Árboles Binarios

Agenda

- Definición
- Descripción y terminología
- Representaciones
- Recorridos
- > Aplicación: Árboles de expresión

Árbol Binario: Definición

- ➤ Un árbol binario es una colección de nodos, tal que:
 - puede estar vacía
 - puede estar formada por un nodo distinguido R, llamado $\it{raíz}$ y dos sub-árboles \it{T}_1 y \it{T}_2 , donde la raíz de cada subárbol \it{T}_i está conectado a \it{R} por medio de una arista

- Cada nodo puede tener a lo sumo dos nodos hijos.
- Cuando un nodo no tiene ningún hijo se denomina *hoja*.
- Los nodos que tienen el mismo nodo padre se denominan *hermanos*.

- Conceptos a usar:
 - *Camino*: desde n_1 hasta n_k , es una secuencia de nodos n_1 , n_2, \ldots, n_k tal que n_i es el padre de n_{i+1} , para $1 \le i < k$.
 - La longitud del camino es el número de aristas, es decir k-1.
 - Existe un camino de longitud cero desde cada nodo a sí mismo.
 - Existe un único camino desde la raíz a cada nodo.
 - *Profundidad*: de n_i es la longitud del único camino desde la raíz hasta n_i.
 - La raíz tiene profundidad cero.

- Grado de n_i es el número de hijos del nodo n_i.
- *Altura* de n_i es la longitud del camino más largo desde n_i hasta una hoja.
 - Las hojas tienen altura cero.
 - La altura de un árbol es la altura del nodo raíz.
- Ancestro/Descendiente: si existe un camino desde n_1 a n_2 , se dice que n_1 es ancestro de n_2 y n_2 es descendiente de n_1 .

• Árbol binario lleno: Dado un árbol binario T de altura h, diremos que T es *lleno* si cada nodo interno tiene grado 2 y todas las hojas están en el mismo nivel (h).

Es decir, recursivamente, T es lleno si :

- 1.- T es un nodo simple (árbol binario lleno de altura 0), o
- 2.- T es de altura h y sus sub-árboles son llenos de altura h-1.

Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

• Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

Nivel $0 \rightarrow 2^0$ nodos

Nivel 1 \rightarrow 2¹ nodos

Nivel 2 \rightarrow 2² nodos

Nivel 3 \rightarrow 2³ nodos

.

Nivel h \rightarrow 2^h nodos

Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

Nivel $0 \rightarrow 2^0$ nodos

Nivel 1 \rightarrow 2¹ nodos

Nivel 2 \rightarrow 2² nodos

Nivel 3 \rightarrow 2³ nodos

.

Nivel h \rightarrow 2^h nodos

$$N = 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^h$$

La suma de los términos de una serie geométrica de razón 2 es:

$$(2^{h+1}-1)$$

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:
 - Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$

• Si no, el árbol es lleno en la altura h-1 y tiene por lo menos un nodo en el nivel h: $\mathbf{N} = (2^{h-1+1}-1)+1=(2^h-1+1)$

Representación Hijo Izquierdo - Hijo Derecho

- ✓ Cada nodo tiene:
 - Información propia del nodo
 - Referencia a su hijo izquierdo
 - Referencia a su hijo derecho

Representación Hijo Izquierdo - Hijo Derecho

Recorridos

Preorden

Se procesa primero la raíz y luego sus hijos, izquierdo y derecho.

> Inorden

Se procesa el hijo izquierdo, luego la raíz y último el hijo derecho

Postorden

Se procesan primero los hijos, izquierdo y derecho, y luego la raíz

Por niveles

Se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

Recorrido: Preorden

```
public void preorden() {
imprimir (dato);
si (tiene hijo_izquierdo)
    hijoIzquierdo.preorden();
si (tiene hijo derecho)
    hijoDerecho.preorden();
```

Recorrido: Por niveles

```
public void porNiveles() {
 encolar(raíz);
  mientras (cola no se vacíe) {
    desencolar(v);
    imprimir (dato de v);
    si (tiene hijo_izquierdo)
            encolar(hijo_izquierdo);
    si (tiene hijo_derecho)
            encolar(hijo_derecho);
```

Ejercicio 1

Ejercicio 1

a)

- √inorden: 10 9 11 7 8
- ✓ postorden: 10 11 9 8 7
- ✓ preorden: 7 9 10 11 8

Ejercicio 1

a)

- √inorden: 10 9 11 7 8
- ✓ postorden: 10 11 9 8 7
- ✓ preorden: 7 9 10 11 8

b)

- ✓ inorden: 3 10 8 11 7 9 18
- ✓ postorden: 10 11 8 18 9 7 3
- ✓preorden: 3 7 8 10 11 9 18

Ejercicio 1

a)

- ✓ inorden: 10 9 11 7 8
- ✓ postorden: 10 11 9 8 7
- ✓ preorden: 7 9 10 11 8

\boldsymbol{c}

- ✓ inorden: 13 10 15 8
- ✓ postorden: 13 15 10 8
- ✓ preorden: 8 10 13 15

b)

- ✓ inorden: 3 10 8 11 7 9 18
- ✓ postorden: 10 11 8 18 9 7 3
- ✓ preorden: 3 7 8 10 11 9 18

Ejercicio 1

a)

- ✓ inorden: 10 9 11 7 8
- ✓ postorden: 10 11 9 8 7
- ✓ preorden: 7 9 10 11 8

 \boldsymbol{c}

- √inorden: 13 10 15 8
- ✓ postorden: 13 15 10 8
- ✓ preorden: 8 10 13 15

b)

- ✓ inorden: 3 10 8 11 7 9 18
- ✓ postorden: 10 11 8 18 9 7 3
- ✓preorden: 3 7 8 10 11 9 18

Ejercicio 2

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos:

inorden: CBFEGADIH y postorden: CFGEBIHDA

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: C B F E G A D I H y postorden: C F G E B I H D A

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

```
¿Por dónde empezamos?
```

¿Qué información podemos obtener de los recorridos dados?

¿De qué estamos seguros?

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA Raíz

¿ Cómo seguimos ?

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

Raíz

¿Cómo armamos los subárboles? ¿Qué información podemos obtener de los recorridos dados?

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

Árbol binario: Recorridos

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

