#### Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

К ЗАЩИТЕ ДОПУСТИТЬ
\_\_\_\_\_ И. В. Лукьянова

# ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

## ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 523 ПЗ

В. С. Чеботарёв

Руководитель И. В. Лукьянова

#### Министерство образования Республики Беларусь

# Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

| <b>«</b> | >>   |     |     |      |     | 2   | 0_ | Γ.  |    |
|----------|------|-----|-----|------|-----|-----|----|-----|----|
|          |      |     | Б.  | В.   | Ни  | кул | Ы  | ШИН | I  |
| 3aı      | зеду | /ЮШ | циі | й ка | афе | едр | ой | ЭЕ  | 3M |
| УΊ       | BE   | РЖ  | ДΡ  | Ж    | )   |     |    |     |    |

#### ЗАДАНИЕ

#### по курсовой работе студента Чеботарёва Вячеслава Сергеевича

- **1** Тема работы: «Проектирование и логический синтез сумматораумножителя двоично-четверичных чисел»
- 2 Срок сдачи студентом законченной работы: 19 мая 2021г.
- 3 Исходные данные к работе:
  - **3.1** исходные сомножители: MH = 51,50; MT = 85,17.
  - 3.2 алгоритм умножения: В.
  - **3.3** метод умножения: умножение закодированного двоично-четверичного множимого на два разряда двоичного множителя одновременно в дополнительных кодах.
  - **3.4** коды четверичных цифр множимого для перехода к двоичночетверичной системе кодирования;  $0_4 11$ ,  $1_4 00$ ,  $2_4 10$ ,  $3_4 01$ .
  - 3.5 тип синтезируемого умножителя: 2.
  - **3.6** логический базис для реализации ОЧС: НЕ, И; метод минимизации алгоритм Рота для одного выхода, метод карты Карно для остальных.
  - **3.7** логический базис для реализации ОЧУС: ИЛИ-НЕ; метод минимизации карты Вейча.

- **4** Содержание пояснительной записки (перечень подлежащих разработке вопросов):
  - Введение. 1. Разработка алгоритма умножения. 2. Разработка структурной схемы сумматора-умножителя. 3. Разработка функциональных схем основных узлов сумматора-умножителя. 4. Синтез комбинационных схем устройств на основе мультиплексоров. 5. Оценка результатов разработки. Заключение. Список литературы.
- 5 Перечень графического материала:
  - 5.1 Сумматор-умножитель второго типа. Схема электрическая структурная.
  - **5.2** Одноразрядный четверичный сумматор. Схема электрическая функциональная.
  - **5.3** Одноразрядный четверичный умножитель-сумматор. Схема электрическая функциональная.
  - 5.4 Преобразователь множителя. Схема электрическая функциональная.
  - **5.5** Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная.

#### КАЛЕНДАРНЫЙ ПЛАН

| Наименование этапов курсовой работы                                    | Объём<br>этапа, % | Срок<br>выполнения<br>этапа | Примечания                   |
|------------------------------------------------------------------------|-------------------|-----------------------------|------------------------------|
| Разработка алгоритма<br>умножения                                      | 10                | 26.02-13.03                 |                              |
| Разработка структурной схемы<br>сумматора-умножителя                   | 10                | 14.03-27.03                 | С<br>выполнением<br>чертежа  |
| Разработка функциональных схем основных узлов сумматора-<br>умножителя | 50                | 28.03-08.05                 | С<br>выполнением<br>чертежей |
| Синтез комбинационных схем устройств на основе мультиплексоров         | 10                | 09.05-22.05                 | С<br>выполнением<br>чертежа  |
| Завершение оформления пояснительной записки                            | 20                | 23.05-05.06                 |                              |

| Дата выдачи задания: 26 февраля 2021 г. |               |
|-----------------------------------------|---------------|
| Руководитель                            | И.В.Лукьянова |
| ЗАДАНИЕ ПРИНЯЛ К ИСПОЛНЕНИЮ             |               |

## СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                                                                           | 5        |
|--------------------------------------------------------------------------------------------------------------------|----------|
| 1 РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ                                                                                   | 6        |
| 2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ<br>ВТОРОГО ТИПА                                                | 9        |
| 3 РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ<br>СУММАТОРА-УМНОЖИТЕЛЯ                                            |          |
| 3.1 Логический синтез одноразрядного четверичного умножителя-                                                      |          |
| сумматора                                                                                                          | 11       |
| 3.2 Логический синтез одноразрядного четверичного сумматора                                                        | 14       |
| 4.3 Логический синтез преобразователя множителя                                                                    | 23       |
| 4 СИНТЕЗ СХЕМЫ ОЧС НА ОСНОВЕ МУЛЬТИПЛЕКСОРА                                                                        | 25       |
| 5 ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ                                                                                    |          |
| 5.1 Расчёт времени умножения на один разряд множителя                                                              | 27       |
| 5.2 Расчёт времени умножения на п разрядов множителя                                                               | 28       |
| ЗАКЛЮЧЕНИЕ                                                                                                         | 29       |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                                                                                   | 30       |
| ПРИЛОЖЕНИЕ А Сумматор-умножитель второго типа. Схема электрическая структурная                                     | я<br>31  |
| ПРИЛОЖЕНИЕ Б Одноразрядный четверичный умножитель-сумматор. Схем электрическая функциональная                      | ла<br>32 |
| ПРИЛОЖЕНИЕ В Одноразрядный четверичный сумматор. Схема электрическая функциональная                                | 33       |
| ПРИЛОЖЕНИЕ Г Преобразователь множителя. Схема электрическая функциональная                                         | 34       |
| ПРИЛОЖЕНИЕ Д Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная | 35       |
| ПРИЛОЖЕНИЕ Е Ведомость документов                                                                                  | 36       |
|                                                                                                                    |          |

#### **ВВЕДЕНИЕ**

Курсовое проектирование является обязательным элементом подготовки специалиста с высшим образованием и одной из форм текущей аттестации студента по учебной дисциплине. Для студентов это первая работа такого рода и объёма. Она содержит результаты теоретических и экспериментальных исследований по дисциплине "Арифметические и логические основы вычислительной техники", включает совокупность аналитических, расчётных, экспериментальных заданий и предполагает выполнение конструкторских работ и разработку графической документации.

Целью данной курсовой работы является проектирование такого цифрового устройства, как двоично-четверичный сумматор-умножитель (СУ). Сумматор является одним из центральных узлов арифметико-логического устройства (АЛУ) вычислительной машины, поэтому глубокое понимание принципов его работы критически важно для современного инженера. Для того чтобы спроектировать данное устройство, необходимо пройти несколько последовательных этапов разработки:

- Разработка алгоритма умножения чисел, по которому работает СУ
- Разработка структурной схемы СУ
- Разработка функциональной схемы основных узлов структурной схемы СУ
- Оценка результатов проделанной работы
- Оформление документации по проделанной работе

В ходе выполнения курсовой работы автором были пройдены все эти этапы. В настоящей пояснительной записке изложено краткое описание процесса проектирования и приведена разработанная автором графическая документация по структурной схеме и функциональным схемам основных её узлов.

#### 1 РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ

1. Перевод сомножителей из десятичной системы счисления в четверичную.

$$M_H = 51,50; M_T = 85,17.$$

#### Множимое

 $M_{H_4} = 303,200.$ 

В соответствии с кодировкой множимого:

 $M_{H_{2/4}} = 011101,101111.$ 

#### Множитель

$$M_{T_4} = 1111.02$$

В соответствии с обычной весомозначной кодировкой множителя:  $M_{T_2/4} = 01010101.0010$ .

2. Запишем сомножители в форме с плавающей запятой в прямом коде:

 $M_H=0.\ 0111011011111$   $P_{_{MH}}=0.1110+03_4-$  закодировано по заданию  $M_T=0.\ 010101010010$   $P_{_{MT}}=0.0100+10_4-$  закодировано традиционно

3. Умножение двух чисел с плавающей запятой на два разряда множителя одновременно в дополнительных кодах. Это сводится к сложению

порядков, формированию знака произведения, преобразованию разрядов множителя согласно алгоритму и перемножению мантисс сомножителей.

Порядок произведения будет следующим:

$$\begin{array}{ll} P_{\text{MH}} = & 0.1110 + \! 03_4 \\ P_{\text{MT}} = & \underline{0.0100} + \! 10_4 \\ P_{\text{MH} \cdot \text{MT}} = 0.0001 + \! 13_4 \end{array}$$

Результат закодирован в соответствии с заданием на кодировку множимого.

Знак произведения определяется суммой по модулю два знаков сомножителей, т.е.:

зн Мн 
$$\bigoplus$$
 зн Мт  $= 0 \bigoplus 0 = 0$ 

Для умножения мантисс необходимо предварительно преобразовать множитель. При умножении чисел в дополнительных кодах диада  $11(3_4)$  заменяется на триаду  $10\overline{1}(\overline{1_4})$ , диада  $10(2_4)$  заменяется на триаду  $1\overline{1}0(\overline{2_4})$ .

Преобразованный множитель имеет вид:

$$[MT^{\Pi}]_{\Pi} = 11111\bar{2}$$

Для выполнения операции умножения нам понадобятся заготовки в виде:

$$[M_H]_{\pi} = 0.303200$$
  $[-2M_H]_{\pi} = 3.212100$ 

Перемножение мантисс по алгоритму "В" приведено в таблице 1.1.

Таблица 1.1 - Перемножение мантисс

| Четверичная с/с | Двоично-четверичная с/с     | Комментарий                               |
|-----------------|-----------------------------|-------------------------------------------|
| 000000000000    | 111111111111111111111111111 | $\varSigma_0^{	ext{	iny q}}$              |
| 00000000000     | 111111111111111111111111111 | $\Sigma_0^{\mathrm{q}}*4$                 |
| 000000303200    | 1111111111111011101101111   | $\Pi_1$ =[MH] <sub><math>\pi</math></sub> |
| 000000303200    | 1111111111111011101101111   | $\varSigma_1^{	ext{	iny q}}$              |
| 000003032000    | 11111111111011101101111111  | $\Sigma_1^{	ext{	iny 4}}$                 |
| 000000303200    | 1111111111111011101101111   | $\Pi_2=[M_H]_{\mathcal{I}}$               |
| 000010001200    | 1111111100111111100101111   | $\varSigma_2^{	ext{	iny q}}$              |
| 000100012000    | 111111001111110010111111    | $\Sigma_2^{\mathrm{q}} * 4$               |
| 000000303200    | 1111111111111011101101111   | П3=[Мн]д                                  |
| 000100321200    | 11111110011111011000101111  | $\varSigma_3^{	ext{	iny q}}$              |
| 001003212000    | 111100111101100010111111    | $\Sigma_3^{\mathrm{q}}*4$                 |
| 000000303200    | 1111111111111011101101111   | П3=[Мн]д                                  |
| 001010121200    | 111100110011001011101111    | $\Sigma_4^{	ext{	iny 4}}$                 |
| 010101212000    | 110011001100101110111111    | $\varSigma_4^{	ext{	iny 4}} *4$           |
| 000000303200    | 1111111111111011101101111   | $\Pi_4=[M_H]_{_{ m I}}$                   |
| 010102121200    | 110011001110001000101111    | $\Sigma_5^{	ext{	iny Y}}$                 |
| 101021212000    | 001100111000100010111111    | $\Sigma_5^{	ext{	iny 4}}$                 |
| 333332121000    | 010101010110001000111111    | $\Pi_6 = [-2M_{\rm H}]_{\rm д}$           |
| 101013333000    | 001100110001010101111111    | $\Sigma_6^{	ext{	iny q}}$                 |

После окончания умножения необходимо оценить погрешность вычислений. Для этого полученное произведение приводится к нулевому порядку, а затем переводится в десятичную систему счисления:

$$[M_{\rm H} \cdot M_{\rm T}]_4 = 1010133.33000, \quad P_{\rm M_{\rm H} \cdot M_{\rm T}} = 0;$$
  
 $[M_{\rm H} \cdot M_{\rm T}]_{10} = 4383.9375.$ 

Результат прямого перемножения операндов дает результат:

$$M_{H_{10}} \cdot M_{T_{10}} = 51.50 * 85.17 = 4386.2550.$$

Абсолютная погрешность:

$$\Delta = 4386.2550 - 4383.9375 = 2.3175.$$

Относительная погрешность: 
$$\delta = \frac{\Delta}{M_{\text{H}} \cdot M_{\text{T}}} = \frac{2.3175}{4386.2550} = 0.0005284 \; (\delta = 0.053 \; \%).$$

Эта погрешность получена за счёт приближённого перевода из десятичной системы счисления в четверичную обоих сомножителей, а также за счёт округления полученного результата произведения.

#### 2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРАУМНОЖИТЕЛЯ ВТОРОГО ТИПА

Структурная схема сумматора-умножителя второго типа для алгоритма умножения «В» приведена на рисунке приложения А.

работает устройство как сумматор, оба TO слагаемых последовательно (за два такта) заносятся в регистр множимого, а на управляющий вход формирователя дополнительного кода F2 поступает «1». обеспечить Необходимо выполнение алгоритма сложения чисел, представленных в форме с плавающей запятой, базируясь на схеме умножителя, реализующего заданный алгоритм умножения.

Первое слагаемое переписывается в регистр результата под действием управляющих сигналов, поступающих на входы h всех ОЧУС (рисунок 2.1).



Рисунок 2.1 – Режимы работы ОЧУС

Если на вход h поступает «0», то ОЧУС перемножает разряды Мн и Мт и добавляет к полученному результату перенос из предыдущего ОЧУС.

В ОЧС первое слагаемое складывается с нулём, записанным в регистре результата, и переписывается без изменений в регистр результата.

На втором такте второе слагаемое из регистра множимого через цепочку ОЧУС попадает на входы ОЧС и складывается с первым слагаемым, хранящимся в регистре результата.

Сумма хранится в регистре результата. Разрядность регистра результата должна быть на единицу больше, чем разрядность исходных слагаемых, чтобы предусмотреть возможность возникновения при суммировании переноса.

Если устройство работает как умножитель, то множимое и множитель помещаются в соответствующие регистры, а на управляющий вход ФДК F2 поступает «0».

Диада множителя поступает на входы преобразователя множителя. Единица переноса в следующую диаду, если она возникает, должна быть добавлена к следующей диаде множителя (выход 1 ПМ) в следующем такте, т. е. должна храниться на триггере до следующего такта.

В регистре множителя после каждого такта умножения содержимое сдвигается на два двоичных разряда, и в конце умножения регистр обнуляется.

Выход 2 ПМ переходит в единичное состояние, если текущая диада со-

держит отрицание ( $\overline{01}$ ). В этом случае инициализируется управляющий вход F1 формирователя дополнительного кода, и на выходах ФДК формируется дополнительный код множимого с обратным знаком (умножение на -1).

Принцип работы ФДК в зависимости от управляющих сигналов отражён в таблице 2.2.

| ,          | 1 1 1                      |                               |  |  |  |
|------------|----------------------------|-------------------------------|--|--|--|
| Сигналы на | входах ФДК                 | Возуну тот но вучуской ФШС    |  |  |  |
| $F_{I}$    | $F_{\scriptscriptstyle 2}$ | Результат на выходах ФДК      |  |  |  |
| 0          | 0                          | Дополнительный код множимого  |  |  |  |
| 0          | 1                          | Дополнительный код слагаемого |  |  |  |
| 1          | 0                          | Меняется знак Мн              |  |  |  |
| 1          | 1                          | Меняется знак слагаемого      |  |  |  |

Таблица 2.2 – Режимы работы формирователя дополнительного кода

На выходах 3 и 4 ПМ формируются диады преобразованного множителя, которые поступают на входы ОЧУС вместе с диадами множимого. На трёх выходах ОЧУС формируется результат умножения диад Мн·Мт плюс перенос из предыдущего ОЧУС. Максимальной цифрой в диаде преобразованного множителя является двойка, поэтому перенос, формируемый ОЧУС, может быть только двоичным («0» или «1»):

Так как на входы ОЧУС из регистра Мт не могут поступить коды «3», в таблице истинности работы ОЧУС будут содержаться 36 безразличных входных наборов.

Частичные произведения, получаемые на выходах ОЧУС, складываются с накапливаемой частичной суммой из регистра результата с помощью цепочки ОЧС (на первом такте выполняется сложение с нулём).

#### 3 РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ

## 3.1Логический синтез одноразрядного четверичного умножителясумматора

ОЧУС – это комбинационное устройство, имеющее шесть входов (два разряда из регистра множимого, два разряда из регистра множителя, вход переноса и управляющий вход h) и три выхода.

Принцип работы ОЧУС представлен с помощью таблицы истинности (таблица 3.1).

Разряды множителя закодированы: 0 - 00, 1 - 01, 2 - 10, 3 - 11.

Разряды множимого закодированы: 0 - 11, 1 - 00, 2 - 10, 3 - 01.

Управляющий вход h определяет тип операции:

«0» – умножение закодированных цифр, поступивших на информационные входы;

 $\ll 1$ » — вывод на выходы без изменения значения разрядов, поступивших из регистра множимого.

Таблица 3.1

| Пер. | Мн        |           | Мт |    | Упр. | Перенос | Результат |    | Результат операции в               |
|------|-----------|-----------|----|----|------|---------|-----------|----|------------------------------------|
| P1   | <b>x1</b> | <b>x2</b> | y1 | y2 | h    | P       | Q1        | Q2 | - четверичной системе<br>счисления |
| 1    | 2         | 3         | 4  | 5  | 6    | 7       | 8         | 9  | 10                                 |
| 0    | 0         | 0         | 0  | 0  | 0    | 0       | 1         | 1  | 1*0+0=00                           |
| 0    | 0         | 0         | 0  | 0  | 1    | 0       | 0         | 0  | Выход-код "01"                     |
| 0    | 0         | 0         | 0  | 1  | 0    | 0       | 0         | 0  | 1*1+0=01                           |
| 0    | 0         | 0         | 0  | 1  | 1    | 0       | 0         | 0  | Выход-код "01"                     |
| 0    | 0         | 0         | 1  | 0  | 0    | 0       | 1         | 0  | 1*2+0=02                           |
| 0    | 0         | 0         | 1  | 0  | 1    | 0       | 0         | 0  | Выход-код "01"                     |
| 0    | 0         | 0         | 1  | 1  | 0    | X       | X         | X  | 1*3+0=03                           |
| 0    | 0         | 0         | 1  | 1  | 1    | X       | X         | X  | Выход-код "01"                     |
| 0    | 0         | 1         | 0  | 0  | 0    | 0       | 1         | 1  | 3*0+0=00                           |
| 0    | 0         | 1         | 0  | 0  | 1    | 0       | 0         | 1  | Выход-код "03"                     |
| 0    | 0         | 1         | 0  | 1  | 0    | 0       | 0         | 1  | 3*1+0=03                           |
| 0    | 0         | 1         | 0  | 1  | 1    | 0       | 0         | 1  | Выход-код "03"                     |
| 0    | 0         | 1         | 1  | 0  | 0    | 1       | 1         | 0  | 3*2+0=12                           |
| 0    | 0         | 1         | 1  | 0  | 1    | 0       | 0         | 1  | Выход-код "03"                     |
| 0    | 0         | 1         | 1  | 1  | 0    | X       | X         | X  | 3*3+0=21                           |
| 0    | 0         | 1         | 1  | 1  | 1    | X       | X         | X  | Выход-код "03"                     |
| 0    | 1         | 0         | 0  | 0  | 0    | 0       | 1         | 1  | 2*0+0=00                           |
| 0    | 1         | 0         | 0  | 0  | 1    | 0       | 1         | 0  | Выход-код "02"                     |
| 0    | 1         | 0         | 0  | 1  | 0    | 0       | 1         | 0  | 2*1+0=02                           |
| 0    | 1         | 0         | 0  | 1  | 1    | 0       | 1         | 0  | Выход-код "02"                     |
| 0    | 1         | 0         | 1  | 0  | 0    | 1       | 1         | 1  | 2*2+0=10                           |
| 0    | 1         | 0         | 1  | 0  | 1    | 0       | 1         | 0  | Выход-код "02"                     |
| 0    | 1         | 0         | 1  | 1  | 0    | X       | X         | X  | 2*3+0=12                           |
| 0    | 1         | 0         | 1  | 1  | 1    | X       | X         | X  | Выход-код "02"                     |
| 0    | 1         | 1         | 0  | 0  | 0    | 0       | 1         | 1  | 0*0+0=00                           |

Продолжение таблицы 3.1

| Продоля | кение | Таоли | щы э. | . 1 |   |   |   |   |                |
|---------|-------|-------|-------|-----|---|---|---|---|----------------|
| 0       | 1     | 1     | 0     | 0   | 1 | 0 | 1 | 1 | Выход-код "00" |
| 0       | 1     | 1     | 0     | 1   | 0 | 0 | 1 | 1 | 0*1+0=00       |
| 0       | 1     | 1     | 0     | 1   | 1 | 0 | 1 | 1 | Выход-код "00" |
| 0       | 1     | 1     | 1     | 0   | 0 | 0 | 1 | 1 | 0*2+0=00       |
| 0       | 1     | 1     | 1     | 0   | 1 | 0 | 1 | 1 | Выход-код "00" |
| 0       | 1     | 1     | 1     | 1   | 0 | X | X | X | 0*3+0=00       |
| 0       | 1     | 1     | 1     | 1   | 1 | X | X | X | Выход-код "00" |
| 1       | 0     | 0     | 0     | 0   | 0 | X | X | X | 1*0+1=00       |
| 1       | 0     | 0     | 0     | 0   | 1 | X | X | X | Выход-код "01" |
| 1       | 0     | 0     | 0     | 1   | 0 | X | X | X | 1*1+1=02       |
| 1       | 0     | 0     | 0     | 1   | 1 | X | X | X | Выход-код "01" |
| 1       | 0     | 0     | 1     | 0   | 0 | 0 | 0 | 1 | 1*2+1=03       |
| 1       | 0     | 0     | 1     | 0   | 1 | X | X | X | Выход-код "01" |
| 1       | 0     | 0     | 1     | 1   | 0 | X | X | X | 1*3+1=10       |
| 1       | 0     | 0     | 1     | 1   | 1 | X | X | X | Выход-код "01" |
| 1       | 0     | 1     | 0     | 0   | 0 | X | X | X | 3*0+1=00       |
| 1       | 0     | 1     | 0     | 0   | 1 | X | X | X | Выход-код "03" |
| 1       | 0     | 1     | 0     | 1   | 0 | X | X | X | 3*1+1=10       |
| 1       | 0     | 1     | 0     | 1   | 1 | X | X | X | Выход-код "03" |
| 1       | 0     | 1     | 1     | 0   | 0 | 1 | 0 | 1 | 3*2+1=13       |
| 1       | 0     | 1     | 1     | 0   | 1 | X | X | X | Выход-код "03" |
| 1       | 0     | 1     | 1     | 1   | 0 | X | X | X | 3*3+1=22       |
| 1       | 0     | 1     | 1     | 1   | 1 | X | X | X | Выход-код "03" |
| 1       | 1     | 0     | 0     | 0   | 0 | X | X | X | 2*0+1=00       |
| 1       | 1     | 0     | 0     | 0   | 1 | X | X | X | Выход-код "02" |
| 1       | 1     | 0     | 0     | 1   | 0 | X | X | X | 2*1+1=03       |
| 1       | 1     | 0     | 0     | 1   | 1 | X | X | X | Выход-код "02" |
| 1       | 1     | 0     | 1     | 0   | 0 | 1 | 0 | 0 | 2*2+1=11       |
| 1       | 1     | 0     | 1     | 0   | 1 | X | X | X | Выход-код "02" |
| 1       | 1     | 0     | 1     | 1   | 0 | X | X | X | 2*3+1=13       |
| 1       | 1     | 0     | 1     | 1   | 1 | X | X | X | Выход-код "02" |
| 1       | 1     | 1     | 0     | 0   | 0 | X | X | X | 0*0+1=01       |
| 1       | 1     | 1     | 0     | 0   | 1 | X | X | X | Выход-код "00" |
| 1       | 1     | 1     | 0     | 1   | 0 | X | X | X | 0*1+1=01       |
| 1       | 1     | 1     | 0     | 1   | 1 | X | X | X | Выход-код "00" |
| 1       | 1     | 1     | 1     | 0   | 0 | 0 | 0 | 0 | 0*2+1=01       |
| 1       | 1     | 1     | 1     | 0   | 1 | X | X | X | Выход-код "00" |
| 1       | 1     | 1     | 1     | 1   | 0 | X | X | X | 0*3+1=01       |
| 1       | 1     | 1     | 1     | 1   | 1 | X | X | X | Выход-код "00" |
|         |       |       |       |     |   |   |   |   |                |

В таблице 3.1 выделено 36 безразличных наборов, т. к. на входы ОЧУС из разрядов множителя не может поступить код «11», при работе ОЧУС как сумматора на вход переноса не может поступить единица, а при умножении на ноль или единицу на вход переноса также не может поступить единица.

Минимизацию функций  $P,\,Q_1$  и  $Q_2$  проведем при помощи карт Вейча.

## Для функции Р:

|       |     |   | У | 1 |   |   |   |   |   |                |
|-------|-----|---|---|---|---|---|---|---|---|----------------|
|       |     |   |   |   | у | 2 |   |   |   |                |
|       |     | 0 | х | х | х | х | х | х | х |                |
| $p_1$ |     |   | х | х | X | х | х | х | х |                |
|       |     | 0 | х | х | х | х | х | х | х | X <sub>2</sub> |
|       |     | 1 | х | х | x | х | х | х | х | '              |
| 2     | X 1 | 1 | 0 | х | X | 0 | 0 | 0 | 0 |                |
|       |     | 0 | 0 | х | х | 0 | 0 | 0 | 0 | V.             |
|       |     | 1 | 0 | х | X | 0 | 0 | 0 | 0 | $X_2$          |
|       |     | 0 | 0 | х | х | 0 | 0 | 0 | 0 |                |

## Для функции $Q_1$ :

|       |    |   | У | 1 |   |           |   |   |   |                |
|-------|----|---|---|---|---|-----------|---|---|---|----------------|
|       |    |   |   |   | У | <u>'2</u> |   |   |   |                |
|       |    | 0 | х | x | x | x         | x | x | х |                |
| $p_1$ |    | 0 | х | х | х | х         | х | х | х | v.             |
|       |    | 0 | х | х | х | х         | х | х | х | X <sub>2</sub> |
|       |    | 0 | х | х | х | х         | х | х | х |                |
|       | X1 |   | 1 | х | х | 1         | 1 | 1 |   | •              |
|       |    | 1 | 1 | х | х | 1         | 1 | 1 |   | $X_2$          |
|       |    | 1 | 0 | х | х | 0         | 0 | 0 | 1 | A2             |
|       |    | 1 | 0 | х | х | 0         | 0 | 0 | 1 |                |

Для функции  $Q_2$ :

|                |    |    | <b>y</b> 1 |   |    |   |            |               |                |  |
|----------------|----|----|------------|---|----|---|------------|---------------|----------------|--|
|                |    |    |            | у | 2  |   |            |               |                |  |
|                |    | х  | х          | х | х  | х | х          | ×             |                |  |
| $p_1$          | 1  | X  | /×         | х | Х  | Х | ×          | ×             |                |  |
|                | 0  | X  | x )        | х | (x | X | <i>x</i> / | x             | $X_2$          |  |
|                | 0  | х  | х          | x | х  | х | х          | х             |                |  |
| $\mathbf{X}_1$ | 1  | 0  | х          | х | 0  | 0 | 0          |               |                |  |
|                | _1 | 1  | X          | х | 1  | 1 | 1          | J             | V <sub>2</sub> |  |
|                | 0  | 1_ | ×          | х | 1_ | 1 | 1          | $\frac{1}{1}$ | X <sub>2</sub> |  |
|                | 0  | 0  | х          | х | 0  | 0 | 0          | 1             |                |  |

Следовательно:

Б.

$$P = \frac{\overline{x_1} + x_2 + \overline{y_1} + h}{\overline{p_1} + \overline{x_1}} + \frac{\overline{x_1} + \overline{x_2} + \overline{y_1} + h}{\overline{p_1} + y_2 + h}$$

$$Q_1 = \frac{\overline{p_1} + \overline{x_1}}{\overline{x_2} + y_1} + \frac{\overline{p_1} + y_2 + h}{\overline{x_2} + \overline{h}} + \frac{\overline{p_1} + x_1}{\overline{p_1} + x_1} + \frac{\overline{y_1} + y_2 + h}{\overline{y_1} + y_2 + h} + \frac{\overline{p_1} + \overline{x_1} + y_2 + h}{\overline{p_1} + \overline{x_1} + y_2 + h}$$

Функциональная схема ОЧУС в заданном базисе представлена в приложении

Оценка эффективности минимизации функций ОЧУС.

| f     | $C_f$                       | $\mathit{C_{f}}_{min}$           | k    |
|-------|-----------------------------|----------------------------------|------|
| P     | $4 \cdot 6 + 4 + 6 = 34$    | $3 + 2 + 2 \cdot 4 = 13$         | 2.7  |
| $Q_1$ | $16 \cdot 6 + 16 + 6 = 118$ | 3+2+2+3=10                       | 11.8 |
| $Q_2$ | $15 \cdot 6 + 15 + 6 = 111$ | $5 + 5 + 3 \cdot 2 + 3 + 4 = 23$ | 4.8  |

#### 3.2 Логический синтез одноразрядного четвертичного сумматора

Одноразрядный четверичный сумматор — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда одного слагаемого, 2 разряда второго слагаемого и вход переноса) и 3 двоичных выхода.

Принцип работы ОЧС представлен с помощью таблицы истинности (таблица 3.2).

Разряды обоих слагаемых закодированы: 0-00; 1-01; 2-10; 3-11. Так как ОЧС синтезируется для схемы второго типа, то безразличные наборы в таблице истинности отсутствуют.

Таблица 3.2

| a <sub>1</sub> | a <sub>2</sub> | <u>μα 3.2</u><br><b>b</b> 1 | b <sub>2</sub> | р | П    | S <sub>1</sub> | S <sub>2</sub> | Примеры операции в |  |  |
|----------------|----------------|-----------------------------|----------------|---|------|----------------|----------------|--------------------|--|--|
| a <sub>1</sub> | a <sub>2</sub> | D <sub>1</sub>              | 102            | P | l '' | 31             | 32             | четверичной с/с    |  |  |
| 1              | 2              | 3                           | 4              | 5 | 6    | 7              | 8              | 9                  |  |  |
| 0              | 0              | 0                           | 0              | 0 | 0    | 1              | 0              | 1+1+0=02           |  |  |
| 0              | 0              | 0                           | 0              | 1 | 0    | 0              | 1              | 1+1+1=03           |  |  |
| 0              | 0              | 0                           | 1              | 0 | 1    | 1              | 1              | 1+3+0=10           |  |  |
| 0              | 0              | 0                           | 1              | 1 | 1    | 0              | 0              | 1+3+1=11           |  |  |
| 0              | 0              | 1                           | 0              | 0 | 0    | 0              | 1              | 1+2+0=03           |  |  |
| 0              | 0              | 1                           | 0              | 1 | 1    | 1              | 1              | 1+2+1=10           |  |  |
| 0              | 0              | 1                           | 1              | 0 | 0    | 0              | 0              | 1+2+1=10           |  |  |
|                |                |                             |                |   |      |                |                |                    |  |  |
| 0              | 0              | 1                           | 1              | 1 | 0    | 1              | 0              | 1+0+1=02           |  |  |
| 0              | 1              | 0                           | 0              | 0 | 1    | 1              | 1              | 3+1+0=10           |  |  |
| 0              | 1              | 0                           | 0              | 1 | 1    | 0              | 0              | 3+1+1=11           |  |  |
| 0              | 1              | 0                           | 1              | 0 | 1    | 1              | 0              | 3+3+0=12           |  |  |
| 0              | 1              | 0                           | 1              | 1 | 1    | 0              | 1              | 3+3+1=13           |  |  |
| 0              | 1              | 1                           | 0              | 0 | 1    | 0              | 0              | 3+2+0=11           |  |  |
| 0              | 1              | 1                           | 0              | 1 | 1    | 1              | 0              | 3+2+1=12           |  |  |
| 0              | 1              | 1                           | 1              | 0 | 0    | 0              | 1              | 3+0+0=03           |  |  |
| 0              | 1              | 1                           | 1              | 1 | 1    | 1              | 1              | 3+0+1=10           |  |  |
| 1              | 0              | 0                           | 0              | 0 | 0    | 0              | 1              | 2+1+0=03           |  |  |
| 1              | 0              | 0                           | 0              | 1 | 1    | 1              | 1              | 2+1+1=10           |  |  |
| 1              | 0              | 0                           | 1              | 0 | 1    | 0              | 0              | 2+3+0=11           |  |  |
| 1              | 0              | 0                           | 1              | 1 | 1    | 1              | 0              | 2+3+1=12           |  |  |
| 1              | 0              | 1                           | 0              | 0 | 1    | 1              | 1              | 2+2+0=10           |  |  |
| 1              | 0              | 1                           | 0              | 1 | 1    | 0              | 0              | 2+2+1=11           |  |  |
| 1              | 0              | 1                           | 1              | 0 | 0    | 1              | 0              | 2+0+0=02           |  |  |
| 1              | 0              | 1                           | 1              | 1 | 0    | 0              | 1              | 2+0+1=03           |  |  |
| 1              | 1              | 0                           | 0              | 0 | 0    | 0              | 0              | 0+1+0=01           |  |  |
| 1              | 1              | 0                           | 0              | 1 | 0    | 1              | 0              | 0+1+1=02           |  |  |
| 1              | 1              | 0                           | 1              | 0 | 0    | 0              | 1              | 0+3+0=03           |  |  |
| 1              | 1              | 0                           | 1              | 1 | 1    | 1              | 1              | 0+3+1=10           |  |  |
| 1              | 1              | 1                           | 0              | 0 | 0    | 1              | 0              | 0+2+0=02           |  |  |
| 1              | 1              | 1                           | 0              | 1 | 0    | 0              | 1              | 0+2+1=03           |  |  |
| 1              | 1              | 1                           | 1              | 0 | 0    | 1              | 1              | 0+0+0=00           |  |  |
| 1              | 1              | 1                           | 1              | 1 | 0    | 0              | 0              | 0+0+1=01           |  |  |

Минимизацию переключательной функций  $\Pi$  проведём с помощью алгоритма Рота, а функции S1 и S2 с помощью карты Карно.

Для функции П:

Множество единичных кубов:

$$L = \begin{cases} 00010, 00011, 00101, 01000 \\ 01001, 01010, 01011, 01100 \\ 01101, 01111, 10001, 10010 \\ 10011, 10100, 10101, 11011 \end{cases}$$

Множество безразличных кубов:

$$N = {\emptyset}.$$

Сформируем множество:  $C_0 = L \cup N$ 

 $C_0 = \{00010, 00011, 00101, 01000, 01001, 01010, 01011, 01100, 01101, 01111, 10001, 10010, 10011, 10100, 10101, 11011\}$ 

Первый шаг умножения ( $C_0 * C_0$ ) приведен в таблице 3.3

В результате этой операции сформируется новое множество кубов:

 $C_1 = \{0001x; 0x010; x0010; 0x011; x0011; 0x101; x0101; 0100x; 010x0; 01x00; 010x1; 01x01; 0101x; 01x11; x1011; 0110x; 011x1; 100x1; 10x01; 1x011; 1001x; 1010x\}$ 

Множество  $Z_0$  кубов, не участвовавших в образовании новых кубов, пустое.

Следующий шаг поиска простых импликант с помощью операции  $C_1*C_1$  приведен в таблице 3.4

```
C_2 = \{0x01x; x001x; xx011; 010xx; 01x0x; 01xx1\}
```

Множество кубов не участвующих в образовании новых кубов имеет вид:

```
Z_1 = \{0x101; x0101; 100x1; 10x01; 1010x\}
```

Следующий шаг поиска простых импликант с помощью операции  $C_2*C_2$  приведен в таблице 3.5

Новых кубов (третьей размерности) не образовалось

Множество кубов не участвующих в образовании новых кубов имеет вид:

$$Z_2 = \{0x01x; x001x; xx011; 010xx; 01x0x; 01xx1\}$$

На этом заканчивается поиск простых импликант, т.к.  $|C_3| \le 1$ .

Таблица 3.3 - Поиск простых импликант (СО\*СО)

|        |       |       |       |       |       |       |       |       |       |       |       |       | -     |       |         |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|
| 10010  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |         | ,     |
| 11011  |       |       |       |       |       |       |       |       |       |       |       |       |       |       | -       | 1y01y |
| 10101  |       |       |       |       |       |       |       |       |       |       |       |       |       | 1     | 1yyy1   | 10yyy |
| 10100  |       |       |       |       |       |       |       |       |       |       |       |       |       | 1010y | 1,4,4,4 | 10yy0 |
| 10011  |       |       |       |       |       |       |       |       |       |       |       | -     | 10ууу | 10yy1 | 1y011   | 1001y |
| 10001  |       |       |       |       |       |       |       |       |       |       | -     | 100y1 | 10y0y | 10y01 | 1y0y1   | 100уу |
| 01111  |       |       |       |       |       |       |       |       |       | -     | yyyy1 | yyy11 | уу1уу | yy1y1 | y1y11   | yyy1y |
| 01101  |       |       |       |       |       |       |       |       | -     | 011y1 | yyy01 | yyy1  | yy10y | yy101 | y1yy1   | yyyyy |
| 01100  |       |       |       |       |       |       |       | -     | 0110y | 011yy | уууоу | yyyyy | yy100 | yy10y | у1ууу   | ууууо |
| 01011  |       |       |       |       |       |       | -     | О1ууу | 01yy1 | 01y11 | yy0y1 | yy011 | ууууу | уууу1 | y1011   | yy01y |
| 01010  |       |       |       |       |       | -     | 0101y | 01yy0 | 01yyy | 01y1y | уу0уу | yy01y | уууу0 | ууууу | y101y   | yy010 |
| 01001  |       |       |       |       | -     | 010yy | 010y1 | 01y0y | 01y01 | 01yy1 | yy001 | yy0y1 | уууу  | ууу01 | y10y1   | уу0уу |
| 01000  |       |       |       | -     | 0100y | 010y0 | 010yy | 01y00 | 01y0y | О1ууу | уу00у | уу0уу | 99990 | уууоу | у10уу   | 99090 |
| 00101  |       |       | -     | 0000  | 0yy01 | Оуууу | 0yyy1 | 0y10y | 0y101 | 0y1y1 | y0y01 | у0уу1 | y010y | y0101 | yyyy1   | уОууу |
| 00011  |       | -     | 00yy1 | 0,000 | 0y0y1 | 0y01y | 0y011 | Оуууу | 0yyy1 | 0yy11 | y00y1 | y0011 | уОууу | y0yy1 | yy011   | y001y |
| 000010 | -     | 0001y | 00yyy | 00000 | ОуОуу | 0y010 | 0y01y | 0ууу0 | Оуууу | 0yy1y | уооуу | y001y | у0уу0 | у0ууу | yy01y   | y0010 |
| 00*00  | 00010 | 00011 | 00101 | 01000 | 01001 | 01010 | 01011 | 01100 | 01101 | 01111 | 10001 | 10011 | 10100 | 10101 | 11011   | 10010 |

Таблица 3.4 - Поиск простых импликант С1\*С1

| 1010x    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         |       |         |       |         |         |
|----------|-------|---------|---------|---------|---------|---------|---------|-------|-------|-------|---------|---------|---------|---------|---------|---------|---------|-------|---------|-------|---------|---------|
| $\vdash$ |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         |       |         |       |         | - X     |
| 1001x    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         |       |         |       | - 1     | 10yyx   |
| 1x011    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         |       |         | ,     | 10011   | 10yy1   |
| 10x01    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         |       | -       | 100y1 | 100y1   | 10101   |
| 100x1    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         | -     | 10001   | 10011 | 10011   | 10y01   |
| 011x1    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         |         |         | ууух1 | yy101   | y1y11 | yyy11   | yy101   |
| 0110x    |       |         |         |         |         |         |         |       |       |       |         |         |         |         |         | -       | 01101   | ууу01 | yy101   | y1yy1 | уууух   | yy10x   |
| x1011    |       |         |         |         |         |         |         |       |       |       |         |         |         |         | -       | 01yy1   | 01y11   | 1y011 | 1y0y1   | 11011 | 1y011   | 19991   |
| 01x11    |       |         |         |         |         |         |         |       |       |       |         |         |         |         | 01011   | 011y1   | 01111   | yy011 | yyxy1   | y1011 | yy011   | yy1y1   |
| 0101x    |       |         |         |         |         |         |         |       |       |       |         |         |         | 01011   | 01011   | ОТуух   | 01y11   | yy011 | yy0y1   | y1011 | yy01x   | уууух   |
| 01x01    |       |         |         |         |         |         |         |       |       |       |         |         | 010y1   | 01xy1   | 010y1   | 01101   | 01101   | yy001 | yyx01   | y10y1 | yy0y1   | yy101   |
| 010x1    |       |         |         |         |         |         |         |       |       |       | -       | 01001   | 01011   | 01011   | 01011   | 01y01   | 01yx1   | yy0x1 | yy001   | y1011 | yy011   | yyy01   |
| 01x00    |       |         |         |         |         |         |         |       |       |       | 0100y   | 01x0y   | 010y0   | 01xyy   | 010yy   | 01100   | 0110y   | ууооу | уух0у   | y10yy | λλολο   | yy100   |
| 010x0    |       |         |         |         |         |         |         |       |       | 01000 | 010xy   | 0100y   | 01010   | 0101y   | 0101y   | 01y00   | 01yxy   | yy0xy | ууооу   | y101y | yy010   | 99990   |
| 0100x    |       |         |         |         |         |         |         |       | 01000 | 01000 | 01001   | 01001   | 010yx   | 010y1   | 010y1   | 01y0x   | 01y01   | yy001 | yy001   | y10y1 | уу0ух   | yyy0x   |
| x0101    |       |         |         |         |         |         |         | 0yy01 | 0000  | 0y10y | 0yy01   | 0y101   | 0yyy1   | 0y1y1   | хууу1   | 0y101   | 0y101   | 10y01 | 10101   | 10yy1 | 10yy1   | 10101   |
| 0x101    |       |         |         |         |         |         | 00101   | 01y01 | 01y0y | 0110y | 01y01   | 01101   | 01yy1   | 011y1   | 01yy1   | 01101   | 01101   | y0y01 | y0101   | ухуу1 | y0yy1   | y0101   |
| x0011    |       |         |         |         |         | 00yy1   | x0yy1   | 0y0y1 | 0y01y | 0,000 | 0y011   | 0y0y1   | 0y011   | 0y011   | xy011   | 0yyy1   | 0yy11   | 10011 | 100y1   | 10011 | 10011   | 10yy1   |
| 0x011    |       |         |         |         | 00011   | 0xyy1   | 00yy1   | 010y1 | 0101y | 010yy | 01011   | 010y1   | 01011   | 01011   | 01011   | 01yy1   | 01y11   | y0011 | y00y1   | yx011 | y0011   | y0yy1   |
| x0010    |       |         |         | 0001y   | х001у   | 00ууу   | хОууу   | 00000 | 0y010 | 0y0y0 | 0y01y   | ОуОуу   | 0y010   | 0y01y   | xy01y   | 0,440   | 0уу1у   | 1001y | 100yy   | 1001y | 10010   | 10yy0   |
| 0x010    |       | _       | 000010  | 0x01y   | 0001y   | Охууу   | ооууу   | 010y0 | 01010 | 010y0 | 0101y   | 010yy   | 01010   | 0101y   | 0101y   | 01yy0   | 01y1y   | y001y | уооуу   | yx01y | y0010   | уоууо   |
| 0001x (  |       | 000010  | 00010   | 00011   | 00011   | 00yy1 ( | 00yy1 ( | 0y0yx | 00010 | 00000 | 0y011 ( | 0y0y1 ( | 0y01x ( | 0y011 ( | 0y011 ( | Оууух ( | 0yy11 ( | y0011 | y00y1 ) | y0011 | y001x ) | у0уух ) |
| C1*C1    | 0001x | 0x010 ( | x0010 ( | 0x011 ( | x0011 ( | 0x101 ( | x0101 ( | 0100x | 010x0 | 01x00 | 010x1 ( | 01x01 ( | 0101x ( | 01x11 ( | x1011 ( | 0110x ( | 011x1 ( | 100x1 | 10x01   | 1x011 | 1001x   | 1010x   |

Таблица 3.5 – Поиск простых импликант  $C_2 * C_2$ 

| $C_2*C_2$ | 0x01x | x001x | xx011 | 010xx | 01x0x | 01xx1 |
|-----------|-------|-------|-------|-------|-------|-------|
| 0x01x     | -     |       |       |       |       |       |
| x001x     | 0001x | -     |       |       |       |       |
| xx011     | 0x011 | x0011 | -     |       |       |       |
| 010xx     | 0101x | 0y01x | 01011 | 1     |       |       |
| 01x0x     | 010yx | 0y0yx | 010y1 | 0100x | -     |       |
| 01xx1     | 01011 | 0y011 | 01011 | 010x1 | 01x01 | -     |

Новых кубов (третьей размерности) не образовалось

Множество кубов не участвующих в образовании новых кубов имеет вид:

$$Z_2 = \{0x01x; x001x; xx011; 010xx; 01x0x; 01xx1\}$$

На этом заканчивается поиск простых импликант, т.к.  $|C_3| \le 1$ .

Множество простых импликант:

```
Z = Z0 U Z1 U Z2 = \{0x101; x0101; 100x1; 10x01; 1010x; 0x01x; x001x; xx011; 010xx; 01x0x; 01xx1\}
```

Следующий этап — поиск L-экстремалей на множестве простых импликант (таблица 3.6). Для этого используется операция # (решетчатое вычитание).

В таблице 3.6 из каждой простой импликанты поочередно вычитаются все остальные простые импликанты  $Z\#(Z\setminus z)$ , результат операции (последняя строка таблицы) указывает на то, что L-экстремалями стали следующие простые импликанты:

```
E = \{1010x; x001x; xx011; 01x0x; 01xx1\}
```

Т.к. безразличных наборов нет, то все L-экстремали являются минимальным значением.

Далее необходимо проанализировать, какие из исходных единичных кубов (множество L) не покрыты найденной L-экстремалью. Этот анализ осуществляется с помощью таблицы 3.7

$$L' = \{00101; 01010; 10001\}$$

Чтобы их покрыть, воспользуемся множеством простых импликант, не являющихся L-экстремалями (таблица 3.8).

Из таблицы видно, что каждый из непокрытых единичных кубов может быть покрыт двумя равнозначными способами.

Таблица 3.6 - Поиск L-экстремалей

| (Z-Z)#Z | 0x101 | x0101 | 100x1 | 10x01 | 1010x | 0x01x | x001x          | xx011          | 010xx | 01x0x          | 01xx1          |
|---------|-------|-------|-------|-------|-------|-------|----------------|----------------|-------|----------------|----------------|
| 0x101   | -     | 10101 | 100x1 | 10x01 | 1010x | 0x01x | x001x          | xx011          | 010xx | 0100x<br>01x00 | 010x1<br>01x11 |
| x0101   | 01101 | 1     | 100x1 | 10001 | 10100 | 0x01x | x001x          | xx011          | 010xx | 0100x<br>01x00 | 010x1<br>01x11 |
| 100x1   | 01101 | 10101 | ı     | Ø     | 10100 | 0x01x | 0001x<br>x0010 | 0x011<br>x1011 | 010xx | 0100x<br>01x00 | 010x1<br>01x11 |
| 10x01   | 01101 | Ø     | 10011 | -     | 10100 | 0x01x | 0001x<br>x0010 | 0x011<br>x1011 | 010xx | 0100x<br>01x00 | 010x1<br>01x11 |
| 1010x   | 01101 | Ø     | 10011 | Ø     | -     | 0x01x | 0001x<br>x0010 | 0x011<br>x1011 | 010xx | 0100x<br>01x00 | 010x1<br>01x11 |
| 0x01x   | 01101 | Ø     | 10011 | Ø     | 10100 | -     | 10010          | 11011          | 0100x | 0100x<br>01x00 | 01001<br>01111 |
| x001x   | 01101 | Ø     | Ø     | Ø     | 10100 | 0101x | -              | 11011          | 0100x | 0100x<br>01x00 | 01001<br>01111 |
| xx011   | 01101 | Ø     | Ø     | Ø     | 10100 | 01010 | 10010          | ı              | 0100x | 0100x<br>01x00 | 01001<br>01111 |
| 010xx   | 01101 | Ø     | 0     | Ø     | 10100 | 0     | 10010          | 11011          | 1     | 01100          | 011111         |
| 01x0x   | Ø     | Ø     | 0     | Ø     | 10100 | 0     | 10010          | 11011          | Ø     | ı              | 011111         |
| 01xx1   | 0     | 0     | 0     | 0     | 10100 | 0     | 10010          | 11011          | 0     | 01100          |                |

Таблица 3.7 Поиск не покрытых исходных наборов

| 0                                                                                                     | 0                                                                                                                 |                                                                           |                           |               |         |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|---------------|---------|
| 1001                                                                                                  | 10010                                                                                                             | Ø                                                                         | Ø                         | Ø             | Ø       |
| 11011                                                                                                 | 11011                                                                                                             | 11011                                                                     | Ø                         | Ø             | Ø       |
| 10101                                                                                                 | Ø                                                                                                                 | 0                                                                         | Ø                         | Ø             | 0       |
| 10100                                                                                                 | 0                                                                                                                 | Ø                                                                         | Ø                         | Ø             | Ø       |
| 10011                                                                                                 | 10011                                                                                                             | 0                                                                         | Ø                         | Ø             | 0       |
| 10001                                                                                                 | 10001                                                                                                             | 10001                                                                     | 10001                     | 01111 10001 Ø | 10001   |
| 01111                                                                                                 | 01111                                                                                                             | 01111                                                                     | 01100 01101 01111 10001 Ø | 01111         | Ø       |
| 01101                                                                                                 | 01101                                                                                                             | 01101                                                                     | 01101                     | Ø             | 0       |
| 01100                                                                                                 | 01100                                                                                                             | 01100                                                                     | 01100                     | Ø             | 0       |
| 01011                                                                                                 | 01011                                                                                                             | 01011                                                                     | Ø                         | Ø             | Ø       |
| 01010                                                                                                 | 01010                                                                                                             | 00101   01000   01001   01010   01011   01100   01101   01111   10001   Ø | 00101 01000 01001 01010 Ø | 01010         | 01010   |
| 01001                                                                                                 | 01001                                                                                                             | 01001                                                                     | 01001                     | Ø             | 0       |
| 01000                                                                                                 | 01000                                                                                                             | 01000                                                                     | 01000                     | 0             | 0       |
| 10100                                                                                                 | 00101                                                                                                             | 00101                                                                     | 00101                     | 00101         | 00101   |
| 00010 00011 00101 01000 01001 01001 01010 01011 01100 01101 01111 10001 10011 10100 10101 11011 10010 | 1010x   00010   00011   00101   01000   01001   01010   01010   01011   01100   01101   01111   10001   10011   Ø | Ø                                                                         | Ø                         | Ø             | Ø       |
| 01000                                                                                                 | 000010                                                                                                            | Ø                                                                         | Ø                         | Ø             | Ø       |
| T#E                                                                                                   | 1010x                                                                                                             | x001x Ø                                                                   | xx011 Ø                   | 01x0x Ø       | 01xx1 Ø |

Таблица 3.8 - Покрытие оставшихся кубов

| Z' n L' | 00101 | 01010 | 10001 |
|---------|-------|-------|-------|
| 0x101   | 00101 | Ø     | Ø     |
| x0101   | 00101 | Ø     | Ø     |
| 100x1   | Ø     | Ø     | 10001 |
| 10x01   | Ø     | Ø     | 10001 |
| 0x01x   | Ø     | 01010 | Ø     |
| 010xx   | Ø     | 01010 | Ø     |

Следовательно, существует 8 тупиковых (минимальных) форм:

 $Fmin1 = \{0x101; 100x1; 0x01x; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin2 = \{x0101; 100x1; 0x01x; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin3 = \{0x101; 10x01; 0x01x; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin4 = \{x0101; 10x01; 0x01x; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin5 = \{0x101; 100x1; 010xx; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin6 = \{x0101; 100x1; 010xx; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin7 = \{0x101; 10x01; 010xx; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

 $Fmin8 = \{x0101; 10x01; 010xx; 1010x; x001x; xx011; 01x0x; 01xx1\}$ 

#### Для функции S<sub>1</sub>:

|    | 000       | 001 | 011 | 010        | 110       | 111 | 101 | 100 |
|----|-----------|-----|-----|------------|-----------|-----|-----|-----|
| 00 | $\bigcap$ | 0   | 0   | $\sqrt{1}$ | 0         | 1   | 1   | 0   |
| 01 | 1         | 0   | 0   | 1          | 0         | 1   | 1   | 0   |
| 11 | 0         | 1   | 1   | 0          | $\bigcap$ | 0   | 0   | 1   |
| 10 | 0         | 1   | 1   | 0          | 1         | 0   | 0   |     |

#### Для функции S<sub>2</sub>:

|    | 000 | 001 | 011       | 010 | 110 | 111 | 101 | 100 |
|----|-----|-----|-----------|-----|-----|-----|-----|-----|
| 00 | 0   | 1   | 0         |     | 0   | 0   | 1   | 1   |
| 01 |     | 0   | $\bigcap$ | 0   | 1   | 1   | 0   | 0   |
| 11 | 0   | 0   | 1         | 1   | 1   | 0   |     | 0   |
| 10 | 1)  | 1   | 0         | 0   | 0   |     | 0   | 1   |

#### Следовательно:

$$\begin{split} \Pi &= \overline{\overline{b_1}b_2p} * \overline{\overline{a_2}\overline{b_1}b_2} * \overline{\overline{a_1}a_2p} * \overline{\overline{a_1}a_2\overline{b_2}} * \overline{\overline{a_1}a_2\overline{b_1}} * \overline{a_1}\overline{a_2}\overline{b_1} * \overline{a_1}\overline{a_2}b_1\overline{b_2}} * \overline{\overline{a_2}b_1\overline{b_2}p} \\ & * \overline{\overline{a_1}\overline{a_2}}\overline{\overline{b_2}p} \\ S_1 &= \overline{\overline{\overline{a_1}b_1p} * \overline{a_1}\overline{b_1}p * \overline{a_1}\overline{b_1}\overline{p}} * \overline{a_1}\overline{b_1}\overline{p}} * \overline{a_1}\overline{b_1}\overline{p}} \\ S_2 &= \overline{\overline{a_1}\overline{a_2}b_1\overline{b_2}} * \overline{\overline{a_1}a_2b_1b_2} * \overline{a_1}a_2\overline{b_1}\overline{p}} * \overline{a_2}\overline{b_1}\overline{b_2}p * \overline{\overline{a_1}a_2}\overline{b_1}\overline{b_2}\overline{p}} * \overline{a_1}\overline{a_2}\overline{b_1}b_2\overline{p}} \\ & * \overline{a_1}\overline{a_2}b_1b_2\overline{p}} * \overline{a_1}a_2b_1\overline{b_2}p * \overline{a_1}a_2\overline{b_1}\overline{b_2}p * \overline{a_1}\overline{a_2}\overline{b_2}\overline{p}} \end{split}$$

Функциональная схема ОЧС в заданном базисе представлена в приложении В.

Оценка эффективности минимизации функций ОЧС.

| f                | $\mathcal{C}_f$             | $\mathit{C_{f}}_{min}$                | k   |
|------------------|-----------------------------|---------------------------------------|-----|
| П                | $16 \cdot 5 + 16 + 5 = 101$ | $4 + 8 + 5 \cdot 3 + 3 \cdot 4 = 39$  | 2.6 |
| $S_1$            | $16 \cdot 5 + 16 + 5 = 101$ | $3 + 4 + 3 \cdot 4 = 19$              | 5.3 |
| $\overline{S_2}$ | $16 \cdot 5 + 16 + 5 = 101$ | $4 \cdot 6 + 5 \cdot 3 + 5 + 10 = 54$ | 1.9 |

#### 3.3 Логический синтез преобразователя множителя

Преобразователь множителя служит для исключения из множителя диад 11 и 10, заменяя их на триады  $1\overline{01}$  и  $1\overline{10}$  соответственно.

Таблица истинности для ПМ. Таблица 3.9

|       | дная<br>ада | Младший<br>бит | Знак | Выхо  | одная<br>ада |
|-------|-------------|----------------|------|-------|--------------|
| $Q_n$ | $Q_{n-1}$   | $Q_{n-2}$      | P    | $S_1$ | $S_2$        |
| 0     | 0           | 0              | 0    | 0     | 0            |
| 0     | 0           | 1              | 0    | 0     | 1            |
| 0     | 1           | 0              | 0    | 0     | 1            |
| 0     | 1           | 1              | 0    | 1     | 0            |
| 1     | 0           | 0              | 1    | 1     | 0            |
| 1     | 0           | 1              | 1    | 0     | 1            |
| 1     | 1           | 0              | 1    | 0     | 1            |
| 1     | 1           | 1              | 1    | 0     | 0            |

Минимизируем выходные функции P ,  $S_1$  и  $S_2$  .

Минимизацию проведём картами Карно.

Минимизация функции Р:

|   | 00 | 01 | 11 | 10 |
|---|----|----|----|----|
| 0 | 0  | 0  | 0  | 0  |
| 1 | 1  | 1  | 1  | 1  |

Минимизация функции  $S_1$ :

|   | 00 | 01 | 11 | 10 |
|---|----|----|----|----|
| 0 | 0  | 0  | 1  | 0  |
| 1 | 1  | 0  | 0  | 0  |

Минимизация функции  $S_2$ :

|   | 00 | 01 | 11 | 10 |
|---|----|----|----|----|
| 0 | 0  |    | 0  | 1  |
| 1 | 0  | 1  | 0  | 1  |

Следовательно:

$$P = Q_n$$
;

$$S_1 = Q_n \overline{Q_{n-1}} \, \overline{Q_{n-2}} + \, \overline{Q_n} Q_{n-1} Q_{n-2};$$

$$S_2 = \overline{Q_{n-1}}Q_{n-2} + Q_{n-1}\overline{Q_{n-2}} = Q_{n-1} \oplus Q_{n-2}.$$

Функциональная схема преобразователя множителя представлена в приложении  $\Gamma$ .

Оценка эффективности минимизации функций ПМ.

| f     | $\mathcal{C}_f$          | $\mathcal{C}_{f_{min}}$  | k   |
|-------|--------------------------|--------------------------|-----|
| P     | $3 \cdot 4 + 4 + 3 = 19$ | 0                        | 8   |
| $S_1$ | $3 \cdot 2 + 2 + 3 = 11$ | $3 \cdot 2 + 2 + 3 = 11$ | 1   |
| $S_2$ | $3 \cdot 4 + 4 + 3 = 19$ | 2                        | 9.5 |

#### 4 СИНТЕЗ СХЕМЫ ОЧС НА ОСНОВЕ МУЛЬТИПЛЕКСОРОВ

Мультиплексор — это логическая схема, имеющая n информационных входов, m управляющих входов и один выход. При этом должно выполняться условие n=2m.

Принцип работы мультиплексора состоит в следующем:

На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, поданным на управляющие входы. Функции ОЧС зависят от пяти переменных. Удобно взять мультиплексор с тремя адресными входами, это позволит упростить одну нашу большую функцию от пяти аргументов до восьми функций от двух переменных. Функции от двух переменных достаточно просты для того, чтобы в самостоятельно заметить их минимальную форму. Таблица истинности ОЧС на базе мультиплексора приведена в таблице 4.1.

Таблица 4.1 – таблица истинности ОЧС на базе мультиплексора

| $egin{array}{c c c c c c c c c c c c c c c c c c c $   | 9<br>1<br>0<br>1<br>0<br>0<br>1 | <b>Выход</b> 10 $\bar{p}$ | \$\begin{align*} \begin{align*} \begi | $egin{aligned} \mathbf{B} \mathbf{b} \mathbf{x} \mathbf{o} \mathbf{g} \\ 12 \\ b_2 ar{p} + \overline{b_2} p \end{aligned}$ |
|--------------------------------------------------------|---------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 1<br>0<br>1<br>0<br>0           |                           | 0<br>1<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0<br>1<br>0<br>0                | $ar{p}$                   | 1<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $b_2ar{p}+\overline{b_2}p$                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 1<br>0<br>0<br>1                | $ar{p}$                   | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $b_2ar{p}+\overline{b_2}p$                                                                                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 0 1                           | p                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $v_2p + v_2p$                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 1                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| h                                                      |                                 | 1                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| $n_0 n$                                                | 0                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                                    |
| $  7   0   0   1   1   0   0   D_2 p$                  | 0                               | p                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{b_2}$                                                                                                           |
| 8 0 0 1 1 1 0                                          | 1                               |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 9 0 1 0 0 0 1                                          | 1                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 10 0 1 0 0 1 1 "1"                                     | 0                               | <u></u>                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                                    |
| 11 0 1 0 1 0 1                                         | 1                               | $ar{p}$                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{b_2}\overline{p} + b_2p$                                                                                        |
| 12 0 1 0 1 1 1                                         | 0                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 13 0 1 1 0 0 1                                         | 0                               |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 14 0 1 1 0 1 1                                         | 1                               |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.                                                                                                                         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 0                               | p                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $b_2$                                                                                                                      |
| 16 0 1 1 1 1 1                                         | 1                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 17 1 0 0 0 0 0                                         | 0                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 18 1 0 0 0 1 1                                         | 1                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0                               | p                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{b_2}$                                                                                                           |
| 20 1 0 0 1 1 1                                         | 1                               |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 21 1 0 1 0 0 1                                         | 1                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0                               | ] <u>.</u> _              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 23 1 0 1 1 0 0                                         | 1                               | $ar{p}$                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{b_2}\overline{p} + b_2p$                                                                                        |
| 24 1 0 1 1 1 0                                         | 0                               |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |

Продолжение таблицы 4.1

| трод | ,001310 | • 1111 | 100 | 71114 | <u> </u> | • |        |   |         |   |                                     |
|------|---------|--------|-----|-------|----------|---|--------|---|---------|---|-------------------------------------|
| 25   | 1       | 1      | 0   | 0     | 0        | 0 |        | 0 |         | 0 |                                     |
| 26   | 1       | 1      | 0   | 0     | 1        | 0 | h n    | 1 |         | 0 | l <sub>a</sub>                      |
| 27   | 1       | 1      | 0   | 1     | 0        | 0 | $b_2p$ | 0 | p       | 1 | $b_2$                               |
| 28   | 1       | 1      | 0   | 1     | 1        | 1 |        | 1 |         | 1 |                                     |
| 29   | 1       | 1      | 1   | 0     | 0        | 0 |        | 1 |         | 0 |                                     |
| 30   | 1       | 1      | 1   | 0     | 1        | 0 | "0"    | 0 | 20      | 1 | h = 1 h n                           |
| 31   | 1       | 1      | 1   | 1     | 0        | 0 | U      | 1 | $ar{p}$ | 1 | $b_2\overline{p} + \overline{b_2}p$ |
| 32   | 1       | 1      | 1   | 1     | 1        | 0 |        | 0 |         | 0 |                                     |

Функциональная схема ОЧС на базе мультиплексоров приведена в приложении Д.

#### 5 ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ

#### 5.1 Расчёт времени умножения на один разряд множителя

Время умножения на один разряд множителя является суммой временных затрат на нескольких различных этапах умножения. Для понимания процесса расчёта следует использовать структурную схему разрабатываемого устройства (см. приложение A).

Процесс умножения можно разбить на несколько этапов:

- 1. Преобразование разряда множителя
- 2. Формирование дополнительного кода множимого в ФДК, если это необходимо
- 3. Умножение дополнительного кода множимого в ОЧУС
- 4. Добавление полученного произведения в регистр результата посредством ОЧС

Заметим, процессы умножения в ОЧУС и сложения в ОЧС могут происходить параллельно. После того, как первый ОЧУС получит свой результат, он может быть сразу передан в блок ОЧС для обработки. В этот момент независимо друг от друга могут начать работу первый ОЧС и второй ОЧУС. После того, как отработает второй ОЧУС, он может незамедлительно передать свой результат во второй ОЧС, который сможет приступить к сложению только после того, как получит перенос из первого ОЧС. Таким образом, если ОЧС работает медленнее, чем ОЧУС, то именно ОЧС будет обуславливать задержку. Если же ОЧУС работает медленнее, то ОЧУС будет вызывать задержку. Выполнение блока ОЧС, который работает с (n-1) старшими разрядами регистра результата, займёт всегда (n-1)\*t<sub>оче</sub>. Формула для расчёта времени имеет следующий вид:

$$T_{\text{умн}} = t_{\text{пр}} + t_{\phi \text{дк}} + t_{\text{очус}} + \max(m^*t_{\text{очус}}, (m+1)^*t_{\text{очс}}) + (n-1)^*t_{\text{очс}}$$

где  $T_{\text{умн}}$  — общее время умножения на один разряд множителя,  $t_{\text{пр}}$  — время преобразования разряда множителя,  $t_{\text{флк}}$  — время формирования дополнительного кода,  $t_{\text{очус}}$  и  $t_{\text{очус}}$  — время работы ОЧУС и ОЧС.

Приведём краткое пояснение. После того, как получен результат с первого ОЧУС, он передается на первый ОЧС и второй ОЧУС. Для того, чтобы блок из (n-1) старших ОЧС мог начать работать, должны отработать ещё m+1 ОЧС и m ОЧУС. Но так как они могут работать параллельно, мы берём максимальное время их работы.

#### 5.2 Расчёт времени умножения на п разрядов множителя

В этом случае рассуждения аналогичны с теми, что приведены в предыдущем разделе. Итоговая формула имеет следующий вид:

$$T_{\text{\tiny YMH}} = n*(t_{\text{\tiny ITP}} + t_{\text{\tiny OHJE}} + t_{\text{\tiny OHJE}} + \max(m*t_{\text{\tiny OHJE}}, (m+1)*t_{\text{\tiny OHJE}}) + (n-1)*t_{\text{\tiny OHJE}})$$

где  $T_{\text{умн}}$  — общее время умножения,  $t_{\text{пр}}$  — время преобразования разряда множителя,  $t_{\text{флк}}$  — время формирования дополнительного кода,  $t_{\text{очус}}$  и  $t_{\text{очс}}$  — время работы ОЧУС и ОЧС.

#### **ЗАКЛЮЧЕНИЕ**

В процессе выполнения курсовой работы была разработана структурная схема сумматора-умножителя второго типа, а также функциональные схемы основных узлов данного устройства. Для уменьшения стоимости логических схем были выполнены минимизации переключательных функций различными способами. Такой подход позволил выявить достоинства и недостатки этих алгоритмов.

В качестве главного достоинства минимизации картами Карно (Вейча) можно выделить простоту и минимальные затраты времени. Однако применение данного способа для функций многих переменных будет затруднительно. Для минимизации функций многих переменных удобно использовать алгоритм Рота, который полностью формализует алгоритмы минимизации и делает минимизацию доступной для выполнения компьютерной программой.

Функциональные схемы были построены в различных логических базисах. Это позволило закрепить теоретические знания основных законов булевой алгебры, например, правило де Моргана.

Реализация переключательных функций на основе мультиплексоров позволила облегчить процесс минимизации этих функций и упростить функциональную схему одноразрядного четверичного сумматора.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Искра Н. А. Арифметические и логические основы вычислительной техники: пособие / Н. А. Искра, И. В. Лукьянова, Ю. А. Луцик. Минск: БГУИР, 2016.-75 с.
- 2. Луцик Ю.А. Арифметические и логические основы вычислительной техники: Учеб. пособие / Ю. А. Луцик, И. В. Лукьянова. Минск: БГУИР, 2014.-165c.

#### ПРИЛОЖЕНИЕ А

(обязательное)

Сумматор-умножитель второго типа. Схема электрическая структурная

#### приложение б

(обязательное)

Одноразрядный четверичный умножитель-сумматор. Схема электрическая функциональная

#### приложение в

(обязательное)

Одноразрядный четверичный сумматор. Схема электрическая функциональная

### приложение г

(обязательное)

Преобразователь множителя. Схема электрическая функциональная

# **ПРИЛОЖЕНИЕ** Д (обязательное)

Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная

### приложение е

(обязательное)

Ведомость документов