MLOps

Tema 1

Introducción a MLOps

Una científica de datos predice las ventas diarias de un comercio usando el histórico de ventas

Workflow local de ML

Notebook único

Sin control de versiones

ML code

Actualizaciones manuales

Sin colaboración ni escalabilidad

Un grupo de ingenier@s despliega el predictor de ventas para ajustar automáticamente la página del comercio

ML en producción: realidad

- 1. Elegir una métrica para optimizar
- 2. Recopilar datos
- 3. Entrenar el modelo
- 4. Darse cuenta de que muchas etiquetas están mal → volver a etiquetar los datos
- 5. Entrenar el modelo
- 6. El modelo tiene un mal desempeño en una clase → recopilar más datos para esa clase
- 7. Entrenar el modelo
- 8. El modelo tiene un mal desempeño en los datos más recientes → recopilar datos más recientes
- 9. Entrenar el modelo
- 10. Desplegar el modelo
- 11. Soñar con \$\$\$
- 12. Despertarse porque el modelo muestra sesgo contra un grupo → revertir a la versión anterior
- 13. Conseguir más datos, entrenar más, hacer más pruebas
- 14. Desplegar el modelo

15. Rezar

- 16. El modelo funciona bien pero los ingresos están disminuyendo
- 17. Llorar
- 18. Elegir una métrica diferente
- 19. Empezar de nuevo

Más allá del notebook

Retos

- Despliegue masivo de modelos en línea que deben funcionar correctamente sin intervención humana
 - Muchas dependencias
 - Diferentes lenguajes y equipos
 - Data scientists no son Software Engineers
- Los sistemas ML son muy complejos:
 - Más automatización e infraestructura
 - Para tener menos conocimiento e ingeniería

Retos

SOFTWARE 1.0 - WRITE CODE

SOFTWARE 2.0 - TRAIN MODELS

Surgimiento de MLOps

MLOps

Automatización del ciclo de vida de los modelos de ML en producción

Machine Learning + Operaciones

Machine Learning + Operaciones

ML

MLOps: Herramientas

MLOps Workflows

Diferentes niveles de automatización

(reflejan la velocidad de entrenar nuevos modelos por tener nuevos datos o implementaciones)

MLOps Manual

MLOps Automatizado con CI/CD

MLOps Automatizado con CI/CD

Buenas prácticas MLOps

- Versionado de experimentos y datasets
- Entender cuando modelos reentrenados son mejores que versions anteriores
- Lanzar a producción los mejores modelos
- Monitorear periódicamente el rendimiento del modelo para evitar su degradado en producción

Infraestructura para MLOps

Necesidades de infraestructura

- Depende del número y sofistificación de las apps
- El despliegue de MLOps es complejo
 - Los costes deben ser inferiores a los beneficios

Infraestructura para MLOps

Development environment e.g., IDE, Git, CI/CD

ML platform e.g., model store, monitoring

Resource management e.g., workflow orchestrator

Storage and compute layer e.g., AWS EC2/S3, GCP, Snowflake

More important to data scientists

More commoditized

1) Entorno de desarrollo

- ▶ IDE, versionado y CI/CD
- Estandarización del entorno
 - Entornos virtuales (conda, virtualenv, etc.)
 - requirements.txt
 - AWS Cloud, Amazon SageMakerStudio, GitHub Spaces...
- Desde desarrollo (dev) hasta producción (prod)
 - ¿Como recrear las condiciones de ambos entornos?
 - Contenedores (docker) para ejecutar en cualquier hardware

2) Plataformas ML

Existen muchísimas soluciones...

Weight & Biases

- Despliegue de modelos
- Almacenado de modelos
- Almacenado de features
- Monitorización
- **Etc.**

3) Manejo de recursos

- Manejo de las etapas de ciencia de datos
- Repetitividad y dependencias
 - Cron, Schedulers and Orchestrators

4) Almacenamiento y computación Máster

Almacenamiento

- Local: disco duro o PCs
- Remoto: On-premise en datacenter privado
- Servicios cloud: Amazon S3, Snowflake...

Computación

- Local: CPU
- Remoto: Servidor privado con GPUs
- Servicios cloud: AWS EC2, GCP...

4) Almacenamiento y computación

Referencias

- Huyen, C. (2022). Designing machine learning systems.
 O'Reilly Media, Inc.
- Treveil, M., Omont, N., Stenac, C., Lefevre, K., Phan, D.,
 Zentici, J., ... & Heidmann, L. (2020). *Introducing MLOps*.
 O'Reilly Media.
- Google (2024). MLOps: Continuous delivery and automation pipelines in machine learning.
- ▶ Stanford, CS 329S (2022). *Machine Learning Systems Design*.