		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
₹*	age	1.000000	-0.062222	-0.103697	0.261782	0.210520	0.109847	-0.124588	-0.412624	0.111263	0.200243	-0.165360	0.254462	0.077368	-0.244798
	sex	-0.062222	1.000000	-0.040197	-0.055463	-0.166885	0.042384	-0.069599	-0.058626	0.124054	0.089726	-0.038771	0.140795	0.198493	-0.283776
	ср	-0.103697	-0.040197	1.000000	0.035563	-0.063592	0.065869	0.008389	0.300307	-0.428233	-0.183616	0.135174	-0.180598	-0.139765	0.425574
	trestbps	0.261782	-0.055463	0.035563	1.000000	0.128444	0.170606	-0.145195	-0.056631	0.067116	0.184896	-0.126553	0.093545	0.068690	-0.173239
	chol	0.210520	-0.166885	-0.063592	0.128444	1.000000	0.003430	-0.162687	-0.023753	0.063902	0.084355	-0.031929	0.068647	0.121280	-0.096773
	fbs	0.109847	0.042384	0.065869	0.170606	0.003430	1.000000	-0.086165	-0.014297	0.029190	0.007943	-0.056866	0.164266	-0.004972	-0.068845
	restecg	-0.124588	-0.069599	0.008389	-0.145195	-0.162687	-0.086165	1.000000	0.025457	-0.089225	-0.047837	0.074982	-0.053946	-0.003377	0.101817
	thalach	-0.412624	-0.058626	0.300307	-0.056631	-0.023753	-0.014297	0.025457	1.000000	-0.404349	-0.340564	0.370073	-0.205060	-0.078637	0.432687
	exang	0.111263	0.124054	-0.428233	0.067116	0.063902	0.029190	-0.089225	-0.404349	1.000000	0.294308	-0.280124	0.106250	0.189253	-0.457502
	oldpeak	0.200243	0.089726	-0.183616	0.184896	0.084355	0.007943	-0.047837	-0.340564	0.294308	1.000000	-0.585472	0.223375	0.200315	-0.443504
	slope	-0.165360	-0.038771	0.135174	-0.126553	-0.031929	-0.056866	0.074982	0.370073	-0.280124	-0.585472	1.000000	-0.083491	-0.090606	0.363983
	ca	0.254462	0.140795	-0.180598	0.093545	0.068647	0.164266	-0.053946	-0.205060	0.106250	0.223375	-0.083491	1.000000	0.136160	-0.391031
	thal	0.077368	0.198493	-0.139765	0.068690	0.121280	-0.004972	-0.003377	-0.078637	0.189253	0.200315	-0.090606	0.136160	1.000000	-0.311701
	target	-0.244798	-0.283776	0.425574	-0.173239	-0.096773	-0.068845	0.101817	0.432687	-0.457502	-0.443504	0.363983	-0.391031	-0.311701	1.000000

圖 1

分析特徵與 target 的相關性,決定把相關性較低的四個 features: chol, fbs, restecg, trestbps 拿掉,並得到測試準確度從 67%上升到 87%的結果,如圖 $1 \circ$

圖 2 為準確度與損失的曲線圖,第一小題將調整超參數並與圖 2 進行比較。

圖 2

(1)(2)

改動 1: 將 epoch 數從 100 調整為 200,最終的測試準確度從 87%下降到 83%,而在驗證損失與準確度並沒有明顯的改變,因此推測此模型在 100 個 epoch 就會 overfitting,如圖 3。原先預期的結果是在 epoch 數超過 100 之後,模型的準確度 會緩慢又平穩的上升,但從圖 3 看起來還是出現了蠻大的波動,驗證損失則沒有太大的變化。

再將 epoch 數從 100 調整為 50,最終的測試準確度從 87%下降到 70%,訓練過程的損失與準確度曲線如圖 4 所示,結果仍有波動,看起來並未完全收斂,因此推斷在該模型架構下,將 epoch 數設為 80~100 數最佳的選擇。

圖 3

圖 4

改動 2: 調整 batch size,將 batch size 從 32 調整為 64,最終測試準確度卻從 87%下降至 70%,推測若將 batch size 條大,則會使得整個訓練過程變得更佳緩慢,因此應該搭配將 epoch 數增加,以維持模型的表現。觀察圖 5 可發現準確度仍不斷波動,尚未收斂。

維持 batch size 為 64,將 epoch 數從 100 調整為 200,準確度 70%上升到 83%,可見 batch size 增加確實需要更久的訓練時間,如圖 6,模型的訓練曲線確實有收斂。

維持 epoch 數 100,將 batch size 從 32 調整為 16,測試準確度維持在 87%,並沒有太大的變化,如圖 7,訓練結果有收斂。

圖 5

圖 6

圖 7

表1為第一小題的總整理表

改動	訓練準確	訓練損失	驗證準確	驗證損失	測試準確
	度		度		度
Epoch =	85.7143%	0.3332	86.42%	0.4557	87%
100					
Bath size =					
32					
Epoch =	88.3598%	0.3158	80.2469%	0.4188	83%
200					
Bath size =					
32					
Epoch = 50	83.0688%	0.4072	85.1852%	0.4595	70%
Bath size =					
32					
Epoch =	82.5397%	0.4128	82.7160%	0.3822	70%
100					
Bath size =					
64					
Epoch =	84.6561%	0.3824	88.8889%	0.3063	87.1%
200					
Bath size =					
64					
Epoch =	86.7725%	0.3370	86.4198%	0.3679	87%
100					
Bath size =					
16					

(3)

我發現模型在訓練集上的準確率通常比測試集高,我認為主要有三個原因。第一個是 overfitting。也就是說,模型在訓練數據上學得太好了,甚至記住了一些細節或雜訊,導致它在測試數據上表現不佳。第二個可能的原因是訓練集和測試集的數據分佈不同。如果這兩者的特徵或樣本比例差異太大,模型就難以適應測試數據,導致準確率下降。第三個原因是數據量不夠,如果訓練數據太少,模型可能學不到有代表性的特徵,而只是在記住有限的樣本。此外,也有可能有人為的因素,像是特徵選取不當或是資料不乾淨等問題。

特徵選擇的好壞直接影響模型效能。如果選擇了太多無關或冗餘的特徵,可能會 導致模型學習噪音,影響準確性;相反,若忽略關鍵特徵,則可能導致模型無法 準確預測。因此,選擇適當的特徵有助於提高模型泛化能力,讓它能夠更準確地 適應新數據。

特徵選擇策略:

- 過濾法:根據統計指標(如皮爾遜相關係數、卡方檢定、互資訊)來評估特 徵與目標變數的關聯性,篩選出有意義的特徵。
- 2. 包裝法:透過特定機器學習模型(如遞歸特徵消除 RFE)來評估不同特徵組 合的效能,選擇最佳組合。
- 3. 嵌入法:在訓練模型的過程中,同時進行特徵選擇,如 LASSO 回歸、決策 樹的特徵重要性等方法。
- 4. 降維技術:如主成分分析 (PCA),將高維度數據轉換為較少的主成分,降低維度但保留資訊量。

参考資料: Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 3, 1157–1182.

(5)

TabNet 是由 Google 提出的模型,基於注意力機制,能夠自動學習並選擇最重要的特徵來進行預測,而非像傳統 ANN 直接對所有特徵進行轉換。因此, TabNet 可以在保持高準確度的同時,仍能解釋模型的決策過程。

前面提到的 TabNet 的注意力機制並非一次性處理所有特徵,而是透過注意力機制選擇最具影響力的特徵,這樣能夠減少不必要的計算,提高學習效率。此外,傳統 ANN 需要大量超參數調整(如學習率、層數、神經元數量),而 TabNet 在較少的調整下就能取得不錯的效果。

根據文章中所提到的實驗結果,在許多表格數據應用場景(如金融風險評估、醫療診斷、行銷分析)中,梯度提升決策樹(如 XGBoost、LightGBM)通常優於傳統 ANN。而 TabNet 的設計結合了類似 GBDT 的結構,能夠學習到更好的特徵表示,提升效能。所以在表現上更勝於決策樹模型。

參考資料: Arik, S. O., & Pfister, T. (2021). TabNet: Attentive Interpretable Tabular Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 6679-