Colle 02

Savoirs et compétences :

Train simple

Soit le train d'engrenages suivant.

Question 1 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Question 2 Donner une relation géométrique entre Z_1 , Z_{21} , Z_{22} et Z_4 permettant de garantir le fonctionnement du train d'engrenages.

Calcul de moments

On donne la structure suivante :

Question 1 Déterminer $\mathcal{M}(A, \overrightarrow{F})$. On donne la structure suivante :

Question 2 Déterminer $\mathcal{M}(B, \overrightarrow{F})$.

Solide en rotation

Une machine est entraînée par un moteur électrique de fréquence nominale $1\,500\,\mathrm{tr\,min}^{-1}$. Celui-ci exerce au démarrage un couple moteur constant de $40\,\mathrm{N}$ m. Le moment d'inertie de l'ensemble de la chaîne cinématique rapporté à l'axe du rotor est de $12,5\,\mathrm{kg\,m^2}$. Le couple résistant dû aux frottements est supposé constant et égal à $4\,\mathrm{N}\,\mathrm{m}$.

Question 1 Calculer l'accélération du moteur pendant le démarrage.

Question 2 Calculer le temps mis pour atteindre la fréquence nominale.

Lois de Kirchoff

Question Sur le circuit suivant, déterminer les courants dans chacune des branches et la tension aux bornes de tous les dipôles en fonction de E et des différentes résistances R_i .

Xavier Pessoles 1

Résistance équivalente

Déterminer la résistance équivalente du montage suivant.

Xavier Pessoles

2