CS 305 Lab Tutorial Lab 14 Layer3 Switch

Dept. Computer Science and Engineering Southern University of Science and Technology

Ethernet switch

- link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

switch with six interfaces (1,2,3,4,5,6)

S5110 (Gigabit Ethernet switch)

- 1. 10/100/1000M Base-T electric interface
- 2. 100/1000 Base-X SFP optical interface
- 3. Console interface
- 4. Port status indicator
- 5. Power status indicator

Connect with switch by console (1)

To configure the switch by PC

- 1. Connect the **console** port of switch with **com** port of PC
- 2. Invoke the SecureCRT Portable on PC to communicate with CLI of switch

Type: Serial Port : COMx

Baud rate: 9600

Data-width: 8

Parity check: None

Stop bit: 1

Flow control: NO flow control

Connect with switch by console (2)

CLI (Command Line Interface)

- TEXT style instruction interaction interface between user and device.
 - Users input text commands, submit devices by inputting return key to execute corresponding commands for configure and manage the devices.
 - confirm the configuration results by viewing the output information.

	超级丝					
				传送 (I)	計 助 (<u>K</u>)	
= @	3	<u> </u>	⊞,			
Wit	hout	the	owner'	's pri	Hangzhou H3C Tech. Co., Ltd. All r written consent, e-engineering shall be allowed.	rights reserved. *
ine	**** aux0	is a	vailab	ole.	***************************************	****
				starte 58:243	2014 H3C SHELL/5/SHELL_LOGIN: TT	Y logged in from aux0.
(H3C>						

Views and Command

Tips: 1. /ctrl+c could be used to return to exit current view.

2.tab key and '?' following the command will help you a lot.

Views in CLI

- **USER**: After the user logs on to the device, he enters **the user view** directly. The prompt displayed on the screen is <Device Name>.
- **SYSTEM**: The **system view** can be shift from the user view, where the prompt displayed on the screen is: [device name].
 - The system view can **configure** the operation parameters and some functions of the equipment, such as configuration welcome information, shortcut keys, etc.
- **FUNCTION**: Input specific commands in the system view, you can enter the **corresponding function view**
 - complete the configuration of the corresponding functions, such as: enter the interface view to configure interface parameters, enter the VLAN view to add ports to the VLAN, and so on
- **Tips:** using "undo" to cancel the finished setting command.

Commands and Keys

- Setting
 - Restore factory default, reboot
 - In different views (system, interface, sub-functions)
 - To set device, interface, ip address, service, AAA etc.
- Display
 - Device, interface, dhcp, ip routing-table etc.
 - The keys useful for displaying the output in pages.

keys	function
space key	continue to display the message of next screen
enter key	continue to display the message of next line
<ctrl +="" c=""></ctrl>	stop display,return to the command line state
<pageup></pageup>	display last page
<pagedown></pagedown>	display next page

Reminds on error inputs

表1-11 命令行常见错误信息表

英文错误信息	错误原因
% Unrecognized command found at '^' position.	命令无法解析,符号"^"指示位置出错
% Incomplete command found at '^' position.	符号 "^" 指示位置的参数输入不完整
% Ambiguous command found at '^' position.	符号 "^" 指示位置的关键字不明确,存在二义性
% Too many parameters.	输入参数太多
% Wrong parameter found at '^' position.	在符号 "^" 指示位置的参数错误

Tips: "display history-command" to display 10 history commands by default.

Interface - work mode

```
[H3C]display interface brief
The brief information of interface(s) under route mode:
Link: ADM - administratively down; Stby - standby
Protocol: (s) - spoofing
Interface
                     Link Protocol Main IP
                                                    Description
                          UP(s)
NULL0
The brief information of interface(s) under bridge mode: 🚩
Link: ADM - administratively down; Stby - standby
Speed or Duplex: (a)/A - auto; H - half; F - full
Type: A - access; T - trunk; H - hybrid
                                   Duplex Type PVID Description
                     Link Speed
GE1/0/2
                     DOWN auto
GE1/0/3
                     DOWN auto
GE1/0/4
                     DOWN auto
GE1/0/5
                     DOWN auto
GE1/0/6
                     DOWN auto
GE1/0/7
                     DOWN auto
GE1/0/8
                     DOWN auto
GE1/0/9
                     DOWN auto
GE1/0/10
                     DOWN auto
GE1/0/11
                     DOWN auto
GE1/0/12
                     DOWN auto
GE1/0/13
                     DOWN auto
GE1/0/14
                     DOWN auto
GE1/0/15
                     DOWN auto
GF1/0/16
                     DOWN auto
GF1/0/17
                     DOWN auto
GE1/0/18
                     DOWN auto
GE1/0/19
                     DOWN auto
GE1/0/20
                     DOWN auto
GE1/0/21
                     DOWN auto
GE1/0/22
                     DOWN auto
GE1/0/23
                     DOWN auto
GE1/0/24
                     DOWN auto
GE1/0/25
                     DOWN auto
GE1/0/26
GE1/0/27
                     DOWN auto
GE1/0/28
                     DOWN auto
[H3C]
```

- Use "display interface brief" to show the brief info of all the interfaces.
- For S5110, all the gigabit-ethernet interface works on the **bridge** mode.
- All the gigabit gigabit-ethernet interface access into the VLAN 1 by default.
- 'port link-type' is configurable :
 - access
 - trunk
- Tips: all the interfaces of switch work on bridge mode, while the interface of router could work on bridge or route mode.

MAC-address-table(1)

- For S5110, the mac-address could be learned as dynamic, or configured as static or dynamic.
 - A static mac-address item gets higher priority than a dynamic item
 - A dynamic mac-address item has a default aging time which is configurable, while a static item is no-aged.

MAC-address-table(2)

- The 'blackhole' mac address means while the packets related to the blackhole, they will be dropped, switch will not forward the packets.
- The 'blackhole' mac address is marked on the mac-address table.
- using command "mac-address blackhole mac-address-x vlan vlan_id" to configure the mac-address-x as a blackhole mac address.

'ping' a PC whose MAC address is marked as 'blackhole' on a connected switch to test whether it is reachable or not.

Isolate Port Group

• The interfaces which belong to an **isolate group** can't reach each other, but can communicate with the interfaces which does not belong to the isolate group.

```
[H3C]display port-isolate group
Port-isolate group information:
Uplink port support: NO
Group ID: 1
Group members:
   No ports.
[H3Clinter
[H3C]interface giga
[H3C]interface GigabitEthernet 1/0/2
[H3C-GigabitEthernet1/0/2]port-isolate enable
[H3C-GigabitEthernet1/0/2]quit
[H3C]interface giga
[H3C]interface GigabitEthernet 1/0/23
[H3C-GigabitEthernet1/0/23]port-isolate enable
[H3C-GigabitEthernet1/0/23]quit
[H3C]display port-isolate group
Port-isolate group information:
Uplink port support: NO
Group ID: 1
Group members:
   GigabitEthernet1/0/2
                             GigabitEthernet1/0/23
TH3C
```

- Two steps to add an interface into isolate port group:
 - step1: using "interface xxx" to enter interface function configuration mode.
 - step2: using command "port-isolate enable" to add this interface into isolate port group

Practice 14.1

- 1. Build a network: connect PCa and PCb with a Layer 3 Switch / Router, set PCa to be in the same network with PCb.
- 2. On PCa, use "ping" to test whether PCb is reachable.
- 3. Use at least two ways to make PCa un-reachable from PCb without changing the connections on them.
- 4. After finishing step1~3, using "display mac-address" to find the mac-address table of Layer 3 Switch/Router:
- 1) How many items are there on the switch mac-address table? Are they static or dynamic?
- 2) For every item, does the mac-address belong to the connected PC or the connected interface of Layer 3 Switch / Router?

VLAN

- A **Virtual LAN** (**VLAN**) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer (OSI layer 2).
- Use command "vlan vlan_id" to create or configure a VLAN.

```
[H3C]display vlan
Total 1 VLAN exist(s).
The following VLANs exist:
 1(default).
[H3C]display vlan 1
VLAN ID: 1
VLAN Type: static
Route Interface: not configured
Description: VLAN 0001
Name: VLAN 0001
Tagged Ports: none
Untagged Ports:
                                                      GigabitEthernet1/0/3
                             GigabitEthernet1/0/2
    GigabitEthernet1/0/1
    GigabitEthernet1/0/4
                             GigabitEthernet1/0/5
                                                      GigabitEthernet1/0/6
                             GigabitEthernet1/0/8
    GigabitEthernet1/0/7
                                                      GigabitEthernet1/0/9
    GigabitEthernet1/0/10
                             GigabitEthernet1/0/11
                                                      GigabitEthernet1/0/12
   GigabitEthernet1/0/13
                             GigabitEthernet1/0/14
                                                      GigabitEthernet1/0/15
   GigabitEthernet1/0/16
                             GigabitEthernet1/0/17
                                                      GigabitEthernet1/0/18
   GigabitEthernet1/0/19
                             GigabitEthernet1/0/20
                                                      GigabitEthernet1/0/21
   GigabitEthernet1/0/22
                             GigabitEthernet1/0/23
                                                      GigabitEthernet1/0/24
    GigabitEthernet1/0/25
                             GigabitEthernet1/0/26
                                                      GigabitEthernet1/0/27
    GigabitEthernet1/0/28
```


Link-type (access to VLAN)

```
[H3C-GigabitEthernet1/0/1]display this

interface GigabitEthernet1/0/1

return
[H3C-GigabitEthernet1/0/1]port link-type access
[H3C-GigabitEthernet1/0/1]port access vlan 101
[H3C-GigabitEthernet1/0/1]display this

interface GigabitEthernet1/0/1
port access vlan 101

return
[H3C-GigabitEthernet1/0/1]
```

 If the 'port link-type' is access, it means the interface can only belongs to one VLAN.

NOTES:

VLAN 101 is not the default
 VLAN on Layer Switch / Router.
 VLAN should be created before be accessed by interfaces.

```
[H3C]display vlan
Total 2 VLAN exist(s).
The following VLANs exist:
 1(default), 101,
[H3Cldisplay vlan 1
VLAN ID: 1
VLAN Type: static
Route Interface: not configured
 Description: VLAN 0001
Name: VLAN 0001
 Tagged Ports: none
Untagged Ports:
                             GigabitEthernet1/0/3
    GigabitEthernet1/0/2
                                                       GigabitEthernet1/0/4
                             GigabitEthernet1/0/6
                                                       GigabitEthernet1/0/7
    GigabitEthernet1/0/5
                             GigabitEthernet1/0/9
    GigabitEthernet1/0/8
                                                       GigabitEthernet1/0/10
    GigabitEthernet1/0/11
                             GigabitEthernet1/0/12
                                                       GigabitEthernet1/0/13
    GigabitEthernet1/0/14
                             GigabitEthernet1/0/15
                                                       GigabitEthernet1/0/16
   GigabitEthernet1/0/17
                             GigabitEthernet1/0/18
                                                       GigabitEthernet1/0/19
    GigabitEthernet1/0/20
                             GigabitEthernet1/0/21
                                                       GigabitEthernet1/0/22
   GigabitEthernet1/0/23
                             GigabitEthernet1/0/24
                                                       GigabitEthernet1/0/25
    GigabitEthernet1/0/26
                             GigabitEthernet1/0/27
                                                       GigabitEthernet1/0/28
H3Cldisplay
H3Cldisplay vlan 101
VLAN TD: 101
VLAN Type: static
Route Interface: not configured
Description: VLAN 0101
```

[H3C]

Name: VLAN 0101

Tagged Ports: none Untagged Ports:

GigabitEthernet1/0/1

Link-type (trunk to VLAN)

```
[H3C-GigabitEthernet1/0/1]undo port link-type
[H3C-GigabitEthernet1/0/1]undo port access vlan
[H3C-GigabitEthernet1/0/1]port link-type trunk
[H3C-GigabitEthernet1/0/1]port trunk permit vlan 101
Please wait... Done.
[H3C-GigabitEthernet1/0/1]display this

interface GigabitEthernet1/0/1
port link-type trunk
port trunk permit vlan 1 101

return
[H3C-GigabitEthernet1/0/1]
```

• If the 'port link-type' is trunk, it means the interface could belongs to more than one VLAN.

```
[H3Cldisplay vlan
Total 2 VLAN exist(s).
The following VLANs exist:
 1(default), 101,
[H3C]disp]av vlan 1
VLAN ID: 1
VLAN Type: static
Route Interface: not configured
Description: VLAN 0001
Name: VLAN 0001
Tagged Ports: none
Untagged Ports:
    GigabitEthernet1/0/1
                             GigabitEthernet1/0/2
                                                       GigabitEthernet1/0/3
                             GigabitEthernet1/0/5
                                                       GigabitEthernet1/0/6
    GigabitEthernet1/0/4
    GigabitEthernet1/0/7
                             GigabitEthernet1/0/8
                                                       GigabitEthernet1/0/9
    GigabitEthernet1/0/10
                             GigabitEthernet1/0/11
                                                       GigabitEthernet1/0/12
    GigabitEthernet1/0/13
                             GigabitEthernet1/0/14
                                                       GigabitEthernet1/0/15
    GigabitEthernet1/0/16
                             GigabitEthernet1/0/17
                                                       GigabitEthernet1/0/18
    GigabitEthernet1/0/19
                             GigabitEthernet1/0/20
                                                       GigabitEthernet1/0/21
    GigabitEthernet1/0/22
                             GigabitEthernet1/0/23
                                                       GigabitEthernet1/0/24
   GigabitEthernet1/0/25
                             GigabitEthernet1/0/26
                                                       GigabitEthernet1/0/27
    GigabitEthernet1/0/28
[H3C]display vlan 101
VLAN ID: 101
VLAN Type: static
Route Interface: not configured
Description: VLAN 0101
Name: VLAN 0101
Tagged Ports:
   GigabitEthernet1/0/1
<del>Untagged Ports. Hone</del>
[H3C]
```


Practice 14.2

- 1. Use "display vlan brief" to find the information about VLAN and interface.
- 2. Is there any default VLAN on Layer 3 Switch / Router? Which interfaces belong to this default VLAN?
- 3. Create two VLANs: VLAN 'x' and VLAN 'y' on Layer3 Switch / Router.
- 4. Configure the VLANs and interfaces:
 - 1) Giga-ethernet interface 'a1' accesses to VLAN 'x'
 - 2) Giga-ethernet interface 'b1' accesses to VLAN 'y'
- 5. Setup the connections:
 - 1) Connect the Giga-ethernet interface 'a1' with PCa
 - 2) Connect the Giga-ethernet interface 'b1' with PCb
- 6. Configure PCa and PCb with static IP addresses which belong to the same network. Use "ping" on PCa to test if PCb is reachable.
- 7. Is there anyway to make the PCa reachable from PCb without changing the connection? Try and test.

NOTES: 'x', 'y' should be two different numbers, while 'a1' and 'b1' should be the index of interface on Layer3 Switch / Router.

IPv6 configuration on Layer 3

- Different types of IPv6 address
 - State address: got from DHCP server, global address.
 - Stateless address: got by Route Advise, same as private address in IPv4.
 - Local link address: with prefix(FE80::/64) as its prefix, this address could be used to communicate with other PCs on the local network.

Tips:

S5110 Ethernet interface works on bridge mode, PCs can't get an IPv6 address while the vlan-interface working on route mode.

Got a stateless IPv6 address(1)

Enable the neighbor discover on an IPv6 interface.

```
[H3C]vlan 101
[H3C-vlan101]quit
[H3C]interface vlan-interface 101
[H3C-Vlan-interface101]ipv6 address 1001::1/64
[H3C-Vlan-interface101]undo ipv6 nd ra halt
[H3C-Vlan-interface101]quit
[H3C]
```

```
[H3C]interface Vlan-interface 101
[H3C-Vlan-interface101]displ
[H3C-Vlan-interface101]display this
#
interface Vlan-interface101
undo ipv6 nd ra halt
ipv6 address 1001::1/64
#
return
```

```
IPv6 地址 . . . . . . . . . . . . : 1001::9cc7:4dc7:b538:91f(首选)
临时 IPv6 地址. . . . . . . . . : 1001::3901:a40d:760:d81e(首选)
本地链接 IPv6 地址. . . . . . . . : fe80::9cc7:4dc7:b538:91f%67(首选)
```

```
C:\Users\vivi>ping -6 1001::3c56:9767:e588:42fc

正在 Ping 1001::3c56:9767:e588:42fc 具有 32 字节的数据:
来自 1001::3c56:9767:e588:42fc 的回复: 时间=3ms
来自 1001::3c56:9767:e588:42fc 的回复: 时间=1ms
来自 1001::3c56:9767:e588:42fc 的回复: 时间=1ms
来自 1001::3c56:9767:e588:42fc 的回复: 时间=1ms
和自 1001::3c56:9767:e588:42fc 的回复: 时间=1ms

1001::3c56:9767:e588:42fc 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 1ms, 最长 = 3ms, 平均 = 1ms
```


Got a stateless IPv6 address (2)

```
[H3C]display ipv6 interface Vlan-interface 101
Vlan-interface101 current state :UP
Line protocol current state :UP
IPv6 is enabled, link-local address is FE80::723D:15FF:FEA6:D540
 Global unicast address(es):
   1001::1, subnet is 1001::/64
  Joined group address(es):
   FF02::1:FF00:0
   FF02::1:FF00:1
   FF02::1:FFA6:D540
   FF02::2
   FF02::1
  MTU is 1500 bytes
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND retransmit interval is 1000 milliseconds
                                                      [H3C]display ipv6 fib
 ND advertised reachable time is 0 milliseconds
                                                       FIB Table:
 ND advertised retransmit interval is 0 milliseconds
                                                       Total number of Routes: 4
 ND router advertisements are sent every 600 seconds
 ND router advertisements live for 1800 seconds
 Hosts use stateless autoconfig for addresses
                                                       Flag:
IPv6 Packet statistics:
                                                        U:Useable
                                                                                                 B:Blackhole
                                                                                                                  D:Dynamic
                                                                       G:Gateway
                                                                                     H:Host
                                                                                                                               S:Static
 InReceives:
 InTooShorts:
                             0
                             0
 InTruncatedPkts:
                                                      Destination:
                                                                         1001::
                                                                                                                           PrefixLenath: 64
 InHopLimitExceeds:
                                                      NextHop :
                                                                                                                           Flag
                                                                                                                                           : U
 InBadHeaders:
 InBadOptions:
                                                      Label
                                                                         Null
                                                                                                                                           : Invalid
 ReasmRegds:
                                                      Interface :
                                                                         Vlan-interface101
 ReasmOKs:
 InFragDrops:
 InFragTimeouts:
                                                      Destination:
                                                                         1001::1
                                                                                                                           PrefixLength: 128
 OutFragFails:
                                                                         ::1
                                                                                                                                           : UH
                                                      NextHop
                                                                                                                           Flag
 InUnknownProtos:
                                                     Label
                                                                         Nu11
                                                                                                                                           : Invalid
 InDelivers:
                                                                                                                           Token
 OutRequests:
                                                      Interface :
                                                                         InLoopBack0
 OutForwDatagrams:
 InNoRoutes:
 InTooBigErrors:
```

Find the subnet ID of this IPv6 LAN.

OutFragOKs: OutFragCreates: InMcastPkts:

H3C1

InMcastNotMembers:
OutMcastPkts:
InAddrErrors:
InDiscards:
OutDiscards:

Practice 14.3(optional)

- Build a LAN with PCa, PCb and a Layer3 switch/route
- Create a vlan-interface, configure its IPv6 address
- Enable the neighbor discovery on the vlan-interface to make the PCs which belong to the VLAN to get a stateless address
 - Can the PC get an IPv6 state-less address? What is the length of the prefix in the address?
 - What 's the difference between this address and IPv6 link address?
 - Invoke 'ping -6' test on PCa to check if PCb is reachable or not, explain the reason.

(Optional) create and enable a DHCPv6 server on the Layer3 switch / Router and test.

Tips (1)

• If two PCs connecting to the same switch can not receive ICMP reply messages from each other, you can make some change about Fire Wall of the PC.

```
C:\users\Administrator>ping 172.18.5.114
正在 Ping 172.18.5.114 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
```


Tips (2)

of Science and Technology

 Go to [Control Panel] -> [System and Secure] -> [Windows Defender Fire Wall] -> [Advanced Setting]

Tips (3)

文件和打印机共享(后台打印程序服务 - RPC-EPMAP)

 文件和打印机共享(回显请求 - ICMPv4-In)
 启用规则(E)

 文件和打印机共享(回显请求 - ICMPv6-In)
 剪切(T)

 文件和打印机共享(回显请求 - ICMPv6-In)
 复制(C)

 无线便携式设备(SSDP-In)
 删除(D)

 无线便携式设备(UPnP-In)
 属性(R)

 帮助(H)

入站规则

名称

文件和打印机共享(SMB-In)

文件和打印机共享(后台打印程序服务 - RPC)

文件和打印机共享(后台打印程序服务 - RPC)

文件和打印机共享(后台打印程序服务 - RPC-EPMAP)

文件和打印机共享(后台打印程序服务 - RPC-EPMAP)

- ② 文件和打印机共享(回显请求 ICMPv4-In)
- ☑ 文件和打印机共享(回显请求 ICMPv6-In)
- ② 文件和打印机共享(回显请求 ICMPv6-In)

无线便携式设备(SSDP-In)

无线便携式设备(UPnP-In)

- ▼ 无线显示基础结构反向通道(TCP-In)
- ▼ 无线显示器(TCP-In)

文件和打印机共享

性能日志和警报(DCOM-In)

性能日志和警报(DCOM-In)

性能日志和警报(TCP-In)

性能日志和警报(TCP-In)

虚拟机监控(DCOM-In)

虚拟机监控(NB-Session-In)

虚拟机监控(RPC)

- ☑ 虚拟机监控(回显请求 ICMPv6-In)
- ☑ 虚拟机监控(回显请求-ICMPv4-In)
- 移动套答

Tips (4)

```
C:\users\Administrator>ping 172.18.5.114
正在 Ping 172.18.5.114 具有 32 字节的数据:
172.18.5.114 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
C:\users\Administrator>ping 172.18.5.114
止在 Ping 172.18.5.114 具有 32 字节的数据:
                     |回复: 字节=32 时间=1ms TTL=128
|回复: 字节=32 时间<1ms TTL=128
|回复: 字节=32 时间=1ms TTL=128
                  的回复:字节=32 时间=1ms TTL=128
172.18.5.114 的 Ping 统计信息:
                                = 4, 丢失 = 0 (0% 丢失),
```

