Линейный регрессионный анализ

10.05.2017

Продолжаем изучать зависимость между переменными

Коэффициент корреляции измеряет выраженность линейной связи между переменными.

В линейном регрессионном анализе строится линейное уравнение, описывающее статистическую зависимость переменной Y от переменной X.

В результате аналитик может прогнозировать значение переменной Y.

Более того, если он способен изменять значение переменной X, он может в некоторой степени управлять переменной Y.

Пытаемся управлять продажами

Если Y — уровень продаж, а X — затраты на рекламу, то можно управлять уровнем продаж, подбирая оптимальное значение переменной X.

Но не все так просто

Способность управлять ограничена, поскольку на уровень продаж влияют не только затраты на рекламу, но и многие другие показатели, которыми управлять труднее, достаточно упомянуть цену.

Кроме того, необходимо, чтобы была справедлива исходная гипотеза о виде зависимости переменных, а это часто не так.

Случай двух переменных X и Y

Дано

Наблюдения, то есть пары чисел (x_i, y_i) .

Гипотеза, что имеется линейная статистическая зависимость между переменными X и Y

$$Y = a + bX. (1)$$

Найти

Оценки коэффициентов a и b уравнения регрессии (1).

Решение

Геометрическая идея: уравнение регрессии определяет прямую, наиболее близко проходящую ко всем точкам с координатами (x_i,y_i) .

Подбираем a и b так, чтобы сумма квадратов отклонений точек линии регрессии Y от наблюдаемых значений y_i была минимальной:

$$F(a,b) = \sum_{i=1}^{N} (y_i - f(x_i, a, b))^2 \to \min$$

Ответ нам уже известен

Коэффициент наклона b характеризует силу влияния X на Y:

$$b = \frac{\sum (x_i - \bar{X})(y_i - \bar{Y})}{\sum (x_i - \bar{X})^2}$$

Свободный член a:

$$a = \bar{Y} - b\bar{X}$$

Терминология

Широко используются термины:

- X независимая переменная;
- ▶ Y зависимая переменная.

Это неудачные термины! Часто приходится изучать зависимость независимых переменных.

Лучше:

- X предикторы;
- У отклик.

или

- ▶ X входные переменные (входы);
- ▶ Y выходная переменная (выход).

Альбукерке: зависимость налогов (TAX) от площади дома (SQFT)

```
x <- read.table("Albuquerque_Home_Prices_data.txt",
                header=T, na.strings="-9999")
# Чтобы не писать каждый раз 'х'
attach(x)
# Рассмотрим зависимость налогов от площади дома
plot(SQFT, TAX)
# Построим линейную регрессионную модель
reg <- lm(TAX ~ SQFT)
# Добавим \kappa ней линию Y = a + bX
abline(a = reg$coefficients[1], b = reg$coefficients[2])
```

Зависимость налогов (TAX) от площади дома (SQFT)

(Intercept) SQFT ## -36.7857016 0.4979852

Измеряем качество регрессионной модели

Насколько построенная нами модель лучше описывает данные по сравнению с некой базовой характеристикой?

В качестве базовой характеристики выступает среднее арифметическое \bar{Y} .

Измеряем сумму квадратов отклонений для регрессионной модели

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - (a + bX_i))^2$$

Измеряем сумму квадратов отклонений для базовой модели

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Коэффициент детерминации \mathbb{R}^2

$$R^{2} = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - (a + bX_{i}))^{2}}{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}, \quad 0 \le R^{2} \le 1$$

Альбукерке: коэффициент детерминации для зависимость налогов от площади дома

summary(reg)\$r.squared

[1] 0.7371644

Итак: наша модель хороша, если она дает большой выигрыш по сравнению с базовой моделью.

В данном случае это так.

Важно!

- ▶ Коэффициент детерминации, в отличие от MSE, величина безразмерная. MSE (Mean Square Error): $(1/n)\sum_{i=1}^{n}(Y_i-(a+bX_i))^2$.
- ▶ Коэффициент детерминации работает для зависимостей вида

$$Y = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n.$$

Интерпретации коэффициента детерминации

$$R^{2} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} - \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - (a + bX_{i}))^{2}}{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} \cdot 100\%$$

- На сколько процентов улучшилась модель по сравнению с базовой.
- ightharpoonup Какой процент вариации Y объясняется влиянием всех независимых переменных (предикторов).

Недостатки коэффициента детерминации

Figure 1: Квартет Анскомба: r везде равен 0.816

Недвижимость в г. Альбукерке, шт. Нью-Мексико, США

Данные (117 наблюдений) являются случайной выборкой из записей о перепродажах домов, совершенных между 15 февраля и 30 апреля 1993. Информация предоставлена Советом риэлтеров (Albuquerque Board of Realtors) Альбукерке.

Переменные:

- ▶ PRICE продажная цена в сотнях долларов;
- ▶ SQFT площадь в квадратных футах;
- ▶ AGE возраст дома (количество лет);
- ► FEATS количество дополнительных удобств из 11 возможных: dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access;
- № NE дом расположен в престижном районе на северо-востоке города (1), или нет (0);
- CUST тип постройки: был ли дом обычной постройки (0), или нет (1),
- ► COR как расположен дом, на углу (1) или нет (0).
- ► ТАХ величина налогов за владение домом (в долларах).

Дадим прогноз цен

Задача

Построить модель, позволяющую по имеющимся параметрам спрогнозировать цену дома.

Гипотеза

Зависимость цены от переменных — линейная.

Порядок решения

- 1. Построение модели цены
- 2. Интерпретация коэффициентов
- 3. Отбор переменных

С чего начать?

Таблица х

	PRICE ‡	SQFT ‡	AGE ‡	FEATS ‡	NE ÷	CUST ‡	COR ÷	TAX ÷
1	2050	2650	13	7	1	1	0	1639
2	2080	2600	NA	4	1	1	0	1088
3	2150	2664	6	5	1	1	0	1193
4	2150	2921	3	6	1	1	0	1635
5	1999	2580	4	4	1	1	0	1732
6	1900	2580	4	4	1	0	0	1534
7	1800	2774	2	4	1	0	0	1765
8	1560	1920	1	5	1	1	0	1161
9	1450	2150	NA	4	1	0	0	NA

Figure 2:

Модель, зависящая ото всех переменных

```
Call:
lm(formula = PRICE ~ SQFT + AGE + FEATS + NE + CUST + COR + TAX,
   data = x)
Residuals:
   Min 10 Median 30 Max
-466.28 -82.29 6.75 78.70 484.84
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.74480 101.60704 0.913 0.365137
       0.35222 0.09575 3.679 0.000515 ***
SQFT
AGE.
   -0.56508 2.00253 -0.282 0.778807
          4.38961 18.55499 0.237 0.813822
FEATS
NF.
          -17.38534 47.27462 -0.368 0.714397
CUST
          174.94108 53.72371 3.256 0.001887 **
          -73.58234 49.13007 -1.498 0.139633
COR
TAX
          0.49887 0.15849 3.148 0.002598 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 158.9 on 58 degrees of freedom
  (51 observations deleted due to missingness)
Multiple R-squared: 0.8623, Adjusted R-squared: 0.8456
F-statistic: 51.86 on 7 and 58 DF, p-value: < 2.2e-16
```

На что обращать внимание?

- 1. Множественный коэффициент детерминации Multiple R-squared. Если он мал, то нужно искать другую модель. Например, нелинейную.
- 2. Коэффициенты: столбец Estimate. Их можно интерпретировать.
- 3. Столбец Pr(>|t|) содержит результат проверки гипотезы о том, что коэффициент равен 0. Помогает понять, какие переменные нужно рассматривать.

Оставим в модели только переменные с "ненулевыми" коэффициентами

```
itog2 <- lm(PRICE ~ SQFT + CUST + TAX, x)
summary(itog2)</pre>
```

Coefficients:

Residual standard error: 164.9 on 103 degrees of freedom (10 observations deleted due to missingness)

Multiple R-squared: 0.8207, Adjusted R-squared: 0.8155

F-statistic: 157.2 on 3 and 103 DF, p-value: < 2.2e-16

Коллинеарность

Допустим, что задана зависимость

$$Z = 6X + 8Y.$$

Одновременно известно, что

$$Y = 2X$$
.

В таком случае к коэффициентам при X и Y нельзя относиться серьезно.

Возможно:

$$Z = 11Y,$$

 $Z = 4X + 90Y,$
 $Z = 22X,$

Что делать?

- 1. Можно удалить одну из коллинеарных переменных.
- 2. В более сложных случаях факторный анализ. Он преобразует исходные переменные в новые некоррелированные переменные. Новые переменные будут линейными комбинациями исходных. Их меньше. Но их труднее интерпретировать.

Посмотрим на корреляцию

```
cor(x, use = "complete.obs", method = "pearson")
```

```
##
            PRICE
                         SQFT
                                      AGE
                                              FEATS
                                                            NE
## PRICE
         1.0000000 0.88394183 -0.166662011
                                          0.3663458
                                                     0.28916464
## SQFT 0.8839418 1.00000000 -0.037693593
                                          0.3573967
                                                    0.36254721
## AGE
        -0.1666620 -0.03769359 1.000000000 -0.1834804
                                                    0.21642412
## FEATS 0.3663458 0.35739666 -0.183480404 1.0000000
                                                    0.30963494
## NE
         0.2891646 0.36254721 0.216424115 0.3096349
                                                     1.00000000
## CUST 0.5821164 0.49187084 0.008517219
                                          0.3121949
                                                    0.15018688
## COR -0.1875856 -0.07850150 0.162728128 -0.2491235 -0.02371519
## TAX
         0.3039824 0.30240397
##
               CUST
                           COR
                                      TAX
## PRICE 0.582116383 -0.18758563 0.8775270
## SQFT
        0.491870845 -0.07850150 0.8752496
## AGE
        0.008517219 0.16272813 -0.2918422
## FEATS 0.312194901 -0.24912353 0.3039824
## NE
         0.150186875 -0.02371519 0.3024040
## CUST
        1.000000000 -0.05368755 0.4370276
## COR
        -0.053687549 1.00000000 -0.1531738
## TAX
        0.437027555 -0.15317383
                                1,0000000
```

Или с помощью матрицы диаграмм рассеяния

Исключаем налоги из модели

```
itog3 <- lm(PRICE ~ SQFT + AGE + FEATS + NE + CUST + COR, x)
summary(itog3)</pre>
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.14037 102.73572 0.809 0.42151

SQFT 0.63719 0.05119 12.448 < 2e-16 ***

AGE -3.72095 1.80540 -2.061 0.04357 *

FEATS 3.25714 18.93246 0.172 0.86398

NE -14.32888 49.23057 -0.291 0.77200

CUST 148.47950 54.40590 2.729 0.00829 **

COR -83.39862 51.26812 -1.627 0.10895

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 174.4 on 61 degrees of freedom

(49 observations deleted due to missingness)

Multiple R-squared: 0.8295, Adjusted R-squared: 0.8128

F-statistic: 49.47 on 6 and 61 DF, p-value: < 2.2e-16

Делаем еще одну попытка: по новым "ненулевым" коэффициентам

```
itog4 <- lm(PRICE ~ SQFT + AGE + CUST, x)
summary(itog4)</pre>
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 72.48077 84.52629 0.857 0.39437

SQFT 0.63914 0.04712 13.565 < 2e-16 ***

AGE -4.28913 1.68111 -2.551 0.01313 *

CUST 149.31462 53.72717 2.779 0.00715 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 174.2 on 64 degrees of freedom (49 observations deleted due to missingness)
Multiple R-squared: 0.8216, Adjusted R-squared: 0.8132

Идеологическое замечание

Разработка модели — процесс последовательных приближений к цели.