Árboles AVL

Un caso extremo

Insertar en un Árbol Binario la siguiente serie de valores: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

O bien:

15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Adelson-Velskii and Landis' Tree

Los Árboles AVL son árboles binario de búsqueda auto-balanceados-En un árbol balanceado la altura de dos subárboles hermanos en cualquier nodo del árbol son iguales o difieren por no más de un nivel de altura.

Si en algún momento la diferencia de alturas entre subárboles hermanos difieren por más de uno, se realiza un rebalanceo para mantener el esto balanceado del árbol.

La diferencia de alturas entre subárboles hermanos dan pie al término *factor* de equilibrio

El rebalanceo se realiza por medio de la Rotación de la cual existen

- Rotación Simple a la Izquierda (RSI) RII: Rotación Izquierda Izquierda
- Rotación Simple a la Derecha (RSD) RDD: Rotación Derecha Derecha
- Rotación Doble a la Izquierda (RDI) RDI: Rotación Derecha Izquierda
- Rotación Doble a la Derecha (RDD) RID: Rotación Izquierda Derecha

Árboles AVL Factor de equilibrio

FE = ASD - ASI

FE: Factor de Equilibrio

ASD: Altura del Subárbol Derecho ASI: Altura del Subárbol Izquierdo

Factor	
2	Desequilibrio hacia la derecha
1	
0	Equilibrado
-1	
-2	Desequilibrio hacia la izquierda

Árboles AVL ¿Qué rotación aplicar?

Si un árbol está desbalanceado hacia la izquierda (-2), aplicar rotación hacia derecha

Si un árbol está desbalanceado hacia la derecha (2), aplicar rotación hacia izquierda

En un árbol que está desbalanceado hacia la <u>izquierda</u> revisar el factor de equilibrio del subárbol <u>izquierdo</u>

En un árbol que está desbalanceado hacia la <u>derecha</u> revisar el factor de equilibrio del subárbol derecho

Si el signo de los factores <u>coincide</u>, se aplica una rotación <u>simple</u>

Si el signo de los factores <u>no coincide</u>, se aplica una rotación doble

Árboles AVL Rotaciones Simples

Árboles AVL Rotaciones Simples

Árboles AVL Rotaciones Simples a la Izquierda

Árboles AVL Rotaciones Simples

Árboles AVL Rotaciones Simples a la Derecha

Árboles AVL Ejemplo con rotaciones simples a la izquierda

Inserte en un árbol AVL la siguiente secuencia: 1, 2, 3, 4, 5, 6, 7, 8, 9

Árboles AVL Ejemplo con rotaciones simples a la derecha

Inserte en un árbol AVL la siguiente secuencia: 9, 8, 7, 6, 5, 4, 3, 2, 1

A la izquierda como una secuencia de dos rotaciones simples (**RDI**)

A la derecha como una secuencia de dos rotaciones simples (RDD)


```
aux1 =(*A)->der;
aux2 = (*A)->der->izq;
aux3 = aux2 -> izq;
if(aux3 == NULL)
aux4 = NULL
else
aux 4 = aux2->der;
(*A)->der = aux3
aux1-> izq = aux4;
aux2->izq = (*A);
aux2->der = aux1;
(*A) = aux2;
```

Árboles AVL Rotaciones Dobles a la Izquierda


```
aux1 =(*A)->izq;
aux2 = aux1->der;
aux3 = aux2 -> der;
if(aux3 == NULL)
aux4 = NULL
else
aux4 = aux2->izq;
(*A)->izq = aux3
aux1->der = aux4;
aux2->der = (*A);
aux2->izq = aux1;
(*A) = aux2;
```

Árboles AVL Rotaciones Dobles a la Derecha

Árboles AVL Ejemplo con rotaciones dobles a la izquierda

Inserte en un árbol AVL la siguiente secuencia: 1, 3, 2, 8, 5, 4, 10, 9, 7, 6

Árboles AVL Ejemplo con rotaciones dobles a la derecha

Inserte en un árbol AVL la siguiente secuencia: 10, 8, 9, 3, 6, 7, 1, 2, 4, 5

