Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №3 Асинхронный обмен данными с ВУ

Выполнил: Кудрявцева Р.С.

Группа: Р3117 Вариант: 1774

Преподаватель: Блохина Е.Н.

Оглавление

Цель работы	3
Задание	
Текст исходной программы	
Функция	
ОП и ОДЗ	
Грассировка программы	5
Вывол	

Цель работы

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Задание

Введите номер варианта 1774							
492: 493: 494: 495: 496: + 497: 498: 499: 498: 49B: 49C: 49D: 49E: 49F:	04A6 0200 E000 E000	4A0: 4A1: 4A2: 4A3: 4A4: 4A5: 4A6: 4A7: 4A8: 	2EF4 0400 EEF2 8494 CEF7 0100 0680 F101 8492				
		'	_				

Текст исходной программы

Адрес	Код команды	Мнемоника	Коментарий		
496	0200	CLA	Очистить аккумулятор: $0 \Rightarrow AC$		
497	EEFD	ST IP-3	Прямое отн. сохранение (очистка ячейки 495) $AC => M \ (\textbf{495})$		
498	AF03	LD #3	Прямая загрузка 0003 => АС		
499	EEFA	ST IP-6	Прямое отн. сохранение (очистка ячейки 494) AC => M (494)		
49A	4EF7	ADD IP-9	Прямое отн. сложение $M(492) + AC => AC$		
49B	EEF7	ST IP-9	Прямое отн. сохранение (очистка ячейки 493) AC => M (493)		
49C	ABF6	LD -(IP-10) Косвенная автодекрементальная загру $MEM(MEM(493) - 1) => AC$			
49D	0480	ROR	Циклический сдвиг вправо.		
49E	0200	CLA	Очистить аккумулятор: 0 => АС		
49F	0280	NOT	(^AC) => AC		
4A0	2EF4	AND IP-12	Прямое относительное логическое И: $M(495) \& AC => AC$		
4A1	0400	ROL	Циклический сдвиг влево.		
4A2	EEF2	ST IP-14	Прямое отн. сохранение (очистка ячейки 495)		

			AC => M (495)
4A3	8494	LOOP 494	M(494)-1 => M(494), IF $M(494) <= 0$,
			goto $IP + 1 \Rightarrow IP$
4A4	CEF7	JUMP IP-9	Прямой относительный прыжок: (IP - 9) + 1 => IP
4A5	0100	HLT	Остановка

Функция

Программа создает матрицу четности элементов массива, где четность і эл-та массива совпадает с і-ым битом результата.

ОП и ОДЗ

Область представления:

M[0], M[1], M[2] - 16-разрядные числа (элементы массива) в каком диапазоне [3;7FC]

N – 7-ми разрядные беззнаковые числа (размер массива)

A, M – 11-разрядные беззнаковые числа, адреса БЭВМ (указатели начала массива и текущий элемет)

R – 16-разрядные беззнаковые числа (результат)

Область допустимых значений:

$$-2^{15} \le M[i] \le 2^{15}-1$$

$$A \in [0; 492 - N] \parallel A \in [4A6; 7FF]$$

$$N \in [0; 3]$$

$$0 \le R \le 2^3 - 1$$

Расположение в памяти ЭВМ программы

Исходные данные: 4А9, 4А8, 4А7, 4А6

Программа: 496,497,498,499,49А,49В,49С,49D,49Е,49F,4АО,4А1,4А2,4А3,4А4,4А5

Промежуточный результат: 494

Итоговый результат: 495

Адрес первой команды:

-496

Адрес последней команды:

-4A5

Адрес первого элемента массива 0001 (16) элементы массива

0 = 0000

-2 = FFFD

1 = 0001

Трассировка программы

Ячейка	, содержимое
--------	--------------

	лняемая манда	Содержимое регистров после выполнения команды						которой изменилось после выполнения команды			
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
496	0200	497	0200	496	0200	000	0496	0000	0100	-	-
497	EEFD	498	EEFD	495	0000	000	FFFD	0000	0100	495	0000
498	AF03	499	AF03	498	0003	000	0003	0003	0000	1	1
499	EEFA	49A	EEFA	494	0003	000	FFFA	0003	0000	494	0003
49A	4EF7	49B	4EF7	492	0001	000	FFF7	0004	0000	1	1
49B	EEF7	49C	EEF7	493	0004	000	FFF7	0004	0000	493	0004
49C	ABF6	49D	ABF6	003	0001	000	FFF6	0001	0000	493	0003
49D	0480	49E	0480	49D	0480	000	049D	0000	0111	-	-
49E	0200	49F	0200	49E	0200	000	049E	0000	0101	-	-
49F	0280	4A0	0280	49F	0280	000	049F	FFFF	1001	-	-
4A0	2EF4	4A1	2EF4	495	0000	000	FFF4	0000	0101	_	-
4A1	0400	4A2	0400	4A1	0400	000	04A1	0001	0000	-	-
4A2	EEF2	4A3	EEF2	495	0001	000	FFF2	0001	0000	495	0001
4A3	8494	4A4	8494	494	0002	000	0001	0001	0000	494	0002
4A4	CEF7	49C	CEF7	4A4	049C	000	FFF7	0001	0000	-	-
49C	ABF6	49D	ABF6	002	FFFD	000	FFF6	FFFD	1000	493	0002
49D	0480	49E	0480	49D	0480	000	049D	7FFE	0011	-	-
49E	0200	49F	0200	49E	0200	000	049E	0000	0101	-	-
49F	0280	4A0	0280	49F	0280	000	049F	FFFF	1001	_	-
4A0	2EF4	4A1	2EF4	495	0001	000	FFF4	0001	0001	-	-
4A1	0400	4A2	0400	4A1	0400	000	04A1	0003	0000	-	-
4A2	EEF2	4A3	EEF2	495	0003	000	FFF2	0003	0000	495	0003
4A3	8494	4A4	8494	494	0001	000	0000	0003	0000	494	0001
4A4	CEF7	49C	CEF7	4A4	049C	000	FFF7	0003	0000	-	-
49C	ABF6	49D	ABF6	001	0000	000	FFF6	0000	0100	493	0001
49D	0480	49E	0480	49D	0480	000	049D	0000	0100	-	-
49E	0200	49F	0200	49E	0200	000	049E	0000	0100	-	-
49F	0280	4A0	0280	49F	0280	000	049F	FFFF	1000	-	-
4A0	2EF4	4A1	2EF4	495	0003	000	FFF4	0003	0000	-	-
4A1	0400	4A2	0400	4A1	0400	000	04A1	0006	0000	-	-
4A2	EEF2	4A3	EEF2	495	000 6	000	FFF2	0006	0000	495	0006
4A3	8494	4A5	8494	494	0000	000	FFFF	0006	0000	494	0000
4A5	0100	4A6	0100	4A5	0100	000	04A5	0006	0000	-	-

Вывод

Во время выполнения лабораторной работы я ознакомилась с режимами адресации, работой

циклических программ в БЭВМ и изучил цикл выполнения команд LOOP и JUMP. Также научилась взаимодействовать с элементами одномерного массива.

Адресная команда с прямой абсолютной адресацией

8494 — loop

1000~1xxx~xxxx~xxxx

48хх — косвенная относительная

а — косвенная имкрементная

$$CR \ ext(7...0) => BR, BR + IP => AR, MEM(AR) => DR, DR+1 => DR,$$

$$DR \Rightarrow MEM(AR), DR \longrightarrow 1 \Rightarrow DR, DR \Rightarrow AR, MEM(AR) \Rightarrow DR$$

b — косвенная дикремнтная

е — прямая относительная

f — прямая загрузка

 $DR \rightarrow AR, MEM(AR) \rightarrow DR$

AExx

1110

$$SXT_CR(0..7) \rightarrow BR, BR+IP \rightarrow DR,$$

$$DR \rightarrow AR, MEM(AR) \rightarrow DR$$

$$\mathsf{DR} \to \mathsf{AC}$$

4Fxx

$$SXT_CR(0..7) \rightarrow BR, BR \rightarrow DR$$

F0xx