"A compreensão das questões faz parte da avaliação"

Arquiteturas Paralelas e Distribuídas

Bacharelado em Ciência da Computação

 $1^{\underline{a}}$ Avaliação Individual

10 de abril de 2015

Nome:	_ Periodo:
$Quest\~ao~1:~(1.0~{ m ponto})$ Assinale as afirmações com ${f V}$ (Verdade) ou ${f F}$ (Falso).	
 () Multi-core é um exemplo de modelo de programação em memória distribuída () No modelo PRAM a quantidade de memória compartilhada é limitada. () Paralelismo de controle é mais fácil de ser implementado que paralelismo de c () A API de programação OPENMP trabalha com threading implícito. 	lados.
() A API de programação OPENMP trabalha com threading implícito. () Pela Lei de Gustafson o speedup é calculado pela expressão $S(n,p)=\frac{1}{(1-f)}$	$\frac{1}{1+\frac{f}{p}}$.

Questão 2: (1.5 pontos)

Explique o que é granularidade no contexto de algoritmos e arquiteturas paralelas, e difirencie granularidade fina de grossa.

$Quest\~ao \ 3: (1.5 \text{ pontos})$

Explique qual a finalidade da diretiva #pragma omp ordered de OPENMP, e diga em que tipo de situação ela deve ser aplicada.

$Quest\tilde{a}o \ 4: (2.0 \text{ pontos})$

Escreva um programa paralelo em C, utilizando as diretivas de OPENMP, que leia (pergunte) n números e depois devolva a soma de tais valores. (**Dica**: Pense primeiro na solução sequencial!)

$Quest\~ao 5: (2.0 \text{ pontos})$

A integral de uma função f(x) pode ser calculada utilizando a fórmula dos trapézios a seguir.

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} A_{i} = h \left[\frac{f(x_{0})}{2} + \frac{f(x_{n})}{2} + f(x_{1}) + f(x_{2}) + \dots + f(x_{n-1}) \right]$$

Desenvolva um código paralelo (em linguagem C) com OPENMP para computar a integral de $f(x) = x^2 + 1$ no intervalo [0, 1].

$Quest\~ao\ 6$: (2.0 pontos)

O produto escalar (ou interno) de 2 vetores $\vec{a} = (a_1, a_2, \dots, a_n)$ e $\vec{b} = (b_1, b_2, \dots, b_n)$ do \mathbb{R}^n é o valor:

$$\sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n.$$

Elabore um código paralelo em C, com diretivas OPENMP, que calcule o produto escalar entre 2 vetores do \mathbb{R}^n .

"Esta avaliação terá duração máxima de 3 horas"