Devoir de synthèse : Electronique analogique

Enseignant: M. YAHIA

Département GCR

Groupes: GCR1A et GCR1B

Durée: 2h

Documents non autorisés

EX1 Schéma simplifié de l'amplificateur opérationnel bipolaire µA741

AU: 2022/2023

On considère le montage de la figure 1.

1) Donner le nom de chaque étage. O ctay & Détage emethor comme 3

2) Quel est l'intérêt de faire ces trois étages en cascades. 1-ilemine le déviv 2-proix un gain important 3- Minimiser la résistance de

Etage 1.

3) Quel est l'intérêt d'utiliser deux entrées au lieu d'une. (denir le dénir le deux deux constitue d'une. (denir le deux deux constitue d'une. (de deux constitue de la deux 4) Donner le nom et le rôle des deux sous-bloques (en pointillé)

Etage 2.

5) Quel est le rôle de cet étage. 6) Donner le nomet le rôle du sous-bloque qui contient les transistors T₈ et

mirrore de comant

Parlinton

1/3

Etage 3.

7) Quel est le rôle de l'étage.

8) Donner le nom et le rôle du sous-bloque qui contient les deux diodes.

EX 2: (Philipe Roux 2005)

On veut réaliser un amplificateur suivant le schéma ci-dessous e utilisant deux transistors rigoureusement complémentaires. Le transistor T_2 avec la résistance R_2 associée sert de "charge active" au transistor amplificateur T_1 .

Les caractéristiques des transistors $T_1(PNP)$ et T_2 (le NPN complémentaire) sont telles que :

β	$ V_{BE} $	r _{ce}
100	0.6 V	très élevée sera négligée

1ère PARTIE : ETUDE DE LA POLARISATION

- (1) Dessiner le schéma qui permet de décrire le fonctionnement du montage en courant continu
- On veut alimenter chaque transistor sous une tension $|V_{CE}| = 10 \text{ V}$. Indiquer sur le schéma précédent, les valeurs des tensions de tous les noeuds par rapport à la masse.
- (3) Déterminer les valeurs à donner aux résistances R₁ et R₂ pour obtenir dans chaque transistor, un courant de collecteur de 5 mA. Indiquer la valeur normalisée que vous choisiriez.
- (#) Déterminer les paramètres gm et rbe des transistors autour de leur point de repos.

2ère PARTIE : ETUDE DE L'AMPLIFICATEUR A VIDE (K ouvert)

On suppose que les condensateurs C_1 et C_2 ont des valeurs suffisantes pour que leur impédance soit négligeable à la fréquence d'utilisation du montage.

(5) Compte tenu de ces hypothèses, dessiner le schéma aux petites variations équivalent à la charge active constituée par T₂ et R₂ (partie encadrée du schéma).

- Déterminer alors la valeur de la résistance R équivalente à la charge active. Il s'agit de la résistance d'entrée de ce montage vue entre le collecteur C₁ et la masse.
- En déduire et dessiner le schéma aux petites variations équivalent à l'ensemble du montage.
- 8) Montrer que le gain en tension peut s'écrire comme suit

$$A_{v0} = \frac{V_s}{V_a} = -(g_m - \frac{1}{R_1})(R_1//R)$$

9) Montrer que la résistance d'entrée peut s'écrire comme suit

$$R_e = \frac{e_g}{i_g} = r_{bel} / / \frac{R_1}{1 - A_{V0}}$$

19) Montrer que la résistance de sortie peut s'écrire comme suit

$$R_s = R / \frac{R_1 + R'_g}{1 + g_{in} R'_g}$$

Br. R. Br. Br. Br. Br.