Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

JUNE 25-29, 2018

15 Lecture Short Course at Princeton University

Lecturer: Ronald K. Hanson **Woodard Professor, Dept. of Mechanical Engineering Stanford University**

Underlying Science: Molecular Spectroscopy **Diagnostic Methods:** Laser Absorption, LIF **Example Applications:**

Engines, Shock Tubes, Kinetics

Copyright ©2018 by Ronald K. Hanson This material is not to be sold, reproduced or distributed without prior written permission of the owner, Ronald K. Hanson.

Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

JUNE 25-29, 2018

15 Lecture Short Course at Princeton University

Lecturer: Ronald K. Hanson Woodard Professor, Dept. of Mechanical Engineering

Stanford University

Today/Lecture 1:

- Overview
- Introductory Material

Copyright ©2018 by Ronald K. Hanson
This material is not to be sold, reproduced or distributed without prior written permission of the owner, Ronald K. Hanson.

Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 1: Course Overview

Course Objectives and Content

- Introduction to fundamentals of molecular spectroscopy & photo-physics
- Introduction to laser absorption and laser-induced fluorescence
- Introduction to shock tubes as a primary tool for studying combustion chemistry, including recent advances and kinetics applications
- Example laser diagnostic applications including:
 - multi-parameter sensing in different types of propulsion flows and engines
 - species-specific sensing for shock tube kinetics studies
 - PLIF imaging in high-speed flows

Next: Spectroscopy and Roles of Lasers

Course Overview: Spectroscopy and Lasers

- What is Spectroscopy?
- Interaction of Radiation (Light) with Matter (in our case, Gases)
- Examples: IR Absorption
- Why Lasers?
- Enables Important Diagnostic Methods
- LIF, Raman, LII, PIV, CARS, ...
- Our Emphasis: Absorption and LIF
- Why: Sensitive and Quantitative!

Minimum Detectivity using Laser Absorption

Calculated IR absorption spectra of HBr

Spectrally resolved individual absorption line of NO at 600 K, 1 atm (in C2H4 combustion exhaust)

Course Overview: Role of Lasers in Energy Sciences

- Example Applications: Remote sensing, combustion and gasdynamic diagnostics, process control, energy systems and environmental monitoring.
- Common Measurements:
 Species concentrations, temperature
 (Τ), pressure (P), density (ρ),
 velocity (u), mass flux (ρu).

OH PLIF in spray flame

Coal gasifiers

Swirl burners

Incinerators

Course Overview: Roles of Laser Sensing for Propulsion

4

Course Overview:Role of Lasers in Combustion Kinetics: Shock Tubes

Course Overview:Role of Lasers in Combustion Kinetics: Shock Tubes

Course Overview: Role of Lasers in Combustion Kinetics: Shock Tubes

Advantages of Shock Tubes

- Near-Ideal Test Platform
- Well-Determined Initial T & P
- Clear Optical Access for Laser Diagnostics

Applications of Shock Tubes

- Ignition Delay Times
- Elementary Reactions
- Species Time-Histories

Species Accessible by Laser Absorption

- Radicals: OH, CH₃...
- Intermediates: CH₄, C₂H₄, CH₂O ...
- Products: CO, CO₂, H₂O ...

Course Overview: Lasers and Shock Tube: Time-Histories & Kinetics

 Multi-wavelength laser absorption species timehistories provide quantitative targets for model refinement and validation

 Laser absorption provides high-accuracy measurements of elementary reaction rate constants

Useful Texts, Supplementary Reading

- G. Herzberg, Atomic spectra and atomic structure, 1944.
- G. Herzberg, Spectra of diatomic molecules, 1950.
- G. Herzberg, Molecular spectra and molecular structure, volume II, Infrared and Raman Spectra of Polyatomic Molecules, 1945.
- G. Herzberg, Molecular spectra and molecular structure, volume III,
 Electronic spectra and electronic structure of polyatomic molecules, 1966.
- C.N. Banwell and E.M. McCash, Fundamentals of molecular spectroscopy, 1994.
- S.S. Penner, Quantitative molecular spectroscopy and gas emissivities, 1959.
- A.C.G. Mitchell and M.W.Zemansky, Resonance radiation and excited atoms, 1971.
- C.H. Townes and A.L. Schawlow, Microwave spectroscopy, 1975.
- M. Diem, Introduction to modern vibrational spectroscopy, 1993.
- W.G. Vincenti and C.H. Kruger, Physical gas dynamics, 1965.
- A.G. Gaydon and I.R. Hurle, The shock tube in high-temperature chemical physics, 1963.
- J.B. Jeffries and K. Kohse-Hoinghaus, Applied combustion diagnostics, 2002.
- A.C. Eckbreth, Laser diagnostics for combustion temperature and species, 1988.
- W. Demtroder, Laser spectroscopy: basic concepts and instrumentation, 1996.
- R.W. Waynant and M.N. Ediger, Electro-optics handbook, 2000.
- J.T. Luxon and D.E.Parker, Industrial lasers and their applications, 1992.
- J.Hecht, Understanding lasers: An entry level guide, 1994.
- K.J.Kuhn, Laser engineering, 1998.
- R.K. Hanson et al., Spectroscopy and Laser Diagnostics for Gases, 2016

Lecture Schedule

Monday

1. Overview & Introduction

Course Organization, Role of Quantum Mechanics, Planck's Law, Beer's Law, Boltzmann distribution

2. Diatomic Molecular Spectra

Rotational Spectra (Microwaves)

Vibration-Rotation (Rovibrational) Spectra (Infrared)

3. Diatomic Molecular Spectra

Electronic (Rovibronic) Spectra (UV, Visible)

Tuesday

4. Polyatomic Molecular Spectra

Rotational Spectra (Microwaves) Vibrational Bands, Rovibrational Spectra

5. Quantitative Emission/ Absorption

Spectral absorptivity, Eqn. of Radiative Transfer Einstein Coefficients/Theory, Line Strength

6. Spectral Lineshapes

Doppler, Natural, Collisional and Stark broadening, Voigt profiles

Wednesday

7. Electronic Spectra of Diatomics

Term Symbols, Molecular Models: Rigid Rotor, Symmetric Top, Hund's Cases, Quantitative Absorption

8. Case Studies of Molecular Spectra

Ultraviolet: OH

9. TDLAS, Lasers and Fibers

Fundamentals and Applications in Aeropropulsion

Thursday

10. TDLAS Applications in Energy Conversion

Tunable Diode Laser Applications in IC Engines Coal-Fired Combustion

11. Shock Tube Techniques

What is a Shock Tube? Recent Advances, ignition Delay Times

12. Shock Tube Applications

Multi-Species Time Histories Elementary Reactions

Friday

13. Laser-Induced Fluorescence (LIF)

Two-Level Model More Complex Models

14. Laser-Induced Fluorescence: Applications 1

Diagnostic Applications (T, V, Species)
PLIF for small molecules

15. Laser-Induced Fluorescence: Applications 2Diagnostic Applications & PLIF for large molecules **The Future**

Lecture 1: Introductory Material

- 1. Role of Quantum Mechanics
 - Planck's Law
- 2. Absorption and Emission
- 3. Boltzmann Distribution
- 4. Working Examples

1. Role of QM - Planck's Law

- Quantum Mechanics:
 - Quantized Energy levels \ We will simply accept these
 - "Allowed" transitions
 f rules from QM

How are energy levels specified? Quantum numbers for electronic, vibrational and rotational states.

1. Role of QM - Planck's Law

Quantum Mechanics

Quantized Energy States (discrete energy levels)

Discrete spectra

- Small species, (e.g., NO, CO, CO₂, and H₂O), have discrete spectral features
- Large molecules (e.g., HCs) have blended features

Note interchangability of λ & ν

Planck's Law:

$$\Delta E = E_{upper} (E') - E_{lower} (E'')$$

$$= h \nu$$

$$= hc/\lambda$$

$$= hc \overline{\nu} \leftarrow E_{nergy in wavenumbers}$$

Frequency [s⁻¹]
$$c = \lambda \nu$$

$$\sim 3 \times 10^{10} \text{ cm/s}$$
 Wavelength [cm]

- Types of spectra:
 - Absorption; Emission; Fluorescence; Scattering (Rayleigh, Raman)
- Absorption: Governed by Beer's Law

Components of spectra: Lines, Bands, Systems

System:

- Transitions between different electronic states
- Comprised of multiple bands between two electronic states
- Different combinations of v_{upper} and v_{lower} such that "bands" with v_{upper}-v_{lower}=const. appear

Example: N₂

• First positive SYSTEM:

$$B^3\Pi_q \rightarrow A^3\Sigma^+_u$$

 The ground (lowest energy) state is X¹Σ⁺_α

Components of spectra: Lines, Bands, Systems

System

Example: Typical emission spectra of DC discharges

Components of spectra: Lines, Bands, Systems

In early days, spectra were recorded on film!
But now we have lasers.

• How is T_{λ} (fractional transmission) measured?

Do lines have finite width/shape? Yes!

And shape is a $f(T,P) \rightarrow$ an opportunity for diagnostics!

- 3 key elements of spectra
 - Line positions
 - Line strengths
 - Line shapes

Covered in course

3. Boltzmann Distribution

How strong is a transition? ⇒ Proportional to particle population in initial energy level n₁

Boltzmann fraction of absorber species *i* in level 1

$$F_i = \frac{n_i}{n} = \frac{g_i \exp\left(-\frac{\mathcal{E}_i}{kT}\right)}{Q}$$
 - Equilibrium distribution of molecules of a single species over its allowed quantum states.

Partition function
$$Q = \sum_{i} g_{i} \exp \left(-\frac{\mathcal{E}_{i}}{kT}\right) = Q_{rot}Q_{vib}Q_{elec}$$

Statistical Mechanics: Defines T!

Hence measurements of two densities n_i and $n_j \rightarrow T$ Since $n_i/n_i = g_i/g_i \exp(-(\varepsilon_i - \varepsilon_i)/kT)$

- TDL sensing for aero-propulsion
 - Diode laser absorption sensors offer prospects for time-resolved, multiparameter, multi-location sensing for performance testing, model validation, feedback control

- Sensors developed for T, V, H₂O, CO₂, O₂, & other species
- Prototypes tested and validated at Stanford
- Several applications successful in ground test facilities
- Now being utilized in flight

TDL Sensing to Characterize NASA Ames ArcJet Facilities

High-Enthalpy Flow for Materials and Vehicle Testing

TDL Sensing to Characterize NASA Ames ArcJet Facilities

- Goals: (1) Time-resolved temperature sensing in the arc heater: O to infer T
 - (2) Investigate spatial uniformity within heater (multi-path absorption)

Challenges: Extreme Conditions T=6000-8000K, P= 2-9 bar, I~2000A, 20 & 60 MW

Difficult access (mechanical, optical, and electrical) 30

Temperature from Atomic O Absorption Measurement

Atomic oxygen energy diagram

Atomic oxygen absorption measured in the arc heater **Residuals** 0.05 0.00 0.05 0.05 0.05 $I_{population} = 7130 \pm 120$ n_{O*}= 6.64 x 10¹⁰ cm⁻³ **Absorbance** Data 0.2 Fitting 777.12 777.24 777.28 777.16 777.20 Wavelength (nm)

- Fundamental absorption transitions from O are VUV but excited O in NIR
- Equilibrium population of O-atom in ⁵S⁰₂ extremely temperature sensitive

- Arc current at 2000A, power 20MW
- Last 200 seconds of run arc current decreased 100A
- Measured temperature captures change in arc conditions

TDL sensor provides new tool for routine monitoring of arcjet performance

4. Working Example – 3 Time-Resolved High-P Sensing in PDC at NPS

- Pulse-detonation combustor gives time-variable P/T
- Time-resolved measurements monitor performance & test CFD

4. Working Example – 3 Time-Resolved High-P Sensing in PDC at NPS

Pulse Detonation Combustor

At Naval Post-graduate School in Monterey, CA

Optical sensors feasible in harsh, high pressure engine environment

Time-Resolved High-P Sensing in PDC at NPS

- Pulse-detonation combustor gives time-variable P/T
- Time-resolved TDLAS measurements monitor performance & test CFD

4. Working Example – 3 Time-Resolved High-P Sensing in PDC at NPS

T- Data Collected in Nozzle Throat vs CFD

- T sensor performs well to >3500K, 30 atm!
- Data agrees well with CFD during primary blow down

4. Working Example – 3 Time-Resolved TDLAS Yields Mass Flow

- T and P give V and mass flow in choked throat as f(t)
- T, m, species (CO, CO₂, H₂O) and ideal gas law can give enthalpy flow rate

4. Working Example – 3Time-Resolved TDL Yields Enthalpy Flow Rate

4 Consecutive Cycles

- Time-resolved data provide key measures of engine performance
 - Power (enthalpy flux)
 - Mass flow dynamics
 - H integrated over complete cycle for η_{th}

4. Working Example – 4 Time-Resolved Sensing in HEG Shock Tunnel

 Diode laser absorption sensors offer prospects for time-resolved, multiparameter, multi-location sensing for performance testing, model validation, feedback control

- Sensors developed for T, V, H₂O, CO₂, O₂, & other species
- Prototypes tested and validated at Stanford
- Several successful demonstrations in ground test facilities
- Opportunities emerging for use in flight: sensing and control
- Measurements made in Mach 7.4 shock tunnel in Germany

4. Working Example – 4 Time-Resolved Sensing in HEG Shock Tunnel

4. Working Example – 4 Time-Resolved Sensing in HEG Shock Tunnel

		$\bar{x} \pm \sigma$	dx/dr
			[1/ms]
P	[kPa]	137.7 ± 2.5	-1.35
P_{H_2O}	[kPa]	3.7 ± 0.5	0.34
T	[K]	1264 ± 81	14.1
U	[m/s]	1776 ± 82	0.77

4. Working Example – 5 First Multi-Species Sensing for Shock Tube Kinetics

- Chemistry progress monitored by quantitative IR laser absorption
- Multi-species time histories provide game-changing advantage for mechanism validation
- Method accounts for nearly 100% of O-atoms

Oxygen Balance: Methyl Formate Decomposition

Next: Diatomic Molecular Spectra

Rotational and Vibrational Spectra