Linear Algebra Homework 6

William Jardee

May 2020

1. (a) Find the lease squares solution

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix}$$

Least squares solution is
$$A^T A \mathbf{x} = A^T \mathbf{b} \to \mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$

$$A^T A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix}$$

$$(A^T A)^{-1} = \frac{1}{42 - 36} \begin{bmatrix} 3 & -6 \\ -6 & 14 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 3 & -6 \\ -6 & 14 \end{bmatrix}$$

$$(A^TA)A^T = \frac{1}{6} \begin{bmatrix} 3 & -6 \\ -6 & 14 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -3 & 0 & 3 \\ 8 & 2 & -4 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -15 \\ 50 \end{bmatrix} \approx \begin{bmatrix} -2.5 \\ 8.33 \end{bmatrix}$$

So the least squares line is: y = -2.5x + 8.33.

(b) The sum of squares of error, or SSE, is calculated with $||A\mathbf{x} - \mathbf{b}||^2$.

$$A\mathbf{x} \approx \begin{bmatrix} 5.833 \\ 3.33 \\ 0.833 \end{bmatrix}$$

$$SSE(\mathbf{x}) = \left\| \begin{bmatrix} 5.83 \\ 3.33 \\ 0.833 \end{bmatrix} - \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix} \right\|^2 = \left\| \begin{bmatrix} -0.167 \\ 0.33 \\ -0.167 \end{bmatrix} \right\|^2 \approx 0.167$$

- (c) Since A has linearly independent columns, $(A^TA)^{-1}$ exists and is unique. Consequently the least squares solution is unique.
- 2. (a) Find the least squares solution

$$y = a + bx + cx^2$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

Again,
$$\mathbf{x}_{l.s.} = (A^T A)^{-1} A^T \mathbf{b}$$

Again,
$$\mathbf{x}_{l.s.} = (A^T A)^{-1} A^T \mathbf{b}$$

$$A^T A = \begin{bmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{bmatrix}$$

The inverse was too extensive to do by hand reliably, so with assistance from Matlab

tance from Matlab:
$$(A^T A)^{-1} \approx \begin{bmatrix} 7.75 & -6.75 & 1.25 \\ -6.75 & 6.45 & -1.25 \\ 1.25 & -1.25 & 0.25 \end{bmatrix}$$

$$(A^T A)^{-1} A^T \approx \begin{bmatrix} 2.25 & -0.75 & -1.25 & 0.75 \\ -1.55 & 1.15 & 1.35 & -0.95 \\ 0.25 & -0.25 & -0.25 & 0.25 \end{bmatrix}$$

$$(A^T A)^{-1} A^T \mathbf{b} \approx \begin{bmatrix} 15 \\ -11.2 \\ 2 \end{bmatrix}$$

So the least squares line approximation is: $y = 15 - 11.2x + 2x^2$

(b)
$$SSE(\mathbf{x}) = \|A\mathbf{x} - \mathbf{b}\|^2 \approx \left\| \begin{bmatrix} 5.8 \\ 0.6 \\ -0.6 \\ 2.2 \end{bmatrix} - \begin{bmatrix} 6 \\ 0 \\ 0 \\ 2 \end{bmatrix} \right\|^2 \approx 0.8$$

3.

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} b = \begin{bmatrix} 5 \\ 3 \\ -1 \\ 1 \end{bmatrix}$$

(a) If a matrix doesn't have linearly independent columns, the solutions either don't exist or are not unique. The least squares solution is given by $A^T A \mathbf{x} = A^T \mathbf{b}$.

$$A^T A = \begin{bmatrix} 3 & 0 & 3 & 0 \\ 0 & 3 & 1 & 2 \\ 3 & 1 & 4 & 0 \\ 0 & 2 & 0 & 2 \end{bmatrix}$$

The 3rd row can be written as a linear combination of the other three rows:

$$\begin{bmatrix} 3 \\ 0 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 4 \\ 0 \end{bmatrix}$$

This means that if we solve $(A^TA)\mathbf{x} = A^T\mathbf{b}$, there is not one unique solution.

- (b) To show there are an infinite number of least squares solutions, we have to show that there are neither 0 or 1 solution. We have already ruled out 1 solution. To rule out 0 solutions, we can look at what it means to be a least squares solution. The least squares solution solves for the projection of \mathbf{b} onto A. If we take the a basis of A, say U, then $Proj_A(\mathbf{b}) = \mathbf{b} \cdot \mathbf{u}_1 + \mathbf{b} \cdot \mathbf{u}_2 + \cdots + \mathbf{b} \cdot \mathbf{u}_n = \mathbf{x}_{l.s.}$. So $\mathbf{x}_{l.s.}$ always has at least one solution, since the solution cannot be undefined. We get multiple solutions when the SSE of multiple of those projections are the same.
- 4. (a) We need to show $P^T = P$ $P^T = (A(A^TA)^{-1}A^T)^T = (A^T)^T((A^TA)^{-1})^TA^T = A((A^TA)^T)^{-1}A^T = A(A^TA)^{-1}A^T = P$ So P is symmetric
 - (b) We need to show $P^2 = P$ $P^2 = PP = (A(A^TA)^{-1}A^T)(A(A^TA)^{-1}A^T) = A(A^TA)^{-1}(A^TA)(A^TA)^{-1}A^T = A((A^TA)^{-1})A^T = P$ So P is idempotent
- 5. Taking the assumption that A is square and has linearly independent columns, we can deduce that the A is invertible. Then the projection matrix P is:

$$P = A(A^{T}A)^{-1}A^{T} = AA^{-1}(A^{T})^{-1}A^{T} = I \cdot I = I$$

.

6. Prove that if a matrix A has independent columns (and possibly rectangular!), then A^TA is invertible.

Proof:

If we show that 0 is not an eigenvector of A^TA , then it is invertible. If A has linear independent columns, then there is no null-space, $A\mathbf{x} \neq \mathbf{0} \ \forall \mathbf{x} \in \mathbb{R}^n$ and consequently $\|A\mathbf{x}\|^2 \neq 0$. Let us \mathbf{v} to be an eigenvector of A^TA .

$$0 \neq \|A\mathbf{v}\|^2 = A\mathbf{v} \cdot A\mathbf{v} = \mathbf{v}^T A^T A\mathbf{v} = \mathbf{v}^T \lambda \mathbf{v} = \lambda (\mathbf{v} \cdot \mathbf{v}) = \lambda \|\mathbf{x}\|^2$$

Since the definition of eigenvector doesn't allow **v** to be the zero vector, $\|\mathbf{v}\|^2 \neq 0$, so $\lambda \neq 0$. Since $\lambda \neq 0$, then $A^T A$ is invertible.

"Quack"

7. Prove that if a square matrix B is diagonalizable with r non-zero eigenvalues, then B has rank r.

Proof:

If A is a $n \times n$ diagonalizable matrix, then it has all linearly independent eigenvectors. The eigenvectors that correlate to the eigenvalues of zero form a basis for the null-space of A. If there are r non-zero eigenvalues, then there are n-r zero eigenvalues, and consequently n-r vectors that make up the basis for our null-space. The nullity(A) = n - r. We know through the Rank Theorem that n = rank + nullity(A). If we substitute in that nullity(A) = n - r: $n = rank + n - r \rightarrow r = rank$.

"Quack" \blacksquare

8. Let $A = U\Sigma V^T$ be the SVD of a (possibly rectangular) matrix A. Prove that the columns of U are orthogonal.

Proof:

If we let $A = U\Sigma V^T$, by the definition of a SVD we know that the columns of U are either $\mathbf{u}_i = \frac{1}{\sigma_i}A\mathbf{v}_i$, or found using gram-schmitt to finish the basis. Using gram-schmitt we are guaranteed to have orthogonal vectors, so the vectors past the r^{th} vector will be be orthogonal to every vector in the matrix. Looking at the first r vectors:

$$\mathbf{u}_i \cdot \mathbf{u}_j = (\frac{1}{\sigma_i} A \mathbf{v}_i) \cdot (\frac{1}{\sigma_j} A \mathbf{v}_j) = \frac{1}{\sigma_i \sigma_j} \mathbf{v}_i^T A^T A \mathbf{v}_j = \frac{1}{\sigma_i \sigma_j} \mathbf{v}_i^T \lambda_j \mathbf{v}_j = \frac{\lambda_j}{\sigma_i \sigma_j} \mathbf{v}_i \cdot \mathbf{v}_j$$

If $i \neq j$ then $\mathbf{v}_i \cdot \mathbf{v}_j = 0 = \mathbf{u}_i \cdot \mathbf{u}_j$. We see that any two column vectors of U are orthogonal.

"Quack" \blacksquare

9. Let A be a symmetric matrix. Show that the singular values of A are the absolute values of the eigenvalues of A.

Proof:

For a matrix A, if A is symmetric, then it is orthogonally diagonalizable. $A = S\Lambda S^T$, $A^TA = A^2 = (S\Lambda S^T)(S\Lambda S^T) = S\Lambda^2 S^T$.

This is the orthogonal diagonalization of A^TA , so the eigenvalues of A^TA are the squares of the eigenvalues of A. The singular values are defined to be the principle root of the eigenvalues of A^TA , so the singular values are $\sigma_i = \left| \sqrt{\lambda_i^2} \right| = |\lambda|_i$. So the singular values of A are the absolute values of the eigenvalues of A.

"Quack" ■

10. Show that if $A = U\Sigma V^T$ is an SVD of A, then the left singular vectors are eigenvectors of AA^T .

Proof:

$$AA^{T}\mathbf{u}_{i} = AA^{T}\frac{1}{\sigma_{i}}A\mathbf{v}_{i} = \frac{1}{\sigma_{i}}AA^{T}A\mathbf{v}_{i} = \frac{1}{\sigma_{i}}A\lambda_{i}\mathbf{v}_{i} = \frac{\lambda_{i}}{\sigma_{i}}A\mathbf{v}_{i} = \lambda_{i}\mathbf{u}_{i}$$

So, for when $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$, which is for all the left singular vectors, \mathbf{u}_i is an eigenvector with an eigenvalue of λ_i , which is the " i^{th} " singular value squared.

"Quack" \blacksquare