Viontina Dea Ivoni Y. P.

1301164643

IFIK-40-01

Analisis dan Strategi Penyelesaian Masalah Simulated Anneling

Diberikan suatu masalah untuk mencari nilai minimun dari fungsi berikut :

$$f(x_1, x_2) = -\left(\sin(x_1)\cos(x_2) + \frac{4}{5}\exp\left(1 - \sqrt{x_1^2 + x_2^2}\right)\right)$$

dengan batasan $-10 \le x_1 \le 10$ dan $-10 \le x_2 \le 10$.

Metode yang digunakan untuk menentukan nilai minimum dari fungsi tersebut yaitu dengan menggunakan algoritma Simulated Annealing (SA). Berikut ini adalah langkah-langkahnya:

- 1. Generate nilai x₁ dan x₂ awal secara random dengan nilai harus lebih dari sama dengan 10 dan kurang dari sama dengan 10. Lalu hitung nilai E dari x₁ dan x₂ kemudian simpan sebagai E best awal. Simpan Best so far dengan x₁ dan x₂.
- 2. Setting T dengan nilai yang besar. Misal T diatur dengan nilai 1000.
- 3. Cari x_1 baru dan x_2 baru dengan random angka lagi dengan batasan $-10 \le x_1 \le 10$ dan $-10 \le x_2 \le 10$. Setelah itu hitung E dari x_1 dan x_2 baru.
- 4. Hitung ΔE dari E baru dan E sebelumnya.
- 5. Jika $\Delta E < 0$ maka x_1 baru dan x_2 baru menggantikan x_1 dan x_2 sebelumnya. E baru juga menggantikan E sebelumnya. Jika E baru kurang dari E best maka x_1 dan x_2 disimpan pada Best so far, dan E baru disimpan sebagai E best.
- 6. Namun jika $\Delta E >= 0$, x_1 dan x_2 baru bisa menggantikan x_1 dan x_2 sebelumnya dicek menggunakan probabilitas $P = e^{-\Delta E/T}$.
- 7. Turunkan nilai T. Nilai ΔT bisa diatur untuk membandingkan antara satu sama lain.
- 8. Ulangi langkah 3 sampai 7 sampai nilai T habis.
- 9. Return nilai Best So Far sebagai solusi.

Berikut adalah hasil percobaan dengan nilai ΔT yang berbeda-beda:

 $\Delta T = 0.9 \qquad \qquad \Delta T = 15$

```
■ "C\Users\yonan\Documents\Artificial Intelligence\Al IFIK-40-01\Tugas_1.exe"

E baru = 0.214676

delta E = 1.123974

X1 baru = -7.000000

X1 baru = -8.000000

X2 baru = -8.000000

E baru = 0.095592

delta E = 0.883766

X1 baru = -3.000000

X1 baru = -9.000000

X2 baru = -0.000000

X1 baru = -9.000000

X2 baru = -0.000000

X3 baru = -9.000000

X4 baru = -9.000000

X5 baru = -0.000000

X6 baru = -0.000000

X7 baru = -9.000000

X8 baru = -0.000000

X9 baru = -8.0000000

X9 baru = -8.0000000

X1 baru = -9.000000

X1 baru = -9.000000

X1 baru = -9.000000

X2 baru = -0.000000

X3 baru = -0.000000

X4 baru = -0.000000

X6 baru = -0.000000

X7 baru = -0.000000

X8 baru = -0.000000

X9 baru = -0.000000

X9 baru = -0.000000

X9 baru = -0.000000

X9 baru = -0.0000000

X9 baru = -0.0000000

X9 baru = -0.0000000

X1 baru = -0.0000000

X9 baru = -3.0000000

X9 baru = -3.0000000

E baru = -0.0000000

X1 baru = -9.0000000

X1 baru = -9.000000

X2 baru = -9.000000

X3 baru = -9.000000

X4 baru = -9.000000

X5 baru = -9.0000
```

 $\Delta T = 50.15$ $\Delta T = 287.52$

Menurut hasil percobaan, didapatkan bahwa semakin besar ΔT maka semakin besar nilai E bestnya. Didapatkan juga bahwa nilai SA paling optimum yaitu saat $\Delta T = 0.9$, dengan nilai Best So Far = $(x_1, x_2) = (8.0, 0.0)$ dan nilai E best = -0.989358.