Graph Theory-Class 2

A graph in which every pair of points are adjacent is called

A graph in which every pair of points are adjacent is called **Complete graph**.

A graph in which every pair of points are adjacent is called **Complete graph**.

A complete graph with p vertices is denoted by K_p .

A graph in which every pair of points are adjacent is called **Complete graph**.

A complete graph with p vertices is denoted by K_p .

Result:

A graph in which every pair of points are adjacent is called **Complete graph**.

A complete graph with p vertices is denoted by K_p .

Result: A complete graph with p vertices has $\frac{p(p-1)}{2}$.

A graph in which every pair of points are adjacent is called **Complete graph**.

A complete graph with p vertices is denoted by K_p .

Result: A complete graph with p vertices has $\frac{p(p-1)}{2}$. **Hint:** Use degree sum formula.

► Length of a walk: The number of occurrences of edges in the walk.

1. sateufvdtas-

► Length of a walk: The number of occurrences of edges in the walk.

1. sateufvdtas-5.

- 1. sateufvdtas-5.
- 2. uetasbucw-

- 1. sateufvdtas-5.
- 2. uetasbucw-4.

- 1. sateufvdtas-5.
- 2. uetasbucw-4.
- ▶ **Distance between two vertices:** The distance between vertices *u* and *v* in a graph *G* is the length of a shortest path joining them.

► Length of a walk: The number of occurrences of edges in the walk.

- 1. sateufvdtas-5.
- 2. uetasbucw-4.

• Z

▶ Distance between two vertices: The distance between vertices u and v in a graph G is the length of a shortest path joining them. If no such path exists, the distance is defined to be ∞ .

Connected Vertices: Two vertices u and v are said to be connected if there exists a path between them in G.

Connected Vertices: Two vertices u and v are said to be connected if there exists a path between them in G.

Connected Graph: A graph is *connected* if every pair of vertices is connected by a path.

Connected Vertices: Two vertices u and v are said to be connected if there exists a path between them in G.

Connected Graph: A graph is *connected* if every pair of vertices is connected by a path.

Connected Vertices: Two vertices u and v are said to be connected if there exists a path between them in G.

Connected Graph: A graph is *connected* if every pair of vertices is connected by a path.

Subgraph: Let G(V, E) be a graph. A graph H is called a subgraph of G if

Spanning subgraph: A subgraph H of G such that V(H) = V(G).

Spanning subgraph: A subgraph H of G such that V(H) = V(G).

Spanning subgraph: A subgraph H of G such that V(H) = V(G).

the graph C_3

the graph C_3

the graph C_3

the graph C_3

the graph C_3

Spanning Subgraphs of C_3

Spanning Subgraphs of C_3

Spanning Subgraphs of C_3

Removal of a point v: Let G be a graph and $v \in V(G)$, the subgraph H = G - v consists of all points of G except v and all lines of G except those lines incident with v.

Removal of a point v: Let G be a graph and $v \in V(G)$, the subgraph H = G - v consists of all points of G except v and all lines of G except those lines incident with v.

Removal of an edge x: Let G be a graph and $x \in E(G)$, the subgraph H = G - x is a spanning subgraph of G with all edges except x.

Removal of a point v: Let G be a graph and $v \in V(G)$, the subgraph H = G - v consists of all points of G except v and all lines of G except those lines incident with v.

Removal of an edge x: Let G be a graph and $x \in E(G)$, the subgraph H = G - x is a spanning subgraph of G with all edges except x.

Maximal subgraph A subgraph H of G is said to be maximal with respect to a property P if

- i. H satisfies property P
- ii. if H' is another subgraph of G which is a supergraph of H then H' does not satisfy property P.

Removal of a point v: Let G be a graph and $v \in V(G)$, the subgraph H = G - v consists of all points of G except v and all lines of G except those lines incident with v.

Removal of an edge x: Let G be a graph and $x \in E(G)$, the subgraph H = G - x is a spanning subgraph of G with all edges except x.

Maximal subgraph A subgraph H of G is said to be maximal with respect to a property P if

- i. H satisfies property P
- ii. if H' is another subgraph of G which is a supergraph of H then H' does not satisfy property P. OR
 H is not a subgraph of any supergraph with property P.

Removal of a point v: Let G be a graph and $v \in V(G)$, the subgraph H = G - v consists of all points of G except v and all lines of G except those lines incident with v.

Removal of an edge x: Let G be a graph and $x \in E(G)$, the subgraph H = G - x is a spanning subgraph of G with all edges except x.

Maximal subgraph A subgraph H of G is said to be maximal with respect to a property P if

- i. H satisfies property P
- ii. if H' is another subgraph of G which is a supergraph of H then H' does not satisfy property P. OR
 H is not a subgraph of any supergraph with property P.

We will see an example now.

Removal of a point v: Let G be a graph and $v \in V(G)$, the subgraph H = G - v consists of all points of G except v and all lines of G except those lines incident with v.

Removal of an edge x: Let G be a graph and $x \in E(G)$, the subgraph H = G - x is a spanning subgraph of G with all edges except x.

Maximal subgraph A subgraph H of G is said to be maximal with respect to a property P if

- i. H satisfies property P
- ii. if H' is another subgraph of G which is a supergraph of H then H' does not satisfy property P. OR
 H is not a subgraph of any supergraph with property P.

We will see an example now.

Acyclic graph: A graph with no cycles.

Let property P: Subgraph has no cycles.

Let property P: Subgraph has no cycles. Draw a maximal subgraph with property P.

Let property P: Subgraph has no cycles. Draw a maximal subgraph with property P.

Let property P: Subgraph has no cycles. Draw a maximal subgraph with property P.

Induced subgraph Let G be a graph and $S \subset V(G)$, the induced subgraph with respect to set S, denoted by S > 1 is the maximal subgraph of S = 1 with point set S = 1.

Induced subgraph Let G be a graph and $S \subset V(G)$, the induced subgraph with respect to set S, denoted by < S > is the maximal subgraph of G with point set S. In otherwords, if G is a graph, then a subgraph H = < S > is induced subgraph if

ightharpoonup V(H) = S and

Induced subgraph Let G be a graph and $S \subset V(G)$, the induced subgraph with respect to set S, denoted by < S > is the maximal subgraph of G with point set S.

In otherwords, if G is a graph, then a subgraph $H=<{\cal S}>$ is induced subgraph if

- ightharpoonup V(H) = S and
- \blacktriangleright H is not a subgraph of any supergraph H' with vertex set S.

Let $S = v_1, v_4, v_5$. Draw induced subgraph of G with set S.

- 1

Let $S = v_1, v_4, v_5$. Draw induced subgraph of G with set S.

Task

Task

▶ We know that two vertices *u* and *v* in a graph *G* are connected if ______.

Task

- ▶ We know that two vertices *u* and *v* in a graph *G* are connected if ______.
- ▶ Based on connectedness of vertices can you separate/divide the vertex set V of the following graph?

Let G(V, E) be a graph. Define a relation on V(G) as follows: $u \sim v$ (u is related to v) if u and v are connected.

▶ This relation is an **equivalence relation** on the vertex set V(G).

- ▶ This relation is an **equivalence relation** on the vertex set V(G).
- ▶ Thus, there is a partition of V(G) into non empty subsets $V_1, V_2, ..., V_k$ such that two vertices u and v are connected if and only if both u and v belongs to the same set V_i .

- ▶ This relation is an **equivalence relation** on the vertex set V(G).
- ▶ Thus, there is a partition of V(G) into non empty subsets $V_1, V_2, ..., V_k$ such that two vertices u and v are connected if and only if both u and v belongs to the same set V_i .
- ▶ The induced subgraphs $< V_1 >, < V_2 >, \dots, < V_k >$ are called the (connected) components of G.

- ▶ This relation is an **equivalence relation** on the vertex set V(G).
- ▶ Thus, there is a partition of V(G) into non empty subsets $V_1, V_2, ..., V_k$ such that two vertices u and v are connected if and only if both u and v belongs to the same set V_i .
- ▶ The induced subgraphs $< V_1 >, < V_2 >, ..., < V_k >$ are called the (connected) components of G.
- ▶ If *G* has exactly one component, *G* is connected; otherwise *G* is disconnected.

- ▶ This relation is an **equivalence relation** on the vertex set V(G).
- ▶ Thus, there is a partition of V(G) into non empty subsets $V_1, V_2, ..., V_k$ such that two vertices u and v are connected if and only if both u and v belongs to the same set V_i .
- ▶ The induced subgraphs $< V_1 >, < V_2 >, ..., < V_k >$ are called the (connected) components of G.
- ▶ If G has exactly one component, G is connected; otherwise G is disconnected.
- We denote the number of components of G by $\omega(G)$.