Programming Languages and Compilers: Quiz #5

Due on April 25, 2024 at $4\!:\!00\mathrm{pm}$

Professor CHUNG YUNG

LEE CHIH PIN

Problem 1

Prove or disprove that the following grammar is SLR(1)

$$S \to \operatorname{StmtList} \ \$$$

$$\operatorname{StmtList} \to \operatorname{Stmt} \ \operatorname{semi} \ \operatorname{StmtList}$$

$$\mid \operatorname{Stmt}$$

$$Stmt \to \operatorname{s}$$

Solution

Given the grammar:

$$\begin{aligned} & \text{Start} \to \text{StmtList\$} \\ & \text{StmtList} \to \text{Stmt semi StmtList} \mid \text{Stmt} \\ & \text{Stmt} \to s \end{aligned}$$

The follow sets are provided as:

- $Follow(Start) = \{\}$
- $Follow(StmtList) = \{\$\}$
- $Follow(Stmt) = {semi, \$}$

LR(0) Items and Automaton

- $\begin{array}{ccc} \operatorname{Start}' \to & \cdot \operatorname{Start} \\ \operatorname{Start} \to & \cdot \operatorname{StmtList} \$ \\ \textbf{10:} & \operatorname{StmtList} \to & \cdot \operatorname{Stmt} \operatorname{semi} \operatorname{StmtList} \\ \operatorname{StmtList} \to & \cdot \operatorname{Stmt} \\ \operatorname{Stmt} \to & \cdot \operatorname{s} \end{array}$
- I1: Start \rightarrow StmtList \cdot \$
 - $Stmt \rightarrow s$
- $\begin{array}{ccc} \textbf{I2:} & \textbf{StmtList} \rightarrow & \textbf{Stmt.} \textbf{ semi StmtList} \\ & \textbf{StmtList} \rightarrow & \textbf{Stmt.} \end{array}$
- $\textbf{I3:} \quad StmtList \rightarrow \quad Stmt \cdot$
 - $\begin{array}{ccc} StmtList \rightarrow & Stmt \; semi \; \cdot StmtList \\ StmtList \rightarrow & \cdot Stmt \; semi \; StmtList \end{array}$
- StmtList \rightarrow Stmt Stmt \rightarrow s
- **I5:** StmtList \rightarrow Stmt semi StmtList

Parsing Table

State	s	\mathbf{semi}	\$	Stmt	StmtList
$\overline{I_0}$	s2			3	1
I_1			accept		
I_2		s4	$r(\mathrm{Stmt} o s)$		
I_3		$r(\text{StmtList} \to \text{Stmt})$	$r(\text{StmtList} \to \text{Stmt})$		
I_4	s2			3	5
I_5		$r(\operatorname{StmtList} \to \operatorname{Stmt} \operatorname{semi} \operatorname{StmtList})$	$r(\operatorname{StmtList} \to \operatorname{Stmt} \operatorname{semi} \operatorname{StmtList})$		

Conclusion

The constructed SLR(1) parsing table does not have any shift/reduce or reduce/reduce conflicts based on the given Follow sets and the automaton. Thus, the grammar is SLR(1).

This concludes the proof that the grammar is SLR(1) as no conflicts were identified in the parsing table.