4. 관계 데이타베이스

❖ 관계 데이타 모델(1)

- ◆ 관계 데이타 모델(relational data model)의 탄생
 - 1970년대 IBM의 E. F. Codd에 의해 제안
- ◆ 관계 데이타 모델의 특성
 - 릴레이션(relation)과 수학적인 이론에 기초
 - 일반 사용자는 테이블 형태로 생각
 - ◆ 통상적인 테이블의 개념과는 다름
 - ◆ 관계 데이타 모델의 직관적인 이해에 도움
 - ◆ 테이블의 열(column) = 필드(field) 혹은 아이템(item) ⇒ 관계 데이타 모델의 애트리뷰트(attribute)
 - ◆ 테이블의 행(row) = 레코드(record) ≒ 관계 데이타 모델의 투플(tuple)

❖ 관계 데이타 모델(2)

학생(STUDENT) 테이블: 릴레이션

학생 (STUDENT)

학번	이름	학년	학과
(Sno)	(Sname)	(Year)	(Dept)
100	나 수 영	4	컴퓨터
200	이 찬 수	3	전기
300	정 기 태	1	컴퓨터
400	송 병 길	4	컴퓨터
500	박 종 화	2	산공

❖ 애트리뷰트와 도메인

- ◆ 테이블 ≒ 릴레이션
- ◆ 도메인(domain)
 - 하나의 애트리뷰트가 취할 수 있는 같은 타입의 모든 원자 값(value)들의 집합
 - ◆ 같은 도메인의 값들끼리 비교가 허용됨
- ◆ 애트리뷰트(attribute)
 - 도메인의 역할 이름
 - 애트리뷰트 이름들은 모두 달라야 함
- ◆ 단순 도메인 (simple domain)
 - → 단순 애트리뷰트 : 원자값
- ◆ 복합 도메인 (composite domain)
 - → 복합 애트리뷰트 : 복합값 연,월,일 ⇒ 날짜:<연,월,일>

Note

• 도메인 : 애트리뷰트(관계 데이터 모델) = 데이터 타입 : 변수(프로그래밍 언어)

❖ 릴레이션의 개념

◆ 릴레이션 학생(STUDENT)의 정의

```
DCL
    DOMAIN DSNO
                  INTEGER;
DCL
    DOMAIN NAME
                   CHAR(10);
DCL
    DOMAIN DYEAR INTEGER;
    DOMAIN DEPT CHAR(6);
DCL
DCL
    RELATION STUDENT
              DOMAIN DSNO,
      (Sno
      Sname
              DOMAIN NAME,
              DOMAIN DYEAR,
      Year
      Dept
              DOMAIN DEPT):
```

◆ 도메인 명세가 생략된 릴레이션 STUDENT의 정의

```
DCLRELATIONSTUDENT(SnoINTEGER,SnameCHAR(10),YearINTEGER,DeptCHAR(6));
```

릴레이션의 예

▶ 릴레이션 스킴 (relation scheme)

- ◆ 릴레이션 스키마라고도 함 릴레이션 이름 + 애트리뷰트 이름 $R(A_1, A_2, ..., A_n), A_i ⇔ D_i$ $≡ R({A_1, A_2, ..., A_n})$
- ◆ 정적 성질
 - 시간에 무관
 - 릴레이션 타입

▶ 릴레이션 인스턴스 (relation instance)

- ◆ 릴레이션 R의 릴레이션 인스턴스
 - ullet 어느 한 시점에 릴레이션 R이 포함하고 있는 투플들의 집합 $\{<V_1,V_2,...,V_n>\}$ $V_i \in D_i$
 - 릴레이션의 내용, 상태
- { $(attr_1=V_1, attr_2=V_2, \cdots, attr_n=V_n)$ }
- ◆ 동적 성질
 - 삽입, 삭제, 갱신으로 시간에 따라 변함
 - 릴레이션 값

▶ 릴레이션(Relation) R

i . 수학적 정의

릴레이션 R: 카티션 프로덕트(cartesian product)의 부분집합

$$R \subseteq D_1 \times D_2 \times ... \times D_n$$

즉 n-투플 <d1, d2, ..., dn>의 집합

단
$$D_i : i 번째 도메인 $d_i \subseteq D_i, \ i=1,2,...,n$$$

- n : R의 차수(degree : 일차, 이차, 삼차, ..., n차)
- 릴레이션에 포함되어 있는 투플의 수 : 카디널리티(cardinality)

ii. 개념적 정의

릴레이션 스킴 + 릴레이션 인스턴스

❖ 릴레이션의 특성 (1)

i . 투플의 유일성 릴레이션 = 서로 다른 투플들의 "집합"

ii. 투플의 무순서성

릴레이션 : 추상적 개념 ← 투플들의 집합

테이블: 구체적개념

iii. 애트리뷰트의 무순서성 릴레이션 스킴 → 애트리뷰트들의 "집합" 투플 : <attr:value>쌍의 집합

❖ 릴레이션의 특성 (2)

iv. 애트리뷰트의 원자성

- 애트리뷰트 값 = 원자 값(atomic value)
 - ◆ 논리적으로 분해 불가능
- 정규화 릴레이션 (normalized relation)
 - ◆ 비정규화 릴레이션은 분해로 정규화
- 널 값(null value) = 원자 값
 - unknown, not applicable
- 도메인
 - ◆ 단순 도메인
 - ◆ 복합 도메인 : 값을 하나의 단위로 취급

릴레이션의 정규화

• 정규화 릴레이션 : 반복 그룹을 애트리뷰트 값으로 허용하지 않는 릴레이션

등록1 (ENROL1)

학번	과목성적 (Cgrade)		
(Sno)	과목번호 (Cno)	성적 (Grade)	
100	C413	А	
	E412	А	
200	C123	В	
	C312	А	
300	C324	С	
	C413	А	
	C312	А	
400	C324	А	
	C413	В	
	E412	С	
500	C312	В	

등록 (ENROL)

학번 (Sno)	과목번호 (Cno)	성적 (Grade)
100	C413	А
100	E412	А
200	C123	В
300	C312	А
300	C324	С
300	C413	А
400	C312	А
400	C324	А
400	C413	В
400	E412	С
500	C312	В

❖ 관계 데이타베이스

- ◆ 관계 데이타베이스
 - 데이타베이스를 시간에 따라 그 내용(상태)이 변할 수 있는 테이블 형태로 표현
- ◆ 관계 데이타베이스 스키마 = {릴레이션 스킴} + 무결성 제약조건
- ◆ 관계 데이타 모델 ⇔ 프로그래밍 시스템 릴레이션 ⇔ 화일 투플 ⇔ 레코드 (레코드 어커런스) 애트리뷰트 ⇔ 필드(필드 타입)

*** example**

◆ 대학(University) 관계 데이타베이스

학생 (STUDENT)

<u>학번</u>	이름	학년	학과
(Sno)	(Sname)	(Year)	(Dept)
100	나 수 영	4	컴퓨터
200	이 찬 수	3	전기
300	정 기 태	1	컴퓨터
400	송 병 길	4	컴퓨터
500	박 종 화	2	산공

과목 (COURSE)

<u>과목번호</u>	과목이름	학점	학과	담당교수
(Cno)	(Cname)	(Credit)	(Dept)	(PRname)
C123	프로그래밍	3	컴퓨터	김성국
C312	자료 구조	3	컴퓨터	황수관
C324	화일 구조	3	컴퓨터	이규찬
C413	데이타베이스	3	컴퓨터	이일로
E412	반 도 체	3	전자	홍봉진

*** example**

◆ 대학(University) 관계 데이타베이스(cont'd)

등록 (ENROL)

<u>학번</u>	<u> 과목번호</u>	성적	중간성적	기말성적
(Sno)	(Cno)	(Grade)	(Midterm)	(Final)
100	C413	Α	90	95
100	E412	Α	95	95
200	C123	В	85	80
300	C312	Α	90	95
300	C324	С	75	75
300	C413	Α	95	90
400	C312	Α	90	95
400	C324	Α	95	90
400	C413	В	80	85
400	E412	С	65	75
500	C312	В	85	80

❖ 기본 키(Primary key)

- ◆ ∃ | (key)
 - 투플을 유일하게 식별할 수 있는 애트리뷰트 집합
- ◆ 후보 키(candidate key)
 - ullet 릴레이션 $R(A_1,A_2,...,A_n)$ 에 대한 애트리뷰트 집합 $K=\{\;A_i\,,A_i^{}\,,...,A_k^{}\,\}$ 로서 아래 성질을 만족하면 후보키
 - ① 유일성(uniqueness) 각 투플의 K (= { A_i , A_j , ... , A_k }) 의 값(< v_i , v_j , ... , v_k >)은 유일
 - ② 최소성(minimality)

 K는 투플을 유일하게 식별하기 위해 필요한 애트리뷰트로만 구성

❖ 기본 키 (2)

- ◆ 슈퍼 키 (super key)
 - 유일성(uniqueness)은 만족하지만 최소성(minimality)이 만족되는 않는 애트리뷰트의 집합
- ◆ 기본 키 (primary key)
 - 후보키(candidate key) 중에서 데이타베이스 설계자가 지정한 하나의 키
 - 각 투플에 대한 기본 키 값은 항상 유효(no null value)
 - 값에 기반한 내용 중심 주소법 제공
- ◆ 대체 키 (alternate key)
 - 후보 키 중에 기본 키를 제외한 나머지 후보 키

❖ 외래 키(Foreign key)

- ◆ 외래 키(foreign key)
 - 릴레이션 R에 속한 애트리뷰트 집합 FK가 릴레이션 S의 기본 키일 때 FK는 R의 외래 키이다.
 - (FK의 도메인) = (S의 기본 키의 도메인)
 - FK의 값은 S에 존재하는 값이거나 null
 - R을 참조 릴레이션(referencing relation), S를 피참조 릴레이션(referenced relation)이라 함

❖ 외래 키 (2)

R≠S인 경우

PK

● R의 외래키가 반드시 R의 기본키에 포함될 필요는 없음 교수 (교수번호, 교수이름, 학과번호, 직급) 학과 (학과번호, 학과이름, 학과장교수번호, 학생수)

FK

학생 (<u>학번</u>, 이름, 학년, 학과) 과목 (<u>과목번호</u>, 과목이름, 학점, 학과, 담당교수) 등록 (<u>학</u>번, 과목번호, 성적) FK FK

- ◆ R = S인 경우
 - R과 S가 반드시 다른 릴레이션일 필요는 없음 교수1 (교수번호, 교수이름, 학과번호, 학장교수번호) PK FK

🍫 무결성 제약(Integrity Constraint)

- (1) 개체 무결성(entity integrity)
 - 기본 키 값은 언제 어느 때고 null값을 가질 수 없다.
- (2) 참조 무결성(referential integrity)
 - 외래 키의 값은 참조된 릴레이션의 기본 키 값이거나 null이다.
- ◆ 데이타베이스 상태(database state)가 항상 만족시켜야 하는 기본 규칙

❖ 무결성 제약(Integrity Constraint)(2)

- ◆ 데이타베이스 상태 (database state)
 - 어느 한 시점에 데이타베이스에 저장된 데이타 값
 - 데이타베이스 인스턴스
 - 데이타베이스 상태 변화: 삽입, 삭제, 변경 연산
 - DBMS는 데이타베이스 상태의 변화에도 항상 무결성 제약을 만족시키도록 해야 함