Pendolo fisico

Lorenzo Cavuoti

15 febbraio 2018

1 Scopo dell'esperienza

Misurare il periodo di un pendolo fisico in funzione della distanza del centro di massa dal punto di sospensione.

2 Cenni teorici

Un qualunque oggetto fissato ad un punto di sospensione P con distanza d dal centro di massa e soggetto alla forza di gravità costituisce un pendolo fisico. Se il pendolo viene spostato di un angolo θ dalla posizione di equilibrio il momento della forza di gravità vale

$$\tau = -mgd\sin(\theta) \tag{1}$$

Per angoli piccoli abbiamo $\sin(\theta) \approx \theta$, quindi

$$\tau = -mgd\theta$$

Per la seconda equazione cardinale si ha

$$\tau = \frac{dL}{dt} \tag{2}$$

e usando le relazioni $L=I\omega$ e $\omega=\frac{d\theta}{dt}$ abbiamo

$$\tau = I \frac{d^2 \theta}{dt^2}$$

Di conseguenza possiamo scrivere

$$\frac{d^2\theta}{dt^2} + \frac{mgd}{I}\theta = 0\tag{3}$$

Che rappresenta l'equazione di un moto armonico con pulsazione costante

$$\omega_0 = \sqrt{\frac{mgd}{I}}$$

e periodo

$$T_0 = 2\pi \sqrt{\frac{mgd}{I}}$$

Sapendo che il momento d'inerzia di un'asta di massa m e lunghezza l rispetto ad un punto P che dista d dal centro di massa vale

$$I = \frac{ml^2}{12} + md^2$$

Si ha infine

$$T(d) = 2\pi \sqrt{\frac{l^2/12 + d^2}{gd}} \tag{4}$$

3 Apparato sperimentale e strumenti

- Asta metallica con 10 fori equidistanti
- Supporto di sospensione
- Cronometro (risoluzione 0.01s)
- Metro a nastro (risoluzione 1mm)
- Calibro ventesimale (risoluzione 0.05mm)

L'apparato sperimentale è composto da un asta metallica attaccata, tramite un perno rimovibile, ad un supporto. L'asta è libera di oscillare.

4 Descrizione delle misure

Per prima cosa abbiamo misurato la lunghezza complessiva dell'asta con il metro a nastro e la distanza dall'inizio dell'asta al primo foro, successivamente, con il calibro ventesimale, abbiamo misurato la distanza minima tra due fori consecutivi e lo spessore di ciascun foro così da ricavare la distanza media tra due fori consecutivi (tabella 1). Infine abbiamo fissato l'asta metallica in 5 fori diversi e per ciascuno abbiamo misurato 6 volte 10 periodi, facendo media e deviazione standard abbiamo così ricavato il singolo periodo e l'errore associato ad esso (tabella 2). L'ampiezza d'oscillazione non è rilevante ai fini dell'esperienza in quanto abbiamo usato un angolo θ corrispondente alle piccole oscillazioni, per cui si ha l'isocronismo del pendolo.

5 Analisi dati

Abbiamo realizzato un grafico cartesiano con la distanza dal centro di massa sulle ascisse e le medie dei periodi misurati sulle ordinate, gli errori sui periodi

Distanza massima tra 2 fori	$10.46 \pm 0.01 [\mathrm{cm}]$
Spessore di un foro	$0.480 \pm 0.005 [\mathrm{cm}]$
Lunghezza asta l	$105.0 \pm 0.1 [\mathrm{cm}]$
Distanza media tra 2 fori	$9.980 \pm 0.008 [\mathrm{cm}]$
Posizione del centro di massa	$52.50 \pm 0.05 [\text{cm}]$
Lunghezza segmento superiore	5.01 ± 0.0125 [cm]

Tabella 1: Misurazioni effettuate

d [cm]	$T_1 \pm 0.01[s]$	$T_2 \pm \ 0.01[s]$	$T_3 \pm 0.01[s]$	$T_4 \pm \ 0.01[s]$	$T_5 \pm \ 0.01[s]$	$T_6 \pm \ 0.01[s]$	Media periodi/10 [s]
47.49 ± 0.06	16.17	16.37	16.31	16.45	16.33	16.54	1.636 ± 0.005
37.51 ± 0.07	15.71	15.73	15.80	15.85	15.72	15.92	1.579 ± 0.003
27.53 ± 0.08	15.53	15.77	15.76	15.69	15.70	15.67	1.568 ± 0.004
17.55 ± 0.09	16.83	16.95	16.77	16.79	16.72	16.87	1.682 ± 0.003
7.57 ± 0.09	22.87	23.04	22.93	22.86	22.88	23.00	2.293 ± 0.003

Tabella 2: Periodi T in funzione della distanza d dal centro di massa

sono stati calcolati facendo la deviazione standard della media sui dati raccolti. Una volta inseriti i punti vi abbiamo sovrapposto la (4), così da valutare l'accordo tra i dati ed il modello (figura 1). Il χ^2 risulta 4.22 vicino al valore aspettato di 5 ± 3.2 . Per completezza abbiamo fatto un fit dei nostri dati con la (4) lasciando l come parametro libero (figura 2). Il χ^2 risulta 2.33 vicino al valore aspettato di 4 ± 2.8 , mentre $l=1.052\pm0.002$ [m]

6 Conclusioni

Sovrapponendo la (4) ai nostri dati sperimentali abbiamo ottenuto un $\chi^2=4.22$ che risulta entro una deviazione standard dal valore aspettato di 5 ± 3.2 , inoltre osservando il grafico (figura 1) notiamo 3 punti sopra la funzione e 2 punti sotto, come ci aspetteremmo. Per quanto riguarda il fit con l parametro (figura 2) abbiamo ottenuto un $\chi^2=2.33$, anche in questo caso entro il valore aspettato di 4 ± 2.8 . Il valore del parametro l risulta $1.052\pm0.002[m]$ entro al valore misurato di 1.05. In conclusione, basandoci sul test del χ^2 e sul valore del parametro l misurato rispetto a quello stimato, possiamo affermare che il modello teorico si adatta bene alla realtà.

Figura 1: Grafico pendolo fisico con l misurato

Figura 2: Grafico pendolo fisico con l stimato tramite fit