

Side Channel Attacks on LLMs

Xiaobei Yan
Nanyang Technological University, CCDS

23-Jul-2025

Did Pizza Predict the Attack on Iran?

Pizza side-channel attack?

What is Side-Channel Attack

- Unintended information leaks
 - Secret-dependent pattern
 - Medium: Power; Electromagnetic; Cache; Memory; Time; Network or PCIe traffic, etc.

- Passive and active attack
 - Power analysis attack (passive)
 - Fault injection attack (active)

Targets of Side-Channel Attack (SCA)

- SCAs on Cryptosystems
 - Full / Partial key extraction
- SCAs on DNNs
 - Model architecture extraction
 - Model weight extraction
 - Input recovery
- SCAs on LLMs
 - Prompt inversion
 - Response recovery

Content

Title	Side Channel	Date	Venue
What Was Your Prompt A Remote Keylogging Attack on Al Assistants	Network	2024	Usenix
I Know What You Asked Prompt Leakage via KV-Cache Sharing in Multi-Tenant LLM Serving	Time	2025	NDSS
I Know What You Said Unveiling Hardware Cache Side-Channels in Local Large Language Model Inference	Cache	2025	arxiv

Content

Title	Side Channel	Date	Venue
What Was Your Prompt A Remote Keylogging Attack on Al Assistants	Network	2024	Usenix
I Know What You Asked Prompt Leakage via KV-Cache Sharing in Multi-Tenant LLM Serving	Time	2025	NDSS
I Know What You Said Unveiling Hardware Cache Side-Channels in Local Large Language Model Inference	Cache	2025	arxiv

Background – Tokens & LLM Assistants

- Background
 - User sends queries to online LLM assistants
 - Online LLM assistants sends back the response
- Tokenization:
 - Example: "I have an itchy rash." → Tokens: ["I", " have", " an", " itchy", " rash", "."].
 - Spaces/punctuation are often separate tokens.
- LLM Response Generation:
 - Streamed token-by-token over encrypted channels (QUIC/TLS).
 - Side Channel: Packet size leaks token lengths $(t_i = |r_i|)$.

Threat Model

- Attacker Capabilities
 - Network Access:
 - Can extract packet sizes but **not** decrypt content.
 - Knowledge:
 - Knows target service's protocol (e.g., OpenAl uses QUIC).
 - Has access to public LLM responses (for fine-tuning).
 - Limitations:
 - No access to prompts or model internals (e.g., token probabilities).
 - Assumes no packet padding/compression.

Side-Channel Leakage

- Leakage from side-channel
 - Token length sequence $T = [t_1, t_2, ..., t_n]$
- Problem Statement
 - Given $T = [t_1, t_2, ..., t_n]$, infer the response token sequence $R = [r_1, ..., r_n]$, such that $t_i = |r_i|$

Attack workflow

Interception: Attacker captures encrypted packets of *R*.

Message identification: Fixed-size preamble of 4200 bytes and 71 bytes message size.

Token-Length Extraction: Computes $t_i = |m_i| - |m_{i-1}|$ (token lengths).

Segmentation: Uses fine-tuned LLM to map $T = [t_1, t_2, ..., t_n] \rightarrow R$.

Prompt Inference: Deduces P from R (e.g., R = "To treat a rash..." \rightarrow P \approx "How to treat a rash?").

Response Recovery

- Two LLMs for Response Recovery
 - LLM A: generate R₀
 - LLM B: generate R_{i-1}
- Use T5 for recovery
 - encoder-decoder architecture
- Training
 - R₀ = "I need more details about your rash."

LLM_A Training Prompt

Translate the Special Tokens to English. **Special Tokens**: 1 5 5 8 6 5 5 1

However, a prompt to train LLM_B on R_1 = "Where is it. and what does it look like?" take the form of:

LLM_B Training Prompt

Translate the Special Tokens to English, given the context. Context: I need more details about your rash. **Special Tokens**: _5 _3 _3 _1 _4 _5 _5 _3 _5 _5 _1

Evaluation

- Datasets & Training:
 - Source: 570K GPT-4 responses from UltraChat
- Split:
 - Training: 550K responses
 - Test: 10K responses
- Models:
 - LLM_A (First Sentence): T5 fine-tuned for 50 epochs.
 - *LLM_R* (Subsequent Sentences): T5 fine-tuned for 40 epochs.
- Hardware: NVIDIA RTX 6000 (~12 days total training).
- Metrics
 - Cosine Similarity (Φ)
 - ROUGE Scores (R1)
 - Edit Distance (ED)
 - 12 ASR

Evaluation

Real-World Performance

	Vendor	Model	Service	ASR	φ > 0.9	φ = 1.0	R1 >= 0.9	R1 = 1.0	ED <= 0.1	$\mathbf{ED} = 0.0$
;	OpenAI	GPT-4	in-browser	38.21	15.64	4.57	12.94	5.75	16.20	3.68
3uf	OpenAI	GPT-4	marketplace	53.01	25.80	13.01	28.09	17.02	27.29	10.21
[0]	OpenAI	GPT-4	API	17.69	5.06	0.82	2.65	0.99	2.40	0.57
Z	Microsoft	Copilot	marketplace API in-browser in-browser marketplace	40.87	17.42	7.96	17.96	10.80	17.11	0.51
gu	OpenAI	GPT-4	in-browser	35.55	13.70	3.60	10.98	4.79	13.88	2.97
eri	OpenAI	GPT-4	marketplace	50.28	22.89	10.84	24.03	14.47	23.52	8.56
uffering	OpenAI	GPT-4	API	17.69	5.06	0.82	2.65	0.99	2.40	0.57
B	Microsoft	Copilot	in-browser	30.15	5.93	0.16	6.73	0.19	5.18	0.00

Content

Title	Side Channel	Date	Venue
What Was Your Prompt A Remote Keylogging Attack on Al Assistants	Network	2024	Usenix
I Know What You Asked Prompt Leakage via KV-Cache Sharing in Multi-Tenant LLM Serving	Time	2025	NDSS
I Know What You Said Unveiling Hardware Cache Side-Channels in Local Large Language Model Inference	Cache	2025	arxiv

Background

- Multi-tenant LLM serving (e.g., vLLM, SGLang) improves efficiency via KV-cache sharing for identical token sequences.
- Problem: KV-cache sharing introduces side-channel vulnerabilities, enabling prompt leakage between users.
- Goal: Demonstrate how attackers can reconstruct prompts via KVcache side channels.

Background – KV Cache in LLMs

- KV Cache: Stores intermediate computations for tokens to speed up inference.
 - Same prefix tokens → same KV cache.
 - Example:
 - User A: "How to install Windows"
 - User B: "How to install Linux" → Reuses KV cache for "How to install".
- Multi-tenant Scheduler:
 - Longest Prefix Match (LPM)
 - First-In-First-Out (FIFO)

Threat Model

- Adversary Capabilities:
 - Non-privileged user.
 - Knows LLM tokenizer and scheduling and eviction policies (LPM, LRU).

- Attack Goals:
 - Reconstruct prompts from other users.

Side-Channel Leakage

- Side-Channel Source: Request Scheduling Order
- Longest Prefix Match (LPM) Policy:
 - Requests with longer matching prefixes get prioritized.
 - Example:
 - Victim's prompt: "How to install Windows"
 - Attacker's request: "How to install Linux" → KV-cache hit for "How to install".
 - Result: Attacker's request jumps ahead in scheduling queue.

Attack Overview

Token Extraction Mechanism

- Candidate Generation:
 - Local LLM predicts likely next tokens (e.g., "Imagine stored KV cache:
 you are [an/a/the]").
 - Candidates = TopK(LLM(Prefix))
 - Dummy token (e.g., "%") for baseline comparison.
- Side-Channel Detection:
 - Send [Dummy, Candidates ,Dummy]
 - If match: Order = [Dummy, Matched Candidate, Dummy, Unmatched Candidate].
 - If **no match**: Order = [Dummy, Dummy, Candidates].

Imagine you are an IT expert (from victim)
Imagine you are % (from dummy requests)

(a) Serving order before LPM.

Waiting queue: Waiting queue: Imagine you are % + Imagine you are % + Imagine you are % Imagine vou are % Imagine you are % |-Pre Imagine you are % |-Pre Imagine you are % Imagine you are % | Imagine you are % + Imagine you are % + Imagine you are a + Imagine you are an +-Match Imagine you are an |-Cands Imagine you are % + Imagine you are the+ Imagine you are % Imagine you are % + Imagine you are % |-Post Imagine you are % | Imagine you are % | Imagine vou are % |-Post Imagine vou are % + Imagine you are % | Imagine you are a + Imagine you are % + Imagine you are the |-Cands

(b) Serving order after LPM.

Evaluation

Figure 10: Impact of concurrency level.

Figure 11: Impact of memory capacity.

Figure 12: Impact of attack requests.

Whole Prompt Extraction							Input Extraction						Template Extraction								
	Succ.	Part.	Fail	SR	RR	Req. /inp	Req. /tok	Succ.	Part.	Fail	SR	RR	Req. /inp	Req. /tok	Succ.	Part.	Fail	SR	RR	Req. /inp	Req. /tok
cloze	56	102	22	87%	64%	4843	212	170	4	6	96%	98%	3115	132	102	78	10	94%	77%	4641	59
role	120	33	0	100%	87%	1502	126	151	2	0	100%	99%	1234	68	150	3	0	100%	99%	1687	21
instruction	899	101	0	100%	93%	2183	172	997	3	0	100%	99%	948	50	995	5	0	100%	99%	1298	18

success rate (**SR**)
reversal ratio (**RR**)
(i.e., extracted length / total length)

the average number of requests to extract the entire input (**Req./inp**)

the average number of requests to extract one token (Req./tok)

Content

Title	Side Channel	Date	Venue
What Was Your Prompt A Remote Keylogging Attack on Al Assistants	Network	2024	Usenix
I Know What You Asked Prompt Leakage via KV-Cache Sharing in Multi-Tenant LLM Serving	Time	2025	NDSS
I Know What You Said Unveiling Hardware Cache Side-Channels in Local Large Language Model Inference	Cache	2025	arxiv

Introduction

- Hardware cache side-channels can leak sensitive input/output text during LLM inference.
 - The embedding operation creates secret-dependent data access
 - The timing of embedding operations correlates with the position of the output token
- Goal
 - Reconstruct LLM inputs/outputs via cache access patterns

Threat Model

- Adversary Capabilities:
 - Unprivileged spy process **co-located** on victim's machine.
 - **Passive cache monitoring**: No direct interaction with victim LLM;.
 - Flush+Reload: Accesses shared memory (via page cache or page deduplication).
- Victim Scenario:
 - User interacts with **local** LLM (e.g., confidential emails, personal advice).
 - Token embedding operations **offloaded** to CPU.

Side Channel Leakage

- Token Value Leakage:
 - Cache access patterns during token embedding reveal token indices.

•
$$E = Wx$$
, where $x_i = [0, ..., 1_{t_i}, ..., 0]^T$

- Autoregressive decoding leaks both input and output tokens.
- Token Position Leakage:
 - Timing of decode phases exposes token order.
- Challenges:
 - Noise in cache traces (false positives/negatives).
 - Shuffled input tokens (prefill phase) due to parallel processing.

Attack Workflow

- **1.Cache Trace Collection:** Spy process monitors shared cache.
- 2.Phase Identification: Separates prefill (batched) and decode (serial) phases.
- **3.Token Mapping:** Converts cache hits to token lists and timing signals.
- **4.Output Reconstruction:** Uses fine-tuned LLM (LLM_A) to denoise and reconstruct response.
- **5.Input Reconstruction:** Leverages context with output to restore shuffled input tokens (LLM_B) .

Example of Cache Trace

The obtained cache trace \mathbf{o} is a $L \times |V|$ matrix.

L: cache trace length.

|V|: vocabulary size.

Measuring Cache Time

- Start address calculation
 - $p_1 + p_2 + iDb \le A_i < p_1 + p_2 + (i+1)Db$
 - p₁: start address p₂: embedding table W offset
 - D: dimension of the embedding table; b size of the vector element.
- **Evading Hardware Prefetchers**
 - Array-of-Pointers (AoP) prefetchers introduce high noise
 - Add an offset to pointers to prevent prefetch

Evaluation

- LLM A and LLM B:
 - GPT-4o-mini-2024-07-18
- Metrics
 - Average number of input and output tokens (N_o)
 - ROUGE Scores (R1, RL) Levenshtein Similarity (LS)
 - Cosine similarity (Φ)
 - ASR: the proportion of testing samples where $\Phi > 0.77$.

Victim LLM	Dataset			Output R	econstruc	tion		Input Reconstruction						
VICUM LLM	Dataset	N_O	R1 (%)	RL (%)	LS (%)	ф (%)	ASR (%)	N_I	R1 (%)	RL (%)	LS (%)	ф (%)	ASR (%)	
Google	UltraChat	243	98.2	98.2	97.0	99.6	99.8	20	93.5	90.2	87.4	99.2	100.0	
Gemma2-9B	NQ-Open	79	95.9	95.9	94.3	98.7	99.3	13	94.6	93.0	91.3	99.0	100.0	
	SIQA	193	96.4	96.4	94.2	98.8	99.1	31	86.6	79.2	74.8	96.9	100.0	
[4]	SQuAD2	55	91.5	91.5	89.8	98.2	100.0	183	57.1	47.7	34.4	94.9	100.0	
	ChatGPT-Roles	222	98.7	98.7	98.0	99.6	100.0	48	85.4	79.7	70.6	99.1	100.0	
Meta	UltraChat	253	99.0	99.0	98.9	99.2	99.3	19	94.5	91.9	89.5	99.2	100.0	
Llama-3.1-8B	NQ-Open	162	97.4	97.4	96.9	98.1	98.0	12	94.8	93.4	91.4	99.0	100.0	
[8]	SIQA	64	98.1	98.1	97.6	98.9	99.1	30	86.1	78.5	73.6	96.6	99.7	
[8]	SQuAD2	20	90.1	90.1	90.4	96.7	96.4	180	55.8	46.4	33.2	94.3	100.0	
	ChatGPT-Roles	215	99.5	99.5	99.6	99.8	100.0	48	86.3	80.7	72.3	99.0	100.0	
TII	UltraChat	175	98.4	98.4	97.3	99.6	99.6	20	94.8	92.1	90.2	99.3	100.0	
Falcon3-10B	NQ-Open	109	98.2	98.1	97.7	99.7	99.9	13	94.3	92.6	91.1	99.0	100.0	
	SIQA	140	98.9	98.9	97.9	99.7	100.0	31	86.2	78.6	75.5	96.7	100.0	
[3]	SQuAD2	62	90.6	90.6	93.2	98.0	96.4	185	54.6	44.9	33.5	93.8	100.0	
	ChatGPT-Roles	67	98.9	98.8	99.3	99.6	100.0	48	86.8	82.3	73.9	99.0	100.0	
	UltraChat	256	94.6	94.6	91.6	98.2	98.7	20	91.6	87.7	84.4	98.7	100.0	
Mistral-7B	NQ-Open	120	95.1	95.1	94.6	97.1	96.8	12	89.1	84.0	80.8	97.3	99.8	
[13]	SIQA	65	98.7	98.7	98.2	99.4	99.7	32	85.9	77.6	73.7	96.2	100.0	
	SQuAD2	57	91.4	91.4	90.1	96.9	98.2	204	51.3	43.2	32.4	92.7	98.2	
	ChatGPT-Roles	243	94.6	94.6	91.6	98.9	100.0	54	83.2	78.4	69.7	97.9	100.0	
Microsoft	UltraChat	263	93.5	93.5	88.9	99.0	100.0	21	90.5	87.2	84.3	98.2	99.6	
Phi-3.5-mini-3B	NQ-Open	194	93.9	93.9	90.9	98.7	99.3	12	88.0	82.9	79.8	97.0	99.8	
	SIQA	253	92.7	92.7	<u>87.7</u>	98.5	99.4	33	85.2	78.5	75.4	96.5	99.7	
[12]	SQuAD2	137	93.5	93.5	90.6	97.6	98.2	209	<u>51.0</u>	<u>42.4</u>	32.2	<u>92.1</u>	<u>96.4</u>	
	ChatGPT-Roles	263	94.6	94.6	92.1	98.8	100.0	57	80.6	75.0	65.7	97.6	100.0	
Average		165	96.3	96.3	94.8	98.7	99.1	24	89.9	85.8	82.7	98.0	29 ^{99.9}	

Future Research

- Attack surface
 - LLM / Agent / RAG
- Attack target
 - User / System prompt
 - Response
 - What other information is worth stealing?
 - PII
 - API key
 - Chain of thought / actions
 -
- Attack practicability
 - Multi-tenant LLM architecture / co-locate with victim → remote?

Thank You!