

KI Labor - Wintersemester 2021

Reinforcement Learning

Schedule

Datum	Thema	Inhalt	Präsenz
01.10.21	Allg.	Organisation, Teamfindung	Nein
08.10.21	CV	Vorstellung CV	Nein
15.10.21	CV	Q&A Sessions	Nein
22.10.21	CV	Sprintwechsel, Vorstellung Assignment	Ja
29.10.21	CV	Q&A Sessions	Nein
05.11.21	CV/NLP	Abgabe CV, Vorstellung NLP	Ja
12.11.21	NLP	Q&A Sessions	Nein
19.11.21	NLP	Sprintwechsel, Vorstellung Assignment	Ja
26.11.21	NLP	Q&A Sessions	Nein
03.12.21	NLP	Keine Veranstaltung Q&A Sessions	Nein
10.12.21	NLP/RL	Abgabe NLP, Vorstellung RL	Nein Ja
17.12.21	RL	Q&A Sessions	Nein
14.01.22	RL	Sprintwechsel, Vorstellung Assignment	Nein Ja
21.01.22	RL	Q&A Sessions	Nein
28.01.22	RL	Abgabe RL, Abschluss KI Labor	Nein Ja (?)

Frederik Martin Software Entwickler seit 2014

Sebastian Blank
Data Scientist
seit 2017

Agenda

Theorie

- Problemstellung & Lösungsansatz
- Monte Carlo Methoden
- Temporal-Difference Methoden
- Q-Learning

Übungsaufgaben

- CliffWalking mit Q-Learning (Aufgabe 1)
- CartPole Gym mit Q-Learning (Aufgabe 2)

Reinforcement Learning

Meilensteine im Reinforcement Learning

Reinforcement Learning

Setting

Grundbegriffe

Agent Environment

Grundbegriffe

States

$$s_t \in \mathcal{S}$$

$$r_t \in \mathcal{R}$$

Return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 Return Discount factor

 ∞

Interaktion zwischen Agent und Umwelt

State_{t+1} = P(State_t, Action_t)

 $Reward_t = R(State_t)$

Transition probabilities P(s,a)

Transition probabilities P(s,a)

tatsächlicher Zustandsübergang

Markov Property

Wissen über vorherige Aktionen

0 1
2 x

Der Übergang in den nächsten Zustand s' hängt nur von aktuellem Zustand s und Aktion a ab.

Markov Decision Process (MDP)

Formale Beschreibung der Interaktion im RL

Markov Property erfüllt

Set von States

A Set von Aktionen

• *R*(*s*,*a*) Reward Funktion

 \bullet P(s,a) Transition Probabilities

y Discount Factor

Policy π

Deterministische Policy

Stochastische Policy

Policies definieren das Verhalten eines Agenten gegeben einem State.

State-value function

Können wir mit diesen Infos den Wert des Zustands bestimmen?

State s

Rewards

-1	-1	-1	-1	-1
-1	-1	-1	-1	0
-1	-1	-1	-1	-1

State-value function

-1	-1	-1	-1	-1
-1	-1	-1	-1	0
-1	-1	-1	-1	-1

State s und Policy π

State-value function v_π(s)

-7	-6	-5	-4	-1
-6	-5	-4	-3	Х
-5	-4	-3	-2	-1

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}[R_{t+1} + G_{t+1}(S_{t+1})|S_t = s]$$

State-value function

Welcher Zustand ist besser?

State 1

State 2

Action-value function $q_{\pi}(s,a)$

State s und Policy π

Action-value function $q_{\pi}(s,a)$

$$q_{\pi}(\underline{s},\underline{a}) = \mathbb{E}_{\pi}[G_t|S_t = \underline{s}, \underline{A_t = a}]$$

= $\mathbb{E}[R_{t+1} + G_{t+1}(S_{t+1}, A_{t+1})|S_t = \underline{s}, A_t = \underline{a}]$

Action-value function $q_{\pi}(s,a)$

Action-value function $q_{\pi}(s,a)$

	-7 -7 -5		
-7 -8 -7	-7 -5 -6	-4 -5 -4	Х
	-5 -7 -6		

Q-Table

	•	4	1	•
S ₁₂	-6	-7	-7	-5
S ₂₁	-4	-8	-7	-7
S ₂₂	-3	-5	-7	-6
S ₂₃	-2	-5	-4	-4
S ₃₂	-5	-7	-5	-6

Optimal Policies π*

-5	-4	-3	-2	-1
-4	-3	-2	-1	Х
-5	-4	-3	-2	-1

Optimale Policy ist besser alle andere Policies:

$$\pi^* \geq \pi, \forall \pi$$

Was bedeutet besser?

$$\pi \geq \pi'$$
, if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Exploitation

Maximierung des Rewards gg. bekannter Information

Exploration

Erschließung neuer, unbekannter Bereiche

bekannt unbekannt

Monte Carlo Methods

Episode 1

Random Policy π

•••

Episode 2

•••

•••

Monte Carlo Prediction

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t))$$
alternative
Schätzung
schätzung

Control Problem: Estimate the optimal policy

Temporal-Difference Methods

Monte Carlo Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t))$$
alternative
Schätzung
aktuelle
Schätzung

Temporal-Difference Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$
alternative
Schätzung
aktuelle
Schätzung

Q-Learning

Off-Policy TD-Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \underline{\gamma}Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

alternative Schätzung

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \underline{\gamma} max_a Q(S_{t+1}, a) - Q(S_t, A_t))$$

alternative Schätzung

Q-Learning

Off-Policy TD-Control

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
       Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
       Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
      S \leftarrow S':
   until S is terminal
```


Aufgaben

OpenAl Gym

Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation > View on GitHub >

OpenAl Gym

```
import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
    observation = env.reset()
    for t in range (100):
        env.render()
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        if done:
            print("Episode finished after {} timesteps".format(t+1))
            break
env.close()
```


Aufgabe 1: CliffWalking mit Q-Learning

Jupyter Lab Notebook

Zustands- und Aktionsräume

Wie unterscheiden sich diese Environments?

Zustände & Aktionen diskret

Zustände kontinuierlich & Aktionen diskret

Zustände & Aktionen kontinuierlich

Aufgabe 2: CartPole Gym mit Q-Learning

Jupyter Lab Notebook

Literatur

- Kostenlose "Standard"-Lektüre für den Einstieg in RL: Reinforcement Learning: An Introduction (Sutton and Barto), siehe http://incompleteideas.net/book/RLbook2018.pdf
- Ausführlich und gut erklärter Einstieg in RL (Video-Lektionen): UCL Course on RL (David Silver, Google DeepMind), siehe https://www.davidsilver.uk/teaching/
- Algorithms in Reinforcement Learning von Csaba Szepesvári, siehe https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
- Blog mit Videos zum Einstieg in RL und Q-Learning, DQN und vieles mehr: Reinforcement Learning – Introducing Goal Oriented Intelligence, siehe https://deeplizard.com/learn/video/nyjbcRQ-uQ8

Feedback

https://forms.gle/YD14698CWjavAckj7

Vielen Dank

Frederik Martin fmartin@inovex.de

Sebastian Blank sblank@inovex.de

