Data Analysis and Credit Risk Modelling - Loan Classification

PROBLEM STATEMENT:

Understand and apply machine learning techniques to classify loan applicants based on their likelihood of loan repayment.

import necessary libararies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.impute import SimpleImputer
from \ sklearn.preprocessing \ import \ Standard Scaler, \ One HotEncoder, \ Label Encoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from \ sklearn.model\_selection \ import \ train\_test\_split, \ GridSearchCV, \ RandomizedSearchCV \ and \ GridSearchCV \ and \ GridSea
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
import xgboost as xgb
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from scipy.stats import zscore
import warnings
warnings.filterwarnings("ignore")
import streamlit as st
```

Step 1: load the dataset

```
data = pd.read_csv('/loan_detection.csv')
```

Step 2: Initial Inspection

```
print("Data Head:")
print(data.head())
     Data Head:
                                previous
        age
             campaign
                        pdays
                                           no previous contact
                                                                  not working
                           999
         56
                                        0
                           999
                                        0
                                                                             0
     1
         57
                     1
                                                              1
     2
         37
                     1
                           999
                                        0
                                                              1
                                                                            0
     3
         40
                     1
                           999
                                        0
                                                                             0
     4
         56
                     1
                           999
                                        0
                                                                             0
                     job_blue-collar
                                        job_entrepreneur
                                                           job_housemaid
     0
                  0
     1
                  0
                                    0
                                                        0
                                                                        0
                                                                           . . .
                  0
                                    0
                                                        0
                                                                           . . .
     3
                                    0
                                                        0
                                                                        0
                  1
                                                                            . . .
     4
                  0
                                                        0
                                    0
                                                                        0
        month_sep
                    day_of_week_fri
                                       day_of_week_mon
                                                         day_of_week_thu
     0
                 a
     1
                 0
                                   0
                                                      1
                                                                        0
                                                                        0
     3
                 0
                                   0
                                                      1
                                                                        0
        day of week tue
                          day_of_week_wed
                                            poutcome failure
                                                                poutcome nonexistent
     0
                       0
                                          0
                       0
                                          0
     1
                                                             0
                                                                                     1
     2
                        0
                                          0
                                                             0
                                                                                     1
     3
                       0
                                          0
                                                             0
                                                                                     1
                        0
        poutcome_success
                            Loan_Status_label
                        0
                                             0
     3
                        0
                                             0
                                             0
     4
                         0
     [5 rows x 60 columns]
```

```
data.shape
→ (41188, 60)
print("\nData Info:")
print(data.info())
\overline{z}
     Data Info:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 41188 entries, 0 to 41187
     Data columns (total 60 columns):
         Column
                                        Non-Null Count Dtvpe
                                         -----
      0
                                        41188 non-null int64
         age
      1
          campaign
                                        41188 non-null
                                                        int64
      2
          pdays
                                        41188 non-null
                                                        int64
      3
          previous
                                        41188 non-null
                                                        int64
          no_previous_contact
                                        41188 non-null
          not_working
                                        41188 non-null
                                        41188 non-null
          job_admin.
                                                        int64
          job_blue-collar
                                        41188 non-null
      8
          job entrepreneur
                                        41188 non-null
                                                        int64
                                        41188 non-null
                                                        int64
          job housemaid
                                        41188 non-null
                                                        int64
      10
         job management
      11
         job_retired
                                        41188 non-null
                                                        int64
      12
          job_self-employed
                                        41188 non-null
                                                        int64
      13
          job_services
                                        41188 non-null
                                                        int64
      14
          job_student
                                        41188 non-null
                                                        int64
      15
          job_technician
                                        41188 non-null
                                        41188 non-null
      16
          job_unemployed
      17
         job_unknown
                                        41188 non-null
      18
         marital_divorced
                                        41188 non-null
                                                        int64
         marital_married
                                        41188 non-null
                                                        int64
      19
                                        41188 non-null
                                                        int64
      20
         marital single
      21 marital_unknown
                                        41188 non-null
                                                        int64
      22
         education_basic.4y
                                        41188 non-null
                                                        int64
      23
         education_basic.6y
                                        41188 non-null
                                                        int64
      24
         education_basic.9y
                                        41188 non-null
                                                        int64
      25
          education_high.school
                                        41188 non-null
         education_illiterate
                                        41188 non-null
      27
         education_professional.course 41188 non-null
                                                        int64
         education_university.degree
                                        41188 non-null
                                                        int64
      28
      29
                                        41188 non-null
                                                        int64
         education unknown
      30
         default no
                                        41188 non-null
                                                        int64
                                                        int64
         {\tt default\_unknown}
                                        41188 non-null
      31
                                                        int64
      32
         default yes
                                        41188 non-null
      33
          housing_no
                                        41188 non-null
                                                        int64
      34
          housing_unknown
                                        41188 non-null
                                                        int64
      35
          housing_yes
                                        41188 non-null
                                                        int64
          loan_no
                                        41188 non-null
                                                         int64
          loan_unknown
                                        41188 non-null
      38
                                        41188 non-null
                                                        int64
         loan ves
         contact_cellular
                                        41188 non-null
      39
                                                        int64
                                        41188 non-null
      40
         contact telephone
                                                        int64
                                        41188 non-null
                                                        int64
      41 month_apr
      42
         month_aug
                                        41188 non-null
                                                        int64
      43
         month dec
                                        41188 non-null
                                                        int64
      44
         month_jul
                                        41188 non-null
                                                        int64
      45
         month_jun
                                        41188 non-null
                                                        int64
      46
         month_mar
                                        41188 non-null
      47
                                        41188 non-null
         month_may
      48
         month_nov
                                        41188 non-null
                                                        int64
      49
         month_oct
                                        41188 non-null
                                                        int64
      50 month_sep
                                         41188 non-null int64
data.describe()
```


	age	campaign	pdays	previous	no_previous_contact	not_working	job_admin.	job_blue- collar	job_entrepr
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.0
mean	40.02406	2.567593	962.475454	0.172963	0.963217	0.087623	0.253035	0.224677	0.0
std	10.42125	2.770014	186.910907	0.494901	0.188230	0.282749	0.434756	0.417375	0.1
min	17.00000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	32.00000	1.000000	999.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.0
50%	38.00000	2.000000	999.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.0
75%	47.00000	3.000000	999.000000	0.000000	1.000000	0.000000	1.000000	0.000000	0.0
max	98.00000	56.000000	999.000000	7.000000	1.000000	1.000000	1.000000	1.000000	1.0
8 rows × 60 columns									
4									>

check for missing values

```
print("\nMissing Values:")
print(data.isnull().sum())
     Missing Values:
     age
                                           0
     campaign
                                           0
     pdays
     previous
                                           0
     no_previous_contact
                                           0
     not_working
                                           0
                                           0
     \mathsf{job}\_\mathsf{admin}.
     job_blue-collar
     job_entrepreneur
                                           0
                                           0
     job housemaid
                                           0
     job_management
                                           0
     job_retired
                                           0
     {\tt job\_self-employed}
                                           0
     iob services
                                           0
     job_student
                                           0
     {\tt job\_technician}
     {\sf job\_unemployed}
                                           0
                                           0
     job_unknown
     marital_divorced
     marital_married
                                           0
     marital_single
                                           0
                                           0
     marital_unknown
     education_basic.4y
                                           0
                                           0
     education_basic.6y
                                           0
     education_basic.9y
     {\tt education\_high.school}
                                           0
     {\tt education\_illiterate}
                                           0
     {\tt education\_professional.course}
     education_university.degree
                                           0
     education_unknown
     default_no
     default_unknown
     default_yes
                                           0
     housing_no
                                           0
                                           0
     \verb|housing_unknown|
     \verb|housing_yes|
                                           0
     loan_no
                                           0
                                           0
     loan_unknown
     loan_yes
                                           0
     contact_cellular
                                           0
     contact_telephone
                                           0
                                           0
     month_apr
     month_aug
                                           0
                                           0
     month\_dec
                                           0
     month_jul
                                           0
     month_jun
                                           0
     month_mar
                                           0
     month_may
     month_nov
                                           0
     month_oct
                                           0
     month_sep
                                           0
     day_of_week_fri
day_of_week_mon
day_of_week_thu
                                           0
                                           0
                                           0
     day_of_week_tue
                                           0
     day_of_week_wed
                                           0
```

Conclusion:

- We can see that their are 60 different coloumns in the dataset.
- · The datset has values of type int64 only.
- Their are no missing values in the dataset

Step 3: Explorartory Data Analysis

Outlier Detection using Boxplots, Z-Score and Quartiles

```
numerical_features == data.select_dtypes(include=[np.number])
print("Numerical Features:")
print(numerical_features)
    Numerical Features:
             age campaign
                             pdays
                                    previous
                                               no_previous_contact
                                                                      not_working
     0
              56
                               999
              57
                               999
                                            0
                                                                                 0
              37
                               999
                                                                                 0
     2
                                            0
                          1
     3
              40
                          1
                               999
                                            0
                                                                                 0
     4
              56
                          1
                               999
                                            0
                                                                   1
                                                                                 0
     41183
              73
                               999
     41184
              46
                               999
                                            0
                                                                                 0
     41185
              56
                               999
                                                                                 1
     41186
                               999
                                            0
     41187
                               999
                          job_blue-collar
             job_admin.
                                            job_entrepreneur
                                                                job_housemaid
     0
                      0
                                         0
                                                            0
                                                                             1
     1
                      0
                                         0
                                                            0
                                                                             0
     2
                      0
     3
                      1
                                         0
                                                            0
                                                                             0
     4
                      0
                                         0
                                                            0
                                                                                . . .
                                                                                . . .
     41183
                                                                                . . .
     41184
                      0
                                                            0
                                                                             0
                                                                                . . .
     41185
                                         0
                      0
                                                            0
                                                                             0
                                                                                . . .
                                         0
     41186
                      0
                                                            0
                                                                             0
                                                                                . . .
     41187
                      0
                                         0
                                                            0
                                                                             0
             month_sep
                        day_of_week_fri
                                           day_of_week_mon
                                                              day_of_week_thu
     0
     1
                     0
                                        0
                                                          1
                                                                             0
                     0
                                                                             0
                                                                             0
     41183
                     0
                                                          0
                                                                             0
     41184
                     0
                                                          0
                                                                             0
                                        1
     41185
                     0
                                        1
                                                          0
                                                                             0
     41186
                     a
                                        1
                                                          a
     41187
                     0
                                        1
             day_of_week_tue
                               day_of_week_wed
     3
                            0
                                              0
                                                                  0
     4
                            0
                                              0
                                                                  0
     41183
                            0
                                              0
                                                                  a
     41184
                            0
                                              0
                                                                  0
     41185
                            0
                                              0
                                                                  0
     41186
                                                                  0
     41187
             poutcome nonexistent
                                    poutcome success
                                                        Loan Status label
     0
                                                     0
                                                     0
                                                                         0
     1
                                 1
     2
                                                     0
                                                                         0
                                 1
     3
                                                     0
                                                                         0
                                 1
```

Visualize the distribution of numerical features

```
numerical_features.hist(figsize=(15, 10), bins=20)
plt.tight_layout()
plt.show()
```


Z-Score method to detect outliers

given solutuion tells us that these are the rows and coloumns where outliers were detected.

Boxplots

```
# Calculate the number of rows and columns needed to fit all features
num_features = numerical_features.shape[1]
nrows = int(np.ceil(np.sqrt(num_features)))  # Calculate rows for a roughly square layout
ncols = int(np.ceil(num_features / nrows))  # Calculate columns
print(f"\n Rows: {nrows}, Columns: {ncols}")
# Plot the boxplots
numerical_features.plot(kind='box', subplots=True, layout=(nrows, ncols), figsize=(15,10))
print("\n Boxplot of dataset")
plt.tight_layout()
plt.show()
```


Rows: 8, Columns: 8

Interquartile Range (IQR) Method

```
Q1 = numerical_features.quantile(0.25)
Q3 = numerical_features.quantile(0.75)
IQR = Q3 - Q1
outliers_iqr = (numerical_features < (Q1 - 1.5 * IQR)) | (numerical_features > (Q3 + 1.5 * IQR))
# Print IQR outliers
print("\nOutliers detected using IQR method:")
for col in numerical_features.columns:
    outliers = numerical_features[outliers_iqr[col]]
    if not outliers.empty:
        print(f"\nOutliers in {col}:\n{outliers}")
     Outliers detected using IQR method:
     Outliers in age:
                 campaign
                           pdays previous no_previous_contact not_working
     27713
             70
                        3
                             999
                                         0
                                                              1
                                                                            1
     27757
             76
                        9
                             999
                                         0
                                                                            1
     27780
             73
                             999
     27800
             88
                             999
                                         0
```

```
27802
        88
                    2
                         999
                                      0
40986
                                                             0
40996
41004
                         999
        80
                                                                           1
41183
        73
                         999
                                                                           1
41187
                         999
       job_admin.
                    job_blue-collar
                                     job_entrepreneur
                                                         job_housemaid
27713
                 Ø
                                                      0
                                                                      0
27757
                 a
                                                      0
                                                                      0
27780
                 0
                                   0
                                                      0
                                                                      0
27800
                 0
                                   0
                                                                      0
27802
                 0
                                   0
                                                      0
                                                                      0
                                                                         . . .
                                                                         . . .
40986
                                   0
                                                      0
                                                                      0
                                                                         . . .
40996
                 0
                                   0
                                                      0
                                                                      0
                                                                        . . .
41004
                                   0
                 0
                                                      0
                                                                      0 ...
41183
                                   0
                 0
                                                      0
                                                                      0
                                                                         . . .
41187
                 0
                                   0
                                                      0
                   day_of_week_fri
                                     day_of_week_mon
27713
                                  0
27757
                                  0
                                                    0
27780
27800
                                                                      0
27802
               0
                                  0
                                                    0
                                                                      0
40986
               0
                                  0
                                                    1
                                                                      0
40996
                                  0
                                                    0
                                                                      0
               0
41004
               0
                                  0
                                                    0
                                                                      1
41183
               0
                                  1
                                                    0
                                                                      0
41187
       day_of_week_tue day_of_week_wed
27713
27757
27780
                                        0
27800
                      0
                                        1
                                                           0
27802
                      0
                                        1
                                                           0
40986
                      0
                                        0
                                                           0
40996
                      0
                                        1
                                                           1
41004
                      0
41183
41187
       poutcome_nonexistent poutcome_success Loan_Status_label
```

Handling of outliers-capping of outliers

```
# Define the capping thresholds (1st and 99th percentiles)
lower_cap = numerical_features.quantile(0.01)
upper_cap = numerical_features.quantile(0.99)
# Apply capping
data_capped = data.copy() # Make a copy of the dataset to cap outliers
for col in numerical_features.columns:
    data_capped[col] = np.where(data_capped[col] < lower_cap[col], lower_cap[col], data_capped[col])</pre>
    data_capped[col] = np.where(data_capped[col] > upper_cap[col], upper_cap[col], data_capped[col])
\ensuremath{\mathtt{\#}} Show the number of capped values for each feature
capped_values_count = (data_capped != data).sum()
print("Number of capped values per feature:\n", capped_values_count)
# Check the distribution after capping
print("\nData after capping outliers:")
print(data_capped.describe())
Number of capped values per feature:
      age
                                       406
     campaign
                                       102
     pdays
     previous
                                       310
     no_previous_contact
     not_working
                                         0
     job_admin.
     job_blue-collar
     job_entrepreneur
     job_housemaid
     job management
     job_retired
     job_self-employed
                                         0
     job_services
     job_student
                                         0
     job_technician
```

```
job_unemployed
                                     0
job_unknown
                                   330
marital_divorced
                                     0
marital_married
marital_single
marital unknown
                                    80
education basic.4y
                                     0
education_basic.6y
                                     0
{\tt education\_basic.9y}
                                     0
education_high.school
                                     9
{\tt education\_illiterate}
                                    18
{\tt education\_professional.course}
                                     0
education_university.degree
education_unknown
default_no
{\tt default\_unknown}
default yes
                                     3
                                     0
housing no
                                     0
housing_unknown
housing_yes
loan_no
                                     0
loan_unknown
loan_yes
                                     0
{\tt contact\_cellular}
contact_telephone
month_apr
                                     0
                                     0
month aug
month dec
                                   182
month_jul
                                     0
month_jun
                                     0
month_mar
month_may
                                     0
month_nov
month_oct
month_sep
day_of_week_fri
day_of_week_mon
day_of_week_thu
day_of_week_tue
day_of_week_wed
poutcome_failure
```

∨ Step 4: Model Building

Encode Categorical Variables and Scale Numerical Features

```
X = data.drop('Loan_Status_label', axis=1)
y = data['Loan_Status_label']
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
categorical_cols = X.select_dtypes(include=['object']).columns
numerical_cols = X.select_dtypes(include=[np.number]).columns
numerical_transformer = Pipeline(steps=[
    ('scaler', StandardScaler())
])
categorical_transformer = Pipeline(steps=[
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numerical_transformer, numerical_cols),
        ('cat', categorical_transformer, categorical_cols)
X_preprocessed = preprocessor.fit_transform(X)
```

Split the Data

```
X_train, X_test, y_train, y_test = train_test_split(X_preprocessed, y, test_size=0.3, random_state=42)
```

Model Selection

```
logistic_model = LogisticRegression(random_state=42)
```

```
random_forest_model = RandomForestClassifier(random_state=42)
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='mlogloss', random_state=42)
Model Training
logistic_model.fit(X_train, y_train)
\rightarrow
               LogisticRegression
      LogisticRegression(random_state=42)
random_forest_model.fit(X_train, y_train)
               RandomForestClassifier
      RandomForestClassifier(random_state=42)
xgb_model.fit(X_train, y_train)
<del>____</del>
                                          XGBClassifier
      XGBClassifier(base_score=None, booster=None, callbacks=None,
                     colsample_bylevel=None, colsample_bynode=None,
                    \verb|colsample_bytree=None|, | device=None|, | early_stopping_rounds=None|, |
                     enable_categorical=False, eval_metric='mlogloss',
                     feature_types=None, gamma=None, grow_policy=None,
                     importance_type=None, interaction_constraints=None,
                    learning_rate=None, max_bin=None, max_cat_threshold=None,
                    max_cat_to_onehot=None, max_delta_step=None, max_depth=None,
                    max_leaves=None, min_child_weight=None, missing=nan,
                    monotone_constraints=None, multi_strategy=None, n_estimators=None,
n_jobs=None, num_parallel_tree=None, random_state=42, ...)
Model Evaluation
y_pred_logistic = logistic_model.predict(X_test)
y_pred_rf = random_forest_model.predict(X_test)
y_pred_xgb = xgb_model.predict(X_test)
print("Logistic Regression Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_logistic))
print(classification_report(y_test, y_pred_logistic))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_logistic))
→ Logistic Regression Performance:
     Accuracy: 0.8981144290685441
                                 recall f1-score
                    precision
                                                      support
                                    0.99
                 0
                         0.91
                                               0.95
                                                        10968
                         0.66
                                    0.19
                                               0.30
                                                         1389
                                               0.90
                                                        12357
         accuracy
                         0.78
                                    0.59
                                                        12357
        macro avg
                                               0.62
     weighted avg
                         0.88
                                    0.90
                                               0.87
                                                        12357
     Confusion Matrix:
      [[10829 139]
      [ 1120
               269]]
print("\nRandom Forest Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_rf))
print(classification_report(y_test, y_pred_rf))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
\overline{z}
     Random Forest Performance:
     Accuracy: 0.8887270373067897
                                 recall f1-score
                    precision
                                                      support
                 0
                         0.91
                                    0.97
                                               0.94
                                                        10968
                 1
                         0.51
                                    0.25
                                               0.34
                                                         1389
         accuracy
                                               0.89
                                                        12357
                         0.71
                                    0.61
        macro avg
                                               0.64
```

```
weighted avg 0.87 0.89 0.87 12357

Confusion Matrix:
[[10630 338]
[ 1037 352]]
```

```
print("\nXGBoost Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_xgb))
print(classification_report(y_test, y_pred_xgb))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_xgb))
```

```
→
```

```
XGBoost Performance:
Accuracy: 0.8943109168892126
              precision
                           recall f1-score
                                               support
           0
                   0.91
                             0.98
                                        0.94
                                                 10968
                             0.24
                                                  1389
                   0.57
                                        0.33
           1
                                        0.89
    accuracy
                                                 12357
                   9.74
                             9.61
   macro avg
                                        9.64
                                                 12357
weighted avg
                   0.87
                             0.89
                                        0.87
                                                 12357
Confusion Matrix:
```

Analysis

Based on Accuracy:

[[10724 244] [1062 327]]

- · Logistic Regression has the highest accuracy at 0.90, slightly higher than XGBoost (0.89) and Random Forest (0.89).
- · This suggests that Logistic Regression correctly predicts the overall outcome slightly more often.

Based on Precision:

- For Class 1 (the minority class), Logistic Regression has the highest precision at 0.66, followed by XGBoost at 0.57, and Random Forest at 0.51
- This indicates that when Logistic Regression predicts a positive case (Class 1), it is more likely to be correct compared to the other models.

Based on Recall:

- Class 1 recall is highest with Random Forest and XGBoost at 0.25 and 0.24, respectively.
- Logistic Regression has a recall of only 0.19 for Class 1, meaning it misses more actual positives.
- · Class 0 recall is highest with Logistic Regression at 0.99, meaning it correctly identifies almost all negatives.

Based on F1-Score:

- The F1-score for Class 1 is highest for Random Forest at 0.34, slightly better than XGBoost (0.33) and Logistic Regression (0.30).
- · F1-Score balances precision and recall, making it a good metric when dealing with imbalanced classes.

Based on Confusion Matrix:

Class 1:

- Logistic Regression has the highest number of false negatives (1,120), meaning it misses many actual positives.
- XGBoost has a slightly lower number of false negatives (1,062) compared to Random Forest (1,037).

Class 0:

• Logistic Regression has the lowest number of false positives (139), indicating better performance in correctly identifying negatives.

From the above given results, *Random Forest* might be the best option for this problem, especially if *correctly identifying as many positives as possible* is crucial. However, if you need *higher precision and overall accuracy*, we can opt for *Logistic Regression*.

Fine Tuning of model developed using XGBoost

```
# Define the hyperparameter space
param_dist = {
    'learning_rate': [0.01, 0.05, 0.1, 0.15, 0.2],
    'n_estimators': np.arange(100, 500, 50),  # Randomly select from 100 to 500 estimators
    'max_depth': np.arange(3, 10, 1),  # Randomly select from depths 3 to 10
    'subsample': [0.6, 0.7, 0.8, 0.9, 1.0],  # Different subsample ratios
    'colsample_bytree': [0.6, 0.7, 0.8, 0.9, 1.0],  # Different feature subsample ratios
    'gamma': [0, 0.1, 0.2, 0.3, 0.4],  # Range of gamma values for regularization
    'reg_alpha': [0, 0.01, 0.05, 0.1],  # L1 regularization
    'reg_lambda': [0.5, 1, 1.5, 2]  # L2 regularization
}
```

using RandomizedSerchCV because the dataset is large

```
# Set up the RandomizedSearchCV
random_search = RandomizedSearchCV(estimator=xgb_model, param_distributions=param_dist,
                                   n_iter=100, cv=5, scoring='accuracy', n_jobs=-1,
                                   verbose=2, random_state=42)
# Fit the RandomizedSearchCV to the data
random_search.fit(X_train, y_train)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
          RandomizedSearchCV
      ▶ estimator: XGBClassifier
            ▶ XGBClassifier
# Get the best parameters
best params = random search.best params
print("Best Parameters:", best_params)
Est Parameters: {'subsample': 0.6, 'reg_lambda': 0.5, 'reg_alpha': 0.1, 'n_estimators': 450, 'max_depth': 5, 'learning_rate': 0.01,
# Train the XGBoost model with the best parameters
best_xgb_model = random_search.best_estimator_
# Predict on the test set
y_pred_best_xgb = best_xgb_model.predict(X_test)
# Evaluate the tuned model
print("\nTuned XGBoost Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_best_xgb))
print(classification_report(y_test, y_pred_best_xgb))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_best_xgb))
     Tuned XGBoost Performance:
     Accuracy: 0.8990046127700898
                               recall f1-score
                  precision
                                                   support
                0
                        0.91
                                 0.99
                                            0.95
                                                     10968
                                                     1389
                1
                        0.67
                                 0.20
                                           0.31
                                            0.90
                                                     12357
        accuracy
        macro avg
                        0.79
                                 0.59
                                            0.63
                                                     12357
     weighted avg
                        0.88
                                 0.90
                                            0.87
                                                     12357
     Confusion Matrix:
      [[10831
               137]
      [ 1111 278]]
```

Conlsuion:

- 1. Slight Improvement in Accuracy
- 2. Improved Precision, Decreased Recall
- 3. Trade-Off Between Precision and Recall
- 4. The reduction in false positives suggests the model is better at correctly classifying negatives, which could be valuable if the cost of a false positive is high.

Comparison

```
1. Accuracy:
  Tuned XGBoost: 0.8990
  Original XGBoost: 0.8943
2. Precision (Class 1):
  Tuned XGBoost: 0.67
  Original XGBoost: 0.57
3. Recall (Class 1):
  Tuned XGBoost: 0.20
  Original XGBoost: 0.24
4. F1-Score (Class 1):
  Tuned XGBoost: 0.31
  Original XGBoost: 0.33
5. Confusion Matrix:
  Tuned XGBoost:
  True Negatives (Class 0): 10,831
  False Positives (Class 0): 137
  False Negatives (Class 1): 1,111
  True Positives (Class 1): 278
  Original XGBoost:
  True Negatives (Class 0): 10,724
  False Positives (Class 0): 244
  False Negatives (Class 1): 1,062
  True Positives (Class 1): 327
```

Dashboard creation

```
import dash
from dash import dcc, html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
import plotly.express as px
import pandas as pd
import numpy as np
import plotly.figure_factory as ff
import plotly.graph_objs as go
# Load the dataset
file_path = '/loan_detection.csv' # Adjust the path as needed
data = pd.read_csv(file_path)
# Model Performance Data
model_performance = {
    'Model': ['Tuned XGBoost', 'XGBoost', 'Random Forest', 'Logistic Regression'],
    'Accuracy': [0.8990, 0.8943, 0.8887, 0.8981],
    'Precision Class 1': [0.67, 0.57, 0.51, 0.66],
    'Recall Class 1': [0.20, 0.24, 0.25, 0.19],
    'F1-Score Class 1': [0.31, 0.33, 0.34, 0.30],
}
# Convert model performance data to DataFrame
performance_df = pd.DataFrame(model_performance)
# Initialize the Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Layout of the dashboard
app.layout = dbc.Container([
    html.H1("Loan Repayment Prediction Model", style={'textAlign': 'center', 'marginTop': 20, 'marginBottom': 20}),
    # Data Overview and Visualization
    html.Div([
        html.H2("Dataset Overview"),
```

```
dcc.Graph(
        id='histogram'.
        figure=px.histogram(data, x='age', title='Age Distribution')
    ),
    dcc.Graph(
        id='boxplot',
        figure=px.box(data, y='age', title='Age Boxplot')
]),
# Model Performance
html.Div([
    html.H2("Model Performance"),
    dcc.Graph(
        id='accuracy-bar'.
        figure=px.bar(performance_df, x='Model', y='Accuracy', title='Model Accuracy')
    ),
    dcc.Graph(
        id='precision-bar',
        figure=px.bar(performance\_df, \ x='Model', \ y='Precision \ Class \ 1', \ title='Precision \ for \ Class \ 1')
    ),
    dcc.Graph(
        id='recall-bar'.
        figure=px.bar(performance_df, x='Model', y='Recall Class 1', title='Recall for Class 1')
    dcc.Graph(
        id='f1-bar',
        figure=px.bar(performance_df, x='Model', y='F1-Score Class 1', title='F1-Score for Class 1')
    )
]),
# Confusion Matrices
html.Div([
    html.H2("Confusion Matrices"),
    dcc.Graph(
        id='tuned-xgb-cm',
        figure=go.Figure(data=go.Heatmap(
            z=[[10831, 137], [1111, 278]],
            x=['Predicted 0', 'Predicted 1'],
            y=['Actual 0', 'Actual 1'],
            colorscale='Greens'
        )).update_layout(title='Tuned XGBoost Confusion Matrix')
    ),
    dcc.Graph(
        id='xgb-cm',
        figure=go.Figure(data=go.Heatmap(
            z=[[10724, 244], [1062, 327]],
            x=['Predicted 0', 'Predicted 1'],
            y=['Actual 0', 'Actual 1'],
            colorscale='Blues'
        )).update_layout(title='XGBoost Confusion Matrix')
    ),
    dcc.Graph(
        id='rf-cm',
        figure=go.Figure(data=go.Heatmap(
            z=[[10630, 338], [1037, 352]],
            x=['Predicted 0', 'Predicted 1'],
            y=['Actual 0', 'Actual 1'],
            colorscale='Reds'
        )).update_layout(title='Random Forest Confusion Matrix')
    ),
    dcc.Graph(
        figure=go.Figure(data=go.Heatmap(
            z=[[10829, 139], [1120, 269]],
            x=['Predicted 0', 'Predicted 1'],
            y=['Actual 0', 'Actual 1'],
            colorscale='Purples'
        )).update_layout(title='Logistic Regression Confusion Matrix')
    )
]),
# Conclusions
html.Div([
    html.H2("Conclusions"),
    html.P("
    Based on the analysis:
    - **Accuracy**: Logistic Regression has the highest accuracy, but all models are close.
    - **Precision**: Logistic Regression and Tuned XGBoost perform well for precision in Class 1.
    - **Recall**: Random Forest and XGBoost have better recall for Class 1.
    - **F1-Score**: Random Forest slightly edges out others in balancing precision and recall.
1)
```

