Выводы:

В ходе выполнения лабораторной работы были изучен теоретический материал по однопроцессорным и многопроцессорным вычислительным системам. Для увеличения надежности вычислительных систем используются методы добавления резервных блоков, которые при неисправности одного из блоков моментально заменяют его.

В лабораторной работе рассматривалось 6 конфигураций вычислительных систем, данные которых приведены в таблице 1.

Таблица 1. Характеристики вычислительных систем

№	$N_{\rm np}$	$P_{\rm пр.бл}$	G_{np}	<i>К</i> эффпр	$N_{\text{пм}}$	$P_{\text{пм.бл}}$	$G_{\scriptscriptstyle \Pi M}$	$K_{ m 9}$ ϕ π M	$N_{\scriptscriptstyle \mathrm{BB}}$	$P_{\scriptscriptstyle m BB.бл}$	$G_{\scriptscriptstyle{\mathrm{BB}}}$	$K_{ m 9 d d BB}$	$G_{\scriptscriptstyle \mathrm{BC}}$	К _{эффвс}
1	1		0,985	0,985	4		0,8493	0,2123	6		0,4188	0,0698	0,3504	0,0146
2	2	0,985	0,9997	0,4925	8	0,96	0,9773	0,1221	12	0,865	0,6623	0,0551	0,6471	0,0033
3	3		0,9999	0,3333	12		0,9965	0,3321	18		0,8037	0,2679	0,8010	0,0296
4	2		0,985	0,985	5		0,9852	0,1970	7		0,7581	0,1083	0,7357	0,0210
5	2		0,985	0,985	6		0,9988	0,1664	8		0,9185	0,1148	0,9036	0,0188
6	2		0,985	0,985	8		0,9999	0,4851	12		0,9996	0,0833	0,9845	0,0398

– Модуль ПР.

Вероятность безотказной работы блока процессора высокая (0.985) и количество основных блоков 1, следовательно добавление резервных блоков не требуется, поскольку коэффициент эффективности уменьшится.

- Модуль ПМ.

Несмотря на высокую $P_{\text{пм.бл}} = (0.96)$ и небольшое количество основных блоков, может потребоваться 1 резервный блок.

 $K_{9 \phi \phi, \text{пм}}$ с 1 резервным блоком = 0.1970,

 $K_{9\varphi\Phi,\Pi M}$ без резервных блоков = 0.2123, следовательно необходимость добавления резервных блоков отсутствует (0.2123 > 0.1970).

- Модуль УВВ.

Вероятность безотказной работы УВВ = 0.865, что является низкой вероятностью. Количество основных блоков УВВ – 8, что является высоким показателем, следовательно, необходимо добавить 3 или 4 резервных блока.

 $K_{9 dod. BB}$ с 3 резервными блоками = 0.0864,

 $K_{9\varphi\Phi,BB}$ с 4 резервными блоками = 0.0820, следовательно необходимо добавить 3 блока.

Таким образом, схема ВС будет выглядеть следующим образом:

$$G_{\rm np}=0.985$$

$$G_{\text{\tiny IIM}} = 0.8493$$

$$G_{BB} = 0.95$$

$$G_{BC} = 0.985 * 0.8493 * 0.95 = 0.7948$$

$$K_{\rm np} = 0.985$$

$$K_{\text{\tiny IIM}} = 0.2123$$

$$K_{\text{BB}} = 0.0864$$

$$K_{\rm BC} = 0.985 * 0.2123 * 0.0864 = 0.018$$

Таким образом, наиболее эффективной системой является система содержащая 1 блок процессора, 4 блока памяти и 11 блоков устройств вводавывода, из которых 3 резервных.