COMP 10280 Programming I (Conversion)

Practical Sheet 11 Thursday, 4 October 2018

For each of the following questions, write an algorithm in pseudocode first before writing a Python program. Submit your algorithms in pseudocode as well as your Python programs.

1. Taking the program to calculate the factorial of a number presented in class, investigate how it would be possible to have just two cases, one where the number is less than 0 and one where it isn't. Rewrite the program to do this.

Save this program as p11p1.py.

2. Write a program that prompts the user for an integer and uses a while loop to calculate that number of terms of the Fibonacci Series. Try to make the program as small and efficient as possible.

Save this program as p11p2.py.

3. Write a program that prompts the user for a series of integers and, for each of the numbers entered, uses a for loop to calculate that number of terms of the Fibonacci Series. The program should stop when a negative number is entered.

Save this program as p11p3.py.

4. The Catalan Numbers form a sequence of natural numbers. They are defined as follows:

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

They can also be defined as follows:

$$C_0 = 1 \text{ and } C_{n+1} = \frac{2(2n+1)}{n+2} C_n, n \geq 0$$

The first few Catalan Numbers are:

$$C_0=1$$
, $C_1=1$, $C_2=2$, $C_3=5$, $C_4=14$, $C_5=42$, $C_6=132$, $C_7=429$, $C_8=1430$.

Write a program that prompts the user for an integer and calculates that number of Catalan Numbers.

Save this program as p11p4.py.

Please upload your work to the Brightspace site before Sunday evening.

You should keep a copy of your programs for your portfolio.