

Universidad De Sonora

LICENCIATURA EN FÍSICA FÍSICA COMPUTACIONAL I

Comprotamiento de Mareas

Alexis Andrey Martínez Padilla Profesor Carlos Lízarraga Celaya

26 de Abril del 2017

1. Breve Resumen

En esta actividad nos introduciremos al analísis de las mareas. Primero que nada será entender su definición, sus tipos y sus diferentes características. Despúes utilizando una Notebook de Python se hará un pequeño analisis de dos costas mostrando su comportamiento de mareas en un mes.

2. Introducción

Las mareas son un fenómeno producido por diferentes factores físicos o natural, entre ellos puede llegar a ser la misma rotacián de la Tierra, los efectos gravitacionales de la Luna, el Sol, etc. Estos fenómenos crean un descenso y ascenso del nivel del mar, al que se le conoce como marea.

3. Teoría de Mareas

Las mareas tienen un comportamiento ondulatorio, tiene su amplitud (Diferencias entre picos y valles de agua), tiene distintos periodos que dependen de la hora y la fecha.

La diferencia de altura entre aguas altas y bajas varía en un ciclo de dos semanas, y es cuando el Sol, la Luna y la Tierra se alinean; por otro lado el mínimo nivel del mar se produce cuando el ángulo entre la Luna y el Sol es perpendicular (Se le conoce marea NEAP)

Así mismo la altitud de la Luna ejerce directamente un cambio en el nivel marino. Cuando la Luna se encuentra más cerca a la Tierra el nivel aumenta, y cuando se encuentra más lejos, disminuye. A estos procesos se les conoce como Perigeo y Apogeo respectivamente.

4. Constituyentes de Mareas

Número	Nombre	Símbolo	Periodo (hr)
1	Principal lunar semidiurno	M_2	12.42
2	Principal solar semidiurno	S_2	12.00
3	Lunar elítpico semidiurno	N_2	12.66
4	Lunar diurno	K_1	23.93
5	Aguas poco profundas de principal lunar	M_4	6.21
6	Lunar diurno	O_1	25.82
7	Aguas poco profundas de principal lunar	M_6	4.14
8	Aguas poco profundas terdiurno	MK_3	8.18
9	Aguas poco profundas de principal solar	S_4	6.00
10	Aguas poco profundas cuarto diurno	MN_4	6.27

5. Resultados

5.1. CICESE: Progreso, Yucatán.

```
import pandas as pd
import matplotlib.pylab as plt
from datetime import datetime
import numpy as np

df = pd.read_csv("Progreso.csv", names = ("Anio", "Mes", "dia", "Hora", "Altura"), head
df.head()

df.apply(lambda x: sum(x.isnull()),axis=0)

df_cl = df.dropna()
df_cl.Altura = pd.to_numeric(df_cl.Altura, errors='coerce')

df_cl['date'] = df.apply(lambda x:datetime.strptime("{0} {1} {2} {3}".format(x[u'Anio'],x))
```

```
y= df_cl['Altura']

plt.plot(df_cl['date'], y, label ="Altura")

plt.xlim(pd.Timestamp('2016-01-01 00:00:00'), pd.Timestamp('2016-01-31 23:00:00'))

plt.ylabel('Altura de marea [mm]')

plt.xlabel('Fecha')

plt.title('Nivel de Marea en Progreso, Yucatán, Enero 2016')

plt.grid(True)

plt.plot(x,y)

plt.show()
```


5.2. NOAA: Fort Point, New Hampshire

import pandas as pd

```
import matplotlib.pylab as plt
from datetime import datetime
import numpy as np

df = pd.read_csv("FortPoint.csv", names = ("Date Time", "Water Level", "Sigma", "O", "F'
df.head()

df['Date'] = pd.to_datetime(df["Date Time"], format = '%Y %m %d %H:%M:')

df.apply(lambda x: sum(x.isnull()),axis=0)
```

```
x= df['Date']
y= df['Water Level']

tides = plt.plot(df[u'Date'], df[u'Water Level'], 'g', label ="Altura")
plt.xlim(pd.Timestamp('2016-03-27 00:00:00'), pd.Timestamp('2016-04-26 23:59:00'))
plt.ylabel('Altura de marea [m]')
plt.xlabel('Fecha')
plt.title('Nivel de Marea en Fort Point, New Hampshire, desde Marzo 2016 hasta Abril 201
plt.grid(True)

plt.plot(x,y)
plt.show()
```


6. Bibliografía

- Carlos Lizárraga Celaya; Universidad de Sonora, Departamento de Física.
 http://computacional1.pbworks.com/w/page/115478932/Actividad %204 %20(2017-1)
- 2. https://en.wikipedia.org/wiki/Tide
- 3. https://en.wikipedia.org/wiki/Theory_of_tides
- 4. http://predmar.cicese.mx/calendarios/
- 5. https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
- 6. http://www.tablademareas.com/mx