Lecture 22: Hydraulic motors, transmission lines

- Hydraulic motors
- Hydraulic transmission lines
- (Electrical transmission lines)

Book: 4.1-4.6, (1.6)

- Info: Ocean Talk «The Polar Regions»
 - 28.03.2019 18:00-20:00, EL1
 - https://www.facebook.com/events/263677944559897/

Systems using hydraulics to produce motion

Excavators

- Robots, cranes, etc.
- To control motion of these systems, we need models of the hydraulic actuators

For information about seals etc.: Skf.com

Hydraulic cylinder

Hydraulic system

Anna Konda – The fire fighting snake robot

Moody chart

- Circular pipe
- Darcy-Weisbach factor with Reynolds number and relative roughness

Figure 7.13 Moody diagram. (From L. F. Moody, Trans. ASME, Vol. 66, 1944.)

Bulk modulus

Motor models

Hydraulic cylinder

Figure 4.9: Symmetric hydraulic cylinder

Figure 4.10: Single-rod hydraulic piston

Rotational hydraulic motor I

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel.

Rotational hydraulic motor II

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel.

Rotational hydraulic motor III

Valves

- Device that regulates flow
- Many different types of valves exist
 - Globe valve, ball valve, butterfly valve, ...

End view of the disc within the butterfly valve at different stages of rotation

End view of the ball within the ball valve at different stages of rotation

Valve fully open Valve ½ open Valve fully closed

Fluid passes freely through the orifice

Valve models

(book 4.2)

Flow through a restriction is generally turbulent

Solution: Regularize by assuming laminar flow for small Δp

$$q = C_l \Delta p$$

Book: Make transition smooth

Tank Н Pump Spool Valve Pu **Hydraulic Cylinder and Piston** q_1 q_2 q_s

Four-way valve

Figure 4.1: Four-way valve

Figure 4.2: A matched and symmetric four-way valve.

Modeling of four-way valve

Define load pressure

$$p_L = p_1 - p_2$$

Define load flow

$$q_L = \frac{q_1 + q_2}{2}$$

Figure 4.1: Four-way valve

Symmetric load assumption (motor)

$$q_1 = q_2$$

Symmetric valve and symmetric load

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \operatorname{sign}(x_v) p_L \right)}$$

Characteristic of four-way valve

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \text{sign}(x_v) p_L \right)}$$

Figure 4.3: Valve characteristic

Linearized model:

$$|p_L| \le \frac{2}{3}p_s: \quad q_L = K_q x_v - K_c p_L$$

Gain uncertainty:

$$0.58K_{q0} \le K_q \le 1.29K_{q0}$$

Transfer function valve+motor

$$\theta_m(s) = \frac{\frac{K_q}{D_m} x_v(s) - \frac{K_{ce}}{D_m^2} \left(1 + \frac{s}{\omega_t}\right) T_L(s)}{s \left(1 + 2\zeta_h \frac{s}{\omega_h} + \frac{s^2}{\omega_h^2}\right)}$$

Transfer function spool to shaft

Electrical transmission lines

Telegrapher's equation (Wave equation)

Lossless:

Lossy:

• Model (Ch. 1.6):

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$
$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Laplace:

$$\frac{\partial u(x,s)}{\partial x} = -X(s)i(x,s)$$
$$\frac{\partial i(x,s)}{\partial x} = -Y(s)u(x,s)$$

Series impedance:

$$X(s) = R + Ls$$

Parallel admittance:

$$Y(s) = G + Cs$$

Characteristic impedance:

$$Z_c(s) = \sqrt{\frac{X(s)}{Y(s)}}$$

Same equations for electrical and fluid/hydraulic transmission lines

Electrical transmission lines:

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$

$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Fluid transmission lines:

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\beta}{A} \frac{\partial q(x,t)}{\partial x}$$
$$\frac{\partial q(x,t)}{\partial t} = -\frac{A}{\rho} \frac{\partial p(x,t)}{\partial x} - \frac{F[q(x,t)]}{\rho}$$

- Current and flow "same" variables, as is voltage and pressure
- In both cases, we can define line impedance, characteristic impedance, propagation operator, etc.
- Solution to equations have same structure/form: waves propagating back and forth

Solution: Waves

Solution:

$$u_{out}(s) = e^{-\Gamma(s)} u_{in}(s)$$

- Propagation operator $\Gamma(s) = L\sqrt{X(s)Y(s)}$
 - Attenuation factor $\alpha=Re[\Gamma(j\omega)]$: How much is wave reduced
 - Phase factor: $\beta = Im[\Gamma(j\omega)]$: How long does it take
- Lossless (R = G = 0): $\Gamma(s) = Ts$
 - Attenuation factor: 0
 - Phase factor: Pure time-delay

When should we care?

Solution lossless case: Time delay

$$e^{-Ts}$$

 Rule-of-thumb from control theory: We can ignore time-delay for frequencies much less than 1/T

$$\omega \le \frac{1}{T} \implies 2\pi \frac{c}{\lambda} \le \frac{c}{L} \implies L \le \frac{\lambda}{2\pi}$$

- Rule-of-thumb for transmission lines: When L is larger than one tenth of wavelength, treat as transmission line
- Power lines, f = 50Hz: $\lambda = 6000$ km
- Personal computers, f = 10 GHz: $\lambda = 1.5 \text{cm}$

Impedance matching

 Suppose we have an imaginary joint at P in a very long transmission line.

The wave goes through the joint without reflection because there is actually no joint (just imagined).

• Now, let us terminate a resistance of value Z_c at the same position of this imaginary joint. The wave will go through without reflection too.

This is called a **matched load**.

http://cktse.eie.polyu.edu.hk/eie403/Transmissionline.pdf

Lecture 23: Process modeling & balance laws

- Process modeling, structure and methodolgy
- Balance laws
 - Closure relations

Book: 10.4, 11.1-11.4

Process equations

- Balance laws
 - Mass
 - Momentum
 - Energy
 - ..

- Constitutive equations
 - For (generalized) flows
 - Thermodynamic equations of state
 (e.g. ideal gas law)
 - Phenomenological relationships (e.g. between friction force and flow in a pipe)
 - **–** ...

- Constraints
 - Geometric relationships
 - Equilibrium conditions
 - ..

Also called «closure relations» as they «close» the balance laws (such that #equations = #variables)

Example – structure of process models

Example: Tank

- Mass balance: $\frac{dm}{dt} = \frac{2}{q_i q_0} \frac{3}{\rho}$
- Constitutive equation: $q_0 = C\sqrt{p-p_0}$ (2) $p = p_0 + \rho g h$ (3)
- Constraints: $m = V \rho$ (4) V = Ah (5)
- How many variables?
- Need to define parameter and inputs
 - Parameters: C, g, A, ρ
 - Inputs: q_i, p_0

Structural index:

	q_0	p	V	h
(2)	Х	Х		
(3)		Х		Х
(4)			х	
(5)				Х

Example: Bubble reactor I

Model reactor as quasi-homogenous

- Assumptions:
 - Ideally mixed
 - Inflows are pure substances

•
$$S_R = S_R(N_{B,in})$$

 The reaction rate can be calculated based on the concentration of A and the pressure in the reactor

•
$$R_0 = R_0(c_{A,liq}, p)$$

- Densities ρ_A and ρ_C and mole masses M_A and M_C are constant and known
- The gas phase can be described by the ideal gas law

•
$$p V_{gas} = n_B R_m T$$

The volume of the reactor is constant and known

 $\uparrow N_{B,out}$

Bubble reactor – Balances

Bubble reactor – closure relations $I_{N_{B,out}}$

Bubble reactor – DoF

• Variables: $[n; N_{A,in}; N_{B,in}; N_{B,out}; N_P; S_R; R_A; R_B; R_C; n_A; x_A; n_B; R_0; c_{A,liq}; p; n_C; V_{liq}; M_A; \rho_A; M_C; \rho_C; V_{gas}; R_m; T; V]$

Bubble reactor – structural index

	S_R	R_A	R_B	R_c	R_0	n_C	x_A	$c_{A,liq}$	p	V_{gas}	V_{liq}
(4)											
(5)											
(6)											
(7)											
(8)											
(9)											
(10)											
(11)											
(12)											
(13)											
(14)											

Bubble reactor – energy balance

Bubble reactor – closure relations II

Assumptions:

- Specific enthalpies of inputs are model inputs
- Spedific enthalpies of pure substances A, B, C are given by $h_i = h_i(T, p)$

Bubble reactor – structural index II

• Variables: $[n; N_{A,in}; N_{B,in}; N_{B,out}; N_P; S_R; R_A; R_B; R_C; n_A; x_A; n_B; R_0; c_{A,liq}; p; n_C; V_{liq}; M_A; \rho_A; M_C; \rho_C; V_{gas}; R_m; T; V U; h_{A,in}; h_{B,in}; h_B; h_P; h_A; x_C; h_C; H]$

	h_B	h_P	x_C	h_C	h_A	T	Н	n_C	p	x_A
(16)										
(17)										
(18)										
(19)										
(20)										
(21)										
(22)										