

第6课 PCB封装库的 认识与创建

主讲: 郑振宇

01 PCB封装的组成认识及设计界面 06 接打

接插件PCB封装创建(USB)

02 PCB封装的设计规范及要求

07 PCB文件生成PCB库

03 常规封装创建法(0603电阻)

08 3D PCB封装模型创建及导入

04 阵列粘贴的封装创建法(SOP-8)

09 PCB封装的复制

10

05 IPC封装向导使用(LQFP-64)

PCB封装的检查与报告

PCB封装的组成认识及设计界面

PCB封装的组成一般有以下元素,如图4-1所示。

- (1) PCB焊盘: 用来焊接元件管脚的载体。
- (2) 管脚序号: 用来和元件进行电气连接关系匹配的序号。
- (3) 元件丝印: 用来描述元件腔体大小的识别框。
- (4) 阻焊: 放置绿油覆盖,可以有效地保护焊盘焊接区域。
- (5) 1脚标识 / 极性标识:主要是用来定位元件方向的标识符号。

PCB封装的组成认识及设计界面

PCB库编辑界面主 要包含菜单栏、工具 栏、绘制工具栏、面 板栏、PCB封装列表、 PCB封闭信息显示、 层显示、状态信息显 示及绘制工作区域, 丰富的信息及绘制工 具组成了非常人性化 的交互界面。同元件 库编辑器界面一样, 状态信息及工作面板 会随绘制工作的不同 而有所不同

PCB封装库绘制工具栏

通过这个工具栏,可以方便地放置圆弧、多边形、线条、焊盘、过孔、文字等封装创建元素。根据作者的设计经验,在创建封装时,绘制工具栏中的放置(Place)命令是用得最多的

放置 (Place) 命令的说明

功能按钮	功能说明	功能按钮	功能说明
	中心圆弧		边界圆弧
	任意弧度	0	完整圆弧
	放置多边形		线条
<u>o</u>	放置焊盘	•	放置过孔
A	放置文字	1 0,10	坐标信息

PCB封装库工作面板

在PCB库编辑界面的右下角执行命令"Panels-PCB Library",可以调用工作面板,用来显示PCB封装列表、PCB封装信息及PCB封装的PCB预览。

PCB封装的设计规范及要求

PCB封装是元件物料在PCB上的映射。封装是否设计规范牵涉到元件的贴片装配,需要正确地处理封装数据,满足实际生产的需求。有的工程师做的封装无法满足手工贴片,有的无法满足机器贴片,也有的未创建1脚标识,手工贴片的时候无法识别正反,造成PCB短路的现象时有发生,这个时候需要设计工程师对自己创建的封装进行一定的约束。

封装设计应统一采用公制单位,对于特殊元件,资料上没有采用公制标注的,为了避免英制到公制的转换误差,可以按照英制单位。精度要求:采用mil为单位时,精度为2;采用mm为单位时,精度为4。

无管脚延伸型SMD贴片封装设计

无管脚延伸型SMD贴片封装尺寸数据,给出如下数据定义说明。

A—元件的实体长度

H—元件的可焊接高度

T—元件的可焊接长度

W--元件的可焊接宽度

注: A、T、W均取数据手册推荐的平均值。

X—PCB封装焊盘宽度

Y—PCB封装焊盘长度

S—两个焊盘之间的间距

T1为T尺寸的外侧补偿常数,取值范围为0.3~1mm; T2为T尺寸的内侧补偿常数,取值范围为0.1~0.6mm; W1为W尺寸的侧边补偿常数,取值范围为0~0.2mm。 通过实践经验并结合数据手册参数得出以下经验公式。

X=T1 + T + T2

Y=W1+W+W1

S = A + T1 + T1 - X

实例演示如图4-5所示,根据图上数据及结合经验公式,可以得到如下实际封装的创建数据。

X=0.6mm (T1) +0.4mm (T) +0.3mm (T2) =1.3mm

Y=0.2mm (W1) +1.2mm (W) +0.2mm (W1) =1.6mm

S=2.0mm (A) +0.6mm (T1) +0.6mm (T1) -1.3mm (X) =1.9mm

翼形管脚型SMD贴片封装设计

翼形管脚型SMD贴片封装尺寸数据,给出如下数据定义说明。

A—元件的实体长度

X—PCB封装焊盘宽度

T—元件管脚的可焊接长度

Y—PCB封装焊盘长度

W-元件管脚宽度

S—两个焊盘之间的间距

注: A、T、W均取数据手册推荐的平均值。

T1为T尺寸的外侧补偿常数,取值范围为0.3~1mm; T2为T尺寸的内侧补偿常数,取值范围为0.3~1mm; W1为W尺寸的侧边补偿常数,取值范围为0~0.2mm。 通过实践经验并结合数据手册参数得出以下经验公式。

X = T1 + T + T2

Y=W1+W+W1

S=A+T1+T1-X

平卧型SMD贴片封装设计

平卧型SMD贴片封装尺寸数据,给出如下数据定义说明。

A—元件管脚的可焊接长度

X—PCB封装焊盘宽度

C—元件管脚脚间隙

Y—PCB封装焊盘长度

W-元件管脚宽度

S—两个焊盘之间的间距

注: A、C、W均取数据手册推荐的平均值。

A1为A尺寸的外侧补偿常数,取值范围为0.3~1mm; A2为A尺寸的内侧补偿常数,取值范围为0.2~0.5mm; W1为W尺寸的侧边补偿常数,取值范围为0~0.5mm。 通过实践经验并结合数据手册参数得出以下经验公式。

X=A1+A+A2

Y=W1+W+W1

S=A+A+C+A1+A1-X

BGA类型SMD贴片封装设计

常见BGA类型SMD贴片封装模型。此类封装可以根据BGA的Pitch间距来进行常数的添加补偿。

常见 BGA 焊盘补偿常数推荐

Pitch 间距 (mm) —	焊盘直径 (mm)		Ditale (CIRE (mans)	焊盘直径 (mm)	
	最小	最大	─ Pitch 间距 (mm) ─	最小	最大
1.50	0.55	0.6	0.75	0.35	0.375
1.27	0.55	0.60 (0.60)	0.65	0.275	0.3
1.00	0.45	0.50 (0.48)	0.50	0.225	0.25
0.80	0.375	0.40 (0.40)	0.40	0.17	0.2

插件类型封装设计

除了贴片封装外,剩下的就是插件类型封装了,在一些接插件、对接座子等元件上面比较常见。 对于插件类型封装焊盘尺寸,大概定义了一些经验公式,

焊盘尺寸计算规则	Lead Pin	Physical Pin
周形管脚,使用圆形钻孔 D'={管脚直径D+0.2mm(D<1mm) 管脚直径D+0.3mm(D≥1mm)	D-	Physical Pill
矩形或正方形管脚,使用圆形钻孔 $D' = \sqrt{W^2 + H^2} + 0.1 mm$		D'*
矩形或正方形管脚,使用矩形钻孔 W'=W+0.5mm H'=H+0.5mm	$ -W- $ \downarrow H	← W' →
矩形或正方形管脚,使用椭圆形钻孔 W'=W+H+0.5mm H'=H+0.5mm	$ \leftarrow W \rightarrow $ $\downarrow H$	—W'→ → H'
椭圆形管脚,使用圆形钻孔 D'=W+0.5mm	W → H	→D'→
椭圆形管脚,使用椭圆形钻孔 W'=W+0.5mm H'=H+0.5mm	₩→↓H	—W'→ → H'

阻焊层就是Solder Mask,是指印制电路板上要上绿油的部分。实际上这阻焊层使用的是负片输出,所以在阻焊层的形状映射到板子上以后,并不是上了绿油阻焊,反而是露出了铜皮。

阻焊层的主要目的是防止波峰焊焊接时桥连现象的产生。

- 一般常规设计的时候采取单边开窗
- 2.5mil的方式即可,如果有特殊要求的,需要在封装里面设计或者利用软件的规则进行约束。

封装丝印设计

- (1) 元件丝印, 一般默认字符线宽为0.2032mm (8mil), 建议不小于 0.127mm (5mil)。
- (2) 焊盘在元件体之内时,轮廓丝印应与元件体轮廓等大,或者丝印比元件体轮廓外扩0.1~0.5mm,以保证丝印与焊盘之间保持6mil以上的间隙;焊盘在元件体之外时,轮廓丝印与焊盘之间保持6mil及以上的间隙,如
- (3)管脚在元件体的边缘上时,轮廓丝印应比元件体大0.1~0.5mm,丝印为断续线,丝印与焊盘之间保持6mil以上的间隙;丝印不要上焊盘,以免引起焊接不良。

元件1脚标识可以表示元件的 方向,防止在装配的时候出现 芯片、二极管、极性电容等装 反的现象,有效地提高了生产 效率和良品率。

常规封装创建法 (0603电阻)

0603封装是我们设计当中用得最多的封装之一, 也是我们封装创建当中最简单的一个常规标准封 装,我们从简单到复杂,以此封装型号为例,让 大家先搞清楚常规封装的常规绘制方法。

表贴焊盘在层数选择处选择"Top Layer",如果是通孔焊盘,请选择"Multi-Layer"。

常规封装创建法 (0603电阻)

复制焊盘之后,焊盘的精准移动

基于原点我们归中绘制一个1.6*0.8mm的矩形丝印框,但是如果我们完全按照这个尺寸来的话,我们的丝印会画到焊盘上去,我们知道丝印是油墨,焊盘上有阻焊,阻焊是防止油墨覆盖的,所以生产出来之后我们的丝印是看不见的。基于这点我们可以考虑补偿把丝印绘制大点,拉出焊盘的外围

阵列粘贴的封装创建法(SOP-8)

符号	尺寸(mm)		か口	尺寸(mm)		
	最小值	最大值	符号	最小值	最大值	
Α	4.95	5.15	C3	0.05	0.20	
A1	0.37	0.47	C4	0.20(典型值)		
A2	1.27(典型值)		D	1.05(典型值)		
А3	0.41(典型值)		D1	0.40	0.60	
В	5.80	6.20	R1	0.07(典型值)		
B1	3.80	4.00	R2	0.07(典型值)		
B2	5.0(典型值)		01	17°(典型值)		
С	1.30	1.50	θ2	13°(典型值)		
C1	0.55	0.65	03	4°(典型值)		
C2	0.55	0.65	04	12°(典型值)		

除了常规方法我们一个焊盘一个焊盘的放置,一个丝印一个丝印的绘制之外,其实对于多焊盘的封装而言我们还可以利用到Altium Designer软件自带的特殊粘贴法来加快我们封装创建进程,

IPC封装向导使用(LQFP-64)

我们知道作为PCB设计工程师我们在进行PCB设计之前都需要进行PCB封装的创建,但是对于一些新手工程师对于创建的封装的精准数据无法进行判断,并且对一些焊盘的补偿参数不是很明白,导致自己做出的封装只能满足打样或者无法使用的囧状。

针对这种情况其实我们Altium Designer考虑得比大家多多了,早早就内置了一个封装创建向导"IPC Compliant Footprint Wizard..."。

利用此工具创建出来的封装是满足IPC行业标准

"EXtensions and updates"扩展和更新菜单命令。在扩展里面找到"IPC Footprint Generator"这个插件进行下载安装。

IPC封装向导使用(LQFP-64)

Figure 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline⁽¹⁾

Figure 72. Recommended footprint(1)(2)

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 72. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
Α			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090		0.200	0.0035		0.0079	
D	11.800	12.000	12.200	0.4646	0.4724	0.4803	
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016	
D.		7.500					
E	11.800	12.000	12.200	0.4646	0.4724	0.4803	
E1	9.800	10.00	10.200	0.3858	0.3937	0.4016	
е		0.500			0.0197		
k	O°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.75	0.0177	0.0236	0.0295	
L1		1.000			0.0394		
ccc		0.080			0.0031		
N _	Number of pins						
	64						

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

IPC封装向导使用(LQFP-64)

直接填数据不用计算 满足IPC行业标准 3D PCB封装模型

接插件PCB封装创建 (USB)

RECOMMANDED PCB LAYOUT

1 Material:

- 1.1 Housing: High temperature thermoplastic with g.f,UL94v-0
- 1.2 Contact: copper alloy,t=0.20mm 1.3 Shell: copper alloy,t=0.25mm

2.Specification:

- 2.1 Current rating: 1 A Max. 2.2 Dielectric withstanding
- voltage: 100 V(ac) for 1 min.
- 2.3 Contact resistance: 50 mW Max.
- 2.4 Insulation resistance: 100 MW Min.
- 2.5 Total mating force: 3.57 Kgf Max. 2.6 Total unmating force: 1.0 Kgf Min.0.81~2.05
- Kaf Min.after 10000 insertion/extration cycles
- 2.7 Temperature range: -30°C~80°C

常规的PCB设计中不仅仅只 存在贴片器件,还存在很多 插件类型的封装,这种封装 没办法用向导或者直接复制 的方法进行创建,这种我们 必须基于封装尺寸一个焊盘 一个丝印的进行绘制。

接插件PCB封装创建 (USB)

PCB文件生成PCB库

设计 (D) 工具 (T) 布线

更新原理图 (U)...

导入变化 (I)...

规则 (R)...

规则向导 (W)...

板子形状 (S)

网络表 (N)

xSignal (X)

层叠管理器 (K)...

管理层设置 (T)

Room (M)

14 (C)...

生成PCB库(P)

生成集成库 (A)

有时自己或客户会提供放置好元件的PCB文件,这时候可以不必一个一个地创建PCB封装,而是直接从已存在的PCB文件导出PCB库即可。

打开PCB直接,按快捷键"DP"

3D PCB封装模型创建及导入

近年来,Altium公司在Altium Designer 6系列以后不断加强三维显示的能力,可以帮助PCB工程师更直观地进行PCB设计。

Altium Designer的3D PCB设计比较简单,只需要拥有建立所需库的3D模型就可以了(即工作就在库的设计)。

那么3D模型有以下3种来源。

- (1) 用Altium Designer自带的3D Body,则建简单的3D模型构架。
- (2) 在相关网站供应商处下载3D模型,导入3D Body。(IC封装网)
- (3) 用SolidWorks等专业三维软件来建立。

3D PCB封装模型创建及导入

用Altium Designer自带的3D Body,可以创建简单的3D模型构架。

3D PCB封装模型创建及导入

对于一些复杂的3D Body,可以利用第三方软件进行创建或者通过第三方网站下载资源。保存为格式为.STEP的文件之后,利用模型导入方式进行3D Body的放置,下面对这种方法进行介绍。

PCB封装的复制

类似于元件库,有时候由于拥有多个PCB封装库,不方便管理,需要把多个PCB封装合并到一个库中。

PCB封装的检查与报告

Altium Designer 提供PCB封装错误的检查功能。创建完封装之后,可以执行菜单命令"报告-元件规则检查",对所创建的封装进行一些常规检查,

- (1) Duplicate-Pads: 检查重复的焊盘。
- (2) Duplicate-Primitives: 检查重复的元素,包括丝印、填充等。
- (3) Duplicate-Footprints: 检查重复的封装。
- (4) Constraints-Missing Pad Names: 检查PCB封装中缺失的焊盘名称。
- (5) Constraints-Shorted Copper: 检查导线短路。
- (6) Constraints-Mirrored Component: 检查镜像的元件。
- (7) Constraints-Unconnected Copper: 检查没有连接的导线铜皮。
- (8) Constraints-Offset Component Reference: 检查参考点是否在本体进行设置。
- (9) Constraints-Check All Components: 检查所有的PCB封装。

凡亿微信公众号

郑振宇个人微信号

15616880848

THANKS

获取教程和帮助请访问:

https://www.fanyedu.com

或关注微信公众号