Finite State Automata

Prsented by - JPK

Finite State Automata - FSA Model

$egin{array}{c c c c c c c c c c c c c c c c c c c $										←
		\mathbf{a}_8	$ \mathbf{a}_{7} $	\mathbf{a}_{6}	a	\mathbf{a}_4	\mathbf{a}_3	$\mathbf{a_2}$	$\mathbf{a_1}$	\mathbf{a}_0

Tape Head

It is used to read input symbol

It contains input symbols a₀,a₁,a₂.... Where a's are input symbols

Finite Control

FC

It is **processing element** of FSA.

FC reads input symbol under tape head and depending upon current state moves to some next state and tape pointer is advanced to next symbol.

Finite State Automata Transition

FSA Transition

Suppose current state of FC is p and input symbol read is a then FC moves to next state q.

Symbolic Notation $\delta(p,a)$ is q

FSA - Types

- 1. Deterministic Finite State Automata DFA
- 2. Non-Deterministic Finite State Automata NFA
- NFA is easy to design than DFA
- NFA and DFA are equivalent
- It means both NFA and DFA have same computing power.
- FSA is abstract model of computing.
- It accepts regular language.

DFA - Formal Definition

- A DFA M is a **5 tuple.**
- $M=(Q,\Sigma,\delta,q_o,F)$
- Where
- Q is a finite set of states
- Σ is a finite set of input alphabets
- qo- initial state. It belongs to set Q. (Unique initial state)
- F set of final states/ accept states. It is subset of Q. (Multiple final
- δ It is transition function or mapping from set Q and Σ to Q. It maps a given state p and input symbol a to some next state q. It can be specified using a **state transition function, table or diagram.**
 - Symbolically $\delta: Q \times \Sigma -> Q$
- Note In DFA we have a unique transition of finite control for each and every state and input combination.

DFA Working

DFA working

input symbols are read by DFA and ultimately it reaches to some state q. DFA M reads current input symbol and depending upon current state makes a transition to next state. This process continues until all the

If q belongs to final/accept state we say that input string w is accepted Otherwise input string w is rejected by DFA.

DFA Examples

State Transition Diagram

State Transition Function $\delta(A,0)=B \\ \delta(A,1)=D \\ \delta(B,0)=B \\ \delta(B,1)=B \\ \delta(D,0)=D \\ \delta(D,1)=D$

State Transition Table

1	D	В	D
0	B	В	Ω
S	¥	(B)	О

H 0,1 DFA Working – Input 0101 State Transition Diagram <u>M</u> M 0,1 A

0

 \mathfrak{A}

0 H 0,1 DFA Working – Input 1101 State Transition Diagram <u>m</u> 0,1

Instantaneous Description of DFA

Instantaneous Description of DFA

ID is a **snapshot** of a DFA M. It specifies up to what point computation has progressed.

ID (q, abcde...) of a DFA M contains two things

- 1. Current state
- .. Portion of input string left to be read by DFA

Entails | - relationship of ID

δ(p, a)=q - means entails in one step

Acceptance of String w

a final state after reading input string w one symbol at a time. A string w is said to be accepted by DFA M if DFA M reaches

Symbolically (q_o, w) |-* (q, ε) where $q \varepsilon F$

Where |-* is reflexive transitive closure of |-And it means entails in o or more steps

Language accepted by DFA M

 The language accepted by DFA M is defined as set of all strings w belonging to Σ^* such that $(q_o, w)|-*(q, \varepsilon)$ and $q \varepsilon F$ (final/accept state) $L(M) = \{ w \in \Sigma^* \mid (q_o, w) | -*(q, \varepsilon) \land q \varepsilon F \}$

DFA Examples II

State Transition Diagram

State Transition Function $\delta(A,0)=B$ $\delta(A,1)=A$ $\delta(B,0)=B$ $\delta(B,1)=B$

State Transition Table

1	A	B
0	B	B
S	V A	(B)

DFA Examples II

State Transition Diagram

)

Acceptance of Strings

1.1101

(A,1101) |- (A,101) |- (A, 01) |- (B,1) |- (B, ε) accept

2.11

(A,111) |- (A,11) |- (A, 1) |- (A, ε) reject

3.010

 $(A,010) | - (B,10) | - (B,0) | - (B,\varepsilon)$ accept

 $L(M)=\{w \in \{0,1\}^* | w \text{ contains symbol '0'}\}$