```
In[*]:= \mu 1 = 3.986004356 *^14 (*m^3/s^2*);

\mu 2 = 4.90280014595616`*^12 (*m^3/s^2*);

r 3 = 6371 * 10^3 (*m*);

RM = 385000000 (*m*);

h 1 = 200000 (*m - высота опорной орбиты*);

R = 150000000 (*sысота целевой орбиты*);

m 1 = 20000 (*kg*);

m KVTKemp = 24000 - 19600 (*kg*);
```

Параметры опорной круговой НОО

```
out[*]:= e1 = 0;

p1 = (r3 + h1) * (1 + e1);

v1 = \sqrt{\frac{\mu 1}{p1}}
```

Out[0]=

2992.49

Гомановский перелёт

Параметры переходной орбиты

Параметры целевой круговой орбиты радиусом Ra

```
In[*]:= e3 = 0;
                                 p3 = Ra;
                                 \Delta v2 = v3 - v2a
Out[0]=
                                  1630.13
Out[0]=
                                  1157.86
       In[⊕]:= (*Суммарная затрата характеристической скорости*)
                                  \Delta V = Abs[\Delta V1] + Abs[\Delta V2]
                                                       абсолютно ... абсолютное значение
Out[0]=
                                 4150.34
                                  \Delta v
Out[0]=
                                  4150.34
      In[@]:= RaList = Table[36 * step * 10^6, {step, 1.5, 15, 0.5}]
                                                                           таблица значений
Out[0]=
                                    \{5.4 \times 10^7, 7.2 \times 10^7, 9. \times 10^7, 1.08 \times 10^8, 1.26 \times 10^8, 1.44 \times 10^8, 1.62 \times 10^8, 1.62 \times 10^8, 1.44 \times 10^8, 1.62 \times
                                       1.8 \times 10^8, 1.98 \times 10^8, 2.16 \times 10^8, 2.34 \times 10^8, 2.52 \times 10^8, 2.7 \times 10^8, 2.88 \times 10^8,
                                       3.06 \times 10^8, 3.24 \times 10^8, 3.42 \times 10^8, 3.6 \times 10^8, 3.78 \times 10^8, 3.96 \times 10^8, 4.14 \times 10^8,
                                       4.32 \times 10^8, 4.5 \times 10^8, 4.68 \times 10^8, 4.86 \times 10^8, 5.04 \times 10^8, 5.22 \times 10^8, 5.4 \times 10^8
     ln[*]:= T3 = 2 \pi * \sqrt{\frac{Ra^3}{\mu 1}};
      In[@]:= Clear[Tab1]
       In[*]:= Tab1 = {{"N", "Ra, тыс. км", "\Delta V, км/с", "Период обращения Т, дней"}}
                                                                                _численное приближение
Out[0]=
                                   \{\{N, Ra, тыс. км, \triangle v, км/с, Период обращения Т, дней\}\}
      In[ • ]:= RaList[1]
Out[0]=
                                  5.4 \times 10^{7}
```

Out[@]=

N	Ra, тыс. км	∆ V , K M/ C	Период обращения Т, дней
1	54.	4.06286	1.4454
2	72.	4.14607	2.22534
3	90.	4.17291	3.11
4	108.	4.17605	4.08821
5	126.	4.16827	5.15173
6	144.	4.1553	6.29421
7	162.	4.13991	7.51052
8	180.	4.12355	8.79642
9	198.	4.10698	10.1483
10	216.	4.09064	11.5632
11	234.	4.07473	13.0383
12	252.	4.05938	14.5713
13	270.	4.04464	16.1601
14	288.	4.03051	17.8027
15	306.	4.017	19.4975
16	324.	4.00409	21.2429
17	342.	3.99174	23.0376
18	360.	3.97994	24.88
19	378.	3.96865	26.7692
20	396.	3.95784	28.7038
21	414.	3.94749	30.683
22	432.	3.93756	32.7057
23	450.	3.92803	34.7709
24	468.	3.91888	36.8779
25	486.	3.91009	39.0258
26	504.	3.90162	41.2138
27	522.	3.89347	43.4413
28	540.	3.88562	45.7075

 1.5×10^{8}

 2.0×10^{8}

Биэллиптический перелёт (трёхимпульсный)

 1.0×10^{8}

In[@]:= RaB = . In[•]:= (*Перелёт на **1**-ый эллипс*)

 5.0×10^{7}

4000

3950

$$In[0]:= e2B = \frac{RaB - (r3 + h1)}{RaB + (r3 + h1)} // N$$

$$p2B = (r3 + h1) * (1 + e2B) // N$$

$$v2pB = \sqrt{\frac{\mu 1}{p2B}} * (1 + e2B)$$

$$v2aB = \sqrt{\frac{\mu 1}{p2B}} * (1 - e2B)$$

$$\Delta v1B = v2pB - v1$$

Out[0]=

0.959132

Out[0]=

$$\textbf{1.28735}\times\textbf{10}^{7}$$

Out[0]=

10901.5

Out[@]=

227.408

Out[@]=

3112.98

ıп[∘]:= (**∗**Перелёт на 2-ой эллипс**∗**)

$$p3B = Ra * (1 + e3B) // N$$

численное приближение

$$\Delta v2B = v3aB - v2aB // N$$

_численное приближение

(*Перелёт на целевую орбиту*)

 $\Delta v3B = v3 - v3pB // N$

_численное приближение

Out[0]=

0.354839

Out[0]=

 $\textbf{2.03226} \times \textbf{10}^{\textbf{8}}$

Out[0]=

1897.44

Out[0]=

903.541

Out[0]=

676.133

Out[0]=

-267.302

Out[0]=

```
In[*]:= Plot[\Delta VB /. RaB \rightarrow x * 1000, \{x, 150000, 500000\}, AxesLabel \rightarrow \{"R^A, KM", "\Delta V_{\Sigma}, M/C"\},
                                                                   обозначения на осях
        график функции
          PlotRange → All, LabelStyle → Directive[Black, Bold, Medium], AspectRatio → 1.03]
         _отображаем⋯ _всё _стиль отметки _ _директива _ _чёрный _жир⋯ _ средний _ _аспектное отношение
Out[0]=
         \Delta V_{\Sigma}, m/c
        4140
        4120
        4100
        4080
        4060
        4040
        4020
                   200 000 250 000 300 000 350 000 400 000 450 000 500 000 R<sup>A</sup>, км
 ln[*]:= Plot[\triangle VB /. RaB \rightarrow x 1000, {x, 150 000, 600 000}, PlotTheme \rightarrow "Detailed",
        график функции
                                                                 тематический стиль графика
         AxesLabel \rightarrow {"\!\(\*SuperscriptBox[\(R\), \(A\)]\), KM",
         _обозначения на осях
                                  Lбокс для верхнего индекса
             "\!\(\*SubscriptBox[\(\DeltaV\), \(\Sigma\)]\), M/c"},
                     бокс для нижнего индекса
         PlotRange → All, LabelStyle → Directive[Black, Bold]]
         In[\bullet]:= FindMinimum[\triangle vB, {RaB, 3 * 10^8}]
        _найти минимум
Out[0]=
        \{3827.67, \{RaB \rightarrow 3.41697 \times 10^8\}\}
 In[\ \circ\ ]:= \Delta V /. Ra \rightarrow 150000000
Out[0]=
        4150.34
 In[-]:= \Delta v / . Ra \rightarrow 380000000
Out[0]=
        3967.42
```

Переход на орбиту захоронения

```
In[∗]:= Параметры орбиты захоронения
         pzakh = (r3 + 100000) * (1 + ezakh);
         vpzakh = \sqrt{\frac{\mu 1}{pzakh}} * (1 + ezakh);
         vazakh = \sqrt{\frac{\mu 1}{pzakh}} * (1 - ezakh);
         ∆v1zakh = Abs[v3 - vazakh];
                      абсолютное значение
         ∆v1zakh /. Ra → 150000000
Out[0]=
         орбиты Параметры захоронения
Out[0]=
         1161.31
 In[\circ]:= Vzakh = \sqrt{\frac{2 \mu 1}{Ra}};
         \Delta v2zakh = Abs[v3 - Vzakh];
                      абсолютное значение
         ∆v2zakh /. Ra → 150000000
Out[0]=
         675.224
  In[*]:= (*Выбираем отлёт в межпланетное пространство*)
  In[@]:= mfzakh =
          Solve \left[ (\Delta \text{V2zakh} / . \text{Ra} \rightarrow 150\,000\,000) == 4500 * \text{Log} \left[ \frac{\text{mKVTKemp} + \text{mfzakh}}{\text{натуральным KVTKemp}_{M}} \right], \text{ mfzakh} \right] [1, 1, 2]
Out[0]=
```

Затраты топлива при биэллиптическом перелёте, РБ КВТК (не подходит, если только

КВТК2Б-А7В)

```
In[+]:= RaB = 315 000 000
Out[0]=
         315 000 000
 Out[0]=
         2072.32
 In\{*\}:= mf2 = Solve \left[\Delta v2B == 4500 * Log \left[\frac{m1 + mKVTKemp + mfzakh + mf1 + mf2}{m1 + mKVTKemp + mfzakh + mf1}\right], mf2\right] [1, 1, 2] решить уравнения
Out[0]=
         2193.26
 In[*]:= mf3 = Solve \left[\Delta v1B == 4500 * Log \left[\frac{m1 + mKVTKemp + mfzakh + mf1 + mf2 + mf3}{\mu + mKVTKemp + mfzakh + mf1 + mf2}\right], mf3\right] [1, 1, 2] решить уравнения
Out[0]=
         29411.
 //n[*]:= mfuel = mfzakh + mf1 + mf2 + mf3
Out[0]=
         34388.9
```

Перелёт на ТЭМ (Зевс), двигатель ИД-500

```
In[*]:= Jid500 = 70000 (*M/c*);
      Fid500 = 0.75(*H*);
      \Deltamid500 = Fid500 / Jid500 (*\kappa\Gamma/C*);
      nid500 = 16 (*кол-во двигателей*);
      mzevs = 20290(*kg*);
      \Delta m = \Delta mid500 * nid500;
      F = Fid500 * nid500;
```

Сначала перелёт на КВТК на орбиту базирования, как можно выше

In[s]:= e2bo =
$$\frac{\text{Rbo} - (\text{r3} + \text{h1})}{\text{Rbo} + (\text{r3} + \text{h1})}$$
 // N [ЧИСЛЕННО]

p2bo = $(\text{r3} + \text{h1}) * (\text{1} + \text{e2bo})$ // N [ЧІ v2pbo = $\sqrt{\frac{\mu 1}{\text{p2bo}}} * (\text{1} + \text{e2bo})$ v2abo = $\sqrt{\frac{\mu 1}{\text{p2bo}}} * (\text{1} - \text{e2bo})$ $\Delta \text{v1bo} = \text{v2pbo} - \text{v1}$

Out[s] = 0.355532

Out[s] = 8.9072 × 10⁶

Out[s] = 9067.93

Out[s] = 4311.22

Out[s] = 1279.44

In[s] := e3bo = 0; p3bo = Rbo; v3bo = $\sqrt{\frac{\mu 1}{\text{p3bo}}}$ $\Delta \text{v2bo} = \text{v3bo} - \text{v2abo}$

Out[s] = 5370.31

```
In[a] := (mfzakhbo + mf1bo + mf2bo) * 1.05 /. Rbo \rightarrow (r3 + 7450000)
Out[0]=
         19584.8
  In[@]:= FindRoot[(mfzakhbo+mf1bo+mf2bo) * 1.05 == 19600, {Rbo, (r3 + 10000000)}]
Out[0]=
         \{ \text{Rbo} \rightarrow \text{1.38291} \times \text{10}^7 \}
  ln[*]:= (mfzakhbo + mf1bo + mf2bo) * 1.05 /. Rbo \rightarrow 1.3829060479531711 *^7
Out[0]=
         19600.
 In[*]:= 1.3829060479531711\*^7 - r3
Out[0]=
         7.45806 \times 10^6
  In[*]:= hbo = 7450000
Out[0]=
         7450000
 In[\bullet]:= \omega bo = v3bo / Rbo / . Rbo \rightarrow (r3 + hbo)
Out[0]=
         0.000388561
  In[*]:= Rbo = r3 + hbo
Out[0]=
         13821000
```

Предварительно находим по формуле время перелёта и затраты ΔVx

```
ln[@]:= a0 = F / (m1 + mzevs) (*начальное ускорение, м/c^2*);
           Tk = \frac{\text{Jid500}}{\text{a0}} * \left( 1 - \text{Exp} \left[ \frac{\sqrt{\mu 1}}{\text{Jid500}} \left( \frac{1}{\text{DyRa}} - \frac{1}{\sqrt{(r3 + \text{hbo})}} \right) \right] \right) (*c*)
Out[0]=
           \textbf{1.2228}\times\textbf{10}^{7}
  In[o]:= Print["Время перелёта составит ", (Тk / 3600) / 24, " дней"]
            Время перелёта составит 141.528 дней
  In[@]:= Tact = TactIter
Out[0]=
           1.21419 \times 10^7
  In[@]:= Tact =.
  In[@]:= Tact = Tk
Out[0]=
           1.2228 \times 10^{7}
```

Решаем ДУ движения

```
ln[*]:= m[t_]:= m[t_]:= piecewise[{{m1 + mzevs - \Delta m * t, t < Tact}}, {m1 + mzevs - \Delta m * Tact, t \ge Tact}}]
                   кусочно-заданная функция
          (*Закон изменения массы*)
 In[*]:= Solution = NDSolve \left[ \left\{ r''[t] - r[t] * (\phi'[t])^2 == -\mu 1 / (r[t])^2 \right\} \right] учисленно решить ДУ
            2*r'[t]*\varphi'[t]+r[t]*\varphi''[t] == (F/m[t])* \begin{cases} HeavisideTheta[Tact-t] & t \neq Tact \\ 0 & t == Tact \end{cases}
             \varphi[0] = \emptyset, \varphi'[0] = \omega bo, r[0] = (r3 + hbo), r'[0] = \emptyset \Big\}, \{\varphi[t], r[t]\}, \{t, \emptyset, Tk + TRa\} \Big]
Out[0]=
         \{ \{ \varphi [t] \rightarrow InterpolatingFunction | \} \}
           r[t] \rightarrow InterpolatingFunction
 ln[e]:= graph1 = ParametricPlot[Evaluate[\{r[t] * Cos[\varphi[t]], r[t] * Sin[\varphi[t]]\} /. Solution],
                   график параметр… вычислить
                                                           косинус
                                                                                 синус
             {t, 0, Tact}, PlotStyle → {Red, Thickness[0.0015]}, PlotLegends → Automatic];
                              стиль графика кр… толщина
                                                                              легенды графика автоматический
 ln(x) = graph2 = RegionPlot[x^2 + y^2 \le r3^2, \{x, -r3, r3\}, \{y, -r3, r3\}];
                   визуализация геометрической области на плоскости
 in[@]:= graph3 = ParametricPlot[{Ra * Cos[p], Ra * Sin[p]},
                   график параметрически … косинус
             {p, 0, 2 Pi}, PlotStyle → Thickness[0.0015]];
                      _чис⋯ _стиль графика _толщина
 In[@]:= graph4 = ParametricPlot[
                   график параметрически заданной области на плоскости
             Evaluate [\{r[t] * Cos[\varphi[t]], r[t] * Sin[\varphi[t]]\} /. Solution], \{t, Tact, Tk + TRa\},
            PlotStyle \rightarrow \{RGBColor[0., 0.82, 0.27], Dashing[0.015, 0.015], Thickness[0.0017]\},
            стиль графика цвет RGB
                                                             разбиенение шриха
                                                                                           толщина
            PlotLegends → Automatic];
            легенды графика Гавтоматический
        graph5 = Graphics[Point[{r1 * Cos[\varphi1], r1 * Sin[\varphi1]}]] /. t \rightarrow Tact;
                                             косинус
                   графика точка
                                                             синус
        graph6 = Graphics[Point[{r1 * Cos[\varphi1], r1 * Sin[\varphi1]}]] /. t \rightarrow tManevr;
                   графика точка
                                             косинус
                                                             синус
 In[*]:= Show[graph1, graph2, graph3, graph4, graph5, graph6, PlotRange → All]
                                                                          отображаемы... всё
        показать
Out[0]=
```



```
In[\bullet]:= \omega Ra = v3 / Ra
Out[0]=
                        0.0000108676
     In[-]:= TRa = 2 Pi / \omega Ra
                                               число пи
Out[0]=
                        578160.
     In[*]:= TRa / 3600 / 24
Out[0]=
                        6.69166
    In[*]:= r1 = Solution[[1, 2, 2]]
Out[0]=
                        \label{eq:Domain: of the continuous of the con
    In[*]:= Tact + TRa / 4
Out[0]=
                        1.23445 \times 10^7
     In[*]:= RaReal = FindMaximum[r1 && Tact \leq t \leq Tact + TRa, {t, Tact + TRa / 4}][1]
                                                     найти максимум
                         ... Interpolating Function: Input value {1.84296 × 10<sup>7</sup>} lies outside the range of data in the interpolating function. Extrapolation
                                        will be used. 0
                        ••• FindMaximum: The function value – False is not a real number at \{t\} = \{1.84296 \times 10^7\}.
Out[0]=
                        \textbf{1.5}\times\textbf{10}^{8}
     In[\circ]:= tManevr = FindMaximum[r1 && Tact \le t \le Tact + TRa, {t, Tact + TRa / 4}] [2, 1, 2]
                                                         _найти максимум
                         ... Interpolating Function: Input value {1.84296 × 10<sup>7</sup>} lies outside the range of data in the interpolating function. Extrapolation
                        ••• FindMaximum: The function value –False is not a real number at \{t\} = \{1.84296 \times 10^7\}.
Out[0]=
                        1.22864 \times 10^7
    In[*]:= r1 /. t → tManevr
Out[0]=
                        \textbf{1.5} \times \textbf{10}^{\textbf{8}}
     In[a]:= RpReal = FindMinimum[r1&& Tact ≤ t ≤ Tact + TRa, {t, Tact + 3 * TRa / 4}] [[1]
                                                     найти минимум
                         ••• FindMinimum: The function value False is not a real number at \{t\} = \{6.28774 \times 10^6\}.
Out[0]=
                        1.40491 \times 10^{8}
```

In[*]:= Plot[r1, {t, Tact, Tk + TRa}] график функции Out[•]= 1.50×10^{8} 1.48×10^{8} 1.46×10^{8} 1.44×10^{8}

In[ϕ]:= φ 1 = Solution[[1, 1, 2]]

Out[0]=

Domain: $\{\{0., 1.28 \times 10^7\}\}$ InterpolatingFunction ☐ ■ Output: scalar

 $1.22 \times 10^7 \ 1.23 \times 10^7 \ 1.24 \times 10^7 \ 1.25 \times 10^7 \ 1.26 \times 10^7 \ 1.27 \times 10^7 \ 1.28 \times 10^7$

In[\circ]:= φ 1 /. t \rightarrow Tk

 1.42×10^{8}

Out[@]=

1711.01

In[\circ]:= φ 1 / (2 Pi) /. t \rightarrow Tk число пи

Out[0]=

Параметры получившейся орбиты после активного участка полёта

```
In[o]:= eReal = RaReal - RpReal
          pReal = RpReal * (1 + eReal)
         vpReal = \sqrt{\frac{\mu 1}{pReal}} * (1 + eReal);
         vaReal = \sqrt{\frac{\mu 1}{pReal}} * (1 - eReal)
          ∆vFin =
           v3 - vaReal(*Характерестическая скорость, требуемая для выхода на круговую орбиту*)
Out[0]=
          0.0327323
Out[0]=
          1.4509 \times 10^{8}
Out[0]=
          1603.24
Out[0]=
          26.8986
  In[*]:= mfFin =.
 In[*]:= mfFin = Solve \[ \Delta vFin == Jid500 * Log \[ \frac{m1 + mzevs - \Delta m * Tact}{\Lambda pewurb уравнения} \], mFin \] [1, 1, 2] \[ \Lambda Harypm1 + mzevs \( \Delta m * Tact - mFin \] \], mFin \[ \Delta 1, 1, 2] \]
            (*масса рабочего тела для последнего манёвра*)
Out[0]=
          14.6794
  In[*]:= ΔtFin = mfFin / Δm
Out[0]=
          85630.
 In[@]:= \Data tFin / TRa
Out[0]=
          0.148108
```

Программа для нахождения времени активного участка полёта

```
In[*]:= step = 10^5;
            RightBorder = Tk;
            LeftBorder = Tk - step;
            TactIter = (LeftBorder + RightBorder) / 2;
           mIter[t_] := Piecewise[
                                 кусочно-заданная функция
                  \{\{m1 + mzevs - \Delta m * t, t < TactIter\}, \{m1 + mzevs - \Delta m * TactIter, t \ge TactIter\}\}\}\}
            SolutionIter =
             NDSolve \left[ \left\{ r''[t] - r[t] * (\varphi'[t])^2 = -\mu 1 / (r[t])^2, 2*r'[t] * \varphi'[t] + r[t] * \varphi''[t] = -\mu 1 / (r[t])^2 \right] \right] цисленно решить ДУ
                   (F / mIter[t]) * { HeavisideTheta[TactIter - t]  t ≠ TactIter  t == TactIter  '
                  \varphi[0] == \emptyset, \varphi'[0] == \omega \text{bo, } r[0] == (r3 + \text{hbo}), r'[0] == \emptyset \Big\}, \{\varphi[t], r[t]\}, \{t, \emptyset, Tk + TRa\} \Big]
Out[0]=
           \left\{\left\{\varphi\left[\mathtt{t}\right]\rightarrow\mathsf{InterpolatingFunction}\right[\boxed{\blacksquare\boxed{\hspace{1cm}\bigcap_{\mathsf{Output: scalar}}^{\mathsf{Domain:}}\left\{\left\{0,,1.28\times10^7\right\}\right\}}}\right]\left[\mathtt{t}\right],
               r[t] \rightarrow InterpolatingFunction \left[ \begin{array}{c} \blacksquare \\ \hline \end{array} \begin{array}{c} Domain: \left\{ \left\{ 0., \, 1.28 \times 10^7 \right\} \right\} \\ Output: \, scalar \end{array} \right] [t] \right\} \right\}
  In[*]:= rIter = SolutionIter[[1, 2, 2]];
            \varphiIter = SolutionIter[[1, 1, 2]];
  In[0]:=
            RaIter = FindMaximum[rIter && TactIter ≤ t ≤ TactIter + TRa, {t, TactIter + TRa / 4}] [1]
                          найти максимум
            ... Interpolating Function: Input value {1.84839 × 10<sup>7</sup>} lies outside the range of data in the interpolating function. Extrapolation
            ••• FindMaximum: The function value –False is not a real number at \{t\} = \{1.84839 \times 10^7\}.
Out[0]=
            1.5221 \times 10^{8}
  In[a]:= RpIter = FindMinimum[rIter && TactIter ≤ t ≤ TactIter + TRa, {t, TactIter + 3 * TRa / 4}] [1]
                          _найти минимум
            ••• FindMinimum: The function value False is not a real number at \{t\} = \{7.35851 \times 10^6\}.
Out[0]=
            1.42271 \times 10^8
```

Out[@]=


```
In[*]:= While [Not[Ra * (1 - 0.00001) < RaIter < Ra * (1 + 0.00001)],
         цикл... отрицание
           If[RaIter > Ra, RightBorder = TactIter,
          _условный оператор
            LeftBorder = TactIter
           ];
           TactIter = (LeftBorder + RightBorder) / 2;
           SolutionIter =
            NDSolve \left[ \left\{ r''[t] - r[t] * (\varphi'[t])^2 = -\mu 1 / (r[t])^2, 2*r'[t] * \varphi'[t] + r[t] * \varphi''[t] = -\mu 1 / (r[t])^2 \right] \right]
                 \varphi[0] = 0, \varphi'[0] = \omega bo, r[0] = (r3 + hbo), r'[0] = 0
              \{\varphi[t], r[t]\}, \{t, 0, Tk + TRa\};
           rIter = SolutionIter[[1, 2, 2]];
           \varphiIter = SolutionIter[[1, 1, 2]];
           RaIter = FindMaximum[rIter && TactIter ≤ t ≤ TactIter + TRa, {t, TactIter + TRa / 4}] [1];
                      найти максимум
           RpIter = FindMinimum[rIter && TactIter ≤ t ≤ TactIter + TRa, {t, TactIter + 3 * TRa / 4}] [1]
                      найти минимум
         ... Interpolating Function: Input value {1.84464 × 10<sup>7</sup>} lies outside the range of data in the interpolating function. Extrapolation
               will be used. 0
         ••• FindMaximum: The function value –False is not a real number at \{t\} = \{1.84464 \times 10^7\}.
         ••• FindMinimum: The function value False is not a real number at \{t\} = \{6.29333 \times 10^6\}.
         ... Interpolating Function: Input value {1.84276 × 10<sup>7</sup>} lies outside the range of data in the interpolating function. Extrapolation
               will be used. 0
         ••• FindMaximum: The function value – False is not a real number at \{t\} = \{1.84276 \times 10^7\}.
         ••• FindMinimum: The function value False is not a real number at \{t\} = \{6.28708 \times 10^6\}.
         \overline{\cdots} Interpolating Function: Input value \{1.8437 \times 10^7\} lies outside the range of data in the interpolating function. Extrapolation
               will be used. 0
         ┅ General: Further output of InterpolatingFunction::dmval will be suppressed during this calculation. 🕖
         ••• FindMaximum: The function value – False is not a real number at \{t\} = \{1.8437 \times 10^7\}.
         🕟 General: Further output of FindMaximum::nrnum will be suppressed during this calculation. 🕡
         ••• FindMinimum: The function value False is not a real number at {t} = {6.29021 × 10<sup>6</sup>}.
         \cdots General: Further output of FindMinimum::nrnum will be suppressed during this calculation. 🕖
  In[@]:= TactIter
Out[0]=
         1.21419 \times 10^7
```

```
In[@]:= RaIter
Out[0]=
               \textbf{1.5}\times\textbf{10}^{8}
```

Расчёт траекторий с "округлением" конечной орбиты

```
mWM[t_] := Piecewise[{
                        кусочно-заданная функция
               \{m1 + mzevs - \Delta m * t, t < Tact\},\
               \{m1 + mzevs - \Delta m * Tact, Tact \le t < (tManevr - \Delta tFin / 2)\},
               \{m1 + mzevs - \Delta m * Tact - \Delta m * (t - (tManevr - \Delta tFin / 2))\}
                (tManevr - \Delta tFin / 2) \le t < (tManevr + \Delta tFin / 2) \},
               {m1 + mzevs - \Delta m * Tact - mfFin, t \ge (tManevr + \Delta tFin / 2)}
             }](*Закон изменения массы*)
          (*, \{1, tManevr-\Delta tFin/2 \le t < tManevr+\Delta tFin/2 \}, \{0, t \ge tManevr+\Delta tFin/2 \}*)
 In[*]:= mWM [1.2329218768892493^**^7 - 10^* - 10]
Out[0]=
         38193.9
 In[*]:= Plot[mWM[t], {t, Tact - 10000, tManevr + \DeltatFin / 2 + 10000}]
         [график функции
Out[0]=
         38210
         38 205
         38 200
         38 195
                      1.215 \times 10^{7}
                                                      1.220 \times 10^{7}
                                                                                     1.225 \times 10^{7}
                                                                                                                    1.230 \times 10^{7}
```

```
In[@]:= SolutionWManevr =
           NDSolve \left[ \left\{ r''[t] - r[t] * (\varphi'[t])^2 = -\mu 1 / (r[t])^2, \; 2 * r'[t] * \varphi'[t] + r[t] * \varphi''[t] = 0 \right\} \right] 
               (F/m[t]) * Piecewise[{{1, (t < Tact | | tManevr - \Delta tFin / 2 \le t < tManevr + \Delta tFin / 2)},
                            _кусочно-заданная функция
                   \{0, (Tact \le t < tManevr - \Delta tFin / 2) \mid | (t \ge tManevr + \Delta tFin / 2) \}\}]
             \varphi[0] = \emptyset, \ \varphi'[0] = \omega \text{bo, } \ r[0] = (\text{r3+hbo}), \ r'[0] = \emptyset \Big\}, \ \{\varphi[t], \ r[t]\}, \ \{t, \ \emptyset, \ \mathsf{Tk} + 2 \ \mathsf{TRa}\} \Big]
Out[0]=
         In[@]:= rFin = SolutionWManevr[[1, 2, 2]];
         \varphiFin = SolutionWManevr[[1, 1, 2]];
 In[⊕]:= Plot[rFin, {t, 0, tManevr + ∆tFin / 2 + TRa},
        график функции
          LabelStyle \rightarrow Directive[Black, Bold, Medium], AxesLabel \rightarrow {"t, c", "r(t), M"}]
         Out[0]=
              r(t), м
         1.4 \times 10^{8}
         1.2 \times 10^{8}
         1.0 \times 10^{8}
         8.0 \times 10^{7}
         6.0 \times 10^{7}
         4.0 \times 10^{7}
                      2.0 \times 10^{6} 4.0 \times 10^{6} 6.0 \times 10^{6} 8.0 \times 10^{6} 1.0 \times 10^{7} 1.2 \times 10^{7}
```

```
In[\phi]:= Plot[\phiFin, {t, 0, tManevr + \DeltatFin / 2 + TRa},
        график функции
         LabelStyle \rightarrow Directive[Black, Bold, Medium], AxesLabel \rightarrow {"t, c", "\varphi(t), M"}]
         [стиль отметки | директива | чёрный | жир⋯ | средний | обозначения на осях
Out[0]=
          \varphi(t), M
        1500
        1000
         500
                 2.0 \times 10^{6} \, 4.0 \times 10^{6} \, 6.0 \times 10^{6} \, 8.0 \times 10^{6} \, 1.0 \times 10^{7} \, 1.2 \times 10^{7}
 In[*]:= ActTrajectory1 =
           ParametricPlot[Evaluate[{r[t] * Cos[\varphi[t]], r[t] * Sin[\varphi[t]]} /. SolutionWManevr],
          график параметр… вычислить
                                                 косинус
            {t, 0, Tact}, PlotStyle → {Red, Thickness[0.001]}];
                            стиль графика кр... толщина
 In[*]:= PassTrajectory1 =
           \label{eq:parametricPlot} ParametricPlot[Evaluate[\{r[t] * Cos[\varphi[t]]\}, r[t] * Sin[\varphi[t]]\} \ \textit{/.} Solution \texttt{WManevr}],
          График параметр⋯ _вычислить
                                                 косинус
            {t, Tact, tManevr - \triangletFin / 2}, PlotStyle \rightarrow {RGBColor[0., 0.82, 0.27],
                                                _стиль графика _цвет RGB
               Dashing[0.015, 0.015], Thickness[0.0017]}, PlotLegends → Automatic];
                                          толщина
                                                                   легенды графика автоматический
              разбиенение шриха
        ManevrTrajectory =
           ParametricPlot[Evaluate[\{r[t] * Cos[\varphi[t]], r[t] * Sin[\varphi[t]]\} /. SolutionWManevr],
           косинус
             {t, tManevr - \DeltatFin / 2, tManevr + \DeltatFin / 2}, PlotStyle \rightarrow {Red, Thickness[0.0017]}];
                                                                стиль графика кр… толщина
        PassTrajectory2 =
           ParametricPlot[Evaluate[\{r[t] * Cos[\varphi[t]], r[t] * Sin[\varphi[t]]\} /. SolutionWManevr],
           график параметр… вычислить
                                                 косинус
                                                                      синус
            {t, tManevr + \DeltatFin / 2, tManevr + \DeltatFin / 2 + TRa},
            PlotStyle → {RGBColor[0., 0.82, 0.27], Dashing[0.015, 0.015], Thickness[0.0019]},
            стиль графика цвет RGB
                                                          разбиенение шриха
                                                                                      толщина
            PlotLegends → Automatic];
            легенды графика Гавтоматический
        PointOff = Graphics[Point[{rFin * Cos[φFin], rFin * Sin[φFin]}]] /. t → Tact;
                    графика точка
                                                косинус
                                                                    синус
 In[*]:= Show[ActTrajectory1, ManevrTrajectory,
         PassTrajectory1, PassTrajectory2, PointOff, PlotRange → All]
                                                              _отображаемы… _всё
```



```
In[@]:= Plot[rFin, {t, tManevr + ΔtFin / 2, Tk + 2 TRa}]
     график функции
```

Out[0]=

In[@]:= tManevr + \DeltatFin / 2

Out[0]=

$$1.23292 \times 10^{7}$$

In[•]:= 2 TRa

Out[0]=

$$1.15632 \times 10^6$$

In[a]:= RpFin = FindMinimum[rFin && tManevr + ΔtFin / 2 ≤ t ≤ tManevr + ΔtFin / 2 + TRa, _найти минимум

{t, tManevr + \triangle tFin / 2 + TRa / 2}] [1]

••• InterpolatingFunction: Input value {1.72083 × 10⁷} lies outside the range of data in the interpolating function. Extrapolation will be used. 0

••• FindMinimum: The function value False is not a real number at $\{t\} = \{1.72083 \times 10^7\}$.

Out[0]=

$$\textbf{1.4973} \times \textbf{10}^{\textbf{8}}$$

In[a]:= RaFin = FindMaximum[rFin && tManevr + Δ tFin / 2 + TRa / 2 \leq t \leq tManevr + Δ tFin / 2 + 3 TRa / 2, **_**найти максимум

{t, tManevr + \triangle tFin / 2 + TRa}][[1]

••• InterpolatingFunction: Input value {1.75606 × 10⁷} lies outside the range of data in the interpolating function. Extrapolation

••• FindMaximum: The function value –False is not a real number at $\{t\} = \{1.75606 \times 10^7\}$.

Out[0]=

$$\textbf{1.50231} \times \textbf{10}^{\textbf{8}}$$

```
In[*]:= tManevr + ΔtFin / 2 + TRa / 2
Out[0]=
         1.26183 \times 10^7
```

Параметры финальной орбиты

$$In[*]:=$$
 eFin = $\frac{RaFin - RpFin}{RaFin + RpFin}$

0.00167163

-0.0337016

0.00782672

Out[0]=

Вековые уходы наклонения орбиты і и эксцентриситета е

```
In[*]:= 1.2329218703937775`*^7 / 3600 / 24
Out[0]=
          142.699
  ln[\circ]:= \varphi Fin / (2 Pi) /. t \rightarrow 1.2329218703937775 *^7
                     число пи
Out[0]=
          272.49
  In[@]:= Rvek =
           Solve \left[0.00782671645632294^+ + eFin = \frac{Ra1 - Rp1}{Ra1 + Rp1} && Ra1 + Rp1 == RaFin + RpFin, {Ra1, Rp1}\right]
          ... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding
                exact system and numericizing the result.
Out[0]=
          \left\{ \left\{ \text{Ra1} \rightarrow \text{1.51405} \times \text{10}^{8} \,, \, \text{Rp1} \rightarrow \text{1.48556} \times \text{10}^{8} \right\} \right\}
  In[*]:= Ra1 = Rvek[[1, 1, 2]]
Out[0]=
          1.51405 \times 10^{8}
  In[*]:= Rp1 = Rvek[[1, 2, 2]]
Out[0]=
          1.48556 \times 10^{8}
 In[*]:= evek = \frac{Ra1 - Rp1}{Ra1 + Rp1};
          pvek = Rp1 * (1 + evek);
         vAvek = \sqrt{\frac{\mu 1}{pvek}} * (1 - evek)
         evek1 = \frac{Ra1 - Ra}{Ra1 + Ra};
          pvek1 = Ra * (1 + evek1);
         vAvek1 = \sqrt{\frac{\mu 1}{pvek1}} * (1 - evek1)
          ∆v1vek = vAvek1 - vAvek
Out[0]=
          1614.83
Out[0]=
          1618.76
Out[0]=
          3.93752
  Out[0]=
```

$$In[*]:=$$
 Solve [0.9588515671870977` + 3.93751655534993` == 3000 * Log [$\frac{40\,000 + \text{mpodd}}{\text{| решить уравнения}}$], mpodd]

Out[*]:= { {mpodd \rightarrow 65.3382}}

 $In[*]:=$ Solve [0.9588515671870977` + 3.93751655534993` == 3000 * Log [$\frac{40\,000 + \text{mpodd}}{\text{| решить уравнения}}$], mpodd]

Out[*]:= {mpodd \rightarrow 65.3382}}

 $In[*]:=$ $\Delta m * Tact + mfFin$

Out[*]:= 2096.14