Parte A

- 1. [punti 4,5] Si presentino e si dimostrino le formule di inversione per la sintesi in frequenza delle reti correttrici. Si esponga inoltre come utilizzare tali formule per la sintesi della rete **anticipatrice** con imposizione del **margine di fase** $M_{\scriptscriptstyle F}$.
- **2.** [punti 4,5] La rete elettrica di figura definisca un sistema dinamico orientato dalla tensione v (ingresso) alla corrente i (uscita).

Di questo sistema si determini (con T := RC):

- 1) la funzione di trasferimento, 2) gli zeri, 3) i poli, 4) i modi, 5) il guadagno statico, 6) l'equazione differenziale.
- 3. [punti 4,5] Dato un sistema con funzione di trasferimento $G(s) = \frac{1}{s+1}$, a partire da condizioni iniziali nulle, determinarne la risposta y(t), $t \in [0,+\infty)$ al segnale di ingresso così definito:

$$u(t) = \begin{cases} 1+2t & 0 \le t < 1 \\ t-1 & t \ge 1 \end{cases}$$

4. [punti 4,5] Presentare e dimostrare la formula di antitrasformazione zeta, ovvero l'espressione con l'integrale su curva chiusa del piano complesso che determina la sequenza a tempo discreto x(k) nota che sia $X(z) \triangleq \mathcal{Z}[x(k)]$.

5. [punti 4,5] Tracciare i diagrammi di Bode asintotici (diagramma dei moduli e diagramma delle fasi della risposta armonica) associati alla funzione di trasferimento

$$G(s) = 10^{3} \frac{1-s}{(1+s)(s+10)^{2}}$$

Suggerimenti:

- i) per una decade delle pulsazioni si assegnino 10 quadretti del foglio protocollo;
- ii) si riportano per comodità dello studente i logaritmi in base 10 degli interi da 2 a 9: $\log_{10} 2 \cong 0,30$, $\log_{10} 3 \cong 0,48$, $\log_{10} 4 \cong 0,60$, $\log_{10} 5 \cong 0,70$, $\log_{10} 6 \cong 0,78$, $\log_{10} 7 \cong 0,85$, $\log_{10} 8 \cong 0,90$, $\log_{10} 9 \cong 0,95$.
- **6.** [punti 4,5] Sia dato il sistema in retroazione di figura dove $P(s) = \frac{1}{s \lceil (s+2)^2 + 1 \rceil}$ e $C(s) = K \in \mathbb{R}$.

- a. Tracciare il luogo delle radici dell'equazione caratteristica del sistema retroazionato per K > 0, determinando in particolare gli asintoti, le radici doppie e gli angoli di partenza del luogo.
- b. Determinare il guadagno ottimo K^* del controllore affinché il grado di stabilità del sistema retroazionato sia massimo $\lceil K^* = \arg\max_{K \in \mathbb{R}} G_s(K) \rceil$.
- c. Per il controllore progettato al punto b precedente $C(s) = K^*$ determinare l'errore a regime e_r in risposta alla rampa $r(t) = 5 \cdot t \cdot 1(t)$.
- d. Per il controllore progettato al punto b precedente $C(s) = K^*$ tracciare il diagramma polare associato al guadagno di anello L(s) := C(s)P(s) determinando l'asintoto verticale del diagramma. Determinare inoltre il margine di ampiezza M_A del sistema retroazionato.
- 7. [punti 4,5] Sia dato il sistema retroazionato di figura

dove $P(s) = \frac{1}{s(s+2)(s+4)}$ e $C(s) = K \in \mathbb{R}$ è un controllore proporzionale.

- 1. Determinare i valori di K per i quali è assicurata la stabilità asintotica del sistema retroazionato.
- 2. Determinare i valori di K per i quali il sistema retroazionato ammette $G_s \ge 0, 2$ s⁻¹ ($G_s \equiv$ grado di stabilità nel piano complesso).
- **8.** [punti 4,5] Determinare la risposta forzata y(k) all'ingresso u(k) = 1(k) (gradino unitario) di un sistema a tempo discreto descritto dall'equazione alle differenze

$$y(k) + y(k-1) + \frac{1}{4}y(k-2) = u(k) + 4u(k-1) + 4u(k-2)$$
.