${ m MT234P-MULTIVARIABLE~CALCULUS-2022}$

Fiacre Ó Cairbre

Lecture 9

Section 2.2 - Tangent Planes.

Remark 5. Recall theorem 5, definition 15 and theorem 6 from chapter 1, where we discussed the definition of a differentiable function of two variables. The situation for a function of three variables is similar and we now give the relevant two theorems and definition.

Theorem 3.

Suppose $f: \mathbb{R}^3 \to \mathbb{R}$. Suppose that the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ are defined on an open set W containing the point (a,b,c). Suppose that $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ are continuous at (a,b,c). Define Δm as $\Delta m = f(a+\Delta x,b+\Delta y,c+\Delta z) - f(a,b,c)$ so that Δm is the change in f as (x,y,z) goes from (a,b,c) to $(a+\Delta x,b+\Delta y,c+\Delta z)$ in W.

Then, we have the following:

$$\Delta m = \frac{\partial f}{\partial x|_{(a,b,c)}} \Delta x + \frac{\partial f}{\partial y|_{(a,b,c)}} \Delta y + \frac{\partial f}{\partial z|_{(a,b,c)}} \Delta z$$

$$+\epsilon_1 \Delta x + \epsilon_2 \Delta y + \epsilon_3 \Delta z$$
, where $\epsilon_1, \ \epsilon_2, \ \epsilon_3 \to 0$ as $\Delta x, \ \Delta y$ and $\Delta z \to 0$ (**)

Definition 5.

Suppose $f: \mathbb{R}^3 \to \mathbb{R}$. We say f is differentiable at (a,b,c) if $\frac{\partial f}{\partial x|_{(a,b,c)}}$, $\frac{\partial f}{\partial y|_{(a,b,c)}}$ and $\frac{\partial f}{\partial z|_{(a,b,c)}}$ exist and (**) in theorem 3 holds for f at (a,b,c). We say f is differentiable if it's differentiable at every point in its domain.

Theorem 4.

Suppose $f: \mathbb{R}^3 \to \mathbb{R}$. If $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial y}$ are continuous on an open set W, then f is differentiable at every point in W.

Remark 6.

Recall that for a differentiable function of one variable, g(x), the derivative of g gives the slope of a tangent line. Here we will see how the gradient of a differentiable function of

three variables, f(x, y, z), will give a vector perpendicular to a so called tangent plane (which will be defined later).

Remark 7.

Consider a curve in \mathbb{R}^3 given by $g(t)\vec{i} + h(t)\vec{j} + q(t)\vec{k}$, $t \in \mathbb{R}$. Then, we say that this curve is differentiable at $t = t_0$ if g, h, q are all differentiable functions at $t = t_0$. We say that this curve is differentiable if it's differentiable at all t in its domain.

Example 3.

Consider the curve in \mathbb{R}^3 given by $\cos t \ \vec{i} + \sin t \ \vec{j} + t \ \vec{k}$, $t \in \mathbb{R}$. Then, this curve is differentiable and will give a helix in \mathbb{R}^3 .

Remark 8.

Suppose f(x, y, z) is a differentiable function of three variables. Suppose (x_0, y_0, z_0) is a point on the level surface f(x, y, z) = c, for some $c \in \mathbb{R}$. Suppose $g(t)\vec{i} + h(t)\vec{j} + q(t)\vec{k}$, $t \in \mathbb{R}$ is any differentiable curve on the level surface f(x, y, z) = c.

Then, f(g(t), h(t), q(t)) = c. Let x = g(t), y = h(t), z = q(t). Now, using the chain rule we get

$$0 = \frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt} = \nabla f \cdot \underline{v}$$

where $\underline{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$ is the curve's so called 'velocity vector' or 'tangent vector'.

So, ∇f is perpendicular to the velocity vector at every point on the curve. All the velocity vectors at (x_0, y_0, z_0) are perpendicular to ∇f at (x_0, y_0, z_0) and so all the tangent lines to these curves lie in the plane containing (x_0, y_0, z_0) that is perpendicular to ∇f . We call this plane the tangent plane of the level surface at (x_0, y_0, z_0) . So, the tangent plane at the point (x_0, y_0, z_0) of the level surface f(x, y, z) = c is the plane containing (x_0, y_0, z_0) that is perpendicular to ∇f .

The line through (x_0, y_0, z_0) that is perpendicular to the tangent plane is called the surface's normal line at (x_0, y_0, z_0) . So, the normal line of the level surface f(x, y, z) = c at the point (x_0, y_0, z_0) is parallel to ∇f . We now gather this information to form the following definition:

Definition 6.

Suppose f(x, y, z) is a differentiable function. The tangent plane at the point (x_0, y_0, z_0) of the level surface f(x, y, z) = c is the plane with equation

$$\frac{\partial f}{\partial x|_{(x_0, y_0, z_0)}}(x - x_0) + \frac{\partial f}{\partial y|_{(x_0, y_0, z_0)}}(y - y_0) + \frac{\partial f}{\partial z|_{(x_0, y_0, z_0)}}(z - z_0) = 0$$

The normal line of the level surface f(x, y, z) = c at the point (x_0, y_0, z_0) on the level surface f(x, y, z) = c is the line with parametric equations

$$x = x_0 + \frac{\partial f}{\partial x|_{(x_0, y_0, z_0)}} t, \quad y = y_0 + \frac{\partial f}{\partial y|_{(x_0, y_0, z_0)}} t, \quad z = z_0 + \frac{\partial f}{\partial z|_{(x_0, y_0, z_0)}} t, \quad t \in \mathbb{R}$$

Example 4.

Find the equations for the tangent plane and normal line at (1, -1, 3) of the level surface $x^2 + 2xy - y^2 + z^2 = 7$.

Solution.

Let
$$f(x, y, z) = x^2 + 2xy - y^2 + z^2$$
 and let $(x_0, y_0, z_0) = (1, -1, 3)$. Now,
$$\frac{\partial f}{\partial x|_{(1, -1, 3)}} = (2x + 2y)_{|(1, -1, 3)} = 0$$
$$\frac{\partial f}{\partial y|_{(1, -1, 3)}} = (2x - 2y)_{|(1, -1, 3)} = 4$$
$$\frac{\partial f}{\partial z|_{(1, -1, 3)}} = (2z)_{|(1, -1, 3)} = 6$$

So, the equation of the required tangent plane is 4(y+1)+6(z-3)=0 which gives the plane 2y+3z=7. The equation of the required normal line is $x=1,\ y=-1+4t,\ z=3+6t,\ t\in\mathbb{R}$.

Chapter 3 – Maxima and Minima.

Section 3.1 – Derivative tests.

Definition 1.

Suppose f(x,y) is a function of two variables and suppose f is defined on a subset T of \mathbb{R}^2 with $(a,b) \in T$. Then

- (i) f(a, b) is a local maximum value of f if $f(a, b) \ge f(x, y)$, for all domain points (x, y) in an open ball with centre (a, b). We call (a, b) a local maximum.
- (ii) f(a,b) is a local minimum value of f if $f(a,b) \leq f(x,y)$, for all domain points (x,y) in an open ball with centre (a,b). We call (a,b) a local minimum.

Remark 1.

Note that if (a, b) is a local maximum of f, then it may not necessarily be the case that $f(a, b) \ge f(x, y)$, for all points (x, y) in the domain of f.