Corporate Debt Standardization and The Rise of Electronic Bond Trading

Artur Carvalho University of Chicago

May 26, 2021

- Increased adoption of electronic trading in U.S. Corporate Bond Markets in the past decade;
 - trend in automation, electronic trading and consolidation;
 - promoted as a solution to deteriorating liquidity condition in secondary markets;
- Obstacle: market fragmentation
 - complexity and heterogeneity in issuance;
- Standardization as a viable solution?
 - ▶ facilitates pricing + concentrates liquidity in a few securities
 - But may take away firms' ability to signal their credit quality!
- ► This paper: structural model of credit risk with
 - 1. illiquid, competing secondary markets;
 - 2. informational asymmetry between debt and equity investors;

wherein covenants arise endogenously.

Electronic Trading of U.S. Corporate bonds:

- Sustained growth over the past few years;
 - ▶ 70% of all U.S. Corporate bonds now trade electronically;
 - ► Trades in ATS account for over 20% of all secondary trades, with volumes soaring last year during the pandemic;

Electronic Trading of U.S. Corporate bonds:

- Sustained growth over the past few years;
 - ▶ 70% of all U.S. Corporate bonds now trade electronically;
 - ► Trades in ATS account for over 20% of all secondary trades, with volumes soaring last year during the pandemic;

Electronic Trading of U.S. Corporate bonds:

- Sustained growth over the past few years;
 - ▶ 70% of all U.S. Corporate bonds now trade electronically;
 - ► Trades in ATS account for over 20% of all secondary trades, with volumes soaring last year during the pandemic;

Motivation: Electronic Trading Obstacles

Obstacles remain:

- ▶ Volume traded electronically: only about 6% of the total;
- Mostly restricted to smaller-sized trades:
 - ► Trades of 100 bonds or fewer: over 85% of all electronic trades v.s. 70% of all OTC trades;
- Low penetration of HY bonds:
 - less than 45% trade electronically.

Research question:

► How will debt standardization affect the composition of debt and distribution of credit quality across competing secondary markets?

Motivation: Electronic Trading Obstacles

Obstacles remain:

- ▶ Volume traded electronically: only about 6% of the total;
- Mostly restricted to smaller-sized trades:
 - ► Trades of 100 bonds or fewer: over 85% of all electronic trades v.s. 70% of all OTC trades;
- Low penetration of HY bonds:
 - less than 45% trade electronically.

Research question:

▶ How will debt standardization affect the composition of debt and distribution of credit quality across competing secondary markets?

The Model in a Nutshell

- ▶ Illiquid secondary bond markets + asymmetric information;
- ► Electronic (standardized debt only) v.s. OTC (less liquid);
- Equity investors exploit their private information about firms;
- ightharpoonup Covenants arise endogenously \Rightarrow signaling mechanism.

Informational v.s. Liquidity Costs

- lacktriangle Private information affects firms' funding costs $\Rightarrow \Delta$ leverage;
- ▶ Informational costs are an increasing function of (i) the share of risky firms, and (ii) the size of their unhedgeable risk.
- ► For high enough informational costs, safer firms may forego liquidity gains to signal their creditworthiness.

Related Literature

- Structural Models of Credit Risk:
 - Leland and Toft (1996);
 - He and Xiong (2012): secondary market illiquidity affects default decision
- Sources of illiquidity:
 - Funding liquidity/collateral constraints: Brunnermeier and Pedersen (2009);
 - 2. **Search and bargaining costs**: Duffie et al. (2005);
 - 3. Adverse selection:
 - Akerlof (1970);
 - Stiglitz and Weiss (1981): interest rates used as a screening device to assess borrower's credit quality;
 - ► Kyle (1985): intermediaries require compensation for losses due to trading with insiders → presence of traders with superior information leads to positive bid-ask spreads
- Secondary Markets' Liquidity: Chen et al. (2007), Bao et al. (2011), several others

Related Literature

- More pre-trade price transparency and direct access for buy-side traders via electronic brokers may reduce dealers' markups and improve liquidity: Hendershott and Madhavan (2015), Harris et al. (2015);
- But perhaps only if adverse selection and information leakage costs are small (Kozora et al. (2020));
- What about standardization?
 - Network externalities can affect market depth (Pagano (1989)) and the prevalence and stickiness of "boilerplate" contracts in corporate debt securities (Klausner (1995));
 - Euro adoption as a natural experiment: lower transaction costs, higher cross-border financial transactions inside the Euro zone, widespread adoption of English law in European debt securities...

THE UNIVERSITY OF CHICAGO

Capital Structure

- ▶ The economy lasts for two periods: t = 0, 1;
- Risk-neutral investors: bond investors and equity holders;
- Firm types: safe (prob. μ_s) or risky (prob. $1 \mu_s$).
 - After t = 0 but before period 1, risky firms experience an idiosyncratic, mean-reducing shock with probability q:

$$V_{1,s} = V_0 e^{\mathrm{x}}, \quad V_{1,r} = egin{cases} V_0 e^{\mathrm{x}}, & \mathrm{w/\ prob\ } 1-q \ V_0 e^{\mathrm{y}}, & \mathrm{w/\ prob\ } q \end{cases}$$

where

$$x \sim \mathcal{N}\left(r_f - \frac{1}{2}\sigma^2, \sigma\right), \quad y \sim \mathcal{N}\left(r_f - \frac{1}{2}\sigma^2 - s_f \cdot \sigma, \sigma\right), \quad s_f > 0$$

Capital Structure

- Financed with a mix of debt and equity, issued at time 0;
- ▶ Debt: measure μ_b of coupon-less bonds with principal $p < V_0$;

Tax benefits v.s. bankruptcy costs

- ▶ tax shield: $\pi \mu_b p$
- risk of a costly bankruptcy: lost tax shields and fractional recovery value αV_1 .

Secondary Bond Markets

- **>** Bonds are traded in illiquid secondary markets: $r_{disc}^b > r_f$ **>**
 - ightharpoonup value of newly-issued bonds in primary markets;
 - ► ↑ firms' funding costs.
- Electronic Platforms (EP) v.s. Over-the-Counter (OTC) markets
 - ► EPs are more liquid: $r_{disc}^{b,EP} < r_{disc}^{b,OTC}$
 - ▶ But accept only covenant-free bonds.

Payoffs, Prices & The Optimal Capital Structure

- ▶ Bankruptcy condition: $V_1 + \pi \mu_b p < \mu_b p$
- ▶ Debt: $D(\mu_b) = e^{-r_{disc}^b} E\left[\mu_b p + (\mu_b p \alpha V_1) \mathbf{1}_{\{V_1 + \pi \mu_b p < \mu_b p\}}\right]$
- Equity: $E(\mu_b) = e^{-r_f} E[\max\{V_1 + \pi \mu_b p \mu_b p, 0\}]$
- ► Expected Equity Return (*ER*):

$$E(\mu_b) - \underbrace{(V_0 - D(\mu_b))}_{\text{Cash Infusion}} = \underbrace{(E(\mu_b) + D(\mu_b))}_{\text{Firm Value}} - V_0$$

Optimal Capital Structure

 μ_b that maximizes the total initial valuation of the firm.

Asymmetric Information

Assumption (Creditors' Information Set)

Creditor's know the distribution of types and observe V, but not firms' exposure to the mean-reducing shock.

- Firms are ex-ante indistinguishable to debt holders;
- Misrepresentation raises the return to risky-type shareholders':

$$\frac{E_r\left(\mu_{b,s}^{\star}\right)}{V_0 - D_s\left(\mu_{b,s}^{\star}\right)} > \frac{E_r\left(\mu_{b,r}^{\star}\right)}{V_0 - D_r\left(\mu_{b,r}^{\star}\right)}$$

▶ But also ↑ safe firm's funding costs;

$$D^{POOL}(\mu_b) = \mu_s D_s(\mu_b) + (1 - \mu_s) D_r(\mu_b)$$

Characterizing the Economy

The Dual Market Economy

The economy is fully characterized by $E \equiv [Q, \mu_s, r, B, M_b]$

- ▶ Set of types: $Q \equiv \{0, q\}$
- ▶ Interest rates: $r \equiv (r_f, r_{disc}^{b,EP}, r_{disc}^{b,OTC})$
- ▶ Bond contracts: $\boldsymbol{B} \equiv \left\{ \boldsymbol{b}^{EP}, \boldsymbol{b}^{OTC} \right\}$
 - $m{b}^{EP} \equiv (m,c,p) = (1,0,p), \ m{b}^{OTC} \equiv \left(m{b}^{EP}, heta \right)$
- ▶ Measure of bonds: $M_b \equiv [0, \overline{\mu}_b]$

Focus first on a Restricted Economy: $E^{SD} \equiv \left[Q, \mu_s, r, \boldsymbol{b}^{EP}, M_b\right]$

lacktriangle Trades happen exclusively in EP, since $r_{disc}^{b,EP} < r_{disc}^{b,OTC}$.

Game Setup

Type-Contingent Strategies, Creditors' Beliefs and Offer Price Function

- ▶ Types play mixed strategies p_i^b : $M_b \mapsto [0,1]$ s.t.
 - $ightharpoonup p_j^b(\mu_b)\geqslant 0$ for all $\mu_b\in M_b$, and $\int_{M_b}p_j^b(x)\,dx=1$.
- lacktriangle Creditors form rational beliefs about firms' types: $\gamma_s\left(\mu_b\right)$
- ► Creditors' offer price function: $d_c(\cdot|\gamma)$

Pooling v.s. Separating Bond Measures

- ▶ Separating measure: μ_b s.t. $\gamma_s(\mu_b) \in \{0,1\}$.
- ▶ Pooling measure: μ_b for which $\gamma_s(\mu_b) \in (0,1)$.

Truth-Telling and Funding Conditions

Types' Incentive Compatibility Condition (IC)

A belief and price functions pair, $(\gamma_s(\cdot), d_c(\cdot|\gamma))$, is robust against misrepresentation iff

$$MBR_{j}\left(\mu_{b}'|\gamma\right)\leqslant\max_{\mu_{b}\in\mathcal{M}_{b}\cup\emptyset}MBR_{j}\left(\mu_{b}|\gamma\right)\quad\forall\mu_{b}'\in\mathcal{M}_{b}\text{ s.t. }\gamma_{i}\left(\mu_{b}'\right)=1$$

where $i, j \in \{s, r\}$, $j \neq i$.

Assumption (Creditors' Funding Condition - CFC)

Any choice of capital structure μ_b must maximize the firm value given creditors' beliefs γ and offer price function $d_c(\cdot|\gamma)$, subject to type's incentive compatibility (IC) conditions.

Game Setup

Creditors' Funding Condition - Cont'd

Optimal pooling measure μ_b^{pool}

$$\max_{\mu_{b} \in M_{b}} \left\{ \gamma_{s} FV_{s} \left(\mu_{b} | \gamma \right) + \left(1 - \gamma_{s} \right) FV_{r} \left(\mu_{b} | \gamma \right) \right\} \quad \text{(CFC - Pooling)}$$

where
$$FV_j(\mu_b|\gamma) = E_j(\mu_b) + \mu_b d_c(\mu_b|\gamma)$$
.

Optimal separating measure $\mu_{b,i}^{sep}$

$$\max_{\mu_b \in M_b \cup \emptyset} FV_i \left(\mu_{b,i}^{sep} | \gamma \right)$$

s.t.

(CFC - Separating)

$$MBR_{j}\left(\mu_{b,i}^{sep}|\gamma\right) \leqslant \max_{\mu_{b} \in M_{b} \cup \emptyset} MBR_{j}\left(\mu_{b}|\gamma\right) \quad (IC)$$

for $j \neq i$.

Weak Equilibrium in E^{SD}

A weak equilibrium in E^{SD} is a tuple $e \equiv \left(\left\{p_s^b\left(\cdot\right), p_r^b\left(\cdot\right)\right\}, \gamma_s\left(\cdot\right), d_c\left(\cdot|\gamma\right)\right)$ satisfying:

- 1. [Funding] μ_b satisfies CFC, $\forall \mu_b \in M_b$ s.t. $p_i^b(\mu_b) > 0$, $i \in \{s, r\}$;
- 2. [Shareholders' optimality] For each μ_b such that $p_i^b(\mu_b) > 0$,

$$MBR_{j}\left(\mu_{b}|\gamma\right) = \max_{\mu_{b} \in M_{b} \cup \emptyset} MBR_{j}\left(\mu_{b}|\gamma\right), \quad j \in \{s, r\}$$

- 3. [Creditors' zero-profit condition]
 - 3.1 For $\mu_b \in M_b$ s.t. $p_i^b(\mu_b) > 0$, $i \in \{s, r\}$,

$$d_{c}\left(\mu_{b}|\gamma\right) = \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right)$$

3.2 Creditors' beliefs are rational:

$$\gamma_{s}\left(\mu_{b}\right) = \frac{\mu_{s} p_{s}^{b}\left(\mu_{b}\right)}{\mu_{s} p_{s}^{b}\left(\mu_{b}\right) + \left(1 - \mu_{s}\right) p_{r}^{b}\left(\mu_{b}\right)}$$

for all
$$\mu_b$$
 s.t. $p_j(\mu_b) > 0$, some $j \in \{s, r\}$.

Characterizing the Weak Equilibria in E^{SD}

- ► Lemma. 1: No type chooses more than one separating measure with strictly positive probability in equilibrium. ▶
- ► Lemma. 2: The only separating measure a risky firm can choose in equilibrium is the risky-type's first-best measure $\mu_{h,r}^{Fl}$.
- ▶ Lemma. 3: The safe-type's separating measure in equilibrium does not depend on the measure of safe types, μ_s . ▶

Characterizing the Weak Equilibria in E^{SD}

- ▶ Lemma. 4: No market equilibrium in E^{SD} can support more than one pooling measure. •
- ▶ Lemma. 5: There cannot be a market equilibrium in E^{SD} where risky firms choose a pooling measure with probability $p_r^b \in (0,1)$ ▶

Types of Weak Equilibria

- ► Pure Separating ►
- Pure Pooling
- ▶ Mixed ▶
 - $\blacktriangleright \ \mathit{MBR}_{\mathsf{s}}\left(\mu_{b}^{\mathit{pool}}\big|\gamma\right) = \mathit{MBR}_{\mathsf{s}}\left(\mu_{b,\mathsf{s}}^{\mathit{sep}}\big|\gamma\right)$
 - \blacktriangleright $\mu_{b,s}^{sep}$ does not depend on μ_s (Lemma 3)
 - lacksquare back out μ_b^{pool} from $MBR_s\left(\mu_{b,s}^{sep}\big|\gamma
 ight)\Rightarrow\gamma_s^{pool}$ (CFC)
 - solve for $p_s^b\left(\mu_b^{pool}\right)\in(0,1)$ that solves:

$$\gamma_{s}^{pool} = \frac{p_{s}^{b}\left(\mu_{b}^{pool}\right)\mu_{s}}{p_{s}^{b}\left(\mu_{b}^{pool}\right)\mu_{s} + (1 - \mu_{s})}$$

Mixed equilibrium shouldn't hold: $\uparrow p_s^{pool} \Rightarrow \uparrow MBR_s^{pool}$

Equilibria in E^{SD}

Creditors' Preferences

Given the pooling and separating weak equilibria in E^{SD} , bond investors prefer that which yields the highest safe firm valuation.

Equilibrium in E^{SD}

An equilibrium in E^{SD} is a weak equilibrium tuple e^* such that no other weak equilibrium \tilde{e}^* yields a higher total firm value for safe firms.

When the safe type's firm valuations coincide in the pooling and separating weak equilibria, the prevailing equilibrium is that which maximizes the safe-type's MBR.

Equilibria in the Dual Market Economy E

The equilibrium in the dual-market economy E can then be backed-out by comparing the safe-type's firm valuation in the restricted economy E^{SD} to $FV_s^{OTC}\left(\mu_{b,s}^{OTC}\right)$.

$$\Delta FV\left(Q, \mu_{s}, \textbf{\textit{r}}, \textbf{\textit{B}}\right) = FV_{s}\left(\mu_{b,s}^{EP}|\gamma\right) - FV_{s}^{FI}\left(\mu_{b,s}^{OTC}|\gamma\right)$$

$$= -\left(FV_{s}^{FI}\left(\mu_{b,s}^{OTC}|\gamma\right) - FV_{s}^{FI}\left(\mu_{b,s}^{FI}\right)\right)$$

$$-\left(FV_{s}^{FI}\left(\mu_{b,s}^{FI}\right) - FV_{s}\left(\mu_{b,s}^{EP}|\gamma\right)\right)$$

$$= \frac{\left(FV_{s}^{FI}\left(\mu_{b,s}^{FI}\right) - FV_{s}\left(\mu_{b,s}^{EP}|\gamma\right)\right)}{INFC(Q,\mu_{s},\textbf{\textit{r}},\textbf{\textit{B}})}$$

Equilibria in the Dual Market Economy E

Mixed equilibrium where safe firms randomize between standardized and non-standardized debt shouldn't hold:

- $\blacktriangleright \quad \mathit{MBR}_{\mathsf{s}}\left(\mu_{b,\mathsf{s}}^{\mathit{EP}}\right) = \mathit{MBR}_{\mathsf{s}}\left(\mu_{b,\mathsf{s}}^{\mathit{OTC}}\right);$
- $\mu_{b,s}^{OTC}$ does not depend on μ_s ;
- ► $FV_s\left(\mu_{b,s}^{EP}\right)$ likely different than $FV_s\left(\mu_{b,s}^{OTC}\right)$:
 - ightharpoonup \Rightarrow creditors not indifferent between $\mu_{b,s}^{\it EP}$ and $\mu_{b,s}^{\it OTC}$;
- Moreover, MBR_s^{EP} is weakly increasing in the measure of safe firms in issuing standardized debt, μ_s^{EP} .

Conclusion

- Numerically solved a structural model of credit risk with competing, illiquid secondary bond markets and adverse selection;
- ▶ Informational Cost: risky type's misrepresentation raises the funding costs for safe firms and forces them to adjust their capital structure, either by pooling together or seeking separation;
 - By and large, pooling is more likely the higher (i) the share of safe firms and (ii) the risk differential between types;
- Cross-Market Liquidity Differential affects the choice of debt instrument:
 - covenants arise endogenously as a means of signaling credit quality when informational costs costs are greater than the liquidity gains offered by electronic trading.
 - dual-market, separating equilibrium prevails, where safe bonds trade over-the-counter, while riskier debt is traded electronically.
- Implications for the widespread adoption of electronic trading of HY bonds.

Bond Investor's Discount Rate

- Creditors are subject to i.i.d. liquidity shocks before time 1;
- Shocks force portfolio liquidation at a fractional cost in secondary markets.

Equity Return and Misrepresentation

- ▶ Shareholders' investment: $W_0 < V_0$
- ▶ Measure of shareholders: $\nu(\mu_b)$

$$u\left(\mu_{b}\right)W_{0} = \underbrace{V_{0} - D\left(\mu_{b}\right)}_{\text{Book Value of Equity}}$$

Individual shareholder's return:

$$\frac{E(\mu_b)}{\nu(\mu_b)} - W_0 = \left(\frac{E(\mu_b)}{\nu(\mu_b)W_0} - 1\right)W_0$$
$$= \left(\frac{E(\mu_b)}{V_0 - D(\mu_b)} - 1\right)W_0$$
$$= (MBR(\mu_b) - 1)W_0$$

The Covenant

In case of a shock, a fraction θ of the equity value is transferred to bondholders:

$$\theta \{V_1 - (1-\pi)\mu_b p\} \cdot \mathbf{1}_{\{V_1 + \pi\mu_b p > \mu_b p\}}$$

Loss in firm valuation:

$$\Delta FV_{j}\left(\mu_{b}\right) \approx EL\left(\mu_{b}, r_{disc}^{e}, r_{disc}^{b, EP} | j\right) + LDL\left(\mu_{b}, r_{disc}^{e}, r_{disc}^{b, EP}, r_{disc}^{b, OTC} | j\right)$$

where

$$\begin{split} EL\left(\mu_{b}, r_{disc}^{\text{e}}, r_{disc}^{b, EP} | j\right) &= -q_{j}\theta\left(r_{disc}^{b, EP} - r_{disc}^{\text{e}}\right)E\left(\mu_{b}; r_{disc}^{\text{e}}, \mu_{r}^{\text{v}}, \sigma\right) \\ LDL\left(\mu_{b}, r_{disc}^{\text{e}}, r_{disc}^{b, EP}, r_{disc}^{b, OTC} | j\right) &= \mu_{b}\left\{d\left(\mu_{b}, r_{disc}^{b, OTC} | j\right) - d\left(\mu_{b}, r_{disc}^{b, EP} | j\right)\right\} \\ &- q_{j}\theta\left(r_{disc}^{b, OTC} - r_{disc}^{b, EP}\right)E\left(\mu_{b}; r_{disc}^{\text{e}}, \mu_{r}^{\text{v}}, \sigma\right) \end{split}$$

Let $\theta = 1$, perfect signaling is possible iff

$$\mathit{MBR}\left(\mu_{b,s}^{\mathit{OTC}}, r_{\mathit{disc}}^{\mathit{OTC}} | r
ightarrow s
ight) = (1-q) \, \mathit{MBR}_s\left(\mu_{b,s}^{\mathit{OTC}}; r_{\mathit{disc}}^{\mathit{OTC}}
ight) \leqslant \mathit{MBR}_r\left(\mu_{b,r}^{\mathit{FI}}; r_{\mathit{disc}}^{\mathit{EP}}
ight)$$

Suppose type-i firms play μ_b' , μ_b'' with strictly positive probability in equilibrium, for some $i \in \{s, r\}$.

- Consistency of creditors' beliefs with investors' strategies requires that $\gamma_i(\mu_b') = \gamma_i(\mu_b'') = 1$, so payoffs are given by the full information (FI) formulas.
- By the shareholders' optimality condition, we must have

$$\textit{MBR}_i\left(\mu_{\textit{b}}'|\gamma\right) = \textit{MBR}_i\left(\mu_{\textit{b}}''|\gamma\right)$$

► However, the strict concavity of the FI firm value function (figure 29) implies that at least one of these measures violates the creditors' funding condition. Contradiction!

Proof. of Lemma 1 - Cont'd

- $\mu_{b,r}^{FI}$ already satisfies the safe-type's IC condition;
- ▶ Any separating measure $\mu'_{b,r}$ s.t. $\mu'_{b,r} \neq \mu^{FI}_{b,r}$ violates *CFC*.

By Lemma 2, the IC constraint for the safe-type becomes:

$$\mathit{MBR}_r\left(\mu_{b,s}^{\mathit{sep}}|\gamma_s=1\right)\leqslant \mathit{MBR}_r\left(\mu_{b,r}^{\mathit{FI}}|\gamma_s=0\right)$$

which depends solely on the type's characteristics, but not on the ratio of safe-to-risky firms.

Let $\mu_b', \mu_b'' \in M_b$ be pooling measures.

► Shareholders' Optimality:

$$MBR_{j}\left(\mu_{b}'|\gamma\right) = MBR_{j}\left(\mu_{b}''|\gamma\right)$$

Creditors' Funding Condition:

$$\max_{\mu_b>0}\left\{\gamma_{\mathrm{s}}^\prime F V_{\mathrm{s}} \left(\mu_b | \gamma_{\mathrm{s}}^\prime\right) + \left(1-\gamma_{\mathrm{s}}^\prime\right) F V_{\mathrm{r}} \left(\mu_b | \gamma_{\mathrm{s}}^\prime\right)\right\}$$

where

$$FV_{j} (\mu_{b}|\gamma'_{s}) = E_{j} (\mu_{b}) + \mu_{b} d (\mu_{b}|\gamma'_{s})$$
$$d (\mu_{b}|\gamma'_{s}) = \gamma'_{s} d_{s} (\mu_{b}) + (1 - \gamma'_{s}) d_{r} (\mu_{b})$$

Proof. of Lemma 4 - Cont'd

Optimal Pooling Capital Structure and Shareholders' Payoff for $q_s=0.0$, $q_r=0.5$, $s_f=1.0$, $\sigma=0.3$ Optimal Measure of Bonds

If
$$p_r\left(\mu_b^{\it pool}
ight) < 1$$
, then

- ▶ By lemma 4, risky firms choose a separating measure $\mu_{b,r}^{sep}$ with strictly positive probability;
- ▶ By lemma 2, $\mu_{b,r}^{sep} = \mu_b^{FI}$;
- Shareholders' optimality condition requires

$$MBR_r\left(\mu_b^{FI}\right) = MBR_r\left(\mu_b^{pool}|\gamma\right)$$

- ▶ However, optimal μ_b is strictly increasing in γ_s , so that $\mu_b^{pool} > \mu_b^{FI}$,
- ► Therefore, $MBR_r\left(\mu_b^{pool}|\gamma\right) > MBR_r\left(\mu_b^{FI}\right)$ (figure 33) Contradiction!

Separating Weak Equilibrium

A pure separating weak equilibrium in E^{SD} is a tuple e satisfying:

- 1. $p_j(\mu_b) = \mathbf{1}_{\left\{\mu_b = \mu_{b,j}^{sep}\right\}}$, for $j \in \{s,r\}$, where $\mu_{b,j}^{sep} \in M_b \cup \emptyset$ solves the creditor funding condition problem CFC Separating.
- 2. Creditors' beliefs are consistent with type's strategies

$$\gamma_s\left(\mu_b\right) = \begin{cases} 1, & \text{if } \mu_b = \mu_{b,s}^{\text{sep}} \\ 0, & \text{if } \mu_b = \mu_{b,r}^{\text{sep}} \\ \in [0,1) & \text{s.t. } \mu_b \text{ does not solve CFC - Pooling} \end{cases}$$

3. Only optimally levered firms get funded and creditors break even:

$$d_{c}\left(\mu_{b}|\gamma\right) = \begin{cases} \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right) & \text{if } \mu_{b} \in \{\mu_{b,s}^{sep}, \mu_{b,r}^{sep}\}\\ 0 & \text{otherwise} \end{cases}$$

Pooling Weak Equilibrium

A pure pooling weak equilibrium in E^{SD} is a tuple e satisfying:

- 1. $p_{j}\left(\mu_{b}\right)=\mathbf{1}_{\left\{\mu_{b}=\mu_{b}^{pool}\right\}}$, for $j\in\{s,r\}$, where μ_{b}^{pool} solves the creditor funding condition problem CFC Pooling.
- 2. Creditors' beliefs are consistent with type's strategies, that is,

(i)
$$\gamma_s\left(\mu_b^{pool}\right)=\mu_s$$
, and (ii) for all $\mu_b\in M_b-\{\mu_b^{pool}\}$,

- if $\gamma_s(\mu_b) \in \{0, 1\}$, then μ_b does not solve CFC Separating when $\gamma_s = \gamma_s(\mu_b)$;
- if $\gamma_s(\mu_b) \in (0,1)$, then μ_b does not solve CFC Pooling when $\gamma_s = \gamma_s(\mu_b)$;
- Only optimally levered firms get funded and creditors break even:

$$d_{c}\left(\mu_{b}|\gamma\right) = \begin{cases} \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right) & \text{if } \mu_{b} = \mu_{b}^{pool} \\ 0 & \text{otherwise} \end{cases}$$

Mixed Weak Equilibrium

A mixed weak equilibrium in E^{SD} is a tuple e satisfying

1. Type-contingent strategies: $p_{r}^{b}\left(\mu_{b}\right)=\mathbf{1}_{\left\{\mu_{b}=\mu_{b}^{pool}\right\}}$ and

$$\begin{split} p_{s}^{b}\left(\mu_{b}\right) &= p_{s}^{pool} \cdot \mathbf{1}_{\left\{\mu_{b} = \mu_{b}^{pool}\right\}} + \left(1 - p_{s}^{pool}\right) \cdot \mathbf{1}_{\left\{\mu_{b} = \mu_{b,s}^{sep}\right\}} \\ \text{and } \textit{MBR}_{s}\left(\mu_{b}^{pool}|\gamma\right) &= \textit{MBR}_{s}\left(\mu_{b,s}^{sep}|\gamma\right) \end{split}$$

2. Creditors' beliefs are consistent with types' strategies:

$$\gamma_{s}\left(\mu_{b}\right) = \begin{cases} \frac{p_{s}^{pool}\mu_{s}}{p_{s}^{pool}\mu_{s} + (1 - \mu_{s})} & \text{if } \mu_{b} = \mu_{b}^{pool} \\ 1 & \text{if } \mu_{b} = \mu_{b}^{sep} \\ \in [0, 1] & \mu_{b} \text{ does not satisfy CFC} \end{cases}$$

3. Only optimally levered firms get funded and creditors break even:

$$d_{c}\left(\mu_{b}|\gamma\right) = \begin{cases} \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right) & \text{if } \mu_{b} = \mu_{b}^{pool}\\ d_{s}\left(\mu_{b}\right) & \text{if } \mu_{b} = \mu_{b,s}^{sep}\\ 0 & \text{otherwise} \end{cases}$$

Electronic Market Equilibria

Safe Type's Firm Value

Dual Market Equilibria

Safe Type's Firm Value

Bibliography

- Akerlof, George A., 1970, The Market for "Lemons": Quality Uncertainty and the Market Mechanism, The Quarterly Journal of Economics 84, 488.
- Bao, Jack, Jun Pan, and Jiang Wang, 2011, The Illiquidity of Corporate Bonds, The Journal of Finance 66, 911–946.
- Brunnermeier, Markus K, and Lasse Heje Pedersen, 2009, Market Liquidity and Funding Liquidity, The Review of Financial Studies 22, 2201–2238.
- Chen, Long, David A. Lesmond, and Jason Wei, 2007, Corporate Yield Spreads and Bond Liquidity, The Journal of Finance 62, 119–149.
- Duffie, Darrell, Nicolae Garleanu, and Lasse Heje Pedersen, 2005, Over-the-Counter Markets, *Econometrica* 73, 1815–1847.
- Harris, Larry, Albert S. Kyle, and Erik R. Sirri, 2015, Statement of the Financial Economists Roundtable, April 2015: The Structure of Trading in Bond Markets, Financial Analysts Journal 71, 5–8.
- He, Zhiguo, and Wei Xiong, 2012, Rollover Risk and Credit Risk, The Journal of Finance 67, 39.