Lösende Planungsgraphen

Sei $G_n = \langle N, E \rangle$ ein Planungsgraph der Ordnung n für $\langle S, O, Z \rangle$.

- Der Planungsgraph $G_0 = \langle S, \varnothing \rangle$ zu einem gegebenen Planungsproblem $\langle S, O, Z \rangle$ ist eine **Lösung**, gdw. $Z \subseteq S$
- Für n>0 ist G_n eine Lösung von $\langle S,O,Z\rangle$, gdw.
 - $Z \subseteq F_n$
 - keine $f,g \in \mathbb{Z}$ schließen sich wechselseitig aus in F_n
 - es gibt $L \subseteq O_{n-1}$, eine minimale Menge nichtausschließlicher Operatoren, sodass Z in der Vereinigung der Nachbedingungen von L liegt, und für die Vereinigung V der Vorbedingungen von L gilt: G_{n-1} ist eine Lösung von $\langle S, O, V \rangle$
- "Regression der Ziele über Planungsgraph-Schichten"

Planungsgraphexpansion und ihr Ende

Expansion eines Planungsgraphen $G_n = \langle N, E \rangle$ der Ordnung n: Einfügen der Operatorschicht O_n , der Faktenschicht F_{n+1} , sowie der Mutex-Kanten

Ein **Expansionsfixpunkt** ist ein Planungsgraph, in dem zwei Faktenebenen und alle ihre Mutex-Bedingungen identisch sind.

Satz

Ergibt die Expansion eines Planungsgraphen für ein Planungsproblem $\langle S, O, Z \rangle$ einen Fixpunkt in Tiefe n und ist $Z \not \sqsubseteq F_n$ oder zwei Teilziele aus Z schließen sich aus in F_n , so ist das Planungsproblem unlösbar.

Beweisidee: $F \subset F_i$ für ein i und Mutex-Freiheit ist notwendige Voraussetzung für Lösbarkeit

GRAPHPLAN

Algorithmus $GRAPHPLAN(\Sigma)$

Eingabe: $\Sigma = (S, O, F)$: propositionales Planungsproblem

Ausgabe: partiell geordneter Plan oder fail

```
    Γ := ⟨F<sub>0</sub> = S, ∅⟩
    repeat forever
    if Γ ist Lösung von Σ;
    then Π := extrahiere einen Lösungsplan aus Γ;
    return(Π)
    else if Γ ist Expansionsfixpunkt
    then return(fail)
    else expandiere Γ um eine (Operator+Fakten-) Schicht end repeat
```

Planextraktion: beginnend mit der Zielmenge in F_n bis F_0 wähle (*backtracking*!) nicht-Mutex-Operatoren in O_{i-1} , die die Ziele in F_i als Nachbedingungen erzeugen. Ziele in F_{i-1} sind die Vorbedingungen der gewählten Op.en in O_{i-1} .

Planextraktion beim Reifenwechseln

Eigenschaften von GRAPHPLAN

- Pläne sind Folgen von "Zeitschritten" (*time steps*) untereinander ungeordneter Operatoren.
- Literale im Planungsgraph wachsen monoton über die Faktenebenen (Grund: einmal erschienen, erhalte Lit. durch Persistenzoperator)
- Operatoren im Planungsgraph wachsen monoton über die Operatorebenen (Grund: Monotonie der Literale)
- Mutexe zwischen gleichen Objekten schrumpfen monoton über die Planungsgraphebenen (Grund: Ausschluss von Fakten kann entfallen mit neuen Operatoren; damit auch Konkurrenz von Operatoren.)
- GRAPHPLAN terminiert (Grund: Monotonien + Expansionsfixpunkt)

Planen als propositionales Erfüllbarkeitsproblem

- Überführe STRIPS-Problembeschreibungen in aussagelogisches Format:
 - Startsituation ist Konjunktion von Grundfakten
 - Zielsituation ist Konjunktion von Grundfakten
 - Formuliere Vor- und Nachbedingungen in Invarianten über Situationen um ("state constraints") (Beispiel s. Russell/Norvig Kap. 11.5; effiziente Repräsentationen können bereichsspezifisch sein!)
- Unterschiede zu Situationskalkül-Repräsentation:
 - Endliches Herbrand-Universum: Verwende propositionale Schemata statt FOL-Formeln
 - Zeitschritte wie bei Graphplan
 - Maximalgrenze von Zeitschritten (Terminerung!)
- Als Planer nimm prop. *Model Checker* (DPLL, WALKSAT)

Propositionale Axiomenschemata I

Startzustand
$$\bigwedge_{f \in s_0} f_0 \land \bigwedge_{f \notin s_0} \neg f_0$$
 Index 0 in f_0 : Zeitschritt!

Bspl.: Roboter R, der zwischen Positionen L,M fahren kann $At(R,L,0) \land \neg At(R,M,0)$

Zielzustand (Zeitschritt)
$$\bigwedge_{f \in g^+} f_n \wedge \bigwedge_{f \notin g^-} f_n$$

Bspl. (n=1): At(R,M,1) evtl. zusätzlich: $\land \neg At(R,L,1)$

Notw. Aktionseigenschaften
$$a_i \Rightarrow \left(\bigwedge_{p \in \operatorname{precond}(a)} p_i \wedge \bigwedge_{p \in \operatorname{effect}(a)} e_{i+1} \right)$$

Bspl.: Move
$$(R,L,M,0) \Rightarrow At(R,L,0) \land At(R,M,1) \land \neg At(R,L,1)$$

Move $(R,M,L,0) \Rightarrow At(R,M,0) \land At(R,L,1) \land \neg At(R,M,1)$

Propositionale Axiomenschemata II

Wandel-Axiome

$$\neg f_i \land f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in \text{effect}^+(a)} a_i \right) \land$$

$$f_i \land \neg f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in \text{effect}^-(a)} a_i \right)$$

Bspl.:
$$\neg At(R,L,0) \land At(R,L,1) \Rightarrow \mathbf{Move}(R,M,L,0)$$

 $\neg At(R,M,0) \land At(R,M,1) \Rightarrow \mathbf{Move}(R,L,M,0)$
 $At(R,L,0) \land \neg At(R,L,1) \Rightarrow \mathbf{Move}(R,L,M,0)$
 $At(R,M,0) \land \neg At(R,M,1) \Rightarrow \mathbf{Move}(R,M,L,0)$

Operatorausschluss-Axiome (soweit erforderlich) $a_i \Rightarrow \neg b_i$

Bspl.:
$$\mathbf{Move}(R, M, L, 0) \Rightarrow \neg \mathbf{Move}(R, L, M, 0)$$

 $\mathbf{Move}(R, L, M, 0) \Rightarrow \neg \mathbf{Move}(R, M, L, 0)$

SATPLAN

```
function SATPLAN(problem, T max) returns solution or failure inputs: problem, a planning problem
T_{\max}, \text{ an upper limit for plan length}
for T=0 to T_{\max} do
enf, mapping \leftarrow \text{Translate-To-SAT}(problem, T)
assignment \leftarrow \text{SAT-SOLVER}(enf)
if assignment is not null then
return \text{ Extract-Solution}(assignment, mapping)
return failure
```

- Attraktiv durch "saubere Semantik" und Verifizierbarkeit
- Größe der Probleme begrenzt durch exponenzielle Klausenzahl
- Pragmatische Kombination (BLACKBOX-Planer) mit Planungsgraphen

3. Planen unter Unsicherheit

Krücken und Methoden

- "Neo-/Klassisches" Planen macht Voraussetzungen für Anwendbarkeit (s. Folien 326, 328)
- Nicht alle Domänen erfüllen diese Voraussetzungen "objektiv"
- "Leichte Verletzungen" von Algorithmen-Voraussetzungen kann man pragmatisch "überbrücken" (im Planen wie auch sonst)
- Russell/Norvig (Kap. 12.3-6) beschreiben solche "Krücken"
 (Nichtdeterminismus, Informationsmangel, Ausführungsfehler)
- Erfüllt die Domäne grundsätzlich nicht die Voraussetzungen für klassisches Planen, sollte man grundsätzlich andere Verfahren wählen
- Methoden zum Planen (Entscheiden) unter Unsicherheit behandeln Russell/Norvig in Kap.16-17.

Rationale Entscheidungen unter Unsicherheit

- Planungsvariante nun:
 - Aktionen: möglicherweise nicht-deterministisch
 - Bereichsinformation bei Planung und/oder Ausführung möglicherweise unvollständig
- Verwende elementare Konzepte der Nutzentheorie
- Modelliere zunächst Entscheidungen über einzelne Aktionen, dann Pläne (policies, "Politiken")

Prinzip des maximalen erwarteten Nutzens (MEU)

Für Aktionen *A* und Evidenz *E* maximiere:

$$EU(\alpha|E) := \max_{A} \sum_{i} [P(\text{Result}_{i}(A) \mid \text{Do}(A), E) \times U(\text{Result}_{i}(A))]$$

Lotterien

Formalisierung von Aktionen mit nicht-deterministischen Effekten:

$$L = [p_1, C_1; p_2, C_2; ...; p_n, C_n]$$

für alternative Zustände oder Lotterien C_i und ihre W'keiten p_i , $\sum_i p_i = 1$

Zustände entsprechen Lotterien der Form [1,A]

Notation für Lotterien:

A > B: A ist **präferiert** gegenüber B

 $A \sim B$: Indifferenz bzgl. A und B

 $A \ge B$: Präferenz oder Indifferenz

Die Axiome der Nutzentheorie

Wohlgeordnetheit
$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

Transitivität
$$(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$$

Kontinuierlichkeit
$$A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$$

Substituierbarkeit
$$A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$$

Monotonie
$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$$

Zerlegbarkeit
$$[p,A;(1-p),[q,B;(1-q),C]] \sim [p,A;(1-p)q,B;(1-p)(1-q),C]$$

Die Nutzenfunktion

... ist eine abgeleitete Funktion, gegeben Lotterien und Präferenzen

Konzeptuell verhalten sich Agenten nach Präferenzen, nicht nach Nutzenfunktionen!

Satz (Ramsey, 1931; von Neumann&Morgenstern, 1944):

Gegeben Präferenzen entsprechend den Axiomen. Dann existiert eine reellwertige Funktion U, sodass

- 1. $U(A) \ge U(B) \Leftrightarrow A \ge B$
- 2. $U([p_1, C_1; ...; p_n, C_n]) = \sum_i p_i U(C_i)$

Normalisierung der Nutzenfunktion: $\forall A.\ 0 \leq U(A) \leq 1$

Exkurs: Ist Kontostand eine Nutzenfunktion?

Für die meisten Menschen nicht!

z.B.: [1,,,Gewinne 1 Mio €"] > [0.5,,,Gewinne 0 €"; 0.5,,,Gewinne 3 Mio €"]

Empirisch ermitteltes *U*:

normative vs. deskriptive

Entscheidungstheorie

Entscheidungsnetze

Für Entscheidungen bei mehreren Variablen (multivariat): Modellierung durch Bayes-Netze mit Aktions- und Nutzenknoten

Multivariate Nutzenfunktionen I

- Wie definiere Nutzenfunktionen $U(X_1,...,X_n)$ mehrerer Var.n? Beispiel: Was ist $U(L\ddot{a}rm, Kosten, Todesf\"{a}lle)$? Wie vergleiche U(,,20000 beeintr\"{a}chtigt", $4,6Mrd \in$, ,0,06 Tote/mpm")? mit U(,,70000 beeintr\"{a}chtigt", $4,2Mrd \in$, ,0,06 Tote/mpm")?
- Eigentliches Problem: Was ist die zu Grunde liegende Präferenzfunktion?
- Idee 1: Identifiziere Formen von Unabhängigkeit der Variablen bzgl Präferenzen (analog bedingter Unabh'keit in Bayes-Netzen)
- Behandle (approximiere) Variablen als (wechselseitig)
 präferenziell unabhängig:

$$U(X_1,...,X_n) = V(X_1,...,X_n) = \sum_i V_i(X_i)$$

additive Wert-Funktion

Multivariate Nutzenfunktionen II

 Idee 2: Identifiziere Formen von Dominanz von Variablen über Abhängige

(z.B.: "je stadtferner der Flughafen, desto geringer die Grundstückskosten") z.B. **strikte** Dominanz: $\forall i. X_i(B) \ge X_i(A)$, folglich $U(B) \ge U(A)$

- 1. Setze die Evidenzvariablen im aktuellen Zustand
- 2. Für alle möglichen Entscheidungen im Entscheidungsknoten:
 - a) Setze den Entscheidungsknoten entsprechend
 - b) berechne die a posteriori W'keiten der Elternknoten des Nutzen-Knotens (z.B. mit Sampling-Algorithmen aus 4.5)
 - c) Berechne Nutzwert für die Entscheidung
- 3. Gib Aktion mit höchstem Nutzen aus

