1. Deuxième forme géométrique du théorème de Hahn-Banach

Soient $A \subset E$ et $B \subset E$ deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé et que B est compact.

Montrer qu'il existe un hyperplan fermé qui sépare strictement A et B.

2. Soit E un espace de Banach réel. On considère une famille finie de E': $\{x_i^*, i = 1 \cdots n\}$ et une forme linéaire sur $E: x^* \in E'$ telles que

$$N(x^*) \supset \bigcap_{i=1}^n N(x_i^*)$$
.

Montrer que x^* est combinaison linéaire des x_i^* .

3. Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$. On suppose que $B_F(0,r) \subset \overline{T[B_E(0,1)]}$. Montrer qu'alors

$$\forall \varepsilon > 0$$
 $B_F(0,r) \subset T[B_E(0,1+\varepsilon)]$.

- 4. On rappelle qu'un espace normé est séparable s'il contient une partie dénombrable dense.
 - (a) Montrer qu'un espace normé séparable contient un sous-espace vectoriel dénombrable dense.
 - (b) Montrer que les espaces c_o et l^p pour $1 \le p < \infty$ sont séparables.
 - (c) Montrer que l^{∞} n'est pas séparable. Pour cela on peut considérer la famille des boules ouvertes :

$$\{B(\chi_A, \frac{1}{2}), A \subset \mathbb{N}\}$$
, où χ_A désigne la fonction caractéristique de A .

(d) Soit E un espace normé. On suppose que son dual E' est séparable. Montrer que E est séparable.

(Soit f_n) une suite dense dans E', considérer une suite (x_n) de E telle que

$$||x_n|| = 1, \ f_n(x_n) \ge \frac{1}{2} ||f_n||$$

et montrer que x_n est totale dans E.

Que peut-on dire de la réciproque?

- 5. Soit E un espace vectoriel réel, C une partie convexe de E et f une application de E dans \mathbb{R} .
 - (a) Soit D l'épigraphe de f c'est à dire

$$D = \{ (x,t) \in C \times \mathbb{R} \mid f(x) \le t \}.$$

Montrer que f est convexe si et seulement si D est convexe.

- (b) On suppose que E est normé. Montrer que si f est continue D est fermé dans $E \times \mathbb{R}$.
- (c) Soit φ une forme linéaire continue sur $E \times \mathbb{R}$ (muni de la norme ||(x,t)|| = ||x|| + |t|). Montrer qu'il existe $a \in \mathbb{R}$ et $u \in E'$ tels que

$$\forall (x,t) \in E \times \mathbb{R}$$
 $\varphi(x,t) = u(x) + at$.

(d) On suppose que f est convexe et continue. Soient $x \in C$ et $\varepsilon > 0$. En appliquant la forme géométrique du théorème de Hahn-Banach à D et $(x, f(x) - \varepsilon)$, montrer que

$$\exists v \in E', \ b \in \mathbb{R} \text{ tels que } f(x) - \varepsilon \leq v(x) + b \quad \text{ et } \quad \forall y \in C \ \ v(y) + b \leq f(y) \ .$$

En déduire que f est l'enveloppe supérieure d'une famille de fonctions affines continues de C dans \mathbb{R} .

- 6. Soient E et F deux espaces de Banach, A et B deux opérateurs de domaines D(A) et D(B) tels que $D(A) \subset D(B) \subset E$, à valeurs dans F.
 - (a) On suppose que A et B sont linéaires et fermés. Montrer qu'il existe C>0 telle que

$$\forall x \in D(A)$$
 $||Bx|| \le C(||x|| + ||Ax||)$.

(b) Définition 1. On dit que B est A-compact si pour toute suite $\{x_k\} \subset D(A)$ telle que : $\exists c > 0$, $||x_k|| + ||Ax_k|| \le c$ implique que la suite $\{Bx_k\}$ admet une sous-suite convergente.

On suppose que A est linéaire, fermé, B linéaire A-compact; montrer que

- i. Il existe C > 0 telle que $\forall x \in D(A) ||Bx|| \le C(||x|| + ||Ax||)$.
- ii. Il existe C > 0 telle que $\forall x \in D(A) \ \|Ax\| \le C(\|x\| + \|(A+B)x\|)$.
- iii. A + B est un opérateur fermé.
- iv. B est (A + B)-compact.

(c) Définition 2. On dit que B est fermable $si~(0,y)\in \overline{G(B)} \Rightarrow y=0$. On suppose que A est linéaire, fermé, B linéaire, fermable et A-compact; montrer que

$$\forall \varepsilon > 0 \ \exists K_{\varepsilon} \text{ telle que } \forall x \in D(A) \ \|Bx\| \le \varepsilon \|Ax\| + K_{\varepsilon} \|x\| .$$

- 7. Soient X un espace de Banach réel, X' son dual, T un opérateur de domaine $D(T) \subset X$ à valeurs dans X' non nécessairement linéaire.
 - (a) Définition 1. On dit que T est hémicontinu si

$$\forall (u, v, w) \in X \quad t \mapsto T[u + tv](w) \ de \ [0, 1] \ dans \ \mathbb{R} \ est \ continue \ .$$

On suppose que T est hémicontinu et qu'il existe $u_o \in D(T), z_o \in X'$ tels que :

$$\forall u \in D(T)$$
 $(T[u] - z_o)(u - u_o) \ge 0$.

Montrer que $T[u_o] = z_o$.

(b) Définition 2. On dit que T est monotone si :

$$\forall (u,v) \in D(T) \qquad (T[u] - T[v])(u-v) \ge 0.$$

On suppose que T est monotone, hémicontinu et X est de dimension finie; montrer que

- i. T transforme les bornés de X en bornés de X'.
- ii. T est continue.
- 8. Soient $E = L^1(0,1)$ l'espace des classes de fonctions mesurables sur (0,1) à valeurs réelles, intégrables pour la mesure de Lebesgue sur (0,1). On définit $A: E \to E$ par $Ax(t) = \int_0^t x(s) \ ds$.
 - (a) Déterminer le noyau de A.
 - (b) Déterminer l'adjoint A^* de A. Que peut-on dire de $R(A^*)$?

On se propose de montrer le résultat suivant :

Les deux assertions sont équivalentes :

- i. x^* in (C([0,1]))'
- ii. On peut trouver une fonction g à variation bornée définie du [0,1] telle que

$$\forall f \in \mathcal{C}([0,1]) \qquad x^*(f) = \int_0^1 f(t) \ dg(t) \ .$$

De plus $||x^*|| = V(g)$.

- 1. Montrer que (ii) \Rightarrow (i)
- 2. Soit x^* dans $(\mathcal{C}([0,1]))'$. Montrer qu'on peut trouver z^* forme linéaire sur $\mathcal{B}([0,1])$, l'ensemble des fonctions bornées sur [0,1], muni de la norme $\| \|_{\infty}$, telle que $\|x^*\| = \|z^*\|$ et

$$\forall f \in \mathcal{B}([0,1]) \qquad x^*(f) = z^*(f) .$$

3. Soit $s \in]0,1]$ et χ_s la fonction caractéristique de [0,s], $(\chi_o=0).$ On définit g par

$$\forall s \in [0,1] \quad g(s) = z^*(\chi_s) .$$

Montrer que g est à variation bornée.

4. Soit $0 = t_0 < t_1 < \cdots < t_n = 1$ une partition arbitraire de [0,1], et f dans $\mathcal{C}([0,1])$. On définit h par

$$h = \sum_{k=1}^{n} f(t_{k-1}) [\chi_{t_k} - \chi_{t_{k-1}}].$$

Montrer que h est dans $\mathcal{B}([0,1])$ et calculer $z^*(h)$.

5. Montrer, en utilisant la définition de l'intégrale de Riemann-Stieljes que

$$z^*(f) = \int_0^1 f(t) \ dg(t) \ .$$

Conclure.

1. Soit f la fonction définie de [0,1] dans $\mathbb R$ par :

$$f(x) = \begin{cases} \frac{1}{t} & \text{si } t \neq 0, \\ 0 & \text{si } t = 0. \end{cases}$$

Montrer que f est fermée mais pas continue.

2. Supplémentaires topologiques

- (a) Soit E un espace de Banach, G et L deux sous espaces vectoriels fermés de E tels que E+G soit fermé. Montrer qu'il existe une constante C>0, telle que tout élément z de G+L admet une décomposition de la forme z=x+y avec $x\in G,\ y\in L$ et $\|x\|\leq C\|z\|,\ \|y\|\leq C\|z\|.$
- (b) Sous les hypothèses de la question précédente, montrer qu'il existe une constante C>0, telle que

$$\forall x \in E$$
 dist $(x, G \cap L) \le C[\text{dist } (x, G) + \text{dist } (x, L)]$.

Définition 1. Soit $G \subset E$ un sous-espace vectoriel fermé du Banach E. $L \subset E$ est un supplémentaire topologique de G si :

- i. L est fermé.
- ii. $G \cap L = \{0\}$ et G + L = E.
- (c) Montrer que tout sous-espace G de E de dimension finie admet un supplémentaire topologique.
- (d) Soit N un sous-espace de E' de dimension finie. Soit G défini par :

$$G = \{ x \in E \mid \forall f \in N < f, x >= 0 \}.$$

- i. Montrer que G est fermé et de codimension finie.
- ii. Soit (f_1, \dots, f_p) une base de N. On définit la fonction Φ de E dans \mathbb{R}^p par :

$$\Phi(x) = (< f_1, x >, \dots, < f_p, x >) .$$

Montrer que Φ est surjective. En déduire l'existence de (e_1, \dots, e_p) dans E tels que

$$\forall i, j \in \{1, \dots, p\} \quad \langle f_i, e_j \rangle = \delta_{ij} .$$

- iii. Montrer que le sous-espace vectoriel L engendré par (e_1, \dots, e_p) est un supplémentaire topologique de G.
- (e) Soit H un espace de Hilbert. Montrer que tout sous-espace vectoriel fermé de H admet un supplémentaire topologique.
- (f) Soit T un opérateur linéaire, continu et surjectif de E sur F (deux espaces de Banach).

Définition 2. On dit que T admet un inverse à droite s'il existe S linéaire et continu de F dans E tel que $T \circ S = Id_F$.

Montrer que les deux assertions suivantes sont équivalentes :

- i. T admet un inverse à droite.
- ii. $T^{-1}(0) = N(T)$ admet un supplémentaire topologique dans E.

3. Fonctions convexes conjuguées

Définition 3. Une fonction φ de E dans \mathbb{R} est semi-continue inférieurement (sci) si

$$\forall \lambda \in \mathbb{R} \quad \{ x \in E \mid \varphi(x) \leq \lambda \} \quad \textit{est ferm\'e} \ .$$

- (a) Montrer que : φ est sci \Leftrightarrow epi (φ) est fermé.
- (b) Montrer que:

 φ sci $\Leftrightarrow \forall x \in E, \ \forall \varepsilon > 0, \ \exists V$ voisinage de x tel que : $\forall y \in V \ \varphi(y) \ge \varphi(x) - \varepsilon$.

En déduire que :

$$\varphi$$
 sci et $x_n \to x \Rightarrow \liminf_{n \to +\infty} \varphi(x_n) \ge \varphi(x)$.

(c) Soit φ de E dans $]-\infty,+\infty]$ telle que $\varphi\neq+\infty$.

Définition 4. La fonction φ^* définie de E' dans $]-\infty,+\infty]$ par

$$\forall f \in E' \ \varphi^*(f) = \sup_{x \in E} \left\{ < f, x > - \varphi(x) \right\},\,$$

est la fonction conjuguée de φ .

Montrer que φ^* est convexe (même si φ ne l'est pas) et sci.

On admettra que si $\varphi \neq +\infty$ alors $\varphi^* \neq +\infty$ et on définit de la même manière φ^{**} par

$$\forall x \in E \ \varphi^{**}(x) = \sup_{f \in E'} \{ \langle f, x \rangle - \varphi^{*}(f) \}.$$

i. Montrer que $\varphi^{**} \leq \varphi$.

- ii. Supposons qu'il existe $x_o \in E$ tel que $\varphi^{**}(x_o) < \varphi(x_o)$. En séparant epi (φ) et le point $(x_o, \varphi^{**}(x_o))$, montrer qu'on arrive à une contradiction. En déduire que $\varphi^{**} = \varphi$.
- (d) Théorème de Fenchel-Rockafellar : Soient φ et ψ deux fonctions convexes. On suppose qu'il existe $x_o \in E$ tel que $\varphi(x_o) < +\infty$ et $\psi(x_o) < +\infty$ et que φ est continue en x_o . On va montrer qu'alors

$$\inf_{x \in E} \left\{ \varphi(x) + \psi(x) \right\} = \sup_{f \in E'} \left\{ -\varphi^*(-f) - \psi^*(f) \right\} = \max_{f \in E'} \left\{ -\varphi^*(-f) - \psi^*(f) \right\}.$$

Pour cela on admettra le résultat suivant : $si\ C \subset E$ est convexe, alors l'intérieur de C : int(C) est convexe. $Si\ int(C) \neq \emptyset$ alors $\bar{C} = \overline{int(C)}$.

Soient
$$a = \inf_{x \in E} \{ \varphi(x) + \psi(x) \}$$
 et $b = \sup_{f \in E'} \{ -\varphi^*(-f) - \psi^*(f) \}.$

- i. Montrer que $b \leq a$.
- ii. On suppose que $a \in \mathbb{R}$. En appliquant le théorème de Hahn-Banach géométrique aux convexes

$$A = \operatorname{int}(C)$$
 et $B = \{ (x, \lambda) \in E \times \mathbb{R} \mid \lambda \le a - \psi(x) \}$,

montrer que a = b et que le sup est atteint.

4. On se propose de montrer le résultat suivant :

Les deux assertions sont équivalentes :

i.
$$x^*$$
 in $(C([0,1]))'$

ii. On peut trouver une fonction g à variation bornée définie du [0,1] à valeurs complexes telle que

$$\forall f \in \mathcal{C}([0,1])$$
 $x^*(f) = \int_0^1 f(t) \ dg(t) \ .$

De plus $||x^*|| = V(g)$.

- (a) Montrer que (ii) \Rightarrow (i)
- (b) Soit x^* dans $(\mathcal{C}([0,1]))'$. Montrer qu'on peut trouver z^* forme linéaire sur $\mathcal{B}([0,1])$, l'ensemble des fonctions bornées sur [0,1], muni de la norme $\| \|_{\infty}$, telle que $\|x^*\| = \|z^*\|$ et

$$\forall f \in \mathcal{B}([0,1]) \qquad x^*(f) = z^*(f) \ .$$

(c) Soit $s \in]0,1]$ et χ_s la fonction caractéristique de $[0,s], \ (\chi_o=0).$ On définit g par

$$\forall s \in [0,1]$$
 $q(s) = z^*(\chi_s)$.

Montrer que g est à variation bornée.

(d) Soit $0 = t_o < t_1 < \cdots < t_n = 1$ une partition arbitraire de [0,1], et f dans $\mathcal{C}([0,1])$. On définit h par

$$h = \sum_{k=1}^{n} f(t_{k-1}) [\chi_{t_k} - \chi_{t_{k-1}}].$$

Montrer que h est dans $\mathcal{B}([0,1])$ et calculer $z^*(h)$.

(e) Montrer, en utilisant la définition de l'intégrale de Riemann-Stieljes que

$$z^*(f) = \int_0^1 f(t) \ dg(t) \ .$$

Conclure.

1. **Théorème de Weierstrass** : il existe une fonction continue de [0,1] sur \mathbb{R} qui n'est différentiable en aucun point de $[0,\frac{1}{2}]$.

Soit n un entier; on définit l'ensemble M_n de la façon suivante :

$$M_n = \{ x \in \mathcal{C}([0,1]) \mid \exists t_o \in [0,\frac{1}{2}] \text{ tel que } \sup_{0 < h < \frac{1}{n}} \frac{|x(t_o + h) - x(t_o)|}{h} \le n \}.$$

- (a) Montrer que M_n est fermé (topologie de la norme uniforme).
- (b) Montrer qu'on a démontré le théorème de Weierstrass dès qu'on a montré que

$$\mathcal{C}([0,1]) - \bigcup_{n=1}^{+\infty} M_n ,$$

est non vide.

- (c) Pour cela on va montrer que pour tout n, M_n est un sous-ensemble maigre ou non-dense, c'est à dire tel que $\overline{M_n}$ ne contient aucun ouvert non vide de $\mathcal{C}([0,1])$: pourquoi?
- (d) Montrer que pour tout polynôme z de $\mathcal{C}([0,1])$ et pour tout $\varepsilon > 0$, il existe une fonction y de $\mathcal{C}([0,1]) M_n$ telle que

$$\sup_{0 < t < 1} |z(t) - y(t)| \le \varepsilon.$$

(Voir indication 1.)

Conclure avec la densité de l'ensemble des polynômes dans $\mathcal{C}([0,1])$.

2. Un exemple d'opérateur linéaire, discontinu et fermé.

Soient $X = Y = \mathcal{C}([0,1])$, munis de la norme infinie (convergence uniforme). Soit D le sous-espace vectoriel de X défini par :

$$D = \{ x \in X \mid x' \in X \} \text{ (fonctions } \mathcal{C}^1) .$$

On définit T de la manière suivante : $T:D(T)\subset X\to Y$, et T(x)=x'.

- (a) Montrer que T est linéaire et non continu (Voir indication 2.)
- (b) Montrer que T est fermé.
- (c) Comment conciliez-vous ce résultat avec le théorème du graphe fermé?

3. Exemple d'espace qui n'est pas un espace de Baire

Soit $E = \mathcal{C}([0,1])$ muni de la norme N (norme L^1) suivante :

$$\forall f \in E$$
 $N(f) = \int_0^1 |f(t)| dt$.

- (a) Montrer que la boule unité B de E (pour la norme infinie notée ici $\| \ \|$) est fermée dans E (pour la norme N).
- (b) Montrer que les normes N et $\|\ \|$ ne sont pas équivalentes.
- (c) Montrer que B est d'intérieur vide pour N. (Voir indication 3.)
- (d) Montrer que E, muni de la norme N n'est pas un espace de Baire.
- (e) E muni de la norme $\| \|$ est-il un espace de Baire ?

Indications

1. Couper l'intervalle en sous-intervalles de longueur "petite" et sur chaque sous-intervalle approcher la fonction z par une fonction en "zig-zag", c'est à dite affine par morceaux telle que la pente de chaque segment soit supérieure à n. Voir dessin.

- 2. Considérer la suite de fonctions définie par $x_n(t) = t^n$.
- 3. Supposer que l'intérieur de B contient un point a. -a est aussi dans B et utiliser la convexité pour montrer que 0 est dans l'intérieur de B. Montrer que cela implique que les normes N et $\| \cdot \|$ sont équivalentes, d'où une contradiction.

Convergence faible

1. Soit E un espace vectoriel normé. On va démontrer que $S = \{x \in E \mid ||x|| = 1\}$ n'est jamais fermée pour la topologie faible $\sigma(E, E')$. Pour cela on montre que

$$\bar{S}^{\sigma(E,E')} = \{ x \in E \mid ||x|| \le 1 \}$$
.

Soit x_o un élément de E vérifiant $||x_o|| \le 1$ et montrons que tout voisinage V (pour la topologie faible) de x_o rencontre S. Pour cela, montrer que si V est un voisinage de x_o (pour la topologie faible), V contient une droite passant par x_o .

De la même manière, montrer que

$$U = \{ x \in E \mid ||x|| < 1 \} ,$$

n'est jamais ouvert pour la topologie faible $\sigma(E, E')$.

- 2. Topologie faible et convexité.
 - (a) Soit $C \subset E$ un convexe. Alors C est faiblement fermé pour la topologie faible $\sigma(E,E')$ si et seulement si il est fortement fermé.

Indication : on montre que E-C est ouvert, c'est-à-dire que chacun de ses points est contenu dans un ouvert faible. Pour cela on sépare strictement C d'un point quelconque x_o de E-C.

(b) Soit $\varphi: E \to]-\infty, +\infty]$ une fonction convexe sci (pour la topologie forte).

Montrer que φ est sci pour la topologie faible $\sigma(E, E')$.

Montrer que si $x_n \rightharpoonup x$ pour $\sigma(E, E')$ alors

$$\varphi(x) \leq \liminf \varphi(x_n)$$
.

- 3. Soient E et F deux espaces de Banach. On note E_f et F_f ces espaces munis de la topologie faible. Montrer que si T est un opérateur linéaire de E dans F les propositions suivantes sont équivalentes.
 - (a) T est continu de E dans F.
 - (b) T est continu de E_f dans F_f .
 - (c) T est continu de E dans F_f .

- 4. Montrer que les topologies forte et faible sur l^1 sont équivalentes.
- 5. Soit H un espace de Hilbert. Montrer que

$$u_n$$
 converge for
tement vers $u\Leftrightarrow \{\begin{array}{l} u_n \text{ converge faiblement vers } u, \text{ et} \\ \|u_n\| \text{ converge vers } \|u\| \end{array} \right.$

6. L'espace $L^1(\mathbb{R}, dx)$ n'est pas réflexif. Exhiber effectivement une suite de fonctions φ_n de $L^1(\mathbb{R}, dx)$ dont aucune sous-suite n'est faiblement convergente.

(Indication: On pourra prendre φ_n égale à la fonction caractéristique de [n, n+1]).

Théorème d'Ascoli - Topologie

1. Soient α un réel de]0,1], C, M deux constantes positives et [a,b] un intervalle de \mathbb{R} . On définit les sous-espaces suivants de $\mathcal{C}([a,b])$:

$$E_{C,M}^{\alpha}([a,b]) = \{ f \in \mathcal{C}([a,b]) \mid ||f||_{\infty} \leq M, \ \forall x,y \in [a,b] \ |f(x) - f(y)| \leq C|x - y|^{\alpha} \},$$

$$Lip^{\alpha}([a,b]) = \{ f \in \mathcal{C}([a,b]) \mid \exists C_f \geq 0, \ \forall x,y \in [a,b] \ |f(x) - f(y)| \leq C_f|x - y|^{\alpha} \}.$$

- (a) Montrer que $E^{\alpha}_{C,M}([a,b])$ est un compact de $\mathcal{C}([a,b])$.
- (b) On munit $Lip^{\alpha}([a,b])$ de la norme suivante :

$$||f||_{Lip^{\alpha}} = \sup_{x \in [a,b]} |f(x)| + \sup_{x, y \in [a,b]} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Montrer que $Lip^{\alpha}([a,b])$ muni de cette norme est un Banach.

- (c) Montrer que la boule unité de $Lip^{\alpha}([a,b])$ est relativement compacte (et même compacte) dans $\mathcal{C}([a,b])$.
- 2. Soient X topologique, Y métrique et (f_n) une suite équicontinue d'applications de X dans Y. Montrer que l'ensemble des points x de X pour lesquels $(f_n(x))$ est une suite de Cauchy de Y, est fermé dans X.
- 3. Soient X et Y deux espaces topologiques, Y compact. Soit f une application de $X \times Y$ dans un espace métrique Z. Montrer que f est continue si et seulement si elle vérifie les deux propriétés suivantes :
 - (a) pour $x \in X$, la fonction $f(x, .) : y \mapsto f(x, y)$ est continue de Y dans Z;
 - (b) lorsque y parcourt le compact Y, l'ensemble des fonctions f(.,y) de X dans Z est équicontinu.

Problème

Dans tout ce problème E désigne l'espace de Hilbert complexe l^2 ; le produit scalaire et la norme sont notés respectivement (.|.) et ||.||.

Soit $c=(c_n)_{n\geq 0}$ une suite complexe, on note A_c l'application linéaire de E dans $\mathbb{C}^{\mathbb{N}}$ qui, à tout élément $x=(x_n)_{n\geq 0}$ de E, associe la suite dont le n-ième terme est $\sum_{m\geq 0} c_{m+n}x_m$. Cette application est appelée **opérateur de Hankel** associé à la suite c. Lorsque l'image $A_c(E)$ est contenue dans E, on dit que l'opérateur A_c est continu.

- 1. Donner une condition nécéssaire et suffisante pour que A_c soit bien défini.
- 2. Soit f une fonction mesurable et bornée sur \mathbb{R} , périodique de période 2π . On note

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt \quad (n \in \mathbb{Z})$$

le n-ième coeficient de Fourier de f, et $c(f) = (c_n(f))_{n\geq 0}$ la suite des coefficients de Fourier de f d'indice **positif**.

(a) Etant donné un élément $x = (x_n)_{n \geq 0}$ de E, on appelle X une fonction complexe mesurable et périodique sur \mathbb{R} , de période 2π , de carré intégrable sur tout intervalle borné, dont le n-ième coeficient de Fourier est x_n pour $n \geq 0$ et 0 pour n < 0.

Montrer l'égalité, pour $n \geq 0$, du n-ième élément de la suite $A_{c(f)}$ et du n-ième coefficient de Fourier de la fonction $t \mapsto f(t)X(-t)$. A cet effet on étudiera d'abord le cas où il n'y a qu'un nombre fini de coordonnées x_n non nulles.

(b) En déduire que l'opérateur de Hankel $A_{c(f)}$ est continu, et qu'on a

$$||A_{c(f)}|| \leq ||f||_{\infty}$$
,

où $||A_{c(f)}||$ désigne la norme de $A_{c(f)}$ dans $\mathcal{L}(E, E)$.

- (c) On suppose que la fonction f est **continue**; montrer que l'opérateur de Hankel $A_{c(f)}$ est compact (considérer d'abord le cas d'un polynôme trigonométrique, puis utiliser le théorème de Stone-Weierstrass).
- 3. Si r est un réel de]0,1[, on note T_r l'opérateur continu de E dans E qui à l'élément $x=(x_n)_{n\geq 0}$ de E, associe l'élément $(r^nx_n)_{n\geq 0}$.
 - (a) Montrer que, pour tout x de E, T_rx converge fortement vers x lorsque r tend vers 1.

- (b) Soit $(x^{(k)})_{k\geq 0}$ une suite bornée d'éléments de E convergeant **faiblement** vers un élément x, et soit $(r_k)_{k\geq 0}$ une suite de nombres réels de]0,1[, convergeant vers 1. Montrer que la suite de terme général $T_{r_k}x^{(k)}$ converge faiblement vers x.
- (c) Soit u un opérateur compact de E dans E; les notations étant les mêmes que celles de la question précédente, montrer que la suite de terme général $u(x^{(k)} u(T_{r_k}x^{(k)}))$ converge fortement vers 0.
- (d) En déduire que si u est un opérateur compact de E dans E, l'opérateur uT_r converge vers u dans $\mathcal{L}(E,E)$ lorsque r tend vers 1. (On pourra utiliser un raisonnement par l'absurde).
- (e) Montrer que, si u est un opérateur compact de E dans E, les opérateurs uT_r et T_ruT_r convergent vers u dans $\mathcal{L}(E,E)$ lorsque r tend vers 1.
- 4. On se propose d'établir une réciproque du résultat de la question 1.c. On dira que l'opérateur de Hankel A_c est de rang fini si la suite c n'a qu'un nombre fini de termes non nuls.
 - (a) Montrer que tout opérateur de Hankel compact A_c est limite dans $\mathcal{L}(E, E)$ d'opérateurs de Hankel de rang fini. A cet effet on établira la formule

$$A_{T_rc} = T_r A_c T_r, \qquad 0 < r < 1 ,$$

et on montrera que A_{T_rc} est limite dans $\mathcal{L}(E,F)$ d'opérateurs de Hankel de rang fini.

(b) On admettra que, quel que soit l'opérateur de Hankel de type fini A_c , il existe une fonction continue g de période 2π vérifiant c(g) = c et $||A_c|| = ||g||_{\infty}$. En déduire que tout opérateur de Hankel compact est de la forme $A_{c(f)}$, où f est une fonction continue de période 2π .

1. Soit $H = L^2(I)$ où I est un intervalle ouvert de \mathbb{R} , muni de la mesure de Lebesgue; on peut définir formellement un opérateur A par $A = i\frac{d}{dx}$, mais A n'est pas défini sur tout H. On notera A_1 l'opérateur de domaine $\mathcal{C}_c^{\infty}(I)$ des fonctions \mathcal{C}^{∞} à support compact sur I, et A_2 celui dont le domaine est $H^1(I)$.

Trouver le spectre de chaque opérateur A_i et dire si les opérateurs A_i sont symétriques dans les cas suivants

- (a) I =]0, 1[
- (b) $I =]-\infty, +\infty[$
- (c) $I =]0, +\infty[$
- 2. Soit l'opérateur $A = \frac{d}{dx}$ dans $L^2([0,1])$ de domaine

$$\mathcal{D} = \{ f \in H^1([0,1] \mid f(0) = 0 \} ;$$

Quel est son spectre?

- 3. Soient V un espace de Hilbert sur \mathbb{R} et $T \in \mathcal{L}(V)$ un opérateur auto-adjoint, compact et défini positif. Le but de l'exercice étant de **démontrer** l'existence d'une base hilbertienne de vecteurs propres de T, on s'interdit ici d'utiliser les résulats du cours.
 - (a) i. Pour tout nombre réel $\theta \neq 0$, vérifier l'identité

$$||Tv||^2 = \frac{1}{4} \left\langle T(\theta v + \frac{1}{\theta} Tv), \theta v + \frac{1}{\theta} Tv \right\rangle - \frac{1}{4} \left\langle T(\theta v - \frac{1}{\theta} Tv), \theta v - \frac{1}{\theta} Tv \right\rangle ,$$

pour tout $v \in V$.

ii. On pose

$$\tau = \sup_{u \in V} \langle Tu, u \rangle$$

$$u \in V$$

$$||u|| = 1$$

Démontrer que

iii. On pose

$$\tau = \sup_{\substack{u \in V \\ \|u\| = 1}} \|Tu\|.$$

- iv. Etablir l'existence d'un élément $\bar{v} \in V$ tel que $\|\bar{v}\| = 1$ et $\tau = \langle T\bar{v}, \bar{v} \rangle$. En déduire qu'alors $T\bar{v} = \tau\bar{v}$.
- (b) i. Soit $v_1 \in V$ un vecteur propre unitaire de T associé la valeur propre $\mu_1 = \tau$. Montrer que l'espace vectoriel

$$V_1^{\perp} = \{ v \in V \mid \langle v, v_1 \rangle = 0 \}$$

est stable par T, c'est-à-dire $T(V_1^\perp)\subset V_1^\perp.$

ii. En déduire l'existence d'un vecteur propre v_2 de T tel que

$$v_2 \in V_1^{\perp}$$
, $Tv_2 = \mu_2 v_2$, $||v_2|| = 1$,

où on a posé

$$\mu_2 = \sup_{\substack{u \in V_1^{\perp} \\ \|u\| = 1}} \langle Tu, u \rangle .$$

iii. Plus généralement, obtenir par ce procédé l'existence d'une suite (μ_m) de valeurs propres et d'une suite de vecteurs propres (v_m) telles que

$$\begin{cases} \mu_m \le \mu_p & \text{pour tout } m \ge p \\ \langle v_m, v_p \rangle = \delta_{mp} & \text{(symbole de Kronecker) pour } m, p \ge 1 \end{cases}.$$

- (c) Démontrer que : $\lim_{m \to +\infty} \mu_m = 0$.
- (d) i. Pour tout $v \in V$, on pose

$$r_m(v) = v - \sum_{p=1}^m \langle v, v_p \rangle v_p$$
.

Démontrer que pour tout $v\in V,$ $\lim_{m\to +\infty}r_m(v)=0$. (On pourra observer que $\|r_m\|^2=\langle r_m(v),v\rangle.$

ii. Pour tout $v \in V$, établir les propriétés suivantes

$$\sum_{p=1}^{m} \langle v, v_p \rangle^2 \le ||v||^2 , \text{ pour tout } m \ge 1 ,$$

$$\sum_{p=1}^{\infty} \langle v, v_p \rangle^2 = ||v||^2 \text{ et } \sum_{p=1}^{\infty} \langle v, v_p \rangle v_p = v .$$

(e) Montrer que par le procédé décrit en 2., on obtient en fait **toutes** les valeurs propres de T, c'est-à-dire que si μ est une valeur propre quelconque de T, il existe un entier $m \geq 1$ pour lequel on a $\mu = \mu_m$ et que de plus l'ensemble

$$\mathcal{R}_{\mu} = \{ m \in \mathbb{N} \mid \mu_m = \mu \}$$

est fini

4. (a) Déterminer explicitement les valeurs propres et les fonctions propres du problème

$$\begin{cases} u \in V, \ \lambda \in \mathbb{R} \\ \int_0^1 u'v' \ dx = \lambda \int_0^1 uv \ dx, \text{ pour tout } v \in V \end{cases}$$

lorsque $V=H^1_o(0,1)$ et lorsque $V=H^1(0,1)$. (Observer que les fonctions propres sont nécessairement de classe \mathcal{C}^{∞} dans [0,1].)

- (b) En déduire qu'une série de la forme $\sum_{n\geq 1} a_n \sin n\pi x$ converge dans $L^2(0,1)$ (respectivement dans $H^1_o(0,1)$) si et seulement si $\sum_{n\geq 1} a_n^2 < +\infty$ (resp. $\sum_{n\geq 1} n^2 a_n^2 < +\infty$).
- (c) Soit $v \in H_o^1(0,1)$ défini par

$$v(x) = \sum_{n>1} a_n \sin n\pi x .$$

Justifier la dérivation terme à terme

$$v(x) = \pi \sum_{n \ge 1} n a_n \cos n \pi x$$
.