

Indian Institute of Technology Mandi भारतीय प्रौद्योगिकी संस्थान मण्डी

IC-111: Linear Algebra

End Sem Exam

Even Semester: 2012-13

Duration: 3.00 Hours Total Marks: 45

There are 15 questions in this question paper.

Answer only 11 questions.

Question No. 1 and 2 are compulsory.

- 1. Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ and an ordered basis B given by $T(x,y) = \{2x 7y, 4x + 3y\}$ and $B = \{(1,3), (2,5)\}$. Then,
 - (a) Find coordinate vectors $[u]_B$ of a general element $u=(x,y)\in\mathbb{R}^2$ with respect to the ordered basis B.
 - (b) Find matrix representation $[T]_B$ with respect to basis B
 - (c) Using $[T]_B$ and $[u]_B$ find $[T(u)]_B$.
 - (d) If $B' = \{(1,0), (0,1)\}$ then find the transition matrix of $P = [Id]_{B'}^B$. [7]
- 2. Let $V = \{p(x) \mid p(x) \text{ is a polynomial of degree at most } 3\}$ be a vector space of all polynomial of degree at most degree 3 over a field $(\mathbb{R}, \Phi, \bullet)$ where vector addition and scalar multiplication are defined in usual manner. Suppose $U = \{p(x) \in V \mid p(1) = 0\}$ and $W = \{p(x) \in V \mid p'(1) = 0\}$ then find dimension and basis of the subspaces $U, W, U \cap W$ and $U \oplus W$.
- 3. Let (V, \oplus, \odot) be a vector space over a field $(\mathbb{F}, \oplus, \odot)$ and (U_i, \oplus, \odot) $i = 1, 2, \dots, n$ be n subspaces of (V, \oplus, \odot) over $(\mathbb{F}, \oplus, \odot)$, then show that $\bigcap_{i=1}^n U_i$ is subspace of V.
- 4. Let U and W be two subspaces of a vector space (V, \oplus, \odot) over the field $(\mathbb{F}, \oplus, \odot)$ then show that $U \oplus W = [U \cup W]$.
- 5. Using Wronskian technique find a LI subset of A of S such that [A] = [S], where $S = \{x^2, x^2 + 2x, x^2 + 2, 1 x\}$. Find coordinate vectors of $3x^2 + x + 5$ corresponding to the A.
- 6. Let (V, \oplus, \odot) be a vector space over a field $(\mathbb{F}, \oplus, \odot)$. Suppose $S = \{v_1, v_2, \dots, v_n\}$ is an ordered set of vectors with $v_1 \neq 0$. Then show that S is LD iff one of the vectors v_2, v_3, \dots, v_n , say v_k belongs to span of $v_1, v_2, \dots v_{k-1}$, i.e. $v_k \in [v_1, v_2, \dots v_{k-1}]$ for some $k = 2, 3, \dots n$.
- 7. Let (V, \oplus, \odot) be a n-dimensional vector space over a field $(\mathbb{F}, \oplus, \odot)$. Then show that any LI set $B = \{v_1, v_2, \dots v_n\}$ of n vectors is a basis of V.