PLANO DE TRABALHO DO BOLSISTA

BOLSISTA 2							
Título do plano de trabalho:	DESENVOLVIMENTO DE BIOSSENSOR À BASE DE PROTEÍNAS REDOX DE MACROFUNGOS E SUA APLICAÇÃO PARA A ELETROANÁLISE DE CONTAMINANTES EMERGENTES						
Modalidade de bolsa solicitada:	PIBIT						

Objetivos geral e específicos:

O objetivo geral deste trabalho é desenvolver um biossensor eletroquímico à base de proteínas redox de macrofungos que apresente alto desempenho para a identificação e quantificação de contaminantes emergentes.

Quanto aos objetivos específicos, pode-se citar:

- (I) Valorizar e explorar a biodiversidade do Bioma Caatinga, com ênfase na Região Cariri Cearense, identificando novas espécies ricas em proteínas redox;
- (II) Caracterizar o conteúdo proteico por diferentes técnicas físico-químicas;
- (III) Estudar a interação/reatividade das proteínas (ou extrato proteico) em relação à diferentes contaminantes emergentes;
- (IV) Estudar estratégias de imobilização das proteínas sobre o eletrodo de trabalho;
- (V) Otimizar parâmetros eletroanalíticos;
- (VI) Quantificar contaminantes emergentes em matrizes de interesse ambiental.

Metodologia:

Os bioelementos purificados ou na forma de extrato serão obtidos de macrofungos (cogumelos e orelhas-de-pau) oriundos da Região Cariri Cearense, mais especificamente da Floresta Nacional do Araripe-Apodi. A amostragem do material será feita em sacos plásticos, devidamente esterilizados e identificados, com posterior acondicionamento dos mesmos em recipientes de poliestireno com gelo. O processo de extração e purificação será conduzido na Central Analítica da Universidade Federal do Cariri (UFCA, Campus de Juazeiro do Norte - CE). A identificação das proteínas se dará por testes qualitativos padrão, ensaios eletroquímicos, eletroforéticos e cromatográficos, que suportarão estudos computacionais de densidade eletrônica e modelagem molecular.

Para o desenvolvimento dos dispositivos, será utilizado um eletrodo de carbono vítreo modificado com nanocompósitos poliméricos (nanomateriais e polímeros condutores), que servirá como suporte para a posterior imobilização dos bioelementos por *drop coating*. A caracterização do material proteico, bem como a modificação das superfícies, será acompanhada por técnicas voltamétricas (perfil característico a cada nova modificação; Potenciostato PGSTAT 101, Metrohm-Autolab), impedância eletroquímica (alterações na resistência de transferência de carga; Potenciostato µ-Autolab Tipe III, Metrohm-Autolab), microscopia eletrônica (morfologia; microscópio eletrônico de varredura EVO MA 10, Carl Zeiss), entre outras técnicas para caracterização *in situ* ou em solução (composição elementar; difratômetro de raios-X MiniFlex 600, Rigaku; e grupos funcionais; difratômetro de raios-X MiniFlex 600, Rigaku e espectrofotômetro UV-visível Cary 50, Varian).

Os estudos eletroanalíticos serão feitos em solução aquosa, buscando informações

referentes ao perfil voltamétrico, intensidade das correntes de pico, potencial necessário para a ocorrência da reação redox, seletividade do processo e menor ruído do sinal analítico. Os dados da equação de regressão linear resultantes das curvas analíticas serão utilizados para avaliar a eficiência da metodologia proposta em termos de faixa linear de concentração, variância e correlação estatística dos dados, limites de detecção e quantificação, precisão, seletividade e robustez. O procedimento será aplicado na quantificação de contaminantes emergentes em matrizes ambientais supostamente impactadas. Todas as medidas serão realizadas em triplicata e reportadas como a média aritmética.

Cronograma de atividades:

ATIVIDADE	MÊS											
	1	2	3	4	5	6	7	8	9	10	11	12
Revisão bibliográfica	X	X	X	X	X	X	X	X	X	X	X	X
Coleta de amostras	X	X										
Extração e purificação do conteúdo proteico			X	X								
Caracterização das proteínas isoladas e/ou extratos proteicos				X	X	X						
Seleção e imobilização do(s) bioelementos(s) sobre o eletrodo de trabalho					X	X	X					
Comportamento eletroquímico dos contaminantes sobre o biossensor eletroquímico						X	X	X	X			
Otimização de parâmetros eletroanalíticos							X	X	X			
Aplicação do procedimento em matrizes ambientais								X	X	X		
Comunicação dos resultados em eventos científicos									X	X	X	X
Elaboração e submissão de artigos para periódicos indexados										X	X	X
Elaboração e envio do Relatório Final Individual											X	X