Лабораторная работа 3.2.8. Релаксационные колебание.

Вязовцев Андрей, Б01-005 22.10.21

Цель работы: изучение вольт-амперной характеристики нормального тлеющего разряда; исследование релаксационного генератора на стабилитроне.

В работе используются: стабилитрон СГ-2 (газонаполненный диод) на монтажной панели, амперметр, вольтметр, магазин сопротивлений, магазин ёмкостей, источник питания, осциллограф (Θ), генератор звуковой частоты (Θ).

Теоретическая справка:

Колебательные системы, как правило, имеют два накопителя, между которыми происходит перекачка энергии. Однако, встречаются системы, содержащие всего один накопитель энергии. Например, цепь, состоящая из конденсатора и сопротивления без самоиндукции. Разряд конденсатора — апериодический процесс, но если через постоянные промежутки времени подавать на него заряд, процесс становится периодическим. Таким образом, эти колебания являются результатом двух апериодических процессов. Они называются релаксационными.

В нашей системе роль «ключа», обеспечивающего зарядку и разрядку конденсатора, будет играть газоразрядный диод. При этом он обладает рядом особенностей: ток начинает течь только при напряжении зажигания V_1 ($V_1 \neq 0$), а перестаёт при напряжении гашения V_2 ($0 < V_2 < V_1$).

Экспериментальная установка:

Измерения будут проводится по двум схемам:

Рис. 1. Схема установки для изучения характеристик стабилитрона

Рис. 2. Схема установки для исследования релаксационных колебаний

Ход работы:

- 1. Соберём схему по 1, выполним необходимые действия для подготовки к работе.
- 2. Снимем вольтамперную характеристику стабилитрона с резистором r=5,4 кОм.

Из таблицы видно, что, $V_1=91{,}25~\mathrm{B},~I_1=3{,}37~\mathrm{mA},~V_2=80{,}52~\mathrm{B},~I_2=1{,}41~\mathrm{mA}.$

- 3. Теперь соберём релаксационный генератор. Установим C=50 нФ, R=0.9 МОм. Выставим напряжение $U=1.2\cdot V_1\approx 110$ В. Настроим осциллограф.
- 4. Получим пилу на экране. Оценим время зарядки и разрядки: $\tau_{\rm 3} \approx 60~{\rm Mc},~\tau_{\rm p} \approx 5~{\rm Mc}.$ Картину колебаний см. ниже на 3.
- 5. Найдём $R_{\rm kp}$, при котором пропадают колебания. Убедимся, что при $R>R_{\rm kp}$ (но не намного) и увеличении U колебания также пропадают.

Получим: $R_{\rm kp}=1.4\cdot 10^5$ Ом. По формуле же можно найти:

$$R_{
m kp} = rac{U - V_2}{I_2} pprox 0.2 \cdot 10^5 \; {
m Om}$$

Такую большую разницу можно объяснить тем, что V_2 и I_2 были измерены неточно.

При возрастании		При убывании			
I, мА	U, B	<i>I</i> , мА	U, B		
0	91	6.48	108.37		
3.37	91.25	6.26	106.48		
3.72	93.25	5.92	105.1		
4.01	94.93	5.52	103.02		
4.47	97.53	5.34	102.05		
4.76	99.15	4.87	99.25		
5.25	102.05	4.64	98.05		
5.47	103.33	3.8	93.55		
5.78	105.12	3.5	92.02		
6.28	107.15	3.22	90.25		
6.48	108.37	2.76	87.67		
		2.26	84.97		
		1.41	80.52		
		0	75.4		

Таблица 1. Зависимость U(I) при возрастании и убывании

Рис. 3. Картина колебаний для пилы

- 6. Восстановим исходные параметры релаксационного генератора. Получим фигуры Лиссажу, соответствующие соотношению частот 1:1, 2:1, 3:1. Получаем следующие изображения (см. таблицу 2):
- 7. При $R=5,2\cdot 10^5$ Ом снимем зависимость зависимость f(C) с помощью фигур Лиссажу 1:1. Результаты см. в таблице 3.
- 8. При C=10 нФ снимем зависимость f(R) с помощью фигур Лиссажу 1:1. Результаты см. в таблице 4.

Обработка результатов:

Таблица 2. Фигуры Лиссажу

f, Гц	150	75	50	37	30
С, мкФ	0.01	0.02	0.03	0.04	0.05

Таблица 3. Зависимость f(C)

f, Гц	1				1			
$R, 10^5 \text{ Om}$	9	8	7	6	5	4	3	2

Таблица 4. Зависимость f(R)

9. По таблице 4 построим графики вольтамперной характеристики в случае возрастания и убывания.

Теперь построим график только с возрастанием, но для сравнения проведём график, в котором не учитывается падение напряжения на r. Результат представлен на рисунке 5.

- 10. Построим графики $T_{\text{эксп}}(C)$ и $T_{\text{теор}}(C)$ согласно таблице 3. Результаты см. на рисунке 6.
- 11. Построим графики $T_{\text{эксп}}(R)$ и $T_{\text{теор}}(R)$ согласно таблице 4. Результаты см. на рисунке 7.

Рис. 4. Вольтамперная характеристика

Рис. 5. Вольтамперная характеристика в сравнении

Рис. 6. Зависимость периода от ёмкости

Рис. 7. Зависимость периода от ёмкости