#### Choice Models Overview

#### Choice Models Overview

- Choice models have Y-variables that are zero or one, e.g., when a customer enters a store, do they buy a TV or not?
- Some techniques to represent choice models include logit, probit, and neural networks.
- Logit and probit have Y-variables which are binary (zero or one) and predict probabilities.
- Logit and probit have s-shaped curves (monotonic): always increasing or always decreasing.
- Neural networks are not limited to monotonic behavior or binary Y-variables.

## Choice Models Overview (cont.)

- Logit uses the logistic distribution and is more sensitive to extreme values of X.
- Probit uses the normal distribution and is more sensitive near the mean of X.

#### **Logit versus Probit**



Choice Models Overview

# Review of Linear Regression

## Review of Linear Regression

Linear regression finds the line that best fits the data by minimizing the square of the error terms (residuals)



## Review of Linear Regression (cont.)

The linear regression equation can be represented as:

Monthly plant cost = 37,894 + 64.269 \* Units produced



Review of Linear Regression

# Review of Logit and the Logistic Function

#### Review of Logit and the Logistic Function, Part I

Linear regression does not work when the Y-variable is binary (zero or one)



#### Review of Logit and the Logistic Function, Part II

For binary Y-variables, logit creates an s-shaped curve using the logistic function



#### Review of Logit and the Logistic Function, Part III

#### The logistic function is

$$f(X) = \exp(\sum \beta_i X_i) / (1 + \exp(\sum \beta_i X_i))$$

#### where:

- $\beta_i$  = the coefficients in a logit regression
- $X_i$  = the variables in a logit regression

#### Review of Logit and the Logistic Function, Part IV

#### Pictorially, this looks like:



Review of Logit and the Logistic Function

# Perceptrons

#### Perceptrons, Part I

- In 1957, Frank Rosenblatt created the perceptron learning algorithm.
- Perceptrons were linear classifiers, i.e., they separated groups which had Y-variables which were zero or one.

#### Perceptrons, Part II

- In this example, datapoints above the line represent people who bought a Lexus, those below the line did not.
- Buyers tend to have higher income or are slightly older.
- The perceptron identifies the straight line which separates the two groups.



#### Perceptrons, Part III

- In 1969, Minsky and Papert analyzed the effectiveness of perceptrons.
- Perceptrons worked on AND conditions; in this example, X identifies those who are both rich and young.
- The perceptron separates the rich and young from the others.



#### Perceptrons, Part IV

- Perceptrons worked on OR conditions; in this example, X identifies those who are rich or young.
- The perceptron separates the rich or young from the others.

|              | Rich | Not rich |
|--------------|------|----------|
| Young        | X    | X        |
| Not<br>young | X    | 0        |

#### Perceptrons, Part V

- Perceptrons did not work on the exclusive OR (XOR).
- Exclusive OR means rich or young, but not both.
- In the 1970s, interest in perceptrons died because of the XOR problem.
- No straight line could be drawn to separate the groups.

|              | Rich | Not rich |
|--------------|------|----------|
| Young        | 0    | X        |
| Not<br>young | X    | Ο        |

#### Perceptrons

#### **Neural Networks**

#### Neural Networks, Part I

- In the 1980s, researchers revisited perceptrons, with a twist
- Instead of using linear separators (straight line), they changed to curves using the logistic function
- In addition, instead of having inputs determine outputs, they introduced a middle layer called the hidden layer
- Inputs determined the values of nodes in the hidden layer; nodes in the hidden layer determined the values of the output
- The hidden nodes and the output use the logistic function

#### Neural Networks, Part II

Each hidden node and each output uses a logistic function



#### Neural Networks, Part III

- The back propagation algorithm uses gradient search (hill climbing) to find the best solution
- It randomly selects a starting point, then calculates the slope and climbs the hill
- When there are multiple hills, it sometimes get stuck in a local optimum



#### Neural Networks, Part IV

#### Advantages

- Can have binary or linear outputs
- Can have one or more outputs
- Can represent any mathematical relationship
- Have been used in voice recognition and speech generation (SIRI), photo recognition (law enforcement), and self-driving cars (Tesla)
- Fast to make decisions after they have learned

#### Disadvantages

- Can get stuck in local optima; need to run several times
- Slow to learn

#### **Neural Networks**

# Deep Learning

## Deep Learning

- Deep learning neural networks have two or more hidden layers.
- Deep learning has been used in sophisticated game analysis, such as the game of Go.



#### Deep Learning