Variables aléatoires discrètes sans mémoire

Partie I: Étude d'une variable discrète sans mémoire.

Soit X une variable aléatoire discrète, à valeurs dans \mathbb{N} telle que : $\forall m \in \mathbb{N}, P(X \geqslant m) > 0$.

On suppose également que X vérifie : $\forall (m,n) \in \mathbb{N} \times \mathbb{N}, P_{(X \geqslant m)}(X \geqslant n+m) = P(X \geqslant n)$. On pose P(X=0) = p et on suppose que p > 0.

- 1. On pose q = 1 p. Montrer que $P(X \ge 1) = q$. En déduire que 0 < q < 1.
- 2. Montrer que : $\forall (m,n) \in \mathbb{N} \times \mathbb{N}, P(X \ge n+m) = P(X \ge m)P(X \ge n).$
- 3. Pour tout n de \mathbb{N} on pose $u_n = P(X \ge n)$.
 - (a) Utiliser la relation obtenue à la deuxième question pour montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique.
 - (b) Pour tout n de N, exprimer $P(X \ge n)$ en fonction de n et q.
 - (c) Établir que : $\forall n \in \mathbb{N}, P(X = n) = P(X \ge n) P(X \ge n + 1).$
 - (d) En déduire que, pour tout n de \mathbb{N} , on a $P(X = n) = q^n p$.
- 4. (a) Reconnaître la loi de la variable X + 1.
 - (b) En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

Partie II: Taux de panne d'une variable discrète.

Pour toute variable aléatoire Y à valeurs dans \mathbb{N} et telle que : $\forall n \in \mathbb{N}$, $P(Y \ge n) > 0$. On définit le taux de panne de Y à l'instant n, noté λ_n par : $\forall n \in \mathbb{N}$, $\lambda_n = P_{(Y \ge n)}(Y = n)$.

- 5. (a) Montrer que : $\forall n \in \mathbb{N}, \lambda_n = \frac{P(Y=n)}{P(Y \ge n)}$.
 - (b) En déduire que : $\forall n \in \mathbb{N}, 1 \lambda_n = \frac{P(Y \geqslant n+1)}{P(Y \geqslant n)}$.
 - (c) Établir alors que : $\forall n \in \mathbb{N}, 0 \leq \lambda_n < 1$.
 - (d) Montrer par récurrence, que : $\forall n \in \mathbb{N}^*, P(Y \ge n) = \prod_{k=0}^{n-1} (1 \lambda_k).$
- 6. (a) Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} P(Y=k) = 1 P(Y \geqslant n).$
 - (b) En déduire que $\lim_{n\to\infty} P(Y \geqslant n) = 0$.
 - (c) Montrer que $\lim_{n\to\infty} \sum_{k=0}^{n-1} -\ln(1-\lambda_k) = +\infty$
 - (d) Conclure quant à la nature de la série de terme général λ_n .

Partie III: Caractérisation des variables dont la loi est du type de celle de X.

- 7. Déterminer le taux de panne de la variable X dont la loi a été trouvée à la question 3 d) de la partie 1.
- 8. On considère une variable aléatoire Z, à valeurs dans \mathbb{N} , et vérifiant : $\forall n \in \mathbb{N}, P(Z \ge n) > 0$. On suppose que le taux de panne de Z est constant, c'est-à-dire que l'on a : $\forall n \in \mathbb{N}, \lambda_n = \lambda$.
 - (a) Montrer que $0 < \lambda < 1$.
 - (b) Pour tout n de \mathbb{N} , déterminer $P(Z \ge n)$ en fonction de λ et n.
 - (c) Conclure que les seules variables aléatoires Z à valeurs dans \mathbb{N} , dont le taux de panne est constant et telles que pour tout n de \mathbb{N} , $P(Z \ge n) > 0$, sont les variables dont la loi est du type de celle de X.

Variables aléatoires discrètes sans mémoire

Partie I: Étude d'une variable discrète sans mémoire.

1. Comme les valeurs de X sont entières, $\overline{[X \ge 1]} = (X = 0)$

Donc $P(X \ge 1) = 1 - P(X = 0) = 1 - p = q > 0$ par hypothèse.

Et comme q = 1 - p et que p > 0 alors q < 1.

Conclusion: $P(X \ge 1) = q$ et 0 < q < 1.

2. On revient à la définition de la probabilité conditionnelle :

$$P_{(X \geqslant m)}(X \geqslant n+m) = \frac{P(X \geqslant n+m)}{P(X \geqslant m)} = P(X \geqslant n)$$

Conclusion : Donc $\forall (m, n) \in \mathbb{N} \times \mathbb{N}, \ P(X \ge n + m) = P(X \ge m) P(X \ge n)$

- 3. Pour tout n de \mathbb{N} on pose $u_n = P(X \ge n)$.
 - (a) On a avec le couple (n,1) la relation : $P(X \ge n+1) = P(X \ge 1) P(X \ge n)$ Donc $u_{n+1} = q \cdot u_n$ Conclusion : la suite $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison q géométrique.
 - (b) On a alors $u_n = q^n u_0 = q^n P(X \ge 0) = q^n$ Conclusion: Pour tout $n \text{ de } \mathbb{N}, P(X \ge n) = q^n$
 - (c) Comme X ne prend que des valeurs entièers, $(X \ge n) = (X = n) \cup (X \ge n + 1)$ et comme les deux sont incompatibles $P(X \ge n) = P(X \ge n + 1) + P(X = n)$ Conclusion : $\forall n \in \mathbb{N}, \ P(X = n) = P(X \ge n) P(X \ge n + 1)$.
 - (d) Et on trouve donc $P(X = n) = q^n q^{n+1} = q^n (1 q) = q^n p$ Conclusion: pour tout n de \mathbb{N} , on a $P(X = n) = q^n p$
- 4. (a) La loi de X+1 est donnée par : $X\left(\Omega\right)=\mathbb{N}^{*} \text{ et P}\left(X+1=n\right)=\mathrm{P}\left(X=n-1\right)=q^{n-1}p$ Conclusion: X+1 suit une loi géomaétrique de paramètre p
 - (b) Comme $\mathbf{E}(X+1) = \frac{1}{p}$ et $\mathbf{V}(X+1) = \frac{q}{p^2}$ et que X = X+1-1 alors $Conclusion : \mathbf{E}(X) = \frac{1}{p}-1 \text{ et } \mathbf{V}(X) = \frac{q}{p^2}$

Partie II: Taux de panne d'une variable discrète.

- 5. (a) Par définition de la probablité conditionnelle on a : $\lambda_n = \frac{P(Y = n \cap Y \ge n)}{P(Y \ge n)}$ et comme $[Y = n] \cap [Y \ge n] = (Y = n)$ on a donc $Conclusion : \forall n \in \mathbb{N}, \lambda_n = \frac{P(Y = n)}{P(Y \ge n)}.$
 - (b) On a alors

$$1 - \lambda_n = 1 - \frac{P(Y = n)}{P(Y \ge n)}$$

$$= \frac{P(Y \ge n) - P(Y = n)}{P(Y \ge n)}$$

$$= \frac{P(Y \ge n + 1)}{P(Y \ge n)}$$

car $(Y \geqslant n) = (Y = n) \cup (Y \geqslant n+1)$ puisque Y ne prend que des valeurs entières. Conclusion : $\forall n \in \mathbb{N}, 1 - \lambda_n = \frac{\mathrm{P}(Y \geqslant n+1)}{\mathrm{P}(Y \geqslant n)}$

Variables aléatoires discrètes sans mémoire

- (c) Comme $P(Y \ge n) > 0$ pour tout entier n alors $1 \lambda_n > 0$ et $\lambda_n < 1$ Mais on peut avoir $\lambda_n = 0$ (par exemple pour une loi géométrique, $\lambda_0 = 0$) Conclusion: $\forall n \in \mathbb{N}, 0 \leq \lambda_n < 1$.
- (d) Par récurrence :

Pour
$$n = 1$$
: $\prod_{k=0}^{1-1} (1 - \lambda_k) = 1 - \lambda_0 = \frac{P(Y \ge 1)}{P(Y \ge 0)} = P(Y \ge 1)$ car $P(Y \ge 0) = 1$

Soit
$$n \in \mathbb{N}^*$$
 tel que $P(Y \ge n) = \prod_{k=0}^{n-1} (1 - \lambda_k)$

Soit
$$n \in \mathbb{N}^*$$
 tel que $P(Y \ge n) = \prod_{k=0}^{n-1} (1 - \lambda_k)$
alors $\prod_{k=0}^{n} (1 - \lambda_k) = (1 - \lambda_n) \prod_{k=0}^{n-1} (1 - \lambda_k) = \frac{P(Y \ge n + 1)}{P(Y \ge n)} P(Y \ge n) = P(Y \ge n + 1)$

Donc, par récurrence,

Conclusion:
$$\forall n \in \mathbb{N}^*, P(Y \ge n) = \prod_{k=0}^{n-1} (1 - \lambda_k)$$

(a) La probabilité du contraire est : $1 - P(Y \ge n) = P(Y < n)$

et comme Y ne prend que des valeurs entières : $1 - P(Y \ge n) = P(Y \le n - 1)$

Et comme
$$(Y \le n-1) = \bigcup_{k=0}^{n-1} (Y = k)$$
 (incompatibles) alors

Conclusion:
$$1 - P(Y \ge n) = \sum_{k=0}^{n-1} P(Y = k)$$

(b) Comme $Y(\Omega) = \mathbb{N}$ alors $\sum_{k=0}^{+\infty} P(Y = k) = 1$

Donc
$$\lim_{n \to +\infty} \sum_{k=0}^{n} P(Y = k) = 1$$

et
$$P(Y \ge n) = 1 - \sum_{k=0}^{n-1} P(Y = k) \xrightarrow[n \to +\infty]{} 0.$$

Conclusion:
$$\lim_{n \to \infty} P(Y \geqslant n) = 0.$$

(c) On a vu que P $(Y\geqslant n)=\prod_{k=0}^{n-1}\left(1-\lambda_{k}\right)$

Donc
$$\ln (P(Y \ge n)) = \sum_{k=0}^{n-1} \ln (1 - \lambda_k)$$

Et comme
$$P(Y \ge n) \xrightarrow[n \to +\infty]{} 0$$
 alors $\ln(P(Y \ge n)) \to -\infty$ donc $\sum_{k=0}^{n-1} \ln(1 - \lambda_k) \xrightarrow[n \to +\infty]{} -\infty$ et

Conclusion:
$$\lim_{n \to \infty} \sum_{k=0}^{n-1} -\ln(1 - \lambda_k) = +\infty$$

(d) On pense au théorème de comparaison.

On a
$$\ln(1+x) \sim x$$
 quand $x \xrightarrow[n \to +\infty]{} 0$

Mais il faudrait pour celà que $\lambda_n \xrightarrow[n \to +\infty]{} 0$ quand $n \to +\infty$. Et on a vu que dans le cas d'une loi géométrique, ce n'était pas le cas $(\lambda_n \text{ constant})$

On distingue deux cas :

- si $\lambda_n \xrightarrow[n \to +\infty]{} 0$ alors $-\ln(1-\lambda_k) \sim \lambda_k \geqslant 0$ et par comparaison de série à termes positifs, la série $\sum_{k>0} \lambda_k$ diverge également.
- Si $\lambda_n \not\to 0$ alors la série $\sum_{k\geqslant 0} \lambda_k$ diverge (condition nécessaire de convergence)

VARIABLES ALÉATOIRES DISCRÈTES SANS MÉMOIRE

Conclusion: la série $\sum_{n\geqslant 0} \lambda_n$ diverge

Partie III: Caractérisation des variables dont la loi est du type de celle de X.

7. On avait $P(X \ge n) = q^n$ et $P(X = n) = q^n p$ Donc $\lambda_n = \frac{P(X = n)}{P(X \ge n)} = p$ pour tout $n \in \mathbb{N}$.

Conclusion : le taux de panne est constant égal à p

- 8. On considère une variable aléatoire Z, à valeurs dans \mathbb{N} , et vérifiant : $\forall n \in \mathbb{N}, P(Z \ge n) > 0$. On suppose que le taux de panne de Z est constant, c'est-à-dire que l'on a : $\forall n \in \mathbb{N}, \lambda_n = \lambda$.
 - (a) Comme on est dans les hypothèses de la partie 3, on a $\lambda = \frac{\mathrm{P}\left(Z=n\right)}{\mathrm{P}\left(Z\geqslant n\right)}$
 - Si $\lambda=0$ alors ${\rm P}\,(Z=n)=0$ pour tout entier n. (et $\sum_{n=0}^{+\infty}{\rm P}\,(Z=n)\neq 1$). Donc $\lambda>0$
 - Si $\lambda = 1$ alors $P(Z = n) = P(Z \ge n)$ donc $P(Z \ge n + 1) = 0$ ce qui contredit $P(Z \ge n) > 0$ pour tout entier n.

Conclusion : Donc $0 < \lambda < 1$

(b) On a vu que, pour $n \ge 1$ on avait $P(Y \ge n) = \prod_{k=0}^{n-1} (1 - \lambda_k) = (1 - \lambda)^{n-1+1}$

et donc
$$P(Z = n) = P(Z \ge n) - P(Z \ge n + 1) = (1 - \lambda)^n - (1 - \lambda)^{n+1} = (1 - \lambda)^n \lambda$$
 et $P(Z = 0) = 1 - P(Z \ge 1) = \lambda$

Conclusion:
$$\forall n \in \mathbb{N} : P(Z = n) = (1 - \lambda)^n \lambda$$

soit la même loi que X pour $p = \lambda$.

(c) Donc, si la loi est celle de X, le taux de panne est constant, et réciproquement

Conclusion : Les seules variables aléatoires Z à valeurs dans \mathbb{N} , dont le taux de panne est constant et telles que pour tout n de \mathbb{N} , $P(Z \ge n) > 0$, sont les variables dont la loi est du type de celle de X.