SCC121 Fundamentals of Computer Science

Prof Corina Sas

School of Computing and Communications

Overview

Preliminary

- Ordered pairs
- Cartesian product

Binary and n-ary relations

- Definitions
- Representing relations
- Operations on relations
- Properties of relations

Objectives

- Understanding the basic ideas about relations
- Ability to represent relations

Overview

Preliminary

- Ordered pairs
- Cartesian product

Binary and n-ary relations

- Definitions
- Representing relations
- Operations on relations
- Properties of relations

Relations

Relations

Relations

Ordered Pairs

- An ordered pair
 - pair of objects
 - with an order associated with them.
 - written: <x, y>

Cartesian Product

- The set of all ordered pairs <a, b>
 - where $a \in A$ and $b \in B$,
 - written: A x B

- Example: A = {a, b, c, d} and B = {1, 2, 3}

Associations

• Example:

John takes course1, Jim takes course1, Mary takes course3, Helen takes course2 and course3

- sets of related objects <John, course1>
- order matters <John, course1> ≠ <course1, John>

Cartesian Product

- S = {Helen, Jim, John, Mary}
- C = {course1, course2, course 3}
- 4 * 3 elements = 12 pairs

```
<Helen, course 1>
```

Associations

- John takes course1
- Jim takes course1
- Mary takes course3
- Helen takes course2 and course3

```
<Helen, course 1>
<Helen, course 2>
<Helen, course 3>
<Jim,
      course 1>
<Jim, course 2>
<Jim,
      course 3>
<John, course 1>
<John, course 2>
<John, course 3>
< Mary, course 1>
<Mary, course 2>
<Mary, course 3>
```

Binary Relation: Definition

Binary relation is defined from one set to another (over 2 sets)

Binary relation **R** from a set A to a set B, or over A x B

• a set of ordered pairs $\langle a, b \rangle$, $a \in A$ and $b \in B$.

Written: $\langle a, b \rangle \in R$ or a R b

- an ordered pair <a, b> is in a relation R
- element a is related to element b through the relation R

Binary Relation: Definition

What is the relationship between R and A x B?

- A x B is the set of all ordered pairs <a, b>
- R is a subset of A x B: R ⊆ A x B

We can also have A = B, so that the binary relation R is a set of ordered pairs $\langle a, b \rangle$, $a \in A$ and $b \in A$.

• If A = B, the relation from **A** to **B** is also called **relation on A**

Example: Binary Relation

- Ordered pairs
 - <John, course1>
 - <Jim, course1>
 - <Mary, course3>
 - <Helen, course2>
 - <Helen, course3>
- Relation: T (from Takes)
 - John takes course1; < John, course1> ∈ T
 - Jim takes course1; < Jim, course1> ∈ T
 - Mary takes course3; <Mary, course3> ∈ T

• ...

Binary Relation: Exercise

- Let $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 2, 3, 4\}$.
- List the ordered pairs in the relation R from A to B where
 <a, b> ∈ R if b a = 1

Answer:

```
for a = 0, what is the value of b?

b - a = 1 means b = a + 1

or <a, b> = <a, a + 1>

R = \{<0, 1>, <1, 2>, <2, 3>, <3, 4>\}
```

Binary Relation: Exercise

- Let $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 2, 3, 4\}$.
- A x B gives us a pool of possible answers
- 4 * 5 elements = 20 ordered pairs

Binary Relation: Exercise

- Let $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 2, 3, 4\}$.
- A x B gives us a pool of possible answers
- 4 * 5 elements = 20 ordered pairs
- <a, b> = <a, a +1>

A x B = { <0, 0>, <0, 1>, <0, 2>, <0, 3>, <0, 4>,
<1, 0>, <1, 1>, <1, 2>, <1, 3>, <1, 4>,
<2, 0>, <2, 1>, <2, 2>, <2, 3>, <2, 4>,
<3, 0>, <3, 1>, <3, 2>, <3, 3>, <3, 4>}
Thus, R = {<0, 1>, <1, 2>, <2, 3>, <3, 4>}.
$$\in$$
 R if b =a + 1

Equality of Binary Relations

Binary relations:

- R1 \subset A1 x A2 and R2 \subset B1 x B2
- When are two relations equal?
 - R1 = R2 if
 - the same sets: A1 = B1, A2 = B2;
 - the set of things related are the same: R1 = R2 as sets

Equality of Binary Relations

• R1 \subseteq A1 x A2 and R2 \subseteq B1 x B2

• R1 =
$$\{<1, 2>, <2, 2>\} \subseteq \{1, 2\} \times \{1, 2\}$$

R2 = $\{, \} \subseteq \{a, b\} \times \{a, b\}$

$$R1 = R2$$
 if

- set $\{1, 2\} = \{a, b\}$, and
- $\{<1, 2>, <2, 2>\} = \{<a, b>, <b, b>\}$

Equality of Binary Relations

```
• R1 = \{<1, 2>, <2, 2>\} \subseteq \{1, 2\} \times \{1, 2\},
R2 = \{<a, b>, <b, b>\} \subseteq \{a, b\} \times \{a, b\}.
```

$$R1 = R2 if$$

- set $\{1, 2\} = \{a, b\}$, and
- $\{<1, 2>, <2, 2>\} = \{<a, b>, <b, b>\}$

So
$$a = 1$$
; and $b = 2$

Ordered n-tuples: Definition

Ordered n-tuple

- on n sets A1, A2, ..., An.
- ordered n-tuple is a set of n objects with an order associated with them

Written: <**x1**, **x2**, ..., **xn**>

- n sets and n elements in the n-tuple
- x1∈ A1, x2∈ A2, ... xn∈ An

Equality of Ordered n-tuples

Equality of ordered *n*-tuples:

```
<x1,x2, x3, ..., xn> = <y1,y2, y3, ..., yn> if 
 x1 = y1, 
 x2 = y2, 
 x3 = y3, ..., 
 xn = yn 
 (xi = yi for all i, <math>1 \le i \le n)
```

• Example: ordered 3-tuple

```
<1, 2, 3> = <1, 2, 3> and <1, 2, 3> \neq <2, 3, 1> because 1 \neq 2, 2 \neq 3, and 3 \neq 1.
```

Cartesian Product of n Sets

Cartesian product of n sets A1, ..., An

• the set of all possible ordered *n*-tuples

```
<x1, x2, ..., xn>, where x1 \in A1, x2 \in A2, ..., xn \in An (xi \in Ai, for all i, 1 \le i \le n)
```

Written: A1 x A2 x... x An.

Ordered 3-tuples: Examples

- S = {John, Jim, Helen, Mary}
 C = {course1, course2, course3}
- $M = \{65, 41, 55, 72, 63\}$

```
<John, course1, 65>
<Jim, course1, 41>
<Mary, course3, 55>
<Helen, course2, 72>
<Helen, course3, 63>
```

Cartesian Product of 3 Sets: Example

- How many n-tuples in S x C x M?
- Every possible combination of the values:
- •4*3*5=60

Cartesian Product of 3 Sets: Example

- S ={John, Jim, Helen, Mary}
- C = {course1, course2, course3}
- M = {65, 41, 55, 72, 63}

```
A \times B \times C = \{ < John, course 1,65 >, < John, course 1,41 >, < John, course 1,55 >, < John, course 1,72 >, < John, course 1,63 >, < John, course 1,63 >, < John, course 1,64 >, < John, course 1,65 >, < John
                                      <John,course2.65>,<John,course2.41>,<John,course2.55>,John,course2.72>,<John,course2.63>,
                                     < John, course 3,65>, John, course 3,41>, < John, course 3,55>, < John, course 3,72>, < John, course 3,63>,
                                     <Jim.course1,65>,<Jim.course1,41>,<Jim.course1,55>,<Jim.course1,72>,<Jim.course1,63>,
                                      <Jim,course2,65>,<Jim,course2,41>,<Jim,course2,55>,<Jim,course2,72>,<Jim,course2,63>,
                                     < Jim.course3.65>, < Jim.course3.41>, < Jim.course3.55>, < Jim.course3.72>, < Jim.course3.63>,
                                     <Helen,course1,65>,<Helen,course1,41>,<Helen,course1,55>,<Helen,course1,72>,<Helen,course1,63>,
                                     <Helen,course2.65>,<Helen,course2.41>,<Helen,course2.55>, <Helen,course2.72>,<Helen,course2.63>,
                                     <Helen,course3,65>,<Helen,course3,41>,<Helen,course3,55>, <Helen,course3,72>,<Helen,course3,63>,
                                     <Mary,course1,65>,<Mary,course1,41>,<Mary,course1,55>,<Mary,course1,72>,<Mary,course1,63>,
                                     <Mary,course2,65>,<Mary,course2,41>,<Mary,course2,55>,<Mary,course2,72>,<Mary,course2,63>,
                                     <Mary,course3,65>,<Mary,course3,41>,<May,course3,55>,<Mary,course3,72>,<Mary,course3,63>}
```

n-ary Relation: Definition

- A binary relation involves 2 sets and can be described by a set of pairs
- A ternary relation involves 3 sets and can be described by a set of triples
- ...
- An n-ary relation involves n sets and can be described by a set of n-tuples
- n-ary relation (R) on n sets A1, A2, ..., An:
 - R is a set of ordered *n*-tuples <a1, a2, ..., an> where a1 \in A1, a2 \in A2, ..., an \in An, (ai \in Ai for all i, 1 \leq i \leq n) R \subseteq A1 x A2 x A3 x ... x An, subset of Cartesian product A1x A2 x A3 x ... x An.

```
S = {John, Jim, Helen, Mary}
• C = {course1, course2, course3}
• M = {65, 41, 55, 72, 63}
T = \{ < John, course1, 65 >, 
     <Jim, course1, 41>,
     <Mary, course3, 55>,
     <Helen, course2, 72>,
     <Helen, course3, 63>}
• T \subset S \times C \times M
```

Let $A = \{0, 1, 2, 3, 4\}$ and R on $A \times A \times A$ consisting of 3-tuples: <a, b, c> such that a <b < c. List the ordered pairs in the relation R

Let $A = \{0, 1, 2, 3, 4\}$ and R on A x A x A consisting of 3-tuples: <a, b, c> such that a <b < c. List the ordered pairs in the relation R

Let's start with: a = 0, then b can be 1, 2, 3 or 4, but not 0, and c can be 2, 3, or 4 but not 0 or 1.

$$R = \{<0, 1, 2>, <0, 1, 3>, <0, 1, 4>, <0, 2, 3>, <0, 2, 4>, <0, 3, 4>, <1, 2, 3>, <1, 2, 4>, <1, 3, 4>, <2, 3, 4>\}$$

- $A = \{0, 1, 2, 3, 4\}$; A x A x A gives us a pool of possible answers
- 5 * 5 * 5 elements = 125 ordered pairs <a, b, c>

- $A = \{0, 1, 2, 3, 4\}$; $A \times A \times A$ gives us a pool of possible answers
- 5 * 5 * 5 elements = 125 ordered pairs <a, b, c> such that a <b < c

A x A x A = {
$$<0, 0, 0>$$
, $<0, 0, 1>$, $<0, 0, 2>$, $<0, 0, 3>$, $<0, 0, 4>$, $<0, 1, 0>$, $<0, 1, 1>$, $<0, 1, 2>$, $<0, 1, 3>$, $<0, 1, 4>$, $<0, 2, 0>$, $<0, 2, 1>$, $<0, 2, 2>$, $<0, 2, 3>$, $<0, 2, 4>$, $<0, 3, 0>$, $<0, 3, 1>$, $<0, 3, 2>$, $<0, 3, 3>$, $<0, 3, 4>$, $<0, 4, 0>$, $<0, 4, 1>$, $<0, 4, 2>$, $<0, 4, 3>$, $<0, 4, 4>$, ... $<4, 4, 0>$, $<4, 4, 1>$, $<4, 4, 2>$, $<4, 4, 3>$, $<4, 4, 4>$ }

R = { $<0, 1, 2>$, $<0, 1, 3>$, $<0, 1, 4>$, $<0, 2, 3>$, $<0, 2, 4>$, $<0, 3, 4>$, $<1, 2, 3>$, $<1, 2, 4>$, $<1, 3, 4>$ }

n-ary Relations: Equality

- n-ary relation R1 ⊆ A1 x ... x An
- m-ary relation R2 ⊆ B1 x ... x Bm
- R1 = R2 if
 - m = n
 - Ai = Bi for each i, $1 \le i \le n$,
 - R1 = R2 as a set of ordered n-tuples

Let's playxercise!

https://kahoot.it/

Overview

Preliminary

- Ordered pairs
- Cartesian product

Binary and n-ary relations

- Definitions
- Representing relations
- Operations on relations
- Properties of relations

Representing Relations

- Tables
- Directed graphs diagraphs

n-ary Relation: Example

T (takes relation) defined on S x C x M

```
S = {John, Jim, Helen, Mary}
• C = {course1, course2, course3}
• M = {65, 41, 55, 72, 63}
T = \{ < John, course 1, 65 >, 
    <Jim, course1, 41>,
    <Mary, course3, 55>,
    <Helen, course2, 72>,
    <Helen, course3, 63>}
```

• $T \subset S \times C \times M$

Representing Relations: Tables

T (takes relation) defined on S x C x M

```
S = {John, Jim, Helen, Mary}
```

• C = {course1, course2, course3}

•
$$M = \{65, 41, 55, 72, 63\}$$

•	T	\subset	S	X	C	X	M

Student	Course	Marks
John	course1	65
Jim	course1	41
Mary	course3	55
Helen	course2	72
Helen	couse3	63

Representing Relations: Tables

T (takes relation) defined on S x C x M

```
S = {John, Jim, Helen, Mary}
```

• C = {course1, course2, course3}

•
$$M = \{65, 41, 55, 72, 63\}$$

•	T	\subset	S	X	C	X	M

Student	Course	Marks
John	course1	65
Jim	course1	41
Mary	course3	55
Helen	course2	72
Helen	couse3	63

Directed graph

- A diagram composed of:
 - points (i.e., vertices, nodes)
 - arrows (i.e., arcs) which connect points to other points
- Diagraph is an ordered pair of sets G = <P, A>:
 - P is a set of points
 - A is a set of ordered pairs (called arcs) of points of P.

Example

Representing binary relations through diagraphs

- $-R \subset P \times P$
- elements of set P are points of the diagraph G
- <p1, p2> is an arc of G from point p1 to point p2 if <p1, p2> is in R

Example

Example

If you want a bi-directional arc, say from point 3 to point 2, you need to add the ordered pair <3, 2> to set A.

Example

- For the set $A = \{1, 2, 3, 4\},$
- any relation R we define on A will be a subset of A x A
- $R \subseteq A \times A$

Example

Draw the diagraphs of the following relations on the set

$$A = \{1, 2, 3, 4\}$$

- equal (=)
- less than (<)
- different (≠)

```
A x A = {<1, 1>, <1, 2>, <1, 3>, <1, 4>,
<2, 1>, <2, 2>, <2, 3>, <2, 4>,
<3, 1>, <3, 2>, <3, 3>, <3, 4>,
<4, 1>, <4, 2>, <4, 3>, <4, 4>}
```

```
A x A = {<1, 1>, <1, 2>, <1, 3>, <1, 4>,
<2, 1>, <2, 2>, <2, 3>, <2, 4>,
<3, 1>, <3, 2>, <3, 3>, <3, 4>,
<4, 1>, <4, 2>, <4, 3>, <4, 4>}
```

$$R = \{<1, 1>, <2, 2>, <3, 3>, <4, 4>\}$$

$$R = \{<1, 1>, <2, 2>, <3, 3>, <4, 4>\}$$

3

$$R = \{<1, 1>, <2, 2>, <3, 3>, <4, 4>\}$$

Example: less than (<)

```
A x A = {<1, 1>, <1, 2>, <1, 3>, <1, 4>,
<2, 1>, <2, 2>, <2, 3>, <2, 4>,
<3, 1>, <3, 2>, <3, 3>, <3, 4>,
<4, 1>, <4, 2>, <4, 3>, <4, 4>}
```

Example: less than (<)

$$R = \{<1, 2>, <1, 3>, <1, 4>, <2, 3>, <2, 4>, <3, 4>\}$$

Example: less than (<)

$$R = \{<1, 2>, <1, 3>, <1, 4>, <2, 3>, <2, 4>, <3, 4>\}$$

Example: different (≠)

```
A x A = {<1, 1>, <1, 2>, <1, 3>, <1, 4>,
<2, 1>, <2, 2>, <2, 3>, <2, 4>,
<3, 1>, <3, 2>, <3, 3>, <3, 4>,
<4, 1>, <4, 2>, <4, 3>, <4, 4>}
```

Example: different (≠)

```
A x A = {<1, 1>, <1, 2>, <1, 3>, <1, 4>,
<2, 1>, <2, 2>, <2, 3>, <2, 4>,
<3, 1>, <3, 2>, <3, 3>, <3, 4>,
<4, 1>, <4, 2>, <4, 3>, <4, 4>}
```

Example: different (\neq)

Let's playxercise!

https://kahoot.it/

Summary: Binary Relations

Symbol	Symbol name	Meaning
<a, b=""></a,>	ordered pair	a pair of elements with an order associated with them
R over A x B	binary relation	set of ordered pairs <a, b="">, where a is paired with b through the relation R, with a \in A and b \in B</a,>

Summary: n-ary Relations

Symbol	Symbol name	Meaning
<x1, x2,,="" xn=""></x1,>	ordered n tuple	a set of n objects x1, x2,, xn with an order associated with them
A1 x A2 x x An	Cartesian product of n sets	the set of all possible ordered n -tuples $<$ x1, x2,, xn $>$, where x1 \in A1, x2 \in A2,, xn \in An
	n-ary relation	set of ordered n -tuples <a1, a2,,="" an=""> where a1 \in A1, a2 \in A2,, an \in An</a1,>