Translation

On considère deux points A et B du plan.

La translation qui transforme A en B associe à tout point C du plan l'unique point D tel que ABDC soit un parallélogramme.

 \triangleright Cette translation est appelée translation de vecteur \overrightarrow{AB} .

Vecteurs

Le vecteur \overrightarrow{AB} a **pour direction**: la droite (AB),

pour sens: "de A vers B",

pour norme (longueur): la distance entre A et B.

Vecteurs particuliers:

Le vecteur nul, noté $\vec{0}$.

Ce vecteur est associé à la translation qui transforme A en lui-même.

Ainsi $\overline{AA} = 0$ et $\overline{AB} = 0$ équivaut à dire que les points A et B sont confondus.

• Le vecteur opposé à \overrightarrow{AB} , noté \overrightarrow{BA} .

C'est le vecteur qui transforme B en A.

Vecteurs égaux

Lorsque la translation qui transforme A en B, transforme également C en D, on dit que \overrightarrow{AB} et \overrightarrow{CD} sont égaux. On note $\overrightarrow{AB} = \overrightarrow{CD}$.

 \overrightarrow{AB} et \overrightarrow{CD} ont même direction, même sens et même longueur.

Propriété :

Dire que $\overrightarrow{AB} = \overrightarrow{CD}$ est équivalent à dire que ABDC est un parallélogramme.

Représentant d'un vecteur :

À partir de n'importe quel point du plan, on peut construire un vecteur égal au vecteur \overrightarrow{AB} .

On dit que \overrightarrow{AB} est le représentant de \vec{u} d'origine A.

 \overrightarrow{CD} est le représentant de \vec{u} d'origine C.

 \overrightarrow{EF} est le représentant de \vec{u} d'origine E.

• Somme de vecteurs

Soient \vec{u} et \vec{v} deux vecteurs du plan.

En enchainant les translations de vecteur \vec{u} et de vecteur \vec{v} , on obtient une nouvelle translation. Le vecteur associé est appelé **somme de** \vec{u} **et** \vec{v} .

On le note $\vec{u} + \vec{v}$.

Remarque: $\vec{u}+(-\vec{u})=\vec{0}$.

Différence de deux vecteurs :

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v}).$$

Relation de Chasles:

Propriété:

Pour tous points A, B et C du plan, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Vecteur $k \vec{u}$ (avec k un réel donné) :

Construire les vecteurs $3\vec{u}$, $0.5\vec{u}$ et $-1.5\vec{u}$.

