Tassen: Next Gen CUPS API Paper

Release Version 0.1

Craig Stevens, Mario Kind, Carmelo Cascone

TABLE OF CONTENTS

1	Introduction and Motivation	3	
2	Background		
3	Architecture 3.1 High Level Architecture	9	
4	Use Cases 4.1 BNG 4.2 UP4	13 13 14	
5	Evaluation	15	
6	Discussion	17	
7	Conclusion		
8	Glossary		
9	References	23	
10	Authors and Contributors 10.1 Authors:		
Ind	dex	27	

TABLE OF CONTENTS

1

INTRODUCTION AND MOTIVATION

Focus on the Telco World.

- Telco operators have an interest in using datacenter technologies -> CORD
- Operators want disaggregation, but incumbent vendors make it hard by defining CUPS APIs that are ambiguous and make integration painful
- New methodology: formally specify the forwarding pipeline of telco appliances (BNG, UPF) to facilitate interoperability
- We are not the first to propose this approach (Google using it for their fixed-function datacenter switches)
- Tassen and UP4 as concrete examples of this methodology

Other: * It would be good to collect experiences from other projects where P4 was not used, e.g. any issue with porting Voltha from the Edgecore OLT to others while using OpenFlow without a formal pipeline definition? * Benu networks in implementing PFCP?

TWO

BACKGROUND

- Works on disaggregation of BNG and other devices e.g. UPF: to justify the need of CUPS API
- Standard CUPS api: PFCP: to present the current state of the art
- Google approach for fixed-function data center switches: to bring example of P4/P4Runtime for defining APIs
- Switch-Independent Architecture (SAI)?
- CORD: to present a project for DC technologies for Telco operators (can be left in the introduction)

ARCHITECTURE

- P4 description of a silicon independent pipeline (bng.p4)
- P4Runtime interface derived from P4 description
- Translation layer (mapr) -> from silicon independent to silicon dependent (e.g., Tofino) or other target (fpga, smartNIC)
 - Northbound: P4Runtime, communicates with the BNG Control Plane
 - Southbound: P4Runtime or other control plane protocol, dialogue with BNG Data Plane
- Integration with current CUPS api (PFCP)

The proposed architecture tackles requirements one by one: * Arguing and understanding requirements is much easier with formal P4 pipeline * New requirement == patch to P4 code and corresponding PTF test * Translation layer * P4Runtime -> gRPC. Mapr: almost stateless, golang, can horizontally scale * PTF, fuzz testing with p4pktgen

3.1 High Level Architecture

3.2 Tassen and the BBF Disaggregated BNG Architecture (WT-459)

Note: This diagram is from the BBF WT-459 specification

3.3 Sequence Diagrams

3.3.1 Initial pipeline setup

3.3.2 Write BNG tables

3.3.3 Read BNG tables

FOUR

USE CASES

4.1 BNG

- high level pipeline description (block level)
- Talk about design rationale behind logical bng.p4 (few database-like tables)
- high level description of a target pipeline
- description of the mapping of some functionalities

4.2 UP4

(SAME AS IN BNG?) Carmelo: worth of mention as the physical realization comprises downlink buffering as an off-device component, but abstracted as an action in the pipeline.

CHAPTER FIVE

EVALUATION

Any evaluation to perform?? Test the performance of mapr?

SIX

DISCUSSION

Shortcomings of the P4 language: too low level redundant tables for uplink and downlink,

CHAPTER SEVEN

CONCLUSION

EIGHT

GLOSSARY

BNG Broadband Network Gateway terminates broadband subscribers.

BNG-c the control plan component of a dissagregated BNG

BNG-d the data plan component of a dissagregated BNG

FW Firewall network function.

gNMI gRPC Network Management Interface uses OpenConfig models to configure/monitor a network device over gRPC.

gRPC Google's Remote Procedure Call (RPC) interface.

IETF The Internet Engineering Task Force (IETF) is an open standards organization, which develops and promotes voluntary Internet standards, in particular the standards that comprise the Internet protocol suite (TCP/IP).

IP the Internet Protocol.

LB Load Balancer network function.

NETCONF The Network Configuration Protocol (NETCONF) is a network management protocol developed and standardized by the IETF.

NF Network Function (i.e. BNG, UPF, LB, FW, etc).

NF-c Control plane part of a dissagregated Network Function.

NF-d Data plane part of a dissagregated Network Function.

NG-SDN Next Generation Software Defined Network

OpenConfig Vendor-neutral, model-driven network management designed by the OpenConfig working group http://openconfig.net.

P4 Runtime Control plane protocol used to communicate between a controller (i.e. the client) and a data plane node (i.e. the server).

Protobuf a serialisation protocol normally used to serialise/deserialise data over a gRPC interface.

SDN Software Defined Network

SmartNIC A more intelligent NIC that generally has a hardware accelerated and programmable programmable forwarding engine (PFE) along with CPU cores on the same NIC that can handle control plane functions (i.e. loading, programming and configuring the forwarding pipeline).

SNIC Abbreviation for SmartNIC

TCP the Transport Control Protocol.

UPF User Plane Function of a 5G solution.

YANG YANG is a data modeling language used to model configuration and state data manipulated by either the NETCONF or gNMI protocols.

CHAPTER
NIINE

REFERENCES

 $\pmb{[\textbf{Ref 1] - Software-Defined Networks: A Systems Approach \ \, \text{https://sdn.systemsapproach.org}}\\$

TEN

AUTHORS AND CONTRIBUTORS

10.1 Authors:

Carmelo Cascone:

• ?????, Open Networking Foundation

Mario Kind:

• ????, Duetsche Telekom

Craig Stevens:

• Distinguished Engineer, CTIO, Dell Technologies

10.2 Contributors:

INDEX

В	U
BNG, 21	UPF, 22
BNG-c, 21	Υ
BNG-d, 21	YANG, 22
F	111110, 22
FW, 21	
G	
gNMI, 21 gRPC, 21	
I	
IETF, 21 IP, 21	
L	
LB, 21	
N	
NETCONF, 21	
NF, 21	
NF-c, 21 NF-d, 21	
NG-SDN, 21	
0	
OpenConfig, 21	
P	
P4 Runtime, 21	
Protobuf, 21	
S	
SDN, 21	
SmartNIC, 21	
SNIC, 21	
Т	
TCP, 21	