І. Электростатика в вакууме

1.1	Электрический заряд.
	Закон Кулона. Поле точечного заряда. Принцип суперпозиции.
	Напряженность электрического поля, силовые линии.
	Объемное, поверхностное и линейное распределения заряда. Плотность заряда.
1.2	Диполь, поле диполя. Силы, действующие на диполь.
	Элементы теории векторных полей. Оператор набла.
1.3	Поток вектора. Дивергенция. Теорема Гаусса в интегральной форме. Применения т.
	Гаусса: поле равномерно заряженных плоскости, сферы, шара, цилиндра, нити. Поле
	вблизи заряженной поверхности. Граничное условие для нормальной составляющей Е,
	сила, действующая на поверхность.
1.4	Формула Гаусса-Остроградского. Теорема Гаусса в дифференциальной форме. Потенциал,
	связь между напряженностью и потенциалом.
1.5	Теорема о циркуляции электрического поля. Граничное условие для тангенциальной
	составляющей электрического поля. Формула Стокса. Ротор Е. Потенциал диполя.
	Дипольный момент нейтральной системы зарядов и ее поле на больших расстояниях.
1.6	Потенциальная энергия взаимодействия зарядов. Плотность энергии электрического поля.
	Локализация электрической энергии в пространстве.
1.7	Уравнения Лапласа и Пуассона. Общая задача математической электростатики.

II. Проводники и диэлектрики в электростатическом поле.

п. пр	П. Проводники и диэлектрики в электростатическом поле.		
2.1	Диэлектрики. Поле в диэлектрике. Поляризация. Поверхностный и объемный связанный заряд. Теорема Гаусса. Электрическая индукция. Диэлектрическая восприимчивость и проницаемость. Граничные условия на поверхности раздела двух диэлектриков. Преломление силовых		
	линий на границе раздела. Общая задача математической электростатики в диэлектрике. Уравнение Пуассона.		
	общия зиди на математи неской электростатики в дизлектрике. 3 равнение ттуассона.		
2.2	<u>Диэлектрики.</u> Электрическая энергия в диэлектрике. Плотность энергии. Энергия диэлетрического тела во внешнем поле.		
	Поле равномерно поляризованного шара. Диэлектрический шар в однородном поле.		
	Точечный заряд над поверхностью диэлектрика.		
2.3	Проводники в электрическом поле. Явление электростатической индукции. Граничное условие на поверхности раздела металл-диэлектрик. Поле в полости внутри проводника. Электрическая экранировка.		
2.4	Проводники в электрическом поле. Метод изображений. Емкость уединенного проводника. Конденсаторы: емкость, энергия поля, соединения конденсатором. Потенциальные и емкостные коэффициенты, соотношения симметрии.		
2.5	Электрический ток. Плотность тока, закон сохранения заряда, уравнение непрерывности. Закон Ома в дифференциальной форме. Закон Джоуля-Ленца. Инерционное время, проводимость Друде.		
2.6	Электрический ток. Сторонние силы, ЭДС. Законы Ома и Джоуля-Ленца в интегральной форме. Закон Ома для неоднородного проводника. Сопротивление проводника. Мощность, выделяемая в цепи, КПД. Правила Кирхгофа.		

III. Магнитостатика.

3.1	Магнитное поле. Сила Лоренца, закон Ампера. Сила и момент силы, действующие на проводник с произвольным распределением тока. Магнитное поле равномерно двужущегося заряда. Закон Био-Савара. Поле прямого провода. Электродинамическая постоянная.
3.2	Векторный потенциал. Теорема Гаусса для магнитного поля. Теорема о циркуляции магнитного поля. Ротор. Формула Стокса и дифференциальная форма теоремы о циркуляции магнитного поля. Поле идеального соленоида и катушки с током. Поверхностный ток.
3.3	Виток с током в магнитном поле. Магнитный момент. Поле малого витка, эквивалентность поля витка и поля магнитного диполя скалярный магнитный потенциал, обобщение на случаи произвольного контура. Сила, действующая на виток с током в неоднородном магнитном поле.
3.4	Магнитное поле в веществе. Магнитная восприимчивость и проницаемость. Теорема о циркуляции магнитного поля в веществе. Уравнения Максвелла: электро- и магнитостатика (вещество). Граничные условия.
3.5	Магнитное поле в веществе. Диамагнетики, парамагнетики, ферромагнетики, сверхпроводники. Преломление силовых линий на границе магнетиков.

IV. Уравнения Максвелла.

	· · · · · · · · · · · · · · · · · · ·
4.1	Электромагнитная индукция. Правило Ленца. Максвеловская трактовка явления индукции. Вихревое электрическое поле. Генерация переменного тока. Токи Фуко. Индуктивность проводников. Взаимная индукция и самоиндукция. Магнитная энергия токов. Локализация магнитной энергии в пространстве.
4.2	Ток смещения и система уравнений Максвелла. Представление э/м поля через скалярный и векторный потенциалы.
4.3	Скорость распространения э.м возмущений. Энергия, поток энергии. Закон изменения энергии электромагнитного поля (теорема Пойнтинга)

V. Электромагнитные колебания.

5.1	Колебательный контур – свободные и вынужденные колебания, затухающие колебания.
	Резонансные кривые, добротность.
5.2	Законы переменного тока. Метод комплексных амплитуд. Импеданс. Правила Кирхгофа.
	Резонанс напряжений в последовательном контуре, резонанс токов в параллельных
	контурах. Работа и мощность в цепи переменного тока.

VI. Электромагнитные волны.

6.1	Распространение волн вдоль линии передач. Волны в двухпроводной линии.
6.2	Электромагнитные волны. Волновое уравнение в вакууме и в среде. Волновое уравнение
	для потенциалов. Решение волнового уравнение – плоская волна. Вектор Пойнтинга и
	плотность энергии в плоской волне.
6.3	Монохроматические плоские электромагнитные волны. Поляризация. Отражение волны
	при нормальном падении на границу раздела двух сред. Отражение от металлического
	зеркала. Давление света.
6.4	Общее решение уравнения Максвелла в виде запаздывающих потенциалов.