数理解析研究所講究録1505

計算科学の基盤技術とその発展

京都大学数理解析研究所 2006年7月

RIMS Kôkyûroku 1505

Computational Science -- Fundamental and Emerging Technology

July, 2006

Research Institute for Mathematical Sciences

Kyoto University, Kyoto, Japan

計算科学の基盤技術とその発展

Computational Science -- Fundamental and Emerging Technology RIMS 研究集会報告集

2005年11月30日~12月2日 研究代表者 櫻井 鉄也 (Tetsuya Sakurai)

月 次

	1.	固有値/特異値計算ライブラリの性能評価のた	とめの数	 女式処理のアルゴリズム	. 1		
		JST / 立教大・理	木村	欣司(Kinji Kimura)			
	2.	EEG・MEG 逆問題における電流双極子の直接	再構成	について	14		
		東大・情報理工学系	奈良	髙明(Takaaki Nara)			
		東大・学際情報学	大濱	潤二(Junji Oohama)			
		東大・情報理工学系	安藤	繁(Shigeru Ando)			
	3.	近似逆行列前処理と不完全コレスキ分解を融合	合したCG法の				
		並列用前処理の提案			20		
		日本電気株式会社	吉田	正浩(Masahiro Yoshida)			
		九大・情報基盤センター	藤野	清次(Seiji Fujino)			
	4.	On a crystalline algorithm for three dimensional Ga	Gauss curvature flow 34				
		東京理大・理工	牛島	健夫(Takeo K. Ushijima)			
		京産大・理	柳下	浩紀(Hiroki Yagisita)			
	5.	改良粗視化粒子-分子動力学ハイブリッド化法(≒の開発と応用 46				
		日本原子力研究開発機構	五十崖	善			
		名工大・工学	尾形	修司(Shuji Ogata)			
	6.	DE-Sinc 法に基づく微分代数方程式の数値解法	法 58				
		東京電機大・理工	森』	E武(Masatake Mori)			
		II .	Ahniya	az Nurmuhammad			
		II .	Mayin	ur Muhammad			
	7.	直交基底気泡関数要素安定化法を用いた有限要	夏素流 和	ι解析	68		
		産総研 / JST PRESTO		· · · · · · · · · · · · · · · · · · ·			
	8.	5次 Swift-Hohenberg 方程式における局在パタ	ーン解		80		
				裕章(Yasuaki Hiraoka)			
	9.	Weak high order stochastic Runge-Kutta methods			88		
		九工大・ 情報 工	小守	良雄(Yoshio Komori)			
1	0.	Rayleigh-Bénard 問題の大域分岐構造に対する	精度保	証付き数値計算1	01		
		九大・情報基盤センター	渡部	善隆(Yoshitaka Watanabe)			
1	1.	Field variation and mathematics of blowup			.06		
		富山大・人間発達科学	齊藤	宣一(Norikazu Saito)			
		阪大・基礎工学	鈴木	貴(Takashi Suzuki)			

12.	分数階拡散方程式の数値解法について	M W W W W W W W W W W W W W W W W W W W		121	
	名大・情報科学	小藤	俊幸(Toshiyuki Koto)		
13.	FMO-MO 法による大規模分子軌道計算	7 70 8 S 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	# b b b b d d a a a a a a a a a a a a a a	134	
	九大・情報基盤センター	稲富	雄一(Yuichi Inadomi)		
	産総研 / JST CREST	梅田	宏明(Hiroaki Umeda)		
	11	渡邊	寿雄(Toshio Watanabe)		
	ji .	長嶋	雲兵(Umpei Nagashima)		
	筑波大・システム情報工学	櫻井	鉄也(Tetsuya Sakurai)		
l 4.	地球シミュレータ上での18テラフロップ	ス級及び			
	1590億次元行列の厳密対角化計算:				
	トラップされた強相関フェルミ原子ガスの基底状態探索				
	電通大・電気通信	今村	俊幸(Toshiyuki Imamura)		
	日本原子力研究開発機構	山田	進(Susumu Yamada)		
	n		昌彦(Masahiko Machida)		
L 5.	有限要素近似による曲面回帰			157	
	弘前大・理工学	嶋中	稔人(Narihito Shimanaka)		
	n		、君(Xiaojun Chen)		
ι6.	Sherman-Morrison 法の部分的な並列化によ	る近似逆行	予列計算の		
	高速化について			170	
	青山学院大・理工		健太郎(Kentaro Moriya)		
	慶應義塾大・理工学	張	a傑(Linjie Zhang)		
	慶應義塾大・理工	野寺	隆(Takashi Nodera)		