CS3611 Computer Networks (Spring 2023) Lab 1: Environment and Softwares

Xiangyuan Xue (521030910387)

- 1. Run wireshark as a root user.
 - \$ sudo wireshark

Ping "www.baidu.com" 10 times.

\$ ping -c 10 www.baidu.com

We can conclude that "ping" uses ICMP protocol.

Traceroute "www.baidu.com" as a root user.

\$ sudo traceroute www.baidu.com

Note that addresses are hidden for timeout. This is because "traceroute" uses UDP protocol by default.

Specify ICMP protocol for "traceroute".

\$ sudo traceroute -I www.baidu.com

Now "traceroute" uses ICMP protocol and returns complete results.

2. Ping "www.sjtu.edu.cn" only once.

rtt min/avg/max/mdev = 4.225/4.225/4.225/0.000 ms

Therefore, the IP address of "www.sjtu.edu.cn" is "202.120.2.119".

3. Ping "www.sjtu.edu.cn" 10 times.

```
$ ping -c 10 www.sjtu.edu.cn
PING www.sjtu.edu.cn (202.120.2.119) 56(84) bytes of data.
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=1 ttl=248 time
   =2.40 \text{ ms}
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=2 ttl=248 time
   =7.28 ms
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=3 ttl=248 time
   =20.8 \text{ ms}
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=4 ttl=248 time
   =38.1 \text{ ms}
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=5 ttl=248 time
   =58.8 \text{ ms}
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=6 ttl=248 time
   =1.92 ms
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=7 ttl=248 time
   =1.64 ms
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=8 ttl=248 time
   =4.05 \text{ ms}
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=9 ttl=248 time
   =5.92 \text{ ms}
64 bytes from 202.120.2.119 (202.120.2.119): icmp_seq=10 ttl=248 time
   =1.98 \text{ ms}
--- www.sjtu.edu.cn ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9131ms
```

rtt min/avg/max/mdev = 1.641/14.297/58.820/18.502 ms

Ping "stanford.edu" 10 times.

```
$ ping -c 10 stanford.edu
PING stanford.edu (171.67.215.200) 56(84) bytes of data.
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=1 ttl=231
   time=265 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=2 ttl=231
   time=211 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=3 ttl=231
   time=205 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=4 ttl=231
   time=209 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=5 ttl=231
   time=241 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=6 ttl=231
   time=262 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=7 ttl=231
   time=270 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=8 ttl=231
   time=218 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=9 ttl=231
   time=218 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=10 ttl=231
   time=232 ms
```

--- stanford.edu ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9039ms rtt min/avg/max/mdev = 205.172/233.553/270.807/23.755 ms

Therefore, the average round trip time is 14.297ms to "www.sjtu.edu.cn" and 233.553ms to "stanford.edu".

To analyze the reason for RTT difference, we can assume "www.sjtu.edu.cn" and "stanford.edu" have similar server load and network quality. Then the major RTT of "stanford.edu" should come from transmission for its longer geographic distance. Since "www. sjtu.edu.cn" is physically closer to my location than "stanford.edu", it is likely to have a lower RTT. In addition, the round trip to "stanford.edu" goes through more ISPs, which can bring more latency.

4. Start iperf3 on server.

Run iperf3 on client.

\$ iperf3 -c 192.168.56.101								
Connecting to host 192.168.56.101, port 5201								
[4] local 192.168.56.103 port 45770 connected to 192.168.56.101 port								
5201								
[ID]	Interval		Transfer	Bandwidth	Retr	Cwnd	
[4]	0.00-1.00	sec	507 MBytes	4.25 Gbits/sec	3348	188	
	KBytes							
[4]	1.00-2.00	sec	513 MBytes	4.30 Gbits/sec	3120	228	
	KBytes							
[4]	2.00-3.00	sec	492 MBytes	4.13 Gbits/sec	3269	236	
	KBytes							
[4]	3.00-4.00	sec	509 MBytes	4.26 Gbits/sec	3704	174	
	KBytes							
Г	4]	4.00-5.00	sec	515 MBytes	4.32 Gbits/sec	3469	181	
KBytes								
[4]	5.00-6.00	sec	521 MBytes	4.37 Gbits/sec	3215	168	
	KBytes							
[4]	6.00-7.00	sec	510 MBytes	4.28 Gbits/sec	3848	230	
	KBytes							
[4]	7.00-8.00	sec	512 MBytes	4.30 Gbits/sec	3802	192	
	KBytes							
[4]	8.00-9.00	sec	480 MBytes	4.02 Gbits/sec	3478	173	
KBytes								
	4]	9.00-10.00	sec	482 MBytes	4.05 Gbits/sec	3380	187	
KBytes								
_								

Therefore, the TCP bandwidth between two virtual machines is 4.23Gbits/sec.

5. Start ssh on server.

Run ssh on client.

```
$ ssh xxyqwq@192.168.56.101
xxyqwq@192.168.56.101's password:
Welcome to Ubuntu 18.04.6 LTS (GNU/Linux 5.4.0-84-generic x86_64)
Last login: Sun Feb 26 16:20:25 2023 from 192.168.56.103
```


6. Create folder "/home/test" on server.

```
$ ssh xxyqwq@192.168.56.101
$ cd /home
$ sudo mkdir test
$ sudo chmod 777 /home/test
$ ls
test xxyqwq
$ exit
```

Create file "abc.txt" and upload it to server.

```
$ touch abc.txt
```


We can see that "abc.txt" has been copied to "/home/test" on server.