MPCS 51040 – C Programming Lecture 8 – Hash Tables, AVL Trees, Sorting, Searching

Dries Kimpe

November 21, 2016

General

Homework 6

- ▶ Reminder: extension until Monday November 21st 5:30pm.
- ▶ Revisit some of the topics if needed (minimax, object-oriented C) slides at the end of this presentation.
- Pushed some documentation updates (already discussed on piazza)
 - Also updated player_agent_create prototype

Monday Lecture

- ▶ Lecture as usual
- ► Start of parallel programming topic

Goto

What it can do

```
void func()
       goto next:
       int i = 10:
    next:
       // Output is undefined
       printf ("Value of i=%i\n",i);
8
10
    void func2()
11
        // label has function scope
13
14
        // label needs following statement
15
16
    void func3()
18
19
       goto next;
20
       for (unsigned int i=0; i<10; ++i)
21
    next:
23
```

Labels

- Labels have function scope
- A label if followed by a statement

Goto

- Destination has to be within the function (no other choice due to function scope of label)
- Cannot cross variable length array scope
- Goto bypassing initialization will bypass initialization
- Goto in or out scope is allowed.

Goto

When to use it...

```
void func()
 2
 3
        FILE * f1 = fopen(...);
        if (!f1)
           goto out1;
        FILE * f2 = fopen(...):
        if (!f2)
           goto out2:
10
        char * m = (char*) malloc(100);
11
        if (!m)
12
           goto out3:
13
14
        // some other code
16
        free (m);
17
        fclose (f2);
18
        fclose (f1);
19
        return true:
20
21
    out3:
22
        fclose (f2);
23
    out2:
24
        fclose (f1);
25
    out1:
26
        return false:
27
```

Main use case: cleanup

- Prevents having to repeat cleanup code at every exit point of the function
- Don't jump into loops/sub-scope
- Don't jump across declarations

If there is a clean alternative to using goto, pick the alternative!

Definition

A hash table is a data structure storing (key,value) pairs, typically providing $\mathcal{O}(1)$ lookup time (on average). It does so by storing each key in a predetermined location determined by the *hash* function. The possible locations are called *buckets*. A hash table is *unordered*. When two keys map to the same bucket, they are said to *collide* and a *collision* has occurred. Hash table implementations differ (among other things) in how collisions are handled.

- A hash table is typically implemented on top of an array.
- ▶ load factor: $\alpha = \frac{n}{m}$ where n is the number of elements in the table, and m is the number of buckets.
- The load factor is assuming uniform hashing (i.e. as little collision as possible) and can be interpreted as the expected number of keys mapping to the same bucket.
- More than one key can map to the same bucket! (collision)

Hash Tables Chained Hash Tables

In a *chained hash table*, the table consists out of linked lists, in other words, each entry in the hash table is the start of a linked list. Collisions are handled by adding the element to the linked list (and removing it again on removal).

- ► Elements are added to the linked list for the key corresponding to the element. Each node contains the key and the value associated with that key.
- The linked list contains all elements in the table that hash to the same value.
- On lookup, first the key is hashed to determine the bucket, and then the corresponding linked list is searched.
- ▶ Note that the linked list has to contain the key itself. (Why?)

Open-Addressed Hash Tables

In an *open-addressed hash table*, elements are stored in the buckets themselves. On a collision, a suitable *unused* bucket is located and the new (key,value) is stored there. This is called *probing* the table.

- An open-addressed hash table can never contain more elements than it has buckets.
- The expected number of positions to probe (for a good hash function) will be $\frac{1}{1-\alpha}$.
- The determine which position to probe, the hash function (h(k)) takes an additional argument i: the number of times the table has been probed for this key.

$$h(k, i)$$
 for $i = 0..(n - 1)$ should return all valid positions.

Consider removal of an element! (Can't simply remove the element from the bucket! Why?)

Open-Addressed Hash Tables

Find

- 1. Probecount i=0
- 2. Hash the key p = h(k, i)
- 3. Is the bucket at position *p* unused? Key was not found.
- 4. Is the bucket at position *p* marked as removed? Continue probing.
- 5. If there is a key in bucket p, does it match the search key? Yes: found
- Otherwise: increase i and retry from step 2.
 (Until i = m, in which case the key was not present)

Remove

- Find the item.
- 2. If found: mark the item as removed (this is different from an empty bucket!)

Insert

- Similar to find, but when the first removed or unused bucket is found, insert the new key there.
- If after m tries no empty or removed bucked could be found, the element cannot be inserted since the table is full.

Complexity

(Assuming reasonable load factor and good hash function)

- \blacktriangleright insert: $\mathcal{O}(1)$
- remove: $\mathcal{O}(1)$
- ▶ find: *O*(1)

Open-Addressed Hash Functions

There are a number of options for the h(k, i) hash function; Two examples (there are other possibilities):

Linear Hashing

$$h(k,i) = (h'(k) + i) \bmod m$$

When probing again, try the next position $(h(k, 1) = h(k, 0) + 1 \mod m)$

 Problem: clustering: a second and third collision will also collide on the next bucket.

Double Hashing

$$h(k,i) = (h_1(k) + i \times h_2(k)) \bmod m$$

- Restrictions on h_1 and h_2 needed to ensure h(k, i) can visit all buckets:
 - Example: make m a power of 2 and ensure h₂ always returns an odd value.
 - Example: make m prime and ensure h₂ always returns a value between 0 and m (not including).
- Doesn't suffer from clustering

Importance of the hash function

A good hash function is:

- ▶ Fast to compute
- Distributes elements uniformly over the buckets

Consider what happens in each hash table implementation when collisions happen frequently...

- ▶ For chained hashing, the performance will degrade to $\mathcal{O}(n)$ due to the search in the linked list
- For open addressed hashing with linear probing: O(n)
- For open addressed hashing with double hashing?

Perfect Hashing: a hash function which has *no* collisions (See the https://www.gnu.org/software/gperf/utility for a concrete example)

AVL Tree

Adelson-Velsky and Landis

Definition

An AVL tree is a *self balancing* binary search tree, which has an additional restriction(property) that, for any node in the tree, the difference between the height of the subtrees *of that node* is at most 1.

Because of the strict balancing:

Lookup $\mathcal{O}(log(n))$ worst (and avg) case Insert $\mathcal{O}(log(n))$ worst (and avg) case Delete $\mathcal{O}(log(n))$ worst (and avg) case

Typically, the balance factor (i.e. difference between the subtree heights) is stored in each node.

AVL Tree Rotations

Any operation modifying the tree will be followed by one or more *rotations* in order to restore the AVL tree requirements.

- ▶ 4 kinds Left-Left, Right-Right, Left-Right, Right-Left
- ► To easily determine if the AVL property is violated, each node keeps track of the difference between the heights of its children. (For example: left child height - right child height)
- ▶ To determine which rotation(s) need to be performed, we look at the relative position of the just inserted node to the first parent where the balance factor is ± 2

AVL Tree Rotations

Example

- Adding two elements
- No balance problem yet; for all nodes: $-1 \le$ the balance factor \le 1
- Adding one more element. Violation for the root
 - ▶ left child height = 2
 - ▶ right child height = 0
- Left-Right case since the new node (20) is the left-right child of the now unbalanced node.
- ► Left-Right case: need to transform into Left-Left case
- ▶ Now transformed into Left-Left case.
- ► AVL property still violated:
 - ► left child height = 2

Searching Definitions

Definition

```
searching Locating an element in a data set
```

linear search Search all elements of the set until found; O(n)

binary search (on sorted sets) use the fact that the data is sorted to search in $\mathcal{O}(\log n)$.

Searching Binary Search

- Same principle as search in BST
- ► However, in this case, worst case $\mathcal{O}(\log n)$
- Repeatedly compare the middle element against the element being searched for.
 - ► If smaller: repeat for the left half of the data
 - ▶ If larger: repeat for the right half.
 - ► If empty set: not found
 - ▶ if equal: element found

Write a recursive function implementing binary search in a given array

