Química

Formulario

Contents

Conversiones	2
Peso	2 2 2 2 2
Propiedades intensivas	2
Estequiometría	2
Isótopo	2 2 2
Reacciones	2
Rendimiento	2
Soluciones	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2
Gases	2
Ley de los gases ideales Ecuación de estado Densidad de un gas Volumen molar de un gas (CNTP) Ley de Dalton Ley de Henry	2 2 2 2 3 3
Termodinámica	3
Trabajo y energía Entalpía Calor Cálculos de un sistema Cambio de fases Propiedades coligativas	3 3 3 3 3
Equilibrio químico	3
Ácidos y bases	3

Conversiones

Peso $N_A/L = 6,022 \cdot 10^{23}$ partículas

1 lb = 453,6 g **Gases**

1 kg = 2.2 lb 1 atm = 760 mmHg

1 oz = 28,35 g 1 atm = 101,3 kPa

Longitud 1 atm = 14,696 psi

1 mi = 1,61 km 1 torr = 1 mmHg

1 m = 3,28 ft 1 torr = 133,32 Pa

1 m = 39,4" $1 \text{ bar} = 10^5 \text{ Pa}$

1" = 2,54 cm **Termodinámica**

Unidades de cantidad 1 cal = 4,18 J

1 uma = $1\frac{g}{md}$ 1 atmL = 101,3 J

Propiedades intensivas

m = dV

(s), (l) g/cm³ (g) g/m³

 $^{\circ}$ C = $(F - 32)^{\frac{5}{9}}$

 $F = \frac{9}{5}$ °C + 32

 $K = {}^{\circ}\text{C} + 273,15$

Estequiometría

Isótopo

 $\bar{m} = m_1 A b_1 + \dots + m_n A b_n$

Composición porcentual

 $Mr = \Sigma Ar$

 $\%X = \frac{nAr}{Mr} \cdot 100\%$

Fórmulas químicas

FM = nFE

m = nMr

Reacciones

Rendimiento

 $%r = \frac{\text{real}}{\text{teórico}} \cdot 100\%$

Error porcentual

 $\mathscr{E} = \frac{|V_A - V_E|}{|V_A|} \cdot 100\%$

Soluciones

 $C_1V_1 = C_2V_2$

 $m_{\text{solución}} = m_{soluto} + m_{solvente}$

 $V_{\text{solución}} = V_{soluto} + V_{solvente}$

Molaridad (M)

 $M = \frac{n_{soluto}}{\langle 1 \rangle dm^3}$ solución

Molalidad (η)

 $\eta = \frac{n_{soluto}}{\langle 1 \rangle k g_{solvente}}$

Fracción molar (X)

 $X_A = \frac{n_A}{\langle 1 \rangle n_{
m solución}}$

 $X_B = \frac{n_B}{\langle 1 \rangle n_{\text{solución}}}$

 $X_A + X_B = 1$

Porcentaje en masa $(m_{\%})$

 $m_{\%} = \frac{g_{soluto}}{\langle 100 \rangle g_{solución}} \cdot 100\%$

Porcentaje en volumen $(V_{\%})$

 $V_{\%} = \frac{V_{soluto}}{V_{solución}} \cdot 100\%$

Partes por millón (ppm)

 $m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 10^6$

Gases

 $R = 8,314 \frac{J[Pa \cdot m^3]}{K \cdot mol} R = 0,0821 \frac{atm \cdot L}{K \cdot mol}$

Condiciones normales (CNTP) 1 atm, 0°C Condiciones estándar (TPE) 1 atm, 25°C (T ambiente)

Ley de los gases ideales

PV = nRT

Ecuación de estado

 $\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$

Gay-Lussac Boyle PV ideal TN = $k_{\rm B}$ Charles Avogadro

Densidad de un gas

 $\rho = \frac{MrP}{RT}$

Volumen molar de un gas (CNTP)

 $1mol = 22,7dm^3$

Ley de Dalton

$$P_A = X_A P_T$$

$$P_A = \frac{n_A RT}{V}$$

Ley de Henry

$$C=kP_A$$

$$k = \left[\frac{mol}{atmL}\right]$$

Termodinámica

Trabajo y energía

$$W = -P\Delta V \Leftrightarrow W = -\Delta nRT$$

$$\Delta U = Q + W$$

Entalpía

Entalpía estándar de reacción

$$\Delta H_{\rm rxn}^\circ = \left[c\Delta H_f^\circ(C) + d\Delta H_f^\circ(D)\right] - \left[a\Delta H_f^\circ(A) + b\Delta H_f^\circ(B)\right]$$

 ΔH_f° de elementos puros es igual a 0.

Entalpía de una solución

$$\Delta H_{\text{soln}} = U + \Delta H_{\text{hidratación}}$$

$$\Delta H_{\text{soln}} = 0 \Leftrightarrow \text{solución ideal}$$

Calor

 $Q = mc\Delta T$

C = mc

$$c_{H_2O} = 4,184 \frac{J}{g^{\circ}C}$$

Cálculos de un sistema

 $Q_{sis} = \Sigma Q_{\text{Componentes}}$

Componentes

 $Q_{sis} = 0 \Leftrightarrow \text{ningún calor entra o sale}$

 $Q_{H_2O} = mc\Delta T$

 $Q_{\rm aparato} = C_{\rm aparato} \Delta T$

Reacción a P constante

 $Q_{\rm rxn} = \Delta H$

Reacción a V constante

 $Q_{\rm rxn} = \Delta U$

Cambio de fases

$$\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vav}$$

Propiedades coligativas

puro

solvente

soluto

Factor de Van't Hoff (i) = $\frac{\text{\# partículas productos}}{\text{\# partículas reactivos}}$

Para no electrolitos es igual a uno.

Disminución de presión de vapor

 $P_1 = X_1 P_1^{\circ}$

 $\Delta P = X_2 P_1^{\circ}$

 $\Delta P = P_1^{\circ} - P_1$

Elevación del punto de ebullición

 $\Delta T_h = i k_{h_1} \eta$

 $\Delta T_b = T_{b_2} - T_{b_1}^{\circ}$

Disminución del punto de ebullición

 $\Delta T_f = i k_{f_1} \eta$

 $\Delta T_f = T_{f_1}^{\circ} - T_{f_2}$

 $T_f \propto \frac{1}{n}$

Presión osmótica

 $\pi = iMRT$

Equilibrio químico

Solo se consideran compuestos gaseosos y acuosos.

 $K_c = \frac{[C]_{\text{eq}}^c[D]_{\text{eq}}^d}{[A]_{\text{eq}}^a[B]_{\text{eq}}^b}$

 $Q_c = \frac{[C]_\circ^c[D]_\circ^d}{[A]_\circ^a[B]_\circ^b}$

 $K_P = \frac{P_C^c P_D^d}{P_A^a P_B^b}$

 $K_P = K_c(RT)^{\Delta n}$

 $K_c = K_c' K_c''$

 $n(\operatorname{rxn}) = K_c^n$

rxn se invierte = $\frac{1}{K}$

 $K_c < Q_c$ $K_c \ll 1$ se favorece los reactivos

 $K_c > Q_c$ $K_c \gg 1$ se favorece los productos $K_c = Q_c$ $K_c = 1$ rxn está en equilibrio

Ácidos y bases

pH + pOH = 14

 $[H^+][OH^-] = 10^{-14}$

 $pH = -\log[H^+] = -\log[H_3O^+]$

 $pOH = -\log[OH^{-}]$

%ionización = $\frac{[H^+]}{[HA]} \cdot 100\%$