Contents

0.1	Compact spaces		- 1
	Compact spaces		

0.1 Compact spaces

A space X is compact if each open cover has a finite subcover.

If we can define a cover which does not have a finite subcover, then the space is not compact.

For example an infinite cover could be tend towards (0,1), eg as $\frac{1}{n}, 1 - \frac{1}{n}$

This covers (0,1), but there is no finite subcover. As a result (0,1) is not compact.