Please remove this sheet before starting your exam.

Things you must have memorized

The Momentum Principle	The Energy Principle	The Angular Momentum Principle			
Definition of Momentum	Definition of Velocity	Definition of Angular Momentum			
Definitions of angular velocity, particle energy, kinetic energy, and work					

Other potentially useful relationships and quantities

$$E_N = N\hbar\omega_0 + E_0$$
 where $N = 0, 1, 2...$ and $\omega_0 = \sqrt{\frac{k_{si}}{m_a}}$ (Quantized oscillator energy levels)

Moment of inertia for rotation about indicated axis

$$I = \frac{2}{5}MR^{2} \qquad I = \frac{1}{2}MR^{2} \qquad I = \frac{1}{12}ML^{2} \qquad I = \frac{1}{3}ML^{2} \qquad I = \frac{1}{12}ML^{2} + \frac{1}{4}MR^{2}$$

Constant	Symbol	Approximate Value	
Speed of light	c	$3 \times 10^8 \text{ m/s}$	
Gravitational constant	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$	
Approx. grav field near Earth's surface	g	$9.8 \mathrm{\ N/kg}$	
Electron mass	m_e	$9 \times 10^{-31} \text{ kg}$	
Proton mass	m_p	$1.7 \times 10^{-27} \text{ kg}$	
Neutron mass	m_n	$1.7 \times 10^{-27} \text{ kg}$	
Electric constant	$\frac{1}{4\pi\epsilon_0}$	$9\times10^9~\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2$	
Proton charge	e	$1.6 \times 10^{-19} \text{ C}$	
Electron volt	1 eV	$1.6 \times 10^{-19} \text{ J}$	
Avogadro's number	N_A	$6.02 \times 10^{23} \text{ atoms/mol}$	
Plank's constant	h	6.6×10^{-34} joule · second	
$hbar = \frac{h}{2\pi}$	\hbar	1.05×10^{-34} joule · second	
specific heat capacity of water	C	$4.2 \mathrm{~J/g/K}$	
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ J/K}$	

milli	m	1×10^{-3}	kilo	k	1×10^3
micro	μ	1×10^{-6}	mega	M	1×10^6
nano	\mathbf{n}	1×10^{-9}	giga	G	1×10^9
pico	p	1×10^{-12}	tera	\mathbf{T}	1×10^{12}

PHYS 2211 KMR - Test 3 - Spring 2022

Please clearly print your name & GTID in the lines below

Name:	GTID:

Instructions

- This exam is closed internet/books/notes, except for the Formula Sheet which is included with the exam.
- You must work individually and receive no assistance from any person or resource.
- You are not allowed to post screenshots, files, or any other details of the test anywhere online, not even after the test is over.
- Work through all the problems first, then scan/upload your solutions after time is called.
 - Your uploaded files **must** be in either PNG, JPG, or PDF format.
 - Your uploaded files must be readable in order to be graded. Unreadable files will earn a zero.
 - You can upload a single file containing work for multiple problems as long as you upload the file for each problem individually.
 - Clearly label your work for each sub-part and box the final answers.
- To earn partial credit, your work must be legible and the organization must be clear.
 - Your solution should be worked out algebraically.
 - Numerical solutions should only be evaluated at the last step. Incorrect solutions that are not solved algebraically will receive an 80 percent deduction.
 - You must show all work, including correct vector notation.
 - Correct answers without adequate explanation will be counted wrong.
 - Incorrect work or explanations mixed in with correct work will be counted wrong. Cross out anything you do not want us to grade
 - Make explanations correct but brief. You do not need to write a lot of prose.
 - Include diagrams!
 - Show what goes into a calculation, not just the final number, e.g.: $\frac{a \cdot b}{c \cdot d} = \frac{(8 \times 10^{-3})(5 \times 10^6)}{(2 \times 10^{-5})(4 \times 10^4)} = 5 \times 10^4$
 - Give standard SI units with your numeric results. Your symbolic answers should not have units.

Unless specifically asked to derive a result, you may start from the formulas given on the formula sheet, including equations corresponding to the fundamental concepts. If a formula you need is not given, you must derive it.

If you cannot do some portion of a problem, invent a symbol for the quantity you can not calculate (explain that you are doing this), and use it to do the rest of the problem.

Stew - Q2 in Gradescope [30 pts]

You get home from school and decide to heat up some vegetable stew for dinner. The stew, which has a heat capacity of $C_s = 3.8 \text{ J/(g}^{\circ}\text{C})$ and a density of $\rho_s = 1500 \text{ g/L}$, has been sitting in a large pot in the fridge at a temperature of $T_{si} = 5^{\circ}\text{C}$ since you cooked it last night. One serving of stew is $m_s = 650 \text{ g}$.

1. [15 pts] Your microwave has a power rating of P = 700 W. How much time does it take to heat one serving of stew to a temperature of $T_{sf} = 70^{\circ}$ C?

$$\Delta E_{\text{thermal, stew}} = \frac{m_s c_s \Delta T_{\text{stew, healing}}}{2 m_s c_s (T_{s_f} - T_{s_t})}$$

$$= (650g)(3.8 T/g \circ c)(65°c)$$

$$= (.6 \times 10^5 \text{ J})$$

$$= \frac{\Delta E_{\text{thistew}}}{P_{\text{mirrowave}}} = \frac{1.6 \times 10^5 \text{ J}}{700 \text{ J/s}} = 229s$$

2. [10 pts] The volume of a spoonful of stew is $V_s = 0.015$ L. When you bring it to your mouth, you realize the stew is too hot, so you start blowing on it. One blow puts $m_a = 258$ g of air at $T_a = 37^{\circ}$ C in contact with the contents of the spoon. How many times do you need to blow on the spoon to lower the stew's temperature by 5°C? Assume the system consisting of the spoonful of stew and the air blown on it are a closed system that reaches thermal equilibrium. The heat capacity for the air you blow is $C_a = 0.8 \text{ J/(g°C)}$.

$$\Delta E_{arr-stew} \stackrel{?}{=} 0 = \Delta E_{th,skw} + \Delta E_{th,arv}$$

$$O = (P_s V_s) \cdot C_s \cdot (\Delta T_{skw}, coolog)$$

$$+ m_a C_a \Delta T_{air}$$

$$O = (22.5g)(3.87/g^{o}c)(-5^{o}c)$$

$$+ (m_{air,th})(0.87/g^{o}c)(65^{o}c - 37^{o}c)$$

$$= 0.07 blows$$

$$+ blows = \frac{M_{air,tot}}{m_a} = 0.07 blows$$

3. [5 pts] Is your answer to the previous part realistic? (yes/no). Very briefly explain your reasoning.

Note on grading: Full credit for "system is not about.

Note on grading: Full credit for "system is not about.

Note on grading: Full credit for "system is not about.

Note on grading: Full credit for other sensible.

Propeller – Q3 in Gradescope [50 pts]

A propeller toy consists of four circular blades, each of mass m and radius r, connected to each other and attached to a massless spring of stiffness k and relaxed length L_0 , as seen in the diagram. You pull upwards $(+\hat{y})$ on the spring with a force of constant magnitude P, causing the spring to be stretched to a length L_i . When this happens, the blades are rotating in the xz plane (parallel to the ground) with angular speed ω_i . This is the initial state (Figure 1).

You continue pulling and some time later your hand has moved up a distance h, causing the spring to be stretched to a new length L_f . The center of mass of the system has moved up a distance d and now moves upwards with an unknown speed v_f . Each blade feels a force from the air of magnitude $F = \alpha v^2$ pointing **opposite to the velocity** of the object (α is a positive constant) that causes their angular speed to change to ω_f . This is the final state (Figure 2).

Consider the system to consist of the four circular blades AND the spring.

- 1. [5 pts] What is the magnitude of the net force acting on the **point particle system**?
 - (a) $F_{\text{net}} = P mg \alpha v^2$
 - (b) $F_{\text{net}} = P 4mg + \alpha v^2$
 - (c) $F_{\text{net}} = P mg + 4\alpha v^2$
 - (d) $F_{\text{net}} = P 4mg 4\alpha v^2$

2. [5 pts] What is the work done on the **point particle system**?

(a)
$$W_{\rm cm} = Pd - 4mgd - 4\alpha \int_0^d v^2 dy$$

(b)
$$W_{\rm cm} = Ph - 4mgh + \alpha \int_0^h v^2 dy$$

(c)
$$W_{\text{cm}} = P(L_f - L_i) - 4mg(L_f - L_i) + 2\alpha \int_0^{L_f - L_i} v^2 dy$$

(d)
$$W_{\rm cm} = P(h-d) - mg(h-d) - \alpha \int_0^{h-d} v^2 dy$$

$$W_{cm} = P(h-d) - mg(h-d) - \alpha \int_0^{h-d} v^2 dy$$

$$W_{cm} = P_{net} \cdot \hat{f}_{cm} \quad f_{cm} = ABP, \quad \text{of cen ker}$$

$$W_{cm} = P_{net} \cdot \hat{f}_{cm} \quad f_{cm} = ABP, \quad \text{of cen ker}$$

3. [10 pts] If the system started at rest, what is the final speed v_f ? Do not evaluate any integrals in your

$$\Delta E_{pt-parknk} = \Delta K_{trans} = W_{cm}$$

$$K_{f} - K_{i}^{7}$$

$$= \sum K_{f} = \frac{1}{2} (4m) v_{f}^{2} = Pd - 4mgd - 4d \int_{0}^{d} v^{2} dy$$

$$= \sum V_{f} = \sqrt{\frac{1}{2m}} \left[Pd - 4mgd - 4d \int_{0}^{d} v^{2} dy \right]$$

- 4. [5 pts] What is the change in **spring potential energy** (ΔU_s) of the system?
 - (a) $\Delta U_s = \frac{1}{2}kh^2 \frac{1}{2}kd^2$
 - (b) $\Delta U_s = \frac{1}{2}kL_f^2 \frac{1}{2}kL_i^2$
 - $(c) \Delta U_s = \frac{1}{2}k(L_f L_i)^2$
 - (d) $\Delta U_s = \frac{1}{2}k(L_f L_0)^2 \frac{1}{2}k(L_i L_0)^2$

- 5. [5 pts] What is the total work done on the **extended (multiparticle) system?**

 - (a) $W_{\rm R} = Pd 4mgh + \alpha \int_0^d v^2 dy$ (b) $W_{\rm R} = Ph 4mgd 4\alpha \int_0^d v^2 dy$
 - (c) $W_{\rm R} = PL_f 4mgd + 4\alpha \int_0^{L_f} v^2 dy$
 - (d) $W_{\rm R} = P(h-d) mg(h-d) \alpha \int_0^{h-d} v^2 d$

Use the displacement of the pront where each force B applied.

6. [20 pts] Determine what is the **final angular speed** ω_f of the system. The moment of inertia of a single blade about its edge is $I=(2/3)mr^2$. To simplify the algebra, you may use any of the quantities you've so far determined as variables, if needed $(F_{\rm net}, W_{\rm cm}, v_f, \Delta U_s, \text{ and/or } W_{\rm R})$. Do not evaluate any integrals in your result.

$$\Delta E_{\text{real system}} = \Delta K_{\text{tens}} + \Delta K_{\text{rat}} + \Delta U_{\text{s}} = W_{\text{R}}$$

$$= \frac{1}{2} (4m) v_{\text{f}}^2 + 4 \cdot \frac{1}{2} I(w_{\text{f}}^2 - w_{\text{i}}^2) + \Delta U_{\text{s}} = W_{\text{R}}$$

$$= \sum W_{\text{f}} = \sqrt{\frac{1}{2} I(w_{\text{f}}^2 - w_{\text{i}}^2) + 2I w_{\text{i}}^2 - \Delta U_{\text{s}}}$$

$$= \sum W_{\text{f}} = \sqrt{\frac{3}{4m r^2} [W_{\text{R}} - 2m v_{\text{f}}^2 - \Delta U_{\text{s}}] + w_{\text{i}}^2}$$

Collision – Q4 in Gradescope [20 pts]

An point mass $m_1 = m$ moves with velocity $\vec{v}_{1i} = \langle v, 0, 0 \rangle$ when it collides with another point mass $m_2 = m$ which was stationary, $\vec{v}_{2i} = 0$. Prove mathematically that if this is an **elastic** collision, all the momentum of point mass 1 will be transferred to point mass 2. In other words, show that $\vec{v}_{1f} = 0$ and $\vec{v}_{2f} = \langle v, 0, 0 \rangle$.

Hint: think about what two quantities are conserved during an elastic collision.

$$\frac{I_{ni}t_{7a}|}{\vec{v}_{1i}} = \langle V_{i}^{0}|0 \rangle$$

$$\vec{v}_{2i} = 0$$
Because this is a (head-on) collision of two point masses, we only need to consider the x-direction.

Conservation of momentum; $\vec{p}_{i} = \vec{p}_{f}$

$$\vec{v}_{1i} + \vec{v}_{2i} = \vec{v}_{1f} + \vec{v}_{2f}$$

$$\vec{v}_{i} + \vec{v}_{2f} = \vec{v}_{1f} + \vec{v}_{2f}$$

$$\vec{v}_{1f,x} = \vec{v} - \vec{v}_{2f,x}$$

$$\vec{v}_{1f,x} = \vec{v} - \vec{v}_{2f,x}$$
(**)

Conservation of energy | $(E_i = KE_f)$ $\frac{1}{2}mv_{ii}^2 + \frac{1}{2}mv_{ii}^2 = \frac{1}{2}mv_{if}^2 + \frac{1}{2}mv_{if}^2$ $v^2 = V_{16x}^2 + v_{26x}^2$

This page is left blank if needed for extra work Subbing in (*) into (* *), we get v2 = (v-V2+,x)2+ v2+,x2 X = X - 2 V V 24, x + 2 V 24, x => V2F,x (Y2F,x-V) = 0 VZ+,X =, B, V this solution implies no collow -> reject Plugging on this solution back is to (*), we get $V_{1f,x} = V - (V) = 0$ So re have $\vec{v}_{1e} = 0$, $\vec{v}_{2e} = \langle v_1 o_1 o_2 \rangle$.