

Machine Intelligence 1 1.5 Radial Basis Function Networks

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2016/2017

1.5.1 Network Architecture

Network architecture

Network architecture

General principle

- lacktriangle two layered network ightarrow expansion into basis functions /features
- sine-waves (Fourier), polynomials (Taylor), sigmoid functions (MLP)

Radial basis functions (RBF)

Distance dependent basis functions

$$\phi_i(\underline{\mathbf{x}}) = \widetilde{\phi}_i(D[\underline{\mathbf{x}},\underline{\mathbf{t}}_i])$$

where $\underline{\mathbf{t}}_i$ are parameters specifying the location of the i-th basis function

Radial basis functions (RBF)

Distance dependent basis functions

$$\phi_i(\underline{\mathbf{x}}) = \widetilde{\phi}_i(D[\underline{\mathbf{x}},\underline{\mathbf{t}}_i])$$

where \mathbf{t}_i are parameters specifying the location of the i-th basis function

Common choice: Gaussian functions

$$\phi_i(\underline{\mathbf{x}}) \propto \exp\left(-\frac{\|\underline{\mathbf{x}} - \underline{\mathbf{t}}_i\|^2}{2\sigma_i^2}\right)$$

RBFs: pro & contra

fast convergence during learning

- \rightarrow few parameters have to be changed per training point
- ightarrow "credit assignment" is simple

RBFs: pro & contra

fast convergence during learning

- ightarrow few parameters have to be changed per training point
- \rightarrow "credit assignment" is simple

"curse of dimensionality"

complete coverage of input space requires $\sim n^d$ basis functions (d: dimension, n: no. of basis functions along one dimension) $d=20, n=10 \rightsquigarrow 10^{20}$ basis functions

RBFs: pro & contra

fast convergence during learning

- ightarrow few parameters have to be changed per training point
- \rightarrow "credit assignment" is simple

"curse of dimensionality"

complete coverage of input space requires $\sim n^d$ basis functions (d: dimension, n: no. of basis functions along one dimension) $d=20, n=10 \rightsquigarrow 10^{20}$ basis functions

- ⇒ RBF-networks are useful for
 - low dimensional data or
 - datasets with a pronounced cluster structure

2) Model Selection - Learning

1.5.2 Model Selection – Learning

Problem setting & model class

Regression: Real-valued targets

$$\left\{ \left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)} \right) \right\}, \quad \alpha \in \left\{ 1, \dots, p \right\}, \quad \underline{\mathbf{x}} \in \mathbb{R}^d, \quad y_T \in \mathbb{R}$$

Problem setting & model class

Regression: Real-valued targets

$$\left\{ \left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)} \right) \right\}, \quad \alpha \in \left\{ 1, \dots, p \right\}, \quad \underline{\mathbf{x}} \in \mathbb{R}^d, \quad y_T \in \mathbb{R}$$

Model class:

$$y_{(\underline{\mathbf{x}})} = \sum_{i=1}^{M} \mathbf{w}_i \exp\left(-\frac{\|\underline{\mathbf{x}} - \underline{\mathbf{t}}_i\|^2}{2\sigma_i^2}\right)$$

- ① $\underline{\mathbf{t}}_i$: centroids of basis functions
- ② σ_i : range of basis functions
- \odot w_i : weights of the second layer

Model selection / learning

- **1** $\underline{\mathbf{t}}_i$: determination of centroids
- ② σ_i : range of basis functions
- $\mathbf{3} \ \mathbf{w}_i$: weights of the second layer

 \Rightarrow 2-Step Learning Procedure: RBFs \rightarrow weights

unsupervised heuristics supervised

Model selection / learning

- **1** $\underline{\mathbf{t}}_i$: determination of centroids
- ② σ_i : range of basis functions
- $\mathbf{3} \ \mathbf{w}_i$: weights of the second layer

⇒ 2-Step Learning Procedure: RBFs → weights

Alternative: supervised learning of all parameters

But: non-convex problem with local minima

unsupervised heuristics supervised

Determination of centroids \mathbf{t}_i

k-means clustering (online)

Initialize t, **BEGIN** loop

- **①** Choose data point $\mathbf{x}^{(\alpha)}$
- ② Closest centroid $\underline{\mathbf{t}}_i : i = \operatorname{argmin}_i |\underline{\mathbf{t}}_i \underline{\mathbf{x}}^{(\alpha)}|$
- 3 Update $\underline{\mathbf{t}}_i$ as: $\Delta \underline{\mathbf{t}}_i = \eta_t (\underline{\mathbf{x}}^{(\alpha)} \underline{\mathbf{t}}_i)$

END loop

- Adaptive learning rate
 - \blacksquare first constant $\eta_t = \eta_0$
 - then decaying $\eta_t = \frac{\eta_0}{t}$

Overfitting vs. underfitting

■ Gaussian "variances" σ_i determine overfitting

- **good** σ_i yield basis functions ϕ_i that
 - are sufficiently different to their neighbors
 - overlap with neighboring basis functions

Determination of variances σ_i

Goal: sufficient overlap between neighboring basis functions

Problem: coverage vs. resolution payoff

Determination of variances σ_i

Goal: sufficient overlap between neighboring basis functions

Problem: coverage vs. resolution payoff

Heuristic

$$\sigma_i = \lambda \min_{j \neq i} \left\| \underline{\mathbf{t}}_i - \underline{\mathbf{t}}_j \right\|, \quad \lambda \approx 2$$

Determination of output weights w_i

Cost function: quadratic error

$$E^{T} = \frac{1}{2p} \sum_{\alpha=1}^{p} \left(y_{T}^{(\alpha)} - \sum_{i=1}^{M} \mathbf{w}_{i} \underbrace{\phi_{i(\mathbf{x}^{(\alpha)})}}_{:-\phi^{(\alpha)}} \right)^{2}$$

Optimization (1)

$$\frac{\partial E^T}{\partial \mathbf{w}_k} = -\frac{1}{p} \sum_{\alpha=1}^p \left(y_T^{(\alpha)} - \sum_{i=1}^M \mathbf{w}_i \phi_i^{(\alpha)} \right) \phi_k^{(\alpha)} \stackrel{!}{=} 0$$

Optimization (1)

$$\frac{\partial E^T}{\partial \mathbf{w}_k} = -\frac{1}{p} \sum_{\alpha=1}^p \left(y_T^{(\alpha)} - \sum_{i=1}^M \mathbf{w}_i \phi_i^{(\alpha)} \right) \phi_k^{(\alpha)} \stackrel{!}{=} 0$$

$$\sum_{i=1}^M \left(\sum_{\alpha=1}^p \phi_k^{(\alpha)} \phi_i^{(\alpha)} \right) \mathbf{w}_i = \sum_{\alpha=1}^p \phi_k^{(\alpha)} y_T^{(\alpha)}$$

Optimization (1)

$$\frac{\partial E^T}{\partial \mathbf{w}_k} = -\frac{1}{p} \sum_{\alpha=1}^p \left(y_T^{(\alpha)} - \sum_{i=1}^M \mathbf{w}_i \phi_i^{(\alpha)} \right) \phi_k^{(\alpha)} \stackrel{!}{=} 0$$

$$\sum_{i=1}^M \left(\sum_{\alpha=1}^p \phi_k^{(\alpha)} \phi_i^{(\alpha)} \right) \mathbf{w}_i = \sum_{\alpha=1}^p \phi_k^{(\alpha)} y_T^{(\alpha)}$$

Matrix Notation

$$\underbrace{\left(\underline{\boldsymbol{\Phi}}^{\top}\underline{\boldsymbol{\Phi}}\right)}_{\text{known}}\underline{\mathbf{w}} = \underbrace{\underline{\boldsymbol{\Phi}}^{\top}\underline{\mathbf{y}}_{T}}_{\text{known}} \quad \Rightarrow \quad \underline{\mathbf{w}} = \underbrace{\left(\underline{\boldsymbol{\Phi}}^{\top}\underline{\boldsymbol{\Phi}}\right)^{-1}}_{\text{if invertible}}\underline{\boldsymbol{\Phi}}^{\top}\underline{\mathbf{y}}_{T}$$

$$\begin{array}{ll} \underline{\Phi} &= \{\phi_k^{(\alpha)}\} & p \times M \text{ matrix} \\ \underline{\mathbf{w}} &= \left\{\mathbf{w}_i\right\} & M \text{ vector} \\ \mathbf{y}_T &= \left\{y_T^{(\alpha)}\right\} & p \text{ vector} \end{array}$$

Validation

- test-set method analog to MLP
- use n-fold cross-validation to estimate $\widehat{E}^G = \frac{1}{p} \sum_j \sum_{\alpha \in D_j} e^{(\alpha)}$.

 training with D/D_i includes all three model selection steps

■ use nested n-fold cross-validation to determine parameters

Comment: number of basis functions

- too many basis functions ⇒ over-fitting
- \blacksquare too few basis functions \Rightarrow under-fitting
- ⇒ determine number by nested n-fold cross validation

Comment: normalization layer

Comment: regularization

- Matrix $\Phi^{\top}\Phi$ often not invertible!
- Add *ridge regression* term $\lambda E_{[\mathbf{w}]}^R = \lambda \|\underline{\mathbf{w}}\|^2$ to cost function

- \blacksquare larger λ yield *smoother* functions
- \Rightarrow Use nested n-fold cross validation to determine λ

Comment: two-step procedure vs. gradient descend

The two-step procedure...

- ...is much faster
- ...has usually equal performance
- ...can use additional unlabeled data

1.5.3 RBF-networks and Regularization

General model classes

General learning problem

observations: $\left\{\left(\underline{\mathbf{x}}^{(\alpha)},y_T^{(\alpha)}\right)\right\}, \quad \alpha \in \{1,\dots,p\}$

model class: all continuous and differentiable functions $y_{(\mathbf{\underline{x}})}$

cost function: $\mathbf{E}^T = \frac{1}{2p} \sum_{\alpha=1}^p \left(y(\underline{\mathbf{x}}^{(\alpha)}) - y_T^{(\alpha)} \right)^2$

General model classes

General learning problem

observations: $\left\{\left(\underline{\mathbf{x}}^{(\alpha)},y_T^{(\alpha)}\right)\right\}, \quad \alpha \in \{1,\ldots,p\}$

model class: all continuous and differentiable functions $y_{(\underline{\mathbf{x}})}$

cost function:
$$\mathbf{E}^T = \frac{1}{2p} \sum_{\alpha=1}^p \left(y(\underline{\mathbf{x}}^{(\alpha)}) - y_T^{(\alpha)} \right)^2$$

many functions are consistent with the data

⇒ ill-posed learning problem

Regularization

New cost function: $R = E^T + \lambda E^R$ (Tikhonov, 1963)

Regularization

New cost function:
$$R = E^T + \lambda E^R$$
 (Tikhonov, 1963)

$$y(\underline{\mathbf{x}}) = \int d\underline{\mathbf{k}} \quad e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \ \tilde{y}(\underline{\mathbf{k}}) \tag{Fourier transform)}$$

Regularization

New cost function: $R = E^T + \lambda E^R$ (Tikhonov, 1963)

$$y(\underline{\mathbf{x}}) = \int d\underline{\mathbf{k}} \quad e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \ \tilde{y}(\underline{\mathbf{k}}) \tag{Fourier transform)}$$

$$\underline{E}^{R} = \frac{1}{2} \int d\underline{\mathbf{k}} \frac{\left| \tilde{y}(\underline{\mathbf{k}}) \right|^{2}}{\widetilde{G}(\mathbf{k})}$$
 (regularization)

Regularization

New cost function: $R = E^T + \lambda E^R$ (Tikhonov, 1963)

$$y(\underline{\mathbf{x}}) = \int d\underline{\mathbf{k}} \quad e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \; \tilde{y}(\underline{\mathbf{k}}) \tag{Fourier transform)}$$

$$\underline{E}^{R} = \frac{1}{2} \int d\underline{\mathbf{k}} \frac{\left| \tilde{y}(\underline{\mathbf{k}}) \right|^{2}}{\tilde{G}(\underline{\mathbf{k}})}$$
 (regularization)

- Filter $\widetilde{G}(\mathbf{k})$ imposes (soft-)constraints on $y(k) \rightsquigarrow$ functions y(x).
- ⇒ well-posed problem (existence, uniqueness, continuity, see Haykin, ch. 5)

Smooth functions in Fourier space

Rough functions in Fourier space

Effects of regularization

high pass $\widetilde{G}^{-1}\Rightarrow$ implicit smoothness constraint e.g. for E^R from before

$$\begin{split} \inf_{\underline{\mathbf{w}}} R &= E_{[\underline{\mathbf{w}}]}^T + \lambda E_{[\underline{\mathbf{w}}]}^R \\ y(\underline{\mathbf{x}}) &= \sum_{\alpha=1}^p \mathbf{w}_\alpha \, G(\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}) \end{split} \qquad \text{(RBF-network depending on filter)} \\ G(\underline{\mathbf{x}}) &= \int d\underline{\mathbf{k}} \; e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \, \widetilde{G}(\underline{\mathbf{k}}) \end{split} \qquad \text{(Fourier-transform of filter)} \end{split}$$

Prof. Obermayer (www.ni.tu-berlin.de)

with

$$\begin{split} \inf_{\underline{\mathbf{w}}} R &= E_{[\underline{\mathbf{w}}]}^T + \lambda E_{[\underline{\mathbf{w}}]}^R \\ y(\underline{\mathbf{x}}) &= \sum_{\alpha=1}^p \mathbf{w}_\alpha \, G(\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}) \end{split} \qquad \text{(RBF-network depending on filter)} \\ G(\underline{\mathbf{x}}) &= \int d\underline{\mathbf{k}} \; e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \, \widetilde{G}(\underline{\mathbf{k}}) \end{split} \qquad \text{(Fourier-transform of filter)} \end{split}$$

- prior knowledge determines shape of basis functions
- location of data points determine location of centroids (unsupervised)

with

$$\inf_{\underline{\mathbf{w}}} R = E_{[\underline{\mathbf{w}}]}^T + \lambda E_{[\underline{\mathbf{w}}]}^R$$

$$y(\underline{\mathbf{x}}) = \sum_{\alpha=1}^p \mathrm{w}_\alpha \, G(\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}) \qquad \text{(RBF-network depending on filter)}$$
 with
$$G(\underline{\mathbf{x}}) = \int d\underline{\mathbf{k}} \, e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \, \widetilde{G}(\underline{\mathbf{k}}) \qquad \text{(Fourier-transform of filter)}$$

- prior knowledge determines shape of basis functions
- location of data points determine location of centroids (unsupervised)

$$\underline{\mathbf{w}} = \frac{1}{p\lambda}\underline{\mathbf{G}}^{-1} \left(\underline{\mathbf{G}}^{-1} + \frac{1}{p\lambda}\;\underline{\mathbf{I}}\right)^{-1}\underline{\mathbf{y}}_T\,, \quad \text{ where } \quad G_{\alpha\beta} = G(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{x}}^{(\beta)})$$

(see supplementary material)

$$\inf_{\underline{\mathbf{w}}} R = E_{[\underline{\mathbf{w}}]}^T + \lambda E_{[\underline{\mathbf{w}}]}^R$$

$$y(\underline{\mathbf{x}}) = \sum_{\alpha=1}^p \mathbf{w}_\alpha \, G(\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}) \qquad \text{(RBF-network depending on filter)}$$
 with
$$G(\underline{\mathbf{x}}) = \int d\underline{\mathbf{k}} \, e^{(i\underline{\mathbf{k}}^T\underline{\mathbf{x}})} \, \widetilde{G}(\underline{\mathbf{k}}) \qquad \text{(Fourier-transform of filter)}$$

- prior knowledge determines shape of basis functions
- location of data points determine location of centroids (unsupervised)

$$\underline{\mathbf{w}} = \frac{1}{p\lambda}\underline{\mathbf{G}}^{-1} \left(\underline{\mathbf{G}}^{-1} + \frac{1}{p\lambda}\;\underline{\mathbf{I}}\right)^{-1} \underline{\mathbf{y}}_T \,, \quad \text{ where } \quad G_{\alpha\beta} = G(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{x}}^{(\beta)})$$

■ solution equivalent to ridge regression

(see supplementary material)

Prior on smooth functions: penalize high frequencies

Prior on smooth functions: penalize high frequencies

$$E^R \quad = \quad \frac{1}{2} \int d\mathbf{\underline{k}} \frac{|\tilde{y}(\underline{\mathbf{k}})|^2}{G(\underline{\mathbf{k}})} \quad = \quad \int d\underline{\mathbf{k}} \ \underbrace{e^{\sigma^2 \underline{\mathbf{k}}^2}}_{\text{high pass}} \left| \tilde{y}_{(\underline{\mathbf{k}})} \right|^2$$

Prior on smooth functions: penalize high frequencies

$$E^R \quad = \quad \frac{1}{2} \int d\mathbf{\underline{k}} \frac{|\tilde{y}(\underline{\mathbf{k}})|^2}{G(\underline{\mathbf{k}})} \quad = \quad \int d\mathbf{\underline{k}} \ \underbrace{e^{\sigma^2 \underline{\mathbf{k}}^2}}_{\text{high pass}} \left| \tilde{y}_{(\underline{\mathbf{k}})} \right|^2$$

leads to:

$$G(\underline{\mathbf{x}}) \sim \exp\left(-\frac{\underline{\mathbf{x}}^2}{\sigma^2}\right)$$

Prior on smooth functions: penalize high frequencies

$$E^{R} = \frac{1}{2} \int d\mathbf{\underline{k}} \frac{|\tilde{y}(\underline{\mathbf{k}})|^{2}}{G(\underline{\mathbf{k}})} = \int d\underline{\mathbf{k}} \underbrace{e^{\sigma^{2}\underline{\mathbf{k}}^{2}}}_{\text{high pass}} |\tilde{y}_{(\underline{\mathbf{k}})}|^{2}$$

leads to:

$$G(\underline{\mathbf{x}}) \sim \exp\left(-\frac{\underline{\mathbf{x}}^2}{\sigma^2}\right)$$

- ⇒ close connection between RBF-networks and regularization
- ⇒ yet another model selection procedure for RBF-networks

Prior on smooth functions: penalize high frequencies

$$E^R \quad = \quad \frac{1}{2} \int d\mathbf{\underline{k}} \frac{|\tilde{y}(\underline{\mathbf{k}})|^2}{G(\underline{\mathbf{k}})} \quad = \quad \int d\mathbf{\underline{k}} \ \underbrace{e^{\sigma^2 \underline{\mathbf{k}}^2}}_{\text{high pass}} \left| \tilde{y}_{(\underline{\mathbf{k}})} \right|^2$$

leads to:

$$G(\underline{\mathbf{x}}) \sim \exp\left(-\frac{\underline{\mathbf{x}}^2}{\sigma^2}\right)$$

- ⇒ close connection between RBF-networks and regularization
- ⇒ yet another model selection procedure for RBF-networks

Problem: Number of basis functions = no. of data points (large!)

- → sparse expansion desirable
- → support vector machines

End of Section 1.5

the following slides contain

OPTIONAL MATERIAL

Batch K-Means

- \blacksquare prototypes: $\underline{\mathbf{t}}_q, q = 1, \dots, M$
- \blacksquare binary assignment: $m_q^{(\alpha)}=1$ if $\underline{\mathbf{x}}^{(\alpha)}$ belongs to cluster q, 0 else
- \blacksquare clustering cost function: $E\big[\big\{m_q^{(\alpha)}\big\}, \big\{\underline{\mathbf{t}}_q\big\}\big] = \frac{1}{2p}\sum_{q,\alpha}m_q^{(\alpha)}\|\underline{\mathbf{x}}^{(\alpha)} \underline{\mathbf{t}}_q\|^2$

Batch K-means: algorithm

Initialization of $\underline{\mathbf{t}}_q, q=1,\dots,M$ (e.g.around data's center of mass) BEGIN loop

- **1** assign every data point to its nearest prototype $m_q^{(\alpha)} = 1$ if $q = \operatorname{argmin}_{\gamma} \left| \underline{\mathbf{x}}^{(\alpha)} \underline{\mathbf{t}}_{\gamma} \right| = 0$, else
- 2 choose $\underline{\mathbf{t}}_q$ such that E^T is minimal (for the given -new- assignments)

$$\underline{\mathbf{t}}_q = rac{\sum\limits_{lpha} m_q^{(lpha)} \underline{\mathbf{x}}^{(lpha)}}{\sum\limits_{lpha} m_q^{(lpha)}}$$

(center of mass of its assigned data)

END loop

Clustering: illustration

