36-789: Topics in High Dimensional Statistics II

Fall 2015

Lecture 3: November 3

Lecturer: Alessandro Rinaldo Scribes: Chun-Liang Li

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Examples of Le cam Lemma

3.1.1

Let x_1, \dots, x_n are i.i.d. samples from $\{-1, 1\}$, $\mathbb{E}(x_i) = \theta$ and $w\left(d(\hat{\theta}, \theta)\right) = |\hat{\theta}, \theta|^2$. By the two points arguments,

$$P_{\theta_1}(1) = \tfrac{1+\delta}{2}, \quad P_{\theta_{-1}}(1) = \tfrac{1-\delta}{2}, \quad P_{\theta_1}(-1) = \tfrac{1-\delta}{2}, \quad P_{\theta_{-1}}(-1) = \tfrac{1+\delta}{2}.$$

We then have $\mathbb{E}_{\theta_1}(x) = \delta$, $\mathbb{E}_{\theta_{-1}}(x) = -\delta$ and $d(\theta_1, \theta_{-1}) = 2\delta$.

By Le cam Lemma, the minimax risk is $\delta^2 \frac{1 - d_{TV}(P_{\theta_1}^n, P_{\theta_{-1}}^n)}{2}$. If $d_{TV}(P_{\theta_1}^n, P_{\theta_{-1}}^n) \leq 1/2$, the minimax risk is $\delta^2/4$. To find δ such that the above is true, we have

$$d_{TV}(P_{\theta_1}^n, P_{\theta_{-1}}^n)^2 \le \frac{n}{2} KL(P_{\theta_1}, P_{\theta_{-1}}) = \frac{n}{2} \delta \log \frac{1+\delta}{1-\delta} \le \frac{n}{2} \times 3\delta.$$

Then $d_{TV}(P_{\theta_1}^n, P_{\theta_{-1}}^n)^2 \le \delta \sqrt{\frac{3n}{2}}$, which is 1/2 if $\delta = \sqrt{\frac{1}{6n}}$. So the minimax lower bound is 1/24n.

3.1.2

Assume we have $\theta_1, \dots, \theta_n$, $d(\theta_i, \theta_j) \ge 2\delta, \forall i \ne j$, and let $\bar{P} = \frac{1}{m} \sum_{i=1}^m P_{\theta_i}$. By La cam,

$$\inf_{\hat{\theta}} \sup_{\theta} \mathbb{E}_{\theta}(d(\hat{\theta}, \theta)) \ge \frac{\delta}{2} \left(1 - d_{TV}(P_{\theta}, \bar{P}) \right).$$

Use above in the following problem, $y_i = \theta_i + \epsilon_i/\sqrt{n}$, where $\epsilon \sim N(0,1)$ and $1 \leq i \leq p$. Then $P_{\theta_0} = N(0,I_p/\sqrt{n})$ and $P_{\theta_i} = N(\theta_i),I_p/\sqrt{n}$, where $\theta_i \in \mathbb{R}^p$, all zeros except for the *i*-th coordinate, which is equal to $\delta = \sqrt{\frac{a \log p}{n}}$, where 0 < a < 1.

Let f_i be density of P_{θ_i} and let's look at χ^2 divergence between P_{θ_0} and $\bar{P} = \frac{1}{m} \sum_{i=1}^m P_{\theta_i}$. Then

$$\int \frac{\frac{1}{p} \sum_{i=1}^{p} (f_i - f_0)^2}{f_0} dx = \int \frac{\frac{1}{p} \sum_{i=1}^{p} f_i^2}{f_0} dx - 1 = \frac{1}{p^2} \sum_{i=1}^{p} \left(\frac{f_i f_j}{f_0} dx - 1 \right) = \frac{1}{p^2} \sum_{i=1}^{p} \left(\frac{f_i^2}{f_0} dx - 1 \right) = \frac{1}{p} e^{a \log p} - \frac{1}{p} \to 0,$$

3-2 Lecture 3: November 3

as $p = \to \infty$.

So $\exists c > 0$ such that $1 - d_{TV}(P_0, \bar{P}) \ge c > 0$. Now we have $\delta = \sqrt{\frac{a \log p}{n}}$, then the lower bound is up to constants.

3.2 Fano Method

- Very popular to get minimax rates in high dimensions
- Choose P_0, \dots, P_m such that $d(\theta(P_i), \theta(P_j)) \ge 2\delta, \forall i \ne j$. We write $\theta_i = \theta(P_i)$.

Let V is sampled from $unifor(m\{0,\dots,m\})$, and $\hat{V} = \phi^*(x)$, where ϕ^* is the minimum distance test $\phi^*(x) = \arg\min d(\hat{\theta}, \theta_i)$. Then $\hat{V} = j$ if $d(\hat{\theta}, \theta_i) \leq \delta$, so

$$\max \mathbb{E}_{\theta_{j}}\left(w(d(\hat{\theta}, \theta_{j}))\right) \geq w(\delta) \max_{j} P_{\theta_{j}}(d(\hat{\theta}, \theta_{j}) > \delta)$$

$$\geq \frac{w(\delta)}{m+1} \sum_{j=0}^{m} P(d(\hat{\theta}, \theta_{j}) > \delta | V = j)$$

$$\geq \frac{w(\delta)}{m+1} \sum_{j=0}^{m} P(\hat{V} \neq V | V = j)$$

$$\geq w(\delta) P(\hat{V} \neq V)$$

By Fano inequality, $P(V \neq \hat{V}) \geq 1 - \frac{I(V;X) + \log 2}{\log(m+1)}$, where $I(V;X) = KL(P_{(X,V),P_X \times P_V})$ is the mutual information between X and V. So a minimax lower bound is $w(\delta) \left(1 - \frac{I(V;X) + \log 2}{\log(m+1)}\right)$. All we have to do is find P_0, \dots, P_m and compute I(X;V). In information theoretical setting, $V \to X \to \hat{V}$, which is a Markov chain

Theorem 3.1 (Fano inequality)

Let $P_e = P(V \neq \hat{V})$, then we have

$$h(P_e) + P_e \log(m+1) > H(V) - I(V; X),$$

where h is the entropy and $H(V) = -\sum_{j=0}^{m} P(V_j) \log P(V_j)$.

For us, $H(V) = \log(m+1)$, then

$$P_e = P(V \neq \hat{V}) \ge \frac{\log(m+1) - I(V;X) - h(P_e)}{\log m} \ge \frac{\log(m+1) - I(V;X) - h(1/2)}{\log(m+1)} = 1 - \frac{I(X;V) + \log 2}{\log(m+1)}.$$

So we need to ensure that $1 - \frac{I(X;V) + \log 2}{\log(m+1)} \ge c > 0$ for some c, which means we need to upper bound I(V;X). Recall that $X|V_j \sim P_j$. If V has probability $\pi(0), \cdots, \pi(m)$, where $P(V=i) = \pi_i$, then $I(V;X) = \sum_{j=0}^m \pi(j) K L(P_0|\bar{P})$, where $\bar{P} = \sum_{j=0}^m \pi(j) P_j$. In our case, $\pi(j) = \frac{1}{m+1}$, so $I(V;X) = \frac{1}{m+1} \sum_{i=0}^m K L(P_i|\frac{1}{m+1} \sum_{i=0}^m P_i)$.

By concavity of log, $I(V;X) \leq \frac{1}{(m+1)^2} \sum_{i,j} KL(P_i,P_j)$. If $\max KL(P_i,P_j) \leq \beta(M,\delta)$, then $I(V;X) \leq \beta(\delta,m)$. So a minimax lower bound is $w(\delta) \left(1 - \frac{\beta(M,\delta) + \log 2}{\log(m+1)}\right)$.