4.
$$(2A-I)(2A-I)=4AA-2A-2A+I$$
 since A idempotent
$$=4A-4A+I$$

$$=1$$

5
$$A' = A = 0$$
 $\alpha_{ji} = \alpha_{ij}$
 $|A| = \sum_{j=1}^{p} \alpha_{ij} c_{ij}$ where $c_{ij} = (-1)^{p} |A|$
 $|A'| = |-A| = (-1)^{p} |A|$
but $|A'| = |A|$ also
50 $|A| = (-1)^{p} |A|$
 $(1 - (-1)^{p})|A| = 0$
30 when $|A| = (-1)^{p} |A| = 0$

- Def: A p-dimensional random vector X is said to have a multivariate Normal distribution with mean vector μ and covariance matrix Σ if its p.d.f. is given by
 - $f(x) = (2\pi)^{-p/2} |\Sigma|^{-1/2} exp\{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\}, x \in \mathbb{R}^p$
 - We write $X \sim N_p(\mu, \Sigma)$

9.

• When p=2, $N_2(\mu,\Sigma)$ is called the bivariate Normal distribution.

9. (8 points) The random vector $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ has density function

$$f(x_1, x_2) = \frac{1}{2\pi} \exp\{-\frac{1}{2}(2x_1^2 + x_2^2 + 2x_1x_2 - 22x_1 - 14x_2 + 65)\}, (x_1, x_2)' \in \mathbb{R}^2$$

Calculate E(X) and cov(X).