FACULTY OF ENGINEERING	Project				Job Ref.	
Learning Tool for	Section Section				Sheet no./rev.	
<u> </u>	~		~11.11			_
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

CRACK WIDTH CALCULATION (BS8110:PART2:1997)

Reference	Calculations	Remarks
	N N d d As	
	$f_{cu} = f_y = f_y = E_s = A_s = A_s = b = h = c = \emptyset = M =$	
Clause 3.2.4	STEP 1 Calculate the neutral axis depth of the cracked section $x = \frac{-\alpha_e A_s \pm \sqrt{(\alpha_e A_s)^2 + 2b\alpha_e A_s d}}{b}$	x =
	STEP 2 Calculate the design service stress at steel f_s $f_s = \frac{M}{\left(d - \frac{x}{3}\right)A_s}$	$f_s = \frac{N}{mm^2}$
	$\frac{\text{STEP 3}}{\varepsilon_1} = \frac{(h-x) \times f_S}{(d-x) \times E_S}$	$arepsilon_1 =$

FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					2	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design			Ž			

Reference	Calculations	Remarks
Clause 3.8.3 Equation 13	$\frac{\text{STEP 4}}{\varepsilon_m = \varepsilon_1} - \frac{b_t(h-x) \times (a'-x)}{3E_S A_S(d-x)}$	$oldsymbol{arepsilon_m}=$
Clause 3.8.3 Equation 12	$\frac{\text{STEP 5}}{w_{max}} = \frac{3a_{cr}\varepsilon_m}{1 + 2\left(\frac{a_{cr} - c_{min}}{h - x}\right)}$ $w_{max} =$	$w_{max} = mm$