



# **Model Development Phase Template**

| Date          | 12 July 2024                                                                     |
|---------------|----------------------------------------------------------------------------------|
| Team ID       | SWTID1720174957                                                                  |
| Project Title | Human Resource Management: Predicting Employee Promotions Using Machine Learning |
| Maximum Marks | 4 Marks                                                                          |

## **Initial Model Training Code, Model Validation and Evaluation Report**

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

## **Initial Model Training Code:**

Decision Tree:-

```
def decisionTree(x_train,x_test,y_train,y_test):
    dt=DecisionTreeClassifier()
    dt.fit(x_train,y_train)
    y_pred=dt.predict(x_test)
    print("DecisionTreeClassifier")
    print('Confusion matrix')
    print(confusion_matrix(y_test,y_pred))
    print('Classification_report())
    print(classification_report(y_test,y_pred))
    return y_pred
```





#### Random Forest:-

```
def randomForest(x_train,x_test,y_train,y_test):
    rf=RandomForestClassifier()
    rf.fit(x_train,y_train)
    y_pred=rf.predict(x_test)
    print("RandomForestClassifier")
    print('Confusion matrix')
    print(confusion_matrix(y_test,y_pred))
    print('Classification_report')
    print(classification_report(y_test,y_pred))
    return y_pred
```

#### KNN:-

```
from sklearn.neighbors import KNeighborsClassifier

def KNN(x_train,x_test,y_train,y_test):
   knn=KNeighborsClassifier()
   knn.fit(x_train,y_train)
   y_pred=knn.predict(x_test)
   print("KNeighboursClassifier")
   print('Confusion matrix')
   print(confusion_matrix(y_test,y_pred))
   print('Classification_report(y_test,y_pred))
   return y_pred
```

### Xgboost:-

```
def xgboost(x_train,x_test,y_train,y_test):
    xg=GradientBoostingClassifier()
    xg.fit(x_train,y_train)
    y_pred=xg.predict(x_test)
    print("GradientBoostingClassifier")
    print('Confusion matrix')
    print(confusion_matrix(y_test,y_pred))
    print('Classification_report(y_test,y_pred))
    return y_pred
```





# ${\bf Model\ Validation\ and\ Evaluation\ Report:}$

| Model    |                       | Classific       | ation I   | Report    | Accuracy | Confusion Matrix                           |                                            |
|----------|-----------------------|-----------------|-----------|-----------|----------|--------------------------------------------|--------------------------------------------|
|          | classifica            | ation_repo      | rt(y_te   | st,y_pred |          |                                            |                                            |
|          | Classificatio         | n report        |           |           |          |                                            |                                            |
| Decision |                       | recall f1-score |           | support   |          | <pre>confusion_matrix(y_test,y_pred)</pre> |                                            |
| Decision | 0                     | 0.95            | 0.93      | 0.94      | 10035    | 93.73%                                     |                                            |
| Tree     | 1                     | 0.93            | 0.95      | 0.94      | 10033    |                                            | array([[9289, 746],                        |
|          |                       |                 |           |           |          |                                            | [ 510, 9511]], dtype=int64)                |
|          | accuracy              |                 |           | 0.94      | 20056    |                                            | , , , , , , , , , , , , , , , , , , , ,    |
|          | macro avg             | 0.94            | 0.94      | 0.94      | 20056    |                                            |                                            |
|          | weighted avg          | 0.94            | 0.94      | 0.94      | 20056    |                                            |                                            |
|          | classificat           | ion_report(     | (y_test,y | _pred)    |          |                                            |                                            |
|          | Classification        | •               |           | -         |          |                                            | confusion_matrix(y_test,y_pred)            |
| random   |                       | precision       | recall    | f1-score  | support  |                                            | com asion_macrix(y_cese)y_prea/            |
|          | 0                     | 0.95            | 0.95      | 0.95      | 10035    | 94.94%                                     | /// 50400 5371                             |
| Forest   | 1                     | 0.95            | 0.95      | 0.95      | 10021    |                                            | array([[9498, 537],                        |
|          | accuracy              |                 |           | 0.95      | 20056    |                                            | [ 477, 9544]], dtype=int64)                |
|          | macro avg             | 0.95            | 0.95      | 0.95      | 20056    |                                            |                                            |
|          | weighted avg          | 0.95            | 0.95      | 0.95      | 20056    |                                            |                                            |
|          | classificat           | ion_report(     | (y_test,y | _pred)    |          |                                            |                                            |
|          | Classification report |                 |           |           |          |                                            |                                            |
|          |                       | precision       | recall    | f1-score  | support  |                                            | <pre>confusion_matrix(y_test,y_pred)</pre> |
| KNN      | 0                     | 0.96            | 0.82      |           | 10035    | 89.5%                                      |                                            |
| 11 1     | 1                     | 0.84            | 0.97      | 0.90      | 10021    |                                            | array([[8242, 1793],                       |
|          | accuracy              |                 |           | 0.90      | 20056    |                                            |                                            |
|          | macro avg             | 0.90            | 0.90      | 0.89      | 20056    |                                            | [ 308, 9713]], dtype=int64)                |
|          | weighted avg          | 0.90            | 0.90      | 0.89      | 20056    |                                            |                                            |
|          |                       |                 |           |           |          |                                            |                                            |





|         | classification   | on_report          | (y_test, | y_pred)  |         |         |                                            |
|---------|------------------|--------------------|----------|----------|---------|---------|--------------------------------------------|
| xgboost | Classification p | report<br>recision | recall   | f1-score | support |         | <pre>confusion_matrix(y_test,y_pred)</pre> |
|         | 0                | 0.88               | 0.84     | 0.86     | 10035   | 86.43%  |                                            |
|         | 1                | 0.85               | 0.89     | 0.87     | 10021   | 00.1570 | array([[8409, 1626],                       |
|         | accuracy         |                    |          | 0.86     | 20056   |         | [1094, 8927]], dtype=int64)                |
|         | macro avg        | 0.87               | 0.86     | 0.86     | 20056   |         |                                            |
|         | weighted avg     | 0.87               | 0.86     | 0.86     | 20056   |         |                                            |
|         |                  |                    |          |          |         |         |                                            |