June 2024 Dr Roxanne Connelly

Materials are available here:

https://github.com/RoxanneConnelly/SGSSS2024LatentClassAnalysis

Lecture Slides: lectureslides.pdf

Workshop Aims

This workshop will provide you with:

- 1. An introduction to what latent class analysis is and how it is used in the social sciences;
- 2. An introduction to how to carry out a latent class analysis and how to interpret the results.

Timetable

1000 - 1100	Talk 1
-------------	--------

1100 - 1130 Lab Activities

1130 - 1200 Talk 2

1200 - 1230 Lab Activities

1230 – 1300 Final Advice and Questions

June 2024 Dr Roxanne Connelly

Talk 1

Operationalising Social Science Concepts

Operationalisation is the process of turning abstract concepts into measurable observations

Many concepts in the social sciences cannot be observed or measured directly

Authoritarianism
Social Exclusion
Cultural Capital
Sexism
Economic Development

Neoliberalism Racial Prejudice Social Capital Anomie Social Class

Operationalising Social Science Concepts

Religiosity

'The quality or state of being religious'

- Latent class analysis is a method used to extract meaningful groups (i.e. latent classes) from data.
- The concept of latent classes was first introduced by Paul Lazarsfeld (1950) and the implementation of the method was substantially developed by Leo Goodman (1974).

Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis & the interpretation and mathematical foundation of latent structure analysis. In S. A.Stouffer, L.Guttman, E. A.Suchman, P. F.Lazarsfeld, S. A.Star, J. A.Clausen (Eds.), *Measurement and prediction* (pp. 362–472). Princeton, NJ: Princeton University Press.

Goodman, L. A. (1974). The analysis of systems of qualitative variables when some of the variables are unobservable: Part I—A modified latent structure approach. *American Journal of Sociology*, 79, 1179–1259.

Magidson, J., Vermunt, J. K., & Madura, J. P., (2020). Latent Class Analysis, In P. Atkinson, S. Delamont, A. Cernat, J.W. Sakshaug, & R.A. Williams (Eds.), Sage Research Methods Foundations. Sage.

- Covariation in the observed variables (i.e. manifest variables) is theorised to be due to the latent variable.
- The latent variable 'explains' the relationship between the observed variables.

Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis & the interpretation and mathematical foundation of latent structure analysis. In S. A.Stouffer, L.Guttman, E. A.Suchman, P. F.Lazarsfeld, S. A.Star, J. A.Clausen (Eds.), *Measurement and prediction* (pp. 362–472). Princeton, NJ: Princeton University Press.

Goodman, L. A. (1974). The analysis of systems of qualitative variables when some of the variables are unobservable: Part I—A modified latent structure approach. *American Journal of Sociology*, 79, 1179–1259.

Latent class analysis (LCA) is a statistical procedure used to identify **qualitatively different** subgroups.

Using latent class analysis we can fit a statistical model to try to determine which individuals are likely to belong to each latent class group based on the patterns in the manifest variables.

Example Applications

- Chan, T. W., & Goldthorpe, J. H. (2007). Social stratification and cultural consumption: The visual arts in England. Poetics, 35(2), 168-190.
- The aim was to examine the relationship between social stratification and cultural consumption. Specifically the consumption of the 'visual arts'.
- This analysis used the Arts in England Survey.

Table 1					
Percentage of respondents who have visited various visual arts events or establishments in the past 12 months					
Event involving video or electronic art	7.7				
Cultural festival	11.0				
Craft exhibition	18.5				
Exhibition or collection of art, photography or sculpture	21.0				
Museum or art gallery	38.7				

Chan, T. W., & Goldthorpe, J. H. (2007). Social stratification and cultural consumption: The visual arts in England. Poetics, 35(2), 168–190.

Potential patterns of response:

- 5 manifest variables
- 2 possible outcomes (yes/no)

Video / EA	Cultural Festival	Craft Exhib.	Art / Photo	Museum / Gallery
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	No
Yes	Yes	Yes	No	Yes
Yes	Yes	Yes	No	No
Yes	Yes	No	Yes	Yes
Yes	Yes	No	Yes	No
Yes	Yes	No	No	Yes
Yes	Yes	No	No	No

Chan, T. W., & Goldthorpe, J. H. (2007). Social stratification and cultural consumption: The visual arts in England. Poetics, 35(2), 168-190.

Latent Class 1: Inactives

Latent Class 2: Paucivores

Latent Class 3: Omnivores

Table 3
Estimated relative sizes of latent classes and conditional probabilities of different forms of visual arts consumption under a three-class model

	1	2	3
Relative size (%)	58.6	34.4	7.0
Event involving video or electronic art	0.092	0.252	0.632
Cultural festival	0.040	0.120	0.644
Craft exhibition	0.035	0.067	0.478
Exhibition or collection of art, photography or sculpture	0.004	0.416	0.922
Museum or art gallery	0.071	0.809	0.966

Latent Class 1: Inactives

Latent Class 2: Paucivores

Latent Class 3: Omnivores

Latent group membership is more strongly differentiated by social status than by social class or by income.

Education is the most important determinant of latent group membership.

Caregiver Coping Strategies

- Lin, I. F., & Wu, H. S. (2014). **Patterns of coping among family caregivers of frail older adults.** Research on aging, 36(5), 603-624.
- Previous studies have extensively examined the coping strategies of caregivers, but they have not considered the possibility that distinct groups of caregivers may use different coping strategies.
- This analysis used the National Long Term Care Survey.

Emotion-focused coping Talk with friends or relatives 77.39 71.82 Pray or meditate Watch TV 71.49 67.15 Read 61.08 Spend time alone 55.80 Spend time on exercise or hobbies 44.33 Eat Take medication to calm 14.61 Drink alcohol 13.22 Smoke 12.52 Problem-focused coping Obtain assistive devices such as wheelchairs or walkers for care 58.16 recipient 29.72 Use services for personal or nursing care at care recipient's home

28.56

18.90

11.04

10.80

10.59 1,552

Make modifications in care recipient's home

Use transportation services for care recipient

Use respite or caregiver support services

Use services to help with housework at care recipient's home

Use services delivering meals to care recipient's home

Request information on financial help for care recipient

Table 1. Percentages of Family Caregivers Who Said How They Coped.

Table 3. Three Latent Class Model (N = 1,552).

Use respite or caregiver support services

Request information on financial help

	Latent Class		
	Unpatterned Coping	Emotional Coping	Hybrid Coping
Probability of membership	.20	.46	.33
Conditional probability of a Yes response			
Emotion-focused coping			
Talk with friends or relatives	.22	.91	.92
Pray or meditate	.22	.85	.85
Watch TV	.08	.90	.86
Read	.04	.86	.81
Spend time alone	.14	.72	.75
Spend time on exercise or hobbies	.07	.67	.70
Eat	.05	.50	.61
Take medication to calm	.02	.13	.24
Drink alcohol	.01	.15	.18
Smoke	.03	.16	.14
Problem-focused coping			
Obtain assistive devices	.45	.41	.89
Use personal or nursing care	.21	.08	.63
Make home modifications	.16	.15	.55
Use services to help with housework	.14	.08	.36
Use meal deliver services	.05	.04	.24
Use outside services for transportation	.07	.04	.22

.02

.07

.04

.03

.27

.20

A Bourdieusian Social Class Measure

- Connelly, R., Gayle, V., & Playford, C. (2021). **Social class inequalities in educational attainment: measuring social class using capitals, assets and resources.** Contemporary Social Science, 16(3), 280-293.
- Is it possible to create a social class measure based on indicators of capitals, assets and resources using existing social survey data resources?
- This analysis used the United Kingdom Household Longitudinal Study (UKHLS, Understanding Society).

Ascribed label middle class' middle class' class' 'Elite' working class' precariat' % Allocated to Latent 31 11 35 19 Class Prior Probabilities Economic Capital Equivalised Net 7298.64 1559.42 1568.76 1494.50 1232.39 1348.61 Monthly Household Income (mean) Own Home 1.00 0.91 0.86 0.95 0.75 0.52 .96 0.06 .00 0.00

The socially

engaged

'The culturally

engaged middle

The

The traditional

Table 3. Prior probabilities for the six latent class solution.

617).

'The established

OWITHORIE	1.00	0.71	0.00	0.53	0.7.3	0.52
Social Capital						
Number of Friends	6.14	5.16	25.03	7.45	4.91	3.96
(mean)						
Active in Trade Union	0.15	0.09	0.05	0.09	0.02	0.06
Active in Professional	0.68	0.16	0.37	0.37	0.04	0.00
Organisation						
Highbrow Cultural						
Capital						
Classical Music	0.57	0.23	0.23	0.34	0.03	0.00
Concerts						
Historic Buildings	0.42	0.86	0.61	0.95	0.12	0.13
Museums / Galleries	0.85	0.84	0.78	0.98	0.21	0.29
Plays/Theatre/	1.00	0.88	0.80	0.77	0.33	0.20
Pantomime						
Ballet Performance	0.14	0.13	0.23	0.14	0.00	0.00
Emerging Cultural						
Capital						
Social Media	0.58	0.64	0.42	0.88	0.83	0.28
Regularly use the Internet	1.00	0.92	1.00	1.00	1.00	0.24
Gym/Fitness Classes	0.60	0.45	0.55	0.93	0.44	0.22
Rock/Pop/Jazz	0.82	0.59	0.58	0.69	0.22	0.10
Concert						
Cycle	0.42	0.46	0.43	0.99	0.28	0.12
Racquet Sports	0.13	0.24	0.66	0.66	0.09	0.06

.12 0.06 Racquet Sports 0.13 0.24 0.66 0.66 0.09 0.27 0.19 0.19 Golf 0.28 0.07 0.03 Note: – indicates that the values in the cell have been suppressed for statistical disclosure control purposes. n = 616. The sample size reduces by one case in the weighted analyses as one sample member has a weight of zero (unweighted n =

Latent class analysis is a method used to extract meaningful (qualitatively different) groups (i.e. latent classes) from data.

		Latent Variables	
		Continuous	Categorical
Manifest (i.e. observed) Variables	Continuous	Factor Analysis	Latent Profile Analysis
	Categorical	Latent Trait Analysis (aka Item Response Theory)	Latent Class Analysis

Bartholomew, D. J., Steele, F., Moustaki, I., & Galbraith, J. I. (2008). Analysis of Multivariate Social Science Data. CRC Press. (p.178)

- Theorise your latent concept and identify manifest variables.
- Fit a series of latent class models.
- Select the most appropriate latent class model.
- Describe the patterns in your latent classes.
- Use your latent classes in further analysis (i.e. as an explanatory variable or an outcome variable).

Under the Hood

Sinha, P., Calfee, C. S., & Delucchi, K. L. (2020). Practitioner's guide to latent class analysis: methodological considerations and common pitfalls. *Critical care medicine*, *49*(1), e63-e79.

$$P\left(y_{1},y_{2},y_{3},y_{4}
ight) = \sum_{k=1}^{K} P\left(X=k
ight) P\left(y_{1},y_{2},y_{3},y_{4} \mid X=k
ight)$$

Each latent class corresponds to one of k categories that comprise the underlying categorical latent variable (X).

LCA will extract that latent class variable (X) with the fewest number of classes to explain the associations between the observed variables (y1, y2, y3... y_k).

$$P(y_1, y_2, y_3, y_4 \mid X = k) = P(y_1 \mid X = k) P(y_2 \mid X = k) P(y_3 \mid X = k) P(y_4 \mid X = k)$$

A key assumption of LCA is that the latent variable explains all the associations between the manifest variables (i.e. the assumption of local independence).

$$P\left(y_{1},y_{2},y_{3},y_{4}
ight) = \sum_{l=1}^{K} P\left(X=k
ight)P\left(y_{1}|\ X=k
ight)P\left(y_{2}|\ X=k
ight)P\left(y_{3}|\ X=k
ight)P\left(y_{4}|\ X=k
ight)$$

More technical introductions:

- McCutcheon, A. L. (1987). Latent Class Analysis. Sage.
- Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied latent class analysis. Cambridge University Press.
- Collins, L. M., & Lanza, S. T. (2009). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. John Wiley & Sons.

Maximum Likelihood Estimation

- Maximum likelihood estimation is a method used to obtain parameter estimates for statistical models.
- Maximum likelihood estimation consists of procedures for finding estimates of unknown parameters that maximise the likelihood of the observed data, the resulting parameter estimates are called maximum likelihood estimates.
- Maximum likelihood follows an iterative process known as convergence.
- Sometimes models 'fail to converge' (more on that later...)

Running Latent Class Analysis in Stata

Software

General Purpose Statistical Software:

- Stata (gsem)
- R (poLCA)
- Mplus

Specialist Software:

- LatentGold
- LEM

Running Latent Class Analysis in Stata

 From Stata 16 onwards LCA can be undertaken using the gsem suite of commands.

STATA
STRUCTURAL EQUATION MODELING
REFERENCE MANUAL
RELEASE 17

https://www.stata.com/manuals/sem.pdf

Example: Drinking Behaviour

I like to drink

I drink hard liquor

I have drank in the morning

I have drank at work

I drink to get drunk

I like the taste of alcohol

I drink to help me sleep

Drinking interferes with my relationships

I frequently visit bars

Fitting a Latent Class Analysis Model

We use the **gsem** command to fit a latent class model

gsem (var1 var2 var3 var4 var5 var6 <-), logit lclass(C 3)</pre>

Our observed variables are all binary so we use the **logit** option

The **lclass** (C 3) option specifies that we want to allow for three categories in a latent class variable named 'C'

gsem (like hard morning work drunk taste sleep rel bar <-), logit lclass(C 3)</pre>

		Coefficient	Std. err.	z	P> z	[95% conf.	. interval]
1.C		(base outco	ome)				
2.C	_cons	.4287798	.8185974	0.52	0.600	-1.175642	2.033201
3.C	_cons	-1.521675	.6923291	-2.20	0.028	-2.878615	1647353

gsem (like hard morning work drunk taste sleep rel bar <-), logit lclass(C 3)</pre>

	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
like _cons	7899339	.9859737	-0.80	0.423	-2.722407	1.142539
hard _cons	-1.628514	. 3027822	-5.38	0.000	-2.221956	-1.035071
morning _cons	-3.295288	.4608422	-7.15	0.000	-4.198523	-2.392054
work _cons	-2.823975	.3176524	-8.89	0.000	-3.446562	-2.201388
drunk _cons	-3.069835	.8750441	-3.51	0.000	-4.78489	-1.35478
taste _cons	-1.496508	. 3030282	-4.94	0.000	-2.090432	9025834
sleep _cons	-2.223255	. 2496319	-8.91	0.000	-2.712524	-1.733985
relcons	-2.091981	. 2295699	-9.11	0.000	-2.541929	-1.642032
bar _cons	-1.464306	. 2636135	-5.55	0.000	-1.980979	9476332

estat lcmean, nose

	Margin	
like	.3121829	
hard	.1640341	
morning	.0357332	
work	.0560423	
drunk	.0443688	
taste	.182947	
sleep	.0976816	
rel	.1098787	
bar	.1878096	
:		
like	.9082864	
hard	.3374061	
morning	.0667436	
work	.0654803	
drunk	.2191517	
taste	.3196319	
sleep	.1128118	
rel	.1398925	
bar	.3248739	
like	.9232913	
hard	.5461479	
morning	.4263958	
work	.4179356	
drunk	.7654785	
taste	.471019	
sleep	.5123812	
rel	.6192121	
bar	.3488301	

Latent Class Analysis of Drinking Behaviour

Cum.	Percent	Freq.	3 Class model - modal LC
28.80	28.80	288	Class 1 Abstainer
93.40	64.60	646	Class 2 Social Drinker
100.00	6.60	66	Class 3 Problem Drinker
	100.00	1,000	Total

	list id class3post1 class3post2 class3post3 expclass3 in 4/29				
	id	class3~1	class3~2	class3~3	expclass3
4.	4	.1773417	.7967343	.025924	Class 2 Social Drinker
5.	5	.0407349	.9341407	.0251244	Class 2 Social Drinker
6.	6	.6856872	.3119247	.0023881	Class 1 Abstainer
7.	7	.0917532	.9033101	.0049367	Class 2 Social Drinker
8.	8	.2176675	.7657966	.0165359	Class 2 Social Drinker
9.	9	.2897012	.6958461	.0144527	Class 2 Social Drinker
10.	10	.850441	.149076	.000483	Class 1 Abstainer
11.	11	.922773	.0770952	.0001318	Class 1 Abstainer
12.	12	.1111802	.8849409	.003879	Class 2 Social Drinker
13.	13	.1737878	.822176	.0040362	Class 2 Social Drinker
14.	14	.850441	.149076	.000483	Class 1 Abstainer
15.	15	.1737878	.822176	.0040362	Class 2 Social Drinker
16.	16	.2082288	.7899443	.0018269	Class 2 Social Drinker
17.	17	.0193921	.933044	.0475639	Class 2 Social Drinker
18.	18	.0198259	.6659695	.3142046	Class 2 Social Drinker
19.	19	.6856872	.3119247	.0023881	Class 1 Abstainer
20.	20	.922773	.0770952	.0001318	Class 1 Abstainer
21.	21	.1239127	.6570181	.2190692	Class 2 Social Drinker
22.	22	.8212255	.1780553	.0007192	Class 1 Abstainer
23.	23	.0917532	.9033101	.0049367	Class 2 Social Drinker
24.	24	.4565689	.5076751	.035756	Class 2 Social Drinker
25.	25	.922773	.0770952	.0001318	Class 1 Abstainer
26.	26	.0000985	.010796	.9891055	Class 3 Problem Drinker
27.	27	.922773	.0770952	.0001318	Class 1 Abstainer
28.	28	.3537591	.6449012	.0013397	Class 2 Social Drinker
29.	29	.3537591	.6449012	.0013397	Class 2 Social Drinker

Class Enumeration

- The model won't tell you how many latent groups there are.
- The process of deciding how many classes to include is called 'class enumeration'.
- To decide how many latent classes to include in your model you should consider statistical fit and substantive interpretability.

Akaike's	information	criterion	and	Bayesian	information	criterion

Ν

1,000

1,000

Model

class1

class2

against the sample size.

class3 class4	1,000 1,000		-4231.696 -4225.508		8521.392 8529.016	
Note: BIC uses	N = number of o	bservat	ions. See [R]	BIC no	ote.	
The Akaike I	nformation Criterion	n (AIC) ar	nd the Bayesian Iı	nformat	ion Criterion (BIC)

are indexes of how well a model fits, which seek to balance the complexity of the model

11(null) 11(model)

-4348.878

-4251.208

df

19

AIC

8715.755

8540.416

BIC

419

8759.925

8633.664

AIC and BIC are calculated from maximum likelihood estimates.

Akaike's	information	criterion	and	Bayesian	${\tt information}$	criterion

1,000

1,000

Model

class1

class2

class3

against the sample size.

	class4	1,000	4225.508	39	8529.016	8720.
Note:	BIC uses	N = number of	observations. See [R]	BIC no	ote.	
Т	The Akaike	Information Criteri	on (AIC) and the Bayesian Ir	nformat	ion Criterion (1	BIC)

are indexes of how well a model fits, which seek to balance the complexity of the model

11(null) 11(model)

-4348.878

-4251.208

-4231.696

df

19

AIC

8715.755

8540.416

8521.392

BIC

419

8759.925

8633.664

8663.716

AIC and BIC are calculated from maximum likelihood estimates.

Entropy

Entropy is a diagnostic statistic which measures the certainty of a posterior classification.

Entropy can help you consider how 'crisp' or 'fuzzy' your model solution is.

Values approaching 1 indicate that there is a clear delineation classes, values approaching 0 indicate that there is not a clear separation between the classes.

```
. lcaentropy
Entropy = .547709
```

Wang, M.-C., Deng, Q., Bi, X., Ye, H., & Yang, W. (2017). Performance of the entropy as an index of classification accuracy in latent profile analysis: A Monte Carlo simulation study. Acta Psychologica Sinica, 49(11), 1473-1482.

Convergence

Iteration 282: log likelihood = -4225.364 (not concave) Iteration 283: log likelihood = -4225.364 (not concave) (not concave) Iteration 284: log likelihood = -4225.364 Iteration 285: log likelihood = -4225.364 (not concave) Iteration 286: log likelihood = -4225.364 (not concave) Iteration 287: log likelihood = -4225.364 (not concave) Iteration 288: log likelihood = -4225.364 (not concave) Iteration 289: log likelihood = (not concave) -4225.364 Iteration 290: log likelihood = -4225.364 (not concave) Iteration 291: log likelihood = -4225.364 (not concave) Iteration 292: log likelihood = -4225.364 (not concave) Iteration 293: log likelihood = -4225.364 (not concave) Iteration 294: log likelihood = -4225.364 (not concave) Iteration 295: log likelihood = -4225.364 (not concave) Iteration 296: log likelihood = -4225.364 (not concave) Iteration 297: log likelihood = -4225.364 (not concave) Iteration 298: log likelihood = (not concave) -4225.364 (not concave) Iteration 299: log likelihood = -4225.364 Iteration 300: log likelihood = -4225.364 (not concave) convergence not achieved

iteration zoi. log likelinood - -4225.504 (not concave)

Convergence

startvalues() option	Description
factor	runs a factor analysis on all observed variables to obtain preliminary class predictions
randomid, $draws(\#)$	randomly assigns observations to initial classes
randompr, draws(#)	randomly assigns initial class probabilities
jitter, draws($\#$)	randomly perturbs starting values from a Gaussian approximation to each outcome
classid varname	specifies a variable that identifies the initial class membership for each case
classpr varlist	specifies a list of variables that give the probability of membership in each class

gsem (like hard morning work drunk taste sleep rel bar <-), logit lclass(C 4) ///
 startvalues(randomid, draws(15) seed(1583))</pre>

Convergence

- In practice, researchers often find that their hypothesised LCA models do not converge.
- If this happens you should try different sets of starting values and make use of additional optional commands to help the model converge.
- Sometimes, you need to simply accept that the model will not converge (and report this transparently).

Latent Class Analysis

June 2024 Dr Roxanne Connelly

Computer Lab Activity 1

Computer Lab Activity 1

Materials are available here:

https://github.com/RoxanneConnelly/SGSSS2024LatentClassAnalysis

File: LabActivity1.do

Timetable

1000 -	- 1100	Talk 1
--------	--------	--------

1100 - 1130 Lab Activities

1130 - 1200 Talk 2

1200 - 1230 Lab Activities

1230 – 1300 Final Advice and Questions

Latent Class Analysis

June 2024 Dr Roxanne Connelly

Talk 2

Latent Class Analysis

Latent class analysis (LCA) is a statistical procedure used to identify **qualitatively different** subgroups.

Sample Size

'more is better, but it depends'

Weller, B. E., Bowen, N. K., & Faubert, S. J. (2020). Latent class analysis: a guide to best practice. Journal of Black Psychology, 46(4), 287-311.

Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analysis.

Translational Issues in Psychological Science, 4(4), 440-461.

Selecting Indicator Variables

More indicators and indicators which effectively differentiate between groups will lead to better results

Wurpts, I. C., & Geiser, C. (2014). Is adding more indicators to a latent class analysis beneficial or detrimental? Results of a Monte Carlo study. Frontiers in Psychology, 5, 1-15. https://doi.org/10.3389/fpsyg.2014.00920

Selecting the Number of Classes

Statistical Model Evaluation + Theoretical Interpretability

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535-569.

Vermunt, J. K. (2002). Latent class analysis of complex sample survey data: Application to dietary data: Comment. Journal of the American Statistical Association, 97(459), 736-737.

Muthén, B. O., & Muthén, L. K. (2000). Integrating person-centered and variable centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical & Experimental Research, 24(6), 882-891.

Allocation to Latent Classes

Individuals are not placed in a latent class group with 100% certainty:

- You might consider an alternative to modal class allocation (e.g. analyse the probability of class membership)
- You might undertake some sensitivity analysis

		list	t id class3 _l	post1 class	3post2 class3post3 expclas
	id	class3~1	class3~2	class3~3	expclass3
4.	4	.1773417	.7967343	.025924	Class 2 Social Drinker
	5	.0407349	.9341407	.0251244	Class 2 Social Drinker
6.	6	.6856872	.3119247	.0023881	Class 1 Abstainer
	7	.0917532	.9033101	.0049367	Class 2 Social Drinker
8.	8	.2176675	.7657966	.0165359	Class 2 Social Drinker
9.	9	. 2897012	.6958461	.0144527	Class 2 Social Drinker
10.	10	.850441	.149076	.000483	Class 1 Abstainer
11.	11	.922773	.0770952	.0001318	Class 1 Abstainer
12.	12	.1111802	.8849409	.003879	Class 2 Social Drinker
13.	13	.1737878	.822176	.0040362	Class 2 Social Drinker
14.	14	.850441	.149076	.000483	Class 1 Abstainer
15.	15	.1737878	.822176	.0040362	Class 2 Social Drinker
L6.	16	.2082288	.7899443	.0018269	Class 2 Social Drinker
17.	17	.0193921	.933044	.0475639	Class 2 Social Drinker
18.	18	.0198259	.6659695	.3142046	Class 2 Social Drinker
19.	19	.6856872	.3119247	.0023881	Class 1 Abstainer
20.	20	.922773	.0770952	.0001318	Class 1 Abstainer
21.	21	.1239127	.6570181	.2190692	Class 2 Social Drinker
22.	22	.8212255	.1780553	.0007192	Class 1 Abstainer
23.	23	.0917532	.9033101	.0049367	Class 2 Social Drinker
24.	24	.4565689	.5076751	.035756	Class 2 Social Drinker
25.	25	.922773	.0770952	.0001318	Class 1 Abstainer
26.	26	.0000985	.010796	.9891055	Class 3 Problem Drinker
27.	27	.922773	.0770952	.0001318	Class 1 Abstainer
28.	28	.3537591	.6449012	.0013397	Class 2 Social Drinker
29.	29	.3537591	.6449012	.0013397	Class 2 Social Drinker

The Naming Fallacy

Researchers usually assign names to the identified classes, and because of the complexity of the classes, may advertently engage in 'naming fallacy', wherein the name of the class does not accurately reflect the class membership.

These limitations should be appreciated when reporting latent class analyses.

Including Covariates in Latent Class Analysis

Does the composition of the latent class groups vary by sociodemographic characteristics?

Is membership of a latent class group associated with an outcome of interest?

Including Covariates in Latent Class Analysis

Should you include the covariates in the same model used to identify the latent class solution?

Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved threestep approaches. Political Analysis, 18(4), 450-469.

Nylund-Gibson, K., & Masyn, K. E. (2016). Covariates and mixture modeling: Results of a simulation study exploring the impact of misspecified effects on class enumeration. Structural Equation Modeling: A Multidisciplinary Journal, 23(6), 782-797.

Three-Step Approach

The three step approach:

- Develop your latent class model solution
- Add covariates to this model
- Fix the measurement parameters of the latent class model to those without the covariates included

Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture modeling: A 3-step approach using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 329-341.

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3-27.

Latent Class Analysis

June 2024 Dr Roxanne Connelly

Computer Lab Activity 2

Computer Lab Activity 2

Materials are available here:

https://github.com/RoxanneConnelly/SGSSS2024LatentClassAnalysis

File: LabActivity2.do or LabActivity2_Answers.do

Timetable

1000 -	1100	Talk 1
--------	------	--------

1100 - 1130 Lab Activities

1130 - 1200 Talk 2

1200 - 1230 Lab Activities

1230 – 1300 Final Advice and Questions

Latent Class Analysis

June 2024 Dr Roxanne Connelly

Final Advice

Final Advice: Share your Code

WORLD VIEW - 24 MAY 2018

Before reproducibility must come preproducibility

Instead of arguing about whether results hold up, let's push to provide enough information for others to repeat the experiments, says Philip Stark.

Philip B. Stark

Stark, P. B. (2018). Before reproducibility must come preproducibility. Nature, 557(7706), 613-614.

"A published paper should be considered as an advertisement of the research."

(Claerbout 1994)

Claerbout, J. (1994). Seventeen years of super computing and other problems in seismology [Paper presentation]. National Research Council Meeting on High Performance Computing in Seismology. http://sepwww.stanford.edu/sep/jon/nrc.html

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

A HIS SEPHELLIANS

Distributed by Color-Depressons Ltd.

Make your code available for others to view the full details of your analysis.

Provide a rationale for the manifest variables selected.

Provide a table of model fit statistics and report how the preferred model was selected.

Table 2. Model of fit statistics of the latent class models.

Model	n	ll(model)	df	AIC	BIC	Entropy
Two Class	616	-12000.03	37	24074.06	24237.72	0.81
Three Class	616	-11927.50	54	23962.99	24201.85	0.83
Four Class	616	-11834.21	68	23804.42	24105.20	0.86
Five Class	616	-11739.05	85	23648.10	24024.08	0.94
Six Class	616	-11693.06	103	23592.12	24047.71	0.96
Seven Class	616	-11670.82	120	23581.65	24112.43	0.95
Eight Class	616	-11659.57	135	23589.13	24186.27	0.94
Nine Class	616	-11605.72	142	23495.43	24123.54	0.93

Note: The sample size reduces by one case in the weighted analyses as one sample member has a weight of zero (unweighted n = 617).

Provide a table summarising the characteristics of each latent class group.

Ascribed label	'Elite'	'The established middle class'	'The socially engaged middle class'	'The culturally engaged middle class'	'The traditional working class'	'The precariat'
% Allocated to Latent Class	-	31	-	11	35	19
Prior Probabilities						
Economic Capital						
Equivalised Net Monthly Household Income (mean)	7298.64	1559.42	1568.76	1494.50	1232.39	1348.61
Own Home Social Capital	1.00	0.91	0.86	0.95	0.75	0.52
Number of Friends (mean)	6.14	5.16	25.03	7.45	4.91	3.96
Active in Trade Union	0.15	0.09	0.05	0.09	0.02	0.06
Active in Professional Organisation Highbrow Cultural	0.68	0.16	0.37	0.37	0.04	0.00
Capital		0.70		224	0.02	
Classical Music Concerts	0.57	0.23	0.23	0.34	0.03	0.00
Historic Buildings	0.42	0.86	0.61	0.95	0.12	0.13
Museums / Galleries	0.85	0.84	0.78	0.98	0.21	0.29
Plays/Theatre/ Pantomime	1.00	0.88	0.80	0.77	0.33	0.20
Ballet Performance Emerging Cultural Capital	0.14	0.13	0.23	0.14	0.00	0.00
Social Media	0.58	0.64	0.42	0.88	0.83	0.28
Regularly use the Internet	1.00	0.92	1.00	1.00	1.00	0.24
Gym/Fitness Classes	0.60	0.45	0.55	0.93	0.44	0.22
Rock/Pop/Jazz Concert	0.82	0.59	0.58	0.69	0.22	0.10
Cycle	0.42	0.46	0.43	0.99	0.28	0.12
Racquet Sports	0.13	0.24	0.66	0.66	0.09	0.06
Golf	0.27	0.19	0.19	0.28	0.07	0.03

Note: – indicates that the values in the cell have been suppressed for statistical disclosure control purposes. n = 616. The sample size reduces by one case in the weighted analyses as one sample member has a weight of zero (unweighted n = 617).

Don't forget about the characteristics of your data (e.g. complex samples and missing data).

Final Advice: Extensions to LCA

This is only the beginning, Latent Class Analysis can do much more...

- You can extend Latent Class Analysis to include different types of variables.
- You can undertake LCA separately by group (e.g. men and women).
- There might be more than one latent variable.

Workshop Summary

You should now know:

- What latent class analysis is.
- How latent class analysis is used in the social sciences.
- How to undertake a latent class analysis.
- How to select the number of latent classes.
- How to allocate sample members to latent classes using the modal allocation method.
- How to overcome (some) model convergence issues.
- How to report a latent class analysis.

Latent Class Analysis

June 2024 Dr Roxanne Connelly

Questions

Latent Class Analysis

June 2024 Dr Roxanne Connelly

roxanne.connelly@ed.ac.uk

