Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

(Multisim)

(úloha pro seznámení s prostředím MULTISIM 12.0)

Popis úlohy:

Cílem úlohy je potvrdit často opomíjený, byť triviální fakt ovlivnění snímané stejnosměrné veličiny (v našem případě napětí na R₃) střídavým rušivým signálem, je-li v příslušné části obvodu nelineární prvek či soustava takových prvků, kde může dojít k částečnému usměrnění tohoto rušivého signálu.

Zdroj V_1 je zdrojem měřeného napětí (model výstupu senzoru se stejnosměrným napěťovým výstupem), zdroj V_2 je zdroj střídavého rušivého napětí, superponovaného na užitečný signál z V_2 . K této superpozici může v praxi dojít např. kapacitní či indukční vazbou ze zdroje střídavého signálu.

Sada prvků D_1 , D_2 a R_3 tvoří model typického ochranného obvodu používaného na většině vstupů analogových integrovaných obvodů. Princip činnosti této ochrany je následující: je-li napětí na vstupu obvodu v rozsahu definovaném nulovým potenciálem (D_1) a napájecím napětím obvodu $V_{\rm CC}$ (D_2), PN přechody obou diod jsou polarizované v závěrném směru a přítomnost diod se v obvodu (zanedbáme-li proud diody v závěrném směru a parazitní kapacitu PN přechodu) neprojeví. V opačném případě se jeden z přechodů otevře a omezí tak napětí na navazujících prvcích v obvodu na hodnotu $V_{\rm CC}$ + $U_{\rm D}$, resp. - $U_{\rm D}$, kde $U_{\rm D}$ je napětí na PN přechodu diody v propustném směru. Kombinace C_1 , R_3 pak představuje model dalších navazujících prvků v obvodu, které zatěžují zdroje měřeného i rušivého napětí.

Úkol měření:

- V prostředí MULTISIM vytvořte model vstupního obvodu měřicího přístroje dle obr. 1.1. Připojte zdroje V₁ a V₂ (model zdroje stejnosměrného napětí s rušivou střídavou složkou lze vytvořit v prostředí MULTISIM elegantněji, avšak použité řešení je názornější). Připojte měřicí přístroje XMM1 (virtuální multimeter) a XSC1 (virtuální osciloskop).
- 2. Určete velikost stejnosměrné složky (nastavení XMM1 "DC") a efektivní hodnotu střídavé složky (nastavení XMM1 "AC") napětí na R_3 pro kombinace hodnot U_{V1} a U_{V2} , uvedené v Tab. 1.1.
- 3. Zakreslete do grafu průběhy napětí na R_3 (U_{R3DC}) pro poslední sloupec tabulky.
- 4. Diskutujte vliv napětí $U_{\rm V2}$ na velikost stejnosměrné složky napětí na R_3 ($U_{\rm R3DC}$). Jak závisí míra tohoto vlivu na hodnotě napětí $U_{\rm V1}$ vzhledem k mezním hodnotám pracovního rozsahu omezovače D_1 , D_2 ? Čím je způsobeno, že hodnota napětí $U_{\rm R3DC}$ nesouhlasí přesně s hodnotou $U_{\rm V1}$ ani pro $U_{\rm V2}$ = 0 V?

Tab 1.1

$U_{\mathrm{V1}}\left(\mathrm{V}\right)$	0	0	0	1	1	1	4,5	4,5	4,5
$U_{\mathrm{V2}}\left(\mathrm{V}\right)$	0	0,5	1	0	0,5	2	0	0,5	2
U_{R3DC} (V)									
U _{R3AC} (V)									

Obr. 1.1 Schéma obvodu pro vyšetření vlivu souhlasného střídavého rušivého napětí na výsledek měření stejnosměrného napětí

Experiment s pásmovou zádrží

(Multisim + volitelně přípravek)

Popis úlohy:

Aktivní pásmová zádrž s dvojitým T-článkem se používá k odstranění nežádoucí harmonické komponenty ze signálu. Lze odvodit, že pro správnou funkci obvodu musí být odpory rezistorů R_1 a R_2 shodné a rovné dvojnásobku velikosti odporu rezistoru R_3 , a obdobně musí být shodné velikosti kapacity kondenzátorů C_1 a C_2 , velikost kapacity kondenzátoru C_3 je polovinou velikosti kapacity kondenzátoru C_1 či C_2 . Tohoto souběhu se v praxi při realizaci z diskrétních prvků dosahuje kusovým výběrem součástek. Činitel jakosti obvodu lze ovlivnit nastavením zpětné vazby OZ (R_4) . Od určitého nastavení R_4 je obvod nestabilní a kmitá.

R3 ≶1.1kΩ XMM1 C2 C1 U1 100nF 100nF R2 R1 V1 R4 2.2kΩ 2.2kΩ 1 Vpk C3 2000 Hz 70 % 200nF Key=A

Obr. 2.1 Pásmová zádrž s dvojitým T-článkem

Úkol měření:

- Vytvořte v prostředí MULTISIM schéma pásmové zádrže s dvojitým T-článkem dle obrázku 2.1. Vyzkoušejte ovládání potenciometru R₄ z klávesnice během simulace.
- 2. Experimentálně zjistěte mez stability obvodu v závislosti na poloze R₄. Hodnotu R₄ na mezi stability zapište.
- 3. Pro polohy R4 60 %, 80 % a 100 % určete:
 - a. přenos obvodu v rozsahu 100 Hz 2 kHz (použijte funkci AC Analysis, výsledky přibližně zakreslete do společného obrázku)
 - b. vysvětlete, proč rozsah nezačíná od 0 Hz

- c. střední kmitočet v zatlumeném pásmu f_s a útlum takového vstupního signálu (pro odečítání hodnot použijte funkci lupy a kurzory v předešlém grafu. V případě potřeby upravte rozsah či počet bodů analýzy).
- d. činitel jakosti dle definice

$$Q = \frac{f_s}{f_{3dBH} - f_{3dBD}}$$
 (2.1)

Pro polohy R_4 20% a 40% určete kmitočet vlastních kmitů obvodu. Vyzkoušejte při tom použití čítače (Frequency Counter). Seznamte se s jeho nastavitelnými parametry a s jejich významem (komparační úroveň a citlivost).

- 4. Určete experimentálně limitu kmitočtu vlastních kmitů obvodu pro $R_4 \rightarrow R_{4\text{mez_stab}}$ a porovnejte s f_s z bodu 3.
- 5. Pomocí "Analysis" "Fourier Analysis" zobrazte amplitudovou frekvenční charakteristiku obvodu pro nastavení R₄ 20 % a 80 % (zachovejte nastavení zdroje dle obrázku 2.2). Zakreslete <u>přibližný</u> průběh spekter v obou případech.

R3 ≶1.1kΩ XMM1 C2 C1 ╂ U1 ╂ 100nF 100nF R2 R1 R4 2.2kΩ 2.2kΩ C3 200nF Key=A

Obr. 2.2 Připojení čítače do obvodu

Přístrojový zesilovač (Multisim + přípravek)

Obr. 3.1 Přístrojový zesilovač

Popis úlohy:

Přístrojový zesilovač je určen k zesílení *rozdílového napětí* $u_D = u_2 - u_1$ při potlačení *souhlasného napětí* $u_C = (u_1 + u_2)/2$. Je tvořen dvojicí symetricky zapojených vstupních zesilovačů napětí s velkým vstupním odporem a symetrickým rozdílovým zesilovačem s asymetrickým výstupem.

Rozdílové zesílení G_D zesilovače je určeno poměrem jeho výstupního napětí k rozdílovému vstupnímu napětí. Za předpokladu ideálních vlastností operačních zesilovačů je rozdílové zesílení

$$G_D = \frac{u_3}{u_D} = \frac{R_4}{R_3} \left(1 + 2\frac{R_2}{R_1} \right)$$

Souhlasné zesílení G_C zesilovače je určeno poměrem jeho výstupního napětí k souhlasnému vstupnímu napětí, které působí současně na obě vstupní svorky zesilovače.

Činitel potlačení souhlasného napětí CMR je definován poměrem rozdílového a souhlasného zesílení

$$CMR = 20\log\frac{G_D}{G_C}[dB]$$

Ideální přístrojový zesilovač má $G_C \rightarrow 0$ a CMR $\rightarrow \infty$.

Statické vlastnosti zesilovače jsou dány vstupními napětími a proudy operačních zesilovačů a jejich nelinearitou.

Výstupní ofset zesilovače je určen jeho výstupním napětím při uzemněných vstupech.

Dynamické vlastnosti zesilovače jsou definovány mezním kmitočtem, mezním výkonovým kmitočtem, dobou náběhu a rychlostí přeběhu výstupního napětí.

Mezní kmitočet f_m je kmitočet vstupního sinusového napětí, při kterém klesne zesílení zesilovače o - 3 dB vzhledem k stejnosměrnému zesílení. Pro mezní kmitočet zesilovače platí

$$f_m \approx \frac{f_T}{G_D}$$

kde f_T je tranzitní kmitočet operačního zesilovače, při kterém je rozdílové zesílení $G_D = 1$. Doba náběhu T_n je doba potřebná ke změně výstupního napětí zesilovače z 0,1 na 0,9 své ustálené hodnoty při skokové změně vstupního napětí. Pro dobu náběhu platí

$$T_n = \frac{0.35}{f_m}$$

 $\textit{Mezní výkonový kmitočet } f_p$ je kmitočet vstupního sinusového napětí, při kterém ještě nedochází ke zkreslenému jeho výstupního napětí. Při rozkmitu výstupního napětí U_m je určen rychlostí přeběhu výstupního napětí S

$$S = \pi f_m U_m$$

Úkol měření (praktické části proveďte dle možností jak na modelu v Multisimu, tak na reálném přípravku):

- 1. Výpočtem určete hodnoty rezistoru R_1 pro rozdílová zesílení $G_D = 1, 2, 4, 8$ při $R_2 = 10$ kOhm, $R_3 = R_4 = 20$ kOhm.
- 2. Změřte výstupní ofset rozdílového zesílení zesilovače pro jmenovitá rozdílová zesílení $G_{\rm D}=2,4,8.$
- 3. Změřte kmitočtovou charakteristiku rozdílového zesílení zesílovače pro rozdílová zesílení G_D = 2, 4, 8 a určete mezní kmitočty, při kterých klesnou zesílení o 3 dB vzhledem k stejnosměrnému zesílení. Amplitudu vstupního rozdílového napětí volte tak, aby rozkmit výstupního napětí zesilovače bylo maximálně ± 1 V.
- 4. Změřte kmitočtovou charakteristiku souhlasného zesílení zesílovače pro rozdílová zesílení G_D = 2, 4, 8. Určete kmitočtovou závislost činitele potlačení CMR. Amplitudu vstupního souhlasného napětí volte tak, aby rozkmit výstupního napětí zesilovače bylo maximálně ± 1 V.
- 5. Změřte dobu náběhu a rychlost přeběhu výstupního napětí zesilovače pro rozdílová zesílení G_D = 2, 4, 8. Amplitudu vstupního obdélníkového napětí volte tak, aby rozkmit výstupního napětí byl maximálně ± 1 V.
- 6. Naměřené výsledky porovnejte s vypočtenými hodnotami za předpokladu, že tranzitní kmitočet operačních zesilovačů je $f_T = 1$ MHz a mezní rychlost přeběhu je S = 1 V/us.

Modelování parazitních vlastností aktivních i pasivních prvků

(Multisim)

Popis úlohy:

Na obrázku 4.1 je zjednodušené schéma stabilizátoru napětí, využívajícího Zenerovu diodu D_1 . Její napěťový úbytek je zesílen na požadovanou hodnotu (cca 10 V) pomocí neinvertujícího zesilovače, realizovaného operačním zesilovačem U_2 . Protože dioda D_1 je přes R_3 protékána proudem z výstupu zesilovače, je v ustáleném stavu činitel stabilizace napětí velmi vysoký.

Pro korektní funkci obvodu je zapotřebí jeho správné spuštění, tj. dosažení záporné zpětné vazby OZ. V praxi se na správném nastartování obvodu podílí řada vlivů, mj. napěťový ofset OZ, vstupní klidové proudy OZ a jejich nesymetrie či parazitní kapacity jednotlivých částí obvodu.

Úkol měření:

 Pro schéma stabilizovaného zdroje napětí s obecným operačním zesilovačem U₂ na obr. 4.1 vyzkoušejte chování obvodu (zjistěte ustálenou hodnotu napětí na výstupu OZ U₂) pro jeho vstupní napěťový offset -10 mV a +10 mV.

Tab. 4.1

U_{U2off} (mV)	50	-50
U_{U2out} (V)		

2. Nahraďte operační zesilovač U₂ bez napájení OZ s napájením dle obrázku 2.2 (vyzkoušejte funkci REPLACE v popisu OZ) a upravte velikost rezistoru R₃ a R₁ i velikost Zenerova napětí ZD D₁ dle obr. 4.2 tak, aby výstupní napětí stabilizátoru mělo hodnotu cca 12 V. Určete dobu náběhu výstupního napětí a vliv offsetu +/-1 mV v tomto případě. Porovnejte s výsledky z bodu 1. a zdůvodněte rozdíly.

Tab. 4.2

$U_{ m U2off}$ (mV)	50	-50
$T_{\rm n}$ (ms)		
$U_{ m U2out}$ (V)		

- 3. Ve schématu dle obr. 4.2 pomocí "Analysis" "DC Operating Point" určete napětí na středním bodě děliče (R₁, R₂) a na ZD D₁ v ustáleném stavu. Porovnejte výsledky s výsledky klasické simulace, naměřenými voltmetrem XMM1.
- Pomocí "Analysis" "DC Sweep" určete napětí na výstupu OZ U₂ v obr. 4.2 v ustáleném stavu pro napětí zdroje V₁ v rozmezí 5 V až 20 V. Ve výsledném grafu vyzkoušejte funkci zoom.

Obr. 4.1 Schéma stabilizátoru napětí 10 V se zpětnou vazbou

Obr. 4.2 Schéma stabilizátoru napětí 12 V se zpětnou vazbou a s modelem napájení použitého OZ

5. Porovnejte předchozí průběhy z měření 4 a výsledné hodnoty napětí v ustáleném stavu z měření 3 s případem, kdy je ZD napájena přímo ze zdroje V₁ (viz obr. 4.3).

Obr. 4.3 Schéma stabilizátoru napětí 12V s přímo napájenou ZD

- 6. Pro schéma na obr. 4.3 vyzkoušejte analýzu Monte Carlo pro hodnotu R3 s tolerancí +/- 3 kΩ. Opět nás zajímá přechodový děj (Transient) napětí na výstupu OZ v čase cca 10 ms. Počet pokusů max. 50. Zapište minimální a maximální dosaženou hodnotu napětí po vyloučení případných "odlehlých" výsledků.
- 7. Dobrovolný úkol: Navrhněte úpravu obvodu dle obr. 2.2, aby správnost funkce obvodu nebyla ovlivněna offsetem OZ.

Experiment se sinusovým funkčním měničem

(Multisim + volitelně přípravek)

Popis úlohy:

Sinusový funkční měnič se používá pro generování harmonického signálu na nízkých kmitočtech. Mezi jeho výhody patří relativně široký rozsah pracovních kmitočtů a obvodová jednoduchost. Při pečlivé realizaci lze v praxi dosáhnout harmonického zkreslení THD < 3% při sériové výrobě a THD < 1% při individuálním výběru prvků. Vstupní trojúhelníkový signál se získá např. integrací pravoúhlého signálu multivibrátoru (v naší úloze použijeme pro jednoduchost funkční generátor).

Úkol měření:

1. Vytvořte v prostředí MULTISIM schéma sinusového funkčního měniče dle obr. 5.1. Dbejte na výběr generických modelů součástek (virtual), na správnou polaritu zdrojů V₁ a V₂ a zejména na správné zapojení odporových trimrů R₁₀ a R₁₁ z hlediska jejich souběhu (použijte možnost ovládání obou prvků stejnou klávesou). Nastavte krok ovládání obou prvků na 1 %.

Obr. 5.1 Sinusový funkční měnič

- 2. Pro nastavení generátoru: frekvence 1000 Hz, typ signálu: trojúhelník, amplituda 3 V a s použitím osciloskopu určete experimentálně nastavení R₁₀ resp. R₁₁ pro vizuálně optimální výstupní harmonický signál (připomínáme, že pracujete s krokem trimrů 1 % a oba trimry jsou neustále nastaveny shodně).
- 3. Pomocí "Analysis" "Fourier Analysis" zobrazte amplitudovou frekvenční charakteristiku obvodu (základní frekvence 1 kHz, 9 vyšších harmonických), případně

experimentálně dostavte trimry R_{10} a R_{11} tak, aby celková energie vyšších harmonických byla minimální. Připomínáme, že po každé změně nastavení trimrů R_{10} a R_{11} je třeba znovu provést "Analysis" - "Fourier Analysis". Porovnejte celkové harmonické zkreslení THD výstupního signálu vypočteného programem Multisim s vypočteným dle definice:

$$THD = \frac{\sqrt{\sum_{i=2}^{9} U_i^2}}{U_1}$$
 (6.1)

4. kde U_1 je amplituda základní harmonické a U_i jsou amplitudy nezanedbatelných vyšších harmonických složek signálu (při měření postačí určit pouze dominantní rušivé složky do 15 kHz).

Tab. 5.1

f(kHz)	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0
U_{i} (V)									

- 5. Výše uvedený vztah (5.1) platí pro amplitudy složek v jednotkách (V). Upravte tento obecný vztah pro případ, že jsou k dispozici hodnoty úrovní jednotlivých složek v dB vzhledem k základní harmonické (0 dB). Přepněte zobrazení svislé osy SA na dB a ověřte dosazením do odvozeného vztahu jeho správnost. V případě, že jsou k dispozici údaje o amplitudách jak ve V, tak v dB, pro který z obou vztahů byste se v praxi rozhodli a proč?
- 6. Určete mezní kmitočet měniče f_{mez} , při kterém poklesne amplituda výstupního signálu o 3 dB vzhledem k amplitudě výstupu (měřte v rozsahu do f = 2 MHz). Pro tuto hodnotu f_{mez} určete pomocí "Analysis" "Fourier Analysis" opět hodnotu THD.

Převodník střední hodnoty (operační usměrňovač)

(Multisim + přípravek)

Popis úlohy:

Operační usměrňovač je určen ke stanovení *aritmetické střední hodnoty* periodického vstupního napětí u(t), definovaného rovnicí

$$U_{2ar} = \frac{1}{T} \int_{t_1}^{t_1 + T_p} |u_1(t)| dt$$

kde T_p je perioda vstupního napětí.

Operační usměrňovač se skládá z jednocestného usměrňovače, tvořeného operačním zesilovačem Z_1 , diodami D_1 , D_2 a rezistory R_1 , R_2 a sčítacího invertujícího zesilovače s operačním zesilovačem Z_2 a rezistory R_3 , R_4 , R_5 .

Obr. 6.1 Operační usměrňovač

Při kladné polaritě vstupního napětí je dioda D_1 vodivá, D_2 nevodivá a přenos zesilovače Z_1 je $R_2/R_1 = -1$. Při záporné polaritě vstupního napětí je dioda D_1 nevodivá, dioda D_2 vodivá a přenos zesilovače je 0. Jednocestné usměrněné vstupní napětí je na vstupu invertujícího zesilovače Z_2 sečteno se vstupním napětím. Pro výstupní napětí dvoucestného usměrňovače platí

$$u_2 = R_5 \left(\frac{R_2}{R_1 R_3} - \frac{1}{R_4} \right) u_1, \quad u_1 > 0$$
 $u_2 = -\frac{R_5}{R_4} u_1, \quad u_1 < 0$

Pro R1 = R2 = R3 = R5 = 10k a R4 = 20k odpovídá střední hodnota výstupního napětí aritmetické střední hodnotě vstupního periodického napětí.

Pro vstupní sinusové napětí s amplitudou U_{1m} je střední hodnota výstupního napětí

$$U_{2s} = \frac{2}{\pi} U_m = 0,637 U_m$$

Při znalosti činitele tvaru k, periodického průběhu lze ze *střední aritmetické hodnoty* určit jeho *efektivní hodnotu*

$$U_{2ef} = k_t U_s$$

Činitel tvaru sinusového průběhu je $k_t = 1,11$. Efektivní hodnota sinusového napětí o amplitudě U_m má hodnotu $U_{ef} = 0,707$ U_m .

Úkol měření (praktické části proveďte dle možností jak na modelu v Multisimu, tak na reálném přípravku):

- 1. Změřte statickou převodní charakteristiku operačního usměrňovače v rozsahu vstupního napětí ± 10 V. Určete chybu nuly a nelinearitu charakteristiky.
- 2. Nakreslete průběh výstupního napětí jednocestného a dvoucestného operačního usměrňovače při vstupním sinusovém signálu o rozkmitu ± 10 V a kmitočtu 1 kHz.
- 3. Změřte kmitočtovou charakteristiku operačního usměrňovače při vstupním sinusovém napětí o rozkmitu ± 10 V v kmitočtovém rozsahu do 1 MHz. Určete mezní kmitočet, při kterém klesne přenos usměrňovače o 3 dB vzhledem k stejnosměrnému přenosu se jmenovitou hodnotou 1.
- 4. Měřením ověřte správnost určení střední a efektivní hodnoty sinusového průběhu vstupního napětí o rozkmitu ± 10 V a kmitočtu 1 kHz.

Měření statické převodní charakteristiky operačního usměrňovače

Měření dynamické převodní charakteristiky operačního usměrňovače

Exponenciální zesilovač

(Multisim + přípravek)

Popis úlohy:

Teplotně kompenzovaný exponenciální zesilovač je určen k exponenciálnímu převodu vstupního napětí v rozsahu \pm 2 V na výstupní napětí v rozsahu 1 mV až 10 V s převodní konstantou -1 V/dek. Zesilovač je tvořen dvojící exponenciálních zesilovačů s operačními zesilovači Z_1 , Z_2 a bipolárními tranzistory T_1 , T_2 .

Obr. 7.1 Teplotně kompenzovaný exponenciální zesilovač

Protože pro kolektorové proudy tranzistorů platí

$$I_{C1}=I_{S1}e^{\frac{U_{BE1}}{U_T}}$$

$$I_{C2}=I_{S2}e^{\frac{U_{BE2}}{U_T}}$$

kde $I_{S1},\,I_{S2}$ jsou saturační proudy tranzistorů při $U_{BE1}=U_{BE2}=0\,$ a $U_T=\frac{kT}{q_e}$ je teplotní napětí,

k je Boltzmannova konstanta, Θ je teplota přechodu BE v K a q_e je náboj elektronu. Za předpokladu, že $I_{S1}=I_{S2}=I_S$, je poměr kolektrových proudů

$$\frac{I_{C1}}{I_{C2}} = e^{\frac{U_{BE2} - U_{BE1}}{U_T}}$$

Protože pro kolektorové proudy tranzistorů platí

$$I_{C1} = \frac{U_1}{R_1} \qquad I_{C2} = \frac{U_1}{R_4}$$

je úbytek napětí na rezistoru R₃

$$U_3 = U_{BE2} - U_{BE1} = U_4 \frac{R_3}{R_2 + R_3}$$

Výstupní napětí exponenciálního zesilovače je pak

$$U_4 = U_2 \frac{R_1}{R_4} e^{\frac{R_2 + R_3}{R_3} \frac{U_1}{U_T}}$$

Uvedeným zapojením lze odstranit teplotní závislosti saturačních proudů tranzistorů. Teplotní závislost výstupního napětí exponenciálního zesilovače je pak určena pouze teplotní závislostí teplotního napětí U_T , která je 3.10^{-3} /K. Tuto závislost lze kompenzovat užitím rezistoru R_3 se shodným teplotním odporovým koeficientem.

Při $R_1 = 10k$, $R_2 = 15k7$, $R_3 = 1k$, $R_4 = 1M$, $U_2 = 10$ V se vstupní napětí v rozsahu \pm 2 V převede na výstupní napětí v rozsahu 1 mV až 10 V.

Rezistor R5 určuje aktivní pracovní oblast tranzistorů T_1 a T_2 . Kondenzátory C_1 a C_2 slouží ke kmitočtové kompenzaci exponenciálních zesilovačů.

Úkol měření:

- 1. Změřte převodní charakteristiku zesilovače v rozsahu vstupního napětí ± 2 V a určete její odchylku od ideálního průběhu se strmostí -1 V/dek.
- Zaznamenejte průběh výstupního napětí zesilovače při vstupním trojúhelníkovém napětí v rozsahu ± 2 V.

Měření statické převodní charakteristiky exponenciálního zesilovače

Měření dynamické převodní charakteristiky exponenciálního zesilovače

Ideální převodní charakteristika exponenciálního zesilovače

Logaritmický zesilovač

Popis úlohy:

Teplotně kompenzovaný logaritmický zesilovač je určen k logaritmickému převodu vstupního napětí v rozsahu 1 mV až 10 V na výstupní napětí v rozsahu \pm 2 V s převodní konstantou -1 V/dek. Zesilovač je tvořen dvojící logaritmických funkčních měničů s operačními zesilovači Z_1 , Z_2 a bipolárními tranzistory T_1 , T_2 .

Obr. 7.2 Teplotně kompenzovaný logaritmický zesilovač

Protože pro kolektorové proudy tranzistorů platí

$$I_{C1} = I_{S1}e^{\frac{U_{BE1}}{U_T}} \qquad \qquad I_{C2} = I_{S2}e^{\frac{U_{BE2}}{U_T}}$$

kde I_{S1} , I_{S2} jsou saturační proudy tranzistorů při $U_{BE1} = U_{BE2} = 0$ a $U_T = \frac{kT}{q}$ je teplotní napětí,

k je Boltzmannova konstanta, Θ je teplota přechodu BE v K a q_e je náboj elektronu. Za předpokladu, že $I_{S1}=I_{S2}=I_S$, je poměr kolektorových proudů

$$\frac{I_{C1}}{I_{C2}} = e^{\frac{U_{BE2} - U_{BE1}}{U_T}}$$

Protože pro kolektorové proudy tranzistorů platí

$$I_{C1} = \frac{U_1}{R_1}$$
 $I_{C2} = \frac{U_2}{R_4}$

je úbytek napětí na rezistoru R₃

$$U_3 = U_{BE2} - U_{BE1} = U_4 \frac{R_3}{R_2 + R_3}$$

Výstupní napětí exponenciálního zesilovače je pak

$$U_4 = -U_T \frac{R_2 + R_3}{R_3} \ln \frac{R_4 \cdot U_1}{R_1 \cdot U_2}$$

Uvedeným zapojením lze odstranit teplotní závislosti saturačních proudů tranzistorů. Teplotní závislost výstupního napětí zesilovače je pak určena pouze teplotní závislostí teplotního napětí U_T , která je 3.10^{-3} /K. Tuto závislost lze kompenzovat užitím rezistoru R_3 se shodným teplotním odporovým koeficientem.

Pro $R_1 = 10k$, $R_2 = 15k7$, $R_3 = 1k$, $R_4 = 1M$, $U_2 = 10$ V se vstupní napětí v rozsahu 1 mV až 10 V převede na výstupní napětí v rozsahu ± 2 V.

Rezistor R5 určuje aktivní pracovní oblast tranzistorů T_1 a T_2 . Kondenzátory C_1 a C_2 slouží ke kmitočtové kompenzaci logaritmických zesilovačů.

Úkol měření:

- 1. Změřte převodní charakteristiku zesilovače v rozsahu vstupního napětí 1 mV až 10 V a určete její odchylku od ideálního průběhu se strmostí -1 V/dek.
- 2. Zaznamenejte průběh výstupního napětí zesilovače při vstupním trojúhelníkovém napětí v rozsahu 1 mV až 10 V.

logaritmického zesilovače

1 V

1 V

1 V

1 mV

10 mv

100 mV

1 V

10 V

U2

logaritmického zesilovače