

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Biology (WBI15)

Paper 01: Respiration, Internal Environment, Coordination and Gene Technology

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024

Question Paper Log Number P73453A

Publications Code WBI15_01_2401_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Answer	Additional guidance	Mark
number			
1(a)	B is the correct answer		
	A is not the correct answer glycolysis, Krebs cycle and link reaction is not the correct order.		
	C is not the correct answer as link reaction, Krebs cycle and glycolysis is not the correct order.		
	D is not the correct answer as Krebs cycle, glycolysis and link reaction is not the correct order.		(1)
			(1)

Question number	Answer	Additional guidance	Mark
1(b)	An answer showing the following steps:	accept incorrect formula e.g. CO2	
	• equation (1)	accept correct word equation	
	balanced equation (1)	e.g. C ₆ H ₁₂ O ₆ + 6O ₂ → 6CO ₂ + 6H ₂ O ignore ATP / ADP	
		1 mark if equation correct but not balanced	(2)

Question number	Answer	Additional guidance	Mark
1(c)(i)	B is the correct answer		
	A is not the correct answer as 0.67 is not the RQ value		
	C is not the correct answer as 1.06 is not the RQ value		
	D is not the correct answer as 1.42 is not the RQ value		(1)

Question	Answer	Additional guidance	Mark
number			
1(c)(ii)	A calculation showing the following steps:		
	• calculation of energy in ATP (1)	(122 x 30.51) = 3722.22 kJ (122 ÷ 12244) = 0.009964	
	calculation of percentage useable energy with answer given to three significant figures (1)	(3722.22 ÷ 12244) x 100 = 30.4% (0.009964 x 30.51) x 100 = 30.4%	
		Correct answer gains both marks	(2)

Question number	Answer	Additional guidance	Mark
2(a)(i)	D is the correct answer		
	A is not the correct answer the sodium channel is not closed in depolarisation		
	B is not the correct answer the sodium channel is not closed in depolarisation		
	C is not the correct answer as the membrane potential is not decreasing in depolarisation		(1)

Question	Answer	Additional guidance	Mark
number			
2(a)(ii)	An explanation that includes the following points: • sodium (ion) {channels / voltage-gated channels}		
	close (1)		
	potassium ions move out of cell via (voltage gated) potassium channels (1)	accept (voltage-gated) potassium (ion) channels open reject contradictions e.g. potassium ion moving in through open channels	
	the inside of the axon becomes negatively charged (compared with the outside) (1)	{ decrease in membrane potential / back to (below)-70mv} ignore back to resting potential	(3)

Question number	Answer	Additional guidance	Mark
2(b)(i)	A calculation showing the following steps:		
	 measurement of scale bar converted to μm (1) 	9.5mm = 9500 (µm) ACCEPT 9000 to 10000 (µm)	
	calculation of magnification and answer given in	$(9500 \div 50) = 190 = 1.9 \times 10^2$	
	standard form (1)	accept 1.8 x 10 ² to 2.0 x 10 ² accept 2 x 10 ²	
		180 to 200 gets 1 mark	(2)
		correct answer gains full marks	(2)

Question	Answer	Additional guidance	Mark
number			
2(b)(ii)	An answer that includes:	mark first answer	
	• light (microscope) (1)		(1)

Question	Answer	Additional guidance	Mark
number			
2(b)(iii)	An explanation that includes three of the following points:		
	 ions cannot cross axon membrane in myelinated regions (1) 		
	as myelin acts as an insulator (1)	ignore myelinated neurone {has / creates} insulation	
	 therefore {action potentials / depolarisation} (only) occur at nodes of Ranvier (1) 	accept gaps between local currents are longer	(3)
	 so {nerve impulses / action potentials} jump from node to node / saltatory conduction (1) 		(3)

Question number	Answer	Additional guidance	Mark
3(a)(i)	 D is the correct answer A is not the correct answer as baroreceptors detect pressure changes B is not the correct answer as chemoreceptors detect changes in chemical stimuli 		
	C is not the correct answer as osmoreceptors detect changes in osmolarity stimuli		(1)

Question number	Answer	Additional guidance	Mark
3(a)(ii)	A description that includes three of the following points:		
	• receptors synapse with sensory neurones (1)	accept impulse transmitted along sensory neurone	
	 impulse transmitted via sensory neurone towards the {CNS / spinal cord} (1) 	accept impulse /action potential transmitted via sensory neurone to relay neurone	
	which passes through dorsal root ganglion (1)		
	 where sensory neurone synapses with {relay / motor} neurone (1) 		
	(synapse / relay neurone) located in the grey matter (1)		(3)

Question	Answer	Additional guidance	Mark
number			
3(b)(i)	A calculation showing the following steps:		
	correct difference from the graph (1)	20 - 12 = (-) 8	
	correct percentage difference (1)	(8 ÷ 16) x 100 = (-) 50% OR 0.5 x 100 = (-) 50%	
		correct answer gains both marks	(2)

Question number	Answer	Additional guidance	Mark
3(b)(ii)	A description that includes three of the following points		
	 all the groups {recover / start changing direction} after 0.5 mins (1) 		
	• recovery increases as time increases (1)	accept the number of roundworms changing direction increases as time increases	
	• steeper increase up to 10 mins / slower increase after 10 mins (1)	{gradient / graph} steeper up to 10 minutes	
	the shorter the habituation interval the {faster the recovery time / higher number of worms changing direction} (1)	accept converse accept group {1 / 60 taps at 2s intervals} had the highest number changing direction / group {3 / 60 taps at 60s intervals} had the lowest number changing direction	
	 all three groups have worms that have not {recovered / started changing direction} (after 30 mins)ii(1) 		(3)

Question number	Answer	Additional guidance	Mark
4(a)(i)	 D is the correct answer A is not the correct answer as the ratio is incorrect B is not the correct answer as the ratio is incorrect as it is rounded incorrectly 		
	C is not the correct answer as the ratio is incorrect as it is rounded incorrectly		(1)

Question number	Answer	Additional guidance	Mark
4(a)(ii)	 An answer that includes four of the following points thermoreceptors produce action potentials below 42 (°C) / no action potentials for nociceptors below 42(°C) (1) accept nociceptor produces action potentials after 42(°C) the number of action potentials from thermoreceptors does not increase after 44(°C) (1) thermoreceptors produce action potentials over a greater range of temperatures than nociceptors (1) 	accept nociceptors { produce more action potentials / more sensitive} at higher temperatures / above 45(.6)(°C) accept levels off / flattens out / peaks accept 34(.2)-50(°C) for thermoreceptor	
	 nociceptors have larger increase in number of impulses for each degree rise in temperature / are more sensitive to a change in temperature (1) comment on information missing on methodology (1) 	accept graph for nociceptors is steeper greater increase in number of action potentials for nociceptors e.g. size / age / area of skin / no sample size / no statistical analysis / no mean calculated accept comment on no error bars so no comment on significance	(4)

Question number	Answer	Additional guidance	Mark
4(b)	An explanation that includes four of the following points:		
	 nicotine causes an increase in the number of action potentials (in post synaptic neurone) (1) 	accept if nicotine is not given the number of action potentials stays the same group A has the highest number of action potentials	
	 as nicotine binds to acetylcholine receptors causing action potential (1) 	accept nicotine has a similar structure to acetylcholine ignore nicotine blocks receptors	
	 Groups B and C have similar number of action potentials (1) 		
	 if nicotine given { to mice with gene for acetylcholine receptor deleted / group C} then number of action potentials stays same (1) 	accept fewer action potentials in group C ignore no action potentials generated	
	 as {no / less} acetylcholine receptor (on post synaptic membrane) (1) 		(4)

Question	Answer	Additional guidance	Mark
number	A decomposition that includes two of the fallowing paints.		
5(a)	A description that includes two of the following points:		
	• use a microarray (1)		
	• to detect mRNA (1)		
	ref to use of cDNA / fluorescent { labels /probes/ tags}		(2)

Question	Answer	Additional guidance	Mark
number			
5(b)(i)	 C is the correct answer 		
	A is not the correct answer as histones are not acting as a transcription factor		
	B is not the correct answer as histones do not form pores in the nuclear membrane		
	D is not the correct answer as histones do not produce RNA polymerase.		(1)

	Mark
er does not	
onal changes	
n changes do	(1)
	onal changes

Question number	Answer	Additional guidance	Mark
5(c)(i)	An explanation that includes three of the following points:		
	 (section of DNA / gene) has methyl groups added to the {cytosine bases / CPG sites} (1) 		
	 {codons / gene / locus / base sequence / promotor region} deleted (in parental chromosome) (1) 		
	 {reduces / inhibits} {binding / action} of RNA polymerase (1) 		
	• {less / no} {transcription / mRNA production} (1)	accept different mRNA (sequence) produced	
	• so {less / no} {protein synthesis / translation} (1)	accept { different / non-functional protein} formed / different amino acid sequence formed	(3)

Question number	Answer	Additional guidance	Mark
5(c)(ii)	A description that includes four of the following points:		
	• {isolated / extracted} gene for HGH (1)	accept {isolate / cut(out)} gene for HGH using restriction enzyme accept extract mRNA, use reverse transcriptase and form cDNA	
	 cut plasmid using same restriction { enzyme / endonuclease} (1) 		
	 gene inserted into plasmid using ligase (enzyme) (1) 	accept sticky ends (of gene and plasmid) joined using ligase	
	• plasmid introduced into E coli (1)	accept vector taken up by {E coli / bacterium} accept bacteria given heat shock ignore gene gun	
	 E coli is grown in a fermenter and HGH {extracted / purified} (1) 		(4)

Question number	Answer	Additional guidance	Mark
6(a)(i)	• fast twitch (1)	accept type 2 / type II / type IIa / type IIb / type IIx	(1)

Question	Answer	Additional guidance	Mark
number			
6(a)(ii)	A description that includes three of the following points:		
	lactate diffuses (from muscle) into blood (1)	accept lactate goes to the liver	
	{ oxidation of lactate / lactate converted} to pyruvate (1)	accept {removal of hydrogen atoms / dehydrogenation} to convert to pyruvate	
	 (and then) used in {link reaction / aerobic respiration} (1) 	ignore Krebs cycle	
	• (taken up by the liver where it is) converted to {glucose / glycogen} (1)	accept stored as glycogen in the liver	(3)

Question	Answer	Additional guidance	Mark
number			
6(a)(iii)			
	B is the correct answer		
	A is not the correct answer as reduced capillary network is not correct		
	C is not the correct answer as reduced capillary network and low myoglobin are not correct		
	D is not the correct answer as low myoglobin is not correct		(1)

Question	Answer	Additional guidance	Mark
number			
6(a)(iv)			
	D is the correct answer		
	A is not the correct answer as Eligization does not evaluin		
	A is not the correct answer as Flick's law does not explain how muscles contract		
	B is not the correct answer as fluid mosaic model does not explain how muscles contract		
	C is not the correct answer as lock and key hypothesis does not explain how muscles contract		(1)

	Answer	Mark
umber		
6(b)	Indicative content	
	consideration of data in table	
	•resting heart rate in athletes lower	
1	•peak heart rate higher in non athletes	
	 maximum, volume of oxygen used higher in athletes in both aerobic and anaerobic conditions 	
	explanation of data in table	
0	 athletes have a lower resting heart rate as have greater {heart muscle / greater stroke volume / greater cardiac output} 	
2	 non athletes peak heart rate is higher than athletes as heart needs to contract {more / faster} to get oxygen to tissues as {less developed heart muscle / lower peak flow} 	
	 athletes use more oxygen due to greater quantity of muscle cells (to be used in aerobic respiration) 	
	consideration of data in graph	
	•as power generated increases oxygen used increases	
_	•athletes use more oxygen than non-athletes	
3	•athletes generate more power than non-athletes	
	●in the graph non athletes have lower VO2 at the same power	
	explanation of data in graph	
	athletes use more oxygen	
	meaning that the metabolic efficiency / circulatory system efficiency athletes is higher	
	athletes have greater lung capacity	
	athletes have more muscles so can achieve greater power	
4	• resulting from years of training	
	athletes have more slow twitch fibres which give greater power	
	• leading to increased muscle growth / development:/ increased lung capacity and gas exchange:	
	increased metabolism /increased energy production in cells/ increased aerobic respiration/increased ATP production / more mitochondria / more myoglobin	

	circulatory and respiratory system	
	circulatory and respiratory system work together to enable exercise	
	heart rate in athletes lower than non athletes compensates for by having an increase in strength of beats	
5	bigger heart – more heart muscle.	
O	increase in arterial pressure caused by increased cardiac output.	
	• cardiac output = heart rate x stroke volume	
	• ref to lung capacity / peak flow of athletes / ventilation rate	
	muscles	
	training increases muscle growth / repair / replacement / capillary network	
	athletes muscle have greater capillary network	
6	depending on exercise will increase amount of slow and fast twitch muscle fibres	
	more ATP can be used for breaking cross bridges / movement of calcium ions	
	contain more myoglobin to store oxygen	
	• in non athletes muscles atrophy which affects the ability to do exercise and venous flow back to the heart	
	biochemistry	
	more ATP due to more mitochondria / aerobic respiration / more oxygen available	
7	athletes have greater tolerance to lactic acid from anaerobic respiration due to training	
	more oxygen carried to cells for aerobic respiration	
	BMR higher in athletes to release energy	
	consideration of methodology	
	 in table no SD / error bars / statistical test so no indication of validity or range of data in graph no SD/error bars / statistical test so no indication of validity or range of data 	
i	• comment on range of data in graph / overlap between athletes and non athletes	
8	• comment on methodology – age / gender / amount of training	
	Level 1: Description of (a minimum of 2 specific) results from table and graph	
	, (2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	Level 2: Reference to all of level one plus one explanation of the effects of exercise / training with some details on physiological processes	
	Level 3: Reference to all of level one and two plus one detailed explanation of the effects of exercise / training with significant details on physiological processes at cellular / genetic level.	(6)

Question number	Answer	Additional guidance	Mark
7(a)	An explanation that includes four of the following points:	ignore signals / messages	
	• reference to negative feedback (1)		
	 thermoreceptors detect {increase / change} in temperature / temperature above 37°C} (1) 	accept receptors detecting temperature change	
	 impulses to {thermoregulatory centre / hypothalamus / heat loss centre} (1) 	ignore control centre unqualified	
	(thermoregulatory centre) sends impulses { to correctly named effector / via motor neurones / via sympathetic neurones} (1)	e.g. sweat glands, hair erector muscles, liver, smooth muscles in skin blood vessels	
	 correct response by named effectors to {increase heat loss / decrease heat energy gain} from the body (1) 	e.g. vasodilation, sweat production, decreased / change metabolic rate	(4)

Question number	Answer	Additional guidance	Mark
7(b)	An answer that includes three of the following points:		
	the loop of Henle is (very) long / more juxtamedullary nephrons (1)	accept more counter current multiplication	
	(more) sodium ions pumped out of the ascending limb / {lower water potential / higher solute concentration} of tissue fluid (1)	accept kangaroo rats have more { aquaporins / ADH} accept increased permeability of { descending limb / collecting duct}	
	 more water reabsorbed results in concentrated urine production (1) 		
	accept correct behavioural adaptation (1)	e.g. nocturnal / stays underground during day	(3)

Question	Answer	Additional guidance	Mark
number			
7(c)(i)	A calculation showing the following steps:		
	calculation of weekly urine produced (1)	$(0.45 \times 7) = 3.15 \text{ AND}$ $(1500 \times 7) = 10500$	
	calculation of difference and answer given in standard form with units (1)		
		= $1.0497 \times 10^4 \text{ cm}^3$ accept $1.05 \times 10^4 \text{ cm}^3 / 1.0 \times 10^4 \text{ cm}^3$ $10496.9 = 1 \text{ mark or } 10.5 \text{ dm}^3$	(2)
		no units max 1 mark	

Question number	Answer	Additional guidance	Mark
7(c)(ii)	An answer that includes four of the following points		
	 kangaroo rat has a lower water balance (1) a correct difference / comparison (1) 	accept converse for human accept in both water gain = water loss per day e.g. more water is gained (as a	
		percentage) through metabolic reactions in kangaroo rat (than human)	
	with an appropriate linked explanation (1)	because kangaroo rat drinks no liquid / lives in desert	
	a second correct difference / comparison (1)	e.g. kangaroo rat produces very little urine	
	with an appropriate linked explanation (1)	as it has a very long loop of Henle / produces concentrated urine / rat lives in {dry place / desert}	(4)

Question number	Answer	Additional guidance	Mark
8(a)	An answer that includes the following point:		
	• (sarcopenia is a progressive) decrease in muscle {mass / function} that is associated with aging (1)		
			(1)

Question number	Answer	Additional guidance	Mark
8(b)	An explanation that includes the following points:		
	 due to a {specific stimulus / transcription factor / epigenetic modification} (1) activating (specific /muscle cell / some) genes which are transcribed (1) 	accept chemical accept differential gene expression accept mRNA produced from active genes ignore some genes inactivated	
	 translation resulting in the synthesis of named proteins required by muscle cells (1) 	e.g. actin, myosin, troponin, tropomyosin	(3)

Question number	Answer	Additional guidance	Mark
8(c)	A description that includes the following points:	to get full marks they have to mention reduced / less / fewer at least ONCE or it is max 3 marks	
	lower testosterone concentration in the blood (1)	accept less testosterone in blood	
	 less testosterone { enters (muscle) cell / crosses membrane / present in (muscle) cell nucleus} (1) 	accept less testosterone diffuses into (muscle) cell	
	 forming fewer {hormone-receptor complexes / transcription factors} (1) 	accept fewer muscle protein genes activated accept less testosterone binds to receptor	
	 (therefore) reduced {transcription / translation} (of muscle protein) (1) 	accept less mRNA produced ignore protein synthesis unqualified	(4)

Question number	Answer	Additional guidance	Mark
8(d)	An explanation that includes the following points:		
	change in condition is detected by a receptor (1)	e.g. {high / low} blood glucose levels detected by (chemo)receptor	
	stimulating an effector that counteracts the change (1)	e.g. pancreas stimulated to release insulin which results in { lower blood glucose / glucose being converted to glycogen}	
		insulin released which results in {lower blood glucose / glucose being converted to glycogen}	
		pancreas releases glucagon which results in {increase in blood glucose} / glycogen being converted to glucose}	
		glucagon released) which results in {increase in blood glucose} / glycogen being converted to glucose}	(2)

Question number	Answer	Additional guidance	Mark
8(e)	 An answer that includes two of the following points: insulin binds to receptors on (muscle) cell (surface) membrane (1) insulin increases the {number / production / activity} of {glucose transport molecules / glucose channels / GLUT4 (molecules)} (in the cell membrane) (1) 	accept (insulin) stimulates {cAMP / formation of secondary messenger}	
	 glucose is taken up by (facilitated) diffusion (1) 		(2)

Question number	Answer	Additional guidance	Mark
8(f)	A description that includes the following points:		
	 {uses X rays (and computer) to give {cross sectional / 2D / 3D} image (1) 		
	 {measure / compare} size (on images taken) before and after aerobic exercise (1) 		(2)

Question number	Answer	Additional guidance	Mark
8(g)	An explanation that includes the following points:		
	 mitochondria perform { aerobic respiration / produce ATP} (1) 	accept aerobic respiration produces ATP	
	 { more / more active} mitochondria supply the increased ATP required (for aerobic exercise / increased aerobic respiration) (1) 	accept more mitochondria supply more ATP more aerobic respiration provides more ATP	
	ATP is needed { to break the cross-bridge / active transport of calcium ions / for muscle contraction} (1)	accept {ATP / energy} needed for protein synthesis	(3)

Question	Answer	Additional guidance	Mark
number			
8(h)	An explanation that includes three of the following points:		
	(whey / egg protein) contain non-essential amino acids (1)		
	 non-essential amino acids not necessary { for (stimulation of) muscle protein anabolism / for (stimulation of) protein synthesis} (1) 		
	(excess) non-essential amino acids can be converted into fats (1)		
	 (therefore they) may not {increase / prevent loss of} muscle mass (1) 	accept increase of fats increases the risk of cardiovascular disease / diabetes /obesity	(3)