EDUARDO SALDANA

eduardosoftwaredev@gmail.com

**** 289-214-7703

♀ St. Catharines

in https://www.linkedin.com/in/eduardo-saldana-2142241a5/

C EduSScs

EMPLOYMENT

Rev

Captioner · Apr. 2020 to Jan. 2021

- Provided accurate and timely captions for a variety of audio and video content, ensuring accessibility for individuals with hearing impairments.
- Transcribed and captioned a high volume of audio and video files, meeting strict quality and turnaround time requirements.
- Utilized transcription software and tools effectively to enhance productivity and accuracy in captioning tasks.

EDUCATION

Brock University · Sept. 2019 to June 2023

B.S. Computer Science 2023

Minor in Economics

SKILLS

TECHNICAL SKILLS: Python, Java, HTML, CSS, Javascript, Typescript, PHP, SQL, NoSQL, C++, Visual Studio, Android Studio,

Agile Methodology, Waterfall Methodology, React, Figma, Fluent in Spanish

SOFT SKILLS: Ability to rapidly acquire knowledge and proficiency in emerging technologies,

High level of self-motivation coupled with a persistent focus on delivering high-quality, results-oriented outcomes,

Meticulous attention to detail in all tasks and projects with a creative approach to problem-solving,

Highly developed interpersonal, verbal, and written communication skills, enabling effective collaboration

PROJECTS

Niagara on the Lake Museum Exhibit Website

Jan. 2021 to May 2021

- Collaborated in a team to develop a website showcasing objects at the Niagara on the Lake Museum.
- Utilized Agile Methodology, creating both front-end and back-end components using HTML, CSS, JavaScript, JSON files, and other technologies.
- Managed project progress through sprints, ensuring timely delivery and continuous improvement.
- Created comprehensive documentation and conducted testing to enhance functionality, user experience, and future maintenance.

Feed-Forward Neural Network for Electric Motor Health Classification

Jan. 2021 to Apr. 2021

- Implemented Fast Fourier Transform (FFT) in Python to convert raw time-domain data of electric motor's current draw into frequency-domain representations.
- Built a Feed-Forward neural network with an input layer tailored to the chosen frequency of the data with an output layer that discriminates between working and malfunctioning motors.
- Initially trained the neural network using the entire data set to function as a memory, debugging the code to ensure functionality.
- Employed backpropagation for the training process, with the goal of effectively classifying motor health based on the frequency spectrum of the current draw.

AWARDS

Dean's Honours List (2019, 2020, 2021, 2022)

Faculty of Mathematics & Science, Brock University

Recognized for exceptional academic performance, achieving an average of 80% or higher upon completion of 5, 10, 15, and 20 undergraduate credits

Brock Scholarship Award (2019)

BrockUniversity

Received for having an admission average of over 93%.