Development of Tools for Data Quality Control for ALICE Experiment at CERN, Using Machine Learning Methods

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

CERN

ALICE

Heavy ions (like Pb)

Quantum chromodynamics

10 000 tones

After 2021 - 3 TB/s

Anomaly Detection

run	chunkID	time	year	period.fString	pass.fString	dataType.fString	startTimeGRP	stopTimeGRP	duration
287000	1	1527204124	2018	LHC18f	pass1	NaN	1527204124	1527231797	27673
287000	2	1527204124	2018	LHC18f	pass1	NaN	1527204124	1527231797	27673
287000	3	1527204124	2018	LHC18f	pass1	NaN	1527204124	1527231797	27673
287000	4	1527204124	2018	LHC18f	pass1	NaN	1527204124	1527231797	27673
287000	5	1527204124	2018	LHC18f	pass1	NaN	1527204124	1527231797	27673

RUN ~ 12h CHUNK ~ 8–15 min

SAMPLES - 3429 FEATURES - 231

Anomaly Detection

	bz	meanTPCnc1F	meanTPCChi2	rmsTPCChi2	slopeATPCnclF	slopeCTPCnclF	slopeATPCnclFErr	slopeCTPCnclFErr
mean	0.671010	0.639430	0.418191	0.354881	0.403929	0.617189	0.039607	0.617189
std	0.469882	0.082914	0.107004	0.078426	0.116310	0.094160	0.046425	0.094160

2 rows x 133 columns

	bz	meanTPCncIF	meanTPCChi2	rmsTPCChi2	slopeATPCncIF	${\sf slopeCTPCncIF}$	slopeATPCncIFErr	slopeCTPCnclFErr
0	0.000000	0.650378	0.586648	0.299807	0.567304	0.506033	0.029799	0.506033
1	0.000000	0.652363	0.579001	0.299619	0.553643	0.490807	0.028887	0.490807
2	0.000000	0.656779	0.582115	0.302841	0.576802	0.486826	0.028507	0.486826
54	0.000000	0.684929	0.573975	0.319703	0.633521	0.722099	0.480131	0.722099
69	0.000000	0.676676	0.583633	0.238868	0.657002	0.320537	0.628478	0.320537
182	0.000000	0.686070	0.549347	0.261746	0.642229	0.560798	0.228963	0.560798

Technology

Data Analysis

Features nessesary to mimic results of former agorithm with logistic regression:

- 0.8

offsetdZCErro offsetdZCErro offsetdZCErro offsetdZCChize offsetdZCChize offsetdZCChize offsetdZCErro offsetdZCErro offsetdRAPos offsetdRAPos offsetdRAPos offsetdRAPos offsetdRAPos offsetdRAPos offsetdRAPos offsetdRAPos offsetdRAPos meanWillbog mashPANos meanWillbog meanPANos meanPANos meanPANos meanPANos mediumPtCNog dear posA_2 Err dear posC_0 Err dear posC_0 Err dear posC_0 Err dear posC_0 Err dear negA_2 Err dear negA_3 Err

Data Analysis

Features nessesary to mimic results of former agorithm with logistic regression:

96% accuracy / 93% b.accuracy

~40 / 231 ???

Lightweight Dataset: 133

Classic Machine Learning

Classic Machine Learning

DBSCAN Isolation Forest t-SNE visualization t-SNE visualization

Deep Autoencoders

Deep Autoencoders

Simple

Variational

Deep Autoencoders

Former

T-SNE visualization 1.5NE visualization 1.5NE visualization 1.5NE visualization 1.5NE visualization

Simple Autoencoder

Model explainability / LIME

What about unsupervised cases?

LIME with Isolation Forest


```
Inlier Outlier

| 0.03 < errorMultPos <=...
| 0.03 < errorMultNeg ...
| 0.03 < errorMultNeg ...
| 0.00 |
| 0.02 |
| slopeCTPCnclFErr <=...
| 0.01 |
| 0.06 < dcar_posC_1_Er...
| 0.01 |
| 0.05 < entriesMult.1 ...
| slopeCTPCnclF <= 0.57
| 0.01 |
| 0.07 < dcar_negC_2_...
| dcar_posA_chi2 > 0.08 |
| 0.01 |
```

Feature	Value
errorMultPos	0.03
errorMultNeg	0.03
qOverPtC	1.00
slopeCTPCnclFErr	0.51
dcar_posC_1_Err	0.06
entriesMult.1	0.07
slopeCTPCnclF	0.51
dcaz_negC_2_Err	0.07
dcar_posA_chi2	0.10
slopeCTPCnclErr	0.43
dcaz_posC_0_Err	0.06
dcar_posC_0_Err	0.06
dcaz_posC_1_Err	0.06

Prediction probabilities Inlier 0.00 Outlier 1.00

Feature	Value
errorMultPos	0.38
errorMultNeg	0.41
dcaz_negC_2_Err	0.79
dcar_posC_1_Err	0.85
offsetdZAErr	0.36
slopedZAErr	0.29
qOverPtC	1.00
dcar_posC_0_Err	0.82
dcaz posC 0 Err	0.76
slopeATPCnclFEn	r 0.48
dcar_posA_0_Err	0.79
dcaz posC 1 Err	0.81
dcar_posC_2_Err	0.80

Inlier

LIME with Autoencoder

Feature	Value
slopeCTPCnclErr	0.43
slopeCTPCncl	0.43
slopeCTPCnclF	0.51
slopeCTPCnclFErr	0.51
tpcItsMatchA	0.53
slopeATPCnclF	0.57
vertStatus	0.43
meanMultPos	0.17
errorMultPos	0.03
meanTPCnclF	0.65
ptPull	0.49
medianHVandPTGainCorrOROC	0.73
offsetdZCchi2Pos	0.10

Feature	Value
vertStatus	0.67
slopeATPCnclF	0.63
tpcItsMatchA	0.53
offsetdZAErr	0.36
ptPull	0.58
slopeCTPCncl	0.53
dcarCP0	0.71
slopeCTPCnclErr	0.53
slopeCTPCnclFErr	0.72
meanMult	0.19
dcaz_posC_chi2	0.07
meanMultPos	0.19
meanPTRelativeA	0.70

Development of Tools for Data Quality Control for ALICE Experiment at CERN, Using Machine Learning Methods

Parameter	Random Forest	DBSCAN	Isolation Forest	Autoencoder	
Accuracy on former method labels	Very high	High	High	High	
Can work unsupervised	No	Yes	Yes	Yes	
Generalization abilities on not labeled data	,	Low	Medium	High	
Amount of hyperparams. and tuning difficulty	Low	High	Low	Very high	
Training Time	Short	Short	Short	Long	
Can find subgroups in data	No	Yes	No	No	
Can outperform expert user?	No	Possibly	Possibly	Yes	
Can be used with LIME?	Yes	Requires intermediate step	Requires intermediate step	Requires intermediate step but can also leverage native proper.	

