### Министерство науки и высшего образования Российской Федерации Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

# ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные</u> технологии»

# ДОМАШНЯЯ РАБОТА

«Алгоритмы на графах»

ДИСЦИПЛИНА: «Дискретная математика»

| Выполнил: студент гр. ИУК4-32Б                           | (Noztrucs) | _ ( | Зудин Д.В<br>(Ф.И.О.)     |
|----------------------------------------------------------|------------|-----|---------------------------|
| Проверил:                                                | (Подпись)  | _(  | Никитенко У.В<br>(Ф.И.О.) |
| Дата сдачи (защиты): <i>15</i> . <i>12</i> . <i>2022</i> |            |     |                           |
| Результаты сдачи (защиты):                               |            |     |                           |

- Оценка: јатиено

- Балльная оценка: 180

Калуга, 2022 г.

**Цель**: приобретение практических навыков в нахождении эйлеровых и гамильтоновых циклов в неориентированных графах, решение задач «китайского почтальона» и коммивояжера.

#### Задачи:

- 1. Построить маршрут (цикл, цепь) во взвешенном графе G минимального веса, проходящий, по крайней мере, один раз по каждой вершине исходного графа;
- 2. Построить маршрут (цикл, цепь), проходящий по каждому ребру графа, по крайней мере, один раз с минимальным суммарным весом.

#### Формулировка общего задания

Исходные графы  $G_1$ : (12, {5, 6})

 $G_2$ : (7, {3, 4})

Алгоритм генерации варианта

$$G(p, X) : A[l:p, l:p],$$
 где

р – количество вершин в графе;

Х – параметр генерации (множество целых чисел);

А – матрица смежности неориентированного графа

 $S = < \phi$ амилия><имя><отчество>

n(c) – функция – номер буквы в алфавите

- 1. Вычеркнуть из S все повторные вхождения букв.
- 2. Построить Y = ||yij||, i,j = 1...p, yij = |n(Si) n(Sj)|.

$$\|a_{ij}\| = egin{cases} 1, ext{ если } \exists x \in X : y_{ij} \ mod \ x = 0 \ 0, i = j \ 0, ext{ иначе} \end{cases}$$

- 3. Построить A = || aij ||, i,j = 1..p,
- 4. Для каждой изолированной вершины добавить (удалить) одно ребро. Добавляемое (удаляемое) ребро связывает текущую вершину со следующей (по номеру). Для последней вершины следующая первая.
- 1. Определить, является ли граф G1 эйлеровым.

Если граф G1 – эйлеров, то:

- 1.1. построить эйлеров цикл по алгоритму Флёри;
- 1.2. решить задачу «китайского почтальона», удалив минимальное число ребер, делающих его не эйлеровым (в качестве весов ребер взять 1).

Если G1 не является эйлеровым, то:

- 1.3. построить эйлеровы цепи в графе G1;
- 1.4. решить задачу «китайского почтальона» (в качестве весов ребер взять 1);
- 1.5. добавить минимальное число ребер, делающих его эйлеровым и найти эйлеров цикл по алгоритму Флёри;
- 2. Определить, является ли граф G2 гамильтоновым.

Если граф – гамильтонов, то:

- 2.1. построить гамильтонов цикл, используя дерево полного перебора;
- 2.2. построить гамильтоновы циклы, используя алгоритм Робертса-Флореса;
- 2.3. решить для него задачу коммивояжера, удалив минимальное число ребер, нарушающих свойство гамильтоновости (в качестве весов ребер взять 1).

Если граф не является гамильтоновым, то:

- 2.4. решить задачу коммивояжера (в качестве весов ребер взять 1);
- 2.5. добавить минимальное число ребер, делающих его гамильтоновым;
- 2.6. построить гамильтонов цикл, используя дерево полного перебора и алгоритм Робертса-Флореса.

#### Решение

Сгенерирую граф  $G_1$  по алгоритму G(p, X) : A[l:p, l:p]

- 1. Составлю строку S из ФИО:
  - S = ЗУДИНДАНИИЛВАСИЛЬЕВИЧ
- 2. Избавлюсь от повторных вхождений символов:
  - S = ЗУДИНАЛВСЬЕЧ
- 3. Составлю таблицу вершин графа:

| S | 3 | У  | Д | И  | Н  | A | Л  | В | С  | Ь  | Е | Ч  |
|---|---|----|---|----|----|---|----|---|----|----|---|----|
| n | 9 | 21 | 5 | 10 | 15 | 1 | 13 | 3 | 19 | 28 | 6 | 25 |

4. Построю таблицу рёбер графа G<sub>1</sub>:

| Y  | 9  | 21 | 5  | 10 | 15 | 1  | 13 | 3  | 19 | 28 | 6  | 25 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 9  | 0  | 12 | 4  | 1  | 6  | 8  | 4  | 6  | 10 | 19 | 3  | 16 |
| 21 | 12 | 0  | 16 | 11 | 6  | 20 | 8  | 18 | 2  | 7  | 15 | 4  |
| 5  | 4  | 16 | 0  | 5  | 10 | 4  | 8  | 2  | 14 | 23 | 1  | 20 |
| 10 | 1  | 11 | 5  | 0  | 5  | 9  | 3  | 7  | 9  | 18 | 4  | 15 |
| 15 | 6  | 6  | 10 | 5  | 0  | 14 | 2  | 12 | 4  | 13 | 9  | 10 |
| 1  | 8  | 20 | 4  | 9  | 14 | 0  | 12 | 2  | 18 | 27 | 5  | 24 |
| 13 | 4  | 8  | 8  | 3  | 2  | 12 | 0  | 10 | 6  | 15 | 7  | 12 |
| 3  | 6  | 18 | 2  | 7  | 12 | 2  | 10 | 0  | 16 | 25 | 3  | 22 |
| 19 | 10 | 2  | 14 | 9  | 4  | 18 | 6  | 16 | 0  | 9  | 13 | 6  |
| 28 | 19 | 7  | 23 | 18 | 13 | 27 | 15 | 25 | 9  | 0  | 22 | 3  |
| 6  | 3  | 15 | 1  | 4  | 9  | 5  | 7  | 3  | 13 | 22 | 0  | 19 |
| 25 | 16 | 4  | 20 | 15 | 10 | 24 | 12 | 22 | 6  | 3  | 19 | 0  |

5. Составлю матрицу смежности  $A_1$  по следующему закону:

$$\mathbf{A} = \parallel \mathbf{a}_{ij} \parallel, \ i,j = 1..p, \ \left\| a_{ij} \right\| = \begin{cases} 1, \text{если } \exists x \in X \colon y_{ij} \ mod \ x = 0 \\ 0, i = j \\ 0, \text{иначе} \end{cases}$$

| A  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|
| 1  | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0  | 0  | 0  |
| 2  | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0  | 1  | 0  |
| 3  | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0  | 0  | 1  |
| 4  | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1  | 0  | 1  |
| 5  | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0  | 0  | 1  |
| 6  | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0  | 1  | 1  |
| 7  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1  | 0  | 1  |
| 8  | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1  | 0  | 0  |
| 9  | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0  | 0  | 1  |
| 10 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0  | 0  | 0  |
| 11 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0  | 0  | 0  |
| 12 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0  | 0  | 0  |

## 6. Построю граф по матрице смежности A<sub>1</sub>:



## 7. Определю, является ли граф эйлеровым:

Граф не содержит Эйлеров цикл

## 8. Решение задачи «китайского почтальона»



В графе с 30 ребрами 4 повторения. Маршрут оптимальный.

# 9. Построю таблицу рёбер G2:

| Y  | 9  | 21 | 5  | 10 | 15 | 1  | 13 |
|----|----|----|----|----|----|----|----|
| 9  | 0  | 12 | 4  | 1  | 6  | 8  | 4  |
| 21 | 12 | 0  | 16 | 11 | 6  | 20 | 8  |
| 5  | 4  | 16 | 0  | 5  | 10 | 4  | 8  |
| 10 | 1  | 11 | 5  | 0  | 5  | 9  | 3  |
| 15 | 6  | 6  | 10 | 5  | 0  | 14 | 2  |
| 1  | 8  | 20 | 4  | 9  | 14 | 0  | 12 |
| 13 | 4  | 8  | 8  | 3  | 2  | 12 | 0  |

# 10. Составлю матрицу смежности А2:

| A | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 2 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 3 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 6 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 7 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |

## 11. Построю граф $G_2$ по матрице смежности $A_2$ :



## 12. Определю, является ли граф гамильтоновым:

Граф является гамильтоновым, так как содержит гамильтонов цикл.

## 13. Построю гамильтонов цикл, используя дерево полного перебора:





### Гамильтоновы циклы:

- 1. (1, 3, 6, 4, 7, 2, 5)
- 2. (1, 3, 7, 4, 6, 2, 5)
- 3. (1, 5, 2, 3, 6, 4, 7)
- 4. (1, 5, 2, 3, 7, 4, 6)

- 5. (1, 5, 2, 6, 4, 7, 3)
- 6. (1, 5, 2, 7, 4, 6, 3)
- 7. (1, 6, 4, 7, 3, 2, 5)
- 8. (1, 7, 4, 6, 3, 2, 5)

## 14. Решение задачи коммивояжера



Гамильтонов цикл: (1, 3, 6, 4, 7, 2, 5, 1)

### Выводы:

В ходе работы были приобретены практические навыки в нахождении эйлеровых и гамильтоновых циклов в неориентированных графах, были решены задачи «китайского почтальона» и коммивояжера.