Lasso Substructure Highlighting

Parameter Definition

- avg_len: Average bond length
- r. circle radius
- w: width of bond
- rel_radius: radius relative to avg_len
 - r = rel_radius · avg_len
 - 0 < r_rel</p>
- rel_width: width relative to r
 - $\mathbf{w} = rel_width \cdot r$
 - 0 < rel_width ≤ 1

Exemplary highlighting of carbons in ethanol

Attachment-Points

- Highlighting consists of:
 - circles around atoms
 - bond-edging
- Attachment-Points:
 - connection between circles and edging
 - saved as polar-coordinates
 - atom-position is origin
- Polar Coordinates:
 - distance to atom: d
 - angle in radiant: alpha
 - 0 corresponds to north

Exemplary highlighting of carbons in ethanol

Left Attachment-Point

- Calculations:
 - distance to atom: d = r
 - angle in radiant: alpha = bond_angle delta
- delta = arcsin(w/r)delta is constant Attachment-Point North alpha Attachment-Point delta **Exemplary highlighting** of carbons in ethanol bond_angle

Right Attachment-Point

- Calculations:
 - distance to atom: d = r
 - angle in radiant: alpha = bond_angle + delta
- delta = arcsin(w/r)
 - delta is constant

Intersecting Attachment-Points

- For atoms with small angles between bonds
 - right Attachment-Point (bond1_rAT) may have greater alpha than left Attachment-Point of following bond (bond2_IAT)
- New Attachment-Point needed
 - angle: mean of angles:
 - bond1_rAT & bond2_IAT
 - distance: next slide

Intersecting Attachment-Points

- Distance for new Attachment-Point:
 - Angle of rhombus:
 a_rhombus = bond2.angle bond1.angle
 - Height of rhombus:h_rhombus = w
 - Side length: len_rhombus = h_rhombus / sin(a_rhombus)
 - new_distance = 2 len_rhombus · cos(a_rhombus / 2)

Workflow

- Calculation of average bond length (avg_len)
- 2) Calculation of w, r and delta from avg_len (Slide 2 & 4)
- 3) Determining atoms and bonds between selected atoms
- Calculation of Attachment-Points (AT)
 - calculation of bond angles
 - calculation of left and right ATt (Slide 4 & 5)
 - left AT: distance = r, angle = bond-angle delta
 - right AT: distance = r, angle = bond-angle + delta
 - 3) checking for intersecting AT (Slide 6)
 - when bond_i and bond_{i+1} intersect: right AT of bond_i & left AT of bond_{i+1} are adapted (Slide 6 & 7)

Workflow

- 5) Drawing arches between:
 - right AT
 - and left AT of following bond
- 6) Drawing lines between:
 - left AT from atom i
 - and right AT from atom j
 - if ATs are for same bond
- 7) Drawing lines between:
 - right AT from atom i
 - and left AT from atom j
 - if ATs are for same bond