Klaysa 29.3. 14:00

Hoisaal AHIV, FV (Aufterlung folg ?)

zugelassene Hilfsuntel:

- wicht programmicharer TR

- Formel blat (wird ausge teil +) -> stele Website

Zessetz is bung: 21,3. 14:00 51, us H

Sprech stemole: 24.3. 14:00 USH, 24A 407 (una Fragen).

$$A1.)$$
 $\bar{h}(g) = \frac{U(\lambda)}{(og(d))} (= i p_j = p_j d^{-n_j})$ $j = 1,..., m$
 $p_j > 0$

$$(=: \frac{1}{4(x)} = \sum_{j=1}^{\infty} P_{j} (\log p_{j})$$

Soi Pi = d-ui

$$\frac{|A(x)|}{\log(d)} = -\sum_{j=1}^{\infty} p_j \left(\log(p_j)\right)$$

$$= \sum_{j=1}^{\infty} p_j u_j = \overline{h}(q)$$

$$=>: Sei $\pi(g) = \sum_{j=1}^{\infty} p_j n_j = \frac{\mathcal{H}(x)}{(\omega_q (d))}$$$

<i>b</i>	P(y=b)
000	$\frac{1}{4}(1-\epsilon)^{2} + \frac{3}{4}(\epsilon)^{3} = \frac{17}{108}$
001	$\frac{1}{4}(1-\xi)^{2}\xi + \frac{3}{4}\xi^{2}(1-\xi) = \frac{10}{108}$
010	10/108
100	10/108
011	14/108
101	14/108
110	14/108
111	25/108

$$P_{k} = P(y = C_{0} \neq X = C_{0}) + P(y = C_{7}, x = C_{7})$$

$$= P(y = C_{0} \mid x = C_{0}) P(x = C_{0}) + P(y = C_{7} \mid x = C_{7}) P(x = C_{7})$$

$$= \frac{7}{4} (1 - E)^{3} + \frac{3}{4} (1 - E)^{3} = (7 - E)^{2} = \frac{2}{77}$$

C.) and log 2 a b.)
$$P_{E} = \frac{7}{4} E^{3} + \frac{3}{4} E^{3} = E^{3} = \frac{7}{27}$$

 $\frac{di)}{h_{AL}(b)} \Rightarrow P(blc) \geq P(bla) \quad \forall a \in C$ P(blc)

	<i>b</i> , <i>b</i> , <i>a</i> , <i>a</i> , <i>b</i> , <i>a</i> , <i>a</i> , <i>b</i> , <i>a</i>	C = (0,0,0)	$C = (T_1, T_1, T_1)$	4m2 (b)	* * *
	(0,00)	$(1-\xi)^3 = \frac{77}{77}$	$\mathcal{E}^3 = \frac{1}{27}$	(0,0,0)	$\frac{2}{27} > \frac{1}{77}$
	(0,0,1)	4/27	3/27	(0,0,0)	
	· · · · · · · · · · · · · · · · · · ·				
	(1,1,1)	1/27	8/77	(1,1,1)	

$$\frac{\mathcal{Q}(a)}{p_{RE}(b)} = \sum_{a} \frac{p(a|b)}{p(b)} \geq \frac{p(a|b)}{p(b)} \qquad \forall a \in C$$

Ь	c=(0,0,0)	c=(1,1,1)	ME (b)
(0,0,0)	8/11	3/11	(0,0,0)
(0,0,1)	2/5	3/5	(1,1,1)
4. *		(, >
(1,1,1)	1/25	74/75	(1,1,1)

Fundamentel sat ::

$$\frac{\log_2(2^{\circ,6N})}{N} = R \quad \text{with } R = C$$

$$\log_2(2^{\circ,6N}) = 0.6N$$

$$N = 0.6$$

TIN 6411

(c) R Symbole ZE

Log2 (M) < R

 $2 = N > \frac{\log_2(M)}{R}$ $(=> N > \frac{\log_2(R)}{R}$

(=> N > K