

AD-A155 482 OPERATIONAL WINDOW FOR A PLASMA EROSION OPENING SWITCH 1/1
USED FOR VOLTAGE M. (U) NAVAL RESEARCH LAB WASHINGTON
DC P F OTTINGER 05 JUN 85 NRL-MR-5591

UNCLASSIFIED

F/G 9/5

NL

END

FILED

STB

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART

Operational Window for a Plasma Erosion Opening Switch Used for Voltage Multiplication on Pulsed Power Generators

AD-A155 482

P. F. OTTINGER

Plasma Technology Branch
Plasma Physics Division

June 5, 1985

This work was supported in part by the U. S. Department of Energy and the Defense Nuclear Agency under Subtask T99QAXLA, work unit 00038 and work unit title "Advanced Simulation Concepts."

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

DTIC FILE COPY

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT			
2b DECLASSIFICATION/DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.			
4 PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 5591		5 MONITORING ORGANIZATION REPORT NUMBER(S)			
6a NAME OF PERFORMING ORGANIZATION Naval Research Laboratory	6b OFFICE SYMBOL (If applicable) Code 4770	7a NAME OF MONITORING ORGANIZATION			
6c ADDRESS (City, State, and ZIP Code) Washington, DC 20375-5000		7b ADDRESS (City, State, and ZIP Code)			
8a NAME OF FUNDING/SPONSORING ORGANIZATION DOE and DNA	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
3c ADDRESS (City, State, and ZIP Code) Washington, DC 20545 Washington, DC 20305		10 SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO (See page ii)	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
11 TITLE (Include Security Classification) Operational Window for a Plasma Erosion Opening Switch Used for Voltage Multiplication on Pulsed Power Generators					
12 PERSONAL AUTHOR(S) Ottinger, P.F.					
13a TYPE OF REPORT Interim	13b TIME COVERED FROM _____ TO _____	14 DATE OF REPORT (Year, Month, Day) 1985 June 5		15 PAGE COUNT 28	
16 SUPPLEMENTARY NOTATION This work was supported in part by the U.S. Department of Energy and the Defense Nuclear Agency under Subtask T99QAXLA, work unit 00038 and work unit title "Advanced Simulation Concepts."					
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Opening switch Pulsed power Voltage multiplication Inductive storage Pulse compression			
19 ABSTRACT (Continue on reverse if necessary and identify by block number) The Plasma Erosion Opening Switch (PEOS) is a fast opening switch which has been shown to be capable of conducting megampere-level currents before opening in <10 ns. Such a switch can be used for inductive storage in order to compress the output from conventional pulsed power generator in order to achieve voltage and power multiplication. An operational window is described herein which illustrates the voltage regime made accessible for a given machine by the switch.					
20 DISTRIBUTION AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS			21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED		
22a NAME OF RESPONSIBLE INDIVIDUAL P. F. Ottinger			22b TELEPHONE (Include Area Code) (202) 767-3066	22c OFFICE SYMBOL Code 4770	

DD FORM 1473, 34 MAR

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
62715H DOE		23	DN320-094 DN680-382

DTIC
SELECTED
S D
JUN 26 1985
B

SECURITY CLASSIFICATION OF THIS PAGE

OPERATIONAL WINDOW FOR A PLASMA EROSION OPENING SWITCH USED FOR VOLTAGE MULTIPLICATION ON PULSED POWER GENERATORS

The Plasma Erosion Opening Switch (PEOS) is a fast opening switch which has been shown to be capable of conducting megampere-level currents before opening in < 10 ns.¹ Such a switch can be used for inductive storage in order to compress the output from conventional pulsed power generator in order to achieve voltage and power multiplication.²⁻⁷ An operational window is described herein which illustrates the voltage regime made accessible for a given machine by the switch.

The physics understanding of how the PEOS conducts current and then opens is presented elsewhere⁸ and will not be described in detail here. Of importance here is only that when the switch opens a gap is opened by erosion at the cathode surface in the switch region and that the switch opening process is complete when the electron flow off the cathode in this switch region becomes magnetically insulated (see Fig. 1). For a machine configured in cylindrical geometry such as Gamble I shown in Figure 2(a), this insulating magnetic field depends inversely on the cathode radius, R_c . For a triplate disk feed such as on PBFA I the insulating magnetic field depends inversely on the distance of the switch region from the center line of the machine also labeled by R_c in Fig. 2(b).

In order to get a feeling for the operational window for switching using a PEOS, consider the following. Good switching action requires that the load current exceed the critical current for magnetic insulation of the electron flow in the switch region. Thus

$$I_L(A) > (1.6) (3500 \beta \gamma R_c/D), \quad (1)$$

where I_L is the load current, 1.6 is a geometry factor determined by PIC code

runs,⁹ $s = (1 - 1/\gamma^2)^{1/2}$ $\gamma = 1 + V(MV)/0.511$, V is the voltage across the switch, R_c is the radius of the cathode in the switch region and D is the switch vacuum gap at the time of insulation. For a load impedance of Z_ℓ , the load current is approximately $I_\ell \sim V/Z_\ell$. Solving Eq. (1) for V yields

$$V > \frac{(0.026 Z_\ell R_c / D)^2}{1 - (0.026 Z_\ell R_c / D)^2} . \quad (2)$$

In other words, for a given load impedance the voltage must be high enough to provide sufficient load current for insulation.

On the other hand, a given machine can only supply a limited amount of current. During the conduction phase the switch acts as a short circuit allowing the storage inductor, L , shown in Fig. 3 to be current charged to at most $I = f V_{oc}^P / Z_g$. Here V_{oc}^P is the peak open circuit voltage of the generator, Z_g is its characteristic impedance and $f(\tau_p L)$ is a factor which is ≤ 1 and depends on the open circuit voltage waveform (represented by its dependence on the pulse duration, τ_p) and on L . The factor f can be associated with the efficiency of transferring energy out of the machine into the inductor. The current which is switched by the PEOS from the storage inductor, L , to the load, Z_ℓ , is less than this by at least a factor $\exp(-Z_\ell \Delta t / L)$ where Δt is related to the switching time and it is assumed that the inductance, L' , between the switch and the load is negligible compared with L . This factor represents the resistive decay of the current during the switching time. Combining these factors results in a load current, $I_\ell = (f V_{oc}^P / Z_g) \exp(-Z_\ell \Delta t / L)$. Defining Δt still remains.

If time $t = 0$ is defined to be the time at which the switch begins to open and drive current through the load, and if $t = t_s$ is defined to be the time of peak load current, then the risetime of the load current, t_s , can be

defined as the switching time. Using this definition Δt and t_s can be related through

$$Z_L \Delta t \equiv \int_0^{t_s} s \left(\frac{Z_L Z_S}{Z_L + Z_S} \right) dt.$$

Here Z_S is the switch impedance and the integral represents the parallel impedance of the switch and the load averaged over the switching time. If Z_S rises rapidly to a value $\gg Z_L$ by $t = t_s$, then $\Delta t \approx t_s$, but in general $\Delta t < t_s$. Here it will be assumed that Z_S does rise rapidly so that $\Delta t \sim t_s$.

Keeping in mind the relationship of Δt and t_s then $V = Z_L I_L$ is limited by

$$V \leq (Z_L f V_{oc}^P / Z_g) \exp(-Z_L \Delta t / L). \quad (3)$$

This is clearly an upper limit, but for the sake of finding the operational window this value will be used. If, for example, there is a current loss in the region between the switch and the load, then the load voltage will be less than that given in Eq. (3). This could happen if significant vacuum electron flow off the cathode in the switch region reaches the anode surface before entering the load region.

The open circuit voltage waveforms for various generators are shown in Fig. 4. Using these input voltage waveforms in the circuit shown in Fig. 3 with $Z_S = 0$, the maximum energy (i.e., $LI^2/2$) transferred to the inductor L can be computed. This energy, $E_L(\tau_p, L)$, is plotted as a function of L in Fig. 5 for various generators.¹⁰⁻¹¹ The peaks in the curves represent the best matched inductance for energy transfer from the generators, however, the peaks are relatively broad. The factor $f(\tau_p, L)$ in Eq. (3) can be obtained from Fig. 5 through

$$f = \frac{Z_g}{V_{OC}} \left(\frac{2E_L(\tau_p, L)}{L} \right). \quad (4)$$

Thus for a given L and Δt Eq. (3) can be used to specify the maximum load voltage as a function Z_g for each generator.

The operational window for a PEUS on a specified pulsed power generator is defined by Eqs. (2) and (3). As an example, consider the results for Gamble I with $\Delta t = 10$ ns shown in Fig. 6. The dashed line is a plot of Eq. (3) and indicates the maximum load voltage Gamble I can expect to drive on a load of impedance Z_g with a storage inductance of 100 nH and with an opening switch that opens in ~ 10 ns. Voltages above this line are not accessible. The curve peaks and begins to fall off when the L/R decay time of the current becomes comparable with or longer than the opening time Δt of the switch. If the switch opens faster (i.e., Δt is decreased), this dashed curve will move up and higher voltages are accessible. On most of the plots that follow dashed curves for three inductances are shown, one for the value of L^{\max} which couples the most energy into the inductor from the generator, one for L somewhat smaller than this L^{\max} and one for L somewhat larger than this L^{\max} .

The solid curves in Fig. 6 are plots of Eq. (2) for $R_c/D = 3, 5$ and 10 . Below and to the right of one of these curves for a given R_c/D the electron flow in the switch region is not fully insulated and therefore the switch will not completely open. Above and to the left of this solid curve the flow is insulated and the switch will open completely. If the switch gap, D , is larger the switch can hold off more voltage while still remaining open. This results in the solid curve moving to the right. The shaded region between the solid and dashed curves in Fig. 6 then represents the operational window for the switch with $R_c/D = 3$ and $L = 100$ nH. The plots that follow will contain a

number of solid curves over a range of values of R_c/D .

Figure 7 shows the same plot for Gamble I as in Fig. 6 but with $\Delta t = 5$ ns. The dashed curve moves up because less energy is dissipated during switching. This illustrates how higher voltage is accessible with a faster opening switch. Figures 8, 9, 10 and 11 show the same results with $\Delta t = 10$ ns for Gamble II, Supermite, PBFA I and PBFA II respectively. Similarly, Figures 12, 13, 14 and 15 show results with $\Delta t = 5$ ns for the same generators.

The results presented here scope out the regime where the PEOS operates well when positioned with a cathode radius R_c on a given generator with a storage inductance L . For a specified gap, D , and opening time, Δt , these plots show what voltage is accessible and what load impedance is necessary to obtain it. If a higher load impedance is used, the switch will not be fully insulated and electrons will shunt current across the switch gap, preventing higher load voltage. Thus this analysis shows what level of voltage and power multiplication can be reasonably expected on various generators using a PEOS which can be made to conduct the full machine current before opening quickly.

Acknowledgments:

The author wishes to acknowledge valuable discussions with R. A. Meger, B. V. Weber, R. J. Commisso, J. N. Neri and G. Cooperstein. This work was supported in part by the U. S. Department of Energy and the Defense Nuclear Agency.

Fig. 1. Schematic of PEOS in opened state.

PBFA I

(a)

GAMBLE II

(b)

Fig. 2. Schematic of (a) PBFA I triplate geometry and (b) Gamble II cylindrical geometry with plasma gun positions indicating location of PEOS.

Fig. 3. Simplified equivalent circuit for generator with PEOS system and load.

(a)

(b)

Fig. 4. Open circuit voltage waveform and generator impedance for (a) Gamble I and Gamble II and (b) PBFAI, PBFA II and SUPERMITE.

Fig. 5. Inductively stored energy as a function of inductance for various generators.

GAMBLE I, $V_{oc} / Z_g = 0.57$ MA
 $\Delta t = 10$ ns

Fig. 6. Operational window for Gamble I and $\Delta t = 10$ ns.

Fig. 7. Operational window for Gamble I with $\Delta t = 5 \text{ ns}$.

GAMBLE II, $V_{oc} / Z_q = 1.5 \text{ MA}$
 $\Delta t = 10 \text{ ns}$

Fig. 8. Operational window for Gamble II with $\Delta t = 10 \text{ ns}$.

Fig. 9. Operational window for Supermite with $\Delta t = 10 \text{ ns}$.

Fig. 10. Operational window for PBFA I with $\Delta t = 10$ ns.

PBFA II, $V_{oc}/Z_g = 6.48$ MA (1/2 machine)
 $\Delta t = 10$ ns

Fig. 11. Operational window for PBFA II with $\Delta t = 10$ ns.

GAMBLE II, $V_{oc}/Z_g = 1.5 \text{ MA}$
 $\Delta t = 5 \text{ ns}$

Fig. 12. Operational window for Gamble II with $\Delta t = 5 \text{ ns}$.

Fig. 13. Operational window for Supermite with $\Delta t = 5 \text{ ns}$.

Fig. 14. Operational window for PBFA II with $\Delta t = 5 \text{ ns}$.

Fig. 15. Operational window for PBFA II with $\Delta t = 5 \text{ ns}$.

References

1. R.A. Meger, J.R. Boller, R.J. Comisso, G. Cooperstein, Shyke A. Goldstein, R. Kulsrud, J.M. Neri, W.F. Oliphant, P.F. Ottlinger, T.J. Renk, J.D. Shipman, Jr., S.J. Stephanakis, B.V. Weber and F.C. Young, Fifth International Conference on High-Power Particle Beams, San Francisco, CA (1983), p.330.
2. R.W. Stinnett, W.B. Moore, R.A. Meger, J.M. Neri and P.F. Ottlinger, Bull. Am. Phys. Soc. 29, 1207 (1984).
3. J.P. VanDevender, et al., Tenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, London, U.K. (1984).
4. K. Imasaki, et al., Tenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, London, U.K. (1984).
5. J.P. VanDevender, Fifth International Conference on High Power Particle Beams San Francisco, CA (1983) p.17.
6. R.A. Meger, R.J. Comisso, G. Cooperstein and Shyke A. Goldstein, Appl. Phys. Lett. 42, 943 (1983).
7. R.A. Meger, J.R. Boller, D. Colombant, R.J. Comisso, G. Cooperstein, Shyke A. Goldstein, R. Kulsrud, J.M. Neri, W.F. Oliphant, P.F. Ottlinger, T.J. Renk, J.D. Shipman, Jr., S.J. Stephanakis, F.C. Young and B.V. Weber, Fourth IEEE Pulsed Power Conference, Albuquerque, NM, (1983) IEEE Cat. No. 83CH1908-3, p. 335.
8. P.F. Ottlinger, Shyke A. Goldstein and R.A. Meger, J. Appl. Physics 56, 774 (1984).
9. R.J. Barker and Shyke A. Goldstein, Bull. Am. Phys. Soc. 26, 921 (1981).
10. J.P. VanDevender, Bull. Am. Phys. Soc. 29, 1230 (1984).
11. G. Cooperstein, J.J. Condon and J.R. Boller, J. Vac. Tech. 10, 961 (1973).

DISTRIBUTION FOR JOINT DIA AND DOE SPONSORED WORK

Director Defense Nuclear Agency Washington, DC 20305 Attn: TIS: Archives TITL Tech. Library J. Z. Farber (RAEV) C. Shubert (RAEV) J. Benson (RAEV) E.E. Stoops (RAEV)	1 copy 3 copies 1 copy 1 copy 1 copy 1 copy	Boeing Company, The P.O. Box 3707 Seattle, WA 98124 Attn: Aerospace Library	1 copy
U.S. Department of Energy Division of Inertial Fusion Washington, DC 20545 Attn: L. E. Killion M. Sluyter R.L. Schriever	1 copy 1 copy 1 copy	Brookhaven National Laboratory Upton, NY 11973 Attn: A.F. Maschke	1 copy
U.S. Department of Energy Office of Classification Washington, DC 20545 Attn: Robert T. Duff	1 copy	BMO/EN Norton AFB, CA Attn: ENSN	1 copy
U.S. Department of Energy Nevada Operations Office Post Office Box 14100 Las Vegas, NV 89114 Attn: Rex Purcell	2 copies	Commander Harry Diamond Laboratory 2800 Powder Mill Rd. Adelphi, MD 20783 (CNWDI-INNER ENVELOPE: ATTN: DELHD-RBH) Attn: DELHD-NP DELHD-RCC -J.A. Rosando DRXDO-RBH -J. Agree DRXDO-TI - Tech Lib.	1 copy 1 copy 1 copy 1 copy
U.S. Department of Energy P.O. Box 62 Oak Ridge, TN 37830	2 copy	Cornell University Ithaca, NY 14850 Attn: D.A. Hammer R.N. Sudan	1 copy 1 copy
Air Force Office of Scientific Research Physics Directorate Bolling AFB, DC 20332 Attn: H. Pugh R. J. Barker	1 copy 1 copy	Defense Advanced Research Project Agency 1400 Wilson Blvd. Arlington, VA 22209 Attn: R. L. Gullickson	1 copy
Atomic Weapons Research Establishment Building H36 Aldermaston, Reading RG 7 4PR United Kingdom Attn: J.C. Martin	1 copy	Defense Technical Information Center Cameron Station 5010 Duke Street Alexandria, VA 22314 Attn: T.C.	2 copies
Air Force Weapons Laboratory, AFSC Kirtland AFB, NM 87117 Attn: NTYP (W. L. Baker)	1 copy	JAYCOR, Inc. 205 S. Whiting Street Alexandria, VA 22304 Attn: D. D. Hinshelwood B. V. Weber J. M. Grossmann	1 copy 1 copy 1 copy
Kaman Tempo 816 State Street (P.O. Drawer QQ) Santa Barbara, CA 93102 Attn: DASIAC			1 copy

KMS Fusion, Inc.
3941 Research Park Drive
P.O. Box 1567
Ann Arbor, MI 48106
Attn: Alexander A. Glass 1 copy

Lawrence Berkeley Laboratory
Berkeley, CA 94720
Attn: D. Keefe 1 copy

Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550
Attn:
Tech. Info. Dept. L-3 1 copy
D.J. Meeker 1 copy
R.E. Batzel/J. Kahn,L-1 1 copy
J.L. Emmett, L-488 1 copy
E. Storm, L-481 1 copy
W.F. Krupke, L-488 1 copy
J. Lindl, L-477 1 copy

Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545
Attn: M. Gillispie/Theo.Div. 1 copy
S.D. Rockwood, ICF Prog. Mgr.
DAD/IF M/S 527 6 copies

Massachusetts Institute of Technology
Cambridge, MA 02139
Attn: R.C. Davidson 1 copy
G. Bekefi 1 copy

Maxwell Laboratories, Inc.
9244 Balboa Avenue
San Diego, CA 92123
Attn: J. Pearlman 1 copy

Mission Research Corporation
1400 San Mateo Blvd. SE
Albuquerque, NM 87108
Attn: B.B. Godfrey 1 copy

National Science Foundation
Mail Stop 19
Washington, DC 20550
Attn: D. Berley 1 copy

Naval Research Laboratory
Addressee: Attn: Name/Code
Code 2628 -TID Distribution 20 copies
Code 1001 - T. Coffey 1 copy
Code 4000 - W. Ellis 1 copy
Code 4040 - J. Boris 1 copy
Code 4700 - S.L. Ossakow 26 copies
Code 4701 - I.V. Vitkovitsky 1 copy
Code 4704 - C. Kapetanakos 1 copy
Code 4720 - J. Davis 1 copy
Code 4730 - S. Bodner 1 copy
Code 4740 - W. Manheimer 1 copy
Code 4760 - B. Robson 1 copy
Code 4770 - G. Cooperstein 10 copies
Code 4770.1 - F. C. Young 1 copy
Code 4771 - P. Ottlinger 1 copy
Code 4773 - R.A. Meger 1 copy
Code 4773 - S.J. Stephanakis 1 copy
Code 4790 - D. Colombant 1 copy
Code 4790 - I. Haber 1 copy
Code 4790 - M. Lampe 1 copy
Code 6682 - D. Nagel 1 copy

Physics International Co.
2700 Merced Street
San Leandro, CA 94577
Attn: A.J. Toepfer 1 copy

Pulse Sciences, Inc.
1615 Broadway, Suite 610
Oakland, CA 94612
Attn: S. Putnam 1 copy

R&D Associates
Suite 500
1401 Wilson Blvd.
Arlington, VA 22209
Attn: P.J. Turchi 1 copy

SAI
8400 W. Park Ave.
McLean, VA 22102
Attn: A. Drobot 1 copy

R&D Associates
P.O. Box 9695
Marina Del Rey, CA 90291
Attn: C. MacDonald 1 copy

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185
Attn: P. Vandevender/1200 6 copies

Spire Corporation
P.O. Box D
Bedford, MA 01730
Attn: R.G. Little 1 copy

Stanford University
SLAC
P.O. Box 4349
Stanford, CA 94305
Attn: W.B. Herrmannsfeldt 1 copy

University of California
Irvine, CA 92717
Attn: N. Rostoker 1 copy

University of Rochester
250 East River Road
Rochester, NY 14623
Attn: J. Eastman 1 copy

Univ. of Washington
Dept. of Nuclear Engineering
BF-10
Seattle, WA 98115
Attn: F. Ribe 1 copy

DIRECTOR OF RESEARCH
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402 2 copies

END

FILMED

7-85

DTIC