Algoritmusok és adatszerkezetek II Fák témakör jegyzete

Készült Ásványi Tibor előadásai és gyakorlatai alapján

Sárközi Gergő, 2021-22-1. félév Nincsen lektorálva!

Tartalomjegyzék

1.	AVI	fák		2
	1.1.	Beszúr	ás	3
		1.1.1.	Kiegyensúlyozás beszúrás miatt	3
		1.1.2.	Beszúrás algoritmus	5
	1.2.	Törlés		6
		1.2.1.	Kiegyensúlyozás törlés miatt	6
		1.2.2.	remMin algoritmus	7
		1.2.3.	delRoot algoritmus	8
2.	Álta	lános	fák	9
3.	$\mathbf{B}+$	fák]	10
	3.1.	Felépít	és	10
	3.2.	Művele	eti igény	10
	3.3.	Beszúr	ás	11
	3.4.	Törlés		12
		3.4.1.	Megtalált levélcsúcs = gyökér	12
		3.4.2.	Megtalált levélcsúcs ≠ gyökér	
		3.4.3.	Belső (nem gyökér) csúcsból törlés	13
		3.4.4.	Gyökérből (ami nem levél) törlés	13

1. AVL fák

- (magasság szerint) kiegyensúlyozott bináris keresőfa
 - egy fa kiegyensúlyozott, ha minden csúcsa kiegyensúlyozott
 - -*pkiegyensúlyozott, ha $|p\to b|\leq 1$
 - $-p \rightarrow b = h(p \rightarrow right) h(p \rightarrow left)$
- AVL fákat láncoltan reprezentálunk
- legyen n = |t| (csúcsok száma) és h = h(t)
- $|logn| \le h \le 1,45 \log n \implies h \in \Theta(logn)$
 - Felső becslés, alsó határ: $n < 2^{h+1} \implies |\log n| < h$
 - Fibonacci fák: h mélységű, legkisebb méretű KBF-ek (kiegyensúlyozott bináris fák) csúcsainak száma:

$$f_0=1,\,f_1=2,\,f_h=1+f_{h-1}+f_{h-2}\,\,(h\geq 2)$$

Ebből megkapható a $h\leq 1,45\log n$
 $f_h=F_{h+3}-1$ (ahol F a rendes fibonacci sorozat)

• $h(t) \leq n-1$

Függvény	Komplexitás	Leírás
$search(t:Node^*;k:\mathbb{T}):Node^*$	$\Theta(\log n)$	
$\min(t:Node^*):Node^*$	$\Theta(\log n)$	ugyan így van max(t)
AVLinsert(& $t : Node^*; k : \mathbb{T}; \&d : \mathbb{B}$)	$\Theta(\log n)$	d igaz, ha nőtt h(t)
$\overline{\text{AVLremMin}(\&t,\&minp:Node^*;\&d:\mathbb{B})}$	$\Theta(\log n)$	d igaz, ha csökkent h(t)
$\overline{\text{AVLdel}(\&t:Node^*;k:\mathbb{T};\&d:\mathbb{B})}$	$\Theta(\log n)$	d igaz, ha csökkent h(t)

Node		
$[\ +\ key:\mathbb{T}$		
$ \ + \ b : \{-1,0,1\}$		
$ + left, right: Node^* $		
$+ Node()\{left := right := \varnothing; b := 0\}$		
$+ Node(x : \mathbb{T})\{left := right := \varnothing; b := 0; key := x\}$		

1.1. Beszúrás

1.1.1. Kiegyensúlyozás beszúrás miatt

- Minden esetben 1 vagy 2 lépés (BESZÚRÁS UTÁN CSAK!)
- Nem változtat az inorder bejáráson (logikus, hiszen keresőfa)

1. ábra. (++,+) forgatás.

2. ábra. (--, -) forgatás.

3. ábra. (++, -) forgatás.

4. ábra. (--,+) forgatás.

(balancePPm(& $t, r : Node^*$)

$l := r \rightarrow left$
$t \rightarrow right := l \rightarrow left$
$r \rightarrow left := l \rightarrow right$
$l \rightarrow left := t$
$l \rightarrow right := r$
$t \to b := -\lfloor (l \to b+1)/2 \rfloor$
$r \to b := \lfloor (1 - l \to b)/2 \rfloor$
$l \rightarrow b := 0$
t := l

(balanceMMp(&t,l:Node*))

$r := l \rightarrow right$					
$l \rightarrow right := r \rightarrow left$ $t \rightarrow left := r \rightarrow right$					
					$r \rightarrow left := l$
$r \rightarrow right := t$					
$l \to b := -\lfloor (r \to b+1)/2 \rfloor$					
$t \to b := \lfloor (1 - r \to b)/2 \rfloor$					
$r \rightarrow b := 0$					
t := r					

1.1.2. Beszúrás algoritmus

- megkeressük a kulcs helyét
 - ha a kulcs benne van, kész vagyunk
 - ha a kulcs helyén lévő részfa üres: beszúrunk egy levélcsúcsot, így a részfa eggyel magasabb lett
- rálépünk a szülőre és az egyensúlyát módosítjuk (amelyikből ráléptünk, az a gyerek lett eggyel magasabb, szóval balance + vagy 1)
 - ha balance=0, akkor kész vagyunk
 - ha |balance|=1, akkor ez a részfa magasabb lett eggyel, ismét rálépünk a szülőre, stb.
 - ha |balance|=2, akkor ki kell egyensúlyozni ezt a részfát, miután visszanyeri az eredeti (beszúrás előtti) magasságát, tehát a kiegyensúlyozás után kész vagyunk

1.2. Törlés

- Törlésnél akár több (akár gyökérig tartó) forgatás (kiegyensúlyozás) kell. Azért, mert a forgatások csökkentik a részfa magasságát, és a törlés is.
- Törlés fajtái:
 - törlendő csúcs egyik részfája üres (levél vagy egy gyerekes csúcs):
 a másik részfát tesszük a csúcs helyére (ami lehet null) és a szülő balance-ját módosítjuk
 - kétgyerekes csúcs törlése: jobb részfa minimumjának kiemelése, fa kiegyensúlyozása, kicseréljük a törlendő csúcsot a kiemelt csúccsal

1.2.1. Kiegyensúlyozás törlés miatt

- Akárhány lépés lehet: forgatások és a törlés is csökkentik a részfa magasságát
 - Nem változtat az inorder bejáráson (hiszen keresőfa)

TODO balance MM metódus, stb.

1.2.2. remMin algoritmus

1.2.3. delRoot algoritmus

			$t \neq \emptyset$			
	$k < t \to key$		$k > t \rightarrow key$		$k = t \rightarrow key$	
A	$VLdel(t \rightarrow left, t)$	(k, d)	$AV Ldel(t \rightarrow right,$	(k, d)	<u> </u>	1 .
	d	/	\setminus d	/	AVLdelRoot	d := hamis
left	$\begin{array}{c} {\rm SubTreeShrunk} \\ (t,d) \end{array}$	SKIP	$\begin{array}{c} \operatorname{rightSubTreeShrunk} \\ (t,d) \end{array}$	SKIP	(t,d)	rearress

(AV Ldel Root(&t: Node*; &d:B))

$t \rightarrow left = 0$	$t \rightarrow right = 0$	$t \rightarrow left \neq \otimes \wedge t \rightarrow right \neq \otimes$		
p := t	p := t	wight Sub Tree Min To Doot (t. d)		
$t := p \rightarrow right$	$t := p \rightarrow left$	- right Sub Tree Min To Root (t,d)		
delete p	delete p			
d := true	d := true	rightSubTreeShrunk(t, d) SKIP		

(right Sub Tree Min To Root (&t: No de * ; &d: B))

$$AV \text{LremMin}(t \to right, p, d)$$

$$p \to left := t \to left \; ; \; p \to right := t \to right \; ; \; p \to b := t \to b$$

$$\text{delete} \; t \; ; \; t := p$$

2. Általános fák

- Csúcsnak tetszőlegesen sok gyereke lehet
- csúcshoz nem tartoznak üres részfák: egy csúcsnak annyi gyereke van, amennyi, nincs üres gyerek
 - ezért nem r-áris fákról beszélni
- rendezett fa: ha a gyerekek sorrendje lényeges
- gyökér, levél fogalma ugyan úgy megvan
- Node osztály tagjai: child1, sibling: Node*
 - létezhetne szülő pointer is
 - levél: $p \rightarrow child1 = \emptyset$
 - -utolsó testvér: $p \to sibling = \varnothing$
- $\bullet\,$ szöveges ábrázolás: ($G\ t_1\ t_2\ ...\ t_n)$ (ahol G a gyökér)

3. B+ fák

3.1. Felépítés

- d a B+ fa fokszáma, $4 \le d$ (szóval r-áris fa, r=4)
- levelek:
 - azonos szinten (mélységben) vannak
 - adatokat tárolnak: minden kulcshoz tartozik egy adatra mutató
 - szóval a levelekben azonos számú (max d-1) kulcs és mutató van
- belső csúcsok:
 - max d mutató és pontosan eggyel kevesebb kulcs
 - belső kulcsok: hasító kulcsok
 - kulcsok viszonya egymáshoz:
 - * legyen n a részfák száma, k a részfa bármelyik kulcsa
 - * legyen K_i a szülő i. kulcsa $(1 \le i < n)$
 - * legszélső bal részfa: $k < K_1$
 - * legszélső jobb részfa: $K_{n-1} \leq k$
 - * közbülső, i. részfa: $K_{i-1} \leq k < K_i$
- \bullet gyerekek száma: (mindig max d)
 - gyökér: min 2, vagy pontosan 0
 - minden nem gyökér belső csúcs: min $\lfloor d/2 \rfloor$
- $\bullet~$ B+ fa által reprezentált adathalmaz minden értéke megjelenik egy levél kulcsaként, balról jobbra szigorúan monoton növekvő sorrendben

3.2. Műveleti igény

• Keresés, beszúrás, törlés: $\Theta(\log n)$

3.3. Beszúrás

- Üres a fa: készítsünk gyökeret, tartalmazza az értéket
- Keressük meg a levelet. Ha a levélben már szerepel a csúcs, fail.
- Ha nincs már a fában a kulcs és nem üres a fa:
 - Ha a csúcsban van szabad hely, láncoljuk be oda rendezetten
 - Ha a csúcs tele van, vágjuk szét két csúccsá, felezve az elemeket (elemek közé sorolva az újat is) (ha páratlan: balra menjen több)
 - * szúrjuk be a jobb oldali csúcs legkisebb értékét a szülőbe
 - · ha nincs szülő (gyökérben vagyunk), hozzuk létre
 - · ha nem levél, akkor töröljük a régi helyről
 - * beszúrás miatt rekurzívan ismételni, amíg szükséges

3.4. Törlés

Meg kell keresni a törlendő kulcsot tartalmazó levelet. Ha nincs ilyen: fail.

3.4.1. Megtalált levélcsúcs = gyökér

- Töröljük a kulcsot és a mutatót
- Ha a gyökér tartalmaz még mutatót: kész vagyunk
- Ha a gyökér üres lett: töröljük, üres fát kapunk

3.4.2. Megtalált levélcsúcs \neq gyökér

- Töröljük a kulcsot és a mutatót
- Ha a levél tartalmaz még elég mutatót ($\lfloor d/2 \rfloor$): kész vagyunk
- Ha a levél már túl kevés mutatót tartalmaz:
 - De van bal/jobb testvére, aki tud adni:
 - * Kapjon a testvérétől annyit, hogy egyenlően el legyenek osztva a kulcsok
 - * Szülőben a két levélhez tartozó kulcs (1db) átírása a jobb testvér min kulcsára
 - És nincs bal/jobb testvére, aki tudna adni:
 - * Egyesítsük egy testvérével: jobból átpakolunk a balba, a jobb oldali levelet töröljük
 - * Meghívunk egy törlő eljárást a szülőre: a két testvért eddig elválasztó kulcsot kell törölni (és a törölt csúcsra a mutatót)

3.4.3. Belső (nem gyökér) csúcsból törlés

- Töröljük a egyesített csúcsok közötti hasító kulcsot és az egyesítés során törölt csúcsra a mutatót
- Ha a csúcs tartalmaz még elég mutatót (|d/2|): kész vagyunk
- Ha a csúcs már túl kevés mutatót tartalmaz:
 - De van bal/jobb testvére, aki tud adni:
 - * Osszuk a két testvér kulcsait és a szülőben az őket elválasztó kulcsot egyenlően
 - * A középső kulcs a szülőben lévőt cserélje ki
 - * A maradék menjen a két testvérbe (az kapjon többet, akinél eddig is több volt)
 - És nincs bal/jobb testvére, aki tudna adni:
 - * Egyesítsük egy testvérével: először a bal oldali kulcsok, utána a két testvér szülőjében lévő elválasztó kulcs, végül a jobb oldali csúcs kulcsai jönnek és a jobb oldali csúcsot töröljük
 - * Meghívunk egy törlő eljárást a szülőre: a két testvért eddig elválasztó kulcsot kell törölni (és a törölt csúcsra a mutatót)

3.4.4. Gyökérből (ami nem levél) törlés

- Töröljük a egyesített csúcsok közötti hasító kulcsot és az egyesítés során törölt csúcsra a mutatót
- Ha a gyökérnek van még min 2 gyereke: kész vagyunk
- Ha a gyökérnek 1 gyereke maradt: töröljük a gyökereket, a fa magassága csökken, az egyetlen gyerek lesz az új gyökér

