A lot of algebra prelims

Contents

Problem 1 (2018, 1). Show that no finite group is the union of conjugates of a proper subgroup.

Problem 2 (2018, 2). Classify all groups of order 18 up to isomorphism.

Problem 3 (2018, 3). Let α , β denote the unique positive real 5th root of 7 and 4th root of 5, respectively. Determine the degree of $\mathbb{Q}(\alpha, \beta)$ over \mathbb{Q} .

Problem 4 (2018, 4). Show that the field extension $\mathbb{Q} \subseteq \mathbb{Q}\left(\sqrt{2+\sqrt{2}}\right)$ is Galois and determine its Galois group.

Problem 5 (2018, 5). Let M be a square matrix over a field K. Use a suitable canonical form to show that M is similar to its transpose M^T .

Problem 6 (2018, 7). Let *G* be a finite group and π , π' be two irreducible representations of *G*. Prove or disprove the following assertion: π and π' are equivalent if and only if det $\pi(g) = \det \pi'(g)$ for all $g \in G$.

Problem 1 (2017, 1). Let R be a Noetherian ring. Prove that R[x] and R[[x]] are both Noetherian. (The first part of the question is asking you to prove the Hilbert Basis Theorem, not to use it!)

Problem 2 (2017, 2). Classify (with proof) all fields with finitely many elements.

Problem 3 (2017, 3). Suppose *A* is a commutative ring and *M* is a finitely presented module. Given any surjection $\phi : A^n \to M$ from a finite free *A*-module, show that ker ϕ is finitely generated.

Problem 4 (2017, 4.). Classify all groups of order 57.

Problem 5 (2017, 7). Show that a finite simple group cannot have a 2-dimensional irreducible representation over C. (Hint: the determinant might prove useful.)

Problem 1 (2016, 1.). Let *G* be a finite simple group. Assume that every proper subgroup of *G* is abelian. Prove that then *G* is cyclic of prime order.

Problem 2 (2016, 2). Let $a \in \mathbb{N}$, a > 0. Compute the Galois group of the splitting field of the polynomial $x^5 - 5a^4x + a$ over \mathbb{Q} .

Problem 3 (2016, 4.). Recall that an inner automorphism of a group is an automorphism given by conjugation by an element of the group. An outer automorphism is an automorphism that is not inner.

- (a) Prove that S_5 has a subgroup of order 20.
- (b) Use the subgroup from (a) to construct a degree 6 permutation representation of S_5 (i.e., an embedding $S_5 \hookrightarrow S_6$ as a transitive permutation group on 6 letters).
- (c) Conclude that S_6 has an outer automorphism.

Problem 4 (2016, 5.). Let A be a commutative ring and M a finitely generated A-module. Define

$$Ann(M) = \{a \in A : am = 0 \text{ for all } m \in M\}.$$

Show that for a prime ideal $\mathfrak{p} \subset A$, the following are equivalent:

- (a) Ann $(M) \not\subset \mathfrak{p}$
- (b) The localization of M at the prime ideal \mathfrak{p} is 0.
- (c) $M \otimes_A k(\mathfrak{p}) = 0$, where $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ is the residue field of A at \mathfrak{p} .

Problem 5 (2016, 6.). Let
$$A = \mathbb{C}[x,y]/(y^2 - (x-1)^3 - (x-1)^2)$$
.

- (a) Show that A is an integral domain and sketch the \mathbb{R} -points of Spec A.
- (b) Find the integral closure of *A*. Recall that for an integral domain *A* with fraction field *K*, the integral closure of *A* in *K* is the set of all elements of *K* integral over *A*.

Problem 6. Let R = k[x, y] where k is a field, and let I = (x, y)R.

1. Show that

$$0 \longrightarrow R \xrightarrow{\phi} R \oplus R \xrightarrow{\psi} R \longrightarrow k \longrightarrow 0$$

where $\phi(a) = (-ya, xa)$, $\psi((a, b)) = xa + yb$ for $a, b \in R$, is a projective resolution of the R-module $k \simeq R/I$.

2. Show that I is not a flat R-module by computing $\operatorname{Tor}_{i}^{R}(I,k)$

- **Problem 1** (2015, 1). (a) Find an irreducible polynomial of degree 5 over the field $\mathbb{Z}/2$ of two elements and use it to construct a field of order 32 as a quotient of the polynomial ring $\mathbb{Z}/2[x]$.
- (b) Using the polynomial found in part (a), find a 5×5 matrix M over $\mathbb{Z}/2$ of order 31, so that $M^{31} = I$ but $M \neq I$.

Problem 2 (2015, 2). Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . Justify your answer.

Problem 3 (2015, 3). (a) Let R be a commutative ring with no nonzero nilpotent elements. Show that the only units in the polynomial ring R[x] are the units of R, regarded as constant polynomials.

(b) Find all units in the polynomial ring $\mathbb{Z}_4[x]$.

Problem 4 (2015, 4.). Let p, q be two distinct primes. Prove that there is at most one non-abelian group of order pq and describe the pairs (p,q) such that there is no non-abelian group of order pq.

- **Problem 5** (2015, 5). (a) Let *L* be a Galois extension of a field *K* of degree 4. What is the minimum number of subfields there could be strictly between *K* and *L*? What is the maximum number of such subfields? Give examples where these bounds are attained.
- (b) How do these numbers change if we assume only that *L* is separable (but not necessarily Galois) over *K*?

Problem 6 (2015, 6). Let R be a commutative algebra over \mathbb{C} . A derivation of R is a \mathbb{C} -linear map $D: R \to R$ such that (i) D(1) = 0 and (ii) D(ab) = D(a)b + aD(b) for all $a, b \in R$.

- (a) Describe all derivations of the polynomial ring $\mathbb{C}[x]$.
- (b) Let A be the subring (or \mathbb{C} -subalgebra) of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ generated by all derivations of $\mathbb{C}[x]$ and the left multiplications by x. Prove that $\mathbb{C}[x]$ is a simple left A-module. Note that the inclusion $A \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ defines a natural left A-module structure on $\mathbb{C}[x]$.

Problem 7 (2015, 7). Let G be a non-abelian group of order p^3 with p a prime.

- (a) Determine the order of the center *Z* of *G*.
- (b) Determine the number of inequivalent complex 1-dimensional representations of G.
- (c) Compute the dimensions of all the inequivalent irreducible representations of *G* and verify that the number of such representations equals the number of conjugacy classes of *G*.

Problem 1 (2014, 1.). (a) Let G be a group (not necessarily finite) that contains a subgroup of index n. Show that G contains a *normal* subgroup N such that $n \leq [G:N] \leq n!$

(b) Use part (a) to show that there is no simple group of order 36.

Problem 2 (2014, 2). Let p be a prime, let \mathbb{F}_p be the p-element field, and let $K = \mathbb{F}_p(t)$ be the field of rational functions in t with coefficients in \mathbb{F}_p . Consider the polynomial $f(x) = x^p - t \in K[x]$.

- (a) Show that *f* does not have a root in *K*.
- (b) Let *E* be the splitting field of *f* over *K*. Find the factorization of *f* over *E*.
- (c) Conclude that *f* is irreducible over *K*.

Problem 3 (2014, 3). Recall that a ring A is called *graded* if it admits a direct sum decomposition $A = \bigoplus_{n=0}^{\infty} A_n$ as abelian groups, with the property that $A_i A_j \subseteq A_{i+j}$ for all $i, j \geq 0$. Prove that a graded commutative ring $A = \bigoplus_{n=0}^{\infty} A_n$ is Noetherian if and only if A_0 is Noetherian and A is finitely generated as an algebra over A_0 .

Problem 4 (2014, 4). Let *R* be a ring with the property that $a^2 = a$ for all $a \in R$.

- (a) Compute the Jacobson radical of *R*.
- (b) What is the characteristic of *R*?
- (c) Prove that *R* is commutative.
- (d) Prove that if *R* is finite, then *R* is isomorphic (as a ring) to $(\mathbb{Z}/2\mathbb{Z})^d$ for some *d*.

Problem 5 (2014, 6). Let $\overline{\mathbb{F}_p}$ denote the algebraic closure of \mathbb{F}_p . Show that the Galois group $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$ has no non-trivial finite subgroups.

Problem 6 (2014, 7). Let C_p denote the cyclic group of order p.

- (a) Show that C_p has two irreducible representations over Q (up to isomorphism), one of dimension 1 and one of dimension p-1.
- (b) Let G be a finite group, and let $\rho: G \to GL_n(\mathbb{Q})$ be a representation of G over \mathbb{Q} . Let $\rho_{\mathbb{C}}: G \to GL_n(\mathbb{C})$ denote ρ followed by the inclusion $GL_n(\mathbb{Q}) \to GL_n(\mathbb{C})$. Thus $\rho_{\mathbb{C}}$ is a representation of G over \mathbb{C} , called the *complexification* of ρ . We say that an irreducible representation ρ of G is *absolutely irreducible* if its complexification remains irreducible over \mathbb{C} .

Now suppose *G* is abelian and that every representation of *G* over Q is absolutely irreducible. Show that $G \cong (C_2)^k$ for some *k* (i.e., is a product of cyclic groups of order 2).

Problem 7 (2014, 8). Let G be a finite group and $\mathbb{Z}[G]$ the internal group algebra. Let \mathcal{Z} be the center of $\mathbb{Z}[G]$. For each conjugacy class $C \subseteq G$, let $P_C = \sum_{g \in C} g$.

- (a) Show that the elements P_C form a \mathbb{Z} -basis for \mathcal{Z} . Hence $\mathcal{Z} \cong \mathbb{Z}^d$ as an abelian group, where d is the number of conjugacy classes in G.
- (b) Show that if a ring R is isomorphic to \mathbb{Z}^d as an abelian group, then every element in R satisfies a monic integral polynomial. (**Hint:** Let $\{v_1, \ldots, v_d\}$ be a basis of R and for a fixed non-zero $r \in R$, write $rv_i = \sum_i a_{ij}v_j$. Use the Hamilton-Cayley theorem.)

(c) Let $\pi:G\to \mathrm{GL}(V)$ be an irreducible representation of G (over $\mathbb C$). Show that $\pi(P_C)$ acts on V as multiplication by the scalar

$$\frac{|C|\chi_{\pi}(C)}{\dim V},$$

where $\chi_{\pi}(C)$ is the value of the character χ_{π} on any element of C.

(d) Conclude that $|C|\chi_{\pi}(C)/\dim V$ is an algebraic integer.

Problem 1 (2013, 3.). (a) Suppose that G is a finitely generated group. Let n be a positive integer. Prove that G has only finitely many subgroups of index n

(b) Let p be a prime number. If G is any finitely-generated abelian group, let $t_p(G)$ denote the number of subgroups of G of index p. Determine the possible values of $t_p(G)$ as G varies over all finitely-generated abelian groups.

Problem 2 (2013, 4.). Suppose that G is a finite group of order 2013. Prove that G has a normal subgroup N of index 3 and that N is a cyclic group. Furthermore, prove that the center of G has order divisible by 11. (You will need the factorization $2013 = 3 \cdot 11 \cdot 61$.)

Problem 3 (2013, 6). This question concerns an extension K of \mathbb{Q} such that $[K : \mathbb{Q}] = 8$. Assume that K/\mathbb{Q} is Galois and let $G = \operatorname{Gal}(K/\mathbb{Q})$. Furthermore, assume that G is non-abelian.

- (a) Prove that *K* has a unique subfield *F* such that F/\mathbb{Q} is Galois and $[F:\mathbb{Q}]=4$.
- (b) Prove that *F* has the form $F = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ where d_1, d_2 are non-zero integers.
- (c) Suppose that G is the quaternionic group. Prove that d_1 and d_2 are positive integers.

Problem 4 (2013, 8). This question concerns the polynomial ring $R = \mathbb{Z}[x, y]$ and the ideal $I = (5, x^2 + 2)$ in R.

- (a) Prove that I is a prime ideal of R and that R/I is a PID.
- (b) Give an explicit example of a maximal ideal of *R* which contains *I*. (Give a set of generators for such an ideal.)
- (c) Show that there are infinitely many distinct maximal ideals in R which contain I.

Problem 1 (2012, 1.). Classify all groups of order 2012 up to isomorphism. (Hint: 503 is prime).

Problem 2 (2012, 2.). For any positive integer n, let G_n be the group generated by a and b subject to the following three relations:

$$a^2 = 1$$
, $b^2 = 1$, and $(ab)^n = 1$.

(a) Find the order of the group G_n

(We don't know how to do the rest of the problem)

Problem 3 (2012, 6). Determine the Galois groups of the following polynomials over Q.

(a)
$$f(x) = x^4 + 4x^2 + 1$$

(b)
$$f(x) = x^4 + 4x^2 - 5$$
.

Problem 4 (2012, 3). Let R be a (commutative) principal ideal domain, let M and N be finitely generated free R-modules, and let $\varphi: M \to N$ be an R-module homomorphism.

- (a) Let K be the kernel of φ . Prove that K is a direct summand of M.
- (b) Let *C* be the image of φ . Show by example (specifying *R*, *M*, *N*, and φ) that *C* need not be a direct summand of *N*.

Problem 1 (2011, 2.). In this problem, as you apply Sylow's Theorem, state precisely which portions you are using.

- (a) Prove that there is no simple group of order 30.
- (b) Suppose that G is a simple group of order 60. Determine the number of p-Sylow subgroups of G for each prime p dividing 60, then prove that G is isomorphic to the alternating group A_5 .

Note: in the second part, you needn't show that A_5 is simple. You need only show that if there is a simple group of order 60, then it must be isomorphic to A_5 .

Problem 2 (2011, 3). Describe the Galois group and the intermediate fields of the cyclotomic extension $\mathbb{Q}(\zeta_{12})/\mathbb{Q}$.

Problem 3 (2011, 4). Let

$$R = \mathbb{Z}[x]/(x^2 + x + 1).$$

- (a) Answer the following questions with suitable justification.
 - (i) Is *R* a Noetherian ring?
 - (ii) Is *R* an Artinian ring?
- (b) Prove that *R* is an integrally closed domain.

Problem 4 (2011, 5). Let R be a commutative ring. Recall that an element r of R is *nilpotent* if $r^n = 0$ for some positive integer n and that the *nilradical* of R is the set N(R) of nilpotent elements.

(a) Prove that

$$N(R) = \bigcap_{P \text{ prime}} P.$$

(Hint: given a non-nilpotent element r of R, you may wish to construct a prime ideal that does not contain r or its powers.)

- (b) Given a positive integer m, determine the nilradical of $\mathbb{Z}/(m)$.
- (c) Determine the nilradical of $\mathbb{C}[x,y]/(y^2-x^3)$.
- (d) Let p(x,y) be a polynomial in $\mathbb{C}[x,y]$ such that for any complex number a, $p(a,a^{3/2})=0$. Prove that p(x,y) is divisible by y^2-x^3 .

Problem 5 (2011, 6). Given a finite group G, recall that its *regular representation* is the representation on the complex group algebra $\mathbb{C}[G]$ induced by left multiplication of G on itself and its *adjoint representation* is the representation on the complex group algebra $\mathbb{C}[G]$ induced by conjugation of G on itself.

- (a) Let $G = GL_2(\mathbb{F}_2)$. Describe the number and dimensions of the irreducible representations of G. Then describe the decomposition of its regular representation as a direct sum of irreducible representations.
- (b) Let G be a group of order 12. Show that its adjoint representation is reducible; that is, there is an H-invariant subspace of $\mathbb{C}[H]$ besides 0 and $\mathbb{C}[H]$.

Problem 6 (2011, 8). Let *R* be a commutative integral domain. Show that the following are equivalent:

- (a) *R* is a field;
- (b) *R* is a semi-simple ring;
- (c) Any *R*-module is projective.

Problem 1 (2010, 1.). Let p be a positive prime number, \mathbb{F}_p the field with p elements, and let $G = GL_2(\mathbb{F}_p)$.

- (a) Compute the order of G, |G|.
- (b) Write down an explicit isomorphism from $\mathbb{Z}/p\mathbb{Z}$ to

$$U = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{F}_p \right\}.$$

(c) How many subgroups of order p does G have? Hint: compute gug^{-1} for $g \in G$ and $u \in U$; use this to find the size of the normalizer of U in G.

Problem 2 (2010, 2). (a) Give definitions of the following terms: (i) a finite length (left) module, (ii) a composition series for a module, and (iii) the length of a module,

(b) Let l(M) denote the length of a module M. Prove that if

$$0 \to M_1 \to M_2 \to \cdots \to M_n \to 0$$

is an exact sequence of modules of finite length, then

$$\sum_{i=1}^{n} (-1)^{k} l(M_{i}) = 0.$$

Problem 3 (2010, 3). Let \mathbb{F} be a field of characteristic p, and G a group of order p^n . Let $R = \mathbb{F}[G]$ be the group ring (group algebra) of G over \mathbb{F} , and let $u := \sum_{x \in G} x$ (so u is an element of R).

- (a) Prove that *u* lies in the center of *R*.
- (b) Verify that Ru is a 2-sided ideal of R.
- (c) Show there exists a positive integer k such that $u^k = 0$. Conclude that for such a k, $(Ru)^k = 0$.
- (d) Show that *R* is **not** a semi-simple ring. (**Warning:** Please use the definition of a semi-simple ring: do **not** use the result that a finite length ring fails to be semisimple if and only if it has a non-zero nilpotent ideal.)

Problem 4 (2010, 4). Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ (where $a_n \neq 0$) and let $R = \mathbb{Z}[x]/(f)$. Prove that R is a finitely generated module over \mathbb{Z} if and only if $a_n = \pm 1$.

Problem 5 (2010, 5). Consider the ring

$$S = C[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}\$$

with the usual operations of addition and multiplication of functions.

- (a) What are the invertible elements of *S*?
- (b) For $a \in [0, 1]$, define $I_a = \{ f \in S : f(a) = 0 \}$. Show that I_a is a maximal ideal of S.
- (c) Show that the elements of any proper ideal of S have a common zero, i.e., if I is a proper ideal of S, then there exists $a \in [0,1]$ such that f(a) = 0 for all $f \in I$. Conclude that every maximal ideal of S is of the form I_a for some $a \in [0,1]$. **Hint:** as [0,1] is compact, every open cover of [0,1] contains a finite subcover.

Problem 6 (2010, 7). Let F be a field of characteristic zero, and let K be an *algebraic* extension of F that possesses the following property: every polynomial $f \in F[x]$ has a root in K. Show that K is algebraically closed.

Hint: if $K(\theta)/K$ is algebraic, consider $F(\theta)/F$ and its normal closure; primitive elements might be of help.

Problem 7 (2010, 8). Let *G* be the unique non-abelian group of order 21.

- (a) Describe all 1-dimensional complex representations of *G*.
- (b) How many (non-isomorphic) irreducible complex representations does *G* have and what are their dimensions?
- (c) Determine the character table of *G*.

Problem 1 (2009, 1.). (a) Classify all groups of order $2009 = 7^2 \times 41$.

(b) Suppose that G is a group of order 2009. How many intermediate groups are there—that is, how many groups H are there with $1 \subsetneq H \subsetneq G$, where both inclusions are proper? (There may be several cases to consider.)

Problem 2 (2009, 2). Let *K* be a field. A discrete valuation on *K* is a function $\nu : K \setminus \{0\} \to \mathbb{Z}$ such that

- (i) v(ab) = v(a) + v(b)
- (ii) ν is surjective
- (iii) $\nu(a+b) \ge \min\{(\nu(a), \nu(b))\}$ for $a, b \in K \setminus \{0\}$ with $a+b \ne 0$.

Let $R := \{x \in K \setminus \{0\} : \nu(x) \ge 0\} \cup \{0\}$. Then R is called the valuation ring of ν . Prove the following:

- (a) *R* is a subring of *K* containing the 1 in *K*.
- (b) for all $x \in K \setminus \{0\}$, either x or x^{-1} is in R.
- (c) x is a unit of R if and only if v(x) = 0.
- (d) Let p be a prime number, $K = \mathbb{Q}$, and $v_p : \mathbb{Q} \setminus \{0\} \to \mathbb{Z}$ be the function defined by $v_p(\frac{a}{b}) = n$ where $\frac{a}{b} = p^n \frac{c}{d}$ and p does not divide c and d. Prove that the corresponding valuation ring R is the ring of all rational numbers whose denominators are relatively prime to p.

Problem 3 (2009, 3). Let *F* be a field of characteristic not equal to 2.

- (a) Prove that any extension K of F of degree 2 is of the form $F(\sqrt{D})$ where $D \in F$ is not a square in F and, conversely, that each such extension has degree 2 over F.
- (b) Let $D_1, D_2 \in F$ neither of which is a square in F. Prove that $[F(\sqrt{D_1}, \sqrt{D_2}) : F] = 4$ if D_1D_2 is not a square in F and is of degree 2 otherwise.

Problem 4 (2009, 4). Let *F* be a field and $p(x) \in F[x]$ an irreducible polynomial.

- (a) Prove that there exists a field extension K of F in which p(x) has a root.
- (b) Determine the dimension of *K* as a vector space over *F* and exhibit a vector space basis for *K*.
- (c) If $\theta \in K$ denotes a root of p(x), express θ^{-1} in terms of the basis found in part (b).
- (d) Suppose $p(x) = x^3 + 9x + 6$. Show p(x) is irreducible over \mathbb{Q} . If θ is a root of p(x), compute the inverse of $(1 + \theta)$ in $\mathbb{Q}(\theta)$.

Problem 5 (2009, 6). Fix a ring R, an R-module M, and an R-module homomorphism $f: M \to M$.

- (a) If M satisfies the descending chain condition on submodules, show that if f is injective, then f is surjective. (Hint: note that if f is injective, so are $f \circ f$, $f \circ f \circ f$, etc.)
- (b) Give an example of a ring R, an R-module M, and an injective R-module homomorphism $f: M \to M$ which is not surjective.
- (c) If M satisfies the ascending chain condition on submodules, show that if f is surjective, then f is injective.

(d) Give an exampe of a ring R, and R-module M, and a surjective R-module homomorphism $f:M\to M$ which is not injective.

Problem 6 (2009, 7). Let G be a finite group, k an algebraically closed field, and V an irreducible k-linear representation of G.

- (a) Show that $\operatorname{Hom}_{kG}(V, V)$ is a division algebra with k in its center.
- (b) Show that V is finite-dimensional over k, and conclude that $\operatorname{Hom}_{kG}(V,V)$ is also finite dimensional.
- (c) Show the inclusion $k \hookrightarrow \operatorname{Hom}_{kG}(V, V)$ found in (a) is an isomorphism. (For $f \in \operatorname{Hom}_{kG}(V, V)$, view f as a linear transformation and consider $f \alpha I$, where α is an eigenvalue of f).

Problem 1 (2008, 1). Let f(x) be an irreducible polynomial of degree 5 over the field \mathbb{Q} of rational numbers with exactly 3 real roots.

- (a) Show that f(x) is not solvable by radicals.
- (b) Let E be the splitting field of f over \mathbb{Q} . Construct a Galois extension K of degree 2 over \mathbb{Q} lying in E such that no field F strictly between K and E is Galois over \mathbb{Q} .

Problem 2 (2008, 2). Let F be a finite field. Show for any positive integer n that there are irreducible polynomials of degree n in F[x].

Problem 3 (2008, 3.). Show that the order of the group $GL_n(\mathbb{F}_q)$ of invertible $n \times n$ matrices over the field \mathbb{F}_q of q elements is given by $(q^n - 1)(q^n - q) \dots (q^n - q^{n-1})$.

Problem 4 (2008, 5). (a) Let R be a commutative principal ideal domain. Show that any R-module M generated by two elements takes the form $R/(a) \oplus R/(b)$ for some $a, b \in R$. What more can you say about a and b?

(b) Give a necessary and sufficient condition for two direct sums as in part (a) to be isomorphic as *R*-modules.

Problem 5 (2008, 6.). Let *G* be the subgroup of $GL_3(\mathbb{C})$ generated by the three matrices

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where $i^2 = -1$. Here C denotes the complex field.

- (a) Compute the order of G.
- (b) Find a matrix in *G* of largest possible order (as an element of *G*) and compute this order.
- (c) Compute the number of elements in *G* with this largest order.

Problem 6 (2008, 7). (a) Let G be a group of (finite) order n. Show that any irreducible left module over the group algebra $\mathbb{C}G$ has complex dimension at least \sqrt{n} .

(b) Give an example of a group G of order $n \ge 5$ and an irreducible left module over $\mathbb{C}G$ of complex dimension $|\sqrt{n}|$, the greatest integer to \sqrt{n} .

Problem 7 (2008, 8). Use the rational canonical form to show that any square matrix M over a field k is similar to its transpose M^t , recalling that p(M) = 0 for some $p \in k[t]$ if and only if $p(M^t) = 0$.

Problem 1 (2007, 1). Let K be a field of characteristic zero and L a Galois extension of K. Let f be an irreducible polynomial in K[x] of degree 7 and suppose f has no zeroes in L. Show that f is irreducible in L[x].

Problem 2 (2007, 2). Let K be a field of characteristic zero and $f \in K[x]$ an irreducible polynomial of degree n. Let L be a splitting field for f. Let G be the group of automorphisms of L which act trivially on K.

- (a) Show that G embeds in the symmetric group S_n .
- (b) For each n, give an example of a field K and polynomial f such that $G = S_n$.
- (c) What are the possible groups G when n = 3. Justify your answer.

Problem 3 (2007, 3.). Show there are exactly two groups of order 21 up to isomorphism.

Problem 1 (2006, 2). Let K be the field $\mathbb{Q}(z)$ of rational functions in a variable z with coefficients in the rational field \mathbb{Q} . Let n be a positive integer. Consider the polynomial $x^n - z \in K[x]$.

- (a) Show that the polynomial $x^n z$ is irreducible over K.
- (b) Describe the splitting field of $x^n z$ over K.
- (c) Determine the Galois group of the splitting field of $x^5 z$ over the field K.

Problem 2 (2006, 3.). (a) Let p < q < r be prime integers. Show that a group of order pqr cannot be simple.

(b) Consider groups of orders $2^2 \cdot 3 \cdot p$ where p has the values 5, 7, and 11. For each of those values of p, either display a simple group of order $2^2 \cdot 3 \cdot p$, or show that there cannot be a simple group of that order.

Problem 3 (2006, 4). Let K/F be a finite Galois extension and let n = [K : F]. There is a theorem (often referred to as the "normal basis theorem") which states that there exists an irreducible polynomial $f(x) \in F[x]$ whose roots form a basis for K as a vector space over F. You may assume that theorem in this problem.

- (a) Let G = Gal(K/F). The action of G on K makes K into a finite-dimensional representation space for G over F. Prove that K is isomorphic to the regular representation for G over F. (The regular representation is defined by letting G act on the group algebra F[G] by multiplication on the left.)
- (b) Suppose that the Galois group G is cyclic and that F contains a primitive n^{th} root of unity. Show that there exists an injective homomorphism $\chi: G \to F^{\times}$.
- (c) Show that *K* contains a non-zero element *a* with the following property:

$$g(a) = \chi(g) \cdot a$$

for all $g \in G$.

(d) If *a* has the property stated in (c), show that K = F(a) and that $a^n \in F^{\times}$.

Problem 4 (2006, 5.). Let *G* be the group of matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

with entries in the finite field \mathbb{F}_p of p element, where p is a prime.

- (a) Prove that *G* is non-abelian.
- (b) Suppose p is odd. Prove that $g^p = I_3$ for all $g \in G$.
- (c) Suppose that p = 2. It is known that there are exactly two non-abelian groups of order 8, up to isomorphism: the dihedral group D_8 and the quaternionic group. Assuming this fact without proof, determine which of these groups G is isomorphic to.

Problem 5 (2006, 7.). There are five nonisomorphic groups of order 8. For each of those groups G, find the smallest positive integer n such that there is an injective homomorphism $\varphi: G \to S_n$.

Problem 1 (2005, 1.). For any group G we define $\Omega(G)$ to be the image of the group homomorphism $\rho: G \to \operatorname{Aut}(G)$ where ρ maps $g \in G$ to the conjugation automorphism $x \mapsto gxg^{-1}$. Starting with a group G_0 , we define $G_1 = \Omega(G_0)$ and $G_{i+1} = \Omega(G_i)$ for all $i \ge 0$. If G_0 is of order p^e for a prime p and integer $e \ge 2$, prove that G_{e-1} is the trivial group.

Problem 2 (2005, 2.). Let \mathbb{F}_2 be the field with two elements.

- (a) What is the order of $GL_3(\mathbb{F}_2)$?
- (b) Use the fact that $GL_3(\mathbb{F}_2)$ is a simple group (which you should not prove) to find the number of elements of order 7 in $GL_3(\mathbb{F}_2)$.

Problem 3 (2005, 3). Let G be a finite abelian group. Let $f: \mathbb{Z}^m \to G$ be a surjection of abelian groups. We may think of f as a homomorphism of \mathbb{Z} -modules. Let K be the kernel of f.

- (a) Prove that K is isomorphic to \mathbb{Z}^m .
- (b) We can therefore write the inclusion map $K \to \mathbb{Z}^m$ as $\mathbb{Z}^m \to \mathbb{Z}^m$ and represent it by an $m \times m$ integer matrix A. Prove that $|\det A| = |G|$.

Problem 4 (2005, 4). Let R = C([0,1]) be the ring of all continuous real-valued functions on the closed interval [0,1], and for each $c \in [0,1]$, denote by M_c the set of all functions $f \in R$ such that f(c) = 0.

- (a) Prove that $g \in R$ is a unit if and only if $g(c) \neq 0$ for all $c \in [0,1]$.
- (b) Prove that for each $c \in [0,1]$, M_c is a maximal ideal of R.
- (c) Prove that if M is a maximal ideal of T, then $M = M_c$ for some $c \in [0,1]$. (Hint: compactness of [0,1] may be relevant.)

Problem 5 (2005, 5). Let R and S be commutative rings, and $f: R \to S$ a ring homomorphism.

(a) Show that if *I* is a prime ideal of *S*, then

$$f^{-1}(I) = \{ r \in R : f(r) \in I \}$$

is a prime ideal of *R*.

(b) Let *N* be the set of nilpotent elements of *R*:

$$N = \{ r \in R : r^m = 0 \text{ for some } m \ge 1 \}.$$

N is called the *nilradical* of R. Prove that it is an ideal which is contained in every prime ideal.

(c) Part (a) lets us define a function

$$f^*$$
: {prime ideals of S } \rightarrow {prime ideals of R }.

$$I \mapsto f^{-1}(I)$$
.

Let *N* be the nilradical of *R*. Show that if S = R/N and $f : R \to R/N$ is the quotient map, then f^* is a bijection

Problem 6 (2005, 7). Consider the polynomial $f(x) = x^{10} + x^5 + 1 \in \mathbb{Q}[x]$ with splitting field K over \mathbb{Q} .

- (a) Determine whether f(x) is irreducible over \mathbb{Q} and find $[K : \mathbb{Q}]$.
- (b) Determine the structure of the Galois group $Gal(K/\mathbb{Q})$.

Problem 7 (2005, 8). For each prime number p and each positive integer n, how many elements α are there in \mathbb{F}_{p^n} such that $F_p(\alpha) = F_{p^6}$?