

Первый признак равенства треугольников

Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.

Давайте рассмотрим три признака равенства треугольников.

Теорема 1. Равенство треугольников по двум сторонам и углу между ними.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Даны два треугольника $\triangle ABC$ и $\triangle A_1B_1C_1$, у которых $AC = A_1C_1$, $AB = A_1B_1$, $\angle A = \angle A_1$.

Докажите, что $\triangle ABC = \triangle A_1B_1C_1$.

Доказательство:

При наложении $\triangle A_1B_1C_1$ на $\triangle ABC$ вершина A_1 совмещается с

Задание 1 из 10

сторона A_1D_1 совмещается со сторонои AD, вершина D совпадает с вершиной D, сторона D0 совмещается со стороной D0, вершина D0 совпадает с вершиной D1.

Значит, происходит совмещение вершин В и В₁, С и С₁.

 B_1C_1 = BC, следовательно, $\triangle ABC$ совмещается с $\triangle A_1B_1C$, значит, $\triangle ABC$ = $\triangle A_1B_1C_1$.

Теорема доказана.

Важно!

Первый признак используют при доказательстве второго и третьего признаков равенства треугольников.

Познавайте математику вместе с нашими лучшими преподавателями на курсах по математике для учеников с 1 до 11 класса!

Домашний лицей для 5– 11 классов

Занятия где и когда удобно, 10+ кружков на выбор, никакого стресса с домашками и нудных родительских собраний

Подробнее!

Второй признак равенства треугольников

Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Даны два треугольника $\triangle ABC$ и $\triangle A_1B_1C_1$, у которых: $AC = A_1C_1$, $\angle A = \angle A_1$, $\angle C = \angle C_1$.

Докажите, что $\triangle ABC = \triangle A_1B_1C_1$.

Доказательство:

Путем наложения $\triangle ABC$ на $\triangle A_1B_1C_1$, совмещаем вершину A с вершиной A_1 , вершины B и B_1 лежат по одну сторону от A_1C_1 .

Тогда AC совмещается с A_1C_1 , вершина C совпадает с C_1 , поскольку мы знаем, что AC = A_1C_1 .

AB накладывается на A_1B_1 , поскольку мы знаем, что $\angle A = \angle A_1$.

CB накладывается на C_1B_1 , поскольку мы знаем, что $\angle C = \angle C_1$.

Вершина В совпадает с вершиной В₁.

Если AB совмещается с A_1B_1 , BC совмещается с B_1C_1 , то $\triangle ABC$ совмещается с $\triangle A_1B_1C_1$, значит, $\triangle ABC = \triangle A_1B_1C_1$.

Теорема доказана.

Пройдите тест и узнайте, какие темы отделяют от пятёрки по математике

Задание 1 из 10

Добро пожаловать в школу магии. 0 нет! Мальчик-молния случайно попал в школьные часы. Теперь они отстают. Мы все можем задержаться в школе

Жми на стрелки сверху, чтобы путешествовать в истории→

Выберите идеального репетитора по математике

15 000+ проверенных преподавателей со средним рейтингом 4,8. Учтём ваш график и цель обучения

Выбрать!

Третий признак равенства треугольников

Теорема 3. Равенство треугольников по трем сторонам.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Даны два треугольника $\triangle ABC$ и $\triangle A_1B_1C_1$, у которых:

 $AC = A_1C_1$

 $AB = A_1B_1$

 $CB = C_1B_1$.

8

Докажите, что $\triangle ABC = \triangle A_1B_1C_1$.

Доказательство 3 признака равенства треугольников:

Приложим $\triangle ABC$ к $\triangle A_1B_1C_1$ таким образом, чтобы вершина A совпала с вершиной A_1 , вершина B — с вершиной B_1 , вершина C и вершина C_1 лежат по разные стороны от прямой A_1B_1 .

 $AC=A_1C_1,\,BC=B_1C_1,\,$ то $\triangle A_1C_1C$ и $\triangle B_1C_1C$ — равнобедренные. $\angle 1=\angle 2,\, \angle 3=\angle 4$ (по свойству равнобедренного треугольника), значит, $\angle A_1CB_1=\angle A_1C_1B_1.$ $AC=A_1C_1,\,BC=B_1C_1.$ $\angle C=\angle C_1,\,$ тогда $\triangle ABC=\triangle A_1B_1C_1$ (по первому признаку равенства треугольников).

Теорема доказана.

Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.

Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.

1. Если угол, сторона, противолежащая этому углу, и высота,