清华大学2022春季学期

电路原理C

目录

MOSFET的电路模型及其应用

- 一、MOSFET(原理和模型)
- 二、用MOSFET构成逻辑同电路
- 三、MOSFET构成逻辑门电路的功率分析
- 四、CMOS

— , MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)

金属氧化物半导体场效应管

小: 线宽32nm

Intel i7 CPU 12亿个晶体管 (双极、MOS)

CPU供电电路 中的MOSFET

吴刚耳机放大器 日立N沟道 2SK214型 MOSFET

承载电压几百V流通电流几百A的功率MOSFET

大: 10cm

MOSFET — N沟道增强型 Metal-Oxide-Semiconductor Field-Effect <u>Transistor</u>

N沟道增强型MOS管导电原理:

当DS之间加漏极**电压U_{DS}时,DS之间并不导通。**

当GS之间加一定大小的栅极**电压U_{GS}后,两N区之间感应出N型导电通道,**DS之间导通。

栅极电压 U_{GS} 越大,DS之间导电能力越强。

MOSFET的外特性

- 1) $U_{\rm GS} I_{\rm GS}$
- $2) U_{\rm DS} I_{\rm GS}$
- 3) $U_{\rm GS} I_{\rm DS}$
- 4) $U_{\rm DS} I_{\rm DS}$

MOSFET的运行

N沟道增强型MOSFET

氧化物绝缘; $U_{\rm GS}$ 增加-导电沟道, $U_{\rm T}$;GSD名称; $U_{\rm DS}$ 增加-夹断, $U_{\rm GS}$ - $U_{\rm T}$;n沟道增强;英文名;两种符号

压控电流源 Voltage Controlled Current Source (VCCS)

MOSFET原理的定性解释

可变电阻区

$U_{\rm GS}=5{\rm V}$ $l_{\rm DS}$ $U_{\rm GS}$ =4V MOSFET的性质 $U_{GS}=3V$ u_{GS} $u_{\rm DS}(V)^6$ mosfet的特性.ewb - $U_{ m GS}$ =5m V0.5 0.4 饱和区/ $u_{\rm DS} > (u_{\rm GS} - U_{\rm T}) > 0$ 恒流区(B) $i_{DS}(A)_{03}$ 0.3 $\dot{l}_{\mathrm{DS(A)}}$ 三极管区/ $(u_{\rm GS} - \overline{U}_{\rm T}) > u_{\rm DS}$ 1.667 3.333 $u_{GS}(V)$ $u_{\rm DS}({\rm V})$ 截止区(A) $u_{\rm GS} < U_{\rm T}$ $(u_{\rm CS}-U_{\rm T})<0$

- (u_{GS} U_T)>0以后,MOSFET的D、S间开始导通。
- 导通后 (u_{GS}-U_T)<u_{DS} 的时候,MOSFET的**D、S间呈电流源特性。**

$$u_{\text{GS}}$$
与 i_{DS} 呈二次方关系 $i_{\text{DS}} = \frac{K(u_{\text{GS}} - U_{\text{T}})^2}{2}$

■ 导通后 $u_{DS} < (u_{GS} - U_T)$ 的时候,MOSFET的**D、S间**呈**电阻特性。**

DC Transfer Characteristic

本讲中MOSFET工作于1或3

检验方式见L8

1. 截止区

条件
$$(u_{GS} - U_{T}) < 0$$
 性质 $i_{DS} = 0$

$$i_{\rm DS} = 0$$

$$G \circ D$$

$0 < (u_{GS} - U_{T}) < u_{DS}$

2. 恒流源区

条件

性质
$$i_{DS} = \frac{K(u_{GS} - U_{T})^{2}}{2}$$

3. 电阻区

条件

$$(u_{\rm GS} - U_{\rm T}) > u_{\rm DS}$$

性质

$$R_{ON}$$

二、用MOSFET构成逻辑门

- 1、逻辑代数基础
- 1) 什么是逻辑?

二值逻辑: 0 和 1

不仅可以表示具体的数值,而且可以两种不同的逻辑状态

事情的是与非电压的高与低开关的通和断电灯的亮与灭

2) 逻辑代数的三种基本运算

$$Y = \overline{A}$$

$$\bar{1} = 0$$
 $\bar{0} = 1$

逻辑与

$$Y = A \cdot B$$

$$0 \cdot 0 = 0$$
 $0 \cdot$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

$$Y = A + B$$

$$0 + 0 = 0$$

$$0+1=1$$

$$1+0=1$$

$$1+1=1$$

3)表示逻辑的两种方法

逻辑表达式

$$Y_1 = A$$

 Y_1 与A相反

$$Y_2 = A \cdot B$$

A、B同为1时 Y_2 为1

$$Y_3 = A + B$$

A、B同为0时 Y_3 为0

真值表

A	В	Y_1	Y_2	Y_3
1	1	0	1	1
0	0	1	0	0
1	0	0	0	1
0	1	1	0	1

4) 如何根据逻辑表达式获得真值表?

$$Y = A \cdot (B + C)$$

Step1: 制表

Step2:写出所有A、B、C的组合

Step3: 根据每个组合写出对应的Y

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

5) 如何根据真值表获得逻辑表达式?

$oldsymbol{A}$	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Step1: 写出所有使得Y为1的A、B、C组合方式

$$ABC \rightarrow Y = 1$$

$$AB\overline{C} \rightarrow Y = 1$$

$$ABC \rightarrow Y = 1$$

Step2: 将这些组合用"或"运算连接起来

$$Y = A\overline{B}C + AB\overline{C} + ABC$$

Step3: 利用某种方式化简得到的逻辑表达式

方法不唯一

6) 几种最常用的逻辑门

7) 逻辑表达式的逻辑门实现

$$Y = A(B+C)$$

2、用MOSFET构成逻辑门

反相器

我们希望:

- (1) 输入 U_{GS} 为 "0" 时,输出 U_{DS} 为 "1"
- (2) 输入 U_{GS} 为 "1" 时,输出 U_{DS} 为 "0"

输入 U_{GS} 为 "0" 时

假设:

"0" ←→接近 0V

"1" ←→接近5V

输出UDS为"1"

如何构成缓冲器?

与非门 (NAND)

$$Y_2 = \overline{A \cdot B}$$

-○ *U*_{OUT}

- (1) A、B同时为"1"时, Y2为"0";
- (2) 其余条件下, Y2为 "1"。

$$Y_2 = \overline{A \cdot B}$$

- (1) A、B同时为"1"时, Y2为"0";
- (2) 其余条件下, Y2为 "1"。

或非门 (NOR)

我们希望:

- (1) A、B同时为"0"时, Y2为"1"
- (2) 其余条件下, Y2为 "0"

例子: 安理会某投票表决系统

班上某同学受联合国委托开发一套安理会投票表决系统。要求用 5V电源、MOSFET、电阻器、发光二极管和单刀双置开关来构成 该系统。

- 安理会由中、美、俄、法、英5国组成。
- 每个国家只能有两种投票方式: 赞成、反对。
- 只有5个国家全部投赞成票,提案才能通过。

Step 1: 逻辑表达式

法1: 先写真值表, 然后根据真值表得到逻辑表达式。

法2: 直接得到逻辑表达式。

$$Y = X_1 \cdot X_2 \cdot X_3 \cdot X_4 \cdot X_5$$

其中, X_1 、……、 X_5 分别代表5个国家的投票情况,均为逻辑值。

"1"为赞成, "0"为反对。

Step 2: 写成能够用MOSFET实现的逻辑门的组合

Step 3: 构成最终的投票系统

三、用MOSFET构成逻辑门电路的功率分析

设
$$U_{\rm S} = 5$$
V, $R_{\rm L} = 100$ k Ω , $R_{\rm ON} = 1$ k Ω

$$W_{\text{GATE_ABSORB}} = \frac{U_{\text{S}}^2}{R_L + R_{\text{ON}}} \approx \frac{25}{10^5} = 0.25 \text{mW}$$

CMOS Complementary Metal—Oxide—Semiconductor

为什么不考虑 U_{out} 流出的电流?