Math 143 Quiz 1

1. Find the degree 3 Taylor poly at x=0 for a function that satisfies f(0)=1 and $f'(x)=f(x)^2+x$.

2. How big should n be to ensure that the error in the approximation

$$e^{-1} \approx 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}$$

is at most 1/100?

3. The degree n Taylor polynomial for f(x) at x = a is

$$y = a_0 + a_1(x - a)^1 + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

where f(x) and y have the same k^{th} derivative at x = a for k = 0, ..., n. Find a formula for a_k .

4. Find the degree n Taylor polynomial for $\ln x$ at x=1. (Write the answer using Σ notation.)

5 (Bonus). (Attempt on a separate page only when all other exercises are perfect.) Find the Taylor series at x=0 for $(1+x)^r$ where r is arbitrary. (Write the answer using Σ notation.)