PyE Práctica 1

Franco Cambiaso

April 2025

Ejercicio 1

- a) Cáncer de Colon y Aspirina
 - Parámetro de interés: *p* = riesgo (probabilidad) de desarrollar cáncer de colon.
 - Valor de referencia (status quo): $p_0 = \frac{1}{16}$.
 - Afirmación a investigar: Tomar aspirina reduce el riesgo.
 - Hipótesis Nula (H_0): La aspirina no reduce el riesgo de cáncer de colon, o el riesgo sigue siendo el mismo.

$$H_0: p = \frac{1}{16}$$

(O también se podría formular como $H_0: p \geq \frac{1}{16}$, indicando que el riesgo no es menor).

■ Hipótesis Alternativa (H_1): La aspirina reduce el riesgo de cáncer de colon.

$$H_1: p < \frac{1}{16}$$

■ **Tipo de Test:** Como se busca evidencia de una *reducción* (el parámetro es *menor* que el valor de referencia), se trata de un **test unilateral a** la izquierda.

b) Vida Útil de las Ollas

- \blacksquare Parámetro de interés: $\mu=$ vida útil promedio de las ollas.
- Valor de referencia (status quo): $\mu_0 = 7$ años.
- Afirmación a investigar: El nuevo material extiende la vida útil.
- **Hipótesis Nula** (H_0): El nuevo material no extiende la vida útil promedio, o es igual a la convencional.

$$H_0: \mu = 7$$

(O también $H_0: \mu \leq 7$, indicando que la vida útil no es mayor).

■ Hipótesis Alternativa (H_1): El nuevo material extiende la vida útil promedio.

$$H_1: \mu > 7$$

■ **Tipo de Test:** Como se busca evidencia de un *aumento* (el parámetro es *mayor* que el valor de referencia), se trata de un **test unilateral a** la derecha.

c) Intención de Voto para el Candidato A

- Parámetro de interés: p = proporción de personas que votarían al candidato A.
- Valor de referencia (basado en encuesta previa): $p_0 = 0.50$.
- Afirmación a investigar: La proporción ha cambiado (no se especifica si aumentó o disminuyó).
- **Hipótesis Nula** (H_0) : La proporción de votantes para el candidato A no ha cambiado.

$$H_0: p = 0.50$$

■ Hipótesis Alternativa (H_1): La proporción de votantes para el candidato A ha cambiado.

$$H_1: p \neq 0.50$$

■ **Tipo de Test:** Como se busca evidencia de *cualquier cambio* (el parámetro es *diferente* del valor de referencia, ya sea mayor o menor), se trata de un **test bilateral**.

Ejercicio 2

a)

$$H_0: p_h = p_m$$

$$H_1: p_h \neq p_m$$

b) Si los datos fueron estadísticamente significativos, significa que hay suficiente evidencia para rechazar H_0 .

Al rechazar H_0 , se acepta

 H_1 : Hombres y mujeres no tuvieron la misma chance de sobrevivir.

Ejercicio 3

- a) **Tipo de Test:** La hipótesis alternativa H_1 postula que el dado está cargado (a favor del 1 y 2). Esto significa que esperamos que los resultados 1 y 2 sean más probables bajo H_1 que bajo H_0 . Como estos valores (1 y 2) se encuentran en el extremo inferior de los posibles resultados, buscamos evidencia en esa dirección para rechazar H_0 . Por lo tanto, la dirección del extremo para esta prueba es **unilateral a la izquierda**.
- b) El nivel de significancia α es la probabilidad de cometer un Error de Tipo I (rechazar H_0 cuando H_0 es verdadera):

 $\alpha = P(\text{Rechazar } H_0|H_0 \text{ es verdadera}) = P(X \in RR|H_0)$

$$\alpha = P(X = 1|H_0) + P(X = 2|H_0) = \frac{3}{18} + \frac{3}{18} = \frac{6}{18} = \boxed{\frac{1}{3}}$$

■ La probabilidad de cometer un Error de Tipo II, β , es la probabilidad de no rechazar H_0 cuando H_1 es verdadera. La región de no rechazo (o aceptación) es $AR = \{3, 4, 5, 6\}$.

 $\beta = P(\text{No Rechazar } H_0|H_1 \text{ es verdadera}) = P(X \in AR|H_1)$

$$\beta = P(X = 3|H_1) + P(X = 4|H_1) + P(X = 5|H_1) + P(X = 6|H_1)$$
$$\beta = \frac{3}{18} + \frac{2}{18} + \frac{1}{18} + \frac{2}{18} = \frac{8}{18} = \boxed{\frac{4}{9}}$$

c) Se indica que el resultado obtenido fue "estadísticamente significativo al nivel de significación α ". Esto significa, por definición, que el resultado observado cayó dentro de la Región de Rechazo $RR = \{1,2\}$. Según la regla de decisión establecida en (b), si el resultado está en la Región de Rechazo, se debe rechazar la hipótesis nula H_0 . Al rechazar H_0 , se acepta la hipótesis alternativa H_1 . Por lo tanto, la decisión tomada fue: "El dado está cargado (a favor del 1 y 2)".

Ejercicio 4

- a) Como los valores con más probabilidad en H_1 están a la derecha de los de H_0 , la dirección del extremo para esta prueba es **unilateral a la derecha**.
- b) P_{value} : [2, max]. Cálculo asociado: $P(X \ge 2 \mid H_0)$.
- c) P_{value} : [-1, max]. Cálculo asociado: $P(X \ge -1 \mid H_0)$.
- d) El p-value es $P(X \ge -1|H_0)$. La distribución bajo H_0 parece ser simétrica y centrada en 0 (o muy cerca de 0). Dado que -1 es menor que el centro (0), el intervalo [-1, max] incluye el centro y toda la mitad derecha de la distribución. Por lo tanto, el área $P(X \ge -1|H_0)$ será mayor que el área de la mitad derecha (0,5). El p-value es **mayor que 0.5**.

- e) Valor crítico: 2,6.
 - Región de no rechazo (RNR): [min, 2,6] (bajo H_0).
 - Región de rechazo (RR): [2,6,max] (bajo H_0).
 - $\alpha = P(\text{Error Tipo I}) = P(\text{Rechazar } H_0 \mid H_0 \text{ es verdadera}) = P(X \in [2,6, max] \mid H_0).$
 - $\beta = P(\text{Error Tipo II}) = P(\text{No Rechazar } H_0 \mid H_1 \text{ es verdadera}) = P(X \in [min, 2, 6] \mid H_1).$
 - Potencia = $1 \beta = P(\text{Rechazar } H_0 \mid H_1 \text{ es verdadera}) = P(X \in [2,6, max] \mid H_1).$
 - Dado un valor observado $x_{obs} = 3$. Como $3 \ge 2,6$, el resultado es estadísticamente significativo (se rechaza H_0).

Ejercicio 5

- a) Como los valores con más probabilidad en H_1 están a la derecha de los de H_0 , la dirección del extremo para esta prueba es **unilateral a la derecha**
- b) $\alpha = Cota(\text{Error Tipo I}) = P(\text{Rechazar } H_0 \mid H_0 \text{ es verdadera}) = P(X \in [4,8,max] \mid H_0).$
 - $\beta = Cota(\text{Error Tipo I}) = P(\text{Rechazar } H_1 \mid H_1 \text{ es verdadera}) = P(X \in [min4,8] \mid H_1).$
- c) $P_{value}: [4,7, max] = P(X \ge 4,7 \mid H_0)$
- d) No es estadísticamente significativo ya que 4, 7 < 4, 8.

Ejercicio 6

- a) $\alpha = \frac{2}{30} \approx 0.067$.
- b) Valor p (P-Value): $P(X \le 3 \text{ o } X \ge 8 \mid H_0) = \frac{12}{30} = 0.4.$
- c) $\beta_B=P(\text{No Rechazar }H_0\mid H_1=\text{Alternativa B})=\frac{23}{30}\approx 0,77.$ $\beta_C=P(\text{No Rechazar }H_0\mid H_1=\text{Alternativa C})=\frac{23}{30}\approx 0,77.$

Nota: α y β son las probabilidades (o cotas) de los errores tipo I y II, respectivamente.

Ejercicio 7

No se puede calcular β ya que falta la regla de decisión

Ejercicio 8

Ejercicio 9

• b) (o un valor más chico).

Ejercicio 10

- a) Hipótesis nula H_0 : La caja es la A. Hipótesis alternativa H_1 : La caja es la B.
- b) Test unilateral por izquierda.
- c) Regla de decisión: Se rechaza H_0 si el valor observado $x \leq 5$.
- d) Nivel de significación (real) $\alpha=P(\text{Error Tipo I})=P(X\leq 5\mid H_0: \text{Caja A})=\frac{2}{25}=0.08=8\,\%.$ (Nota: El $\alpha=0.10$ mencionado podría ser un objetivo o un error en la nota original). Probabilidad de Error Tipo II: $\beta=P(\text{Error Tipo II})=P(X>5\mid H_1: M_2)$
 - Probabilidad de Error Tipo II: $\beta = P(\text{Error Tipo II}) = P(X > 5 \mid H_1 \text{ Caja B}) = \frac{11}{25} = 0.44 = 44\%.$
- e) Decisión: Rechazar H_0 . Conclusión: En base a la evidencia muestral, y con un nivel de significación del 8%, se concluye que la caja es la B. Valor p (P-Value) para $x_{obs} = 5$: $P(X \le 5 \mid H_0 : \text{Caja A}) = \frac{2}{25} = 0.08$.

Ejercicio 11

- a) Test unilateral hacia izquierda.
- b) $\alpha = P(\text{Error Tipo I}) = \frac{3}{15} = 0.2.$ $\beta = P(\text{Error Tipo II}) = \frac{6}{15} = 0.4.$
- c) Valor p (P-Value) = $\frac{10}{15} \approx 0.67$.
- d) Como el Valor p $(\frac{10}{15})$ es mayor que α $(\frac{3}{15})$, el resultado no es estadísticamente significativo. No se rechaza H_0 .

Ejercicio 12

Ejercicio 13

Ejercicio 14

a) Posibles niveles de significación α para diferentes estudios (A, B, C): 0,01, 0,06, 0,05.

- b) Tipos de tests correspondientes:
 - Unilateral a derecha.
 - Unilateral a izquierda.
 - Unilateral (¿Bilateral? La nota solo dice unilateral. Podría ser uno de los lados o bilateral).
- c) El estudio B. (Contexto insuficiente para mayor detalle).
- d) Error Tipo I. (Posiblemente refiriéndose a α).