Graph visualizations of the COVID-19 cases from the Italian town of Vo'

Haplea Ioan Ștefan

Resident MD, Internal Medicine

UMF Cluj-Napoca, Romania

Location

• Vo' is a small town in Italy, 50 km west of Venice

The pandemic

- In February and March 2020, during pandemic lockdown, 80% of the 3200 inhabitants were screened for SARS-CoV2 infection
- Most had two tests performed, 2 weeks apart
- A significant proportion of positive cases were asymptomatic
- The results were published in:

Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo'. Imperial College COVID-19 Response Team, Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, et al. Nature [Internet]. 2020 Jun 30;

The source of the data

- The authors made available the data and the R code at: https://github.com/ncov-ic/SEIR Covid Vo
- The data is a unique resource for epidemiologists and statisticians
 - A single easy to read Excel file
 - Very detailed: gender and age stratification, household identifiers, symptoms check list, severity, hospitalization, outcome
 - Contact tracing provided by adjacency matrix
 - Viral levels in swabs (no.of PCR cycles), body temperature
 - Longitudinal data affords a glimpse into the temporal dynamics of SARS-CoV2 infection
- Has the potential to become the "Framingham study" of COVID-19

Zuin, Marco, Claudio Bilato, Giovanni Zuliani, and Loris Roncon. 2020. "Italian Vò Municipality Cohort and COVID-19 Epidemiology: The 'Framingham' Study of the 21st Century." *European Journal of Internal Medicine* 0 (0). https://doi.org/10.1016/j.ejim.2020.07.015.

Graph visualisations

- I analyzed the data and constructed contact graphs for visualizations
- Each point (node in a graph) represents an individual
- The color of the point signifies the status:
 - Gray negative and asymptomatic, or unknown
 - Red SARS-CoV2 positive, symptomatic disease
 - Light red SARS-CoV2 positive, asymptomatic
 - Blue negative, symptomatic (e.g. fever caused by flu etc.)
- In the following visualisations, the sequence of slides is not necessarily the temporal sequence of the actual discovery of cases
- The proximity of two points in the graph plane does not signify geographic proximity of their households
- The data seem to tell an interesting story of their own, if only visually, with no graph-theoretic statistics employed

At first, everyone's status is unknown

Some inhabitants display symptoms

Some of the symptomatic are COVID +

Some more COVID+ are asymptomatic

There is a contact net between cases

Resize point by the number of contacts

Reshape graph to cluster positive cases

Reshaping

A contact net of COVID+ emerges

A close-up of the network

Some features of the network

- Many COVID+ cases are clustered, some symptomatic and some asymptomatic, a lot of household contacts
- A very well connected, asymptomatic COVID+ case did not spread much disease (large point at bottom left)
- In the entourage of COVID+ cases, there are always symptomatic cases from other diseases (blue points)

Putting the net back among its peers

The whole population sampled

A bird's eye view of the town

Conclusions

- An intuitive sense can be made of :
 - how common the infection is
 - how frequent is the asymptomatic carrier status
 - how often other diseases can produce symptoms similar to COVID-19, in the vicinity of COVID cases
 - how all of the above occur, interact, and transform into each other not in a well-mixed system, but within a coherent structure
- The graph data, the code and the images are available at:

https://github.com/Haplea-Ioan-Stefan/COVID_Vo

Thank you!

