15-312 Assignment 1

Andrew Carnegie (andrew)

October 21, 2017

```
Type \tau ::=
                                                                                                   naturals
          nat
                                          nat
                                                                                                   unit
          unit
                                          unit
          bool
                                          bool
                                                                                                   boolean
          prod(\tau_1; \tau_2)
                                                                                                   product
                                           \tau_1 \times \tau_2
          \mathtt{arr}(\tau_1; \tau_2)
                                                                                                   function
                                           \tau_1 \rightarrow \tau_2
                                                                                                   list
          list(\tau)
                                           \tau\, {\tt list}
  Exp e
             ::=
                                                                                                   variable
          x
                                           \boldsymbol{x}
          nat[n]
                                          \overline{n}
                                                                                                   number
          unit
                                           ()
                                                                                                   unit
          Т
                                          Т
                                                                                                   true
                                          F
          F
                                                                                                   false
          if(x;e_1;e_2)
                                           \verb"if"\,x" \verb"then"\,e_1" \verb"else"\,e_2"
                                                                                                   if
          lam(x:\tau.e)
                                           \lambda x : \tau . e
                                                                                                   abstraction
                                                                                                   application
          ap(f;x)
                                           f(x)
                                           \langle x_1, x_2 \rangle
          tpl(x_1; x_2)
                                                                                                   pair
                                           case p\{(x_1; x_2) \hookrightarrow e_1\}
          \mathtt{case}(x_1, x_2.e_1)
                                                                                                   match pair
          nil
                                                                                                   nil
                                                                                                   cons
          cons(x_1; x_2)
                                          x_1 :: x_2
          \mathsf{case}\{l\}(e_1; x, xs.e_2)
                                           \operatorname{case} l\left\{\operatorname{nil} \hookrightarrow e_1 \mid \operatorname{cons}(x; xs) \hookrightarrow e_2\right\}
                                                                                                   match list
          let(e_1; x : \tau.e_2)
                                           \mathtt{let}\; x = e_1 \; \mathtt{in}\; e_2
                                                                                                   let
  \mathsf{Val} \ \ v \ \ ::=
          val(n)
                                                                                                   numeric value
                                          n
                                          Т
                                                                                                   true value
          val(T)
                                                                                                   false value
          val(F)
                                          F
          val(Null)
                                          Null
                                                                                                   null value
          val(cl(V; x.e))
                                          (V, x.e)
                                                                                                   function value
          val(l)
                                                                                                   loc value
          val(pair(v_1; v_2))
                                           \langle v_1, v_2 \rangle
                                                                                                   pair value
State s ::=
                                                                                                   live value
          alive
                                           alive
                                                                                                   dead value
                                           dead
          dead
  \mathsf{Loc} \ l \ ::=
          loc(l)
                                          l
                                                                                                   location
  Var l ::=
          var(x)
                                                                                                   variable
                                          \boldsymbol{x}
```

1 Garbage collection semantics

Model dynamics using judgement of the form:

$$V, H, R, F \vdash e \Downarrow v, H', F'$$

Where $V: \mathsf{Var} \to \mathsf{Val} \times \mathsf{State}$, $H: \mathsf{Loc} \to \mathsf{Val}$, $R \subseteq \mathsf{Loc}$, and $F \subseteq \mathsf{Loc}$. This can be read as: under stack V, heap H, roots R, freelist F, the expression e evaluates to v, and engenders a new heap H' and freelist F'.

Note that the stack maps each variable to a value v and a state s. If s is alive, then v can still be used, while dead indicates that v is already used and cannot be used again. We write $\overline{V} = \{x \in V \mid V(x) = (_, \mathtt{alive})\}$ for the variables in V that are alive.

Roots represents the set of locations required to compute the continuation *excluding* the current expression. We can think of roots as the heap allocations necessary to compute the context with a hole that will be filled by the current expression.

Below defines the size of reachable values and space for roots:

$$locs_{V,H}(e) = \bigcup_{x \in FV(e)} \{l \in H \mid \exists l' \in root(x).H \models p : l' \leadsto l\}$$

$$size(\langle v_1, v_2 \rangle) = size(v_1) + size(v_2)$$

$$size(_) = 1$$

$$\begin{split} copy(H,L,\langle v_1,v_2\rangle) &= \\ \text{let } L_1 \subseteq L \text{with } |L_1| = size(v_1) \text{ in } \\ \text{let } H_1, _ &= copy(H,L_1,v_1) \text{ in } \\ copy(H_1,L\setminus L_1,v_2) \\ copy(H,l,v) &= H[l\mapsto v], l \end{split}$$

$$\frac{V(x) = (v, \text{alive})}{V, H, R, F \vdash x \Downarrow v, H, F}(S_1) \qquad V, H, R, F \vdash \overline{n} \Downarrow \text{val}(n), H, F}(S_2)$$

$$\overline{V, H, R, F \vdash T \Downarrow \text{val}(T), H, F}(S_3) \qquad \overline{V, H, R, F \vdash \overline{n} \Downarrow \text{val}(n), H, F}(S_4)$$

$$\overline{V, H, R, F \vdash T \Downarrow \text{val}(T), H, F}(S_5)$$

$$\overline{V, H, R, F \vdash T \Downarrow \text{val}(Null), H, F}(S_5)$$

$$\frac{V(x) = T \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \vdash \text{if}(x; e_1; e_2) \Downarrow v, H', F'} (S_5)$$

$$\overline{V(x)} = F \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e_2)\} \qquad V, H, R, F \cup g \vdash e_2 \Downarrow v, H', F'}{V, H, R, F \vdash \text{if}(x; e_1; e_2) \Downarrow v, H', F'} (S_7)$$

$$\frac{l \in F \qquad F' = F \setminus \{l\} \qquad H' = H[l \mapsto (V, x.e)]}{V, H, R, F \vdash \text{lam}(x : x.e) \Downarrow l, H', F'} (S_8)$$

$$\frac{V(f) = (V_1, x.e) \qquad V(x) = v_1 \qquad V_1[x \mapsto v_1], H, R \vdash e \Downarrow v, H', F'}{V, H, R, F \vdash f(x) \Downarrow v, H', F'} (S_9)$$

$$\frac{V(x_1) = v_1 \qquad V(x_2) = v_2}{V, H, R, F \vdash (x_1, x_2) \Downarrow (v_1, v_2), H, F} (S_{10})$$

$$\frac{V(x) = (v_1, v_2)}{V, H, R, F \vdash \text{case } x \{(x_1; x_2) \mapsto e\} \Downarrow v, H', F'} (S_{11})$$

$$\frac{g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e)\} \qquad V[x_1 \mapsto v_1, x_2 \mapsto v_2], H, R, F \cup g \vdash e \Downarrow v, H', F'}{V, H, R, F \vdash \text{case } x \{(x_1; x_2) \mapsto e\} \Downarrow v, H', F} (S_{12})$$

$$\frac{v = \langle V(x_1), V(x_2) \rangle \qquad L \subseteq F \qquad |L| = \text{size}_H(v) \qquad F' = F \setminus L \qquad H', l = \text{copy}(H, L, v)}{V, H, R, F \vdash \text{cons}(x_1; x_2) \Downarrow l, H', F'} (S_{13})$$

$$\frac{V(x) = \text{Null} \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V',H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \vdash \text{case } x \{\text{nil} \mapsto e_1 \mid \text{cons}(x_h; x_t) \mapsto e_2 \} \Downarrow v, H', F'} (S_{14})$$

$$\frac{V(x) = (l, \text{alive})}{V, H, R, F \vdash \text{case } x \{\text{nil} \mapsto e_1 \mid \text{cons}(x_h; x_t) \mapsto e_2 \} \Downarrow v, H', F'}{V, H, R, F \vdash \text{case } x \{\text{nil} \mapsto e_1 \mid \text{cons}(x_h; x_t) \mapsto e_2 \} \Downarrow v, H', F'} (S_{15})$$

$$\frac{R' = R \cup locs_{V',H}(\text{lam}(x : \tau.e_2)) \qquad V, H, R', F \vdash \text{e} \psi, H_1, H_1, F_1 \cup f' = v_2 \Downarrow v_2, H_2, F_2}{V, H, R, F \vdash \text{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2, F_2}$$

2 Operational semantics

In order to prove the soundess of the type system, we also define a simplified operational semantics that does not account for garbage collection.

$$V, H \vdash e \Downarrow v, H'$$

This can be read as: under stack V, heap H the expression e evaluates to v, and engenders a new heap H'. We write the representative rules.

$$\frac{v = \langle V(x_1), V(x_2) \rangle \qquad H', l = copy(H, L, v)}{V, H \vdash \mathsf{cons}(x_1; x_2) \Downarrow l, H'} (S_{17})$$

$$\frac{V(x) = (l, \mathsf{alive}) \qquad H(l) = \langle v_h, v_t \rangle \qquad V' = V\{x \mapsto (l, \mathsf{dead})\}}{V'' = V'[x_h \mapsto (v_h, \mathsf{alive}), x_t \mapsto (v_t, \mathsf{alive})] \qquad V'', H \vdash e_2 \Downarrow v, H'} (S_{18})$$

$$\frac{V, H \vdash e_1 \Downarrow v_1, H_1 \qquad V' = V[x \mapsto v_1] \qquad V', H_1 \vdash e_2 \Downarrow v_2, H_2}{V, H \vdash \mathsf{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2} (S_{19})$$

3 Type rules

The type system takes into account of garbaged collected cells by returning potential locally in a match construct. Since we are interested in the number of heap cells, all constants are assumed to be nonnegative.

$$\frac{n \in \mathbb{Z}}{\Sigma; \emptyset \left| \frac{q}{q} \ n : \mathrm{nat}} (\mathrm{L:ConstI}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ () : \mathrm{unit}}{\Sigma; \emptyset \left| \frac{q}{q} \ n : \mathrm{nat}} (\mathrm{L:ConstF}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ T : \mathrm{bool}}{\Sigma; \emptyset \left| \frac{q}{q} \ F : \mathrm{bool}} (\mathrm{L:ConstF}) \qquad \frac{\Sigma; \Gamma \left| \frac{q}{q'} \ e_t : B \right| \Sigma; \Gamma \left| \frac{q}{q'} \ e_f : B \right|}{\Sigma; \Gamma, x : \mathrm{bool} \left| \frac{q}{q'} \ \text{if} \ x \ \text{then} \ e_t \ \text{else} \ e_f : B} (\mathrm{L:Cond}) \qquad \frac{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_1 : B \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_1 : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_1 : B \right|}{\Sigma; \Gamma, x_1 : A_1, A_2 : A_2 \left| \frac{q}{q'} \ e_1 : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ \mathrm{nil} : L^p(A) \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_1 : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; 0 \left| \frac{q}{q} \ \mathrm{nil} : L^p(A) \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 : A_$$

Now if we take $\dagger: L^p(A) \mapsto L(A)$ as the map that erases resource annotations, we obtain a simpler typing judgement Σ^{\dagger} ; $\Gamma^{\dagger} \vdash e : B^{\dagger}$.

4 Paths and aliasing

In order prove soundness of the type system, we need some auxiliary judgements to defining properties of a heap. Below we define $reach: Val \rightarrow \{\{Loc\}\}\}$ that maps stack values its the root multiset, the multiset of locations that's already on the stack.

$$reach_H(\langle v_1, v_2 \rangle) = reach_H(v_1) \uplus reach_H(v_2)$$

 $reach_H(l) = \{l\} \cup reach_H(H(l))$
 $reach_H(-) = \emptyset$

For a multiset S, we write $\mu: S \to \mathbb{N}^+$ for the multiplicity function of S, which maps each element to the count of its occurrence. If $\forall s \in S.\mu(s) = 1$, then S is a property set, and we denote it by set(S).

Next, we define the predicates no_alias:

no_alias
$$(V, H)$$
: $\forall x, y \in \overline{V}, x \neq y$. Let $r_x = reach_H(\overline{V}(x)), r_y = reach_H(\overline{V}(y))$. Then:

(1) $set(r_x), set(r_y)$

(2)
$$r_x \cap r_y = \emptyset$$

 $\mathsf{no_ref}(V, H, v)$: There is no such $x \in \overline{V}$ s.t. $l \in reach_H(v) \cap \bigcup_{x \in \overline{V}} reach_H(V(x))$.

If the induced graph of heap H is a forest, then it is a disjoint union of arborescences (directed trees), and there is at most one path from one loaction in H to another by following the pointers.

5 Soundness for garbage collection semantics

We simplify the soundness proof of the type system for the general metric to one with monotonic resource. (No function types for now)

Lemma 1.1. If Σ ; $\Gamma \mid \frac{q}{q'} e : B$, then Σ^{\dagger} ; $\Gamma^{\dagger} \vdash e : B^{\dagger}$.

Lemma 1.2. If $V, H, R, F \vdash e \Downarrow v, H', F'$, then $\forall x \in V$, $reach_H(V(x)) = reach_{H'}(V(x))$.

Lemma 1.3. For all stacks V and heaps H, if $\operatorname{no_alias}(V,H)$, $\Sigma^{\dagger}; \Gamma^{\dagger} \vdash e : B^{\dagger}$, $F \cap R = \emptyset$, $(F \cup R) \cap locs_{V,H}(e) = \emptyset$, $H \models V : \Gamma$, and $V,H,R,F \vdash e \Downarrow v,H',F'$, then $\operatorname{set}(reach_{H'}(v))$, $R \cap reach_{H'}(v) = \emptyset$, $F' \cap R = \emptyset$, $\operatorname{no_ref}(V,H,v)$, and $\operatorname{no_alias}(V,H')$.

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 7: E:Let

$$V, H, R, F \vdash \mathsf{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2, F_2 \tag{case}$$

$$V, H, R', F \vdash e_1 \Downarrow v_1, H_1, F_1 \tag{ad.}$$

$$\Sigma; \Gamma_1, \Gamma_2 \mid_{\overline{q}}^q \mathsf{let}(e_1; x : \tau.e_2) : B \tag{case}$$

$$\Sigma; \Gamma_1 \mid_{\overline{p}}^q e_1 : A \tag{ad.}$$

$$\Sigma^\dagger; \Gamma_1^\dagger \vdash e_1 : A^\dagger \tag{Lemma 1.1}$$

$$\Sigma; \Gamma_2, x : A \mid_{\overline{q'}}^p e_2 : B \tag{ad.}$$
Suppose no_alias $(V, H), F \cap R = \emptyset set, (F \cup R) \cap locs_{V,H}(e) = \emptyset, \text{ and } H \vDash V : \Gamma$

$$H \vDash V : \Gamma_1 \tag{def of W.D.E}$$

$$F \cap R' = \emptyset \text{ since } F \cap locs_{V,H}(e) = \emptyset$$

$$R' \cap locs_{V,H}(e_1) = \emptyset \tag{no_alias}(V, H)$$

$$(F \cup R') \cap locs_{V,H}(e_1) = \emptyset \tag{Sp.}$$

Case 13: E:MatCons

$$V(x) = (l, alive)$$
 (ad.)

By IH, $set(reach_{H_1}(v_1)), R' \cap reach_{H_1}(v_1) = \emptyset, F_1 \cap R' = \emptyset, \text{ and no_alias}(V, H_1)$

$$H(l) = \langle v_h, v_t \rangle \qquad (ad.) \\ \Gamma = \Gamma', x : L^p(A) \qquad (ad.) \\ \Sigma; \Gamma', x_h : A, x_t : L^p(A) \Big| \frac{q+p+1}{q'} e_2 : B \qquad (ad.) \\ \Sigma; \Gamma', x_h : A, x_t : L^p(A) \Big| \frac{q+p+1}{q'} e_2 : B \qquad (ad.) \\ V'', H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F' \qquad (ad.) \\ \text{Suppose no_alias}(V, H), F \cap R = \emptyset, \text{ and } H \vDash V : \Gamma \\ H \vDash V(x) : L^p(A) \qquad (ad.) \\ H \vDash v_h : A, H'' \vDash v_t : L^p(A) \qquad (ad.) \\ H \vDash v_h : A, H \vDash v_t : L^p(A) \qquad (???) \\ H \vDash V'' : \Gamma', x_h : A, x_t : L^p(A) \qquad (def of W.D.E) \\ \text{NTS no_alias}(V'', H) \qquad (def of W.D.E) \\ \text{NTS no_alias}(V'', H) \qquad (ad.) \\ \text{Let } x_1, x_2 \in \overline{V}'', x_1 \neq x_2, r_{x_1} = reach_H(\overline{V}''(x_1)), r_{x_2} = reach_H(\overline{V}''(x_2)) \\ \text{case: } x_1 \notin \{x_h, x_t\}, x_2 \notin \{x_h, x_t\} \\ (1), (2) \text{ from no_alias}(V, H) \qquad (ad.) \\ \text{case: } x_1 = x_h, x_2 \notin \{x_h, x_t\} \\ \text{set}(r_{x_1}) \text{ since set}(H(l)) \text{ from no_alias}(V, H) \\ \text{set}(r_{x_2}) \text{ since no_alias}(V, H) \\ \text{AFSOC, suppose } t' \in r_{x_1} \cap r_{x_2} \\ \text{but } reach_H(\overline{V}(x)) \cap r_{x_2} = \emptyset, \text{ contradiction} \\ \text{hence } r_{x_1} \cap r_{x_2} = \emptyset \\ \text{case: } x_1 = x_h, x_2 = x_t \\ \text{set}(r_{x_1}) \text{ since set}(H(l)) \text{ from no_alias}(V, H) \\ \text{AFSOC, suppose } t' \in r_{x_1} \cap r_{x_2} \\ \text{but then } \mu_{reach_H(t)}(t') \geq 2, \text{ and set}(H(t)) does not hold.} \\ \text{hence } r_{x_1} \cap r_{x_2} = \emptyset \\ \text{case: otherwise} \\ \text{similar to the above} \\ \text{Thus we have no_alias}(V'', H) \\ (F \cup g) \cap R = \emptyset \text{ since } F \cap R = \emptyset \\ \text{By IH, set}(reach_{H'}(v)), F' \cap R = \emptyset, \text{ and no_alias}(V'', H') \\ \text{NTS no_alias}(V, H') \\ \text{Follows from Lemma...}$$

Task 1.4 (Soundness). let $H \vDash V : \Gamma$, Σ ; $\Gamma \vdash_{q'}^{q} e : B$, and $V, H \vdash e \Downarrow v, H'$. Then $\forall C \in \mathbb{Q}^+$ and $\forall F \subseteq \mathsf{Loc} \ with \ |F| \ge \Phi_{V,H}(\Gamma) + q + C$, if $\mathsf{no_alias}(V)$, $R \cap locs_{V,H}(e) = \emptyset$, and $F \cap locs_{V,H}(e) = \emptyset$,

then there exists $F' \subseteq \text{Loc } s.t.$

1.
$$V, H, R, F \vdash e \Downarrow v, H', F'$$

2.
$$|F'| > \Phi_{H'}(v:B) + q' + C$$

Proof. Induction on the evaluation judgement.

Case 1: E:Var

$$V, H, R, F \vdash x \Downarrow V(x), H, F$$

$$\Sigma; x : B \mid \frac{q}{q} x : B$$

$$|F| - |F'|$$

$$= |F| - |F|$$

$$= 0$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

$$= \Phi_{V,H}(x : B) + q - (\Phi_{H}(V(x) : B) + q)$$

$$= \Phi_{H}(V(x) : B) + q - (\Phi_{H}(V(x) : B) + q)$$

$$= 0$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
(admissibility)
(admissibility)
(ad.)
(admissibility)
(ad.)
(ad.)
(admissibility)
(ad.)
(ad.)
(ad.)
(def. of $\Phi_{V,H}(\Gamma) = 0$
(def. of $\Phi_{V,H}(\Gamma) = 0$
(4)

Case 2: E:Const* Due to similarity, we show only for E:ConstI

$$|F| - |F'| = |F| - |F|$$

$$= 0$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') = \Phi_{V,H}(\emptyset) + q - (\Phi_{H}(v:int) + q)$$

$$= 0$$

$$(\text{def of } \Phi_{V,H})$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 4: E:App

Case 5: E:CondT

$$\begin{split} \Gamma &= \Gamma', x : \texttt{bool} \\ H &\models V : \Gamma' \\ \Sigma; \Gamma' \left| \frac{q}{q'} \ e_t : B \right. \\ V, H, R, F &\cup g \ \vdash e_t \Downarrow v, H', F' \\ |F &\cup g| - |F'| \leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q') \\ |F| &- |F'| \leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q') \end{split} \tag{IH}$$

Case 6: E:CondF Similar to E:CondT

Case 7: E:Let

$$V, H, R', F \vdash e_1 \Downarrow v_1, H_1, F_1 \qquad (ad.)$$

$$\Sigma; \Gamma_1 | \frac{q}{p} e_1 : A \qquad (ad.)$$

$$H \vDash V : \Gamma_1 \qquad (\Gamma_1 \subseteq \Gamma)$$

$$|F| - |F_1| \le \Phi_{V,H}(\Gamma_1) + q - (\Phi_{H_1}(v_1 : A) + p) \qquad (IH)$$

$$V', H_1, R, F_1 \cup g \vdash e_2 \Downarrow v_2, H_2, F_2 \qquad (ad.)$$

$$\Sigma; \Gamma_2, x : A \mid \frac{p}{q'} e_2 : B \qquad (ad.)$$

$$H_1 \vDash v_1 : A \text{ and} \qquad (Theorem 3.3.4)$$

$$H_1 \vDash V : \Gamma_2 \qquad (???)$$

$$H_1 \vDash V' : \Gamma_2, x : A \qquad (def of \vDash)$$

$$|F_1 \cup g| - |F_2| \le \Phi_{V',H_1}(\Gamma_2, x : A) + p - (\Phi_{H_2}(v_2 : B) + q') \qquad (IH)$$

$$|F_1| - |F_2| \le \Phi_{V',H_1}(\Gamma_2, x : A) + p - (\Phi_{H_2}(v_2 : B) + q')$$
summing the inequalities:
$$|F| - |F_1| + |F_1| - |F_2| \le \Phi_{V,H}(\Gamma_1) + q - (\Phi_{H_1}(v_1 : A) + p) + \Phi_{V',H_1}(\Gamma_2, x : A) + p - (\Phi_{H_2}(v_2 : B) + q')$$

$$|F| - |F_2| \le \Phi_{V,H}(\Gamma_1) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(\Gamma_2, x : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$= \Phi_{V,H}(\Gamma_1) + \Phi_{V',H_1}(\Gamma_2) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(x : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$(def of \Phi_{V,H})$$

$$\alpha = \Phi_{V,H}(\Gamma_1) + \Phi_{V,H}(\Gamma_2) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(x : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$(Lemma 4.3.3)$$

$$= \Phi_{V,H}(\Gamma) + q - \Phi_{H_1}(v_1 : A) + \Phi_{H_1}(v_1 : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$(Lemma 4.3.3)$$

$$= \Phi_{V,H}(\Gamma) + q - (\Phi_{H_2}(v_2 : B) + q')$$

Case 8: E:Pair Similar to E:Const*

Case 9: E:MatP Similar to E:MatCons

Case 10: E:Nil Similar to E:Const*

|F| - |F'|

Case 11: E:Cons

$$= |F| - |F \setminus \{l\}|$$

$$= 1$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

$$= \Phi_{V,H}(x_h:A, x_t:L^p(A)) + q + p + 1 - (\Phi_{H'}(v:L^p(A)) + q)$$

$$= \Phi_{V,H}(x_h:A, x_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A)))$$

$$= \Phi_{H}(V(x_h):A) + \Phi_{H}(V(x_t):L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A)))$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))$$
(ad.)
(ad.)

$$=\Phi_{H}(v_{h}:A)+\Phi_{H}(v_{t}:L^{p}(A))+p+1-(p+\Phi_{H'}(v_{h}:A)+\Phi_{H'}(v_{t}:L^{p}(A)))$$
 (Lemma 4.1.1)
$$=\Phi_{H}(v_{h}:A)+\Phi_{H}(v_{t}:L^{p}(A))+p+1-(p+\Phi_{H}(v_{h}:A)+\Phi_{H}(v_{t}:L^{p}(A)))$$
 (Lemma 4.3.3)
$$=1$$
 Hence,
$$|F|-|F'|\leq\Phi_{VH}(\Gamma)+q-(\Phi_{H'}(v:B)+q')$$

Case 12: E:MatNil Similar to E:Cond*

Case 13: E:MatCons

$$V(x) = (l, \texttt{alive}) \tag{ad.}$$

$$H(l) = \langle v_h, v_l \rangle \tag{ad.}$$

$$\Gamma = \Gamma', x : L^p(A) \tag{ad.}$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \big|_{q^+p^+1}^{q^+p^+1} e_2 : B \tag{ad.}$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \big|_{q^+p^+1}^{q^+p^+1} e_2 : B \tag{ad.}$$

$$V'', H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F' \tag{ad.}$$

$$H \vDash V(x) : L^p(A) \tag{def of W.D.E}$$

$$H'' \vDash v_h : A, H'' \vDash v_t : L^p(A) \tag{ad.}$$

$$H \vDash v_h : A, H' \vDash v_t : L^p(A) \tag{def of W.D.E}$$

$$Suppose \ \text{no_alias}(V)H, R \cap locs_{V,H}(e) = \emptyset, \ \text{and} \ F \cap locs_{V,H}(e) = \emptyset$$

$$NTS \ |F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q') \ \text{and no_alias}(V)H'$$

$$WTS \ \text{no_alias}(V'')H$$

$$let \ l \in H \ \text{arbitrary}, y, z \in \overline{V}'' \ \text{arbitrary}, r_y = root(\overline{V}''(y)), r_z = root(\overline{V}''(z))$$

$$\text{case:} \ y \notin \{x_h, x_t\}, z \notin \{x_h, x_t\}$$

$$y, z \in \overline{V} \tag{def of } V''$$

$$(1) - (3) \ \text{holds} \tag{Sp.}$$

$$\text{case:} \ y = x_h, z \notin \{x_h, x_t\}$$

$$\text{set}(root(\langle v_h, v_t \rangle)) \tag{Sp.}$$

$$\text{set}(root(\langle v_h, v_t \rangle)) \tag{Sp.}$$

$$\text{set}(root(\langle v_h, v_t \rangle)) \tag{def of } V''$$

$$\text{def of } V''$$

 $z \in \overline{V}$

 $\operatorname{set}(r_z)$ (Sp.)

(def of V'')

hence we have (1)

Suppose $l' \in r_y \cap r_z$

$$l' \in H \qquad (H \models V'' : \Gamma', x_h : A, x_t : L^p(A))$$

$$H \models id_{l'} : l' \leadsto l' \tag{Id}$$

$$H \vDash (l, l') : l \leadsto l'$$
 (Edge)

```
H \vDash id_{l'} \equiv (l, l') : l' \leadsto l'
                                                                                                         (linear_H(r_x, r_z))
   contradiction, hence r_y \cap r_z = \emptyset,
                                                                                                   (hence we have (2))
   let l' \in H arbitrary l_1, l_2 \in r_y
                                                                                                                (arbitrary)
   suppose H \vDash p : l_1 \leadsto l', H \vDash q : l_2 \leadsto l'
   H \vDash (l, l_1) : l \leadsto l_1 \text{ and } H \vDash (l, l_2) : l \leadsto l_2
                                                                                                                      (Edge)
   H \vDash p \circ (l, l_1) : l \leadsto l' \text{ and } H \vDash q \circ (l, l_2) : l \leadsto l'
                                                                                                                     (Comp)
   H \vDash p \circ (l, l_1) \equiv q \circ (l, l_2) : l \leadsto l'
                                                                                                         (linear_H(r_x, r_x))
   H \vDash p \equiv q : l_1 \leadsto l'
                                                                                                      (inversion on Eq)
   hence we have linear_H(r_u, r_u)
   linear_H(r_z, r_z)
                                                                                                                         (Sp.)
   let l' \in H arbitrary, l_1 \in r_u, l_2 \in r_z
                                                                                                                (arbitrary)
   suppose H \vDash p : l_1 \leadsto l', H \vDash q : l_2 \leadsto l'
   H \vDash (l, l_1) : l \leadsto l_1
                                                                                                                      (Edge)
   H \vDash p \circ (l, l_1) : l \leadsto l'
                                                                                                                     (Comp)
   l = l_2
                                                                                                         (linear_H(r_x, r_z))
   contradiction since r_x \cap r_z = \emptyset
   hence we have linear_H(r_y, r_z)
   hence we have (3)
   case: y = x_t, z \notin \{x_h, x_t\}
   case: y = \notin \{x_h, x_t\}, z = x_h
   case: y = \notin \{x_h, x_t\}, z = x_t
   all symmetric to previous case
   case: y = x_h, z = x_t
   we get (1) the same way as the previous case
   set(root(\langle v_h, v_t \rangle))
                                                                                                                         ((1))
   set(root(v_h) \uplus root(v_t))
                                                                                                              (def of root)
   root(v_h) \cap root(v_t) = \emptyset
                                                                                                                (def of set)
   r_y \cap r_z = \emptyset
                                                                                                             (def of r_y, r_z)
   we get (3) the same way as the previous case
   hence we have no\_alias(V'')H
let l' \in locs_{V'',H}(e_2) arbitrary
   \exists ! x' \in \overline{V}''. \exists ! l'' \in root(\overline{V}''(x')). H \vDash p : l'' \leadsto l'
                                                                                                         (\text{def of } locs_{V,H})
   case: x' \notin \{x_h, x_t\}
   x \in \overline{V}
                                                                                                                (\text{def of }V'')
   l' \in locs_{VH}(e)
                                                                                                         (\text{def of } locs_{V,H})
   case: x' = x_h
   H \vDash (l, l'') : l \leadsto l''
                                                                                                                      (Edge)
```

$$H \vDash p \circ (l,l'') : l \leadsto l' \qquad (\text{Comp}) \\ l' \in locs_{V,H}(e) \qquad (\text{def of } locs_{V,H}) \\ \text{thus we have } locs_{V'',H}(e_2) \subseteq locs_{V,H}(e) \\ F \cap locs_{V'',H}(e_2) = \emptyset \qquad (\text{Sp.}) \\ g \cap locs_{V'',H}(e_2) = \emptyset \qquad (\text{def. of } g) \\ (F \cup g) \cap locs_{V'',H}(e_2) = \emptyset \qquad (\text{def. of } g) \\ |F \cup g| - |F'| \leq \Phi_{V,H}(\Gamma',x_h : A,x_t : L^p(A)) + q + p + 1 - (\Phi_{H'}(v : B) + q') \qquad (\text{def of } \Phi_{V,H}) \\ = \Phi_{V,H}(\Gamma') + \Phi_H(v_h : A) + \Phi_H(v_l : L^p(A)) + p + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (\text{def of } \Phi_{V,H}) \\ = \Phi_{V,H}(\Gamma') + \Phi_H(\langle v_h, v_t \rangle^L : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (\text{def of } \Phi_{V,H}) \\ = \Phi_{V,H}(\Gamma', z : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (\text{def of } \Phi_{V,H}) \\ = \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (\text{def of } \Phi_{V,H}) \\ = \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (\text{def. of } locs_{V,H}) \\ \text{suppose } l \in locs_{V',H}(e_2) \\ \exists x' \in FV(e_2) \cap \overline{V''}, l' \in root(\overline{V''}(x')) . x \neq x', H \vDash p : l' \leadsto l \qquad (\text{def. of } locs_{V,H}) \\ \text{case: } x' \notin \{x_h, x_t\} \qquad (\text{def. of } locs_{V,H}) \\ \text{case: } x' = x_h \qquad H \vDash p \circ (l, l') : l \leadsto l \qquad (\text{def. of } locs_{V,H}) \\ H \vDash id_l : l \leadsto l \qquad (\text{contradiction since linear}_H(r_x, r_x)) \\ \text{hence we have } l \notin locs_{V'',H}(e_2) \\ l \in g \qquad (\text{def of } g) \\ |g| \ge 1 \qquad |F| + |g| - |F'| \qquad (F, g \text{ disjoint}) \\ \text{Hence,} \\ |F| + |g| - |F'| \le \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \\ |F| - |F'| \le \Phi_{V,H}(\Gamma) + q + 1 - |g| - (\Phi_{H'}(v : B) + q') \\ \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q') \qquad (|g| \ge 1)$$