CS F364: Design & Analysis of Algorithm

Introduction to Algorithm

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Jan 18, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Introduction

- Computational Problems
- Algorithms: input, output, definiteness, finiteness, effectiveness
- Pseudo code
- Input size
 - Analysis
- Kind of resources¹: time, space, number of gates ...
 Cases: Best, Worst and Average
- Correctness: initialize well, maintain invariance and terminate
- Order of growth: O, o, θ , ω , Ω zoo
- Insertion and Merge sort

¹ Complexity is a function		↑		200
Design & Analysis of Algo. (CS F364)	M W F (3-4PM) online@BITS-Pilani	Lecture-01 (Ja	an 18, 2021)	3/7

Analyse Insertion Sort

cost times	u	n-1			$\sum_{j=2}^n (t_j-1)$	$\sum_{j=2}^n (t_j-1)$	
ő	2	ଓ		2		රී	5
INSERTION-SORT (A)	for $j = 2$ to A.length	key = A[j]	i = j - 1	while $i > 0$ and $A[i] > key$	A[i+1] = A[i]	i = i - 1	A[i+1]=kev
Z	-	Ŋ	က	4	2	9	7

- Best case T(n) = O(n)
- Worst case $T(n) = O(n^2)$

Lecture-01 (Jan 18, 2021) 5/7

Logistics: (CS F364) Design & Analysis of Algorithms

- http://meet.google.com/jto-vjtw-bsd M W F (3:00PM-3:50PM) online
- Dr. Abhishek Mishra (IC) and Dr. Kamlesh Tiwari. Jointly to be taught by
- Grading

- Tutorial Quiz (32%) 4 of 8% each, Open Book
 Mid Semester Exam (28%) Open Book
 Comprehensive Exam (40%) Open Book

Learn algorithm design techniques like Divide and Conquer, Greedy, Dynamic Programming, Approximation Algorithms, and Randomized Algorithms. Explore topics like Computational Complexity etc.

Books:

[1] T.H. Cornen, C.E. Lesseson, R.L. Rivest, C. Slein, *Introduction to Algorithms*, 3rd Editon, PHI, 2012.
[2] S. Anora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009
[3] J.Kleinberg, E. Tardos, Algorithm Design, Pearson, 2013.

Insertion Sort

Incremental algorithm paradigm:

```
Algorithm 1: INSERTION-SORT (A)
                                                              while i > 0 and A[i] > key do A[i+1] = A[i] i = i-1
                    j = 2 to A.length do key = A[j]
                                                                                                                       A[i+1]=key
```

Merge sort

Divide and conquer paradigm: Divide, Conquer and Combine

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

$$\frac{1}{aT(n/b)} + D(n) + D(n) + D(n) & \text{otherwise} \end{cases}$$

$$\frac{1}{aT(n/b)} + D(n) + D(n)$$

Average case $T(n) = O(n \log n)$. Best and Worst?

MERGE (A,p,q,r)

Thank You!

Thank you very much for your attention! (Reference²)

Queries?

2 (1) Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN
Design & Analysis of Algo. (CS F364) M.W.F (3-4PM) online@BITS-Plant Lecture-01 (Jan 16, 2021) 7/7