



## Opinion manipulation via social media: a case study of SocialBots and Russian trolls during the 2016 US elections

Marian-Andrei Rizoiu

### The research group



1 research associate, 4 PhD students, 1 research assistant, 1 lecturer















### Research objectives



1.



information diffusion epidemics spreading behavioral modeling



### Research objectives



1.



information diffusion epidemics spreading behavioral modeling



2.





## Research objectives





information diffusion epidemics spreading behavioral modeling





[Rizoiu et al WWW'20]





[Rizoiu et al ICWSM'18] [Kim et al Journ.Comp.SocSci'19]





# Role of Twitter Socialbots During US Presidential Debate

## Two influencers: the 2016 U.S. Presidential elections





#### Jenna Abrams

@Jenn\_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- Q USA
- & jennabrams.com
- iii Joined October 2014
- Born on October 02



6ok followers

136k followers

#### Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

• ...



## Two influencers: the 2016 U.S. Presidential elections





#### Jenna Abrams

@Jenn\_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **USA**
- & jennabrams.com
- iii Joined October 2014
- Born on October 02



6ok followers

136k followers

#### Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

• ...

Russian-controlled bots operated by the Internet Research Agency in St. Petersburg

[Forbes, The Guardian, CNN + 50 more]

## The political influence of socialbots



#### **SocialBots:**

"Software processes that are programmed to appear to be human-generated within the context of social networking sites such as Facebook and Twitter"

(Gehl and Bakardjieva 2016, p.2)

### Immediate and long term research questions:

- are socialbots influential in the political discourse?
- did they have political partisanship?
- (long term) were they instrumental for the results of the elections?

## #DebateNight dataset



- First U.S. Presidential Debate (26 sept 2016, 8.45pm to 10.45pm EDT)
- Twitter Firehose



### **Dataset stats:**

- length: 90 minutes
- #tweets: **6.5M**
- #users: 1.45M

### Hashtags:

#DebateNight
#Debates2016
#election2016
#HillaryClinton
#Debates,
#Hillary2016
#DonaldTrump
#Trump2016

### Presentation outline









Political partisanship



User botness



Analyze political behavior of bots







## Diffusion trees and influence







## Diffusion trees and influence







$$p_{ij} = \frac{m_i e^{-r(t_j - t_i)}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability



$$p_{ij} = \frac{m_i \mathbf{e}^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

- users retweet *fresh content* [Hawkes 1971]

[Wu and Huberman 2007]



#followers of  $u_i$ 

$$p_{ij} = \frac{\mathbf{m_i} e^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

- users retweet *fresh content*[Hawkes 1971]
  [Wu and Huberman 2007]
- preferential attachment [Barabási 2005]



#followers of  $u_i$ 

$$p_{ij} = \frac{\mathbf{m_i} e^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

- users retweet *fresh content*[Hawkes 1971]
  [Wu and Huberman 2007]
- preferential attachment [Barabási 2005]

Tweet influence: the expected number of retweets, averaged over all possible trees.

But ... (n-1)! trees  $10^{156}$  trees for 100 tweets









## Tractable influence computation

Pair-wise influence score  $m_{ij}$ 



• • •





## Tractable influence computation



Pair-wise influence score  $m_{ij}$ 

$$m_{15} = m_{11}p_{15} + m_{12}p_{25} + m_{13}p_{35} + m_{14}p_{45}$$



Recursive algorithm  $O(n^3)$ 

## Supp: Influence vs. cascade size





Density plot for 653K users (45% users start a cascade)

## Supp: Influence vs. cascade size





Density plot for 653K users (45% users start a cascade)



actor and filmmaker
10.8 million followers



2.1 million followers

comedian

## Supp: Influence vs. number of followers





### Supp: Influence vs. number of followers







2 followers Initiated a big cascade

now suspended 1 follower Initiated a big cascade

**Twitter Rules** 

### Presentation outline









Political partisanship



User botness



Analyze political behavior of bots

## Political polarization (1)



#### **Protocol:**

- Top 1000 most frequent hashtags
- Manually labeled as *clearly* partisan pro-democrat or pro-republican

### Partisanship stats:

- pro-Democrat hashtags: 93
- pro-Republican hashtags: 86
- partisan tweets: **65K**
- partisan users: 47K



## Political polarization (2)



#### For each user i:

- dem<sub>i</sub> #democrat hashtags
- rep<sub>i</sub> #republican hashtags



$$\mathcal{P}(u_i) = \frac{rep_i - dem_i}{rep_i + dem_i}$$

### Political polarization (2)



#### For each user i:

- dem; #democrat hashtags
- rep<sub>i</sub> #republican hashtags





Let's Get READY TO RUMBLE AND TELL LIES.
#debateriaht #debates #Debates 2016 #enn

#debatenight #debates #Debates2016 #cnn #nevertrump #neverhillary #Obama

## Botness score and bot detection



#### **Bot detection:**

- BotOrNot [Davis et al, WWW '16] [Varol et al, ICWSM'17]
  - RandomForest classifier
  - more than 1000 features from metadata
    - o very likely human
    - 1 very likely bot
  - 94.5% precision



#### Botometer

@Botometer

Online tool to classify Twitter accounts as human or bot. Formerly known as BotOrNot, part of the OSoMe project at Indiana University

- O Bloomington, IN
- S botometer.iuni.iu.edu
- S-a alăturat în aprilie 2014

## Separating bots from humans



### Three populations

| Population | Effective |
|------------|-----------|
| All        | 1,451,388 |
| Protected  | 45,316    |
| Suspended  | 10,162    |

## Separating bots from humans



### Three populations

| Population | Effective |
|------------|-----------|
| All        | 1,451,388 |
| Protected  | 45,316    |
| Suspended  | 10,162    |



[Varol et al, ICWSM'17] use a threshold of 0.5

### Presentation outline





User influence



Political partisanship



User botness



Analyze political behavior of bots

## Activity profiling







**Bots** and **Suspended** are more active than **Humans** and **Protected** 

Some **Bots** are highly followed, while most are ignored

### User influence







The average **Bot** has 2.5 times more influence than the average **Human** 

The average pro-Republican **Bot** is twice as influential as the average pro-Democrat **Bot** 

### Political partisanship







**Bots** are more likely to be pro-Republican (than pro-Democrat)

Very highly influential users are more likely to be pro-Democrat

### Polarization map





# Polarization map





Very highly influential users are pro-Democrat

(D: 7201, R: 5736)





Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

Highly influential **Bots** are pro-Republican

(D: 24, R: 45)





Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

Highly influential **Bots** are pro-Republican

(D: 24, R: 45)

Mid-influential humans are pro-Republican

(D: 1530, R: 3311)





# User identity via semantic edit distance: A case study of Russian trolls on Twitter

[Kim et al Jour. Comp. Social Science '19]

#### Russian Trolls dataset

[Linvin and Warren, 2018]



- User handles provided by Twitter to the House Intelligence Committee
- The most comprehensive empirical record of Russian troll activity on social media



#### **Dataset stats:**

- length: February 2012 and May 2018
- #tweets: 3M
- #users: 2,848 handles

## 5 roles:

right troll news feed left troll hashtag gamer fearmonger

### Identify troll via their online traces







Identity through the digital traces that actors leave behind

#### Identify troll via their online traces





Identity through the digital traces that actors leave behind

## Identify troll via their online traces

# Semantic edit distance between two trajectories

$$D(i,j) = \operatorname{dist}(\boldsymbol{s}_i, \boldsymbol{s}_j) \times \exp(\theta |t_i - t_j|)$$

## **Properties:**

- Increases with sequence similarity;
- Decreases with time-difference;
- Embeds semantics of text





t

### Predict and explain troll strategy



|          |               | Micro F1 |      | Macro F1 |      |
|----------|---------------|----------|------|----------|------|
|          | N /           |          |      |          |      |
|          | Method        | K        | F1   | K        | F1   |
| Baseline | LR            | _        | 0.75 | _        | 0.55 |
|          | $\mathrm{ED}$ | 1        | 0.73 | 1        | 0.47 |
|          | Cosine        | 1        | 0.75 | 1        | 0.54 |
| Semantic | SED           | 1        | 0.79 | 1        | 0.62 |
|          | SED/Max       | 6        | 0.68 | 1        | 0.39 |
|          | SED/ED        | 8        | 0.62 | 8        | 0.34 |
| Temporal | t-LR          | _        | 0.79 | _        | 0.61 |
|          | $	ext{t-ED}$  | 1        | 0.84 | 1        | 0.76 |
|          | t-Cosine      | 5        | 0.81 | 1        | 0.61 |
|          | t-SED         | 3        | 0.86 | 3        | 0.78 |

Distinguish/predict troll roles: right troll, news feed, left troll

## Predict and explain troll strategy





"Focused MAGA" right trolls, "diverse strategy" left trolls.

## Predict and explain troll strategy





"Focused MAGA" right trolls, "diverse strategy" left trolls.

- **A** (right trolls) Hillary cannot be trusted #ThingsMoreTrustedThanHillary
- **B** (right trolls) Mimic black Trump supporters #Blacks4Trump
- **C** (all trolls) Religious beliefs #God #Prolife
- **D**, **F** (news trolls) News about violence and civil unrest #news
- **E** (news trolls) Federal politics, policy and regulation #politics

# Summary



A scalable algorithm to estimate user influence from latent network structures



Three measures to quantify the influence, the political partisanship and botness of Twitter users



A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.



Predict and analyze the role of opinion manipulators (trolls) via semantic edit distance

# Thank you!





A scalable algorithm to estimate user influence from latent network structures



Three measures to quantify the influence, the political partisanship and botness of Twitter users



A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.



Predict and analyze the role of opinion manipulators (trolls) via semantic edit distance

# Next steps:





# Next steps:





- Complex contagion diffusion models with community structure;
  Estimate impact of spread of malicious content (total popularity, virality, affected communities)