Quantum Field Theory

July 16, 2019

Contents

1	Clas	sical field theory	3
	1.1	Field theory in continuum	3
		Noether Theorem	
1	Rad	iative corrections	3
	6.1	Optical theorem	3
	6.2	Field-strength renomrlization	7
		LSZ reduction formula	
	6.4	The propagator (again)	Ç
	6.5	Divergent graphs and dimensional regularization	12
	6.6	Superficial defree of divergence	17
	6.7	Sketch of renormlisation of OED	18

1 Classical field theory

1.1 Field theory in continuum

Euler-Lagrange-equation

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0 \tag{1.1.1}$$

momentum density

$$\pi(x) = \frac{\partial \mathcal{L}}{\partial \dot{\phi}(\mathbf{x})} \tag{1.1.2}$$

Hamiltonian density

$$\mathcal{H}(\phi(\mathbf{x}), \pi(\mathbf{x})) = \pi(\mathbf{x})\dot{\phi}(\mathbf{x}) - \mathcal{L}(\phi, \partial_{\mu}\phi)$$
(1.1.3)

1.2 Noether Theorem

If a Lagrangian field theory has an infinitisimal symmetry, then there is an associated current j^{μ} , which is conserved.

$$\partial_{\mu}j^{\mu} = 0 \tag{1.2.1}$$

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \Delta \phi - X^{\mu} \tag{1.2.2}$$

Energy-momentum tensor (stress-energy tensor)

Asymmetric version

$$\Theta_{\nu}^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial_{\nu}\phi - \delta_{\nu}^{\mu}\mathcal{L}$$
 (1.2.3)

General version

$$T^{\mu\nu} = \Theta^{\mu\nu} + \partial_{\lambda} f^{\mu\nu\lambda} \tag{1.2.4}$$

with $f^{\lambda\mu\nu} = -f^{\mu\lambda\nu}$ or $\partial_{\mu}\partial\nu f^{\lambda\mu\nu} = 0$