Autómatas Celulares Trabajo Practico Nro. 2

Badi Leonel, Buchhalter Nicolás Demián y Meola Franco Román

6 de abril de 2016

Fundamentos Introducción

- Autómata Off-Latice de Bandadas de Agentes Autopropulsados.
- Basado en el algoritmo del trabajo de Novel type of phase transition in a system of self-driven particles.
- ullet Cada agente será representado por un vector de velocidad cuyo origen estará ubicado en la posición de la partícula para cada tiempo de la simulación t.

Fundamentos Variables relevantes

- ullet N : cantidad de agentes
- ullet L : longitud del lado del área de simulación
- ullet v : módulo de la velocidad
- $\rho = \frac{N}{L^2}$: densidad
- ullet η : amplitud del ruido
- ullet v_a : parámetro de orden
- Nos interesa obtener las curvas de v_a en función de η y ρ .

Implementación Generación de los agentes

- Posiciones (x,y) aleatorias para cada agente.
- $r_c = 0.5$ (radio de interacción de las partículas)
- $v_{cte} = 0.3$
- $\theta_0 = rand() * 2\pi$ (ángulo inicial aleatorio)
- $\delta_{\theta} = (rand() * \eta) \frac{\eta}{2}$

Implementación Algoritmo

```
public static void main(String[] args) {
    log.info("Hola Mundo!");
    (...)
}
```

Salida 1: Código

Resultados

Tabla de la prueba N=10

v_a	t(s)
0.90837	0
0.98470	0
0.70629	0
0.83263	0
0.20089	0
0.30686	0
0.36970	0
0.21550	0
	0.90837 0.98470 0.70629 0.83263 0.20089 0.30686 0.36970

Tabla: Datos de la curva de v_a para N=10.

Resultados

Tabla de la prueba N=50

v_a	t(s)
0.97092	0
0.93931	0
0.68197	0
0.85446	0
0.79951	0
0.73634	0
0.38437	0
0.29738	0
	0.97092 0.93931 0.68197 0.85446 0.79951 0.73634 0.38437

Tabla: Datos de la curva de v_a para N=50.

Resultados Gráfico

Grafico: Lorem ipsum dolor sit amet.

Resultados

Animación de la prueba N=?

Grafico: Lorem ipsum dolor sit amet.

