

An Array Tomography Exploration Tool: Exploring Synapses from FMR1 Knockout Mice

Anish K. Simhal ^{1*}, Kristina D. Micheva ² Yi Zuo ³, Richard J. Weinberg ⁴, Stephen J. Smith ⁵, Guillermo Sapiro ¹

¹Duke University ² Stanford University School of Medicine ³ University of California, Santa Cruz ⁴ University of North Carolina, Chapel Hill ⁵ Allen Institute for Brain Sciences

Overview

- Array tomography allows collection of data sets containing synaptic protein markers and markers for dendrites, axons, glial cells, nuclei, myelin, and mitochondria.
- We here introduce the Array Tomography Exploration Tool (ATET), a suite of computer vision methods that facilitate the exploration of array tomography data.
- We use array tomography and ATET to compare the relationship between astrocytes and synapses in the barrel cortex of a knockout mouse versus a wild-type mouse.

Fragile X syndrome (FXS) is a genetic condition that causes a range of developmental problems including learning disabilities and cognitive impairment. It is caused by the transcriptional silencing of the FMR1 gene that encodes the fragile X mental retardation protein. In this study, we used 4-month-old FMR1 knock out mice (a mouse model of FXS) and characterized synapses in the barrel cortex between FMR1^{+/y} and FMR1^{-/y} males.

Array Tomography Pipeline

Figure 1: Pipeline of the array tomography (AT)approach used for creating the data

Figure 2: Cartoon showing the relative spatial arrangement of the different parts of a tripartite synapse

References

Frontiers in Neuroanatomy. 2018;12.

[3] Simhal, Anish K., et al. A Computational Synaptic Antibody Characterization Tool for Array Tomography.

Array Tomography Exploration Tool

Array Tomography Exploration Tool Pipeline Feature Extraction Feature Analysis 3D Volumes of the following markers: Punctum Detection Synapse Subtype Analysis Synapse Subtype Detection Presynaptic Tripartite Synapse Analysis Synapse/Astrocyte Spatial synapse/dendrite Postsynaptic Astrocyte Adjacency analysis • Volumetric Dendrite Ratio of synapse subtypes to Extraction protein marker density Cell Body Detection

Figure 3: Pipeline of the ATET process. Individual parts are highlighted below

Synapse Detection

Figure 4: Example cutout of a single slice showing three channels: red, PSD-95; green, synapsin; blue, DAPI

Figure 5: Probabilistic synapse detection pipeline

Dendrite Segmentation

Figure 6: Pipeline for dendrite segmentation

A probabilistic model for the background noise, p_B , is

$$p_B(x, y, z) = \frac{1}{\sigma_B \sqrt{2\pi}} \int_{v(x, y, z)}^{\infty} e^{\frac{-(t - \mu_B)^2}{2\sigma_B^2}} dt.$$
 (1)

Probability of a voxel associated with the foreground, p_F ,

$$p_F(x, y, z) = 1 - p_B(x, y, z).$$
 (2)

Dendrite + Synapses

Figure 7: Maximum intensity projection of a portion of the YFP channel

Figure 8: Segmented dendrite with various synapse subtypes marked

Wild-type Synapse Distribution

Figure 9: Density distribution of different synapse subtypes in the upper layers of mouse barrel cortex

Acknowledgments

FMR1 Knockout Mice Analysis

Animals			
Mouse specimen #	DOB	Age	KO or WT
2SS	6/27/17	4 months	WT
3SS	6/27/17	4 months	KO
4SS	7/04/17	4 months	WT
6SS	7/04/17	4 months	KO
5SS	7/04/17	4 months	WT
7SS	7/04/17	4 months	KO
2SS	6/27/17	4 months	WT
100	(107/17	4 41	WO.

Table 1: Mice used for this experiment.

Antibodies			
Antigen	Host	Antibody Source	Dilution
Synapsin	Rabbit	Cell Signaling 5297	1:100
PSD95	Rabbit	Cell Signaling 3450	1:100
VGluT1	Guinea pig	Millipore AB5905	1:5000
VGluT2	Guinea pig	Millipore AB2251	1:5000
GAD2	Rabbit	Cell Signaling 5843	1:100
VGAT	Mouse	Synaptic Systems 131 011	1:300
Gephyrin	Mouse	NeuroMab 75-443	1:100
Glutamine synthetase	Mouse	BD Biosciences 610517	1:25

Table 2: Anithodies used for this experiment.

Density changes were calculated as ((KO - WT)/WT) *100. 'Small synapse' refers to synapses whose puncta only span a single slice of data.

Figure 10: Synapse density change. Plot showing the percent change in synapse density between the wild type and knockout mice

Figure 11: Glial coverage change This plot shows the percentage change in synapses that have an associated astrocytic marker between the wild type and knockout mice, for four different synapse subtypes

^[1] Micheva KD, Smith SJ. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron. 2007 Jul 5;55(1):25-36.

^[2] Simhal, Anish K., et al. Probabilistic Fluorescence-Based Synapse Detection. PLoS Computational Biology, May