Module "Sécurité Informatique et Protection de données" TD - codage de canal; durée : 2h30

Exercice 1 : Canal binaire symétrique

Soit X une source sans mémoire sur l'alphabet binaire $\{0,1\}$ donnée par la distribution :

$$\mathbb{P}[X=0] = \frac{1}{8}, \qquad \mathbb{P}[X=1] = \frac{7}{8}.$$

Considérons le canal symétrique binaire \mathcal{C} de paramètre $p=\frac{1}{16}$.

- 1. Si X est la source en entrée du canal C, et Y la source en sortie du canal, donnez la loi conjointe de (X,Y).
- 2. En déduire la loi de Y. Est-ce la même que celle de X?
- 3. Quelle est l'entropie de X et de Y? Quelle est l'entropie conjointe de (X,Y)?
- 4. En déduire l'information mutuelle I(X,Y) et les entropies conditionnelles H(X|Y) et H(Y|X).
- 5. Donnez la capacité du canal \mathcal{C} .

Exercice 2: Canal

Soit X une source sans mémoire sur l'alphabet ternaire $\{0,1,2\}$ donnée par la distribution :

$$\mathbb{P}[X=0] = \frac{1}{8}, \qquad \mathbb{P}[X=1] = \frac{3}{8}, \qquad \mathbb{P}[X=2] = \frac{4}{8}.$$

Considérons le canal ternaire \mathcal{C} dont la matrice de transition est donnée par

$$\mathcal{M} = \begin{pmatrix} 3/4 & 1/8 & 1/8 \\ 1/8 & 3/4 & 1/8 \\ 1/8 & 1/8 & 3/4 \end{pmatrix}.$$

- 1. Si X est la source en entrée du canal \mathcal{C} , et Y la source en sortie du canal, donnez la loi conjointe de (X,Y).
- 2. En déduire la loi de Y. Est-ce la même que celle de X?
- 3. Quelle est l'entropie de X et de Y? Quelle est l'entropie conjointe de (X,Y)?
- 4. En déduire l'information mutuelle I(X,Y) et les entropies conditionnelles H(X|Y) et H(Y|X).
- 5. Soit X' une source sans mémoire sur l'alphabet $\{0,1,2\}$. Montrez que l'information mutuelle I(X',Y') avec Y' la source à la sortie du canal vérifie

$$I(X', Y') = H(Y') - H(\mathcal{M})$$
 avec $H(\mathcal{M}) = -\frac{3}{4}\log_2\frac{3}{4} - 2 \times \frac{1}{8}\log_2\frac{1}{8}$.

6. Donnez la capacité du canal \mathcal{C} .

Exercice 3: Canal symétrique binaire

Considérons le canal symétrique binaire $C_1(p)$ de paramètre p sur l'alphabet binaire $\{0,1\}$. Pour tout entier positif k, on peut définir un canal C_k de la manière suivante : le canal agit sur $\{0,1\}^k$ et pour un mot $w = w_1w_2 \dots w_k \in \{0,1\}^k$, le canal change le symbole w_i avec la probabilité p, indépendamment des autres i, et ceci pour tout i = 1..k.

- 1. Pour i = 1..k, quelle est la probabilité que le canal C_k produise i erreurs?
- 2. Quelle est la capacité de C_k ?

Exercice 4: exam 2018 (5pts)

Considérons le canal binaire à effacement C suivant, de paramètre $p \in [0,1]$:

1. Donnez la matrice de transition du canal \mathcal{C} . (0,5pt)

Soit X une source sans mémoire sur l'alphabet $\{0,1\}$ telle que

$$Prob(X = 1) = 1 - Prob(X = 0) = a.$$

Soit Y la source résultant du passage de la source X à travers le canal \mathcal{C} .

- 2. Calculez en fonction de a et p, les entropies H(X), H(Y), H(X,Y) et l'information mutuelle I(X,Y).
 - Pour simplifier les formules, nous posons $h(t) = -t \log_2 t (1-t) \log_2 (1-t)$. (3pts)
- 3. En déduire la capacité du canal \mathcal{C} . (1,5pt)

Exercice 5: Code de Hamming (7,4)

L'alphabet d'entrée du code de Hamming(7,4) est $\{0,1\}^4$ et l'alphabet de sortie est $\{0,1\}^7$. Si les quatre bits d'entrée sont donnés par $m=(m_1,m_2,m_3,m_4)$, alors les sept bits en sortie $y=(y_1,y_2,\ldots,y_7)$ sont définis par :

$$y_7 = m_4$$
, $y_6 = m_3$, $y_5 = m_2$, $y_3 = m_1$

$$y_1 = y_3 + y_5 + y_7 \mod 2$$
, $y_2 = y_3 + y_6 + y_7 \mod 2$, $y_4 = y_5 + y_6 + y_7 \mod 2$.

Rappelons que les sommes de contrôle précédentes permettent de corriger jusqu'à une erreur. La première (resp. deuxième/troisième) somme de contrôle indique une erreur potentielle à une position d'indice paire (resp. dont le deuxième/troisième bit est à 1) si la somme de contrôle n'est pas vérifiée.

1. Quel est le code associé aux mots suivants :

2. Y a-t'il une erreur dans les mots de code suivants? Si oui, corriger la.

$$y = (1, 0, 1, 0, 1, 1, 0),$$
 $y = (1, 1, 1, 0, 1, 1, 1),$ $y = (0, 0, 1, 0, 0, 1, 0).$

- 3. La matrice génératrice d'un code linéaire (ce qu'est le code de Hamming) est une matrice G telle que si $m=(m_1,m_2,m_3,m_4)$ est encodée en $y=(y_1,\ldots,y_7)$, alors $G\cdot {}^tm={}^ty$. Trouvez une expression de G.
- 4. La matrice de contrôle est une matrice H tel que pour tout mot de code $y = (y_1, \ldots, y_7)$ sans erreur, on a $H \cdot {}^t y = {}^t (0, 0, 0)$. Trouvez une expression de H
- 5. Calculez $H \cdot G$.
- 6. Le syndrome d'un mot de code y (avec ou sans erreur) est défini par $s = H \cdot {}^{t}y$. Donnez le syndrome des y de la question 2.

Exercice 6 : Code de Hamming généraux

En s'inspirant du code de Hamming (7,4), il est possible de construire des codes de Hamming dont :

- l'alphabet de sortie sont les blocs de $2^n 1$ bits,
- l'alphabet d'entrée sont les blocs de $m = (2^n 1) n$ bits,
- dont les sommes de contrôles C_i sont en position 2^i pour $i=0,1,2,\ldots,n-1$.

Questions:

- 1. Construisez le code de Hamming (15, 11) (qui correspond à n=4).
- 2. Considérons le message codé y=(1,0,1,1,0,1,1,1,0,1,1,0,1,1). Décodez ce message.
- 3. Quelle est l'efficacité des codes de Hamming (7,4), (15,11) et (31,26)? Que se passe-t'il lorsque n tend vers l'infini?