Лабораторная работа № 7 ДО КЛЮЧЕВЫЕ ЭЛЕМЕНТЫ НА ТРАНЗИСТОРАХ

Методические указания по выполнению лабораторной работы

Электронный ключ на биполярном транзисторе

- 1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему согласно рис. 1.
 - Разместить на рабочем поле все необходимые элементы. Для этого войти в библиотеку моделей (Ctrl-G или нажать на иконку (Etrl-G)), выбрать и перенести на рабочее поле элементы, необходимые для построения схемы: резисторы Etrlooping R, источники питания Etrlooping VDC, земля Etrlooping R0 и транзистор Qbreak N.
 - Расположить элементы схемы на рабочем поле в соответствии с принципиальной схемой, не соединяя их. Для этого отметить элемент, щелкнув один раз левой кнопкой мыши, и перетащить его на нужное место.
 Если нужно повернуть элемент на 90° Ctrl/R. Если элемент нужно зеркально отразить Ctrl/F.

Рис. 1. Рабочая схема ключевого элемента

- Соединить элементы между собой в соответствии с принципиальной схемой. Для этого курсор мыши перевести в режим рисования соединительных линий (*иконка -*). Подвести карандаш к выводу одного из элементов и щелкнуть и отпустить левую кнопку мыши (ЛКМ). Подвести карандаш к другой точке схемы, снова нажать и отпустить ЛКМ. И так далее.
- Установить в соответствии с расчетом параметры резисторов, конденсаторов и источников питания.

- Сохранить схему в рабочей папке на рабочем диске D, например, $D:\Student\name$, где name любое имя не включающее кириллицу.
- Проверить работоспособность схемы, сняв передаточную характеристику схемы. Подключить маркер напряжения () на выходе схемы.
- Установить режим расчета передаточной характеристики (*Analis Setup... Sweep DC...*). В этом режиме установить имя источника входного сигнала, пределы его изменения и шаг изменения (рис. 2).

Рис. 2. Задание параметров для расчета передаточной характеристики

- Запустить программу расчета PSpice, нажав F11 или на иконку \square .
- Если при построении схемы и задании ее параметров не были допущены ошибки, то в результате анализа в окне программы *Probe* появится передаточная характеристика.
- 3. По передаточной характеристике определить порог включения схемы $U^0_{\text{вх макс}}$ и порог выключения схемы $U^1_{\text{вх мин}}$.
 - Это можно сделать с помощью электронных курсоров, которые становятся доступными после нажатия на пиктограмму . Их можно перемещать левой или правой кнопками мыши.
- 4. Сравнить порог включения схемы $U^0_{\text{вх макс}}$ и порог выключения схемы $U^1_{\text{вх мин}}$ с заданием. Сделать таблицу сравнения.

Ключевые схемы на полевых транзисторах

Исследование инвертора с резистивной нагрузкой

- 1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему инвертора с резистивной нагрузкой (рис.3).
 - Разместить на рабочем поле все необходимые элементы. Для этого войти в библиотеку моделей (Ctrl-G или нажать на иконку \square), выбрать и

перенести на рабочее поле элементы, необходимые для построения схемы: резисторы — R, источники питания — VDC, земля — EGND и транзистор — MbreakN.

Рис. 3. Рабочая схема инвертора с резистивной нагрузкой

- Расположить элементы схемы на рабочем поле в соответствии с принципиальной схемой, не соединяя их.
- Соединить элементы между собой в соответствии с принципиальной схемой.
- Установить в соответствии с расчетом параметры резистора и источников питания.
- Установить параметры полевого транзистора. Для этого щелкнуть транзистор один раз (он окрасится). Войти в интерфейсный диалог: *Edit Model Edit instance model (text)*... В окне параметров модели транзистора ввести пороговое напряжение V_0 и коэффициент пропорциональности $K_p = 2b$ (рис. 4).
- Сохранить схему в рабочей папке на рабочем диске D, например, $D:\Student\name$, где name любое имя не включающее кириллицу.

Рис. 4. Окно редактирования параметров полевого транзистора.

- 2. Проверить работоспособность схемы, сняв передаточную характеристику схемы.
- Подключить маркер напряжения (²²) на выходе схемы.
- Установить режим расчета передаточной характеристики (*Analis Setup... Sweep DC...*). В этом режиме установить имя источника входного сигнала, пределы его изменения и шаг изменения (рис. 5).

Рис. 5. Задание параметров для расчета передаточной характеристики

- Запустить программу расчета *PSpice*, нажав F11 или на иконку ...
- Если при построении схемы и задании ее параметров не были допущены ошибки, то в результате анализа в окне программы *Probe* появится передаточная характеристика.

- 3. По передаточной характеристике определить порог включения схемы $U^0_{_{\mathrm{BX}\,\mathrm{Makc}}}$ и порог выключения схемы $U^1_{_{\mathrm{BX}\,\mathrm{MuH}}}$.
- Порог включения схемы $U^0_{\text{вх макс}}$ определяется в точке перехода транзистора
 из закрытого состояния в пологую область характеристик.
- Порог выключения схемы $U^{1}_{\text{вх}}$ мин определяется в точке перехода транзистора из пологой области характеристик в крутую.
- 4. Исследовать переходные процессы.
- Подключить к выходу схемы конденсатор, имитирующий емкость нагрузки $C_{\rm H} = 10 \pi \Phi$.
- На вход подключить импульсный источник *VPULSE* с параметрами $U^0_{\text{вх}}=0$, $U^1_{\text{вх}}=E_{\text{пит}}$, $t_{\text{вх}}=200$ нс (рис. 6).

Рис. 6. Окно задания параметров импульсного сигнала

– Установить анализ переходных процессов (команда *Analis/ Setup...* или пиктограмма

). Для режима *Transient...* установить конечное время анализа, примерно равное 2мкс (рис. 7).

Рис.7. Установка параметров временного анализа

— По полученным осциллограммам определить длительности фронтов включения и выключения схемы (длительности определять по уровням 0.1 и 0.9 от U_m , см. рис. 9).

Рис. 8. Ключевые схемы на основе полевых транзисторов.

Исследование инвертора с нелинейной нагрузкой

- 1. Собрать схему инвертора на одноканальных полевых транзисторах (рис. 8,б). Параметры транзисторов установить в соответствии с подготовкой к работе.
- 3. Снять переходной процесс $u_{\text{вых}}(t)$ при $C_{\text{н}} = 10$ пФ. Определить длительности фронтов выходного импульса при включении и выключении схемы

Исследование КМОП инвертора

- 1. Собрать схему инвертора на КМОП транзисторах (рис. 8,в). Установить следующие параметры моделей транзисторов:
 - .model nnMOS NMOS Level=1 Gamma= 0 Xj=0 Tox=1200n Phi=.6 Rs=0 Kp=111u Vto=2.0 Lambda=0.01 Rd=0 Cbd=2.0p Cbs=2.0p Pb=.8 Cgso=0.1p Cgdo=0.1p Is=16.64p N=1
 - .model ppMOS PMOS Level=1 Gamma= 0 Xj=0 Tox=1200n Phi=.6 Rs=0 Kp=55u Vto=-1.5 Lambda=0.04 Rd=0 Cbd=4.0p Cbs=4.0p Pb=.8 Cgso=0.2p Cgdo=0.2p Is=16.64p N=1
- 2. Получить совмещенные графики передаточной характеристики и характеристики тока потребления. По передаточной характеристике определить порог включения $U^0_{\rm BX\ Makc}$ и выключения $U^1_{\rm BX\ Muh}$ схемы. По линии равной передачи определить напряжение переключения инвертора $U_{\rm пер}$.
- 3. Снять переходной процесс $u_{\text{вых}}(t)$ при $C_{\text{н}} = 10$ пФ. Определить длительности фронтов выходного импульса при включении и выключении схемы (длительности определять по уровням 0.1 и 0.9 от U_m , см. рис. 9).

Рис. 9. Переходные процессы в ключе