Support Vector Machines

Machine Learning Group Department of Computer Sciences University of Texas at Austin

University of Texas at Austin

Machine Learning Group

Perceptron Revisited: Linear Separators

• Binary classification can be viewed as the task of separating classes in feature space:

University of Texas at Austin

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are *support vectors*.
- *Margin* ρ of the separator is the distance between support vectors.

University of Texas at Austin

9 =

Support Vector Machines

Maximum Margin Classification

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.

University of Texas at Austin

11 -

Support Vector Machines

- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|}$
 - Which is equivalent to minimizing: $L(w) = \frac{||\vec{w}||^2}{2}$
 - But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -\rho/2 \quad \text{if } y_{i} = -1 \\ \mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge \rho/2 \quad \text{if } y_{i} = 1 \quad \Leftrightarrow \quad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge \rho/2$$

- For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is $r = \frac{\mathbf{y}_s(\mathbf{w}^T\mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$
- Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

University of Texas at Austin

13

Machine Learning Group

Linear SVMs Mathematically (cont.)

• Then we can formulate the *quadratic optimization problem*:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 is maximized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

 $\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$ is minimized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

University of Texas at Austin

Solving the Optimization Problem

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w}$ is minimized and for all $(\mathbf{x}_i, y_i), i=1..n$: $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1$

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a *dual problem* where a *Lagrange multiplier* α_i is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_1...\alpha_n$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

University of Texas at Austin

15

Machine Learning Group

The Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point \mathbf{x} and the support vectors \mathbf{x}_i we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^T \mathbf{x}_i$ between all training points.

University of Texas at Austin

Soft Margin Classification

- What if the training set is not linearly separable?
- *Slack variables* ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft*.

University of Texas at Austin

10

Machine Learning Group

Soft Margin Classification Mathematically

• The old formulation:

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

• Modified formulation incorporates slack variables:

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w} + C\Sigma\xi_{i} \text{ is minimized}$ and for all $(\mathbf{x}_{i}, y_{i}), i=1..n$: $y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i}+b) \geq 1-\xi_{i}$, $\xi_{i} \geq 0$

• Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

University of Texas at Austin

Soft Margin Classification – Solution

• Dual problem is identical to separable case (would *not* be identical if the 2-norm penalty for slack variables $C\Sigma \xi_i^2$ was used in primal objective, we would need additional Lagrange multipliers for slack variables):

Find $\alpha_1...\alpha_N$ such that

 $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x}_i^T \mathbf{x}_i$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute **w** explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

University of Texas at Austin

21

Machine Learning Group

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_r
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $\alpha_1...\alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\Sigma \alpha_i y_i = 0$

 $f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$

(2) $0 \le \alpha_i \le C$ for all α_i

University of Texas at Austin

What about the non-linear case?

- What if the classes are not linearly separable?
- Transform instances by introducing nonlinear combination "pseudo-attributes"

NC STATE UNIVERSITY

CSC 422 / 522 Jon Doyle © 2013

32

Machine Learning Group

The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$
- If every datapoint is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \to \varphi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_i) = \mathbf{\varphi}(\mathbf{x}_i)^{\mathrm{T}}\mathbf{\varphi}(\mathbf{x}_i)$$

- A *kernel function* is a function that is equivalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,

Need to show that $K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{2} = 1 + x_{i1}^{2}x_{j1}^{2} + 2 x_{i1}x_{j1} x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} =$$

$$= [1 \ x_{i1}^{2} \ \sqrt{2} \ x_{i1}x_{i2} \ x_{i2}^{2} \ \sqrt{2}x_{i1} \ \sqrt{2}x_{i2}]^{\mathsf{T}} [1 \ x_{j1}^{2} \ \sqrt{2} \ x_{j1}x_{j2} \ x_{j2}^{2} \ \sqrt{2}x_{j1} \ \sqrt{2}x_{j2}] =$$

$$= \mathbf{\phi}(\mathbf{x}_{i})^{\mathsf{T}}\mathbf{\phi}(\mathbf{x}_{j}), \quad \text{where } \mathbf{\phi}(\mathbf{x}) = [1 \ x_{i}^{2} \ \sqrt{2} \ x_{i}x_{2} \ x_{2}^{2} \ \sqrt{2}x_{1} \ \sqrt{2}x_{2}]$$

• Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\varphi(x)$ explicitly).

University of Texas at Austin

Exclusive-or problem

A prototypical difficult case

Index i x y (class)

$$1 \qquad (1,1) \qquad 1$$

$$=$$
 class 1

$$=$$
 class -1

NC STATE UNIVERSITY

CSC 422 / 522 Jon Doyle © 2013

Exclusive-or problem

- Not linearly separable in the input space
 - Needs a non-linear transformation
 - Recall decision tree for exclusive or
 - Maximal subtree repetition!
 - Overfitting a big danger
 - Handle each instance as a separate case
- Transform space by

$$H(x, x') = [(x \cdot x') + 1]^2$$

to get

$$[x_1^2 + x_2^2 + 1]^2$$

Solution

The solution to the quadratic optimization problem is

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.125$$

- All the points are support vectors
- The "decision function" is

$$D(\mathbf{x}) = (0.125) \Sigma_{i=1}^{4} y_{i} [(\mathbf{x_{i}} \cdot \mathbf{x}) + 1]^{2}$$

NC STATE UNIVERSITY

CSC 422 / 522 Jon Doyle © 2013

37

Solution

Decision on (1,1):

$$0.125(-1([-1 \ 1] \ 1] + 1)^{2}$$

$$+1([1 \ 1] \ 1] + 1)^{2}$$

$$+(1([-1 \ -1] \ 1] + 1)^{2}$$

$$+(-1([1 \ -1] \ 1] + 1)^{2}))$$

$$= 0.125 (-1 + 9 + 1 - 1) = 0.125(8) = 1$$

NC STATE UNIVERSITY

CSC 422 / 522

NC STATE UNIVERSITY

 $\sqrt{2} x_2$

CSC 422 / 522 Jon Doyle © 2013

Machine Learning Group

What Functions are Kernels?

0

-1

 $\sqrt{2} x_1$

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

K=	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$		$K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
	•••	•••	•••	•••	•••
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$		$K(\mathbf{x}_n,\mathbf{x}_n)$

University of Texas at Austin

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power p: $K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^p$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has $\begin{pmatrix} d+p \\ p \end{pmatrix}$ dimensions

$$-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2\sigma^{2}}$$

- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_j) = e$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has *intrinsic* dimensionality *d* (the mapping is not *onto*), but linear separators in it correspond to *non-linear* separators in original space.

University of Texas at Austin

41 :

Machine Learning Group !

Non-linear SVMs Mathematically

• Dual problem formulation:

Find $\alpha_1 ... \alpha_n$ such that

 $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i K(\mathbf{x}_i, \mathbf{x}_i)$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i
- The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

University of Texas at Austin

Sparse data

- Sparse data has mostly 0 values
- SVM algorithms can be sped up dramatically on sparse data
 - Lots of dot products are 0
 - Iterate over the values that are not zero
- SVM algorithms can handle sparse datasets with tens of thousands of attributes

NC STATE UNIVERSITY

CSC 422 / 522 Jon Dovle © 20 48

Machine Learning Group

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik *et al.* '97], principal component analysis [Schölkopf *et al.* '99], etc.
- Most popular optimization algorithms for SVMs use *decomposition* to hill-climb over a subset of α_i 's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

University of Texas at Austin