

Aplikasi Kalkulus di Bidang Informatika

Mata Kuliah Kalkulus – Pertemuan 15

Anggit Wirasto, S.Si., M.Eng.

Fakultas Sains dan Teknologi

Universitas Harapan Bangsa

Tujuan Pembelajaran

- Memahami relevansi kalkulus di bidang informatika.
- Menerapkan konsep kalkulus untuk menyelesaikan masalah yang terkait dengan informatika.
- Mengeksplorasi aplikasi kalkulus dalam algoritma, machine learning, dan grafik komputer.
- Memahami dan mengaplikasikan konsep Area Under the Curve (AUC) dalam analisis model prediktif.

Pengantar Kalkulus di Bidang Informatika

Definisi Kalkulus:

Cabang matematika yang mempelajari perubahan kontinu (diferensiasi dan integrasi).

Relevansi di Bidang Informatika:

- Memberikan alat untuk menganalisis dan memodelkan sistem dinamis.
- Penting untuk optimasi, analisis data, dan simulasi.

Konsep Utama Kalkulus di Informatika

Diferensiasi

- Konsep:
 - Mengukur laju perubahan suatu fungsi.
- Aplikasi:
 - Machine Learning: Optimasi fungsi biaya menggunakan gradient descent.
 - Pemrosesan Citra: Deteksi tepi menggunakan gradien.

Integrasi

- Konsep:
 - Mengukur akumulasi suatu kuantitas.
- Aplikasi:
 - Pemrosesan Sinyal: Menghitung area di bawah kurva untuk sinyal audio dan citra.
 - Visi Komputer: Menemukan area objek dalam citra digital.

Kalkulus Multivariabel

- Konsep:
 - Ekstensi kalkulus untuk fungsi dengan banyak variabel.
- Aplikasi:
 - Jaringan Saraf Tiruan: Backpropagation bergantung pada turunan parsial.
 - Pengembangan Game: Pemodelan fisika untuk lingkungan 3D.

Persamaan Diferensial

- Konsep:
 - Persamaan yang melibatkan turunan, menggambarkan sistem dinamis.
- Aplikasi:
 - **Simulasi**: Pemodelan fenomena dunia nyata seperti aliran lalu lintas atau data jaringan.

Aplikasi di Bidang Informatika

Masalah Optimasi

• Contoh:

• Menemukan jalur terpendek dalam sebuah graf menggunakan optimasi berbasis kalkulus.

Metode:

• Multiplikator Lagrange untuk optimasi dengan kendala.

Algoritma dan Kompleksitas

• Menganalisis pertumbuhan kompleksitas waktu menggunakan analisis asimptotik.

Machine Learning

Gradient Descent:

- Menggunakan turunan untuk meminimalkan fungsi kesalahan.
- Aplikasi: Pelatihan model klasifikasi, regresi.

Grafik Komputer

- Teknik Rendering:
 - Menghitung pantulan cahaya dan bayangan menggunakan integrasi.
 - Kurva Bezier untuk transisi halus dalam animasi.

Kriptografi

- Kriptografi Kurva Eliptik:
 - Mengandalkan properti kurva kontinu untuk menghasilkan kunci yang aman.

Data Science

- Pemodelan Statistik:
 - Fitting kurva dan analisis regresi menggunakan kalkulus.
- Contoh: Prediksi tren dalam big data.

Pengukuran Area Under the Curve (AUC)

Konsep:

 AUC adalah ukuran performa model klasifikasi berdasarkan kurva Receiver Operating Characteristic (ROC).

• Aplikasi:

- Menilai kemampuan model dalam membedakan kelas positif dan negatif.
- AUC berkisar antara 0 hingga 1, di mana nilai mendekati 1 menunjukkan performa yang baik.

Contoh:

 Menghitung AUC untuk model machine learning dengan Python menggunakan library seperti sklearn.