Optimization Method homework 15

Qingfu Wen

2015213495

December 24, 2015

CONTENTS

i.	Problem 1	2
ii.	Problem 2	2

I. PROBLEM 1

Consider the following problem:

min
$$x_1^3 + x_2^3$$

s.t. $x_1 + x_2 = 1$

- 1. Solve the optimum of problem.
- 2. Define penalty function

$$F(x,\sigma) = x_1^3 + x_2^3 + \sigma(x_1 + x_2 - 1)^2$$

Can we get the optimal solution of original problem by solving non-constraint problem $\min F(x, \sigma)$? Why?

Solution:

1. we can use $x_2 = 1 - x_1$ replace into objective function, we change original problem into a non-constraint problem

min
$$3x_1^2 - 3x_1 + 1$$

Set f'(x) = 6x - 3 = 0, we get $x = \frac{1}{2}$. Then we can easily get the optimal solution $\bar{x} = (\frac{1}{2}, \frac{1}{2})^T$, $f_{min} = \frac{1}{4}$.

2. No, $F(x^{(k)}, \sigma_k) \le f(\bar{x})$'s solution is not contained in a compact set.

II. PROBLEM 2

Consider the following problem:

min
$$x_1x_2$$

s.t. $g(x) = -2x_1 + x_2 + 3 \ge 0$

1. Prove that

$$\bar{x} = \begin{bmatrix} \frac{3}{4} \\ -\frac{3}{2} \end{bmatrix}$$

is local optimum, and tell whether it is global optimum or not.

2. Define barrier function

$$G(x, r) = x_1 x_2 - r \ln g(x)$$

Solve this problem using inner point method and explain that sequence generated by inner point method incline to \bar{x} .

Solution:

1. at point \bar{x} , we have

$$\nabla f(x) = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} \\ \frac{3}{4} \end{bmatrix}, \nabla g(\bar{x}) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} -\frac{3}{2} \\ \frac{3}{4} \end{bmatrix} - w \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solve it and we get $w = \frac{3}{4} > 0$, \bar{x} is a KTT point. we get Lagrange function

$$L(x, w) = x_1x_2 - w(-2x_1 + x_2 + 3)$$

Then

$$\nabla^2 L(x, w) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Set

$$\nabla g(\bar{x})^T d = [-2, 1] \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = 0$$

we get $d_2 = 2d_1$. $\forall d \in G$, we have

$$d^T \nabla^2 L(x, w) d = 4d_1^2 > 0$$

So, \bar{x} is strict local optimum, and it is easy to find out \bar{x} is not global optimum.

2.

$$G(x, r) = x_1x_2 - r\ln(-2x_1 + x_2 + 3)$$

Set

$$\begin{cases} \frac{\partial G(x,r)}{\partial x_1} = x_2 + \frac{2r}{-2x_1 + x_2 + 3} = 0\\ \frac{\partial G(x,r)}{\partial x_2} = x_1 - \frac{r}{-2x_1 + x_2 + 3} = 0 \end{cases}$$

Solve the above equation, we get

$$\begin{cases} x_1 = \frac{3 + \sqrt{9 - 16r}}{8} = 0\\ x_2 = -\frac{3 + \sqrt{9 - 16r}}{4} = 0 \end{cases}$$

Set $r \rightarrow 0$, we have

$$\bar{x} = (\frac{3}{4}, -\frac{3}{2})^T$$