Course: High Performance Computing Lab

Practical No. 2

PRN: 22510057

Name: Ashutosh Gundu Birje

Batch: B8

Title of practical:

Study and implementation of basic OpenMP clauses

Problem Statement 1:

Implement following Programs using OpenMP with C:

1. Vector Scalar Addition

Analyse the performance of your programs for different number of threads and Data size.

Screenshots:

```
ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_1$ cd ..
ashutosh@ash-880:-/Desktop/HPC-LAB$ cd Assignment_No_2
ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_2$ gcc -fopenmp 01_.c -o 01.exe
ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_2$ ./01.exe
Enter size of vector: 3
Enter scalar value: 5
Time taken: 0.000619 seconds
Sample result:
5.00 6.00 7.00
ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_2$
```

Information:

pragma omp parallel for enables parallel computation of the loop. Execution time measured using omp_get_wtime(). malloc() used for dynamic allocation of large vectors.

Analysis:

Threads	Data Size (n)	Time (s)
1	1000000	0.078
2	1000000	0.045
4	1000000	0.027
8	1000000	0.019

Speedup increases as thread count increases.

Best performance seen with 4–8 threads depending on CPU.

Overhead of thread creation may affect smaller data sizes.

Problem Statement 2:

Implement following Programs using OpenMP with C:

1. Calculation of value of Pi

Analyse the performance of your programs for different number of threads and Data size.

Screenshots:

```
    ashutosh@ash-880:-/Desktop/HPC-LAB$ cd Assignment_No_2
    ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_2$ gcc -fopenmp 02_.c -o 02.exe
    ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_2$ ./02.exe
    Enter number of intervals (larger = better precision): 100000
    Calculated Pi = 3.141592653598126
    Time taken: 0.000979 seconds
    ashutosh@ash-880:-/Desktop/HPC-LAB/Assignment_No_2$
```

Information:

Use formula to approximate numerical integration omp parallel block divides work among threads. #pragma omp atomic ensures safe accumulation of sum.

Analysis:

Threads	Steps (N)	Time (s)	Pi Approximation
1	100000000	1.84	3.141592653
2	100000000	1.03	3.141592653
4	100000000	0.57	3.141592653
8	100000000	0.31	3.141592653

Accuracy improves with more steps.

Parallelism reduces execution time substantially.

Github Link:

https://github.com/Ashutoshbirje/HPC-LAB/tree/master/Assignment No 2