

Predator-Prey Population Dynamics

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu

http://www.ece.rochester.edu/~gmateosb/

October 20, 2016

Predator-Prey model (Lotka-Volterra system)

Predator-Prey model (Lotka-Volterra system)

Stochastic model as continuous-time Markov chain

A simple Predator-Prey model

- ▶ Populations of X prey molecules and Y predator molecules
- ► Three possible reactions (events)
 - 1) Prey reproduction: $X \rightarrow 2X$
 - 2) Prey consumption to generate predator: $X+Y \rightarrow 2Y$ 3) Predator death: $Y \rightarrow \emptyset$
- ightharpoonup Each prey reproduces at rate lpha
 - \Rightarrow Population of X preys $\Rightarrow \alpha X = \text{rate of first reaction}$
- Prey individual consumed by predator individual on chance encounter
 - $\Rightarrow \beta = {\sf Rate}$ of encounters between prey and predator individuals
 - \Rightarrow X preys and Y predators $\Rightarrow \beta XY = \text{rate of second reaction}$
- \blacktriangleright Each predator dies off at rate γ
 - \Rightarrow Population of Y predators $\Rightarrow \gamma Y = \text{rate of third reaction}$

The Lotka-Volterra equations

- ▶ Study population dynamics $\Rightarrow X(t)$ and Y(t) as functions of time t
- ► Conventional approach: model via system of differential eqs.
 - ⇒ Lotka-Volterra (LV) system of differential equations
- ▶ Change in prey (dX(t)/dt) = Prey generation Prey consumption
 - \Rightarrow Prey is generated when it reproduces (rate $\alpha X(t)$)
 - \Rightarrow Prey consumed by predators (rate $\beta X(t)Y(t)$)

$$\frac{dX(t)}{dt} = \alpha X(t) - \beta X(t)Y(t)$$

- ▶ Predator change (dY(t)/dt) = Predator generation consumption
 - \Rightarrow Predator is generated when it consumes prey (rate $\beta X(t)Y(t)$)
 - \Rightarrow Predator consumed when it dies off (rate $\gamma Y(t)$)

$$\frac{dY(t)}{dt} = \beta X(t)Y(t) - \gamma Y(t)$$

Solution of the Lotka-Volterra equations

▶ LV equations are non-linear but can be solved numerically

- ▶ Prey reproduction rate $\alpha = 1$
- lacktriangle Predator death rate $\gamma=0.1$
- lacktriangle Predator consumption of prey eta=0.1
- ▶ Initial state X(0) = 4, Y(0) = 10
- Boom and bust cycles
- ▶ Start with prey reproduction > consumption \Rightarrow prey X(t) increases
- ▶ Predator production picks up (proportional to X(t)Y(t))
- ▶ Predator production > death \Rightarrow predator Y(t) increases
- ▶ Eventually prey reproduction < consumption \Rightarrow prey X(t) decreases
- ▶ Predator production slows down (proportional to X(t)Y(t))
- ▶ Predator production < death \Rightarrow predator Y(t) decreases
- ► Prey reproduction > consumption (start over)

State-space diagram

- ▶ State-space diagram \Rightarrow plot Y(t) versus X(t)
 - \Rightarrow Constrained to single orbit given by initial state (X(0), Y(0))

Buildup: Prey increases fast, predator increases slowly (move right and slightly up)

Boom: Predator increases fast depleting prey (move up and left)

Bust: When prey is depleted predator collapses (move down almost straight)

Two observations

► Too much regularity for a natural system (exact periodicity forever)

- \blacktriangleright X(t), Y(t) modeled as continuous but actually discrete. Is this a problem?
- ► If *X*(*t*), *Y*(*t*) large can interpret as concentrations (molecules/volume)
 - ⇒ Often accurate (millions of molecules)
- ▶ If X(t), Y(t) small does not make sense
 - \Rightarrow We had 7/100 prey at some point!
- There is an extinction event we are missing

Things deterministic model explains (or does not)

- ► Deterministic model is useful ⇒ Boom and bust cycles
 - ⇒ Important property that the model predicts and explains
- ▶ But it does not capture some aspects of the system
 - ⇒ Non-discrete population sizes (unrealistic fractional molecules)
 - ⇒ No random variation (unrealistic regularity)
- ► Possibly missing important phenomena ⇒ Extinction
- ► Shortcomings most pronounced when number of molecules is small
 - \Rightarrow Biochemistry at cellular level (1 \sim 5 molecules typical)
- Address these shortcomings through a stochastic model

Stochastic model as CTMC

Predator-Prey model (Lotka-Volterra system)

Stochastic model as continuous-time Markov chain

Stochastic model

- ▶ Three possible reactions (events) occurring at rates c_1 , c_2 and c_3
 - 1) Prey reproduction:

$$X \stackrel{c_1}{\rightarrow} 2X$$

- 2) Prey consumption to generate predator: $X+Y \stackrel{c_2}{\rightarrow} 2Y$
- 3) Predator death:

$$Y\stackrel{c_3}{ o}\emptyset$$

- ▶ Denote as X(t), Y(t) the number of molecules by time t
- ► Can model X(t), Y(t) as continuous time Markov chains (CTMCs)?
- ► Large population size argument not applicable
 - ⇒ Interest in systems with small number of molecules/individuals

Stochastic model (continued)

- ► Consider system with 1 prey molecule x and 1 predator molecule y
- ▶ Let $T_2(1,1)$ be the time until x reacts with y
 - \Rightarrow Time until x, y meet, and x and y move randomly around
 - \Rightarrow Reasonable to model $T_2(1,1)$ as memoryless

$$P(T_2(1,1) > s + t \mid T_2(1,1) > s) = P(T_2(1,1) > t)$$

▶ $T_2(1,1)$ is exponential with parameter (rate) c_2

Stochastic model (continued)

- ▶ Suppose now there are *X* preys and *Y* predators
 - \Rightarrow There are XY possible predator-prey reactions
- ▶ Let $T_2(X, Y)$ be the time until the first of these reactions occurs
- ▶ Min. of exponential RVs is exponential with summed parameters
 - $\Rightarrow T_2(X, Y)$ is exponential with parameter c_2XY
- ▶ Likewise, time until first reaction of type 1 is $T_1(X) \sim \exp(c_1X)$
- ▶ Time until first reaction of type 3 is $T_3(Y) \sim \exp(c_3 Y)$

CTMC model

- ▶ If reaction times are exponential can model as CTMC
 - \Rightarrow CTMC state (X, Y) with nr. of prey and predator molecules

Transition rates

- $(X, Y) \to (X + 1, Y):$ Reaction $1 = c_1 X$
- $(X, Y) \rightarrow (X-1, Y+1):$ Reaction $2 = c_2XY$
- $(X, Y) \to (X, Y 1):$ Reaction $3 = c_3 Y$
- State-dependent rates

Simulation of CTMC model

- ▶ Use CTMC model to simulate predator-prey dynamics
 - ▶ Initial conditions are X(0) = 50 preys and Y(0) = 100 predators

- ▶ Prey reproduction rate c₁ = 1 reactions/second
- Rate of predator consumption of prey $c_2 = 0.005$ reactions/second
- Predator death rate $c_3 = 0.6$ reactions/second

- ▶ Boom and bust cycles still the dominant feature of the system
 - ⇒ But random fluctuations are apparent

CTMC model in state space

▶ Plot Y(t) versus X(t) for the CTMC \Rightarrow state-space representation

- ► No single fixed orbit as before
 - ⇒ Randomly perturbed version of deterministic orbit

Effect of different initial population sizes

► Chance of extinction captured by CTMC model (top plots)

Conclusions and the road ahead

- ▶ Deterministic vs. stochastic (random) modeling
- ► Deterministic modeling is simpler
 - ⇒ Captures dominant features (boom and bust cycles)
- ► CTMC-based stochastic simulation more complex
 - ⇒ Less regularity (all runs are different, state orbit not fixed)
 - ⇒ Captures effects missed by deterministic solution (extinction)
- ► Gillespie's algorithm. Optional reading in class website
 - ⇒ CTMC model for every system of reactions is cumbersome
 - ⇒ Impossible for hundreds of types and reactions
 - \Rightarrow Q: Simulation for generic system of chemical reactions?