

功能聚类 - GSEA 分析

ID	Description	setSize	enrichmentScore	NES	pvalue	p.adjust	qvalue
REACTOME_CELL_CYC	REACTOME_CELL_CYCLE_CH	237	0.667	3.044	1e-10	7.58e-09	6.02e-09
REACTOME_MITOTIC	REACTOME_MITOTIC_G1_P	142	0.701	3.002	1e-10	7.58e-09	6.02e-09
REACTOME_DNA_REPL	REACTOME_DNA_REPLICATI	137	0.696	2.956	1e-10	7.58e-09	6.02e-09
REACTOME_CELL_CYC	REACTOME_CELL_CYCLE_MI	458	0.607	2.947	1e-10	7.58e-09	6.02e-09
REACTOME_G2_M_CHE	REACTOME_G2_M_CHECKP	134	0.687	2.901	1e-10	7.58e-09	6.02e-09
REACTOME_SYNTHESI	REACTOME_SYNTHESIS_OF	110	0.711	2.901	1e-10	7.58e-09	6.02e-09
REACTOME_MITOTIC	REACTOME_MITOTIC_META	201	0.650	2.887	1e-10	7.58e-09	6.02e-09
WP_RETINOBLASTOMA	WP_RETINOBLASTOMA_GE	84	0.730	2.814	1e-10	7.58e-09	6.02e-09
REACTOME_S_PHASE	REACTOME_S_PHASE	145	0.655	2.799	1e-10	7.58e-09	6.02e-09
REACTOME_MITOTIC	REACTOME_MITOTIC_SPIN	92	0.702	2.772	1e-10	7.58e-09	6.02e-09

网址: https://www.xiantao.love

更新时间: 2023.02.03

目录

基本概念 3
应用场景 3
主要结果 4
数据格式 7
参数说明 9
基因集 9
分析参数 10
结果说明 11
主要结果 11
方法学 13
如何引用 14
常见问题

基本概念

➤ 基因集富集分析(Gene Set Enrichment Analysis, GSEA):用一个预先定义的基因集中的基因来评估在与表型相关度<mark>排序</mark>的基因表中的分布趋势,从而判断其对表型的贡献。这个与表型相关度排序可以是 logFC 值。

应用场景

手上有大部分的功能分子以及对应的值,这个值可以是 logFC。可以用这个 logFC 作为分子的排序,从而来评估在预先定义的基因集中是否显著富集。

预先定义的基因集来自 MSigDB 数据库

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp),这些预先定义的基因集中的分子基本为功能基因为主,如果手上只有非功能基因(比如 miRNA、lncRNA、circRNA),那么将由于缺少基因集而无法进行 GSEA 分析。

主要结果

1	Α	В	С	D	E	F	G	Н	T	J	K	L	
1	ID	Description	setSize	enrichmentS	NES	pvalue	p.adjust	qvalue	rank	leading_edg	core_enr	ichment	
2	REACTOME_	REACTOME_	237	0.66674999	3.04379824	1E-10	7.5813E-09	6.0164E-09	1898	tags=43%, li	CDC45/CI	DCA8/MCM10	0/CD
3	REACTOME_	REACTOME_	142	0.70095021	3.00209513	1E-10	7.5813E-09	6.0164E-09	1151	tags=41%, li	CDC45/M	ICM10/MYBL2	2/TOI
4	REACTOME_	REACTOME_	137	0.69582082	2.95608573	1E-10	7.5813E-09	6.0164E-09	1763	tags=49%, li	CDC45/M	ICM10/UBE20	C/UBE
5	REACTOME_	REACTOME_	458	0.6073098	2.94715166	1E-10	7.5813E-09	6.0164E-09	1763	tags=36%, li	s CDC45/CI	DCA8/MCM10	0/CD
6	REACTOME_	REACTOME_	134	0.68661939	2.90126992	1E-10	7.5813E-09	6.0164E-09	1898	tags=49%, li	CDC45/M	ICM10/CCNB	2/CDI
7	REACTOME_	REACTOME_	110	0.71134747	2.90065947	1E-10	7.5813E-09	6.0164E-09	1898	tags=54%, li	s CDC45/U	BE2C/UBE2S/	CCN
8	REACTOME_	REACTOME_	201	0.65023395	2.88715897	1E-10	7.5813E-09	6.0164E-09	1850	tags=40%, li	CDCA8/C	DC20/CENPE	/CCN
9	WP_RETINO	WP_RETINO	84	0.73015214	2.81434613	1E-10	7.5813E-09	6.0164E-09	1329	tags=51%, li	CDC45/C	CNB2/TOP2A	/RRN
10	REACTOME_	REACTOME_	145	0.65531327	2.79876078	1E-10	7.5813E-09	6.0164E-09	1763	tags=46%, li	CDC45/U	BE2C/UBE2S/	CCN
11	REACTOME_	REACTOME_	92	0.70154933	2.77241955	1E-10	7.5813E-09	6.0164E-09	449	tags=27%, li	CDCA8/C	DC20/CENPE	/NDC
12	REACTOME_	REACTOME_	111	0.68070952	2.75987156	1E-10	7.5813E-09	6.0164E-09	1898	tags=46%, li	s CDC45/M	ICM10/UBE20	C/UBE
13	REACTOME_	REACTOME_	162	0.64291611	2.75628681	1E-10	7.5813E-09	6.0164E-09	1762	tags=38%, li	CDCA8/C	DC20/CENPE	/NDC
14	NABA_CORE	NABA_CORE	201	-0.66811865	-2.75251153	1E-10	7.5813E-09	6.0164E-09	1537	tags=50%, li	MFAP3/I	GFBP7/THSD4	4/VW
15	KEGG_CELL_	KEGG_CELL_	114	0.66878969	2.72918483	1E-10	7.5813E-09	6.0164E-09	1230	tags=40%, li	s CDC45/CI	DC20/CCNB2/	/CCN

➤ ID: 基因集的名字,以下划线作为分隔,最前面代表来自哪个数据库,比如 KEGG_xxxxx,就说明来自 KEGG 的基因集。

▶ Description: 基因集的名字

> setSize: 基因集中定义的分子数量

- enrichmentScore: 富集得分。ES 反应基因集中的基因(S) 在排序列表基因(L) 的两端富集的程度。
 - 以 FoldChange (FC) 值作为排序基因列表 (L) 对应数值为例,对于一个基因集 (S):

计算方式是, 从基因列表 L 的第一个基因开始扫描, 计算一个累计统计值。当遇到一个在 S 里面的基因, 则增加统计值; 遇到一个不在 S 里面的基因, 则降低统计值。每一步统计值增加或减少的幅度与基因的表达变化程度是相关的。统计值连成线, 最高峰定义为对应基因集(如例子中的 S) 的富集得分 ES。正值 ES 表示基因集在列表的顶部富集, 负值 ES 表示基因集在列表的底部富集。

Start with ranked list (L) of genes that are in (Hit) or not in (Miss) a gene set (S), using fold change (FC) as example metric

Ranked List(L)	FC		Contribution to running sum for ES	Hits + FC / Σ	Misses -1/(N-N _H)	Running sum for ES
	15	Hit	+0.15	+0.15		0.15
	12	Hit	+0.12	+0.12		0.27
E	10	Miss	-0.01		-0.01	0.269
(s 	9	Hit	+0.09	+0.09		0.359
g-	8	Hit	+0.08	+0.08		0.439
	6	Miss	-0.01		-0.01	0.438

Hits: Genes \in S + |FC| / Σ Misses: Genes \notin S -1/(N-N_H)

Σ 表达矩阵L中基因的FC之和(e.g., 100) N 表达矩阵L的基因总数(e.g., 1020)

N_H某一基因集对应的基因数(e.g., 20)

ES(S) = value of maximum deviation from 0 of the running sum

- ➤ NES (normalize enrichment score): 校正后归一化的富集得分。富集评分的标准化考虑了基因集个数和大小。
- > pvalue: 统计检验的 p 值, 也称为 NOM p-val。通过基于表型而不改变基因之间关系的排列检验 (permutation test) 计算观察到的富集得分(ES)出现的可能性。若样品量少, 也可基于基因集做排列检验 (permutation test), 计算 p-value。
- p.adjust: 通过 p 值校正方法得到的校正后的 p 值。(一般这个要满足 <0.05)
- p qvalue: 通过 p 值校正方法得到的校正后的 q 值,也称为 FDR。
- rank: 当 ES 值最大时,对应基因在排序好的基因列表 L 中的位置。
- ➤ Leading-edge subset,对富集得分贡献最大的基因成员,即核心基因集,也是对 ES 影响较大的基因;该处有 3 个统计值,tags 表示核心基因集占该基因集 S 中基因总数的百分比; list 表示核心基因集占基因列表 L 中基因总数的百分比; signal,将前两项统计数据结合在一起计算出的富集信号强度。
- > core_enrichment: 核心富集的分子,即对应的基因集中核心的分子。

这里得到的表格即说明(假设是由两组分析后得到的 logFC 作为分子的值)对应的基因集在两组内有差异,当 ES 或者 NES 为正时,说明该基因集在高表达组(头部)富集,;当 ES 或者 NES 为负时,说明该基因集在低表达组(尾部)富集。

结果这里一般只需要关注满足阈值(p.adj<0.05 & qvalue<0.25)的基因集的名字(最前面是对应的数据库或者分类)。可以挑选在满足阈值下的 NES top 的分子,或者一些感兴趣的分子。

数据格式

A		В			
1	id	value			
2	MMP1	4.572612682			
3	CDC45	4.514593715			
4	NMU	4.418217981			
5	CDCA8	4.144075182			
6	MCM10	3.876258009			
7	CDC20	3.677857006			
8	S100A9	3.501962572			
9	FOXM1	3.291811805			
10	KIF23	3.286223276			
11	CENPE	3.219760698			
12	KRT16	3.213434697			
13	MYBL2	3.208372764			
14	MELK	3.197736904			
15	CCNB2	3.125238899			
16	S100A8	3.086835528			

数据要求提供2列:

- ▶ 第一列除了列名外,下面的可以是分子名、Ensembl编号、Entrez ID、Symbol ID。
- ▶ 第二列为分子对应的数值,这个可以是 logFC 值。
 - 注意: <mark>这里的数据不需要对分子过滤,分子越多越好</mark>。如果过滤了分子,则可能会富集不到结果。
 - 如果分子存在有重复的话,会只保留第一次出现的分子以及对应的值
- ➤ GSEA 一般要求是输入所有的分子和对应的值,因为 GSEA 会对所有分子进行排序,输入分子越少则对结果可能影响较大,甚至可能富集不到结果,参考基因集中的分子中越多分子没有给定值,则该参考基因集富集不出来的概率更高。
- ▶ 最少要求 200 行,最多支持 70000 列。若验证数据时返回报错,需要在上传数据内进行相应的调整,然后再上传数据。

这里为任务式模块,提交任务后需要到历史记录中刷新并等待任务完成,(分析时间大概在几分钟左右,如果任务执行时间过长,刷新后任然在执行阶段,建议删除后重新提交。)

参数说明

(说明:标注了颜色的为常用参数。)

基因集

▶ 数据集: 数据集主要来自 MSigDB 数据库

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) ,具体数据集的介绍可以在 MSigDB 数据库查看相关介绍。

▶ 物种:物种选择,可以选人源、大鼠、小鼠。

分析参数

- ▶ <mark>种子</mark>: 设置种子号。由于 GSEA 会进行重复随机计算,需要设置种子号保证每次输入的结果都是一致的,<u>不同种子号产生的结果都有可能会有一定的</u>差别。
- → <mark>计算次数</mark>: 设置计算的次数,默认无,可以选 1000、5000、100000。<u>提高计算次数</u>能够增加 GSEA 富集结果的稳定性。(<u>可能会有效降低校正后的</u> р值。)
- ▶ 每个基因集至少含有基因数:一般设置为 10, 一般不需要更改。
- ▶ 每个基因集至多含有基因数:一般设置为 500,一般不需要更改。
- ▶ p 值校正方法: 默认为 BH 法, <u>一般不需要改动</u>。如果有需要也可以进行相应修改。

结果说明

主要结果

此表格提供 GSEA 富集分析结果(页面只展示 Top10),提供 Excel、Docx 格式下载。

补充结果

GSEA富集情况统计	
显著性一般看校正后p值 < 0.05 同时 FDR (qvalue) < 0.25	
条件	个数
FDR(qvalue) < 0.25 & p.adjust < 0.05	397

此表格提供 GSEA 富集分析结果中显著性满足阈值(p.adj<0.05 & qvalue<0.25)的基因集个数。

这里为任务式模块,提交任务后需要到**历史记录**中刷新并等待任务完成,(<u>分析</u>时间大概在 几分钟 左右,如果任务执行时间过长,刷新后任然在执行阶段,建议删除后重新提交。)任务完成后,提供 Excel 、Docx 格式及完整报告下载。

注意: GSEA 的可视化需要到 可视化模块中进行。<u>如果删除了数据记录,将无</u> 法进行可视化。

如果下载的 excel 为空,说明没有富集出来结果。具体原因可以看常见问题。

方法学

所有分析和可视化均在 R 4.2.1 中进行

涉及的 R 包: clusterProfiler 包(用于富集分析)、msigdbr 包(参考基因集来源)

基因集数据库: MSigDB Collections

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)

处理过程:

(1) 方法: Gene Set Enrichment Analysis (GSEA)分析

- (2) 基因集数据库: MSigDB Collections (数据库超链接)(有各个基因集的详细介绍)
- (3) 过程: 对输入的数据中的分子进行 ID 转换后,用 clusterProfiler 包进行 GSEA 分析。

如何引用

生信工具分析和可视化用的是 R 语言,可以直接写自己用 R 来进行分析和可视化即可,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 数据集选项卡中的每个数据集是什么内容? KEGG 在哪个数据集中? 答:

与 GSEA 分析数据集通用, 具 体 每 个 数 据 集 都 是 来 源 于 这 个 数 据 库 MSigDB Collections

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp),数据库内含有每个数据集的介绍:

其中, C2 是通路数据集,包含有 KEGG、Reactome 数据库等的内容。如果是想要分析 KEGG 通路富集,可以选 C2.CP 数据集。如果最终结果中包含有 KEGG 开头的数据集,则说明有 KEGG 通路相关富集。

2. **富集结果不是很好**(没有富集出来),有什么可能的原因? <mark>下载的文件为空</mark>? 答:

下载文件为空,就是说明所选的基因集中都不满足 p.adj < 0.05 & qvalue < 0.25 的阈值,所以就为空文件(只含有列名)。

富集结果不好的原因可能有下:

- ① 如果定义的每个分子的值本身就是不显著,差别不大,则可能富集出来的结果就是不好的。
- ② 如果过滤了分子,<u>有一些分子没有出现在表格中,尤其是一些基因集中核心</u>的分子,那么有极大的可能富集不到好的结果。
- ③ 上传的分子含有较少的功能基因或者无功能基因或者没办法转换 ID 的分子,则可能最终也会富集不到结果。

如果某个基因集结果不好, <u>可以尝试其他的数据集</u>。结果如果还是不理想, 那么可能就还是数据的问题或者就是富集不出来,这种工具也没有办法解决。

3. **富集结果的** p.adj 就差一丢丢满足阈值,有没有办法降低以达到阈值? 答:

可以更换别的种子号或者提高计算次数(具体解释见参数说明部分),可能会有不一样的结果。

4. 富集分析的结果很多,如何挑选?

答:

结果这里一般只需要关注满足阈值(p.adj<0.05 & qvalue<0.25)的基因集的名字(最前面是对应的数据库或者分类)。可以挑选在满足阈值下的 NES top 基因集,或者一些感兴趣的基因集。

5. 如何做单基因差异 GSEA?

答:

先进行单基因差异分析(云端数据类型模块在表达差异-单基因差异分析模块), 拿到结果后,提取分子列和对应的 logFC,进行 GSEA 分析,即是单基因 GSEA 分析。注意,这里不要按照差异分析结果过滤分子,要把所有的分子都纳入。

6. 如何进行可视化的操作?

答:

提交分析任务完成后,历史记录中会有一条对应的结果记录,可以下载对应的结果表格。同时在 GSEA 可视化模块中可以选择对应的数据记录,可以对数据进行可视化。如果想要更改可视化的基因集,可以从下载的结果表格中复制 ID 列到右边的基本参数中,即可进行想要的基因集的可视化。