Anomaly Detection to detect failing servers on a network An anomaly detection algorithm will be implemented to detect anomalous behavior in server computers. The dataset contains two features: throughput (mb/s) and latency (ms) of the response of each server. While servers were operating, m=307 examples of how they were behaving are collected, and thus have an unlabeled dataset $\{x^{(1)},\ldots,x^{(m)}\}$ (the vast majority of these examples are "normal" (non-anomalous) examples of the servers operating normally, but there might also be some examples of servers acting anomalously within this dataset). A Gaussian model will be used to detect anomalous examples in the dataset. A Gaussian distribution will be fitted on the dataset and then values that have very low probability will be finded and hence can be considered anomalies. • The anomaly detection algorithm will be applied to a larger dataset with many dimensions. steps followed by code: 1- Dataset • 2- Gaussian distribution • 3- High dimensional dataset import numpy as np import matplotlib.pyplot as plt from utils_anomaly import * %matplotlib inline 1- Dataset: X_train will be used to fit a Gaussian distribution • X val and y val will be used as a cross validation set to select a threshold and determine anomalous vs normal examples In [2]: # Load the dataset X_train, X_val, y_val = load_data() In [3]: # Displaying the first five elements of X_train print("The first 5 elements of X_train are:\n", X_train[:5]) The first 5 elements of X_train are: [[13.04681517 14.74115241] [13.40852019 13.7632696] [14.19591481 15.85318113] [14.91470077 16.17425987] [13.57669961 14.04284944]] In [4]: # Displaying the first five elements of X_val print("The first 5 elements of X_val are\n", X_val[:5]) The first 5 elements of X_val are [[15.79025979 14.9210243] [13.63961877 15.32995521] [14.86589943 16.47386514] [13.58467605 13.98930611] [13.46404167 15.63533011]] In [5]: # Displaying the first five elements of y_val print("The first 5 elements of y_val are\n", y_val[:5]) The first 5 elements of y_val are $[0 \ 0 \ 0 \ 0]$ The code below prints the shape of X_train, X_val and y_val: In [6]: print ('The shape of X_train is:', X_train.shape) print ('The shape of X_val is:', X_val.shape) print ('The shape of y_val is: ', y_val.shape) The shape of X_train is: (307, 2) The shape of X_{val} is: (307, 2) The shape of y_val is: (307,) visualize the data X_train: The dataset has only two properties to plot (throughput and latency). # Creating a scatter plot of the data. plt.scatter(X_train[:, 0], X_train[:, 1], marker='x', c='b') # Set the title plt.title("The first dataset") # Set the y-axis label plt.ylabel('Throughput (mb/s)') # Set the x-axis label plt.xlabel('Latency (ms)') # Set axis range plt.axis([0, 30, 0, 30]) plt.show() The first dataset 30 25 × Throughput (mb/s) 15 10 10 5 × 0 + 5 10 15 20 25 30 Latency (ms) 2- Gaussian distribution To perform anomaly detection, at first, we need to fit a model to the data's distribution. • Given a training set $\{x^{(1)},\ldots,x^{(m)}\}$ --> estimating the Gaussian distribution for each of the features x_i . · the Gaussian distribution: $p(x;\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}^{-rac{(x-\mu)^2}{2\sigma^2}}$ where μ is the mean and σ^2 is the variance. • For each feature $i=1\dots n$, we need to find parameters μ_i and σ_i^2 that fit the data in the i-th dimension $\{x_i^{(1)},\dots,x_i^{(m)}\}$ (the i-th dimension of each example). Estimating parameters for a Gaussian distribution --> estimate_gaussian: def estimate_gaussian(X): In [8]: Calculates mean and variance of all features in the dataset Args: X (ndarray): (m, n) Data matrix Returns: mu (ndarray): (n,) Mean of all features var (ndarray): (n,) Variance of all features m, n = X.shapemu = 1 / m * np.sum(X, axis = 0)var = 1 / m * np.sum((X - mu) ** 2, axis = 0)return mu, var # Estimating mean and variance of each feature mu, var = estimate_gaussian(X_train) print("Mean of each feature:", mu) print("Variance of each feature:", var) # UNIT TEST from public_tests_anomaly import * estimate_gaussian_test(estimate_gaussian) Mean of each feature: [14.11222578 14.99771051] Variance of each feature: [1.83263141 1.70974533] All tests passed! In [12]: # Returns the density of the multivariate normal # at each data point (row) of X_train p = multivariate_gaussian(X_train, mu, var) #Plotting code visualize_fit(X_train, mu, var) The Gaussian contours of the distribution fit to the dataset 35 30 25 Throughput (mb/s) 20 10 5 10 15 20 25 30 35 Latency (ms) In the plot above, most of the examples are in the region with the highest probability, while the anomalous examples are in the regions with lower probabilities. Selecting the threshold ϵ : After the Gaussian parameters have been estimated, we can investigate which examples have a very high probability given this distribution and which examples have a very low probability. • The low probability examples are more likely to be the anomalies in our dataset. • One way to determine which examples are anomalies is to select a threshold based on a cross validation set. So, select_threshold is used to select the threshold ε using the F_1 score on a cross validation set. $\bullet \ \ \text{For this, a cross validation set will be used } \{(x_{\mathrm{cv}}^{(1)}, y_{\mathrm{cv}}^{(1)}), \ldots, (x_{\mathrm{cv}}^{(m_{\mathrm{cv}})}, y_{\mathrm{cv}}^{(m_{\mathrm{cv}})})\}, \text{ where the label } y = 1 \text{ corresponds to an anomalous example, and } y = 0 \text{ corresponds to a normal example.}$ • For each cross validation example, $p(x_{\mathrm{cv}}^{(i)})$ will be computed. The vector of all of these probabilities $p(x_{\mathrm{cv}}^{(1)}), \ldots, p(x_{\mathrm{cv}}^{(m_{\mathrm{cv}})})$ is passed to select_threshold in the vector p_val. ullet The corresponding labels $y_{
m cv}^{(1)},\dots,y_{
m cv}^{(m_{
m cv})}$ are passed to the same function in the vector y_val. In select threshold: • There is already a loop that will try many different values of ε and select the best ε based on the F_1 score. • If an example x has a low probability $p(x) < \varepsilon$, then it is classified as an anomaly. precision and recall: prec =where tp is the number of true positives, fp is the number of false positives, and fn is the number of false negatives • The F_1 score is computed using precision (prec) and recall (rec): $F_1 = rac{2 \cdot prec \cdot rec}{prec + rec}$ def select_threshold(y_val, p_val): In [13]: Finds the best threshold to use for selecting outliers based on the results from a validation set (p_val) and the ground truth (y_val) Args: y_val (ndarray): Ground truth on validation set p_val (ndarray): Results on validation set Returns: epsilon (float): Threshold chosen F1 score by choosing epsilon as threshold F1 (float): $best_epsilon = 0$ $best_F1 = 0$ F1 = 0step_size = $(max(p_val) - min(p_val)) / 1000$ for epsilon in np.arange(min(p_val), max(p_val), step_size): predictions = (p_val < epsilon)</pre> $tp = np.sum((predictions == 1) & (y_val == 1))$ $fp = np.sum((predictions == 1) & (y_val == 0))$ $fn = np.sum((predictions == 0) & (y_val == 1))$ prec = tp / (tp + fp)rec = tp / (tp + fn)F1 = 2 * prec * rec / (prec + rec)if F1 > best_F1: $best_F1 = F1$ best_epsilon = epsilon return best_epsilon, best_F1 In [15]: p_val = multivariate_gaussian(X_val, mu, var) epsilon, F1 = select_threshold(y_val, p_val) print('Best epsilon found using cross-validation: %e' % epsilon) print('Best F1 on Cross Validation Set: %f' % F1) # UNIT TEST select_threshold_test(select_threshold) Best epsilon found using cross-validation: 8.990853e-05 Best F1 on Cross Validation Set: 0.875000 All tests passed! C:\Users\sanaz\AppData\Local\Temp\ipykernel_8876\1877173503.py:30: RuntimeWarning: invalid value encountered in scalar divide prec = tp / (tp + fp)Running the anomaly detection code and circle the anomalies in the plot: # Find the outliers in the training set In [16]: outliers = p < epsilon # Visualize the fit visualize_fit(X_train, mu, var) # Draw a red circle around those outliers plt.plot(X_train[outliers, 0], X_train[outliers, 1], 'ro', markersize= 10, markerfacecolor='none', markeredgewidth=2) [<matplotlib.lines.Line2D at 0x2675b6d2a30>] Out[16]: The Gaussian contours of the distribution fit to the dataset 35 30 25 Throughput (mb/s) 10 5 0 -5 10 15 20 25 30 35 Latency (ms) 3- High dimensional dataset In this dataset that the anomaly detection algorithm will be implemented on it, each example is described by 11 features, capturing many more properties of compute servers. Let's start by loading the dataset. _high is meant to distinguish these variables from the ones used in the previous part • X train high will be used to fit Gaussian distribution • X_val_high and y_val_high will be used as a cross validation set to select a threshold and determine anomalous vs normal examples In [17]: # load the dataset X_train_high, X_val_high, y_val_high = load_data_multi() print ('The shape of X_train_high is:', X_train_high.shape) In [18]: print ('The shape of X_val_high is:', X_val_high.shape) print ('The shape of y_val_high is: ', y_val_high.shape) The shape of X_train_high is: (1000, 11) The shape of X_val_high is: (100, 11) The shape of y_val_high is: (100,) Running the nomaly detection algorithm on this new dataset: • Estimate the Gaussian parameters (μ_i and σ_i^2) • Evaluate the probabilities for both the training data X_train_high as well as for the the cross-validation set X_val_high. • Using select_threshold to find the best threshold ε . In [19]: # Apply the same steps to the larger dataset # Estimate the Gaussian parameters mu_high, var_high = estimate_gaussian(X_train_high) # Evaluate the probabilites for the training set p_high = multivariate_gaussian(X_train_high, mu_high, var_high) # Evaluate the probabilites for the cross validation set p_val_high = multivariate_gaussian(X_val_high, mu_high, var_high) # Find the best threshold epsilon_high, F1_high = select_threshold(y_val_high, p_val_high) print('Best epsilon found using cross-validation: %e'% epsilon_high) print('Best F1 on Cross Validation Set: %f'% F1_high) print('# Anomalies found: %d'% sum(p_high < epsilon_high))</pre> Best epsilon found using cross-validation: 1.377229e-18 Best F1 on Cross Validation Set: 0.615385 # Anomalies found: 117 C:\Users\sanaz\AppData\Local\Temp\ipykernel_8876\1877173503.py:30: RuntimeWarning: invalid value encountered in scalar divide prec = tp / (tp + fp)