Calculus BC Important Info Sheet

Transcribed to LaTeX by Jack Ellert-Beck Most information compiled by Dr. Olga Voronkova

August 10, 2017

Contents

I	Information	
3		
1	Functions 3	
1.1	Even and Odd Functions 3	
1.2	Periodicity 3	
1.3	Inverse Functions 3	
2	Limits 3	
2.1	Definition of a Limit 3	
2.1.1	Symbolic Definitions of Limits 4	
2.2	Continuity 4	
2.3	Horizontal and Vertical Asymptotes 4	
2.4	Evaluating Limits 4	
2.4.1	Limits of Rational Functions as $x \to \pm \infty$	4

Part I

Information

1 Functions

1.1 Even and Odd Functions

A function y = f(x) is **even** if f(-x) = f(x) for every x in the function's domain. Every even function is summertric about the y-axis.

Example:
$$(-x)^2 = x^2$$

A function y = f(x) is **odd** if f(x) = -f(x) for every x in the function's domain. Every odd function is symmetric about the origin.

Example:
$$(-x)^3 = -(x)^3$$

1.2 Periodicity

A function f(x) is **periodic** with period p (p > 0) if f(x + p) = f(x) for every value of x.

Sinusoids are examples of periodic functions. Specifically, the period of the function $y = A \sin(Bx + C)$ or $y = A \cos(Bx + C)$ is $\frac{2\pi}{|B|}$. The amplitude is |A|. The period of $y = \tan(x)$ is π .

1.3 Inverse Functions

If f and g are two functions such that f(g(x)) = x for every x in the domain of g, and g(f(x)) = x for every x in the domain of f, then f and g are inverse functions of one another.

A function f has an inverse if and only if no horizontal line intersects its graph more than once.

If f is either increasing or decreasing in an interval, then f has an inverse.

For information on the derivatives of inverse functions, see THE THING THAT SHOULD BE HERE.

2 Limits

2.1 Definition of a Limit

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. Then $\lim_{x\to c} f(x) = L$ means that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$.

2.1.1 Symbolic Definitions of Limits

• Definition of a finite limit at a specific point:

$$\lim_{x \to c} = L \Leftrightarrow (\forall \varepsilon > 0, \exists \delta > 0, 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon)$$

• Definition of an undefined limit at a specific point:

$$\lim_{x \to c} = \infty \Leftrightarrow (\forall M > 0, \exists \delta > 0, 0 < |x - c| < \delta \Rightarrow f(x) > M)$$

$$\lim_{x \to c} = -\infty \Leftrightarrow (\forall M < 0, \exists \delta > 0, 0 < |x - c| < \delta \Rightarrow f(x) < M)$$

• Definition of a finite limit at infinity:

$$\lim_{x \to \infty} = L \Leftrightarrow (\forall \varepsilon > 0, \exists M, x > M \Rightarrow |f(x) - L| < \varepsilon)$$

$$\lim_{x \to -\infty} = L \Leftrightarrow (\forall \varepsilon > 0, \exists M, x < M \Rightarrow |f(x) - L| < \varepsilon)$$

2.2 Continuity

A function y = f(x) is **continuous** at x = a if f(a) exists, $\lim_{x \to a} f(x)$ exists, and $\lim_{x \to a} f(x) = f(a)$. y = f(x) is continuous on (a, b) if f(x) is continuous for every $x \in (a, b)$.

2.3 Horizontal and Vertical Asymptotes

A line y = b is a **horizontal asymptote** of the graph of y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.

A line x=a is a **vertical asymptote** of the graph of y=f(x) if either $\lim_{x\to a^+}f(x)=\pm\infty$ or $\lim_{x\to a^-}f(x)=\pm\infty$.

2.4 Evaluating Limits

2.4.1 Limits of Rational Functions as $x \to \pm \infty$

• $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0$ if the degree of f(x) is less than the degree of g(x).

Example:
$$\lim_{x \to \infty} \frac{x^2 - 2x}{x^3 + 3} = 0$$

• $\lim_{x\to\pm\infty}\frac{f(x)}{g(x)}$ is infinite if the degree of f(x) is greater than the degree of g(x).

Example:
$$\lim_{x \to \infty} \frac{x^3 + 2x}{x^2 - 8} = \infty$$

• $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)}$ is finite if the degree of f(x) is equal to the degree of g(x). The limit will be equal to the ratio of the leading coefficients of f(x) to g(x).

Example:
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 2}{10x - 5x^2} = -\frac{2}{5}$$

Lorem Ipsum