Chapitre 14

Vecteurs (1) : approche géométrique

Table 14.1 – Objectifs. À fin de ce chapitre 14...

	Pour m'entraîner 🚣		
Je dois connaître/savoir faire	۵	•	Ö
Approche géométrique			
Représenter un vecteur	1		
Identifier graphiquement les vecteurs égaux, colinéaires, opposés	2, 3, 4		
Opérations simples			
Tracer une addition ou soustraction de vecteurs	5, 6, 7		
Utiliser la relation de Chasles pour simplifier une expression vectorielle	8, 9, 10	13, 14	
Multiplier un vecteur par un réel	15	16, 17	
Décomposer un vecteur	11, 12	18	19

14.1 Vecteurs liés

Définition 14.1 — vecteur lié. Soit A et B deux points du plan. Le vecteur lié \overrightarrow{AB} est le segment orienté, du point A vers le point B:

- $-\overrightarrow{AB}$ est le vecteur d'origine A et d'extrémité B
- $-\overrightarrow{AB}$ est le *vecteur position* de B par rapport à A

La *norme* du vecteur \overrightarrow{AB} est la longueur du segment AB, elle se note $\left\|\overrightarrow{AB}\right\| = AB$

■ Exemple 14.1

Le vecteur ci-contre peut être noté : \overrightarrow{a} où \overrightarrow{OA} . Sa norme peut être notée $\|\overrightarrow{a}\|$ où $\|\overrightarrow{OA}\|$ où OA.

Le vecteur représente la position de A par rapport à l'origine $\mathcal{O}.$

On n'écrira pas ni l'origine est toujours à gauche et la flèche pointe vers la droite.

Définition 14.2 — vecteur nul.

Le vecteur est nul si le même point est origine et extrémité : \overrightarrow{AA} .

La norme d'un vecteur nul est nulle : $\|\overrightarrow{AA}\| = 0$.

Les vecteurs sont utilisés pour représenter des *quantités vectorielles* qui possèdent une direction et une grandeur ¹ : un vecteur déplacement, un vecteur vitesse, un vecteur accélération, un vecteur force (associé au poids, au frottements), un vecteur moment (associé à une torsion) etc.

■ Exemple 14.2

Vecteur vitesse 20 m/s orienté vers le sud $\|\vec{v}\| = v = 20 \text{ m/s}$ échelle : 1 cm pour 10 m/s \vec{v} Vecteur force de 40 N vers N-115°-Est avec la verticale $\|\vec{F}\| = F = 40 \text{ N}$

^{1.} par opposition aux quantités scalaires (température, masse, distance, énergie ...) qui ne possèdent qu'une grandeur

14.2 Précisions sur le vocabulaire de collège

Les subtilités suivantes peuvent avoir échapées à certain(e)s. Nous les rappellerons.

Définition 14.3 Dans le plan:

- Deux droites sont *strictement parallèles* si elles sont sans points communs.
- Deux droites sont *parallèles* si elles sont soit strictement parallèles soit confondues.
- Exemple 14.3 conséquence.

Une droite est parallèle à elle même : (AB)//(CD)

Figure 14.1

Définition 14.4 Un parallélogramme est un quadrilatère dont les diagonales se coupent en leur milieu. Il peut être :

- parallélogramme strict : côtés opposés strictement parallèles.
- parallélogramme plat : une paire de côtés opposés sur une même droite.
- parallélogramme réduit à un point.

■ Exemple 14.4 — conséquence.

Affirmation fausse	Si les côtés opposés d'un quadrilatère sont parallèles, alors c'est un
	parallélogramme (voir le quadrilatère ABCD de la figure 14.1)
Affirmation vraie	Si les côtés opposés d'un quadrilatère sont strictement parallèles, alors
	c'est un parallélogramme (strict).

14.3 Vecteurs égaux, opposés et colinéaires

Définition 14.5 Les vecteurs (liés) \overrightarrow{AB} et \overrightarrow{XY} (non nuls) sont égaux s'ils ont :

- une même **direction** parallèle à la droite (AB)//(XY).
- un même **sens** selon la flèche, de A vers B, de X vers Y.
- une même **norme** $\|\overrightarrow{AB}\| = \|\overrightarrow{XY}\|$ ou encore AB = XY.

On résume par $\overrightarrow{AB} = \overrightarrow{XY} \iff ABYX$ est un parallélogramme. Figure 14.2 – « $\overrightarrow{AB} = \overrightarrow{XY}$ »

■ Exemple 14.5

- 1. Dans le parallélogramme FUNK : $\overrightarrow{FU} = \dots$ et $\overrightarrow{KF} = \dots$
- 2. Si $\overrightarrow{RA} = \overrightarrow{GE}$ alors est un parallélogramme.

Définition 14.6 — vecteurs opposés.

Les vecteurs (liés) \overrightarrow{AB} et \overrightarrow{XY} (non nuls) sont opposés s'ils ont :

- une même **direction** parallèle à la droite (AB)//(XY).
- *des sens* contraires.
- une même **norme** $\|\overrightarrow{AB}\| = \|\overrightarrow{XY}\|$ ou encore AB = XY.

Figure 14.3 – « $\overrightarrow{AB} = -\overrightarrow{XY}$ »

■ Exemple 14.6

- 1. $\overrightarrow{AB} = -\overrightarrow{BA}$ et $\overrightarrow{BA} = -\overrightarrow{AB}$.
- 2. Si ABCD est un parallélogramme alors $\overrightarrow{AB} = -\overrightarrow{CD}$.

On ne dit pas que deux vecteurs sont parallèles on dit :

Définition 14.7 — vecteurs colinéaires.

Les vecteurs \overrightarrow{AB} et \overrightarrow{XY} (non nuls) sont colinéaires s'ils ont une même **direction** :

$$\overrightarrow{AB} \propto \overrightarrow{XY} \iff (AB)//(XY)$$

Propriétés 14.1 L'égalité de vecteur vérifie trois propriétés clefs :

- (i) **réflexive** $\overrightarrow{AB} = \overrightarrow{AB}$ (un vecteur est égal à lui même)
- (ii) symétrie $\overrightarrow{AB} = \overrightarrow{XY}$ alors $\overrightarrow{XY} = \overrightarrow{AB}$.
- (iii) transitivité $\overrightarrow{AB} = \overrightarrow{XY}$ et $\overrightarrow{XY} = \overrightarrow{CD}$ alors $\overrightarrow{AB} = \overrightarrow{CD}$

explications. (i) et (ii) sont évidents, notez que par soucis de cohérence avec la définition :

- la droite (AB) doit être parallèle à (AB).
- le "quadrilatère" ABBA doit être considéré comme un parallélogramme (plat).

En géométrie classique, le point (iii) s'appelle le théorème de transitivité des parallélogrammes :

Figure 14.4 – « Si ABYX et XYDC sont deux parallélogrammes, alors ABDC est un parallélogramme. »

Utiliser l'égalité de vecteurs est une manière d'admettre ce théorème dont la démonstration est laborieuse avec la géométrie de collège (disjonctions de cas et critères d'égalité des triangles).

14.4 Vecteurs libres et vecteur nul

Figure 14.5 – Les vecteurs liés égaux ci-dessous sont les représentant d'un même vecteur libre \vec{u}

Définition 14.8 — vecteur libre non nul.

Le vecteur (libre) $\overrightarrow{u} = \overrightarrow{AB}$ désigne l'ensemble de tous les vecteurs \overrightarrow{XY} tels que $\overrightarrow{XY} = \overrightarrow{AB}$.

On dira que : \overrightarrow{AB} est un représentant de \overrightarrow{u} d'origine A.

 \overrightarrow{XY} est un *représentant* de \overrightarrow{AB} d'origine X.

La norme d'un vecteur (libre) est la norme d'un de ses représentants : $\|\vec{u}\| = AB = XY$.

Définition 14.9 — vecteur nul.

Le vecteur nul a une infinité de représentants : $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \dots$

La norme du vecteur nul est nulle : $\|\vec{0}\| = \|\overrightarrow{AA}\| = \|\overrightarrow{BB}\| = \dots = 0$.

Le vecteur nul n'a ni direction ni sens. On considère qu'il est colinéaire à tous les vecteurs.

14.5 Addition de vecteurs libres

Définition 14.10 — relation de Chasles. Pour tous points A, B et C on a : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Figure 14.6 – Illustrations de la relation de Chasles $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$

Définition 14.11 — somme de vecteurs.

La somme de deux vecteurs libres \vec{u} et \vec{v} est un vecteur libre noté $\vec{u} + \vec{v}$.

Pour tracer un représentant du vecteur $\vec{u} + \vec{v}$ il faut :

- 1. tracer un représentant de \vec{u}
- 2. en partant de l'extrémité du vecteur obtenu, tracer le représentant de \vec{v}
- 3. utiliser la relation de Chasles pour obtenir un représentant de $\vec{u} + \vec{v}$.

Figure 14.7 – Commencer par des représentants différents de \vec{u} donnera des représentants égaux de $\vec{u} + \vec{v}$

■ Exemple 14.7

Définition 14.12 Le vecteur différence $\vec{u} - \vec{v}$ est défini par $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$

■ Exemple 14.8

, alors $\vec{a} - \vec{b}$ est

■ Exemple 14.9 — soustraction.

Tracer les vecteurs $\vec{r} - \vec{s}$ et $\vec{s} - \vec{t} - \vec{r}$

Propriétés 14.2 — de l'addition.

- 1. **(Élément nul)** Pour tout vecteur \vec{u} , $\vec{0} + \vec{u} = \vec{u} + \vec{0} = \vec{u}$.
- 2. (commutativité) La somme de 2 vecteurs est indépendante de l'ordre.

 $\vec{u} + \vec{v} = \vec{v} + \vec{u}$. Pour tous vecteurs \vec{u} et \vec{v}

3. (associativité) La somme de plusieurs vecteurs quelconques \vec{u} , \vec{v} et \vec{w} est indépendante de l'ordre : Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} $\vec{u} + \vec{v} + \vec{w} = (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

Figure 14.8 – Illustration de la commutativité et l'associativité de l'addition de vecteurs

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$

$$\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=(\overrightarrow{u}+\overrightarrow{v})+\overrightarrow{w}=\overrightarrow{u}+(\overrightarrow{v}+\overrightarrow{w})$$

14.6 Multiplication d'un vecteur libre par un réel

Définition 14.13 $\vec{u} \neq \vec{0}$. Le produit d'un réel k par un vecteur \vec{u} est le vecteur noté $k\vec{u}$ le vecteur colinéaire à \vec{u} de norme $||k\vec{u}|| = |k| \times ||\vec{u}||$ tel que

- Si k > 0 alors $k\vec{u}$ et \vec{u} ont le **même sens**.
- Si k < 0 alors $k \overrightarrow{u}$ et \overrightarrow{u} sont de sens contraires
- Si k = 0 alors $0\vec{u} = \vec{0}$

Figure 14.9 – Les vecteurs \vec{a} , $2\vec{a}$ et $3\vec{a}$ sont colinéaires de même sens. $-3\vec{a}$ et $-\frac{1}{2}\vec{a}$ sont colinéaires à \vec{a} mais de sens contraire à \vec{a} .

Propriétés 14.3 — de la multiplication par un réel.

- 1. Pour tout vecteurs \vec{u} , et réel a et b, $a(b\vec{u}) = (ab)\vec{u}$.
- 2. Pour tout a et $b \in \mathbb{R}$ et vecteur \vec{u} on $a : a\vec{u} + b\vec{u} = (a+b)\vec{u}$
- 3. Pour tout vecteurs \vec{u} , \vec{v} et réel k, $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$.

Figure 14.10 – illustrations pour k>0 et k<0 de l'identité vectorielle $k(\vec{u}+\vec{v})=k\vec{u}+k\vec{v}$

L'identité vectorielle $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ repose et remplace désormais le théorème de Thalès.

14.7 Exercices

Exercice 1 Représenter les quantités vectorielles suivantes à l'échelle 1 cm pour 10 unités :

- 1. force de 30 N vers le Sud-Est.
- 2. force de 30 N vers le Nord-Ouest.
- 3. vitesse de 25 m/s vers le Nord.
- 4. déplacement de 35 m dans la direction Nord-(70°)-Est.
- 5. vitesse de décollage de 50 m/s avec un angle de 10° de l'horizontale.
- 6. déplacement de 25 km dans la direction Sud-(30°)-Est.

■ Exemple 14.10

Dans le parallélogramme PQRS, $\overrightarrow{PQ} = \overrightarrow{a}$ et $\overrightarrow{QR} = \overrightarrow{b}$.

Exprimer en fonction de \vec{a} et \vec{b} les vecteurs suivants :

2. \overrightarrow{RQ}

3. \overrightarrow{SR}

4. \overrightarrow{SP}

solution.

 $\overrightarrow{QP} = -\overrightarrow{a}$ (vecteur opposé à \overrightarrow{PQ}); $\overrightarrow{SR} = \overrightarrow{a}$ (mêmes direction, sens et norme)

 $\overrightarrow{RQ} = -\overrightarrow{b}$ (vecteur opposé à \overrightarrow{QR}); $\overrightarrow{SP} = -\overrightarrow{b}$ (mêmes direction et norme, sens contraires)

Déterminer parmi les vecteurs ci-contre les vecteurs :

- 1. de même norme
- 2. colinéaires et de même sens

3. colinéaires

4. opposés

5. égaux

Exercice 3

En utilisant les points de la figure, donner

- 1. les vecteurs égaux à \overrightarrow{AB} :
- 2. les vecteurs opposés à \overrightarrow{FE} :
- 3. un vecteur égal à \overrightarrow{DE} = :
- 4. 3 vecteurs colinéaires à \overrightarrow{AF} :
- 5. 3 vecteurs d'origine C et colinéaires à \overrightarrow{EF} :
- 6. 2 vecteurs d'origine B colinéaires et de sens contraire à \overrightarrow{EF} :
- 7. 2 vecteurs de même norme et non colinéaires à \overrightarrow{AF} :

Exercice 4

1. Les triangles AEB et BDC sont équilatéraux, et les points A, B et C sont alignés.

On pose $\overrightarrow{AB} = \overrightarrow{p}$ et $\overrightarrow{AE} = \overrightarrow{q}$ et $\overrightarrow{DC} = \overrightarrow{r}$.

Entourez les bonnes réponses : (A) $\overrightarrow{EB} = \overrightarrow{r}$ (B) $\|\overrightarrow{p}\| = \|\overrightarrow{q}\|$ (C) $\overrightarrow{BC} = \overrightarrow{r}$ (D) $\overrightarrow{DB} = \overrightarrow{q}$

(B)
$$\|\vec{p}\| = \|\vec{q}\|$$

(C)
$$\overrightarrow{BC} = \overrightarrow{r}$$

(D)
$$\overrightarrow{DB} = \overrightarrow{q}$$

- (E) $\overrightarrow{ED} = \overrightarrow{p}$ (F) $\overrightarrow{p} = \overrightarrow{q}$
- 2. JOLI est un parallélogramme. Entourez les bonnes réponses :

(A)
$$\overrightarrow{JO} = \overrightarrow{LI}$$

(B)
$$\overrightarrow{JO} = -\overrightarrow{LI}$$

(C)
$$\overrightarrow{OJ} = \overrightarrow{LI}$$

(A)
$$\overrightarrow{JO} = \overrightarrow{LI}$$
 (B) $\overrightarrow{JO} = -\overrightarrow{LI}$ (C) $\overrightarrow{OJ} = \overrightarrow{LI}$ (D) $\overrightarrow{JL} = -\overrightarrow{OI}$ (E) $\overrightarrow{OL} = \overrightarrow{JI}$

(E)
$$\overrightarrow{OL} = \overrightarrow{JL}$$

- (F) $\overrightarrow{IL} = -\overrightarrow{OJ}$
- 3. I est l'intersection des diagonales du parallélogramme ECHO.

Entourez les bonnes réponses :

4. M est le milieu du segment [AB]. Entourez les bonnes réponses :

(A)
$$\overrightarrow{MA} = \overrightarrow{MB}$$

(B)
$$MA = ME$$

(A)
$$\overrightarrow{MA} = \overrightarrow{MB}$$
 (B) $MA = MB$ (C) $\left\| \overrightarrow{MA} \right\| = \left\| \overrightarrow{BM} \right\|$ (D) $\overrightarrow{AM} = \overrightarrow{MB}$

(D)
$$\overrightarrow{AM} = \overrightarrow{MB}$$

- 5. Vrai ou faux? « Si Q est l'image de P par la translation \overrightarrow{AB} alors $\overrightarrow{AP} = \overrightarrow{BQ}$ » (faire une figure)
- 6. Vrai ou faux? « Si M est le milieu de [AB] alors $\overrightarrow{AM} = \overrightarrow{MB}$ » (faire une figure)
- 7. Tracer un contre-exemple de l'affirmation « Si AM = MB alors M est le milieu de [AB] ».
- 8. Vrai ou faux? « Si $\overrightarrow{AM} = \overrightarrow{MB}$ alors M est le milieu de [AB] »
- 9. Tracer un contre-exemple de l'affirmation « Si AB=CD alors $\overrightarrow{AB}=\overrightarrow{DC}$ ».
- 10. Vrai ou faux? « Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $\overrightarrow{BC} = \overrightarrow{AD}$ » (faire une figure et justifier)

14.7.1 Exercices : additions de vecteurs

Exercice 5 Recopier les vecteurs \vec{a} et \vec{b} puis tracer un représentant de $\vec{a} + \vec{b}$:

Exercice 6 Recopier les vecteurs \vec{a} et \vec{b} puis tracer un représentant de $\vec{a} - \vec{b}$:

\overrightarrow{q}

Exercice 7

Tracer les vecteurs:

1.
$$\overrightarrow{p} + \overrightarrow{q} - \overrightarrow{r}$$

1.
$$\vec{p} + \vec{q} - \vec{r}$$
 2. $\vec{p} - \vec{q} - \vec{r}$ 3. $\vec{r} - \vec{q} - \vec{p}$

$$3. \vec{r} - \vec{q} - \vec{p}$$

■ Exemple 14.11 — utiliser les relations de Chasles.

1.
$$\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA}$$
 (comme sur la figure)

2.
$$\overrightarrow{BA} + \overrightarrow{AE} + \overrightarrow{EC} = \overrightarrow{BC}$$

3.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$$

4.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{AE}$$

Exercice 8

Simplifier les expressions suivantes à l'aide de la relation de Chasles :

1.
$$\overrightarrow{AB} + \overrightarrow{BC}$$

2.
$$\overrightarrow{BC} + \overrightarrow{CD}$$

3.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

4.
$$\overrightarrow{DA} + \overrightarrow{BD}$$

$$\mathbf{5}. \ \overrightarrow{BD} + \overrightarrow{DB}$$

6.
$$\overrightarrow{BD} + \overrightarrow{AA}$$

7.
$$\overrightarrow{DD} + \overrightarrow{AC}$$

8.
$$\overrightarrow{DB} + \overrightarrow{AD} + \overrightarrow{BA}$$

9.
$$\overrightarrow{KT} + \overrightarrow{TD} + \overrightarrow{DK}$$

■ Exemple 14.12 — utiliser les relations de Chasles.

2.
$$\overrightarrow{AC} - \overrightarrow{BC} - \overrightarrow{DB}$$

$$= \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BD}$$

$$= \overrightarrow{AD}$$
 A
 C
 B
 B
 B
 D

Exercice 9 Simplifier les expressions suivantes à l'aide de la relation de Chasles :

1.
$$\overrightarrow{AC} + \overrightarrow{CB}$$

4.
$$\overrightarrow{BD} - \overrightarrow{BA}$$

7.
$$\overrightarrow{BA} - \overrightarrow{CA} + \overrightarrow{CB}$$

2.
$$\overrightarrow{AD} - \overrightarrow{BD}$$

5.
$$\overrightarrow{MB} - \overrightarrow{MD}$$

8.
$$\overrightarrow{AB} - \overrightarrow{CB} - \overrightarrow{DC}$$

3.
$$\overrightarrow{AC} + \overrightarrow{CA}$$

6.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

9.
$$\overrightarrow{BQ} - \overrightarrow{BA} + \overrightarrow{QA} - \overrightarrow{QB}$$

Exercice 10 Compléter les identités vectorielles suivantes à l'aide de la relation de Chasles :

a)
$$\overrightarrow{FE} = \overrightarrow{F} + \overrightarrow{U}$$

c)
$$\overrightarrow{HG} + \overrightarrow{\underline{}} = \overrightarrow{HF}$$

e)
$$\overrightarrow{DC} - \underline{\longrightarrow} = \overrightarrow{AC}$$

b)
$$\overrightarrow{XY} = \overrightarrow{M} + \overrightarrow{N} + \overrightarrow{M}$$
 d) $\overrightarrow{RT} = \overrightarrow{I} - \overrightarrow{I}$

d)
$$\overrightarrow{RT} = \overrightarrow{I} - \overrightarrow{I}$$

f)
$$\overrightarrow{DC} - \overrightarrow{\underline{}} = \overrightarrow{DE}$$

■ Exemple 14.13 Écrire une équation reliant les vecteurs tracés.

$$\vec{f} = -\vec{g} + \vec{d} + \vec{e}$$

$$\vec{g} + \vec{f} = \vec{d} + \vec{e}$$

Exercice 11 Écrire une équation reliant les vecteurs tracés.

■ Exemple 14.14 Exprimer en fonction de \vec{r} , \vec{s} et \vec{t} les vecteurs suivants :

$$\overrightarrow{RS} = \overrightarrow{RO} + \overrightarrow{OS} \qquad \overrightarrow{SR} = \overrightarrow{SO} + \overrightarrow{OR}$$

$$= -\overrightarrow{OR} + \overrightarrow{OS} \qquad = -\overrightarrow{OS} + \overrightarrow{OR}$$

$$= -\overrightarrow{r} + \overrightarrow{s} \qquad = -\overrightarrow{r} + \overrightarrow{s}$$

$$-\overrightarrow{OS} + \overrightarrow{OB}$$

$$\overrightarrow{SR} = \overrightarrow{SO} + \overrightarrow{OR}$$
 $\overrightarrow{ST} = \overrightarrow{SO} + \overrightarrow{OT}$

 $=-\overrightarrow{OS}+\overrightarrow{OT}$

$$=-\overrightarrow{r}+\overrightarrow{s}$$
 $=-\overrightarrow{s}+\overrightarrow{t}$

$$=-\vec{s}+\vec{t}$$

Exercice 12

- 1. Exprimer en fonction de \vec{r} , \vec{s} et \vec{t} les vecteurs \overrightarrow{OA} , \overrightarrow{CA} et \overrightarrow{OC}
- 2. Exprimer en fonction de \vec{p} , \vec{q} et \vec{r} les vecteurs \overrightarrow{AD} , \overrightarrow{BC} et \overrightarrow{AC}

■ Exemple 14.15 — sommes de vecteurs libres.

ABCDEF est un hexagone régulier de centre O et rayon 1. Simplifier les sommes ci-dessous :

1.
$$\overrightarrow{OA} + \overrightarrow{AB} =$$

2.
$$OA + OB =$$

3.
$$\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{A} = \overrightarrow{O}$$

4.
$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{O} + \overrightarrow{OB} = \overrightarrow{B}$$

5.
$$\overrightarrow{DO} - \overrightarrow{AB} = \overrightarrow{DO} + \overrightarrow{\ldots} = \overrightarrow{DO} + \overrightarrow{\ldots} = \overrightarrow{DO} + \overrightarrow{\ldots} = \overrightarrow{DO} + \overrightarrow{\ldots} = \overrightarrow{DO} + \overrightarrow{\Box} = \overrightarrow{DO} + \overrightarrow{DO} + \overrightarrow{DO} + \overrightarrow{DO} = \overrightarrow{DO} + \overrightarrow{DO} +$$

Exercice 13

ABCDEF est un hexagone régulier de centre O et rayon 1.

1. Compléter les sommes ci-dessous.

a)
$$\overrightarrow{EF} + \overrightarrow{FA} + \overrightarrow{AB} =$$

b)
$$\overrightarrow{OB} - \overrightarrow{OA} =$$

c)
$$OB - OA =$$

d)
$$\overrightarrow{OC} - \overrightarrow{EC} =$$

e)
$$\overrightarrow{EB} + \overrightarrow{AF} = \overrightarrow{EB} + \overrightarrow{B} = \overrightarrow{B}$$

f)
$$\overrightarrow{BC} + \overrightarrow{AF} = \overrightarrow{BC} + \cdots =$$

g)
$$\overrightarrow{AF} + \overrightarrow{DE} = \overrightarrow{DF} + \overrightarrow{DE} =$$

h)
$$\overrightarrow{CD} + \overrightarrow{FA} = \overrightarrow{CD} + \cdots =$$

i)
$$\overrightarrow{OA} + \overrightarrow{DE} = \overrightarrow{O} + \overrightarrow{O} = \overrightarrow{O}$$

2. Simplifier les sommes ci-dessous. Plusieurs réponses sont possibles.

a)
$$\overrightarrow{OB} + \overrightarrow{OE} =$$

b)
$$\overrightarrow{DO} - \overrightarrow{AB} =$$

c)
$$\overrightarrow{DB} - \overrightarrow{EC} =$$

d)
$$\overrightarrow{DF} - \overrightarrow{CB} =$$

e)
$$\overrightarrow{CB} - \overrightarrow{FA} =$$

f)
$$\overrightarrow{EA} - \overrightarrow{CB} =$$

g)
$$OA + OE + OC =$$

h)
$$\overrightarrow{OA} + \overrightarrow{OE} + \overrightarrow{OC} =$$

Exercice 14 — le hérisson.

Écrire les sommes demandées à l'aide de vecteurs entres points de la figure.

1.
$$\overrightarrow{GF} + \overrightarrow{CB} = \dots$$

2.
$$\overrightarrow{BG} - \overrightarrow{HG} = \dots$$

3.
$$\overrightarrow{HF} + \overrightarrow{FH} + \overrightarrow{HF} = \dots$$

4.
$$\overrightarrow{IJ} + \overrightarrow{CF} + \overrightarrow{JC} + \overrightarrow{FE} = \dots$$

5.
$$\overrightarrow{HF} - \overrightarrow{BC} + \overrightarrow{CD} = \dots$$

6.
$$\overrightarrow{BD} + \overrightarrow{IH} - \overrightarrow{BH} - \overrightarrow{FD} = \dots$$

14

14.7.2 Exercices : produit par un réel

■ Exemple 14.16 Les vecteurs ci-dessous ont tous la même direction.

Exercice 15 Compléter les égalités vectorielles pour chaque figure :

b)
$$\overrightarrow{BC} = \dots \overrightarrow{BA}$$
 d) $\overrightarrow{BC} = \dots \overrightarrow{AC}$ f) $\overrightarrow{BA} = \dots \overrightarrow{AB}$

3. Le point B est le milieu de [AC] (faire une figure) :

■ Exemple 14.18

Exercice 16

Étant donné les vecteurs \vec{a} et \vec{b} ci-contre, représenter sur votre cahier les vecteurs suivants :

1.
$$-\vec{a}$$
 3. $\frac{1}{2}\vec{a}$ 5. $2\vec{a} - \vec{b}$ 7. $\frac{1}{2}\vec{a} + 2\vec{b}$ 2. $2\vec{b}$ 6. $2\vec{a} + 3\vec{b}$ 8. $\frac{1}{2}(\vec{a} + 3\vec{b})$

Exercice 17

1. Recopier la figure et placer les points X, Y et Z tel que :

a)
$$\overrightarrow{MX} = \overrightarrow{MN} + \overrightarrow{MP}$$

b)
$$\overrightarrow{MY} = \overrightarrow{MN} - \overrightarrow{MP}$$

c)
$$\overrightarrow{PZ} = 2\overrightarrow{PM}$$

2. Quelle est la nature du quadrilatère MNYZ?

■ Exemple 14.19 — décomposer un vecteur en fonction de deux autres.

La figure ci-dessous est formée de triangles équilatéraux. On pose $\overrightarrow{OC} = \overrightarrow{\imath}$ et $\overrightarrow{OD} = \overrightarrow{\jmath}$. Décomposer les vecteurs suivants sous la forme $a\overrightarrow{\imath} + b\overrightarrow{\jmath}$.

$$\overrightarrow{IA} = \overrightarrow{\imath} - 3\overrightarrow{\jmath}$$

 $\overrightarrow{DG} = -\overrightarrow{\imath} - 2\overrightarrow{\jmath}$

Exercice 18

La figure ci-dessous est formée de triangles équilatéraux. On pose $\overrightarrow{OC} = \overrightarrow{\imath}$ et $\overrightarrow{OD} = \overrightarrow{\jmath}$. Décomposer les vecteurs suivants sous la forme $a\overrightarrow{\imath} + b\overrightarrow{\jmath}$.

1.
$$\overrightarrow{IH} =$$

4.
$$\overrightarrow{GC} =$$

7.
$$\overrightarrow{AF} =$$

2.
$$\overrightarrow{EB} =$$

5.
$$\overrightarrow{HE} =$$

8.
$$\overrightarrow{BD} =$$

3.
$$\overrightarrow{OG} =$$

6.
$$\overrightarrow{AE} =$$

9.
$$\overrightarrow{FB} =$$

Exercice 19

La figure ci-dessous est formée de deux hexagones réguliers de centre O. I, J, K, L, M et N sont les milieux respectifs des segements [OA], [OB], [OC], [OD], [OE] et [OF].

Décomposer chacun des vecteurs suivants selon les vecteurs donnés.

1.
$$\overrightarrow{BF} = \dots \overrightarrow{OI} + \dots \overrightarrow{OJ}$$

2.
$$\overrightarrow{JD} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$$

3.
$$\overrightarrow{CO} = \dots \overrightarrow{OI} + \dots \overrightarrow{OJ}$$

4.
$$\overrightarrow{EA} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$$

5.
$$\overrightarrow{JF} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$$

6.
$$\overrightarrow{EK} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$$

7.
$$\overrightarrow{CI} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$$

8.
$$\overrightarrow{JD} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$$

14.8 Exercices : solutions et éléments de réponse

solution de ?? .		
solution de ?? .		•
solution de ?? .		
solution de ?? .		
solution de ?? .		•
solution de ?? .		•
solution de ?? .		•
solution de ?? .		
solution de ?? .		
solution de ?? .		
solution de ?? .		•
solution de ?? .		

solution de ??.

solution de 18.

a)
$$\overrightarrow{IH} = 3\overrightarrow{\imath} - 3\overrightarrow{\jmath}$$

b)
$$\overrightarrow{EB} = 2\overrightarrow{\imath} - 2\overrightarrow{\jmath}$$

c)
$$\overrightarrow{OG} = -\overrightarrow{i} - \overrightarrow{j}$$

d)
$$\overrightarrow{GC} = 2\overrightarrow{\imath} + \overrightarrow{\jmath}$$

e)
$$\overrightarrow{HE} = -3\overrightarrow{\imath} + 2\overrightarrow{\jmath}$$

f)
$$\overrightarrow{AE} = -\overrightarrow{\imath} + 2\overrightarrow{\jmath}$$

g)
$$\overrightarrow{AF} = -\overrightarrow{\imath} + \overrightarrow{\jmath}$$

h)
$$\overrightarrow{BD} = -\overrightarrow{\imath} + 2\overrightarrow{\jmath}$$

i)
$$\overrightarrow{FB} = 2\overrightarrow{\imath} - \overrightarrow{\jmath}$$

solution de 19.

Décomposer chacun des vecteurs suivants selon les vecteurs donnés.

1.
$$\overrightarrow{BF} = 2\overrightarrow{OI} - 4\overrightarrow{OJ}$$

2.
$$\overrightarrow{JD} = -3\overrightarrow{OI} - \overrightarrow{OK}$$

3.
$$\overrightarrow{CO} = 2\overrightarrow{OI} - 2\overrightarrow{OJ}$$

4.
$$\overrightarrow{EA} = 4\overrightarrow{OI} + 2\overrightarrow{OK}$$

5.
$$\overrightarrow{JF} = \overrightarrow{OA} - \frac{3}{2}\overrightarrow{OB}$$

$$6. \ \overrightarrow{EK} = \overrightarrow{OA} + \frac{3}{2}\overrightarrow{OC}$$

7.
$$\overrightarrow{CI} = \frac{3}{2}\overrightarrow{OA} - \overrightarrow{OB}$$

8.
$$\overrightarrow{JD} = -\frac{3}{2}\overrightarrow{OA} - \frac{1}{2}\overrightarrow{OC}$$

19

14.9 B.A.R. Maths: Cas particuliers du théorème de Menelaus

Problème 1

ABC est un triangle. P est le milieu de [AB], Q est un point de (AC) et R est sur le segment [BC]. Les graduations sur les droites sont régulières.

On veut démontrer que les points P, Q et R sont alignés.

- 1. Déterminer les valeurs des réels a, b et c tel que : $\overrightarrow{AP} = a\overrightarrow{AB}$, $\overrightarrow{AQ} = b\overrightarrow{AC}$ et $\overrightarrow{BR} = c\overrightarrow{BC}$.
- 2. Montrer que $\overrightarrow{PQ} = -\frac{1}{2}\overrightarrow{AB} + \frac{5}{4}\overrightarrow{AC}$.
- 3. Exprimer \overrightarrow{PR} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Montrer que \overrightarrow{PQ} et \overrightarrow{PR} sont multiples l'un de l'autre.
- 5. Expliquer pourquoi P, Q et R sont alignés.

Problème 2

ABC est un triangle; P est un point de (AB), Q un point de (BC) et R un point de (AC) disposés comme sur le dessin (les graduations sur les droites sont régulières).

- 1. Déterminer les valeurs des réels a, b, et c tels que : $\overrightarrow{AP} = a\overrightarrow{AB} \ \overrightarrow{AR} = b\overrightarrow{AC}$ et $\overrightarrow{BQ} = c\overrightarrow{BC}$.
- 2. Exprimer \overrightarrow{PR} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. Démontrer que $\overrightarrow{PQ} = \frac{9}{28}\overrightarrow{AB} + \frac{3}{7}\overrightarrow{AC}$.
- 4. Justifier que $\overrightarrow{PQ} = -\frac{9}{7} \overrightarrow{PR}$. Que conclure?

Problème 3

ABC est un triangle. P est le milieu de [AB], Q est un point de (AC). Les graduations sur les droites sont régulières. R est le point d'intersection des droites (PQ) et (BC).

On sait que pour un certain nombre k : $\overrightarrow{BR} = k\overrightarrow{BC}$. L'objectif est de déterminer k.

- 1. Déterminer les valeurs des réels a et b tel que : $\overrightarrow{AP} = a\overrightarrow{AB}$ et $\overrightarrow{AQ} = b\overrightarrow{AC}$.
- 2. Montrer que $\overrightarrow{PQ} = -\frac{2}{3}\overrightarrow{AB} + \frac{5}{4}\overrightarrow{AC}$.
- 3. Montrer que $\overrightarrow{PR} = \left(\frac{1}{3} k\right) \overrightarrow{AB} + k\overrightarrow{AC}$.
- 4. P, Q et R sont alignés, les vecteurs \overrightarrow{PQ} et \overrightarrow{PR} sont multiples l'un de l'autre. Déterminer k.

