1. Consider the ETS(AAN) model with $\alpha = 0.1$, $\beta = 0.1$, $\ell_{99} = 8$, $\ell_{99} = 1$, $\ell_{99} = 10$, $\ell_{100} = 8$, ℓ_{100

$$\begin{cases} u_t \sim \mathcal{N}(0, \sigma^2) \\ b_t = b_{t-1} + \beta u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ y_t = \ell_{t-1} + b_{t-1} + u_t \end{cases}$$

- (a) Find ℓ_{100} , b_{100} .
- (b) Find 95% predictive interval for y_{102} .
- 2. [10] I have two exactly proportional regressors, $w_i = 2x_i$, Consider the ridge regression loss function,

$$loss(\hat{\beta}_1, \hat{\beta}_2) = \sum_{i} (y_i - \hat{y}_i)^2 + \lambda \cdot (\hat{\beta}_1^2 + \hat{\beta}_2^2), \quad \hat{y}_i = \hat{\beta}_1 x_i + \hat{\beta}_2 w_i.$$

- (a) [4] Write the first order conditions for $\hat{\beta}_1$ and $\hat{\beta}_2$.
- (b) [6] Find the penalized estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ for arbitrary $\lambda > 0$.
- 3. Let's use $\{-1, +1\}$ encoding for binary variable y_i instead of $\{0, 1\}$. Consider a simple logit model where $\mathbb{P}(y_i = 1 \mid x_i) = \Lambda(\beta_1 + \beta_x x_i)$ where x_i is scalar.
 - (a) [6] Write the first order conditions for optimization. Explicitly find $\Lambda'(u)$ as a function of u.

You have 500 observations, $y_i = 1$ in 300 observations.

- (b) [4] Without finding $\hat{\beta}_1$, $\hat{\beta}_2$ find the sum $\sum \hat{\mathbb{P}}(y_i = 1 \mid x_i) = \sum \Lambda(\hat{\beta}_1 + \hat{\beta}_x x_i)$.
- 4. [10] Consider the model $y = X\beta + u$ where β is non-random, $\mathbb{E}(u \mid X) = 0$. The matrix X of size $n \times k$ has rank X = k and $\mathbb{V}\mathrm{ar}(u \mid X) = \sigma^2 I$. Let $\hat{\beta}$ be the standard OLS estimator of β .
 - (a) [2] Find $\mathbb{E}(y \hat{y} \mid X)$.
 - (b) [4 + 4] Find $\mathbb{C}\text{ov}(\hat{\beta}, y \mid X)$ and $\mathbb{C}\text{ov}(\hat{y}, y \hat{y} \mid X)$.
- 5. [10] Consider the matrix $X = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.
 - (a) [4] Find the matrix X^TX and diagonalize it.
 - (b) [3] Find the SVD of X.

The generalized Moore-Penrose inverse for the matrix $M=UDV^T$ is defined as $M^+=VD^+U^T$ where to calculate D^+ we invert all non-zero elements on the diagonal leaving all zeros in place.

- (c) [3] Find the generalized inverse X^+ .
- 6. [10] The prior belief for the parameter x is uniform on [0;1]. Conditionally on x the observations y_1 and y_2 are independent exponentially distributed with rate x.
 - (a) [7] Find the posterior distribution of the parameter x given that $y_1 = 5$ and $y_2 = 7$ up to a normalizing constant.
 - (b) [3] If possible find the normalizing constant.

Hint: if you missed the last lecture, then just replace 'posterior' by 'conditional' and 'prior' by 'unconditional' and recall that $f(x \mid y) = f(x,y)/f(y)$.