卷积神经网络

Convolutional neural network (CNN)

本节课内容

1. 图像分类

- 1.1 线性分类器
- 1.2 损失函数
- 1.3 梯度下降
- 1.4 反向传播

2. 卷积神经网络

- 2.1 卷积层
- 2.2 池化层
- 2.3 激活函数
- 2.4 全连接层
- 3. 经典CNN(AlexNet)

1. 图像分类

图像分类——计算机视觉的核心问题

假设给定一组离散标签:dog, car, cow, automobile ...

cat

图片的语义鸿沟

• 一个RGB图片可以被表示成 3D的数字阵列

(3维张量tensor)

- 取值范围为[0,255]
- E.g. 200 x 100 x 3 (3表示 三个通道)

What the computer sees

挑战——视角变化(Viewpoint Variation)

挑战——光照条件(Illumination)

挑战——形变 (Deformation)

猫的行为艺术

挑战——遮挡 (Occlusion)

You cannot see me!

挑战——背景干扰(Background clutter)

挑战——类间细分(Intraclass variation)

上一节课回顾

- 数字图像处理
 - 二值图、灰度图、彩色图
 - 数字图像采样(Image Sampling)
 - 数字图像操作(Image Augmentation)
 - 数字图像滤波(Image Filter)
- 图像识别的挑战
- 参考文献来源
 - 期刊: PAMI, IJCV, TIP, CVIU
 - •会议: CVPR, ICCV, ECCV, ICML, ICLR, AAAI, NeurIPS

Anaconda

https://www.anaconda.com/distribution/

• Anaconda中包含Python、科学包及依赖库

• 学习使用Jupyter(是一个交互式笔记本,Kaggle常用工具)

1.1 线性图像分类器

Example dataset: CIFAR-10

10 labels

50,000 training images

10,000 test images

each image is 32x32x3.

• 图像分类器

array: [32x32x3]

共3072像素

airplane automobile CIFAR-10 bird 10 labels deer 输出[10*1] dog 表示10个类别分数 frog horse ship truck

• 线性图像分类器

•示例:输入图像4像素,有3类(cat/dog/ship)

$$f(x_i, W, b) = Wx_i + b$$

[32x32x3]

score function:

$$f(x_i; W, b) = Wx_i + b$$

随机设定权重W 3张示例图的类别得分

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

输入为automobile 输出automobile得分最高

→ 输入为cat 输出dog得分最高

→ 输入为frog 输出truck得分最高

分类结果:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

给定随机权重W, 分类结果差

•解决方案:

定义损失函数,通过优化权重W来最小化损失函数,以找到最好的分类器,达到最好的分类结果。

1.2 损失函数(loss function)

定义loss function: $L_i \longrightarrow$ 衡量分类结果与真实值的不一致程度

1	cat	3.2	1.3	2.2
2	car	5.1	4.9	2.5

frog -1.7 2.0 **-3.1**

Multiclass loss:

给定一个训练样本(x_i , y_i) x_i 为输入图像 y_i 为输出 $label \in [1, 2, 3]$ 记 $s_i = f(x_i, W) = Wx_i$

$$L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$$

示例: 训练样本3张, 有3类 (cat 1/car 2/frog 3)

定义loss function: $L_i \longrightarrow$ 衡量分类结果与真实值的不一致程度

	ν		4		
	А	€0.	a		
	IQ.	200	Te.	1	
d	b	gr.	36		
a				g,	
e.				w	
				ь.	
B					_

1	cat	,
2	car	Į.

3.2

1.3

2.2

5.1

4.9

2.5

3 frog | -1.7

2.0

-3.1

loss:

2.9

Multiclass loss:

$$L_1 = \sum_{j \neq y_1} \max(0, s_j - s_{y_1} + 1)$$

=max(0, 5.1 - 3.2 + 1)

 $+\max(0, -1.7 - 3.2 + 1)$

 $=\max(0, 2.9)+\max(0, -3.9)$

=2.9+0

=2.9

定义loss function: $L_i \longrightarrow$ 衡量分类结果与真实值的不一致程度

56 m			7
	P		4
-20	966	9	
	500	7	
		×	×

1 cat 3.2 1.3 2.2 2 car 5.1 4.9 2.5 3 frog -1.7 2.0 -3.1 loss: 2.9 0

Multiclass loss:

$$L_2 = \sum_{j \neq y_2} \max(0, s_j - s_{y_2} + 1)$$

=max(0, 1.3 - 4.9 + 1)

 $+\max(0, 2.0 - 4.9 + 1)$

 $=\max(0, -2.6)+\max(0, -1.9)$

=0+0

=0

定义loss function: $L_i \longrightarrow$ 衡量分类结果与真实值的不一致程度

		A	38	
- 4	40	æ		4
- 10	-34	. 0	v	
452	30	œ.		
			7	
86				
BO.			1	
R.			-	

2.9

loss:

1	cat	3.2	1.3	2.2
2	car	5.1	4.9	2.5
3	frog	-1.7	2.0	-3.1

Multiclass loss:

$$L_3 = \sum_{j \neq y_3} \max(0, s_j - s_{y_3} + 1)$$

=max(0, 2.2 - (-3.1) + 1)

 $+\max(0, 2.5 - (-3.1) + 1)$

 $=\max(0, 6.3)+\max(0, 6.6)$

=6. 3+6. 6

=12.9

定义loss function: $L_i \longrightarrow$ 衡量分类结果与真实值的不一致程度

3.2

1.3

2.2

2 car

5.1

4.9

2.5

3 frog

-1.7

2.0

-3.1

loss:

2.9

0

12. 9

Multiclass loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

总的训练损失:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$=(2.9+0+12.9)/3$$

=5.3

分类结果:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

给定随机权重W, 分类结果差

•解决方案:

定义损失函数,通过优化权重W来最小化损失函数,以找到最好的分类器,达到最好的分类结果。

梯度下降

1.3 梯度下降

问题

如何优化调整参数W, b, 以达到损失函数最小化的目的?

解决方案——梯度下降用于更新权重W,以及偏置b。

- 1. 初始化参数, 计算损失L;
- 2. 梯度下降法每次迭代:

计算梯度
$$\frac{\partial L(W,b)}{\partial W}$$
, $\frac{\partial L(W,b)}{\partial b}$;
更新参数:

$$W \coloneqq W - \alpha \frac{\partial L(W, b)}{\partial W} \quad b \coloneqq b - \alpha \frac{\partial L(W, b)}{\partial b}$$

3. 重复步骤2, 直至L(min).

淋度下降法的细节说明

$$L(w) = w^2, w_{(0)} = 1, \alpha = 0.4$$

$$w \coloneqq w - \alpha * \frac{\mathrm{dL}(w)}{dw}$$

$$w_{(1)} = w_{(0)} - \alpha * \frac{dL(w)}{dw}$$

= 1 - 0.4 * 2 * 1 = 0.2

$$w_{(2)} = w^{1} - \alpha * \frac{dL(w)}{dw}$$

= 0.2 - 0.4 * 2 * 0.2 = 0.04

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$a = 2$$
 $f(a) = 6$
 $a = 2.001$ $f(a) = 6.003$

因此在a=2处斜率为3

$$a = 5$$
 $f(a) = 15$
 $a = 5.001$ $f(a) = 15.003$

因此在a=5处斜率为3

$$\frac{df(a)}{da} = 3 = \frac{d}{da}f(a)$$

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{df(a)}{da} = \frac{d}{da}a^2 = 2a$$

$$a = 2$$
 $f(a) = 4$
 $a = 2.001$ $f(a) = 4.004001$

当
$$a=2$$
时,斜率为 4 , $\frac{df(a)}{da}=4$

$$a = 5$$
 $f(a) = 25$
 $a = 5.001$ $f(a) = 25.010$
 (25.010001)

当
$$a = 5$$
时,斜率为 10 , $\frac{df(a)}{da} = 10$

1.4 反向传播(Backpropagation)

• Backpropagation是the backward propagation errors的缩写。

反向传播一般用于更新深度神经网络中的参数,具体是通过对损失函数求导来实现的。

• 反向传播包含两个环节: 传播和参数更新。

• 利用计算图来解释反向传播算法。

1.4 反向传播

• 计算图导数计算

$$f(x,y,z)=(x+y)z$$

e.g.
$$x=-2$$
, $y=5$, $z=-4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1$$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$

Want: $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial z}$

- 反向传播

正向传播

另外一个例子:

$$f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \quad \frac{df}{dx} = e^x$$

$$f(x) = ax \frac{df}{dx} = a$$

$$f(x) = \frac{1}{x} \quad \frac{df}{dx} = -\frac{1}{x^2}$$

$$f_c(x) = c + x$$
 $\frac{df}{dx} = 1$

另外一个例子: $f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\delta(x) = \frac{1}{1 + e^{-x}}$$

sigmoid function

$$\frac{d\delta(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \frac{1+e^{-x}-1}{1+e^{-x}} \left(\frac{1}{1+e^{-x}}\right) = (1-\delta(x))\delta(x)$$

反向传播

• Multiclass loss:

$$L(W,b) = \frac{1}{N} \sum_{i=1}^{N} L_i$$

其中

Score function:

$$s = f(x_i; W, b) = Wx_i + b$$

损失函数:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

更新参数:

$$W := W - \alpha \frac{\partial L(W, b)}{\partial W}$$
$$b := b - \alpha \frac{\partial L(W, b)}{\partial b}$$