Econometría

Diplomado Banco Central de Honduras

Instituto de Economía

Pontificia Universidad Católica de Chile

Juan Ignacio Urquiza — Junio 2022

Información cualitativa

- Hasta ahora, las variables explicativas han tenido un carácter cuantitativo: años de educación/experiencia, nivel de ventas, tamaño de la sala, etc.
- Muchas veces es necesario incluir factores cualitativos:
 - Género, raza, estado civil.
 - Región geográfica.
 - Participación sindical.
 - Tipo de industria.
- En estos casos se puede emplear una o más variables binarias (o ficticias), que toman el valor de 0 o 1 dependiendo de si la característica está presente o ausente.

Información cualitativa

- Esto no permite distinguir dos tipos de efectos:
 - Efecto aditivo (diferencias de intercepto)
 - Efecto interacción (diferencias de pendiente)

Efecto aditivo

Considere el siguiente modelo para los salarios:

$$Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + arepsilon_i,$$
 $Y_i = ext{salario} \qquad X_{1i} = ext{educación}$
 $X_{2i} = ext{mujer}_i = \left\{ egin{array}{ll} 1 & ext{si el individuo es mujer} \\ 0 & ext{si el individuo es hombre} \end{array}
ight.$

- \Box El intercepto para los hombres es igual a eta_0 , mientras que para las mujeres es igual a (eta_0+eta_2) .
- Por lo tanto, β_2 representa la diferencia esperada en los salarios de mujeres y hombres, manteniendo todo lo demás constante (en este caso, los años de educación).

Gráfica de wage = $\beta_0 + \delta_0$ female + β_1 educ en la que $\delta_0 < 0$.

Efecto aditivo

 Alternativamente, podríamos haber considerado la variable binaria hombre:

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_{3i} + \varepsilon_i$$

$$X_{3i} = \text{hombre}_i = \begin{cases} 1 & \text{si el individuo es hombre} \\ 0 & \text{si el individuo es mujer} \end{cases}$$

- Ahora el intercepto para los hombres es igual a $(\alpha_0 + \alpha_2)$, mientras que para las mujeres es igual a α_0 .
- Por lo tanto, se cumple que:

$$\alpha_0 = \beta_0 + \beta_2$$

$$|\alpha_0 + \alpha_2 = \beta_0|$$

$$\alpha_1 = \beta_1$$

. reg lwage educ mujer

Sou	rce	SS df		MS			Number of o	_	526
Mod Resida		5315181 3.798233	2 523			F(2, 523) Prob > F R-squared Adj R-squared			0.0000 0.3002 0.2975
To	tal 148	3.329751	525	.282	53286		Root MSE	=	.4455
lwa	age	Coef.	Std.	Err.	t	P> t	[95% Cont	E. In	terval]
mu;	jer3	0772033 8608654 8262694	.0070	245	10.96 -9.25 8.79	0.000 0.000 0.000	.0633591 4375294 .6414991		0910475 2842015 1.01104
		202034	.0340	041	0.75	0.000	.0414551		1.01104

. reg lwage educ hombre

526
112.19
0.0000
0.3002
0.2975
.4455
nterval]
.0910475
.4375294
.6446199

Información cualitativa

- Esto no permite distinguir dos tipos de efectos:
 - Efecto aditivo (diferencias de intercepto)
 - Efecto interacción (diferencias de pendiente)

Efecto interacción

Considere ahora el siguiente modelo:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{4i} + \varepsilon_{i}$$

$$X_{2i} = \text{mujer}_{i} = \begin{cases} 1 & \text{si el individuo es mujer} \\ 0 & \text{si el individuo es hombre} \end{cases}$$

$$X_{4i} = X_{1i} \times X_{2i} = \begin{cases} X_{1i} & \text{si el individuo es mujer} \\ 0 & \text{si el individuo es hombre} \end{cases}$$

- Para las mujeres, el intercepto es $(\beta_0 + \beta_2)$ y la pendiente es $(\beta_1 + \beta_3)$. Por lo tanto, β_2 mide la diferencia en intercepto entre mujeres y hombres, mientras que β_3 mide la diferencia en pendiente.

. gen educXmujer=educ*mujer

	e <u>E</u> dit	View <u>D</u> at		i (1)						
		educ[1]	11						
<u>o</u> ,		educ	mujer	1wage	hombre	educXmujer				
Sna	1	11	1	1.131402	0	11				
Snapshots	2	12	1	1.175573	0	12				
ots	3	11	0	1.098612	1	0				
	4	8	0	1.791759	1	0				
	5	12	0	1.667707	1	0				
	6	16	0	2.169054	1	0				
	7	18	0	2.420368	1	0				
	8	12	1	1.609438	0	12				
	9	12	1	1.280934	0	12				
	10	17	0	2.900322	1	0				
	11	16	1	1.832582	0	16				
	12	13	1	2.095561	0	13				
	13	12	0	2.171337	1	0				
	14	12	0	1.704748	1	0				
	15	12	0	3.100092	1	0				
	16	16	0	2.852439	1	0				
	17	12	1	2.014903	0	12				
	18	13	1	2.36368	0	13				
	19	12	1	1.280934	0	12				

Gráficas de la ecuación (7.16): (a) $\delta_0 < 0$, $\delta_1 < 0$; (b) $\delta_0 < 0$, $\delta_1 > 0$.

Efecto interacción

¿Cómo contrastar que el intercepto es el mismo para hombres y mujeres?

$$H_0: \beta_2 = 0$$

¿Cómo contrastar que la pendiente es la misma?

$$H_0: \beta_3 = 0$$

□ ¿Cómo contrastar que el modelo de determinación de salarios es el mismo?

$$H_0: \beta_2 = \beta_3 = 0$$

. reg lwage educ mujer educXmujer

Source	SS	df		MS		Number of obs		526
Model Residual	44.531522 103.798229	3 522	14.8438407 .198847183			F(3, 522) Prob > F R-squared	= =	74.65 0.0000 0.3002
Total	148.329751	525	.28	3253286		Adj R-squared Root MSE	=	0.2962
lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
educ mujer	.0772279 3600645	.0089		8.59 -1.94	0.000	.0595718 7243444		0948841 0042154
educXmujer cons	0000641 .8259547	.0145	5035	-0.00 7.00	0.996	0285565 .5940427		0284283

test mujer

(1) mujer = 0

$$F(1, 522) = 3.77$$

 $Prob > F = 0.0527$

test educXmujer

$$F(1, 522) = 0.00$$

 $Prob > F = 0.9965$

test mujer educXmujer

- (1) mujer = 0
- (2) educXmujer = 0

$$F(2, 522) = 42.67$$

 $Prob > F = 0.0000$

Categorías múltiples

- Por ejemplo, piense en 3 sectores productivos como pueden ser agricultura, manufacturas y servicios.
- \square Se deben crear (q-1) v. binarias, donde c/u tome el valor de 1 para una cierta categoría y sea 0 en caso contrario.
- La categoría cuya variable binaria no es incluida en el modelo corresponde a la categoría base, y la interpretación de los coeficientes de las categorías restantes se hace en relación a los de la categoría base.

Categorías múltiples

También se puede considerar una interacción entre v. binarias:

$$\ln(\widehat{salario}) = 0.321 - 0.110 \times mujer + 0.213 \times casado$$
$$-0.301 \times (mujer \times casado) + 0.079 \times educ + \cdots$$

El efecto parcial del estado civil depende del género:

$$\frac{\Delta \ln(\widehat{salario})}{\Delta casado} = 0.213 - 0.301 \times mujer$$

- □ Para hombres, su valor es 21.3% mientras que para mujeres es − 8.8%.
- Para analizar diferencias entre cualquier par de grupos (por ejemplo, entre hombre casados y mujeres solteras), sólo hay que tener en cuenta qué coeficientes debemos comparar.