

学号: <u>11910104</u> 姓名: <u>王奕童</u> 日期: 2020 年 <u>4</u> 月 <u>10</u> 日 星期 五

示波器原理与应用

一.实验目的

- 1. 了解示波器的基本结构和原理
- 2. 学习使用示波器观察波形和测量信号周期及时间参数等。

二.实验仪器

双踪示波器,函数信号发生器,接线板,导线若干

三. 实验原理

阅读讲义,清楚以下问题,简要概括实验原理。

1. 示波器结构。

示波器主要由示波管(如图3.2.3-1所示)和复杂的电子线路构成。示波器的基本结构 见图3.2.3-2。

图 3.2.3-1 示波管示意图

图 3.2.3-2 示波器的基本结构简图

2. 示波器竖直偏转极板所加信号的特点。

示波器竖直方向所加信号为正弦电压,如图3.2.3-4所示。且偏转电压 U_Y 和偏转位移Y成正比关系,即 $Y \propto U_Y \ .$

3. 示波器水平偏转极板所加信号的特点

为显示波形,必须在水平偏转板(X轴)上加一扫描电压,其为加在X偏转板上的锯齿波电压,如图3.2.3-5所示。且该扫描电压周期应为被测信号周期的整数倍,即 $T_x=nT_y$,n=1,2,3...

四、实验内容、数据记录及数据处理

- 1. 用示波器测量信号的周期和幅度
- (1) 测量示波器自带方波信号的周期和幅度,并与理论值(1ms, $4V_{p-p}$)比较。 思考题: 时基分别选 0.1~ms/div, 0.2ms/div 和 0.5~ms/div 来测量周期,哪种时基测出的数据更准确,为什么?

时基 (ms/div)	0.1	0.2	0.5			
理论周期 (ms)	1.000					
理论频率(Hz)	1000					
测量频率(Hz)	996.0	994.0	990.1			
测量周期(ms) 1.004		1.006	1.010			

哪种时基测出的数据更准确: 0.1ms/div , 原因是:

时基越小,相应分辨率会越高,因肉眼测量带来的误差也会越小,对周期长度的测量结果的影响也就越小,可以提高实验结果的准确度。

(2) 选择信号发生器的对称方波接 Y 输入, 频率为 2000Hz, 幅度分别为 $0.5 \ V_{p-p} \ 1 \ V_{p-p} \ 1.5 \ V_{p-p} \ 2.5 \ V_{p-p} \ 3.5 \ V_{p-p} \ 3.5$

当频率为 2000Hz 时:

输入幅度 (Vpp)	0.5	1.0	1.5	2.0	2.5	3.0	3.5
屏幕一格所代 表幅度(v/div)	0.1	0.2	0.2	0.5	0.5	0.5	0.5
曲线所占格数	6.00	5.51	8.00	4.00	5.00	6.02	7.00
测量幅度 (Vpp)	0.60	1.12	1.60	2.00	2.50	3.01	3.50

利用 Excel 作曲线图:

(3) 选择信号发生器的正弦波接 Y 轴输入, 幅度为 5V_{p-p}, 频率分别为 200、500、1 K、2K、5K、10K、20K(Hz), 选择示波器合适的时基, 测量信号的周期, 并换算成频率。以信号发生器的频率为 x 轴, 示波器所测频率为 y 轴, 用坐标纸作曲线。

输入信号幅度为 5Vpp 时,

输入频率(Hz)	200	500	1k	2k	5k	10k	20k
所选时基 (ms/div)	1	0.5	0.2	0.1	0.05	0.02	0.01
曲线所占格数	4.81	4.01	5.01	4.95	3.99	5.01	5.02
测量周期(ms)	4.810	2.005	1.002	0.495	0.199	0.100	0.050
测量频率(Hz)	207.9	498.8	998.0	2020.2	5025.1	9980.0	19920.3

利用 OriginLab 作曲线图:

2. 观察李萨如图形,并求频率,其中 f_x =1200 Hz

A:
$$\frac{f_x}{f_y} = 1$$
, $f_y = 1200 \,\text{Hz}$

B:
$$\frac{f_x}{f_y} = \frac{3}{2}$$
, $f_y = 800 \text{ Hz}$

C:
$$\frac{f_x}{f_y} = 2$$
, $f_y = 600 \,\text{Hz}$

D:
$$\frac{f_x}{f_y} = 3$$
, $f_y = 400 \,\text{Hz}$

E:
$$\frac{f_x}{f_y} = 4$$
, $f_y = 300 \text{ Hz}$

五、实验误差分析

定性分析本实验误差来源及改进措施

- (1) 误差来源分析:
- ①垂直系统和水平系统的电压发生不同步协调,有可能会存在时间差而带来测量周期的不准确:
- ②实验时仪器有可能受到桌面振动的影响,从而有可能使波形图发生变化,带来测量周期的不准确性;
- ③在测量周期、频率和幅度的实验过程中,示波器在屏幕上所占比例较小,示波器的波形 图较粗,使用肉眼测量波形图之间周期宽度时可能带来偏差,有可能使读取的波形图的振 幅测量不准确,带来实验的误差:
- ④测量时图形会有一定波动, f_v 会上下跳动,有可能使实验读取时不准,带来误差;
- ⑤而且示波器本身机器会存在一定的系统误差,如示波器显示图像可能存在延时等等
- (2) 改进措施:
- ①在实验前调试垂直系统和水平系统的电压频率,减小垂直系统和水平系统的协调误差;
- ②在实验中注意操作规范并且在桌面上添加一些重物,减小桌面振动:
- ③调节示波器图像的分辨率以将示波器图像放大,减小因肉眼不能精确读取图像数据带来的测量误差;
- ④根据随机误差的对称性和抵偿性的特点,可以使用多次测量求取平均值的方法可以减小实验中 f_{v} 测量的误差;
- ⑤更换性能更好的示波器进行实验。

六、实验结论

简要概括实验内容及结果。

- (1) 实验内容:本次实验使用了双踪示波器,函数信号发生器,接线板,导线若干等实验器材,进行了使用示波器的实验,共分为2个部分:①用示波器测量信号的周期与幅度②观察李萨如图形并测频率。
- (2) 实验结果:
- ①用示波器测量信号的周期与幅度实验中,
- (1) 测得示波器自带方波信号周期为 1.007 ms, 频率为 993.4Hz, 且在时基为 0.1s 时测量的精确度更高;
- (2) 信号发生器的对称方波在输入频率为 2000Hz 时输入幅度和测量幅度的关系如下图所示,近似满足正比关系

(3) 选择信号发生器的正弦波接 Y 轴输入,幅度为 $5V_{p-p}$ 时输入频率和测量频率关系如下图所示,近似满足正比关系;且由本实验可知,实验中所选时基越小,实验结果的精确度越高。

②在观察李萨如图形并测频率的实验中,先后观察了五组示波器的李萨如图形,并根据图形计算出了相应的频率。

通过这次实验,了解了示波器的基本机构和原理,学习了如何使用示波器观察波形和测量信号周期及时间参数等信息,掌握了用示波器测量信号的周期和幅度的方法,学习了如何通过观察李萨如图形来求取频率的实验方法。

七、思考题

1. 1V 峰峰值的正弦波,它的有效值是多少? 解:

正弦波的有效值需要考虑其方均根(V_{RMS})

设正弦波的一个周期为T,则 $V = \sin(\frac{2\pi}{T}t)$

所以 $\int_{0}^{T} \sin^{2}(\frac{2\pi}{T}t)dt = T \cdot V_{RMS}^{2}$,其中等式左边通过微积分换元可得左边的结果为 $\frac{1}{2}T$,故可得

正弦波的方均根 $V_{RMS} = \frac{\sqrt{2}}{2}V$

因此以 1V 为峰峰值的正弦波的有效值是 $\frac{\sqrt{2}}{2}V$

2. 示波器稳定显示周期信号的条件?

①竖直偏转板(Y 轴)上添加正弦电压,如图 3.2.3-4 所示,水平偏转板(X 轴)上添加扫描电压,如图 3.2.3-5 所示;且需要满足扫描电压周期应为被测信号周期的整数倍,即 $T_x = nT_v$, n = 1,2,3...。

图 3.2.3-4 信号随时间变化的规律 (加在 Y 偏转板)

图 3.2.3-5 锯齿波电压 (加在 X 偏转板)

②示波器采取的三种方式以保持波形的完整稳定:

1. "内整步":将待测信号一部分加到扫描发生器,当待测信号频率 f_y 有微小变化,它将迫使扫描频率 f_x 追踪 其变化,保证波形的完整稳定;

- 2. "外整步": 从外部电路中取出信号加到扫描发生器, 迫使扫描频率 f_x 变化;
- 3. "电源整步": 整步信号从电源变压器获得;