Assignment-II

i) f(x) = x2

is not one-to-one because f(-s) and f(s) have the same image i.e 25 which contradicts the olefination one-one.

Here f(x) is not one-one.

2) Equivalance realation: If a relation satisfies

i) reflexive

(ii) 2 Symmetry

in Transitive

arb - iff ((a) = ((b)

- It's reflereive since (a) = (a)

→ let a, b ∈ R

if arb = ((a) = ((b)

=> ((b) = ((a)

=> b R a

i. It is symmetry

→ let 0,6,CER

let a R b & b R C

=) ((a)= ((b) and ((b)= ((c)

=) ((a)=(c)

=) aRC

:. It is transitive

3) $R = \{(a,b) | (a = b \pmod{m})^{\frac{1}{2}}$

a=b(mod m) means (a=b) is divisible by m

→ since a-a=0 is divible by any number (say m)

⇒ R is reflexive

- let
$$a = b \pmod{m}$$

- $a - b$ is also divisible by m

- $(a - b)$ is also divisible by m

- $(a - b)$ is also divisible by m

- $b - a$

- $a - b - b$

- $a - b - b - c - a$

- $a - b - b - c - a$

- $a - b - a$

- $a - a$

- a

minimal element.

ex = (=+, <)

5) let $s = \{a,b,c\}$ $P(A) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,e\}, \{a,b,c\} \}$

If least element exists it should be unique

In this case least element is \$\phi\$ and greatest is

da, b, c\frac{1}{2}.

: (east and Greatest elements does exist in \$P(s)\$)

for any set \$5.

Hasse diagram: Graphical representation of relation of elements of poset.

$$(D_{12}, 1)$$

$$D_{12} = \{1, 2, 3, 4, 6, 12\}$$

maximal, greatest element = 12 minimal, least element = 1

Problem: Prove that $(Z_n, +_n)$ is a cyclic group.

Solution: we know that $Z_n = \{0,1,2,\dots,n-1\}$ for 1,2 in Z_n , we have $1+_n 2 \in Z_n$. Thus Z_n is closed under $+_n$ and also $a+_n b = b+_n a$ for all a,b in Z_n , Thus $+_n$ is commutative.

To prove that +n is associative: By division algorithm consider the following

$$a + b = q \ln r \cdot r \cdot 1$$
 for $0 \le r \cdot 1 \le r \cdot r \cdot r \cdot (1)$;

$$b + c = q2 n + r2$$
 for $0 \le r2 \le n$ -----(2) and

$$r1 + c = q3 n + r3$$
 for $0 \le r3 < n$ ----(3).

So,
$$a +_n b = r1$$
 and $b +_n c = r2$; and $r1 +_n c = r3$.

Now
$$(a+b)+c = q \ln +r + c [form (1)] = q \ln + q \ln +r + c [form (3)] -----(4)$$

So
$$(a+_n b) +_n c = r1 +_n c = r3$$
 [from (3)] also $a+_n (b+_n c) = a+_n r2$ ----(5)

Now a + r2 = a + b + c - q2n [from 2] = q1n + q3n + r3 - q2n = (q1+q3-q2)n + r3 which implies $a+_n (b+_n c) = a+_n r2 = r3$ -----(6),

Thus from (5) & (6) we have $(a+_n b) +_n c = a+_n (b+_n c) = r3$, which proves that $+_n$ is associative. 0 is the identity element of Z_n .

The inverse of i for 1 < i < n is n-i.

Also any r in Z_n can be written as 1+_n 1+_n 1+_n ---- -+_n 1, 1 being repeated for r times,

So $(Z_n, +_n)$ is a cyclic group.

Definition:- order of an element:- Let (G,*) be a group and a be an element of G, then the order of the element a is the smallest positive integer n for which $a^n = e$, if such an integer exists and is denoted by O(a).

g) order of elements of
$$(z_8, t_8)$$

$$z_8 = \{0, 1, ---7\}$$
* $0+_80=0$ \longrightarrow order of 0 i.e $O(0)=0$

$$2+82=4$$
 $2+82+82=6$
 $0(2)=4$
 $2+82+82+82=0$

$$3 + 83 = 6$$
 $3 + 83 = 9$