Physics 415 - Lecture 16: Heat Engines and Refrigerators

February 26, 2025

Summary

- First Law: $\Delta E = Q W$. (Q=heat absorbed by system, W=work done by system). Differential form: dE = dQ dW.
- Second Law: For an isolated system, total entropy change $\Delta S_{tot} \geq 0$.
 - $-\Delta S_{tot} > 0$: Irreversible process.
 - $-\Delta S_{tot} = 0$: Reversible process.
- Heat Bath/Reservoir: A very large system at temperature T. If it absorbs heat Q reversibly, its entropy changes by $\Delta S = Q/T$. Its temperature change $\Delta T = Q/C$ is negligible (assumed $C \to \infty$).

Heat Engines & Refrigerators

Heat Engine

A device (thermodynamic system) that operates in a cycle, absorbs heat, and converts part of this energy to work. In more detail:

- Device M (working substance) undergoes a cyclic process.
- In each cycle:
 - Heat q_1 is absorbed from a high-temperature reservoir (T_1) .
 - Part of this energy is converted to work W.
 - Remaining heat q_2 is dumped to a lower-temperature reservoir ("heat sink") ($T_2 < T_1$).

The laws of thermodynamics ultimately limit the efficiency of such a heat engine.

A "Perfect" Heat Engine? Could an engine, in each cycle, convert *all* absorbed heat q_1 into work $W = q_1$, with $q_2 = 0$?

Such a device would not violate the First Law ($\Delta E_M = 0$ over cycle, $Q_{net} = q_1$, $W = q_1 \implies \Delta E_M = Q_{net} - W = 0$). However, the Second Law forbids such a machine. Let's analyze the total entropy change over one cycle:

$$\Delta S_{tot} = \Delta S_M + \Delta S_{heat\ bath}$$

Since M returns to its initial state after a cycle, $\Delta S_M = 0$. The heat bath loses heat q_1 , so its entropy change is $\Delta S_{heat\ bath} = -q_1/T_1$.

$$\implies \Delta S_{tot} = 0 + \left(-\frac{q_1}{T_1}\right) = -\frac{q_1}{T_1}$$

If the engine does positive work, $W = q_1 > 0$. Then $\Delta S_{tot} = -W/T_1 < 0$. This contradicts the Second Law ($\Delta S_{tot} \geq 0$). X (If $W \leq 0$, the process is allowed but useless as an engine).

Kelvin's Statement of the Second Law: "It is impossible to construct a perfect heat engine" (a device whose sole effect is to extract heat from a reservoir and convert it entirely into work).

From a statistical viewpoint: A perfect heat engine would require the spontaneous occurrence of a process in which some amount of energy, distributed randomly among the enormous number of degrees of freedom (DOF) of the bath, converts entirely into the ordered motion of a single DOF doing work (e.g., piston). This would correspond to a decrease in total entropy S, which is overwhelmingly improbable.

A "Real" Heat Engine (with two reservoirs): By introducing another heat bath at lower temperature T_2 , where entropy increases, we can satisfy the Second Law:

Assume a cyclic process for M ($\Delta S_M = 0$). First Law: $\Delta E_M = (q_1 - q_2) - W = 0 \implies W = q_1 - q_2$. $(q_1, q_2, W \text{ are all positive quantities here})$. Second Law: $\Delta S_{tot} = \Delta S_1 + \Delta S_2 + \Delta S_M \ge 0$. $\Delta S_1 = -q_1/T_1$ (heat leaves reservoir 1). $\Delta S_2 = +q_2/T_2$ (heat enters reservoir 2).

$$\Delta S_{tot} = -\frac{q_1}{T_1} + \frac{q_2}{T_2} \ge 0$$

Substitute $q_2 = q_1 - W$:

$$\begin{split} -\frac{q_1}{T_1} + \frac{q_1 - W}{T_2} &\geq 0 \\ \frac{q_1}{T_2} - \frac{W}{T_2} &\geq \frac{q_1}{T_1} \\ \frac{W}{T_2} &\leq q_1 \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = q_1 \frac{T_1 - T_2}{T_1 T_2} \\ W &\leq q_1 \frac{T_1 - T_2}{T_1} = q_1 \left(1 - \frac{T_2}{T_1}\right) \end{split}$$

This inequality limits the maximum work obtainable from heat q_1 . Define the "efficiency" η of the engine:

$$\eta = \frac{W}{q_1} = \frac{\text{what we get out (Work)}}{\text{what we put in (Heat } q_1)}$$

The Second Law implies:

$$\eta \le 1 - \frac{T_2}{T_1}$$

An efficient engine requires $T_2 \ll T_1$ (large temperature difference: high T_1 , low T_2). The maximum possible efficiency is achieved for a reversible process, where $\Delta S_{tot} = 0$.

$$\eta_{max} = 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T_1}$$

This maximum efficiency is called the **Carnot Efficiency**. Roughly, a reversible engine avoids "friction" and processes that generate entropy, like heat transfer across large temperature differences.

Carnot Cycle

An example of a reversible cycle that achieves the maximum efficiency is the Carnot cycle. It consists of four reversible steps carried out on a working substance (e.g., gas, liquid):

- (a) Isothermal expansion at $T = T_1$. Heat q_1 absorbed from reservoir 1.
- (b) Adiabatic expansion (Q = 0). Temperature drops from T_1 to T_2 .
- (c) Isothermal compression at $T = T_2$. Heat q_2 given off to reservoir 2.
- (d) Adiabatic compression (Q = 0). Temperature rises from T_2 to T_1 .

Carnot Cycle (p-V Diagram)

Since each stage is reversible, the total cycle is reversible, $\Delta S_{tot} = 0$, and the efficiency is $\eta = 1 - T_2/T_1 = \eta_{max}$. The working substance can be anything.

Example: Carnot Cycle with Ideal Gas Working substance = ν moles of ideal gas $(pV = \nu RT, E = \nu c_v T)$.

- $a \to b$: Isothermal expansion at T_1 . $\Delta E = 0$. $q_1 = W_{a \to b} = \int_{V_a}^{V_b} p dV = \int_{V_a}^{V_b} \frac{\nu R T_1}{V} dV = \nu R T_1 \ln(V_b/V_a)$.
- $b \to c$: Adiabatic expansion (Q = 0). $W_{b\to c} = -\Delta E = -\nu c_v (T_2 T_1)$. Also $T_1 V_b^{\gamma 1} = T_2 V_c^{\gamma 1}$.

- $c \to d$: Isothermal compression at T_2 . $\Delta E = 0$. $W_{c \to d} = \int_{V_c}^{V_d} p dV = \nu R T_2 \ln(V_d/V_c)$. Heat rejected $q_2 = -W_{c \to d} = \nu R T_2 \ln(V_c/V_d)$.
- $d \to a$: Adiabatic compression (Q=0). $W_{d\to a} = -\Delta E = -\nu c_v (T_1 T_2)$. Also $T_2 V_d^{\gamma-1} =$ $T_1V_a^{\gamma-1}$.

Total work done by gas:

$$W = W_{a \to b} + W_{b \to c} + W_{c \to d} + W_{d \to a}$$

$$W = \nu R T_1 \ln(V_b/V_a) - \nu c_v (T_2 - T_1) + \nu R T_2 \ln(V_d/V_c) - \nu c_v (T_1 - T_2)$$

The c_v terms cancel.

$$W = \nu RT_1 \ln(V_b/V_a) + \nu RT_2 \ln(V_d/V_c)$$

From adiabatic steps: $T_1V_b^{\gamma-1}=T_2V_c^{\gamma-1}$ and $T_1V_a^{\gamma-1}=T_2V_d^{\gamma-1}$. Dividing these equations: $(V_b/V_a)^{\gamma-1}=(V_c/V_d)^{\gamma-1} \implies V_b/V_a=V_c/V_d$. Let $r=V_b/V_a$. Then $V_d/V_c=V_a/V_b=1/r$. $\ln(V_d/V_c) = \ln(1/r) = -\ln r.$

$$W = \nu R T_1 \ln r - \nu R T_2 \ln r = \nu R (T_1 - T_2) \ln r$$

Efficiency:

$$\eta = \frac{W}{q_1} = \frac{\nu R(T_1 - T_2) \ln r}{\nu R T_1 \ln r} = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}$$

This confirms the Carnot efficiency for the ideal gas example. \checkmark

Refrigerator

A device, operating in a cycle, that removes heat q_2 from a low-temperature reservoir (T_2) and rejects heat q_1 to a higher-temperature reservoir (T_1) . This requires work input W. Essentially a heat engine run in reverse.

A "Perfect" Refrigerator? Could heat q flow spontaneously from cold T_2 to hot T_1 without work input (W=0)?

This violates the Second Law. Over one cycle $(\Delta S_M = 0)$: $\Delta S_{tot} = \Delta S_1 + \Delta S_2 = \frac{q}{T_1} - \frac{q}{T_2} =$ $q\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$. Since $T_1 > T_2$, $(1/T_1 - 1/T_2) < 0$. If q > 0, then $\Delta S_{tot} < 0$. X Clausius Statement of the Second Law: "It is impossible to construct a perfect refrig-

erator" (a device whose sole effect is to transfer heat from a colder body to a hotter body).

A "Real" Refrigerator: Requires work input W.

First Law (over cycle): $\Delta E_M = Q_{net} - W_{net} = (q_2 - q_1) - (-W) = 0 \implies q_1 = q_2 + W$. (Heat rejected = heat absorbed + work input). Second Law: $\Delta S_{tot} = \Delta S_1 + \Delta S_2 \ge 0 \implies \frac{q_1}{T_1} - \frac{q_2}{T_2} \ge 0$.

$$\frac{q_2 + W}{T_1} \ge \frac{q_2}{T_2} \implies \frac{W}{T_1} \ge q_2 \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = q_2 \frac{T_1 - T_2}{T_1 T_2}$$

$$W \ge q_2 \frac{T_1 - T_2}{T_2}$$

The "Coefficient of Performance" (COP) K for a refrigerator is:

$$K = \frac{q_2}{W} = \frac{\text{what we want (Heat extracted from cold)}}{\text{what we pay for (Work input)}}$$

From the Second Law inequality:

$$K \le \frac{T_2}{T_1 - T_2}$$

The maximum COP is $K_{max} = \frac{T_2}{T_1 - T_2}$, achieved by a reversible refrigerator (e.g., reversed Carnot cycle).