NoSQL: Vantagens, Desvantagens e Compromissos

Mauricio De Diana (mestrando) Marco Aurélio Gerosa (orientador)

Agenda

Definição de NoSQL

Atributos de qualidade e trocas

Modelo de dados

Escalabilidade

Transações

Consistência e disponibilidade

Desempenho

Dados em larga escala na web - Publicações

Bigtable (Google)

Dynamo (Amazon)

PNUTS (Yahoo!)

Além de: GFS, MapReduce, Chubby...

Chang, F. et al (2006). Bigtable: A Distributed Storage System for Structured Data. DeCandia, G. et al (2007). Dynamo: Amazon's Highly Available Key-value Store. Cooper, B. et al (2008). PNUTS: Yahoo!'s Hosted Data Serving Platform.

02/45

Dados em larga escala na web - FLOSS

Cassandra

MongoDB

Neo4J

Redis

Riak

. . .

SGBDs NoSQL

Não-relacionais

Não-ACID

Distribuídos

SGBDs NoSQL

Não-relacionais

Não-ACID

Distribuídos

Para modelos de dados: 24/09, 14:00, CEC (lab 06): Aula de MAC5855

Atributos de qualidade

<u>Tempo de projeto</u> <u>Tempo de execução</u>

Modificabilidade Desempenho

Testabilidade Disponibilidade

... Escalabilidade

Segurança

Barbacci, M. (1995). Quality Attributes. Bass, L. et al. (2003). Software Architecture in Practice. 2a ed.

Atributos de qualidade - Trocas

07/45

Modelo de dados

Modelos não-relacionais

Grafos: interconectividade dos dados é tão ou mais importante quanto os dados em si

Chave-valor: modelo simples

Orientado a documentos: dados semiestruturados

Angles, R. e Gutierrez, C. (2008) Survey of Graph Database Models. Buneman, P. (1997). Semistructured Data.

SGBDs relacionais

Esquema

Restrições de integridade (entidade, referencial, domínio)

Normalização

Esquema

Banco de dados compartilhado

Diferença de impedância

<u>OO</u> <u>Relacional</u>

Herança Relacionamentos

Encapsulamento Junções

Polimorfismo Normalização

•••

Ambler, S. The Object-Relational Impedance Mismatch. http://www.agiledata.org/essays/impedanceMismatch.html

Escalabilidade

Escalando relacional

N servidores web 1 db

Mestre / Escravo

Mestre / Escravo

Particionamento funcional

Particionamento horizontal

Pritchett, D. (2008). BASE: An Acid Alternative.

Perde-se

Junções

Normalização

Integridade de entidade e referencial

Transparência de localização

Transações

ACID

Atomicidade

Consistência

Isolamento

Durabilidade

ACID e escalabilidade

Atomicidade: protocolo distribuído (2PC)

Consistência: problemas com réplicas

Isolamento: locks distribuídos

Abadi, D. (2010). The problems with ACID, and how to fix them without going NoSQL. http://dbmsmusings.blogspot.com/2010/08/problems-with-acid-and-how-to-fix-them.html

Exemplos de trocas com ACID em NoSQL

Atomicidade e isolamento: em único banco de dados (Bigtable)

Consistência: em momento indeterminado (Dynamo)

Durabilidade: memória + snapshotting (Redis)

Pritchett, D. (2008). BASE: An Acid Alternative. Vogels, W. (2009). Eventually Consistent.

Consistência e Disponibilidade

Teorema CAP

Consistência

Disponibilidade

Tolerância à partição

Fonte: http://blog.mattwoodward.com/

Brewer, E. (2000). Towards Robust Distributed Systems.
Gilbert, S. e Lynch, N. (2002). Brewer's Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services

ACID x BASE

Basicamente disponível (Basically available)

Soft state

Consistente em momento indeterminado (*Eventually consistent*)

Consistência em momento indeterminado

Consertando inconsistências

Fazer nada

Tentar novamente

Ação de compensação

Desempenho

Cenários

Cargas de trabalho diferentes precisam de tratamento diferente

<u>OLTP</u> <u>OLAP</u>

Operação Informação (BI)

CRUD pequeno e rápido Batches demorados

Consultas simples Consultas complexas

Stonebraker, M. e Cetintemel, U. (2005). "One Size Fits All": An Idea Whose Time Has Come and Gone.

39/45

Experimentos

<u>OLTP</u>

<u>OLAP</u>

H-Store (VoltDB)

C-Store (Vertica)

82x mais rápido que um SGBD comercial

124x mais rápido que um SGBD comercial orientado a linha

21x mais rápido que um SGBD comercial orientado a coluna

Stonebraker, M. et al. (2007). The End of an Architectural Era (It's Time for a Complete Rewrite).

Stonebraker, M. et al. (2005). C-store: a Column-oriented DBMS.

40/45

Tempos em um SGBDR

Logging, locking, latching e gerenciamento de buffer

1/60 das instruções em uma transação são trabalho útil

20x mais rápido sem esses sub-subsistemas

Harizopoulos, S. et al. (2008). OLTP Through the Looking Glass, and What We Found There.

Especializações

Problema não está no modelo relacional, nem na SQL

Ordens de grandeza de diferença

Persistência poliglota

Conclusões

Contexto importa

Balancear vantagens e desvantagens é fundamental

Próximos passos

Foco em chave-valor (DHT)

Desenvolvimento de taxonomia

Arquitetura de referência

Experimentos de escalabilidade e desempenho riak_core
Benchmark para cloud do Yahoo!

Obrigado.

Comentários, dúvidas, sugestões?

mdediana@ime.usp.br mdediana@gmail.com @mdediana