	Name: Reny
	The Equilibrium Temperature $4 \cdot \frac{7}{4} R$ $\Delta C_p = -6R = -49.88$ Mol. K
	Consider the Haber-Bosch process: $3H_2(g) + N_2(g) \implies 2NH_3(g)$
	At $298~K$ this reaction has $\Delta G^{\Theta} = -32.90 \frac{kJ}{mol}$, $\Delta H^{\Theta} = -92.22 \frac{kJ}{mol}$, and $\Delta S^{\Theta} = -198.76 \frac{J}{mol~K}$
	In CHEM 1220 you learned that $\Delta G = \Delta H - T\Delta S$, and used this formula to calculate the equilibrium
	temperature: $T = \frac{\Delta H}{\Delta S}$. Use this formula to find the equilibrium temperature.
	T= -92.22 moi = 464 K
	That formula relies on the accurantian that $A U = 1 A C = 1$
	only a good approximation over very small temperature ranges. Use Kirchoff's law to find A U and use
	$\Delta S(T_2) = \Delta S(T_1) + \int_{T_1}^{T_2} \frac{\Delta C_p}{T} dT \text{ to find } \Delta S \text{ at the equilibrium temperature you calculated above}$
¥H(464)	= -92.22 k3 - 0.04988 k2 ~ 166 K = -100.5 k3 moi
5 (464) =	-198-76 76 - 49.88 7 - (n (298) = -220.8 7 moi.k
	Use these values of ΔH and ΔS to find ΔG at the equilibrium temperature you calculated above. Is the system really at equilibrium?
Δ	G=-100.5 k2 - 464 K0.2208 k3 +1.95 k3 No. DG # 8
	Find the true equilibrium temperature using the Gibbs-Helmholtz equation: $\left(\frac{\mathrm{d}\left(\Delta G/T\right)}{\mathrm{d}T}\right)_{p}=-\frac{\Delta H}{T^{2}}$
The a	newer is 454.4K, but this is a bad question so please
don't	feel like you need to solve it.
	Find ΔH and ΔS at that temperature, and confirm that the system is at equilibrium at that temperature
	, and the same competature

Quiz 3.3 – Gibbs Energy and T