

RACIOCÍNIO LÓGICO

Lógica de Argumentação

Presidente: Gabriel Granjeiro

Vice-Presidente: Rodrigo Calado

Diretor Pedagógico: Erico Teixeira

Diretora de Produção Educacional: Vivian Higashi

Gerência de Produção de Conteúdo: Magno Coimbra

Coordenadora Pedagógica: Élica Lopes

Todo o material desta apostila (incluídos textos e imagens) está protegido por direitos autorais do Gran Cursos Online. Será proibida toda forma de plágio, cópia, reprodução ou qualquer outra forma de uso, não autorizada expressamente, seja ela onerosa ou não, sujeitando-se o transgressor às penalidades previstas civil e criminalmente.

CÓDIGO:

230410366817

THIAGO CARDOSO

Engenheiro eletrônico formado pelo ITA com distinção em Matemática, analistachefe da Múltiplos Investimentos, especialista em mercado de ações. Professor desde os 19 anos e, atualmente, leciona todos os ramos da Matemática para concursos públicos.

SUMÁRIO

Apresentação 4
Lógica de Argumentação 5
1. Tautologia, Contradição e Contingência
1.1. Tautologia
1.2. Contradição
1.3. Contingência
2. Lógica de Argumentação
2.1. Argumento Válido
2.2. Argumento Inválido
2.3. Argumentos Válidos no Operador Condicional
2.4. Silogismo
2.5. Tabelas Cruzadas
3. Verdades e Mentiras
3.1. Paradoxo do Mentiroso
3.2. Redução ao Absurdo
3.3. Duas Pessoas em Contradição41
Resumo
Mapas Mentais
Questões Comentadas em Aula
Questões de Concurso
Gabarito
Gabarito Comentado74

APRESENTAÇÃO

Olá, sejam bem-vindos a mais uma aula do nosso curso de Raciocínio Lógico.

Nesta aula, estudaremos a Lógica de Argumentação. Aprenderemos o que é um argumento válido e um argumento inválido.

Também estudaremos o importante tema de Verdades e Mentiras. Trata-se de um tema bastante importante para a vida real, pois nos ensina a formular hipóteses e a começar a pensar em um ambiente de incertezas.

Como sempre, gostaria de te passar meus contatos:

- E-mail: thiagofernando.pe@gmail.com
- · Instagram: @math.gran

Feitas essas orientações iniciais, vamos juntos aprender Raciocínio Lógico?

LÓGICA DE ARGUMENTAÇÃO

1. TAUTOLOGIA, CONTRADIÇÃO E CONTINGÊNCIA

São três categorias de proposições compostas importantes de se estudar. Vamos a elas.

1.1. TAUTOLOGIA

Uma tautologia é uma proposição composta que é sempre verdadeira, independentemente do valor lógico das proposições simples que a constituem.

O exemplo mais simples é a proposição $p \vee (\neg p)$. Qualquer que seja o valor lógico da proposição p, essa proposição sempre será verdadeira. Vejamos um exemplo de tabela-verdade.

p	$\neg p$	$p \lor (\neg p)$
V	F	V
F	V	V

Tabela 1: Exemplo de Tautologia

Como exemplo, temos a afirmação: "Miguel é sério ou Miguel não é sério". Perceba que essa proposição sempre será verdadeira.

Tome cuidado para não confundir uma tautologia com uma proposição que é simplesmente verdadeira. Por exemplo, a proposição "Thiago é professor" não é uma tautologia.

Do ponto de vista de uma dedução lógica, uma tautologia é uma verdade óbvia e que nada acrescenta em termos de conhecimento de mundo para auxiliar a demonstração de alguma sentença.

Uma propriedade interessante da tautologia é relacionada ao operador condicional:

$$(Taut \to q) = q$$

Essa propriedade é fácil de ser demonstrada. Como a tautologia é sempre verdadeira, temos V implica q, o que somente será verdadeiro se, e somente se, q for verdadeiro.

Assim, uma tautologia não acrescenta nenhum conhecimento útil para uma dedução lógica. Portanto, ela pode ser retirada da sua base de premissas sem nenhum prejuízo à sua capacidade argumentativa.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

001. (CESPE/CEBRASPE/PO-AL/PAPILOSCOPISTA/2023) Considere os conectivos lógicos usuais e assuma que as letras maiúsculas representam proposições lógicas simples. Com base nessas informações, julgue o item seguinte relativo à lógica proposicional.

A proposição lógica $(P \Rightarrow Q) \Leftrightarrow ((\sim P) \lor Q)$ é uma tautologia.

Primeiramente, lembre-se da tabela verdade de cada conectivo do enunciado:

- Disjunção ou só é falsa se F v F = F.
- Condicional só é falsa se V → F = F.
- Bicondicional só é verdadeira se V ⇔ V = V ou F ⇔ F = V.

Agora, basta montar a tabela verdade de $(P \Rightarrow Q) \Leftrightarrow ((\sim P) \lor Q)$. Temos:

P	Q	~ P	P → Q	(~P) ∨ Q	$(P \rightarrow Q) \Leftrightarrow ((\sim P) \lor Q)$
٧	٧	F	V	V	V
V	F	F	F	F	V
F	٧	٧	V	V	V
F	F	٧	٧	V	v

Portanto, como a proposição lógica (P \Rightarrow Q) \Leftrightarrow ((\sim P) \vee Q) assume apenas valores verdadeiros, trata-se de uma **Tautologia**.

Certo.

1.2. CONTRADIÇÃO

Uma contradição é uma proposição lógica composta que é sempre falsa, independentemente do valor lógico das proposições simples que a constituem.

O caso mais clássico é a proposição $p \land (\neg p)$.

p	$\neg p$	$p \wedge (\neg p)$
٧	F	F
F	V	F

Tabela 2: Exemplo de Contradição

Esse caso particular de contradição consiste em afirmar algo e depois negar essa mesma afirmação durante sua argumentação. Por exemplo, dizer que "Isabela é inteligente e Isabela não é inteligente".

Quando você faz uma contradição desse gênero, você está automaticamente violando o Princípio da Não-Contradição, que é um dos pilares da Lógica.

1.2.1. PRINCÍPIO DA NÃO-CONTRADIÇÃO

O problema de violar esse princípio pode ser entendido com base na seguinte propriedade.

$$(Cont \rightarrow q) = Taut$$

Como já vimos no operador condicional, se a primeira proposição (a condição suficiente) é falsa, o condicional sempre será verdadeiro. No caso em apreço, a primeira proposição é uma contradição. Isso pode ser também verificado pela tabela-verdade.

Cont	q	$p \wedge (\neg p)$
F	F	V
F	V	V

Portanto, o operador condicional sempre será verdadeiro se partir de uma contradição. Portanto, tem-se uma tautologia.

O interessante disso é que mostra que, caso você parta de uma contradição em suas premissas, você será capaz de concluir qualquer coisa.

Sendo assim, sempre que ouvimos falar de provas lógicas absurdas, como "filósofo prova que Deus existe" ou "filósofo prova que Deus não existe", tenha a certeza de que, em algum momento, esse filósofo partiu de uma contradição em suas premissas.

Essa propriedade também é importante para entender por que apontar uma contradição entre as premissas é suficiente para invalidar um argumento.

Se uma pessoa usou uma contradição entre suas premissas, então ela será capaz de concluir qualquer coisa. Portanto, **não podemos em nenhuma hipótese partir de uma contradição** para fazer uma argumentação lógica.

1.2.2. REDUÇÃO AO ABSURDO

O problema de violar esse princípio pode ser entendido com base na seguinte propriedade.

$$(q \rightarrow Cont) \rightarrow \neg q$$

Checaremos essa propriedade por meio da tabela-verdade.

q	Cont	$q \rightarrow Cont$
F	F	V
٧	F	F

Tabela 3: Propriedade de Redução ao Absurdo

Olha só que propriedade interessante. Se, por acaso, provarmos que uma tese "q" implica uma contradição, então, podemos concluir que a tese "q" é falsa.

Essa técnica é chamada Redução ao Absurdo. Vejamos.

EXEMPLO

Tese: "Toda regra tem exceção"

Prova: "Toda regra tem exceção" é uma regra, portanto, ela apresenta uma exceção. Se ela apresenta uma exceção, existe ao menos uma regra que não tem exceção. Chegamos, portanto, a uma contradição. Logo, a tese original é falsa.

Você percebeu a contradição existente. A tese era de que "Toda regra tem exceção", porém, fomos capazes de provar que "existe ao menos uma regra que não tem exceção", ou seja, provamos exatamente a sua negação. Sendo assim, tínhamos $p \land (\neg p)$, que é o caso mais típico de contradição.

Em Matemática, é mais comum dizer que "chegamos a um absurdo" significando que "chegamos a uma contradição".

1.2.3. ANTINOMIA E PARADOXO

As antinomias e paradoxos são frases contraditórias.

A diferença básica entre elas é que, **na antinomia, são duas proposições atômicas que se contradizem.** Vejamos: "Mauro é recifense e Mauro não é recifense."

Essa proposição composta é uma contradição, porque suas duas proposições atômicas se contradizem. Além disso, elas estão interligadas por um operador **E.**

O paradoxo, por sua vez, é uma proposição atômica que, por si só, é contraditória. O exemplo mais clássico e importante é o paradoxo do mentiroso:

EXEMPLO

"Eu sou mentiroso"

Estudaremos esse paradoxo mais profundamente adiante nesse material em PDF. Por hora, é importante que você entenda por que isso é um paradoxo.

Nenhuma pessoa pode dizer: "Eu sou mentiroso". Quem fala a verdade tem que falar a verdade, logo, não pode dizer que "é mentiroso". Por outro lado, quem é mentiroso deve necessariamente mentir, portanto, não poderia admitir a verdade.

1.3. CONTINGÊNCIA

A contingência é, na verdade, o caso mais comum de proposição lógica. Consiste numa proposição composta que pode ser verdadeira ou falsa, dependendo do valor lógico das premissas que a constituem.

Por exemplo, "Laura nasceu no Brasil e é doutora em Direito Constitucional". Nesse caso, tem-se uma proposição composta $p \land q$, em que:

EXEMPLO

p: "Laura nasceu no Brasil"

q: "Laura é doutora em Direito Constitucional"

A proposição "p E q" pode ser verdadeira ou falsa, dependendo do valor lógico dessas duas proposições simples que a constituem.

Por isso, esse é um caso de contingência.

Vamos revisar?

Figura 1: Tautologia, Contradição e Contingência

002. (IBFC/PREFEITURA DE SÃO GONÇALO DO AMARANTE-RN/ADMINISTRADOR/2021) Sejam duas proposições lógicas simples: A e B, e a representação simbólica para a negação e os conectivos lógicos abaixo listadas:

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

~A	negação de A
AΛB	AeB
AVB	A ou B
$A \rightarrow B$	se A, então B
$A \leftrightarrow B$	A se, e somente se, B

Considere as proposições enumeradas:

 $I - A \wedge \sim A$

$$II - (A \wedge B) \vee \sim (A \wedge B)$$

III –
$$(A \rightarrow B) \leftrightarrow (\sim B \rightarrow \sim A)$$

Uma tautologia é uma proposição lógica que pode apenas assumir valores-verdade verdadeiros (V), uma antinomia é a negação de uma tautologia, e, portanto, é uma proposição composta em que resulta apenas em valores lógicos falsos (F). Assinale a alternativa que corretamente classifica as proposições completas enumeradas nesses termos.

- a) I Antinomia; II Tautologia; III Tautologia Volta negando
- b) I Tautologia; II Antinomia; III Tautologia
- c) I Tautologia; II Tautologia; III Antinomia
- d) I Tautologia; II Tautologia; III Tautologia

Primeiramente, lembre-se da tabela verdade de cada conectivo:

- Conjunção só é verdadeira se V \wedge V = V.
- Disjunção só é falsa se F v F = F.
- Condicional só é falsa se V → F = F.
- **Bicondicional** só é verdadeira se $V \leftrightarrow V = V$ ou $F \leftrightarrow F = V$.

Agora, basta montar a tabela verdade de cada proposição. Temos:

I. A ∧ ~A

Α	~A	A ∧ ~A
V	F	F
F	V	F

Portanto, a proposição I assume apenas valores falsos e é uma Antinomia.

II. (A
$$\wedge$$
 B) \vee ~ (A \wedge B)

Α	В	$A \wedge B$	~(A ∧ B)	$(A \land B) \lor \backsim (A \land B)$
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Portanto, a proposição II assume apenas valores verdadeiros e é uma **Tautologia**.

III. (A
$$\rightarrow$$
 B) \leftrightarrow (~ B \rightarrow ~A)

Α	В	~A	~B	$A \rightarrow B$	\sim B \rightarrow \sim A	$(A \rightarrow B) \leftrightarrow (\sim B \rightarrow \sim A)$
V	V	F	F	V	V	\mathbf{V}
V	F	F	V	F	F	\mathbf{V}
F	V	V	F	V	V	\mathbf{V}
F	F	V	V	V	V	V

Portanto, a proposição III assume apenas valores verdadeiros e é uma **Tautologia**.

Letra a.

003. (CESPE/BNB/ESPECIALISTA TÉCNICO ANALISTA DE SISTEMA/2018) Julgue o item que segue, a respeito de lógica proposicional.

Se P e Q forem proposições simples, então a proposição $\neg [PV(\neg Q)] \leftrightarrow [(\neg P) \land Q]$ é uma tautologia.

Uma sentença é uma tautologia quando ela está sempre correta, independentemente do valor lógico das premissas.

Se **Q** for falsa, teremos:

$$\neg [P \lor (V)] \longleftrightarrow [\neg P \land F]$$
$$= \neg [V] \longleftrightarrow [F]$$
$$= F \longleftrightarrow [F] = V$$

Portanto, a sentença será sempre verdadeira se Q for falsa. Por outro lado, se Q for verdadeira, teremos:

$$\neg [P \lor (F)] \longleftrightarrow [\neg P \land V]$$

Usando as propriedades do operador **OU** e do operador **E**, temos:

$$= \neg [P] \iff [\neg P]$$

$$= V$$

A frase, portanto, é uma tautologia.

Certo.

004. (VUNESP/PC-SP/DESENHISTA/2014) Considerando a tabela-verdade apresentada, assinale a alternativa correta.

р	¬р	р∨¬р
v	F	V
F	V	V

A proposição $p \lor \neg p$ representa:

- a) Uma contradição.
- b) Uma tautologia.
- c) Uma dupla negação.
- d) Uma implicação.
- e) Uma contingência.

Uma tautologia é uma proposição composta que será sempre verdadeira, independentemente do valor lógico das premissas.

Letra b.

005. (CESPE/SEBRAE/2010) Julgue o seguinte item.

A proposição $[\gamma B] \vee \{ [\gamma B] \rightarrow A \} [\neg B] \vee \{ [\neg B] \rightarrow A \}$ é uma tautologia.

A maneira mais simples de resolver essa questão é utilizando a equivalência lógica para o condicional.

$$(\neg B) \rightarrow A = B \lor A$$

Agora, basta jogar na proposição fornecida no enunciado.

$$\neg B \lor \{\neg B \to A\} = \neg B \lor B \lor A$$

Observe que a parte, logo, já é uma tautologia.

$$\neg B \lor \{\neg B \to A\} = Taut \lor A = Taut$$

Sendo assim, a proposição fornecida é realmente uma tautologia.

Outra maneira de fazer é a seguinte. Se a proposição B for verdadeira, o condicional $(\neg B \to A)$ será, necessariamente, verdadeiro, porque a proposição antecede $\neg B$ seria falsa e Falso \to Qualquer Coisa é sempre Verdadeiro.. Por outro lado, se B for falsa, $\neg B$ será verdadeira. Sendo assim, a proposição $[\neg B] \lor \{[\neg B] \to A\}$ é uma tautologia.

Certo.

006. (VUNESP/PC-SP/ESCRIVÃO/2014) Um dos princípios fundamentais da lógica é o da **não contradição**. Segundo este princípio, nenhuma proposição pode ser simultaneamente verdadeira e falsa sob o mesmo aspecto. Uma das razões da importância desse princípio é que ele permite realizar inferências e confrontar descrições diferentes do mesmo acontecimento sem o risco de se chegar a conclusões contraditórias. Assim sendo, o princípio da não contradição.

- a) Fornece pouco auxílio lógico para investigar a legitimidade de descrições.
- b) Permite conciliar descrições contraditórias entre si e relativizar conclusões.
- c) Exibe propriedades lógicas inapropriadas para produzir inferências válidas.
- d) Oferece suporte lógico para realizar inferências adequadas sobre descrições.
- e) Propicia a produção de argumentos inválidos e mutuamente contraditórios.

O Princípio da Não Contradição é muito importante. Quando se parte de uma contradição nas suas premissas, é possível provar qualquer coisa.

Sendo assim, esse princípio é indispensável. A sua violação retiraria completamente o suporte lógico para qualquer inferência.

Letra d.

007. (VUNESP/PC-SP/2014) O princípio da não contradição, inicialmente formulado por Aristóteles (384-322 a.C.), permanece como um dos sustentáculos da lógica clássica. Uma proposição composta é contraditória quando:

- a) seu valor lógico é falso e todas as proposições simples que a constituem são falsas.
- b) uma ou mais das proposições que a constituem decorre/ decorrem de premissas sempre falsas.
- c) seu valor lógico é sempre falso, não importando o valor de suas proposições constituintes.
- d) suas proposições constituintes não permitem inferir uma conclusão sempre verdadeira
- e) uma ou mais das proposições que a constituem possui/ possuem valor lógico indeterminável.

Uma contradição é uma proposição composta que é sempre falsa, independentemente do valor lógico das proposições atômicas que a constituem.

Letra c.

008. (VUNESP/PC-SP/DESENHISTA/2014) Joana é cabeleireira. Ela corta o cabelo somente das mulheres que não cortam seus próprios cabelos. No entanto, se Joana corta seu próprio cabelo, ela passará a fazer parte do grupo de mulheres que não cortam seu próprio cabelo. A situação apresentada é considerada:

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

- a) Uma conjunção.
- b) Uma tautologia.
- c) Uma disjunção.
- d) Um paradoxo.
- e) Um conectivo.

Do jeito que a frase foi escrita, ou seja, Joana corta o cabelo somente das mulheres que não cortam seus próprios cabelos, podemos concluir logicamente que Joana não corta seu próprio cabelo.

Se Joana corta o seu próprio cabelo, então Joana faz parte do grupo de mulheres que não cortam seus próprios cabelos. O que é um absurdo.

Sendo assim, se Joana corta seu próprio cabelo, temos uma contradição. No entanto, como são duas proposições diferentes, tem-se, na verdade, que é uma antinomia, não um paradoxo.

A meu ver, a banca cometeu um pequeno equívoco. Porém, realmente não dá para marcar outra alternativa. Numa questão de prova, muitas vezes, devemos estar prontos para dar a melhor resposta.

Letra d.

009. (CESPE/INSS/TÉCNICO DO SEGURO SOCIAL/2016) Para quaisquer proposições p e q, com valores lógicos quaisquer, a condicional p \rightarrow (q \rightarrow p) será, sempre, uma tautologia.

Usando a propriedade do condicional, temos que:

$$q \rightarrow p = \neg q \lor p$$

Por outro lado, temos que:

$$p \to (q \to p) = \neg p \lor \{q \to p\} = \neg p \lor \neg q \lor p = \neg p \lor p \lor \neg q = Taut \lor \neg q$$
$$= Taut$$

Certo.

2. LÓGICA DE ARGUMENTAÇÃO

A argumentação é o procedimento lógico que busca **extrair conclusões a partir de premissas.**

Perceba, portanto, que o argumento independe da validade das premissas. E essa é uma das pegadinhas mais importantes em provas.

Também é bastante comum na vida real. É relativamente comum filósofos que constroem livros inteiros com base em uma argumentação bastante sofisticada e absolutamente sem nenhum defeito. Críticos podem passar anos analisando e jamais encontrarão uma única falha na sua argumentação.

Porém, mesmo assim, eles chegam a conclusões flagrantemente erradas. E o problema, nesse caso, reside nas premissas.

Tomemos como exemplo o caso clássico de Platão. Platão, além de filósofo, era um grande matemático e ele provou que existiam apenas cinco poliedros regulares convexos: o tetraedro, o hexaedro, o octaedro, o icosaedro e o dodecaedro.

Figura 2: Poliedros Regulares de Platão

A demonstração de Platão de que somente existem esses poliedros regulares é perfeita e até hoje é utilizada na Geometria Espacial.

Porém, Platão supôs erroneamente que esses cinco poliedros regulares estivessem associados aos cinco elementos constitutivos de toda a matéria: a terra, o fogo, a água, o ar e o cosmos.

Era a ligação entre a Matemática e a Química que, por muito tempo, foi uma premissa aceita como verdadeira sem a sua devida demonstração. Por causa disso, muitos cientistas rejeitaram muitas hipóteses sobre a Química.

A Química permaneceu atrasada por mais de mil anos.

O curioso é que todos esses cientistas fizeram argumentos perfeitos para rejeitar a noção de átomo. O ponto em que eles falhavam era nas premissas. A premissa de que os cinco poliedros regulares estavam associados aos cinco elementos constitutivos da matéria estava completamente falsa.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

É importante você saber que, de maneira geral, invalidar as conclusões de um bom filósofo é atacando-as pela raiz, ou seja, pelas premissas.

2.1. ARGUMENTO VÁLIDO

O argumento válido é aquele cuja conclusão decorre logicamente das premissas.

Vejamos um exemplo:

EXEMPLO

Premissas: "Todo homem é mortal"

"Sócrates é homem"

Conclusão: "Sócrates é mortal"

É importante destacar que, quando as premissas são verdadeiras e o argumento é válido, a sua conclusão lógica está provada como verdadeira.

Por outro lado, é interessante sempre lembrar que **a validade do argumento independe das premissas.** Por exemplo, tomemos o caso de Thor, que é o meu cachorro.

EXEMPLO

Premissas: "Todo homem é mortal"

"Thor é homem"

Conclusão: "Thor é mortal"

O argumento em si é válido. Se Thor fosse homem, considerando que todo homem é mortal, realmente Thor seria mortal.

Porém, observe que a segunda premissa é falsa. Como Thor é meu cachorro, ele não é homem.

Embora as premissas sejam inválidas, a conclusão foi verdadeira, visto que Thor é mortal – como qualquer ser vivo, não somente o ser humano.

Vejamos agora um outro caso de argumento válido.

EXEMPLO

Premissas: "Todo homem é imortal"

"Sócrates é homem"

Conclusão: "Sócrates é imortal"

Mais uma vez, **esse argumento é válido.** Se todo homem fosse imortal e, se Sócrates é homem, então realmente, Sócrates seria imortal.

Porém, chegamos a uma conclusão flagrantemente errada. Isso aconteceu porque a primeira premissa era falsa.

Dessa maneira, podemos concluir que, se o argumento for válido e as premissas forem falsas, é possível chegar a conclusões verdadeiras ou falsas.

Portanto, não caia no erro de dizer que, se as premissas são falsas, a conclusão é também falsa. O máximo que você pode fazer é rejeitar essa conclusão, porém, você nunca poderá afirmar que a conclusão é falsa.

2.2. ARGUMENTO INVÁLIDO

O argumento inválido é aquele cuja conclusão NÃO decorre logicamente das premissas. Vejamos alguns exemplos:

EXEMPLO

Premissas: "Todo homem é mortal"

"Zeus não é homem"

Conclusão: "Zeus é mortal"

Esse é um exemplo clássico de uma argumentação inválida. **Embora as premissas sejam verdadeiras, a conclusão é flagrantemente errada** – pelo menos, de acordo com a mitologia grega.

EXEMPLO

Premissas: "Algum homem é mortal"

"Sócrates é homem"

Conclusão: "Sócrates é mortal"

Olha só, mais um caso interessante. Nesse caso, tomando como base que **apenas alguns** homens sejam mortais, não é possível concluir automaticamente que Sócrates, por ser homem, é também mortal.

Se algum homem é mortal, pode existir um conjunto de homens que não sejam mortais, e Sócrates pode fazer parte desse conjunto.

Portanto, o argumento citado é inválido.

Vale citar que ambas as premissas são verdadeiras e que o argumento é inválido. Mesmo assim, chegamos a uma conclusão verdadeira. Realmente, Sócrates era mortal.

Mais uma vez, gostaria de fazer uma observação aqui. De novo, o simples fato de que uma conclusão foi obtida por meio de um argumento inválido não torna essa conclusão falsa.

O máximo que você pode fazer é rejeitar a demonstração e a conclusão, porém, não é possível afirmar que ela é falsa.

Então, você não pode cair nessas falácias nem na sua vida nem na sua prova, combinado?

2.2.1. SOFISMAS

O sofismo é o argumento inválido feito propositadamente com o objetivo de enganar outras pessoas. Trata-se de uma argumentação falsa que é cometida intencionalmente com o intuito de persuadir seu interlocutor e gerar uma ilusão de verdade.

Os sofistas frequentemente se utilizam da **retórica**, que é a arte de falar bem para divulgar suas ideias.

O maravilhoso livro "Como Vencer um Debate sem ter Razão", de Arthur Schopenhauer, explica 38 estratagemas que maus filósofos geralmente utilizam para persuadir seus interlocutores de que estão falando a verdade.

O subtítulo do livro é *dialética erística*, que, segundo Schopenhauer, é "a arte de discutir, mais precisamente a arte de discutir de modo a vencer, e isto *per faz et per nefas* (por meios lícitos ou ilícitos)".

Outro estratagema interessante é a chamada homonímia sutil. Esse estratagema consiste em mudar o significado da palavra utilizada pelo interlocutor.

Vejamos um exemplo. Certa vez, li uma crítica sobre o filme Tropa de Elite alegando que o protagonista Coronel Nascimento usava o discurso de esquerda. Segundo o crítico, o protagonista, Coronel Nascimento, refere-se diversas vezes ao "sistema", o qual propõe combater.

Para o crítico, quem deseja lutar contra o "sistema capitalista" são pessoas de esquerda. Porém, no filme, o Coronel Nascimento utilizava a expressão "o sistema" como a cultura da imoralidade e impunidade que permitia que o crime se alastrasse nas favelas do Rio de Janeiro.

Assim, o sentido da palavra "sistema" para o Coronel Nascimento nada tinha a ver com o "sistema capitalista".

2.2.2. FALÁCIAS

A falácia é o **argumento inválido feito de maneira equivocada** por uma pessoa. Ela não tinha o objetivo de manipular ninguém, apenas se enganou ou utilizou a Lógica de forma errada inadvertidamente.

A natureza do sofismo e da falácia é a mesma. A única diferença entre eles é a intenção original da pessoa que cometeu a falha na argumentação.

A dialética erística de Schopenhauer é muitas vezes referida como 38 falácias. Isso acontece, porque, infelizmente, o ser humano é tão sensível a esses 38 estratagemas que, muitas vezes, os repetimos naturalmente sem nos dar conta de que estamos cometendo erros de argumentação.

Por exemplo, é relativamente comum fazermos argumentos à autoridade. É relativamente comum dizermos: "o professor X disse isso, então, isso está certo."

O fato de uma grande referência na área ter feito uma afirmação não pode ser considerado, de forma alguma, uma prova de que aquilo é verdadeiro. Lembre-se de que especialistas podem estar equivocados ou até mesmo mentindo.

Por isso, lembre-se bem da diferença entre sofisma e falácia.

Figura 3: Sofismas e Falácias

010. (VUNESP/PC-SP/DESENHISTA/2014) Assinale a alternativa que apresenta um argumento válido.

- a) O cisne é uma ave. Aves são ovíparas. Logo, o cisne é ovíparo.
- b) João é contador. João é alto. Logo, contadores são altos.
- c) Pulgas não são répteis. Répteis não são mamíferos. Logo, pulgas são insetos.
- d) Pedro não gosta de arroz. O arroz não é orgânico. Logo, Pedro não é orgânico.
- e) América é um continente. Brasil fica na América. Logo, Brasil não é um continente.

- a) Certa. A frase da letra A seria mais precisa se dissesse que "todas as aves são ovíparas". No entanto, veremos que as outras letras são bem piores.
- b) Errada. João é um indivíduo do grupo contador. O fato de ele ser alto não é garantia nenhuma que todos os contadores sejam altos.
- c) Errada. Não há nenhuma garantia de que o que não é réptil nem mamífero seja necessariamente um inseto.
- d) Errada. Não podemos concluir nada se Pedro é ou não orgânico. Aliás, essa característica pode nem mesmo se aplicar a ele.
- e) Errada. É bem possível que um continente fique localizado na América. Com base apenas no que foi dito na letra e) não é possível concluir que um continente não esteja localizado dentro de outro continente.

L	.etra	a a.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,

a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

011. (VUNESP/PC-SP/ESCRIVÃO DE POLÍCIA/2014) Um argumento é considerado válido quando sua conclusão se segue logicamente das premissas. Mas um argumento pode ser logicamente válido e, mesmo assim, dar origem a uma conclusão comprovadamente falsa. Isso ocorre porque:

- a) a conclusão do argumento não decorre das premissas
- b) a premissa maior do argumento é sempre verdadeira.
- c) todas as premissas do argumento são verdadeiras.
- d) a premissa menor do argumento é sempre falsa.
- e) pelo menos uma premissa do argumento é falsa

Só podemos garantir que uma conclusão é verdadeira se todas as premissas forem verdadeiras e se o argumento for válido.

Se o argumento não for válido ou se pelo menos uma premissa do argumento é falsa, então não é possível garantir que a conclusão chegada seja verdadeira.

Letra e.

012. (CESPE/FUNPRESP/ANALISTA DE COMUNICAÇÃO E MARKETING/2016) Os sofismas são considerados argumentos válidos; as falácias, argumentos inválidos.

Tanto sofismas como falácias são argumentos inválidos. A diferença entre eles é que o sofisma é um argumento feito de forma errada de propósito com o objetivo de enganar outra pessoa.

Já a falácia acontece quando uma pessoa se equivoca na sua argumentação. Ela não tinha o objetivo de enganar ninguém, ela apenas cometeu um erro.

Errado.

- **013.** (FCC/SEFAZ-SP/AGENTE FISCAL DE RENDAS/1997) Assinale a alternativa em que ocorre uma conclusão verdadeira (que corresponde à realidade) e o argumento inválido (do ponto de vista lógico).
- a) Sócrates é homem e todo homem é mortal, portanto, Sócrates é mortal.
- b) Toda pedra é um homem, pois alguma pedra é um ser, e todo ser é homem.
- c) Toda cadeira é um objeto, e todo objeto tem cinco pés, portanto, algumas cadeiras têm quatro pés.
- d) Todo pensamento é um raciocínio, portanto, todo pensamento é um movimento, visto que todos os raciocínios são movimentos.
- e) Todo cachorro mia, e nenhum gato mia, portanto, cachorros não são gatos.

Questão bastante interessante e complicada.

Primeiramente, vamos excluir as alternativas que possuem conclusões falsas.

- a) Sócrates é homem e todo homem é mortal, portanto, **Sócrates é mortal.** Conclusão verdadeira.
- b) Toda pedra é um homem, pois alguma pedra é um ser, e todo ser é homem. Conclusão falsa.
- c) Toda cadeira é um objeto, e todo objeto tem cinco pés, portanto, **algumas cadeiras têm quatro pés.** Conclusão verdadeira.
- d) Todo pensamento é um raciocínio, portanto, todo pensamento é um movimento, visto que todos os raciocínios são movimentos. Conclusão falsa.
- e) Todo cachorro mia, e nenhum gato mia, portanto, **cachorros não são gatos.** Conclusão verdadeira.

Agora, prestemos atenção aos argumentos. Um argumento é composto por premissas e por conclusões. O argumento é válido quando a conclusão deriva logicamente das premissas, independentemente de elas serem verdadeiras ou não.

Ao analisar a validade de um argumento, devemos abstrair a validade das premissas.

a) Sócrates é homem

Todo homem é mortal

Conclusão: Sócrates é mortal.

Esse argumento é válido. Portanto, não atende ao que foi pedido.

c) Toda cadeira é um objeto.

Todo objeto tem cinco pés

Conclusão: algumas cadeiras têm quatro pés.

Esse argumento é inválido. A conclusão lógica das premissas é que as cadeiras deveriam ter cinco pés, e não quatro. Logo, essa é a afirmação desejada.

e) Todo cachorro mia

E nenhum gato mia

Conclusão: cachorros não são gatos.

Note que esse argumento é válido. Embora as premissas sejam falsas, a validade do argumento independe disso.

Letra c.

2.3. ARGUMENTOS VÁLIDOS NO OPERADOR CONDICIONAL

O operador condicional é formado por uma condição e por um resultado. Tomemos como exemplo "Se fizer sol, eu vou à praia."

Temos a condição "Se fizer sol" e o resultado "eu vou à praia". "Fazer sol" é uma condição suficiente para "ir à praia". Porém, se você foi à praia, não é possível concluir que fez sol. Essa é uma conclusão do tipo *modus ponens*. Do latim, o que se afirma afirmando. Temos mais alguns exemplos:

EXEMPLO

Premissas:

Se eu tiver dinheiro, eu vou ao show Eu tenho dinheiro.

Conclusão:

Eu vou ao show

Podemos analisar se ele é verdadeiro ou não também usando as ferramentas que aprendemos no estudo de Operador Condicional, que é o conceito de condição suficiente e necessária.

Quando falamos "Se eu tiver dinheiro, então eu vou ao show" é bastante intuitivo que essa frase seja equivalente a dizer que "basta eu ter dinheiro para que eu vá ao show".

Portanto, a **proposição antecedente** no Operador Condicional afirmativo é sempre **uma condição suficiente**. Podemos esquematizar o argumento da seguinte forma, que é conhecida como "vai afirmando" ou *modus ponens*

Por outro lado, podemos dizer que "eu vou ao show" é uma condição necessária para fazer sol – lembre-se da relação inversa do condicional entre necessidade e suficiência. Sendo assim, se eu não fui à praia, podemos concluir que não fez sol. Em outras palavras, o seguinte argumento é válido

EXEMPLO

Premissas:

Se eu tiver dinheiro, eu vou ao show

Eu não vou ao show

Conclusão:

Eu não tenho dinheiro

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Pode parecer esquisito, mas realmente, do ponto de vista do Operador Condicional, "eu vou ao show" é uma condição necessária para que "eu tenha dinheiro".

O que acontece é que, quando dissemos "Se eu tiver dinheiro, então eu vou ao show", eu estou falando que, todas as vezes que eu tenho dinheiro, eu vou ao show. Portanto, se eu não fui ao show, é porque eu não tive dinheiro para ir. Esse argumento pode ser esquematizado da seguinte forma, que é conhecida como "volta negando" ou modus tollens.

2.3.1. ARGUMENTOS INVÁLIDOS NO OPERADOR CONDICIONAL

O operador condicional apresenta o chamado ciclo do argumento válido. São argumentos válidos o modus ponens (vai afirmando) e o modus tollens (volta negando).

Figura 4: Ciclo do Argumento Válido para o Operador Condicional

É importante não cometer as seguintes falácias: não podemos ir negando nem voltar afirmando. Não existem essas conclusões no Operador Condicional.

Se a proposição antecedente for falsa ou se a consequente for verdadeira, nada podemos concluir sobre a proposição composta.

Voltemos a considerar a frase "Se eu tiver dinheiro, então eu vou ao show". Nesse caso, se eu não tive dinheiro, nada se pode concluir.

EXEMPLO

Premissas:

Se eu tiver dinheiro, eu vou ao show

Não tenho dinheiro

Conclusão:

Não é possível concluir nada porque não se pode ir negando.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Se não tive dinheiro, não podemos fazer nenhuma afirmação sobre se vamos ou não ao show. Portanto, é possível que não tenha tido dinheiro, mas que, mesmo assim, tenha ido ao show.

Vamos esquematizar essa situação.

Analogamente, "Se eu tiver dinheiro, então eu vou ao show". E, se, por acaso, eu fui ao show, não podemos concluir nada sobre se eu tive ou não dinheiro, porque não podemos voltar afirmando.

EXEMPLO

Premissas:

Se eu tiver dinheiro, então eu vou ao show.

Eu fui ao show.

Conclusão:

Não é possível concluir nada porque não se pode voltar afirmando.

Podemos esquematizar esse argumento.

Portanto, memorize que o operador condicional só aceita duas deduções lógicas: vai afirmando ou volta negando. É o que eu chamo de ciclo do argumento válido.

2.4. SILOGISMO

O silogismo lógico é a conclusão lógica perfeita e irrefutável.

O silogismo lógico chega a uma conclusão a partir de premissas verdadeiras e argumentos válidos.

Nesse caso, é possível provar com segurança a sua conclusão desejada.

Vale ressaltar que o objetivo da Lógica é provar matematicamente uma afirmação. Portanto, uma vez atingido o silogismo lógico, a afirmação provada será uma verdade absoluta e jamais admitirá uma prova em contrário. Trata-se de uma demonstração matemática.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

	Argumento Válido	Argumento Inválido
Premissas Verdadeiras	Conclusão válida	Conclusão pode ser válida ou inválida
Premissas Falsas	Conclusão pode ser válida ou inválida	Conclusão pode ser válida ou inválida

Tabela 5: Silogismo Lógico

É importante fazer um adendo que, muitas vezes, na vida real, precisamos tomar como premissas algumas suposições.

Por exemplo, quando você está estudando, provavelmente você suporá que a sua banca pode cobrar qualquer parte área do conhecimento que está prevista no edital. Por vezes, você supõe: "Banca A gosta mais de cobrar Raciocínio Matemático; Banca B gosta mais de cobrar Lógica Proposicional; Banca C gosta mais de cobrar Diagramas Lógicos" e, por aí, vai.

Essas suas suposições, que ajudam muito no seu estudo, podem não ser necessariamente verdadeiras para a sua prova especificamente. É bem possível que a banca A prepare uma prova inteira de Proposições Lógicas, por exemplo, no próximo concurso, ainda que não seja esse o histórico da banca.

É por isso que, quando dizemos, você deve estudar mais Diagramas Lógicos para tal banca, isso não pode ser tomado como um silogismo, ou seja, como uma afirmação absolutamente verdadeira.

Na verdade, essa afirmação é um silogismo hipotético. Portanto, ele se baseia em uma hipótese, não em uma premissa absolutamente verdadeira.

Sendo assim, se aquela hipótese for provada falsa, a conclusão lógica ficará prejudicada.

Em termos práticos, é bastante importante saber a diferença entre o silogismo lógico e o silogismo hipotético.

É por isso que, mesmo que saibamos que determinada banca não cobre um determinado assunto com frequência, mesmo assim, precisamos ministrar tal conteúdo no seu curso. A razão é que, simplesmente, a banca pode mudar de opinião exatamente no dia da sua prova e cobrar aquele assunto. Seria uma péssima surpresa, não é?

Por outro lado, se a tese de que a banca A não cobra Diagramas Lógicos fosse absolutamente verdadeira, o que acontece, por exemplo, se o assunto não estiver previsto no edital? Nesse caso, aí sim, podemos descartar tal assunto do nosso curso, pois, nesse caso, a conclusão é um silogismo lógico e é uma verdade absoluta.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

DIRETO DO CONCURSO

014. (IADES/CFA/2010) Considere os argumentos a seguir.

Argumento I: Se nevar, então vai congelar. Não está nevando. Logo, não vai congelar. Argumento II: Se nevar então vai congelar. Não está congelando. Logo, não vai nevar. Assim, é correto concluir que:

- a) Ambos são falácias
- b) Ambos são tautologias
- c) Argumento I é uma falácia e o argumento II é uma tautologia.
- d) Argumento I é uma tautologia e o argumento II é uma falácia.

O argumento II é um *modus tollens*. Se nevar, então vai congelar" é equivalente a "Se não está congelando, não vai nevar". Podemos ver pelo ciclo do argumento válido, em que podemos voltar negando na frase.

Por outro lado, no argumento I, "nevar" é uma condição suficiente para "congelar". Mas não é necessária. Sendo assim, é possível congelar sem nevar. Portanto, o argumento I é uma falácia. Outra forma de ver é que não podemos ir negando.

Letra c.

015. (VUNESP/PC-SP/INVESTIGADOR/2014/ADAPTADA) Assinale a alternativa que representa

Se João é professor, então João ministra aulas.

João não é professor.

Logo, João não ministra aulas.

a estrutura do seguinte argumento:

- a) Modus tollens.
- b) Adição.
- c) Falácia.
- d) Silogismo Disjuntivo.
- e) Modus ponens.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

No argumento citado, temos um caso clássico de falácia, pois ele vai negando.

O modus ponens consiste em ir afirmando

"Se João é professor, então João ministra aulas.

João é professor.

Logo, João ministra aulas."

O modus tollens consiste em voltar negando.

"Se João é professor, então João ministra aulas.

João não ministra aulas.

Logo, João não é professor.

Como o argumento citado não se encaixa em nenhum dos dois tipos. Ele consiste em ir negando, trata-se de uma falácia.

Letra c.

016. (CESPE/BNB/ANALISTA DE SISTEMA/2018) A partir do argumento "A saúde é uma fonte de riqueza, pois as pessoas saudáveis são muito trabalhadoras, e as pessoas trabalhadoras sempre enriquecem.", julgue o próximo item.

A proposição "A saúde é uma fonte de riqueza." é a conclusão do referido argumento.

Observe o argumento construído com o operador CONDICIONAL.

"As pessoas saudáveis são muito trabalhadoras", ou seja, todas as pessoas saudáveis são trabalhadoras.

"As pessoas trabalhadoras sempre enriquecem", ou seja, todas as pessoas trabalhadoras pertencem ao conjunto das pessoas que enriquecem.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Por fim, a frase "A saúde é uma fonte de riqueza" deve ser entendida como **todas as pessoas saudáveis enriquecem.** Portanto, "ser saudável" é um subconjunto de "enriquecer". De fato, podemos concluir isso observando o diagrama.

Obs.: Esse é um caso clássico de um argumento válido, porém, com premissas falsas, chegando a uma conclusão flagrantemente errada. Porém, a questão pediu para avaliar a validade do argumento. Apenas isso.

Certo.

017. (CESPE/BNB/ANALISTA DE SISTEMA/2018) A partir do argumento "A saúde é uma fonte de riqueza, pois as pessoas saudáveis são muito trabalhadoras, e as pessoas trabalhadoras sempre enriquecem.", julgue o próximo item.

O referido argumento constitui um argumento válido.

Como mostrado no item anterior, o argumento é sim válido, embora suas premissas não sejam plausíveis.

Certo.

018. (CESPE/FUNPRESP/2016) O raciocínio Nenhum peixe é ave. Logo, nenhuma ave é peixe é válido.

"Nenhum peixe é ave" pode ser escrito na forma de proposição lógica como:

$$P \rightarrow \neg A$$

Por outro lado, "nenhuma ave é peixe" pode ser escrita da seguinte forma:

$$A \rightarrow \neg P$$

Agora, podemos utilizar a equivalência lógica:

$$P \rightarrow \neg A = A \rightarrow \neg P$$

Sendo assim, se "Nenhum peixe é ave", então "Nenhuma ave é peixe".

Certo.

019. (CESPE/FUNPRESP/CONHECIMENTOS BÁSICOS/2016) Considere o seguinte silogismo: Em cada mão, os seres humanos têm quatro dedos.

Em cada pé, os seres humanos têm três dedos.

Logo, os seres humanos têm mais dedos nas mãos que nos pés.

No silogismo apresentado, a conclusão é uma consequência das premissas.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

...

De fato, tem-se um argumento válido. A conclusão a que chegamos foi absurda, porque as premissas são falsas. Porém, as premissas não afetam a validade do argumento.

Certo.

020. (CESPE/FUNPRESP/ASSISTENTE/2016) Sob o ponto de vista da dedução lógica, o seguinte argumento é inválido.

Grande parte da população brasileira que tomou a vacina contra o vírus H1N1 não teve a doença.

O meu pai tomou a vacina contra o vírus H1N1.

Logo, o meu pai não terá a doença causada pelo vírus H1N1.

Trata-se de uma generalização indevida. Só se poderia afirmar que o "meu pai não terá a doença" se realmente todos os que tomassem a vacina não contraíssem a doença. Portanto, tem-se um argumento inválido.

Certo.

021. (CESPE/ANVISA/TÉCNICO ADMINISTRATIVO/2016) A sentença "As consequências de nossos atos são florestas devastadas, descongelamento das calotas polares, extinção de dezenas de espécies animais, poluição dos rios e diminuição drástica das reservas de água potável" apresenta um argumento válido.

Não há qualquer argumentação nessa sentença. Há apenas uma proposição simples.

A argumentação normalmente é feita usando o operador CONDICIONAL ou o operador BICONDICIONAL (SE E SOMENTE SE).

Errado.

2.5. TABELAS CRUZADAS

O uso de Tabelas Cruzadas é muito útil nas questões em que precisamos relacionar elementos de duas ou mais categorias diferentes e o enunciado dá diversas dicas.

Normalmente, essas questões não envolvem verdades e mentiras. As afirmações fornecidas no enunciado são sempre consideradas verdadeiras.

São questões que requerem bastante atenção. Vejamos um exemplo de enunciado possível:

EXEMPLO

(FCC/TCE-SP/2012) Para escolher a roupa que irá vestir em uma entrevista de emprego, Estela precisa decidir entre uma camisa branca e uma vermelha, entre uma calça azul e uma preta

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

e entre um par de sapatos preto e outro azul. Quatro amigas de Estela deram as seguintes sugestões:

- Amiga 1: Se usar a calça azul, então vá com os sapatos azuis.
- Amiga 2: Se vestir a calça preta, então não use a camisa branca.
- Amiga 3: Se optar pela camisa branca, então calce os sapatos pretos.
- Amiga 4: Se escolher a camisa vermelha, então vá com a calça azul.

Sabendo que Estela acatou as sugestões das quatro amigas, conclui-se que ela vestiu:

- a) A camisa branca com a calça e os sapatos azuis.
- b) A camisa branca com a calça e os sapatos pretos.
- c) A camisa vermelha com a calça e os sapatos azuis.
- d) A camisa vermelha com a calça e os sapatos pretos.
- e) A camisa vermelha com a calça azul e os sapatos pretos.

Resolução: Nesse caso, temos três categorias de elementos: calça, camisa e sapatos.

Para resolver a questão, a técnica mais simples é montar uma tabela em que escolhemos uma das categorias nas linhas e as demais nas colunas.

Como exemplo, vamos colocar nas linhas da tabela as cores possíveis de camisas, no caso, branca e vermelha. Nas colunas, vamos colocar tanto as calças como os sapatos.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca				
Camisa Vermelha				

A tabela será ainda mais prática e mais fácil de usar, se fizermos uma expansão. Ou seja, vamos aproveitar as colunas das calças e criar uma linha com as cores dos sapatos.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca				
Camisa Vermelha				
Sapato Azul				
Sapato Preto				

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Nessa tabela cruzada, somos capazes de investigar todas as combinações 2 a 2 de todas as categorias. Note que:

- No canto superior esquerdo, temos todas as combinações possíveis de camisas e calças;
- No canto superior direito, temos todas as combinações possíveis de camisas e sapatos;
- No canto inferior esquerdo, temos todas as combinações possíveis de sapatos e calças.

Figura 5: Visualização das Combinações Possíveis

A grande utilidade desse tipo de tabela cruzada é que, como ela inclui todas as combinações possíveis entre todas as categorias de elementos duas a duas, ela nos permite utilizar imediatamente qualquer tipo de informação fornecida pelo enunciado.

Vejamos como isso pode ser feito. A amiga 1 de Estela disse:

EXEMPLO

Amiga 1: Se usar a calça azul, então vá com os sapatos azuis.

Com base nisso, podemos dizer que Estela não pode usar a calça azul com os sapatos pretos. Logo, eliminamos a seguinte possibilidade.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

EXEMPLO

Amiga 2: Se vestir a calça preta, então não use a camisa branca.

Dessa forma, eliminamos a possibilidade de Estela vestir a calça preta e a camisa branca.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca		X		
Camisa Vermelha				
Sapato Azul				
Sapato Preto	X			

EXEMPLO

Amiga 3: Se optar pela camisa branca, então calce os sapatos pretos.

Dessa forma, Estela não pode optar pela camisa branca e sapato azul.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca		X	X	
Camisa Vermelha				
Sapato Azul		9		
Sapato Preto	X			

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

EXEMPLO

Amiga 4: Se escolher a camisa vermelha, então vá com a calça azul.

Portanto, Estela não pode usar a camisa vermelha com a calça preta.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca		X	x	
Camisa Vermelha		X		
Sapato Azul				
Sapato Preto	X			

Dessa forma, Estela não pode utilizar a calça preta, pois não há combinações de camisas adequadas para essa cor de calça. Portanto, Estela só pode usar a calça azul.

Como já sabemos que Estela não pode usar a calça azul com o sapato preto, necessariamente ela deve calçar os sapatos azuis.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca		X	X	
Camisa Vermelha		X		
Sapato Azul	\vee	X		
Sapato Preto	X	X		

Para usar o sapato azul, Estela deve usar a camisa vermelha. Assim, concluímos a tabela cruzada.

	Calça Azul	Calça Preta	Sapato Azul	Sapato Preto
Camisa Branca	X	X	X	x
Camisa Vermelha	V	X	V	x
Sapato Azul	V	X		
Sapato Preto	X	X		

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Portanto, Estela usará a camisa vermelha, a calça azul e o sapato azul (letra c). Essa questão poderia ser feita também sem o uso de tabelas cruzadas.

DIRETO DO CONCURSO

022. (FCC/TCE-SP/2012) Para escolher a roupa que irá vestir em uma entrevista de emprego, Estela precisa decidir entre uma camisa branca e uma vermelha, entre uma calça azul e uma preta e entre um par de sapatos preto e outro azul. Quatro amigas de Estela deram as seguintes sugestões:

- Amiga 1: Se usar a calça azul, então vá com os sapatos azuis.
- Amiga 2: Se vestir a calça preta, então não use a camisa branca.
- Amiga 3: Se optar pela camisa branca, então calce os sapatos pretos.
- Amiga 4: Se escolher a camisa vermelha, então vá com a calça azul.

Sabendo que Estela acatou as sugestões das quatro amigas, conclui-se que ela vestiu:

- a) A camisa branca com a calça e os sapatos azuis.
- b) A camisa branca com a calça e os sapatos pretos.
- c) A camisa vermelha com a calça e os sapatos azuis.
- d) A camisa vermelha com a calça e os sapatos pretos.
- e) A camisa vermelha com a calça azul e os sapatos pretos.

Vamos criar uma tabela com todas as possibilidades.

Calça	Camisa	Sapatos	
A P	ВV	PΑ	

Se Estela usar a calça azul, ela deve usar o sapato azul, seguindo o conselho da Amiga 1. Podemos usar o conselho da Amiga 3 a modus tollens. Como Estela não vai usar o sapato preto, ela não poderá usar a camisa branca, portanto, deverá usar a camisa vermelha.

Por fim, pelo conselho da amiga 4, se Estela usou a camisa vermelha, ela deverá usar a calça azul. Então, não houve nenhuma contradição. Perfeito.

Por outro lado, se Estela usar a calça preta, ela não poderá usar a camisa branca, seguindo o conselho da Amiga 2, portanto, ela deverá usar a camisa vermelha.

Porém, seguindo o conselho da Amiga 4, ela deveria usar a calça azul, o que é um absurdo. Portanto, Estela não pode usar a calça preta e deverá usar a calça azul.

Concluímos, portanto, que Estela usou a calça azul, o sapato azul e a camisa vermelha.

Letra c.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

023. (CESPE/BNB/ANALISTA DE SISTEMA/2018) Paulo, Tiago e João, analistas de sistema do BNB, têm, cada um deles, uma única e diferente formação: engenharia da informação (EI), sistemas de informação (SI) ou ciência da computação (CC). Suas idades são 25, 27 e 29 anos. João não é formado em EI e tem 25 anos de idade. O analista formado em SI tem 29 anos de idade. Paulo não é formado em CC, e sua idade não é 29 anos.

A respeito desses analistas, de suas formações e de suas idades, julgue o item que segue. Tiago tem 29 anos de idade.

Vamos montar uma tabela com todas as possibilidades de idades e profissões. Observe que o enunciado nos entregou apenas a idade de João.

Como sabemos que João tem 25 anos e que os três têm idades diferentes, devemos eliminar as possibilidades de que Paulo e Tiago tenham 25 anos. Além disso, o enunciado nos informou que João não é formado em EI, portanto, também vamos excluir essa possibilidade.

	25	27	29	EI	IS	СС
Paulo	X					
Tiago	X					
João	>	X	X	X		
EI						
SI						
cc			·		·	·

Além disso, o enunciado nos disse que "Paulo não tem 29 anos" e "Paulo não é formado em CC". Portanto, podemos riscar algumas possibilidades.

Já sabíamos que Paulo não podia ter 25 anos, porque essa era a idade de João. Como Paulo também não pode ter 29, concluímos que Paulo tem 27 anos. Logo, Tiago deve ter a idade de 29 anos.

	25	27	29	ЕІ	IS	СС
Paulo	x	✓	X			X
Tiago	x	X	~			
João	>	X	X	X		
EI						
SI						
cc						

Logo, Tiago tem 29 anos de idade. E a afirmação está correta. **Certo.**

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

024. (CESPE/BNB/ANALISTA DE SISTEMA/2018) ... Paulo tem 27 anos de idade.

Como vimos na última tabela montada, Paulo realmente tem 27 anos de idade.

	25	27	29	EI	IS	S
Paulo	X	\vee	X		X	X
Tiago	X	X	\triangleright	X	\vee	X
João	\triangleright	X	X	X	X	
EI	X	X	N.			
SI			X			
сс			X			

Afirmação correta.

^ -	
(' 🗅	rta

025. (CESPE/BNB/ANALISTA DE SISTEMA/2018) ... João é formado em ciência da computação.

Outra informação interessante é que "o analista formado em SI tem 29 anos". Como vimos que essa é a idade de Tiago, concluímos que Tiago é formado em SI.

	25	27	29	Ы	IS	СС
Paulo	X	✓	X		X	X
Tiago	X	X	>	X	>	X
João	>	X	X	X	X	
EI	X	X	<			
SI			X			
cc			X			

Como Paulo e João devem ter profissões diferentes de Tiago, devemos riscar as possibilidades de eles serem SI, como mostrado acima. Portanto, concluímos, as idades e as profissões de todos os três analistas.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

	25	27	29	EI	SI	ပ္ပ
Paulo	X	\vee	X	\vee	X	X
Tiago	X	X	\vee	x		x
João	N	X	X	X	X	V
EI	X	X	\vee			
SI	X	\checkmark	X			
сс	\searrow	X	X			

Logo, João realmente é formado em Ciência da Computação.

Certo.

3. VERDADES E MENTIRAS

Nas questões de Verdades e Mentiras, o enunciado cita que **algumas pessoas estão** falando a verdade e outras estão falando mentiras.

Para resolver esse tipo de questão, precisamos compreender bem dois temas específicos: o Paradoxo do Mentiroso e a Redução ao Absurdo.

3.1. PARADOXO DO MENTIROSO

O Paradoxo do Mentiroso consiste na afirmação:

EXEMPLO

"Eu sou um mentiroso"

Como já explicamos, nenhuma pessoa pode dizer essa frase. Se você fala a verdade, você tem que dizer que fala a verdade. Por outro lado, se você é um mentiroso, você vai mentir, portanto, também dirá que fala a verdade.

O paradoxo do mentiroso é muito utilizado em desafios lógicos. E, por conta disso, também aparece em questões de prova. Vejamos um exemplo.

Obs.: Desafio: você está numa bifurcação, na qual um dos caminhos te leva à Cidade da Mentira, onde todos os habitantes mentem, e o outro caminho te leva à Cidade da Verdade, onde todos os habitantes falam a verdade. Você deseja chegar à Cidade da Verdade, mas não sabe qual o caminho correto a tomar. Nessa bifurcação, você encontra um cidadão que você não sabe de onde vem. Ele lhe dá a oportunidade de fazer uma única pergunta para que você encontre o caminho certo. Qual pergunta você lhe faria?

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Pense um pouco sobre esse desafio. Somente um dos caminhos leva à cidade da verdade, você não sabe de onde vem a pessoa que está na bifurcação e só pode lhe fazer uma pergunta:

Figura 6: Qual pergunta você faria?

Solução: Uma boa pergunta seria "Para onde fica a sua casa?" Nesse caso, se o cidadão fosse da Cidade da Verdade, ele teria que apontar o caminho da Cidade da Verdade. Porém, se ele fosse da Cidade da Mentira, ele mentiria e, portanto, também apontaria o caminho da Cidade da Verdade. Sendo assim, necessariamente, você encontraria o caminho correto, mesmo sem saber a origem daquele cidadão.

Muito interessante, não é? E será que o Paradoxo do Mentiroso cai em provas? Ora, cai mais do que o Neymar.

026. (VUNESP/PREFEITURA DE SÃO JOSÉ DOS CAMPOS-SP/ASSISTENTE EM GESTÃO MUNICIPAL/2015) Na lendária ilha de Myjsf, todos os habitantes praticam ou surfe ou canoagem. Os homens que praticam surfe sempre dizem a verdade e os homens que praticam canoagem sempre mentem. Com as mulheres, acontece o contrário, ou seja, as mulheres que praticam surfe sempre mentem e as mulheres que praticam canoagem sempre dizem a verdade.

Ao chegar à ilha de Myjsf, um turista foi recebido por um de seus habitantes, que disse: "Eu falo a verdade".

Essa frase pode ter sido dita:

- a) Apenas por um homem.
- b) Apenas por uma mulher.
- c) Apenas por quem pratica surfe.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

- d) Apenas por quem pratica canoagem.
- e) Por qualquer habitante da ilha.

De acordo com o Paradoxo do Mentiroso, uma pessoa que fala a verdade deve dizer que fala a verdade. Por outro lado, um mentiroso também deve mentir, portanto, ele poderia dizer que fala a verdade.

Portanto, qualquer pessoa pode dizer que fala a verdade.

Letra e.

3.2. REDUÇÃO AO ABSURDO

A Redução ao Absurdo é uma técnica de demonstração que consiste em três passos:

- Supor que uma afirmação é verdadeira.
- Usar as premissas fornecidas pelo enunciado e chegar a uma contradição.
- Feito isso, está provado que a afirmação inicial era falsa.

Nós veremos vários exemplos sobre como aplicar o famoso princípio da Redução ao Absurdo nas próximas linhas. Em termos práticos, a Redução ao Absurdo é uma ferramenta muito útil para provar que uma afirmação é verdadeira ou falsa. Ela é muito utilizada naquelas questões de Verdades e Mentiras, ou seja, aquelas que dizem "uma pessoa está mentindo e as outras estão falando a verdade" ou que "uma pessoa está falando a verdade e as outras estão mentindo".

Podemos usar o seguinte procedimento:

- · Supor que uma proposição p é falsa.
- Utilizar as outras premissas do enunciado para fazer deduções lógicas até chegar a uma contradição.
- Ao chegar à contradição, provamos que a proposição p não pode ser falsa. Logo, p só pode ser verdadeira.

Vejamos um exemplo:

027. (VUNESP/CÂMARA MUNICIPAL DE DESCALVADO-SP/TÉCNICO EM INFORMÁTICA/2015) Em uma festa à fantasia, os convidados deveriam assumir, por toda a festa, um comportamento singular: ou falariam somente verdades, ou apenas mentiriam. Pessoas com a mesma fantasia combinariam com antecedência quais falariam verdades e quais falariam mentiras

e saberiam, portanto, qual o comportamento de cada um deles. Um garçom, desconhecedor do comportamento dos convidados, teve o seguinte diálogo com quatro rapazes fantasiados de pirata:

Garçom: Quais de vocês estão mentindo?

Pirata 1: - Nenhum.

Pirata 2: - Nenhum.

Pirata 3: - Esses 3 ao meu lado.

Pirata 4: - Os 4.

Garçom: Quem quer cerveja?

Pirata 1: – Eu quero.

Pirata 2: – Eu não quero.

Pirata 3: - Eu quero.

Pirata 4: - Eu guero.

Raciocinando logicamente sobre esse diálogo, o garçom serviu cerveja para os piratas:

a) 1 e 3

b) 1 e 4

c) 1, 3 e 4

d) 2 e 3

e) 2 e 4

O garçom deve saber que fala a verdade e quem mente por esse diálogo.

Garçom: Quais de vocês estão mentindo?

Pirata 1: - Nenhum.

Pirata 2: - Nenhum.

Pirata 3: - Esses 3 ao meu lado.

Pirata 4: - Os 4.

Se o pirata 1 estivesse dizendo a verdade, então, necessariamente, os piratas 3 e 4 também falariam a verdade. Porém, o pirata 3 diz que há mentirosos, o que contradiz o pirata 1. Chegamos, portanto, a um absurdo.

Logo, o pirata 1 é mentiroso. Como já temos um pirata mentiroso, o pirata 2 também mente ao dizer que não há nenhum mentiroso.

Se o pirata 3 estivesse mentindo, então, necessariamente, o pirata 4 falaria a verdade. Nesse caso, quando o pirata 4 fala que os 4 mentem, isso seria uma mentira. Portanto, chegamos a um absurdo.

Sendo assim, o pirata 3 fala a verdade, logo o pirata 4 mente.

Pirata	Fala	Verdade?	Ação	
1	Eu quero	Mentira	Não servir	
2	Eu não quero	Mentira	Servir	
3	Eu quero	Verdade	Servir	
4	Eu quero	Mentira	Não servir	

Portanto, o garçom serviu a cerveja aos piratas 2 e 3.

Letra d.

3.3. DUAS PESSOAS EM CONTRADIÇÃO

Outro atalho muito útil oriundo do Princípio da Não-Contradição para a resolução de Verdades e Mentiras. Anote o seguinte:

Obs.: Sempre que uma pessoa diz que a outra está mentindo, uma das duas está mentindo e a outra está falando a verdade.

A mesma regra é válida quando duas pessoas entram em contradição, uma delas está falando a verdade e a outra está mentindo. Por exemplo:

A: "Pedro comeu chocolate"

B: "Pedro não comeu chocolate"

Nesse caso, A e B estão em contradição. Portanto, necessariamente um dos dois está falando a verdade e o outro está mentindo.

DIRETO DO CONCURSO

028. (FCC/TRT/9ª REGIÃO-PR/TÉCNICO JUDICIÁRIO/2022) Uma camiseta autografada foi comprada por um e apenas um torcedor de um grupo de cinco amigos: Alberto, Breno, Carlos, Davi e Ernesto. Perguntados sobre quem comprou a camiseta, cada um deles respondeu:

Alberto: Eu não comprei.

Breno: Quem comprou foi o Carlos. Carlos: Foi Ernesto quem comprou.

Davi: Alberto disse a verdade.

Ernesto: Breno mentiu.

Sabendo-se que apenas um dos amigos mentiu e que todos os outros disseram a verdade, o dono da camiseta é

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Thiago Cardoso

- a) Breno.
- b) Ernesto.
- c) Alberto.
- d) Carlos.

Como Ernesto disse que Breno mentiu, podemos concluir que um deles está mentindo e o outro está falando a verdade.

Nesse caso, podemos concluir de cara que Carlos está falando a verdade, portanto, foi Ernesto quem comprou a camisa.

Mas, podemos ir além e investigar todas as frases.

Vamos, então, supor que Breno mentiu e que Ernesto está falando a verdade. Nesse caso, o que aconteceria?

Hipótese: Breno mentiu.

Alberto: Eu não comprei. (V)

Breno: Quem comprou foi o Carlos. (F)

Carlos: Foi Ernesto quem comprou. (V)

Davi: Alberto disse a verdade. (V)

Ernesto: Breno mentiu. (V)

Vamos agora conferir:

Segundo Breno, temos que Carlos não comprou a camisa.

Segundo Alberto, Alberto também não comprou a camisa.

Segundo Carlos, Ernesto comprou a camisa.

Segundo Davi, Alberto diz a verdade.

Segundo Ernesto, Breno mentiu, o que é coerente com nossa hipótese.

Note que tudo se encaixou e não houve incoerências. Logo, nossa hipótese que Breno mentiu foi validada, pois com essa configuração, apenas um dos amigos mentiu, isto é, o próprio Breno. Com base nisso, podemos concluir que Ernesto comprou a camisa, pois Carlos está falando a verdade.

Letra b.

029. (FCC/PREFEITURA DE TERESINA-PI/ASSISTENTE TÉCNICO DE SAÚDE/2016) Paulo, Francisco, Carlos, Henrique e Alexandre são irmãos, sendo que apenas um deles quebrou um vaso na sala de casa. Ao investigar o ocorrido, a mãe dos cinco ouviu de cada um as seguintes afirmações:

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Paulo: - Fui eu quem quebrou o vaso.

Francisco: - Eu não quebrei o vaso.

Carlos: - Foi Alexandre quem quebrou o vaso.

Henrique: - Francisco está mentindo.

Alexandre: - Não foi Carlos quem quebrou o vaso.

Se apenas um dos cinco irmãos disse a verdade, quem quebrou o vaso foi

- a) Henrique.
- b) Francisco.
- c) Paulo.
- d) Carlos.
- e) Alexandre.

Prestemos bastante atenção à frase "Francisco está mentindo" dita por Henrique.

Temos que, se Henrique está falando a verdade, então Francisco mente. Por outro lado, se Henrique está mentindo, então Francisco fala a verdade.

Sendo assim, ou Henrique ou Francisco é o irmão que fala a verdade.

Suponha que Henrique fale a verdade. Nesse caso, Francisco é que quebrou o vaso. Porém, isso entraria em contradição com a afirmação de Alexandre, pois, ao afirmar que "não foi Carlos quem quebrou o vaso", isso estaria verdadeiro, porém, chocaria com a restrição do enunciado de que só um deles fala a verdade. Trata-se, portanto, de um absurdo.

Sendo assim, Henrique está mentindo e Francisco fala a verdade. Sendo assim, Francisco não quebrou o vaso.

Como Paulo e Carlos estão mentindo, já sabemos que nem Paulo nem Alexandre quebraram o vaso. Por fim, como Alexandre também está mentindo, concluímos que foi Carlos quem quebrou o vaso.

Letra d.

030. (FGV/MPE-RJ/OFICIAL DO MINISTÉRIO PÚBLICO/2019) Chico, Serafim, Juvenal e Dirceu trabalham juntos e, em certo momento, Dirceu pergunta: Que dia do mês é hoje? As respostas dos outros três foram:

Chico: hoje não é dia 15.

Serafim: ontem foi dia 13.

Juvenal: hoje é dia 15.

Sabe-se que um deles mentiu e os outros disseram a verdade.

O dia em que Dirceu fez a pergunta foi dia:

- a) 13;
- b) 14;
- c) 15;
- d)16;
- e) 17.

Sabe-se que apenas um mentiu e os outros dois disseram a verdade. Temos as seguintes afirmações:

- · Chico: hoje não é dia 15.
- Serafim: ontem foi dia 13. Isto é, hoje é dia 14.
- · Juvenal: hoje é dia 15.

Note que Chico e Juvenal estão se contradizendo. Portanto, um está necessariamente a verdade e o outro está mentindo.

Suponhamos que Juvenal esteja falando a verdade. Nesse caso, Chico e Serafim ambos estariam mentindo, e isso se contrapõe ao enunciado, pois o enunciado exigiu que 2 falassem a verdade.

Portanto, Juvenal deve ter mentido e hoje não é dia 15. Desse modo, Chico e Serafim precisam estar falando a verdade. Desse modo, podemos concluir que "hoje não é dia 15", porque Chico falou a verdade e que "ontem foi dia 13", porque Serafim falou a verdade. Desse modo, hoje é dia 14.

Letra b.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

RESUMO

Proposições Especiais:

 Tautologia: é sempre verdadeira, independentemente do valor lógico das proposições atômicas que a constituem;

"Marcos é japonês ou Marcos não é japonês"

 Contradição: é sempre falsa, independentemente do valor lógico das proposições atômicas que a constituem;

"Marcos é japonês e Marcos não é japonês"

· Contingência: pode ser verdadeira ou falsa.

"Marcos é japonês e Isabela é paulista"

Argumento

- A validade de um argumento não depende do valor lógico das premissas;
- Sofismas: são argumentos inválidos feitos com o propósito de enganar o interlocutor;
- · Falácias: são argumentos inválidos feitos equivocadamente.

Redução ao Absurdo

- Suponha que a tese está errada;
- Faça deduções lógicas e chegue a uma contradição;
- · Ao chegar a uma contradição, provamos que a tese inicial está correta.

Paradoxo do Mentiroso

- Ninguém pode dizer "eu sou mentiroso"
- Uma pessoa sincera n\u00e3o pode dizer "eu sou mentiroso", porque estaria mentindo;
- Um mentiroso não pode dizer "eu sou mentiroso", porque ele estaria falando a verdade,
 e o mentiroso jamais fala a verdade;
- · Logo, "eu sou mentiroso" não é uma proposição, mas sim um paradoxo.

Verdades e Mentiras

- São as questões que dão várias afirmações e dizem que "somente um está falando a verdade" ou "somente um está mentindo";
- Procure por duas pessoas que se contradizem. O caso mais comum é quando A diz que B está mentindo;
- Sempre que duas pessoas se contradizem, uma está mentindo e a outra está falando a verdade;
- · Assim, você descobrirá rapidamente quem mentiu e quem falou a verdade.

Thiago Cardoso

MAPAS MENTAIS

Tautologia

Contradição

"Marcos "Marcos é japonês ou é japonês e Marcos não é Marcos não é japonês" japonês"

Contingência

"Marcos é japonês e isabela é paulista"

Sofismas

São argumentos inválidos feitos com o propósito de <mark>enganar</mark> o interlocutor.

Falácias

São argumentos inválidos feitos equivocadamente.

TRUE

Zógica de Z rgumentação

A validade de um argumento não depende do valor lógico das premissas.

Suponha que a tese está errada

Faça deduções lógicas e chegue a uma contradição

Ao chegar a uma contradição, provamos que a tese inicial está correta

Paradoxo do Mentiroso

Ninguém pode dizer "eu sou mentiroso"

Uma pessoa sincera não pode dizer "eu sou mentiroso", porque estaria mentindo

Um mentiroso não pode dizer "eu sou mentiroso", porque ele estaria falando a verdade, e o mentiroso jamais fala a verdade

Logo, "eu sou mentiroso" não é uma proposição, mas sim um paradoxo

São as questões que dão várias afirmações e dizem que "somente um está falando a verdade" ou "somente um está mentindo"

Procure por duas pessoas que se contradizem. O caso mais comum é quando A diz que B está mentindo

Sempre que duas pessoas se contradizem, uma está mentindo e a outra está falando a verdade

Assim, você descobrirá rapidamente quem mentiu e quem falou a verdade

QUESTÕES COMENTADAS EM AULA

001. (CESPE/CEBRASPE/PO-AL/PAPILOSCOPISTA/2023) Considere os conectivos lógicos usuais e assuma que as letras maiúsculas representam proposições lógicas simples. Com base nessas informações, julgue o item seguinte relativo à lógica proposicional.

A proposição lógica $(P \Rightarrow Q) \Leftrightarrow ((\sim P) \lor Q)$ é uma tautologia.

002. (IBFC/PREFEITURA DE SÃO GONÇALO DO AMARANTE-RN/ADMINISTRADOR/2021) Sejam duas proposições lógicas simples: A e B, e a representação simbólica para a negação e os conectivos lógicos abaixo listadas:

~A	negação de A
AΛB	AeB
AVB	A ou B
$A \rightarrow B$	se A, então B
$A \leftrightarrow B$	A se, e somente se, B

Considere as proposições enumeradas:

I. A Λ ~A

II.
$$(A \wedge B) \vee \sim (A \wedge B)$$

III.
$$(A \rightarrow B) \leftrightarrow (\sim B \rightarrow \sim A)$$

Uma tautologia é uma proposição lógica que pode apenas assumir valores-verdade verdadeiros (V), uma antinomia é a negação de uma tautologia, e, portanto, é uma proposição composta em que resulta apenas em valores lógicos falsos (F). Assinale a alternativa que corretamente classifica as proposições completas enumeradas nesses termos.

- a) I Antinomia; II Tautologia; III Tautologia
- b) I Tautologia; II Antinomia; III Tautologia
- c) I Tautologia; II Tautologia; III Antinomia
- d) I Tautologia; II Tautologia; III Tautologia

003. (CESPE/BNB/ESPECIALISTA TÉCNICO ANALISTA DE SISTEMA/2018) Julgue o item que segue, a respeito de lógica proposicional.

Se P e Q forem proposições simples, então a proposição $\neg [PV(\neg Q)] \leftrightarrow [(\neg P) \land Q]$ é uma tautologia.

004. (VUNESP/PC-SP/DESENHISTA/2014) Considerando a tabela-verdade apresentada, assinale a alternativa correta.

р	¬р	р∨¬р	
v	F	V	
F	V	V	

A proposição representa:

- a) Uma contradição.
- b) Uma tautologia.
- c) Uma dupla negação.
- d) Uma implicação.
- e) Uma contingência.

005. (CESPE/SEBRAE/2010) Julgue o seguinte item.

006. (VUNESP/PC-SP/ESCRIVÃO/2014) Um dos princípios fundamentais da lógica é o da **não contradição**. Segundo este princípio, nenhuma proposição pode ser simultaneamente verdadeira e falsa sob o mesmo

aspecto. Uma das razões da importância desse princípio é que ele permite realizar inferências e confrontar descrições diferentes do mesmo acontecimento sem o risco de se chegar a conclusões contraditórias. Assim sendo, o princípio da não contradição.

- a) Fornece pouco auxílio lógico para investigar a legitimidade de descrições.
- b) Permite conciliar descrições contraditórias entre si e relativizar conclusões.
- c) Exibe propriedades lógicas inapropriadas para produzir inferências válidas.
- d) Oferece suporte lógico para realizar inferências adequadas sobre descrições.
- e) Propicia a produção de argumentos inválidos e mutuamente contraditórios.

007. (VUNESP/PC-SP/2014) O princípio da não contradição, inicialmente formulado por Aristóteles (384-322 a.C.), permanece como um dos sustentáculos da lógica clássica. Uma proposição composta é contraditória quando:

- a) seu valor lógico é falso e todas as proposições simples que a constituem são falsas.
- b) uma ou mais das proposições que a constituem decorre/ decorrem de premissas sempre falsas.
- c) seu valor lógico é sempre falso, não importando o valor de suas proposições constituintes.
- d) suas proposições constituintes não permitem inferir uma conclusão sempre verdadeira
- e) uma ou mais das proposições que a constituem possui/ possuem valor lógico indeterminável.

- **008.** (VUNESP/PC-SP/DESENHISTA/2014) Joana é cabeleireira. Ela corta o cabelo somente das mulheres que não cortam seus próprios cabelos. No entanto, se Joana corta seu próprio cabelo, ela passará a fazer parte do grupo de mulheres que não cortam seu próprio cabelo. A situação apresentada é considerada:
- a) Uma conjunção.
- b) Uma tautologia.
- c) Uma disjunção.
- d) Um paradoxo.
- e) Um conectivo.
- **009.** (CESPE/INSS/TÉCNICO DO SEGURO SOCIAL/2016) Para quaisquer proposições p e q, com valores lógicos quaisquer, a condicional $P \rightarrow (q \rightarrow p)$ será, sempre, uma tautologia.
- **010.** (VUNESP/PC-SP/DESENHISTA/2014) Assinale a alternativa que apresenta um argumento válido.
- a) O cisne é uma ave. Aves são ovíparas. Logo, o cisne é ovíparo.
- b) João é contador. João é alto. Logo, contadores são altos.
- c) Pulgas não são répteis. Répteis não são mamíferos. Logo, pulgas são insetos.
- d) Pedro não gosta de arroz. O arroz não é orgânico. Logo, Pedro não é orgânico.
- e) América é um continente. Brasil fica na América. Logo, Brasil não é um continente.
- **011.** (VUNESP/PC-SP/ESCRIVÃO DE POLÍCIA/2014) Um argumento é considerado válido quando sua conclusão se segue logicamente das premissas. Mas um argumento pode ser logicamente válido e, mesmo assim, dar origem a uma conclusão comprovadamente falsa. Isso ocorre porque:
- a) a conclusão do argumento não decorre das premissas
- b) a premissa maior do argumento é sempre verdadeira.
- c) todas as premissas do argumento são verdadeiras.
- d) a premissa menor do argumento é sempre falsa.
- e) pelo menos uma premissa do argumento é falsa
- **012.** (CESPE/FUNPRESP/ANALISTA DE COMUNICAÇÃO E MARKETING/2016) Os sofismas são considerados argumentos válidos; as falácias, argumentos inválidos.
- **013.** (FCC/SEFAZ-SP/AGENTE FISCAL DE RENDAS/1997) Assinale a alternativa em que ocorre uma conclusão verdadeira (que corresponde à realidade) e o argumento inválido (do ponto de vista lógico).
- a) Sócrates é homem e todo homem é mortal, portanto, Sócrates é mortal.
- b) Toda pedra é um homem, pois alguma pedra é um ser, e todo ser é homem.

- c) Toda cadeira é um objeto, e todo objeto tem cinco pés, portanto, algumas cadeiras têm quatro pés.
- d) Todo pensamento é um raciocínio, portanto, todo pensamento é um movimento, visto que todos os raciocínios são movimentos.
- e) Todo cachorro mia, e nenhum gato mia, portanto, cachorros não são gatos.
- 014. (IADES/CFA/2010) Considere os argumentos a seguir.

Argumento I: Se nevar, então vai congelar. Não está nevando. Logo, não vai congelar.

Argumento II: Se nevar então vai congelar. Não está congelando. Logo, não vai nevar.

Assim, é correto concluir que:

- a) Ambos são falácias
- b) Ambos são tautologias
- c) Argumento I é uma falácia e o argumento II é uma tautologia.
- d) Argumento I é uma tautologia e o argumento II é uma falácia.
- **015.** (VUNESP/PC-SP/INVESTIGADOR/2014/ADAPTADA) Assinale a alternativa que representa a estrutura do seguinte argumento:

Se João é professor, então João ministra aulas.

João não é professor.

Logo, João não ministra aulas.

- a) Modus tollens.
- b) Adição.
- c) Falácia.
- d) Silogismo Disjuntivo.
- e) Modus ponens.
- **016.** (CESPE/BNB/ANALISTA DE SISTEMA/2018) A partir do argumento "A saúde é uma fonte de riqueza, pois as pessoas saudáveis são muito trabalhadoras, e as pessoas trabalhadoras sempre enriquecem.", julgue o próximo item.

A proposição "A saúde é uma fonte de riqueza." é a conclusão do referido argumento.

017. (CESPE/BNB/ANALISTA DE SISTEMA/2018) A partir do argumento "A saúde é uma fonte de riqueza, pois as pessoas saudáveis são muito trabalhadoras, e as pessoas trabalhadoras sempre enriquecem.", julgue o próximo item.

O referido argumento constitui um argumento válido.

018. (CESPE/FUNPRESP/2016) O raciocínio Nenhum peixe é ave. Logo, nenhuma ave é peixe é válido.

019. (CESPE/FUNPRESP/CONHECIMENTOS BÁSICOS/2016) Considere o seguinte silogismo: Em cada mão, os seres humanos têm quatro dedos.

Em cada pé, os seres humanos têm três dedos.

Logo, os seres humanos têm mais dedos nas mãos que nos pés.

No silogismo apresentado, a conclusão é uma consequência das premissas.

020. (CESPE/FUNPRESP/ASSISTENTE/2016) Sob o ponto de vista da dedução lógica, o seguinte argumento é inválido.

Grande parte da população brasileira que tomou a vacina contra o vírus H1N1 não teve a doença.

O meu pai tomou a vacina contra o vírus H1N1.

Logo, o meu pai não terá a doença causada pelo vírus H1N1.

- **021.** (CESPE/ANVISA/TÉCNICO ADMINISTRATIVO/2016) A sentença "As consequências de nossos atos são florestas devastadas, descongelamento das calotas polares, extinção de dezenas de espécies animais, poluição dos rios e diminuição drástica das reservas de água potável" apresenta um argumento válido.
- **022.** (FCC/TCE-SP/2012) Para escolher a roupa que irá vestir em uma entrevista de emprego, Estela precisa decidir entre uma camisa branca e uma vermelha, entre uma calça azul e uma preta e entre um par de sapatos preto e outro azul. Quatro amigas de Estela deram as seguintes sugestões:
- Amiga 1: Se usar a calça azul, então vá com os sapatos azuis.
- Amiga 2: Se vestir a calça preta, então não use a camisa branca.
- Amiga 3: Se optar pela camisa branca, então calce os sapatos pretos.
- Amiga 4: Se escolher a camisa vermelha, então vá com a calça azul.

Sabendo que Estela acatou as sugestões das quatro amigas, conclui-se que ela vestiu:

- a) A camisa branca com a calça e os sapatos azuis.
- b) A camisa branca com a calça e os sapatos pretos.
- c) A camisa vermelha com a calça e os sapatos azuis.
- d) A camisa vermelha com a calça e os sapatos pretos.
- e) A camisa vermelha com a calça azul e os sapatos pretos.
- **023.** (CESPE/BNB/ANALISTA DE SISTEMA/2018) Paulo, Tiago e João, analistas de sistema do BNB, têm, cada um deles, uma única e diferente formação: engenharia da informação (EI), sistemas de informação (SI) ou ciência da computação (CC). Suas idades são 25, 27 e 29 anos. João não é formado em EI e tem 25 anos de idade. O analista formado em SI tem 29 anos de idade. Paulo não é formado em CC, e sua idade não é 29 anos.

A respeito desses analistas, de suas formações e de suas idades, julgue o item que segue. Tiago tem 29 anos de idade.

024. (CESPE/BNB/ANALISTA DE SISTEMA/2018) ... Paulo tem 27 anos de idade.

025. (CESPE/BNB/ANALISTA DE SISTEMA/2018) ... João é formado em ciência da computação.

026. (VUNESP/PREFEITURA DE SÃO JOSÉ DOS CAMPOS-SP/ASSISTENTE EM GESTÃO MUNICIPAL/2015) Na lendária ilha de Myjsf, todos os habitantes praticam ou surfe ou canoagem. Os homens que praticam surfe sempre dizem a verdade e os homens que praticam canoagem sempre mentem. Com as mulheres, acontece o contrário, ou seja, as mulheres que praticam surfe sempre mentem e as mulheres que praticam canoagem sempre dizem a verdade.

Ao chegar à ilha de Myjsf, um turista foi recebido por um de seus habitantes, que disse: "Eu falo a verdade".

Essa frase pode ter sido dita:

- a) Apenas por um homem.
- b) Apenas por uma mulher.
- c) Apenas por quem pratica surfe.
- d) Apenas por quem pratica canoagem.
- e) Por qualquer habitante da ilha.

027. (VUNESP/CÂMARA MUNICIPAL DE DESCALVADO-SP/TÉCNICO EM INFORMÁTICA/2015) Em uma festa à fantasia, os convidados deveriam assumir, por toda a festa, um comportamento singular: ou falariam somente verdades, ou apenas mentiriam. Pessoas com a mesma fantasia combinariam com antecedência quais falariam verdades e quais falariam mentiras e saberiam, portanto, qual o comportamento de cada um deles. Um garçom, desconhecedor do comportamento dos convidados, teve o seguinte diálogo com quatro rapazes fantasiados de pirata:

Garçom: Quais de vocês estão mentindo?

Pirata 1: - Nenhum.

Pirata 2: - Nenhum.

Pirata 3: - Esses 3 ao meu lado.

Pirata 4: - Os 4.

Garçom: Quem quer cerveja?

Pirata 1: – Eu quero.

Pirata 2: – Eu não quero.

Pirata 3: - Eu quero.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Pirata 4: - Eu quero.

Raciocinando logicamente sobre esse diálogo, o garçom serviu cerveja para os piratas:

- a) 1 e 3
- b) 1 e 4
- c) 1, 3 e 4
- d) 2 e 3
- e) 2 e 4

028. (FCC/TRT/9ª REGIÃO-PR/TÉCNICO JUDICIÁRIO/2022) Uma camiseta autografada foi comprada por um e apenas um torcedor de um grupo de cinco amigos: Alberto, Breno, Carlos, Davi e Ernesto. Perguntados sobre quem comprou a camiseta, cada um deles respondeu: Alberto: Eu não comprei.

Breno: Quem comprou foi o Carlos.

Carlos: Foi Ernesto quem comprou.

Davi: Alberto disse a verdade.

Ernesto: Breno mentiu.

Sabendo-se que apenas um dos amigos mentiu e que todos os outros disseram a verdade, o dono da camiseta é

- a) Breno.
- b) Ernesto.
- c) Alberto.
- e) Carlos.

029. (FCC/PREFEITURA DE TERESINA-PI/ASSISTENTE TÉCNICO DE SAÚDE/2016) Paulo, Francisco, Carlos, Henrique e Alexandre são irmãos, sendo que apenas um deles quebrou um vaso na sala de casa. Ao investigar o ocorrido, a mãe dos cinco ouviu de cada um as seguintes afirmações:

Paulo: - Fui eu quem quebrou o vaso.

Francisco: - Eu não quebrei o vaso.

Carlos: - Foi Alexandre quem quebrou o vaso.

Henrique: - Francisco está mentindo.

Alexandre: - Não foi Carlos quem quebrou o vaso.

Se apenas um dos cinco irmãos disse a verdade, quem quebrou o vaso foi

- a) Henrique.
- b) Francisco.
- c) Paulo.
- d) Carlos.
- e) Alexandre.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Thiago Cardoso

030. (FGV/MPE-RJ/OFICIAL DO MINISTÉRIO PÚBLICO/2019) Chico, Serafim, Juvenal e Dirceu trabalham juntos e, em certo momento, Dirceu pergunta: Que dia do mês é hoje? As respostas dos outros três foram:

Chico: hoje não é dia 15. Serafim: ontem foi dia 13. Juvenal: hoje é dia 15.

Sabe-se que um deles mentiu e os outros disseram a verdade.

O dia em que Dirceu fez a pergunta foi dia:

- a) 13;
- b) 14;
- c) 15;
- d)16;
- e) 17.

QUESTÕES DE CONCURSO

031. (FGV/SEFAZ-BA/AGENTE DE TRIBUTOS ESTADUAIS/2022) Luana e Vanessa estão brincando de "par ou ímpar" da seguinte maneira: elas escondem as mãos, uma delas escolhe "par" e a outra escolhe "ímpar" e, depois, ao mesmo tempo, cada uma delas mostra uma de suas mãos com 1, 2, 3, 4 ou 5 dedos estendidos. Se o total de dedos estendidos das duas for "par" ganha a que escolheu "par". Caso contrário, ganha a que escolheu "ímpar". Luana escolher "par" e Vanessa escolheu "ímpar". É correto afirmar que

- a) as duas têm a mesma probabilidade de ganhar.
- b) a probabilidade de Luana ganhar é maior do que a de Vanessa.
- c) a probabilidade de Vanessa ganhar é maior do que a de Luana.
- d) a probabilidade de Luana ganhar é 2/5.
- e) a probabilidade de Vanessa ganhar é 2/5.

032. (FGV/SEFAZ-BA/AGENTE DE TRIBUTOS ESTADUAIS/2022) As amigas Ana, Bia e Carol, têm idades diferentes. Uma delas é médica, outra é enfermeira e a outra é professora. Cada uma delas tem um animal de estimação diferente: gato, cachorro e peixe de aquário. Sabe-se que:

- · A mais nova é a professora.
- · Ana adora seu cachorro.
- · A enfermeira é a dona do gato.
- · Carol não é a médica.
- · Bia é a mais velha.
- · A médica não é a mais velha.

É correto concluir que

- a) Ana é a enfermeira.
- b) Bia é a dona do peixe.
- c) Carol é a mais velha.
- d) Ana é a mais nova.
- e) Bia é a dona do gato

033. (CESPE/SEFAZ-RS/AUDITOR FISCAL DA RECEITA ESTADUAL/2019) Texto 1A10-I No exercício de suas atribuições profissionais, auditores fiscais sempre fazem afirmações verdadeiras, ao passo que sonegadores sempre fazem proposições falsas. Durante uma audiência para tratar da autuação da empresa X, um auditor fiscal fez as seguintes afirmações sobre essa empresa:

- A1: "Se identifiquei erro ou inconsistência na declaração de imposto da empresa X, eu a notifiquei".
- · A2: "Se o erro não foi sanado, eu a autuei".
- · A3: "Se a empresa não recorreu da autuação, eu a multei".

Nessa situação hipotética, à luz da premissa estabelecida no texto 1A10-I, assinale a opção que apresenta uma proposição necessariamente verdadeira.

- a) "A empresa X errou em sua declaração de imposto".
- b) "A empresa X apresentou inconsistência em sua declaração de imposto".
- c) "A empresa X foi notificada, autuada e multada".
- d) "A empresa X não sanou o erro identificado e foi autuada".
- e) "A empresa X recorreu da autuação ou foi multada".

034. (CESPE/CGE-CE/2019) Argumento CB1AA5-II: No argumento seguinte, as proposições P1, P2 e P3 são as premissas, e C é a conclusão.

- P1: Se os recursos foram aplicados em finalidade diversa da prevista ou se a obra foi superfaturada, então a prestação de contas da prefeitura não foi aprovada.
- P2: Se a prestação de contas da prefeitura não foi aprovada, então a prefeitura ficou impedida de celebrar novos convênios ou a prefeitura devolveu o dinheiro ao governo estadual
- P3: A obra não foi superfaturada, e a prefeitura não devolveu o dinheiro ao governo estadual.
- C: A prefeitura ficou impedida de celebrar novos convênios.

As proposições P1, P2, P3 e C, que integram o argumento CB1A5-II, são compostas por diversas proposições simples, e o argumento CB1A5-II pode ser escrito, na forma simbólica, como P1∧P2∧P3→C. Dessa forma, na tabela-verdade do argumento CB1A5-II, a quantidade mínima de linhas que precisam ser preenchidas para se determinar a validade ou invalidade do argumento é igual a

- a) 4.
- b) 8.
- c) 16.
- d) 32.
- e) 64.

035. (FGV/SEFAZ-ES/CONSULTOR DO TESOURO ESTADUAL/2022) Sabe-se que as 3 sentenças a seguir são verdadeiras.

- · Se Pedro é capixaba ou Raquel não é carioca, então Renata não é pernambucana.
- Se Pedro não é capixaba ou Renata é pernambucana, então Raquel é carioca.
- · Se Raquel não é carioca, então Pedro é capixaba e Renata é pernambucana.

É correto concluir que

- a) Pedro é capixaba.
- b) Raquel é carioca.
- c) Renata é pernambucana.
- d) Pedro não é capixaba.
- e) Raquel não é carioca.

036. (FCC/SEFAZ-SC/ANALISTA DA RECEITA ESTADUAL IV/2021) Das três afirmações a seguir, apenas uma é verdadeira.

- I Se Pedro ama Júlia, então Bia vai mudar para a Espanha.
- II Bia vai mudar para a Espanha ou virar cabeleireira, ou as duas coisas.
- III Bia não vai virar cabeleireira e Pedro não ama Júlia.

Nessas condições, é necessariamente verdade que

- a) Pedro ama Júlia e Bia vai mudar para a Espanha.
- b) Pedro ama Júlia e Bia vai virar cabeleireira.
- c) Pedro não ama Júlia e Bia vai mudar para a Espanha.
- d) Pedro não ama Júlia e Bia vai virar cabeleireira.
- e) Bia não vai mudar para a Espanha nem virar cabeleireira.

037. (FCC/PREFEITURA DE SÃO JOSÉ DO RIO PRETO-SP/AGENTE ADMINISTRATIVO/2019) Além da língua portuguesa, Ana, Bia e Carla falam fluentemente apenas uma outra língua. Essas línguas são inglês, francês e espanhol, não necessariamente nessa ordem. Considere

as seguintes afirmações feitas por elas:

Ana: "Eu não sou fluente em inglês."

Bia: "Eu sou fluente em inglês."

Carla: "Bia é fluente em inglês e eu sou fluente em francês."

Sabendo que apenas uma dessas meninas mentiu, as línguas em que Ana, Bia e Carla são fluentes, além da língua portuguesa, são, respectivamente,

- a) francês, inglês e espanhol.
- b) espanhol, francês e inglês.
- c) espanhol, inglês e francês.
- d) inglês, francês e espanhol.
- e) inglês, espanhol e francês.

038. (INSTITUTO AOCP/PREFEITURA DE JOÃO PESSOA-PB/ASSISTENTE SOCIAL EM SAÚDE/2021) Cinco pessoas, identificadas como P_1 , P_2 , P_3 , P_4 e P_5 , estão em uma clínica médica aguardando a vez para realizar dois tipos de exames laboratoriais. Sabe-se que duas dessas pessoas, cada uma na sua vez, irão fazer o exame de Hemograma e as outras três,

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

também cada um na sua vez, irão fazer o exame de Glicemia. Sabe-se também que P_3 e P_4 irão fazer o mesmo tipo de exame, P_2 e P_4 irão fazer exames de tipos diferentes e P_2 e P_5 irão fazer exames de tipos diferentes. Com base nessas informações, é correto afirmar que

- a) P1 irá fazer o exame de Glicemia.
- b) P5 irá fazer o exame de Hemograma.
- c) P3 irá fazer o exame de Hemograma.
- d) P2 irá fazer o exame de Glicemia.
- e) P4 irá fazer o exame de Glicemia.

039. (VUNESP/PC-SP/INVESTIGADOR DE POLÍCIA/2013) Em um reino distante, um homem cometeu um crime e foi condenado à forca. Para que a sentença fosse executada, o rei mandou que construíssem duas forcas e determinou que fossem denominadas de Forca da Verdade e Forca da Mentira. Além disso, ordenou que na hora da execução o prisioneiro deveria proferir uma sentença assertiva qualquer. Se a sentença fosse verdadeira, ele deveria ser enforcado na Forca da Verdade.

Se, por outro lado, a sentença fosse falsa, ele deveria ser enforcado na Forca da Mentira. Assim, no momento da execução, foi solicitado que o prisioneiro proferisse a sua asserção. Ao fazer isso, o carrasco ficou completamente sem saber o que fazer e a execução foi cancelada!

Assinale qual das alternativas representa a asserção que o prisioneiro teria proferido.

- a) "Está chovendo forte."
- b) "O carrasco não vai me executar."
- c) "A soma dos ângulos de um triângulo é cento e oitenta graus."
- d) "Dois mais dois é igual a cinco."
- e) "Serei enforcado na Forca da Mentira."

040. (FGV/MPE-AL/TÉCNICO DO MINISTÉRIO PÚBLICO/2018) Em certo dia útil da semana (de segunda a sexta-feira) Mário e Jorge fizeram duas declarações cada um. Um deles disse a verdade nas duas declarações e o outro mentiu nas duas: - Mário: anteontem foi sábado.

- Jorge: depois de amanhã não será sábado.
- Mário: amanhã será quarta-feira.
- Jorge: ontem não foi quinta-feira.

O dia da semana em que eles fizeram essas declarações foi

- a) segunda-feira.
- b) terça-feira.
- c) quarta-feira.
- d) quinta-feira.
- e) sexta-feira.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

- **041.** (FGV/MPE-AL/TÉCNICO DO MINISTÉRIO PÚBLICO/2018) Gabriel, Lucas e Mateus trabalham na mesma empresa em Maceió, mas cada um nasceu em uma cidade diferente. Um nasceu em Atalaia, outro em Coruripe e outro em Penedo. Sabe-se que Gabriel não nasceu em Penedo e Mateus nasceu em Coruripe. É correto afirmar que
- a) Gabriel nasceu em Coruripe.
- b) Gabriel nasceu em Atalaia.
- c) Lucas não nasceu em Penedo.
- d) Lucas nasceu em Atalaia.
- e) Mateus nasceu em Penedo.
- **042.** (FCC/SEGEP-MA/AUDITOR FISCAL DA RECEITA ESTADUAL/2016) Quatro meninos têm 5, 7, 9 e 11 carrinhos cada um. A respeito da quantidade de carrinhos que cada um tem, eles afirmaram:
- Antônio: Eu tenho 5 carrinhos;
- Bruno: Eu tenho 11 carrinhos;
- Cássio: Antônio tem 9 carrinhos;
- Danilo: Eu tenho 9 carrinhos.

Se apenas um deles mentiu, tendo os outros dito a verdade, então é correto concluir que a soma do número de carrinhos de Antônio, Bruno e Cássio é igual a:

- a) 23
- b) 25
- c) 21
- d) 27
- e) 22
- **043.** (CESPE/SEFAZ-AL/AUDITOR FISCAL DA RECEITA ESTADUAL/2020) No argumento seguinte, as proposições P1, P2, P3 e P4 são as premissas, e C é a conclusão.
- P1: "Se há carência de recursos tecnológicos no setor Alfa, então o trabalho dos servidores públicos que atuam nesse setor pode ficar prejudicado.".
- P2: "Se há carência de recursos tecnológicos no setor Alfa, então os beneficiários dos serviços prestados por esse setor podem ser mal atendidos.".
- P3: "Se o trabalho dos servidores públicos que atuam no setor Alfa fica prejudicado, então os servidores públicos que atuam nesse setor padecem.".
- P4: "Se os beneficiários dos serviços prestados pelo setor Alfa são mal atendidos, então os beneficiários dos serviços prestados por esse setor padecem.".
- C: "Se há carência de recursos tecnológicos no setor Alfa, então os servidores públicos que atuam nesse setor padecem e os beneficiários dos serviços prestados por esse setor padecem.". Considerando esse argumento, julgue o item seguinte.
- O argumento em questão é válido.

044. (CESPE/PGE-PE/ANALISTA ADMINISTRATIVO DE PROCURADORIA/2019) Considere as seguintes proposições.

- P1: Se a empresa privada causar prejuízos à sociedade e se o governo interferir na sua gestão, então o governo dará sinalização indesejada para o mercado.
- P2: Se o governo der sinalização indesejada para o mercado, a popularidade do governo cairá.
- Q1: Se a empresa privada causar prejuízos à sociedade e se o governo não interferir na sua gestão, o governo será visto como fraco.
- · Q2: Se o governo for visto como fraco, a popularidade do governo cairá

Tendo como referência essas proposições, julgue o item seguinte, a respeito da lógica de argumentação.

A tabela-verdade da proposição P1Λ P2Λ Q1Λ Q2 tem mais de 30 linhas.

045. (CESPE/PGE-PE/ANALISTA ADMINISTRATIVO DE PROCURADORIA/2019) Tendo como referência essas proposições, julgue os itens seguintes, a respeito da lógica de argumentação. O argumento em que as proposições P1, P2, Q1 e Q2 são as premissas e a conclusão é a proposição "A popularidade do governo cairá." é um argumento válido.

046. (FGV/SENADO FEDERAL/ADVOGADO/2022) Se não é verdade que Daniel fala mandarim ou japonês, avalie as afirmativas a seguir e assinale (V) para a verdadeira e (F) para a falsa.

- () Pode ser que Daniel fale mandarim e não fale japonês.
- () Daniel não fala nem mandarim nem japonês.
- () Pode ser que Daniel fale mandarim e japonês.

As afirmativas são, respectivamente

- a) V, V e V.
- b) F, V e F.
- c) V, V e F.
- d) F, F e V.
- e) F, F e F.

047. (VUNESP/MPE/SP/OFICIAL DE PROMOTORIA I/2016) Marcos, Paulo e Sérgio são irmãos e fazem cursos diferentes, cada um fazendo apenas um curso. Um tio, visitando a família, sem conhecer qual curso cada sobrinho fazia, ouviu a seguinte conversa:

Marcos: "Eu não curso engenharia."

Paulo: "Eu curso engenharia."

Sérgio: "Eu não curso medicina."

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

A mãe dos jovens disse corretamente ao tio que seus três filhos cursavam engenharia, medicina e direito e que apenas um falou a verdade, o que permitiu ao tio determinar que Marcos, Paulo e Sérgio cursam, respectivamente,

- a) Engenharia, direito e medicina.
- b) Engenharia, medicina e direito.
- c) Direito, engenharia e medicina.
- d) Medicina, direito e engenharia.
- e) Medicina, engenharia e direito.

048. (CESPE/TRT-CE/2017) P1: Se eu assino o relatório, sou responsável por todo o seu conteúdo, mesmo que tenha escrito apenas uma parte.

P2: Se sou responsável pelo relatório e surge um problema em seu conteúdo, sou demitido. C: Logo, escrevo apenas uma parte do relatório, mas sou demitido.

O argumento apresentado no texto CB1A5BBB se tornaria válido do ponto de vista da lógica sentencial, se, além das premissas P1 e P2, a ele fosse acrescentada a proposição:

- a) Não sou demitido ou não escrevo uma parte do relatório.
- b) Sou responsável apenas pela parte que escrevi do relatório.
- c) Eu escrevo apenas uma parte do relatório, assino o relatório e surge um problema em seu conteúdo.
- d) Se não escrevo nenhuma parte do relatório, não sou demitido.
- **049.** (INSTITUTO CONSULPLAN/CÂMARA DE TREMEMBÉ-SP/OFICIAL LEGISLATIVO/2023) Se Carla é analista, então Joana não é auxiliar de contabilidade. Ou Joana é auxiliar de contabilidade ou Marina é bibliotecária. Se Marina não é bibliotecária, então Carla é analista. Considerando que Carla não é analista, pode-se afirmar, verdadeiramente, que:
- a) Joana é auxiliar de contabilidade.
- b) Marina é bibliotecária e Joana é auxiliar de contabilidade.
- c) Se Marina é bibliotecária, então Joana é auxiliar de contabilidade.
- d) Carla é analista se, e somente se, Joana é auxiliar de contabilidade.
- **050.** (INSTITUTO CONSULPLAN/PREFEITURA DE LINHARES-ES/MONITOR DA EDUCAÇÃO INFANTIL/2022) Se Ana disse a verdade, Caio e João mentiram; se João mentiu, Laura disse a verdade; e, se Laura disse a verdade, Linhares é um município do estado do Maranhão. Como Linhares não é município do Maranhão, quem está mentindo?
- a) Ana e Caio.
- b) Ana e Laura.
- c) João e Laura
- d) Todos mentiram, exceto Laura.

051. (CESPE/POLÍCIA CIENTÍFICA-PE/PERITO CRIMINAL E MÉDICO/2016) Considere as seguintes proposições para responder a questão.

P1: Se há investigação ou o suspeito é flagrado cometendo delito, então há punição de criminosos.

P2: Se há punição de criminosos, os níveis de violência não tendem a aumentar.

P3: Se os níveis de violência não tendem a aumentar, a população não faz justiça com as próprias mãos.

Pretende-se acrescentar ao conjunto de <u>proposições</u> P1, P2 e P3 uma nova proposição, P0, de modo que o argumento formado pelas premissas P0, P1, P2 e P3, juntamente com a conclusão "A população não faz justiça com as próprias mãos" constitua um argumento válido. Assinale a opção que apresenta uma proposta correta de proposição P0

- a) Há investigação ou o suspeito é flagrado cometendo delito.
- b) Não há investigação ou o suspeito não é flagrado cometendo delito.
- c) Não há investigação e o suspeito não é flagrado cometendo delito.
- d) Se o suspeito é flagrado cometendo delito, então há punição de criminosos.
- e) Se há investigação, então há punição de criminosos.

052. (FCC/TCE-PR/2011) Considere que as seguintes premissas são verdadeiras:

- I Se um homem é prudente, então ele é competente.
- II Se um homem não é prudente, então ele é ignorante.
- III Se um homem é ignorante, então ele não tem esperanças.
- IV Se um homem é competente, então ele não é violento.

Para que se obtenha um argumento válido, é correto concluir que se um homem:

- a) não é violento, então ele é prudente.
- b) não é competente, então ele é violento.
- c) é violento, então ele não tem esperanças.
- d) não é prudente, então ele é violento.
- e) não é violento, então ele não é competente.

053. (FGV/TJ-AM/ANALISTA JUDICIÁRIO/2013) Considere como verdadeiras as afirmativas a seguir.

- I Se Carlos mentiu, então João é culpado.
- II Se João é culpado, então Carlos não mentiu.
- III Se Carlos não mentiu, então Pedro não é culpado.
- IV Se Pedro não é culpado, então João não é culpado.

Com base nas afirmativas acima, é correto concluir que:

- a) Carlos mentiu, João é culpado, Pedro não é culpado.
- b) Carlos mentiu, João não é culpado, Pedro não é culpado.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

- c) Carlos mentiu, João é culpado, Pedro é culpado.
- d) Carlos não mentiu, João não é culpado, Pedro não é culpado.
- e) Carlos não mentiu, João é culpado, Pedro é culpado.

054. (FGV/PROEFEITURA DE SALVADOR/TÉCNICO/2017) Alice, Bruno, Carlos e Denise são as quatro primeiras pessoas de uma fila, não necessariamente nesta ordem. João olha para os quatro e afirma:

Bruno e Carlos estão em posições consecutivas na fila;

Alice está entre Bruno e Carlos na fila.

Entretanto, as duas afirmações de João são falsas. Sabe-se que Bruno é o terceiro da fila. O segundo da fila é:

- a) Alice
- b) Bruno
- c) Carlos
- d) Denise
- e) João

055. (ESAF/AFT/2006) Ana encontra-se à frente de três salas cujas portas estão pintadas de verde, azul e rosa. Em cada uma das três salas encontra-se uma e somente uma pessoa - em uma delas encontra-se Luís; em outra, encontra-se Carla; em outra, encontra-se Diana. Na porta de cada uma das salas existe uma inscrição, a saber:

- Sala verde: "Luís está na sala de porta rosa"
- · Sala azul: "Carla está na sala de porta verde"
- · Sala rosa: "Luís está aqui".

Ana sabe que a inscrição na porta da sala onde Luís se encontra pode ser verdadeira ou falsa. Sabe, ainda, que a inscrição na porta da sala onde Carla se encontra é falsa, e que a inscrição na porta da sala em que Diana se encontra é verdadeira. Com tais informações, Ana conclui corretamente que nas salas de portas verde, azul e rosa encontram-se, respectivamente,

- a) Diana, Luís, Carla
- b) Luís, Diana, Carla
- c) Diana, Carla, Luís
- d) Carla, Diana, Luís
- e) Luís, Carla, Diana

056. (ESAF/CGU/ANALISTA DE FINANÇAS E CONTROLE/2006) Um professor de lógica encontrase em viajem em um país distante, habitado pelos verdamanos e pelos mentimanos. O que os distingue é que os verdamanos sempre dizem a verdade, enquanto os mentimanos sempre mentem. Certo dia, o professor depara-se com um grupo de cinco habitantes locais.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Chamemo-los de Alfa, Beta, Gama, Delta e Épsilon. O professor sabe que um e apenas um no grupo é verdamano, mas não sabe qual deles o é. Pergunta, então, a cada um do grupo quem entre eles é verdamano e obtém as seguintes respostas:

- · Alfa: "Beta é mentimano"
- · Beta: "Gama é mentimano"
- · Gama: "Delta é verdamano"
- Delta: "Épsilon é verdamano"

Épsilon, afônico, fala tão baixo que o professor não consegue ouvir sua resposta. Mesmo assim, o professor de lógica conclui corretamente que o verdamano é:

- a) Delta
- b) Alfa
- c) Gama
- d) Beta
- e) Épsilon

057. (ESAF/CGU/ANALISTA DE FINANÇAS E CONTROLE/2004) Três homens são levados à presença de um jovem lógico. Sabe-se que um deles é um honesto marceneiro, que sempre diz a verdade. Sabe-se, também, que um outro é um pedreiro, igualmente honesto e trabalhador, mas que tem o estranho costume de sempre mentir, de jamais dizer a verdade. Sabe-se, ainda, que o restante é um vulgar ladrão que ora mente, ora diz a verdade. O problema é que não se sabe quem, entre eles, é quem. À frente do jovem lógico, esses três homens fazem, ordenadamente, as seguintes declarações:

- · O primeiro diz: "Eu sou o ladrão."
- O segundo diz: "É verdade; ele, o que acabou de falar, é o ladrão."
- · O terceiro diz: "Eu sou o ladrão."

Com base nestas informações, o jovem lógico pode, então, concluir corretamente que:

- a) O ladrão é o primeiro e o marceneiro é o terceiro.
- b) O ladrão é o primeiro e o marceneiro é o segundo.
- c) O pedreiro é o primeiro e o ladrão é o segundo.
- d) O pedreiro é o primeiro e o ladrão é o terceiro.
- e) O marceneiro é o primeiro e o ladrão é o segundo.

058. (FCC/AL-MS/AGENTE DE APOIO LEGISLATIVO/2016) Lucas encontrou as seguintes sentenças em um livro de lógica:

- 1. A próxima sentença é verdadeira.
- 2. A sentença anterior é falsa.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Analisando as duas sentenças, é correto afirmar que

- a) 1 e 2 são necessariamente verdadeiras.
- b) 1 é verdadeira e 2 é falsa.
- c) 1 é falsa e 2 é verdadeira.
- d) 1 e 2 são necessariamente falsas.
- e) 1 e 2 são mutuamente inconsistentes.

059. (CESPE/SEFAZ-RS/ASSISTENTE ADMINISTRATIVO FAZENDÁRIO/2018) Alberto, Anderson, Bernardo, Cláudio, Dionísio e Tadeu, lotados em um mesmo departamento, viajarão a serviço, em duplas. Cada dupla utilizará um meio de transporte diferente: avião, trem ou carro. Alberto e Bernardo viajarão juntos; Anderson viajará de avião; Cláudio não formará dupla com Dionísio nem viajará de avião; Tadeu não viajará de trem.

Dessas informações conclui-se que:

- a) Alberto viajará de trem, e Tadeu, de carro.
- b) Dionísio viajará de trem, e Anderson e Cláudio formarão uma dupla.
- c) Tadeu formará dupla com Dionísio, e Bernardo viajará de avião.
- d) Bernardo viajará de carro, e Cláudio, de avião.
- e) Anderson viajará de avião, e Alberto, de carro.

060. (INSTITUTO AOCP/MPE-RS/TÉCNICO DO MINISTÉRIO PÚBLICO/2021) Quatro funcionários, Adão, Beto, César e Davi, não necessariamente nessa ordem, atuam como promotor, assistente de promotor, procurador e subprocurador. Esses funcionários atuam no Ministério Público em andares diferentes do prédio: 1º andar, 2º andar, 3º andar e 4º andar, não necessariamente na ordem em que os nomes foram apresentados. Sabe-se que:

- César atua como promotor, mas não no 3º andar e nem no 4º andar;
- Beto atua como procurador no 3º andar;
- Davi não atua no 1º andar e não atua como assistente de promotor;
- O funcionário que atua como assistente de promotor atua no 1º andar.

Nessas condições, assinale a alternativa correta.

- a) Davi atua como subprocurador no 4º andar.
- b) Adão atua como subprocurador no 2º andar.
- c) César atua no 1º andar.
- d) Davi atua no 2º andar.
- e) Adão atua no 4º andar.

061. (INSTITUTO AOCP/FUNPRESP/ANALISTA DE TECNOLOGIA DA INFORMAÇÃO/2021) Se Inês é analista de investimentos, então Joana é analista de conformidade. Se Karen não é analista de conformidade, então Inês é analista de investimentos. A analista de marketing

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

é a mais velha das três. Sabe-se que cada uma das mulheres citadas exerce uma e somente uma das profissões mencionadas e que Joana não é analista de conformidade.

Dado o exposto, julgue o seguinte item.

Inês é analista de marketing e Karen é analista de conformidade.

062. (INSTITUTO AOCP/FUNPRESP/ANALISTA DE TECNOLOGIA DA INFORMAÇÃO/2021) Se Inês é analista de investimentos, então Joana é analista de conformidade. Se Karen não é analista de conformidade, então Inês é analista de investimentos. A analista de marketing é a mais velha das três. Sabe-se que cada uma das mulheres citadas exerce uma e somente uma das profissões mencionadas e que Joana não é analista de conformidade.

Dado o exposto, julgue o seguinte item.

Karen é analista de conformidade e Joana é a mais velha das três mulheres citadas.

063. (FCC/DPE-RR/ADMINISTRADOR/2015) Dentro de um envelope há um papel marcado com um número. Afirma-se sobre esse número que:

I – o número é 1;

II - o número não é 2;

III - o número é 3;

IV – o número não é 4.

Sabendo que três das afirmações são verdadeiras e uma é falsa, é necessariamente correto concluir que

- a) I é verdadeira.
- b) II é falsa.
- c) II é verdadeira.
- d) III é verdadeira.
- e) IV é falsa.

064. (FCC/TRT 2ª REGIÃO-SP/TÉCNICO JUDICIÁRIO) Em certo planeta de uma galáxia distante, existem apenas dois partidos, o BEM e o MAL. Quando são perguntados sobre qualquer assunto, os habitantes desse planeta sempre respondem com uma única dentre as duas seguintes palavras: sim ou não. Porém, os integrantes do BEM sempre respondem a verdade, enquanto que os integrantes do MAL necessariamente mentem. Zip e seu irmão Zap são habitantes desse planeta, sendo o primeiro um integrante do BEM e o segundo do MAL. Dentre as perguntas a seguir, qual é a única que, se for feita tanto para Zip quanto para Zap, gerará respostas diferentes?

- a) Seu irmão é mentiroso?
- b) Você é mentiroso?
- c) Você é o Zip?

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

- d) Zip é mentiroso?
- e) Seu irmão chama-se Zip?

065. (FCC/SEFAZ-SP/AGENTE FISCAL DE TRIBUTOS ESTADUAIS/2006) Numa ilha dos mares do sul convivem três raças distintas de ilhéus: os zel(s) só mentem, os del(s) só falam a verdade e os mel(s) alternadamente falam verdades e mentiras - ou seja, uma verdade, uma mentira, uma verdade, uma mentira -, mas não se sabe se começaram falando uma ou outra. Nos encontramos com três nativos, Sr. A, Sr. B, Sr. C, um de cada uma das raças:

Observe bem o diálogo que travamos com o Sr. C

Nós: - Sr. C, o senhor é da raça zel, del ou mel?

Sr. C: - Eu sou mel. (1ª resposta)

Nós: - Sr. C, e o senhor A, de que raça é?

Sr. C: - Ele é zel. (2ª resposta)

Nós: - Mas então o Sr. B é del, não é isso, Sr. C?

Sr. C: - Claro, senhor! (3ª resposta)

Nessas condições, é verdade que os senhores A, B e C são, respectivamente,

- a) del, zel, mel.
- b) del, mel, zel.
- c) mel, del, zel.
- d) zel, del, mel.
- e) zel, mel, del.

066. (FCC/SEFAZ-PE/JULGADOR ADMINISTRATIVO TRIBUTÁRIO DO TESOURO ESTADUAL/2015) Em um país, todo habitante pertence a uma única dentre três tribos: os Autênticos, que sempre dizem a verdade, os Dissimulados, que sempre mentem, e os Volúveis, que sempre alternam uma fala verdadeira e uma mentirosa, não necessariamente nessa ordem. As autoridades alfandegárias fizeram três perguntas a um grupo de habitantes desse país que chegou ao Brasil em um avião. A primeira pergunta, que foi "Você é um Autêntico?", foi respondida afirmativamente por 53 integrantes do grupo. A segunda, que foi "Você é um Volúvel?", foi respondida afirmativamente por 38 deles. E 18 integrantes responderam "sim" à última pergunta, que foi "Você é um Dissimulado?". O número de Autênticos nesse grupo é igual a

- a) 15.
- b) 28.
- c) 20.

- d) 53.
- e) 35.
- **067.** (CESPE/SEFAZ-RS/AUDITOR FISCAL DA RECEITA ESTADUAL/2019) Em determinada cidade, foram fiscalizadas 20 empresas, classificadas quanto ao porte e quanto ao setor de atividade econômica em que atuam. Quanto ao porte, cada empresa recebe uma única classificação: microempresa (ME), pequena (P), média (M) ou grande (G). Quanto ao setor, cada empresa também recebe uma única classificação: 1, 2, 3, 4 ou 5. Não há empresa que receba, simultaneamente, a mesma classificação de porte e de setor que outra empresa já recebe. Para a realização dessa fiscalização, tais empresas foram distribuídas igualmente e designadas a quatro auditores fiscais, Aldo, Bruno, Carlos e Dário. Cada empresa foi fiscalizada por apenas um desses auditores. Após a conclusão do trabalho, os auditores fizeram as seguintes afirmações:
- I Aldo: "Fiscalizei cinco empresas de porte médio".
- II Bruno: "Fiscalizei quatro empresas de um mesmo setor".
- III Carlos: "Fiscalizei cinco empresas cujo porte recebe uma classificação que começa com a letra M".
- IV Dário: "Fiscalizei três empresas de um setor e duas empresas de outro setor".

Considerando que, nessa situação hipotética, somente uma das afirmações feitas pelos auditores seja falsa, assinale a opção que apresenta o maior número de empresas de porte G que podem ser fiscalizadas por um mesmo auditor.

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5
- **068.** (ESAF/ANEEL/2004) Se não leio, não compreendo. Se jogo, não leio. Se não desisto, compreendo. Se é feriado, não desisto. Então,
- a) se jogo, não é feriado.
- b) se não jogo, é feriado.
- c) se é feriado, não leio.
- d) se não é feriado, leio.
- e) se é feriado, jogo.
- **069.** (FGV/SENADO FEDERAL/POLICIAL LEGISLATIVO/2008) Um crime é cometido por uma pessoa e há quatro suspeitos: André, Eduardo, Rafael e João. Interrogados, eles fazem as seguintes declarações:

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

André: Eduardo é o culpado. Eduardo: João é o culpado. Rafael: Eu não sou culpado.

João: Eduardo mente quando diz que eu sou culpado.

Sabendo que apenas um dos quatro disse a verdade, o culpado:

- a) é certamente André.
- b) é certamente Eduardo.
- c) é certamente Rafael.
- d) é certamente João.
- e) não pode ser determinado com essas informações

070. (ESAF/AFRFB/2012) Se Ana é pianista, então Beatriz é violinista. Se Ana é violinista, então Beatriz é pianista. Se Ana é pianista, Denise é violinista. Se Ana é violinista, então Denise é pianista. Se Beatriz é violinista, então Denise é pianista. Sabendo-se que nenhuma delas toca mais de um instrumento, então Ana, Beatriz e Denise tocam, respectivamente:

- a) Piano, piano, piano
- b) Piano, piano, violino.
- c) Violino, piano, piano
- d) Violino, piano, violino
- e) Violino, violino, piano.

071. (VUNESP/CÂMARA DE MARÍLIA/ANALISTA DE SISTEMAS/2016) Jorge, Álvaro, Mauro, Rogério e Sidney são casados com Rosa, Wilma, Thaís, Helen e Miriam, não necessariamente nessa ordem. Cada um deles tem uma profissão diferente, dentre advogado, médico, engenheiro, dentista e psicólogo. Sabe-se que:

- (1) Mauro não é casado com Thaís, que é casada com o dentista;
- (2) Rosa não é casada com Sidney, que não é engenheiro e tampouco dentista;
- (3) Helen é casada com Rogério, que não é engenheiro e tampouco psicólogo;
- (4) o advogado não é casado com Wilma, que não é casada com Jorge e tampouco com o psicólogo;
- (5) Álvaro é advogado.

Sendo assim, conclui-se corretamente que

- a) Mauro não é engenheiro.
- b) Jorge é casado com Thaís
- c) Álvaro não é casado com Rosa.

- d) Sidney é casado com Wilma.
- e) Rogério não é médico.
- **072.** (CESPE/SEFAZ-ES/2021) Hugo não conseguiu assistir ao último episódio de sua série televisa favorita. No capítulo anterior, o protagonista, Ned, estava em vias de enfrentar uma guerra sangrenta que poderia levá-lo à morte. Sabendo que seus amigos Bernardo, Fernando e Ronaldo tinham visto o final do seriado, Hugo pediu, explicitamente, que não lhe contassem o que havia ocorrido. Por diversão, os colegas resolveram escrever, cada um, uma mensagem anônima para Hugo. Os bilhetes foram recebidos na seguinte ordem:
- 1°: "A guerra foi evitada";
- 2°: "A guerra não foi evitada";
- 3°: "Ned morreu na guerra".

Hugo sabe que:

- (I) Bernardo sempre fala a verdade;
- (II) Fernando sempre mente; e
- (III) Ronaldo às vezes fala a verdade e, outras vezes, mente.

Analisando as três mensagens, Hugo conseguiu identificar, pela caligrafia, a que havia sido escrita por Ronaldo. Tal constatação levou Hugo a concluir corretamente o final do seriado. Diante disso, responda: a primeira, a segunda e a terceira mensagem foram enviadas, respectivamente, por

- a) Bernardo, Fernando e Ronaldo.
- b) Bernardo, Ronaldo e Fernando.
- c) Fernando, Bernardo e Ronaldo.
- d) Ronaldo, Bernardo e Fernando.
- e) Fernando, Ronaldo e Bernardo.

073. (CESPE/PC-DF/2021) A proposição $[(p \land q)] \rightarrow [p \lor (\sim q)]$, em que $(\sim q)$ denota a negação da proposição q, só apresenta resultado verdadeiro quando a proposição p for verdadeira e a proposição q for falsa.

074. (TFC – INÉDITA) Bruno, Daniela, Francisco e Geraldo são auditores-fiscais da SEFAZ/SC e possuem as seguintes especialidades, mas não necessariamente nessa ordem, auditoria, aduana, gestão tributária e tecnologia da informação. Além disso, eles trabalham nas cidades de Florianópolis, Joinville, Blumenau e Chapecó, mas não necessariamente nessa ordem. Sabe-se também que:

- I Bruno não trabalha em Blumenau.
- II Quem trabalha em aduana trabalha em Florianópolis.
- III Geraldo trabalha em gestão tributária e não trabalha em Chapecó.
- IV Quem trabalha com tecnologia da informação trabalha em Blumenau.
- V Daniela trabalha com auditoria.

Diante dessas informações, pode-se concluir que Francisco:

- a) Francisco trabalha com aduana em Florianópolis.
- b) Francisco trabalha com tecnologia da informação em Blumenau.
- c) Francisco trabalha com gestão tributária em Joinville.
- d) Daniela trabalha com auditoria em Blumenau.
- e) Daniela trabalha em Joinville e Geraldo trabalha em Chapecó.

GABARITO

69. c

70. c

71. b **72.** d

73. E

74. b

1	\mathcal{C}
	\sim

2. a

3. C

4. b

5. C

6. d

7. c

8. d

9. C

10. a

11. e

12. E

13. c

14. c

15. c

16. C

17. C

18. C

19. C

20. C

21. E

22. c

23. C

24. C

25. C

26. e

27. d

28. b

29. d

30. b

31. b

32. e

33. e

34. c

35. b

36. b

37. a

38. e

39. e

40. c

41. b

42. a

43. E

44. C

45. E

46. b

47. b

48. c

49. d

50. b

51. a

52. c

53. d

54. d

55. c

56. d

57. b

58. e

59. a

60. a

61. C

62. E

63. c

64. d

65. b

66. a

67. d

68. a

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

GABARITO COMENTADO

031. (FGV/SEFAZ-BA/AGENTE DE TRIBUTOS ESTADUAIS/2022) Luana e Vanessa estão brincando de "par ou ímpar" da seguinte maneira: elas escondem as mãos, uma delas escolhe "par" e a outra escolhe "ímpar" e, depois, ao mesmo tempo, cada uma delas mostra uma de suas mãos com 1, 2, 3, 4 ou 5 dedos estendidos. Se o total de dedos estendidos das duas for "par" ganha a que escolheu "par". Caso contrário, ganha a que escolheu "ímpar". Luana escolher "par" e Vanessa escolheu "ímpar". É correto afirmar que

- a) as duas têm a mesma probabilidade de ganhar.
- b) a probabilidade de Luana ganhar é maior do que a de Vanessa.
- c) a probabilidade de Vanessa ganhar é maior do que a de Luana.
- d) a probabilidade de Luana ganhar é 2/5.
- e) a probabilidade de Vanessa ganhar é 2/5.

Vamos montar uma tabela de probabilidades do par ou ímpar e assinalar quem ganha em cada caso.

	1 2		3	4	5	
1	Luana	Vanessa	Luana	Vanessa	Luana	
2	Vanessa	Luana	Vanessa	Luana	Vanessa	
3	Luana	Vanessa	Luana	Vanessa	Luana	
4	Vanessa	Luana	Vanessa	Luana	Vanessa	
5	Luana	Vanessa	Luana	Vanessa	Luana	

Então, perceba que existem 25 resultados possíveis no par ou ímpar, nos quais Luana ganha em 13 e Vanessa ganha em 12. Portanto:

$$P(Luana) = \frac{\#favor\'aveis}{\#totais} = \frac{13}{25}$$

$$P(Vanessa) = \frac{\#favor\'{a}veis}{\#totais} = \frac{12}{25}$$

Portanto, a probabilidade de Luana ganhar é maior que a probabilidade de Vanessa ganhar, mas não é igual a 2/5.

Letra b.

032. (FGV/SEFAZ-BA/AGENTE DE TRIBUTOS ESTADUAIS/2022) As amigas Ana, Bia e Carol, têm idades diferentes. Uma delas é médica, outra é enfermeira e a outra é professora. Cada uma delas tem um animal de estimação diferente: gato, cachorro e peixe de aquário.

Sabe-se que:

- · A mais nova é a professora.
- · Ana adora seu cachorro.
- · A enfermeira é a dona do gato.
- · Carol não é a médica.
- · Bia é a mais velha.
- · A médica não é a mais velha.

É correto concluir que

- a) Ana é a enfermeira.
- b) Bia é a dona do peixe.
- c) Carol é a mais velha.
- d) Ana é a mais nova.
- e) Bia é a dona do gato

Vamos montar uma tabela de todas as combinações possíveis.

Ana	Velha Meio Nova	Méd Enf Prof	GCP
Bia	Velha Meio Nova	Méd Enf Prof	GCP
Carol	Velha Meio Nova	Méd Enf Prof	GCP

Como Ana adora seu cachorro, ela tem o cachorro e nenhuma das outras pode ter cachorro. Além disso, como a enfermeira é dona do gato, sabemos que Ana não pode ser enfermeira. Então, vamos eliminar algumas possibilidades

Ana	Velha Meio Nova	Méd Enf Prof	GCP
Bia	Velha Meio Nova	Méd Enf Prof	G∈P
Carol	Velha Meio Nova	Méd Enf Prof	G∈P

Em seguida, sabemos que Carol não é médica.

Ana	Velha Meio Nova	Méd Enf Prof	GCP
Bia	Velha Meio Nova	Méd Enf Prof	G∈P
Carol	Velha Meio Nova	Méd Enf Prof	G∈P

Sabemos também que Bia é a mais velha e que a médica não é mais velha. Consequentemente, Bia também não pode ser médica. Mas, como já sabíamos que Carol também não era, sobrou apenas Ana como única que pode ser médica.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Ana	Velha Meio Nova	Méd Enf Prof	G C P
Bia	Velha Meio Nova	Méd Enf Prof	G€P
Carol	Velha Meio Nova	Méd Enf Prof	G∈P

Como sabemos que a mais nova é professora e sabemos que Ana não é professora, concluímos que Carol é que deve ser a mais nova do grupo e também que ela deve ser professora.

Ana	Velha Meio Nova	Méd Enf Prof	GCP
Bia	Velha Meio Nova	Méd Enf Prof	G∈P
Carol	Velha Meio Nova	Méd Enf Prof	G€P

Por fim, concluímos que Ana é a do meio e que Bia é enfermeira. Consequentemente, Bia é a dona do gato.

Ana	Velha Meio Nova	Méd Enf Prof	GCP
Bia	Velha Meio Nova	Méd Enf Prof	G∈P
Carol	Velha Meio Nova	Méd Enf Prof	G∈P

Então, vamos analisar os itens.

- a) Errada. Ana é médica. Falso.
- b) Errada. Bia é dona do gato. Falso.
- c) Errada. Carol é a mais nova. Falso.
- d) Errada. Ana é a do meio. Falso.
- e) Certa. Bia é a dona do gato.

Letra e.

033. (CESPE/SEFAZ-RS/AUDITOR FISCAL DA RECEITA ESTADUAL/2019) Texto 1A10-I No exercício de suas atribuições profissionais, auditores fiscais sempre fazem afirmações verdadeiras, ao passo que sonegadores sempre fazem proposições falsas. Durante uma audiência para tratar da autuação da empresa X, um auditor fiscal fez as seguintes afirmações sobre essa empresa:

- A1: "Se identifiquei erro ou inconsistência na declaração de imposto da empresa X, eu a notifiquei".
- · A2: "Se o erro não foi sanado, eu a autuei".
- · A3: "Se a empresa não recorreu da autuação, eu a multei".

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Nessa situação hipotética, à luz da premissa estabelecida no texto 1A10-I, assinale a opção que apresenta uma proposição necessariamente verdadeira.

- a) "A empresa X errou em sua declaração de imposto".
- b) "A empresa X apresentou inconsistência em sua declaração de imposto".
- c) "A empresa X foi notificada, autuada e multada".
- d) "A empresa X não sanou o erro identificado e foi autuada".
- e) "A empresa X recorreu da autuação ou foi multada".

Segundo o enunciado, a empresa foi autuada. Portanto, vale a proposição A3:

A3: "Se a empresa não recorreu da autuação, eu a multei".

Uma equivalente lógica para essa proposição pode ser escrita com o operador OU.

$$\neg p \rightarrow q = p \lor q$$

"A empresa recorreu da autuação ou foi multada."

Letra e.

034. (CESPE/CGE-CE/2019) Argumento CB1AA5-II: No argumento seguinte, as proposições P1, P2 e P3 são as premissas, e C é a conclusão.

- P1: Se os recursos foram aplicados em finalidade diversa da prevista ou se a obra foi superfaturada, então a prestação de contas da prefeitura não foi aprovada.
- P2: Se a prestação de contas da prefeitura não foi aprovada, então a prefeitura ficou impedida de celebrar novos convênios ou a prefeitura devolveu o dinheiro ao governo estadual
- P3: A obra não foi superfaturada, e a prefeitura não devolveu o dinheiro ao governo estadual.
- · C: A prefeitura ficou impedida de celebrar novos convênios.

As proposições P1, P2, P3 e C, que integram o argumento CB1A5-II, são compostas por diversas proposições simples, e o argumento CB1A5-II pode ser escrito, na forma simbólica, como P1∧P2∧P3→C. Dessa forma, na tabela-verdade do argumento CB1A5-II, a quantidade mínima de linhas que precisam ser preenchidas para se determinar a validade ou invalidade do argumento é igual a

- a) 4.
- b) 8.
- c) 16.
- d) 32.
- e) 64.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

É preciso contar a quantidade de proposições simples envolvidas nas frases. A primeira sentença é uma proposição composta formada por 3 proposições simples.

 P1: Se os recursos foram aplicados em finalidade diversa da prevista¹ ou se a obra foi superfaturada², então a prestação de contas da prefeitura não foi aprovada3.

Vamos à segunda frase. Ela também é composta por 3 proposições simples, porém, uma delas já havia sido utilizada antes.

 P2: Se a prestação de contas da prefeitura não foi aprovada, então a prefeitura ficou impedida de celebrar novos convênios4 ou a prefeitura devolveu o dinheiro ao governo estadual5.

Temos, portanto, 5 proposições simples envolvidas nas frases. Vamos analisar a terceira frase, marcando as proposições simples já previamente utilizadas.

- P3: A obra não foi superfaturada², e a prefeitura não devolveu o dinheiro ao governo estadual5.
- C: A prefeitura ficou impedida de celebrar novos convênios4.

Embora tenhamos 5 proposições simples, note que o enunciado pediu "a quantidade mínima de linhas que precisam ser preenchidas para se determinar a validade ou invalidade do argumento".

Vejamos. Um argumento qualquer é escrito da seguinte forma:

$$A \rightarrow B$$

Note que, se A for falsa, a proposição A → B é sempre verdadeira. Portanto, não é necessário montar a tabela verdade completa. Em metade da tabela verdade, a proposição A será falsa. E essas linhas não precisam ser verificadas.

Portanto, o número de linhas que precisam ser verificadas é igual à metade da tabela verdade para 5 proposições.

$$N = \frac{2^5}{2} = \frac{32}{2} = 16$$

Letra c.

035. (FGV/SEFAZ-ES/CONSULTOR DO TESOURO ESTADUAL/2022) Sabe-se que as 3 sentenças a seguir são verdadeiras.

- · Se Pedro é capixaba ou Raquel não é carioca, então Renata não é pernambucana.
- Se Pedro não é capixaba ou Renata é pernambucana, então Raquel é carioca.
- Se Raquel não é carioca, então Pedro é capixaba e Renata é pernambucana.

É correto concluir que

- a) Pedro é capixaba.
- b) Raquel é carioca.
- c) Renata é pernambucana.
- d) Pedro não é capixaba.
- e) Raquel não é carioca.

As três sentenças são verdadeiras. A única forma da condicional ser falsa é se sua primeira parte for verdadeira e a sua segunda parte for falsa. Logo, essas três sentenças não são desse tipo.

Vamos analisar a terceira frase: "Se Raquel não é carioca, então Pedro é capixaba e Renata é pernambucana."

Podemos utilizar a técnica da redução ao absurdo. Para isso, vamos supor que:

"Raquel não é carioca" é verdadeiro.

Assim, para a condicional ser verdadeira, a segunda parte também terá que ser verdadeira. Assim, temos:

- Pedro é capixaba. (V)
- Renata é pernambucana. (V)

Analisando a primeira condicional, temos:

"Se Pedro é capixaba ou Raquel não é carioca, então Renata não é pernambucana."

Porém, se "Pedro é capixaba" é V, então a primeira parte da condicional já será verdadeira em razão do conectivo "ou".

Além disso, se "Renata é pernambucana" é V, a segunda parte da condicional é falsa. Uma condicional com V -> F é Falsa.

Porém, sabemos que a afirmação é verdadeira. Desse modo, provamos **por redução ao absurdo** que a suposição inicial é falsa. Logo:

"Raquel não é carioca" é falso.

Isto é, "Raquel é carioca" é verdadeiro.

Veja que, se Raquel é carioca, as sentenças I e III serão automaticamente verdadeiras, porque a proposição antecedente será falsa. Veja:

"Se Pedro é capixaba ou Raquel não é carioca, então Renata não é pernambucana." Falso → Qualquer coisa = Verdadeiro.

"Se Raquel não é carioca, então Pedro é capixaba e Renata é pernambucana." Falso []
Qualquer coisa = Verdadeiro.

Portanto, considerando que "Raquel é carioca" é verdadeiro, não chegaríamos a nenhuma contradição. Portanto, está provado que Raquel é carioca.

Letra b.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

036. (FCC/SEFAZ-SC/ANALISTA DA RECEITA ESTADUAL IV/2021) Das três afirmações a seguir, apenas uma é verdadeira.

I – Se Pedro ama Júlia, então Bia vai mudar para a Espanha.

II – Bia vai mudar para a Espanha ou virar cabeleireira, ou as duas coisas.

III - Bia não vai virar cabeleireira e Pedro não ama Júlia.

Nessas condições, é necessariamente verdade que

- a) Pedro ama Júlia e Bia vai mudar para a Espanha.
- b) Pedro ama Júlia e Bia vai virar cabeleireira.
- c) Pedro não ama Júlia e Bia vai mudar para a Espanha.
- d) Pedro não ama Júlia e Bia vai virar cabeleireira.
- e) Bia não vai mudar para a Espanha nem virar cabeleireira.

Podemos considerar apenas uma das premissas como verdadeira.

Primeiramente, vamos considerar: III Verdadeiro, I Falso e II Falso.

Para a afirmação III (com conectivo E) ser verdadeira, as duas proposições devem ser verdadeiras. Logo, temos:

- Bia não vai virar cabeleireira. (V)
- · Pedro não ama Júlia. (V)

Para a afirmação II ser falsa, as duas proposições do conectivo OU devem ser falsas. Logo, temos:

- Bia vai mudar para a Espanha. (F)
- · Bia vai virar cabeleireira. (F)

Para a afirmação I (condicional) ser falsa, a primeira deve ser Verdadeira e a segunda Falsa. Logo, temos:

- Pedro ama Júlia. (V)
- Bia vai mudar para a Espanha. (F)

Note que temos uma contradição, pois Pedro ama e não ama Júlia ao mesmo tempo. Logo, III é falsa.

Considerando agora: Il Verdadeiro, I falso e III falso.

Para a afirmação I (condicional) ser falsa, já sabemos que:

- Pedro ama Júlia. (V)
- Bia vai mudar para a Espanha. (F)

Logo, temos que, na afirmação II, a primeira parte é Falsa:

· Bia vai mudar para a Espanha. (F)

Note que a afirmação II apresenta o conectivo OU e é verdadeira. Como II é verdadeiro, a segunda parte deve ser obrigatoriamente verdadeira, pois se for Falsa, a afirmação II será Falsa também. Logo:

• Bia vai virar cabeleireira. (V)

Portanto, temos que Pedro ama Júlia e Bia vai virar cabeleireira.

Letra b.

037. (FCC/PREFEITURA DE SÃO JOSÉ DO RIO PRETO-SP/AGENTE ADMINISTRATIVO/2019) Além da língua portuguesa, Ana, Bia e Carla falam fluentemente apenas uma outra língua. Essas línguas são inglês, francês e espanhol, não necessariamente nessa ordem. Considere as seguintes afirmações feitas por elas:

Ana: "Eu não sou fluente em inglês."

Bia: "Eu sou fluente em inglês."

Carla: "Bia é fluente em inglês e eu sou fluente em francês."

Sabendo que apenas uma dessas meninas mentiu, as línguas em que Ana, Bia e Carla são fluentes, além da língua portuguesa, são, respectivamente,

- a) francês, inglês e espanhol.
- b) espanhol, francês e inglês.
- c) espanhol, inglês e francês.
- d) inglês, francês e espanhol.
- e) inglês, espanhol e francês.

Sabe-se que cada uma fala apenas uma língua e apenas uma mente.

Note que se Ana mentir, então Ana será fluente em inglês. Como Bia também é fluente em inglês, então há incoerência. Logo, Ana fala a verdade.

Assim, Ana é fluente em espanhol ou francês.

Note que se Bia mentir, então Bia não será fluente em inglês. Porém, como Carla diz que Bia é fluente em inglês, então há incoerência. Logo, Bia fala a verdade.

Por fim, restou apenas Carla mentir. Temos:

Ana: "Eu não sou fluente em inglês." (V)

Bia: "Eu sou fluente em inglês." (V)

Carla: "Bia é fluente em inglês e eu sou fluente em francês." (F)

A conjunção E só é verdadeira se as duas partes forem verdadeiras. Como "Bia é fluente em inglês" é V, então Carla é fluente em francês é Falsa para que Carla minta.

Portanto, por exclusão, Carla é fluente em espanhol. Resumindo, temos:

- · Ana é fluente em francês.
- · Bia é fluente em inglês.
- Carla é fluente em espanhol.

Letra a.

038. (INSTITUTO AOCP/PREFEITURA DE JOÃO PESSOA-PB/ASSISTENTE SOCIAL EM SAÚDE/2021) Cinco pessoas, identificadas como P_1 , P_2 , P_3 , P_4 e P_5 , estão em uma clínica médica aguardando a vez para realizar dois tipos de exames laboratoriais. Sabe-se que duas

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

dessas pessoas, cada uma na sua vez, irão fazer o exame de Hemograma e as outras três, também cada um na sua vez, irão fazer o exame de Glicemia. Sabe-se também que P_3 e P_4 irão fazer o mesmo tipo de exame, P_2 e P_4 irão fazer exames de tipos diferentes e P_2 e P_5 irão fazer exames de tipos diferentes. Com base nessas informações, é correto afirmar que

- a) P1 irá fazer o exame de Glicemia.
- b) P5 irá fazer o exame de Hemograma.
- c) P3 irá fazer o exame de Hemograma.
- d) P2 irá fazer o exame de Glicemia.
- e) P4 irá fazer o exame de Glicemia.

Note que há apenas dois grupos: 2 pessoas farão Hemograma e 3 pessoas farão Glicemia. Temos que P2 fará um exame diferente de P4 e também diferente de P5. Como as 5 pessoas vão realizar apenas um dos dois tipos de exames, então **P5 fará o mesmo exame que P4**. Além disso, P3 fará o mesmo exame que P4. Logo, temos:

Grupo 1: P3, P4 e P5, para o exame de Glicemia.

Grupo 2: P1 e P2, para o exame de Hemograma.

Letra e.

039. (VUNESP/PC-SP/INVESTIGADOR DE POLÍCIA/2013) Em um reino distante, um homem cometeu um crime e foi condenado à forca. Para que a sentença fosse executada, o rei mandou que construíssem duas forcas e determinou que fossem denominadas de Forca da Verdade e Forca da Mentira. Além disso, ordenou que na hora da execução o prisioneiro deveria proferir uma sentença assertiva qualquer. Se a sentença fosse verdadeira, ele deveria ser enforcado na Forca da Verdade.

Se, por outro lado, a sentença fosse falsa, ele deveria ser enforcado na Forca da Mentira. Assim, no momento da execução, foi solicitado que o prisioneiro proferisse a sua asserção. Ao fazer isso, o carrasco ficou completamente sem saber o que fazer e a execução foi cancelada!

Assinale qual das alternativas representa a asserção que o prisioneiro teria proferido.

- a) "Está chovendo forte."
- b) "O carrasco não vai me executar."
- c) "A soma dos ângulos de um triângulo é cento e oitenta graus."
- d) "Dois mais dois é igual a cinco."
- e) "Serei enforcado na Forca da Mentira."

Uma bela questão sobre o Paradoxo do Mentiroso.

Se o preso disser que será enforcado na Forca da Mentira, o carrasco não poderá concluir onde deverá executá-lo.

Se o carrasco fosse executar na Forca da Mentira, o prisioneiro teria falado a verdade, portanto, não poderia ser executado ali.

Se o carrasco fosse executar na Forca da Verdade, o prisioneiro teria mentido, portanto, também não poderia ser executado nessa forca.

Letra e.

040. (FGV/MPE-AL/TÉCNICO DO MINISTÉRIO PÚBLICO/2018) Em certo dia útil da semana (de segunda a sexta-feira) Mário e Jorge fizeram duas declarações cada um. Um deles disse a verdade nas duas declarações e o outro mentiu nas duas: - Mário: anteontem foi sábado.

- Jorge: depois de amanhã não será sábado.
- Mário: amanhã será quarta-feira.
- Jorge: ontem não foi quinta-feira.
- O dia da semana em que eles fizeram essas declarações foi
- a) segunda-feira.
- b) terça-feira.
- c) quarta-feira.
- d) quinta-feira.
- e) sexta-feira.

Sabe-se que um deles mentiu nas duas afirmações e um deles falou a verdade nas duas afirmações. Temos as seguintes declarações de Mário:

- Mário: anteontem foi sábado. Isto é, hoje é Segunda.
- · Mário: amanhã será quarta-feira. Isto é, hoje é Terça.

Portanto, Mário está mentindo pois não pode ser Segunda e Terça ao mesmo tempo. Logo, o dia da semana não é nem Segunda e nem Terça.

Além disso, Jorge fala a verdade. Então, temos:

- Jorge: depois de amanhã não será sábado. Isto é, o dia da semana não é Quinta.
- Jorge: ontem não foi quinta-feira. Isto é, também não é Sexta.

Por exclusão, temos que o dia da semana é Quarta.

Letra c.

041. (FGV/MPE-AL/TÉCNICO DO MINISTÉRIO PÚBLICO/2018) Gabriel, Lucas e Mateus trabalham na mesma empresa em Maceió, mas cada um nasceu em uma cidade diferente.

Um nasceu em Atalaia, outro em Coruripe e outro em Penedo. Sabe-se que Gabriel não nasceu em Penedo e Mateus nasceu em Coruripe. É correto afirmar que

- a) Gabriel nasceu em Coruripe.
- b) Gabriel nasceu em Atalaia.
- c) Lucas não nasceu em Penedo.
- d) Lucas nasceu em Atalaia.
- e) Mateus nasceu em Penedo.

Pelo enunciado, sabemos que "Gabriel não nasceu em Penedo e Mateus nasceu em Coruripe". Note que há apenas três opções de local: Atalaia, Coruripe e Penedo.

Se Mateus nasceu em Coruripe e Gabriel não nasceu em Penedo, então obrigatoriamente Gabriel nasceu em Atalaia. Por fim, temos então que Lucas nasceu na opção restante, isto é, Penedo.

Resumindo:

- · Gabriel nasceu em Atalaia.
- · Mateus nasceu em Coruripe.
- · Lucas nasceu em Penedo.

Letra b.

042. (FCC/SEGEP-MA/AUDITOR FISCAL DA RECEITA ESTADUAL/2016) Quatro meninos têm 5, 7, 9 e 11 carrinhos cada um. A respeito da quantidade de carrinhos que cada um tem, eles afirmaram:

- Antônio: Eu tenho 5 carrinhos;
- Bruno: Eu tenho 11 carrinhos;
- Cássio: Antônio tem 9 carrinhos;
- Danilo: Eu tenho 9 carrinhos.

Se apenas um deles mentiu, tendo os outros dito a verdade, então é correto concluir que a soma do número de carrinhos de Antônio, Bruno e Cássio é igual a:

- a) 23
- b) 25
- c) 21
- d) 27
- e) 22

Uma boa questão para começarmos a treinar sobre Verdades e Mentiras. Como apenas um deles mentiu, vamos fazer suposições e descobrir quem é o mentiroso.

Podemos resolver essa questão mais rapidamente se percebermos que Cássio e Danilo se contradizem. Sendo assim, um dos dois necessariamente é o mentiroso.

Cássio e Antônio também se contradizem, portanto, um dos dois deve ser o mentiroso.

Se Cássio está falando a verdade, concluímos que Danilo e Antônio mentiram, o que não é possível devido à restrição do enunciado de que havia apenas um mentiroso. Logo, Cássio mentiu e todos os demais falaram a verdade.

Se Cássio mentiu, então Danilo falou a verdade, logo Danilo tem 9 carrinhos. Além disso, Antônio teria 5 carrinhos e Bruno teria 11, pois ambos falaram a verdade. Restou a Cássio ter 7 carrinhos. Portanto, não encontramos nenhuma incoerência.

Agora, podemos calcular a soma dos carrinhos de Antônio, Bruno e Cássio.

$$A + B + C = 5 + 11 + 7 = 23$$

Letra a.

043. (CESPE/SEFAZ-AL/AUDITOR FISCAL DA RECEITA ESTADUAL/2020) No argumento seguinte, as proposições P1, P2, P3 e P4 são as premissas, e C é a conclusão.

P1: "Se há carência de recursos tecnológicos no setor Alfa, então o trabalho dos servidores públicos que atuam nesse setor pode ficar prejudicado.".

P2: "Se há carência de recursos tecnológicos no setor Alfa, então os beneficiários dos serviços prestados por esse setor podem ser mal atendidos.".

P3: "Se o trabalho dos servidores públicos que atuam no setor Alfa fica prejudicado, então os servidores públicos que atuam nesse setor padecem.".

P4: "Se os beneficiários dos serviços prestados pelo setor Alfa são mal atendidos, então os beneficiários dos serviços prestados por esse setor padecem.".

C: "Se há carência de recursos tecnológicos no setor Alfa, então os servidores públicos que atuam nesse setor padecem e os beneficiários dos serviços prestados por esse setor padecem.".

Considerando esse argumento, julgue o item seguinte.

O argumento em questão é válido.

O grande problema dessa questão se encontra no "podem" encontrado na premissa P2.

P2: "Se há carência de recursos tecnológicos no setor Alfa, então os beneficiários dos serviços prestados por esse setor PODEM ser mal atendidos.".

Se há carência de recursos tecnológicos, nós podemos concluir apenas que os beneficiários dos serviços prestados **podem** ser mal atendidos, não podemos concluir que eles são mal atendidos necessariamente.

Lembre-se de que, na Lógica, não temos espaço para o "talvez". Ou uma afirmação está completamente certa ou não está. Não existe o "pode ser". Isso é importante, porque, olhando a frase P4:

P4: "Se os beneficiários dos serviços prestados pelo setor Alfa são mal atendidos, então os beneficiários dos serviços prestados por esse setor padecem.".

Não podemos utilizar a propriedade transitiva do condicional nas frases P2 e P4, porque há uma sutil diferença entre as frases "os beneficiários dos serviços prestados por esse setor PODEM ser mal atendidos" e "os beneficiários dos serviços prestados por esse setor são mal atendidos".

É interessante que o mesmo problema acontece com a proposições P1 e P3.

P1: "Se há carência de recursos tecnológicos no setor Alfa, então o trabalho dos servidores públicos que atuam nesse setor PODE ficar prejudicado.".

P3: "Se o trabalho dos servidores públicos que atuam no setor Alfa fica prejudicado, então os servidores públicos que atuam nesse setor padecem.".

Portanto, não podemos chegar a conclusão alguma. Portanto, a afirmação do enunciado está errada.

Se, por acaso, o enunciado tivesse retirado o "PODEM" na proposição P2 e o "PODE" na proposição P1, aí sim, poderíamos concluir:

C1: "Se há carência de recursos tecnológicos no setor Alfa, então os beneficiários dos serviços prestados por esse setor padecem."

C2: "Se há carência de recursos tecnológicos no setor Alfa, então os servidores públicos que atuam nesse setor padecem."

É interessante observar que, se as duas conclusões C1 e C2 fossem verdadeiras, aí sim poderíamos concluir a conclusão final proposta pelo enunciado.

C1: "Se há carência de recursos tecnológicos no setor Alfa, então os beneficiários dos serviços prestados por esse setor padecem."

C2: "Se há carência de recursos tecnológicos no setor Alfa, então os servidores públicos que atuam nesse setor padecem."

Como as duas frases "os beneficiários dos serviços prestados por esse setor padecem" e "os servidores públicos que atuam nesse setor padecem" são consequências da primeira proposição "há carência de recursos tecnológicos no setor Alfa", podemos unir as duas consequências em um operador condicional somente.

C: "Se há carência de recursos tecnológicos no setor Alfa, então os beneficiários dos serviços prestados por esse setor padecem e os servidores públicos que atuam nesse setor padecem."

Porém, note que o único problema da questão é mesmo o "PODE" na frase P1 e o "PODEM" na frase P2, que inviabiliza a dedução mostrada.

Errado.

044. (CESPE/PGE-PE/ANALISTA ADMINISTRATIVO DE PROCURADORIA/2019) Considere as seguintes proposições.

- P1: Se a empresa privada causar prejuízos à sociedade e se o governo interferir na sua gestão, então o governo dará sinalização indesejada para o mercado.
- P2: Se o governo der sinalização indesejada para o mercado, a popularidade do governo cairá.
- Q1: Se a empresa privada causar prejuízos à sociedade e se o governo não interferir na sua gestão, o governo será visto como fraco.
- · Q2: Se o governo for visto como fraco, a popularidade do governo cairá

Tendo como referência essas proposições, julgue o item seguinte, a respeito da lógica de argumentação.

A tabela-verdade da proposição P1Λ P2Λ Q1Λ Q2 tem mais de 30 linhas.

É preciso contar a quantidade de proposições simples envolvidas nas frases. A primeira sentença é uma proposição composta formada por 3 proposições simples. Para facilitar a sua visualização, vamos pintar as frases com cores diferentes e também assinalar números em cada frase para que você seja capaz de ver, mesmo que esteja estudando com o material em preto e branco.

 P1: Se a empresa privada causar prejuízos à sociedade¹ e se o governo interferir na sua gestão², então o governo dará sinalização indesejada para o mercado³.

Vamos agora à segunda proposição P2, em que observamos que a proposição 3 foi repetida.

 P2: Se o governo der sinalização indesejada para o mercado³, a popularidade do governo cairá⁴.

Vamos à sentença Q1 marcando as novas proposições que foram encontradas.

 Q1: Se a empresa privada causar prejuízos à sociedade¹ e se o governo não interferir na sua gestão², o governo será visto como fraco⁵.

Na proposição Q2, vemos duas proposições simples repetidas.

Q2: Se o governo for visto como fraco⁵, a popularidade do governo cairá⁴.

O conjunto P1 Λ P2 Λ Q1 Λ Q2 é formado por 5 proposições simples. Portanto, o número de linhas da tabela verdade é igual a 2 5 = 32 linhas.

Certo.

045. (CESPE/PGE-PE/ANALISTA ADMINISTRATIVO DE PROCURADORIA/2019) Tendo como referência essas proposições, julgue os itens seguintes, a respeito da lógica de argumentação. O argumento em que as proposições P1, P2, Q1 e Q2 são as premissas e a conclusão é a proposição "A popularidade do governo cairá." é um argumento válido.

Vamos buscar algumas deduções com base nas premissas fornecidas pelo enunciado. Primeiramente, vamos examinar as premissas P1 e P2.

- P1: Se a empresa privada causar prejuízos à sociedade e se o governo interferir na sua gestão, então o governo dará sinalização indesejada para o mercado.
- P2: Se o governo der sinalização indesejada para o mercado, a popularidade do governo cairá.

Note que, usando a propriedade transitiva do Operador Condicional, podemos chegar à seguinte conclusão:

EXEMPLO

C: Se a empresa privada causar prejuízos à sociedade e se o governo interferir na sua gestão, a popularidade do governo cairá.

Agora, podemos fazer o mesmo em relação às premissas Q1 e Q2.

- Q1: Se a empresa privada causar prejuízos à sociedade e se o governo não interferir na sua gestão, o governo será visto como fraco.
- O2: Se o governo for visto como fraco, a popularidade do governo cairá

Mais uma vez, usando a propriedade transitiva do Operador Condicional, podemos chegar à seguinte conclusão:

EXEMPLO

C: Se a empresa privada causar prejuízos à sociedade e se o governo não interferir na sua gestão, a popularidade do governo cairá.

Portanto, note que:

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Com base nisso, podemos concluir que, se a empresa privada causa prejuízos à sociedade, a popularidade do governo cairá de qualquer forma, interferindo ou não na sua gestão. Portanto, podemos concluir que "Se a empresa privada causar prejuízos à sociedade, a popularidade do governo cairá".

Matematicamente, poderíamos escrever:

- p: Empresa privada causa prejuízos à sociedade
- q: O governo interfere na gestão da empresa privada
- r: Popularidade do governo cai

EXEMPLO

 $[p \land q] \rightarrow r$: Se a empresa privada causar prejuízos à sociedade e se o governo interferir na sua gestão, a popularidade do governo cairá.

 $[p \land (\neg q)] \rightarrow r$: C: Se a empresa privada causar prejuízos à sociedade e se o governo não interferir na sua gestão, a popularidade do governo cairá.

Juntando as duas, temos:

$$[p \land q] \lor [p \land (\neg q)] \rightarrow r$$

Usando a propriedade distributiva, temos:

$$[p \land (q \lor \neg q)] \rightarrow r$$

O termo $(q \lor \neg q)$ é uma tautologia. Logo, podemos escrever:

$$[p \land Verdadeiro] \rightarrow r$$

O resultado de uma conjunção de \mathbf{p} com uma sentença verdadeira é sempre igual ao próprio valor lógico de \mathbf{p} .

$$p \rightarrow r$$

Portanto, não somos capazes de concluir que **r**, ou seja, "a popularidade do governo cai". Nós somos capazes apenas de concluir que "Se a empresa privada causar prejuízos à sociedade, então a popularidade do governo cai."

Errado.

046. (FGV/SENADO FEDERAL/ADVOGADO/2022) Se não é verdade que Daniel fala mandarim ou japonês, avalie as afirmativas a seguir e assinale (V) para a verdadeira e (F) para a falsa.

- () Pode ser que Daniel fale mandarim e não fale japonês.
- () Daniel não fala nem mandarim nem japonês.
- () Pode ser que Daniel fale mandarim e japonês.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

As afirmativas são, respectivamente

- a) V, V e V.
- b) F, V e F.
- c) V, V e F.
- d) F, F e V.
- e) F, F e F.

Pelo enunciado, temos que negar o trecho "Daniel fala mandarim ou japonês". Para escrever a equivalência da disjunção "ou", precisamos fazer os seguintes passos:

- 1. Nega a primeira parte;
- 2. Nega a segunda parte;
- 3. Troca o conectivo "ou" pelo "e".

Portanto, a equivalência de "Daniel fala mandarim ou japonês" será:

"Daniel não fala mandarim nem japonês".

Agora, basta analisar as afirmações do enunciado. Temos, então:

- (F) **Pode ser que Daniel fale mandarim e não fale japonês.** Veja que, se Daniel falar mandarim, automaticamente, a sentença "Daniel fala mandarim ou japonês" será verdadeira, o que se contrapõe ao enunciado.
- (V) **Daniel não fala nem mandarim nem japonês.** Essa é precisamente a negação da frase pedida pelo enunciado.
- (F) **Pode ser que Daniel fale mandarim e japonês.** Nesse caso, "Daniel fala mandarim ou japonês" seria verdadeira, o que se contrapõe ao enunciado.

Letra b.

- **047.** (VUNESP/MPE/SP/OFICIAL DE PROMOTORIA I/2016) Marcos, Paulo e Sérgio são irmãos e fazem cursos diferentes, cada um fazendo apenas um curso. Um tio, visitando a família, sem conhecer qual curso cada sobrinho fazia, ouviu a seguinte conversa:
 - · Marcos: "Eu não curso engenharia."
 - · Paulo: "Eu curso engenharia."
 - · Sérgio: "Eu não curso medicina."

A mãe dos jovens disse corretamente ao tio que seus três filhos cursavam engenharia, medicina e direito e que apenas um falou a verdade, o que permitiu ao tio determinar que Marcos, Paulo e Sérgio cursam, respectivamente,

- a) Engenharia, direito e medicina.
- b) Engenharia, medicina e direito.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

- c) Direito, engenharia e medicina.
- d) Medicina, direito e engenharia.
- e) Medicina, engenharia e direito.

Nesse tipo de questão, o primeiro passo é descobrir quem está falando a verdade. Para isso, devemos utilizar a técnica de redução ao absurdo.

Ou seja, devemos supor arbitrariamente que alguém está falando a verdade e ver se chegamos a alguma contradição. Dessa forma, provamos que essa pessoa estava mentindo. Suponha que Marcos seja quem está falando a verdade. Por consequência, tanto Paulo como Sérgio devem ter mentido. Nesse caso, devemos ter que:

- · Marcos não cursa Engenharia.
- · Paulo não cursa Engenharia, pois ele estaria mentindo.
- · Sérgio cursa Medicina, pois ele estaria mentindo.

Vamos criar a tabela cruzada de possibilidades e excluir todas as situações já apresentadas.

	Medicina	Engenharia	Direito
Marcos	x	x	
Paulo	x	x	
Sérgio	N		

Nesse caso, chegamos a nenhum absurdo. Marcos e Paulo teriam que ambos cursarem Direito, mas eles não podem fazer o mesmo curso, por restrições do enunciado. Portanto, Marcos não pode ter falado verdade. Assim, concluímos que Marcos mentiu. Logo, ele cursa Engenharia.

Se supuséssemos que Paulo estava falando a verdade, teríamos que Marcos e Sérgio teriam mentido. Logo:

- · Marcos cursa Engenharia, pois ele estava mentindo;
- · Paulo cursa Engenharia;
- · Sérgio cursa Medicina, pois ele estava mentindo.

Chegamos a um absurdo, porque Marcos e Paulo cursam simultaneamente Engenharia, o que não é permitido pelas regras do enunciado.

Por outro lado, se nós supuséssemos que Sérgio está falando a verdade, teríamos que:

- Marcos cursa Engenharia, pois ele estava mentindo;
- · Paulo não cursa Engenharia, pois ele estava mentindo.
- · Sérgio não cursa Medicina, pois ele falou a verdade.

	Medicina	Engenharia	Direito
Marcos	x	\vee	X
Paulo		X	X
Sérgio	x	X	

Dessa forma, concluímos que Paulo cursa Medicina e que Sérgio cursa Direito.

	Medicina	Engenharia	Direito
Marcos	x	\vee	X
Paulo	\vee	x	X
Sérgio	x	X	\vee

Portanto, Marcos cursa Engenharia, Paulo cursa Medicina e Sérgio cursa Direito.

Letra b.

048. (CESPE/TRT-CE/2017) P1: Se eu assino o relatório, sou responsável por todo o seu

conteúdo, mesmo que tenha escrito apenas uma parte. P2: Se sou responsável pelo relatório e surge um problema em seu conteúdo, sou demitido.

C: Logo, escrevo apenas uma parte do relatório, mas sou demitido.

O argumento apresentado no texto CB1A5BBB se tornaria válido do ponto de vista da lógica sentencial, se, além das premissas P1 e P2, a ele fosse acrescentada a proposição:

- a) Não sou demitido ou não escrevo uma parte do relatório.
- b) Sou responsável apenas pela parte que escrevi do relatório.
- c) Eu escrevo apenas uma parte do relatório, assino o relatório e surge um problema em seu conteúdo.
- d) Se não escrevo nenhuma parte do relatório, não sou demitido.

Qual é a condição para eu ser demitido? A resposta está no próprio enunciado:

P2: "Se sou responsável pelo relatório e surge um problema em seu conteúdo, sou demitido." Portanto, a condição para eu ser demitido é "ser responsável pelo relatório e surgir um problema em seu conteúdo"

Mas qual é a condição para eu ser responsável pelo relatório? A resposta está na P1:

P1: "Se eu assino o relatório, sou responsável por todo o seu conteúdo, mesmo que tenha escrito apenas uma parte."

Portanto, a condição para eu ser responsável pelo relatório é: "Assinar o relatório, mesmo que tenha escrito apenas uma parte."

Reunindo as duas situações, temos que as condições para eu ser demitido são: "Assinar o relatório, mesmo que tenha escrito apenas uma parte, e surgir algum problema"

Temos uma conclusão: "Logo, escrevo apenas uma parte do relatório, mas sou demitido." Para chegar a essa conclusão, eu preciso cumprir tudo o que está em negrito. Portanto, eu preciso "assinar o relatório", "escrever uma parte do seu conteúdo" e "surgir algum problema" **Letra c.**

049. (INSTITUTO CONSULPLAN/CÂMARA DE TREMEMBÉ-SP/OFICIAL LEGISLATIVO/2023) Se Carla é analista, então Joana não é auxiliar de contabilidade. Ou Joana é auxiliar de contabilidade ou Marina é bibliotecária. Se Marina não é bibliotecária, então Carla é analista. Considerando que Carla não é analista, pode-se afirmar, verdadeiramente, que:

- a) Joana é auxiliar de contabilidade.
- b) Marina é bibliotecária e Joana é auxiliar de contabilidade.
- c) Se Marina é bibliotecária, então Joana é auxiliar de contabilidade.
- d) Carla é analista se, e somente se, Joana é auxiliar de contabilidade.

Sabe-se que "Carla não é analista" é Verdadeiro. Isto é:

- · Carla não é analista. (V)
- · Carla é analista. (F)

Além disso, as três afirmações do enunciado são verdadeiras.

Em "Se Marina não é bibliotecária, então Carla é analista" temos que ter F→F, pois se for V→F, a afirmação será falsa. Logo, "Marina não é bibliotecária" é Falso. Isto é:

· Marina é bibliotecária. (V)

Analisando a disjunção exclusiva, "Ou Joana é auxiliar de contabilidade ou Marina é bibliotecária", sabe-se que "Marina é bibliotecária" é V.

Logo, temos que ter obrigatoriamente F v V para que a proposição seja verdadeira. Lembrese que a disjunção exclusiva será verdadeira quando apresentar proposições com valores lógicos diferentes.

Assim, temos:

- · Joana é auxiliar de contabilidade. (F)
- Joana não é auxiliar de contabilidade. (V)

Por fim, "Se Carla é analista, então Joana não é auxiliar de contabilidade" temos $F \rightarrow V$. Note que $F \rightarrow V$ é verdadeiro, pois a condicional será falsa apenas se $V \rightarrow F$.

Analisando as alternativas, temos:

- a) Errada. Pois Joana não é auxiliar de contabilidade.
- b) Errada. Pois Marina é bibliotecária, mas Joana não é auxiliar de contabilidade.

- c) Errada. Pois Joana não é auxiliar de contabilidade.
- d) Certa. A bicondicional é verdadeira quando ambas as proposições são verdadeiras ou ambas são falsas. Neste caso, ambas são falsas, pois "Carla é analista" é (F) e "Joana é auxiliar de contabilidade" é (F).

Letra d.

050. (INSTITUTO CONSULPLAN/PREFEITURA DE LINHARES-ES/MONITOR DA EDUCAÇÃO INFANTIL/2022) Se Ana disse a verdade, Caio e João mentiram; se João mentiu, Laura disse a verdade; e, se Laura disse a verdade, Linhares é um município do estado do Maranhão. Como Linhares não é município do Maranhão, quem está mentindo?

- a) Ana e Caio.
- b) Ana e Laura.
- c) João e Laura
- d) Todos mentiram, exceto Laura.

Sabe-se que "Linhares é um município do estado do Maranhão" é Falso.

Logo, para a condicional "Se Laura disse a verdade, Linhares é um município do estado do Maranhão" ser verdadeira, deve ser da forma F → F. Lembre-se que a condicional é falsa quando temos V → F. Assim:

- · Laura disse a verdade (F).
- · Laura mentiu. (V)

Analogamente, como "Laura disse a verdade" é falso, para a condicional "Se João mentiu, Laura disse a verdade" ser verdadeira, deve ser da forma F → F. Logo:

- João mentiu. (F)
- João disse a verdade. (V)

Se João mentiu é Falso, para a condicional "Se Ana disse a verdade, Caio mentiu e João mentiu" ser verdadeira, deve ser da forma F F. Lembre-se que basta uma oração com a conjunção "e" ser falsa para tornar toda a proposição falsa.

Logo, temos:

- Ana disse a verdade. (F)
- · Ana mentiu. (V)

Portanto, podemos afirmar que as mentirosas foram: Ana e Laura.

Letra b.

051. (CESPE/POLÍCIA CIENTÍFICA-PE/PERITO CRIMINAL E MÉDICO/2016) Considere as seguintes proposições para responder a questão.

P1: Se há investigação ou o suspeito é flagrado cometendo delito, então há punição de criminosos.

P2: Se há punição de criminosos, os níveis de violência não tendem a aumentar.

P3: Se os níveis de violência não tendem a aumentar, a população não faz justiça com as próprias mãos.

Pretende-se acrescentar ao conjunto de <u>proposições</u> P1, P2 e P3 uma nova proposição, P0, de modo que o argumento formado pelas premissas P0, P1, P2 e P3, juntamente com a conclusão "A população não faz justiça com as próprias mãos" constitua um argumento válido. Assinale a opção que apresenta uma proposta correta de proposição P0

- a) Há investigação ou o suspeito é flagrado cometendo delito.
- b) Não há investigação ou o suspeito não é flagrado cometendo delito.
- c) Não há investigação e o suspeito não é flagrado cometendo delito.
- d) Se o suspeito é flagrado cometendo delito, então há punição de criminosos.
- e) Se há investigação, então há punição de criminosos.

Observe que, entre P1, P2 e P3, podemos usar a propriedade transitiva do condicional para concluir que:

Se há investigação ou o suspeito é flagrado cometendo delito, então a população não faz justiça com as próprias mãos.

Sendo assim, para concluir que a população não faz justiça com as próprias mãos, só precisamos adicionar a premissa de que haja investigação ou de que o suspeito seja flagrado. Com essa premissa, podemos usar o modus ponens.

Letra a.

052. (FCC/TCE-PR/2011) Considere que as seguintes premissas são verdadeiras:

I – Se um homem é prudente, então ele é competente.

II – Se um homem não é prudente, então ele é ignorante.

III – Se um homem é ignorante, então ele não tem esperanças.

IV – Se um homem é competente, então ele não é violento.

Para que se obtenha um argumento válido, é correto concluir que se um homem:

- a) não é violento, então ele é prudente.
- b) não é competente, então ele é violento.
- c) é violento, então ele não tem esperanças.

- d) não é prudente, então ele é violento.
- e) não é violento, então ele não é competente.

Mais uma questão cobrando a interessante propriedade transitiva do operador condicional.

- I Prudente → Competente
- II Não Prudente → Ignorante
- III Ignorante → Não Esperanças
- IV Competente → Não Violento

Podemos usar a propriedade transitiva em I e IV:

Prudente → Competente → Não Violento, portanto Prudente → Não Violento (V).

Essa afirmação não está nas respostas. Mas também podemos concluir que Violento → Não Prudente (VI), por equivalência lógica.

Vamos tentar usar agora a transitiva em II e III:

Não Prudente \rightarrow Ignorante \rightarrow Não Esperanças, portanto Não Prudente \rightarrow Não Esperanças (VII). Ainda não encontramos a resposta, porém, podemos usar VI e VII.

Violento → Não Prudente → Não Esperanças, portanto, Violento → Não Esperanças.

Olha só, "Se um homem é violento, então ele não tem esperanças."

Letra c.

053. (FGV/TJ-AM/ANALISTA JUDICIÁRIO/2013) Considere como verdadeiras as afirmativas a seguir.

- I Se Carlos mentiu, então João é culpado.
- II Se João é culpado, então Carlos não mentiu.
- III Se Carlos não mentiu, então Pedro não é culpado.
- IV Se Pedro não é culpado, então João não é culpado.

Com base nas afirmativas acima, é correto concluir que:

- a) Carlos mentiu, João é culpado, Pedro não é culpado.
- b) Carlos mentiu, João não é culpado, Pedro não é culpado.
- c) Carlos mentiu, João é culpado, Pedro é culpado.
- d) Carlos não mentiu, João não é culpado, Pedro não é culpado.
- e) Carlos não mentiu, João é culpado, Pedro é culpado.

Podemos observar as frases I e II supondo que Carlos tenha mentido. Nesse caso, temos o seguinte.

Se Carlos mentiu, então João é culpado. Mas, se João é culpado, então Carlos não mentiu.

Sendo assim, usando a propriedade transitiva do condicional, se Carlos mentiu, então Carlos não mentiu. O que é um absurdo, portanto, Carlos não pode ter mentido.

Mais uma vez, podemos usar a propriedade transitiva.

Como Carlos não mentiu, Pedro não é culpado (frase III). Por fim, usando o modus ponens na frase IV, como Pedro não é culpado, então João não é culpado.

l etra d

054. (FGV/PROEFEITURA DE SALVADOR/TÉCNICO/2017) Alice, Bruno, Carlos e Denise são as quatro primeiras pessoas de uma fila, não necessariamente nesta ordem. João olha para os quatro e afirma:

- Bruno e Carlos estão em posições consecutivas na fila;
- · Alice está entre Bruno e Carlos na fila.

Entretanto, as duas afirmações de João são falsas. Sabe-se que Bruno é o terceiro da fila. O segundo da fila é:

- a) Alice
- b) Bruno
- c) Carlos
- d) Denise
- e) João

Se Bruno é o terceiro da fila, Carlos não pode estar nem na segunda nem na quarta posição. Sendo assim, Carlos só pode estar na primeira posição da fila.

Alice não pode estar entre Bruno e Carlos, portanto, ela só pode estar na quarta posição da fila.

Restou, portanto, Denise para ocupar a segunda posição nessa fila.

Letra d.

055. (ESAF/AFT/2006) Ana encontra-se à frente de três salas cujas portas estão pintadas de verde, azul e rosa. Em cada uma das três salas encontra-se uma e somente uma pessoa - em uma delas encontra-se Luís; em outra, encontra-se Carla; em outra, encontra-se Diana. Na porta de cada uma das salas existe uma inscrição, a saber:

- · Sala verde: "Luís está na sala de porta rosa"
- · Sala azul: "Carla está na sala de porta verde"
- · Sala rosa: "Luís está aqui".

Ana sabe que a inscrição na porta da sala onde Luís se encontra pode ser verdadeira ou falsa. Sabe, ainda, que a inscrição na porta da sala onde Carla se encontra é falsa, e que a inscrição

na porta da sala em que Diana se encontra é verdadeira. Com tais informações, Ana conclui corretamente que nas salas de portas verde, azul e rosa encontram-se, respectivamente,

- a) Diana, Luís, Carla
- b) Luís, Diana, Carla
- c) Diana, Carla, Luís
- d) Carla, Diana, Luís
- e) Luís, Carla, Diana

Uma excelente questão.

Se Luís estiver na sala rosa, temos que a informação da sala verde é verdadeira. Portanto, só quem pode estar lá é Diana. Logo, Carla estaria na sala azul, o que faria sentido, pois a inscrição lá estaria falsa. Como não há nenhum absurdo, tentemos eliminar as outras possibilidades.

Se Luís estiver na sala verde, a inscrição dessa sala estaria falsa, o que não tem problema. A sala rosa teria uma mentira, portanto, somente Carla poderia estar lá. Nesse caso, Diana estaria na sala azul, que traz uma afirmação mentirosa, pois Carla está na sala rosa, não na verde. Portanto, temos um absurdo. Logo, Luís não está na sala verde.

Por fim, se Luís estiver na sala azul, teríamos que as inscrições da sala verde e da sala rosa estariam erradas. Portanto, Luís necessariamente estaria em uma dessas salas e Carla na outra. Como Diana deve estar numa sala em que está informação verdadeira, teríamos que ela estaria na sala azul. Trata-se de um novo absurdo, pois Luís e Diana não podem estar na mesma sala.

Sendo assim, concluímos que a sala verde está ocupada por Diana, a sala azul está ocupada por Carla e a sala rosa está ocupada por Luís.

Letra c.

os6. (ESAF/CGU/ANALISTA DE FINANÇAS E CONTROLE/2006) Um professor de lógica encontrase em viajem em um país distante, habitado pelos verdamanos e pelos mentimanos. O que os distingue é que os verdamanos sempre dizem a verdade, enquanto os mentimanos sempre mentem. Certo dia, o professor depara-se com um grupo de cinco habitantes locais. Chamemo-los de Alfa, Beta, Gama, Delta e Épsilon. O professor sabe que um e apenas um no grupo é verdamano, mas não sabe qual deles o é. Pergunta, então, a cada um do grupo quem entre eles é verdamano e obtém as seguintes respostas:

· Alfa: "Beta é mentimano"

· Beta: "Gama é mentimano"

· Gama: "Delta é verdamano"

· Delta: "Épsilon é verdamano"

Épsilon, afônico, fala tão baixo que o professor não consegue ouvir sua resposta. Mesmo assim, o professor de lógica conclui corretamente que o verdamano é:

- a) Delta
- b) Alfa
- c) Gama
- d) Beta
- e) Épsilon

Supondo que Alfa esteja falando a verdade, teríamos que todos os demais mentem. Como Beta mente, teríamos que Gama falaria a verdade, o que é um absurdo. Portanto, Alfa mente. Sendo assim, Alfa mente, logo Beta é verdamano.

E isso é coerente, pois, nesse caso, Gamma e Delta estariam mentindo, pois Delta e Épsilon são mentimanos.

Letra d.

057. (ESAF/CGU/ANALISTA DE FINANÇAS E CONTROLE/2004) Três homens são levados à presença de um jovem lógico. Sabe-se que um deles é um honesto marceneiro, que sempre diz a verdade. Sabe-se, também, que um outro é um pedreiro, igualmente honesto e trabalhador, mas que tem o estranho costume de sempre mentir, de jamais dizer a verdade. Sabe-se, ainda, que o restante é um vulgar ladrão que ora mente, ora diz a verdade. O problema é que não se sabe quem, entre eles, é quem. À frente do jovem lógico, esses três homens fazem, ordenadamente, as seguintes declarações:

- · O primeiro diz: "Eu sou o ladrão."
- · O segundo diz: "É verdade; ele, o que acabou de falar, é o ladrão."
- O terceiro diz: "Eu sou o ladrão."

Com base nestas informações, o jovem lógico pode, então, concluir corretamente que:

- a) O ladrão é o primeiro e o marceneiro é o terceiro.
- b) O ladrão é o primeiro e o marceneiro é o segundo.
- c) O pedreiro é o primeiro e o ladrão é o segundo.
- d) O pedreiro é o primeiro e o ladrão é o terceiro.
- e) O marceneiro é o primeiro e o ladrão é o segundo.

Como o marceneiro é honesto e sempre diz a verdade, ele jamais poderia dizer que é um ladrão. Portanto, ele só pode ser o segundo.

Logo, a segunda frase está verdadeira, sendo assim, o primeiro é, de fato, o ladrão. Já o terceiro é o pedreiro que não é ladrão, mas é mentiroso.

Letra b.

058. (FCC/AL-MS/AGENTE DE APOIO LEGISLATIVO/2016) Lucas encontrou as seguintes sentenças em um livro de lógica:

- 1. A próxima sentença é verdadeira.
- 2. A sentença anterior é falsa.

Analisando as duas sentenças, é correto afirmar que

- a) 1 e 2 são necessariamente verdadeiras.
- b) 1 é verdadeira e 2 é falsa.
- c) 1 é falsa e 2 é verdadeira.
- d) 1 e 2 são necessariamente falsas.
- e) 1 e 2 são mutuamente inconsistentes.

Se a sentença 1 for verdadeira, então a sentença 2 seria verdadeira, mas isso implicaria na sentença 1 ser falsa. Portanto, é um absurdo.

Se a sentença 1 for falsa, então a sentença 2 seria falsa, mas isso implicaria na sentença 1 ser verdadeira. Portanto, é mais um absurdo.

Sendo assim, as duas frases são inconsistentes.

Letra e.

059. (CESPE/SEFAZ-RS/ASSISTENTE ADMINISTRATIVO FAZENDÁRIO/2018) Alberto, Anderson, Bernardo, Cláudio, Dionísio e Tadeu, lotados em um mesmo departamento, viajarão a serviço, em duplas. Cada dupla utilizará um meio de transporte diferente: avião, trem ou carro. Alberto e Bernardo viajarão juntos; Anderson viajará de avião; Cláudio não formará dupla com Dionísio nem viajará de avião; Tadeu não viajará de trem.

Dessas informações conclui-se que:

- a) Alberto viajará de trem, e Tadeu, de carro.
- b) Dionísio viajará de trem, e Anderson e Cláudio formarão uma dupla.
- c) Tadeu formará dupla com Dionísio, e Bernardo viajará de avião.
- d) Bernardo viajará de carro, e Cláudio, de avião.
- e) Anderson viajará de avião, e Alberto, de carro.

Vamos montar a tabela cruzada. Nas linhas colocaremos os seis integrantes e nas colunas colocaremos as suas duplas e os meios de transporte que podem ser utilizados.

Thiago Cardoso

Convém ressaltar que não é possível que uma pessoa faça dupla com ela mesma. Portanto, já podemos eliminar de cara essas duplas.

	Alberto	Anderson	Bernardo	Cláudio	Dionísio	Tadeu	Avião	Carro	Trem
Alberto	X								
Anderson		х							
Bernardo			X						
Cláudio				x					
Dionísio					х				
Tadeu						x			

De acordo com o enunciado, Alberto e Bernardo viajarão juntos. Dessa forma, como uma pessoa só pode ter uma dupla, automaticamente eliminamos todas as possibilidades de que Alberto e Bernardo formem duplas com outros colaboradores.

	Alberto	Anderson	Bernardo	Cláudio	Dionísio	Tadeu	Avião	Carro	Trem
Alberto	X	X		X	X	X			
Anderson	X	X	X						
Bernardo	V	X	x	x	x	X			
Cláudio	X		X	X					
Dionísio	x		x		x				
Tadeu	X		X			X			

De acordo com o enunciado, Anderson viajará de avião. Portanto, ele não pode viajar nem de carro nem de trem. Além disso, Alberto e Bernardo, que já são uma dupla formada, não podem viajar de avião, tendo em vista que as três duplas formadas devem utilizar meios de transporte diferentes.

	Alberto	Anderson	Bernardo	Cláudio	Dionísio	Tadeu	Avião	Carro	Trem
Alberto	X	X		X	X	X	X		
Anderson	X	X	X				V	X	x
Bernardo	∇	X	X	X	X	X			
Cláudio	X		x	X					
Dionísio	X		X		X				
Tadeu	X		X			X			

Agora, vamos à próxima informação do enunciado: Cláudio não formará dupla com Dionísio nem viajará de avião.

Já sabíamos acima que Cláudio não poderia formar duplas com Alberto nem com Bernardo. Agora sabemos que ele não pode formar dupla com Dionísio e também não pode formar com Anderson, tendo em vista que Anderson irá de avião.

Portanto, Cláudio só pode formar dupla com Tadeu.

	Alberto	Anderson	Bernardo	Cláudio	Dionísio	Tadeu	Avião	Carro	Trem
Alberto	x	X	✓	X	X	X	x		
Anderson	х	X	x			x	>	X	x
Bernardo	~	X	x	x	x	x			
Cláudio	x	X	X	X	X	~	X		
Dionísio	x		x	x	x	x			
Tadeu	X	X	X	~	X	X			

Dessa forma, as três duplas já estão formadas: Alberto e Bernardo; Cláudio e Tadeu; Anderson e Dionísio. Como sabemos que Anderson viaja de avião, a sua dupla (Dionísio) também deve viajar de avião.

Por fim, sabemos que Tadeu não viajará de trem. Consequentemente, a sua dupla (Cláudio) também não viajará de trem.

	Alberto	Anderson	Bernardo	Cláudio	Dionísio	Tadeu	Avião	Carro	Trem
Alberto	X	X	V	X	X	X	X		
Anderson	X	X	X	X		X	V	X	X
Bernardo	\vee	x	x	x	x	x			
Cláudio	X	X	X	X	X	\vee			X
Dionísio	X		X	X	X	X			X
Tadeu	X	X	X		X	X			X

Concluímos, portanto, que Alberto e Bernardo viajam de trem. À dupla Tadeu e Cláudio, restou viajar de carro.

	Alberto	Anderson	Bernardo	Cláudio	Dionísio	Tadeu	Avião	Carro	Trem
Alberto	X	X		X	X	X	X	X	\triangle
Anderson	X	X	X	X		X	\vee	X	X
Bernardo	✓	X	X	X	X	x	X	X	abla
Cláudio	X	X	X	X	x	\square	X		X
Dionísio	X	\checkmark	X	x	X	X	\checkmark	X	X
Tadeu	X	X	X		X	X	x		X

Com base nas nossas conclusões

- a) Certa. Alberto viajará de trem, e Tadeu, de carro.
- b) Errada. Dionísio viajará de trem, e Anderson e Cláudio formarão uma dupla.
- c) Errada. Tadeu formará dupla com Dionísio, e Bernardo viajará de avião.
- d) Errada. Bernardo viajará de carro, e Cláudio, de avião.
- e) Errada. Anderson viajará de avião, e Alberto, de carro.

Letra a.

060. (INSTITUTO AOCP/MPE-RS/TÉCNICO DO MINISTÉRIO PÚBLICO/2021) Quatro funcionários,

060. (INSTITUTO AOCP/MPE-RS/TECNICO DO MINISTERIO PUBLICO/2021) Quatro funcionários, Adão, Beto, César e Davi, não necessariamente nessa ordem, atuam como promotor, assistente de promotor, procurador e subprocurador. Esses funcionários atuam no Ministério Público em andares diferentes do prédio: 1º andar, 2º andar, 3º andar e 4º andar, não necessariamente na ordem em que os nomes foram apresentados. Sabe-se que:

César atua como promotor, mas não no 3º andar e nem no 4º andar;

Beto atua como procurador no 3º andar;

Davi não atua no 1º andar e não atua como assistente de promotor;

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

O funcionário que atua como assistente de promotor atua no 1º andar.

Nessas condições, assinale a alternativa correta.

- a) Davi atua como subprocurador no 4º andar.
- b) Adão atua como subprocurador no 2º andar.
- c) César atua no 1º andar.
- d) Davi atua no 2º andar.
- e) Adão atua no 4º andar.

Para facilitar a resolução, pode-se construir uma tabela de andares x cargos. Vamos, então, utilizar as informações propostas no enunciado.

• César atua como promotor, mas não no 3º andar e nem no 4º andar.

Logo, Cesar admite duas possibilidades:

6	Promotor	Assistente	Procurador	Subprocurador
1º andar	С			
2º andar	С			
3º andar				
4º andar				

• Beto atua como procurador no 3º andar;

Logo, Beto admite apenas 1 possibilidade:

	Promotor	Assistente	Procurador	Subprocurador
1º andar	С			
2º andar	С			
3º andar			В	
4º andar				

· Davi não atua no 1º andar e não atua como assistente de promotor;

Assim, Davi pode atuar no 2º ou 4º andar. Além disso, como César já é o promotor, Beto já é o Procurador e Davi também não é assistente, então Davi só pode ser Subprocurador. Logo:

	Promotor	Assistente	Procurador	Subprocurador
1º andar	С			
2º andar	С			D
3º andar			В	
4º andar				D

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Portanto, temos que Adão só pode ser Assistente. Assim, Adão tem 3 possibilidades:

	Promotor	Assistente	Procurador	Subprocurador
1º andar	С	Α		
2º andar	С	Α		D
3º andar			В	
4º andar		Α		D

• O funcionário que atua como assistente de promotor atua no 1º andar.

Por fim, sabemos que Adão, que é o assistente, está no 1º andar.

Como cada funcionário atua em um andar diferente, obrigatoriamente César não poderá ficar no 1º andar. Logo, César estará no 2º andar. Por conseguinte, Davi só poderá estar no 4º andar.

Assim, temos:

5)	Promotor	Assistente	Procurador	Subprocurador
1º andar		Α		
2º andar	С			
3º andar			В	
4º andar				D

Resumindo:

- Adão = Assistente do promotor e atua no 1º andar.
- Beto = Procurador e atua no 3º andar.
- · César = Promotor e atua no 2º andar.
- Davi = Subprocurador e atua no 4º andar.

Letra a.

061. (INSTITUTO AOCP/FUNPRESP/ANALISTA DE TECNOLOGIA DA INFORMAÇÃO/2021) Se Inês é analista de investimentos, então Joana é analista de conformidade. Se Karen não é analista de conformidade, então Inês é analista de investimentos. A analista de marketing é a mais velha das três. Sabe-se que cada uma das mulheres citadas exerce uma e somente uma das profissões mencionadas e que Joana não é analista de conformidade.

Dado o exposto, julgue o seguinte item.

Inês é analista de marketing e Karen é analista de conformidade.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Substituindo todas as premissas por letras e tomando todas as proposições como V, temos: I – Se Inês é analista de investimentos (A), então Joana é analista de conformidade (B). Logo, se A, então B. = V

II – Se Karen não é analista de conformidade (C), então Inês é analista de investimentos
 (A). Logo, se C, então A. = V

III – A analista de marketing é a mais velha das três. = V

IV - Joana não é analista de conformidade (~B). = V

Agora, relembre a tabela verdade da condicional.

Р	Q	$P \rightarrow Q$
V	V	V
V	F	F
F	V	v
F	F	v

No item I, temos: Se A, então Falso = Verdadeiro. Para I ser verdadeiro, A é falso. Isto é, **Inês** não é analista de investimentos.

No item II, temos: Se C, então Falso = Verdadeiro. Para II ser verdadeiro, C é falso. Isto é, Karen é analista de conformidade.

Como Inês não é analista de investimentos e nem de conformidades, obrigatoriamente Inês é analista de marketing e, consequentemente, Joana é analista de investimentos. Certo.

062. (INSTITUTO AOCP/FUNPRESP/ANALISTA DE TECNOLOGIA DA INFORMAÇÃO/2021) Se Inês é analista de investimentos, então Joana é analista de conformidade. Se Karen não é analista de conformidade, então Inês é analista de investimentos. A analista de marketing é a mais velha das três. Sabe-se que cada uma das mulheres citadas exerce uma e somente uma das profissões mencionadas e que Joana não é analista de conformidade.

Dado o exposto, julgue o seguinte item.

Karen é analista de conformidade e Joana é a mais velha das três mulheres citadas.

Substituindo todas as premissas por letras e tomando todas as proposições como V, temos: I – Se Inês é analista de investimentos (A), então Joana é analista de conformidade (B). Logo, se A, então B. = V

II – Se Karen não é analista de conformidade (C), então Inês é analista de investimentos
 (A). Logo, se C, então A. = V

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

III – A analista de marketing é a mais velha das três. = V

IV - Joana não é analista de conformidade (~B). = V

Agora, relembre a tabela verdade da condicional.

P	Q	$P \rightarrow Q$
V	V	v
V	F	F
F	V	v
F	F	v

No item I, temos: Se A, então Falso = Verdadeiro. Para I ser verdadeiro, A é falso. Isto é, **Inês** não é analista de investimentos.

No item II, temos: Se C, então Falso = Verdadeiro. Para II ser verdadeiro, C é falso. Isto é, Karen é analista de conformidade.

Como Inês não é analista de investimentos e nem de conformidades, obrigatoriamente <u>Inês</u> <u>é analista de marketing</u> e, pela proposição III, <u>a mais velha de todas as três mulheres citadas.</u>

Além disso, Joana é analista de investimentos.

Logo, Karen é analista de conformidade, mas Joana **não** é a mais velha das três mulheres citadas.

Errado.

063. (FCC/DPE-RR/ADMINISTRADOR/2015) Dentro de um envelope há um papel marcado com um número. Afirma-se sobre esse número que:

I – o número é 1;

II - o número não é 2;

III - o número é 3;

IV - o número não é 4.

Sabendo que três das afirmações são verdadeiras e uma é falsa, é necessariamente correto concluir que

- a) I é verdadeira.
- b) II é falsa.
- c) II é verdadeira.
- d) III é verdadeira.
- e) IV é falsa.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

As afirmações I e III são um bom exemplo de par de afirmações contrárias. Portanto, elas podem estar simultaneamente falsas, mas não podem ser simultaneamente verdadeiras. Já as afirmações II e IV constituem um bom par de afirmações subcontrárias. Portanto, elas podem estar simultaneamente verdadeiras, mas não podem ser simultaneamente falsas. Como sabemos que apenas uma afirmação é falsa, concluímos que II e IV são verdadeiras. Portanto, o número deve ser 1 ou 3.

Letra c.

064. (FCC/TRT 2ª REGIÃO-SP/TÉCNICO JUDICIÁRIO) Em certo planeta de uma galáxia distante, existem apenas dois partidos, o BEM e o MAL. Quando são perguntados sobre qualquer assunto, os habitantes desse planeta sempre respondem com uma única dentre as duas seguintes palavras: sim ou não. Porém, os integrantes do BEM sempre respondem a verdade, enquanto que os integrantes do MAL necessariamente mentem. Zip e seu irmão Zap são habitantes desse planeta, sendo o primeiro um integrante do BEM e o segundo do MAL. Dentre as perguntas a seguir, qual é a única que, se for feita tanto para Zip quanto para Zap, gerará respostas diferentes?

- a) Seu irmão é mentiroso?
- b) Você é mentiroso?
- c) Você é o Zip?
- d) Zip é mentiroso?
- e) Seu irmão chama-se Zip?

A questão aborda o famoso Paradoxo do Mentiroso. Tanto Zip como Zap responderiam que não são mentirosos. Ambos também diriam que o irmão é mentiroso.

Zip diria que sim, pois ele sabe que Zap é mentiroso e deve dizer a verdade. Zap diria que sim, porque ele sabe que Zip fala a verdade e Zap deve mentir.

Porém, a pergunta "Zip é mentiroso?" diferencia os dois. Zip falaria que não, pois deve dizer a verdade sobre si próprio. Por outro lado, Zap mentiria e diria que Zip é mentiroso.

Letra d.

065. (FCC/SEFAZ-SP/AGENTE FISCAL DE TRIBUTOS ESTADUAIS/2006) Numa ilha dos mares do sul convivem três raças distintas de ilhéus: os zel(s) só mentem, os del(s) só falam a verdade e os mel(s) alternadamente falam verdades e mentiras - ou seja, uma verdade, uma mentira, uma verdade, uma mentira -, mas não se sabe se começaram falando uma ou outra. Nos encontramos com três nativos, Sr. A, Sr. B, Sr. C, um de cada uma das raças:

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Observe bem o diálogo que travamos com o Sr. C

Nós: - Sr. C, o senhor é da raça zel, del ou mel?

Sr. C: - Eu sou mel. (1ª resposta)

Nós: - Sr. C, e o senhor A, de que raça é?

Sr. C: - Ele é zel. (2ª resposta)

Nós: - Mas então o Sr. B é del, não é isso, Sr. C?

Sr. C: - Claro, senhor! (3ª resposta)

Nessas condições, é verdade que os senhores A, B e C são, respectivamente,

- a) del, zel, mel.
- b) del, mel, zel.
- c) mel, del, zel.
- d) zel, del, mel.
- e) zel, mel, del.

Uma questão interessante envolvendo uma pessoa que ora mente ora fala a verdade.

Vamos por partes.

Nós: - Sr. C, o senhor é da raça zel, del ou mel?

Sr. C: - Eu sou mel. (1ª resposta)

Essa frase poderia ser dita por uma pessoa da raça mel ou da raça zel. Portanto, ainda temos duas possibilidades. Vamos supor que C é da raça mel e vamos às próximas.

Nós: - Sr. C, e o senhor A, de que raça é?

Sr. C: - Ele é zel. (2ª resposta)

Se C é mel, ele falou a verdade na primeira frase e, portanto, está mentindo agora. Logo, A não pode ser zel. A pode ser del ou mel, mas A também não pode ser mel, porque C já é mel. Portanto, A seria del.

Nós: - Mas então o Sr. B é del, não é isso, Sr. C?

Sr. C: - Claro, senhor! (3ª resposta)

Supondo que C seja mel, agora, ele estaria falando a verdade. No entanto, B não pode ser del, porque A já é del. Sendo assim, chegamos a um absurdo. Logo, C não pode ser mel. C deve ser zel.

Então, vamos concluir.

Nós: - Sr. C, e o senhor A, de que raça é?

Sr. C: - Ele é zel. (2ª resposta)

Aqui, já havíamos concluído que A só pode ser del.

Nós: - Mas então o Sr. B é del, não é isso, Sr. C?

Sr. C: - Claro, senhor! (3ª resposta)

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Nesse caso, como C é zel, ele está sempre mentindo. Portanto, B não pode ser del. Restou a B ser um mel.

Letra b.

066. (FCC/SEFAZ-PE/JULGADOR ADMINISTRATIVO TRIBUTÁRIO DO TESOURO ESTADUAL/2015) Em um país, todo habitante pertence a uma única dentre três tribos: os Autênticos, que sempre dizem a verdade, os Dissimulados, que sempre mentem, e os Volúveis, que sempre alternam uma fala verdadeira e uma mentirosa, não necessariamente nessa ordem. As autoridades alfandegárias fizeram três perguntas a um grupo de habitantes desse país que chegou ao Brasil em um avião. A primeira pergunta, que foi "Você é um Autêntico?", foi respondida afirmativamente por 53 integrantes do grupo. A segunda, que foi "Você é um Volúvel?", foi respondida afirmativamente por 38 deles. E 18 integrantes responderam "sim" à última pergunta, que foi "Você é um Dissimulado?". O número de Autênticos nesse grupo é igual a

- a) 15.
- b) 28.
- c) 20.
- d) 53.
- e) 35.

Essa é uma das melhores questões que eu conheço sobre esse tema. É importante perceber que somente uma pessoa volúvel poderia responder sim à pergunta "Você é Dissimulado?". Trata-se de uma versão do Paradoxo do Mentiroso. Os dissimulados não poderiam admitir que são dissimulados, já os autênticos também não poderiam dizer que são dissimulados. Sendo assim, os 18 que responderam sim à última pergunta são todos volúveis. E falaram mentindo.

Convém reparar que, como eles falam a verdade e depois mentem alternadamente, na pergunta anterior "Você é volúvel?", eles falaram a verdade e disseram que são volúveis. Portanto, dos 38 que responderam sim, 18 são volúveis e 20 são dissimulados.

Nenhum autêntico poderia responder sim à pergunta se é volúvel. Além disso, todos os dissimulados deveriam responder sim a essa pergunta, pois eles mentem.

Por fim, na pergunta "Você é Autêntico?" foi respondida sim, naturalmente, pelos autênticos e pelos dissimulados. Mas também foi respondida sim pelos volúveis, porque, como eles mentiram na segunda pergunta, eles deveriam dizer a verdade na primeira pergunta.

Sendo assim, o grupo total é formado por 53 pessoas, das quais 18 são volúveis, 20 são dissimulados e 15 são autênticos.

Letra a.

067. (CESPE/SEFAZ-RS/AUDITOR FISCAL DA RECEITA ESTADUAL/2019) Em determinada cidade, foram fiscalizadas 20 empresas, classificadas quanto ao porte e quanto ao setor de atividade econômica em que atuam. Quanto ao porte, cada empresa recebe uma única classificação: microempresa (ME), pequena (P), média (M) ou grande (G). Quanto ao setor, cada empresa também recebe uma única classificação: 1, 2, 3, 4 ou 5. Não há empresa que receba, simultaneamente, a mesma classificação de porte e de setor que outra empresa já recebe. Para a realização dessa fiscalização, tais empresas foram distribuídas igualmente e designadas a quatro auditores fiscais, Aldo, Bruno, Carlos e Dário. Cada empresa foi fiscalizada por apenas um desses auditores. Após a conclusão do trabalho, os auditores fizeram as seguintes afirmações:

I – Aldo: "Fiscalizei cinco empresas de porte médio".

II - Bruno: "Fiscalizei quatro empresas de um mesmo setor".

III – Carlos: "Fiscalizei cinco empresas cujo porte recebe uma classificação que começa com a letra M".

IV - Dário: "Fiscalizei três empresas de um setor e duas empresas de outro setor".

Considerando que, nessa situação hipotética, somente uma das afirmações feitas pelos auditores seja falsa, assinale a opção que apresenta o maior número de empresas de porte G que podem ser fiscalizadas por um mesmo auditor.

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

Essa foi uma das questões mais complicadas que eu já vi de Raciocínio Lógico.

O primeiro ponto a notar é que existem 4 tipos de porte e 5 setores diferentes. Portanto, há um total de 20 combinações.

Como só existem 20 empresas, concluímos que existe exatamente uma empresa em cada uma das combinações.

Portanto, só existe uma microempresa do setor 1 (ME1), só existe uma empresa grande do setor 4 (G4) e, assim, por diante.

Além disso, podemos concluir que existem 5 empresas de cada porte. Por exemplo, entre as empresas de porte grande, existem as G1, G2, G3, G4 e G5. Essas empresas são uma de cada setor: G1 é a empresa grande do setor 1, G2 é a empresa grande do setor 2 e, assim, por diante.

Também podemos concluir que existem 4 empresas em cada setor. Por exemplo, no setor 1, existem as empresas ME1, P1, M1 e G1. Elas são, respectivamente, a microempresa do setor 1, a pequena empresa do setor 1, a média empresa do setor 1 e a empresa grande do setor 1.

Outro ponto que devemos notar é que, sempre que duas pessoas se contradizem, uma está mentindo e a outra está falando a verdade.

Aldo diz: "Fiscalizei cinco empresas de porte médio". Ao afirmar isso, Aldo está dizendo que fiscalizou todas as empresas de porte médio, pois, como vimos, só existem 5, de fato: M1, M2, M3, M4 e M5.

Por outro lado, Bruno diz: "Fiscalizei quatro empresas de um mesmo setor", como só existem 4 empresas de cada setor, isso significa que ele fiscalizou todas as empresas do setor. Portanto, ele teria também fiscalizado a empresa de médio porte naquele setor.

Como sabemos que cada empresa foi fiscalizada por um único auditor, temos que Aldo e Bruno se contradizem. Portanto, um deles está mentindo.

Vamos supor que Bruno esteja mentindo.

Nesse caso, Aldo teria fiscalizado todas as empresas de médio porte. Carlos teria fiscalizado todas as microempresas. Sendo assim, sobrariam apenas as empresas pequenas e grandes. Porém, ao verificar a frase de Dário: "Fiscalizei três empresas de um setor e duas empresas de outro setor", essa frase estaria necessariamente falsa, porque, de acordo com a conclusão anterior, Dário só poderia ter fiscalizado empresas pequenas e empresas grandes. Logo, ele estaria limitado a duas empresas de cada setor.

Chegamos, portanto, a uma contradição. Logo, concluímos que Bruno está falando a verdade e que Aldo está mentindo.

Se Bruno falou a verdade e fiscalizou quatro empresas de um mesmo setor, necessariamente ele fiscalizou uma empresa grande. Ele pode ter também fiscalizado duas, pois sabemos que ele fiscalizou cinco empresas.

Para fins de ilustração, vamos supor que Bruno fiscalizou quatro empresas do setor 2. Nesse caso, ele fiscalizou a ME2, P2, M2 e G2. A outra empresa fiscalizada por Bruno pode ser grande ou não.

Vamos verificar as afirmações dos outros auditores.

III – Carlos: "Fiscalizei cinco empresas cujo porte recebe uma classificação que começa com a letra M". Como Carlos falou a verdade, temos que ele não fiscalizou nenhuma empresa grande.

IV - Dário: "Fiscalizei três empresas de um setor e duas empresas de outro setor".

Dário só pode ter fiscalizado, no máximo, duas empresas grandes, mas pode ser também que ele não tenha fiscalizado nenhuma.

Sobrou, portanto, Aldo. Como sabemos que ele mentiu, é bastante possível que ele tenha fiscalizado todas as demais empresas grandes: G1, G3, G4 e G5.

Portanto, é possível que um auditor tenha fiscalizado 4 empresas grandes.

Mas não é possível que um único auditor tenha fiscalizado 5 empresas grandes, porque Dário necessariamente fiscalizou uma.

Letra d.

068. (ESAF/ANEEL/2004) Se não leio, não compreendo. Se jogo, não leio. Se não desisto, compreendo. Se é feriado, não desisto. Então,

- a) se jogo, não é feriado.
- b) se não jogo, é feriado.
- c) se é feriado, não leio.
- d) se não é feriado, leio.
- e) se é feriado, jogo.

Podemos separar as questões que envolvem muitas sentenças com o operador condicional em dois grupos: aquelas cuja resposta está em função do próprio condicional e aquelas cuja resposta é uma conclusão sem condicional.

Essa questão é do primeiro tipo. Nesse caso, devemos utilizar a propriedade transitiva do condicional. Vejamos:

- p: Leio
- q: Compreendo
- r: Jogo
- s: Desisto
- t: é feriado

O enunciado nos forneceu as seguintes premissas:

$$\neg p \rightarrow \neg q, r \rightarrow \neg p, \neg s \rightarrow q, t \rightarrow \neg s$$

Podemos usar a propriedade transitiva para concluir que:

$$\neg p \rightarrow \neg q, r \rightarrow \neg p :: r \rightarrow \neg q$$

 $r \to \neg q$: "Se jogo, não compreendo", que é equivalente a "Se compreendo, não jogo" Como não está nas respostas, vamos adiante.

$$r \rightarrow \neg q, \neg s \rightarrow q : r \rightarrow s$$

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Aqui usamos também a famosa equivalência lógica de que.

$$\neg s \rightarrow q = \neg q \rightarrow s$$
.

 $r \rightarrow s$: "Se jogo, desisto", que é equivalente a "Se não desisto, não jogo"

Como não está nas respostas, vamos adiante.

 $r \rightarrow \neg t$: "Se jogo, não é feriado"

Opa! Acabamos de achar nossa resposta.

Poderíamos também ter adotado o seguinte procedimento mais verbal, se fosse de sua preferência.

Não Leio \rightarrow Não Compreendo e Jogo \rightarrow Não Leio, então Jogo \rightarrow Não Compreendo

Jogo → Não Compreendo e Não desisto → Compreendo, então Jogo → Desisto

Jogo → Desisto e Feriado → Não Desisto, então Jogo → não é feriado

Outra maneira de ver o problema é a seguinte:

Podemos organizar as frases:

"Se jogo, não leio."

"Se não leio, não compreendo."

"Se não desisto, compreendo." = "Se não compreendo, eu desisto"

"Se é feriado, não desisto." = "Se eu desisto, não é feriado"

Assim, é mais fácil usar a propriedade transitiva:

"Se jogo, não leio." Jogo -> não leio

"Se não leio, não compreendo." não leio -> não compreendo

"Se não compreendo, eu desisto" não compreendo -> desisto

"Se eu desisto, não é feriado" desisto -> não é feriado

Para visualizar melhor a propriedade transitiva, podemos colocar as setas em sequência:

"Se jogo, então não leio, então não compreendo, então desisto, então não é feriado."

Que é a mesma coisa de: "Jogo -> não leio -> não compreendo -> desisto -> não é feriado" Perceba, portanto que, Jogo -> não é feriado. Logo "Se jogo, não é feriado"

Letra a.

069. (FGV/SENADO FEDERAL/POLICIAL LEGISLATIVO/2008) Um crime é cometido por uma pessoa e há quatro suspeitos: André, Eduardo, Rafael e João. Interrogados, eles fazem as seguintes declarações:

- André: Eduardo é o culpado.
- · Eduardo: João é o culpado.
- · Rafael: Eu não sou culpado.
- · João: Eduardo mente quando diz que eu sou culpado.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Sabendo que apenas um dos quatro disse a verdade, o culpado:

- a) é certamente André.
- b) é certamente Eduardo.
- c) é certamente Rafael.
- d) é certamente João.
- e) não pode ser determinado com essas informações

Temos que descobrir o único que falou a verdade.

Observe que Eduardo e João se contradizem. Se Eduardo está falando a verdade, então João mente. Por outro lado, se Eduardo está mentindo, então João fala a verdade.

Sendo assim, um dos dois está mentindo e o outro está falando a verdade, necessariamente. Portanto, o único suspeito que disse a verdade é João ou Eduardo. Logo, podemos concluir que André e Rafael estão mentindo.

Se Rafael está mentindo, podemos concluir que **Rafael é o culpado.** Portanto, o gabarito é letra C.

Observe que essa conclusão é coerente, pois André estaria mentindo, já que Eduardo não é o culpado. Eduardo estaria mentindo, pois João não é o culpado. Rafael também estaria mentindo e o único a falar a verdade foi o próprio João.

Letra c.

070. (ESAF/AFRFB/2012) Se Ana é pianista, então Beatriz é violinista. Se Ana é violinista, então Beatriz é pianista. Se Ana é pianista, Denise é violinista. Se Ana é violinista, então Denise é pianista. Se Beatriz é violinista, então Denise é pianista. Sabendo-se que nenhuma delas toca mais de um instrumento, então Ana, Beatriz e Denise tocam, respectivamente:

- a) Piano, piano, piano
- b) Piano, piano, violino.
- c) Violino, piano, piano
- d) Violino, piano, violino
- e) Violino, violino, piano.

Essa questão muito interessante foi cobrada na prova de 2012 da Receita Federal. Fugiu um pouco do tradicional das questões de Raciocínio Lógico.

Para resolver essa questão, vamos recorrer à técnica da redução ao absurdo. No enunciado, temos cinco afirmações.

- I Se Ana é pianista, então Beatriz é violinista.
- II Se Ana é violinista, então Beatriz é pianista.
- III Se Ana é pianista, Denise é violinista.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

IV – Se Ana é violinista, então Denise é pianista.

V – Se Beatriz é violinista, então Denise é pianista.

Suponha que Ana é pianista. Nesse caso, de (I), temos que Beatriz é violinista e de (III), temos que Denise é violinista.

Porém, usando a afirmação (V), temos que Denise é pianista. Logo, Denise seria pianista e violinista ao mesmo tempo, o que é um absurdo, pois é proibido pelas regras do enunciado, que garante que nenhuma delas toca mais de um instrumento.

Sendo assim, supor que Ana é pianista nos leva a um absurdo. Logo, Ana não é pianista, portanto, Ana é violinista.

Dessa maneira, de (II), temos que Beatriz é pianista e, de (IV), temos que Denise é pianista.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Esses conhecimentos não chocam com (V), portanto, não há nenhum absurdo.

Portanto, Ana toca violino, Beatriz toca piano e Denise também toca piano.

Outra forma de fazer esse problema seria **testar as alternativas.** Considero um recurso mais demorado, porém, é uma alternativa para você resolver.

a) Errada. Piano, piano, piano.

Nesse caso, as três tocam piano. Vamos ver se a alternativa se choca com alguma das premissas do enunciado.

- Se Ana é pianista, então Beatriz é violinista F -> F = V
- Se Ana é violinista, então Beatriz é pianista F -> V = V
- Se Ana é pianista, Denise é violinista V -> F = F
- Se Ana é violinista, então Denise é pianista F -> V = V
- Se Beatriz é violinista, então Denise é pianista F -> V = V

Chegamos a um absurdo, portanto, a letra A é incompatível com as premissas do enunciado. b) Errada. Piano, piano, violino.

Nessa situação, Ana e Beatriz tocam piano, somente Denise toca violino. Vejamos se há alguma contradição com as premissas do enunciado.

- Se Ana é pianista, então Beatriz é violinista V -> F = F
- Se Ana é violinista, então Beatriz é pianista F -> V = V
- Se Ana é pianista, Denise é violinista V -> V = V
- Se Ana é violinista, então Denise é pianista F -> F = V
- Se Beatriz é violinista, então Denise é pianista F -> F = V
- · Como chegamos a uma contradição, a letra B está falsa.

c) Certa. Violino, piano, piano.

Nesse caso, Ana toca violino, e as outras duas tocam piano. Vamos ver se a alternativa entra em contradição com as proposições

- Se Ana é pianista, então Beatriz é violinista F -> F = V
- Se Ana é violinista, então Beatriz é pianista V -> V = V
- Se Ana é pianista, Denise é violinista F -> F = V
- Se Ana é violinista, então Denise é pianista V -> V = V
- Se Beatriz é violinista, então Denise é pianista F-> V = V

Como não chegamos a nenhum absurdo, a letra C pode estar correta.

d) Errada. Violino, piano, violino.

Nesse caso, Ana e Denise tocam violino, enquanto Beatriz toca piano. Vamos ver se há algum confronto com as premissas do enunciado.

- Se Ana é pianista, então Beatriz é violinista F -> F = V
- Se Ana é violinista, então Beatriz é pianista V -> V = V
- Se Ana é pianista, Denise é violinista F -> V = V
- Se Ana é violinista, então Denise é pianista V -> F = F
- Se Beatriz é violinista, então Denise é pianista F -> F = V

Como chegamos a uma contradição, a letra D não pode ser a resposta.

e) Errada. Violino, violino, piano.

Ana e Beatriz tocam violino e Denise toca piano. Vamos ver se há algum conflito com as premissas do enunciado.

- Se Ana é pianista, então Beatriz é violinista F -> V = V
- Se Ana é violinista, então Beatriz é pianista V -> F = F
- Se Ana é pianista, Denise é violinista F -> F = V
- Se Ana é violinista, então Denise é pianista V -> V = V
- Se Beatriz é violinista, então Denise é pianista V -> V = V
- · Como chegamos a uma contradição, a letra E não pode ser a resposta.

Letra c.

071. (VUNESP/CÂMARA DE MARÍLIA/ANALISTA DE SISTEMAS/2016) Jorge, Álvaro, Mauro, Rogério e Sidney são casados com Rosa, Wilma, Thaís, Helen e Miriam, não necessariamente nessa ordem. Cada um deles tem uma profissão diferente, dentre advogado, médico, engenheiro, dentista e psicólogo. Sabe-se que:

- (1) Mauro não é casado com Thaís, que é casada com o dentista;
- (2) Rosa não é casada com Sidney, que não é engenheiro e tampouco dentista;
- (3) Helen é casada com Rogério, que não é engenheiro e tampouco psicólogo;

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Thiago Cardoso

- (4) o advogado não é casado com Wilma, que não é casada com Jorge e tampouco com o psicólogo;
- (5) Álvaro é advogado.

Sendo assim, conclui-se corretamente que

- a) Mauro não é engenheiro.
- b) Jorge é casado com Thaís
- c) Álvaro não é casado com Rosa.
- d) Sidney é casado com Wilma.
- e) Rogério não é médico.

Observe que foram dadas três categorias de elementos que precisamos organizar: os maridos, as esposas e a profissão do marido. Vamos montar a Tabela Cruzada de Gibbs para essas três categorias.

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge										
Álvaro										
Mauro										
Rogério										
Sidney										
Advogado										
Médico										
Engenheiro										
Dentista										
Psicólogo										

Agora, vamos utilizar as informações fornecidas pelo enunciado. De (1): "Mauro não é casado com Thaís, que é casada com o dentista", podemos eliminar diversas possibilidades:

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge										
Álvaro										
Mauro			X						X	
Rogério										
Sidney										
Advogado			X							
Médico			x							
Engenheiro			X							
Dentista	X	X	~	X	X					
Psicólogo			X							

Observe que podemos concluir que Mauro não é dentista, porque sabemos que Thaís é casada com o dentista, mas que ela não é casada com Mauro.

Agora, vamos utilizar a informação (5): "Álvaro é advogado". Podemos escrever:

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge						X				
Álvaro						>	X	X	X	X
Mauro			X			X			X	
Rogério						X				
Sidney	X					X		X	X	
Advogado			X							
Médico			x							
Engenheiro			X							
Dentista	X	X	~	X	X					
Psicólogo			X							

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Vamos, agora, utilizar a informação (3): "Helen é casada com Rogério, que não é engenheiro e tampouco psicólogo". É interessante que nós já sabíamos que Rogério não era advogado. Agora, sabemos que ele não pode ser engenheiro nem psicólogo. Rogério também não pode ser dentista, porque o dentista é casado com Thaís. Portanto, concluímos que Rogério é médico e é casado com Helen.

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge				x		X	х			
Álvaro				X		V	x	X	х	X
Mauro			x	X		x	x		x	
Rogério	X	X	x	~	X	X	~	X	X	X
Sidney	х			х		х	x	х	х	
Advogado			X	х						
Médico	x	x	x	✓	x					
Engenheiro			X	х						
Dentista	x	x	1	x	x					
Psicólogo			x	x						

Vamos, agora, utilizar a informação (4): "o advogado não é casado com Wilma, que não é casada com Jorge e tampouco com o psicólogo".

Mas, nós já sabíamos, no passo anterior, que Wilma não era casada nem com o médico nem com o dentista. Agora, sabemos que ela não é casada nem com o advogado nem com o psicólogo. Portanto, concluímos que Wilma é casada com o engenheiro.

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge		X		Х		Х	X			
Álvaro				x		>	x	x	x	x
Mauro			x	x		X	X		x	
Rogério	X	X	X	~	X	X	V	X	x	X
Sidney	X			х		X	X	X	х	
Advogado		X	X	X			**			
Médico	X	X	x	~	X					
Engenheiro	X	✓	X	X	X					
Dentista	x	X	~	x	x					
Psicólogo		X	X	X						

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Thiago Cardoso

Como Wilma é casada com o engenheiro e nós sabemos que Álvaro, Rogério e Sidney não são engenheiros, concluímos que Wilma não pode ser casada com nenhum desses três. Como já sabíamos que ela não podia ser casada também com Jorge, concluímos que ela é casada com Mauro e que Mauro é engenheiro.

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge		x		x		x	x	x		
Álvaro		х		x		~	x	X	x	X
Mauro	x	~	x	x	x	x	x	V	х	x
Rogério	x	x	x	V	x	x	✓	x	x	x
Sidney	x	х		x		х	x	X	X	
Advogado		x	X	x						
Médico	X	х	X	~	X					
Engenheiro	x	~	x	x	x	1				
Dentista	X	x	~	x	X					
Psicólogo		x	x	x						

Assim, concluímos que Jorge somente pode ser dentista. E, portanto, ele é casado com Thaís.

	Rosa	Wilma	Thaís	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge	x	x	7	X	x	x	x	х	~	X
Álvaro		X	x	x		>	X	х	х	х
Mauro	X	✓	X	x	x	x	X	✓	x	X
Rogério	x	X	X	~	X	X	~	X	X	X
Sidney	X	X	X	X		X	X	X	X	
Advogado		X	x	x						
Médico	X	X	X	~	X					
Engenheiro	X	~	х	X	х					
Dentista	X	x	✓	x	x					
Psicólogo		x	X	X						

Agora, podemos chegar às últimas conclusões:

- · Sidney é casado com Miriam e é psicólogo;
- · Rosa é casada com Álvaro. Como Álvaro é advogado,

	Rosa	Wilma	Thais	Helen	Miriam	Advogado	Médico	Engenheiro	Dentista	Psicólogo
Jorge	X	x	~	X	x	x	X	X	~	x
Álvaro	✓	X	X	X	х	✓	X	х	Х	х
Mauro	X	~	x	X	X	x	X	~	X	X
Rogério	X	X	X	V	х	X	V	х	х	X
Sidney	X	X	x	X	Y	x	x	X	X	Y
Advogado	V	x	x	x	x					
Médico	X	X	x	✓	х	1				
Engenheiro	x	~	x	x	X					
Dentista	X	X	✓	X	X					
Psicólogo	X	x	x	X	~					

Agora, podemos julgar os itens:

- a) Mauro não é engenheiro. Falso.
- b) Jorge é casado com Thaís. Verdadeiro.
- c) Álvaro não é casado com Rosa. Falso.
- d) Sidney é casado com Wilma. Falso.
- e) Rogério não é médico. Falso.

Letra b.

072. (CESPE/SEFAZ-ES/2021) Hugo não conseguiu assistir ao último episódio de sua série televisa favorita. No capítulo anterior, o protagonista, Ned, estava em vias de enfrentar uma guerra sangrenta que poderia levá-lo à morte. Sabendo que seus amigos Bernardo, Fernando e Ronaldo tinham visto o final do seriado, Hugo pediu, explicitamente, que não lhe contassem o que havia ocorrido. Por diversão, os colegas resolveram escrever, cada um, uma mensagem anônima para Hugo. Os bilhetes foram recebidos na seguinte ordem:

- 1°: "A guerra foi evitada";
- 2°: "A guerra não foi evitada";
- 3°: "Ned morreu na guerra".

Hugo sabe que:

- (I) Bernardo sempre fala a verdade;
- (II) Fernando sempre mente; e
- (III) Ronaldo às vezes fala a verdade e, outras vezes, mente.

Analisando as três mensagens, Hugo conseguiu identificar, pela caligrafia, a que havia sido escrita por Ronaldo. Tal constatação levou Hugo a concluir corretamente o final do seriado. Diante disso, responda: a primeira, a segunda e a terceira mensagem foram enviadas, respectivamente, por

- a) Bernardo, Fernando e Ronaldo.
- b) Bernardo, Ronaldo e Fernando.
- c) Fernando, Bernardo e Ronaldo.
- d) Ronaldo, Bernardo e Fernando.
- e) Fernando, Ronaldo e Bernardo.

Questão muito criativa!

Primeira Solução:

Temos duas perguntas a responder: a guerra foi evitada? Ned morreu na guerra? Assim, podemos montar a tabela de possibilidades.

A guerra foi evitada	Ned Morreu na guerra
V	V
V	F
F	V
F	F

Perceba que a primeira linha já se contradiz. Se a guerra foi evitada, é impossível Ned ter morrido nela. Desse modo, temos a seguinte tabela de possibilidades:

A guerra foi evitada	Ned Morreu na guerra
V	F
F	V
F	F

Em seguida, vamos nos colocar no lugar de Hugo, observando que ele sabe qual foi o bilhete escrito por Ronaldo. Então, podemos fazer suposições.

Vamos supor que Ronaldo escreveu o terceiro bilhete. Nesse caso, como ele pode falar a verdade ou mentir, é impossível para Hugo saber o final do seriado. Portanto, Ronaldo não pode ter escrito o terceiro bilhete em nenhum caso.

Suponha que Ronaldo tenha escrito o primeiro bilhete. Nesse caso, não temos como saber se a guerra foi evitada ou não. Mas, sabemos que, entre os dois bilhetes, um deles é verdadeiro e o outro é falso. Porém, Hugo não tem como saber qual é qual. Mas ele pode usar a lógica.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Como ele sabe que exatamente uma das proposições é verdadeira, ele sabe que o seguinte operador ou exclusivo é verdadeiro:

"Ou a guerra não foi evitada ou Ned morreu na guerra".

Assim, podemos construir a tabela-verdade:

A guerra foi evitada	A guerra não foi evitada	Ned Morreu na guerra	OUOU
V	F	F	F
F	V	V	F
F	V	F	V

Desse modo, Hugo poderia concluir que guerra não foi evitada, mas que Ned não morreu nela. Então, se Hugo reconheceu que Ronaldo escreveu o primeiro bilhete, ele seria capaz de saber o final do seriado.

Nesse caso, o segundo bilhete seria verdadeiro e o terceiro seria falso. Assim, Bernardo escreveu o segundo bilhete e Fernando escreveu o terceiro.

Por outro lado, se Ronaldo tivesse escrito o segundo bilhete, Hugo pensaria mais uma vez que, dentre o primeiro e o terceiro bilhetes, um deles é falso e o outro é verdadeiro. Mas ele não sabe qual é qual. Hugo poderia utilizar o operador ou exclusivo novamente:

"Ou a guerra foi evitada ou Ned morreu na guerra."

Nesse caso, a tabela verdade que Hugo encontraria seria:

A guerra foi evitada	Ned Morreu na guerra	0000
V	F	V
F	V	V
F	F	F

Desse modo, se Hugo tivesse reconhecido a letra de Ronaldo no segundo bilhete, ele não seria capaz de concluir o final do seriado, e isso viola as premissas da questão.

Portanto, a única possibilidade é que Ronaldo tenha escrito o primeiro bilhete, Bernardo o segundo e Fernando o terceiro. Nesse caso, a guerra não foi evitada, mas Ned não morreu nela.

Segunda Solução:

Vamos supor que Ronaldo escreveu o terceiro bilhete. Nesse caso, como ele pode falar a verdade ou mentir, é impossível para Hugo saber o final do seriado. Portanto, Ronaldo não pode ter escrito o terceiro bilhete em nenhum caso.

Suponha que Ronaldo tenha escrito o primeiro bilhete. Nesse caso, não temos como saber se a guerra foi evitada ou não. Mas, sabemos que, entre os dois bilhetes, um deles é verdadeiro e o outro é falso. Porém, Hugo não tem como saber qual é qual. Mas ele pode usar a lógica.

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Se Ronaldo escreveu o primeiro bilhete e Bernardo o segundo, logo Fernando escreveria o terceiro, que seria uma mentira, consequentemente. Nesse caso, teríamos que a guerra não foi evitada, mas que Ned não morreu nela.

Por outro lado, se Ronaldo escreveu o primeiro bilhete e Fernando escreveu o segundo, podemos concluir que a guerra foi evitada, já que Fernando sempre mente. Porém, o terceiro bilhete precisaria ter sido escrito por Bernardo, e concluímos que Bernardo estaria mentido, o que é uma contradição. Portanto, é impossível.

Assim, se Ronaldo escreveu o primeiro bilhete, podemos concluir que Bernardo escreveu o segundo e Fernando o terceiro. Nesse caso, a guerra não foi evitada, mas Ned não morreu nela. Então, se Hugo reconheceu que Ronaldo escreveu o primeiro bilhete, ele seria capaz de saber o final do seriado.

Por outro lado, se Ronaldo tivesse escrito o segundo bilhete, Hugo não teria como concluir o final do seriado. Vejamos:

Pense que Hugo supôs que Bernardo escreveu o primeiro bilhete e Fernando escreveu o segundo. Nesse caso, ele concluiria que a guerra foi evitada e que Ned não morreu na guerra. Não há contradição.

Por outro lado, se Hugo tivesse suposto que Bernardo escreveu o terceiro bilhete e Fernando escreveu o segundo, ele concluiria que a guerra não foi evitada e que Ned morreu nela. Não há contradição também.

Desse modo, se Hugo tivesse reconhecido a letra de Ronaldo no segundo bilhete, ele não seria capaz de concluir o final do seriado, e isso viola as premissas da questão.

Portanto, a única possibilidade é que Ronaldo tenha escrito o primeiro bilhete, Bernardo o segundo e Fernando o terceiro. Nesse caso, a guerra não foi evitada, mas Ned não morreu nela. **Letra d.**

073. (CESPE/PC-DF/2021) A proposição $[(p \land q)] \rightarrow [p \lor (\sim q)]$, em que ($\sim q$) denota a negação da proposição q, só apresenta resultado verdadeiro quando a proposição p for verdadeira e a proposição q for falsa.

Vamos utilizar as propriedades de equivalência lógica do operador condicional.

$$A \rightarrow B = \neg A \lor B$$

Assim, temos:

$$A \to B = \neg [(p \land q)] \lor [p \lor (\sim q)] = [(\neg p) \lor (\neg q)] \lor [p \lor (\sim q)]$$

Usando a comutatividade do operador OU:

$$A \to B = [(\neg p) \lor (p)] \lor [(\sim q) \lor (\sim q)]$$

Perceba que não p OU p é uma tautologia, isto é, ela é sempre verdadeira. Em seguida, podemos utilizar o fato de que uma proposição verdadeira OU qualquer proposição é sempre verdade.

$$A \rightarrow B = Verdadeiro \lor [(\sim q)] = Verdadeiro$$

Desse modo, a proposição citada no enunciado é sempre verdadeira, independentemente do valor lógico das premissas **p** e **q**.

Errado.

074. (TFC – INÉDITA) Bruno, Daniela, Francisco e Geraldo são auditores-fiscais da SEFAZ/SC e possuem as seguintes especialidades, mas não necessariamente nessa ordem, auditoria, aduana, gestão tributária e tecnologia da informação. Além disso, eles trabalham nas cidades de Florianópolis, Joinville, Blumenau e Chapecó, mas não necessariamente nessa ordem. Sabe-se também que:

- I Bruno não trabalha em Blumenau.
- II Quem trabalha em aduana trabalha em Florianópolis.
- III Geraldo trabalha em gestão tributária e não trabalha em Chapecó.
- IV Quem trabalha com tecnologia da informação trabalha em Blumenau.
- V Daniela trabalha com auditoria.

Diante dessas informações, pode-se concluir que Francisco:

- a) Francisco trabalha com aduana em Florianópolis.
- b) Francisco trabalha com tecnologia da informação em Blumenau.
- c) Francisco trabalha com gestão tributária em Joinville.
- d) Daniela trabalha com auditoria em Blumenau.
- e) Daniela trabalha em Joinville e Geraldo trabalha em Chapecó.

...

Vamos desenhar a tabela cruzada de Gibbs correspondente a essa situação.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	JOI	BLU	СНА
Bruno								
Daniela								
Francisco								
Geraldo								
FLN								
301								
BLU								
СНА								

Vamos utilizar a informação de que Bruno não trabalha em Blumenau e que quem trabalha em aduana trabalha em Florianópolis, observando que essa informação exclui várias possibilidades.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	301	BLU	СНА
Bruno							×	
Daniela								
Francisco								
Geraldo								
FLN	×	<u> </u>	×	×				
301		×						
BLU		×						
СНА		×						

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Em seguida, vamos utilizar o fato de que Geraldo trabalha com gestão tributária. Isso automaticamente exclui a possibilidade de ele morar em Florianópolis, porque quem mora em Florianópolis trabalha com aduana.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	301	BLU	СНА
Bruno			×				×	
Daniela			×					
Francisco			×					
Geraldo	×	×	<u>~</u>	×	×			×
FLN	×	<u>~</u>	×	×				
JOI		×						
BLU		×						
СНА		×	×					

Em seguida, vamos utilizar a informação de que quem trabalha com tecnologia da informação trabalha em Blumenau. Observe que isso exclui a possibilidade de Bruno trabalhar nessa área, já que sabemos que ele não trabalha em Blumenau. Também exclui a possibilidade de Geraldo trabalhar em Blumenau, pois ele trabalha em outra área.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	301	BLU	СНА
Bruno			×	X			×	
Daniela			×					
Francisco			×					
Geraldo	×	×	V	×	×		×	×
FLN	×	<u>~</u>	×	×				
301		×		×				
BLU	×	×	×	K				
СНА		×	×	×				

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Assim, podemos concluir que Geraldo trabalha em Joinville e que quem trabalha em Chapecó trabalha com auditoria.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	301	BLU	СНА
Bruno			×	X		×	×	
Daniela			×			×		
Francisco			×			×		
Geraldo	×	×	<u>~</u>	×	×	V	×	×
FLN	×	<u>~</u>	×	×				
301	×	×	V	×				
BLU	×	×	×	K				
СНА	Ŋ	×	×	×				

Por fim, vamos utilizar a informação V de que Daniela trabalha com auditoria. Consequentemente, ela trabalha em Chapecó, pois já sabíamos que quem trabalhava em Chapecó trabalha com auditoria.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	301	BLU	СНА
Bruno	×		×	X		×	×	×
Daniela	V	×	×	×	×	×	×	<u><</u>
Francisco	×		×			×		×
Geraldo	×	×	<u> </u>	×	×	V	×	×
FLN	×	<u>~</u>	×	X				
301	×	×	<u>~</u>	×				
BLU	×	×	×	K				
СНА	Ŋ	×	×	×				

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

Observe que, assim, podemos concluir a tabela, pois sabemos que Bruno trabalha em Florianópolis e na aduana. Logo, Francisco só pode trabalhar com tecnologia da Informação em Blumenau.

	Auditoria	Aduana	Gestão Tributária	Tecnologia da Informação	FLN	301	BLU	СНА
Bruno	×	V	×	×	K	×	×	×
Daniela	V	×	×	×	×	×	×	<u><</u>
Francisco	×	×	×	K	×	×	<u>~</u>	×
Geraldo	×	×	V	×	×	Ŋ	×	×
FLN	×	<u>~</u>	×	×				
301	×	×	✓	×				
BLU	×	×	×	K				
СНА	Ŋ	×	×	×				

Diante das nossas conclusões, vamos analisar as afirmações propostas.

- a) Francisco trabalha com aduana em Florianópolis. **FALSO, pois ele trabalha com tecnologia** da informação em Blumenau.
- b) Francisco trabalha com tecnologia da informação em Blumenau. VERDADEIRO.
- c) Francisco trabalha com gestão tributária em Joinville. FALSO, pois ele trabalha com tecnologia da informação em Blumenau.
- d) Daniela trabalha com auditoria em Blumenau. FALSO, pois ela trabalha em Chapecó.
- e) Daniela trabalha em Joinville e Geraldo trabalha em Chapecó. **FALSO, pois está invertido**. **Letra b.**

O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.

