Data Scientist Role Play: Profiling and Analyzing the Yelp Dataset Coursera Worksheet

This is a 2-part assignment. In the first part, you are asked a series of questions that will help you profile and understand the data just like a data scientist would. For this first part of the assignment, you will be assessed both on the correctness of your findings, as well as the code you used to arrive at your answer. You will be graded on how easy your code is to read, so remember to use proper formatting and comments where necessary.

In the second part of the assignment, you are asked to come up with your own inferences and analysis of the data for a particular research question you want to answer. You will be required to prepare the dataset for the analysis you choose to do. As with the first part, you will be graded, in part, on how easy your code is to read, so use proper formatting and comments to illustrate and communicate your intent as required.

For both parts of this assignment, use this "worksheet." It provides all the questions you are being asked, and your job will be to transfer your answers and SQL coding where indicated into this worksheet so that your peers can review your work. You should be able to use any Text Editor (Windows Notepad, Apple TextEdit, Notepad ++, Sublime Text, etc.) to copy and paste your answers. If you are going to use Word or some other page layout application, just be careful to make sure your answers and code are lined appropriately.

In this case, you may want to save as a PDF to ensure your formatting remains intact for you reviewer.

Part 1: Yelp Dataset Profiling and Understanding

- 1. Profile the data by finding the total number of records for each of the tables below:
- i. Attribute table = 10,000
- ii. Business table = 10,000
- iii. Category table = 10,000
- iv. Checkin table = 10,000
- v. elite_years table = 10,000
- vi. friend table = 10,000
- vii. hours table = 10,000
- viii. photo table = 10,000
- ix. review table = 10,000
- x. tip table = 10,000
- xi. user table = 10,000
- 2. Find the total distinct records by either the foreign key or primary key for each table. If two foreign keys are listed in the table, please specify which foreign key.
- i. Business = primary: 10,000
- ii. Hours = business_id: 1,562
- iii. Category = business_id: 2643
- iv. Attribute = business id: 1115
- v. Review = primary: 10,000, business_id: 8090, user_id: 9581
- vi. Checkin = business id: 493
- vii. Photo = primary: 10,000, business_id: 6493
- viii. Tip = user id: 537, business id: 3979
- ix. User = primary: 10,000
- x. Friend = user_id: 11
- xi. Elite_years = user_id: 2780

Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.

3. Are there any columns with null values in the Users table? Indicate "yes," or "no."

Answer: NO

SQL code used to arrive at answer:

SELECT *

FROM user

WHERE id is null or name is null or ...

- 4. For each table and column listed below, display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:
 - i. Table: Review, Column: Stars

min: 1 max: 5 avg: 3.7082

ii. Table: Business, Column: Stars

min: 1.0

max: 5.0

avg: 3.6549

iii. Table: Tip, Column: Likes

min: 0

max: 2 avg: 0.0144

iv. Table: Checkin, Column: Count

min: 1 max: 53 avg: 1.9414

v. Table: User, Column: Review count

min: 0 max: 2000 avg: 24.2995

5. List the cities with the most reviews in descending order:

SQL code used to arrive at answer:

SELECT review_count,

city

FROM business

ORDER BY review count DESC

Copy and Paste the Result Below:

review_count 		
3873	Las Vegas	
1757	Montréal	
1549	Gilbert	
1410	Las Vegas	
1389	Las Vegas	
1252	Las Vegas	
1116	Las Vegas	

1084	Las Vegas
961	Las Vegas
902	Gilbert
864	Las Vegas
823	Scottsdale
821	Las Vegas
786	Las Vegas
785	Henderson
778	Toronto
768	Las Vegas
758	Las Vegas
726	Scottsdale
723	Cleveland
720	Las Vegas
715	Charlotte
711	Phoenix
706	Las Vegas
700	Phoenix
	H

6. Find the distribution of star ratings to the business in the following cities:

i. Avon

Copy and Paste the Resulting Table Below (2 columns â€" star rating and count):

review_count	stars
50	3.5
31	3.5
31	4.5
17	4.0
10	1.5
7	3.5
4	4.0
3	2.5
3	5.0
3	2.5
+	++

ii. Beachwood

Copy and Paste the Resulting Table Below (2 columns â€" star rating and count):

```
+-----+
| review_count | stars |
+-----+
| 69 | 4.0 |
```

```
14
    4.5
8 |
     3.0
8 |
    2.0
6
    5.0
    5.0
6
    5.0
4
    5.0
4
3 |
    3.0
    4.5
3 |
3 |
    3.5
3 |
    3.5
3 |
    2.5
3
    5.0
```

7. Find the top 3 users based on their total number of reviews:

SQL code used to arrive at answer:

SELECT name,
 id,
 review_count

FROM user

ORDER BY review_count DESC

LIMIT 3

Copy and Paste the Result Below:

name	+	review_count
Gerald	-G7Zkl1wIWBBmD0KRy_sCw	2000
Sara	-3s52C4zL_DHRK0ULG6qtg	1629
Yuri	-8lbUNlXVSoXqaRRiHiSNg	1339

8. Does posing more reviews correlate with more fans?

Please explain your findings and interpretation of the results:

SELECT name,
 id,
 review_count,
 fans

FROM user

ORDER BY review count DESC

result:

+	+	+·	++
name 	id +	review_count	fans
Gerald	-G7Zkl1wIWBBmD0KRy sCw	2000	253
Sara	-3s52C4zL DHRK0ULG6qtg	1629	50
Yuri	-81bUN1XVSoXqaRRiHiSNg	1339	76
.Hon	-K2Tcgh2EKX6e6HqqIrBIQ	1246	101
William	-FZBTkAZEXoP7CYvRV2ZwQ	1215	126
Harald	2vR0DIsmQ6WfcSzKWigw	1153	311
eric	-gokwePdbXjfS0iF7NsUGA	1116	16
Roanna	-DFCC64NXgqrxlO8aLU5rg	1039	104
Mimi	-8EnCioUmDygAbsYZmTeRQ	968	497
Christine	-0IiMAZI2SsQ7VmyzJjokQ	930	173
Ed	-fUARDNuXAfrOn4WLSZLgA	904	38
Nicole	-hKniZN2OdshWLHYuj21jQ	864	43
Fran	-9da1xk7zgnnfO1uTVYGkA	862	124
Mark	-B-QEUESGWHPE_889WJaeg	861	115

Christina	-kLVfaJytOJY2-QdQoCcNQ	842	85
Dominic	-kO6984fXByyZm3 6z2JYg	836	37
Lissa	-lh59ko3dxChBSZ9U7LfUw	834	120
Lisa	-g3XIcCb2b-BD0QBCcq2Sw	813	159
Alison	-19giG8TSDBG1jnUBUXp5w	775	61
Sui	-dw8f7FLaUmWR7bfJ_Yf0w	754	78
Tim	-AaBjWJYiQxXkCMDlXfPGw	702	35
L	-jt1ACMiZljnBFvS6RRvnA	696	10
Angela	-IgKkE8JvYNWeGu8ze4P8Q	694	101
Crissy	-hxUwfo3cMnLTv-CAaP69A	676	25
Lyn	-H6cTbVxeIRYR-atxdielQ	675	45
+	+	+	

As shown from the result, as the review_count decreases, there's no decreasing pattern shown in the fans as expected. Therefore, there's no any positive correlationship between the two variables.

9. Are there more reviews with the word "love" or with the word "hate" in them?

Answer: love

SQL code used to arrive at answer: SELECT count(*)
FROM review
where text LIKE "%love%"

SELECT count(*)
FROM review
where text LIKE "%hate%"

10. Find the top 10 users with the most fans:

SQL code used to arrive at answer:
SELECT name,
fans
FROM user
ORDER BY fans DESC
LIMIT 10

Copy and Paste the Result Below:

+	++
name	fans
Amy	503
Mimi	497
Harald	311
Gerald	253
Christine	173
Lisa	159
Cat	133
William	126
Fran	124
Lissa	120
+	++

Part 2: Inferences and Analysis

- 1. Pick one city and category of your choice and group the businesses in that city or category by their overall star rating. Compare the businesses with 2-3 stars to the businesses with 4-5 stars and answer the following questions. Include your code.
- i. Do the two groups you chose to analyze have a different distribution of hours? I chose Toronto, with the category of Restaurants. They do have. One of the 4-5 stars restaurants have hours in the night, whereas the rest restaurants operate during noon.
- ii. Do the two groups you chose to analyze have a different number of reviews? Restaurants with high star rating tend to have more number of reviews.
- iii. Are you able to infer anything from the location data provided between these two groups? Explain. Nope.

```
SQL code used for analysis:
SELECT name,
    postal_code,
    longitude,
    stars,
    review_count,
    hours,
    c.category
FROM business b
INNER JOIN hours h ON b.id = h.business_id
INNER JOIN category c ON b.id = c.business_id
WHERE b.city = "Toronto"
AND c.category = "Restaurants"
GROUP BY stars
ORDER BY stars ASC
```

- 2. Group business based on the ones that are open and the ones that are closed. What differences can you find between the ones that are still open and the ones that are closed? List at least two differences and the SQL code you used to arrive at your answer.
- i. Difference 1:

The ones that are open tend to have more stars than those not.

ii. Difference 2:

The ones that are open tend to have more reviews than those not.

```
SQL code used for analysis:
SELECT is_open,
    AVG(review_count),
    AVG(stars)
FROM business
GROUP BY is_open
```

3. For this last part of your analysis, you are going to choose the type of analysis you want to conduct on the Yelp dataset and are going to prepare the data for analysis.

Ideas for analysis include: Parsing out keywords and business attributes for sentiment analysis, clustering businesses to find commonalities or anomalies between them, predicting the overall star rating for a business, predicting the number of fans a user will have, and so on. These are just a few examples to get you started, so feel free to be creative and come up with your own problem you want to solve. Provide answers, in-line, to all of the following:

i. Indicate the type of analysis you chose to do:

Which category is more popular and successful for a business.

ii. Write 1-2 brief paragraphs on the type of data you will need for your analysis and why you chose that data:

I will basically group categories and calculate the average star rating and review counts of each of them, and rank them in a descending order. For further analysis, we may also include the number of sample size into account. For example, some categories may have very high average of star ratings, but actually there are only 4 samples in this category, leading to an unfair comparison.

iii. Output of your finished dataset:

+ category	+ average_review	+ average_star	+ number_of_business
+ Restaurants	+ 63.4366197183	+ 3.45774647887	+ 71
Shopping	32.5666666667	3.98333333333	30
Shopping Food	77.4347826087	3.78260869565	23
Nightlife	67.55	3.475	20
Nightifie Bars	77.7647058824	3.475	17
Health & Medical	11.9411764706	4.08823529412	17
Home Services	5.875	4.00023329412	16
Beauty & Spas	9.15384615385	3.88461538462	13
Local Services	8.33333333333	4.20833333333	13
American (Traditional)	102.545454545	3.81818181818	12 11
Active Life	13.1	4.15	10
Active file Automotive	22.0	4.15 4.5	10
Automotive Hotels & Travel	42.3333333333	3.222222222	9
	37.125	3.125	8
Burgers Sandwiches	121.75	3.125 3.9375	8
Arts & Entertainment	55.4285714286	!	
		4.0	
Fast Food	26.4285714286	3.21428571429	
Mexican	46.7142857143	3.5	!
American (New)	80.1666666667	3.3333333333	6
Event Planning & Services	19.6666666667	3.75	6
Hair Salons	10.833333333	4.0833333333	6
Bakeries	47.8	4.1	5
Doctors	11.0	4.2	5
Indian	12.6	3.6	5
Japanese	30.4	3.8	5

iv. Provide the SQL code you used to create your final dataset: SELECT c.category,

AVG(b.review_count) AS average_review,

AVG(b.stars) AS average_star,

COUNT(c.business_id) AS number_of_business

FROM business b

INNER JOIN category c ON b.id = c.business id

GROUP BY c.category

ORDER BY number of business DESC