From RNA-seq reads to gene models

Biodiversity Genomics Academy 2024

Wednesday 02nd October 2024

Jose Perez-Silva

Bioinformatician at Genebuild

ereboperezsilva@ebi.ac.uk

introduction - genome annotation

introduction - genome annotation

introduction - transcription and RNA-seq

introduction - transcription and RNA-seq

introduction - data

- Annotating_the_genome_with_rnaseq_data.pdf
- Fastq/
 - 2cell_chr12_R1.fastq
 - 2cell_chr12_R2.fastq
 - 6hpf_chr12_R1.fastq
 - 6hpf_chr12_R2.fastq
- Genome/
 - Danio_rerio.GRCz11.dna.chromosome.12.fa

introduction - data

- Annotating the genome with rnaseq data.pdf
- Fastq/
 - 2cell chr12 R1.fastq
 - 2cell chr12 R2.fastq
 - 6hpf chr12 R1.fastq
 - 6hpf chr12 R2.fastq
- Genome/
 - Danio_rerio.GRCz11.dna.chro

introduction - data

- Annotating_the_genome_with_rnaseq_data.pdf
- Fastq/
 - 2cell_chr12_R1.fastq
 - 2cell_chr12_R2.fastq
 - 6hpf_chr12_R1.fastq
 - 6hpf_chr12_R2.fastq
- Genome/
 - Danio_rerio.GRCz11.dna.chromosome.12.fa

introduction - tools

STAR: Spliced Transcripts Alignment to a Reference ©

- "Ultrafast universal RNA-seq aligner"
- SCALLOP:
 - "Accurate reference-based transcript assembler"
- SAMTOOLS:
 - "Suite of programs for interacting with high-throughput sequencing data"

let's get starting

- Access: https://gitpod.io/#https://github.com/thebgacademy/ensembl-annotation
- From the options:
 - Leave this
 - Choose your favourite editor
 - Choose "Large" in the third

let's get starting

- Wait while it loads. This may take a second or two.
- Navigate the files in the left, open ensembl-annotation, then
 Annotating_the_genome, and PREVIEW instructions.md by left-clicking it.
- You should now have a markdown document with instructions.

STAR

- Maps over splices, mismatches and excludes unwanted segs
- Requires a genome index
- Docs available in github page
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/

SAMtools

- A suite of software for various tasks:
 - Fastq to BAM/CRAM
 - WGS/WES mapping to variant calls
 - Filtering of VCF files
 - Several, BAM-workflow related
- Docs available in github page
- https://pubmed.ncbi.nlm.nih.gov/33590861/

samtools addreplacerg -r 'ID:fish' -r 'LB:1334' -r 'SM:alpha' -o output.bam input.bam samtools ampliconclip -b bed.file input.bam samtools ampliconstats primers.bed in.bam samtools bedcov aln.sorted.bam samtools calmd in.sorted.bam ref.fasta samtools cat out.bam in1.bam in2.bam in3.bam samtools collate -o aln.name collated.bam aln.sorted.bam samtools consensus -o out.fasta in.bam samtools coverage aln.sorted.bam samtools cram-size -v -o out.size in.cram samtools depad input.bam samtools depth aln.sorted.bam samtools dict -a GRCh38 -s "Homo sapiens" ref.fasta samtools faldx ref.fasta samtools fasta input.bam > output.fasta samtools fastq input.bam > output.fastq samtools fixmate in.namesorted.sam out.bam samtools flags PAIRED, UNMAP, MUNMAP samtools flagstat aln.sorted.bam samtools fqidx ref.fastq samtools head in.bam samtools idxstats aln.sorted.bam samtools import input.fastq > output.bam samtools index aln.sorted.bam samtools markdup in.algnsorted.bam out.bam samtools merge out.bam in1.bam in2.bam in3.bam samtools mpileup -C50 -f ref.fasta -r chr3:1,000-2,000 in1.bam in2.bam samtools phase input.bam samtools quickcheck in1.bam in2.cram samtools reference -o ref.fa in.cram samtools reheader in.header.sam in.bam > out.bam samtools reset -o /tmp/reset.bam processed.bam samtools samples input.bam samtools sort -T /tmp/ain.sorted -o ain.sorted.bam ain.bam samtools split merged,bam samtools stats aln.sorted.bam samtools targetcut input.bam samtools tview aln.sorted.bam ref.fasta samtools view -bt ref_list.txt -o aln.bam aln.sam.gz

scallop

- Splice graph
- Docs available in github page
- https://www.nature.com/articles/nbt.4020

what comes next?

what comes next?

- There are tons of transcripts (m, snc, lnc, r, ...)
- We must differentiate among them
- Translation, gene model generation, final geneset

overview

- Simplified show of 1 process
 among many in our pipeline
- Alternatives:
 - HISAT2, salmon
 - StringTie2

overview

- A different alternative:
 - NextFlow/nf-core
- Different functionalities and uses
- Modules and pipelines

The Eukaryotic Annotation Team

Fergal Martin
Eukaryotic Annotation Team Leader

The Genebuild Team

Leanne Haggerty
Ensembl Genome Annotation Project Lead

Swati Sinha
Senior Bioinformatician

Francesca Floriana Tricomi
Bioinformatician

Jose Maria Gonzalez Perez-Silva
Bioinformatician

Vianey Paola Barrera Enriquez
Bioinformatician

Acknowledgements

Funding

National Human Genome Research Institute (NHGRI)

National Institute of Allergy and Infectious Diseases (NIAID)

