Review and Preview

Daniela Pamplona

U2IS - ENSTA - IPParis

ecampus moodle: MI210 - Modèles neuro-computationnels de la vision (P4 - 2020-21)

daniela.pamplona@ensta.fr

Plan

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

$$V(t) = \begin{cases} V_{rest} & \text{if } V(t) = \upsilon_{th} \\ V_{rest} - \tau \frac{dV}{dt} + RI(t) & \text{o.w.} \end{cases}$$

Plan

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

- 1. The generative model
- 2. The inference process
- 3. The distribution of the MAP estimate

$$p(x \mid d_1 \cdots d_N) \propto p(x) \prod_{i=1}^N p(d_i \mid x)$$

$$= p(x)p(d_N|x)\prod_{i=1}^{N-1}p(d_i|x) \propto p(x|d_1\cdots d_{N-1})p(d_N|x)$$

Plan

Date	Type	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

Today

1. Definition and properties of Receptive Fields

2. Tour on the visual pathway

3. Natural Images statistics

