

A Different Approach

- We look to implement the segmentation approach of "flood-filling networks" (FFNs).
- Forgoes the multiple steps of boundary detection and subsequent segmentation.
- Uses a single network, analogous to a RNN, to process raw image pixels directly into individual object masks.
- Approach has been validated on a strenuous three dimensional image segmentation task connectomic reconstruction from volume electron microscopy data, on which flood-filling neural networks proved to be a significant improvement in terms of accuracy over other state-of-the-art methods.

A traditional flood-filling network takes a three dimensional sub volume of data as input and produces an object mask probability map.

The input sub volume contains two channels: one providing the raw image intensities, and another providing the local state of the object mask in the form of a probability map.

Flood filling networks have been developed to segment objects over n number of iterations. FFN start with one pixel and keep on iterating till a final segmentation is produced.

- The input mask in the second channel is incomplete in most inference iterations of the network.
- The FFN is trained to extend it within its field of view (FoV).
- At the beginning of inference, in absence of any prior information about object shape, the incomplete object mask can consist of a single active voxel.
- ➤ The network then performs single-object segmentation for the object covered by that voxel.

Observed Improvements of FFN
technique on an electron microscopy
problem.

	Edge	Merged	Split	Omitted	Omitted
Segmentation	accuracy	edges	edges	edges	edges
	[%]	[%]	[%]	(adjusted) [%]	(raw) [%]
CNN + Watershed	87.7	1.0	10.6	0.7	1.1
CNN + Watershed + GALA	96.3	1.7	1.4	0.6	1.1
CNN + Watershed + CELIS	93.2	5.4	0.7	0.7	1.1
Flood-Filling Network	98.5	0.0	0.7	0.8	2.4

Our Architecture

- FFN start with one pixel and keep on iterating till a final segmentation is produced.
- What we propose is that using a simple traditional neural –net to first produce a mask and then this mask be fed to the FFN.
- Thus, output of the initial neural network serves as a much better starting point than a single pixel.
- ➤ It also efficiently tackles the problem of slow rate of segmentation progress in initial iterations of a flood filling network, as the FFN now has prior information about image at onset of operation of the FFN.
- Accuracy of the initial neural network would be improved upon.

Architecture of one block 64@320x400 64@320x400 4@320x400

Our Architecture

Proposed Benefits:

- The FFN doesn't have to start with one-pixel as a mask input.
- The traditional neural net need not be a complex neural net.
- Our implementation of FFN can be used to increase accuracy of underperforming segmentation models.

Observations

- The iris dataset was used as the training and testing data.
- We used 9000 images to train the first encoder-decoder network, and subsequently tested 1000 images.
- The second network, that is, the FFN was trained on 4000 images received from NN1, and subsequently tested on the same 1000 images.
- On observation, the first network achieved accuracy of 87% and loss of 9.36 pixels.
- ➤ On observation, our FFN implementation achieved accuracy of 91% and loss of 5.84 pixels.

Inferences

- Training complexity of our architecture is observed to be significantly less than that of our traditional model which was trained on 9000 images.
- End to end training is not feasible in our architecture. Thus, the NN1 was trained first, and subsequently

End of Presentation

Thank You

Hrishikesh, B16029 Karan, B16020 Sammarth, B16031

