Distributed Systems

Giuseppe Anastasi

g.anastasi@iet.unipi.it

Pervasive Computing & Networking Lab. (PerLab) Dept. of Information Engineering, University of Pisa

Overview

- Introduction
- Communication Networks
- Communication Protocols
- Distributed Programming

Objectives

- Provide a high-level overview of distributed systems and underlying communications networks
- Introduce different types of communication networks
- Discuss networking protocols that allow communication in a distributed environment
- Introduce principles of distributed programming

Motivation

- Distributed system is collection of loosely coupled processors interconnected by a communications network
- Processors variously called nodes, computers, machines, hosts
 - Site is location of the processor
- Reasons for distributed systems
 - Resource sharing
 - sharing and printing files at remote sites
 - processing information in a distributed database
 - using remote specialized hardware devices
 - Computation speedup load sharing
 - Reliability detect and recover from site failure, function transfer, reintegrate failed site
 - Communication message passing

A Distributed System

Overview

- Introduction
- Communication Networks
 - LAN
 - WAN
 - Internet
- Communication Protocols
- Distributed Programming

Classification of Communication Networks

- Wide Area Networks (WAN)
- Metropolitan Area Networks (MAN)
- Local Area Networks (LAN)
- Personal Area Networks (PAN)
- Body Area Networks (BAN)

Network Topologies

fully connected network

partially connected network

tree-structured network

F D C

Service Types

Connection Oriented (Stream)

- Inspired from the telephone system
- Connection Setup, Data Transfer, Connection Tear down
- Messages tend to follow the same path from source to destination

Connectionless (Datagram)

- Inspired from the mail system
- Each message includes the destination address
- Different messages follows different paths
- No guarantee on message ordering

Layered Architecture

OSI

TCP/IP

Actual Data Path

Local Area Networks (LANs)

- Cover small geographical area.
- Speed ≈ 10 100 Mbps
- Nodes:
 - usually workstations and/or personal computers
 - a few (usually one or two) mainframes
- Shared CommunicationMedium
- Broadcast communication

LAN Topologies

Shared Communication Medium

Node use a MAC (Medium Access Protocol) to regulate the access to the communication medium

Physical Addressing Scheme

How to implement unicast communication?

Each node in the LAN is assigned with a unique address (physical address or hw address o MAC address)

The sending node inserts the destination address in each packet it sends

The destination node accepts the received packet *only if* the destination address corresponds to its own address.

Ethernet LANs

- Ethernet a 10 Mbps
 - 10BaseT
 - 10Base5
 - 10Base2
- Fast Ethernet (100 BaseT, 100 Mbps)
- Gigabit Ethernet (1, 10 Gbps)
 - ▶ IEEE 802.3z (1 Gbps)
 - ▶ IEEE 802.3ae (10 Gbps)

An Example of Ethernet LAN

Figure 5.29 • An institutional network using a combination of hubs, Ethernet switches, and a router

Frame Ethernet

- Preamble
 - 64-bit string used for clock synchronization
- Destination Address
 - Broadcast address: 11111......1
- Source Address
- Type
 - Specify the data type (e.g., 0800: IPv4)
- Payload
- ■CRC (Cyclic Redundancy Check)
 - Error detection

Ethernet MAC Protocol

- CSMA/CD Carrier sense with multiple access (CSMA); collision detection (CD)
 - A node determines whether another packet is currently being transmitted over that link (carrier sense).
 - If the link is sensed as free the packet transmission is started. The node continues listening while transmitting
 - If two or more nodes begin transmitting at exactly the same time, then they will register a collision and will stop transmitting
 - A collided packet is re-tried after a random backoff interval

Wide Area Networks (WANs)

- Links geographically separated sites
- Point-to-point connections over long-haul lines (often leased from a phone company)
- Speed ≈ 1.544 45 Mbps

Point-to-Point Physical Links

- Collegamenti via modem
- Linee dedicate
- Linee ISDN
- Linee DSL
 - ADSL (Asynchronous Digital Subscriber Line)
 - SDSL (Synchronous Digital Subscriber Line)
 - HDSL (High-Rate Digital Subscriber Line)
 - VDSL (Very high-rate Digital Subscriber Line)

Point-to-Point Virtual Links

Limitazioni delle LAN

- Le LAN permettono di interconnettere calcolatori in ambito locale
 - Ambienti SOHO
 - Edifici
 - Campus

LAN 1

Come far comunicare fra loro calcolatori collegati a reti di tipo diverso e in posti diversi?

Quello che vorremmo ...

Due calcolatori devono poter comunicare indipendentemente dalla rete fisica a cui sono collegati

- Aumento di produttività
- Problemi da risolvere
 - Diversi segnali elettrici,
 - Diverso formato dei pacchetti
 - Diverso schema di indirizzamento

Inter-rete

Occorre

- Raccordare fisicamente le reti fisiche mediante opportuni dispositivi fisici (router)
- Aggiungere uno strato software sopra l'hardware di rete
 - Fa apparire l'insieme di reti eterogenee come un unico sistema

Il sistema che si realizza è detto inter-rete o internet

Router

- Calcolatore specializzato dedicato alla interconnessione
 - CPU, memoria, ...
 - una interfaccia per ciascuna rete a cui è collegato
- Si collega come un qualsiasi altro calcolatore
 - Collegato contemporaneamente a (almeno) due reti fisiche
- Può interconnettere reti di tipo qualsiasi

Inter-rete = reti di calcolatori collegate da router

Protocolli software

- Simulano una rete virtuale
 - si può collegare un calcolatore come si farebbe con una rete singola
- Nascondono i dettagli delle reti fisiche sottostanti
 - L'utenti si può disinteressare del tipo di reti fisiche sottostanti, della presenza o meno di router, ecc.
- Realizzano un servizio universale
 - Ogni calcolatore è individuato tramite un indirizzo software
 - Ogni calcolatore può scambiare messaggi con altri calcolatori collegati alla inter-rete

Protocolli TCP/IP

TCP = Transmission Control Protocol

IP = Internet Protocol

- Famiglia di protocolli usati in Internet
- Usati anche per la realizzazione di inter-reti private (Intranet)
- Progettati verso gli inizi degli anni '70 su iniziativa del Pentagono
 - Agenzia ARPA → Arpanet
 - Arpanet → Internet

The TCP/IP Protocol Layers

1	0	-
ı	0	C

TCP/IP

application

presentation

session

transport

network

data link

physical

HTTP, DNS, Telnet SMTP, FTP

not defined

not defined

TCP-UDP

IP

not defined

not defined

Overview

- Introduction
- Network-Based Operating Systems
- Communication Networks
- Communication Protocols
 - TCP/UDP
 - IP
- Distributed Programming

Internet Layer (Protocollo IP)

- Formato dei pacchetti (datagram)
- Formato degli indirizzi software (indirizzi IP)
- Instradamento dei datagrammi
- Servizio best-effort
 - Connectionless
 - Possibili fuori sequenza
 - Non affidabile
 - Perdite e/o alterazioni dei datagram
 - Nessuna garanzia di QoS (ritardo, jitter, throughput)

Transport Layer (Protocollo UDP)

- Demultiplexing dei datagram
 - Riceve un flusso indistinto di datagrammi IP
 - Recapita i datagram ai processi applicativi a cui sono destinati
- Nessun incremento al servizio offerto da IP
 - Servizio connectionless e non affidabile

Transport Layer (Protocollo TCP)

- Flusso di byte (stream)
 - ma la comunicazione è sempre a pacchetti (segmenti)
- Trattamento di fuori-sequenza e duplicati
- Rilevazione dei segmenti alterati o persi
- Recupero dei segmenti alterati, persi, ritardati
- Controllo del flusso
- Controllo della congestione
- Servizio Connection-oriented e affidabile
 - Tutti i segmenti vengono consegnati in sequenza
 - Assenza di duplicati
 - Nessuna garanzia sul ritardo, sul jitter e sul throughput

Host, Router e Protocolli

Host = qualsiasi calcolatore collegato alla inter-rete

Indirizzi IP

- Indirizzo a 32 bit assegnato a ogni host
- Struttura Gerarchica
 - Indirizzo di rete (prefisso) + Indirizzo di host (suffisso)
- Indirizzo di rete (network number)
 - Identifica una rete fisica
 - Assegnato da una autorità centrale che garantisce l'univocità

Indirizzo di host (host number)

- Identifica un particolare host all'interno della rete fisica
- Assegnato localmente dall'amministratore

Classi di indirizzi IP

bits	01234	8	16	2	24	31
Class A	0 prefix	suffix				
Class B	40	nvofiv		out	El u	
Class B	1 0	prefix		suf	IIX.	
Class C	1 1 0		prefix		suffix	
Class D	1 1 1 0 multicast address					
Class E	1 1 1 1 reserved for future use					

Notazione decimale puntata

- I 4 byte sono interpretati come numeri decimali

 compresi fra 0 e 255
- Indirizzo letto come 4 numeri decimali separati da punti

32-bit Binary Number			Equivalent Dotted Decimal	
10000001	00110100	00000110	00000000	129.52.6.0
11000000	00000101	00110000	00000011	192.5.48.3
00001010	00000010	00000000	00100101	10.2.0.37
10000000	00001010	00000010	00000011	128.10.2.3
10000000	10000000	11111111	00000000	128 . 128 . 255 . 0

Indirizzi IP riservati

- Indirizzo per l'intera sottorete
 - Suffisso di tutti zeri (131.114.0.0)
- Indirizzo di trasmissione brodcast orientata
 - Suffisso di tutti 1 (131.114.255.255)
- Indirizzo di trasmissione brodcast ristretta
 - Costituito da tutti 1 (255.255.255.255)
- Indirizzo di "questo calcolatore"
 - Indirizzi di tutti 0
 - Usato all'avvio
- Indirizzo loopback
 - 127.0.0.1
 - Usato nello fase di sviluppo di applicazione di rete

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

Hierarchical Addressing

Hierarchical addressing

IP Addresses: how to get one?

Q: How does *network* get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	11001000	00010111	<u>0001001</u> 0	00000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
 Organization 7	11001000	 00010111	<u>0001111</u> 0		200.23.30.0/23

IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

Names and Numbers

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

IP addresses: how to get one?

Q: How does a *host* get IP address?

Permanent Address

- hard-coded by system admin in a file
- Windows: control-panel->network->configuration->tcp/ip->properties
- UNIX: /etc/rc.config

Temporary Address

- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
- "plug-and-play"

Goal: allow host to *dynamically* obtain its IP address from network server when it joins network

Allows reuse of addresses (only hold address while connected "on")
Support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg
- DHCP server responds with "DHCP offer" msg
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP address

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

NAT: Network Address Translation Perlab

- Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

NAT: Network Address Translation Per Lab

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

Implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #)
 of every outgoing datagram to (NAT IP address, new
 port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation

Datagram IP

0	4	8	16	19	24	31		
VERS	H. LEN	SERVICE TYPE	TOTAL LENGTH					
IDENTIFICATION			FLAGS	FRAG	FRAGMENT OFFSET			
TIME T	O LIVE	TYPE	HEADER CHECKSUM					
SOURCE IP ADDRESS								
DESTINATION IP ADDRESS								
IP OPTIONS (MAY BE OMITTED)					PADDING			
BEGINNING OF DATA								

Livello di trasporto

- Estende il servizio di trasporto host-to-host in un servizio di comunicazione fra processi
 - Esegue il demultiplexing delle informazioni
 - Basato sul concetto di porta
- I processi vengono individuati mediante la coppia

<Host IP Address, Port Number>

- Il processo mittente deve specificare sia l'indirizzo IP che il numero di porta
- II SO realizza la porta come coda di messaggi

Protocollo UDP

Introduzione al TCP

- Servizio di comunicazione fra processi orientato alla connessione
 - Meccanismo di de-multiplexing basato sulle porte
 - Apertura connessione, trasferimento dati, chiusura connessione
- Punto-Punto
 - Ogni connessione TCP collega esattamente due processi
- Affidabile
 - Consegna affidabile, senza duplicati e in sequenza di un flusso di byte
- Full duplex
 - Un flusso di byte in ciascuna direzione

Introduzione al TCP

- Controllo e gestione degli errori
 - Checksum e ACK
 - Timeout e ritrasmissione
- Controllo del flusso
 - Evita che il mittente invii più dati di quanti il ricevitore possa gestire
- Controllo della congestione
 - Evita che il mittente invii più dati di quanti la rete sia in grado di trasportare

Flusso di byte

Distributed Systems

Internet History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- ate70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

FO

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for nameto-IP-address translation
- 1985: ftp protocol defined
- 1986: first Italian node connected to the Internet (Pisa)
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

First Italian node connected to the Internet

- 30 Aprile 1986
- Nodo CNUCE, Pisa

Consiglio Nazionale delle Ricerche Istituto CNUCE

Pisa 12/5/86

Prot. n. 1922

Prof. L. Rossi Bernardi Presidente del CNR

Prof. G. Biorci Presidente CGI

Ing. S. Trumpy
Direttore CNUCE

Oggetto: Collegamento del CNUCE ad ARPANET.

Dal 30 Aprile scorso, il sistema di calcolo dell'Istituto CNUCE è stato collegato alla rete di eleboratori USA denominata ARPANET (Advanced Research Projects Agency NETwork). Tale rete, sponsorizzata dal Dipartimento della Difesa USA, collega ormai parecchie migliaia di elaboratori eterogenei per dimensione e per costruttore, operanti presso i più prestigiosi Centri di Ricerca, Università ed Istituzioni Militari prevalentemente USA.

Dopo la Norvegia, la Gran Bretagna e la Germania Ovest, l'Italia è la quarta nazione europea dotata di accesso ad ARPANET tramite la sottorete via satellite SATNET (SATellite NETwork) (Allegato 1).

A livello italiano tale collegamento è il risultato di una cooperazione tra CNR, TELESPAZIO ed ITALCABLE; cooperazione sancita dalla stipula di un comune contratto triennale che scadrà nell'Agosto del 1987.

Voluta dalla CGI per attuare la politica del calcolo scientifico dell'Ente, ARPANET consente adesso all'utente scientifico italiano collegato al CNUCE di accedere ai servizi disponibili presso gli altri elaboratori della rete e viceversa.

Data la riservatezza dei dati residenti presso gli elaboratori che operano aoprattutto in ambito militare, e in conformità alle norme del suddetto contratto, l'accesso dell'utente CNUCE dovrà essere autorizzato, altre che dal CNR, anche da TELESPAZIO, ITALCABLE e della DARPA (Defence Advanced Research Projects Agency).

Cordiali Saluti

Luciano Lenzir

PS: Allego copia della bozza del comunicato stampa il cui contenuto deve essere concordato con TELESPAZIO ed ITALCABLE.

36 VIA S. MARIA - 56100 - PISA Tel. (050) 593111 Telex 500371-CNUCE Telegrammi CNUCE-PISA

1990, 2000's: commercialization, the Web, new apps

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

Late 1990's – 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2007:

- ~500 million hosts
- Voice, Video over IP
- P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
- more applications: YouTube, gaming
- wireless, mobility

Overview

- Introduction
- Network-Based Operating Systems
- Communication Networks
- Communication Protocols
- Distributed Programming
 - Socket interface
 - Client-server Model
 - Peer-to-Peer Model

Interfaccia Socket

- Standard de facto per la comunicazione fra processi in ambiente distribuito
 - Si può usare anche per la comunicazione fra processi sulla stessa macchina
- Interfaccia unica per operare con i vari protocolli di rete a disposizione
- Nasconde tutti i meccanismi di comunicazione di livello inferiore (TCP/UDP, IP, ...)

Socket

- Estremità di canale di comunicazione identificata da un indirizzo
 - Socket: presa telefonica
 - Indirizzo: numero di telefono
- Indirizzo
 - ▶ Indirizzo dell'Host (Indirizzo IP)
 - Indirizzo del processo (Port Number)
- La comunicazione avviene tramite una coppia di socket

Comunicazione mediante socket

Supporto del SO

- II SO implementa l'astrazione di socket
- System call per
 - Creare un socket
 - Associare indirizzo IP e porta al socket
 - Mettere in ascolto un processo su un socket (server)
 - Accettare una richiesta di servizio su un socket (server)
 - Aprire una connessione verso un socket remoto (client)
 - Inviare un messagio verso un socket remoto
 - Ricevere un messaggio da un socket
 -

Modello Client-Server

- Paradigma basato su scambio di messaggi
 - Paradigma generale
 - Ma usato principalmente in ambito distribuito
- Scambio di msg per
 - Richiesta di servizio
 - Invio dei risultati

Client-Server in Sistemi Distribuiti

Modello P2P

Client-Server Communication

Remote Procedure Calls

- Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
- Stubs client-side proxy for the actual procedure on the server
- The client-side stub locates the server and marshalls the parameters
- The server-side stub receives this message, unpacks the marshalled parameters, and performs the procedure on the server

RPC: general issues

Data Representation

- Little endian vs. big endian
- A system-independent representation is used (e.g., XDR: eXternal Data Representation)
- Exactly-once semantic
 - Acks and retransmissions for avoid message losses (at least once
 - Timestamps for avoiding multiple execution (at most once)

RPC: general issues

Client-server communication

• How to locate the RPC port on the server?

Predefined ports

- RPC are associated at compile time with fixed port numbers
- The server cannot change the port number of the required service

Rendez-Vous

- The server-side OS provides a rendez-vous daemon (matchmaker)
- The client requires the port number to the matchmaker
- The daemon replies with the port number
- The client send the RPC request to the appropriate port number

An RPC Application

- Distributed File System (DFS)
 - Set of daemons and RPC clients
 - Messages containing file-system operations
 - read, write, rename, delete, status
 - The client sends a message to the server
 - The command is executed on the server
 - A reply message is sent to the client

Remote Method Invocation

- Remote Method Invocation (RMI) is a Java mechanism similar to RPCs
- RMI allows a Java program on one machine to invoke a method on a remote object

Questions?

