Organisation

- Glocke im Forum aktivieren
 - Mail, falls es Änderungen bei Übungsblättern gibt
 - (Leider) Auch bei anderen Postings
- Saubere Abgaben!

Physik-Teil (Juhu!...)

- Abgewählt?
- 2-stündig?
- 4-stündig?

Dichte

- Verhältnis von Volumen zu Gewicht
- Zeichen: ρ
- Einheit: kg/m³
- Formel: x kg / y m³

Elektrotechnik

- Strom I [A]
 - Elektrische Ladung q [C bzw. A * s]
 - Elektrisches Feld
- Spannung U [V]
 - Elektrisches Potential φ [V]
- Widerstand R $[\Omega]$

Strom

- Elektronen bzw. abstrakt Ladungsträger
- "Stärke" einer Ladung q
 - Einheit: Coulomb (C)
- Technischer Strom I
 - Einheit: Ampere(A) bzw. C/s
 - Gesamtstärke der Ladung, die in einer Zeit eine Fläche durchfließt
 - NICHT! Anzahl der Ladungsträger

Strom (Elektrisches Feld)

- Punktladung z.B. Elektron
 - Gleiche Ladungen stoßen sich ab
 - Ungleiche ziehen sich an
- Punktladung (+/-) wirkt auf andere Ladungen
 - => Elektrisches Feld
- Feldlinien zeigen Richtung an

Strom (Elektrisches Feld)

- Feldlinien interferieren
 - Entspricht resultierendem Vektor →r

Strom (Elektrisches Feld)

- Coulombsches Gesetz
 - Berechnung der Feldstärke E an einem Punkt
- ¬r = Koordinaten zu Punkt
- r = Länge des Weges zum Punkt $\vec{E}(\vec{r}) = \frac{Q}{4\pi\varepsilon_0 \,\varepsilon_r} \cdot \frac{\vec{e}_r}{r^2} = \frac{Q}{4\pi\varepsilon_0 \,\varepsilon_r} \cdot \frac{\vec{r}}{r^3}$
- e_r = Einheitsvektor (Länge = 1)
- ε_0 = elektr. Feldkonstante für Vakuum
- ε_r = stoffabhängiger Faktor (bei Vakuum = 1)

Spannung (Potential)

- Spannung
 - Benötigte Arbeit W, um eine Ladung q von A nach B zu bewegen
- Kraft Auf eine Ladung im E-Feld
 - $\rightarrow F = q * \rightarrow E$
- Arbeit ist Kraft mal Weg
 - $W = \int F d s$
 - "Integral der Kraft auf eine Ladung über einem Weg"
- Spannung $U_{AB} = 1/q * \int_{AB} F d d s bzw. \int_{AB} E d d s bzw. W_{AB} / q$

Spannung (Potential)

- Ladung an einem Punkt im E-Feld hat potentielle Energie
- Potential φ = Arbeit / Ladung [J/C bzw. \bigvee]
 - Arbeit, um Ladung vom Ursprung zu Punkt zu bewegen
- Differenz zweier Potentiale
 - = Spannung!

Strom (Verhalten einer Ladung)

- Potential durch Entfernung zu Ladung definiert
- Zerteilung des Weges oft sinnvoll
- Eine Ladung:
 - Gleicher Abstand = Gleiches Potential
- Mehre Ladungen:
 - Gleiche Resultierende Kraft = Gleiches Potential bzw.
 - Gleicher Abstand & Symmetrie = Gleiches Potential

Widerstand

- $R = U / I [\Omega \text{ bzw. V/A}]$
 - Benötigte Spannung, um einen Widerstand/Stoff mit einem Strom zu durchfließen
 - bzw. "Spannungskosten" für den Durchfluss

Formeldreicke

- URI Dreieck
- Hilfreich für umformen
- Auf andere Formeln/Einheiten übertragbar
- Auch mit mehr als 3 Bestandteilen

len
$$I = \frac{U}{R} = \frac{U}{R} = R$$

$$U = R \times I$$

Elektrische Schaltungen

- Kabel in der Praxis als ideal angesehen ($R=0\Omega$)
 - Lange Kabel: Merklicher Widerstand
 - Formel: Im Skript ;)
- Bauteile:
 - Widerstände
 - LEDs, Glühbirnen, Kondensatoren, Spulen
 - Spannungs-/Stromquellen

Schaltungsanalyse

- Wie ist der Gesamtwiderstand?
- Reicht die Spannung/Strom?
- Gibt es zu viel Spannung/Strom?
- •

Widerstand im Netz

Reihenschaltung:

$$R_1$$
 R_2 \dots R_n

$$- R_{ges} = R_1 + R_2 + ... + R_n$$

Parallelschaltung:

$$-1/R_{ges} = 1/R_1 + 1/R_2 + ... + 1/R_n$$

Sonderfall: Zwei parallele Widerstände:

-
$$R_{ges} = (R_1 * R_2)/(R_1 + R_2)$$

Strom im Netz

- Batterie stellt Ausgangsspannung U₀
- Mit U₀ und R_G Gesamtstrom I_G berechnen
- Reihenschaltung:
 - Strom bleibt gleich
- Parallelschaltung:
 - Strom teilt sich auf die Zweige auf
 - $I_A = I_G * (R_B) / (R_A + R_B)$

Weg des geringsten Widerstandes

- Strom ist "faul"
- Widerstand des Weges bestimmt Stromfluss
 - Je leichter, desto mehr Strom fließt

Weg des geringsten Widerstandes

- Widerstandsloser Pfad, um einen Widerstand
 - Widerstand wird überbrückt
- Manchmal schwer zu erkennen

Problem: Uneindeutige Flüsse

 Was tun, wenn nicht in Parallel- oder Reihenschaltung zerlegbar?

Kondensatoren

- Was, wenn Strom nicht fließen kann?
- Baue Spannung zwischen 2 Platten auf
 - Isolierschicht (Dielektrikum)
- Ladung will trotzdem vom Überschuss zu Mangel

Kondensator

- An den Platten bilden sich große elektr. Ladungen
- Zwischen den Platten bildet sich E-Feld

Einheiten Zusammenhänge

$$1 V = 1 \frac{W}{A} = 1 \frac{J}{C}$$

$$= 1 \frac{\text{kg m}^2}{A s^3} = 1 \frac{N m}{A s}$$

Übung

• Berechne den Gesamtwiderstand der Schaltungen mit R_1 = 1 Ω , R_2 = 2 Ω , R_3 = 3 Ω

Übung

$$R_G = R_1 + R_2 + R_3$$
$$= 1\Omega + 2\Omega + 3\Omega = \underline{6\Omega}$$

$$R_{12} = R_1 + R_2 = 1\Omega + 2\Omega = 3\Omega$$

$$R_{123} = (R_{12} * R_3) / (R_{12} + R_3) = 9\Omega^2 / 6\Omega = 1,5\Omega$$

$$R_G = R_1 + R_{123} + R_2 = 1\Omega + 1,5\Omega + 2\Omega = 4,5\Omega$$

Übung

Kabel kann zu einem Knoten zusammengefasst werden

$$R_{13} = (R_1 * R_3) / (R_1 + R_3) = (1\Omega * 3\Omega) / (1\Omega + 3\Omega)$$

= 3\Omega^2 / 4\Omega = 0.75\Omega

$$R_G = R_{13} + R_{13} = 0.75\Omega + 0.75\Omega = 1.5\Omega$$

Kabel verbindet R1 direkt mit der Batterie. R2 und R3 werden überbrückt.

$$R_G = R_1 = \underline{1\Omega}$$

Wichtig: Physik

- Zwischenschritte/Lösungsweg
- Einheiten angeben
- Formeln in den Folien
- Welche Werte hab/brauch ich und welche Formeln kenne ich
- Formeldreiecke
- Einheiten lassen auf Formel schließen
- Benötigte Formeln auf dem Blatt oder in den Folien
- Quelle: LEFI Physik
- Technische und Physikalische Stromrichtung!