PROGRAMAÇÃO KAIZEN PARA CONSTRUÇÃO DE MODELOS INTERPRETÁVEIS

UMA ABORDAGEM MULTIOBJETIVO PARA REGRESSÃO SIMBÓLICA

DEFESA DE MESTRADO

Aluno: Artur Henrique Gonçalves Coutinho Alves

Orientador: Prof. Dr. Vinícius Veloso de Melo

Programa de Pós-Graduação em Ciência da Computação

Instituto de Ciência e Tecnologia

Universidade Federal de São Paulo – Campus São José dos Campos

13 de abril de 2017

SUMÁRIO

Contextualização

Motivações

Objetivos

Otimização e Regressão

Programação Genética

Programação Kaizen

Otimização Multiobjetivo

Experimentos com Bases da Literatura

Aplicação: Direção Automática

Controle Preditivo Baseado em Modelo

Experimentos com o Simulador de Corrida

Conclusões

CONTEXTUALIZAÇÃO

Aumento da complexidade das atividades da sociedade moderna

Grandes massas de dados e sistemas integrados

Aprendizado de máquina supervisionado

Regressão e classificação

Diversas aplicações, como engenharia, data mining e inteligência artificial em jogos

Programação Kaizen

Direção automática

Controle preditivo baseado em modelo (MPC)

MOTIVAÇÕES

Evolução de Programação Kaizen

Utilização de controle preditivo para direção automática

Aplicação de jogos como plataforma de teste de inteligência computacional

OBJETIVOS

Identificar pontos que podem ser melhorados em Programação Kaizen e propor soluções

Implementar tais soluções e aplicar em problemas reais, comparando seu desempenho com outras técnicas de aprendizado de máquina

Construir uma plataforma de controle preditivo com Programação Kaizen como técnica de modelagem

Integrar este controle a um piloto de simulador de corrida e testar seu desempenho em situações reais

OTIMIZAÇÃO E REGRESSÃO

MODELANDO COMPORTAMENTOS

OTIMIZAÇÃO

Otimização: min/max f(x)

Otimização multiobjetivo

Heurísticas

Meta-heurísticas

Hiper-heurísticas

OTIMIZAÇÃO REGRESSÃO LINEAR

$$y = a + bx$$

OTIMIZAÇÃO REGRESSÃO NÃO-LINEAR

$$y = ae^{bx}$$

OTIMIZAÇÃO REGRESSÃO SIMBÓLICA

OTIMIZAÇÃO REGRESSÃO SIMBÓLICA: TRABALHOS RELACIONADOS

Técnicas com otimização numérica de coeficientes

MRGP (Multiple Regression Genetic Programming)

GSGP-LSH (Geometric Semantic Genetic Programming with Local Search – Hybrid)

SSR (Sequential Symbolic Regression)

Simulated Annealing multiobjetivo para regressão simbólica

Programação Genética para construção de modelos para controle preditivo

Estudo de Grosman e Lewin

Estabilização de pêndulo invertido

PPGCC ICT-UNIFESF

PROGRAMAÇÃO GENÉTICA

COMPUTAÇÃO EVOLUTIVA PARA REGRESSÃO SIMBÓLICA

PPGCC ICT-UNIFESF

PROGRAMAÇÃO GENÉTICA

$$individuo_1 = x_1^2 + x_3$$

$$individuo_2 = \sqrt[]{x_2} / 3.14 + \log x_1$$

$$individuo_3 = x_1 + x_2 + x_3$$

PROGRAMAÇÃO KAIZEN

APLICANDO O PROCESSO DE MELHORIA CONTÍNUA À PROGRAMAÇÃO AUTOMÁTICA

PPGCC ICT-UNIFESP

PROGRAMAÇÃO KAIZEN

KAIZEN E PDCA

Filosofia de trabalho japonesa que busca a melhoria contínua de processos

Eventos Kaizen

Especialistas

Metodologia cíclica *Plan-Do-Check-Act* (PDCA)

Programação Kaizen

Aplica conceitos da filosofia Kaizen em inteligência computacional

Combina técnicas determinísticas com abordagens aleatórias

Evolução colaborativa, não competitiva, com indivíduos representando soluções parciais

PROGRAMAÇÃO KAIZEN KAIZEN E PDCA

$$ideia_1 = x_1^2 + x_3$$
 $ideia_2 = \sqrt{x_2} / 3.14 + \log x_1$
 $ideia_3 = x_1 + x_2 + x_3$

PROGRAMAÇÃO KAIZEN ESPECIALISTAS PRINCIPAIS

A implementação de KP deste trabalho utiliza oito especialistas; em destaque:

Criação de novas ideias: rand(2*tam) terminais, rand(tam) terminais e/ou não-terminais e rand(2*tam) não-terminais, sendo que rand retorna um valor inteiro de 1 até o parâmetro informado, tam = rand(maxTam) e maxTam é um tamanho máximo definido pelo usuário

Combinação de ideias: duas ideias existentes são combinadas com um operador de aridade 2

Ideias inicialmente pouco importantes podem aumentar a diversidade das soluções

A combinação de ideias distintas faz grandes saltos no espaço de busca

PPGCC ICT-UNIFESP

PROGRAMAÇÃO KAIZEN CONSTRUÇÃO DE SOLUÇÕES

Regressão linear múltipla

Busca um hiperplano que aproxime o comportamento de uma variável dependente

Combinação linear das variáveis independentes:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_k x_{i,k} + \epsilon_i$$

Variáveis independentes são provenientes das ideias geradas em KP

Combinações não-lineares das variáveis de entrada

Assim, a regressão linear pode aproximar funções não-lineares

$$\begin{split} ideia_1 &= x_1^2 + x_3 \\ ideia_2 &= \sqrt[]{x_2} \Big/_{3.14 + \log x_1} \\ ideia_3 &= x_1 + x_2 + x_3 \\ y_i &= \beta_0 + \beta_1 ideia_{i,1} + \beta_2 ideia_{i,2} + \beta_3 ideia_{i,3} \end{split}$$

A importância de cada ideia é dada por um teste de significância no modelo

A qualidade do modelo é dada, por exemplo, pelo erro quadrado médio

OTIMIZAÇÃO MULTIOBJETIVO

EVOLUINDO A PROGRAMAÇÃO KAIZEN

PPGCC ICT-UNIFESP

OTIMIZAÇÃO MULTIOBJETIVO OBJETIVOS EM REGRESSÃO SIMBÓLICA

Qualidade: capacidade preditiva de um modelo

Complexidade: dificuldade de interpretação/cálculo de um modelo

Modelos exageradamente complexos podem:

Apresentar sobreajuste

Ser muito custosos computacionalmente

Ser difíceis de interpretar

Maior complexidade, até certo ponto, leva a melhor qualidade

Objetivos são contrários entre si

OTIMIZAÇÃO MULTIOBJETIVO

COMPLEXIDADE

Há diferentes definições para a complexidade em regressão simbólica

Complexidade estrutural: comprimento das equações

Complexidade semântica: dificuldade das funções presentes nas equações

$$f(x) = 3x^3 + 4x^2 + 2x + 6$$
 vs. $g(x) = e^{\cos\sqrt{x}}$

Neste trabalho, é considerada a complexidade semântica, dada pela não-linearidade das funções

Três etapas do algoritmo consideram a complexidade

Escolha de ideias quando há alta correlação

Seleção de melhor padrão ao fim de cada iteração

Seleção de melhor padrão ao fim da execução

EXPERIMENTOS COM BASES DA LITERATURA

AVALIANDO A PROGRAMAÇÃO KAIZEN MULTIOBJETIVO

PPGCC ICT-UNIFESP

EXPERIMENTOS CONJUNTOS DE DADOS

Abreviação	Nome	Nº de covariáveis	Nº de instâncias
air¹	Airfoil Self-Noise	5	1.503
bio [131]	Human Oral Drug Biovailability	241	359
con²	Concrete Compressive Strength	8	1.030
cpu³	Computer Hardware	7	209
enC4	Energy efficiency (cooling only)	8	768
enH ⁵	Energy efficiency (heating only)	8	768
for ⁶	Forest Fires	10	517
ppb [5]	Plasma Protein Binding Levels	626	131
tow [143]	Distillation Tower Problem	25	4.999
wiR ⁷	Wine Quality (red only)	11	1.599
wiW ⁸	Wine Quality (white only)	11	4.898
yac ⁹	Yacht Hydrodynamics	6	768
snk	SnakeOil	80	420

_ Conjuntos de dados utilizados.

EXPERIMENTOS CONFIGURAÇÕES DE PROGRAMAÇÃO KAIZEN

		MOI	KPSA			KP	SA	SMORBF	SMOPoly	
	iter	ideas	perexp	corr	iter	ideas	perexp	corr	gamma	exponent
air	1.000	10	5	0,9	500	10	2	0,9	100	2
bio	1.000	3	5	0,7	1.000	2	2	0,7	1	1
con	500	10	1	0,7	1.000	10	1	0,9	10	3
cpu	1.000	10	2	0,9	1.000	10	5	0,9	1	2
enC	500	10	5	0,7	1.000	10	10	0,5	10	3
enH	500	3	1	0,9	1.000	10	10	0,5	10	3
for	100	2	3	0,3	100	3	2	0,3	1	3
ppb		N,	/A		100	3	5	0,5	0,01	1
tow	1.000	2	5	0,9	1.000	10	1	0,5	10	3
wiR	500	10	2	0,7	1.000	5	1	0,9	1	2
wiW	500	10	1	0,9	500	10	1	0,9	100	3
yac	1.000	10	10	0,9	1.000	2	10	0,7	10	3

Melhor configuração de cada técnica para cada conjunto de dados de acordo com a mediana do RMSE.

EXPERIMENTOS CONFIGURAÇÕES DE PROGRAMAÇÃO KAIZEN

		MOk	KPSA	KPSA					
	iter	ideas	perexp	corr	iter	ideas	perexp	corr	
#1	1.000	10	2	0,9	500	10	10	0,7	
#2	1.000	10	3	0,7	1.000	10	3	0,7	
#3	500	10	5	0,7	1.000	10	10	0,7	
#4	500	10	2	0,9	1.000	10	3	0,9	
#5	1.000	10	5	0,7	1.000	10	1	0,7	

Melhores configurações gerais de KPSA e MOKPSA para todos os conjuntos de dados de acordo com a mediana do RMSE.

DDGCC ICT_LINIEESD

EXPERIMENTOS QUALIDADE X COMPLEXIDADE

Fronteiras de Pareto das melhores configurações de MOKPSA em enC e yac

DDGCC ICT_I INIEECD

ABORDAGEM MULTIOBJETIVO

			KPSA						
	RM	SE	R	2	Comple	exidade	RMSE	\mathbb{R}^2	Complexidade
	Absoluto	Relativo	Absoluto	Relativo	Absoluta	bsoluta Relativa		Absoluto	Absoluta
air	3,09	105,70%	0,79	96,33%	917	52,82%	2,92	0,82	1.736
bio	29,21	100,44%	0,13	133,91%	417	556%	29,09	0,09	75
con	6,91	104,94%	0,83	97,79%	322	9,73%	6,59	0,85	3.308
cpu	4,54	134,47%	1,00	99,92%	688	44,44%	3,38	1,00	1.548
enC	3,08	151,89%	0,89	0,89 93,79%		8,31%	2,03	0,95	4.741
enH	2,63	243,40%	0,93	94,32%	87	1,59%	1,08	0,99	5.484
for	36,85	97,41%	0,00	56,33%	27	3,81%	37,83	0,01	708
ppb	N/A	N/A	N/A	N/A	N/A	N/A	27,14	0,20	213
tow	34,86	111,54%	0,84	96,32%	708	20,26%	31,25	0,87	3.495
wiR	0,62	99,94%	0,37	101,46%	376	22,25%	0,62	0,37	1.690
wiW	0,73	101,24%	0,32	94,35%	332	9,16%	0,72	0,33	3.625
yac	2,96	141,67%	0,96	98,04%	981	89,02%	2,09	0,98	1.102
	Média	126,6%		96,6%		74,31%			
Des	vio-padrão	43,12		17,52		161,94			
	Mediana	105,7%		96,33%		20,26%			

Valores medianos de RMSE, R² e complexidade das melhores configurações específicas de MOKPSA e KPSA nos conjuntos de dados da literatura. Os valores relativos em MOKPSA têm como base os respectivos valores absolutos de KPSA.

ABORDAGEM MULTIOBJETIVO: QUALIDADE

Distribuição de RMSE da melhor solução apresentada por todas as configurações de MOKP e de KP para cada conjunto de dados da literatura

ABORDAGEM MULTIOBJETIVO: COMPLEXIDADE

Distribuição de complexidade da melhor solução apresentada por todas as configurações de MOKP e de KP para cada conjunto de dados da literatura

EXPERIMENTOS REGRESSÃO SIMBÓLICA: QUALIDADE

	MOKP	SA	KPSA	A	SSR			
	Mediana	IQR	Mediana	IQR	Mediana	IQR		
air	3,27	0,85	3,08	0,27	3,06	0,39		
bio	31,39	4,84	34,23	14,75	31,21	3,38		
con	7,03	2,05	6,99	0,61	7,02	0,62		
cpu	4,54	5,5	10,78	16,48	55,26	30,27		
enC	3,09	0,32	2,88	0,46	2,38	0,45		
enH	2,65	0,29	2,5	1,19	1,83	0,66		
for	93	67,29	83,86	74,13	71,23	66,86		
ppb	N/A	N/A	N/A	N/A	29,4	7,51		
tow	45,68	12,72	37,81	11,43	34,91	3,7		
wiR	0,63	0,04	0,65	0,07	0,64	0,03		
wiW	0,73	0,03	0,73	0,02	0,73	0,02		
yac	3,04	1,24	2,92	1,32	1,88	0,62		

Valores de RMSE mediano e interquartil para as melhores configurações gerais de MOKPSA e KPSA e para SSR nos conjuntos de dados da literatura.

REGRESSÃO SIMBÓLICA: QUALIDADE

Gráfico de diferença crítica (CD=1). Métodos conectados não apresentam diferença significativa para α =0,05.

EXPERIMENTOS REGRESSÃO SIMBÓLICA: TAMANHO DE FUNÇÃO

	MOKP	SA	KPSA	A	SSR			
	Mediana	IQR	Mediana	IQR	Mediana	IQR		
air	107	30	145	18	641	54		
bio	137	110	127	24	252	49,5		
con	135	40	149	149 26		75		
cpu	101	10	147	34	412	41		
enC	85	85 36		46	554	73,5		
enH	91	20	143	26	557	87		
for	1.214	1.273	195 46		374	59		
ppb	N/A	N/A	N/A	N/A N/A		97,5		
tow	103	36	137	22	619	58,5		
wiR	127	56	151	16	437	44,5		
wiW	119	58	149	26	540	55		
yac	201	140	159	22	595	74,5		

Valores de RMSE mediano e interquartil para as melhores configurações gerais de MOKPSA e KPSA e para SSR nos conjuntos de dados da literatura.

APRENDIZADO DE MÁQUINA

	MOKPSA		KPSA		SN	SMORBF		SMOPoly		MLP			LinReg				
	RMSE	\mathbb{R}^2	RMSE	R ²		RMSE	\mathbb{R}^2		RMSE	\mathbb{R}^2		RMSE	R ²		RMSE	\mathbb{R}^2	
air	3,09	0,79	2,92	0,82	• • •	2,69	0,85	• • •	4,29	0,62	000	4,13	0,67	000	4,74	0,52	000
bio	29,21	0,13	29,09	0,09		28,00	0,14		35,86	0,07		36,92	0,03	000	36,27	0,03	000
con	6,91	0,83	6,59	0,85	•	5,84	0,88	•••	7,07	0,82	000	7,50	0,83	000	10,27	0,62	000
cpu	4,54	1,00	3,38	1,00	•••	16,07	0,99	00	17,67	0,99	000	7,56	1,00	000	28,91	0,95	000
enC	3,08	0,89	2,03	0,95	•••	2,02	0,96	•••	2,49	0,93	•••	2,42	0,95		3,20	0,89	
enH	2,63	0,93	1,08	0,99	•••	1,64	0,98	•••	1,74	0,97	•••	1,25	0,99	•••	2,86	0,92	00
for	36,85	0,00	37,83	0,01		36,94	0,00	000	36,89	0,00	000	57,11	0,00		36,95	0,00	0
ppb	N/A	N/A	27,14	0,20	N/A	27,51	0,34	N/A	38,90	0,06	N/A	34,67	0,08	N/A	50,94	0,00	N/A
tow	34,86	0,84	31,25	0,87	•••	14,40	0,97	•••	15,49	0,97	•••	20,11	0,96	•••	33,68	0,85	•••
wiR	0,62	0,37	0,62	0,37		0,63	0,39	000	0,64	0,37		0,73	0,33	000	0,65	0,35	
wiW	0,73	0,32	0,72	0,33		0,66	0,43	•••	0,73	0,33	•••	0,77	0,32	000	0,75	0,28	0
yac	2,96	0,96	2,09	0,98	•	4,16	0,96	000	3,07	0,97	0	1,20	1,00	•••	8,69	0,67	000
	V/E/D			0/4/7			4/1/6			5/2/4			6/2/3		8	8/2/1	

EXPERIMENTOS APRENDIZADO DE MÁQUINA

DDGCC ICT_I INIEECD

APLICAÇÃO: DIREÇÃO AUTOMÁTICA

REVOLUCIONANDO OS MEIOS DE TRANSPORTE

DIREÇÃO AUTOMÁTICA

Sistemas autônomos são utilizados para controle na aviação devido à complexidade dos sistemas envolvidos

O transporte terrestre, por sua vez, é muito mais suscetível a erros humanos

Falta de sistemas autônomos

Produção em massa de veículos

Iniciativas de pesquisa e desenvolvimento

Simuladores de corrida

DIREÇÃO AUTOMÁTICA

O PROBLEMA

Objetivo: correr o mais rápido possível em uma pista

Maior complexidade em curvas

Simulador: TORCS

Abstração dos dados

Sensores

Internos

Externos

Atuadores

Abordagem: melhoria de um piloto já existente

SnakeOil: framework e piloto

Desenvolvido em Python

Modularização

DIREÇÃO AUTOMÁTICA O PROBLEMA

CONTROLE PREDITIVO BASEADO EM MODELO

APLICANDO A PROGRAMAÇÃO KAIZEN AO PROBLEMA DE DIREÇÃO AUTOMÁTICA

MPC O QUE É CONTROLE?

Área de estudo de Automação

Aumento de complexidade de sistemas

Sistemas difíceis de controlar manualmente

Altos riscos e custos associados

Necessidade de controle autônomo

MPC FUNCIONAMENTO

DDGCC ICT_I INIEECD

MPC OTIMIZAÇÃO

Objetivos

Maximizar a velocidade do veículo

Minimizar a distância da referência (centro da pista)

Problema multiobjetivo

MPC APRENDIZADO

Duas etapas

Construção offline dos modelos

Duas voltas de aquecimento para coleta de dados

Encerramento do piloto para construção dos modelos

Modelo do veículo deve prever os sensores escolhidos

Aprendizado online do piloto

Processo contínuo durante a corrida

Ticks de previsão

Melhoria constante da trajetória

Aproveitamento de previsões anteriores

Exemplo de predição de trajetória: Verde – referência Azul – predição Vermelho – erro

EXPERIMENTOS COM O SIMULADOR DE CORRIDA

AVALIANDO OS MODELOS NO MPC

EXPERIMENTOS COM O SIMULADOR QUALIDADE DOS MODELOS

Considerando que a pista utilizada tem 15m de largura...

MOKPSA		KPSA		SMORBF		SMOPoly		MLP		LinReg	
MAE	Real	MAE	Real	MAE	Real	MAE	Real	MAE	Real	MAE	Real
0,35	2,625m	0,5	3,75m	0,51	3,825m	0.52	3,9m	0.44	3,3m	1.43	10,725m

Estes erros são inaceitáveis.

EXPERIMENTOS COM O SIMULADOR

QUALIDADE DOS MODELOS

Gráficos de dispersão do conjunto de dados do simulador aplicado às melhores configurações específicas das técnicas executadas neste trabalho. Um modelo ideal apresentaria todos os pontos sobre a reta tracejada, onde predito=esperado.

CONCLUSÕES

ANALISANDO OS SUCESSOS E AS FALHAS E PLANEJANDO O FUTURO

CONCLUSÕES PROGRAMAÇÃO KAIZEN MULTIOBJETIVO

Principal expectativa: modelos de qualidade ligeiramente inferior mas complexidade significativamente reduzida

Referência: Programação Kaizen original

Atingida

KPSA e MOKPSA apresentam bons resultados quando comparadas a outras técnicas

Ajuste de parâmetros e de critérios de complexidade pode trazer melhorias

Mais iterações *podem* levar a modelos mais simples e com menor correlação

KP constrói modelos lineares

O uso de estruturas não-lineares apresenta resultados significativamente superiores

Superou modelos não-lineares de técnicas como MLP

KP pode auxiliar outras técnicas, por construção de novos atributos e seleção de atributos existentes

CONCLUSÕES

CONTROLE PREDITIVO BASEADO EM MODELO

Apesar de a MOKPSA ter apresentado os melhores resultados, estes ainda não foram suficientes para a execução da tarefa

Há muitas causas possíveis

Por restrições de tempo, não foi possível investigá-las extensivamente

A metodologia e os resultados apresentados são valiosos para trabalhos futuros

CONCLUSÕES TRABALHOS FUTUROS

Otimização multiobjetivo na modelagem

Critérios de complexidade

Comparações com aprendizado de máquina

Ajuste fino de parâmetros

Teste de KPSA em outras aplicações

Uso de outros elementos não-terminais

Métodos alternativos de mapeamento de pista

Aplicação de MPC em outros simuladores

CONCLUSÕES PUBLICAÇÕES

"Training a Multilayer Perceptron to predict a car speed in a simulator: Comparing RPROP, PSO, BFGS and a memetic PSO-BFGS hybrid"

Apresentado no XV Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2016)

Um artigo com os resultados de MOKPSA nas bases de dados tradicionais da literatura está sendo elaborado e será submetido a uma revista

Obrigado!

Perguntas?

Agradecimentos à CAPES pelo auxílio financeiro dado a esta pesquisa

MESTRADO PPGCC ICT-UNIFESP 2017