績效比率	比率公式	變數涵義		公式涵義及優缺點
Sharpe Ratio	$\overline{(R_a - R_e)}$	R:資產報酬	A.	Sharpe Ratio 以資產報酬的標準差,做為風險的測量數。
	$\frac{\overline{(R_a - R_f)}}{\sqrt{var(R_a - R_f)}}$	R_f :無風險利率	B.	衡量每單位風險,能帶來多少風險溢酬。
	$\sqrt{var(R_a-R_f)}$	σ: 風險	C.	使用標準差測量風險,即假設其資產報酬為常態分佈,
				但金融資產之報酬率常有厚尾、偏態分布之特性,故使
				用標準差測量風險較不適當。
Adjusted Sharpe Ratio	$SR*[1+(\frac{S}{6})*SR-(\frac{K-3}{24})*SR^2]$	SR:年化的 Sharpe Ratio	A.	Adjusted Sharpe ratio 加入係數調整偏態、峰態分布對指
		S:偏態		標之影響。其餘與 Sharpe ratio 相同。
		K:峰態		
Appraisal Ratio	α	α: Jensen's alpha	A.	以資產報酬率對大盤報酬率配適簡單迴歸,取得其殘差
	$\overline{\sigma_\epsilon}$	σ_E :獨有的風險		之標準差(非系統性風險),做為風險的測量數。
	Modified Jensen' s alpha= $\frac{\alpha}{\beta}$	σ_s :系統性風險	В.	衡量每單位非系統性風險,在假設市場報酬為零的情況
	Alternative Jensen's alpha= $\frac{\alpha}{\sigma_S}$			下,能帶來多少超額報酬。
Bernardo Ledoit Ratio	1_{Σ^n} may(n , 0)	n:觀察值個數	A.	Bernardo Ledoit Ratio 又稱為 Profit/Loss Ratio,使用每次
	$\frac{\frac{1}{n}\sum_{t=1}^{n}\max(R_t,0)}{\frac{1}{n}\sum_{t=1}^{n}\max(-R_t,0)}$			交易虧損的平均值做為風險的測量數。
	$\frac{1}{n}\sum_{t=1}^{n}\max(-R_t,0)$		B.	以平均值計算,忽略獲利與虧損之變異程度。
Burke Ratio	Burke Ratio= $\frac{r_p - r_F}{\sqrt{\sum_{t=1}^d D_t^2}}$	d:落後一期的數值	A.	Burke Ratio 以特定期間,資產價格減少之百分比的平
	$\sqrt{\Sigma_{t=1}^d D_t^2}$	r_p :投資組合的報酬		方,加總後取平方根,做為風險的測量數。
	Modified Burke Ratio= $\frac{r_p - r_F}{\sqrt{\sum_{r=1}^d \frac{D_t^2}{r_r}}}$	$r_{\!\scriptscriptstyle F}$:無風險利率	B.	考量期間內所有資產虧損之走勢。
	$\sqrt{\sum_{t=1}^{d} \frac{D_t^2}{n}}$	D_t :第 t^{th} 的落後一期	C.	出現次數低、幅度大之虧損風險較高,出現次數高、幅
				度小之虧損風險較小,為反映此特性,Burke Ratio 公式
				將每段虧損平方,使幅度大之虧損計算後有較高權重。

Calmar Ratio	Calmar Ratio(R, scale=NA)	scale:一年中期間的數量 (日=252, 月	A.	Calmar Ratio 衡量資產面臨最大幅
	Sterling Ratio(R,scale=NA, excess=0.1)	=12, 季=4)		度的波動時之表現。
		excess:英鎊比率,剩餘的加入最大跌幅	B.	以資產在特定期間內,曾遭遇的最
				大虧損百分比做為風險的測量數,
				一般以三年之時間資料做計算。
			C.	適合反映投資人在面臨資產價格大
				幅度波動時的心理痛苦程度。
			D.	以最大虧損的百分比衡量風險,忽
				略其餘虧損部位之風險測量。
			E.	資料涵蓋的時間範圍對分析結果有
				較大影響。
			F.	Sterling Ratio 將最大虧損百分比減
				10%,做為風險的測量數,其餘特性
				與 Calmar Ratio 相同。
D Ratio	$n_{d*\sum_{t=1}^{n} \max(-R_t,0)}$	n_d :小於零的觀察值數量	A.	比率介於0至∞間,愈低資產績效
	$\overline{n_u * \sum_{t=1}^n \max(R_t, 0)}$	n_u :大於零的觀察值數量		表現愈佳。
			В.	若比率為0,表示無負報酬,若為
				∞,表示無正報酬。
			C.	報酬率若為負偏態分布,D ratio 較
				低。
Information Ratio	Active Premium/Tracking Error	Active Premium:可行性的溢酬	A.	資訊比率是衡量調整風險後的投資
		Tracking Error:追蹤錯誤		組合長期績效,主要用來評估投資

			組合相較於同類型投資組合的表現 及其穩定性,是標準普爾與 Lipper 等知名評比機構評鑑基金等級或星
			號的重要依據。 B. Information ratio 越高,代表投資組合管理者越能運用資訊
Kelly Ratio	Kelly criterion ratio (leverage or bet size) for a strategy leverage = $\frac{\overline{(R_s - R_f)}}{StdDev(R)^2}$	確定一系列賭局的最佳規模	A. 以資產報酬率的變異數測量風險。 B. 衡量每單位資產報酬率之變異數, 可帶來多少風險溢酬。
Martin Ratio	$\frac{r_P - r_F}{\sqrt{\sum_{i=1}^n \frac{{D_i'}^2}{n}}}$	r_p :年化投資報酬率 D_i' :過去以來在 i 期下降的峰值 $drawdown since previous peak in period i$	A. 以 Ulcer index 測量風險 • Ulcer index: 公式: R_i =100× $\frac{price_i-maxprice}{maxprice}$ Ulcer index = $\sqrt{\frac{R_1^2+R_2^2+\cdots+R_n^2}{N}}$ 1. R_i 為價格下跌幅度,N 為觀察值數量。 2. 衡量價格下跌的風險。 3. 根據收盤價,測量特定期間內,價格自高點下跌之波動

				性。		
				4. 當資產價格上漲,Ulcer index		
				減少,當資產價格下跌,Ulcer		
				index 增加。		
				5. 當資產價格大幅度下跌,需較		
				長時間回到上一高點,因此將		
				價格下跌幅度(R_i)平方,增加		
				較大資產價格下跌的計算權		
				重。		
			В.	衡量每單位價格下跌之風險(Ulcer		
				index),帶來多少風險溢酬。		
				ega Sharpe Ratio		
Omega Sharpe Ratio	$r_p - r_t$		Ome	ga Sharpe Ratio		
Omega Sharpe Ratio	$\frac{r_p - r_t}{\sum_{t=1}^n \frac{\max(r_t, r_i, 0)}{n}}$		Ome A.	ga Sharpe Ratio 以價格下跌空間(Downside		
Omega Sharpe Ratio	$\frac{r_p - r_t}{\sum_{t=1}^n \frac{\max(r_t, r_i, 0)}{n}}$					
Omega Sharpe Ratio	$\frac{r_p - r_t}{\sum_{t=1}^n \frac{\max(r_t, r_i, 0)}{n}}$			以價格下跌空間(Downside		
Omega Sharpe Ratio	$\frac{r_p - r_t}{\sum_{t=1}^n \frac{\max(r_t, r_i, 0)}{n}}$		A.	以價格下跌空間(Downside Potential),作為風險的測量數。		
Omega Sharpe Ratio Pain Ratio	$\frac{\sum_{t=1}^{n} \frac{\max(r_t, r_i, 0)}{n}}{r}$ $r_P - r_F$		A.	以價格下跌空間(Downside Potential),作為風險的測量數。 下跌空間是以平均數計算,可調整		
	$\frac{\sum_{t=1}^{n} \frac{\max(r_t, r_i, 0)}{n}}{n}$		A. B.	以價格下跌空間(Downside Potential),作為風險的測量數。 下跌空間是以平均數計算,可調整 偏態及峰態分布在測量上的問題。		
	$\frac{\sum_{t=1}^{n} \frac{\max(r_t, r_i, 0)}{n}}{r}$ $r_P - r_F$		A. B.	以價格下跌空間(Downside Potential),作為風險的測量數。 下跌空間是以平均數計算,可調整 偏態及峰態分布在測量上的問題。 痛苦比率是風險調整後的收益指		
	$\frac{\sum_{t=1}^{n} \frac{\max(r_t, r_i, 0)}{n}}{\sum_{t=1}^{n} \frac{ D_t' }{n}}$	MAR:最低可接受的報酬率	A. B.	以價格下跌空間(Downside Potential),作為風險的測量數。 下跌空間是以平均數計算,可調整 偏態及峰態分布在測量上的問題。 痛苦比率是風險調整後的收益指 標。代表每一單位的痛苦指數能帶		
Pain Ratio	$\frac{\sum_{t=1}^{n} \frac{\max(r_t, r_i, 0)}{n}}{r}$ $r_P - r_F$	$MAR:$ 最低可接受的報酬率 $\sigma_{\!\scriptscriptstyle D}:$ 風險下限	A. B. A.	以價格下跌空間(Downside Potential),作為風險的測量數。 下跌空間是以平均數計算,可調整 偏態及峰態分布在測量上的問題。 痛苦比率是風險調整後的收益指 標。代表每一單位的痛苦指數能帶 來多少收益回報。		

				的計算權重。
Skewness Kurtosis Ratio	Skewness Kurtosis Ratio(R,MAR)= $\frac{S}{K}$	S=skewness of R	A.	衡量報酬分布中偏態與峰態之比
		K=Kurtosis of R		例。
Sortino Ratio	Sortino Ratio= $\frac{\overline{(R_a - MAR)}}{2}$	δ_{MAR} :誤差下限	Α.	就是投資者在承受一單位的下跌風
	Sortino Ratio= $\frac{\delta_{MAR}}{\delta_{MAR}}$			險之下所獲得的超額報酬,和夏普
				比率類似都是用來衡量風險與報酬
				的指標,不同在於它在計算波動率
				時它所採用的不是標準差,而是下
				跌的標準差,也就是績效偏離平均
				跌幅的程度來衡量波動大小。
Treynor Ratio	$\overline{(R_a-R_F)}$		A.	Treynor Ratio 是每單位系統風險資
	$\overline{\beta_{a,b}}$			產獲得的超額報酬(超過無風險利
				率)。
			В.	Treynor Ratio 越大,投資組合的表現
				就越好;反之,投資組合的表現越
				差。
			C.	超額報酬被定義為投資組合的投資
				報酬率與同期的無風險報酬率之
				差,並以投資組合的系統風險 β 作
				為績效調整的參數。
			D.	Treynor Ratio 只考慮系統風險,因此
				適合已分散風險投資組合之評估

UpDown Rations	Asset's return	A.	Up Down Ration 衡量市場上漲或下
	benchmark's return		跌時,資產的報酬表現。
		B.	當市場上漲時,此比率愈高愈好,
			表示漲幅超越大盤。
		C.	當市場下跌時,此比率愈低愈好,
			表示資產較大盤相對抗跌。
Upside Potential Ratio	$\sum_{t=1}^{n} (R_t - MAR)$	A.	以下跌風險(downside risk),即低於
	δ_{MAR}		目標報酬率的標準差,來測量風險。
		B.	資產在低於目標報酬率的波動率愈
			低,Upside Potential Ratio 愈高。
		C.	若用於評價基金,表示基金經理人
			不因高於目標報酬率的波動率影響
			績效,但低於目標報酬率的波動率
			則降低績效表現。