

SÍLABO TECNICAS Y HERRAMIENTAS PARA EL MONITOREO Y SUPERVISIÓN INDUSTRIAL (HMI)

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

CICLO: Electivo: Ing. Industrial SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 090851E1030

II. CRÉDITOS : 03

III.REQUISITO : 09017008040 Automatización Industrial

IV.CONDICIÓN DEL CURSO : Electivo

V. SUMILLA

Técnicas y Herramientas para el Monitoreo y Supervisión Industrial (HMI), es un curso que permite al estudiante de Ingeniería Industrial, crear nuevos proyectos y brindar herramientas que le permitan supervisar procesos productivos utilizando el entorno de desarrollo del software industrial para el control de procesos a través de SCADA, el cual brinda herramientas para el monitoreo de la producción, contribuyendo de forma directa o indirecta en el sector industrial proponiendo herramientas para la toma de decisiones en tiempo real. El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Fundamentos de **Sistemas de Producción**. II. Instalación y preparación **entorno SCADA** con Software HMI y Desarrollo de aplicaciones industriales. III. Desarrollo de aplicaciones industriales con Software HMI – Ventanas de **Control de Procesos**. IV. Supervisión de la Producción con SCADA aplicando **Control Estadístico** de Procesos.

VI. FUENTES DE CONSULTA:

Bibliográficas

• Rodríguez, A. (2012). Sistemas SCADA. Barcelona: Marcombo.

Electrónicas

- Manual Wonderware InTouch
- Manual Wonderware SPC

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: FUNDAMENTOS DE SISTEMAS DE PRODUCCIÓN.

OBJETIVOS DE APRENDIZAJE:

- Evaluar la Importancia de la aplicación de la automatización en los sistemas Industriales.
- Analizar el enfoque integrado de control de procesos y producción con tecnología Wonderware.

PRIMERA SEMANA

Primera sesión

Conceptos Generales de la Gestión de Operaciones. Conceptos de Sistemas de Producción. Entornos de Producción. Papel Estratégico de la Gestión de la Producción. Producción y Estrategias Empresariales.

Segunda sesión

Papel Estratégico de la Gestión de la Producción. Producción y Estrategias Empresariales.

SEGUNDA SEMANA

Primera sesión

Prueba de Entrada.

Segunda sesión

Conceptos Generales de Control de Procesos a través de la Automatización. Influencia de la Automatización Industrial en la Producción.

UNIDAD II: INSTALACIÓN Y PREPARACIÓN ENTORNO SCADA CON SOFTWARE INDUSTRIAL Y DESARROLLO DE APLICACIONES INDUSTRIALES.

OBJETIVOS DE APRENDIZAJE:

- Analizar los principales parámetros a tomar en cuenta para la instalación de una aplicación industrial con tecnología Wonderware InTouch.
- Instalar software de control de procesos de acuerdo a las necesidades de un entorno industrial.
- Desarrollo de modelado de proceso industrial en software de control de procesos.
- Desarrollo de aplicación de supervisión de proceso industrial y de principales parámetros de producción en tiempo real.

TERCERA SEMANA

Primera sesión

Teoría General de Sistemas de Supervisión, Control y Adquisición de Datos (SCADA).

Segunda sesión

Configuración de entorno Wonderware InTouch - Stand Alone.

CUARTA SEMANA

Primera sesión

Reconocimiento de entorno de desarrollo con software SCADA.

Segunda sesión

Análisis de procesos industriales para diseño en entorno SCADA con Software HMI. Diagramas de flujo de proceso. Filosofía de control de procesos. Identificación de variables de proceso.

QUINTA SEMANA

Primera sesión

Diseño de ventanas de proceso. Navegación entre pantallas de proceso. Desarrollo de estructura de ventanas de proceso.

Segunda sesión

Desarrollo de ventanas SCADA de las entradas de proceso industrial.

SEXTA SEMANA

Primera sesión

Modelado de comunicación de procesos industriales entre sistemas SCADA y simulador de variables de entrada/salida en planta.

Segunda sesión

Desarrollo de ventanas SCADA de supervisión de procesos intermedios 1.

SÉPTIMA SEMANA

Primera sesión

Desarrollo de ventanas SCADA de supervisión de procesos intermedios 2.

Segunda sesión

Primera Práctica Calificada.

OCTAVA SEMANA

Examen Parcial

UNIDAD III: DESARROLLO DE APLICACIONES INDUSTRIALES CON SOFTWARE HMI - VENTANAS DE CONTROL DE PROCESOS.

OBJETIVOS DE APRENDIZAJE:

- Desarrollo de aplicación de supervisión de proceso industrial y de principales parámetros de producción en tiempo real para el control de procesos en tiempo real.
- Introducción a la programación de scripts en lenguaje Visual Basic.
- Historización de datos análogos de procesos industriales y uso de tablero de Alarmas.

NOVENA SEMANA

Primera sesión

Desarrollo de ventanas SCADA de control de procesos avanzados con variables análogas - 1. Control de variables análogas: Temperatura y Nivel.

Segunda sesión

Desarrollo de ventanas SCADA de control de procesos avanzados con variables discretas - 2. Control de mecanismos discretos: motores, válvulas, mezcladores.

DECIMA SEMANA

Primera sesión

Desarrollo de scripts para el control de tiempo de proceso.

Segunda sesión

Desarrollo de scripts para el control de recetas de proceso.

UNDÉCIMA SEMANA

Primera sesión

Desarrollo de ventana con tablero de control de alarmas y eventos en procesos industriales.

Segunda sesión

Desarrollo de ventana con gráficos para el monitoreo en tiempo real y datos históricos. Exportación de datos históricos en formato *.xls para el diseño de reportes.

UNIDAD IV: SUPERVISIÓN DE LA PRODUCCIÓN CON SCADA APLICANDO CONTROL ESTADÍSTICO DE PROCESOS.

OBJETIVOS DE APRENDIZAJE:

- Analizar la importancia de la aplicación de la estadística en la automatización y control de procesos industriales.
- Crear ventanas SCADA donde se realice control estadístico de procesos a partir de un análisis estadístico de variables de proceso.

DUODÉCIMA SEMANA

Primera sesión

Generalidades del control estadístico de procesos. Cartas de Control. Histogramas. Diagramas de Pareto.

Segunda sesión

Instalación y configuración de entorno de trabajo en Wonderware SPC for InTouch.

DECIMOTERCERA SEMANA

Primera sesión

Diseño de Pantallas SCADA para Control Estadístico de Procesos. Selección de variable a analizar en proceso.

Segunda sesión

Análisis teórico de data estadística para la configuración de cartas de control según variables de proceso SCADA.

DECIMOCUARTA SEMANA

Primera sesión

Creación de Base de Datos en Microsoft Access, Datasets, Usuarios, Gráficos y Características de Calidad aplicada a procesos industriales.

Segunda sesión

Programación de Scripts de conexión de base de datos con características de calidad ingresadas en el SCADA. Pruebas de funcionamiento de la aplicación.

DECIMOQUINTA SEMANA

Primera sesión

Exposición de trabajos finales.

Segunda sesión

Segunda práctica calificada.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- **Método Expositivo Interactivo**. Comprende la exposición del docente y la interacción con el estudiante a fin de que este exprese su sentir como si estuviese en un entorno industrial real
- **Método de Demostración ejecución**. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y una computadora personal para cada estudiante del curso, ecran, proyector de multimedia. Software Wonderware InTouch.

Materiales: Manual SCADA InTouch y Wonderware SPC.

XI. EVALUACIÓN

PF = (PE + EP + EF) / 3 PE = (P1 + P2 + P3) / 3

Donde:

PF = Promedio Final
PE = Promedio de Evaluaciones
P2 = Práctica Calificada 2
PR = Evamen Parcial Laboratoria
P3 = Trabaja Final

EP = Examen Parcial Laboratorio **P3** = Trabajo Final **EP** = Examen Final Laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del programa (Outcomes), para las Escuelas Profesionales de Ingeniería Electrónica e Ingeniería Industrial, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería		
(f)	Comprensión de lo que es la responsabilidad ética y profesional		
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R	
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	R	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
2	2	0

b) Sesiones por semana: Dos sesiones.

c) Duración: 4 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. Juan Diego García Guerra

XV. FECHA

La Molina, marzo de 2018