Calcul Numeric – Tema #4

Ex. 1 Fie următorul sistem de ecuații neliniare:

$$\begin{cases} x^2 + y^2 = 4 \\ \frac{x^2}{8} - y = 0 \end{cases} \tag{1}$$

 $(x,y) \in [-3,3] \times [-3,3]$. Să se implementeze în Matlab următoarele cerințe:

- Să se calculeze simbolic Jacobianul sistemului;
- Să se construiască grafic curbele $C_1: x^2 + y^2 = 4$ și $C_2: y = \frac{x^2}{8}$;
- Să se construiască procedura **Newton** cu sintaxa $[x_{aprox}, N] = \mathbf{Newton}(F, J, x^{(0)}, \varepsilon)$ în baza algoritmului metodei Newton;
- Să se afle ambele puncte de intersecție apelând procedura **Newton** pentru datele $\varepsilon = 10^{-6}$ și $x^{(0)}$ ales în vecinătatea punctelor de intersecție.
- Să se construiască pe graficul curbelor punctele de intersecție.

Ex. 2 Fie sistemul neliniar

$$\begin{cases} x_1^2 - 10x_1 + x_2^2 + 8 = 0 \\ x_1 x_2^2 + x_1 - 10x_2 + 8 = 0 \end{cases}, (x_1, x_2) \in [0, 5] \times [0, 5]$$
 (2)

Rămân valabile cerințele de la Ex. 1.

- **Ex. 3** Să se afle polinomul de interpolare Lagrange $P_2(x)$, a funcției f(x) = sin(x) relativ la diviziunea $(-\frac{\pi}{2}, 0, \frac{\pi}{2})$. Se vor folosi metodele: directă, Lagrange și Newton. Să se evalueze eroarea $|P_2(\frac{\pi}{6}) f(\frac{\pi}{6})|$.
- Ex. 4 1) Să se construiască în Matlab următoarele proceduri conform sintaxelor:
 - a) $y = \mathbf{MetDirecta}(X, Y, x)$
 - b) $y = \mathbf{MetLagrange}(X, Y, x)$
 - c) $y = \mathbf{MetN}(X, Y, x)$

Se vor folosi metodele prezentate la curs. Vectorii X, Y reprezintă nodurile de interpolare, respectiv valorile funcției f în nodurile de interpolare. Variabila y reprezintă valoarea polinomului Lagrange P_n evaluat în variabila x conform metodelor directă, Lagrange si Newton;

- 2) Să se construiască în Matlab în aceeași figură, graficele funcției f pe intervalul [a, b], punctele $(X_i, Y_i), i = \overline{1, n+1}$ și polinomul P_n obținut alternativ prin una din cele două metode. Datele problemei sunt: $f(x) = \sin(x), n = 3, a = -\pi/2, b = \pi/2$. Se va considera diviziunea $(X_i)_{i=\overline{1,n+1}}$ echidistantă. Pentru construcția graficelor funcției f și P_n , folosiți o discretizare cu 100 noduri.
- 3) Reprezentați grafic într-o altă figură eroarea $E = |f P_n|$.
- 4) Creșteți progresiv gradul polinomului P_n și rulați programele. Ce observați în comportamentul polinomului P_n ? Deduceți n maxim pentru care polinomu P_n își pierde caracterul.

Obs.: Polinoamele Lagrange sunt instabile pentru n mare, i.e., la o variație mică în coeficienți apar variații semnificative în valorile polinomului.