EEE 431: Telecommunications 1

Quiz 1

Oct. 23, 2021, 17:30-18:30

Instructor: Sinan Gezici

Name: _______

Signature: ______

Section: ______

Prob. 1: ______ / 20

Prob. 2: ______ / 28

Prob. 3: ______ / 24

Prob. 4: _____ / 28

Total: _____ / 100

Problem 1: Suppose that X_1 and X_2 are jointly Gaussian and the joint probability density function (PDF) of $\mathbf{X} = [X_1 \ X_2]^T$ is given by $\frac{1}{2\pi\sqrt{\det(\mathbf{C})}} \exp\{-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{x} - \boldsymbol{\mu})\}$, where $\boldsymbol{\mu} = [-1 \ 2]^T$ and $\mathbf{C} = \begin{bmatrix} 4 & -0.5 \\ -0.5 & 2 \end{bmatrix}$.

- (a) Calculate the following probability in terms of the Q-function(s): $P(2(X_1)^2 5 < 1)$.
- **(b)** Calculate the following expectation: $E[(X_1 + 3X_2)^2]$.

<u>Hint:</u> The Q-function is defined as $Q(b) = (1/\sqrt{2\pi}) \int_b^\infty e^{-t^2/2} dt$ (i.e., as the probability that a standard Gaussian random variable is larger than b).

Problem 3: A source output Y is modeled as a random variable with the probability density function (PDF) given by $f_Y(y) = 3y^2/16$ if $y \in [-2,2]$ and $f_Y(y) = 0$ otherwise. This source output is being quantized using a 4-level quantizer $Q(\cdot)$ with the quantization regions [-2,-1], (-1,0], (0,1], and (1,2]. Determine the optimal reconstruction levels for the four quantization regions that minimize the mean squared error distortion, $D = E[(Y - Q(Y))^2]$.

Problem 4: Consider the following signal: $s(t) = 4\cos(1000\pi t/3)$ for $t \in [0,1)$ second. Suppose s(t) is sampled at every 1 millisecond over the duration of $t \in [0,1)$ second. Let X denote a random variable corresponding to these samples.

- (a) Can we recover s(t) from these samples? Why or why not?
- (b) Find the probability mass function (PMF) of X (i.e., the samples).
- (c) The samples are processed by a two-level quantizer $Q(\cdot)$ that maps positive samples to A and negative samples to -A, where A is positive real number. First, write an expression, in terms of A, for the mean-squared error distortion, $D = E[(X Q(X))^2]$. Then, find the optimal value of A that minimizes D.
- (d) How much bandwidth (in Hertz) is needed to transmit the outputs of the quantizer in Part (c) assuming binary signaling?