31/01/2023-Shift 1

EE24BTECH11021 - Eshan Ray

- 1) If the maximum distance of normal to the ellipse $\frac{x^2}{4} + \frac{y^2}{h^2} = 1$, b < 2, from the origin is 1, then the eccentricity of the ellipse is:

 - a) $\frac{1}{\sqrt{2}}$ b) $\frac{\sqrt{3}}{2}$ c) $\frac{1}{2}$ d) $\frac{\sqrt{3}}{4}$
- 2) For all $z \in C$ on the curve C_1 : |z| = 4, let the locus of the point $z + \frac{1}{z}$ be the curve C_2 . Then [Jan-2023]
 - a) the curve s C_1 and C_2 intersect at 4 points
 - b) the curve C_1 lies inside C_2
 - c) the curves C_1 and C_2 intersect at 2 points
 - d) the curve C_2 lies inside C_1
- 3) A wire of length 20 m is to be cut into two pieces. A piece of length l_1 is bent into the shape of area A_1 and the other piece if length l_2 is made into circle of area A_2 . If $2A_1 + 3A_2$ is minimum then $(\pi l_1) : l_2$ is equal to : [Jan-2023]
 - a) 6: 1 b) 3:1

 - c) 1:6
 - d) 4:1
- 4) For the system of linear equations

$$x + y + z = 6$$

$$\alpha x + \beta y + 7z = 3$$

$$x + 2y + 3z = 14$$

which of the following is NOT true?

[Jan-2023]

1

- a) If $\alpha = \beta = 7$, then the system has no solution
- b) If $\alpha = \beta$ and $\alpha \neq 7$ then the system has a unique solution
- c) There is a unique point (α, β) on the line x + 2y + 18 = 0 for which the system has infinitely many solutions
- d) For every point $(\alpha, \beta) \neq (7, 7)$ on the line x 2y + 7 = 0, the system has infinitely many solutions
- 5) Let the shortest distance between the lines

L:
$$\frac{x-5}{-2} = \frac{y-\lambda}{0} = \frac{z+\lambda}{1}$$
, $\lambda \ge 0$ and L_1 : $x+1=y-1=4-z$ be $2\sqrt{6}$. If (α,β,γ) lies on L, then which of the following is NOT possible? [Jan-2023]

- a) $\alpha + 2\gamma = 24$
- b) $2\alpha + \gamma = 7$
- c) $2\alpha \gamma = 9$

d)
$$\alpha - 2\gamma = 19$$

- 6) Let y = f(x) represent a parabola with focus $\left(-\frac{1}{2}, 0\right)$ and directrix $y = -\frac{1}{2}$. Then $S = \left\{ x \in R : \tan^{-1} \left(\sqrt{f(x)} + \sin^{-1} \left(\sqrt{f(x) + 1} \right) \right) = \frac{\pi}{2} \right\} :$
 - a) contains exactly two elements
 - b) contains exactly one element
 - c) is an infinite set
 - d) is an empty set
- 7) Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{pmatrix}$. Then the sum of the diagonal elements of the matrix $(A + I)^{11}$

is equal to: [Jan-2023]

- a) 6144
- b) 4094
- c) 4097
- d) 2050
- 8) Let *R* be a relation $N \times N$ defined by (a, b) R(c, d) if and only if ad(b c) = bc(a d). Then R is [Jan-2023]
 - a) symmetric but neither reflexive nor transitive
 - b) transitive but neither reflexive nor symmetric
 - c) reflexive and symmetric but not transitive
 - d) symmetric and transitive but not reflexive
- 9) Let

Let
$$y = f(x) = \sin^3\left(\frac{\pi}{3}\left(\cos\left(\frac{\pi}{3\sqrt{2}}\left(-4x^3 + 5x^2 + 1\right)^{\frac{3}{2}}\right)\right)\right)$$

Then, at $x = 1$, [Jan-2023]

- a) $2v' + \sqrt{3}\pi^2 v = 0$
- b) $2v' + 3\pi^2 v = 0$
- c) $\sqrt{2}v' 3\pi^2v = 0$
- d) $y' + 3\pi^2 y = 0$
- 10) If sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is: [Jan-2023]
 - a) 7
 - b) $\frac{9}{2}$
 - c) 3
 - d) 14
- 11) The number of real roots of the equation $\sqrt{x^2 4x + 3} + \sqrt{x^2 9} = \sqrt{4x^2 14x + 6}$, is:
 - a) 0
 - b) 1
 - c) 3
 - d) 2
- 12) Let a differentiable function f satisfy $f(x) + \int_3^x \frac{f(t)}{t} dt = \sqrt{x+1}, x \ge 3$. Then 12f(8)[Jan-2023] is equal to:

- a) 34
- b) 19
- c) 17
- d) 1
- 13) If the domain of the function $f(x) = \frac{[x]}{1+x^2}$, where [x] is greatest integer $\leq x$, is [2,6), then its range is [Jan-2023]

 - a) $\left(\frac{5}{26}, \frac{2}{5}\right] \left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$ b) $\left(\frac{5}{26}, \frac{2}{5}\right]$ c) $\left(\frac{5}{37}, \frac{2}{5}\right] \left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$ d) $\left(\frac{5}{37}, \frac{2}{5}\right]$
- 14) Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and \vec{b} and \vec{c} be two nonzero vectors such that $|\vec{a} + \vec{b} + \vec{c}| =$ $|\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}|$ and $|\overrightarrow{b} \cdot \overrightarrow{c}| = 0$. Consider the following two statements:
 - (A) $|\overrightarrow{a} + \lambda \overrightarrow{c}| \ge |\overrightarrow{a}|$ for all $\lambda \in R$
 - (B) \overrightarrow{d} and \overrightarrow{c} are always parallel

[Jan-2023]

- a) only (B) is correct
- b) neither (A) nor (B) is correct
- c) only (A) is correct
- d) both (A) and (B) are correct
- 15) Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}, x \in (0,1)$. Then, the integral $\int_0^{\alpha} \frac{t^{50}}{1-t} dt$ is equal to :
 - a) $\beta P_{50(\alpha)}$
 - b) $-(\beta + P_{50}(\alpha))$
 - c) $P_{50}(\alpha) \beta$
 - d) $\beta + P_{50}(\alpha)$