

Lecture - 5

Number Systems

Number Systems

- Simply put, a number system is a way to represent numbers
- There are two types of number systems

Positional number systems

- Uses only a few symbols called digits
- These digits represents different values depending on the position they occupy in the number
- The value of each digit is determined by
 - the digit itself
 - the position of the digit in the number
 - the base of the number system
 - base is the total number of digits in the number system

Non-positional number systems

- ① Uses symbols such as I for 1, II for 2, III for 3 etc.
- Each symbol represents the same value regardless of its position in the number
- The symbols are simply added to find out the value of a particular number
- It is difficult to perform arithmetic with such a number system

Decimal Number System

- A positional number system which has 10 symbols or digits
- A total of 10 digits means base of decimal number system is 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The maximum value of a single digit is 9 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (10)
- The most popular and used by us in our day-to-day life

Example

(2586)₁₀ (163)₁₀ (981)₁₀

Binary Number System

- A positional number system which has only two digits
- Base = 2, only two digits 0, 1
- The maximum value of a single digit is 1 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (2)
- Mostly is used in the field of computer science

Example

```
(10101)<sub>2</sub>
(101111010)<sub>2</sub>
(1110101)<sub>2</sub>
```


Octal Number System

- A positional number system which has eight digits
- Base = 8, total digits 0, 1, 2, 3, 4, 5, 6, 7
- The maximum value of a single digit is 7 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (8)
- Not much used in the real-world mathematics

Example

```
(2057)<sub>8</sub>
(6605)<sub>8</sub>
(321)<sub>8</sub>
```


Hexadecimal Number System

- A positional number system which has a total of 16 digits or symbols
- Base = 16, so total 16 symbols and digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- The symbols A, B, C, D, E, F represents decimal values 10, 11, 12, 13, 14 and 15
- The maximum value of a single digit is 15 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (16)
- Not much used in the real-world mathematics

Example

```
(1AF)<sub>16</sub>
(9EA)<sub>16</sub>
(664BD)<sub>16</sub>
```


© Converting a number of another base to decimal number

Example:

$$(4706)_8 = (4x8^3) + (7x8^2) + (0x8^1) + (6x8^0)$$

$$= (4x512) + (7x64) + (0x8) + (6x1)$$

$$= 2048 + 448 + 0 + 6$$

$$= (2502)_{10}$$

© Converting a decimal number to a number of another base

Example:

$$(952)_{10} = ?_8$$

8	952	
	119	0
	14	7
	1	6
	0	1

Hence, $(952)_{10} = (1670)_8$

- © Converting a number of some base to a number of another base
- © Convert the original number to a decimal base (10)
- Convert the decimal number obtained in the above step to the new base number

Examples:

$$(545)_6 = ?_4$$

= $(209)_{10} = (3101)_4$

$$(545)_8 = ?_4$$

= $(357)_{10} = (11211)_4$

- Shortcut method for converting a binary number to an octal number
- Divide the binary digits into groups of three starting from the right
- © Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion

Example:
$$(1101010)_2 = ?_8$$

001 101 010

$$(001)_2 = (0x2^2) + (0x2^1) + (1x2^0) = (1)_{10}$$

 $(101)_2 = (1x2^2) + (0x2^1) + (1x2^0) = (5)_{10}$
 $(010)_2 = (0x2^2) + (1x2^1) + (0x2^0) = (2)_{10}$

Hence, $(1101010)_2 = (152)_8$

- Shortcut method for converting an octal number to a binary number
- © Convert each octal digit (or its decimal equivalent) to a three digit binary number
- © Combine all the individual groups of three binary digits into a single binary number

Example:

$$(562)_8 = ?_2$$

 $5 = 101$ $6 = 110$ $2 = 010$
101 110 010

Hence, $(562)_8 = (101110010)_2$

- Shortcut method for converting a binary number to a hexadecimal number
- Divide the binary digits into groups of four starting from the right
- © Convert each group of four binary digits to one hexadecimal digit using the method of binary to hexadecimal conversion

Example:
$$(111101)_2 = ?_{16}$$

0011 1101

$$(0011)_2 = (0x2^3) + (0x2^2) + (1x2^1) + (1x2^0) = (3)_{10} = (3)_{16}$$

 $(1101)_2 = (1x2^3) + (1x2^2) + (0x2^1) + (1x2^0) = (13)_{10} = (D)_{16}$

Hence,
$$(111101)_2 = (3D)_{16}$$

- Shortcut method for converting a hexadecimal number to a binary number
- © Convert the decimal equivalent of each hexadecimal digit to a four digit binary number
- © Combine all the individual groups of four binary digits into a single binary number

Example:

$$(2AB)_{16} = ?_2$$

 $(2)_{16} = (2)_{10} = 0010$ $(A)_{16} = (10)_{10} = 1010$ $(B)_{16} = (11)_{10} = 1011$

0010 1010 1011

Hence, $(2AB)_{16} = (001010101011)_2$

Fractional Numbers

- Fractional numbers are formed the same way
- In general, a number in a number system with base b would be written as;

$$a_n, a_{n-1}, \dots a_0 a_{-1}, a_{-2}, \dots a_{-m}$$

And would be interpreted as;

$$a_n \times b^n + a_{n-1} \times b^{n-1} + ... + a_0 \times b^0 + a_{-1} \times b^{-1} + a_{-2} \times b^{-2} + ... + a_{-m} \times b^{-m}$$

The symbols a_n , a_{n-1} , ..., a_{-m} in the above representation should be one of the symbols allowed in the number system

Fractional Numbers

Formatting of fractional numbers in binary number system

Position	4	3	2	1	0	-1	-2	-3	-4
Position Value	24	2 ³	2 ²	21	20	2-1	2-2	2 ⁻³	2-4
Quantity Represented	16	8	4	2	1	1/2	1/4	1/8	1/16

© Conversion of fractional numbers in binary number system Example:

$$(110.101)_2 = ?_{10}$$

 $(110.101)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$
 $= 4 + 2 + 0 + 0.5 + 0 + 0.125$
 $= (6.625)_{10}$

Fractional Numbers

Formatting of fractional numbers in octal number system

Position	4	3	2	1	0	•	-1	-2	-3	-4
Position Value	84	83	82	81	80		8-1	8-2	8-3	8-4
Quantity Represented	4096	512	64	8	1		1/8	1/64	1/512	1/4096

© Conversion of fractional numbers in octal number system Example:

$$(127.54)_8 = ?_{10}$$

 $(127.54)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 5 \times 8^{-1} + 4 \times 8^{-2}$
 $= 64 + 16 + 7 + 5/8 + 4/64$
 $= (87.6875)_{10}$

