PD 91573A

International Rectifier

IRG4PH50UD

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

UltraFast CoPack IGBT

Features

- UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode
- New IGBT design provides tighter parameter distribution and higher efficiency than previous generations
- IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- Industry standard TO-247AC package

Benefits

- Higher switching frequency capability than competitive IGBTs
- Highest efficiency available
- HEXFRED diodes optimized for performance with IGBT's. Minimized recovery characteristics require less/no snubbing

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	45	
I _C @ T _C = 100°C	Continuous Collector Current	24	A
I _{CM}	Pulsed Collector Current ①	180	
I _{LM}	Clamped Inductive Load Current ②	180	
I _F @ T _C = 100°C	Diode Continuous Forward Current	16	
I _{FM}	Diode Maximum Forward Current	180	
V _{GE}	Gate-to-Emitter Voltage	± 20	V
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	200	– w
P _D @ T _C = 100°C	Maximum Power Dissipation	78	VV
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT			0.64	
$R_{\theta JC}$	Junction-to-Case - Diode			0.83	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface		0.24		
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount			40	
Wt	Weight		6 (0.21)		g (oz)

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage3	1200	_	_	V	$V_{GE} = 0V, I_{C} = 250 \mu A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	1.20	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.56	3.5		I _C = 20A	$V_{GE} = 15V$
		_	2.78	3.7		$I_C = 24A$	
		_	3.20	_	V	I _C = 45A	See Fig. 2, 5
		_	2.54	_		I _C = 24A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	6.0		$V_{CE}=V_{GE},\ I_{C}=250\mu A$	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	-13	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
9 _{fe}	Forward Transconductance @	23	35	_	S	$V_{CE} = 100V, I_{C} = 24A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μΑ	$V_{GE} = 0V, V_{CE} = 1200V$	
		_	_	6500		$V_{GE} = 0V, V_{CE} = 1200V$, T _J = 150°C
V _{FM}	Diode Forward Voltage Drop	_	2.5	3.5	V	I _C = 16A	See Fig. 13
		_	2.1	3.0		$I_C = 16A, T_J = 150^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	_	160	250		I _C = 24A
Qge	Gate - Emitter Charge (turn-on)	—	27	40	nC	V _{CC} = 400V See Fig. 8
Q _{gc}	Gate - Collector Charge (turn-on)	_	53	80		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	47	_		$T_J = 25^{\circ}C$
t _r	Rise Time	_	24	_	ns	$I_C = 24A, V_{CC} = 800V$
t _{d(off)}	Turn-Off Delay Time	_	110	170		$V_{GE} = 15V, R_{G} = 5.0\Omega$
t _f	Fall Time	_	180	260		Energy losses include "tail" and
Eon	Turn-On Switching Loss	_	2.10	_		diode reverse recovery.
E _{off}	Turn-Off Switching Loss	_	1.50	_	mJ	See Fig. 9, 10, 18
Ets	Total Switching Loss	—	3.60	4.6		
t _{d(on)}	Turn-On Delay Time	_	46	_		T _J = 150°C, See Fig. 11, 18
t _r	Rise Time	_	27	_	ns	$I_C = 24A, V_{CC} = 800V$
t _{d(off)}	Turn-Off Delay Time	_	240	_		$V_{GE} = 15V, R_{G} = 5.0\Omega$
t _f	Fall Time	_	330	_		Energy losses include "tail" and
E _{ts}	Total Switching Loss	_	6.38	_	mJ	diode reverse recovery.
LE	Internal Emitter Inductance	_	13	_	nH	Measured 5mm from package
Cies	Input Capacitance	_	3600	_		$V_{GE} = 0V$
Coes	Output Capacitance	_	160	_	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance	_	31	_		f = 1.0MHz
t _{rr}	Diode Reverse Recovery Time	_	90	135	ns	T _J = 25°C See Fig.
		_	164	245		T _J = 125°C 14 I _F = 16A
I _{rr}	Diode Peak Reverse Recovery Current	_	5.8	10	Α	T _J = 25°C See Fig.
		_	8.3	15		T _J = 125°C 15 V _R = 200V
Q _{rr}	Diode Reverse Recovery Charge	_	260	675	nC	T _J = 25°C See Fig.
		_	680	1838]	T _J = 125°C 16 di/dt = 200A/μs
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	120	_	A/µs	T _J = 25°C See Fig.
	During t _b	_	76	_		T _J = 125°C 17

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics www.irf.com

Fig. 3 - Typical Transfer Characteristics

3

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4PH50UD

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current

International **TOR** Rectifier

300 V_R = 200V T_J = 125°C ---T_J = 25°C 100 dif/dt - (A/μs)

Fig. 14 - Typical Reverse Recovery vs. di_f/dt

Fig. 16 - Typical Stored Charge vs. di_f/dt www.irf.com

IRG4PH50UD

Fig. 15 - Typical Recovery Current vs. di_f/dt

Fig. 17 - Typical $di_{(rec)M}/dt$ vs. di_f/dt

 $\label{eq:Fig. 18a} \textbf{Fig. 18a} \textbf{ -} \textbf{ Test Circuit for Measurement of } I_{LM}, \, E_{on}, \, E_{off(diode)}, \, t_{rr}, \, Q_{rr}, \, I_{rr}, \, t_{d(on)}, \, t_r, \, t_{d(off)}, \, t_f$

Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{ Defining E}_{on}, \ t_{d(on)}, \ t_{r}$

Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

Figure 19. Clamped Inductive Load Test Circuit

Figure 20. Pulsed Collector Current Test Circuit

Notes:

- \odot Repetitive rating: $V_{GE}=20V$; pulse width limited by maximum junction temperature (figure 20)
- $V_{CC} = 80\%(V_{CES}), V_{GE} = 20V, L = 10\mu H, R_G = 5.0Ω (figure 19)$
- ③ Pulse width ≤80µs; duty factor ≤0.1%.
- 4 Pulse width 5.0 µs, single shot.

Case Outline — TO-247AC

CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)

 ${\tt Dimensions} \,\, {\tt in} \,\, {\tt Millimeters} \,\, {\tt and} \,\, ({\tt Inches})$

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 7/00

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/