Panel linear regression with individual and time -fixed effects:

$$Conflicts_{i,m,y} = \alpha + \beta_1 T A_{i,m,y} + \beta_2 P A_{i,m,y} + \beta_3 D L_{i,m,y}^{TA} + \psi_i + \theta_{m,y} + \epsilon_{i,m,y}$$

Panel linear regression

$$Conflicts_{i,m,y} = \alpha + \beta_1 T A_{i,m,y} + \beta_2 P A_{i,m,y} + \beta_3 D L_{i,m,y}^{TA} + \beta_4 Sum_{-}displ_{i,m,y} + \psi_i + \theta_{m,y} + \epsilon_{i,m,y}$$

Panel linear regression

R-squared for these regressions is very low (\sim 0.01) but comparable with similar model specifications in other works on similar topics

The **spatial cross-regressive model (SLX model)** presumes that the exploratory variables $X_2, X_3, ..., X_k$ as well as their spatial lags $LX_2, ..., LX_k$ influence a georeferenced dependent variable Y. In this approach Y is not only affected by values the variables take in the same region but also they can take in neighbouring regions:

(5.1)
$$\mathbf{y} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + ... + \beta_k \mathbf{x}_k + \gamma_2 \mathbf{W} \mathbf{x}_2 + ... + \gamma_k \mathbf{W} \mathbf{x}_k + \varepsilon$$

In our case, x_1 , x_2 , ... are the climate variables TA, PA, DL. The spatial weight matrix W is a matrix containing the square of the inverse distance between regions.

In the heatmap below, Wlag.TA, Wlag.PA and Wlag.DL denote the spatial lags of the climate variables.

Spatial cross-regressive model (SLX model)

AIC	-6405.58	-6410.21	-6416.79	-6417.92	-6418.59	-6416.46	-6411.25

The **Spatial Durbin Model (SDM model)** is an extension of the Spatial Autoregressive (SAR) model because of the spatial interaction of the dependent variable and independent variables. SDM models, in general, can be written in the form of a matrix, like the following:

$$C_i = \alpha + \beta X_i + \gamma W X_i + \rho W C_i + \psi_i + \theta_t + \epsilon_{i,t}$$

In the heatmap below, Wlag.TA, Wlag.PA and Wlag.DL denote the spatial lags of the climate variables, and rho is the spatial lag of the dependent variable (i.e. conflicts).

Spatial Durbin Model (SDM model)

AIC	-6414.50	-6419.96	-6427.71	-6428.52	-6429.92	-6427.96	-6421.39