An introduction to mixture modelling for unsupervised clustering Mini-tutorial

Nicole M White

Australian Centre for Health Services Innovation (AusHSI)

Queensland University of Technology

July 7, 2021

Further reading

https://github.com/nicolemwhite/anzsc-mixture-modelling

A motivating example

Distribution of body mass index (BMI) for 10,000 participants.

A motivating example

Distribution of body mass index (BMI) for 10,000 participants

Defining clustering

Unsupervised clustering ↔ Identifying subgroups

Common approaches:

- Hierarchical clustering, K-means
- Mixture models

Examples of clustering using mixture models: Image classification

Alston et al (2005) DOI: 10.1071/AR04211

Examples of clustering using mixture models: Spike sorting

Mixture model ingredients

Data are drawn from a convex combination of components

$$p(y) = \eta_1 f(y|\theta_1) + \ldots + \eta_K f(y|\theta_K)$$
$$= \sum_{k=1}^K \eta_k f(y|\theta_k)$$

Unknown parameters: $oldsymbol{
u}=(oldsymbol{\eta},oldsymbol{ heta})$

- $\eta = (\eta_1, \dots, \eta_K)$: Mixture weights; $\sum_{k=1}^K \eta_k = 1$
- $f(y|\theta_k)$: k^{th} Mixture component; same parametric family

A simple 2-component mixture model

$$y_i \sim \eta_1 \mathcal{N}\left(\mu_1, 1\right) + \eta_2 \mathcal{N}\left(\mu_2, 1\right)$$

two_component_normal.R

Mixture model examples

General formulation:

$$p(y_i) = \sum_{k=1}^K \eta_k f(y_i | \boldsymbol{\theta}_k)$$

Latent class analysis (J items)

$$f(y_i|\boldsymbol{\theta}_k) = \prod_{j=1}^J f(y_{ij}|\theta_{jk})$$

Latent class regression: $\eta_k \to \eta_k(x_i)$

$$\eta_k(\mathsf{x}_i) = \frac{\exp\left(\mathsf{x}_i^T \beta_k\right)}{\sum_{l=1}^K \exp\left(\mathsf{x}_i^T \beta_l\right)}$$

Mixture model examples

Focus of mini-tutorial: cross-sectional data

- Finite mixture model
- Dirichlet Process mixture model
- Profile regression

Bayesian approaches to inference: Markov chain Monte Carlo (MCMC)

- 1 Finite mixture models
- 2 Dirichlet Process Mixture models
- 3 Profile regression

Finite mixture model: Setup

Assume:

- K is fixed a priori
- Each observation has a probability of belonging to components $1, \ldots, K$

Likelihood for $\mathbf{y} = (y_1, \dots, y_n)$

$$p(\mathbf{y}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \eta_k f(y_i | \boldsymbol{\theta}_k)$$

Aim is to learn $oldsymbol{
u}=(oldsymbol{\eta}_{1,...,\mathcal{K}},oldsymbol{ heta}_{1,...,\mathcal{K}})$

Finite Mixture Model: Setup

Likelihood:

$$p(\mathbf{y}|\boldsymbol{\nu}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \eta_k f(y_i|\boldsymbol{\theta}_k)$$

Priors:

$$(\eta_1, \ldots, \eta_K) \sim \mathcal{D}(\gamma_1, \ldots, \gamma_K)$$

 $\theta_k \sim p(\theta_k | \delta)$

Finite Mixture Model: Setup

Example: Finite mixture of Normal distributions

$$p(\mathbf{y}|\mathbf{\nu}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \eta_{k} \mathcal{N}(y_{i}|\mu_{k}, \sigma_{k}^{2})$$
$$\mu_{k} = \mathcal{N}\left(\mu_{0}, \frac{\sigma_{k}^{2}}{N_{0}}\right)$$
$$\sigma_{k}^{2} = \mathcal{I}\mathcal{G}\left(c_{0}, C_{0}\right)$$

How to estimate when membership of y_i to components 1, ..., K is not known?

Finite Mixture Model: Estimation

Enter data augmentation! (Tanner and Wong, 1987; *JASA*) The idea:

• Introduce z_i = cluster membership for y_i and treat as missing data

$$p(y_i|\nu) = \sum_{k=1}^{K} p(y_i|z_i = k, \nu) Pr(z_i = k|\nu)$$

$$Pr(z_i = k|\nu) = \eta_k$$

$$p(y_i|z_i = k, \nu) = f(y_i|\theta_k)$$

Inference on z_i provides information on clustering

Finite Mixture Model: Estimation

Inference based on the complete-data likelihood

$$p(y, z|\nu) = \prod_{k=1}^{K} \prod_{i:z_i=k} \eta_k p(y_i|\theta_k)$$
$$= \prod_{k=1}^{K} \eta_k^{\sum_{i=1}^{n} \mathbb{I}(z_i=k)} \prod_{i:z_i=k} p(y_i|\theta_k)$$

Finite Mixture Model: Estimation by MCMC

Sample z (Bayes' rule)

$$Pr(z_i = k|y_i, \nu) = \frac{\eta_k f(y_i|\theta_k)}{\sum_{j=1}^K \eta_j f(y_i|\theta_j)}$$
$$z_i \sim MN(1, Pr(z_i = 1|y_i, \nu), \dots, Pr(z_i = K|y_i, \nu))$$

2 Conditional on **z**: Update η_1, \ldots, η_K

$$\eta_1,\ldots,\eta_{\mathcal{K}} \sim \mathcal{D}(\delta_1 + \sum_{i=1}^n \mathbb{I}(z_i=1),\ldots,\delta_{\mathcal{K}} + \sum_{i=1}^n \mathbb{I}(z_i=\mathcal{K}))$$

3 Conditional on z: Update $\theta_1, \ldots, \theta_K$

$$\theta_k \sim p(\boldsymbol{\theta}_k|\delta) \prod_{i:z_i=k} f(y_i|\boldsymbol{\theta}_k)$$

Finite Mixture Model: Estimation by MCMC

Available approaches in R:

- R2OpenBUGS (see fmm_BUGS.R)
- bayesmix
- Maximum likelihood: mixtools. mclust

Or code from scratch:

- fmm_mvn.R
- fmm_multinomial.R
- fmm_pois.R

Example MCMC output

Label switching

Issue arises as likelihood is invariant to permutations of k e.g. K=3

$$p(y_{i}|\nu) = \eta_{1}p(y_{i}|\theta_{1}) + \eta_{2}p(y_{i}|\theta_{2}) + \eta_{3}p(y_{i}|\theta_{3})$$

$$= \eta_{3}p(y_{i}|\theta_{3}) + \eta_{2}p(y_{i}|\theta_{2}) + \eta_{1}p(y_{i}|\theta_{1})$$

$$= \eta_{2}p(y_{i}|\theta_{2}) + \eta_{3}p(y_{i}|\theta_{3}) + \eta_{1}p(y_{i}|\theta_{1})$$

When sampling z_i , components can be relabelled \rightarrow affects posterior inference

Exploring posterior space \leftrightarrow Posterior inference on components

Label switching: Possible solutions

Prior constraints (not a good idea):

$$\eta_1 < \eta_2 < \ldots < \eta_K$$

Relabelling algorithms:

- Loss functions: minimise over all MCMC samples of z (Stephens, 2000)
- MAP estimate \hat{z} as 'pivot' (Marin et. al, 2005)

An introduction to mixture modelling for unsupervised clustering

Similarity matrix, **S**:

$$S_{ii'}^{(d)} = \begin{cases} 1 & \text{if } z_i^{(d)} = z_{i'}^{(d)} \\ 0 & \text{otherwise.} \end{cases}$$
$$\overline{S} = \frac{1}{D} \sum_{d=1}^{D} S^{(d)}$$

Loss functions to obtain likely classification z: e.g Least squares (Dahl, 2006)

Label switching

Example: Spike sorting, K = 4 clusters

R packages: mcclust; clustering_inference.R

Choosing K

Common information criteria:

• Akaike's Information Criterion (AIC)

$$AIC_K = -\log p(y|\boldsymbol{\eta}^*, \boldsymbol{\theta}^*) + 2p_k$$

Bayesian Information Criterion (BIC)

$$BIC_K = -\log p(y|\boldsymbol{\eta}^*, \boldsymbol{\theta}^*) + p_k \log n$$

Deviance Information Criterion (DIC)

$$DIC_{K} = -4E_{\eta,\theta|y} [\log p(y|\eta,\theta)] + 2\log f(y)$$
$$f(y) = \prod_{i=1}^{n} \frac{1}{D} \sum_{d=1}^{D} \sum_{k=1}^{K} \eta_{k}^{(d)} f(y_{i}|\theta_{k}^{(d)})$$

- 1 Finite mixture models
- 2 Dirichlet Process Mixture models
- 3 Profile regression

Dirichlet Process mixture model: Motivation

General formulation:

$$p(y_i|\boldsymbol{\nu}) = \sum_{k=1}^K \eta_k f(y_i|\boldsymbol{\theta}_k)$$

In a finite mixture - assume K as fixed \rightarrow model comparison problem

Alternative: Infer K as part of modelling

An introduction to mixture modelling for unsupervised clustering

$$p(y_i|\boldsymbol{\nu}) = \sum_{k>1} \eta_k f(y_i|\boldsymbol{\theta}_k)$$

Dirichlet Process mixture model: Setup

- Nonparametric approach to mixture modelling
- Does not estimate K directly; focus on clustering of individual parameters, θ_i

Dirichlet process (DP) prior:

$$G \sim DP(\alpha, G_0)$$

 $G_0 = E(G)$; Base distribution
 $\alpha > 0$; Concentration parameter

Dirichlet Process mixture model: Setup

Each draw from a DP is itself a distribution:

$$G(A_1),\ldots,G(A_k)|\alpha,G_0\sim D(\alpha G_0(A_1),\ldots,\alpha G_0(A_k))$$

"Discreteness property": multiple draws from $DP(\alpha, G_0)$ can take the same value; induces clustering behaviour

Dirichlet Process mixture model: Setup

DP as prior within mixture setting:

$$y_i| heta_i \sim p(y_i| heta_i) \ heta_i|G \sim G \ G \sim DP(lpha,G_0)$$

- *G* is the mixing distribution
- *G*₀ prior distribution on unknown components
- α controls variation around G_0

Dirichlet Process mixture model: Estimation

How to sample from $DP(\alpha, G_0)$?! What happened to η_k ?!

- Stick breaking representation
- Pòlya Urn scheme/Chinese restaurant process

Stick breaking representation

G replaced by an infinite sum of weighted point masses:

$$G \sim DP(\alpha, G_0)$$
 $G = \sum_{k=1}^{\infty} \eta_k \delta_{\theta_k}$
 $\theta_k \sim G_0.$

 η_k ; k = 1, ... are the "stick breaking weights". Weights are drawn sequentially:

$$egin{array}{lcl} w_k | lpha & \sim & \textit{Beta}(1,lpha) \ \eta_1 & = & w_1 \ \eta_k & = & w_k \prod_{l=1}^{k-1} (1-w_l). \end{array}$$

Stick breaking process

1

• Draw $w_1 \sim Beta(1, \alpha)$ and set $\eta_1 = w_1$

 $w_1 = 1 - w_1$

• Draw $w_2 \sim \textit{Beta}(1, \alpha)$ and compute $\eta_2 = w_2(1 - w_1)$

$$w_1 | w_2 | (1-w_2)(1-w_1)$$

• Draw $w_3 \sim \textit{Beta}(1, lpha)$ and compute $\eta_3 = w_3(1-w_1)(1-w_2)$

$$w_1$$
 w_2 w_3 $(1-w_3)(1-w_2)(1-w_1)$

As $K \to \infty$

$$p(y_i|\nu) = \sum_{k=1}^K \eta_k p(y_i|\theta_k)$$

The Pòlya Urn scheme

Good analogy for implied clustering behaviour Begin with α red balls in an urn:

The Pòlya Urn scheme

If a red ball is drawn, record colour and replace with a ball of a new colour:

The Pòlya Urn scheme

If a non-red ball is drawn, record colour and replace with a ball of the same colour:

The more often a colour is drawn, the more likely it is to appear - induced clustering effect.

G is integrated out of the DP (Blackwell and MacQueen, 1973)

$$p(y_i|\theta_i) \sim p(y_i)$$

$$\theta_1 \sim G_0$$

$$\theta_i|\theta_{i-1}, \dots, \theta_1, \alpha, G_0 = \sum_{i=1}^{i-1} \frac{\delta_{\theta_i}}{\alpha + i - 1} + \frac{\alpha G_0}{\alpha + i - 1}$$

In terms of unobserved cluster memberships, z_1 , z_2 , etc

$$z_i = k | z_1, \dots, z_{i-1}, \alpha = \begin{cases} \frac{N_k}{i-1+\alpha} & 1 \leq k \leq K \\ \frac{\alpha}{i-1+\alpha} & k = K+1. \end{cases}$$

For each observation:

- ullet Chance of being assigned to a cluster \propto number of observations already assigned (N_k)
- Always a chance of a new cluster being generated (α)

Dirichlet Process Mixture model: Role of α

 α controls the level of variation about G_0

$$G \sim DP(\alpha, G_0)$$

- as $\alpha \to 0$, no clustering
- as $\alpha \to \infty$, singleton clusters

Assume α unknown and assign Gamma prior (Escobar and West, 1995)

$$\alpha \sim G(a, b)$$

Dirichlet Process Mixture model: Estimation

Stick breaking representation

• Blocked Gibbs sampler (Ishwaran and James, 2002)

$$p(y|\boldsymbol{\nu}) = \prod_{i=1}^{n} \sum_{k=1}^{L} \eta_k p(y_i|\boldsymbol{\theta}_k); \qquad L >> E(K)$$

Slice sampler (Walker, 2007); "adaptive truncation"

$$\sum_{k>1} \eta_k \sim \mathcal{U}(0, \eta_{z_i})$$

$$\sum_{k>1} \eta_k > 1 - \min\{u_1, \dots, u_n\}$$

see spike_sorting_DPM.R

Dirichlet Process Mixture model: Estimation

The Pòlya Urn scheme: collapsed Gibbs sampler Each z_i is updated sequentially given current values for remaining observations, $z^{(-i)}$

$$p(z_{i} = k|z^{-i}, y, \xi) = \begin{cases} \frac{N_{k}^{-i}}{n-1+\alpha} p(y_{i}|y^{-i}, z^{-i} = k, \xi) & 1 \leq k \leq K, \\ \frac{\alpha}{n-1+\alpha} p(y_{i}|\xi) & k = K+1. \end{cases}$$
$$p(y_{i}|y^{-i}, z^{-i} = k, \xi) = \int p(y_{i}|\theta, z_{i} = k) p(\theta|y^{-i}, z^{-i} = k, \xi) d\theta$$

see R package dirichletprocess

Dirichlet Process Mixture model: An example

Subgroup identification in Parkinson's disease based on symptom severity (White et al, 2012)

- Data collected using Unified Parkinson's Disease Rating Scale (UPDRS)
- Symptom scores: Activities of daily living (ADL), Tremor, Rigidity and Akinesia
- Responses coded as Low/Moderate/High Progression based on UPDRS score

An introduction to mixture modelling for unsupervised clustering

Model specification

• For J symptoms, $y_i = (y_{i1}, \dots, y_{iJ})$ is Multinomial with R = 3 levels

$$p(y_i|\boldsymbol{\theta}_k \sim \prod_{j=1}^J Mult(y_{ij}; \boldsymbol{\theta}_{jk})$$
 $\boldsymbol{\theta}_{jk} = (\theta_{jk1}, \dots, \theta_{jkR})$

Base distribution, G₀

$$G_0 = \rho(\theta_1, \dots, \theta_J)$$

$$= \prod_{j=1}^J D\left(\frac{1}{R}, \dots, \frac{1}{R}\right)$$

• Assume stick breaking representation with $\alpha \sim \mathcal{G}(2,2)$

Results - Clustering inference

Blocked Gibbs sampler: 100,000 iterations (50,000 burnin), and L=50

Parameter inference

ADL				Cluster			
	1	2	3	4	5	6	7*
Low	0.09(0.04)	0.16(0.05)	0.85(0.06)	0.46(0.10)	0.62(0.17)	0.11(0.16)	0.17(0.21)
Moderate	0.20(0.06)	0.60(0.07)	0.11(0.05)	0.31(0.09)	0.19(0.14)	0.78(0.21)	0.66(0.27)
High	0.71(0.06)	0.24(0.06)	0.04(0.03)	0.23(0.07)	0.19(0.14)	0.11(0.18)	0.17(0.21)
Tremor				Cluster			
	1	2	3	4	5	6	7*
Low	0.10(0.04)	0.43(0.07)	0.69(0.08)	0.01(0.02)	0.05(0.07)	0.11(0.18)	0.17(0.21)
Moderate	0.26(0.06)	0.24(0.06)	0.30(0.08)	0.88(0.06)	0.62(0.17)	0.11(0.16)	0.66(0.27)
High	0.64(0.07)	0.33(0.07)	0.01(0.02)	0.11(0.06)	0.33(0.17)	0.78(0.21)	0.17(0.21)
Rigidity				Cluster			
	1	2	3	4	5	6	7*
Low	0.01(0.01)	0.52(0.07)	0.59(0.09)	0.06(0.05)	0.90(0.10)	0.44(0.25)	0.66(0.27)
Moderate	0.13(0.05)	0.30(0.06)	0.33(0.08)	0.93(0.05)	0.05(0.07)	0.12(0.16)	0.17(0.21)
High	0.86(0.05)	0.18(0.05)	0.08(0.05)	0.01(0.02)	0.05(0.07)	0.44(0.25)	0.17(0.21)
Akinesia				Cluster			
	1	2	3	4	5	6	7*
Low	0.07(0.04)	0.01(0.01)	0.95(0.04)	0.49(0.10)	0.90(0.10)	0.78(0.21)	0.17(0.21)
Moderate	0.05(0.03)	0.88(0.05)	0.04(0.03)	0.23(0.08)	0.05(0.07)	0.11(0.16)	0.17(0.21)
High	0.88(0.05)	0.11(0.04)	0.01(0.02)	0.28(0.09)	0.05(0.07)	0.11(0.16)	0.66(0.27)
η	0.30(0.04)	0.30(0.04)	0.19(0.03)	0.15(0.03)	0.04(0.01)	0.01(0.01)	0.01(0.01)

Cluster 1 - High severity

ADL				Cluster			
	1	2	3	4	5	6	7*
Low	0.09(0.04)	0.16(0.05)	0.85(0.06)	0.46(0.10)	0.62(0.17)	0.11(0.16)	0.17(0.21)
Moderate	0.20(0.06)	0.60(0.07)	0.11(0.05)	0.31(0.09)	0.19(0.14)	0.78(0.21)	0.66(0.27)
High	0.71(0.06)	0.24(0.06)	0.04(0.03)	0.23(0.07)	0.19(0.14)	0.11(0.18)	0.17(0.21)
Tremor				Cluster			
	1	2	3	4	5	6	7*
Low	0.10(0.04)	0.43(0.07)	0.69(0.08)	0.01(0.02)	0.05(0.07)	0.11(0.18)	0.17(0.21)
Moderate	0.26(0.06)	0.24(0.06)	0.30(0.08)	0.88(0.06)	0.62(0.17)	0.11(0.16)	0.66(0.27)
High	0.64(0.07)	0.33(0.07)	0.01(0.02)	0.11(0.06)	0.33(0.17)	0.78(0.21)	0.17(0.21)
Rigidity				Cluster			
	1	2	3	4	5	6	7*
Low	0.01(0.01)	0.52(0.07)	0.59(0.09)	0.06(0.05)	0.90(0.10)	0.44(0.25)	0.66(0.27)
Moderate	0.13(0.05)	0.30(0.06)	0.33(0.08)	0.93(0.05)	0.05(0.07)	0.12(0.16)	0.17(0.21)
High	0.86(0.05)	0.18(0.05)	0.08(0.05)	0.01(0.02)	0.05(0.07)	0.44(0.25)	0.17(0.21)
Akinesia				Cluster			
	1	2	3	4	5	6	7*
Low	0.07(0.04)	0.01(0.01)	0.95(0.04)	0.49(0.10)	0.90(0.10)	0.78(0.21)	0.17(0.21)
Moderate	0.05(0.03)	0.88(0.05)	0.04(0.03)	0.23(0.08)	0.05(0.07)	0.11(0.16)	0.17(0.21)
High	0.88(0.05)	0.11(0.04)	0.01(0.02)	0.28(0.09)	0.05(0.07)	0.11(0.16)	0.66(0.27)
n	0.30(0.04)	0.30(0.04)	0.19(0.03)	0.15(0.03)	0.04(0.01)	0.01(0.01)	0.01(0.01)

Cluster 2 - ADL/Akinesia

ADL				Cluster			
	1	2	3	4	5	6	7*
Low	0.09(0.04)	0.16(0.05)	0.85(0.06)	0.46(0.10)	0.62(0.17)	0.11(0.16)	0.17(0.21)
Moderate	0.20(0.06)	0.60(0.07)	0.11(0.05)	0.31(0.09)	0.19(0.14)	0.78(0.21)	0.66(0.27)
High	0.71(0.06)	0.24(0.06)	0.04(0.03)	0.23(0.07)	0.19(0.14)	0.11(0.18)	0.17(0.21)
Tremor				Cluster			
	1	2	3	4	5	6	7*
Low	0.10(0.04)	0.43(0.07)	0.69(0.08)	0.01(0.02)	0.05(0.07)	0.11(0.18)	0.17(0.21)
Moderate	0.26(0.06)	0.24(0.06)	0.30(0.08)	0.88(0.06)	0.62(0.17)	0.11(0.16)	0.66(0.27)
High	0.64(0.07)	0.33(0.07)	0.01(0.02)	0.11(0.06)	0.33(0.17)	0.78(0.21)	0.17(0.21)
Rigidity	Cluster						
	1	2	3	4	5	6	7*
Low	0.01(0.01)	0.52(0.07)	0.59(0.09)	0.06(0.05)	0.90(0.10)	0.44(0.25)	0.66(0.27)
Moderate	0.13(0.05)	0.30(0.06)	0.33(0.08)	0.93(0.05)	0.05(0.07)	0.12(0.16)	0.17(0.21)
High	0.86(0.05)	0.18(0.05)	0.08(0.05)	0.01(0.02)	0.05(0.07)	0.44(0.25)	0.17(0.21)
Akinesia				Cluster			
	1	2	3	4	5	6	7*
Low	0.07(0.04)	0.01(0.01)	0.95(0.04)	0.49(0.10)	0.90(0.10)	0.78(0.21)	0.17(0.21)
Moderate	0.05(0.03)	0.88(0.05)	0.04(0.03)	0.23(0.08)	0.05(0.07)	0.11(0.16)	0.17(0.21)
High	0.88(0.05)	0.11(0.04)	0.01(0.02)	0.28(0.09)	0.05(0.07)	0.11(0.16)	0.66(0.27)
η	0.30(0.04)	0.30(0.04)	0.19(0.03)	0.15(0.03)	0.04(0.01)	0.01(0.01)	0.01(0.01)

Cluster 3 - Low severity

ADL				Cluster			
	1	2	3	4	5	6	7*
Low	0.09(0.04)	0.16(0.05)	0.85(0.06)	0.46(0.10)	0.62(0.17)	0.11(0.16)	0.17(0.21)
Moderate	0.20(0.06)	0.60(0.07)	0.11(0.05)	0.31(0.09)	0.19(0.14)	0.78(0.21)	0.66(0.27)
High	0.71(0.06)	0.24(0.06)	0.04(0.03)	0.23(0.07)	0.19(0.14)	0.11(0.18)	0.17(0.21)
Tremor				Cluster			
	1	2	3	4	5	6	7*
Low	0.10(0.04)	0.43(0.07)	0.69(0.08)	0.01(0.02)	0.05(0.07)	0.11(0.18)	0.17(0.21)
Moderate	0.26(0.06)	0.24(0.06)	0.30(0.08)	0.88(0.06)	0.62(0.17)	0.11(0.16)	0.66(0.27)
High	0.64(0.07)	0.33(0.07)	0.01(0.02)	0.11(0.06)	0.33(0.17)	0.78(0.21)	0.17(0.21)
Rigidity	Cluster						
	1	2	3	4	5	6	7*
Low	0.01(0.01)	0.52(0.07)	0.59(0.09)	0.06(0.05)	0.90(0.10)	0.44(0.25)	0.66(0.27)
Moderate	0.13(0.05)	0.30(0.06)	0.33(0.08)	0.93(0.05)	0.05(0.07)	0.12(0.16)	0.17(0.21)
High	0.86(0.05)	0.18(0.05)	0.08(0.05)	0.01(0.02)	0.05(0.07)	0.44(0.25)	0.17(0.21)
Akinesia				Cluster			
	1	2	3	4	5	6	7*
Low	0.07(0.04)	0.01(0.01)	0.95(0.04)	0.49(0.10)	0.90(0.10)	0.78(0.21)	0.17(0.21)
Moderate	0.05(0.03)	0.88(0.05)	0.04(0.03)	0.23(0.08)	0.05(0.07)	0.11(0.16)	0.17(0.21)
High	0.88(0.05)	0.11(0.04)	0.01(0.02)	0.28(0.09)	0.05(0.07)	0.11(0.16)	0.66(0.27)
η	0.30(0.04)	0.30(0.04)	0.19(0.03)	0.15(0.03)	0.04(0.01)	0.01(0.01)	0.01(0.01)

Cluster 4 - Tremor/Rigidity

ADL				Cluster			
	1	2	3	4	5	6	7*
Low	0.09(0.04)	0.16(0.05)	0.85(0.06)	0.46(0.10)	0.62(0.17)	0.11(0.16)	0.17(0.21)
Moderate	0.20(0.06)	0.60(0.07)	0.11(0.05)	0.31(0.09)	0.19(0.14)	0.78(0.21)	0.66(0.27)
High	0.71(0.06)	0.24(0.06)	0.04(0.03)	0.23(0.07)	0.19(0.14)	0.11(0.18)	0.17(0.21)
Tremor				Cluster			
	1	2	3	4	5	6	7*
Low	0.10(0.04)	0.43(0.07)	0.69(0.08)	0.01(0.02)	0.05(0.07)	0.11(0.18)	0.17(0.21)
Moderate	0.26(0.06)	0.24(0.06)	0.30(0.08)	0.88(0.06)	0.62(0.17)	0.11(0.16)	0.66(0.27)
High	0.64(0.07)	0.33(0.07)	0.01(0.02)	0.11(0.06)	0.33(0.17)	0.78(0.21)	0.17(0.21)
Rigidity				Cluster			
	1	2	3	4	5	6	7*
Low	0.01(0.01)	0.52(0.07)	0.59(0.09)	0.06(0.05)	0.90(0.10)	0.44(0.25)	0.66(0.27)
Moderate	0.13(0.05)	0.30(0.06)	0.33(0.08)	0.93(0.05)	0.05(0.07)	0.12(0.16)	0.17(0.21)
High	0.86(0.05)	0.18(0.05)	0.08(0.05)	0.01(0.02)	0.05(0.07)	0.44(0.25)	0.17(0.21)
Akinesia				Cluster			
	1	2	3	4	5	6	7*
Low	0.07(0.04)	0.01(0.01)	0.95(0.04)	0.49(0.10)	0.90(0.10)	0.78(0.21)	0.17(0.21)
Moderate	0.05(0.03)	0.88(0.05)	0.04(0.03)	0.23(0.08)	0.05(0.07)	0.11(0.16)	0.17(0.21)
High	0.88(0.05)	0.11(0.04)	0.01(0.02)	0.28(0.09)	0.05(0.07)	0.11(0.16)	0.66(0.27)
η	0.30(0.04)	0.30(0.04)	0.19(0.03)	0.15(0.03)	0.04(0.01)	0.01(0.01)	0.01(0.01)

Cluster 5 to 7 - small weights

ADL				Cluster			
	1	2	3	4	5	6	7*
Low	0.09(0.04)	0.16(0.05)	0.85(0.06)	0.46(0.10)	0.62(0.17)	0.11(0.16)	0.17(0.21)
Moderate	0.20(0.06)	0.60(0.07)	0.11(0.05)	0.31(0.09)	0.19(0.14)	0.78(0.21)	0.66(0.27)
High	0.71(0.06)	0.24(0.06)	0.04(0.03)	0.23(0.07)	0.19(0.14)	0.11(0.18)	0.17(0.21)
Tremor				Cluster			
	1	2	3	4	5	6	7*
Low	0.10(0.04)	0.43(0.07)	0.69(0.08)	0.01(0.02)	0.05(0.07)	0.11(0.18)	0.17(0.21)
Moderate	0.26(0.06)	0.24(0.06)	0.30(0.08)	0.88(0.06)	0.62(0.17)	0.11(0.16)	0.66(0.27)
High	0.64(0.07)	0.33(0.07)	0.01(0.02)	0.11(0.06)	0.33(0.17)	0.78(0.21)	0.17(0.21)
Rigidity				Cluster			
	1	2	3	4	5	6	7*
Low	0.01(0.01)	0.52(0.07)	0.59(0.09)	0.06(0.05)	0.90(0.10)	0.44(0.25)	0.66(0.27)
Moderate	0.13(0.05)	0.30(0.06)	0.33(0.08)	0.93(0.05)	0.05(0.07)	0.12(0.16)	0.17(0.21)
High	0.86(0.05)	0.18(0.05)	0.08(0.05)	0.01(0.02)	0.05(0.07)	0.44(0.25)	0.17(0.21)
Akinesia	1	2	3	4	5	6	7
Low	0.07(0.04)	0.01(0.01)	0.95(0.04)	0.49(0.10)	0.90(0.10)	0.78(0.21)	0.17(0.21)
Moderate	0.05(0.03)	0.88(0.05)	0.04(0.03)	0.23(0.08)	0.05(0.07)	0.11(0.16)	0.17(0.21)
High	0.88(0.05)	0.11(0.04)	0.01(0.02)	0.28(0.09)	0.05(0.07)	0.11(0.16)	0.66(0.27)
η	0.30(0.04)	0.30(0.04)	0.19(0.03)	0.15(0.03)	0.04(0.01)	0.01(0.01)	0.01(0.01)

Comparison with finite mixture modelling

• DIC provided support for a K=4

K	3	4	5
DIC	1248.7	1241.1	1247.9

- Identified subgroups had same characteristics as DPM Clusters 1-4
- DPM versus FMM: 1 model versus comparison of many models

- finite mixture models
- 2 Dirichlet Process Mixture models
- 3 Profile regression

Profile regression: Motivation

- Extends Dirichlet Processes to account for joint clustering in outcomes and covariates
- Developed as a solution for dealing with multi-collinearity within standard regression framework

Profile regression: Setup

Assignment submodel:

$$p(\mathbf{x}_i|\boldsymbol{\xi}) = \sum_{k\geq 1} \eta_k \prod_{j=1}^J p(\mathbf{x}_{ij}|\boldsymbol{\phi}_k)$$

Outcome submodel:

$$p(y_i|\boldsymbol{\theta},z_i=k)=f(y_i|\boldsymbol{\theta}_k)$$

Profile regression: An example

Assessing falls in early stage Parkinson's disease (Sarini, 2018) Assignment submodel: Disease severity profile

$$p(x_i|z_i=k) = \prod_{j=1}^J \mathcal{N}(x_{ij}|\mu_k, \sigma_k^2)$$

Outcome submodel: Poisson distribution

$$p(y_i|z_i=k)=Po(\theta_k)$$

Profile regression: The PReMiuM package

https:

//cran.r-project.org/web/packages/PReMiuM/index.html

- Outcome submodel: Continuous (Normal), binary/categorical (Multinomial), count (Poisson)
- Assignment submodel: Continuous (Normal), binary/categorical (Multinomial)
- Estimation based on stick-breaking representation
- Simulated datasets available as part of package

see profile_regression_example.R

Done!

 $\label{limits} \begin{tabular}{ll} https://github.com/nicolemwhite/anzsc-mixture-modelling\\ E: nm.white@qut.edu.au Twitter: @nicolem_white \\ \end{tabular}$