NCL Throughput Derivation

	Sub-	Initial	Wavefronts								
Stage	cycle	State	1	2	3	4	5	6	7	8	9
	D _{i-1}		Χ				X				Х
i-1	N _{i-1}	X			Х				Х		
	RFD _{i-1}	Х				Х				Х	
	RFN _{i-1}			Х				Х			
	Di			Х				Х			
[i	Ni	Х				Х				Х	
	RFD _i	Х					Х				Х
	RFN _i				Х				Х		

NCL Throughput Derivation (continued)

```
• T_{DDi} = MAX (TD_i, TRFN_{i-1}) + MAX (TN_{i-1}, TRFN_i) + MAX (TN_i, TRFD_{i-1}) + MAX (TD_{i-1}, TRFD_i)
```

```
\begin{split} T_{DDmax} &= TRFD_1 + TD_1 + TRFN_1 + TN_1 \\ for~(i=2~to~N)~loop \\ T_{DDtemp} &= MAX(TRFD_i + TD_i + TRFN_i + TN_i, \\ TRFD_{i-1} + TD_{i-1} + TD_i + TRFN_i, \\ TRFN_{i-1} + TN_{i-1} + TN_i + TRFD_i) \\ T_{DDmax} &= MAX(T_{DDtemp}, T_{DDmax}) \\ end~loop \\ throughput &= 1 / T_{DDmax} \\ &\qquad \qquad NCL T_{DD} \\ &\qquad \qquad Esting \\ \end{split}
```

NCL T_{DD} Estimation

```
\begin{split} T_{DDmax} &= 2 \times (\overline{Dcomb}_1 + Dcomp_1) \\ \text{for (i = 2 to N) loop} \\ T_{DDtemp} &= 2 \times (\overline{Dcomb}_i + Dcomp_i) \\ T_{DDmax} &= MAX(T_{DDtemp}, T_{DDmax}) \\ \text{end loop} \end{split}
```

Full-Word Completion

Bit-Wise Completion

Non-Pipelined Multiplier

 $T_{DD} = 24$ gate delays

Full-Word Completion Multiplier

 $T_{DD} = 8$ gate delays

Bit-Wise Completion Multiplier

 $T_{DD} = 6$ gate delays

Multiplier Comparisons

	Maximum Combinational	Maximum Completion	Predicted	Simulated
Multiplier	Delay per Stage	Delay per Stage	Throughput	Throughput
Design	(gate delays)	(gate delays)	(gate delays) ⁻¹	(ns) ⁻¹
Non-Pipelined	10	2	1/24 = 0.042	0.114
Full-Word	2	2	1/8 = 0.125	0.209
Bit-Wise	2	1	1/6 = 0.167	0.257

- Throughput Optimal Design Utilizes Bit-Wise Completion
 - speedup of 1.23 over Full-Word Completion Design
 - speedup of 2.25 over Non-Pipelined Design

NCL Pipelining Algorithm

- 1) initially partition an NCL circuit into stages of *primary components*
 - a primary component is defined as a component whose inputs only consist of the circuit's inputs or outputs of components that have already been added to a previous stage
- 2) calculate the combinational and completion delay for each stage and the maximum delay for the entire pipeline, utilizing both full-word and bit-wise completion strategies
- 3) merge stages to reduce latency and area, as long as doing so does not decrease throughput

Quad-Rail Multiplier

Component	Output Gate Delays			
Type	Carry / PPH	Sum / PPL		
Q33mul	1	2		
Q332add	3	3		
Q322add	2	3		
Q32add	2	2		
Q2Dadd	N/A	1		
Q3Dadd	N/A	1		

Full-Word Completion Pipelining

Stage	D _{comb}	# Outputs	D_comp	delay
1	2	8	2	4
2	3	6	2	5
3	2	5	2	4
4	1	4	1	2
			max_delay	5

- Stages 3 and 4 can be combined: $D_{comb} = 3$, $D_{comp} = 1$, delay = 4

Bit-Wise Completion Pipelining

Stage	D _{comb}	max_outputs	D_comp	delay
1	2	4	1	3
2	3	2	1	4
3	2	2	1	3
4	1	1	0	1
			max_delay	4

- Stages 3 and 4 can be combined:

$$D_{comb} = 3$$
, max_outputs = 2 \rightarrow $D_{comp} = 1$, delay = 4

NULL Cycle Reduction

- NCR applied to non-pipelined 4×4 multiplier
 - speedup of 1.61achieved

NCR Applied to a Slow Pipeline Stage

- Pipeline without NCR
 - $-T_{DD} = 8.42 \text{ ns}$
- Pipeline with NCR applied to Multiplier #2
 - $-T_{DD} = 6.96 \text{ ns}$
 - Speedup = 1.21

Pipelined MAC with Conditional Rounding, Scaling, and Saturation

Gate Count = 13,613 Minimum Feedback Path = 25 gate delays $T_{DD} = 12.7 \text{ ns}$

Pipelined MAC without Conditional Rounding, Scaling, and Saturation

Gate Count = 16,169Minimum Feedback Path = 18 gate delays $T_{DD} = 11.4$ ns

Delay Analysis of 71-bit RCA

Х	Percent ≥ X Gate Delays			
11	21.8%			
10	32.7%			
9	41.4%			
8	67.7%			
7	91.4%			
6	99.6%			

Pipelined MAC with

NCR Feedback Loop

275-Bit NCL Register

Pipelined MAC with NCR Feedback Loop and Bit-Wise Completion

Gate Count = 21,154 $T_{DD} = 8.6 \text{ ns}$

MAC Comparisons

Design	Completion Strategy	T _{DD} (ns)	Gate Count
MAC with CRSS	Full-Word	12.7	13,613
MAC without CRSS	Full-Word	11.4	16,169
NCR MAC	Full-Word	8.7	22,804
NCR MAC	Bit-Wise	8.6	21,154

• Application of NCR to throughput-limiting feedback loop yielded speedup of 1.31