Q. Watson durbin test:

ĸ.	*1	VF.	y(t-1)	yt-m1	y(t-1)	m2 (yt-m1)	2 h(t-1)	-m2) produ	et.	watt A	10119	emar^2 di	HA2		
	1	-5	10	1.2	-5	-3	25	9	15	16.55	-6.55	42.84	5.76		
	2	-4	12	3.8	-3	3	9	.9	-9	16.15	-5.15	17.18	40.96		
	3	-3	18	22	3	7.	9	49	21	15.75	2.25	5.08	19.10		
	4	-2	22	16	7	1	49	1.3	7	15.35	6.65	64.28	31.36		
	5.	-1	16	18	1	3	1	9	3	14.95	1.05	1.11	5.76		
	6	0	18	18	3	3	9	-9	9	14.55	3.45	11.93	0.16		
	7	1	18	17	3	2	9	4	6	14.15	3.85	14.86	0.36		
	8	2	17	10	2	-5	4	25	-10	13.75	3.25	10.59	43.56		
	9	3	10	9	-5	6	25	36-	30	13.35	3.35	11.19	0.36		
	10	4	9	10	-6	-5	36	25	30	12.95	-3.95	15.57	1.06		
	11	5	10		5					12.55	-2.95	6.48			
	Mean		15	15		1	76	176	102		0.0	181.13	149.60		
ind autocorrelation by lag1			-				-	- 755		-	0.825939	475000			
poly Warson Durbin Test					Auto Co	er 0	580				0,000,000				
poly Runs Test				Conclusion From this we make a conclusion that the given time series yt and its lagged version by 1i.e. yit-1) have positive conclusion.											
-	the rapidly		11				From this we say that autocorrelation in the given time series is equal to 0.580 Jitati's autocorrelation is positive.								
lesso A	Applying wa	boon Paint	do Tart												
ow,	-ephysis wo	CSON DOTE	HH 1036												
t thi	point we a	ssume th	at finearily is	the given o	lets, and s	a we make a	linear ass	umption in	the data a	nd apply y =a+bx	where a,b	are constants	to be found and x is direct	ly proportional to the time.	
karm	al Equation	6													
at	sum(y)=na+b(sum(x))			¥	1	60 11a		14.5 <-a							
	sumix	sum(xy)~a(sum(x))+b(Sum(x^2))		^200	xy		44	0	110 h	-0.4					
/.D.	Combit	ara as form	n(error^2)												
1.10.	semin	en-59 and	detter. (1)												

Signs of error terms re-11 re-3 rd-6 r0-5 because rd<20, we lack to the table

We have the rurs test in order to check the condomness of the error for that we have ideall or \$1, \$1.45 and \$2.55 offices. Sweeton insert and upper limits of \$1, \$1.45 and \$2.55 offices. Sweeton insert and upper limits of \$1, \$1.45 and \$2.55 offices.

