Problem Set 12

Ryan Coyne

- 1. (a) The relation R_1 is a function since there are no elements in the domain, \mathbb{R} , that cannot be mapped to an element in the codomain, \mathbb{R} , and y = 4x 3 produces only one y value for each x value.
 - (b) The relation R_2 is not a function because each element $a \in A_2$, where a > 0, maps to two elements of the codomain. For example, (4,0) and (4,-4) are both elements of R_2 .
 - (c) The relation R_3 is not a function because each element $a \in A_3$ to two elements, $b_1, b_2 \in \mathbb{R}$. In particular b_1 and b_2 are related by $b_2 = b_1 + 4$. As an example, (0, -2) and (0, 2) are both in R_3 .
- 2. (a) f(n) = n
 - (b) f(n) = n + 1
 - (c) $f(n) = \begin{cases} 1, & x = 1\\ n 1, & x > 1 \end{cases}$
 - (d) f(n) = 1
- 3. The relation, \mathcal{F} , is a set such that, $\mathcal{F} = \{(2,7), (4,1), (6,4), (6,9)\}$. Thus, this relation is not a function because $\mathcal{F}(6) = 4, 9$.
- 4. (a) Let $x \in A$. Now, $(f \circ f \circ f)(x) = f(f(f(x)))$. Thus,

$$f(f(f(x))) = 1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{x}}}$$

$$= 1 - \frac{1}{\frac{1 - \frac{1}{x} - 1}{1 - \frac{1}{x}}}$$

$$= 1 - \frac{1}{\frac{\frac{1}{x}}{\frac{1}{x} - 1}}$$

$$= 1 - \frac{\frac{1}{x} - 1}{\frac{1}{x}}$$

$$= 1 - (1 - x)$$

$$= x$$

Therefore $f \circ f \circ f$ is the identity function.

(b) Since, $f \circ f \circ f$ is the identity function, it follows that $f \circ f^{-1} = f \circ f \circ f$. Thus,

$$f^{-1}(x) = f \circ f(x) = 1 - \frac{1}{1 - \frac{1}{x}}$$

$$= 1 - \frac{1}{\frac{x-1}{x}}$$

$$= 1 - \frac{x}{x-1}$$

$$= \frac{x - 1 - x}{x - 1}$$

$$= \frac{1}{1 - x}$$

- 5. (a) The function, F, is not one-to-one because F(2) = F(4) = 0. In fact, F(a) = 0 for any $a \in (\mathbb{N} \cup \{0\}) \cap \mathbb{E}$, where \mathbb{E} is the set of even integers.
 - (b) I conjecture that it is onto, but I cannot find a proof of it.
- 6. Let T, S be sets. Now, $T S = \{a \in T | a \notin S\} = \{a \in T | a \notin T \cap S\}$. Thus, $T S = T T \cap S$. By the same process, it can be shown that $S T = S T \cap S$. Assuming the hypothesis that |T S| = |S T|, it follows that $|T T \cap S| = |S T \cap S|$. Now since, $T \cap S \subset T$ and $T \cap S \subset S$, it is the case that $|T| |T \cap S| = |S| |T \cap S|$. Finally, by algebraic manipulation, |T| = |S|.