Paris House Pricing Prediction Model Using Bayesian Method

Elvina Benedicta Santoso

2023-12-29

Load library

```
library(coda)
library(rjags)

## Linked to JAGS 4.3.2

## Loaded modules: basemod,bugs

library(knitr)
library(purrr)
library(tidyr)
library(ggplot2)
```

Set Seed

```
set.seed(123)
```

Load Data

```
df <- read.csv('./ParisHousing.csv')
head(df)</pre>
```

```
\verb|squareMeters| numberOfRooms| has Yard| has Pool floors| \verb|cityCode| cityPartRange| \\
##
## 1
            75523
                                                     63
                                                             9373
                                                                              3
                              3
                                       0
                                               1
## 2
            80771
                             39
                                               1
                                                     98
                                                            39381
                                                                              8
## 3
            55712
                             58
                                       0
                                               1
                                                     19
                                                                              6
                                                            34457
                             47
            32316
                                               0
                                                      6
                                                            27939
                                                                             10
## 5
            70429
                             19
                                       1
                                               1
                                                     90
                                                           38045
                                                                              3
## 6
            39223
                             36
                                       0
                                                     17
                                                            39489
  numPrevOwners made isNewBuilt hasStormProtector basement attic garage
## 1
        8 2005
                         0
                                                           4313 9005
               6 2015
                                 1
## 2
                                                           3653 2436
                                                                         128
```

```
## 3
               8 2021
                                                   2937 8852
                                                                135
## 4
               4 2012
                             0
                                             1
                                                   659 7141
                                                                359
                                             0
                                                   8435 2429
## 5
               7 1990
                             1
                                                                292
               6 2012
                             0
                                             1
                                                   2009 4552
                                                                757
## 6
## hasStorageRoom hasGuestRoom price
## 1
                      7 7559082
               0
## 2
               1
                          2 8085990
               1
                           9 5574642
## 3
              0
## 4
                           3 3232561
## 5
               1
                           4 7055052
## 6
                           1 3926647
```

Model 1

Set Dataframe as matrix and split dependent and independent variable

```
price <- as.matrix(df$price)
Y <- price

X <- df[, c("squareMeters", "numberOfRooms", "hasYard", "hasPool", "floors", "cityCode", "numPrevOwners
names <- c("price", "Square Meters", "Number of Rooms", "Has Yard", "Has Pool", "Number of Floors", "CityCode", "numPrevOwners")</pre>
```

Delete Missing Value

```
junk <- is.na(rowSums(X))
Y <- Y[!junk]
X <- X[!junk,]</pre>
```

Standardize Covariates

```
X <- as.matrix(scale(X))</pre>
```

JAGS

Put Data in JAGS Format

```
n <- length(Y)
p <- ncol(X)

data <- list(Y=Y,X=X,n=n,p=p)
params <- c("alpha","beta")
burn <- 500
n.iter <- 2000
n.chains <- 3
thin <- 5</pre>
```

Make Jags Model

```
model_string <- textConnection("model{
    # Likelihood
    for(i in 1:n){
        Y[i] ~ dnorm(alpha+mu[i],taue)
        mu[i] <- inprod(X[i,],beta[])
}

# Priors
    for(j in 1:p){
        beta[j] ~ dnorm(0,0.001)
}

alpha ~ dnorm(0,0.001)
    taue ~ dgamma(0.1, 0.1)

# WAIC calculations
    for(i in 1:n){
        like[i] <- dnorm(Y[i],mu[i],taue)
}
</pre>
```

Set Initial Value

```
inits = list()
inits$alpha = rnorm(1)
for(i in 1:p) {
   inits$beta[i] = rnorm(1)
}
inits$taue = 10
```

Compile Model

```
model1 <- jags.model(model_string, data = data, n.chains=n.chains, quiet=TRUE, inits = inits)</pre>
```

Update Model

```
update(model1, burn)
```

Get Posterior Samples from the model

```
samples1 <- coda.samples(model1, variable.names=params, n.iter=n.iter, thin=thin)</pre>
```

Plot MCMC Chain Trace and Features Posterior Density

```
par(mar=c(1,1,1,1))
plot(samples1)
```


Descriptive Statistics of model1

```
summary(samples1)
```

```
##
## Iterations = 505:2500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 400
##
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
##
                Mean
                        SD Naive SE Time-series SE
## alpha
             2.60364 31.57
                             0.9114
                                             0.9116
## beta[1]
          -0.21763 31.38
                             0.9060
                                             0.9130
## beta[2]
             1.15939 32.31
                             0.9326
                                             0.9308
## beta[3]
           -0.87051 31.43
                             0.9073
                                             0.8733
## beta[4]
            0.93194 31.05
                             0.8965
                                             0.8726
## beta[5]
             0.20884 31.86
                             0.9197
                                             0.8642
## beta[6]
             0.48302 32.30
                             0.9324
                                             1.0516
## beta[7]
             0.70716 31.39
                             0.9062
                                             0.9366
             0.88142 32.11
## beta[8]
                             0.9268
                                             0.9262
```

```
## beta[9] -0.31983 31.65
                            0.9136
                                           0.9286
## beta[10] -0.70227 30.40
                            0.8775
                                           0.8781
## beta[11] 1.80388 32.08
                            0.9262
                                            0.9268
## beta[12] -0.03802 30.38
                            0.8770
                                            0.8429
## beta[13] 0.20978 32.52
                            0.9388
                                            0.8954
## beta[14] 1.67043 31.64
                            0.9133
                                           0.9997
## beta[15] -1.10066 31.62
                            0.9129
                                           0.9132
## beta[16] 0.06349 31.74
                            0.9161
                                            0.8650
##
## 2. Quantiles for each variable:
##
##
             2.5%
                      25%
                               50%
                                     75% 97.5%
## alpha
            -55.77 -19.23
                          2.67669 24.23 64.64
## beta[1] -65.83 -20.58
                          0.03270 20.89 60.69
## beta[2] -61.43 -20.34 0.69101 21.66 68.19
## beta[3]
           -61.42 -22.11 -1.18361 22.04 57.21
          -57.08 -20.94 -0.73974 21.99 61.84
## beta[4]
## beta[5] -61.96 -20.11 0.14642 21.04 66.78
## beta[6] -66.80 -20.70 1.61000 23.38 63.22
## beta[7] -60.63 -21.00 0.68301 22.07 60.83
## beta[8] -62.31 -20.68 0.29102 22.32 63.86
## beta[9] -58.84 -22.13 -1.40274 20.06 65.29
## beta[10] -61.23 -21.55 -1.17282 18.71 59.85
## beta[11] -59.89 -19.66 1.44799 23.07 62.35
## beta[12] -61.62 -19.84 0.85211 20.42 58.22
## beta[13] -62.15 -22.02 -0.08204 21.68 65.45
## beta[14] -61.97 -19.62 2.24538 23.47 61.71
## beta[15] -64.65 -21.94 -0.98620 20.45 58.52
## beta[16] -59.98 -22.17 -0.52528 21.80 64.92
```

Show Alpha and Betas to the corresponding Features

```
sum <- summary(samples1)</pre>
rownames(sum$statistics) <- names</pre>
rownames(sum$quantiles) <- names</pre>
sum$statistics <- round(sum$statistics,3)</pre>
sum$quantiles <- round(sum$quantiles,3)</pre>
sum
##
## Iterations = 505:2500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 400
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
                                          SD Naive SE Time-series SE
                                 Mean
## price
                                2.604 31.57
                                                0.911
                                                                 0.912
## Square Meters
                               -0.218 31.38
                                                0.906
                                                                 0.913
## Number of Rooms
                                                0.933
                                1.159 32.30
                                                                 0.931
```

```
## Has Yard
                             -0.871 31.43
                                             0.907
                                                             0.873
## Has Pool
                                             0.896
                                                             0.873
                              0.932 31.05
                              0.209 31.86
## Number of Floors
                                             0.920
                                                             0.864
## City Code
                              0.483 32.30
                                             0.932
                                                             1.052
## Number of Previous Owners 0.707 31.39
                                             0.906
                                                             0.937
## Year Made
                              0.881 32.11
                                             0.927
                                                             0.926
## is Newly Built
                             -0.320 31.65
                                             0.914
                                                             0.929
## Has Storm Protector
                             -0.702\ 30.40
                                             0.877
                                                             0.878
## Basement Area
                              1.804 32.08
                                             0.926
                                                             0.927
## Attic Area
                             -0.038 30.38
                                             0.877
                                                             0.843
## Garage Area
                             0.210 32.52
                                             0.939
                                                             0.895
## Has Storage Room
                                             0.913
                              1.670 31.64
                                                             1.000
## Has Guest Room
                             -1.101 31.62
                                             0.913
                                                             0.913
                              0.063 31.73
## City Part Range
                                             0.916
                                                             0.865
##
## 2. Quantiles for each variable:
##
##
                               2.5%
                                       25%
                                              50%
                                                    75% 97.5%
                             -55.77 -19.23 2.677 24.23 64.64
## price
## Square Meters
                             -65.83 -20.58 0.033 20.89 60.69
                             -61.43 -20.34 0.691 21.66 68.19
## Number of Rooms
## Has Yard
                             -61.42 -22.11 -1.184 22.04 57.21
                             -57.08 -20.94 -0.740 21.99 61.84
## Has Pool
## Number of Floors
                             -61.96 -20.11 0.146 21.04 66.78
## City Code
                             -66.80 -20.70 1.610 23.38 63.22
## Number of Previous Owners -60.63 -21.00 0.683 22.07 60.83
## Year Made
                             -62.30 -20.68 0.291 22.32 63.86
                             -58.84 -22.13 -1.403 20.06 65.29
## is Newly Built
## Has Storm Protector
                             -61.23 -21.55 -1.173 18.71 59.85
## Basement Area
                             -59.89 -19.66 1.448 23.07 62.35
                             -61.62 -19.84 0.852 20.42 58.22
## Attic Area
## Garage Area
                             -62.15 -22.02 -0.082 21.68 65.45
## Has Storage Room
                             -61.97 -19.62 2.245 23.47 61.71
                             -64.65 -21.94 -0.986 20.45 58.52
## Has Guest Room
## City Part Range
                             -59.98 -22.17 -0.525 21.80 64.92
```

Check Convergence

gelman.diag(samples1)

```
## Potential scale reduction factors:
##
##
            Point est. Upper C.I.
                             1.024
                  1.006
## alpha
## beta[1]
                  1.005
                             1.014
## beta[2]
                  1.005
                             1.019
## beta[3]
                  0.999
                             1.001
## beta[4]
                  1.001
                             1.007
## beta[5]
                  0.999
                             1.002
## beta[6]
                  1.001
                             1.008
## beta[7]
                  1.005
                             1.024
## beta[8]
                  1.002
                             1.013
```

```
## beta[9]
                0.999
                           1.000
                           1.003
## beta[10]
                1.000
## beta[11]
                           1.003
                1.001
## beta[12]
                1.000
                           1.001
## beta[13]
                1.007
                           1.013
## beta[14]
                1.001
                          1.006
## beta[15]
                1.002
                           1.006
## beta[16]
                0.999
                           0.999
## Multivariate psrf
## 1.02
```

Compile results

```
ESS1 <- effectiveSize(samples1)</pre>
out1 <- summary(samples1)$quantiles</pre>
rownames (out1) <- names
ESS1
                         beta[2]
                                             beta[4]
##
       alpha
               beta[1]
                                   beta[3]
                                                        beta[5]
                                                                  beta[6]
                                                                            beta[7]
## 1200.0000 1181.8287 1200.0000 1317.1512 1282.1286 1412.7931 976.1667 1131.0232
              beta[9] beta[10] beta[11] beta[12] beta[13] beta[14] beta[15]
## beta[8]
## 1200.0000 1165.6151 1200.0000 1200.0000 1324.9619 1337.5107 1047.6516 1200.0000
## beta[16]
## 1375.3569
```

Compute DIC & WAIC

```
# DIC
dic1 <- dic.samples(model1,n.iter=n.iter)

# WAIC
waic1 <- coda.samples(model1, variable.names=c("like"), n.iter=n.iter)
like1 <- waic1[[1]]
fbar1 <- colMeans(like1)
P1 <- sum(apply(log(like1),2,var))
WAIC1 <- -2*sum(log(fbar1))+2*P1</pre>
```

Plot Posterior Density Individually

```
beta <- NULL
for(l in 1:n.chains){
  beta <- rbind(beta,samples1[[1]])
}
colnames(beta) <- names
for(j in 1:17){</pre>
```

```
hist(beta[,j],xlab=expression(beta[j]),ylab="Posterior density",
  breaks=100,main=names[j])
}
```


Square Meters

Number of Rooms

Number of Floors

Number of Previous Owners

Year Made

is Newly Built

Has Storm Protector

Basement Area

Has Storage Room

Has Guest Room

City Part Range

SSVS

```
library(knitr)
Inc_Prob <- apply(beta!=0,2,mean)
Q <- t(apply(beta,2,quantile,c(0.5,0.05,0.95)))
out <- cbind(Inc_Prob,Q)
kable(round(out,2))</pre>
```

	Inc_Prob	50%	5%	95%
price	1	2.68	-47.63	54.44
Square Meters	1	0.03	-52.42	50.00
Number of Rooms	1	0.69	-52.57	53.44
Has Yard	1	-1.18	-52.37	48.27
Has Pool	1	-0.74	-49.06	54.67
Number of Floors	1	0.15	-51.31	53.04
City Code	1	1.61	-53.94	51.74
Number of Previous Owners	1	0.68	-49.18	50.74
Year Made	1	0.29	-50.61	55.12
is Newly Built	1	-1.40	-49.54	51.92
Has Storm Protector	1	-1.17	-50.89	48.88
Basement Area	1	1.45	-50.22	54.90
Attic Area	1	0.85	-52.09	48.73

	Inc_Prob	50%	5%	95%
Garage Area	1	-0.08	-53.91	55.95
Has Storage Room	1	2.25	-52.82	52.03
Has Guest Room	1	-0.99	-52.83	49.99
City Part Range	1	-0.53	-51.09	53.01

Model 2 (Using features that have strong correlation with the target variable based on the frequentist linear regression model)

Build frequentist linear regression model

```
price.lm <- lm(price ~ X, data = df)</pre>
summary(price.lm)
##
## Call:
## lm(formula = price ~ X, data = df)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -6988.9 -1192.2
                     -3.2 1198.7 7005.6
##
## Coefficients:
##
                       Estimate Std. Error
                                               t value Pr(>|t|)
## (Intercept)
                      4.993e+06 1.898e+01 263030.498 < 2e-16 ***
## XsquareMeters
                      2.877e+06 1.900e+01 151480.243 < 2e-16 ***
## XnumberOfRooms
                      7.257e+00 1.901e+01
                                                0.382 0.702640
## XhasYard
                      1.506e+03 1.899e+01
                                               79.289 < 2e-16 ***
## XhasPool
                      1.489e+03 1.900e+01
                                               78.365 < 2e-16 ***
## Xfloors
                      1.576e+03 1.900e+01
                                               82.943 < 2e-16 ***
                     -2.332e+01 1.899e+01
## XcityCode
                                               -1.228 0.219513
## XnumPrevOwners
                     -1.130e+00 1.901e+01
                                               -0.059 0.952580
## Xmade
                     -2.153e+01 1.899e+01
                                               -1.134 0.256940
## XisNewBuilt
                      7.903e+01 1.900e+01
                                                4.159 3.22e-05 ***
## XhasStormProtector 7.060e+01 1.899e+01
                                                3.718 0.000202 ***
## Xbasement
                     -6.057e+00 1.900e+01
                                               -0.319 0.749846
## Xattic
                     -1.305e+01 1.900e+01
                                               -0.687 0.492064
## Xgarage
                      2.973e+01 1.901e+01
                                                1.563 0.117967
## XhasStorageRoom
                      9.743e+00 1.901e+01
                                                0.512 0.608332
## XhasGuestRoom
                                               -0.939 0.347641
                     -1.785e+01 1.901e+01
## XcityPartRange
                      1.360e+02 1.900e+01
                                                7.162 8.51e-13 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1898 on 9983 degrees of freedom
## Multiple R-squared:
                           1, Adjusted R-squared:
## F-statistic: 1.436e+09 on 16 and 9983 DF, p-value: < 2.2e-16
```

There are 7 variables that have a strong correlation with the variable price (indicated by 3 stars). These seven variables include squareMeters, hasYard, hasPool, floors, cityPartRange, isNewBuilt, and hasStorm-Protector.

Split dependent and independent variable

Using 7 variables that have a strong correlation with the variable price

```
X <- df[, c("squareMeters", "hasYard", "hasPool", "floors", "cityPartRange", "isNewBuilt", "hasStormPro
Y <- df$price
names <- c("price", "Square Meters", "Has Yard", "Has Pool", "Floors", "City Part Range", "Is New Built</pre>
```

Delete Missing Value

```
junk <- is.na(rowSums(X))
Y <- Y[!junk]
X <- X[!junk,]</pre>
```

Standardize Covariates

```
X <- as.matrix(scale(X))</pre>
```

JAGS

Put Data in JAGS Format

```
n <- length(Y)
p <- ncol(X)

data <- list(Y=Y,X=X,n=n,p=p)
params <- c("alpha","beta")
burn <- 500
n.iter <- 2000
n.chains <- 3
thin <- 5</pre>
```

Make Jags Model

```
model_string <- textConnection("model{
    # Likelihood
    for(i in 1:n){
        Y[i] ~ dnorm(alpha+mu[i],taue)
        mu[i] <- inprod(X[i,],beta[])
    }</pre>
```

```
# Priors
for(j in 1:p){
    beta[j] ~ dnorm(0,0.001)
}

alpha ~ dnorm(0,0.001)
taue ~ dgamma(0.1, 0.1)

# WAIC calculations
for(i in 1:n){
    like[i] <- dnorm(Y[i],mu[i],taue)
}
}")</pre>
```

Set Initial Value

```
inits = list()
inits$alpha = rnorm(1)
for(i in 1:p) {
   inits$beta[i] = rnorm(1)
}
inits$taue = 10
```

Compile Model

```
model2 <- jags.model(model_string, data = data, n.chains=n.chains, quiet=TRUE, inits = inits)</pre>
```

Update Model

```
update(model2, burn)
```

Get Posterior Samples from the model

```
samples2 <- coda.samples(model2, variable.names=params, n.iter=n.iter, thin = thin)</pre>
```

Plot MCMC Chain Trace and Features Posterior Density

```
par(mar=c(1,1,1,1))
plot(samples2)
```


Descriptive Statistics of model2

```
summary(samples2)
```

```
##
## Iterations = 505:2500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 400
##
## 1. Empirical mean and standard deviation for each variable,
     plus standard error of the mean:
##
##
##
              Mean
                       SD Naive SE Time-series SE
            0.23135 32.20
                           0.9297
                                           0.9303
## alpha
## beta[1] 0.92347 32.49
                                           0.9375
                            0.9378
## beta[2] 1.61012 32.01
                                           0.9228
                            0.9241
## beta[3] 0.60626 31.57
                            0.9113
                                           0.8673
## beta[4] -0.18475 31.51
                            0.9097
                                           0.9262
## beta[5] -0.07379 31.53
                            0.9103
                                           0.9110
## beta[6] 0.44872 31.80
                           0.9181
                                           0.9185
## beta[7] 0.32309 31.36
                           0.9054
                                           0.9060
##
```

```
## 2. Quantiles for each variable:
##
##
             2.5%
                     25%
                              50%
                                    75% 97.5%
           -61.42 -21.19 0.02346 21.67 62.81
## alpha
## beta[1] -68.17 -20.15 1.89683 22.17 62.71
## beta[2] -59.18 -19.33 0.56575 21.57 67.96
## beta[3] -57.55 -21.50 1.07917 21.09 64.90
## beta[4] -61.80 -21.01 -0.35077 20.29 60.50
## beta[5] -60.01 -21.75  0.08325  20.82  61.43
## beta[6] -57.84 -20.81 -0.72388 21.23 62.17
## beta[7] -61.53 -20.25  0.68807 21.69 59.40
```

Show Alpha and Betas to the corresponding Features

```
sum <- summary(samples2)</pre>
rownames(sum$statistics) <- names</pre>
rownames(sum$quantiles) <- names</pre>
sum$statistics <- round(sum$statistics,3)</pre>
sum$quantiles <- round(sum$quantiles,3)</pre>
sum
##
## Iterations = 505:2500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 400
##
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
                          Mean
                                  SD Naive SE Time-series SE
## price
                         0.231 32.20
                                        0.930
                                                        0.930
## Square Meters
                         0.923 32.49
                                        0.938
                                                        0.938
## Has Yard
                         1.610 32.01
                                        0.924
                                                        0.923
## Has Pool
                        0.606 31.57
                                        0.911
                                                        0.867
## Floors
                        -0.185 31.52
                                        0.910
                                                        0.926
## City Part Range
                        -0.074 31.53
                                        0.910
                                                        0.911
## Is New Built
                         0.449 31.80
                                        0.918
                                                        0.919
## Has Storm Protector 0.323 31.36
                                        0.905
                                                        0.906
## 2. Quantiles for each variable:
##
##
                          2.5%
                                  25%
                                         50%
                                                75% 97.5%
## price
                        -61.42 -21.19 0.023 21.66 62.81
## Square Meters
                       -68.17 -20.15 1.897 22.17 62.71
## Has Yard
                        -59.18 -19.33 0.566 21.57 67.96
## Has Pool
                       -57.55 -21.50 1.079 21.09 64.90
                       -61.80 -21.01 -0.351 20.29 60.50
## Floors
                       -60.01 -21.75 0.083 20.82 61.43
## City Part Range
## Is New Built
                        -57.84 -20.81 -0.724 21.23 62.17
## Has Storm Protector -61.53 -20.25 0.688 21.69 59.40
```

Check Convergence

```
gelman.diag(samples2)
## Potential scale reduction factors:
##
##
          Point est. Upper C.I.
## alpha
              1.000
                          1.00
## beta[1]
              1.007
                          1.03
## beta[2]
             1.008
                         1.03
              1.002
## beta[3]
                          1.01
## beta[4]
              1.002
                          1.01
## beta[5]
             0.999
                         1.00
## beta[6]
             1.002
                         1.01
## beta[7] 0.999
                        1.00
## Multivariate psrf
##
## 1.02
```

Compile results

```
ESS2 <- effectiveSize(samples2)
out2 <- summary(samples2)$quantiles
rownames(out2)<-names

ESS2
## alpha beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7]</pre>
```

1200.000 1200.000 1200.000 1338.351 1161.042 1200.000 1200.000 1200.000

Compute DIC & WAIC

```
# DIC
dic2 <- dic.samples(model2,n.iter=n.iter)

# WAIC
waic2 <- coda.samples(model2, variable.names=c("like"), n.iter=n.iter)
like2 <- waic2[[1]]
fbar2 <- colMeans(like2)
P2 <- sum(apply(log(like2),2,var))
WAIC2 <- -2*sum(log(fbar2))+2*P2</pre>
```

Plot Posterior Density Individually

```
beta <- NULL
for(l in 1:n.chains){
  beta <- rbind(beta,samples2[[1]])
}
colnames(beta) <- names
for(j in 1:8){
  hist(beta[,j],xlab=expression(beta[j]),ylab="Posterior density",
  breaks=100,main=names[j])
}</pre>
```


Square Meters

City Part Range

Is New Built

Has Storm Protector

Model 3 (Same like model 2, but using initial values (alpha and beta coefficients) from the estimation of frequentist linear model)

Split dependent and independent variable

```
X <- df[, c("squareMeters", "hasYard", "hasPool", "floors", "cityPartRange", "isNewBuilt", "hasStormPro
Y <- df$price
names <- c("price", "Square Meters", "Has Yard", "Has Pool", "Floors", "City Part Range", "Is New Built</pre>
```

Delete Missing Value

```
junk <- is.na(rowSums(X))
Y <- Y[!junk]
X <- X[!junk,]</pre>
```

Standardize Covariates

```
X <- as.matrix(scale(X))</pre>
```

JAGS

Put Data in JAGS Format

```
n <- length(Y)
p <- ncol(X)

data <- list(Y=Y,X=X,n=n,p=p)
params <- c("alpha","beta")
burn <- 500
n.iter <- 2000
n.chains <- 3
thin <- 5</pre>
```

Make Jags Model

```
model_string <- textConnection("model{
    # Likelihood
    for(i in 1:n){
        Y[i] ~ dnorm(alpha+mu[i],taue)
        mu[i] <- inprod(X[i,],beta[])
}

# Priors
    for(j in 1:p){
        beta[j] ~ dnorm(0,0.001)
}

alpha ~ dnorm(0,0.001)
    taue ~ dgamma(0.1, 0.1)

# WAIC calculations
    for(i in 1:n){
        like[i] <- dnorm(Y[i],mu[i],taue)
}
</pre>
```

Frequentist Linear Regression

```
price.lm2 <- lm(price ~ X, data = df)
summary(price.lm2)</pre>
```

```
##
## Call:
## lm(formula = price ~ X, data = df)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -6976.4 -1193.3
                      -5.9 1201.2 6968.3
##
## Coefficients:
##
                      Estimate Std. Error
                                             t value Pr(>|t|)
## (Intercept)
                      4.993e+06 1.898e+01 2.631e+05 < 2e-16 ***
## XsquareMeters
                      2.877e+06 1.899e+01 1.516e+05 < 2e-16 ***
## XhasYard
                      1.506e+03 1.899e+01 7.930e+01 < 2e-16 ***
## XhasPool
                      1.489e+03 1.899e+01 7.841e+01 < 2e-16 ***
## Xfloors
                      1.576e+03 1.898e+01 8.303e+01 < 2e-16 ***
## XcityPartRange
                      1.355e+02 1.899e+01 7.135e+00 1.04e-12 ***
## XisNewBuilt
                      7.868e+01 1.899e+01 4.144e+00 3.43e-05 ***
## XhasStormProtector 7.105e+01 1.899e+01 3.742e+00 0.000183 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1898 on 9992 degrees of freedom
                            1, Adjusted R-squared:
## Multiple R-squared:
## F-statistic: 3.282e+09 on 7 and 9992 DF, p-value: < 2.2e-16
Linear regression model: Yi = 4993000 + 2877000 * squareMeters + 1506 * hasYard + 1489 * hasPool +
1576 * floors + 135.5 * cityPartRange + 78.68 * isNewBuilt + 71.05 * hasStormProtector
```

Set Initial Value

We use the estimation alpha and betas from Frequentist Linear Regression Model

```
inits = list()

inits$alpha = 4993000
inits$beta[1] = 2877000
inits$beta[2] = 1506
inits$beta[3] = 1489
inits$beta[4] = 1576
inits$beta[5] = 135.5
inits$beta[6] = 78.68
inits$beta[7] = 71.05
inits$taue = 10
```

Compile Model

```
model3 <- jags.model(model_string, data = data, n.chains=n.chains, quiet=TRUE, inits = inits)</pre>
```

Update Model

```
update(model3, burn)
```

Get Posterior Samples from the model

```
samples3 <- coda.samples(model3, variable.names=params, n.iter=n.iter, thin=thin)</pre>
```

Plot MCMC Chain Trace and Features Posterior Density

```
par(mar=c(1,1,1,1))
plot(samples3)
```


Descriptive Statistics of model 3

```
summary(samples3)
```

```
##
## Iterations = 505:2500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 400
##
## 1. Empirical mean and standard deviation for each variable,
     plus standard error of the mean:
##
##
##
               Mean
                       SD Naive SE Time-series SE
            1.22899 31.44
                            0.9077
                                           0.9086
## alpha
## beta[1] 2.29544 31.77
                                           0.8927
                            0.9172
## beta[2] 0.19762 30.60
                            0.8833
                                           0.8840
## beta[3] 0.77166 32.96
                            0.9515
                                           0.9280
## beta[4] 0.05361 32.10
                            0.9266
                                           0.8893
## beta[5] -0.59112 31.12
                            0.8983
                                           0.8730
                                           0.8592
## beta[6] -0.54344 30.89
                            0.8916
## beta[7] -0.26234 31.18
                            0.9000
                                           0.8367
##
```

```
## 2. Quantiles for each variable:
##
##
             2.5%
                     25%
                             50%
                                   75% 97.5%
           -58.37 -21.22
                         0.7081 22.85 62.84
## alpha
## beta[1] -60.26 -19.72
                         2.2413 23.55 65.54
## beta[2] -61.12 -20.05 0.6380 20.82 57.49
## beta[3] -65.04 -21.10 1.0293 22.73 66.52
## beta[4] -64.37 -21.01 -0.9178 20.64 63.50
## beta[5] -59.81 -21.62 1.0063 19.64 61.29
## beta[6] -62.92 -21.34 -0.1015 18.76 60.65
## beta[7] -60.82 -20.83 1.5131 20.19 60.37
```

Show Alpha and Betas to the corresponding Features

```
sum <- summary(samples3)</pre>
rownames(sum$statistics) <- names</pre>
rownames(sum$quantiles) <- names</pre>
sum$statistics <- round(sum$statistics,3)</pre>
sum$quantiles <- round(sum$quantiles,3)</pre>
sum
##
## Iterations = 505:2500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 400
##
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
                          Mean
                                  SD Naive SE Time-series SE
## price
                         1.229 31.44
                                        0.908
                                                        0.909
## Square Meters
                         2.295 31.77
                                        0.917
                                                        0.893
## Has Yard
                         0.198 30.60
                                        0.883
                                                        0.884
## Has Pool
                         0.772 32.96
                                        0.951
                                                        0.928
## Floors
                         0.054 32.10
                                        0.927
                                                        0.889
## City Part Range
                        -0.591 31.12
                                        0.898
                                                        0.873
## Is New Built
                        -0.543 30.89
                                        0.892
                                                        0.859
## Has Storm Protector -0.262 31.18
                                        0.900
                                                        0.837
## 2. Quantiles for each variable:
##
##
                          2.5%
                                         50%
                                                75% 97.5%
                                  25%
## price
                        -58.37 -21.22 0.708 22.85 62.84
## Square Meters
                       -60.26 -19.72 2.241 23.55 65.54
## Has Yard
                        -61.12 -20.05 0.638 20.82 57.49
## Has Pool
                       -65.04 -21.10 1.029 22.73 66.52
                       -64.37 -21.01 -0.918 20.64 63.50
## Floors
                       -59.81 -21.62 1.006 19.64 61.29
## City Part Range
## Is New Built
                        -62.92 -21.34 -0.102 18.76 60.65
## Has Storm Protector -60.82 -20.83 1.513 20.19 60.37
```

Check Convergence

```
gelman.diag(samples3)
## Potential scale reduction factors:
##
##
          Point est. Upper C.I.
## alpha
               0.998
                         0.999
## beta[1]
               1.002
                         1.009
## beta[2]
             1.001
                         1.002
              1.001
## beta[3]
                         1.007
## beta[4]
          1.001 1.007
1.002 1.011
              1.001
                         1.007
## beta[5]
## beta[6]
             1.003
                        1.016
## beta[7] 0.999
                         0.999
## Multivariate psrf
##
## 1.01
```

Compile results

```
ESS3 <- effectiveSize(samples3)
out3 <- summary(samples3)$quantiles
rownames(out3)<-names

ESS3

## alpha beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7]</pre>
```

1213.985 1267.530 1200.000 1264.617 1325.921 1279.350 1302.553 1425.877

Compute DIC & WAIC

```
# DIC
dic3 <- dic.samples(model3,n.iter=n.iter)

# WAIC
waic3 <- coda.samples(model3, variable.names=c("like"), n.iter=n.iter)
like3 <- waic3[[1]]
fbar3 <- colMeans(like3)
P3 <- sum(apply(log(like3),2,var))
WAIC3 <- -2*sum(log(fbar3))+2*P3</pre>
```

Plot Posterior Density Individually

```
beta <- NULL
for(1 in 1:n.chains){
  beta <- rbind(beta,samples3[[1]])
}
colnames(beta) <- names
for(j in 1:8){
  hist(beta[,j],xlab=expression(beta[j]),ylab="Posterior density",
  breaks=100,main=names[j])
}</pre>
```


Square Meters

City Part Range

Is New Built

Has Storm Protector

Model 4

Set Dataframe as matrix and split dependent and independent variable

```
price <- as.matrix(df$price)
Y <- price
X <- cbind(df$squareMeters, df$numberOfRooms, df$hasYard, df$hasPool, df$floors, df$cityCode, df$numPre
names <- c("price", "Square Meters", "Number of Rooms", "Has Yard", "Has Pool", "Number of Floors", "Cit</pre>
```

Delete Missing Value

```
junk <- is.na(rowSums(X))
Y <- Y[!junk]
X <- X[!junk,]</pre>
```

Standardize Covariates

```
X <- as.matrix(scale(X))</pre>
```

JAGS

Put Data in JAGS Format

```
n <- length(Y)
p <- ncol(X)

data <- list(Y=Y,X=X,n=n,p=p)
params <- c("alpha","beta")
burn <- 500
n.iter <- 5000
n.chains <- 3
thin <- 5</pre>
```

Make Jags Model

```
model_string <- textConnection("model{</pre>
  # Likelihood
 for(i in 1:n){
   Y[i] ~ dnorm(alpha+mu[i],taue)
    mu[i] <- theta[i] + inprod(X[i,],beta[])</pre>
  # Random Effects
 for(j in 1:n){
   theta[j] ~ ddexp(0,taue)
  # Priors
  for(j in 1:p){
   beta[j] ~ dnorm(0,0.001)
  alpha ~ dnorm(0,0.001)
  taue ~ dgamma(0.1, 0.1)
  # WAIC calculations
  for(i in 1:n){
    like[i] <- dnorm(Y[i],mu[i],taue)</pre>
}")
```

Set Initial Value

```
inits = list()
inits$alpha = rnorm(1)
for(i in 1:p) {
```

```
inits$beta[i] = rnorm(1)
}
for(i in 1:n) {
   inits$theta[i] = rnorm(1)
}
inits$taue = 10
```

Compile Model

```
model4 <- jags.model(model_string, data = data, n.chains=n.chains, quiet=TRUE, inits = inits)</pre>
```

Update Model

```
update(model4, burn)
```

Get Posterior Samples from the model

```
samples4 <- coda.samples(model4, variable.names=params, n.iter=n.iter, thin=thin)</pre>
```

Plot MCMC Chain Trace and Features Posterior Density

```
par(mar=c(1,1,1,1))
plot(samples4)
```


Show Alpha and Betas to the corresponding Features

```
sum <- summary(samples4)</pre>
rownames(sum$statistics) <- names</pre>
rownames(sum$quantiles) <- names</pre>
sum$statistics <- round(sum$statistics,3)</pre>
sum$quantiles <- round(sum$quantiles,3)</pre>
sum
##
## Iterations = 1505:6500
## Thinning interval = 5
## Number of chains = 3
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
                                         SD Naive SE Time-series SE
##
                                Mean
## price
                                2.301 31.18
                                             0.569
                                                               0.647
## Square Meters
                              -0.081 31.62
                                               0.577
                                                               0.679
## Number of Rooms
                              -0.296 31.21
                                               0.570
                                                               0.633
## Has Yard
                                               0.577
                                                               0.607
                               0.100 31.62
```

```
## Has Pool
                             -0.443 31.62
                                             0.577
                                                             0.678
## Number of Floors
                              0.081 31.89
                                             0.582
                                                             0.649
## City Code
                              0.294 31.76
                                             0.580
                                                             0.680
## Number of Previous Owners -0.153 30.92
                                             0.565
                                                             0.698
## Year Made
                              0.473 31.86
                                             0.582
                                                             0.651
## is Newly Built
                              1.001 30.72
                                             0.561
                                                             0.609
## Has Storm Protector
                             -0.711 31.36
                                             0.572
                                                             0.643
## Basement Area
                              0.610 32.28
                                             0.589
                                                             0.686
## Attic Area
                              0.095 31.15
                                             0.569
                                                             0.683
## Garage Area
                             0.382 31.78
                                             0.580
                                                             0.652
## Has Storage Room
                             -1.187 30.53
                                             0.557
                                                             0.635
## Has Guest Room
                             -0.634 31.98
                                             0.584
                                                             0.657
## City Part Range
                             -0.432 31.78
                                             0.580
                                                             0.668
##
## 2. Quantiles for each variable:
##
##
                                       25%
                                              50%
                                                    75% 97.5%
                               2.5%
## price
                             -59.02 -18.32 2.424 23.65 62.95
## Square Meters
                             -61.00 -21.54 -0.234 20.57 63.26
## Number of Rooms
                             -60.50 -21.33 -0.456 20.94 58.76
                             -61.69 -21.39 0.141 21.91 61.03
## Has Yard
## Has Pool
                             -63.95 -20.23 -0.380 20.42 62.02
## Number of Floors
                             -62.81 -21.43 0.112 20.90 63.18
                             -64.86 -20.66 -0.164 22.14 62.36
## City Code
## Number of Previous Owners -61.23 -20.79 -0.373 20.73 63.09
                            -61.39 -20.81 1.024 21.64 63.30
## Year Made
## is Newly Built
                             -57.21 -20.38 0.906 21.54 60.80
                             -60.77 -21.79 -0.556 20.56 60.84
## Has Storm Protector
## Basement Area
                             -62.55 -20.70 1.014 22.27 64.14
## Attic Area
                             -60.13 -21.19 0.569 21.08 59.22
## Garage Area
                             -62.14 -21.12 0.696 22.25 64.13
## Has Storage Room
                             -62.52 -21.95 -1.237 19.36 59.07
## Has Guest Room
                             -61.36 -22.13 -0.376 20.90 60.53
## City Part Range
                             -61.24 -21.51 -0.159 20.80 62.81
```

Check Convergence

gelman.diag(samples4)

```
## Potential scale reduction factors:
##
##
             Point est. Upper C.I.
## alpha
                      1
                               1.01
## beta[1]
                               1.00
                      1
## beta[2]
                      1
                               1.00
## beta[3]
                               1.00
                      1
## beta[4]
                               1.00
                      1
## beta[5]
                               1.00
                      1
## beta[6]
                      1
                               1.00
## beta[7]
                      1
                               1.01
## beta[8]
                      1
                               1.01
                               1.01
## beta[9]
                      1
```

```
## beta[10]
           1 1.00
## beta[11]
                1
                       1.00
                      1.00
## beta[12]
               1
## beta[13]
               1
                      1.00
## beta[14]
                1
                      1.00
## beta[15]
               1
                      1.02
## beta[16]
                      1.00
## Multivariate psrf
##
## 1.01
```

Compile results

```
ESS2 <- effectiveSize(samples4)
out2 <- summary(samples4)$quantiles
rownames(out2)<-names

ESS2

## alpha beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7]
## 2317.755 2196.744 2434.245 2827.537 2194.905 2428.948 2192.781 1966.371
## beta[8] beta[9] beta[10] beta[11] beta[12] beta[13] beta[14] beta[15]
## 2453.230 2549.585 2379.390 2219.239 2098.781 2377.606 2334.667 2376.514
## beta[16]
## 2262.405
```

Compute DIC & WAIC

```
# DIC
dic4 <- dic.samples(model4,n.iter=n.iter)

# WAIC
waic4 <- coda.samples(model4, variable.names=c("like"), n.iter=n.iter)
like4 <- waic4[[1]]
fbar4 <- colMeans(like4)
P4 <- sum(apply(log(like4),2,var))
WAIC4 <- -2*sum(log(fbar4))+2*P4</pre>
```

DIC and WAIC comparison

```
print("DIC Model 1:")
## [1] "DIC Model 1:"
```

```
print(dic1)
## Mean deviance: 339719
## penalty 1.036
## Penalized deviance: 339721
print("DIC Model 2:")
## [1] "DIC Model 2:"
print(dic2)
## Mean deviance: 339719
## penalty 0.9815
## Penalized deviance: 339720
print("DIC Model 3:")
## [1] "DIC Model 3:"
print(dic3)
## Mean deviance: 339719
## penalty 0.9966
## Penalized deviance: 339720
print("DIC Model 4:")
## [1] "DIC Model 4:"
print(dic4)
## Mean deviance: 182610
## penalty 10000
## Penalized deviance: 192610
print("WAIC Model 1:")
## [1] "WAIC Model 1:"
print(WAIC1)
## [1] 339719.8
```

```
print("WAIC Model 2:")

## [1] "WAIC Model 2:"

print(WAIC2)

## [1] 339719.9

print("WAIC Model 3:")

## [1] "WAIC Model 3:"

print(WAIC3)

## [1] 339719.9

print("WAIC Model 4:")

## [1] "WAIC Model 4:"

print(WAIC4)
```