

MSc. Data Science & Artificial Intelligence

Introduction to Machine Learning

Dr. Michel Riveill & Dr. Diane LINGRAND

Final project: Petfinder

Author: Joris LIMONIER

joris.limonier@hotmail.fr

Due: January 15, 2022

Contents

Ι	Problem description	T				
2	Exploratory Data Analysis	1				
3	Solution	1				
4	Evaluation & critical view	2				
List of Figures						
L	ist of Tables					
	1 Data types per column	1				
	2 Accuracies of first prospect	2				

1 Problem description

The problem we are trying to solve consists of predicting whether an animal will be adopted from a shelter within 30 days, given several pieces of information on this animal. This problem is a clean and reduced version of a Kaggle competition dating back from 2019.

2 Exploratory Data Analysis

We would like to get some basic information of the data set before diving into the machine learning solution.

The training set has shape (8168×16) and the test set has shape (250×16) , where the column names and data types are summarized in Table 1.

CATEGORICAL		NUMERICAL	TEXT	IMAGE
Type Gender Breed Color1 Color2 Color3	MaturitySize FurLength Vaccinated Dewormed Sterilized Health	Age Fee	Description	Images

Table 1: Data types per column

Overall, the data set is very clean as it contains 0 NaN values.

3 Solution

The solution consists of a pipeline of the following structure:

Classifier	Accuracy	
GradientBoostingClassifier	0.629	
RandomForestClassifier	0.623	
AdaBoostClassifier	0.612	
MLPClassifier	0.602	
$\operatorname{BernoulliNB}$	0.600	
GaussianNB	0.567	
DecisionTreeClassifier	0.559	
SVC	0.529	
KNeighborsClassifier	0.520	
GaussianProcessClassifier	0.509	
SGDClassifier	0.509	

Table 2: Accuracies of first prospect

We did not test XGBoost because is too slow.

4 Evaluation & critical view