Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$	
	$4 \bar{\imath} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
 Total constraints/gau	uge generators:	16

Г							
${\mathfrak r}_1^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$ au_{1}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^-}^{\#1}$	0	0	0	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
${\mathfrak l}_1^{\#1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$a_1^{\#2} + \alpha \beta$	${\mathfrak l}_1^{\#1} + {\mathfrak a}^{\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$

$\tau_1^{\#2} + \alpha$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	$\frac{1}{r_5!t_1} 0$		$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
Quadrat	Quadratic (free) action) action			$\sigma_2^{\sharp 1}$ †		$\sigma_{2}^{\#1}$		
S== [[[$[(f^{\alpha\beta} \iota_{\alpha}$	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$			αβχ	-	$\dagger^{\alpha\beta}$		
		$rac{1}{6}t_1$ (2 $\mathcal{A}^{lpha\prime}_{\ lpha}$ 5	$\mathcal{A}_{,\;\theta}^{\;\theta}$ -4 $\mathcal{A}_{\alpha\;\theta}^{\;\;\theta}$ $\partial_{i}f^{\alpha_{i}}$	$rac{1}{6}t_{1}\left(2\mathcal{A}^{lpha\prime}_{$	f^{θ}	(1+2 k	(1+2 k	$\sigma_{2}^{#1}$	
		$\partial' f^{\alpha}_{\ \alpha}$	$-2\partial_{i}f^{\alpha i}\partial_{\theta}f_{\alpha}^{\ \ \theta}+4$	$\partial' f^{\alpha}_{\alpha} - 2\partial_{\scriptscriptstyle{j}} f^{\alpha\prime}\partial_{\theta} f^{\theta}_{\alpha} + 4\partial' f^{\alpha}_{\alpha}\partial_{\theta} f^{\theta}_{\prime} - 6\partial_{\alpha} f_{\prime\theta}\partial^{\theta} f^{\alpha\prime} -$		$(2)^2 t_1$	$\frac{(2)^2 t_1}{(2)^2 k}$	αβ	
		$3 \partial_{\alpha} f_{\theta_1} \dot{\epsilon}$	$\partial^{\theta} f^{\alpha \prime} + 3 \partial_{\iota} f_{\alpha \theta} \partial^{\theta} f$	$3 \partial_{\alpha} f_{\theta_l} \partial^{\theta} f^{\alpha_l} + 3 \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha_l} + 3 \partial_{\theta} f_{\alpha_l} \partial^{\theta} f^{\alpha_l} +$		(1+	- 1	ι	
		$3 \partial_{\theta} f_{I\alpha} \dot{\alpha}$	$3 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha \prime} + 6 \mathcal{A}_{\alpha \theta \prime} (\mathcal{A}^{\alpha \prime \theta} + 2 \partial^{\theta} f^{\alpha \prime})) +$	$(\alpha^{(1)} + 2 \partial^{\theta} f^{\alpha'})) +$	0	$4k^2$ $2k^2)^2$	$2i\sqrt{2}$ $+2k^2$.#1 2 ⁺ αβ	
		$\frac{1}{3} r_2 (4 \partial_{eta} \mathcal{A}_{\alpha \iota \theta})$	$\frac{1}{3}r_2 (4 \partial_{\beta} \mathcal{A}_{\alpha \prime \theta} - 2 \partial_{\beta} \mathcal{A}_{\alpha \theta \prime} + 2 \partial_{\beta} \mathcal{A}_{\prime \theta \alpha} - \partial_{\prime} \mathcal{A}_{\alpha \beta \theta} +$	$q_{, hetalpha}$ - $\partial_{,}\mathcal{R}_{lphaeta heta}$ +		$\frac{1}{t_1}$	$\frac{k}{2}$	3 (
		$\partial_{ heta} \mathcal{A}_{lphaeta_{l}}$ -	$\partial_{\theta}\mathcal{A}_{\alpha\beta'}$ - $2\partial_{\theta}\mathcal{A}_{\alpha'\beta}$) $\partial^{\theta}\mathcal{A}^{\alpha\beta'}$ -	ا	$\frac{2}{t_1}$	0	0	$\sigma_{2}^{\#1}$ α	
		$2 r_3 (\partial_{\beta} \mathcal{H}_{\beta}^{\ \ \ \ \ } \partial^{\prime} \mathcal{F}_{\beta})$	$\mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{i}\mathcal{A}_{\beta}^{\theta}\partial^{i}\mathcal{S}$	$2r_3(\partial_{\beta}\mathcal{A}_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				βχ	
		2 3' A ^{ab}	$2\partial'\mathcal{A}^{\alpha\beta}_{\beta}\partial_{\theta}\mathcal{A}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$^{\prime}$		85	$\binom{\#1}{2} \alpha \beta$	$f_2^{\#1}$	${\mathcal A}_2^{\#1}_{+lphaeta}f_2^{\#1}_{+lphaeta}{\mathcal A}_2^{\#1}_{-lphaeta}$
		2019 ^{ab}	$2\partial'\mathcal{A}^{\alpha\beta}{}_{\alpha}\partial_{\theta}\mathcal{A}^{}_{\beta}+2\partial_{\beta}\mathcal{A}_{I\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta'})+$	$_{ heta lpha} \partial^{ heta} \mathcal{A}^{lpha eta'}) +$	#Z ₂ .	$\mathcal{A}_{2}^{\#1} + \alpha \beta$	2 - 2	$-\frac{ikt_1}{\sqrt{2}}$	0
		r_5 (3,99 $_{_{ m K}}^{^{_{ m K}}}$ 399	$(\alpha'_{\alpha} - \partial_{\theta} \mathcal{A}'_{\kappa}^{\kappa} \partial^{\theta} \mathcal{A}^{\alpha'})$	$r_{5}\left(\partial_{i}\mathcal{A}_{\theta}^{k}\partial^{\theta}\mathcal{A}^{lpha\prime}_{a}-\partial_{\theta}\mathcal{A}_{ik}^{k}\partial^{\theta}\mathcal{A}^{lpha\prime}_{a}-\left(\partial_{lpha}\mathcal{A}^{lpha\prime\theta}-2\partial^{\theta}\mathcal{A}^{lpha\prime}_{a}\right)$		$f_2^{#1} + \alpha \beta$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
		$(\partial_{\kappa}\mathcal{A})$	$_{'}^{\kappa}{}_{\theta}^{}$ - $\partial_{\kappa}\mathcal{R}_{\theta}^{\kappa}{}_{,}^{\prime})))[t,\kappa,$	$(\partial_{\kappa}\mathcal{H}_{_{l}}^{\kappa}-\partial_{\kappa}\mathcal{H}_{\partial^{\kappa}_{_{l}}}^{\kappa})))[t,\kappa,y,z]dzdydxdt$	$\mathcal{A}_{2}^{\#1}$	$\mathcal{A}_{2}^{#1} +^{\alpha \beta \chi}$	0	0	<u>t1</u> 2
						$\sigma_{i+1}^{\#1}$	$O_{-}^{\#1}$ $I_{-}^{\#1}$ $I_{-}^{\#2}$	#2 C#1	<u>+</u> 1

 $c_{0}^{#1} + c_{0}^{#1} + c_{$

0 0

0 0

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,t_1$

 $k^2 (2 r_3 + r_5) + \frac{t_1}{6}$

 $\mathcal{A}_{1}^{\#_{1}} \dagger^{\alpha}$

 $\frac{t_1}{3\sqrt{2}}$

 $\mathcal{A}_{1}^{\#2} \dagger^{\alpha}$

 $f_{1^{\text{-}}}^{\#1} \dagger^{\alpha}$

 $\frac{t_1}{3\sqrt{2}}$ $\frac{t_1}{3}$

 $\frac{2k^2t_1}{3}$

 $-\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,t_1$

 $-\frac{1}{3}\,\bar{l}\,k\,t_1$

 $\mathcal{A}_{0}^{\#1}+f_{0}^{\#1}+f_{0}^{\#2}+f_{0}^{\#2}+g_{0}^$

 $k^2 (2 r_3 + r_5) - \frac{t_1}{2}$

 $\mathcal{A}_1^{\#1} + ^{\alpha eta}$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_1^{#1} + \alpha \beta$

 $6\,k^2\,r_3$

 $\mathcal{A}_{1}^{\#2}_{+}\,f_{1}^{\#1}_{lphaeta}$

 $\mathcal{A}_{0}^{\#1}$

Massive and massless spectra

Massive particle				
Pole residue:	$-\frac{1}{r_2} > 0$			
Polarisations:	1			
Square mass:	$\frac{t_1}{r_2} > 0$			
Spin:	0			
Parity:	Odd			

?	Quadratic pole	:
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$
?	Polarisations:	2
:		

Unitarity conditions

 $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$