Teorema: Taylor

Teorema: Taylor

Supongamos que $f \in C^n[a,b]$, que $f^{(n+1)}$ existe en (a,b) y $x_0 \in [a,b]$. Para cada $x \in [a,b]$ existe un número $\beta(x)$ entre x_0 y x tal que:

$$f(x) = P_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)} \cdot \beta(x)}{(n+1)!} (x - x_0)^{n+1}$$

donde P_n es el n-ésimo polinomio de Taylor para f en torno a x_0 y R_n es el término del residuo (error de truncamiento) asociado a P_n .