Оглавление

Вв	ведение	
	Функционал программного продукта	
	Выбор средств разработки	
	Реализация программного продукта, базы данных	
	3.1. Разработка пользовательского интерфейса	
	3.2. Реализация программного продукта	
	3.3. Логическая модель базы данных	
4.	Тестирование	g
	Инструкция пользователя	
3a	аключение	13

Введение

В данной работе представлена реализация программного симулятора предотвращения инцидентов безопасности в серверной. Данная система реализует функции обучения пользователя по предотвращению инцидентов, фиксирование времени, затраченного пользователем на реализацию определенного сценария.

Организация обучения внутри компании сильно влияет на эффективность принятия решений в описываемых ситуациях. До сих пор многие компании используют устаревшие методики обучения, без возможности внедрения сотрудника в приближенную к реальности среду возникновения инцидентов.

Помимо устаревшей методики обучения, устаревший подход несет большие финансовые и временные затраты на обучение каждого сотрудника. Часто обучение требует задействование отдельного сотрудника, отвечающего за него, которому требуется выплачивать заработную плату.

Вторая проблема — привычное обучение без погружения сотрудника в реальную ситуацию не может гарантировать скорость и правильность действий сотрудника в настоящей ситуации предотвращения инцидента. Сотрудник встретившийся с реальной ситуацией и не отрабатывающий данные элементы в приближенной среде может совершать не правильные действия или действовать медленно, из-за вызванного стресса.

Симулятор позволит подготавливать сотрудников к реальным ситуациям во избежание возникновения человеческого фактора, вызванного стрессом, возникшим из-за нахождения в непривычной ситуации. Так же симулятор позволит сократить траты на сотрудников обучения. Увеличить скорость обучения.

1. Функционал программного продукта

Назначение системы

Система корпоративной коммуникации поддержки реализации проектов группы разработчиков предназначена для увеличения общей производительности работы и упрощения коммуникации между сотрудниками компании, во время разработки по водопадной модели жизненного цикла.

Программный симулятор предотвращения инцидентов безопасности в серверной предназначен для подготовить сотрудников к реальным критическим ситуациям для избегания человеческого фактора, вызванного стрессом. Это приведет к повышению эффективности работы предприятия, уменьшению временных и финансовых затрат на обучение персонала.

Программный симулятор, включает в себя:

- Приложение-симулятор;
- Встраиваемую СУБД.

Основные задачи системы

- Выбор сценария;
- Прохождение обучения;
- Прохождение экзамена;
- Создание отчета;
- Редактирование данных пользователя программного средства.

Функциональные требования

1. Выбор сценария

Предоставление пользователю возможности выбора сценария обучения, с выбором определенного направления.

2. Прохождение обучения

Предоставление пользователю возможности прохождения обучения для получения новых навыков и закрепления старых навыков. С использованием подсказок

3. Прохождение экзамена

Возможность пользователя проходить сценарий для проверки остаточных знаний, с подсчетом пользовательского счета.

4. Созданик отчета

Возможность пользователя получить отчет о прохождении экзамена.

5. Редактирование данных

Возможность пользователя вводить собственные данные для корректного сохранения собственных результатов.

2. Выбор средств разработки

В качестве платформы была выбрана межплатформенная среда разработки Unity, так как она предоставляет не перегруженный интерфейс, модульную систему разрабатываемых компонентов. Так же платформа Unity использует объектно-ориентированный язык программирования С#. Модульная система позволяет конструировать игровые объекты в виде комбинируемых пакетов функциональных элементов.

Хранение данных на сервере реализовано с использованием компактной встраиваемой СУБД, которой является выбранная SQLite, не реализующая парадигмы клиент-сервер. Данная СУБД распространяется по лицензии public domain, это означает что на данный продукт нет имущественных авторских прав и данный продукт можно распространять и использовать без ограничений, без выплат авторского вознаграждения.

Для реализации управления приложением в виртуальной реальности была выбрана библиотека SteamVR реализующая возможности программного интерфейса OpenVR. Данный программный интерфейс не требует использования приложениями информации о устройствах на с какими оно на работает. OpenVR распространяется по лицензии BSD-3-Clause. Что не запрещает её использование в коммерческих проектах. Так же лицензия разрешает модифицировать, распространять и использовать в личных целях данный продукт.

3. Реализация программного продукта, базы данных

3.1. Разработка пользовательского интерфейса

Пользовательское приложение содержит одно окно, в котором присутствует несколько элементов для взаимодействия. Графический интерфейс изображен на рисунке 3.1.

Рисунок 3.1 – Графический интерфейс пользовательского приложения

3.2. Реализация программного продукта

Основными алгоритмами разрабатываемой системы являются операции прохождения обучения, прохождения экзамена, подсчета результатов.

Прохождение обучения

Функция прохождения обучения пользователя получает на вход, выбранный пользователем сценарий. После запускает его, передавая пользователю подсказки и ожидая пользовательский ввод. Изображение процесса представлено на рисунке 3.2.

Рисунок 3.2 – Графическое изображение процесса прохождения обучения

Прохождение экзамена

Функция прохождения экзамена пользователя получает на вход, выбранный пользователем сценарий. После запускает его, и ожидает пользовательский ввод. Изображение процесса представлено на рисунке 3.3.

Рисунок 3.3 – Графическое изображение процесса порождения экзамена

Подсчета пользовательского результата

Функция подсчета пользовательского результата работает в процессе пока пользователь проходит экзамен. Конечный пользовательский результат зависит от скорости и правильности выполнения действий пользователем.

3.3. Логическая модель базы данных

Основной сущностью БД является пользователь, данные о котором хранятся в таблице с названием users.

Таблица results служит для хранения информации о прохождениях пользователями экзаменов, сохраняя в себе пользовательский идентификационный номер и результат данного пользователя.

В результате проектирования базы данных была получена логическая модель, представленная на рисунке 3.4.

Рисунок 3.4 – Логическая модель базы данных

4. Тестирование

Таблица 4.1. – тестирование разработанной системы

Входные данные	Ожидаемый результат	Фактический результат	Статус теста
Запуск экзамена	Экзамен запущен	Экзамен запущен	Пройден
Запуск обучения	Обучение запущено	Обучение запущено	Пройден
Прохождение первого	Вывод сообщения-	Вывод сообщения-	Пройден
шага обучения	подсказки для	подсказки для	_
	следующего шага	следующего шага	
Не правильное	Сообщение о не	Сообщение о не	Пройден
выполнение шага на	правильном	правильном	
обучении	выполнении	выполнении	
Не правильное	Сообщение о не	Сообщение о не	Пройден
выполнение шага на	правильном	правильном	
экзамене	выполнении,	выполнении,	
	завершение экзамена	завершение экзамена	
Корректное	Вывод результата,	Вывод результата,	Пройден
завершение экзамена	запись результата в	запись результата в	
	базу данных	базу данных	
Корректное	Вывод сообщения о	Вывод сообщения о	Пройден
завершение обучения	корректном	корректном	
	завершении обучения	завершении обучения	
Ввод нового	Добавление	Добавление	Пройден
пользовательского	пользователя в	пользователя в таблицу	
ФИО	таблицу		
Попытка	Огнетушитель не	Огнетушитель не	Пройден
использования	вымещает тушащее	вымещает тушащее	
огнетушителя с	вещество	вещество	
пломбой		·	
Попытка	Огнетушитель не	Огнетушитель не	Пройден
использования	вымещает тушащее	вымещает тушащее	
огнетушителя с	вещество	вещество	
закончившемся ОТВ			
Попытка	Огнетушитель	Огнетушитель	Пройден
использования	вымещает тушащее	вымещает тушащее	-
полного	вещество	вещество	
огнетушителя без			
пломбы			

5. Инструкция пользователя

Запуск экзамена:

1. Заполнить поле. Графический интерфейс представлен на рисунке 5.1.

Рисунок 5.1 – Графический игтерфейс

- 2. Выбрать режим экзамена.
- 3. Выбрать требуемый сценарий.

Запуск обучения:

- 1. Заполнить поле. Графический интерфейс представлен на рисунке 5.1.
 - 2. Выбрать режим обучения.
 - 3. Выбрать требуемый сценарий.

Ознакомление с подсказками:

- 1. Поднять левую руку перед собой.
- 2. Прочитать текст на тыльной стороне ладони. Рисунок 5.2.

Рисунок 5.2 – Обучающая подсказка

Проверка результата прохождения экзамена:

- 1. Поднять левую руку перед собой.
- 2. Ознакомиться с результатом на тыльной стороне ладони. Интерфейс отображен на рисунок 5.3.

Рисунок 5.3 – Результат прохождения экзамена

Отключение электропитания оборудования:

- 1. Приложить ладонь к кнопке. Кнопка отображена на рисунке 5.3
- 2. Зажать кнопку захвата объекта.
- 3. Надавить на кнопку.

Рисунок 5.3 – Кнопка остановки подачи электропитания

Заключение

Результатом выполнения производственной практики является определенный перечень используемых инструментов средств разработки, функционал разрабатываемой систем, спроектированная диаграмма базы данных.

Разработанная система имеет следующие функциональные особенности:

- Возможность прохождения обучения, построенного на пошаговом выполнении определенных задач, с использованием обучающих системных подсказок;
- Возможность прохождения экзамена, построенного на пошаговом выполнении определённых задач, системные подсказки в данном режиме не доступны;
 - Ведение подсчета пользовательских результатов;
 - Сохранение пользовательских результатов.