· a
$$(1-\alpha) \times 100\%$$
 (.I. on β_1 is:

B1:
$$\beta_1 \pm t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{\times \times}}}$$

denominator ferm of $\hat{\beta}_1$

ex: Oz qurity vs. hydrocarbon level example

$$5xx = 0.68048$$
 $14.947 = 2.61 \sqrt{\frac{1.118}{0.68088}}$
 7.02 purity
 $12.181 < P_1 < 17.713 7.69 hydrocarta

12.01 1 1014$

note: this C.I. does not include zero;

we would reject to: B1 = 0 0 d=0.05

- a (1-d) x 100% C.J. on Po is:

Bo:
$$\beta_0 + t_{\alpha/2, n-2} \sqrt{\frac{n^2 \left[\frac{1}{n} + \frac{x^2}{S_{xx}}\right]}$$

recall: Bo = 74.28 [% O2 purity] = 1.196 [% hydrocarbon]

$$74.28 \pm 2.101 \sqrt{1.18 \left[\frac{1}{20} + \frac{1.196^2}{0.68088}\right]} \iff 957.$$

70.93 < Po < 77.63

[7. 02 quaity]

C.I. on Mean Response

· Mean response : MY/x.

estimated regression line at some value of x

 $M_{Y|_{X}}$: $M_{Y|_{X}} + t_{X/2, n-2} \sqrt{\sigma^2 \left[\frac{1}{n} + (x_0 - \overline{x})^2 \right]}$

Note: the further away from x
our chosen X. is, the wider the C.I.

Write 95% C.I. on mean response @x=1.00 % hydrocarbon level

first need uy | 1.00 !!

ŷ = Pix + Po = 14.95 x + 71.28

 $99.23 \pm 2.101 \sqrt{1.18 \int_{20}^{1} + \frac{(1.00 - 1.960)^{2}}{0.68088}}$

88.49 < UT/1.00% < 89.97

(% O2 purity)

Very narrow range; estimated regression line does good job of computing y due to small amount of scatter in the data.

Prediction of New Observations

what can we expect the next data point to return?

" $n \left(1-d\right) \times 100\%$ prediction interval is:

 $\int_{0}^{\infty} \frac{1}{x^{2}} \int_{0}^{\infty} \frac{1}{x^{2}$

this term widens interval over C.I. on My/x.

ex: write a 95% P.I. on the

21st observation of O2 purity

@ Xo = 1.00% hydrocarbon level

yo = β, + β, xo = 89.23 [Same as MY11.0070]

 89.23 ± 2.101 [1.18 [1 + $\frac{(1.00 - 1.196)^2}{0.6809}$]

26.83 < 10 < 91.63

(% O2 parity)

· wider than 95% C.I. on UY/1.00%