Data Collection, Cleaning, Manipulation, Visualization

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
df=pd.read_excel(r"C:\Users\user\Desktop\Datasets\student_info.xlsx")
df
```

Out[2]:

	study_hours	student_marks	Result
0	6.83	78.50	Pass
1	6.56	76.74	Pass
2	NaN	78.68	Pass
3	5.67	71.82	Fail
4	8.67	84.19	Pass
195	7.53	81.67	Pass
196	8.56	84.68	Pass
197	8.94	86.75	Pass
198	6.60	78.05	Pass
199	8.35	83.50	Pass

200 rows × 3 columns

In [3]:

```
df.isnull().sum()
```

Out[3]:

```
study_hours 6
student_marks 3
Result 2
dtype: int64
```

```
In [4]:
df['study_hours'].mean()
Out[4]:
7.006185567010309
In [5]:
df['study_hours']=df['study_hours'].fillna(df['study_hours'].mean())
df['student_marks']=df['student_marks'].fillna(df['student_marks'].mean())
In [6]:
df.isnull().sum()
Out[6]:
study_hours
                 0
                 0
student_marks
Result
                 2
dtype: int64
In [7]:
df.dropna(inplace=True)
In [8]:
df.isnull().sum()
Out[8]:
study_hours
student_marks
                 0
Result
dtype: int64
In [9]:
df.shape
Out[9]:
(198, 3)
In [10]:
df2=df.groupby('Result').count()
```

In [11]:

df2

Out[11]:

study_hours student_marks

Result		
Fail	62	62
Pass	136	136

In [12]:

sns.barplot(x=df2.index,y="study_hours",data=df2)

Out[12]:

<AxesSubplot:xlabel='Result', ylabel='study_hours'>

Regression---->Linear Regression

#Data Prediction

In [13]:

df

Out[13]:

	study_hours	student_marks	Result
0	6.830000	78.50	Pass
1	6.560000	76.74	Pass
2	7.006186	78.68	Pass
3	5.670000	71.82	Fail
4	8.670000	84.19	Pass
195	7.530000	81.67	Pass
196	8.560000	84.68	Pass
197	8.940000	86.75	Pass
198	6.600000	78.05	Pass
199	8.350000	83.50	Pass

198 rows × 3 columns

In [15]:

```
#x is indepedent variable
#y is depedent variable
x=df[['study_hours']]
y=df[['student_marks']]
```

```
In [16]:
```

```
print(x)
print(y)
     study_hours
        6.830000
0
1
        6.560000
2
        7.006186
3
        5.670000
4
        8.670000
195
        7.530000
196
        8.560000
197
        8.940000
198
        6.600000
199
        8.350000
[198 rows x 1 columns]
     student marks
0
              78.50
              76.74
1
2
              78.68
3
              71.82
4
              84.19
                . . .
. .
195
              81.67
              84.68
196
              86.75
197
              78.05
198
199
              83.50
[198 rows x 1 columns]
In [17]:
#Spiliting Dataset
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [22]:
#Shape of All Datasets
print("Shape of All Dataset : ", df.shape)
print("Shape of x_train : ",x_train.shape)
print("Shape of x_test : ",x_test.shape)
print("Shape of y_train : ",y_train.shape)
print("Shape of y_test : ",y_test.shape)
Shape of All Dataset: (198, 3)
Shape of x_{train}: (138, 1)
Shape of x_{test}: (60, 1)
Shape of y_{train}: (138, 1)
Shape of y_{test}: (60, 1)
```

```
In [24]:
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(x_train,y_train)
Out[24]:
LinearRegression()
In [25]:
model.score(x_test,y_test)
Out[25]:
0.9154499992224483
In [27]:
y_pred=model.predict(x_test)
#Predicted Result
y_pred[0:5]
Out[27]:
array([[84.89864714],
       [70.46496814],
       [79.12517554],
       [70.85506757],
       [77.95487724]])
In [28]:
#Actual Result
y_test.head()
Out[28]:
    student_marks
 89
           84.60
           70.05
 78
 74
           77.59
 8
           70.66
 46
           77.46
In [32]:
student=np.array([7.00]).reshape(1,-1)
```

student

Out[32]:

array([[7.]])

```
In [33]:
prediction=model.predict(student)
prediction

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450: UserWarn
ing: X does not have valid feature names, but LinearRegression was fitte
d with feature names
   warnings.warn(

Out[33]:
array([[77.9158673]])

In []:
```