PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

BZ

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12Q 1/68	A1	 (11) International Publication Number: WO 99/60164 (43) International Publication Date: 25 November 1999 (25.11.99)
 (21) International Application Number: PCT/US (22) International Filing Date: 14 May 1999 ((30) Priority Data: 60/085,673 15 May 1998 (15.05.98) (71) Applicant: QUARK BIOTECH, INC. [US/US]; 105tine Lane, Pleasanton, CA 94566 (US). (72) Inventors: EINAT, Paz; Neve Nir 1/27, Ness-Zi MOR, Orna; Emek Ayalon Street 12, Ganei Ila One (IL). SKALITER, Rami; Habanim Stree Ness-Ziona (IL). FEINSTEIN, Elena; Hahaga 12/29, Rehovot (IL). FAERMAN, Alexander, 2024/36, Bnei Aiish (IL). (74) Agents: KOWALSKI, Thomas, J. et al.; Frommer La Haug LLP, 745 Fifth Avenue, New York, NY 10 	9 Serpe ona (II. n, Kiry t 117/1 na Stre Haell:	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI paten (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MECHANICAL STRESS INDUCED GENES, EXPRESSION PRODUCTS THEREFROM, AND USES THEREOF

(57) Abstract

This disclosure relates to osteoporosis. Moreover, the disclosure relates to mechanical stress induced genes, probes therefor, tests to identify such genes, expression products of such genes, uses for such genes and expression products, e.g., in diagnosis (for instance risk determination), treatment, prevention, or control, of osteoporosis or factors or processes which lead to osteoporosis; and, to diagnostic, treatment, prevention, or control methods or processes, as well as compositions therefor and methods or processes for making and using such compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Rederation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
ER	Estonia	LR	Liberia	SG	Singapore		

1

TITLE OF THE INVENTION

MECHANICAL STRESS INDUCED GENES, EXPRESSION PRODUCTS THEREFROM, AND USES THEREOF

5 RELATED APPLICATION

15

20

25

This application is based upon and claims priority from U.S. Provisional application Serial No. 60/085,673, filed May 15, 1998.

Reference is also made to U.S. Provisional application Serial No. 60/084,944, filed May 11, 1998, and the full U.S. utility application, Serial No. ______, filed May 11, 1999, naming as inventors Paz Einat, Rami Skaliter, Orna Mor and Sylvie Luria and assigned to the assignee of the present application (Kohn & Associates Attorney Docket No. 0168.00060), and claiming priority from U.S. Provisional application Serial No. 60/084,944 (herein "the May 11, 1999 Einat et al. full U.S. utility application").

U.S. Provisional application Serial No. 60/085,673, filed May 15, 1998, U.S. application Serial No. 60/084,944, and the May 11, 1999 Einat et al. full U.S. utility application, as well as each document or reference cited in that application, is hereby expressly incorporated herein by reference. Documents or references are also cited in the following text, either in a Reference List before the claims, or in the text itself; and, each of these documents or references ("herein-cited documents or references"), as well as each document or reference cited in each of the herein-cited documents or references, is hereby expressly incorporated herein by reference. It is explicitly stated that the inventive entity of the May 11, 1999 Einat et al. full U.S. utility application is not another or others as to the inventive entity of this application; and, that the inventive entity of the Present application is not another or others as to the inventive entity of the Maty 11, 1999 Einat et al. full U.S. utility application.

FIELD OF THE INVENTION

This invention relates to osteoporosis. Moreover, the invention relates to mechanical stress induced genes, probes therefor, tests to identify such genes, expression products of such genes, uses for such genes and expression products, e.g., in diagnosis (for instance risk determination), treatment, prevention, or control, of osteoporosis or factors or processes which lead to osteoporosis; and, to diagnostic,

2

treatment, prevention, or control methods or processes, as well as compositions therefor and methods or processes for making and using such compositions.

The present application also relates to a method for identifying genes that are regulated at the RNA level. More specifically, the present application relates to the rapid isolation of differentially expressed or developmentally regulated gene sequences through analysis of mRNAs obtained from specific cellular compartments. By comparing changes in the relative abundance of the mRNAs found in these compartments occurring as a result of application of a cue or stimulus to the tested biological sample, genes that are differentially expressed can be characterized.

The present invention especially relates to such methods with respect to bone cells and/or the stimulus being mechanical stress.

These and other areas to which the invention relates will be apparent from the following text.

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

Bone is composed of a collagen-rich organic matrix impregnated with mineral, largely calcium and phosphate. Two major forms of bone exist, compact cortical bone forms the external envelopes of the skeleton and trabecular or medullary bone forms plates that traverse the internal cavities of the skeleton. The responses of these two forms to metabolic influences and their susceptibility to fracture differ.

Bone undergoes continuous remodeling (turnover, renewal) throughout life. Mechanical and electrical forces, hormones and local regulatory factors influence remodeling. Bone is renewed by two opposing activities that are coupled in time and space (Parfitt 1979). These activities - resorption and formation – are contained within a temporary anatomic structure known as a bone remodeling unit (Parfitt 1981). Within a given bone remodeling unit, old bone is resorbed by osteoclasts. The resorbed cavity created by the osteoclasts is subsequently filled with new bone by osteoblasts, which synthesize the organic matrix of bone.

Peak bone mass is mainly genetically determined, though dietary factors and physical activity can have positive effects. Peak bone mass is attained at the point when skeletal growth ceases, after which time bone loss starts.

In contrast to the positive balance that occurs during growth, in osteporosis, the resorbed cavity is not completely refilled by bone (Parfitt 1988). Osteoporosis, or porous bone, is a progressive and chronic disease characterized by low bone mass and

3

structural deterioration of bone tissue, leading to bone fragility and an increased susceptibility to fractures of the hip, spine, and wrist (diminishing bone strength).

Bone loss occurs without symptoms. The Consensus Development Conference (Am J Med 94:646-50, 1993) defined osteoporosis as "a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture."

Common types of osteoporosis include postmenopausal osteoporosis; and senile osteoporosis, which generally occurs in later life, e.g., 70+ years; see, e.g., U.S. Patent No. 5,691,153 and documents cited therein and during its prosecution, all incorporated herein by reference.

Osteoporosis is estimated to affect more than 25 million people in the United States (Rosen 1997); and, at least one estimate asserts that osteoporosis affects 1 in 3 women (Keen et al. 1997). However, life expectancy has increased, and in the western world, 17% of women are now over 50 years of age; and, a woman can expect to live a third (1/3) of her life after menopause. Thus, some estimate that 1 out of every 2 women and 1 out of 5 men will eventually develop osteoporosis; and, that 75 million people in the US, Japan and Europe have osteoporosis. The World Summit of Osteoporosis Societies estimates that more than 200 million people world-wide are afflicted with the disease. The actual incidence of the disease is difficult to estimate since the condition is often asymptotic until a bone fracture occurs. It is believed that there are over 1.5 million osteoporosis-associated bone fractures per year in the U.S. of which 300,000 are hip fractures that usually require hospitalization and surgery and may result in lengthy or permanent disability or even death. (See Spangler et al. "The Genetic Component of Osteoporosis Mini-review;

http://www.csa.com.osteointro.html)

5

10

15

20

25

30

Further, there is a 20-30% mortality rate related to hip fractures in elderly women (U.S. Patent No. 5,691,153); and, it is reported that such a patient with a hip fracture has a 10-15% greater chance of dying than others of the same age. Further, it is reported that although men suffer fewer hip injuries than women, men are 25% more likely than women to die within one year of the injury. See Sprangler et al., supra. Also, about 20% of the patients who were living independently before a hip fracture still remain confined in a long-term health care facility one year later; and, the treatment of ostepososis and related fractures can cost over \$10 billion annually.

4

Accordingly, osteoporosis is a major health problem in virtually all societies (Eisman 1996; Wark 1996; U.S. Patent No. 5,834,200 and the documents cited therein, being hereby incorporated herein by reference).

Treatment for osteoporosis helps stop further bone loss and fractures, such as HRT (hormone replacement therapy), bisphosphonates, e.g., alendronate (Fosamax), as well as, estrogen and estrogen receptor modulators, progestin, calcitonin, and vitamin D.

While there may be numerous factors that determine whether any particular person will develop osteoporosis, a step towards prevention, control or treatment of osteoporosis is determining whether one is at risk for osteoporosis. Genetic factors are said to play an important role in the pathogenesis of osteoporosis (Ralston 1997; see also Keen et al. 1997; Eisman 1996; Rosen 1997; Cole 1998, Johnston et al. 1995; Gong et al. 1996; Wasnich 1996 inter alia).

10

15

20

25

30

Some attribute 50-60% of total bone variation (Bone Mineral Density; BMD), depending upon the bone area, to genetic effects (Livshits et al. 1996). However, up to 85%-90% of the variance in bone mineral density may be genetically determined.

For instance, as studies have shown from family histories, twin studies, and racial factors, there may be a predisposition for osteoporosis (see, e.g., Jouanny et al. 1995; Garnero et al. 1996; Cummings 1996; Lonzer et al. 1996). Several candidate genes may be involved in this, most probably multigenic process.

Association between vitamin D receptor gene (VDR) allelic variation and BMD has been suggested. Restriction fragment length polymorphisms (RFLPs) at the vitamin D receptor (VDR) gene locus have been recently correlated to bone mineral density (BMD) and rate of bone loss (see, e.g., Tokita et al. 1996; Cole et al. 1998; Eisman 1996; Keen et al. Ralston 1997; Fujita 1996; Houston et al. 1996; Riggs et al. 1995; Fleet et al. 1995; Krall et al. 1995).

Collagen type I alpha gene has been implicated (see, e.g., Dalgleish 1997; Pereira et al. 1995). The COLIA1 and COLIA2 genes encode type I collagen, a key bone protein, and, therefore, may play a role in the genetic control of bone mass.

Mutation of the estrogen receptor (ER) gene may be implicated in some cases of osteoporosis (polymorphism of the ER gene has been correlated with BMD in some populations) (see Sano et al. 1995; see also U.S. Patent No. 5,834,200). Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) have also been

5

implicated in the pathogenesis of osteoporosis in recent studies. These proinflammatory cytokines induce both cyclooxygenase (COX) and nitric oxide synthase (NOS) with the release of prostaglandin (PG) and NO, respectively. Cytokines have been shown to be powerful regulators of bone resorption and formation, though under superior control from oestrogen/testosterone, parathyroidhormone and 1,25(OH)2D3. Some of the cytokines primarily enhance osteoclastic bone resorption e.g. IL-1 (Interleukin-1), TNF (Tumor Necrosis Factor) and IL-6 (Interleukin-6), while others primarily stimulate bone formation e.g. TGF-beta (Transforming Growth Factor), IGF (Insulin-like Growth Factor) and PDGF (Platelet Derived Growth Factor).

There is need for clinical and epidemiological research to further explore and extend the current potential for practical control, prevention and treatment of the disease. A deeper knowledge of factors controlling bone cell activity and regulation of bone mineral and matrix formation and remodeling is desired.

Further, while certain genetic may be useful for detecting high bone mass or predisosition to low or high bone mineral density (see U.S. Patents Nos. 5,691,153 and 5,834,200), there is a need for further tests to determine risk for osteoporosis; and, there is a need for new treatments, preventatives, or means to control osteoporosis or factors or processes which lead to osteoporosis.

20 OBJECTS AND SUMMARY OF THE INVENTION

10

15

25

30

An object of the invention can include any one or any combination or all of: advancing clinical and epidemiological research and/or further exploring and extending the current potential for practical control, prevention and treatment of the disease; providing further knowledge of factors controlling bone cell activity and regulation of bone mineral and matrix formation and remodeling; providing further tests to determine risk for osteoporosis; and/or new treatments, preventatives, or means to control osteoporosis or factors or processes which lead to osteoporosis.

The present invention provides mechanical stress induced genes, probes therefor, a test to identify such genes, expression products of such genes, uses for such genes and expression products, e.g., in diagnosis (for instance risk determination), treatment, prevention, control, or osteoporosis or factors or processes which lead to osteoporosis. Thus, the invention further provides diagnostic, treatment, prevention, control methods or processes as well as compositions.

6

There is disclosed a method for identifying genes whose expression is regulated at the RNA level in an organism including the steps of selectively stimulating translation of an unknown target mRNA with a stress inducing element, the target mRNA being part of a larger sample of mRNA, dividing the sample of mRNA into pools of translated and untranslated mRNA and differentially analyzing the pools of mRNA to identify genes translationally regulated by the stress inducing element. The stress inducing element can include pathologic, environmental including chemical and physical stressors or other stimulus that induces mRNA translation. The stress inducing element can comprise mechanical stress. The sample can comprise bone cells that retain being bone cells in a culture, e.g., calvaria cells.

5

10

15

20

25

30

According to the present application, methods are disclosed for identifying genes that may be regulated on a number of possible regulatory levels. Such methods include the steps of exposing cells or tissue to a cue or stimulus such as mechanical, chemical, toxic, pharmaceutical or other stress, hormones, physiological disorders or disease; fractionating the cells into compartments such as polysomes, nuclei, cytoplasm and spliceosomes; extracting the mRNA from these fractions, and subjecting the mRNA to differential analysis using accepted methodologies, such as gene expression array (GEM).

For instance, the application discloses the use of RNA isolation from nuclei for isolating genes whose steady state levels show only minor changes, but which show high differential expression when detected by nuclear RNA probe. Most such genes are regulated at the transcriptional level. One type of regulation is shown using polysomes isolated from cells/tissues to identify genes whose mRNA steady state levels dô not change, but are highly increased in the polysomes after application of a stress cue. Such genes are regulated strictly on the translation level. A subgroup of genes regulated on the translational level involves the existence of internal ribosome entry sites. A method is disclosed for identification of such genes, which includes inhibiting 5'cap-dependant mRNA translation in a cell, collecting a pool of mRNA from the cells, and differentially analyzing the pool of mRNA to identify genes with sequences coding for internal ribosome entry sites.

Thus, the application discloses a method or process for identifying genes whose expression is responsive to a specific cue or cues including the steps of:

(a) applying a cue to an organism or tissue or cells;

7

(b) isolating specific cellular fractions from the tissues or cells subjected to the cue;

(c) extracting the mRNA from the cellular fractions; and

5

10

15

20

25

30

(d) differentially analyzing the mRNA samples in comparison with control samples not subjected to the cue to identify genes that have responded to the cue.

The cells or tissues can be bone cells which retain the nature of being bone cells when in a culture and the cue can be mechanical stress or a lack thereof.

The cue can be a toxin or a chemical, or a pharmaceutical, or a mechanical stress, or an electric current, or a pathogen or a pathological condition, or a hormone, or a specific protein. The cue can be further defined as chemically treating the cells, or irradiating the cells, or depriving the cells of oxygen. The cue can be further defined as a stress-inducing element of unknown relationship to gene translation.

The genes can be identified at the translation level; genes regulated at the transcription level; genes regulated by RNA stability; genes regulated by mRNA transport rate between the nucleus and cytoplasm; genes regulated by differential splicing; and genes regulated by antisense RNA.

The mRNA samples can be further fractionated into mRNA subfractions which are subjected to differential analysis to identify genes responsive to the cue at all levels of expression regulation as herein defined and to determine the abundance and direction of the response. The mRNA sample can be fractionated into one or more subfractions from the group consisting essentially of cytoplasmic, nuclear, polyribosomal, sub polyribosomal, microsomal or rough endoplasmic reticulum, mitochondrial and splicesome associated mRNA.

The differential analysis step can be selected from the group consisting of differential display, representational differential analysis (RDA), suppressive subtraction hybridization (SSH), serial analysis of gene expression (SAGE), gene expression microarray (GEM), nucleic acid chip technology, oligonucleotide chip technology; DNA membrane arrays; direct sequencing and variations and combinations of these methods. The differential analysis step can be further defined as identifying and measuring the genes regulated at the translation level. The differential analysis step can also be further defined as identifying and measuring the genes regulated at the transcription level. The differential analysis step can also be further defined as identifying and measuring the genes regulated by RNA stability.

WO 99/60164 *

10

25

30

8

PCT/US99/11066

The differential analysis step can additionally be further defined as identifying and measuring the genes regulated by mRNA transport rate between the nucleus and the cytoplasm. The differential analysis step can also be further defined as identifying and measuring the genes regulated by differential splicing. The differential analysis step additionally can be further defined as identifying and measuring the genes encoding secreted and membrane proteins. The differential analysis step can also be further defined as identifying and measuring the genes encoding for nuclear proteins.

The application further discloses a method for determining risk of developing a physiological or disease state based upon absence or decrease from normal cells of mRNA or protein from a gene shown to be down regulated in a mammal by an inventive or disclosed method comprising:

- (a) determining the level or status of mRNA in cells of said mammal; and/or
- (b) determining the level or status of corresponding protein in cells of said mammal; and
- 15 (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus the risk of developing a physiological or disease state.

The application further discloses a method for determining risk of physiological or disease state based upon presence or an increase from normal cells of mRNA or protein from a gene shown to be upregulated by an inventive or disclosed method in a mammal comprising:

- (a) determining the level or status of mRNA in cells of said mammal; and/or
- (b) determining the level or status of corresponding protein in cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a

10

15

20

25

30

transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.

These "determining" methods can be diagnostic methods; e.g., methods for diagnosing a physiological or disease state.

The application further discloses a method for testing a medicament for or a gene therapy approach to a physiological or disease state or other factors causing or contributing thereto or to symptoms thereof based on absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein of identified genes comprising an inventive or disclosed method additionally comprising: (a') administering the medicament or the gene therapy; and from the comparing determining an absence or decrease from normal cells or presence or increase from normal cells of the relevant mRNA or protein and thus efficacy of the medicament or the gene therapy.

The application still further discloses a method for treating, preventing or controlling a physiological or disease state comprising an inventive or disclosed method and additionally comprising administering a medicament or treatment therefor or for a cause thereof or a symptom thereof.

The medicament or treatment can comprise the protein, a functional portion thereof, a vector expressing the protein or a functional portion thereof, or an inhibitor of the protein or of a functional portion thereof, or an inhibitor of a nucleic acid encoding the protein or a functional portion thereof.

Inventive or disclosed methods can further comprise:

- (d) determining the level or status of a second gene mRNA in cells of said mammal; and/or
- (e) determining the level or status of protein expressed by a second gene product in cells of said mammal; and
- (f) comparing said level or status of that mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence,

which may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining risk.

Steps (a) and/or (b) and optionally (d) and/or (e) can be carried out *in vivo* and/or steps (a) and/or (b) and optionally (d) and/or (e) can be carried out *in vitro*.

The determination in step (a) and optionally in step (d) can be effected by employing

5

10

15

20

25

30

- (i) a nucleic acid sequence corresponding to at least a part of the gene encoding at least part of the protein and optionally a second nucleic acid sequence corresponding to at least a part of the second gene encoding at least part of the second protein;
- (ii) a nucleic acid sequence complementary to the nucleic acid sequence(s) of (i); or
- (iii) a primer or a primer pair hybridizing to the nucleic acid sequence(s) of (i) or (ii).

The determination in step (b) and optionally of step (e) can be effected by employing an antibody or a fragment thereof that specifically binds to the protein and optionally by employing a second antibody or a fragment thereof which specifically binds to the second protein.

In inventive methods, the stimulus can be mechanical stress or a lack thereof and the sample comprises bone cells which retain their characteristic thereof in cultures.

The invention further provides a gene identification process comprising: preparation of probes from a model system; analysis of DNA chip hybridization; sequencing of clones showing differential expression; and optionally full-length cloning of clones of interest.

The model system can comprise bone cells which retain their characteristic thereof in cultures which have mechanical stress or a lack thereof applied thereto. The bone cells can comprise a calvaria primary culture.

The invention further provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells of mRNA or protein from a gene shown to be down regulated by an inventive method comprising:

11

(a) determining the level or status of mRNA in bone cells of said mammal; and/or

- (b) determining the level or status of corresponding protein in bone cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

5

10

15

30

The invention still further provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or other conditions involving mechanical stress or a lack thereof, based upon presence or increase from normal cells of mRNA or protein from a gene shown to be upregulated by an inventive method in a mammal comprising:

- (a) determining the level or status of mRNA in bone cells of said mammal; and/or
- (b) determining the level or status of corresponding protein in bone cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.

The invention also provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or lower levels of osteoblasts and chondrocytes or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells of mRNA or protein from 608 comprising:

(a) determining the level or status of mRNA in bone cells of said mammal; and/or

12

(b) determining the level or status of corresponding protein in bone cells of said mammal; and

(c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.

Further still, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or of imbalance as to osteogenic and chondrogenic cells or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein from 405 in a mammal comprising:

10

30

æ

- (a) determining the level or status of mRNA in bone cellsof said mammal; and/or
- (b) determining the level or status of corresponding protein in bone cells of said mammal; and

20 (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

Even further, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or of being susceptible to environmental factors or other than genetic factors of osteoporosis or of predisposition of bones towards susceptibility to environmental factors, or less lymphoid cells, or osteopososis, or other conditions involving mechanical stress or a lack thereof, based upon presence or

13

increase from normal cells or absence or decrease from normal cells of mRNA or protein from 274 in a mammal comprising:

- (a) determining the level or status of mRNA in bone cells of said mammal; and/or
- (b) determining the level or status of corresponding protein in bone cells of said mammal; and
 - (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

10

15

20

25

30

These "determining" methods can be diagnostic methods; e.g., methods for diagnosing osteoporosis or for diagnosing other conditions recited in the preamble of these "determining" methods.

Also, the invention further provides a method for testing a medicament for or gene therapy approach to osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, based on absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein comprising a method according to any one of the foregoing inventive methods and additionally comprising:

(a') administering the medicament or the gene therapy; and from the comparing determining an absence or decrease from normal cells or presence or increase from normal cells of the relevant mRNA or protein and thus efficacy of the medicament or the gene therapy.

The invention also comprehends analogous methods with respect to other genes identified by inventive processes, e.g., CMF2-224, CMF2-45.

Similarly, the invention additionally provides a method for treating, preventing or controlling osteporosis or other conditions involving mechanical stress or a lack thereof, comprising a method according to any one of the foregoing inventive methods and further comprising administering a medicament or treatment for osteoporosis or a cause thereof or a symptom thereof.

14

Still further, the invention provides a composition comprising a gene or portion thereof or a protein or portion thereof expressed by the gene or portion thereof or an antibody or portion thereof which binds to the protein or portion thereof, wherein the gene is identified by an inventive method.

Even further still, the invention provides an osteoporosis or mechanical stress or lack thereof model comprising bone cells which retain their characteristic thereof in culture with mechanical stress applied thereto or an absence of mechanical stress applied thereto.

The invention additionally provides an isolated nucleic acid molecule encoding the herein identified protein 608 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.

5

10

15

20

25

30

Further, the invention provides an isolated nucleic acid molecule encoding the herein identified protein 405 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.

Also, the invention provides an isolated nucleic acid molecule encoding the herein identified protein 274 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.

The invention comprehends an isolated nucleic acid molecule encoding human protein 608 or a functional portion thereof. The invention further comprehends an isolated nucleic acid molecule encoding human protein 405 or a functional portion thereof. And, the invention comprehends the isolated nucleic acid molecule encoding human protein 274 or a functional portion thereof. In particular embodiments, the invention provides the isolated nucleic acid molecules identified herein by sequence numbers, as well as functional portions thereof.

The invention further encompasses a vector comprising an inventive isolated nucleic acid molecule, a composition comprising such a vector, a probe or primer which specifically hybridizes to such an isolated nucleic acid molecule, and an expression product of such an isolated nucleic acid molecule.

The invention still further provides an isolated polypeptide herein identified as protein 608 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.

15

The invention also provides an isolated polypeptide herein identified as protein 405 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.

And, the invention provides an isolated polypeptide herein identified as protein 274 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.

5

10

15

20

25

30

The invention comprehends an isolated polypeptide which is human protein 608 or a functional portion thereof, as well as an isolated polypeptide which is human protein 405 or a functional portion thereof, and an isolated polypeptide which is human protein 274 or a functional portion thereof. The invention further comprehends polypeptides identified by sequence identification numbers, as well as polypeptides from expression of nucleic acid molecules identified by sequence identification numbers; and, functional portions thereof. Further still, the invention comprehends compositions comprising an inventive polypeptide or portion thereof. Even further, the invention envisions an antibody elicited by an inventive polypeptide or a functional portion thereof, as well as a functional portion of such an antibody; and, compositions comprising such an antibody or portion thereof.

The invention further encompasses methods for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, comprising administering an inventive polypeptide or portion thereof; and accordingly, the invention comprehends uses of polypeptides in preparing a medicament or therapy for such prevention, treatment or control.

The invention even further encompasses a method for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, comprising administering an inventive vector or inventive nucleic acid molecules; and accordingly, the invention comprehends uses of such vectors or nucleic acid molecules in preparing a medicament or therapy for such prevention, treatment or control.

The invention also comprehends a method for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a

16

lack thereof, comprising administering a composition comprising a gene or functional portion thereof identified in inventive methods or an inventive model or an expression product thereof or an antibody or portion thereof elicited by such an expression product or portion thereof; and, the invention thus further comprehends uses of such genes, expression products, antibodies, portions thereof, in the preparation of a medicament or thereapy for such control, prevention or treatment.

The invention yet further provides methods for preparing a polypeptide comprising expressing the polypeptide from inventive vectors or from inventive genes or genes identified in inventive methods or models, or portions of such genes.

Further still, the invention envisions advancing research in or studies of bone development and/or osteopososis comprising the inventive methods, materials/products, and/or models.

10

15

20

25

30

The invention comprehends genes differentially expressed under the influence of (a) mechanical force applied to a calvaria primary cell culture and (b) treatment of PGE2 applied to the same culture. In addition the invention involves the effect of calcium depletion. The genes that are differentially expressed are thus demonstrated to be involved in the processes that lead to osteoporosis or other mechanical stress or lack thereof related conditions.

Certain genes identifed by the methods herein respond to estrogen. From the methods disclosed herein one can identify compounds to which genes identifed by herein methods respond. Thus, the invention comprehends a method for affecting a gene identified by any one of the herein methods comprising contacting cells containing the gene with a compound to which the gene responds; e.g., administering the compound as a composition or formulation as herein described. Thus, for instance, with respect to genes which respond to estrogen, the invention envisions a method for affecting (e.g., stimulating expression, inhibiting expression, and the like) the gene comprising contacting a cell containing the gene with estrogen or a derivative or precursor thereof, e.g., 17-Beta estradiol and the like.

It is noted that in this disclosure, the word "comprises" can have the meaning attributed to it in U.S. Patent law; e.g., it can mean "includes".

These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.

17

BRIEF DESCRIPTION OF FIGURES

5

10

15

20

25

30

The following Detailed Description, given by way of example, but not intended to limit the invention to specific embodiments described, may be understood in conjunction with the accompanying Figures, incorporated herein by reference, in which:

Figure 1A shows an absorbance profile of a fractionation of cytoplasmic RNA on a sucrose density gradient wherein the absorbance (at 254nm) is plotted against the sedimentation rate of the cytoplasmic RNA;

Figure 1B shows a purified RNA electrophoresed on an agarose gel and stained with ethidium bromide illustrating the fractionation of RNA;

Figure 2 shows a representation of DNA chip hybridization results comparing probes of total RNA (Tot) to probes derived from nuclear RNA (STP);

Figure 2A shows a table of genes identified by inventive methods, and sequences therefor or sequences of ESTs thereof (SEQ ID NOS:);

Figure 3 shows DNA and amino acid sequences for inventive nucleic acid molecule 608 and the expression product therefrom with this Figure differing from other 608 sequences herein in that Figure 3 shows additional protein sequences towards the 5' end (compare Figure 3 from about position 1025 with other 608 sequence figures herein) (SEQ ID NOS:);

Figure 4 shows the results of a 5' fragment probe of inventive nucleic acid molecule 608 on target mRNA in normal and mechanically stressed cells;

Figure 5 shows DNA and amino acid sequences for inventive nucleic acid molecule 608 and the expression product therefrom (SEQ ID NOS:);

Figure 6 shows Clustal X (1.64b) Multiple Sequence Alignment with respect to inventive nucleic acid molecule 608 and probes therefor (SEQ ID NOS.);

Figures 7 shows the results of a probe of human 405 on the target total RNA of human k562;

Figure 8 shows the results of a probe of human 405 on the target rat cmf RNA; Figures 9 and 10 show the DNA and amino acid sequences for inventive

nucleic acid molecule 405 and the expression product therefrom (SEQ ID NOS:);

Figure 11 shows Clustal X (1.64b) Multiple Sequence Alignment with respect to inventive nucleic acid molecule 405 and probes therefor (SEQ ID NOS.);

18

Figure 12 shows the results of a probe of 8 KB of human 274 on the target rat bone, rat testes and human cell line NB4 total RNA sources;

Figure 13 shows the DNA and amino acid sequences for inventive nucleic acid molecule 274 and the expression product therefrom (SEQ ID NOS:);

Figure 14 shows the DNA and amino acid sequences for inventive nucleic acid molecule 274 and the expression product therefrom (SEQ ID NOS:). (Markings on sequence figures, e.g., sequence figures such those for 608, such as dots and plus/minus signs may indicate repeats, such as IgG repeats, that may appear in many proteins; there are approximately 20 such IgG repeats in the 608 sequence listing.)

DETAILED DESCRIPTION

5

10

15

20

25

30

As discussed, disclosed herein is a method for identifying genes whose expression is regulated at the RNA level in an organism.

More in particular, disclosed herein is a method of identifying genes whose expression is regulated at least in part at the mRNA level by selectively stimulating an unknown target mRNA with a stress inducing element, the target mRNA being part of a larger sample. The organism may be any organism which provides suitable mRNA. The mRNA sample is derived from cellular compartments based on expression regulation and protein localization which are differentially analyzed to identify genes which are translationally regulated by the stress inducing element. This method is designed for identifying and cloning genes which are responsive to specific cues. That is, the present method is designed for identifying and cloning genes which are either up- or down- regulated responsive to a specific pathology, stress, physiological condition, and so on, and in generally to any factor that can influence cells or organisms to alter their gene expression.

This disclosure provides a novel approach to the identification and cloning of genes that are involved in fundamental cellular functions and which are regulated at any level in an organism. The basic underlying theory for this method relies on the knowledge that the regulation of gene expression can be controlled at different levels (modes) and that each different regulation level(s) is manifested by some difference in the distribution of the specific mRNAs in the cell. In genes that are regulated by translation, the mRNA is stored in the cell in an inactive form and will not be found on polysomes. Following the appropriate external cue, the mRNA is incorporated into

5

10

15

20

25

30

١.

19

the polysomes and translated, and the encoded protein quickly appears. By comparing mRNA populations that are "active" or "non-active" at a given time, genes that are regulated by a mechanism referred to as the "shift mechanism" can be identified.

Genes whose main regulatory level is the active transport of mRNA from the nucleus to the cytoplasm are stored in the nucleus and at the appropriate cue the mRNA is transported to the cytoplasm. Comparison of mRNA isolated from the nucleus and cytoplasm before and after the cue can lead to the discovery of genes controlled in this way. The comparison of mRNA derived from the nucleus also allows direct analysis of the transcription activity of many genes. For most transcriptionally activated genes a basal level of mRNA exists in the cell even when the basal transcription activity is low. Thus, increased transcription (up to five-fold) is often obscured when total cellular RNA is used for differential analysis of gene expression. The use of nuclear RNA allows direct measurement of transcription activity of many genes, since the basal mRNA is found in the cytoplasm. The result is a major increase in sensitivity for the detection of differential expression.

In the case of mRNA stability regulation, it is expected that such mRNA would be similarly transcribed before and after cue administration, resulting in a similar abundance in nuclear mRNA pools. However, if the mRNA is stabilized following the cue, its abundance in the cytoplasm would become higher. In the case of mRNA transport regulation, such mRNA is expected to exist at a high level in the nucleus and a low level in the cytoplasm prior to the cue, which situation would be reversed after administration of the cue. It is thus easy to differentiate between the two regulatory modes.

The method of the invention includes the identification of genes regulated at the translational level; genes regulated at the transcription level; genes regulated by RNA stability; genes regulated by mRNA transport rate between the nucleus and the cytoplasm; and genes regulated by differential splicing. That is, genes whose expression is at least partly controlled or regulated at the mRNA level can be identified.

The method will identify genes encoding secreted and membrane proteins; genes encoding for nuclear proteins; genes encoding for mitochondrial proteins; and

20

genes encoding for cytoskeletal proteins. In addition, any other gene whose expression can be controlled at the mRNA level can be identified by this method.

As used herein, RNA refers to RNA isolated from cell cultures, cultured tissues or cells or tissues isolated from organisms which are stimulated, differentiated, exposed to a chemical compound, are infected with a pathogen or otherwise stimulated. As used herein, translation is defined as the synthesis of protein on an mRNA template.

10

15

20

25

30

As used herein, stimulation of translation, transcription, stability or transportation of unknown target mRNA or stimulating element, includes chemically, pathogenically, physically, or otherwise inducing or repressing an mRNA population from genes which can be derived from native tissues and/or cells under pathological and/or stress conditions. In other words, stimulating the expression of a gene's mRNA with a stress inducing element or "stressor" can include the application of an external cue, stimulus, or stimuli which stimulates or initiates translation of a mRNA stored as untranslated mRNA in the cells from the sample. The stressor may cause an increase in stability of certain mRNAs, or induce the transport of specific mRNAs from the nucleus to the cytoplasm. The stressor may also induce gene transcription. In addition to stimulating translation of mRNA from genes in native cells/tissues, stimulation can include induction and/or repression of genes under pathological and/or stress conditions. The present method utilizes a stimulus or stressor to identify unknown target genes which are regulated at the various possible levels by the stress inducing element or stressor.

The method synergistically integrates methodologies which were not previously used together.

One methodology comprises the division of cellular mRNA into separate pools of mRNA derived from polysomes, nucleus, cytoplasm or spliceosomes.

Another methodology comprises the simultaneous comparison of the relative abundance of the mRNA species found in the separate pools by a method of differential analysis such as differential display, representational difference analysis (RDA), gene expression microarray (GEM), suppressive subtraction hybridization (SSH) (Diatchenko et al., 1996), and oligonucleotide chip techniques such as the chip technology exemplified by United States Patent No. 5,545,531 to Rava et al. assigned

21

to Affymax Technologies N.V. and direct sequencing exemplified by WO 96/17957 patent application to Hyseq, Inc.

Briefly, subtractive hybridization is defined as subtraction of mRNA by hybridization in solution. RNAs that are common to the two pools form a duplex that can be removed, enriching for RNAs that are unique or more abundant in one pool. Differential Display is defined as reverse transcription of mRNA into cDNA and PCR amplification with degenerated primers. Comparison of the amounts amplification products (by electrophoresis) from two pools indicate transcript abundance. RDA, GEM, SSH, SAGE are described herein above.

The specific cells/tissues which are to be analyzed in order to identify translationally regulated genes, can include any suitable cells and/or tissues. Any cell type or tissue can be used, whether an established cell line or culture or whether directly isolated from an exposed organism.

10

15

20

30

The cells/tissues to be analyzed under the present method are selectively stimulated or "stressed" utilizing a physiological, chemical, environmental and/or pathological stress inducing element or stressor, in order to stimulate the translation of mRNA within the sample tissue and identify genes whose expression is regulated at least in part at the mRNA level. Stimulation can cause up or down regulation. Following stimulation, RNA is isolated or extracted from the cells/tissues. The isolation of the RNA can be performed utilizing techniques which are well known to those skilled in the art and are described, for example, in "Molecular Cloning; A Laboratory Manual" (Cold Springs Harbor Laboratory Press, Cold Spring Harbor, New York, 1989). Other methods for the isolation and extraction of RNA from cells/tissue can be used and will be known to those of ordinary skill in the art. (Mach et al., 1986, Jefferies et al., 1994). However, may variations of these methodologies have been published. The methods described herein were carefully selected after many trials.

The mRNAs which are actively engaged in translation and those which remain untranslated can be separated utilizing a procedure such as fractionation on a sucrose density gradient, high performance gel filtration chromatography, or polyacrylamide gel matrix separation (Ogishima et al., 1984, Menaker et al., 1974, Hirama et al., 1986, Mechler, 1987, and Bharucha and Murthy, 1992), since mRNAs that are being translated are loaded with ribosomes and, therefore, will migrate differently on a

22

density gradient than ribosome-free untranslated mRNAs. By comparing mRNA populations that are active or non-active in translation at a given time, genes that are regulated by the "shift mechanism" can be identified.

Polysomal fractionation and specific analysis can be facilitated by treatment of target cell/tissue with drugs that will specifically inhibit or modulate transcription or translation. Examples of such drugs are actinomycin D and cyclohexamide, respectively.

The fractionation can be completed to create polysomal subdivisions. The subdivisions can be made to discriminate between total polyribosomes or membrane bound ribosomes by methods known in the art (Mechler, 1987). Further, the mRNA sample can additionally be fractionated into one or more of at least the following subsegments or fractions: cytoplasmatic, nuclear, polyribosomal, sub polyribosomal, microsomal or rough endoplasmic reticulum, mitochondrial and splicesome associated mRNA by methods known in the art.

15

20

25

More specifically, nuclear fractions can be obtained using the method set forth in the article entitled Abundant Nuclear Ribonucleoprotein Form of CAD RNA (Sperling, 1984) as set forth in the Examples, thus allowing nuclear RNA to be utilized for a method of identifying genes which are regulated or responsive to stress conditions. Further, antisense RNA can be utilized as a method for identifying genes which are responsive to specific pathology or stress conditions. Antisense RNA can be isolated using the methods described by Dimitrijevic, whose abstract details the methods utilized for obtaining and isolating antisense RNA from a sample. Additionally, microsomal fractions may be obtained using the methods of the present invention as set forth in the Experimental Section which are modifications of the methods disclosed by Walter and Blobel in 1983.

Following isolation and division of the total mRNA population into separate expression regulation and protein localization pools of mRNA, the relative abundance of the many mRNA species found in these pools are simultaneously compared using a differential analysis technique such as differential display, oligonucleotide chips, representational difference analysis (RDA), GEM-Gene Expression Microarrays (Schena et al., 1995, Aiello et al., 1994, Shen et al., 1995, Bauer et al., 1993, Liang and Pardee, 1992, Liang and Pardee, 1995, Liang et al., 1993, Braun et al., 1995, Hubank and Schatz, 1994) and suppressive subtraction hybridization (SSH). The

23

RNA isolated from the fractions can be further purified into mRNA without the ribosomal RNA by poly A selection. It should be noted that multiple pools can be analyzed utilizing this method. That is, different cell aliquots subjected to different stressors can be compared with each other as well as with the reference sample.

5

10

15

20

25

30

Labeled nucleic acid probes (in a cDNA, PCR product or rRNA transcribed from the cDNA) made from RNA derived from polysomal, non-polysomal, mRNPs, nuclear, cytoplasmic, or spliceosome fractions can be used as probes, to identify clones of cDNA, genomic clones, and mRNA species that are fixed onto a solid matrix-like microarrays such as (GEM), that shown in United States Patent Number 5,545,531 to Rava et al. and WO96/17957 to Hyseq, Inc., and membranes of any kind where clones can be either blotted after electrophoresis or directly loaded (dot blot) onto the membrane. The label can be radioactive, fluorescent, or incorporating a

modified base such as digoxigenin and biotin.

Comparison between the fractions derived from the polysomal or polyribosomal fraction or other fractions to the total unfractionated material is essential to discriminate between differentials in expression levels that are the result of transcription modulation from those that result from modulation of translation per se. The polysomal fractions or groups can include membrane bound polysomes, loose or tight polysomes, or free unbound polysome groups.

The importance of utilizing the polysomal sub-population in order to identify differentially (translationally) expressed genes is shown in Example 1 where a number of genes were not detected as translationally expressed under heat shock inducement when total mRNA was used as the detection probe but, however, when polysomal mRNA was used as a probe, a number of genes were identified as differentially expressed. As shown in Example 1, a number of genes under heat shock inducement with total mRNA derived probe were detected when probed with polysomal mRNA fractions. Heat shock, being a model for acute diseases such as ischemic diseases, reveal the importance of the polysomal probe. Cells store critical mRNAs in an inactive form so that in an acute situation they can be quickly loaded onto polysomes (without the need to wait for their production by transcription) and translated to produce the proteins the cells require for their survival under stress.

The present method for identifying translationally regulated genes is not limited by the source of the mRNA pools. Therefore, the present method can be

24

utilized to clone genes from native cells/tissue under pathological and/or stress conditions that are regulated by the "shift mechanism," as well as genes that are induced/repressed under pathological and/or stress conditions. Pathologies can include disease states including those diseases caused by pathogens and trauma.

Stress conditions can also include disease states, physical and psychological trauma, and environmental stresses. Following analysis by the selected method of differential analysis, the genes which have been identified as being regulated by translation can be cloned by any suitable cloning methodologies known to those skilled in the art. (Lisitsyn and Wigler, 1993).

Differential comparisons can be made of all possible permutations of polysomal vs. non-polysomal RNA where the definition of the fraction type is done, for example, by absorbance profile at 254nm, density of the sucrose gradient as shown in Figure 1A (or another size standard if high pressure liquid chromatography or gel systems are used) and types of RNA that are stained with ethidium bromide after electrophoresis of the fractions on agarous gels are completed, as shown in Figure 1B. In Figure 1A, the polysomal fractions are those that have mRNA with more than two ribosomes loaded. The materials and methods for this comparison are set forth below in the experimental section.

Differential comparisons can also include polysomal vs. non-polysomal fractions in each condition. By "condition" it is meant that cells from the same source, such as a cell line, a primary cell, or a tissue that undergoes different treatment or has been modified to have different features or to express different sets of genes. For example, this can be accomplished by differentiation, transformation, application of the stress such as oxygen deprivation, chemical treatment, or radiation.

25 Permutations can include, for example:

10

15

20

- 1. polysomal fractions between conditions individually (migrating in the same density) or in a pool;
- 2.* non-polysomal fractions between conditions individually (migrating in the same density) or in a pool;
- 30 3. non-polysomal to polysomal between conditions and within each condition individually (migrating in the same density) or in a pool; and

5

20

25

30

25

4. each of the fractions being polysomal and non-polysomal individually (migrating in the same density) or in a pool that can be compared to total RNA that is unfractionated.

The method described above for the identification of genes regulated on the translational level has a number of applications. A particular application for this method is its use for the detection of changes in the pattern of mRNA expression in cells/tissue associated with any physiological or pathological change. By comparing the translated versus untranslated mRNAs, the effect of the physiological or pathological cue or stress on the change of the pattern of mRNA expression in the cell/tissue can be observed and/or detected. This method can be used to study the effects of a number of cues, stimuli, or stressors to ascertain their effect or contribution to various physiological and pathological activities of the cell/tissue. In particular, the present method can be used to analyze the results of the administrations of pharmaceuticals (drugs) or other chemicals to an individual by comparing the mRNA pattern of a tissue before and after the administration of the drug or chemical. This analysis allows for the identification of drugs, chemicals, or other stimuli which affect cells/tissue at the level of translational regulation. Utilizing this method, it is possible to ascertain if particular mRNA species are involved in particular physiological or disease states and, in particular, to ascertain the specific cells/tissue wherein the external stimulus, i.e., a drug, affects a gene which is regulated at the translational level.

The identification of a subgroup of genes regulated on the translational level involved a method for identifying gene sequences coding for internal ribosome entry sites (IRES), including the general steps of inhibiting 5'cap-dependant mRNA translation in a cell, collecting a pool of mRNA from the cells, and differentially analyzing the pool of mRNA to identify genes with sequences coding for internal ribosome entry sites. The inhibiting step can be further defined as selecting for non-5'-cap dependent mRNA translation or by incorporating a gene, such as a gene coding for a protease such as poliovirus 2A protease. The method can include the step of controlling the expression of the gene. The analyzing step can be further defined as differential display analysis, or as representational difference analysis, or as performing a gene expression microarray analysis. The method can include the further step of cloning genes identified as being translationally regulated. The

26

analyzing step can distinguish between polysomal fractions that migrate in the same density individually or in a pool. The analyzing step can distinguish between nonpolysomal fractions individually or as a pool. The analyzing step can distinguish between stimulated polysomal and nonpolysomal fractions individually or in a pool. And, the analyzing step can distinguish between each of the polysomal and nonpolysomal fractions individually or in a pool compared to an unfractionated total

And, the analyzing step can distinguish between each of the polysomal and nonpolysomal fractions individually or in a pool compared to an unfractionated total RNA pool.

Utilizing these methods, it is possible to ascertain if particular mRNA species are involved in particular physiological or disease states and, in particular, to ascertain the specific cells/tissue wherein the external stimulus, e.g., a drug, affects a gene which is regulated at the translational level.

10

15

Accordingly, in an aspect, the application also discloses a method for determining risk of developing a physiological or disease state based upon absence or decrease from normal cells of mRNA or protein from a gene shown to be down regulated by the inventive or herein disclosed methods in a mammal comprising:

- (a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or
- (b) determining the level or status of corresponding protein in cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

In another aspect, the disclosure herein provides a method for determining risk of physiological or disease state based upon presence or increase from normal cells of mRNA or protein from a gene shown to be upregulated by the inventive or herein disclosed methods in a mammal comprising:

(a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or

27

(b) determining the level or status of corresponding protein in cells of said mammal; and

(c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.

10

15

20

25

30

The foregoing methods can be employed in inventive methods for testing a medicament for or a gene therapy approach to a physiological or disease state or other factors causing or contributing thereto or to symptoms thereof based on absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein of identified genes additionally comprising: (a') administering the medicament or the gene therapy; and from the comparing determining an absence or decrease from normal cells or presence or increase from normal cells of the relevant mRNA or protein and thus efficacy of the medicament or the gene therapy.

Similarly, in still further aspects, the disclosure herein provides methods for treating, preventing or controlling a physiological or disease state comprising administering a medicament or treatment therefor or for a cause thereof or a symptom thereof, including the foregoing detection methods. For instance, from the comparing one determines an absence or decrease from normal cells or presence or increase from normal cells of particular mRNA or protein and thus risk and administers a the medicament or treatment.

The methods can additionally comprise using the steps in conjunction with another test method akin to those described above, e.g., having a same or similar preamble recitation and comprising:

- (d) determining the level or status of a second gene mRNA in cells of said mammal; and/or
- (e) determining the level or status of protein expressed by a second gene product in cells of said mammal; and

5

10

15

30

(f) comparing said level or status of that mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein.

The absence or decrease or presence or increase may be correlated to risk.

Thus, the second gene can be identified by methods of the invention or as disclosed herein. Or alternatively or additionally, the second gene and/or the additional steps can be determined in accordance with other methods, e.g., other methods for determining the risk of the physiological or disease state or a condition or factor associated therewith. Thus, such methods can be used in conjunction with methods herein to advance or improve diagnostic or detection methodologies.

In the methods, steps (a) and/or (b) and optionally (d) and/or (e) are carried out *in vivo* and/or steps (a) and/or (b) and optionally (d) and/or (e) are carried out *in vitro*.

The determination in step (a) and optionally in step (d) can be effected by employing

- 20 (i) a nucleic acid sequence corresponding to at least a part of the gene encoding at least part of the protein and optionally a second nucleic acid sequence corresponding to at least a part of the second gene encoding at least part of the second protein;
 - (ii) a nucleic acid sequence complementary to the nucleic acid sequence(s) of (i); or
- 25 (iii) a primer or a primer pair hybridizing to the nucleic acid sequence(s) of (i) or (ii).

The determination in step (b) and optionally of step (e) can be effected by employing an antibody or a fragment thereof that specifically binds to the protein and optionally by employing a second antibody or a fragment thereof which specifically binds to the second protein.

Cells may be considered "normal" in the methods by having an absence of the physiological or disease being tested for; or by any other standard definition recognized in the art.

29

The medicament or treatment can be any conventional medicament or treatment for the physiological or disease. Alternatively or additionally, the medicament or treatment can be the particular protein of the gene detected in the inventive methods or a functional portion thereof, or that which inhibits that protein, e.g., binds to it. Similarly, additionally or alternatively, the medicament or treatment can be a vector which expresses the protein of the gene detected in the inventive methods or a functional portion thereof or that which inhibits expression of that gene; again, for instance, that which can bind to it and/or otherwise prevents its transcription or translation. The selection of administering a protein or that which expresses it, or of administering that which inhibits the protein or the gene expression, can be done without undue experimentation, e.g., based on down regulation or up regulation as determined by inventive methods (e.g., in the osteoporosis model).

5

10

15

20

25

30

In an aspect of the invention, the stimulus in inventive methods is mechanical stress or a lack thereof, e.g., with respect to bone cells which retain their characteristic thereof in cultures.

In a further aspect, the invention provides an application of inventive methods with respect to osteoporosis, a major health problem; and provides inventive products and uses therefor. As discussed, osteoporosis or porous bone, is a progressive and chronic disease characterized by low bone mass and structural deterioration of bone tissue, with bone loss being possibly without symptoms, leading to bone fragility and an increased susceptibility to fractures of the hip, spine, and wrist (diminishing bone strength).

Osteoporosis is histologically, biochemical and kinetically heterogeneous. Data points to causes such as: deficiency of estrogen and deficiency of calcium.

Calcium is an essential nutrient that is involved in most metabolic processes and the phosphate salts of which provide mechanical rigidity to the bones and teeth, where 99% of the body's calcium resides. The calcium in the skeleton has the additional role of acting as a reserve supply of calcium to meet the body's metabolic needs in states of calcium deficiency. Calcium deficiency is easily induced because of the obligatory losses of calcium via the bowel, kidneys, and skin. Calcium deficiency delays the consolidation of the skeleton, may cause mobilization of bones and has been shown in animals to lead to osteoporosis.

30

Further, bone is composed of a collagen-rich organic matrix impregnated with mineral, largely calcium and phosphate. Two major forms of bone exist, compact cortical bone forms the external envelopes of the skeleton and trabecular or medullary bone forms plates that traverse the internal cavities of the skeleton. The responses of these two forms to metabolic influences and their susceptibility to fracture differ. Bone undergoes continuous remodeling (turnover) throughout life. Osteoclasts are the cells in the skeleton that responsible for breaking down bones, osteoblasts on the other hand, are capable of forming new bones. Mechanical and electrical forces, hormones and local regulatory factors influence remodeling. Peak bone mass is mainly genetically determined, though dietary factors and physical activity can have positive effects. Peak bone mass is attained at the point when skeletal growth ceases, after which time bone loss starts. Bone mass declines throughout life due to an imbalance in this process.

10

15

20

25

30

It is noted that the World Health Organization (WHO Technical Report Series: 843, 1994) characterizes "normal", e.g., as to women, as bone mineral density (BMD) or bone mineral content (BMC) that is greater than or equal to 1 standard deviation (SD) below the young adult reference range; "low bone mass" as BMD or BMC 1-2.5 SD below the mean of young healthy adults, e.g., women; "osteoporosis" as BMD or BMC greater than 2.5 SD below the mean of young healthy adults, e.g., women; and "severe osteoporosis" as BMD or BMC greater than 2.5 SD below the mean of young healthy adults, e.g., women and the presence of one or more fragility fractures. From this information and the knowledge in the art, the skilled artisan can determine and employ "normal" cells, without any undue experimentation.

Osteoblasts are particularly sensitive to aging phenomena--more sensitive than are osteoclasts--so the negative bone balance increases with increasing age. Age-dependent bone loss is aggravated by reduced calcium absorption, a mutation in the collagen gene and polymorphism in TGF-beta and estrogen receptor proteins.

Cells bind to ECM (extracellular matrix) via specific cell surface receptors such as integrins. When engaging with ECM ligands, these receptors can activate signal transduction pathways within the cells and may act as mechanochemical transducers. Thus, interaction of cells with ECM can modulate gene expression.

Among the genes that are, in part, controlled by cell-ECM interactions are those for

31

certain ECM components themselves. Bone cells, remodel their matrix and reorient bone trabeculae in response to mechanical strain.

Accordingly, the nature of the bone cell response can relate to the state of differentiation. Furthermore, evidence shows that prostaglandins are likely to play an important role in the physiologic and pathologic responses of bone tissue.

Prostaglandins can stimulate and inhibit bone resorption and formation.

Prostaglandins mediate bone loss due to immobilization, but prostaglandin E2 (PGE2) stimulates bone formation in vivo. Prostaglandin production by bone cells is highly regulated by mechanical forces, cytokines, growth factors and systemic hormones.

Mechanical stimulation applied to cultured bone cells results in increased production of several prostaglandins including PGE2, prostaglandin 12 (PGI2), and prostaglandin F2a. Addition of indomethacin, which blocks endogenous prostaglandin production, neutralizes the effect of mechanical stress treatment.

Cells isolated from calvaria bone maintain their osteoblastic phenotype in culture. Genetics factors play an important role in the pathogenesis of osteoporosis. It is suggested that up to 85%-90% of the variance in bone mineral density is genetically determined. Thus, calvaria bone cells were used in methods of the invention. Genes differentially expressed under the influence of (a) mechanical force applied to a calvaria primary cell culture and (b) treatment of PGE2 applied to the same culture. In addition, the effect of calcium depletion is also shown. The genes that result differentially expressed are thus demonstrated to be involved in the processes that lead to osteoporosis, and ergo osteoporosis.

15

20

25

30

It is well accepted that the main process that is characteristic of osteoporosis – enhanced bone resorption – takes place not only in conditions of low estrogen production (menopause women), but also in some other conditions, like treatment with glucocorticoids or bone immobilization. Therefore, it was reasoned that application of mechanical force is stimulatory for bone formation. To model this process, as discussed in the Examples, e.g., Example 2, primary rat calvaria cells grown on elastic membranes and stretched together with this membrane for 20 minutes. Genes expression patterns were compared before and after the application of mechanical force. Particular genes were found to be differentially regulated and/or differentially expressed following mechanical stimulation, validating the osteoporosis model; and, showing that the inventive methods can be used to identify genes,

32

expression products therefrom, probes/primers for such genes, as well as uses for such genes, expression products, probes/primers, inter alia.

In an aspect the invention provides a gene identification process. Steps involved in the gene identification process comprise one or more or all of the following: Preparation of probes from the model system (mechanical force, calvaria primary culture); analysis of DNA chip hybridization; sequencing of clones showing differential expression; and full-length cloning of clones of interest (cloning can be by a variety of known methodologies).

In yet another aspect the invention provides an osteoporosis model or a model for other conditions caused by mechanical stress or force, e.g., bone mass formation, comprising rat calvaria cells or another cell which retains osteoblast or osteoclast nature in cell cultures, being subjected to mechanical or other bone growth/formation inducing stress or stimuli or bone loss inducing stress or stimuli.

10

15

With respect to mechanical stress and osteoporosis, it is well documented that exercise has very beneficial effects on bone mass. The effect of the zero of gravity on astronauts and their need to do a lot of exercise is also believed well known. However, as far as the inventors know, efforts to isolate genes involved in the biological interpretation of mechanical stress signals into increase in bone mass have not heretofore been done. And, mention is made of: Binderman I, Duksin D, Harell A, Katzir E, Sachs L Formation of bone tissue in culture from isolated bone cells. J Cell 20 Biol 1974 May;61(2):427-39; Harell A, Dekel S, Binderman I Biochemical effect of mechanical stress on cultured bone cells. Calcif Tissue Res 1977 May;22 Suppl:202-7; Somjen D, Binderman I, Berger E, Harell A Bone remodelling induced by physical stress is prostaglandin E2 mediated. Biochim Biophys Acta 1980 Jan 3;627(1):91-100; Shimshoni Z, Binderman I, Fine N, Somjen D Mechanical and hormonal 25 stimulation of cell cultures derived from young rat mandible condyle. Arch Oral Biol 1984;29(10):827-31; Binderman I, Shimshoni Z, Somjen D Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif Tissue Int 1984;36 Suppl 1:S82-5; Binderman I, Zor U, Kaye AM, Shimshoni Z, Harell A, Somjen D The transduction of mechanical force into biochemical events in bone cells 30 may involve activation of phospholipase A2. Calcif Tissue Int 1988 Apr;42(4):261-6; Binderman I, Berger E, Fine N, Shimshoni Z, Harell A, Somjen D Calvaria derived

33

osteogenic cells: phenotypic expression in culture. Connect Tissue Res 1989;20(1-4):41-7.

The inventive osteoporosis model or model for other conditions caused by mechanical stress or force or lack thereof, encompasses inventive methods and products of inventive methods employed under conditions of little or no gravity, e.g., the results of performing inventive methods, such as those exemplified or analogous to those exemplified, for instance without applying mechanical stress and under conditions of little or no gravity such as on a space vehicle such as a Space Shuttle or a space station as is being constructed.

5

10

15

20

25

30

The invention is still further aspects provides CMF274, expression products therefrom, probes/primers therefor, and uses for such gene, expression products and primers/probes, as well as of functional portions of the gene or of the expression product.

The invention is still further aspects provides CMF405, expression products therefrom, probes/primers therefor, and uses for such gene, expression products and primers/probes, as well as of functional portions of the gene or of the expression product.

The invention is still further aspects provides CMF608, expression products therefrom, probes/primers therefor, and uses for such gene, expression products and primers/probes, as well as of functional portions of the gene or of the expression product.

Species of origin of the sequences: all initial sequences (short fragments of ~500bp) were rat. For 405 a homologue in the form of a partially characterized mRNA was found but there is no published information on its expression in bones. The study in rats was done to prove its function and possible uses in humans (directly or indirectly) for therapeutics. Once the rat sequence is known the isolation of the human homologues can be within the ambit of the skilled artisan; and thus, this disclosure is intended to cover the human homologues as well because these homologues fall within a degree of homology included within the present invention.

More in particular, respect to the herein mentioned nucleic acid molecules and polypeptides therefrom, e.g., the aforementioned nucleic acid molecules (608, 405, 274) and polypeptides expressed from them, the invention further comprehends isolated and/or purified nucleic acid molecules and isolated and/or purified

polypeptides having at least about 70%, preferably at least about 75% or about 77% identity or homology ("substantially homologous or identical"), advantageously at least about 80% or about 83%, such as at least about 85% or about 87% homology or identity ("significantly homologous or identical"), for instance at least about 90% or about 93% identity or homology ("highly homologous or identical"), more advantageously at least about 95%, e.g., at least about 97%, about 98%, about 99% or even about 100% identity or homology ("very highly homologous or identical" to "identical"; or from about 84-100% identity considered "highly conserved"). The invention also comprehends that these nucleic acid molecules and polypeptides can be used in the same fashion as the herein or aforementioned nucleic acid molecules and polypeptides.

Nucleotide sequence homology can be determined using the "Align" program of Myers and Miller, ("Optimal Alignments in Linear Space", CABIOS 4, 11-17, 1988, incorporated herein by reference) and available at NCBI. Alternatively or additionally, the term "homology" or "identity", for instance, with respect to a nucleotide or amino acid sequence, can indicate a quantitative measure of homology between two sequences. The percent sequence homology can be calculated as $(N_{ref} - N_{dif})*100/N_{ref}$, wherein N_{dif} is the total number of non-identical residues in the two sequences when aligned and wherein N_{ref} is the number of residues in one of the sequences. Hence, the DNA sequence AGTCAGTC will have a sequence similarity of 75% with the sequence AATCAATC $(N_{ref} = 8; N_{dif}=2)$.

Alternatively or additionally, "homology" or "identity" with respect to sequences can refer to the number of positions with identical nucleotides or amino acids divided by the number of nucleotides or amino acids in the shorter of the two sequences wherein alignment of the two sequences can be determined in accordance with the Wilbur and Lipman algorithm (Wilbur and Lipman, 1983 PNAS USA 80:726, incorporated herein by reference), for instance, using a window size of 20 nucleotides, a word length of 4 nucleotides, and a gap penalty of 4, and computer-assisted analysis and interpretation of the sequence data including alignment can be conveniently performed using commercially available programs (e.g., Intelligenetics TM Suite, Intelligenetics Inc. CA). When RNA sequences are said to be similar, or have a degree of sequence identity or homology with DNA sequences, thymidine (T)

35

in the DNA sequence is considered equal to uracil (U) in the RNA sequence (see also alignment used in Figures).

RNA sequences within the scope of the invention can be derived from DNA sequences, by thymidine (T) in the DNA sequence being considered equal to uracil (U) in RNA sequences.

5

10

15

20

25

30

Additionally or alternatively, amino acid sequence similarity or identity or homology can be determined using the BlastP program (Altschul et al., Nucl. Acids Res. 25, 3389-3402, incorporated herein by reference) and available at NCBI. The following references (each incorporated herein by reference) provide algorithms for comparing the relative identity or homology of amino acid residues of two proteins, and additionally or alternatively with respect to the foregoing, the teachings in these references can be used for determining percent homology or identity: Needleman SB and Wunsch CD, "A general method applicable to the search for similarities in the amino acid sequences of two proteins," J. Mol. Biol. 48:444-453 (1970); Smith TF and Waterman MS, "Comparison of Bio-sequences," Advances in Applied Mathematics 2:482-489 (1981); Smith TF, Waterman MS and Sadler JR, "Statistical characterization of nucleic acid sequence functional domains," Nucleic Acids Res., 11:2205-2220 (1983); Feng DF and Dolittle RF, "Progressive sequence alignment as a prerequisite to correct phylogenetic trees," J. of Molec. Evol., 25:351-360 (1987); Higgins DG and Sharp PM, "Fast and sensitive multiple sequence alignment on a microcomputer," CABIOS, 5: 151-153 (1989); Thompson JD, Higgins DG and Gibson TJ, "ClusterW: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice, Nucleic Acid Res., 22:4673-480 (1994); and, Devereux J, Haeberlie P and Smithies O, "A comprehensive set of sequence analysis program for the VAX," Nucl. Acids Res., 12: 387-395 (1984).

In this fashion, by comprehending nucleic acid molecules and polypeptides having such homology to the particular sequences disclosed, it is envisioned that the invention encompasses human and other homologues to the disclosed sequences, within the herein terms. Identification and/or isolation of corresponding human sequences can be any suitable method, for instance, by analysis of hybridization of herein defined genes (such as genes identified herein and/or identified by inventive methods herein) or suitable portions thereof, e.g., primers/probes derived from herein

36

defined genes; for instance, in PCR amplification of portions of the human genome by such primers/probes and/or labeled hybridization analysis of herein defined genes or portions thereof to portions of the human genome (see also discussions infra, e.g., concerning PCR, hybridization, inter alia).

5

ĺÛ

15

20

25

30

Furthermore, by comprehending proteins having homology to the gene products of genes identified herein (e.g., 405, 608, 274) as well as of genes identified by the methods disclosed herein, the invention comprehends proteins which are "functional" proteins derived from gene products identified herein, as well as from gene products of genes identified by the methods disclosed herein; e.g., truncated forms of proteins identified herein or expressed by genes identified by the methods disclosed herein.

As to uses, the inventive genes and expression products as well as genes identified by the herein disclosed methods and expression products thereof (including "functional" variations of such expression products, and ergo truncated portions of herein defined genes such as portions of herein defined genes which encode a functional porton of an expression product) are useful in treating, preventing or controlling or diagnosing or observing or studying osteoporosis or processes thereof or mechanical stress conditions or absence or reduced mechanical stress conditions. They may aid in bone density. They may be useful for diagnostic purposes. They may be used for determining predisposition to high or low bone density or for determining gene association or other factors associated with high bone mass or low bone mass.

For instance, 608 expression causes cells to differentiate into osteoblasts and chondrocytes. The expression product of 608, or if cells or vectors expressing 608 may cause cells to selectively differentiate and thereby increase or alter bone density. Detecting levels of 608 mRNA or expression and comparing it to "normal" non-osteopathic levels may allow one to detect who may be at risk for osteoporosis or lower levels of osteoblasts and chondrocytes.

405 expression impacts upon bone density by being characteristic for osteogenic and chondrogenic cells in their differentiation predeeding matrix calcification. The expression product of 405 or cells or vectors expressing it may cause cells to differentiate into osteogenic and chondrogenic cells and thereby increase matrix calcification and bone density. One may detect a risk of low bone

37

density or low matrix calcification or osteoporosis by determining levels of expression of 405 or of mRNA and compare it to "normal" levels.

5

10

15

25

30

274 is implicated in lymphoid precursors in bone marrow. Under expression may lead to less lymphoid cells and bones that are more susceptible to environmental factors or other than genetic factors of osteoporosis, e.g., cancer causes of osteoporosis. One may detect a risk of predisposition of bones towards susceptibility to environmental factors, or less lymphoid cells, or osteopososis by determining levels of expression of 405 or of mRNA and comparing it to "normal" levels.

Further, genes which were upregulated and identified by the method of the present invention are of interest. That which may inhibit these genes and/or the expression products therefrom or portions thereof, e.g., antibodies or functional portions thereof or other compounds which bind thereto, may be useful in preventing, controlling or treating osteoporosis or factors leading thereto or causing osteoporosis or other conditions involving mechanical stress or a lack thereof, and the genes may be targets for anti-osteoporosis treatment or therapy, as well as for study of osteoporosis or factors leading thereto or causes thereof, e.g., determining predisposition to high or low bone density or for determining gene association or other factors associated with high bone mass or low bone mass.

Among these, three identified upregulated RGD-containing proteins,

ADAMTS-1 and complement 3 itself (potential prevention of osteoclast attraction)

and two proteins of the SARP family (secreted apoptosis related proteins) as potential modifiers of programmed cell death in bone formation were identified.

Similarly, genes which were downregulated and identified by the method of the present invention are interesting. These genes and/or the expression products therefrom and/or a functional portion thereof may be useful in preventing, controlling or treating osteoporosis or factors leading thereto or causing osteoporosis, or other conditions involving mechanical stress or a lack thereof, and the genes may be targets for anti-osteoporosis treatment or therapy, as well as for study of osteoporosis or factors leading thereto or causes thereof, e.g., determining predisposition to high or low bone density or for determining gene association or other factors associated with high bone mass or low bone mass.

Accordingly, in an aspect, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or

38

contributing to osteporosis or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells of mRNA or protein from a gene shown to be down regulated by the inventive methods in a mammal comprising:

- (a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or
 - (b) determining the level or status of corresponding protein in cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

In another aspect, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or other conditions involving mechanical stress or a lack thereof, based upon presence or increase from normal cells of mRNA or protein from a gene shown to be upregulated by the inventive methods in a mammal comprising:

- (a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or
- (b) determining the level or status of corresponding protein in cells of said25 mammal; and

20

30

(c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.

As mentioned, 608 expression causes cells to differentiate into osteoblasts and chondrocytes. Thus, in a further aspect, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or lower levels of osteoblasts and chondrocytes or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells of mRNA or protein from 608 comprising:

- (a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or
- 10 (b) determining the level or status of corresponding protein in cells of said mammal; and

5

15

20

25

30

(c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.

As discussed herein, 405 expression impacts upon bone density by being characteristic for osteogenic and chondrogenic cells in their differentiation predeeding matrix calcification. Accordingly, in a still further aspect, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or of imbalance as to osteogenic and chondrogenic cells or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells or presence or increase from normal cells, e.g., absence or decrease from normal cells of mRNA or protein from 405 in a mammal comprising:

- (a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or
- (b) determining the level or status of corresponding protein in cells of said mammal; and

40

(c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

Likewise, as discussed herein, 274 is implicated in lymphoid precursors in bone marrow.

ĺÛ

15

20

*

Therefore, in yet another aspect, the invention provides a method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or of being susceptible to environmental factors or other than genetic factors of osteoporosis, e.g., cancer causes of osteoporosis or of predisposition of bones towards susceptibility to environmental factors, or less lymphoid cells, or osteopososis, or other conditions involving mechanical stress or a lack thereof, based upon presence or increase from normal cells or absence or decrease from normal cells, e.g., absence or decrease from normal cells of mRNA or protein from 274 in a mammal comprising:

- (a) determining the level or status of mRNA in cells, e.g., bone cells (for instance, osteoblasts and/or osteoclasts) of said mammal; and/or
- (b) determining the level or status of corresponding protein in cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.

The foregoing methods, in still further aspects of the invention, can be employed in inventive methods for testing a medicament for or a gene therapy

41

approach to osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, based on absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein of identified genes additionally comprising:

(a') administering the medicament or the gene therapy; and from the comparing determining an absence or decrease from normal cells or presence or increase from normal cells of the relevant mRNA or protein and thus efficacy of the medicament or the gene therapy.

Similarly, in still further aspects, the invention provides methods for treating, preventing or controlling osteporosis or other conditions involving mechanical stress or a lack thereof, comprising administering a medicament or treatment for osteoporosis or a cause thereof or a symptom thereof, including the foregoing detection methods. For instance, from the comparing one determines an absence or decrease from normal cells or presence or increase from normal cells of particular mRNA or protein and thus risk and administers a the medicament or treatment.

10

15

20

25

30

The cells in the inventive methods can be *in vitro* or *in vivo* or from any suitable mammal, e.g., a human, a domesticated animal, for instance a companion animal or livestock, or a laboratory animal, such as a rat, mouse or the like; and, the cells can be from any stage of the mammal's development, such as embryonic, mature or adult, immature or child, newborn, or elderly, and the like.

It is noted that as to CMF608, the inventors did not see any differences in its expression between normal and ovariectomized rats suggesting it may not necessarily per se be a marker for bone intensity. Similarly, for CMF405 there was no change in expression after ovariectomy. In addition, expression in a few non-bone tissues suggests it may not necessarily per se be a marker.

Thus, inventive methods can additionally comprise using the steps in conjunction with another test method akin to those described herein, e.g., having a same or similar preamble recitation and comprising:

- (d) determining the level or status of a second gene mRNA in bone cells of said mammal; and/or
- (e) determining the level or status of protein expressed by a second gene product in bone cells of said mammal; and

(f) comparing said level or status of that mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein.

The absence or decrease or presence or increase detected may be correlated to risk. Thus, the second gene can be identified by methods of the invention. Or, alternatively or additionally, the second gene and/or the additional steps can be determined in accordance with other methods, e.g., as in U.S. Patents Nos. 5,834,200 and/or 5,691,153.

Likwise, it is within the invention that the inventive genes or genes identified by inventive methods herein or portions thereof can be the subject of other or analogous methods, such as a method for determining predisposition to high or low bone density comprising detecting the under or over expression of the gene or abnormalities in a receptor for a gene product or polymorphysim; *see*, *e.g.*, U.S. Patent Nos. 5,834,200 and 5,691,153; for instance, the inventive genes or genes identified by inventive methods herein can be used in methods analogous to those of U.S. Patent Nos. 5,834,200 and 5,691,153.

In the inventive methods steps (a) and/or (b) and optionally (d) and/or (e) are carried out *in vivo* and/or steps (a) and/or (b) and optionally (d) and/or (e) are carried out *in vitro*.

The determination in step (a) and optionally in step (d) can be effected by employing

- (i) a nucleic acid sequence corresponding to at least a part of the gene encoding at least part of the protein and optionally a second nucleic acid sequence corresponding to at least a part of the second gene encoding at least part of the second protein;
- (ii) a nucleic acid sequence complementary to the nucleic acid sequence(s) of (i);

30 or

ĺÛ

15

20

25

(iii) a primer or a primer pair hybridizing to the nucleic acid sequence(s) of (i) or (ii).

43

(Note also the discussion herein, e.g., infra, concerning primers/probes and PCR and hybridization.)

The determination in step (b) and optionally of step (e) can be effected by employing an antibody or a fragment thereof that specifically binds to the protein and optionally by employing a second antibody or a fragment thereof which specifically binds to the second protein. (Note also the discussion herein, e.g., *infra*, concerning antibodies and methods for making and uses thereof.)

5

10

15

20

25

The medicament or treatment can be any conventional medicament or treatment for osteoporosis. Alternatively or additionally, the medicament or treatment can be the particular protein of the gene detected in the inventive methods, or that which inhibits that protein, e.g., binds to it. Similarly, additionally or alternatively, the medicament or treatment can be a vector which expresses the protein of the gene detected in the inventive methods or that which inhibits expression of that gene; again, for instance, that which can bind to it and/or otherwise prevents its transcription or translation. The selection of administering a protein or that which expresses it, or of administering that which inhibits the protein or the gene expression, can be done without undue experimentation, e.g., based on down regulation or up regulation as determined by inventive methods (e.g., in the osteoporosis model).

In the practice of the invention, one can employ general methods in molecular biology: Standard molecular biology techniques known in the art and not specifically described are generally followed as in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1989, 1992), and in Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Maryland (1989).

To determine the absence or decrease from normal cells or presence or increase from normal cells of a nucleic acid molecule, or to amplify it, e.g., in using probes or primers described herein or derived from nucleic acid molecules disclosed herein, the polymerase chain reaction (PCR) may be used and is conveniently carried out generally as in PCR Protocols: A Guide To Methods And Applications, Academic Press, San Diego, CA (1990). Reactions and manipulations involving other nucleic acid techniques, unless stated otherwise, are performed as generally described in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, and methodology as set forth in United States patents 4,666,828;

44

4,683,202; 4,801,531; 5,192,659 and 5,272,057 and incorporated herein by reference. *In-situ* (In-cell) PCR in combination with Flow Cytometry can be used for detection of cells containing specific DNA and mRNA sequences (Testoni et al, 1996, Blood 87:3822.)

5

ĺÛ

15

20

25

30

In PCR, as well as in hybridization, it is preferred that the primers (or probes) bind specifically to the gene of interest, e.g., an inventive gene disclosed herein such as 608, 405 or 274, or a gene identified by methods disclosed herein, or a corresponding human homolog being detected by primer(s) or probe(s) derived from a herein defined gene. One way to ensure this is to select primers from the gene sequence that are not generally found in other known sequences.

The invention accordingly in yet a further aspect provides an isolated nucleic acid molecule, e.g., DNA comprising a sequence encoding a herein defined gene or encoding a herein defined a polypeptide (e.g., an expression product of a herein defined gene) comprising at least about 12 nucleotides in length, for instance, at least about 15, about 18, about 21, about 24 or about 27 nucleotides in length, such as at least about 30, about 33, about 36, about 39 or about 42 nucleotides in length, for example, a nucleic acid molecule of at least about 12 nucleotides in length such as about 12 to about 30, about 12 to about 50 or about 12 to about 60, or about 12 to about 75 or about 12 to about 100 or more nucleotides in length. Nucleic acid molecules of these lengths may be useful in hybridization; and, the invention further comprehends vectors or plasmids containing and/or expressing such a nucleic acid molecule, as well as uses of such nucleic acid molecules, e.g., for expression thereof either *in vitro* or *in vivo*, or for amplifying or detecting a herein defined gene or a homolog thereof, e.g., a human homolog, in a sample, for instance by a polymerase chain reaction.

A probe or primer can be any stretch of at least 8, preferably at least 10, more preferably at least 12, 13, 14, or 15, such as at least 20, e.g., at least 23 or 25, for instance at least 27 or 30 nucleotides in a herein defined gene which are unique thereto. As to PCR or hybridization primers or probes and optimal lengths therefor, reference is also made to Kajimura et al., GATA 7(4):71-79 (1990). The invention will thus be understood to provide oligonucleotides, such as, pairs of oligonucleotides, for use as primers for the *in vitro* amplification of DNA samples and fragments thereof, or for use in expressing a portion of DNA, either *in vitro* or *in vivo*.

45

The oligonucleotides preferably specifically hybridize to sequences flanking a nucleic acid to be amplified, wherein the oligonucleotides hybridize to different and opposite strands of the double-stranded DNA target. The oligonucleotides of the invention are preferably derived from the nucleic acid molecules, e.g., a herein defined gene, and teachings herein. As used in the practice of this invention, the term "derived from" is intended to encompass the development of such oligonucleotides from the nucleic acid molecules and herein defined gene(s) and teachings disclosed herein, from which a multiplicity of alternative and variant oligonucleotides can be prepared.

The term "specific hybridization" will be understood to mean that the nucleic acid probes of the invention are capable of stable, double-stranded hybridization to gene-derived DNA or RNA under conditions of high stringency, as the term "high stringency" would be understood by those with skill in the art (see, for example, Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Hames and Higgins, eds., 1985, Nucleic Acid Hybridization, IRL Press, Oxford, U.K.). Hybridization will be understood to be accomplished using well-established techniques, including but not limited to Southern blot hybridization, Northern blot hybridization, in situ hybridization and, most preferably, Southern hybridization to PCR-amplified DNA fragments.

10

15

20

25

30

The nucleic acid hybridization probe of the invention may be obtained by use of the polymerase chain reaction (PCR) procedure, using appropriate pairs of PCR oligonucleotide primers as provided herein or derived from the gene sequence(s) provided herein. See U.S. Pat. Nos. 4,683,195 to Mullis et al. and 4,683,202 to Mullis. The invention in a still further aspect provides oligonucleotides for *in vitro* amplification using any of a variety of amplification protocols known in the art. Preferably, the invention provides oligonucleotides for performing polymerase chain reaction (PCR). See U.S. Pat. Nos. 4,683,195 to Mullis et al. and 4,683,202 to Mullis.

The invention will thus be understood to provide oligonucleotides, specifically, pairs of oligonucleotides, for use as primers for the *in vitro* amplification of genes as disclosed herein, e.g., of DNA samples and fragments thereof. In the practice of this invention, the pairs of oligonucleotides herein provided will be understood to comprise two oligonucleotides, comprising from about 8 to about 30 nucleotide residues apiece, said oligonucleotides specifically hybridizing to sequences

46

flanking a nucleic acid to be amplified, wherein the oligonucleotides hybridize to different and opposite strands of the DNA target. The oligonucleotides of the invention are preferably derived from the nucleic acid primers discussed below or from the gene(s) disclosed herein. As used in the practice of this invention, the term "derived from" is intended to encompass the development of such oligonucleotides from the nucleic acid sequence of the gene(s) or the primers herein disclosed, from which a multiplicity of alternative and variant oligonucleotides can be prepared. In particular, the invention provides oligonucleotides having a sequence that is substantially complementary to the corresponding sequence of the nucleic acid hybridization probe. As used herein, the term "substantially corresponding to" is intended to encompass oligonucleotides comprising sequence additions, deletions and mismatches, wherein certain nucleotide residues of the oligonucleotide sequence are not optimally complementary (e.g., A-C or G-T) or are non-complementary (e.g., A-G or T-C) to the corresponding sequence of the nucleic acid hybridization probe, provided that such oligonucleotides retain the capacity to specifically amplify the gene(s).

Nucleic acids, e.g., 405, 608 or 274, and oligonucleotides therefrom, such as primers disclosed herein and derivable from the sequences of the present invention (e.g., portions of each disclosed gene which are about 8 to 30 or more nucleotides in length and bind with sufficient specificity to the gene are useful as diagnostic tools for detecting the existence of a osteoporosis or conditions or factors of osteoporosis. Such diagnostic or detection reagents comprise nucleic acid hybridization probes of the invention and encompass paired oligonucleotide PCR primers, as described above.

15

20

25

30

Methods provided by the invention include blot hybridization, in situ hybridization and in vitro amplification techniques for detecting osteoporosis or conditions or factors of osteoporosis in a sample such as a biological sample.

Appropriate biological samples advantageously screened using the methods described herein include blood, serum, saliva and other body fluids, and other potential sources of infection.

In the detection methods of the invention, production of a specific DNA fragment produced by *in vitro* amplification of a template DNA sample is detected by agarose gel electrophoresis, ethidium bromide staining and ultraviolet transillumination of ethidium bromide stained gels, performed using conventional

47

techniques (Sambrook et al., supra), or detection by sequence detection systems using fluorogenic or other labeled probes that rely on automatic or automated detection instrumentation. In instances where a greater degree of specificity is required, hybridization of such agarose gels probed with a detectably-labeled nucleic acid hybridization probe of the invention is performed using standard techniques (Sambrook et al., supra). In each of these embodiments of the methods of the invention, a sufficient amount of a specific PCR-amplified DNA fragment is produced to be readily detected. For the purposes of this invention, the term "a sufficient amount of a specific PCR-amplified DNA fragment" is defined as that amount required to be detected, either by visualization of ethidium bromide-stained agarose gels or autoradiographic or other development of a blot hybridized with a detectably-labeled probe.

It will be understood that a sufficient quantity of a specific PCR amplified DNA fragment is prepared in PCR amplification reactions by performing a number of cycles required to produce said sufficient amount of the specific DNA fragment. The number of cycles in each PCR required to produce said sufficient amount of a specific DNA fragment will be understood to depend on the oligonucleotide primers, buffers, salts and other reaction components, the amount of template DNA and the PCR cycling times and temperatures. It will also be understood that the optimization of these parameters are within the skill of the worker of ordinary skill to achieve with no more than routine experimentation.

15

20

25

Detectably-labeled probes as provided by the invention are labeled with biotin, a radioisotope (including ³H, ¹⁴ C, ³⁵ S and ³² P), a fluorescent label (including fluorescein

isothiocyanate), and an antigenic label. The detectable label is incorporated into the probe during synthetic preparation of the probe, whereby the probe is alternatively end-labeled or labeled by the incorporation of labeled nucleotides into the synthesized probe.

The invention also provides a PCR-based method for preparing a nucleic acid hybridization probe of the invention. In these embodiments, template DNA comprises a recombinant genetic construct of the invention. A detectably-labeled nucleic acid hybridization probe is prepared by performing PCR amplification using a pair of oligonucleotide primers specific for sequences flanking the position of the nucleic

48

acid insert. Detectable label is incorporated into the nucleic acid hybridization probe by direct end-labeling of PCR primers or incorporation of detectably-labeled nucleotide triphosphates into the probe nucleic acid.

PCR comprising the methods of the invention is performed in a reaction mixture comprising an amount, typically between <10 ng-200 ng template nucleic acid; 50-100 pmoles each oligonucleotide primer; 1-1.25 mM each deoxynucleotide triphosphate; a buffer solution appropriate for the polymerase used to catalyze the amplification reaction; and 0.5-2 Units of a polymerase, most preferably a thermostable polymerase (e.g., Taq polymerase or Tth polymerase).

5

10

15

20

25

30

The invention thus provides in further aspects diagnostic assays for the specific detection of osteoporosis or genes associated therewith. These diagnostic assays include nucleic acid hybridization assays, using the nucleic acids of the invention or specifically-hybridizing fragments thereof, for sensitive detection of fungal genomic DNA and/or RNA. Such assays include various blot assays, such as Southern blots, Northern blots, dot blots, slot blots and the like, as well as *in vitro* amplification assays, such as the polymerase chain reaction assay (PCR), reverse transcription-polymerase chain reaction assay (RT-PCR), ligase chain reaction assay (LCR), and others known to those skilled in the art. Specific restriction endonuclease digestion of diagnostic fragments detected using any of the methods of the invention, analogous to restriction fragment linked polymorphism assays (RFLP) are also within the scope of this invention.

These PCR techniques can be used in conjunction with or in the practice of other methods disclosed herein, or other conditions associated with or correlated to mechanical stress or a lack thereof.

Accordingly, the invention relates to compositions and methods for detecting and/or diagnosing osteoporosis or conditions or factors associated therewith, including genetic factors associated therewith.

Similarly, in the practice of the invention, e.g., protein detection, general methods in immunology may be employed. Standard methods in immunology known in the art and not specifically described are generally followed as in Stites et al.(eds), Basic and Clinical Immunology (8th Edition), Appleton & Lange, Norwalk, CT (1994) and Mishell and Shiigi (eds), Selected Methods in Cellular Immunology, W.H. Freeman and Co., New York (1980). Immunoassays such as RIA and ELISA can be

49

employed to assess a specimen for the presence of specific proteins or other compounds of interest where appropriate as known in the art. Both polyclonal and monoclonal antibodies can be used in the assays. Available immunoassays are extensively described in the patent and scientific literature. See, for example, United States patents 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521 as well as Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Springs Harbor, New York, 1989

5

10

15

20

25

30

Antibodies may be used in various aspects of the invention, e.g., in detection or treatment or prevention methods. Antibodies may be either monoclonal, polyclonal or recombinant to be used in the immunoassays or other methods of analysis necessary for the practice of the invention. Conveniently, the antibodies may be prepared against the immunogen or portion thereof for example a synthetic peptide based on the sequence, or prepared recombinantly by cloning techniques or the natural gene product and/or portions thereof may be isolated and used as the immunogen. The genes are identified as set forth in the present invention and the gene product identified. Immunogens can be used to produce antibodies by standard antibody production technology well known to those skilled in the art as described generally in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988 and Borrebaeck, Antibody Engineering - A Practical Guide, W.H. Freeman and Co., 1992. Antibody fragments may also be prepared from the antibodies and include Fab, F(abl)2, and Fv by methods known to those skilled in the art.

For producing polyclonal antibodies a host, such as a rabbit or goat, is immunized with the immunogen or immunogen fragment, generally with an adjuvant and, if necessary, coupled to a carrier; antibodies to the immunogen are collected from the sera. Further, the polyclonal antibody can be absorbed such that it is monospecific. That is, the sera can be absorbed against related immunogens so that no cross-reactive antibodies remain in the sera rendering it monospecific.

For producing monoclonal antibodies the technique involves hyperimmunization of an appropriate donor with the immunogen, generally a mouse, and isolation of splenic antibody producing cells. These cells are fused to a cell having immortality, such as a myeloma cell, to provide a fused cell hybrid which has

50

immortality and secretes the required antibody. The cells are then cultured, in bulk, and the monoclonal antibodies harvested from the culture media for use.

For producing recombinant antibody (see generally Huston et al, 1991; Johnson and Bird, 1991; Mernaugh and Mernaugh, 1995), messenger RNAs from antibody producing Blymphocytes of animals, or hybridoma are reverse -transcribed to obtain complimentary DNAs (cDNAs). Antibody cDNA, which can be full or partial length, is amplified and cloned into a phage or a plasmid. The cDNA can be a partial length of heavy and light chain cDNA, separated or connected by a linker. The antibody, or antibody fragment, is expressed using a suitable expression system to obtain recombinant antibody. Antibody cDNA can also be obtained by screening pertinent expression libraries.

10

15

20

25

30

The antibody can be bound to a solid support substrate or conjugated with a detectable moiety or be both bound and conjugated as is well known in the art. (For a general discussion of conjugation of fluorescent or enzymatic moieties see Johnstone & Thorpe, Immunochemistry in Practice, Blackwell Scientific Publications, Oxford, 1982.) The binding of antibodies to a solid support substrate is also well known in the art. (see for a general discussion Harlow & Lane Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Publications, New York, 1988 and Borrebaeck, Antibody Engineering - A Practical Guide, W.H. Freeman and Co., 1992) The detectable moieties contemplated with the present invention can include, but are not limited to, fluorescent, metallic, enzymatic and radioactive markers such as biotin, gold, ferritin, alkaline phosphatase, Beta-galactosidase, peroxidase, urease, fluorescein, rhodamine, tritium, ¹³C and iodination.

Antibodies can also be used as an active agent in a therapeutic composition and such antibodies can be humanized, for instance, to enhance their effects. See, e.g., Huls et al., "A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments," Nature Biotechnology Vol. 17, No. 3, March 1999, and documents cited therein, incorporated herein by reference.

Accordingly, antibodies from expression products of genes identified herein or by inventive methods disclosed herein are useful in immunodiagnostics, as well as in drugs or other commercial uses such as in research.

51

Simply, the expression product from the gene or portions thereof can be useful for generating antibodies such as monoclonal or polyclonal antibodies which are useful for diagnostic purposes or to block activity of expression products or portions thereof or of genes or a portion thereof, e.g., as a therapeutic. Monoclonal antibodies are immunoglobulins produced by hybridoma cells. A monoclonal antibody reacts with a single antigenic determinant and provides greater specificity than a conventional, serum-derived antibody. Furthermore, screening a large number of monoclonal antibodies makes it possible to select an individual antibody with desired specificity, avidity and isotype. Hybridoma cell lines provide a constant, inexpensive source of chemically identical antibodies and preparations of such antibodies can be easily standardized. Methods for producing monoclonal antibodies are well known to those of ordinary skill in the art, e.g., Koprowski, H. et al., U.S. Pat. No. 4,196,265, issued Apr. 1, 1989, incorporated herein by reference, and other documents cited herein, e.g., supra.

10

15

20

25

30

Uses of monoclonal antibodies are known. One such use is in David, G. and Greene, H., U.S. Pat. No. 4,376,110, issued Mar. 8, 1983, incorporated herein by reference; see also documents cited herein, e.g., supra. Monoclonal antibodies have also been used to recover materials by immunoadsorption chromatography, see, e.g. Milstein, C., 1980, Scientific American 243:66, 70, incorporated herein by reference; and documents cited herein, such as supra. Thus, products expressed from genes identified herein or by methods herein or portions thereof are useful in therapeutics, immunoadsorption chromatography, as well as for generating antibodies for diagnostic or detection purposes. Furthermore, the expression products can be used in assays for detecting the presence of antibodies. For instance, the antibodies or expressed products can be used in assays analogous to those disclosed in U.S. Patents Nos. 5,591,645, 4,861,711, 5,861,319, 5,858,804, and 5,863,720, as well as in WO 86/04683, EP 154 749, WO 86/03839, and EP 186 799. Antibodies in the practice of the invention can include fragments thereof which are functional, e.g., a fragment that at least statistically significantly retains some (for instance a majority) or all of binding as compared with the entire antibody; for instance, antibodies comprehends a fragment comprising a binding domain.

Protein purification, including recombinant protein purification in the practice of the invention can be in accordance with or analogous to Marshak et al, "Strategies

52

for Protein Purification and Characterization. A laboratory course manual. " CSHL Press, 1996.

With respect to transgenic and knockout methods, the present invention comprehends transgenic gene and polymorphic gene animal and cellular (cell lines) models as well as for knockout models for the genes identified in the present invention. These models are constructed using standard methods known in the art and as set forth in United States Patents 5,487,992, 5,464,764, 5,387,742, 5,360,735, 5,347,075, 5,298,422, 5,288,846, 5,221,778, 5,175,385, 5,175,384,5,175,383, 4,736,866 as well as Burke and Olson (1991), Capecchi (1989), Davies et al. (1992), Dickinson et al. (1993), Duff and Lincoln (1995), Huxley et al. (1991), Jakobovits et al. (1993), Lamb et al. (1993), Pearson and Choi (1993), Rothstein (1991), Schedl et al. (1993), Strauss et al. (1993) . Further, patent applications WO 94/23049, WO 93/14200, WO 94/06908, WO 94/28123 also provide information.

5

10

15

20

25

30

Thus, for instance, the inventive methods of the invention can be used to determine a gene of interest with respect to a physiological or disease state, e.g., osteoporosis or other conditions caused by mechanical stress for instance 608 or 405 or 274 and using the information herein and in the art (such as documents cited herein), knockout or trangenic animals such as mice or rat, can be prepared, to generate animals prone to the physiological or disease state, osteoporosis or other conditions caused by mechanical stress, to thereby test treatments or medicaments therefor; or, to test theories and thus advance research pertaining to the physiological or disease state, e.g., to test the functions of identified genes such as 405, 608 and 274, *inter alia*. Accordingly, from this disclosure and the knowledge in the art, no undue experimentation is needed to prepare knockout or transgenic animals, such as mice or rats or rodents; and, such animals have great value and utility.

Moreover, the genes of the present invention or a portion thereof, e.g., a portion thereof which expresses a protein which function the same as or analogously to the full length protein, or genes identified by the methods herein can be expressed recombinantly, e.g., in *E. coli* or in another vector or plasmid for either *in vivo* expression or *in vitro* expression. The methods for making and/or administering a vector or recombinant or plasmid for expression of gene products of genes of the invention or identified by the invention or a portion thereof either *in vivo* or *in vitro* can be any desired method, e.g., a method which is by or analogous to the methods

53 disclosed in: U.S. Patent Nos. 4,603,112, 4,769,330, 5,174,993, 5,505,941, 5,338,683, 5,494,807, 4,722,848, WO 94/16716, WO 96/39491, Paoletti, "Applications of pox virus vectors to vaccination: An update," PNAS USA 93:11349-11353, October 1996, Moss, "Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety," PNAS USA 93:11341-11348, October 1996, Smith et al., 5 U.S. Patent No. 4,745,051 (recombinant baculovirus), Richardson, C.D. (Editor), Methods in Molecular Biology 39, "Baculovirus Expression Protocols" (1995 Humana Press Inc.), Smith et al., "Production of Huma Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector," Molecular and Cellular Biology, Dec., 1983, Vol. 3, No. 12, p. 2156-2165; Pennock et al., "Strong and Regulated 10 Expression of Escherichia coli B-Galactosidase in Infect Cells with a Baculovirus vector," Molecular and Cellular Biology Mar. 1984, Vol. 4, No. 3, p. 399-406; EPA 0 370 573, U.S. application Serial No. 920,197, filed October 16, 1986, EP Patent publication No. 265785, U.S. Patent No. 4,769,331 (recombinant herpesvirus), Roizman, "The function of herpes simplex virus genes: A primer for genetic 15 engineering of novel vectors," PNAS USA 93:11307-11312, October 1996, Andreansky et al., "The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors," PNAS USA 93:11313-11318, October 1996, Robertson et al. "Epstein-Barr virus vectors for gene delivery to B lymphocytes," PNAS USA 93:11334-11340, October 1996, Frolov et al., 20 "Alphavirus-based expression vectors: Strategies and applications," PNAS USA 93:11371-11377, October 1996, Kitson et al., J. Virol. 65, 3068-3075, 1991; U.S. Patent Nos. 5,591,439, 5,552,143 (recombinant adenovirus), Grunhaus et al., 1992, "Adenovirus as cloning vectors," Seminars in Virology (Vol. 3) p. 237-52, 1993, Ballay et al. EMBO Journal, vol. 4, p. 3861-65, Graham, Tibtech 8, 85-87, April, 25 1990, Prevec et al., J. Gen Virol. 70, 429-434, PCT WO91/11525, Felgner et al. (1994), J. Biol. Chem. 269, 2550-2561, Science, 259:1745-49, 1993 and McClements et al., "Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease," PNAS USA 93:11414-11420, October 1996, and U.S. 30 Patents Nos 5,591,639, 5,589,466, and 5,580,859 relating to DNA expression vectors, inter alia. See also WO 98/33510; Ju et al., Diabetologia, 41:736-739, 1998 (lentiviral expression system); Sanford et al., U.S. Patent No. 4,945,050 (method for

54

transporting substances into living cells and tissues and apparatus therefor); Fischbach et al. (Intracel), WO 90/01543 (method for the genetic expression of heterologous proteins by cells transfected); Robinson et al., seminars in IMMUNOLOGY, vol. 9, pp.271-283 (1997) (DNA vaccines); Szoka et al., U.S. Patent No. 4,394,448 (method of inserting DNA into living cells); and McCormick et al., U.S. Patent No. 5,677,178 (use of cytopathic viruses for therapy and prophylaxis of neoplasia).

The expression product generated by vectors or recombinants in this invention optionally can also be isolated and/or purified from infected or transfected cells; for instance, to prepare compositions for administration to patients. However, in certain instances, it may be advantageous to not isolate and/or purify an expression product from a cell; for instance, when the cell or portions thereof enhance the effect of the polypeptide.

10

15

20

25

30

An inventive vector or recombinant expressing a gene identifed herein or from a method herein or a portion thereof can be administered in any suitable amount to achieve expression at a suitable dosage level, e.g., a dosage level analogous to the herein mentioned dosage levels (wherein the gene product is directly present). The inventive vector or recombinant can be administered to a patient or infected or transfected into cells in an amount of about at least 103 pfu; more preferably about 104 pfu to about 10¹⁰ pfu, e.g., about 10⁵ pfu to about 10⁹ pfu, for instance about 10⁶ pfu to about 10⁸ pfu. In plasmid compositions, the dosage should be a sufficient amount of plasmid to elicit a response analogous to compositions wherein gene product or a portion thereof is directly present; or to have expression analogous to dosages in such compositions; or to have expression analogous to expression obtained in vivo by recombinant compositions. For instance, suitable quantities of plasmid DNA in plasmid compositions can be 1 ug to 100 mg, preferably 0.1 to 10 mg, e.g., 500 micrograms, but lower levels such as 0.1 to 2 mg or preferably 1-10 ug may be employed. Documents cited herein regarding DNA plasmid vectors may be consulted for the skilled artisan to ascertain other suitable dosages for DNA plasmid vector compositions of the invention, without undue experimentation.

Compositions for administering vectors can be as in or analogous to such compositions in documents cited herein or as in or analogous to compositions herein described, e.g., pharmaceutical or therapeutic compositions and the like (e.g., see infra).

55

Thus, the invention comprehends in vivo gene expression which is sometimes termed "gene therapy". Gene therapy can refer to the transfer of genetic material (e.g DNA or RNA) of interest into a host to treat or prevent a genetic or acquired disease or condition phenotype. The particular gene that is to be used or which has been identified as the target gene is identified as set forth herein. The genetic material of interest encodes a product (e.g. a protein, polypeptide, peptide or functional RNA) whose production in vivo is desired. For example, the genetic material of interest can encode a hormone, receptor, enzyme, polypeptide or peptide of therapeutic value. For a review see, in general, the text "Gene Therapy" (Advances in Pharmacology 40, Academic Press, 1997).

10

15

20

25

30

Two basic approaches to gene therapy have evolved: (1) ex vivo and (2) in vivo gene therapy. In ex vivo gene therapy cells are removed from a patient, and while being cultured are treated in vitro. Generally, a functional replacement gene is introduced into the cell via an appropriate gene delivery vehicle/method (transfection, homologous recombination, etc.) and, an expression system as needed and then the modified cells are expanded in culture and returned to the host/patient. These genetically reimplanted cells have been shown to produce the transfected gene product in situ. In in vivo gene therapy, target cells are not removed from the subject rather the gene to be transferred is introduced into the cells of the recipient organism in situ, that is within the recipient. Alternatively, if the host gene is defective, the gene is repaired in situ (Culver, 19981. These genetically altered cells have been shown to produce the transfected gene product in situ.

The gene expression vehicle is capable of delivery/transfer of heterologous nucleic acid into a host cell. The expression vehicle may include elements to control targeting, expression and transcription of the nucleic acid in a cell selective manner as is known in the art. It should be noted that often the 5'UTR and/or 3'UTR of the gene may be replaced by the 5' UTR and/or 3'UTR of the expression vehicle. Therefore as used herein the expression vehicle may, as needed, not include the 5'UTR and/or 3'UTR shown in sequences herein and only include the specific amino acid coding region.

The expression vehicle can include a promotor for controlling transcription of the heterologous material and can be either a constitutive or inducible promotor to allow selective transcription. Enhancers that may be required to obtain necessary

56

transcription levels can optionally be included. Enhancers are generally any non-translated DNA sequence which works contiguously with the coding sequence (in cis) to change the basal transcription level dictated by the promoter. The expression vehicle can also include a selection gene as described herein.

5

15

20

25

30

Vectors can be introduced into cells or tissues by any one of a variety of known methods within the art. Such methods can be found generally described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, New York (1989, 1992), in Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Maryland (1989), Chang et al., Somatic Gene Therapy, CRC Press, Ann Arbor, MI (1995), Vega et al., Gene Targeting, CRC Press, Ann Arbor, MI (1995), Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworths, Boston MA (1988) and Gilboa et al (1986), as well as other documents cited herein (see supra) and include, for example, stable or transient transfection, lipofection, electroporation and infection with recombinant viral vectors. In addition, see United States patent 4,866,042 for vectors involving the central nervous system and also United States patents 5,464,764 and 5,487,992 for positive-negative selection methods.

Introduction of nucleic acids by infection offers several advantages over the other listed methods. Higher efficiency can be obtained due to their infectious nature. Moreover, viruses are very specialized and typically infect and propagate in specific cell types. Thus, their natural specificity can be used to target the vectors to specific cell types in vivo or within a tissue or mixed culture of cells. Viral vectors can also be modified with specific receptors or ligands to alter target specificity through receptor mediated events.

A specific example of DNA viral vector for introducing and expressing recombinant sequences is the adenovirus derived vector Adenop53TK. This vector expresses a herpes virus thymidine kinase (TK) gene for either positive or negative selection and an expression cassette for desired recombinant sequences. This vector can be used to infect cells that have an adenovirus receptor which includes most cancers of epithelial origin as well as others. This vector as well' as others that exhibit similar desired functions, can be used to treat a mixed population of cells and can include, for example, an *in vitro* or *ex vivo* culture of cells, a tissue or a human subject.

57

Additional features can be added to the vector to ensure its safety and/or enhance its therapeutic efficacy. Such features include, for example, markers that can be used to negatively select against cells infected with the recombinant virus. An example of such a negative selection marker is the TK gene described above that confers sensitivity to the antibiotic gancyclovir. Negative selection is therefore a means by which infection can be controlled because it provides inducible suicide through the addition of antibiotic. Such protection ensures that if, for example, mutations arise that produce altered forms of the viral vector or recombinant sequence, cellular transformation will not occur. Features that limit expression to particular cell types can also be included. Such features include, for example, promoter and regulatory elements that are specific for the desired cell type.

10

15

20

25

30

In addition, recombinant viral vectors are useful for *in vivo* expression of a desired nucleic acid because they offer advantages such as lateral infection and targeting specificity. Lateral infection is inherent in the life cycle of, for example, retrovirus and is the process by which a single infected cell produces many progeny virions that bud off and infect neighboring cells. The result is that a large area becomes rapidly infected, most of which was not initially infected by the original viral particles. This is in contrast to vertical-type of infection in which the infectious agent spreads only through daughter progeny. Viral vectors can also be produced that are unable to spread laterally. This characteristic can be useful if the desired purpose is to introduce a specified gene into only a localized number of targeted cells.

As described above, viruses are very specialized infectious agents that have evolved, in many cases, to elude host def ense mechanisms. Typically, viruses infect and propagate in specific cell types. The targeting specificity of viral vectors utilizes its natural specificity to specifically target predetermined cell types and thereby introduce a recombinant gene into the infected cell. The vector to be used in the methods of the invention will depend on desired cell type to be targeted and will be known to those skilled in the art. For example, if breast cancer is to be treated then a vector specific for such epithelial cells would be used. Likewise, if diseases or pathological conditions of the hematopoietic system are to be treated, then a viral vector that is specific for blood cells and their precursors, preferably for the specific type of hematopoietic cell, would be used.

58

Retroviral vectors can be constructed to function either as infectious particles or to undergo only a single initial round of infection. In the former case, the genome of the virus is modified so that it maintains all the necessary genes, regulatory sequences and packaging signals to synthesize new viral proteins and RNA. Once these molecules are synthesized, the host cell packages the RNA into new viral particles which are capable of undergoing further rounds of infection. The vector's genome is also engineered to encode and express the desired recombinant gene. In the case of non-infectious viral vectors, the vector genome is usually mutated to destroy the viral packaging signal that is required to encapsulate the RNA into viral particles. Without such a signal, any particles that are formed will not contain a genome and therefore cannot proceed through 'subsequent rounds of infection. The specific type of vector will depend upon the intended application. The actual vectors are also known and readily available within the art or can be constructed by one skilled in the art using well-known methodology.

10

15

20

25

30

The recombinant vector can be administered in several ways. If viral vectors are used, for example, the procedure can take advantage of their target specificity and consequently, do not have to be administered locally at the diseased site. However, local administration can provide a quicker and more effective treatment, administration can also be performed by, for example, intravenous or subcutaneous injection into the subject. Injection of the viral vectors into a spinal fluid can also be used as a mode of administration, especially in the case of neurodegenerative diseases. Following injection, the viral vectors will circulate until they recognize host cells with the appropriate target specificity for infection.

An alternate mode of administration can be by direct inoculation locally at the site of the disease or pathological condition or by inoculation into the vascular system supplying the site with nutrients or into the spinal fluid. Local administration is advantageous because there is no dilution effect and, therefore, a smaller dose is required to achieve expression in a majority of the targeted cells. Additionally, local inoculation can alleviate the targeting requirement required with other forms of administration since a vector can be used that infects all cells in the inoculated area. If expression is desired in only a specific subset of cells within the inoculated area, then promoter and regulatory elements that are specific for the desired subset can be used to accomplish this goal. Such non-targeting vectors can be, for example, viral vectors,

5

10

15

20

25

30

59

viral genome, plasmids, phagemids and the like. Transfection vehicles such as liposomes can also be used to introduce the non-viral vectors described above into recipient cells within the inoculated area. Such transfection vehicles are known by one skilled within the art.

Inventive vectors can comprise a herein defined gene, as well as a regulatory element operative linked thereto, e.g., a promoter, for expression; and, the regulatory element or promoter can be tissue or cell specific; for instance, the regulatory element or promoter can be for expression in a cell or precursor thereto employed in an inventive or herein-described or herein-cited test, e.g., the regulatory element or promoter can be for expression in a bone cell such as an osteoblast or an osteoclast or a precursor thereto.

Delivery of gene products (products from herein defined genes: genes identified herein or by inventive methods or portions thereof) and/or antibodies or portions thereof and/or agonists or antagonists (collectively or individually "therapeutics"), and compositions comprising the same, as well as of compositions comprising a vector expressing gene products, can be done without undue experimentation from this disclosure and the knowledge in the art.

The present invention provides compositions comprising an expression vector comprising a herein defined gene, or a portion thereof, e.g., which codes for a functional portion thereof, as well as therapeutics based on the genes identified herein, e.g., compositions comprising expression products or a functional portion thereof or antibodies thereto or a functional portion thereof and/or agonists or antagonists.

(Thus, a herein defined gene can comprehend a portion thereof which expresses a functional portion of a full length expression product.). The therapeutics and vectors of the present invention are administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, patient age, sex, body weight, species of the patient, and other factors known to those skilled in the pharmaceutical or veterinary arts.

The pharmaceutically "effective amount" for purposes herein is thus determined by such considerations as are known in the art. The amount must be effective to achieve improvement including but not limited to improved survival rate or more rapid recovery, or improvement or elimination of symptoms and other

60

indicators, e.g., of osteopososis, for instance, improvement in bone density, as are selected as appropriate measures by those skilled in the art.

5

15

20

25

30

Where appropriate the therapeutics of the present invention are pharmaceuticals and as such can be administered in various ways. It should be noted that these therapeutics can be administered as the expression product and/or portion thereof and/or antibody and/or portion thereof or as pharmaceutically acceptable salt and can be administered alone or as an active ingredient in combination with pharmaceutically acceptable carriers, diluents, adjuvants and vehicles, as well as other active ingredients (e.g., other expression products, portions thereof, antibodies, portions thereof, from inventive methods, and/or other therapies, such as those discussed herein). The compounds can be administered orally, subcutaneously or parenterally including intravenous, intraarterial, intramuscular, intraperitoneally, and intranasal administration as well as intrathecal and infusion techniques.

Implants of the therapeutics and/or of vectors expressing the herein defined genes are also useful. The patient being treated is a warm-blooded animal and, in particular, mammals including man. The pharmaceutically acceptable carriers, diluents, adjuvants and vehicles as well as implant carriers generally refer to inert, non-toxic solid or liquid fillers, diluents or encapsulating material not reacting with the active ingredients of the invention. The implant can be placed near bone, to stimulate bone growth or increase bone density. With respect to implants or slow release systems that can be used in the practice of the invention with respect to therapeutics, or vectors expressing the herein defined genes, mention is made of U.S. Patents Nos. 4,150,108, 4,329,332, 4,331,652, 4,333,919, 4,389,330, 4,489,055, 4,526,938, 4,530,840, 4,542,025, 4,563,489, 4,675,189, 4,677,191, 4,683,288, 4,758,435, 4,857,335, 4,931,287, 5,178,872, 5,252,701, 5,275,820, 5,478,564, 5,540,912, 5,447,725, 5,599,852, 5,607,686, 5,609,886, 5,631,015, 5,654,010, 5,700,485, 5,702,717, 5,711,968, 5,733,566, 4,938,763, 5,077,049, 5,278,201, 5,278,202, 5,288,496, 5,324,519, 5,324,520, 5,340,849, 5,368,859, 5,401,507, 5,419,910, 5,427,796, 5,487,897, 5,599,552, 5,632,727, 5,643,595, 5,660,849, 5,686,092, 5,702,716, 5,707,647, 5,717,030, 5,725,491, 5,733,950, 5,736,152, 5,744,153, 5,759,563, and 5,780,044, European Patent Application 0537559, Shah et al (J. Controlled Release, 1993, 27:139-147), Lambert and Peck (J. Controlled

61

Release, 1995, 33:189-195), and Shivley et al (J. Controlled Release, 1995, 33:237-243).

It is noted that humans are treated generally longer than the mice or other experimental animals exemplified herein which treatment has a length proportional to the length of the disease process and drug effectiveness. The doses may be single doses or multiple doses over a period of several days, but single doses are preferred. Thus, one can scale up from animal experiments, e.g., rats, mice, and the like, to humans, by techniques from this disclosure and the knowledge in the art, without undue experimentation.

5

10

15

20

25

30

The doses may be single doses or multiple doses over a period of several days. The treatment generally has a length proportional to the length of the disease process and drug effectiveness and the patient species being treated.

When administering a therapeutic or vector of the present invention parenterally, it will generally be formulated in a unit dosage injectable form (solution, suspension, emulsion). The pharmaceutical formulations suitable for injection include sterile aqueous solutions or dispersions and sterile powders for reconstitution into sterile injectable solutions or dispersions. The carrier can be a solvent or dispersing medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.

Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Nonaqueous vehicles such a cottonseed oil, sesame oil, olive oil, soybean oil, corn oil, sunflower oil, or peanut oil and esters, such as isopropyl myristate, may also be used as solvent systems for compound compositions

Additionally, various additives which enhance the stability, sterility, and isotonicity of the compositions, including antimicrobial preservatives, antioxidants, chelating agents, and buffers, can be added. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. In many cases, it will be desirable to include isotonic agents, for example, sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate

62

and gelatin. According to the present invention, however, any vehicle, diluent, or additive used would have to be compatible with the compounds.

Sterile injectable solutions can be prepared by incorporating the compounds utilized in practicing the present invention in the required amount of the appropriate solvent with various of the other ingredients, as desired.

5

20

25

30

A pharmacological formulation of the present invention, e.g., comprising a therapeutic and/or vector, can be administered to the patient in an injectable formulation containing any compatible carrier, such as various vehicle, adjuvants, additives, and diluents; or the compounds utilized in the present invention can be administered parenterally to the patient in the form of slow-release subcutaneous implants or targeted delivery systems such as monoclonal antibodies, vectored delivery, iontophoretic, polymer matrices, liposomes, and microspheres. Examples of delivery systems useful in the present invention include: 5, 225, 182; 5, 169, 383; 5, 167, 616; 4,959,217; 4,925,678; 4,487,603; 4,486,194; 4,447,233; 4,447,224; 4,439,196; and 4,475,196. Many other such implants, delivery systems, and modules are well known to those skilled in the art (*See also* documents cited herein, e.g., *supra*).

A pharmacological formulation of the compound utilized in the present invention can be administered orally to the patient. Conventional methods such as administering the compounds in tablets, suspensions, solutions, emulsions, capsules, powders, syrups and the like are usable. Known techniques which deliver it orally or intravenously and retain the biological activity are preferred.

In one embodiment, a formulation of the present invention can be administered initially, and thereafter maintained by further administration. For instance, a formulation of the invention can be administered in one type of composition and thereafter further administered in a different or the same type of composition. For example, a formulaiton of the invention can be administered by intravenous injection to bring blood levels to a suitable level. The patient's levels are then maintained by an oral dosage form, although other forms of administration, dependent upon the patient's condition and as indicated above, can be used.

The quantity to be administered will vary for the patient being treated and will vary from about 100 ng/kg of body weight to 100 mg/kg of body weight per day and preferably will be from 10 pg/kg to 10 mg/kg per day. For instance, dosages can be

5

10

15

20

30

63

readily ascertained by those skilled in the art from this disclosure and the knowledge in the art. Thus, the skilled artisan can readily determine the amount of gene product and optional additives, vehicles, carrier and/or adjuvant in compositions and to be administered in methods of the invention. Typically, an adjuvant or additive is commonly used as 0.001 to 50 wt% solution in phosphate buffered saline, and the gene product or active ingredient is present on the order of micrograms to milligrams, such as about 0.0001 to about 5 wt%, preferably about 0.0001 to about 1 wt%, most preferably about 0.0001 to about 0.05 wt% or about 0.001 to about 20 wt%, preferably about 0.01 to about 10 wt%, and most preferably about 0.05 to about 5 wt%. Of course, for any composition to be administered to an animal or human, including the components thereof, and for any particular method of administration, it is preferred to determine therefor: toxicity, such as by determining the lethal dose (LD) and LD₅₀ in a suitable animal model e.g., rodent such as mouse; and, the dosage of the composition(s), concentration of components therein and timing of administering the composition(s), which elicit a suitable response, such as by titrations of sera and analysis thereof, e.g., by ELISA and/or RFFIT analysis. Such determinations do not require undue experimentation from the knowledge of the skilled artisan, this disclosure and the documents cited herein. And, the time for sequential administrations can be ascertained without undue experimentation.

Examples of compositions comprising a therapeutic and/or vector of the invention include liquid preparations for orifice, e.g., oral, nasal, anal, vaginal, peroral, intragastric, mucosal (e.g., perlingual, alveolar, gingival, olfactory or respiratory mucosa) etc., administration such as suspensions, syrups or elixirs; and, preparations for parenteral, subcutaneous, intradermal, intramuscular or intravenous administration (e.g., injectable administration), such as sterile suspensions or emulsions. Such compositions may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like. The compositions can also be lyophilized. The compositions can contain auxiliary substances such as wetting or emulsifying agents, pH buffering agents, gelling or viscosity enhancing additives, preservatives, flavoring agents, colors, and the like, depending upon the route of administration and the preparation desired. Standard texts, such as "REMINGTON'S PHARMACEUTICAL SCIENCE", 17th edition,

64

1985, incorporated herein by reference, may be consulted to prepare suitable preparations, without undue experimentation.

Compositions of the invention, are conveniently provided as liquid preparations, e.g., isotonic aqueous solutions, suspensions, emulsions or viscous compositions which may be buffered to a selected pH. If digestive tract absorption is preferred, compositions of the invention can be in the "solid" form of pills, tablets, capsules, caplets and the like, including "solid" preparations which are time-released or which have a liquid filling, e.g., gelatin covered liquid, whereby the gelatin is dissolved in the stomach for delivery to the gut. If nasal or respiratory (mucosal) administration is desired, compositions may be in a form and dispensed by a squeeze spray dispenser, pump dispenser or aerosol dispenser. Aerosols are usually under pressure by means of a hydrocarbon. Pump dispensers can preferably dispense a metered dose or, a dose having a particular particle size.

İŪ

15

20

25

30

Compositions of the invention can contain pharmaceutically acceptable flavors and/or colors for rendering them more appealing, especially if they are administered orally. The viscous compositions may be in the form of gels, lotions, ointments, creams and the like (e.g., for transdermal administration) and will typically contain a sufficient amount of a thickening agent so that the viscosity is from about 2500 to 6500 cps, although more viscous compositions, even up to 10,000 cps may be employed. Viscous compositions have a viscosity preferably of 2500 to 5000 cps, since above that range they become more difficult to administer. However, above that range, the compositions can approach solid or gelatin forms which are then easily administered as a swallowed pill for oral ingestion.

Liquid preparations are normally easier to prepare than gels, other viscous compositions, and solid compositions. Additionally, liquid compositions are somewhat more convenient to administer, especially by injection or orally, to animals, children, particularly small children, and others who may have difficulty swallowing a pill, tablet, capsule or the like, or in multi-dose situations. Viscous compositions, on the other hand, can be formulated within the appropriate viscosity range to provide longer contact periods with mucosa, such as the lining of the stomach or nasal mucosa.

Obviously, the choice of suitable carriers and other additives will depend on the exact route of administration and the nature of the particular dosage form, e.g.,

5

10

15

20

25

30

65

liquid dosage form (e.g., whether the composition is to be formulated into a solution, a suspension, gel or another liquid form), or solid dosage form (e.g., whether the composition is to be formulated into a pill, tablet, capsule, caplet, time release form or liquid-filled form).

Solutions, suspensions and gels, normally contain a major amount of water (preferably purified water) in addition to the antigen, lipoprotein and optional adjuvant. Minor amounts of other ingredients such as pH adjusters (e.g., a base such as NaOH), emulsifiers or dispersing agents, buffering agents, preservatives, wetting agents, jelling agents, (e.g., methylcellulose), colors and/or flavors may also be present. The compositions can be isotonic, i.e., it can have the same osmotic pressure as blood and lacrimal fluid.

The desired isotonicity of the compositions of this invention may be accomplished using sodium chloride, or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol or other inorganic or organic solutes. Sodium chloride is preferred particularly for buffers containing sodium ions.

Viscosity of the compositions may be maintained at the selected level using a pharmaceutically acceptable thickening agent. Methylcellulose is preferred because it is readily and economically available and is easy to work with. Other suitable thickening agents include, for example, xanthan gum, carboxymethyl cellulose, hydroxypropyl cellulose, carbomer, and the like. The preferred concentration of the thickener will depend upon the agent selected. The important point is to use an amount which will achieve the selected viscosity. Viscous compositions are normally prepared from solutions by the addition of such thickening agents.

As mentioned herein, a pharmaceutically acceptable preservative can be employed to increase the shelf-life of the compositions. Benzyl alcohol may be suitable, although a variety of preservatives including, for example, parabens, thimerosal, chlorobutanol, or benzalkonium chloride may also be employed. A suitable concentration of the preservative will be from 0.02% to 2% based on the total weight although there may be appreciable variation depending upon the agent selected.

Those skilled in the art will recognize that the components of the compositions should be selected to be chemically inert with respect to the gene product and optional

66

adjuvant or additive. This will present no problem to those skilled in chemical and pharmaceutical principles, or problems can be readily avoided by reference to standard texts or by simple experiments (not involving undue experimentation), from this disclosure and the documents cited herein.

5

10

15

20

30

The inventive compositions of this invention are prepared by mixing the ingredients following generally accepted procedures. For example the selected components may be simply mixed in a blender, or other standard device to produce a concentrated mixture which may then be adjusted to the final concentration and viscosity by the addition of water or thickening agent and possibly a buffer to control pH or an additional solute to control tonicity. Generally the pH may be from about 3 to 7.5. Compositions can be administered in dosages and by techniques well known to those skilled in the medical and veterinary arts taking into consideration such factors as the age, sex, weight, and condition of the particular patient or animal, and the composition form used for administration (e.g., solid vs. liquid). Dosages for humans or other mammals can be determined without undue experimentation by the skilled artisan, from this disclosure, the documents cited herein, the Examples below.

Suitable regimes for initial administration and booster doses or for sequential administrations also are variable, may include an initial administration followed by subsequent administrations; but nonetheless, may be ascertained by the skilled artisan, from this disclosure, the documents cited herein, and the Examples below.

Accordingly, the invention comprehends, in further aspects, methods for preparing therapeutic compositions including a gene product or functional fragment thereof of a gene identified herein or a gene identified in an inventive method herein, as well as to methods for increasing bone density, treating, preventing or controlling osteporosis, or otherwise alleviating a condition caused by mechanical stress or inducing bone growth, comprising administering an inventive composition, or a gene product, or functional fragment thereof of a gene identified herein or a gene identified in an inventive method herein, or a vector expressing such a gene.

In this context and as used throughout this specification, "functional" means a protein having part or all of the primary structural conformation of the protein gene product of a gene identified herein or of a gene identified by the methods herein, and possessing the biological property of contributing to the development of bone cells in the same or an analogous fashion to the full length protein gene product, said protein

67

gene product being either isolated from a natural source or being the product of procaryotic or eukaryotic expression or of protein synthesis methods. The protein can have an amino acid sequence comprising an amino acid sequence of a sequence disclosed herein or of a gene product of a gene identified by a method herein or any fragment or derivative thereof by way of amino acid deletion, substitution, insertion, addition and/or replacement of the amino acid sequence. Also comprised by the term "functional" protein is the capability of said protein or part thereof to generate a specific immune response such as an antibody response; e.g., to bind to antibodies elicited by the full length protein.

ÌÛ

15

20

25

30

Moreover, the present invention and embodiments thereof provide advances in and assist to further research and knowledge with respect to osteoporosis and conditions caused by or having as a factor mechanical stress or a lack thereof and provide an insight into development and maintenance of bone tissue. The present invention and embodiments thereof also provide advances in and assist to further clinical and epidemiological research, e.g., to allow others to further explore and extend the current potential for practical prevention and treatment. Further still, the present invention and embodiments thereof provide a deeper knowledge of factors controlling bone cell activity and regulation of bone mineral and matrix formation and remodeling contribute ultimately to the understanding of the etiology of osteoporosis or other conditions involving mechanical stress or a lack thereof. For example, the present invention provides osteporosis or mechanical stress or lack thereof models for in vitro studies. This understanding will permit a more rational choice and evaluation of therapies, even as current treatments are evaluated clinically. Moreover, the present invention, for instance, via the inventive models, allows for the discovery of genes involved in processes of osteoporosis and/or one growth or formation or bone cell activity, inter alia. Every new gene discovered sheds more light on the complex molecular events that govern all aspects of life. The elucidation of the function of the gene and its place and role in this intricate network of pathways and structures resolves another piece in the puzzle of life. Thus, the educational and research implications are very clear. Sometimes genes may have much more benefit in this respect than in the therapeutics/diagnostics fields.

68

A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration and as a further description of the invention.

EXAMPLES/RESULTS

5 Example/Result 1: ANALYSYS OF GENES AT A
TRANSCRIPTIONAL LEVEL
USING NUCLEAR mRNA PROBES

DIFFERENTIAL TRANSLATION

MATERIALS/METHODS (WHICH MAY APPLY IN WHOLE OR PART TO SOME OR ALL EXAMPLES)

General Scheme

- a. Total mRNA organic extraction of all RNA from the source tissue or cell. (additional selection for polyA+ mRNA can be included).
- b. Nuclear RNA-lysis of cells (from a tissue or a cell line) by homogenization in
 hypotonic buffer. Collection of nuclei by centrifugation and organic extraction of the
 RNA.
 - c. Cytoplasmic RNA Organic extraction of the RNA from the supernatant from b above.
- d. Polyribosomal/subpolyribosomal fractionation. Lysis of cells by homogenization
 hypotonic buffer, removal of nuclei and fractionation of polyribosome on linear sucrose gradients and organic extraction of the RNA from each fraction of the gradient.
 - e. Secreted and membrane encoding transcripts.
 - 1. Isolation of RER on Percol gradients (after homogenization of cells).
- 25 2. Preparation of microsomes containing the RER
 - 3. Isolation of membrane-bound polyribosomes by successive treatment of cells with detergents.
 - f. Nuclear proteins. Isolation of cytoskeletal associated polyribosomes by treating cells lyzates with different detergents.
- 30 g. Mitochondrial genes. Isolation of mitochondria on Percoll gradients.
 - h. Alternative splicing. Separation of nuclei and isolation of splicsosome (proteins and RNA complex) on linear sucrose gradients.

<u>Preparation of cell extracts</u>: Cells were centrifuged. The pellet was washed with PBS and recentrifuged. The cells were resuspended in 4x of one packed cell

69

volume (PCV) with hypotonic lysis buffer (HLB: 20mM TrisHCL pH=7.4; 10mM NaCl; 3mM MgCl₂). The cells were incubated five minutes on ice. 1xPCV of HLB containing 1.2% Triton X-100 and 0.2M sucrose was added. The cells were homogenized with a Dounce homogenizer (five strokes with B pestle). The cell lysate was centrifuged at 2300g for ten minutes at 4°C. The supernatant was transferred to a new tube. HLB containing 10mg/ml heparin was added to a final concentration of 1mg/ml heparin. NaCl was added to a final concentration of 0.15M. The supernatant was frozen at

-70°C after quick freezing in liquid N₂ or used immediately.

10

15

20

25

30

Sucrose gradient fractionation: A linear sucrose gradient from 0.5M to 1.5M sucrose in HLB was prepared. Polyallomer tubes (14X89mm) were used. 0.5 to 1.0ml of cell extract was loaded on the gradient. The cells were centrifuged at 36,000 RPM for 110 minutes at 4°C. An ISCO Density Fractionator was used to collect the fractions and record the absorbance profile.

RNA purification: SDS was added to 0.5% and Proteinase K to 0.1mg/ml and incubated at 37°C for 30 minutes. Extract with an equal volume of phenol+chloroform (1:1). The aqueous phase was extracted with one volume of chloroform and the RNA was precipitated by adding Na-Acetate to 0.3M and 2.5 volumes of ethanol and incubating at -20°C overnight. Centrifuged ten minutes, the supernatant was aspirated and the RNA pellet was dissolved in sterile, diethylpyrocarbonate (hereinafter referred to as "DEPC") DEPC-treated water.

Preparation of Microsomes: When possible fresh tissues and cells are used, without freezing. Tissues were powdered in liquid nitrogen with mortar and pestle and then homogenized using 4ml of buffer A/1 gr tissue (Buffer A is 250mM sucrose, 50mM TEA, 50mM KOAc pH7.5, 6mM Mg(Oac)₂, 1mM EDTA, 1mM DTT, 0.5mM PMSF. PMSF was made in ethanol before making the buffer and added in drops to buffer while being stirred. This was stirred for 15 minutes and then DTT was added). Fresh organs were washed in Buffer A a few times, and then cut into pieces and homogenized. Approximately 5ml buffer A/5x10⁸ cells were added and homogenized. This was then homogenized on ice for 5-10 times, or as needed with the individual tissue. The mixture was transferred to 50ml tubes, then centrifuged for 10 minutes, at 4°C in a swinging bucket rotor machine. Next, the supernatant was transferred, avoiding the pellet as much as possible, to a Sorvall tube, the pellet was

70

washed again with 1ml buffer and centrifuge as before. The two pellets were combined, thus establishing the nuclear fraction. The combination was dissolved and treated the pellet with Tri-reagent (usually 2ml of Tri-reagent when sample is from cells) to extract the nuclear RNA. The combined 1st and 2nd supernatants were centrifuged for 10 minutes at 10000g at 4°C. Again, the supernatant was transferred to a tube and kept on ice. The pellet was washed again with 1ml buffer and centrifuged for 10 minutes at 10000g and the two pellets were combined as before, thus establishing the Mitochondrial pellet. Again, the pellet was treated with Trireagent (usually 1ml with cells) and the Mitochondrial RNA was extracted. Next, cold ultracentrifuge tubes were prepared containing a sucrose cushion made of: buffer A + 1.3M sucrose. The volume of the cushion was approximately 1/3 of the supernatant. The supernatant was loaded on the cushion in a 1:3 ratio of cushion to supernatant. A pair of tubes was weighed for balancing, a 20-30mg difference is allowable. The tubes were centrifuged 2.5 hours at 140,000g, 4°C with a Ti60.2 rotor (45,000 rpm). When two phases of supernatant were visible, then the red phase only was transferred (if possible), as the cytoplasmic fraction, to a sorvall tube. The clear supernatant was aspirated. When not possible to separate or phase distinction not visible, all the supernatant was taken as cytoplasmic fraction and dilute sucrose with TE (10mM Tris-HCl pH 8.0, 1mM EDTA). In the pellet were the microsomes which were visible and were clear or yellowish. For the RNA extraction, the cytoplasmic fraction was treated with 1% SDS, 0.1mg/ml proteinase K, for 30 minutes, at 37°C. After this, freezing at -80°C was possible. The RNA was extracted with a phenol:chloroform combination and precipitate with 0.3M Na-acetate, 1µl glycogen, and equal volume of isopropanol. O'N precipitation was possible and can be accomplished at 30 minutes on ice. The extract was spun at 10000g, for 20 minutes, then the RNA pellet was washed with 70% ethanol. The pellet was dried and then dissolved in H₂O. The microsomes were then dissolved with 0.1M NaCl/1% SDS solution (1ml is usually sufficient for a small pellet) and extracted with a phenol:chloroform combination (no proteinase K treatment). Then the precipitation of the RNA was done in the same way as for the cytoplasmic fraction but without the requirement of adding salt.

10

15

20

25

30

<u>Preparation of Nuclear and Cytoplasmic RNA</u>: Subconfluent plates were washed with 125 mM KCl-30 mM Tris-hydrochloride (pH 7.5)-5 mM magnesium

acetate-1 mM 2-mercaptoethanol-2 mM ribonucleoside vanadyl complex (2)-0.15 mM spermine-0.05 mM spermidine at 4°C, and cells scraped from the plates were washed twice with the same buffer. Approximately 10⁸ cells were allowed to swell for 10 minutes in 2.5 ml of swelling buffer (same as wash buffer except the KCl concentration was 10 mM) lysed with 20 strokes of a Dounce homogenizer (B pestle), overlaid on an equal volume of swelling buffer containing 25% glycerol, and centrifuged for 5 min. at 400 x g and 4°C. The upper layer of the supernatant, which contained 90% of the CAD sequences released by lysis, was designated the cytoplasmic fraction. The nuclear pellet was washed once with 2 ml of swelling buffer.

Nuclear RNP. Nuclei from 10⁸ cells, prepared as described above, were suspended in 1 ml of 10 mM Tris-hydrochloride (pH 8.0)-100 mM NaCl-2 mM MgCl₂-1 mM 2-mercapthoethanol-0.15 mM spermine-0.05 mM spermidine-10 mM ribonucleoside vanadyl complex (2)-100 U of placental RNase inhibitor (Amersham Corp.) per ml and sonicated at the maximum power setting of a Konres microultrasonic cell disrupter for 20 g at 4°C. Bacterial tRNA (2 mg) was added, to adsorb basic proteins (9), and the mixture was centrifuged for 1 minute (Eppendorf microcentrifuge). The supernatant was applied to a 15 to 45% sucrose gradient in mM Tris-hydrochloride-100 mM NaCl-2 mM MgCl₂-2 mM ribonucleoside vanadyl complex and centrifuged in a Beckman SW41 rotor for 90 minutes at 40,000 rpm and 4°C. RNA was recovered from gradient fractions by the addition of sodium dodecyl sulfate to 0.5%, treatment with proteinase K (200 μg/ml) for 2 hours at 37°C, extraction with phenol, and precipitation with ethanol.

Preparation of Antisense RNA: Total cellular RNA is extracted. Part of the RNA pool is immobilized on a membrane, another part converted into cDNA after ligation of oligodeoxynucletides to the 3'-ends. The use of biotinylated, complementary oligos for cDNA synthesis allows immobilization of a "minus" strand to streptavidin-coated magnetic beads. A second set of oligos is ligated to the cDNA at the previous 5'-end of the RNA. Plus strands are eluted from the bound strands and hybridized to the membrane-bound RNA. Since the cDNA strand used has the same polarity of the RNAs, only cDNA sequences that can bind to complementary RNAs should be retained. PCR amplification and subsequent cloning of PCR-fragments is followed by sequence analysis. To test whether cloned sequences are correctly

72

identified, probes are generated in sense and antisense direction. Positive clones will be structurally and functionally characterized. In order to work out this method, we started using a bacterial strain (Escherichia coli), containing plasmid R1 that regulates its copy number by antisense RNA. Previous work has identified both antisense (CopA) and target RNA (CopT) of R1 intracellularly. This procedure, if feasible, will then be used to screen for antisense RNA systems in other organisms.

DIFFERENTIAL ANALYSIS

30

Differential display: Reverse transcription: 2μg of RNA were annealed with 1pmol of oligo dT primer (dT)₁₈ in a volume of 6.5μ1 by heating to 70°C for five minutes and cooling on ice. 2μ1 reaction buffer (x5), 1μl of 10mM dNTP mix, and 0.5μ1 of SuperScript II reverse transcriptase (GibcoBRL) was added. The reaction was carried out for one hour at 42°C. The reaction was stopped by adding 70μ1 TE (10mM Tris pH=8; 0.1mM EDTA). Oligonucleotides used for Differential display: The oligonucleotides were essentially those described in the Delta RNA

15 Fingerprinting kit (Clonetech Labs. Inc.). There were 9 "T" oligonucleotides of the structure: 5' CATTATGCTGAGTGATATCTTTTTTTTTTXY 3' (SEQ ID No:). The 10 "P" oligonucleotides were of the structure: 3' ATTAACCCTCACTAAA "TGCTGGGGA" 3' (SEQ ID No:) where the 9 or 10 nucleotides between the parenthesis represent an arbitrary sequence and there are 10 different sequences (SEQ ID Nos.), one for each "P" oligo.

Amplification reactions: each reaction is done in 20μ1 and contains 50μM dNTP mix, 1μM from each primer, 1x polymerase buffer, 1 unit expand Polymerase (Beohringer Mannheim), 2μCi [α-³²P]dATP and 1μ1 cDNA template. Cycling conditions were: three minutes at 95°C, then three cycles of two minutes at 94°C, five minutes at 40°C, five minutes at 68°C. This was followed by 27 cycles of one minute at 94°C, two minutes at 60°C, two minutes at 68°C. Reactions were terminated by a seven minute incubation at 68°C and addition of 20μ1 sequencing stop solution (95% formamide, 10mM NaOH, 0.025% bromophenol blue, 0.025% xylene cyanol).

Gel analysis: 3-4µ1 were loaded onto a 5% sequencing polyacrylamide gel and samples were electrophoresed at 2000 volts/40 milliamperes until the slow dye (xylene cyanol) was about 2 cm from the bottom. The gel was transferred to a filter paper, dried under vacuum and exposed to x-ray film.

15

20

Recovery of differential bands: bands showing any a differential between the various pools were excised out of the dried gel and placed in a microcentrifuge tube. $50\mu 1$ of sterile H_2O were added and the tubes heated to 100° c for five minutes. $1\mu 1$ was added to a $49\mu 1$ PCR reaction using the same primers used for the differential display and the samples were amplified for 30 cycles of: one minute at 94° C, one minute at 60° C and one minute at 68° C. $10\mu 1$ was analyzed on agarous gel to visualize and confirm successful amplification.

REPRESENTATIONAL DIFFERENCE ANALYSIS

Reverse transcription: as above but with 2μg polyA+ selected mRNA. Preparation of double stranded cDNA: cDNA from previous step was treated with alkali to remove the mRNA, precipitated and dissolved in 20μ1 H₂O. 5μ1 buffer, 2μ1 10mM dATP, H₂O to 48μ1 and 2μ1 terminal deoxynucleotide transferase (TdT) were added. The reaction was incubated 2-4 hours at 37°C. 5μ1 oligo dT (1μg/μ1) was added and incubated at 60°C for 5 minutes. 5μ1 200 mM DTT, 10 μ1 10x section buffer (100mM Mg C1₂, 900 mM Hepes, pH 6.6) 16 μ1 dNTPs (1 mM), and 16 U of Klenow were added and the mixture was incubated overnight at room temperature to generate ds cDNA. 100μ1 TE was added and extracted with phenol/chloroform. The DNA was precipitated and dissolved in 50μ1 H₂O.

Generation of representations: cDNA with DpnII was digested by adding 3μ1 DpnII reaction buffer 20 V and DpnII to 25μ1 cDNA and incubated five hours at 37°C. 50μ1 TE was added and extracted with phenol/chloroform. cDNA was precipitated and dissolved to a concentration of 10ng/μ1.

The following oligonucleotides are used in this procedure:

R-Bg1-12 5' GATCTGCGGTGA 3' (SEQ ID No:)

25 R-Bg1-24 5' AGCACTCTCCAGCCTCTCACCGCA 3' (SEQ ID No:)

J-Bg1-12 5' GATCTGTTCATG 3' (SEQ ID No:)

J-Bg1-24 5' ACCGACGTCGACTATCCATGAACA 3' (SEQ ID No:)

N-Bg1-12 5' GATCTTCCCTCG 3' (SEQ ID No:)

N-Bg1-24 5' AGGCAACTGTGCTATCCGAGGGAA 3' (SEQ IDNo:)

R-Bg1-12 and R-Bg1-24 oligos were ligated to Tester and Driver: 1.2μg DpnII digested cDNA. 4μ1 from each oligo and 5μ1 ligation buffer X10 and annealed at 60°C for ten minutes. 2μ1 ligase was added and incubated overnight at 16°C. The

74

ligation mixture was diluted by adding 140µ1 TE. Amplification was carried out in a volume of 200µ1 using R-Bg1-24 primer and 2µ1 ligation product and repeated in twenty tubes for each sample. Before adding Taq DNA polymerase, the tubes were heated to 72°C for three minutes. PCR conditions were as follows: five minutes at 72°C, twenty cycles of one minute at 95°C and three minutes at 72°C, followed by ten minutes at 72°C.

Every four reactions were combined, extracted with phenol/chloroform and precipitated. Amplified DNA was dissolved to a concentration of $0.5\mu g/\mu 1$ and all samples were pooled.

10

20

25

30

Subtraction: Tester DNA (20μg) was digested with DpnII as above and separated on a 1.2% agarous gel. The DNA was extracted from the gel and 2μg was ligated to J-Bg1-12 and J-Bg124 oligos as described above for the R-oligos. The ligated Tester DNA was diluted to 10ng/μ1 with TE. Driver DNA was digested with DpnII and repurified to a final concentration of 0.5μg/μ1. Mix 40μg of Driver DNA with 0.4μg of Tester DNA. Extraction was carried out with phenol/chloroform and precipitated using two washes with 70% ethanol, resuspended DNA in 4μ1 of 30mM EPPS pH=8.0, 3mM EDTA and overlayed with 35μ1 mineral oil. Denatured at 98°C for five minutes, cool to 67°C and 1μ1 of 5M NaC1 was added to the DNA. Incubated at 67°C for twenty hours. Diluted DNA by adding 400μ1 TE.

Amplification: Amplification of subtracted DNA in a final volume of 200µ1 as follows: Buffer, nucleotides and 20µ1 of the diluted DNA were added, heated to 72°C, and Taq DNA polymerase was added. Incubated at 72°C for five minutes and added J-Bg1-24 oligo. Ten cycles of one minute at 95°C, three minutes at 70°C were performed. Incubated ten minutes at 72°C. The amplification was repeated in four separate tubes. The amplified DNA was extracted with phenol/chloroform, precipitated and all four tubes were combined in 40µ1 0.2XTE, Digested with Mung Bean Nuclease as follows: To 20µ1 DNA 4µ1 buffer, 14µ1 H₂O and 2µ1 Mung Bean Nuclease (10 units/µ1) was added. Incubated at 30°C for thirty-five minutes + First Differential Product (DPI).

Repeat subtraction hybridization and PCR amplification at driver: differential ratio of 1:400 (DPII) and 1:40,000 (DPIII) using N-Bg1 oligonucleotides and J-Bg1

75

oligonucleotides, respectively. Differential products were cloned into a Bluescript vector at the BAM HI site for analysis of the individual clones.

The experimental cells were grown alternatively under normal conditions, for 4 hours under hypoxia (<1% oxygen) and for 16 hours under hypoxia. The cells were harvested and RNA was extracted either from nuclei that were prepared from the cells (nuclear RNA) or from extracts of unfractionated cells (total cellular RNA).

5

10

15

20

25

30

Figure 2 demonstrates how the probes prepared from the nuclear RNA (STP) give a higher differential expression than the total cellular RNA probe (Tot). The control genes encoding VEGF (vascular endothelial growth factor), Glut1 (glucose transporter 1) and glycogen synthase are known to be induced by the hypoxia stress. The level of induction observed in the nuclear probe is much higher than that seen in the total probe and much closer to the actual know level of induction. The three new genes RTP 241, RTP 262 and RTP 779 show marked induction by hypoxia. Again, the induction level seen with the nuclear probe is much higher, up to five-fold higher, as seen for RTP779. When the induction of these genes was analyzed by the Northern blot method, it was found that the nuclear probe was once again much closer to the actual situation, while the total probe gives a marked underestimation.

The genes RTPi-66 and RTP2I-72 demonstrate the ability of the nuclear probe to detect differentially expressed genes that do not appear differentially with the total probe.

The genes for Nucleolin and Thrombospondin show that also for downregulated mRNAs the nuclear probe is much more sensitive and gives much high levels of differential expression values.

Lastly, the genes for ribosomal protein L17 and cytoplasmic gamma-actin are known as genes that do not respond to hypoxia stress. The nuclear probe and the total probe both show that no induction occurs.

Example/Result 2: DIFFERENTIAL EXPRESSION PROFILING

Chip: The microarray (Chip) used was prepared as follows. Subtraction experiments

were carried out on rat osteoblasts (Calvaria) using CLONTECH SSH kit

(K 1804- 1). Cells were subjected to 20 minutes of mechanical stress and compared to "normal" cells not subjected to mechanical force. 767

76

induced sequences and 606 reduced sequences were selected and

printed on a chip.

Probe:

Total RNA

Cells:

Primary Calvaria cultures derived from 17-19 days old rat embryos.

5 List of Analyses:

٠٠į

15

CHIP no	Experiment	Analysis
109	3 -Ca +/-mechanical force	Compare the system with and without application of mechanical force in absence of Ca in culture medium. Find genes differentially expressed under the influence of mechanical force.
110	2 +Ca +/-mechanical force	Compare the system with and without application of mechanical force in presence of Ca in culture medium. Find genes differentially expressed under the influence of mechanical force.
111	1 +Indomethacin +/- mechanical force	Compare the system with and without application of mechanical force. Find genes differentially expressed under the influence of mechanical force (with prostaglandin synthesis inhibited by indomethacin).
107	4 +/- PEG2	Compare the system with and without PGE2 treatment (to mimic mechanical force)
116	5 +/- PEG2	Compare the system with and without PGE2 treatment (to mimic mechanical force)

Calvaria treated with indomethacin and mechanical force

Primary cell cultures derived from 17-19 days old rat embryos. The cultures were prepared by trypsin - EDTA digestion of Calvaria including the periosteum. The cell cultures were grown in MEM medium with 10% FCS for 5-6 days to reach confluency.

At this time 10 microliter which contains 20ug of indomethacin were added to culture dishes which had 4ml of medium. 20 minutes later the dishes were activated mechanically. The mechanical activation is carried out e.g. by expanding an orthodontic expansion screw which is attached to two pieces of solid acrylic resin

77

glued to the outer surface of the cell culture dish. The expansion deforms the dish irreversibly. Same cultures which were not treated with indomethacin and activated mechanically were as positive control.

The rationale is because mechanical activation stimulates *de novo* synthesis of prostaglandins. Indomethacin inhibits synthesis of prostaglandins.

Calvaria. grown in the presence of Ca activated by mechanical force

5

10

15

20

25

30

Calvaria grown in the presence of Ca were activated by mechanical activating devices at confluency. The cultures were prepared as described above. The cells were grown in MEM medium which normally includes 1 mM of calcium: - from the seeding of the cells until confluency and mechanical activation.

Calvaria grown in absence of Ca treated with mechanical force

The cultures were grown in MEM medium which was calcium free. The calcium in this medium was 0.25 mM because it consisted of 10% FCS (serum contains 2.5 mM of calcium). After 3-4 days the medium was replaced by regular MEM which included normal calcium concentration.

The rationale of this experiment is mainly because transudation mechanism of mechanical activation like prostaglandin synthesis and action is calcium dependent. The cultures in low calcium suppress the proliferation of fibroblasts and allow growth and differentiation of osteoblasts in culture. Therefore, the strategy is to start with low calcium medium and after 3-4 days to booster growth by switching to normal calcium medium (1 mM Ca).

Calvaria treated with prostaglandin PGE2

Primary Calvaria cells were treated with PGE2 in both experiments (both are similar primary cultures prepared at different date, and treated identically).

PGE2 treatment was performed on cultures which reached confluency by adding (treating with) 10 microliter of PGE2 which consists of total of 500ng of PGE2. After 30 minutes the cells were scraped and stored in -70°C.

The rationale: The PGE2 treatment is supposed to mimic the mechanical activation effect.

The results from this Example are shown in the Table and sequences of Figure 2A. Novel sequences CMF608, CMF405 and CMF274 were identified, *inter alia*, as discussed below (see also Figs 2A-14).

78

AN OSTEOPOROSIS (or mechanical stress) MODEL (calvaria cell cultures). <u>Differentially regulated/differentially expressed genes post-mechanical</u> <u>stimulation</u>

Extracellular matrix, transmembranal and secreted proteins:

5 tenascin

collagen XII

thrombospondin 1

ADAMTS-1.

C3 complement component

10 alpha-2-macroglobulin receptor fibronectin

connective tissue growth factor

endothelin converting enzyme

alpha-2u microglobulin-related protein

15 RB13-6

Genes connected to regulation of apoptosis

SARP1

cytochrome oxidase subunit 1 glutamyl-cystein synthetase

20 Genes connected to intracellular fatty acid methabolism

3-hydroxy-3-methylglutaryl coenzyme A reductase yeast ERG3 homologue and yeast ERG25 homologue stearoyl-CoA desaturase

25 Genes connected to cytoskeleton regulation

AHNAK

filamin

syntrophin 1

Genes connected to regulation of water channels

30 aquaporin1

Novel genes or known anonymous genes without function

highly charged amino acid sequence

DEST274 (CMF274; see Figs 2A-14)

DEST405 (CMF405; see Figs 2A-14)

35 DEST608 (CMF 608; see Figs 2A-14)

General overview of identified genes.

Tenascin is an extracellular matrix glycoprotein whose expression is upregulated in normal bone development during condensation. It is also involved in genesis and function of articular chondrocytes. Tenascin is secreted by osteoblasts,

40 but is absent from mineralized bone matrix. Expression of alkaline phosphatase

79

activity and collagen XII (markers of osteoblast differentiation) are tenascindependent (down-regulated by anti-tenascin RNA). Expression of tenascin is markedly increased in response to mechanical stress, its promoter (in chicken) was shown to contain a cis-acting "strain-responsive" element.

5

10

15

20

25

30

Another protein whose expression is known to be modulated by mechanical stress (fluid shear or stretched stress of i.e. mesothelial cells) is endothelin (endothelin converting enzyme that generates active endothelin molecules from inactive intermediates is upregulated in the present screen). In bone, endothelin stimulates the osteoblastic IL-1-induced production of IL-6 - mediator of osteoclastic differentiation, function and probably survival. Receptors to endothelin were demonstrated in osteoblastic cells by ligand binding (autocrine loop). Major endothelin signal transduction pathways in bone cells is stimulation of phospholipid turnover, by activation of phospholipases A, C, and D, stimulation of Ca flux from intra- and extracellular stores and activation of tyrosine kinases. Endothelins also modulated calcium signaling elicited by other agents (i.e. potentiation of PH-stimulated Ca transient) in osteoblastic cells. Phenotypic responses to endothelin include stimulation of osteocalcin and osteopontin messages (see herein), inhibition of osteoclast motility and stimulation of prostaglandin-dependent resorption.

One protein exhibiting channel characteristics was found upregulated. It is aquaporin1 - a water channel protein expressed in many fluid secreting and absorbing tissues such as kidney, brain, heart, eye, inner ear. Its promoter contains glucocorticoid responsive elements and can be activated in response to dexamethasone treatment. Induction of aquaporin-1 expression was detected by subtracted cloning of genes upregulated following cardiopulmonary bypass and reperfusion. However, its induction is delayed compared to inflammatory mediators (i.e. ICAM-1, E-selectin, IL-8). The only bone link can be traced in localization of aquaporin molecules in the inner ear, but this localization can be easily explained by the critical dependence of inner ear function on fluid homeostasis. In ear, the protein was found in close association with bone - in most of the cells lining the bony labirynth, and in other non-bony locations.

AHNAK (other names: neuroblast differentiation factor, desmoykin) - a 700 kD protein that was originally identified as differentially repressed (lost) in neuroblastoma cells. Its body is constituted of 128 amino acid repeats. The protein

80

was initially identified as a nuclear one. However, when it was rediscovered under the name "desmoykin", its subcellular localization was reported as membranal (at the sites of desmosomes). AHNAK-like repeats were found in another protein VAP-1 (vesicle associated protein) - a novel high molecular weight protein found in sea urchin eggs. It is located at peripheral membrane in association with microsomal membrane fraction. Within AHNAK-like repeats of VAP-1 RNA -binding sequences - of RNP1 and of RNP2 types (the same is true for AHNAK). Therefore, it is tempting to speculate, that the general increase in expression of secreted proteins observed in bone tissue in response to mechanical stress might dictate the need in the upregulation of RNA-binding protein localized to a microsomal fraction.

Filamin (non-muscle type), ABP-280, plays a critical role in stabilizing the membrane-cytoskeletal interactions. It is a dimeric actin crosslinking protein that provides the major mode for attaching the cortical F-actin network to membrane glycoproteins. One fillamin molecule is able to crosslink up to 1,000 actin molecules. This ability makes filamin the most potent actin crosslinking agent known today.

10

15

20

30

Syntrophin 1 is a member of multigene family of intracellular extrinsic membrane proteins found in complex with dystrophin. This particular syntrophin was demonstrated also in complex with nitric oxide (NO) synthase (in muscle tissue). The interaction is likely to be mediated by PDZ domains found in both proteins, but formation of this complex is probably dystrophin-dependent. NO is known to be implicated in the metabolism of bone, especially as a mediator of cytokine effects on remodeling of bone tissue in response to diverse stimuli such as pro-inflammatory cytokines, mechanical stress and sex hormones. Both estrogen and mechanical stress increase NO production by activating constitutive nitric oxide synthase. High concentrations of NO inhibit bone resorption by inhibiting osteoclast formation and by inhibiting the resorptive function of mature osteoclasts, whereas lower NO concentrations potentiate bone resorption and may be essential for normal osteoclast function. On the other hand, growth and differentiation of osteoblasts are also inhibited by high NO concentration.

Thrombospondin 1 - a 450 kD adhesive glycoprotein involved in cellular attachment, spreading, proliferation, and migration. It was originally isolated from plateletes and endothelial cells, but it is also localized in osteoid of undermineralized fetal subperiosteum and in mineralized bone matrix of neonetal/young (growing)

81

bone. TSP-1 can specifically interact with osteonectin - a 30 kD protein of bones and plateletes. This complex formation is Ca-dependent. In osteogenesis imperfecta, levels of osteonectin are reduced, while production of thrombospondin is increased. Expression of trombospondin is a marker of osteoblast differentiation (together with alkaline phosphatase and alpha-1-collagen). Dexamethasone treatment decreases the levels of thrombospondin expression in cultured osteoblastic cells (glucocorticoids induce osteoporosis). 17-beta estradiol, on the contrary, induces trombospondin expression. Thrombospondin-1 gene expression is modulated during pericytes differentiation in vitro (pericytes are cells that are embedded within basement membrane of microvessels, believed to participate in angiogenesis, but are able to differentiate into osteogenic phenotype). It is markedly increased during nodule formation and then decreased when mineralization of the nodules has taken place. TSP-1 is excluded from the inner mass of such mineralized nodules.

10

15

20

25

Several non-trombospondin genes were found to contain **thrombospondin** motifs (cell-binding domain of thrombospondin). One of them also belongs to a metalloproteinase-disintegrin family (identified as an up-regulated gene in the present screen) - ADAMTS-1. It was initially cloned as a gene that is selectively expressed in cachegenic (in vivo) colon 26 adenocartsinoma subline. It is a putative secreted protein without transmembranal domain. ADAMTS-1 contains six protein modules: pro-, metalloproteinase, disintegrin-like. TSP type 1 motif, spacer, C-terminal TSP motifs.

Another TSP-motifs containing protein is properdin - a plasma glycoprotein which stabilizes the C3nBb enzyme complex of the alternative pathway of the complemet system through TSP motifs binding. Interestingly these motifs are aslo found in terminal complement components C6 - C9.

C3 complement component is produced by osteoblastic and marrow-derived stromal cells in response to vitamin D and regulates differentiation of mononuclear phagocytes into osteoclasts. This effect is bone-specific, since C3 serum, unlike bone, concentrations were unaffected in vitD-deficient mice. In normal mice the C3 protein is located manely in periosteal regions of calvaria and on the surfaces of bone trabeculae in tibial metaphyses. It is suggested that C3 deposition on mineralized bone surfaces mediates recrutement of mononuclear osteoclasts (unlike multinuclear, express C3 receptor) to this site. In biological fluids, activated C3 in complex with

82

alpha-2-macroglobulin (whose receptor was found to be upregulated in this screen this receptor is known to be expressed by bone marrow macrophages, so, probably, osteoclast precursors can be alpha-2M-receptor positive as well) binds IL-1. It is worth noting, that IL-1 is considered as one of the stimulators of osteoclastogenesis and treatement of ovariectomized mice with its inhibitor significantly decreases the bone loss. Increased osteoclast development after estrogen loss is also mediated by IL-6. Both cytokines expression is upregulated in vivo and in vitro following estrogen deprivation.

It seems now proven that estrogen induces apoptosis of bone-resorbing osteoclasts being applied directly. On the other hand, estrogen induces TGF-beta 1 production by osteoblasts, and anti-TGF-beta antibodies, in turn, can inhibit the estrogen-induced apoptosis of osteoclasts. In this light, finding of SARP1 upregulation is of special interest. SARPs are a family of secreted apoptosis-related proteins. SARP1 was initially identified as a component of conditioned medium collected from quiescent cells, responsible for apoptosis resistance. SARP2, on the contrary, induces apoptosis sensitization. Structurally SARPs possess a cystein-rich domain (CRD), homologous to CRD of frizzled proteins, but lack the transmembranal domain.

10

15

20

25

30

Upregulation of **cytochrom oxidase subunit 1** may be a consequence of mechanical stress or oxidative stress/apoptosis possibly mediated in the system by, for example, increased NO levels.

DEST (ACC#AA177798), after the contige construction turned out to belong to a cDNA coding for glutamyl-cystein synthetase - a rate limiting enzyme in glutathione (GSH) synthesis. Its upregulation may be related to the stressed conditions like in the previous case. On the other hand there is one clinical work that correlates GSH reduction (low activity of antioxidant systems) in patients with hypomineralized state of bones.

TGF-beta1 is known as a principal inducer of connective tissue growth factor (CTFG, cef10, fisp12, cyr61, betaIG-M1, beta IG-M2, nov-protoncogene) expression. The latter contains four distinct structural modules, each of them being homologous to distinct domains in other extracellular proteins such as Von Willebrand factor, slit, trombospondins, fibrillar collagenes, IGF-binding proteins and mucins. CTGF expression is induced not only by TGF-beta1, but also by BMP2

83

(bone morphogenic factor 2), and during wound repair. In embryogenesis, its expression is found in developing cartilaginous elements, including limbs, ribs, prevertebrae, chondrocranium and craniofascial elements (Meckel's cartilage). Thus, CTGF transcription correlates with differentiation of chondrocytes of both mesodermal and ectodermal origin. In culture, CTGF is expressed in chondrocytes but not in osteoblasts. Possible role in endochondral ossification is suspected because of responsiveness to BMP2. In fibroblasts, CTGF expression causes upregulation of alpha-1-collagen, alpha-5-integrin and fibronectin.

Several enzymes known to participate in steroid synthesis were found transcriptionally elevated in the present system in response to mechanical stress. They include 3-hydroxy-3-methylglutaryl coenzyme A reductase (the first rate limiting enzyme in the chain of cholesterol synthesis from 3 acethyl-CoA molecules), yeast ERG3 homolog - sterol-C5-desaturase and yeast ERG25 homolog - methyl-sterol-oxidase (both may play a role in formation of cholesterol from lanosterol). It is worth noting that cholecterol is the basis for estrogen and vitamin D3 synthesis. One additional enzyme beloning to fatty acid metabolic pathways that was found upregulated is stearoyl-CoA desaturase, that converts the saturated substrate into the D9-deasaturated oleoyl-CoA. Both compounds participate in the synthesis of phospholipids building the cell membrane. Interestingly, estrogens and androsterons are known enhancers of the desaturation reaction.

10

15

20

25

30

Alpha-2u microglobulin-related protein (neutrophil gelatinase-associated lipocalin precursor - NGAL) belongs to a lipocalin superfamily embracing small extracellular proteins that can bind small hydrofobic molecules (i.e. retinols) and serve ligands to specific extracellular receptors. Many of them were implicated in regulation of cell homeostasis. NGAL was identified as a protein secreted from specific neutrophils' granules upon cell activation and it is identical to a 24p3 protein upregulated in SV-40 induced mitotic reaction. Interestingly, NGAL expression is increased in neu- but not in ras-induced expreimental mammary tumors. NGAL can be upregulated by dexamethasone through a responsive promoter element in vitro. In vivo, induction of NGAL in epithelial cells was observed in inflammatory and neoplastic colorectal deseases, but not in normal colon. Among other lipocalins, NGAL is mostly similar to lipocalin-type prostoglandin-D-synthase, responsible for synthesis of prostaglandin D2 from prostaglandin H2. However, NGAL is not

84

supposed to have the enzymatic activity because of the absence of a specific Cys residue (position 65) which is crucial for prostaglandin-D-synthase function.

Structural similarity between two proteins most probably stems from clustered localization of both genes at the same chromosomal locus. Nothing is known about NGAL function in bones.

5

ĺÛ

15

20

25

30

In addition, two known (RB13-6 antigen and highly charged amino acid sequence ACC# X59131) but without any attributed function and three novel proteins designated 274, 405 and 608 were found to be upregulated in the present model.

RB13-6 is a cell surface 130 kD glycoprotein selectively recognized by monoclonal antibody with the same name. RB13-6 is as a surface antigen of a subset of glial cells highly susceptible to malignant convertion by treatment with a certain carcinogen. This protein is related to the human and murine plasma cell membrane protein PC-1, a nucleotide pyrophosphatase / alkaline phosphodieterase, and possesses a 5'-nucleotidase activity. However, unlike PC-1, RB13-6 contains an RGD-sequence. The latter is a signature of integrin-interacting proteins.

So called highly charged amino acid sequence (ACC#X59131) is a putative protein encoded by anonymous open reading frame of 315 amino acids. It has no significant homology to any protein in the database. Charged amino acids are found in clusters with either Ser and Thr or Ser and Pro residues. Two prominent alpha-helices - one basic and one acidic - are positioned near the C-terminus.

was found upregulated approximately 3-fold by mechanical strain. This was detected both by microarray analysis and by Northern hybridization. In rat calvaria this gene is expressed as a single RNA species of approximately 9 Kb. However, expansion of Northern analysis to RNA samples from other rat tissue sources we have found that 274 may probably be alternatively spliced in a tissue specific manner. Alternatively, there is a family of genes closely related to 274 genes that are differently expressed in different tissues. Transcripts of varying length (in general, 9 Kb or a slightly shorter) were found in rat small intestine, skeletal muscle, lung, kidney, eye, brain, colon and testis. The highest expression levels were found in testis, eye and kidney. Complex expression pattern was discovered in bone: two strong transcripts of more than 9 Kb and 4 Kb and three faint transcripts of 1.8 Kb, 0.5 Kb and 0.3 Kb. Interestingly, when human derived lymphoid cell line NB4 was hybridized to the same probe, these three

5

ĺŪ

15

20

25

30

85

faint transcripts appeared strong, while bone-specific two strong transcripts were not evident. This, probably, indicates that the origin of the three short transcripts is in some lymphoid precursors present in small amount in the bone marrow.

cDNA library was prepared from RNA extracted from calvaria cells after mechanical stimulation. 5291 bp 274-specific RACE product was synthesized and sequenced (see Figs 2A-14). Comparison to public databases revealed that 274 is a rat homologue (98% identity on the level of amino acids) of anonymous human cDNA KIAA0462. This sequence is 7150 bp long and contains open reading frame of 6900 bp capable of coding for 2300 amino acid protein. The frame is still open from the 5'. indicating the lack of the N-terminal sequences. The open reading frame extends to the 5' direction for additional 900 bp compared to the human KIAA0462 sequence, but still does not reach the beginning of the protein. On the basis of human sequence information the inventors were able to synthesize a 6.8 Kb long human specific RACE contige. The putative KIAA0462 protein has no direct analogs in the database. It distantly (26%) resembles the C.elegans hypothetical protein (AF003140) that was. in turn, defined as having weak similarity to the drosophila hyperplastic disc protein. No known protein functional domains were identified either. A stretch of 24 hydrophobic amino acids between positions 165 and 188 of the KIAA0462 putative protein hints on its potential transmembranal location.

In situ hybridization analysis (discussed in more detail in further Examples, infra): in normal rat bones and bones obtained from ovaryectomized (osteoporotic) rats gave preliminary results indicating that gene 274 is expressed in long bones of normal rats in lining cells covering the inner surface of compact bone and in bone marrow. In normal trabecular bone specific signal was detected in bone marrow. Osteoporotic bones were 274 – negative or displayed extremely reduced signal.

CMF274 appears to encodes a huge protein. This gene seems to be bone specific. In the bone expression is in many compartments. Expressed in osteoblasts but not in lining cells. This gene seems different from the other two in that it is expressed in more mature cells.

With respect to CMF 274, mention is made of Xu et al, "Retinal Targets for Calmodulin Include Proteins Implicated in Synaptic Transmission," J Biol Chem 273(47):31297-307 (1998). Xu relates to what may be a homolog for CMF274 in drosophila, named "calossin". Xu et al. may provide homology to mouse ESTs and

86

that the protein is highly conserved during evolution. The mouse ESTs may be from the mouse homolog of CMF274. However, in Xu et al., the mouse gene was not characterized, and Xu et al. do not provide any relation to bones.

5

10

20

25

30

CMF274 contains some interesting domains including calmodulin binding domain and two zinc finger domains. The first implies capability to bind the important Calcium sensor calmodulin, and the second implies DNA binding capabilities. This combination support the proposition that CMF274 is involved in a central aspect of bone biology: sensing amount of calcium and translating it into nuclear signals that change the expression of downstream genes. It is important to note that one of the zinc-finger binding domains (CRD1) "is most similar to the zinc-finger family defined by Requiem, a protein required for apoptosis" (Xu et al).

405 (novel gene): In rat calvaria primary cell cultures, expression of this gene was found to be downregulated in response to mechanical stimulation as detected both by microarray analysis and by Northern blots. A single 9 Kb transcript was detected in this tissue. However, being hybridized to rat tissue blot, the same probe had detected a major 5 Kb transcript ubiquitously expressed in bone, brain, colon, small intestine, testis, ovary, uterus, heart, kidney, liver, stomach, thymus, spleen, bladder, adipose tissue and mammary gland.

Partial 405 rat cDNA clone was isolated from rat calvaria cDNA library by RACE technique and sequenced. It contains 3684 bp, 3000 of them constituting an open reading frame closed from the 3' end (see Figs 2A-14). Comparison to public databases revealed that gene 405 is a rat homologue of human anonymous cDNA sequences KIAA0183 and AF055017. Interestingly, the latter cDNA lacks a 294 bp (98 amino acids) fragment corresponding to positions 2384 - 2483 of KIAA0183 putative amino acid sequence. Rat 405 homologue contains this region.

Thus, there is an indication that gene 405 is subjected to alternative splicing. KIAA0183 cDNA clone was obtained from Genbank and used as a probe for hybridization with human tissue RNA blot. As in the case of rat tissues, a 5 Kb transcript was detected. However, in humans its expression was not as uniformly distributed among different tissues as in rats. The highest levels were detected in early embryo, and in testis, placenta, ovary, tongue, intestine in adults. The only RNA of human origin where a faint 9 Kb transcript (together with the major 5 Kb one) could be seen was RNA from K562 early myeloid precursor cell line.

ç

5

10

15

20

25

30

KIAA0183 cDNA clone represents a 1062 amino acid open reading frame, lacking the N-terminus. The available sequence has no transmembrane domain. On the other hand, four structural subdomains can be easily identified: N-terminal, highly charged alpha-helical region, Ser-Pro rich spacer domain, C-terminal highly charged alpha-helical region, and a tail region, rich in Ser, Pro, Gly, and Arg - amino acids, known to be clustered in this composition in the RNA-binding protein regions. A middle spacer region contains an RGD motif known to serve as a receptor to integrins. No significant homology to any known protein was found. Among those ones that displayed distant fragment homology, are FUS/TLS RNA binding protein (nuclear export) and various types of collagens.

87

Thus, as CMF405 the full sequence of the human cDNA is also presented. The pattern of expression in bone suggests involvement in osteoblast and chondrocyte differentiation. The presence of an RGD motif in this protein suggests involvement in response to integrins. Expression in few other tissues may suggest a broader function.

608 (novel gene): In rat calvaria primary cell cultures, expression of this gene was found upregulated approximately 3-fold by mechanical strain. This was detected both by microarray analysis and by Northern hybridization. In rat calvaria this gene is expressed as a single RNA species of approximately 9 Kb. Hiybridization signal was not detected in any other rat RNA from different tissue sources, including testis, colon, intestine, kidney, stomach, thymus, lung, uterus, heart, brain, liver, eye, and lymphnode.

Partial 608 rat cDNA clone was isolated from rat calvaria cDNA library by RACE technique and sequenced. RACE contige is 4007 bp long and contains a 3356 bp open reading frame closed from the 3'. Comparison to public databases revealed no sequence homologues. There are several human EST clones, similar 608 cDNA. The primary structure of the putative protein enables to attribute it to Ig superfamily.

By in situ hybridization (discussed in more details in Examples infra), expression of gene 608 was found in bone marrow from normal trabecular bones, but not of osteoporotic ones.

As to CMF608, the inventors found that it encodes a big protein that is most probably a part of the extra-cellular matrix. The gene may be actively involved in supporting osteoblast differentiation. Another option is that it marks regions were

remodeling takes place. Such an hypothesis is also compatible with a role in directing osteoclast action and thus it may be a target for inhibition by small molecules.

In normal bone formation, activation of osteoblasts leads to secretion of various factors that attract octeoclast precursors or mature osteoclasts to the sites of bone formation to initiate the process of bone resoption. In normal bone formation both functions are balanced. Imbalance to any side causes either osteopetrosis (osteoblast function overwhelms) or osteoporosis (osteoclast function overwhelms).

5

15

20

25

30

Among known osteoblast activators - mechanical force stimulation - is actually applied in the present model. As proof of principle, increased expression of several genes known to respond to mechanical stress by transcriptional upregulation were found. They include tenascin, endothelin and possibly trombospondin.

Upregulation of water channel encoding message is likely related to this mechanism too.

Among genes whose expression is found upregulated are those known to be expressed by activated osteoblasts (i.e. complement C3) or those whose upregulation may be logically connected:

- 1) Mechanical stress activates constitutive NO-synthase (NO plays an important role in bine building). In muscle, this enzyme is found in complex with syntrophin 1. The latter is found upregulated in our screen. Therefore, it can participate in NO-synthase activation in bone, too.
- 2) Some proteins secreted by osteoblasts participate osteoclast attraction through the RGD-mediated binding to integrin receptor highly expressed by osteoclasts, e.g., osteopontin. While this specific protein was not identified in the present screen, this is of no moment as other RGD-containing proteins were identified in the present screen, including the DEST405 and RB13-6.
- 3) Additional protein complex that attracts osteoclasts is the complex of C3 complement. Such complexes are known to be stabilized in plasma by a thrombospondin motifs containing glycoprotein properdin. Another trombospondin motifs-containing protein without any known function ADAMTS-1 is found upregulated. It can participate in stabilization of C3 complexes in bone.

Several lines of evidence indicate that mechanical stress causes generation of both apoptotic (NO, cytochrom oxidase subunit 1) and antiapoptotic signalling

89

(SARP1, glutamyl-cystein synthetase). That may be important for keeping the balance between osteoblast and osteoclast proliferation, differentiation and death.

Interestingly, the inventors found that in response to mechanical force, several enzymes that regulate the chain of chemical reactions potentially leading steroid synthesis are upregulated. In bone, these steroids may have the estrogen-like function that is reflected by at least two observations: first - upregulation of stearoyl-CoA-desaturase (elevation of this enzyme activity is known as estrogen-dependent); and, second - upregulation of connective tissue growth factor that is mainly induced in cells by TGF-beta -1, that, in turn, is known to be induced in osteoblasts by estrogen. Such a link may explain a common anti-osteoporotic action of estrogens and mechanical forse. It is worth noting, that estrogen induces osteoclasts apoptosis both directly (applied to cultured osteoclasts) and in TGF-beta-1-dependent manner.

10

15

20

30

Genes that are implicated in osteoporosis, osteoporosis prevention, treatment, or control, or in study or investigation to advance knowledge of osteoporosis, its prevention, treatment or control and/or in bone growth/formation study or investigation and/or for addressing maladies, conditions, symptoms, and the like, associated with bone growth/formation, include three novel genes DEST's 274, 405, 608, as well as RG13-6 (as RGD-containing protein), metalloproteinase ADAMTS-1, and proteins of SARP family (secreted apoptosis related proteins) including as potential modifiers of programmed cell death in bone formation.

Furthermore, as mentioned herein, this Example can also be performed without imparting mechanical stress to the cells; for instance, in reduced or zero gravity conditions, to develop a model with the lack of mechanical stress; and, the invention comprehends such a model and genes thereby identified.

25 Example/Result 3: CMF608 GENE EXPRESSION BY IN SITU HYBRIDIZATION

Pattern of expression of CMF608 gene was studied by in situ hybridization on sections of bones from ovariectomized and sham-operated rats. Female Wistar rats weighting 300-350 g were subjected to ovariectomy under general anesthesia. Control rats were operated in the same way but ovaries were not excised - sham operation.

Three weeks after operation rats were sacrificed and tibia were excised together with the knee joint. Bones were fixed for three days in 4% paraformaldehyde and then decalcified for four days in solution containing 5% formic acid and 10%

90

formalin. Decalcified bones were postfixed in 10% formalin for three days and embedded into paraffin.

To study the pattern of expression of CMF608 gene in developing bone the model of ectopic bone formation was employed. Rat bone marrow cells were seeded into cylinders of demineralized bone matrix prepared from rat tibiae. Cylinders were implanted subcutaneously into adult rats. After three weeks rats were sacrificed and implants were decalcified and embedded into paraffin as described above for tibial bones.

The 6 um sections were prepared and subjected to in situ hybridization procedure. After hybridization sections were dipped into nuclear track emulsion and exposed for three weeks at 4°C. Autoradiographs were developed, stained with hematoxylin-eosin and studied under microscope using brightfield and darkfield illumination.

10

15

20

25

30

For the further assessment of cell and tissue specificity of CMF608 gene expression in situ hybridization study was performed on sections of multitissue block containing multiple samples of adult rat tissues. Developmental pattern of CMF608 expression was studied on sagittal sections of mouse embryos of 12.5, 14.5 and 16.5 days postconception (dpc) stages.

Microscopic study of hybridized sections of long bones revealed a peculiar pattern of CMF608 probe hybridization. The hybridization signal can be seen mainly in fibroblast-like cells found in several locations throughout the sections. Prominent accumulations of these cells can be seen in the area of periosteal modeling in metaphysis, and also in regions of active remodelling of compact bone in diaphysis: at the boundary between bone marrow and endosteal osteoblasts and in periosteum, also in close contact with osteoblasts. Perivascular connective tissue filling Volkmann's canals in compact bone in diaphysis and epiphysis also contains expressing cells. No hybridization is found within cancellous bone and in bone marrow. This pattern of hybridization suggests that cells showing expression of CMF608 are associated with areas of remodelling of preexisting bone and are not involved in primary endochondral ossification.

At the level of growth plate expressing cells can be seen in perichondral fibrous ring of LaCroix. Some investigators regard this fibrous tissue as the aggregation of residual mesenchymal cells able to differentiate into both osteoblasts

91

and chondrocytes. In this respect it is noteworthy that single cells expressing CMF608 can be seen in epiphyseal cartilage. These expressing cells are rounded cells within the lateral segment of epiphysis (sometimes in close vicinity to the ring of LaCroix) and flattened cells covering the articulate surface. Most of cells in articulate cartilage and all chondrocytes of growth plate do not show expression of CMF608.

Ovariectomy did not result in change of the intensity and pattern of CMF608 expression in bone tissue.

In sections of ectopic bones hybridization signal for CMF608 can be seen in some fibroblast-like cell either scattered within unmineralized connective tissue matrix or concentrated at the boundary between this tissue and osteoblasts of immature bone.

10

15

20

25

30

Pattern of expression of CMF608 gene revealed by in situ hybridization in bone and cartilage allows to speculate that its expression marks some skeletal tissue elements able to differentiate into two skeletal cell types - osteoblasts and chondrocytes. The terminal differentiation of these cells appears to be accompanied by down-regulation of CMF608 expression. The latter suggestion is supported by peculiar temporal pattern of CMF608 expression in primary cultures of osteogenic cells isolated from calvaria bones of rat fetuses. In these cultures expression was revealed by in situ hybridization in vast majority of cells after one and two weeks of incubation in vitro. Three and four weeks old cultures showing signs of ossification contain no expressing cells. Significantly, no hybridization signal was found on sections of multitissue block hybridized to CMF608 probe suggesting high specificity of this gene expression for the skeletal tissue in adult organism.

In situ hybridization study of embryonic sections demonstrated that at 12.5 dpc weak hybridization signal can be discerned in some mesenchymal cells in several locations throughout the embryonic body. The most prominent signal is found in the head: in loose mesenchymal tissue surrounding the olfactory epithelium and underlying the surface epithelium of nose tip. Other mesenchymal cells in the head also show hybridization signal: in non-cartilagenous part of basisphenoid bone primordium and in mesenchyme surrounding the dental laminae (tooth primordia) in the mandible.

In the trunk expression can be detected in less developed vertebrae primordia in thoraco-lumbar region. Hybridization signal here marks the condensed portion of

92

sclerotomes. Another area showing hybridization signal in the trunk is comprised by thin layer of mesenshynal cells in the anterior part of thoracic body wall.

At later stages of development -14.5 and 16.5 dpc probe CMF608 gave no hybridization signal. Thus, it appears that during embryonic development CMF608 gene is transiently expressed by at least some mesenchymal and skeleton-forming cells cells. This expressio is down-regulated at later stages of development. More detailed study of late embryonic and postnatal stages of development will reveal the timing of appearance of CMF608 expressing cells in bone tissue.

Example/Result 4: CMF405 GENE EXPRESSION BY IN SITU HYBRIDIZATION

10

15

20

25

30

Pattern of expression of CMF405 gene was studied by in situ hybridization on sections of bones from ovariectomized and sham-operated rats. Female Wistar rats weighting 300-350 g were subjected to ovariectomy under general anesthesia. Control rats were operated in the same way but ovaries were not excised - sham operation.

Three weeks after operation rats were sacrificed and tibia were excised together with the knee joint. Bones were fixed for three days in 4% paraformaldehyde and then decalcified for four days in solution containing 5% formic acid and 10% formalin. Decalcified bones were postfixed in 10% formalin for three days and embedded into paraffin.

To study the pattern of expression of CMF405 gene in developing bone the model of ectopic bone formation was employed. Rat bone marrow cells were seeded into cylinders of demineralized bone matrix prepared from rat tibiae. Cylinders were implanted subcutaneously into adult rats. After three weeks rats were sacrificed and implants were decalcified and embedded into paraffin as described above for tibial bones.

The 6 um sections were prepared and subjected to in situ hybridization procedure. After hybridization sections were dipped into nuclear track emulsion and exposed for three weeks at 4°C. Autoradiographs were developed, stained with hematoxylin-eosin and studied under microscope using brightfield and darkfield illumination.

For the further assessment of cell and tissue specificity of CMF405 gene expression in situ hybridization study was performed on sections of multitissue block containing multiple samples of adult rat tissues. Developmental pattern of CMF405

93

expression was studied on sagittal sections of mouse embryos of 12.5, 14.5 and 16.5 days postconception (dpc) stages.

Bones: Hybridization signal for CMF405 gene is widely spread throughout different cell types on sections of long bones from sham-operated animals: cartilage, bone marrow and bone.

5

10

15

20

25

30

In the growth plate hybridization signal is concentrated in the transition zone from proliferating to hypertrophic cartilage so that most advanced proliferating chondrocytes and youngest hypertrophic chondrocytes display expression. Both young proliferating chondrocytes and most of mature hypertrophic chondrocytes do not show hybridization signal. Chondrocytes of articulate cartilage show no hybridization signal.

Some (but not all) hematopoietic cells within the bone marrow show clear hybridization signal. Poor morphology of decalcified section stained with hematoxylin-eosin does not allow identification of expressing cell types.

Within the bone tissue hybridization signal can be seen in osteoblasts localized in primary spongiosa and secondary spongiosa in methaphysis (cancellous bone). Osteoblasts covering the surface of marrow cavity and Volkmann's canals in diaphyseal (compact) bone also display hybridization signal. Flat bone lining cells and osteocytes are not expressed in any part of the bone.

Ovariectomy did not result in change of the intensity and pattern of CMF405 expression. In ectopic bone hybridization signal concentrates mainly in osteoblasts of immature bone. This signal is weak or absent from osteoblasts embedded into bone matrix.

The pattern of hybridization of CMF405 gene in adult skeletal tissues suggests that its expression is characteristic for osteogenic and chondrogenic cells at intermediate stage of their differentiation preceding intensive matrix calcification.

Tissue expression: The CMF405 probe was hybridized to multitissue block sections. The hybridization signal can be seen mainly in epithelial cells in many organs and tissues suggesting the wide expression of this gene in adult tissues.

The hybridization signal of varying intensity can be seen in epithelial lining of the digestive system. Weak hybridization signal can be seen in basal cells of stratified squamous epithelium of esophagus. Weak signal is displayed by surface epithelium of fundic stomach. In pyloric stomach strong hybridization signal is displayed by cells

94

lining mucosal pits and weaker signal - by surface eptihelium. In thin intestine expressing cells are localized in crypts and glands while villous epithelium shows no hybridization signal. Similar pattern is observed in colonic epithelium: weak hybridization signal can be seen only in crypts and not in villi. This pattern of hybridization throughout different parts of the alimentary canal allows to suggest that expression of CMF405 in digestive system appears to be confined mainly to actively proliferating epithelial cells and transition of epithelial cells into non-proliferative compartment (like suprabasal layers of esophagus or villous epithelium of intestine) is accompanied by down-regulation of CMF405 expression.

5

10

15

20

25

In urogenital system weak and diffuse signal can be seen in medullar part of kidney. The weak hybridization signal is displayed by transitional epithelium of kidney calyx, ureter and bladder. Hybridization signal is seen also in basal cells within seminiferous tubules. Low resolution of microautoradiographs does not allow unequivocal identification of expressing cells as spermatogonia or Sertoli cells.

All epidermal layers of skin show hybridization signal. Strongly expressing cells are localized also in all layers of the hair follicle.

Strong and uniform hybridization signal can be seen on sections of lymphoid organs: thymus, spleen and lymph nodes.

Positive hybridization was obtained also on eye sections: strong signal is displayed by corneal epithelium. Retina shows weaker hybridization signal throughout all layers excluding ganglion cell layer.

No hybridization signal can be seen in brain.

In situ hybridization study of sections of 12.5, 14.5 and 16.5 dpc embryos revealed strong and practically uniform hybridization signal throughout bodies of 12.5 and 14.5 dpc embryos. This suggests that all cell types at these stages of development express CMF405 gene. By 16.5 dpc stage expression appears to decline in some cells so that pattern of expression approaches to that in adult tissue although some structures showing no expression in adults display hybridization signal.

95

Example/Result 5: EXPRESSION OF CMF274 GENE BY IN SITU HYBRIDIZATION

5

10

15

25

30

Hybridization of CMF274 probe to the sections of knee joint demonstrated wide expression throughout the bone, cartilage and bone marrow tissues.

Hybridization signal can be seen in hematopoietic bone marrow cells. Accumulation of signal in cells of eosinophilic lineage is clear. Poor morphology of decalcified sections does not allow identification of other expressing cell types although it is apparent that not all the myeloid elements are expressing.

Chondrocytes display weak hybridization signal throughout all zones of growth plate. No expression is detected in epiphyseal articulate cartilage.

Within the bone tissue hybridization signal can be seen in osteoblasts localized in primary spongiosa and secondary spongiosa in methaphysis (cancellous bone). Periosteal and endosteal osteoblasts and osteoblasts of Volkmann's canals in diaphyseal (compact) bone also display hybridization signal. Flat lining cells and osteocytes are not expressing in any part of the bone. Ovariectomy did not result in change of the intensity and pattern of CMF274 expression in bone tissue.

The CMF274 probe was hybridized to multitissue block sections and to sections of 12.5, 14.5 and 16.5 dpc mouse embryos. No hybridization signal was found on these sections.

20 Example/Result 6: CMF2-45 (SARP) GENE EXPRESSION BY IN SITU HYBRIDIZATION

Hybridization signal for CMF2-45 (SARP) gene is found in different cell types on sections of long bones from sham-operated animals: cartilage, bone marrow and bone. In all expressing cell types the level of hybridization signal is rather low.

In growth plate hybridization signal marks proliferating chondrocytes while hypertrophic chondrocytes show little or no signal. Chondrocytes of articulate cartilage in epiphysis do not show hybridization signal.

Hybridization signal in bone tissue proper marks osteoblasts located in all compartments of cancellous and compact bone: primary and secondary spongiosa, periosteum, endosteum and Volmann's canals. Bone lining cells and osteocytes show no hybridization signal.

96

Some (but not all) hematopoietic cells within the bone marrow show clear hybridization signal. Poor morphology of decalcified sections stained with hematoxylin-eosin does not allow identification of expressing cell types.

In ectopic bone hybridization signal can be seen in osteoblasts of immature bone. Beside of osteoblasts single fibrobast-like cells scattered throughout the connective tissue also show hybridization signal. Some of these expressing fibroblast-like cells can be seen in close contact with osteoblasts.

Example/Result 7: CMF2-224 (Rb13-6) EXPRESSION BY IN SITU HYBRIDIZATION

5

10

15

20

25

30

43

In situ hybridization study of RB13-6 gene (GenBank Accession No.: Z47987) revealed expression of this gene in osteoblasts located in different compartments of long bone: in primary and secondary spongiosa of cancellous bone in metaphysis and within endosteum and Volkmann's canals of compact bone in diaphysis. Weak hybridization signal can be seen also in myeloid cells of bone marrow. Osteoblasts of immature bone developing within ectopic bone implants aslo display hybridization signal. Significantly, no hybridization signal was revealed on sections of long bones of ovariectomised rats and also on sections of ectopic bones implanted into ovariectomised rats. This result suggests that expression of RB13-6 in osteoblasts and bone marrow cells is estrogen-dependent. Further study will be needed to clarify the involvement of RB13-6 gene product into regulation of osteoblast function and development of osteoporosis.

Additional in situ hybridization study on sections of multitissue block demonstrated expression of RB13-6 gene in distinct epithelial cell types and in lymphoid tissue. Expressing cells can be seen in epithelial lining of bronchi, villous (i.e. mature and non-proliferating) epithelium of thin intestine, in luminal and glandular epithelia of uterus, acinar and ductal epithelia of salivary glands. Very weak hybridization signal suggesting low level of expression was found in liver and in kidney. Liver expression appears to be uniform throughout hepatocytes. In kidney single expressing cells can be seen in thick ascending part of Henle's loop.

Within lymphoid tissue strongly expressing lymphocytes are concentrated in medullar zone of lymph nodes. Few expressing cells can be seen in spleen: in the perifollicular zone (the bordering area between the red and white pulp) and in perivascular aggregations of lymphocytes. No expressing cells were found in thymus.

97

Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof.

98 References

Consensus Development Conference: Prophylaxis and Treatment of Osteoporosis: Am J Med 94:646-650, 1993

- WHO Study Group: In Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. WHO Technical Report Series: 843, 1994
- Department of Health Health and Personal Social Services Statistics for England, 1991 Edition. HMSO, London, 1991, pp 10-11
 - Welsh Office Health and Personal Social Services for Wales HMSO. London, 1991, pp 2-3
- 15 Kanis JA, McCloskey EV: Epidemiology of vertebral osteoporosis. *Bone* 13:Sl-S10, 1992
 - Kanis JA, Pitt FA: Epidemiology of osteoporosis. Bone 13:S7-S15, 1992
- Cummings SR et al: Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178-207, 1985
 - Department of Health and Social Security Office of Population Censuses and Surveys CancerStatistics: Registrations. Series MBT, 20, HMSO, London, 1987
- Riggs BL, Melton LJ: Involutional osteoporosis. N Engl J Med 314:1676-1686, 1986
 - Melton LJ, Eddy DM, Johnston CC: Screening for osteoporosis. Ann Intern Med 112:516-528, 1990
- Department of Health and Social Security Office of Population Censuses and Surveys

 Hospital In-Patient Enquiry Summary Tables. Series MB4, 26, HMSO, London, 1985
- Nordin BEC, Need AG: How can we prevent osteoporosis? In Osteoporosis 1987 (Christiansen C, Riis BJ, eds.). Osteopress ApS, Copenhagen, 1987, pp 1204-1210
 - United Nations Interpolated National Populations by Age and Sex: 1950-2025 (1992 Revision). United Nations Population Division, United Nations, New York, 1992
- 40 Cooper C, Campion G, Melton LJ: Hip fractures in the elderly: A world-wide projection. Osteoporosis Int 2:285-289, 1992
 - Parfitt AM: Quantum concept of bone remodeling and turnover: Implications for the pathogenesis of osteoporosis. Calcif Tissue Int 28: 1-5, 1979
- Parfitt AM: Bone remodeling in the pathogenesis of osteoporosis. Res Staff Physician, December: 60-72, 1981

99

Parfitt AM: Bone remodeling: Relationship to the amount and structure of bone, and the pathogenesis and prevention of fractures. In Osteoporosis: Etiology, Diagnosis, and Management (Riggs BL, Melton LJ, eds.). Raven Press, New York, 1988, pp 74-93

5

- Kanis JA Pathophysiology and Treatment of Paget's Disease of Bone. Martin Dunitz, London, 1991, pp 12-40
- Smith DM et al: Genetic factors in determining bone mass. *J Clin Invest* 52:2800-2808, 1973
 - Pocock NA et al: Genetic determinants of bone mass in adults: A twin study. J Clin Invest 80:706-710, 1987
- 15 Matkovic V et al: Factors that influence peak bone mass formation: A study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 52:878-888. 1990
- Cohn SH et al: Comparative skeletal mass and radial bone mineral content in black and white women. *Metabolism* 26:171-178, 1977
 - Selby PL: Endocrinology and osteoporosis. In *HRT and Osteoporosis* (Drife JO, Studd JWW, eds.). Springer Verlag, London, 1990, pp 105-114
- 25 Stevenson JC et al: Exercise and the skeleton. In *Osteoporosis 1990* (Smith R, ed.). Royal College of Physicians of London, London, 1990, pp 119-124
 - Griffin J: Osteoporosis and the Risk of Fracture. Office of Health Economics, London, 1990, p 48

30

- Mundy GR Calcium Homeostasis: Hypercalcemia and Hypocalcemia, 2nd ed. Martin Dunitz, London, 1990, pp 1, 32, 51-52, 179, 200
- Christiansen C, Riis B The Silent Epidemic: Postmenopausal Osteoporosis.
- 35 Christiansen and Riis, Denmark, 1990, pp 23, 66-67, 70-73
 - Christiansen C, Rodbro P, Tjellesen L: Serum alkaline phosphatase during hormone treatment in early postmenopausal women: A model for establishing optimal prophylaxis and treatment in postmenopausal osteoporosis. *Acta Med Scand*
- 40 216:11-17, 1984
 - Gallagher JC et al: Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: Effect of age and dietary calcium. *J Clin Invest* 64:729-736, 1979

45

Heaney RP: Nutritional factors in bone health. In Osteoporosis: Etiology, Diagnosis, and Management (Riggs BL, Melton LJ, eds.). Raven Press, New York, 1988, pp 359-372

100

Heaney RP: Effect of calcium on skeletal development, bone loss, and risk of fractures. Am J Med 91 (suppl 5B):5B-23S-5B-29S, 1991

Delmas PD et al: Increase in serum bone gamma-carboxyglutamic acid protein with aging in women: Implications for the mechanism of age-related bone loss. *J Clin Invest* 71:1316-1321, 1983

Drinkwater BL et al: Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 311:277-281, 1984

10 Silverman SL: The clinical consequences of vertebral compression fracture. *Bone* 13:S27-S31, 1992

Adami S et al: The radiological assessment of vertebral osteoporosis. *Bone* 13:S33-S36, 1992

Riggs BL: Practical management of the patient with osteoporosis. In Osteoporosis: Etiology, Diagnosis, and Management (Riggs BL, Melton LJ, eds.). Raven Press, New York, 1988, pp 481-490

Kanis JA et al: Screening techniques in the evaluation of osteoporosis. In HRT and Osteoporosis (Drife JO, Studd JWW, eds.). Springer Verlag, London, 1990, pp 135-147

25 Genant HK, Faulkner KG, Gluer C-C: Measurement of bone mineral density: Current status. Am J Med (suppl 5B) 91:5B-49S-5B-53S, 1991

Sartoris DJ, Resnick D: Digital radiography may spark renewal of bone densitometry. *Diagnostic Imaging*, January:145-150, 1988

Fogelman I, Rodin A: The measurement of bone density. In *HRT and Osteoporosis* (*Drife* JO, Studd JWW, eds.). Springer Verlag, London, 1990, pp 119-133

30

Mazess RB et al: Dual-energy X-ray absorptiometry for total-body and regional bonemineral and soft-tissue composition. Am J Clin Nutr 51:1106-1112, 1990

Johnston CC et al: Clinical indications for bone mass measurements. J Bone Min Res 4 (suppl 2): 1-29, 1989

Delmas PD: Clinical use of biochemical markers of bone remodeling in osteoporosis. In *Osteoporosis 1990* (Christiansen C, Overgaard K, eds.). Osteopress ApS, Copenhagen, 1990, pp 450-458

Uebelhart D et al: Urinary excretion of pyridinium crosslinks: A new marker of bone resorption in metabolic bone disease. *Bone Mineral* 8:87-96, 1990

Consensus Development Conference: Prophylaxis and Treatment of Osteoporosis: Am J Med 90:107-110, 1991

- Delmas PD: Biochemical markers for the assessment of bone turnover. In Osteoporosis: Etiology, Diagnosis, and Management. Rev. ed. (Riggs BL, Melton LJ, eds.). Raven Press, New York, 1995, pp 319-333
- 5 Uebelhart D et al: Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J Clin Endocrinol Metab 72:367-373, 1991
- Christiansen C, Riis BJ, Rodbro P: Screening procedure for women at risk of developing postmenopausal osteoporosis. *Osteoporosis Int* 1:35-40, 1990
 - Sinaki M: Exercise and physical therapy. In Osteoporosis: Etiology, Diagnosis, and Management (Riggs BL, Melton LJ, eds.). Raven Press, New York, 1988, pp 457-479
- Davee AM et al: Exercise patterns and trabecular bone density in college women. J Bone Min Res 5:245-250, 1990
 - Gleeson PB et al: Effects of weight lifting on bone mineral density in premenopausal women. J Bone Min Res 5:153-158, 1990
- 20
 Riggs BL, Melton LJ: The prevention and treatment of osteoporosis. N Engl J Med 327:620-627, 1992
- Riggs BL: Treatment of osteoporosis with sodium fluoride or parathyroid hormone.

 25 Am J Med (suppl 5B) 91:5B-37S-5B-41S, 1991
 - Kanis JA et al: Osteoporosis: Causes and therapeutic implications. In Osteoporosis 1990 (Smith R, ed.). Royal College of Physicians of London, London, 1990, pp 45-56
- 30 Rogers HJ, Spector AG, Trounce JR: In A Textbook of Clinical Pharmacology. Hodder and Stoughton, London, 1981, p 583
 - Eriksen EF et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84-86, 1988
- Lindsay R, Cosman F: Estradiol in prevention of osteoporosis. In Osteoporosis 1990 (Christiansen C, Overgaard K, eds.). Osteopress ApS, Copenhagen, 1990, pp 2070-2075
- 40 Lindsay R: Estrogens, bone mass, and osteoporotic fracture. Am J Med 91 (suppl 5B):5B10S-5B-13S, 1991
 - Lindsay R, Tohme JF: Estrogen treatment of patients with established postmenopausal osteoporosis. Obstet Gynecol 76:290-295, 1990
- Christiansen C, Riis BJ: 17ß-estradiol and continuous norethisterone: A unique treatment for established osteoporosis in elderly women. J Clin Endocrinol Metab 71:836-841, 1990

45

- Lufkin EG et al: Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann intern Med 117:1-9, 1992
- Segre G, Bruni G, Dal Pra P: Calcitonin pharmacokinetics. In *Calcitonin* (Pecile A, ed.). Elsevier, New York, 1985, pp 99-107
 - Nicholson GC et al: Abundant calcitonin receptors in isolated rat osteoclasts. *J Clin Invest* 78:355-360, 1986
- Baron R, Vignery A: Behaviour of osteoclasts during a rapid change in their number induced by high doses of parathyroid hormone or calcitonin in intact rats. *Metab Bone Dis Rel Res* 2:339-343, 1981
- Overgaard K et al: Effect of salcatonin given intranasally on early postmenopausal bone loss. Br Med J 299:477-479, 1989
 - Rasmussen H et al: Effect of combined therapy with phosphate and calcitonin on bone volume in osteoporosis. *Metab Bone Dis Rel Res* 2:107-111, 1980
- 20 Gruber HE et al: Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism 33:295-303, 1984
- Christiansen C et al: Intranasal calcitonin in the treatment of postmenopausal osteoporosis. In *Osteoporosis 1987* (Christiansen C, Riis BJ, eds.). Osteopress ApS, Copenhagen, 1987, pp 853-856
 - Overgaard K et al: Nasal calcitonin for treatment of established osteoporosis. Clin Endocrinol 30: 435-442, 1989
- Overgaard K et al: Discontinuous calcitonin treatment of established osteoporosis: Effects of withdrawal of treatment. Am J Med 89:1-6, 1990
 - Fleisch H: Bisphosphonates: Pharmacology and use in the treatment of turnour-induced hypercalcemic and metastatic bone disease. *Drugs* 42:919-944, 1991
 - Watts NB et al: Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 323:73-79, 1990
- Filipponi P et al: Cyclical clodronate is effective in preventing postmenopausal bone loss: A comparative study with transcutaneous hormone replacement therapy. *J Bone Min Res* 10:697-703, 1995
 - Chesnut CH et al: Alendronate treatment of the postmenopausal osteoporotic woman: Effect of multiple dosages on bone mass and bone remodeling. Am J Med 99: 144-152, 1995
 - Garnero P et al: Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. *J Clin Endocrinol Metab* 79(6):1693-1700, 1994

30

- Francis RM: The calcium controversy. In *Osteoporosis 1990* (Smith R, ed.). Royal College of Physicians of London, London, 1990, pp 125-133
- Johnston CC et al: Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82-87, 1992
 - Baran D et al: Dietary modification with dairy products for preventing vertebral bone loss in premenopausal women: A three-year prospective study. *J Clin Endocrinol Metab* 70:264-270, 1989
 - Dawson-Hughes B et al: A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med 323:878-883, 1990
- 15 Chapuy MC et al: Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 327:1637-1642, 1992
- Hassager C et al: Changes in soft tissue body composition and plasma lipid metabolism during nandrolone decanoate therapy in postmenopausal osteoporotic women. *Metabolism* 38:238-242, 1989
 - Johansen JS et al: Treatment of postmenopausal osteoporosis: Is the anabolic steroid nandrolone decanoate a candidate? *Bone Mineral* 6:77-86, 1989
- 25 Riggs BL: Treatment of osteoporosis with sodium fluoride: An appraisal. In Bone and Mineral Research, Annual 2 (Peck WA, ed.). Elsevier, New York, 1983, pp 366-393
 - Delmas PD: Treatment of vertebral osteoporosis with disodium monfluorophosphate: Comparison with sodium fluoride. *J Bone Mineral Res* 5(suppl 1):S143-S147, 1990
 - Riggs BL et al: Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322:802-809, 1990
- Mamelle N et al: Risk-benefit ratio of sodium fluoride treatment in primary vertebral osteoporosis. Lancet ii:361-365, 1988
 - Tietz NW, ed. Textbook of Clinical Chemistry. WB Saunders, Philadelphia, 1986, pp 1322-1323
- 40 Russell RGG: Bone cell biology: The role of cytokines and other mediators. In Osteoporosis 1990 (Smith R, ed.). Royal College of Physicians of London, London, 1990, pp 9-33
- Tilyard MW et al: Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357-362, 1992
 - Meunier PJ et al: Can we stop bone loss and prevent hip fractures in the elderly? Osteoporosis Int 4(suppl 1):S71-S76, 1994

Chapuy MC et al: Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. Br Med J 308:1081-1089, 1994

- Neer R et al: Treatment of postmenopausal osteoporosis with daily parathyroid hormone plus calcitriol. In *Osteoporosis 1990* (Christiansen C, Overgaard K, eds.). Osteopress ApS, Copenhagen, 1990, pp 1314-1317
 - Reid DM: Corticosteroid-induced osteoporosis. In *Osteoporosis 1990* (Smith R, ed.). Royal College of Physicians of London, London, 1990, pp 99-117
- 10 Lukert BP, Raisz LG: Glucocorticoid-induced osteoporosis: Pathogenesis and management. Ann Intern Med 112:352-364, 1990
- Reid IR et al: Two-year follow-up of bisphosphonate (APD) treatment in steroid-induced osteoporosis. *Lancet* ii: 1144, 1988
 - Ringe JD, Welzel D: Salmon calcitonin in the therapy of corticoid-induced osteoporosis. Eur J Clin Pharmacol 33:35-39, 1987
- 20 Rosen, CJ: Beyond one gene-one disease: Alternative strategies for deciphering genetic determinants of osteoporosis. *Calcif Tissue Int* 60(3):225-28, 1997.
 - Keen et al.: Genetic factors in osteoporosis. What are the implicatins for prevention and treatment? Drugs Aging (New Zealand) 11(5):333-7, 1997.
 - Eisman: Vitamin D receptor gene variants: Implications for therapy. Curr Opin Genet Dev 6(3): 361-65, 1996.
- Ralston: The genetics of osteporosis. QJM Monthly Journal of the Association of Physicians (United Kingdom) 90/4, pp 247-51, 1997.
 - Cole et al.: Osteoporosis And the Interface Between Nutrition And Genetics. INABIS '98 5th Internet World Congress on Biomedical Sciences at McMaster University, Canada, Dec 7-16. http://www.mcmaster.ca/inabis98/atkinson/cole0195/index.html
- Tokita et al.: Vitamin D receptor alleles, bone mineral density and turnover in premenopausal Japanese women. *J Bone Miner Res* 11(7): 1003-09, 1996.
- Jouanny et al.: Environmental and genetic factors affecting bone mass. Similarity of bone density among members of healthy families. Arthritis Rheum 38(1):61-67, 1995.
 - Garnero et al.: Genetic influence on bone turnover in postmenopausal twins. *J Clin Endocrinol Metab* 81(1):140-46, 1996.
- Johnston et al.: Pathogenesis of osteoporosis. Bone 17(2 Suppl):19S-22S, 1995.

• }

Fujita: Vitamin D in the treatment of osteoporosis revisited. *Proc Soc Exp Biol Med* 212(2):110-5, 1996.

Gong et al.: Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet 59(1):146-51, 1996.

- Houston et al.: Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: studies in a UK population. *Bone* 18(3):249-52, 1996.
 - Cummings: Treatable and untreatable risk factors for hip fracture. *Bone* 18(3 Suppl):165S-167S, 1996.
- Wasnich: Vertebral fracture epidemiology. Bone 18(3 Suppl):179S-183S, 1996.
 - Riggs et al.: The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 10(6):991-6, 1995.
 - Wark: Osteoporotic fractures: background and prevention strategies. *Maturitas* (*Ireland*) 23(2):193-207, 1996.
- Fleet et al.: The BsmI vitamin D receptor restriction fragment length polymorphism (BB) predicts low bone density in premenopausal black and white women. J Bone Miner Res 10(6):985-90, 1995.
- Krall et al.:Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res 10(6):978-84, 1995.
 - Livshits et al.: Population biology of human aging: segregation analysis of bone age characteristics. *Hum biol* 68(4):540-54, 1996.
- 30 Dalgleish: The human type I collagen mutation database. Nucleic Acids Res 25(1):181-7, 1997 (citing http://www.le.ac.uk/depts/ge/collagen/collagen.html)
 - Lonzer et al.: Effects of heredity, age, weight, puberty, activity and calcium intake on bone mineral density in children. Clin Pediatr 35(4):185-9, 1996.
- Pereira et al.: Bone fragility in transgenic mice expressing a mutated gene for type I procollagen (COL1A1) parallels the age-dependent phenotype of human osteogenesis imperfecta. J Bone Miner Res 10(12):1837-43, 1995.
- Sano et al.: Association of estrogen receptor dinucleotide repeat polymorphism with osteporposis. Biochem Biopphys Res Commun 217(1):378-83, 1995.
 - Burke and Olson, "Preparation of Clone Libraries in Yeast Artificial -Chromosome Vectors" in Methods in Enzymology, Vol. 194, "Guide to Yeast Genetics and Molecular Biology", eds. C. Guthrie and G. Fink, Academic Press, Inc., Chap. 17, pp. 251-2 70 (1991).
 - Capecchi, "Altering the genome by homologous recombination" Science 244:1288-1292 (1989).

45

- Davies et al., "Targeted alterations in yeast artificial chromosomes for inter-species gene transfer", Nucleic Acids Research, Vol. 20, No. 11, pp. 2693-2698 (1992).
- Dickinson et al., "High frequency gene targeting using insertional vectors", Human Molecular Genetics, Vol. 2, No. 8, pp. 1299-1302 (1993).
- Duff and Lincoln, "Insertion of a pathogenic mutation into a yeast artificial chromosome containing the h uman APP gene and expression in ES cells", Research

 Advances in Alzheimer's Disease and Related Disorders, 1995.
 - Huxley et al., "The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion", Genomics, 9:742-750 (1991).
- Jakobovits et al., "Germ-line transmission and expression of a human-derived yeast artificial chromosome", Nature, Vol. 362, pp. 255-261 (1993).
 - Lamb et al., "Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice", Nature Genetics, Vol. 5, pp. 22-29 (1993).
 - Pearson and Choi, Expression of the human 0-amyloid precursor protein gene from a heast artificial chromosome in transgenic mice. Proc. Natl. Scad. Sci. USA, 1993. 90:1057882.
- 25 Rothstein, "Targeting, disruption, replacement, and allele re-scue: integrative DNA transformation in yeast" in Methods in Enzymology, Vol. 194, "Guide to Yeast Genetics and Molecular Biology", eds. C. Guthrie and G. Fink, Academic Press, Inc., Chap. 19, pp. 281-301 (1991).
- 30 Schedl et al., "A yeast artificialchromosome covering the tyrosinase gene confers copy number- dependent expression in transgenic mice", Nature, Vol. 362, pp. 258-261 (1993).
- Strauss et al., "Germ line transmission of a yeast artificial chromosome spanning the murine al (I) collagen locus", Science, Vol. 259, pp. 1904-1907 (1993).
 - Gilboa, E, Eglitis, MA, Kantoff, PW, Anderson, WF: Transfer and expression of cloned genes using retroviral vectors. BioTechniques 4(6):SO4-512, 198G.
- 40 Cregg JM, Vedvick TS, Raschke WC: Recent Advances in the Expression of Foreign Genes in Pichia pastoris, Bio/Technology 11:905-910, 1993
 - Culver, 1998. Site-Directed recombination for repair of mutations in the human ADA gene. (Abstract) Antisense DNA & RNA based therapeutics, February, 1998, Coronado, CA.
 - Huston et al, 1991 "Protein engineering of single-chain Fv analogs and fusion proteins" in Methods in Enzymology (ii Langone, ed.; Academic Press, New York, NY) 203:46-88.

WO 99/60164

Johnson and Bird, 1991 "Construction of single-chain Fvb derivatives of monoclonal antibodies and their production in Escherichia coli in Methods in Enzymology (JJ Langone, ed.; Academic Press, New York, NY) 203:88-99.

- Mernaugh and Mernaugh, 1995 "An overview of phage-displayed recombinant antibodies" in Molecular Methods In Plant Pathology (RP Singh and US Singh, eds.; CRC Press Inc., Boca Raton, FL) pp. 359-365.
- Aiello et al., "Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display" Proc. Natl. Acad. Sci. USA Vol. 9 1, pp. 623 1 6235 (1994).
- Bauer et al., "Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR)" Nucleic Acids Research Vol. 21, No. 18 (1993).
 - Bhanicha and Ven Murthy, "Characterization of Polysomes and Polysomal mRNAs by Sucrose Density Gradient Centrifugation Followed by Immobilization in Polyacrylamide Gel Matrix" Methods in Enzymology Vol. 216, pp. 168-179 (1992).
- Braun et al., "Identification of Target Genes for the Ewing's Sarcoma EWS/FLI Fusion Protein by Representational Difference Analysis" Molecular and Cellular Biology Vol. 15, No. 8, pp. 4623-4630 (1995).
- 25 Cold Springs Harbor Laboratory Press, Cold Spring Harbor, New York, 1989
 - Davis et al., "Expression of a single transfected cDNA converts fibroblasts to myoblasts." Cell 51:9871000, 1987.
- Diatchenko et al., "Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries" Proc. Nad Acad. Sci., Vol. 93, pp. 6025-6030 (1996).
- Ehrenfeld, "Initiation of Translation by Picomavirus RNAs", Translational Control Cold Spring Harbor Laboratory Press, pp. 549-573, 1996.
 - Hadman et al., "Modification to the differential display technique reduce background and increase sensitivity" Analytical Biochemistry 226:383-386 (1995).
- Hanauske-Abel et al., "Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the GI-S boundary. Proposal of a role for EIF-5A in onset of DNA replication." FEBS Letters 386 pp. 92-98 (1995).
- Hirama et al., "Direct Purification of Polyadenylated RNAs from Isolated Polysome Fractions" Analytical Biochemistry 155, pp. 385-390 (1986).
 - Hubank and Schatz, "Identifying differences in mRNA expression by representational difference analysis of cDNA" Nucleic Acids Research, Vol. 22, No. 25, p. 5640-5648 (1994). Jefferies et al., "Elongation Faction-la mRNA is Selectively Translated

WO 99/60164 PCT/US99/11066

. ŧ

108

following Mitogenic StimulatioW' The Journal of Biological Chemistry Vol. 269, No. 6, pp. 4367-4372 (1994).

- Liang and Pardee, "Differential Display of Eukaryotic Messenger RNA by Means of the Polymerase Chain Reaction" ~S~cience, Vol. 257, pp. 967-971 (1992).
 - Liang et al., "Distribution and cloning of Eukaryotic mRNAs by means of differential display: refinements and optimization" Nucleic Acids Research Vol. 21, No. 14, pp. 3269-3275 (1993).
- Liang and Pardee, "Recent advances in differential display" Current Opinion in Immunology, 7:274-280 (1995).
- Linskens et al., Cataloging altered gene expression in young and senescent cells using enhanced differential display" Nuc. Ac. Res. 23: 3244-3251 (1995).
 - Lisitsyn and Wigler, "Cloning the Differences Between Two Complex Genomes" Science Vol. 259, pp. 946-951 (1993).
- Mach et al., "Isolation of a cDNA Clone Encoding S-Adenosylmethionine Decarboxylase" The Annual of Biological Chemistry Vol. 261, No. 25, pp. 11697-11703 (1986).
- Macejak et al., "Internal inition of translation mediated by the 5' leader of a cellular mRNA" Nature, Vol. 353, pp. 990-94 (1991).
 - Mechler, "Isolation of messenger RNA from Membrane-Bound Polysomes" Methods in Enzymology Vol. 152, pp. 241-253 (1987).
- Menaker et al., "A Method for the Isolation of Rat Submandibular Salivary Gland Polysomes on Linear Sucrose Density Gradients" Analytical Biochemistry 57, pp. 325-335 (1974).
- Meyuhas et al., "Translational Control of Ribosomal Protein mRNAs in Eukaryotes"

 Translational Control,, pp. 363-388 (1996).
 - Mountford et al., "Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis" TIG, Vol. 11. No. 5, pp. 179-184 (1995).
- Ogishima, et al., "Fractionation of Mammalian Tissue mRNAs by High-Performance Gel Filtration Chromatography" Analytical Biochemistry 138, pp. 309-313 (1984). Oh et al., "Gene regulation: translational initiation by internal ribosome binding" Current Opinion in Genetics and development pp. 295-300 (1993).
- Pelletier et al., "Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA" Nature Vol. 334, pp. 320-325 (1988).
 - Schena et al., "Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray" Science Vol. 270, pp. 467-470 1995).

Shen et al., "Identification of the Human Prostatic Carcinoma Oncogene PTI- I by Rapid Expression Cloning and Differential RNA Display" Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6778-6782 (1995).

5

Vagner et al. "Alternative Translation of Human Fibroblast Growth Factor 2 mRNA Occurs by Internal Entry of Ribosomes" Molecular and Cellular Biology, Vol. 15, No. 1, pp. 35-44 (1995).

Welsh et al., "Arbitrary primed PCR fingerprinting of RNA", Nuc. Ac. Res.

10 20:49654970 (1992).

- Zhao et al., "New primer strategy improves precision of differential display" Biotechniques 18: 842-850 (1995).
- 15 Sperling et al., "Abundant Nuclear Ribonucleoprotein Form of CAD RNA," Mol Cell Biol. 1985 Mar;5(3):569-75.
 - Dimitrijevic & Wgner "A search for novel, naturally occurring antisense RNA systems"

20

- Murphy, P.R. and Knee R.S. (1994) Identification and characterization of an antisense RNA transcript (gfg) prom the human basic fibroblast growth factor gene. Mol. Endo Vol. 8 no. 7 852-859.
- Adelman, J.P. Bond, C.T., Douglass, J. and Herbert, E. (1987) Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 235:1514:1313.
 - Kimelman, Du Kirschner, M.W. (1989) An antisense m-RNA directs the covalent modification of the transcript encoding pibroblast growth factor in Xenopus oocytes Cell, 59:687-696.

Lazer, M.A. Hodin, R.A., Darling D.S., Chin, ww. (1989) A novel member of the thyoid/steroid hormone receptor family is encoded by the opposite strand of the rat cerbA a transcriptional unit. Mol. Cell. Biol. 9:1128-1136.

35

30

Miyajima, N., Horiuchi, R., Shibuya, Yl, Fuhushige, S., Mutsubara, K., Toyoshimak, Yamamoto, T (1989) Tow erba homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell. 57:31-39.

- Kindy, M., McCormack, J. Buckler, A., Levine, R., Sanenshein G. (1987) Independent regulation of the transcription of the two strands of the c-myc gene. Mol. Cell. Biol. 7:2857-2562.
- Celano, P., Berchtold, C., Kizer, D., Weararatna, F., Nelkin, B., Baylin, S., Casero, R. (1992) Characterization of an edogenous RNA transcript with homology to the antisense strand of the human c-mye gene. J. Biol.. Chem. 267:15092-15096.

WO 99/60164

110

Armstrong, B.C., Krystal, G.W. (1992) Isolation and characterization of complementary DNA per N-cym, a gene encoded by the DNA strand opposite to N-myc Cell Growth Differ. 3:385-390.

5

Taylor, E.R., Seleiro, E.A.P. Brickell, P.M. (1991) Identification of antisense transcripts of the chicken insulin-like growth factor II gene. J. Mol. Endocrial 7:145

Mitchell, P.J., Carothers, M., Han. J.H., Harding, J.D., Kas, E. Vendia, L., Chasin, L.A. (1986) Multiple transcription start sites, Dnase I-hypersentive sites, and an opposite strand exon in the 5' region of the CHO dnfr gene. Mol. Cell. Biol. 6:425-

WO 99/60164

A search for novel, naturally occurring antisense RNA systems, N. Dimitrijevic,
 E.G.H. Wagner, Dept. of Microbiology, SLU (Swedish University of Agricultural Sciences), Genetic Center, P.O. Box 7025, S-75007 Uppsala, Sweden

Antisense RNA control of gene expression has been demonstrated in many bacteria, whereas only few cases are known in eukaryotes. All antisense RNAs identified to date have been found fortuitously. Therefore, our goal is to develop a 10 novel strategy for targeted identification of naturally occuring antisense systems. The approach is based on the complementarity between antisense and target RNA over a significantly long stretch of nucleotides. The method used is briefly described here. Total cellular RNA is extracted. Part of the RNA pool is immobilized on a membrane, another part converted into cDNA after ligation of oligodeoxynucleotides 15 to the 3' ends. The use of biotinylated, complementary oligos for cDNA synthesis allows immobilization of a "minus" strand to streptavidin-coated magnetic beads. A second set of oligos is ligated to the cDNA at the previous 5' end of the RNA. Plus strands are eluted from the bound strands and hybridized to the membrane-bound RNA. Since the cDNA strand used has the same polarity of the RNAs, only cDNA 20 sequences that can bind to complementary RNAs should be retained. PCR amplification and subsequent cloning of PCR-fragments is followed by sequence analysis. To test whether cloned sequences are correctly identified, probes are generated in sense and antisense direction. Positive clones will be structurally and functionally characterized. In order to work out this method, we started using a 25 bacterial strain (Escherichia coli), containing plasmid R1 that regulates its copy number by antisense RNA. Previous work has identified both antisense (CopA) and target RNA (CopT) of R1 intracellularly. This procedure, if feasible, will then be used to screen for antisense RNA systems in other organisms.

30

- }

WHAT IS CLAIMED IS

- 1. A method or process for identifying genes whose expression is responsive to a specific cue or cues including the steps of:
 - (a) applying a cue to an organism or tissue or cells;
- 5 (b) isolating specific cellular fractions from the tissues or cells subjected to the cue;
 - (c) extracting the mRNA from the cellular fractions; and
 - (d) differentially analyzing the mRNA samples in comparison with control samples not subjected to the cue to identify genes that have responded to the cue; wherein the tissue or cells comprises bone cells that retain being bone cells in a culture.
 - 2. A method as set forth in claim 1, wherein genes are identified at the translation level; genes regulated at the transcription level; genes regulated by RNA stability; genes regulated by mRNA transport rate between the nucleus and cytoplasm; genes regulated by differential splicing; and genes regulated by antisense RNA.
 - 3. The method of claim 1 wherein the cue comprises a stress inducing element which comprises mechanical stress.
 - 4. The method of claim 1 wherein the bone cells comprise calvaria cells.
- 5. A method for determining risk of developing a physiological or disease state based upon presence or increase from normal cells or absence or decrease from normal cells of mRNA or protein from a gene shown to be up regulated or down regulated in a mammal by a method of claim 1 comprising:
 - (a) determining the level or status of mRNA in cells of said mammal; and/or
- 25 (b) determining the level or status of corresponding protein in cells of said mammal; and
 - (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a

presence or increase from normal cells, or an absence or decrease from normal cells, of mRNA or protein and thus risk of developing a physiological or disease state.

- 6. A method for testing a medicament for or a gene therapy approach to a physiological or disease state or other factors causing or contributing thereto or to symptoms thereof based on absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein of identified genes comprising a method as claimed in claim 5 additionally comprising: (a') administering the medicament or the gene therapy; and from the comparing determining an absence or decrease from normal cells or presence or increase from normal cells of the relevant mRNA or protein and thus efficacy of the medicament or the gene therapy.
- 7. A method for treating, preventing or controlling a physiological or disease state comprising a method as claimed in claim 5 and additionally comprising administering a medicament or treatment therefor or for a cause thereof or a symptom thereof.
- 15 8. The method of claim 6 wherein the medicament or treatment comprises the protein, a functional portion thereof, a vector expressing the protein or a functional portion thereof, or an inhibitor of the protein or of a functional portion thereof, or an inhibitor of a nucleic acid encoding the protein or a functional portion thereof.
- 20 9. The method of claim 5 further comprising:
 - (d) determining the level or status of a second gene mRNA in cells of said mammal; and/or
 - (e) determining the level or status of protein expressed by a second gene product in cells of said mammal; and
- 25 (f) comparing said level or status of that mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining risk.

- 10. The method of claim 9 wherein steps (a) and/or (b) and optionally (d) and/or (e) are carried out *in vivo* and/or steps (a) and/or (b) and optionally (d) and/or (e) are carried out *in vitro*.
- 11. The method of claim 9 wherein the determination in step (a) and optionally in step (d) is effected by employing
 - (i) a nucleic acid sequence corresponding to at least a part of the gene encoding at least part of the protein and optionally a second nucleic acid sequence corresponding to at least a part of the second gene encoding at least part of the second protein;
- (ii) a nucleic acid sequence complementary to the nucleic acid sequence(s) of (i);
- 10 or

20

- (iii) a primer or a primer pair hybridizing to the nucleic acid sequence(s) of (i) or (ii).
- 12. The method of claim 9 wherein the determination in step (b) and optionally of step (e) is effected by employing an antibody or a fragment thereof that specifically binds to the protein and optionally by employing a second antibody or a fragment thereof which specifically binds to the second protein.
- 13. A gene identification method comprising: preparation of probes from a model system; analysis of DNA chip hybridization; sequencing of clones showing differential expression; and optionally full-length cloning of clones of interest; wherein the model system comprises bone cells which retain their characteristic thereof in cultures which have mechanical stress or a lack thereof applied thereto.
- 14. The method of claim 13 wherein the bone cells comprise a calvaria primary culture.
- 15. A method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or other conditions involving mechanical stress or a lack thereof, based upon presence or increase or absence or decrease from normal cells of mRNA or protein from a gene shown to be up regulated or down regulated by a method of claim 13 in a mammal comprising:
- 30 (a) determining the level or status of mRNA in bone cells of said mammal; and/or
 - (b) determining the level or status of corresponding protein in bone cells of said mammal; and

15

20

25

- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells, or an absence or decrease from normal cells, of mRNA or protein and thus risk.
- 10 16. A method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or lower levels of osteoblasts and chondrocytes or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells of mRNA or protein from 608 comprising:
 - (a) determining the level or status of mRNA in bone cells of said mammal; and/or
 - (b) determining the level or status of corresponding protein in bone cells of said mammal; and
 - (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining a presence or increase from normal cells of mRNA or protein and thus risk.
 - 17. A method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or of imbalance as to osteogenic and chondrogenic cells or other conditions involving mechanical stress or a lack thereof, based upon absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein from 405 in a mammal comprising:
 - (a) determining the level or status of mRNA in bone cellsof said mammal; and/or

20

25

- (b) determining the level or status of corresponding protein in bone cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.
- 18. A method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or of being susceptible to environmental factors or other than genetic factors of osteoporosis or of predisposition of bones towards susceptibility to environmental factors, or less lymphoid cells, or osteopososis, or other conditions involving mechanical stress or a lack thereof, based upon presence or increase from normal cells or absence or decrease from normal cells of mRNA or protein from 274 in a mammal comprising:
- (a) determining the level or status of mRNA in bone cells of said mammal; and/or
- (b) determining the level or status of corresponding protein in bone cells of said mammal; and
- (c) comparing said level or status of mRNA and/or protein with the corresponding level in normal cells; wherein the term "level" denotes the amount of mRNA or protein produced; and, the term "status" includes that the gene, mRNA, protein or a transcription control element, including a promoter/enhancer sequence, may bear a mutation, deletion or any other modifications which would affect the overall activity of the gene when compared to the wild-type normal gene product, including post-translational modifications of the protein, and from the comparing determining an absence or decrease from normal cells of mRNA or protein and thus risk.
- 19. A method for testing a medicament for or gene therapy approach to osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, based on absence or decrease from normal cells or presence or increase from normal cells of mRNA or protein comprising a method according to any one of claims 15-18

20

25

30

and additionally comprising: (a') administering the medicament or the gene therapy; and from the comparing determining an absence or decrease from normal cells or presence or increase from normal cells of the relevant mRNA or protein and thus efficacy of the medicament or the gene therapy.

- 5 20. A method for treating, preventing or controlling osteporosis or other conditions involving mechanical stress or a lack thereof, comprising a method according to any one of claims 15-18 and further comprising administering a medicament or treatment for osteoporosis or a cause thereof or a symptom thereof.
- 21. A composition comprising a gene or portion thereof or a protein or

 10 portion thereof expressed by the gene or portion thereof or an antibody or portion
 thereof which binds to the protein or portion thereof, wherein the gene is identified by
 a method as claimed in claim 1 or 13.
 - 22. An osteoporosis or mechanical stress or lack thereof model comprising bone cells which retain their characteristic thereof in culture with mechanical stress applied thereto or an absence of mechanical stress applied thereto.
 - 23. An isolated nucleic acid molecule: encoding the herein identified protein 608 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto; or encoding the herein identified protein 405 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto; or encoding the herein identified protein 274 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.
 - 24. The isolated nucleic acid molecule of claim 23: encoding human protein 608 or a functional portion thereof; or encoding human protein 405 or a functional portion thereof; or encoding human protein 274 or a functional portion thereof.
 - 25. The isolated nucleic acid molecule of claim 23: comprising SEQ ID NO: or a functional portion thereof; or comprising SEQ ID NO: or a functional portion thereof; or comprising SEQ ID NO: or a functional portion thereof; or comprising a nucleotide sequence as shown in the Figures or a functional portion thereof.
 - 26. A vector comprising an isolated nucleic acid molecule of any one of claims 23-25.

- 27. A composition comprising the vector of claim 26.
- 28. A probe or primer which specifically hybridizes to an isolated nucleic acid molecule of any one of claims 23-25.
- 29. An expression product of the isolated nucleic acid molecule of any one of claims 23-25.
 - 30. An isolated polypeptide: herein identified as protein 608 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto; or herein identified as protein 405 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto; or herein identified as protein 274 or a functional portion thereof or a polypeptide which is at least substantially homologous or identical thereto.
 - 31. The isolated polypeptide of claim 30: which is human protein 608 or a functional portion thereof; or which is human protein 405 or a functional portion thereof; or which is human protein 274 or a functional portion thereof.
- 15 32. The isolated polypeptide of claim 28: comprising SEQ ID NO: or a functional portion thereof; or comprising SEQ ID NO: or a functional portion thereof; or comprising SEQ ID NO: or a functional portion thereof; or comprising a polypeptide sequence as shown in the Figures or a functional portion thereof.
 - 33. A composition comprising the isolated polypeptide of any one of claims 30-32.
 - 34. An antibody elicited by a polypeptide of any one of claims 30-32 or a functional portion thereof.
 - 35. A composition comprising the antibody or functional portion thereof of claim 34.
- 25 36. A method for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, comprising administering a polypeptide as claimed in any one of claims 30-32.
- 37. A method for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, comprising administering a vector as claimed in claim 26.

- 38. A method for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, comprising administering a composition as claimed in claim 21.
- 39. A method for preventing, treating or controlling osteoporosis or bone density or other factors causing or contributing to osteoporosis or symptoms thereof or other conditions involving mechanical stress or a lack thereof, comprising administering a gene or functional portion thereof or a polypeptide comprising an expression product of the gene or functional portion of the polypeptide or an antibody to the polypeptide or a functional portion of the antibody, wherein the gene is identified in the model of claim 22.
 - 40. The method of claim 39 wherein the gene identified in the model is CMF2-45 or CMF2-224.
- 41. A method for preparing a polypeptide comprising expressing the polypeptide from the vector of claim 26.
 - 42. A method for preparing a polypeptide comprising expressing the polypeptide from a gene identified in a method as claimed in any one of claims 1 or 13.
- 43. A method for advancing research in or studies of bone development comprising a method as claimed in any one of claims 1 or 11.
 - 44. A method for affecting a gene identified by any one of the methods of claim 1 or 11 comprising contacting cells containing the gene with a compound to which the gene responds.
- 45. The method of claim 44 wherein the compound comprises estrogen or 25 a derivative or precursor thereof.

FIG. IA

FIG. 1B

SUBSTITUTE SHEET (RULE 26)

### 16hrs	4E12 STP = 5D11 Clycogen synthase 4hrs 16hrs 4hrs 16hrs N H N H N H N H N H Tot (************************************	15F03	5D07 L17 Cyto γ actin 4hrs 4hrs 16hrs N H N H Tot 6 6 1.1 2 4 hrs N H N H Tot 6 6 1.1 2 4 hrs N H N H Tot 6 6 1.1 3 4 hrs N H N H STP 6 6 1.1 4 6 1.1 STP 6 6 1.2 5 5 1.1	Expression Level Scale
6 E0 1 RTP241 4hrs 16hrs N H N H Tot DD 3.1 24 25.0	4E11 VEGF 4hrs 16hrs . N H N H Tot [11] 3.1 [13] 4.8 STP [13] 2.6	6 E02 Nucleolin 4hrs 16hrs N H N H Tot 2.6 C G 4.8 STP 6 2.2.8 6 4.3.2	6E02 Thrombospondin 4hrs 16hrs N H N H Tot CC 1.5 EE-1.2 STP CC 2.2 CC -4.3	

F16.2

COMPLEMENT COMPONENT C3
X62477) -2 -3.8 -2.5 -2.3 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.2 -2.1 -2.2 -2.2 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5
-2.5 -2.1 -2.1 -2.2 -2.2 -2.2 -2.6 -3.6 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5
-2.1 -2.2 -2.2 -2.6 -2.2 -3.6 -2.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3
-2.2 -2.1 -2.6 -2.3 -3.8 -2.5 -3.5 -2.4 -3.5 -3.4 -3.5 -3.4 -3.5 -3.6 -2.3 -5.8
-2.2 -2.2 -3.8 -2.5 -2.7 -3.5 -3 -3 -3 -2.3 -5.8 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5
3.8 -2.3 -3.6 -2.5 -2.7 -2.4 -3.5 -3 -3 -3 -2.3 -5.8 -2.6 -2.6
-27 -24 -35 -3 -3 -3 -51 -23 -58
-3 -3 -51 -51 -23 -58 -26 -26
-3.7 E -2.3
-26
-2.8
+67 -3.3 -4.1
-3.7
NING THROMBOSPONDIN MOTHIFS 3.3
(PROTEIN KINASE) -3.b

ŧ.

F16. 2A-1

TACTGTTTGTTTTCAGAGGTCTTCTGGAAAAATACCATGGCAAACTGGTCGTAGTCAGTG TCGGCCACTTGCACATCGTAGCTCTGTATCTGAGGGTAGCTGTGAATATTCCCCCAGGGTG AACTGGCCAGGCCTGGAGCTTGGAACGAATGTTCTGATCCAGTAGCGA&AGCCCTGGCCC CTGACGAGGATGGAAGTGACGTTGTAGCTATTGTCTTCCTGTAGCTCAÏAGATGGTGCTG >cal2-294 = a 2u globulin-related protein

2

CTGTTAGCTTTGGGGTTCAGGGGGGCCTCGGTCAGAAGCACCGGGTGCTC CTCAGGGGCCACACGCAGCTCGTTGTAGAAGGTGTGGTGCCAGATCTTCT ACATGGCTGGGGTATTGAAGGTTTCAAACATTATCTGCGTCATCTTCTCT CCATGTCGTCCCAGTTGGTGACAATGCCGTGCTCAATAGGGT q-actin, cytoplasmic 11 >call-42

. M

ACAGGTCTTTGCGGATATCGATGTCACACTTCATGATGCTGTTATAAGTAGTTTCGTGAA TGCCGGCAGACTCCATACCAATGAAAGAGGGCTGGAAGAGAGTCTCAGGACAGCGGAAAC GCTCGTTGCCAATGGTGATGACCTGGCCATCGGGAAGTTCGTAGCTCTTCTCCAGAGAGG AGGAAGATGCAGCGGTGGCCATCTCATTCTCAAAATCCAGGGCGACATAACACAGTTTTT CTTTGATGTCTCGGACAATTTCACGTTCAGCGGTGGTGACAAAGGAGT cardiac a-actin, 11 >cal2 54

= Alkaline phosphodiesterase >cal2 224

ţ

ACTTGACTCCGGATTTGCCGAAACGACTGCNCTATGCCAAGAACGTCAGGATTGACAAAG TTCATCTAATGGTGGATCGGCTATGGCTTGGCTTACAGGAACTAAGGGAGTTCCAACTGCG AATGCGGAANNCACNGTTACAACTATGAATTTAAAANTTTGGANGCAATCTTTTGGCAC **ACCNAGGACCTGCCCTCGAATCAGGACTCGTAATATACCTCAGGACTTCTTTACCTTTA** ATGGACCCNGCTTTAANGAGAANACTGTTNTCCAACCATTTGAAAACATCGAAGTCTATA ATTCCGAAGAGATTGTCAGAGACCTCAGCTGTCGAAAATCCGATCAACACTTCAAACCCT

NTCTACTGTGTGATCTTCTGCACNTCCN

; LRP/a-2->call-582 = AM2 receptor/LDL receptor related

TCTCAGAGGCACGGAGTCTGTGGCATTGCCTTTGCATCCACGCTTGATGGAGCCGTTGGC GTGAGTTCTGTCACTCCAGTAGATGAAATCCTCAAACACAGACACAGAGAACATGTCCAT CTTGTCCATCCGGGCATCACACCAGTAGAGCTTGCCGCCCTGATAGTCTACTGAGATGCC GTTGTTACTGGACAGGACCACCTCACGGTTCTCACCCGTCTCCAGATCGATACGTTCGAT ACCCTTCTGCCTGTCCCTGTTGAAGACCTTGATGTCTTTAAGCTGCACGCCNATGCCCGT CCGCTCAATCCGTGGGTAGTGACCCCCACTCAGTCCAGAACAAG macroqlobulin receptor

protein membrane integral >cmf1-519 = Aquaporin (AQA1); Channel

ACCATGGCACCAACTGGCTGTTTCCCTCTAGTCTCCCTTGCAGTGCAGATGTGACGTGTG TGTTTATTAAAGAGCACTGGGCTATTGCAGCGTCATGTCTGAGGAAAGAAGCAGCTAGAC TGCAAGGACCTGATGCTGTGGCTTCTGCTATAGCCCCAAGAACATCTCAGAGTGCATTCAG CTCAGGGCTTGCATTTAGCTCTCTGGGTTATTCTATTCAATCCCACCAAGCCAGAGCAGC TCTACCACTGTGCCGTTAACCATGTCGTGAACCGAGACCACATTCTTCAGGTGCTTAGAA ATGCAACAGACCCCAGACAGATGCCCATGCCGGGCACACAGGGGTTTGGATGCCCCTAGT GACCAGAGCCIGGACAATCTGAAGGGGCTCACTATGTGACTCCAGGCACAGTCTCCTTAT GCAGCAGAATAATCAGGAGGCCATTGACCACTGGCATAGT

GGGGACAAGAAATAACAGTGAGAGGATCAGAGACCAGTCACTGCTTCACTGGCCTCTCCC CGGAGGCTGAGTATGGCGTTACTGTTTTTGTGCAGACACCCAAATCTCGAGGGGGCCGGGTG TCCCCATCAAAGAACAGACGACTGTGAAACCAACAGAGGCTCCCACAGAGACCGGCCCACGC CTTCACCTCCTCCCACTATCCCACCTGCCCGTGATGTATGCAAAGGGGCCCAAGGCAGATA TTGTGTTCCTGACGGATGCCTCTTGGAGTATTGGAGATGACAATTTTAACAAAGTTGTAA AATTTATTTTAATACTGTGGGGGCCTTTGATGAAATCAGCCCTGCTGGGATTCAGGTTT GGTCACCTCACCGGGCAGCGACCTCTTACAGGCTAAAGCTGAGTCCTGCCGATGGAACCA ACTTAAATGTGACAGATCTGAAAACTTACCAGGTTGGATGGGACACCTTCTGTGTCAAAT a-1 = Collagen type XII CTTTTGTGCAGT >call-138

8. FIG. 2A-4

GCTGTGCCGAGGAGAACTGCTTCNTGCATCAGTCAGGATCAGGTCNGCCTGAATGAAC GACTACACAAGGCTTGTGAGCCTGGAGTGGACTACGTGTACCTCGGCCGCGCGACCACGCTG GGTGCTGGGACAAGGGATCCCCTGCTCTNGTGCTCCCCCCCCCGACTTATTGATTTCTTTC ATGAGATGGACAAAGCCTTCTCCAACAACACCCTCATCATCTACCTAGAAAGATCT TCTATCATCCGGAGAAGGACGATGGAATGCTGAGCAAGCTGTGCCACAATGAAATGTGCC CTGAGCCTTGANCCGGGGAAACAANAACNGCCCACCCCATCTGGGGGAGGCCTTTCNAAGT AAAATCANCCCCTCACTGGGTTTTGACCCTNTGGCNAGAANAACACCCCCCCCCTTTT ACTTGGGAAACTTGGATGCTACTATGTCCATGCTGGACATCTCCATGATGACTGGCTTTA CACACTCCGAAGAAGACTGCCTGTCCTTCAAAGTCCACCAGTTCTTTAACGTGGGACTTA TCCAGCCGGGGTCGATCTACTCCTACTACTAAAGGAGTCNTGCACCCGGT CNTTAACCTGTCCTGGGCACGCCCNTTNCCTNAGGGGGACTAGTTCANTGTTTCTGGGGA TTCCAGACACAAACGACCTGGAACTGCTGAGCTCTGGAGTAGACAGATACATTTCCAAGT ATGCCCCCNGGTGTTGNCCTTNCCTCGTTATGGGCC component C3 >cal2 155 = Complement

. О

ACGATCCCTGTTAGGCCCCCTACTGTGAATAAGAGATAAACCCCTAAGGCTCATAATATG AGGCCTACTGTGAATATGTGTGTGTCATACAATAAACCCTAGGAAGCCAATAGATATT GCGGGGGATCATTTGATATTCCCTCCATGTAGTGTAGCGAGTCAGCTGAATACTTTTACG CCTGTAGGAATTGCGATATTATAGTGGCAGATGTAAAGTAGGCTCGGGTGTCTACATCT >cal2 162 = Cytochrome oxidase subunit 1, mitochondria ACATGTGAAATAP.TTCCAAACCCTGGAAGAATTAAGATGT

F16.24-5

= DEST

...

TCAGGGTTATTACACACCAGGCAGGGATCACTCTCTAGGTAGTAGCCATC AAACTCCACTAAGCCAGACAAGGTATTGTAAATGTTGGAGTTGGATGAT TGGTGAGAATGTGGTTCTGAGTCCTCAAAATCTCCACGGCCTTCTGTGAG ACCGTGTGTCCACTTTAATGGAAGACAGCTTGATATAACAAAACGGCACT

ATGTGGACATGGGCTACTCATGACTGTGGAATTCTCTTGGTGCCACCTTATTCCTCAGTG ACTCTGTCTGAGCAAACAGCTTCAATGCCCGGATGAGTGGAAACTATCCATGCTCAGTAA TCTTCTGCGACATCAGGGTTTCTCTGTGTTTCATGAATGGAATTGGTTCCCTTTCCTCCA CAACCACAAATTCATTCTTTCAAAGAAGACTTGCTTTGGTCCCCTCTGTCCAGTGGTGT AAGGGAGCCTTAGTCCCAGAGTCCACTCTCCAGGTTGAGCCCAACTCCCAGAGGGTCTTTC CCACTGAATGGGTCTTCCAGCTGCTGGGAAGTGGCTGTGNGAACCNCGCCTCTTAAGACA CAGTGGCTTCAGTGTTCAGAGGGAAGACCTCTTCTGGGGAGATNANTGGGGAA GGGAAGGGATAAAAATGACCTCCTGTTTTTTTTGGTGTAAGTTTCATTGAATTTTTAATG GCGANGGTCTCACACTGGTTAACCACTTAAAGANACCAATCACTTTCNNGGTTGGCCATN GGTTCCTTGTGGGATCTGAGAGTGGTTGACTCCAGTCCAGGGTCTTTCAGTTTCTATTC GTGCTGGTATGCCAATGGATAGCATCAAGATATGCCAATGTGTTTTTTTGGGCCAGTT AAATGTTGAATGTCTTTGGGCTCAGTTTCATTTCA = DEST >cal2 144

F16.24-6

adhesion molecule

608 = DEST; homology to Neural cell

>call

CAGGCAAACTCCAGGATACCTCAGGCACAGGGGAGCCAAGAGGCCTTGCAGTCAACTTGGA AATCTTTCCCATGGAGCACTTGCTTCTTAAATACTGCTTCTGTTCAATTTTGGCAGGTG ATAAGTGCCCCTCACTGAAGGACGATGCTTCTTATATACAGAGTTCCATTTGGATACAAG CTTCCACAGTAAGAACACTACCCTTCTCTGAGCCTGAGGAGCTGGTGGCAATGCACTC A A A A A A T C T G G G A A T G A T G C T T T T T T T T T T C T C C A T C A T A A A G G A C C C A A A A A C C C C C A A C C C T T N C T C T T T T G G N T C C T A T A A T G A C A G G G G G A C N G T T G A A ACCTCTTGGTCCTATAGCCACTGTCATCAGCTTGGGCTACATTGTTGAGCACTGTCCCAT AGACGTGGATTCGGCTGCCCATTCTGTGCCACTGGTCGATGACAGCCTTGGATGGCAGCC TCCAGATTATTCTAGGCTTTGGATCCCCAGTAGCTGAGCAGTTCAGTAGTAATTTCTCAC CCAAATTCACCTCAGTCCATGTCTGAGAGGCAGTTTCTATCCTGGGGGTTGTCTCTCCCT TTAACTTTTTTCTTTAACCCAACANTTGAATCCTGGNCCANAATGGGTTGCCTGGCC

F16. 24-1

similarity to: erg3 (Ascobolus Immersus; some = DEST; >cal2_197 X10624)

ACCTGTTCCCCCACCGCCGAAGACTGCAAATTCACAGGCAATTTCTTCTACAACTACA TGATGGGGATTGAGTTCAACCCCCCCCATCGGAAAGTGGTTTGACTTCAAGCTGTTCTTCA AGGAGCTTTATGGCCATGTGACCCAACTCCATGATTTTGGTCAATGTCTTACAGGCCATCT ATGGGCGCCCGGGGATTGTGGCCTGGACTCTTATCAACCTGTCCTTTGCTGCCAAGCAGC **ATGTGTTAGACTTCTTGGAACGAAACCTGGTATCA**

7

GCAACGGGGGGCAAGGGAGGTGTGGTGATATCCATGTGGTTCCTGGTGGG TGCCTTCAGCTAGCTGGCTTCCCGAAGAGGCAGTGGATGAACCTTCTACC TTTACTTGGTCTCCGGGTCTCCCGTGCCAGTGGCTCTGCATGGCTTCC TGCTGTAGCTGTTCTGCTCTGTCAGGTTCTTCCCGCTAGAGTCCAGGGCG CACTGCCCTCATCGTTGTCTGATGAGGACGAGGTAGACGAGGCCAGGGGAA GTAGGCGGAATCCACGTGATTGGGGCTGCCGCTCTGGGCCAGGTTGATGG ACATCAGTCCCTTCTTGTGTGTGCTCAGCCACTCTCAGCACCTCAGGT CATTGACAGGAGGCACGGGATTGGCTGAACAGTGCCCATGTGGCTCCCTT AAGGCAGGCTCAGGGAAGCTGTATGGGTATGGAACCTGGCCTGGGGTGCC GCGAAGAAACGCTCATACAGCGGTGTGTGTGCTTCCCCTCGTGAGGAAATGT CCTGGGCTGGCACCTGTTGGACCGCGGGCTTTGCTTGC >call-405 = DEST=KIAA0183

5. F/G.24-8

ACCTGGGCTTTGCCCTGGGCCCCATGTTTGTGAAAGCAACCTTTGCGGAGGACAGCAAGA ACATGATAGGCTACCCCAACTTCATGACCCCCAAGGAGCTGGACAAAGTGTTCAATG ACATAGCCAGCGAGATCATCCTGGAGATCAAGAAGGCATTCGAGGAGAGGCTGAGCACCC TGAAATGGATGGATGAAGATACTCGGAGGTCAGCCAAGGAGAAGGCGGACGCCATCTACA GGAGGGTCACAGCCGACCTCAGGAAAGCCCCCAACAGAGATCAGTGGAGTATGACCC CGCCCATGGTGAACCCCTACTACTCGCCCACCAAGAACGAGATTGTGTTTCCAGCTGGAA TCCTGCAGGCGCTATTTTAINCCCGCTCTTCGCCCCAACGCCTTGAACTTTGGTGGTATCC GGGTCTTTGTTGGGCACNAACTGACTCCTGCTTTCNACGATCAGGGCNGGAGTTTGACAA ACTACACAGCAGTTCCCGATCTCTACTTTGAGAACGCCATGCGATTTTTCAACTTCTCAT GGATNGGAANCTCCCGGCCTGGTTGGGAAAAACNCCTCGGTGGAAGCTTCCANCCNCANA ACCAATGCTTGGTTTCAACCTTTTCAAAACCTCCAACNCCAANGGGGGGGGCCCGGTTCCC ACCTTTTGTTCCCCTTANTTGAAGGGGTTAATTTCCAACCTTGGGGTT = Endothelin converting enzyme >cal14c8

9

<u> ACTGAGGCGGCCCAGGGTAGATGTCAGCATTGGTATCAAGTGTGCCCCTGGAGTACTGGG</u> CACACCCACCCCCATCACACTCAAATTGGAGCCTTCTCATGATGCCAGTAAAGTGAA CCCCACTGAGGCTGATATTGACTTTGATATCATCCGTAATGACAATGACACCTTCACTGT GAAATACACACCCTGTGGGCTGGCAGCTATACCATCATGGTTCTTTTTGCTGACCAGGC **IGCTGAGGGTCCTGTCCTAAATCGCACTGGTGTTGAGCTTGGCAAACCCCACTTTCAC AGTCAATGCTAAAACTGCTGGAAAGGCAAGCTGGATGTTCAGTTCTCACGACTGGCTAA** = filamin >call-254 CGGAGATTC

-16.24-9

aataatatttacattgaaataataggtccccgaagccacttttgatattctaggagtccg GGAGTATTTCAAAAGCTAGGGCCATGCGGAGAGGGCCTTTGTTCAGGATTTTAGTCTTAG GTCATCAGGCCTCCAAACTTATCAGCCTTGAGCAACTCAAACAAGACTCCTATCCACCCA NCCTGGNCCTCCCCCCCCCCCACCTTTCTACCGTCTCAGGCATGGGACACTGTGGTTC TGCACAGTCAGTTGTTGAGATTTCCACTGTCTGCAGGGTCCCTTGTCTCAAATACCTGTT >cal2 28 = Highly charged amino acid sequence (X59131) CINAACCIGIGACIGAIGCCCC

Zn-peptidase aminopeptidase M/kidney >cal2 204 = Kidney aminopeptidase N

CCTGTGACTGATGCATGAAGCAGTTCTCCTCGGCACAGCGGCACATTTCATTGTGGCACA SCTIGCICAGCATICCATCGICCTICTCCGGATGATANAACCGGGIGCATGACTCCTCTA GGTGGACTTTGAAGGACAGGCAGTCTTCGGAGTGTGAGATCTTTTCTAGGTAGATGA **FGAGGGTGTTCTTGTTGGAGAGGCTTTGTCCATCTCATACTTGGAAATGTATCTGTCTA** GATTGTAGTAGAGTAGACCTTGACCGACCCGGCTGGATAAGTCCCACGTTAAAGAACT CTCCAGAGCTCAGNNGTNCCAGGTCGTTTGTGTCTGGAATAAAGCCANTCNTCATGGAGA TGTCCAGGATGGACATAGTAGCATCCNCGTCTCCCAAGI

9. FIG.24-10

ACTCCTCCTGCTCCAGNATGAACATGGTGTGTGGTTGAACAGCTGCTGCAGC TTCTCGTNGGTNTACTNGATNTCAAAGTTGCTCGAATGAGTTCACATCAA agatctcgaagccagcggatgtccangatcncganntatgangcnccctg CCTCTTGGTCTTGTCNNTAACTTTGTTATTGNGAACCACCAGCCAGGGGA **ATATCCGCNCGTAGGTACCCTTNGNCAGAGCCTCCATGGTAAAATCAGCC** CGGGGTCAAGGGAINCCTCTGGTTGACCTCGGTCNCNTINCATCNCCCAC GCAAGTGNGGACANCINTIGAACICCIGIGITAICIGGCAIGGACGACIT TGCNCTTTCTCTGTGGCCNTCTGCNCAINCTCGCTGCCNTNCNTNATGCN GTTCAGNTGCTCCCCTCCCTNTNCTTGANNGACCCANGINCCCCTCTGTC >call-268 = Myosin heavy chain A, non-muscle INAATGTACCCCTTGANATGATCTCTCAG

20,

ACATITITCCAAACAIGGITTTCTTGACTTTGGGAGATTTTACTTCAGCITTGAGCGCAG CATCAGGCCCTGCAACGCTGACATCCACATCAGGAACTTTGAGGCTGGCATCAATCTCAC GAATTTTAGGCATTTTAAACTTGCTTTTCTTGCCCTTGCCACCAATGTTTATCTCAGGAG TCTCAACACTCCAGTTCTGCTTCAGGGACAGTCACACCAACTGTGGGGGGTCTTAATGTCAG CTCCAGNAACATTCAAATCCATGTTTCTTGGTCTTGACTTTAGGGCCACTCATGT CTTTGGGGCTTTTTGCACCAAATCCAAACTTGGGTTTTTTTAAACTTCGGAACTTTAACAT CTGGCCCTTCAATATATATCTGGACTCTCCATGTGGACATCTAAGCTTGGAGTTTCTA AATCAACTTTAGGCCCCCTGAGGTCAACTTCACCTCCTCCTAACTTAGGCCCCAGAAATTC CAACATTTGGTGTCTTGAGGTGCACATTAGCATCAGGCCCACTTATTTAGGAACAGGT (M80899) >call4d6t7 = Novel protein AHNAK (nucleoprotein)

F16.24-1.

Secretory protein containing thrombospondin motifs **ACCAGACCTTGTGCAGACCTTCCTTGCCCACGTTGGCAGGTGGGGGGA.TTG** GTCACCATGTTCTAAAACTTGTGGGAAGGGTTATAAGAAGAGAACCTTGA TTGAATAAACCAaAGCATTACATTGACTTTTGCATACTGACACAGTGCAG TTAACAGGTTTTGAGGACAAGGTAGCGTGGGAGGGCTGATACACTGAAAG CAAGAGTGCTGGAGGGATCCTGTGAATCAAACCA9TAAACAGTGAGGTGT AATGTCTGTCCCATGATGGCGGTGTGTTATCAAATGAGAGCTGTGAT¢CT GGCAATGAGGTGTGTATAGGGGATaCATTAGCAAAAGAGGTAGATCCGT 11 >call-191

ACTGTGCAGCGGGCTGGCTGCAGAACTTAAGTCATAACACTCTTTGTCGCTGAGGTCTG AAGCTCTCTGCACGTTCTCATCCCTGGGAACGTGACCCCCAGCATCCGACGCCAAGATGCC GGCTCACATACTGCAAGAGATCTCTGGCTCTTACTCGGCCACCACCACAATCACAGCGCC ACCTTCTGGGGGACAGCAGAATGGAGGAGAGAGTTTGAAAGGAATCCTCACCACTGGGG AGCAGATGTTCGCCCTGAAATTAAAGATGACCTATACGACCCCAGCTACCAGGATGAGGA desaturase Co A GGGGCCCCCGCCCAAGCTGGAGT Stearoyl 11 >call-562

SUBSTITUTE SHEET (RULE 26)

F16.24-12

23

CATTGGAGCTCCACCGCGGTGGCGGCCGCTCTAGAATAGTGGATCCCCCGGGGCTGCAGGA ATTCGATACTCATGGGCCCCTTCCAGTTGGAAACCATTTAAAAACCCTGAATGGTGAATA atgitcccatatctgcccatcaaggttgaanccatganagttcttataccagaaagctcc TTTGINGGACAGGGCACAGTTGGTGATGGCTGAATCNGTGTCCTTGTCATAGGTNGANAA **LAGCTIGTAGCGACTCTTGGCATCTCCAACACTGAACCTGTCATACACAGCATAAGCTGA** CAGGTTATCCAGTCCAAGCCAGAATTCTTCTGCGGTCTCCAAACCCAATGGCATTAGC NGATCTACCATTGTGATAGTTCATGGAATCACCTACCGTTCCACTGTATCCTTCTACCTT CTCCCCATGGTCTTGTAGGTCCACCCGGANCTCATATTGCCCTTGGGCTGTGATTTTGCT CTTCCAGTTTCCAAAGAAANTCCTCACGTCCATTTTTGCGTCTCAAGAAAACGANTCATC >cal2 76 = Tenascin CACCICCAICC

24.

ACCACTGAAGTCCACGGCATTAAACTCATCATAACCTACAGCAAGTCCAGGGTCACAGTT TACAGTCTGGACAAGTTCTTTGCCCTGATGGCGGACAACCCAGTTAGGGTCATTTTGGGA GGTTCCTTTGGGATCTAGAGGAATCATCTGGAATCGGCGGAAATCGGITTCACTGATGTC GCAGTTGTCTCTGTCATCAGGGATGCCGTCGTTGTCATCGTCATGGTCACAGGCGTCTCC **AACATTCTCAGGACAGATGTCATCAATGTCTGGCACATTGTCATGGTCAAAGTCGTCTTT** GCAGGCATCGCCTCGGCCATCACCATCAGAGTCCTTCTGGTCAGGATTGGGCACCAGCCT TTTACCATCTTTATCGTGGTCGGCCTGGTTGGCATTGGGCACATAGGGACAGTTGTCCAC GTTGTTCTGATGGCCATCCTCATCGATGTCCTGATTGTTGTC >call-609 = Thrombospondin 1

F16. 24-13

7

ACTCTCCCCAGGTGTTGAGGTGGGAAAAGGGGGCTTCTGCACCTTCGATGATGGCCTCG ATACCTGACTGCGGGTTCTGCTCTGTTTGGTAGCACTGCTGGCAGGGAAACTTCCTG CCTCCTGGATGAAGGGGTTTACTCATCATCACTGGCAGCTGCAGGAANTCGGGGGCC TGATAAACAATTTCATAACCCCTTTCTGCTAGTCCGTCTGCCAAAAAACTCAAAGGACCC AAGCAGGGAGCTGTTCCACAGGCGAGCCACTGTCAGCTGAGT >call-700 DEST

26.

GAAGTGAGAACCGTGTGTCATTGTCATGCCAAATAGCCTGTCAATCTCAGACACTGGTTTC ACTACAGGAAGATGTATGGAGACATGGCGTAAAGCCAGGGAGTAAGGGACACGAACTCAT TACAGTAGCACATTAATTTTAAATCTGGGTTCCTAACTGCTGTGGGAGAAAACACCCCACC GAGACAGTTTAGACTTGACAGTTGTTCACTAGCGCACAGTGACAGAACGCACACTAAGGT **3AGCCTCCTGGCAAGAGTGGACATGCCANCGAGAAAAGACAGGT** >call-248 Connective tissue growth factor

27

>cal2-45 SARP1

AAAATAGCTATCTGTTCCCGGGGCCTCCTAGGGCCTTATAACTCAGGACACGTTAGGATA ACTACAGCTATTCAAAACTACCCTTAAAATGAGCTGTTTTAAAAACTTCATAAAAAACAGT CACACATGCAAAAGGCAGGGCAAGCTGCTCCAAGCTGAGACTGTAGCT©TCCCGGACAGT

F16. 24-14

7

GAGTCTTCTGGGTCAGTGGCAANAGGAGGAGGAGGCCTTTCTGTTCACTCTCCCTTGG ACACAGAAGCCATTCCGAGGCTGGGACCTGACCCTGTGGGGATCCACCCCATCTCCAGTC <u> AACAGCAGAGCTGCCACACCTCCTGGAGGCCCCTAAGCCCACCCTGAGATCTCTGCAGATG</u> >call3c4 Syntrophin

727

ACGGGTTGAGAGGGATATCATAACCACTGTGCACATCGATGGTTTCTAGCAAACGCATGG ACTGGACATCCGTCCCAAAGATTCTGTCCCACCACGTGAAGGTGGAGGCGTAATTCCCAA TGAAGTTCATGTGGAAATCGTGATGCCGAGCCCCGGTATAAAAAGGGATGTAGTTCA TCACCCATGCCCACAGAAGAATTACATGATCACACAAAAGCACAATTCCAATGAAAAAT CCAGTCCCAAGAATTAGGGTTTCCAAGGGATGTGCATATTCTGCTTCGATTCCAAATGGA GCCTGGAAACTCGTGATGGACTTTATGAATGTATTTATAAATCCTCTTGTGGTGAAGGAG TCTGTGCAGGAAATAGTGCCAGGTATCCTCGATGACTGCACAGCCCCAAACACCTTGCCAA **AGTGAAATACCATCTTGGCATTCTTTCCCAATCATAAGGAATATTGAAAAACTCTGTAAA** atagtatgttccacaaatcagaagcaactggat**aaaaaaa**tgattaaacagaattccttt CAAACACTTCCACTGGCCTTCAAAGGTTCTGGTTTATCCTTTTGAATCTTGT >call-404 erg25 methyl sterol

16.24-15

ACCATAAGCAGTTTCCATGGGGTCAGAGAATGGCTGGAGAGTTGTGGAAACCAGCAGGAG AGGAAGTTTCTGATGGAGGAGCTATTGACAGGTAGCAGAGACAGCCGAAAGACGATCATG GTATTGTTTTGGAGACAGGACCTCACTGTGTAGCCCTGGCCTCAAACTCAGAGATCCACC TGCCTCTGCCTCCTGAGTGCTTGGATTAAAGGCATGCACCACCACCGCCGCCCTGACAGGG GGCCATCTGTGGGGGTCAGTGGGGGGCTGCTGTATGTCTTTGCTGCTTTACAGGGAAGGTGA TGTATGCATCGTAGCCAAACAGCAAGGTAGCCANTAAGCCCAGT >cal2-176 DEST

~

ACTTGTCATTGTCTAGGTCAGGTCTCAAAGAAGCGAGTGGTGCAATGTTCCATGGGAA TGAGGGGAGCGCCAGTGGGGCCCAGCTCCGTGTGGGACAGGT **>OSTEONECTIN**

608 Protein Sequence of

Listed from: 2 to: 8883; (Entire region); Length of 608 13.5.99; 8883 bp; Translated from: 575 to: 8365 Genetic Code used: Universal;

GAG AGA CGA CAG AAG GTT ACG GCT GCG AGA AGA CGA CAG AAG GGT CCA GAA AAA 10 19 28 37 46 55

GGA AAG TGC TGG AGA GTG GGG ACA AAA GCA GCG ACC AAG TGA ATG TCA CTT CAG TGA 64 73 82 91 100

CCA GGC AAA ACG CGC GGG AAG GAT TTT GTG TAG CTT GGG ACC CTT TCA TAG ACA 12.1 151 160 169 CTG AGG

CTG ATG ACA CGT TTA CGC AAA ATA GAA ATT TGA GGA GAA ACG CCT GGG CCT TCG GAA AGG 184 193 202 210

F16.3E

ACT	TAA	CAG	ည္ဌ	TAT
CTA ATG TAT ACT 289	GGT 1	CTT C	GGA AGC	acc t
TG 1 89	TT G	AAG C 409	17.T. G 59	TCT G 529
4 4 3	AGC TTT 349	CTG A	CCC TTT (
ti er	7 ¥C	2	8	GTC
TA	GAA	TCT	GAT	CCT
AAC TAA 0 280	CAG 340	GCC TCC AGG	CCT TTT 460	CTC CTC AGA AGA TTT 511 S20
GAG	CAG	TCC	CCT	AGA
AAG	CAG	מכט	AAG	AGA
GGT GAC TTT 271	CAG 331	AGC 391	CCC ACT AAG 451	CTC S11
GAC	AGT TTC	AGA	CCC	CIC
GGT	AGT	AAC	AAG	ACT
TTA 262	CAG 322	AAT AAC AGA 382	ACT AAG 442	4.4.G 502
CTT GCA AGT 253	AGA GCA TTA 313	CAT TAA	GAA AAG	676 J
GCA	GCA	CAT	GAA	999
CTT 253	AGA 313	TAG 373	CCA 433	CCT 493
GTA	GGA	TGA	AAG	TTC
TTA		GGA		TCC
TGA 244	GGA GGA 304	GGA AAT GGA 364	AGC TGA 424	CTT 484
GAT	att gag	GGA	כככ	GAA
AGT	ATT	TYY	TCC	AAA GAA CIT 484

F16.30

Y TAC e Gara R AGG H C T F F F CA TOTT C 709 G G 649 P CCT V T CGC GTC ACC 640 A N V E R I N GCC AAT GTG GAA CGA ATA AAT 751 V GTG E V I M AGG ATG L V CTG GTG V P T 1
GTG CCC ACA (CTC 571 C TGC 631 A V GGCT GTC GTT ACA AGA GGA ATC AAA ACC AAG ACA GAG GAG 544 553 562 I P ATC CCG O У ТАТ 692 1 1 1 1 1 L CTC ₹ 000 S TCC C TGT 673 **န** ဂဌာ r CGC

r Cic E N D F D G L S K L E GAA AAC GAC TTT GAT GGC CTG AGC AAA CTG GAG 802 811 L

F16.30

L H S N G I H R V S D K T F S G L Q S L CTG CAC AGT AAT GGC ATT CAC AGA GTC AGT GAC AAG ACC TTC TCG GGC TTG CAG TGC TTG 844 853 862 871 880 G S L V R L H L D H N N I E F I N P E GG AGC TTG CTG CTG GAT CAC AAC AAC ATT GAA TTC ATC AAC CCT GAG 964 1000 Q V L K M S Y N K V Q I I R K D T F Y G CAG GTC TTA AAA ATG AAG TAT AAC AAA GTC CAA ATC ATT CGG AAG GAT ACT TTC TAC GGA 904 913 922 931 A F Y G L T S L R L V H L E G N R L T K GCC TTT TAT GGA CTT ACC TCG CTC CGC TTG GTA CAT TTA GAA GGA AAC CGG CTC ACA AAG 1024 1033 1042 1051 1051 L H P D T F V S L S Y L Q I F K T S F I CTC CAT CTC CAT ATT THE ATT TH r CTC

F16.3E

 K
 Y
 L
 S
 D
 N
 F
 L
 T
 S
 L
 P
 K
 E
 M
 V
 S
 Y

 ANG
 TAG
 TAG
 TYC
 CTG
 ACG
 TCG
 CTC
 CACA
 AAA
 GAA
 ATG
 TCG
 TAG
 TCG
 TAG
 TAG
 TCG
 TAG
 TAG
 TCG
 TAG
 TAG
 TCG
 TAG
 TCG
 AGG
 AG

F16.3F

A D M V C S I Q K P S R T S P T A F T E GCC GAC ATG GTC TGT AGT ATC CAA AAG CCA TCA AGG ACA TCA CCA ACT GCA TTC ACT GAA 1564 1573 1582 1591 1600 1609 L K S K S L V T Q E D N G S A S T 9 P 2 CTG AAG TCA AAG AGC CTG GTT ACT CAG GAG AAT GGA TCT GCC TCC ACC TCA CCT CAA 1444 1453 1462 1471 1480 1489 Y N H I Q P V W Q L L A L Y S D S P L I TAT AAT CAC ACT CTG TATA TAC AGT GAC TCT CTG ATA TAT AAT CAC ACT CTG ATA 1684 1693 1702 D F I E P F G S L S L N M T X X S G N K GAT TTC ATA GAA CCC TTT GGC TCC TTG TCT TTG AAC ATG ACA KAS MTK TCT GGA AAT AAG 1504 1513 1522 1531 E N D Y I M L N A S F S T N L V C S V D GAA AAT GAC TAC ATC ATG CTA AAT GCG TCA TTT TCC ACA AAT CTT GTG TGC AGT GTA GAT 1624 1633 1642 1651 1660 1669

L E R K P Q L T E T P S L S S R Y K Q V CTA GAA AGG AAG CCC CAG CTT ACC GAG ACT CCT TCA CTG TCT TCT AGA TAT AAA CAG GTG 1744 1753 1762 1771 1780 1789 A L R P E D I F T S I E A D V R A D P F GCT CTT AGG CCT GAA GAC ATT TTT ACC AGC ATA GAG GCT GAT GTC AGA GCA GAC CCT TTT 1804 1810 1813 1849 W F Q Q E K I V L Q L N R T A T T L S T TGG TTC CAA CAA AAA ATT GTC TTG CAG CTG AAC AGA ACT GCC ACC ACA CTT AGC ACA 1864 1873 1882 1891 E R L K W T M I L M M N N P K L E R T V GAG AGA CTC AAA TGG ACC ATG ATG ATG AAG AAT CTG GAA CGC ACT GTC 1984 1993 2002 2011

G E T L D L P C L S T G V P D A S I S W GGT GAG ACG CTC GAC CTT CCA TGC CTT TCC ACG GGT GTT CCA GAT GCT TCT ATT AGC TGG 2344 2353 2362 2371 2380

A N P S G A D F S S F K V S V Q K K G Q GCC AAC CCA TCA GGG GCC GAC TTT TCC AGT TTT AAA GTT TCA GTT CAAA AAG AAA GGC CAA 2524 2533 2542 2551 2550 2569

R M V E H D R E A G G S G L G E P N S S AGG ATG GTT GAG CAT GAG GCA GGT GGA TCT GGA CTT GGA GAA CCC AAC TCC AGT 2584 2591 2602 2611 2620

V S L K Q P A S L K L S A S A L T G S E GTT TCC CTT AAG CAG CCA GCA TCT TTG AAA CTC TCT GCA TCA GCT TTG ACA GGG TCA GAT 2644 2653 2662 2671 2680

R R G D S T L R R F R E H R R Q L P L S
CGG CGT GGG GAT TTC AGG GAG CAT AGG AGG CTC CTC TCT TCT
2764 2773 2782 2791 2800 2809
A R R I D P Q R W A A L L E K A K K N S
GCT CGG AGA ATT GAC CGG CAA CGC TGG GCA CTT CTA GAA AAA GCC AAA AAG AAT TCT
2824 2833 2842 2851 2860 2869 A G K Q V S G V H R K N K H R D L I H R GCT GGA ARA CAA GTC TCC GGT GTA CAT AGG AAC AAA CAT AGA GAC TTA ATA CAT CGG 2704 2713 2722 2731 E L T D E E K D A S G M I P P D E E F M GAA CTC ACT GAC GAG GAA AAG GAT GCC TCT GGC ATG ATT CCT CCA GAT GAA GAA TTC ATG 2944 2953 2962 2971 2980 . 2989 V L K T K A S G V P G R S P T A D S G P GTT CTG AAA ACT AAG GCT TCT GGT GTC CCA GGA AGG TCA CCA ACT GCT GAC TCT GGA CCA 3004 3013 3022 3031

F16. 3K

V N H G F M T S I A S G T E V S T V N P GTA AAT CAT GGT TTT ATG ACG AGT ATA GCT TCT GGC ACA GAA GTC TCA ACT GTG AAT CCA 3064 3073 3082 3091 3100 3109

O T L Q S E H L P D F K L F S V T N G T CAA ACA CTA CAA TCT GAG CAC CTT CCT GAT TTC AAA TTA TTT AGT GTA ACA AAC GGT ACA 3124 3133 3142 3151 3160 3169

A V T K S M N P S I A S K I E D T T N Q GCT GTG ACA AGG AGT ATG AAC CCA TCC ATA GCA AGC AAA ATA GAA GAT ACA ACC AAC CAA 3184 3193 3202 3211 3220

N P I I I F P S V A E I R D S A Q A G R AAC CCA ATC ATT ATC TTT CCA TCA GTA GCT GAA ATT CGA GAT TCT GCT CAG GCA GGA AGA 3244 3253 3262 3271 3280 3289

A S S Q S A H P V T G G N M A T Y G H T GCA TCT TCC CAA AGT GCA CAC CCT GTA ACA GGG GGA AAC ATG GCT ACC TAT GGG CAT ACC 3304

N T Y S S F T S K A S T V L Q P I N P T AAC ACA TAT AGT AGC TIT ACC AGC AAA GCC AGT ACA GTC TIG CAG CCA ATA AAT CCA ACA 3364 3373 3382 3391 3400 3409

E S Y G P Q I P I T G V S R P S S D I GAA AGT TAT GAA GT AGT AGT AGT AGT AT ACA GGA GTC AGC AGA CCT AGC AGT AGT GAC ATC 3424 3433 3442 3451 3451

A S S L F H I P R N N N T G N F P L S R GCC TCG TCT TTA TTT CAC ATT CCT AGA AAC AAT ACA GGT AAC TTC CCC TTG TCC AGG 3544 3553 3562 3571 3580

H L G R E R T I W S R G R V K N P H R T CAC TTG GGA A7A GAG AGG ACA ATT TGG AGC AGA GGG AGA GTT AAA AAC CCA CAT AGA ACC 3604 3613 3622 3631 3640 3649

PVLRRRHRRTVVRPALIKGPAPOTACTOCA GCA ATC AAG GGA CCT GCT AAC 3664 3673 3682 3691 3700 3700 3709

F16.3N

A E G L T V A T A A L S V P S S 9 H S A GCA GA GA GA GTT CCA AGT TCA AGT GCA AGT TCA AGT TCA AGT TCA AGT GCA AGT TCA AGT TCA AGT GCA AGT GCA AGT TCA AGT GCA AGT GCA AGT GCA AGT TCA AGT GCA AGT AGT GCA AGT G

L P K T N N V G V I A E E S T T V V K K CTC CCC AAA ACT AAT GTT GGG GTC ATA GCA GAA GAG TCT ACC ACT GTG GTC AAG AAA 3844 3853 3862 3862

PLLLLKRKDKQNVDIE I ITTTTT CCA CTG TTA CTA TTT AAG GAC AAA CAA AAT GTA GAT ATT GAG ATA ATA ACA ACC ACT ACA 3904 3913 3522 3931 3940 3949

K Y S G G E S N H V I P T E A S M T S A AAA TAT TCC GGA GGG GAA AGT AAC CAC GTG ATT CCT ACG GAA GCA AGC ATG ACT TCT GCT 3964 3973 3982 3991 4000

P T S V S L G K S P V D N S G H L S M P CCA ACA TCT GTA GAC AAT AGT GGT CAC CTG AGC ATG CCT A024 4033 4042 4051 4051

K D S V E T T P L P S P L S
AAA GAT TCA GTG GAA ACA ACA CCA CTT CCC AGC CCC CTC AGC
4102 4111 4120 G T I Q T GGG ACC ATC CAA ACT GGG 4093

S T K F S K R K T P L H Q I AGC ACA AAA TTC TCA AAG AGG AAA ACT CCC TTG CAC CAG ATC 4162 4171 4180 4189 T P S I P T
ACA CCC TCA ATA CCA ACA
4144 4153 K K E G M L K N P Y Q F G L Q AAG AAG GAG GGG ATG TTA AAG AAT CCA TAT CAA TTC GGT TTA CAA 1213 4222 4231 4231 F V N N Q TTT GTA AAT AAC CAG 4204 4

K N P A A K L P K I A P L L P T G Q S S AAG AAC CCA GCA AAG CTT CCC AAA ATA GCT CCT CTT TTA CCC ACA GGT CAG AGT TCC 4264 4273 4282 4291 4300

A T Q N K G T E V V S G A R S L S A G K GCC ACT CAG AAC AAG GGC ACT GAA GTA TCA GGT GCC AGA AGT CTC TCA GCA GGG AAG 4384 4393 4402 4411

S S F V L F S T I S K R S
TCC TCT CCA GTG CTT CCT AGC ACC ATA AGC AAG AGA TCT
4462 4471 4480 4489 K Q P F T N
AAG CAG CCC TTC ACC AAC
4444

F16 30

L S T E T P T V T S F T A T TTG TCA ACG GAA ACC CCC ACA GTG ACA AGT CCT ACT GCT ACT 4513 4513 4549 T L N F ACA TTA AAC TTC 4504 V I M S E T Q R T R S K E A K D Q I K G GTC ATT ATG TCT GAA ACC CAA CGA ACA AGA TCC AAA GAA GCA AAA GAC CAA ATA AAG GGG 4564 4573 4582 4591 4600 4609

N T T P R Q V S G Y S AAC ACC CCC AGG CAG GIT TCT GGC TAT AGT 4642 4651 4669 Y S A L T T A D T P L A F S H S P R Q D TAC TCA GCT CTA ACA ACA GCT GAT ACC CCC TTG GCT TTC AGT CAT TCC CCA CGA CAA GAT 4684 4693 4702

D G G N V S A V A Y H S T T S L L A I T GAT GGT GGA AAT GTA AGT GCA GTT GCT TAT CAC TCA ACA ACC TCT CTT CTG GCC ATA ACT 4744 4753 4762 4771 4780 4789

E L F E K Y T Q T L G N T T A L E T T L GAA CTG TTT GAG AAG TAC ACC CAG ACT TTG GGA AAT ACA ACA GCT TTG GAA ACA ACG TTG TAG 4804 4804

F16. 3F

L S K S Q E S T T V K R A S D T P P P L TTG ÄGC AAA TCA CAG GAG AGT ACC ACA GTG AAA AGA GCC TCA GAC ACA CCA CCA CTC 4864 4873 4882 4891 4900 L S S G A P V P T P S P P F T K G V CTC AGC AGT GGG GGC CCC CCA GGC ACT CCT TCC CCA CCT CCT TTT ACT AAG GGT GTG 4921 4924 4933 4942 4951 V T D S K V T S A F Q M T S N R V V T I GTT ACA GAC AGC ACA GCT TTC CAG ATG ACG TCA AAT AGA GTG GTC ACC ATA 4984 4993 5002 5011 5020 Y E S S R H N 'I D L Q Q P S A E A S P N TAT GAA TCT TCA AGG CAC AAT ACA GAT CTG CAG CAA CCC TCA GCA GAG GCT AGC CCC AAT 5044 5053 5062 5061 PEII I TG T TD SPSNLFFPS TS TS TO CCT GAG ATC ACT GCA TCT ACT GCT TCT GTG S104 5113 5122 5131 5140 P A L R V D K P Q N S K W K P S P W P E CCA GCA GCA CTA AGG GTA GAT AAA CCA CAG AAT TCT AAA TGG AAG CCC TCT CCC TGG CCA GAA TGG AAG CCC TCT CCC TGG CCA GAA TGG AAG CCC TCT CCC TGG CCA GAA TCT AAA TGG AAG CCC TCT CCC TGG CCA GAA TCT AAG CCC TCT CCC TGG CCA GAA

G D P L P I I H W T R V S S G X E I S Q GGA GAC CCA CTG CCC ATC ATC TGG ACC AGA GTT TCA TCA GGA NTT GAA ATA TCC CAA 5524 5533 5542 5551 5560

F16.3R

G T O K S R F H V L P N G T L S I O R V GGG ACC TYG TCC ATC CAG AGG GTC GGG ACC TYG TCC ATC CAG AGG GTC 5621 5584 5623 S R K V W V T P D G T L I I Y N L S L Y AGC AGA AAG GTC TGG GTA ACA CCT GAT GGA ACA TTG ATC TAT AAT CTG AGT CTT TAT 5984 5893 5902 5911 5920 R P T V S W I L A N Q T V V S E T A K G AGG CCT ACG GTT TCC TGG ATA CTT GCA AAC CAA ACG GTG GTC TCA GAA ACG GCC AAG GGA 5824 5833 5842 5851 5860

K I Q V I T A P P V I I E Q K R Q A I V AAG ATA CAA GTC ATC ACT CCC CCT GTC ATT ATA GAG CAA AAG AGG CAA GCC ATC GTT 6004 6013 6022 6031 6040 D R G F. Y K C V A S N P S G Q D S L L V GAT CGT GGT TTT TAC AAG TGT GCC AGC AAC CCA TCT GGC CAG GAT TCA CTG TTG GTT 5944 5953 5962 5971 5980 5989 V H W V L Y D G T E L K P L Q L T H S R
GTT CAC TGG GTC CTT TAT GAT GGG ACT GAA CTA AAA CCA TTG CAG TTG ACT CAT TCC AGA
6124 6133 6142 6151 6160 6169

F F L Y P N G T L Y I R S I A P S V R G
TTT TTC TTG TAT CCA AAT GGA ACT CTG TAT ATA AGA AGC GCT CCT TCA GTG AGG GGC
6184 6193 6202 6211 T Y E C I A T S S S B B R R V V I L T ACT TAT GAG TGC ACC ACC TCC TCA GAC AGA AGG GTA GTG ATT CTT ACT 6244 6253 6262 6271 G V L G G S L K L P C T A K G T P Q P S GGG GTT TTA GGT GGA AGT TTG AAA CTG CCC TGC ACT GCA AAA GGA ACT CCC CAG CCT AGT 6064 6073 6082 6091 6100 6109

N L G E K L L L N C S A T G D F K P R I AAT TTG GGT GAG AAA TTA CTA CTG AAC TGC TCA GCT ACT GGG GAT CCA AAG CCT AGA ATA 6364 6373 6382 6391 6400

I W R L P S K A V I D Q W H R M G S R I ATC TGG AGG CTG CCA TCC AAG GCT GTC ATC GAC CAG TGG CAC AGA ATG GGC AGC CGA ATC 6424 6433 6442 6451 6460 6469

Y L C V A R N K M G D D L V L M H V R L TAC TTA TGT GTA AGA AAC AAA ATG GGA GAT GAC CTA GTC CTG ATG CAT GTC CGC CTG 6544 6553 6562 6571

R L T P A K I E Q K Q Y F K K Q V L H G AGA TTG ACA CCT GCC AAA ATT GAA CAG AAG CAG TAT TTT AAG AAG CAA GTG CTC CAT GGG 6604 6613 6622 6631 6640 6649

 KA
 D
 F
 Q
 V
 D
 C
 K
 A
 S
 G
 S
 V
 P
 E
 V
 S
 W
 S

 6664
 AAA
 GT
 TC
 AAG
 GCC
 TC
 GGG
 TC
 GT
 GT
 TC
 TC
 TC
 G691
 CCT
 GT
 GT
 TC
 TC
 TC
 G692
 TC
 GT
 GT
 TC
 R A G E T A V L D C E V T G E P K P N V AGG GCT GGA GAA ACA GCT GTC CTT GAC TGC GAG GTC ACT GGG GAA CCG AAG CCC AAT GTA 6964 6973 6982 6991 F/G. 3VF W L L P S N N V I S F S N D R F T F H TT TG TIG TIG CTG CCT TCC AAC AAT GTC ATT TCA TIC TCC AAT GAC AGG TIC ACA TIT CAT 7024 7033 7042 7051

A N R T L S I H K V K P L D S G D Y V C GCC AAT AGA ACT TIG TCC ATC CAT AAA GTG AAA CCA CTT GAC TCT GGG GAC TAT GTG TGC 7120 7084 7129

V A Q N P S G D D T K T Y K L D I V S K GTA GCT CAG AAT CCT AGT GGG GAT GAC ACT AAG ACA TAC AAA CTG GAC ATT GTC TCT AAA 7144 7153 7162 7162

PPLINGLYANNKTVIKA TATRA TRANCES TO TOUT TO THE SCHOOL OF THE SCHOOL OF THE SCHOOL OF THE SCHOOL STATE CONTRACT STATES TO SECTION 1249

H S K K Y F D C R A D G I P S S Q V T W CAC TCC AAA AAA TAC TTT GAC TGC AGA GCA GAT GGG ATC CCA TCT TCC CAG GTC ACG TGG TGG 7264 7273 7292

I M P G N I F L P A P Y F G S R V T V H ATT ATG CCA GGC AAT ATT TTC CTC CCA GCT CCA TAC TTT GGA AGC AGA GTC ACG GTC CAT 7324 7333 7342 7351

F16. 3W

V V R S E G G E S V L V V Q L E V L E M GTG GTT CGG AGC GAA GGA GAA AGT GTG TTG GTA GTG CAG TTA GAA GTC CTA GAA ATG 7444 7453 7462 7471.

L R R P T F R N P F N E K V I A Q A G K CTG AGA AGA CCA TTC AGA AAC GAA AAA GTC ATC GCC CAA GCT GGC AAG 7504 7513 7522 7531 7531

P V A L N C S V D G N P P P E I T W I L CCC GTA GCA CTG AAC TGC TGG ATC GCC CCA CCT GAA ATT ACC TGG ATC TTA 7564 7573 7582 7591 7600 7600

PDGTOPFANRPHNSPYLMAGNGGCAAT CCT GAC GGC ACA CAG TTTT GCT AAA CCA CAC AAT TCC CCG TAT CTG ATG GCA AGG AAT 7624 7633 7642 7651

R N K V G Y I E K L I L L E I G Q K P V AGG AAT AAG GTT GGC TAC ATC GAG AAA CTC ATC CTG TTA GAG AYT GGG CAG AAG CCA GTC 7744 7753 7762 7771 7780

I L T Y E P G M V K S V S G E P L S L H ATT CTG ACA TAC GAA CCA GGG ATG GTG AAG AGC GTC AGT GGG GAA CCG TTA TCA CTG CAT 7804 7913 7822 7831 7840

C V S D G I P K P N V K W T T P G G H V TGT GTG TCT GAT GCC AAG CCA AAT GTC AAG TGG ACT ACA CCG GGT GGC CAT GTA 7864 7873 7882 7891

I D R P Q V D G K Y I L H E N G T L V I ATC GAC AGG CCT CAA GTG GAT GGA AAA TAC ATA CTG CAT GAA AAT GGC ACG CTG GTC ATC 7924 7933 7942 7951 7960

K A T T A H D Q G N Y I C R A Q N S V G AAA GCA ACA ACA GCA CAA GGA AAT TAT ATC TGT AGG GCT CAA AAC AGT GTT GGC 7984 7993 8002 8011

F16.3>

G I P K P K V T W E T P R H S L L S K A GGA ATC CCC AAG CCC AAG GTC ACC TGG GAG ACG CCA AGA CAC TCC CTG CTC TCA AAA GCA ABA GCA AGA CAC TCC CTG CTC TCA AAA GCA ABA GCA AGA AAA GT S E M L H F Q G T L V I Q A ACA GCA AGA AAA CC CAT AGA AGT GAG ATG CTT CAC CCA CAA GGT ACG CTG GTC ATT CAG 8224 8233 8242 8251 L P R N M L R R T G E A M Q L H C V A L CTA CCC AGG AAC ACA GGG GAA GCC ATG CAG CTC CAC TGT GTG GCC TTG 8104 8113 8122 8131 8140 8149 D Y A T T Y I Q V L GAT TAC GCA ACA ACT TAC ATC CAG GTA CTC TGA CAG GAA GGG GGA GAC TAA AAT TCA ACA 8344 8353 8362 8371 8380 8389 N L Q T S D S G V Y K C R A Q N L L G T AAT CTC CAA ACC TCG GAT TCC GGA GTC TAT AAG TGC AGA GCT CAG AAC CTA CTT GGG ACT 8284 8329 8329

CAC TAC GAA ATA ACA AAC GGC TAA TGC ACC TGA ATT CTC AGT AAA AAG ACC TTT CTC TCG 8644 8653 8662 8671

F16.32

299	ACI	TTA	ATC
GCA GCC ATA 8449	CTG AAT ACA TTT ACA TTA AAT TTA CAA TGG ACA TGC GAT GAG ACT 8473 8482 8491	GGA TCT CAA AGC AAA CTC TTA 8560 8569	CCA ACA AAT AAC AAA CAT TAA GAG AAA AAA ATG ATC 8620 8629
GCC 3449	GAT 3509	AAA 3569	AAA 3629
408 8	TGC	AGC	AAA 3
AAG	ACA	CAA	GAG
TCA 3440	7GG 3500	TCT 3560	TAA 3620
TAA	4	GGA	CAT
GIT	TTA	TGT	AAA
GAA 3431	AAT 3491	CTC 3551	AAC 3611
es a	TTA	AGT	AAT
CAC AGG GT" "RAT TTG GAA GAA GTT TAA TCA AAG 8413 8422 8431 8440	GTA	CAT TGT GAA CTG AAA CCG AGT CTC TGT 08533 8542 8551	AAT
TTT 3422	ACA 3482	AAA 3542	ACA 3602
'I'A'T }	TTT	CTG 8	5 00
GT'I	ACA	GAA	TTG
AGG 3413	AAT 1473	TGT 1533	TTG ATT TTG 8593
CAC	CTG	CAT	TTG
ATC	AGT	AAG	ACT
gaa girc cac airc 8404	ATG TAA ATG AGT 8464	tgt aaa tga aag 8524	GGC 584
GTC 8	TAA 8	aaa 8	TAA 8
GAA	ATG	TGT	ACT TAA GGC ACT 8584

CTA ACA GIT GCC AGC TGC CTC GTG TCT GTT TCC TAC CAA TGT CAC AAA CAT CGC ACA CAG 8704 8713 8722 8731

GGT GAA TGG AGT CAA CGG GAA AGA TTA AGT TTG CGG TCT GTG TAA ATC TCA ATG TAC AAA 8800 8782 8773 8764

AAA AAA AA

608-Rat

PROBE: 5' fragment of 608(Rat)

Target: (mRNA)

N-normal

T-Nechanical force

N T

FIG. 4

7680 bp; Listed from: 2 to: 7680; 7162 (Entire region); (Entire region); Translated from: 71 to: Length of 608

L E S L Y L M G N P W T C D C H L K CTA GAA AGC CTG TAT TTG CAT GGA AAC CCA TGG ACC TGT GAC TGC CAT TTA AAG 10 19 28 37 46 55 Genetic Code used: Universal; Frame 2

S AGC R AGA D GAC 109 K AAA C K I L S E W M Q G N P D I I K TTG TCT GAG TGG ATG CAG GGA AAC CCA GAT ATA ATA AAA 64 73 82 91 _ Y TGG

G R GGC AGA 169 I S K C ATC TCT AAA C N P R AAC CCC AGG 1 CTT TGC ATG 2 S S P Q Q C P TCT TCC AGT CCT CAG CAA TGT CCC 124 133 r cīg S TCA I D I ATT GAT S G A TCT GGA GCT V P GTA CCA

P CCA 229 T ACC 220 T K P
ACA AAG CCA Z F L C TTTC CTA TGT 7 193 F A M TTT GCT ATG (

SUBSTITUTE SHEET (RULE 26)

F1G. 5B

D		e	Y	L
GAT	GCC	gaa	TAT	CTA
Q	K	E	D	I
CAA	AAG	GAA	GAT	ATA
P	N	T	V	L
CCT	AAT	ACT	GTA	CTG
289	349	409	469	529
S TCA	G GGA	F	S AGT	PCCT
TACC	S	A	C	S
	TCT	GCA	TGC	TCT
S	L	T	v	D
TCC	CTG	ACT	GTG	GAC
280	340	400	460	520
A GCC	D GAC	PCCA	L	S AGT
S	T	S	n	Y
TCT	ACA	TCA	AAT	TAC
G	M	T	T	L
GGA	ATG	ACA	ACA	TTA
271	331	391	451	511
N	N	R	S	A
AAT	AAC	AGG	TCC	GCT
D GAC	$^{ m L}_{ m TTG}$	S TCA	FTT	L CTG
E	S	Р	S	L
GAG	TCT	ССА	TCA	CTT
262	322	382	442	502
Q	L	K AAG	A	Q
CAG	TTG		GCG	CAA
T	S	o	N	₩
ACT	TCC	Caa	AAT	TGG
V	G	I	L	V
GT'I'	GGC	ATC	CTA	GTG
253	313	373	433	493
L	FTT	S	I M	P
CFG		AGT	ATC ATG	CCA
S	PCCC	C	I	Q
AGC		TGT	ATC	CAG
K S L AAG AGC CFG 244	E GAA 304	V GTC 364	Y TAC 124	I Q ATC CAG (
K S	I	M	N D AAT GAC	H
AAG TCA	ATA	ATG		CAC
K	F	D	N	N
AAG		GAC	AAT	AAT

E GAG $^{\rm W}$ L TTA r CTG V GTG T ACA S AGC 709 T ACT 829 R AGA 769 P CCT 649 L CTT M ATG R CGC K AAA D GAC E GAG E GAA A GCA T ACA Y TAT T ACC 700 A GCG 760 L CTG 820 R AGA 640 T A ACT GCC R AGG V GTC K AAA S TCT PCCA CCC D GAT S TCT L TTA 751 A GCT 631 R AGA 691 A GCT N AAC M N ATG AAC E GAG S TCA L CTG I ATC P CCT I ATA O CAA 743 . CAG 682 M ATG 802 D A GAT GCT E GAG L TTG L. CTG T ACC I ATC V GTC T. ACC \mathbf{F} T ACT 733 I ATT 673 D GAC K AAA Q CAG P CCC F TYY E GAA E GAA Q CAG о Саа 664 Q CAA I ATC r CTC R AGG R AGG E GAA L CTT Q CAG

V E P Y C E S T H D S G V Q H T V V T G GTA GAG CCC TAT GGA GAC ACA CAT GAC AGT GGA GTC CAG CAC ACA GTG GTT ACG GGT 1084 11093 1102

F/G. 51

W L L A D G S K V R A P Y V S E D G R I TGG CTT CTA GCT GAT GGG AGT AAA GTG AGA GCC CCT TAC GTT AGC GAG GAT GGG CGA ATC 904 913 922 931 V G G T I A L S C P G K G D P S P H L E GTT GGC GGC ACT ATT GCC CTG AGC TGT CCA GGC AAA GGC GAC CCT TCA CCT CAC TTG GAA 844 853 862 871 880 Y H C I S T N D A D A D V L T Y R I T V TAC CAC TGC ATA AGC ACC AAT GAT GCA GAT GTT CTC ACA TAC AGG ATA ACT GTG 1024 1033 1042 1051 L I D K N G K L E L Q M A D S F D A G L CTA ATA GAC AAA AAT GGG AAG TTG GAA CTG CAG ATG GCT GAC AGC TTT GAT GCA GGT CTT 964 973 982 991 1000

L R I L Q V T P K D Q G H Y Q C V A A TTA AGA ATA TTA CAG GTT ACG CCA AAA GAT CAA GGT CAT TAC CAA TGT GTG GCT GCC 1264 1273 1282 1291 L P G N T V F S Q P S R D R Q I L N N G CTT CCA GGG AAC ACT GTG TTC TCT CAG CCA TCA AGA GAC AGG CAA ATT CTT AAC AAT GGG 1204 1213 1222 1231 S G A D F S S F K V S V Q K K G TCA GGG GCC GAC TTT TCA GTT TCA GTT CAA AAG AAA GGC 1324 1333 1342 1351 1360 1369 M V E H D R E A G G S G L G E ATG GTT GAG CAT GAC AGG GAG GCA GGT GGA TCT GGA CTT GGA GAA 1384 1393 1402 1411 C L S T G V P D A TGC CTT TCC ACG GGT GTT CCA GAT GCT 1162 1171 1180 T L D L P
ACG CTC GAC CTT CCA
1144 1153 E GAG

F16.5F

ე ე H R D L I CAT AGA GAC TTA ATA 1540 1 S A L TCA GCT TTG S A TCT GCA r CTC L K T'IG AAA 1462 V GTA A GCA L K Q P CTT AAG CAG CCA 1444 1 G GGA

L CTC 1609 P CCT L CTC R R Q 1 AGG AGG CAG (1600 E H GAG CAT 1591 R. CGA D GAT 999

K K N S AAA AAG AAT 7 A GCC 1660 E K GAA AAA G W TGG Q CAA 1633

> R CGG

V GTT P L A CCA CTG GCT C P V CCA GTG (1711) K K Q E N T T V K AAA AAG CAA GAA AAT ACC ACA GTA AAG 1684 1693 1702

SUBSTITUTE SHEET (RULE 26)

F/G. 56

L T D E E K D A S G M I P P D E E F M V CTC ACT GAC GAA AAG GAT GCC TCT GGC ATG ATT CCT CCA GAT GAA TTC ATG GTT 1744 1753 1762 1771 1780 1789 L K T K A S G V P G R S P T A D S G P V CTG AAA ACT ACT GAT TCT GGT GTC CCA GGA AGG TCA CCA ACT GCT GAC TCT GGA CCA GTA 1804 N H G F M T S I A S G T E V S T V N P Q AAT CAT GGT TTT ATG ACG AGT ATA GCT TCT GGC ACA GAA GTC TCA ACT GTG AAT CCA CAA 1864 1873 1882 1891

V T K S M N P S I A S K I E D T T N Q N GTG ACA AAG AGT ATG AAC CCA TCC ATA GCA AGC AAA ATA GAA GAT ACA ACC AAC CAA AAC 1984 1993 2002 2011

T L Q S E H L P D F K L F S V T N G T A ACA CTA CAA TCT GAG CAC CTT CCT GAT TTC AAA TTA TTT AGT GTA ACA AAC GGT ACA GCT 1924 1933 1942 1951 1960 1969

G L T V A T A A L S V P S S S H S A GGG CTC ACA GTG GCA CTG TCA GTT CCA AGT TCC CAC AGT GCC 2584 2593 2602 2611

F1G. 51

V · L R R H R T V R P A I K G P A N K GTT CTC CGA CGC CAT AGA CAC AGG ACT GTG AGG CCA GCA ATC AAG GGA CCT GCT AAC AAA 2464 2473 2482 2491 2500 L G R E R T I W S R G R V K N P H R T P. TTG GGA AGA GGG ACA ATT TGG AGC AGA GGG AGA GTT AAA AAC CCA CAT AGA ACC CCA 2404 2413 2422 2431 P L S I CCC TTG TCC P 2389 N N T G N F AAC AAT ACA GGT AAC TTC 2371 2380 S L F H I P R N TCT TTA TTT CAC ATT CCT AGA AAC 2344 2353 2362

F/6.50

P K T N N V G V I A E E S T T V V K K P CCC AAA ACT AAT GTT GGG GTC ATA GCA GAA GAG TCT ACC ACT GTG GTC AAG AAA CCA 2644 2653 2662 2671 2680 2689

L L L F K D K Q N V D I E I I T T T F K CTG TTA CTA TTT AAG GAC AAA CAA AAT GTA GAT ATT GAG ATA ATA ACA ACA ACT ACA AAA 2704 2713 2722 2731

Y S G G E S N H. V I P T E A S M T S A P TAT TCC GGA GGG GAA AGT AAC CAC GTG ATT CCT ACG GAA GCA AGC ATG ACT TCT GCT CCA 2764 2773 2782 2791 2800 2809

T S V S L G K S P V D N S G H L S M P G ACA TCT GTA TCC CTG GGG AAA TCT CCT GTA GAC AAT AGT GGT CAC CTG AGC ATG CCT GGG 2824 2833 2842 2851 2860 2869

S P L S T AGC CCC CTC AGC ACA 2929 E T T P L P
GAA ACA ACA CCA CTT CCC
2911 2920 T I Q T G K D S V ACC ATC CAA ACT GGG AAA GAT TCA GTG 2884 2893 2902

SUBSTITUTE SHEET (RULE 26)

F/G. 5K

T Q N K G T E V V S G A R S L S A G K K ACT CAG AAC AAG GGC ACT GAA GTA TCA GGT GCC AGA AGT CTC TCA GCA GGG AAG AAG 3184 3193 3202 3211 V N W Q K K E G M L K N P Y Q F G L Q K GTA AAT AAC CAG AAG GAG GGG ATG TTA AAG AAT CCA TAT CAA TTC GGT TTA CAA AAG 3004 3013 3022 3031 N P A K L P K I A P L L P T G Q S S P AAC CCA GCC GCA AAG CTT CCC ACT CCC ACC ACA GGT CAG AGT TCC CCC 3064 3073 3082 3091 3100 PSIPPLHQIF CCC TCA ATA CCA ACA AGC ACA AAA TTC TCA AAG AGG AAA ACT CCC TTG CAC CAG ATC TTT 2944 2953 2962 2971 2980 S D S T T L L T S P P A L S T T M A A T TCA GAT TCT ACA ACT CCG CCA CCA GCT CTG TCT ACA ACT GCT GCC 3124 3133 3142 3151

R K N R N N A N T T P R Q V S G Y S A Y CGG AAG AAC AAC GCA AAC ACC CCC AGG CAG GTT TCT GGC TAT AGT GCA TAC 3424 3433 3442 3451 3460 3469 S A L T T A D T P L A F S H S P R Q D D T TCA GCT CTA ACA GCT GAT ACC CCC TTG GCT TTC AGT CAT TCC CCA CGA CAA GAT GAT GAT 3484 3493 35.02 35.11

F16.5M

G G N V S A V A Y H S T T S L L A I T E GGT GGA AAT GTA GCT TAT CAC TCA ACA ACC TCT CTG GCC ATA ACT GAA 3544 3553 3562 T D S K V T S A F Q M T S N R V V T I Y ACA GAC AGC AAA GTC ACA TCA GCT TTC CAG ATG ACG TCA AAT AGA GTG GTC ACC ATA TAT 3793 3802 3811 3820

F16.5N

E S S R H N T D L Q Q P S A E A S P N P GAA TCT TCA AGG CAC AAT ACA GAT CTG CAG CAA CCC TĈA GCA GAG GCT AGC CCC AAT CCT 3844 3853 3862 3871 3880 3889 A L R V D K P Q N S K W K P S P W P E H GCA CTA AGG GTA GAT AAA TCT AAA TGG AAG CCC TCT CCC TGG CCA GAA CAC 3964 3973 3982 3991 4000 4009 E I I T G T T D S P S N L F P S T S V P GAG ATC ATA ACT GAC TCT CCC TCT AAT CTG TTT CCA TCC ACT TCT GTG CCA 3904 3913 3922 3931 3940 3949

K Y Q L K S Y S E T I E K G K R P A V S AAA TAT CAG CTC AAG TCA TAC TCC GAA ACC ATT GAG AAG GGC AAA AGG CCA GCA GTA AGC 4024 4033 4042 4051 4060 4069 P H L S L P E A S T H A S H W N T CCC CAC CTC AGC CTT CCA GAG GCC AGC ACT CAT GCC TCA CAC TGG AAT ACA 4084 41093 4102 4111

T Q K S R F H V L P N G T L S I Q R V S ACA CAG AAA AGC CGG TTC CAC GTG CTT CCC AAT GGC ACC TTG TCC ATC CAG AGG GTC AGT 4384 4393 4402 4411

F16. 50

K H A E K S V F D K K P G Q N P T S K H AAG CAT GCA GAA AAG AGT GTT TTT GAT AAG AAA CCT GGT CAA AAC CCA ACT TCC AAA CAT 4144 4153 4162 4171 4180 4189 L P Y V S L P K T · L L K K P R I I G G K CTG CCT TAC GTC TCT CTA AGG ACT CTA TTG AAA AAG CCA AGA ATA ATT GGA GGA AAG 4204 4213 4222 4231 4240 D P L P I I H W T R V S S G X E I S Q G GAC CCA CTG CCC ATC ATC TGG ACC AGA GTT TCA TCA GGA NTT GAA ATA TCC CAA GGG 4324 4333 4342 4351 4360 4369 A A S F T V P A N S D V F L P C E A V G GCT GCT GCA AGC TIT ACA GIT CCA GCT AAT TCA GAC GIT TIT CIT CCT TGT GAG GCT GIT GGA 4204 4209 4204 4209

SUBSTITUTE SHEET (RULE 26)

S AGC

Q. T. V. V. S. E. T. A. K. G. CAA ACG GIG GIC TUA GAA ACG GCC AAG GGA 4651. 4660. 4669

CCT ACG GIT TCC TGG ATA CIT GCA AAC 4624 4624 4642

F16.5F

E GAG R AGG F G S T V E L K C R V E G M P TTT GGA AGT ACT GTG GAA CTA AAG TGC AGA GTG GAG GGT ATG CCG 4573 4582 4591 4600 H V S L S V V F Y P A R I L D R H V K CAT GTC TCT TTG TCT GTG GTT TTT TAC CCG GCA AGG ATT TTG GAC AGA CAT GTC AAG 4504 4513 4522 4531 4540 G V D GGC GTA GAC (4489 S A F N P L
TCT GCA TTT AAT CCA CTG
4471. 4480 I Q D R G Q Y L C ATT CAG GAC CGI GGA CAG TAC CTG TGC 4444 4453 4462 V H I GTT CAC 7 R K V W V T P D G T L I I Y N L S L Y D AGA AAG GTC TGG GTA ACA CCT GAT GGA ACA TYG ATC ATC TAT AAT CYG AGT CTT TAT GAT 4684 4693 4702 4711

A P S V R G T GCT CCT TCA GTG AGG GGC ACT 5020 5029 L P C T A K G T P Q P S CTG CCC TGC ACT GCA AAA GGA ACT CCC CAG CCT AGT 4882 4891 4900 P L Q L T H S R CCA TTG CAG TTG ACT CAT TCC AGA 4951 4960 4969 S G Q D S L TCT GGC CAG GAT TCA CTG 4771 P P V I I E Q K R Q CCC CCT GTC ATT ATA GAG CAA AAG AGG CAA 4822 4831 T L Y I R S I ACT CTG TAT ATA AGA AGC ATC 5002 5011 L K CTA AAA P CCA C V A S N TGT GTG GCC AGC AAC T E I ACT GAA C 4942 V L G G S L K GTT TTA GGT GGA AGT TTG AAA 4864 4873 V L Y D G GTC CTT TAT GAT GGG 4924 4933 P N G CCA AAT GGA 1 4993 Q V I T A CAA GTC ATC ACA GCT 4804 F L Y TTC TTC TAT (4984

 Y
 E
 C
 I
 A
 T
 S
 S
 S
 G
 T
 N
 C
 T
 T
 V
 T
 L
 T
 V

 TAY
 GAG
 TUC
 TUC</td

F/6.55

 L
 C
 V
 A
 A
 A
 A
 A
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 P D G T V L N N V A Q A D D S G Y R T K CCT GAT GGG ACA GTC AAT GTA GCC CAA GCT GAC AGT GGC TAT AGG ACC AAG 5524 5533 5542 5551

	E GAA	CTA	T V L T A I P R I R Q S Y K T T M R L R ACA GTT CTA ACA GCC ATC CCA CGG ATA AGG CAA AGC TAC AAG ACC ACC ATG AGG CTC AGG 5704 5713 5722 5731	E V T G E P K P N V F GAG GTC ACT GGG GAA CCG AAG CCC AAT GTA TTT 5791 5800 5809	A GCC	V GTA
	E GAG	H	L	V GTA	H CAT	c TGC
	A GCA 6629	V GTC 689	R AGG 5749	N AAT 8809	F 1717 5869	V G'rG 5929
	M ATG 5	K AAA 5	M ATG 5	ى كىن م	T ACA	Y TAT
	999 9	M ATG	TACC	K AAG	FTTC	D GAC
	v GTT 5620	E GAG 5680	T ACC 5740	P CCG 5800	W L L P S N N V I S F S N D R F T F H TGG TTG CTG CCT TCC AAC AAT GTC ATT TCA TTC TCC AAT GAC AGG TTC ACA TTT CAT 5824 5833 5842 5851 5860 5869	N R T L S I H K V K P L D S G D Y V C AAT AGA ACT TIG TCC ATC CAT AAA GTG AAA CCA CTT GAC TCT GGG GAC TAT GTG TGC 5884 5893 5902 5911 5920
	N AAC	D GAT	A AAG	E GAA	D GAC	S TCT
	N AAC	k aaa	Y TAC	9 9 9	N AAT	DGAC
	F TTC 5611	G GGG 5671	S AGC 5731	T ACT 5791	S TCC 5851	L CTT 5911
	Y TAT	L TTA	O CAA	V GTC	F TTC	P CCA
	$_{ m TTG}$	T ACC	R AGG	E GAG	S TCA	K AAA
	T ACC 5602	N AAC 5662	I ATA 5722	C TGC 5782	I ATT 5842	V GTG 5902
	GGA	Q CAG	R CGG	DCGAC	V GTC	K AAA
	N AAT	A GCC	P CCA	$_{ m CTT}$	N AAT	H CAT
	H CAC 5593	S TCT 5653	I ATC 5713	V GTC 5773	N AAC 5833	I A'I'C 5893
	F TTC	C TGC	205 GCC	A GCT	S TCC	S TCC
	I. CTT	I ATC	T ACA	T ACA	P CCT	L T'IG
とと	T. ACC 5584	Y TAT 5644	L CTA 5704	E GAA 5764	L C'IG 5824	T ACT 5884
Ś	Z × E	D GAT	V GTT	A G E T A V L D C GCT GGA GAA ACA GCT GTC CTT GAC TGC 5764 5773 5782	L TTG	R AGA
Ú	R AGG	G D Y I C S A Q N T L G GGA GAT TAT ATC TGC TCT GCC CAG AAC ACC TTA GGG 5644 5653 5662 5671	T ACA	A GCT	W TGG	N AAT

N G T L E M R N I R L S D S A D F T C V AAT GGA ACC TTG GAG ATG AGG AAC ATC CGG CTT TCT GAC TCT GCG GAC TTC ACC TGT GTG 6184 6193 6202 6211

F/G. 56

A Q N P S G D D T"K T Y K L D I V S "K P GCT CAG AAT CCT AGT GGG GAT GAC ACT AAG ACA TAC AAA CTG GAC ATT GTC TCT AAA CCT 5944 5953 5962 5971 5980 5989 P L I N G L Y A N K T V I K A T A I R H CCA TTA ATC AAT GCC CTG TAT GCA AAC AAG ACT GTT ATT AAA GCC ACA GCC ATT CGG CAC 6004 6013 6022 6031 6040 S K K Y F D C R A D G I P S S Q V T W I TCC AAA AAA TAC TTI GAC TGC ÀGA GCA GAT GGG ATC CCA TCT TCC CAG GTC ACG TGG ATT 6064 6073 6082 6091 6100 M P G N I F L P A P Y F G S R V T V H P ATG CCA GGC AAT ATT TTC CTC CCA GCT CCA TAC TTT GGA AGC AGA GTC ACG GTC CAT CCA 6124 6133 6142 6151

Q A G K P CAA GCT GGC AAG CCC 6349 V D G N P P E I T W I L P GTG GAT GGG AAC CCC CCA CCT GAA ATT ACC TGG ATC TTA CCT 6382 6400 6400 A G N C GCA GGC AAT C 6469 V L E M GTC CTA GAA ATG 6289 P Y L M P CCG TAT CTG ATG C 6450 L E TTA GAA (6280 V I A GTC ATC GCC G Q CAG L V V C TTG GTA GTG C N R P H N S AAC AGA CCA CAC AAT TCC 6442 6451 N P F N E K AAC CCA TTC AAC GAA AAA 6331 E S V I GAG AGT GTG 7 6262 E G G I GAG GGA GGA (F R 1 TTC AGA 7 6313 V A L N C S'
GTA GCA CTG AAC TGC TCT
6364 6373 G T Q F A GGC ACA CAG TTT GCT 6424 6433 V R S E GTT CGG AGC C 6244

G K Y R C A GGG AAG TAT CGC TGT GCA 6520 6529 N K S (AAC AAG TCA (6511 S L I L Y K A T R TCT CTC ATC CTT TAC AAA GCA ACT CGG 6484 6493 6502

D GAC

F/G. 5N

N K V G Y I E K L I L L E I G Q K P V I AAT AAG GTT GGC TAC ATC GAG AAC CTC ATC CTG TTA GAG ATT GGG CAG AAG CCA GTC ATT 6544 6553 6562 6571 6580

L T Y E P G M V K S V S G E P L S L H C CTG ACA TAC GAA CCA GGG ATG GTG AAG AGC GTC AGT GGG GAA CCG TTA TCA CTG CAT TGT 6604 6613 6622 6631

V S D G i P K P N V K W T T P G G H V I GTG TCT GAT GGG ATC CCC AAG CCA AAT GTC AAG TGG ACT-ACA CCG GGT GGC CAT GTA ATC 6664 6673 6682 6691 6700

D R P Q V D G K Y I L H E N G T L V I K GAC AGG CCT CAA GTG GAA AAA TAC ATA CTG CAT GAA AAT GGC ACG CTG GTC ATC AAA 6724 6733 6742 6751 6760 6769

A T T A H D Q G N Y I C R A Q N S V G Q GCA ACA ACA GCT CAC GAC CAA GGA AAT TAT ATC TGT AGG GCT CAA AAC AGT GTT GGC CAG 6793 6802 6811 6820

F16.5)

A V I S V S V M V V A Y P P R I I N Y L GCA GTT ATT AGC GTG TCA GTG GTT GTG GCC TAC CCT CCC CGA ATC ATA AAC TAC CTA CTA 6881 6889 PRNMLRRTGE AMQLHCVA ALGR CCC AGG AAC ATG CTC AGG ACA GGG GAA GCC ATG CAG CTC CAC TGT GTG GCA TTG GGA 6904 6913 6922 6931 6940 6949 L Q T S D S G V Y K C R A Q N L L G T D CTC CAA ACC TCG GAT TCC GGA GTC TAT AAG TGC AGA GCT CAG AAC CTA CTT GGG ACT GAT 7084 71093 7102 7111 A R K P H E S E M L H P Q G T L V I Q N GCA AGA AAA CCC CAT AGA AGT GAG ATG CTT CAC CCA CAA GGT ACG CTG GTC ATT CAG AAT 7024 7033 7042 7051 7060 7069

TAA AAT TCA ACA GAA 7189 TGA CAG GAA GGG GGA GAC | 7180 Q V CAG GTA CTC 7 TAC ATC 71.53 TAC GCA ACA

GTC CAC ATC CAC AGG GTT TAT TTT GAA GAA GTT TAA TCA AAG GCA GCC ATA GGC ATG 7204 7213 7222 7231

TAA ATG AGT CTG AAT ACA TTT ACA GTA TTA AAT TTA CAA TGG ACA TGC GAT GAG ACT TGT 7264 7264 7273 7282 7291

AAA TGA AAG CAT TGT GAA CTG AAA CCG AGT CTC TGT GGA TCT CAA AGC AAA CTC TTA ACT 7324 7333 7342 7351 7360

TAA GAG AAA AAA ATG ATC CAC 7420 TAA GGC ACT TYG ATT TYG CCA ACA AAT AAT AAC AAA CAT 7384 7384 7393

F/6 57

TAC GAA ATA ACA AAC GGC TAA TGC ACC TGA ATT CTC AGT AAA AAG ACC TTT CTC TCG CTA
7444 7453 7462 7462

ACA GTT GCC AGC TGC CTC GTG TCT GTT TCC TAC CAA TGT CAC AAA CAT CGC ACA CAG GGT 7504 7513 7522 7531 7540

GAA TGG AGT CAA CGG GAA AGA TTA AGT TTG CGG TCT GTG TAA ATC TCA ATG TAC AAA TAT 7564 7573 7582 7591

ACA TTT TGA TAA AAC CGA AAA AAA AAA AAA AAA AAA AAA 7669 7642 7659 TAA TCT GTC NCT GGT TTA

AAA AA

E16.61

ATT dimens	
608; CLUSTAL X (1.64b) Multiple Sequence Aliquient	
608: CLUSTAL X (1.64b) Multiple	
608: CLUSTAL	

PDQEMPVYPPAIITPLQDTVTSEGQPARFQCRVSGTDLKVSWYSKDKKIK -MGRSPSWLYGVLGLLLLATTCSSVNDDKNDPTGKSS	PSRFFRMTQFEDTYQLEIAEAYPEDEGTYTFVANNAVGQVSSTANLSL Lafveditgsmfddlvqvregaakifktvmaqrekliynyimvpf 	EAPESILHERIEQEIEMEMKAAPVIKRKIEPLEVALGHLAKFTCEIQS HDPYIGEIINTTDSTYFMRQLSKVYVHGGGDCPEKTLTGILKALQISLPS	APNVRFQWFKAGREIYESDKCSIRSSKYISSLEILRTQVVDCGEYTCKAS SFIYVFTDARSKDYHLEDEVLNTIQEK-QSSVVFVMTGDCGNRTHPGF	 NEYGSVSCTATLTVTEAYPPTFLSRPKSLTTFVGKAAKFICTVTGTPVIE EYVRHAVKQKKVH
gi 1017427 emb CAA62189	gi 1017427 emb CAA62189	gi 1017427 emb CAA62189	gi 1017427 emb CAA62189	gi 1017427 emb CAA62189
gi 3328186	gi 3328186	gi 3328186	gi 3328186	gi 3328186
608	608	608	608	608

gi 1017427 emb CAA62189 gi 3328186 608	TIWOKDGAALSPSPNWRISDAENKHILELSNLTIODRGVYSCKASNKFGA LMYEARERGGTVSRNIPVDKHLSELTISLSGDKDDSDNLDI
gi 1017427 emb CAA62189 gi 3328186 608	DICQAELIIIDKPHFIKELEPVQSAINKKVHLECQVDEDRKVTVTWSKDG VLRDPEGRTVDKRLYSKEGGTIDLKNVKLIRLKDPSPGVWTVNTN-SRLK
gi 1017427 emb CAA62189 gi 3328186 608	QKLPPGKDYKICFEDKIATLEIPLAKLKDSGTYVCTASNEAGSSSCSATV HTIRVFGHGAVDFKYGFASRPLDRIELARPRPVLNQDTYLLINM
gi 1017427 emb CAA62189 gi 3328186 608	TVREPPSFVKKVDPSYLMLPGESARLHCKLKGSPVIQVTWFKNNKELSES TGLIPPGTVGEIDLVDYHGHSLYKAVASPHRT-NPNMYFAGPF
gi 1017427 emb CAA62189 gi 3328186 608	NTVRMYFVNSEAILDITDVKVEDSGSYSCEAVNDVGSDSCSTEIVIKEPP VPPKGLFFVRVQGYDEDNYEFMRIAFTAIGSVIVGGPR

gi 1017427 emb CAA62189	HDSGQYTEEISNEVGSSSCETTFTVLDRDIAPFFTKPLRNVDSVVNGTCR
gi 3328186	IIDEGTYECRAMSQAGQARDTTDIMLATPPKVEIIQNKMMVGRGDRV
608	
gi 1017427 emb CAA62189 gi 3328186 608	-LDCKIAGSLPMR-VSWFKDGKEIAASDRYRIAFVEGTASLEIIRVDMND SFECKTIRGKPHPKIRWFKNGKDLIKPDDY-IKINEGQLHIMGAKDED
gi 1017427 emb CAA62189 gi 3328186 608	AGNFTCRATNSVGSKDSSGALIVQEPPSFVTKPGSKDVLPGSAVCLKSTF AGAYSCVGENMAGKDVQVANLSVGRVPTIIESPHTVRVNIERQVTLQCLA
gi 1017427 emb CAA62189	FVKEPAAFLKRLSDHSVEPGKSIILESTYTGTLPISVTWKKOGFNITTSE
gi 3328186	VIIPPVIDGERREAVAVIEGFSSELFCDSNSTG-VDVEWQKOGLTINQDT
608	LPLSARRIDPQRWAALLEKAKKNSVPKKQENTTVKPVPLAVPLVELTDEE
gi 1017427 emb CAA62189	KCNIVTTEKTCILEILNSTKRDAGQYSCEIENEAGRDVCGALVSTLE
gi 3328186	LRGDSFIQIPSSGKKMSFLSARKSDSGRYTCIVRNPAGEARKLFDFAVND
608	KDASGMIPPDEEFMVLKTKASGVPGRSPTADSGPVNHGFMTSIASGTE

PPYFVTELEP--LEAAVG-DSVSLQCQVAGTPEITVSWYKGDTKLRPTPE PPSISDELSSANIQTIVPYYPVEINCVVSGSPHPKVYWLFDDKPLEPD-S VSTVNPQTI,QSEHLPDFKLFSVTNGTAVTKSMNPSIASKIEDTTNQNPII gi|1017427|emb|CAA62189| gi|3328186 608

gi|1017427|emb|CAA62129| gi|3328186

AAYELTINGETLKIVRSQVEHAGTYTCEAQNNVGKARKDFLVRVT---AP

IFPSVAEIRDSAQAGRASSQSAHPVTGGNMATYGHTNTYSSFTSK----

PSFARQLKDI EQTVGLPVTLTCRLNGSAPIQVCWYRDGVLLRDHENLQTS PHFEKEREEVVARVGDIMLLICNAESSVPLSSVYWHAHDESVQNGVITSK

---ASTVLQPINPTESYGPQIPITGVSRPSSSDISSHTTADPS

YRTYFTNNVATLVENKVNINDSGEYTCKAENSIGTASSKTVFRIQERQLP

gi|1017427|emb|CAA62189| gi|3328186 608 gi|1017427|emb|CAA62189| gi|3328186 608

FVDNVATLKILQTDLSHSGQYSCSASNPLGTASSSARLTAREPKKSPFFD YAANEKTLNVTNIQLDDEGFYYCTAVNEAGITKKFFKLIVIET---PYFL

FSSIIPSGSHTTASSLFHIPRNNNTGNFPLSRHLGRERTIWSRG----RV-

gi|1017427|emb|CAA62189| gi|3328186 608

DQQKLYPIILGKRLTLDCSATGTPPPTILFMKDGK--RLNESDEVDIIGS | KPVS1.DVIAGESADFECHVTGAQPMR.ITW5KDNKEIRPGGNYTITCVGN KNPHRTPVLRRHRHRTVRPAIKGPANKNVSQVPATEYPGMCHTCPSAEGL

SUBSTITUTE SHEET (RULE 26)

```
TPHLRI LKVGKGDSGQYTCQATNDVGKDMCSAQLSVKEPPKFVKKLEASK
                     T--LVIDNPQKEVEGRYTCIAENKAGRSEKDMMVEVLLPPKLSKEWINVE
                                           T--VATAALSVPSSSHSALPKTNNVGVIAEESTTVVKKPLLLFKOKONVD
                                                                                                        VAKQGESIQLECKISGSPEIKVSWFRNDSELHESWKYNMSFINSVALLTI
                                                                                                                               VQ-AGDPLTLECPIEDTSGVHITWSRQFGKDGQLDMRAQSSSDKSKLY-I
                                                                                                                                                      IE----IITTTKYSGGESNHVIPTEAS------MTSAPTSVSLG--
                                                                                                                                                                                                                                                                             --KSPVDNS----GHLSMPGTIQTGKDSVETTP---LPSPLSTPSIPTS
                                                                                                                                                                                                                                                                                                                                                      DVILQCEISGTPPFEVVWVKDRKQVRNSKKFKITSKHFDTNLHILNLEAS
                                                                                                                                                                                                                                NEASAEDSGDYICEAHNGVGDASCSTALTVKAPP-VFTQKPSPVGALKGS
                                                                                                                                                                                                                                                        MQATPEDADSYSCIAVNDAGGAEAVFQVTVNTPPKI FGDSFSTTEIVADT
                                                                                                                                                                                                                                                                                                                                                                                                       ---- LKNP--
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DVGEYHCKAINEVGSDICSCSVKFKEPPRFVKKLSDISTLIGDAVELRAI
                                                                                                                                                                                                                                                                                                                                                                                 ---DITEMb--
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -- YQFG---
                                                                                                                                                                                                                                                                                                                                                                                   TLEIPCRTEGIPPPEISWFLDGK---
                                                                                                                                                                                                                                                                                                                                                                                                           TKFSKRKTPLHQIFVNNQKKEGM--
             gi|1017427|emb|CAA62189|
                                                                                                                                                                                                                                               gi|1017427|emb|CAA62189|
                                                                                                                              gi|1017427|emb|CAA62189|
                                                                                                                                                                                                                                                                                                                                                                   gi|1017427|emb|CAA62189|
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              gi|1017427|emb|CAA62189|
                                                                                                                                                      gi|3328186
608
                               gi|3328186
                                                                                                                                                                                                                                                                          gi|3328186
608
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       gil3328186
                                                                                                                                                                                                                                                                                                                                                                                          gi|3328186
```

gi 1017427 emb CAA62189 gi 3328186 608	VEGFQPISVVWLKDRGEVIRESENTRISFIDNIATLQLGSPEASNSGKYI
gi 1017427 emb CAA62189	COIKNDAGMRECSAVLTVLEPARIIEKPEPMTVTTGNPFALECVVTGTPE
gi 3328186	CVAENKAGRAEQDTYVEISEPPRVVMASEVMRVVEGRQTTIRCEVFGNPE
608	PLLPTGQSSPSDSTTLLTSPPPALSTTMAATONKGTEVVSGARSLSA
gi 1017427 emb CAA62189	LSAKWFKOGRELSADSKHHITEINKVASLKIPCAEMSDKGLYSFEVKNSV
gi 3328186	PVVNWLKOGEPYTSDLLQFSTKLSYLHLRETTLADGGTYTCIATNKA
608	GKKQPFTNSSPVLPSTISKRSNTLNFLSTETPTVTSPTATASVIM
gi 1017427 emb CAA.62189 gi 3328186 608	GKSNCTVSVHVSDRIVPPSFIRKLKDVNALLGASVVLECRVSGSAPISVG SESQTTTDVEVLVPPRIEDEERVLQGKEGNTYMVHCQVTGRPVPYVT SETQRTRSKEAKDQIKGPRKNRNNANTTPRQVSGïSA ::: * :: :
gi 1017427 emb CAA62189	WEQDGNEIVSGPKCQSSFSENVCTLNLSLLEPSDTGIYTCVAANVAGSDE
gi 3328186	WKRNGKEIEQFNPVLHIRNATRADEGKYSCIASNEAGTAV
608	YSALTTADTPLAFSHSPRQDDGGNVSAVAY

F/G 61

gil1017427 emb CAA62189 gil3328186 608	CSAVLTVQEPPSFEQTPDSVEVLPGMSLTFTSVIRGTPPFKVKWFKGSRE ADFLIDVFTKPTFETHETTFNIVEGESAKIECKIDGHPKPTISWLKGGR- HSTTSLLAITELFEKYTQTLGNTTALETTLLSKSQESTTVKRASDTP- **
gi 1017427 emb CAA62189	LVPGESCNISLEDFVTELELFEVQPLESGDYSCLVTNDAGSASCTTHLFV
gi 3328186	PFNMDNIILSPRGDTLMILKAQRFDGGLYTCVATNSYGDSEQDFKVNV
608	PPLLSSGAPPVPTPSPPPFTKGVVTDSKVTSAFQMTSNRVVTI
gi 1017427 emb CAA62189	KEPATFVKRLADFSVETGSPIVLEATYTGTPPISVSWIKDEYLISQSE
gi 3328186	YT-KPYIDETIDQTPKAVAGGEIILKCPVLGNPTPTVTWKRGDDAVPNDS
608	YESSRHNTDLQQPSAEASPNP
gi 1017427 emb CAA62189 gi 3328186 608	RCSITMTEKSTILEILESTIEDYAQYSCLIENEAGQDICEALVSVLEPPY RHTIVNNYDLKINSVTTEDAGQYSCIAVNEAGNLTTHYAAEVIGKPTEIITGTTDSPSNLFPSTSVPALRVDKPQNSKWKPSPW :* *::
gi 1017427 emb CAA62189	FIEP-LEHVEAVIGEPATLQCKVDGTPEIRISWYKEHTKLRSAPAYKMQF
gi 3328186	FVRKGGNLYEVIENDTITMDCGVTSRPLPSISWFRGDKPVYLYDRYSISP
608	PEHKYQL-KSYSETIEKGKRPAVSMSPHLSLPEASTHASHWNTQ

```
gil1017427|emb|CAA62189|
            gi|3328186
```

gi|1017427|emb|CAA62189| gi|3328186 608

gi|1017427|emb|CAA62189| gi|3328186

gi|1017427|emb|CAA62189| gi|3328186 gil1017427|emb|CAA62189| gi|3328186 608

KNNVASLVINKVDHSDVGEYSUKADNSVGAVASSAVLVIKARKI.PPFFAR DG--SHITINKAKLSDGGKYICRASNEAG---TSDIDLILKILVPPKIDK KH----AEKSVFDKKPG--ONPTSKHLP----YVSLPKTLLKKPRIIG

SNIIGNPLAIVARTIYLECPISGIPQPDVIWTKNGMDIN-MTDSRVILAQ K--lkdvhetlgfpvafecringseplqvswykdgvllkddanlqtsfvh G-KAASFTVPANSDVFLPCEAVGDPLPIIHWTRVSSGXEISQGTQKSRFH

HGTQPTIKREGDTITLTCPIKLAEDIADQVMDVSWTKDSRALD---GDLT VLPNGTLSIQRVSIQDRGQYLCSAFNPLGVDHFHVSLSVVFYP-ARILDR KPVSVDLA-LGESGTFKCHVTGTAPIK----ITWAKDNREIR---PGGN HVKEITVH-FGSTVELKCRVEGMPRPT----VSWILANQTVVSETAKGS NNE--TFGIENVQVTDQGRYTCTATNRGGKASHDFSLDVLS---PPEFDI NVA--TLQILQTDQSHIGQYNCSASNPLGTASSSAKLILSEHEVPPFFDL

YKMTLVENTATLTVLKVGKGDAGQYTCYASNIAGKDSCSAQLGVQEPPRF DNVDISDDGRKLTISQASLENAGLYTCIALNRAGEASLEFKVEILSPPVI RKVWVTPDG-TLIIYNLSLYDRGFYKCVASNPSGQDSLLVKIQVITAPPV * * * * * * ...

F/6.6

```
IIEQK-RQAIVGVLGGSLKLP-CTAKGTPQPSVHWVLYDGTELKPLQLTH
                        DISRNDVQPQVAVNQPTIMR--CAVTGHPFPSIKWLK-NGKEVTDDENIR
IKK ----LEPSRIVKQDEFTRYECKIGGSPEIKVLWYK-DETEIQESSKFR
                      gi|1017427|emb|CAA62189|
                                             gi|3328186
```

gi|1017427|emb|CAA62189| gi|3328186 608

MSF-VDSVAVLEMHNLSVEDSGDYTCEAHNAAGSASSSTSLKVKEP---P I---VEQGQVLQILRTDSDHAGKWSCVAENDAGVKELEMVLDVFTP---P SRFFLYPNGTLYIRSIAPSVRGTYECIATSSSGSERRVVILTVEEGETIP

IFRKKP-HPIETLKGADVHLECELQGTPPFHVSWYKDKRELRSGKKYK-I VVSVKSDNPIKAL-GETITLFCNASGNPYPQLKWAKGG-SLIFDSPDG-A RIETASQKWTEVNLGEKLLLNCSATGDPKPRIIWRLPSKAVIDQWHRMGS

> gi|1017427|emb|CAA62189| gi|3328186 608 gi|1017427|emb|CAA62189| gi|3328186 608

gi|1017427|emb|CAA62189| gi|3328186 608

KLSDISTVVG--KEVQLQTTIEGAEPISVVWFKDKGEIVRESDNI-----DGIDMSPRIPAQQSITLQCLAQGKPVPQMRWTINGTALTHSTP-----QKQYFKKQVLHGKDFQVDCKASGSPVPEVSWSLPDGTVLNNVAQADDSGY

RIHVYPNGSLVVGSVTEKDAGDYLCVARNKMGDDLVLMHVRLRLTPAKIE

* * * * *

••

MSENFLTS-IHILMVDAADIGEYQCKATNDVGSDTCVGSIALKAPPRFVK RISLKGAR-LDIPHLKKTDVGDYTCQALNAAGTSEASVSVDVLVPPEINR

*

*

SUBSTITUTE SHEET (RULE 26)

ILIDNIC-ALIVNMLEESDSGDYTCIAINMAGSDECSAPL----TVREPP

gi|1017427|emb|CAA62189|

gi13328186

IGADG---TLHIEKAEER-HLIYECTAKNDAGADTLEFPVQ---TIVAPK

RVTVHPNGTLEMRNI RLSDSADFTCVVRSEGGESVLVVQLEVLEMLRRPT

F1G. 61

```
--WISYSENIATLQFSRVEPANAGKYTCQIKNDAGMQECFATLSVLEPAT
                                           --GITVASDSTF101NNVSLSDKGVYTCYAENVAGSDNLMYNVDVVO-AP
                                                                          RTKRYTLFHNGTLYFNNVGMAEEGDYICSAQNTLGKDEMKVHLTVLTAIP
                                                                                                                                                                        IVEKPES--IKVTTGDTCTLECTVAGTPELSTKWFKDGKELTSDNKYKIS
                                                                                                                                                                                                         VISNGGT--KQVIEGELAVIECLVEGYPAPQVSWLRNGNRVETG-VQGVR
                                                                                                                                                                                                                                          RIROSYKTIMRLRAGETAVLDCEVTGEPKPNVFWLLPSNNVISF-SNDRF
                                                                                                                                                                                                                                                                                                                                                                                                            TFHANRTLSIHKVKPLDSGDYVCVAQNPSG--DDTKTYKLDIVSKPPLIN
                                                                                                                                                                                                                                                                                                                                                                           YVTDGRMLTIIEARSLDSGIYLCSATNEAG--SAQQAYTLEVLVSPKIIT
                                                                                                                                                                                                                                                                                                                                        FFNKVSGLKIINVAPSDSGVYSFEVQNPVGKOSCTASLQVSDRTVPPSFT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GLYANKTVIKATAIRHSKKYFDCRADGIPSSQVTWIMPGNIFLPAPYFGS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RKLK-----EINGLSGSSVVMECKVYGSPPISVSWFHEGNEISSGRKYQT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STPG-----VLTPSSGSKFSLPCAVRGYPDPIISWTLNGNDIKDGENGHT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     * * . * . . .
                                                                                                                                                                                                                                                                           gi|1017427|emb|CAA62189|
gi|3328186
608
                                                                                                                                                                  gi|1017427|emb|CAA62189
                                                                                                                                                                                                                                                                                                                                               gi | 1017427 | emb | CAA62189 |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            gi | 1017427 | emb | CAA62189 |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        gi|3328186
608
                                                                                                                                                                                                     gi|3328186
                                                                                                                                                                                                                                                                                                                                                                                  gi|3328186
```

F/6.6

```
S VGDSASLQCQLAGTPEIGVSWYKG-DTKLRPTTTYKMHFRNNV---A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    N--PRQTVFLSCNATGIPEPVISWMR--DSNIAIQNNEKYQILG----T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LRRTGEAMQLHCVALGIPKPKVTWETPRHSLLSKATARKPHRSEMLHPQG
SEVQKPDPMDVLTGTNVTFTSIVKGTPPFSVSWFK-GSSELVPGDRCNVS
                                                                                                                                FSEDYKLIKILSTRLSDQGEYSCTAANKAGNATQKTNLNVGVAPKIMERP
                                                                                                                                                      LMAGNGSLILYKATRNKSGKYRCAARNKVGYIEKLILLEIGQKPVILTYE
                                                                                                                                                                                                                                                                          PGMVKSVSGEPLSLHCVSDGIPKPNVKWTTPGGHVIDRPQVDGKYILHEN
                                                                                                                                                                                                                                                                                                                                                                  SVIFSSISPSQ-AGVYTCKÆENWVASTEEDIDLIVMIPPEVVPERMNVST
                                                                                                                                                                                                                                                                                                                                                                                        GTLVIKATTAHDQGNYICRAQNSVGQAVISVSVMVVAYPPRIINYLPRNM
                   ISTSGNRYINGSEGTETVIKCEIE-SESSEFSWSK-NGVPLLPSN--NLI
                                         FRNPFNEKVIAQAGKPVALNCSVDGNPPPEITWILPDGTQFANRPHNSPY
                                                                                                          LEDSVAELELFDVDTSQSGEYTCIVSNEAGKASCTTHLYIKAPAKFVKRL
                                                                                                                                                                                                                            NDYSIEK-GKPLILEGTFTGTPPISVTWK-KNGINVTPSQRCNITTTEKS
                                                                                                                                                                                                                                                  RTQVVHK-GDQVTLWCEASGVPQPAITWY-KDNELLTNTGVDETATTKKK
                                                                                                                                                                                                                                                                                                                                          PILEIPSSTVEDAGQYNCYIENASGKDSCSAQILILEPPYFVKQLEPVKV
                                                                                                                                                                                                                                                                                                                                                                                                                 *
                                                                      * * *
                                                                                                                                                                                                                                                                                                                                                        gi|1017427|emb|CAA62189|
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            gi|1017427|emb|CAA62189|
                                                                                                                                                                                                                                          gi|1017427|emb|CAA62189
           gil1017427|emb|CAA62189|
                                                                                                                   gi|1017427|emb|CAA62189
                                                                                                                                                    gi|3328186
608
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         gi|3328186
608
                                                                                                                                                                                                                                                                                                                                                                                  gi.|3328186
                                                                                                                                                                                                                                                                 gi|3328186
                                  gi|3328186
```

gi 1017427 emb CAA62189 gi 3328186 608	TLVENQVDINDSGEYICKAENSVGEVSASTELTVQEQKLPPSFSRQLRDV TIAIRNVLPDDDGFYHCIAKSDAGQKIATRKLIVNKPSDRP TLVIQNLQTSDSGVYKCRAQNLLGTDYATTYIQVL
gi 1017427 emb CAA62189 gi 3328186 608	QETVGLPVVFDCAISGSEPISVSWYKDGKPLKDSPNVQTSFLDNTATLNI APIWVECDEKG-KPKKTEYMIDRGDTPDDNPQLLPW
gi 1017427 emb CAA62189 gi 3328186 608	FKT-DRSLAGQYSCTATNPIGSASSSARLILTEGKNPPFFDIRLAPVD KDVEDSSLNGSIAYRCMPG-PRSSRTVLLHAAPQFIVKPKNTT
gi 1017427 emb CAA62189 gi 3328186 608	AVVGESADFECHVTGTQPIKVSWAKDSREIRSGGKYQISYLENSAHLTVL AAIGAIVELRCSAAGPPHPTITWAKDGKLIEDS-KFEIAYSHLKVT
gi 1017427 emb CAA62189 gi 3328186 608	KVDKGDSGQYTCYAVNEVGKDSCTAQLNIKERLIPPSFTKRLSETVE I.NSTSDSGEYTCMAQNSVGSSTVSAFINVDNNILPTPKPSSNQKNVAVIT

F1G. 61

gi 1017427 emb CAA62189 gi 3328186 608	ETEGNSFKLEGRVAGSQPITVAWYKNNIEIQPTSNCEITFKNNTLVLQ CYERNQAYSRGLTWEYNGVP-MPKNLAGIHFMNNGSLVILD
gi 1017427 emb CAA62189 gi 3328186 608	VRKAGMNDAGLYTCKVSNDAGSALCTSSIVIKEPKKPPVFDQHLTPVTVS TSSLKEGDLELYTCKVRNRRRHSIPHLTS
gi 1017427 emb CAA62189 gi 3328186 608	EGEYVQLSCHVQGSEPIRIQWLKAGREIKPSDRCSFSFASGTAVLELRDV AFEGVPKVEV
gil1017427 emb CAA62189 gi 3328186 608	AKADSGDYVCKASNVAGSDTTKSKVTIKDKPAVAPATKKAAVDGRLFFVS NNGDSVVLDC
gil1017427 emb CAA62189 gil3328186 608	EPQSIRVVEKTTATFIAKVGGDPIPNVKWTKGKWRQLNQGGRVFIHQKGD DPLTTHVVWTKNDQKMLDDDAIYVLP

gi 1017427 emb CAA62189 gi 3328186 608	EAKLEIRDTTKTDSGLYRCVAFNEHGEIESNVNLQVDERKKQEKIEGDLR NNSLVLLNVEKYDEGVYKCVASNSIGKAFDDTQLNVYEGDFL
gi 1017427 emb CAA62189 gi 3328186 608	AMLKKTPILKKGAGEEEEIDIMELLKNVDPKEYEKYARMYGITDFRGLLQ PLTGFE-GSGIN-IDDSSNAGGSSRR
gi 1017427 emb CAA62189 gi 3328186 608	RVEEEHRVEKVHRVIEVFEAEEVEVFEKPKAPPKGPEISEKIIPPKKPPT
gi 1017427 emb CAA62189 gi 3328186 608	KVVPRKEPPAKVPEVPKKIVVEEKVRVPEEPRVPPTKVPEVLPPKEVVPE
gi 1017427 emb CAA62189 gi 3328186 608	KRVPVPPAKKPEAPPPKVPEAPKEVVPEKKVPVPPPPKKPEVPFTKVPEVP

gi 1017427 emb CAA62189 gi 3328186 608	KAAVPEKKVPEAIPPKPESPPPEVFEEPEESPSAPPKKPEVPPVRVPEVP
gi 1017427 emb CAA62189 gi 3328186 608	KEVVPEKKVPAAPPKKPEVTPVKVPEAPKEVVPEKKVPVPPPFKKPEVPPT
gi 1017427 emb CAA62189 gi 3328186 608	KVPEVPKVAVPEKKVPBAIPPKPESPPPEVFEBPEEVALEEPPAEVVEEP
gi 1017427 emb CAA62189 gi 3328186 608	EPAAPPQVTVPPKNPVPEKKAPAVVAKKPELPFVKVPEVPKEVVPEKKVP
gi 1017427 emb CAA62189 gi 3328186 608	LVVPKKPEAPPAKVPEVPKEVVPEKKVAVPKKPEVPPAKVPEVPKKPVLE

VEEVEVPTVTKRERKIPEPTKVPEIKPAIPLPAPEPKPKPEAEVKTIKPP **LPERKPEPKEEVVLKSVLRKRPEEEEPKVEPKIGEKVKKPAVPEPPPKP** PPAV PEEPKKI I PEKKVPVI KKPEAP PPKE PEPEKV I EKPKLKPRP PPPP PAPPKEDVKEKI FQLKAI PKKKVPENPQVPEKVELTPLKVPGGEKKVRKL EKPAVPVPERAESPPEVYEEPEEIAPEEEIAPEEEKPVPVAEEEEPEVP gi|1017427|emb|CAA62189| gi|3328186 608 gi|1017427|emb|CAA62189| gi|3328186 608 gi|1017427|emb|CAA62189| g1|3328186 608 gi|1017427|emb|CAA62189| gi|3328186 608 gi|1017427|emb|CAA62189| gi|3328186 608

SUBSTITUTE SHEET (RULE 26)

PVEPEPTPIAAPVTVPVVGKKAEAKAPKEEAAKPKGPIKGVPKKTPSPIE	AERRKLRPGSGGEKPPDEAPFTYQLKAVPLKFVKEIKDIILTESEFVGSS	AIFECLVSPSTAITTWMKDGSNIRESPKHRFIADGKDRKLHIIDVQLSDA	GEYTCVLRLGNKEKTSTAKLVVEELPVRFVKTLEEEVTVVKGQPLYLSCE	L,NKERDVVWRKDGKIVVEKPGRIVPGVIGLMRALTINDAD
gi 1017427 emb CAA62189	gi 1017427 emb CAA62189	gi 1017427 emb CAA62189	gi 1017427 emb CAA62189	gil1017427 emb CAA62189
gi 3328186	gi 3328186	gi 3328186	gi 3328186	
608	608	608	608	

405 Human

PROBE·Human 405 EST Probe.

Target:total RNA:Human K562
N K562

FIG. 7

405 Human

Probe: Human 405 EST Probe

Target: Rat Cmf mRNA

FIG. 8

V GTC 7

Listed from: 3 to: 3722; (Entire region); Length of 405-without up: 3722 bp;

Translated from: 48 to: 3176 Genetic Code used: Universal;

GGC 56 r crc GGT GGC TTC TAC ACC GAC TGG GTG AGC GGC CAG TGG AAC CAC ATG m Frame

E L 1 GAG CTC 1 I ATC G N GGC AAC 7 92 A A L A K A C F G GCG GCT CTG GCC AAG GCC TGC TTC GGA 65 74 83 W V K R Q G N TGG GTC AAG CGG CAG GGT AAC 152 161 170 E GAG L H I CTG CAC (K A R I AAG GCC CGG (134 E GAG CTC A GCG 125 N G AAC GGC

P CCC 230 CCA T ACG 221 K G AAAG GGC Q N F CAG AAC 7 212 Q Q CAG Z Q T CAG ACA

V S H V GTC AGC CAT GTC 203 I ATC (A GCG 185

TAC

F16.9B

Y TAC o Caa E GAG S AGC F C TGC 350 T ACA 470 T ACC N AAC F TTC F I ATC C TGC r crc ე ც I ATT 341 L CTG 401 n AAC 521 S AGT 461 K AAG P CCA V GTG A GCA L CTG ე ც E GAA $_{
m TAT}^{
m Y}$ R CGC n AAT 452 L CTG 512 I ATC 272 D GAT 392 O CAA 332 S TCT R CGC H CAT D GAC C r CTG H. CAT D GAC S AGC D GAT 323 Y TAT 383 Q CAA 503 L CTG 443 K AAG E GAG A GCG K AAA M ATG L CTG A GCC I ATT V GTG C TGC L TTG 374 S AGC 314 V GTT 494 V GTC 254 Q CAG H CAT g GGC E GAG H CAT A GCC H CAC S AGT 425 F TTC 365 V GTT 305 G GGT F TTC

F16.9C

D GAC w TGG V GTC H CAT 710 L CTG 650 K AAG Q CAG S AGC S TCT H CAC N AAC A GCT 641 A GCA V GTC L CTG R CGA S TCA Y TAT V GTC H CAT D GAT Y **TA**C 812 D GAC r CTG A GCT GGA GGA P CCT s TCA GTA V GTT 803 A GCT 683 A GCA K AAA i ATA K AAA r CTC R AGA H CAC IATC G GGA V GTA E GAG D GAT D GAT G GGT A GCT

N I P H E G K H AAC ATT CCT CAC GAG GGG AAG CAC 1085 1094 1103

V P S P G G T P G Q A P Y P Y S L GTG CCC AGC CCA GGG GGC ACC CCA GGC CAG GCT CCA TAC CCA TAC AGC CTC 974 983 992 1001 P G M V P CCT GGG ATG GTG CCA 890 Y V P P Q M L N I P Q T S L Q A K P A TAT GIT CCC CCT CAG ATG CTC AAC ATT CCA CAG ACT TCT CIG CAA GCA AAG CCC GCG 905 914 923 L A L D S S G K N L T E Q N S CTC GCC CTG GAC TCT AGC GGG AAG AAC CTG ACA GAG CAG AAC AGC 1034 1043 1052 1061 1070 S S P TCC TCG CCC 1 F G M TTT GGA ATG 881 T P L Y E R ACA CCG CTG TAT GAG CGC 1112 P N CCA AAT R CGA 863 H Y L P F CAT TAC TTA CCC C 854 E P A I GAG CCT GCC C 1025 P CCA (P CCA (845 Q CAG 965 H P CCA F V GTC

G GGA

A Y F P G S S T GCC TAC TTC CCT GGC TCG TCT ACC 1181 1190 S G S P N H V D S AGC GGC AGC CCC AAT CAC GTG GAT TCC 1154 1163 1172

S S S D N D E G S G G A T N H I S G N TCG TCC TCA TCA GAC GAT GAG GGC AGT GGA GGG GCA ACC AAC CAC ATC AGC GGG AAC 1205 1214 1223 1232

K I G W E K T G S H A E P L A R G D P AAG ATT GGC TGG GAG AAG AGC CAT GCA GAG CCA CTG GCA CGG GGA GAC CCA 1265 1274 1283 1292 1301

D Q V K V E G S S T A S S G S Q L A E. G GAC CAA GTA AAG GTA GGT TCA TCC ACT GCC TCT TCG GGA AGC CAG CTA GCT GAA GGC 1325 1334 1343 1352 1361 1370

K G S H M G T V Q P I P C L L S M P T R AAA GGG AGC CAC ATT CAG CCA ATC CCG TGC CTC CTG TCA ATG CCC ACC AGG 1385 1394 1403 1412

F16.9F

N H M D I T T P P L P P V A P E V. L R V AAC CAC ATG GAT ATC ACC ACA CCT CCC TTG CCC GTT GCA CCT GAG GTG CTG AGA GTG 1445 1459 1463 1472 A E H R H K K G L M Y P Y I F H V L T K GCT GAG CAC AGA CAC AAG AAG GGA CTG ATG TAC CCC TAC ATC TTC CAC GTC CTG ACA AAG 1505 1514 1523 1532 1541 G E I K I A V S I E D E A N K D L P P A GGT GAA ATC AAA ATT GCT ATT GAA GAT GAA GCC AAC AAA GAC CTG CCT CCG GCC 1565 1574 1583 1592 1601 S R K K T E R L A F R K N R L P P E F S AGC AGA AAG AAA ACT GAG AGA CTT GCT GCA GAA TTC TCG 1685 1694 1703 1712 1721 A L L Y R P V R Q Y V Y G V L F S L A E GCC CTG CTC TAT AGG CCA GTT CGT CAG TAT GTT TAC GGA GTC CTG TTT AGT TTG GCA GAA 1625 1634 1643 1652 1661.

P L I I K E W A A Y K G K S P Q T P E L CCA CTG ATC ATT AAG GAA TGG GCA GCT TAC AAG GGG AAG TCT CCT CAG ACC CCG GAA CTA 1745 1754 1763 1772 1781 1790

V E A L A F R E W T C P N L K R L W L G GTG GAA GCA CTG GCC TTC CGG GAG TGG ACC TGC CCC AAC CTG AAG AGG CTT TGG CTG GGC 1805 1814 1823 1832 1841

K A V E D K N R R M R A F L A C M R S D AAG GCG GTG GAC AAG AAC CGC CGG ATG AGG GCC TTC CTG GCC TGC ATG AGG TCT GAT 1865 1874 1883 1892 1901

T P A M L N P A N V P T H L M V L C C V ACC CCA GCC ATG CTC AAC CCT GCC AAT GTG CCC ACT CAC CTC ATG GTG CTC TGC TGT GTC 1925 1934 1943 1952 1961

L R Y M V Q W P G A R I L R R Q E L D A TTA CGG TAT ATG GTG CCC GGA GCT CGC ATT CTG CGG CGT CAG GAG CTG GAT GCC 1985 1994 2003 2012

F16.9H

M A L F A N D A C G Q P I P W E H C C P ATG GCA CTG TTT GCC TGT GGG CAG CCC ATA CCC TGG GAA CAC TGT TGT CCT 2165 2174 2183 2192 F L A Q A L S P K L Y E P D Q L Q E L K TIC CTG GCT CAG GCA TTG TCT CCC AAA CTC TAT GAG CCG GAC CAG CTG CAG GAA CTC AAG 2045 2054 2063 2072 I E N L D P R G I Q L S A L F M S G V D ATT GAG AAC TTA GAC CCC CGA GGA ATT CAG CTG TCA GCT CTC TTC ATG AGC GGA GTA GAC 2105 2114 2123 2132 2141 W M Y F D G K L F Q S K L L K A S R E K TGG ATG TAT TTC 3AT GGG AAG CTC TTC CAG TCC AAA CTT CTT AAA GCC AGC CGG GAA AAG 2225 22343 2243 T P L I D L C D G Q A E Q A A K V E K M ACC CCA CTC ATC GAC CTC TGT GAT GGT CAG GCT GAG GCT GCC AAG GTT GAA AAG ATG 2285 2294 2303 2312 2321

F16.91

GGG GGG 2450 V C G F G G GTC TGT GGC TTT GGA GGC 2501 2510 K S Q G G AAG TCC CAG GGC GGA 2621 2630 H CAC Y P R F TAT CCT CGG C 2441 R V T 18 CGG GTG ACA C F S R TTC TCC CGG G R G F A G GGC AGG GGT TTT GCA GGA 2483 2492 V A T G P Y R A F GTA GCA ACA GGC CCT TAC CGT GCC TTC 2534 2543 2552 S D S N AGT GAC AGC P 2603 F Y P i GGG CTC I L E (ATC CTG GAG (2354 Q G R C CAG GGC AGG C 2474

A GCT	GGA	G GGA	PCCT	S TCC
W A	V GTG	F (R 1 AGA (E GAA
G H C GGC CAC 2690	V V S V C GGGGGTCT GTG (1 2750	I R T F C 3 ATT AGA ACA TTT C 1 2810	I Q G R I A ATT CAG GGC AGA O	3 36 330
	V GTG	R AGA	O CAG	STCT
V GTC	V GTG	I ATT	I ATT	S K S C TCG AAA TCT C 2921
G T V GGC*ACG GTG 2681	P L Q CCT CTG CAG	T P V ACT CCT GTG 2801	Q G A CAG GGA GCA 2861	S TCG 2921
T ACG	r CTG	P CCT	GGA	K AAA
ن وون و	PCCT	T ACT	o Cag	L K S CTG AAA T
E I A (GAA ATA GCT (P F CCC TTC 2732	V I S GIT AIT TCC 2792	Y K S TAT AAA AGC	A K E S GCC AAA GAA 2912
I ATA	P CCC	I ATT	K Aga	K AAA
e gaa	9 9 9	V GTT	Y TAT	A GCC
K L S AAG CTA 0	R CGA 2723	P R G CCA AGG GGT 2783	R Y Y G R G AGG TAC TAC GGC AGA GGC 2834 2843	A S A E E V GCT TCA GCA GAA GTG 2894 2903
K AAG	 990 900	R AGG	R AGA	E GAA
9	999 9	PCCA	299 200	e gaa
P I P S Q G CCT ATT CCT TCT CAG GGA 2645 2654	R G R G G F CGG GGC CGT GGG GGC CGA 2714 2723	G P A R G R GGA CCA GCA AGA GGG CGT 2774	Y TAC 2834	А GCA 2894
CAG CAG	ນ ອ) 999 9	Y TAC	S
S TCT	R CGG	R AGA	R AGG	A GCT
P CCT 2645	R AGG 2705	А GCA 2765	G GGA 2825	A GCT 2885
I ATT	S AGC	P CCA	G GGT	Y TAT
PCCT	G S R GGG AGC AGG 2705	G GGA	R G G I AGA GGT GGA 7	P Y A A CCT TAT GCT (2885

F16.9K

K S S A V S S E G S L A E N G V M A E E E AAG TCC TCT GCT GAA AAC GGA GTG ATG GCC GAG GAG TCC TTG GCT GAA AAC GGA GTG ATG GCC GAG GAG 2945 2954 2963 2972 K P V P Q L N G S T A D T R A P S H S E AAG CCA GTG CCC CAA CTT AAT GGG AGC ACG GCT GAC ACG ACG CCC AGG CAC TCT GAA 3005 3014 3023 3032 S A L N N D S K T C N T N P H L N A L S AGT GCC TTG AAT GAC TCT AAA ACG TGC AAT ACA AAT CCT CAC TTA AAT GCA CTA AGT 3065 3074 3083

TGA ACT TAT TTT TAT AGA GGG TGA AGG ATG CTG GAA GGG TAA GGA TTC AGG AAT ATC TGG 3185 3230 3203

T D S A C R R E A A L E A A V L N K E ACA GAC GCC TGC CGC AGG GCT GCT CTG GAG GCA GCT GTC TTA AAT AAA GAA 31.25 31.34 31.43 31.52 31.61

F16.91

ACT
CCG TAA GAG AAA ATG AGG ACT 3281 3290
130 190
AA <i>A</i>
AG A
्छ स <u>म</u>
3 TA
)
TTT
3272
TTG
ATT
3263
TG 1
GCA GTT ATG 3
4. 4 . 2
CCI
GAG
AGA 3245
GAA 3
AGA G
Ă

GTT
TTA
T CAG AGA TYT AAA CAA CAC AYY CYY YYY YYA GYY 3332 3341 3350
ATT
CAC 3341
CAA 3
AAA
TTT 1332
AGA 3
CAG
ATC CCT CTT TGA TAT 0 3314 3323
TGA 3
CTT
314
ATC 3
CAG
ATT 305
3AA 3
GTG (

GCC TAC AGT TGT GTT TCT TGA ACT ATA AAG AAA ACA AAT TTT GGC AGT GTT TAA GTA TAT 3494 3503 3512 3521 3530

ATA GCT TAA AAT ATT TTT AGC ATT TGG CAC CAT ATG TAT GCC ATT ATA TTT GAT TTT 3545 3554 3563 3572

GCA TTA CTG TTT CAC AAT GAA GCT TTG TTT TAA GGC TTT GAT TTA TGA AAG AAA 3605 3614 3623 3632

TAA GGC ACA ACC ACA GTT TTT CTT TAC TTA AAT TTC ATC ACT GTT GAT GTG GTT CTT 3665 3674 3683 3692 3701

TTG TGA

CCC

CCG CCG 109

Length of r84695-#85 like R405: 4680 bp; Listed from: 2 to: 4680; Translated from: 152 to: 3505 (Entire region); Translated from: 152 to: 3505 Genetic Code used: Universal;

CGC 55 CCG CGG CGG CCA TGA GCG CGC CCC CGA CCC GCC CCA GTC CCC CCT AGA GGC 10 19 28 37 46 2 Frame

D GAC Q CAG M ATG

CGC

222 252

GTG 160 GCC CGC GCC GCC GCC GCC 1333 142 151 CGC ACC CGC

222 222

L CTG 229 K AAG o CAG L CTG 220 E GAG GTG GTG GTG S AGC CCG CAC I K AAG I ATC

F16.10E

V GTG	0 0 0	0 0 0	W TGG	N AAC
L CTG	S AGC	0 0 0	E GAG	Q CAG
L	V	F.	н	V
CTG	GTC	TTC	САС	GTC
289	349	409	469	529
R	W	c	L	H
CGC	TGG	TGC	CTG	CAT
L	DGAC	A	R	S
CTG		GCC	CGG	AGC
P	T	K	A	V
CCG	ACC	AAG	GCC	GTC
280	340	400	460	520
T	Y	BCC	K	I
ACC	TAC		AAG	ATC
Q	FTC	L	E	Q
CAG		CTG	GAG	CAG
P	G	A	L	Q
CCG	GGC	GCG	CTC	CAG
271	331	391	451	511
P	ე <u>ე</u> ნ	A	A	A
	ე	GCG	GCG	GCA
R	Y	L	ე <u>ე</u> ნე	T
CGG	TAC	CTG		ACG
Q CAG 262	L CTC 322	Y TAC 382	N AAC 442	Q CAG 502
R	R	ე	${ m F}$	R
CGG	CGC	ე		CGC
9	H	L	F	e
9	CAC	CTT	TTC	Gag
G	L	M	V	N
GGC	CTG	ATG	GTC	AAC
253	313	373	433	493
0 0 0	C TGC	N H AAC CAC	F	ე ც
V	N	N	L	o
GTG	AAC	LAC	CTC	CAG
L	D	W	E	R
CTG	GAC	TGG	GAG	CGG
244	304	364	424	484
S	A	Q	I	K
AGC	GCC	CAG	ATC	AAG
0	D	0	NAAAA	V
0	GAC	0		GTC

F16.100

ATC	S	D	N	L
	CAG	GAT	AAC	CTG
7 7 7 7	н САТ	S TCT	R CGG	D GAC
H	н	D	S	L
CAC	САС	GAC	AGC	CTG
589	649	709	769	829
SCC A	D	Y	L	Q
	GAT	TAT	C'IG	CAA
M	E	A	K	K
ATG	GAG	GCG	AAA	AAG
с	I	v	L	А
Т GС	ATT	GTT	CTA	GCC
580	640	700	760	820
V	S	L	A	V
GTC	AGC	TTG	GCC	GTT
PCCC	Q	0	H	E
	CAG	0	CA'ľ	Gaa
P	A	H	A	H
CCG	GCA	CAT	GCC	CAT
571	631	691	751	811
CTG	V GTT	F	S AGT	M ATG
F	K AAG	GGT	\mathbf{F}	L CTG
W	V	n	Y	Y
TGG	GTC	aat	TAT	TAT
562	622	682	742	802
v	H	E	Y	Q
GTĊ	CAC	GAG	TAC	CAA
K AAG	\mathbf{F}	R AGA	. CCC	SAGC
Р	R	C	I	T
ССА	CGC	TGC	ATC	ACA
553	613	673	733	793
۳.	I	F	N	T
200	ATC	TTC	AAC	ACC
P	L	G	C	L
CCG	CTC	GGT	TGC	CTC
T	A	I	L	S
ACC	GCG	ATT	CTG	AGT
544	604	664	724	784
0 0 0	L CTG	V GTG	A GCA	G K GGG AAA
K	R	e	Y	9
AAG	CGC	gaa	TAT	9

H S Q S R T D D K V I R F K R A I G Y Y CAT TCA CAG TCT AGA ACA GAT GAC LAA GTT ATT CGA TTT AAG AGA GCA ATT GGA TAT TAT 1084 11093 1102 1111

F16.100

D E GAT GAA D L A S F H W S L L G P E H P L A S L K GAT CTG GCT TCC TTT CAT TGG AGT TTA CTT GGT CCA GAA CAT CCA CTA GCC TCA CTA AAG 904 913 922 931 A H Q L V L P P C D V V I K A V A D GCC CAC CAG CTG GTC TTG GCG GTA GTG ATC AAA GCC GTT GCT GAC 964 973 982 991 1000 Y V R N I Q D T S D L D A I A K D V F Q TAT GTA CGC AAC ATT CAG GAC ACT GAC TTG GAT GCC ATA GCT AAA GAT GTT TTC CAG 1024 1033 1042 1051 1.060 N R F P I F A A L L G N H I L P AAT CGT TTT CCT ATT TTT GCT CTC TTA GGA AAT CAC ATT CTG CCT 844 880 862 N P AAT CCA V R GTC CGG

F16.10F

S AGC S TCC E GAG

P G S S T S S S D N CCT GGC TCT TCT ACA TCG TCA TCT TCC GAC AC 15.2

D E (GAC GAG (1549

W E K T G TGG GAG AAG ACG GGA 1609

0 0 0 G D GGA GAC GGC AAG (L A E C CTA GCC GAA C 1702

F16.106

P P V A P E V L R V A E H R H K K G L M CCC CCC GTC GCA GTG GTG GTG GCC GAG CAC AGG AAG AGG GGG CTG ATG 1804 1813 1822 1831 1840 1849 I P C L L S M P T R N H M D I T T P P L ATC CCG TGC CTC CTG TCG ATG CCC ACC AGG AAC CAC ATG GAC ATC ACC ACA CCT CCC CTG 1744 1753 1762 1771 1780 Y P Y I F H V L T K G E I K I A V S I E TAC CCC TAC ATC TTC CAT GTC ACG AAG GGT GAA ATC AAA ATT GCT GTT TCT ATT GAA 1864 1873 1882 1891 1900 1909 D E A N K D L P P A A L L Y R P V R Q Y GAT GAA GAC CTG CCT CCG GCC GCT CTG CTC TAT AGG CCA GTT CGT CAG TAT 1924 1933 1942 1951 V Y G V L F S L A E S R K K T E R L A F GTT TAC GGA G'TC CTG TTT AGT TTG GCA GAA AGC AGA AAG AAA ACT GAG AGA CTT GCT TTT 1984 2029

F16.10A

R K N R L P P E F S P V I I K E W A A Y AGA AAG AAC AGA CI'F CCA GCA GAA TTT TCA CCA GTG ATC AIT AAA GAA TGG GCA GCT TAC 2044 2063 2062 2071

K G K S P Q T P E L V E A L A F R E W T AAA GGA AAG TCT CCT CAA ACC CCG GAA CTG GTT GAA GCT CTT GCC TTC AGG GAG TGG ACC 2104 2113 2122 2131

C P N L K R L W L G K A V E D K N R R M TGC CCC AAC CTG AAG AGG CTG TGG TTG GGT AAG GCG GTA GAG GAC AAG AAC CGC AGG ATG 2164 2173 2182 2191

R A F L A C M R S D T P A M L N P A N V AGG GCC TTC CTG GC TGC ATG AGG TCG GAC ACC CCA GCC ATG CTC AAC CCT GCC AAC GTG 2224 2283 2242 2251 2260

P T H L M V L C C V L R Y M V Q W P G A CCC ACT CAC CTC ATG GTG CTC TGC GTC TTA CGG TAC ATG GTG CAG TGG CCG GGA GCA 2284 2393 2302 2311

F16.10

C I L R R Q E L D A F L A Q A L S P K L 1GC ATC CIT CG CG CG CG AA CTC CTC AAG GCG CTG TCC CCC AAA CTC 2344 2353 2362 2371 L S A L F M S G V D M A L F A N D A C G CTA TCA GCT CTC TTC ATG AGT GGA GTA GAC ATG GCC TTG TTT GCA AAT GAT GCA TGC GGA 2464 2473 2482 2491 2500 Q P I P W E H C C P W M Y F D G K L F Q CAG CCA ATC CCT TGG ATG TAT TTT GAT GGG AAG CTC TTC CAA 25524 2533 2542 2551 Y E P D Q L Q E L K I E N L D P R G I TAC GAG CCT GAT CAG CTC CAG GAG ATT GAG AAC CTA GAT CCC CGA GGA ATT 2404 2413 2422 2431 S K L L K A S R E K T P L I D L C D G TCC AAA CTC CTC AAA GCC AGC CGG GAA AAG ACC CCA CTC ATT GAC CTC TGT GAT GGT 2584 2593 2602 2611 2620

F/G.10J

F16.10K

F P L Q V V S V G G P A R G R P R G V TTC CCC CTG CAG GTT TCT GTC GGA GGA CCA GCT AGA GGG CGT CCA AGA GGA GTT 3064 3073 3082 3091 G K GGC AAA 2989 G GGA S Q TCT CAG 2980 P I CCT ATA 2971 T S K S Q G G V ACT AGC AAG TCC CAG GGC GGA GTC 2944 2953 2962

I S T P V I R T F G R G G R Y Y G R G Y ATT TCC ACC CCA GTG ATT AGA ACA TTT GGA AGA GGT GGA AGG TAC TAT GGC AGA GGT TAC 3124 3133 3142 3151 3160 3169

A I Q G R P P Y A A S A E E GCA ATT CAG GGC AGA CCT CCT TAT GCT GCT TCA GCA GAA GAA 3193 3202 3211

SUBSTITUTE SHEET (RULE 26)

E GAG TAA ACT TAT TTY TAG AGG GTG AAG GAT 3511 3520 3529

F16.10L

E GAA 3469 L N N I TTG AAT AAT 0 S A AGT GCC 3391 S G E TTCT GGG GAA '

SUBSTITUTE SHEET (RULE 26)

F/G./OM

CAT
GTA
T TAT GTA 3589
TGC AGT
760
AGA GCC 3580
AGA
AAG
AGA 7
GAG
CTG
TAT 562
GAA 3
TAG
ATT 3553
AGG ATT TAG 3553
GTA
AGG 544
GGA 3
GCT

TTT GTC CTT TCC GTA AGA GAA AGA GGA CTT TGG AAA TTC AGA TCC CTC TTT GAT ATC 3604 3613 3622 3631

AGA GAT TTA AAC AAC ACA TTT TTA GTT TTA ACC AGT TGT AGT CAA AAT GCT ACA ATA AAA 3664 3664 3673 3682 3691 CAA AAA AGA GAA AGA AGA AGA GCA TTT GAC TCC CGC ACT TAA AAT GAA GTA CAC ATA 3724 3733 3742 3751 3760 AAG TIT AAA CTG GTT ATG ACA AAA GCC TAT AGT TGT GTT TCT TGA ACT ATA AAG AAA ACA 3784 3829

AAT TTT GGC AGT CTT TAA GTA TAT ATA GCT TAA AAT ATA ATT TTT AGC ATT TGG CAC CAT 3844 3853 3862 3871

ATG TAT GCC ATT ATA TTT GAT TTT GCA TTA CTG TTT CAC AAT GAA GCT TTC TTT AAG GCT 3904 3904 3913

TTG ATT TTT ATG ATA AAA GAA ATA AGG CAC AAC CAC AGT TTT TCT TTC TTA AAT TTC 3964 3973 3982 3991 4000

ATC ACT GIT GAT GTT CTT TTG TGT TAA AAA AAA GTG CAA CTA TCA AAA CTA AAA 4042 4051 4060 4069

AAT TAT AGA GTA ATA TYG CCG TYC TGC TGA TYT TAA ATA TAC AAT ACA TCA TAC ATA CTT 4084 4093 4102 4111

F16.10 C

TAC AAG CAA GTT AAA TGG AGA TAA AGT TGA AAT CAT AGA AGA TGC AAA TGA CCT TTC AAA 4144 4153 4162 4171

ATC AAC ACA ATG TGT TCT GAA ACT TTC GTG ACT AAT ACC ATG CAT CTG TGA TCA ATG AAC 4204 4213 4222 4231

TAT GTG GTT TTG AAT CGG ATG TAG ACC ATT AGT ACT ACT TGA GCT AAA CTT CTG CAT 4264 4273 4282 4291

GGT TCA TAA TTT TTA AAG TGT GTT GAT ATG CAT GTT ATC GTC CTT TCT TCC ATT CTT 4324 4333 4342 4351 4350 4360

AAC AGT ATG TGC CCA TTT GCA AAA CAA AAA TGC TAA TAA TCA GTA ATA GTC CTA TAA AAG 4384 4393 4402 4411

ATG TTA ACT CTG TTT AGT CAT TGA CTG ATC TTG CTC TAA CCT TAA AAT TTT GTG ATT ATT 4444 4453 4462 4471 4471

GAC CTC TGT TGC ATT TAT TCT AAA GCC CCC CAA AAA TTA TCT AGC CGT TTC GAA TAT CAA 4513 4549 4549

CAT TAC CCT GGT GTA TTC ACT GCT GTA TGC ATT ATT GTT CTT TGT TGT TTT ATG CCT 4564 4573 4582 4591 4600

AAA AA

F16 114

405: CLUSTAL X (1.64b) Multiple Sequence Alignment

405_no_up gi 3005744 405_hum gi 1136426 gn PID d1012166	MGVQGFQDYIEKHCPSAVVPVELQKLARGSLVGGGRQRPPQTPLRLLVDA
405_no_up gi 3005744 405_hum gi 1136426 gnl PID d1012166	
405_no_up gi 3005744 405_hum gi 1136426 gnl PID d1012166	EKARLHEWVKRQGNERQTAQQIVSHVQNKGTPPPKVWFLPPVCMAHCIRL
405_no_up gi 3005744 405_hum gi 1136426 gn PID d1012166	ALIRFHVKVAQSIEDHHQEVIGFCRENGFHGLVAYDSDYALCNIPYYFSA

E/16.11B

405; CLUSTAL X (1.64b) Multiple Sequence Alignment

GMPGMVPPHVPPQMLNIPQTSLQAKPVAPQVPSPGGAPGQGPYPYSLSEP GMPGMVPPHVPPQMLNIPQTSLQAKPVAPQVPSPGGAPGQGPYPYSLSEP	gi 3005744 405_hum gi 1136426 gnl PID d1012166
GMPGMVPPYVPPQMINIPQTSLQAKPAVPQVPSPGGTPGQAPYPYSLPEP	405_no_up
AIAKDVFQHSQSRTDDKVIRFKRALGYYSATSKPMSFHPPHYLAARPGPF AIAKDVFQHSQSRTDDKVIRFKRALGYYSATSKPMSFHPPHYLAARPGPF	gi 3005744 405_hum gi 1136426 gnl PID d1012166
ALAKDVEQHSQSRTDDKVIRFKRAVGYYSATSKPMPFHPPHYLPR-PNPF	405 no up
PPCI	gi 3005744 405_hum gi 1136426 gnl PID d1012166
ASFHWSLLGPEHPLASLKVRAHQLVLPPCDVVIKAVADYVRNIHDTSDLD	405_no_up
HALKLSRNGKSLTTSQYLMHEVAKQLDLNPNRFPI FAALLGNHILPDEDL HALKLSRNGKSLTTSQYLMHEVAKQLDLNPNRFPI FAALLGNHILPDEDL	gi 3005744 405_hum gi 1136426 gn PID d1012166
HALKLSRNGKSLTTSQYLMHEVAKQLDLNPNRFPI FAALLGNHILPDEDL	405_no_up

F16.11C

405 no up	A-LALDSSGKNLTEQNSYSNIPHEGKHTPLYERSSPINLAQSGSPNHVDS
gi 3005744 405_hum gi 1136426 gnl PID d1012166	APLTLDTSGKNLTEQNSYSNI PHEGKHTPLYERSSPINRAQSGSPNHVDS APLTLDTSGKNLTEQNSYSNI PHEGKHTPLYERSSPINPAQSGSPNHVDS
405_no_up	AYFPGSSTSSSDNDEGSGGATNHISGNKIGWEKTGSHAEPLARGDPGDQ
gi 3005744 405_hum gi 1136426 gnl PID d1012166	AYFPGSSTSSSSDNDEGSGGATNHISGNKIGWEKTGSHSEPQARGDPGDQ AYFPGSSTSSSSDNDEGSGGATNHISGNKIGWEKTGSHSEPQARGDPGDQ
405 no up	VKVEGSSTASSGSQLAEGKGSHMGTVQPIPCLLSMPTRNHMDITTPPLPP
gi 3005744 405_hum gi 1136426 gnl PID d1012166	TKAEGSSTASSGSQLAEGKGSQMGTVQPIPCLLSMPTRNHMDITTPPLPP TKAEGSSTASSGSQLAEGKGSQMGTVQPIPCLLSMPTRNHMDITTPPLPP
405 no up gi 3005744 405 hum gi 1136426 gn1 PID d1012166	VAPEVLRVAEHRHKKGLMYPYIFHVLTKGEIKTAVSIEDEANKDLPPAAL

LYRPVROYVYGVLFSLAESRKKTERLAFRKNRLPPEFSPLIIKEWAAYKG	LYRPVROYVYGVLFSLAESRKKTERLAFRKNRLPPEFSPVIIKEWAAYKG	1. YR PVROYVYGVLFSLAESRKKTERLAFRKNRLPPEFSPVIIKEWAAYKG	1. YR PVROYVYGVLFSLAESRKKTERLAFRKNRLPPEFSPVI I KEWAAYKG	***********************************

gi | 1136426 | gnl | PID | d1012166

gi | 3005744

405 hum

405_no_up

KSPQTPELVEALAFREWTCPNLKRLWIGKAVEDKNRRMRAFLACMRSDTP KSPQTPELVEALAFREWTCPNLKRLWIGKAVEDKNRRMRAFLACMRSDTP KSPQTPELVEALAFREWTCPNLKRLWIGKAVEDKNRRMRAFLACMRSDTP KSPQTPELVEALAFREWTCPNLKRLWLGKAVEDKNRRMRAFLACMRSDTP AMINPANVPTHLMVLCCVLRYMVQWPGARILRRQELDAFLAQALSPKLYE AMINPANVPTHIMVICCVIRYMVQWPGARIIRRQEIDAFIAQALSPKIYE AMINPANVPTHIMVICCVIRYMVQWPGACIIRRQEIDAFLAQALSPKIYE AMINPANVPTHIMVLCCVLRYMVQWPGARIIRRQEIDAFIAQALSPKLYE ************************* gi | 1136426 | gnl | PID | d1012166

P D Q L Q E L K I EN L D P R G I Q L S A L F M S G V D M A L F A N D A C G Q P I P W E H C C P W M P D Q L Q E L K I EN L D P R G I Q L S A L F M S G V D M A L F A N D A C G Q P I P W E H C C P W M P D Q L Q E L K I EN L D P R G I Q L S A L F M S G V D MA L F AND A C G Q P I P W E H C C P W M PDQLQELKIENLDPRGIQLSALFMSGVDMALFANDACGQPI PWEHCCPWM

qi | 1136426 | gnl | PID | d1012166

gi | 3005744

405 hum

405 no up

gi | 1136426 | gnl | PID | d1012166

gi | 3005744

405 hum

405 no up

405 no up gi | 3005744

405 hum

gi | 1136426 | gnl | PID | d1012166

405 no up gi|3005744 405 hum

GTVVGHWAGSRRGRGGRGPFPLQVVSVGGPARGRPRGVISTPVIRTFGRG GTVVGHWAGSRRGRGGRGPFPLQVVSVGGPARGRPRGVISTPVIRTFGRG

F/G.11E

YFDGKLFQSKLLKASREKTPLIDLCDGQAEQAAKVEKMRQSILEGLNFSR YFDGKLFQSKLLKASREKTPLIDLCDGQADQAAKVEKMRQSVLEGLSFSR YFDGKLFQSKLLKASREKTPLIDLCDGQADQAAKVEKMRQSVLEGLSFSR YFDGKLFQSKLLKASREKTPLIDLCDGQADQAAKVEKMRQSVLEGLSFSR ***********************************	ONHPLPFPPPPALPFYPASVYPRHFGPVPPSQGRGRGFAGVCGFGGHYGE QSHTLPFPPPPALPFYPASAYPRHFGPVPPSQGRGRGFA QSHTLPFPPPPALPFYPASAYPRHFGPVPPSQGRGRGFAGVCGFGGPYGE QSHTLPFPPPPALPFYPASAYPRHFGPVPPSQGRGRGFAGVCGFGGPYGE	TVATGPYRAFRVTAASGHCGAFSGSDSNRTSKSQGGVQPIPSQGGKLEIA GVQPIPSQGGKLEIA TVATGPYRAFRVAAASGHCGAFSGSDSSRTSKSQGGVQPIPSQGGKLEIA TVATGPYRAFRVAAASGHCGAFSGSDSSRTSKSQGGVQPIPSQGGKLEIA	GTVVGHWAGSRRGRGRGPFPLQVVSVGGPARGRPRGVISTPVIRTFGRG
405_no_up	405_no_up	405 no up	405 no up
gi 3005744	gi 3005744	gi 3005744	
405_hum	405_hum	405 hum	
gi 1136426 gnl PID d1012166	gi 1136426 gnl PID d1012166	gi 1136426 gnl PID d1012166	

F/G.11F

405_no_up gi 3005744 405_hum gi 1136426 gnl PID d1012166	GRYYGRGYKSQGAIQGRPPYAASAEEVAKELKSKSGESKSSAVSSEGSLA GRYYGRGYKNQAAIQGRPPYAASAEEVAKELKSKSGESKSSAMSSDGSLA GRYYGRGYKNQAAIQGRPPYAASAEEVAKELKSKSGESKSSAMSSDGSLA GRYYGRGYKNQAAIQGRPPYAASAEEVAKELKSKSGESKSSAMSSDGSLA ************************************
405_no_up	ENGVMAEEKF VPQLNGSTADTRAPSHSESALNNDSKTCNTNPHLNALSTD
gi 3005744	ENGVMAEEKPAPQMNGSTGDARAPSHSESALNNDSKTCNTNPHLNALSTD
405_hum	ENGVMAEEKPAPQMNGSTGDARAPSHSESALNNDSKTCNTNPHLNALSTD
gi 1136426 gnl PID d1012166	ENGVIGRGEAGSPDEREHG
405_no_up	SACRREAALEAAVLNKEE
gil3005744	SACRREAALEAAVLNKEE
405_hum	SACRREAALEAAVLNKEE

274 Human

Probe:

Pool of probes
representing a 8Kb
of the 274 Human
contig

Target: (total RNA sources)

- 1.Rat Bone
- 2. Rot Testis
- 3.Human cell line NB4

F1G. 12

Listed from: 1 to: 10427; (Entire region); Length of 274 25.3.99: 10427 bp; Translated from: 211 to: 9996 (

Genetic Code used: Universal;

CGA CAA AGG CAG CCT GTG CCG CAC AGT TGA GGG GTG CCG TGA GGA GCT GCA GAA 27 36 45 54

Frame

TCA GGC CAA TTT CTC CTT CGC TCC TCT CGT GTT AGA CAT GCT CAA TTT CCT CAT GGA TGC 63 72 81 90

CAT TCA GAC CAA CTT TCA CAG GCT TCC GCC GTG GGG AGC AGC CGG GCA CAG CAG GCC 123 132 141 150

OPEN

GIT Q L ... CAG CTG ATG C 228 D GAC 219 CTC AGT GAA CTG CAC ACA GTG GAC AAG GTT GTG GAG ATG ACA 192 201 210

SUBSTITUTE SHEET (RULE 26)

F1G.13B

o	v.	I	T	P
Cag	GTG	ATC	ACT	CCC
DGAC	C	K	L	N
	TGT	AAG	TTG	A.A.C
G	M	G	K	G
GGA	ATG	GGC	AAG	GGA
288	348	408	468	528
SAGC	A	K	R	T
	GCT	AAG	AGG	ACT
Y	V	e	K	LCTT
TAC	GTG	Gag	AAG	
n	R	H	S	S
AAT	CGG	CAC	AGT	AGT
279	339	399	459	519
M	r	S	S	L
ATG	Agg	AGC	TCC	CTG
R	L	V	D	v
CGG	CTC	GTC	GAT	GTG
V	V	A	A	T
GTT	GTG	GCT	GCA	ACC
270	330	390	450	510
N	H	L	o	F
AAT	CAC	TYIG	caa	
e	A	H	K	P
Gag	GCC	CAT	AAG	
F	S	Q	L	V
TTT	AGT	CAA	CTG	GTT
261	321	381	441	501
A GCC	I ATC	R CGC	L	PCCA
G	L	R	A	A
GGT	CTG	CGC	GCG	GCT
E	Q	G	S	s
GAA	CAG	GGG	TCG	TCT
252	312	372	432	492
Q	R	H	L	A
CAG	CGG	CAT	CTC	GCT
S	I	P	Q	LTTG
TCA	ATA	CCC	CAG	
G	T	s	L	R
GGC	ACT	TCC	CTG	CGC
243	303	363	423	483
L	Q	S	V	TACC
TTA	CAG	TCT	GTG	
T	ე	L	T	L
ACC	ეტე		ACG	CTA

S	F	D	r
AGT		GAC	cre
F	N AAC	A GCA	CIC
T	G	T	F
ACC	GGG	ACT	TTC
588	648	708	768
CTC	T	V	Y
	ACA	GTT	TAC
V	A	I	F
GTG	GCA	ATT	
H	L	А	T
CAT	TTG	GCC	ACC
579	639	699	759
င	Q	L	CCC
7GC	CAG	CTA	
D GAC	PCCC	E GAG	SAGC
K	H	T	L
AAG	CAT	ACC	TTG
570	630	690	750
CTG	L	Q	A
	TTA	CAG	GCC
999	V	S	D
9	GTG	TCT	GAT
C	L	6	V
TGT	TTA	66	GTT
561	621	681	741
V GTG	H CAC	PCT	S TCT
SCA	D GAT	CTC	L CTG
L	S	W	D
CTG	TCC	TGG	GAC
552	612	672	732
Y	V	V	Y
TAC	GTC	GTG	TAC
D	s	A	I
GAC	TCT	GCT	ATT
E	ი	к	K
GAG	იცი	Адд	AAG
543	603	663	723
K	S	I	V
AAG	TCG	ATC	GTC
C TGC	SAGC	I ATC	F

V .

F/G./3C

EVLQLFPINIKSSNGGGSKTTS GAGGTGCTGCAGCTTCCATCAAAAGCTCCAATGGTGGCAGTAAGACTTTT 1083 1128

F16.13D

Q G G P F Y V T N V L E I N H E D L K D CAG GGC CCC TTC TAT GTC ACT AAT GTG CTG GAA ATA AAT CAC GAG GAT CTG AAG GAC 933 948

S N S Q V A G G G V S V Y Y S H V L Q M AGT AAC AGC CAG GTG GTG GTG TCT GTG TAC TAT TCA CAC GTG TTG CAG ATG 963 1008 L F F S Y S Q G K S F A A T V S R S T L CTT TTC TTC AGC AGG AGC AAG TCC TTT GCA GCC ACC GTC AGG AGC ACT CTG 1023 1032 1041 1050 1059

F16.13E

CC GCC CTT TGC CAG TGG TCT GAG GTG ATG AAC CAC CCT GGC TTG GTG TGT TGT GTT CAG

1143

1152

1161

1170

1179

1188

Q T T G V P L V V M V K P D T F L I Q E

CAA ACT ACT GGT GTA GTC ATG GTG AAA CCA GAC ACT TTC CTC ATC CAG GAG

1203

1213 C N E Q Q R T T M I L L C E D G S L R I TGT AAT GAG CAG CGC ACC ATG ATC CTG CTG TGT GAG GAT GGC AGC CTG CGA ATT 1323 1332 1341 1350 1359 I K T L P A K A K I Q D M V A I R H T A ATT AAG ACT CTT CCC GCC AAA GCA AAG ATC CAG GAC ATG GTT GCT ATT AGA CAC ACT GCC
F16.13F

S S Q V T F P I D F F E H N Q Q L T D V TCC AGC CAG GTG ACC TTC CTT GAA CAC AAC CAG CAG CTA ACG GAT GTG 1503 1512 1521 1530 1539

E F G G N D L L Q V Y N A Q Q I K H R L GAG TYT GGT GGT AAT GAC CTC CTG CAA GTC TAC AAT GCG CAA CAG ATA AAG CAC AGG CTC 1563 1572 1581 1590 1599

N S T G M Y V A N T K P G G F T M E I S AAC TCC ACT GGC ATG TAT GTG GCG AAC ACC AAG CCT GGA GGC TTC ACC ATG GAG ATC AGT 1623 1632 1641 1650 1659 1668

N N S S T M V M T G M R I Q I G T Q A I AAC AAC AGT AGC ACC ATG ATG ATG ATC CAG ATT GGC ACA CAG GCA ATC 1683 1692 1701 1710 1719

P E D F P CCA GAA GAC TTC CCT 1968

I Y G K T K E Q F G W P D E P ATT TAT GGC AAG ACT AAA GAG CAG TTT GGC TGG CCT GAT GAG CCC 1923 1932 1941 1950

F16.136

S R W F D F P F T R E E A L Q A D R K L TCC CGC TGG TTT GAC TTC CCC TTC ACC AGA GAG GAA GCC CTG CAG GCT GAC CGG AAG CTG 1803 1812 1821 1830 N L F I G A S V D P A G V T M I D A V K AAC CTC TTC ATC GCT GCC TCT GTG GAT CCA GCT GGC GTC ACC ATG ATA GAT GCT GTA AAA 1863 1872 1881 1890 1899 ERAPES Y IEIFGRATUM OLN L GAG CGA GCA CCG TCC TAC ATC GAG ATC TTT GGC AGA ACC ATG CAG CTT AAC CTG 1743 1752 1761 1770 1779 1788

S A S V S S V C P P N L N Q S N G T G D TCT GC TCT GTT AGC AGC GTC TGC CCT CCT AAC CTG AAC CAG AGC AAC GGC ACT GGA GAC 1983 1992 2001

P I I E K E R CCA ATC ATT GAG AAG GAG AGA 2139 2148 V V GTT (2088 L E R 1 CTG GAG AGG 0 2079 V GTC G T GGC ACT (2070 F A V G TTT GCT GTC GGC 2121 2130 SAGT A 'I' ACA ACC P S D S AGT GAC TCA

Q E L A T L L L S L P A P A S V CAG GAG CTG GCC ACT TTG TTG CTC TCC CTG CCA GCG CCT GCC AGC GTC 2172 2172 2190

S K S L L A S L H S S R TCA AAG AGC CTG GCC AGC CTG CAC AGC AGT CGC 2232 2241 2250 2259

Q A L L S K A V Q C L N T S S K E CAG GCC TTG TTG AGC AAA GCT GTG CAG TGT CTC AAC ACT TCC AGC AAA GAA GAA 2310 2319 2328

F16.13 1

P N N L V H F T E S K L P Q M E T. CCC AAC AAC CTT GTG CAC TTT ACG GAG TCC AAG CTG CCC CAG ATG GAA ACA 2412 2421 2421 E G A E E G K E P Q K Q V E G D G C S F GAA GGA GCG GAG GGG AAA GAG CCG CAG AAG CAG GTG GAA GGA GAC GGC TGT AGT TTC 2463 2472 2481 2490 2499 L D P E V F Q R L V I T A R S I A TYG GAC CCC GAG GTG TTC CAG CGT CTA GTA ATC ACA GCT CGC TCT ATT GCC 2352 2351 2370 V T R E GTC ACA CGT C 2403 G K D 1 GGC AAG GAC 7 2343

A C L P G L T H I E A T V N A L V GCC TGC CTG CCA GGC CTT ACT CAT ATT GAA GCT ACG GTT AAT GCG CTG GTA 2592 2601 .2610 L A P P CTG GCA CCT (2583

M Q M L L C P D P A V S F S C K Q A L ATG CAG ATG CTG TGT CCT GAC CCT GCT GTG AGC TTC TCC TGT AAA CAA GCT CTA 2703 2712 2721 2730 I R V L R P R N K R H V T L P S S P R ATT CGA GTC CTA AGG CCC AGG AAC AAG CGG AGA CAC GTG ACA TTG CCC TCC TCC CCC CGA 2763 2772 2781 2790 D I I H G Y C T C E L D C I N T A S K GAC ATT ATC CAT GGC TAT TGT ACC TGC GAG CTG GAC TGT ATC AAC ACA GCA TCC AAG 2652 2661 2670

S G I P D G G H I R Q E S Q E Q TCG GGC ATC CCT GAT GGT CAC ATC CGT CAG GAA AGC CAG GAA CAG 2883 2919 2928

F/G.13K

V D H G D F E M V S E S M V L E T A E N GTG GAC CAT GGA GAT TTT GAG ATG GTG TCG ATG GTC CTG GAA ACA GCT GAA AAT 2943 2952 2961 2970

N N G N P S P R K A L L A G A E G F P AAC AAT GGC AAC CCC TCT CCC CGG AAA GCC CTG CTG GCC GGT GCT GAG GGC TTT CCT 3003 3012 3021 3030

P M L D I P P D A D D E T M V E L A I A CCC ATG CTG GAC ATC CCA CCT GAT GCA GAC GAG ACC ATG GTT GAA CTA GCC ATT GCC ATG GTT GAA GCC ATG GTT GAA GCC ATG GTT GAA GCC ATG GTT GC

P S S S L D A G T L C CC AGC TCT TCC TCT CTG GAC GCA GGA ACC CTC 3201 3210 G L S G GGA CTG TCG GGC 31.83

F16.13L

T A S A P A S D D E G S T A A T D G S T A A T D G S T ACA GCA TCA GCC TCA GAT GAC GAG GGC AGC ACT GCA GCA ACT GAT GGC TCC ACC ACC 3243 L R T S P A D H G G S V G S E S G G S A CTG CGG ACC CAC CAT GGC GGT AGT GTG GGC TCA GAG AGC GGG GGA AGT GCA CTG CGG ACC TCA GAG AGC GGG GGA AGT GCA 3330 33339 3348

Y M (A TAC ATG (3648 E R 3 GAA AGA ' I A E L G M D K K D V S ATT GCT GAG CTG GGA ATG GAC AAA AAG GAT GTC TCC 3741 3750 3759 D K G A
GAC AAG GGA GCC
3708 I ATC L CTG D E K I GAT GAG AAA (3699 L M 1 CTA ATG (3579 R A CGG GCC 2 3639 R CGT M V F ATG GTT 0 3570 D G E I GAT GGA GAA C 3690 G GGT 3630 GGÀ CAC GTC D L I GAT CTG (T S N 'R L ACT AGC AAC AGG CTA 3552 3561 P Q L R N CCC CAG TTA CGG AAT 3612 3621 CTC ACT ACA C r crg M ATG I L N ATT CTC ? 3663

L 5 CTG 7 3828 V H L V V M R L GTC CAT TTG GTC GTG ATG AGA CTC 3810 3819 L N E V TTG AAC GAA C 3801 R S A I CGC AGT GCA 7 K N E I AAG AĄT GAA (3783

A Q L I GCA CAG CTC A 3732

R T K S G S K S S I C E S S S CGC ACC AAG TCT AAA TCT TCC ATC TGT GAG TCG TCT TCC 3879 3888 F M S I TTC ATG TCC (

S A T A A A L L S S G A V D Y C L H V AGT GCC ACG GCA GCA GCC CTG CTG AGC TCC GGG GCC GTG GAC TAT TGC CTC CAT GTG 3903 3912 3921 3930

K S I AAG TCT (3963

L L K P H T T S S P P D M S P F F L TTG CTG AAA CCA CAC ACC TCA TCT CCA CCA GAT ATG AGC CCG TTC TTT CTC 4023 4032 4041 4050

R Q Y V K G H A A D V F E A Y T Q L L T CGA CAA TAT GTG AAG GGT CAT GCT GAT GTG TTC GAA GCC TAT ACC CAG CTG ACA ACA 4083 4092 4101 4110 4119

F Y F L S E Y L M I TTC TAC TTT CTC TCT GAG TAC CTA ATG ATC 4230 4239 4248 G GGG 4368 A S GCC AGT 4428 T P F V R R Q. V R K L L L F I C G
ACC CCT TIT GTC CGC CAA GTC CGG AAA CTT CTG CTC TTC ATC TGT GGA
4263 4272 4281 4290 4308 R CGT S V V T F
AGC GTG GTT ACA C
4419 V GTG D S H V GAC TCC CAT G 4359 I K K I ATC AAG AAG 7 4170 L R A S CTC AGG GCC 7 4410 R D L H T L CGA GAC CTG CAC ACC CTG 4341 4350 P Y Q I CCC TAC CAG A P P V F D H S W CCT CCT GTC TTT GAT CAC TCC TGG 4201 K L L E E Q G I F AAG CTG CTG GAG GAA CAA GGC ATC TTC 4383 4392 4401 K Y R C AAA TAC CGT C V GTP (4143 M A'IG EGAG o CAG E GAA P CCT

I A A Q R T I N W Q K F C I K D D S V L
ATT GCC GCC CAG CAC ATC AAC TGG CAG AAG TTC TGC ATC AAA GAT GAC TCT GTC CTG
4503 4512 4521 4530 4539 4548

Y F L L Q V S F L V D E G V S P V L L Q
TAC TTC CTC CTG CAA GTG AGT TTC CTG GTA GAT GAG GGG GTG TCC CCT GTG CTA CTG CAG
4509 4509 4608 S A L Q Y D T L I S L M E H L K A C A E TCC GCT TIG CAG TAT GAC TCC ATC AGC CTC ATG GAG CAC CTG AAG GCC TGT GCA GAG 4443 4452 4461 4470 L L S C A L C G S K V L A A L A S T G CTG CTT TCC TGT GCT TCG GC AGC AAA GTG CTC GCA GCC CTG GCG GCC TCC ACG GGC 4623 4632 4641 4650 4659 4668

A Y GCT TAT

CTC

W P E 1 TGG CCA GAA (

I ATC 5010

L L L D L M W
CTC TTG CTA GAT CTC ATG TGG
4992 5001

o CAG

F16.130

E GAG S TCG A GCT E G r GAG GGT (4788 N R AAC AGA 4848 N AAC 4968 N AAC 4908 AAA E GAG EGAG o CAG N AAC V N C GTG AAC CP I Y R N HATC TAC AGA P 4959 L TTG 4899 K E K AAG GAG AAA CIC E E I A GCT (4830 C TGC 4890 H CAC 4950 L T L r CTG ACA CTG C 4941 45 L C T CTG TGT ACA Q F L CAG TIT CTG CGC S T K K S K K TCC AC'F AAA AAG AGC AAG AAA 4761 H CAC TGC D Q GAC CAG T L I ACT CTG ATC Q E CAG GAA 4812 Q A CAG GCC 4932 S AGC EGAG S S G AGC TCG GGT A K AAG R CGC 4923 A D I S TCC S TCA

F16.13A

E K K L K E Y S Q K A V E I L R T Q N H GAG AAG AAG GAG TAC TCA CAG AAG GCC GTG GAG ATT CTG AGG ACT CAG AAC CAC 5103 5112 5121 5130 5139 5148 I L T N H P N S N I Y N T L S G L V E F ATT CTC ACC AAT CCC AAC TCC AAC ATT TAC AAT ACC TTG TCT GGC TTA GTG GAG TTT 5163 5172 5181 5190 5199 C Y I K L S S I K V D T R Y T T Q Q V TGT TAT ATC AAG CTG TCT TCC ATT AAA GTG GAC ACA CGG TAC ACC ACC CAG CAG GTG 5283 5328 5301 5310 D G Y Y L E S D P C L V C N N P E V P F GAT GAT GAT GAT GAT GAT CCC TGC CTG GTG TGT AAT AAC CCT GAA GTG CCG TTT 5223 5232 5241 5250 5259

D F Y E N Y Q A S T E T L Q C P R GAC TTC TAT GAG AAC TAC CAG GCT TCC ACA GAG ACC CTT CAG TGT CCT CGC 5592 5601 5610 5619 5628

E GAG

F16.13S

L K CTG AAG Q T E V K I D L P L P I V A S N L M I CAG ACA GAA GTC AAG ATT GAC CTG CCT CTG CCC ATT GTG GCC TCT AAC CTG ATG ATC 5523 5532 5541 5550 5559 E L K N K P A R W H K A K K V Q L T P GAG TTG AAA AAT AAG CCA GCT CGC TGG CAC AAA GCC AAG AAA GTT CAG CTG ACG CCT 5463 5472 5481 5490 5499 T K M V R T I N L Y Y N N R T V Q A I. ACC AAG ATG GGG ACA ATC AAC CTG TAT TAC AAC AAC GGA ACT GTG CAG GCC ATT 5403 5412 5421 5430 T V K I G D ACA GTG AAA ATT GGG GAC 5379 5388 V K L I G S H T I S K V GTA AAG CTC ATT GGT AGT CAC ACC ATC AGC AAG GTG 5343 5352 5361 5370 V GTG

C G F C K Y A R F D F M L Y A K P C C P TGT GGC TTT TGT AAA TAT GCC CGC TTT GAC TTC ATG CTT TAT GCC AAA CCT TGC TGC CCA 5763 5772 5781 5790 5799 V D P I E N E E D R K K A V S N I N T L GTG GAT CCC ATC GAG AAC GAT CGG AAG AAG GCC GTT TCC AAC ATC AAC ACA CTT 5823 5832 5841 5850 5859 CSASVPANVY TGC AGT GCC TCT GTC CCC GCC AAT GTA TAC 5643 5652 5661 5670 5679 Q C H K C. R S I N Y D E K D P F L C N À CAG TGT CAC AGG TCC ATC AAC TAT GAT GAG AAG GAT CCC TTC CTC TGC AAT GCT 5703 5712 5721 5730 5739

L D K A D R V Y H Q L M G H R P Q L E N4 CTG GAC AAA GCT GAC CGG CTG GAG CTC ATG GGA CAC CGG CCC CAG CTG GAG AAC 5883 5892 5901 5910

F16.13L

G G I S S T S A S V N R Y I L Q L A Q E GGA GGC ATC ACT TCA GCC AGT GTG AAT CGC TAC ATC CTA CAG CTG GCG CAG GAG 6003 6012 6021 6030 6039 L L C K V N E A A P E K P Q E D S G T A CIG CTC TGC AAA GTG AAT GAA GCT CCA GAA AAG CCA CAG GAA GAC TCG GGA ACA GCG 5943 5952 5961'

A S R K E L L E Y D L Q Q R E A A T K S GCT TCG CGC AAA GAG CTG TAT GAC CTG CAG CAG AGA GAA GCG GCC ACC AAG TCA 61.23 61.32 61.41 61.50 61.59 61.68 S R T S V Q P T F T A S Q Y R A L S V L TCC CGG ACA TCC GTG CCC ACG TTT ACT GCC AGC CAG TAC CGT GCG TTG TCT GTC TTA 6183 6192 6201 6210

Y C G D C K N S F D E L S K I I Q K V F TAT TGT GGA GAC TGT AAG AAC TCA TTT GAC GAG CTC TCC AAA ATC ATC CAG AAA GTC TTC 6063 6072 6081 6090

G C G H T S S T K C Y G C A S A V T E H GGC TGT GGC CAC ACC TCC ACC AAG TGC TAT GGC TGT GCC TCA GCT GTC ACA GAG CAT 6243 6252 6261 6270 M N D L I I G K V S T A L K G H W A N P ATG AAT GAC CTG ATT GGC AAA GTC TCC ACT GCA CTG AAG GGC CAC TGG GCT AAT CCT 6483 6528

L T D S I S K E CTG ACA GAC TCC ATC TCC AAG GAG 6579 6588 I K T P V V V E N I T L M C L R I L Q K ATC AAA ACG CCA GTG GTT GTT GAG AAC ATC ACC CTC ATG TGT CTG CGG ATC TTA CAG AAG 6663 6672 6681 6690 P A P T S K K N K D V P V E A L CCT GCC CCA ACC AGC AAG AAC AAG GAC GTC CCT GTG GAG GCC CTC 6732 6741 6750 6759 6768 Q A Q L W L K R CAG GCT CAG CTG TGG CTC AAG CGA 6819 6828 I H A C STC CAC GCG C 6810 C N E I TGC AAT GAG 7 T V K P Y
ACG GTG AAG CCG TAC
6783 6792 L I K P F CTG ATT AAA CCA C 6723

G F GGC	K Y V 3 AAG TAT GTG 6948	K AAG	R A CGG	V G GTC
D GAT	Y TAT	LCTC	A A GCA GCA 7068	αÜ
V GTA 6888	K AAG 5948	L D CTT GAC 7008	а GCA 7068	Q ; CAG 7128
99	E GAG	CTT	CAG CAG	K AAG
R CGA	T E ACT GAG	PCC	T ACA	R CGC
1 ATC 879	L Y L CTC TAC TTG	T T 3 ACC ACC 6999	А GCA 7059	S 2 AGC 7119
P CCT	Y TAC	T ACC	<u>4</u> دردو	V P CCC
L CTO	L CTC	R AG(T ACC	V GTC
K C : AAG TGC 6870	H R : CAC CGG 6930	K AAG 6990	L F CTC TYT 7050	L A T CTT GCT ACT 1110
K AAG	H CAC	999	CIC	A GCT
K AAG	r CTO	₽ CGG	V GTA	CTT
A W GCC TGG 6861	E GAG 6921	s R s ÀGT CGG 6981	Q CAG 7041	A GCT 7101
A GCC	STCC	S ÀGT	R CGG	EGAA
E Gaa	K AAG	CTC	CI	V GTG
Y C TAC 6852	P S K S E CCC AGC AAG TCC GAG 6912 6921	K Q F AAA CAG TTC 6972	v rgg 332	C T I V E A TGT ACT ATT GTG GAA GCT 7092
S	P CCC	Q CAG	NAAAC	T ACT
A GCA	S TCC	K AAA	II Anc	C TGT
К ААС 5843	к ааа 6903	W TGG 6963	H CAC 7023	A GCC 7083
P CCT	G K GGG AAA 6903	R W AGG TGG 6963	G H II N V GGC CAC AAC AAC 7070	A A GCA.GCC 7083
D P K GAT CCT AAG 6843	N AAC	W TGG	L CTG	o CAG

F/G.13)

E C A A B GAG TGT GCT C A G F GCT GGG C 71.79 L D E L S V CTG GAC GAG CTG AGT GTG 7161 7170

Y L A A TAC CTG GCT GCT 7248 CTG GCT CTC TAC CAG AAG CTC ATC GCC TCC TGC CAC TGG AAA 7203 7212 7221 7230 7239

R L L P CGC CTG CTG C 7308 V L P Y V G N L I T K E I A GTC GTC CTG CCC TAC GTG GGC AAC CTC ATC ACC AAG GAA ATC GCC 7263 7299 Q Q G Y A L K S CAG CAG GGA TAT GCC CTC AAG AGT 7350 7359 7368 T L S T D L
ACA CTG AGC ACA GAC CTG
7332 7341 E E A 1 GAG GAG GCC ? 7323

L TTG K K H F K S AAG CGT CAT TTC AAG AGC 7419 7428 E S I P GAG TCC ATC 7 S F V E V TCC TTT GTA GAG GTG 7392 7401 S TCC L L CTC CTC 7383

G T V L N G Y L C L R K L V L Q R T K GGC ACT GTG CTG AAC TG CTG CTG CAG AGG ACC AAG 7443 7452 7461 7470 7479 L I D E T Q D M L L E M L E D M CTC ATC GAT GAG GAC ATG CTG CAG GAG ATG CTG GAG ATG CTG GAG GAC ATG 7539

ESETRKAFFWAVCIFETAAKKRYN GAGTCT GAA ACC AAG GCC TTC ATG GCT GTG TGC ATT GAG ACA GCC AAG CGC TAC AAT CTG 7563 7572 7581 7590 7599

D Y R T P V F I F E R L C S I I Y P E GAC TAC CGG ACT CTC TTC ATC TTT GAG CTG TGC AGC ATC ATC TAC CCT GAG 7623 7632 7641 7650 7659

E N E V T E F V T L E K D P Q Q E D F GAA AAT GAA AAT GAG TTC TTT GTG ACC CTG GAG AAG GAC CCC CAG CAA GAG GAC TTT 7683 7701 7701

F16.13AA

I S L D L P V ATC AGT CTG GAT CTT CCT GTG 7899 7908 G I G I GGC ATT GGG C 7788 M R I V TATG AGG ATT G 7968 S L D TCC CTG GAC S M P G N P Y S S N E P ATG CCC GGA AAC CCA TAT AGC AGC AAT GAA CCA 7752 F I E STTT ATC GAG 78019 T N E G E P ACC AAT GAG GGA GAG CCC 7950 Q D C CAG GAC TGT C E E I GAG GAG S 8010 L V N N K I CTA GTG AAC AAT AAA ATT 7890 L L G D A
CTA CTG GGC GAT GCC
7992 8001 E L I GAG CTT C 7872 R AGG MATG R M R G CGA ATG CGG GGG 7983 L Q. G F CTA CAG GGC A 7743 GGG GGG 7863

F/G./3BB

O CAG E E D E E E V Y R M A G V M A GAA GAA GAA GTG TAC AGA ATG GCC GGT GTG ATG GCC AGA B052 8061 8070 8079 8088 T D E I ACA GAT GAA (8043 g GGG

G L Q C M L N R L A G V K D F K Q G GGT CTG CAG TG CTG AAC AGA CTG GCA GGA GTC AAA GAT TTT AAG CAG GGG 8103 8112 8121 8130 8139 8148

H L L T V L L K · L F S Y C V K V K V N R CAC CTT CTA ACA GTG CTC CTG AAG CTG TTC AGT TAC TGT GTG AAG GTG AAA GTC AAT CGG 8163 8172 8181 8190 8199

Q L V K L E M N T L N V M L G T L N CAG TTG GTC AAG CTG GAA ATG AAC ACC TTG AAT GTC ATG TTG GGG ACT TTA AAC 8223 8223 8241 8250 8259

V A E (
GTG GCT GAG (
8328 A L V A E Q E S K D S G GCT CTG GTA GCT GAG CAA GAG AGC GGA 8293 8292 8301 8310

F16.13CC

S T F V R S N P S V L Q G L L R I I P Y AGC ACC TTC GTT TCC AAT CCC AGC GTG CTG CAG GGT TTG CTG CGT ATC CCA TAC 8463 8472 8481 8490 8499 L S F G E V E K M Q I L V E R F K P Y C CTG TCC TTC GGA GAG GAG AAG ATG CAG ATC CTG GTG GAG CGG TTC AAG CCA TAC TGC 8523 8532 8541 8550 8559 8568

I ATC	SCC.	I ATT		T ACG	T ACC
CTC	S AGT	F TYTY		G GGA	999
D GAC 3688	P CCC 3748	P CCA	8808	I ATT 1868	I ATT 928
K AAG	G I T Q S A L D Y M K K H I P S A GGA ATC ACC CAG AGT GCC CTG GAC TAC ATG AAA AAG CAT ATC CCC AGT GCC	P A L P F I CCT GCT CTG CCA TIT AIT	ω	L R G L A M Q H P A T Q V L I G CTT CGG GGT CTG GCC ATG CAA CAC CCT GCC ACC CAG GTT CTG ATT GGA 8832 8841 8850 8859 8868	T S L H K L E Q V S S D E G I G T ACA AGC CTG CAT AAG CTA GAG GTG TCC AGT GAT GAG GGC ATT GGG ACC 8892 8901 8910 8919 8928
L CTG	H CAT	A GCT		V GTT	e Gag
Q CAG 8679	K AAG 8739	P CCT	8799	Q CAG 3859	D GAT 1919
H CAT	K AAA	R CGG	w	T ACC E	S AGT 8
GGT	M ATG	S TCT		A GCC	S TCC
N AAT 8670	Y TAC 8730	L TTG	8790	P CCT 3850	v GTG 3910
SAGC	D GAC	F TYFT	-	H CAC	o CAG
AAC	L CTG	K AAG		o Caa	E GAG
N AAC 8661	A GCC 8721	K AAA	8781	M ATG 3841	L CTA 3901
k AAG	S AGT	W TGG	-	A GCC	K AAG 8
ATC	Q CAG	I ATC		L CTG	H CAT
G GGT 8652	T ACC 8712	DGAC	8772	G GGT 3832	L CTG 3892
A GCT	IATC	A GCT	~	R CGG	s AGC 8
A GCT	G GGA	D GAT		L	T ACA
I ATT 8643	K AAG 8703	L TTG	8763	L CTT 3823	I. ATC 3883
C K I A A G I K N N S N G H Q L K D L I TGC AAG ATT GCT GCT ATC AAG AAC AAC AGC AAT GGT CAT CAG CTG AAG GAC CTC ATC 8643 8652 8661 8670 8679	L Q K CTG CAG AAG 8703	K N L D A D I W K K F L S R AAG AAT TTG GAT GCT GAC ATC TGG AAA AAG TTT TTG TCT CGG	w	R AGG	s TCC B
C TGC	L CTG	K AAG		L R L TTG AGG CTT 8823	D S I T GAC TCC ATC A 8883

F16.13EE

I D	K	A	R	R
	AAG	T GCG	AGG	CGG
I	o	F G	C	K
ATT	Cag		TGC	AAG
K K	M R	V V T K	C C I C	K V L G I Y T F T K AAG GTC TTA GGC ATT TAC ACT TTC ACC AAG
AAG AAG	: ATG AGG	G GTG GTG ACC AAG	G TGC TGC ATC TGC 9	
8988	9048	9099 9108	9 9168	
K AAG	M ATG	TACC	C TGC	F
N	A	V	C	T
AAC	GCC	GTĞ	TGC	ACT
V GTG 3979	M ATG 9039	V GTG 3099	T ACG 9159	Y TAC
P D V CCA GAT GTG 8979	A M A NG GCC P	Q Q	CTC	I ATT
P CCA	M AT	GGT	G GGA	3 3 3
R E. H	R	K	P	LTTA
A AGA GAA CAC	CGC	AAG	CCC	
L 8970	1030	9090	150	
E GAA E	K K ; AAG AAG 9	e Gag	E E E GAG L	V GTC
R	K	n	e	K
AGA	AAG	AAC	Gag	AAG
CT2 961	E GAC 9021	T N 3 ACA AAC 9081	L I CTG ATT 9141	P T S CCC ACG
A	A	T	L	D
GC(GCA	ACC	CTG	CCC
E	R	M	E	Q
GA	CGG	ATG	GAG	CAG
L L	E T	L G	E	F
CTC CTG	GAG ACC	CTG GGC	GAA	
8952	9012	9072	9132	
CTC	E	L	M	K
	GAG	CTG	ATG	AAG
N	,	T	Q	T
AAC	AGA	ACT	CAA	ACC
E	R	G	K	GGGT
GAG	CGC	GGA	AAG	
8943	9003	9063	9123	
L A E N TTG GCC GAG AAC 8943	SCC GCC	L CTG	L L K Q M E CTC CTG AAG CAA ATG GAA 9123 9132	E G G T K F GAA GGG GGT ACC AAG TTC
L	A A R F GCA GCC CGC P 9003	A L G T I GCT CTG GGA ACT 0 9063	L CTC	E Gaa

F1G.13FF

V A L E E M E N' K P R K Q Q G Y S T V S GTG GCC TTG GAG ATG GAG AAC AAG CCT CGG AAA CAG CAG GGC TAC AGC ACT GTG TCC 9243 9252 9261 9270 R CGG E E W E S A A L Q N A N T K C N G L L P GAA GAG TGG GAA AGT GCC CTG CAG AAC GCC AAC ACG AAG TGC AAT GGA CTC CTT CCG 9363 9372 9381 9390 9399 Y L Q E C T G Q R E P T Y Q L N I H D I TAC CTC CAG GAG TGC GGG GAG CCC ACG TAC CAG CTC AAC ATC CAC GAC ATC 9483 9528 V W G P H V P E S A F A T C L A R H N T GTC TGG GGC CCC CAT GTC CCT GAG TCA GCT TTT GCC ACT TGT TTA GCT AGG CAC AAC ACT 9423 9432 9441 9450 9459 H F N I V H Y D C H L A A V R L A R G
CAT TTC AAC ATC GTG CAC TAT GAC TGT CAC CTG GCT GTC AGG TTG GCT AGA GGC
9303 9312 9321 9330

K L L · F L R F A M E Q S F S A D T G G G AAA CTG CTT TTC CTG CGC TTC GCC ATG GAG CAG TCA TTC AGT GCA GAC ACC GGT GGG GGC 9543 9552 9561 9570 9570

S N I H L I P Y I I H T V L Y V AGC AAC ATC CAC CTG ATC CCG TAC ATT CAC ACT GTG CTT TAC GTC GTC 9612 9648 R E S CGG GAG P 9603

P A T S R E E K N L Q G F L E Q G CA BCA ACG TCC CGG GAG GAG AAC CTC CAA GGC TTC CTG GAG CAG CAG ACG TCC CAA GGC TTC CTG GAG CAG 9672 9681 9690 9699 N T T R AAC ACG ACC CGA 9663

R E K W T E S A F D V D G P H Y F T AGA GAG AGA GAG AGT GCC TTT GAT GTA GAT GGG CCC CAC TAC TTC ACC 9723 9732 9741 9750 9759 9768

P E Q W K A T R V E I L CCT GAG CAG TGG AAA GCC ACT CGA GTG GAG ATC CTA 9801 9828

F16.13HH

G G A T 'R L T GGA GGA GCC ACC AGG TTG ACA 9879 9888 R A V A P CGG GCA GTG GCT CCA 9861 9870 TCG CAT (ပ္သပ္သ r crg

L F (CTG TTC ' 9939 A V K D Y S A Y R GCG GTG AAA GAC TAT TCT GCC TAC CGT 9903 9912 9921 K AAG

GGT CCT CCC ACT AGT AAC ACT TGA GGG CGG GCT K K V AAG ÄAG GTG I Y N M F ATT TAT AAC ATG TTT 9963 9972 r CTC

NGC TCT CTG GCT GAG TAC ATT CCG CCA CAA ATG ACA TGC CCA TTC TAC GAA GCT GCC GAC 10023 10032 10041 10050 10059 10068

AAA GCC CCT GAA AAN CTT CCA GGA GGA GTT CAT GCC AGT GGA GAC CTT CTC AGA GTT CCT 10083 10092 10101 10110 10119 10128

CGA CGC AGC AGG TCT TCT ATC AGA AAT CAC CGA CCC AGA GAG CTT CCT AAA GGA CCT GTT 10143 10152 10161 10170 10179 10188

 GAA
 CTC
 ACC
 ATC
 CCC
 ATG
 GAA
 ATG
 AGA
 TCG
 CGG
 TGA
 GAA
 TAG
 CAG
 CAG</th

CIT GCA TIC TCC CCT CAT TCA TCT CTC CGT GTG CAC TCA TTT CCC CCA CGG ATG CTG CAT 10263 10272 10281 10290 10299

TAT CAC GCG CGC GTG TGT GTG TG

SUBSTITUTE SHEET (RULE 26)

274: CLUSTAL X (1.64b) Multiple Sequence Alignment

274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	MSAHSGGTDWNSVVKALILNRTGALNKNEVVNLLKAITRCEHDFFEEESN
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	FTQFYTAFAALAADKLMQIKTICQTQICQLHDATAVLIRFIIYRLPRVSV
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	YETKWLIGALKMLCEGRECPASASSMEDYNAVANVLKSCKHPESTTKSI
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	
274 gi 3413886 dbj BAA32307 qi 4426611 qb AAD20450	LSEEVTDCTEQILAANVEYFQEQNGVDTLLDVCVSLPILNRYRSKYMETI

F1G.14B

274: CLUSTAL X (1.64b) Multiple Sequence Alignment

274	
gi 3413886 db] BAA323071 gi 4426611 gb AAD20450	NGGKSLYLPLTQVEATAVKSSMNHMLTDLTILSQAQALIEMQPLTPSRIE
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	RLSMCGIAALYNAVLTSIATSVLGMSQASSSQKQTASTSQGSGVGGSSGG
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	QSNKDHDDFEDQACSIVNKALEIYSNIGHMFKTSARIHVYQNHLCYGSWL
274 gi]3413886 dbj BAA32307 gi 4426611 gb AAD20450	LISGIQGAMGASGSGSSSDSASKSASKATKSGSEAGTAPTTPIARVNLF
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	KVQQGFGELNAALANHSIKLLSELIEDLKVEAACGQSLESTELPEPAQFD

F16.14C	
274 g1 3413886 dbj BAA32307 gi 4426611 gb AAD20450	ILQNYSSLERIVRVLNTATLHQLFTFLATVAYRKACTLKRASAKDRTECE
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	PISYSDSTTYFNDSLSCSDNSEEDDSESYLGHWFKETLSPETHDDNANTS
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TQERAEQKSALVPKLDEPHEYLDLAADI FCFLDQFLANRHAYMQRYVKAG
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	VSDQQMLLMANIIKDFDRDVMRNETDQGSGNAPAASAGAGTSAGASTKWQ
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	VYPSTLSVLVQILLLKPTQEKEAACLSVWHRLINTLVEGVCSSNTASDSD

274 F/G./4D gil3413886 dbj BAA32307 gi 4426611 gb AAD20450	YEDLNIEHAQLLLFLFHSLNIMQKKSILLLTAGGVIRCAEVCRGISEDRP	
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450		
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TDLLNCRTKLNSYCRHDIEENFRKSAGEYGSSIRPTFYSLVMGDPE	•
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	I S YW AQEFKLDGLAWNFILCTPDKLKYPLLVDALTDILS:ITDMSMY	
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	SMHNLCAIQYCETIAWKLNLGLPPSTSHVESLKAERSPNLHSLMWS	
274 gi 3413886 dbj BAA32307 qi 4426611 gb AAD20450	TRI.DIASSHYLVVSSLIKQGMYTQYAETLWTHVGDIGAD:IKYSLKQ	

14E
9
F

274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	NSQMNGNGTPRLSDLILFDSLVAHMQAVAWANKEGLKWPRKESEDA
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	AGEQSAGTSLTSSSNDPELYSSNESIDDQKLKQDDDGKL;SSDLQKY
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	VKLMNSYQLLSVIVRGQMLKQLSSSTPEKALNLIVPIVSDKPAIML
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	ELHAAFLKLLPNEDKQLIANEWPKCLMVNDFAFNGKQHPVEPYILN
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	LTRGSNYSTLHTLKHCLKSILQLFELLLPHRTANAEVETQLKQLLI
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	SSMLDMRTDYLQGHSEHCLREILSGLTQEAQKLLLYEHMVGYCTRM

F16.14F

274 gi 3413886 dbj Ena32307 gi 4426611 gb naD20450	RQPQAAGPSGGAPLDQDRAMFNESMLFAVLKTMFKMLEKPVAVQAM
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	ROFFKDORSGSLTTLLLSFTGTSLPVSYARIMIQEVNRLFQLSLOA
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	LVECFSELATVDVARLKQWLGHIIYGPNVSTDVSTSEALDTTCRML
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TSILQPSSSSSNAQTPTNMATVSAMPSISDQLDPMEIEYDCGTAA
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TGGAAANTSQILSLWQAAQPDPSEESSQACDHSDSERNGALLLSFV
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	KSLVKDQSKASQIAPPLFQALLQLGQTLISPPQEGCDFADVLQIMI

16.146

RGHVALFNTTLLWLELAKLQLPDKHLKHAENVSAQLRYLSELLQSI	GERGSRQHNPPWDDELQTDIDELYDELAEEGEQDSLLDDSDEDTLN	ALLSKAVQCINTSSKEGKDLDPEVFQRLVITARSIAVTRPNNLV
gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450

=/G./4H

274 gi 3413886 dbj BAA32307	HFTESKLPOMETEGAEEGKEPQKQVEGDGCSFITQLVNHFWKLHASKPKN.
g1 44Zbb11 gb AADZ0450	
274	AFLAPACLPGLTHIEATVNALVDIIHGYCTCELDCINTASKIYMQMLLCP
gi 3413886 dD] bAA32307 gi 4426611 gb AAD20450	DEPVNIVKRGLCQPETIVHCLVEIMYGFALADPGQVGRMTKYFIDLLKHD
274	DPAVSFSCKOALIRVLRPRNKRRHVTLPSSPRSNTPMGDKDDDDDDADE
gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	υ

F/G./4I gi 3413886 dbj BAA32307	KMQSSGIPDGGHIRQESQEQSEVDHGDFEMVSESMVLETAENVNNGNPSP
gi 4426611 gb AAD20450	SSAASDIIEEAAGVVVDGSVGGGGLFERNALMAGAAAAA
274 # 134138861db 11888333071	RKALLAGAEGFPPMLDIPPDADDETMVELATALS LYCUCKGS SSSTAGAS
gi 4426611 gb AAD20450	Leafwgggfprliglpedaddeaimdiaialsloohggdanalosloo
274	SLG-LSGQAPSSSSLDAGTLSDTTASAPASDDEGSTAATDGSTLRTSPAD
gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	GLANLQGIRQATAMAAAVNAAANVSLGGSDDDEGSNVATDGSTLRTSPAE
274	HGGSVGSESGGSAVDSVAGEHSVSGRSSAYGDATAEGHPAGPGSVSSS
gi 3413886 dbj BRA32307 gi 4426611 gb AAD20450	PAGSGGSESGGSGVESIGGTSARSSNFGDH-ANASPPROGSTKDDQE
274	-TGAISTTGHQEGDGSEGEGEGEAEGDVHTSNRLHMVRLMLLERLLQ -rgatstttghoegdgsegegegegeddyhtsnrlhmvrlmllerllq
gi 3413886 ab] bAA32307 gi 4426611 gb AAD20450	OPGPSGVAGSGGVAVLSAMSSSEDNEANEDDKLS-KLHDLRITVLESIIC
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TLPQLRNVGGVRALPYMQVILMLTTDLDGEBEKDKGALDNLLAQLIAELG TLPQLRNVGGVRALPYMQVILMLTTDLDGEBEKDKGALDNLLSQLIAELG HLGTFDLCNGLQALPLIQVILMLTTDLNGNNERDQQVLHDLLTALVGLCG

274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	SSSIISSATAAALLSSGAVDYCLHVIKSLLEYWKSQU SSSIISSATAAALLSSGAVDYCLHVIKSLLEYWKSQQ NSSFVASTTANVISKSGAFVYALEALNTLIVHWKNVLGDPYAAGGGLASQ **:::*:*: *: *: *: *: *: *: *: *: *: *:
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	SEEEPVTTSQLLKPHTTSSPPDMSPFFLRQXVKGHAADVFEAXTQL NDEEPVATSQLLKPHTTSSPPDMSPFFLRQYVKGHAADVFEAXTQL SAQASGGASGPGVQLLKPIKHGPKPDISILIPHNYLKNYP-DIFESYDGL :**:*:*:*:*:*
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	LTEMVLRLPYQIKKIADTSSRIPPPVEDHSWEYFLSEYLMIQQTPEVRRQ LTEMVLRLPYQIKKITDTNSRIPPPVEDHSWFYFLSEYLMIQQTPEVRRQ LTEIIVRLPYQILRLSSAHPDNYDSGFCEAMTFTLCEYMMININTLLRRQ ***:::****::::******::::::::::::::::
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	VRKILLFICGSKEKYRQLRDLHTLDSHVRGIKKLLEEQGIFLRASVVTAS VRKILLFICGSKEKYRQLRDLHTLDSHVRGIKKLLEEQGIFLRASVVTAS VRKILMYICGSKEKFRMYRDGHSLDAHFRVVKRVCNIVSSKTGAPYNA ****::****:: : : : : : : : : : : : : :
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	SGSALQYDTLISLMEHLKACAEIAAQRTINWQKFCIKDDSVLYFLLQVS- SGSALQYDTLISLMEHLKACAEIAAQRTINWQKFCIKDDSVLYFLLQVS- NPPMLSYDALVELTEHLRTCQEISQMRTGNWQKFCVVHEDALAMLMEIAC * **.*. * ****************************

F/G:/4K gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	FLVDEGVSPVLLQLLSCALCGSKVLAALAASTGSSSVASS-APPAASSGQ FLVDEGVSPVLLQLLSCALCGSKVLAALAASSGSSSASSSSAPVAASSGQ YQLDDGVSPIIIQLLQAAVCNLPPPSGSKQ : :*:***:::****.
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TTTQSKSSTKKSK-KEEKEKEGESSGSQED-QLCTALVNQLNRFADKE ATTQSKSSTKKSK-KEEKEKDGETSGSQED-QLCTALVNQLNKFADKE AQPQPSTSSASGKLRTDREKSEDTDAYYSKFDPAQCGTFVHQIFRYACDA
274 gi 3413886 dbj BAA32307 gi 4426611 gb ArD20450	TLIQFLRCFLLESNSSSVRWQAHCLTLHIYRNSNKAQQELLLDLMWSIWP TLIQFLRCFLLESNSSSVRWQAHCLTLHIYRNSSKSQQELLLDLMWSIWP LIIRFVRIFLLENNITQLRWQAHSFMTGLFEHANERQREKLLNIFWNLWP :*:*:* *******************************
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	ELPAYGRKAAQFVDLLGYFSLKTAQTEKKLKEYSQKAVEILRTQNHILTN ELPAYGRKAAQFVDLLGYFSLKTPQTEKKLKEYSQKAVEILRTQNHILTN LVPTYGRRTAQFVDLLGYLTLSTRSITERLPEFVSRAVDVLRQQNELLCK :*:***::*********::**
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	HPNSNIYNTLSGLVEFDGYYLESDPCLVCNNPEVPFCYIKLSSIKVDTRY HPNSNIYNTLSGLVEFDGYYLESDPCLVCNNPEVPFCYIKLSSIKVDTRY HPNAPIYTTLESILQVNGYYLESEPCLVCNNPEVPMANIKLPSVKSDSKY ***: ** ** ** ** ** ** ** ** ** ** ** **
274 gi 3413866 dbj BAA32307 gi 4426611 gb AAD20450	TTTQQVVKLIGSHTISKVTVKIGDLKRTKMVRTINLYYNNRTVQAIVELK TTTQQVVKLIGSHTISKVTVKIGDLKRTKMVRTINLYYNNRTVQAIVELK TTTTMIYKLVQCHTISKLIVRIADLKRTKMVRTINVYYNNRSVQAVVELK

gil

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

KYAKFDFSMYARVCCAVDPI ESAEDRVKTVSL IHSSLERADRNYRQLLTN

KYAR FDFMLYAKPCCAVDP I ENEEDRKKAVSN I NTLLDKADRVYHQLMGH

RPQLENLLCKVNEAAPEKPQEDSGTAGGISSTSASVNRYILQLAQEYCGDRPQLENLLCKVNEAAPEKPQDDSGTAGGISSTSASVNRYILQLAQEYCGDKQMLELLIQKVAEHRSSDRMVEDNMAS-VHSTS-QVNKIIQLLAQKYCVE

F16.14M

gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307 gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

GHWANPDLASSLQYEMLLIDSISKEDSCWELRLRCALSLFLWAVNIKTP GHWANPDLASSLQYEMLLITDSISKEDSCWELRLRCALSLFLWAVNIKTP GSIPLISLEAAVHQEMTLLEVLLGQDDICWEYKLKVIFELFISNCRLPR-* :::: ** ** :::: ** :::: VVVENITLMCLRILOKLIKPPAPTSKKNKDVPVEALTTVKPYCNEIHAOA VVVENITLMCLRILOKLIKPPAPTSKKNKDVPVEALTTVKPYCNEIHAQA GPVTAVLHPCLRIMONLICPVLPGSKPNQKVATTDLCSMKMFEGNT-VDY

 RQAACTIVEALATVPSRKQQVLDLLTSYLDELSVAGECAAEXLALYQKLI RQAACTIVEALATIPSRKQQVLDLLTSYLDELSIAGECAAEYLALYQKLI RQLACSLLSSLSRTNERRQQALNMLTSFLKHVGEAGEASAEYLMLYKNMA ** **:::::*

274 F/G./4N gil3413886 dbj BAA32307 gi 4426611 gb AAD20450	ASCHWKVYLAARGVLPYVGNLITKEIARILALEEATLSTDLQQGYALKSL TSAHWKVYLAARGVLPYVGNLITKEIARILALEEATLSTDLQQGYALKSL TEQPWLQYLVLKGVLSQISQLLAIEISKVHRMEEYSLSSDLSLGYALRQY : * * * : : * : : * : : * : : . * * : . * * : * * *
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TGLLSSFVEVESIKRHFKSRLVGTVLNGYLCLRKLVLQRTKLIDETQDML TGLLSSFVEVESIKRHFKSRLVGTVLNGYLCLRKLVVQRTKLIDETQDML VELLWLLLECPNIRRTYKTRMLGPVLESYLALRSIVVQRTRLIDDAQEKL
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	TQKE FMNQHWYHCHTCNMINTVGVCSVCARVCHKGHDVSYAKYGNFFCDC
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	GAKEDGSCQALSRRIGSNEVRDSAGIGSYLPSHMSLLAGKKRSSLPVGQP
274 gi 3413886 dbj!BAA32507 gi 4426611 gb AAD20450	VLTRKDSLTNERIAVLTKLLEPYRETLQHQDQWLLVVRCILEYFDLLLPS
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	INENCMLYSIVGCHKRATAALERLHLLEQSFQVTDQLMFATLGSQEGAFE

F1G. 140

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307 gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

TVLQLSALLKQADSSKRKTILTRLASAPVPFTVLSLTGNPCKEDYLXVCG

VMNHPGLVCCVQQTTGVPLVVMVKPDTFLI@EIKTLPAKAKIQDMVAIRH	TACNEQORTTMILLCEDGSLRIYMANVENTSYWLQPSLQPSSVISI	MKPVRKRKTATITARISSQVTFPIDFFEHN	QQLTDVEFGGNDLLQVYNAQQIKHRLNSTGMYVANTKPGGFTMEISNNSS	TMVMTGMRIQIGTQAIERAPSYIEIFGRTMQLNLSRSRWFDFPFTREEAL	QADRKLNLFIGASVDPAGVTMIDAVKIYGKTKEQFGWPDEPPEDFPSASV
274	274	274	274	274	274
gi 3413886 dbj BAA32307	gi 3413886 dbj BAA32307	gi 3413886 dbj BAA32307	gi 3413886 dbj BAA32307	gi 3413886 dbj BAA32307	gi 3413886 dbj BAA32307
gi 4426611 gb AAD20450	gi 4426611 gb AAD20450	gi 4426611 gb AAD20450	gi 4426611 gb AAD20450	gi 4426611 gb AAD20450	gi 4426611 gb AAD20450

274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450 gi 3413886 dbj BAA32307 gi 3413886 dbj BAA32307 gi 3426611 gb AAD20450 gi 3413886 dbj BAA32307 gi 3413886 dbj BAA32307	SSUCPPNINQSNGTGDSDSAAPATTSGTVLERIVVSSLEALESCFAVGPI
---	--

F16.14F

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

RLAGVKDFKQGRHLLTVLLKLFSYCVKVKVNRQQLVKLENNTLNVMLGTL RLAGIRDFKQGRHLLTVLLKLFSYCVKVKVNRQQLVKLEMNTLNVMLGTL RIGSLQRISRNRELIQVLLKLFLICVKVRRCQEVLCQPEIGAINTLLKVL

YCSFDKYDEDHSGDDKVFLDCFCKIAAGIKNNSNGHQLKDLILQKGITQS YCNFDKYDEDHSGDDKVFLDCFCKIAAGIKNNSNGHQLKDLILQKGITQN TLNFNRFDNERTPEEEFKLELFCVLTNQIEHNCIGGTLKDYIVSLGIVER

	13886 dbj BAA32307	1 gb AAD20450
274	gi 341388	gi 4426611

274 gi|3413886|dbj|BAA32307| gi|4426611|gb|AAD20450|

274 gi|3413886|dbj|BAA32307 gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|3AA32307 gi|4426611|gb|AAD20450| 274 gi|3413886|dbj|BAA32307 gi|4426611|gb|AAD20450|

NIHLIPYIIHTVLYVLNTTRATSREEKNLQGFLEQP-REKWTESAFDVDG NIHLIPYIIHTVLYVLNTTRATSREEKNLQGFLEQP-KEKWVESAFEVDG NMHFVPYLLEYSVYLLLSSRSARDSKTLLTYLQAPPSEKWLECGYEVDG

274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	PHYFTILALHVLPPEQWKATRVEILRRLLVASHARAVAPGGATRLT PYYFTVLALHILPPEQWRATRVEILRRLLVTSGARAVAPGGATRLI PLFMATISLSLHSRELWNKHKLAHLKRMIAVA@GRHVSPAVLCKALLAPA * ::: ::* : * * . :: * :: :: :: :: :: :: :: :: :: :: :: :
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	DKAVKDYSAYRSSLLFWALVDLIYN-MFKKVPTSNT
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	NDMPIYEAADKALKTFQEEFMPVETFSEFLDVAGLLSEITDPESFLKDLL NDEALLKSTDSILQTLTEEFLPCTSFVEFCDVAGLLHLIEHPDNFIEEIL
274 gi 3413886 dbj BAA32307 gi 4426611 gb AAD20450	NSVP

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11066

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(6) :C 12Q 1/68					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/6, 435/7.1, 514/44, 435/69.1, 536/23.1					
Documentation searched other than minimum documentation to the	he extent that such documents are included	in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
US PAT, Biosis, embase, caplus, medline, lifesci,					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
		1 12			
Y,P US 5,882,925 A (FALB) 16 March	1999 see entire document.	1-12			
Y,P US 5,861,249 A (BEACH et al) 19	January 1999 see entire.	5, 9-12			
Y US 5,445, 941 A (YANG) 29 Aug	US 5,445, 941 A (YANG) 29 August 1995 see entire document.				
Y US 5,599,708 A (MUNDY et al) document.	US 5,599,708 A (MUNDY et al) 04 February 1997 see entire document.				
Y,P US 5,763,416 A (BONADIO et a document.	US 5,763,416 A (BONADIO et al) 09 June 1998 see entire document.				
Further documents are listed in the continuation of Box	C. See patent family annex.				
Special categories of cited documents:	*T* later document published after the int				
A document defining the general state of the ert which is not considered the principle or theory underlying the invention					
to be of particular relavance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step					
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other (*Y*) document is taken alone document is taken alone document in taken alone.					
O document referring to an oral disclosure, use, exhibition or othe means	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in	th documents, such combination			
P document published prior to the international filing data but later that the priority data claimed					
Date of the actual completion of the international search	Date of mailing of the international se	arch report			
24 SEPTEMBER 1999	2 9 OCI 1	1989			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT ANNA B. Pawoll ANNA B. Pawoll					
Washington, D.C. 20231 Facsimile No. (703) 305-3230 Telephone No. (703) 308-0254					
Form PCT/ISA/210 (second sheet)(July 1992)*					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11066

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2Xa) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
Please See Extra Sheet.				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

International application No. PCT/US99/11066

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-12 and 43, drawn to method or process for identifying genes whose expression is responsive to a specific cue or cues (claims 1-12) and a method for advancing research in or studies of bone development (claim 43). Group II, claim(s) 16-19, drawn to method for determining risk of developing osteoporosis or low or high bone density or other factors causing or contributing to osteoporosis or lower levels of osteoblasts and chondrocytes or other conditions involving mechanical stress or lack thereof.

Group III, claim(s) 19, drawn to method for testing a medicatement for or gene therapy approach to osteoporosis. Group IV, claim(s)20, 36-40, 44 and 45, drawn to method of treating, preventing or controlling osteoporosis.

Group V, claim(s) 22, drawn to a cellular-based model of osteoporosis or mechanical stress, or lack thereof.

Group VI, claim(s) 23-28, drawn to nucleic acid, probes, primers (claims 23-25 and 28) and to a vector (claims 26 and 27).

Group VII, claim(s) 29-34 and 41-42, drawn to expression product (polypeptide), composition comprising same, and related method of making same.

Group VIII, claim(s) 34 and 35, drawn to antibody and related composition.

Claim 21 is considered to be generic to the inventions of groups VI, VII, and VIII. Accordingly, it will be searched with any or all of the Groups depending upon the payment of additional fees for having searches conducted for each of said groups.

Election of Species

In the event that applicant elects to pay additional fees for the search of inventions corresponding to Groups III, IV, VI, VII, and VIII, the following election of species will apply.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

Claim 21:

a) gene or portion thereof;

b) protein or portion thereof; and

c) antibody or portion thereof.

Group IV:

a) protein 274; and

b) protein 405.

Group VI:

a) nucleic acid that encodes human protein 608;

b) nucleic acid that encodes human protein 405;

c) nucleic acid that encodes human protein 274; and

d) probe or primer that specifically hybridizes to

i)

8); b); and

ii) c). (iii

Group VII:

a) protein 274;

b) protein 405; and

c) protein 608.

Group VIII:

a) antibody that is elicited by protein 274;

b) antibody elicited by protein 405; and

c) antibody elicited by protein 608.

The inventions listed as Groups I-VIII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The inventions are directed to different methods and compounds. The methods comprised of different methods steps, requiring different reagents and resulting in deferent end products. The compounds are not related by a special technical feature, e.g., the probe/primer need not encode any amino acid sequence nor antibody and can also hybridize specifically to other

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/US99/11066
	sequences with equal affinity.	
	The species listed above do not relate to a single inventive concept under PCT Rule the species lack the same or corresponding special technical features for the following different proteins, nucleic acids, probes/primers, and antibodies which each have different proteins.	ng reasons: The species are drawn to ferent physical composition and
ı	This application contains the following inventions or groups of inventions which are inventive concept under PCT Rule 13.1. In order for all inventions to be searched, must be paid.	not so linked as to form a single the appropriate additional search fees
	4,	
	•	