2004 年真题参考答案

一、填空题

(1)
$$y = x - 1$$
. (2) $\frac{1}{2} (\ln x)^2$. (3) $\frac{3}{2} \pi$. (4) $y = \frac{C_1}{x} + \frac{C_2}{x^2}$,其中 C_1 , C_2 为任意常数.

$$(5) \frac{1}{9}$$
. $(6) \frac{1}{e}$.

二、选择题

三、解答题

(15) 证明略. (可考虑函数
$$\varphi(x) = \ln^2 x - \frac{4}{e^2}x$$
, 计算 $\varphi'(x)$, 并利用 $\varphi(x)$ 的单调性.)

- (16) 1.05 km.
- $(17) \pi$.
- (18) 证明略. (证明 $x_n^{\alpha} < \left(\frac{1}{n}\right)^{\alpha}$,使用比较审敛法.)
- (19) 点(9,3) 是函数z(x,y) 的极小值点,极小值为3,点(-9,-3) 是函数z(x,y) 的极大值点,极大值为 3.
- (20) 当 a=0 或 $a=-\frac{n(n+1)}{2}$ 时,方程组有非零解.

当a = 0时,方程组的通解为

$$k_1(1, -1, 0, \dots, 0)^{\mathrm{T}} + k_2(1, 0, -1, \dots, 0)^{\mathrm{T}} + \dots + k_{n-1}(1, 0, 0, \dots, -1)^{\mathrm{T}},$$

其中 $k_1, k_2, \cdots, k_{n-1}$ 为任意常数.

当
$$a = -\frac{n(n+1)}{2}$$
 时,方程组的通解为 $k(1,2,3,\cdots,n)^{\mathrm{T}}$,其中 k 为任意常数.

- (21) 当 a = -2 和 $a = -\frac{2}{3}$ 时,矩阵 A 有二重特征值,当 a = -2 时, A 可相似对角化,当 $a = -\frac{2}{3}$ 时, A 不可相似对角化.
- (22) (I)

Y X	0	1
0	$\frac{2}{3}$	$\frac{1}{12}$
1	$\frac{1}{6}$	$\frac{1}{12}$

$$(II)\frac{\sqrt{15}}{15}$$
.

(23) (I)
$$\beta$$
 的矩估计量为 $\hat{\beta} = \frac{\overline{X}}{\overline{X} - 1}$.

$$(\ II \) \beta$$
 的最大似然估计量 $\hat{\beta} = \frac{n}{\sum\limits_{i=1}^{n} \ln X_i}$.