Chapter 1 Introduction

These slides are adapted from the originals made available publicly. Some figures and some text are copyrighted from the book:

copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights Reserved

Computer
Networking: A Top
Down Approach,
4th edition.
Jim Kurose, Keith
Ross
Addison-Wesley

Chapter 1: Introduction

Chapter 1 goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

Overview:

- what's the Internet?
- what's a *protocol*?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers
- history

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security

What's the Internet: "nuts and bolts" view

PC

server

wireless laptop

cellular handheld

millions of connected computing devices: hosts = end systems

- running *network* apps
- communication links

links

- fiber, copper, radio, satellite
- transmission ratebandwidth

routers: forward packets (chunks of data)

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

What's a protocol?

<u>human protocols:</u>

- "what's the time?"
- "I have a question"
- introductions
- ... specific **msgs** sent
- ... specific **actions**taken when msgs
 received, or other
 events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of **msgs** sent and received among network entities, and **actions** taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Chapter 1: roadmap

- 1.1 What *is* the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security

A closer look at network structure:

- network edge: applications and hosts
- access networks,
 physical media:
 wired, wireless
 communication links
 - network core:
 - interconnected routers
 - network of networks

The network edge:

end systems (hosts):

- run application programs
- e.g. Web, email
- at "edge of network"
- client/server model
 - client host requests, receives service from always-on server
 - e.g. Web browser/server; email client/server
- peer-peer model:
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

Residential access: point to point access

Dialup via modem

- up to 56Kbps direct access to router (often less)
- Can't surf and phone at same time: can't be "always on"

DSL: digital subscriber line

- deployment: telephone company (typically)
- up to 1 Mbps upstream (today typically < 256 kbps)</p>
- up to 8 Mbps downstream (today typically < 1 Mbps)</p>
- dedicated physical line to telephone central office

Residential access: cable modems

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream,2 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - homes share access to router
- deployment: available via cable TV companies

Residential access: cable modems

Company access: local area networks

 company/univ local area network (LAN) connects end system to edge router

Ethernet:

- * 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- modern configuration: end systems connect into Ethernet switch
- LANs: chapter 5

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"
- wireless LANs:
 - * 802.11b/g (WiFi): 11 or 54 Mbps
- wider-area wireless access
 - provided by telco operator
 - ~1Mbps over cellular system (EVDO, HSDPA)
 - next up (?): WiMAX (10's Mbps) over wide area

Home networks

Typical home network components:

- DSL or cable modem
- router/firewall/NAT
- Ethernet
- wireless access point (C:3) wireless laptops to/from cable router/ cable firewall modem headend wireless access **Ethernet** point

Physical Media

- Bit: propagates between transmitter/rcvr pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5, 6: 100Mbps Ethernet

Gbps Ethernet

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - * HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gps)
- low error rate: repeaters spaced far apart; immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - 11Mbps, 54 Mbps
- wide-area (e.g., cellular)
 - ❖ 3G cellular: ~ 1 Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security

The Network Core

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

- network resources (e.g., bandwidth) divided into "pieces"
- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)

- dividing link bandwidth into "pieces"
 - frequency division
 - time division

Circuit Switching: FDM and TDM

Network Core: Packet Switching

each end-end data stream divided into packets

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

Bandwidth division into 'pieces"

Dedicated allocation

Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

<u>Packet Switching: Statistical</u> <u>Multiplexing</u>

Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand [] **statistical multiplexing**.

Introduction

<u>Packet-switching:</u> <u>store-and-forward</u>

- takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- store and forward:
 entire packet must
 arrive at router before
 it can be transmitted on
 next link
- delay = 3L/R (assuming zero propagation delay)

Example:

- \Box L = 7.5 Mbits
- \square R = 1.5 Mbps
- transmission delay =15 sec

Network Core: Packet Switching

Packet-switching: store and forward behaviour

- break message into smaller chunks: "packets"
- Store-and-forward: switch waits until chunk has completely arrived, then forwards/routes

Packet switching versus circuit switching

Packet switching allows more users to use network!

- □ 1 Mb/s link
- each user:
 - * 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, the probability > 10 active at same time is less than 0.0004

Packet switching versus circuit switching

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - * still an unsolved problem!

<u>Internet structure: network of</u> networks

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT&T, Cable and Wireless), national/international coverage
 - treat each other as equals

<u>Internet structure: network of</u> networks

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier-2 ISPs also peer Tier-2 ISP Tier-2 ISP pays Tier-2 ISP privately with tier-1 ISP for each other. Tier 1 ISP connectivity to rest of Internet tier-2 ISP is customer of Tier 1 ISP Tier 1 ISP tier-1 provider Tier-2 ISP Tier-2 ISP Tier-2 ISP

<u>Internet structure: network of</u> networks

- "Tier-3" ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

<u>Internet structure: network of networks</u>

a packet passes through many networks!

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

Four sources of packet delay

- 1. nodal processing:
 - check bit errors
 - determine output link
- 2. queueing
 - time waiting at output link for transmission
 - depends on congestion level of router

Delay in packet-switched

networks

- 3. Transmission delay:
- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

- 4. Propagation delay:
- d = length of physical link
- □ s = propagation speed in medium (\sim 2x10 8 m/sec)
- propagation delay = d/s

Note: s and R are *very* different quantities!

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- \Box d_{proc} = processing delay
 - typically a few microsecs or less
- \Box $d_{\text{queue}} = \text{queuing delay}$
 - depends on congestion
- \Box d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- \Box d_{prop} = propagation delay
 - a few microsecs to hundreds of msecs

Queueing delay (revisited)

- R=link bandwidth (bps)
- L=packet length (bits)
- a=average packet arrival rate traffic intensity = La/R

- La/R ~ 0: average queueing delay small
- □ La/R -> 1: delays become large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

"Real" Internet delays and routes

- What do "real" Internet delay & loss look like?
- Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
Three delay measurements from
                                               gaia.cs.umass.edu to cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 1 trans-oceanic
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
                                                                               link
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renatèr.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
17 * * *
                           * means no response (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - * instantaneous: rate at given point in time
 - * average: rate over longer period of time

Throughput (more)

 $\square R_s < R_c$ What is average end-end throughput?

 $\square R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- □ per-connection end-end throughput: min(R_c,R_s,R/10)
- □ in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security

Protocol "Layers"

Networks are complex!

- many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

a series of steps

Layering of airline functionality

Layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - * TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - PPP, Ethernet
- physical: bits "on the wire"

application transport network link physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

application presentation session transport network link physical

Introduction

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security

Network Security

- The field of network security is about:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - * original vision: "a group of mutually trusting users attached to a transparent network" ©
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

Bad guys can put malware into hosts via Internet

- Malware can get in host from a virus, worm, or trojan horse.
- Spyware malware can record keystrokes, web sites visited, upload info to collection site.
- Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- Malware is often self-replicating: from an infected host, seeks entry into other hosts

Bad guys can put malware into hosts via Internet

Trojan horse

- Hidden part of some otherwise useful software
- Today often on a Web page (Active-X, plugin)

Virus

- infection by receiving object (e.g., e-mail attachment), actively executing
- self-replicating: propagate itself to other hosts, users

■ Worm:

- infection by passively receiving object that gets itself executed
- self- replicating: propagates to other hosts, users

Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Bad guys can attack servers and network infrastructure

Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

select target

break into hosts around the network (see botnet) send packets toward target from compromised hosts

The bad guys can sniff packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

The bad guys can use false source addresses

□ IP spoofing: send packet with false source

The bad guys can record and playback

- record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

Introduction: Summary

Covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security

You now have:

- context, overview, "feel" of networking
- more depth, detail to follow!