

Approved by:
Checked by:
Issued by:

Surface-Acoustic-Wave Resonator SPECIFICATION

R433T2

SMD 7.5X3.5

433.92MHz SAW

Low Series Resistance **Quartz Stability** Rugged, Hermetic, Low-profile SMD7.5X3.5 Case

The R433T2 is a true one-port, surface-acoustic-wave (SAW) resonator in low-profile SMD case. It provides reliable, fundamental-mode. quartz frequency stabilization of fixed-frequency transmitters operating at 433.92 MHz. The R433T2 is designed specifically for remote-controls and wireless security transmitters. Operating in the Europe underETS11-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	$^{\circ}$

Electrical Characteristics

Characteristics			Notes	Minimum	Typical	Maximum	Units	
Center Frequency (+25℃)	Absolute Frequency	fc		433.845	433.92	433.995	MHz	
	Tolerance from 433.920MHz	Δ f _c	2,3,4,5			±75	KHz	
Insertion Loss		IL	2,5,6		1.5	2.0	dB	
Quality Factor	Unloaded Q	Q _U			12.800			
	50Ω loaded Q	Q _L	5,6,7		2.000			
Temperature Stability	Turnover Temperature	To		24	39	54	°C	
	Turnover Frequency	f _O	5,7,8		f _c +2.7		KHz	
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C²	
Frequency Aging	Absolute Value during the First Year	If _A I	1		≦10		ppm/y τ	
DC Insulation Resistance between Any Two Pins			5	1.0			ΜΩ	
RF Equivalent RLC Model	Motional Resistance	R _M			18	26	Ω	
	Motional Inductance	L _M	570		86.0075		μН	
	Motional Capacitance	См	5,7,9		1.56417		pF	
	Pin 1 to Pin 2 Static Capacitance	Co	5,6,9	1.7	2.0	2.3	pF	
	Transducer Static Capacitance	C _P	5,6,7,9		1.7		pF	
Test Fixture Shunt Inductance		L _{TEST}	2,7		78		nH	
Lid Symbolization (in Addition to Lot and/or Date Code			R433T2					

CAUTION: electrostatic Sensitive Device, Observe precautions for handling.

Notes:

- Frequency aging is the change in f_C with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, fc, is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the 50 Ω test system(VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is turned for parallel resonator with C_O at f_c. Typically, foscillator or ftransmitter is less than the resonator fc.
- One or more of following United States patents apply:4,454,488 and 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- Derived mathematically from one or more of the following directly measured parameter: fc, IL, 3dB bandwidth, fc versus $T_{c,}$ and C_{o} .
- Turnover temperature, T_{o} , is the temperature of maximum (or turnover) frequency, fo. The nominal frequency at any case temperature, Tc. may be calculated from:
 - $f=f_o$ [1-FTC(T_o - T_c)²]. Typically, oscillator T_o is 20 $^{\circ}$ C less
- than the specified *resonator* T_o.

 This equivalent RLC model approximates resonators performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between pin 1 and pin 2 measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to Co.

Electrical Connections

This one-port, two-terminal SAW resonator is bi-directional. The terminals are interchangeable with the exception of circuit board layout.

Pin	Connection
1	Terminal 1
2	Terminal 2

Typical Test Circuit

The test circuit inductor, $L_{\text{TEST}},$ is turn to resonate with the static capacitance, C_o at $F_c.$

Electrical Test:

Power Test:

Typical Application Circuits

Typical Low-Power Transmitter Application:

Typical Local Oscillator Application:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Frequency Response

433.92MHz SAW

Taping structure

Componet load per 7' reel: 1000pcs

