9.85. Конденсатор предылущей задачи заряжен до разности потенциалов $U=300~\mathrm{B}_{\odot}$ Найти поверхностную илотность заряда σ на его пластинах.

Решение:

Напряженность поля плоского конденсатора $E = \frac{U}{d}$. С

другой етороны.
$$E = \frac{\sigma}{\varepsilon \varepsilon_0}$$
. Тогда $\frac{l}{d} = \frac{\sigma}{\varepsilon \varepsilon_0}$. откуда

$$\sigma = \frac{U\varepsilon\varepsilon_0}{d} = 1.77 \text{ MKKD/M}^2.$$

9.86. Требуется изготовни конденсатор емкостью C = 250 пФ. Для этого на парафинированную бумагу толициюй d = 0.05 мм наклеивают с обенх сторон кружки станноля. Каким должен быть диаметр D кружков станноля?

Решение:

Емкость конденсатора выражается формулой $C = \frac{\varepsilon \varepsilon_0 S}{d}$,

где
$$S=\pi\,rac{D^2}{4}$$
. Т. с. $C=rac{arepsilon arepsilon_0\pi D^2}{4d}$. Отсюда $D=\sqrt{rac{4Cd}{arepsilon arepsilon_0\pi D^2}}$. Ди-

электрическая пропицаемость парафина $\varepsilon = 2$. Подставив числовые данные, получим D = 3 см.

9.87. Площаль нластии плоского воздушного конденсатора $S = 0.01\,\mathrm{M}^2$, расстояние между ними $d = 5\,\mathrm{MM}$. К пластинам приложена разность потенциалов $U_1 = 300\,\mathrm{B}$. После отключения конденсатора от источника напряжения пространство между пластинами, заполняется эбонитом. Какова будет разность потенциалов U_2 между пластинами после заполнения? Найти емкости конденсатора C_1 и C_2 и поверхностные плотности заряда σ_1 и σ_2 на пластинах ло и после заполнения.

Решение:

Т. к. заполнение конденсатора эбонитом производ: c_b после отключения от источника напряжения, то по $a_b = a_b$ сохранения электрического заряда заряд на плас $a_b = a_b$ $a_b = a_b$

да на пластинах
$$\sigma=\frac{q}{S}-const$$
. Т. к. $E=\frac{\sigma}{\varepsilon_0\varepsilon}-\frac{U}{d}$, то носле заполнения имеем $\sigma\cdot d=U_1\varepsilon_0\varepsilon_1$ — (1) и $\sigma\cdot d=\varepsilon$, к $\times \varepsilon_1\varepsilon_2$ — (2). Приравняв правые части уравнений (1) г. 21, имеем $U_1\varepsilon_1+U_2\varepsilon_2$, откуда $U_2=\frac{U_1\varepsilon_1}{\varepsilon_2}=115\,\mathrm{B}$. До и г. не

заполнения конденсатора имеем
$$C_1 = \frac{\varepsilon_0 \varepsilon_2 S}{d} = 17.7 \text{ (b)};$$
 $C_2 = \frac{\varepsilon_0 \varepsilon_2 S}{d} = 46 \, \text{пФ}; \; \sigma = \frac{g}{S} = \frac{C_1 U_1}{S} = 531 \, \text{нКл/м}^2.$

9.88. Решить предыдущую задачу для случая, когда заполнение пространства между пластинами изолятором произвоз ися при включенном источнике напряжения.

Решение:

В данной задаче рассматриваются два крайних состояния конденсатора: когда он не заполнен диэлектриком и когда заполнен. Сам процесс заполнения не учитывается. Гали заполнение конденсатора эбонитом производить при вы коченном источнике напряжения, то U=const. Следовательно, и напряженность поля свободных зарядов на обкладках конденсатора $E=\frac{U}{d}=const$. С другой стороны.

напряженность поля свободных зарядов $E = \frac{\sigma}{\varepsilon_0 \varepsilon}$, тогл.: до

и после заполнения имеем $\frac{U}{d} = \frac{\sigma_1}{\varepsilon_0 \varepsilon_1}$ и $\frac{U}{d} = \frac{\sigma_2}{\varepsilon_0 \varepsilon_2}$, от \mathcal{I}^3

 $\frac{\varepsilon_0 \varepsilon_1 U}{d} = 531 \,\mathrm{HKn/m^2}$ и $\sigma_2 = \frac{\varepsilon_0 \varepsilon_2 U}{d} = 1,38 \,\mathrm{MKKn/m^2}$. До носле заполнения эбонитом имеем (см. задачу 9.87) $C_1 = 17,7 \,\mathrm{n\Phi}$, $C_2 = 46 \,\mathrm{n\Phi}$, т. к. емкость конденсатора от напряжения не зависит.

9.89. Площаль пластии плоского конденсатора $S = 0.01 \, \mathrm{M}^2$, расстояние между ними $d = 1 \, \mathrm{cm}$. К пластинам приложена разность потенциалов $U = 300 \, \mathrm{B}$. В пространстве между пластинам находятся плоскопараллельная пластинка стекла толщиной $d = 0.5 \, \mathrm{cm}$ и плоскопараллельная пластинка парафина толщиной $d = 0.5 \, \mathrm{cm}$. Найти папряженности E_1 и E_2 электрического поля втадения потенциала U_1 и U_2 в каждом слое. Каковы будут при этом емкость C конденсатора и поверхностная плотность заряда G на пластинах?

Решение:

Разность потенциалов между обкладками конденсатора $U = \int_{-\infty}^{\infty} \vec{E} d\vec{l}$ — (1). Поскольку в плоском конденсаторе в

пределах каждого диэлектрика поле однородно, равенство (1) может быть записано в виде $U=E_1l_1+E_2l_2$ — (2), где $l_1=d_1$ — толицина слоя стекла, $l_2=d_2$ — толицина слоя парафина. Граница раздела диэлектриков нараллельна обкладкам и, следовательно, нормальна силовым линиям поля. В отсутствие свободных зарядов на поверхности диэлектрика $D_1=D_2$ и $\varepsilon_1E_1=\varepsilon_2E_2$ — (3). Падение потенциала в каждом слое $U_1=E_1d_1$ и $U_2=E_2d_2$ — (4). Уравнение (2) можно записать в виде $E_1d_1+E_2d_2=U$ — (5). Из

(5) и (3) нмесм
$$E_1 = \frac{U\varepsilon_2}{\varepsilon_1 d_1 + \varepsilon_2 d_2} = 15 \text{ кB/м}, \quad E_2 = \frac{\varepsilon_1 E_1}{\varepsilon_2} =$$
 = 45 кB/м. Тогда из (4) $U_1 = 75 \text{ B}, \quad U_2 = 225 \text{ B}.$ Емкость C

найдем по формуле
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
, где $C_1 = \frac{1}{C_1} + \frac{1}{C_2}$, где $C_2 = \frac{\varepsilon_3 \varepsilon_2 S}{d_2}$ — (4). Отеюда емкость $C = \frac{\varepsilon \varepsilon_1 \varepsilon}{d_1 \varepsilon_2 + \varepsilon_1} = 26.6 \,\mathrm{n}\Phi$. Заряд на однов из пластин $q = \sigma \cdot S = C_1 = C_2 U_2 = CU$; отеюда $\sigma = \frac{CU}{S} = 0.8 \,\mathrm{mkKr} \,\mathrm{m}^2$.

9.90. Между пластинами плоского конденсатора, на коденцимися на расстоянии $d=1\,\mathrm{cm}$ друг от друга, приложен разность потенциалов $U=100\,\mathrm{B}$. К одной из пластии при стает плоскопараллельная пластинка кристаллического бромым гого таллия (ε -173) толщиной $d_{\alpha}=9.5\,\mathrm{mm}$. После отключени конденсатора от источника напряжения пластинку кристалла вынимают. Какова будет после этого разность потенциа. В U между пластинами конденсатора?

Решение:

Если конденсатор отключен от источника напряжен то q = const. Когда иластинка крысталла находится в утри конденсатора, напряженность в воздушном оде $E = \frac{U_1 \varepsilon_2}{\varepsilon_1 d_c + \varepsilon_2 (d - d_c)}$ — (1) (см. задачу 9.89). После того

как пластинку вынули, разность потенциалов между пластинами стала $U_2=Ed$ — (2). Подставляя (2) в (1), н. гам

$$U_2 = \frac{dU_1c_2}{\varepsilon_*d_1 + \varepsilon_*(d - d_1)} = 18 \text{ kB}.$$

9.91. Коаксиальный электрический кабель состоит и центральной жилы и концентрической цилиндрической оболожи между которыми находится диэлектрик ($\varepsilon=3,2$). Найти ехосто сли единицы длины такого кабеля, если радиус жилы $r_i \in \mathbb{R}^{2n}$ радиус оболочки $r_2=3,0$ см.

Решение:

Eмкость коаксиального кабеля конечной длины L можно найти по формуле $C = \frac{2\pi e v_0 L}{\ln(R/r)}$. Отсюда для единицы длины кабеля имеем $C_i = \frac{C}{L} = \frac{2\pi\varepsilon\varepsilon_0}{\ln(R/r)}$; $C_i = 214 \text{ нФ/м}$.

9.92. Раднус центральной жилы коаксиального кабеля r = 1.5 см, раднус оболочки R = 3.5 см. Между центральной жилой и оболочкой приложена разность потенциалов U = 2.3 kB. **Найти напр**яженность *Е* электрического поля на расстоянии x = 2 см от осн кабеля.

Решение:

Поле внутри кабеля неоднородно, и напряженность убывает с увеличением расстояния от оси системы. Поскольку вся система обладает осевой симметрией, напряженность поля может быть найдена с помощью обобщенной тео**ремы** Гаусса: $\oint \dot{D} d\bar{S} = \sum Q$. Если выбрать вспомога-

тельную поверхность в виде коаксиального цилиндра, по-

лучим
$$D = \frac{\tau}{2\pi r}$$
 — (1), где τ — линейная плотность заряда

на центральной жиле. При этом вектор \tilde{D} нормален к границе раздела и выражение (1) справедливо в любой **точке** конденсатора. Учитывая, что $D = \varepsilon \varepsilon_0 E$, нолучим выражение для напряженности поля в указанной точке, т. е.

при r = x: $E = \frac{\tau}{2\pi \epsilon c_0 x}$. Найдем линейную илотность за-

ряда. Емкость кабеля (=
$$\frac{2\pi\varepsilon\nu_0 L}{\ln(R/r)} = \frac{q}{U} = \frac{\tau L}{U}$$
. откуда

$$r = \frac{2\pi\varepsilon\varepsilon_0 U}{\ln(R/r)}$$
. Тогда напряженность ноля $E = \frac{U}{x\ln(R/r)} =$ = 136 кВ/м.

3-3269

9.93. Вакуумный цилипарический конденсатор имеет і — диус виутреннего цилипара $r=1.5\,\mathrm{cm}$ и раднує внешнего по надра $R=3.5\,\mathrm{cm}$. Между цилинарами приложена разность потень далов $U=2.3\,\mathrm{kB}$. Какую скорость у получит электрон под дене вием поля этого конденсатора, двигаясь е расстояния $I_1=2.5\,\mathrm{cm}/_{20}$ расстояния $I_2=2\,\mathrm{cm}$ от оси цилинара?

Решение:

За счет работы сил электрического поля электрон приобретает кинетическую энергию, т. е. $A = \frac{mv^2}{2}$. Имеем dA = qdU = -qEdx. Т. к. $E = \frac{U}{x\ln(R/r)}$, то работа $A = -\int_{l_1}^{l_2} \frac{qUdx}{x\ln(R/r)} = \frac{qU\ln(l_1/l_2)}{\ln(R/r)} = \frac{mv^2}{2}$, следовательно, $v = \sqrt{\frac{2qU\ln(l_1/l_2)}{m\ln(R/r)}} = 1.46\cdot 10^7 \, \text{м/c}$.

9.94. Цилиндрический конденсатор состоит из внутрением шилиндра раднусом r=3 мм, двух слоев диэлектрика и внешнего шилиндра раднусом R=1см. Первый слой диэлектрика тол-шиной $d_1=3$ мм примыкает к внутреннему цилиндру. Найти отношение падений потенциала $\frac{U_1}{U_2}$ в этих слоях.

Решение:

Напряженность электрического поля внутри цилинтирического конденсатора $E = \frac{U}{x \ln(R^2 r)}$ (см. задачу 9.92).

Падение потенциала в первом слое $U_1 = -\int\limits_{r+d_1}^r E_r dr$

$$\int_{-\infty}^{\infty} \frac{U_0}{x \ln(R/r)} dx = \frac{U_0 \ln[(r+d_1)/r]}{\ln(R/r)}.$$
 Аналогично падение

потенциала во втором слое $U_2 = \frac{U_0 \ln[R/(r+d_1)]}{\ln(R/r)}$. Отсюда

$$\frac{U_1}{U_2} = \frac{\ln[(r+d_1)/r]}{\ln[R/(r+d_1)]} = 1.35.$$

9.95. При изучении фотоэлектрических явлений используется **сферически**й конденсатор, состоящий из металлического шарика **пиметром** d=1.5 см (катода) и внутренней поверхности по**серебренной** изнутри сферической колбы диаметром D=11 см (анода). Воздух из колбы откачивается. Найти емкость C такого **конденсатор**а.

Решение:

Потенциал внутреннего шарика равен $\varphi_1 = \frac{2q}{4\pi\varepsilon c_0 d}$. По-

тенциал внешней сферы равен $\varphi_2 = \frac{2q}{4\pi\varepsilon\varepsilon_0 D}$. Отсюда раз-

ность потенциалов $\Delta \varphi = \frac{2q}{4\pi\varepsilon\varepsilon_0} \left(\frac{1}{d} - \frac{1}{D} \right)$. Емкость конден-

сатора $C = \frac{q}{\Delta \varphi} = \frac{2\pi \varepsilon \varepsilon_0 dD}{D-d}$. Подставляя числовые данные, **получим** $C = 0.96~\rm n\Phi$.

9.96. Каким будет потенциал φ шара радиусом r=3 см, если: а) сообщить ему заряд q=1 иКл. б) окружить его концентрическим шаром радиусом R=4 см, соединенным с землей?

Решение:

а) Потенциал шара $\varphi = \frac{q}{C} = \frac{q}{4\pi\varepsilon\varepsilon_0 r}$; $\varphi = 300 \text{ B. 6}$) На зазем-

ленной сфере в результате взаимодействия электрического

поля заряженного шара индуцируется заряд, равный H_0 величине и противоположный по знаку заряду H_0 ρ_0 , ρ_0 ,

9.97. Найти емкость C сферического конденсать $\gamma_{\rm st}$ состоящего из двух концентрических сфер с радиусами r=10 см и R=10.5 см. Пространство между сферами заполнено мастом. Какой разлус R_{\odot} должен иметь шар, помещенный в масто, чтобы иметь такую же емкость?

Решение:

Емкость сферического конденсатора $C=\frac{4\pi\varepsilon\varepsilon_0 rR}{R-r}$. Дирлектрическая проницаемость масла $\varepsilon=5$. Подставляя чис ювые данные, получим $C=1,17\cdot 10^{-9}\,\Phi$. Емкость шара $C=4\pi\varepsilon\varepsilon_0 R_0$, отсюда $R_0=\frac{C}{4\pi\varepsilon\varepsilon_0}=2.1\,\mathrm{M}$.

9.98. Радиус внутреннего шара воздушного сферического конденсатора r=1 см. раднус внеишего шара R=4 см. Метолу шарами приложена разность потенциалов U=3 кВ. Найти меторяженность E электрического поля на расстоянии x=3 см от центра шаров.

Решение:

Папряженность в заданной точке создается только вн 1- ренним шаром и равна $E = \frac{q}{4\pi\varepsilon\varepsilon_0 x^2}$. Заряд q найдем 113

тношения
$$C = \frac{4\pi \varepsilon_r \varepsilon_0 rR}{R-r} = \frac{q}{U}$$
, откуда $q = \frac{4\pi \varepsilon_r \varepsilon_0 RU}{R-r}$.

9.99. Раднус внутреннего шара вакуумного сферического компенсатора $r=1\,\mathrm{cm}$, раднус внешнего шара $R=4\,\mathrm{cm}$. Между шарами приложена разность потенциалов $U=3\,\mathrm{kB}$. Какую скорость у получит электрон, приблизившись к центру шаров с расстояния $x_1=3\,\mathrm{cm}$ до расстояния $x_2=2\,\mathrm{cm}$?

Решение:

3a счет работы A сил электрического поля электрон

приобрел кинетическую эпергию, т. е. $A = \frac{mv^2}{2}$. Имеем

$$A = edU = -eEdx$$
. Т. к. $E = \frac{rRU}{(R-r)x^2}$ (см. задачу 9.98), то

$$A = -\int_{x_1}^{x_2} \frac{erRU}{(R-r)x^2} dx = -\frac{erRU}{R-r} \int_{x_1}^{x_2} \frac{dx}{x^2}; \qquad A = \frac{erRU}{R-r} \left(\frac{1}{x_2} - \frac{1}{x_1} \right) =$$

$$=\frac{eUrR(x_1-x_2)}{(R-r)x_1x_2}$$
. Тогда $\frac{mv^2}{2} = \frac{eErR(x_1-x_2)}{(R-r)x_1x_2}$, откуда

$$v = \sqrt{\frac{2eUrR(x_1 - x_2)}{m(R - r)x_1x_2}} = 1.54 \cdot 10^7 \text{ m/c}.$$

9.100. Найти емкость ($^{\circ}$ системы конденсаторов, изображенной на рисунке. Емкость каждого конденсатора $C_{r}=0.5$ мк Φ

Решение:

$$C_1 = C_2 = C_3 = C_i$$
, to $C = \frac{2}{3}C_i = 0.33 \,\text{MK}\Phi$.

9.101. При помощи электрометра сравнивали между собой емкости двух конденсаторов. Для этого заряжали их до разностей потенциалов $U_1=300~\mathrm{B}$ и $U_2=100~\mathrm{B}$ и соединяли оба конденсатора параллельно. Измеренная при этом электрометром разность потенциалов между обкладками конденсатора овазалась равной $U=250~\mathrm{B}$. Найти отношение емкостей $\frac{C_1}{C_2}$.

Решение:

Заряд на обкладках первого конденсатора $q_1=C_1U_1$. Заряд на обкладках второго конденсатора $q_2=C_2U_2$. После соединения конденсаторов $q_1+q_2=CU$, где $C=C_1-C_2$. Отсюда $(C_1+C_2)U=C_1U_1+C_2U_2$. После несложных преобразований получим $\frac{C_1}{C_2}=\frac{U-U_2}{U_1-U}=3$.

9.102. Разность потенциалов между точками A и B U = 6 B. Емкость первого конденсатора $C_1 = 2$ мк Φ и емкость втолого конденсатора $C_2 = 4$ мк Φ . Найти заряды q_1 и q_2 и разности потенциалов U_1 и U_2 на обкладках каждого конденсатора.

решение:

последовательном соединении на всех пластинах конденсатора будет C_1 C_2 одинаковый по модулю заряд, т. е. A $q_1 = q_2$. При этом $q_1 = C_1U_1$, а $q_2 = C_2 U_2$. Отсюда $C_1 U_1 = C_2 U_2$. Падение напряжения на удаєтке AB равно $U=U_1+U_2$, отсюда $U_1=U-U_2$. Тогда $C_1(U-U_2) = C_2U_2$, откуда $U_2 = \frac{C_1U}{C_2 + C_2} = 2 \text{ B}; U_1 = U - C_2$ $\mathcal{L}U_2 = 4 \text{ B}; \ q_1 = q_2 = C_1 U_1 = 8 \text{ мкКл.}$

9.103. В каких пределах может меняться емкость C системы, состоящей из двух конденсаторов, если емкость одного из **конденсатор**ов постоянна и равна $C_1 = 3.33 \, \text{н}$ Ф, а емкость C_2 другого изменяется от 22,2 до 555,5 пФ?

Решенне:

При парадлельном соединении конденсаторов емкость системы равна $C = C_1 + C_2$ и изменяется от $C = 3.33 \times$ $\times 10^{-9} + 22.2 \cdot 10^{-12} = 3.35 \cdot 10^{-9} \,\Phi$ go $C = 3.33 \cdot 10^{-9} + 555.5 \times 10^{-9} \,\Phi$ $\times 10^{-12} = 3.89 \cdot 10^{-9} \, \Phi$. При последовательном соединении конденсаторов емкость системы $C = \frac{C_1 C_2}{C_1 + C_2}$ и изменяется от $C = \frac{3.33 \cdot 10^{-9} \cdot 22.2 \cdot 10^{-12}}{3.35 \cdot 10^{-9}} = 22 \cdot 10^{-12} \, \Phi$ до

$$C = \frac{3.33 \cdot 10^{-9} \cdot 555.5 \cdot 10^{-12}}{3.89 \cdot 10^{-9}} = 475.5 \cdot 10^{-12} \Phi.$$

9.104. В каких пределах может изменяться емкость C системы, состоящей из двух конденсаторов переменной емкости, если емкость C_i каждого из них изменяется от 10 до 450 п Φ ?

Решение:

При последовательном соединении емкость системы ${\rm KOH}_{\bullet}$ денеаторов равна $C = \frac{C_A C_{12}}{C_A + C_{12}}$. Подставляя гранизгые значения, получим, что емкость C системы меняется в пределах от $20~{\rm n\Phi}$ до $900~{\rm n\Phi}$. При парадлельном соединении емкость системы $C = C_A + C_A$. Подставляя граничные значения, пайдем, что емкость C системы

9.105. Конценсатор емкостью $C=20~{\rm Mk\Phi}$ заряжен до $^{+}$ 43-иости потенциалов $U=100~{\rm B}.$ Найти энергию B' этого кон $_{\rm CH}$ -сатора.

Pemenne:

меняется от 5пФ до 225пФ.

Эпергия заряженного конденсатора $W = \frac{CU^2}{2}$; W = 0.1 Д.к.

9.106. Шар раднусом $R_{\rm i} = 1\,{\rm M}$ заряжен до потенци гла $\varphi = 30\,{\rm kB}.$ Найти энергию W заряженного шара.

Решение:

Энергия заряженного шара $W = \frac{CU^2}{2}$, где емкость шера

$$C=4\pi arepsilon arepsilon_0 R$$
 . Тогда $W=rac{4\pi arepsilon arepsilon_0 R U^2}{2}=2\pi arepsilon arepsilon_0 R U^2$; $W=0.05~{
m Hm}$.

9.107. Шар, погруженный в керосии, имеет потень рад $\varphi=4.5~\mathrm{kB}$ и поверхностиую илотность заряда $\sigma=11.3~\mathrm{mkKz}$ Майти раднус R, заряд φ , емкость C и эпертию W имра.

Решение:

Будем считать, что весь заряд шара равномерно распрецелен по поверхности и задана поверхностная плотность свог 72 **ТНОМЕНЬЕМ** зарядов. Потенциал шара φ и его заряд q связаны **тношением** $q = C\varphi$ — (1). где $q = \sigma S$ — (2): $C = 4 \times \epsilon_0 \epsilon R$ — (3). Плошадь поверхности шара $S = 4\pi R^2$ — (4). **Подстав**ляя (2) — (4) в (1). получим $\sigma R = \epsilon \epsilon_0 \varphi$, откуда $R = \frac{\epsilon \epsilon_0 \varphi}{\sigma} = 7$ мм. Из (2) $q = 4\pi R^2 \sigma = 7$ пКл. Из (1)

 $C = \frac{q}{\varphi} = 1,55$ пФ. Энергия заряженного шара $B' = \frac{q^2}{2C} = 15,8$ мкДж.

9,108. Шар 1 раднусом $R_1 = 10$ см, заряженный до потенциала $\phi = 3$ кВ, после отключения от источника напряжения соединяется проволочкой (емкостью которой можно пренебречь) сначава с удаленным незаряженным шаром 2, а затем после отсоединения от шара 2 с удаленным незаряженным шаром 3. Шары 2 и-3/имеют радиусы $R_2 = R_3 = 10$ см. Пайти: а) первоначальную энергию W_1 шара 1; б) энергии W_2 и W_3 шаров 1 и 2 после соединения и работу A разряда при соединении; в) энергии W_1 и W_3 шаров 1 и 3 после соединения и работу A разряда при соединении.

Решение:

Пусть $R_1 = R_2 = R_3 - R$. Первоначальная энергия шара 1 $W_1 = \frac{q_1^2}{2C}$ — (1). Заряд шара q и его емкость C связаны соотношением $C = \frac{q}{\varphi}$ — (2), где φ — потенциал шара. Из (2) $q_1 = C\varphi$, подставляя это выражение в (1), получим $W_1 = \frac{C\varphi_1^2}{2}$. Емкость шара $C = 4\pi \varepsilon \varepsilon_0 R$, тогда $W_1 = 2\pi \varepsilon \varepsilon_0 \times R$

 $\times R \varphi_i^2$; $W_i = 50 \,\mathrm{mk} \,\mathrm{Дж}$. После соединения шаров 1 н з проволокой перетекание заряда происходит до тех пор. по ка потенциалы шаров не станут равны, т. е. $\varphi_2' = \varphi_2' - - (3)$ По закопу сохранения зарядов для изолированной системы имеем: $q_1 = q_1' + q_2'$ — (4), где q_1' и q_2' — заряды шароз 1_{11} 2 после соединения. Т. к. по условию шары находятья на большом расстоянии друг от друга, потенциал кажде о во шаров определяется только зарядом самого пара второго шара можно $\varphi_1' = \frac{q_1'}{4\pi\varepsilon_0 R}; \quad \varphi_2' = \frac{q_2'}{4\pi\varepsilon_0 R} \quad -- \quad (5), \quad \text{отсюда следует.} \quad \text{что}$ $q_1' = q_2'$. Поскольку емкость и потенциал шаров 1 и 2 весле соединения одинаковы, то $W_1' = W_2'$. Из уравнений (3) — (5) следует, что $\varphi_1' = \frac{\varphi_1}{2}$. Тогда $W_1' = W_2' = -\frac{C\varphi_1^2}{8} - \frac{V_1}{4}$; $W_1' = W_2'' = 12.5 \,\mathrm{M}$ кДж. Работа разряда A равна разнасти энергий $A = W_1 - (W_1' + W_2') = \frac{W_1'}{2}$; A = 25 мкДж. Если теперь соединить шар 1 и шар 3, то аналогично $W_1'' = W_3' = \frac{W_1''}{A} = 3,125$ мкДж; $A = \frac{W_1''}{2} = 6,25$ мкДж.

9.109. Два металинческих шарика, первый с зарсдом $q_1=10$ нКл и раднусом $R_1=3$ см и второй с потенциалом $\varphi=9$ кВ и раднусом $R_2=2$ см, соединены проволочкой, см-костью которой можно пренебречь. Найти: а) потенциал φ_1 дервого шарика до разряда; б) заряд q_2 второго шарика до разряда; б) заряд q_3 второго шарика до разряда; г) заряд q_4 потенциал φ_1' первого шарика после разряда; д) заряд q_4' потенциал φ_2' второго шарика после разряда; е) энергию q_4' потенциал q_2' второго шарика после разряда; е) энергию q_4' соединенных проводником шариков: ж) работу q_4' разряда.

Тотенциал первого шарика до разряда $\varphi_1 = \frac{q_1}{C} - \frac{q_1}{4\pi c s_1 R} =$ **23кВ.** Заряд второго шарика до разряда $q_2 = C_2 \varphi_2 =$ **=4\pi \epsilon \epsilon_0 R_2 \varphi_2**: $q_2 = 20$ нКл. Энергия первого шарика до разрада $W_1 = 2\pi\varepsilon\varepsilon_0 R_1 \varphi_1^2$:15 мкДж. Энергня второго шарика до $\widetilde{\phi}$ азряда $W_2 = 2\pi\varepsilon\varepsilon_0 R_2 \varphi_2^2 = 90$ мкДж (см. задачу 9.108). После соединения шариков $\varphi_1' = \varphi_2'$. По закону сохранения заряда $q_1 + q_2 = q_1' + q_2'$ — (1). Имеем $\varphi_1' = \frac{q_1'}{4\pi\varepsilon\varepsilon_2 R_c}$ $\phi_2' = \frac{q_2'}{4\pi\varepsilon\varepsilon_0 R_2}$. Т. к. $\varphi_1' = \varphi_2'$, то $\frac{q_1'}{4\pi\varepsilon\varepsilon_0 R_1} = \frac{q_2'}{4\pi\varepsilon\varepsilon_0 R_2}$ или с учетом (1) получим $\frac{q_1'}{R_1} = \frac{q_1 + q_2 - q_1'}{R_2}$, откуда $\mathbf{q}_1^2 = \frac{q_1 + q_2}{1 + R_2 / R_1} = 18$ нКл. Тогда $q_2' = q_1 + q_2 - q_1' = 12$ нКл. По**тенциалы** шариков после разряда $\varphi_1' = \varphi_2' = \frac{q_1'}{4\pi\varepsilon\varepsilon_n R} =$ =5,4 кВ. Энергия W соединенных шариков равна сумме энергий каждого шарика в отдельности после разряда. Т. е.

 $W = W_1' + W_2'$, rate $W_1' = \frac{(q_1')^2}{8C_1} = \frac{(q_1')^2}{8\pi\varepsilon\varepsilon_0 R_1}$; $W_2' = \frac{(q_2')^2}{8\pi\varepsilon\varepsilon_0 R_2}$.

Следовательно. $W = \frac{1}{8\pi\varepsilon\varepsilon_0} \left(\frac{(q_1')^2}{R_1} + \frac{(q_2')^2}{R_2} \right)$: W = 81 мкДж.

Работа разряда A равна разности энергий до и после разряда, т. е. $A = (W_1 + W_2) - W = 24$ мкДж.

9.110. Заряженный шар 1 разнусом $R_i = 2$ см приводится в **соприкос**новение с незаряженным шаром 2. раднус которого

 $R_2=3$ см. После того как шары разъединили, энергия шара 2 оказалась равной $W_2=0.4$ Дж. Какой заряд q_1 был на шаре 1 g_0 соприкосновения с шаром 2?

Решение:

По закону сохранения заряда $q_1=q_1'+q_2'$ — (1), где q_1' и q_2' — заряды шаров 1 и 2 после соприкосновения. Кроме того, потенциалы шаров будут равны, т. е. $\varphi_1=\varphi_2$ или $\frac{q_1'}{4\pi\varepsilon\varepsilon_0R_1}=\frac{q_2'}{4\pi\varepsilon\varepsilon_0R_2}$, откуда $q_1'R_2=q_2'R_1$ — (2). По условию $W_2=\frac{(q_2')^2}{8\pi\varepsilon\varepsilon_0R_2}=0.4$ Дж, откуда $q_2'=\sqrt{8\pi\varepsilon\varepsilon_0R_2}$ = = 1,64 · 10 ⁻⁶ Кл. Подставляя полученное значение в (2), най-дем $q_1'=\frac{q_2'R_1}{R_2}=1.1\cdot 10^{-6}$ Кл. Тогда из (1) получим $q_1=(1.6+1.1)\cdot 10^{-6}=2.7\cdot 10^{-6}$ Кл.

9.111. Пластины плоского конденсатора площадью $S = 0.01 \,\mathrm{m}^2$ каждая притягиваются друг к другу с силой $F = 30 \,\mathrm{mH}$. Пространство между пластинами заполнено слюдой. Найти заряды q, находящиеся на пластинах, напряженность E поля между пластинами и объемную плотность энергии W_0 поля.

Решение:

Диэлектрическая проницаемость слюды $\varepsilon = 6$. Сила притяжения между пластинами плоского конденсатора $\sqrt{2E}$

$$F = \frac{\varepsilon_0 \varepsilon E^2 S}{2}$$
, откуда $E = \sqrt{\frac{2F}{\varepsilon_0 \varepsilon S}} = 336$ кВ/м. Силу F межно

выразить иначе:
$$F = \frac{\sigma^2 S}{2\varepsilon_0 \varepsilon}$$
, где $\sigma = \frac{q}{S}$. Т. е. $F = \frac{q^2}{2\varepsilon\omega_0 S}$.

откуда
$$q = \sqrt{2F\varepsilon\varepsilon_0 S} = 178 \,\mathrm{HKH}$$
. Объемная плотность энергии $W_0 = \frac{\varepsilon\varepsilon_0 E^2}{2} = 3 \,\mathrm{Дж/M}^2$.

9.112. Между пластинами плоского конденсатора вложена тонкая слюдяная пластинка. Какое давление p испытывает эта пластинка при напряженности электрического поля $E=\mathrm{i}\,\mathrm{MB}\,\mathrm{m}$?

Решение:

Пластинка испытывает давление $p = \frac{F}{S}$, где F — сила

притяжения между пластинами конденсатора, $F = \frac{\varepsilon \varepsilon_0 E^2 S}{2}$.

Отсюда
$$p = \frac{\varepsilon \varepsilon_0 E^2}{2} = 26.5 \, \Pi a.$$

9.113. Абсолютный электрометр представляет собой плоский конденсатор, нижняя пластина которого неподвижна, а верхняя польешена к коромыслу весов. При незаряженном конденсаторе расстояние между пластинами $d=1\,\mathrm{cm}$. Какую разность потенциалов U приложили между пластинами, если для сохранения того же расстояния $d=1\,\mathrm{cm}$ на другую чашку весов пришлось положить груз массой $m=5,1\,\mathrm{r}$? Площадь пластин конденсатора $S=50\,\mathrm{cm}^2$.

Решение:

На верхнюю пластину электрометра действуют две силы: сила притяжения между пластинами \vec{F} , направленная вниз, и сила натяжения \vec{T} нити коромысла весов, направленная вверх, равная по абсолютной величине весу груза \vec{P} , где $\vec{P}=m\vec{g}$. Запишем условие равновесия: $\vec{F}=\vec{T}$ или F=mg. Силу притяжения между пластинами можно

выразить следующим образом:
$$F = \frac{\varepsilon \varepsilon_0 S U^2}{2d^2}$$
. Тогда $\frac{\varepsilon \varepsilon_0 S U^2}{2d^2} = mg$, откуда $U = \sqrt{\frac{2d^2 mg}{\varepsilon \varepsilon_0 S}} = 15 \, \mathrm{kB}$.

9.114. Разность потенциалов между пластинами плоского конденсатора $U=280\,\mathrm{B}$. Площадь пластин конденсатора $S=0.01\,\mathrm{m}^2$; поверхностная плотность заряда на пластинах $\sigma=495\,\mathrm{HKn/m}^2$. Найти: а) напряженность E поля внутри конденсатора; б) расстояние d между пластинами; в) скорость ν_{c} которую получит электрон, пройдя в конденсаторе путь от одной пластины до другой; г) энергию W конденсатора; д) емкость C конденсатора; е) силу притяжения F пластин конденсатора.

конденсатора; е) силу притяжения F пластин конденсатора. **Решение:**Напряженность поля конденсатора $E = \frac{\sigma}{\varepsilon \varepsilon_0} = 56 \,\mathrm{kB/m}$. С другой стороны, $E = \frac{U}{d}$, отсюда $d = \frac{U}{E} = 5 \,\mathrm{mm}$. За счет работы сил электрического поля электрону будет сообщена кинетическая энергия $W_{\mathrm{K}} = A$, т. е. $\frac{mv^2}{2} = eU$, откум найдем $v = \sqrt{\frac{2eU}{m}} = 10^7 \,\mathrm{m/c}$. Энергия плоского конденсатора $W = \frac{\sigma^2 Sd}{2\varepsilon\varepsilon_0} = 692 \,\mathrm{нДж}$. Емкость плоского конденсатора $C = \frac{\varepsilon\varepsilon_0 S}{d} = 1,77 \,\mathrm{n\Phi}$. Сила притяжения пластин конденсатора $F = 138 \,\mathrm{mkH}$.

9.115. Площадь пластин плоского воздушного конденсатор $S = 0.01\,\mathrm{m}^2$, расстояние между ними $d=5\,\mathrm{mm}$. Какая разност потенциалов U была приложена к пластинам конденсатор U

известно, что при разряде конденсатора выделилось 4,19 мДж тепла?

решение:

Заряженный конденсатор обладает энергией $W=\frac{\varepsilon \varepsilon_0 S U^2}{2d}$. При разрядке конденсатора эта энергия выделяется в виде тепла. Следовательно, $Q=\frac{\varepsilon \varepsilon_0 S U^2}{2d}$, откуда $U=\sqrt{\frac{2dQ}{\varepsilon \varepsilon_0 S}}=$

9.116. Площадь пластии плоского воздушного конденсатора $S=0.01\text{M}^2$, расстояние между ними d=5 мм. К пластинам конденсатора приложена разность погенциалов U=3 кВ. Какова булет напряженность E поля конденсатора, если, не отключая его от источника напряжения, пластины раздвинуть до расстояния $d_2=5$ см? Найти энергии W_1 и W_2 конденсатора до и поле раздвижения пластии.

Решение:

Поскольку конденсатор постоянно подключен к источнику, то напряжение на нем не изменяется. Напряженность конденсатора при раздвинутых пластинах $E = \frac{U}{d}$;

В = 60 кВ/м. Емкость плоского конденсатора $C = \frac{\varepsilon \varepsilon_0 S}{d}$ —

При увеличении расстояния между пластинами

Регость уменьшается. Из формулы $W = \frac{CU^2}{2}$ — (2),

выражающей энергию W конденсатора через его емкость и напряжение, следует, что энергия конденсатора также уменьшится. Из (1) и (2) следует, что энергия конденсатора

© раздвижения пластин $W_1 = \frac{\varepsilon \varepsilon_0 S U^2}{2d_2} = 20$ мкДж. Энергия

$$W_2 = \frac{\varepsilon \varepsilon_0 S U^2}{2d_2} = 8$$
 мкДж.

конденсатора

9.117. Решить предыдущую задачу при условии, что сначала конденсатор отключается от источника напряжения, а затем раздвигаются пластины кондепсатора.

Решение:

Поскольку конденсатор отключили от источника напря. жения, то заряд на его пластинах, а также плотность заряда останутся неизменными. Напряженность поля кон-

денсатора $E = \frac{\sigma}{2\varepsilon\varepsilon_0}$. Как видно из формулы, напряжен-

ность при $\sigma = const$ не зависит от расстояния между пластинами, следовательно, после раздвижения пластин напряженность не изменится и ее можно найти по формуле

 $E = \frac{U}{d}$, т. е. $E_1 = E_2 = 150 \text{ кB/м}$. Энергия заряженного кон-

денсатора выражается через заряд и емкость формулой $W = \frac{q^2}{2C}$. Емкость плоского конденсатора $C = \frac{\varepsilon \varepsilon_0 S}{d}$. Заряд

конденсатора равен $q = C_1 U$. Тогда энергия конден-

сатора до раздвижения пластин $W_1 = \frac{C_1 U^2}{2} = \frac{\varepsilon \varepsilon_0 SU^2}{2^{d}}$;

 $W_{\rm t} = 20 \, {
m MkДж}$. Энергия конденсатора после раздвижения

пластин $W_2 = \frac{C_1^2 U^2}{2C} = \frac{\varepsilon \varepsilon_0 S U^2 d_2}{2C}$; $W_2 = 50$ мкДж.

9.118. Площадь пластин плоского воздущного конденсатора $S=0.01\,\mathrm{m}^2$, расстояние между ними $d_1=1\,\mathrm{mm}$. К пластинам конг денсатора приложена разность потенциалов U = 0.1 kB. Пласти 80

РИЗАТВИГАЮТСЯ до расстояння $d_2 = 25$ мм. Найти энергии W_1 и W_2 конденсатора до и после раздвижения пластин, если источник напряжения перед раздвижением: а) не отключается; б) отключается.

Решение:

а) Энергия конденсатора до раздвижения пластин $W_1 = \frac{\varepsilon \varepsilon_0 SU^2}{2d_2} = 443$ мкДж. Энергия конденсатора после раз-

движения пластин
$$W_2 = \frac{\varepsilon \varepsilon_0 S U^2}{2d_2} = 17,8$$
 мкДж (см. задачу 9.116). б) Энергия конденсатора до раздвижения пластин

$$W_1 = \frac{C_1 U^2}{2} = \frac{\varepsilon \varepsilon_0 S U^2}{2 d_1}$$
; $W_1 = 443 \text{ мкДж.}$ Энергия конденса-

тора после раздвижения пластин
$$W_2 = \frac{C_1^2 U^2}{2C_2} = \frac{\varepsilon \varepsilon_0 S U^2 d_2}{2d_1}$$
; $W_2 = 11,1$ мкДж (см. задачу 9.117).

9.119. Плоский конденсатор заполнен диэлектриком и на его пластины подана некоторая разность потенциалов. Его энергия при этом W = 20 мкДж. После того как конденсатор отключили от источника напряжения, диэлектрик вынули из конденсатора. Работа, которую надо было совершить против сил электрического поля, чтобы вынуть диэлектрик, A = 70 мкДж. Найти диэлектрическую проницаемость ε диэлектрика.

Решение:

Энергия конденсатора, заполненного диэлектриком, $W_1 = \frac{C_1 U_1^2}{2}$. После удаления диэлектрика емкость конден-

сатора уменьшилась в ε раз и стала равной $C_2 = \frac{C_1}{\varepsilon}$. Т. к. заряд конденсатора остался прежним, то разность потен-

циалов в силу связи q=CU увеличилась в ε раз; $U_2=\varepsilon U_1$. Энергия конденсатора после удаления диэлект. рика $W_2=\frac{C_1U_1^2\varepsilon^2}{2\varepsilon}=W_1\varepsilon$. Работа, совершенная против $\varepsilon_{\rm MR}$ кулоновского притяжения, равна $A=W_2-W_1=W_1(\varepsilon-1)$, отсюда $\varepsilon=\frac{A}{W_1}+1$; $\varepsilon=4.5$.

9.120. Площадь пластин плоского воздушного конденсатора $S=12,5~{\rm cm}^2$, расстояние между ними $d_1=5~{\rm mm}$. К пластинам конденсатора приложена разность потенциалов $U=6~{\rm kB}$. Иластины конденсатора раздвигаются до расстояния $d_2=1~{\rm cm}$. Найти изменение емкости конденсатора ΔC , потока нагряженности ΔN_E сквозь площадь электродов и объемной плотности энергии ΔW_0 электрического поля, если источник напряжения перед раздвижением: а) не отключается; б) отключается

Решение:
а) Если источник напряжения отключается, то разность потенциалов между пластинами конденсатора остается постоянной. Емкость конденсатора $C = \frac{\varepsilon \varepsilon_0 S}{d}$, отсюда изменение емкости $\Delta C = \varepsilon \varepsilon_0 S \bigg(\frac{1}{d_1} - \frac{1}{d_2} \bigg)$; $\Delta C = 1,1$ Пф. По теореме Гаусса поток напряженности сквозь любую замкнутую поверхность $N_E = \frac{1}{\varepsilon \varepsilon_0} \sum q_i$, в нашем случае $N_E = \frac{q}{\varepsilon \varepsilon_0}$, а изменение потока напряженности $\Delta N_E = \frac{1}{\varepsilon \varepsilon_0} \bigg(q_1 - q_2 \bigg)$. Поскольку $q_1 = C_1 U = \frac{\varepsilon \varepsilon_0 S U}{d_1}$. а

$$Q_2 = \frac{\varepsilon \varepsilon_0 SU}{d_2}$$
, to $\Delta N_E = SU \left(\frac{1}{d_1} - \frac{1}{d_2} \right)$; $\Delta N_E = 750 \,\mathrm{B} \cdot \mathrm{M}$.

Объемная плотность энергии $W_0 = \frac{\varepsilon \varepsilon_0 E^2}{2}$, где $E = \frac{U}{d}$. От-

сюда
$$\Delta W_0 = \frac{\varepsilon \varepsilon_0 U^2}{2} \left(\frac{1}{d_1^2} - \frac{1}{d_2^2} \right); \ \Delta W_0 = 48 \text{ МДж/м}^3.$$

- **6)** Если конденсатор перед раздвижением отключается от источника напряжения, то заряд на пластинах конденсатора остается постоянным. Емкость, как и в случае «а», уменьшится на величину $\Delta C = 1,1$ пФ. Поток напряженности не изменится, т. к. $q_1 = q_2$, т. е. $\Delta N_E = 0$. При
- $extbf{q} = const$ напряженность $E = \frac{\sigma}{\varepsilon \varepsilon_0} = const$, т. е. объемная

плотность энергии тоже не изменится, $\Delta W_0 = 0$.

9.121. Найти объемную плотность энергии W_0 электрического поля в точке, находящейся: а) на расстоянии x=2 см от поверхности заряженного шара радиусом R=1 см, б) вблизи бесконечно протяженной заряженной плоскости, в) на расстоянии x=2 см от бесконечно длинной заряженной нити. Поверхностная плотность заряда на шаре и плоскости $\sigma=16.7$ мкКл/м², линейная плотность заряда на нити $\tau=167$ мкКл/м. Диэлектрическая проницаемость среды $\varepsilon=2$.

Решение:

Объемная плотность энергии $W_0 = \frac{\varepsilon \varepsilon_0 E^2}{2}$. а) Напряженность поля на расстоянии x от поверхности заряженного

шара
$$E = \frac{q}{4\pi\varepsilon\varepsilon_0 (R+x)^2}$$
, где $q = \sigma \cdot 4\pi R^2$. Тогда

$$W_0 = \frac{\sigma^2 R^4}{2\varepsilon \varepsilon_0 (R+x)^4}$$
; $W_0 = 97 \text{ МДж/м}^3$. б) Напряженность по-

ля бесконечной заряженной плоскости $E = \frac{\sigma}{2\varepsilon\varepsilon_0}$, тогда

$$W_0 = \frac{\sigma^2}{8\varepsilon\varepsilon_0}$$
; $W_0 = 1.97 \, \text{Дж/м}^3$. в) Напряженность поля бес-

конечной заряженной нити
$$E = \frac{\tau}{2\pi\varepsilon\varepsilon_0 x}$$
, тогда

$$W_0 = \frac{\tau^2}{8\pi^2 c \varepsilon_0 x^2}$$
; $W_0 = 50 \text{ MДж/м}^3$.

9.122. На пластины плоского конденсатора, расстояние между которыми d=3 см, подана разность потенциалов $U=1\,\mathrm{kB}$. Пространство между пластинами заполняется диэлектриком ($\varepsilon=7$). Найти поверхностную плотность связанных (поляризационных) зарядов σ_{cB} . Насколько изменяется поверхностная плотность заряда на пластинах при заполнении конденсатора электриком? Задачу решить, если заполнение конденсатора диэлектриком производится: а) до отключения конденсатора от источника напряжения; б) после отключения конденсатора от источника напряжения.

Решение:

Введем обозначения: σ_0 — поверхностная плотность заряда на пластинах конденсатора в отсутствие диэлектрика, $\sigma_{\rm a}$ — поверхностная плотность заряда на пластинах в присутствии диэлектрика, $\sigma_{\rm cs}$ — поверхностная плотность связанных (поляризационных) зарядов на диэлектрике. Совместное действие зарядов $\sigma_{\rm a}$ и $\sigma_{\rm cs}$ таково, как будто бы на границе раздела проводника и диэлектрика иместся заряд, распределенный с плотностью $\sigma = \sigma_{\rm a} - \sigma_{\rm cs}$ — (†). Таким образом, σ — поверхностная плотность «эффективных» зарядов, т. е. зарядов, определяющих сумемарное результирующее поле в диэлектрике. Очевидно, величины σ_0 , $\sigma_{\rm a}$ и σ связаны с соответствующими

поля следующими соотношениями: в отсутствие диэлектрика $E_1 = \frac{\sigma_0}{\varepsilon} = \frac{U_1}{d}$ — (2); в присутствии диэлектрика $E_2 = \frac{\sigma_{\pi}}{\varepsilon \varepsilon_{\circ}} = \frac{\sigma}{\varepsilon_{\circ}} = \frac{U_2}{d}$ — (3). Из (1) имеем $\sigma_{cs} = \sigma_{\pi} - \sigma$ или, на основании (3), $\sigma_{cs} = \varepsilon \varepsilon_0 E_2 - \varepsilon_0 E_2 = \varepsilon \varepsilon_0 E_2$ $=\varepsilon_0(\varepsilon-1)E_2=\varepsilon_0(\varepsilon-1)\frac{U_2}{I}$. a) До отключения конденсатора от источника напряжения $U_{\rm i}=U_{\rm 2}=U$ и $\sigma_{
m cs}=arepsilon_0 imes$ $(\varepsilon-1)\frac{U}{d}=17.7 \text{ мкКл/м}^2$. Изменение поверхностной плотности заряда при заполнении конденсатора диэлектриком $\sigma_{a} - \sigma_{0} = \varepsilon_{0}(\varepsilon - 1)\frac{U}{U} = \sigma_{cB} = 17.7 \text{ мкКл/м}^{2}$. Таким образом, благодаря источнику напряжения на пластинах конденсатора появятся добавочные заряды, компенсирующие уменьшение заряда, вызванное поляризацией диэлектрика. б) После отключения конденсатора от источника напряжения q=const и $U_2=\frac{\varepsilon_1 U_1}{2}$ (см. решение 9.87) и $\sigma_{cs}=\varepsilon_0 \times$

×(ε-1) $\frac{U_2}{d}$ ε₀(ε-1) $\frac{\varepsilon_1 U_1}{\varepsilon_2 d}$ = 2.53 MKKJI/M². Τ. κ. q = const, το

 $\sigma_{\rm cs} = \sigma_0$, т. е. поверхностная плотность заряда на пластинах конденсатора не изменяется.

9.123. Пространство между пластинами плоского конденсатора заполнено диэлектриком, диэлектрическая воспримчинвость которого $\aleph=0.08$. Расстояние между пластинами $d=5\,\mathrm{mm}$. На пластины конденсатора подана разность потенциалов $U=4\,\mathrm{kB}$. Найти поверхностную плотность связанных зарядов σ_{cs} на диэлектрике и поверхностную плотность заряда σ_{a} на пластинах конденсатора.

Решение:

Поляризованность P, численно равная поверхностной плотности связанных зарядов $\sigma_{\rm cs}$ на диэлектрике, ${\rm hpo}_{\rm cs}$ порциональна напряженности поля в диэлектрике, ..е $P = \sigma_{\rm cn} = \aleph' E$. В системе СИ диэлектрическая востриимчивость 8' имеет размерность фарад на метр. Межно ноказать, что $\aleph' = 4\pi\varepsilon_0 \aleph$, где \aleph — безразмерная величина (табличное значение диолектрической восприимчивости). Тогда поверхностная плотность связанных зарядов на диэлектрике $\sigma_{\rm cB} = 4\pi\varepsilon_0 \% E = 4\pi\varepsilon_0 \% \frac{U}{d} = 7,1 \,\mathrm{mkKn/m}^2$. Halt. lem диэлектрическую проницаемость диэлектрика. Г. к. $\sigma_{\rm cB}=arepsilon_0 (arepsilon-1) E$ (см. задачу 9.122), то $\sigma_{\rm cB}=4\piarepsilon_0 \otimes arepsilon=0$ $= \varepsilon_0(\varepsilon - 1)E$, откуда $\varepsilon - 1 = 4\pi \%$, или $\varepsilon = 1 + 4\pi \% = 1$ $=1+4\pi\cdot 0.8=2$. Тогда $E=\frac{U}{d}=\frac{\sigma_{\pi}}{\varepsilon\varepsilon_{0}}$. Отсюда поверхностная плотность заряда на пластинах конденсатора $σ_{\pi} = \frac{U\varepsilon\varepsilon_0}{d} = 14 \text{ MKK} \pi/\text{M}^2.$

9.124. Пространство между пластинами плоского конденсатора заполнено стеклом. Расстояние между пластинами $d=\kappa$ мм. На пластины конденсатора подана разность потенциалов U=1,2 кВ. Найти: а) напряженность E поля в стекле; б) посерхностную плотность заряда σ_{α} на пластинах конденсатора; ы поверхностную плотность связанных зарядов σ_{cs} на стекле; то две электрическую воспринмчивость \aleph стекла.

Решение:

а) Напряженность поля в стекле $E = \frac{U}{d} = 300 \text{ кB/м}$ (ст. заглачу 9.122). Диэлектрическая проницаемость стекла E = 6. б) Поверхностная плотность заряда на пластинах рана 86

 $\frac{U\varepsilon\varepsilon_0}{d}=15,9$ мкКл/м² (см. задачу 9.123). в) Поверхностная плотность зарядов на стекле равна $\sigma_{\rm cB}=\varepsilon_0\times (\varepsilon-1)\frac{U}{d}=13,3$ мкКл/м² (см. задачу 9.122). г) Диэлектрическая восприимчивость стекла и поверхностная плотность связанных зарядов связаны соотношением $\sigma_{\rm cB}=\frac{4\pi\varepsilon_0\aleph U}{d}$ (см. задачу 9.123). Отсюда $\aleph=\frac{\sigma_{\rm cB}d}{4\pi\varepsilon_0 U}=0,4$.

9.125. Пространство между пластинами плоского конденсатора заполнено маслом. Расстояние между пластинами d=1см. Какую разность потенциалов U надо подать на пластины конденсатора, чтобы поверхностная плотность связанных

зарядов на масле была равна $\sigma_{\rm cs} = 6.2 \, {\rm MKK} \pi/{\rm M}^2$?

Решение:

Имеем $\sigma_{cs} = \varepsilon_0 (\varepsilon - 1) \frac{U}{d}$ — (1) (см. задачу 9.122). Диэлектрическая проницаемость масла $\varepsilon = 5$. Из (1) $U = \frac{\sigma_{cs} d}{\varepsilon_0 (\varepsilon - 1)} = 1,75 \text{ кB}.$

9.126. Пространство между пластинами плоского конденсатора заполнено стеклом. Площадь пластин конденсатора $S=0.01\,\mathrm{m}^2$. Пластины конденсатора притягиваются друг к другу с силой $F=4.9\,\mathrm{mH}$. Найти поверхностную плотность связанных зарадов σ_{cs} на стекле.

Решение:

Имеем $F = \frac{\varepsilon \varepsilon_0 S U^2}{2d^2}$ — (1). Поверхностная плотность

зарядов на стекле равна $\sigma_{\rm cB} = \varepsilon_0 (\varepsilon - 1) \frac{U}{d}$ (см. задачу 9.122).

Из (1)
$$\frac{U}{d} = \sqrt{\frac{2F}{\varepsilon \varepsilon_0 S}}$$
. Тогда $\sigma_{cs} = \varepsilon_0 (\varepsilon - 1) \sqrt{\frac{2F}{\varepsilon \varepsilon_0 S}}$; $\sigma_{cs} = 0.6 \,\mathrm{MKK} \pi/\mathrm{M}^2$.

9.127. Пространство между пластинами плоского конденсатора заполнено парафином. При присоединении пластин к источнику напряжения давление пластин на парафин стало равным p=5 Па. Найти: а) напряженность E электрического поля и электрическое смещение D в парафине; б) поверхностную плотность связанных зарядов $\sigma_{\rm cs}$ на парафине; в) поверхностную плотность заряда $\sigma_{\rm cs}$ на пластинах конденсатора; г) объемную плотность энергии W_0 электрического поля в парафине; д) диэлектрическую воспринмчивость \aleph парафина.

Решение:

а) Сила притяжения между пластинами плоского конденсатора $F = \frac{\varepsilon \varepsilon_0 E^2 S}{2}$, откуда $E = \sqrt{\frac{2F}{\varepsilon \varepsilon_0 S}}$. Поскольку давление $p = \frac{F}{S}$, то $E = \sqrt{\frac{2p}{\varepsilon \varepsilon_0}} = 752 \text{ кB/м}$. Электрическое смещение $D = \varepsilon \varepsilon_0 E = 13.3 \,\mathrm{mkKn/m^2}$. б) Имеем $\sigma_{\mathrm{cB}} = \varepsilon_0 (\varepsilon - 1) \times 10^{-1} \,\mathrm{mkKn/m^2}$ $\times \sqrt{\frac{2F}{g_F}}$ (см. задачу 9.126). С учетом $p = \frac{F}{S}$ имсем $\sigma_{\rm cB} = \varepsilon_0 (\varepsilon - 1) \sqrt{\frac{2p}{c\varepsilon}} = 6.7 \,\mathrm{MKK} \,\mathrm{J/M}^2$. в) Поверхностная плотность заряда на пластинах конденсатора $\sigma_{\rm A} = \varepsilon \varepsilon_0 E = D$; $\sigma_{n} = 13.3 \,\mathrm{MKK} \mathrm{J/m}^{2}$. г) Объемная плотность $W_0 = \frac{ED}{2} = 5 \, \text{Дж/м}^2$. д) Имеем $\sigma_{cs} = 4\pi \varepsilon_0 \, \text{KE}$ (см. задачу 9.123), отсюда $\aleph = \frac{\sigma_{cr}}{4\pi\varepsilon_0 E} = 0.08$.

6.128. Пространство между пластинами плоского конденатора заполнено диэлектриком. Расстояние между пластинами $2\,\mathrm{MM}$. На пластины конденсатора подана разность потенциалов $U_1=0.6\,\mathrm{kB}$. Если, отключив источник напряжения, вынуть диэлектрик из конденсатора, то разность потенциалов на пластинах конденсатора возрастет до $U_2=1.8\,\mathrm{kB}$. Найти поверхностную плотность связанных зарядов σ_{cs} на диэлектрике и лиэлектрическую воспринмчивость Σ диэлектрика.

Решение:

После отключения конденсатора от источника напряжения g = const и $U_2 = \varepsilon U_1$ — (1). Из решения задачи 9.122

имеем
$$\sigma_{\rm cs}=arepsilon_0 (arepsilon-1) rac{U_1}{cl}$$
. Найдем из (1) $arepsilon=rac{U_2}{U_1}$. Тогда

$$\epsilon_0 = \epsilon_0 \left(\frac{U_2}{U_1} - 1 \right) \frac{U_1}{d}$$
; $\sigma_{cs} = 5.3 \text{ мкКл/м}^2$. Поверхностная

плотность связанных зарядов и диэлектрическая восприимчивость диэлектрика связаны соотношением

$$\sigma_{\rm cs} = 4\pi \varepsilon_0 \aleph \frac{U_1}{d}$$
 . Отсюда $\aleph = \frac{d\sigma_{\rm cs}}{4\pi \varepsilon_0 U_1}$; $\aleph = 0.159$.

9.129. Пространство между пластинами плоского конденсатора объемом $V=20~{\rm cm}^3$ заполнено диэлектриком ($\varepsilon=5$). Пластины конденсатора присоединены к источнику напряжения. При этом поверхностная плотность связанных зарядов на малектрике $\sigma_{\rm cs}=8,35~{\rm mkK}_{\rm л}/{\rm m}^2$. Какую работу A надо совершить против сил электрического поля, чтобы удалить диэлектрик из конденсатора? Задачу решить, если удаление диэлектрика производится: а) до отключения источника напряжения, б) после отключения источника напряжения.

Решение:

Работа A против сил кулоновского поля равна изменению энергии конденсатора $\Delta W = A$. а) До отключения конденсатора от источника напряжения $U_1 = U_2 = U$ и

$$\sigma_{\rm cs}=arepsilon_0ig(arepsilon-1ig)rac{U}{d}$$
 — (1) (см. задачу 9.122). Энергия конден.

сатора с диэлектриком
$$W_1 = \frac{\varepsilon \varepsilon_0 S U^2}{2d} = \frac{\varepsilon \varepsilon_0 V}{2} \left(\frac{U}{d}\right)^2$$
. Энергия

конденсатора без диэлектрика
$$W_2 = \frac{\varepsilon_0 V}{2} \left(\frac{U}{d}\right)^2$$
. Отеюда

$$\Delta W = \frac{\varepsilon_0 V}{2} \left(\frac{U}{d}\right)^2 (1-\varepsilon)$$
. Из (1) найдем $\frac{U}{d} = \frac{\sigma_{\rm cs}}{\varepsilon_0 (1-\varepsilon)}$, или

$$-\frac{U}{d} = \frac{\sigma_{\rm cB}}{\varepsilon_0 (1 - \varepsilon)}$$
, тогда $\Delta W = \frac{V \sigma_{\rm cB}^2}{2 \varepsilon_0 (1 - \varepsilon)} = -19,7$ мкДж, т. е.

энергия конденсатора уменьшилась, следовательно, работа сил поля положительна, а работа против них отрицательна. Тогда A=-19.7 мкДж. б) Если конденсатор отключен от источника, то q=const и $U_2=\varepsilon U_1$ — (1). Энергия

конденсатора с диэлектриком
$$W_1 = \frac{\varepsilon \varepsilon_0 V}{2} \left(\frac{U_1}{d}\right)^2$$
. Энергия

конденсатора без диэлектрика
$$W_2 = \frac{\varepsilon_0 V}{2} \left(\frac{U_2}{d}\right)^2$$
. Отеюда

$$\Delta W = \frac{\varepsilon_0 V}{2} \left(\varepsilon^2 \left(\frac{U_1}{d} \right)^2 - \varepsilon^2 \left(\frac{U_2}{d} \right)^2 \right); \quad \Delta W = \frac{\varepsilon \varepsilon_0 V}{2} \left(\frac{U_1}{d} \right)^2 (\varepsilon - 1).$$

Поскольку
$$\sigma_{\rm cb} = \varepsilon_0 (\varepsilon - 1) \frac{U_{\rm i}}{d}$$
, откуда $\frac{U_{\rm i}}{d} = \frac{\sigma_{\rm cb}}{\varepsilon_0 (\varepsilon - 1)}$, то

$$\Delta W = \frac{\varepsilon V \sigma_{\text{св}}^2}{2\varepsilon_0(\varepsilon - 1)}; \ \Delta W = 98 \text{ мкДж, т. е. энергия конденсатора}$$

увеличилась, следовательно, работа сил поля отрицательна, а работа против них положительна. Тогда $A=98\,\mathrm{Mg}\,\mathrm{Jm}$.