Using Marpit

A tutorial | Prof. Dr. Felix Zeidler

Agenda

Die folgenden Dinge werden in dieser Präsentation enthalten sein

- Art der Hervorhebung von Text
- 2 Kapitelslides
- 3 Slides mit zwei Spalten
- 4 Tabellen und zentrieren von Objekten
- 5 Fußnoten und Quellenangaben

Auf geht's 🐸

1 Hervorhebung von Text

Wir können reguläre Markdown-Syntax nutzen, um Text hervorzuheben

Hier einige Beispiel:

- ein normaler Satz
- ein Satz mit einem **fetten** Wort
- ein Satz mit einem kursiven Wort
- ein Satz mit einem code block
- ein Satz mit einem blauen Hintergrund

Natürlich kann auch ein ganzer Block hervorgehoben werden...

Beispiel 1:

Hier folgt ein langes Beispiel

Das geht aber natürlich auch mit Code!

```
1: # ein Kommentar
2:
3: a = 13
4: b = 14
5: c = a * b
6: print(c)
7:
8: >> 182
```

Auch Latex ist natürlich kein Problem

Hier eine sehr komplexe Formel:

$$egin{align} S(\omega) &= rac{lpha g^2}{\omega^5} e^{[-0.74\left\{rac{\omega U_\omega 19.5}{g}
ight\}^{-4}\,]} \ &= rac{lpha g^2}{\omega^5} \mathrm{exp} \Big[-0.74 \Big\{rac{\omega U_\omega 19.5}{g}\Big\}^{-4}\,\Big] \end{aligned}$$

Noch besser vielleicht eingebettet in einen Block?

Formel: eine sehr komplexe Formel!

$$S(\omega) = \frac{\alpha g^2}{\omega^5} e^{\left[-0.74\left\{\frac{\omega U_{\omega}^{19.5}}{g}\right\}^{-4}\right]}$$

$$= \frac{\alpha g^2}{\omega^5} \exp\left[-0.74\left\{\frac{\omega U_{\omega}^{19.5}}{g}\right\}^{-4}\right]$$
(1)

Slides mit zwei Spalten

Kommentar

Folgende Gründe sprechen dafür, dass es sich hier um eine Normalverteilung ($pprox N(\mu,\sigma)$) handelt.

1.

2. ...

Zentrieren von Objekten

Hier wird ein Text und eine Tabelle zentriert!

Dies ist ein zentrierter Text

Header 1	Header 2
True negative	False negative
False negative	True positive

Man kann auch sehr gut Fußnoten hinzufügen^[1]. In diesem Fall muss man dann im Appendix ein Literaturverzeichnis manuell hinzufügen.

Gut klappt allerings auch das hinzufügen von Quelle*

 $^{^{}st}$ die Information habe ich **hier** gefunden

Vielen Dank für die Aufmerksamkeit

Kontaktdaten

- felix.zeidler@gmail.com
- ...
- Dies ist ein Test!
- Test

Exercise

We have **two** different customers. One of the customers wants to buy something.

? Question

What is the probability $P(X=3), ext{ where } orall x \in \mathbb{R}^+$

Pseudocode

```
Algorithm 1: Example-Algo  
Algorithm parameters: step size \alpha \in (0,1], \epsilon > 0  
Initialize Q(s,a), \ \forall s \in S^+, a \in A(s),  arbitrarily except that Q(terminal, \cdot) = 0  
a \leftarrow 12  
Loop for each episode:  
Initialize S  
Loop for each step of episode:  
Choose A from S using some policy derived from Q (eg \epsilon-greedy)  
Take action A, observe R, S'  
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a(S',a) - Q(S,A)]  
S \leftarrow S'  
until S is terminal
```

Pseudocode im Codeblock?

```
1: # Ein Kommentar: es folgt eine Funktion
2:
3: def name_of_function(values: List[int]) -> Int:
4: return np.sum(values)
```

Erläuterungen

Abbildung zeigt Dichte einer Normalverteilung $N(\mu, \sigma)$. Diese zeichnet sich aus durch:

- 1.
- 2. dddd

Pseudocode for birthday problem

```
initialize nsims
sameday ← 0
npeople ← 25

for 1...nsims
   allbirthdays ← birthdays of npeople
   uniquebirthdays ← determine number of different birthdays
   if uniquebirthdays < npeople
      sameday ← +1

prob ← sameday / nsims</pre>
```

What is your guess?

Python code for birthday problem

Here is the code in **Python**

```
1: import numpy as np
2:
3: nsims = 10000
4: sameday = 0
5: npeople = 25
6: for sim in range(nsims):
7: birthdays = np.random.choice(range(365), n=npeople)
8: unique_birthdays = np.unique(birthdays) # you can also use set(birthdays)
9: if len(unique_birthdays) < npeople:
10: sameday += 1
11: prob = sameday / nsims
```

The above example is just *one* way how to translate the problem into code. There are numerous ways how to achieve this in Python.

(c) by me

18

What we should have learned

Some new things, we introduced in **Python**:

- we can use np.random.choice() to sample from an array of elements (note that these could also be non-numerical)
- we can use np.unique() if we want to determine the number of unique elements (alternatively we could have used set())

Eine Tabelle, die nicht gut formatiert ist!

Was wird das noch geben?

Header 1	Header 2	Header 3
True negative	False negative $f(x)=3x imes 12=36x$	
False negative	True positive	Teste etwas!
False negative	True positive	
Die ist ein Test		
Heade r 1 Header 2 Header 3 Header 1 Header 2 Header 3 		

```
1: import numpy as np
2:
3: nsims = 10000
4: sameday = 0
5: npeople = 25
6: for sim in range(nsims):
7: birthdays = np.random.choice(range(365), n=npeople)
8: unique_birthdays = np.unique(birthdays) # you can also use set(birthdays)
9: if len(unique_birthdays) < npeople:
10: sameday += 1
11: prob = sameday / nsims
```

(c) by me

21