Advanced Machine Learning

Entropy

Entropy, Coding, Maximum Entropy

Outline

- 1. Measuring Uncertainty
- 2. Code Length
- 3. Maximum Entropy

- What is more uncertain tossing a coin three times or throwing a dice
- The answer depends on whether you care about the order of the coin tosses
- But, how do we answer such a question?
- ullet Let X be a random variable denoting the possible outcomes
- Interestingly, Shannon entropy give a precise answer

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

- What is more uncertain tossing a coin three times or throwing a dice
- The answer depends on whether you care about the order of the coin tosses
- But, how do we answer such a question?
- ullet Let X be a random variable denoting the possible outcomes
- Interestingly, Shannon entropy give a precise answer

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

- What is more uncertain tossing a coin three times or throwing a dice
- The answer depends on whether you care about the order of the coin tosses
- But, how do we answer such a question?
- ullet Let X be a random variable denoting the possible outcomes
- Interestingly, Shannon entropy give a precise answer

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

- What is more uncertain tossing a coin three times or throwing a dice
- The answer depends on whether you care about the order of the coin tosses
- But, how do we answer such a question?
- ullet Let X be a random variable denoting the possible outcomes
- Interestingly, Shannon entropy give a precise answer

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

- What is more uncertain tossing a coin three times or throwing a dice
- The answer depends on whether you care about the order of the coin tosses
- But, how do we answer such a question?
- ullet Let X be a random variable denoting the possible outcomes
- Interestingly, Shannon entropy give a precise answer

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

Let's Calculate

• For an honest dice $D \in \{1,2,3,4,5,6\}$ and $\mathbb{P}(D=i)=1/6$ so

$$H_D = -\sum_{i=1}^{6} \frac{1}{6} \log_2 \left(\frac{1}{6}\right) = -\log_2 \left(\frac{1}{6}\right) = \log_2(6) \approx 2.584 \text{ bits}$$

• For an honest coin where we care about the order so $C \in \{000,001,...,111\}$ the $\mathbb{P}(C=i)=\frac{1}{8}$ and

$$H_C = -\sum_{i=0}^{7} \frac{1}{8} \log_2 \left(\frac{1}{8}\right) = -\log_2 \left(\frac{1}{8}\right) = \log_2(8) = 3 \text{ bits}$$

 This clearly makes sense: there are more possible outcomes; all equally likely

Let's Calculate

• For an honest dice $D \in \{1,2,3,4,5,6\}$ and $\mathbb{P}(D=i)=1/6$ so

$$H_D = -\sum_{i=1}^{6} \frac{1}{6} \log_2 \left(\frac{1}{6}\right) = -\log_2 \left(\frac{1}{6}\right) = \log_2(6) \approx 2.584 \text{ bits}$$

• For an honest coin where we care about the order so $C \in \{000,001,...,111\}$ the $\mathbb{P}(C=i)=\frac{1}{8}$ and

$$H_C = -\sum_{i=0}^{7} \frac{1}{8} \log_2 \left(\frac{1}{8}\right) = -\log_2 \left(\frac{1}{8}\right) = \log_2(8) = 3 \text{ bits}$$

 This clearly makes sense: there are more possible outcomes; all equally likely

Let's Calculate

• For an honest dice $D \in \{1,2,3,4,5,6\}$ and $\mathbb{P}(D=i)=1/6$ so

$$H_D = -\sum_{i=1}^{6} \frac{1}{6} \log_2 \left(\frac{1}{6}\right) = -\log_2 \left(\frac{1}{6}\right) = \log_2(6) \approx 2.584 \text{ bits}$$

• For an honest coin where we care about the order so $C \in \{000,001,\dots,111\}$ the $\mathbb{P}(C=i)=\frac{1}{8}$ and

$$H_C = -\sum_{i=0}^{7} \frac{1}{8} \log_2 \left(\frac{1}{8}\right) = -\log_2 \left(\frac{1}{8}\right) = \log_2(8) = 3 \text{ bits}$$

 This clearly makes sense: there are more possible outcomes; all equally likely

Unordered Coin Toss

• What if we don't care about the order of the out-come then $\mathbb{P}(HHH) = \mathbb{P}(TTT) = 1/8$, $\mathbb{P}(HHT) = \mathbb{P}(HTT) = 3/8$ so

$$H_U = -\frac{1}{4}\log_2\left(\frac{1}{8}\right) - \frac{3}{4}\log_2\left(\frac{3}{8}\right) \approx 1.811 \text{ bits}$$

 This seems reasonable, although it is not obvious how you would determine this without using entropy

Unordered Coin Toss

• What if we don't care about the order of the out-come then $\mathbb{P}(HHH) = \mathbb{P}(TTT) = 1/8$, $\mathbb{P}(HHT) = \mathbb{P}(HTT) = 3/8$ so

$$H_U = -\frac{1}{4}\log_2\left(\frac{1}{8}\right) - \frac{3}{4}\log_2\left(\frac{3}{8}\right) \approx 1.811 \text{ bits}$$

 This seems reasonable, although it is not obvious how you would determine this without using entropy

Unordered Coin Toss

• What if we don't care about the order of the out-come then $\mathbb{P}(HHH) = \mathbb{P}(TTT) = 1/8$, $\mathbb{P}(HHT) = \mathbb{P}(HTT) = 3/8$ so

$$H_U = -\frac{1}{4}\log_2\left(\frac{1}{8}\right) - \frac{3}{4}\log_2\left(\frac{3}{8}\right) \approx 1.811 \text{ bits}$$

- This seems reasonable, although it is not obvious how you would determine this without using entropy
- But why Shannon entropy?

• If H_X and H_Y is the uncertainty of two independent random variable X and Y, what is the uncertainty of the combined event (X,Y)?

$$\begin{split} H_{(X,Y)} &= -\sum_{X,Y} \mathbb{P}(X,Y) \log_2(\mathbb{P}(X,Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \log_2(\mathbb{P}(X) \mathbb{P}(Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \left(\log_2(\mathbb{P}(X)) + \log_2(\mathbb{P}(Y)) \right) \\ &= -\sum_{X} \mathbb{P}(X) \log_2(\mathbb{P}(X)) - \sum_{Y} \mathbb{P}(Y) \log_2(Y) = H_X + H_Y \end{split}$$

• If H_X and H_Y is the uncertainty of two independent random variable X and Y, what is the uncertainty of the combined event (X,Y)?

$$H_{(X,Y)} = -\sum_{X,Y} \mathbb{P}(X,Y) \log_2(\mathbb{P}(X,Y))$$

$$= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \log_2(\mathbb{P}(X) \mathbb{P}(Y))$$

$$= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \left(\log_2(\mathbb{P}(X)) + \log_2(\mathbb{P}(Y)) \right)$$

$$= -\sum_{X} \mathbb{P}(X) \log_2(\mathbb{P}(X)) - \sum_{Y} \mathbb{P}(Y) \log_2(Y) = H_X + H_Y$$

• If H_X and H_Y is the uncertainty of two independent random variable X and Y, what is the uncertainty of the combined event (X,Y)?

$$\begin{split} H_{(X,Y)} &= -\sum_{X,Y} \mathbb{P}(X,Y) \log_2(\mathbb{P}(X,Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \log_2(\mathbb{P}(X) \mathbb{P}(Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \left(\log_2(\mathbb{P}(X)) + \log_2(\mathbb{P}(Y)) \right) \\ &= -\sum_{X} \mathbb{P}(X) \log_2(\mathbb{P}(X)) - \sum_{Y} \mathbb{P}(Y) \log_2(Y) = H_X + H_Y \end{split}$$

• If H_X and H_Y is the uncertainty of two independent random variable X and Y, what is the uncertainty of the combined event (X,Y)?

$$\begin{split} H_{(X,Y)} &= -\sum_{X,Y} \mathbb{P}(X,Y) \log_2(\mathbb{P}(X,Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \log_2(\mathbb{P}(X) \mathbb{P}(Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \left(\log_2(\mathbb{P}(X)) + \log_2(\mathbb{P}(Y)) \right) \\ &= -\sum_{X} \mathbb{P}(X) \log_2(\mathbb{P}(X)) - \sum_{Y} \mathbb{P}(Y) \log_2(Y) = H_X + H_Y \end{split}$$

• If H_X and H_Y is the uncertainty of two independent random variable X and Y, what is the uncertainty of the combined event (X,Y)?

$$\begin{split} H_{(X,Y)} &= -\sum_{X,Y} \mathbb{P}(X,Y) \log_2(\mathbb{P}(X,Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \log_2(\mathbb{P}(X) \mathbb{P}(Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \left(\log_2(\mathbb{P}(X)) + \log_2(\mathbb{P}(Y)) \right) \\ &= -\sum_{X} \mathbb{P}(X) \log_2(\mathbb{P}(X)) - \sum_{Y} \mathbb{P}(Y) \log_2(Y) = H_X + H_Y \end{split}$$

• If H_X and H_Y is the uncertainty of two independent random variable X and Y, what is the uncertainty of the combined event (X,Y)?

$$\begin{split} H_{(X,Y)} &= -\sum_{X,Y} \mathbb{P}(X,Y) \log_2(\mathbb{P}(X,Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \log_2(\mathbb{P}(X) \mathbb{P}(Y)) \\ &= -\sum_{X,Y} \mathbb{P}(X) \mathbb{P}(Y) \left(\log_2(\mathbb{P}(X)) + \log_2(\mathbb{P}(Y)) \right) \\ &= -\sum_{X} \mathbb{P}(X) \log_2(\mathbb{P}(X)) - \sum_{Y} \mathbb{P}(Y) \log_2(Y) = H_X + H_Y \end{split}$$

Outline

- 1. Measuring Uncertainty
- 2. Code Length
- 3. Maximum Entropy

- Suppose we had to communicate a message with 2^n equally likely outputs (e.g. the result of n-coin tosses)
- We can do this with a binary string with n bits (011..0)
- If there were 5 possible outcomes I could do this with 3 bits, but waste 3/8 of the message
- However if we have a batch of 3 independent messages each with 5 outcomes then there are 125 possible outcomes

ullet By batching together enough messages with N outcomes then we asymptotically need just $\log_2(N)$ bits

- Suppose we had to communicate a message with 2^n equally likely outputs (e.g. the result of n-coin tosses)
- We can do this with a binary string with n bits (011..0)
- If there were 5 possible outcomes I could do this with 3 bits, but waste 3/8 of the message
- However if we have a batch of 3 independent messages each with
 5 outcomes then there are 125 possible outcomes

• By batching together enough messages with N outcomes then we asymptotically need just $\log_2(N)$ bits

- Suppose we had to communicate a message with 2^n equally likely outputs (e.g. the result of n-coin tosses)
- We can do this with a binary string with n bits (011..0)
- If there were 5 possible outcomes I could do this with 3 bits, but waste 3/8 of the message
- However if we have a batch of 3 independent messages each with 5 outcomes then there are 125 possible outcomes

• By batching together enough messages with N outcomes then we asymptotically need just $\log_2(N)$ bits

- Suppose we had to communicate a message with 2^n equally likely outputs (e.g. the result of n-coin tosses)
- We can do this with a binary string with n bits (011..0)
- If there were 5 possible outcomes I could do this with 3 bits, but waste 3/8 of the message
- However if we have a batch of 3 independent messages each with
 5 outcomes then there are 125 possible outcomes

• By batching together enough messages with N outcomes then we asymptotically need just $\log_2(N)$ bits

- Suppose we had to communicate a message with 2^n equally likely outputs (e.g. the result of n-coin tosses)
- We can do this with a binary string with n bits (011..0)
- If there were 5 possible outcomes I could do this with 3 bits, but waste 3/8 of the message
- However if we have a batch of 3 independent messages each with 5 outcomes then there are 125 possible outcomes. We could communicate this with 8 bits. This would waste 3/128 of the message
- By batching together enough messages with N outcomes then we asymptotically need just $\log_2(N)$ bits

- Suppose we had to communicate a message with 2^n equally likely outputs (e.g. the result of n-coin tosses)
- We can do this with a binary string with n bits (011..0)
- If there were 5 possible outcomes I could do this with 3 bits, but waste 3/8 of the message
- However if we have a batch of 3 independent messages each with 5 outcomes then there are 125 possible outcomes. We could communicate this with 8 bits. This would waste 3/128 of the message
- ullet By batching together enough messages with N outcomes then we asymptotically need just $\log_2(N)$ bits

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i))$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 3 2 2

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i)) = \log_2(N)$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 3 2 2

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i)) = \log_2(N)$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 3 2 2

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i)) = \log_2(N)$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 3 2 2

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i)) = \log_2(N)$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 3 2 2

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i)) = \log_2(N)$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 3 2 2

- We "showed" that if we had N events, X_i , each with probability, $\mathbb{P}(X_i) = 1/N$, we can code the outcomes with a message of length $-\log_2(\mathbb{P}(X_i)) = \log_2(N)$
- With a shorter message we would not be able to distinguish all possible outcomes from the message
- What happens if some of outcomes occur with a different probability

$$X_i$$
: 1 2 3 4 5 6 $p(X_i)$: $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ Code: 000 001 010 011 10 11 $L = -\log_2(p(X_i))$: 3 3 3 2 2

Shannon's Entropy

- If the probabilities are not equal to 2^{-n} we can still find a code with a length very close to $-\log_2(\mathbb{P}(X))$ per message by transmitting a large number of messages
- The length of the message measures the amount of surprise on receiving the message
- ullet Shannon's entropy is the expected length of the message to communicate a random variable X

$$H_X = \mathbb{E}_X[-\log_2(\mathbb{P}(X))] = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x)\log_2(\mathbb{P}(X = x))$$

The expected length is a measure of the uncertainty

Shannon's Entropy

- If the probabilities are not equal to 2^{-n} we can still find a code with a length very close to $-\log_2(\mathbb{P}(X))$ per message by transmitting a large number of messages
- The length of the message measures the amount of surprise on receiving the message
- ullet Shannon's entropy is the expected length of the message to communicate a random variable X

$$H_X = \mathbb{E}_X[-\log_2(\mathbb{P}(X))] = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x)\log_2(\mathbb{P}(X = x))$$

The expected length is a measure of the uncertainty

Shannon's Entropy

- If the probabilities are not equal to 2^{-n} we can still find a code with a length very close to $-\log_2(\mathbb{P}(X))$ per message by transmitting a large number of messages
- The length of the message measures the amount of surprise on receiving the message
- ullet Shannon's entropy is the expected length of the message to communicate a random variable X

$$H_X = \mathbb{E}_X[-\log_2(\mathbb{P}(X))] = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

The expected length is a measure of the uncertainty

Shannon's Entropy

- If the probabilities are not equal to 2^{-n} we can still find a code with a length very close to $-\log_2(\mathbb{P}(X))$ per message by transmitting a large number of messages
- The length of the message measures the amount of surprise on receiving the message
- ullet Shannon's entropy is the expected length of the message to communicate a random variable X

$$H_X = \mathbb{E}_X[-\log_2(\mathbb{P}(X))] = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

The expected length is a measure of the uncertainty

Shannon's Entropy

- If the probabilities are not equal to 2^{-n} we can still find a code with a length very close to $-\log_2(\mathbb{P}(X))$ per message by transmitting a large number of messages
- The length of the message measures the amount of surprise on receiving the message
- ullet Shannon's entropy is the expected length of the message to communicate a random variable X

$$H_X = \mathbb{E}_X[-\log_2(\mathbb{P}(X))] = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

• The expected length is a measure of the uncertainty (how much information on average we need to convey the outcome)

- Those of you with some computer science background will realise that we can't actually use different length strings in a code without paying some price
- We won't know where a code word ends so we can't decode the message
- An optimal solution is to use Huffman encoding where we associate the leaf of a tree with each code word
- Using the tree we can decode any message constructed using the tree
- There is a greedy algorithm for constructing the optimal tree

- Those of you with some computer science background will realise that we can't actually use different length strings in a code without paying some price
- We won't know where a code word ends so we can't decode the message
- An optimal solution is to use Huffman encoding where we associate the leaf of a tree with each code word
- Using the tree we can decode any message constructed using the tree
- There is a greedy algorithm for constructing the optimal tree

- Those of you with some computer science background will realise that we can't actually use different length strings in a code without paying some price
- We won't know where a code word ends so we can't decode the message
- An optimal solution is to use Huffman encoding where we associate the leaf of a tree with each code word
- Using the tree we can decode any message constructed using the tree
- There is a greedy algorithm for constructing the optimal tree

- Those of you with some computer science background will realise that we can't actually use different length strings in a code without paying some price
- We won't know where a code word ends so we can't decode the message
- An optimal solution is to use Huffman encoding where we associate the leaf of a tree with each code word
- Using the tree we can decode any message constructed using the tree
- There is a greedy algorithm for constructing the optimal tree

- Those of you with some computer science background will realise that we can't actually use different length strings in a code without paying some price
- We won't know where a code word ends so we can't decode the message
- An optimal solution is to use Huffman encoding where we associate the leaf of a tree with each code word
- Using the tree we can decode any message constructed using the tree
- There is a greedy algorithm for constructing the optimal tree

Coding Normals

Coding Normals to Accuracy Δx

Coding Normals to Accuracy Δx

Coding Normals to Accuracy Δx

We have measured entropy in bits using

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \ln(\mathbb{P}(X = x))$$

- In this case the entropy is measured in **nats** with 1 nat equal to $\log_2(e)$ bits
- This is often easier when we want to do calculus on entropy

We have measured entropy in bits using

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \ln(\mathbb{P}(X = x))$$

- In this case the entropy is measured in **nats** with 1 nat equal to $\log_2(e)$ bits
- This is often easier when we want to do calculus on entropy

We have measured entropy in bits using

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \ln(\mathbb{P}(X = x))$$

- In this case the entropy is measured in nats with 1 nat equal to $\log_2(e)$ bits
- This is often easier when we want to do calculus on entropy

We have measured entropy in bits using

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2(\mathbb{P}(X = x))$$

$$H_X = -\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \ln(\mathbb{P}(X = x))$$

- In this case the entropy is measured in **nats** with 1 nat equal to $log_2(e)$ bits
- This is often easier when we want to do calculus on entropy

Outline

- 1. Measuring Uncertainty
- 2. Code Length
- 3. Maximum Entropy

Number of States

• Suppose I have N balls I them put in K boxes with coordinates x_i such that the mean is μ and variance is σ^2

$$\mathbb{P}(\boldsymbol{n}) \propto \frac{N!}{n_1! n_2! \cdots n_K!} \left[\sum_{i} \frac{n_i}{N} x_i = \mu \right] \left[\sum_{i} \frac{n_i}{N} (x_i - \mu)^2 = \sigma^2 \right]$$

Number of States

• Suppose I have N balls I them put in K boxes with coordinates x_i such that the mean is μ and variance is σ^2

$$\mathbb{P}(\boldsymbol{n}) \propto \frac{N!}{n_1! n_2! \cdots n_K!} \left[\sum_{i} \frac{n_i}{N} x_i = \mu \right] \left[\sum_{i} \frac{n_i}{N} (x_i - \mu)^2 = \sigma^2 \right]$$

Stirling's Approximation

We can approximate the factorial n! using Stirling's approximation

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$
$$\log(n!) = n\log(n) - n + \frac{1}{2}\log(2\pi n)$$

ullet Using this in our formula for $\mathbb{P}(oldsymbol{n})$ we have

$$\mathbb{P}(\boldsymbol{n}) \approx C e^{-N \sum_{i} \frac{n_{i}}{N} \log \left(\frac{n_{i}}{N}\right)} \prod_{l=1}^{3} \left[\sum_{i} \frac{n_{i}}{N} f_{l}(x_{i}) = v_{l} \right]$$

where
$$(f_1(x_i), v_l) = \{(1,1), (x_i, \mu), ((x_i - \mu)^2, \sigma^2)\}$$

Stirling's Approximation

• We can approximate the factorial n! using **Stirling's** approximation

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$
$$\log(n!) = n\log(n) - n + \frac{1}{2}\log(2\pi n)$$

ullet Using this in our formula for $\mathbb{P}(oldsymbol{n})$ we have

$$\mathbb{P}(\boldsymbol{n}) \approx C e^{-N \sum_{i} \frac{n_{i}}{N} \log \left(\frac{n_{i}}{N}\right)} \prod_{l=1}^{3} \left[\sum_{i} \frac{n_{i}}{N} f_{l}(x_{i}) = v_{l} \right]$$

where
$$(f_1(x_i), v_l) = \{(1,1), (x_i, \mu), ((x_i - \mu)^2, \sigma^2)\}$$

Stirling's Approximation

• We can approximate the factorial n! using **Stirling's** approximation

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$
$$\log(n!) = n\log(n) - n + \frac{1}{2}\log(2\pi n)$$

ullet Using this in our formula for $\mathbb{P}(oldsymbol{n})$ we have

$$\mathbb{P}(\boldsymbol{n}) \approx C e^{-N \sum_{i} \frac{n_{i}}{N} \log \left(\frac{n_{i}}{N}\right)} \prod_{l=1}^{3} \left[\sum_{i} \frac{n_{i}}{N} f_{l}(x_{i}) = v_{l} \right]$$

where
$$(f_1(x_i), v_l) = \{(1,1), (x_i, \mu), ((x_i - \mu)^2, \sigma^2)\}$$

Number of States and Entropy

• Let $p(x_i) = n_i/N$ be the proportion of balls in bin i then

$$\mathbb{P}(\boldsymbol{n}) \approx C e^{NH_X} \prod_{l=1}^{3} \left[\sum_{i} \frac{n_i}{N} f_l(x_i) = v_l \right]$$

where

$$H_X = -\sum_i p(x_i) \log(p(x_i))$$

- That is, the "entropy" can be seen as a measure of the logarithm of the number of configurations
- When the number of balls, $N \to \infty$ the overwhelmingly likely configurations is the one that maximises the entropy subject to the observed mean and variance

Number of States and Entropy

• Let $p(x_i) = n_i/N$ be the proportion of balls in bin i then

$$\mathbb{P}(\boldsymbol{n}) \approx C e^{NH_X} \prod_{l=1}^{3} \left[\sum_{i} \frac{n_i}{N} f_l(x_i) = v_l \right]$$

where

$$H_X = -\sum_{i} p(x_i) \log(p(x_i))$$

- That is, the "entropy" can be seen as a measure of the logarithm of the number of configurations
- When the number of balls, $N \to \infty$ the overwhelmingly likely configurations is the one that maximises the entropy subject to the observed mean and variance

Number of States and Entropy

• Let $p(x_i) = n_i/N$ be the proportion of balls in bin i then

$$\mathbb{P}(\boldsymbol{n}) \approx C e^{NH_X} \prod_{l=1}^{3} \left[\sum_{i} \frac{n_i}{N} f_l(x_i) = v_l \right]$$

where

$$H_X = -\sum_{i} p(x_i) \log(p(x_i))$$

- That is, the "entropy" can be seen as a measure of the logarithm of the number of configurations
- When the number of balls, $N \to \infty$ the overwhelmingly likely configurations is the one that maximises the entropy subject to the observed mean and variance

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know
- It only gives a good approximation if all possibilities are equally likely

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints—the entropy acts as a prior
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know
- It only gives a good approximation if all possibilities are equally likely

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints—the entropy acts as a prior
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know
- It only gives a good approximation if all possibilities are equally likely

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints—the entropy acts as a prior
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know
- It only gives a good approximation if all possibilities are equally likely

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints—the entropy acts as a prior
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know
- It only gives a good approximation if all possibilities are equally likely

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints—the entropy acts as a prior
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know—being as unbiased as possible
- It only gives a good approximation if all possibilities are equally likely

- When we are trying to infer a distribution given some observations then we can maximise the entropy subject to constraints—the entropy acts as a prior
- This is known as the maximum entropy method
- We can rationalise this as this is by far the most likely set of configurations consistent with the observations
- Alternatively we can see this as maximising our uncertainty given what we know—being as unbiased as possible
- It only gives a good approximation if all possibilities are equally likely

ullet Consider a continuous random variable, X, with a known mean and second moment

$$\mathbb{E}[X] = \mu, \qquad \qquad \mathbb{E}[X^2] = \mu_2 = \mu^2 + \sigma^2$$

To maximise the entropy subject to constraints consider

$$\mathcal{L}(f) = -\int f_X(x) \log(f_X(x)) dx + \lambda_0 \left(\int f_X(x) dx - 1 \right)$$

$$+ \lambda_1 \left(\int f_X(x) x dx - \mu \right) + \lambda_2 \left(\int f_X(x) x^2 dx - \mu_2 \right)$$

Thus

$$\frac{\delta \mathcal{L}(f)}{\delta f_X(x)} = -\log(f_X(x)) - 1 + \lambda_0 + \lambda_1 x + \lambda_2 x^2 = 0$$

$$f_X(x) = e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2}$$

ullet Consider a continuous random variable, X, with a known mean and second moment

$$\mathbb{E}[X] = \mu, \qquad \qquad \mathbb{E}[X^2] = \mu_2 = \mu^2 + \sigma^2$$

To maximise the entropy subject to constraints consider

$$\mathcal{L}(f) = -\int f_X(x) \log(f_X(x)) dx + \lambda_0 \left(\int f_X(x) dx - 1 \right)$$
$$+ \lambda_1 \left(\int f_X(x) x dx - \mu \right) + \lambda_2 \left(\int f_X(x) x^2 dx - \mu_2 \right)$$

Thus

$$\frac{\delta \mathcal{L}(f)}{\delta f_X(x)} = -\log(f_X(x)) - 1 + \lambda_0 + \lambda_1 x + \lambda_2 x^2 = 0$$

$$f_X(x) = e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2}$$

ullet Consider a continuous random variable, X, with a known mean and second moment

$$\mathbb{E}[X] = \mu, \qquad \qquad \mathbb{E}[X^2] = \mu_2 = \mu^2 + \sigma^2$$

To maximise the entropy subject to constraints consider

$$\mathcal{L}(f) = -\int f_X(x) \log(f_X(x)) dx + \lambda_0 \left(\int f_X(x) dx - 1 \right)$$

$$+ \lambda_1 \left(\int f_X(x) x dx - \mu \right) + \lambda_2 \left(\int f_X(x) x^2 dx - \mu_2 \right)$$

Thus

$$\frac{\delta \mathcal{L}(f)}{\delta f_X(x)} = -\log(f_X(x)) - 1 + \lambda_0 + \lambda_1 x + \lambda_2 x^2 = 0$$

$$f_X(x) = e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2}$$

ullet Consider a continuous random variable, X, with a known mean and second moment

$$\mathbb{E}[X] = \mu, \qquad \qquad \mathbb{E}[X^2] = \mu_2 = \mu^2 + \sigma^2$$

To maximise the entropy subject to constraints consider

$$\mathcal{L}(f) = -\int f_X(x) \log(f_X(x)) dx + \lambda_0 \left(\int f_X(x) dx - 1 \right)$$

$$+ \lambda_1 \left(\int f_X(x) x dx - \mu \right) + \lambda_2 \left(\int f_X(x) x^2 dx - \mu_2 \right)$$

Thus

$$\frac{\delta \mathcal{L}(f)}{\delta f_X(x)} = -\log(f_X(x)) - 1 + \lambda_0 + \lambda_1 x + \lambda_2 x^2 = 0$$

$$f_X(x) = e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2}$$

Normal Distribution

We have three constraints

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} dx = 1$$

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} x dx = \mu$$

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} x^2 dx = \mu_2 = \mu^2 + \sigma^2$$

• Solving for λ_0 , λ_1 and λ_2 then

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

 That is, the normal distribution is the maximum entropy distribution given we known the mean and variance

Normal Distribution

We have three constraints

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} dx = 1$$

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} x dx = \mu$$

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} x^2 dx = \mu_2 = \mu^2 + \sigma^2$$

• Solving for λ_0 , λ_1 and λ_2 then

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

 That is, the normal distribution is the maximum entropy distribution given we known the mean and variance

Normal Distribution

We have three constraints

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} dx = 1$$

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} x dx = \mu$$

$$\int e^{-1+\lambda_0+\lambda_1 x + \lambda_2 x^2} x^2 dx = \mu_2 = \mu^2 + \sigma^2$$

• Solving for λ_0 , λ_1 and λ_2 then

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

 That is, the normal distribution is the maximum entropy distribution given we known the mean and variance

- Maximum entropy is often used to infer distributions
- It can be very effective, but it might not work well if there are other constraints that we have not included
- The place that they work superbly well is in statistical physics
- The whole of statistical physics is about inferring distributions making observations of volume, pressure, etc.
- Temperature appears rather strangely as a Lagrange multiplier

- Maximum entropy is often used to infer distributions
- It can be very effective, but it might not work well if there are other constraints that we have not included
- The place that they work superbly well is in statistical physics
- The whole of statistical physics is about inferring distributions making observations of volume, pressure, etc.
- Temperature appears rather strangely as a Lagrange multiplier

- Maximum entropy is often used to infer distributions
- It can be very effective, but it might not work well if there are other constraints that we have not included
- The place that they work superbly well is in statistical physics
- The whole of statistical physics is about inferring distributions making observations of volume, pressure, etc.
- Temperature appears rather strangely as a Lagrange multiplier

- Maximum entropy is often used to infer distributions
- It can be very effective, but it might not work well if there are other constraints that we have not included
- The place that they work superbly well is in statistical physics
- The whole of statistical physics is about inferring distributions making observations of volume, pressure, etc.
- Temperature appears rather strangely as a Lagrange multiplier

- Maximum entropy is often used to infer distributions
- It can be very effective, but it might not work well if there are other constraints that we have not included
- The place that they work superbly well is in statistical physics
- The whole of statistical physics is about inferring distributions making observations of volume, pressure, etc.
- Temperature appears rather strangely as a Lagrange multiplier

- Historically entropy was first introduced in statistical physics by Rudolf Clausius in 1865 (although Macquorn Rankine discussed it in 1850)
- Its interpretation as the number of states was introduced by Ludwig Boltzmann
- The person who got it all right was Josiah Willard Gibbs (and James Clerk Maxwell)
- Claude Shannon invented information theory base on entropy around 1948 (more on that in the next lecture)
- Ed Jaynes was the first to understand that statistical physics can be seen as an inference problem

- Historically entropy was first introduced in statistical physics by Rudolf Clausius in 1865 (although Macquorn Rankine discussed it in 1850)
- Its interpretation as the number of states was introduced by Ludwig Boltzmann
- The person who got it all right was Josiah Willard Gibbs (and James Clerk Maxwell)
- Claude Shannon invented information theory base on entropy around 1948 (more on that in the next lecture)
- Ed Jaynes was the first to understand that statistical physics can be seen as an inference problem

- Historically entropy was first introduced in statistical physics by Rudolf Clausius in 1865 (although Macquorn Rankine discussed it in 1850)
- Its interpretation as the number of states was introduced by Ludwig Boltzmann
- The person who got it all right was Josiah Willard Gibbs (and James Clerk Maxwell)
- Claude Shannon invented information theory base on entropy around 1948 (more on that in the next lecture)
- Ed Jaynes was the first to understand that statistical physics can be seen as an inference problem

- Historically entropy was first introduced in statistical physics by Rudolf Clausius in 1865 (although Macquorn Rankine discussed it in 1850)
- Its interpretation as the number of states was introduced by Ludwig Boltzmann
- The person who got it all right was Josiah Willard Gibbs (and James Clerk Maxwell)
- Claude Shannon invented information theory base on entropy around 1948 (more on that in the next lecture)
- Ed Jaynes was the first to understand that statistical physics can be seen as an inference problem

- Historically entropy was first introduced in statistical physics by Rudolf Clausius in 1865 (although Macquorn Rankine discussed it in 1850)
- Its interpretation as the number of states was introduced by Ludwig Boltzmann
- The person who got it all right was Josiah Willard Gibbs (and James Clerk Maxwell)
- Claude Shannon invented information theory base on entropy around 1948 (more on that in the next lecture)
- Ed Jaynes was the first to understand that statistical physics can be seen as an inference problem

- Entropy provides a measure of the disorder or uncertainty in a system
- It forms the basis of information theory which we will look at in the next lecture
- $-\log(\mathbb{P}(X=x))$ can be seen as the minimum length of a message to communication x
- This will be used as the basis of the minimum description length formalism also discussed in the next lecture
- Entropy can be used as a prior, which we often maximise subject to constraints to obtain an unbiased estimate

- Entropy provides a measure of the disorder or uncertainty in a system
- It forms the basis of information theory which we will look at in the next lecture
- $-\log(\mathbb{P}(X=x))$ can be seen as the minimum length of a message to communication x
- This will be used as the basis of the minimum description length formalism also discussed in the next lecture
- Entropy can be used as a prior, which we often maximise subject to constraints to obtain an unbiased estimate

- Entropy provides a measure of the disorder or uncertainty in a system
- It forms the basis of information theory which we will look at in the next lecture
- $-\log(\mathbb{P}(X=x))$ can be seen as the minimum length of a message to communication x
- This will be used as the basis of the minimum description length formalism also discussed in the next lecture
- Entropy can be used as a prior, which we often maximise subject to constraints to obtain an unbiased estimate

- Entropy provides a measure of the disorder or uncertainty in a system
- It forms the basis of information theory which we will look at in the next lecture
- $-\log(\mathbb{P}(X=x))$ can be seen as the minimum length of a message to communication x
- This will be used as the basis of the minimum description length formalism also discussed in the next lecture
- Entropy can be used as a prior, which we often maximise subject to constraints to obtain an unbiased estimate

- Entropy provides a measure of the disorder or uncertainty in a system
- It forms the basis of information theory which we will look at in the next lecture
- $-\log(\mathbb{P}(X=x))$ can be seen as the minimum length of a message to communication x
- This will be used as the basis of the minimum description length formalism also discussed in the next lecture
- Entropy can be used as a prior, which we often maximise subject to constraints to obtain an unbiased estimate