3.3 Divided Differences

Representing nth Lagrange Polynomial

• If $P_n(x)$ is the nth degree Lagrange interpolating polynomial that agrees with f(x) at the points $\{x_0, x_1, ..., x_n\}$, $P_n(x)$ can be expressed in the form:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \dots + a_n(x - x_0)(x - x_1)(x - x_2) \dots (x - x_{n-1})$$

• ? How to find constants $a_0,...,a_n$?

Finding constants $a_0,...,a_n$

Given interpolating polynomial
$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)$$

$$a_2(x-x_0)(x-x_1) +$$

$$a_3(x-x_0)(x-x_1)(x-x_2) +$$

... +
$$a_n(x - x_0)(x - x_1)(x - x_2)$$
 ... $(x - x_{n-1})$

- ightharpoonup At x_0 : $a_0 = P_n(x_0) = f(x_0)$
- ightharpoonup At x_1 : $f(x_0) + a_1(x_1 x_0) = P_n(x_1) = f(x_1)$

$$\Rightarrow a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

At
$$x_2$$
: $f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = P_n(x_2) = f(x_2)$

$$\Rightarrow a_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

Newton's Divided Difference

Zeroth divided difference:

$$f[x_i] = f(x_i).$$

First divided difference:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$$

Second divided difference:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

Third divided difference:

$$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}] = \frac{f[x_{i+1}, x_{i+2}, x_{i+3}] - f[x_i, x_{i+1}, x_{i+2}]}{x_{i+3} - x_i}.$$

Kth divided difference:

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

Finding constants $a_0,..., a_n$ -revisited

Given interpolating polynomial $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)$

$$a_{2}(x - x_{0})(x - x_{1}) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2}) + \dots + a_{n}(x - x_{0})(x - x_{1})(x - x_{2}) \dots (x - x_{n-1})$$

- $\triangleright a_0 = f(x_0) = f[x_0]$
- $a_1 = \frac{f(x_1) f(x_0)}{x_1 x_0} = \frac{f[x_1] f[x_0]}{x_1 x_0} = f[x_0, x_1].$

$$a_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = f[x_0, x_1, x_2].$$

$$a_3 = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = f[x_0, x_1, x_2, x_3].$$

$$> a_k = f[x_0, x_1, ..., x_k].$$

Interpolating Polynomial Using Newton's Divided Difference Formula

$$P_n(x)$$
= $f[x_0] + f[x_0, x_1](x - x_0)$
+ $f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$
+ $f[x_0, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$

Or

$$P_n(x)$$

$$= f[x_0] + \sum_{k=1}^{n} [f[x_0, \dots, x_k](x - x_0) \dots (x - x_{k-1})]$$

Remark: $a_k = f[x_0, x_1, ..., x_k]$ for k = 0, ..., n

Example 3.3.1 Use the data in the table to construct interpolating polynomial.

i	x_i	$f(x_i)$	$f[x_{i-1},x_i]$	$f[x_{i-2},x_{i-1},x_i]$	$f[x_{i-3}, x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-4}, x_{i-3}, x_{i-2}, x_{i-1}, x_i]$
0	1.0	0.7651977				
1	1.3	0.6200860				
2	1.6	0.4554022				
3	1.9	0.2818186				
4	2.2	0.1103623				

Table for Computing

X	f(x)	1st Div. Diff.	2nd Div. Diff.
<i>X</i> ₀	$f[x_0]$		
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	
<i>x</i> ₁	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	7.2 7.0
<i>x</i> ₂	$f[x_2]$	^2 ^1	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_1 - x_2}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{f[x_3] - f[x_2]}$	×3-×1
X3	$f[x_3]$	x ₃ -x ₂	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$ $f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$ $f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$
3	[3]	$f[x_2, x_4] = \frac{f[x_4] - f[x_3]}{f[x_2, x_4]}$	x_4-x_2
Y4	f[va]	$x_4 - x_3$	$f[x_2, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{f[x_2, x_4]}$
^4	/ [^4]	$f[x_1, x_2] = f[x_5] - f[x_4]$	$[x_5, x_4, x_5] - x_5 - x_3$
	£[]	$I[x_4, x_5] = \frac{x_5 - x_4}{x_5 - x_4}$	
<i>X</i> 5	[T [X5]		

Theorem 3.6 Suppose that $f \in C^n[a,b]$ and $x_0, x_1, ..., x_n$ are distinct numbers in [a,b]. Then $\exists \xi \in (a,b)$ with $f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$.

Remark: When n=1, it's just the Mean Value Theorem.

Illustration. 1) Complete the following divided difference table. 2) Find the interpolating polynomial.

i	x_i	$f[x_i]$	$f[x_{i-1},x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3},,x_i]$	$f[x_{i-4},,x_i]$
0	1.0	0.7651977	-0.4837057			
1	1.3	0.6200860	-0.5489460			
2	1.6	0.4554022	-0.3469400	-0.0494433		
3	1.9					
4	2.2	0.1103623				

Algorithm: Newton's Divided Differences

```
Input: (x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))
Output: Divided differences F_{0,0}, \dots, F_{n,n}
//comment: P_n(x) = F_{0.0} + \sum_{i=1}^n [F_{i.i}(x - x_0) \dots (x - x_{i-1})]
Step 1: For i = 0, ..., n
               \operatorname{set} F_{i,0} = f(x_i)
Step 2: For i = 1, ..., n
                For i = 1, ..., i
                   set F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_i - x_{i-1}}
                 End
            End
            Output(F_{0,0},...F_{i,i},...,F_{n,n})
            STOP.
```

Forward difference formula for equally spaced nodes

- Let the points $\{x_0, x_1, ..., x_n\}$ be equally spaced. $h = x_{i+1} x_i$, for each i = 0, ..., n-1; and $x = x_0 + sh$.
- Then

$$\begin{split} &P_n(x)\\ &= f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)\\ &+ \dots + f[x_0, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})\\ &= f[x_0] + shf[x_0, x_1] + s(s - 1)h^2f[x_0, x_1, x_2] + \dots\\ &+ s(s - 1) \dots (s - n + 1)h^nf[x_0, \dots, x_n] \end{split}$$

Or

$$P_n(x) = P_n(x_0 + sh) = f[x_0] + \sum_{k=1}^n {s \choose k} k! h^k f[x_0, x_1, \dots, x_k]$$

Where
$$\binom{S}{k} = \frac{s(s-1)...(s-k+1)}{k!}$$