RelaTree

Graph Based approach for Recommendations

Team - RelaTreevs

Aashish Subramanian • Chintan Vachhani • Pavana Srinivasadeshika Achar

Introduction

- **Problem:** provide personalized recommendations to groups for various services.
- **Goal:** Use relationships between users, groups and services.
- **Solution:** Graph based approach to provide recommendations based on interests of a users' immediate connections.
- **Evaluation:** Comparative analysis performed with item-based recommendation.

Dataset

- Obtained from multiple tables in the production database of Duta Inc.
- Data has been anonymized.
- Consists of user, group and channel information.
- Each user is connected to a group.
- Each group is subscribed to 1 or more channels.
- The user to group relation consists of 20917620 records.
- The group to channels relation consists of 13150793 records

Process Build Graphs Recommendations **Evaluations** Data **Target Processed** Data Data Build **Matrix**

Model

Approach

- · Get all users for the given group
- · find their 1st connects & create a set of Users
- · find a set of groups for all the users along with a weight associated with them based on user counts.

 · find a set of channels for all the groups.

 · Recommend 'k' channels using the group weights and channel association scores.

Model

Approach

RECOMMEND CHANNEL FOR 95'

(ECO) (I TOTAL							
G	id	CL	CZ	C3	c4	CE	
	91	0	O	ı	1	0	
9	32	ſ	,	t	0	٥	
å	3	0	0	o	6	٥	
e	14	1	ರಿ	0	0	0	N.
9	5	1	0	1	0	12	
1				i	;		
77							
UTILITY MATRIX							

$$Sim \left[C2 \right] = Sim \left(C_{2_1} C_1 \right) + Sim \left(C_{2_1} C_3 \right) + Sim \left(C_{2_1} C_5 \right) + ...$$

$$Sim \left[C4 \right] = Sim \left(C_{4_1} C_1 \right) + Sim \left(C_{4_1} C_3 \right) + Sim \left(C_{4_1} C_5 \right) + ...$$

RECOMMEND MAX (SIMECZ), SIMEC4)

Evaluation

- Both the models were evaluated using 10 diverse groups, out of which 3 were weakly connected groups, 5 were heavily connected groups and 2 were lone groups.
- Reason for choosing a very small number of groups for end evaluation is because of the large data. It takes approximately 45 minutes to run for a single weakly connected group.
- But the used set of test sample represent the entire data statistics well. Also, the actual evaluation would be how the live users react to these recommendations.
- Accuracy was used as the metric since subscription to a service is a binary value and Jaccard similarity was used.

Evaluation

Conclusion

- It was observed that graph based recommendation works better overall. It outperforms the traditional method for weakly connected and lone groups.
- Using graph based recommendation, the cold start problem is addressed and it no longer affects the system heavily.
- Scope for improvement exists. Considering additional features such as user's
 activity with a particular service, more user activity data and analyzing user
 patterns can add to the effectiveness of recommendations.

Thank You