DSC5211C QUANTITATIVE RISK MANAGEMENT SESSION 4

Fernando Oliveira

bizfmdo@nus.edu.sg

ARIMA Modelling

Objectives

- Box-Jenkins Univariate Forecasting
 - Introduction to ARIMA Models
 - Model Identification
 - Model Estimation

Readings: Enders, Ch. 2.6-2.10

Franses, Ch. 3

Hanke, Ch. 9.

Box-Jenkins Univariate Forecasting

- Box-Jenkins is a univariate forecasting approach. It involves careful examination of series in order to identify underlying *data-generating process*.
- Useful to restrict search in models of the class of AutoRegressive Integrated Moving Average: these models are linear functions of past observations: $Y_t = 0.5 Y_{t-1} + 0.3 Y_{t-2} + e_t$
- Choice of best model can be made systematically by following sequence of:

Autoregressive Models

• If Y_t follows an *autoregressive* process of order p, we write $Y_t \sim AR(p)$, or $Y_t \sim ARMA(p,0)$

 Y_t depends linearly on p past values:

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

where e_t has zero mean, fixed variance, no autocorrelation (as in regression)

Autoregressive Models: AR(1)

• An AR(1) process:

$$Y_t = \phi_1 Y_{t-1} + \varepsilon_t$$

- Unemployment, Prices, GDP, etc.
- AR model of sufficiently high order can generally be found as a close approximation to any process met in business and economics
- But if a large number of parameters are required for good fit, forecasts can be poor.
- This motivates working with a broader class of models.

Moving Average Models

• If Y_t follows a moving average process of order q, we write

$$Y_t \sim \text{MA}(q)$$
, or $Y_t \sim \text{ARMA}(0,q)$

 Y_t depends linearly on q past values of a stochastic term:

$$Y_{t} = e_{t} + \theta_{1}e_{t-1} + \theta_{2}e_{t-2} + \dots + \theta_{q}e_{t-q}$$

 e_t has zero mean, fixed variance, no autocorrelation

• Helpful not to view e_t as 'error' but instead as a pure stochastic term affecting Y_t

Moving Average Models: MA(1)

• An MA(1) process:

$$Y_t = e_t + \theta_1 e_{t-1}$$

- Small commodity market receives news about crops. News will have immediate effect and discounted effect as market assimilates importance.
- Don't confuse this MA with the smoothing MA

ARMA Models

• An obvious generalisation of AR and MA models, that includes them as special cases, is the mixed model in which Y_t is generated by

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} + \theta_{1}e_{t-1} + \theta_{2}e_{t-2} + \dots + \theta_{q}e_{t-q}$$

This is an ARMA(p,q) model

• Experience suggests that a mixed model ARMA(p,q) may achieve as good a fit as an AR(p') model but using fewer parameters,

i.e.
$$p+q < p'$$

• Since amount of data is limited, preference is to fit a model involving as few parameters as possible

This is known as the *principle of parsimony*

ARIMA Models

- Univariate methods rely on information in past series for predicting future.
- The assumption is that there is some regularity in data generating process.
- Assuming stability over time of autocorrelations allows their exploitation in forecasting
- Use of autocorrelation structure relies on series being stationary:
 - constant mean
 - constant variance
 - autocorrelation depends only on lag

ARIMA Models

- Use of autocorrelation structure relies on series being stationary:
- Stationarity is achieved by differencing. This is consistent with current view that trends in financial and economic series are stochastic.
- If variable must be differentiated d times in order to achieve stationarity, it is *integrated* of order d
- If it then follows an ARMA(p,q) process, we say that the variable is an ARIMA(p,d,q) process: AutoRegressive Integrated Moving Average

Box-Jenkins Methodology

Model Identification (p,d,q)

• Box-Jenkins imposes stationarity by differencing.

If differenced d times, model will be ARIMA(p,d,q)

- After differencing, look at ACF and PACF of new stationary series.
 - Different ARIMA models have different ACF and PACF patterns.
- Autocorrelation function (ACF): measures correlation between Y_t and Y_{t-k}

ACF & PACF for AR Models

• To get a feel for ACF & PACF, consider

$$Y_t = 0.8Y_{t-1} + \varepsilon_t \tag{1}$$

• Using this:

$$Y_{t-1} = 0.8Y_{t-2} + \varepsilon_{t-1} \tag{2}$$

Substituting (2) into (1):

$$Y_t = 0.64Y_{t-2} + 0.8\varepsilon_{t-1} + \varepsilon_t$$
 (3)

ACF & PACF for AR Models

Using (1):

$$corr(Y_t, Y_{t-1}) = corr(0.8Y_{t-1} + \varepsilon_t, Y_{t-1})$$

Using (3):

$$corr(Y_t, Y_{t-2}) = corr(0.64Y_{t-2} + 0.8\varepsilon_{t-1} + \varepsilon_t, Y_{t-2})$$

Indicates that autocorrelations are significant for first few orders and die away exponentially

• To get a feel for PACF, ask how significant is Y_{t-k} in a regression of Y_t on Y_{t-1} , Y_{t-2} , Y_{t-3} ,...., Y_{t-k}

ACF & PACF for AR(1) Model

The ACF and the PACF of an AR(1) Process

ACF & PACF for AR(2) Model

The ACF and the PACF of an AR(2) Process

ACF & PACF for AR(2) Model

In each case, the first two PAC's are nonzero, then the PACF cuts off to zero

ACF & PACF for MA Models

• To get a feel for ACF & PACF, consider

$$Y_t = 0.8\varepsilon_{t-1} + \varepsilon_t \tag{1}$$

• From (1):

$$Y_{t-1} = 0.8\varepsilon_{t-2} + \varepsilon_{t-1} \tag{2}$$

$$Y_{t-2} = 0.8\varepsilon_{t-3} + \varepsilon_{t-2} \tag{3}$$

• Using (1) and (2):

$$corr(Y_t, Y_{t-1}) = corr(0.8\varepsilon_{t-1} + \varepsilon_t, 0.8\varepsilon_{t-2} + \varepsilon_{t-1})$$

• Using (1) and (3): Indicates that autocorrelation is significant for first order but is zero thereafter

ACF & PACF for MA Models

• To calculate PACF, express RHS in terms of Y_{t-1} , Y_{t-2} , Y_{t-3} ,, Y_{t-k}

From (2):
$$\varepsilon_{t-1} = Y_{t-1} - 0.8\varepsilon_{t-2}$$

So from (1):
$$Y_t = 0.8Y_{t-1} - 0.64\varepsilon_{t-2} + \varepsilon_t$$
 (4)

From (3):
$$\varepsilon_{t-2} = Y_{t-2} - 0.8\varepsilon_{t-3}$$

So from (4):
$$Y_t = 0.8Y_{t-1} - 0.64Y_{t-2} + 0.512\varepsilon_{t-3} + \varepsilon_t$$

Thus
$$Y_t = 0.8Y_{t-1} - 0.64Y_{t-2} + 0.512Y_{t-3} + \dots + \varepsilon_t$$

Indicates PACF significant for first few orders and then dies away exponentially

ACF & PACF for MA(1)

The ACF and the PACF of an MA(1) Process

ACF & PACF for MA(2)

The ACF and the PACF of an MA[2] Process

The first two autocorrelations (or at least the second one) are nonzero, either positive or negative, and all the rest are zero

ACF & PACF for MA(2)

ACF & PACF for Non-Stationary Models

- Differencing should be performed to make series stationary before one looks at ACF and PACF
- However, non-stationarity should be apparent from ACF and PACF

Summary: ARIMA Identification

Type of model	ACF	PACF
AR(p)	Tails off	p spikes, then cuts off to zero
MA(q)	q spikes, then cuts to zero	Tails off
Mixed ARMA	Tails off	Tails off
Nonstationary	Persistently nonzero	Large spike, close to 1.00, at lag 1

Model Estimation

• For purely AR processes

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$$

parameters can be estimated by a regression package or a dedicated ARIMA package

• When the model contains MA parameters,

$$Y_{t} = \phi_{1}Y_{t-1} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2}$$

there is a need for a dedicated ARIMA package

Model Estimation

- *Maximum likelihood* this procedure selects the parameters so as to maximise the likelihood of drawing the observed sample
- Amounts to minimisation of complicated nonlinear function of parameters.
- Iterative numerical procedure is used to search for optimal parameters.

Example: Copper Prices Copper (\$/mt)

Included observations: 708

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	1	1	0.992	0.992	699.84	0.000
		2	0.980	-0.257	1384.0	0.000
	1 11	3	0.968	0.008	2051.6	0.000
	l i þi l	4	0.955	0.030	2703.3	0.000
		5	0.944	0.004	3339.9	0.000
	u[ı	6	0.931	-0.037	3961.0	0.000
	I	7	0.919	0.027	4567.3	0.000
	יף	8	0.909	0.068	5160.5	0.000
	'P	9	0.901	0.111	5743.7	0.000
	' '	10	0.893	-0.004	6318.5	0.000
	¶'	11	0.886	-0.055	6884.1	0.000
		12	0.876	-0.113	7438.2	0.000
	"[13	0.866	0.016	7980.0	0.000
	'	14	0.856	0.069	8510.8	0.000
	'['	15	0.847	-0.008	9031.3	0.000
	' '	16	0.838	0.019	9542.0	0.000
	' '	17	0.830	0.021	10043.	0.000
	'['	18	0.822	0.006	10535.	0.000
	' '	19	0.814	0.010	11018.	0.000
	']'	20	0.807	0.006	11494.	0.000
	"[]'	21	0.800	-0.029	11963.	0.000
	<u>"</u> "	22		-0.045	12423.	0.000
	"	23		-0.017	12873.	0.000
	'['	24	0.774	0.002	13314.	0.000
	<u> </u>	25	0.766	0.034	13745.	0.000
	101	26	0.758	0.031	14168.	0.000
	<u> </u>	27	0.751	0.090	14585.	0.000
	<u> </u>	28	0.746	0.012	14997.	0.000
		29	0.741	0.024	15404.	0.000
		30	0.738	0.000	15807.	0.000
	'['	31	0.734	-0.002	16207.	0.000
	<u> </u>	32	0.732	0.061	16605.	0.000
	<u> </u>	33	0.729	0.008	17001.	0.000
	' ! '	34	0.727	0.017	17395.	0.000

DLog(Copper) Stationarity

DLOG(COPPER)

DLOG(Copper) Example: Correlogram

Sample: 1960M01 2018M12 Included observations: 707

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	ı .b		0.004	0.004	77.000	0.000
1		1	0.331	0.331	77.832	0.000
:::	l 51	2	0.011	-0.110	77.924	0.000
11.	l ''	3	-0.018 0.010	0.016 0.015	78.155	0.000
:::	1 7	5	-0.004		78.231 78.241	0.000
]];	_	-0.004	0.003	78.265	0.000
			-0.054		80.362	0.000
4.	l 4.	ı	-0.034		90.141	0.000
7.	1 7.		-0.077		94.397	0.000
1	l ih	10	0.021	0.046	94.708	0.000
ili	l in	11	0.084	0.063	99.849	0.000
Ĭĥ.	in	12	0.072	0.029	103.55	0.000
ıſι	l of		-0.010		103.63	0.000
dı	l di		-0.067		106.87	0.000
<u>.</u>	<u> </u>		-0.073		110.68	0.000
ı j ı	l ib	16	0.014	0.041	110.82	0.000
ı ı	l di	17	0.005	-0.028	110.84	0.000
d ı	<u> </u> -	18	-0.107	-0.103	119.16	0.000
dı .	l ili	19	-0.081	0.012	123.94	0.000
ı l ı	l ili	20	-0.016	0.012	124.14	0.000
ı j ı	l ili	21	0.023	0.014	124.52	0.000
ı j ı	ψ	22	0.013	-0.022	124.65	0.000
ı þi	'Þ	23	0.057	0.046	127.02	0.000
ı j ı	10	24	0.023	-0.011	127.41	0.000
' ¹	1 1	ı	-0.012		127.52	0.000
1		26	-0.009		127.58	0.000
<u> </u>]]	27		-0.006	127.62	0.000
<u>"</u>	[ı	-0.046		129.18	0.000
g '	^[]	ı	-0.079		133.82	0.000
q ı	10	30	-0.061	-0.010	136.58	0.000

• Even though stationary we can still model the residuals

DLOG(Copper) Example: MA(1)

OPTIONS: Generalised Least Squares - GLS

DLOG(Copper) Example: MA(1)

Dependent Variable: DLOG(COPPER)

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 01/23/19 Time: 15:48 Sample: 1960M02 2018M12 Included observations: 707

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.003041 0.356941	0.003225 0.035185	0.3461 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.119345 0.118096 0.063219 2.817605 949.8805 95.54071 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.003026 0.067319 -2.681416 -2.668513 -2.676431 1.977221

DLOG(Copper) Example: MA(1) – Residuals Corr.

Sample: 1960M01 2018M12 Included observations: 707

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ıjı	iji	1	0.011	0.011	0.0907	
ı j ı	լի	2	0.018	0.018	0.3174	0.573
ı (lı	(1)	3	-0.032	-0.032	1.0338	0.596
ıþı		4	0.025	0.025	1.4768	0.688
ų l	10	5	-0.014	-0.014	1.6202	0.805
ı ι		6	0.008	0.006	1.6635	0.893
ıψ	di	7	-0.028	-0.026	2.2283	0.898
q۱	 	8	-0.091	-0.093	8.2161	0.314
q i	•	9	-0.055	-0.051	10.361	0.241
ı j ı	1 1	10	0.019	0.021	10.622	0.303
ı þi	'	11	0.061	0.059	13.285	0.208
ı þi	'b	12	0.058	0.058	15.695	0.153
- 1∳1	1 10	13	-0.016	-0.017	15.873	0.197
ıψι	10	14	-0.041	-0.042	17.069	0.196
qi	[[i	15	-0.069	-0.073	20.497	0.115
ıþı	1 1/1	16	0.027	0.015	21.022	0.136
ıþı	1 1	17	0.029	0.024	21.616	0.156
q۱	[]'	18	-0.102	-0.104	29.249	0.032
ıψ	10	19	-0.045	-0.027	30.753	0.031
ı ∮ ı		20	-0.012	0.007	30.860	0.042
ıþı		21	0.032	0.029	31.610	0.048
ı l ı	di	22	-0.016	-0.030	31.791	0.061
ı j ı		23	0.060	0.036	34.405	0.045
ıþι		24	0.008	0.008	34.448	0.059
.4.	I di	OF.	0.044	0.000	24 520	0.070

ARIMA: Examples

• ARIMA(2,0,1) Eviews: Y c AR(1) AR(2) MA(1)

• ARIMA([4],0,0) Eviews: *Y* c AR(4)

• ARIMA(0,0,2) Eviews: $Y \in MA(1) MA(2)$

• ARIMA(1,0,1) Eviews: Y c AR(1) MA(1)

• ARIMA(1,1,1) Eviews: D(Y) c AR(1) MA(1)

• ARIMA(1,2,1) Eviews: D(Y, 2) c AR(1) MA(1)

Summary

- ARIMA modelling is an attempt to model the true data generating process
- Box-Jenkins Methodology requires series to be stationary so use Dickey-Fuller tests and difference if necessary
 - Model Identification ACF & PACF
 - Model Estimation estimate several candidates

EXTRA Readings

Box, G. E. P., and G. M. Jenkins, 1970, *Time Series Analysis, Forecasting and Control*. San Francisco: Holden Day.