UNIVERSIDAD DE MENDOZA - FACULTAD DE INGENIERÍA

CARRERA	ASIGNATURA	CÓDIGO
Ingeniería en Informática	TEORÍA DE COMPILADORES	2035
CURSO	ÁREA	ULTIMA REVISIÓN
3ro	TECNOLOGÍAS BÁSICAS	Marzo de 2015
MATERIAS CORRELATIVAS: 2022- MATEMÀTICA DISCRETA y DISEÑO LÓGICO		AÑO LECTIVO 2016

Profesor Titular: Ing. Alfredo Iglesias	
Profesor Asociado:	
Profesores Adjuntos:	
Jefes de trabajos prácticos: Ing. Nora Costa	

Carga Horaria Semanal:	4
Carga Horaria Total:	60

OBJETIVOS:

Al finalizar el curso, el alumno deberá haber adquirido los conceptos básicos de la teoría de lenguajes formales y autómatas. Conocer los modelos, teorías y algoritmos asociados a la construcción de compiladores, y ser capaz de aplicar estos modelos a la solución de problemas relacionados al diseño y desarrollo de software.

PROGRAMA ANALÍTICO:

Capítulo I: Introducción

<u>Tema 1:</u> Antecedentes de la arquitectura computacional y los principios de los lenguajes de programación.

<u>Tema 2:</u> Procesadores de lenguajes. Estructura de un compilador. Evolución de los lenguajes de programación.

<u>Tema 3:</u> Construcción de compiladores. Aplicaciones de la teoría de compiladores. Nuevas arquitecturas de computadoras

Capítulo II: Análisis Léxico

<u>Tema 1:</u> Especificaciones de tokens: cadenas, lenguajes, operaciones en los lenguajes, expresiones regulares, definiciones regulares.

<u>Tema 2:</u> Reconocimiento de tokens: Diagramas de transición, reconocimiento de palabras reservadas. Autómatas finitos deterministas y no deterministas, tablas de transición, aceptación de cadenas.

<u>Tema 3:</u> Obtención de autómatas a partir de expresiones regulares. Conversión de AFN en AFD, Diseño de analizadores léxicos, estructura del analizador.

<u>Tema 4:</u> Máquinas de Turing. Definición formal. Diagrama de estados. Lenguajes asociados. Restricciones. Máquinas de Turing no deterministas.

Capítulo III: Análisis Sintáctico

<u>Tema 1:</u> Función del analizador sintáctico, representación de gramáticas, manejo de errores. Gramáticas libres de contexto, definiciones formales, derivaciones, árboles sintácticos y derivaciones, eliminación de ambigüedad, eliminación de recursividad.

<u>Tema 2:</u> Análisis sintáctico descendente: Análisis de descenso recursivo, primero y siguiente. Análisis sintáctico predictivo no recursivo. Recuperación de errores.

<u>Tema 3:</u> Análisis sintáctico ascendente: Reducciones, poda de mangos. Analizadores LR, algoritmos, construcción de tablas. Analizadores LR canónicos y LALR. Gramáticas ambiguas, precedencia y asociatividad.

Tema 4: Generadores de analizadores sintácticos Yacc.

Capítulo IV: Traducción dirigida por la sintaxis

<u>Tema 1:</u> Traducción dirigida por la sintaxis, definiciones dirigidas por la sintaxis. atributos heredados y sintetizados,

<u>Tema 2:</u> Evaluación de atributos. Construcción de árboles sintácticos. Estructura de tipos.

<u>Tema 3:</u> Esquemas de traducción orientados por la sintaxis. Grafo dirigido acíclico.

Capítulo V: Generación de código intermedio

Tema 1: Código de tres direcciones. Cuádruplos, Triplos.

Tema 2: Tipos y declaraciones, equivalencias, distribución de almacenamiento

<u>Tema 3:</u> Comprobación de tipos, conversiones, sobrecarga de funciones y operadores.

Formación Práctica	Horas
Resolución de Problemas Rutinarios:	
Laboratorio, Trabajo de Campo:	
Resolución de Problemas Abiertos de ingeniería:	15
Proyecto y Diseño:	

PROGRAMA DE TRABAJOS PRÁCTICOS:

Trabajo Práctico 1: Expresiones Regulares, Autómatas y Maquinas de Turing

Trabajo Práctico 2: Construcción de Analizadores Léxicos – Uso de Lex

Trabajo Práctico 3: Construcción de Analizadores Sintácticos – Uso de Yacc

ARTICULACIÓN HORIZONTAL Y VERTICAL DE CONTENIDOS:

 Los contenidos abordados en esta materia se basan en conceptos de las siguientes cátedras:

Asignatura	Curso	
Arquitectura de computadoras	2do	
Sistemas Operativos	2do	
Matemática Discreta y Diseño	2do	
Lógico		

Comparte e integra elementos horizontalmente con las siguientes cátedras:

Asignatura	Curso
Computación II	3ro

Los contenidos abordados en esta materia aportan conceptos a las siguientes cátedras:

Asignatura	Curso
Computación II	

CONDICIONES PARA REGULARIZAR LA MATERIA Y RÉGIMEN DE EVALUACIÓN:

Para aprobar la materia el alumno deberá: Aprobar el 100% de los prácticos. Cumplir con el 80% de asistencia Rendir un examen final.

BIBLIOGRAFÍA:

Principal:

Autor	Título	Editorial	Año Ed.	Dispon.
Alfred V. Aho,	COMPILADORES.	PEARSON		
Monica S. Lam,	PRINCIPIOS, TÉCNICAS Y	ADDISON	2008	1
Ravi Sethi, Jersey	HERRAMIENTAS	WESLEY	1998	3
D. Ullman				
Alfonseca Cubero	TEORÍA DE AUTÓMATAS	MCGRAW-		
E., Alfonseca	Y LENGUAJES	HILL		
Moreno M.,	FORMALES		2007	1
Mariyon Salomón				
R.				

De Consulta:

Autor	Título	Editorial	Año Ed.	Dispon.
Louden Kenneth. C.	CONSTRUCCION DE COMPILADORES PRINCIPIOS Y PRÁCTICAS	THOMSON INTERNACIO NAL	2004	1
Dean Kelley	TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES	LONGMAN	1995	
Cases Muñoz Rafel - Marquez Villodre Lluis	LENGUAJES, GRAMATICAS Y AUTOMATAS; CURSO BASICO	ALFAOMEGA	2002	1

ESTRATEGIAS DIDÁCTICAS UTILIZADAS:

- Clases expositivas
- Trabajos teórico prácticos grupales e individuales
- Trabajos prácticos individuales

RECURSOS DIDÁCTICOS UTILIZADOS:

- Textos
- Pizarrón
- Multimedia
- WEB de la Cátedra
- Guías de trabajos prácticos

PROGRAMA DE EXAMEN:

Ídem Analítico.