

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 9 and Hw 9: reopened till this Friday @ 11:59 pm
 - Lab 10: tonight @ 11:59 pm
 - Homework 10: this Friday 12/2 @ 11:59 pm
 - Lab 11: Monday 12/5 @ 11:59 pm
 - Homework 11: Friday 12/9 @ 11:59 pm
 - Assignment 3: Monday 11/28 Friday 12/9 @ 11:59 pm
 - Assignment 4: Friday 12/9 @ 11:59 pm

Previous Lecture

- Dynamic Programming Examples
 - Unbounded Knapsack
 - 0/1 Knapsack

This Lecture

- Dynamic Programming Examples
 - Subset Sum
 - Edit Distance
 - Longest Common Subsequence

Muddiest Points

- Q: Is the unbounded knapsack solution different from backtracking with pruning state repeats, or is there some fundamental difference b/w the 2?
- backtracking with pruning state repeats is pretty much the same as memoization
- The fundamental difference is that backtracking is recursive but dynamic programming is iterative

Subset sum

• Given a set of non-negative integers S and a value k, is there a subset of S that sums to exactly k?

Subset sum calls

Subset sum recursive solution

```
boolean SSS(int set[], int sum, int n) {
   if (sum == 0)
         return true;
   if (sum != 0 \&\& n == 0)
         return false;
   //try adding item n-1
   if (set[n-1] > sum)
          return SSS(set, sum, n-1);
   return SSS(set, sum, n-1)
         || SSS(set, sum-set[n-1], n-1);
}
```

What would a dynamic programming table look like?

The Subset Sum dynamic programming solution

The Subset Sum dynamic programming solution

i∖j	0	1	2	3	4	5	6	
0	true	false	false	false	false	false	false	
1	true							
2	true						is true if the first i	
3	true				ite	ems sum	s up to j	

The Subset Sum dynamic programming solution

i\j	0	1	2	3	4	5	6
0	true	false	false	false	false	false	false
1	true		1		†		
2	true		go lef set[i-1	t by	OR		
3	true		set[i-1]			

Subset sum bottom-up dynamic programming

```
boolean SSS(int set[], int sum, int n) {
    boolean[][] subset = new boolean[sum+1][n+1];
    for (int i = 0; i \le n; i++) subset[0][i] = true;
    for (int i = 1; i <= sum; i++) subset[i][0] = false;
   for (int i = 1; i <= sum; i++) {
      for (int j = 1; j <= n; j++) {
             subset[i][j] = subset[i][j-1];
             //try adding item j-1
             if (i >= set[j-1])
                    subset[i][j] ||= subset[i - set[j-1]][j-1];
   return subset[sum][n];
```

- Given two strings
 - a string S of length n
 - o a string T of length m
- We want to find the minimum number of character changes to convert one string to the other
 - called Levenshtein Distance (LD)
- Consider changes to be one of the following:
 - Change a character in a string to a different char
 - Delete a character from one string
 - Insert a character into one string

For example:

```
LD("WEASEL", "SEASHELL") = 3
```

- Why? Consider "WEASEL":
 - Change the W in position 1 to an S
 - Add an H in position 5
 - Add an L in position 8
- Result is SEASHELL
 - We could also do the changes from the point of view of SEASHELL if we prefer
- How can we determine this?
 - We can define it in a recursive way initially
 - Then we will use dynamic programming to improve the run-time

- We want to calculate D[n, m] where n is the length of S and m is the length of T
 - From this point of view we want to determine the distance from S → T
 - If we reverse the arguments, we get the (same) distance from T to S (but the edits may be different)

```
If n = 0  // BASE CASES
  return m (m appends will create T from S)
else if m = 0
  return n (n deletes will create T from S)
else
  Consider character n of S and character m of T
```

Now we have some possibilities

- If characters match
 - return D[n-1, m-1]
 - Result is the same as for the strings with the last character removed (since it matches)
 - Recursively solve the same problem with both strings one character smaller
- If characters do not match -- more poss. here
 - We could have a mismatch at that char:
 - return D[n-1, m-1] + 1
 - Example:
 - S = -----X
 - T = ----Y
 - Change X to Y, then recursively solve the same problem but with both strings one character smaller

- S could have an extra character
 - return D[n-1, m] + 1
 - Example:
 - \blacksquare S = -----XY
 - \blacksquare T = ----X
 - Delete Y, then recursively solve the same problem, with S one char smaller but with T the same size
- S could be missing a character there
 - return D[n, m-1] + 1
 - Example:
 - \blacksquare S = ----Y
 - $\blacksquare T = -----YX$
 - Add X onto S, then recursively solve the same problem with S the original size and T one char smaller

- Unfortunately, we don't know which of these gives the minimum distance until we try them all!
- So to solve this problem we must try them all and choose the one that gives the minimum result
 - This yields 3 recursive calls for each original call (in which a mismatch occurs)
 - o and thus can give a worst-case run-time of Theta(3ⁿ)
- How can we do this more efficiently?
 - Let's build a table of all possible values for n and m using a twodimensional array
 - Basically we are calculating the same D[][] values but from the bottom up rather than from the top down

- For each new cell D[i, j] when we have a mismatch we are taking the minimum of the cells
 - \circ D[i-1, j] + 1
 - Append a char to S
 - \circ D[i, j-1] + 1
 - Delete a char from S
 - D[i-1, j-1] + 1
 - Change char at this point in S if necessary
- For each new cell D[i, j] = D[i-1, j-1] if we have a match

Edit Distance in case of matching letters i and j

Edit Distance in case of matching letters i and j

Edit Distance in case of mismatching letters i and j

- At the end the value in the bottom right corner is our edit distance
- Example:
 - We are starting with PROTEIN
 - We want to generate ROTTEN
 - Note the initialization of the first row and column
 - Let's fill in the remaining squares

	Р	R	0	Т	Е	I	N
R							
0							
Т							
Т							
Е							
N							

		Р	R	0	Т	Е	I	N
	0	1	2	3	4	5	6	7
R	1							
0	2							
Т	3							
Т	4							
Е	5							
N	6							

		Р	R	O	Т	Е	I	N
	0	1	2	3	4	5	6	7
R	1	1	1	2	3	4	5	6
0	2	2	2	1	2	3	4	5
Т	3	3	3	2	1	2	3	4
Т	4	4	4	3	2	2	3	4
Е	5	5	5	4	3	2	3	4
N	6	6	6	5	4	3	3	3

- Why is this cool?
 - Run-time is Theta(MN)
 - As opposed to the 3ⁿ of the recursive version
 - Unlike the pseudo-polynomial subset sum and knapsack solutions, this solution does not have any anomalous worst-case scenarios
 - There is a price, which is the space required for the matrix
 - Optimized versions can reduce this from Theta(MN) space to Theta(M+N) space

Longest Common Subsequence

Given two sequences, return the longest common subsequence

```
A Q S R J K V B IQ B W F J V I T U
```

 We'll consider a relaxation of the problem and only look for the length of the longest common subsequence

LCS dynamic programming example

x =	AQS	RJBI			y = Q B I J T U T					
i\j	0	Q	В	I	J	Т	U	Т		
0										
Α										
Q										
S										
R										
J										
В										
1										

LCS dynamic programming solution

```
int LCSLength(String x, String y) {
   int[][] m = new int[x.length + 1][y.length + 1];
   for (int i=0; i <= x.length; i++) {
            for (int j=0; j <= y.length; j++) {
                  if (i == 0 | | j == 0) m[i][j] = 0;
                  if (x.charAt(i) == y.charAt(j))
                        m[i][j] = m[i-1][j-1] + 1;
                  else
                        m[i][j] = max(m[i][j-1], m[i-1][j]);
            }
   return m[x.length][y.length];
```

Change making problem

Consider a currency with n different denominations of coins d_1 , d_2 , ..., d_n . What is the minimum number of coins needed to make up a given value k?

We will see a dynamic programming algorithm in the recitations