# Geometry Favorites (WIP)

# People

Last updated December 24, 2022

... special things, I compile...

A Million Dreams

Colloquially, "the problems of all time"; have fun!

(Note: here,  $\infty_{XY}$ ,  $\infty_{\perp XY}$  denote the points at infinity along line XY and along a line perpendicular to  $\overline{XY}$ , respectively.) (also too moved to p. 2)

# ♣-1 Credits + remarks

Inspired by chapter 11 of EGMO book, and **Geometry At Its Best** by Eric Shen. Also thanks to collaborators...

Things to do:

- add one more **non-triangular** problem;
- fix toc formatting;

# Contents

| -1 | Cred      | its + remarks                                           | 1  |
|----|-----------|---------------------------------------------------------|----|
| 0  | Prob      | lems                                                    | 3  |
| 1  | Solutions |                                                         |    |
|    | 1.1       | SL 1998/G4                                              | 6  |
|    | 1.2       | SL 2009/G3, by Hossein Karke Abadi                      | 8  |
|    | 1.3       | SL 2015/G4                                              | 9  |
|    | 1.4       | SL 2016/G7                                              | Ю  |
|    | 1.5       | IMO 2008/6, by Vladimir Shmarov                         | 12 |
|    | 1.6       | EGMO 2015/6                                             | 13 |
|    | 1.7       | Iran TST 2018/1/4, by Iman Maghsoudi & Hooman Fattahi   | 14 |
|    | 1.8       | Mock AIME 2019/15', by Eric Shen & Raymond Feng         | 15 |
|    | 1.9       | China TST 2015/2/3                                      | 17 |
|    | 1.10      | SL 2018/G5, by Denmark                                  | 21 |
|    | 1.11      | MOP 2020/1Z, by Evan Chen                               | 22 |
|    | 1.12      |                                                         | 24 |
|    | 1.13      |                                                         | 26 |
|    | 1.14      | IMO 2019/6, by Anant Mudgal                             | 28 |
|    | 1.15      | MOP + USA TST, by Ankan Bhattacharya                    | 30 |
|    |           | 1.15.1 MOP 2019/(?)                                     | 30 |
|    |           | 1.15.2 USA TST 2019/6                                   | 31 |
|    | 1.16      | RMM + Fake USAMO                                        | 32 |
|    |           | 1.16.1 RMM 2012/6, by Fedor Ivlev                       | 32 |
|    |           | 1.16.2 Fake USAMO 2020/3 (author?)                      | 35 |
|    |           | TSTST 2018/3, by Evan Chen & Yannick Yao                | 37 |
|    | 1.18      |                                                         | 40 |
|    | 1.19      |                                                         | 42 |
|    | 1.20      | IMO 2021/3                                              | 43 |
|    | 1.21      | USAMO 2021/6, by Ankan Bhattacharya                     | 45 |
|    |           |                                                         | 46 |
|    |           | USEMO 2020/3, by Anant Mudgal                           |    |
|    | 1.24      | Brazil Olympic Revenge 2021/3, by Joao P.R. Viana Costa | 50 |

# **♣** O Problems

Remark. Some attempt has been made to deviate from the aformentioned two famous geometry papers.

**Problem 1** (SL 1998/G4). Let M and N be two points inside triangle ABC such that  $\angle MAB = \angle NAC$  and  $\angle MBA = \angle NBC$ . Prove that

$$\frac{AM \cdot AN}{AB \cdot AC} + \frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CA \cdot CB} = 1.$$

**Problem 2** (SL 2009/G3). Let ABC be a triangle. The incircle of  $\triangle ABC$  touches AB and AC at the points Z and Y, respectively. Let  $G = \overline{BY} \cap \overline{CZ}$ , and let R and S be points such that the two quadrilaterals BCYR and BCSZ are parallelograms. Prove that GR = GS.

**Problem 3** (SL 2015/G4). Let ABC be an acute triangle and let M be the midpoint of AC. A circle  $\omega$  passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of  $\frac{BT}{RM}$ .

**Problem 4** (SL 2016/G7). Let I be the incentre of a non-equilateral triangle ABC,  $I_A$  be the A-excentre,  $I'_A$  be the reflection of  $I_A$  in BC, and  $I_A$  be the reflection of line  $AI'_A$  in AI. Define points  $I_B$ ,  $I'_B$  and line  $I_B$  analogously. Let P be the intersection point of  $I_A$  and  $I_B$ .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that  $\angle XIY = 120^{\circ}$ .

**Problem 5** (IMO 2008/6). Let ABCD be a convex quadrilateral with  $BA \neq BC$ . Denote the incircles of triangles ABC and ADC by  $\omega_1$  and  $\omega_2$  respectively. Suppose that there exists a circle  $\omega$  tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to  $\omega_1$  and  $\omega_2$  intersect on  $\omega$ .

**Problem 6** (EGMO 2015/6). Let H be the orthocentre and G be the centroid of acute-angled triangle ABC with  $AB \neq AC$ . The line AG intersects the circumcircle of ABC at A and P. Let P' be the reflection of P in the line BC. Prove that  $\angle CAB = 60^{\circ}$  if and only if HG = GP'.

**Problem 7** (Iran TST 2018/1/4). Let ABC be a triangle ( $\angle A \neq 90^{\circ}$ ), with altitudes  $\overline{BE}$ ,  $\overline{CF}$ . The bisector of  $\angle A$  intersects  $\overline{EF}$ ,  $\overline{BC}$  at M, N. Let P be a point such that  $\overline{MP} \perp \overline{EF}$  and  $\overline{NP} \perp \overline{BC}$ . Prove that  $\overline{AP}$  bisects  $\overline{BC}$ .

**Problem 8** (Eric Shen). In  $\triangle ABC$ , let D, E, F be the feet of the altitudes from A, B, C respectively, and let O be the circumcenter. Let  $Z = \overline{AO} \cap \overline{EF}$ . There exists a point T such that  $\angle DTZ = 90^{\circ}$  and AZ = AT. If  $P = \overline{AD} \cap \overline{TZ}$ , and Q lies on  $\overline{EF}$  such that  $\overline{PQ} \parallel \overline{BC}$ , prove that  $\overline{AQ}$  bisects  $\overline{BC}$ .

**Problem 9** (China TST 2015/2/3). Let  $\triangle ABC$  be an acute triangle with circumcenter O and centroid G. Let D be the midpoint of  $\overline{BC}$ , and E be on (BC) with  $\overline{AE} \perp \overline{BC}$ . Let  $F = \overline{EG} \cap \overline{OD}$ . Define points  $K, L \in \overline{BC}, M \in \overline{AB}, N \in \overline{AC}$  with  $\overline{FK} \parallel \overline{OB}, \overline{FL} \parallel \overline{OC}$ , and  $\overline{MK}, \overline{NL} \perp \overline{BC}$ .

Let  $\omega$  be the circle tangent to  $\overline{OB}$ ,  $\overline{OC}$  at B, C respectively. Prove that (AMN) is tangent to  $\omega$ .

**Problem 10** (SL 2018/G5). Let ABC be a triangle with circumcircle  $\omega$  and incenter I. A line  $\ell$  meets the lines AI, BI, CI at points D, E, F respectively, all distinct from A, B, C, I. Prove that the circumcircle of the triangle determined by the perpendicular bisectors of  $\overline{AD}$ ,  $\overline{BE}$ ,  $\overline{CF}$  is tangent to  $\omega$ .

**Problem 11** (MOP 2020/1Z). Let ABCD be a quadrilateral inscribed in circle  $\Omega$ . Circles  $\omega_A$  and  $\omega_D$  are drawn internally tangent to  $\Omega$ , such that  $\omega_A$  is tangent to  $\overline{AB}$  and  $\overline{AC}$  while  $\omega_D$  is tangent to  $\overline{DB}$  and  $\overline{DC}$ . Prove that we can draw a line parallel to  $\overline{AD}$  which is simultaneously tangent to both  $\omega_A$  and  $\omega_D$ .

**Problem 12** (Evan Chen Twitch). Let ABC be a triangle and let T be the contact point of the A-mixtilinear incircle with the circumcircle, and let T' be the reflection of T over BC. Prove that the nine-point circle of T'BC is tangent to the incircle.

**Problem 13** (IGO 2020/A4). Convex circumscribed quadrilateral ABCD with its incenter I is given such that its incircle is tangent to  $\overline{AD}$ ,  $\overline{DC}$ ,  $\overline{CB}$ , and  $\overline{BA}$  at K, L, M, and N. Let  $E = \overline{AD} \cap \overline{BC}$  and  $F = \overline{AB} \cap \overline{CD}$ . Let  $X = \overline{KM} \cap \overline{AB}$  and  $Y = \overline{KM} \cap \overline{CD}$ . Let  $Z = \overline{LN} \cap \overline{AD}$  and  $T = \overline{LN} \cap \overline{BC}$ .

Prove that the circumcircle of triangle  $\triangle XFY$  and the circle with diameter EI are tangent if and only if the circumcircle of triangle  $\triangle TEZ$  and the circle with diameter FI are tangent.

**Problem 14** (IMO 2019/6). Let I be the incenter of acute triangle ABC with  $AB \neq AC$ . The incircle  $\omega$  of ABC is tangent to sides BC, CA, and AB at D, E, and E, respectively. The line through E perpendicular to EF meets E0 at E1. Line E2 meets E3 again at E4. The circumcircles of triangle E4 and E5 meet again at E6.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.

**Problem 15** (MOP 2019 & USA TST 2019/6). Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying  $\angle AID = 90^{\circ}$ . Let the excircle of triangle ABC opposite the vertex A be tangent to  $\overline{BC}$  at  $A_1$ . Define points  $B_1$  on  $\overline{CA}$  and  $C_1$  on  $\overline{AB}$  analogously, using the excircles opposite B and C, respectively.

- (a) (MOP 2019) Let E, F be the feet of the altitudes from B, C respectively. Prove that if  $\overline{EF}$  touches the incircle, then quadrilateral  $AB_1A_1C_1$  is cyclic.
- (b) (USA TST 2019/6) Prove that if quadrilateral  $AB_1A_1C_1$  is cyclic, then  $\overline{AD}$  is tangent to  $(DB_1C_1)$ .

**Problem 16** (RMM 2012/6 + Fake USAMO 2020/3). In triangle ABC with incenter I and circumcenter O, let the incircle  $\omega$  touch  $\overline{BC}$ ,  $\overline{CA}$ ,  $\overline{AB}$  at D, E, F respectively.

- (RMM 2012/6) Let  $\omega_a$  be the circle through B and C tangent to  $\omega$ , and define  $\omega_b$ ,  $\omega_c$  similarly. Finally, let  $A' = \omega_b \cap \omega_c$  ( $\neq A$ ), and similarly for points B' and C'. Prove that the lines AA', BB' and CC' are concurrent at a point on the line IO.
- (Fake USAMO 2020/3) Let T be the projection of D to  $\overline{EF}$ . The line AT intersects the circumcircle of  $\triangle ABC$  again at point  $X \neq A$ . Circles (AEX) and (AFX) intersect  $\omega$  again at points  $P \neq E$  and  $Q \neq F$  respectively. Prove that  $\overline{EQ}$ ,  $\overline{FP}$ , and  $\overline{OI}$  are also concurrent.

**Problem 17** (TSTST 2018/3). Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle  $\Gamma$ . Let M be the midpoint of  $\overline{AB}$ . Ray AI meets  $\overline{BC}$  at D. Denote by  $\omega$  and  $\gamma$  the circumcircles of  $\triangle BIC$  and  $\triangle BAD$ , respectively. Line MO meets  $\omega$  at X and Y, while line CO meets  $\omega$  at C and C. Assume that C lies inside C0 and C1 and C2 and C3.

Consider the tangents to  $\omega$  at X and Y and the tangents to  $\gamma$  at A and D. Given that  $\angle BAC \neq 60^{\circ}$ , prove that these four lines are concurrent on  $\Gamma$ .

**Problem 18** (DeuX MO 2020/II/3). In triangle ABC with circumcenter O and orthocenter H, line OH meets  $\overline{AB}$ ,  $\overline{AC}$  at E, F respectively. Let  $\omega$  be the circumcircle of triangle AEF with center S, meeting (ABC) again at  $J \neq A$ . Line OH also meets (JSO) again at  $D \neq O$ . Define  $K = (JSO) \cap (ABC) \ (\neq J)$ ,  $M = \overline{JK} \cap \overline{OH}$ , and  $G = \overline{DK} \cap (ABC) \ (\neq K)$ . Prove that (GHM) and (ABC) are tangent to each other.

**Problem 19** (USA TST 2021/2). Points A,  $V_1$ ,  $V_2$ , B,  $U_2$ ,  $U_1$  lie fixed on a circle  $\Gamma$ , in that order, and such that  $BU_2 > AU_1 > BV_2 > AV_1$ . Let X be a variable point on the arc  $V_1V_2$  of  $\Gamma$  not containing A or B. Line XA meets line  $U_1V_1$  at C, while line XB meets line  $U_2V_2$  at D.

Prove there exists a fixed point K, independent of X, such that the power of K to the circumcircle of  $\triangle XCD$  is constant.

**Problem 20** (IMO 2021/3). Let D be an interior point of the acute triangle ABC with AB > AC so that  $\angle DAB = \angle CAD$ . The point E on the segment AC satisfies  $\angle ADE = \angle BCD$ , the point E on the segment E satisfies E satisfi

**Problem 21** (USAMO 2021/6). Let  $\overline{ABCDEF}$  be a convex hexagon satisfying  $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}, \overline{CD} \parallel \overline{FA}$ , and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA$$
.

Let X, Y, and Z be the midpoints of  $\overline{AD}$ ,  $\overline{BE}$ , and  $\overline{CF}$ . Prove that the circumcenter of  $\triangle ACE$ , the circumcenter of  $\triangle BDF$ , and the orthocenter of  $\triangle XYZ$  are collinear.

**Problem 22** (SL 2021/G8). Let ABC be a triangle with circumcircle  $\omega$  and let  $\Omega_A$  be the A-excircle. Let X and Y be the intersection points of  $\omega$  and  $\Omega_A$ . Let P and Q be the projections of A onto the tangent lines to  $\Omega_A$  at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that  $\overline{AR} \perp \overline{BC}$ .

**Problem 23** (USEMO 2020/3). Let ABC be an acute triangle with circumcenter O and orthocenter H. Let  $\Gamma$  denote the circumcircle of triangle ABC, and N the midpoint of OH. The tangents to  $\Gamma$  at B and C, and the line through H perpendicular to line AN, determine a triangle whose circumcircle we denote by  $\omega_A$ . Define  $\omega_B$  and  $\omega_C$  similarly.

Prove that the common chords of  $\omega_A$ ,  $\omega_B$  and  $\omega_C$  are concurrent on line OH.

# **♣**1 Solutions

## **♣** 1.1 SL 1998/G4

Let M and N be two points inside triangle ABC such that

$$\angle MAB = \angle NAC$$
 and  $\angle MBA = \angle NBC$ .

Prove that

$$\frac{AM \cdot AN}{AB \cdot AC} + \frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CA \cdot CB} = 1.$$



**Solution 1, by inversion** Let  $i_a$  denote the inversion at A with power  $AB \cdot AC$  composed with reflection in the bisector of  $\angle A$ . It's well-known that  $i_a$  swaps B, C. Let the images of M under  $i_a$  be  $M_a \in \overline{AN}$ , and cyclic variants.

**Claim** - 
$$M_a \in (BNC)$$
, and

$$\frac{AM \cdot AN}{AB \cdot AC} = \frac{AN}{AM_a}.$$

*Proof.* The first part by angle chase:

$$\angle BM_aN \stackrel{i_a}{=} \angle MCA = \angle BCN,$$

while the second part is just the inversion distance formula.

The claim reduces the problem to  $\sum_{cyc} AN/AM_a = 1$ , which is just **BAMO 2008/6**.



# Solution 2, by area ratios (official / intended)

**Claim** - For any M, N, we have

$$\frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CB \cdot CA} = \frac{[BMC] + [BNC]}{[ABC]}.$$

*Proof.* Reflect N over  $\overline{BC}$  to obtain point  $N_a$ . Then, because  $\angle MBN_a = \angle B$ ,  $(BM \cdot BN)/(BA \cdot BC) = [MBN_a]/[ABC]$ . Similarly  $(CM \cdot CN)/(CA \cdot CB) = [MCN_a]/[ABC]$ , and summing the previous two equations gives

$$\frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CB \cdot CA} = \frac{[BMN_aC]}{[ABC]} = \frac{[BMC] + [BNC]}{[ABC]}.$$

Noting that M, N are just isogonal conjugates, we obtain the problem by cyclic summation.

# **♣** 1.2 SL 2009/G3, by Hossein Karke Abadi

Let ABC be a triangle. The incircle of  $\triangle ABC$  touches AB and AC at the points Z and Y, respectively. Let  $G = \overline{BY} \cap \overline{CZ}$ , and let R and S be points such that the two quadrilaterals BCYR and BCSZ are parallelograms. Prove that GR = GS.



This is a very "troll" problem. Let (R), (S),  $\omega_a$  denote the point circles at R, S (radius = 0) and the A-excircle respectively. Let  $\omega_a$  touch  $\overline{BC}$ ,  $\overline{CA}$ ,  $\overline{AB}$  at D, E, F respectively. Also, for brevity, let A = BC, B = CA, B = CA

**Claim** -  $\overline{BY}$  is the radical axis of (R),  $\omega_a$ .

*Proof.* BD = BR = s - c, while YE = YR = a; because  $\overline{BD}$ ,  $\overline{YE}$  touch  $\omega_a$ , B, Y have powers  $(s - c)^2$ ,  $a^2$  wrt each of (R),  $\omega_a$  as promised.

By the claim,  $G = \overline{BY} \cap \overline{CZ}$  must be the radical center of (R), (S),  $\omega_a$ , implying the desired GR = GS.

### **1.3** SL 2015/G4

Let ABC be an acute triangle and let M be the midpoint of AC. A circle  $\omega$  passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of  $\frac{BT}{RM}$ .



### Solution by **CyclicISLscelesTrapezoid**.

The answer is  $\sqrt{2}$  only. Let  $X = (ABC) \cap (BPMQ) \ (\neq B)$ , and let N be the midpoint of  $\overline{BT}$ .

**Claim 1 -** *XNMT* is cyclic.

*Proof.* Since N is also the midpoint of  $\overline{PQ}$ , there is a spiral similarity at X sending PNQ to AMC. Thus, we have

$$\angle XMN = \angle XAP = \angle XTB$$
,

proving the claim.

**Claim 2 -**  $\overline{BM}$  is tangent to (XNMT).

Proof. We have

$$\angle XNM = \angle XPA = \angle XPB = \angle XMB.$$

By Power of a Point,  $BM^2 = BN \cdot BT = \frac{BT^2}{2}$ , so  $\frac{BT}{BM} = \sqrt{2}$ .

#### **1.4** SL 2016/G7

Let I be the incentre of a non-equilateral triangle ABC,  $I_A$  be the A-excentre,  $I'_A$  be the reflection of  $I_A$  in BC, and  $I_A$  be the reflection of line  $AI'_A$  in AI. Define points  $I_B$ ,  $I'_B$  and line  $I_B$  analogously. Let P be the intersection point of  $I_A$  and  $I_B$ .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that  $\angle XIY = 120^{\circ}$ .



Redefine P as the inverse of I wrt (ABC). For the first part we assert more strongly that:

Claim -  $\triangle AI_aI'_a \stackrel{+}{\sim} \triangle API$ .

*Proof.* By angle chasing,  $\angle I_a = \angle P$  follows easily. We contend that  $I_a I_a' / I_a A = IP/AP$ ; indeed, the first ratio equals  $2 \cos \angle BI_a C = 2 \sin \frac{A}{2}$  because of similar triangles  $I_a BC \stackrel{\sim}{\sim} \triangle I_a I_b I_c$ , while

$$\frac{IP}{AP} = \frac{OP}{AP} - \frac{OI}{OA}\frac{OA}{AP} = \frac{OA}{AI} - \frac{OI^2}{OA \cdot AI} = \frac{R}{AI} - \frac{R^2 - 2rR}{R \cdot AI} = \frac{R - (R - 2r)}{AI} = 2\sin\frac{A}{2},$$

so the ratios are equal. The similarity follows by SAS.

The claim clearly implies the isogonality.



For the second part, using Poncelet, let  $Z \in (ABC)$  be the unique point so that  $\triangle XYZ$ , ABC share a incircle and circumcircle. Inverting "P, X, Y collinear" wrt the circumcircle gives O, I, X, Y concyclic, or  $\angle XOY = \angle XIY$ . As it's well-known that  $\angle XOY = 2\angle Z$  and  $\angle XIY = (\pi + \angle Z)/2$ , we must have  $\angle Z = \pi/3 \Rightarrow \angle XIY = 2\pi/3$  as needed.

# **♣** 1.5 IMO 2008/6, by Vladimir Shmarov

Let ABCD be a convex quadrilateral with  $BA \neq BC$ . Denote the incircles of triangles ABC and ADC by  $\omega_1$  and  $\omega_2$  respectively. Suppose that there exists a circle  $\omega$  tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to  $\omega_1$  and  $\omega_2$  intersect on  $\omega$ .



Rename  $\omega_1$ ,  $\omega_2$  to  $\omega_b$ ,  $\omega_d$ ; by Pitot-like reasoning we have AB + AD = CB + CD; let  $T_b$ ,  $T_d$  be the intouch points on  $\overline{AC}$ ; then  $T_b$ ,  $T_d$  are isotomic by the obtained length condition.

If we let  $T'_b$ ,  $T'_d$  be the antipodes of  $T_b$ ,  $T_d$  on their respective circles, then an EGMO lemma (ch4) implies that B,  $T_d$ ,  $T'_b$  and sym variant are collinear.

Construct the point K' on the "closer" side to the rest of the figure so that the tangent to  $\omega$  at K is parallel to  $\overline{AC}$ . Then by homothety  $K' \in \overline{BT_d}$ ,  $\overline{DT_b}$ , so this is the desired exsimilicenter.

#### \$ 1.6 EGMO 2015/6

Let H be the orthocentre and G be the centroid of acute-angled triangle ABC with  $AB \neq AC$ . The line AG intersects the circumcircle of ABC at A and P. Let P' be the reflection of P in the line BC. Prove that  $\angle CAB = 60^{\circ}$  if and only if HG = GP'.

I'm just gonna do the 'only if' and not the 'if'.

CyclicISLscelesTrapezoid



Let  $\ell$  be the perpendicular bisector of  $\overline{BC}$ . Then we unconditionally have:

**Claim** -  $\overline{P'H}$  is perpendicular to the *A*-symmedian.

*Proof.* Reflect! Reflect! Let D be the intersection of the A-symmedian with (ABC) aka the reflection of P in  $\ell$ ,  $H_a \in (ABC)$  be the reflection of H in  $\overline{BC}$ , A' be the reflection of A in  $\ell$  aka the antipode of  $H_a$ .

$$\angle(\overline{AD}, \overline{P'H}) = \angle(\overline{AD}, \overline{BC}) + \angle(\overline{BC}, \overline{P'H}) \stackrel{\text{reflects}}{=} -\angle(\overline{A'P}, \overline{BC}) - \angle(\overline{BC}, \overline{PH_a})$$

$$= -\angle A'PH_a = 90^{\circ}.$$

It's easy to see that  $O_a$  – the reflection of the circumcenter O in  $\overline{BC}$  – is the center of (BHP'C);  $\Rightarrow O_aH = O_aP = R$  unconditionally. The given length condition is thus equivalent to  $\overline{O_aG} \perp \overline{HP'}$ , which (by the claim) is in turn equivalent to  $\overline{O_aG} \parallel \overline{AD}$ .

Reflecting yet again, this time in the nine-point center,  $(\cdots) \iff A, G', D \text{ collinear}$ , where G' = 2N - G = O + H - G.

$$\iff \overline{AG}, \overline{AG'}$$
 both isogonal and isotomic in  $\triangle AHO$ ;

$$\iff AH = AO \iff \angle BAC = 60^{\circ}.$$

# **♣** 1.7 Iran TST 2018/1/4, by Iman Maghsoudi & Hooman Fattahi

Let ABC be a triangle ( $\angle A \neq 90^{\circ}$ ), with altitudes  $\overline{BE}$ ,  $\overline{CF}$ . The bisector of  $\angle A$  intersects  $\overline{EF}$ ,  $\overline{BC}$  at M, N. Let P be a point such that  $\overline{MP} \perp \overline{EF}$  and  $\overline{NP} \perp \overline{BC}$ . Prove that  $\overline{AP}$  bisects  $\overline{BC}$ .



Construct  $K = \overline{EF} \cap \overline{BC}$ , Q as the A-Humpty point, H as the orthocenter of  $\triangle ABC$ , and  $\omega = (KMN)$ , so that the P given is the antipode of K on it. Let spiral similarity s at Q take  $(E, F) \rightarrow (B, C)$ . The main point of the problem is then:

**Claim** - MKQN cyclic. In other words,  $Q \in \omega$ .

Proof. From angle bisector theorem,

$$\frac{EM}{MF} = \frac{EA}{AF} = \frac{BA}{AC} = \frac{BN}{NC} \Rightarrow (M \xrightarrow{s} N) \Rightarrow \angle MQN = -\arg(s) = \angle(\overline{EF}, \overline{BC}) = \angle MKN.$$

Since *P* is the antipode of *K* on  $\omega$ ,  $\angle KQP = 90^{\circ} = \angle KQA$ , implying that  $P \in \overline{AQ}$ , the *A*-median.

# **♣** 1.8 Mock AIME 2019/15', by Eric Shen & Raymond Feng

In  $\triangle ABC$ , let D, E, F be the feet of the altitudes from A, B, C respectively, and let O be the circumcenter. Let  $Z = \overline{AO} \cap \overline{EF}$ . There exists a point T such that  $\angle DTZ = 90^{\circ}$  and AZ = AT. If  $P = \overline{AD} \cap \overline{TZ}$ , and Q lies on  $\overline{EF}$  such that  $\overline{PQ} \parallel \overline{BC}$ , prove that  $\overline{AQ}$  bisects  $\overline{BC}$ .



Construct points X, Y as the projections of E, F onto  $\overline{AD}$  respectively. \*

After drawing a diagram on Geogebra, we obtain:

#### Characterization of T

T is the harmonic conjugate of Z wrt XY – i.e. it lies on  $\omega = (XYZ)$  so that the resulting quadrilateral is harmonic.

In American style, we show that this choice of T lies on  $\omega_a$  (defined as the circle at A thru Z) and (DZ),

#### Verification (inspired by USA TST 2015/1)

For AZ = AT, we use power of a point / length chase to get  $AZ^2 = AX \cdot AY$  whence  $\overline{AZ}$  touches  $\omega$ . Hence, by harmonics  $\overline{AT}$  is also tangent to  $\omega$ , so this property follows.

 $\angle DTZ = 90^{\circ}$  is much less straightforward. We define Z' = 2A - Z and G = E + F - Z as the antipodes of Z on the circle at A through Z. By a well-known lemma, D, Z', G collinear (along the cevian through the intouch point in  $\triangle DEF$ ).

But also at the same time, T is on  $\omega$ ,  $\omega_a \Rightarrow \angle ZTG = \angle ZTZ' = \pi/2$  due to antipodes. Hence,  $\angle DTZ = \pi/2$ , completing the verification.

<sup>\*</sup>Eric Shen originally included these points in the problem statement (as seen in the 2019 version of "Geometry At Its Best"), but I guess the problem's made harder by deleting them. For me, thinking about their relevance/use was important in making nonzero progress on the problem.

By this definition, we clearly have (AP; XY) = -1. From here (the chase is best discovered backwards), harmonic chasing suffices. Define  $K = \overline{EF} \cap \overline{A} \otimes_{BC}$ . Then the bisection is established by

$$(\overline{AQ} \cap \overline{BC}, \infty_{BC}; B, C) \stackrel{A}{=} (QK; FE) \stackrel{\infty_{BC}}{=} (PA; YX) = -1.$$

#### **♣** 1.9 China TST 2015/2/3

Let  $\triangle ABC$  be an acute triangle with circumcenter O and centroid G. Let D be the midpoint of  $\overline{BC}$ , and E be on (BC) with  $\overline{AE} \perp \overline{BC}$ . Let  $F = \overline{EG} \cap \overline{OD}$ . Define points  $K, L \in \overline{BC}, M \in \overline{AB}, N \in \overline{AC}$  with  $\overline{FK} \parallel \overline{OB}, \overline{FL} \parallel \overline{OC}$ , and  $\overline{MK}, \overline{NL} \perp \overline{BC}$ .

Let  $\omega$  be the circle tangent to  $\overline{OB}$ ,  $\overline{OC}$  at B, C respectively. Prove that (AMN) is tangent to  $\omega$ .



As much of the parallel/perpendicular lines aren't even relevant (just to give us some equal ratios), we simplify as follows:

#### **Problem reworded**

In acute  $\triangle ABC$  with circumcenter O and orthocenter H, D is the midpoint of  $\overline{BC}$ , and the altitude from A meets (BC) at E (either one works). Let U,  $V = \overline{OD} \cap \overline{AB}$ ,  $\overline{AC}$ , respectively; define M,  $N \in \overline{AB}$ ,  $\overline{AC}$  with (lengths directed)

$$UM/MB = VN/NC = AE/EH$$
.

Let  $\omega$  be the circle tangent to segments *OB*, *OC* at *B*, *C* respectively. Prove that (AMN) is tangent to  $\omega$ .

We define a load of new points as follows:

- A' = 2O A as the antipode of A on (ABC);
- $T = \overline{AO} \cap \omega$ , which we stipulate to be on segment AA' iff E is on segment AH; WLOG, assume this is the case;
- Q as the harmonic conjugate of A' wrt BC, aka the reflection of the A-orthocenter Miquel point  $Q_a$  in the perpendicular bisector  $\overline{DUV}$  of  $\overline{BC}$ .



First, we get rid of E:

Claim 1 - 
$$AE/EH = AT/TA'$$
. (lengths still directed)

*Proof.* (by **v4913**) Let  $B_1$ ,  $C_1$  denote the feet of the respective altitudes from B, C, and r a reflection in the bisector of  $\angle A$  composed with a homothety at A with scale factor  $AH/AA' = AB_1/AB = AC_1/AC$ .

Because  $\overline{DB_1}$ ,  $\overline{DC_1}$  are well-known to touch (AH), D is the pole of  $\overline{B_1C_1}$ ;

$$\Rightarrow (Z \xrightarrow{r} D) \Rightarrow (\omega \xrightarrow{r} (BC)) \Rightarrow (T_1 \xrightarrow{r} E_1)$$

proving the claim.



**Claim 2** - *Q* is the Miquel point of *ABCDUV*.

*Proof.* As we already have  $Q \in (ABC)$ , sufficient to prove QDVC cyclic. Observe that  $Q \in \overline{H_aD}$ , which follows by  $Q_a \in \overline{A'PH}$  reflected in  $\overline{DUV}$ . The result holds by Reim because  $AH_aQC$  cyclic and  $\overline{DV} \parallel \overline{AH_a}$ .

Consider the spiral similarity s at Q mapping B,  $C \to U$ , V. Since  $\triangle BA'C \stackrel{+}{\sim} \triangle UAV$ ,  $(A' \stackrel{s}{\to} A)$ . By the length condition  $(M \stackrel{s}{\to} N)$  as well, so M,  $N \in (AQT)$ .

Finally, we turn to the problem statement:

**Claim 3 -**  $AQT_1$  touches  $\omega$  at  $T_1$ .

We present two finishes.



**Proof 1, by inversion (v4913)** Let  $Z \in \overline{QA'}$  be the center of  $\omega$  aka the polar of  $\overline{BC}$  wrt (ABC), and \* denote inversion in  $\omega$ . Define  $K = \overline{AZ} \cap (ABC)$   $(\neq A) = A^*$ . Clearly,  $(A'Q;BC) = -1 \Rightarrow A' = Q^*$ . Finally, let  $\ell \perp \overline{ZT}$  denote the tangent to  $\omega$  at T.

It remains to prove that  $(A'KT) = (AQT)^*$  touches  $\ell$  at T (and thus  $\omega$  as well). We do so by angle chase:

$$\angle(\overline{KT},\ell) = 90^\circ + \angle KTZ \stackrel{\text{inversion}}{=} 90^\circ + \angle ZAA' = \angle KA'T;$$

inverting back completes the problem.



**Proof 2, by polars (crazyeyemoody907)** Let  $X = \overline{AO} \cap \overline{BC}$ , and Y be the pole of  $\overline{AO}$  wrt  $\omega$ , so that  $\overline{YT}$  touches  $\omega$ . Since  $\overline{AO}$  contains the pole O of  $\overline{BC}$  wrt  $\omega$ , we also  $Y \in \overline{BC}$  by La Hire.

Finally, we contend that *A*, *Q*, *Y* collinear. Indeed, this follows from

$$(\overline{AY} \cap (ABC), A'; B, C) \stackrel{A}{=} (YX; BC) = -1$$

where the last harmonic bundle holds by definition of polar.

We finish by power of a point at  $Y: YT^2 = YB \cdot YC = YA \cdot YQ$  means that  $(AQT), \omega, \overline{YT}$  are tangent at T.

Remark. Should definitely use the first diagram for intimidation purposes.

# **♣** 1.10 SL 2018/G5, by Denmark

Let ABC be a triangle with circumcircle  $\omega$  and incenter I. A line  $\ell$  meets the lines AI, BI, CI at points D, E, F respectively, all distinct from A, B, C, I. Prove that the circumcircle of the triangle determined by the perpendicular bisectors of  $\overline{AD}$ ,  $\overline{BE}$ ,  $\overline{CF}$  is tangent to  $\omega$ .



### Solution by **TheUltimate123**.

Let  $\ell_a$  and cyclic variants be the reflections of  $\ell$  in the perpendicular bisectors  $x_a$  of  $\overline{AD}$ , etc.

**Claim** -  $\ell_a$ ,  $\ell_b$ ,  $\ell_c$ ,  $\omega$  concur at a point T.

Proof. Because

$$\angle(\ell_b, \ell_c) = 2\angle(x_b, x_c) = 2\angle BIC = \angle BAC,$$

 $\ell_b \cap \ell_c \in \omega$ ; the result follows by symmetry.

Let  $I' = \overline{TI} \cap \ell$ , and consider the homothety h at T mapping  $I \to I'$ . Let P' denote the image of point P under h, so I' is the incenter of  $\triangle A'B'C'$ . Since  $\overline{A'I'} \parallel \overline{ADI}$  while  $A' \in \ell_a$  and  $I' \in \ell$ ,  $m_a$  is also the perpendicular bisector of  $\overline{AI}$ .

From here it follows that the pairwise intersections of  $m_a$ ,  $m_b$ ,  $m_c$  are just the arc midpoints in (A'B'C'). By h, (A'B'C'), (ABC) tangent at T, hence done.

## **♣** 1.11 MOP 2020/1Z, by Evan Chen

Let ABCD be a quadrilateral inscribed in circle  $\Omega$ . Circles  $\omega_A$  and  $\omega_D$  are drawn internally tangent to  $\Omega$ , such that  $\omega_A$  is tangent to  $\overline{AB}$  and  $\overline{AC}$  while  $\omega_D$  is tangent to  $\overline{DB}$  and  $\overline{DC}$ . Prove that we can draw a line parallel to  $\overline{AD}$  which is simultaneously tangent to both  $\omega_A$  and  $\omega_D$ .



Solution by **v4913**. Define...

- P, Q as the respective midpoints of  $\widehat{BC}$ ,  $\widehat{BAC}$ ,  $I_a$ ,  $I_d$  as the respective incenters of  $\omega_a$ ,  $\omega_d$ , and M as the midpoint of  $\widehat{BC}$ ;
- $O_a$ ,  $O_d$  as respective centers of  $\omega_a$ ,  $\omega_d$ , and  $\gamma = (BI_aI_dC)$  (with center P), so that  $\overline{QB}$ ,  $\overline{QC}$  touch  $\gamma$ ;
- $E_a$ ,  $F_a$ ,  $T_a = \omega_a \cap \overline{AB}$ ,  $\overline{AC}$ ,  $\Omega$ ;  $K_a$  as the intersection of  $\overline{AT_d}$  with  $\omega_a$  closer to A, and their symmetric variants. It's well-known that Q,  $I_a$ ,  $T_a$  collinear, and that  $I_a$  is the midpoint of  $\overline{E_aF_a}$ ;
- $s_a$  as the spiral similarity mapping  $\gamma \to \omega_a$  and thus Q, B, C,  $M \to A$ ,  $E_a$ ,  $F_a$ ,  $I_a$ . Since  $\Delta K_a A F_a = \frac{1}{2} \widehat{T_d C} = \Delta I_d Q C$  by design, we also have  $(K_a \overset{s_a}{\to} I_d)$ .

We contend that  $\overline{K_aK_d}$  is the desired tangent, using the following two parts:

Claim 1 - 
$$\overline{O_a K_a}$$
,  $\overline{O_d K_d} \perp \overline{AD}$ .

*Proof.* We angle chase:

$$\measuredangle(\overline{O_aK_a},\overline{AD})=\measuredangle O_aK_aA+\measuredangle K_aAD\stackrel{s_a}{=} \measuredangle PI_dQ+\measuredangle T_dQD=\measuredangle(\overline{PI_d},\overline{QD})=\frac{1}{2}\widehat{PQ}=90^\circ.$$

The claim follows by symmetry.

Claim 2 -  $\overline{K_aK_d} \parallel \overline{AD}$ .

*Proof.* Let  $X = \overline{AT_d} \cap \overline{DT_a}$ , so that it'll suffice to prove  $AK_a/AX = DK_d/DX$ . Indeed, using  $s_a$ ,  $AK_a = QI_d \cdot \frac{AI_a}{QM}$  and similarly  $DK_d = QI_a \cdot \frac{DI_d}{QM}$ . We thus have:

$$\frac{AK_a}{DK_d} = \frac{AI_a/QI_a}{DI_d/QI_d} = \frac{AT_a/QP}{DT_d/QP} = \frac{AX}{DX}.$$

From the previous two claims,  $\overline{O_aK_a}$ ,  $\overline{O_dK_d} \perp \overline{K_aK_d}$ ,  $\overline{AD}$  so  $\overline{K_aK_d}$  touches both  $\omega_a$ ,  $\omega_d$  while also parallel to  $\overline{AD}$ , as required.

#### **♣ 1.12** Twitch Solves ISL 006.1

Let ABC be a triangle and let T be the contact point of the A-mixtilinear incircle with the circumcircle, and let T' be the reflection of T over BC. Prove that the nine-point circle of T'BC is tangent to the incircle.



Let K, L, M be the midpoints of  $\widehat{BTC}$ ,  $\widehat{BAC}$ , and  $I_1$  be the incenter, so that  $\omega = (BI_1C)$ ; then, let  $I_2 = \overline{NT} \cap \omega$  ( $\neq I_1$ ). Clearly, since  $\overline{LB}$ ,  $\overline{LC}$  touch  $\omega$ ,  $(BC; I_1I_2) = -1$ . Additionally, since  $\angle KTL = 90^\circ$ , T is the midpoint of  $\overline{I_1I_2}$ , a Dumpty point...

Recall the following lemma:

**Lemma -** In  $\triangle ABC$  with A-Dumpty point X,  $\overline{AX}$  bisects  $\angle BXC$ .

Reflect the nine-point circle given to obtain the nine-point circle of  $\triangle TBC$ . We may now safely get rid of A:

#### **Problem simplified**

In harmonic quadrilateral  $BI_1CI_2$ , T is the midpoint of  $\overline{I_1I_2}$ , and  $I_1'$  is the reflection of  $I_1$  in  $\overline{BC}$  (aka the  $I_2$ -Humpty point in  $\triangle I_2BC$ ). For  $k \in \{1,2\}$  let  $D_k$  be the foot from  $I_k$  to  $\overline{BC}$ , and  $\omega_k$  the circle at  $I_k$  through  $D_k$ . Then the circle  $\omega_1'$  at  $I_1'$  through  $D_1$  touches the nine-point circle  $\gamma$  of  $\triangle TBC$ .

Recalling the proof of Feuerbach by inverting about the midpoint of a side, we do likewise here. Define...

- U as foot from T to  $\overline{BC}$ , and  $E = \overline{I_1I_2} \cap \overline{BC}$ . By midpoints of harmonic bundles lemma applied to  $(D_1D_2; ME) \stackrel{\infty \perp BC}{=} (I_1I_2; NE) = -1$ , we have  $ME \cdot MU = MD_1 \cdot MD_2$ .
- N, O as respective centers of  $\gamma$ , (BTC), and H as orthocenter of  $\triangle BTC$ ;

 $\underline{M}$  is the exsimilicenter of  $\omega_1'$ ,  $\omega_2$  because it lies on the line of centers  $\overline{I_1'I_2}$  as well as the common external tangent  $\overline{BC}$ . Let \* denote inversion at M with power  $ME \cdot MU = MD_1 \cdot MD_2$ , so that  $\omega_1' = \omega_2^*$ .

**Claim** - The reflection  $\ell$  of  $\overline{BC}$  in  $\overline{I_1I_2}$  is  $\gamma^*$ .

*Proof.* Since  $E = U^*$ , it suffices to prove that  $\overline{MN} \perp \ell$ . Indeed,  $MN \parallel \overline{TO}$  by homothety at H, while reflecting  $\overline{TU} \perp \overline{BC}$  in the T-angle bisector  $\overline{I_1TX_2}$  gives  $\overline{TO} \perp \ell$ .

Observe by symmetry about  $\overline{I_1I_2}$  that  $\ell$  also touches  $\omega_2$ . Inverting back, we have  $\gamma$  tangent to  $\omega'_1$  as required.

#### \$1.13 IGO 2020/A4

Convex circumscribed quadrilateral ABCD with its incenter I is given such that its incircle is tangent to  $\overline{AD}$ ,  $\overline{DC}$ ,  $\overline{CB}$ , and  $\overline{BA}$  at K, L, M, and N. Let  $E = \overline{AD} \cap \overline{BC}$  and  $F = \overline{AB} \cap \overline{CD}$ . Let  $X = \overline{KM} \cap \overline{AB}$  and  $Y = \overline{KM} \cap \overline{CD}$ . Let  $Z = \overline{LN} \cap \overline{AD}$  and  $T = \overline{LN} \cap \overline{BC}$ .

Prove that the circumcircle of triangle  $\triangle XFY$  and the circle with diameter EI are tangent if and only if the circumcircle of triangle  $\triangle TEZ$  and the circle with diameter FI are tangent.

### imagine doing both directions

CyclicISLscelesTrapezoid



We contend that (XFY), (EI) tangent  $\iff \overline{KM} \perp \overline{LN}$ , which is just another expression of 'ABCD bicentric'. Call the incircle  $\omega$ . Define  $S = \overline{KM} \cap \overline{LN}$  and Q as the Miquel point of KLMN aka the inverse of S wrt  $\omega$ , which obviously lies on the polar  $\overline{EF}$  of S wrt  $\omega$ . It follows that  $\angle SQE = \angle SQF = 90^\circ$ . Let  $F' = \overline{QF} \cap \overline{KM} U$  be the midpoint of  $\overline{SF'}$ .

**Claim** -  $\overline{QF}$  always bisects  $\angle XQY$ , and  $UM \cdot UK = US^2 = UX \cdot UY$ , so U lies on the radical axis of (EIMK), (XFY).

*Proof.* By Brianchon on ABMCDK,  $S = \overline{AB} \cap \overline{CD}$  as well. Apply DIT to  $\overline{KM}$  and quadrilateral ABCD and project to Q, to obtain an involutive pairing i: Q(XY; SS; KM). The last two pairs imply that i is just reflection in  $\overline{QS}$ , so  $\overline{QS}$  bisects  $\angle XQY$ . As  $\overline{QF} \perp \overline{QS}$ , it must also bisect the same angle: i: Q(F'F'). By these right angles and angle bisections, (SF'; MK) = (SF'; XY) = -1, so the last result follows by midpoints

Now because  $\angle SQF' = 90^\circ$ , we have  $UQ = US = UF' \Rightarrow (EI)$ , (XQY) tangent at Q; this means that the desired is equivalent to FQXY cyclic.

*Note.* Actually, there are two circles through *X*, *Y*, but one of them is extraneous by configuration issues.

Next, we show that this happens iff FX = FY.

of harmonic bundles lemma.

"If" direction Since  $\angle FQX = \angle YQF$ , triangles FQX, FQY have equal circumradii, so their circumcircles either coincide or are reflections of each other in  $\overline{QF}$ . If they were to be reflections, we'd obtain two possibilities, each

absurd in the context of the problem: (i) Q, X, Y collinear  $\Rightarrow \overline{XY}, \overline{EF}$  coincide; and (ii) X, Y reflections in  $\overline{QF} \Rightarrow \overline{XY}, \overline{SQ} \perp \overline{EF}, \overline{XY} \parallel \overline{SQ}$ . Thus (FQX) = (FQY) as required.

"Only if" direction  $\angle YQF = \angle FQX \Rightarrow \widehat{YF} = \widehat{FX}$ , trivial;

To finish the problem, observe that FX = FY is equivalent to  $\overline{MK}$  making equal angles with  $\overline{AB}$ ,  $\overline{CD}$ . As FN = FL as well,  $\overline{LN}$  (always) makes equal angles with the same two lines. Since K, L, M, N form a convex polygon, this is in turn equivalent to  $\overline{KM} \perp \overline{LN}$ , completing the proof.

# **♣** 1.14 IMO 2019/6, by Anant Mudgal

Let I be the incenter of acute triangle ABC with  $AB \neq AC$ . The incircle  $\omega$  of ABC is tangent to sides BC, CA, and AB at D, E, and F, respectively. The line through D perpendicular to  $\overline{EF}$  meets  $\omega$  at R. Line AR meets  $\omega$  again at P. The circumcircles of triangle PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to  $\overline{AI}$ .



Observe that P is the D-orthocenter Miquel in  $\triangle DEF$ . Define K as the intersection of the A-external bisector with  $\overline{AD}$ . We make the following definitions...

- Let  $\omega$ ,  $\omega_a$  denote the incircle and (*BIC*) respectively;
- Define X as intersection of segment PK with  $\omega$ . Let Q instead denote the A-SD point;
- G be the harmonic conjugate of I wrt BC, D' as the foot of the A-angle bisector;  $M_a$  as the midpoint of arc BC exc. A;  $M'_a$  as the antipode of  $M_a$  on (ABC);
- H as orthocenter of  $\triangle DEF$ , and  $H_d$  its reflection over  $\overline{EF}$ .

 $\Rightarrow$  because  $MB^2 = MD \cdot MQ = MD' \cdot MA$ ,  $Q \in (ADD'K)$ .

Thus we want to show that *PXFB* cyclic. (*PXEC* cyclic would follow from symmetry, proving that *X* was indeed the point constructed in the problem.)



Claim 1 -  $P \in (ADD'KQ)$ .

*Proof.* Observe that  $(PH_d; EF) = -1$  whence A, P,  $H_d$  collinear. Then because  $\overline{DH_d} \parallel \overline{AI}$  because both perpendicular to  $\overline{EF}$ . Hence result by degenerate Reim.

Claim 2 -  $\triangle PFE \stackrel{+}{\sim} \triangle GBC$ .

*Proof.* Proceed by spiral at Q. Observe that  $\triangle H_dEF \stackrel{+}{\sim} \triangle ICB$  by angle chase. Because  $(H_dP;EF)=(IG;BC)=-1$ , the needed similarity follows.

Claim 3 - *K*, *G*, *P* collinear.

*Proof.* An angle chase, using the previous two claims:

$$\angle QPK \stackrel{\text{claim I}}{=} \angle QAK = \angle QAM_a \stackrel{\text{spiral}}{=} \angle QPG. \qquad \Box$$

Using last two claims, we may angle chase:

$$\angle PXB = \angle GXB = \angle GCB \stackrel{\text{spiral}}{=} \angle PEF = \angle PFB$$
,

or PXFB cyclic.

Remark. ggb way too op

## **♣** 1.15 MOP + USA TST, by Ankan Bhattacharya

Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying  $\angle AID = 90^{\circ}$ . Let the excircle of triangle ABC opposite the vertex A be tangent to  $\overline{BC}$  at  $A_1$ . Define points  $B_1$  on  $\overline{CA}$  and  $C_1$  on  $\overline{AB}$  analogously, using the excircles opposite B and C, respectively.

#### **\$ 1.15.1** MOP 2019/(?)

Let E, F be the feet of the altitudes from B, C respectively. Prove that if  $\overline{EF}$  touches the incircle, then quadrilateral  $AB_1A_1C_1$  is cyclic.



Call the incircle  $\omega$ .

**Claim 1 –** D, E, F are collinear.

<u>Proof.</u> We will prove that the tangent line from D is antiparallel to  $\overline{BC}$  wrt  $\angle A$ . Indeed, this line is found by reflecting  $\overline{DBC}$  over  $\overline{DI}$ , a line perpendicular to  $\overline{AI}$ , so we win.

Let  $\omega$  touch  $\overline{DEF}$  at a point T, and let D' denote the A-intouch point.

**Claim 2 –**  $\overline{AI} \parallel \overline{HD'}$ ; hence AID'H is a parallelogram and AH = r, the inradius of  $\triangle ABC$ .

*Proof.* Because *BCEF* is tangential, it follows by degenerate Brianchon that lines *BE*, *CF*, *DT'* concur, i.e.  $H \in \overline{TD'}$ . Observe that DT = DD'; then  $\overline{THD'} \perp \overline{DI}$  by symmetry, while  $\overline{AI} \perp \overline{DI}$  is given; the lines are thus parallel as claimed.

Now, let  $\omega_a$ , etc denote  $(AB_1C_1)$ , etc, respectively. We observe that because the perpendicular from  $A_1$  to BC and its cyclic variants all concur at the point 2O - I, it follows that all three circles must concur at this point by Miquel spam.

But because r/2 = AH/2 is the distance from O to  $\overline{BC}$ , we actually have  $2O - I = A_1$  (also because of their feet onto  $\overline{BC}$ ). Hence  $A_1 \in \omega_a$  as desired.

#### **♣** 1.15.2 USA TST 2019/6

Prove that if quadrilateral  $AB_1A_1C_1$  is cyclic, then  $\overline{AD}$  is tangent to the circumcircle of  $\triangle DB_1C_1$ .



From MOP 2019, we make the following observations:

- By its converse, D, E, F collinear; then, if T is the foot from A to  $\overline{BC}$ , we have (TD; BC) = -1.
- As  $A_1$  is the Bevan point 2O I, its projections onto  $\overline{AC}$ ,  $\overline{AB}$  are  $B_1$ ,  $C_1$  respectively. It follows that A,  $A_1$  are antipodes on  $\omega_a$ .
- Since BCEF is bicentric, if the incircle touches  $\overline{AC}$ ,  $\overline{AB}$  at  $B_1'$ ,  $C_1'$ , then  $BC_1'/FC_1' = CB_1'/EB_1'$ , so the *A*-incenter and orthocenter Miquel points coincide, say at  $Q \in (ABC)$ .

From the last item,  $\angle AQI = \angle AQH = 90^{\circ}$ .

Claim -  $\overline{AD}$  touches  $\omega_a$ .

*Proof.* Since  $(ABC) \cap (AH) = \{A, Q\}$ , the projection of O onto  $\overline{AQD}$  is  $\frac{A+Q}{2}$ . At the same time, the above implies Q is the projection of I onto  $\overline{AQD}$ . By linearity the projection of  $A_1 = 2O - I$  onto  $\overline{AD}$  is  $2\frac{A+Q}{2} - Q = A$  in other words,  $\angle A_1AD = 90^\circ$ . This proves the tangency as  $\overline{AA_1}$  is a diameter of  $\omega_a$ .

Let  $M = \frac{A+D}{2}$ , so  $\overline{MT}$  touches  $\omega_a$  as well by symmetry in the perpendicular bisector  $M \otimes_{BC}$  of  $\overline{AT}$ . Now,  $(AT; B_1C_1) \stackrel{A}{=} (DT; CB) = -1$  means  $M \in \overline{B_1C_1}$ .

Finish by power of a point converse:  $MD^2 = MA^2 = MB_1 \cdot MC_1$  gives the needed tangency.

#### **♣ 1.16** RMM + Fake USAMO

#### **♣** 1.16.1 RMM 2012/6, by Fedor Ivlev

Let ABC be a triangle and let I and O denote its incentre and circumcentre respectively. Let  $\omega_A$  be the circle through B and C which is tangent to the incircle of the triangle ABC; the circles  $\omega_B$  and  $\omega_C$  are defined similarly. The circles  $\omega_B$  and  $\omega_C$  meet at a point A' distinct from A; the points B' and C' are defined similarly. Prove that the lines AA', BB' and CC' are concurrent at a point on the line IO.

Let  $K_a = \overline{EF} \cap \overline{BC}$ ,  $\gamma_a = (K_a D)$ ,  $J_a = \omega_a \cap \gamma_a \cap \omega$  (and cyclic variants), and H and  $\ell$  denote the orthocenter and Euler line of  $\triangle DEF$ , respectively. Also, let  $I_a$ ,  $I_b$ ,  $I_c$  be the excenters of  $\triangle ABC$ .



**Solution 1, by radical axes** Observe that  $\ell$  is just  $\overline{OI}$ , and that  $\gamma_a$ , etc are coaxial Apollonian circles. Define X as the radical center of  $\gamma_a$ ,  $\gamma_b$ ,  $\gamma_c$ ,  $\omega$  (which exists since the former 3 circles are coaxial). We'll show this is the desired concurrency point in both problems. Clearly,  $\overline{DJ_a}$  is the raxis of  $(\gamma_a, \omega)$ , i.e.  $X \in \overline{DJ_a}$ .

#### **Lemma 1** – $\ell$ is the raxis of $\gamma_a$ and variants.

*Proof.* Let  $T_a$  denote the foot of D onto  $\overline{EF}$ , which is obviously on  $\gamma_a$ . Then H has power  $HD \cdot HT_a$  ( = variants) wrt the  $\gamma$ 's, hence on raxis; Meanwhile I has power  $r^2$  wrt all circles by orthogonality, hence also on raxis, done.  $\Box$ 

Let tangents to  $\omega$  at  $J_b$ ,  $J_c$  meet at U; then,  $\overline{AU}$  is the raxis of  $\omega_b$ ,  $\omega_c$ . Clearly this is the polar of  $\overline{J_bJ_c} \cap \overline{EF}$ . Recalling that  $X = \overline{EJ_b} \cap \overline{FJ_c}$ , follows by Brokard that  $X \in \overline{AU}$ , the end.



**Solution 2, by homothety (v4913)** Let D' be the antipode of D on  $\omega$ ,  $Q = \overline{AD} \cap \omega$  ( $\neq D$ ); then, because (EF; DQ) = -1,  $\overline{K_aQ}$  touches  $\omega$  as well. Also, because  $\angle DJ_aD' = \angle DJ_aK_a = 90^\circ$ ,  $K_a$ ,  $J_a$ , D' are collinear, whence  $(DQ; J_aD') = -1$ .

We start with X as the similicenter of homothetic triangles DEF,  $I_aI_bI_c$ . Let homothety h at X with scale factor r map  $(D, E, F) \rightarrow (I_a, I_b, I_c)$ , This must also map their circumcenters to each other, i.e.  $I \stackrel{H}{\Rightarrow} 2O - I$ , whence  $X \in \overline{OI}$ .

Also, let  $M_a$  be the midpoint of  $\overline{BC}$ ,  $O_a \in \overline{DJ_a}$  be the midpoint of arc BC on  $\omega_a$  not containing  $J_a$  (and variants).

## **Lemma 2 (SL 2002/G7)** – $J_a$ , D, $I_a$ collinear.

Proof. Harmonics:

$$-1 = (DQ; D'J_a) \stackrel{D}{=} (\overline{BC} \cap \overline{AI}, \overline{JaD} \cap \overline{AI}; I, A),$$

implying that  $\overline{J_aD} \cap \overline{AI}$  is the *A*-excenter.

Hence,  $X = \overline{DJ_a} \cap \overline{EJ_b} \cap \overline{FJ_c}$ .

**Claim** -  $O_a$  is the midpoint of  $\overline{DI_a}$ .

*Proof.* By symmetry,  $M_a$  is the foot of  $O_a$  onto  $\overline{BC}$ , while it's well-known that 2M-D is the foot of  $I_a$  onto  $\overline{BC}$ . M obviously being the midpoint of the segment with endpoints D, 2M-D implies the claim by parallel lines.  $\Box$ 

Therefore there must exist a homothety b' at X with scale factor (1+r)/2, mapping  $(D, E, F) \to (O_a, O_b, O_c)$ . To show that our X is indeed the radical center of  $\omega_a$ ,  $\omega_b$ ,  $\omega_c$ , compute

$$\operatorname{Pow}(X, \omega_a) = XJ_a \cdot XO_a \stackrel{b'}{=} \frac{1+r}{2}XJ_a \cdot XD = \frac{\operatorname{Pow}(X, \omega)}{(r+1)/2},$$

a symmetric quantity wrt *a*, *b*, *c*.

#### **♣** 1.16.2 Fake USAMO 2020/3 (author?)

Let  $\triangle ABC$  be a scalene triangle with circumcenter O, incenter I, and incircle  $\omega$ . Let  $\omega$  touch the sides  $\overline{BC}$ ,  $\overline{CA}$ , and  $\overline{AB}$  at points D, E, and F respectively. Let E be the projection of E to E. The line E intersects the circumcircle of E again at point E and E and E and E intersect E and E and E are concurrent.



Retain the point definitions from the previous two problems, renaming the X given in the problem to Y. For consistency of notation we let X denote the similicenter of triangles  $I_aI_bI_c$ , DEF (as before). We'll show that  $AEYJ_c$  cyclic–P, Q are just the  $J_b$ ,  $J_c$  from earlier.

**Claim 1 -**  $\overline{EJ_c}$ ,  $\overline{FJ_b}$ ,  $\overline{AT}$  are concurrent at some point R on the polar of X wrt  $\omega$ .

*Proof.* I claim that  $\overline{AT}$  is the polar of  $\overline{EF} \cap \overline{J_bJ_c}$  wrt  $\omega$ . Indeed, this is just Brokard. By Brokard again,  $\overline{EJ_b} \cap \overline{FJ_c}$  is on  $\overline{AT}$  as well as the polar of X wrt  $\omega$ .

Let  $M_a$  be midpoint of  $\overline{K_aD}$  (and cyclic variants).

**Lemma -** The polar of X wrt  $\omega$  is the radical axis of  $\Omega$ ,  $\omega$ .

*Proof.* As  $\gamma_b \perp \omega$ , and  $\overline{M_b E}$  touches  $\omega$ ,  $\overline{M_b J_b}$  must also touch it; in other words  $M_b$  is the pole of  $\overline{EJ_b}$  wrt  $\omega$ . As  $X \in \overline{EJ_b}$ ,  $\overline{M_a M_b M_c}$  is the polar of X wrt  $\omega$  by la Hire.

It remains to prove that  $M_a$  (and thus cyclic variants by symmetry) is on the radical axis of  $\Omega$ ,  $\omega$ . Indeed, by the midpoints of harmonic bundles lemma on  $(K_aD;BC)$ ,

$$Pow(M, \omega) = M_a D^2 = MB \cdot MC = Pow(M, \Omega)$$

From the previous two claims,

$$RA \cdot RY = \text{Pow}(R, \Omega) = \text{Pow}(R, \omega) = RE \cdot RJ_c \Rightarrow AEJ_c Y \text{ cyclic,}$$

completing the proof.

## **♣** 1.17 TSTST 2018/3, by Evan Chen & Yannick Yao

Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle  $\Gamma$ . Let M be the midpoint of  $\overline{AB}$ . Ray AI meets  $\overline{BC}$  at D. Denote by  $\omega$  and  $\gamma$  the circumcircles of  $\triangle BIC$  and  $\triangle BAD$ , respectively. Line MO meets  $\omega$  at X and Y, while line CO meets  $\omega$  at C and Q. Assume that Q lies inside  $\triangle ABC$  and  $\triangle AQM = \triangle ACB$ .

Consider the tangents to  $\omega$  at X and Y and the tangents to  $\gamma$  at A and D. Given that  $\angle BAC \neq 60^{\circ}$ , prove that these four lines are concurrent on  $\Gamma$ .

Geometry is the science of correct reasoning on incorrect figures.

George Pólya / Henri Poincaré



The given angle condition implies AMQO cyclic, or  $\angle AQC = \angle AMO = \pi/2$ . We make the following definitions:

- $\Omega = (ABC)$ ,  $M_a$  as the center of  $\omega$  and midpoint of  $\widehat{BC}$ ;
- Q' = 2Q A as the reflection of A in  $\overline{QOC}$  this lies on  $\Omega$  by symmetry about  $\overline{CO}$ ;
- $K \in \Omega$  as the reflection of  $M_a$  in  $\overline{MO}$ , the perpendicular bisector of  $\overline{AB}$ .

In the meat of the problem we'll use the following easily findable arcs/angles frequently:

$$\widehat{BM_a} = \widehat{CM_a} = \widehat{AK} = A$$
, and  $\widehat{AC} = \widehat{CQ'} = \widehat{M_aK} \Rightarrow \angle AQ'C = B$ .

#### Observation

 $\overline{QI}$  bisects  $\angle AQD$ . (Holds because  $Q \in \gamma$ , the Apollonian circle wrt A, D through I.)

Claim 1 -  $\triangle QQ'D \stackrel{+}{\sim} \triangle M_aAC$ .

*Proof.* First, we'll show  $\angle QQ'D = \angle B$ , a massive angle chase:

$$\angle M_a A Q = \angle C A Q' - \angle C A M_a = B - \frac{A}{2}, \text{ and } \angle M_a I Q = \frac{\pi - \angle I M_a Q}{2} = \frac{\pi}{2} - \angle I C O = B + \frac{C}{2};$$
$$\Rightarrow \angle A Q I = \angle M_a I Q - \angle M_a A Q = \frac{\pi - B}{2}.$$

Applying the observation gives  $\angle Q'QD = B$ .

To conclude, note that

$$\frac{Q'Q}{QD} = \frac{AQ}{QD} = \frac{AI}{ID} = \frac{AC}{CD} = \frac{AM_a}{M_aC},$$

establishing the similarity by SAS.

(The similarity is negative due to lack of configuration issues, and inspection.)

Claim 2 - Q', D, K collinear.

*Proof.* Angle chase again: 
$$\angle AQ'D \stackrel{\text{claim I}}{=} -\angle M_aAC = \widehat{AC}/2 = \widehat{AK}/2 = \angle AQ'K$$
.

## Part 1: $\overline{KA}$ and $\overline{KD}$ touch $\gamma$

Even more angle chasing, taking advantage of claim 2...

$$\angle KAD = \frac{\widehat{KM_a}}{2} = \frac{\widehat{AC}}{2} = \angle ABD$$
, while  $\angle KDA = \frac{\widehat{KA} + \widehat{QM_a}}{2} = \frac{\widehat{Q'C}}{2} = B = \angle DBA$ ,

proving the tangencies.

The other, more elegant part of the problem...

**Claim 3** -  $\overline{MO}$ ,  $\overline{BC}$ ,  $\overline{KM_a}$ , (ADK) all concur at a point X.

*Proof.* Let  $X_1 = \overline{MO} \cap \overline{BC}$ ,  $X_2 = \overline{KM_a} \cap \overline{BC}$ .

- $X_1 \in (ADK)$  by similarity: observe by (omitted) angle chase that  $\triangle AXB \stackrel{+}{\sim} \triangle AKD$ , whence  $\angle AXD = \angle AKD$ ;
- $X_2 \in (ADK)$  (by contrast) is by power of a point at  $M_a$ :

$$M_a B^2 = M_a C^2 = M_a X_2 \cdot M_a K = M_a A \cdot M_a D.$$

As  $X_1 = X_2 = (ADK) \cap \overline{BC} \ (\neq D)$ , the claim is proven.

Because  $\overline{M_aK} \parallel \overline{AB} \perp \overline{MO}$ , and  $X = \overline{MO} \cap \overline{M_aK}$  is the inverse of K wrt  $\omega$  (by the second equation in previous claim's proof),  $\overline{MO}$  is the polar of K wrt  $\omega$ , completing the problem.

*Remark.* (crazyeyemoody907) For me, it took forever to discover the proof of claim 1. Here are some useless formulations of its statement I harped upon:

•  $(AC; KM_a) = -1$  which directly implies the first part:

$$(B, \overline{BK} \cap \gamma; A, D) \stackrel{B}{=} (M_a K; AC) = -1;$$

Since " $\overline{KA}$  touches  $\gamma$ " is very easily provable, K would be polar of  $\overline{AD}$  wrt  $\gamma$  as promised...

• BDQQ' cyclic ( $\iff \overline{QD} \parallel \overline{AC}$  by Reim)

In fact, this means post-solve that  $\overline{BQ} \parallel \overline{Q'DK}$ ... in hindsight, equally useless...

Remark. (Note to self?) When angle chasing in a synthetic problem fails, try length ratios! Examples: SL 2016/G7, GGG 4.5;

## **♣** 1.18 DeuX MO 2020/II/3, by Hao Minyan (China)

In triangle ABC with circumcenter O and orthocenter H, line OH meets  $\overline{AB}$ ,  $\overline{AC}$  at E, F respectively. Let  $\omega$  be the circumcircle of triangle AEF with center S, meeting (ABC) again at  $J \neq A$ . Line OH also meets (JSO) again at  $D \neq O$ . Define  $K = (JSO) \cap (ABC)$   $(\neq J)$ ,  $M = \overline{JK} \cap \overline{OH}$ , and  $G = \overline{DK} \cap (ABC)$   $(\neq K)$ . Prove that (GHM) and (ABC) are tangent to each other.



Solution by crazyeyemoody907, v4913.

Let  $\Omega = (ABC)$ ,  $H_b$ ,  $H_c$  be the respective reflections of H in  $\overline{AC}$ ,  $\overline{AB}$ , and  $\ell = \overline{EFOH}$ . Redefine  $K = \overline{H_cE} \cap \overline{H_bF}$  (we'll see this is an equivalent definition). As  $\overline{EA}$ ,  $\overline{FA}$  are external angle bisectors wrt  $\triangle KEF$ , we have  $\angle EKF = \pi - 2A$ .

Claim 1 -  $J \in (HEH_c), (HFH_b).$ 

*Proof.* Let  $J' = (HEH_c) \cap (HFH_b) \ (\neq H)$ . Then:

$$\angle H_c J' H_b = \angle H_c J' H + \angle H J' H_b = \angle H_c E H + \angle H F H_b = \angle (\overline{H_c E}, \overline{H_b F}) = \angle H_b K H_c = \angle H_b A H_c \Rightarrow J' \in \Omega.$$

The construction of J' implies that  $\overline{J'E}$ ,  $\overline{J'F}$  respectively bisect  $\angle H_cJ'H$ ,  $\angle H_bJ'H$ , and thus

$$\angle EJ'F = \frac{1}{2}\angle H_bJ'H_c = \angle BAC = \angle EAF \Rightarrow J' \in (AEF),$$

finishing the claim.

Let  $L = \overline{JH} \cap \Omega$  ( $\neq J$ ); then, as  $JH_cKL$ ,  $JH_cEH$  cyclic,  $\ell \parallel \overline{KL}$  by Reim. By homothety, (JHM) touches  $(JKL) = \Omega$ .

**Claim 2** - For the *K* defined in solution,  $K \in \overline{AS}$ , (*JSO*).

*Proof.* Since  $\angle ESF = 2 \angle BAC = \angle EKF$ , we have KESF cyclic; as SE = SF,  $AH_b = AH_c$ , A, S both lie on bisector of  $\angle EKF$ .

Next, we prove that O is the midpoint of  $\widehat{JSK}$  on (JSK). Because  $\overline{OS}$  is the perpendicular bisector of  $\overline{AJ}$  by symmetry, it externally bisects  $\angle JSK$  as  $K \in \overline{AS}$ . At the same time, OJ = OK means O is on the perpendicular bisector of  $\overline{JK}$ . These two properties imply that O is the claimed arc midpoint.

From here, as DJKO cyclic and OJ = OK,  $\overline{DO}$  bisects  $\angle JDK$ , and  $G = \overline{DK} \cap \Omega$  is the reflection of J in  $\ell$  by symmetry. Reflecting "(JHM) touches  $\Omega$ " over  $\ell$  completes the proof.

## **♣** 1.19 USA TST 2021/2, by Andrew Gu & Frank Han

Points A,  $V_1$ ,  $V_2$ , B,  $U_2$ ,  $U_1$  lie fixed on a circle  $\Gamma$ , in that order, and such that  $BU_2 > AU_1 > BV_2 > AV_1$ . Let X be a variable point on the arc  $V_1V_2$  of  $\Gamma$  not containing A or B. Line XA meets line  $U_1V_1$  at C, while line XB meets line  $U_2V_2$  at D.

Prove there exists a fixed point K, independent of X, such that the power of K to the circumcircle of  $\triangle XCD$  is constant.



Clearly, the problem statement should hold for any  $X \in \Gamma$ ; here, all lengths are directed.

Let  $X_1, X_2$  be the respective reflections of A, B in the perpendicular bisectors of  $\overline{U_1V_1}$ ,  $\overline{U_2V_2}$ . We assert that  $K = \overline{AX_2} \cap \overline{BX_1}$  fits the bill. For brevity, let ' $\leftrightarrow$ ' denote 'is a constant multiple of', so ' $x \leftrightarrow 1$ ' is a shorthand for 'x is constant'.

By Reim,  $E = \overline{BX} \cap \overline{AX_2}$  lies on (ADX), so Pow $(K, (ADX)) = KE \cdot KA \leftrightarrow 1$ . Now, in the spirit of linpop, let f(P) = Pow(P, (ADX)) - Pow(P, (XCD)), so that because f(Y) = 0, we have

$$f(K) = -\frac{KY}{YA}f(A) = AC \cdot AX\frac{KY}{AY}.$$

The rest is a wild length chase; let B', Z be the respective reflections of B, X in the perpendicular bisector of  $\overline{U_1V_1}$ , so that  $XX_1 = AZ$  and  $\overline{AZ}$ ,  $\overline{ACX}$  isogonal wrt  $\angle U_1AV_1$ . Then, observing that all lengths not involving X, C, D, Y are fixed,

$$\frac{KY}{AY} = (KA; Y \infty_{AK}) \stackrel{B}{=} (X_1 A; XB') \leftrightarrow \frac{X_1 X}{AX} = \frac{AZ}{AX};$$
$$\Rightarrow f(K) \leftrightarrow AC \cdot AZ = AU_1 \cdot AV_1 \leftrightarrow 1,$$

where the last equality follows because Z, C swapped by inversion at A with power  $AU_1 \cdot AV_1$  composed with reflection in the angle bisector of  $\angle U_1AV_1$ , so we win.

*Remark.* How on earth would someone find K? I considered the degenerate cases when (XCD) is a straight line (which occur when  $X = X_1, X_2$ , hence their names).

### **♣** 1.20 IMO 2021/3

Let D be an interior point of the acute triangle ABC with AB > AC so that  $\angle DAB = \angle CAD$ . The point E on the segment E satisfies E satisfies E and the point E on the segment E satisfies E sa



## Solution by **v4913**.

Let  $J = \overline{EF} \cap \overline{BC}$ , and  $D' \in \overline{AD}$  be the isogonal conjugate of D wrt  $\triangle ABC$ . The given angle conditions imply that BDD'F, CDD'E are cyclic, while power of a point at A implies BCEF cyclic as well.

**Claim 1 -** J is the exsimilicenter of (EDC), (FDB); hence, JD = JD' by symmetry.

*Proof.* Construct  $E_1 = (CDD'E) \cap \overline{BC} \ (\neq C)$ ,  $F_1 = (BDD'F) \cap \overline{BC} \ (\neq B)$ . By isogonality, DF = D'F' and DE = D'E' whence DD'E'E, DD'F'F are both cyclic isosceles trapezoids.  $\overline{DD'}$ ,  $\overline{EE'}$ ,  $\overline{FF'}$  share a perpendicular bisector b, and in fact, this is the bisector of  $\angle I$ , i.e.  $\overline{IE} = \overline{IE'}$ ,  $\overline{IF} = \overline{IF'}$ .

Reflect *B*, *C* over *b* to obtain *B'*, *C'*; then, because JB/JF' = JB/JF = JE/JC = JE'/JC, there is a homothety at *J* mapping  $(B, B', F, F') \rightarrow (E', E, C', C)$  and thus their circumcircles  $(BB'DD') \rightarrow (CC'DD')$  as well.



Let  $Y = (ADC) \cap (EXD)$  ( $\neq D$ ), Q be the Miquel point of ABCJEF, and j the circle at J through D, D'. Observing that  $\overline{O_1O_2}$  is the perpendicular bisector of  $\overline{DY}$ , it remains to prove  $Y \in j$ .

**Claim 2 -** *XQEB* is cyclic.

*Proof.* This is a simple angle chase: using cyclic quadrilaterals (ABCQ), (JFBQ), (ECJQ), and (AEFQ), we obtain

$$\angle EQB = \angle EQA + \angle AQB = \angle ACB + \angle EFA = 2\angle ACB = \angle EXB$$

Next, we characterize the radical axis of j, (JBF) – it's perpendicular to the line of centers and through A:

**Claim 3** - The line through *B* and the center of (*JBF*) is perpendicular to  $\overline{AC}$ .

*Proof.* This is equivalent to " $t_b$ , the tangent to (JBF) at J, is parallel to  $\overline{AC}$ ". Because  $\angle(\overline{BJC}, t_b) = \angle BFJ = \angle JCE$ , the result follows.

Because  $\text{Pow}(A, j) = AD \cdot AD' = AQ \cdot AJ = \text{Pow}(A, (JBQF)), A$  is on the radical axis of j, (JBF). By the previous claim, it follows that  $\overline{AC}$  is the radical axis of j, (JBF).

To finish, define  $T = \overline{DY} \cap \overline{AC} \cap \overline{BQ}$  as the radical center of (*JBF*), (*ABC*), (*EXD*), (*ADC*), and the phantom point  $Y' = \overline{TD} \cap j \ (\neq D)$ . Because T is on  $\overline{AC}$ , the radical axis of j, (*JBF*), we have (lengths directed)

$$TY' \cdot TD = \text{Pow}(T, j) = \text{Pow}(T, (JBF)) = \text{Pow}(T, (ABCQ)) = TA \cdot TC = TY \cdot TD \Rightarrow Y = Y',$$

the end!

## **♣** 1.21 USAMO 2021/6, by Ankan Bhattacharya

Let ABCDEF be a convex hexagon satisfying  $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}, \overline{CD} \parallel \overline{FA}$ , and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA.$$

Let X, Y, and Z be the midpoints of  $\overline{AD}$ ,  $\overline{BE}$ , and  $\overline{CF}$ . Prove that the circumcenter of  $\triangle ACE$ , the circumcenter of  $\triangle BDF$ , and the orthocenter of  $\triangle XYZ$  are collinear.



Construct parallelogram CDEA' and cyclic variants: A' = C + E - D, etc. We may compute using vectors that  $\triangle B'D'F'$  is a translation of  $\triangle A'C'E'$  by the vector (B+D+F)-(A+C+E). In particular, they're congruent.

**Claim 1 -** A, C, E have same power wrt (A'C'E'); in other words,  $\triangle ACE$ , A'C'E' share a circumcenter.

*Proof.* Observing that  $Pow(A, (A'C'E')) = AC' \cdot AE' = BC \cdot EF$  by parallelograms, this claim follows by the given length condition.

Next, construct  $A'' = \frac{C' + E'}{2}$  and cyclic variants. The circumcenter of  $\triangle A' C' E'$  is then the orthocenter of  $\triangle A'' C'' E''$ .

Claim 2 - 
$$X = \frac{A'' + D''}{2}$$
.

Proof. Using vectors, 
$$B' + C' = E' + F' = A + D \Rightarrow \frac{A+D}{2} = \frac{B' + C' + E' + F'}{4} = \frac{A'' + D''}{2}$$
.



By claim 2 + symmetry,  $\triangle XYZ$  is the vector average of (congruent) triangles A''C''E'', B''D''F'', so their orthocenters are collinear.

### **♣** 1.22 SL 2021/G8

Let ABC be a triangle with circumcircle  $\omega$  and let  $\Omega_A$  be the A-excircle. Let X and Y be the intersection points of  $\omega$  and  $\Omega_A$ . Let P and Q be the projections of A onto the tangent lines to  $\Omega_A$  at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that  $\overline{AR} \perp \overline{BC}$ .



### Solution by crazyeyemoody907.

Let the antipode of the A-extouch point be D, and the tangent to  $\omega_a$  at D intersect  $\overline{AB}$ ,  $\overline{AC}$  at B', C' respectively. Also, construct the tangent line to  $\omega_a$  at X, meeting  $\overline{BC}$ ,  $\overline{B'C'}$  at U, V respectively. Finally, let  $X' = \overline{AX} \cap \overline{BC}$ ,  $V' = \overline{AV} \cap \overline{BC}$ .

*Proof.* Apply DDIT to A,  $UXV \otimes_{BC}$  (with inconic  $\omega_a$ ), and project onto  $\overline{BC}$ , to obtain an involutive pairing (B, C), (U, V'),  $(\infty_{BC}, X')$  – or equivalently,  $X'B \cdot X'C = X'U \cdot X'V'$ . By power of a point,  $X'B \cdot X'C = X'A \cdot X'X$ , so the claim follows from power of a point converse on  $X'U \cdot X'V = X'A \cdot X'X$ .

**Claim 2 -** 
$$\overline{DV}$$
 is tangent to  $(AXV)$ .

*Proof.* Angle chase using previous claim, and the fact that  $\overline{BC} \parallel \overline{B'C'}$ :

$$\angle XAV \stackrel{\text{claim } 1}{=} \angle XUV' = \angle XVD. \qquad \Box$$

Redefine R as the foot from A to  $\overline{B'C'}$ . It remains to show,

**Claim 3 -**  $\overline{PR}$  touches (APX').

*Proof.* Since  $\angle VPA = \angle VRA = 90^{\circ}$ , APRV cyclic, so we may angle chase as follows:

$$\angle APR = \angle AVR \stackrel{\text{claim 2}}{=} \angle AXV = \angle AXP.$$

## **♣** 1.23 USEMO 2020/3, by Anant Mudgal

Let ABC be an acute triangle with circumcenter O and orthocenter H. Let  $\Gamma$  denote the circumcircle of triangle ABC, and N the midpoint of  $\overline{OH}$ . The tangents to  $\Gamma$  at B and C, and the line through H perpendicular to line AN, determine a triangle whose circumcircle we denote by  $\omega_A$ . Define  $\omega_B$  and  $\omega_C$  similarly.

Prove that the common chords of  $\omega_A$ ,  $\omega_B$ , and  $\omega_C$  are concurrent on line OH.

Let  $H_a$ , A' denote the respective reflections of H in  $\overline{BC}$ , A in O, and their symmetric variants.



**Claim 1** - The polar  $\ell_a$  of  $\overline{BH_c} \cap \overline{CH_b}$  passes through H and is perpendicular to  $\overline{AN}$ .

*Proof.* Let  $P = \overline{BH_c} \cap \overline{CH_b}$  and S = 2A - H.  $H \in \ell_a$  is just Brokard, so it suffices to prove  $\overline{AN} \parallel \overline{OP}$ . By Pascal on  $BB'H_bCC'H_c$ , we have P, Q, S collinear. Taking a homothety at H with scale factor  $\frac{1}{2}$  maps the latter two points to N, A, which implies the required parallel lines.

In  $\triangle ABC$ , let  $X_bc$  be the pole of  $\overline{BH_c}$  wrt  $\Gamma$  (and 5 other variants), X, Y, Z be the poles of the sides, D, E, F be the feet of the altitudes. Clearly,  $\ell_a = \overline{X_{bc}X_{cb}}$ .

*Note.* Here, the condition  $\triangle ABC$  acute comes in:  $\Gamma$  is the incircle, not excircle, of  $\triangle XYZ$ .

We'll show that  $\overline{XD}$  is the radical axis of  $\omega_b$ ,  $\omega_c$ . (By a somewhat-known configuration (say, **Brazil 2013/6**),  $\overline{XD} \cap \overline{YE} \cap \overline{ZF}$  lies on the Euler line.) Also let  $Q_a$ ,  $Q_b$ ,  $Q_c$  be the SD points of  $\triangle XYZ$ .



**Claim 2 -**  $Q_a$  lies on  $\omega_a$ .

*Proof.* By spiral similarity, it suffices to prove  $YX_{bc}/YC = ZX_{cb}/ZB$ . By antiparallel lines,  $\triangle XYZ \sim \triangle X_{ab}YX_{cb}$ ,  $X_{ac}X_{bc}Z$ . But since  $\Gamma$  is the Y-excircle of  $\triangle X_{ab}YX_{cb}$ , we have  $YX_{cb}/YC = a/s$ . Similarly  $ZX_{bc}/ZB = a/s$  as well.

(In some awful notation, 
$$a = YZ$$
,  $b = ZX$ ,  $c = XY$  and  $s = \frac{a+b+c}{2}$ .)

Let 
$$L = \overline{YQ_b} \cap \overline{ZQ_c}$$
.

**Claim 3** -  $\overline{XL}$  is the radical axis of  $\omega_b$ ,  $\omega_c$ .

*Proof.* By antiparallel lines again,  $YZX_{ba}X_{ca}$  cyclic, so that

$$\operatorname{Pow}(X,\omega_b) = XX_{ca} \cdot XY = XX_{ba} \cdot XZ = \operatorname{Pow}(X,\omega_c), \text{ while }$$

$$Pow(L, \omega_b) = LY \cdot LQ_b = LZ \cdot LQ_c = Pow(L, \omega_c).$$

It remains to prove *X*, *D*, *L* collinear.



**Claim 4** - L is the pole of  $\overline{EF}$  wrt  $\Gamma$ .

*Proof.* Since  $Q_a$  is the inverse of D wrt  $\Gamma$  and  $\angle OQ_aX = 90^\circ$ ,  $\overline{XQ_a}$  is the polar of D wrt  $\Gamma$ . Similarly,  $\overline{YQ_b}$ ,  $\overline{ZQ_c}$  are the respective polars of E, F wrt  $\Gamma$ . The claim is then established by la Hire.

Claim 5 -  $\overline{BC}$ ,  $\overline{EF}$ ,  $\overline{XQ_a}$  concurrent.

*Proof.* Let  $K = \overline{EF} \cap \overline{BC}$  so that (KD; BC) = -1. Because  $\overline{Q_aO}$  bisects  $\angle BQ_aC$ ,  $\angle KQ_aO = 90^\circ = \angle AQ_aO \Rightarrow X$ ,  $Q_a$ , K collinear.

Taking poles wrt  $\Gamma$  in the last claim gives the desired collinearity.

*Remark.* The problem can be bary'd wrt  $\triangle XYZ$  after the first claim, but it's monstrous from my experience a long time ago, oops

## **♣** 1.24 Brazil Olympic Revenge 2021/3, by Joao P.R. Viana Costa

Let  $I, C, \omega$  and  $\Omega$  be the incenter, circumcenter, incircle and circumcircle, respectively, of the scalene triangle XYZ with XZ > YZ > XY. The incircle  $\omega$  is tangent to the sides YZ, XZ and XY at the points D, E and F. Let S be the point on  $\Omega$  such that XS, CI and YZ are concurrent. Let  $(XEF) \cap \Omega = R$ ,  $(RSD) \cap (XEF) = U$ ,  $SU \cap CI = N$ ,  $EF \cap YZ = A$ ,  $EF \cap CI = T$  and  $XU \cap YZ = O$ .

Prove that NARUTO is cyclic.

Colloquially known as "Naruto".



Solution by crazyeyemoody907, CyclicISLscelesTrapezoid with Eyed, v4913.

*Warning.* This problem is not meant for neither the faint-hearted nor freehand geometers like the paper's author(s). If Geogebra's to be used any time, it'd be now.

We do a massive refactoring and simplification; consider the following equivalent problem, a breakdown of the given, despite being longer:

# Naruto simplified

In triangle ABC with circumcircle  $\Omega$  centered at O, the incircle  $\omega$  centered at I touches the sides at D, E, F. Let I',  $I'_a$  be the respective reflections of I and the orthocenter of  $\triangle BIC$  in  $\overline{BC}$ , and M the midpoint of arc BC on  $\Omega$ . Further define:

- *S* as the intersection of the Euler lines  $\overline{OI}$  of  $\triangle DEF$ ,  $\overline{MI'}$  of  $\triangle I'_{a}BC$ ;
- $T = \overline{EF} \cap \overline{BC}, U = \overline{EF} \cap \overline{OI}, V = \overline{MI'} \cap \overline{BC}, R = \overline{AV} \cap (AI);$
- $K = \overline{OI} \cap \overline{BC}$ ;

Prove that (a) Q, R, S, T, U, V are concyclic, and (b)  $\overline{AK}$ ,  $\Omega$ , (QRD),  $\overline{RS}$  concurrent;

(a) The concyclicity Let the spiral similarity s at Q with (directed) angle  $\theta$  map  $E, F \to C$ , B and thus D, I and the orthocenter of  $\triangle DEF$  to  $I', M, I'_a$  respectively. Clearly, S is the intersection of the Euler lines of two triangles related by s:  $DEF, I'_aCB$ .

By design, we have  $U \stackrel{s}{\to} V$ , so

$$\angle VQU = \theta = \angle(\overline{BC}, \overline{EF}) \stackrel{s}{=} \angle(\overline{MI'}, \overline{OI}) = \angle VSU,$$

whence Q, S, T, U, V concyclic. To see that the last point is also concyclic with the other five, let N be the midpoint of  $\widehat{BAC}$ , so that  $\overline{NA}$  touches (AI). Indeed, then

$$\angle QRV = \angle QRA = \angle QAN \stackrel{s}{=} \angle QUV$$

as needed.

*Remark.* In fact, by design, S is the exsimilicenter of the incircle and the circle at O with radius half that of  $\Omega$ , so it's actually the inverse of I wrt  $\Omega$ .

**(b) The concurrence** Let D' be the reflection of D in  $\overline{EF}$ , and G the orthocenter of  $\triangle BIC$ , so that  $D' \stackrel{s}{\to} G$ . We easily have DD'GQ cyclic. As  $\angle(\overline{AD'}, \overline{NG}) = \theta$ , the point  $X = \overline{AD'} \cap \overline{NG}$  lies on both (DD'GQ),  $\Omega$ . We require the following result(s):

### Theorem: weird concurrences

In a scalene triangle *ABC* with circumcenter O, circumcircle  $\Omega$ , and orthocenter H.

- (a) let K be the polar of  $\overline{BC}$  wrt  $\Omega$ , and A' be the reflection of A in  $\overline{BC}$ . Then  $\overline{OH}$ ,  $\overline{A'K}$  and the tangent to  $\Omega$  at A are concurrent.
- (b) Let E be the reflection of the point  $E_0$  (such that A is the incenter or excenter of  $\triangle E_0BC$ ) in the perpendicular bisector of  $\overline{BC}$ . Then  $\overline{OH}$ ,  $\overline{BC}$ ,  $\overline{EA'}$  are also concurrent.

(parentheses used above for easier grammatical parsing)



*Proof.* These two parts actually aren't connected at all...

**Part (a), by CyclicISLscelesTrapezoid** Let J be the intersection of the tangent to  $\Omega$  at A with the perpendicular bisector of  $\overline{BC}$ , and  $H_a \in \Omega$  be the reflection of H in  $\overline{BC}$ . We contend that the triples (A, H, A'), (J, O, K) are homothetic. Indeed, they lie on parallel lines. To finish, check that (if R denotes the radius of  $\Omega$ )

$$JO = \frac{R}{\cos(B-C)}, OK = \frac{R}{\cos A}, AH = 2R\cos A, HA' = AH_a = 2R\cos(B-C) \Rightarrow \frac{JO}{OK} = \frac{AH}{HA'}.$$



**Part (b), by crazyeyemoody907** Let  $F = B + C - E_0$ , and  $A_2 = B + C - A$ , so that  $A_2$  is an incenter or excenter of  $\triangle FBC$ . Since H is the antipode of  $A_2$  on  $(BA_2C)$ , it is another incenter / excenter. To prove that A, L, F collinear where  $X = \overline{FHA_2} \cap \overline{BC}$ ,  $L = \overline{OH} \cap \overline{BC}$ , verify that (where  $O_a \in \overline{H_aA_2}$  is the reflection of O in  $\overline{BC}$ )

$$(\overline{AF} \cap \overline{BC}, X; D, M) \stackrel{A}{=} (FX; HA_2) = -1 \text{ while } (DM; XL) \stackrel{H}{=} (\infty_{\perp BC} M; O_a O) = -1.$$

Returning to the problem, applying respective parts of the theorem to  $\triangle DEF$ ,  $I'_aBC$ , we obtain (A, D', K) and (A, G, V) collinear. Since  $R \in (UVQ)$ ,  $\overline{GV}$ , and Q is the Miquel point of D'GVU, we must have  $R = \overline{D'U} \cap \overline{GV}$  an intersection of opposite sides. Hence, by definition of Miquel point,  $R \in (QD'G)$ .

It remains to prove that R, X, S collinear. In fact, there is a spiral similarity at Q mapping  $D', X \rightarrow U, S$  since  $Q \in (URS), (D'XR)$ , so we're done!