Quality scores across bases: RAD datasets

Nucleotide composition

RAD/GBS

Each read starts with the barcode, then the restriction site, then a variable sequence

Issues with cluster identification

Due to low complexity at the beginning of the sequence, Illumina cannot distinguish if a signal comes from one or two clusters

Phasing issues

"Out of Phase"

The first 12 nucleotides are also used for «phasing», i.e. correcting for reads that are out of phase. The algorithm expects random nucleotide distribution!

-> Barcodes of the same length may lead to low quality overall

How to minimize the problem

- Use barcodes of different lengths to shift the restriction enzyme cut site
- Add PhiX virus DNA to the RAD libraries to increase the complexity of reads ('spiking')
- Reduce loading concentrations of Illumina plates
- Potentially: filter out bad reads

RAD/GBS

Each read starts with the barcode, then the restriction site, then a variable sequence

RAD 2: with barcodes of different lengths

Sequence duplication level

Example 1: 20 reads total

10 unique sequences + 5 sequences each present twice

Example 2: 20 reads total 10 unique sequences + 1 sequence present 10x

Deduplicated sequences (=number of distinct copies)

15 distinct sequences are distributed as 10 singletons and 5 duplicates, 10/15=66% and 5/15=33% is the slope of the red line. Thus 15/20=75% remaining after deduplication (distinct reads).

Deduplicated sequences (=number of distinct copies)

11 total groups where 10/11=91% are singletons and 1/11=9% of the groups form at duplication rate of 10x. Therefore, 11/20 = 55% distinct reads.

UPer sequence GC content GC distribution over all sequences 50000 This might be contamination Sharp peak indicates or a feature of the genome specific motif. Adapters are the usual suspect. 30000 20000 511110 10000 Wider or multiple distributions suggest 0 49 52 55 58 61 65 69 72 75 79 82 85 89 Contamination.

Mean GC content (%) Expected: Normal/Gaussian Distribution

0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 41

Per base N content

Per tile sequencing quality

Kmer content in RAD data:

wgs.Novaseq.R2

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	28471	0.17023848994734272	No Hit

polyG tail due to 2-colour SBS technology

Trimming and filtering reads

Remove adapter sequences

If the DNA fragment is very short, it will sequence into the second adapter. Therefore, there will be adapter sequences in the read which need to be removed or the read will not map.

- Remove polyG tails (if 2-base SBS technology used)
- Trim (cut off) ends of reads with low sequencing quality

Sequencing by synthesis by Illumina: Read1

- 1. DNA fragments bind to the P1 primer
- 2. polymerase makes it double-stranded
- 3. Template strand is washed away (denaturated)

- 4. DNA strand forms a bridge and binds to the P2 primer
- 5. Polymerase makes it doublestranded
- 6. Denaturation -> two single stranded DNA fragments

Repeat many times to form clusters of thousands of identical DNA strands
7. The reverse strands are cleaved and washed off

8. Primer annealing
9. Complementary
fluorescently tagged
nucleotides are
incorporated in each cycle
10. Repeat step 9 150x

Sequencing by synthesis by Illumina: Read2

- 11. Denaturation
- 12. Primer index 1 is added and sequenced
- 13. The 3' end is deprotected

- 14. The DNA fragment forms a bridge to the reverse primer
- 15. Sequencing of index 2 16. Polymerase makes
- bridge double-stranded
- 14. Denaturation leads to single-stranded fragments bound to the flowcell 15. Forward strands are cleaved and washed off
- 16. Second read is sequenced as the first read with sequencing-bysynthesis

How many SNPs will I get?

GBS

Species	Genome Size (Mb)	Enzyme	Sample Size	No. SNPs
Maize	2,600	ApeKI	33,000	1,200K
Rice	400	ApeKI	850	60K
Grape	500	ApeKI	1000	200K
Willow*	460	ApeKI	459	23K
Pine*	16,000	ApeKI	12	63K
Vole*	3,400	Pstl	283	53K
Fox*	2,400	EcoT22I	48	16K
Cow	3,000	Pstl	48	64K
Verticilliflorum (fungus isolates)	40	ApeKI	2	10K

^{*}No reference genome. UNEAK analysis pipeline used for analysis. To avoid homology/paralogy issues this pipeline calls SNPs very conservatively.