Problem Set #7

Danny Edgel Econ 703: Mathematical Economics I Fall 2020

October 4, 2020

Collaborated with Sarah Bass, Emily Case, Michael Nattinger, and Alex Von Hafften

Question 1

Let $X \subset \mathbb{R}^n$ be convex. We can prove that, for any $k \in \mathbb{N}$, $\lambda_1, ..., \lambda_k \geq 0$, $\sum_{i=1}^k \lambda_i = 1$, if $x_1, ..., x_k \in X$, then $\sum_{i=1}^k \lambda_i x_1 \in X$.

Proof.

- 1. Base step. Suppose $x_1, x_2 \in X$. Since X is convex, $(1 \lambda)x_1 + \lambda x_2$ is also in X for all $\lambda \in [0, 1]$
- 2. Induction Step. Assume that, for some $k \in \mathbb{N}$, $\sum_{i=1}^k \lambda_i x_i \in X$, where $\sum_{i=1}^k = 1$. Let $x_{k+1} \in X$ and $\lambda' \in [0,1]$. Then, since X is convex,

$$(1 - \lambda')x_{k+1} + \lambda' \sum_{i=1} \lambda_i x_i$$

is also in X. Now, define

$$\lambda'_i = \begin{cases} \lambda' \lambda_i, & i \in \{1, ..., k\} \\ 1 - \lambda', & i = k + 1 \end{cases}$$

Then, $\sum_{i=1}^{k+1} \lambda'_i x_i \in X$ and $\sum_{i=1}^{k+1} \lambda'_i = 1$

 $\therefore \sum_{i=1}^k \lambda_i x_i \in X \text{ for any } k \in \mathbb{N} \blacksquare$

Question 2

Question 3

Suppose X is convex.

- 1. Let $x, y \in \text{cl} X$ and suppose $\exists z = (1 \lambda)x + \lambda y, z \notin \text{cl} X$
- 2. If $x,y\in X$, then, since X is convex, $(1-\lambda)x+\lambda y\in X$ $\forall \lambda$. Thus, $x,y\in X\Rightarrow z\in {\rm cl} X$
- 3. If $x \in \operatorname{cl} X$, $x \notin X$, and $y \in X$, then x is a limit point of X. Then, $\forall x' = (1 \lambda')x + \lambda'y$, $x' \in X$ or x' = x. Thus, either $z \in X$ or z is a limit point of x. Thus, $z \in \operatorname{cl} X$.
- 4. If $x, y \in \text{cl}X$ and $x, y \notin X$, then both x and y are limit points of X. Thus, $\forall \varepsilon > 0$, $\exists x' \in B_{\varepsilon}(x)$, $y' \in B_{\varepsilon}(y)$ such that x' and y' are both in X and are convex combinations of x and y. Then, either z is equal to x or y, or $\exists \varepsilon$ such that $x' \in B_{\varepsilon}(x)$, $y' \in B_{\varepsilon}(y)$, and $z = (1 \lambda')x' + \lambda'y'$ for some $\lambda' \in [0, 1]$. Thus, $z \in \text{cl}X$
- \therefore by contradiction, clX is convex