Parallel Processing

CLC_MT15_1st Semester_2018_2019

Ho Chi Minh City University of Technology http://www.cse.hcmut.edu.vn/~nam

References

- 1. Parallel Computing theory and practice, Michael J. Quinn, McGRAW-HILL, 1994.
- 2. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, Barry Wilkinson and MiChael Allen, Second Edition, Prentice Hall, 2005.
- 3. Distributed Algorithms, Nancy Lynch, Morgan Kaufmann, 1997.
- 4. Scalable Parallel Computing: Technology, Architecture, Programming, Kai Hwang & Zhiwei Xu, McGRAW-HILL, 1997.
- 5. Introduction to Parallel Computing: https://computing.llnl.gov/tutorials/parallel_comp/#Designing
 6. Open MP:
 7. MPI: http://www.mcs.anl.gov/research/projects/mpi/tutorial/
 8. Xeon Phi Programming:
 6. ONL P.

- 9. GPU Programming
- 10. Hadoop:
- 11. Spark:
- 12. Parallel Computing theory and practice: http://www.cs.cmu.edu/afs/cs/academic/class/15210f15/www/tapp.html# preface

Lectures

Lectures (90 min)	Week	Topics	References	Notes
Lecture 1	W1	Introduction	[1]	
Lab 1	W2	Lab: Introduction & multithreading	` ,	
Lecture 2	W2	Abstract machine models	[1][2]	
		- PRAM & BSP		
		Multithreading		
		OpenMP	[6]	
Lab 2	W3	Lab: OpenMP (1) Xeon Phi		
Lecture 3	W3	MPI	[7]	
Lab 3	W4	Lab: OpenMP (2) & Xeon Phi		
Lecture 4	W4	Parallel machine architectures:	[1][2]	
		 Flynn classifications 		
		 Pipeline, Processor array, 		
		Multiprocessor, Data flow computer		
		 Processor organizations 		
Lab 4	W5	Lab: MPI – Point-to-point communication		
Lecture 5	W5	Speedup:	[1]	
		– Amdahl		
		- Gustafson		
Lab 5	W6	Lab: MPI – Collective communication		
Lecture 6	W6	Map/Reduce	[10]	
Lab 6	W7	Lab: Hadoop 1		
Lecture 7	W7	Parallel & distributed computing	[2]	
		techniques (1)		
		- EPC		
		- Partition, Divide & Conquer		
T .1. 7	MIO	- Pipeline		
Lab 7 Lecture 8	W8 W8	Lab: Hadoop & Spark	[2]	
Lecture 8	w 8	Parallel & distributed computing techniques (2)	[2]	
		- Synchronous computations		
		Synchronous computationsAsynchronous computations		
		Asynchronous computationsLoad balancing		
Lab 8	W9	Lab: GPU		
Lecture 9	W9	Parallel algorithms	[2]	
Lab 9	W10	Lab: Algorithms 1	[-]	
Lecture 10	W10	Review		
Lab 10	W11	Lab: Algorithms 2		

HPC Lab

- SuperNode-I: 5 nodes x (2 CPUs x 8 cores, 32GB RAM), Infiniband 30 Gbps
- SuperNode-XP 24 nodes x (2 CPus x 12 cores, 2 Xeon Phi x 61 cores, 512/256/128 GB RAM, 1 TB HD/SSD), Infiniband 56 Gbps
- IBM system: 8 nodes x (2 CPUs x 16 cores, 10 Gbps Ethernet)

Evaluation

Final exam: 40% HKProject: 30% HK

■ Lab: 30%

Contact:

■ Thoại Nam: namthoai@hcmut.edu.vn

Contact person of the class: Nguyễn Dũng Uyên Thi,
 1552355@hcmut.edu.vn

Class:

- Lecture: B4-605, T7-8-9
 - o Missed lectures: (1) 23 Aug 2018
 - o Lectures of NQ. Hung: (1) 6 Sep 2018 [PRAM]
- Lab:

Project of Parallel Computing

CLC 15 1st Semester 2018 2019

Quy định:

- 1. Mỗi nhóm tối đa 4 sinh viên (trùng với nhóm seminar).
- 2. Các nhóm đăng ký danh sách và đề tài cho Trưởng lớp, hạn cuối 10/9/2018:
 - Ghi rõ họ tên, MSSV, email của các thành viên trong nhóm
- 3. Nộp báo cáo 2-4 trang mô tả nội dung đề tài thực hiện, nguồn dữ liệu, dự kiến kết quả, hạn cuối 24/9/2018
- 4. Nộp báo cáo sơ bộ về tiến độ và kết quả đạt được, hạn cuối 22/10/2018
- 5. Nộp báo cáo cuối kỳ, hạn cuối 10/12/2018, tất cả các nhóm phải nộp:
 - Báo cáo tối đa 8 trang A4
 - Mã nguồn.
- Đề 1: Trực quan hoá các phương thức lập lịch static, dynamic cho các threads trong OpenMP. Lý thuyết:
 - Tìm hiểu về lập trình OpenMP
 - Tìm hiểu về lập lịch static, dynamic
 - Tìm hiểu công cụ trực quan hoá.

Hiện thực:

- Viết chương trình
- Trực quan hoá và phân tích kết quả.
- Đề 2: Đánh giá hiệu năng của Spark trong các bài toán phân tích dữ liệu lớn.

Lý thuyết:

- Tìm hiểu về Spark & thư viện về phân tích dữ liệu lớn & học máy
- Triển khai thực tế trên hệ thống máy tính manh SuperNode-XP.

Hiên thực:

- Chạy các ứng dụng để đánh giá hiệu năng Spark trên SuperNode-XP
- Phân tích kết quả.
- Đề 3: Đánh giá hiệu năng của các thư viện về Deep Learning như TensorFlow, Torch, Caffe... trên các loại GPU cards khác nhau.

Lý thuyết:

- Tìm hiểu về Deep learning và các thư viện TensorFlow, Torch, Caffe
- Triển khai thực tế trên hệ thống máy tính mạnh SuperNode-XP dùng các loại GPU như P100, GTX 1080Ti, P4, trên CPUs.

Hiện thực:

- Chạy các ứng dụng để đánh giá hiệu năng các thư viện TensorFlow, Torch, Caffe trên SuperNode-XP với các loại GPU khác nhau
- Phân tích kết quả.
- Đề 4: Viết chương trình giải bài toán Association Rules dùng multi-thread trên Xeon Phi dùng cơ chế Offload và OpenMP

Lý thuyết:

- Tìm hiểu giải thuật cho Association Rules
- Tìm hiểu cách lập trình trên Xeon Phi dùng cơ chế Offload và OpenMP.

Hiện thực:

- Viết chương trình
- Vẽ biểu đánh giá hiệu năng (speedup) cho từng trường hợp với số lượng threads khác nhau

- Thử nghiệm sử dụng 2 Xeon Phi cards.

Đề 5: Viết chương trình Association Rules dùng multi-thread trên Xeon Phi dùng OpenCL Lý thuyết:

- Tìm hiểu giải thuật cho Association Rules
- Tìm hiểu cách lập trình trên Xeon Phi dùng OpenCL.

Hiên thực:

- Viết chương trình
- Vẽ biểu đánh giá hiệu năng (speedup) cho từng trường hợp với số lượng threads khác nhau
- Thử nghiệm sử dụng 2 Xeon Phi cards.

Đề 6: Viết chương trình Association Rules dùng multi-thread trên Xeon Phi dùng Intel Cilk Plus và Intel TBB (Thread Building Blocks).

Lý thuyết:

- Tìm hiểu giải thuật cho Association Rules
- Tìm hiểu cách lập trình trên Xeon Phi dùng Intel Cilk Plus và Intel TBB (Thread Building Blocks).

Hiên thực:

- Viết chương trình
- Vẽ biểu đánh giá hiệu năng (speedup) cho từng trường hợp với số lượng threads khác nhau
- Thử nghiệm sử dụng 2 Xeon Phi cards.

Đề 7: Viết chương trình nhân ma trận kích thước 1.000x1.000, 10.000x10.000 và 100.000x100.000 (có trao đổi hàng/cột giữa các bộ xử lý) trên hệ thống máy tính ảo có giao tiếp 1Gpbs, 10 Gbps (Gigabit Ethernet), 40 Gbps (Infiniband).

Lý thuyết:

- Tìm hiểu và viết chương trình nhân ma trận dùng MPI có trao đổi hàng cột
- MPI One-Sided Communication

Hiên thực:

- Viết chương trình
- Vẽ biểu đồ đánh giá hiệu năng (speedup) cho 2 trường hợp dùng hệ thống máy tính vật lý và máy tính ảo với số lượng máy tính khác nhau
- So sánh trường hợp giao tiếp thông thường và cách sử dụng One-Sided Communication.

Bài 8: Viết chương trình so trùng ảnh dùng "The Skein Hash Function Family" trên Hadoop Lý thuyết:

- Tìm hiểu Hadoop
- Tìm hiểu "The Skein Hash Function Family"
- Giải pháp loại các ảnh trùng nhau trong một tập ảnh lớn

Hiên thực:

- Viết chương trình
- Đánh giá hiệu suất trên hệ thống thực.

Đề 9: Viết chương trình Association Rules trên GPUs

Lý thuyết:

- Tìm hiểu về lập trình GPU (CUDA)
- Tìm hiểu về giải thuật cho Association Rules.

Hiện thực:

Viết chương trình

- Đánh giá hiệu năng (speedup) với số lượng core khác nhau.

Đề 10: sinh viên có thể đề xuất bài toán để giải như K-means, SVM (Support Vector Machines), bài toán trên Graph...

Tham khảo

Video

High Performance Computing made easy, http://www.hpc.uva.nl/

Algorithms on Xeon Phi (XP)

- 1. Strassen algorithm: https://www.singularis-lab.com/docs/materials/07 Shapovalov Strassen CKA.pdf
- 2. Fast Smith-Waterman: http://xsw.sdu-hpcl.org
- 3. PCIT algorithm: https://utexas.influuent.utsystem.edu/en/publications/optimizing-the-pcit-algorithm-on-stampedes-xeon-and-xeon-phi-proc
- 4. Breadth-first search: http://www.dislab.org/docs/bfs-phi-paper-eng.pdf
- 5. Graph coloring: http://www.sandia.gov/~egboman/papers/Deveci coloring ipdps16.pdf
- 6. Pattern matching: http://sbac.lip6.fr/2014/session%206/1-BitParallel.pdf
- 7. Sort: http://cass-mt.pnnl.gov/docs/ia3-2013/2-3.pdf
- 8. OpenFoam: https://www.nersc.gov/assets/Uploads/IXPUGISC15OpenFOAMTCSV6.pdf
- 9. Kalman Filter: https://facultystaff.richmond.edu/~ggilfoyl/research/keegan2014DNP.pdf
- $10. \ SU2: http://stanford.edu/\sim economon/docs/SU2_IPCC_SciTech2015_final.pdf$
- 11. Conjunction Gradient method: https://en.wikipedia.org/wiki/Conjugate_gradient_method

Deep learning on XP

 Deep Neural Networks for Financial Market Prediction: https://www.researchgate.net/publication/281685181_Implementing_Deep_Neural Networks for Financial Market Prediction on the Intel Xeon Phi