Learning Analytics: an investigation on the influence of school quality in overcoming social inequalities

A non-parametric analysis on INVALSI data

Final Presentation
3 February 2021

Federico Capello – Federico Fatone – Filippo Fedeli – Gianmarco Genalti

The Data

We based our analysis on the results of **28145 students** from **658 schools** of Italy, observing **305 variables** for each record in the dataset:

Data were also considering Socio-Economical status of each students, in both aggregated and disaggregated flavours:

Parents' education

City/Countryside

Family status

Family size

School Level Aggregation

After the good results obtained at a student level, we considered them under a **school level perspective**, as the **literature** seems to **lack** an **in-depth analyisis** at that level

Categorical features

We selected the most meaningful classes and computed the school-wise proportion (e.g. prop_laurea_madre).

We selected the most meaningful classes and computed the school-wise proportion (e.g. prop_laurea_madre).

We selected a set of aggregating functions (mean, standard deviation, skew, quantiles) and aggregated on school level using those (e.g. mean_ESCS).

School management Questionnaire

Multiple choice (often in «ordinal»
fashion) and binary answers

We encoded the answers with **ordered integers** and kept the **average** of the subquestions as feature (e.g. *opinione invalsi*)

North – Center/South Differences

The North/South differences found at student level have a clear reflection also by looking at schools:

Differences in absolute **outcomes** and relative improvements.

Better absolute outcomes in the North for Maths and Italian.

Differences in **indices** and **factors**.

More principals' self-reported activity in the south and better reported infrastructure in the North.

North – Center/South Differences: A DDPlots Investigation

After the Location-Scale adjustments the distributions are comparable, suggesting a difference only affecting the parameters of the underlying distribution and not the distribution itself.

Connecting Managerial Practices to Outcomes

We focus on finding possible connections between **managerial practices** in schools (*indices* and *debiased answers*) and **school outcomes**.

Actionable Insights to School Management

We have synthesized our findings in 4 insights:

Negative link between the tendency of responsibilization of teachers and Maths; positive link between the tendency of setting objectives for everyone and Maths.

Parents' involvement **lowers** the **variance** of scores and we see a possible **positive** direct **link** between parents' pressure and absolute scores.

Positive association, twice at a regional level, between Maths and Invalsi usage/consideration.

For both Italian and Maths, a male principal relates to a **higher variance** in the scores.

School performances driving factors

In order to find out what differentiates **high** and **low impact schools**, we fitted a **mixed effects model** on the INVALSI outcome at 3rd year taking into account the schools as factors (discarding schools with the **lowest correction coefficient**):

 $score_{third\ year} \sim score_{first\ year} + school.\ effect\ + school.\ effect\ * score_{first\ year}$

We decided to focus on Maths performances only, where we achieved an adjusted R² of **0.5655** w.r.t. **0.4505** of the model **without the school factor**. This allowed us to divide the schools into 2 groups:

'TOP' SCHOOLS

Schools in the top 20% of effects, having a significant p-value (<0.01) in the regression

Higher minimal ESCS among students (0.0376) Higher percentage of educated fathers (0.0278) More variance in ESCS among students (0.0420)

'FLOP'SCHOOLS

Schools in the worst 20% of effects, having a significant p-value (<0.01) in the regression

More discussion of INVALSI scores with teachers (0.0274)

Discussing the results with teachers is **not effective**: School Inspectorate should promote **more substantial actions** in schools showing poor performances.

Predicting the Schools at Risk

A model able to predict poor performing schools could be a powerful tool in the hands of School Inspectorate

We defined **Schools at Risk** as the ones getting results **below the 20th percentile** at 3rd year, separately in Maths and Italian

We considered **Generalized Additive Models** and **Explainable Boosting Machines** in order to achieve this goal.

Predicting the Schools at Risk: GAM approach

We first considered **Logistic GAMs**, for which we selected relevant features via **4-fold stratified cross-validation** performances.

The models achieve 33.4% of explained deviance in Maths and 31.5% in Italian

Predicting the Schools at Risk: GAM approach performances

We achieved **good performances** in 4-fold stratified cross-validation:

Confusion Matrix – Maths

	Predicted No SaR	Predicted SaR
True No SaR	257	64
True SaR	19	52

Accuracy: 0.7883 (0.0226)

AUC: 0.7670 (0.0054)

Sensitivity: 0.7328 (0.0212)

Recall@20th: 0.5240 (0.0194)

Confusion Matrix – Italian

	Predicted No SaR	Predicted SaR
True No SaR	255	71
True SaR	20	50

Accuracy: 0.7703 (0.0199)

AUC: 0.7483 (0.0389)

Sensitivity: 0.7148 (0.1183)

Recall@20th: 0.5742 (0.0324)

Nevertheless, we were **not satisfied yet**...

Explainable Boosting Machines

Our desiderata for the final model included the following features:

- o It should spot some **nonlinear relationships and interactions** between variables
- o It **shouldn't overfit** too easily
- o It should keep a high level of interpretability.

We came up with **Explainable Boosting Machines**:

Iteration	feat ₁	feat ₂	feat₃		featn	pair ₁		pairk
1	residuals	residuals	residuals	residuals ···	residuals	residuals	resio	duals residuals
2	residuals	residuals	residuals	residuals ··· – →	residuals —	residuals	resio 	duals residuals
 N	residuals	residuals —	residuals —	residuals ···	residuals —	residuals —	resic •••	duals residuals
		Management of the second of th	1			N/me ISC/me	+	still ges still gess

Predicting the Schools at Risk: EBM approach performances

We achieved **very good performances** in **4-fold stratified cross-validation**:

Confusion Matrix – Maths

	Predicted No SaR	Predicted SaR
True No SaR	248	52
True SaR	15	51

Accuracy: 0.8166 (0.0732)

AUC: 0.8742 (0.0019)

Sensitivity: 0.773 (0.0236)

Recall@20th: 0.6389 (0.0621)

Confusion Matrix – Italian

	Predicted No SaR	Predicted SaR
True No SaR	263	43
True SaR	16	44

Accuracy: 0.8553 (0.0189)

AUC: 0.8701 (0.0441)

Sensitivity: 0.7028 (0.1977)

Recall@20th: 0.5694 (0.0461)

Predicting the Improvement: EBM approach performances

Using **4-fold stratified cross-validation**, we classified **schools showing an improvement** (> national median) in INVALSI scores:

AUC: 0.74 (0.0454) Recall@20th: 0.8026 (0.0436)

- Most important features are infrastructures and family background information.
- Overall good performance, strong dependence on starting level.

Italian

AUC: 0.63 (0.0408) Recall@20th: 0.7222 (0.0393)

- Difficult task
- Geographical Area and management's usage of INVALSI scores are the most relevant features
- Strong dependence on starting level, also on its skew.

Conclusions & Further Advancements

Summing up, we can summarize our findings over these 3 axes:

- 1. Pointed out **structural regional differences**, not only from an **outcome perspective**, but also from a **factors** / **indices point of view**.
- 2. Uncovered influences of managerial practices on school performance, ending with a selection of 4 strategic suggestions.
- 3. Successfully implemented GAM/GA2M prediction models to obtain an accurate estimate of the future performance of schools.

Further advancements to our work could be the following:

- Use suitable models for nonparametric causal inference.
- o Re-analyse indices and more management-related questions considering the **user de-biasing procedure**.
- Replicate the analysis using DEA (Data Envelopment Analysis).
- o Interesting to test the quality of the analysis using data from INVALSI tests of the following years and possibly including the time-dependency of the phenomenon

Thank You!

Yin Lou, Rich Caruana, Giles Hooker, Johannes Gehrke, Accurate Intelligible Models with Pairwise Interactions - KDD'13, August 11-14, 2013, Chicago, Illinois, USA, 2013

Harsha Nori, Samuel Jenkins, Paul Koch, Rich Caruana, Interpretml: A unified framework for machine learning interpretability - arXiv preprint arXiv:1909.09223, 2019

Chun-Hao Chang, Sarah Tan, Ben Lengerich, Anna Goldenberg, Rich Caruana, How Interpretable and Trustworthy are GAMs?, arXiv preprint arXiv:2006.06466, 2020

Chiara Masci, Kristof De Witte, Tommaso Agasisti, **The influence of school size, principal characteristics and school management practices on educational performance: An efficiency analysis of Italian students attending middle schools** - Socio-Economic Planning Sciences, Volume 61, Pages 52-69, 2018

Fritz Schiltz, Chiara Masci, Tommaso Agasisti, Daniel Horn. Using regression tree ensembles to model interaction effects: a graphical approach - Applied Economics, 50:58, 6341-6354, DOI: 10.1080/00036846.2018.1489520, 2018

Chiara Masci, Anna Maria Paganoni, Francesca Ieva, Semiparametric mixed effects models for unsupervised classification of Italian schools - Journal of the Royal Statistical Society: Series A, 2019