Variable Elimination: Algorithm

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. Types of Inference Algorithms
- 2. Variable Elimination: the Basic ideas
- 3. Variable Elimination
 - Sum-Product VE Algorithm
 - Sum-Product VE for Conditional Probabilities
- 4. Variable Ordering for VE

Variable Elimination: Use of Factors

- To formalize VE need concept of factors φ
- χ is a set of r.v.s, X is a subset $X \subseteq \chi$
- We say $Scope[\phi] = X$
 - Factor associates a real value for each setting of it arguments $\phi: Val(\mathbf{X}) \rightarrow R$
- Factor in BN is a product term
 - say $\phi(A,B,C) = P(A/B,C)$

Factors in BNs and MNs

- Useful in both BNs and MNs
 - Factor in BN: product term, $\phi(A,B,C)=P(A/B,C)$
 - Factor in MN: Gibbs distribution, say $\phi(A,B)$
 - Definition of Gibbs:
 - Example:

$$P_{\Phi}(X_1,..X_n) = \frac{1}{Z}\tilde{P}(X_1,..X_n)$$

where

$$\left| \tilde{P}(X_1,..X_n) = \prod_{i=1}^m \phi_i(D_i) \right|$$

is an unnomalized measure and

$$Z = \sum_{X_1,..X_n} \tilde{P}(X_1,..X_n)$$
 is a normalizing constant

called the partition function

Role of Factor Operations

The joint distribution is a product of factors

 $P(C,D,I,G,S,L,J,H) = P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L)P(H|G,J) = \phi_C(C) \phi_D(D,C) \phi_I(I) \phi_G(G,I,D) \phi_S(S,I) \phi_L(L,G) \phi_J(J,L,S) \phi_H(H,G,J)$

Inference is a task of marginalization

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

 We wish to systematically eliminate all variables other than J

About Factors

- Inference Algorithms manipulate factors
- Occur in both directed and undirected PGMs
- Need two operations:
 - Factor Product: $\Phi_1(X,Y) \Phi_2(Y,Z)$
 - Factor Marginalization: $\psi(X) = \sum_{Y} \phi(X, Y)$

Factor Product

- Let X, Y and Z be three disjoint sets of variables and let $\phi_1(X,Y)$ and $\phi_2(Y,Z)$ be two factors.
- The factor product is the mapping $Val(X, Y, Z) \rightarrow R$ as follows

$$\psi(X, Y, Z) = \phi_1(X, Y) \phi_2(Y, Z)$$

An example:

 ϕ_1 : 3 x 2 = 6 entries

 ϕ_2 : 2 x 2= 4 entries

yields

 ψ : 3 x 2 x 2= 12 entries

Factor Marginalization

- X is a set of variables and $Y \notin X$ is a variable
- $\phi(X, Y)$ is a factor
- We wish to eliminate Y
- Factor marginalization of Y is a factor ψ s.t.

$$\psi(X) = \sum_{Y} \phi(X, Y)$$

Example of Factor Marginalization: Summing-out Y=B when $X=\{A,C\}$

- Process is called summing out of Y in ϕ
- We sum up entities in the table only when the values of X match up
- If we sum out all variables we get a factor which is a single value of 1
- If we sum out all of the variables in an unnormalized distribution $\tilde{P}_{\phi} = \prod_{i=1}^{r} \phi_i (D_i)$ we get the partition function

Distributivity of product over sum

Example with nos.

 $a.b_1+a.b_2=a(b_1+b_2)$: product is distributive $(a+b_1).(a+b_2)$. ne. $a+(b_1\ b_2)$: sum is not Product distributivity allows fewer operations

$$\psi(A,B) = \sum_{A=a_1}^{a_2} \sum_{B=b_1}^{b_2} A \cdot B = a_1 b_1 + a_1 b_2 + a_2 b_1 + a_2 b_2 \quad \text{requires 4 products, 3 sums}$$

Alternative formulation requires 2 sums, 2 products

$$\psi(A,B) = \sum_{A=a_1}^{a_2} A \cdot \tau(B)$$

$$egin{align} where & auig(Big) = \sum_{B=b}^{b_2} B = b_1 + b_2 \ \end{array}$$

$$\psi(A,B) = a_{\scriptscriptstyle 1}\tau(B) + a_{\scriptscriptstyle 2}\tau(B)$$

Sum first
Product next
Saves ops over
Product first
Sum next

- Factor product and summation behave exactly like product and summation over nos.
- If $X \not\in Scope(\phi_1)$ then $\sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \sum_{X} \phi_2$

Sum-Product Variable Elimination Algorithm

- Task of computing the value of an expression of the form $\sum_{Z} \prod_{\phi \in \Phi} \phi$
- Called sum-product inference task
 - Sum of Products
- Key insight is that scope of the factors is limited
 - Allowing us to push in some of the summations, performing them over the product of only some of the factors
 - We sum out variables one at a time

Inference using Variable Elimination

Example: Extended Student BN

We wish to infer P(J)

$$P(J) = \sum_{H} \sum_{L} \sum_{S} \sum_{G} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

By chain rule:

P(C,D,I,G,S,L,J,H) = P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L)P(H|G,J)

- Which is a Sum of Product of factors

Sum-product VE

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

$$P(\,C,D,I,G,S,L,J,H) = \,P(\,C)\,P(\,D|\,C)\,P(\,I)\,P(\,G|\,I,D)\,P(\,S|\,I)\,P(\,L|\,G)\,P(\,J|\,L)\,P(\,H|\,G,J) = \,P(\,C,D,I,G,S,L,J,H) = \,P(\,C)\,P(\,D|\,C)\,P(\,D|\,C)\,P(\,I)\,P(\,G|\,I,D)\,P(\,S|\,I)\,P(\,L|\,G)\,P(\,J|\,L)\,P(\,H|\,G,J) = \,P(\,C)\,P(\,D|\,C)\,P$$

$$\phi_C(C)$$
 $\phi_D(D,C)$ $\phi_I(I)$ $\phi_G(G,I,D)$ $\phi_S(S,I)$ $\phi_L(L,G)$ $\phi_J(J,L,S)$ $\phi_H(H,G,J)$

Elimination ordering C,D,I,H,G,S,L

1.Eliminating *C*:

$$\boxed{\psi_{\!\scriptscriptstyle 1}\!\left(\!C,D\right)\!=\phi_{\!\scriptscriptstyle C}\!\left(\!C\right)\!\phi_{\!\scriptscriptstyle D}\!\left(\!D,C\right) \qquad \tau_{\!\scriptscriptstyle 1}\!\left(\!D\right)\!=\sum_{\!\scriptscriptstyle C}\psi_{\!\scriptscriptstyle 1}\!\left(\!C,D\right)}$$

Each step involves factor product ψ and factor marginalization to obtain a new factor τ

Compute the factors

2. Eliminating
$$D$$
:
$$\psi_2(G,I,D) = \phi_G(G,I,D)\tau_1(D) \qquad \tau_2(G,I) = \sum_D \psi_2(G,I,D)$$

Note we already eliminated one factor with D, but introduced τ_I involving D

3. Eliminating *I*:

$$\left| \psi_{_{3}}\!\left(G,I,S\right) = \phi_{_{I}}\!\left(I\right) \phi_{_{S}}\!\left(S,I\right) \tau_{_{2}}\!\left(G,I\right) \quad \tau_{_{3}}\!\left(G,S\right) = \sum_{I} \psi_{_{3}}\!\left(G,I,S\right) \right|$$

4. Eliminating H: Note $\tau_{\mathcal{A}}(G,J)=1$

$$\bigg|\psi_{\!\scriptscriptstyle 4}\!\left(\!G,\!J,\!H\right)\!=\phi_{\!\scriptscriptstyle H}(H,\!G,\!J) \qquad \tau_{\!\scriptscriptstyle 4}\!\left(\!G,\!J\right)\!=\sum_{\!\scriptscriptstyle H}\psi_{\!\scriptscriptstyle 4}\!\left(\!G,\!J,\!H\right)$$

5. Eliminating *G*:

$$\bigg|\psi_{_{5}}\Big(G,J,L,S\Big) = \tau_{_{4}}\Big(G,J\Big)\tau_{_{3}}\Big(G,S\Big)\phi_{_{L}}\Big(L,G\Big) \qquad \tau_{_{5}}\Big(J,L,S\Big) = \sum_{G}\psi_{_{5}}\Big(G,J,L,S\Big)$$

6. Eliminating *S*:

$$\boxed{\psi_{\scriptscriptstyle 6}\!\left(J,L,S\right) = \tau_{\scriptscriptstyle 5}\!\left(J,L,S\right) \cdot \phi_{\scriptscriptstyle J}\!\left(J,L,S\right) \quad \tau_{\scriptscriptstyle 6}\!\left(J,L\right) = \sum_{S} \psi_{\scriptscriptstyle 6}\!\left(J,L,S\right)}$$

7. Eliminating *L*:

$$\boxed{\psi_{\scriptscriptstyle 7}\!\left(J,L\right) = \tau_{\scriptscriptstyle 6}\!\left(J,L\right) \qquad \tau_{\scriptscriptstyle 7}\!\left(J\right) \! = \sum_{\scriptscriptstyle L} \psi_{\scriptscriptstyle 7}\!\left(J,L\right)}$$

Computing $\tau(A,C) = \Sigma_B \psi(A,B,C) = \Sigma_B \phi(A,B) \phi(B,C)$

1.Factor product

$$\psi(A,B,C) = \phi(A,B)\phi(B,C)$$

2. Factor marginalization

$$\tau(A,C) = \sum_{B} \psi(A,B,C)$$

_										
							a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
							a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
							a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
$a^1 b^1$	0.5					_	a ¹	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
$a^1 b^2$	0.8		b^1	c^1	0.5		a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
$a^2 b^1$	0.1		b^1	c^2	0.7		a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
$a^2 b^2$	0	$\downarrow \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	b^2	c^1	0.1		a ²	b^2	c^1	0.0.1 = 0
$a^3 b^1$	0.3		b^2	c^2	0.2		a^2	b^2	c^2	0.0.2 = 0
$a^3 b^2$	0.9					•	a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
							a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
							a^3	b^2	c^1	0.9.0.1 = 0.09
							a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

a ¹	b^1	c^1	0.25			
a^1	b^1	c^2	0.35			
a ¹	b^2	c^1	0.08			
a ¹	b^2	c^2	0.16	a^1	c^1	0.33
a^2	b^1	c^1	0.05	a^1	c^2	0.51
<i>a</i> ²	b^1	c^2	0.07	a^2	c^1	0.05
<i>a</i> ²	b^2	c^1	0	a^2	c^2	0.07
a^2	b^2	c^2	0	a^3	c^1	0.24
a^3	b^1	c^1	0.15	a^3	c^2	0.39
<i>a</i> ³	b^1	c^2	0.21			
a^3	b^2	c^1	0.09			
a^3	b^2	c^2	0.18			

Sum-Product VE Algorithm

To compute

$$\sum_{Z} \prod_{\phi \in \Phi} \phi$$

- First procedure $\stackrel{/}{}$ specifies ordering of k variables Z_i
- Second procedure
 eliminates a single
 variable Z
 (contained in factors
 Φ') and returns
 factor τ

```
Procedure Sum-Product-VE (
                    // Set of factors
                    // Set of variables to be eliminated
                   // Ordering on \boldsymbol{Z}
          Let Z_1, \ldots, Z_k be an ordering of Z such that
              Z_i \prec Z_j if and only if i < j
          for i = 1, \ldots, k
              \Phi \leftarrow \text{Sum-Product-Eliminate-Var}(\Phi, Z_i)
4
          \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
           return \phi^*
       Procedure Sum-Product-Eliminate-Var (
                     // Set of factors
                   // Variable to be eliminated
          \Phi' \leftarrow \{\phi \in \Phi : Z \in \mathit{Scope}[\phi]\}
          \Phi'' \leftarrow \Phi - \Phi'
          \begin{array}{ll} \psi \leftarrow & \prod_{\phi \in \Phi'} \phi \\ \tau \leftarrow & \sum_{Z} \psi \end{array}
                                                                                    114
           return \Phi'' \cup \{\tau\}
```

Two runs of Variable Elimination

• Elimination Ordering: C,D,I,H,G,S,L

				/ /
Step	Variable	Factors	Variables	New
otop	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$
4	$\overset{1}{H}$	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	\overline{G}	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	$\stackrel{\smile}{S}$	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

• Elimination Ordering: G,I,S,L,H,C,D

Step	Variable eliminated	Factors used	Variables involved	New factor
1	G	$\phi_G(G,I,D), \phi_L(L,G), \phi_H(H,G,J)$	G, I, D, L, J, H	$ au_1(I,D,L,J)$
2	I	$\phi_I(I)$, $\phi_S(S,I)$, $\tau_1(I,D,L,S,J,H)$	S, I, D, L, J, H	$ au_2(D,L,S,J)$
3	G.	$\phi_J(J,L,S), au_2(D,L,S,J,H)$	D, L, S, J, H	$ au_3(D,L,J,oldsymbol{\mathbb{Z}})$
	5	$\varphi_J(S, E, S), \gamma_2(E, E, S, S,$	D, L, J, H	$ au_4(D,J,H)$
4	L	$ au_3(D,L,J,H)$	/ / /	
5	H	$ au_4(D,J,H)$	D, J, H	$ au_5(D,J)$
6	C	$ au_5(D,J),\phi_C(C),\phi_D(D,C)$	D, J, C	$ au_6(D,J)$
7	D	$ au_6(D,J)$	D, J	$ au_7(J)$

Factors with much larger scope

Semantics of Factors

- What are the intermediate factors?
- Sometimes they correspond to marginal or conditional probabilities in the network
- It is not always the case
- Result of eliminating X in (a) is

$$\tau(A,B,C) = \sum_{X} P(X) P(A|X) P(C/B,X)$$

- It does not correspond to any probability or conditional probability in (a)
- It does correspond to a conditional probability P(A, C|B) in (b)

Dealing with Evidence

- We observe student is intelligent (i^1) and is unhappy (h^0)
- What is the probability that student has a job?

$$P(J \mid i^1, h^0) = \frac{P(J, i^1, h^0)}{P(i^1, h^0)}$$
 Probability of evidence

- For this we need unnormalized distribution $P(J,i^1,h^0)$. Then we compute conditional distribution by renormalizing by $P(e) = P(i^1,h^0)$

BN with evidence e is Gibbs with Z=P(e)

Defined by original factors reduced to context E=eLet \mathcal{B} be a BN over χ and E=e an observation. Let $W=\chi -E$.

- Then $P_{\mathcal{B}}(\mathbf{W}|\mathbf{e})$ is a Gibbs distribution defined by the factors $\Phi = \{\phi_{Xi}\} \ X_i \ \varepsilon \ \chi \text{ where } \phi_{Xi} = P_{\mathcal{B}}(X_i|Pa_{Xi})[\mathbf{E} = \mathbf{e}]$
 - Partition function for Gibbs distribution is P(e). Proof follows:

$$\begin{split} & P_{\boldsymbol{B}}\left(\boldsymbol{\chi}\right) = \prod_{i=1}^{N} P_{\boldsymbol{B}}\left(\boldsymbol{X}_{i} \mid Pa_{\boldsymbol{X}_{i}}\right) \\ & P_{\boldsymbol{B}}(\boldsymbol{W} \mid \boldsymbol{E} = \boldsymbol{e}) = \frac{P_{\boldsymbol{B}}(\boldsymbol{W})\big[\boldsymbol{E} = \boldsymbol{e}\big]}{P_{\boldsymbol{B}}(\boldsymbol{E} = \boldsymbol{e})} = \frac{\prod_{i=1}^{N} P_{\boldsymbol{B}}\left(\boldsymbol{X}_{i} \mid Pa_{\boldsymbol{X}_{i}}\right)\!\big[\boldsymbol{E} = \boldsymbol{e}\big]}{\sum_{\boldsymbol{W}} P_{\boldsymbol{B}}\left(\boldsymbol{\chi}\right)\!\big[\boldsymbol{E} = \boldsymbol{e}\big]} = \frac{\prod_{i=1}^{N} P_{\boldsymbol{B}}\left(\boldsymbol{X}_{i} \mid Pa_{\boldsymbol{X}_{i}}\right)\!\big[\boldsymbol{E} = \boldsymbol{e}\big]}{\sum_{\boldsymbol{W}} \prod_{i=1}^{N} P_{\boldsymbol{B}}\left(\boldsymbol{X}_{i} \mid Pa_{\boldsymbol{X}_{i}}\right)\!\big[\boldsymbol{E} = \boldsymbol{e}\big]} \end{split}$$

- Thus any BN conditioned on evidence can be regarded as a Markov network
 - and use techniques developed for MN analysis

Sum-Product for Conditional Probabilities

- Apply Sum-product VE to χ-Y-E
- Returned factor $\phi^*(Y)$ is P(Y,e)
- To obtain P(Y|e)
 - Renormalize $\phi^*(Y)$ by P(e), sum over entries in the unormalized distribution

```
Procedure Cond-Prob-VE (

\mathcal{K}, // A network over \mathcal{X}
\mathbf{Y}, // Set of query variables
\mathbf{E} = \mathbf{e} // Evidence
)

\Phi \leftarrow \text{Factors parameterizing } \mathcal{K}
Replace each \phi \in \Phi by \phi[\mathbf{E} = \mathbf{e}]
Select an elimination ordering \prec
\mathbf{Z} \leftarrow = \mathcal{X} - \mathbf{Y} - \mathbf{E}
\phi^* \leftarrow \text{Sum-Product-VE}(\Phi, \prec, \mathbf{Z})
\alpha \leftarrow \sum_{\mathbf{y} \in Val(\mathbf{Y})} \phi^*(\mathbf{y})
return \alpha, \phi^*
```

Run of Sum-Product VE

Computing

$$P(J, i^1, h^0)$$

Step	Variable	Factors	Variables	New
ыср	eliminated	used	involved	factor
1,	C	$\phi_C(C), \phi_D(D,C)$	C, D	$ au_1'(D)$
2'	D	$\phi_G[I=i^1](G,D), \phi_I[I=i^1](), \tau_1'(D)$	G, D	$ au_2'(G)$
5'	G	$\tau_2'(G), \phi_L(L,G), \phi_H[H=h^0](G,J)$	G, L, J	$ au_5'(L,J)$
6'	S	$\phi_S[I=i^1](S), \phi_J(J,L,S)$	J, L, S	$ au_6'(J,L)$
7'	$\stackrel{\circ}{L}$	$ au_6'(J,L), au_5'(J,L)$	J, L	$ au_7'(J)$

Compare with previous elimination ordering:

- Steps 3,4 disappear
- Since *I* and *H* need not be eliminated

Step	Variable	Factors	Variables	New
ССР	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$
2	D	$\phi_G(G,I,D)$, $ au_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J)$, $\tau_3(G,S)$, $\phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

By not eliminating *I* we avoid step that correlates *G* and *I*

Complexity of VE: Simple Analysis

- If *n* random variables and *m* initial factors:
 - We have m=n in a BN
 - In a MN we may have more factors than variables
- VE picks a variable X_i then multiplies all factors involving that variable
 - Result is a single factor ψ_i
- If N_i is no. of entries in factor ψ_i and $N_{\max}{=}{\max}\ N_i$
 - Overall amount of work required is $O(mN_{\rm max})$
 - Inevitable exponential blowup is exponential growth in size of factors $\,\psi_i$

Complexity: Graph-Theoretic Analysis

- VE does'nt care if input directed/undirected/combo
 - It can be viewed as operating on an undirected graph $\mathcal H$ with factors Φ
 - Let P be defined by multiplying factors in $\Phi = \{\phi\}$
 - Defining $X = Scope[\Phi]$ $P(X) = \frac{1}{Z} \prod_{\phi \in \Phi} \phi$ where $Z = \sum_{X} \prod_{\phi \in \Phi} \phi$
 - Then \mathcal{H}_{Φ} is the minimal MN I-map for P and factors Φ are a parameterization of this network
 - For a BN \mathcal{G} , the undirected graph \mathcal{H}_{Φ} is precisely the Moralized BN

MN induced by context E=e

- Factor $\psi(A,B,C)$
- Variable C eliminated by context $C=c^1$

a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
a^1	b^2	c^1	0.8.0.1 = 0.08
a^1	b^2	c^2	0.8.0.2 = 0.16
a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2	b^2	c^1	0.0.1 = 0
a^2	b^2	c^2	0.0.2 = 0
a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
a^3	b^2	c^1	$0.9 \cdot 0.1 = 0.09$
a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Value of C determines the factor $\tau(A,B)$

$$\tau(A,B) = \Sigma_{C=c} 1 \quad \psi(A,B,C)$$

Initial Set of Factors

Context G=g

Context G=g, S=s

VE as graph transformation

When a variable X is eliminated from Φ ,

Fill edges are introduced in Φ_X

Step	Variable	Factors	Variables	New
осор	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$
2	D	$\phi_G(G,I,D), \tau_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J)$, $\tau_3(G,S)$, $\phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S),\phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

After eliminating *C*

After eliminating *D* No fill edges

After eliminating *I* Fill edge *G-S*

Induced Graph

- Union of all graphs generated by VE
- Every factor generated is a clique
- Every maximal clique is the scope of some intermediate factor

Induced Graph due to VE using elimination order:

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C, D	$ au_1(D)$
2	D	$\phi_G(G,I,D)$, $\tau_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I)$, $\phi_S(S,I)$, $\tau_2(G,I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	\overline{G}	$\tau_4(G,J),\tau_3(G,S),\phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	$\stackrel{\smile}{S}$	$ au_5(J,L,S),\phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Width of induced graph= no. of nodes in largest clique minus 1

Minimal induced width over all orderings is bound on VE performance

Finding Elimination Orderings

- Which ordering C,D,I,H,G,S,L or G,I,S,L,H,C,D ?
 - How can we compute minimal induced width of the graph and the elimination ordering achieving that width?
 - Given graph $\mathcal H$ and some bound K, determine whether there exists an elimination ordering achieving induced width $<\!K$
- 1. Max-cardinality Search
 - Induced graphs are chordal
 - Every minimal loop is of length 3
 - $-G \rightarrow L \rightarrow J \rightarrow H$ is cut by chord $G \rightarrow J$

2. Greedy Search

SAT

Job

Intelligence

Difficulty

Нарру

Grade

Letter

Max-Cardinality Search

• Procedure Max-Cardinality (

```
{\cal H} // An undirected graph over \chi
```

```
Initialize all nodes in \mathcal{X} as unmarked

for k = |\mathcal{X}| \dots 1

X \leftarrow \text{unmarked variable in } \mathcal{X} \text{ with largest number of marked neighbors}

\pi(X) \leftarrow k

Mark X

return \pi
```


Select S first Next is a neighbor, say JLargest no of marked neighbors are H and I

Greedy Search

• Procedure Greedy- Ordering(

```
{\cal H} // An undirected graph over \chi s // An evaluation metric
```

```
Initialize all nodes in \mathcal{X} as unmarked for k=1\dots |\mathcal{X}|
Select an unmarked variable X\in\mathcal{X} that minimizes s(\mathcal{H},X)
\pi(X)\leftarrow k
Introduce edges in \mathcal{H} between all neighbors of X
Mark X
return \pi
```

Evaluation metric $s(\mathcal{H}, X)$:

- Min-neighbors: no. of neighbors it has in current graph
- Min-weight: product of weights (domain-cardinality)of its neighbors
- Min-fill: no. of edges that need to be added to the graph due to its elimination
- Weighted min-fill: sum of weights of edges that need to be added where weight of edge is product of weights of constituent vertices

Comparison of VE Orderings

- Different heuristics for variable orderings
- Testing data:
 - -8 standard BNs ranging from 8 to 1,000 nodes
- Methods:
 - Simulated annealing, BN package
 - Four heuristics

Comparison of VE variable ordering algorithms

• Evaluation metric $s(\mathcal{H}, X)$:

- Min-neighbors (MIN-N)
- Min-weight (MIN-W)
- Min-fill (MIN-Fill)
- Weighted min-fill (WMIN-Fill)
 - · Best of 4 is black bar

For large networks

worthwhile to run several heuristic algorithms to find best ordering

Two Simple Inference Cases

- Same ideas as before, as discussed in HMM literature
- 1. Bayes theorem as inference
- 2. Inference on a chain

1. Bayes Theorem as Inference

- Joint distribution p(x,y) over two variables x
 and y
 - Factors p(x,y)=p(x)p(y|x)
 - represented as directed graph (a)
 - We are given CPDs p(x) and p(y|x)
- If we observe value of y as in (b)
 - Can view marginal p(x) as prior
 - Over latent variable x
- Analogy to 2-class classifier
 - Class $x \in \{0,1\}$ and feature y is continuous
 - Wish to infer a posteriori distribution p(x|y)

Inferring posterior using Bayes

- Using sum and product rules, we can evaluate marginal $p(y) = \sum p(y|x')p(x')$
 - Need to evaluate a summation
- Which is then used in Bayes rule to calculate

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

- Observations
 - Joint is now expressed as

$$p(x,y)=p(y)p(x|y)$$

- Which is shown in (c)
- Thus knowing value of y
 we know distribution of x

2. Inference on a Chain

- Graphs of this form are known as Markov chains
 - Example: N = 365 days and x is weather (cloudy,rainy,snow..)
- Analysis more complex than previous case
- In this case directed and undirected are exactly same since there is only one parent per node (no additional links needed)
- Joint distribution has form

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) ... \psi_{N-1,N}(x_{N-1}, x_N)$$

Product of potential functions over pairwise cliques

- Specific case of N discrete variables
 - Potential functions are K x K tables
 - Joint distribution has $(n-1)K^2$ parameters

Inferring marginal of a node

- Wish to evaluate marginal distribution $p(x_n)$
 - What is the weather on November 11?
- For specific node x_n part way along chain
- As yet there are no observed nodes
- Required marginal obtained summing joint distribution over all variables except x_n

$$p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} p(x)$$
By application of sum rule

Naive Evaluation of marginal

$$p(x_n) = \sum_{x_1} \dots \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(x)$$

$$= \sum_{x_1} \dots \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \dots \psi_{N-1,N}(x_{N-1}, x_N)$$

Joint

- 1. Evaluate joint distribution
- 2. Perform summations explicitly
- Joint can be expressed as set of numbers one for each value of x
- There are N variables with K states
 - $-K^N$ values for x
- Evaluation of both joint and marginal
 - Exponential with length N of chain
 - Impossible with K=10 and N=365

Efficient Evaluation

$$p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) ... \psi_{N-1,N}(x_{N-1}, x_N)$$

- We are adding a bunch of products
- But multiplication is distributive over addition

$$ab+ac=a(b+c)$$

- Perform summation first and then do product
- LHS involves 3 arithmetic ops,
- RHS involves 2
- Sum-of-products evaluated as sums first

Efficient evaluation:

exploiting conditional independence properties

$$p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) ... \psi_{N-1,N}(x_{N-1}, x_N)$$

- Rearrange order of summations/multiplications
 - to allow marginal to be evaluated more efficiently
- Consider summation over x_N
 - Potential $\psi_{N-1,N}(x_{N-1},x_N)$ is only one that depends on x_N
 - So we can perform $\sum_{x_N} \psi_{N-1,N}(x_{N-1},x_N)$
 - To give a function of x_{N-1}
- Use this to perform summation over x_{N-1}
- Each summation removes a variable from distribution or removal of node from graph

Marginal Expression

 Group potentials and summations together to give marginal

$$p(x_n) = \frac{1}{Z}$$

$$\left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1},x_n) ... \left[\sum_{x_2} \psi_{2,3}(x_2,x_3) \left[\sum_{x_1} \psi_{1,2}(x_1,x_2)\right]\right]..\right]$$

$$\left[\sum_{x_{n-1}} \psi_{n,n+1}(x_n, x_{n+1}) ... \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)\right] ..\right]$$

Multiplication is distributive over addition ab+ac=a(b+c) LHS involves 3 arithmetic ops, RHS involves 2

Computational cost

- Evaluation of marginal using reordered expression
- *N-1* summations
 - Each with K states
 - Each a function of 2 variables
 - Summation over x_1 involves only $\psi_{1,2}(x_1,x_2)$
 - A table of K x K numbers
 - Sum table over x_1 for each x_2
 - $-O(K^2)$ cost
- Total cost is $O(NK^2)$
- Linear in chain length vs. exponential cost of naïve approach
 - Able to exploit many conditional independence properties of simple graph

Interpretation as Message Passing

- Calculation viewed as message passing in graph
- Expression for marginal decomposes into

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

- Interpretation
 - Message passed forwards along chain from node x_{n-1} to x_n is $\mu_{\alpha}(x_n)$
 - Message passed backwards from node x_{n+1} to x_n is $\mu_{\beta}(x_n)$
 - Each message comprises of K values one for each choice of x_n

Recursive evaluation of messages

• Message $\mu_{\alpha}(x_n)$ can be evaluated as

$$\mu_{\alpha}(x_{n}) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \left[\sum_{x_{n-2}} \dots \right]$$

$$= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \mu_{\alpha}(x_{n-1}) \qquad (1)$$

Therefore first evaluate x_{n-1}

$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2)$$

- Apply (1) repeatedly until we reach desired node
- Note that outgoing message $\mu_{\alpha}(x_n)$ in (1) is obtained by
 - multiplying incoming message $\mu_{\alpha}(x_{n-1})$ by the local potential involving the node variable and
 - the outgoing variable
 - and summing over node variable

Recursive message passing

• Similarly message $\mu_b(x_n)$ can be evaluated recursively starting with node x_n

$$\mu_{\beta}(x_{n}) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_{n}) \left[\sum_{x_{n+2}} \dots \right]$$

$$= \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_{n}) \mu_{\beta}(x_{n+1})$$

Message passing
equations known as
Chapman-Kolmogorov
equations for
Markov processes

- Normalization constant Z is easily evaluated
 - By summing $\frac{1}{Z}\mu_{\alpha}(x_n)\mu_{\beta}(x_n)$ over all state of x_n
 - An O(K) computation

Evaluating marginals for every node

- Evaluate $p(x_n)$ for every node n = 1,...N
- Simply applying above procedure is $O(N^2M^2)$
- Computationally wasteful with duplication
 - To find $p(x_1)$ we need to propagate message $m_b(.)$ from node x_N back to x_2
 - To evaluate $p(x_2)$ we need to propagate message $m_b(.)$ from node x_N back to x_3

Instead

- launch message $m_b(x_{N-1})$ starting from node x_N and propagate back to x_1
- launch message $m_a(x_2)$ starting from node x_2 and propagate forward to x_N
- Store all intermediate messages along the way
- Then any node can evaluate its marginal by $p(x_n) = \frac{1}{7} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$
- Computational cost is only twice as finding marginal of single node instead of N times

Joint distribution of neighbors

- Wish to calculate joint distribution $p(x_{n-1},x_n)$ for neighboring nodes
- Similar to previous computation
- Required joint distribution can be written as

$$p(x_{n-1}, x_n) = \frac{1}{Z} \mu_{\alpha}(x_{n-1}) \psi_{n-1}, n(x_{n-1}, x_n) \mu_{\beta}(x_n)$$

- Obtained once message passing for marginals is completed
- Useful result if we wish to use parametric forms for conditional distributions

Tree structured graphs

- Local message passing can be performed efficiently on trees
- Message passing can be generalized to give sum-product algorithm

Tree

- a graph with only one path between any pair of nodes
- Such graphs have no loops
- In directed graphs a tree has a single node with no parents called a *root*
- Directed to undirected will not add moralization links since every node has only one parent

Polytree

- A directed graph has nodes with more than one parent but there is only one path between nodes (ignoring arrow direction)
- Moralization will add links

Undirected tree

Directed tree

