MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Summer-13 EXAMINATION

Model Answer

Subject &code:MTO(12297)

Important instructions to examiners:

- 1. The answers should be examined by keywords and not as word to word as given in the model answer scheme.
- 2. The model answer and the answer written by candidate may vary, but the examiner may try to assess the understanding level of the candidate.
- 3. The language errors such as grammatical, spelling errors should not given more importance.
- 4. While assessing figures, examiner may give credit for principal components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6. In case of some questions credit may be given by judgment of relevant answer based on candidates understanding.

Q	Answer	mar	Tot
no:		k	al
			mar
			ks
1A	Steady state equimolar counter diffusion:		4
i			

	DAB dCA + CA (NA+NB)	1
Fox ideal gas 1		
	$C_{R} = \frac{P_{R}}{RT}$	
d ($C_{p} = \frac{dp_{p}}{RT}$	
	C = PRT	
	of cp, dcp & c	
Na = - Day	n den 1 + PAIRT (NA+NB) RT dz + PIRT	1
For equimolar	counter diffusion, Nn = - NB - DAB dPn RT dz	1
ib DAB is const.	aut, this can be integrated	
NA Cdz	PAZ	
2(301)	PAI	
NA (55-	RT	
NAZ =	RT (PA, - PA;)	
N'n -	DAR (PAITPAZ).	1

Boiling point diagram for minimum boiling at the second of	2	4
iii. Wet Bulb Temperature: The temperature record	rded by a thermometer whose 1	4
bulb is kept wet by wrapping with a wet cotton	in the open air is called dry	
bulb temperature.		
Dry bulb temperature : The temperature recor	ded by a thermometer whose 1	
bulb is kept dry is called dry bulb temperature.		
Critical Moisture content: The moisture conte	ent of a material at which the 1	
constant rate period ends and the falling rate I	period starts is called critical	
moisture content.		
Equilibrium moisture content: The moisture c	ontent of a solid material that 1	
is in thermodynamic equilibrium with its var	our in the gas phase under	
specified humidity and temperature of gas is	called equilibrium moisture	
content.		

1 B	Fick's law of diffusion:	2	6				
i	It states that the flux of a diffusing component A in z direction in a binary						
	mixture of A and B is proportional to the molar concentration gradient.						
	$J_{A} = -D_{AB} dC_{A}/dz$	2					
	Reynolds Analogy between heat and mass transfer						
	$h/Cp .u.\rho = kc/u$	1					
	Complete Reynolds analogy						
	h/Cp .u. $\rho = kc/u = f/2$	1					
1.B	Selection criteria for solvent selection in liquid-liquid extraction:	1	6				
.ii	1. Selectivity: The ratio of concentration ratio of solute to feed solvent	mar					
	in extract phase to that in raffinate phase is called selectivity factor. It	k					
	is the measure of effectiveness of solvent for separating the	for					
	constituents.	any					
	2. Recoverability: As solvent should be recovered for reuse frequently	six					
	by distillation, it should not form an azeotrope with extracted solute	poi					
	and for low cost recovery, relative volatility should be high.	nts					
	3. Distribution coefficient: Higher values are desirable as less solvent						
	will then be required for given extraction duty.						
	4. Density: The difference in densities of saturated liquid phases should						
	be larger for physical separation.						
	5. Insolubility of solvent: The solvent insoluble in original liquid						
	solvent should be preferred and it should have high solubility for						
	solute to be extracted, then small amounts of solvent are required.						
	6. Chemical Stability: The solvent should be stable chemically and inert						
	towards other components and should not be corrosive.						
	7. Cost: The solvent should be cheap.						
	8. The solvent should be non toxic, non flammable.						
	9. Solvent should have low viscosity, freezing point, vapor pressure for						
	ease in handling and storage.						
	10. Interfacial tension: It should be high for coalescence of emulsions to						
	occur more readily, as the same is of greater importance than						

	dispersion.		
2a	Basis: 100 kgmol feed.		8
	$X_{F}=0.4, X_{D}=0.9, X_{W}=0.1$	1	
	$F X_F = D X_D + W X_W$		
	D= 37.5 kmol	1	
	W=62.5 kmol		
	R=3= L/D		
	But L=Ln		
	Therefore 3=Ln/D	1	
	Or Ln=3D=112.5 kmol		
	Rectifying section operating line		
	$Y_{n+1} = 0.75Xn + 0.225$	1	
	Lm=Ln+F=212.5kmol		
	Stripping section operating line		
	$Y_{m+1} = 1.415Xm - 0.042$	1	
	Yn=Xd=0.9		
	Draw X-Y diagram	1	
	Calculate X values from equilibrium diagram and calculate Y values from		
	equations till the X value is equal to or less than Xw.	1	
	Number of stages required=7	1	
2.b	Basis: 100 kg feed solution	1	8
	$X_{\rm F} = 0.48$		
	Solvent balance		
	$F(1-X_F) = L$	1	
	L=52 kg	1	
	NaNO ₃ balance		
	0.48*100 = C+L*80.18/100	1	
	C = Yield of crystals= 6.31 kg	2	
	% yield of crystals = 6.31*100/48		
	=13.14%	2	

2.c	Area(A) = $0.01 \mathrm{m}^2$			1	8	
	Weight of dry material(W	()=0.15 kg		1		
	Initial moisture contentX ₁	1				
	Moisture content after 0.5	hours X ₂ = 80/150= 0.53 3	3	1		
	Rate of drying R= W(X1-	X2)/A*t		1		
	= 4.02kg	/m² hr		1		
	Moisture content after 0.7	5 hours $X_3 = 65/150 = 0.43$	33	1		
	Rate of drying R= W(X1-	X2)/A*t				
	= 4.68kg	/m² hr		1		
	Resistance to transfer in each phase is regarded as line in a thin film close to the interface. ii) The transfer in these films is by steady state process of molecular diffusion. iii) The concentration gradient is assume to be linear in this films and it is zero outside the films. iv) The theory assume that the turbulence in the bulk fluid dye out at the interface of the films. v) The film capacity is negligible.] The equation for this theory is, $1/K_y = 1/k_y + m/k_x$					
3.b	Processing drags	Packed column	Plate column	1	4	
	Pressure drop	Less	More Not professible	mar k		
	Handling corrosive	Preferable	Not preferable	K		

	liquid			eac		
	Handling very small	Preferable	Not preferable	h		
	volume of liquid					
	cost	Less	more			
3.c		Property of the second second second	Liquid-Liquid Extrac	2	4	
	i)It consists of vertical tank incorporating a turbine or propeller agitator. ii)Feed solution to be extracted to be taken into an agitated vessel, then the required amount of solvent is added, and whole mass is agitated for predetermined time. iii)At the end of this, two phases are formed, one is extract phase and other is raffinite phase which are then separated.					
3.d		estillation tillation fication ed out in a continuous r y vaporized the vapor a	nanner. In this method, a and liquid are allowed to ly	1	4	
				1		

	The equation for flash distillation: $y = -((1-f)/f)*x + x_f/f$ Where, $x = \text{the mole fraction of more volatile component in liquid phase}$ $y = \text{the mole fraction of more volatile component in vapor phase}$ $f = \text{fraction of liquid/feed vaporized}$	1	
3.e	solution: The flux for equimolar counter diffusion is given by, $NA = D_{AB} / RTz \; (pA1-pA2)$	1	4
	Where, $D_{AB} = 6.75*10^{-5} \text{ m}^2/\text{s}$, $R = 8.31451 \text{ m}^3$. kPa/ (kmol. K)	2	
	T = 298 K, $z = 30 mm = 0.03 mpA1 = 55 kPa$, $pA2 = 15 kPa$	2 1	
	$NA = 6.75*10^{-5} (55-15)/8.31451*298*0.03$	1	
	$= 3.63*10^{-5} \text{ kmol/(m}^2.s)$		
4.a-	<u>Tray Dryer</u> :		4
i			

Working:

The material to be dried is spread over the trays and put into the cabinet then it is closed.

Steam is continuously passed through the coil and the fan is started. Air is heated by heating coils, so its relative humidity decreases and the hot air then passes over the trays.

The moisture is evaporated from the wet feed, gets added in air and finally air leaves the dryer through the outlet. The process is continued until the solids are dried.

Advantages (any two):

- i) It is cheap and easy to construct.
- ii) Low space requirement.
- iii) Ease of cleaning.
- iv) No loss of product during drying.

2

1

1

Page 10 of 21

4.a-	Swenson-walker Crystallizer:	2	4
ii	Crystal + mother liquor Shaft Trough		
	 i) It is the cooling type continuous jacketed trough crystallizer. ii) It is an example of scrapped surface crystallizer. iii) It contain slow speed long pitch agitator with a speed of 7 r.p.m. It helps to transport crystals from one point to another point and doesn't allow crystals to settle at the bottom. iv) Feed is admitted at one end and mixture of crystals and mother liquor is removed from other end. 	2	
4.a- iii	 Reflux ratio: The ratio of quantity of liquid returned to the liquid that has taken out as distillate is known as reflux ratio (L/D). Total reflux: 	1	4
	It is the total overhead product which is returned back to the column. At total reflux no, of plates required is minimum with maximum purity. • Minimum reflux:	1	
	At minimum reflux infinite no. of plates are required and purity also low and no product is obtained. Optimum reflux: The optimum ratio occurs at a point where sum of the fixed cost and operating cost is minimum. The optimum reflux ratio usually lies in the range of 1.1 to 1.5 times the minimum reflux ratio.	1	

	114 /17 17 \ 1.4 /17 17 \		
	$V'(Y_1-Y_2) = L'(X_1-X_2)$		
	200 (0.0084 - 0.0044) = L' (0.0006 - 0.0000013)		
	L' = 1336.22 kg/hr		
	Mass flowrate of water = 1336.22 kg/hr	1	
4.b	Triangular diagram:		6
-i	also an dana natition p Call moderates and	3	
	The state of the property of the state of th		
	of hu concentration of cold being fee		
	$\frac{Z}{V}$		
	X X		
	F P		
	R		
	A Dy		
	Where		
	A=dilutent		
	B=solvent		
	C=solute		
	Binodial curve: It represents two phase region that will split up into two	1	
	layers in equilibrium with each other.	1	
	Tie line: Tie line is a line which connects two phases in equilibrium with each	1	
	other.	1	
	Plait point: The plait point on binodial solubility curve represent a single	_	
	phase where the length of tie line is zero.	1	
	place where the length of the line is zero.		

4.b	Note:(since the problem given in this question is same as Q2c except wt of		6
-ii	dry solid and dimensions of tray students can assume the data for area and		
	Wt from same problem and if they write right expressions they should be		
	the marks)		
	Solution:		
	A= Area of tray= 0.1*0.1=0.01m2	1	
	W' = wt of dry solids = 150gm = 150/1000 = 0.15kg		
	Moisture in saw dust initially = 250-150=100gm		
	X1= initial moisture content = $100/150$ = $0.666 kg / kg of dry solids$	1	
	Moisture after 0.5 hr in wet saw dust = 230-150 = 80gm		
	X2 = final moisture cotent = 80/150 = 0.533	1	
	Time of drying = $t = W'/A ((X1-X2)/R)$		
	Where,		
	R= rate of drying in kg /m2. Hr		
	Rearranging above equation	1	
	R = W'/A t (X1-X2) = 0.15/0.01*0.5 (0.666-0.533)		
	=3.99 kg/m2. Hr		
	Wt of wet sample after $0.75 \text{ hr} = 215 \text{gm}$		
	Wt of moisture in wet solids after 0.75 hr =215-150=65gm	1	
	X3= moisture content after 75 hrs = $65/150$ = 0.433		
	Rate of drying = W' (X1-X3)/ $A*t = 0.15 (0.666-0.433)/0.01*0.75$	1	
	= 4.66 kg/m2. Hr		
5.a	n-heptane=40%		8
	n-octane=60%		
	Basis: 100 kmol of feed.		
	Given: 60% of feed distilled.		
	D=60 kmol		
	F=D+W		
	W=40 kmol.	1	
	Xf= 0.4(mole fraction of heptanes in feed.)		
	Xw= mole fraction of heptanes in residue.		

	Yd,avg= n	nole fraction	on of heptan	es in disti	llate.				
	According to Rayleigh equation								
	Ln(f/w)=int dx/y-x within limit xw to xf(1)								
	LHS $ln(f/w) = ln(100/40) = 0.916$ (2)								
	Generation	n of x-y da	ta with the l	nelp of α=2	2.16				
	$Y=\sigma x/1+(\sigma x)$	σ-1)x						1	
	As xf=0.4,	, generate 1	the data upto	x = 0.5					
	X	0.05	0.1	0.2	0.3	0.40	0.50		
	Y	0.1	0.19	0.35	0.48	0.59	0.68	1	
	1/y-x	20	11.11	6.67	5.55	5.26	5.55		
	From eqn	(1) & (2)							
	0 916– Ar	ea x (0 1 u	nit/2 cm ²)X	(2 units/1	cm^2)			1	
	0.710=711	ca x (0.1 u	imi 2 cm /2x	(2 dints/ i	CIII)				
	Area =9.10	6 cm ²							
	So measur	re the area	under the c	urve from	. V 0 40 ti	ill we get th	e area=9.16	1	
	cm ²	ic the area	under the c	urve mon	1 AF=0.40 ti	in we get th	ic arca=7.10		
	CIII								
	This will give the value of Xw=0.22							1	
							1		
	From material balance								
	FX _F =DX _D	$+WX_W$						1	
							1		
	And find out $X_D = 0.52$								
5.b	Equation of feed line or q-line							2	8
	$y=(-q/1-q)x+(x_f/1-q)$								
	where q is the measure of various thermal condition of feed.								
	1								
								1	<u> </u>

	$\begin{array}{c} a - cold \ feed \\ b - saturated \ liquid \\ c - partially \ vaporised \\ d - saturated \ vapour \\ e - superheated \ vapour \\ \end{array}$	6	
5.c	Mier's supersaturation theory:	4	8
	According to Mier's theory there is a definite relationship between the conc		
	and temp at which crystals will spontaneously formed in a pure solution. This		
	relationship is represented by the super solubility curve which is		
	approximately parallel tp the solubility curve. The curve AB is the solubility		
	curve and curve PQ is the super solubility curve. The curve AB represents		
	maximium conc of solution which can be achieved by bringing solid-solute		
	into eqm with liquid solvent. If a solution having the composition and temp		
	indicated by point C is cooled in the direction shown by the arrow it first		
	crosses the solubility curve AB and it is expected to start of crystallization.		
	Actually if the process started with initially unseeded solution crystal		
	formation will not begin until the solution is super cooled considerably passed		
	the curve AB. According to Mier's theory, crystallization will start in the		
	neighbourhood of the point D and the concentration of the solution then		
	follows roughly along the curve DE.For an initially unseeded solution , the		
	curve PQ represents the limit at which spontaneous nuclei formation begin		
	and consequently, crystallization can start.		
	Curve	2	

	Two methods of supersaturation:		
	a) By cooling a concentrated ,hot solution through indirect heat exchange.	2	
	b) By evaporating a part of the solvent.		
6.a	 a) i) Daltons law: it states that the total pressure exerted by gas/vapour mixture is equal to the sum of the partial pressures of components present in it, thus it expresses the additive nature of the partial pressure. Mathematically, for binary system P = p_A + p_B ii) Gibbs phase rule: 	2	4
	according to gibbs phase rule $F=C-P+2$ where, $F=$ Degree of freedom $C=$ No of component $P=$ no of phases		
6.b	a) Oslo evaporative crystalliser		4

Oslo Evaporative Crystalliser:

In this crystalliser, supersaturation is generated/achieved by evaporation. It is circulating liquid evaporative crystalliser.

1

It consists of a crystallising chamber containing a bed of forming and growin crystals, a circulating pump, an external heater for heating the solution with the help condensing steam and a vapour - head wherein reduced pressure is maintained by vacuum generating equipment. The heater is maintained under sufficient hydrostat head to avoid the boiling on the heating surface.

2

Fig. 6.7 : Oslo/Krystal Evaporative Crystalliser

The solution from the crystallising chamber is pumped by a circulating pump on the suction side of which the feed solution forming a small part of the total circulating liquid is

1

introduced into a heater, where it is heated by means of condensing steam (on the shell side of the heater) and then fed to a vapour head wherein some of the solution flashes into vapour resulting into some degree of supersaturation. The supersaturated solution is then returned to the bottom of the crystallising chamber through a central duct prolonged from the vapour head into the crystallising chamber. Nucleation takes place in the crystal bed which is maintained in a fluidised state by means of a upward flowing stream of liquid through the duct. The nuclei formed circulate with the mother liquor and once they grow sufficiently large they will be retained in the fluidised bed. When the crystals grow to a required size, they will be withdrawn as product from the bottom of the crystallising chamber as they will not be maintained in the fluidised bed by the circulation relative.

6.c	c) Higbie's penetration theory:	4	4
	1) As the time of exposure of fluid for mass transfer generally being		
	short, development of the concentration gradient of film theory is		
	not possible.		
	2) The transfer is largely because of fresh material brought to the		
	interface by the eddies.		
	3) A process of unsteady state transfer occurs for a fixed period at the		
	freshly exposed surface.		
	Each fluid element (eddy) resides for the same length of time period at the		
	surface. According to this theory, the mass transfer coefficient is proportional		
	to the square		

representing the constant rate of drying, thus the section BC is called the constant rate period during which the layer of water on the surface of solid is being evaporated. The rate of drying is constant from B to C as the drying takes place from a saturated surface. The section (CE) of the curve represents the falling rate period composed of the first falling rate period (CD) and the second falling rate period (DE). From point 'C' onwards some dry patches have started forming on the surface of the solid. The rate of drying decreases for the unsaturated portion and hence the rate for total surface decreases. The section CD of the curve represents the period corresponding to the zone of unsaturated surface drying. The moisture content at which the constant rate period ends and the drying rate starts to fall (i.e. at which unsaturated surface drying starts) is known as the critical moisture content. After point D, the surface of the solid is completely dry and now the internal moment of moisture starts coming to the surface and this is continued upto the point E, where the equilibrium is attained. The rate of drying over section DE is governed by the rate of internal moisture movement. The second falling rate period (DE) represents zone where the internal moisture movement controls.

2