Лабораторная работа № 3

" Разработка и исследование программы обработки массивов"

<u>Задание:</u> разработать на *Visual C#* проект, использующий библиотеку *Windows Forms* и реализующий генерацию массива, ввод (вывод) массива из файла, обработку массива и сохранение результатов обработки массива в файле в соответствии с вариантом из таблицы 1.

Разработать модульные тесты (unit-тесты) для методов класса операций над одномерным массивом.

UML диаграмма вариантов использования проекта приведена на рисунке 1.

Рис. 1. Диаграмма вариантов использования проекта "Обработка одномерного массива"

В проекте должны выполняться следующие действия:

- **в** задать размерность N и диапазон [A, B] чисел массива Mas;
- \blacksquare с помощью методов класса *Random* сгенерировать одномерный массив *Mas* размерности *N* целых равномерно распределенных в диапазоне [*A*, *B*] чисел;
- показать на форме исходный массив с использованием компонентов *DataGridView* и *TextBox*;
- \blacksquare записать полученный массив Mas в файл F_1 с использованием компонента SaveFileDialog;
- прочитать массив Mas из файла F_1 с использованием компонента OpenFileDialog;
- обработать массив Mas в соответствии с вариантом задания, результаты обработки сохранить в файле F_2 ;
- результаты обработки массива Mas показать с использованием компонента TextBox.

Массив, методы его генерации, сохранения в файл, считывания из файла и обработки должны быть реализованы в отдельном классе.

Письменный отчет по лабораторной работе должен содержать:

- 1. Титульный лист. (Название лабораторной работы. Фамилия, имя, отчество, номер группы исполнителя, дата сдачи.)
 - 2. Постановку задачи в соответствии с вариантом из таблицы 1.
- 3. Таблицу со списком полей и методов классов проекта и их назначением.

Таблица 1 – Поля и методы класса А и их назначение (Пример)

$\mathcal{N}_{\underline{o}}$	Поле	Назначение
1		
	Метод	

4. Таблицу со списком обработчиков событий проекта и их назначением.

Таблица 2 — Обработчики событий проекта и их назначение (Пример)

$\mathcal{N}\!$	Обработчик события	Назначение
1.		

- 5. Экранную форму (формы) интерфейса проекта.
- 6. Распечатку кода основных обработчиков событий проекта, полей и методов классов (обязательны комментарии).
 - 7. Диаграммы классов для всех используемых в проекте классов.

- 8. Диаграммы классов и текст программы для unit-тестов.
- 9. Привести результаты модульного тестирования методов класса операций над одномерным массивом в соответствии с вариантом.
- 10.Исследование программной реализации проекта, содержащее следующие материалы:
- тесты (не менее двух) по каждой операции (N=7, массивы разного качества);
 - файл с массивом (*N*=10);
 - файл с результатами обработки массива (N=10);
 - примеры работы проекта для N=10;
- результаты работы проекта для N=100..1000 и объем памяти файла, занимаемого массивом Mas и результатами его обработки.

Таблица 1 – Результаты работы проекта

N	100	200		1000
Объем памяти файла с массивом				
Объем памяти файла с результатами				
обработки массива			•••	

- 11.Выводы по лабораторной работе (в выводах отразить ограничения на работу проекта, пути дальнейшей модернизации проекта).
- 12.В лабораторной работе рекомендуется использовать следующие компоненты: Form, TextBox, Label, Button, GroupBox, Panel, NumericUpDown, SaveFileDialog, OpenFileDialog, DataGridView.

Таблица 1 - Варианты заданий

Номер по списку	Интервал [А, В]	Варианты операций	Тип файла
1.	[0, 10000]	1, 5, 9,18	txt
2.	[-2000, 2000]	2, 6, 11, 17	xml
3.	[1, 5000]	3, 5, 8, 18	json
4.	[0,6000]	4, 6, 9, 15	txt
5.	[0, 5000]	1, 5, 10, 18	xml
6.	[0, 10000]	4, 6, 17, 19	json
7.	[-3000, 3000]	5, 7, 11,18	txt
8.	[-2000, 4000]	6, 8, 14, 17	xml
9.	[-5000, 5000]	1, 5, 9, 18	json
10.	[0,6000]	6, 7, 10, 15	txt
11.	[0, 5000]	2, 5, 11, 18	xml
12.	[0, 1000]	4, 6, 12, 17	json
13.	[-2000, 4000]	3, 5, 13, 16	txt
14.	[-5000, 5000]	6, 7, 14, 18	xml
15.	[0,6000]	1, 5, 9, 15	json
16.	[0, 5000]	4, 6, 17, 10	txt
17.	[0, 10000]	3, 5, 16, 18	xml
18.	[0, 1000]	6, 12, 18, 19	json
19.	[0, 2000]	1, 5, 7, 13	txt
20.	[0, 3000]	4, 5, 15, 18	xml

21.	[-1000, 3000]	3, 5, 11, 19	json
22.	[1000, 3000]	1, 6, 7, 18	txt

Варианты операций:

- 1. Вычислить математическое ожидание и дисперсию массива.
- 2. Вычислить суммы элементов больших и меньших C с четными номерами.
- 3. Вычислить суммы элементов больших и меньших C с нечетными номерами.
- 4. Вычислить минимальный, максимальный элементы массива и медиану массива (вычисления проводить без использования встроенных функций C#).
- 5. Отсортировать элементы массива по возрастанию.
- 6. Отсортировать элементы массива по убыванию.
- 7. Диапазон определения чисел массива [A, B] разбить на k равных подинтервалов. Определить количество чисел и процент чисел, попадающих в каждый подинтервал.
- 8. Определить сумму и количество чисел больших C с четными номерами.
- 9. Определить сумму и количество чисел больших C с нечетными номерами.
- 10. Определить сумму и количество чисел, находящихся в интервале C1, C2 (C1 < C2).
- 11. Определить сумму и количество чисел, меньших C1 и больших C2 (C1 < C2).
- 12. Определить сумму и количество элементов массива a_i , у которых число, составленное из последней и третьей с конца цифр числа a_i , четное.
- 13. Определить сумму и количество элементов массива a_i , у которых число, составленное из второй и третьей с конца цифр числа a_i , нечетное.
- 14. Определить сумму и количество элементов массива a_i , у которых число, составленное из двух последних цифр числа a_i , делится на 3.
- 15. Определить сумму и количество элементов массива a_i , у которых число, составленное из двух первых цифр числа a_i , четное.
- 16. Определить сумму и количество элементов массива a_i , у которых число, составленное из двух первых цифр числа a_i , нечетное.
- 17. Определить сумму и количество элементов массива a_i , у которых число, составленное из двух первых цифр числа a_i , делится на 5.
- 18. Определить количество простых чисел массива методом пробных делителей.
- 19. Вычислить математическое ожидание и дисперсию квадратов элементов массива.

Вариант внешнего вида проекта

Алгоритм действий в лабораторной работе №3

Примечание:

1. Формула для вычисления оценки математического ожидания (арифметического значения) Sr последовательности из n элементов

$$Sr = \frac{\sum_{i=0}^{i=n-1} a_i}{n}$$

2. Формула для вычисления оценки дисперсии D последовательности из n элементов

$$D = \frac{\sum_{i=0}^{i=n-1} (a_i - Sr)^2}{n-1}$$