Rx Active CTLE

12 Gbps

Muhammad Aldacher

Outline

- 1. Design & Equations
- 2. Tests & Simulations
 - a) Channel:
 - i. Frequency response
 - b) CTLE only:
 - i. DC Analysis (\rightarrow gm)
 - ii. AC Analysis (→ Gain Peaking)
 - c) CTLE + Channel:
 - i. AC Analysis (→ Frequency Response)
 - ii. Transient Analysis (→ Eye Diagram)
- 3. Summary & Conclusion

Design Topology & Equations

Active CTLE

Active CTLE

Ideal Peaking =
$$\frac{\text{Ideal peak gain}}{\text{DC gain}} = \frac{\omega_{p1}}{\omega_z} = 1 + g_m R_S / 2$$

Tests & Simulations

Design Parameters

Parameter	Value
Data Rate	12 Gb/s
VDD (for CTLE)	1.2 V
Input Vswing (PK2PK)	0.5 V
Input V _{CM}	0.75 V
Channel	12-inch FR4
Output V _{CM}	0.6 V

a) Channel

The frequency response can be found by 2 methods: Single–ended or Differential

Channel = 12×1 -inch FR4 section

1) Single-Ended: Testbench

1) Single-Ended: Setup

Measurements:

2) Differential:

Testbench

2) Differential:

Setup

Measurements:

Channel's Frequency Response

b) CTLE

→ We use the DC Analysis to design for the required gm, output DC level, & current consumption.

Testbench

Setup

Measurements

Name	Туре	Details	EvalType
Filter	▼ Filter	Filter	▼Filter ▼
VCM	expr	VDC("/vcm")	point
хр	expr	VDC("/xp")	point
xn	expr	VDC("/xn")	point
vbias	expr	VDC("/vbias")	point
outp	expr	VDC("/outp")	point
outn	expr	VDC("/outn")	point
I_branch	expr	IDC("/RLp/PLUS")	point
Vgs_in	expr	(VDC("/vcm") - VDC("/xp"))	point
Ids	expr	I_branch	sweeps
dIds	expr	deriv(I_branch)	sweeps
dVgs	expr	deriv(Vgs_in)	sweeps
gm	expr	(dIds / dVgs)	sweeps
gm_vcm	expr	value(gm 0.75)	sweeps
Out_vcm	expr	value(outp 0.75)	sweeps
Ids_vcm	expr	value(Ids 0.75)	sweeps

$$g_m = \frac{dI_{DS}}{dV_{GS}} = \frac{\left(\frac{dI_{DS}}{dV_{CM}}\right)}{\left(\frac{dV_{GS}}{dV_{CM}}\right)}$$

1) DC Analysis: Results

Results

→ We use the AC Analysis to design for the required gain peaking, zero & pole frequencies.

Testbench

Setup

The degeneration R (or C) can be swept to change the amount of equalization or gain peaking.

Measurements

Name	Туре	Details	EvalType
Filter	Filter 🛂	Filter	Filter 🔽
Gain	expr	dB2θ((VF("/outp") - VF("/outn")))	point
Gain_at_DC	expr	value(Gain θ)	point
Gain_at_Nyq	expr	<pre>value(Gain (VAR("Data_rate") / 2))</pre>	point
Peaking	expr	(Gain_at_Nyq - Gain_at_DC)	point

Results - Sweeps

a) Sweeping Cp (Output loading Cap)

Results - Sweeps

b) Sweeping Cs (Equalization Cap)

Results - Sweeps

c) Sweeping Rs (Equalization Resistance)

Results - Sweeps

c) Sweeping Rs (Equalization Resistance)

Results

Results

c) CTLE + Channel

Testbench

Setup

Measurements

Name	Туре	Details	EvalType
Filter	Filter	Filter	Filter 🔽
Hf_in	expr	<pre>dB20((VF("/inp_rx") - VF("/inn_rx")))</pre>	point
Hf_out	expr	dB20((VF("/outp") - VF("/outn")))	point
Hf_at_DC	expr	value(Hf_out θ)	point
Hf_at_Nyq	expr	value(Hf_out (VAR("Data_rate") / 2))	point
Peaking	expr	(Hf_at_Nyq - Hf_at_DC)	point

HF_in = Freq Response after the channel HF_out = Freq Response after CTLE

Peaking = Gain Peaking @ Nyquist after CTLE

1) AC Analysis: Results

1) AC Analysis: Results

2) Transient Analysis: Testbench

LIB: analogLib
CELL: vprbs

Zero value: vcm +/- 0.5 One value: vcm -/+ 0.5 Bit period: 83.33ps

(1/12G) Rise/Fall times: 10 ps

Edge type: linear Trigger: Internal LFSR Mode: PN32

2) Transient Analysis: Setup

2) Transient Analysis: Measurements

Name	Туре	Details	EvalType
ilter	Filter 🔽	Filter	Filter Y
	signal	/vcm	point
	signal	/inp	point
	signal	/inn	point
	signal	/inp_rx	point
	signal	/inn_rx	point
	signal	/outp	point
	signal	/outn	point
*** PK2PK ***	expr		point
Vchin_pk2pk	expr	(VT("/inp") - VT("/inn"))	point
Vchout_pk2pk	expr	(VT("/inp_rx") - VT("/inn_rx"))	point
Vctleout_pk2pk	expr	(VT("/outp") - VT("/outn"))	point
*** EYE ***	expr		point
EYE_ch_out	expr	eyeDiagram(Vchout_pk2pk 1e-08 VAR("sim_time") (2 * (1 / VAR("Data_rate"))) ?autoCenter t)	point
EYE_ctle_out	expr	eyeDiagram(Vctleout_pk2pk 1e-08 VAR("sim_time") (2 * (1 / VAR("Data_rate"))) ?autoCenter t)	point

2) Transient Analysis: Eye Diagram

2) Transient Analysis: Eye Diagram

2) Transient Analysis: Eye Diagram

Summary

Design Parameters

Parameter	Value
Data Rate	12 Gb/s
VDD (for CTLE)	1.2 V
Input Vswing (PK2PK)	0.5 V
Input V _{CM}	0.75 V
Channel	12-inch FR4
Output V _{CM}	0.6 V

Design Parameters

Poles/Zero/Gains (calculated based on previous values)

$$Peaking = 20 \log \left(1 + g_m \cdot \frac{R_S}{2}\right) = 12.68 \ dB$$

→ Frequency Response of CTLE: (Simulated Values)

→ Frequency Response of Channel + CTLE:

→ Eye Diagrams:

→ Eye Diagram Comparison:

	Before CTLE (After Channel)	After CTLE
Eye Height (Max)	194.8 mV	698.5 mV
Eye Width (Max)	41.65 ps	77.73 ps
Eye SNR	2.51 dB	14.08 dB

Conclusion

 This project shows the design procedure & the testbench setup details used for the design of an Active RX CTLE Equalizer for a 12 Gb/s NRZ input & a channel of 12-inch FR4.