

Figure 56.3: The two red half spaces associated with the hyperplane $w^{\top}x_i - z + b = -\epsilon$.

Thus it appears that the above problem is the version of Program (**RR3**) (see Section 55.2) in which the ℓ^2 -norm of $y - Xw - b\mathbf{1}$ is replaced by its ℓ^1 -norm. This a sort of "dual" of lasso (see Section 55.5) where $(1/2)w^\top w = (1/2)\|w\|_2^2$ is replaced by $\tau \|w\|_1$, and $\|y - Xw - b\mathbf{1}\|_1$ is replaced by $\|y - Xw - b\mathbf{1}\|_2^2$.

Proposition 56.1. For any optimal solution, the equations

$$\xi_i \xi_i' = 0, \quad i = 1, \dots, m \tag{\xi \xi'}$$

hold. If $\epsilon > 0$, then the equations

$$w^{\top} x_i + b - y_i = \epsilon + \xi_i$$
$$-w^{\top} x_i - b + y_i = \epsilon + \xi'_i$$

cannot hold simultaneously.

Proof. For an optimal solution we have

$$-\epsilon - \xi_i' \le w^{\mathsf{T}} x_i + b - y_i \le \epsilon + \xi_i.$$

If $w^{\top}x_i + b - y_i \geq 0$, then $\xi'_i = 0$ since the inequality

$$-\epsilon - \xi_i' \le w^{\top} x_i + b - y_i$$

is trivially satisfied (because $\epsilon, \xi_i' \geq 0$), and if $w^{\top} x_i + b - y_i \leq 0$, then similarly $\xi_i = 0$. See Figure 56.4.