TEMA 3: BBDD Relacionales. Dependencias Funcionales.

BBDD Relacionales. Dependencias Funcionales

El modelo de base de datos relacional se basa en una estructura de datos de dos dimensiones denominada **TABLA o RELACIÓN**.

TABLA: estructura bidimensional formada por filas y columnas.

Cada columna corresponde a los campos o atributos de la relación

Cada fila corresponde a una ocurrencia, a un elemento de la tabla.

GRADO: de una relación es el número de columnas que tiene y es fijo mientras no cambie el diseño.

CARDINALIDAD: número de filas de la tabla en un momento determinado, varía en el tiempo.

CLAVES

- → Clave Candidata: conjunto mínimo de atributos que identifican una tupla de la tabla De entre las claves candidatas se elige una con Clave Primaria o Principal. Las restantes se llaman Claves Alternativas
- → Clave simple: formada por un solo atributo
- → Clave compuesta: formada por varios atributos
- → Clave ajena o foránea de una relación R2 es un conjunto de atributos cuyos valores han de coincidir con los valores de la clave primaria de otra relación R1 o ser nulos

Reglas de integridad

- → Claves primarias:
 - o Ningún componente de la clave primaria puede ser nulo
 - o El valor de una clave primaria es único
- → Referencial:
 - El valor de una clave foránea debe existir en la clave primaria de la relación a la que referencia o ser nulo

DEPENDENCIAS FUNCIONALES

Definición:

Dados dos atributos A y B de una relación R, se dice que B es dependiente funcionalmente de A si, para cada valor de A existe un único valor de B asociado a él.

Es decir, si dado un valor de A podemos conocer el valor de B

Se representa

A→B B depende funcionalmente de A

ó A determina B

Tanto A como B pueden ser un conjunto de atributos.

A y B son equivalentes si $A \rightarrow B$ y $B \rightarrow A$

```
R (Dni, Nombre, Ciudad, Tfno)

Dni → Nombre

Dni → Ciudad

Dni → Tfno

Tfno → Dni
```

```
R (dni, nombre, direccion, codasig, nomasig, nota)

DF={ dni -> nombre, direccion codasig -> nomasig dni, codasig -> nota }
```

A partir de ahora, una relación viene definida por el conjunto de sus atributos (A) y el conjunto de sus dependencias funcionales (Dep) : R (A, Dep)

AXIOMAS de ARMSTRONG

Para transformar un conjunto de D.F. en otro equivalente se pueden aplicar las siguientes reglas:

1. Reflexividad

Sea R relación, A atributo o conjunto de atributos de R entonces

A → A (A depende funcionalmente de sí mismo)

DNI→DNI

Además, si X es un conjunto de atributos contenido en Y, se tiene Y \rightarrow X

dni, codasig → dni

2. <u>Aumentación</u>

Sea R relación, A,B atributos o conjuntos de atributos de R entonces

Si $A \rightarrow B$ entonces $A, X \rightarrow B, X$

dni→nombre entonces dni, cod_asig →nombre, cod_asig

Además, si A→B y X está contenido en W, entonces A,W->A,X

3. Transitividad

Sea R relación, A,B,C atributos o conjuntos de atributos de R entonces

Si $A \rightarrow B$ y $B \rightarrow C$ entonces $A \rightarrow C$

 $\begin{array}{c} \text{dni } \rightarrow \text{fecha_nac} \\ \text{fecha_nac} \rightarrow \text{edad} \end{array} \qquad \begin{array}{c} \text{entonces} \\ \text{dni } \rightarrow \text{edad} \end{array}$

4. Unión

Sea R relación, A,B,C atributos o conjuntos de atributos de R entonces

Si $A \rightarrow B$ y $A \rightarrow C$ entonces $A \rightarrow B, C$

dni -> nombre entonces
dni -> direccion dni -> nombre, direccion

5. Pseudotransitividad

Sea R relación, A,B,C,D atributos o conjuntos de atributos de R entonces

Si $A \rightarrow B y B, C \rightarrow D$ Entonces $A, C \rightarrow D$

 $\left.\begin{array}{c} \mathsf{prof} \boldsymbol{\rightarrow} \mathsf{asig} \\ \mathsf{hora, asig} \boldsymbol{\rightarrow} \mathsf{aula} \end{array}\right\} \qquad \begin{array}{c} \mathsf{entonces} \\ \mathsf{prof, hora} \boldsymbol{\rightarrow} \mathsf{aula} \end{array}$

6. <u>Descomposición</u>

Sea R relación, A,B,C atributos o conjuntos de atributos de R entonces

Si
$$A \rightarrow B,C$$

entonces
$$A \rightarrow B$$
 y $A \rightarrow C$

Ejemplos:

$$DF=\{A \rightarrow B, C \rightarrow D, D \rightarrow E\}$$

Demostrar A,C → A, B, C, D, E

b. R(A, B, C, D, E, F)

$$DF=\{A \rightarrow B, D \quad E \rightarrow C \quad D, C \rightarrow F\}$$

Demostrar A,E -> A, B, C, D, E, F

CIERRE DE UN CONJUNTO DE DEPENDENCIAS FUNCIONALES

Sea DF un conjunto de dependencias funcionales de una relación, el **cierre** de DF es el conjunto de todas las dependencias funcionales que se pueden deducir de DF aplicando los axiomas de Armstrong. Se representa por DF⁺

CIERRE DE UN ATRIBUTO O CONJUNTO DE ATRIBUTOS X⁺DF

Sea R una relación, DF su conjunto de dependencias funcionales y X un atributo o conjunto de atributos de R,

 X^{+}_{DF} es el conjunto de todos los atributos que dependen funcionalmente de X al aplicar los axiomas de Armstrong

Ejemplos:

a.
$$R(A, B, C, D, E)$$
 DF={ $A \rightarrow B \rightarrow C \quad A, D \rightarrow E$ }

$$(A)^{+}=A,B,C$$

$$(B)^{\dagger}=B,C$$

$$(A,D)^{\dagger}=A,D,B,C,E$$

$$(E,B)^{\dagger}=E,B,C$$

TEMA 3: BBDD Relacionales. Dependencias Funcionales.

b. R(A, B, C, D, E, F) DF={ A,B \rightarrow D,E C \rightarrow F A,D \rightarrow C}

 $(A,B)^{+}=$

 $(F)^{+}=$

 $(A,D)^{+}=$

 $(A,D)^{+}=$

MÉTODO PARA HALLAR TODAS LAS CLAVES CANDIDATAS DE UNA RELACIÓN

Nueva definición:

Dada R una relación con A sus atributos y DF su conjunto de dependencias funcionales R(A,DF), entonces X, conjunto de atributos contenido en A, será **clave candidata** si

- X→A
- no existe un subconjunto de X, X', tal que X'→A

Es decir, atributo o conjunto de atributos tal que su cierre está formado por todos los atributos de la relación y no contenga un subconjunto que también sea clave candidata. $(X)^{\dagger}_{DF}=A$

Ejemplos:

- a) Sea R(A,B,C,D), DF = { $A \rightarrow B$ $B \rightarrow A$ $A \rightarrow C$ $A \rightarrow D$ } Claves candidatas (A), (B) ya que $(A)^+=A,B,C,D$ $(B)^+=A,B,C,D$
- b) Sea R(A, B, C, D, E), DF={ $A \rightarrow B$, $C \rightarrow D$, $D \rightarrow E$ } Clave candidata (A,C) ya que $(A,C)^{+}=A,C,B,D,E$
- c) R (Dni, Nombre, Ciudad, Tfno)

DF={ Dni →Nombre Dni →Ciudad Dni →Tfno Tfno → Dni}

Claves candidatas (Dni), (Tfno) ya que (Dni) ⁺= Dni, Nombre, Ciudad, Tfno (Tfno) ⁺= Tfno, Nombre, Ciudad, Dni

TEMA 3: BBDD Relacionales. Dependencias Funcionales.

d) R (dni, nummat, nombre, direccion, codasig, nomasig, prof, nota)

```
DF={ dnialum -> nombre, direccion, nummat nummat -> dnialum codasig -> nomasig, prof dnialum, codasig -> nota }

Claves candidatas (dnialum, codasig) (nummat,codasig)
```

(EJERCICIOS)

Método para el cálculo de claves

Sea R(A,DF) relación con A conjunto de atributos y DF dependencias funcionales entre sus atributos.

Se realiza una división de los atributos de R en cuatro grupos

- 1. Atributos que no están en ninguna dependencia funcional (independientes)
- 2. Atributos que solo están en la parte izquierda de las d.f.
- 3. Atributos que solo están en la parte derecha de las d.f.
- 4. Atributos que están tanto a la derecha como a la izquierda de las d.f.

1 2	son atributos a los que no se llega desde otros atributos, luego tienen que estar en la clave
3	no pertenecen a la clave puesto que a partir de ellos no se llega a ningún atributo y a ellos sí se llega desde otros
4	pueden pertenecer o no

Atributos que NO están en ninguna d.f.	Atributos que SOLO están a la izquierda de las d.f.
Atributos que SOLO están a la derecha de las d.f.	Atributos que están a la izquierda y a la derecha de las d.f

Método del cuadrante para hallar claves:

1º C.G.S DAW

1º Determinar cada atributo en que parte del cuadrante está.

2º La clave o claves candidatas van a tener seguro los atributos que están en 1 y en 2, porque son atributos a los que nadie llega, solo a partir de ellos se puede llegar a ellos mismos.

 3° Si con 1 y 2 ya tenemos una clave hemos acabado. Si no tenemos que ir probando añadiendo atributos de $\frac{4}{3}$.

Ejemplo 1:

R(A,B,C,D,E,F)

A,B->C,D,E

E->F

	A,B
C,D,F	E

Vemos $(A,B)^{+}$ = A,B,C,D,E,F

ya he encontrado la clave, no hay más.

Ejemplo 2:

R(A,B,C,D,E,F,G)

A,B->C,D,E

E->F

G	A,B
C,D,F	E

Vemos $(A,B,G)^{\dagger} = A,B,G,C,D,E,F$

ya he encontrado la clave, no hay más.

TEMA 3: BBDD Relacionales. Dependencias Funcionales.

Ejemplo 3:

R(A,B,C,D,E,F,G)

A,B->C,D,E,G

G->A

E->F

	В
C,D,F	G,A,E

Vemos $(B)^+= B$

no es clave

Añadimos por ejemplo a

(B,A) ⁺= B,A,C,D,E,G,F es una clave candidata, tenemos que seguir mirando porque puede haber más al mezclar con los otros atributos de <mark>4</mark>.

(B,G) +=B,G,A, C,D,E,F es una clave candidata

(B,E)⁺=B,E,F no es clave candidata

Ejemplo 4:

R(A,B,C,D,E,F,G,H,I)

A->B,C,D

B,C -> A

E->F

G->H,E

I	G
D,F	A,B,C,E

Vemos (I,G)⁺= I,G,H,E,F no es clave, así que empezamos a probar con 4

(I,G,A)⁺ =I,G,A,B,C,D,H,E,F clave candidata

 $(I,G,B)^{\dagger} = I,G,B,H,E,F$ no lo es

 $(I,G,C)^+ = I,G,C,H,E,F$ no lo es

(I,G,B,C)⁺ =I,G,B,C,A,D,H,E,F clave candidata (si te fijas, A y B,C son equivalentes)