Verifica di fisica											
Nome e cognome:						Classe:		Da	.ta:	Griglia	
Risposte (varia	ante 42)										
	1	2	3	4	5	6	7	8	9	10	
	11	12	13	14	15	16	17	18	19	20	
 Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio (⁴₂He)? (a) Decadimento Beta meno (β⁻) (b) Emissione Gamma (γ) (c) Decadimento Alfa (α) (d) Decadimento Beta più (β⁺) 											
2. Completare la seguente reazione di decadimento beta meno (β^-): ${}^{14}_6{\rm C} \rightarrow ? + e^- + \bar{\nu}_e$											
(a) $^{13}_{6}$	C		(b)	$_{5}^{14}{ m B}$		((c) $^{14}_{7}$ N			(d) ${}_{6}^{14}C$	

- La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Che l'energia emessa fosse quantizzata fin dall'inizio.
 - (b) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (c) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).
 - (d) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
- Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?
 - (a) $E_B = (\Delta m)/c^2$. (b) $E_B = (\Delta m)c^2$. (c) $E_B = m_{nucleo}c^2$. (d) $E_B = (\sum m_{costituenti})c^2$.
- Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) Il nucleo atomico vibra emettendo fotoni.
 - (b) Gli urti tra atomi eccitati producono lo spettro.
 - (c) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (d) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
- Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \text{ J} \cdot \text{s e 1 eV} \approx 1.6 \times 10^{-19} \text{ J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)
 - (b) $K_{max} \approx 2.14 \,\text{eV}$ (a) $K_{max} \approx 6.14 \,\text{eV}$
- (c) $K_{max} \approx 4.14 \,\text{eV}$ (d) $K_{max} \approx 2.0 \,\text{eV}$
- In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) La variazione è indipendente dall'angolo θ .
 - (b) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).
 - (c) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
 - (d) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
- Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (b) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (c) Viene assorbito completamente dall'elettrone.
 - (d) Passa attraverso l'elettrone senza interagire.
- Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $\binom{18}{0}$ F) può decadere β^+ : ${}^{18}_{9}F \rightarrow ? + e^+ + \nu_e$

	(a)	$^{19}_{9}$ F (b) $^{17}_{9}$	(c)	$^{18}_{10}{ m Ne}$	(d) ¹⁸ ₈ O			
10.	10. Nel range di energie tipico della radiodiagnostica (es. $30 - 150 \text{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?							
	(a)	Scattering di Rayleigh (coerente).	. (c)	Effetto fotoelettrico.				
	(b)	Produzione di coppie (e^+/e^-) .	(d)	Effetto Compton.				
11.	11. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?							
	(a) Il tempo trascorso dall'inizio dell'esperimento.							
	(b) Il decadimento dell'atomo radioattivo all'interno della scatola.							
	(c)	(c) La volontà del gatto.						
	(d)	(d) L'atto di osservazione o misurazione (apertura della scatola).						
12.	12. Il principio di indeterminazione è una conseguenza fondamentale:							
	(a)	Della teoria della relatività di Ein	nstein.					

- (b) Degli errori sperimentali inevitabili negli strumenti di misura.
- (c) Del modello atomico di Bohr.
- (d) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
- Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione solo quando viene ionizzato.
 - (b) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (c) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
 - (d) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
- 14. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che la luce è composta da particelle (fotoni).
 - (b) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (c) Che il principio di indeterminazione non è valido.
 - (d) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
- 15. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Uno stato indeterminato che non è né vivo né morto.
 - (b) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
 - (c) Lo stato "gatto morto".
 - (d) Lo stato "gatto vivo".
- 16. Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}$ U $\rightarrow X + \alpha$

(a)
$$X = {}^{234}_{90}$$
 Th (Torio- (b) $X = {}^{234}_{92}$ U (Uranio- 234) (c) $X = {}^{238}_{90}$ Th (Torio- (d) $X = {}^{234}_{88}$ Ra (Radio- 234) 234)

(b)
$$X =_{92}^{234} \text{ U (Uranio-} 234)$$

(c)
$$X = {}^{238}_{90}$$
 Th (Torio 238)

(d)
$$X = {}^{234}_{88}$$
 Ra (Radio-234)

- 17. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
 - (b) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
 - (c) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (d) Perché a basse frequenze la luce si comporta solo come un'onda.

	(b)	Il numero $N(t)$ di nuclei radioattivi non ancora decaduti presenti al tempo t , partendo da N_0 nuclei al tempo $t=0$.							
	(c)	Il tempo di dimezzamento del campione.							
	(d)	(d) L'attività del campione al tempo t .							
19. Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2} = 5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, quanti milligrammi rimarranno dopo 20 giorni?									
	(a)	$8\mathrm{mg}$	(b) 4 mg	(c)	$2\mathrm{mg}$	(d) 1 mg			
20. Il nucleo di Deuterio (² H) è formato da 1 protone ($m_p \approx 1.0073\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?									
	(a)	$\Delta m pprox 2.0141\mathrm{u}$		(c)	$\Delta m \approx (1.0073 + 1.0087)$ -	$-2.0141 = 0.0019 \mathrm{u}$			
	(b)	$\Delta m \approx 2.0141 - (1.0073 +$	-1.0087) = -0.0019 u	(d)	$\Delta m \approx 1.0073 + 1.0087 + 1.0087 + 1.0087$				

18. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:

(a) Il numero di nuclei decaduti al tempo t.