

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA (Prova Online)

01/02/2021

Allievi fisici

Allegare alle soluzioni il presente testo indicando (in STAMPATELLO):

NOME E COGNOME.....

Tempo a disposizione: 1 ora 45 minuti

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K)

□ ESERCIZIO 1 (punti 10)

Si studi l'impianto rappresentato in figura. Si ha un ciclo Rankine (acqua come fluido di lavoro) la cui potenza meccanica prodotta dalla turbina a vapore viene interamente utilizzata per il funzionamento del compressore C che comprime 30 kg/s di azoto da P5=1 bar (T5=35°C) fino a P6=20 bar. Il compressore ha un rendimento isoentropico pari a 0.8.

Si assuma unitario il rendimento meccanico delle macchine.

Trattare l'azoto come gas ideale biatomico (MM=28 kg/kmol).

Con i dati riportati in figura e sapendo che P4=0.05 bar e P1=100 bar, si chiede di valutare:

- a. la potenza del compressore C
- b. la portata circolante nel ciclo a vapore
- c. il ∆h14 (in 1→4 assumere l'acqua come liquido ideale con densità di 1000 kg/m3)
- d. la potenza termica entrante nel ciclo a vapore;
- $\eta_{is,TV}=87\%$ $\Delta h_{is}=1452.97 \, kJ/kg$ $\eta_{hyd}=78\%$ $\eta_{is,c}=80\%$ $\eta_{is,c}=80\%$

 $h_2 = 3481.7 \text{ kJ/kg}$

□ ESERCIZIO 2 (punti 10)

In un tubo di acciaio lungo 1 m e di raggio interno e spessore rispettivamente pari a 8 mm e 1 mm (k_{acc} =14 W/m/K) scorre un fluido alla temperatura di 5°C (assunta uniforme lungo il tubo).

Sul tubo di acciaio è posto uno strato di materiale plastico (k_{iso}=0.7 W/m/K) di spessore pari a 2 mm. La superficie cilindrica esterna è lambita trasversalmente da una corrente d'aria ambiente a 25°C alla velocità di 1 m/s.

Assumendo un coefficiente di scambio termico convettivo interno pari a 380 W/m²/K, si chiede di (condizioni stazionarie) :

- a. calcolare il coefficiente di scambio convettivo esterno
- b. calcolare la potenza trasferita al fluido

esterno; a → costante; n → costante)

- c. calcolare le temperature sulle superfici solide del sistema
- d. determinare, giustificando la risposta, se l'aumento dello spessore di materiale plastico diminuisce sempre la potenza trasferita al fluido. (Consiglio: esprimere il coeff. convettivo esterno come h=a*Dⁿ D→Diametro

Correlazione per convezione forzata per cilindro (lunghezza caratteristica diametro) e proprietà dell'aria stimate a T ambiente (per le proprietà mancanti considerare l'aria come gas ideale a 101325 Pa).

$Nu = 0.683 * Re^{0.466} Pr^{\frac{1}{3}}$						
c _p [J/kg/K]	1006					
k [W/m/K]	0.025					
μ [Pa*s]	17.95E-06					
MM [kg/kmol]	28.9					

□ QUESITO 3 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Descrivere un ciclo Rankine saturo ideale (riportando lo schema di impianto e rappresentando il ciclo su un piano T-s e h-s). Discutere l'effetto della pratica del surriscaldamento.
- 2- Descrivere l'approccio a parametri concentrati per lo studio di un transitorio di raffreddamento e ricavare l'andamento della temperatura nel tempo. Riportare tutte le ipotesi considerate e rappresentare graficamente la potenza termica scambiata nel tempo. Calcolare l'energia scambiata in un determinato intervallo di tempo.

QUESITO 5 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.2 punti se sbagliata).

	cola Hopocta corrotta	,0.0	partie per riepeeta cerretta, e.z parti ee ebagiiata).	•		
			Se Qgen>0 allora sempre T(X=0)=T _{MAX}	vero		falso
sinistra adiabatica.						
	SN 5000000000		kB>kC (k = conduttività termica)	vero		falso
	A B C		Rcond,B = Rcond,C (R> Res. Termica K/W	□ vero	×	falso
	Qgen [W/m³]					
	x=0 m x					
ļ	Per un ciclo Joule Brayton	+	La P _{MIN} coincide con P _{AMB}	Xvero		falso
- 1	aperto reale:	Αr		vero		
	P→Pressione		ηII è sempre minore di 1	J		
	T→Temperatura] `		
- 1	Una macchina motrice		Se η _{idr} =1 allora ΔT>0			
elabora un fluido			Lmeccanico> Lidraulico > Lelettrico		K 3	
incomprimibile (ρ=800			Se ΔP =1bar, Δz =1m, Δv =0m/s ed η_{idr} =0.8 allora I=168.5	□ vero	X	falso
	kg/m ³):		J/kg			
	Una sfera(1) e un cubo (2)		Il coeff. convettivo h è indipendente dalla Tamb	□ vero		
	di stesso materiale si		Per t→∞, la T al centro→Tamb			
	trovano alla stessa T iniziale	S	e Fou1=Fou2 e stesso materiale, allora il cubo e la sfera		X	falso
- 1	(T ₀), (T ₀ >Tamb), aria in		hanno lo stesso volume			
quiete:		NI.				f-1
	Per un fluido reale:		el diagramma h-s, i valori numerici di s e h riportati pendono dallo stato di riferimento	vero		taiso
			el piano h-s, le isobare sono segmenti rettilinei nella zona bifase	<i>y</i> \		falso
		Ne	el piano T-s, le isoentalpiche sono sempre monotone	□ vero	X	falso
		1		1	1	