ad9361x2_pl_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

AD9361x2 core and support core wrapper.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ad9361x2 pl wrapper

```
module ad9361x2_pl_wrapper #(
parameter
FPGA_TECHNOLOGY

=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

```
=
Θ,
parameter
DEV_PACKAGE
parameter
ADC_INIT_DELAY
23,
parameter
DAC_INIT_DELAY
parameter
DELAY_REFCLK_FREQUENCY
200,
parameter
DMA_AXI_PROTOCOL_TO_PS
parameter
AXI_DMAC_ADC_ADDR
321h7C400000,
parameter
AXI_DMAC_DAC_ADDR
321h7C420000,
parameter
AXI_AD9361_0_ADDR
321h79020000,
parameter
AXI_AD9361_1_ADDR
32 h79040000
) ( input axi_aclk, input axi_aresetn, input s_axi_awvalid, input [31:0] s_a
```

AD9361x2 core and support core wrapper.

Parameters

FPGA_TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 20 is for -2.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 3 is for ff.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

parameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

parameter

DMA_AXI_PROTOCOL_TO_PS Select DMA AXI standard, 1 = AXI3, 0 = AXI4

paramete

AXI_DMAC_ADC_ADDR Set ADC AXI lite address.

parameter

AXI DMAC DAC ADDR Set DAC AXI lite address.

parameter

AXI_AD9361_0_ADDR Set AD9361_0 AXI lite address.

paramete

AXI_AD9361_1_ADDR Set AD9361 1 AXI lite address.

parameter

Ports

AXI Lite control bus axi aclk axi_aresetn AXI Lite control bus s_axi_awvalid AXI Lite control bus s axi awaddr AXI Lite control bus s_axi_awready AXI Lite control bus s axi awprot AXI Lite control bus s_axi_wvalid AXI Lite control bus s_axi_wdata AXI Lite control bus s_axi_wstrb AXI Lite control bus s_axi_wready AXI Lite control bus s_axi_bvalid AXI Lite control bus s axi bresp AXI Lite control bus s_axi_bready AXI Lite control bus s_axi_arvalid AXI Lite control bus s_axi_araddr AXI Lite control bus AXI Lite control bus s_axi_arready s_axi_arprot AXI Lite control bus s axi rvalid AXI Lite control bus s_axi_rready AXI Lite control bus s_axi_rresp AXI Lite control bus AXI Lite control bus s_axi_rdata adc_dma_irq fmcomms5 ADC irq dac_dma_irq fmcomms5 DAC irq delay clk fmcomms5 delay clock rx_clk_in_0_p fmcomms5 0 rx clk rx_clk_in_0_n fmcomms5 0 rx clk rx_frame_in_0_p fmcomms5 0 rx frame rx frame in 0 n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data fmcomms5 0 rx data rx_data_in_0_n tx_clk_out_0_p fmcomms5 0 tx clk fmcomms5 0 tx clk tx clk out 0 n tx_frame_out_0_p fmcomms5 0 tx frame fmcomms5 0 tx frame tx_frame_out_0_n

tx_data_out_0_p fmcomms5 0 tx data tx data out 0 n fmcomms5 0 tx data fmcomms5 0 txnrx txnrx_0 enable_0 fmcomms5 0 enable up_enable_0 fmcomms5 0 enable input up txnrx 0 fmcomms5 0 txnrx select input tdd_sync_0_t fmcomms5 0 TDD sync i/o fmcomms5 0 TDD sync i/o tdd_sync_0_i tdd_sync_0_o fmcomms5 0 TDD sync i/o

rx_clk_in_1_p fmcomms5 1 rx clk fmcomms5 1 rx clk rx_clk_in_1_n rx frame in 1 p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx_data_in_1_p fmcomms5 1 rx data rx_data_in_1_n fmcomms5 1 rx data tx_clk_out_1_p fmcomms5 1 tx clk fmcomms5 1 tx clk tx_clk_out_1_n tx frame out 1 p fmcomms5 1 tx frame tx_frame_out_1_n fmcomms5 1 tx frame tx data out 1 p fmcomms5 1 tx data tx_data_out_1_n fmcomms5 1 tx data txnrx_1 fmcomms5 1 txnrx enable_1 fmcomms5 1 enable up_enable_1 fmcomms5 1 enable input

up_txnrx_1fmcomms5 1 txnrx select inputtdd_sync_1_tfmcomms5 1 TDD sync i/otdd_sync_1_ifmcomms5 1 TDD sync i/otdd_sync_1_ofmcomms5 1 TDD sync i/o

m_axi_aclk DMA Clock

m axi aresetn DMA Negative Reset adc_m_dest_axi_awaddr fmcomms5 ADC DMA adc_m_dest_axi_awlen fmcomms5 ADC DMA adc_m_dest_axi_awsize fmcomms5 ADC DMA adc_m_dest_axi_awburst fmcomms5 ADC DMA adc_m_dest_axi_awprot fmcomms5 ADC DMA adc m dest axi awcache fmcomms5 ADC DMA adc_m_dest_axi_awvalid fmcomms5 ADC DMA adc_m_dest_axi_awready fmcomms5 ADC DMA adc_m_dest_axi_wdata fmcomms5 ADC DMA adc_m_dest_axi_wstrb fmcomms5 ADC DMA fmcomms5 ADC DMA adc m dest axi wready adc m dest axi wvalid fmcomms5 ADC DMA adc_m_dest_axi_wlast fmcomms5 ADC DMA adc_m_dest_axi_bvalid fmcomms5 ADC DMA adc_m_dest_axi_bresp fmcomms5 ADC DMA adc_m_dest_axi_bready fmcomms5 ADC DMA dac_m_src_axi_arready fmcomms5 DAC DMA $dac_m_src_axi_arvalid$ fmcomms5 DAC DMA $dac_m_src_axi_araddr$ fmcomms5 DAC DMA dac m src axi arlen fmcomms5 DAC DMA dac_m_src_axi_arsize fmcomms5 DAC DMA dac_m_src_axi_arburst fmcomms5 DAC DMA dac_m_src_axi_arprot fmcomms5 DAC DMA dac_m_src_axi_arcache fmcomms5 DAC DMA dac_m_src_axi_rdata fmcomms5 DAC DMA fmcomms5 DAC DMA dac_m_src_axi_rready dac_m_src_axi_rvalid fmcomms5 DAC DMA fmcomms5 DAC DMA dac_m_src_axi_rresp dac_m_src_axi_rlast fmcomms5 DAC DMA

INSTANTIANTED MODULES

inst_axi_ad9361_0

```
axi_ad9361 #(

ID(0),

MODE_1R1T(0),

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

TDD_DISABLE(0),

PPS_RECEIVER_ENABLE(0),

CMOS_OR_LVDS_N(0),

ADC_INIT_DELAY(ADC_INIT_DELAY),

ADC_DATAPATH_DISABLE(0),

ADC_DATAFORMAT_DISABLE(0),

ADC_DCFILTER_DISABLE(0),
```

```
ADC_IQCORRECTION_DISABLE(0),
DAC_INIT_DELAY(DAC_INIT_DELAY),
DAC_CLK_EDGE_SEL(0),
DAC_IODELAY_ENABLE(0),
DAC_DATAPATH_DISABLE(0),
DAC_DDS_DISABLE(0),
DAC_DDS_TYPE(1),
DAC_DDS_CORDIC_DW(14),
DAC_DDS_CORDIC_PHASE_DW(13),
DAC_USERPORTS_DISABLE(0),
DAC_IQCORRECTION_DISABLE(0),
IO_DELAY_GROUP("dev_0_if_delay_group"),
MIMO_ENABLE(0),
USE_SSI_CLK(1),
DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY),
) inst_axi_ad9361_0 ( .rx_clk_in_p(rx_clk_in_0_p), .rx_clk_in_n(rx_clk_in_0_
```

Analog Devices ad9361 0 interface core

inst_axi_ad9361_1

```
axi_ad9361 #(

ID(1),

MODE_1R1T(0),

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

TDD_DISABLE(0),

PPS_RECEIVER_ENABLE(0),

CMOS_OR_LVDS_N(0),

ADC_INIT_DELAY(ADC_INIT_DELAY),

ADC_USERPORTS_DISABLE(0),
```

```
ADC_DATAFORMAT_DISABLE(0),
ADC_DCFILTER_DISABLE(0),
ADC_IQCORRECTION_DISABLE(0),
DAC_INIT_DELAY(DAC_INIT_DELAY),
DAC_CLK_EDGE_SEL(0),
DAC_IODELAY_ENABLE(0),
DAC_DATAPATH_DISABLE(0),
DAC_DDS_DISABLE(0),
DAC_DDS_TYPE(1),
DAC_DDS_CORDIC_DW(14),
DAC_DDS_CORDIC_PHASE_DW(13),
DAC_USERPORTS_DISABLE(0),
DAC_IQCORRECTION_DISABLE(0),
IO_DELAY_GROUP("dev_1_if_delay_group"),
MIMO_ENABLE(0),
USE_SSI_CLK(0),
DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY),
) inst_axi_ad9361_1 ( .rx_clk_in_p(rx_clk_in_1_p), .rx_clk_in_n(rx_clk_in_1_
```

Analog Devices ad9361 1 interface core

inst_adc_axi_dmac

```
axi_dmac #(

ID(0),

DMA_DATA_WIDTH_SRC(128),

DMA_DATA_WIDTH_DEST(64),

DMA_LENGTH_WIDTH(24),

DMA_2D_TRANSFER(0),

ASYNC_CLK_REQ_SRC(1),

ASYNC_CLK_SRC_DEST(1),

ASYNC_CLK_DEST_REQ(1),

AXI_SLICE_DEST(0),

AXI_SLICE_SRC(1),
```

```
SYNC_TRANSFER_START(1),
CYCLIC(0),
DMA_AXI_PROTOCOL_DEST(DMA_AXI_PROTOCOL_TO_PS),
DMA_AXI_PROTOCOL_SRC(1),
DMA_TYPE_DEST(0),
DMA_TYPE_SRC(1),
DMA_AXI_ADDR_WIDTH(32),
MAX_BYTES_PER_BURST(128),
FIF0_SIZE(8),
AXI_ID_WIDTH_SRC(6),
AXI_ID_WIDTH_DEST(6),
DMA_AXIS_ID_W(8),
DMA_AXIS_DEST_W(4),
DISABLE_DEBUG_REGISTERS(0),
ENABLE_DIAGNOSTICS_IF(0),
ALLOW_ASYM_MEM(1),
CACHE_COHERENT_DEST(1)
) inst_adc_axi_dmac ( .s_axi_aclk(axi_aclk), .s_axi_aresetn(axi_aresetn),
```

Analog Devices DMA for AD9361 ADC

inst_dac_axi_dmac

```
axi_dmac #(

ID(0),

DMA_DATA_WIDTH_SRC(64),

DMA_DATA_WIDTH_DEST(128),

DMA_LENGTH_WIDTH(24),

DMA_2D_TRANSFER(0),

ASYNC_CLK_REQ_SRC(1),

ASYNC_CLK_SRC_DEST(1),

ASYNC_CLK_DEST_REQ(1),

AXI_SLICE_DEST(1),

AXI_SLICE_SRC(0),

SYNC_TRANSFER_START(0),
```

```
CYCLIC(1),
DMA_AXI_PROTOCOL_DEST(1),
DMA_AXI_PROTOCOL_SRC(DMA_AXI_PROTOCOL_TO_PS),
DMA_TYPE_DEST(1),
DMA_TYPE_SRC(0),
DMA_AXI_ADDR_WIDTH(32),
MAX_BYTES_PER_BURST(128),
FIF0_SIZE(8),
AXI_ID_WIDTH_SRC(6),
AXI_ID_WIDTH_DEST(6),
DMA_AXIS_ID_W(8),
DMA_AXIS_DEST_W(4),
DISABLE_DEBUG_REGISTERS(0),
ENABLE_DIAGNOSTICS_IF(0),
ALLOW_ASYM_MEM(1),
CACHE_COHERENT_DEST(0)
) inst_dac_axi_dmac ( .s_axi_aclk(axi_aclk), .s_axi_aresetn(axi_aresetn), .s
```

Analog Devices DMA for AD9361 DAC

inst_adc_cpack

Analog Devices Utility to take ad9361 data and pack it to a AXIS bus for the ADC

inst_dac_cpack

Analog Devices Utility to take ad9361 data and unpack from the AXIS bus to the DAC

inst_dac_fifo

```
util_rfifo #(

NUM_OF_CHANNELS(8),
```

```
DIN_DATA_WIDTH(16),

DOUT_DATA_WIDTH(16),

DIN_ADDRESS_WIDTH(4)
) inst_dac_fifo ( .din_rstn(p_aresetn), .din_clk(d_clk), .din_enable_0(fife
```

Analog Devices FIFO for AD9361 DAC BUS

inst_adc_fifo

Analog Devices FIFO for AD9361 ADC BUS

inst_clkdiv

```
util_clkdiv #(
.
SIM_DEVICE(SIM_DEVICE)
) inst_clkdiv ( .clk(l_clk), .clk_sel(adc_r1_mode_0 & dac_r1_mode_0 & adc_r
```

Analog Devices Clock Divider with select

isnt_util_tdd_sync_0

```
util_tdd_sync #(

TDD_SYNC_PERIOD(100000000)
) isnt_util_tdd_sync_0 ( .clk(axi_aclk), .rstn(axi_aresetn), .sync_mode(tdo
```

Analog Devices tdd sync utility

isnt_util_tdd_sync_1

```
util_tdd_sync #(

TDD_SYNC_PERIOD(100000000)
) isnt_util_tdd_sync_1 ( .clk(axi_aclk), .rstn(axi_aresetn), .sync_mode(tdo
```

Analog Devices tdd sync utility

inst_ad_reset

```
ad_rst inst_ad_reset (
    rst_async(~axi_aresetn),
    clk(d_clk),
    rstn(p_aresetn),
    .
    rst(p_reset)
)
```

Analog Devices reset sync

inst_axilxbar

AXI Lite crossbar for ADC DMA, DAC DMA, and AD9361 1/0 control registers.