1) Portrait

Condition: $g_{y} < -THRESHOLD$

$$a = (\cos \alpha, -\sin \alpha, 0)$$

$$b = (-\sin\alpha, -\cos\alpha, 0)$$

$$c = (0, 0, -1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = s \cos \alpha - t \sin \alpha$$

$$g_y = -s \sin \alpha - t \cos \alpha$$

$$-t = g_x \sin \alpha + g_y \cos \alpha$$

$$s = g_x \cos \alpha - g_y \sin \alpha$$

$$tan\left(-\gamma\right)=s/t$$

2) Landscape Positive (Right)

Condition: $g_x > THRESHOLD$

 $a=(\sin\alpha,\cos\alpha,0)$

$$b=(\cos\alpha,-\sin\alpha,0)$$

$$c = (0, 0, -1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = s \sin \alpha + t \cos \alpha$$

$$g_y = s\cos\alpha - t\sin\alpha$$

$$s = g_x \sin \alpha + g_y \cos \alpha$$

$$t = g_x \cos \alpha - g_y \sin \alpha$$

$$tan\left(-\gamma\right)=s/t$$

3) Landscape Negative (Left)

Condition: $g_x < -THRESHOLD$

$$a = (-\sin \alpha, -\cos \alpha, 0)$$

$$b=(-\cos\alpha,\sin\alpha,0)$$

$$c = (0, 0, -1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = -s \sin \alpha - t \cos \alpha$$

$$g_y = -s \cos \alpha + t \sin \alpha$$

$$-s = g_x \sin \alpha + g_y \cos \alpha$$

$$-t = g_x \cos \alpha - g_y \sin \alpha$$

$$tan\left(-\gamma\right)=s/t$$

4) Below (look at phone from above)

Condition: $g_z < -THRESHOLD$

 $a=(\sin\alpha,\cos\alpha,0)$

$$b=(\cos\alpha,-\sin\alpha,0)$$

$$c = (0, 0, -1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = s \sin \alpha + t \cos \alpha$$

$$g_y = s\cos\alpha - t\sin\alpha$$

$$g_z = -r$$

$$s = g_x \sin \alpha + g_y \cos \alpha$$

$$tan\left(-\gamma\right)=s/r$$

5) Above (look at phone from below)

Condition: $g_z > THRESHOLD$

$$a = (-\sin \alpha, \cos \alpha, 0)$$

$$b=(-\cos\alpha,-\sin\alpha,0)$$

$$c = (0, 0, 1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = -s \sin \alpha + t \cos \alpha$$

$$g_y = -s\cos\alpha - t\sin\alpha$$

$$g_z = r$$

$$-s = g_x \sin \alpha + g_y \cos \alpha$$

$$tan\left(-\gamma\right)=s/r$$

6) Top Down

Condition: $g_y > THRESHOLD$

 $a = (-\cos \alpha, \sin \alpha, 0)$

 $b=(\sin\alpha,\cos\alpha,0)$

c = (0, 0, -1)

 $g = s \cdot a + t \cdot b + r \cdot c$

 $g_x = -s \cos \alpha + t \sin \alpha$

 $g_y = s \sin \alpha + t \cos \alpha$

 $t = g_x \sin \alpha + g_y \cos \alpha$

 $-s = g_x \cos \alpha - g_y \sin \alpha$

 $tan\left(-\gamma\right) =s/t$

