Next-to-Leading Order QCD Corrections to Inclusive Heavy-Flavor Production in Polarized Deep-Inelastic Scattering

Felix Hekhorn

Institute for Theoretical Physics, University of Tübingen

February 14, 2018

Outline

- 1 Introduction
- 2 Computation Review
- 3 Partonic Results
- 4 Hadronic Results
- 5 Outlook

Introduction - Heavy Quarks

HQ are good

Introduction - Experimental Setups

e ⁻ -e ⁺ -annihilation (SIA)	deep inelastic scattering (DIS)	Drell-Yan process (DY)
$e^- + e^+ ightarrow \overline{Q} + X[Q]$	$\ell + h \to \overline{Q} + X[Q]$	$h+h' o \overline{Q} + X[Q]$
	$\begin{array}{c c} \ell & & \\ \hline & \gamma^* & \\ \hline Q & & \\ \hline & Q & \\ \hline & & Q & \\ \hline & & Q & \\ \hline & & & Q & \\ \hline & & & &$	$\begin{array}{c c} h & & \\ \hline Q & & \\ h' & & \\ \end{array}$
LEP, ILC	HERA, COMPASS, EIC	Tevatron, LHC
gluon	factorization	top, Higgs

Introduction - Structure Functions

cross section:
$$\frac{d^2\sigma}{dxdy} = \frac{2\pi y\alpha^2}{Q^4} L^{\mu\nu} W_{\mu\nu} \tag{1}$$

hard. tensor:

$$W_{\mu\nu} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) F_1(x, Q^2) + \frac{P_{\mu}P_{\nu}}{P \cdot q} F_2(x, Q^2) + i\epsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}S^{\beta}}{P \cdot q} g_1(x, Q^2)$$

$$(2)$$

$$F_L(x, Q^2) = F_2(x, Q^2) - 2xF_1(x, Q^2)$$
 (3)

$$\frac{d^2\sigma}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2} \left(Y_+ F_2(x, Q^2) - y^2 F_L(x, Q^2) \right)$$
 (4)

$$\frac{d^2\Delta\sigma}{dxdy} = \frac{4\pi\alpha^2}{xyQ^2}Y_- \cdot 2xg_1(x, Q^2)$$
 (5)

$$Y_{\pm} = 1 \pm (1 - y)^2 \tag{6}$$

Computation Review

- use factorisation theorem: $s \to \xi S_h + \mathsf{PDF}$
- three massive particles: $2 \cdot m^2 > 0, q^2 = -Q^2 < 0$
- lacktriangle compute 2-to-3-phase space: $dPS_3 \sim dt_1 ds_4 d\theta_1 d\theta_2$

- eompate diagrams.
- $\Rightarrow 2xg_1(x) \sim e_L^2 \cdot \xi \Delta f_u(\xi) \otimes d_{P,q}^{(1)}(\chi,\chi')$
- $d_{P,q}^{(1)}(\chi,\chi') = c_1(\chi,\chi')\ln(\chi) + c_2(\chi,\chi')\operatorname{Li}_2\left(\frac{1+\chi'}{1+\chi}\right) + \dots \checkmark$

Computation Review - Collinear Poles

- lacktriangleright remove by mass factorization $ightarrow \overline{\mathsf{MS}}_m$
- $\Rightarrow 2xg_1(x) \sim e_H^2 \cdot \xi \Delta g(\xi) \otimes \ln(\mu_F^2/m^2) \bar{c}_{P,g}^{F,(1)}(\chi,\chi_q)$
- $\bar{c}_{P,g}^{F,(1)}(\chi,\chi_q) = c_1(\chi,\chi_q) \ln(\chi) + c_2(\chi,\chi_q) \operatorname{Li}_2\left(\frac{1-\chi_q}{1+\chi}\right) + \dots \left(\sqrt{\operatorname{for}} Q^2 \gg m^2\right)$

Computation Review - Virtual and Soft Poles

virtual diagrams are

FiXme Error: insert diagrams

soft poles appear in the limit of a soft gluon $k_2 o 0$

FiXme Error: insert diagrams

soft + virtual + renormalisation is finite!

Partonic Results

cg, cq, dq

Hadronic Results

ALL g1

Outlook

fully diff, NC, NC fully diff