

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta032

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze distanța de la punctul A(4,3) la dreapta de ecuație 2x + y 1 = 0.
- (4p) b) Să se calculeze $\sin \frac{\pi}{6} + \cos \frac{\pi}{3}$.
- (4p) c) Să se calculeze $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\left(\frac{1-i\sqrt{3}}{2}\right)^3 = a+ib.$
- (4p) d) Să se calculeze lungimea înălțimii din A a triunghiului ABC având laturile AB = 4, BC = 6, CA = 8.
- (2p) e) Să se determine $a \in (0, \infty)$ astfel încât punctul A(a,1) să aparțină elipsei $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- (2p) f) Să se calculeze volumul tetraedrului ABCD, unde A(1,1,1), B(1,1,0), C(1,0,1) și D(0,1,1).

SUBIECTUL II (30p)

- **1.** Se consideră inelul \mathbf{Z}_4 și mulțimea $M = \left\{ \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{b} & \hat{a} \end{pmatrix} \middle| \hat{a}, \hat{b} \in \mathbf{Z}_4 \right\}$.
- (3p) a) Să se determine numărul elementelor inversabile față de înmulțire din inelul \mathbb{Z}_4 .
- (3p) b) Să se rezolve ecuația $\hat{x}^2 = \hat{2}\hat{x}$ în multimea \mathbf{Z}_4 .
- (3p) c) Să se calculeze $\hat{1} \cdot \hat{2} + \hat{2} \cdot \hat{3} + \hat{3} \cdot \hat{1}$ în inelul Z_4 .
- (3p) d) Să se calculeze numărul elementelor mulțimii M.
- (3p) e) Să se calculeze probabilitatea ca alegând o matrice din mulțimea M, aceasta să aibă suma elementelor egală cu $\hat{0}$.
 - 2. Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + x + 1}{x + 1}$.
- (3p) a) Să se determine ecuația asimptotei verticale a graficului funcției f.
- (3p) b) Să se calculeze $\lim_{x\to\infty} \frac{f(x)}{x}$.
- (3p) c) Să se calculeze f'(x), $x \in \mathbb{R} \setminus \{-1\}$.
- (3p) d) Să se arate că funcția f este concavă pe intervalul $(-\infty,-1)$.
- (3p) e) Să se calculeze $\lim_{x\to\infty} \frac{1}{x^2} \int_0^x f(t) dt$.

SUBIECTUL III (20p)

Se consideră o funcție bijectivă $f: \mathbb{C} \to \mathbb{C}$ cu proprietățile: f(z+w) = f(z) + f(w),

$$f(z \cdot w) = f(z) \cdot f(w) \quad \forall z, w \in \mathbb{C}, \text{ si } f(x) \in \mathbb{R}, \ \forall x \in \mathbb{R}$$

- **(4p) a)** Să se arate că f(0) = 0 și f(1) = 1.
- (4p) b) Utilizând metoda inducției matematice, să se arate că $f(z_1 + z_2 + ... + z_n) = f(z_1) + f(z_2) + ... + f(z_n), \forall n \in \mathbb{N}^* \text{ și } \forall z_1, z_2, ... z_n \in \mathbb{C}.$
- (2p) c) Să se arate că $f(r) = r, \forall r \in \mathbf{Q}$
- (2p) d) Să se arate că dacă $x \in \mathbb{R}$, atunci f(x) > 0 dacă și numai dacă x > 0.
- (2p) e) Dacă $x_1, x_2 \in \mathbb{R}$ cu $x_1 < x_2$, să se arate că $f(x_1) < f(x_2)$.
- (2p) | f) Să se arate că $f(x) = x, \forall x \in \mathbf{R}$.
- (2p) g) Să se arate că f(i) = i sau f(i) = -i.
- (2p) h Să se arate că f(z) = z, $\forall z \in \mathbb{C}$ sau $f(z) = \overline{z}$, $\forall z \in \mathbb{C}$.

SUBIECTUL IV (20p)

(4p) Se consideră funcțiile: $f_n:[0,\infty)\to \mathbf{R}$ definite prin $f_0(x)=x-\sin x$ și

$$f_{n+1}(x) = \int_{0}^{x} f_n(t)dt$$
, $\forall n \in \mathbb{N}, \forall x \in [0, \infty).$

- a) Să se verifice că $f_1(x) = \cos x + \frac{x^2}{2} 1, \ \forall x \in [0, \infty).$
- (4p) **b**) Să se arate că f_1 este convexă.
- (4p) c) Utilizând metoda inducției matematice, să se arate că:

$$f_{2n}(x) = \left(-1\right)^n \left(-\sin x + \frac{x}{1!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}\right), \ \forall n \in \mathbb{N}, \ \forall x \in [0, \infty).$$

- (2p) d) Să se arate că $f_n(x) > 0, \forall n \in \mathbb{N}, \forall x \in (0, \infty).$
- (2p) e) Să se arate că:

$$\frac{x}{1!} - \frac{x^3}{3!} + \dots - \frac{x^{4n-1}}{(4n-1)!} < \sin x < \frac{x}{1!} - \frac{x^3}{3!} + \dots + \frac{x^{4n+1}}{(4n+1)!}, \, \forall \, n \in \mathbb{N}^*, \, \forall \, x \in (0, \infty).$$

- (2p) **f**) Să se arate că: $\lim_{n \to \infty} \left(\frac{x}{1!} \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right) = \sin x, \quad \forall x \in \mathbf{R}.$
- (2p) g) Să se arate că sin1∉ Q.