时序分析(5) -- ARMA(p,q)模型

如无特殊说明,本系列文章中的数据将使用2012~2017年,分别代表国内股票、香港股票、国内债卷和国内货币的四个指数数据。

前两篇文章我们分别探讨了AR模型和MA模型对时序数据进行建模,这一节我们主要讨论ARMA模型。从名字中我们可以推知,ARMA模型是AR模型和MA模型的一种组合。

首先我们介绍ARMA模型的基本概念:

AutoRegression Moving Average Models - ARMA(p,q)

- AR模型是尝试捕捉和解释金融交易市场的动量和均值反转效果
- MA模型是尝试捕捉和解释在白噪声项中所观测到的振荡效果,这些震荡可以被理解为影响所观测过程的非 预期事件造成的影响,例如超额收益等。

ARMA模型就是这两者的联合,它的主要缺点是忽略了在金融市场时序数据中经常可见的波动聚簇现象(Volatility Clustering),模型公式如下:

$$y_{t} = \alpha_{1} y_{t-1} + \alpha_{2} y_{t-2} + \dots + \alpha_{p} y_{t-p} + \omega_{t} + \beta_{1} \omega_{t-1} + \dots + \beta_{q} \omega_{t-q}$$

$$= \sum_{i=1}^{p} \alpha_{i} y_{t-i} + \omega_{t} + \sum_{i=1}^{q} \beta_{i} \omega_{t-i}$$

In [1]:

import warnings
warnings.simplefilter('ignore')

1. 导入python包

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from fintechtools.backtest import *
from fintechtools.datasource import *
#from fintechtools. SimuMultiTest import *
#from lib.portfolio import DailySimulator
#from lib. experiment import Experiment
import statsmodels. formula. api as smf
import statsmodels.tsa.api as smt
import statsmodels.api as sm
import scipy. stats as scs
from arch import arch model
#sns. set context ("talk")
import matplotlib
import matplotlib as mpl
from matplotlib. ticker import FuncFormatter
mpl. style. use ('classic')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.serif'] = ['SimHei']
plt.rcParams['axes.unicode minus'] = False
import seaborn as sns
sns. set_style("whitegrid", {"font. sans-serif":['simhei', 'Arial']})
sns. set context ("talk")
#zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Users\ktwc37\Documents\ZNTG\notebooks\S\
%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

2. 读入数据

```
In [3]:
```

```
start = '2012-01-01'
end = '2017-02-05'
```

```
In [4]:
```

```
indexs = pd.read_excel('./data/华夏指数.xlsx')
indexs_pv = indexs.pivot_table(index='日期', columns='简称', values='收盘价(元)')
indexs_pv.index = pd.to_datetime(indexs_pv.index, unit='d')
```

In [5]:

```
indexs_pv.columns = ['国内债券', '国内股票', '香港股票', '国内货币']
indexs_pv = indexs_pv[['国内债券', '国内股票', '国内货币', '香港股票']]
indexs_pv.fillna(axis=0, method='bfill', inplace=True)
indexs_sub = indexs_pv.loc[start:end,]
```

国内债卷:中债综合财富(总值)指数

国内股票:中证全指 香港股票:恒生指数 国内货币:货币基金

In [6]:

indexs_sub. head()

Out[6]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-04	141.5160	2571.951	1166.7726	18727.31
2012-01-05	141.5501	2513.699	1166.9696	18813.41
2012-01-06	141.7277	2527.247	1167.1185	18593.06
2012-01-09	141.8669	2619.638	1167.5058	18865.72
2012-01-10	142.0118	2713.529	1167.6330	19004.28

In [7]:

```
indexs_logret = indexs_sub.apply(log_return).dropna()
```

In [8]:

indexs_logret.head()

Out[8]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-05	0.000241	-0.022909	0.000169	0.004587
2012-01-06	0.001254	0.005375	0.000128	-0.011782
2012-01-09	0.000982	0.035906	0.000332	0.014558
2012-01-10	0.001021	0.035214	0.000109	0.007318
2012-01-11	0.000188	-0.002115	0.000113	0.007740

In [9]:

```
def tsplot(y, lags=None, figsize=(16, 10), style='bmh'):
    if not isinstance(y, pd. Series):
        y = pd. Series(y)
    with plt.style.context(style):
        fig = plt.figure(figsize=figsize)
        #mpl. rcParams['font. family'] = 'Ubuntu Mono'
        1ayout = (3, 2)
        ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
        acf_ax = plt.subplot2grid(layout, (1, 0))
        pacf ax = plt. subplot2grid(layout, (1, 1))
        qq_ax = plt. subplot2grid(layout, (2, 0))
        pp_ax = plt. subplot2grid(layout, (2, 1))
        y. plot (ax=ts_ax)
        ts_ax.set_title('Time Series Analysis Plots')
        smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
        smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
        sm. qqplot(y, line='s', ax=qq_ax)
        qq_ax.set_title('QQ Plot')
        scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)
        plt. tight_layout()
    return
```

模拟ARMA(2,3)过程

下面我们以 $\beta = [0.5, -0.3, \alpha = [0.5, -0.25]$ 来模拟一个ARMA(2,2)过程

In [15]:

```
# Simulate an ARMA(2, 2) model with alphas=[0.5, -0.25] and betas=[0.5, -0.3]
max_lag = 30

n = int(5000) # lots of samples to help estimates
burn = int(n/10) # number of samples to discard before fit

alphas = np. array([0.5, -0.25])
betas = np. array([0.5, -0.3])
ar = np.r_[1, -alphas]
ma = np.r_[1, betas]

arma22 = smt.arma_generate_sample(ar=ar, ma=ma, nsample=n, burnin=burn)
_ = tsplot(arma22, lags=max_lag)
```


现在我们对此模拟数据用ARMA(2,2)进行建模

In [16]:

```
mdl = smt.ARMA(arma22, order=(2, 2)).fit(
    maxlag=max_lag, method='mle', trend='nc', burnin=burn)
print(mdl.summary())
```

		ARM	A Model Re	sults		
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(2, , 12 Jul : 19:10	, 2) Log mle S.D. 2018 AIC		s	5000 -7115. 477 1. 004 14240. 955 14273. 541 14252. 375
	coef	std err	Z	P> z	[0.025	0. 975]
ar. L1. y ar. L2. y ma. L1. y ma. L2. y	0. 5859 -0. 2640 0. 4138 -0. 3684	0. 052 0. 015 0. 053 0. 049	11. 335 -17. 544 7. 807 -7. 542 Roots	0. 000 0. 000 0. 000 0. 000	0. 485 -0. 294 0. 310 -0. 464	0. 687 -0. 235 0. 518 -0. 273
	Real	I1	maginary	Modulu	S	Frequency
AR. 1 AR. 2 MA. 1 MA. 2	1. 1096 1. 1096 -1. 1790 2. 3022	-	-1.5989j +1.5989j +0.0000j +0.0000j	1. 946 1. 946 1. 179 2. 302	2 0	-0. 1534 0. 1534 0. 5000 0. 0000

显然, ARMA模型准确的回归出了模拟数据设定的参数。

下面,我们模拟一个ARMA(3,2)过程,然后用ARMA模型来建模,搜索参数并给出赤池信息量(Akaike Information Criterion)AIC最低的p,q。

```
# Simulate an ARMA(3, 2) model with alphas=[0.5, -0.25, 0.4] and betas=[0.5, -0.3]
\max 1ag = 30
n = int(5000)
burn = 2000
alphas = np. array([0.5, -0.25, 0.4])
betas = np. array([0.5, -0.3])
ar = np.r_[1, -alphas]
ma = np.r_[1, betas]
arma32 = smt.arma_generate_sample(ar=ar, ma=ma, nsample=n, burnin=burn)
_ = tsplot(arma32, lags=max_lag)
# pick best order by aic
# smallest aic value wins
best_aic = np.inf
best_order = None
best_md1 = None
rng = range(5)
for i in rng:
    for j in rng:
        try:
            tmp_md1 = smt. ARMA(arma32, order=(i, j)).fit(method='mle', trend='nc')
            tmp aic = tmp mdl.aic
            if tmp_aic < best_aic:</pre>
                best_aic = tmp_aic
                best_order = (i, j)
                best_md1 = tmp_md1
        except: continue
print('aic: {:6.5f} | order: {}'.format(best aic, best order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
```

```
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals
"Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals
"Check mle_retvals", ConvergenceWarning)
aic: 14266.72269 | order: (3, 2)
```


非常好,我们准确的找到了p,q。

In [18]:

print(best_mdl.summary())

		ARMA	Model Resul	.ts		
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(3, 1, 12 Jul 2 19:11	2) Log Li mle S.D. o 2018 AIC	eservations: kelihood of innovatio	ns	5000 -7127. 361 1. 006 14266. 723 14305. 826 14280. 428
	coef	std err	Z	P> z	[0. 025	0. 975]
ar. L1. y	0. 5258	0.030	17. 367	0.000	0. 466	0. 585
ar. L2. y	-0. 2770	0.016	-17. 226	0.000	-0.309	-0. 245
ar. L3. y	0. 4151	0.014	30. 284	0.000	0.388	0.442
ma. L1. y	0. 4752	0.033	14. 563	0.000	0.411	0. 539
ma. L2. y	-0. 3211	0.031	-10.259 Roots	0.000	-0. 382	-0. 260
	Real	In	aginary	Modul	====== us	Frequency
AR. 1	1. 2300	-	-0.0000j	1. 23	00	-0.0000
AR. 2	-0. 2813	=	-1.3710j	1. 3996		-0.2822
AR. 3	-0.2813	+	-1.3710j	1. 39	96	0.2822
MA. 1	-1.1736	+	-0.0000j	1. 17	36	0.5000
MA. 2	2.6535	+	-0.0000j	2.65	35	0.0000

残差plot

In [19]:

= tsplot(best_mdl.resid, lags=max_lag)

残差与高斯白噪声非常拟合。

下一步,我们要尝试使用ARMA模型对四个指数数据建模。

• 国内股票收益率 以ARMA建模,优化目标为Max Likelihood Estimation,得到阶数为(3,2)

```
In [20]:
```

aic: -6601.86081 | order: (3, 2)

"Check mle_retvals", ConvergenceWarning)

```
best_aic = np.inf
best_order = None
best mdl = None
Y = indexs_logret['国内股票']
rng = range(5)
for i in rng:
    for j in rng:
        try:
            tmp_mdl = smt.ARMA(Y, order=(i, j)).fit(method='mle', trend='nc')
            tmp aic = tmp mdl.aic
            if tmp_aic < best_aic:</pre>
                best_aic = tmp_aic
                best_order = (i, j)
                best_md1 = tmp_md1
        except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma

ximum Likelihood optimization failed to converge. Check mle_retvals

In [21]:

print(best_mdl.summary())

		ARMA Mode	el Results	3		
Method: mle S. D. of innovations Date: Thu, 12 Jul 2018 AIC -66 Time: 19:29:11 BIC -68					1234 3306. 930 0. 017 6601. 861 5571. 153 5590. 309	
	coef sto	l err	Z	P> z	[0. 025	0. 975]
ar. L1. 国内股票 ar. L2. 国内股票 ar. L3. 国内股票 ma. L1. 国内股票 ma. L2. 国内股票	0. 3035 -0. 9876 0. 1147 -0. 2264 0. 9566	0. 033 0. 014 0. 029 0. 019 0. 017	9. 106 -68. 697 3. 950 -12. 219 57. 387	0. 000 0. 000 0. 000 0. 000 0. 000	0. 238 -1. 016 0. 058 -0. 263 0. 924	0. 369 -0. 959 0. 172 -0. 190 0. 989
	Real	Imagina	ary	Modulus	Fre	equency
AR. 1 AR. 2 AR. 3 MA. 1 MA. 2	0. 0957 0. 0957 8. 4200 0. 1183 0. 1183	-1. 013 +1. 013 -0. 000 -1. 015 +1. 015	31j 00j 55j	1. 0176 1. 0176 8. 4200 1. 0224 1. 0224	- -	-0. 2350 0. 2350 -0. 0000 -0. 2315 0. 2315

从拟合的模型指标上看,一阶参数都比较显著。

残差Plot

In [22]:

= tsplot(best_mdl.resid, lags=max_lag)

从QQ-plot上看,残差并非正态分布,所以说明模型拟合并不是非常完美。

 香港股票收益率 以ARMA建模 优化目标为Max Likelihood Estimation,拟合参数为(2,2)

```
In [25]:
```

aic: -7640.79631 | order: (2, 2)

"Check mle_retvals", ConvergenceWarning)

```
Y = indexs logret['香港股票']
rng = range(5)
for i in rng:
    for j in rng:
        try:
            tmp_mdl = smt.ARMA(Y, order=(i, j)).fit(method='mle', trend='nc')
            tmp_aic = tmp_mdl.aic
            if tmp_aic < best_aic:</pre>
                best_aic = tmp_aic
                best order = (i, j)
                best_md1 = tmp_md1
        except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma

ximum Likelihood optimization failed to converge. Check mle_retvals

In [26]:

print(best_mdl.summary())

		ARMA Mod	el Results 	S 			
Dep. Variable:							
Model:		ARMA(2, 2)	RMA(2, 2) Log Likelihood		3	825. 398	
Method:		mle	S.D. of	innovations		0.011	
Date:	Thu,	12 Jul 2018	AIC		-7	640. 796	
Time:		19:32:56	BIC		-7	615. 206	
Sample:		01-05-2012	HQIC		-7	631. 170	
	-	02-03-2017					
	coef s	td err	z	P> z	[0. 025	0. 975]	
ar. L1. 香港股票	-0.1710	0.005	-37. 855	0.000	-0. 180	-0.162	
ar. L2. 香港股票	-0.9924	0.004	-239.949	0.000	-1.001	-0.984	
ma. L1. 香港股票	0.1804	0.002	73.455	0.000	0.176	0. 185	
ma. L2. 香港股票	1.0000	0.005	201.497	0.000	0.990	1.010	
		Ro	ots				
	Real	Imagin	ary	Modulus	Fre	equency	
AR. 1	-0 . 0862	-1.00	 01j	1.0038		-0. 2637	
		+1.00	01j	1.0038		0. 2637	
MA. 1	-0.0902	-0.99	-0.9959j		_	-0.2644	
MA. 2	-0.0902	+0.99	59 j	1.0000		0. 2644	

回归系数都比较显著

 国内债券收益率 以ARMA建模 优化目标为Max Likelihood Estimation,得到(3,1).

```
In [27]:
```

```
Y = indexs logret['国内债券']
rng = range(5)
for i in rng:
    for j in rng:
        try:
            tmp_mdl = smt.ARMA(Y, order=(i, j)).fit(method='mle', trend='nc')
            tmp_aic = tmp_mdl.aic
            if tmp_aic < best_aic:</pre>
                best_aic = tmp_aic
                best order = (i, j)
                best_md1 = tmp_md1
        except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

```
aic: -14105.28291 | order: (3, 1)
```

In [28]:

```
print(best_mdl.summary())
```

		ARMA Mode	el Results 			
Dep. Variable:		 国内债	 5券 No.	Observations	 3:	1234
Model:		ARMA (3, 1)	Log Like	lihood	7	057.641
Method:		mle	S.D. of	innovations		0.001
Date:	Thu,	12 Jul 2018	AIC		-14	105. 283
Time:		19:35:52	BIC		-14	079.693
Sample:		01-05-2012	HQIC		-14	095.657
	_	02-03-2017				
=======================================	coef s	td err	Z	P> z	[0. 025	0.975]
ar. L1. 国内债券	1. 3945	0.031	44. 862	0.000	1.334	1. 455
ar. L2. 国内债券	-0.3340	0.048	-6.961	0.000	-0.428	-0.240
ar. L3. 国内债券	-0.0629	0.029	-2.138	0.033	-0.121	-0.005
ma. L1. 国内债券	-0.9845	0.012	-79. 206	0.000	-1.009	-0.960
		Roo	ots			
=========	Real	Imagina	ary	Modulus	Fre	quency
AR. 1	1.0045	+0.000	00j	1.0045		0.0000
AR. 2 1. 9219		+0.000	+0.0000 j			0.0000
AR. 3	-8.2389	+0.000	00j	8. 2389		0.5000
MA. 1	1.0157			00j 1.0157		0.0000

 国内货币收益率 以ARMA建模 优化目标为Max Likelihood Estimation,得到(3,4).

In [30]:

```
Y = indexs logret['国内货币']
rng = range(5)
for i in rng:
    for j in rng:
        try:
            tmp mdl = smt. ARMA(Y, order=(i, j)).fit(method='mle', trend='nc')
            tmp aic = tmp mdl.aic
            if tmp_aic < best_aic:</pre>
                best_aic = tmp_aic
                best_order = (i, j)
                best_md1 = tmp_md1
        except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
```

```
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)
aic: -19062.72857 | order: (3, 4)
```

In [31]:

print(best_mdl.summary())

		ARMA Mo	del Results	S 		
Dep. Variable: Model: Method: Date: Time: Sample:	Thu,	国内 ARMA(3, 4) mle 12 Jul 2018 19:37:52 01-05-2012 - 02-03-2017	Log Like S.D. of AIC BIC	Observations elihood innovations	-19 -19	1234 0539. 364 0. 000 0062. 729 0021. 784 0047. 327
	coef	std err	Z	P> z	[0. 025	0. 975]
ar. L1. 国内货币 ar. L2. 国内货币 ar. L3. 国内货币 ma. L1. 国内货币 ma. L2. 国内货币 ma. L3. 国内货币 ma. L4. 国内货币	1. 546 -1. 4877 0. 9411 -1. 7193 1. 6906 -1. 1665 0. 2377	7 6. 74e-05 5 1. 32e-05 8 0. 026 6 0. 042 5 0. 041 7 0. 025	2. 28e+04 -2. 21e+04 7. 14e+04 -66. 755 40. 473 -28. 474 9. 532 oots	0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000	1. 546 -1. 488 0. 942 -1. 770 1. 609 -1. 247 0. 189	1. 546 -1. 488 0. 942 -1. 669 1. 772 -1. 086 0. 287
	Real	Imagi	nary	Modulus	Fre	equency
AR. 1 1.0000 -0.00 AR. 2 0.2900 -0.98 AR. 3 0.2900 +0.98 MA. 1 0.2808 -1.06 MA. 2 0.2808 +1.06 MA. 3 1.0468 -0.00 MA. 4 3.2994 -0.00		889j 889j 674j 674j	1. 0000 1. 0306 1. 0306 1. 1037 1. 1037 1. 0468 3. 2994	-	-0. 0000 -0. 2046 -0. 2046 -0. 2091 -0. 2091 -0. 0000	

回归系数都比较显著。

总结

本文展示了采用Python语言为四个指数时序数据进行ARMA建模,介绍了ARMA模型的基本概念和AR、MA模型的联系,并使用ARMA模型对四指数数据进行建模。