Semester project

Hemodynamics (BMEGEVGNX26)

Statistical Analysis of Hemodynamic Metrics in Aneurysms

> LEVENTE Sándor

Relevance of Statistical Analysis

Why is statistical analysis important?

- **1. Reproductibility:** In the medical field, statistical analysis ensures that findings are consistent and hypotheses can be validated based on robust data.
- 2. Evidence-based decision: Provides a foundation for informed, data-driven medical decision-making.

Application in Hemodynamics

- **Evaluating Stent Effectiveness:** Analyzing performance under varying conditions (e.g., nominal vs oversized stents).
- **Identifying Critical Relationships:** Detecting patterns and relationships in key metrics like AMVR.
- **Risk Assessment:** Quantifying the likelihood of device failure or incomplete occlusion to guide improvements.

Statistical Tests Presence in Literature I.

Ali Sarrami-Foroushani's article

- 164 virtual anatomies modeled using CFD to simulate hemodynamic changes.
- Evaluated success with AMVR >35% as a predictor of aneurysm occlusion.
- Statistical analysis
 - → **Student's t-Test:** Compared continuous variables.
 - $\rightarrow \chi^2$ **Test:** Analyzed categorical data.
 - → RRs & Cls: Identified risk factors for failure.

Table 6 Subgroup analysis: RRs of incomplete occlusion associated with the presence of a side branch, aneurysm size, aspect ratio and hypertension.

	Normotensive		Hypertensive			
	Relative risk (95% CI)	p value	Relative risk (95% CI)	p value	Relative risk (95% CI)	p value
Side branch presence	3.53 (1.21-10.32)	0.021	2.05 (1.09-3.85)	0.025		
Size (>10 mm)	2.15 (0.84-5.51)	0.109	2.00 (1.10-3.62)	0.022		
Aspect ratio (>1.6)	1.42 (0.50-4.00)	0.504	1.49 (0.79-2.83)	0.216		
Hypertension					1.93 (1.09-3.40)	0.023

Statistical Tests Presence in Literature II.

Table 6 Subgroup analysis: RRs of incomplete occlusion associated with the presence of a side branch, aneurysm size, aspect ratio and hypertension.

	Normotensive		Hypertensive			
	Relative risk (95% CI)	p value	Relative risk (95% CI)	p value	Relative risk (95% CI)	p value
Side branch presence Size (>10 mm) Aspect ratio (>1.6)	3.53 (1.21-10.32) 2.15 (0.84-5.51) 1.42 (0.50-4.00)	0.021 0.109 0.504	2.05 (1.09-3.85) 2.00 (1.10-3.62) 1.49 (0.79-2.83)	0.025 0.022 0.216		
Hypertension					1.93 (1.09-3.40)	0.023

- 1. Side Branch Presence: Consistently increases occlusion failure risk in both normotensive and hypertensive groups and is statistically significant.
- 2. Aneurysm Size (>10 mm): Significant risk factor for hypertensive patients but not for normotensive patients.
- 3. Aspect Ratio (>1.6): Not a significant risk factor in either group.
- **4. Hypertension:** Independently increases occlusion failure risk (RR = 1.93, p = 0.023).

Types of Statistical Tests I.

1

ANOVA

ANOVA: Analysis of Variance Objective: Compares group means by partitioning total variability into within-group and between-group variances. Test Statistic:

$$F = \frac{MS_{between}}{MS_{within}}, \quad MS = \frac{SS}{df}$$

Where MS is mean square.

2

Student's t-test

Objective: Compares two means to test if they are significantly different.
Test Statistic:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

3

χ2 Test (Chi-Square):

Objective: Tests association between categorical variables. Test Statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E},$$

Where:

- O is the observed frequency
- E is the expected frequency

Types of Statistical Tests II.

4

Two-way ANOVA

Objective: Tests main effects and interaction effects between 2 factors.

Used to:

- 1. Test the main effects of two independent factors on a dependent variable (e.g., stent type and stent size on AMVR).
- **2. Evaluate interaction effects** between the factors to see if one factor's influence depends on the level of the other.

Partition total variability: Calculate the sum of squares for Factor A, B, interaction effect and for the error.

2

Degrees of Freedom: Calculate the DoF for each component.

 $\mathrm{d}f$

SS

3

Variance: Calculate the variance for each component.

 σ^2

4

Test Hypotheses: Calculate F for each effect and the corresponding p-value to decide the null hypothesis.

$$F \to p < 0.05$$
?

Statistical analysis I. - Setup

4 Two-way ANOVA

Factors: Stent type, Stent size

Dependent variable: Aneurysm Mean Velocity Reduction (AMVR)

H0 Hypotheses

- There is a significant difference between the stent types in case of AMVR values.
- There is a significant difference between the stent sizes in case of AMVR values.
- 3. The **stent type** has an influence on the effect of the **stent size** in case of **AMVR** values.

Assumptions

- 1. The data within the groups should be **normally distributed**.
- 2. The **variance** of data in groups should be equal.
- 3. The measurements should be **independent**.
- 4. The dependent variable should have a metric scale level.

Question

- Does Factor A have an effect on the dependent variable?
- 2. Does **Factor B** have an effect on the dependent variable?
- 3. Is there an **interaction** between Factor A and Factor B?

Statistical analysis II. - Setup

4 Two-way ANOVA

Factors: Stent type, Stent size

Dependent variable: Aneurysm Mean Velocity Reduction (AMVR)

Question

- 1. Does **Factor A** have an effect on the dependent variable?
- 2. Does **Factor B** have an effect on the dependent variable?
- 3. Is there an **interaction** between Factor A and Factor B?

Statistical analysis III. - Results

4 Two-way ANOVA

Factors: Stent type, Stent size

Dependent variable: Aneurysm Mean Velocity Reduction (AMVR)

Assumptions

- 1. The data within the groups should be **normally distributed**.
- 2. The **variance** of data in groups should be equal.
- 3. The measurements should be **independent**.
- 4. The dependent variable should have a metric scale level.

Statistical analysis IV. - Results

4 Two-way ANOVA

Factors: Stent type, Stent size

Dependent variable: Aneurysm Mean Velocity Reduction (AMVR)

Question

- 1. Does **Factor A** have an effect on the dependent variable?
- 2. Does **Factor B** have an effect on the dependent variable?
- 3. Is there an **interaction** between Factor A and Factor B?

Answers

- 1. Yes.
- 2. Yes, undoubtingly.
- **3. No,** since p-value almost doubles the necessary value, its not certain enough.

	p-value		
Stent type	3.897e-2		
Stent size	6.689e-23		
Interaction	9.467e-2		

Thank you for your attention!

