# LM386 microphone amplifier

🕠 lowvoltage.wordpress.com/2011/05/15/lm386-mic-amp/

#### Dimitar Kovachev



In this schematic, a LM386-based audio amplifier takes its input from an electret microphone.

There are two output signals. V OUT carries an AC-only voltage and should be used when interfacing with another piece of audio equipment. The voltage at V\_OUT\_UC is biased at 1/2 of the supply voltage VCC and is the better option for microcontroller input.

If volume control is needed, the VR1 potentiometer from the original schematic can be added back, before the input pin 3.

#### Sound sensor for the Arduino

Arduino's analog pins map a 0 ~ 5V voltage to a 0 ~ 1023 integer. In silence, an ideal sound sensor should consistently give readings of 511-512 – half of the 0 ~ 1023 range, corresponding to 1/2 VCC = 2.5V. When there's a very loud sound, the readings should sweep all the way to 0 and 1023. Moderate sounds should have readings somewhere in between. This makes it easier to set a threshold for detecting sounds of a given strength.

| Sound                    | Readings range (ideal) | Amplitude<br>(ideal) |
|--------------------------|------------------------|----------------------|
| (Silence)                | 511 ~ 512              | 1                    |
| Talking                  | 300 ~ 723*             | 423*                 |
| Loud knock, broken glass | 0 ~ 1023               | 1023                 |

<sup>\*</sup> These particular values are just an example

For battery-powered applications, the current draw of the circuit may also be a concern.

#### LM386 sound sensor performance

Let's see how the LM386 sensor fares, in its 20x gain configuration (no C2 capacitor). V\_OUT\_UC is connected to Arduino's A0 pin and the Min-Max sketch is uploaded.

| Sound | Readings range<br>(LM386) | Amplitude<br>(LM386) |
|-------|---------------------------|----------------------|
|       |                           |                      |

| (Silence)  | 455 ~ 547 | 92  |
|------------|-----------|-----|
| Loud knock | 132 ~ 897 | 765 |

Not too bad, not too great either. A loud knock gives a decent output sweep, but the readings in (relative) silence cover quite a wide range. The current draw of the sensor was 5.54mA.

Increasing the gain to 50x or 200x is unlikely to bring much improvement. It may push the output range a bit closer to  $0 \sim 1024$ , but will increase the noise as well. At 20x gain, the output already covers 75% of the  $0 \sim 1024$  range.

#### Side note: Picking the value for R2

Most sources suggest using a  $1K \sim 10K$  resistor for R2. The easiest way to test which value works best is to use a trim-pot

| Sound                       | Readings range (LM386) | Amplitude<br>(LM386) |
|-----------------------------|------------------------|----------------------|
| (Silence), R2=2K            | 369 ~ 576              | 207                  |
| (Silence), R2=5K            | 420 ~ 564              | 144                  |
| (Silence), R2=10K           | 447 ~ 549              | 102                  |
| Loud knock (R2=2K, 5K, 10K) | 132 ~ 896              | 764                  |

These are the results for my particular setup. The maximum output sweep was virtually identical for all R2 values tested and R2 = 10K yielded the lowest noise in silence.

## Parts list



| Part | Value   | Description                   |
|------|---------|-------------------------------|
| C1   | 1~10uF  | Bypass capacitor              |
| C2   | 10uF    | Gain 200x. Optional.          |
| C3   | 220uF   | Output coupling capacitor     |
| C4   | 47nF    | Boucherot cell                |
| C5   | 100nF   | Power supply decoupling       |
| C6   | 100uF   | Power supply decoupling       |
| C7   | 10uF    | Microphone coupling capacitor |
| MIC  |         | Electret microphone           |
| R1   | 10R     | Boucherot cell                |
| R2   | 1 ~ 10K | Microphone load resistor      |
| VSS  | 4 ~ 12V | Supply voltage                |
|      |         |                               |

## **Downloads**

- EAGLE schematic [.sch]
- Min-Max sketch code [.pde]

## Related posts

- LM358 microphone amplifier
- LM386 audio amplifier
- Min-Max sketch

### Links

- LM386 Datasheet [.pdf]
- "Powering microphones" by Tomi Engdahl

About these ads