Lecture 10: Issues of Large Scale Optimization

- Motivating examples: compressive sensing, matrix completion, etc
- Sparsity-promoting L_1 regularization, nonsmoothness
- Quick introduction to subgradient and subdifferential calculus
- Linear convergence without strong convexity?

Large Scale Convex Optimization

minimize
$$f(x)$$
 (1) subject to $x \in X$

where $f(\cdot)$ is convex differentiable, $X \subseteq \mathbb{R}^n$ is a *nonempty* convex set.

- If X is well-represented, and f(x), $\nabla f(x)$, $\nabla^2 f(x)$ are easily computed, then (1) is efficiently solvable (e.g., via interior point methods in polynomial time).
- Second order methods (e.g., interior point methods) require solving a linear system of size $n \times n$, which can be slow when n is large (e.g., $> 10^5$).
- For large scale optimization problems, first order methods are preferred, since each iteration is cheaper, requiring only matrix-vector multiplications.
- First order methods typically preserve problem sparsity in large scale optimization problems.

Example: Routing in a Data Network

- Consider a directed graph with nodes $\{1,...,N\}$ and directed links $\mathcal{A} \subseteq \{1,...,N\} \times \{1,...,N\}$ connecting the nodes.
- ullet M pairs of nodes (called origin-destination (OD) pairs) labeled from 1 to M
- For each OD pair $w \in \{1, ..., M\}$, a set of directed loop-free paths from the origin to the destination, with traffic arrival rate $r_w > 0$.
- Label the given paths from 1 to P and let $\mathcal{P}_w \subseteq \{1, ..., P\}$ be the set of paths from the origin to the destination of OD pair w.
- For each link $(i,j) \in \mathcal{A}$, we are given $\bar{D}_{ij}(\boldsymbol{f}_{ij})$, the delay on this link when the flow it carries is equal to \boldsymbol{f}_{ij} , so that the total delay is

$$\bar{D}(\cdots, \boldsymbol{f}_{ij}, \cdots)_{(i,j)\in\mathcal{A}} = \sum_{(i,j)\in\mathcal{A}} \bar{D}_{ij}(\boldsymbol{f}_{ij}).$$

Routing in a Data Network, continued

Let

$$X = \{ (\boldsymbol{x}_1, ..., \boldsymbol{x}_P) \mid \boldsymbol{x}_1 \geq 0, ..., \boldsymbol{x}_P \geq 0, \sum_{p \in \mathcal{P}_w} \boldsymbol{x}_p = r_w, w = 1, ...M \}.$$

- Let E denote the $|A| \times P$ link-path incidence matrix associated with the given paths (i.e., an entry of E is 1 if the link corresponding to its row is on the path corresponding to its column, and is 0 otherwise).
- Then, the optimal routing problem may be formulated as the following nonlinear program:

minimize
$$D(x) = \bar{D}(Ex)$$
 subject to $x \in X$.

• Assume \bar{D}_{ij} is continuous on an interval $[0,C_{ij})$, tends to ∞ at C_{ij} (the "transmission capacity" of link (i,j)), and is strictly convex and smooth.

Routing in a Data Network, continued

• A well-known example is the M/M/1 queue delay function

$$\bar{D}_{ij}(\boldsymbol{f}_{ij}) = \boldsymbol{f}_{ij}/(C_{ij} - \boldsymbol{f}_{ij}).$$

- There may be more than one optimal routing since, although \bar{D} is strictly convex, D need not be.
- Given the large network size, many OD pairs and the large number of routes, the routing problem is a large scale convex optimization problem, which may admit multiple optimal path flows.

Example: MRI, Compressive Sensing

In a MRI system, we have measurement in the form of

$$b = Ax + n$$

where $x \in \mathbb{C}^n$ is the image of interest, $n \in \mathbb{C}^m$ is measurement noise, and $A \in \mathbb{C}^{m \times n}$ is the measurement matrix (partial Fourier Transform matrix)

• Large under-determined linear system $m \ll n$, to reduce data volume.

Figure 1: MRI, Sampling points, Image

MRI and Compressive Sensing

- ullet x is typically sparse \Rightarrow finding the sparsest solution
- L₀-norm minimization

where $\lambda > 0$ is a penalty parameter

- Nonconvex, difficult to solve
- Compressive sensing: L_1 -norm minimization

$$\underset{{\boldsymbol x} \in \mathbb{R}^n}{\mathsf{minimize}} \ \lambda \|{\boldsymbol x}\|_1 + \frac{1}{2} \|{\boldsymbol A}{\boldsymbol x} - {\boldsymbol b}\|_2^2$$

which is a large scale (non-smooth) convex optimization problem.

• Under suitable conditions (e.g., A is random), L_0 minimization $\Leftrightarrow L_1$ minimization

MRI and **Compressive Sensing**

- Pick 25% coefficients at random (with bias)
- Reconstruct image from the 25% coefficients

MRI and **Compressive Sensing**

Use 1/4 Fourier coefficients

Figure 2: Original vs. Reconstructed Image (courtesy of Y. Zhang, Rice University)

L_1 -minimization: Sparsity-Inducing

The optimality condition for

$$\underset{{\boldsymbol x} \in \mathbb{R}^n}{\mathsf{minimize}} \ \lambda \|{\boldsymbol x}\|_1 + \frac{1}{2} \|{\boldsymbol A}{\boldsymbol x} - {\boldsymbol b}\|_2^2$$

is $-oldsymbol{A}'(oldsymbol{A}oldsymbol{x}^*-oldsymbol{b})\in\lambda\partial\|oldsymbol{x}^*\|_1$, or

- $\begin{array}{ll} \bullet & -\lambda \leq (\boldsymbol{A}'(\boldsymbol{A}\boldsymbol{x}^* \boldsymbol{b}))_i \leq \lambda \\ \bullet & \text{if } \boldsymbol{x}_i^* > 0 \text{, then } (\boldsymbol{A}'(\boldsymbol{A}\boldsymbol{x}^* \boldsymbol{b}))_i = -\lambda \\ \bullet & \text{if } \boldsymbol{x}_i^* < 0 \text{, then } (\boldsymbol{A}'(\boldsymbol{A}\boldsymbol{x}^* \boldsymbol{b}))_i = \lambda \end{array}$

Thus, L_1 minimization is sparsity-inducing

$$-\lambda < (\boldsymbol{A}'(\boldsymbol{A}\boldsymbol{x}^* - \boldsymbol{b}))_i < \lambda \quad \text{implies} \quad \boldsymbol{x}_i^* = 0.$$

 \Rightarrow The larger the value of λ , the sparser is the solution x^* .

Subgradient

A vector g is a subgradient of f (not necessarily convex) at x if

$$f(oldsymbol{y}) \geq f(oldsymbol{x}) + oldsymbol{g}'(oldsymbol{y} - oldsymbol{x})$$
 for all $oldsymbol{y}$

- ullet subgradient gives affine global underestimator of f
- if f is convex, it has at least one subgradient at every point in $\operatorname{\mathbf{relint}}\operatorname{\mathbf{dom}} f$
- ullet if f is convex and differentiable, $\nabla f(oldsymbol{x})$ is a subgradient of f at $oldsymbol{x}$

Example: $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

Subdifferential

The set of all subgradients of f at x is called the **subdifferential** of f at x, written $\partial f(x)$

- $\partial f(x)$ is a closed convex set
- $\partial f(x)$ nonempty (if f convex, and finite near x)
- $\partial f(x) = \{\nabla f(x)\}\$ if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Example: $f(x) = |x_1| + |x_2|$

Optimality condition: x^* is a minimizer of $\min f(x)$ iff $0 \in \partial f(x^*)$.

Subdifferential Calculus

Assumption: all functions are finite near $oldsymbol{x}$

- $\partial f(x) = \{\nabla f(x)\}\$ if f is differentiable at x
- scaling: $\partial(\alpha f) = \alpha \partial f$ (if $\alpha > 0$)
- addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$ (RHS is addition of sets)
- affine transformation of variables: if g(x) = f(Ax + b), then $\partial g(x) = A^T \partial f(Ax + b)$
- pointwise maximum: if $f = \max_{i=1,...,m} f_i$, then

$$\partial f(\boldsymbol{x}) = \mathbf{Co} \bigcup \{ \partial f_i(\boldsymbol{x}) \mid f_i(\boldsymbol{x}) = f(\boldsymbol{x}) \},$$

i.e.,, convex hull of union of subdifferentials of 'active' functions at x

Compressive Sensing: Other Convex Formulations

Variations of formulations

- $\min_{m{x} \in \mathbb{C}^n} \|m{x}\|_1$, subject to: $m{A}m{x} = m{b}$
- $\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{x}\|_1$, subject to: $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}; \boldsymbol{x} \geq 0$
- $\min_{m{x} \in \mathbb{R}^n} \|m{A}m{x} m{b}\|_2^2$, subject to: $\|m{x}\|_1 \leq
 u$
- The interior point methods are ineffective. The classical first order methods are preferred, such as the coordinate descent, the alternating direction method of multipliers, LASSO - Least Absolute Shrinkage and Selection Operator
- Note A is a fat matrix, thus not full column rank \Rightarrow existing (rate of) convergence theory does not apply.
- Non-smoothness is involved in the objective function, "causing problem" to the coordinate descent method??

Coordinate Descent for Compressive Sensing

Consider the nonsmooth formulation:

$$\min_{m{x} \in \mathbb{R}^n} \lambda \|m{x}\|_1 + \frac{1}{2} \|m{A}m{x} - m{b}\|_2^2$$

- Coordinate descent algorithm (CD): iteratively and cyclically minimize wrt each variable
- Soft thresholding: let $x^+ = \arg\min_{y \in \mathbb{R}} \lambda |y| + \frac{1}{2} (y-x)^2$, then

$$x^{+} = \begin{cases} x + \lambda, & x \le -\lambda \\ 0, & -\lambda \le x \le \lambda \\ x - \lambda, & x \ge \lambda \end{cases}$$

• Simple, fast, sparsity-inducing ... how about convergence??

Coordinate Descent Method

Figure 3: CD method for smooth/non-smooth minimization

Non-smoothness can cause the CD method to get stuck!

Example: Matrix Completion

- ullet Restore an image $oldsymbol{M} \in \mathbb{R}^{m imes n}$ using a subset E of pixel values
- M is a large matrix, but low rank (say rank $r \ll \min\{m, n\}$)
- ullet Matrix completion: assume M is rank r, let $oldsymbol{X} \in \mathbb{R}^{m imes r}$, $oldsymbol{Y} \in \mathbb{R}^{n imes r}$, solve

minimize
$$_{\boldsymbol{X},\boldsymbol{Y},\boldsymbol{Z}} \|\boldsymbol{Z} - \boldsymbol{X}\boldsymbol{Y}'\|_2^2$$
 subject to $\boldsymbol{Z}_{ij} = \boldsymbol{M}_{ij}, \quad (i,j) \in E.$ (2)

- ullet Can do coordinate descent by cyclically minimizing $oldsymbol{X}, oldsymbol{Y}, oldsymbol{Z}$.
- ullet Nuclear norm minimization: let P_E denote projection to the entries in E

$$\min_{\boldsymbol{Z}} \operatorname{rank}(\boldsymbol{Z}) + \lambda \|P_E(\boldsymbol{Z} - \boldsymbol{M})\|^2 \Rightarrow \min_{\boldsymbol{Z}} \|\boldsymbol{Z}\|_* + \lambda \|P_E(\boldsymbol{Z} - \boldsymbol{M})\|^2.$$

- ⇒ relaxation to a large scale convex optimization problem
- ullet Related to the Netflix problem: M contains the movie rankings from customers

Matrix Completion

• Under suitable conditions (e.g., randomly generated low rank matrix M, $|E| \geq O^*(nr)$, ignoring \log factors), the nuclear norm minimization leads to exact recovery of M w.h.p.. That is, matrix completion via convex optimization

- Nuclear norm minimization \Leftrightarrow Semidefinite programming, slow for large m, n.
- Solving the nonconvex formulation (2) using CD is much more efficient; also has exact recovery property?
- Special case: $E = \{1, 2, ..., m\} \times \{1, 2, ..., n\}$. Then the nonconvex formulation (2) becomes

$$\min_{\boldsymbol{X} \in \mathbb{R}^{m \times r}, \boldsymbol{Y} \in \mathbb{R}^{n \times r}} \|\boldsymbol{M} - \boldsymbol{X} \boldsymbol{Y}'\|^2 \tag{3}$$

whose optimal solution is given by the SVD of $oldsymbol{M}$.

• Surprise(?): For almost all initial values of X, Y, the CD method for (3) converges to the global optimal solution (i.e., the SVD solution) linearly.

Box Constrained Convex QP

Consider a convex quadratic minimization problem over \mathbb{R}^n_+

minimize
$$\frac{1}{2}x'Ax + b'x$$
 subject to $x \in X$ (4)

If $X = \mathbb{R}^n$, we can solve (4) by a simple coordinate descent (Gauss-Seidel type) method: write $A = A_{\text{low}} + D + A_{\text{upp}} \succeq 0$ (assume $D \succ 0$) and iterate

$$(\mathbf{A}_{\text{low}} + \mathbf{D})\mathbf{x}^{r+1} + \mathbf{A}_{\text{upp}}\mathbf{x}^r + \mathbf{b} = 0$$

$$\Rightarrow \mathbf{x}^{r+1} = -(\mathbf{A}_{\text{low}} + \mathbf{D})^{-1}(\mathbf{A}_{\text{upp}}\mathbf{x}^r + \mathbf{b}).$$

If $X = \mathbb{R}^n_+$, the coordinate descent (CD) algorithm becomes

$$m{x}^{r+1} = [m{x}^{r+1} - (m{A}_{\mathrm{low}} + m{D}) m{x}^{r+1} - m{A}_{\mathrm{upp}} m{x}^r - m{b}]_+$$

where $[u]+=\max\{0,u\}$; related to SOR, block SOR.

Convex QP

Consider a convex quadratic minimization problem over \mathbb{R}^n_+

minimize
$$\frac{1}{2} x' A x + b' x$$
 subject to $x \in X$

- CD has many applications in image processing, MRI, ... Convergence was known for symmetric $A \succ 0$, with unique optimal solution
- Convergence for the case symmetric $A \succeq 0$ was unresolved for many years ..., unbounded optimal solution set

$$X^* = \{ \boldsymbol{x}^* \mid \boldsymbol{x}^* = \operatorname{proj}_X[\boldsymbol{x}^* - \alpha \nabla f(\boldsymbol{x}^*)] \}, \quad \alpha > 0$$

with $\operatorname{proj}_X[\cdot] = \operatorname{projection}$ to X.

 Studied by Hildreth, Cryer, Mangasarian, Pang, ... in various contexts since 1950's.

Gradient Projection Method

Given ${m x}^0 \in X$, generate

$$\boldsymbol{x}^{r+1} = \operatorname{proj}_{X}[\boldsymbol{x}^{r} - \alpha^{r} \nabla f(\boldsymbol{x}^{r})], \quad r = 0, 1, 2, \dots$$

where $\alpha^r > 0$ is the stepsize (chosen as constant or by Armijo-like rule).

Convergence for the non-degenerate case $A \succ 0$: \exists a unique solution x^* satisfying $x^* = \text{proj}_X[x^* - \alpha^r \nabla f(x^*)]$, so

$$\|\boldsymbol{x}^{r+1} - \boldsymbol{x}^*\| = \|\operatorname{proj}_{X}[\boldsymbol{x}^r - \alpha^r \nabla f(\boldsymbol{x}^r)] - \operatorname{proj}_{X}[\boldsymbol{x}^* - \alpha^r \nabla f(\boldsymbol{x}^*)]\|$$

$$\leq \|(\boldsymbol{x}^r - \boldsymbol{x}^*) - \alpha^r (\nabla f(\boldsymbol{x}^r) - \nabla f(\boldsymbol{x}^*))\|$$

$$= \|(\boldsymbol{I} - \alpha^r \boldsymbol{A})(\boldsymbol{x}^r - \boldsymbol{x}^*)\|$$

$$\leq \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right) \|\boldsymbol{x}^r - \boldsymbol{x}^*\| = \left(1 - \frac{2}{\kappa + 1}\right) \|\boldsymbol{x}^r - \boldsymbol{x}^*\|.$$

Convergence rate depends on $\kappa = \lambda_{\max}/\lambda_{\min}$, but *independent* of dimension. Requires $O(1)\kappa \ln(1/\epsilon)$ to find an ϵ -relative optimal solution.