EE3DSB miniprojekt 2 Frekvensanalyse af målte vibrationssignaler

Øvelsen er baseret på et mini-projekt udviklet af Søren Nielsen, ASE Øst KPL 2020-07-27

Formål

Bliv fortrolig med diskret Fouriertransformation (DFT), og anvend denne til at analysere frekvensindholdet i forskellige signaler. Bliv fortrolig med Matlab til at håndtere og analysere digitale signaler.

Opgaven

Lav i Matlab et analysesystem, som baserer sig på Diskret Fouriertransformation (DFT). Systemet skal kunne lave DFT (vha. fft-funktionen) på et tidssignal og vise størrelsen af DFT'en med korrekte frekvens- og amplitudeakser og korrekt skalering.

Inkludér kortfattet teori, essentielle kodestumper samt passende konklusioner.

Der gives et audiosignal af en vindmølle i filen Opgave2_audiofil_1_1.mat. Samplefrekvensen er 25600 Hz.

Figur 1: Principaliagram for måling af signal fra et IEPE-accelerometer (Integrated Electronics PiezoElectric) [wikipedia.org, 2020 (Jan Burg)]

Dette signal er optaget fra et accelerometer, der er monteret tæt på et af kuglelejerne i en havvindmølle. Accelerometret strømforsynes via signalledningen, se blokdiagram på næste side. Det udleverede signal er blevet optaget uden at fjerne DC-komponenten, dvs. at C_C i diagrammet er erstattet af en kortslutning. Vi kender desværre ikke accelerometrets følsomhed. Til gengæld kender vi skaleringen, nemlig at 1 volt fysisk svarer til 100 enheder i filen.

Delopgaver:

- a. Plot de første 5 sekunder og beskriv hvilke frekvenser som I forventer signalet indeholder ud fra det tidslige plot. Tidsskalaen skal være i sekunder og amplitudeskalaen i volt
- b. Beregn DC middelværdien, AC RMS-værdien, og energien for de første 5 sekunder af signalet.
- c. Træk DC middelværdien fra tidssignalet. Den stammer fra forsyningsspændingen og bærer ingen signalinformation (i dette tilfælde).
- d. Lav frekvenstransformation på de første 5 sekunder af signalet og vis frekvensspektret.
- e. Vis spektret både med logaritmisk og lineær frekvensakse (begge i Hz), samt størrelsen både i dB (i forhold til 1 volt) og i lineært mål (volt eller millivolt).
- f. Diskutér, hvornår man bør benytte hvilken skala.
- g. Hvad er den dominerende frekvens, og passer den med det forventede?
- h. Bestem lavfrekvent energi E_{low} (< 1000 Hz) og højfrekvent energi E_{high} (≥ 1000 Hz) for signalet. DC-værdien skal ikke tages med i disse beregninger.
- i. Bestem energiforholdet E_{low}/E_{high}. Hvad betyder dette forhold?
- j. Gang et Hanning-vindue på signalet og lav igen frekvenstransformation. Vis spektret. Gør vinduet nogen forskel i dette tilfælde? Hvorfor/hvorfor ikke?
- k. Beregn igen AC RMS-værdien, og energien for de første 5 sekunder af signalet, nu med Hanningvinduet ganget på. Hvad gør Hanning vinduet ved disse værdier?
- I. Lav en udglatning/smoothing af signalet i frekvensdomænet og vis det resulterende spektrum på et plot. Diskuter hvornår det bør bruges, og hvad det gør ved den dominerende frekvens.
- m. EKSTRAOPGAVE (ikke obligatorisk): Frekvensanalyse af lyd fra en bilmotor. Optag lyd fra en bilmotor, i motorrummet eller ved udstødningen. Vi har en Tascam DR05 håndholdt lydoptager, som i kan låne hos Søren, hvis i vil lave jeres egne lydsignaler i god kvalitet. Hvad er bilens omdrejningstal (rpm) i tomgang? I kan evt. finde hjælp i denne video: https://youtu.be/u4SHb9OZx2c. Prøv evt. både med en 3-cylindret og en 4-cylindret motor. Passer teorien?

Journal

Øvelsen udføres i grupper, og i skal aflevere en kort rapport/journal (maks. 20 sider alt inklusive). I skal inkludere kortfattet teori, eksperimenter, essentiel Matlab-kode, figurer og diskussioner. I kan eventuelt publicere kode direkte fra Matlab til Word eller pdf.

Øvelsen er den anden af fire øvelser, der alle skal afleveres og godkendes for at bestå E3DSB.

 \odot

Med venlig hilsen

Kristian Lomholdt