Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Prof. Samuel Feitosa

Congruências I

Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo resto quando divididos por m. Denotaremos isso por $a \equiv b \pmod{m}$.

Por exemplo, $7 \equiv 2 \pmod{5}$, $9 \equiv 3 \pmod{6}$, $37 \equiv 7 \pmod{10}$ mas $5 \not\equiv 3 \pmod{4}$. Veja que $a \equiv b \pmod{m}$ se, e somente se, $m \mid a - b$.

Teorema 2. Se $a \equiv b \pmod{m}$ e $c \equiv d \pmod{m}$, então:

- $i) \ a + c \equiv b + d \pmod{m}$
- $ii) \ a c \equiv b d \pmod{m}$
- iii) $ka \equiv kb \pmod{m} \ \forall k \in \mathbb{Z}$
- iv) $ac \equiv bd \pmod{m}$
- $v) \ a^k \equiv b^k \pmod{m} \ \forall k \in \mathbb{N}$
- vi) Se mdc(k, m) = d, então $ka \equiv kb \pmod{m} \Leftrightarrow a \equiv b \pmod{m/d}$

Demonstração. Sejam q_1 e q_2 tais que:

$$a - b = q_1 m$$

$$c - d = q_2 m$$

Então, $(a+c)-(b+d)=(q_1+q_2)m$. Logo, a+c e b+d deixam o mesmo resto por m e consequentemente $a+c\equiv b+d\pmod m$. Usando que $a-b\pmod a^k-b^k$ e que $m\mid a-b$, concluímos que $m\pmod a^k-b^k$. Os demais itens serão deixados para o leitor.

Em termos práticos, podemos realizar quase todas as operações elementares envolvendo igualdade de inteiros. Uma das diferenças cruciais é a operação de divisão como mostra o último item do teorema anterior.

Exemplo 3. Calcule o resto de 4^{100} por 3.

Como $4 \equiv 1 \pmod{3}$, temos $4^{100} \equiv 1^{100} = 1 \pmod{3}$.

Exemplo 4. Calcule o resto de 4¹⁰⁰ por 5.

Como $4 \equiv -1 \pmod{5}$, temos $4^{100} \equiv (-1)^{100} = 1 \pmod{5}$.

Exemplo 5. Calcule o resto de 4^{100} por 7.

Você deve ter percebido que encontrar relações do tipo $a \equiv \pm 1 \pmod{m}$ podem simplificar bastante o cálculo de $a^k \pmod{m}$. Procuremos alguma relação como essa para 4 e 7. Veja que:

$$4^0 \equiv 1 \pmod{7}, 4^1 \equiv 4 \pmod{7}, 4^2 \equiv 2 \pmod{7}, 4^3 \equiv 1 \pmod{7}.$$

Assim,

$$4^{99} = (4^3)^{33} \equiv 1^{33} = 1 \pmod{7}.$$

Como $4^3 \equiv 1 \pmod{7}$, os restos das potências de 4 na divisão por 7 se repetem periodicamente de 3 em 3 pois $4^{3k+r} \equiv 4^{3k} \cdot 4^r \equiv 4^r \pmod{7}$.

Exemplo 6. Qual o resto de $36^{36} + 41^{41}$ na divisão por 77?

Inicialmente devemos perceber que existe uma relação entre os números do problema: 36 + 41 = 77. Assim:

$$-36 \equiv 41 \pmod{77},$$

$$(-36)^{41} \equiv 41^{41} \pmod{77},$$

$$36^{36}(1-36^5) \equiv 36^{36}+41^{41} \pmod{77}.$$

Nosso próximo passo é encontrar o resto de 36^5 na divisão por 77. Como $36 \equiv 1 \pmod{7}$, $36^5 \equiv 1 \pmod{7}$. Além disso, $36 \equiv 3 \pmod{1}$ 1 produzindo $36^5 \equiv 3^5 \equiv 1 \pmod{1}$ 1. Como mdc(7,11)=1 e ambos dividem 36^5-1 , podemos concluir que 77 | 36^5-1 . Logo, $36^{36}+41^{41}$ deixa resto 0 na divisão por 77.

Exemplo 7. Prove que $p^2 - 1$ é divisível por 24 se p é um primo maior que 3.

Se p é um primo maior que 3, $p \equiv \pm 1 \pmod{3}$ e $p \equiv 1 \pmod{2}$. Daí, $p^2 \equiv 1 \pmod{3}$. Além disso, se p = 2k + 1, segue que $p^2 = 4k(k+1) + 1 \equiv 1 \pmod{8}$ pois k(k+1) é par. Como mdc(8,3) = 1 e ambos dividem $p^2 - 1$, segue que $24 \mid p^2 - 1$.

Exemplo 8. (OCM-2001) Achar o menor natural n tal que 2001 é a soma dos quadrados de n inteiros

Podemos concluir da solução do problema anterior que todo todo inteiro ímpar ao quadrado deixa resto 1 por 8. Usemos isso para estimar o valor de n. Sejam x_1, x_2, \ldots, x_n inteiros ímpares tais que:

$$x_1^2 + x_2^2 + \dots x_n^2 = 2001.$$

Analisando a congruência módulo 8, obtemos:

$$x_1^2 + x_2^2 + \dots + x_n^2 = 2001 \pmod{8}$$

 $1 + 1 + \dots + 1 \equiv 1 \pmod{8}$
 $n \equiv 1 \pmod{8}$

Como 2001 não é quadrado perfeito, não podemos ter n=1. O próximo candidado para n seria 1+8=9. Se exibirmos um exemplo para n=9, teremos achado o valor mínimo. Veja que:

$$2001 = 43^2 + 11^2 + 5^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2$$

Exemplo 9. (IMO) Seja s(n) a soma dos dígitos de n. Se $N=4444^{4444}$, A=s(N) e B=s(A). Quanto vale s(B)?

Pelo critério de divisibilidade por 9, $N \equiv A \equiv B \pmod{9}$. Inicialmente calculemos o resto de N por 9. Como $4444 \equiv 16 \equiv 7 \pmod{9}$, precisamos encontrar $7^{4444} \pmod{9}$. Seguindo os métodos dos primeiros exemplos, seria interessante encontrarmos um inteiro r tal que $7^r \equiv \pm 1 \pmod{9}$. O menor inteiro positivo com essa propriedade é r = 3. Como $4444 = 1481 \cdot 3 + 1$, temos:

$$7^{4444} \equiv 7^{1481 \cdot 3 + 1} \equiv (7^3)^{1481} \cdot 7 \equiv 7 \pmod{9}.$$

Nosso próximo passo é estimar o valor de s(B). Como $N=4444^{4444}<10^{5\cdot4444},\ A=s(N)\leq 5\cdot 4444\cdot 9=199980.$ Além disso, $B=s(A)\leq 1+9\cdot 5=46$ e $s(B)\leq 12.$ O único inteiro menor ou igual a 12 com resto 7 por 9 é o próprio 7, daí s(B)=7.

Exemplo 10. Prove que $11^{n+2} + 12^{2n+1}$ é divisível por 133 para qualquer natural n.

Duas relações que podemos extrair dos números envolvidos são: 144-11=133 e 133-12=121. Assim:

$$144 \equiv 11 \pmod{133},$$

$$12^{2} \equiv 11 \pmod{133},$$

$$12^{2n} \equiv 11^{n} \pmod{133},$$

$$12^{2n+1} \equiv 11^{n} \cdot 12 \pmod{133},$$

$$12^{2n+1} \equiv 11^{n} \cdot (-121) + 133 \cdot 11^{n} \pmod{133},$$

$$12^{2n+1} \equiv -11^{n+2} \pmod{133}.$$

Exemplo 11. Prove que $n^5 + 4n$ é divisível por 5 para todo inteiro n

Inicialmente note que $n^5 + 4n = n(n^4 + 4)$. Se $n \equiv 0 \pmod{5}$, não há o que fazer. Se $n \equiv \pm 1 \pmod{5}$, $n^4 + 4 \equiv 1 + 4 = 0 \pmod{5}$. Finalmente, se $n \equiv \pm 2 \pmod{5}$, $n^2 \equiv 4 \equiv -1 \pmod{5}$ e consequentemente $n^4 + 4 \equiv 1 + 4 = 0 \pmod{5}$.

Exemplo 12. Seja n > 6 um inteiro positivo tal que n-1 e n+1 são primos. Mostre que $n^2(n^2+16)$ é divisível por 720. A recíproca é verdadeira?

Veja que n é da forma 6k, pois n-1 e n+1 são primos maiores que 3, portanto da forma 6k-1 e 6k+1, respectivamente. Logo,

$$n^2(n^2 + 16) = 144(9k^4 + 4k^2).$$

Resta provar que $9k^4 + 4k^2$ é um múltiplo de 5. Vamos analisar a igualdade acima módulo 5.

- i) Se $k \equiv 0, 2$ ou 3 (mod 5), temos $9k^4 + 4k^2 \equiv 0 \pmod{5}$;
- ii) Se $k \equiv 1 \pmod{5} \Rightarrow n \equiv 1 \pmod{5}$, temos $n-1 \equiv 0 \pmod{5}$, um absurdo;
- iii) Se $k \equiv 4 \pmod{5} \Rightarrow n \equiv 4 \pmod{5}$, temos $n+1 \equiv 0 \pmod{5}$, novamente um absurdo.

Isso conclui a demonstração. A recíproca não é verdadeira. Basta tomar, por exemplo, n=90.

Problemas Propostos

Problema 13. Determine o resto de $2^{20} - 1$ na divisão por 41.

Problema 14. Qual o resto de $1^{2000} + 2^{2000} + ... + 2000^{2000}$ na divisão por 7?

Problema 15. Qual o resto na divisão de $2^{70} + 3^{70}$ por 13?

Problema 16. Qual o resto de 3^{200} por 100?

Problema 17. (Estônia 2000) Determine todos os possíveis restos da divisão do quadrado de um número primo com o 120 por 120.

Problema 18. *Qual o último dígito de* 777⁷⁷⁷?

Exemplo 19. Prove que $2222^{5555} + 5555^{2222}$ é divisível por 7.

Problema 20. Prove que o número $n^3 + 2n$ é divisível por 3 para todo natural n.

Problema 21. Prove que $n^2 + 1$ não é divisível por 3 para nenhum n inteiro.

Problema 22. Prove que $n^3 + 2$ não é divisível por 9 para nenhum n inteiro.

Problema 23. Prove que $p^2 - q^2$ é divisível por 24 se p e q são primos maiores que 3.

Problema 24. Prove que se 2n + 1 e 3n + 1 são ambos quadrados perfeitos, então n é divisível por 40.

Problema 25. Se $n \notin impar$, prove que $7|2^{2n+1} + 3^{n+2}$.

Problema 26. Seja d(n) a soma dos dígitos de n. Suponha que n + d(n) + d(d(n)) = 1995. Quais os possíveis restos da divisão de n por 9?

Problema 27. Prove que não existem inteiros positivos x_1, x_2, \ldots, x_{14} tais que:

$$x_1^4 + x_2^4 + \ldots + x_{14}^4 = 1599.$$

Problema 28. Escreva uma única congruência que é equivalente ao par de congruências $x \equiv 1 \pmod{4}$ e $x \equiv 2 \pmod{3}$.

Problema 29. Prove que $20^{15} - 1$ é divisível por $11 \cdot 31 \cdot 61$

Problema 30. (Alemanha 1997) Determine todos os primos p para os quais o sistema

$$p+1 = 2x^2$$
$$p^2 + 1 = 2y^2$$

tem uma solução nos inteiros x, y.

Problema 31. Mostre que se n divide um número de Fibonacci então ele dividirá uma infinidade.

Dicas e Soluções

13. Veja que

$$2^5 = 32 \equiv -9 \pmod{41} \Rightarrow$$

 $2^{10} \equiv 81 \equiv -1 \pmod{42} \Rightarrow$
 $2^{20} \equiv 1 \pmod{41}.$

Assim, o resto procurado é zero.

14. Como $i^{2000} \equiv (i+7k)^{2000} \pmod{7}$, podemos simplificar o problema calculando primeiramente o valor de:

$$1^{2000} + 2^{2000} + 3^{2000} + 4^{2000} + 5^{2000} + 6^{2000} + 7^{2000} \pmod{7}$$
.

Outra observação importante que simplificará o cálculo é perceber que $2^3 \equiv 1 \pmod{7}$. Assim,

$$2^{3k} \equiv 1 \pmod{7}, 2^{3k+1} \equiv 2 \pmod{7}, e^{2^{3k+2}} \equiv 4 \pmod{7}.$$

Usando isso e o fato de que 2000 é par, temos:

$$1^{2000} + 2^{2000} + 3^{2000} + 4^{2000} + 5^{2000} + 6^{2000} + 7^{2000} \equiv 1^{2000} + 2^{2000} + (-4)^{2000} + 4^{2000} + (-2)^{2000} + (-1)^{2000} + 0^{2000} \equiv 1 + 4 + 2 + 2 + 4 + 1 + 0 \equiv 0 \pmod{7}.$$

Dentre os primeiros 2000 naturais consecutivos, podemos formar 285 grupos de 7 números consecutivos cuja soma é múltipla de 7, em virtude da soma anterior. Os cinco números restantes possuem como resto na divisão por 7 o número:

$$1996^{2000} + 1997^{2000} + 1998^{2000} + 1999^{2000} + 2000^{2000} \equiv 1 + 4 + 2 + 2 + 4$$

$$\equiv 6 \pmod{7}.$$

Assim, o resto da soma na divisão por 7 é 6.

15. Inicialmente é interessante buscarmos alguma relação entre os números envolvidos no problema. Como 13 = 4 + 9, podemos escrever:

$$9 \equiv -4 \pmod{13} \Rightarrow$$
 $9^{35} \equiv (-4)^{35} \pmod{13} \Rightarrow$
 $3^{70} + 2^{70} \equiv 0 \pmod{13}.$

- 17. Use a fatoração $120=3\cdot 5\cdot 2^3$ e analise a congruência módulo 3, 5 e 8 separadamente.
- 18. Se n não é múltiplo de 3, sabemos que $n^2 \equiv 1 \pmod{3}$. Assim $n^2 + 2 \equiv 0 \pmod{3}$. Se n é múltiplo de 3, $n \equiv 0 \pmod{3}$. Em qualquer caso, $n(n^2 + 2) \equiv 0 \pmod{3}$.
- 19. Basta repetir a análise do problema anterior
- 20. Podemos montar uma tabela de congruências na divisão por 9:

Como nenhum cubo perfeito diexa resto 7 na divisão por 9, $n^3 + 2 \not\equiv 0 \pmod{9}$.

23. Proceda como no exemplo 7.

25.

$$2^{2n+1} + 3^{n+2} \equiv 4^n \cdot 2 + 3^n \cdot 9$$
$$\equiv (-3)^n \cdot 2 + 3^n \cdot 2$$
$$\equiv 0 \pmod{7}.$$

26. Seja r o resto na divisão por 9 de n. Pelo critério de divisibilidade por 9, temos:

$$n + d(n) + d(d(n)) \equiv 3r \equiv 1995 \pmod{9}.$$

Assim, $r \equiv 2 \pmod{3}$ (Pela propriedade vi do teorema 2). Além disso,

$$\begin{array}{rcl} n & \leq & 1995 \Rightarrow \\ d(n) & \leq & 27 = d(1989) \Rightarrow \\ d(d(n)) & \leq & 10 = d(19). \end{array}$$

Consequentemente, $n \geq 1995 - d(n) - d(d(n)) \geq 1958$. Basta procurarmos nos conjunto $\{1958, 1959, \dots, 1995\}$ os inteiros que deixam resto 2 por 3 e que satisfazem a equação do problema. Nesse conjunto, apena o inteiro 1967 cumpre essas condições.

27. Estudando a congruência módulo 16, podemos mostrar que $x^4 \equiv 0$ ou 1 (mod 1)6. Assim, a soma

$$x_1^4 + x_2^4 + \ldots + x_{14}^4$$

é congruente a um dos números do conjunto $\{0,1,\ldots,14\}$ m odulo 16 enquanto que $1599 \equiv 15 \pmod{16}$. Um absurdo.

28. $x \equiv 5 \pmod{12}$.

30. Suponha sem perda de generalidade que $x,y\geq 0$. Como p+1 é par, $p\neq 2$. Além disso,

$$2x^2 \equiv 1 \equiv 2y^2 \pmod{p}$$

e consequentente, usando que p é impar, $x \equiv \pm y \pmod{p}$. Como x < y < p, temos

$$p^{2} + 1 = 2(p - x)^{2} = 2p^{2} - 4px + p + 1,$$

de modo que $p = 4x - 1, 2x^2 = 4x$. Podemos concluir que $x \notin 0$ ou 2 e que a única possibilidade para $p \notin p = 7$.

31. Em virtude da fórmula recursiva da sequência de Fibonacci, é possível mostrarmos que os restos de seus termos na divisão por qualquer número formam uma sequência periódica.

Referências

- [1] E. Carneiro, O. Campos and F. Paiva, Olimpíadas Cearenses de Matemática 1981-2005 (Níveis Júnior e Senior), Ed. Realce, 2005.
- [2] S. B. Feitosa, B. Holanda, Y. Lima and C. T. Magalhães, Treinamento Cone Sul 2008. Fortaleza, Ed. Realce, 2010.
- [3] D. Fomin, A. Kirichenko, Leningrad Mathematical Olympiads 1987-1991, MathPro Press, Westford, MA, 1994.
- [4] D. Fomin, S. Genkin and I. Itenberg, Mathematical Circles, Mathematical Words, Vol. 7, American Mathematical Society, Boston, MA, 1966.
- [5] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers.

Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Prof. Samuel Feitosa

Congruências II

Na aula de hoje, aprenderemos um dos teoremas mais importantes do curso: o "pequeno" teorema de Fermat. Começaremos relembrando um resultado da aula passada:

Lema 1. Se $ka \equiv kb \pmod{m}$ e mdc(m, k) = 1, então $a \equiv b \pmod{m}$.

Demonstração. Como $m \mid k(a-b)$ e mdc(m,k) = 1, segue que $m \mid a-b$.

Teorema 2. (Teorema de Fermat) Seja p um primo. Se p não divide a então

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Além disso, para todo inteiro $a, a^p \equiv a \pmod{p}$

Demonstração. Considere o conjunto de inteiros $B = \{a, 2a, 3a, \dots, (p-1)a\}$ onde a é um inteiro satisfazendo mdc(a, p) = 1. Nenhum deles é divisível por p e quaisquer dois deles são incongruentes módulo p, em virtude do lema anterior. Assim, o conjunto dos restos dos elementos de B coincide com o conjunto dos restos não nulos na divisão por p, a saber, $\{1, 2, 3, \dots, p-1\}$. Portanto,

$$a \cdot 2a \cdot 3a \dots (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \dots (p-1) \pmod{p},$$
$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}.$$

Podemos cancelar o termo (p-1)! em ambos os lados pois mdc((p-1)!, p) = 1, concluindo assim a demonstração do teorema.

Exemplo 3. Prove que $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ é um inteiro para todo inteiro n.

Primeiramente note que $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15} = \frac{3n^5 + 5n^3 + 7n}{15}$. Como mdc(3,5) = 1, basta mostrarmos que o numerador é mútiplo de 3 e 5. Pelo teorema de Fermat:

$$3n^5 + 5n^3 + 7n \equiv 5n^3 + 7n \equiv 5n + 7n = 12n \equiv 0 \pmod{3},$$

 $3n^5 + 5n^3 + 7n \equiv 3n^5 + 7n \equiv 3n + 7n = 10n \equiv 0 \pmod{5}.$

Problema 4. Mostre que $n^7 \equiv n \pmod{42}, \forall n \in \mathbb{N}$

Pelo teorema de Fermat,

$$n^{7} \equiv n \pmod{7}$$

$$n^{7} \equiv (n^{3})^{2} \cdot n \equiv n^{2} \cdot n = n^{3} \equiv n \pmod{3}$$

$$n^{7} \equiv (n^{2})^{3} \cdot n \equiv n^{3} \cdot n = (n^{2})^{2} \equiv n^{2} \equiv n \pmod{2}$$

Como 2,3 e 7 são primos entre si, $n^7 \equiv n \pmod{2 \cdot 3 \cdot 7} = 42$).

Exemplo 5. (Bulgária 95) Encontre o número de inteiros n > 1 para os quais o número $a^{25} - a$ é divisível por n para cada inteiro a.

Se n satisfaz o enunciado, $p^2(p)$ primo) não pode dividí-lo, pois $p^{25}-p$ não é divisível por p^2 . Assim, n é múltiplo de primos diferentes. Os fatores primos de n são fatores de $2^{25}-2=2\cdot 3^2\cdot 5\cdot 7\cdot 13\cdot 17\cdot 241$. Entretanto, n não é divisível por 17 e 241 pois $3^{25}\equiv -3\pmod{17}$ e $3^{25}\equiv 32\pmod{241}$. Seguindo o exemplo anterior, podemos usar o teorema de Fermat para mostrar que $a^{25}\equiv a\pmod{p}$ para $p\in\{2,3,5,7,13\}$. Portanto, n deve ser igual a um dos divisores de $2\cdot 3\cdot 5\cdot 7\cdot 13$ diferente de 1. A quantidade de tais divisores é $2^5-1=31$.

Exemplo 6. Prove que para cada primo p, a diferença

$$111 \dots 11222 \dots 22333 \dots 33 \dots 888 \dots 88999 \dots 99 - 123456789$$

(onde cada digito está escrito exatamente p vezes) é múltiplo de p.

Uma boa maneira de associar os números do problema com o teorema de Fermat é perceber que:

$$\underbrace{111\dots11}_{p \ uns} = \frac{10^p - 1}{9}.$$

Assim, podemos escrever o número $S=111\dots11222\dots22333\dots33\dots888\dots88999\dots99$ como:

$$S = \frac{10^{p} - 1}{9} \cdot 10^{8p} + 2 \cdot \frac{10^{p} - 1}{9} \cdot 10^{7p} + \dots 9 \cdot \frac{10^{p} - 1}{9}$$
$$9S = (10^{p} - 1) \cdot 10^{8p} + 2 \cdot (10^{p} - 1) \cdot 10^{7p} + \dots 9 \cdot (10^{p} - 1)$$

Para p=2 ou p=3, o resultado do enunciado segue dos critérios de divisibilidade por 2 e 3. Podemos então nos concentrar no caso p>3. Nesse caso, é suficiente mostrarmos que 9(S-123456789) é divisível por p pois mdc(p,9)=1. Pelo teorema de Fermat:

$$9S = (10^{p} - 1) \cdot 10^{8p} + 2 \cdot (10^{p} - 1) \cdot 10^{7p} + \dots 9 \cdot (10^{p} - 1)$$

$$\equiv (10 - 1) \cdot 10^{8} + 2 \cdot (10 - 1) \cdot 10^{7} + \dots 9 + (10 - 1) \pmod{p}$$

$$\equiv 9 \cdot 123456789 \pmod{p}.$$

Exemplo 7. Dado um primo p, prove que existem infinitos naturais n tais que p divide $2^n - n$.

Se p=2, n pode ser qualquer número par. Suponha que p>2. Considere $(p-1)^{2k}$, pelo teorema de Fermat temos:

$$2^{(p-1)^{2k}} \equiv (2^{p-1})^{(p-1)^{2k-1}} \equiv 1^{(p-1)^{2k-1}} = 1 \equiv (p-1)^{2k} \pmod{p}.$$

Assim, para qualquer k, $n = (p-1)^{2k}$ satisfaz o problema.

Lema 8. Se mdc(a, m) = 1 então existe um inteiro x tal que

$$ax \equiv 1 \pmod{m}$$
.

 $Tal\ x\ \'e\ \'unico\ m\'odulo\ m.\ Se\ mdc(a,m)>1\ ent\~ao\ n\~ao\ existe\ tal\ x.$

Demonstração. Pelo teorema de Bachet-Bézout, existem inteiros x e y tais que ax+my=1. Analisando essa congruência módulo m, obtemos $ax \equiv 1 \pmod{m}$. Se y é outro inteiro que satisfaz a congruência, temos $ax \equiv ay \pmod{m}$. Pelo primeiro lema, $x \equiv y \pmod{m}$. Se d = mdc(a, m) > 1, não podemos ter $d \mid m \in m \mid ax - 1$ pois $d \nmid ax - 1$.

Teorema 9. (Teorema de Wilson) Se p é primo, então

$$(p-1)! \equiv -1 \pmod{p}$$

Demonstração. Em virtude do lema anterior, para cada $a \in \{2, 3, ..., p-2\}$, existe um resto $x \in \{0, 1, 2, ..., p-1\}$ tal que $ax \equiv 1 \pmod{p}$. Se x = 1 ou x = p-1, teríamos a = 1 ou p-1. Além disso, não podemos ter a = x pois os únicos restos que satisfazem $a^2 \equiv 1 \pmod{p}$ são $1 \in p-1$ (Veja o problema 20). Com isso, podemos agrupar os números de $\{2, 3, ..., p-2\}$ em pares onde o produto deixa resto 1 por p, o que nos permite concluir que o produto de todos eles também deixa resto 1 por p. Logo,

$$(p-1)! \equiv 1 \cdot (p-1) \equiv -1 \pmod{p}$$
.

Exemplo 10. (Estônia 2000) Prove que não é possível dividir qualquer conjunto de 18 inteiros consecutivos em dois conjuntos disjuntos A e B tais que o produtos dos elementos de A seja igual ao produto dos elementos de B.

Suponha, por absurdo, que existam tais conjuntos. Considere o primo p=19. Como o produtos dos elementos de A é igual ao produtos dos elementos de B, se um dos conjuntos contém um múltiplo de 19, o outro necessariamente também conterá. Como entre 18 inteiros consecutivos não existem dois múltiplos de 19, nenhum dos conjuntos do problema contém tais números. Seja x o resto na divisão por 19 dos produtos dos elementos de A. Calculemos então o resto na divisão por 19 do produto de todos os 18 inteiros consecutivos:

$$x \cdot x \equiv n(n+1)(n+2)(n+3)\dots(n+17)$$

 $\equiv 1 \cdot 2 \cdot 3 \dots \cdot 18$
 $\equiv -1 \pmod{19}$ (Pelo teorema de Wilson).

Como $x^2 \equiv -1 \pmod{19}$, $x^{18} \equiv (-1)^9 \equiv 1 \pmod{19}$. Isso contraria o teorema de Fermat e obtemos um absurdo.

Definição 11. Um conjunto S é chamado de sistema completo de resíduos módulo n, denotado abreviadamente por \mathbf{scr} , se para cada $0 \le i \le n-1$, existe um elemento de $s \in S$ tal que $i \equiv s \pmod{n}$. Para qualquer a, o conjunto $\{a, a+1, a+2, \ldots, a+(n-1)\}$ é um exemplo de \mathbf{scr} .

Exemplo 12. Se mdc(m, s) = 1, mostre que $\{t, t + s, t + 2s, ... t + (m - 1)s\}$ é um scr.

Pelo primeiro lema, se $t + is \equiv t + js \pmod{m}$, temos $is \equiv js \pmod{m}$ e $i \equiv j \pmod{m}$. Como $i, j \in \{0, 1, ..., m - 1\}$, i = j. Isso nos diz que temos m inteiros que deixam restos distintos na divisão por m. Como existem exatamente m restos na divisão por m, o conjunto é um scr.

Exemplo 13. Seja m um inteiro positivo par. Suponha que $\{a_1, a_1, \ldots, a_m\}$ e $\{b_1, b_2, \ldots, b_m\}$ são dois sistemas completos de resíduso módulo m. Prove que

$$S = \{a_1 + b_1, a_2 + b_2, \dots, a_m + b_m\}$$

não é um sistema completo de resíduos.

Suponha que S seja um **scr**, então:

$$1 + 2 + \ldots + m \equiv (a_1 + b_1) + (a_2 + b_2) + \ldots + (a_n + b_n) \pmod{m}$$
$$\equiv (a_1 + a_2 + \ldots + a_n) + (b_1 + b_2 + \ldots + b_n)$$
$$\equiv 2(1 + 2 + \ldots + m)$$
$$\equiv 2(1 + 2 + \ldots + m)$$

Isso implica que $m \mid \frac{m(m+1)}{2}$, ou seja, $\frac{m+1}{2}$ é inteiro. Um absurdo pois m é par.

Exemplo 14. (Polônia 1997) Prove que a sequência a_n definida por $a_1 = 1$ e

$$a_n = a_{n-1} + a \left| \frac{n}{2} \right|$$

contém infinitos termos divisíveis por 7.

Uma maneira natural para mostrarmos que existem infinitos inteiros múltiplos de 7 na sequência é verificar que o aparecimento de um múltiplo de 7 acarreta o aparecimento de outro múltiplo na sequência com um índice maior. Suponha que a_k é múltiplo de 7. Seja $a_{2k-1} = s$. Então:

$$a_{2k-1} = s$$

$$a_{2k} = s + a_k \equiv s \pmod{7}$$

$$a_{2k+1} = a_{2k} + a_k \equiv s \pmod{7}$$

Ou seja, o aparecimento de um inteiro múltiplo de 7 implica no aparecimento de 3 inteiros com o mesmo resto por 7. Exploremos essa ideia mais uma vez.

$$\begin{array}{rcl} a_{4k-3} & = & t \\ a_{4k-2} & \equiv & t + a_{2k-1} \equiv t + s \pmod{7} \\ a_{4k-1} & \equiv & t + s + a_{2k-1} \equiv t + 2s \pmod{7} \\ a_{4k} & \equiv & t + 2s + a_{2k} \equiv t + 3s \pmod{7} \\ a_{4k+1} & \equiv & t + 3s + a_{2k} \equiv t + 4s \pmod{7} \\ a_{4k+2} & \equiv & t + 4s + a_{2k+1} \equiv t + 5s \pmod{7} \\ a_{4k+3} & \equiv & t + 5s + a_{2k+2} \equiv t + 6s \pmod{7} \end{array}$$

Se s é múltiplo de 7, já teremos conseguido outro múltiplo de 7 na sequência. Em caso contrário, o conjunto $\{t, t+s, t+2s, \ldots, t+6s\}$ é um **scr** e conterá um múltiplo de 7.

Exemplo 15. Sejam x, y inteiros. Prove que $3x^2 + 4y^2$ e $4x^2 + 3y^2$ não podem ser ambos quadrados perfeitos.

Comecemos com um lema bastante útil:

Lema 16. Seja p um número primo da forma 4k + 3. Então

$$p \mid m^2 + n^2 \iff p \mid m \ e \ p \mid n.$$

Façamos inicialmente a primeira implicação. Se $p \nmid m$, então $m^{p-1} \equiv 1 \pmod{p}$, e daí temos as equivalências módulo p

$$n^{2} \equiv -m^{2}$$

$$\Rightarrow (nm^{p-2})^{2} \equiv -(m^{p-1})^{2}$$

$$\equiv -1$$

$$\Rightarrow (nm^{p-2})^{p-1} \equiv (-1)^{\frac{p-1}{2}}$$

$$\equiv (-1)^{2k+1}$$

$$\equiv -1,$$

o que contraria o teorema de Fermat. Assim, $p \mid m \in p \mid n$.

A recíproca é óbvia. Voltando ao problema, suponha que existam w,z inteiros positivos tais que

$$3x^2 + 4y^2 = w^2$$
 e
 $4x^2 + 3y^2 = z^2$.

Então $7x^2 + 7y^2 = w^2 + z^2$ (*). Afirmamos que a equação (*) não possui solução. Para isso, seja S o conjunto formado pelas soluções inteiras (x, y, w, z) de (*), e tome $(a, b, c, d) \in S$

com c^2+d^2 mínimo. Pelo lema, temos que 7|c e 7|d, e daí c=7c' e d=7d'. Mas então $a^2+b^2=7c'^2+7d'^2\Rightarrow (c',d',a,b)\in S$, com

$$a^2 + b^2 < 7(a^2 + b^2) = c^2 + d^2$$

o que contraria a minimalidade de (a, b, c, d).

Problemas Propostos

Problema 17. Prove que se p é primo então

$$a^p \equiv b^p \pmod{p} \Rightarrow a^p \equiv b^p \pmod{p^2}$$

Problema 18. Encontre os restos da divisões de:

- a) $300^{3000} 1 \ por \ 1001$
- b) $7^{120} 1$ por 143

Problema 19. Encontre o resto de $\underbrace{111...11}_{p-1}$ por p, onde p é um primo maior que 5.

Problema 20. Prove que se $n \notin impar$, então $n^5 \equiv n \pmod{240}$.

Problema 21. Sejam p e q primos distintos. Mostre que

- $i) (a+b)^p \equiv a^p + b^p \pmod{p}$
- $ii) p^q + q^p \equiv p + q \pmod{pq}$

iii)
$$\left| \frac{p^q + p^q}{pq} \right|$$
 é par se $p, q \neq 2$.

Problema 22. Mostre que se p é primo e $a^2 \equiv b^2 \pmod{p}$, então $a \equiv \pm b \pmod{p}$.

Problema 23. Encontre os últimos três dígitos de 7⁹⁹⁹⁹

Problema 24. Prove que $20^{15} - 1$ é divisível por $11 \cdot 31 \cdot 61$

Problema 25. Sejam $\{a_1, a_2, ..., a_{101}\}$ e $\{b_1, b_2, ..., b_{101}\}$ sistemas completos de resíduos módulo 101. Pode $\{a_1b_1, a_2b_2, ..., a_{101}b_{101}\}$ ser um sistema completo de resíduos módulo 101?

Problema 26. (Balcânica 2003) Existe um conjunto B de 4004 inteiros positivos tal que, para cada subconjunto A de B com 2003 elementos, a soma dos elementos em A não é divisível por 2003?

Problema 27. Para um inteiro ímpar n > 1, seja S o conjunto de inteiros $x, 1 \le x \le n$, tal que ambos x e x + 1 são relativamente primos com n. Mostre que o produto de todos os elementos de S deixa resto 1 na divisão por n.

Problema 28. Sejam n um inteiro positivo maior que 1 e p um primo positivo tal que n divide p-1 e p divide n^3-1 . Mostre que 4p-3 é um quadrado perfeito.

Dicas e Soluções

17. Pelo teorema de Fermat, $a \equiv a^p \equiv b^p \equiv b \pmod{p}$. Assim,

$$a^{p-1} + a^{p-2}b + \dots + ab^{p-2} + b^{p-1} \equiv a^{p-1} + a^{p-1} + \dots + a^{p-1}$$

 $\equiv pa^{p-1}$
 $\equiv 0 \pmod{p}$

Como $a - b \equiv 0 \pmod{p}$, temos:

$$a^p - b^p = (a - b)(a^{p-1} + a^{p-2}b + \dots + ab^{p-2} + b^{p-1}) \equiv 0 \pmod{p^2}$$

19. Veja que:

$$\underbrace{111...11}_{p-1 \ uns} = \frac{999...99}{9}$$
$$= \frac{10^{p-1} - 1}{9}$$

Pelo teorema de Fermat, o numerador $10^{p-1}-1$ é divisível por p visto que $p\neq 5$. Além disso, usando que $p\neq 2$ e 3, segue que $\frac{10^{p-1}-1}{9}$ também é múltiplo de p.

- 20. Proceda como no exemplo 20.
- 21. i)Pelo teorema de Fermat:

$$(a+b)^p \equiv a+b$$

 $\equiv a^p + b^p \pmod{p}.$

ii) Pelo teorema de Fermat,

$$p^q + q^p \equiv 0 + q \equiv p + q \pmod{p}$$

 $p^q + q^p \equiv p + 0 \equiv p + q \pmod{q}$

- 22. Veja que $(a-b)(a+b) \equiv 0 \pmod{p}$ e assim $a-b \equiv 0 \pmod{p}$ ou $a+b \equiv 0 \pmod{p}$.
- 25. Suponha, por abusurdo, que seja possível. Sejam a_i e b_j tais que $a_i \equiv b_j \equiv 0 \pmod{101}$. Se $i \neq j$, o conjunto $\{a_1b_1, a_2b_2, ..., a_{101}b_{101}\}$ teria dois inteiros com resto

0 na divisão por p e não poderia ser um ${f scr}.$ Suponha sem perda de generalidade que i=j=101, então:

$$100! \equiv (a_1b_1)(a_2b_2)\dots(a_{100}b_{100})$$

$$\equiv (a_1a_2\dots a_{100})(b_1b_2\dots b_{100})$$

$$\equiv (100!)(100!)$$

$$\equiv (100!)^2 \pmod{101}$$

Assim, $100! \equiv 1 \pmod{101}$. Isso contradiz o teorema de Wilson.

26. Sim. Um exemplo de tal conjunto é a união de um conjunto de 2002 inteiros positivos que deixem resto 0 com outro conjunto composto por 2002 inteiros que deixem resto 1 por 2003.