Big Data and Economics

Lecture 1: Introduction

Kyle Coombs (he/him/his)
Bates College | EC/DCS 368

Table of contents

- 1. Prologue
- 2. Veggies: Syllabus highlights
- 3. Dessert: What is data science?
- 4. Appetizer: Getting started
- 5. Entree: R for data science
- 6. Second Dessert: Data visualization with ggplot2

Prologue

Introductions

Course

https://github.com/big-data-and-economics

You'll soon receive access to this GitHub organization, where we submit assignments, upload presentations, etc.

Me

- **■** Kyle Coombs
- Assistant Professor (economics)
- ▼ From Scotia, New York
- **A** Live in Maine and Massachusetts
- Research fields: Public and Labor, interested in applied econometrics and data science

Syllabus highlights

(Read the full document here.)

Why this course?

Fill in the gaps left by traditional econometrics and methods classes.

- Practical skills that tools that will benefit your thesis and future career.
- Neglected skills like how to actually find datasets in the wild and clean them.
- Apply skills to analyze empirical questions on economic and social problems.

Data science skills are largely distinct from (and complementary to) the core 'metrics familiar to economists.

- Acquiring data; scraping; maintaining databases; etc.
- Data viz, cleaning and wrangling; programming; cloud computation; relational databases; machine learning; etc.

"In short, we will cover things that I wish someone had taught me when I was starting out in college."

Caveat

- This course will be **hard.** You will need to:
 - Teach yourself new skills I cannot cover in 12 weeks
 - Be entrepreneurial: If you find a better way to do something, do (and share) it!
 - Be patient: You will encounter bugs and errors, and you will need to learn how to fix them
- This course will also be **rewarding**
 - You can avoid the mistakes you make here on your thesis and in your career
 - You will learn skills that employers, pre-doc programs, and grad schools want (but teach poorly)
 - You will learn how to be a better researcher and citizen
 - Seriously, a little data science goes a long way in helping you see through BS

You, at the end of this course

Syllabus readthrough

- Read over the class **ReadMe** for 3 minutes
- Identify at least one word you're unfamiliar with
- Anyone have guesses for how to define them?
- Mentimeter

Class outline

Data science basics

- Version control with Git and GitHub
- R language basics
- Data cleaning and wrangling
- Webscraping
- Data visualization

Analysis and Programming

- Regression analysis in R
- Spatial analysis in R
- Functions in R
- Parallel programming

Causal inference

- Regression discontinuity design
- Panel data and fixed effects
- Field experiments

Scaling up: Big data, ML, and cloud computation

- High performance computing (Leavitt cluster)
- Databases: SQL(ite) and BigQuery
- Machine Learning techniques
- Text analysis

What is Data Science?

What is Data Science?

- **Data science (DS):** The scientific discipline that deals with transforming data into useful information ("insights") using a variety of stats/ML techniques
 - Facebook: Collects data on search history, friendship links, site clicks
 - Raj Chetty et al. used these data to estimate users' socioeconomic status and their social network (Social Capital Atlas)
- The rise of data science has come because of the so-called Big Data revolution
 - The rise of the internet in the late-1990s and 2000s ⇒↑ opportunities for companies and governments to collect data on consumers & citizens
 - Proliferation of mobile devices & social media from late 2000s until now has generated even more data

Pillars of data science

- Programming (for automation of data collection, manipulation, cleaning, visualization, and modeling)
- Visualization & exploration
- Causal inference (to be able to make a policy prescription)

The data science workflow

Source: R for Data Science

Big Data

Statistical information is currently accumulating at an unprecedented rate. But no amount of statistical information, however complete and exact, can by itself explain economic phenomena. If we are not to get lost in the overwhelming, bewildering mass of statistical data that are now becoming available, we need the guidance and help of a powerful theoretical framework. Without this no significant interpretation and coordination of our observations will be possible.

Big Data

Statistical information is currently accumulating at an unprecedented rate. But no amount of statistical information, however complete and exact, can by itself explain economic phenomena. If we are not to get lost in the overwhelming, bewildering mass of statistical data that are now becoming available, we need the guidance and help of a powerful theoretical framework. Without this no significant interpretation and coordination of our observations will be possible.

Source: Frisch, Ragnar. 1933. "Editor's Note" Econometrica 1(1): 1-4

What is Big Data?

It depends on who you ask. It could mean:

- 1. "Wild" data (unstructured; happenstance; collected without a particular intention; e.g. twitter, contrast with Census surveys)
- 2. "Wide" data (a.k.a. "Big-K" data because K > N, customer data sets where each click is a variable)
- 3. "Long" data (a.k.a. "Big-N" data because *N* very, very large [and may not all fit onto a single hard drive!], government tax records, Medicare claims data, etc.)
- 4. Any data set that cannot be analyzed with classical methods like OLS (e.g. all combinations of the above three types)

"Big Data" not so much about size of data, but about whether or not "small data" (read: classical) methods can be used

Long data

- Main application: identifying causal effects
- Example: effects of improving schools on income

Wide data

- Main application: prediction
- Example: predicting income to target ads from tons of information like location, links clicked, etc.

Why does data shape matter?

- 1. Data shape determines how much memory is required to store information
- 2. Data shape determines what method you can use to analyze the data
 - A regression model with year fixed effects requires that rows vary by year
 - So you cannot have a wide data set with one row per person and one column per year

What can we capture in data?

- Data can capture a lot of information about the world, but not everything
- Yes, that sounds like buzzword soup, but it is true
- Any dataset, no matter how big, has simplified the world in some way
- You want the simplification to match the question
- How do you record where a person is?
 - County? Lots of people have same location.
 - IP address? Changes frequently
 - GPS coordinates? Too precise, and changes every second!
- The solution? Decide why you need location
 - Are you curious about the effect of local government policies or firms on people?
 - Are you looking to measure the effect of air pollution on health?
 - Do you want to see how people change their commute patterns over time? When there is a road closure?
- Different questions require different levels of precision

Big data & machine learning

- You'll often hear the phrase "big data and machine learning"
- This is because many machine learning algorithms are helpful for big data problems:
 - \circ Selecting which k < K covariates should enter your model
 - Streamlined techniques for processing "wild" data
 - New modeling approaches that can leverage the greater amount of information that Big Data has
- ML also gave us generative AI (ChatGPT and GitHub CoPilot), which I encourage you to use heavily to help you learn R and Git
- Think of it as a more interactive version of Googling for the solution to a bug
 - It is not (yet) a replacement for thinking through the best way to code something
 - It will actually perform better if you think through the basic coding tasks first, then ask it to fill in the blanks

What is machine learning? What is AI?

- Machine learning (ML): Allowing computers to learn for themselves without explicitly being programmed
 - USPS: Computer to read handwriting on envelopes
 - o Google: AlphaGo, computer that defeated world champion Go player
 - Apple/Amazon/Microsoft: Siri, Alexa, Cortana, Talon voice assistants
- **Artificial intelligence (AI):** Constructing machines (robots, computers) to think and act like human beings
- ML is a subset of Al

Getting started

Software installation and registration

- 1 Download R
- 2. Download RStudio.
- 3. Download Git.
- 4. Create an account on GitHub and register for a student/educator discount.
 - We will use GitHub to disseminate and submit assignments, receive feedback and grading, etc.
- 5. Make a folder on your computer for this class. Any and all repositories for this class should be cloned into this folder.

If you had trouble completing any of these steps, please raise your hand.

 My go-to place for installation guidance and troubleshooting is Jenny Bryan's http://happygitwithr.com.

Some OS-specific extras

I'll detail further software requirements as and when the need arises. However, to help smooth some software installation issues further down the road, please also do the following (depending on your OS):

- **Windows:** Install **Rtools**. I also recommend that you install **Chocolately**. **Windows Subsystem for** Linx.
- Mac: Install Homebrew. I also recommend that you configure/open your C++ toolchain (see here.)
- **Linux:** None (you should be good to go).

Checklist

☑ Do you have the most recent version of R?

```
version$version.string
## [1] "R version 4.3.1 (2023-06-16 ucrt)"
```

☑ Do you have the most recent version of RStudio? (The **preview version** is fine.)

```
RStudio.Version()$version
## Requires an interactive session but should return something like "[1] '1.4.1100'"
```

☑ Have you updated all of your R packages?

```
update.packages(ask = FALSE, checkBuilt = TRUE)
```

Checklist (cont.)

Open up the shell.

- Windows users, make sure that you installed a Bash-compatible version of the shell. If you installed **Git for Windows**, then you should be good to go.
- ☑ Which version of Git have you installed?

```
git --version

## git version 2.34.1
```

☑ Did you introduce yourself to Git? (Substitute in your details.)

```
git config --global user.name 'Kyle Coombs'
git config --global user.email 'kcoombs@bates.edu'
git config --global --list
```

☑ Did you register an account in GitHub?

Checklist (cont.)

- Navigate to the class materials repository
- Click the green "Code" button and copy the HTTPS link.
- Under Codespaces, click Create codespace on main. This will create a cloud-based server for you to work on
- It may take a few minutes to get up and running.
- Once inside, navigate to PORTS at the bottom, and click the link under "Local Address" for the RStudio Port. The username and password are rstudio/rstudio.
- You should now be in RStudio!
- Open up test.Rmd and click Knit at the top to test that it works!
- Navigate back to the main GitHub repository page and click Code, the three dots next to the codespace name, and Delete codespace.
- I'll encourage you to use Codespaces on some problem sets when I want to hit the ground running instead of troubleshooting package installation issues.

Checklist (cont.)

We will make sure that everything is working properly with your R and GitHub setup next lecture.

For the rest of today's lecture, I want to go over some very basic ChatGPT and R concepts.

PS — Just so you know where we're headed: We'll return to these R concepts (and delve much deeper) next week after a brief, but important detour to the lands of coding best practices and Git(Hub).

R and Generative AI for data science

Why R and RStudio? (cont.)

Why R and RStudio? (cont.)

Data science positivism

- Alongside Python, R has become the de facto language for data science.
 - See: The Impressive Growth of R, The Popularity of Data Science Software
- Open-source (free!) with a global user-base spanning academia and industry.
 - "Do you want to be a profit source or a cost center?"

Bridge to applied economics and other tools

- Already has all of the statistics and econometrics support, and is amazingly adaptable as a "glue" language to other programming languages and APIs.
- The RStudio IDE and ecosystem allow for further, seemless integration.

Path dependency

- It's also the language that I know (second) best.
- (Learning multiple languages is a good idea, though.)

R code example (linear regression)

```
fit = lm(mpg ~ wt, data = mtcars)
summary(fit)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
## Residuals:
      Min
           1Q Median 3Q
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
           -5.3445 0.5591 -9.559 1.29e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```

Base R plot

```
par(mar = c(4, 4, 1, .1)) ## Just for nice plot margins on this slide deck
plot(mtcars$wt, mtcars$mpg)
abline(fit, col = "red")
```


ggplot2

```
library(ggplot2)
ggplot(data = mtcars, aes(x = wt, y = mpg)) +
  geom_smooth(method = "lm", col = "red") +
  geom_point()
```


Do ↑ in GDP cause life expectancy to ↑?

- Let's use our new-found R knowledge to try to separate correlation from causation for a critical question in economics:
 - Does increasing the economic pie (GDP) lead to longer lives (life expectancy)?
- We can use the gapminder dataset to explore this question
- The **gapminder** dataset contains panel data on life expectancy, population size, and GDP per capita for 142 countries since the 1950s
- Any predictions about what we'll learn?
- Also, we can tap into generative AI to help us climb the steep learning curve of coding in a new language

ChatGPT and GitHub CoPilot

- I strongly encourage you to use ChatGPT and GitHub CoPilot in all aspects of this class
- ChatGPT is a large language model (LLM) developed by OpenAI
- Create an account at http://chat.openai.com/
- ChatGPT is excellent at producing basic code and helping resolve bugs
- It serves as a bridge between the ideas in your head and crisp instructions for a computer (code)

ChatGPT example

Human:

Write an R script that does the following:

- (a) Reads in the gapminder dataset using the library gapminder.
- (b) Prints out the first 10 rows of the gapminder dataset.
- (c) Lists which countries are in the sample (i.e. list unique values of the county variable)
- (d) Plots a scatterplot of the gdpPercap by lifeExp using the gapminder dataset using ggplot.

ChatGPT example (continued)

Assistant:

Certainly! Here's an R script that accomplishes these tasks using the gapminder dataset:

```
# Load necessary libraries
library(gapminder)
library(ggplot2)

# Step (a) - Read in the gapminder dataset
data("gapminder")
gapminder_df ← gapminder
# Step (b) Print first 10 rays
```

This script assumes that the gapminder package is installed and loaded. It reads in the gapminder dataset, prints the first 10 rows, lists unique countries present in the dataset, and then creates a scatterplot of gdpPercap (GDP per Capita) against lifeExp (Life Expectancy) using ggplot2. Adjust the plot aesthetics as needed to suit your preferences.

Exported on 1/8/2024.

How's the code run?

Tips for using ChatGPT

- Be as specific as possible in your instructions
 - o If you know the name of the variables in your dataset, use them
- Think of it as a more interactive version of Googling for the solution to a bug
- Try things iteratively and in small steps
 - If you're not sure how to do something, try to break it down into smaller steps
 - This is a good tip for coding in general
- Your brain is still the most powerful tool you have
 - ChatGPT is a tool to help you, not replace you
 - You will not get much mileage if you say, "Read in the gapminder dataset and do something interesting with it"
- Often it only "skeleton code" for you, so you'll need to fill in the blanks

More ggplot2

Install and load

Open up your laptops. For the remainder of this first lecture, we're going to pla around with **ggplot2** (i.e. livecoding) to answer our question about GDP and life expectancy.

If you don't have them already, install the ggplot2 and causaldata packages via either:

- **Console:** Enter install.packages(c("ggplot2", "causaldata"), dependencies=T).
- **RStudio:** Click the "Packages" tab in the bottom-right window pane. Then click "Install" and search for these two packages.

Install and load (cont.)

Once the packages are installed, load them into your R session with the library() function.

```
library(ggplot2)
library(causaldata) ## We're just using this package for the gapminder data, it has many useful datasets!
```

Notice too that you don't need quotes around the package names any more. Reason: R now recognises these packages as defined objects with given names. PS — A convenient way to combine the package installation and loading steps is with the **pacman package's** p_load() function. If you run pacman::p_load(ggplot, causaldata) it will first look to see whether it needs to install either package before loading them. Clever.

• We'll get to this later, but if you want to run a function from an (installed) package without loading it, you can use the PACKAGE::package_function() syntax.

Visualization

- Data visualization is critical (and often) neglected skill
- Any dataset will have far too many rows to interpret by staring at it
- Regressions and summary statistics can obscure a lot! Meet Anscombe's Quartet (Anscombe, 1973)

DataSarus Dozen

• A more ambitious example is the **Datasaurus Dozen** dataset.

Elements of ggplot2

Hadley Wickham's ggplot2 is one of the most popular packages in the entire R canon.

• It also happens to be built upon some deep visualization theory: i.e. Leland Wilkinson's *The Grammar of Graphics*.

There's a lot to say about ggplot2's implementation of this "grammar of graphics" approach, but the three key elements are:

- 1. Your plot ("the visualization") is linked to your variables ("the data") through various **aesthetic mappings**.
- 2. Once the aesthetic mappings are defined, you can represent your data in different ways by choosing different **geoms** (i.e. "geometric objects" like points, lines or bars).
- 3. You build your plot in layers.

That's kind of abstract. Let's break down the elements of ggplot2 in turn with some actual plots.

• As a shortcut, we'll use AI to write the basic code for us then we'll fill in the blanks.

1. Aesthetic mappings

```
ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
geom_point()
```



```
ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
  geom_point()
```

Focus on the top line, which contains the initialising ggplot() function call. This function accepts various arguments, including:

- Where the data come from (i.e. data = gapminder).
- What the aesthetic mappings are (i.e. mapping = aes(x = gdpPercap, y = lifeExp)).

The aesthetic mappings here are pretty simple: They just define an x-axis (GDP per capita) and a y-axis (life expecancy).

• To get a sense of the power and flexibility that comes with this approach, however, consider what happens if we add more aesthetics to the plot call...

• Can you ask ChatGPT to add color the dots by continent?

```
ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
  geom_point()
```

• Submit your guesses on Mentimeter.

```
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, col = continent)) +
geom_point(alpha = 0.3) ## "alpha" controls transparency. Takes a value between 0 and 1.
```


- I've dropped the "mapping =" part of the ggplot call. ggplot2 knows the order of the arguments.
- The aesthetics expect "long" data to differentiate series by a variable. This is distinct from the "wide" format, where each series has its own column.

51 / 70

We can specify aesthetic mappings in the geom layer too.

```
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) + ## Applicable to all geoms
geom_point(aes(size = pop, col = continent), alpha = 0.3) ## Applicable to this geom only
```


Oops. What went wrong here?

```
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) +
geom_point(aes(size = "big", col="black"), alpha = 0.3)
```


Answer: Aesthetics must be mapped to variables, not descriptions!

At this point, instead of repeating the same ggplot2 call every time, it will prove convenient to define an intermediate plot object that we can re-use.

```
p = ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp))
p
```


2. Geoms

Once your variable relationships have been defined by the aesthetic mappings, you can invoke and combine different geoms to generate different visualizations.

```
p +
  geom_point(alpha = 0.3) +
  geom_smooth(method = "loess") # A smoothed "locally estimated scatterplot smoothing" line
```


2. Geoms (cont.)

Aesthetics can be applied differentially across geoms.

```
p +
  geom_point(aes(size = pop, col = continent), alpha = 0.3) +
  geom_smooth(method = "loess")
```


2. Geoms (cont.)

The previous plot provides a good illustration of the power (or effect) that comes from assigning aesthetic mappings "globally" vs in the individual geom layers.

• Compare: What happens if you run the below code chunk?

```
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, col = continent)) +
geom_point(alpha = 0.3) +
geom_smooth(method = "loess")
```

2. Geoms (cont.)

The previous plot provides a good illustration of the power (or effect) that comes from assigning aesthetic mappings "globally" vs in the individual geom layers.

• Compare: What happens if you run the below code chunk?

```
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, col = continent)) +
    geom_point(alpha = 0.3) +
    geom_smooth(method = "loess")

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.

## i Please use `linewidth` instead.

## This warning is displayed once every 8 hours.

## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was

## generated.

## Warning: The following aesthetics were dropped during statistical transformation: size

## i This can happen when ggplot fails to infer the correct grouping structure in

## the data.

## i Did you forget to specify a `group` aesthetic or to convert a numerical

## variable into a factor?
```


3. Build your plot in layers

We've already seen how we can chain (or "layer") consecutive plot elements using the + connector.

• The fact that we can create and then re-use an intermediate plot object (e.g. "p") is testament to this.

But it bears repeating: You can build out some truly impressive complexity and transformation of your visualization through this simple layering process.

- You don't have to transform your original data; ggplot2 takes care of all of that.
- For example (see next slide for figure).
- **Bonus:** Maybe this will help make sense of the non-linear relationship between GDP per capita and life expectancy?

Build your plot in layers (cont.)

```
p +
geom_point(aes(size = pop, col = continent), alpha = 0.3) +
scale_color_brewer(name = "Continent", palette = "Set1") + ## Different colour scale
scale_size(name = "Population", labels = scales::comma) + ## Different point (i.e. legend) scale
scale_x_log10(labels = scales::dollar) + ## Switch to logarithmic scale on x-axis. Use dollar units.
labs(x = "Log (GDP per capita)", y = "Life Expectancy") + ## Better axis titles
theme_minimal() ## Try a minimal (b&W) plot theme
```

- Before executing, what will this do?
- The comments help, as will Google and ChatGPT, but the function names are somewhat intuitive too.

3. Build your plot in layers (cont.)

What else?

We have barely scratched the surface of ggplot2's or ChatGPT's functionality... let alone talked about the entire ecosystem of packages that has been built around it.

• Here's are an additional examples to whet your appetite

Note that you will need to install and load some additional packages if you want to recreate the next two figures on your own machine. A quick way to do this:

```
if (!require("pacman")) install.packages("pacman")
pacman::p_load(hrbrthemes, gganimate)
```

What else? (cont.)

Elaborate extension: Animation! (See the next slide for the resulting GIF.)

```
# library(gganimate)
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
geom_point(alpha = 0.7, show.legend = FALSE) +
scale_colour_manual(values = country_colors) +
scale_size(range = c(2, 12)) +
scale_x_log10(labels = scales::dollar) +
facet_wrap(~continent) +
# Here comes the gganimate specific bits
labs(title = 'Year: {frame_time}', x = 'Log (GDP per capita)', y = 'Life expectancy') +
transition_time(year) +
ease_aes('linear')
```

What is different about this code?

What else? (cont.)

Year: 1952

Note that this animated plot provides a much more intuitive understanding of the underlying data. Just as **Hans Rosling** intended.

But do increases in GDP per capita cause

- We can't answer this question with a simple plot.
- We also can't answer this question with a very fancy plot.
- What do we need?
 - A model
 - A causal identification strategy
 - o More granular (bigger) data

What else? (cont.)

There's a lot more to say, but I think we'll stop now for today's lecture.

We also haven't touched on ggplot2's relationship to "tidy" data.

- It actually forms part of a suite of packages collectively known as the tidyverse.
- We will get back to this.

Rest assured, you will be using ggplot2 throughout the rest of this course and developing your skills along the way.

• Your very first assignment (coming up) is a chance specifically to hone some of those skills.

In the meantime, I want youyou can do some reading and practice on your own. Pick either of the following (or choose among the litany of online resources) and work through their examples:

- Chapter 3 of *R for Data Science* by Hadley Wickham and Garett Grolemund.
- Data Visualization: A Practical Guide by Kieran Healy.
- Designing ggplots by Malcom Barrett.

Next lecture: Deep dive into Git(Hub).

Appendix

Some R basics

- 1. Everything is an object.
- 2. Everything has a name.
- 3. You do things using functions.
- 4. Functions come pre-written in packages (i.e. "libraries"), although you can and should write your own functions too.

Points 1. and 2. can be summarised as an object-oriented programming (OOP) approach.

• This may sound super abstract now, but we'll see *lots* of examples over the coming weeks that will make things clear.

R vs Stata

If you're coming from Stata, some additional things worth emphasizing:

- Multiple objects (e.g. data frames) can exist happily in the same workspace.
 - No more keep, preserve, restore hackery. (Though, props to Stata 16.)
 - This is a direct consequence of the OOP approach.
- You will load packages at the start of every new R session. Make peace with this.
 - "Base" R comes with tons of useful in-built functions. It also provides all the tools necessary for you to write your own functions.
 - However, many of R's best data science functions and tools come from external packages written by other users.
- R easily and infinitely parallelizes. For free.
 - o Compare the cost of a Stata/MP license, nevermind the fact that you effectively pay per core...
- You don't need to tsset or xtset your data. (Although you can too.)