

PROPAGATING, ANALYZING, AND REDUCING UNCERTAINTY

Concepts

- * Sensitivity Analysis $\partial x \to \partial y$ How does a change in X translate into a change in Y?
- * Uncertainty Propagation Var[x] → Var[y]
 How does the uncertainty in X affect the uncertainty in Y?
 How do we forecast Y with uncertainty?
- * Uncertainty Analysis which sources of uncertainty are most important?
- * Optimal Design

 How do we best reduce the uncertainty in our forecast?

Sensitivity Methods

- * Local
 - ★ Analytical: df/dθ
 - * One-at-a-time perturbations
- * Global
 - * Monte Carlo
 - * Sobol
 - * Emulators
 - * Elementary Effects
 - * Group Sampling

Extensive but Costly

Sparse but Cheap

Saltelli et al. 2008. Global Sensitivity Analysis

Sensitivity Analysis

Monte Carlo Sensitivity

Free if you do MC uncertainty propagation or MCMC

UNCERTAINTY PROPAGATION

UNCERTAINTY PROPAGATION

Analytic Numeric Distribution

Output Moments

Variable Transform

Analytical Moments Taylor Series

Numeric | Monte Carlo

Ensemble

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS. Typo in book (puts Taylor in with Ensemble)

VARIABLE TRANSFORM

$$|P_{Y}[y] = P_{\theta}[f^{-1}(y)] \cdot \left| \frac{df^{-1}(y)}{dy} \right|$$

$$X \sim N(0,1)$$

$$Y = X^{2}$$

$$Y \sim \chi^{2}$$

$$E[f(\bar{X})] = 0$$

$$E[f(X)] = 1$$

$$Var(aX) = a^2 Var(X)$$

$$Var(X+b)=Var(X)$$

Analytical Moments

$$Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)$$

$$Var(aX+bY)=a^2 Var(X)+b^2 Var(Y)+2abCov(X,Y)$$

$$Var\left(\sum X\right) = \sum Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

$$Var(X) = Var(E[X|Y]) + E[Var(X|Y)]$$

REL'N TO SENSITIVITY

LINEAR APPROX

TAYLOR SERIES

$$Var[f(x|\theta)] \approx Var \left[f(x|\bar{\theta}) + \frac{\frac{df}{d\theta}(x|\bar{\theta})}{1!} (\theta - \bar{\theta}) + \dots \right]$$

$$var[f(x)] \approx \left(\frac{\partial f}{\partial \theta_i}\right)^2 var[\theta]$$

TAYLOR SERIES

$$Var[f(x|\theta)] \approx Var \left[f(x|\bar{\theta}) + \frac{\frac{df}{d\theta}(x|\bar{\theta})}{1!} (\theta - \bar{\theta}) + \dots \right]$$

$$var[f(x)] \approx \sum_{i \neq j} \left(\frac{\partial f}{\partial \theta_{i}}\right)^{2} var[\theta_{i}] + \sum_{i \neq j} \left(\frac{\partial f}{\partial \theta_{i}}\right) \left(\frac{\partial f}{\partial \theta_{i}}\right) cov[\theta_{i}, \theta_{j}]$$

#

$$Y_{t+1} = f(Y_t, X_t | \theta) + \varepsilon$$

$$Var[Y_{t+1}] \approx \underbrace{\left(\frac{df}{dY}\right)^{2}}_{stability} \underbrace{Var[Y_{t}]}_{lC} + \underbrace{\left(\frac{df}{dX}\right)^{2}}_{uncert} \underbrace{Var[X]}_{driver} + \underbrace{\left(\frac{df}{d\theta}\right)^{2}}_{uncert} \underbrace{Var[\theta]}_{param} + \underbrace{Var[\varepsilon]}_{param} \underbrace{Var[\theta]}_{uncert} + \underbrace{Var[\varepsilon]}_{error}$$

COV & SCALING

 Scaling very dependent on spatial and temporal auto- & cross-correlation

$$\sum \sum \frac{\partial f}{\partial X_i} \frac{\partial f}{\partial X_j} COV[X_i, X_j]$$

UNCERTAINTY PROPAGATION

		Output	
Approach		Distribution	Moments
	Analytic	Variable Transform	Analytical Moments Taylor Series
	Numeric	Monte Carlo	Ensemble

Numerical Approximation

- * Monte Carlo Simulation --> Distribution
- * Ensemble Analysis --> Moments

MONTE CARLO UNCERTAINTY

- for (i in 1:n)
 - draw random values from distributions
 - run model

Already have this from MCMC!

- save results
- summarize distributions

ENSEMBLE UNCERTAINTY

- * for (i in 1:n) ** Requires smaller N to estimate moments than to approximate full PDF
 - draw random values from distributions
 - run model

Already have this from MCMC!

- save results
- Fit PDF to results
- Use PDF for intervals, etc.

Monte Carlo

Taylor Series

Unscented Transform

UNCERTAINTY PROPAGATION

		Output	
Approach		Distribution	Moments
	Analytic	Variable Transform	Analytical Moments Taylor Series
	Numeric	Monte Carlo	Ensemble

Uncertainty Analysis

VARIANCE DECOMPOSITION

SWITCHGRASS YIELD, CENTRAL ILLINOIS

How do the drivers of forecast uncertainty vary across ecological system?

Tools for model-data feedbacks

* Power analysis

- * Sample size needed to detect an effect size
- * Minimum effect size detectable given a size

* Observational design

- * What do I need to measure?
- * Where should I collect new data?
- * How do I gain new info most efficiently?

$SE \propto 1/sqrt(n)$

Power = f(effect size, SE)

Pseudo-data simulation

for(k in 1:M)
Draw random data of size N
Fit model
Save Parameter(S) of interest

- * Nonparameteric bootstrap: resample data
- * Parameteric bootstrap: assume param, sim data
- * Embed in overall loop over N or different effect sizes
- * Summarize distribution

Observing System Simulation Experiments

- * Simulate "true" system
- * Simulate pseudo-observations
- * Assimilate pseudo-observations
- * Assess impact on estimates
- Augment an existing network
 - Additional locations
 - New Sensors
- Common in Weather, Remote Sensing, Oceanography