

SPARKCHART

CALCULUS REFERENCE

THEORY

DERIVATIVES AND DIFFERENTIATION

Definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

DERIVATIVE RULES

- 1. Sum and Difference: $\frac{d}{dx}\big(f(x)\pm g(x)\big)=f'(x)\pm g'(x)$
- 2. Scalar Multiple: $\frac{d}{dx}(cf(x)) = cf'(x)$
- 3. Product: $\frac{d}{dx} \big(f(x)g(x) \big) = f'(x)g(x) + f(x)g'(x)$

Mnemonic: If f is "hi" and g is "ho," then the product rule is "ho d hi plus hi d ho."

- **4. Quotient:** $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ Mnemonic: "Ho d hi minus hi d ho over ho ho."
- 5. The Chain Rule
- First formulation: $(f \circ g)'(x) = f'(g(x)) g'(x)$
- Second formulation: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
- **6.** Implicit differentiation: Used for curves when it is difficult to express y as a function of x. Differentiate both sides of the equation with respect to x. Use the chain rule carefully whenever y appears. Then, rewrite $\frac{dy}{dx} = y'$ and solve for y'.

Ex: $x\cos y - y^2 = 3x$. Differentiate to first obtain $\frac{dx}{dx}\cos y + x\frac{d(\cos y)}{dx} - 2y\frac{dy}{dx} = 3\frac{dx}{dx}$, and then $\cos y - x(\sin y)y' - 2yy' = 3$. Finally, solve for $y' = \frac{\cos y - 3}{x \sin y + 2y}$.

COMMON DERIVATIVES

- 1. Constants: $\frac{d}{dx}(c) = 0$
- $\frac{d}{dx}(mx + b) = m$ 2. Linear:
- $\frac{d}{dx}(x^n) = nx^{n-1}$ (true for all real $n \neq 0$)
- **4. Polynomials:** $\frac{d}{dx}(a_nx^n + \cdots + a_2x^2 + a_1x + a_0) = a_nnx^{n-1} + \cdots + 2a_2x + a_1$
- 5. Exponential
 - Base e: $\frac{d}{d}(e^x) = e^x$
- Arbitrary base: $\frac{d}{dx}(a^x) = a^x \ln a$
- 6. Logarithmic
 - Base e: $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- Arbitrary base: $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$
- 7. Trigonometric
 - Sine:
- Cosine: $\frac{d}{dx}(\cos x) = -\sin x$

- - - Arccosine:
- Arcsine: $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ • Arctangent: $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$
- Arccotangent: $\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$
- Arcsecant: $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$ Arccosecant: $\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$

INTEGRALS AND INTEGRATION

DEFINITE INTEGRAL

The **definite integral** $\int f(x) dx$ is the **signed area** between the function y = f(x) and the

- Formal definition: Let n be an integer and $\Delta x = \frac{b-a}{n}$. For each k = 0, 2, ..., n-1, pick point x_k^* in the interval $[a+k\Delta x, a+(k+1)\Delta x]$. The expression $\Delta x \sum_{k=0}^{\infty} f(x_k^*)$
 - is a **Riemann sum.** The definite integral $\int_{-\infty}^{\infty} f(x) dx$ is defined as $\lim_{n \to \infty} \Delta x \sum_{n=0}^{n-1} f(x_n^*)$.

- Antiderivative: The function F(x) is an antiderivative of f(x) if F'(x) = f(x).
- Indefinite integral: The indefinite integral $\int f(x) dx$ represents a family of

antiderivatives: $\int f(x) dx = F(x) + C$ if F'(x) = f(x).

- **Part 1:** If f(x) is continuous on the interval [a,b], then the area function $F(x)=\int f(t)\,dt$ is continuous and differentiable on the interval and F'(x) = f(x).
- **Part 2:** If f(x) is continuous on the interval [a, b] and F(x) is any antiderivative of f(x), then $\int f(x) dx = F(b) - F(a)$.

APPROXIMATING DEFINITE INTEGRALS

- 1. Left-hand rectangle approximation:
- 2. Right-hand rectangle approximation:

$$L_n = \Delta x \sum_{k=0}^{n-1} f(x_k)$$

 $R_n = \Delta x \sum_{k=1}^{n} f(x_k)$

3. Midpoint Rule:

$$M_n = \Delta x \sum_{k=0}^{n-1} f\left(\frac{x_k + x_{k+1}}{2}\right)$$

- **4. Trapezoidal Rule:** $T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n))$
- 5. Simpson's Rule: $S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))$

TECHNIQUES OF INTEGRATION

- 1. Properties of Integrals
 - Sums and differences: $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$
 - Constant multiples: $\int cf(x) dx = c \int f(x) dx$
- Definite integrals: reversing the limits: $\int_{a}^{b} f(x) dx = -\int_{a}^{a} f(x) dx$
- Definite integrals: concatenation: $\int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$
- Definite integrals: comparison:
- If $f(x) \leq g(x)$ on the interval [a, b], then $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$.
- - $\int f(g(x))g'(x) dx = F(g(x)) + C \text{ if } \int f(x) dx = F(x) + C.$

Best used to integrate a product when one factor (u = f(x)) has a simple derivative and the other factor (dv = g'(x) dx) is easy to integrate.

- $\int f(x)g'(x) dx = f(x)g(x) \int f'(x)g(x) dx \text{ or } \int u dv = uv \int v du$
- Definite Integrals: $\int_a^b f(x)g'(x) dx = f(x)g(x)]_a^b \int_a^b f'(x)g(x) dx$

Expression	Trig substitution	Expression becomes	Range of θ	Pythagorean identity used
$\sqrt{a^2-x^2}$	$x = a \sin \theta$ $dx = a \cos \theta d\theta$	$a\cos\theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $(-a \le x \le a)$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$ $dx = a \sec \theta \tan \theta d\theta$	$a \tan \theta$	$\begin{array}{l} 0 \leq \theta < \frac{\pi}{2} \\ \pi \leq \theta < \frac{3\pi}{2} \end{array}$	$\sec^2\theta - 1 = \tan^2\theta$
$\sqrt{x^2 + a^2}$	$x = a \tan \theta$ $dx = a \sec^2 \theta d\theta$	$a \sec \theta$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2 \theta = \sec^2 \theta$

APPLICATIONS

GEOMETRY

Area: $\int_{-\infty}^{\infty} (f(x) - g(x)) dx$ is the area bounded by y = f(x), y = g(x), x = a and x = bif $f(x) \stackrel{a}{\geq} g(x)$ on [a, b].

Volume of revolved solid (disk method): $\pi \int_{-\infty}^{\infty} (f(x))^2 dx$ is the volume of the solid swept out by the curve y = f(x) as it revolves around the x-axis on the interval [a, b].

Volume of revolved solid (washer method): $\pi \int_{-\infty}^{\infty} (f(x))^2 - (g(x))^2 dx$ is the volume of the solid swept out between y = f(x) and y = g(x) as they revolve around the x-axis on the interval [a, b] if $f(x) \ge g(x)$.

Volume of revolved solid (shell method): $\int_{-\pi}^{\pi} 2\pi x f(x) dx$ is the volume of the solid obtained by revolving the region under the curve y = f(x) between x = a and x = b

Arc length: $\int_{-\infty}^{\infty} \sqrt{1 + (f'(x))^2} dx$ is the length of the curve y = f(x) from x = a

Surface area: $\int_{0}^{x} 2\pi f(x) \sqrt{1 + (f'(x))^2} dx$ is the area of the surface swept out by revolving the function y = f(x) about the x-axis between x = a and x = b.

CONTINUED ON OTHER SIDE

MOTION

1. Position s(t) vs. time t graph:

- The slope of the graph is the velocity: s'(t) = v(t).
- The concavity of the graph is the acceleration:
- **2. Velocity** v(t) vs. time t graph:
 - \bullet The slope of the graph is the accleration: v'(t)=a(t).
 - The (signed) area under the graph gives the displacement (change in position):

$$s(t) - s(0) = \int_0^t v(\tau) d\tau$$

- **3.** Acceleration a(t) vs. time t graph:
 - The (signed) area under the graph gives the change in velocity: $v(t) - v(0) = \int_0^t a(\tau) d\tau$

PROBABILITY AND STATISTICS

• Average value of f(x) between a and b is $\overline{f} = \frac{1}{b-a} \int_a^b f(x) dx$.

CONTINUOUS DISTRIBUTION FORMULAS

X and Y are random variables.

- Probability density function f(x) of the random variable X satisfies:
- 1. $f(x) \ge 0$ for all x;
- **2.** $\int_{-\infty}^{\infty} f(x) \, dx = 1$.
- Probability that X is between a and b: $P(a \le X \le b) = \int_a^b f(x) dx$
- Expected value (a.k.a. expectation or mean) of X: $E(X) = \mu_X = \int_{-\infty}^{\infty} x f(x) \, dx$
- Variance: $\mathrm{Var}(X) = \sigma_X^2 = \int_{-\infty}^{\infty} \left(x E(x)\right)^2 f(x) \, dx = E(X^2) \left(E(X)\right)^2 f(x) \, dx$
- Standard deviation: $\sqrt{\operatorname{Var}(X)} = \sigma_X$
- Median m satisfies $\int_{-\infty}^{m} f(x) dx = \int_{m}^{\infty} f(x) dx = \frac{1}{2}$.
- Cumulative density function (F(x)) is the probability that X is at most x):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) \, dy$$

- ullet Joint probability density function g(x,y) chronicles distribution of X and Y. Then $f(x) = \int_{-\infty}^{\infty} g(x, y) dy$.
- Covariance: $Cov(X,Y) = \sigma_{XY} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x E(X))(y E(Y)) f(x,y) dx dy$
- $\bullet \ \, \text{Correlation:} \ \, \rho(X,Y) = \frac{\sigma_{XY}}{\sigma_X\sigma_Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$

COMMON DISTRIBUTIONS

- 1. Normal distribution (or Bell curve) with mean μ and $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - $P(\mu \sigma \le X \le \mu \sigma) = 68.3\%$
 - $P(\mu 2\sigma \le X \le \mu + 2\sigma) = 95.5\%$
- **2.** χ -square distribution: with mean ν and variance 2ν : $f(x) = \frac{1}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)}x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}}$
- Gamma function: $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt$

68% -1 0

MICROECONOMICS

- ullet Cost function C(x): cost of producing x units.
- Marginal cost: C'(x)
- Average cost function $\overline{C}(x) = \frac{C(x)}{x}$: cost per unit when x units produced.
- ullet Marginal average cost: $\overline{C}'(x)$

If the average cost is minimized, then average cost = marginal cost.

• If C''(x) > 0, then to find the number of units (x) that minimizes average cost, solve for x in $\frac{C(x)}{x} = C'(x)$.

REVENUE, PROFIT

- \bullet Demand (or price) function p(x): price charged per unit if x units sold.
- Revenue (or sales) function: R(x) = xp(x)
- $\bullet \ \, \text{Marginal revenue:} \, R'(x)$
- Profit function: P(x) = R(x) C(x)
- Marginal profit function: P'(x)

If profit is maximal, then marginal revenue = marginal cost.

• The number of units x maximizes profit if R'(x) = C'(x) and R''(x) < C''(x).

PRICE ELASTICITY OF DEMAND

• Demand curve: x = x(p) is the number of units demanded at price p.

Price elasticity of demand: $E(p) = -\frac{p \, x'(p)}{r(p)}$

- Demand is **elastic** if E(p) > 1. Percentage change in p leads to larger percentage change in $\boldsymbol{x}(\boldsymbol{p}).$ Increasing \boldsymbol{p} leads to decrease in revenue.
- Demand is **unitary** if E(p)=1. Percentage change in p leads to similar percentage change in x(p). Small change in p will not change revenue.
- Demand is **inelastic** if E(p) < 1. Percentage change in p leads to smaller percentage change in x(p). Increasing p leads to increase in revenue.
- Formula relating elasticity and revenue: R'(p) = x(p)(1 E(p))

CONSUMER AND PRODUCER SURPLUS

- **Demand function:** p = D(x) gives price per unit (p) when x units demanded.
- Supply function: p = S(x) gives price per unit (p) when x units available.
- Market equilibrium is \bar{x} units at price \bar{p} . (So $\bar{p} = D(\bar{x}) = S(\bar{x})$.)
- Consumer surplus: $CS = \int_{0}^{\bar{x}} D(x) dx - \bar{p}\bar{x} = \int_{0}^{\bar{x}} (D(x) - \bar{p}) dx$
- Producer surplus:
- $PS = \bar{p}\bar{x} \int_{0}^{\bar{x}} S(x) dx = \int_{0}^{\bar{x}} (\bar{p} S(x)) dx$

LORENTZ CURVE

The Lorentz Curve L(x) is the fraction of income received by the poorest x fraction of the population.

- **1.** Domain and range of L(x) is the interval [0, 1].
- **2. Endpoints:** L(0) = 0 and L(1) = 1
- **3.** Curve is nondecreasing: $L'(x) \ge 0$ for all x
- **4.** $L(x) \leq x$ for all x
- Coefficient of Inequality (a.k.a. Gini Index):

$$L = 2 \int_0^1 (x - f(x)) dx.$$

The quantity L is between 0 and 1. The closer L is to 1, the more equitable the income distribution.

SUBSTITUTE AND COMPLEMENTATRY COMMODITIES

X and Y are two commodities with unit price p and q, respectively.

- The amount of X demanded is given by f(p, q).
- The amount of Y demanded is given by g(p, q).
- X and Y are substitute commodites (Ex: pet mice and pet rats) if \(\frac{\partial f}{\partial g} > 0\) and \(\frac{\partial g}{\partial p} > 0\).
- 2. X and Y are complementary commodities (Ex: pet mice and mouse feed) if $\frac{\partial f}{\partial g} < 0$ and $\frac{\partial g}{\partial p} < 0$.

FINANCE

- P(t): the amount after t years.
- P₀ = P(0): the original amount invested (the principal).
- r: the yearly interest rate (the yearly percentage is 100r%).

INTEREST

- Simple interest: $P(t) = P_0 (1 + r)^2$
- Compound interest
 - Interest compounded m times a year: $P(t) = P_0 \left(1 + \frac{r}{m}\right)^{mt}$
 - Interest compounded continuously: $P(t) = P_0 e^{rt}$

The effective (or true) interest rate, $r_{\rm eff}$, is a rate which, if applied simply (without compounding) to a principal, will yield the same end amount after the same amount of time.

- Interest compounded m times a year: $r_{\text{eff}} = \left(1 + \frac{r}{m}\right)^m 1$
- Interest compounded continuously: $r_{\rm eff} = e^r 1$

PRESENT VALUE OF FUTURE AMOUNT

The **present value** (PV) of an amount (A) t years in the future is the amount of principal that, if invested at r yearly interest, will yield A after t years.

- Interest compounded m times a year: PV = A (1 + \(\frac{r}{m}\))
- Interest compounded continuously: $PV = Ae^{-rt}$

PRESENT VALUE OF ANNUITIES AND PERPETUITIES

Present value of amount P paid yearly (starting next year) for t years or in perpetuity:

- 1. Interest compounded yearly
- Annuity paid for t years: $PV = \frac{P}{r} \left(1 \frac{1}{(1+r)^t}\right)$
- Perpetuity: $PV = \frac{P}{r}$ 2. Interest compounded continuously
 - Annuity paid for t years: $PV = \frac{P}{r_{\text{eff}}} (1 e^{-rt}) = \frac{P}{e^r 1} (1 e^{-rt})$
 - Perpetuity: $PV = \frac{P}{r_{off}} = \frac{P}{e^r 1}$

RESTRICTED GROWTH (A.K.A. LEARNING

asymptotic value of P Solution:

LOGISTIC GROWTH MODE

capacity · Solution:

BIOLOGY

t = 0;

In all the following models P(t): size of the pop-

- ulation at time t; $P_0 = P(0)$, the size of the population at time
- r: coefficient of rate of growth.

EXPONENTIAL (MALTHUSIAN) GROWTH / EXPONENTIAL DECAY MODEL

• If r > 0, this is exponential growth; if r < 0, exponential decay.

CURVE) MODEL

