Math 295: Homework 10

Carter Rhea

April 10, 2014

- 1. Chapter 5.4 # 2d Suppose that Y and Z are subsets of B. Will it always be true that $Y \subseteq Z \iff f^{-1}(Y) \subseteq f^{-1}(Z)$?
 - (\rightarrow) Assume $Y \subseteq Z$ and $Y \subseteq B$ and $Z \subseteq B$. Let $a \in f^{-1}(Y)$. So f(a) = y. Then, by assumption, $f(a) \in Z$. Thus $f^{-1}(f(a)) \subseteq f^{-1}(Z)$, which implies that $a \in f^{-1}(Z)$. Since a was arbitrary, $Y \subseteq Z \to f^{-1}(Y) \subseteq f^{-1}(Z)$.
 - $f^{-1}(Y) \subseteq f^{-1}(Z)$. $((G)) \subseteq f$ ((B), which implies that $a \in f$ (B), since a was arbitrary, $f \subseteq Z$ ((G)), since $f^{-1}(Y) \subseteq f^{-1}(Z)$ and also $Y \subseteq B$ and $Z \subseteq B$. Let $a \in f^{-1}(Y)$. So f(a) = Y. Since $f^{-1}(f(a)) \subseteq f^{-1}(Z)$, $f(a) \in Z$. Since a was arbitrary, $f^{-1}(Y) \subseteq f^{-1}(Z) \to Y \subseteq Z$.
- 2. Chapter 5.4 # 3 Suppose $X \subseteq A$. Will it always be true that $f^{-1}(f(X)) = X$?

 Take figure 1 from chapter 5.4 from the book as an example. The relation is not one-to-one. Take $X = \{1, 2\}$. Then $f(X) = f(\{1, 2\}) = \{4, 5\}$. Now take $f^{-1}(\{4, 5\}) = \{1, 2, 3\}$. Thus, it has been shown that $f^{-1}(f(X))$ does not always equal X. I hypothesize that if f is injective, then $f^{-1}(f(X)) = X$.
- 3. Chapter 6.1 # 2 Prove that for all $n \in \mathbb{N}, 0^2 + 1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$ Base Case: $0^2 = \frac{0(1)(1)}{6}$ which is equivalent to 0 = 0 which is true. So P(0) is true. Inductive Case: Let $n \in \mathbb{N}$. Assume P(n) is true. Thus $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Thus, adding $(n+1)^2$ to both sides.

$$\sum_{i=1}^{n} i^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

which implies

$$\sum_{i=0}^{n+1} i^2 = \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

which implies

$$\sum_{i=0}^{n+1} i^2 = \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

which implies

$$\sum_{i=0}^{n+1} i^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

Which is P(n+1). Q.E.D.

4. Chapter 6.1 # 5 Prove that for all $n \in \mathbb{N}$, 0*1+1*2+2*3+...+n(n+1)=n(n+1)(n+2)/3. Base Case: P(0)=0(1)=0(1)(2)/3 which is equivalent to 0=0 which is true. Thus P(0) is true. Inductive Case: Let $n \in \mathbb{N}$. Assume P(n) is true. Thus, $\sum_{i=1}^{n} n(n+1) = \frac{n(n+1)(n+2)}{3}$ Adding (n+1)(n+2) to both sides,

$$\sum_{i=1}^{n} n(n+1) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$$

which implies

$$\sum_{i=1}^{n+1} n(n+1) = \frac{n(n+1)(n+2)}{3} + \frac{3(n+1)(n+2)}{3}$$

which implies

$$\sum_{i=1}^{n+1} n(n+1) = \frac{(n+1)(n^2 + 5n + 6)}{3}$$

1

which implies

$$\sum_{i=1}^{n+1} n(n+1) = \frac{(n+1)(n+2)(n+3)}{3}$$

Which is P(n+1). Q.E.D.

5. Chapter 6.1 # 12 Prove that for all integers a and b and all $n \in \mathbb{N}$, $(a-b) \mid (a^n+b^n)$. Base Case:k(a-b) = 1 - 1 = 0, so(a-b) = 0. Thus $a-b \mid a^n-b^n$ Induction Case: Let n be an arbitrary natural number and suppose $a-b \mid a^n-b^n$. Then we can chose an integer k such that $(a-b)k = a^n - b^n$. Thus,

$$a^{n+1} - b^{n+1} = a^n + a - b^n - b$$

which is equal to

$$(a^n - b^n) + (a - b)$$

which is equal to

$$k(a-b) + (a-b)$$

which is equal to

$$(k+1)(a-b)$$

Let m = k + 1 such that $m \in \mathbb{Z}$, thus

$$(k+1)(a-b) = m(a-b)$$

Therefore $(a-b) \mid a^{n+1} - b^{n+1}$, as required. Q.E.D.