Netzwerk-Dokumentation: IOT & Homelab

Allgemeine Netzwerkkonfiguration

Standard-LAN (Homelab & Management)

VLAN ID: Default/untagged **Subnetz:** 192.168.1.0/24

Gateway: 192.168.1.1

DNS: 192.168.1.1, 8.8.8.8

DHCP-Bereich: 192.168.1.100 - 192.168.1.200 (für automatische Zuweisung)

IOT-VLAN

VLAN ID: 10 (IOT-VLAN) Subnetz: 192.168.10.0/22 Gateway: 192.168.10.1 DNS: 192.168.10.1, 8.8.8.8

DHCP-Bereich: 192.168.12.1 - 192.168.12.254 (für automatische Zuweisung)

Netzwerkaufteilung und IP-Bereiche

Standard-LAN (192.168.1.0/24) - Homelab & Management

Bereich	IP-Bereich	Anzahl IPs	Verwendung
Gateway	192.168.1.1	1	UniFi Gateway
Core Infrastructure	192.168.1.2 - 192.168.1.20	19	UniFi Controller, Pi-hole+Unbound, Switches, APs
Homelab Core	192.168.1.21 - 192.168.1.40	20	Proxmox Hosts, Storage
Homelab Services	192.168.1.41 - 192.168.1.99	59	VMs, Docker Container, Services
DHCP Pool	192.168.1.100 - 192.168.1.200	101	Automatische Zuweisung
Client Devices	192.168.1.201 - 192.168.1.220	20	Desktop, Laptop, Management
Reserve	192.168.1.221 - 192.168.1.254	34	Für zukünftige Erweiterungen
4	•	1	•

IOT-VLAN (192.168.10.0/22) - Smart Home Geräte

Raum	IP-Bereich	Anzahl IPs	Verwendung
Unterverteilung	192.168.10.1 - 192.168.10.62	62	Zentrale Steuergeräte, Homematic CCU
Flur	192.168.10.65 - 192.168.10.126	62	Shelly Schalter, Homematic Sensoren
Arbeitszimmer	192.168.10.129 - 192.168.10.190	62	Shelly Relais, Hue Arbeitsplatz
Schlafzimmer	192.168.10.193 - 192.168.10.254	62	Hue Lampen, Klimasensoren, Jalousien
Wohnzimmer	192.168.11.1 - 192.168.11.62	62	Hue Lampen, Sonos Lautsprecher, TV-Geräte
Küche	192.168.11.65 - 192.168.11.126	62	Küchengeräte, Sonos, Hue Unterschrank
Bad	192.168.11.129 - 192.168.11.190	62	Feuchtigkeitssensoren, Lüftungssteuerung
Reserve	192.168.11.193 - 192.168.13.254	574	Für zukünftige Erweiterungen
4	•	•	•

DNS-Naming-Konvention

Standard-LAN Schema: [geraetetype]-[nummer].lab.enzmann.online

IOT-VLAN Schema: [geraetetype]-[raum]-[nummer].iot.enzmann.online]

Gerätetypen (Präfixe)

Homelab & Infrastructure (Standard-LAN)

• **pve-**: Proxmox VE Hosts

• vm-: Virtuelle Maschinen

docker-: Docker Hosts/Swarm Nodes

• ha-: Home Assistant Instanzen

• nas-: NAS/Storage Systeme

• unifi-: UniFi Controller

switch-: Managed Switches

• ap-: Access Points

Technische Geräte (IOT-VLAN - detailliert)

• **shelly-dimmer-** : Shelly Dimmer

• **shelly-pro1pm-**: Shelly Pro 1PM (mit Leistungsmessung)

• **shelly-1-**: Shelly 1 (Relais)

shelly-button1-: Shelly Button1

shelly-flood-: Shelly Flood Sensor

• hm-window-: Homematic Fensterkontakt

hm-motion-: Homematic Bewegungsmelder

• hm-thermo-: Homematic Thermostat

- hm-temp-: Homematic Temperatursensor
- **hm-humid-**: Homematic Feuchtigkeitssensor
- hm-smoke-: Homematic Rauchmelder

Consumer-Geräte (IOT-VLAN - einfach)

• hue-: Philips Hue Lampen, Sensoren, Bridge

• sonos-: Sonos Lautsprecher

Raum-Abkürzungen

• flur: Flur

wz: Wohnzimmer

• **sz** : Schlafzimmer

• az : Arbeitszimmer

• bad : Bad

kueche : Küche

• uv : Unterverteilung

Beispiele

Standard-LAN (Homelab)

pve-01.lab.enzmann.online vm-homeassistant-01.lab.enzmann.online → Home Assistant VM docker-01.lab.enzmann.online ha-prod-01.lab.enzmann.online unifi-controller-01.lab.enzmann.online

- → Proxmox Host 1
- → Docker Swarm Manager
- → Home Assistant Produktiv
- → UniFi Controller

IOT-VLAN (Smart Home)

shelly-dimmer-flur-01.iot.enzmann.online shelly-pro1pm-kueche-01.iot.enzmann.online → Shelly Pro 1PM in der Küche hue-wz-03.iot.enzmann.online sonos-kueche-01.iot.enzmann.online hm-temp-sz-01.iot.enzmann.online hm-window-sz-01.iot.enzmann.online

- → Shelly Dimmer im Flur
- → Hue Lampe im Wohnzimmer
- → Sonos in der Küche
- → Homematic Temperatursensor Schlafzimmer
- → Homematic Fensterkontakt Schlafzimmer

UniFi-spezifische Konfiguration

Standard-LAN Einstellungen

1. Standard-Netzwerk (Default):

• Name: "Standard-LAN"

VLAN: Untagged/Default

• Subnetz: 192.168.1.0/24

• DHCP aktivieren: Ja

IOT-VLAN Einstellungen

1. Netzwerk erstellen:

• Name: "IOT-VLAN"

VLAN ID: 10

Subnetz: 192.168.10.0/22

• DHCP aktivieren: Ja (für Fallback)

2. WiFi-Netzwerk:

• Name: "IOT-WiFi"

Sicherheit: WPA2/WPA3

VLAN: IOT-VLAN (10)

• Gast-Isolation: Aktiviert

Firewall-Regeln

1. **Standard-LAN** → **IOT-VLAN**: Erlaubt (für Home Assistant)

2. **IOT-VLAN** → **Standard-LAN**: Blockiert (außer DNS/NTP)

3. **IOT-VLAN** → **Internet**: Erlaubt

4. **Standard-LAN** → **Internet:** Erlaubt

Spezifische Regeln für Home Assistant

• **Port 8123:** IOT → Standard-LAN (Home Assistant Web-Interface)

mDNS: Bidirektional für Device Discovery

MQTT: IOT → Standard-LAN Port 1883/8883

Lokales DNS mit Pi-hole

Übersicht

Lokale DNS-Auflösung erfolgt über Pi-hole anstatt öffentlicher DNS-Einträge bei netcup:

• Sicherheit: Keine internen Strukturen öffentlich sichtbar

Performance: Lokale Auflösung ohne Internet-Abhängigkeit

• Zusatznutzen: Ad-Blocking, Malware-Schutz, DNS-Statistiken

• Flexibilität: Einfache Verwaltung über Web-Interface

Pi-hole + Unbound Setup

Docker Compose Konfiguration

```
# pihole/docker-compose.yml
version: '3.8'
services:
  unbound:
    image: mvance/unbound:latest
   hostname: unbound-01
   environment:
     TZ: 'Europe/Berlin'
   volumes:
      - unbound_config:/opt/unbound/etc/unbound
    networks:
      - pihole-internal
   deploy:
      placement:
        constraints:
          - node.role == manager
  pihole:
    image: pihole/pihole:latest
    hostname: pihole-01
    environment:
      TZ: 'Europe/Berlin'
      WEBPASSWORD: 'secure-admin-password'
      VIRTUAL_HOST: 'pihole-01.lab.enzmann.online'
      PROXY_LOCATION: 'pihole-01'
      FTLCONF_LOCAL_IPV4: '192.168.1.3'
      PIHOLE_DNS_: '10.0.1.2#5053' # Unbound Container IP
   volumes:
      - pihole_config:/etc/pihole
      - pihole_dnsmasq:/etc/dnsmasq.d
      - pihole_custom_conf:/etc/pihole/custom.conf
   ports:
      - "53:53/tcp"
      - "53:53/udp"
      - "67:67/udp" # DHCP (optional)
    networks:
      pihole-internal:
        ipv4_address: 10.0.1.3
     traefik:
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.pihole.rule=Host(`pihole-01.lab.enzmann.online`)"
      - "traefik.http.routers.pihole.tls.certresolver=letsencrypt"
      - "traefik.http.services.pihole.loadbalancer.server.port=80"
    depends on:
```

```
- unbound
   deploy:
     placement:
       constraints:
          - node.role == manager
volumes:
 pihole_config:
 pihole_dnsmasq:
 pihole_custom_conf:
 unbound_config:
networks:
  pihole-internal:
   ipam:
     config:
       - subnet: 10.0.1.0/24
 traefik:
    external: true
```

Unbound Konfiguration

```
# Unbound Config erstellen (einmalig)
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) sh -c 'cat > /opt/unbound/etc/unbou
server:
   # Listening
   interface: 0.0.0.0
   port: 5053
   do-ip4: yes
   do-ip6: no
   do-udp: yes
   do-tcp: yes
   # Trust glue only if it is within the server's authority
   harden-glue: yes
   # Require DNSSEC data for trust-anchored zones
   harden-dnssec-stripped: yes
   # Don't use Capitalization randomization
   use-caps-for-id: no
   # Reduce EDNS reassembly buffer size.
    edns-buffer-size: 1232
    # Perform prefetching of close to expired message cache entries
   prefetch: yes
   # One thread should be sufficient
   num-threads: 1
   # Ensure kernel buffer is large enough
    so-rcvbuf: 1m
   # Ensure privacy of local IP ranges
    private-address: 192.168.0.0/16
   private-address: 169.254.0.0/16
   private-address: 172.16.0.0/12
   private-address: 10.0.0.0/8
   private-address: fd00::/8
   private-address: fe80::/10
   # Logging
   verbosity: 1
   log-queries: no
    log-replies: no
```

Performance tuning

```
msg-cache-slabs: 2
    rrset-cache-slabs: 2
    infra-cache-slabs: 2
    key-cache-slabs: 2
    msg-cache-size: 50m
    rrset-cache-size: 100m
    cache-max-ttl: 86400
    cache-min-ttl: 300
    # Security
    hide-identity: yes
    hide-version: yes
    qname-minimisation: yes
    minimal-responses: yes
# Forward zones for Local domains
forward-zone:
    name: "lab.enzmann.online"
    forward-addr: 10.0.1.3@53 # Pi-hole IP
forward-zone:
    name: "iot.enzmann.online"
    forward-addr: 10.0.1.3@53 # Pi-hole IP
EOF '
```

DNS-Konfiguration in Pi-hole

Lokale DNS-Einträge (via Web-Interface)

```
# Standard-LAN (Homelab) - Core Infrastructure
 192.168.1.2
               unifi-controller-01.lab.enzmann.online
 192.168.1.3 pihole-01.lab.enzmann.online
 192.168.1.10 switch-main-01.lab.enzmann.online
 192.168.1.11 ap-wz-01.lab.enzmann.online
 192.168.1.12 ap-sz-01.lab.enzmann.online
 # Homelab Core
 192.168.1.21 pve-01.lab.enzmann.online
 192.168.1.22 pve-02.lab.enzmann.online
 192.168.1.25 nas-01.lab.enzmann.online
 # Homelab Services (Beispiele)
 192.168.1.41 ha-prod-01.lab.enzmann.online
 192.168.1.42 ha-test-01.lab.enzmann.online
 192.168.1.45 docker-01.lab.enzmann.online
 192.168.1.48 traefik-01.lab.enzmann.online
 192.168.1.50 portainer-01.lab.enzmann.online
 192.168.1.51 grafana-01.lab.enzmann.online
 192.168.1.52 influx-01.lab.enzmann.online
 192.168.1.55 matt-01.lab.enzmann.online
 192.168.1.56
               prometheus-01.lab.enzmann.online
 # Client Devices
 192.168.1.205 desktop-admin-01.lab.enzmann.online
 192.168.1.206 laptop-admin-01.lab.enzmann.online
 # IOT-VLAN (Smart Home) - wichtigste Geräte
 192.168.10.10 hm-ccu-uv-01.iot.enzmann.online
 192.168.11.1 hue-wz-bridge01.iot.enzmann.online
 192.168.11.2 sonos-wz-bridge01.iot.enzmann.online
Wildcard-Domains (via dnsmasq config)
 bash
 # /etc/dnsmasq.d/02-Lab-wildcard.conf
 address=/lab.enzmann.online/192.168.1.48
 # /etc/dnsmasq.d/03-iot-wildcard.conf
```

UniFi Integration

DHCP-Einstellungen ändern

address=/iot.enzmann.online/192.168.1.48

- 1. Standard-LAN Netzwerk bearbeiten
- 2. **DHCP** → **DNS Server:** (192.168.1.3) (Pi-hole IP)
- 3. **DHCP** → **Domain Name:** [lab.enzmann.online]

IOT-VLAN DHCP-Einstellungen

- 1. IOT-VLAN Netzwerk bearbeiten
- 2. **DHCP** → **DNS Server:** (192.168.1.3) (Pi-hole IP)
- 3. **DHCP** → **Domain Name:** (iot.enzmann.online)

Vorteile der Pi-hole + Unbound Lösung

Sicherheit & Privatsphäre

- Keine externen DNS-Provider alle Anfragen bleiben lokal bis zu den Root-Servern
- DNSSEC-Validierung durch Unbound für sichere DNS-Auflösung
- **Kein DNS-Logging** bei externen Anbietern (Google, Cloudflare)
- **Qname-Minimisation** reduziert Datenleckage

Performance

- Lokales Caching auf zwei Ebenen (Pi-hole + Unbound)
- Prefetching von häufig genutzten Domains durch Unbound
- Rekursive Auflösung direkt zu autoritativen Servern
- Optimierte Cache-Größen für Homelab-Umgebung

Zusatzfunktionen

- Ad-Blocking für alle Geräte im Netzwerk (Pi-hole)
- Malware-Schutz über Blocklisten (Pi-hole)
- **Query-Logging** für Troubleshooting (Pi-hole)
- **Statistiken** über DNS-Nutzung (Pi-hole)
- Lokale Domain-Auflösung für (.lab) und (.iot) Subdomains

HTTPS & Zertifikate mit Traefik

Übersicht

Alle Homelab-Services werden über HTTPS mit echten Let's Encrypt Zertifikaten bereitgestellt:

- **Domain:** enzmann.online (gehostet bei netcup)
- Reverse Proxy: Traefik mit automatischer SSL-Terminierung

• Zertifikate: Let's Encrypt Wildcard via DNS-Challenge (netcup API)

DNS-Struktur bei netcup

```
# A-Records (zeigen auf lokale IPs)
ha.enzmann.online → 192.168.1.41
grafana.enzmann.online → 192.168.1.51
portainer.enzmann.online → 192.168.1.50
traefik.enzmann.online → 192.168.1.48

# Wildcard für alle Services
*.enzmann.online → 192.168.1.48 (Traefik)
```

Traefik Konfiguration

Docker Compose Setup

```
version: '3.8'
services:
  traefik:
    image: traefik:v3.0
    command:
      # API und Dashboard
      - "--api.dashboard=true"
      - "--api.insecure=false"
      # Provider
      - "--providers.docker=true"
      - "--providers.docker.swarmMode=true"
      - "--providers.docker.exposedbydefault=false"
      # Entrypoints
      - "--entrypoints.web.address=:80"
      - "--entrypoints.websecure.address=:443"
      - "--entrypoints.web.http.redirections.entrypoint.to=websecure"
      - "--entrypoints.web.http.redirections.entrypoint.scheme=https"
      # Let's Encrypt mit netcup DNS-Challenge für Wildcards
      - "--certificatesresolvers.letsencrypt.acme.dnschallenge=true"
      - "--certificatesresolvers.letsencrypt.acme.dnschallenge.provider=netcup"
      - "--certificatesresolvers.letsencrypt.acme.email=admin@enzmann.online"
      - "--certificatesresolvers.letsencrypt.acme.storage=/letsencrypt/acme.json"
      # Logging
      - "--log.level=INFO"
      - "--accesslog=true"
   ports:
      - "80:80"
      - "443:443"
    environment:
      # netcup API Credentials
      NETCUP_CUSTOMER_NUMBER: "${NETCUP_CUSTOMER_NUMBER}"
      NETCUP_API_KEY: "${NETCUP_API_KEY}"
      NETCUP_API_PASSWORD: "${NETCUP_API_PASSWORD}"
   volumes:
      - /var/run/docker.sock:/var/run/docker.sock:ro
      - traefik_letsencrypt:/letsencrypt
```

traefik/docker-compose.yml

```
labels:
      # Traefik Dashboard
      - "traefik.enable=true"
      - "traefik.http.routers.dashboard.rule=Host(`traefik-01.lab.enzmann.online`)"
      - "traefik.http.routers.dashboard.service=api@internal"
      - "traefik.http.routers.dashboard.tls.certresolver=letsencrypt"
      - "traefik.http.routers.dashboard.middlewares=auth"
      # Basic Auth für Dashboard
      - "traefik.http.middlewares.auth.basicauth.users=admin:$2y$10$..." # htpasswd generiert
   networks:
      - traefik
    deploy:
     placement:
       constraints:
          - node.role == manager
volumes:
 traefik_letsencrypt:
networks:
 traefik:
   external: true
```

Environment File (.env)

```
bash
# netcup API Credentials (von netcup CCP)
NETCUP_CUSTOMER_NUMBER=123456
NETCUP_API_KEY=abcdefghijklmnopqrstuvwxyz
NETCUP_API_PASSWORD=your-api-password
```

Service-Konfiguration Beispiele

Home Assistant

```
# homeassistant/docker-compose.yml
services:
  homeassistant:
    image: homeassistant/home-assistant:stable
   volumes:
      - ha_config:/config
   networks:
     - traefik
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.homeassistant.rule=Host(`ha-prod-01.lab.enzmann.online`)"
      - "traefik.http.routers.homeassistant.tls.certresolver=letsencrypt"
      - "traefik.http.services.homeassistant.loadbalancer.server.port=8123"
networks:
 traefik:
   external: true
```

Grafana

```
# monitoring/docker-compose.ymL
services:
    grafana:
    image: grafana/grafana:latest
    environment:
        - GF_SERVER_ROOT_URL=https://grafana-01.lab.enzmann.online
        - GF_SECURITY_ADMIN_PASSWORD=secure-password
    networks:
        - traefik
    labels:
        - "traefik.enable=true"
        - "traefik.http.routers.grafana.rule=Host(`grafana-01.lab.enzmann.online`)"
        - "traefik.http.routers.grafana.tls.certresolver=letsencrypt"
        - "traefik.http.services.grafana.loadbalancer.server.port=3000"
```

Portainer

"traefik.http.routers.portainer.tls.certresolver=letsencrypt""traefik.http.services.portainer.loadbalancer.server.port=9000"

netcup DNS API Setup

1. API-Zugang aktivieren

- 1. Bei netcup im Customer Control Panel anmelden
- 2. Stammdaten → API aufrufen
- 3. API-Key und API-Password generieren
- 4. **DNS-API** Berechtigung aktivieren

2. DNS-Einträge bei netcup

Wichtig: Keine A-Records für lokale Services erstellen!

```
bash

# Nur für DNS-Challenge erforderlich - keine manuellen Einträge nötig
# Traefik erstellt automatisch TXT-Records für Let's Encrypt
```

Optional: Falls später externe VPN-Services gewünscht:

3. Deployment

```
# Traefik Network erstellen
docker network create --driver overlay traefik
# Pi-hole + Unbound Stack deployen
docker stack deploy -c pihole/docker-compose.yml pihole
# Warten bis Container gestartet sind
sleep 30
# Unbound Konfiguration anwenden (einmalig)
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) sh -c 'cat > /opt/unbound/etc/unbou
server:
    interface: 0.0.0.0
   port: 5053
   do-ip4: yes
   do-ip6: no
   do-udp: yes
   do-tcp: yes
   harden-glue: yes
   harden-dnssec-stripped: yes
   use-caps-for-id: no
    edns-buffer-size: 1232
   prefetch: ves
   num-threads: 1
    so-rcvbuf: 1m
   private-address: 192.168.0.0/16
   private-address: 172.16.0.0/12
   private-address: 10.0.0.0/8
   verbosity: 1
    log-queries: no
   hide-identity: yes
   hide-version: yes
   qname-minimisation: yes
   minimal-responses: yes
   msg-cache-size: 50m
    rrset-cache-size: 100m
    cache-max-ttl: 86400
forward-zone:
    name: "lab.enzmann.online"
   forward-addr: 10.0.1.3@53
forward-zone:
   name: "iot.enzmann.online"
   forward-addr: 10.0.1.3@53
EOF'
```

```
# Unbound new starten für Konfiguration

docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-control reload

# UniFi DHCP auf Pi-hole umstellen (192.168.1.3 als DNS)

# Pi-hole lokale DNS-Einträge konfigurieren (Web-Interface)

# Environment für Traefik setzen

echo "NETCUP_CUSTOMER_NUMBER=123456" > .env

echo "NETCUP_API_KEY=your-api-key" >> .env

echo "NETCUP_API_PASSWORD=your-api-password" >> .env

# Traefik deployen

docker stack deploy -c traefik/docker-compose.yml traefik

# Services deployen

docker stack deploy -c homeassistant/docker-compose.yml homeassistant

docker stack deploy -c monitoring/docker-compose.yml monitoring
```

Wildcard-Zertifikat Vorteile

- **Ein Zertifikat** für alle *.enzmann.online Subdomains
- Automatische Erneuerung alle 60 Tage
- **Keine Rate-Limits** von Let's Encrypt
- **Einfache Service-Erweiterung** ohne zusätzliche Zertifikatskonfiguration

Zugriff auf Services

Nach dem Setup sind alle Services sicher über HTTPS erreichbar:

```
https://ha-prod-01.lab.enzmann.online → Home Assistant
https://grafana-01.lab.enzmann.online → Grafana Dashboard
https://portainer-01.lab.enzmann.online → Docker Management
https://traefik-01.lab.enzmann.online → Traefik Dashboard
https://pihole-01.lab.enzmann.online → Pi-hole Admin Interface
```

Zusätzlich: Alle IOT-Geräte sind über ihre Subdomains erreichbar:

```
https://hm-ccu-uv-01.iot.enzmann.online → Homematic CCU
https://shelly-dimmer-flur-01.iot.enzmann.online → Shelly Dimmer
```

DHCP-Reservierungen

Standard-LAN (Homelab)

UniFi Controller: 192.168.1.2 → unifi-controller-01.lab.enzmann.online

Proxmox Host 1: 192.168.1.21 → pve-01.lab.enzmann.online
Proxmox Host 2: 192.168.1.22 → pve-02.lab.enzmann.online
Pi-hole DNS: 192.168.1.3 → pihole-01.lab.enzmann.online

Home Assistant: 192.168.1.41 → ha-prod-01.lab.enzmann.online

Docker Swarm Manager: 192.168.1.45 → docker-01.lab.enzmann.online
Traefik Reverse Proxy: 192.168.1.48 → traefik-01.lab.enzmann.online

IOT-VLAN (Smart Home)

Homematic CCU: 192.168.10.10 → hm-ccu-uv-01.iot.enzmann.online

Hue Bridge: 192.168.11.1 → hue-wz-bridge01.iot.enzmann.online

Sonos Bridge: 192.168.11.2 → sonos-wz-bridge01.iot.enzmann.online

Geräte-Inventar

Standard-LAN - Homelab & Infrastructure

UniFi Infrastructure (192.168.1.2 - 192.168.1.20)

Gerät	IP	DNS-Name	Öffentlicher Zugang	Notizen
UniFi	192.168.1.2	unifi-controller-		Controller
Controller	192.100.1.2	01.lab.enzmann.online	-	VM/Hardware
Pi-hole +	192.168.1.3	pihole-	https://pihole-	DNS + Ad-Blocking +
Unbound	192.100.1.5	01.lab.enzmann.online	01.lab.enzmann.online	rekursiver Resolver
UniFi Switch	192.168.1.10	switch-main-		Hauptswitch
Pro 24	192.100.1.10	01.lab.enzmann.online	-	Arbeitszimmer
UniFi AP Pro	192.168.1.11	ap-wz-		Access Point
6	192.100.1.11	01.lab.enzmann.online	-	Wohnzimmer
UniFi AP Pro	102 100 1 12	ap-sz-		Access Point
6	192.168.1.12	01.lab.enzmann.online	-	Schlafzimmer
4	•	•	•	•

Homelab Core (192.168.1.21 - 192.168.1.40)

Gerät IP		DNS-Name	Öffentlicher Zugang	Notizen
Proxmox Host 1	192.168.1.21	pve-01.lab.enzmann.online	-	Hauptserver
Proxmox Host 2	192.168.1.22	pve-02.lab.enzmann.online	-	Backup/Cluster
TrueNAS Scale	192.168.1.25	nas-01.lab.enzmann.online	-	Zentraler Storage
4	•	•	•	

Homelab Services (192.168.1.41 - 192.168.1.99)

Gerät	IP	DNS-Name	Öffentlicher Zugang	Notizen	
Home Assistant	192.168.1.41	ha-prod-	https://ha-prod-	Produktiv HA	
Prod	192.100.1.41	01.lab.enzmann.online	01.lab.enzmann.online	Instance	
Home Assistant	102 100 1 42	ha-test-		To at /David and and	
Test	192.168.1.42	01.lab.enzmann.online	-	Test/Development	
Docker Swarm	102 100 1 45	docker-		Consumation	
Manager	192.168.1.45	01.lab.enzmann.online	-	Swarm Leader	
Docker Swarm	102.160.1.46	docker-		C. a.va Mada	
Worker 1	192.168.1.46	02.lab.enzmann.online	-	Swarm Worker	
Docker Swarm	100 100 1 17	docker-		C	
Worker 2	192.168.1.47	03.lab.enzmann.online	-	Swarm Worker	
Traefik Reverse	100 150 1 10	traefik-	https://traefik-	CCL T	
Proxy	192.168.1.48	01.lab.enzmann.online	01.lab.enzmann.online	SSL-Terminierung	
5	100 150 1 50	portainer-	https://portainer-	Docker	
Portainer	192.168.1.50	01.lab.enzmann.online	01.lab.enzmann.online	Management	
Cartana	102.160.1.51	grafana-	https://grafana-	Monitoring	
Grafana	192.168.1.51	01.lab.enzmann.online	01.lab.enzmann.online	Dashboard	
	102.160.1.52	influx-		T' 6 ' DD	
InfluxDB	192.168.1.52	01.lab.enzmann.online	-	Time Series DB	
NACTT	100 100 1 55	mqtt-			
MQTT Broker	192.168.1.55	01.lab.enzmann.online	-	Mosquitto	
December	102.160.1.56	prometheus-		Matrice Callegia	
Prometheus	192.168.1.56	01.lab.enzmann.online	-	Metrics Collection	
N. I. E.	100 100 1 57	nodeexp-		6	
Node Exporter	192.168.1.57	01.lab.enzmann.online	-	System Metrics	
Loki	192.168.1.58	loki-01.lab.enzmann.online	-	Log Aggregation	
	100 150 1 ==	jaeger-		B	
Jaeger	192.168.1.59	01.lab.enzmann.online	-	Distributed Tracing	
Zusätzliche	192.168.1.60-			40 weitere IPs	
Services 99		-	-	verfügbar	
4	•	1		•	

Client Devices (192.168.1.201 - 192.168.1.220)

Gerät	IP	DNS-Name	Öffentlicher Zugang	Notizen
Admin	102 169 1 205	desktop-admin-		Managament DC
Desktop	192.168.1.205	01.lab.enzmann.online	-	Management PC
Admin	192.168.1.206	laptop-admin-		Makila Managamant
Laptop	192.168.1.206	01.lab.enzmann.online	-	Mobile Management
Weitere	192.168.1.207-			14 weitere IPs
Clients	220	-	-	verfügbar
4	1	1		•

IOT-VLAN - Smart Home Geräte

Unterverteilung (192.168.10.1 - 192.168.10.62)

Gerät	IP	DNS-Name	MAC	Notizen
Homematic CCU	192.168.10.10	hm-ccu-uv-01.iot.local	-	Zentrale
UniFi Switch	192.168.10.11	switch-uv-01.iot.local	-	Hauptverteiler
4	1	•		•

Flur (192.168.10.65 - 192.168.10.126)

Gerät	IP	DNS-Name	MAC	Notizen
Shelly 1 (Deckenlampe)	192.168.10.70	shelly-1-flur-01.iot.local	-	Hauptlicht
Homematic Bewegungsmelder	192.168.10.71	hm-motion-flur-01.iot.local	-	Eingang
▲	•	•	•	•

Arbeitszimmer (192.168.10.129 - 192.168.10.190)

Gerät	IP	DNS-Name	MAC	Notizen
Shelly Dimmer	192.168.10.135	shelly-dimmer-az-01.iot.local	ı	Schreibtischlampe
Hue Strip	192.168.10.136	hue-az-01.iot.local	-	Monitor-Backlight
4	•	•		>

Schlafzimmer (192.168.10.193 - 192.168.10.254)

Gerät	IP	DNS-Name	MAC	Notizen
Hue Lampe Links	192.168.10.200	hue-sz-01.iot.local	-	Nachttischlampe
Hue Lampe Rechts	192.168.10.201	hue-sz-02.iot.local	-	Nachttischlampe
Homematic Fensterkontakt	192.168.10.202	hm-window-sz-01.iot.local	-	Fenster Straßenseite
4	•	•	•	•

Wohnzimmer (192.168.11.1 - 192.168.11.62)

Gerät	IP	DNS-Name	MAC	Notizen
Hue Bridge	192.168.11.1	hue-wz-bridge01.iot.local	-	Zentrale Bridge
Sonos One	192.168.11.10	sonos-wz-01.iot.local	-	Musikwiedergabe
Hue Deckenlampe	192.168.11.11	hue-wz-01.iot.local	-	Hauptbeleuchtung
Hue Stehlampe	192.168.11.12	hue-wz-02.iot.local	-	Ambientelicht
4	1	•	•	•

Küche (192.168.11.65 - 192.168.11.126)

Gerät	IP	DNS-Name	MAC	Notizen
Shelly 1PM (Dunstabzug)	192.168.11.70	shelly-pro1pm-kueche-01.iot.local	-	Dunstabzugsteuerung
Hue Unterbauleuchte	192.168.11.71	hue-kueche-01.iot.local	-	Arbeitsplatte
Sonos One SL	192.168.11.72	sonos-kueche-01.iot.local	-	Küchenmusik
Homematic Temperatursensor	192.168.11.73	hm-temp-kueche-01.iot.local	-	Raumtemperatur
▲	-	•	•	>

Bad (192.168.11.129 - 192.168.11.190)

Gerät	IP	DNS-Name	MAC	Notizen
Shelly 1 (Lüftung)	192.168.11.135	shelly-1-bad-01.iot.local	ı	Lüftungssteuerung
Homematic Feuchtigkeitssensor	192.168.11.136	hm-humid-bad-01.iot.local	-	Luftfeuchtigkeit
Hue Spiegellampe	192.168.11.137	hue-bad-01.iot.local	-	Spiegelbeleuchtung
4	•	•		•

[Weitere Räume nach gleichem Schema]

Wartungshinweise

Backup-Strategie

• UniFi Controller: Täglich automatisch + wöchentlich manuell

• **Proxmox:** Wöchentlich (VMs + Konfiguration)

• Home Assistant: Täglich automatisch

• **Docker Swarm:** Backup der compose files + Volumes

Update-Fenster

• Infrastruktur (UniFi, Proxmox): Sonntag 02:00-04:00 Uhr

• Services (Home Assistant, Docker): Sonntag 04:00-06:00 Uhr

• IOT-Geräte: Nach Bedarf, rollierend

Monitoring

• Homelab: Grafana + InfluxDB für alle Services

- IOT: Home Assistant Device Tracker + Ping-Tests alle 5 Minuten
- Network: UniFi Controller Statistiken

Dokumentation aktualisieren

- Bei jeder Geräteerweiterung (IOT)
- Bei Service-Änderungen (Homelab)
- Nach größeren Netzwerkänderungen

Troubleshooting

Homelab-spezifische Probleme

1. VM nicht erreichbar:

- Proxmox Host-Status prüfen
- VM-Status in Proxmox GUI kontrollieren
- Network Bridge Konfiguration überprüfen

2. Docker Service nicht verfügbar:

- Swarm Status: (docker node 1s)
- Service Status: (docker service ps <service>)
- Container Logs: (docker service logs <service>)

3. Home Assistant Verbindungsprobleme zu IOT:

- Firewall-Regeln Standard-LAN → IOT prüfen
- mDNS-Reflector Status kontrollieren
- MQTT Broker Erreichbarkeit testen

4. HTTPS/Traefik Probleme:

Zertifikat nicht erstellt:

```
# Traefik Logs prüfen
docker service logs traefik_traefik

# netcup API Credentials testen
curl -X POST https://ccp.netcup.net/run/webservice/servers/endpoint.php \
    -d '{"action":"login","param":{"customernumber":"123456","apikey":"...","apipassword"
```

• Service nicht erreichbar über HTTPS:

```
bash
```

```
# DNS Auflösung testen (Lokal)
nslookup ha-prod-01.lab.enzmann.online 192.168.1.3
# Traefik Dashboard prüfen: https://traefik-01.lab.enzmann.online
# Router und Services Status kontrollieren
```

• Wildcard-Zertifikat Probleme:

```
# ACME Logs prüfen
docker exec -it $(docker ps | grep traefik | cut -d' ' -f1) cat /letsencrypt/acme.json
# DNS Challenge manuell testen
dig TXT _acme-challenge.lab.enzmann.online
dig TXT _acme-challenge.iot.enzmann.online
```

5. Pi-hole + Unbound DNS-Probleme:

• Lokale Domain nicht auflösbar:

```
# Pi-hole Status prüfen
docker service logs pihole_pihole

# Unbound Status prüfen
docker service logs pihole_unbound

# DNS-Auflösung manuell testen
nslookup ha-prod-01.lab.enzmann.online 192.168.1.3

# Pi-hole Query-Log prüfen: https://pihole-01.lab.enzmann.online
```

• Unbound nicht erreichbar:

```
# Unbound Container IP prüfen

docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) nslookup google.com 10.0.1.2

# Unbound Konfiguration prüfen

docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-checkconf

# Unbound Cache-Statistiken

docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-control stats_nores
```

• DNS-Auflösung langsam:

```
# Cache-Hit-Rate prüfen
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-control stats | gre
# DNS-Query-Zeit testen
dig @192.168.1.3 google.com +stats

# Pi-hole Cache Leeren
docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) pihole restartdns
```

Wildcard-Domains funktionieren nicht:

```
# dnsmasq Konfiguration prüfen
docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) cat /etc/dnsmasq.d/02-lab-wi
# dnsmasq neu starten
docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) pihole restartdns
# Unbound Forward-Zonen prüfen
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) cat /opt/unbound/etc/unbound
```

IOT-spezifische Probleme

1. Gerät nicht erreichbar:

- VLAN-Zuordnung pr

 üfen
- DHCP-Lease erneuern
- Firewall-Regeln überprüfen

2. DNS-Auflösung funktioniert nicht:

- Controller-DNS-Einstellungen pr

 üfen
- mDNS-Reflector aktivieren

3. Home Assistant kann IOT-Geräte nicht finden:

- Firewall-Regel Standard-LAN → IOT prüfen
- Integration-spezifische Ports freischalten
- Network Discovery Settings in HA prüfen

Netzwerk-übergreifende Probleme

1. Keine Inter-VLAN Kommunikation:

- Gateway-Konfiguration prüfen
- Routing-Tabellen kontrollieren
- Firewall-Regeln step-by-step testen

2. **Performance-Probleme:**

- Switch-Auslastung in UniFi Controller prüfen
- QoS-Einstellungen anpassen
- Bandbreiten-Limits überprüfen

Erstellt: [Datum]

Letzte Aktualisierung: [Datum]

Version: 3.0 (erweitert um lokales DNS mit Pi-hole)