

Figure 24.6: An affine space: the plane x + y + z - 1 = 0.

H defined such that for every point (x, y, 1 - x - y) on H and any $\begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^2$,

$$(x, y, 1 - x - y) + {u \choose v} = (x + u, y + v, 1 - x - u - y - v).$$

For a slightly wilder example, consider the subset P of \mathbb{A}^3 consisting of all points (x, y, z) satisfying the equation

$$x^2 + y^2 - z = 0.$$

The set P is a paraboloid of revolution, with axis Oz. The surface P can be made into an official affine space by defining the action $+: P \times \mathbb{R}^2 \to P$ of \mathbb{R}^2 on P defined such that for every point $(x, y, x^2 + y^2)$ on P and any $\begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^2$,

$$(x, y, x^2 + y^2) + \begin{pmatrix} u \\ v \end{pmatrix} = (x + u, y + v, (x + u)^2 + (y + v)^2).$$

See Figure 24.7.

This should dispel any idea that affine spaces are dull. Affine spaces not already equipped with an obvious vector space structure arise in projective geometry.

24.3 Chasles's Identity

Given any three points $a, b, c \in E$, since $c = a + \overrightarrow{ac}$, $b = a + \overrightarrow{ab}$, and $c = b + \overrightarrow{bc}$, we get

$$c = b + \overrightarrow{bc} = (a + \overrightarrow{ab}) + \overrightarrow{bc} = a + (\overrightarrow{ab} + \overrightarrow{bc})$$