Math 331 — Homework 6 Due: Friday, March 19 Pushed back to Monday, March 29

Dana Merrick June 14, 2010

> (1) Prove that if $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then it is bounded. Hint: follow the proof that convergent sequences are bounded.

Proof. If $\{a_n\}_{n=1}^{\infty}$ is Cauchy, then for any $\epsilon > 0$, there exists an N > 0 such that for all $n, m \geq N, |a_n - a_m| < \epsilon$. If $\epsilon = 1$, there exists an N_1 such that for all $m, n > N_1, |a_n - a_m| < 1.$

Using the triangle inequality, we know that for all $a, b, c \in \mathbb{Z}$, the following holds:

$$||a-c|-|b-c|| \le |a-b|.$$

Let $m = N_1 + 1$. By the triangle inequality, for any $n > N_1$, we have:

$$||a_n - a_{N_1}| - |a_n - a_m|| \le |a_{N_1} - a_m|$$

$$||a_n - a_{N_1}| - |a_n - a_{(N_1+1)}|| \le |a_{N_1} - a_{(N_1+1)}|$$

$$< 1$$

Therefore, $|a_n - a_{N_1}| < |a_n - a_{(N_1+1)}| + 1$.

Let $M = \max(|a_{N_1} - a_1|, |a_{N_1} - a_2|, \dots, |a_{N_1} - a_{N_1}|, |a_{N_1} - a_{(N_1+1)}|) + 1$. Then for all $n \in \mathbb{N}$, $|a_n - a_{N_1}| \leq M$. Hence, $\{a_n\}_{n=1}^{\infty}$ is bounded by M.

(2) Prove that the series $\sum_{i=1}^{\infty} \frac{1}{n(n+1)}$ converges and find its sum.

Hint: Use induction and the fact that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ to find the partial sums.

Proof. Let $\{S_N\}_{n=1}^{\infty}$ be the series of partial sums where $S_N = \sum_{n=1}^N \frac{1}{n(n+1)}$. We want to show that $S_N \to S$ as $n \to \infty$.

I claim that:

$$S_N = 1 - \frac{1}{N+1}.$$

We will proceed by induction. When N=1, then we have:

$$\frac{1}{1\cdot(1+1)} = 1 - \frac{1}{1+1} = \frac{1}{2}.$$

Suppose that $S_k = 1 - \frac{1}{k+1}$, we want to show that $S_{k+1} = 1 - \frac{1}{k+2}$. We have that $S_k = 1 - \frac{1}{k+1}$, so S_{k+1} must equal $1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$. But since we can write $\frac{1}{n(n+1)}$ as $\frac{1}{n} - \frac{1}{n+1}$, we have the following:

$$S_{k+1} = 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+1} + \frac{1}{k+1} - \frac{1}{k+2}$$

$$= 1 - \frac{1}{k+2}$$

$$= 1 - \frac{1}{(k+1)+1}.$$

Hence, our assertion that $S_N = 1 - \frac{1}{N+1}$ holds.

(3) Given two convergent series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, and any constant $c \in \mathbb{R}$, prove the following:

(a)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
.

Proof. Since $\sum_{n=1}^{\infty} a_n$ converges, we have a series of partial sums $\{S_N\}_{n=1}^{\infty}$ where:

$$S_N = \sum_{n=1}^N a_n.$$

Further, we know that $S_N \to S$ as $n \to \infty$. Since we know that $c\{S_N\}_{n=1}^{\infty} = \{cS_N\}_{n=1}^{\infty}$, it follows that:

$$c\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}ca_n.$$

(b)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
.

Proof. Since $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, we have two series of partial sums $\{S_N^a\}_{n=1}^{\infty}$ and $\{S_N^b\}_{n=1}^{\infty}$ where:

$$S_N^a = \sum_{n=1}^N a_n \text{ and } S_N^b = \sum_{n=1}^N b_n$$

Further, we know that $S_N^a \to S^a$ and $S_N^b \to S^b$ as $n \to \infty$. We know from the arithmetic of series that:

$$\{S_N^a\}_{n=1}^{\infty} + \{S_N^b\}_{n=1}^{\infty} = \{S_N^a + S_N^b\}_{n=1}^{\infty},$$

and that $(S_N^a + S_N^b) \to (S^a + S^b)$ as $n \to \infty$. It follows that:

$$\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + b_n).$$

(4) Prove that the series $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges.

Hint: Show by induction that the partial sums S_{2^k} are bounded below by k/2. Use this to deduce that the sequence of partial sums diverges.

Proof. Notice we have the following:

$$\sum_{n=1}^{\infty} \frac{1}{n} = (1) + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) + \cdots$$
$$= S_1 + S_2 + S_3 + \cdots$$

Note that there are 2^k summands in each S_k . Since each of the summands in a given S_k is greater than $\frac{1}{2^{k+1}}$, we have that $S_k > \frac{2^k}{2^{k+1}} = \frac{1}{2}$. Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{k=1}^{\infty} S_k$, we have that:

$$\sum_{k=1}^{\infty} S_k > \sum_{k=1}^{\infty} \frac{1}{2},$$

which diverges. Hence, $\sum_{n=1}^{\infty} \frac{1}{n}$ must diverge.