Final Report

due November 16, 2021 by 11:59 PM

Enzo, Layla, Madeleine

November 16, 2021

```
cities <- initial_data %>%
  select(StateAbbr, PlaceName, Population2010, PlaceFIPS, Geolocation,
         ACCESS2_AdjPrev, CANCER_AdjPrev, CHD_AdjPrev, CHECKUP_AdjPrev,
         COPD AdjPrev, COLON SCREEN AdjPrev, COREM AdjPrev, COREW AdjPrev,
         KIDNEY_AdjPrev, MAMMOUSE_AdjPrev, PAPTEST_AdjPrev) %>%
  dplyr::rename(state = StateAbbr, city = PlaceName, population = Population2010,
         health_access = ACCESS2_AdjPrev, cancer = CANCER_AdjPrev,
         heart_disease = CHD_AdjPrev, checkup = CHECKUP_AdjPrev,
         chronic lung disease = COPD AdjPrev,
         colon screen = COLON SCREEN AdjPrev,
         men colorectal cancer screen = COREM AdjPrev,
         women_colorectal_cancer_screen = COREW_AdjPrev,
         chronic_kidney_disease = KIDNEY_AdjPrev,
         mammogram = MAMMOUSE_AdjPrev,
         pap_test = PAPTEST_AdjPrev) %>%
  mutate(large_metro = (population >= 1500000),
         metro = (population >= 500000 & population < 1500000),</pre>
         med_urban = (population >= 200000 & population < 500000),</pre>
         small_urban = (population >= 50000 & population < 200000)) %>%
  mutate(west = (state %in% c("WA", "OR", "ID", "MT", "WY", "CA", "NV", "UT",
                              "CO", "AZ", "NM")),
         midwest = (state %in% c("ND", "SD", "NE", "KS", "MN", "IA", "MO",
                                 "WI", "IL", "IN", "MI", "OH")),
         northeast = (state %in% c("PA", "NY", "VT", "NH", "MA", "CT", "RI",
                                   "NJ", "ME", "DC")),
         south = (state %in% c("OK", "TX", "AR", "LA", "MS", "AL", "TN", "KY",
                                "WV", "VA", "MD", "DE", "NC", "SC", "GA",
                               "FL"))) %>%
  mutate(region = ifelse(west == TRUE, "West",
                         ifelse(midwest == TRUE, "Midwest",
                                ifelse(northeast == TRUE, "Northeast",
                                       ifelse(south == TRUE,
                                               "South", NA))))) %>%
  mutate(city_size = ifelse(large_metro == TRUE, "Large Metropolitan",
                         ifelse(metro == TRUE, "Metropolitan",
                                ifelse(med_urban == TRUE, "Medium-Size Urban",
                                       ifelse(small_urban == TRUE,
                                               "Small-Size Urban", NA))))) %>%
  na.omit(city_size) %>%
  na.omit(region) %>%
  mutate(checkup_n = (population*(checkup/100)),
```

```
colon_n_screened = (population*(colon_screen/100)),
         m_colorectal_n_screened = (population*(men_colorectal_cancer_screen/100)),
         w_colorectal_n_screened =
           (population*(women_colorectal_cancer_screen/100)),
         mammogram_n_screened = (population*(mammogram/100)),
         pap_n_screened = (population*(pap_test/100))) %>%
  mutate(no_checkup_n = (population - checkup_n),
         no colon n screened = (population - colon n screened),
         no_m_colorectal_n_screened = (population - m_colorectal_n_screened),
         no_w_colorectal_n_screened =
           (population - w_colorectal_n_screened),
         no_mammogram_n_screened = (population - mammogram_n_screened),
         no_pap_n_screened = (population - pap_n_screened))
# checked the residual plot withouth this and need todo this to make model more accurate
#this is the training data set called model_cities
set.seed(100)
split <- initial_split(cities, prop = 3/4, strata = region)</pre>
model_cities <- training(split)</pre>
cities_test <- testing(split)</pre>
#for introductory visualizations
west cities <- cities %>%
  filter(west)
midwest_cities <- cities %>%
  filter(midwest)
northeast_cities <- cities %>%
  filter(northeast)
south_cities <- cities %>%
  filter(south)
```

#boxplot of region and city size

Introductory Visualisations of Data Set


```
#anova shows means of checkup (n and log) are different among the regions
anova1 <- aov(logcheckup_n ~ region, data = cities2)
tidy(anova1)</pre>
```

```
## # A tibble: 2 x 6
##
    term
                 df sumsq meansq statistic p.value
##
     <chr>
              <dbl> <dbl> <dbl>
                                      <dbl>
                                               <dbl>
## 1 region
                  3
                      6.32 2.11
                                       4.16 0.00638
                            0.507
## 2 Residuals 447 226.
                                      NA
#boxplots of checkup (n and log) by city size
ggplot(data = cities2,
      aes(x = city_size, y = logcheckup_n,
          color = city_size)) +
 geom_boxplot()
```



```
#anova shows means of checkup (n and log) are different among the city sizes
anova2 <- aov(logcheckup_n ~ city_size, data = cities2)</pre>
tidy(anova2)
## # A tibble: 2 x 6
##
     term
                  df sumsq meansq statistic
                                                p.value
##
     <chr>
              <dbl> <dbl>
                           <dbl>
                                       <dbl>
                                                  <dbl>
## 1 city_size
                   3 191. 63.5
                                        671. 4.15e-165
## 2 Residuals 447 42.3 0.0946
                                         NA NA
#enzo's graph for health access vs checkup
ggplot(data = cities2,
       aes(x = health_access, y = logcheckup_n)) +
```

geom_point()

Number of Checkups by City Size

Number of Checkups by City Size

Colorectal Cancer Screening and Lack of Healthcare Access Men only

Colorectal Cancer Screening and Lack of Healthcare Access Women only

Mammograms by Region

Prevalence of checkups by Region

Prevalence of checkups by City Size

#doesn't look that helpful tbh won't hurt my feelings if u trash it

Prevalence of Checkups and Lack of Healthcare Access

#cloud of points means something-- don't forget this later on


```
# cities heatmap <- melt(cities, id.vars = "checkup", measure.vars =</pre>
                            c("colon_screen", "mammogram", "pap_test"))
#head(cities_heatmap)
# ggplot(cities, aes(checkup, )) +
correlation1 <- cor.test(cities$checkup_n, cities$pap_n_screened,</pre>
                         method = "pearson")
correlation2 <- cor.test(cities$checkup_n, cities$colon_n_screened,</pre>
                          method = "pearson")
correlation3 <- cor.test(cities$checkup_n, cities$mammogram_n_screened,</pre>
                          method = "pearson")
print(correlation1)
##
  Pearson's product-moment correlation
##
## data: cities$checkup_n and cities$pap_n_screened
## t = 332.26, df = 449, p-value < 0.0000000000000022
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9975606 0.9983151
## sample estimates:
         cor
## 0.9979726
```

```
print(correlation2)
   Pearson's product-moment correlation
##
##
## data: cities$checkup_n and cities$colon_n_screened
## t = 294.91, df = 449, p-value < 0.0000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9969063 0.9978629
## sample estimates:
        cor
## 0.9974287
print(correlation3)
##
##
   Pearson's product-moment correlation
##
## data: cities$checkup_n and cities$mammogram_n_screened
## t = 437.63, df = 449, p-value < 0.0000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9985920 0.9990276
## sample estimates:
        cor
## 0.9988299
Multiple Logistic Regression Model
```

```
##
## Call:
## glm(formula = cbind(checkup_n, no_checkup_n) ~ region + city_size +
      health_access, family = binomial, data = model_cities)
##
## Deviance Residuals:
      Min 1Q Median
                                       Max
##
                                3Q
## -99.359 -18.975 -0.627 14.963 130.327
##
## Coefficients:
##
                              Estimate Std. Error z value
## (Intercept)
                            0.97037012 0.00122436 792.555
## regionNortheast
                            0.19874789 0.00093326 212.960
## regionSouth
                            0.10411063 0.00084367 123.402
                           ## regionWest
## city_sizeMedium-Size Urban 0.01336343 0.00086185
                                                  15.506
## city_sizeMetropolitan -0.00289017 0.00084854
                                                  -3.406
## city_sizeSmall-Size Urban -0.01782009 0.00077588 -22.968
                           -0.00596421 0.00005375 -110.965
## health_access
                                      Pr(>|z|)
## (Intercept)
                           ## regionNortheast
                          < 0.000000000000000000002 ***
## regionSouth
                           < 0.00000000000000000002 ***
## regionWest
                           < 0.00000000000000000000 ***
```

```
## city_sizeMetropolitan
                                        0.000659 ***
< 0.000000000000000 ***
## health access
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 808649
                            on 336
                                    degrees of freedom
## Residual deviance: 290529
                            on 329
                                    degrees of freedom
## AIC: 294628
## Number of Fisher Scoring iterations: 3
##
## Call:
  glm(formula = cbind(checkup_n, no_checkup_n) ~ region + city_size +
      health_access + region * city_size, family = binomial, data = model_cities)
##
## Deviance Residuals:
##
       Min
                  1Q
                       Median
                                     3Q
                                              Max
## -103.564
            -17.554
                        0.418
                                 14.078
                                           86.320
##
## Coefficients:
##
                                               Estimate Std. Error z value
## (Intercept)
                                             0.97009830 0.00162902 595.512
## regionNortheast
                                             0.15804724 0.00156374
                                                                    101.070
## regionSouth
                                            -0.01826191 0.00211966
                                                                     -8.616
## regionWest
                                            -0.21440752 0.00172584 -124.234
## city_sizeMedium-Size Urban
                                            -0.05649839 0.00178519
                                                                   -31.648
## city_sizeMetropolitan
                                            0.09483272 0.00188009
                                                                    50.440
## city_sizeSmall-Size Urban
                                            -0.06367042 0.00163329
                                                                   -38.983
## health_access
                                            -0.00488135 0.00005675
                                                                    -86.017
## regionNortheast:city_sizeMedium-Size Urban 0.16894949
                                                                    52.448
                                                        0.00322129
## regionSouth:city_sizeMedium-Size Urban
                                             0.20281749
                                                        0.00254564
                                                                    79.672
## regionWest:city_sizeMedium-Size Urban
                                            -0.01553915 0.00228157
                                                                     -6.811
## regionNortheast:city_sizeMetropolitan
                                            0.10447464 0.00301573
                                                                     34.643
## regionSouth:city_sizeMetropolitan
                                            -0.04324966 0.00254176
                                                                    -17.016
## regionWest:city_sizeMetropolitan
                                            -0.21259142 0.00239770
                                                                    -88.665
## regionNortheast:city sizeSmall-Size Urban
                                            0.04923987 0.00237171
                                                                     20.761
## regionSouth:city_sizeSmall-Size Urban
                                             0.18529679 0.00234383
                                                                    79.057
## regionWest:city_sizeSmall-Size Urban
                                            -0.04092672 0.00205398 -19.926
##
                                                       Pr(>|z|)
## (Intercept)
                                            < 0.000000000000000 ***
## regionNortheast
                                            < 0.00000000000000000000 ***
## regionSouth
                                            < 0.0000000000000000 ***
## regionWest
                                            < 0.000000000000000 ***
## city_sizeMedium-Size Urban
                                            < 0.000000000000000 ***
## city_sizeMetropolitan
                                            < 0.000000000000000 ***
## city_sizeSmall-Size Urban
                                            < 0.000000000000000 ***
## health_access
                                            < 0.000000000000000 ***
## regionNortheast:city_sizeMedium-Size Urban < 0.0000000000000000 ***
## regionSouth:city_sizeMedium-Size Urban
                                            < 0.000000000000000 ***
```

```
## regionWest:city_sizeMedium-Size Urban
                                              0.0000000000971 ***
## regionNortheast:city_sizeMetropolitan
                                          < 0.000000000000000000002 ***
                                          < 0.000000000000000 ***
## regionSouth:city sizeMetropolitan
## regionWest:city_sizeMetropolitan
                                          < 0.00000000000000000002 ***
## regionNortheast:city_sizeSmall-Size Urban < 0.0000000000000000 ***
## regionSouth:city sizeSmall-Size Urban
                                      < 0.0000000000000000 ***
## regionWest:city_sizeSmall-Size Urban
                                          < 0.000000000000000000000 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 808649 on 336 degrees of freedom
## Residual deviance: 252886 on 320 degrees of freedom
## AIC: 257003
##
## Number of Fisher Scoring iterations: 3
checkup fit <- logistic reg() \%>\%
set_engine("glm") %>%
fit(as.factor(checkup n) ~ region + city size + health access,
data=cities,
family="binomial", exponentiate = TRUE)
```

result <- tidy(checkup_fit, conf.int=TRUE)

print(result)

#how do i visualize all the log reg models can i augment when using a log reg model that uses cbind? can i make a regression plot without using augment function?

```
##
## Call:
## glm(formula = cbind(colon_n_screened, no_colon_n_screened) ~
##
       region + city_size + health_access, family = binomial, data = model_cities)
##
## Deviance Residuals:
##
                 1Q
                     Median
                                   ЗQ
       Min
                                            Max
## -98.034 -13.699
                     -1.068
                               18.543
                                        65.912
##
## Coefficients:
##
                                 Estimate Std. Error z value
                                                                          Pr(>|z|)
## (Intercept)
                               0.96017646  0.00115479  831.47  < 0.0000000000000002
                                                       22.41 < 0.000000000000000002
## regionNortheast
                               0.01927332 0.00086022
## regionSouth
                               0.24458352  0.00079496  307.67  < 0.0000000000000002
                               0.11740260 0.00068781 170.69 < 0.00000000000000002
## regionWest
```

```
## city_sizeMedium-Size Urban 0.02151338 0.00081370 26.44 <0.00000000000000000
                            0.02745954 0.00079974 34.34 < 0.0000000000000000
## city_sizeMetropolitan
## city sizeSmall-Size Urban
                            0.02848220 0.00073139 38.94 < 0.0000000000000002
                           ## health_access
## (Intercept)
                           ***
## regionNortheast
## regionSouth
## regionWest
## city_sizeMedium-Size Urban ***
## city_sizeMetropolitan
## city_sizeSmall-Size Urban
                           ***
## health_access
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 763964 on 336 degrees of freedom
## Residual deviance: 221991 on 329 degrees of freedom
## AIC: 226119
## Number of Fisher Scoring iterations: 3
##
## Call:
## glm(formula = cbind(mammogram_n_screened, no_mammogram_n_screened) ~
##
      region + city_size + health_access, family = binomial, data = model_cities)
##
## Deviance Residuals:
                    Median
##
                                3Q
      Min
               10
                                       Max
## -91.766 -17.040
                    4.115
                            18.677
                                    90.943
##
## Coefficients:
##
                             Estimate Std. Error z value
## (Intercept)
                            ## regionNortheast
                            0.1026001 \quad 0.0009550 \quad 107.435 < 0.0000000000000002
## regionSouth
                            0.1759165 0.0008741 201.243 < 0.0000000000000002
## regionWest
                                                35.384 < 0.00000000000000000
                            0.0265853 0.0007513
## city_sizeMedium-Size Urban -0.0133440 0.0008966 -14.883 < 0.00000000000000000
                                                -4.357
## city sizeMetropolitan
                           -0.0038478 0.0008831
                                                                  0.0000132
## city_sizeSmall-Size Urban -0.0075516 0.0008070
                                                -9.357 < 0.00000000000000000
## health access
                           ##
## (Intercept)
## regionNortheast
                           ***
## regionSouth
## regionWest
## city_sizeMedium-Size Urban ***
## city_sizeMetropolitan
                           ***
## city_sizeSmall-Size Urban
## health_access
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 401462 on 336 degrees of freedom
## Residual deviance: 288696 on 329 degrees of freedom
## AIC: 292760
## Number of Fisher Scoring iterations: 3
##
## Call:
## glm(formula = cbind(pap_n_screened, no_pap_n_screened) ~ region +
##
      city_size + health_access, family = binomial, data = model_cities)
##
## Deviance Residuals:
##
                  1Q
                                    3Q
       Min
                       Median
                                             Max
             -15.237
                        2.326
## -153.489
                                 16.525
                                          85.826
##
## Coefficients:
                               Estimate Std. Error z value
                                                                     Pr(>|z|)
##
## (Intercept)
                             1.66586484 0.00133834 1244.73 < 0.00000000000000002
## regionNortheast
                            -0.07942884 0.00100571 -78.98 < 0.00000000000000002
## regionSouth
                             ## regionWest
                             0.01680779
                                        0.00080678
                                                    20.83 < 0.00000000000000002
## city_sizeMedium-Size Urban -0.10257377
                                       0.00094715 -108.30 < 0.00000000000000002
## city sizeMetropolitan
                            -0.04724339  0.00093719  -50.41  <0.0000000000000002
## city_sizeSmall-Size Urban -0.06835666 0.00085439 -80.01 <0.00000000000000000
## health_access
                            ##
## (Intercept)
## regionNortheast
## regionSouth
## regionWest
## city_sizeMedium-Size Urban ***
## city_sizeMetropolitan
## city sizeSmall-Size Urban
## health_access
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 392788 on 336
                                   degrees of freedom
## Residual deviance: 242902 on 329 degrees of freedom
## AIC: 246928
## Number of Fisher Scoring iterations: 3
```

Model Validation

model that was made from the training data set compared to the rest of the test data points from the cities data

```
library(pROC)
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
# predictions from no interaction model
test prob1 = predict(checkup fit, newdata = cities test, type = "response")
print(test_prob1)
                     2
                                3
                                                    5
## 0.6455606 0.7314895 0.7011851 0.7228949 0.7112079 0.7050252 0.7078892 0.6422785
           9
                    10
                                                   13
                                                             14
                               11
                                         12
                                                                        15
## 0.6523540 0.7276781 0.6500896 0.7057882 0.7093670 0.6459699 0.6957643 0.7177244
                    18
                                         20
                                                   21
                                                             22
                                                                        23
##
          17
                               19
## 0.7083823 0.7351469 0.7208554 0.7154229 0.7243224 0.6459699 0.7294139 0.6503223
##
          25
                    26
                               27
                                         28
                                                   29
                                                             30
                                                                        31
## 0.7157870 0.7352215 0.6481492 0.7284711 0.7143288 0.7110314 0.6446047 0.6527981
          33
                    34
                               35
                                         36
                                                   37
                                                             38
                                                                        39
## 0.7096128 0.7054165 0.7094899 0.7451987 0.7226520 0.6461062 0.7220539 0.7156657
          41
                    42
                               43
                                                   45
                                                             46
                                         44
## 0.7207354 0.7451987 0.7174826 0.7044241 0.7430410 0.7104724 0.6389831 0.7072722
##
          49
                    50
                               51
                                         52
                                                   53
                                                             54
                                                                        55
## 0.7123092 0.6467878 0.6435109 0.7165145 0.7284711 0.6454241 0.7445186 0.7242033
          57
                    58
                               59
                                         60
                                                   61
                                                             62
## 0.7335473 0.6511356 0.7117661 0.7243224 0.7476684 0.7315275 0.7064071 0.6512711
          65
                    66
                               67
                                         68
                                                   69
                                                             70
                                                                        71
## 0.6370547 0.7013101 0.6485571 0.7217288 0.7072722 0.6484598 0.7081709 0.6439212
          73
                    74
                               75
                                         76
                                                   77
                                                             78
## 0.6297147 0.6896344 0.6297147 0.7254268 0.7297669 0.7100500 0.7293296 0.7290941
                               83
                                         84
                                                   85
                                                             86
                                                                        87
## 0.6609976 0.6507291 0.7171198 0.6437845 0.7104724 0.7486131 0.6499197 0.7189311
                                                             94
                    90
                               91
                                         92
                                                   93
## 0.7278425 0.6500510 0.7045482 0.6411815 0.6967931 0.7279606 0.7207354 0.6476049
                                        100
                    98
                               99
                                                            102
                                                                       103
                                                  101
## 0.7131987 0.6388455 0.6420044 0.7485008 0.7246796 0.6462426 0.7173617 0.6443314
                   106
                             107
                                        108
                                                  109
                                                            110
## 0.6432372 0.7183281 0.7304339 0.6462426 0.6435109 0.6482852 0.6330461 0.6476049
         113
## 0.7081358 0.7275599
new cities test <-
  merge(cities_test, test_prob1, by = "row.names", all.x = TRUE)
ggplot(cities_test, aes(x = test_prob1, y = checkup)) +
  geom_point()
```


prediction from model with interaction

test_prob2 = predict(checkup_fit2, newdata = cities_test, type = "response")
print(test_prob2)

0.6431587 0.7294199 0.6952775 0.7132379 0.7035892 0.7152382 0.7008332 0.6404655 ## 0.6487404 0.7334590 0.6484848 0.6990904 0.7020599 0.6434947 0.7078243 0.7256013 $0.7012424\ 0.7235076\ 0.7281210\ 0.7237509\ 0.7309143\ 0.6434947\ 0.7350225\ 0.6470701$ $0.7240436\ 0.7324917\ 0.6452845\ 0.7342612\ 0.7228717\ 0.7202237\ 0.6423741\ 0.6507070$ ## 0.7022641 0.6987823 0.7021620 0.7407306 0.7295681 0.6436067 0.7290863 0.7239460 ## ## 0.7280244 0.7407306 0.7254069 0.6979597 0.7389454 0.7029780 0.6377634 0.7003212 $0.7045046 \ 0.6441664 \ 0.6414765 \ 0.7246284 \ 0.7342612 \ 0.6430467 \ 0.7401677 \ 0.7308183$ ## 0.7382032 0.6477387 0.7208134 0.7309143 0.7427469 0.7367302 0.6996036 0.6478500 ## 0.6361832 0.6953809 0.6456196 0.7286605 0.7003212 0.6471484 0.6972072 0.6418132 $0.6301744\ 0.7030993\ 0.6301744\ 0.7316419\ 0.7353076\ 0.7194361\ 0.7347929\ 0.7346026$

```
## 0.6574440 0.6474045 0.7251151 0.6417010 0.7029780 0.7624053 0.6409192 0.7265722
##
          89
                    90
                               91
                                         92
                                                   93
                                                              94
                                                                        95
## 0.7264229 0.6468471 0.6980626 0.6395658 0.6916457 0.7265199 0.7280244 0.6448374
                    98
                               99
                                                            102
                                                                       103
                                        100
                                                  101
## 0.7014155 0.6376507 0.6402407 0.7623169 0.7312022 0.6437187 0.7253097 0.6421498
##
         105
                   106
                             107
                                        108
                                                  109
                                                             110
                                                                       111
## 0.6412520 0.7260870 0.7285519 0.6437187 0.6414765 0.6453962 0.6329005 0.6448374
##
         113
## 0.7010378 0.7333636
new_cities_test <-</pre>
  merge(cities_test, test_prob2, by = "row.names", all.x = TRUE)
ggplot(cities\_test, aes(x = test\_prob2, y = checkup)) +
  geom_point()
```


A tibble: 1 x 3