

George Boole (1815-1864)

Napsal řadu matematických prací

- kromě jiného novým způsobem prozkoumal logiku
 - redukoval ji na jednoduchou algebru
 - > tím zavedl logiku do matematiky
 - později se jeho algebra začala nazývat Booleovská algebra

Booleovská algebra

Booleovská algebra je šestice (A, +, . , ', 0, 1) , kde

- □ A je neprázdná množina prvků, např. { 0, 1 },
- □ 0 je nejmenší prvek A
- □ 1 je největší prvek A
- □ ' je unární operace (komplement) a
- + . jsou dvě binární operace definované na A, které splňují následující axiomy:

Axiom	(a)	(b)
Komutativita	a + b = b + a	a · b = b · a
Neutralita	a + 0 = a	a · 1 = a
Distributivita	$a + (b \cdot c) = (a + b) \cdot (a + c)$	$a \cdot (b + c) = a \cdot b + a \cdot c$
Komplementarita	a + a' = 1	a · a′ = 0
Agresivita	a + 1 = 1	a · 0 = 0

(Pojmy: Booleovská logika je jeden případ abstraktní Booleovské algebry...)

SPS

Cz: Dualita axiomů a teorémů

Vlastnost	AND OR 0 1	OR AND 10
Komutativita	a + b = b + a	a · b = b · a
Identita	a + 0 = a	a · 1 = a
Distributivita	$a + (b \cdot c) = (a + b) \cdot (a + c)$	$a \cdot (b + c) = a \cdot b + a \cdot c$
Komplementarita	a + a' = 1	a · a′ = 0
Idempotence	a + a = a	a · a = a
Agresivita	a + 1 = 1	a · 0 = 0
Dvojí negace	(a')' = a	
Asociativita	a + (b + c) = (a + b) + c	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$
DeMorgan	$(a+b)'=a'\cdot b'$	$(a\cdot b)'=a'+b'$
Absorpce	a + (a ⋅b) = a	a · (a + b) = a
Sloučení	$(x\cdot y)+(x\cdot y')=x$	$(x+y)\cdot(x+y')=x$

_ SPS

Eng: Manipulating Logic Expressions

Table 1.2 Laws (basic identities) of Boolean algebra.

Name of law	OR version	AND version
Identity	$x \mid 0 = x$	x & 1 = x
One/Zero	x 1 = 1	x & 0 = 0
Idempotent	$x \mid x = x$	x & x = x
Inverse	x x ' = 1	x & x' = 0
Commutative	$x \mid y = y \mid x$	x & y = y & x
Associative	$(x \mid y) \mid z = x \mid (y \mid z)$	(x & y) & z = x & (y & z)
Distributive	$x \mid (y \& z) = (x \mid y) \& (x \mid z)$	$x & (y \mid z) = (x & y) \mid (x & z)$
DeMorgan's	$(x \mid y)' = x' \& y'$	$(x \& y)' = x' \mid y'$

SPS

Hradlo	AND	OR
NAND		=
NOR	<u>_</u>	=
AND		=
OR		=

1. AND <-> OR

Richard S. Sandige, Digital Design Essentials, Prentice-Hall, 2002. p 141

2. invertujeme znak negace,

tj. přidáme tam, kde dříve nebyl, a smažeme tam, kde dříve byl...

Pravdivostní tabulka

 Vyvinul 1854 George Boole, později dopracoval Claude Shannon (Bell Labs)
 Spínač světla

Vstupy	Výstupy
A B	Z
0 0	0
0 1	1
1 0	1
1 1	0

- Jedinečný otisk logické funkce
 - □ 1 funkci lze realizovat mnoha způsoby, které vedou na totožnou tabulku
 - □ Dovoluje přímo zapsat v kanonickém tvaru disjunktivním nebo konjunktivním
- Nevýhoda složitost zápisu dána O(2ⁿ)

 \Rightarrow

Disjunktivní normální forma 1/2

- známa také jako
- Sum-of-Products = S-o-P
- mintermy

SPS

Disjunktivní normální forma 2/2

Α	В	С	minterms
0	0	0	A'B'C' m0
0	0	1	A'B'C m1
0	1	0	A'BC' m2
0	1	1	A'BC m3
1	0	0	AB'C' m4
1	0	1	AB'C m5
1	1	0	ABC' m6
1	1	1	ABC m7
			1

zkratka pro mintermy 3 proměnných F v kanonickém tvaru:

 $F(A, B, C) = \Sigma m(1,3,5,6,7)$

= m1 + m3 + m5 + m6 + m7

= A'B'C + A'BC + AB'C + ABC' + ABC

Kanonická forma ≠ minimalní formy

F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'

= (A'B' + A'B + AB' + AB)C + ABC'

 \Box

= ((A' + A)(B' + B))C + ABC'

= C + ABC'

= ABC' + C

= AB + C

S-o-P a de Morganův teorém

- Sum-of-products
 - □ F' = A'B'C' + A'BC' + AB'C'
- Aplikujeme de Morganův teorém
 - \Box (F')' = (A'B'C' + A'BC' + AB'C')'
 - $\Box F = (A + B + C) (A + B' + C) (A' + B + C)$

 \Rightarrow

ene

Examples of S-o-P

Simple Combinational Logic Circuits

A multiplexer (a.k.a. data selector) has •n control inputs •2ⁿ data inputs •a single data output (a) Switch view (b) Mux symbol

Binární enkodér inverze dekodéru

Design by direct application of S-o-P

D_0	<i>D</i> ₁	D_2	D_3	D_4	D_5	D_6	D ₇	Х	У	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$x = D_4 + D_5 + D_6 + D_7$$
$$y = D_2 + D_3 + D_6 + D_7$$
$$z = D_1 + D_3 + D_5 + D_7$$

Pokud může nastat možnost nastavení více vstupů současně do 1, pak musíme použít složitější prioritní enkodér, bude na některé další přednášce

Model of Gate as a Control Element of Switch

(a) AND gate for controlled transfer

Enable/Pass signal

No data (d) Model for tristate buffer.

An AND gate and a tristate buffer act as controlled switches or valves. An inverting buffer is logically the same as a NOT gate.

2:1 multiplexer

Design by application of switching model of gate

The Set-Reset Latch

What happens if R and S are 1 at the same time?

P is no longer a complement of Q!

S=1 and R=1 is not allowed for a usage as a latches.

The Set-Reset Latch using NOR loop

Characteristic equation $Q(t+\varepsilon) = R'(t).(S(t)+Q(t))$

NOR – NAND SR

NOR equation $Q(t+\varepsilon) = R'(t).(S(t)+Q(t))=R'(t).S(t)+R'(t).Q(t)$ has reset priority NAND equation $Q(t+\varepsilon) = S(t)+R'(t).Q(t)$ has set priority

The behaviours are equal after adding the forbidden state constrain!

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

Clocks

- Used to keep time
 - Wait long enough for inputs (R' and S') to settle
 - Then allow to have effect on value stored
- Clocks are regular periodic signals
 - Period (time between ticks)
 - Duty-cycle (time clock is high between ticks expressed as % of period)

Clocks

• Controlling an R-S latch with a clock

R and S Clock Clock

D Latch (7475) - Quartus latch

• The *D* latch stores the value on the *D* input when the enable input is asserted.

Master-Slave Structure

• Break flow by alternating clocks (like an air-lock)

D Flip-Flop – Quartus DFF master-slave

• Make S and R complements of each other

• More efficient solution: only 6 gates

characteristic equation Q(t+1) = D

Counters in hardware ripple/synchronous

Counters

- Used for the control of sequence and program execution.
- Two categories of counters: asynchronous and synchronous.
- The asynchronous counters produce the outputs in sequence
- The outputs of the synchronous counters are available at the same time.

Counters

- Q produces one pulse for every two clock pulses input.
- The counter counts once for every two clock pulses.
- The frequency at Q is half of that at the clock.
- Sometimes called a divider.
- A J-K flip-flop can be regarded as a divide-by-2 counter.

Divide-by-16 Ripple Counter (Cont'd)

- Propagation delay happens in operations of flipflops.
- Time delay for all output clocks compared with their input clocks.
- Outputs are not available at the same time, it is an *asynchronous* counter.

_ SPS

