Other types of networks and some example applications

Anders Krogh

Many different types of neural networks used for different tasks

Generative models

Generative neural networks

Aim:

Model the distribution of your data, P(x), by mapping from a low-dimensional representation space

Ingredients:

- Distribution over representations: $P(z|\phi)$
- Decoder (neural network): $P(x|z,\theta)$ *

Generative:

- 1. Sample random z from $P(z|\varphi)$
- 2. Sample random x from $P(x|z,\theta)$

High dimensional data space

^{*)} Neural network may for instance output a mean of a normal with fixed variance

Why generate images of fake cats?

- Model learns a low dimensional representation
- Related to manifold learning
 - UMAP
 - tSNE
- This may be useful for other puposes
 - Representations useful for other tasks
 - Grouping of tumor types, stocks, cats,...
 - Imputation
 - Interpolation

Latent space interpolation

Copied from
"Generative Modeling with Variational Auto
Encoder (VAE). Understanding the intuition
behind Variational Autoencoder"
By Fathy Rashad

https://medium.com/vitroxpublication/generative-modeling-with-variationalauto-encoder-vae-fc449be9890e

Similar: App that can predict how you will look when you get old

VAE: Variational Autoencoder

- Training of generative models require additional "tricks"
- One method is to train an encoder together with the decoder to give a distribution P(z|x) to sample from
- This is called a variational autoencoder

Generative adversarial network (GAN) is another type

Generative models for gene expression

Bioinformatics, 36(16), 2020, 4415–4422 doi: 10.1093/bioinformatics/btaa293 Advance Access Publication Date: 16 May 2020 Original Paper

Gene expression

scVAE: variational auto-encoders for single-cell gene expression data

Christopher Heje Grønbech^{1,2,3,*}, Maximillian Fornitz Vording³, Pascal N. Timshel⁴, Casper Kaae Sønderby¹, Tune H. Pers⁴ and Ole Winther^{1,2,3}

ARTICLES

https://doi.org/10.1038/s41592-019-0494-8

scGen predicts single-cell perturbation responses

Mohammad Lotfollahi 1012, F. Alexander Wolf 11* and Fabian J. Theis 12,3*

ARTICLE

https://doi.org/10.1038/s41467-019-14018-z

OPEN

Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

Mohamed Marouf^{1,5}, Pierre Machart ^{1,5}, Vikas Bansal ¹, Christoph Kilian ^{1,2}, Daniel S. Magruder^{1,3}, Christian F. Krebs² & Stefan Bonn ^{1,4}*

Bioinformatics, 36(11), 2020, 3418–3421 doi: 10.1093/bioinformatics/btaa169 Advance Access Publication Date: 16 March 2020 Original Paper

(R) Check for updates

Gene expression

Interpretable factor models of single-cell RNA-seq via variational autoencoders

Valentine Svensson (Adam Gayoso (Nir Yosef^{2,3,4} and Lior Pachter^{1,5}

ARTICLE

https://doi.org/10.1038/s41467-021-26017-0

OPEN

VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics

Lucas Seninge¹, Ioannis Anastopoulos¹, Hongxu Ding¹ & Joshua Stuart¹

A Deep Generative model applied to a single-cell dataset from peripheral blood mononuclear cells*

Schuster & Krogh: https://arxiv.org/abs/2110.06672

*) Data from Zheng, et al. Nat Commun. 2017 Apr;8(1):14049. https://doi.org/10.1038/ncomms14049.

Sub-clustering for marker genes

Transformers

AlphaFold 2

The New York Times

A.I. Predicts the Shapes of Molecules to Come

DeepMind has given 3-D structure to 350,000 proteins, including every one made by humans, promising a boon for medicine and drug design.

From: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2

Transformer Neural Networks

- Introduced for natural language processing
- Used for sequential data like words in a sentence or amino acids in a sequence
- Replaces recurrent neural networks
- Use several layers of representations and an attention mechanism to focus on important parts (words)

Learn more e.g. in this blog post (where the figure is from):

https://towardsdatascience.com/transformer-neural-network-step-by-step-breakdown-of-the-beast-b3e096dc857f

or read the paper

Attention Is All You Need

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. Ashish Vaswani* Google Brain avaswani@google.com

> Llion Jones* Google Research

llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Noam Shazeer*

Google Brain

noam@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Jakob Uszkoreit*

Google Research

usz@google.com

Niki Parmar*

Google Research

nikip@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Figure 1: The Transformer - model architecture.

And so on

- DELL-E https://openai.com/dall-e-2/
- ChatGBT