

Intel[®] Intelligent Storage Acceleration Library (Intel[®] ISA-L)

API Reference Manual - Version 2.12

October 17, 2014

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S LICENSE AGREEMENT FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011 - 2014 Intel Corporation. All rights reserved.

Contents

1	Stor	age Library	1
	1.1	About This Document	1
	1.2	Overview	1
	1.3	RAID Functions	1
	1.4	Erasure Code Functions	2
	1.5	CRC Functions	2
	1.6	Multi-buffer Hashing Functions	2
	1.7	Alignment for Input Parameters	3
	1.8	System Requirements	3
2	Fun	ction Version Numbers	5
	2.1	Function Version Numbers	5
	2.2	Function Version Numbers Tables	6
3	Insti	ruction Set Requirements	11
4	Data	a Structure Index	21
	4.1	Data Structures	21
5	File	Index	24
	5.1	File List	24
6			2 6
	6.1		26
		1	26
	6.2	-	26
		1	27
	6.3		27
		1	28
	6.4	-	28
		1	29
	6.5	-	29
		<u>.</u>	29
	6.6		30
		±	31
	6.7	LZ_Stream1 Struct Reference	31

	6.7.1 Detailed Description	32
<i>(</i> 0		32
6.8	MD5_ARGS_X8 Struct Reference	
	6.8.1 Detailed Description	32
6.9	MD5_ARGS_X8X2 Struct Reference	33
	6.9.1 Detailed Description	33
6.10	MD5_HASH_CTX Struct Reference	33
	6.10.1 Detailed Description	34
6.11	MD5_HASH_CTX_MGR Struct Reference	34
	6.11.1 Detailed Description	34
6.12	MD5_HMAC_LANE_DATA Struct Reference	34
	6.12.1 Detailed Description	35
6.13	MD5_JOB Struct Reference	35
0.13	6.13.1 Detailed Description	35
6 14	MD5_LANE_DATA Struct Reference	35
0.14	6.14.1 Detailed Description	36
6 15	MD5 MD ADCS V16 Street Deference	36
0.13	MD5_MB_ARGS_X16 Struct Reference	
616	6.15.1 Detailed Description	36
6.16	MD5_MB_JOB_MGR Struct Reference	36
	6.16.1 Detailed Description	36
6.17	MD5_MB_MGR Struct Reference	37
	6.17.1 Detailed Description	37
6.18	MD5_MB_MGR_X8X2 Struct Reference	37
	6.18.1 Detailed Description	38
6.19	SHA1_ARGS_X4 Struct Reference	38
	6.19.1 Detailed Description	38
6.20	SHA1_ARGS_X8 Struct Reference	38
	6.20.1 Detailed Description	39
6.21	SHA1_HASH_CTX Struct Reference	39
	6.21.1 Detailed Description	39
6.22	SHA1_HASH_CTX_MGR Struct Reference	40
0.22	6.22.1 Detailed Description	40
6.23	SHA1_HMAC_LANE_DATA Struct Reference	40
0.23	6.23.1 Detailed Description	40
6.24	SHA1_JOB Struct Reference	41
0.24		41
()5	6.24.1 Detailed Description	
6.23	SHA1_LANE_DATA Struct Reference	41
()(6.25.1 Detailed Description	41
6.26		42
	6.26.1 Detailed Description	42
6.27	SHA1_MB_JOB_MGR Struct Reference	42
	6.27.1 Detailed Description	42
6.28	SHA1_MB_MGR Struct Reference	42
	6.28.1 Detailed Description	43
6.29	SHA1_MB_MGR_X8 Struct Reference	43
	6.29.1 Detailed Description	44
6.30	SHA256_ARGS_X4 Struct Reference	44

	6.30.1 Detailed Description	44
6.31	SHA256_ARGS_X8 Struct Reference	44
	6.31.1 Detailed Description	45
6.32	SHA256_HASH_CTX Struct Reference	45
	6.32.1 Detailed Description	45
6.33	SHA256_HASH_CTX_MGR Struct Reference	46
	6.33.1 Detailed Description	46
6.34	SHA256_HMAC_LANE_DATA Struct Reference	46
	6.34.1 Detailed Description	46
6.35	SHA256_JOB Struct Reference	47
	6.35.1 Detailed Description	47
6.36	SHA256_LANE_DATA Struct Reference	47
	6.36.1 Detailed Description	47
6.37	SHA256_MB_ARGS_X8 Struct Reference	48
	6.37.1 Detailed Description	48
6.38	SHA256_MB_JOB_MGR Struct Reference	48
0.00	6.38.1 Detailed Description	48
6 39	SHA256_MB_MGR Struct Reference	48
0.57	6.39.1 Detailed Description	49
6.40	SHA256_MB_MGR_X8 Struct Reference	49
0.40	6.40.1 Detailed Description	49
6.41	SHA512_ARGS_X2 Struct Reference	50
0.41	6.41.1 Detailed Description	50
6.42	SHA512_ARGS_X4 Struct Reference	50
0.42		50
6.12	6.42.1 Detailed Description	51
0.43		51
6.44	6.43.1 Detailed Description	51
0.44	SHA512_HASH_CTX_MGR Struct Reference	
C 15	6.44.1 Detailed Description	51
6.45	SHA512_HMAC_LANE_DATA Struct Reference	52
C 16	6.45.1 Detailed Description	52
6.46	SHA512_JOB Struct Reference	52
C 47	6.46.1 Detailed Description	53
6.47	SHA512_LANE_DATA Struct Reference	53
c 10	6.47.1 Detailed Description	53
6.48	SHA512_MB_ARGS_X4 Struct Reference	53
	6.48.1 Detailed Description	54
6.49	SHA512_MB_JOB_MGR Struct Reference	54
	6.49.1 Detailed Description	54
6.50	SHA512_MB_MGR Struct Reference	54
	6.50.1 Detailed Description	55
6.51	SHA512_MB_MGR_X4 Struct Reference	55
	6.51.1 Detailed Description	55
	Documentation Processing the Company of the Company	56
7.1	aes_xts.h File Reference	56

7

	7.1.1	Detailed	Description
	7.1.2		Documentation
		7.1.2.1	aes_keyexp_128
		7.1.2.2	aes_keyexp_256
		7.1.2.3	XTS_AES_128_dec
		7.1.2.4	XTS_AES_128_dec_expanded_key
		7.1.2.5	XTS_AES_128_enc
		7.1.2.6	XTS_AES_128_enc_expanded_key
		7.1.2.7	XTS_AES_256_dec
		7.1.2.8	XTS_AES_256_dec_expanded_key
		7.1.2.9	XTS_AES_256_enc
		7.1.2.10	XTS_AES_256_enc_expanded_key
7.2	crc.h F	ile Refere	nce
	7.2.1		Description
	7.2.2		Documentation
		7.2.2.1	crc16_t10dif
		7.2.2.2	crc16_t10dif_01
		7.2.2.3	crc16_t10dif_base
		7.2.2.4	crc16_t10dif_by4
		7.2.2.5	crc32_ieee
		7.2.2.6	crc32_ieee_01
		7.2.2.7	crc32_ieee_base
		7.2.2.8	crc32_ieee_by4
		7.2.2.9	crc32_iscsi
		7.2.2.10	crc32_iscsi_00
		7.2.2.11	crc32_iscsi_01
		7.2.2.12	crc32_iscsi_base
		7.2.2.13	crc32_iscsi_baseline
		7.2.2.14	crc32_iscsi_simple
7.3	erasure	e code.h F	ile Reference
	7.3.1		Description
	7.3.2		Documentation
		7.3.2.1	ec_encode_data
		7.3.2.2	ec_encode_data_avx
		7.3.2.3	ec_encode_data_avx2
		7.3.2.4	ec_encode_data_base
		7.3.2.5	ec_encode_data_sse
		7.3.2.6	ec_encode_data_update
		7.3.2.7	ec_encode_data_update_avx
		7.3.2.8	ec_encode_data_update_avx2
		7.3.2.9	ec_encode_data_update_base
		7.3.2.10	ec_encode_data_update_sse
		7.3.2.11	ec_init_tables
		7.3.2.12	gf_2vect_dot_prod_avx
		7.3.2.13	gf_2vect_dot_prod_avx2
		7.3.2.14	gf_2vect_dot_prod_sse

73.2.16 gf_2vect_mad_avx2 77 73.2.17 gf_2vect_mad_sse 78 73.2.18 gf_3vect_dot_prod_avx2 79 73.2.20 gf_3vect_dot_prod_sse 79 73.2.21 gf_3vect_mad_avx2 80 73.2.22 gf_3vect_mad_avx2 80 73.2.23 gf_3vect_mad_avx2 80 73.2.24 gf_4vect_dot_prod_avx 81 73.2.25 gf_4vect_dot_prod_avx 81 73.2.26 gf_4vect_dot_prod_sse 82 73.2.27 gf_4vect_mad_avx 83 73.2.28 gf_4vect_mad_avx 83 73.2.29 gf_4vect_mad_avx 83 73.2.30 gf_5vect_dot_prod_avx 84 73.2.31 gf_5vect_dot_prod_avx 84 73.2.32 gf_5vect_dot_prod_avx 84 73.2.33 gf_5vect_mad_avx 85 73.2.34 gf_5vect_mad_avx 85 73.2.35 gf_5vect_mad_avx 86 73.2.36 gf_6vect_dot_prod_avx 86 73.2.37 gf_6vect_mad_avx 86 73.2.38 gf_6vect_mad_avx 86 73.2.39 gf_6vect_dot_prod_avx 86 73.2.39 gf_6vect_dot_prod_avx 86 73.2.30 gf_6vect_dot_prod_avx 86 73.2.37 gf_evect_dot_prod_avx 87 73.2.39 gf_ovect_dot_prod_avx 87 73.2.40 gf_evect_dot_prod_avx 88 73.2.41 gf_evect_		7.3.2.	15 gf_2vect_mad_avx
7.3.2.18 gf_3vect_dot_prod_avx 78 7.3.2.20 gf_3vect_dot_prod_avse 79 7.3.2.21 gf_3vect_mad_avx 80 7.3.2.22 gf_3vect_mad_avx 80 7.3.2.23 gf_3vect_mad_ses 80 7.3.2.24 gf_4vect_dot_prod_avx 81 7.3.2.25 gf_4vect_dot_prod_avx 81 7.3.2.26 gf_4vect_dot_prod_ses 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.28 gf_4vect_mad_avx 83 7.3.2.29 gf_4vect_mad_avx 83 7.3.2.31 gf_5vect_dot_prod_avx 84 7.3.2.33 gf_5vect_dot_prod_avx 84 7.3.2.34 gf_5vect_mad_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 86 7.3.2.35 gf_6vect_mad_avx 86 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_en_cauchyl_matrix 88 7.3.2.41 gf_evect_dot_prod_avx 91 7.3.2.43 gf_vect_dot_prod_avx 91 <		7.3.2.	16 gf_2vect_mad_avx2
7.3.2.19 gf_3vect_dot_prod_asv2 79 7.3.2.20 gf_3vect_mad_avx 80 7.3.2.21 gf_3vect_mad_avx2 80 7.3.2.23 gf_3vect_mad_see 80 7.3.2.24 gf_4vect_dot_prod_avx 81 7.3.2.25 gf_4vect_dot_prod_avx2 81 7.3.2.26 gf_4vect_dot_prod_see 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.29 gf_4vect_mad_avx2 83 7.3.2.20 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_dot_prod_avx2 84 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 85 7.3.2.35 gf_5vect_mad_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 86 7.3.2.38 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_mad_avx 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.41 gf_ovect_mad_avx 88 7.3.2.42 gf_gen_rs_matrix 89 7.3.2.43 gf_ovect_mad_avx 91 7.3.2.44 gf_ovect_dot_prod_avx 91		7.3.2.	17 gf_2vect_mad_sse
7.3.2.20 gf_3vect_dot_prod_sse 79 7.3.2.21 gf_3vect_mad_avx 80 7.3.2.22 gf_3vect_mad_sse 80 7.3.2.23 gf_3vect_mad_sse 80 7.3.2.24 gf_4vect_dot_prod_avx 81 7.3.2.25 gf_4vect_dot_prod_avx 81 7.3.2.26 gf_4vect_dot_prod_sse 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.29 gf_4vect_mad_sse 83 7.3.2.29 gf_5vect_dot_prod_avx 84 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx 84 7.3.2.32 gf_5vect_dot_prod_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 86 7.3.2.35 gf_5vect_dot_prod_avx 86 7.3.2.39 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_dot_prod_avx 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_gen_cauchyl_matrix 88 7.3.2.41 gf_fovect_mad_avx 91 7.3.2.42 gf_unct_matrix 90 7.3.2.43 gf_vect_dot_prod_avx 91		7.3.2.	18 gf_3vect_dot_prod_avx
7.3.2.21 gf_3vect_mad_avx 80 7.3.2.22 gf_3vect_mad_avs2 80 7.3.2.23 gf_3vect_mad_sse 80 7.3.2.25 gf_4vect_dot_prod_avx 81 7.3.2.26 gf_4vect_dot_prod_sse 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.28 gf_4vect_mad_avx2 83 7.3.2.29 gf_4vect_mad_sse 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx 84 7.3.2.32 gf_5vect_dot_prod_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 85 7.3.2.35 gf_5vect_mad_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 86 7.3.2.38 gf_6vect_dot_prod_avx 87 7.3.2.39 gf_6vect_dot_prod_avx 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_gen_cauchyl_matrix 88 7.3.2.41 gf_ovect_matrix 89 7.3.2.42 gf_gen_cauchyl_matrix 89 7.3.2.43 gf_vect_dot_prod_avx 91 7.3.2		7.3.2.	19 gf_3vect_dot_prod_avx2
7.3.2.22 gf_3vect_mad_avx2 80 7.3.2.23 gf_3vect_mad_sse 80 7.3.2.24 gf_4vect_dot_prod_avx 81 7.3.2.25 gf_4vect_dot_prod_avx2 81 7.3.2.26 gf_4vect_dot_prod_avx 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.29 gf_4vect_mad_avx2 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx 84 7.3.2.32 gf_5vect_dot_prod_avx2 84 7.3.2.33 gf_5vect_dot_prod_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 86 7.3.2.35 gf_5vect_mad_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_dot_prod_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_evect_mad_avx 88 7.3.2.41 gf_evect_mad_avx 90 7.3.2.45 gf_evet_dot_prod_avx 91 7.3.		7.3.2.	20 gf_3vect_dot_prod_sse
7.3.2.23 gf_3vect_mad_sse 80 7.3.2.24 gf_4vect_dot_prod_avx 81 7.3.2.25 gf_4vect_dot_prod_sse 81 7.3.2.26 gf_4vect_dot_prod_sse 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.28 gf_4vect_mad_sse 83 7.3.2.29 gf_4vect_mad_sse 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx 84 7.3.2.32 gf_5vect_mad_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 86 7.3.2.35 gf_6vect_dot_prod_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_sse 87 7.3.2.38 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_avx 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_pect_dot_prod_sse 88 7.3.2.45 gf_ivect_dot_prod_avx 90 7.3.2.47 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.51 gf_vect_dot_prod_avx 91 7.3.2.52 gf_vect_mad_avx 93		7.3.2.	21 gf_3vect_mad_avx
7.3.2.24 gf_4vect_dot_prod_avx 81 7.3.2.25 gf_4vect_dot_prod_avx2 81 7.3.2.26 gf_4vect_dot_prod_sse 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.28 gf_4vect_mad_avx2 83 7.3.2.29 gf_4vect_mad_sse 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_dot_prod_sse 85 7.3.2.33 gf_5vect_mad_avx 86 7.3.2.35 gf_5vect_mad_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 86 7.3.2.38 gf_6vect_dot_prod_avx 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_sse 87 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_enc_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad_avx <td></td> <td>7.3.2.</td> <td>22 gf_3vect_mad_avx2</td>		7.3.2.	22 gf_3vect_mad_avx2
7.3.2.25 gf_4vect_dot_prod_avx2 81 7.3.2.26 gf_4vect_mad_avx 82 7.3.2.27 gf_4vect_mad_avx 83 7.3.2.29 gf_4vect_mad_avx2 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_mad_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 86 7.3.2.35 gf_5vect_mad_see 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 86 7.3.2.38 gf_6vect_dot_prod_avx 86 7.3.2.39 gf_6vect_mad_avx 86 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_see 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_nort_matrix 90 7.3.2.45 gf_invert_matrix 90 7.3.2.47 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.51 gf_vect_dot_prod_avx2 91 7.3.2.52 gf_vect_mad_avx 93 7.3.2.55 gf_vec		7.3.2.	23 gf_3vect_mad_sse
7.3.2.26 gf 4vect_dot_prod_sse 82 7.3.2.27 gf 4vect_mad_avx 83 7.3.2.28 gf 4vect_mad_avs 83 7.3.2.29 gf 4vect_mad_sse 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx 84 7.3.2.32 gf_5vect_mad_avx 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx 86 7.3.2.35 gf_5vect_mad_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 86 7.3.2.38 gf_6vect_dot_prod_see 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_avx 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_invet_matrix 89 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod_avx 91 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vec		7.3.2.	24 gf_4vect_dot_prod_avx
7.3.2.27 gf_4vect_mad_avx 83 7.3.2.28 gf_4vect_mad_avs2 83 7.3.2.29 gf_4vect_mad_sse 83 7.3.2.29 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_dot_prod_sse 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.35 gf_5vect_mad_avx 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 87 7.3.2.39 gf_6vect_dot_prod_avx 88 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_avx 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_sen_cauchyl_matrix 89 7.3.2.45 gf_invert_matrix 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_invert_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2		7.3.2.	25 gf_4vect_dot_prod_avx2
7.3.2.28 gf_4vect_mad_avx2 83 7.3.2.29 gf_4vect_mad_sse 83 7.3.2.30 gf_5vect_dot_prod_avx2 84 7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_mad_avx 85 7.3.2.33 gf_5vect_mad_avx2 86 7.3.2.35 gf_5vect_mad_avx2 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx2 87 7.3.2.38 gf_6vect_dot_prod_see 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_see 88 7.3.2.42 gf_gen_rs_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.51 gf_vect_mad_avx 93 7.3.2.55 gf_vec		7.3.2.	
7.3.2.29 gf_4vect_mad_sse 83 7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avse 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx2 86 7.3.2.35 gf_5vect_mad_sse 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 87 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_avx 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invet_matrix 90 7.3.2.46 gf_mul 90 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.51 gf_vect_mad_avx 93 7.3.2.52 gf_vect_mad_avx<		7.3.2.	<u> </u>
7.3.2.30 gf_5vect_dot_prod_avx 84 7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_dot_prod_sse 85 7.3.2.33 gf_5vect_mad_avx2 86 7.3.2.35 gf_5vect_mad_sse 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 87 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inver_matrix 90 7.3.2.45 gf_inver_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.52 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx 93 7.3.2.55 gf		7.3.2.	<u> </u>
7.3.2.31 gf_5vect_dot_prod_avx2 84 7.3.2.32 gf_5vect_dot_prod_sse 85 7.3.2.33 gf_5vect_mad_avx2 86 7.3.2.34 gf_5vect_mad_sse 86 7.3.2.35 gf_5vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx 86 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx2 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_invert_matrix 90 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_sse 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad_avx 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.56 gf_ve		7.3.2.	<u> </u>
7.3.2.32 gf_5vect_dot_prod_sse 85 7.3.2.33 gf_5vect_mad_avx 85 7.3.2.34 gf_5vect_mad_avx2 86 7.3.2.35 gf_5vect_dot_prod_avx 86 7.3.2.36 gf_6vect_dot_prod_avx2 87 7.3.2.37 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_asse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_wect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_mad_avx 93 7.3.2.51 gf_vect_mad_avx 93 7.3.2.52 gf_vect_mad_avx 93 7.3.2.55 gf_			
7.3.2.33 gf_5vect_mad_avx2 86 7.3.2.34 gf_5vect_mad_ase 86 7.3.2.35 gf_5vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx2 87 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_eoc_tmad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 89 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx 91 7.3.2.52 gf_vect_mad 92 7.3.2.53 gf_vect_mad_avx 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_ase 94 7.4 gf_vect_mulh File Reference 94 7.4.1 Detailed Descriptio		7.3.2.	
7.3.2.34 gf_5vect_mad_avx2 86 7.3.2.35 gf_5vect_mad_sse 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx2 87 7.3.2.38 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchy1_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad_avx 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.56 gf_vect_mad_avs 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95		7.3.2.	
7.3.2.35 gf_5vect_mad_sse 86 7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx2 87 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchy1_matrix 89 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_sse 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_ase 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Functio		7.3.2.	<u> </u>
7.3.2.36 gf_6vect_dot_prod_avx 86 7.3.2.37 gf_6vect_dot_prod_avx2 87 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_s_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.49 gf_vect_dot_prod 90 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_asse 92 7.3.2.51 gf_vect_mad_avx2 93 7.3.2.52 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul,h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentat		7.3.2.	<u> </u>
7.3.2.37 gf_6vect_dot_prod_avx2 87 7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_asse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95		7.3.2.	<u> </u>
7.3.2.38 gf_6vect_dot_prod_sse 87 7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avs2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mulh File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation			
7.3.2.39 gf_6vect_mad_avx 88 7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_ovect_mad_sse 88 7.3.2.42 gf_gen_cauchy1_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod_avx 91 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_base 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			
7.3.2.40 gf_6vect_mad_avx2 88 7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchy1_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			
7.3.2.41 gf_6vect_mad_sse 88 7.3.2.42 gf_gen_cauchyl_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.3.2.42 gf_gen_cauchy1_matrix 88 7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.50 gf_vect_dot_prod_avx2 91 7.3.2.51 gf_vect_dot_prod_base 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.3.2.43 gf_gen_rs_matrix 89 7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.56 gf_vect_mad_base 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.3.2.44 gf_inv 89 7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<i>8</i> − <i>8</i> − <i>8</i> −
7.3.2.45 gf_invert_matrix 90 7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<i>8</i> − <i>8</i> − −
7.3.2.46 gf_mul 90 7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			0
7.3.2.47 gf_vect_dot_prod 90 7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.55 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.3.2.48 gf_vect_dot_prod_avx 91 7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			0
7.3.2.49 gf_vect_dot_prod_avx2 91 7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			$\mathcal{E} = -$
7.3.2.50 gf_vect_dot_prod_base 92 7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			$\mathcal{E} = -$
7.3.2.51 gf_vect_dot_prod_sse 92 7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.3.2.52 gf_vect_mad 93 7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			S
7.3.2.53 gf_vect_mad_avx 93 7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			
7.3.2.54 gf_vect_mad_avx2 93 7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.3.2.55 gf_vect_mad_base 94 7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			
7.3.2.56 gf_vect_mad_sse 94 7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			<u> </u>
7.4 gf_vect_mul.h File Reference 94 7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			
7.4.1 Detailed Description 94 7.4.2 Function Documentation 95			
7.4.2 Function Documentation	7.4		
7.4.2.1 gf_vect_mul			
		7.4.2.	1 gt_vect_mul

		7.4.2.2	gf_vect_mul_avx	95
		7.4.2.3	gf_vect_mul_base	96
		7.4.2.4	gf_vect_mul_init	96
		7.4.2.5	gf_vect_mul_sse	96
7.5	igzip_	lib.h File F	Reference	97
	7.5.1	Detailed	Description	98
	7.5.2		ation Type Documentation	99
		7.5.2.1	LZ_State1_state	99
	7.5.3	Function	Documentation	99
		7.5.3.1	fast_lz	99
		7.5.3.2	fast_lz_stateless	
		7.5.3.3		101
7.6	intrinr		Reference	
,,,	7.6.1		Description	
7.7			Reference	
,.,	7.7.1		Description	
	7.7.1		Documentation	
	1.1.2	7.7.2.1	md5_flush_job	
		7.7.2.1	md5_flush_job_avx	
		7.7.2.2		
			md5_flush_job_avx2	
		7.7.2.4	md5_init_mb_mgr	
		7.7.2.5	md5_init_mb_mgr_x8x2	
		7.7.2.6	md5_submit_job	
		7.7.2.7	md5_submit_job_avx	
- 0		7.7.2.8	md5_submit_job_avx2	
7.8			Reference	
	7.8.1		Description	
	7.8.2		Documentation	
		7.8.2.1	sha1_flush_job	
		7.8.2.2	sha1_flush_job_avx	
		7.8.2.3	sha1_flush_job_avx2	
		7.8.2.4	sha1_init_mb_mgr	
		7.8.2.5	sha1_init_mb_mgr_x8	
		7.8.2.6	sha1_submit_job	
		7.8.2.7	sha1_submit_job_avx	109
		7.8.2.8	sha1_submit_job_avx2	110
7.9	mb_sh	na256.h Fil	le Reference	110
	7.9.1	Detailed	Description	111
	7.9.2	Function	Documentation	112
		7.9.2.1	sha256_flush_job	112
		7.9.2.2	·	112
		7.9.2.3	·	112
		7.9.2.4		113
		7.9.2.5	&	113
		7.9.2.6	_	113
		7.9.2.7	sha256_submit_job_avx	

CONTENTS vii

		7.9.2.8	sha256_submit_job_avx2	114
7.10	mb sha	a512.h File	e Reference	
			Description	
			Documentation	
		7.10.2.1	sha512_flush_job	
		7.10.2.2	sha512_flush_job_avx	
		7.10.2.3	sha512_flush_job_avx2	
		7.10.2.4	sha512_init_mb_mgr	
		7.10.2.5	sha512_init_mb_mgr_x4	
		7.10.2.6	sha512_submit_job	
		7.10.2.7	sha512_submit_job_avx	
		7.10.2.7	sha512_submit_job_avx2	
7 11	md5 m		teference	
			Description	
			Documentation	
	7.11.2		md5_ctx_mgr_flush	
			md5_ctx_mgr_flush_avx	
			md5_ctx_mgr_flush_avx2	
		7.11.2.3		
		7.11.2.5	md5_ctx_mgr_init	
			md5_ctx_mgr_init_avx	
		7.11.2.7	= - 6 = -	
			md5_ctx_mgr_init_sse	
			md5_ctx_mgr_submit	
			md5_ctx_mgr_submit_avx	
			md5_ctx_mgr_submit_avx2	
			2 md5_ctx_mgr_submit_sse	
			File Reference	
			Description	
<i>'</i>	7.12.2		Documentation	
			mem_cmp_avx	
			mem_cmp_avx2	
			mem_cmp_sse	
			mem_cpy_avx	
			mem_cpy_sse	
			mem_zero_detect_avx	
			File Reference	
			Description	
			le Reference	129
			I	130
•	7.14.2		√1	130
				130
				130
		7.14.2.3	HASH_CTX_STS	131
		7.14.2.4	JOB_STS	131
7.15	raid.h F	File Refere	ence	131

7.15.1 Detailed Description 132 7.15.2 Function Documentation 132 7.15.2.1 pq_check 132 7.15.2.2 pq_check_base 133 7.15.2.3 pq_check_sse 133 7.15.2.4 pq_gen 133 7.15.2.5 pq_gen_avx 134 7.15.2.6 pq_gen_avx2 134 7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 vor_check 135 7.15.2.10 vor_check_base 136 7.15.2.11 vor_check_sse 136 7.15.2.12 vor_gen 137 7.15.2.13 vor_gen_base 137 7.15.2.14 vor_gen_base 137 7.15.2.15 vor_gen_sse 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17.1 Detailed Description 141 7.17.2 Function Documentation 142 7.17.1 Detailed Description 141 7.17.2 Function Documentation 142 7.17.1 Detailed Description 141 7.17.
7.15.2.1 pq_check 132 7.15.2.2 pq_check_base 133 7.15.2.3 pq_check_sse 133 7.15.2.4 pq_gen 133 7.15.2.5 pq_gen_avx 134 7.15.2.6 pq_gen_avx2 134 7.15.2.8 pq_gen_base 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.15 xor_gen_base 138 7.16 sha.h File Reference 138 7.16.2 Function Documentation 138 7.16.2.2 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.2 pq_check_base 133 7.15.2.3 pq_check_sse 133 7.15.2.4 pq_gen 133 7.15.2.5 pq_gen_avx 134 7.15.2.6 pq_gen_avx2 134 7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17.1 betailed Description 141
7.15.2.3 pq_check_sse 133 7.15.2.4 pq_gen 133 7.15.2.5 pq_gen_avx 134 7.15.2.6 pq_gen_avx2 134 7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17.1 Detailed Description 141
7.15.2.4 pq_gen 133 7.15.2.5 pq_gen_avx 134 7.15.2.6 pq_gen_avx2 134 7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.5 pq_gen_avx 134 7.15.2.6 pq_gen_avx2 134 7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.6 pq_gen_avx2 134 7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.7 pq_gen_base 135 7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.8 pq_gen_sse 135 7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.9 xor_check 135 7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.10 xor_check_base 136 7.15.2.11 xor_check_sse 136 7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.12 xor_gen 137 7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.13 xor_gen_avx 137 7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.14 xor_gen_base 137 7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.15.2.15 xor_gen_sse 138 7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.16 sha.h File Reference 138 7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.16.1 Detailed Description 138 7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.16.2 Function Documentation 139 7.16.2.1 shal_opt 139 7.16.2.2 shal_update 139 7.17 shal_mb.h File Reference 139 7.17.1 Detailed Description 141
7.16.2.1 sha1_opt 139 7.16.2.2 sha1_update 139 7.17 sha1_mb.h File Reference 139 7.17.1 Detailed Description 141
7.16.2.2 sha1_update 139 7.17 sha1_mb.h File Reference 139 7.17.1 Detailed Description 141
7.17 sha1_mb.h File Reference
7.17.1 Detailed Description
7.17.2.1 sha1_ctx_mgr_flush
7.17.2.2 sha1_ctx_mgr_flush_avx
7.17.2.3 sha1_ctx_mgr_flush_avx2
7.17.2.4 sha1_ctx_mgr_flush_sse
7.17.2.5 sha1_ctx_mgr_init
7.17.2.6 sha1_ctx_mgr_init_avx
7.17.2.7 sha1_ctx_mgr_init_avx2
7.17.2.8 sha1_ctx_mgr_init_sse
7.17.2.9 sha1_ctx_mgr_submit
7.17.2.10 sha1_ctx_mgr_submit_avx
7.17.2.11 sha1_ctx_mgr_submit_avx2
7.17.2.12 sha1_ctx_mgr_submit_sse
7.18 sha256_mb.h File Reference
7.18.1 Detailed Description
7.18.2 Function Documentation
7.18.2.1 sha256_ctx_mgr_flush
7.18.2.2 sha256_ctx_mgr_flush_avx
7.18.2.3 sha256_ctx_mgr_flush_avx2
7.18.2.4 sha256_ctx_mgr_flush_sse
7.18.2.5 sha256_ctx_mgr_init
7.18.2.6 sha256_ctx_mgr_init_avx

CONTENTS ix

Ind	lex	17	0
	8.4 xor	example.c	8
	8.3 mu	i_buffer_sha1_example.c	6
	8.2 igzi	_example.c	5
		simple_test.c	
8		Documentation 16	
	7.20	.1 Detailed Description	,3
		s.h File Reference	
		7.19.2.15 sha512_ctx_mgr_submit_sse	
		7.19.2.14 sha512_ctx_mgr_submit_sb_sse4	
		7.19.2.13 sha512_ctx_mgr_submit_avx2	
		7.19.2.12 sha512_ctx_mgr_submit_avx	
		7.19.2.11 sha512_ctx_mgr_submit	
		7.19.2.10 sha512_ctx_mgr_init_sse	
		7.19.2.9 sha512_ctx_mgr_init_sb_sse4	
		7.19.2.8 sha512_ctx_mgr_init_avx2	
		7.19.2.7 sha512_ctx_mgr_init_avx	
		7.19.2.6 sha512_ctx_mgr_init	
		7.19.2.5 sha512_ctx_mgr_flush_sse	
		7.19.2.4 sha512_ctx_mgr_flush_sb_sse4	
		7.19.2.2 sha512_ctx_mgr_flush_avx2	
		7.19.2.2 sha512_ctx_mgr_flush_avx	
	7.1	.2 Function Documentation	
		.1 Detailed Description	
		12_mb.h File Reference	
		7.18.2.12 sha256_ctx_mgr_submit_sse	
		7.18.2.11 sha256_ctx_mgr_submit_avx2	
		7.18.2.10 sha256_ctx_mgr_submit_avx	
		7.18.2.9 sha256_ctx_mgr_submit	2
		7.18.2.8 sha256_ctx_mgr_init_sse	2
		7.18.2.7 sha256_ctx_mgr_init_avx2	1

1.1 About This Document

This document describes the software programming interface and operation of functions in the library. Sections in this document are grouped by the functions found in individual header files that define the function prototypes. Subsections include function parameters, description and type.

1.2 Overview

The Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) is a collection of functions used in storage applications optimized for Intel architecture Intel® 64. In some cases, multiple versions of the same function are available that are optimized for a particular Intel architecture and instruction set. This software takes advantage of new instructions and users should ensure that the chosen function is compatible with hardware it will run on.

Multibinary support has been added for many units in ISA-L. With multibinary support functions, an appropriate version is selected at first run and can be called instead of the architecture-specific versions. This allows users to deploy a single binary with multiple function versions and choose at run time based on platform features. Users can still call the architecture-specific versions directly to reduce code size. There are also base functions, written in C, which the multibinary function will call if none of the required instruction sets are enabled.

1.3 RAID Functions

Functions in the RAID section calculate and operate on XOR and P+Q parity found in common RAID implementations. The mathematics of RAID are based on Galois finite-field arithmetic to find one or two parity bytes for each byte in N sources such that single or dual disk failures (one or two erasures) can be corrected. For RAID5, a block of parity is calculated by the xor across the N source arrays. Each parity byte is calculated from N sources by:

$$P = D_0 + D_1 + \dots + D_{N-1}$$

where D_n are elements across each source array [0-(N-1)] and + is the bit-wise exclusive or (xor) operation. Elements in GF(2⁸) are implemented as bytes.

For RAID6, two parity bytes P and Q are calculated from the source array. P is calculated as in RAID5 and Q is calculated using the generator g as:

$$Q = g^{0}D_{0} + g^{1}D_{1} + g^{2}D_{2} + \dots + g^{N-1}D_{N-1}$$

where g is chosen as $\{2\}$, the second field element. Multiplication and the field are defined using the primitive polynomial $x^8 + x^4 + x^3 + x^2 + 1$ (0x1d).

1.4 Erasure Code Functions 2

1.4 Erasure Code Functions

Functions pertaining to erasure codes implement a general Reed-Solomon type encoding for blocks of data to protect against erasure of whole blocks. Individual operations can be described in terms of arithmetic in the Galois finite field $GF(2^8)$ with the particular field-defining primitive or reducing polynomial $x^8 + x^4 + x^3 + x^2 + 1$ (0x1d).

For example, the function ec_encode_data() will generate a set of parity blocks P_i from the set of k source blocks D_i and arbitrary encoding coefficients $a_{i,j}$ where each byte in P is calculated from sources as:

$$P_i = \sum_{j=1}^k a_{i,j} \cdot D_j$$

where addition and multiplication \cdot is defined in GF(2⁸). Since any arbitrary set of coefficients $a_{i,j}$ can be supplied, the same fundamental function can be used for encoding blocks or decoding from blocks in erasure.

1.5 CRC Functions

Functions in the CRC section are fast implementations of cyclic redundancy check using IA specialized instructions such as PCLMULQDQ, carry-less multiplication. Generally, a CRC is the remainder in binary division of a message and a CRC polynomial in GF(2).

$$CRC(M(x)) = x^{deg(P(x))} \cdot M(x) \mod P(x)$$

CRC is used in many storage applications to ensure integrity of data by appending the CRC to a message. Various standards choose the polynomial P and may vary by initial seeding value, bit reversal and inverting the CRC for example.

1.6 Multi-buffer Hashing Functions

Functions in the Multi-buffer MD5, SHA1, SHA256 and SHA512 sections are used to increase the performance of the secure hash algorithms on a single processor core by operating on multiple jobs at once. By buffering jobs, the algorithm can exploit the instruction-level parallelism inherent in modern IA cores to an extent not possible in a serial implementation. The multi-buffer API is similar to that used in the whitepaper Fast Multi-buffer IPsec Implementations on Intel Architecture Processors.

There are two flavors of the multi-buffer hash API: the older version that uses the MB_MGR structure context and the newer version that uses the HASH_CTX_MGR context (MD5 is not available under the new API at this time). Changes to the API were necessary to get new functionality. Benefits to using the new API include:

 Multibinary functionality. Call one function and the appropriate architecture-specific version is fixed up at runtime. No restriction on update length. Submitting an update block no longer has to have length a multiple of the fundamental block size.

As noted in the above document, the scheduler routines do not enforce atomic access to the context structure. If a single scheduler state structure is being used by multiple threads, then the application must take care that calls are not made from different threads at the same time, i.e. thread-safety should be implemented at a level higher than these routines. This could be implemented by employing a separate context structure for each worker thread.

1.7 Alignment for Input Parameters

The alignment required for the input parameters of each of the Intel® ISA-L functions is documented in the relevant sections of this API manual. The table below outlines these requirements.

Function	Alignment Required
AES-XTS 128	No
AES-XTS 256	No
CRC	No
Erasure Code	32B for gf_vect_mul, none otherwise
RAID	32B or 16B
Igzip	No
MB Hashing - old API	No (Members of JOB structures defined with required
	alignment, already aligned once initialised. On
	FreeBSD the MB_MGR structure may need to be
	aligned to 32B for AVX2 MD5)
MB Hashing - new API	No (Members of CTX structures defined with required
	alignment, already aligned once initialised. On
	FreeBSD, or when using Linux/icc, the CTX_MGR
	structure may need to be aligned to 16B.)

1.8 System Requirements

Individual functions may have various run-time requirements such as the minimum version of SSE as described in Instruction Set Requirements. General requirements are listed below.

Recommended Hardware:

- em64t: A system based on the Intel® Xeon® processor with Intel® 64 architecture.
- IA32: When available for 32-bit functions; A system based on the Intel® Xeon® processor or subsequent IA-32 architecture based processor.

Software Requirements:

Most functions in the library use the 64-bit embedded and Unix standard for calling convention http://refspecs.-linuxfoundation.org/elf/x86_64-abi-0.95.pdf. When available, 32-bit versions use cdecl. Individual functions are written to be statically linked with an application.

Building Library Functions:

• Yasm Assembler: version at least v1.2.0.

Building Examples and Tests:

Examples and test source follow simple command line POSIX standards and should be portable to any mostly POSI-X-compliant OS.

Note

Please note that the library assumes 1MB = 1,000,000 bytes in reported performance figures.

CHAPTER 2 FUNCTION VERSION NUMBERS

2.1 Function Version Numbers

Individual functions are given version numbers with the format mm-vv-ssss.

- mm = Two hex digits indicating the processor a function was optimized for.

```
- 00 = Nehalem/Jasper Forest/Multibinary
```

- 01 = Westmere

- 02 = Sandybridge

- 03 = Ivy Bridge

- 04 = Haswell

- 05 = Silvermont

- vv = function version number
- ssss = function serial number

2.2 Function Version Numbers Tables

Function	Version
crc16_t10dif_01	01-05-0010
crc32_ieee_01	01-05-0011
crc32_iscsi_simple	00-01-0012
crc32_iscsi_baseline	00-01-0013
crc32_iscsi_00	00-02-0014
crc32_iscsi_01	01-02-0015
crc16_t10dif_by4	05-01-0016
crc32_ieee_by4	05-01-0017
sha1_init_mb_mgr	00-03-0020
sha1_flush_job	00-07-0021
sha1_submit_job	00-07-0022
sha256_init_mb_mgr	00-03-0023
sha256_flush_job	00-07-0024
sha256_submit_job	00-07-0025
md5_init_mb_mgr	00-02-0026
md5_flush_job	00-06-0027
md5_submit_job	00-06-0028
sha512_init_mb_mgr	00-05-002a
sha512_flush_job	00-06-002b
sha512_submit_job	00-06-002c
xor_gen_sse	00-0b-0030
xor_check_sse	00-02-0031
pq_gen_sse	00-08-0032
pq_check_sse	00-05-0033
gf_vect_mul_sse	00-02-0034
gf_vect_mul_init	00-02-0035
gf_vect_mul_avx	01-02-0036
xor_gen_avx	02-04-0037
pq_gen_avx	02-09-0039
pq_gen_avx2	04-02-0041
sha1_update	00-01-0050
sha1_opt	00-02-0051
gf_vect_dot_prod_sse	00-03-0060
gf_vect_dot_prod_avx	02-03-0061
gf_2vect_dot_prod_sse	00-02-0062
gf_3vect_dot_prod_sse	00-03-0063
gf_4vect_dot_prod_sse	00-03-0064
gf_5vect_dot_prod_sse	00-03-0065
gf_6vect_dot_prod_sse	00-03-0066
ec_init_tables	00-01-0068
ec_encode_data_sse	00-02-0069

Function	Version
aes_keyexp_128	01-02-0070
XTS_AES_128_enc	01-03-0071
XTS_AES_128_enc_expanded_key	01-03-0072
XTS_AES_128_dec	01-03-0073
XTS_AES_128_dec_expanded_key	01-03-0074
aes_keyexp_256	01-02-0075
XTS_AES_256_enc	01-03-0076
XTS_AES_256_enc_expanded_key	01-03-0077
XTS_AES_256_dec	01-03-0078
XTS_AES_256_dec_expanded_key	01-03-0079
init_stream	01-03-0081
fast_lz	01-03-0082
fast_lz_stateless	01-01-0083
sha1_flush_job_avx	02-07-0091
sha1_submit_job_avx	02-07-0092
sha256_flush_job_avx	02-07-0094
sha256_submit_job_avx	02-07-0095
md5_flush_job_avx	02-06-0097
md5_submit_job_avx	02-06-0098
sha512_flush_job_avx	02-06-009b
sha512_submit_job_avx	02-06-009c
sha1_init_mb_mgr_x8	04-01-0100
sha1_flush_job_avx2	04-01-0101
sha1_submit_job_avx2	04-01-0102
sha256_init_mb_mgr_x8	04-01-0103
sha256_flush_job_avx2	04-01-0104
sha256_submit_job_avx2	04-01-0105
md5_init_mb_mgr_x8x2	04-01-0106
md5_submit_job_avx2	04-01-0107
md5_flush_job_avx2	04-01-0108
sha512_init_mb_mgr_x4	04-01-0109
sha512_submit_job_avx2	04-01-0110
sha512_flush_job_avx2	04-01-0111
crc16_t10dif	00-02-011a
crc32_ieee	00-02-011b
crc32_iscsi	00-02-011c
crc32_iscsi_base	00-01-011d
crc16_t10dif_base	00-01-011e
crc32_ieee_base	00-01-011f
xor_gen	00-02-0126

Function	Version
xor_check	00-02-0127
pq_gen	00-02-0128
pq_check	00-02-0129
pq_gen_base	00-01-012a
xor_gen_base	00-01-012b
pq_check_base	00-01-012c
xor_check_base	00-01-012d
ec_encode_data	00-02-0133
gf_vect_mul	00-02-0134
ec_encode_data_base	00-01-0135
gf_vect_mul_base	00-01-0136
gf_vect_dot_prod_base	00-01-0137
gf_vect_dot_prod	00-01-0138
sha1_ctx_mgr_init_sse	00-01-0139
sha1_ctx_mgr_submit_sse	00-01-0140
sha1_ctx_mgr_flush_sse	00-01-0141
sha1_ctx_mgr_init_avx	02-01-0142
sha1_ctx_mgr_submit_avx	02-01-0143
sha1_ctx_mgr_flush_avx	02-01-0144
sha1_ctx_mgr_init_avx2	04-01-0145
sha1_ctx_mgr_submit_avx2	04-01-0146
sha1_ctx_mgr_flush_avx2	04-01-0147
sha1_ctx_mgr_init	00-01-0148
sha1_ctx_mgr_submit	00-01-0149
sha1_ctx_mgr_flush	00-01-0150
sha256_ctx_mgr_init_sse	00-01-0151
sha256_ctx_mgr_submit_sse	00-01-0152
sha256_ctx_mgr_flush_sse	00-01-0153
sha256_ctx_mgr_init_avx	02-01-0154
sha256_ctx_mgr_submit_avx	02-01-0155
sha256_ctx_mgr_flush_avx	02-01-0156
sha256_ctx_mgr_init_avx2	04-01-0157
sha256_ctx_mgr_submit_avx2	04-01-0158
sha256_ctx_mgr_flush_avx2	04-01-0159
sha256_ctx_mgr_init	00-01-0160
sha256_ctx_mgr_submit	00-01-0161
sha256_ctx_mgr_flush	00-01-0162
sha512_ctx_mgr_init_sse	00-01-0163
sha512_ctx_mgr_submit_sse	00-01-0164
sha512_ctx_mgr_flush_sse	00-01-0165

Function	Version
sha512_ctx_mgr_init_avx	02-01-0166
sha512_ctx_mgr_submit_avx	02-01-0167
sha512_ctx_mgr_flush_avx	02-01-0168
sha512_ctx_mgr_init_avx2	04-01-0169
sha512_ctx_mgr_submit_avx2	04-01-0170
sha512_ctx_mgr_flush_avx2	04-01-0171
sha512_ctx_mgr_init_sb_sse4	05-01-0172
sha512_ctx_mgr_submit_sb_sse4	05-01-0173
sha512_ctx_mgr_flush_sb_sse4	05-01-0174
sha512_ctx_mgr_init	00-01-0175
sha512_ctx_mgr_submit	00-01-0176
sha512_ctx_mgr_flush	00-01-0177
md5_ctx_mgr_init_sse	00-01-0180
md5_ctx_mgr_submit_sse	00-01-0181
md5_ctx_mgr_flush_sse	00-01-0182
md5_ctx_mgr_init_avx	02-01-0183
md5_ctx_mgr_submit_avx	02-01-0184
md5_ctx_mgr_flush_avx	02-01-0185
md5_ctx_mgr_init_avx2	04-01-0186
md5_ctx_mgr_submit_avx2	04-01-0187
md5_ctx_mgr_flush_avx2	04-01-0188
md5_ctx_mgr_init	00-01-0189
md5_ctx_mgr_submit	00-01-018a
md5_ctx_mgr_flush	00-01-018b
gf_vect_dot_prod_avx2	04-03-0190
gf_2vect_dot_prod_avx	02-03-0191
gf_3vect_dot_prod_avx	02-03-0192
gf_4vect_dot_prod_avx	02-02-0193
gf_5vect_dot_prod_avx	02-03-0194
gf_6vect_dot_prod_avx	02-03-0195
gf_2vect_dot_prod_avx2	04-03-0196
gf_3vect_dot_prod_avx2	04-03-0197
gf_4vect_dot_prod_avx2	04-03-0198
gf_5vect_dot_prod_avx2	04-03-0199
gf_6vect_dot_prod_avx2	04-03-019a
gf_vect_mad_sse	00-00-0200
gf_vect_mad_avx	02-00-0201
gf_vect_mad_avx2	04-00-0202
gf_2vect_mad_sse	00-00-0203
gf_2vect_mad_avx	02-00-0204

Function	Version
gf_2vect_mad_avx2	04-00-0205
gf_3vect_mad_sse	00-00-0206
gf_3vect_mad_avx	02-00-0207
gf_3vect_mad_avx2	04-00-0208
gf_4vect_mad_sse	00-00-0209
gf_4vect_mad_avx	02-00-020a
gf_4vect_mad_avx2	04-00-020b
gf_5vect_mad_sse	00-00-020c
gf_5vect_mad_avx	02-00-020d
gf_5vect_mad_avx2	04-00-020e
gf_6vect_mad_sse	00-00-020f
gf_6vect_mad_avx	02-00-0210
gf_6vect_mad_avx2	04-00-0211
ec_encode_data_update	00-02-0212
gf_vect_mad	00-01-0213
mem_zero_detect_avx	02-01-0232
mem_cpy_sse	02-01-0236
mem_cpy_avx	02-01-0237
mem_cmp_sse	02-01-0241
mem_cmp_avx	02-01-0242
mem_cmp_avx2	02-01-0243

CHAPTER 3 INSTRUCTION SET REQUIREMENTS

```
aes_keyexp_128 (UINT8 *key, UINT8 *exp_key_enc, UINT8 *exp_key_dec) AES-NI
```

- aes_keyexp_256 (UINT8 *key, UINT8 *exp_key_enc, UINT8 *exp_key_dec)
 AES-NI
- crc16_t10dif_01 (UINT16 init_crc, const unsigned char *buf, UINT64 len)
 SSE3, CLMUL
- crc16_t10dif_by4 (UINT16 init_crc, const unsigned char *buf, UINT64 len)
 SSE4, PCLMULQDQ.
- crc32_ieee_01 (UINT32 init_crc, const unsigned char *buf, UINT64 len)
 SSE3, CLMUL
- crc32_ieee_by4 (UINT32 init_crc, const unsigned char *buf, UINT64 len)
 SSE4, PCLMULODO.
- crc32_iscsi_00 (unsigned char *buffer, int len, unsigned int init_crc)
 SSE4.2
- crc32_iscsi_01 (unsigned char *buffer, int len, unsigned int init_crc)
 SSE4.2, CLMUL
- crc32_iscsi_baseline (unsigned char *buffer, int len, unsigned int init_crc)
 SSE4.2
- crc32_iscsi_simple (unsigned char *buffer, int len, unsigned int init_crc)
 SSE4.2
- ec_encode_data_avx (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding)
 AVX
- ec_encode_data_avx2 (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding)
 AVX2
- ec_encode_data_sse (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding) SSE4.1

```
ec_encode_data_update_sse (int len, int k, int rows, int vec_i, unsigned char *g_tbls, unsigned char *data, unsigned
   char **coding)
   SSE4.1
fast_lz (LZ_Stream1 *stream)
   SSE4.1, CLMUL
fast_lz_stateless (LZ_Stream1 *stream)
   SSE4.1, CLMUL
gf_2vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
gf_2vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
gf_2vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
gf_2vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
   AVX
gf_2vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
gf_2vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
   SSE4.1
gf_3vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
   AVX
gf_3vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
   AVX2
gf_3vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
   SSE4.1
gf 3vect mad avx (int len, int vec, int vec i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
   AVX
gf_3vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
gf_3vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
   SSE4.1
gf_4vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
gf_4vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
   AVX2
```

- gf_4vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
 SSE4.1

- gf_4vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
 SSE4.1
- gf_5vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
 AVX
- gf_5vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
 AVX2
- gf_5vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
 SSE4.1
- gf_5vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
 AVX
- gf_5vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
 AVX2
- gf_5vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
 SSE4.1

- gf_6vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)
 SSE4.1
- gf_6vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
 AVX2
- gf_6vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)
 SSE4.1
- gf_vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest)
 AVX2

```
gf_vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest)
   SSE4.1
gf_vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest)
   AVX
gf_vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest)
   AVX2
gf_vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest)
   SSE4.1
gf_vect_mul_avx (int len, unsigned char *gftbl, void *src, void *dest)
   AVX
gf_vect_mul_sse (int len, unsigned char *gftbl, void *src, void *dest)
   SSE4.1
init_stream (LZ_Stream1 *stream)
   SSE4.1, CLMUL
md5_ctx_mgr_flush (MD5_HASH_CTX_MGR *mgr)
   SSE4.1 or AVX or AVX2
md5_ctx_mgr_flush_avx (MD5_HASH_CTX_MGR *mgr)
   AVX
md5_ctx_mgr_flush_avx2 (MD5_HASH_CTX_MGR *mgr)
   AVX2
md5_ctx_mgr_flush_sse (MD5_HASH_CTX_MGR *mgr)
   SSE4.1
md5_ctx_mgr_init (MD5_HASH_CTX_MGR *mgr)
   SSE4.1 or AVX or AVX2
md5_ctx_mgr_init_avx (MD5_HASH_CTX_MGR *mgr)
   AVX
md5_ctx_mgr_init_avx2 (MD5_HASH_CTX_MGR *mgr)
   AVX2
md5_ctx_mgr_init_sse (MD5_HASH_CTX_MGR *mgr)
   SSE4.1
md5_ctx_mgr_submit (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t len,
   HASH_CTX_FLAG flags)
   SSE4.1 or \overline{AVX} or \overline{AVX2}
md5_ctx_mgr_submit_avx (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t
   len, HASH_CTX_FLAG flags)
   AVX
```

```
md5_ctx_mgr_submit_avx2 (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t
   len, HASH CTX FLAG flags)
   AVX2
md5_ctx_mgr_submit_sse (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t
   len, HASH_CTX_FLAG flags)
   SSE4.1
md5_flush_job (MD5_MB_MGR *state)
   SSE4.1
md5_flush_job_avx (MD5_MB_MGR *state)
md5_flush_job_avx2 (MD5_MB_MGR_X8X2 *state)
   AVX2
md5_init_mb_mgr (MD5_MB_MGR *state)
   SSE4.1
md5_init_mb_mgr_x8x2 (MD5_MB_MGR_X8X2 *state)
   AVX2
md5_submit_job (MD5_MB_MGR *state, JOB_MD5 *job)
   SSE4.1
md5 submit job avx (MD5 MB MGR *state, JOB MD5 *job)
   AVX
md5_submit_job_avx2 (MD5_MB_MGR_X8X2 *state, JOB_MD5 *job)
   AVX2
mem_cmp_avx (void *src, void *des, int n)
   AVX
mem_cmp_avx2 (void *src, void *des, int n)
   AVX2
mem_cmp_sse (void *src, void *des, int n)
   SSE4.1
mem_cpy_avx (void *des, void *src, int n)
   AVX
mem_cpy_sse (void *des, void *src, int n)
   SSE2
mem_zero_detect_avx (void *mem, int len)
   AVX
pq_check_sse (int vects, int len, void **array)
   SSE4.1
```

```
pq_gen_avx (int vects, int len, void **array)
pq_gen_avx2 (int vects, int len, void **array)
   AVX2
pq_gen_sse (int vects, int len, void **array)
  SSE4.1
sha1_ctx_mgr_flush (SHA1_HASH_CTX_MGR *mgr)
  SSE4.1 or AVX or AVX2
sha1_ctx_mgr_flush_avx (SHA1_HASH_CTX_MGR *mgr)
sha1_ctx_mgr_flush_avx2 (SHA1_HASH_CTX_MGR *mgr)
  AVX2
sha1_ctx_mgr_flush_sse (SHA1_HASH_CTX_MGR *mgr)
  SSE4.1
sha1_ctx_mgr_init (SHA1_HASH_CTX_MGR *mgr)
  SSE4.1 or AVX or AVX2
sha1_ctx_mgr_init_avx (SHA1_HASH_CTX_MGR *mgr)
  AVX
sha1_ctx_mgr_init_avx2 (SHA1_HASH_CTX_MGR *mgr)
  AVX2
sha1_ctx_mgr_init_sse (SHA1_HASH_CTX_MGR *mgr)
  SSE4.1
sha1_ctx_mgr_submit (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t len,
  HASH CTX FLAG flags)
   SSE4.1 or AVX or AVX2
sha1_ctx_mgr_submit_avx (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t
  len, HASH_CTX_FLAG flags)
  AVX
sha1 ctx mgr submit avx2 (SHA1 HASH CTX MGR *mgr, SHA1 HASH CTX *ctx, const void *buffer, uint32-
   _t len, HASH_CTX_FLAG flags)
  AVX2
sha1_ctx_mgr_submit_sse (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t
   len, HASH_CTX_FLAG flags)
  SSE4.1
sha1_flush_job (SHA1_MB_MGR *state)
  SSE4.1
sha1_flush_job_avx (SHA1_MB_MGR *state)
  AVX
```

```
sha1_flush_job_avx2 (SHA1_MB_MGR_X8 *state)
   AVX2
sha1_init_mb_mgr (SHA1_MB_MGR *state)
  SSE4.1
sha1_init_mb_mgr_x8 (SHA1_MB_MGR_X8 *state)
  AVX2
sha1_opt (unsigned char *input, unsigned int *digest, int len)
  SSE3
sha1_submit_job (SHA1_MB_MGR *state, JOB_SHA1 *job)
  SSE4.1
sha1_submit_job_avx (SHA1_MB_MGR *state, JOB_SHA1 *job)
  AVX
sha1 submit job avx2 (SHA1 MB MGR X8 *state, JOB SHA1 *job)
  AVX2
sha1_update (unsigned int *digest, unsigned char *input, size_t num_blocks)
  SSE3
sha256_ctx_mgr_flush (SHA256_HASH_CTX_MGR *mgr)
  SSE4.1 or AVX or AVX2
sha256_ctx_mgr_flush_avx (SHA256_HASH_CTX_MGR *mgr)
  AVX
sha256_ctx_mgr_flush_avx2 (SHA256_HASH_CTX_MGR *mgr)
  AVX2
sha256_ctx_mgr_flush_sse (SHA256_HASH_CTX_MGR *mgr)
  SSE4.1
sha256_ctx_mgr_init (SHA256_HASH_CTX_MGR *mgr)
  SSE4.1 or AVX or AVX2
sha256_ctx_mgr_init_avx (SHA256_HASH_CTX_MGR *mgr)
  AVX
sha256_ctx_mgr_init_avx2 (SHA256_HASH_CTX_MGR *mgr)
  AVX2
sha256_ctx_mgr_init_sse (SHA256_HASH_CTX_MGR *mgr)
sha256_ctx_mgr_submit (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer,
  uint32 t len, HASH CTX FLAG flags)
  SSE4.1 or AVX or AVX2
```

```
sha256_ctx_mgr_submit_avx (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer,
  uint32 t len, HASH CTX FLAG flags)
  AVX
sha256_ctx_mgr_submit_avx2 (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer,
  uint32_t len, HASH_CTX_FLAG flags)
sha256_ctx_mgr_submit_sse (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer,
  uint32_t len, HASH_CTX_FLAG flags)
  SSE4.1
sha256_flush_job (SHA256_MB_MGR *state)
  SSE4.1
sha256_flush_job_avx (SHA256_MB_MGR *state)
  AVX
sha256_flush_job_avx2 (SHA256_MB_MGR_X8 *state)
  AVX2
sha256_init_mb_mgr (SHA256_MB_MGR *state)
  SSE4.1
sha256_init_mb_mgr_x8 (SHA256_MB_MGR_X8 *state)
  AVX2
sha256_submit_job (SHA256_MB_MGR *state, JOB_SHA256 *job)
  SSE4.1
sha256 submit job avx (SHA256 MB MGR *state, JOB SHA256 *job)
  AVX
sha256_submit_job_avx2 (SHA256_MB_MGR_X8 *state, JOB_SHA256 *job)
  AVX2
sha512_ctx_mgr_flush (SHA512_HASH_CTX_MGR *mgr)
  SSE4.1 or AVX or AVX2
sha512_ctx_mgr_flush_avx (SHA512_HASH_CTX_MGR *mgr)
sha512_ctx_mgr_flush_avx2 (SHA512_HASH_CTX_MGR *mgr)
  AVX2
sha512_ctx_mgr_flush_sb_sse4 (SHA512_HASH_CTX_MGR *mgr)
sha512_ctx_mgr_flush_sse (SHA512_HASH_CTX_MGR *mgr)
  SSE4.1
sha512_ctx_mgr_init (SHA512_HASH_CTX_MGR *mgr)
  SSE4.1 or AVX or AVX2
```

```
sha512_ctx_mgr_init_avx (SHA512_HASH_CTX_MGR *mgr)
sha512 ctx mgr init avx2 (SHA512 HASH CTX MGR *mgr)
   AVX2
sha512_ctx_mgr_init_sb_sse4 (SHA512_HASH_CTX_MGR *mgr)
  SSE4
sha512_ctx_mgr_init_sse (SHA512_HASH_CTX_MGR *mgr)
  SSE4.1
sha512_ctx_mgr_submit (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer,
   uint32_t len, HASH_CTX_FLAG flags)
   SSE4.1 or AVX or AVX2
sha512_ctx_mgr_submit_avx (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer,
   uint32_t len, HASH_CTX_FLAG flags)
sha512 ctx mgr submit avx2 (SHA512 HASH CTX MGR *mgr, SHA512 HASH CTX *ctx, const void *buffer,
  uint32_t len, HASH_CTX_FLAG flags)
   AVX2
sha512 ctx mgr submit sb sse4 (SHA512 HASH CTX MGR *mgr, SHA512 HASH CTX *ctx, const void
   *buffer, uint32_t len, HASH_CTX_FLAG flags)
  SSE4
sha512_ctx_mgr_submit_sse (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer,
  uint32_t len, HASH_CTX_FLAG flags)
  SSE4.1
sha512_flush_job (SHA512_MB_MGR *state)
  SSE4.1
sha512_flush_job_avx (SHA512_MB_MGR *state)
  AVX
sha512_flush_job_avx2 (SHA512_MB_MGR_X4 *state)
   AVX2
sha512_init_mb_mgr (SHA512_MB_MGR *state)
  SSE4.1
sha512_init_mb_mgr_x4 (SHA512_MB_MGR_X4 *state)
sha512_submit_job (SHA512_MB_MGR *state, JOB_SHA512 *job)
  SSE4.1
sha512_submit_job_avx (SHA512_MB_MGR *state, JOB_SHA512 *job)
sha512 submit job avx2 (SHA512 MB MGR X4 *state, JOB SHA512 *job)
  AVX2
```

```
xor_check_sse (int vects, int len, void **array)
   SSE4.1
xor_gen_avx (int vects, int len, void **array)
   AVX
xor_gen_sse (int vects, int len, void **array)
   SSE4.1
XTS_AES_128_dec (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *ct, UINT8 *pt)
   AES-NI
XTS_AES_128_dec_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *ct,
   UINT8 *pt)
   AES-NI
XTS_AES_128_enc (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *pt, UINT8 *ct)
   AES-NI
XTS_AES_128_enc_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *pt,
   UINT8 *ct)
   AES-NI
XTS_AES_256_dec (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *ct, UINT8 *pt)
XTS_AES_256_dec_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *ct,
   UINT8 *pt)
   AES-NI
XTS_AES_256_enc (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *pt, UINT8 *ct)
   AES-NI
```

XTS_AES_256_enc_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *pt,

UINT8 *ct) AES-NI

CHAPTER 4 DATA STRUCTURE INDEX

4.1 Data Structures

Here are the data structures with brief descriptions:

BitBuf2	
Holds Bit Buffer information	26
JOB_MD5	
Holds info describing a single MD5 job for the multi-buffer manager	26
JOB_SHA1	
Holds info describing a single SHA1 job for the multi-buffer manager	27
JOB_SHA256	20
Holds info describing a single SHA256 job for the multi-buffer manager	28
Holds info describing a single SHA512 job for the multi-buffer manager	29
LZ_State1	2)
Holds the internal state information for input and output compression streams	30
LZ_Stream1	
Holds stream information	31
MD5_ARGS_X8	
Holds arguments for submitted MD5 job	32
MD5_ARGS_X8X2	
Holds arguments for submitted AVX2 MD5 job	33
MD5_HASH_CTX	22
Context layer - Holds info describing a single MD5 job for the multi-buffer CTX manager MD5_HASH_CTX_MGR	33
Context layer - Holds state for multi-buffer MD5 jobs	34
MD5 HMAC LANE DATA	54
MD5 out-of-order scheduler fields	34
MD5_JOB	
Scheduler layer - Holds info describing a single MD5 job for the multi-buffer manager	35
MD5_LANE_DATA	
Scheduler layer - Lane data	35
MD5_MB_ARGS_X16	
Scheduler layer - Holds arguments for submitted MD5 job	36
MD5_MB_JOB_MGR	36
Scheduler layer - Holds state for multi-buffer MD5 jobs	30
Holds state for multi-buffer MD5 jobs	37
MD5_MB_MGR_X8X2	31
Holds state for multi-buffer AVX2 MD5 jobs	37
,	

4.1 Data Structures 22

SHA1_ARGS_X4	20
Holds arguments for submitted SHA1 job	38
Holds arguments for submitted SHA1 job	38
SHA1_HASH_CTX	50
Context layer - Holds info describing a single SHA1 job for the multi-buffer CTX manager	39
SHA1_HASH_CTX_MGR	
Context layer - Holds state for multi-buffer SHA1 jobs	40
SHA1_HMAC_LANE_DATA	
SHA1 out-of-order scheduler fields	40
SHA1_JOB School and level - Holds info describing a single SHA1 ich for the multi-huffer manager	41
Scheduler layer - Holds info describing a single SHA1 job for the multi-buffer manager SHA1_LANE_DATA	41
Scheduler layer - Lane data	41
SHA1_MB_ARGS_X8	
Scheduler layer - Holds arguments for submitted SHA1 job	42
SHA1_MB_JOB_MGR	
Scheduler layer - Holds state for multi-buffer SHA1 jobs	42
SHA1_MB_MGR	
Holds state for multi-buffer SHA1 jobs	42
SHA1_MB_MGR_X8	
Holds state for multi-buffer SHA1 jobs	43
SHA256_ARGS_X4 Holds arguments for submitted SHA256 job	44
SHA256_ARGS_X8	44
Holds arguments for submitted SHA256 job	44
SHA256_HASH_CTX	
Context layer - Holds info describing a single SHA256 job for the multi-buffer CTX manager	45
SHA256_HASH_CTX_MGR	
Context layer - Holds state for multi-buffer SHA256 jobs	46
SHA256_HMAC_LANE_DATA	
SHA256 out-of-order scheduler fields	46
SHA256_JOB	47
Scheduler layer - Holds info describing a single SHA256 job for the multi-buffer manager	47
SHA256_LANE_DATA Scheduler layer - Lane data	47
SHA256 MB ARGS X8	4/
Scheduler layer - Holds arguments for submitted SHA256 job	48
SHA256_MB_JOB_MGR	
Scheduler layer - Holds state for multi-buffer SHA256 jobs	48
SHA256_MB_MGR	
Holds state for multi-buffer SHA256 jobs	48
SHA256_MB_MGR_X8	
Holds state for multi-buffer SHA256 jobs	49
SHA512_ARGS_X2	
Holds arguments for submitted SHA512 job	50

4.1 Data Structures 23

SHA512_ARGS_X4	
Holds arguments for submitted AVX2 SHA512 job	50
SHA512_HASH_CTX	
Context layer - Holds info describing a single SHA512 job for the multi-buffer CTX manager	51
SHA512_HASH_CTX_MGR	
Context layer - Holds state for multi-buffer SHA512 jobs	51
SHA512_HMAC_LANE_DATA	
SHA512 out-of-order scheduler fields	52
SHA512_JOB	
Scheduler layer - Holds info describing a single SHA512 job for the multi-buffer manager	52
SHA512_LANE_DATA	
Scheduler layer - Lane data	53
SHA512_MB_ARGS_X4	
Scheduler layer - Holds arguments for submitted SHA512 job	53
SHA512_MB_JOB_MGR	
Scheduler layer - Holds state for multi-buffer SHA512 jobs	54
SHA512_MB_MGR	
Holds state for multi-buffer SHA512 jobs	54
SHA512_MB_MGR_X4	
Holds state for multi-buffer SHA512 jobs	55

5.1 File List

Here is a list of all documented files with brief descriptions:

aes_xts.n	
AES XTS encryption function prototypes	. 56
crc.h	
CRC functions	. 62
erasure_code.h	
Interface to functions supporting erasure code encode and decode	. 68
gf_vect_mul.h	
Interface to functions for vector (block) multiplication in $GF(2^{8})$. 94
igzip_lib.h	
This file defines the igzip compression interface, a high performance deflate compression interface	
for storage applications	. 97
intrinreg.h	
Defines intrinsic types used by the new hashing API	. 101
mb_md5.h	
Multi-buffer MD5 function prototypes and structures to submit jobs	. 101
mb_sha1.h	
Multi-buffer SHA1 function prototypes and structures to submit jobs	. 106
mb_sha256.h	
Multi-buffer SHA256 function prototypes and structures to submit jobs	. 110
mb_sha512.h	
Multi-buffer SHA512 function prototypes and structures to submit jobs	. 115
md5_mb.h	
Multi-buffer CTX API MD5 function prototypes and structures	. 119
mem_routines.h	
Interface to storage mem operations	. 126
memcpy_inline.h	
Defines intrinsic memcpy functions used by the new hashing API	. 129
multi_buffer.h	
Multi-buffer common fields	. 129
raid.h	
Interface to RAID functions - XOR and P+Q calculation	. 131
sha.h	
SHA1 functions	. 138
sha1_mb.h	
Multi-buffer CTX API SHA1 function prototypes and structures	. 139
sha256_mb.h	
Multi-buffer CTX API SHA256 function prototypes and structures	. 147

5.1 File List	25

sha512_	mb.h	
	Single/Multi-buffer CTX API SHA512 function prototypes and structures	154
types.h		
	Defines standard width types	163

6.1 BitBuf2 Struct Reference

Holds Bit Buffer information.

```
#include <igzip_lib.h>
```

Data Fields

```
• uint64_t m_bits

bits in the bit buffer
```

• uint32_t m_bit_count

number of valid bits in the bit buffer

• uint8_t * m_out_buf

current index of buffer to write to

• $uint8_t * m_out_end$

end of buffer to write to

• uint8_t * m_out_start

start of buffer to write to

6.1.1 Detailed Description

Holds Bit Buffer information.

The documentation for this struct was generated from the following file:

• igzip_lib.h

6.2 JOB MD5 Struct Reference

Holds info describing a single MD5 job for the multi-buffer manager.

```
#include <mb_md5.h>
```

Data Fields

• UINT8 * buffer

pointer to data buffer for this job

• UINT32 len

length of buffer for this job in bytes. For finalize can be any length. For update must be a multiple of MD5_BLOCK_SIZE.

• UINT32 len_total

total size of the complete hash in bytes

• ALIGN UINT32 result_digest [4]

holds result of hash operation

• JOB_STS status

output job status

• UINT32 flags

input flags to indicate init, update or finalize

void * user_data

pointer for user to keep any job-related data

6.2.1 Detailed Description

Holds info describing a single MD5 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• mb md5.h

6.3 JOB SHA1 Struct Reference

Holds info describing a single SHA1 job for the multi-buffer manager.

```
#include <mb_shal.h>
```

Data Fields

• UINT8 * buffer

pointer to data buffer for this job

• UINT32 len

length of buffer for this job in bytes. For finalize can be any length. For update must be a multiple of SHA1_BLOCK_S-IZE.

• UINT32 len_total

total size of the complete hash in bytes

• ALIGN UINT32 result_digest [5]

holds result of hash operation

• JOB_STS status

output job status

• UINT32 flags

input flags to indicate init, update or finalize

• void * user_data

pointer for user to keep any job-related data

6.3.1 Detailed Description

Holds info describing a single SHA1 job for the multi-buffer manager.

Examples:

```
multi_buffer_sha1_example.c.
```

The documentation for this struct was generated from the following file:

• mb_sha1.h

6.4 JOB_SHA256 Struct Reference

Holds info describing a single SHA256 job for the multi-buffer manager.

```
#include <mb_sha256.h>
```

Data Fields

• UINT8 * buffer

pointer to data buffer for this job

• UINT32 len

length of buffer for this job in bytes. For finalize can be any length. For update must be a multiple of SHA256_BLOCK_SIZE.

• UINT32 len_total

total size of the complete hash in bytes

• ALIGN UINT32 result_digest [8]

holds result of hash operation

• JOB_STS status

output job status

• UINT32 flags

input flags to indicate init, update or finalize

void * user_data

pointer for user to keep any job-related data

6.4.1 Detailed Description

Holds info describing a single SHA256 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• mb_sha256.h

6.5 JOB_SHA512 Struct Reference

Holds info describing a single SHA512 job for the multi-buffer manager.

```
#include <mb_sha512.h>
```

Data Fields

• UINT8 * buffer

pointer to data buffer for this job

• UINT32 len

length of buffer for this job in bytes. For finalize can be any length. For update must be a multiple of SHA512_BLOCK_SIZE.

• UINT32 len_total

total size of the complete hash in bytes

• ALIGN UINT64 result_digest [8]

holds result of hash operation

• JOB_STS status

output job status

• UINT32 flags

input flags to indicate init, update or finalize

void * user_data

pointer for user to keep any job-related data

6.5.1 Detailed Description

Holds info describing a single SHA512 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• mb_sha512.h

6.6 LZ_State1 Struct Reference

Holds the internal state information for input and output compression streams.

```
#include <igzip_lib.h>
```

Data Fields

```
• uint32_t b_bytes_valid
```

number of bytes of valid data in buffer

uint32_t b_bytes_processed

keeps track of the number of bytes processed from the input buffer

• uint8_t * file_start

pointer to where file would logically start

• ALIGN uint32_t crc [16]

actually 4 128-bit integers

• struct BitBuf2 bitbuf

Bit Buffer.

• enum LZ_State1_state state

can be LZS2_HDR, LZS2_BODY, LZS2_TRL, LZS2_END

• uint32_t count

used for partial header/trailer writes

• uint8_t tmp_out_buff [16]

temporary array

• uint32_t tmp_out_start

temporary variable

• uint32_t tmp_out_end

temporary variable

• uint32_t last_flush

keeps track of last submitted flush

• uint32_t submitted

 $keeps\ track\ of\ submitted\ bytes\ internally$

• uint8_t * last_next_in

keeps track of last submitted input buffer

• uint32_t has_eob

keeps track of eob on the last deflate block

• uint32_t has_eob_hdr

keeps track of eob hdr (with BFINAL set)

• uint32_t stored_blk_len

keeps track of the length of a stored block

• uint32_t no_comp

used to copy data into history where a stored block is used

• uint32_t left_over

keeps track of overflow bytes

• uint32_t overflow_submitted

keeps track of how many bytes were submitted when overflow

• uint32 t overflow

indicates we're in an overflow state

• uint32_t had_overflow

indicates we had overflow state

• ALIGN uint8_t buffer [(2 *(8 *1024)+(17 *16))+16]

Internal buffer.

• ALIGN uint16_t head [(8 *1024)]

Hash array.

6.6.1 Detailed Description

Holds the internal state information for input and output compression streams.

The documentation for this struct was generated from the following file:

• igzip_lib.h

6.7 LZ Stream1 Struct Reference

Holds stream information.

```
#include <igzip_lib.h>
```

Data Fields

```
• uint8_t * next_in
```

Next input byte.

• uint32_t avail_in

number of bytes available at next_in

• uint32_t total_in

total number of bytes read so far

• uint8_t * next_out

Next output byte.

• uint32_t avail_out

number of bytes available at next_out

• uint32_t total_out

total number of bytes written so far

• uint32_t end_of_stream

non-zero if this is the last input buffer

• uint32_t flush

Flush type can be FINISH_FLUSH or SYNC_FLUSH.

• uint32_t bytes_consumed

indicates the number of bytes processed from the input buffer

• struct LZ_State1 internal_state

Internal state for this stream.

6.7.1 Detailed Description

Holds stream information.

Examples:

```
igzip_example.c.
```

The documentation for this struct was generated from the following file:

• igzip_lib.h

6.8 MD5_ARGS_X8 Struct Reference

Holds arguments for submitted MD5 job.

```
#include <mb_md5.h>
```

Data Fields

• ALIGN UINT32 digest [4][8]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_MD5_LANES]

Pointers to working buffer for each lane.

6.8.1 Detailed Description

Holds arguments for submitted MD5 job.

The documentation for this struct was generated from the following file:

• mb_md5.h

6.9 MD5_ARGS_X8X2 Struct Reference

Holds arguments for submitted AVX2 MD5 job.

```
#include <mb_md5.h>
```

Data Fields

• ALIGN UINT32 digest [4][16]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_MD5_LANES_X8X2]

Pointers to working buffer for each lane.

6.9.1 Detailed Description

Holds arguments for submitted AVX2 MD5 job.

The documentation for this struct was generated from the following file:

• mb_md5.h

6.10 MD5_HASH_CTX Struct Reference

Context layer - Holds info describing a single MD5 job for the multi-buffer CTX manager.

```
#include <md5_mb.h>
```

Data Fields

• HASH_CTX_STS status

Context status flag.

HASH_CTX_ERROR error

Context error flag.

• uint32_t total_length

Running counter of length processed for this CTX's job.

• const void * incoming_buffer

pointer to data input buffer for this CTX's job

• uint32_t incoming_buffer_length

length of buffer for this job in bytes.

• uint8_t partial_block_buffer [MD5_BLOCK_SIZE *2]

CTX partial blocks.

void * user_data
 pointer for user to keep any job-related data

6.10.1 Detailed Description

Context layer - Holds info describing a single MD5 job for the multi-buffer CTX manager.

The documentation for this struct was generated from the following file:

• md5_mb.h

6.11 MD5_HASH_CTX_MGR Struct Reference

Context layer - Holds state for multi-buffer MD5 jobs.

```
#include <md5_mb.h>
```

6.11.1 Detailed Description

Context layer - Holds state for multi-buffer MD5 jobs.

The documentation for this struct was generated from the following file:

• md5_mb.h

6.12 MD5_HMAC_LANE_DATA Struct Reference

MD5 out-of-order scheduler fields.

```
#include <mb_md5.h>
```

Data Fields

ALIGN UINT8 extra_block [2 *64+8]

Extra block array - for padding or sub-block message.

• JOB_MD5 * job_in_lane

address of lane's current job

UINT32 extra_blocks

num extra blocks (1 or 2)

• UINT32 size_offset

offset in extra_block to start of size field

• UINT32 start_offset offset to start of data

6.12.1 Detailed Description

MD5 out-of-order scheduler fields.

The documentation for this struct was generated from the following file:

• mb_md5.h

6.13 MD5_JOB Struct Reference

Scheduler layer - Holds info describing a single MD5 job for the multi-buffer manager.

```
#include <md5_mb.h>
```

Data Fields

uint8_t * buffer
 pointer to data buffer for this job

 uint32_t len

length of buffer for this job in blocks.

• JOB_STS status

output job status

void * user_data

pointer for user's job-related data

6.13.1 Detailed Description

Scheduler layer - Holds info describing a single MD5 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• md5_mb.h

6.14 MD5_LANE_DATA Struct Reference

Scheduler layer - Lane data.

```
#include <md5_mb.h>
```

6.14.1 Detailed Description

Scheduler layer - Lane data.

The documentation for this struct was generated from the following file:

• md5_mb.h

6.15 MD5_MB_ARGS_X16 Struct Reference

Scheduler layer - Holds arguments for submitted MD5 job.

```
#include <md5_mb.h>
```

6.15.1 Detailed Description

Scheduler layer - Holds arguments for submitted MD5 job.

The documentation for this struct was generated from the following file:

• md5_mb.h

6.16 MD5_MB_JOB_MGR Struct Reference

Scheduler layer - Holds state for multi-buffer MD5 jobs.

```
#include <md5_mb.h>
```

Data Fields

• uint64_t unused_lanes

each nibble is index (0...3 or 0...7) of unused lanes, nibble 4 or 8 is set to F as a flag

6.16.1 Detailed Description

Scheduler layer - Holds state for multi-buffer MD5 jobs.

The documentation for this struct was generated from the following file:

• md5_mb.h

6.17 MD5_MB_MGR Struct Reference

Holds state for multi-buffer MD5 jobs.

```
#include <mb_md5.h>
```

Data Fields

• MD5_ARGS_X8 args

Structure containing working digests and pointers to input buffers.

• ALIGN UINT32 lens [8]

Length (number of blocks) of each lane's current message.

• UINT64 unused_lanes

each nibble is index (0...7) of unused lanes, nibble 8 is set to F as a flag

MD5_HMAC_LANE_DATA ldata [NUM_MD5_LANES]

Structure containing lane setup.

6.17.1 Detailed Description

Holds state for multi-buffer MD5 jobs.

The documentation for this struct was generated from the following file:

• mb_md5.h

6.18 MD5_MB_MGR_X8X2 Struct Reference

Holds state for multi-buffer AVX2 MD5 jobs.

```
#include <mb_md5.h>
```

Data Fields

MD5_ARGS_X8X2 args

Structure containing working digests and pointers to input buffers.

• ALIGN UINT32 lens [16]

Length (number of blocks) of each lane's current message.

• UINT64 unused_lanes

each nibble is index (0...15) of unused lanes

MD5_HMAC_LANE_DATA ldata [NUM_MD5_LANES_X8X2]

Structure containing lane setup.

• UINT32 num_lanes_inuse

Counter required to supplement unused_lanes in the case of 16 lanes.

6.18.1 Detailed Description

Holds state for multi-buffer AVX2 MD5 jobs.

The documentation for this struct was generated from the following file:

• mb_md5.h

6.19 SHA1_ARGS_X4 Struct Reference

Holds arguments for submitted SHA1 job.

```
#include <mb_sha1.h>
```

Data Fields

• ALIGN UINT32 digest [5][4]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_SHA1_LANES]

Pointers to working buffer for each lane.

6.19.1 Detailed Description

Holds arguments for submitted SHA1 job.

The documentation for this struct was generated from the following file:

• mb_sha1.h

6.20 SHA1_ARGS_X8 Struct Reference

Holds arguments for submitted SHA1 job.

```
#include <mb_sha1.h>
```

Data Fields

• ALIGN UINT32 digest [5][8]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_SHA1_LANES_X8]

Pointers to working buffer for each lane.

6.20.1 Detailed Description

Holds arguments for submitted SHA1 job.

The documentation for this struct was generated from the following file:

• mb_sha1.h

6.21 SHA1_HASH_CTX Struct Reference

Context layer - Holds info describing a single SHA1 job for the multi-buffer CTX manager.

```
#include <sha1_mb.h>
```

Data Fields

• HASH_CTX_STS status

Context status flag.

• HASH_CTX_ERROR error

Context error flag.

• uint32_t total_length

Running counter of length processed for this CTX's job.

• const void * incoming_buffer

pointer to data input buffer for this CTX's job

• uint32_t incoming_buffer_length

length of buffer for this job in bytes.

• uint8_t partial_block_buffer [SHA1_BLOCK_SIZE *2]

CTX partial blocks.

void * user_data

pointer for user to keep any job-related data

6.21.1 Detailed Description

Context layer - Holds info describing a single SHA1 job for the multi-buffer CTX manager.

The documentation for this struct was generated from the following file:

• sha1_mb.h

6.22 SHA1_HASH_CTX_MGR Struct Reference

Context layer - Holds state for multi-buffer SHA1 jobs.

```
#include <shal_mb.h>
```

6.22.1 Detailed Description

Context layer - Holds state for multi-buffer SHA1 jobs.

The documentation for this struct was generated from the following file:

• sha1_mb.h

6.23 SHA1_HMAC_LANE_DATA Struct Reference

SHA1 out-of-order scheduler fields.

```
#include <mb_sha1.h>
```

Data Fields

• ALIGN UINT8 extra_block [2 *64+8]

Extra block array - for padding or sub-block message.

• JOB_SHA1 * job_in_lane

address of lane's current job

• UINT32 extra_blocks

num extra blocks (1 or 2)

• UINT32 size_offset

offset in extra_block to start of size field

• UINT32 start offset

offset to start of data

• UINT32 padding

padding for internal use

6.23.1 Detailed Description

SHA1 out-of-order scheduler fields.

The documentation for this struct was generated from the following file:

• mb_sha1.h

6.24 SHA1_JOB Struct Reference

Scheduler layer - Holds info describing a single SHA1 job for the multi-buffer manager.

```
#include <shal_mb.h>
```

Data Fields

```
• uint8_t * buffer

pointer to data buffer for this job
```

• uint32_t len

length of buffer for this job in blocks.

• JOB_STS status

output job status

void * user_data

pointer for user's job-related data

6.24.1 Detailed Description

Scheduler layer - Holds info describing a single SHA1 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• sha1_mb.h

6.25 SHA1_LANE_DATA Struct Reference

```
Scheduler layer - Lane data.
```

```
#include <shal_mb.h>
```

6.25.1 Detailed Description

Scheduler layer - Lane data.

The documentation for this struct was generated from the following file:

• sha1_mb.h

6.26 SHA1_MB_ARGS_X8 Struct Reference

Scheduler layer - Holds arguments for submitted SHA1 job.

```
#include <sha1 mb.h>
```

6.26.1 Detailed Description

Scheduler layer - Holds arguments for submitted SHA1 job.

The documentation for this struct was generated from the following file:

• sha1_mb.h

6.27 SHA1_MB_JOB_MGR Struct Reference

Scheduler layer - Holds state for multi-buffer SHA1 jobs.

```
#include <sha1_mb.h>
```

Data Fields

• uint64_t unused_lanes
each nibble is index (0...3 or 0...7) of unused lanes, nibble 4 or 8 is set to F as a flag

6.27.1 Detailed Description

Scheduler layer - Holds state for multi-buffer SHA1 jobs.

The documentation for this struct was generated from the following file:

• sha1_mb.h

6.28 SHA1_MB_MGR Struct Reference

Holds state for multi-buffer SHA1 jobs.

```
#include <mb_sha1.h>
```

Data Fields

• SHA1_ARGS_X4 args

Structure containing working digests and pointers to input buffers.

• UINT64 lens [NUM_SHA1_LANES]

Length (number of blocks) of each lane's current message.

• UINT64 unused lanes

each byte is index (0...3) of unused lanes, byte 4 is set to FF as a flag

• SHA1_HMAC_LANE_DATA ldata [NUM_SHA1_LANES]

Structure containing lane setup.

6.28.1 Detailed Description

Holds state for multi-buffer SHA1 jobs.

Examples:

```
multi_buffer_sha1_example.c.
```

The documentation for this struct was generated from the following file:

• mb_sha1.h

6.29 SHA1_MB_MGR_X8 Struct Reference

Holds state for multi-buffer SHA1 jobs.

```
#include <mb_sha1.h>
```

Data Fields

SHA1_ARGS_X8 args

Structure containing working digests and pointers to input buffers.

• ALIGN UINT32 lens [8]

Length (number of blocks) of each lane's current message.

• UINT64 unused_lanes

each nibble is index (0...7) of unused lanes, nibble 8 is set to F as a flag

• SHA1_HMAC_LANE_DATA ldata [NUM_SHA1_LANES_X8]

Structure containing lane setup.

6.29.1 Detailed Description

Holds state for multi-buffer SHA1 jobs.

The documentation for this struct was generated from the following file:

• mb_sha1.h

6.30 SHA256_ARGS_X4 Struct Reference

Holds arguments for submitted SHA256 job.

```
#include <mb_sha256.h>
```

Data Fields

• ALIGN UINT32 digest [8][4]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_SHA256_LANES]

Pointers to working buffer for each lane.

6.30.1 Detailed Description

Holds arguments for submitted SHA256 job.

The documentation for this struct was generated from the following file:

• mb_sha256.h

6.31 SHA256_ARGS_X8 Struct Reference

Holds arguments for submitted SHA256 job.

```
#include <mb_sha256.h>
```

Data Fields

• ALIGN UINT32 digest [8][8]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_SHA256_LANES_X8]

Pointers to working buffer for each lane.

6.31.1 Detailed Description

Holds arguments for submitted SHA256 job.

The documentation for this struct was generated from the following file:

• mb_sha256.h

6.32 SHA256_HASH_CTX Struct Reference

Context layer - Holds info describing a single SHA256 job for the multi-buffer CTX manager.

```
#include <sha256_mb.h>
```

Data Fields

• HASH_CTX_STS status

Context status flag.

• HASH_CTX_ERROR error

Context error flag.

• uint32_t total_length

Running counter of length processed for this CTX's job.

• const void * incoming_buffer

pointer to data input buffer for this CTX's job

• uint32_t incoming_buffer_length

length of buffer for this job in bytes.

• uint8_t partial_block_buffer [SHA256_BLOCK_SIZE *2]

CTX partial blocks.

void * user_data

pointer for user to keep any job-related data

6.32.1 Detailed Description

Context layer - Holds info describing a single SHA256 job for the multi-buffer CTX manager.

The documentation for this struct was generated from the following file:

• sha256_mb.h

6.33 SHA256_HASH_CTX_MGR Struct Reference

Context layer - Holds state for multi-buffer SHA256 jobs.

```
#include <sha256_mb.h>
```

6.33.1 Detailed Description

Context layer - Holds state for multi-buffer SHA256 jobs.

The documentation for this struct was generated from the following file:

• sha256_mb.h

6.34 SHA256_HMAC_LANE_DATA Struct Reference

SHA256 out-of-order scheduler fields.

```
#include <mb_sha256.h>
```

Data Fields

• ALIGN UINT8 extra_block [2 *64+8]

Extra block array - for padding or sub-block message.

• JOB_SHA256 * job_in_lane

address of lane's current job

• UINT32 extra_blocks

num extra blocks (1 or 2)

• UINT32 size_offset

offset in extra_block to start of size field

• UINT32 start offset

offset to start of data

• UINT32 padding

padding for internal use

6.34.1 Detailed Description

SHA256 out-of-order scheduler fields.

The documentation for this struct was generated from the following file:

• mb_sha256.h

6.35 SHA256_JOB Struct Reference

Scheduler layer - Holds info describing a single SHA256 job for the multi-buffer manager.

```
#include <sha256_mb.h>
```

Data Fields

```
• uint8_t * buffer

pointer to data buffer for this job
```

• uint64_t len

length of buffer for this job in blocks.

• JOB_STS status

output job status

void * user_data

pointer for user's job-related data

6.35.1 Detailed Description

Scheduler layer - Holds info describing a single SHA256 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• sha256_mb.h

6.36 SHA256_LANE_DATA Struct Reference

```
Scheduler layer - Lane data.
```

```
#include <sha256_mb.h>
```

6.36.1 Detailed Description

Scheduler layer - Lane data.

The documentation for this struct was generated from the following file:

• sha256_mb.h

6.37 SHA256_MB_ARGS_X8 Struct Reference

Scheduler layer - Holds arguments for submitted SHA256 job.

```
#include <sha256 mb.h>
```

6.37.1 Detailed Description

Scheduler layer - Holds arguments for submitted SHA256 job.

The documentation for this struct was generated from the following file:

• sha256_mb.h

6.38 SHA256 MB JOB MGR Struct Reference

Scheduler layer - Holds state for multi-buffer SHA256 jobs.

```
#include <sha256_mb.h>
```

Data Fields

• uint64_t unused_lanes
each nibble is index (0...3 or 0...7) of unused lanes, nibble 4 or 8 is set to F as a flag

6.38.1 Detailed Description

Scheduler layer - Holds state for multi-buffer SHA256 jobs.

The documentation for this struct was generated from the following file:

• sha256_mb.h

6.39 SHA256_MB_MGR Struct Reference

Holds state for multi-buffer SHA256 jobs.

```
#include <mb_sha256.h>
```

Data Fields

• SHA256_ARGS_X4 args

Structure containing working digests and pointers to input buffers.

• UINT64 lens [NUM_SHA256_LANES]

Length (number of blocks) of each lane's current message.

• UINT64 unused lanes

each byte is index (0...3) of unused lanes, byte 4 is set to FF as a flag

• SHA256_HMAC_LANE_DATA ldata [NUM_SHA256_LANES]

Structure containing lane setup.

6.39.1 Detailed Description

Holds state for multi-buffer SHA256 jobs.

The documentation for this struct was generated from the following file:

mb_sha256.h

6.40 SHA256 MB MGR X8 Struct Reference

Holds state for multi-buffer SHA256 jobs.

```
#include <mb_sha256.h>
```

Data Fields

• SHA256_ARGS_X8 args

Structure containing working digests and pointers to input buffers.

• ALIGN UINT32 lens [8]

Length (number of blocks) of each lane's current message.

• UINT64 unused lanes

each nibble is index (0...7) of unused lanes nibble 8 is set to F as a flag

SHA256_HMAC_LANE_DATA ldata [NUM_SHA256_LANES_X8]

Structure containing lane setup.

6.40.1 Detailed Description

Holds state for multi-buffer SHA256 jobs.

The documentation for this struct was generated from the following file:

• mb_sha256.h

6.41 SHA512_ARGS_X2 Struct Reference

Holds arguments for submitted SHA512 job.

```
#include <mb sha512.h>
```

Data Fields

• ALIGN UINT64 digest [8][2]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_SHA512_LANES]

Pointers to working buffer for each lane.

6.41.1 Detailed Description

Holds arguments for submitted SHA512 job.

The documentation for this struct was generated from the following file:

• mb_sha512.h

6.42 SHA512_ARGS_X4 Struct Reference

Holds arguments for submitted AVX2 SHA512 job.

```
#include <mb_sha512.h>
```

Data Fields

• ALIGN UINT64 digest [8][4]

Holds the working digest for each lane.

• UINT8 * data_ptr [NUM_SHA512_LANES_X4]

Pointers to working buffer for each lane.

6.42.1 Detailed Description

Holds arguments for submitted AVX2 SHA512 job.

The documentation for this struct was generated from the following file:

• mb_sha512.h

6.43 SHA512_HASH_CTX Struct Reference

Context layer - Holds info describing a single SHA512 job for the multi-buffer CTX manager.

```
#include <sha512_mb.h>
```

Data Fields

• HASH_CTX_STS status

Context status flag.

• HASH CTX ERROR error

Context error flag.

• uint32_t total_length

Running counter of length processed for this CTX's job.

const void * incoming_buffer

pointer to data input buffer for this CTX's job

• uint32_t incoming_buffer_length

length of buffer for this job in bytes.

uint8_t partial_block_buffer [SHA512_BLOCK_SIZE *2]

CTX partial blocks.

void * user_data

pointer for user to keep any job-related data

6.43.1 Detailed Description

Context layer - Holds info describing a single SHA512 job for the multi-buffer CTX manager.

The documentation for this struct was generated from the following file:

• sha512 mb.h

6.44 SHA512_HASH_CTX_MGR Struct Reference

Context layer - Holds state for multi-buffer SHA512 jobs.

```
#include <sha512_mb.h>
```

6.44.1 Detailed Description

Context layer - Holds state for multi-buffer SHA512 jobs.

The documentation for this struct was generated from the following file:

• sha512_mb.h

6.45 SHA512_HMAC_LANE_DATA Struct Reference

SHA512 out-of-order scheduler fields.

```
#include <mb_sha512.h>
```

Data Fields

• ALIGN UINT8 extra_block [2 *128+16]

extra block array - for padding or sub-block message

• JOB_SHA512 * job_in_lane

address of lane's current job

• UINT32 extra_blocks

num extra blocks (1 or 2)

• UINT32 size_offset

offset in extra_block to start of size field

UINT32 start_offset

offset to start of data

• UINT32 padding

padding for internal use

6.45.1 Detailed Description

SHA512 out-of-order scheduler fields.

The documentation for this struct was generated from the following file:

• mb_sha512.h

6.46 SHA512_JOB Struct Reference

Scheduler layer - Holds info describing a single SHA512 job for the multi-buffer manager.

```
#include <sha512_mb.h>
```

Data Fields

```
• uint8_t * buffer

pointer to data buffer for this job
```

• uint64_t len

length of buffer for this job in blocks.

• JOB_STS status

output job status

void * user_data

pointer for user's job-related data

6.46.1 Detailed Description

Scheduler layer - Holds info describing a single SHA512 job for the multi-buffer manager.

The documentation for this struct was generated from the following file:

• sha512_mb.h

6.47 SHA512 LANE DATA Struct Reference

```
Scheduler layer - Lane data.
```

```
#include <sha512_mb.h>
```

6.47.1 Detailed Description

Scheduler layer - Lane data.

The documentation for this struct was generated from the following file:

• sha512_mb.h

6.48 SHA512_MB_ARGS_X4 Struct Reference

Scheduler layer - Holds arguments for submitted SHA512 job.

```
#include <sha512_mb.h>
```

6.48.1 Detailed Description

Scheduler layer - Holds arguments for submitted SHA512 job.

The documentation for this struct was generated from the following file:

• sha512_mb.h

6.49 SHA512_MB_JOB_MGR Struct Reference

Scheduler layer - Holds state for multi-buffer SHA512 jobs.

```
#include <sha512_mb.h>
```

Data Fields

• uint64_t unused_lanes

each byte is index (00, 01 or 00...03) of unused lanes, byte 2 or 4 is set to FF as a flag

6.49.1 Detailed Description

Scheduler layer - Holds state for multi-buffer SHA512 jobs.

The documentation for this struct was generated from the following file:

• sha512_mb.h

6.50 SHA512_MB_MGR Struct Reference

Holds state for multi-buffer SHA512 jobs.

```
#include <mb_sha512.h>
```

Data Fields

• SHA512_ARGS_X2 args

Structure containing working digests and pointers to input buffers.

• UINT64 lens [NUM_SHA512_LANES]

Length (number of blocks) of each lane's current message.

• UINT64 unused_lanes

each byte is index (0...1) of unused lanes, byte 2 is set to FF as a flag

• SHA512_HMAC_LANE_DATA ldata [NUM_SHA512_LANES]

Structure containing lane setup.

6.50.1 Detailed Description

Holds state for multi-buffer SHA512 jobs.

The documentation for this struct was generated from the following file:

• mb_sha512.h

6.51 SHA512_MB_MGR_X4 Struct Reference

Holds state for multi-buffer SHA512 jobs.

```
#include <mb_sha512.h>
```

Data Fields

• SHA512_ARGS_X4 args

Structure containing working digests and pointers to input buffers.

• ALIGN UINT32 lens [4]

Length (number of blocks) of each lane's current message.

• UINT64 unused_lanes

each byte is index (0...1) of unused lanes, byte 4 is set to FF as a flag

• SHA512_HMAC_LANE_DATA ldata [NUM_SHA512_LANES_X4]

Structure containing lane setup.

6.51.1 Detailed Description

Holds state for multi-buffer SHA512 jobs.

The documentation for this struct was generated from the following file:

• mb_sha512.h

7.1 aes xts.h File Reference

AES XTS encryption function prototypes.

```
#include "types.h"
```

Functions

• void aes_keyexp_128 (UINT8 *key, UINT8 *exp_key_enc, UINT8 *exp_key_dec)

AES-128 key expansion for encryption and decryption.

void XTS_AES_128_enc (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *pt, UINT8 *ct)

XTS-AES-128 Encryption.

void XTS_AES_128_enc_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UI-NT8 *pt, UINT8 *ct)

XTS-AES-128 Encryption with pre-expanded keys.

void XTS_AES_128_dec (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *ct, UINT8 *pt)

XTS-AES-128 Decryption.

• void XTS_AES_128_dec_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UI-NT8 *ct, UINT8 *pt)

XTS-AES-128 Decryption with pre-expanded keys.

• void aes_keyexp_256 (UINT8 *key, UINT8 *exp_key_enc, UINT8 *exp_key_dec)

AES-256 key expansion for encryption and decryption.

void XTS_AES_256_enc (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *pt, UINT8 *ct)

XTS-AES-256 Encryption.

void XTS_AES_256_enc_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UI-NT8 *pt, UINT8 *ct)

XTS-AES-256 Encryption with pre-expanded keys.

void XTS_AES_256_dec (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UINT8 *ct, UINT8 *pt)

XTS-AES-256 Decryption.

void XTS_AES_256_dec_expanded_key (UINT8 *k2, UINT8 *k1, UINT8 *TW_initial, UINT64 N, const UI-NT8 *ct, UINT8 *pt)

XTS-AES-256 Decryption with pre-expanded keys.

7.1 aes_xts.h File Reference 57

7.1.1 Detailed Description

AES XTS encryption function prototypes. This defines the interface to optimized AES XTS functions

Pre-expanded keys

For key encryption, pre-expanded keys are stored in the order that they will be used. As an example, if Key[0] is the 128-bit initial key used for an AES-128 encryption, the rest of the keys are stored as follows:

- Key[0]: Initial encryption key
- Key[1]: Round 1 encryption key
- Key[2]: Round 2 encryption key
- ...
- Key[10]: Round 10 encryption key

For decryption, the order of keys does not change. However, we apply the necessary assimc instructions before storing the expanded keys. For the same key used above, the pre-expanded keys will be stored as follows:

- Key[0]: Initial encryption key
- Key[1]: aesimc(Round 1 encryption key)
- Key[2]: aesimc(Round 2 encryption key)
- ...
- Key[9]: aesimc(Round 9 encryption key)
- Key[10]: Round 10 encryption key

Note: The expanded key decryption requires a decryption key only for the block decryption step. The tweak step in the expanded key decryption requires the same expanded encryption key that is used in the expanded key encryption.

Input and Output Buffers

The input and output buffers can be overlapping as long as the output buffer pointer is not less than the input buffer pointer. If the two pointers are the same, then encryption/decryption will occur in-place.

Data Length

- The functions support data length of any bytes greater than or equal to 16 bytes.
- Data length is a 64-bit value, which makes the largest possible data length $2^64 1$ bytes.
- For data lengths from 0 to 15 bytes, the functions return without any error codes, without reading or writing any data.
- The functions only support byte lengths, not bits.

Initial Tweak

The functions accept a 128-bit initial tweak value. The user is responsible for padding the initial tweak value to this length.

Data Alignment

The input and output buffers, keys, pre-expanded keys and initial tweak value are not required to be aligned to 16 bytes, any alignment works.

7.1.2 Function Documentation

7.1.2.1 void aes_keyexp_128 (UINT8 * key, UINT8 * exp_key_enc, UINT8 * exp_key_dec)

AES-128 key expansion for encryption and decryption.

Requires AES-NI

Parameters

	key	input key for AES-128, 16 bytes
	exp_key_enc	expanded encryption keys, 16*11 bytes
Ī	exp_key_dec	expanded decryption keys, 16*11 bytes

7.1.2.2 void aes_keyexp_256 (UINT8 * key, UINT8 * exp_key_enc, UINT8 * exp_key_dec)

AES-256 key expansion for encryption and decryption.

Requires AES-NI

Parameters

key	input key for AES-256, 16*2 bytes
exp_key_enc	expanded encryption keys, 16*15 bytes
exp_key_dec	expanded decryption keys, 16*15 bytes

7.1.2.3 void XTS_AES_128_dec (UINT8 * k2, UINT8 * k1, UINT8 * TW_i uint64 N, const UINT8 * ct, UINT8 * pt)

XTS-AES-128 Decryption.

Requires AES-NI

Parameters

k2	key used for tweaking, 16 bytes
k1	key used for decryption of tweaked ciphertext, 16 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
ct	ciphertext sector input data
pt	plaintext sector output data

7.1.2.4 void XTS_AES_128_dec_expanded_key (UINT8 * k2, UINT8 * k1, UINT8 * TW_i UINT64 N, const UINT8 * ct, UINT8 * pt)

XTS-AES-128 Decryption with pre-expanded keys.

Requires AES-NI

Parameters

k2	expanded key used for tweaking, 16*11 bytes - encryption key is used
k1	expanded decryption key used for decryption of tweaked ciphertext, 16*11 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
ct	ciphertext sector input data
pt	plaintext sector output data

7.1.2.5 void XTS_AES_128_enc (UINT8 * k2, UINT8 * k1, UINT8 * $TW_{initial}$, UINT64 N, const UINT8 * pt, UINT8 * pt

XTS-AES-128 Encryption.

Requires AES-NI

Parameters

k2	key used for tweaking, 16 bytes
k1	key used for encryption of tweaked plaintext, 16 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
pt	plaintext sector input data
ct	ciphertext sector output data

7.1.2.6 void XTS_AES_128_enc_expanded_key (UINT8 * k2, UINT8 * k1, UINT8 * TW_initial, UINT64 N, const UINT8 * pt, UINT8 * ct)

XTS-AES-128 Encryption with pre-expanded keys.

Requires AES-NI

Parameters

k2	expanded key used for tweaking, 16*11 bytes
k1	expanded key used for encryption of tweaked plaintext, 16*11 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
pt	plaintext sector input data
ct	ciphertext sector output data

7.1.2.7 void XTS_AES_256_dec (UINT8 * k2, UINT8 * k1, UINT8 * $TW_{initial}$, UINT64 N, const UINT8 * ct, UINT8 * pt)

XTS-AES-256 Decryption.

Requires AES-NI

Parameters

k2	key used for tweaking, 16*2 bytes
k1	key used for decryption of tweaked ciphertext, 16*2 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
ct	ciphertext sector input data
pt	plaintext sector output data

7.1.2.8 void XTS_AES_256_dec_expanded_key (UINT8 * k2, UINT8 * k1, UINT8 * TW_initial, UINT64 N, const UINT8 * ct, UINT8 * pt)

XTS-AES-256 Decryption with pre-expanded keys.

Requires AES-NI

Parameters

k2	expanded key used for tweaking, 16*15 bytes - encryption key is used
k1	expanded decryption key used for decryption of tweaked ciphertext, 16*15 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
ct	ciphertext sector input data
pt	plaintext sector output data

7.1.2.9 void XTS_AES_256_enc (UINT8 * k2, UINT8 * k1, UINT8 * TW_i uint64 N, const UINT8 * pt, UINT8 * ct)

XTS-AES-256 Encryption.

Requires AES-NI

Parameters

k2	key used for tweaking, 16*2 bytes
k1	key used for encryption of tweaked plaintext, 16*2 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
pt	plaintext sector input data
ct	ciphertext sector output data

7.1.2.10 void XTS_AES_256_enc_expanded_key (UINT8 * k2, UINT8 * k1, UINT8 * TW_i uINT64 N, const UINT8 * pt, UINT8 * ct)

XTS-AES-256 Encryption with pre-expanded keys.

Requires AES-NI

Parameters

k2	expanded key used for tweaking, 16*15 bytes
k1	expanded key used for encryption of tweaked plaintext, 16*15 bytes
TW_initial	initial tweak value, 16 bytes
N	sector size, in bytes
pt	plaintext sector input data
ct	ciphertext sector output data

7.2 crc.h File Reference

CRC functions.

```
#include "types.h"
```

Functions

- UINT16 crc16_t10dif_01 (UINT16 init_crc, const unsigned char *buf, UINT64 len) Generate CRC from the T10 standard.
- UINT16 crc16_t10dif_by4 (UINT16 init_crc, const unsigned char *buf, UINT64 len) Generate CRC from the T10 standard. Optimized for SLM.
- UINT16 crc16_t10dif (UINT16 init_crc, const unsigned char *buf, UINT64 len)

 Generate CRC from the T10 standard, runs appropriate version.
- UINT32 crc32_ieee_01 (UINT32 init_crc, const unsigned char *buf, UINT64 len) Generate CRC from the IEEE standard.
- UINT32 crc32_ieee_by4 (UINT32 init_crc, const unsigned char *buf, UINT64 len)

 Generate CRC from the IEEE standard. Optimized for SLM.
- UINT32 crc32_ieee (UINT32 init_crc, const unsigned char *buf, UINT64 len)

 Generate CRC from the IEEE standard, runs appropriate version.
- unsigned int crc32_iscsi_simple (unsigned char *buffer, int len, unsigned int init_crc) ISCSI CRC simple implementation with CRC32 instruction.
- unsigned int crc32_iscsi_baseline (unsigned char *buffer, int len, unsigned int init_crc) ISCSI CRC baseline implementation with CRC32 instruction.
- unsigned int crc32_iscsi_00 (unsigned char *buffer, int len, unsigned int init_crc) ISCSI CRC function optimized for Nehalem.
- unsigned int crc32_iscsi_01 (unsigned char *buffer, int len, unsigned int init_crc) ISCSI CRC function optimized for Westmere.
- unsigned int crc32_iscsi (unsigned char *buffer, int len, unsigned int init_crc)

 ISCSI CRC function, runs appropriate version.
- unsigned int crc32_iscsi_base (unsigned char *buffer, int len, unsigned int crc_init) ISCSI CRC function, baseline version.
- UINT16 crc16_t10dif_base (UINT16 seed, UINT8 *buf, UINT64 len)
 - Generate CRC from the T10 standard, runs baseline version.
- UINT32 crc32_ieee_base (UINT32 seed, UINT8 *buf, UINT64 len)

Generate CRC from the IEEE standard, runs baseline version.

7.2.1 Detailed Description

CRC functions.

7.2.2 Function Documentation

7.2.2.1 UINT16 crc16_t10dif (UINT16 init_crc, const unsigned char * buf, UINT64 len)

Generate CRC from the T10 standard, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Returns

16 bit CRC

Parameters

init_crc	initial CRC value, 16 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

Examples:

crc_simple_test.c.

7.2.2.2 UINT16 crc16_t10dif_01 (UINT16 init_crc, const unsigned char * buf, UINT64 len)

Generate CRC from the T10 standard.

Requires SSE3, CLMUL

Returns

16 bit CRC

Parameters

init_crc	initial CRC value, 16 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

7.2.2.3 UINT16 crc16_t10dif_base (UINT16 seed, UINT8 * buf, UINT64 len)

Generate CRC from the T10 standard, runs baseline version.

Returns

16 bit CRC

Parameters

seed	initial CRC value, 16 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

7.2.2.4 UINT16 crc16_t10dif_by4 (UINT16 init_crc, const unsigned char * buf, UINT64 len)

Generate CRC from the T10 standard. Optimized for SLM.

Requires SSE4, PCLMULQDQ.

Returns

16 bit CRC

Parameters

init_crc	initial CRC value, 16 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

7.2.2.5 UINT32 crc32_ieee (UINT32 init_crc, const unsigned char * buf, UINT64 len)

Generate CRC from the IEEE standard, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Returns

32 bit CRC

init_crc	initial CRC value, 32 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

Examples:

crc_simple_test.c.

7.2.2.6 UINT32 crc32_ieee_01 (UINT32 init_crc, const unsigned char * buf, UINT64 len)

Generate CRC from the IEEE standard.

Requires SSE3, CLMUL

Returns

32 bit CRC

Parameters

init_crc	initial CRC value, 32 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

7.2.2.7 UINT32 crc32_ieee_base (UINT32 seed, UINT8 * buf, UINT64 len)

Generate CRC from the IEEE standard, runs baseline version.

Returns

32 bit CRC

Parameters

seed	initial CRC value, 32 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

7.2.2.8 UINT32 crc32_ieee_by4 (UINT32 init_crc, const unsigned char * buf, UINT64 len)

Generate CRC from the IEEE standard. Optimized for SLM.

Requires SSE4, PCLMULQDQ.

Returns

32 bit CRC.

Parameters

init_crc	initial CRC value, 32 bits
buf	buffer to calculate CRC on
len	buffer length in bytes (64-bit data)

7.2.2.9 unsigned int crc32_iscsi (unsigned char * buffer, int len, unsigned int init_crc)

ISCSI CRC function, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Returns

32 bit CRC

Parameters

buffer	buffer to calculate CRC on
len	buffer length in bytes
init_crc	initial CRC value

7.2.2.10 unsigned int crc32_iscsi_00 (unsigned char * buffer, int len, unsigned int init_crc)

ISCSI CRC function optimized for Nehalem.

Requires SSE4.2

Returns

32 bit CRC

buffer	buffer to calculate CRC on
len	buffer length in bytes
init_crc	initial CRC value

7.2.2.11 unsigned int crc32_iscsi_01 (unsigned char * buffer, int len, unsigned int init_crc)

ISCSI CRC function optimized for Westmere.

Requires SSE4.2, CLMUL

Returns

32 bit CRC

Parameters

	buffer	buffer to calculate CRC on
	len	buffer length in bytes
Ī	init_crc	initial CRC value

7.2.2.12 unsigned int crc32_iscsi_base (unsigned char * buffer, int len, unsigned int crc_init)

ISCSI CRC function, baseline version.

Returns

32 bit CRC

Parameters

buffer	buffer to calculate CRC on
len	buffer length in bytes
crc init	initial CRC value

7.2.2.13 unsigned int crc32_iscsi_baseline (unsigned char * buffer, int len, unsigned int init_crc)

ISCSI CRC baseline implementation with CRC32 instruction.

ISCSI CRC function using the CRC32 instruction in an unrolled loop.

Requires SSE4.2

Returns

32 bit CRC

Parameters

buffer	buffer to calculate CRC on
len	buffer length in bytes
init_crc	initial CRC value

7.2.2.14 unsigned int crc32_iscsi_simple (unsigned char * buffer, int len, unsigned int init_crc)

ISCSI CRC simple implementation with CRC32 instruction.

ISCSI CRC function that uses the CRC32 instruction in a simple, codesize efficient manner.

Requires SSE4.2

Returns

32 bit CRC

Parameters

buffer	buffer to calculate CRC on
len	buffer length in bytes
init_crc	initial CRC value

7.3 erasure_code.h File Reference

Interface to functions supporting erasure code encode and decode.

```
#include "gf_vect_mul.h"
```

Functions

• void ec_init_tables (int k, int rows, unsigned char *a, unsigned char *gftbls)

Initialize tables for fast Erasure Code encode and decode.

• void ec_encode_data (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding)

Generate or decode erasure codes on blocks of data, runs appropriate version.

void ec_encode_data_sse (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding)

Generate or decode erasure codes on blocks of data.

void ec_encode_data_avx (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding)

Generate or decode erasure codes on blocks of data.

void ec_encode_data_avx2 (int len, int k, int rows, unsigned char *gftbls, unsigned char **data, unsigned char **coding)

Generate or decode erasure codes on blocks of data.

void ec_encode_data_base (int len, int srcs, int dests, unsigned char *v, unsigned char **src, unsigned char **dest)

Generate or decode erasure codes on blocks of data, runs baseline version.

• void ec_encode_data_update (int len, int k, int rows, int vec_i, unsigned char *g_tbls, unsigned char *data, unsigned char **coding)

Generate update for encode or decode of erasure codes from single source, runs appropriate version.

• void ec_encode_data_update_sse (int len, int k, int rows, int vec_i, unsigned char *g_tbls, unsigned char *data, unsigned char **coding)

Generate update for encode or decode of erasure codes from single source.

• void ec_encode_data_update_avx (int len, int k, int rows, int vec_i, unsigned char *g_tbls, unsigned char *data, unsigned char **coding)

Generate update for encode or decode of erasure codes from single source.

• void ec_encode_data_update_avx2 (int len, int k, int rows, int vec_i, unsigned char *g_tbls, unsigned char *data, unsigned char **coding)

Generate update for encode or decode of erasure codes from single source.

• void ec_encode_data_update_base (int len, int k, int rows, int vec_i, unsigned char *v, unsigned char *data, unsigned char **dest)

Generate update for encode or decode of erasure codes from single source.

- void gf_vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest) GF(2^8) vector dot product.
- void gf_vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest) $GF(2^{\circ}8)$ vector dot product.
- void gf_vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest)

 $GF(2^{8})$ vector dot product.

• void gf 2vect dot prod sse (int len, int vlen, unsigned char *gftbls, unsigned char *src, unsigned char *dest)

 $GF(2^{\wedge}8)$ vector dot product with two outputs.

void gf_2vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **src, unsigned char **dest)

 $GF(2^{8})$ vector dot product with two outputs.

 void gf_2vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{8})$ vector dot product with two outputs.

• void gf_3vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{\wedge}8)$ vector dot product with three outputs.

void gf_3vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{8})$ vector dot product with three outputs.

• void gf_3vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{\wedge}8)$ vector dot product with three outputs.

• void gf_4vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{8})$ vector dot product with four outputs.

void gf_4vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **src, unsigned char **dest)

 $GF(2^{\land}8)$ vector dot product with four outputs.

• void gf_4vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{8})$ vector dot product with four outputs.

• void gf_5vect_dot_prod_sse (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^8)$ vector dot product with five outputs.

void gf_5vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **src, unsigned char **dest)

 $GF(2^{\wedge}8)$ vector dot product with five outputs.

• void gf_5vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{8})$ vector dot product with five outputs.

• void gf 6vect dot prod sse (int len, int vlen, unsigned char *gftbls, unsigned char *src, unsigned char *dest)

 $GF(2^{\wedge}8)$ vector dot product with six outputs.

void gf_6vect_dot_prod_avx (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **src, unsigned char **dest)

 $GF(2^8)$ vector dot product with six outputs.

• void gf_6vect_dot_prod_avx2 (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char **dest)

 $GF(2^{\wedge}8)$ vector dot product with six outputs.

- void gf_vect_dot_prod_base (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest) GF(2^8) vector dot product, runs baseline version.
- void gf_vect_dot_prod (int len, int vlen, unsigned char *gftbls, unsigned char **src, unsigned char *dest) $GF(2^8)$ vector dot product, runs appropriate version.
- void gf_vect_mad (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest) $GF(2^8)$ vector multiply accumulate, runs appropriate version.
- void gf_vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest)

 $GF(2^{8})$ vector multiply accumulate, arch specific version.

void gf_vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest)

 $GF(2^{\wedge}8)$ vector multiply accumulate, arch specific version.

void gf_vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *dest)

 $GF(2^8)$ vector multiply accumulate, arch specific version.

• void gf_vect_mad_base (int len, int vec, int vec_i, unsigned char *v, unsigned char *src, unsigned char *dest) $GF(2^{\wedge}8)$ vector multiply accumulate, baseline version.

void gf_2vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *sdest)

 $GF(2^{\wedge}8)$ vector multiply with 2 accumulate. SSE version.

void gf_2vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *sdest)

 $GF(2^8)$ vector multiply with 2 accumulate. AVX version of gf_2vect_mad_sse().

void gf_2vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)

 $GF(2^{8})$ vector multiply with 2 accumulate. AVX2 version of $gf_2vect_mad_sse()$.

void gf_3vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *sdest)

 $GF(2^{\wedge}8)$ vector multiply with 3 accumulate. SSE version.

• void gf_3vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *rdest)

 $GF(2^8)$ vector multiply with 3 accumulate. AVX version of gf 3vect mad sse().

void gf_3vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *src, unsigned char *sdest)

 $GF(2^8)$ vector multiply with 3 accumulate. AVX2 version of gf_3vect_mad_sse().

void gf_4vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *sdest)

 $GF(2^8)$ vector multiply with 4 accumulate. SSE version.

 void gf_4vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)

 $GF(2^8)$ vector multiply with 4 accumulate. AVX version of $gf_4vect_mad_sse()$.

void gf_4vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *src, unsigned char *sdest)

 $GF(2^{8})$ vector multiply with 4 accumulate. AVX2 version of $gf_4vect_mad_sse()$.

void gf_5vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *sdest)

 $GF(2^{\wedge}8)$ vector multiply with 5 accumulate. SSE version.

• void gf_5vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)

 $GF(2^{\wedge}8)$ vector multiply with 5 accumulate. AVX version.

 void gf_5vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char **dest)

 $GF(2^8)$ vector multiply with 5 accumulate. AVX2 version.

void gf_6vect_mad_sse (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *sdest)

 $GF(2^8)$ vector multiply with 6 accumulate. SSE version.

void gf_6vect_mad_avx (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *src, unsigned char *sdest)

 $GF(2^8)$ vector multiply with 6 accumulate. AVX version.

void gf_6vect_mad_avx2 (int len, int vec, int vec_i, unsigned char *gftbls, unsigned char *src, unsigned char *src, unsigned char *sdest)

 $GF(2^8)$ vector multiply with 6 accumulate. AVX2 version.

• unsigned char gf_mul (unsigned char a, unsigned char b)

Single element $GF(2^{8})$ multiply.

• unsigned char gf_inv (unsigned char a)

Single element $GF(2^{\wedge}8)$ inverse.

• void gf_gen_rs_matrix (unsigned char *a, int m, int k)

Generate a matrix of coefficients to be used for encoding.

• void gf_gen_cauchy1_matrix (unsigned char *a, int m, int k)

Generate a Cauchy matrix of coefficients to be used for encoding.

• int gf_invert_matrix (unsigned char *in, unsigned char *out, const int n)

Invert a matrix in $GF(2^8)$

7.3.1 Detailed Description

Interface to functions supporting erasure code encode and decode. This file defines the interface to optimized functions used in erasure codes. Encode and decode of erasures in $GF(2^8)$ are made by calculating the dot product of the symbols (bytes in $GF(2^8)$) across a set of buffers and a set of coefficients. Values for the coefficients are determined by the type of erasure code. Using a general dot product means that any sequence of coefficients may be used including erasure codes based on random coefficients. Multiple versions of dot product are supplied to calculate 1-6 output vectors in one pass. Base GF multiply and divide functions can be sped up by defining GF_LARGE_TABLES at the expense of memory size.

7.3.2 Function Documentation

7.3.2.1 void ec_encode_data (int *len*, int *k*, int *rows*, unsigned char * *gftbls*, unsigned char ** *data*, unsigned char ** *coding*)

Generate or decode erasure codes on blocks of data, runs appropriate version.

Given a list of source data blocks, generate one or multiple blocks of encoded data as specified by a matrix of $GF(2^8)$ coefficients. When given a suitable set of coefficients, this function will perform the fast generation or decoding of Reed-Solomon type erasure codes.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

len	Length of each block of data (vector) of source or dest data.
k	The number of vector sources or rows in the generator matrix for coding.
rows	The number of output vectors to concurrently encode/decode.
gftbls	Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
	of size 32*k*rows
data	Array of pointers to source input buffers.
coding	Array of pointers to coded output buffers.

Returns

none

7.3.2.2 void ec_encode_data_avx (int *len*, int *k*, int *rows*, unsigned char * *gftbls*, unsigned char ** *data*, unsigned char ** *coding*)

Generate or decode erasure codes on blocks of data.

Arch specific version of ec_encode_data() with same parameters.

Requires AVX

7.3.2.3 void ec_encode_data_avx2 (int *len*, int *k*, int *rows*, unsigned char * *gftbls*, unsigned char ** *data*, unsigned char ** *coding*)

Generate or decode erasure codes on blocks of data.

Arch specific version of ec_encode_data() with same parameters.

Requires AVX2

7.3.2.4 void ec_encode_data_base (int *len*, int *srcs*, int *dests*, unsigned char * v, unsigned char ** src, unsigned char ** dest)

Generate or decode erasure codes on blocks of data, runs baseline version.

Baseline version of ec_encode_data() with same parameters.

7.3.2.5 void ec_encode_data_sse (int *len*, int *k*, int *rows*, unsigned char * *gftbls*, unsigned char ** *data*, unsigned char ** *coding*)

Generate or decode erasure codes on blocks of data.

Arch specific version of ec_encode_data() with same parameters.

Requires SSE4.1

7.3.2.6 void ec_encode_data_update (int *len*, int *k*, int *rows*, int *vec_i*, unsigned char * *g_tbls*, unsigned char * *data*, unsigned char ** *coding*)

Generate update for encode or decode of erasure codes from single source, runs appropriate version.

Given one source data block, update one or multiple blocks of encoded data as specified by a matrix of $GF(2^{8})$ coefficients. When given a suitable set of coefficients, this function will perform the fast generation or decoding of Reed-Solomon type erasure codes from one input source at a time.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

len	Length of each block of data (vector) of source or dest data.
k	The number of vector sources or rows in the generator matrix for coding.
rows	The number of output vectors to concurrently encode/decode.
vec_i	The vector index corresponding to the single input source.
g_tbls	Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
	of size 32*k*rows
data	Pointer to single input source used to update output parity.
coding	Array of pointers to coded output buffers.

Returns

none

7.3.2.7 void ec_encode_data_update_avx (int *len*, int *k*, int *rows*, int *vec_i*, unsigned char * *g_tbls*, unsigned char * *data*, unsigned char ** *coding*)

Generate update for encode or decode of erasure codes from single source.

Arch specific version of ec_encode_data_update() with same parameters.

Requires AVX

7.3.2.8 void ec_encode_data_update_avx2 (int *len*, int *k*, int *rows*, int *vec_i*, unsigned char * *g_tbls*, unsigned char * *data*, unsigned char ** *coding*)

Generate update for encode or decode of erasure codes from single source.

Arch specific version of ec_encode_data_update() with same parameters.

Requires AVX2

7.3.2.9 void ec_encode_data_update_base (int *len*, int *k*, int *rows*, int *vec_i*, unsigned char * v, unsigned char * data, unsigned char ** dest)

Generate update for encode or decode of erasure codes from single source.

Baseline version of ec_encode_data_update().

7.3.2.10 void ec_encode_data_update_sse (int *len*, int *k*, int *rows*, int *vec_i*, unsigned char * *g_tbls*, unsigned char * *data*, unsigned char ** *coding*)

Generate update for encode or decode of erasure codes from single source.

Arch specific version of ec_encode_data_update() with same parameters.

Requires SSE4.1

7.3.2.11 void ec_init_tables (int k, int rows, unsigned char * a, unsigned char * gftbls)

Initialize tables for fast Erasure Code encode and decode.

Generates the expanded tables needed for fast encode or decode for erasure codes on blocks of data. 32bytes is generated for each input coefficient.

Parameters

k	The number of vector sources or rows in the generator matrix for coding.
rows	The number of output vectors to concurrently encode/decode.
а	Pointer to sets of arrays of input coefficients used to encode or decode data.
gftbls	Pointer to start of space for concatenated output tables generated from input coefficients. Must be of size 32*k*rows.

Returns

none

7.3.2.12 void gf_2vect_dot_prod_avx (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with two outputs.

Vector dot product optimized to calculate two ouputs at a time. Does two $GF(2^{\wedge}8)$ dot products across each byte of the input array and two constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 2*32*vlen byte constant array based on the two sets of input coefficients.

Requires AVX

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 2*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.13 void gf_2vect_dot_prod_avx2 (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{\wedge}8)$ vector dot product with two outputs.

Vector dot product optimized to calculate two ouputs at a time. Does two $GF(2^{\wedge}8)$ dot products across each byte of the input array and two constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 2*32*vlen byte constant array based on the two sets of input coefficients.

Requires AVX2

len	Length of each vector in bytes. Must be $>= 32$.
vlen	Number of vector sources.
gftbls	Pointer to 2*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

none

7.3.2.14 void gf_2vect_dot_prod_sse (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with two outputs.

Vector dot product optimized to calculate two ouputs at a time. Does two $GF(2^{\wedge}8)$ dot products across each byte of the input array and two constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 2*32*vlen byte constant array based on the two sets of input coefficients.

Requires SSE4.1

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 2*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.15 void gf_2vect_mad_avx (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *dest*)

GF(2^{\(\delta\)}8) vector multiply with 2 accumulate. AVX version of gf_2vect_mad_sse().

Requires AVX

7.3.2.16 void gf_2vect_mad_avx2 (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char **

 $GF(2^8)$ vector multiply with 2 accumulate. AVX2 version of gf_2vect_mad_sse().

Requires AVX2

7.3.2.17 void gf_2vect_mad_sse (int *len,* int *vec,* int *vec_i,* unsigned char * *gftbls,* unsigned char * *src,* unsigned char ** *dest*)

 $GF(2^{\wedge}8)$ vector multiply with 2 accumulate. SSE version.

Does a $GF(2^8)$ multiply across each byte of input source with expanded constants and add to destination arrays. Can be used for erasure coding encode and decode update when only one source is available at a time. Function requires pre-calculation of a 32*vec byte constant array based on the input coefficients.

Requires SSE4.1

Parameters

len	Length of each vector in bytes. Must be $>= 32$.
vec	The number of vector sources or rows in the generator matrix for coding.
vec_i	The vector index corresponding to the single input source.
gftbls	Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
	of size 32*vec.
src	Pointer to source input array.
dest	Array of pointers to destination input/outputs.

Returns

none

7.3.2.18 void gf_3vect_dot_prod_avx (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{\wedge}8)$ vector dot product with three outputs.

Vector dot product optimized to calculate three ouputs at a time. Does three $GF(2^{\wedge}8)$ dot products across each byte of the input array and three constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 3*32*vlen byte constant array based on the three sets of input coefficients.

Requires AVX

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 3*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

none

7.3.2.19 void gf_3vect_dot_prod_avx2 (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with three outputs.

Vector dot product optimized to calculate three ouputs at a time. Does three $GF(2^{\wedge}8)$ dot products across each byte of the input array and three constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 3*32*vlen byte constant array based on the three sets of input coefficients.

Requires AVX2

Parameters

lei	Length of each vector in bytes. Must be ≥ 32 .
vlei	Number of vector sources.
gftbl	Pointer to 3*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
sre	Array of pointers to source inputs.
des	Array of pointers to destination data buffers.

Returns

none

7.3.2.20 void gf_3vect_dot_prod_sse (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with three outputs.

Vector dot product optimized to calculate three ouputs at a time. Does three $GF(2^{\wedge}8)$ dot products across each byte of the input array and three constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 3*32*vlen byte constant array based on the three sets of input coefficients.

Requires SSE4.1

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 3*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.21 void gf_3vect_mad_avx (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector multiply with 3 accumulate. AVX version of gf_3vect_mad_sse().

Requires AVX

7.3.2.22 void gf_3vect_mad_avx2 (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char **

 $GF(2^{8})$ vector multiply with 3 accumulate. AVX2 version of gf_3vect_mad_sse().

Requires AVX2

7.3.2.23 void gf_3vect_mad_sse (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector multiply with 3 accumulate. SSE version.

Does a $GF(2^8)$ multiply across each byte of input source with expanded constants and add to destination arrays. Can be used for erasure coding encode and decode update when only one source is available at a time. Function requires pre-calculation of a 32*vec byte constant array based on the input coefficients.

Requires SSE4.1

Parameters

len	Length of each vector in bytes. Must be $>= 32$.
vec	The number of vector sources or rows in the generator matrix for coding.
vec_i	The vector index corresponding to the single input source.
gftbls	Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
	of size 32*vec.
src	Pointer to source input array.
dest	Array of pointers to destination input/outputs.

Returns

none

7.3.2.24 void gf_4vect_dot_prod_avx (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{\wedge}8)$ vector dot product with four outputs.

Vector dot product optimized to calculate four ouputs at a time. Does four $GF(2^8)$ dot products across each byte of the input array and four constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 4*32*vlen byte constant array based on the four sets of input coefficients.

Requires AVX

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 4*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.25 void gf_4vect_dot_prod_avx2 (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{\wedge}8)$ vector dot product with four outputs.

Vector dot product optimized to calculate four ouputs at a time. Does four $GF(2^8)$ dot products across each byte of the input array and four constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 4*32*vlen byte constant array based on the four sets of input coefficients.

Requires AVX2

Parameters

len	Length of each vector in bytes. Must be $>= 32$.
vlen	Number of vector sources.
gftbls	Pointer to 4*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.26 void gf_4vect_dot_prod_sse (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with four outputs.

Vector dot product optimized to calculate four ouputs at a time. Does four $GF(2^8)$ dot products across each byte of the input array and four constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 4*32*vlen byte constant array based on the four sets of input coefficients.

Requires SSE4.1

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 4*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

none

7.3.2.27 void gf_4vect_mad_avx (int *len,* int *vec,* int *vec_i,* unsigned char * *gftbls,* unsigned char * *src,* unsigned char * *dest*)

 $GF(2^{8})$ vector multiply with 4 accumulate. AVX version of gf_4vect_mad_sse().

Requires AVX

7.3.2.28 void gf_4vect_mad_avx2 (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *dest*)

 $GF(2^8)$ vector multiply with 4 accumulate. AVX2 version of gf_4vect_mad_sse().

Requires AVX2

7.3.2.29 void gf_4vect_mad_sse (int *len,* int *vec,* int *vec_i,* unsigned char * *gftbls,* unsigned char * *src,* unsigned char * *dest*)

 $GF(2^{8})$ vector multiply with 4 accumulate. SSE version.

Does a $GF(2^8)$ multiply across each byte of input source with expanded constants and add to destination arrays. Can be used for erasure coding encode and decode update when only one source is available at a time. Function requires pre-calculation of a 32*vec byte constant array based on the input coefficients.

Requires SSE4.1

len	Length of each vector in bytes. Must be $>= 32$.
vec	The number of vector sources or rows in the generator matrix for coding.
vec_i	The vector index corresponding to the single input source.
gftbls	Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
	of size 32*vec.
src	Pointer to source input array.
dest	Array of pointers to destination input/outputs.

none

7.3.2.30 void gf_5vect_dot_prod_avx (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with five outputs.

Vector dot product optimized to calculate five ouputs at a time. Does five $GF(2^{\wedge}8)$ dot products across each byte of the input array and five constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 5*32*vlen byte constant array based on the five sets of input coefficients.

Requires AVX

Parameters

le	Length of each vector in bytes. Must ≥ 16 .
vle	Number of vector sources.
gftb	Pointer to 5*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
S	c Array of pointers to source inputs.
de	Array of pointers to destination data buffers.

Returns

none

7.3.2.31 void gf_5vect_dot_prod_avx2 (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{\wedge}8)$ vector dot product with five outputs.

Vector dot product optimized to calculate five ouputs at a time. Does five $GF(2^{8})$ dot products across each byte of the input array and five constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 5*32*vlen byte constant array based on the five sets of input coefficients.

Requires AVX2

Parameters

len	Length of each vector in bytes. Must ≥ 32 .
vlen	Number of vector sources.
gftbls	Pointer to 5*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.32 void gf_5vect_dot_prod_sse (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with five outputs.

Vector dot product optimized to calculate five ouputs at a time. Does five $GF(2^{\wedge}8)$ dot products across each byte of the input array and five constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 5*32*vlen byte constant array based on the five sets of input coefficients.

Requires SSE4.1

Parameters

len	Length of each vector in bytes. Must >= 16.
vlen	Number of vector sources.
gftbls	Pointer to 5*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.33 void gf_5vect_mad_avx (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char * *src*, unsigned char **

 $GF(2^{8})$ vector multiply with 5 accumulate. AVX version.

Requires AVX

7.3.2.34 void gf_5vect_mad_avx2 (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector multiply with 5 accumulate. AVX2 version.

Requires AVX2

7.3.2.35 void gf_5vect_mad_sse (int *len,* int *vec,* int *vec_i,* unsigned char * *gftbls,* unsigned char * *src,* unsigned char * *dest*)

 $GF(2^{\wedge}8)$ vector multiply with 5 accumulate. SSE version.

Requires SSE4.1

7.3.2.36 void gf_6vect_dot_prod_avx (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with six outputs.

Vector dot product optimized to calculate six ouputs at a time. Does six $GF(2^8)$ dot products across each byte of the input array and six constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 6*32*vlen byte constant array based on the six sets of input coefficients.

Requires AVX

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 6*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

none

7.3.2.37 void gf_6vect_dot_prod_avx2 (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with six outputs.

Vector dot product optimized to calculate six ouputs at a time. Does six $GF(2^8)$ dot products across each byte of the input array and six constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 6*32*vlen byte constant array based on the six sets of input coefficients.

Requires AVX2

Parameters

len	Length of each vector in bytes. Must be $>= 32$.
vlen	Number of vector sources.
gftbls	Pointer to 6*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.38 void gf_6vect_dot_prod_sse (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char ** *dest*)

 $GF(2^{8})$ vector dot product with six outputs.

Vector dot product optimized to calculate six ouputs at a time. Does six $GF(2^8)$ dot products across each byte of the input array and six constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 6*32*vlen byte constant array based on the six sets of input coefficients.

Requires SSE4.1

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 6*32*vlen byte array of pre-calculated constants based on the array of input coeffi-
	cients.
src	Array of pointers to source inputs.
dest	Array of pointers to destination data buffers.

Returns

none

7.3.2.39 void gf_6vect_mad_avx (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char * *dest*)

 $GF(2^{8})$ vector multiply with 6 accumulate. AVX version.

Requires AVX

7.3.2.40 void gf_6vect_mad_avx2 (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*, unsigned char **

 $GF(2^{\wedge}8)$ vector multiply with 6 accumulate. AVX2 version.

Requires AVX2

7.3.2.41 void gf_6vect_mad_sse (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *src*

 $GF(2^{\wedge}8)$ vector multiply with 6 accumulate. SSE version.

Requires SSE4.1

7.3.2.42 void gf_gen_cauchy1_matrix (unsigned char * a, int m, int k)

Generate a Cauchy matrix of coefficients to be used for encoding.

Cauchy matrix example of encoding coefficients where high portion of matrix is identity matrix I and lower portion is constructed as $1/(i+j) \mid i \mid = j$, $i:\{0,k-1\}$ $j:\{k,m-1\}$. Any sub-matrix of a Cauchy matrix should be invertable.

Parameters

а	[mxk] array to hold coefficients
m	number of rows in matrix corresponding to srcs + parity.
k	number of columns in matrix corresponding to srcs.

Returns

none

7.3.2.43 void gf_gen_rs_matrix (unsigned char * a, int m, int k)

Generate a matrix of coefficients to be used for encoding.

Vandermonde matrix example of encoding coefficients where high portion of matrix is identity matrix I and lower portion is constructed as $2^{\{i*(j-k+1)\}}$ i: $\{0,k-1\}$ j: $\{k,m-1\}$. Commonly used method for choosing coefficients in erasure encoding but does not guarantee invertable for every sub matrix. For large k it is possible to find cases where the decode matrix chosen from sources and parity not in erasure are not invertable. Users may want to adjust for k > 5.

Parameters

а	[mxk] array to hold coefficients
m	number of rows in matrix corresponding to srcs + parity.
k	number of columns in matrix corresponding to srcs.

Returns

none

7.3.2.44 unsigned char gf_inv (unsigned char a)

Single element $GF(2^8)$ inverse.

Parameters

a	Input element

Returns

Field element b such that a x b = $\{1\}$

7.3.2.45 int gf_invert_matrix (unsigned char * in, unsigned char * out, const int n)

Invert a matrix in $GF(2^8)$

Parameters

in	input matrix
out	output matrix such that $[in] \times [out] = [I]$ - identity matrix
n	size of matrix [nxn]

Returns

0 successful, other fail on singular input matrix

7.3.2.46 unsigned char gf_{-} mul (unsigned char a, unsigned char b)

Single element $GF(2^8)$ multiply.

Parameters

а	Multiplicand a
b	Multiplicand b

Returns

Product of a and b in $GF(2^{8})$

7.3.2.47 void gf_vect_dot_prod (int len, int vlen, unsigned char * gftbls, unsigned char ** src, unsigned char * dest)

 $GF(2^{\wedge}8)$ vector dot product, runs appropriate version.

Does a $GF(2^8)$ dot product across each byte of the input array and a constant set of coefficients to produce each byte of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32*vlen byte constant array based on the input coefficients.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

len	Length of each vector in bytes. Must be $>= 32$.
vlen	Number of vector sources.
gftbls	Pointer to 32*vlen byte array of pre-calculated constants based on the array of input coefficients.
src	Array of pointers to source inputs.
dest	Pointer to destination data array.

none

7.3.2.48 void gf_vect_dot_prod_avx (int *len*, int *vlen*, unsigned char * gftbls, unsigned char ** src, unsigned char * dest)

 $GF(2^{8})$ vector dot product.

Does a $GF(2^8)$ dot product across each byte of the input array and a constant set of coefficients to produce each byte of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32*vlen byte constant array based on the input coefficients.

Requires AVX

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 32*vlen byte array of pre-calculated constants based on the array of input coefficients.
src	Array of pointers to source inputs.
dest	Pointer to destination data array.

Returns

none

7.3.2.49 void gf_vect_dot_prod_avx2 (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char * *dest*)

 $GF(2^8)$ vector dot product.

Does a $GF(2^8)$ dot product across each byte of the input array and a constant set of coefficients to produce each byte of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32*vlen byte constant array based on the input coefficients.

Requires AVX2

len	Length of each vector in bytes. Must be $>= 32$.
vlen	Number of vector sources.
gftbls	Pointer to 32*vlen byte array of pre-calculated constants based on the array of input coefficients.
src	Array of pointers to source inputs.
dest	Pointer to destination data array.

none

7.3.2.50 void gf_vect_dot_prod_base (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char * *dest*)

 $GF(2^{8})$ vector dot product, runs baseline version.

Does a $GF(2^8)$ dot product across each byte of the input array and a constant set of coefficients to produce each byte of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32*vlen byte constant array based on the input coefficients.

Parameters

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 32*vlen byte array of pre-calculated constants based on the array of input coefficients.
	Only elements $32*CONST*j + 1$ of this array are used, where $j = (0, 1, 2)$ and CONST is
	the number of elements in the array of input coefficients. The elements used correspond to the
	original input coefficients.
src	Array of pointers to source inputs.
dest	Pointer to destination data array.

Returns

none

7.3.2.51 void gf_vect_dot_prod_sse (int *len*, int *vlen*, unsigned char * *gftbls*, unsigned char ** *src*, unsigned char * *dest*)

 $GF(2^{8})$ vector dot product.

Does a $GF(2^8)$ dot product across each byte of the input array and a constant set of coefficients to produce each byte of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32*vlen byte constant array based on the input coefficients.

Requires SSE4.1

len	Length of each vector in bytes. Must be $>= 16$.
vlen	Number of vector sources.
gftbls	Pointer to 32*vlen byte array of pre-calculated constants based on the array of input coefficients.
src	Array of pointers to source inputs.
dest	Pointer to destination data array.

none

7.3.2.52 void gf_vect_mad (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *dest*)

 $GF(2^{\wedge}8)$ vector multiply accumulate, runs appropriate version.

Does a $GF(2^8)$ multiply across each byte of input source with expanded constant and add to destination array. Can be used for erasure coding encode and decode update when only one source is available at a time. Function requires pre-calculation of a 32*vec byte constant array based on the input coefficients.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

len	Length of each vector in bytes. Must be $>= 32$.
vec	The number of vector sources or rows in the generator matrix for coding.
vec_i	The vector index corresponding to the single input source.
gftbls	Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
	of size 32*vec.
src	Array of pointers to source inputs.
dest	Pointer to destination data array.

Returns

none

7.3.2.53 void gf_vect_mad_avx (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *dest*)

 $GF(2^{8})$ vector multiply accumulate, arch specific version.

Arch specific version of gf_vect_mad() with same parameters.

Requires AVX

7.3.2.54 void gf_vect_mad_avx2 (int *len,* int *vec,* int *vec_i,* unsigned char * *gftbls,* unsigned char * *src,* unsigned char * *dest*)

 $GF(2^{8})$ vector multiply accumulate, arch specific version.

Arch specific version of gf_vect_mad() with same parameters.

Requires AVX2

7.3.2.55 void gf_vect_mad_base (int *len*, int *vec*, int *vec_i*, unsigned char * v, unsigned char * src, unsigned char * dest)

 $GF(2^{8})$ vector multiply accumulate, baseline version.

Baseline version of gf_vect_mad() with same parameters.

7.3.2.56 void gf_vect_mad_sse (int *len*, int *vec*, int *vec_i*, unsigned char * *gftbls*, unsigned char * *src*, unsigned char * *dest*)

 $GF(2^{8})$ vector multiply accumulate, arch specific version.

Arch specific version of gf_vect_mad() with same parameters.

Requires SSE4.1

7.4 gf_vect_mul.h File Reference

Interface to functions for vector (block) multiplication in $GF(2^8)$.

Functions

- int gf_vect_mul_sse (int len, unsigned char *gftbl, void *src, void *dest) GF(2^8) vector multiply by constant.
- int gf_vect_mul_avx (int len, unsigned char *gftbl, void *src, void *dest) GF(2^8) vector multiply by constant.
- int gf_vect_mul (int len, unsigned char *gftbl, void *src, void *dest)

 $GF(2^{\wedge}8)$ vector multiply by constant, runs appropriate version.

- void gf_vect_mul_init (unsigned char c, unsigned char *gftbl)
 - *Initialize 32-byte constant array for GF*(2^{8}) *vector multiply.*
- void gf_vect_mul_base (int len, unsigned char *a, unsigned char *src, unsigned char *dest)

 $GF(2^{8})$ vector multiply by constant, runs baseline version.

7.4.1 Detailed Description

Interface to functions for vector (block) multiplication in $GF(2^{8})$. This file defines the interface to routines used in fast RAID rebuild and erasure codes.

7.4.2 Function Documentation

7.4.2.1 int gf_vect_mul (int len, unsigned char * gftbl, void * src, void * dest)

 $GF(2^{8})$ vector multiply by constant, runs appropriate version.

Does a GF(2^8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2^8). Can be used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ..., C{0f}}, {C{00}, C{10}, C{20}, ..., C{f0}}}. Len and src must be aligned to 32B.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

len	Length of vector in bytes. Must be aligned to 32B.
gftbl	Pointer to 32-byte array of pre-calculated constants based on C.
src	Pointer to src data array. Must be aligned to 32B.
dest	Pointer to destination data array. Must be aligned to 32B.

Returns

0 pass, other fail

7.4.2.2 int gf_vect_mul_avx (int len, unsigned char * gftbl, void * src, void * dest)

 $GF(2^8)$ vector multiply by constant.

Does a GF(2^8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2^8). Can be used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ..., C{0f}}, {C{00}, C{10}, C{20}, ..., C{f0}} }. Len and src must be aligned to 32B.

Requires AVX

Parameters

len	Length of vector in bytes. Must be aligned to 32B.
gftbl	Pointer to 32-byte array of pre-calculated constants based on C.
src	Pointer to src data array. Must be aligned to 32B.
dest	Pointer to destination data array. Must be aligned to 32B.

Returns

0 pass, other fail

7.4.2.3 void gf_vect_mul_base (int len, unsigned char * a, unsigned char * src, unsigned char * dest)

 $GF(2^{\wedge}8)$ vector multiply by constant, runs baseline version.

Does a GF(2^8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2^8). Can be used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ..., C{0f}}, {C{00}, C{10}, C{20}, ..., C{f0}} }. Len and src must be aligned to 32B.

Parameters

len	Length of vector in bytes. Must be aligned to 32B.
а	Pointer to 32-byte array of pre-calculated constants based on C. only use 2nd element is used.
src	Pointer to src data array. Must be aligned to 32B.
dest	Pointer to destination data array. Must be aligned to 32B.

7.4.2.4 void gf_vect_mul_init (unsigned char c, unsigned char * gftbl)

Initialize 32-byte constant array for $GF(2^{\wedge}8)$ vector multiply.

Calculates array $\{C\{00\}, C\{01\}, C\{02\}, \dots, C\{0f\}\}, \{C\{00\}, C\{10\}, C\{20\}, \dots, C\{f0\}\}\}$ as required by other fast vector multiply functions.

Parameters

C	Constant input.
gftbl	Table output.

7.4.2.5 int gf_vect_mul_sse (int len, unsigned char * gftbl, void * src, void * dest)

 $GF(2^8)$ vector multiply by constant.

Does a GF(2^8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2^8). Can be used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ..., C{0f}}, {C{00}, C{10}, C{20}, ..., C{f0}}. Len and src must be aligned to 32B.

Requires SSE4.1

len	Length of vector in bytes. Must be aligned to 32B.
gftbl	Pointer to 32-byte array of pre-calculated constants based on C.
src	Pointer to src data array. Must be aligned to 32B.
dest	Pointer to destination data array. Must be aligned to 32B.

0 pass, other fail

7.5 igzip_lib.h File Reference

This file defines the igzip compression interface, a high performance deflate compression interface for storage applications

```
#include <stdint.h>
#include "types.h"
```

Data Structures

• struct BitBuf2

Holds Bit Buffer information.

• struct LZ_State1

Holds the internal state information for input and output compression streams.

• struct LZ_Stream1

Holds stream information.

Typedefs

• typedef struct LZ_State1 LZ_State1

Holds the internal state information for input and output compression streams.

• typedef struct LZ_Stream1 LZ_Stream1

Holds stream information.

Enumerations

enum LZ_State1_state { LZS2_HDR, LZS2_BODY, LZS2_TRL, LZS2_END }

Compression State please note LZS2_TRL only applies for GZIP compression.

Functions

• void init_stream (LZ_Stream1 *stream)

Initialize compression stream data structure.

• int fast_lz (LZ_Stream1 *stream)

Fast data (deflate) compression for storage applications.

• int fast_lz_stateless (LZ_Stream1 *stream)

Fast data (deflate) stateless compression for storage applications.

7.5.1 Detailed Description

This file defines the igzip compression interface, a high performance deflate compression interface for storage applications. Deflate is a widely used compression standard that can be used standalone, it also forms the basis of gzip and zlib compression formats. igzip supports the following flush features:

- Sync flush: whereby each call to fast_lz returns a new deflate block. Each deflate block is byte aligned with an empty stored block that is appended to the compressed output. With this flush mode an accurate bytes consumed figure is reported in the compression state.
- Finish Flush: whereby a call or multiple calls to fast_lz will return a single deflate block that is not byte aligned. Accurate bytes consumed is not supported with this flush mode

There are 4 major versions selectable at build time:

- IGZIPOC: the default version, it uses PCLMULQDQ for CRC calculations and 1 pointer in the hash table.
- IGZIP1C: it uses PCLMULQDQ for CRC calculations and a fixed array of 4 pointers in the hash table.
- IGZIP0: similar to IGZIP0C, with the CLMUL requirement no longer necessary.
- IGZIP1: similar to IGZIP1C, with the CLMUL requirement no longer necessary, and no limit on the hash update.

A number of configuration options are available, and can be used and combined to override igzip's defaults. igzip default configuration is:

- 8K window size
- IGZIPOC major version

These options can be overriden to enable:

• 32K window size, a large window size, by adding #define LARGE_WINDOW 1 in igzip_lib.h and %define LARGE_WINDOW 1 in options.inc, or via the command line with

```
gmake D="LARGE_WINDOW=1"
on Linux and FreeBSD, or with
nmake -f Makefile.nmake D="-D LARGE_WINDOW=1"
on Windows.
```

· A different igzip major version, by passing a variable via command line with the version to select, such as

```
gmake D="MAJOR_VERSION=IGZIPOC"
```

on Linux and FreeBSD, and

```
nmake -f Makefile.nmake D="-D MAJOR_VERSION=IGZIPOC"
on Windows.
```

KNOWN ISSUES:

- Minimum size output buffer needs to be >218 Bytes, which is the size of the deflate header and trees.
- If building the code on Windows with the 32K window enabled, the /LARGEADDRESSAWARE:NO link option must be added.
- The 32K window isn't supported when used in a shared library.

7.5.2 Enumeration Type Documentation

```
7.5.2.1 enum LZ_State1_state
```

Compression State please note LZS2_TRL only applies for GZIP compression.

Enumerator

```
LZS2_HDR Header state.LZS2_BODY Body state.LZS2_TRL Trailer state.LZS2_END End state.
```

7.5.3 Function Documentation

```
7.5.3.1 int fast_lz ( LZ_Stream1 * stream )
```

Fast data (deflate) compression for storage applications.

On entry to fast_lz(), next_in points to an input buffer and avail_in indicates the length of that buffer. Similarly next_out points to an empty output buffer and avail_out indicates the size of that buffer.

The fields total_in and total_out start at 0 and are updated by fast_lz(). These reflect the total number of bytes read or written so far.

The call to fast_lz() will take data from the input buffer (updating next_in, avail_in and in the case of sync flush bytes_consumed for accurate bytes consumed) and write a compressed stream to the output buffer (updating next_out and avail_out). Without sync flushing the function returns when either avail_in or avail_out goes to zero (i.e. when it runs out of input data or when the output buffer fills up, whichever comes first), producing one contiguous deflate block.

With sync flushing the function returns when it runs out of input data (bytes_consumed equals what was submitted in avail_in) or if it runs out of space (gets within 13 bytes from the end of the output buffer, avail_out <= 13bytes), whichever comes first. It produces one raw deflate block for each input buffer followed by an empty stored block

(sync flush per input buffer). When a buffer is submitted, it is copied into the internal state and avail_in is decremented to 0 (the internal state manages the offsets on each successive call to fast_lz()). The bytes_consumed variable will reflect how much of that input buffer has been compressed (for example: if there was not enough space in the output buffer). NOTE: bytes_consumed indicates exactly what was consumed from the input buffer even if avail_in returns as 0; avail_in needs to be updated if the input buffer was not fully consumed and the stream is re-initialized.

When the last input buffer is passed in, NOTE: the end_of_stream flag should be set (FINISH_FLUSH does not indicate this is the last buffer). This will cause the routine to complete the bit stream when it gets to the end of that input buffer, as long as the output buffer is big enough.

The equivalent of the zlib FLUSH_SYNC operation is currently supported. Flush types can be SYNC_FLUSH or FINISH_FLUSH. Default value is FINISH_FLUSH if SYNC_FLUSH is selected each input buffer is compressed and byte aligned with a type 0 block appended to the end.

Requires SSE4.1, CLMUL

Parameters

stream | Structure holding state information on the compression streams.

Returns

COMP_OK (if everything is ok), INVALID_FLUSH (if an invalid FLUSH is selected), INVALID_PARAM (If FLUSH SYNC is selected after FLUSH FINISH without resetting the stream).

Examples:

igzip_example.c.

7.5.3.2 int fast_lz_stateless (LZ_Stream1 * stream)

Fast data (deflate) stateless compression for storage applications.

Stateless (one shot) compression routine with a similar interface to fast_lz() but operates on entire input buffer at one time. Parameter avail_out must be large enough to fit the entire compressed output. Max expansion is limited to the input size plus the header size of a stored/raw block.

Requires SSE4.1, CLMUL

Parameters

stream | Structure holding state information on the compression streams.

Returns

COMP_OK (if everything is ok), STATELESS_OVERFLOW (if output buffer will not fit output).

```
7.5.3.3 void init_stream ( LZ_Stream1 * stream )
```

Initialize compression stream data structure.

Requires SSE4.1, CLMUL

Parameters

stream Structure holding state information on the compression streams.

Returns

none

Examples:

igzip_example.c.

7.6 intrinreg.h File Reference

Defines intrinsic types used by the new hashing API.

```
#include <stdint.h>
#include <immintrin.h>
```

7.6.1 Detailed Description

Defines intrinsic types used by the new hashing API.

7.7 mb md5.h File Reference

Multi-buffer MD5 function prototypes and structures to submit jobs.

```
#include "types.h"
#include "multi_buffer.h"
```

Data Structures

• struct MD5_ARGS_X8

Holds arguments for submitted MD5 job.

• struct MD5_ARGS_X8X2

Holds arguments for submitted AVX2 MD5 job.

• struct JOB_MD5

Holds info describing a single MD5 job for the multi-buffer manager.

• struct MD5_HMAC_LANE_DATA

MD5 out-of-order scheduler fields.

• struct MD5_MB_MGR

Holds state for multi-buffer MD5 jobs.

• struct MD5_MB_MGR_X8X2

Holds state for multi-buffer AVX2 MD5 jobs.

Functions

• void md5_init_mb_mgr (MD5_MB_MGR *state)

Initialize the MD5 multi-buffer manager structure.

• void md5_init_mb_mgr_x8x2 (MD5_MB_MGR_X8X2 *state)

Initialize the MD5 multi-buffer manager structure.

• JOB_MD5 * md5_submit_job (MD5_MB_MGR *state, JOB_MD5 *job)

Submit a new MD5 job to the multi-buffer manager.

• JOB_MD5 * md5_flush_job (MD5_MB_MGR *state)

Finish all submitted MD5 jobs and return when complete.

JOB_MD5 * md5_submit_job_avx (MD5_MB_MGR *state, JOB_MD5 *job)

Submit a new MD5 job to the multi-buffer manager.

• JOB_MD5 * md5_flush_job_avx (MD5_MB_MGR *state)

Finish all submitted MD5 jobs and return when complete.

• JOB_MD5 * md5_submit_job_avx2 (MD5_MB_MGR_X8X2 *state, JOB_MD5 *job)

Submit a new MD5 job to the multi-buffer manager.

JOB_MD5 * md5_flush_job_avx2 (MD5_MB_MGR_X8X2 *state)

Finish all submitted MD5 jobs and return when complete.

7.7.1 Detailed Description

Multi-buffer MD5 function prototypes and structures to submit jobs. Interface for multi-buffer MD5 functions.

Multi-buffer MD5 Init/Update/Finalize

The multi-buffer md5 interface includes the ability to submit complete buffers for hashing (with init and finalize steps) or jobs in the category of init only (do initialization but no finalize) or update (no init or finalize steps). The job must

specify the flags HASH_MB_FIRST and/or HASH_MB_LAST, or HASH_MB_NO_FLAGS to specify between the types of jobs. Job types without HASH_MB_LAST must be submitted with size as a multiple of the fundamental block size of 64 bytes. Note: The update function is not yet available for the AVX2 versions, but the job flags and total length must still be set.

7.7.2 Function Documentation

7.7.2.1 JOB_MD5* md5_flush_job (MD5_MB_MGR * state)

Finish all submitted MD5 jobs and return when complete.

Requires SSE4.1

Parameters

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.7.2.2 JOB_MD5* md5_flush_job_avx (MD5_MB_MGR * state)

Finish all submitted MD5 jobs and return when complete.

Requires AVX

Parameters

state	Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.7.2.3 JOB_MD5* md5_flush_job_avx2 (MD5_MB_MGR_X8X2 * state)

Finish all submitted MD5 jobs and return when complete.

Requires AVX2

state Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.7.2.4 void md5_init_mb_mgr (MD5_MB_MGR * state)

Initialize the MD5 multi-buffer manager structure.

Requires SSE4.1

Parameters

state | Structure holding jobs state info

Returns

void

7.7.2.5 void md5_init_mb_mgr_x8x2 (MD5_MB_MGR_X8X2 * state)

Initialize the MD5 multi-buffer manager structure.

Requires AVX2

Parameters

state	Structure holding jobs state info

Returns

void

7.7.2.6 JOB_MD5* md5_submit_job (MD5_MB_MGR * state, JOB_MD5 * job)

Submit a new MD5 job to the multi-buffer manager.

Requires SSE4.1

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.7.2.7 JOB_MD5* md5_submit_job_avx (MD5_MB_MGR * state, JOB_MD5 * job)

Submit a new MD5 job to the multi-buffer manager.

Requires AVX

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.7.2.8 JOB_MD5* md5_submit_job_avx2 (MD5_MB_MGR_X8X2 * state, JOB_MD5 * job)

Submit a new MD5 job to the multi-buffer manager.

Requires AVX2

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.8 mb_sha1.h File Reference

Multi-buffer SHA1 function prototypes and structures to submit jobs.

```
#include "types.h"
#include "multi_buffer.h"
```

Data Structures

struct SHA1_ARGS_X4

Holds arguments for submitted SHA1 job.

struct SHA1_ARGS_X8

Holds arguments for submitted SHA1 job.

• struct JOB_SHA1

Holds info describing a single SHA1 job for the multi-buffer manager.

• struct SHA1_HMAC_LANE_DATA

SHA1 out-of-order scheduler fields.

• struct SHA1_MB_MGR

Holds state for multi-buffer SHA1 jobs.

struct SHA1_MB_MGR_X8

Holds state for multi-buffer SHA1 jobs.

Functions

• void sha1_init_mb_mgr (SHA1_MB_MGR *state)

Initialize the SHA1 multi-buffer manager structure.

• void sha1_init_mb_mgr_x8 (SHA1_MB_MGR_X8 *state)

Initialize the SHA1 multi-buffer manager structure.

• JOB_SHA1 * sha1_submit_job (SHA1_MB_MGR *state, JOB_SHA1 *job)

Submit a new SHA1 job to the multi-buffer manager.

JOB_SHA1 * sha1_flush_job (SHA1_MB_MGR *state)

Finish all submitted SHA1 jobs and return when complete.

JOB_SHA1 * sha1_submit_job_avx (SHA1_MB_MGR *state, JOB_SHA1 *job)

Submit a new SHA1 job to the multi-buffer manager.

• JOB_SHA1 * sha1_flush_job_avx (SHA1_MB_MGR *state)

Finish all submitted SHA1 jobs and return when complete.

- JOB_SHA1 * sha1_submit_job_avx2 (SHA1_MB_MGR_X8 *state, JOB_SHA1 *job)
 - Submit a new SHA1 job to the multi-buffer manager.
- JOB_SHA1 * sha1_flush_job_avx2 (SHA1_MB_MGR_X8 *state)

Finish all submitted SHA1 jobs and return when complete.

7.8.1 Detailed Description

Multi-buffer SHA1 function prototypes and structures to submit jobs. Interface for multi-buffer SHA1 functions.

Multi-buffer SHA1 Init/Update/Finalize

The multi-buffer sha1 interface includes the ability to submit complete buffers for hashing (with init and finalize steps) or jobs in the category of init only (do initialization but no finalize) or update (no init or finalize steps). The job must specify the flags HASH_MB_FIRST and/or HASH_MB_LAST, or HASH_MB_NO_FLAGS to specify between the types of jobs. Job types without HASH_MB_LAST must be submitted with size as a multiple of the fundamental block size of 64 bytes. Note: The update function is not yet available for the AVX2 versions, but the job flags and total length must still be set.

7.8.2 Function Documentation

7.8.2.1 JOB_SHA1* sha1_flush_job (SHA1_MB_MGR * state)

Finish all submitted SHA1 jobs and return when complete.

Requires SSE4.1

Parameters

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

Examples:

multi_buffer_sha1_example.c.

7.8.2.2 JOB_SHA1* sha1_flush_job_avx (SHA1_MB_MGR * state)

Finish all submitted SHA1 jobs and return when complete.

Requires AVX

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.8.2.3 JOB_SHA1* sha1_flush_job_avx2 (SHA1_MB_MGR_X8 * state)

Finish all submitted SHA1 jobs and return when complete.

Requires AVX2

Parameters

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.8.2.4 void sha1_init_mb_mgr ($SHA1_MB_MGR*state$)

Initialize the SHA1 multi-buffer manager structure.

Requires SSE4.1

Parameters

state	Structure holding jobs state info

Returns

void

Examples:

multi_buffer_sha1_example.c.

7.8.2.5 void sha1_init_mb_mgr_x8 (SHA1_MB_MGR_X8 * state)

Initialize the SHA1 multi-buffer manager structure.

Requires AVX2

Parameters

state	Structure holding jobs state info

Returns

void

7.8.2.6 JOB_SHA1* sha1_submit_job (SHA1_MB_MGR * state, JOB_SHA1 * job)

Submit a new SHA1 job to the multi-buffer manager.

Requires SSE4.1

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

Examples:

```
multi_buffer_sha1_example.c.
```

7.8.2.7 JOB_SHA1* sha1_submit_job_avx (SHA1_MB_MGR * state, JOB_SHA1 * job)

Submit a new SHA1 job to the multi-buffer manager.

Requires AVX

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

```
7.8.2.8 JOB_SHA1* sha1_submit_job_avx2 ( SHA1_MB_MGR_X8 * state, JOB_SHA1 * job )
```

Submit a new SHA1 job to the multi-buffer manager.

Requires AVX2

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.9 mb_sha256.h File Reference

Multi-buffer SHA256 function prototypes and structures to submit jobs.

```
#include "types.h"
#include "multi_buffer.h"
```

Data Structures

• struct SHA256_ARGS_X4

Holds arguments for submitted SHA256 job.

• struct SHA256_ARGS_X8

Holds arguments for submitted SHA256 job.

• struct JOB_SHA256

Holds info describing a single SHA256 job for the multi-buffer manager.

struct SHA256_HMAC_LANE_DATA

SHA256 out-of-order scheduler fields.

• struct SHA256_MB_MGR

Holds state for multi-buffer SHA256 jobs.

struct SHA256 MB MGR X8

Holds state for multi-buffer SHA256 jobs.

Functions

• void sha256_init_mb_mgr (SHA256_MB_MGR *state)

Initialize the SHA256 multi-buffer manager structure.

• void sha256 init mb mgr x8 (SHA256 MB MGR X8 *state)

Initialize the SHA256 multi-buffer manager structure.

• JOB_SHA256 * sha256_submit_job (SHA256_MB_MGR *state, JOB_SHA256 *job)

Submit a new SHA256 job to the multi-buffer manager.

• JOB SHA256 * sha256 flush job (SHA256 MB MGR *state)

Finish all submitted SHA256 jobs and return when complete.

JOB_SHA256 * sha256_submit_job_avx (SHA256_MB_MGR *state, JOB_SHA256 *job)

Submit a new SHA256 job to the multi-buffer manager.

JOB_SHA256 * sha256_flush_job_avx (SHA256_MB_MGR *state)

Finish all submitted SHA256 jobs and return when complete.

JOB_SHA256 * sha256_submit_job_avx2 (SHA256_MB_MGR_X8 *state, JOB_SHA256 *job)

Submit a new SHA256 job to the multi-buffer manager.

JOB_SHA256 * sha256_flush_job_avx2 (SHA256_MB_MGR_X8 *state)

Finish all submitted SHA256 jobs and return when complete.

7.9.1 Detailed Description

Multi-buffer SHA256 function prototypes and structures to submit jobs. Interface for multi-buffer SHA256 functions.

Multi-buffer SHA256 Init/Update/Finalize

The multi-buffer sha256 interface includes the ability to submit complete buffers for hashing (with init and finalize steps) or jobs in the category of init only (do initialization but no finalize) or update (no init or finalize steps). The job must specify the flags HASH_MB_FIRST and/or HASH_MB_LAST, or HASH_MB_NO_FLAGS to specify between the types of jobs. Job types without HASH_MB_LAST must be submitted with size as a multiple of the fundamental block size of 64 bytes. Note: The update function is not yet available for the AVX2 versions, but the job flags and total length must still be set.

7.9.2 Function Documentation

7.9.2.1 JOB_SHA256* sha256_flush_job (SHA256_MB_MGR * state)

Finish all submitted SHA256 jobs and return when complete.

Requires SSE4.1

Parameters

state Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.9.2.2 JOB_SHA256* sha256_flush_job_avx (SHA256_MB_MGR * state)

Finish all submitted SHA256 jobs and return when complete.

Requires AVX

Parameters

state	structure holding jobs state info	

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.9.2.3 JOB_SHA256* sha256_flush_job_avx2 (SHA256_MB_MGR_X8 * state)

Finish all submitted SHA256 jobs and return when complete.

Requires AVX2

Parameters

state Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.9.2.4 void sha256_init_mb_mgr (SHA256_MB_MGR * state)

Initialize the SHA256 multi-buffer manager structure.

Requires SSE4.1

Parameters

state	Structure holding jobs state info

Returns

void

7.9.2.5 void sha256_init_mb_mgr_x8 (SHA256_MB_MGR_X8 * state)

Initialize the SHA256 multi-buffer manager structure.

Requires AVX2

Parameters

state	Structure holding jobs state info

Returns

void

7.9.2.6 JOB_SHA256* sha256_submit_job (SHA256_MB_MGR * state, JOB_SHA256 * job)

Submit a new SHA256 job to the multi-buffer manager.

Requires SSE4.1

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.9.2.7 JOB_SHA256* sha256_submit_job_avx (SHA256_MB_MGR * state, JOB_SHA256 * job)

Submit a new SHA256 job to the multi-buffer manager.

Requires AVX

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.9.2.8 JOB_SHA256* sha256_submit_job_avx2 (SHA256_MB_MGR_X8 * state, JOB_SHA256 * job)

Submit a new SHA256 job to the multi-buffer manager.

Requires AVX2

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.10 mb sha512.h File Reference

Multi-buffer SHA512 function prototypes and structures to submit jobs.

```
#include "types.h"
#include "multi_buffer.h"
```

Data Structures

• struct SHA512 ARGS X2

Holds arguments for submitted SHA512 job.

struct SHA512_ARGS_X4

Holds arguments for submitted AVX2 SHA512 job.

• struct JOB_SHA512

Holds info describing a single SHA512 job for the multi-buffer manager.

struct SHA512_HMAC_LANE_DATA

SHA512 out-of-order scheduler fields.

• struct SHA512_MB_MGR

Holds state for multi-buffer SHA512 jobs.

struct SHA512_MB_MGR_X4

Holds state for multi-buffer SHA512 jobs.

Functions

void sha512_init_mb_mgr (SHA512_MB_MGR *state)

Initialize the SHA512 multi-buffer manager structure.

• void sha512_init_mb_mgr_x4 (SHA512_MB_MGR_X4 *state)

Initialize the SHA512 multi-buffer manager structure.

• JOB_SHA512 * sha512_submit_job (SHA512_MB_MGR *state, JOB_SHA512 *job)

Submit a new SHA512 job to the multi-buffer manager.

JOB_SHA512 * sha512_flush_job (SHA512_MB_MGR *state)

Finish all submitted SHA512 jobs and return when complete.

JOB_SHA512 * sha512_submit_job_avx (SHA512_MB_MGR *state, JOB_SHA512 *job)

Submit a new SHA512 job to the multi-buffer manager.

• JOB_SHA512 * sha512_flush_job_avx (SHA512_MB_MGR *state)

Finish all submitted SHA512 jobs and return when complete.

- JOB_SHA512 * sha512_submit_job_avx2 (SHA512_MB_MGR_X4 *state, JOB_SHA512 *job) Submit a new SHA512 job to the multi-buffer manager.
- JOB_SHA512 * sha512_flush_job_avx2 (SHA512_MB_MGR_X4 *state)

Finish all submitted SHA512 jobs and return when complete.

7.10.1 Detailed Description

Multi-buffer SHA512 function prototypes and structures to submit jobs. Interface for multi-buffer SHA512 functions.

Multi-buffer SHA512 Init/Update/Finalize

The multi-buffer sha512 interface includes the ability to submit complete buffers for hashing (with init and finalize steps) or jobs in the category of init only (do initialization but no finalize) or update (no init or finalize steps). The job must specify the flags HASH_MB_FIRST and/or HASH_MB_LAST, or HASH_MB_NO_FLAGS to specify between the types of jobs. Job types without HASH_MB_LAST must be submitted with size as a multiple of the fundamental block size of 128 bytes. Note: The update function is not yet available for the AVX2 versions, but the job flags and total length must still be set.

7.10.2 Function Documentation

7.10.2.1 JOB_SHA512* sha512_flush_job (SHA512_MB_MGR * state)

Finish all submitted SHA512 jobs and return when complete.

Requires SSE4.1

Parameters

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.10.2.2 $JOB_SHA512*$ sha512_flush_job_avx ($SHA512_MB_MGR*$ state)

Finish all submitted SHA512 jobs and return when complete.

Requires AVX

Parameters

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.10.2.3 JOB_SHA512* sha512_flush_job_avx2 (SHA512_MB_MGR_X4 * state)

Finish all submitted SHA512 jobs and return when complete.

Requires AVX2

Parameters

state | Structure holding jobs state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.10.2.4 void sha512_init_mb_mgr (SHA512_MB_MGR * state)

Initialize the SHA512 multi-buffer manager structure.

Requires SSE4.1

Parameters

state | Structure holding jobs state info

Returns

void

7.10.2.5 void sha512_init_mb_mgr_x4 ($SHA512_MB_MGR_X4 * state$)

Initialize the SHA512 multi-buffer manager structure.

Requires AVX2

state	Structure holding jobs state info
-------	-----------------------------------

Returns

void

7.10.2.6 JOB_SHA512* sha512_submit_job (SHA512_MB_MGR * state, JOB_SHA512 * job)

Submit a new SHA512 job to the multi-buffer manager.

Requires SSE4.1

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.10.2.7 JOB_SHA512* sha512_submit_job_avx (SHA512_MB_MGR * state, JOB_SHA512 * job)

Submit a new SHA512 job to the multi-buffer manager.

Requires AVX

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.10.2.8 JOB_SHA512* sha512_submit_job_avx2 (SHA512_MB_MGR_X4 * state, JOB_SHA512 * job)

Submit a new SHA512 job to the multi-buffer manager.

Requires AVX2

Parameters

state	Structure holding jobs state info
job	Structure holding new job info

Returns

NULL if no jobs complete or pointer to jobs structure.

7.11 md5 mb.h File Reference

Multi-buffer CTX API MD5 function prototypes and structures.

```
#include <stdint.h>
#include "multi_buffer.h"
#include "types.h"
```

Data Structures

• struct MD5 JOB

Scheduler layer - Holds info describing a single MD5 job for the multi-buffer manager.

• struct MD5_MB_ARGS_X16

Scheduler layer - Holds arguments for submitted MD5 job.

• struct MD5_LANE_DATA

Scheduler layer - Lane data.

• struct MD5_MB_JOB_MGR

Scheduler layer - Holds state for multi-buffer MD5 jobs.

• struct MD5_HASH_CTX_MGR

Context layer - Holds state for multi-buffer MD5 jobs.

struct MD5_HASH_CTX

Context layer - Holds info describing a single MD5 job for the multi-buffer CTX manager.

Functions

- void md5_ctx_mgr_init_sse (MD5_HASH_CTX_MGR *mgr)
 - Initialize the context level MD5 multi-buffer manager structure.
- MD5_HASH_CTX * md5_ctx_mgr_submit_sse (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the context level multi-buffer manager.

• MD5_HASH_CTX * md5_ctx_mgr_flush_sse (MD5_HASH_CTX_MGR *mgr)

Finish all submitted MD5 jobs and return when complete.

void md5_ctx_mgr_init_avx (MD5_HASH_CTX_MGR *mgr)

Initialize the MD5 multi-buffer manager structure.

• MD5_HASH_CTX * md5_ctx_mgr_submit_avx (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the multi-buffer manager.

• MD5 HASH CTX * md5 ctx mgr flush avx (MD5 HASH CTX MGR *mgr)

Finish all submitted MD5 jobs and return when complete.

void md5_ctx_mgr_init_avx2 (MD5_HASH_CTX_MGR *mgr)

Initialize the MD5 multi-buffer manager structure.

• MD5_HASH_CTX * md5_ctx_mgr_submit_avx2 (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the multi-buffer manager.

MD5_HASH_CTX * md5_ctx_mgr_flush_avx2 (MD5_HASH_CTX_MGR *mgr)

Finish all submitted MD5 jobs and return when complete.

• void md5_ctx_mgr_init (MD5_HASH_CTX_MGR *mgr)

Initialize the MD5 multi-buffer manager structure.

• MD5_HASH_CTX * md5_ctx_mgr_submit (MD5_HASH_CTX_MGR *mgr, MD5_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the multi-buffer manager.

MD5_HASH_CTX * md5_ctx_mgr_flush (MD5_HASH_CTX_MGR *mgr)

Finish all submitted MD5 jobs and return when complete.

7.11.1 Detailed Description

Multi-buffer CTX API MD5 function prototypes and structures. Interface for multi-buffer MD5 functions

Multi-buffer MD5 Entire or First-Update..Update-Last

The interface to this multi-buffer hashing code is carried out through the context-level (CTX) init, submit and flush functions and the MD5_HASH_CTX_MGR and MD5_HASH_CTX objects. Numerous MD5_HASH_CTX objects may be instantiated by the application for use with a single MD5_HASH_CTX_MGR.

The CTX interface functions carry out the initialization and padding of the jobs entered by the user and add them to the multi-buffer manager. The lower level "scheduler" layer then processes the jobs in an out-of-order manner. The scheduler layer functions are internal and are not intended to be invoked directly. Jobs can be submitted to a CTX as a complete buffer to be hashed, using the HASH_ENTIRE flag, or as partial jobs which can be started using the HASH_FIRST flag, and later resumed or finished using the HASH_UPDATE and HASH_LAST flags respectively.

Note: The submit function does not require data buffers to be block sized.

The MD5 CTX interface functions are available for 3 architectures: SSE, AVX and AVX2. In addition, a multibinary interface is provided, which selects the appropriate architecture-specific function at runtime.

Usage: The application creates a MD5_HASH_CTX_MGR object and initializes it with a call to md5_ctx_mgr_init*() function, where henceforth "*" stands for the relevant suffix for each architecture; _sse, _avx, _avx2 (or no suffix for the multibinary version). The MD5_HASH_CTX_MGR object will be used to schedule processor resources, with up to 8 MD5_HASH_CTX objects (or 16 in the AVX2 case) being processed at a time.

Each MD5_HASH_CTX must be initialized before first use by the hash_ctx_init macro defined in multi_buffer.h. After initialization, the application may begin computing a hash by giving the MD5_HASH_CTX to a MD5_HASH_CTX_MGR using the submit functions md5_ctx_mgr_submit*() with the HASH_FIRST flag set. When the MD5_HASH_CTX is returned to the application (via this or a later call to md5_ctx_mgr_submit*() or md5_ctx_mgr_flush*()), the application can then re-submit it with another call to md5_ctx_mgr_submit*(), but without the HASH_FIRST flag set.

Ideally, on the last buffer for that hash, md5_ctx_mgr_submit_sse is called with HASH_LAST, although it is also possible to submit the hash with HASH_LAST and a zero length if necessary. When a MD5_HASH_CTX is returned after having been submitted with HASH_LAST, it will contain a valid hash. The MD5_HASH_CTX can be reused immediately by submitting with HASH_FIRST.

For example, you would submit hashes with the following flags for the following numbers of buffers:

- one buffer: HASH_FIRST | HASH_LAST (or, equivalently, HASH_ENTIRE)
- two buffers: HASH FIRST, HASH LAST
- three buffers: HASH_FIRST, HASH_UPDATE, HASH_LAST etc.

The order in which MD5_CTX objects are returned is in general different from the order in which they are submitted. A few possible error conditions exist:

- Submitting flags other than the allowed entire/first/update/last values
- Submitting a context that is currently being managed by a MD5 HASH CTX MGR.
- Submitting a context after HASH_LAST is used but before HASH_FIRST is set.

These error conditions are reported by returning the MD5_HASH_CTX immediately after a submit with its error member set to a non-zero error code (defined in multi_buffer.h). No changes are made to the MD5_HASH_CTX_M-GR in the case of an error; no processing is done for other hashes.

7.11.2 Function Documentation

7.11.2.1 MD5_HASH_CTX* md5_ctx_mgr_flush (MD5_HASH_CTX_MGR * mgr)

Finish all submitted MD5 jobs and return when complete.

Requires SSE4.1 or AVX or AVX2

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.11.2.2 MD5_HASH_CTX* md5_ctx_mgr_flush_avx (MD5_HASH_CTX_MGR * mgr)

Finish all submitted MD5 jobs and return when complete.

Requires AVX

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.11.2.3 MD5_HASH_CTX* md5_ctx_mgr_flush_avx2 (MD5_HASH_CTX_MGR * mgr)

Finish all submitted MD5 jobs and return when complete.

Requires AVX2

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.11.2.4 $MD5_HASH_CTX*md5_ctx_mgr_flush_sse$ ($MD5_HASH_CTX_MGR*mgr$)

Finish all submitted MD5 jobs and return when complete.

Requires SSE4.1

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.11.2.5 void md5_ctx_mgr_init (MD5_HASH_CTX_MGR * mgr)

Initialize the MD5 multi-buffer manager structure.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr | Structure holding context level state info

Returns

void

7.11.2.6 void md5_ctx_mgr_init_avx (MD5_HASH_CTX_MGR * mgr)

Initialize the MD5 multi-buffer manager structure.

Requires AVX

Parameters

mgr | Structure holding context level state info

Returns

void

7.11.2.7 void md5_ctx_mgr_init_avx2 (MD5_HASH_CTX_MGR * mgr)

Initialize the MD5 multi-buffer manager structure.

Requires AVX2

mgr	Structure holding context level state info

Returns

void

7.11.2.8 void md5_ctx_mgr_init_sse (MD5_HASH_CTX_MGR * mgr)

Initialize the context level MD5 multi-buffer manager structure.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info

Returns

void

7.11.2.9 MD5_HASH_CTX* md5_ctx_mgr_submit (MD5_HASH_CTX_MGR * mgr, MD5_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the multi-buffer manager.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.11.2.10 MD5_HASH_CTX* md5_ctx_mgr_submit_avx (MD5_HASH_CTX_MGR * mgr, MD5_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the multi-buffer manager.

Requires AVX

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.11.2.11 MD5_HASH_CTX* md5_ctx_mgr_submit_avx2 (MD5_HASH_CTX_MGR * mgr, MD5_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the multi-buffer manager.

Requires AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.11.2.12 MD5_HASH_CTX* md5_ctx_mgr_submit_sse (MD5_HASH_CTX_MGR * mgr, MD5_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new MD5 job to the context level multi-buffer manager.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.12 mem_routines.h File Reference

Interface to storage mem operations.

Functions

- int mem_zero_detect_avx (void *mem, int len)
 - Detect if a memory region is all zero.
- int mem_cmp_sse (void *src, void *des, int n)
 - Compare two memory blocks.
- int mem_cmp_avx (void *src, void *des, int n)
 - Compare two memory blocks.
- int mem_cmp_avx2 (void *src, void *des, int n)
 - Compare two memory blocks.
- void * mem_cpy_sse (void *des, void *src, int n)
 - Copy memory blocks from src to des. Source and destination addresses cannot overlap.
- void * mem_cpy_avx (void *des, void *src, int n)

Copy memory blocks from src to des. Source and destination addresses cannot overlap.

7.12.1 Detailed Description

Interface to storage mem operations. Defines the interface for vector versions of common memory functions. Vector memory functions are beneficial in some cases to standard library calls but not in all situations. Users should select vector versions when it is known from special use or environmental conditions that they will likely benefit.

7.12.2 Function Documentation

7.12.2.1 int mem_cmp_avx (void * src, void * des, int n)

Compare two memory blocks.

Memory compare function with optimizations for large blocks > 256 bytes

Requires AVX

Parameters

src	the first memory region
des	the second memory region
n	the length of each memory region in bytes

Returns

0 - the two memory blocks are exactly the same other - the blocks are not the same

7.12.2.2 int mem_cmp_avx2 (void * src, void * des, int n)

Compare two memory blocks.

Memory compare function with optimizations for large blocks > 256 bytes

Requires AVX2

Parameters

src	the first memory region
des	the second memory region
n	the length of each memory region in bytes

Returns

 $\boldsymbol{0}$ - the two memory blocks are exactly the same other - the blocks are not the same

7.12.2.3 int mem_cmp_sse (void * src, void * des, int n)

Compare two memory blocks.

Memory compare function with optimizations for large blocks > 128 bytes

Requires SSE4.1

Parameters

src	the first memory region
des	the second memory region
n	the length of each memory region in bytes

Returns

 $\boldsymbol{0}$ - the two memory blocks are exactly the same other - the blocks are not the same

7.12.2.4 void* mem_cpy_avx (void * des, void * src, int n)

Copy memory blocks from src to des. Source and destination addresses cannot overlap.

Memory copy function with optimizations for large blocks > 256 bytes

Requires AVX

Parameters

src	the source memory region to copy from
des	the destination memory region to copy into
n	the length of memory region in bytes

Returns

the start address of the destination memory region

7.12.2.5 void* mem_cpy_sse (void * des, void * src, int n)

Copy memory blocks from src to des. Source and destination addresses cannot overlap.

Memory copy function with optimizations for large blocks > 128 bytes

Requires SSE2

Parameters

src	the source memory region to copy from
des	the destination memory region to copy into
n	the length of memory region in bytes

Returns

the start address of the destination memory region

7.12.2.6 int mem_zero_detect_avx (void * mem, int len)

Detect if a memory region is all zero.

Zero detect function with optimizations for large blocks > 128 bytes

Requires AVX

Parameters

mem	Pointer to memory region to test
len	Length of region in bytes

Returns

0 - region is all zeros other - region has non zero bytes

7.13 memcpy_inline.h File Reference

Defines intrinsic memcpy functions used by the new hashing API.

```
#include "intrinreg.h"
#include <assert.h>
```

7.13.1 Detailed Description

Defines intrinsic memcpy functions used by the new hashing API.

7.14 multi_buffer.h File Reference

Multi-buffer common fields.

Enumerations

```
    enum JOB_STS {
    STS_UNKNOWN = 0, STS_BEING_PROCESSED = 1, STS_COMPLETED = 2, STS_INTERNAL_ERROR, STS_ERROR }
```

Job return codes.

• enum HASH_CTX_FLAG { HASH_UPDATE = 0x00, HASH_FIRST = 0x01, HASH_LAST = 0x02, HASH_ENTIRE = 0x03 }

CTX job type.

• enum HASH_CTX_STS { HASH_CTX_STS_IDLE = 0x00, HASH_CTX_STS_PROCESSING = 0x01, HASH_CTX_STS_LAST = 0x02, HASH_CTX_STS_COMPLETE = 0x04 }

CTX status flags.

enum HASH_CTX_ERROR { HASH_CTX_ERROR_NONE = 0, HASH_CTX_ERROR_INVALID_FLAGS = -1, HASH_CTX_ERROR_ALREADY_PROCESSING = -2, HASH_CTX_ERROR_ALREADY_COMPLETED = -3 }

CTX error flags.

7.14.1 Detailed Description

Multi-buffer common fields.

7.14.2 Enumeration Type Documentation

7.14.2.1 enum HASH_CTX_ERROR

CTX error flags.

Enumerator

HASH_CTX_ERROR_NONE HASH_CTX_ERROR_NONE.
 HASH_CTX_ERROR_INVALID_FLAGS HASH_CTX_ERROR_INVALID_FLAGS.
 HASH_CTX_ERROR_ALREADY_PROCESSING HASH_CTX_ERROR_ALREADY_PROCESSING.
 HASH_CTX_ERROR_ALREADY_COMPLETED HASH_CTX_ERROR_ALREADY_COMPLETED.

7.14.2.2 enum HASH_CTX_FLAG

CTX job type.

Enumerator

HASH_UPDATE HASH_UPDATE.
HASH_FIRST HASH_FIRST.
HASH_LAST HASH_LAST.
HASH_ENTIRE HASH_ENTIRE.

7.15 raid.h File Reference

7.14.2.3 enum HASH_CTX_STS

CTX status flags.

Enumerator

```
HASH_CTX_STS_IDLE HASH_CTX_STS_IDLE.

HASH_CTX_STS_PROCESSING HASH_CTX_STS_PROCESSING.

HASH_CTX_STS_LAST HASH_CTX_STS_LAST.

HASH_CTX_STS_COMPLETE HASH_CTX_STS_COMPLETE.
```

7.14.2.4 enum **JOB_STS**

Job return codes.

Enumerator

```
STS_UNKNOWN STS_UNKNOWN.

STS_BEING_PROCESSED STS_BEING_PROCESSED.

STS_COMPLETED STS_COMPLETED.

STS_INTERNAL_ERROR STS_INTERNAL_ERROR.

STS_ERROR STS_ERROR.
```

7.15 raid.h File Reference

Interface to RAID functions - XOR and P+Q calculation.

Functions

• int xor_gen_sse (int vects, int len, void **array)

Generate XOR parity vector from N sources.

• int xor_gen_avx (int vects, int len, void **array)

Generate XOR parity vector from N sources.

• int xor_gen (int vects, int len, void **array)

Generate XOR parity vector from N sources, runs appropriate version.

• int xor_check_sse (int vects, int len, void **array)

Checks that array has XOR parity sum of 0 across all vectors.

• int xor_check (int vects, int len, void **array)

Checks that array has XOR parity sum of 0 across all vectors, runs appropriate version.

7.15 raid.h File Reference

• int pq_gen_sse (int vects, int len, void **array)

Generate P+Q parity vectors from N sources.

• int pq_gen_avx (int vects, int len, void **array)

Generate P+Q parity vectors from N sources.

• int pq_gen_avx2 (int vects, int len, void **array)

Generate P+Q parity vectors from N sources.

• int pq_gen (int vects, int len, void **array)

Generate P+Q parity vectors from N sources, runs appropriate version.

• int pq_check_sse (int vects, int len, void **array)

Checks that array of N sources, P and Q are consistent across all vectors.

• int pq_check (int vects, int len, void **array)

Checks that array of N sources, P and Q are consistent across all vectors, runs appropriate version.

• int pq_gen_base (int vects, int len, void **array)

Generate P+Q parity vectors from N sources, runs baseline version.

• int xor_gen_base (int vects, int len, void **array)

Generate XOR parity vector from N sources, runs baseline version.

• int xor_check_base (int vects, int len, void **array)

Checks that array has XOR parity sum of 0 across all vectors, runs baseline version.

• int pq_check_base (int vects, int len, void **array)

Checks that array of N sources, P and Q are consistent across all vectors, runs baseline version.

7.15.1 Detailed Description

Interface to RAID functions - XOR and P+Q calculation. This file defines the interface to optimized XOR calculation (RAID5) or P+Q dual parity (RAID6). Operations are carried out on an array of pointers to sources and output arrays.

7.15.2 Function Documentation

7.15.2.1 int pq_check (int vects, int len, void ** array)

Checks that array of N sources, P and Q are consistent across all vectors, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

vects	Number of vectors in array including P&Q.
len	Length of each vector in bytes. Must be 16B aligned.
array	Array of pointers to source and P, Q. P and Q parity are assumed to be the last two pointers in
	the array. All pointers must be aligned to 16B.

7.15 raid.h File Reference

Returns

0 pass, other fail

7.15.2.2 int pq_check_base (int vects, int len, void ** array)

Checks that array of N sources, P and Q are consistent across all vectors, runs baseline version.

Parameters

vects	Number of vectors in array including P&Q.
len	Length of each vector in bytes. Must be 16B aligned.
array	Array of pointers to source and P, Q. P and Q parity are assumed to be the last two pointers in
	the array. All pointers must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.3 int pq_check_sse (int vects, int len, void ** array)

Checks that array of N sources, P and Q are consistent across all vectors.

Requires SSE4.1

Parameters

vects	Number of vectors in array including P&Q.
len	Length of each vector in bytes. Must be 16B aligned.
array	Array of pointers to source and P, Q. P and Q parity are assumed to be the last two pointers in
	the array. All pointers must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.4 int pq_gen (int vects, int len, void ** array)

Generate P+Q parity vectors from N sources, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes. Must be 32B aligned.
array	Array of pointers to source and dest. For P+Q the dest is the last two pointers. ie array[vects-2],
	array[vects-1]. P and Q parity vectors are written to these last two pointers. Src and dest pointers
	must be aligned to 32B.

Returns

0 pass, other fail

7.15.2.5 int pq_gen_avx (int vects, int len, void ** array)

Generate P+Q parity vectors from N sources.

Requires AVX

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes. Must be 16B aligned.
array	Array of pointers to source and dest. For P+Q the dest is the last two pointers. ie array[vects-2],
	array[vects-1]. P and Q parity vectors are written to these last two pointers. Src and dest pointers
	must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.6 int pq_gen_avx2 (int vects, int len, void ** array)

Generate P+Q parity vectors from N sources.

Requires AVX2

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes. Must be 32B aligned.
array	Array of pointers to source and dest. For P+Q the dest is the last two pointers. ie array[vects-2],
	array[vects-1]. P and Q parity vectors are written to these last two pointers. Src and dest pointers
	must be aligned to 32B.

Returns

0 pass, other fail

7.15.2.7 int pq_gen_base (int vects, int len, void ** array)

Generate P+Q parity vectors from N sources, runs baseline version.

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes. Must be 16B aligned.
array	Array of pointers to source and dest. For P+Q the dest is the last two pointers. ie array[vects-2],
	array[vects-1]. P and Q parity vectors are written to these last two pointers. Src and dest pointers
	must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.8 int pq_gen_sse (int vects, int len, void ** array)

Generate P+Q parity vectors from N sources.

Requires SSE4.1

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes. Must be 16B aligned.
array	Array of pointers to source and dest. For P+Q the dest is the last two pointers. ie array[vects-2],
	array[vects-1]. P and Q parity vectors are written to these last two pointers. Src and dest pointers
	must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.9 int xor_check (int vects, int len, void ** array)

Checks that array has XOR parity sum of 0 across all vectors, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

vects	Number of vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to vectors. Src and dest pointers must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.10 int xor_check_base (int vects, int len, void ** array)

Checks that array has XOR parity sum of 0 across all vectors, runs baseline version.

Parameters

vects	Number of vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to vectors. Src and dest pointers must be aligned to 16B.

Returns

0 pass, other fail

7.15.2.11 int xor_check_sse (int vects, int len, void ** array)

Checks that array has XOR parity sum of 0 across all vectors.

Requires SSE4.1

Parameters

vects	Number of vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to vectors. Src and dest pointers must be aligned to 16B.

Returns

0 pass, other fail

Examples:

xor_example.c.

7.15.2.12 int xor_gen (int vects, int len, void ** array)

Generate XOR parity vector from N sources, runs appropriate version.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to source and dest. For XOR the dest is the last pointer. ie array[vects-1]. Src
	and dest pointers must be aligned to 32B.

Returns

0 pass, other fail

7.15.2.13 int xor_gen_avx (int vects, int len, void ** array)

Generate XOR parity vector from N sources.

Requires AVX

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to source and dest. For XOR the dest is the last pointer. ie array[vects-1]. Src
	and dest pointers must be aligned to 32B.

Returns

0 pass, other fail

7.15.2.14 int xor_gen_base (int vects, int len, void ** array)

Generate XOR parity vector from N sources, runs baseline version.

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to source and dest. For XOR the dest is the last pointer. ie array[vects-1]. Src
	and dest pointers must be aligned to 32B.

7.16 sha.h File Reference

Returns

0 pass, other fail

7.15.2.15 int xor_gen_sse (int vects, int len, void ** array)

Generate XOR parity vector from N sources.

Requires SSE4.1

Parameters

vects	Number of source+dest vectors in array.
len	Length of each vector in bytes.
array	Array of pointers to source and dest. For XOR the dest is the last pointer. ie array[vects-1]. Src
	and dest pointers must be aligned to 16B.

Returns

0 pass, other fail

Examples:

xor_example.c.

7.16 sha.h File Reference

SHA1 functions.

Functions

• void sha1_update (unsigned int *digest, unsigned char *input, size_t num_blocks)

Part of the SHA1 hash algorithm that can be run repeatedly on message blocks of 64 bytes to update the hash value.

• void sha1_opt (unsigned char *input, unsigned int *digest, int len)

Performs complete SHA1 algorithm using optimized sha1_update routine.

7.16.1 Detailed Description

SHA1 functions.

7.16.2 Function Documentation

7.16.2.1 void sha1_opt (unsigned char * input, unsigned int * digest, int len)

Performs complete SHA1 algorithm using optimized sha1_update routine.

Requires SSE3

Parameters

input	Pointer to buffer containing the input message.
digest	Pointer to digest to update.
len	Length of buffer.

Returns

None

7.16.2.2 void sha1_update (unsigned int * digest, unsigned char * input, size_t num_blocks)

Part of the SHA1 hash algorithm that can be run repeatedly on message blocks of 64 bytes to update the hash value.

Requires SSE3

Parameters

	digest	Pointer to digest to update.
	input	Pointer to buffer containing the input message in 64 byte blocks.
ſ	num_blocks	Number of 64 byte blocks to incorporate in hash update.

Returns

None

7.17 sha1_mb.h File Reference

Multi-buffer CTX API SHA1 function prototypes and structures.

```
#include <stdint.h>
#include "multi_buffer.h"
#include "types.h"
#include <stdbool.h>
```

Data Structures

• struct SHA1_JOB

Scheduler layer - Holds info describing a single SHA1 job for the multi-buffer manager.

• struct SHA1_MB_ARGS_X8

Scheduler layer - Holds arguments for submitted SHA1 job.

struct SHA1_LANE_DATA

Scheduler layer - Lane data.

• struct SHA1 MB JOB MGR

Scheduler layer - Holds state for multi-buffer SHA1 jobs.

• struct SHA1_HASH_CTX_MGR

Context layer - Holds state for multi-buffer SHA1 jobs.

struct SHA1 HASH CTX

Context layer - Holds info describing a single SHA1 job for the multi-buffer CTX manager.

Functions

void sha1_ctx_mgr_init_sse (SHA1_HASH_CTX_MGR *mgr)

Initialize the context level SHA1 multi-buffer manager structure.

• SHA1_HASH_CTX * sha1_ctx_mgr_submit_sse (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA1 job to the context level multi-buffer manager.

SHA1_HASH_CTX * sha1_ctx_mgr_flush_sse (SHA1_HASH_CTX_MGR *mgr)

Finish all submitted SHA1 jobs and return when complete.

• void sha1_ctx_mgr_init_avx (SHA1_HASH_CTX_MGR *mgr)

Initialize the SHA1 multi-buffer manager structure.

• SHA1_HASH_CTX * sha1_ctx_mgr_submit_avx (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA1 job to the multi-buffer manager.

SHA1_HASH_CTX * sha1_ctx_mgr_flush_avx (SHA1_HASH_CTX_MGR *mgr)

Finish all submitted SHA1 jobs and return when complete.

void sha1_ctx_mgr_init_avx2 (SHA1_HASH_CTX_MGR *mgr)

Initialize the SHA1 multi-buffer manager structure.

• SHA1_HASH_CTX * sha1_ctx_mgr_submit_avx2 (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA1 job to the multi-buffer manager.

• SHA1_HASH_CTX * sha1_ctx_mgr_flush_avx2 (SHA1_HASH_CTX_MGR *mgr)

Finish all submitted SHA1 jobs and return when complete.

• void sha1_ctx_mgr_init (SHA1_HASH_CTX_MGR *mgr)

Initialize the SHA1 multi-buffer manager structure.

• SHA1_HASH_CTX * sha1_ctx_mgr_submit (SHA1_HASH_CTX_MGR *mgr, SHA1_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA1 job to the multi-buffer manager.

• SHA1_HASH_CTX * sha1_ctx_mgr_flush (SHA1_HASH_CTX_MGR *mgr)

Finish all submitted SHA1 jobs and return when complete.

7.17.1 Detailed Description

Multi-buffer CTX API SHA1 function prototypes and structures. Interface for multi-buffer SHA1 functions

Multi-buffer SHA1 Entire or First-Update..Update-Last

The interface to this multi-buffer hashing code is carried out through the context-level (CTX) init, submit and flush functions and the SHA1_HASH_CTX_MGR and SHA1_HASH_CTX objects. Numerous SHA1_HASH_CTX objects may be instantiated by the application for use with a single SHA1_HASH_CTX_MGR.

The CTX interface functions carry out the initialization and padding of the jobs entered by the user and add them to the multi-buffer manager. The lower level "scheduler" layer then processes the jobs in an out-of-order manner. The scheduler layer functions are internal and are not intended to be invoked directly. Jobs can be submitted to a CTX as a complete buffer to be hashed, using the HASH_ENTIRE flag, or as partial jobs which can be started using the HASH_FIRST flag, and later resumed or finished using the HASH_UPDATE and HASH_LAST flags respectively.

Note: The submit function does not require data buffers to be block sized.

The SHA1 CTX interface functions are available for 3 architectures: SSE, AVX and AVX2. In addition, a multibinary interface is provided, which selects the appropriate architecture-specific function at runtime.

Usage: The application creates a SHA1_HASH_CTX_MGR object and initializes it with a call to sha1_ctx_mgr_init*() function, where henceforth "*" stands for the relevant suffix for each architecture; _sse, _avx, _avx2 (or no suffix for the multibinary version). The SHA1_HASH_CTX_MGR object will be used to schedule processor resources, with up to 4 SHA1_HASH_CTX objects (or 8 in the AVX2 case) being processed at a time.

Each SHA1_HASH_CTX must be initialized before first use by the hash_ctx_init macro defined in multi_buffer.h. After initialization, the application may begin computing a hash by giving the SHA1_HASH_CTX to a SHA1_H-ASH_CTX_MGR using the submit functions sha1_ctx_mgr_submit*() with the HASH_FIRST flag set. When the SHA1_HASH_CTX is returned to the application (via this or a later call to sha1_ctx_mgr_submit*() or sha1_ctx_mgr_flush*()), the application can then re-submit it with another call to sha1_ctx_mgr_submit*(), but without the HASH_FIRST flag set.

Ideally, on the last buffer for that hash, sha1_ctx_mgr_submit_sse is called with HASH_LAST, although it is also possible to submit the hash with HASH_LAST and a zero length if necessary. When a SHA1_HASH_CTX is returned after having been submitted with HASH_LAST, it will contain a valid hash. The SHA1_HASH_CTX can be reused immediately by submitting with HASH_FIRST.

For example, you would submit hashes with the following flags for the following numbers of buffers:

• one buffer: HASH_FIRST | HASH_LAST (or, equivalently, HASH_ENTIRE)

- two buffers: HASH_FIRST, HASH_LAST
- three buffers: HASH FIRST, HASH UPDATE, HASH LAST etc.

The order in which SHA1_CTX objects are returned is in general different from the order in which they are submitted. A few possible error conditions exist:

- Submitting flags other than the allowed entire/first/update/last values
- Submitting a context that is currently being managed by a SHA1_HASH_CTX_MGR.
- Submitting a context after HASH_LAST is used but before HASH_FIRST is set.

These error conditions are reported by returning the SHA1_HASH_CTX immediately after a submit with its error member set to a non-zero error code (defined in multi_buffer.h). No changes are made to the SHA1_HASH_CTX_M-GR in the case of an error; no processing is done for other hashes.

7.17.2 Function Documentation

7.17.2.1 SHA1_HASH_CTX* sha1_ctx_mgr_flush (SHA1_HASH_CTX_MGR * mgr)

Finish all submitted SHA1 jobs and return when complete.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.17.2.2 SHA1_HASH_CTX* sha1_ctx_mgr_flush_avx (SHA1_HASH_CTX_MGR * mgr)

Finish all submitted SHA1 jobs and return when complete.

Requires AVX

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.17.2.3 SHA1_HASH_CTX* sha1_ctx_mgr_flush_avx2 (SHA1_HASH_CTX_MGR * mgr)

Finish all submitted SHA1 jobs and return when complete.

Requires AVX2

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.17.2.4 SHA1_HASH_CTX* sha1_ctx_mgr_flush_sse (SHA1_HASH_CTX_MGR * mgr)

Finish all submitted SHA1 jobs and return when complete.

Requires SSE4.1

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.17.2.5 void sha1_ctx_mgr_init (SHA1_HASH_CTX_MGR * mgr)

Initialize the SHA1 multi-buffer manager structure.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr | Structure holding context level state info

Returns

void

7.17.2.6 void sha1_ctx_mgr_init_avx (SHA1_HASH_CTX_MGR * mgr)

Initialize the SHA1 multi-buffer manager structure.

Requires AVX

Parameters

mgr Structure holding context level state info

Returns

void

7.17.2.7 void sha1_ctx_mgr_init_avx2 (SHA1_HASH_CTX_MGR * mgr)

Initialize the SHA1 multi-buffer manager structure.

Requires AVX2

Parameters

mgr	Structure holding context level state info

Returns

void

7.17.2.8 void sha1_ctx_mgr_init_sse (SHA1_HASH_CTX_MGR * mgr)

Initialize the context level SHA1 multi-buffer manager structure.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info

Returns

void

7.17.2.9 SHA1_HASH_CTX* sha1_ctx_mgr_submit (SHA1_HASH_CTX_MGR * mgr, SHA1_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA1 job to the multi-buffer manager.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.17.2.10 SHA1_HASH_CTX* sha1_ctx_mgr_submit_avx (SHA1_HASH_CTX_MGR * mgr, SHA1_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA1 job to the multi-buffer manager.

Requires AVX

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

```
7.17.2.11 SHA1_HASH_CTX* sha1_ctx_mgr_submit_avx2 ( SHA1_HASH_CTX_MGR * mgr, SHA1_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags )
```

Submit a new SHA1 job to the multi-buffer manager.

Requires AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer (in bytes) to be processed
len	Length of buffer to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

```
7.17.2.12 SHA1_HASH_CTX* sha1_ctx_mgr_submit_sse ( SHA1_HASH_CTX_MGR * mgr, SHA1_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags )
```

Submit a new SHA1 job to the context level multi-buffer manager.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.18 sha256 mb.h File Reference

Multi-buffer CTX API SHA256 function prototypes and structures.

```
#include <stdint.h>
#include "multi_buffer.h"
#include "types.h"
#include <stdbool.h>
```

Data Structures

struct SHA256_JOB

Scheduler layer - Holds info describing a single SHA256 job for the multi-buffer manager.

struct SHA256_MB_ARGS_X8

Scheduler layer - Holds arguments for submitted SHA256 job.

struct SHA256 LANE DATA

Scheduler layer - Lane data.

• struct SHA256_MB_JOB_MGR

Scheduler layer - Holds state for multi-buffer SHA256 jobs.

struct SHA256_HASH_CTX_MGR

Context layer - Holds state for multi-buffer SHA256 jobs.

struct SHA256_HASH_CTX

Context layer - Holds info describing a single SHA256 job for the multi-buffer CTX manager.

Functions

void sha256_ctx_mgr_init_sse (SHA256_HASH_CTX_MGR *mgr)

Initialize the context level SHA256 multi-buffer manager structure.

SHA256_HASH_CTX * sha256_ctx_mgr_submit_sse (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the context level multi-buffer manager.

SHA256_HASH_CTX * sha256_ctx_mgr_flush_sse (SHA256_HASH_CTX_MGR *mgr)

Finish all submitted SHA256 jobs and return when complete.

void sha256_ctx_mgr_init_avx (SHA256_HASH_CTX_MGR *mgr)

Initialize the SHA256 multi-buffer manager structure.

SHA256_HASH_CTX * sha256_ctx_mgr_submit_avx (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the multi-buffer manager.

SHA256_HASH_CTX * sha256_ctx_mgr_flush_avx (SHA256_HASH_CTX_MGR *mgr)

Finish all submitted SHA256 jobs and return when complete.

void sha256_ctx_mgr_init_avx2 (SHA256_HASH_CTX_MGR *mgr)

Initialize the SHA256 multi-buffer manager structure.

SHA256_HASH_CTX * sha256_ctx_mgr_submit_avx2 (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the multi-buffer manager.

SHA256_HASH_CTX * sha256_ctx_mgr_flush_avx2 (SHA256_HASH_CTX_MGR *mgr)

Finish all submitted SHA256 jobs and return when complete.

• void sha256 ctx mgr init (SHA256 HASH CTX MGR *mgr)

Initialize the SHA256 multi-buffer manager structure.

• SHA256_HASH_CTX * sha256_ctx_mgr_submit (SHA256_HASH_CTX_MGR *mgr, SHA256_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the multi-buffer manager.

SHA256_HASH_CTX * sha256_ctx_mgr_flush (SHA256_HASH_CTX_MGR *mgr)

Finish all submitted SHA256 jobs and return when complete.

7.18.1 Detailed Description

Multi-buffer CTX API SHA256 function prototypes and structures. Interface for multi-buffer SHA256 functions

Multi-buffer SHA256 Entire or First-Update..Update-Last

The interface to this multi-buffer hashing code is carried out through the context-level (CTX) init, submit and flush functions and the SHA256_HASH_CTX_MGR and SHA256_HASH_CTX objects. Numerous SHA256_HASH_CTX objects may be instantiated by the application for use with a single SHA256_HASH_CTX_MGR.

The CTX interface functions carry out the initialization and padding of the jobs entered by the user and add them to the multi-buffer manager. The lower level "scheduler" layer then processes the jobs in an out-of-order manner. The scheduler layer functions are internal and are not intended to be invoked directly. Jobs can be submitted to a CTX as a complete buffer to be hashed, using the HASH_ENTIRE flag, or as partial jobs which can be started using the HASH_FIRST flag, and later resumed or finished using the HASH_UPDATE and HASH_LAST flags respectively.

Note: The submit function does not require data buffers to be block sized.

The SHA256 CTX interface functions are available for 3 architectures: SSE, AVX and AVX2. In addition, a multibinary interface is provided, which selects the appropriate architecture-specific function at runtime.

Usage: The application creates a SHA256_HASH_CTX_MGR object and initializes it with a call to sha256_ctx_mgr_init*() function, where henceforth "*" stands for the relevant suffix for each architecture; _sse, _avx, _avx2 (or no suffix for the multibinary version). The SHA256_HASH_CTX_MGR object will be used to schedule processor resources, with up to 4 SHA256_HASH_CTX objects (or 8 in the AVX2 case) being processed at a time.

Each SHA256_HASH_CTX must be initialized before first use by the hash_ctx_init macro defined in multi_buffer.h. After initialization, the application may begin computing a hash by giving the SHA256_HASH_CTX to a SHA256_HASH_CTX_MGR using the submit functions sha256_ctx_mgr_submit*() with the HASH_FIRST flag set. When the SHA256_HASH_CTX is returned to the application (via this or a later call to sha256_ctx_mgr_submit*() or sha256_ctx_mgr_flush*()), the application can then re-submit it with another call to sha256_ctx_mgr_submit*(), but without the HASH_FIRST flag set.

Ideally, on the last buffer for that hash, sha256_ctx_mgr_submit_sse is called with HASH_LAST, although it is also possible to submit the hash with HASH_LAST and a zero length if necessary. When a SHA256_HASH_CTX is returned after having been submitted with HASH_LAST, it will contain a valid hash. The SHA256_HASH_CTX can be reused immediately by submitting with HASH_FIRST.

For example, you would submit hashes with the following flags for the following numbers of buffers:

- one buffer: HASH_FIRST | HASH_LAST (or, equivalently, HASH_ENTIRE)
- two buffers: HASH_FIRST, HASH_LAST
- three buffers: HASH_FIRST, HASH_UPDATE, HASH_LAST etc.

The order in which SHA256_CTX objects are returned is in general different from the order in which they are submitted

A few possible error conditions exist:

- Submitting flags other than the allowed entire/first/update/last values
- Submitting a context that is currently being managed by a SHA256_HASH_CTX_MGR.
- Submitting a context after HASH LAST is used but before HASH FIRST is set.

These error conditions are reported by returning the SHA256_HASH_CTX immediately after a submit with its error member set to a non-zero error code (defined in multi_buffer.h). No changes are made to the SHA256_HASH_CTX-_MGR in the case of an error; no processing is done for other hashes.

7.18.2 Function Documentation

7.18.2.1 SHA256_HASH_CTX* sha256_ctx_mgr_flush (SHA256_HASH_CTX_MGR * mgr)

Finish all submitted SHA256 jobs and return when complete.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.18.2.2 SHA256_HASH_CTX* sha256_ctx_mgr_flush_avx (SHA256_HASH_CTX_MGR * mgr)

Finish all submitted SHA256 jobs and return when complete.

Requires AVX

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.18.2.3 SHA256_HASH_CTX* sha256_ctx_mgr_flush_avx2 (SHA256_HASH_CTX_MGR * mgr)

Finish all submitted SHA256 jobs and return when complete.

Requires AVX2

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.18.2.4 SHA256_HASH_CTX* sha256_ctx_mgr_flush_sse(SHA256_HASH_CTX_MGR * mgr)

Finish all submitted SHA256 jobs and return when complete.

Requires SSE4.1

Parameters

mgr Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.18.2.5 void sha256_ctx_mgr_init (SHA256_HASH_CTX_MGR * mgr)

Initialize the SHA256 multi-buffer manager structure.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr | Structure holding context level state info

Returns

void

7.18.2.6 void sha256_ctx_mgr_init_avx (SHA256_HASH_CTX_MGR * mgr)

Initialize the SHA256 multi-buffer manager structure.

Requires AVX

Parameters

mgr | Structure holding context level state info

Returns

void

7.18.2.7 void sha256_ctx_mgr_init_avx2 (SHA256_HASH_CTX_MGR * mgr)

Initialize the SHA256 multi-buffer manager structure.

Requires AVX2

Parameters

mgr	Structure holding context level state info
U	\boldsymbol{c}

Returns

void

7.18.2.8 void sha256_ctx_mgr_init_sse (SHA256_HASH_CTX_MGR * mgr)

Initialize the context level SHA256 multi-buffer manager structure.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info

Returns

void

7.18.2.9 SHA256_HASH_CTX* sha256_ctx_mgr_submit (SHA256_HASH_CTX_MGR * mgr, SHA256_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the multi-buffer manager.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.18.2.10 SHA256_HASH_CTX* sha256_ctx_mgr_submit_avx (SHA256_HASH_CTX_MGR * mgr, SHA256_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the multi-buffer manager.

Requires AVX

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.18.2.11 SHA256_HASH_CTX* sha256_ctx_mgr_submit_avx2 (SHA256_HASH_CTX_MGR * mgr, SHA256 HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the multi-buffer manager.

Requires AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.18.2.12 SHA256_HASH_CTX* sha256_ctx_mgr_submit_sse (SHA256_HASH_CTX_MGR * mgr, SHA256_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA256 job to the context level multi-buffer manager.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.19 sha512_mb.h File Reference

Single/Multi-buffer CTX API SHA512 function prototypes and structures.

```
#include <stdint.h>
#include "multi_buffer.h"
#include "types.h"
#include <stdbool.h>
```

Data Structures

• struct SHA512_JOB

Scheduler layer - Holds info describing a single SHA512 job for the multi-buffer manager.

• struct SHA512_MB_ARGS_X4

Scheduler layer - Holds arguments for submitted SHA512 job.

• struct SHA512_LANE_DATA

Scheduler layer - Lane data.

• struct SHA512_MB_JOB_MGR

Scheduler layer - Holds state for multi-buffer SHA512 jobs.

• struct SHA512_HASH_CTX_MGR

Context layer - Holds state for multi-buffer SHA512 jobs.

• struct SHA512_HASH_CTX

Context layer - Holds info describing a single SHA512 job for the multi-buffer CTX manager.

Functions

void sha512_ctx_mgr_init_sse (SHA512_HASH_CTX_MGR *mgr)

Initialize the context level SHA512 multi-buffer manager structure.

SHA512_HASH_CTX * sha512_ctx_mgr_submit_sse (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the context level multi-buffer manager.

• SHA512 HASH CTX * sha512 ctx mgr flush sse (SHA512 HASH CTX MGR *mgr)

Finish all submitted SHA512 jobs and return when complete.

void sha512_ctx_mgr_init_avx (SHA512_HASH_CTX_MGR *mgr)

Initialize the SHA512 multi-buffer manager structure.

SHA512_HASH_CTX * sha512_ctx_mgr_submit_avx (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

• SHA512_HASH_CTX * sha512_ctx_mgr_flush_avx (SHA512_HASH_CTX_MGR *mgr)

Finish all submitted SHA512 jobs and return when complete.

void sha512_ctx_mgr_init_avx2 (SHA512_HASH_CTX_MGR *mgr)

Initialize the SHA512 multi-buffer manager structure.

SHA512_HASH_CTX * sha512_ctx_mgr_submit_avx2 (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

SHA512_HASH_CTX * sha512_ctx_mgr_flush_avx2 (SHA512_HASH_CTX_MGR *mgr)

Finish all submitted SHA512 jobs and return when complete.

void sha512_ctx_mgr_init_sb_sse4 (SHA512_HASH_CTX_MGR *mgr)

Initialize the SHA512 multi-buffer manager structure.

• SHA512_HASH_CTX * sha512_ctx_mgr_submit_sb_sse4 (SHA512_HASH_CTX_MGR *mgr, SHA512_H-ASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

SHA512_HASH_CTX * sha512_ctx_mgr_flush_sb_sse4 (SHA512_HASH_CTX_MGR *mgr)

Finish all submitted SHA512 jobs and return when complete.

void sha512_ctx_mgr_init (SHA512_HASH_CTX_MGR *mgr)

Initialize the SHA512 multi-buffer manager structure.

• SHA512_HASH_CTX * sha512_ctx_mgr_submit (SHA512_HASH_CTX_MGR *mgr, SHA512_HASH_CTX *ctx, const void *buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

• SHA512_HASH_CTX * sha512_ctx_mgr_flush (SHA512_HASH_CTX_MGR *mgr)

Finish all submitted SHA512 jobs and return when complete.

7.19.1 Detailed Description

Single/Multi-buffer CTX API SHA512 function prototypes and structures. Interface for single and multi-buffer SH-A512 functions

Single/Multi-buffer SHA512 Entire or First-Update..Update-Last

The interface to this single/multi-buffer hashing code is carried out through the context-level (CTX) init, submit and flush functions and the SHA512_HASH_CTX_MGR and SHA512_HASH_CTX objects. Numerous SHA512_HASH_CTX objects may be instantiated by the application for use with a single SHA512_HASH_CTX_MGR.

The CTX interface functions carry out the initialization and padding of the jobs entered by the user and add them to the multi-buffer manager. The lower level "scheduler" layer then processes the jobs in an out-of-order manner. The scheduler layer functions are internal and are not intended to be invoked directly. Jobs can be submitted to a CTX as a complete buffer to be hashed, using the HASH_ENTIRE flag, or as partial jobs which can be started using the HASH_FIRST flag, and later resumed or finished using the HASH_UPDATE and HASH_LAST flags respectively.

Note: The submit function does not require data buffers to be block sized.

The SHA512 CTX interface functions are available for 4 architectures: multi-buffer SSE, AVX and AVX2, and single-buffer SSE4 (which is used in the same way as the multi-buffer code). In addition, a multibinary interface is provided, which selects the appropriate architecture-specific function at runtime. This multibinary interface selects the single buffer SSE4 functions when the platform is detected to be Silvermont.

Usage: The application creates a SHA512_HASH_CTX_MGR object and initializes it with a call to sha512_ctx_mgr_init*() function, where henceforth "*" stands for the relevant suffix for each architecture; _sse, _avx, _avx2 (or no suffix for the multibinary version). The SHA512_HASH_CTX_MGR object will be used to schedule processor resources, with up to 4 SHA512_HASH_CTX objects (or 8 in the AVX2 case) being processed at a time.

Each SHA512_HASH_CTX must be initialized before first use by the hash_ctx_init macro defined in multi_buffer.h. After initialization, the application may begin computing a hash by giving the SHA512_HASH_CTX to a SHA512_HASH_CTX to a SHA512_HASH_CTX_MGR using the submit functions sha512_ctx_mgr_submit*() with the HASH_FIRST flag set. When the SHA512_HASH_CTX is returned to the application (via this or a later call to sha512_ctx_mgr_submit*() or sha512_ctx_mgr_flush*()), the application can then re-submit it with another call to sha512_ctx_mgr_submit*(), but without the HASH_FIRST flag set.

Ideally, on the last buffer for that hash, sha512_ctx_mgr_submit_sse is called with HASH_LAST, although it is also possible to submit the hash with HASH_LAST and a zero length if necessary. When a SHA512_HASH_CTX is returned after having been submitted with HASH_LAST, it will contain a valid hash. The SHA512_HASH_CTX can be reused immediately by submitting with HASH_FIRST.

For example, you would submit hashes with the following flags for the following numbers of buffers:

- one buffer: HASH_FIRST | HASH_LAST (or, equivalently, HASH_ENTIRE)
- two buffers: HASH_FIRST, HASH_LAST
- three buffers: HASH_FIRST, HASH_UPDATE, HASH_LAST etc.

The order in which SHA512_CTX objects are returned is in general different from the order in which they are submitted.

A few possible error conditions exist:

- Submitting flags other than the allowed entire/first/update/last values
- Submitting a context that is currently being managed by a SHA512_HASH_CTX_MGR. (Note: This error case is not applicable to the single buffer SSE4 version)
- Submitting a context after HASH_LAST is used but before HASH_FIRST is set.

These error conditions are reported by returning the SHA512_HASH_CTX immediately after a submit with its error member set to a non-zero error code (defined in multi_buffer.h). No changes are made to the SHA512_HASH_CTX_MGR in the case of an error; no processing is done for other hashes.

7.19.2 Function Documentation

7.19.2.1 SHA512_HASH_CTX* sha512_ctx_mgr_flush (SHA512_HASH_CTX_MGR * mgr)

Finish all submitted SHA512 jobs and return when complete.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.19.2.2 SHA512_HASH_CTX* sha512_ctx_mgr_flush_avx (SHA512_HASH_CTX_MGR * mgr)

Finish all submitted SHA512 jobs and return when complete.

Requires AVX

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.19.2.3 SHA512_HASH_CTX* sha512_ctx_mgr_flush_avx2 (SHA512_HASH_CTX_MGR * mgr)

Finish all submitted SHA512 jobs and return when complete.

Requires AVX2

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.19.2.4 SHA512_HASH_CTX* sha512_ctx_mgr_flush_sb_sse4 (SHA512_HASH_CTX_MGR * mgr)

Finish all submitted SHA512 jobs and return when complete.

Requires SSE4

Parameters

mgr | Structure holding context level state info

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.19.2.5 SHA512_HASH_CTX* sha512_ctx_mgr_flush_sse (SHA512_HASH_CTX_MGR * mgr)

Finish all submitted SHA512 jobs and return when complete.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info
-----	--

Returns

NULL if no jobs to complete or pointer to jobs structure.

7.19.2.6 void sha512_ctx_mgr_init (SHA512_HASH_CTX_MGR * mgr)

Initialize the SHA512 multi-buffer manager structure.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr | Structure holding context level state info

Returns

void

7.19.2.7 void sha512_ctx_mgr_init_avx (SHA512_HASH_CTX_MGR * mgr)

Initialize the SHA512 multi-buffer manager structure.

Requires AVX

Parameters

mgr Structure holding context level state info

Returns

void

7.19.2.8 void sha512_ctx_mgr_init_avx2 (SHA512_HASH_CTX_MGR * mgr)

Initialize the SHA512 multi-buffer manager structure.

Requires AVX2

Parameters

mgr Structure holding context level state info

Returns

void

7.19.2.9 void sha512_ctx_mgr_init_sb_sse4 (SHA512_HASH_CTX_MGR * mgr)

Initialize the SHA512 multi-buffer manager structure.

Requires SSE4

Parameters

mgr Structure holding context level state info

Returns

void

7.19.2.10 void sha512_ctx_mgr_init_sse (SHA512_HASH_CTX_MGR * mgr)

Initialize the context level SHA512 multi-buffer manager structure.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info	

Returns

void

7.19.2.11 SHA512_HASH_CTX* sha512_ctx_mgr_submit (SHA512_HASH_CTX_MGR * mgr, SHA512_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

Requires SSE4.1 or AVX or AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.19.2.12 SHA512_HASH_CTX* sha512_ctx_mgr_submit_avx (SHA512_HASH_CTX_MGR * mgr, SHA512_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

Requires AVX

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.19.2.13 SHA512_HASH_CTX* sha512_ctx_mgr_submit_avx2 (SHA512_HASH_CTX_MGR * mgr, SHA512_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

Requires AVX2

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.19.2.14 SHA512_HASH_CTX* sha512_ctx_mgr_submit_sb_sse4 (SHA512_HASH_CTX_MGR * mgr, SHA512_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the multi-buffer manager.

Requires SSE4

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.19.2.15 SHA512_HASH_CTX* sha512_ctx_mgr_submit_sse (SHA512_HASH_CTX_MGR * mgr, SHA512_HASH_CTX * ctx, const void * buffer, uint32_t len, HASH_CTX_FLAG flags)

Submit a new SHA512 job to the context level multi-buffer manager.

Requires SSE4.1

Parameters

mgr	Structure holding context level state info
ctx	Structure holding ctx job info
buffer	Pointer to buffer to be processed
len	Length of buffer (in bytes) to be processed
flags	Input flag specifying job type (first, update, last or entire)

Returns

NULL if no jobs complete or pointer to jobs structure.

7.20 types.h File Reference

Defines standard width types.

7.20.1 Detailed Description

Defines standard width types.

8.1 crc_simple_test.c

Example usage of crc multibinary functions.

```
Copyright(c) 2011-2013 Intel Corporation All rights reserved.
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
   * Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.
    * Neither the name of Intel Corporation nor the names of its
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdio.h>
#include <stdint.h>
#include "crc.h"
const uint16_t init_crc_16 = 0x1234;
const uint16_t t10_dif_expected = 0x60b3;
const uint32_t init_crc_32 = 0x12345678;
const uint32_t ieee_expected = 0x2ceadbe3;
int main()
       unsigned char p_buf[48];
       uint16_t t10_dif_computed;
       uint32_t ieee_computed;
       int i:
        for (i = 0; i < 48; i++)
               p\_buf[i] = i;
       t10_dif_computed = crc16_t10dif(init_crc_16, p_buf, 48);
        if (t10_dif_computed != t10_dif_expected)
               printf("WRONG CRC-16(T10 DIF) value\n");
               printf("CORRECT CRC-16(T10 DIF) value\n");
```

ieee_computed = crc32_ieee(init_crc_32, p_buf, 48);

8.2 igzip_example.c 165

8.2 igzip_example.c

Example simple application using fast_lz.

```
Copyright(c) 2011-2013 Intel Corporation All rights reserved.
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
   * Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.
    \star Neither the name of Intel Corporation nor the names of its
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "igzip_lib.h"
#define BUF_SIZE 8192
LZ_Stream1 stream;
int main(int argc, char *argv[])
       uint8_t inbuf[BUF_SIZE], outbuf[BUF_SIZE];
       FILE *in, *out;
       if (argc != 3) {
               fprintf(stderr, "Usage: igzip_example infile outfile\n");
               exit(0);
       in = fopen(argv[1], "rb");
       if (!in) {
               fprintf(stderr, "Can't open %s for reading\n", argv[1]);
               exit(0);
        }
```

```
out = fopen(argv[2], "wb");
                fprintf(stderr, "Can't open %s for writing\n", argv[2]);
        printf("igzip_example\nWindow Size: %d K\n", HIST_SIZE);
        fflush(0);
        init_stream(&stream);
        stream.end_of_stream = 0;
                stream.avail_in = (uint32_t) fread(inbuf, 1, BUF_SIZE, in);
                stream.end_of_stream = feof(in);
                stream.next_in = inbuf;
                stream.flush = FINISH FLUSH;
                do {
                        stream.avail_out = BUF_SIZE;
                        stream.next out = outbuf;
                        fast lz(&stream);
                        fwrite(outbuf, 1, BUF_SIZE - stream.avail_out, out);
                } while (stream.avail_out == 0);
                assert(stream.avail in == 0);
        } while (!stream.end_of_stream);
        fclose(out);
        fclose(in);
        printf("End of igzip_example\n\n");
        return 0:
}
```

8.3 multi_buffer_sha1_example.c

Example of multi-buffer hashing using mb_sha1.

```
Copyright(c) 2011-2013 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
  \star Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
  \star Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in
    the documentation and/or other materials provided with the
  \star Neither the name of Intel Corporation nor the names of its
    contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
```

```
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "mb_shal.h"
// Test messages
#define TST_STR "0123456789:; <=> ?@ABCDEFGHIJKLMNOPQRSTUVWX"
uint8_t msg1[] = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq";
uint8_t msg2[] = "0123456789:; <=>?@ABCDEFGHIJKLMNO";
uint8_t msg3[] = TST_STR TST_STR "0123456789:;<";
uint8_t msg4[] = TST_STR TST_STR TST_STR "0123456789:;<=>?@ABCDEFGHIJKLMNOPQR";
uint8_t msq5[] = TST_STR TST_STR TST_STR TST_STR TST_STR "0123456789:;<=>?";
uint8 t msq6[] =
    TST_STR TST_STR TST_STR TST_STR TST_STR TST_STR "0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTU";
uint8_t msg7[] = "";
// Expected digests
uint32_t dgst1[] = { 0x84983E44, 0x1C3BD26E, 0xBAAE4AA1, 0xF95129E5, 0xE54670F1 };
uint32_t dgst2[] = { 0xB7C66452, 0x0FD122B3, 0x55D539F2, 0xA35E6FAA, 0xC2A5A11D };
uint32_t dgst3[] = { 0x127729B6, 0xA8B2F8A0, 0xA4DDC819, 0x08E1D8B3, 0x67CEEA55 };
uint32_t dgst4[] = { 0xFDDE2D00, 0xABD5B7A3, 0x694DDC619, 0x3FF1D1AC, 0x3B872AC2 };
uint32_t dgst4[] = { 0xFDDE2D00, 0xABD5B7A3, 0x694DB6F2, 0x3FF1D1AC, 0x3B872AC2 };
uint32_t dgst5[] = { 0xE7FCA85C, 0xA4AB3740, 0x6A180B32, 0x0B8D362C, 0x622A96E6 };
uint32_t dgst6[] = { 0x505B0686, 0xE1ACDF42, 0xB3588B5A, 0xB043D52C, 0x6D8C7444 };
uint32_t dgst7[] = { 0xDA39A3EE, 0x5E6B4B0D, 0x3255BFEF, 0x95601890, 0xAFD80709 };
uint8_t *msgs[] = { msg1, msg2, msg3, msg4, msg5, msg6, msg7 };
uint32_t *expected_digest[] = { dgst1, dgst2, dgst3, dgst4, dgst5, dgst6, dgst7 };
int check_job(uint32_t * ref, uint32_t * good, int words)
         int i:
         for (i = 0; i < words; i++)</pre>
                   if (good[i] != ref[i])
                             return 1;
         return 0;
#define MAX_MSGS 7
int main()
         SHA1_MB_MGR mb_mgr;
          JOB_SHA1 job[MAX_MSGS], *p_job;
          int i, checked = 0, failed = 0;
         int n = sizeof(msgs) / sizeof(msgs[0]);
          // Set up jobs
          for (i = 0; i < n; i++) {
                    job[i].buffer = msgs[i];
                    job[i].len = strlen((char *)msgs[i]);
                    job[i].len_total = job[i].len;
                    job[i].user_data = (void *)expected_digest[i];
                    job[i].flags = HASH_MB_FIRST | HASH_MB_LAST;
          // Initialize multi-buffer manager
         sha1_init_mb_mgr(&mb_mgr);
          for (i = 0; i < n; i++) {</pre>
                   p_job = sha1_submit_job(&mb_mgr, &job[i]);
                    if (p_job) {
                                       // If we have finished a job, process it
                             checked++;
                             failed +=
```

8.4 xor_example.c 168

8.4 xor_example.c

Example of XOR usage on multiple sources.

```
/************************
 Copyright(c) 2011-2013 Intel Corporation All rights reserved.
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
    \star Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.
    \star Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the % \left( 1\right) =\left( 1\right) \left( 1\right) 
     distribution.
   \star Neither the name of Intel Corporation nor the names of its
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************
#include <stdio.h>
#include <stdlib.h>
#include "raid.h"
#include "types.h"
#define TEST_SOURCES 16
#define TEST_LEN
int main(int argc, char *argv[])
        int i, j, should_pass, should_fail;
       void *buffs[TEST_SOURCES + 1];
       printf("XOR example\n");
```

8.4 xor_example.c

aes_keyexp_128	crc.h, 65
aes_xts.h, 58	crc32_ieee_base
aes_keyexp_256	crc.h, 65
aes_xts.h, 58	crc32_ieee_by4
aes_xts.h, 56	crc.h, 65
aes_keyexp_128, 58	crc32_iscsi
aes_keyexp_126, 58	crc.h, 66
XTS_AES_128_dec, 58	crc32_iscsi_00
XTS_AES_128_dec_expanded_key, 59	crc.h, 66
XTS_AES_128_enc, 59	crc32_iscsi_01
XTS_AES_128_enc_expanded_key, 59	crc.h, 66
- · · · · · · · · · · · · · · · · · · ·	crc32_iscsi_base
XTS_AES_256_dec, 60	
XTS_AES_256_dec_expanded_key, 60	crc.h, 67
XTS_AES_256_enc, 61	crc32_iscsi_baseline
XTS_AES_256_enc_expanded_key, 61	crc.h, 67
BitBuf2, 26	crc32_iscsi_simple
BitBu12, 20	crc.h, 68
crc.h, 62	ec_encode_data
crc16_t10dif, 63	erasure_code.h, 72
crc16_t10dif_01, 63	ec_encode_data_avx
crc16_t10dif_base, 63	erasure_code.h, 73
crc16_t10dif_by4, 64	ec_encode_data_avx2
crc32_ieee, 64	erasure_code.h, 73
crc32_ieee_01, 65	ec_encode_data_base
crc32_ieee_base, 65	erasure_code.h, 73
crc32_ieee_by4, 65	ec_encode_data_sse
crc32_iscsi, 66	erasure_code.h, 73
crc32_iscsi_00, 66	ec_encode_data_update
crc32_iscsi_01, 66	erasure_code.h, 74
crc32_iscsi_base, 67	ec_encode_data_update_avx
crc32_iscsi_baseline, 67	erasure_code.h, 74
crc32_iscsi_simple, 68	ec_encode_data_update_avx2
crc16_t10dif	erasure_code.h, 74
crc.h, 63	ec_encode_data_update_base
crc16_t10dif_01	erasure_code.h, 75
crc.h, 63	ec_encode_data_update_sse
crc16_t10dif_base	erasure_code.h, 75
crc.h, 63	ec_init_tables
crc16_t10dif_by4	erasure_code.h, 75
crc.h, 64	erasure code.h, 68
crc32_ieee	ec_encode_data, 72
crc.h, 64	ec_encode_data_avx, 73
crc32_ieee_01	ec_encode_data_avx2, 73
 	cc_cncodc_data_avx2, 75

ec_encode_data_base, 73	gf_vect_dot_prod_base, 92
ec_encode_data_sse, 73	gf_vect_dot_prod_sse, 92
ec_encode_data_update, 74	gf_vect_mad, 93
ec_encode_data_update_avx, 74	gf_vect_mad_avx, 93
ec_encode_data_update_avx2, 74	gf_vect_mad_avx2, 93
ec_encode_data_update_base, 75	gf_vect_mad_base, 93
ec_encode_data_update_sse, 75	gf_vect_mad_sse, 94
ec_init_tables, 75	
gf_2vect_dot_prod_avx, 75	fast_lz
gf_2vect_dot_prod_avx2, 76	igzip_lib.h, 99
gf_2vect_dot_prod_sse, 77	fast_lz_stateless
gf_2vect_mad_avx, 77	igzip_lib.h, 100
gf_2vect_mad_avx2, 77	6.0
gf_2vect_mad_sse, 77	gf_2vect_dot_prod_avx
gf_3vect_dot_prod_avx, 78	erasure_code.h, 75
gf_3vect_dot_prod_avx2, 79	gf_2vect_dot_prod_avx2
gf_3vect_dot_prod_sse, 79	erasure_code.h, 76
gf_3vect_mad_avx, 80	gf_2vect_dot_prod_sse
gf_3vect_mad_avx2, 80	erasure_code.h, 77
gf_3vect_mad_sse, 80	gf_2vect_mad_avx
gf_4vect_dot_prod_avx, 81	erasure_code.h, 77
gf_4vect_dot_prod_avx2, 81	gf_2vect_mad_avx2
gf_4vect_dot_prod_sse, 82	erasure_code.h, 77
gf_4vect_mad_avx, 83	gf_2vect_mad_sse
gf_4vect_mad_avx2, 83	erasure_code.h, 77
gf_4vect_mad_sse, 83	gf_3vect_dot_prod_avx
gf_5vect_dot_prod_avx, 84	erasure_code.h, 78
gf_5vect_dot_prod_avx2, 84	gf_3vect_dot_prod_avx2
gf_5vect_dot_prod_sse, 85	erasure_code.h, 79
gf_5vect_mad_avx, 85	gf_3vect_dot_prod_sse
gf_5vect_mad_avx2, 85	erasure_code.h, 79
gf_5vect_mad_sse, 86	gf_3vect_mad_avx
gf_6vect_dot_prod_avx, 86	erasure_code.h, 80
gf_6vect_dot_prod_avx2, 87	gf_3vect_mad_avx2
gf_6vect_dot_prod_sse, 87	erasure_code.h, 80
gf_6vect_mad_avx, 88	gf_3vect_mad_sse
gf_6vect_mad_avx2, 88	erasure_code.h, 80
gf_6vect_mad_sse, 88	gf_4vect_dot_prod_avx
gf_gen_cauchy1_matrix, 88	erasure_code.h, 81
gf_gen_rs_matrix, 89	gf_4vect_dot_prod_avx2
gf_inv, 89	erasure_code.h, 81
gf_invert_matrix, 89	gf_4vect_dot_prod_sse
gf_mul, 90	erasure_code.h, 82
gf_vect_dot_prod, 90	gf_4vect_mad_avx
gf_vect_dot_prod_avx, 91	erasure_code.h, 83
gf_vect_dot_prod_avx2, 91	gf_4vect_mad_avx2
S /	erasure_code.h, 83

gf_4vect_mad_sse	gf_vect_mad
erasure_code.h, 83	erasure_code.h, 93
gf_5vect_dot_prod_avx	gf_vect_mad_avx
erasure_code.h, 84	erasure_code.h, 93
gf_5vect_dot_prod_avx2	gf_vect_mad_avx2
erasure_code.h, 84	erasure_code.h, 93
gf_5vect_dot_prod_sse	gf_vect_mad_base
erasure_code.h, 85	erasure_code.h, 93
gf_5vect_mad_avx	gf_vect_mad_sse
erasure_code.h, 85	erasure_code.h, 94
gf_5vect_mad_avx2	gf_vect_mul
erasure_code.h, 85	gf_vect_mul.h, 95
gf_5vect_mad_sse	gf_vect_mul.h, 94
erasure_code.h, 86	gf_vect_mul, 95
gf_6vect_dot_prod_avx	gf_vect_mul_avx, 95
erasure_code.h, 86	gf_vect_mul_base, 95
gf_6vect_dot_prod_avx2	gf_vect_mul_init, 96
erasure_code.h, 87	gf_vect_mul_sse, 96
gf_6vect_dot_prod_sse	gf_vect_mul_avx
erasure_code.h, 87	gf_vect_mul.h, 95
gf_6vect_mad_avx	gf_vect_mul_base
erasure_code.h, 88	gf_vect_mul.h, 95
gf_6vect_mad_avx2	gf_vect_mul_init
erasure_code.h, 88	gf_vect_mul.h, 96
gf_6vect_mad_sse	gf_vect_mul_sse
erasure_code.h, 88	gf_vect_mul.h, 96
gf_gen_cauchy1_matrix	
erasure_code.h, 88	HASH_CTX_ERROR_ALREADY_COMPLETED
gf_gen_rs_matrix	multi_buffer.h, 130
erasure_code.h, 89	HASH_CTX_ERROR_ALREADY_PROCESSING
gf_inv	multi_buffer.h, 130
erasure_code.h, 89	HASH_CTX_ERROR_INVALID_FLAGS
gf_invert_matrix	multi_buffer.h, 130
erasure_code.h, 89	HASH_CTX_ERROR_NONE
gf_mul	multi_buffer.h, 130
erasure_code.h, 90	HASH_CTX_STS_COMPLETE
gf_vect_dot_prod	multi_buffer.h, 131
erasure_code.h, 90	HASH_CTX_STS_IDLE
gf_vect_dot_prod_avx	multi_buffer.h, 131
erasure_code.h, 91	HASH_CTX_STS_LAST
gf_vect_dot_prod_avx2	multi_buffer.h, 131
erasure_code.h, 91	HASH_CTX_STS_PROCESSING
gf_vect_dot_prod_base	multi_buffer.h, 131
erasure_code.h, 92	HASH_ENTIRE
gf_vect_dot_prod_sse	multi_buffer.h, 130
erasure_code.h, 92	HASH_FIRST

1.1 1 00 1 100	MDF ADGG MOMO 00
multi_buffer.h, 130	MD5_ARGS_X8X2, 33
HASH_LAST	MD5_HASH_CTX, 33
multi_buffer.h, 130	MD5_HASH_CTX_MGR, 34
HASH_UPDATE	MD5_HMAC_LANE_DATA, 34
multi_buffer.h, 130	MD5_JOB, 35
HASH_CTX_ERROR	MD5_LANE_DATA, 35
multi_buffer.h, 130	MD5_MB_ARGS_X16, 36
HASH_CTX_FLAG	MD5_MB_JOB_MGR, 36
multi_buffer.h, 130	MD5_MB_MGR, 37
HASH_CTX_STS	MD5_MB_MGR_X8X2, 37
multi_buffer.h, 130	mb_md5.h, 101
	md5_flush_job, 103
igzip_lib.h	md5_flush_job_avx, 103
LZS2_BODY, 99	md5_flush_job_avx2, 103
LZS2_END, 99	· ·
	md5_init_mb_mgr, 104
LZS2_HDR, 99	md5_init_mb_mgr_x8x2, 104
LZS2_TRL, 99	md5_submit_job, 104
igzip_lib.h, 97	md5_submit_job_avx, 105
fast_lz, 99	md5_submit_job_avx2, 105
fast_lz_stateless, 100	mb_sha1.h, 106
init_stream, 101	sha1_flush_job, 107
LZ_State1_state, 99	sha1_flush_job_avx, 107
init_stream	sha1_flush_job_avx2, 108
igzip_lib.h, 101	
6 I = 1	sha1_init_mb_mgr, 108
intrinreg.h, 101	sha1_init_mb_mgr_x8, 108
IOD MD5 26	sha1_submit_job, 109
JOB_MD5, 26	sha1_submit_job_avx, 109
JOB_SHA1, 27	sha1_submit_job_avx2, 110
JOB_SHA256, 28	mb_sha256.h, 110
JOB_SHA512, 29	sha256_flush_job, 112
JOB_STS	sha256_flush_job_avx, 112
multi_buffer.h, 131	sha256_flush_job_avx2, 112
_ ,	· ·
LZS2 BODY	sha256_init_mb_mgr, 113
igzip_lib.h, 99	sha256_init_mb_mgr_x8, 113
LZS2_END	sha256_submit_job, 113
igzip_lib.h, 99	sha256_submit_job_avx, 114
	sha256_submit_job_avx2, 114
LZS2_HDR	mb_sha512.h, 115
igzip_lib.h, 99	sha512_flush_job, 116
LZS2_TRL	sha512_flush_job_avx, 116
igzip_lib.h, 99	
LZ_State1, 30	sha512_flush_job_avx2, 117
LZ_State1_state	sha512_init_mb_mgr, 117
igzip_lib.h, 99	sha512_init_mb_mgr_x4, 117
LZ_Stream1, 31	sha512_submit_job, 118
LL_Outdill1, J1	sha512_submit_job_avx, 118
MD5_ARGS_X8, 32	sha512_submit_job_avx2, 118
11D2_11KOO_1KO, 32	_, _ ,

md5_ctx_mgr_flush	md5_ctx_mgr_submit_sse, 125
md5_mb.h, 121	md5_submit_job
md5_ctx_mgr_flush_avx	mb_md5.h, 104
md5_mb.h, 122	md5_submit_job_avx
md5_ctx_mgr_flush_avx2	mb_md5.h, 105
md5_mb.h, 122	md5_submit_job_avx2
md5_ctx_mgr_flush_sse	mb_md5.h, 105
md5_mb.h, 122	mem_cmp_avx
md5_ctx_mgr_init	mem_routines.h, 127
md5_mb.h, 123	mem_cmp_avx2
md5_ctx_mgr_init_avx	mem_routines.h, 127
md5_mb.h, 123	mem_cmp_sse
md5_ctx_mgr_init_avx2	mem_routines.h, 127
md5_mb.h, 123	mem_cpy_avx
md5_ctx_mgr_init_sse	mem_routines.h, 128
md5_mb.h, 124	mem_cpy_sse
md5_ctx_mgr_submit	mem_routines.h, 128
md5_mb.h, 124	mem_routines.h, 126
md5_ctx_mgr_submit_avx	mem_cmp_avx, 127
md5_mb.h, 124	mem_cmp_avx2, 127
md5_ctx_mgr_submit_avx2	mem_cmp_sse, 127
md5_mb.h, 125	mem_cpy_avx, 128
md5_ctx_mgr_submit_sse	mem_cpy_sse, 128
md5_mb.h, 125	mem_zero_detect_avx, 129
md5_flush_job	mem_zero_detect_avx
mb_md5.h, 103	mem_routines.h, 129
md5_flush_job_avx	memcpy_inline.h, 129
mb_md5.h, 103	multi_buffer.h
md5_flush_job_avx2	HASH_CTX_ERROR_ALREADY_COMPLETED,
mb_md5.h, 103	130
md5_init_mb_mgr	HASH_CTX_ERROR_ALREADY_PROCESSING,
mb_md5.h, 104	130
md5_init_mb_mgr_x8x2	HASH_CTX_ERROR_INVALID_FLAGS, 130
mb_md5.h, 104	HASH_CTX_ERROR_NONE, 130
md5_mb.h, 119	HASH_CTX_STS_COMPLETE, 131
md5_ctx_mgr_flush, 121	HASH_CTX_STS_IDLE, 131
md5_ctx_mgr_flush_avx, 122	HASH_CTX_STS_LAST, 131
md5_ctx_mgr_flush_avx2, 122	HASH_CTX_STS_PROCESSING, 131
md5_ctx_mgr_flush_sse, 122	HASH_ENTIRE, 130
md5_ctx_mgr_init, 123	HASH_FIRST, 130
md5_ctx_mgr_init_avx, 123	HASH_LAST, 130
md5_ctx_mgr_init_avx2, 123	HASH_UPDATE, 130
md5_ctx_mgr_init_sse, 124	STS_BEING_PROCESSED, 131
md5_ctx_mgr_submit, 124	STS_COMPLETED, 131
md5_ctx_mgr_submit_avx, 124	STS_ERROR, 131
md5_ctx_mgr_submit_avx2, 125	STS_INTERNAL_ERROR, 131

STS_UNKNOWN, 131	STS_INTERNAL_ERROR
multi_buffer.h, 129	multi_buffer.h, 131
HASH_CTX_ERROR, 130	STS_UNKNOWN
HASH_CTX_FLAG, 130	multi_buffer.h, 131
HASH_CTX_STS, 130	SHA1_ARGS_X4, 38
JOB_STS, 131	SHA1_ARGS_X8, 38
	SHA1_HASH_CTX, 39
pq_check	SHA1_HASH_CTX_MGR, 40
raid.h, 132	SHA1_HMAC_LANE_DATA, 40
pq_check_base	SHA1_JOB, 41
raid.h, 133	SHA1_LANE_DATA, 41
pq_check_sse	SHA1_MB_ARGS_X8, 42
raid.h, 133	SHA1_MB_JOB_MGR, 42
pq_gen	SHA1_MB_MGR, 42
raid.h, 133	SHA1_MB_MGR_X8, 43
pq_gen_avx	SHA256_ARGS_X4, 44
raid.h, 134	SHA256_ARGS_X8, 44
pq_gen_avx2	SHA256_HASH_CTX, 45
raid.h, 134	SHA256_HASH_CTX_MGR, 46
pq_gen_base	SHA256_HMAC_LANE_DATA, 46
raid.h, 135	SHA256_JOB, 47
pq_gen_sse	SHA256_LANE_DATA, 47
raid.h, 135	SHA256_MB_ARGS_X8, 48
	SHA256_MB_JOB_MGR, 48
raid.h, 131	SHA256_MB_MGR, 48
pq_check, 132	SHA256_MB_MGR_X8, 49
pq_check_base, 133	SHA512_ARGS_X2, 50
pq_check_sse, 133	SHA512_ARGS_X4, 50
pq_gen, 133	SHA512_HASH_CTX, 51
pq_gen_avx, 134	SHA512_HASH_CTX_MGR, 51
pq_gen_avx2, 134	SHA512_HMAC_LANE_DATA, 52
pq_gen_base, 135	SHA512_JOB, 52
pq_gen_sse, 135	SHA512_LANE_DATA, 53
xor_check, 135	SHA512_MB_ARGS_X4, 53
xor_check_base, 136	SHA512_MB_JOB_MGR, 54
xor_check_sse, 136	SHA512_MB_MGR, 54
xor_gen, 136	SHA512_MB_MGR_X4, 55
xor_gen_avx, 137	sha.h, 138
xor_gen_base, 137	sha1_opt, 139
xor_gen_sse, 138	sha1_update, 139
CTC DEING DROCECCED	sha1_ctx_mgr_flush
STS_BEING_PROCESSED	sha1_mb.h, 142
multi_buffer.h, 131 STS COMPLETED	sha1_ctx_mgr_flush_avx
_	sha1_mb.h, 142
multi_buffer.h, 131	sha1_ctx_mgr_flush_avx2
STS_ERROR	sha1_mb.h, 143
multi_buffer.h, 131	

sha1_ctx_mgr_flush_sse	mb_sha1.h, 109
sha1_mb.h, 143	sha1_submit_job_avx2
sha1_ctx_mgr_init	mb_sha1.h, 110
sha1_mb.h, 143	sha1_update
sha1_ctx_mgr_init_avx	sha.h, 139
sha1_mb.h, 144	sha256_ctx_mgr_flush
sha1_ctx_mgr_init_avx2	sha256_mb.h, 149
sha1_mb.h, 144	sha256_ctx_mgr_flush_avx
sha1_ctx_mgr_init_sse	sha256_mb.h, 149
sha1_mb.h, 144	sha256_ctx_mgr_flush_avx2
sha1_ctx_mgr_submit	sha256_mb.h, 150
sha1_mb.h, 145	sha256_ctx_mgr_flush_sse
sha1_ctx_mgr_submit_avx	sha256_mb.h, 150
sha1_mb.h, 145	sha256_ctx_mgr_init
sha1_ctx_mgr_submit_avx2	sha256_mb.h, 151
sha1_mb.h, 146	sha256_ctx_mgr_init_avx
sha1_ctx_mgr_submit_sse	sha256_mb.h, 151
sha1_mb.h, 146	sha256_ctx_mgr_init_avx2
sha1_flush_job	sha256_mb.h, 151
mb_sha1.h, 107	sha256_ctx_mgr_init_sse
sha1_flush_job_avx	sha256_mb.h, 152
mb_sha1.h, 107	sha256_ctx_mgr_submit
sha1_flush_job_avx2	sha256_mb.h, 152
mb_sha1.h, 108	sha256_ctx_mgr_submit_avx
sha1_init_mb_mgr	sha256_mb.h, 152
mb_sha1.h, 108	sha256_ctx_mgr_submit_avx2
sha1_init_mb_mgr_x8	sha256_mb.h, 153
mb_sha1.h, 108	sha256_ctx_mgr_submit_sse
sha1_mb.h, 139	sha256_mb.h, 153
sha1_ctx_mgr_flush, 142	sha256_flush_job
sha1_ctx_mgr_flush_avx, 142	mb_sha256.h, 112
sha1_ctx_mgr_flush_avx2, 143	sha256_flush_job_avx
sha1_ctx_mgr_flush_sse, 143	mb_sha256.h, 112
sha1_ctx_mgr_init, 143	sha256_flush_job_avx2
sha1_ctx_mgr_init_avx, 144	mb_sha256.h, 112
sha1_ctx_mgr_init_avx2, 144	sha256_init_mb_mgr
sha1_ctx_mgr_init_sse, 144	mb_sha256.h, 113
sha1_ctx_mgr_submit, 145	sha256_init_mb_mgr_x8
sha1_ctx_mgr_submit_avx, 145	mb_sha256.h, 113
sha1_ctx_mgr_submit_avx2, 146	sha256_mb.h, 147
sha1_ctx_mgr_submit_sse, 146	sha256_ctx_mgr_flush, 149
sha1_opt	sha256_ctx_mgr_flush_avx, 149
sha.h, 139	sha256_ctx_mgr_flush_avx2, 150
sha1_submit_job	sha256_ctx_mgr_flush_sse, 150
mb_sha1.h, 109	sha256_ctx_mgr_init, 151
sha1_submit_job_avx	sha256_ctx_mgr_init_avx, 151

sha256_ctx_mgr_init_avx2, 151	sha512_flush_job_avx2
sha256_ctx_mgr_init_sse, 152	mb_sha512.h, 117
sha256_ctx_mgr_submit, 152	sha512_init_mb_mgr
sha256_ctx_mgr_submit_avx, 152	mb_sha512.h, 117
sha256_ctx_mgr_submit_avx2, 153	sha512_init_mb_mgr_x4
sha256_ctx_mgr_submit_sse, 153	mb_sha512.h, 117
sha256_submit_job	sha512_mb.h, 154
mb_sha256.h, 113	sha512_ctx_mgr_flush, 157
sha256_submit_job_avx	sha512_ctx_mgr_flush_avx, 157
mb_sha256.h, 114	sha512_ctx_mgr_flush_avx2, 157
sha256_submit_job_avx2	sha512_ctx_mgr_flush_sb_sse4, 158
· ·	•
mb_sha256.h, 114	sha512_ctx_mgr_flush_sse, 158
sha512_ctx_mgr_flush	sha512_ctx_mgr_init, 159
sha512_mb.h, 157	sha512_ctx_mgr_init_avx, 159
sha512_ctx_mgr_flush_avx	sha512_ctx_mgr_init_avx2, 159
sha512_mb.h, 157	sha512_ctx_mgr_init_sb_sse4, 160
sha512_ctx_mgr_flush_avx2	sha512_ctx_mgr_init_sse, 160
sha512_mb.h, 157	sha512_ctx_mgr_submit, 160
sha512_ctx_mgr_flush_sb_sse4	sha512_ctx_mgr_submit_avx, 161
sha512_mb.h, 158	sha512_ctx_mgr_submit_avx2, 161
sha512_ctx_mgr_flush_sse	sha512_ctx_mgr_submit_sb_sse4, 162
sha512_mb.h, 158	sha512_ctx_mgr_submit_sse, 162
sha512_ctx_mgr_init	sha512_submit_job
sha512_mb.h, 159	mb_sha512.h, 118
sha512_ctx_mgr_init_avx	sha512_submit_job_avx
sha512_mb.h, 159	mb_sha512.h, 118
sha512_ctx_mgr_init_avx2	sha512_submit_job_avx2
sha512_mb.h, 159	mb_sha512.h, 118
	1110_\$11a312.11, 116
sha512_ctx_mgr_init_sb_sse4	types.h, 163
sha512_mb.h, 160	typesiii, 100
sha512_ctx_mgr_init_sse	XTS_AES_128_dec
sha512_mb.h, 160	aes_xts.h, 58
sha512_ctx_mgr_submit	XTS_AES_128_dec_expanded_key
sha512_mb.h, 160	aes_xts.h, 59
sha512_ctx_mgr_submit_avx	XTS_AES_128_enc
sha512_mb.h, 161	aes_xts.h, 59
sha512_ctx_mgr_submit_avx2	XTS_AES_128_enc_expanded_key
sha512_mb.h, 161	
sha512_ctx_mgr_submit_sb_sse4	aes_xts.h, 59
sha512_mb.h, 162	XTS_AES_256_dec
sha512_ctx_mgr_submit_sse	aes_xts.h, 60
sha512_mb.h, 162	XTS_AES_256_dec_expanded_key
sha512_flush_job	aes_xts.h, 60
mb_sha512.h, 116	XTS_AES_256_enc
sha512_flush_job_avx	aes_xts.h, 61
mb_sha512.h, 116	XTS_AES_256_enc_expanded_key
o	aes_xts.h, 61

xor_check
raid.h, 135
xor_check_base
raid.h, 136
xor_check_sse
raid.h, 136
xor_gen
raid.h, 136
xor_gen_avx
raid.h, 137
xor_gen_base
raid.h, 137
xor_gen_sse
raid.h, 138