Nome (Cognome, Nome)	 Matricola $\#$							

- Non aprire l'esame fino a quando non è stato espressamente consentito. Il tempo totale per l'esame è 150 minuti.
- Questo esame contiene 6 problemi in 11 pagine.
- Non sono ammessi appunti di nessun genere, calcolatrici, smartphones nè smart watches.
- <u>Giustificate il vostro lavoro!</u> Tranne che per le domande Vero/Falso, se una risposta (anche corretta) non ha spiegazioni non si riceveranno tutti i i punti per il problema.

NON SCRIVERE IN QUESTA TABELLA!

PROBLEMA	Punti	RISULTATO
1	10	
2	10	
3	20	
4	20	
5	20	
6	20	
TOTALE:	100	

Problema 1. (10 points) Si dica se le seguenti affermazioni sono vere o false (non si richie alcuna giustificazione per questa parte).
(a) Se \mathcal{B} è una base di un sottospazio S e $u \in \mathcal{B}$ allora $2 \cdot u \in \mathcal{B}$.
○ Vero ○ Falso
(b) Se una matrice $n \times n$ A è diagonalizzabile allora A è invertibile.
○ Vero ○ Falso
(c) Se A è una matrice stocastica per colonne allora $\lambda=1$ è il più piccolo autovalore di $\lambda=1$
○ Vero ○ Falso
(d) In un sottospazio di dimension n ci sono al più n vettori linearmente indipendenti.
○ Vero ○ Falso
(e) Se u e v sono due autovettori di una matrice A allora u e v sono linearmente indipenden
○ Vero ○ Falso
(f) Lo spazio vettoriale delle funzioni continue $\mathbb{R} \to \mathbb{R}$ ha dimensione finita.
○ Vero ○ Falso
(g) L'insieme delle soluzioni di un sistema lineare è un sottospazio vettoriale.
○ Vero ○ Falso
(h) Se A è una matrice $p \times n$ allora rango $(A) \leq \min\{p, n\}$.
○ Vero ○ Falso
(i) Se una matrice è diagonalizzabile, tutti i suoi autovalori sono distinti.
○ Vero ○ Falso
(j) Se v e w sono autovettori di una matrice A con lo $stesso$ autovalore λ allora $v-w$ è autovettore di A .
○ Vero ○ Falso

Problema 2. (10 points) Per ognuna delle seguenti domande si dia un esempio esplicito con una breve spiegazione. Se non è possibile dare un esempio si spieghi perchè.
(a) Una matrice 3×3 con tutti i termini non nulli con determinante uguale a 0.

(b) Una matrice 2×2 che ha e_1+e_2 come autovettore.

(c) Due trasformazioni lineari $f:\mathbb{R}^3\to\mathbb{R}^2$ e $g:\mathbb{R}^2\to\mathbb{R}^3$ tali che $f\circ g$ sia l'identità .

(d) Tre vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^2$ tali che l'equazione $x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3=\vec{b}$ ha al più una soluzione per ogni $\vec{b}\in\mathbb{R}^2$

(e) Una base ortogonale del sottospazio $\{x_1 - x_2 + x_3 = 0\}$ di \mathbb{R}^3 .

(f) Una trasformazione lineare $f: \mathcal{M}_{2\times 2} \to \mathcal{P}_2(\mathbb{R})$ che sia suriettiva.

Problema 3. (20 points) Si consideri il seguente sistema lineare dipendente dal parametro $k \in \mathbb{R}$:

$$S_k: \begin{cases} x_1 - k x_3 + 2x_4 = 4 \\ 2x_1 - x_2 + k x_3 + 3x_4 = 5 \\ x_1 - x_2 + x_4 = 2k - 1 \end{cases}$$

(a) Stabilire per quali valori di $k \in \mathbb{R}$ il sistema è compatibile.

(b) Sia W_k l'insieme delle soluzioni del sistema *omogeneo* associato a S_k . Stabilire per quali valori di k il sottospazio W_k ha dimensione 2, e per uno di tali valori, calcolare una base per W_k .

(d) Per lo stesso valore di k usato nei punti precedenti si determini la dimensione di $U \cap W_k$.

Problema 4. (20 points) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la trasformazione lineare definita da

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ x_2 \\ 2x_2 + x_3 - 2x_4 \\ 2x_2 - x_4 \end{pmatrix}$$

(a) Calcolare il polinomio caratteristico $p_A(t)$ con A la matrice associata ad f rispetto ad una base di \mathbb{R}^4 . Si calcolino poi gli autovalori di f, le loro molteplicità algebriche e si discuta se f è o meno invertibile.

(b) Determinare una base di ciascun autospazio di f e la molteplicità geometrica di ogni autovalore.

(c)	Si dise una m	cuta se atrice o	f è dia diagona	gonalizz le D tal	zabile. I i che A	$\begin{array}{l} \text{n caso } \\ = P \cdot D \end{array}$	positivo P^{-1} .	si trovin	o un mat	rice inve	rtibile P ϵ

Problema 5. (20 points) Siano $A \in T_B$ le seguenti matrice e trasformazioni lineari (dove $a \in \mathbb{R}$):

$$A = \begin{pmatrix} 1 & 2 & a & 3 \\ 1 & 1 & 1 & a+1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \qquad T_B \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \\ x_2 \end{pmatrix}$$

(a) Si determini dominio e codominio di T_A e T_B e la matrice associata alla trasformazione T_B rispetto alle basi canoniche.

(b) Per ogni composizione che ha senso tra $T_A \circ T_B$ e $T_B \circ T_A$ si determini dominio, codominio, la matrice associata e i valori di a tali che la composizione (se ha senso) ha rango 2.

(c)	Por .	Ognune	dello (compos	izioni e	he han	in sang	n dal m	into pro	ocedento	gi calc	olino una
(0)	base	e le eq	uazioni	cartesi	ane del	nucleo	e dell'i	mmagin	e per i	valori di	a trova	ti prima.

Problema 6. (20 points) Sia $f: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^3$ una trasformazione lineare tale che

- il vettore $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \in \text{Im} \ f$ e il vettore $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ NON è nell'immagine;
- i polinomi $p_1 = x + 3x^3$ e $p_2 = -1 + x$ soddisfano $f(p_1) = f(p_2) = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}$.
- (a) Si determini il rango di f e una base dell'immagine Im(f) giustificando il ragionamento.

(b) Si calcoli la nullità di f e si determini una soluzione non nulla di $f(p) = \underline{0}$.

(c) Si trovi un polinomio q distinto da p_1 e p_2 tale che $f(q) = \begin{pmatrix} -2\\2\\1 \end{pmatrix}$.

(d) [4 points] Si completi la base di $\operatorname{Im}(f)$ a una base $\mathcal B$ di $\mathbb R^3$ e si calcoli la matrice del cambiamento di base $M_{\mathcal E,\mathcal B}(\operatorname{id})$.