1.9 Chapter 1 Review

ESSENTIAL AXIOMS/DEFINITIONS

Axiom	Symbol	Short	Example
$Addtion \ Table$	<u>+ </u> N	[AT]	3 + 5 = 8
Times Table	× N	[TT]	$3 \cdot 5 = 15$
Commutativity Law of Addition	+	[CoLA]	3 + 5 = 5 + 3
Commutativity Law of Multiplication	X	[CoLM]	$3 \times 5 = 5 \times 3$
Associativity Law of Addition	(+)	[ALA]	(3+5)+7=3+(5+7)
Associativity Law of Multiplication	(x)	[ALM]	3(xy) = (3x)y
Additive Identity	+	[AId]	x + 0 = x
Multiplicative Identity	×	[MId]	$x \cdot 1 = x$
Additive Inverses		[AInv]	-5+5=0
Multiplicative Inverses		[MInv]	$5 \cdot \frac{1}{5} = 1$
Cancellation Law of Addition	τ <u>‡</u> τ	[CLA]	$A = B \implies (A) + c = (B) + c$
Cancellation Law of Multiplication	₹Ţ	[CLm]	$A = B \implies (A)c = (B)c$
Reflexive Property	₹	[RP]	A = A
Symmetric Property	\equiv	[SP]	$A = B \implies B = A$
Transitivity Property	∌	[TP]	$A = B \& B = C \implies A = C$

2.7 Chapter 2 Review

ESSENTIAL DEFINITIONS & THEOREMS

Definition/Theorem	Short	Example
Zero Multiplication Theorem	[0MT]	$3 \cdot 0 = 0$
Minus Theorem	[MT]	$-1 \cdot 3 = -3$
Negative times Positive Theorem	[NPT]	$-5 \cdot 3 = -15$
Negative One Times Negative One Theorem	[NotNot]	$-1 \cdot -1 = 1$
Negative times Negative Theorem	[NNT]	$-5 \cdot -3 = 15$
Negative Plus Negative Theorem	[N+NT]	-5 + -3 = -8
Natural Exponents	[N. Expo]	$5^3 = 5 \cdot 5 \cdot 5$
Just Add Exponents	[JAE]	$5^3 \cdot 5^4 = 5^7$
Power to Power	[P2P]	$(5^3)^4 = 5^{12}$
Definition of Subtraction	[defa-b]	5 - 3 = 5 + -3

3.7 Chapter 3 Review

ESSENTIAL DEFINITIONS & THEOREMS

Definition/Theorem	Short	Example
Add Tops Theorem	[ATT]	$\frac{2}{7} + \frac{3}{7} = \frac{5}{7}$
Just One Theorem	[JOT]	$\frac{7}{7} = 1$
Multiply Acorss Theorem	[MAT]	$\frac{2}{3} \cdot \frac{4}{5} = \frac{8}{15}$
Multiply Bottoms Theorem	[MBT]	$\frac{1}{3} \cdot \frac{1}{5} = \frac{1}{15}$
Negative Wherever you Want	[NWW]	$\frac{-2}{3} = -\frac{2}{3} = \frac{2}{-3}$
One Under Theorem	[OUT]	$5 = \frac{5}{1}$
Definition of Divide	$[Def \div]$	$5 \div 6 = \frac{5}{6}$
Flip Bottoms Theorem	[FBT]	$\frac{\frac{7}{3}}{\frac{3}{5}} = 7 \cdot \frac{5}{3}$
Kill The Coeffificent	[KTC]	$Ax = B \implies x = \frac{B}{A}$

4.10 Chapter Review

Very Famous Polynomials			
name	Short	Example	
FOIL	[FOIL]	(A+B)(C+D) = AC + AD + BC + BD	
Difference of Squares	[DS]	$x^2 - y^2 = (x - y)(x + y)$	
Difference of Cubes	[DS]	$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$	
Sum of Cubes	[SC]	$x^3 + y^3 = (x+y)(x^2 - xy + y^2)$	
Sum of Cubes	[PP2]	$(x+y)^2 = x^2 + 2xy + y^2$	

name	Short	Example
Pascal Polynomial #2	[PP2]	$(x+y)^2 = x^2 + 2yx + y^2$
Pascal Polynomial #3	[PP3]	$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
Pascal Polynomial #4	[PP4]	$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 6xy^3 + y^4$
Pascal Polynomial #5	[PP5]	$(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$

Pascal Polynomials

name	Short	Example
Geometric Series #2	[GS2]	$x^2 - 1 = (x - 1)(x + 1)$
Geometric Series #3	[GS3]	$x^3 - 1 = (x - 1)(x^2 + x + 1)$
Geometric Series #4	[GS4]	$x^4 - 1 = (x - 1)(x^3 + x^2 + x + 1)$
Geometric Series #5	[GS5]	$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$

Geometric Series Polynomials

ort	Example
[GS2]	$x^{2} - y^{2} = (x - y)(x + y)$
[GS3]	$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$
[GS4]	$x^4 - y^4 = (x - 1)(x^3 + x^2y + xy^2 + y^3)$
[GS5]	$x^5 - y^4 = (x - 1)(x^4 + x^3y + x^2y^2 + xy^3 + y^4)$
	GS2] GS3]

Generalized Geometric Series Polynomials

44 CONTENTS

0.9 Chapter 5 Summary

Solving Linear Equations

name	from	to
Free the terms	$3(x+1) = \frac{x+1}{2}$	$3x + 1 = \frac{1}{2}x + \frac{1}{2}$
Shuffle the terms	$3x + 1 = \frac{1}{2}x + \frac{1}{2}$	$3x + -\frac{1}{2}x = -1 + \frac{1}{2}$
Collect the terms	$3x + -\frac{1}{2}x = -1 + \frac{1}{2}$	$(3 + -\frac{1}{2}) x = -1 + \frac{1}{2}$
Kill the Coefficient	$(3 + -\frac{1}{2}) x = -1 + \frac{1}{2}$	$x = \frac{-1 + \frac{1}{2}}{3 + -\frac{1}{2}}$

Theorems

name	$_{ m symbol}$	says
Zero Factor Theorem	ZFT	$A \cdot B = 0 \implies A = 0 \text{ or } B = 0$
Square Root Property	SRP	$x^2 = a \implies x = \pm \sqrt{a}$
Absolute Value Theorem	AVT	$ x = a \implies x = a \text{ or } x = -a$
Quadratic Formula	QF	$ax^{2} + bx + c = 0$ $\Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2}$
		2a

Strategies

example	strategy	such as
$x^2 + 3x + 2 = 0$	Factors & ZFT	(x+2)(x+1) = 0
$x^2 + 3x + 2 = 0$	Complete PP2 & SRP	$\left(x + \frac{3}{2}\right)^2 = \frac{9}{4}$
$x^2 + 3x + 2 = 0$	Quadratic Formula	$x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$
$x^2 - 9 = 0$	Recognize Famous	(x-3)(x+3) = 0