Workshop

November 3, 2023

Power Analysis using G*Power

Tom Ledermann, Ph.D.

In designing a study, we commonly want to know what sample size is required to detect a specific effect or in the case the data collection is completed what is the power for a specific effect.

Overview

- 1. Power
- 2. Effect Size
- 3. Effect Size Measures
- 4. Classification of Effect Sizes
- 5. Power Analysis
- 6. G*Power
- 7. Examples
- 8. Possible Scenarios
- 9. Non-Centrality Parameter

Power $(1 - \beta)$ is

- the probability of correctly assuming there is an effect (i.e., correctly rejecting the null hypothesis).
- inversely related to the probability of making a Type II Error (concluding there is no effect when there is one).

_	In the population	
	H_0 is true	H_0 is false (H_1 is true)
Decision (Empiry)		
Do not reject H_0	Correct (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct (1 - β)

If power is high, the probability of making a Type II Error (i.e., false negative) is low.

How much power is enough?

A power of .80 is probably the most reasonable compromise between the chance of detecting a substantial effect without involving more recourses in raising the power any higher and the risk of committing a Type I error (i.e., incorrectly concluding there is an effect).

- Studies with low power are statistically underpowered and have a high risk for false negative conclusions (Type II error).
- Studies with high power have a high risk for false positive conclusions (Type I error).
- ⇒ Each study should be adequately powered.

Statistical Power depends on:

- the Type of Statistical Test (statistical model)
- the Size of the Effect (↑)
- the Sample Size N (↑)
- the Significance Level α (↑)

Power as a function of N and Effect Size (Cohen's d)

Power as a function of α and N

Power as a function of Effect Size (Cohen's d) and N

Ways to Increase Power

- Increase the sample size.
- Chose a higher alpha level.
- Use a one-tailed test instead of a two-tailed test (not always possible and against consensus).
- Increase the effect size.

In comparing groups, the effect size can be increased by:

- increasing the variability between the groups (bigger difference).
- reducing the variability within groups.

Effect Size

Effect size (ES) is a name given to a family of indices that measure the magnitude of an effect (e.g., the difference between groups or relationships between variables) in a standardized way.

Unlike significance tests, effect sizes are independent of the sample size.

Effect Size

Effect sizes are used

- to judge the practical importance.
- to determine the sample size needed for detecting a specific effect and estimate power in cases where raw data are not available.
- to compare results across studies (and methods).
 - ⇒ meta-analysis studies

Effect Size Measrues

Effect Size	Statistical Analysis
r	Correlation Analysis
R^2	Regression Analysis
η^2	ANOVA family
Cohen's f	Regression Analysis and ANOVA
Odds Ratio	Logistic Regression Analysis
Cohen's d	Difference between 2 means
Δ	Hotelling T^2 test
W	Contingency table (χ²-test)

Effect size converters:

https://www.escal.site/#

https://www.psychometrica.de/effect_size.html

Classification of Effect Sizes

Jacob Cohen (1988) suggested benchmarks for many effect sizes to classify effects as

- small in size
- medium in size
- large in size

Power Analysis

Power analysis refers to statistical methods used to determine the sample size required to detect a specific effect or to estimate power for a specific effect.

Power Analysis

Important types of power analyses

- A Priori Power Analyses
 compute N as a function of power, α, and the
 (assumed) population ES.
- Post Hoc Power Analyses
 compute power (also know as estimated power) as a
 function of α, N, and ES.
- Sensitivity Analyses
 compute the critical population ES as a function of α,
 power, and N.

Power Analysis

Other types of power analyses offered by G*Power

- Criterion Analyses
 compute α as a function of power, the population ES,
 and N.
- Compromise Power Analyses compute both α and power as a function of N, the population ES, and the error probability ratio q, which is β/α .

G*Power

G*Power was developed by Faul et al. (2009) and is a free-to-use stand-alone power analysis software program.

G*Power can be used for the following

- statistical tests: F test, t test, χ^2 test, and z test.
- statistical methods:
 - correlation and regression analysis
 - analysis of means
 - analysis of proportions
 - analysis of variance

Research Design

Three-wave longitudinal study with two groups.

Question

What sample size is required to detect a medium-sized time-by-group interaction effect with power of .80?

Assumptions

15% missing data

Significance level $\alpha = .05$

Autocorrelation $\rho = .50$

Non-sphericity correction $\varepsilon = 1$

Required sample size:

28 complete cases (14 in each group)

Plus 15% missings (28/.85):

32.9 cases total (17 in each group)

The same number of cases would be required for the within-subject (time) effect.

For the between-subject (group) effect, 86 cases would be needed.

Research Design

Regression model with 3 covariates and 3 predictor variables.

$$Y = b_0 + b_1 C_1 + b_2 C_2 + b_3 C_3 + b_4 X_1 + b_5 X_2 + b_6 X_3 + e$$

Question

What sample size is needed to detect a medium-sized incremental effect (R^2 increase) for the 3 predictor variables?

Assumption

Significance level $\alpha = .05$

Required sample size:

77 complete cases

Small effect:

550 cases

Large effect:

36 cases

Possible Scenarios

There are two rare but possible scenarios:

- Power is high and the *p* value of an effect is high (not statistically significant).
- The p value of an effect is low (statistically significant) although power is low.

In either case, further investigation of the data is warrant.

- Many statistical tests involve a test statistic with a normal, t, F, or chi-square distribution.
- When H₀ is true, then these test statistics have a central distribution (e.g., central t distribution).
- When H_0 is false, the test statistics have a non-central distribution, which depends on the size of the effect.

The noncentral distributions

- show how the test statistics are distributed when there is an effect (i.e., H_0 is false).
- have an additional parameter, the noncentrality parameter δ (delta).

A central distribution is a special case of a noncentral distribution where the δ is zero.

The noncentrality parameter δ represents the degree to which the mean of the sampling distribution of the test statistic departs from its mean when the null is true.

For the two-sample *t* test, the noncentrality parameter is

$$\delta = \text{Cohen's } d \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

When the two samples are equal in size, then

$$\delta = \text{Cohen's } d\sqrt{\frac{n}{2}}$$

t Distributions with different Noncentrality Parameters and df = 10

References and Readings

- Cohen, J. (1992). A power primer. *Psychological Bulletin, 112* (1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155
- Fan, X. (November, 1999). Statistical Significance and Effect Size: Two Sides of a Coin. Paper presented at the Annual Meeting of the American Evaluation Association, Orlando, FL.
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*, *41*(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
- Kang H. (2021). Sample size determination and power analysis using the G*Power software. *Journal of Educational Evaluation for Health Professions, 18*, 17. https://doi.org/10.3352/jeehp.2021.18.17
- Lan, L., & Lian, Z. (2010). Application of statistical power analysis—How to determine the right sample size in human health, comfort and productivity research. *Building and Environment*, *45*(5), 1202-1213. https://doi.org/10.1016/j.buildenv.2009.11.002

Thank you!

Email: tledermann@fsu.edu

GitHub: https://github.com/thomasledermann/powerAPIM