#### Likelihood and models of evolution

#### Emily Jane McTavish

Life and Environmental Sciences University of California, Merced ejmctavish@ucmerced.edu, twitter:snacktavish

(With thanks to Paul Lewis for slides)

#### How can we deal with character conflict?

- ► We need to apply an error model
- Likelihood provides a measure of surprise under different models

## The Likelihood Criterion

The probability of the observations computed using a model tells us how surprised we should be.

The preferred model is the one that surprises us least.



## The Fair Dice model

$$\Pr(\text{obs.}|\text{fair dice model}) = \left(\frac{1}{6}\right)^{20} = \frac{1}{3,656,158,440,062,976}$$











You should have been **very surprised** at this result because the probability of this event is **very small**: only 1 in 3.6 <u>quadrillion</u>!



























## The Trick Dice model

(assumes dice each have 5 on every side)

 $Pr(obs.|trick\ dice\ model) = 1^{20} = 1$ 



Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution)

under this model

## Results

| Model      | Likelihood                 | Surprise level                            |
|------------|----------------------------|-------------------------------------------|
| Fair Dice  | 1<br>3,656,158,440,062,976 | Very, <i>very</i> , <i>very</i> surprised |
| Trick Dice | 1                          | Not surprised at all                      |

winning model maximizes likelihood (and thus minimizes surprise)

Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution)

## Likelihood: why a new term?



Probabilities of data outcomes given one particular model sum to 1.0

# Likelihood and model comparison

- Analyses using likelihoods ultimately involve model comparison
- The models compared can be **discrete** (as in the fair vs. trick dice example)
- More often the models compared differ continuously:
  - Model 1: branch length is 0.01
  - Model 2: branch length is 0.02
  - Model 3: branch length is 0.03

Rather than having an infinity of models, we instead think of the branch length as a parameter within one model

# Likelihood calculated from a single sequence

 $\Pr(A) = \pi_A$ 

First 32 nucleotides of the ψη-globin gene of gorilla:

 $Pr(C) = \pi_C$  $Pr(G) = \pi_G$ 

 $Pr(T) = \pi_T$ 

#### GAAGTCCTTGAGAAATAAACTGCACACACTGG

$$L = \pi_G \pi_A \pi_A \pi_G \pi_T \pi_C \pi_C \pi_T \pi_T \pi_G \pi_A \pi_G \pi_A \pi_A \pi_A \pi_T \pi_A \pi_A \pi_A \pi_C \pi_T \pi_G \pi_C \pi_A \pi_C \pi_A \pi_C \pi_A \pi_C \pi_T \pi_G \pi_G$$

$$= \pi_A^{12} \pi_C^{7} \pi_G^{7} \pi_T^{6}$$
Note that we are assuming independence among sites here

$$\log L = 12\log(\pi_A) + 7\log(\pi_C) + 7\log(\pi_G) + 6\log(\pi_T)$$

We can already see by eye-balling this that a model allowing **unequal** base frequencies will **fit better** than a model that assumes **equal** base frequencies because there are about twice as many As as there are Cs, Gs and Ts.

# Likelihood of the simplest tree

sequence 1 \_\_\_\_\_ sequence 2

To keep things simple, assume that the sequences are only 2 nucleotides long:

$$\begin{array}{c} \mathbf{GA} \\ \uparrow \uparrow \\ \text{site 1} & \text{site 2} \end{array} \\ L = L_1 L_2 \\ = \left[ \left( \frac{1}{4} \right) \left( \frac{1}{4} + \frac{3}{4} e^{-4\alpha t} \right) \right] \left[ \left( \frac{1}{4} \right) \left( \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} \right) \right] \\ \mathbf{Pr(G)} \qquad \mathbf{Pr(G|G, \alpha t)} \qquad \mathbf{Pr(A)} \qquad \mathbf{Pr(G|A, \alpha t)} \\ \end{array}$$

Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution)

Note that we are NOT assuming independence here

26

### Maximum likelihood estimation

First 32 nucleotides of the  $\psi\eta$ -globin gene of gorilla and orangutan:

gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

$$L = \left[ \left( \frac{1}{4} \right) \left( \frac{1}{4} + \frac{3}{4} e^{-4\alpha t} \right) \right]^{30} \left[ \left( \frac{1}{4} \right) \left( \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} \right) \right]^2$$



#### number of substitutions = rate $\times$ time



This is the rate at which an existing A changes to a T

Overall substitution rate is  $3\alpha$ , so the expected number of substitutions ( $\nu$ ) is

$$v = 3\alpha t$$

#### Rate and time are confounded



## Likelihood of an unrooted tree

(data shown for only one site)





Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution)

Note use of the AND probability rule

## **Substitution Models**

#### $y = -1.5972 x^5 + 23.167 x^4 - 126.18 x^3 + 319.17 x^2 - 369.22 x + 155.67$



Copyright © 2007 Paul O. Lewis

### Models

- Models help us intelligently interpolate between our observations for purposes of making predictions
- Adding parameters to a model generally increases its fit to the data
- Underparameterized models lead to poor fit to observed data points
- Overparameterized models lead to poor prediction of future observations
- Criteria for choosing models include likelihood ratio tests, AIC, BIC, Bayes Factors, etc.
  - all provide a way to choose a model that is neither underparameterized nor overparameterized

## Jukes-Cantor (JC69) model

- The four bases (A, C, G, T) are expected to be **equally frequent** in sequences ( $\pi_A = \pi_C = \pi_G = \pi_T = 0.25$ )
- Assumes **same rate** for all types of substitution  $(r_{A\leftrightarrow C} = r_{A\leftrightarrow G} = r_{A\leftrightarrow T} = r_{C\leftrightarrow G} = r_{C\leftrightarrow T} = r_{G\leftrightarrow T} = \alpha)$
- Usually described as a **1-parameter** model (the parameter being the edge length)
  - Remember, however, that each edge in a tree can have its own length, so there are really as many parameters in the model as there are edges in the tree!
- Assumes substitution is a **Markov** process...

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro (ed.). Mammalian Protein Metabolism. Academic Press. New York.

# What is a Markov process?

A substitution occurs, changing T to C



To predict which base will be present after some time t we need know only which base was present at time 0 (C in this case).

If it is irrelevant that there was a T present at this site before time 0, then this is a Markov model.



# Equilibrium frequencies

- The JC69 model assumes that the frequencies of the four bases (A, C, G, T) are equal
- The equilibrium relative frequency of each base is thus 0.25
- Why are they called *equilibrium* frequencies?



Paul O. Lewis (2017 Woods Hole Workshop in Molecular Evolution)