R-package FME: inverse modelling, sensitivity, Monte Carlo - applied to a steady-state model

Karline Soetaert

NIOO-CEME The Netherlands

Abstract

Rpackage **FME** (Soetaert 2009a) contains functions for model calibration, sensitivity, identifiability, and Monte Carlo analysis of nonlinear models.

This vignette, (vignette("FMEsteady")), applies FME to a partial differential equation, solved with a steady-state solver from package rootSolve

A similar vignette (vignette("FMEdyna")), applies the functions to a dynamic similation model, solved with integration routines from package **deSolve**

A third vignette (vignette ("FMEother")), applies the functions to a simple nonlinear model

vignette("FMEmcmc") tests the Markov chain Monte Carlo (MCMC) implementation

Keywords: steady-state models, differential equations, fitting, sensitivity, Monte Carlo, identifiability, R.

1. A steady-state model of oxygen in a marine sediment

This is a simple model of oxygen in a marine (submersed) sediment, diffusing along a spatial gradient, with imposed upper boundary concentration oxygen is consumed at maximal fixed rate, and including a monod limitation.

See (Soetaert and Herman 2009) for a description of reaction-transport models.

The constitutive equations are:

$$\frac{\partial O_2}{\partial t} = -\frac{\partial Flux}{\partial x} - cons \cdot \frac{O_2}{O_2 + k_s}$$

$$Flux = -D \cdot \frac{\partial O_2}{\partial x}$$

$$O_2(x = 0) = upO2$$

> par(mfrow=c(2,2))
> require(FME)

First the model parameters are defined...

> pars <- c(up02=360, # concentration at upper boundary, mmol02/m3
+ cons=80, # consumption rate, mmol02/m3/day</pre>

```
+ ks=1, # 02 half-saturation ct, mmolO2/m3
+ D=1) # diffusion coefficient, cm2/d
```

Next the sediment is vertically subdivided into 100 grid cells, each 0.05 cm thick.

```
> n <- 100  # nr grid points

> dx <- 0.05  #cm

> dX <- c(dx/2,rep(dx,n-1),dx/2)  # dispersion distances; half dx near boundaries

> X <- seq(dx/2,len=n,by=dx)  # distance from upper interface at middle of box
```

The model function takes as input the parameter values and returns the steady-state condition of oxygen. Function steady.band from package rootSolve ((Soetaert 2009b)) does this in a very efficient way (see (Soetaert and Herman 2009)).

```
> 02fun <- function(pars)</pre>
+ {
    derivs<-function(t,02,pars)</pre>
    with (as.list(pars),{
      Flux \leftarrow -D* diff(c(up02,02,02[n]))/dX
      d02 < -diff(Flux)/dx-cons*02/(02+ks)
      return(list(dO2,UpFlux = Flux[1],LowFlux = Flux[n+1]))
    })
   }
   # Solve the steady-state conditions of the model
   ox <- steady.band(y=runif(n),func=derivs,parms=pars,nspec=1,positive=TRUE)</pre>
   data.frame(X=X,02=ox$y)
+ }
The model is run
> ox<-02fun(pars)</pre>
and the results plotted...
> plot(ox$02,ox$X,ylim=rev(range(X)),xlab="mmo1/m3",
       main="Oxygen", ylab="depth, cm", type="1", lwd=2)
```

2. Global sensitivity analysis: Sensitivity ranges

The sensitivity of the oxygen profile to parameter cons, the consumption rate is estimated. We assume a normally distributed parameter, with mean = 80 (parMean), and a variance=100 (parCovar). The model is run 100 times (num).

Figure 1: The modeled oxygen profile - see text for R-code

The results can be plotted in two ways:

```
> par(mfrow=c(1,2))
> plot(Sens2,xyswap=TRUE,xlab= "02",
+     ylab="depth, cm",main="Sensitivity runs")
> plot(summary(Sens2),xyswap=TRUE,xlab= "02",
+     ylab="depth, cm",main="Sensitivity ranges")
> par(mfrow=c(1,1))
```

3. Local sensitivity analysis: Sensitivity functions

Local sensitivity analysis starts by calculating the sensitivity functions

```
> 02sens <- sensFun(func=02fun,parms=pars)
```

The summary of these functions gives information about which parameters have the largest effect (univariate sensitivity):

```
> summary(02sens)
```

${\bf 4} \qquad {\bf FME}: inverse \ modelling, \ sensitivity, \ Monte \ Carlo \ - \ applied \ to \ a \ steady-state \ model$

Figure 2: Results of the sensitivity run - left: all model runs, right: summary - see text for R-code

```
value scale
                 L1
                        L2 Mean
                                     Min
                                             Max
                                                    N
up02
       360
             360 6.7 0.84
                            6.7
                                 1.0e+00 12.6813 100
        80
cons
              80 7.5 1.04 -7.5 -2.0e+01 -0.0084 100
ks
         1
               1 2.8 0.47
                            2.8
                                 1.2e-04 11.4027 100
D
               1 8.8 1.24 8.8 8.4e-03 23.8202 100
```

In bivariate sensitivity the pair-wise relationship and the correlation is estimated and/or plotted:

> pairs(02sens)

> cor(02sens[,-(1:2)])

```
D
           up02
                                    ks
                       cons
      1.0000000 -0.9764790
                             0.8613176
                                        0.9734905
cons -0.9764790
                 1.0000000 -0.9484756 -0.9985358
      0.8613176 -0.9484756
                             1.0000000
                                        0.9546044
ks
D
      0.9734905 -0.9985358
                             0.9546044
                                        1.0000000
```

Multivariate sensitivity is done by estimating the collinearity between parameter sets (Brun, Reichert, and Kunsch 2001).

```
> Coll <- collin(02sens)
> Coll
```


Figure 3: pairs plot - see text for R-code

```
3
                                  6.8
                0 1 2
4
                1 0 2
                                 4.9
5
                                 33.5
                0 1 2
6
       0
                1 1 2
                                 5.3
            0
7
       1
            1
                1 0 3
                                25.8
8
       1
                0 1 3
                                38.2
            1
                                26.3
9
       1
                1 1 3
10
       0
            1
                1 1 3
                                38.6
                1 1 4
11
       1
            1
                                38.6
```

```
> plot(Coll,log="y")
```

4. Fitting the model to the data

Assume both the oxygen flux at the upper interface and a vertical profile of oxygen has been measured.

These are the data:

First a function is defined that returns only the required model output.

```
> 02fun2 <- function(pars)
+ {</pre>
```


Figure 4: collinearity - see text for R-code

```
+ derivs<-function(t,02,pars)
+ {
+ with (as.list(pars),{
+
+ Flux <- -D*diff(c(up02,02,02[n]))/dX
+ d02 <- -diff(Flux)/dx-cons*02/(02+ks)
+
+ return(list(d02,UpFlux = Flux[1],LowFlux = Flux[n+1]))
+ })
+ }
+ ox <- steady.band(y=runif(n),func=derivs,parms=pars,nspec=1,
+ positive=TRUE,rtol=1e-8,atol=1e-10)
+
+ list(data.frame(x=X,02=ox$y),
+ UpFlux=ox$UpFlux)
+ }</pre>
```

The function used in the fitting algorithm returns an instance of type modCost. This is created by calling function modCost twice. First with the modeled oxygen profile, then with the modeled flux.

```
> Objective <- function (P)
+ {
+ Pars <- pars
+ Pars[names(P)] <-P
+ mod02 <- 02fun2(Pars)
+
+ # Model cost: first the oxygen profile
+ Cost <- modCost(obs=02depth,model=mod02[[1]],x="x",y="y")</pre>
```

```
# then the flux
   modFl <- c(UpFlux=modO2$UpFlux)</pre>
   Cost <- modCost(obs=02flux,model=modFl,x=NULL,cost=Cost)</pre>
  return(Cost)
+ }
We first estimate the identifiability of the parameters, given the data:
> print(system.time(
+ sF<-sensFun(Objective, parms=pars)
+ ))
   user
          system elapsed
   0.11
            0.00
                     0.11
> summary(sF)
     value scale
                     L1
                          L2
                               Mean
                                          Min Max
                                                    N
                               4.25
up02
        360
              360 4.25 0.97
                                       0.5069 13.3 36
cons
         80
               80 3.68 0.99 -3.65 -15.3722
                                               0.5 36
                                     -0.0069
ks
          1
                1 0.40 0.14
                               0.40
                                                3.1 36
D
          1
                1 3.68 0.99
                               3.68
                                       0.0342 15.4 36
> collin(sF)
   upO2 cons ks D N collinearity
               0 0 2
1
                                8.6
2
      1
               1 0 2
                                3.1
3
      1
               0 1 2
                                8.7
                                4.2
4
      0
               1 0 2
5
      0
            1
               0 1 2
                               50.6
                                4.2
6
      0
            0
               1 1 2
7
      1
            1
               1 0 3
                               14.2
8
      1
            1
               0 1 3
                               50.8
9
      1
               1 1 3
                               14.7
               1 1 3
                               50.6
10
      0
            1
      1
               1 1 4
                               51.0
11
```

The collinearity of the full set is too high, but as the oxygen diffusion coefficient is well known, it is left out of the fitting. The combination of the three remaining parameters has a low enough collinearity to enable automatic fitting. The parameters are constrained to be >0

```
8
```

```
> print(system.time(
+ Fit<-modFit(p=c(up02=360,cons=80,ks=1),
                    f=Objective, lower=c(0,0,0))
   user system elapsed
        0.00
   0.79
                  0.80
> (SFit<-summary(Fit))</pre>
Parameters:
     Estimate Std. Error t value Pr(>|t|)
upO2 292.937 2.104 139.242 <2e-16 ***
                   2.367 20.991 <2e-16 ***
       49.686
cons
ks
        1.297
                   1.363 0.951 0.348
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.401 on 33 degrees of freedom
Parameter correlation:
       up02
              cons
                       ks
up02 1.0000 0.5791 0.2976
cons 0.5791 1.0000 0.9012
     0.2976 0.9012 1.0000
We next plot the residuals
> plot(Objective(Fit$par),xlab="depth",ylab="",main="residual",legpos="top")
and show the best-fit model
> Pars <- pars
> Pars[names(Fit$par)] <- Fit$par
> modO2 <- O2fun(Pars)
> plot(02depth$y,02depth$x,ylim=rev(range(02depth$x)),pch=18,
       main="Oxygen-fitted", xlab="mmol/m3",ylab="depth, cm")
> lines(mod02\$02, mod02\$X)
```

5. Running a Markov chain Monte Carlo

We use the parameter covariances of previous fit to update parameters, while the mean squared residual of the fit is use as prior fo the model variance.

```
> Covar <- SFit$cov.scaled * 2.4^2/3
> s2prior <- SFit$modVariance</pre>
```


Figure 5: residuals - see text for R-code

Figure 6: Best fit model - see text for R-code

We run an adaptive Metropolis, making sure that ks does not become negative...

```
dr_steps Alfasteps num_accepted num_covupdate 693 2079 713 9
```

Plotting the results is similar to previous cases.

```
> plot(MCMC,Full=TRUE)
```

```
> hist(MCMC,Full=TRUE)
```

> pairs(MCMC,Full=TRUE)

or summaries can be created:

> summary(MCMC)

```
var_model
          up02
                    cons
                                  ks
mean 293.442452 52.139084 3.27198305
                                        98.956376
sd
       2.678854 3.231064 2.28571946
                                       487.368335
min 285.250574 45.952058 0.01434916
                                         1.471498
     301.608297 67.373373 13.84679879 9742.678124
q025 291.618087 49.992039 1.58473732
                                        10.875876
q050 293.406869 51.825246 2.87023190
                                        24.660540
q075 295.281284 53.864852 4.35283107
                                       56.875861
```

> cor(MCMC\$pars)

```
up02 cons ks
up02 1.0000000 0.4490684 0.1019165
cons 0.4490684 1.0000000 0.8791278
ks 0.1019165 0.8791278 1.0000000
```

Note: we pass to sensRange the full parameter vector (parms) and the parameters sampled during the MCMC (parInput).

Figure 7: MCMC plot results - see text for R-code

Figure 8: MCMC histogram results - see text for R-code

Figure 9: MCMC pairs plot - see text for R-code

Figure 10: MCMC range plot - see text for R-code

- > plot(summary(sensRange(parms=pars,parInput=MCMC\$par,f=02fun,num=500)),
- + xyswap=TRUE)
- > points(02depth\$y,02depth\$x)

6. Finally

This vignette is made with Sweave (Leisch 2002).

References

Brun R, Reichert P, Kunsch H (2001). "Practical identifiability analysis of large environmental simulation models." WATER RESOURCES RESEARCH, **37**(4), 1015–1030.

Leisch F (2002). "Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis." In W Härdle, B Rönz (eds.), "Compstat 2002 - Proceedings in Computational Statistics," pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http://www.stat.uni-muenchen.de/~leisch/Sweave.

Soetaert K (2009a). FME: A Flexible Modelling Environment for inverse modelling, sensitivity, identifiability, monte carlo analysis. R package version 1.0.

Soetaert K (2009b). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations. R package version 1.4.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using Ras a Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Affiliation:

Karline Soetaert

Centre for Estuarine and Marine Ecology (CEME)

Netherlands Institute of Ecology (NIOO)

4401 NT Yerseke, Netherlands

E-mail: k.soetaert@nioo.knaw.nl

URL: http://www.nioo.knaw.nl/users/ksoetaert