3,4 due Monday 12th

ST3451: Problem set 1

October, 2015

Problems 3 and 4 due at the 5pm class on Monday 12th October. No late assignments will be accepted.

1. Consider a population of Y values

- (a) Compute the mean and variance of Y (μ and σ^2).
- (b) If we write $Y = \mu + \epsilon$
 - i. What values does ϵ have?
 - ii. Calculate the mean and variance of ε .
- (c) If we write $Y = 5 + \epsilon^*$
 - i. What values does ϵ^* have?
 - ii. Calculate the mean and variance of ϵ^* .
- 2. Given the sample Y_1,Y_2,\ldots,Y_n find the least squares estimator of α in the model

$$Y_i = \alpha + \epsilon_i, \qquad i = 1, \dots, n$$

where
$$\mathbb{E}\{\epsilon_i\} = 0$$
, $\operatorname{var}\{\epsilon_i\} = \sigma^2$ and $\operatorname{corr}\{\epsilon_i, \epsilon_j\} = 0, i \neq j$.

3. Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad i = 1, 2, ..., n$$

where $E\{\epsilon_i\} = 0$, $var\{\epsilon_i\} = \sigma^2$ and the ϵ_i are uncorrelated.

- (a) If β_1 is known, find the least squares estimator of β_0 .
- (b) If β_0 is known, find the least squares estimator of β_1 .
- (c) Do the answers to (a) and (b) seem reasonable? Why?

4. The reduction in blood pressure (Y) caused by an blood pressure drug was measured at each of a number of doses (X)

Reduction Y	Dose X
4.2	10
6.8	20
5.2	30
8.4	40
- 5.9	50
10.4	60
9.1	70
12.4	80
9.4	90
12.8	100
12.9	110
16.2	120
11.7	130
12.9	140
14.3	150

- (a) Does the mean value of Y depend on X?
- (b) Fit a simple linear regression model to these data.
- (c) Interpret the estimated parameters of the model in context.
- (d) Find an estimate of the error about the regression line.

5. Show that the least squares estimators of $\widehat{\beta}_0, \widehat{\beta}_1$ can be written in the form

$$\widehat{\beta}_1 = \sum_{i=1}^n c_i Y_i \qquad \widehat{\beta}_0 = \sum_{i=1}^n d_i Y_i$$

giving the explicit c_i, d_i .

- 6. Write down a simple linear regression model forces the fitted line to go through the origin. Derive the least squares estimator for the parameter of your model. Use the extra sum of squares method to decompose the variance for this model.
- 7. (*) Suppose that the errors of the SLR model are assumed to be normally distributed. Find the maximum likelihood estimators of β_0 and β_1 .
- 8. (*) Suppose that the heteroscedasticity assumption does not hold, so that $\text{var}\{Y_i\} = f_i\sigma^2$. Suggest a suitable least squares criterion in this case, and derive the form of the corresponding least squares estimators.

1	DAMO WETERRAPIT	
1	14/10/15 ALSMI PROBLEM SHEET I	
	al Population of y volves	
	A. Man & y = 501/n = 7.78 54 = 728 2412 = 67066	
	Dative d. = \$101.41, = 2013 - 4019	
	B. Y = pt & E = y - pt M = 76/n = 4.88 × pt = 0	
-	00° = 260° - 190° , 9.068	
	$Q^{2} = \frac{1}{2} \left[\frac{1}{2} (9 \mu)^{2} - n (\frac{1}{2} \mu) \right]$ $\frac{1}{2} \left[\frac{1}{2} (9 \mu)^{2} - n (\frac{1}{2} \mu) \right]$ $\frac{1}{2} \left[\frac{1}{2} (9 \mu)^{2} - n (\frac{1}{2} \mu) \right]$	
	$C = 5 + E^* \qquad E^* = 9.5$ $M_C = \frac{5E^*}{2} = 2.78$ $C_E^2 = \frac{5(E^* - N_E)^2}{2} = 9.068$	
	2 Done in class	
	3 $4i = \beta_0 + \beta_1 \times i + \epsilon_i$ E[ϵ_i] = 0, $\forall \alpha \in [\epsilon_i] = \rho^2 = (\alpha \cap [\epsilon_i, \epsilon_j] = 0 \neq i \neq i$ 4. If β_i is known, what is β_i ? 4. If β_i is known, what is β_i ? 4. If β_i is β_i is β_i is β_i ? 4. If β_i is β_i is β_i is β_i ? 4. If β_i is β_i is β_i is β_i ? 4. If β_i is β_i .	To Part of
	$\frac{d\theta}{d\beta} = -2 \times (4i - \beta 5 - \beta_1 x_i) = 0$ $\times 4i - n\beta - \beta_1 \times x_i = 0$ $\hat{\beta}_1 = g - \beta_1 \hat{x}$ Compar with Calulatur for β_2 , $\hat{\beta}_1 \Rightarrow be$ some \Rightarrow reasonable	

