TP - CAT RISK MODEL

General Set-up of the Practical Work

- The main concepts for creating two important modules for a CAT model are studied in this practical work:
 - Modelling physical risk (hazard modelling): Part 1
 - Modelling vulnerability (vulnerability modelling): Part 2
- **●** We studied here these concepts by analysing hurricane risks in Mexico for a fake insurance company
- We use several datasets:
 - Data from the portfolio of the fake insurance company based in Mexico
 - Fake claims data from 3 historical hurricanes (Odile, Wilma and Patricia)
 - Wind speed footprints from these 3 hurricanes
 - IBTrACS database

General set-up

- Friday 2 December 2022:
 - General presentation
 - Explanation of the practical work
- Work at home
 - Prepare a ppt presentation with the main graphics answering the different questions
 - Send me your R script (or Python if you prefer) and the ppt presentation
- Wednesday 11 January 2023:
 - Correction

R Packages

- Data.frames manipulation
 - → Useful packages: dplyr; magrittr
 - → https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

CONFIDENTIALITY LEVEL

- Rasters and shapefiles
 - → Useful packages: raster; rgdal; sp; geosphere
- Graphical
 - → Packages: *ggplot2*; *leaflet*

RSTUDIO Interface

- Rstudio is an IDE (Integrated Development Environment)
- With Rstudio you can code in R efficiently

List of variables loaded in your

environment

How to create a R project

- In « File » tab, click on « New Project »
- You get the same window that the one on the right
- You can choose « Existing Directory » option
- Choose the path of your working directory
- Click on « Create Project »
- When it is created, your project appears in your directory as a .Rproj file format
- ♦ You can then create a R script (Ctrl + Shift + N) and you can start to code
- When you come back in your working directory, you can open directly your project by clicking on the .Rproj file for resuming your work

Create a R script

- You can create a script by going into « File »
- Then, choose « New File » and « R script »
- You can also create directly a R script with « CTRL + Shift + N »

- You can save the script using « CTRL + S »
- For writing a commentary, you have to start the line by « # »
- This line wont be executed

Few useful commands

- Load a .Rdata file into your environment Using « load » function
 - → df = get(load("filename.Rdata"))
- Know all modalities of a specific variable Using « table » function

For example, you want to know all modalities of COLOR variable in df dataframe:

- → table(df\$COULEUR); you will get Red: 23; Blue: 45; Yellow 13
- Manipulate dataframe Using dplyr
- → df_out = dplyr::inner_join(df1,df2,by="SITE_ID"): join df1 and df2 by keeping all common rows
- → df_out = dplyr::left_join(df1,df2,by="SITE_ID") : join df1 and df2 by keeping all rows from df1
- df_out = dplyr::mutate(df1, MDR = LOSS_AMOUNT/TIV) : create MDR variable which is the ratio between LOSS_AMOUNT and TIV.

TP - PART 1: HAZARD MODELLING

- **IBTrACS: International Best Track Archive for Climate Stewardship**
- **♦** IBTrACS database give many information on tropical systems for all basins
- IBTrACS database is a reference for the topical system community
- You can find the database "ibtracs.ALL.list.hotel1.csv" in the folder 1-TP_HAZARD/INPUTS/
 - This database has 163 columns and 680'892 rows

SID	SEASON	NUMBER =	BASIN	SUBBASIN	NAME	ISO_TIME	NATURE =	LAT	LON	WMO_WIND =	WMO_PRES	WMO_AGENCY =	TRACK_TYPE	DIST2LAND =	LANDFALL
1951037507074	1951	11	SI	MM	NOT_NAMED	1951-02-11 15:00:00	TS	-27.96550	60.9343	NA	NA		main	898	89
1951037507074	1951	11	SI	MM	NOT_NAMED	1951-02-11 18:00:00	TS	-28.40000	60.9000	NA	NA		main	940	94
1951037507074	1951	11	SI	MM	NOT_NAMED	1951-02-11 21:00:00	TS	-28.80710	60.8899	NA	NA		main	981	98
1951037507074	1951	11	SI	MM	NOT_NAMED	1951-02-12 00:00:00	TS	-29.17670	60.8942	NA	NA		main	1020	102
1951037507074	1951	11	SI	MM	NOT_NAMED	1951-02-12 03:00:00	TS	-29.50130	60.8980	NA	NA		main	1049	104
1951037507074	1951	11	SI	MM	NOT_NAMED	1951-02-12 06:00:00	TS	-29.80000	60.9000	NA	NA		main	1077	N
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 01:00:00	NR	-11.00000	99.0000	NA	1002	bom	main	828	82
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 03:00:00	NR	-11.17810	99.0765	NA	NA		main	832	82
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 06:00:00	TS	-11.42990	99.1897	NA	NA		main	836	83
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 09:00:00	TS	-11.68450	99.2661	NA	NA		main	849	84
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 12:00:00	TS	-11.93480	99.3168	NA	NA		main	863	86
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 13:00:00	TS	-12.01460	99.3257	NA	NA		main	870	87
1951038511099	1951	12	SI	WA	NOT_NAMED	1951-02-07 15:00:00	TS	-12.18400	99.3363	NA	NA		main	885	88

TP – PART 1: HAZARD MODELLING

Présentation de la bae de données IBTrACS

- "Best Track" means that available information is the best estimation of the different parameters (eye location, max sustained wind, pressure, ..) with a temporal resolution of 6 hours
- Several agencies (NHC, JMA, IMD, MFLR, NZMS, etc.) are in charge to measure, correct and archive data of tropical systems
- Most important parameters
 - Location (longitude, latitude)
 - Intensity Max sustained wind and minimal pressure
 - Classification (Tropicale, extra-tropical, sub-tropical)
 - Wind radii maximum extent in different direction for different wind speed (34kt, 50kt et 64kt). The unit is nautic miles.
 - Landfall: Yes or No the system went onshore

Illustration de l'extension des vents par quadrants

Wind Radus

30 Notes

3

- Useful information on the dataset is available here "IBTrACS_v04_column_documentation.pdi
- General informations may be found here: https://www.ncdc.noaa.gov/ibtracs/

TP – PARTIE 1: HAZARD MODELLING

- Be careful all agencies do not use the same averaging period for measuring wind speed
- Despite data reanalysis efforts, problems are persisting
- For example, biases exist on the evolution of observation methosd to detect and monitor tropical systems
 - 1851 today: data from cargoes
 - 1950 today: using aircrafts and buoys
 - 1960 today: satellite data
- It is usually recommended to use the most recent period of the database (after 1960 for example)

Table 3 - Wind speed averaging period by agency.

<u> </u>		. •	
1-min wind	2-min wind	3-min wind	10-min wind
US Agencies (NOAA and JTWC)	CMA (China)	IMD (India)	JMA (Japan) BoM (Australia) La Reunion Nadi (Fiji) Wellington (New Zealand)

TP - PARTIE 1: HAZARD MODELLING

Présentation de la base de données IBTrACS

- A few orders of magnitude of uncertainties on the intensity and tracks of tropical systems
 - We notice a strong improvement on intensity forecast on the North Atlantic basin
 - We notice also a decrease in the track uncertainty when the intensity of the system increases

Table 1 - Qualitative uncertainty level for intensity in wind speed (knots). Blank boxes imply the level of uncertainty is too difficult to quantify (and possibly larger than 30 knots).

	and the second s									
Period	SI	NI	SP	WP	EP	NA				
pre1950						±30				
1950-1965				±30		±30				
1965-1973	±30	±30	±30	±20		±20				
1973-1978	±20	±20	±20	±20	±20	±20				
1978-1984	±15	±20	±20	±20	±20	±15				
1984-1987	±15	±20	±15	±10	±20	±10				
1987-1995	±15	±15	±15	±15	±15	±10				
1995-2000	±10	±15	±15	±10	±15	±10				
2000- now	±10	±10	±10	±10	±10	± 7				

Table 2 - Uncertainty of TC position based on TC intensity

Approximate intensity of system	Approximate uncertainty of position
Weak TC (Winds < 60 kt)	~ 30-40 km (and larger before 1980)
Moderate TC (60 kt < Winds < 100 kt)	~ 20-25 km (and larger before 1980)
Strong TC (Winds > 100 kt)	~ 10-15 km (and larger before 1980)

- Exposure data (called "portfolio") contains the list of all sites insured by the company with all characteristics (localisation, structure type, ...).
- The portfolio of an insurance company is a dataset strictly confidential.
- In this exercise, we use a fake portfolio of an insurance company with lots of insured sites in Mexico.
- The accurate analysis of a portfolio may answer to the following questions:
 - What are the different characteristics of the insured sites?
 - Where are located these sites?

- Exposure data (called "portfolio") contains the list of all sites insured by the company with all characteristics (localisation, structure type, ...).
- The portfolio of an insurance company is a dataset strictly confidential.
- In this exercise, we use a fake portfolio of an insurance company with lots of insured sites in Mexico.
- Below, you will find a sample of the portfolio:

SITE_ID	POLICY_ID	OCCUPANCY_TYPE	NUM_STORIES	COUNTRY ‡	CRESTA ‡	POSTCODE	longitude [‡]	latitude ‡	GEOCODING_RESOLUTION	LOB ‡	TIV
POL_00002_S00001	POL_00002	PERMANENT_DWELLING_SINGLE	14	MEX	JAL	48390	-105.23984	20.59518	STREET	RESIDENTIAL	26109.530
POL_00003_S00001	POL_00003	PERMANENT_DWELLING_SINGLE	1	MEX	COA	NA	-100.94000	25.53280	STREET	RESIDENTIAL	47799.508
POL_00004_S00001	POL_00004	PERMANENT_DWELLING_SINGLE	1	MEX	DIF	1280	-99.18700	19.49390	POSTCODE	RESIDENTIAL	23792.900
POL_00005_S00001	POL_00005	PERMANENT_DWELLING_SINGLE	2	MEX	СНР	29200	-92.63035	16.74093	BUILDING	RESIDENTIAL	9889.548
POL_00006_S00001	POL_00006	PERMANENT_DWELLING_SINGLE	1	MEX	JAL	NA	-103.36000	20.70800	POSTCODE	RESIDENTIAL	20401.362
POL_00008_S00001	POL_00008	PERMANENT_DWELLING_SINGLE	1	MEX	SON	NA	-110.91000	27.88040	STREET	RESIDENTIAL	483750.000
POL_00009_S00001	POL_00009	PERMANENT_DWELLING_SINGLE	1	MEX	PUE	NA	-98.22800	19.08650	STREET	RESIDENTIAL	431732.569
POL_00010_S00001	POL_00010	PERMANENT_DWELLING_SINGLE	1	MEX	DIF	NA	-99.06700	19.40990	POSTCODE	RESIDENTIAL	86276.757
POL_00011_S00001	POL_00011	PERMANENT_DWELLING_SINGLE	1	MEX	DIF	NA	-99.14300	19.51560	STREET	RESIDENTIAL	44539.184
POL_00012_S00001	POL_00012	PERMANENT_DWELLING_SINGLE	1	MEX	СНН	NA	-106.14000	28.73850	STREET	RESIDENTIAL	12152.898
POL_00013_S00001	POL_00013	PERMANENT_DWELLING_SINGLE	1	MEX	TAM	NA	-98.22600	26.03510	STREET	RESIDENTIAL	20401.362
POL_00014_S00001	POL_00014	PERMANENT_DWELLING_SINGLE	1	MEX	JAL	NA	-103.36000	20.72880	STREET	RESIDENTIAL	9413.306
POL_00012_S00002	POL_00012	PERMANENT_DWELLING_SINGLE	1	MEX	СНН	NA	-106.12000	28.73760	BUILDING	RESIDENTIAL	9889.548

- We describe below the different variables available in the portfolio.
 - 1. SITE_ID: site indentifier
 - **2. POLICY_ID**: **policy identifier.** Some sites have same policy (ex: commercial centers)
 - 3. OCCUPANCY_TYPE: type of occupancy
 - Hotel, Permanent Dwelling Single; Apart; Retail_Trade; ...
 - 4. « LOB Line Of Business »: business activity
 - commercial, residential, industrial
 - **5.** NUM_STORIES: Number of stories
 - 6. COUNTRY: country where the site is located
 - 7. CRESTA: administrative region
 - ROO: Quintana Roo; BCS: Baja California Sur; ...
 - 8. POSTCODE
 - 9. LONGITUDE
 - 10. LATITUDE
 - 11. GEOCODING_RESOLUTION: resolution of geocoding
 - Geocoding can be done at Cresta, postal code, street or building levels.

- We describe below the different variables available in the portfolio.
 - 12. TIV (Total Insured Value): value in \$ of the insured site
 - 13. DEDUCT (Deductible): Deductible included in the insurance contract
 - 14. STRUCTURE_TYPE
- Financial conditions are the characteristics of insurance contract. These conditions can be very complex. In this exercise, we won't go in details on financial conditions.
- However, for your information, the maximum loss for a specific site is equal to the difference between the insured value (TIV) and the deductible (DEDUCT).

- Geocoded data may give a spatial representation of insured sites.
- In one of the question, you will be asked to create a map like the one below. It shows the localization of all sites contained in the portfolio.

CRESTA

ORESTA are administrative regions. They are shown below.

II - Claims data

- The claims dataset contains all damages suffered by insured sites of the portfolio during historical events.
- Using claims data by insurance company give information on:
 - The reasons of the claims
 - Define insurance premiums based on characteristics of the site
 - Set up prevention measures

Sample of the claims data

SITE_ID: identifier of the site EVENT: name of the event

LOSS_AMOUNT : loss amount in \$

IF_CLAIM equals to 1, it means it is a claim data

(useful for jointure)

SITE_ID =	EVENT	LOSS_AMOUNT	IF_CLAIM =
POL_22775_S00001	WILMA	8.006172e+04	1
POL_22876_S00001	WILMA	1.476115e+04	1
POL_23021_S00001	WILMA	3.229228e+04	1
POL_23550_S00001	WILMA	2.045144e+05	1
POL_23580_S00001	WILMA	7.367268e+05	1
POL_00314_S00031	WILMA	1.322823e+04	1
POL_04452_S00004	WILMA	5.000000e+00	1
POL_24025_S00001	WILMA	7.831497e+02	1
POL_24186_S00001	WILMA	1.204852e+04	1

II - Claims data

- **●** In general, claims database does not contain all characteristics of sites
- Onsequently, you need to merge the claims database with the exposure database in order to have all available information in the same database.
- In R, you can use "dplyr" library with "left_join", "right_join", "inner_join",...

Claims database

SITE_ID	EVENT [‡]	LOSS_AMOUNT	IF_CLAIM [‡]
POL_22775_S00001	WILMA	8.006172e+04	1
POL_22876_S00001	WILMA	1.476115e+04	1
POL_23021_S00001	WILMA	3.229228e+04	1

Portfolio – Exposure database	,
-------------------------------	---

SITE_ID [‡]	POLICY_ID [‡]	OCCUPANCY_TYPE	NUM_STORIES [‡]	COUNTRY [‡]	CRESTA [‡]	POSTCODE [‡]
POL_00002_S00001	POL_00002	PERMANENT_DWELLING_SINGLE	14	MEX	JAL	48390
POL_00003_S00001	POL_00003	PERMANENT_DWELLING_SINGLE	1	MEX	COA	NA
POL_00004_S00001	POL_00004	PERMANENT_DWELLING_SINGLE	1	MEX	DIF	1280

Full database with characteristics from both exposure and claims databases

Vulnerability curves

- In this exercise, you will try to create vulnerability curves
- A vulnerability curve links wind speed values with mean damage ratio (MDR).
- MDR (mean damage ratio) is defined as the ratio between claims loss and total insured value: MDR = (claims loss) / (insured value)

Vulnerability curves

- ♦ Vulnerability curves are usually based on the using of historical claims data. But it is not the case every time...
- There are several methods:
 - Empirical method
 - Analytical method
 - Engineering method
 - Hybrid method

Vulnerability curves

- Tor building these vulnerability curves, you will need to extract wind speed at insured site locations by using longitude/latitude coordinates
- Files of hurricanes footprints are available in the folder INPUTS/
- These files are « .tif » format files which can be read with the function raster of raster library
 - Example : odile = raster(fichier_odile_tif)
- You can also use the extract_wind(ptf,raster) function which is specified in the exercise

Vulnerability curves – Empirical Method

- The empirical method builds vulnerability curves using only claims data.
- In general, we compute MDR mean by wind speed bin. We can for example use a bin of 1m/s and averaged MDR for all claims contained in each bin.
- Then, we can plot the evolution of MDR in function of wind speed and you will find a graphic similar to the one below:

Vulnerability curves – Analytical method

- This method uses an analytical expression which has a similar shape than a vulnerability curve.
- These analytical expressions have several parameters which are generally optimized using claims data.
- Below, you can find 2 formulas which are usually used:
 - Emanuel (2011) expression
 - ATC-13 exporession
- \bullet ATC-13 expression depend on 3 parameters : V_{lim} , ρ and γ.

Emanuel (2011)

$$MDR(V) = \frac{V_n^3}{1 + V_n^3}$$
 with: $V_n = \frac{MAX(V - V_{thresh}, 0)}{V_{half} - V_{thresh}}$

$$MDR(V) = 1 - 0.5^{\left(\frac{V - V lim}{\gamma}\right)^{\rho}}$$

Vulnerability curves

Summary of the methodology used to build vulnerability curves. This is the method used in the practical work n2.

- 1. Merge claims and exposure database
- 2. Compute MDR for all insured sites. Others sites not damaged in the past have a MDR equals to 0.
- 3. Extract wind speed for all sites
- 4. Apply an empiral method to compute MDR by wind bins