

Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: Introdução a Geometría Analítica e Álgebra Linear Código: CM303

Lista semana 10

- 1. Calcule o ângulo que a reta que passa por A = (3, -1, 4) e B = (1, 3, 2) forma com a sua projeção sobre o plano xy.
- 2. Seja o plano

$$\pi: 3x + y - z - 4 = 0.$$

Calcular:

- (a) O ponto de π que tem abscissa 1 e ordenada 3.
- (b) O valor de k para que o ponto $P = (k, 2, k 1) \in \pi$.
- (c) O ponto de abscissa 2 e cuja ordenada é o dobro da cota.
- (d) O valor de k para que o plano π_1 : kx 4y + 4z 7 = 0 seja paralelo a π .
- **3.** Determine m sabendo que o ponto P=(-1,0,m) pertence ao plano $\pi:\ 2x-y-z=3.$
- 4. Em cada item, determine uma equação geral para o plano que contém os pontos A, B e C.
 - (a) $A = (2, 1, 1), B = (-1, 0, 1) \in C = (3, -2, 4).$
 - (b) $A = (0, -1, 1), B = (0, 0, 0) \in C = (2, 1, 0).$
- **5.** Determine a equação do plano paralelo ao plano $\pi: 2x-3y-z+5=0$ e que contenha o ponto A=(4,-2,1).
- 6. Calcule a equação do plano perpendicular à reta

$$\begin{cases} x = 2 + 2t \\ y = 1 - 3t \\ z = 4t \end{cases},$$

e que contenha o ponto A = (-1, 2, 3).

- 7. O plano passa por A=(2,0,-2) e é paralelo aos vetores $\vec{u}=\vec{i}-\vec{j}+\vec{k}$ e $\vec{v}=2\vec{i}+3\vec{j}$.
- 8. Determine as posições relativas e a intersecção entre quaisquer duas das retas abaixo.

$$r_1: (x, y, z) = (-2, 0, 1) + t(2, 1, 1); r_2: (x, y, z) = (0, -2, 1) + t(1, 0, -1);$$

$$r_3: (x, y, z) = (-2, -2, 3) + t(-2, 0, 2); r_4: (x, y, z) = (2, -1, 6) + t(1, -1, 2);$$

$$r_5: \begin{cases} y = -x \\ z = 2x - 1. \end{cases}$$

- 9. Em cada item, determine uma equação geral para o plano que se pede.
 - (a) Plano paralelo ao plano $\pi: 2x-3y-z+5=0$ e que passa pelo ponto A=(4,-1,2).
 - (b) Plano paralelo ao vetor $\vec{v}=2\vec{i}-3\vec{k}$ e que contém os pontos A=(-3,1,-2) e B=(-1,2,1).
 - (c) Plano perpendicular ao plano $\pi: 2x+y-z+8=0$ e que contém os pontos A=(1,-2,2) e B=(-3,1,-2).
 - (d) Plano perpendicular aos planos $\pi_1: 2x-y-4z-6=0$ e $\pi_2: x+y+2z-3=0$ e que contém o ponto A=(4,1,0).

10. Determine a posição relativa e a intersecção entre quaisquer dois dos planos abaixo.

$$\pi_1: 2x - y - z - 1 = 0;$$
 $\pi_2: 4x - 2y - 2z + 3 = 0;$

$$\pi_3: x - y = 0;$$
 $\pi_4: (x, y, z) = (t, t, s).$

- 11. Determine a e b sabendo que os planos $\pi_1: ax+by+4z-1=0$ e $\pi_2: 3x-5y-2z+5=0$ são paralelos.
- 12. Determine uma equação geral para o plano que contém o ponto A=(1,2,1) e contém a reta de intersecção entre plano $\pi: x-2y+z-3=0$ e o plano yz.
- 13. Determine o valor de m para que os planos $\pi_1: 2mx + 2y z = 0$ e $\pi_2: 3x my + 2z 1 = 0$ sejam perpendiculares.
- 14. Em cada item, determine uma equação geral para o plano que se pede.
 - (a) Plano perpendicular à reta $r: \left\{ \begin{array}{l} x=2y-3 \\ z=-y+1 \end{array} \right.$ e que contém o ponto A=(1,2,3).
 - (b) Plano paralelo ao eixo z e que contém os pontos A=(0,3,1) e B=(2,0,-1).
 - (c) Plano paralelo ao eixo y e ao vetor $\vec{v} = (-3, 2, 0)$ e que contém o ponto A = (1, 0, 0).
 - (d) Plano perpendicular ao eixo y e que contém o ponto A = (3, 4, -1).
 - (e) Plano que contém as retas

$$r: \left\{ \begin{array}{ll} y=2x-3 \\ z=-x+2 \end{array} \right.$$
 e $s: \frac{x-1}{3}=\frac{z-1}{5}; \ y=-1$.

(f) Plano que contém as retas

$$r: \frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-1} \qquad \text{e} \qquad s: \frac{x-1}{-2} = \frac{y+2}{-1} = \frac{z-3}{2} \ .$$

(g) Plano que contém as retas

$$r: \left\{ \begin{array}{ll} x = -3 + t \\ y = -t \\ z = 4 \end{array} \right.$$
 e $s: \frac{x+2}{2} = \frac{y-1}{-2}; \ z = 0$.

- (h) Plano que contém a reta r:(x,y,z)=(0,2,3)+t(1,-1,2) e o ponto A=(3,-1,2).
- (i) Plano que contém o ponto A = (1, -2, 1) e contém o eixo x.

Respostas:

1.
$$\theta = \arccos\left(\frac{\sqrt{30}}{6}\right)$$
.

(b)
$$k = \frac{1}{2}$$
.

(c)
$$k = (2, -4, -2)$$
.

(d)
$$k = -12$$
.

3.
$$m = -5$$
.

4. (a)
$$-3x + 9y + 10z - 13 = 0$$
.

(b)
$$-x + 2y + 2z = 0$$
.

5.
$$2x - 3y - z - 13 = 0$$
.

6.
$$2x - 3y + 4z - 4 = 0$$
.

7.
$$3x - 2y - 5z - 16 = 0$$
.

8. $-r_2$ e r_3 são retas coincidentes, portanto $r_2 \cap r_3 = r_2 = r_3$. A partir daqui, faremos as respostas com r_2 e omitiremos as com r_3 , pois são a mesma reta.

 $-r_1$ e r_2 são reversas e, portanto, $r_1 \cap r_2 = \emptyset$.

 $- r_1 e r_4 são concorrentes e r_1 \cap r_4 = \{(0, 1, 2)\}.$

 $-\ r_1$ e r_5 são reversas e, portanto, $r_1\cap r_5=\varnothing.$

 $-r_2$ e r_4 são reversas e, portanto, $r_2 \cap r_4 = \emptyset$.

 $-r_2$ e r_5 são reversas e, portanto, $r_2 \cap r_5 = \emptyset$.

 $-r_4$ e r_5 são paralelas e, portanto, $r_4 \cap r_5 = \emptyset$.

9. 2x - 3y - z - 9 = 0.

$$3x - 12y + 2z + 25 = 0.$$

$$x - 12y - 10z - 5 = 0.$$

$$2x - 8y + 3z = 0.$$

10. $-\pi_3$ e π_4 são planos coincidentes, portanto $\pi_3 \cap \pi_4 = \pi_3 = \pi_4$. A partir daqui, faremos as respostas com π_3 e omitiremos as com π_4 , pois são o mesmo plano.

- π_1 e π_2 são paralelos e, portanto, $\pi_1 \cap \pi_2 = \varnothing.$

 $-\pi_1 \in \pi_3$ são concorrentes e $\pi_1 \cap \pi_3 : \begin{cases} y = x \\ z = x - 1. \end{cases}$

 $-\pi_2$ e π_3 são concorrentes e $\pi_2 \cap \pi_3$: $\begin{cases} y = x \\ z = x + \frac{3}{2}. \end{cases}$

11. a = -6 e b = 10.

12. 6x - 2y + z - 3 = 0.

13. $m = \frac{1}{2}$.

14. (a) 2x + y - z - 1 = 0.

(d) y = 4.

(g) 2x + 2y + z + 2 = 0.

(b) 3x + 2y - 6 = 0.

(e) 5x - 4y - 3z - 6 = 0.

(h) x + y - 2 = 0.

(c) z = 0.

(f) 5x - 2y + 4z - 21 = 0.

(i) y + 2z = 0.