

CLASE N°6

Abstracción de procesos

DISEÑO DE UNA SOLUCIÓN

- En el diseño de una solución informática:
 - Existe un enunciado que describe un problema en el mundo real
 - Usando abstracción obtenemos un modelo del problema (planteamiento)

Abstracción de problemas (Definición): Técnica que tiene por objeto construir un mundo imaginario que contenga sólo la estructura necesaria para resolver un problema.

DISEÑO DE UNA SOLUCIÓN

- En un planteamiento debemos:
 - Identificar entidades y aspectos importantes
 - Dar nombres a estos elementos
 - Definir operaciones consistentes sobre estos elementos
- Debemos considerar que un enunciado:
 - Es un texto (problemática, información, restricciones)
 - Pueden omitir información y asumir conocimiento (implícitamente)
 - Puede contener datos irrelevantes

3

DISEÑO DE UNA SOLUCIÓN

- Teniendo el problema planteado:
 - Hemos identificado un objetivo
 - Que se alcanza ejecutando procesos
 - Usando abstracción obtenemos un modelo de la solución

Abstracción de procesos (Definición): Técnica que tiene por finalidad describir qué procesos deben realizarse y en qué orden para lograr un objetivo, sin detallar el "cómo" deben realizarse.

DISEÑO DE UNA SOLUCIÓN

- La solución:
 - Es una secuencia de pasos a realizar, que siguen un orden lógico
 - Que utiliza los elementos identificados y que son compatibles con las restricciones del problema
 - Que sumados permiten alcanzar el objetivo planteado
- En problemas complejos:
 - Esta secuencia es una estrategia general
 - Que requiere refinamiento

5

DIVISIÓN EN SUBPROBLEMAS

- Para refinar una solución aplicamos repetidamente la abstracción de procesos:
 - Para alcanzar un objetivo complejo, se definen subobjetivos (se identifican subproblemas)
 - Esta subdivisión se repite hasta alcanzar objetivos manejables
 - Se resuelve cada sub-objetivo simple
 - Se componen las soluciones obtenidas para resolver subobjetivos más complejos
 - Esta composición se realiza hasta alcanzar el objetivo del problema original

REFINAMIENTO ALGORÍTMICO

- La división en subproblemas la aplicamos como refinamiento algorítmico:
 - La solución empieza a tomar forma de programa
 - Objetivos manejables se expresan como una sentencia
 - Objetivos complejos se expresan como la invocación a una subrutina
 - Cada subrutina se refina de igual manera, en forma independiente
 - Hasta que todos los pasos pueden ser implementados "fácilmente" en un lenguaje de programación

7

IMPLEMENTACIÓN

- La implementación es la operación inversa a la abstracción
 - Se completan los detalles
 - Que se eligen de acuerdo al lenguaje de programación utilizado
 - Una decisión común es cómo manejar restricciones y errores
 - La más simple es documentar las condiciones bajo las cuales nuestro programa "funciona"

PRÓXIMA CLASE

- Aprenderemos otro tipo de expresiones en Python:
 las expresiones lógicas
- Estudiaremos cómo estas expresiones permiten tomar decisiones
- Crearemos programas que pueden seguir más de un camino de ejecución

