Курсовая работа (vo_PJ)

Исследование лекарственной активности

Аналитический отчёт

Белянини Роман Сергеевич

Цель исследования

На основе предоставленных данных о химических соединениях спрогнозировать их эффективность с целью подбора оптимального состава лекарственного препарата. Основное внимание уделяется прогнозированию ключевых показателей активности (IC50, CC50, SI) и классификации соединений на «сильные» и «слабые» ингибиторы.

Задачи исследования

- 1. Выполнить исследовательский анализ данных (EDA) и оценить информативность признаков.
- 2. Построить и обучить модели машинного обучения:

Регрессионные задачи

- прогноз ІС50;
- прогноз СС50;
- прогноз SI.

Классификационные задачи

- бинарный прогноз: превышает ли IC50 медианное значение;
- бинарный прогноз: превышает ли СС50 медианное значение;
- бинарный прогноз: превышает ли SI медианное значение;
- бинарный прогноз: превышает ли SI порог 8.
- 3. Оценить и сравнить качество моделей по соответствующим метрикам (например, RMSE и MAE для регрессии; Accuracy, ROC-AUC, F1-score для классификации) и выбрать лучшие решения.

Целевые переменные

- IC₅₀ (мМ) концентрация соединения, необходимая для подавления вирусной активности на 50 %.
- CC₅₀ (мМ) концентрация соединения, вызывающая гибель 50 % клеток (цитотоксичность).
- SI (Selectivity Index) индекс селективности, рассчитываемый как отношение СС₅₀ к IС₅₀; чем выше значение, тем более селективен препарат.

Исследовательский анализ (EDA)

Описание датасета

Датасет представляет собой таблицу, содержащую данные о **1 001** химическом соединении. Каждая строка соответствует одному веществу, а столбцы — его физико-химическим признакам и показателям биологической активности.

Состав признаков:

- 107 числовых признаков (float64)
- 107 целочисленных признаков (int64)

Эти признаки описывают структурные, физико-химические и молекулярные свойства соединений. Данные будут использованы для построения моделей регрессии и классификации, а также для оценки их селективности.

В датасете присутствуют пропуски в размере примерно 30% от данных

MaxPartialCharge	0.2997
MinPartialCharge	0.2997
MaxAbsPartialCharge	0.2997
MinAbsPartialCharge	0.2997
BCUT2D_MWHI	0.2997
BCUT2D_MWLOW	0.2997
BCUT2D_CHGHI	0.2997
BCUT2D_CHGLO	0.2997
BCUT2D_LOGPHI	0:2997
BCUT2D_LOGPLOW	0.2997
BCUT2D_MRHI	0.2997
BCUT2D_MRLOW	0.2997
dtype: float64	

Данные пропуски заполняем медианой

Так же в данных присутствуют данные с 1 уникальным значением

Столбцы заполненые константой ['NumRadicalElectrons', 'SMR_VSA8', 'SlogP_VSA9', 'fr_N_O', 'fr_SH', 'fr_azide', 'fr_barbitur', 'fr_benzodiazepine', 'fr_diazo', 'fr_dihydropyridine', 'fr_isocyan', 'fr_isothiocyan', 'fr_lactam', 'fr_nitroso', 'fr_phos_acid', 'fr_phos_ester', 'fr_prisulfonamd', 'fr_thiocyan']

Удалим их из данных

Большинство соединений демонстрируют низкие значения активности/цитотоксичности, а высокая активность встречается редко. Для корректного моделирования полезны логарифмические преобразования.

На графиках видны выбросы на всех трех целевых переменных

Обработка выбросов

Для смягчения влияния аномально высоких значений протестированы два подхода:

1. Ограничение верхних порогов. Значения выше $IC_{50} > 1~200$ мМ, $CC_{50} >$

- **2** 500 мМ и SI > 250 заменялись пороговыми. Метод сохраняет все строки, быстро устраняя экстремальные пики.
- 2. Исключение выбросов при помощи Isolation Forest. Алгоритм выявил и удалил ≈ 2 % наблюдений, что привело к среднему росту регрессионных метрик на ≈ 3 %.

Таким образом, жертвуя 2 % данных, можно добиться заметного улучшения качества модели. В контексте задачи это считается целесообразным компромиссом между полнотой выборки и точностью прогнозов.

Итоговый размер датасета (980, 196)

Регрессия для СС50

Выбранные алгоритмы регрессии:

- · LinearRegression;
- RandomForestRegressor;
- ExtraTreesRegressor;
- HistGradientBoostingRegressor;
- XGBoostRegressor;
- LightGBMRegressor;
- CatBoostRegressor.

Расширение признакового пространства

- 1. PolynomialFeatures до второй степени. Из сгенерированного набора выбираются 20 наиболее коррелированных с целевой переменной признаков (|r| по Пирсону).
- 2. Базовые + отобранные полиномиальные признаки объединяются в единый датафрейм.
- 3. На объединённом наборе выполняется Lasso (α подбирается перекрёстной проверкой), что окончательно отбирает наиболее информативные переменные и снижает мультиколлинеарность.

Итог: получаем компактный, но информативный набор признаков, на котором обучаются все вышеперечисленные модели.

Результаты обучения моделей (R², кросс-валидация)

Модель	R ² (среднее)	R ² (ст. отклонение)
LinearRegression	-1.27e+21	$\pm 2.54e + 21$
RandomForest	0.5014	$\pm\ 0.0996$
ExtraTrees	0.4846	$\pm \ 0.1251$
HistGBR	0.5229	$\pm~0.0940$
XGBoost	0.4483	± 0.1296
LightGBM	0.5140	$\pm \ 0.0911$
CatBoost	0.5105	$\pm \ 0.1034$

- LinearRegression показывает аномально большое отрицательное значение R^2 вероятно, из-за несоответствия предпосылок линейной модели (например, сильной мультиколлинеарности или влияния выбросов).
- Деревья и бустинг-алгоритмы демонстрируют R^2 около 0.45–0.52 с допустимой вариацией, что подтверждает их устойчивость и способность объяснять данные лучше среднего прогноза.

Для подбора гиперпараметров была выбрана модель LightGBMRegressor, показавшая хорошее сочетание качества ($R^2 \approx 0.51$) и скорости обучения. В качестве инструмента для автоматизированного поиска оптимальных настроек применялся фреймворк Optuna.

Финальные метрики RMSE: 437.75 MAE: 282.50 R²: 0.5559

Регрессия для ІС50

Используем такие же алгоритмы регрессии что и для СС50.

Модель	R ² (среднее)	R ² (ст. отклонение)
LinearRegression	-4.97e+18	$\pm9.93e{+}18$
RandomForest	0.2467	±0.1984
ExtraTrees	0.1693	±0.2883
HistGBR	0.2725	± 0.1584
XGBoost	0.0909	± 0.3575
LightGBM	0.2729	± 0.1543
CatBoost	0.2193	± 0.2517

Для подбора гиперпараметров была выбрана модель LightGBMRegressor Финальные метрики RMSE: 392.33 MAE : 212.70 R² : 0.4646

Регрессия для SI

Используем такие же алгоритмы регрессии что и для CC50. Только добавляем логарифмирование целевой переменной что увеличивает R^2 примерно на 0.10

Матрица корреляции (включая целевую переменную)

Модель	R ² (среднее)	R ² (ст. отклонение)
LinearRegression	-1.96e+20	$\pm 3.92e + 20$
RandomForest	0.3162	$\pm~0.0660$
ExtraTrees	0.2447	$\pm~0.0629$
HistGBR	0.2650	$\pm\ 0.0714$
XGBoost	0.2168	± 0.0613
LightGBM	0.2583	$\pm~0.0759$
CatBoost	0.2851	$\pm \ 0.0728$

Для подбора гиперпараметров была выбрана модель RandomForestRegressor Финальные метрики RMSE: $1.05~\text{MAE}:0.83~\text{R}^2:0.3831$

Классификация: превышает ли значение CC50 медианное значение выборки

Выбранные алгоритмы классификации:

- RandomForestClassifier;
- ExtraTreesClassifier;
- HistGradientBoostingClassifier;
- XGBoostClassifier;
- LightGBMClassifier;
- CatBoostClassifier.

Метод отбора признаков:

Для сокращения размерности данных используется SelectFromModel с порогом в виде медианы важностей признаков. Автоматически отбираются только признаки с важностью выше медианы.

Красные и синие точки в некоторых областях хорошо разделены (например, плотный красный кластер в правом верхнем углу и плотный синий кластер ближе к центру).

- Однако значительное число объектов разных классов перемешаны между собой (в центральной области проекции).
- Это указывает, что полное разделение классов по выбранным признакам затруднено.

Модель	Accuracy	Precision	Recall	F1 Score	ROC AUC
RandomForestClassifier	0.753 ± 0.033	0.749 ± 0.026	0.768 ± 0.063	0.757 ± 0.038	0.837 ± 0.018
ExtraTreesClassifier	0.758 ± 0.021	0.766 ± 0.028	0.753 ± 0.040	0.758 ± 0.022	0.826 ± 0.025
HistGBC	0.742 ± 0.030	0.742 ± 0.028	0.750 ± 0.037	0.746 ± 0.031	0.836 ± 0.023
XGBoostClassifier	0.746 ± 0.025	0.742 ± 0.012	0.763 ± 0.056	0.751 ± 0.033	0.831 ± 0.024
LightGBMClassifier	0.759 ± 0.027	0.763 ± 0.025	0.758 ± 0.050	0.760 ± 0.032	0.833 ± 0.018
CatBoostClassifier	0.758 ± 0.017	0.751 ± 0.020	0.780 ± 0.053	0.764 ± 0.023	0.842 ± 0.018

Сводная таблица метрик на тестовой выборке:

	accuracy	precision	recall	f1	roc_auc
HistGBC	0.796	0.760	0.840	0.798	0.860
LightGBM	0.791	0.752	0.840	0.794	0.860
CatBoost	0.786	0.736	0.862	0.794	0.874
XGBoost	0.781	0.743	0.830	0.784	0.858
ExtraTrees	0.765	0.726	0.819	0.770	0.841
RandomForest	0.760	0.724	0.809	0.764	0.852

Для подбора гиперпараметров была выбрана модель RandomForestClassifier Финальные метрики

Метрики на тестовой выборке:

Классификация: превышает ли значение ІС50 медианное значение выборки

Выбранные алгоритмы классификации:

- RandomForestClassifier;
- ExtraTreesClassifier;
- HistGradientBoostingClassifier;
- XGBoostClassifier;
- LightGBMClassifier;
- CatBoostClassifier.

Метод отбора признаков: такой же как был в СС50

Наблюдается чёткое разделение классов: основная масса точек каждого класса образует свой кластер с минимальным наложением. Количество выбросов невелико.

Сводная таблица метрик на тестовой выборке:

	accuracy	precision	recall	f1	roc_auc
CatBoost	0.732	0.768	0.724	0.745	0.809
LightGBM	0.722	0.748	0.733	0.740	0.778
ExtraTrees	0.732	0.785	0.695	0.737	0.768
HistGBC	0.716	0.740	0.733	0.737	0.788
RandomForest	0.727	0.771	0.705	0.736	0.794
XGBoost	0.722	0.763	0.705	0.733	0.775

Для подбора гиперпараметров была выбрана модель RandomForestClassifier Финальные метрики

Классификация: превышает ли значение SI медианное значение выборки

Выбранные алгоритмы классификации:

- RandomForestClassifier;
- ExtraTreesClassifier;
- HistGradientBoostingClassifier;
- XGBoostClassifier;
- LightGBMClassifier;
- CatBoostClassifier.

Метод отбора признаков: такой же как был в СС50

Сводная таблица метрик на тестовой выборке:

	accuracy	precision	recall	f1	roc_auc
LightGBM	0.663	0.620	0.689	0.653	0.702
XGBoost	0.648	0.604	0.678	0.639	0.710
CatBoost	0.653	0.612	0.667	0.638	0.713
HistGBC	0.633	0.587	0.678	0.629	0.695
RandomForest	0.638	0.600	0.633	0.616	0.692
ExtraTrees	0.622	0.582	0.633	0.606	0.695

Для подбора гиперпараметров была выбрана модель RandomForestClassifier Финальные метрики

Метрики на тестовой выборке:

Классификация: превышает ли значение SI значение 8

Выбранные алгоритмы классификации:

- RandomForestClassifier;
- ExtraTreesClassifier;
- HistGradientBoostingClassifier;
- XGBoostClassifier;
- LightGBMClassifier;
- CatBoostClassifier.

Метод отбора признаков: такой же как был в СС50

Сводная таблица метрик на тестовой выборке:

	accuracy	precision	recall	f1	roc_auc
LightGBM	0.724	0.603	0.567	0.585	0.722
RandomForest	0.735	0.632	0.537	0.581	0.700
HistGBC	0.724	0.610	0.537	0.571	0.718
XGBoost	0.709	0.578	0.552	0.565	0.709
CatBoost	0.730	0.635	0.493	0.555	0.714
ExtraTrees	0.694	0.564	0.463	0.508	0.696

Для подбора гиперпараметров была выбрана модель RandomForestClassifier Финальные метрики

Test Accuracy : 0.6990 Test ROC-AUC : 0.7151 Метрики на тестовой выборке:

	Accuracy	Precision	Recall	F1-score	ROC AUC
0	0.699	0.562	0.537	0.55	0.715

