Homework 1

1. Let H be a Hilbert space, and G be a bounded set in H, i.e. there exists b>0 such that $\|g\|\leq b$ holds for any $g\in G$. Let $f\in \overline{Conv(G)}$. Prove that for any integer m>0, there exist $g_1,g_2,...,g_m\in G$, $\gamma_1,\gamma_2,...,\gamma_m\geq 0$ that satisfies $\sum_{i=1}^m \gamma_i=1$, and

$$||f - \sum_{i=1}^{m} \gamma_i g_i|| \le \frac{b}{\sqrt{m}}.$$

2. Rademacher complexity

Recall that for a function class \mathcal{F} and data $\{x_i\}_{i=1}^n$, we use $\operatorname{Rad}_n(\mathcal{F})$ to denote the empirical Rademacher complexity of \mathcal{F} at $\{x_i\}_{i=1}^n$:

$$\operatorname{Rad}_{n}(\mathcal{F}) = \frac{1}{n} \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f(x_{i}).$$

a. Let $\{x_i\}_{i=1}^n$ be n points in \mathbb{R}^d that satisfies $\|x_i\|_\infty \leq 1$ for any i=1,2,...,n. Show that

$$\frac{1}{n} \mathbb{E}_{\sigma} \left[\| \sum_{i=1}^{n} \sigma_{i} x_{i} \|_{\infty} \right] \leq \sqrt{\frac{2 \log d}{n}}.$$

(Hint: use the Massart lemma.)

b. Let \mathcal{F} be the class of linear predictors with the L_1 -norm of the weights bounded by W, i.e. $\mathcal{F} = \{w^T x : \|w\|_1 \leq W\}$. Show that

$$\operatorname{Rad}_n(\mathcal{F}) \le \max_{1 \le i \le n} \|x_i\|_{\infty} W \sqrt{\frac{2 \log d}{n}}.$$

- c. Assume \mathcal{D} is a distribution on \mathbb{R}^d and all x sampled from \mathcal{D} satisfies $||x||_{\infty} \leq 1$. Let $S = \{x_1, x_2, ..., x_n\}$ be n points i.i.d. sampled from \mathcal{D} . For any $f \in \mathcal{F}$, write down the upper bound of the generalization gap $\mathbb{E}_{\mathcal{D}}[f(x)] \hat{\mathbb{E}}_S[f(x)]$ using the bound derived in (b).
- d. Show that, there exists a constant c, such that for any $\delta \in (0,1)$, with probability no less than $1-\delta$ over the choice of S, we have

$$\mathbb{E}_{\mathcal{D}}[f(x)] \le \hat{\mathbb{E}}_{S}[f(x)] + (\|w\|_{1} + 1)\sqrt{\frac{2\log d}{n}} + 3\sqrt{\frac{2\log(c(\|w\|_{1} + 1)^{2})/\delta}{n}},$$

for any linear predictor $f(x) = w^T x$ (with no constraint on $||w||_1$).

3. Covering and Packing number

a. Let B be the unit ball in \mathbb{R}^d : $B = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. Show that

$$N(\alpha, B, l_2) \ge \left(\frac{1}{\alpha}\right)^d$$
.

b. For a metric space (S,d) and a set $T \subset S$, we say T' is an α -packing of T if $T' \subset T$ and for any $x_1, x_2 \in T'$, there is $d(x_1, x_2) > \alpha$. Let $M(\alpha, T, d)$ be the packing number of T, which is defined as

$$M(\alpha, T, d) = \max\{|T'| : T' \text{ is an } \alpha - packing \text{ of } T\}.$$

Prove that

$$M(2\alpha, B, l_2) \le N(\alpha, B, l_2) \le M(\alpha, B, l_2).$$

c. Show that

$$N(\alpha, B, l_2) \le \left(\frac{2}{\alpha} + 1\right)^d$$
.