FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 18. Reduction and undecidable languages II

Eunjung Kim

E_{LBA} IS UNDECIDABLE

 $E_{LBA} = \{ \langle M \rangle : M \text{ is LBA and } L(M) = \emptyset \}.$

UNDECIDABILITY OF E_{LBA}

 E_{IBA} is undecidable.

- Reduce from A_{TM} to E_{LBA} .
- Can we use the same reduction from A_{TM} to E_{TM} ?

E_{LBA} IS UNDECIDABLE

```
E_{LBA} = \{ \langle M \rangle : M \text{ is LBA and } L(M) = \emptyset \}.
```

- *D* upon an input $\langle M, w \rangle$ does the following:
 - Compute & write an encoding $\langle B^{M,w} \rangle$ of LBA $B^{M,w}$ s.t.

$$L(B^{M,w}) = \begin{cases} \{ \text{the accepting computation history of } M \text{ on } w \} \\ \emptyset \quad \text{if } M \text{ does not accept } w \end{cases}$$

- 2 Run E on $\langle B^{M,w} \rangle$.
- 3 D outputs

$$\begin{cases} No & \text{if } E \text{ outputs YES} \\ YES & \text{if } E \text{ outputs NO} \end{cases}$$

EIBA IS UNDECIDABLE

How does the LBA $B^{M,w}$ work internally?

$$L(B^{M,w}) = \begin{cases} \{ \text{the accepting computation history of } M \text{ on } w \} \\ \emptyset \quad \text{if } M \text{ does not accept } w \end{cases}$$

Upon an input string $x \in \Sigma^*$, we want:

• $B^{M,w}$ rejects x if it is not in the form

$$\#C_1\#C_2\#\cdots\#C_\ell\#$$

for some ℓ where

- each C_i is a configuration of M,
- C_1 is a starting configuration of M on w, i.e. q_{init} w,
- C_{ℓ} is an accepting configuration of M, i.e. $y \ q_{accept} \ z$ for some $y, z \in \Gamma^*$.
- $B^{M,w}$ zig-zags between C_i and C_{i+1} and check $C_i \vdash_M C_{i+1}$. Reject if not.
- Accept the input x if nothing went wrong for all $i \le \ell 1$.

TM COMPUTING A FUNCTION

Let's use the writing power of TM to have more than 'yes'-'no' answers.

TM COMPUTING A FUNCTION IN GENERAL

Consider a single-tape TM $M = (Q, \Sigma, \delta, q_0, q_{final})$:

• the contents of the tape when M reaches q_{final} (halting/final state, and terminate immediately) is said to be the output of M on w, written as M(w).

We say that M computes a function $f: \Sigma^* \to \Sigma^*$ if for every input $w \in \Sigma^*$,

$$M(w) = f(w)$$
.

Especially, TM computing a function must halt on every input w.

TM COMPUTING A FUNCTION

Let's use the writing power of TM to have more than 'yes'-'no' answers.

TM COMPUTING A FUNCTION IN GENERAL

Consider a single-tape TM $M = (Q, \Sigma, \delta, q_0, q_{final})$:

• the contents of the tape when M reaches q_{final} (halting/final state, and terminate immediately) is said to be the output of M on w, written as M(w).

We say that M computes a function $f: \Sigma^* \to \Sigma^*$ if for every input $w \in \Sigma^*$,

$$M(w) = f(w)$$
.

Especially, TM computing a function must halt on every input w.

A function f is (Turing)-computable if there exists TM that computes f.

TM COMPUTING A FUNCTION

Let's use the writing power of TM to have more than 'yes'-'no' answers.

TM COMPUTING A FUNCTION IN GENERAL

Consider a single-tape TM $M = (Q, \Sigma, \delta, q_0, q_{final})$:

• the contents of the tape when M reaches q_{final} (halting/final state, and terminate immediately) is said to be the output of M on w, written as M(w).

We say that M computes a function $f: \Sigma^* \to \Sigma^*$ if for every input $w \in \Sigma^*$,

$$M(w) = f(w)$$
.

Especially, TM computing a function must halt on every input w.

A function f is (Turing)-computable if there exists TM that computes f.

Instead of a single-tape TM and f(w) is the content of the tape in the halting state, we can consider a multitape TM and designate a specific tape so that f(w) is the content of the said tape.

TM COMPUTING A PARTIAL FUNCTION

TM COMPUTING A PARTIAL FUNCTION

Consider a TM $M = (Q, \Sigma, \delta, q_0, q_{final})$ as before.

We say that M computes a partial function $f: \Sigma^* \to \Sigma^*$ if for every input $w \in \Sigma^*$,

$$M(w) = f(w)$$

whenever f(w) is defined and M does not halt if f(w) is not defined.

MAPPING-REDUCIBILITY

Mapping-reducibility: Definition

Let $A \subseteq \Sigma^*$ and $B \subseteq \Sigma^*$ be two languages.

We say that A is mapping-reducible (or many-one reducible) to B, written as $A \leq_m B$, if there is a <u>computable</u> function $f: \Sigma^* \to \Sigma^*$ such that for every input $w \in \Sigma^*$,

 $w \in A$ if and only if $f(w) \in B$.

$A \leq_m B$ means B is as hard as A

DECIDABILITY PROPAGATES BACKWARDS

If $A \leq_m B$ and B is decidable, then A is decidable.

$A \leq_m B$ means B is as hard as A

DECIDABILITY PROPAGATES BACKWARDS

If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: build a TM M_A which decides A, using the decider M_B for B and the TM R for reduction; R halts on every input $x \in \Sigma^*$ and $R(x) \in B$ if and only if $x \in A$.

 M_A upon an input string $w \in \Sigma^*$ does the following.

- \blacksquare Run R on w and output f(w).
- 2 Run M_B on f(w): if M_B accepts f(w), then M_A accepts. Otherwise, M_A rejects.

$A \leq_m B$ means B is as hard as A

DECIDABILITY PROPAGATES BACKWARDS

If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: build a TM M_A which decides A, using the decider M_B for B and the TM R for reduction; R halts on every input $x \in \Sigma^*$ and $R(x) \in B$ if and only if $x \in A$.

 M_A upon an input string $w \in \Sigma^*$ does the following.

- \blacksquare Run R on w and output f(w).
- 2 Run M_B on f(w): if M_B accepts f(w), then M_A accepts. Otherwise, M_A rejects.

UNDECIDABILITY PROPAGATES FORWARDS

If $A \leq_m B$ and A is undecidable, then B is undecidable.

RECOGNIZABILITY PROPAGATES BACKWARDS

If $A \leq_m B$ and B is Turing-recognizable, then A is recognizable.

RECOGNIZABILITY PROPAGATES BACKWARDS

If $A \leq_m B$ and B is Turing-recognizable, then A is recognizable.

UNRECOGNIZABILITY PROPAGATES FORWARDS

If $A \leq_m B$ and A is not Turing-recognizable, then B is not recognizable.

RECOGNIZABILITY PROPAGATES BACKWARDS

If $A \leq_m B$ and B is Turing-recognizable, then A is recognizable.

UNRECOGNIZABILITY PROPAGATES FORWARDS

If $A \leq_m B$ and A is not Turing-recognizable, then B is not recognizable.

TRANSITIVITY

If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.

MAPPING-REDUCIBILITY FOR COMPLEMENTS

If $A \leq_m B$, then $\neg A \leq_m \neg B$.

HALTING PROBLEM IS UNDECIDABLE

Halting problem: $HALT_{TM} = \{(M, w) : M \text{ is TM and } M \text{ halts on } w\}.$

HALT_{TM} IS UNDECIDABLE VIA MAPPING-REDUCIBILITY

 $HALT_{TM}$ is undecidable.

HALTING PROBLEM IS UNDECIDABLE

Halting problem: $HALT_{TM} = \{(M, w) : M \text{ is TM and } M \text{ halts on } w\}.$

HALT_{TM} IS UNDECIDABLE VIA MAPPING-REDUCIBILITY

 $HALT_{TM}$ is undecidable.

Proof: We build TM T which converts an input (M, w) to A_{TM} to an equivalent input (M', w') to $HALT_{TM}$.

HALTING PROBLEM IS UNDECIDABLE

Halting problem: $HALT_{TM} = \{(M, w) : M \text{ is TM and } M \text{ halts on } w\}.$

HALT_{TM} IS UNDECIDABLE VIA MAPPING-REDUCIBILITY

 $HALT_{TM}$ is undecidable.

Proof: We build TM T which converts an input (M, w) to A_{TM} to an equivalent input (M', w') to $HALT_{TM}$.

T works as follows on input (M, w):

- T internally builds a new (description of) TM M' which, on any input string x,
 - simulates M on x,
 - if M(x) = 1, then M' halts on x, (so (M', x) is YES-instance to $HALT_{TM}$)
 - if M(x) = 0, then M' loops on X (so (M', X) is No-instance to $HALT_{TM}$).
- **2** *T* outputs $\langle M', w \rangle$.

Remark: if M loops on x, then M' will loop on x anyway.

Post Correspondence Problem (PCP)

$$\left\{ \left[\frac{b}{ca}\right], \ \left[\frac{a}{ab}\right], \ \left[\frac{ca}{a}\right], \ \left[\frac{abc}{c}\right] \right\}_{\text{Chapter 5.2, Sipser 2012.}}$$

EMIL POST'S CORRESPONDENCE PROBLEM

INPUT: a (finite) set $P = \{(\alpha_1, \beta_1), (\alpha_2, \beta_2), \dots (\alpha_k, \beta_k)\}$ of ordered pairs (called dominoes) of strings over Σ .

QUESTION: Is there a match, i.e. a sequence $i_1, \ldots, i_m \in [k]$ such that

 $\alpha_{i_1}\cdots\alpha_{i_m}=\beta_{i_1}\cdots\beta_{i_m}$?

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

POST CORRESPONDENCE PROBLEM

Key idea: many-one reduction (mapping-reduction).

- Many-one reduce from $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM accepting } w \}$ to PCP.
- As an intermediary problem we introduce a decision problem Modified PCP (MPCP), in which an instance of PCP is a YES-instance iff there is a match which begins with the first domino (α_1, β_1) .
- Combine two (many-one) reductions: from A_{TM} to MPCP, and one from MPCP to PCP.

POST CORRESPONDENCE PROBLEM

Set-up

- **I** We assume that the TM M of instance $\langle M, w \rangle$ satisfies:
 - it is deterministic, with left/right move only.
 - M never attempts to move the header to the left when it is in the left-most cell of the tape.
 - if $w = \epsilon$, the string w is encoded as B, where B is a symbol in the alphabet.
- 2 Reduction from MPCP to PCP is simple:

$$\left\{ \left[\frac{t_1}{b_1}\right], \ \left[\frac{t_2}{b_2}\right], \ \left[\frac{t_3}{b_3}\right], \ \dots \ , \left[\frac{t_k}{b_k}\right] \right\}$$

$$\left\{ \left[\frac{\star t_1}{\star b_1 \star}\right], \; \left[\frac{\star t_1}{b_1 \star}\right], \; \left[\frac{\star t_2}{b_2 \star}\right], \; \left[\frac{\star t_3}{b_3 \star}\right], \; \ldots \; , \left[\frac{\star t_k}{b_k \star}\right], \; \left[\frac{\star \diamondsuit}{\diamondsuit}\right] \right\}$$

Chapter 5.2, Sipser 2012.