

PERLA:

A DATA LANGUAGE FOR PERVASIVE SYSTEMS

F. A. Schreiber, R. Camplani, M. Fortunato, M. Marelli, F. Pacifici DEI – Politecnico di Milano

THE WINE PRODUCTION PROCESS

7. A. Schreiber & Al.

PERLA

PREVIOUS SENSORS LANGUAGES

- TinyDB (U. C. Berkeley)
 - ONE OF THE FIRST AND MOST KNOWN PROJECTS
 - PORTABILITY BOUND TO TinyOS
- GSN (EPFL Lausanne)
 - SCALABLE, LIGHTWEIGHT, DYNAMICALLY ADAPTABLE TO SYSTEM CONFIGURATION
 - XML FOR NETWORK AND DATA SPECIFICATION
 - SQL FOR DATA MANIPULATION
- DSN (U. C. Berkeley)
 - THE WHOLE SYSTEM IS BUILT AND MANAGED IN Snlog (A DATALOG DIALECT)

PERLA APPROACH

- PERVASIVE SYSTEMS AS TARGET
 - RUN-TIME SUPPORT OF HETEROGENEITY
 - SUPPORT OF NON INTELLIGENT DEVICES
 - EVENT- AND TIME-BASED SEMANTICS
- SINGLE SYSTEM SINGLE LANGUAGE
 - FUNCTIONAL FEATURES
 - RAW DATA MANIPULATION → QUERY RESULTS
 - SET SAMPLING PARAMETERS
 - NON FUNCTIONAL FEATURES
 - CONSTRAINTS ON THE FUNCTIONALITY
 - QoS (MAINLY POWER MANAGEMENT)
 - DETERMINE THE PARTICIPATION OF A NODE TO A QUERY

MIDDLEWARE ARCHITECTURE

- APPLICATION LAYER
 - FRONT-END FOR DATA ACCESS
- LOGICAL OBJECT LAYER
 - ABSTRACTION FOR PHYSICAL DEVICES
- DEVICE ACCESS LAYER
 - SW INFRASTRUCTURE FOR DEVICE ACCESS

LOGICAL OBJECTS ATTRIBUTES

STATIC

- NODE CHARACTERISTIC (type, max. sampling rate, ...)

DYNAMIC PROBING

 VARIABLES READ FROM PHYSICAL DEVICES (sensor measurements)

DYNAMIC NON-PROBING

- LOCALLY CACHED VALUES

LANGUAGE FEATURES

DATA REPRESENTATION

FUNCTIONAL CHARACTERISTICS

PHYSICAL DEVICE MANAGEMENT

NON-FUNCTIONAL CHARACTERISTICS

PHYSICAL DEVICE MANAGEMENT

- DEFINITION OF THE SAMPLING SEMANTICS FOR EACH CLASS OF DEVICES
 - READING OF A LOGICAL OBJECT ATTRIBUTE
 - PERIODIC SAMPLING
 - EVENT BASED SAMPLING
- EXAMPLE: RFID ABSTRACTION
 - RFID TAG AS A SENSOR
 - SAMPLED DATA → ID OF THE LAST READER WHICH SENSED THE TAG
 - READER AS A SENSOR
 - SAMPLED DATA → ID OF THE LAST TAG SENSED BY THE READER
 - EVENT BASED SAMPLING
 - WHEN THE CORRESPONDING LOGICAL OBJECT SENSES THE READER FIRING

NON-FUNCTIONAL CHARACTERISTICS

• NON FUNCTIONAL FIELDS EXPOSED BY LOGICAL OBJECTS ARE EXPRESSED IN AN ABSTRACT WAY AND TRANSLATED IN CONCRETE VALUES HANDLED BY PHYSICAL DEVICES

- EXAMPLE: A DEVICE PERCENTAGE POWER LEVEL
 - VOLTAGE VALUE
 - PREDICTED FROM THE NUMBER OF PERFORMED OPERATIONS
 - SET TO 100% FOR A.C. POWERED DEVICES

LOGICAL OBJECTS INTERFACE

- RETRIEVE ATTRIBUTES VALUES
 - DATA
 - POLICIES
- FIRE NOTIFICATION EVENTS
 - EVENT BASED SAMPLING
 - ACTIVATE QUERY SELECTION
- GET THE LIST OF SUPPORTED ATTRIBUTES AND THEIR PROPERTIES

DATA STRUCTURES

STREAM TABLES

- UNBOUNDED LISTS OF RECORDS. QUERIES CAN PERFORM
 - INSERT (GENERATES AN INSERTION EVENT)
 - READ (EXTRACTS A DATA WINDOW[ts, size])

SNAPSHOT TABLES

SET OF RECORDS PRODUCED BY A QUERY IN A GIVEN PERIOD

EVERY RECORD IS TIME-STAMPED

LANGUAGE LEVELS

LOW LEVEL

- DEFINES THE BEHAVIOUR OF A SINGLE OR OF A GROUP OF DEVICES ABSTRACTED BY A SINGLE LOGICAL OBJECT
 - PRECISE DEFINITION OF SAMPLING OPERATIONS
 - READ ATTRIBUTES FROM A LOGICAL OBJECT
 - INSERT VALUES IN THE LOCAL BUFFER
 - PERFORM SIMPLE SQL OPERATIONS (filtering, grouping, ...)
 - ON DATA IN THE LOCAL BUFFER
 - INSERT RECORDS IN A DATA STRUCTURE
- PERIODIC OR EVENT BASED
- CONDITIONAL EXECUTION

LANGUAGE LEVELS

- HIGH LEVEL
 - PERFORMS COMPLEX SQL QUERIES ON WINDOWS EXTRACTED FROM ONE OR MORE INPUT STREAMS
 - TIME DRIVEN
 - EVENT DRIVEN

THE PILOT JOIN OPERATION

MONITOR THE TEMPERATURE OF ALL THE WINE PALLETS IN TRUCKS WHOSE CURRENT POSITION IS IN A GIVEN PARKING AREA

- TEMPERATURE SENSORS ON PALLETS
- POSITION SENSORS ON TRUCKS

THE PILOT JOIN OPERATION ACTIVATES THE EXECUTION OF A LOW LEVEL QUERY ON LOGICAL OBJECTS CONDITIONED BY VALUES SAMPLED ON OTHER NODES

THE PILOT JOIN OPERATION

EVENT BASED PILOT JOIN

 WHEN AN EVENT HAPPENS, A GIVEN SET OF NODES ARE FIRED TO SAMPLE (e.g. sense pallet temperature for 15 minutes every time a truck enters parking area B)

CONDITION BASED PILOT JOIN

 CONTINUOUS SAMPLING IS PERFORMED ON NODES CONNECTED TO A GIVEN BASE STATION (e.g. start samplig every 15 minutes the temperature of pallets whose last sensed position was in parking area B)

COMPLEX QUERY EXAMPLE

DEFINE SNAPSHOT

LIST PALLETS ID'S
WHOSE TEMPERATURE
EXCEEDED A GIVEN
THRESHOLD WHILE
TRAVELLING THROUGH
A CRITICAL ZONE

```
TrucksPositions (ID baseStationId) AS
WITH DURATION 1 hour
SELECT baseStationId
SAMPLING EVERY 1 hour
WHERE is in(location, CRITICALZONE)
EXECUTE IF deviceType = "GPS"
DEFINE OUTPUT STREAM
  OutOfTemperatureRangePallets (ID palletId)
EVERY 10 min
SELECT id
SAMPLING
    EVERY 10 min
    WHERE temperature > threshold
PILOT JOIN TrucksPositions ON
    currentBaseStationId =
    TrucksPositions.baseStationId
EXECUTE IF EXISTS (ALL)
```

COMPLEX QUERY EXAMPLE

LOGICAL OBJECT ATTRIBUTES

GPS

• id ID (static)

• location COORDS (dynamic probing) (current truck position sensed by GPS)

• baseStationId ID (static)

(id of the base station mounted on the truck)

deviceType STRING (static)

TEMPERATURE NODE

• id ID (static)

• temperature DOUBLE (dynamic probing)

(current pallet temperature)

• currentBaseStationId ID (dynamic non probing) (id of the base station the node is currently connected to)

deviceType STRING (static)

QUERY PROCESSING

QUERY DECOMPOSITION

STATE OF THE PROJECT

- LANGUAGE GRAMMAR AND SEMANTICS DEFINITION
- PARSER AND QUERY ANALYZER IMPLEMENTATION
- LOW LEVEL AND HIGH LEVEL QUERY ENGINES
- LOGICAL OBJECTS DESIGN AND IMPLEMENTATION
- SENSORS SIMULATOR
- NEW LANGUAGE FEATURES (Actuators, Data Mining, ...)

COMPLETED

- COMPLETED
- IN COURSE
- UNDER DESIGN (Technological choices)
- COMPLETED
- FUTURE WORK

A REAL WORLD TESTBED

WE USED THE WINE AND TRANSPORT EXAMPLE AS THE MAIN CASE STUDY DURING THE LANGUAGE DEFINITION PHASE

ROCKFALL MONITORING

- THE FIRST RELEASE OF PERLA WILL BE ADOPTED IN A ROCKFALL MONITORING PROJECT (PROMETEO)
 - CONCRETE AND MISSION CRITICAL APPLICATION
 - SENSORS ARE AD-HOC BOARDS:
 - GEOPHONES
 - ACCELEROMETERS
 - TEMPERATURE SENSORS
 - EXPLOITS EVENT BASED MONITORING FEATURES
 - ALLOWS THE TESTING OF THE SYSTEM BEFORE THE IMPLEMENTATION OF ALL THE LANGUAGE FEATURES

GEOLOGICAL INVESTIGATION OF THE TESBED

COURTESY OF C. Alippi et Al.

A POSSIBLE DEPLOYMENT

AN OVERVIEW OF THE HW INFRASTRUCTURE

7. A. Schreiber & Al. COURTESY OF C. Alippi et Al.

PERLA

CONCLUSIONS

- PERLA FEATURES
 - PERLA IS ENTIRELY SQL-LIKE
 - PERLA GIVES AN IMPORTANT ROLE TO THE SAMPLING OPERATION
 - PERLA ALLOWS THE SAMPLING ACTIVATION ON A NODE BASED ON DATA SAMPLED FROM ANOTHER NODE (PILOT JOIN OPERATION)
 - METADATA AND DATA HOMOGENEOUSLY MANAGED (e.g.: Power levels, ...)

CONCLUSIONS

	PERLA	GSN
FULLY DECLARATIVE LANGUAGE		
HETEROGENEOUS SYSTEMS SUPPORT	<u>©</u>	
EVENT BASED AND TIME BASED QUERIES		
PILOT JOIN OPERATION SUPPORT		
FULL SAMPLING AND SENSOR PARAMETERS CONTROL	<u>©</u>	8
POLICY MANAGEMENT	<u>©</u>	8

CHEERS!

