

Experiment No. 3
Title: Design and Implementation of Different Arithmetic Circuits using Vlab.

Batch: B-1 Roll No.: 16010422234 Name: Chandana Ramesh Galgali

Experiment No.: 3

Aim: To Design and Implementation of Different Arithmetic Circuits using Vlab.

Resources needed: internet connection,

Access to- https://he-coep.vlabs.ac.in/exp/various-arithmetic-circuits/index.html

Theory:

Explain following points in brief

- 1. Binary Adder Subtractor
- 2. Half Adder
- 3. Full Adder
- 4. 4 bit Binary Adder Subtractor

Explore the Theory and lab Manual in References section of the Vlab experiment

Procedure:

- a) Appear for Pretest and include the screenshot in write-up.
- b) Design and Realize a Half Adder. Include scanned copy of design in write up.
- c) Go through Procedure Tab.
- d) Explore Simulator as per instructions in Procedure include screenshot of every circuit simulated in the writeup.
- e) Appear for Posttest and include screenshot in write-up.
- f) Create a document with screenshots mentioned above, Outcome and Conclusion.
- g) Please note every document uploaded as Lab Writeup should be labelled as Exp_<No>_<RollNo.pdf

Observations and Results:

a) Design of Half Adder.

b) Observe and understand the simulated Binary Adders and Subtractors.

Outcomes: Understand the basic building blocks, techniques used in digital logic design.

Post-test:

Add binary numbers 1010 and 0001	
0 at 1100	
O b: siis	
® c; 1011	
0 d 1110	
Add binary numbers 1011 and 1101	
O at 11011	
₩ b: 11000	
O c mm	
O d. 11010	
Subtract decimal numbers 73 and 46 using	2s complement arithmetic
O a: 10101111	
O is osossiss	
○ c 01101111	
® d 00110011	
Subtract 1010 from 1111 using 2s complemen	nt
● a: 0101	
O b: 1010	
O c 1101	
O d; 1011	
Use 2s complement arithmetic to solve exp	ression given in decimal numbers : 58-33+4
© at 01000100	
C b: Ossionos	
○ c 01011111	
® d. 01011101	
Submit Quiz	
5 out of 5	
30000	117 V WIII YYY 111

Conclusion:

We could successfully design and implement Different Arithmetic Circuits using Vlab.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of faculty in-charge with date

References:

Books/ Journals/ Websites:

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. https://he-coep.vlabs.ac.in/exp/various-arithmetic-circuits/index.html
- 3. https://he-coep.vlabs.ac.in/exp/various-arithmetic-circuits/images/Lab.Manual.Exp.ari thmatic.ckt.pdf