Вербицкий — задачи

1 Вербицкий — функциональный анализ

1. 1.1. Конечная группа G свободно действует на хаусдорфовом многообразии M. Тогда фактор M/G — многообразие. Надо проверить, что у каждой точки в M/G есть окрестность, гомеоморфная \mathbb{R}^n . Возьмём некоторую точку $y \in M/G$. Пусть её прообразы при факторотображении

$$y_1, \ldots, y_m, m = |G|, y_i \in M, G = \{g_1, \ldots, g_m\}.$$

У точки y_1 выберем окрестность U_1 так, чтобы

$$\forall i \neq j \ g_i U_1 \cap g_i U_1 = \emptyset.$$

Почему такую окрестность можно выбрать? Потому что пространство M хаусдорфово, мы у каждой точки $g_iy_1, i=1,2,\ldots,m$, выберем окрестность W_i , так, что

$$W_i \cap W_j = \emptyset, i \neq j.$$

Тогда искомая окрестность U_1 точки y_1 есть

$$U_1 = \bigcap_{i=1}^m g_i^{-1} W_i.$$

Теперь выберем окрестность V_1 точки y_1 , гомеоморную \mathbb{R}^n , так, что её замыкание лежит в U_1 :

$$\overline{V_1} \subseteq U_1$$
.

Тогда g_iV_1 — окрестности, гомеоморфные \mathbb{R}^n , и их замыкания попарно не пересекаются. Тогда образ gV_1 при факторотображении и есть искомая окрестность $y \in M/G$.

- 1.2.
- 2. 2.1.

2 Вербицкий — теория меры

- 1.
- 2.

3.

- 4. 4.1.
 - 4.2.
 - 4.3.
 - 4.4.
 - 4.5.
 - 4.6.
 - 4.7.
 - 4.8.