Fiche résumé électromagnétisme

6. Électrostatique et électricité : courant

Modélisation volumique du courant électrique

Additivité des vecteurs densité de courant si plusieurs types de porteurs :

$$\vec{J} = q n \vec{v}$$
 avec
$$\begin{cases} q & \text{charge d'un porteur libre} \\ n & \text{densit\'e volumique de porteurs libres} & \text{et} \quad I = \iint_S \vec{J}.d\vec{S} \\ \vec{v} & \text{vitesse d'un porteur libre} \end{cases}$$

Loi des nœuds, basée sur le postulat de conservation de la charge électrique :

$$\begin{cases} \operatorname{div}(\vec{\jmath}) = 0 & \text{formulation locale} \\ I_{\text{entrant}} = I_{\text{sortant}} & \text{formulation intégrale} \end{cases}$$

Autres modélisations

Surfacique : $J_s=qn_s\vec{v}$ avec n_s densité surfacique de porteurs libres. Linéique : utilisation directe de I, pas de densité linéique.

Loi d'Ohm

Modèle de Drude : résultante des interactions entre un électron libre et le reste du matériau assimilée à une force de frottement fluide linéaire.

PFD sur un électron libre : force électrostatique (imposée par générateur) + force de Drude.

Loi d'Ohm locale avec γ la conductivité du matériau (en S m⁻¹) :

$$\vec{J} = \gamma \vec{E}$$

Pour un cylindre soumis à une tension U (circulation de \vec{E}) et traversé par un courant d'intensité I (flux de \vec{j}):

$$U = RI$$
 avec $R = \frac{L}{\gamma S}$

Modèles de conducteur

	Conducteur réel	Conducteur parfait
γ	finie	+∞
Charges et courants	volumiques	surfaciques
$ec{E}$ dedans	peut être non nul	nul
$ec{E}$ à la surface	continu	discontinu (1 ^{re} espèce)

Donc dans un conducteur parfait, la relation de passage devient le théorème de Coulomb :

$$\vec{E}_{\text{ext}} = \frac{\sigma}{\varepsilon_0} \vec{n}$$
 avec \vec{n} orienté sortant du métal