Computational Nuclear Physics

Cody L. Petrie

Arizona State University Tempe, AZ

Nuclear Physics

- Pictures of things that nuclear physics is good for, like ...
 - Nuclear power (on earth, spacecraft, etc.)
 - Medical imaging
 - Basic structure of nuclei
 - Neutron Stars

Integrals

• Ground state (lowest) energy

$$E_{\mathsf{gs}} = \int \psi^*(\mathsf{R}) H \psi(\mathsf{R}) d\mathsf{r}_1 d\mathsf{r}_2 \dots d\mathsf{r}_\mathsf{N}$$

Integrals

Ground state (lowest) energy

$$E_{gs} = \int \psi^*(\mathbf{R}) H \psi(\mathbf{R}) d\mathbf{r}_1 d\mathbf{r}_2 \dots d\mathbf{r}_{\mathbf{N}}$$

• If you know what an integral is, go ahead and panic.

Integrals

Ground state (lowest) energy

$$E_{gs} = \int \psi^*(\mathbf{R}) H \psi(\mathbf{R}) d\mathbf{r}_1 d\mathbf{r}_2 \dots d\mathbf{r}_{\mathbf{N}}$$

- If you know what an integral is, go ahead and panic.
- If you don't know what an integral is, it's easy. Here I'll show you . . .

What is an integral?

 Let's say you wanted to know the length of a line at disneyland. You can have 1 stick of known length. Does a smaller or larger stick make it faster? Which makes it more

accurate?

What is an integral?

 Let's say you wanted to know the length of a line at disneyland. You can have 1 stick of known length. Does a smaller or larger stick make it faster? Which makes it more

accurate?

$$L = \sum_{i} I_{i} \xrightarrow{I_{i} \to 0} \int_{\text{line}} dI$$

Monte Carlo

$$A_{\mathsf{circle}} = \sum_{i} \sum_{j} dx_{i} dy_{j}$$

Monte Carlo

$$\frac{A_{\rm circle}}{A_{\rm box}} = \frac{\# \text{ points in the circle}}{\# \text{ points in the box (total)}}$$

Monte Carlo Example

• You can estimate $\pi = 3.14159$ using the method above.

$$\frac{A_{\text{circle}}}{A_{\text{box}}} = \frac{\pi r^2}{(2r)(2r)} = \frac{\pi}{4} = \frac{\# \text{ points in the circle}}{\# \text{ points in the box (total)}}$$

$$\pi = 4 \frac{\# \text{ points in the circle}}{\# \text{ points in the box (total)}}$$

Monte Carlo on a Supercomputer

$$E_{gs} = \int \psi^*(\mathbf{R}) H \psi(\mathbf{R}) d\mathbf{r_1} d\mathbf{r_2} \dots d\mathbf{r_N}$$

 $\psi_T^*(\mathbf{R}) H \psi_T(\mathbf{R})$ at each point

Monte Carlo in Nuclear Physics

$$E_{gs} = \int \psi^*(\mathsf{R}) H \psi(\mathsf{R}) d\mathsf{r}_1 d\mathsf{r}_2 \dots d\mathsf{r}_\mathsf{N}$$

- Guess Ψ_T
- Get a good guess for H from somebody else
- Put it on a supercomputer
- Change Ψ_T until you get the lowest energy you can (Variational Monte Carlo)

Better Ψ_T Results

Table: Energy (*per nucleon) in MeV

System	Linear	IP Quadratic	Quadratic	Experimental
⁴ He	-27.14(4)	-27.22(3)	-27.11(3)	-28.295
¹⁶ O	-115.7(9)	-121.5(1.5)	-120.0(1.4)	-127.62
⁴⁰ Ca	-324(3)	-347(8)	-349(5)	-342.1
SNM*	-13.92(6)	-14.80(7)	-14.70(11)	

Better Ψ_T Cost

	⁴ He	¹⁶ O	SNM(28)	⁴⁰ Ca
IP Quadratic	1.73	30.7	64.8	720.9
Quadratic	2.00	58.8	133.6	1473.9

⁴He Nuclei Forming in Neutron Stars

• Use new wave function to study α formation in the inner crust of neutron stars.

W. Newton Nature Physics 9, 396-397 (2013)

Alpha Particle Clustering in Mostly Neutron Matter

 If alpha particles form in nearly neutron matter then we should be able to estimate their energy by

$$E_{\alpha} = E_{14n+2p} - E_{12n}$$

• Both energies decreased, but the combination did not always.

Table: Alpha energy in MeV

ρ (fm ⁻³)	lin	ip
0.0005	-22.3(3)	-23.8(2)
0.001	-20.7(3)	-23.0(2)
0.002	-21.6(2)	-22.6(2)
0.003	-25.7(3)	-23.5(5)
0.005	-27.5(5)	-22.4(3)
0.01	-37.3(3)	-34.7(3)

Picture References

Ariel line on opening day (accessed 4 Aug 2018):

 $\label{lem:https://forums.wdwmagic.com/threads/omg-little-mermaid-is-sucha-failure.753509/page-2 \\ \textbf{Monte Carlo casino (accessed 6 Aug 2018):}$

http://www.montecarlosbm.com/luxury-casinos-monaco-3/monte-carlo-casino/