Homework 8 -Indecidibilità e riducibilità

Gabriel Rovesti

- 1. Considera il seguente problema: data una TM M a nastro semi-infinito, determinare se esiste un input w su cui M sposta la testina a sinistra partendo dalla cella numero 2023 (ossia se in qualche momento durante la computazione la testina si muove dalla cella 2023 alla cella 2022).
 - (a) Formula questo problema come un linguaggio 2023_{TM} .
 - (b) Dimostra che il linguaggio 2023_{TM} è indecidibile.

Soluzione

 $2023_{TM} = \{\langle M \rangle \mid M$ è una TM a nastro semi-infinito che, per qualche input w, sposta la testina dalla cella 2023 alla cella 2022 durante la computazione $\}$

Per dimostrare che 2023_{TM} è indecidibile, utilizzeremo una riduzione da $HALT_{TM}$ che sappiamo essere indecidibile.

Definiamo la seguente funzione F: $F(\langle M, w \rangle) = \langle M' \rangle$ dove M' è una TM definita come segue:

M' ="Su input x:

- (a) Scrivi w nelle prime |w| celle del nastro.
- (b) Sposta la testina alla cella 2023.
- (c) Simula M su input w a partire dalla cella 2023.
- (d) Se M termina, sposta la testina a sinistra di una cella (dalla cella 2023 alla cella 2022).
- (e) Termina."

Mostriamo che F è una riduzione da $HALT_{TM}$ a 2023_{TM} :

- Se $\langle M, w \rangle \in HALT_{TM}$, allora M termina su input w. Quindi M', su qualsiasi input x, scrive w sul nastro, sposta la testina alla cella 2023, simula M su w fino al termine, e poi sposta la testina a sinistra di una cella, dalla cella 2023 alla cella 2022. Quindi $\langle M' \rangle \in 2023_{TM}$.
- Se $\langle M, w \rangle \notin HALT_{TM}$, allora M non termina su input w. Quindi M', su qualsiasi input x, scrive w sul nastro, sposta la testina alla cella 2023, e poi entra in un loop infinito simulando M su w, senza mai spostare la testina dalla cella 2023 alla cella 2022. Quindi $\langle M' \rangle \notin 2023_{TM}$.

Quindi $\langle M, w \rangle \in HALT_{TM}$ sse $\langle M' \rangle \in 2023_{TM}$, ovvero F riduce $HALT_{TM}$ a 2023_{TM} . Poiché $HALT_{TM}$ è indecidibile, per riduzione anche 2023_{TM} è indecidibile.

2. Considera il problema di determinare se un PDA accetta qualche stringa nella forma $\{ww \mid w \in \{0,1\}^*\}$. Dimostra che questo problema è indecidibile.

Soluzione

Per dimostrare l'indecidibilità del problema, utilizzeremo una riduzione dal problema E_{PDA} che sappiamo essere indecidibile. Sia F la seguente funzione: $F(\langle P \rangle) = \langle P' \rangle$ dove P' è un PDA definito come segue: P' = "Su input x:

- (a) Simula il PDA P su input x.
- (b) Se P accetta, controlla se x è nella forma ww con $w \in 0, 1^*$.
 - Se sì, accetta.
 - Altrimenti, rifiuta.
- (c) Se P rifiuta, rifiuta."

Mostriamo che F è una riduzione da E_{PDA} al problema di determinare se un PDA accetta qualche stringa nella forma $\{ww \mid w \in 0, 1^*\}$: $\langle P \rangle \in E_{PDA}$ sse $L(P) = \emptyset$ sse $\forall x, P$ rifiuta x sse $\forall x, P'$ rifiuta x (perché rifiuta sempre al passo 3) sse P' non accetta alcuna stringa, incluse quelle nella forma ww sse $\langle P' \rangle$ non è un PDA che accetta qualche stringa nella forma ww.

Al contrario: $\langle P \rangle \notin E_{PDA}$ sse $L(P) \neq \emptyset$ sse $\exists x$ tale che P accetta x sse $\exists x$ tale che P' accetta x se x = ww e rifiuta altrimenti sse $\langle P' \rangle$ è un PDA che accetta qualche stringa nella forma ww (ma potrebbe anche accettare altre stringhe).

Quindi abbiamo dimostrato che: $\langle P \rangle \in \mathcal{E}_{PDA}$ sse $\langle P' \rangle$ non è un PDA che accetta qualche stringa nella forma ww, ovvero E_{PDA} si riduce al complemento del nostro problema. Poiché E_{PDA} è indecidibile, per riduzione anche il nostro problema è indecidibile.

- 3. Una variabile A in una CFG G necessaria se appare in tutte le derivazioni di qualche stringa $w \in G$. Sia $NECESSARY_{CFG} = \{\langle G, A \rangle \mid A \text{ è una variabile necessaria in } G\}$.
 - (a) Si mostri $NECESSARY_{CFG}$ è Turing-riconoscibile
 - (b) Si mostri che $NECESSARY_{CFG}$ è indecidibile

Soluzione

Per dimostrare che $NECESSARY_{CFG}$ è Turing-riconoscibile, costruiamo una TM M che accetta $NECESSARY_{CFG}$:

M ="Su input $\langle G, A \rangle$:

- (a) Verifica che A sia una variabile di G. Se non lo è, rifiuta.
- (b) Enumera tutte le derivazioni di G. Per ogni derivazione:
 - Se la derivazione produce una stringa $w \in \Sigma^*$ (cioè composta solo da simboli terminali) e A appare nella derivazione, accetta.
 - Se la derivazione produce una stringa $w \in \Sigma^*$ e A non appare nella derivazione, rifiuta.
- (c) Se tutte le derivazioni sono state enumerate senza raggiungere una conclusione, vai al passo 2.

Se $\langle G, A \rangle \in NECESSARY_{CFG}$, allora A apparirà in tutte le derivazioni di qualche stringa w, quindi M troverà una di queste derivazioni e accetterà. Se $\langle G, A \rangle \in NECESSARY_{CFG}$, allora o A non apparirà in nessuna derivazione di stringhe (e quindi M non accetterà mai), oppure per ogni stringa esistono alcune derivazioni in cui A non appare (e quindi M troverà una di queste derivazioni e rifiuterà).

Quindi $L(M) = NECESSARY_{CFG}$, ovvero è Turing-riconoscibile.

Per dimostrare che $NECESSARY_{CFG}$ è indecidibile, riduciamo da E_{CFG} che sappiamo essere indecidibile.

Sia F la seguente funzione: $F(\langle G \rangle) = \langle G', S' \rangle$ dove G' è una CFG definita come segue:

- ullet Tutte le variabili e le produzioni di G sono incluse in G'
- Viene aggiunta una nuova variabile iniziale S' con la produzione $S' \to S$, dove S è la variabile iniziale di G.

Mostriamo che F è una riduzione da E_{CFG} a $NECESSARY_{CFG}$:

- Se $\langle G \rangle \in E_{CFG}$, allora $L(G) = \emptyset$. Quindi $L(G') = \emptyset$ e S' non appare in nessuna derivazione di stringhe. Quindi $\langle G', S' \rangle \notin$.
- Se $\langle G \rangle \notin E_{CFG}$, allora $L(G) \neq \emptyset$. Quindi esiste qualche $w \in L(G')$ e tutte le derivazioni di w in G' devono iniziare con $S' \to S$. Quindi S' appare in tutte le derivazioni di w e $\langle G', S' \rangle \in NECESSARY_{CFG}$.
- 4. Una CFG è minimale se nessuna delle regole può essere rimossa senza cambiare il linguaggio generato. Sia $MIN_{CFG} = \{\langle G, A \rangle \mid A \text{ è una variabile necessaria in } G\}$.
 - (a) Si mostri MIN_{CFG} è Turing-riconoscibile
 - (b) Si mostri che MIN_{CFG} è indecidibile

Soluzione

Per dimostrare che MIN_{CFG} è Turing-riconoscibile, costruiamo una TM M che accetta MIN_{CFG} :

M ="Su input $\langle G \rangle$:

- (a) Per ogni produzione p in G:
 - i. Costruisci una nuova CFG G' rimuovendo la produzione p da G.
 - ii. Enumera tutte le possibili derivazioni in $G \in G'$ in parallelo:
 - Se trovi una stringa w che può essere derivata in G ma non in G', continua con la prossima produzione (vai al passo 1).
 - Se trovi una stringa w che può essere derivata sia in G che in G', rifiuta.
- (b) Se tutte le produzioni sono state verificate senza rifiutare, accetta.
 - Se $\langle G \rangle \in MIN_{CFG}$, allora per ogni produzione p, rimuovere p cambierà il linguaggio generato. Quindi per ogni p, M troverà una stringa che può essere derivata in G ma non in G' e alla fine accetterà.

• Se $\langle G \rangle \notin MIN_{CFG}$, allora esiste una produzione p che può essere rimossa senza cambiare il linguaggio. Quindi M troverà una stringa che può essere derivata sia in G che in G' e rifiuterà.

Quindi $L(M) = MIN_{CFG}$, ovvero MIN_{CFG} è Turing-riconoscibile.

Per dimostrare che MIN_{CFG} è indecidibile, riduciamo da che sappiamo essere indecidibile.

Sia F la seguente funzione: $F(\langle G \rangle) = \langle G' \rangle$ dove G' è una CFG definita come segue:

- Tutte le variabili e le produzioni di G sono incluse in G'
- Per ogni produzione $A \to \alpha$ in G, aggiungiamo una nuova variabile A' e le produzioni $A \to A'$ e $A' \to \alpha$ in G'.

Mostriamo che F è una riduzione da ALL_{CFG} a MIN_{CFG} :

- Se $\langle G \rangle \in ALL_{CFG}$, allora $L(G) = \Sigma^*$. Quindi anche $L(G') = \Sigma^*$, ma G' non è minimale perché rimuovendo qualsiasi coppia di produzioni $A \to A'$ e $A' \to \alpha$ si ottiene ancora una grammatica che genera Σ^* . Quindi $\langle G' \rangle \notin MIN_{CFG}$.
- Se $\langle G \rangle \notin ALL_{CFG}$, allora $L(G) \neq \Sigma^*$. Quindi esistono stringhe in Σ^* che non possono essere generate da G. Queste stringhe non possono essere generate nemmeno da G', e rimuovere qualsiasi produzione da G' può solo ridurre ulteriormente il linguaggio generato. Quindi G' è minimale e $\langle G' \rangle \in MIN_{CFG}$.

Quindi $\langle G \rangle \in ALLCFG$ sse $\langle G' \rangle \notin MIN_{CFG}$, ovvero F riduce ALL_{CFG} al complemento di MIN_{CFG} . Poiché ALL_{CFG} è indecidibile, per riduzione anche MIN_{CFG} è indecidibile.

5. Considera il linguaggio $FORTY-TWO=\{\langle M,w\mid M \text{ termina la computazione su }w\text{ avendo solo }42\text{ sul nastro }\}.$ Dimostra che FORTY-TWO è indecidibile.

Soluzione

Per dimostrare che FORTY-TWO è indecidibile, utilizzeremo una riduzione da che sappiamo essere indecidibile. Definiamo la seguente funzione $F: F(\langle M, w \rangle) = \langle M', w \rangle$ dove M' è una TM definita come segue: M' = "Su input x:

(a) Simula M su input w.

- (b) Se M termina, cancella tutto il contenuto del nastro e scrivi '42'.
- (c) Accetta."

Mostriamo che F è una riduzione da $HALT_{TM}$ a FORTY-TWO

- Se ⟨M, w⟩ ∈, allora M termina su input w. Quindi M' simulerà M fino al termine, poi cancellerà il contenuto del nastro, scriverà '42' e accetterà. Quindi ⟨M', w⟩ ∈ FORTY − TWO.
- Se $\langle M, w \rangle \notin$, allora M non termina su input w. Quindi M' entrerà in un loop infinito simulando M e non scriverà mai '42' sul nastro. Quindi $\langle M', w \rangle \notin FORTY TWO$.

Quindi $\langle M, w \rangle \in HALT_{TM}$ sse $\langle M', w \rangle \in FORTY - TWO$, ovvero F riduce $HALT_{TM}$ a FORTY - TWO. Poiché $HALT_{TM}$ è indecidibile, per riduzione anche FORTY - TWO è indecidibile.

- 6. Una Turing Machine moltiplica correttamente se, dati in input due numeri binari separati da #, termina la computazione con la loro moltiplicazione (in binario) sul nastro. (Non importa cosa fa sugli altri input.)
 Considera il problema di determinare se una TM moltiplica correttamente
 - (a) Formula questo problema come un linguaggio MUL_{TM} .
 - (b) Dimostra che il linguaggio MUL_{TM} è indecidibile.

Soluzione

- 1. $MUL_{TM} = \{\langle M \rangle \mid M \text{ è una TM che, su input } w = x \# y \text{ con } x, y \in \{0,1\}^*$, termina la computazione con z sul nastro, dove z è la rappresentazione binaria del prodotto tra i numeri rappresentati in binario da $x \in y\}$
- 2. Per dimostrare che MUL_{TM} è indecidibile, utilizzeremo una riduzione da $HALT_{TM}$ che sappiamo essere indecidibile.

Definiamo la seguente funzione $F: F(\langle M, w \rangle) = \langle M' \rangle$ dove M' è una TM definita come segue:

M' ="Su input x # y:

- (a) Simula M su input w.
- (b) Se M termina, calcola il prodotto tra i numeri rappresentati in binario da x e y e scrivi il risultato z sul nastro.

(c) Termina."

Mostriamo che F è una riduzione da $HALT_{TM}$ a MUL_{TM} :

Se $\langle M, w \rangle \in HALT_{TM}$, allora M termina su input w. Quindi M', su qualsiasi input della forma x # y, simula M su w fino al termine, poi calcola correttamente il prodotto tra i numeri rappresentati da x e y e scrive il risultato sul nastro. Quindi $\langle M' \rangle \in MUL_{TM}$.

Se $\langle M, w \rangle \notin HALT_{TM}$, allora M non termina su input w. Quindi M', su qualsiasi input della forma x # y, entra in un loop infinito simulando M su w e non calcola mai il prodotto. Quindi $\langle M' \rangle \notin MUL_{TM}$.

Quindi $\langle M, w \rangle \in HALT_{TM}$ sse $\langle M' \rangle \in MUL_{TM}$, ovvero F riduce $HALT_{TM}$ a MUL_{TM} . Poiché $HALT_{TM}$ è indecidibile, per riduzione anche MUL_{TM} è indecidibile.