

Theory of Computation CSC 339 - Spring 2021

Chapter-5: part1
Reducability

King Saud University

Department of Computer Science

Dr. Azzam Alsudais

>Some problems can be reduced to other <u>new</u> problems.

- >Some problems can be reduced to other <u>new</u> problems.
- >This reducability helps us reason about the decidability of certain problems.

- >Some problems can be reduced to other <u>new</u> problems.
- >This reducability helps us reason about the decidability of certain problems.
- >We say problem A is reducible to problem B:

- >Some problems can be reduced to other new problems.
- >This reducability helps us reason about the decidability of certain problems.
- >We say problem A is reducible to problem B:
 - **>Solving** *A* cannot be harder than solving *B* because a solution to *B* gives a solution to *A*.

- >Some problems can be reduced to other new problems.
- >This reducability helps us reason about the decidability of certain problems.
- >We say problem A is reducible to problem B:
 - **>Solving** *A* cannot be harder than solving *B* because a solution to *B* gives a solution to *A*.
 - If A is reducible to B, and B is decidable, then A also is decidable.

- Some problems can be reduced to other <u>new</u> problems.
- >This reducability helps us reason about the decidability of certain problems.
- **▶We say problem** *A* is reducible to problem *B*:
 - **>Solving** *A* cannot be harder than solving *B* because a solution to *B* gives a solution to *A*.
 - If A is reducible to B, and B is decidable, then A also is decidable.
 - \triangleright If A is undecidable, then B is undecidable, too.

- Some problems can be reduced to other <u>new</u> problems.
- >This reducability helps us reason about the decidability of certain problems.
- >We say problem A is reducible to problem B:

Goal is to prove that a given problem *B* is undecidable by showing that some other problem that's known to be undecidable *A* reduces to it.

9

to

The halting problem $HALT_{TM}$ determines whether a given TM halts (accept or reject) on some input string w.

The halting problem $HALT_{TM}$ determines whether a given TM halts (accept or reject) on some input string w.

 $^{\triangleright}A_{TM}$ on the other hand determines whether a given TM accepts a given string W.

The halting problem $HALT_{TM}$ determines whether a given TM halts (accept or reject) on some input string w.

 $^{\flat}A_{TM}$ on the other hand determines whether a given TM accepts a given string W.

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a } TM \text{ and } M \text{ halts on input } w \}.$

The halting problem $HALT_{TM}$ determines whether a given TM halts (accept or reject) on some input string w.

 $^{>}A_{TM}$ on the other hand determines whether a given TM accepts a given string W.

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a } TM \text{ and } M \text{ halts on input } w \}.$

Theorem 5.1

HALT_{TM} is undecidable

To prove that $HALT_{TM}$ is undecidable, we reduce A_{TM} to it.

- To prove that $HALT_{TM}$ is undecidable, we reduce A_{TM} to it.
- Proof by contradiction
 - **≻Assume** *HALT*_{TM} is decidable
 - ► Reduce A_{TM} to HALT_{TM}
 - Show that since A_{TM} is undecidable and that it reduces to $HALT_{TM}$, then $HALT_{TM}$ is undecidable.

Assume $HALT_{TM}$ is decidable by TM R.

Construct TM S **to decide** A_{TM} .

- **Assume** $HALT_{TM}$ is decidable by TM R.
- **Construct TM** *S* **to decide** *A*_{TM}**.**
 - S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject.
 - 3. If *R* accepts, simulate *M* on *w* until it halts.
 - 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If *R* rejects, reject.
- 3. If *R* accepts, simulate *M* on *w* until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

The Emptiness problem E_{TM} is concerned with determining TMs whose language is empty.

- The Emptiness problem E_{TM} is concerned with determining TMs whose language is empty.
- >This means we want to see the behavior of those TMs on all possible strings.

- The Emptiness problem E_{TM} is concerned with determining TMs whose language is empty.
- >This means we want to see the behavior of those TMs on all possible strings.
- Given a description of a TM, we want to check if this TM does not accept any string.

- The Emptiness problem E_{TM} is concerned with determining TMs whose language is empty.
- >This means we want to see the behavior of those TMs on all possible strings.
- Given a description of a TM, we want to check if this TM does not accept any string.
- $^{\flat}A_{TM}$ and $HALT_{TM}$ are for determining the behavior of a given TM on a given string.

- The Emptiness problem E_{TM} is concerned with determining TMs whose language is empty.
- >This means we want to see the behavior of those TMs on all possible strings.
- Given a description of a TM, we want to check if this TM does not accept any string.
- $^{>}A_{TM}$ and $HALT_{TM}$ are for determining the behavior of a given TM on a given string.
- $^{\triangleright}E_{TM}$, on the other hand, concerns the behavior of a TM on all strings.

$$|E_{TM} = \{(M) | M \text{ is a } TM \text{ and } L(M) = \emptyset\}.|$$

$$E_{TM} = \{(M) | \widehat{M} \text{ is a TM and } L(M) = \emptyset\}.$$

If *M* does not accept any string, then we should *accept M* as a member of this language

$$E_{TM} = \{(M) | (M) \text{ is a TM and } L(M) = \emptyset\}.$$

If *M* does not accept any string, then we should *accept M* as a member of this language

If *M* accepts at least 1 string, then we should *reject* that *M* is a member of this language

$$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$$

$$E_{TM} = \{(M) | \widehat{M} \text{ is a TM and } L(M) = \emptyset\}.$$

The idea here is to assume there is a decider R for E_{TM} and use R to build a decider SA_{TM} .

The Emptiness Problem: Undecidability Proof

How can we construct a decider R for E_{TM} and use it to decide A_{TM} ?

The Emptiness Problem: Undecidability Proof

- **How can we construct a decider** R for E_{TM} and use it to decide A_{TM} ?
- **Done idea when** *S* receives ⟨*M*,*w*⟩
 - **≻Run** *R* **on** *(M)*
 - If it accepts (meaning L(M) is empty), then S rejects W.
 - If it rejects (meaning L(M) is non-empty), then all we know is that L(M) is not empty.
 - **≻We** cannot tell anything about string w.

The Emptiness Problem: Undecidability Proof

- **How can we construct a decider** R for E_{TM} and use it to decide A_{TM} ?
- **Done idea when** *S* receives ⟨*M*,*w*⟩
 - **≻Run** *R* **on** *(M)*
 - If it accepts (meaning L(M) is empty), then S rejects W.
 - If it rejects (meaning L(M) is non-empty), then all we know is that L(M) is not empty.
 - >We cannot tell anything about string w.
- >We need a different idea.

- Alternatively, we can use the following idea.
- Instead of running R on $\langle M \rangle$, run R on a modified version of $\langle M \rangle$, which we will call M_1 .
- **>What does** *M*₁ do?
 - **≻Rejects all strings excepts** *w*.
 - \triangleright If it sees w, then it runs the original TM M.

- Alternatively, we can use the following idea.
- Instead of running R on $\langle M \rangle$, run R on a modified version of $\langle M \rangle$, which we will call M_1 .
- **>What does** *M*₁ do?
 - ▶ Rejects all strings excepts w.
 - \triangleright If it sees w, then it runs the original TM M.

```
M_1 = "On input x:
```

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

 M_1 = "On input x: 1. If $x \neq w$, reject. 2. If x = w, run M on input w and accept if M does."

- M_1 = "On input x: 1. If $x \neq w$, reject. 2. If x = w, run M on input w and accept if M does."

$$L(M_{l}) = \begin{cases} \emptyset, & \text{if } M \text{ does not accept } w \\ \{w\}, & \text{if } M \text{ accepts } w \end{cases}$$

$$M_1$$
 = "On input x:

- M_1 = "On input x: 1. If $x \neq w$, reject. 2. If x = w, run M on input w and accept if M does."

$$L(M_{I}) = \begin{cases} \emptyset, & \text{if } M \text{ does not accept } w \\ \{w\}, & \text{if } M \text{ accepts } w \end{cases}$$

Answering the question whether M accepts w is fundamental to answering whether the $L(M_I)$ is empty or not

Now, we are ready to construct a decider S **for** A_{TM} .

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Use the description of M and w to construct the TM M_1 just described.
 - 2. Run R on input $\langle M_1 \rangle$.
 - 3. If R accepts, reject; if R rejects, accept."

Now, we are ready to construct a decider S **for** A_{TM} .

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Use the description of M and w to construct the TM M_1 just described.
 - 2. Run R on input $\langle M_1 \rangle$.
 - 3. If R accepts, reject; if R rejects, accept."

S will accept $\langle M, w \rangle$ iff $L(M_1)$ is non-empty

Now, we are ready to construct a decider S **for** A_{TM} .

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Use the description of M and w to construct the TM M_1 just described.
 - 2. Run R on input $\langle M_1 \rangle$.
 - 3. If R accepts, reject; if R rejects, accept."

S will accept $\langle M, w \rangle$ iff $L(M_1)$ is non-empty

Contradiction!

Decider S in this case decides whether w is accepted by TM M, which gives the language A_{TM} . But, we know A_{TM} is undecidable. So, S doesn't exist. Therefore, R cannot exist.

Computation Histories

Definition:

Let M be a Turing machine and w an input string. An accepting computation history for M on w is a sequence of configurations, $C_1, C_2, ..., C_k$, where C_l is the start configuration of M on w, C_k is an accepting configuration of M, and each C_i legally follows from C_{i-1} according to the rules of M. A rejecting computation history for M on w is defined similarly, except that C_k is a rejecting configuration

Computation Histories

Definition:

Let M be a Turing machine and w an input string. An accepting computation history for M on w is a sequence of configurations, C_1, C_2, \ldots, C_k , where C_1 is the start configuration of M on w, C_k is an accepting configuration of M, and each C_i legally follows from C_{i-1} according to the rules of M. A rejecting computation history for M on w is defined similarly, except that C_k is a rejecting configuration

Computation histories are finite.

Computation Histories

Definition:

Let M be a Turing machine and w an input string. An accepting computation history for M on w is a sequence of configurations,

 $C_1, C_2, ..., C_k$, where C_1 is the start configuration of M on w,

 C_k is an accepting configuration of M, and each C_i legally follows from

 C_{i-1} according to the rules of M. A rejecting computation history for

M on w is defined similarly, except that C_k is a rejecting configuration

- Computation histories are finite.
- Deterministic TMs have exactly one history for each input.

Definition:

A *linear bounded automaton* is a restricted type of Turing machine wherein the tape head isn't permitted to move off the portion of the tape containing the input. If the machine tries to move its head off either end of the input, the head stays where it is—in the same way that the head will not move off the left-hand end of an ordinary Turing machine's tape.

Definition:

A *linear bounded automaton* is a restricted type of Turing machine wherein the tape head isn't permitted to move off the portion of the tape containing the input. If the machine tries to move its head off either end of the input, the head stays where it is—in the same way that the head will not move off the left-hand end of an ordinary Turing machine's tape.

Definition:

A *linear bounded automaton* is a restricted type of Turing machine wherein the tape head isn't permitted to move off the portion of the tape containing the input. If the machine tries to move its head off either end of the input, the head stays where it is—in the same way that the head will not move off the left-hand end of an ordinary Turing machine's tape.

- **LBAs** have limited power, yet they are still powerful.
- **LBAs can decide** ADFA, ACFG, EDFA, ECFG.

Lemma 5.8:

Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

Lemma 5.8:

Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

>ALBA = {(M, w) | M is an LBA that accepts string w}

Lemma 5.8:

Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

>ALBA = {(M, w) | M is an LBA that accepts string w}

Theorem 5.9

A_{LBA} is decidable

A_{LBA} is decidable: Proof

Proof Idea

>Simulate *M* on input *w*.

- **Proof Idea**
 - **>Simulate** *M* on input *w*.
 - ▶If M halts and accepts or rejects, we accept or reject accordingly.

Proof Idea

- **≻Simulate** *M* on input *w*.
- ▶If M halts and accepts or rejects, we accept or reject accordingly.
- **≻What if** *M* loops on *w*? How can we tell whether *w* would be accepted?

Proof Idea

- **≻Simulate** *M* on input *w*.
- ▶If M halts and accepts or rejects, we accept or reject accordingly.
- **≻What if** *M* loops on *w*? How can we tell whether *w* would be accepted?
- >Leverage lemma 5.8 (the amount of tape available to an LBA is limited).

Proof Idea

- **≻Simulate** *M* on input *w*.
- ▶If M halts and accepts or rejects, we accept or reject accordingly.
- **≻What if** *M* loops on *w*? How can we tell whether *w* would be accepted?
- >Leverage lemma 5.8 (the amount of tape available to an LBA is limited).
- Fig. If we exceed the number of distinct configurations (qng^n), then we know M is repeating some configurations. Thus, we reject.

L = "On input $\langle M, w \rangle$, where M is an LBA and w is a string:

- 1. Simulate M on w for qng^n steps or until it halts.
- 2. If M has halted, *accept* if it has accepted and *reject* if it has rejected. If it has not halted, *reject*."

L = "On input $\langle M, w \rangle$, where M is an LBA and w is a string:

- 1. Simulate M on w for *qng*ⁿ steps <u>or</u> until it halts.
- 2. If M has halted, *accept* if it has accepted and *reject* if it has rejected. If it has not halted, *reject*."

Meaning that it is repeating configurations (looping)