El Gamal Mixnets and Implementation of a Verifier

Carl Svensson & Erik Larsson April 10, 2013

Contents

1	Introduction	2
2	El Gamal Cryptography	2
	2.1 Definition	2
	2.2 Security	2
	2.3 Properties	2
3	Mix Networks	2
	3.1 Overview	2
	3.2 El Gamal Mixnet	3
	3.3 Operation	3
	3.4 Verification	3
4	Specification/Documentation	3
5	Implementation of the Verifier	3
	5.1 General Design Choices	3
	5.2 Third Party Libraries	3
	5.3 Math Library	3
	5.4 Pseudorandom Generators and Random Oracles	3
	5.5 Verifier	3
	5.6 Tests	3
	5.7 Performance	3
6	Conclusion	3
7	References	3

1 Introduction

2 El Gamal Cryptography

2.1 Definition

The El-Gamal cryptosystem is defined over a group $G_q = \langle g \rangle$ of prime order q, generated by $g \in G_q$. A private key $x \in \mathbb{Z}_q$ is chosen randomly and is used to compute the public key $(g,y) \in G_q \times G_q$ where $y = g^x$.

Encryption of a plaintext $m \in G_q$ is done by choosing a random $s \in Z_q$ and computing $(u, v) \in G_q \times G_q$ where $u = g^s$ and $v = y^s m$. Decryption of a ciphertext $(u, v) \in G_q \times G_q$ is achieved by using the private key x to compute $m = u^{-x}v$.

2.2 Security

Let $b = g^a \in G_q$ where $a \in \mathbb{Z}_q$. Then a is said to be the discrete logarithm of b in the group G_q . There is currently no known efficient classical algorithm that given (G_q, g, b) is able to calculate a in a reasonable amount of time (polynomial time). The discrete logarithm problem is thus considered to be a hard problem. (Källa)

The security of the El Gamal cryptosystem relies on the difficulty of discrete logarithm in finite cyclic groups G_q . This means that the El Gamal cryptosystem is secure as long as no one is able to compute the discrete logarithm in G_q efficiently. (Källa)

2.3 Properties

The El Gamal cryptosystem is a homomorphic cryptosystem. This

Generalization

3 Mix Networks

3.1 Overview

Intuitiv beskrivning (gör bättre)

http://www.rsa.com/rsalabs/staff/bios/ajuels/publications/universal/Universal.pdf

One purpose of mix networks, or mixnets, is to provide untraceability to its users. A mixnet may, for example, take as input a list of encrypted messages of different origins. These messages pass through the mixnet and is output decrypted and in a randomized order. This property may be used to enable anonymous voting systems.

A reencryption mixnet consists of a number of servers which sequentially process the messages and reencrypts the list of messages and outputs them in a randomized order. After passing through all servers, the list of ciphertexts is decrypted and the result is a list of the messages in random order. It is impossible to deduce from where each element came.

- 3.2 El Gamal Mixnet
- 3.3 Operation
- 3.4 Verification
- 4 Specification/Documentation
- 5 Implementation of the Verifier
- 5.1 General Design Choices
- 5.2 Third Party Libraries
- 5.2.1 Arithmetic Library

GMP

5.2.2 XML Parser

RapidXML

5.2.3 Cryptographic Primitives

OpenSSL

5.2.4 Testing

Google Test

- 5.3 Math Library
- 5.4 Pseudorandom Generators and Random Oracles
- 5.5 Verifier
- 5.6 Tests
- 5.7 Performance
- 6 Conclusion
- 7 References