CONSTANTES

 $= 6.02 \times 10^{23} \text{ mol}^{-1}$ Constante de Avogadro Constante de Faraday (F) = $9.65 \times 10^4 \text{ C mol}^{-1}$ Volume molar de gás ideal = 22.4 L (CNTP) $= 1.602 \times 10^{-19} \text{ C}$ Carga elementar

= 8.21×10^{-2} atm L K⁻¹ mol⁻¹ = 8.31 J K⁻¹ mol⁻¹ = 62.4 mmHg L K⁻¹ mol⁻¹ = 1.98 cal K⁻¹ mol⁻¹ Constante dos gases (R)

DEFINICÕES

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg.

Condições ambientes: 25 °C e 1 atm.

Condições-padrão: 25 °C, 1 atm, concentração das soluções: 1 mol L⁻¹ (rigorosamente: atividade unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) ou (c) = sólido cristalino; (l) ou (ℓ) = líquido; (g) = gás; (aq) = aquoso; (graf) = grafite; (CM) = circuito metálico; (conc) = concentrado; (ua) = unidades arbitrárias; [A] = concentração da espécie química A em mol L^{-1} .

MASSAS MOLARES

Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)	Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)	
H	1	1,01	K	19	39,10	
Не	2	4,00	Ca	20	40,08	
C	6	12,01	Cr	24	52,00	
N	7	14,01	Mn	25	54,94	
O	8	16,00	Fe	26	55,85	
F	9	19,00	Cu	29	63,55	
Na	11	22,99	Zn	30	65,37	
Mg	12	24,31	Br	35	79,91	
Al	13	26,98	Ag	47	107,87	
Si	14	28,09	I	53	126,90	
P	15	30,97	Ba	56	137,34	
S	16	32,06	Pt	78	195,09	
Cl	17	35,45	Hg	80	200,59	
Ar	18	39,95	Pb	82	207,21	

As questões de 01 a 20 NÃO devem ser resolvidas no caderno de soluções. Para respondê-las, marque a opção escolhida para cada questão na folha de leitura óptica e na reprodução da folha de leitura óptica (que se encontra na última página do caderno de soluções).

Questão 1. Considere as reações envolvendo o sulfeto de hidrogênio representadas pelas equações seguintes:

I.
$$2H_2S(g) + H_2SO_3(aq) \rightarrow 3S(s) + 3H_2O(\ell)$$

II.
$$H_2S(g) + 2H^+(aq) + SO_4^{2-}(aq) \rightarrow SO_2(g) + S(s) + 2H_2O(\ell)$$

III.
$$H_2S(g) + Pb(s) \rightarrow PbS(s) + H_2(g)$$

IV.
$$2H_2S(g) + 4Ag(s) + O_2(g) \rightarrow 2Ag_2S(s) + 2H_2O(\ell)$$

Nas reações representadas pelas equações acima, o sulfeto de hidrogênio é agente redutor em

A () apenas I.

B() apenas I e II. **C**() apenas III.

D() apenas III e IV.

E() apenas IV.

Questão 2. Assinale a opção que contém o par de substâncias que, nas mesmas condições de pressão e temperatura, apresenta propriedades físico-químicas iguais.

$$\mathbf{A}(\) \qquad \qquad \mathbf{H} \qquad \overset{\mathbf{H}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}{\overset{C}}}}{\overset{\mathbf{C}}{$$

Questão 3. Esta tabela apresenta a solubilidade de algumas substâncias em água, a 15 °C:

Substância	Solubilidade (g soluto / 100 g H₂O)
ZnS	0,00069
$ZnSO_4.7H_2O$	96
$ZnSO_3.2H_2O$	0,16
$Na_2S.9H_2O$	46
$\mathrm{Na_2SO_4}$. $\mathrm{7H_2O}$	44
$Na_2SO_3.2H_2O$	32

Quando 50 mL de uma solução aquosa $0.10 \text{ mol } L^{-1}$ em sulfato de zinco são misturados a 50 mL de uma solução aquosa $0.010 \text{ mol } L^{-1}$ em sulfato de sódio, à temperatura de $15 \, ^{\circ}\text{C}$, espera-se observar

- A () a formação de uma solução não saturada constituída pela mistura das duas substâncias.
- **B**() a precipitação de um sólido constituído por sulfeto de zinco.
- C() a precipitação de um sólido constituído por sulfito de zinco.
- **D**() a precipitação de um sólido constituído por sulfato de zinco.
- E () a precipitação de um sólido constituído por sulfeto de sódio.

Questão 4. Utilizando os dados fornecidos na tabela da questão 3, è CORRETO afirmar que o produto de solubilidade d sulfito de sódio em água, a 15 °C, é igual a
A () 8×10^{-3} . B () $1,6 \times 10^{-2}$. C () $3,2 \times 10^{-2}$. D () 8 . E () 32 .
Questão 5 . Certa substância Y é obtida pela oxidação de uma substância X com solução aquosa de permanganato o potássio. A substância Y reage tanto com o bicarbonato presente numa solução aquosa de bicarbonato de sódio como con álcool etílico. Com base nestas informações, é CORRETO afirmar que
$\begin{array}{lll} \textbf{A}(\) & \text{X \'e um \'eter.} & \textbf{B}(\) & \text{X \'e um \'alcool.} & \textbf{C}(\) & \text{Y \'e um \'ester.} \\ \textbf{D}(\) & \text{Y \'e uma cetona.} & \textbf{E}(\) & \text{Y \'e um alde\'ado.} & \end{array}$
Questão 6 . Um cilindro provido de um pistão móvel, que se desloca sem atrito, contém 3,2 g de gás hélio que ocupa un volume de 19,0 L sob pressão 1,2 x 10 ⁵ N m ⁻² . Mantendo a pressão constante, a temperatura do gás é diminuída de 15 K e volume ocupado pelo gás diminui para 18,2 L. Sabendo que a capacidade calorífica molar do gás hélio à pressão constante igual a 20,8 J K ⁻¹ mol ⁻¹ , a variação da energia interna neste sistema é aproximadamente igual a
A() = 0.35 k J. $B() = 0.25 k J.$ $C() = 0.20 k J.$ $D() = 0.15 k J.$ $E() = 0.10 k J.$
Questão 7. A 25 °C e 1 atm, considere o respectivo efeito térmico associado à mistura de volumes iguais das soluçõe relacionadas abaixo:
 I. Solução aquosa 1 milimolar de ácido clorídrico com solução aquosa 1 milimolar de cloreto de sódio. II. Solução aquosa 1 milimolar de ácido clorídrico com solução aquosa 1 milimolar de hidróxido de amônio. III. Solução aquosa 1 milimolar de ácido clorídrico com solução aquosa 1 milimolar de hidróxido de sódio. IV. Solução aquosa 1 milimolar de ácido clorídrico com solução aquosa 1 milimolar de ácido clorídrico.
Qual das opções abaixo apresenta a ordem decrescente CORRETA para o efeito térmico observado em cada uma das misturas acima?
A () I, III, II e IV B () II, III, I e IV C () II, III, IV e I E () III, II, IV e I
Questão 8. Assinale a opção que contém a substância cuja combustão, nas condições-padrão, libera maior quantidade de energia.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Questão 9. Considere as reações representadas pelas equações químicas abaixo:
$A(g) \xrightarrow{+1 \atop -1} B(g) \xrightarrow{+2 \atop -2} C(g)$ e $A(g) \xrightarrow{+3 \atop -3} C(g)$
O índice positivo refere-se ao sentido da reação da esquerda para a direita e, o negativo, ao da direita para a esquerda. Sendo I a energia de ativação e ΔH a variação de entalpia, são feitas as seguintes afirmações, todas relativas às condições-padrão:
I. $\Delta H_{+3} = \Delta H_{+1} + \Delta H_{+2}$ II. $\Delta H_{+1} = -\Delta H_{-1}$ III. $E_{a_{+3}} = E_{a_{+1}} + E_{a_{+2}}$ IV. $E_{a_{+3}} = -E_{a_{-3}}$
Das afirmações acima está(ão) CORRETA(S)
A () apenas I e II. B () apenas I e III. C () apenas II e IV. D () apenas III. E () apenas IV.

Quest	ão 10.	Qual das	opções	a seguir apresen	ta a seqüência	CORRETA	de comparaç	ão do pH o	de soluções	aquosas	dos sais
FeCl ₂ ,	FeCl ₃ ,	MgCl ₂ ,	KClO ₂	, todas com mes	ma concentraç	ão e sob mes	ma temperat	ura e press	ão?		

$$A()$$
 FeCl₂ > FeCl₃ > MgCl₂ > KClO₂

$$B()$$
 MgCl₂ > KClO₂ > FeCl₃ > FeCl₂

$$C()$$
 KClO₂ > MgCl₂ > FeCl₃ > FeCl₃

$$D()$$
 MgCl₂ > FeCl₂ > FeCl₃ > KClO₂

$$E()$$
 FeCl₃ > MgCl₂ > KClO₂ > FeCl₂

Questão 11. Considere as afirmações abaixo, todas relativas à pressão de 1 atm:

- I. A temperatura de fusão do ácido benzóico puro é 122 °C, enquanto que a da água pura é 0 °C.
- II. A temperatura de ebulição de uma solução aquosa $1,00 \text{ mol } L^{-1}$ de sulfato de cobre é maior do que a de uma solução aquosa $0,10 \text{ mol } L^{-1}$ deste mesmo sal.
- III. A temperatura de ebulição de uma solução aquosa saturada em cloreto de sódio é maior do que a da água pura.
- IV. A temperatura de ebulição do etanol puro é 78,4 °C, enquanto que a de uma solução alcoólica 10% (m/m) em água é 78,2 °C.

Das diferenças apresentadas em cada uma das afirmações acima, está(ão) relacionada(s) com propriedades coligativas

A () apenas I e III.

B() apenas I.

C() apenas II e III.

D() apenas II e IV.

E () apenas III e IV.

Questão 12. Um composto sólido é adicionado a um béquer contendo uma solução aquosa de fenolftaleína. A solução adquire uma coloração rósea e ocorre a liberação de um gás que é recolhido. Numa etapa posterior, esse gás é submetido à combustão completa, formando H₂O e CO₂. Com base nestas informações, é CORRETO afirmar que o composto é

A() CO(NH₂)₂.

 $\mathbf{B}(\) \mathbf{CaC}_2.$

C() Ca(HCO₃)₂.

D() NaHCO₃.

 $\mathbf{E}()$ Na₂C₂O₄.

Questão 13. A 15 °C e 1 atm, borbulham-se quantidades iguais de cloridreto de hidrogênio, HCl(g), nos solventes relacionados abaixo:

I. Etilamina

III. n-Hexano

II. Dietilamina

IV. Água pura

Assinale a alternativa que contém a ordem decrescente CORRETA de condutividade elétrica das soluções formadas.

A() I, II, III e IV

B() II, III, IV e I

C() II, IV, I e III

D() III, IV, II e I

E() IV, I, II e III

Questão 14. Assinale a opção que contém a afirmação ERRADA relativa à curva de resfriamento apresentada abaixo.

- A () A curva pode representar o resfriamento de uma mistura eutética.
- **B**() A curva pode representar o resfriamento de uma substância sólida, que apresenta uma única forma cristalina.
- C () A curva pode representar o resfriamento de uma mistura azeotrópica.
- **D** () A curva pode representar o resfriamento de um líquido constituído por uma substância pura.
- **E** () A curva pode representar o resfriamento de uma mistura líquida de duas substâncias que são completamente miscíveis no estado sólido.

A() 0,01

B() 0,25

C() 0,50

D() 0,75

E() 1,00

Questão 16. Dois copos (A e B) contêm solução aquosa 1 mol L^{-1} em nitrato de prata e estão conectados entre si por uma ponte salina. Mergulha-se parcialmente um fio de prata na solução contida no copo A, conectando-o a um fio de cobre mergulhado parcialmente na solução contida no copo B. Após certo período de tempo, os dois fios são desconectados. A seguir, o condutor metálico do copo A é conectado a um dos terminais de um multímetro, e o condutor metálico do copo B, ao outro terminal. Admitindo que a corrente elétrica não circula pelo elemento galvânico e que a temperatura permanece constante, assinale a opção que contém o gráfico que melhor representa a forma como a diferença de potencial entre os dois eletrodos ($\Delta E = E_A - E_B$) varia com o tempo.

Α() ΔΕ 1 tempo

Β() ΔΕ 0 tempo

C() ΔE tempo

D () ΔΕ (tempo

E() ΔE 0 tempo

Questão 17. Assinale a opção que contém o polímero que melhor conduz corrente elétrica, quando dopado.

A () Polietileno D () Poliacetileno

B() Polipropileno **E**() Poli (tetrafluor-etileno) C () Poliestireno

Questão 18. Considere as seguintes equações que representam reações químicas genéricas e suas respectivas equações de velocidade:

I. $A \rightarrow \text{produtos}; \ V_I = k_I[A]$

II. $2B \rightarrow \text{produtos}; \ v_{II} = k_{II} [B]^2$

Considerando que, nos gráficos, [X] representa a concentração de A e de B para as reações I e II, respectivamente, assinale a opção que contém o gráfico que melhor representa a lei de velocidade das reações I e II.

 $\mathbf{D}(\)$ $\begin{array}{c} \frac{1}{[X]} \\ \hline \\ \text{II} \\ \hline \\ \text{tempo} \end{array}$

Questão 19. A 25 °C, borbulha-se $H_2S(g)$ em uma solução aquosa 0,020 mol L^{-1} em $MnCl_2$, contida em um erlenmeyer, até que seja observado o início de precipitação de MnS(s). Neste momento, a concentração de H^+ na solução é igual a 2.5×10^{-7} mol L^{-1} .

Dados eventualmente necessários, referentes à temperatura de 25 °C:

$$\begin{split} \text{I.} & \quad MnS(s) + \text{H}_2O(\ell) \quad \Box \quad Mn^{2+}(aq) \ + \text{HS}^- \ (aq) + \text{OH}^- \ (aq) \\ \text{II.} & \quad \text{H}_2S(aq) \quad \Box \quad \text{HS}^- (aq) + \text{H}^+ \ (aq) \\ \text{III.} & \quad \text{H}_2O(\ell) \quad \Box \quad \text{OH}^- (aq) + \text{H}^+ \ (aq) \\ \end{split} \quad ; \quad K_{II} = 9.5 \times 10^{-8} \\ ; \quad K_{III} = 1.0 \times 10^{-14} \\ \end{split}$$

Assinale a opção que contém o valor da concentração, em mol L^{-1} , de H_2S na solução no instante em que é observada a formação de sólido.

A()
$$1.0 \times 10^{-10}$$
 B() 7×10^{-7} **C**() 4×10^{-2} **D**() 1.0×10^{-1} **E**() 1.5×10^{4}

Questão 20. Dois frascos abertos, um contendo água pura líquida (frasco A) e o outro contendo o mesmo volume de uma solução aquosa concentrada em sacarose (frasco B), são colocados em um recipiente que, a seguir, é devidamente fechado. É CORRETO afirmar, então, que, decorrido um longo período de tempo,

- A () os volumes dos líquidos nos frascos A e B não apresentam alterações visíveis.
- **B**() o volume do líquido no frasco A aumenta, enquanto que o do frasco B diminui.
- C () o volume do líquido no frasco A diminui, enquanto que o do frasco B aumenta.
- **D**() o volume do líquido no frasco A permanece o mesmo, enquanto que o do frasco B diminui.
- **E** () o volume do líquido no frasco A diminui, enquanto que o do frasco B permanece o mesmo.

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Qualitativamente (sem fazer contas), como você explica o fato de a quantidade de calor trocado na vaporização de um mol de água no estado líquido ser muito maior do que o calor trocado na fusão da mesma quantidade de água no estado sólido?

Questão 22. Considere o elemento galvânico representado por:

$$\left. \text{Hg}(\ell) \, \right| \ \text{eletr\'olito} \ \left\| \ C\ell^{\, -} \left(\text{solu\'oa aquosa saturada em } \ \text{KC}\ell \right) \, \right| \, \text{Hg}_2 C\ell_2 \left(s \right) \, \left| \, \text{Hg}(\ell) \right| \, \text{Hg}(\ell)$$

- a) Preveja se o potencial do eletrodo representado no lado direito do elemento galvânico será maior, menor ou igual ao potencial desse mesmo eletrodo nas condições-padrão. Justifique sua resposta.
- **b)** Se o eletrólito no eletrodo à esquerda do elemento galvânico for uma solução 0,002 mol L⁻¹ em Hg²⁺ (aq), preveja se o potencial desse eletrodo será maior, menor ou igual ao potencial desse mesmo eletrodo nas condições-padrão. Justifique sua resposta.
- c) Faça um esboço gráfico da forma como a força eletromotriz do elemento galvânico (ordenada) deve variar com a temperatura (abscissa), no caso em que o eletrodo do lado esquerdo do elemento galvânico seja igual ao eletrodo do lado direito nas condições-padrão.

Questão 23. Sob pressão de 1 atm, adiciona-se água pura em um cilindro provido de termômetro, de manômetro e de pistão móvel que se desloca sem atrito. No instante inicial (t_0) , à temperatura de 25 °C, todo o espaço interno do cilindro é ocupado por água pura. A partir do instante (t_1) , mantendo a temperatura constante $(25 \, ^{\circ}\text{C})$, o pistão é deslocado e o manômetro indica uma nova pressão. A partir do instante (t_2) , todo o conjunto é resfriado muito lentamente a $-10 \, ^{\circ}\text{C}$, mantendo-se-o em repouso por 3 horas. No instante (t_3) , o cilindro é agitado, observando-se uma queda brusca da pressão. Faça um esboço do diagrama de fases da água e assinale, neste esboço, a(s) fase(s) (co)existente(s) no cilindro nos instantes t_0 , t_1 , t_2 e t_3 .

Questão 24. A 25 °C e 1 atm, um recipiente aberto contém um solução aquosa saturada em bicarbonato de sódio em equilíbrio com seu respectivo sólido. Este recipiente foi aquecido à temperatura de ebulição da solução por 1 hora. Considere que o volume de água perdido por evaporação foi desprezível.

- **a)** Explique, utilizando equações químicas, o que ocorre durante o aquecimento, considerando que ainda se observa bicarbonato de sódio sólido durante todo esse processo.
- b) Após o processo de aquecimento, o conteúdo do béquer foi resfriado até 25 °C. Discuta qual foi a quantidade de sólido observada logo após o resfriamento, em relação à quantidade do mesmo (maior, menor ou igual) antes do aquecimento. Justifique a sua resposta.

Questão 25. Considere que dois materiais poliméricos A e B são suportados em substratos iguais e flexíveis. Em condições ambientes, pode-se observar que o material polimérico A é rígido, enquanto o material B é bastante flexível. A seguir, ambos os materiais são aquecidos à temperatura (T), menor do que as respectivas temperaturas de decomposição. Observou-se que o material A apresentou-se flexível e o material B tornou-se rígido, na temperatura (T). A seguir, os dois materiais poliméricos foram resfriados à temperatura ambiente.

- a) Preveja o que será observado caso o mesmo tratamento térmico for novamente realizado nos materiais poliméricos A e B. Justifique sua resposta.
- b) Baseando-se na resposta ao item a), preveja a solubilidade dos materiais em solventes orgânicos.

Questão 26. Vidro de janela pode ser produzido por uma mistura de óxido de silício, óxido de sódio e óxido de cálcio, nas seguintes proporções (% m/m): 75, 15 e 10, respectivamente. Os óxidos de cálcio e de sódio são provenientes da decomposição térmica de seus respectivos carbonatos. Para produzir 1,00 kg de vidro, quais são as massas de óxido de silício, carbonato de sódio e carbonato de cálcio que devem ser utilizadas? Mostre os cálculos e as equações químicas balanceadas de decomposição dos carbonatos.

Questão 27. Explique em que consiste o fenômeno denominado chuva ácida. Da sua explicação devem constar as equações químicas que representam as reações envolvidas.

Questão 28. Considere uma reação química endotérmica entre reagentes, todos no estado gasoso.

- a) Esboce graficamente como deve ser a variação da constante de velocidade em função da temperatura.
- b) Conhecendo-se a função matemática que descreve a variação da constante de velocidade com a temperatura é possível determinar a energia de ativação da reação. Explique como e justifique.
- c) Descreva um método que pode ser utilizado para determinar a ordem da reação.

Questão 29. Considere a curva de titulação ao lado, de um ácido fraco com uma base forte.

- a) Qual o valor do pH no ponto de equivalência?
- **b)** Em qual(ais) intervalo(s) de volume de base adicionado o sistema se comporta como tampão?
- c) Em qual valor de volume de base adicionado $pH = pK_a$?

Questão 30. Considere que na figura ao lado, o frasco A contém peróxido de hidrogênio, os frascos B e C contêm água e que se observa borbulhamento de gás no frasco C. O frasco A é aberto para a adição de 1 g de dióxido de manganês e imediatamente fechado. Observa-se então, um aumento do fluxo de gás no frasco C. Após um período de tempo, cessa o borbulhamento de gás no frasco C, observando-se que ainda resta sólido no frasco A. Separando-se este sólido e secando-o, verifica-se que sua massa é igual a 1 g.

- a) Escreva a equação química que descreve a reação que ocorre com o peróxido de hidrogênio, na ausência de dióxido de manganês.
- **b)** Explique por que o fluxo de gás no frasco C aumenta quando da adição de dióxido de manganês ao peróxido de hidrogênio.

