1 公式

1.1 向量

$$\begin{split} |\vec{u}| &= \sqrt{\vec{i}^2 + \vec{j}^2 + \vec{k}^2} \quad a_x = a \cos \theta \quad b_x = b \sin \theta \\ |\hat{u}| &= \frac{u}{|\vec{u}|} \quad |\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta \\ \vec{a} \cdot \vec{b} &= a_x b_x + a_j b_j + a_z b_z \quad \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \\ \vec{a} \times \vec{b} &= \vec{i} \, \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \, - \vec{j} \, \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \, + \vec{k} \, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{split}$$

1.2 微積分

$$\frac{d}{dx}x_t = v_t \qquad \frac{d}{dx}v_t = a_t \qquad \frac{d}{dx}log_e|x| = \frac{1}{x}$$

$$\frac{d}{dx}e^x = e^x \qquad \frac{d}{dx}a^x = a^xlog_ea$$

$$\int v_t = x_t \qquad \int a_t = v_t$$

$$\int \frac{1}{x}dx = log_e|x| \qquad \int a^xdx = \frac{a^x}{log_e} + c$$

$$\int e^xdx = e^x$$

1.3 靜電力庫倫定律

基本電荷 $e = 1.602 \times 10^{-19}C$ $k_e = 8.99 \times 10^9 \frac{N \cdot m^2}{c^2} = \frac{1}{4\pi\varepsilon_0}$ $\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$ $\vec{E} = \frac{\vec{F}}{\vec{e}} = k_e \frac{q_1}{r^2} \frac{N}{G}$

電荷	符號	單位
	q	c
線電荷密度	λ	$\frac{C}{m}$
面電荷密度	σ	$\frac{C}{m^2}$
體電荷密度	Q	$\frac{C}{m^3}$

220年9月14日 星期一 下午6:54

$$dq = \lambda ds$$

$$dE = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{\lambda ds}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{\lambda ds}{Z^2 + R^2}$$

 $|E| = \frac{4kQ}{\pi^{-2}}$

1.4 基礎電路

$$I = \frac{Q}{t} = \frac{n \cdot A \cdot L \cdot e}{\frac{L}{V_d}} = nA_eV_d$$

e: 載子的單位電量 n: 每單位體積載子數

A: 截面積 L: 長度

$$\begin{split} V_t &= E - V_r \qquad R = \rho \times \frac{l}{A} \\ P &= \frac{W}{t} = \frac{V \times Q}{t} = V \times I = \frac{V^2}{R} = I^2 R \end{split}$$

串聯電路

 $E = V_1 + V_2 + \dots + V_n$ $R_T = R_1 + R_2 + \dots + R_n$ 並聯電路

$$E = V_1 = V_2 = \dots = V_n \qquad I_n = \frac{E}{R_n} = G_n \times E$$

$$G_T = G_1 + G_2 + \dots + G_n$$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$\begin{cases}
Junction & I_1 + I_2 = I_3 \\
£ 2 2 2 2 3 & 10 - I_1 \cdot 1 + 5 - I_1 \cdot 2 = 0 \\
£ 3 2 2 2 & 13 - 5 = 0
\end{cases}$$

$$\begin{split} R_{ab} &= \frac{(R_1 + R_2 \times R_3)}{R_1 + R_2 + R_3} \quad R_{bc} = \frac{(R_2 + R_3 \times R_1)}{R_1 + R_2 + R_3} \quad R_{ca} = \frac{(R_3 + R_1 \times R_2)}{R_1 + R_2 + R_3} \\ R_a &= \frac{R_2 R_3}{R_1 + R_2 + R_3} \quad R_b = \frac{R_3 R_1}{R_1 + R_2 + R_3} \quad R_c = \frac{R_1 R_2}{R_1 + R_2 + R_3} \\ R_1 &= \frac{R_a R_b + R_b R_c + R_c R_a}{R_a} \quad R_2 = \frac{R_a R_b + R_b R_c + R_c R_a}{R_b} \\ R_3 &= \frac{R_a R_b + R_b R_c + R_c R_a}{R_c} \end{split}$$

惠斯同電橋

 $R_2 \times R_s = R_1 \times R_x$

電壓表倍增器 (倍增率 m)(串聯) $R_m = R_v \times (m-1)$ 電流表分流器 (倍增率 n)(並聯) $R_s = \frac{R_A}{n-1}$

1.5 高斯定律

通量 $\phi(flux)$ $\phi = \vec{V} \cdot \vec{A} = V \cdot A \cos \theta$

V為流速 A為面積向量 θ 為與 \overline{A} 夾角

電場通量 ϕ $\phi = \sum \vec{E} \cdot \Delta \vec{A} (\frac{N \cdot m^2}{C})$

高斯定律通過高斯面之總電通量

與該曲面之靜電荷 q_{enc} 之間關係 $\phi = \frac{\sum q_{enc}}{c_n}$

如果 q_{enc} 為正,淨通量向外 如果 q_{enc} 為負,淨通量向內 $\phi = \oint \vec{E} \cdot d\vec{A}$

 $\phi \propto E \propto$ 通過每單位面積電場線數目

Case 1: 球體為導體 (R 為球半徑)(屏蔽效應)

 $r \ge R$ $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$

r < R E = 0

Case 2: 球體為非導體 (R 為球半徑 ρ 為體電荷密度)

$$r > R$$
 $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} = \frac{\rho(\frac{4}{3}\pi R^3)}{4\pi\varepsilon_0} \frac{1}{r^2} = \frac{\rho R^3}{3r^2\varepsilon_0}$

$$r < R \ E = \frac{1}{4\pi\varepsilon_0} \frac{q'}{r^2} = \frac{\rho(\frac{4}{3}\pi R^3) \frac{r^3}{R^3}}{4\pi\varepsilon_0} \frac{1}{r^2} = \frac{\rho r}{3\varepsilon_0}$$
 高斯轉庫倫
$$E = \frac{1}{4\pi\varepsilon_0} \frac{q_{enc}}{r^2} \ F = \frac{1}{4\pi\varepsilon_0} \frac{q \cdot q_{enc}}{r^2}$$

翻譯 2

elect	ric charge	電荷	electric file	·d 電場	
opposites attract		異性相吸			
likes repel		同性相斥			
СО	nductor	導體	insulator 非導體		
semi	conductor	半導體	linear charg	charge 線電荷	
surfa	ace charge	面電荷	volume charg	rge 體電荷	
electromotive force/emf		電動勢 ε			
voltage drop		電壓降			
terminal voltage		端電壓			
node	節點 b	ranch	支路 loop	迴路	
	mesh	網目	multiplier	multiplier 倍增器	
series circuit		串聯電路			
parallel circuit		並聯電路			
	flux	通量	electric flu	x 電場通量	

