Intro to Machine Learning (CS436/CS580L)

Lecture 2: Model Representation & Cost Function

Xi Peng, Fall 2018

Thanks to Tom Mitchell, Andrew Ng, Ben Taskar, Carlos Guestrin, Eric Xing, Hal Daume III, David Sontag, Jerry Zhu, and Tina Eliassi-Rad for some slides & teaching material.

This Class

- Graphical Example
 - Classification
 - Regression
 - Clustering
- Model representation
- Loss function

Types of Machine Learning

- Supervised Learning (SL)
- Unsupervised Learning (UL)
- Reinforcement Learning (RL)

Types of Machine Learning Supervised Learning

- Observe *n* training examples $D=\{x_i, y_i\}$
- Learn a function, h, mapping any input x to output y: h(x)≈y
- Classification: predict a small number of discretevalued outputs
- Regression: predict a continuous-valued output
- Ranking

•

Decision Boundaries

Graphical Example of Regression

Graphical Example of Regression

Graphical Example of Regression

Types of Machine Learning Unsupervised Learning

- Observe *n* examples $D = \{x_i\}$
- Clustering: Find a well-separated partition of example $D=\{D_1, D_2, ..., D_k\}$
- Dimensionality reduction: Find a low-distortion, low-dimensional projection y = P x, where the number of dimensions of y is less than (sometimes much less than) the number of dimensions of x
- The goal is to replace the high-complexity description of with a lower-complexity one

Clustering

- Clustering is an unsupervised learning task.
 - There is no target value to shoot for.
- Identify groups of "similar" data points, that are "dissimilar" from others.
- Partition the data into groups (clusters) that satisfy these constraints
 - Points in the same cluster should be similar.
 - 2. Points in different clusters should be dissimilar.

Graphical Example of Clustering

Graphical Example of Clustering

Graphical Example of Clustering

Dimension Reduction

- High dimension
 — low dimension
 - Dimension: number of features
- Principle:
 - Preserve some quantity of the original data
- Goal:
 - People can "see" the data in eyes
 - Some model can actually work on them

Data Manifold

https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/13122/visualization Kaggle competition, otto group product, 93 features, 200K products (data), 10 categoreis

Types of Machine Learning

- Supervised Learning (SL)
- Unsupervised Learning (UL)
- Reinforcement Learning (RL)

Python scikit learn http://scikit-learn.org/stable/tutorial/machine_learning_map/

Task: predict the house price based on the size of house.

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178
	•••	•••
	X -	→ V

 Learn a function, h, mapping any input x to output y: h(x)≈y

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

 $\underline{h_{\theta}(x)}$ (for fixed $\theta_0, \overline{\theta_1}$, this is a function of x)

$$J(heta_0, heta_1)$$
 (function of the parameters $heta_0, heta_1$)

This Class

- Graphical Example
 - Classification
 - Regression
 - Clustering
- Model representation
- Loss function

Next Class

- Linear Regression
- Maximum Likelihood Estimation (MLE)
- Gradient Decent
- Overfitting & Underfitting

To Do

- Read "Bishop": Ch 2 & Ch 3.
- Read "Statistics" and "Linear Algebra" resources.
- Class project.