

Δ

Vittorio Maniezzo - Universita di Bologna

Terminologia (4)

Sottografo: sottinsieme di vertici e archi di un grafo dato

Componente connessa: sottografo connesso massimale.

Ad es., il grafo sotto ha 3 componenti connesse

Grafo completo: ha un arco fra ogni coppia di nodi

$$m = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Vittorio Maniezzo - Universita di Bologna

7

Grafo trasposto

Il grafo $G^T=(V,E^T)$ è il trasposto di G=(V,E) se $E^T=\{(u,v):(v,u)\in E\}$ (rovescia il senso di percorrenza degli archi di G).

G e G^T hanno le stesse componenti fortemente connesse.

Vittorio Maniezzo - Universita di Bologna

Terminologia (5)

Grafi pesati:

Gli archi possono avere un peso (costo, guadagno) associato. Il peso può essere determinato da una funzione $p: V \times V \to \mathbb{R}$ Se non è specificato un peso su un arco, lo si assume infinito

Q

Alberi

Un albero è un grafo aciclico con un numero di nodi uguale al numero di archi più uno (|E|=|V|-1).

Equiv., un albero è un grafo aciclico totalmente connesso. Può esistere un nodo particolare chiamato radice.

Alberi, definizioni

Se c'è un nodo radice viene implicitamente definita una relazione di ordinamento fra nodi basata sulla distanza dalla radice in cui:

- Ogni nodo non radice ha un unico predecessore / padre
- Un nodo può avere più successori / discendenti / figli
- Un nodo senza successori è una foglia
- Un nodo con successori è un nodo interno
- La profondità di un nodo è la lunghezza di un cammino dalla radice al nodo
- L'altezza di un nodo è la massima lunghezza di un cammino dal nodo a una foglia discendente del nodo
- L'altezza di un albero è l'altezza della radice
- Un livello / strato di un albero consiste di tutti i nodi con la stessa profondità
- Il numero di livelli di un albero è pari alla sua altezza +1

Vittorio Maniezzo - Universita di Bologna

1

11

Problema: Ordinamento

Input: una sequenza di n numeri $\langle a_1, a_2, ..., a_n \rangle$

Output: i numeri ricevuti in input ordinati dal più piccolo al più grande ovvero:

 $< a_{\pi(1)}, a_{\pi(2)}, ..., a_{\pi(n)} > dove \ a_{\pi(i)} \le a_{\pi(i+1)}$

 π è una opportuna permutazione degli indici 1,...,n

Esempio: *a* = [7, 32, 88, 21, 92, -4]

 $\pi = [6, 1, 4, 2, 3, 5]$

 $a[\pi[]] = [-4, 7, 21, 32, 88, 92]$

Vittorio Maniezzo - Universita di Bologna

13

Ordinamento di chiavi

Più in generale, spesso è dato un array di n elementi, dove ciascun elemento è composto da:

- una chiave, con le chiavi confrontabili tra loro
- un contenuto (valore), arbitrario

Vogliamo permutare l'array delle chiavi in modo che esse compaiano in ordine non decrescente (oppure non crescente)

Esempio:

Chiave	Valore
4	quattro
2	due
5	cinque
1	uno
3	tre

Chiave	Valore
1	uno
2	due
3	tre
4	quattro
5	cinque

Sarà una semplice estensione degli algoritmi affrontati.

Vittorio Maniezzo - Universita di Bologna

Limite inf al num dei confronti

Nell'esempio, 3 elementi.

3! = 6 : numero di foglie dell'albero dei confronti.

- ogni (cammino dalla radice ad una) foglia rappresenta un ordinamento
- ci sono n! ordinamenti.

quanto deve essere alto un albero per avere n! foglie?

- un albero binario alto h ha al massimo 2^h foglie
- dobbiamo avere $2^h \ge n!$
- Formula di Stirling: $n! > (n/e)^n e = 2.17...$

 $h \ge \log[(n/e)^n] = n \log(n) - n \log(e) = \Omega(n \log(n))$

Vittorio Maniezzo - Universita di Bologna

19

Limite inf al num dei confronti

Il caso pessimo di un qualsiasi algoritmo comparison-sort eseguito su una sequenza di *n* numeri è dato dall'altezza dell'albero di decisione associato a quell'algoritmo.

MA

Un albero binario con n! foglie (ordinamenti) ha un altezza $\Omega(n \log(n))$

QUINDI

qualsiasi algoritmo comparison-sort, nel caso pessimo, esegue $\Omega(n \log(n))$ confronti.

Vittorio Maniezzo - Universita di Bologna


```
Insertion—sort (A)

1. for j=2 to size (A)

2. do key = A[j]

3. // insert A[j] in A[1,...,j-1]

4. i = j-1

5. while i>0 and A[i]>key

6. do A[i+1] = A[i]

7. i=i-1

8. A[i+1] = key

Vittorio Maniezzo - Universita di Bologna
```



```
Insertion Sort
 Insertion-sort(A)

    for j=2 to size(A)

      do key = A[j]
 2.
          // insert A[j] in A[1,...,j-1]
          i = j-1
 4.
          while i>0 and A[i]>key
 5.
            do A[i+1] = A[i]
 6.
                i=i-1
 7.
          A[i+1] = key
 8.
Vittorio Maniezzo - Universita di Bologna
```

```
Insertion Sort
 Insertion-sort(A)
 1. for j=2 to size(A)
      do key = read(j)
 3.
           {insert A[j] in A[1,...,j-1]}
 4.
           i = j-1
 5.
           while i>0 and read(i)>key
 6.
              do modify(i+1, read(i))
 7.
                 i=i-1
 8.
           modify(i+1,key)
Vittorio Maniezzo - Universita di Bologna
```



```
Insertion Sort: pseudocodice
 Pseudo codice dell'algoritmo InsertionSort.
   1: procedure InsertionSort(A)
         for j \leftarrow 2 to Length(A) do
                                                Attenzione se
   3:
         key \leftarrow A[j]
                                              · lo si implementa
           i \leftarrow j - 1
   4:
                                                    in C!
   5: while i > 0 & A[i]>key do
            A[i+1] \leftarrow A[i]
   6:
   7:
        i \leftarrow i - 1
         end while
   8:
          A[i+1] \leftarrow key
   9:
         end for
  10:
  11: end procedure
Vittorio Maniezzo - Universita di Bologna
```

Inser	tion-sort (A)	costo	Num. ipetizioni
L. fo	or j=2 to length(A)	C ₁	n
2.	do key = A[j]	C ₂	n-1
3.	i = j-1	<i>C</i> ₃	n-1
4.	while i>0 and A[i]>k	ey C4	$\sum_{j=2}^{n} t_j$
5.	do A[i+1] = A[i]	C ₅	$\sum_{j=2}^{n} (t_j - 1)$
6.	i=i-1	C ₆	$\sum_{j=2}^{n} (t_j - 1)$
7.	A[i+1] = key	C ₇	n-1

Costo computazionale

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum t_j + (c_5 + c_6) \sum (t_j - 1) + c_7 (n-1)$$
 t_j numero di esecuzioni istruzione while dipende dai dati in input

• caso ottimo: $t_j = 1$ $T(n) = an + b$; lineare

• caso pessimo: $t_j = j$ $T(n) = an^2 + bn + c$; quadratico

• caso medio: $t_j = j/2$???

