photo: Florida

Deep Learning in Python

Autoencoders and Pix2pix networks

Paweł Kasprowski, PhD, DSc.

Picture to picture

- The network that generates an image
- Training:
 - input image -> network -> output image
- Problem:
 - the network should generalize

Autoencoders

- The network that consists of:
 - Encoder converts an image into a vector (code)
 - Decoder converts the code into an image

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Encoder

- The sample is recalculated to lower dimension
- For instance:
 - image (200x200x3) is encoded to the vector (100)
- The idea:
 - this compressed (latent) representation preserves the most important properties of the original object
 - it will be possible to reconstruct the same object from the latent representation

MNIST dataset

- Handwritten digits
- 10 classes
- 60,000 training examples
- 10,000 test examples
- size: 28x28x1

The idea

- Encode to the latent vector of size=code_size
- Decode to the original image
- Training: the same image as input and output!

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

The simplest autoencoder

autoencoders1.ipynb

• Simple dense network (gets flattened images):

```
code_size = 5
input_img = Input(shape=(28*28,))
code = Dense(code_size, activation='relu')(input_img)
output_img = Dense(28*28, activation='sigmoid')(code)
autoencoder = Model(input_img, output_img)
```

- Training:
 - autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
 - autoencoder.fit(trainSamples, trainSamples, epochs=5)

Testing the network

- For different code_size: 1, 5, 10, 100
- For more sophisticated architecture with two hidden layers:

```
input_img = Input(shape=(input_size,))
hidden_1 = Dense(128, activation='relu')(input_img)
code = Dense(code_size, activation='relu')(hidden_1)
hidden_2 = Dense(128, activation='relu')(code)
output_img = Dense(input_size, activation='sigmoid')(hidden_2)
```


Denoising autoencoder

autoencoders2.ipynb

Creating noisy samples:

- Train using noisy samples:
 - autoencoder.fit(trainSamples_noisy, trainSamples, epochs=5)
- Works better for noisy than for sharp!

Analysing codes

- Codes for the same digits should be similar
- Let's map the codes to 2D and analyse on plot
- We will use Principal Component Analysis (PCA) to map it

```
from sklearn.decomposition import PCA
encoder = Model(input_img, code)
vectors = encoder.predict(testSamples[:20]) # get codes
pca = PCA(n_components=2)
vectors2D = pca.fit_transform(vectors) # transform to 2D
plt.scatter(vectors2D[:,0],vectors2D[:,1], c=testLabels[:points])
for i,w in enumerate(vectors):
    plt.annotate(testLabels[i],(vectors2D[i,0],vectors2D[i,1]))
```


Results

• For code_size=32 digits in similar places

Classification of encoded vectors

Prepare vectors:

```
encoder = Model(input_img, code)
testVectors = encoder.predict(testSamples)
trainVectors = encoder.predict(trainSamples)
```

Use kNN to classify vectors

```
knn_model = KNeighborsClassifier()
knn_model.fit(trainVectors, trainLabels)
predLabels = knn_model.predict(testVectors)
```

- Results:
 - over 97% for each class!

Autoencoder applications

- Compression
 - but only for specific data
 - typically jpeg algorithm is better...
- Denoising
 - requires examples!
- Providing latent space vector for future analysis
 - for instance for classification using kNN

Map example

Input google maps

- Create autoencoders
- Three architectures:
 - Conv2D
 - Upsampling

UNET

autoencoder_models.py

Upsampling

- Uses UpSampling2D to recontruct the image
- Result: blurred (autoencoders_map_upsampling.ipynb)

Conv2DTranspose

- Used Conv2DTranspose layers to decode
- Result: much better and with less iterations autoencoders_map_transpose.ipynb

U-NET

- A special kind of encoder-decoder network
- N encoder layers
- N decoder layers
- Every i-th encoder layer is connected with (N-i) decoder layer

Why U-NET?

https://programmer.group/unet-network-magic-changes-those-things.html

UNET simplified architecture

```
input = Input(...)
e1 = encoder_block(input,layers, filters,...)
e2 = encoder_block(e1,...)
e3 = encoder block(e2,...)
b = Conv2D(...)(e3)
d1 = decoder block(b, e3,...)
d2 = decoder_block(d1, e2,...)
d3 = decoder_block(d2, e1,...)
output = Activation('tanh')(d3)
model = Model(input,output)
```


UNET simplified architecture

```
input = Input(...)
e1 = encoder_block(input,layers, filters,...)
   e2 = encoder_block(e1,...)
        e3 = encoder_block(e2,...)
       b = Conv2D(...)(e3)
d1 = decoder_block(b, e3,...)
  d2 = decoder_block(d1, e2,...)
d3 = decoder_block(d2, e1,...)
output = Activation('tanh')(d3)
model = Model(input,output)
```


encoder

```
def encoder_block(layer_in, n_filters, batchnorm=True):
    g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same',
        kernel_initializer=init)(layer_in)
    if batchnorm:
        g = BatchNormalization()(g, training=True)
        g = LeakyReLU(alpha=0.2)(g)
    return g
```


decoder

```
def decoder_block(layer_in, skip_in, n_filters, dropout=True):
  g = Conv2DTranspose(n_filters, (4,4), strides=(2,2),
       padding='same', kernel_initializer=init)(layer_in)
  g = BatchNormalization()(g, training=True)
  if dropout:
       g = Dropout(0.5)(g, training=True)
  g = Concatenate()([g, skip_in]) # merge with skip connection
  g = Activation('relu')(g)
   return g
```


Maps with U-NET

- Good results in few epochs
- Not surprising there are direct connections!
 autoencoder_map_unet.ipynb

Real applications

Some examples:

- Colorization
 - BW image -> color image
- Super-resolution
 - image 64x64 > image 256x256
- Image segmentation:
 - https://keras.io/examples/vision/oxford pets image segmentation/
- Creating analogy
 - satellite image -> map

Colorization

- Simple CNN network (colorize.ipynb)
 - -NxNx1->NxNx3
- Architecture:

```
input_img = Input(shape=image_shape)
```

- x = Conv2D(filters = 16, kernel_size = (3, 3), activation='relu',
 padding='same')(input_img)
- x = Conv2D(filters = 32, kernel_size = (3, 3), activation='relu',
 padding='same')(x)
- x = Conv2D(filters = 64, kernel_size = (3, 3), activation='relu',
 padding='same')(x)

```
output_img = Conv2D(3, (3, 3), padding='same')(x)
```

model = Model(input_img, output_img)

Colorization

- Simple CNN network
 - -NxNx1->NxNx3
- Architecture (simplified notation):

```
args = {"activation": "relu","padding": "same", "kernel_size": (3,3)}
input_img = Input(shape=image_shape)
x = Conv2D(filters = 16, **args)(input_img)
x = Conv2D(filters = 32, **args)(x)
x = Conv2D(filters = 64, **args)(x)
output_img = Conv2D(3, (3, 3), padding='same')(x)
model = Model(input_img, output_img)
```


Results

- Not very good...
- ...but not very bad as well!

Black&White images

Colorized BW images

Original images

Important property of CNN

- The number of weights for CNN is independent of the image resolution!
- Conv2D(filters = 16, kernel_size = (3, 3)) always has
 - -16*3*3 + 16 = 160 weights
 - regardless of an image size!
- The next layer Conv2D(32,(3,3)) always has
 - -16*32*3*3+32 = 4640 weights
 - regardless of an image size!
- Pure CNN models work for images with any size!

Using UNET architecture

- Necessary to add two channels to BW images:
 - bwlmages = np.concatenate((bwlmages,bwlmages,bwlmages),axis=3)
- Results: much better just after few epochs
- colorize_unet.ipynb

UNET Results

Much better!

Black&White images

Colorized BW images

Original images

Super-resolution

- Turn an image with low resolution into the image with high resolution
- The state of the art established during:
 - New Trends in Image Restoration and Enhancement (NTIRE) workshop and challenge on image super-resolution
 - part of the CVPR conference
 - several editions: 2017-2021
- Different possible architectures

The simplest example

supersampling_bolek.ipynb

```
- 64x64 -> 256x256
```

• The model:

```
conv_args = {"activation": "relu","padding": "same", }
inputs = Input(shape=image_shape)
x = Conv2D(64, 5, **conv_args)(inputs)
x = Conv2D(64, 3, **conv_args)(x)
x = Conv2D(32, 3, **conv_args)(x)
x = Conv2D(channels * (up_factor ** 2), 3, **conv_args)(x)
outputs = tf.nn.depth_to_space(x, up_factor)
model = Model(inputs, outputs)
```


depth_to_space

- Conversion with scale factor: s
- General task:
 - (W, H, C) > (s*W, s*H, C)
- Depth to space layer:
 - $(W, H, C*s^2) > (s*W, s*H, C)$
- Example:
 - -(32,32,3)
 - ___...
 - -(32, 32, 3*4²)
 - depth_to_space layer
 - -(32*4, 32*4, 3)

More sophisticated architectures

- Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR)
 - winner of NTIRE 2017
- Wide Activation for Efficient and Accurate Image Super-Resolution (WDSR)
 - winner of NTIRE 2018
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (SRGAN)
 - GAN network

EDSR

Residual network with Conv2D-RELU-Conv2D-Mult blocks

WDSR

- Extension of EDSR:
 - increases the number of channels in residual blocks
 - reduces the mumber of channels in mapping path
 - the same number of weights

http://krasserm.github.io/2019/09/04/super-resolution/

Evaluation

- How to evaluate the correctness of superscaling?
- The obvious idea: calculate the difference between the generated image and the real image:
 - L2 norm
 - L1 norm
 - Binary crossentropy
- Problem: images percieved as blurred have typically good results
- A step forward:
 - use the additional network (discriminator!) to judge the correctness!
- SRGAN

Ready to use

- More information:
 - http://krasserm.github.io/2019/09/04/super-resolution/
- Library with code:
 - https://github.com/krasserm/super-resolution
- Execution examples
 - article.ipynb
 - example-esdr.ipynb
 - example-wdsr.ipynb
 - example-srgan.ipynb

Image to image (pix2pix)

- GAN that converts one image to another
- Input and output images are different but there is analogy between them
- A simple example: turn violet circles to green rectangles

Working example

pix2pix.ipynb

- generator:
 - UNET network (encoder-decoder with residuals)
- discriminator:
 - PatchGAN
 - It does not return one value 1/0
 - It returns a matrix of 1/0 values
 - Every pixel in the matrix refers to some part of the image
 - the parts overlap!
 - The architecture works with images of any size!

PatchGAN

Pix2Pix GAN architecture

return model

A bit different GAN creation

- This time we don't use the GradientTape!
 - discriminator_model will be trained by itself
 - generator_model will be trained through the "gan_model"

model = Model(input_src, [disc_out, gen_out])

Training GAN

Preparation:

```
patch = d_model.output_shape[1] # output of discriminator
steps = int(len(trainImgs) / batch) # steps per epoch
all_ones = np.ones((batch, patch, patch, 1)) # expected output for real
all_zeros = np.zeros((batch, patch, patch, 1)) # expected output for fake
```

One learning step:

```
for epoch in range(epochs):
    for i in range(steps):
        realA, realB = generate_real_samples(batch)
        fakeB = g_model.predict(realA)
        d_loss1 = d_model.train_on_batch([realA, realB], all_ones)
        d_loss2 = d_model.train_on_batch([realA, fakeB], all_zeros)
        g_loss, _, _ = gan_model.train_on_batch(realA, [all_ones, realB])
```


map2image example

- Load pairs: satellite image and google map
- pix2pix_map.ipynb

Ready-to-use solution

- https://github.com/affinelayer/pix2pix-tensorflow
- Dataset preparation: set of images side by side:

Using pix2pix

- Training on facades:
 - python pix2pix.py --mode train --output_dir facades_train --max_epochs 200 --input_dir facades/train -- which_direction BtoA
- Testing facades:
 - python pix2pix.py --mode test --output_dir facades_test -input_dir facades/val --checkpoint facades_train
- Result: the html file with pairs of images

Available datasets

- https://www.github.com/affinelayer/pix2pix-tensorflow-models.git static/models
 - facades
 - edges2cats
 - edges2shoes
 - edges2handbags
- Online example:
 - https://affinelayer.com/pixsrv/
- It is possible to start your own server:
 - cd server
 - serve.py --port 8001

Using ready-to-use models

- Install tensorflow_examples package
 - pip install git+https://github.com/tensorflow/examples.git
- Import the package:
 - from tensorflow_examples.models.pix2pix import pix2pix
- Create the generator and discriminator:

```
generator = pix2pix.unet_generator(....)
```

discriminator = pix2pix.discriminator(...)

Problems with pix2pix

- It requires pairs of analogous images
- It is not always possible
- Simple example: change man face to woman face

- Problem: we don't have many pairs like that
- If we had a software producing such pairs we would not need any GAN!

CycleGAN

- Instead of preparing pairs of images we prepare sets of images
 - without one-to-one relationships!
- For example:
 - set of female images (X)
 - set of male images (Y)
- We train the network to generate images based on X that look like Y
- ...and images based on Y that look like X (a cycle!)

CycleGAN architecture

- Two generators: G and F
 - G translates X to Y
 - F translates Y to X
- Two discriminators Dx and Dy:
 - Dx checks if X is genuine or fake
 - Dy checks if Y is genuine or fake

CycleGAN architecture

Two sets of images: X and Y

$$Dx_{loss} = bce(X,1) + bce(Y',0)$$

$$Dy_loss = bce(Y,1) + bce(X',0)$$

$$G_{loss} = bce(X',1)+...$$

$$F_{loss} = bce(Y',1)+...$$

bce = binary crossentropy

Two additional losses for CycleGAN

- Cycle loss: after the cycle the image should look the same
 - -X'=G(X)
 - X'' = F(X')
 - cycle_loss_x = |X'' X| = |F(G(X)) X|
 - $\text{ cycle_loss_y} = |G(F(Y)) Y|$
 - total_cycle_loss = cycle_loss_x + cycle_loss_y
- Identity loss: after the "reverse generation" the image should look the same
 - identity_loss_x = |F(X) X|
 - identity_loss_y = |G(Y) Y|

For our example

Cycle loss

X" should be similar do X: cycle_loss_x = |X-X''| = |X-F(G(X))|

Identity loss

Turning male image to male should have no effect: identity_loss_x=|X-F(X)|

Rules for loss calculation

- Discriminator X should recognize male faces
- Discriminator Y should recognize female faces
- Cycle:
 - Male face after generator G should turn to female, and this changed image after generator F should turn to male again – the same as at the begining
 - Female face after generator F should turn to male, and this changed image after generator G should turn to female again
- Identity:
 - Male face used as input to generator F should remain male
 - Female face used as input to generator G should remain female

One step

```
input: real_x, real_y
# generate images
fake_y = generator_g(real_x, training=True)
cycled_x = generator_f(fake_y, training=True)
fake_x = generator_f(real_y, training=True)
cycled_y = generator_g(fake_x, training=True)
same_x = generator_f(real_x, training=True)
same_y = generator_g(real_y, training=True)
# check results
disc_real_x = discriminator_x(real_x, training=True)
disc_real_y = discriminator_y(real_y, training=True)
disc_fake_x = discriminator_x(fake_x, training=True)
disc_fake_y = discriminator_y(fake_y, training=True)
```


Calculate loss

```
bce – binary cross entropy, abs – mean absolute error
# discriminators losses
disc_x_loss = bce([1],disc_real_x) + bce([0],disc_fake_x)
disc_y_loss = bce([1],disc_real_y) + bce([0], disc_fake_y)
# generators losses
gen_g_loss = bce([1],disc_fake_y)
gen_f_loss = bce([1],disc_fake_x)
total_cycle_loss = abs(real_x, cycled_x) + abs(real_y, cycled_y)
identity_loss_x = abs(real_x, same_x)
identity_loss_y = abs(real_y, same_y)
# total generator losses
total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss_y
total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss_x
```


Apply gradients

Calculate the gradients for generators and discriminators

```
g_grads = tape.gradient(total_gen_g_loss, generator_g.trainable_variables)
f_grads = tape.gradient(total_gen_f_loss, generator_f.trainable_variables)
dx_grads = tape.gradient(disc_x_loss, discriminator_x.trainable_variables)
dy_grads = tape.gradient(disc_y_loss, discriminator_y.trainable_variables)
# Apply the gradients to the networks
g_optimizer.apply_gradients(zip(g_grads, generator_g.trainable_variables))
f_optimizer.apply_gradients(zip(f_grads, generator_f.trainable_variables))
dx_opt.apply_gradients(zip(dx_grads, discriminator_x.trainable_variables))
```

dy_opt.apply_gradients(zip(dy_grads, discriminator_y.trainable_variables))

CycleGAN example

- cyclegan.ipynb
- Changing circles to squares

A classic example

- Notebook from the Tensorflow tutorial
 - https://www.tensorflow.org/tutorials/generative/cyclegan
- Changing horses to zebras

Other datasets

- https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
- apple2orange.zip
- cezanne2photo.zip
- iphone2dslr_flower.zip
- monet2photo.zip
- summer2winter_yosemite.zip
- vangogh2photo.zip
- ...

Summary

- Autoencoders and U-Networks
 - may be used for image conversion (deniosing, colorization, supersampling,...)
- Pix2pix
 - converts one image to another
 - we need pairs of images
- CycleGAN
 - builds generators that convert one type of images into another type
- There are a lot of interesting applications!

photo: Florida

Deep Learning in Python

Next lecture: Object detection

Paweł Kasprowski, PhD, DSc.

