A New Look at Nonlinear Dynamical Systems

Ning Ruan

University of Ballarat

Joint work with Prof. David Gao

ANZAMP Inaugural Meeting, Cumberland Lorne Resort, 3-5 Dec, 2012

Agenda

Motivation

Methodology: Canonical dual transformation

Conclusions

Population Dynamics Modeling

- Understanding of the dynamics of the species is obtained through fitting models to data collected from biology to estimate vital parameters in population dynamics.
- Investigate the population dynamics by the optimization method
- Surplus production model is widely used in fisheries and biology
- Logistic differential equation

$$\frac{dx}{dt} = rx(1 - \frac{x}{K}) - C$$

By finite difference method

$$x_{t+1} = x_t + rx_t (1 - \frac{x_t}{K}) - C_t + E_t$$

- x_t Stock abundance in year t
- *C* Constant harvesting rate
- *K*-"ideal" population or carrying capacity
- r Rate of population growth
- E_t Process error

Optimization Modelling

The stock biomass x can not be observed, so introduce observation model

$$\hat{I}_t = qx_t = I_t + \varepsilon_t$$

- \hat{I}_t estimation of abundance
- I_t abundance observed
- q proportional coefficient
- ε_t observation error

By least squares method

$$(P_0) \quad \min \sum_{t=1}^{n} (qx_t - I_t)^2 + \frac{\alpha}{2} \sum_{t=1}^{n-1} E_t^2$$
s.t. $x_{t+1} = x_t + rx_t (1 - \frac{x_t}{K}) - C_t + E_t, t = 1, \dots, n-1$

 α : penalty factor

Reformulation

Let
$$I = \{I_t\} \in \mathbb{R}^n$$
, $C = \{C_t\} \in \mathbb{R}^{n-1}$, $A = \{\delta_{ij}^t\} \in \mathbb{R}^{n \times (n-1) \times n}$, and

$$S_{ij}^{t} = \begin{cases} 1, & \text{if } i = j = t \\ 0, & \text{otherwise} \end{cases}$$

$$\delta_{ij}^{t} = \begin{cases} 1, & \text{if } t = J = t \\ 0, & \text{otherwise} \end{cases}$$

$$D = \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$

$$(P_{1}) \quad \min \quad P_{1}(x, q, K, r) = ||qx - \frac{I}{K}||^{2} + \frac{\alpha}{2} ||rx^{T}Ax + (D - (1 + r)R)x + \frac{C}{K}||^{2}$$

$$(P_1) \quad \min \ P_1(x,q,K,r) = \|qx - \frac{I}{K}\|^2 + \frac{\alpha}{2} \|rx^T A x + (D - (1+r)R)x + \frac{C}{K}\|^2$$

s.t.
$$0 < x < 1, q > 0, K > 0, r > 0,$$

 $x \in \mathbb{R}^n, q \in \mathbb{R}, K \in \mathbb{R}, r \in \mathbb{R}$

Fourth-order polynomial optimization problem with unknown parameters is non-convex

Dual Transformation

Stage 1: Fix the parameters q, r, K

$$W(x) = \frac{\alpha}{2} || rx^{T} Ax + (D - (1+r)R)x + \frac{C}{K} ||^{2} \text{ is nonconvex}$$

Introduce a geometrical measure

$$\xi = \Lambda_1(x) = rx^T A x + (D - (1+r)R)x + \frac{C}{K}$$

- Canonical function $V_1(\xi) = \frac{1}{2}\alpha \|\xi\|^2$
- Dual relation $\varsigma = \nabla V_1(\xi) = \alpha \xi$
- Legendre conjugate $V_1^*(\varsigma) = \max\{\xi^T \varsigma V_1(\xi) \mid \xi \in \mathbb{R}^{n-1}\} = \frac{1}{2\alpha} \varsigma^T \varsigma$

- Rewrite inequalty constraint in the canonical form: $x \circ (x e) < 0$
- Introduce geometrical operator

$$\varepsilon = \Lambda_2(x) = x \circ (x - e)$$

- Indicator function $V_2(\varepsilon) = \begin{cases} 0 & \text{if } \varepsilon < 0 \\ +\infty & \text{otherwise} \end{cases}$
- Fenchel transformation

$$V_2^\#(\sigma) = \sup\{\varepsilon^T \sigma - V_2(\varepsilon) \, | \, \varepsilon \in R^n\} = \begin{cases} 0 & \text{if } \sigma \geq 0 \\ +\infty & \text{otherwise} \end{cases}$$
 University of Ballarat Learn to succeed

$$P_1(x) = ||qx - \frac{I}{K}||^2 + V_1(\Lambda_1(x)) + V_2(\Lambda_2(x))$$

Total complementary function

$$\Xi(x,\varsigma,\sigma) = \|qx - \frac{I}{K}\|^{2} + \varsigma^{T} \Lambda_{1}(x) - V_{1}^{*}(\varsigma) + \sigma^{T} \Lambda_{2}(x) - V_{2}^{*}(\sigma)$$

$$= \frac{1}{2} x^{T} G(\varsigma,\sigma) x - F^{T}(\varsigma,\sigma) x - V_{1}^{*}(\varsigma) - V_{2}^{*}(\sigma)$$

$$G(\varsigma,\sigma) = 2(rA^{T}\varsigma + q^{2}H + \text{Diag}(\sigma)), \qquad \nabla_{x}\Xi(x,\varsigma,\sigma) = 0 \Rightarrow$$

$$F(\varsigma,\sigma) = 2 \frac{q}{K} I + \sigma - (D - (1+r)R)^{T} \varsigma \qquad x = G^{-1}(\varsigma,\sigma) F(\varsigma,\sigma)$$
Dual problem

$$(P^{d}) \max_{\boldsymbol{P}} P^{d}(\varsigma, \sigma) = -\frac{1}{2} F(\varsigma, \sigma) G^{-1}(\varsigma) F(\varsigma, \sigma) - \frac{1}{2\alpha} \varsigma^{T} \varsigma + \frac{1}{K} C^{T} \varsigma + \frac{1}{K^{2}} I^{2} I$$

Thm: Given q, K, r, if (ς^*, σ^*) is a KKT point of (P^d) , then the vector

$$x^* = G^{-1}(\varsigma^*, \sigma^*) F(\varsigma^*, \sigma^*)$$

is a KKT point of (P_1) , and $P(x^*) = P^d(\varsigma^*, \sigma^*)$.

$$S_a^+ = \{ (\varsigma, \sigma) \in S_a \mid G(\varsigma, \sigma) \succ 0 \}$$

Thm: Given $q, K, r, \text{if } (\varsigma^*, \sigma^*) \in S_a^+ \text{ is a critical point of } (P^d), \text{ and } x^* = G^{-1}(\varsigma^*, \sigma^*) F(\varsigma^*, \sigma^*).$ Then x^* is a global minimizer of $P_1(x)$ if and only if (ς^*, σ^*) is a global maximizer of $P^d(\varsigma, \sigma)$, i.e.,

$$P_1(x^*) = \min_{x \in \mathbb{R}^n} P_1(x) \iff \max_{(\varsigma,\sigma) \in S_a^+} P^d(\varsigma,\sigma) = P^d(\varsigma^*,\sigma^*)$$

Stage 2

When the global optimal solution of problem (P_1) is obtained by dual method, the optimal parameter q^*, K^*, r^* can be obtained by minimization problem.

$$(P_2) \min P_2(q, K, r) = \|qx^* - \frac{I}{K}\|^2 + \frac{\alpha}{2} \|rx^*Ax^* + (D - (1+r)R)x^* + \frac{C}{K}\|^2$$

s.t. $q > 0, K > 0, r > 0$

By combing together problem (P_1) and (P_2) , the global optimal solution (x^*, q^*, r^*, K^*) can be obtained by certain alternative iteration method.

Numerical Experiment

- The data we used is about New Zealand rock lobster over 46 years
- Table:
 - Catch Yield *C*
 - CUPE Catch per unit effort I

Year	Catch	CPUE	Year	Catch	CPUE
1945	809	3.49	1968	4975	1.53
1946	854	3.38	1969	4786	1.32
1947	919	3.18	1970	4699	1.45
1948	1360	3.56	1971	4478	1.40
1949	1872	1.79	1972	3495	1.09
1950	2672	4.35	1973	3784	1.23
1951	2834	2.33	1974	3643	1.12
1952	3324	2.57	1975	2987	0.92
1953	4160	2.88	1976	3311	1.02
1954	5541	3.85	1977	3237	1.0
1955	5909	4.16	1978	3418	1.05
1956	6547	4.34	1979	4050	1.09
1957	5049	3.70	1980	4190	1.02
1958	4447	2.37	1981	4058	1.01
1959	4018	2.46	1982	4331	0.98
1960	3762	2.06	1983	4385	1.01
1961	4042	2.21	1984	4911	0.85
1962	4583	2.19	1985	4856	0.84
1963	4554	2.44	1986	4657	0.81
1964	4597	2.14	1987	4500	0.84
1965	4984	2.18	1988	3128	0.68
1966	5295	2.13	1989	3318	0.62
1967	4782	1.86	1990	2770	0.54

■ Stock abundance over 46 years

Conclusions

- By combining the methods of the finite difference and the Least Squares, the non-linear problem is reformulated as a non-convex optimization problem with inequality constraints.
- Due to the non-convexity of the target function with unknown parameters, the problem is difficult to be solve by direct methods.
- By the canonical duality theory, a global optimal solution is obtained for the first time to the problem over the whole time domain.

