An Information Minimization Based Contrastive Learning Model for Unsupervised Sentence Embeddings Learning

Shaobin Chen¹, Jie Zhou², Yuling Sun¹, Liang He¹

¹East China Normal University ²Fudan University

Code: https://github.com/Bin199/InforMin-CL

Introduction of Contrastive Learning

Previous Contrastive Learning Based Methods

[ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer. Yuanmeng Yan et al. ACL 2021.]
[DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations. John Giorgi et al. ACL 2021.]
[CLINE: Contrastive Learning with Semantic Negative Examples for Natural Language Understanding. Dong Wang et al. ACL 2021.]

[SimCSE: Simple Contrastive Learning of Sentence Embeddings. Tianyu Gao et al. EMNLP 2021.]

Previous Contrastive Learning Based Methods

Redundant Information

Redundant information leads to a drop in transfer performance!!!

Redundant Information

We care about two types of redundant information, stop words and the style of the sentence (e.g., restatement, capitalization, and hyphen.)

Original	Where is the party, it sounds great.
Stop words Restatement Capitalization Hyphen	Where is the party, it sounds great. The party sounds great, where is it. Where Is The Party, It Sounds Great. Where-is-the-party, it-sounds-great.

lied in work.

Question

Solution

Draw inspiration from <u>Information minimization principle</u>: A good set of views share the minimal information necessary to perform well at the downstream task.

Architecture of Proposed Model: InforMin-CL

Total Loss function L:

$$\mathcal{L} = \mathcal{L}_C + \lambda * \mathcal{L}_R$$

Contrast Keeps Almost All the Key Information

<u>Theorem 1:</u> The supervised learned representations contain all the key information in the input I(X;T). The self-supervised representations contain all the key information in the input with a potential loss.

$$I(X;T) = I(Z^{sup};T) = I(Z^{sup_{min}};T)$$

$$\geq I(Z^{ssl};T)$$

$$\geq I(Z^{ssl_{min}};T)$$

$$\geq I(X;T) - \varepsilon$$

X: input

Z: instance

S: self-supervised signal

T: key information

I: mutual information

H: information entropy

 $Z^{\sup} = \underset{Z}{\operatorname{arg max}} I(Z;T)$ $Z^{\sup_{\min}} = \underset{Z}{\operatorname{arg min}} H(Z|T)$

 $Z^{sup_{\min}} = \operatorname*{arg\,min}_{Z} H\left(Z|T\right)$

s.t. I(Z;T) is maximized

 $Z^{ssl} = \arg\max_{Z} I\left(Z; S\right)$

 $Z^{ssl_{\min}} = \operatorname*{arg\,min}_{Z} H\left(Z|S\right)$

s.t. I(Z;S) is maximized

Contrast Keeps Almost All the Key Information

<u>Theorem 1</u> suggests maximizing $I(z^1, z^2)$ results in z^1 containing almost all the key information.

We minimize the following loss:

$$\mathcal{L}_{C} = \max \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{sim(z_{i}^{1}, z_{i}^{2})} / \tau}{\frac{1}{N} \sum_{k=1}^{N} e^{sim(z_{i}^{1}, z_{k}^{2})} / \tau} \right]$$

Reconstruction Discards the Redundant Information

<u>Theorem 2:</u> The sufficient self-supervised representation contains more redundant information in the input than the sufficient and minimal self-supervised representation. The latter contains an amount of the information, I(X; S|T) that cannot be discarded from the input.

$$I(Z^{ssl}; X|T) = I(X; S|T) + I(Z^{ssl}; X|S,T)$$

$$\geq I(Z^{ssl_{min}}; X|T) = I(X; S|T)$$

$$\geq I(Z^{sup_{min}}; X|T) = 0$$

$$Z^{ssl} = \underset{Z}{\operatorname{arg\,max}} I\left(Z;S\right)$$
 $Z^{ssl_{\min}} = \underset{Z}{\operatorname{arg\,min}} H\left(Z|S\right)$
 $s.t. \ I\left(Z;S\right) is \text{ maximized}$
 $Z^{\sup} = \underset{Z}{\operatorname{arg\,max}} I\left(Z;T\right)$
 $Z^{\sup_{Z}} = \underset{Z}{\operatorname{arg\,min}} H\left(Z|T\right)$
 $s.t. \ I\left(Z;T\right) is \text{ maximized}$

Reconstruction Discards the Redundant Information

("InfoMin Principle": Discard redundant information not shared)

- Key information shared
- Redundant information not shared
- Redundant information shared

Maximize
$$\mathbb{E}_{P_{Z^1,Z^2}}\left[\log P\left(Z^1|Z^2\right)\right]$$
 = Minimize $H\left(Z^1|Z^2\right)$

Reconstruct z^1 via z^2

maximize
$$\mathbb{E}_{P_{Z^1,Z^2}}\left[\log P\left(Z^1|Z^2\right)\right]$$

under the constraint that

$$I(z^1, z^2)$$
 is maximized: (by contrast operation)

We obtain:

$$z^{1_{SSl}}min$$

Which contains the least redundant information according to *Theorem 2*.

Reconstruction Discards the Redundant Information

("InfoMin Principle": Discard redundant information not shared)

- Key information shared
- Redundant information not shared
- Redundant information shared

For eaiser optimization, we use

$$\mathbb{E}_{P_{Z^1,Z^2}}\left[\log Q_{\Phi}\left(Z^1|Z^2\right)\right]$$

As a lower bound of

$$\mathbb{E}_{P_{Z^1,Z^2}}\left[\log P\left(Z^1|Z^2\right)\right]$$

Where $Q_{\Phi}\left(Z^{1}|Z^{2}\right) \sim N\left(Z^{1}|Z^{2}, \sigma I\right)$ (σI is a diagonal matrix)

We minimize the following loss:

$$\mathcal{L}_{R} = \mathbb{E}_{z^{1}, z^{2} \sim P_{Z^{1}, Z^{2}}} \left[- \left\| z^{1} - z^{2} \right\|_{2}^{2} \right]$$

Performance on Unsupervised (semantic textual similarity) Tasks

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
GloVe embeddings (avg.) †	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
$BERT_{base}$ (first – last avg.) †	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
$\mathrm{BERT}_{\mathrm{base}}\mathrm{-flow}^{\dagger}$	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
$\mathrm{BERT}_{\mathrm{base}}$ -whitening [†]	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
$IS - BERT_{base}^{\dagger}$	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
$CT - BERT_{base}^{\dagger}$	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
$SCD - BERT_{base}^{\circ}$	66.94	78.03	69.89	78.73	76.23	76.30	73.18	74.19
$SimCSE - BERT_{base}$	67.01	82.14	73.76	80.49	79.01	77.04	69.94	75.63
InforMin-CL $-$ BERT $_{ m base}$	70.22	83.48	75.51	81.72	79.88	79.27	71.03	77.30
RoBERTa _{base} (first – last avg.) [†]	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTa _{base} —whitening [†]	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
$DeCLUTR - RoBERTa_{base}^{\dagger}$	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
$SCD - RoBERTa_{base}^{\heartsuit}$	63.53	77.79	69.79	80.21	77.29	76.55	72.10	73.89
$SimCSE - RoBERTa_{base}$	70.32	82.48	74.84	82.13	82.14	81.57	68.62	77.44
InforMin-CL $-$ RoBERT $\mathbf{a}_{\mathbf{base}}$	69.79	82.57	73.36	80.91	81.28	81.07	70.30	77.04
$SimCSE - RoBERTa_{large}$	72.64	83.78	75.83	84.24	80.12	81.10	69.81	78.22
InforMin-CL $-$ RoBERTa _{large}	70.91	84.20	75.57	82.26	79.68	81.10	72.81	78.08

InforMin-CL outperforms all baselines significantly with BERT as an encoder.

Analysis of Experimental Result

Datasets			
BERT (16GB)	RoBERTa (160GB)		
BooksCorpus	BooksCorpus		
English Wikipedia	English Wikipedia		
-	CC-NEWS		
-	OPENWEB-TEXT		
-	STORIES		

The diverse large-scale high-quality pre-training datasets of RoBERTa contain less noise information, which results in InforMin-CL struggling to present its effects.

Performance on Supervised Tasks

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
GloVe embeddings $(avg.)^{\dagger}$	77.25	78.30	91.17	87.85	80.18	83.00	72.87	81.52
Skip – thought [†]	76.50	80.10	93.60	87.10	82.00	92.20	73.00	83.50
Avg. BERT embeddings [†]	78.66	86.25	94.37	88.66	84.40	92.80	69.54	84.94
BERT – [CLS] embeddings [†]	78.68	84.85	94.21	88.23	84.13	91.40	71.13	84.66
$IS - BERT_{base}^{\dagger}$	81.09	87.18	94.96	88.75	85.96	88.64	74.24	85.83
$SCD - BERT_{base}^{\circ}$	73.21	85.80	99.56	88.67	85.59	89.80	75.71	85.52
$SimCSE - BERT_{base}$	81.47	86.86	94.79	89.25	86.27	89.40	72.81	85.84
InforMin-CL $-$ BERT $_{ m base}$	80.99	85.72	94.63	89.47	85.67	88.20	73.97	85.52
w/ MLM	82.87	87.05	95.22	88.43	87.15	92.20	75.77	86.96
$SimCSE - RoBERTa_{base}$	81.26	87.36	93.58	87.56	86.93	84.80	75.01	85.21
$SCD - RoBERTa_{base}^{\heartsuit}$	82.17	87.76	93.67	85.69	88.19	83.40	76.23	85.30
$InforMin-CL-RoBERTa_{base}$	82.22	88.08	93.57	87.75	87.59	86.60	76.99	86.11
w/ MLM	83.49	88.69	94.79	86.81	88.30	89.40	77.57	87.01
$SimCSE - RoBERTa_{large}$	80.85	85.99	93.08	87.65	86.33	89.00	72.46	85.05
${\tt InforMin-CL-RoBERTa_{large}}$	82.50	88.32	93.81	89.38	87.64	90.80	74.49	86.71

InforMin-CL outperforms all baselines with BERT or RoBERTa as the encoder.

Ablation Study

Influence of λ (the coefficient of reconstruction objective)

λ	Avg. Sup	Avg. Unsup
0.04	85.20	76.09
0.4	85.52	77.30
4	85.03	77.18

The performance of InforMin-CL on both unsupervised and supervised tasks rises first and falls later.

Ablation Study

Influence of β (the coefficient of MLM objectives)

Model	Avg. Sup	Avg. Unsup
w/o MLM	85.52	77.30
w/ MLM		
$\beta = 0.01$	86.46	63.59
$\beta = 0.1$ (ours)	86.96	63.25
$\beta = 1.0$	87.04	60.85

Consistently helps improve performance on supervised tasks but brings a significant drop on unsupervised tasks.

Ablation Study

Influence of Batch Size

Batch size	64	128	256
Avg. Sup	85.38	85.52	85.77
Avg. Unsup	76.64	77.30	76.14

Not sensitive to batch size

Alignment: How well positive pairs are aligned

Uniformity: How well the embeddings are uniformly distributed

Qualitative Analysis:

$$\mathcal{L}_{C} = \max \left[\frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[sim \left(z_{i}^{1}, z_{i}^{2} \right) / \tau \right] - \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[log \left(\frac{1}{N} \sum_{k=1}^{N} e^{sim \left(z_{i}^{1}, z_{k}^{2} \right) / \tau } \right) \right] \right]$$

Optimizing L_R pulls z^1 and z^2 closer

$$\mathcal{L}_{R} = \mathbb{E}_{z^{1}, z^{2} \sim P_{Z^{1}, Z^{2}}} \left[- \left\| z^{1} - z^{2} \right\|_{2}^{2} \right]$$

Quantitative Analysis:

InforMin-CL achieves best in terms of alignment

Quantitative Analysis:

Similar sentence pairs generated by InforMin-CL are more aligned.

Thanks!

Contact: chenshaobin000001@gmail.com

