典型网络欺骗攻击原理及防范的研究

罗玉梅

(贵州师范大学,贵州 贵阳 550001)

摘要:随着计算机网络的飞速发展,网络承载的业务数量及种类越来越复杂,安全问题也不断出现。其中,网络攻击问题 尤为严重,不仅妨碍网络用户的正常使用,更严重的甚至会影响到整个网络的正常运行。该文分析了几种主要攻击的实 现过程及特征,从而提出相应的防御措施。

关键词:ARP欺骗攻击;DNS欺骗攻击;IP欺骗攻击;防御攻击

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)11-0036-02

DOI:10.14004/j.cnki.ckt.2016.1260

1引言

伴随着网络应用的不断发展,网络安全问题层出不穷。正 是由网络本身具有的开放性、互联性、多样性以及不均匀性等 特征,使其极易受到各种攻击;因此,如何保障网络的安全是当 前面临的首要问题。

网络欺骗攻击就是利用网络存在的安全缺陷进行攻击。 在实施攻击的过程中,攻击方会极力想办法得到网络的信任, 其原因是网络操作都是倾向于可信系统四。一旦建立乐信任关 系,受信系统的管理员就能够实施工作并维护相应的系统安全 级别。通常,如果一个系统A是受到另一个系统B的信任的, 此时若有一个系统 C 假装成 B,则 C 就轻易地获得 B的一些权

2 几种主要的网络欺骗攻击

2.1 ARP欺骗攻击

ARP协议的主要功能是将 IP 地址转换成对应的 MAC 地 址,依靠在内存中保存的转换表让IP能够在网络中获得目标主 机的响应。在ARP协议中,为了减少数据的通信的数据量,主 机会将收到的ARP应答包插入到自己的ARP缓存表中,不论 这个包是否是自己所请求的,如此便使ARP欺骗实施成为可能 ②。如图1所示,若攻击者想获知网络中两个用户间的通信,向 两个用户主机发送一个 ARP 应答包,此时两个用户都会将攻 击者的主机 MAC 地址误以为是对方的 MAC 地址。如此一来, 攻击者便可以获知双方通信的内容,通信双方看似直接通信的 过程,中间实际都是通过攻击者的主机来间接实施的四。

2.2 DNS欺骗攻击

域名系统(DNS)是一种分布式数据库,主要用于实现主机 名和 IP地址的转换,是广大网络应用的基础。然而协议本身 存在的设计缺陷且没有适当的信息保护和认证机制,导致 DNS 极易受到攻击[4]。在DNS解析过程中,客户端先向DNS服务器 发送查询数据包,随后服务器将查询结果用相同的ID号发回 给客户端。客户端将响应数据包的ID与之前发送的查询包的 ID进行比较,若一致,则说明此响应数据包正是自己的。在此 过程中,若攻击者假冒 DNS服务器提前给客户端发送响应数据 包,客户端收到的域名对应的IP地址就可由攻击者指定了,当 客户端访问所需网站时实际上访问到的是攻击者指定的网站 [5]。攻击过程如图2所示。

图 2 DNS欺骗攻击

2.3 IP欺骗攻击

IP欺骗是一种伪造数据包源IP地址的攻击,即是向目标主 机发送源地址非本机IP地址的数据包。攻击的简要过程如图 3所示,攻击方 X 对目标 B 实施拒绝服务攻击使其崩溃无法应 答,随后向A发送源地址为B的数据包,尝试与A建立连接,从

收稿日期:2016-03-24

而达到欺骗的目的。

图3 IP欺骗简要过程

3 网络欺骗攻击的防御

3.1 ARP欺骗攻击的防御及测试

在ARP欺骗攻击过程中需同时欺骗网络中的其他主机和 网关交换机,从而实施"中间人攻击"。可以从以下方面进行控制.

- (1)将网管的ARP表项绑定到用户的主机上,防止中间攻击者的arp relay报文更新用户的网管ARP表。
- (2)将用户主机的 ARP 表绑定到网关交换机, 防止中间攻击者的 arp relay 报文更新网关交换机的 ARP 表。

防御ARP攻击的方法很多,例如:

- (1)在交换机上阻止"中间人攻击"。通常,在支持网管的交换机上都能绑定用户的 ARP,通过端口的 port security 将端口上的可学习 MAC 数及用户主机的 MAC 地址进行绑定,或使用 dhep snooping 将用户主机的 IP 地址和 MAC 地址进行绑定。
- (2)在用户主机上控制"中间人攻击"。 在接入交换机上 启用 pvlan 或者 port–isolated 功能隔离不同用户,从而使被攻击 主机的 arp relay 不能发给网络上其他主机。
- (3)在端口开启 802.1x 认证,利用 802.1x 客户端实现二层 网络的用户认证,将帐号、端口及 MAC 等信息和用户终端绑定,从而防止中毒的主机侵入内部网络。

实验测试环境如图 4,在网络中用户主机上不能 ping 通公 网地址,有的主机甚至 ping 不通自己的网关。

图4 实验拓补图

在核心交换机上抓取的数据包如下:

3362 114,49590 192,168,115,254	60.28/175/162	TCP	1977 > http [ACK] 580+3288 ACK+63983 W1n+65533 L
3163 114.49594: 197.168.115.254	60.28.175.162	100	1977 > http (ACK) Seq+3288 AcK+65243 win+65535 L
3364 114,50668 197,168,115,1	tiroadcast.	ARP	who has 197,168,115,135? Tell 197,168,115,1
3365 114.50790 192.168.115.1	proadcast	AIP	who has 192,168,115,1367 Tell 192,168,115,1
3366 114,50923 192,168,115,1	Broadcast	ARP	who has 192.168.115.1377 Tell 192.168.115.1
3367 114, 51945/ 197, 168, 115, 1	Broadcast	AND	Who has 192,168,115,1387 Tell 192,168,115,1
3369 114,51301 192,168,115,1	Broadcast	AND	who has 192,168,115,1407 Tell 192,168,115,1
3370 114.51450 192.168.115.1	broadcast	ARP	who has 192,168,115,141? Tell 192,168,115,1
3371 114,51570: 192,168,115,1	Broadcast	ARP.	who has 192,168,115,1427 Tell 192,168,115,1
3172 114.51620 50.28.175.162	192.108.115.254	HTTP	Continuation or non-HTTP traffic
3373 114,51630-60,28,175,162	192,160,115,254	HTTP	Continuation or non-HTTF traffic

从故障的表现及抓包的情况可以判定是受到ARP攻击;随后,将连接发送大量ARP数据包主机的交换机断电,网络上其

他用户能够正常上网。为了防止再次受到类似攻击,可以采取如下措施:

- 1)在每个接入交换机上进行 MAC 绑定, 对端口的接入主机数进行设定。
- 2)在核心交换机上实施IP与MAC绑定,阻止虚假arp数据进入网络;同时,开启抑制广播风暴功能,防止核心交换机因内存或CPU占用过高影响接入交换机工作。
 - 3)在防火墙上布置安全策略。
- 4)在有访问权限的主机上做一个批处理,将本机 IP 与 MAC进行绑定,同时将本机网关的 IP 与 MAC绑定。设置开机启动该批处理程序。

3.2 DNS欺骗攻击的防御

DNS欺骗攻击的实现主要包括中间人攻击和缓存投毒攻击两种形式,其中中间人攻击主要针对的对象是DNS查询客户端。防御DNS欺骗攻击,必须要同时保护DNS客户端和DNS服务器。由此,给出防御DNS欺骗的解决方法如下:

- (1)对于网络中有设定的 DNS 服务器,要及时更新服务器的版本,将动态更新和区域传输范围进行限制。
- (2)对用户主机来说,防御 DNS的主要措施有如下几点:1)禁用主机 DNS缓存;2)给主机指定 DNS服务器和本地 UDP端口号。通过指定 UDP端口号,防火墙的设置更加精确,从而能够进一步提高整体安全性。

3.3 IP欺骗攻击的防御

IP欺骗攻击的原理比较简单,但实际实施却很困难,需要进行序列号猜测和建立信任关系等过程。然而要成功实施IP欺骗也不无可能,因此,也要对IP欺骗攻击进行防范,主要方法有.

- 1)尽量不要使用源地址认证的服务系统以及基于IP的认证机制,对于远程Telnet服务考虑由SSH替代。
- 2)在边界路由器上采取源地址过滤措施,检查进入本网数据包的源IP,防止使用本地IP的外部数据进入本网络,从而防御IP欺骗攻击。

4 总结

对网络来说,除了满足功能性需求外,还要保证网络的安全,防止网络受到各种安全性攻击。在网络安全中协议漏洞是最严重的安全漏洞,给攻击者创造了成功机会。ARP欺骗攻击正是利用了ARP协议自身的安全漏洞,通过专用攻击工具让攻击极易成功。IP欺骗攻击也是利用TCP/IP协议存在的漏洞来实施的。对于类似网络攻击,用户除了做好网络和终端设备等硬件的安全防范工作外,还要不断提高安全意识,不断了解防范欺骗类攻击的最新技术,真正做到防患于未然。

参考文献:

- [1] 谢希仁.计算机网络(第五版)[M].北京:电子工业出版社,2008.
- [2] 李浩.ARP.病毒攻击分析及其防御措施[J].宁波广播电视大学学报,2007.
- [3] 李成友,韩昧华. 互联网协议中地址解析的欺骗问题研究[J]. 网络安全技术与应用,2010.
- [4] 郑亚,谢琳.DNS的原理及其应用[J]. 软件导刊,2012.
- [5] Hudaib Z. DNS Advanced Attacks and Analysis[J]. International Journal of Computer Science and Security (IJCSS),2014.

----- **网络通讯及安全** --- 37