

Introdução

Grandes problemas, com alto custo computacional

- Divisão de um problema em partes
- Processamento Paralelo/Distribuído

Processamento sequencial

Processamento paralelo/distribuído

Divisão de um problema em partes

Divisão de um problema em partes

Threads

[10, 20, 11, 23, 14, 1, 2, 5]

[10, 20, 11, 23, 14, 1, 2, 5]

Comunicação entre processos

Concorrência

Condições de corrida

Regiões críticas

Deadlock

- Sincronização
 - Mutex
 - Semáforo
 - Produtor/Consumidor
 - Barreira

Problema dos Filósofos Famintos

Problema dos Filósofos Famintos (implementação)

https://rosettacode.org/wiki/Dining_philosophers#Python

"Coleção de computadores independentes entre si que se apresenta ao usuário como um sistema único e coerente" — Tanenbaum, Andrew S., Distributed Systems: Principles and Paradigms, pg. 2

Divisão de um problema em partes

• Distribuir acessos ≠ Distribuir processamento

Distribuir acessos ≠ Distribuir processamento

Ferramentas

Ferramentas

Equipamentos

OpenMPI

- Problemas
 - Eleição
 - Ordenação de eventos
 - Generais Bizantinos

Eleição

A eleição torna-se necessária quando o sistema distribuído está sendo iniciado pela primeira vez ou o líder anterior não consegue se comunicar com os demais processos pela ocorrência de alguma falha.

- Algoritmo em anel
- Algoritmo de bully

- Ordenação de eventos
 - Dificuldade de determinar relações temporais
 - Relógio físico (sincronização)
 - Relógio lógico
 - Ordenação Parcial
 - Ordenação Casual Potencial
 - Ordenação Total

Generais Bizantinos

Dois exércitos, cada um liderado por um general, estão se preparando para atacar uma cidade fortificada. Os exércitos estão acampados próximo à cidade, cada um em sua própria montanha. Um vale separa as duas montanhas, e a única forma dos dois generais se comunicarem é por meio do envio de mensageiros através do vale. Infelizmente, o vale é ocupado pelos defensores da cidade e há a chance que algum mensageiro enviado seja capturado.

Generais Bizantinos

