Assignment 17 MAT 257

Q5a: Since M, N, are manifolds, for each $p \in M, q \in N$ there must exist open $U \ni p, V \ni q$ and a $g: U \to \mathbb{R}^{m-k}, \ f: V \to \mathbb{R}^{n-l}$ with $U \cap M = U \cap g^{-1}(\{0\})$ and $V \cap N = V \cap f^{-1}(\{0\})$ and Dg(p) and Df(q) have full rank. We define $h: U \times V \mapsto \mathbb{R}^{m+n-(k+l)}$ by h(x,y) = (g(x), f(y)). We can see that $(U \times V) \cap (M \times N) = (U \times V) \cap h^{-1}(\{0\})$, and we evaluate the differential of h at p, q as

$$Dh(p,q) = \begin{bmatrix} Dg(p) & 0\\ 0 & Df(q) \end{bmatrix}$$

This will have a rank of n+m-(k+l), and hence we conclude that $M\times N$ is a k+l manifold.

Q5b: We first claim that $\partial M \times \partial N$ is a k+l-2 manifold without boundary. First, note that from discussion in class, we know that ∂M , ∂N are k-1 and l-1 manifolds respectively. Hence by 5a, we have that their cartesian product will be a (k-1)+(l-1)=k+l-2 manifold. Next, consider the manifold $M\setminus \partial M$. We have that every point in $M\setminus \partial M$ will have some coordinate chart with domain in the interiour of \mathbb{R}^k_+ , and similarly for $N\setminus \partial N$ and \mathbb{R}^l_+ . Hence we will have that $M\setminus \partial M$ will be a k manifold with boundary, and similarly $N\setminus \partial N$ will be an l manifold with boundary. Note that $M\setminus \partial M$ and $N\setminus \partial N$ have empty boundary, but are still manifolds with boundary. By 5a, $M\setminus \partial M\times N\setminus \partial N$ is a k+l manifold, and by construction is disjoint from $\partial M\times \partial N$.