Generalizing to New Physical Systems via Context-Informed Dynamics Model

Matthieu Kirchmeyer*^{1,2}, Yuan Yin*¹, Jérémie Donà¹, Nicolas Baskiotis¹, Alain Rakotomamoniy^{2,3}, Patrick Gallinari^{1,2} *Equal Contribution ¹Sorbonne Université, ISIR, MLIA ²Criteo AI Lab ³Université de Rouen, LITIS {matthieu.kirchmeyer,yuan.yin}@sorbonne-universite.fr

MOTIVATION

- Neural dynamics models are successful but generalize poorly out-of-distribution.
- Limitation if applied to real-world problems e.g.
- disease diffusion prediction in new countries
- heart dynamics modelling for new patients
- weather prediction for new spatial regions
- CoDA: first principled solution to this problem

PROBLEM SETTING

We consider systems described by a differential eq.: $\mathrm{d}x(t)/\mathrm{d}t = f(x(t))$

- x(t) is the state at t
- f unknown dynamics describing the evolution of x
- defined by context e.g. parameters, forcing
- defines trajectories: $x(t) = x_0 + \int_0^t f(x(\tau)) d\tau$

We learn a neural dynamics model g_{θ} across contexts.

- We leverage several different environments:
- environment $e \in \mathcal{E} \Leftrightarrow \mathsf{physical}$ context
- trajectories \mathcal{D}^e of corresponding dynamics f^e
- Training: environments $\mathcal{E}_{\mathrm{tr}}$ with reasonable data
- Adaptation: environments $\mathcal{E}_{\mathrm{ad}}$ with *scarce* data
- Task: generalize to new trajectories of $\mathcal{E}_{\mathrm{ad}}$

CODA FRAMEWORK

ADAPTATION RULE

 $\forall e, \theta^e \triangleq \theta^c + \delta \theta^e, \ \theta^c$ shared; $\delta \theta^e$ env. specific

LOCALITY

$$\min_{\theta^c, \{\delta\theta^e\}} \sum_{e \in \mathcal{E}} \lVert \delta\theta^e \rVert^2 \text{ s.t. } \forall t \ \frac{\mathrm{d} x^e(t)}{\mathrm{d} t} = g_{\theta^c + \delta\theta^e}(x^e(t))$$

- Fast adaptation by constraining θ^c
- Hypothesis space constrained around θ^c

LOW-RANK ADAPTATION VIA HYPERNETWORK

$$\forall e, \theta^e \triangleq \theta^c + W\xi^e \quad (\delta\theta^e \triangleq W\xi^e)$$

Smaller adaptation space ($d_{\xi} \ll d_{\theta}$)

THEORETICAL MOTIVATION

Proposition 1 (Low-rank gradients). For linearly parameterized dynamics with d_p parameters, $\forall heta^c \in \mathbb{R}^{d_{ heta}}$, $\dim(\operatorname{Span}(\{\nabla_{\theta}\mathcal{L}(\theta^c, \mathcal{D}^e)\}_{e \in \mathcal{E}})) \leq d_p \ll d_{\theta}.$

VISUALIZATION

Context-Informed Dynamics Adaptation (CoDA)

CoDA's loss landscape projected onto $Span(W_1, W_2)$

ERM's loss projected onto top 2 SVD directions

- Smooth loss with a single minimum across ${\mathcal E}$
- Proximity of local loss optimas to θ^c
- Low minimal loss of optimas of CoDA w.r.t. ERM

CONSTRAINED OPTIMIZATION

$$\begin{aligned} & \text{Training:} \min_{\theta^c, W, \{\xi^e\}_{\mathcal{E}_{\mathrm{tr}}}} \sum_{e \in \mathcal{E}_{\mathrm{tr}}} \mathcal{L}(\theta^c + W\xi^e, \mathcal{D}^e) + \|W\xi^e\|^2 \end{aligned}$$

Adaptation: $\min_{\{\xi^e\}_{\mathcal{E}_{ad}}} \sum_{e \in \mathcal{E}_{ad}} \mathcal{L}(\theta^c + W\xi^e, \mathcal{D}^e) + \|W\xi^e\|^2$

- $\mathcal{L}(\theta, \mathcal{D}^e) = \sum_{i=1}^{N_{tr}} \sum_{t_k} \| (x^{e,i} \tilde{x}^{e,i})(t_k) \|_2^2$ $\tilde{x}^{e,i}(t_k) = x^{e,i}(t_{k-1}) + \int_{t_{k-1}}^{t_k} g_{\theta}(\tilde{x}^{e,i}(\tau)) d\tau$
- $||W\xi^e||^2 \rightarrow \lambda_{\xi}||\xi^e||_2^2 + \lambda_{\Omega}\Omega(W)$

$$\ell_2$$
: $\Omega(W) = ||W||_2$ ℓ_1 : $\Omega(W) = \sum_{i=1}^{d_\theta} ||W_{i,\cdot}||_2$

EXPERIMENTAL SETTING

- ODE: Lotka-Volterra (LV), Glycolitic Oscillator (G0)
- PDE: Gray-Scott (GS), Navier-Stokes (NS)
- d_p parameters vary between physical systems
- Various architecture for dynamics model g_{θ} $ODE \rightarrow MLP \quad PDE \rightarrow ConvNet, FNO$

RESULTS

Evaluation on new test trajectories: In-Domain ($\mathcal{E}_{\mathrm{tr}}$) and 1-shot Adaptation ($\mathcal{E}_{\mathrm{ad}}$, $N_{ad}=1$)

Test MSE (↓)	$LV (\times 10^{-5})$		$GO(\times 10^{-4})$		$GS(\times 10^{-3})$		$NS (\times 10^{-4})$	
	In-Domain	Adaptation	In-Domain	Adaptation	In-Domain	Adaptation	In-Domain	Adaptation
MAML	60.3±1.3	3150±940	57.3±2.1	1081±62	3.67±0.53	2.25±0.39	68.0±8.0	51.1±4.0
LEADS	3.70±0.27	47.61±12.47	31.4±3.3	113.8±41.5	2.90±0.76	1.36±0.43	14.00±1.55	28.60±7.23
CAVIA-FiLM	4.38±1.15	8.41±3.20	4.44±1.46	3.87±1.28	2.81±1.15	1.43±1.07	23.2±12.1	22.60±9.88
CAVIA-Concat	2.43±0.66	6.26±0.77	5.09±0.35	2.37±0.23	2.67±0.48	1.62±0.85	25.50±6.31	26.00±8.24
CoDA- ℓ_2	1.52±0.08	1.82±0.24	2.45±0.38	1.98±0.06	1.01±0.15	0.77±0.10	9.40±1.13	10.30±1.48
$ extit{CoDA-}\ell_1^-$	1.35±0.22	1.24±0.20	2.20±0.26	1.86±0.29	0.900±0.057	0.74±0.10	8.35±1.71	9.65±1.37

x: prey y: predator Sample efficiency and impact of number of adaptation trajectories N_{ad} on Adaptation MSE (\downarrow) on LV

Test MSE $\times 10^{-5}$	1	5	10
MAML	3150±940	239±16	173±10
LEADS	47.61±12.47	19.89±7.23	19.42±3.52
CoDA- ℓ_1	1.24±0.20	1.21±0.18	1.20±0.17

locality and layer importance for *In-Domain* MSE (\downarrow)

In-Domain	LV ($ imes$	10^{-5})	GO ($ imes10^{-4}$)		
MSE (↓)	W/o ℓ_2	With ℓ_2	W/o ℓ_2	With ℓ_2	
Full	2.28±0.29	1.52±0.08	2.98±0.71	2.45±0.38	
FirstLayer	2.25±0.29	2.41±0.23	2.38±0.71	2.12±0.55	
LastLayer	1.86±0.24	1.27±0.03	28.40±0.60	28.40±0.64	

SYSTEM PARAMETER ESTIMATION

- Learn correspondence between context vectors oxplus and *known* system parameters oxplus on $\mathcal{E}_{\mathrm{t,r}}$
- Apply the correspondence to $\mathcal{E}_{\mathrm{ad}}$ to infer parameters

LV - correspondence (left); estimation MAPE (↓, right)

0.50 0.75 1.00 \leftarrow Estimated $\beta \rightarrow$

NS estimation MAPE (\downarrow)

