미니 프로젝트

타자의 지표와 득점의 상관관계

분석

MLB BATTER DATA

야구는 빠따조

KIM MINSEOP RYU AIN LEE HWAN HEE PARK HONGGEUN

INDEX

- 1. 팀원 소개
- 2. 주제 소개 및 선정 이유
- 3. 목표
- 4. WBS
- 5. 데이터 정의서

- 6. 머신 러닝 소스코드
- 7. 그래프
- 8. 웹 페이지
- 9. 결론
- 10.아쉬운 점

팀원 소개

주제 소개 및 **선정 이유**

주제:

타자의 지표와 득점의 상관관계 분석

선정 이유:

통계의 대표적인 스포츠인 야구 분석을 통해 다양한 예측을 해보고자 함.

목표

- 타자 지표와 승률과의 관계
- 투수 지표와 승률과의 관계
- 타자의 각 지표에 따른 득점의 총 합 예측
- 투수의 각 지표에 따른 평균 방어율의 예측
- 올스타 팀 선정 및 해당 팀의 득점의 총 합 예측

WBS

3.0.0. 데이	터 분석	1												
	3.1.0.	데이터 분석	4											Т
		3.1.1.	분석용 데이터 준비	1										\top
				MLB 2010~2019 숭률.선수랭킹 데이터 수집	박홍근, 이환희	2월 14일(오전)	2월 14일(오전)							\top
				데이터 전처리(타자)	김민섭	2월 14일(오전)	2월 14일(오전)							\top
				데이터 전처리(투수)	류아인	2월 14일(오전)	2월 14일(오전)							\top
				선수 영입 데이터 전처리	류아인	2월 14일(오후)	2월 14일(오후)							\top
		3.1.2	탐색적 분석											\top
				MLB 타자 지표와 승률의 상관관계 분석 및 시각화	박홍근, 이환희	2월 14일(오후)	2월 14일(오후)							\top
				MLB 투수 지표와 승률의 상관관계 분석 및 시각화	김민섭, 류아인	2월 14일(오후)	2월 14일(오후)							\top
				표준화 작업 및 상관계수 파악	김민섭, 류아인	2월 16일(오후)	2월 16일(오후)							\top
				KBO 타자 지표와 숭률의 상관관계 분석 및 시각화	박홍근	2월 17일(오전)	2월 17일(오전)							\top
				KBO 투수 지표와 숭률의 상관관계 분석 및 시각화	이환희	2월 17일(오전)	2월 17일(오전)							\top
		3.1.3	모델링											\top
				머신러닝을 통한 승률과 상관관계 예측	김민섭	2월 17일(오전)	2월 17일(오전)							\top
		3.1.4		머신러닝 정확도 향상(하이퍼 파라미터 조정 90↑)	이환희, 박홍근	2월 18일(오전)	2월 18일(오전)							\top
				KBO wOBA점수 찾기	류아인	2월 18일(오전)	2월 18일(오전)							\top
				데이터 시각화	이환희	2월 18일(오전)	2월 18일(오전)							\top
				MLB의 wOBA와 특점관계 분석	박홍근	2월 18일(오후)	2월 18일(오후)							\top
				선형회귀 모델 정확도 향상	이환희, 박홍근	2월 18일(오후)	2월 18일(오후)							\top
				그래프 최적화	류아인	2월 18일(오후)	2월 18일(오후)							\top
				머신러닝을 통한 MLB 2019년 득점수 예측 TEST	김민섭	2월 18일(오후)	2월 18일(오후)							\top
				하이퍼파라미터를 통한 모델 정확도 향상	박홍근, 이환희	2월 19일(오후)	2월 19일(오후)							\top
				그래프 시각화(머신러닝 정확도에 따른 실제값과 관계)	김민섭	2월 19일(오전)	2월 19일(오전)							\top
				그래프 시각화(머신러닝 모델별 정확도 히트맵 구현)	류아인	2월 19일(오전)	2월 19일(오전)							\top
				그래프 시각화(머신러닝을 통한 예측값과 실제값 시각)	김민섭		2월 19일(오전)							\top
				그래프 시각화(MLB 팀별 머신러닝 모델 정확도)	김민섭	2월 19일(오후)	2월 19일(오후)							\top
									+		+		\blacksquare	\top
		3.1.5	모델 평가 및 검증											+
				선형회귀 식으로 MLB 전체 팀 득점 수 예측	김민섭	2월 19일(오후)	2월 19일(오후)							\top
				ALL STAR 팀 예상 득점 수 예측	박홍근		2월 19일(오후)		+		+			\top
				최적화 회귀분석 모델 테스트	류아인, 박홍근, 이환희	2월 19일(오후)	2월 19일(오후)				1			\top
4.0.0. 시스	템 구현													
	4.1.0.	프레젠테이	선											
		4.1.1.		발표용 웹 구현	이환희	2월 19일(오후)	2월 19일(오후)				\top	\top		\top
		4.1.2.		제출용 PPT 작성	류아인	2월 19일(오후)	2월 19일(오후)				\top			\top

- MLB 2010~2019년 각 연도 별 타자 지표
- MLB 2010~2019년 각 연도 별 투수 지표
- MLB 2010~2019년 각 연도 별 시즌 팀 랭킹

데이터 정의서

• 투수 지표

투수 컬럼										
Player	Team	Age	G	GS	CG	SHO	IP	Н	ER	K
선수명	팀	나이	게임수	선발출전	완투 수	완봉 수	이닝	피안타	자책점	삼진

BB	HR	W	L	SV	BS	HLD	ERA	WHIP
볼넷	피홈런	승	ᅖ	세이브	블론세이브	홀드	평균자책점	이닝당 출루허용률

• 타자 지표

타자 컬럼											
Player	Team	Pos	Age	G	AB	R	Н	2B	3B	HR	RBI
선수명	팀	포지션	나이	게임수	타수	득점	안타	2루타	3루타	홈런	타점

SB	CS	BB	SO	SH	SF	HBP	AVG	OBP	SLG	OPS
도루성공횟수	도루실패횟수	볼넷	삼진	희생안타	희생플라이	데드볼	타율	출루율	장타율	(출루율+장타율)

2010 ~ 2019년 KBO 투수, 타자 자료

- 2010_bat.csv
- 2010_pit.csv
- 2011_bat.csv
- 2011_pit.csv
- 2011_pit_edit.csv
- 2012_bat.csv
- 2012_pit.csv
- 2013_bat.csv
- 2013_pit.csv
- 2014_bat.csv
- 2014_pit.csv
- 2015_bat.csv

- 2015_pit.csv
- 2016_bat.csv
- 2016_pit.csv
- 2016_pit_edit.csv
- 2017_bat.csv
- 2017_pit.csv
- 2017_pit_edit.csv
- 2018_bat.csv
- 2018_pit.csv
- 2019_bat.csv
- 2019_pit.csv

2010 ~ 2019년 KBO 투수 wOBA 자료

KBO_wOBA10.csv

KBO_wOBA11.csv

KBO_wOBA12.csv

KBO_wOBA13.csv

KBO_wOBA14.csv

KBO_wOBA15.csv

KBO_wOBA15.csv

KBO_wOBA17.csv

KBO_wOBA18.csv

KBO_wOBA19.csv

Total KBO 투수 wOBA 자료

KBO_wOBA_total.csv

2010 ~ 2019년 MLB 투수, 타자 자료

- 2010_bat.csv
- 2010_pit.csv
- 2011_bat.csv
- 2011_pit.csv
- 2011_pit_edit.csv
- 2012_bat.csv
- 2012_pit.csv
- 2013_bat.csv
- 2013_pit.csv
- 2014_bat.csv
- 2014_pit.csv
- 2015_bat.csv

- 2015_pit.csv
- 2016_bat.csv
- 2016_pit.csv
- 2016_pit_edit.csv
- 2017_bat.csv
- 2017_pit.csv
- 2017_pit_edit.csv
- 2018_bat.csv
- 2018_pit.csv
- 2019_bat.csv
- 2019_pit.csv

2010 ~ 2019년

MLB 투수, 타자 자료를
데이터 전처리 후 만들어진
파일들

- All_star_final.csv
- b_total_no_scale.csv
- bat_r.csv
- bat_total.csv
- bat_total_2010_2018.csv
- bat_total_2019.csv
- p_total_no_scale.csv
- pit_total.csv
- Precision.csv
- r_2010_2018.csv
- r_2019.csv
- grank_good.csv
- greal_bat_total.csv
- g real_pit_total.csv

2010 ~ 2018년
MLB 타자 자료로 학습 시켜
2019년
MLB 타자 자료와 일치하는지 확인

- bat_total_2010_2018.csv
- bat_total_2019.csv

2019년 MLB 타자 득점 수의 합 예측한 값

Precision.csv

각 포지션 별 최고 선수들

All_star_final.csv

 $2010 \sim 2019년$ MLB 시즌 랭킹

2010 ~ 2019년 MLB 시즌 랭킹 Total

- 2010_ranking.csv
- 2011_ranking.csv
- 2012_ranking.csv
- 2013_ranking.csv
- 2014_ranking.csv
- 2015_ranking.csv
- 2016_ranking.csv
- 2017_ranking.csv
- 2018_ranking.csv
- 2019_ranking.csv

concat_rank.csv

2010 ~ 2019년 MLB FA 선수들 리스트

- 2010_2011_FA.csv
- 2011_2012_FA.csv
- 2012_2013_FA.csv
- 2013_2014_FA.csv
- 2014_2015_FA.csv
- 2015_2016_FA.csv
- 2016_2017_FA.csv
- 2017_2018_FA.csv
- 2018_2019_FA.csv
- 2019_2020_FA.csv

2010 ~ 2019년 MLB FA 선수들 리스트를 전 처리한 후 만들어진 데이터

선수 영입 데이터 전체 파이널 선수 영입 데이터 NA값 없는 것

- trade_batter_final.csv
- trade_batter_notna.csv
- trade_pitcher_final.csv
- trade_pitcher_notna.csv
- trade_total_FA.csv
- trade_total_final.csv

2010 ~ 2019년 MLB wOBA 데이터

2010 ~ 2019년 MLB wOBA 데이터 Total

MLB_wOBA_final.csv
MLB_wOBA_final_.csv
MLB_wOBA_total.csv

전체 폴더 KBO_data KBO_wOBA MLB_data MLB_data_edit MLB_Season_Ranking MLB_TRADE MLB_TRADE_EDIT MLB_wOBA ranking_player

2010 ~ 2019년 MLB 선수 랭킹 별 자료

ranking_player_2010.csv
ranking_player_2010.xlsx
ranking_player_2011.csv
ranking_player_2011.xlsx
ranking_player_2012.csv
ranking_player_2012.xlsx
ranking_player_2013.csv
ranking_player_2013.xlsx
ranking_player_2014.csv
ranking_player_2014.csv
ranking_player_2014.xlsx

ranking_player_2015.csv
ranking_player_2015.xlsx
ranking_player_2016.csv
ranking_player_2016.xlsx
ranking_player_2017.csv
ranking_player_2017.xlsx
ranking_player_2018.csv
ranking_player_2018.xlsx
ranking_player_2019.csv
ranking_player_2019.csv
ranking_player_2019.xlsx

```
# 학습용 데이터
from sklearn import datasets
# 데이터를 학습용과 테스트용으로 나눌 수 있는 함수
from sklearn.model_selection import train_test_split
# 데이터 표준화
from sklearn.preprocessing import StandardScaler
# Perceptron 머신 러닝을 위한 클래스
from sklearn.linear model import Perceptron
# 정확도 계산을 위한 함수
from sklearn.metrics import accuracy_score
# 파일 저장을 위해..
import pickle
import numpy as np
from sklearn import preprocessing
from sklearn import linear_model
```

```
#======step1
# 전체 타자 데이터
bat total=pd.read csv('/Users/admin/Dropbox/Rank Predict/Data/MLB data edit/real bat total.csv')
# 전체 투수 데이터
pit total=pd.read csv('/Users/admin/Dropbox/Rank Predict/Data/MLB data edit/real pit total.csv')
# 전체 랭크 데이터
rank total=pd.read csv('/Users/admin/Dropbox/Rank Predict/Data/MLB data edit/rank good.csv')
# 10년치 팀 평균(타자)
# R, 2B, HR, RBI, BB, SF, OBP, SLG, OPS 사용
b total=pd.read csv('/Users/admin/Dropbox/Rank Predict/Data/MLB data edit/b total no scale.csv')
# 10년치 팀 평균(투수)
# 타자, 투수 지표
b corr=b total[['R','H','2B','HR','RBI','SF','OPS','BB']]
# 승률
rank_PCT=r[['R']]
# V = 승률, X = 투수지표
y=rank PCT; X=b corr
```

```
========step2
# train 데이터와 test 데이터 정의 및 분리
X train, X test, y train, y test=train test split(X, y, test size=0.2, shuffle=False)
# 표준화 함수 정의
sc = preprocessing.StandardScaler()
# 데이터를 표준화
sc.fit(X train)
X_train_std = sc.transform(X_train)
sc.fit(X test)
X test std = sc.transform(X test)
clf = linear model.Ridge(alpha=0.5)
# 학습
print(X train.R)
clf .fit(X train, y train)
y pred = clf .predict(X test)
# 학습정확도 확인
print('Mean Squared Error :',mean_squared_error(y_test,y_pred))
print('Mean Absolute Error :',mean absolute error(y test,y pred))
print("train 학습 정확도 :", clf .score(X train, y train))
print("test 학습 정확도 :", clf .score(X test, y test))
print(clf .coef )
print(clf_.intercept_)
with open('./bs.dat', 'wb') as fp:
    pickle.dump(sc, fp)
    pickle.dump(clf , fp)
```

```
# =======step3
with open('./bs.dat', 'rb') as fp:
   sc = pickle.load(fp)
   clf_ = pickle.load(fp)
#X = []
X = [[97.100000, 151.100000, 32.300000, 35.500000, 101.00000, 5.100000, 0.965600, 75.900000]]
# R
                 97.100000
# H
                151.100000
# 2B
                 32.300000
# HR
                 35.500000
# RBI
                101.000000
# SF
                  5.100000
# OPS
                  0.965600
# BB
                 75.900000
X_{std} = sc.transform(X)
           추출한다
y_pred = clf_.predict(X_std)
print("★ 예상 총 득점수는 ★")
print(y_pred)
```

지표 별 승률과의 상관계수 그래프

〈 상관 계수가 높은 지표들을 이용해 머신 러닝에 활용함 〉

〈 상관 계수가 높은 지표들을 이용해 머신 러닝에 활용한 것을 스캐터 그래프로 표현 〉

〈 상관관계가 있는 지표들로 머신 러닝을 돌려서 나온 값과 실제 2019년 득점 수의 관계(득점 수 예측) 〉

〈 60% 70% 90%에 따른 머신 러닝 정확도 상승 〉

〈 팀 별 정확도 〉 Accuracy per MLB_Teams by modeling

〈 회귀분석 종류에 따른 학습 정확도 비교 〉

당신이 응원하는 팀의 내년 총 득점수가 궁금하신가요? 지금 바로 투자하세요!

내년 총 득점수 확인

시즌 ALL STAR 확인

1. 타자의 지표와 득점수의 상관관계

2. 2019년 머신러닝 결과와 실제 득점수의 관계

3. 학습정확도에 따른 머신러닝 정확도

4. 팀별 정확도

5.회귀분석 종류에 따른 학습 정확도 비교

6. 머신러닝 객체에 ALL STAR데이터 대입하여 득점수 예측

1. 타자의 지표와 득점수의 상관관계

★ Hitmap ★

2. 2019년 머신러닝 결과와 실제 득점수의 관계

★ Precision & Condition ★

3. 학습정확도에 따른 머신러닝 정확도

★ 60% 70% 90%에 따른 머신러닝 정확도 ★

4. 팀별 정확도

★ LollipopBar Plot★

5.회귀분석 종류에 따른 학습 정확도 비교

★ Hitmap ★

6. 머신러닝 객체에 ALL STAR데이터 대입하여 득점수 예측

ALL STAR TEAM의 지표를 입력해주세요.^_^

R	97.100000	н	151.100000
2B	32.300000	HR	35.500000
RBI	101.000000	SF	5.100000
OPS	0.965600	ВВ	75.900000

득점수 예측 GO!

6. 머신러닝 객체에 ALL STAR데이터 대입하여 득점수 예측

★ vscode 실행 결과 ★

```
32.173913
     28.875000
237
     38.000000
     25.592593
238
239
     32.080000
Name: R, Length: 240, dtype: float64
Mean Squared Error: 707.5428677963616
Mean Absolute Error: 22.306872901063283
train 학습 정확도 : 0.8570435886194582
test 학습 정확도: 0.9073314559151874
[[ 29.52573392 -11.75656111 -10.31359328 -19.23654464 3.31681039
   12.17001768 92.19807092 -8.18082397]]
[524,12942251]
★예상 총 득점수는
 [1007.82593631]
```

I ♥ Baseball

BAT888

★ 시즌 ALL STAR ★

결론

야구에서 왜 Saber metrics를 쓰는 이유를 알게 되었고, 투수의 지표와 합쳐보면 시즌 랭킹 예측이나 선수 별 stats 예측이 충분이 가능 할 것이라고 생각함.

아쉬운 점

- 타자 데이터로만 작업한 것
- 더 많은 연도의 자료를 포함시켜 작업하지 못한 것 데이터 양이 작음
- 10년 간 팀 이적을 고려하지 못함

Q & A

질문 해주세여 \sim $^{\wedge \wedge *}$