МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ярославский государственный университет им. П.Г.Демидова»

Кафедра алгебры и математической логики

Сдано на кафедру
«16» июня 2020 г.
Заведующий кфедрой
д.фм.н., профессор
Казарин Л.С.

Выпускная квалификационная работа

Модули, замена коэффициентов и кручение

направление подготовки 01.03.02 Прикладная математика и информатика

Научный руководитель
профессор,
д-р фм.н., доцент
Тимофеева Н.В.
«16» июня 2020 г.
Студент группы ПМИ-41БО
Медведев Е.А.
«16» июня 2020 г.

Реферат

Данная работа содержит 45 страниц, в работе использовано 6 источников.

В главе 1 рассматриваются основные понятия коммутативной алгебры, связанные с коммутативными кольцами и идеалами. Формулируются основные теоремы, связанные с ними, а также приводятся решения некоторых задач из главы 1 книги [2].

В главе 2 рассматривается понятие A-модуля над коммутативным ассоциативным кольцом A с единицей, формулируются элементарные теоремы, связанные с понятием A-модуля, далее рассматривается понятие точной последовательности модулей, тензорного и периодического произведений двух модулей и их свойств. Производится вычисление тензорного произведения и периодического произведения двух модулей с помощью свободной резольвенты A-модуля.

Глава 3 посвящена вычислению подмодуля кручения в тензорных произведениях вида $(\bigoplus_{s\geqslant 0}I^s)\otimes_A J$, где $I,J\subset A$ — идеалы и $(\bigoplus_{s\geqslant 0}I^s)\otimes_A M$, как \widehat{A} -модуля где M-A-модуль. а также вычисление делителей нуля алгебры $\bigoplus_{s\geqslant 0}(I[t]+(t))^s/(t^{s+1})$ с покомпонетным умножением.

Ключевые слова: идеал, коммутативное кольцо, кручение, модуль, периодическое произведение, тензорное произведение.

Содержание

Введение				
1	Koj	выда и идеалы	5	
	1.1	Определение кольца. Основные свойства	5	
	1.2	Простые идеалы и максимальные идеалы	5	
	1.3	Нильрадикал и радикал Джекобсона	6	
	1.4	Операции над идеалами	7	
	1.5	Расширение и сужение идеалов	9	
	1.6	Решения упражнений в конце главы 1 книги [2]	11	
2	Mo,	дули	22	
	2.1	Определение модуля	22	
	2.2	Гоморфизмы модулей	22	
	2.3	Операции над модулями		
	2.4	Конечно порожденные модули	25	
	2.5	Модули и точные последовательности	25	
	2.6	Понятие тензорного произведения модулей	26	
	2.7	Свойства тензорного произведения модулей	27	
	2.8	Периодические произведения	27	
		2.8.1 Понятие свободной резольвенты A -модуля	27	
		2.8.2 Понятие периодического произведения	28	
	2.9	Непосредственное вычисление некоторых тензорных и периодических		
		произведений	29	
3	Kpy	учения в некоторых тензорных произведениях модулей	33	
За	Ваключение			
$\mathbf{C}^{:}$	писо	к литературы	45	

Введение

В данной работе решен ряд задач, связанных с теорией модулей над коммутативным кольцом. Были поставлены как исключительно учебные, так и задачи, происходящие из научных разработок руководителя.

- 1. Изучить основные понятия и теоремы, связанные с коммутативными кольцами и идеалами.
- 2. Выполнить ряд упраженений из книги [2].
- 3. Изучить основные понятия и теоремы, связанные с модулями над коммутативным кольцом.
- 4. Представить явные формулы для вычисления тензорных и периодических произведений в некоторых простейших случаях.
- 5. Вычислить кручение в тензорных произведениях вида $(\bigoplus_{s>0} I^s) \otimes_A M$.
- 6. Вычислить делители нуля алгебры $\bigoplus_{s>0} (I[t]+(t))^s/(t^{s+1}).$

Работа состоит из трех глав.

В первой главе работы будут рассмотрены коммутативные кольца, идеалы и операции над ними. В этой же части приведены решения некоторых упражнений из главы 1 книги [2]. В процессе решения упражнений были изучены такие понятия как радикал идеала, частное идеалов, расширение и сужение идеалов, понятие простого спектра кольца.

Во второй главе работы рассматриваются модули над заданным коммутативным кольцом и операции над ними. Вводится классическое понятия тензорного произведения, рассматриваются его свойства и даются явные формулы для вычисления тензорных произведений в некоторых простейших случаях. Далее приводится известная конструкция периодических произведений с помощью свободных резольвент и основанное на ней явное вычисление $\mathrm{Tor}_1^\mathbb{Z}(A,B)$, где A и B — конечно порожденные абелевы группы.

Третья глава работы посвящена вычислению кручения в тензорных произведениях вида $\bigoplus_{s\geqslant 0} I^s \otimes_A M$, где $I\subset A$ — идеал в целостном кольце A,M — A-модуль, $\bigoplus_{s\geqslant 0} (I[t]+(t))^s/(t^{s+1})\otimes_A J$, где $J\subset A$ — идеал, вычислению делителей нуля алгебры $\bigoplus_{s\geqslant 0} (I[t]+(t))^s/(t^{s+1})$ с покомпонентным умножением и вычислению кручения в $\bigoplus_{s\geqslant 0} I^s \otimes_A M$, как \widehat{A} -модуля, где $\widehat{A}:=\bigoplus_{s\geqslant 0} I^s$.

1 Кольца и идеалы

1.1 Определение кольца. Основные свойства

Дадим определение кольца:

Определение 1.1 Коммутативным, ассоциативным кольцом с единицей A называется абелева группа A с операцией $\cdot: A \times A \to A$, которая удовлетворяет следующим свойствам для всех $x, y, z \in A$:

- 1. Дистрибутивность $-x \cdot (y+x) = x \cdot y + x \cdot z$;
- 2. Коммутативность $-x \cdot y = y \cdot x$;
- 3. Ассоциативность $-x \cdot (y \cdot z) = (x \cdot y) \cdot z;$
- 4. Существует нейтральный по умножению элемент 1.

Далее в тексте $x \cdot y$ будем записывать как xy. Под кольцом далее будем понимать коммутативное, ассоциативное кольцо с единицей.

Определение 1.2 Идеалом $\mathfrak a$ в кольце A называется подгруппа в A, такая что $A\mathfrak a\subset\mathfrak a$.

Определение 1.3 Пусть задано некоторое подмножество $E \subseteq A$. Будем говорить, что *идеал* \mathfrak{a} *порожеден множеством* E, если \mathfrak{a} предстваляет собой множество конечных A-линейных комбинаций элементов E.

Определение 1.4 *Полем* называется кольцо, в котором $1 \neq 0$ и всякий ненулевой элемент имеет обратный.

Сформулируем теорему, с помощью которой можно установить, является кольцо полем или нет.

Теорема 1.1 [2] Пусть A — ненулевое кольцо. Следующие утверждения эквивалентны:

- 1. A none;
- 2. B A нет идеалов, кроме 0 u (1);
- 3. Любой гомоморфизм $A \to B$, где B ненулевое кольцо, интективен.

1.2 Простые идеалы и максимальные идеалы

Среди множества всех идеалов кольца A выделяют особые типы идеалов: простые и максимальные.

Определение 1.5 Идеал \mathfrak{p} в кольце A называется *простым*, если $\mathfrak{p} \neq (1)$ и из включения $xy \in \mathfrak{p}$ следует, что либо $x \in \mathfrak{p}$, либо $y \in \mathfrak{p}$.

Определение 1.6 Идеал \mathfrak{m} в кольце A называется максимальным, если $\mathfrak{m} \neq (1)$ и не существует идеала \mathfrak{a} , удовлетворяющего условиям $\mathfrak{m} \subsetneq \mathfrak{a} \subsetneq (1)$.

Данные выше определения можно сформулировать иначе:

$$\mathfrak{p}$$
 — простой $\Leftrightarrow A/\mathfrak{p}$ — область целостности.

Действительно, из определения простого идеала следует, что $\overline{xy}=\overline{0}$ только в том случае, когда $x\in\mathfrak{p}$ или $y\in\mathfrak{p}$, где x,y— представители классов \overline{x} и \overline{y} соответственно.

С другой стороны, так как A/\mathfrak{p} область целостности, значит из равенства $\overline{xy}=\overline{0}$ следует что либо $\overline{x}=\overline{0}$, либо $\overline{y}=\overline{0}$, то есть либо $x\in\mathfrak{p}$, либо $y\in\mathfrak{p}$.

 \mathfrak{m} — максимальный $\Leftrightarrow A/\mathfrak{m}$ — поле.

Так как все идеалы, содержащие \mathfrak{m} находятся во взаимнооднозначном соответствии с идеалами в A/\mathfrak{m} [2], то сразу получаем что A/\mathfrak{m} — поле, так как \mathfrak{m} максимальный.

Так как A/\mathfrak{m} — поле, следовательно оно не содержит идеалов кроме $\overline{0}$ и $(\overline{1})$, следовательно, идеал \mathfrak{m} не содержат никакие другие идеалы, кроме (1), по определению \mathfrak{m} максимален.

Так как любое поле является областью целостности, следовательно любой максимальный идеал прост.

Сформулируем важную теорему:

Теорема 1.2 [2] В каждом кольце $A \neq 0$ существует максимальный идеал.

Из доказательства теоремы, приведенного в [2] следует справедливость следующих утверждений:

Следствие 1.3 [2] Всякий идеал $\mathfrak{a} \neq (1)$ содержится в некотором максимальном идеале.

Следствие 1.4 [2] Любой элемент из A, не являющийся обратимым элементом содержится в некотором максимальном идеале.

Выделяют особый вид колец в которых существует только один максимальный идеал. Такие кольца называют *локальными*.

Теорема 1.5 /2/

- 1. Пусть A некоторое кольцо, $\mathfrak{m} \neq (1)$ такой идеал в A, что любой элемент $x \in A \backslash \mathfrak{m}$ обратим. Тогда A локальное кольцо, а \mathfrak{m} его максимальный идеал.
- 2. Пусть A некоторое кольцо, \mathfrak{m} его максимальный идеал и пусть любой элемент из $1+\mathfrak{m}$ обратим в A. Тогда A локальное кольцо.

1.3 Нильрадикал и радикал Джекобсона

Определение 1.7 Множество всех нильпотентов кольца A называется $\mu u n b p a \partial u \kappa a n o n konbua <math>A$ и обозначается $\mathfrak{N}(A)$.

Tеорема 1.6 /2/

- 1. Множество $\mathfrak{N}(A)$ является идеалом. В кольце $A/\mathfrak{N}(A)$ нет ненулевых нильпотентов.
- 2. $\mathfrak{N}(A)$ совпадает с пересечением всех простых идеалов в A.

Определение 1.8 *Радикалом Джекобсона* кольца A называется пересечение всех его максимальных идеалов и обозначается $\mathfrak{R}(A)$.

Теорема 1.7 [2] $x \in \Re(A) \Leftrightarrow 1 - xy - oбратим в A для всех <math>y \in A$.

1.4 Операции над идеалами

Пересечение идеалов определяется естественным образом как пересечение множеств. Пересечение любого семейства идеалов снова будет идеалом [2].

Определим операции суммы и произведения идеалов.

Определение 1.9 Пусть \mathfrak{a} , \mathfrak{b} — идеалы в кольце A. Их *суммой* \mathfrak{a} + \mathfrak{b} называют множество всех сумм x + y, где $x \in \mathfrak{a}$, $y \in \mathfrak{b}$.

Замечание. Можно определить сумму любого семейства идеалов $\mathfrak{a}_i, i \in I$ как множество сумм вида $\sum_{i \in I} x_i$, где $x_i \in \mathfrak{a}_i$, в которых конечное число членов отлично от нуля.

Определение 1.10 Произведением \mathfrak{ab} идеалов \mathfrak{a} и \mathfrak{b} называется идеал, порожденный произведениями xy, $x \in \mathfrak{a}$, $y \in \mathfrak{b}$.

Замечание. Можно аналогичным образом определить произведение любого конечного числа идеалов. В частности, можно определить степень \mathfrak{a}^n идеала \mathfrak{a} , как идеал, порожденный всевозможными произведениями вида $x_1x_2...x_n, x_i \in \mathfrak{a}$.

Справедлив ряд свойств для операций пересечения, суммы и произведения идеалов $\mathfrak{a},\mathfrak{b},\mathfrak{c}\in A$ [2].

- 1. Коммутативность и ассоциативность суммы, произвдения и пересечения идеалов.
- 2. Дистрибутивный закон: $\mathfrak{a}(\mathfrak{b}+\mathfrak{c})=\mathfrak{a}\mathfrak{b}+\mathfrak{b}\mathfrak{c}$.
- 3. Модулярный закон: $\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}$, при $\mathfrak{a} \supseteq \mathfrak{b}$ или $\mathfrak{a} \supseteq \mathfrak{c}$.
- 4. $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{ab}$, если $\mathfrak{a} + \mathfrak{b} = (1)$.

Объединение идеалов в общем случае идеалом не является [2].

Определение 1.11 Пусть $\mathfrak{a}, \mathfrak{b}$ — идеалы в A. Их *частным* называется множество

$$(\mathfrak{a}:\mathfrak{b}) = \{x \in A \mid x\mathfrak{b} \subseteq \mathfrak{a}\},\$$

которое само является идеалом [2].

Определение 1.12 Аннулятором $Ann(\mathfrak{a})$ идеала \mathfrak{a} называется множество $(0:\mathfrak{a}),$ то есть множество таких элементов $x \in A$, что $x\mathfrak{a} = 0$.

Множество D всех делителей нуля можно описать как

$$D = \bigcup_{x \in A \setminus 0} \operatorname{Ann}(x),$$

где под Ann(x) мы понимаем аннулятор идеала (x).

Упражнение 1.1 Доказать следующие утверждения $\forall \mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ идеалов в кольце A.

- 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- 2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- 3. $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})=(\mathfrak{a}:\mathfrak{bc})=((\mathfrak{a}:\mathfrak{c}):\mathfrak{b})$
- 4. $(\bigcap_i \mathfrak{a}_i : b) = \bigcap_i (\mathfrak{a}_i : \mathfrak{b})$
- 5. $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \bigcap_{i} (\mathfrak{a}: \mathfrak{b}_{i})$

¹[2] Страница 18, упражнение 1.12.

Доказательство.

- 1. Так как \mathfrak{a} идеал и $\forall x \in \mathfrak{a}$ справедливо $x\mathfrak{b} \subseteq \mathfrak{a} \Rightarrow x \in (\mathfrak{a} : \mathfrak{b})$.
- 2. $\forall x \in (\mathfrak{a} : \mathfrak{b})$ справедливо, что $x\mathfrak{b} \in a \Rightarrow (\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$.
- 3. Выберем произвольный $x \in ((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c})$, тогда

$$x \in ((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) \Leftrightarrow x\mathfrak{c} \subseteq (\mathfrak{a} : \mathfrak{b}) \Leftrightarrow x\mathfrak{bc} \subseteq \mathfrak{a} \Leftrightarrow x(\mathfrak{bc}) \subseteq \mathfrak{a} \Leftrightarrow x \in (\mathfrak{a} : \mathfrak{bc}).$$

Имеем
$$((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})=(\mathfrak{a}:\mathfrak{bc})$$
. А так как $(\mathfrak{a}:\mathfrak{bc})=(\mathfrak{a}:\mathfrak{cb})$, то получаем $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})==((\mathfrak{a}:\mathfrak{c}):\mathfrak{b})$.

- 4. $\forall x \in (\bigcap_i \mathfrak{a}_i : \mathfrak{b}) \Leftrightarrow x\mathfrak{b} \in \bigcap_i \mathfrak{a}_i \Leftrightarrow x\mathfrak{b} \in \mathfrak{a}_i \ \forall i \Leftrightarrow x \in (\mathfrak{a}_i : \mathfrak{b}) \ \forall i \Leftrightarrow x \in \bigcap_i (\mathfrak{a}_i : \mathfrak{b}).$
- 5. $\forall x \in (\mathfrak{a} : \sum_i \mathfrak{b}_i) \Leftrightarrow x \sum_i \mathfrak{b}_i \subseteq \mathfrak{a} \Leftrightarrow \sum_i x \mathfrak{b}_i \subseteq \mathfrak{a} \Leftrightarrow x \mathfrak{b}_i \in \mathfrak{a} \ \forall i \Leftrightarrow x \in \bigcap_i (\mathfrak{a} : \mathfrak{b}_i).$

Определение 1.13 Пусть \mathfrak{a} — идеал в кольце A. Его радикалом называется множество

$$\sqrt{\mathfrak{a}} = \{ x \in A \mid \exists n > 0 : x^n \in \mathfrak{a} \}.$$

Упражнение 1.2 Доказать следующие утверждения для любых \mathfrak{a} , \mathfrak{b} идеалов в кольие A.

- 1. $\mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$
- 2. $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$
- 3. $\sqrt{\mathfrak{a}\mathfrak{b}} = \sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$
- 4. $\sqrt{\mathfrak{a}} = (1) \Leftrightarrow \mathfrak{a} = (1)$
- $5. \ \sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$
- 6. \mathfrak{p} $npocmo\check{u} \Rightarrow \sqrt{\mathfrak{p}^n} = \sqrt{\mathfrak{p}}$

Доказательство.

- 1. $\forall x \in \mathfrak{a}, x^1 \in \mathfrak{a} \Rightarrow x \in \sqrt{\mathfrak{a}}$.
- 2. Докажем $\sqrt{\sqrt{\mathfrak{a}}} \subset \sqrt{a}$.

$$\forall x \in \sqrt{\sqrt{\mathfrak{a}}} \Rightarrow \exists n > 0 : x^n \in \sqrt{\mathfrak{a}} \Rightarrow \exists m > 0 : x^{nm} \in \mathfrak{a} \Rightarrow x \in \sqrt{\mathfrak{a}}.$$

Из пункта 1 данного упражнения вытекает $\sqrt{\mathfrak{a}} \subseteq \sqrt{\sqrt{\mathfrak{a}}}$.

Таким образом $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$.

3. Сперва докажем что $\sqrt{\mathfrak{a}\mathfrak{b}} \subseteq \sqrt{\mathfrak{a} \cap \mathfrak{b}}$.

 $\forall x \in \sqrt{\mathfrak{a}\mathfrak{b}} \Rightarrow \exists n > 0 : x^n \in \mathfrak{a}\mathfrak{b}$. Учтем, что $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$. Тогда из того, что $x^n \in \mathfrak{a}\mathfrak{b}$, следует, что $x^n \in \mathfrak{a} \cap \mathfrak{b}$. Значит, $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$.

Теперь докажем, что $\sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$.

$$\forall x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}} \Leftrightarrow \exists n > 0 : x^n \in \mathfrak{a} \cap \mathfrak{b} \Leftrightarrow$$

$$\Leftrightarrow x^n \in \mathfrak{a} \wedge x^n \in \mathfrak{b} \Leftrightarrow x \in \sqrt{\mathfrak{a}} \wedge x \in \sqrt{\mathfrak{b}} \Leftrightarrow x \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}.$$

Докажем что $\sqrt{\mathfrak{a} \cap \mathfrak{b}} \subseteq \sqrt{\mathfrak{a}\mathfrak{b}}$.

$$\forall x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}} \Rightarrow \exists n > 0 : x^n \in \mathfrak{a} \wedge x^n \in \mathfrak{b} \Rightarrow x^{2n} \in \mathfrak{ab} \Rightarrow x \in \sqrt{\mathfrak{ab}}.$$

²[2] Страница 19, упражнение 1.13.

4.
$$\mathfrak{a} = (1) \Leftrightarrow 1 \in \mathfrak{a} \Leftrightarrow 1 \in \sqrt{\mathfrak{a}} \Leftrightarrow \sqrt{\mathfrak{a}} = (1)$$
.

5. Докажем
$$\sqrt{\mathfrak{a} + \mathfrak{b}} \subseteq \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$$
.

$$\forall x \in \sqrt{\mathfrak{a} + \mathfrak{b}} \Rightarrow \exists n > 0 : x^n \in \mathfrak{a} + \mathfrak{b}$$
. Из $\mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$ следует $x^n \in \sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}} \Rightarrow x \in \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$.

Теперь докажем
$$\sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}} \subseteq \sqrt{\mathfrak{a} + \mathfrak{b}}$$
.

$$\forall x \in \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}} \Rightarrow \exists n > 0 : x^n \in \sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}$$
. Значит найдутся такие $y \in \sqrt{\mathfrak{a}}$ и $z \in \sqrt{\mathfrak{b}}$ такие что $x^n = y + z$.

Заметим, что $\exists m>0: y^m\in \mathfrak{a}$ и $\exists l>0: z^l\in \mathfrak{b}.$

Тогда
$$x^{n(m+l-1)} = \sum_{s=0}^{n(m+l-1)} C_{n(m+l-1)}^s y^s z^r$$
, где $s+r = n(m+l-1)$. Отсюда $x^{n(m+l-1)} \in \mathfrak{a} + \mathfrak{b} \Rightarrow x \in \sqrt{\mathfrak{a} + \mathfrak{b}}$.

6. Докажем $\sqrt{\mathfrak{p}^n} \subseteq \sqrt{\mathfrak{p}}$.

$$\forall x \in \sqrt{\mathfrak{p}^n} \Rightarrow x^m \in \mathfrak{p}^n$$
. Заметим $\mathfrak{p}^n \subseteq \mathfrak{p}$. Отсюда $x^m \in \mathfrak{p} \Rightarrow x \in \sqrt{\mathfrak{p}}$.

Докажем
$$\sqrt{\mathfrak{p}} \subseteq \sqrt{\mathfrak{p}^n}$$
.

Пусть
$$x \in \sqrt{\mathfrak{p}} \Rightarrow x^m \in \mathfrak{p}$$
. Отсюда $x \in \mathfrak{p} \Rightarrow x^n \in \mathfrak{p}^n \Rightarrow x \in \sqrt{\mathfrak{p}^n}$.

Теорема 1.8 [2] Радикал идеала \mathfrak{a} совпадает с пересечением всех простых идеалов, содержащих \mathfrak{a} .

Доказательство. Рассмотрим факторкольцо A/\mathfrak{a} . Все x, такие что $x^n \in \mathfrak{a}$ будут содржаться в нильрадикале $\mathfrak{N}(A/\mathfrak{a})$ кольца A/\mathfrak{a} . Так как нильрадикал совпадает с пересечением всех простых идеалов $\overline{\mathfrak{p}}$ в кольце A/\mathfrak{a} и имеется взаимнооднозначное соответствие между идеалами в A/\mathfrak{a} и идеалами, содержащими \mathfrak{a} , то получаем что $\sqrt{\mathfrak{a}}$ совпадает с пересеением всех простых идеалов, содержащих \mathfrak{a} .

1.5 Расширение и сужение идеалов

Пусть $f:A\to B$ — некоторый гомоморфизм колец. Если $\mathfrak a$ — идеал в A, то его образ $f(\mathfrak a)$ не обязательно будет идеалом.

Определение 1.14 Расширением идеала \mathfrak{a} кольца A называется идеал, порожденный множеством $f(\mathfrak{a})$, то есть идеал $Bf(\mathfrak{a})$. Обозначается как \mathfrak{a}^e .

Расширение идеала \mathfrak{a} совпадает с множеством всевозможных конечных сумм вида $\sum_i y_i f(x_i)$, где $x_i \in \mathfrak{a}, y_i \in B$.

Определение 1.15 *Сужением* идеала $\mathfrak b$ кольца B называется его прообраз $f^{-1}(\mathfrak b)$ и обозначается $\mathfrak b^c$.

Теорема 1.9 [2] Пусть \mathfrak{a} , \mathfrak{b} идеал в кольцах A и B соответственно, $f:A\to B$ — гомоморфизм колец. Тогда

1.
$$\mathfrak{a} \subseteq \mathfrak{a}^{ec}$$
, $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$.

2.
$$\mathfrak{b}^c = \mathfrak{b}^{cec}$$
, $\mathfrak{a}^e = \mathfrak{a}^{ece}$.

3. Пусть C — множество идеалов в A, являющихся сужениями, а E — множество идеалов в B, являющихся расширениями. Тогда

$$C = \{ \mathfrak{a} \mid \mathfrak{a}^{ce} = \mathfrak{a} \}, \qquad E = \{ \mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b} \}$$

 $u \mathfrak{a} \mapsto \mathfrak{a}^e$ — биективное отображение C на E, обратное κ которому имеет $eud \mathfrak{b} \mapsto \mathfrak{b}^c$.

Упражнение 1.3 Пусть $\mathfrak{a}_1, \mathfrak{a}_2 \subset A$ – идеалы в кольце $A, \mathfrak{b}_1, \mathfrak{b}_2 \subset B$ идеалы в кольце $B \ u \ f : A \to B$ гомоморфизм колец. Доказать следующие утверждения.³

1.
$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$$

2.
$$(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^e \cap \mathfrak{a}_2^e$$

3.
$$(\mathfrak{a}_1\mathfrak{a}_2)^e = \mathfrak{a}_1^e\mathfrak{a}_2^e$$

4.
$$(\mathfrak{a}_1 : \mathfrak{a}_2)^e \subseteq (\mathfrak{a}_1^e : \mathfrak{a}_2^e)$$

5.
$$(\sqrt{\mathfrak{a}})^e \subseteq \sqrt{\mathfrak{a}^e}$$

6.
$$(\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$$

7.
$$(\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$$

8.
$$(\mathfrak{b}_1\mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c\mathfrak{b}_2^c$$

9.
$$(\mathfrak{b}_1:\mathfrak{b}_2)^c\subseteq (\mathfrak{b}_1^c:\mathfrak{b}_2^c)$$

10.
$$(\sqrt{\mathfrak{b}})^c = \sqrt{\mathfrak{b}^c}$$

Доказательство.

1.
$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = Bf(\mathfrak{a}_1 + \mathfrak{a}_2) = Bf(\mathfrak{a}_1) + Bf(\mathfrak{a}_2) = \mathfrak{a}_1^e + \mathfrak{a}_2^e$$
.

2.
$$x \in \mathfrak{a}_1 \cap \mathfrak{a}_2 \Rightarrow Bf(x) \subseteq \mathfrak{a}_1^e \cap \mathfrak{a}_2^e \Rightarrow (\mathfrak{a}_1 \cap \mathfrak{a}_2) \subseteq (\mathfrak{a}_1 \cap \mathfrak{a}_2)^e$$
.

3.
$$(\mathfrak{a}_1\mathfrak{a}_2)^e = Bf(\mathfrak{a}_1\mathfrak{a}_2) = Bf(\mathfrak{a}_1)Bf(\mathfrak{a}_2) = \mathfrak{a}_1^e\mathfrak{a}_2^e$$
.

- 4. Выберем произвольный $y \in (\mathfrak{a}_1 : \mathfrak{a}_2)^e = \{Bf(x) \mid \mathfrak{a}_2 x \subseteq \mathfrak{a}_2\}.$ Следовательно, $\exists x_0 \in (\mathfrak{a}_1 : \mathfrak{a}_2)$ такой что $y \in Bf(x_0)$. Заметим, $\mathfrak{a}_2^e y \subseteq Bf(\mathfrak{a}_2)Bf(x_0) = Bf(\mathfrak{a}_2 x_0).$ Так как $\mathfrak{a}_2 x_0 \subseteq \mathfrak{a}_2$, значит $Bf(\mathfrak{a}_2 x_0) \subseteq Bf(\mathfrak{a}_1) = \mathfrak{a}_1^e$. Из $\mathfrak{a}_2^e y \subseteq \mathfrak{a}_1^e$ следует $y \in (\mathfrak{a}_1^e : \mathfrak{a}_2^e)$.
- 5. Выберем произвольный $y \in (\sqrt{\mathfrak{a}})^e \Rightarrow y \in Bf(x_0)$ для некоторого $x_0^n \in \mathfrak{a}$. Заметим $y^n \in B^n(f(x_0)^n) = Bf(x_0^n) \subseteq Bf(\mathfrak{a}) = \mathfrak{a}^e$. Отсюда $y \in \sqrt{\mathfrak{a}^e}$.

6.
$$\mathfrak{b}_1^c + \mathfrak{b}_2^c \subseteq ((\mathfrak{b}_1^c + \mathfrak{b}_2^c)^e)^c = (\mathfrak{b}_1^{ce} + \mathfrak{b}_2^{ce})^c \subseteq (\mathfrak{b}_1 + \mathfrak{b}_2)^c$$
.

7. Выберем произвольный $x\in (\mathfrak{b}_1\cap\mathfrak{b}_2)^c=f^{-1}(\mathfrak{b}_1\cap\mathfrak{b}_2),$ что равносильно

$$f(x) \in \mathfrak{b}_1 \cap \mathfrak{b}_2 \Leftrightarrow f(x) \in \mathfrak{b}_1 \wedge f(x) \in \mathfrak{b}_2 \Leftrightarrow x \in f^{-1}(\mathfrak{b}_1) \wedge x \in f^{-1}(\mathfrak{b}_2).$$

Отсюда
$$x \in f^{-1}(\mathfrak{b}_1) \cap f^{-1}(\mathfrak{b}_1) = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$$
.

 $^{^{3}[2]}$ Страница 21, упражнение 1.18.

- 8. $\mathfrak{b}_1^c \mathfrak{b}_2^c \subseteq (\mathfrak{b}_1^c \mathfrak{b}_2^c)^{ec} = (\mathfrak{b}_1^{ce} \mathfrak{b}_2^{ce})^c \subseteq (\mathfrak{b}_1 \mathfrak{b}_2)^c$.
- 9. Выберем произвольный $y \in (\mathfrak{b}_1 : \mathfrak{b}_2)^c$. Это значит что $y \in f^{-1}(x_0)$, где $x_0\mathfrak{b}_2 \subseteq \mathfrak{b}_1$. Заметим, что

$$f^{-1}(\mathfrak{b}_2)y \subseteq f^{-1}(\mathfrak{b}_2)f^{-1}(x_0) \subseteq f^{-1}(\mathfrak{b}_2x_0) \subseteq f^{-1}(\mathfrak{b}_1).$$

Отсюда $y \in (\mathfrak{b}_1^c : \mathfrak{b}_2^c)$.

10. Докажем, что $(\sqrt{\mathfrak{b}})^c \subset \sqrt{\mathfrak{b}^c}$.

Выберем произвольный $y \in (\sqrt{\mathfrak{b}})^c = f^{-1}(\sqrt{\mathfrak{b}})$. Это равносильно тому, что

$$\exists n > 0 : y \in f^{-1}(x_0),$$
где $x_0^n \in \mathfrak{b}.$

Отсюда

$$y^n \in f^{-1}(x_0^n) \subseteq f^{-1}(\mathfrak{b}) \Rightarrow y \in \sqrt{\mathfrak{b}^c}$$
.

Докажем $(\sqrt{\mathfrak{b}})^c \supseteq \sqrt{\mathfrak{b}^c}$.

Выберем произвольный $y \in \sqrt{\mathfrak{b}^c}$. Из этого следует $\exists n > 0$ такое, что $y^n \in \mathfrak{b}^c = f^{-1}(\mathfrak{b})$. Тогда имеем

$$f(y^n) = (f(y))^n \in \mathfrak{b} \Rightarrow f(y) \in \sqrt{\mathfrak{b}} \Rightarrow y \in f^{-1}(\sqrt{\mathfrak{b}}) = (\sqrt{\mathfrak{b}})^c.$$

1.6 Решения упражнений в конце главы 1 книги [2]

Упражнение 1.4 Доказать, что $x \in \mathfrak{N}(A) \Leftrightarrow 1 + x \in U(A)$, где $x \in A$, A -кольцо; $\mathfrak{N}(A), U(A) -$ множество нильпотентов и обратимых элементов кольца A соответственно. 4

Доказательство.

Докажем, что $x\in\mathfrak{N}(A)\Rightarrow 1+x\in U(A).$ Пусть n — такое число, что $x^n=0.$ Тогда

$$1 - (-x)^n = 1 = (1 - (-x))(1 + (-x) + \dots + (-x)^{n-1}).$$

Обозначим $S = 1 + (-x) + \dots + (-x)^{n-1}$. Имеем

$$1 = (1+x)S \Rightarrow 1 + x \in U(A).$$

Теперь докажем более общее утверждение:

$$x \in \mathfrak{N}(A), u_0 \in U(A) \Rightarrow u_0 + x \in U(A).$$

Умножим $u_0 + x$ на u_0^{-1} :

$$u_0^{-1}(u_0+x)=1+u_0^{-1}x=1+y$$
, где $y:=u_0^{-1}x$.

 $^{^4[2]}$ Страница 21, упражнение 1

Заметим

$$1 = (1+y)(1+(-y)+(-y)^2+\cdots+(-y)^{n-1}),$$

обозначим $S = 1 + (-y) + (-y)^2 + \dots + (-y)^{n-1}$ и умножим на u_0 . Имеем

$$u_0 = (u_0 + x)S \Rightarrow u_0 + x \in U(A).$$

Теперь, полагая $u_0 = 1$, получаем требуемое доказательство.

Упражнение 1.5 Пусть A — некоторое кольцо, а A[x] — кольцо многочленов от переменной x с коэффициентами из A. Пусть

$$f = a_0 + a_1 x + \dots + a_n x^n \in A[x].$$

Доказать следующие утверждения: 5

- 1. f обратимый элемент e $A[x] \Leftrightarrow a_0$ обратимый элемент e A, a a_1, \ldots, a_n нильпотенты.
- 2. f нильпотент $\Leftrightarrow a_0, \ldots, a_n$ нильпотенты.
- 3. f- делитель нуля \Leftrightarrow существует ненулевой элемент $a\in A$ такой, что af=0.
- 4. Многочлен f называется примитивным, если $(a_0, \ldots, a_n) = 1$. Пусть $f, g \in A[x]$. Показать, что примититеность fg равносильна примитивности f u g.

Докажем 1.

Доказательство.

 \Leftarrow : Заметим, если $a \in A$ — нильпотент, то и $ax^k \in A[x]$ тоже нильпотент. Так же отметим, если $a \in A$ — обратим, то и $a \in A[x]$ обратим как многочлен нулевой степени. Воспользуемся результатом упражнения 1.4. Так как a_0 — обратим, а $\sum_{k=1}^n a_k x^k$ — нильпотент (множество всех нильпотентов кольца является идеалом [2]), то получаем, что f — обратим как сумма обратимого элемента и нильпотента.

⇒: Докажем следующее

Утверждение 1.1 Пусть $g = b_0 + b_1 x + \dots + b_m x^m$ — обратный κ f многочлен, тогда $a_n^{r+1}b_{m-r} = 0$.

Доказательство. Рассмотрим коэффициенты произведения fg. Коэффициент при x^k обозначим как $[x^k]$:

$$[x^{n+m}] = a_n b_m = 0$$

$$[x^{n+m-1}] = a_{n-1} b_m + a_n b_{m-1} = 0$$

$$[x^{n+m-2}] = a_{n-2} b_m + a_{n-1} b_{m-1} + a_n b_{m-2} = 0$$

$$\vdots$$

$$[x^2] = a_0 b_2 + a_1 b_1 + a_2 b_0 = 0$$

$$[x^1] = a_0 b_1 + a_1 b_0 = 0$$

$$[x^0] = a_0 b_0 = 1.$$

⁵[2] Страница 21, упражнение 2.

i-ую сверху строчку умножим на a_n^i . Получим:

$$[x^{n+m}] = a_n b_m = 0$$

$$[x^{n+m-1}] a_n = a_{n-1} b_m a_n + a_n^2 b_{m-1} = 0$$

$$[x^{n+m-2}] a_n^2 = a_{n-2} b_m a_n^2 + a_{n-1} b_{m-1} a_n^2 + a_n^3 b_{m-2} = 0$$

$$\vdots$$

$$[x^2] a_n^{n+m-2} = a_0 b_2 a_n^{n+m-2} + a_1 b_1 a_n^{n+m-2} + a_2 b_0 a_n^{n+m-2} = 0$$

$$[x^1] a_n^{n+m-1} = a_0 b_1 a_n^{n+m-1} + a_1 b_0 a_n^{n+m-1} = 0$$

$$[x^0] a_n^{n+m} = a_0 b_0 a_n^{n+m} = 1.$$

Из первой строчки $a_nb_m=0$. Подставляя это во вторую, получаем, что $a_n^2b_{m-1}=0$. Подставляя эти оба равенства в третью, получаем, что $a_n^3b_{m-2}=0$ и так далее, по индукции, получаем что $a_n^{r+1}b_{m-r}=0$.

Воспользуемся доказанным утверждением при r=m: $a_n^{m+1}b_0=0$. Так как b_0 обратим, получаем что $a_n^{m+1}=0$, следовательно a_n — нильпотент.

Обозначим $\tilde{f}=f-a_nx^n$. Так как f — обратимый элемент, а a_nx^n — нильпотент, то \tilde{f} тоже будет обратим. Теперь, повторяя аналогичное доказательство для \tilde{f} , получим, что a_{n-1} — нильпотент, и так до тех пор, пока $\deg f>0$. При $\deg f=0$ имеем $f=a_0$, откуда сразу получаем что a_0 — обратимый элемент. \blacksquare Докажем 2.

Доказательство.

 \Leftarrow : Так как $a_k \in A$ — нильпотенты для всех $k = \overline{0, n}$, то и $a_k x^k \in A[x]$ тоже будут нильпотентами, следовательно, и их сумма $f = \sum_{k=0}^n a_k x^k$ будет нильпотентом.

 \Rightarrow : Так как f — нильпотент, следовательно, существует такое $n_0>0$, что $f^{n_0}=0$:

$$f^{n_0} = \underbrace{(a_0 + \dots)(a_0 + \dots)\dots(a_0 + \dots)}_{n_0 \text{ скобок}} = a_0^{n_0} + \dots = 0.$$

Отсюда получаем, что $a_0^{n_0}=0$, значит a_0 — нильпотент. Обозначим $\tilde{f}=f-a_0$. Так как $f,a_0\in A[x]$ нильпотенты, следовательно, и \tilde{f} тоже будет нильпотентом. Проведем для \tilde{f} аналогичные действия, по индукции получим, что a_k — нильпотенты для всех $k=\overline{0,n}$.

Докажем 3.

Доказательство.

 \Leftarrow : Будем смотреть на a как на элемент кольца A[x]. Отсюда сразу получаем, что f — нильпотент.

 \Rightarrow : Среди всех многочленов g таких, что fg=0, выберем многочлен минимальной степени. Пусть это $g=b_0+b_1x+\cdots+b_mx^m$.

Докажем следующее

Утверждение 1.2 $a_{n-r}g = 0$ npu $scex \ r = \overline{0, n}$.

Доказательство. Проведем индукцию по r.

r=0: $a_ng=0$, в противном случае степень m не была бы наименьшей и $a_ngf=0$.

Пусть при r=k утверждение было доказано. Докажем его при r=k+1. Обозначим

$$\tilde{f} = f - \sum_{i=0}^{k} a_{n-i} x^{n-i}.$$

Умножим \tilde{f} на g:

$$\tilde{f}g = fg - \sum_{i=0}^{k} a_{n-i}gx^{n-i} = 0,$$

так как fg=0 и при всех $i=\overline{0,k}$ $a_{n-i}g=0$. Рассмотрим коэффициенты в произведении $\tilde{f}g$:

$$[x^{0}] = a_{0}b_{0} = 0$$

$$[x^{1}] = a_{0}b_{1} + a_{1}b_{0} = 0$$

$$\vdots$$

$$[x^{n-k-1}] = a_{n-k-1}b_{0} = 0.$$

Откуда получаем, что $a_{n-k-1}g = 0$, иначе степень m не была бы наименьшей и $a_{n-k-1}gf = 0$.

Для всех $i=\overline{0,n}$ имеем $a_ig=0$, откуда следует $a_ib_m=0$, следовательно, $b_mf=0$. Искомый a положим равным b_m .

Доказательство. Пусть

$$f = a_0 + a_1 x + \dots + a_n x^n$$
, $q = b_0 + b_1 x + \dots + b_m x^m$.

 \Rightarrow : Предположим, что fg примитивен, но f не является примитивным, то есть $\exists d \neq 1, 0$ такой, что $d \mid a_i$ при всех $i = \overline{0,n}$. Рассмотрим коэффициенты произведения fg:

$$[x^{0}] = c_{0} = a_{0}b_{0}$$

$$[x^{1}] = c_{1} = a_{0}b_{1} + a_{1}b_{0}$$

$$\vdots$$

$$[x^{n+m-1}] = c_{n+m-1} = a_{n-1}b_{m} + a_{n}b_{m-1}$$

$$[x^{n+m}] = c_{n+m} = a_{n}b_{m}.$$

Так как d делит все a_i , следовательно, d будет делить все c_j , следовательно, многочлен fg уже не будет примитивным. Значит предположение было неверно и f является примитивным. Аналогично доказывается примитивность g.

 \Leftarrow : Предположим, что $f,\,g$ примитивны, а fg не является примитивным. Пусть fgимеет следующий вид

$$fg = \sum_{j=0}^{n+m} c_j x^j.$$

Многочлен fg не примитивен, значит $\exists \mathfrak{p}$ — простой идеал, такой что $c_j \in \mathfrak{p}$ для всех $j = \overline{0, n+m}$.

$$[x^{0}] = c_{0} = a_{0}b_{0} \in \mathfrak{p}$$

$$[x^{1}] = c_{1} = a_{0}b_{1} + a_{1}b_{0} \in \mathfrak{p}$$

$$\vdots$$

$$[x^{n+m-1}] = c_{n+m-1} = a_{n-1}b_{m} + a_{n}b_{m-1} \in \mathfrak{p}$$

$$[x^{n+m}] = c_{n+m} = a_{n}b_{m} \in \mathfrak{p}.$$

Так как f, g — примитивны, значит не все a_i и не все b_j не принадлежат \mathfrak{p} . Предположим, что найдутся такие a_i и b_j , что $a_ib_j \notin \mathfrak{p}$, причем все a_s при s < i и все b_t при t < j принадлежат \mathfrak{p} , но

$$c_{i+j} = \cdots + a_i b_j + \cdots \in \mathfrak{p},$$

следовательно, либо $a_i \in \mathfrak{p}$, либо $b_j \in \mathfrak{p}$. Таким образом, получили противоречие, значит либо f, либо g — не является примитивным.

Упражнение 1.6 Доказать, что в кольце A[x] радикал Джекобсона совпадает с нильрадикалом.⁶

Доказательство.

Докажем $\mathfrak{N}(A[x]) \subseteq \mathfrak{R}(A[x])$.

Выберем произвольные $f,g\in\mathfrak{N}(A[x])$. Так как нильрадикал является идеалом, следовательно $fg\in\mathfrak{N}(A[x])$. Из упражнения 1.4 следует, что $1-fg\in U(A[x])$, значит, из теоремы 1.7 $f\in\mathfrak{R}(A[x])$.

Докажем $\mathfrak{R}(A[x]) \subseteq \mathfrak{N}(A[x])$

Выберем произвольный $f \in \mathfrak{R}(A[x])$. Из предлжения 1.9[2] следует, что для всех $g \in A[x]$ выполнено $1 - fg \in U(A[x])$. Положим g = x. То есть $1 - xf \in U(A[x])$. Пусть многочлен f имеет следующий вид:

$$f = a_0 + a_1 x + \dots + a_n x^n,$$

тогда 1 - xf будет иметь вид:

$$1 - xf = 1 - (a_0x + a_1x^2 + \dots + a_nx^{n+1}).$$

Воспользовавшись упражнением 1.4 получаем, что $a_0x + a_1x^2 + \cdots + a_nx^{n+1}$ — нильпотент. Из упражнения 1.5 пункта 2 вытекает, что $a_i \in \mathfrak{N}(A[x])$ для $i = \overline{1,n}$. Снова воспользовавшись результатом упражнения 1.5 пункт 2 получаем, что f — нильпотент, то есть $f \in \mathfrak{N}(A[x])$. Таким образом $\mathfrak{N}(A[x]) = \mathfrak{R}(A[x])$.

Упражнение 1.7 Пусть A — некоторое кольцо, A[[x]] — кольцо формальных степенных рядов

$$f = \sum_{n=0}^{\infty} a_n x^n$$

c коэффициентами в A. Доказать следующие утверждения: 7

- 1. f обратимый элемент в $A[[x]] \Leftrightarrow a_0$ обратимый элемент в A.
- 2. Ecnu $f \in \mathfrak{N}(A[[x]]) \Rightarrow a_n \in \mathfrak{N}(A)$ npu $acex \ n \geqslant 0$.
- 3. $f \in \mathfrak{R}(A[[x]]) \Leftrightarrow a_0 \in \mathfrak{R}(A)$

Докажем 1.

Доказательство.

⁶[2] Страница 21, упражнение 4.

⁷[2] Страница 21, упражнение 5.

 \Rightarrow : Так как $f \in U(A[[x]])$, значит, существует элемент $g \in A[[x]]$ такой, что fg=1. Выпишем несколько первых коэффициентов произведения:

$$[x^{0}] = a_{0}b_{0} = 1$$

$$[x^{1}] = a_{0}b_{1} + a_{1}b_{0} = 0$$

$$[x^{2}] = a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0} = 0$$

$$\vdots$$

$$[x^{m}] = \sum_{i+j=m} a_{i}b_{j}$$

$$\vdots$$

Из $a_0b_0 = 1$ сразу следует, что $a_0 \in U(A)$.

 \Leftarrow : Пусть $a_0 \in U(A)$. Построим формальный степенной ряд g такой, что fg=1. Пусть g имеет вид

$$g = \sum_{n=0}^{\infty} b_n x^n.$$

Рассмотрим коэффициенты произведения fg:

$$[x^{0}] = a_{0}b_{0} = 1 \Rightarrow b_{0} = a_{0}^{-1}$$

$$[x^{1}] = a_{0}b_{1} + a_{1}b_{0} = 0 \Rightarrow b_{1} = a_{0}^{-1}(-a_{1}b_{0})$$

$$[x^{2}] = a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0} = 0 \Rightarrow b_{2} = a_{0}^{-1}(-a_{1}b_{1} - a_{2}b_{0})$$

$$\vdots$$

$$[x^{m}] = \sum_{i+j=m} a_{i}b_{j} = 0 \Rightarrow b_{m} = a_{0}^{-1} \left(-\sum_{i=1}^{m} a_{i}b_{m-i}\right)$$

$$\vdots$$

Таким образом, для любого m за конечное число шагов мы сможем получить коэффициент b_m формального степенного ряда g.

Докажем 2.

Доказательство.

Проведем доказательство, аналогичное доказательству упражнения 1.5 пункт 2. Так как f — нильпотент, следовательно найдется такое натуральное число n_0 , что $f^{n_0} = 0$. Имеем

$$f^{n_0} = \underbrace{(a_0 + \dots)(a_0 + \dots)\dots(a_0 + \dots)}_{n_0 \text{ скобок}} = a_0^{n_0} + \dots = 0,$$

откуда следует $a_0^{n_0}=0$. Выполним замену $\tilde{f}=f-a_0$. Тогда \tilde{f} снова будет нильпотентом, значит, найдется целое $n_1>0$: $\tilde{f}^{n_1}=0$. Имеем

$$\tilde{f}^{n_1} = \underbrace{(a_1 x + \dots)(a_1 x + \dots) \dots (a_1 x + \dots)}_{n_1 \text{ скобок}} = (a_1 x)^{n_1} + \dots = 0,$$

откуда получаем $a_1^{n_1}=0$, и сделаем замени $\tilde{\tilde{f}}=\tilde{f}-a_1x$. Для $\tilde{\tilde{f}}$ снова проведем аналогичные рассуждения. Таким образом, за конечное число шагов, получим последовательно a_0 — нильпотент, a_1 — нильпотент, и так далее.

Докажем 3.

Доказательство.

Из теоремы 1.7 $f \in \mathfrak{R}(A[[x]]) \Leftrightarrow 1 - fg \in U(A[[x]])$ при всех $g \in A[[x]]$. Пусть f и g имеют следующий вид:

$$f = \sum_{n=0}^{\infty} a_n x^n,$$
$$g = \sum_{n=0}^{\infty} b_n x^n.$$

Тогда условие $1 - fg \in U(A[[x]])$ запишется следующим образом:

$$1 - fg = (1 - a_0b_0) + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots \in U(A[[x]]).$$
 (1)

Воспользовавшись пунктом 1 данного упражнения получим $1 - a_0 b_0 \in U(A)$. Так как g выбирался произвольно, следовательно b_0 — произвольный элемент кольца A. Откуда вытекает, что $a_0 \in \mathfrak{R}(A)$.

С другой стороны, из того, что $a_0 \in \mathfrak{R}(A)$, следует, что при всех b_0 будет выполнено $1 - a_0 b_0 \in U(A)$, значит ряд (1) будет обратимым при всех b_n , $n \geqslant 0$, то есть при любых $g \in A[[x]]$. Отсюда, по теореме 1.7, получаем, что $f \in \mathfrak{R}(A[[x]])$.

Упражнение 1.8 Пусть A — некоторое кольцо, X — множество всех его простых идеалов. Для вского подмножества $E \subset A$ обозначим V(E) множество всех простых идеалов, содержащих E. Доказать следующие утверждения: ⁸

- 1. Если \mathfrak{a} идеал, порожденный E, то $V(E)=V(\mathfrak{a})=V(\sqrt{\mathfrak{a}})$.
- 2. $V(0) = X, V(1) = \emptyset$.
- 3. Пусть $(E_i)_{i\in I}$ любое семейство подмножеств A. Тогда

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

4. $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ для любых идеалов $\mathfrak{a}, \mathfrak{b}$ в A.

Докажем 1.

Доказательство.

1. Доказательство $V(E) = V(\mathfrak{a})$.

To, что \mathfrak{a} порожден множеством E, означает, что \mathfrak{a} имеет вид

$$\mathfrak{a} = \left\{ \sum_{i} a_{i} x_{i} \mid a_{i} \in A, x_{i} \in E \right\},\,$$

причем все суммы конечные.

Покажем $V(E) \subseteq V(\mathfrak{a})$,

Выберем произвольный простой идеал $\mathfrak{p} \in V(E)$. Для всех $x \in E$ будет выполнено $x \in \mathfrak{p}$, следовательно, любая A-линейная комбинация $\sum_{i=1}^{n} a_i x_i$ принадлежит \mathfrak{p} , где $a_i \in A$, $x_i \in E$, откуда получаем $\mathfrak{a} \subseteq \mathfrak{p}$, следовательно, $\mathfrak{p} \in V(\mathfrak{a})$.

⁸[2] Страница 22, упражнение 15.

Покажем $V(\mathfrak{a}) \subseteq V(E)$.

Выберем произвольный $x \in E$. Очевидно $x \in \mathfrak{a}$. Так как для всех $\mathfrak{p} \in V(\mathfrak{a})$ выполнено $\mathfrak{a} \subseteq \mathfrak{p}$, следовательно, $x \in \mathfrak{p}$. В силу произвольности выбора x получаем, что $E \subseteq \mathfrak{p}$, откуда $\mathfrak{p} \in V(E)$.

2. Доказательство $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}).$

Пусть $x \in \sqrt{\mathfrak{a}}$ — произвольный элемент $\sqrt{\mathfrak{a}}$. Это означает, что существует n > 0 такое, что $x^n \in \mathfrak{a}$. Теперь выберем произвольный простой идеал $\mathfrak{p} \in V(\mathfrak{a})$. По определению, выполнено $\mathfrak{a} \subseteq \mathfrak{p}$. Значит $x^n \in \mathfrak{p}$, а следовательно и $x \in \mathfrak{p}$. В силу произвольности выбора x получаем, что $\mathfrak{p} \in V(\sqrt{\mathfrak{a}})$. Таким образом, доказано, что $V(\mathfrak{a}) \subset V(\sqrt{\mathfrak{a}})$.

Так как $\mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$, то для всех $\mathfrak{p} \in V(\sqrt{\mathfrak{a}})$ будет выполнено

$$\mathfrak{a} \subseteq \sqrt{\mathfrak{a}} \subseteq \mathfrak{p}$$
,

значит, $\mathfrak{a} \subseteq \mathfrak{p}$, откуда $V(\sqrt{\mathfrak{a}}) \subseteq V(\mathfrak{a})$.

Докажем 2.

Доказательство.

Так как $\forall \mathfrak{p} \in X$ справедливо $0 \in \mathfrak{p}$, следовательно V(0) = X.

Так как A=(1) и не существует такого простого идеала $\mathfrak{p},$ что выполнено $(1)\subset\mathfrak{p},$ то $V(1)=\varnothing.$

Докажем 3.

Доказательство.

Покажем что $V\left(\bigcup_{i\in I} E_i\right) \subseteq \bigcap_{i\in I} V(E_i)$.

Выберем произвольный $\mathfrak{p} \in V(\bigcup_{i \in I} E_i)$. По определению $\bigcup_{i \in I} E_i \subseteq \mathfrak{p}$, что равносильно $E_i \subseteq \mathfrak{p}$ для всех $i \in I$, откуда следует $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$.

Для доказательства $V\left(\bigcup_{i\in I} E_i\right) \supseteq \bigcap_{i\in I} V(E_i)$ достаточно провести предыдущее рассуждение в обратном порядке.

Докажем 4.

Доказательство.

Воспользовавшись свойствами радикалов сразу получаем

$$V(\mathfrak{a}\cap\mathfrak{b})=V\left(\sqrt{\mathfrak{a}\cap\mathfrak{b}}\right)=V\left(\sqrt{\mathfrak{a}\mathfrak{b}}\right)=V(\mathfrak{a}\mathfrak{b}).$$

Осталось доказать равенство $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b}).$

Покажем, что $V(\mathfrak{ab}) \subseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Выберем произвольный $\mathfrak{p} \in V(\mathfrak{ab})$. По определению $\mathfrak{ab} \subseteq \mathfrak{p}$. Это означает, что $\forall x \in \mathfrak{a}, \forall y \in \mathfrak{b}$ справедливо $xy \in \mathfrak{p}$. Пусть существует некоторый $x_0 \in \mathfrak{a}$ и $x_0 \notin \mathfrak{p}$. Однако при всех $y \in \mathfrak{b}$ $x_0y \in \mathfrak{p}$. Из определения простого идеала получаем $y \in \mathfrak{p}$, то есть $\mathfrak{b} \subseteq \mathfrak{p}$, или, иными словами, $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Покажем, что $V(\mathfrak{ab}) \supseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Пусть $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$ и, для определенности, $\mathfrak{b} \subseteq \mathfrak{p}$, тогда $\forall x \in \mathfrak{a}$ справедливо $x\mathfrak{b} \subseteq \mathfrak{p}$. Следовательно и $\mathfrak{ab} \subseteq \mathfrak{p}$, то есть $\mathfrak{p} \in V(\mathfrak{ab})$.

Таким образом, множества V(E) удовлетворяют аксиомам замкнутых множеств в топологическом пространстве. Такая топология на X называется топологией Зарисского, а само пространство X называется npocmым cnekmpom konbua и обозначается как $\mathrm{Spec}(A)$.

Упражнение 1.9 Для вского элемнта $f \in A$ обозначим через X_f дополнение κ V(f) в $X = \operatorname{Spec}(A)$. Множества X_f открыты. Доказать что они образуют базу в топологии Зарисского и обладают следующими свойствами: ⁹

- 1. $X_f \cap X_g = X_{fg}$.
- 2. $X_f = \varnothing \Leftrightarrow f$ нильпотент.
- 3. $X_f = X \Leftrightarrow f oбратимый элемент.$
- 4. $X_f = X_g \Leftrightarrow \sqrt{(f)} = \sqrt{(g)}$.
- 5. X квазикомпактно (т.е. у всякого открытого покрытия X есть конечное подпокрытие).
- 6. Более общо, X_f квазикомпактны.
- 7. Открытое подмножество в X квазикомпактно тогда и только тогда, когда оно является конечным объединением множеств вида X_f .

Здесь под \overline{Q} , где $Q \subset X$ будем понимать дополнение к множеству Q.

Определение 1.16 Семейство множеств B называется Eазой топологии, если любое открытое множество из топологического пространства X представимо в виде объединения элементов из B.

Докажем что X_f образуют базу в топологии Зарисского.

Доказательство. Выберем произвольное множество $E \subset A$. Ему будет соответствовать некоторое открытое множество $\overline{V(E)} = Y$. Тогда

$$Y = \overline{V\left(\bigcup_{f \in E} \{f\}\right)} = \overline{\bigcap_{f \in E} V(f)} = \bigcup_{f \in E} \overline{V(f)} = \bigcup_{f \in E} X_f.$$

Докажем 1.

Доказательство. Воспользуемся свойствами замкнутых множеств в топологии Зарисского из упражнения 1.8.

$$X_f \cap X_g = \overline{V(f)} \cap \overline{V(g)} = \overline{V(f) \cup V(g)} = \overline{V(fg)} = X_{fg}.$$

Докажем 2.

Доказательство. $X_f = \emptyset \Leftrightarrow V(f) = X$, то есть для любого простого идеала \mathfrak{p} выполнено $f \in \mathfrak{p}$ или, другими словами,

$$f \in \bigcap_{\mathfrak{p} \text{ прост}} \mathfrak{p} = \mathfrak{N}(A),$$

то есть f — нильпотент.

Докажем 3.

Доказательство.

 $X_f = X \Leftrightarrow V(f) = \varnothing$, то есть f не принадлежит ни одному простому идеалу, в том числе ни одному максимальному, значит f обратим.

⁹[2] Страница 23, упражнение 17

С другой стороны, если бы f не был обратим, то он содержался бы в некотором максимальном идеале \mathfrak{m} , а значит $V(f) \neq \varnothing$.

Доказательство.

 \Leftarrow : Если $\sqrt{(f)}=\sqrt{(g)},$ то и V(f)=V(g) (из свойств замкнутых множеств, упражнение 1.8). Откуда сразу получаем $X_f=X_g.$

 \Rightarrow : По определению $V(g)=\{\mathfrak{p}\mid \mathfrak{p}-$ прост в $A\wedge (g)\subseteq \mathfrak{p}\}$. Так как $X_f=X_g$, то и $V(\sqrt{(f)})=V(\sqrt{(g)})$. Тогда по свойствам замкнутых множеств (упражнение 1.8) имеем:

$$\sqrt{(f)} = \bigcap_{\mathfrak{p}: (f) \subseteq \mathfrak{p}} \mathfrak{p} = \bigcap_{\mathfrak{p} \in V\left(\sqrt{(f)}\right)} \mathfrak{p} = \bigcap_{\mathfrak{p} \in V\left(\sqrt{(g)}\right)} \mathfrak{p} = \bigcap_{\mathfrak{p}: (g) \subseteq \mathfrak{p}} \mathfrak{p} = \sqrt{(g)}.$$

Докажем 5.

Доказательство. Так как $\{X_f\}$ — база топологии, то можно рассматривать покрытия главными открытыми множествами X_{f_i} , где $i \in I$. Так как $X = \bigcup_{i \in I} X_{f_i}$, то

$$\varnothing = \bigcap_{i \in I} V(f_i) = V\left(\bigcup_{i \in I} \{f_i\}\right) = V(\langle f_i \rangle_{i \in I}),$$

где выражение $\langle f_i \rangle_{i \in I}$ означает A-линейную оболочку множества $\{f_i \mid i \in I\}$. Откуда получаем, что A-линейная оболочка $\langle f_i \rangle_{i \in I} = (1)$, то есть существует такое конечное множество J, что

$$\sum_{j \in J} g_j f_j = 1, \text{ где } g_j \in A.$$

Следовательно, A-линейная оболочка элементов $f_j, j \in J$ совпадает с кольцом A. Тогда

$$\varnothing = V(\langle f_j \rangle) = \bigcap_{j \in J} V(f_j),$$

из чего следует

$$X = \bigcup_{j \in J} X_{f_j}.$$

Докажем 6.

Доказательство.

Рассмотрим некоторое покрытие главными открытыми множествами: $X_f \subset \bigcup_{i \in I} X_{f_i}$. Перейдем к дополнениям:

$$V(f) \supset \bigcap_{i \in I} V(f_i) = V(\langle f_i \rangle_{i \in I}).$$

Аналогично пункту 4 можно показать, что

$$V(f) \supset V(\langle f_i \rangle_{i \in I}) \Rightarrow \sqrt{(f)} \subset \sqrt{\langle f_i \rangle_{i \in I}}.$$

Откуда

$$\exists k > 0 : f^k = \sum_{j=1}^n f_j g_j, \text{ где } g_j \in A.$$

Иначе говоря, $f^k \in \langle f_j \rangle_{j=\overline{1,n}}$. Так как, $V(f^k) = V(f)$ имеем:

$$V(f) \supset V(\langle f_j \rangle_{j=\overline{1,n}}) = \bigcap_{j=1}^n V(f_j),$$

переходя к дополнениям, получаем

$$X_f \subset \bigcup_{j=1}^n X_{f_j}.$$

Докажем 7.

 $\overline{\mathbf{Доказательство.}}$ Пусть Y — открытое множество.

 \Leftarrow : Пусть $Y=\bigcup_{j=1}^n X_{f_j}\subset \bigcup_{i\in I} X_i$. Следовательно, при всех j имеют место включения $X_{f_j}\subset \bigcup_{i\in I} X_i$. Так как X_{f_j} квазикомпактно, то найдутся такие i_k и n_j , что

$$X_{f_j} \subset \bigcup_{k=1}^{n_j} X_{i_k}. \tag{2}$$

Теперь, объединяя выражения вида (2) по $j = \overline{1, n}$, получаем:

$$Y \subset \bigcup_{j=1}^{n} \bigcup_{k=1}^{n_j} X_{i_k}.$$

Таким образом, множество Y — квазикомпактно.

 \Rightarrow : Так как $\{X_f\}$ — база топологии, то можно предстваить Y в виде $Y=\bigcup_{i\in I}X_{f_i}$. Так как Y — квазикомпактно, значит среди X_{f_i} можно выделить конечный набор подмножеств $X_{f_{i_j}}$ такой, что $Y=\bigcup_{j=1}^n X_{f_{i_j}}$.

2 Модули

2.1 Определение модуля

Пусть A — некоторое кольцо, а M — некоторая абелева группа.

Определение 2.1 *Модулем над кольцом* A называется пара (M, μ) , состоящая из абелевой группы M и отображения $\mu: A \times M \to M$ (действия кольца A на группе M), которое удовлетворяет следующим условиям:

- 1. $\mu(a, x + y) = \mu(a, x) + \mu(a, y),$
- 2. $\mu(a+b,x) = \mu(a,x) + \mu(b,x)$,
- 3. $\mu(ab, x) = \mu(a, \mu(b, x)),$
- 4. $\mu(1, x) = x$.

Где $a, b \in A, x, y \in M$.

Далее $\mu(a, x)$ будем записывать как ax.

В случае, когда кольцо A является полем, A-модулями будут векторные пространства над полем A.

Отметим также, что любой идеал кольца A, в частности само кольцо A, является A-модулем. Поэтому к идеалам применимы все теоремы, которые формулирются для модулей.

Как в случае векторных пространств над полем k выделают подпространства и факторпространства, в случае A-модулей можно выделять подмодули и фактормодули.

Определение 2.2 *Подмодулем* $M' \subset M$ называется всякая подгруппа M' группы M, замкнутая относительно действия кольца. Иными словами, M' — подмодуль M, если он включается следующую в коммутативную диаграмму.

$$\begin{array}{ccc} A \times M' \stackrel{1 \times i}{\longrightarrow} A \times M \\ & \downarrow^{\mu|_{M'}} & \downarrow^{\mu} \\ M' \stackrel{i}{\longrightarrow} M \end{array}$$

При этом действие $\mu|_{M'}$ получается как ограничение отображения μ на подмножество $A \times M'$.

Определение 2.3 Φ актормодулем M/M' A-модуля M по подмодулю M' называет факторгруппа M/M' на которой действие μ' кольца A определено следующим образом:

$$\mu': (a, x + M') \mapsto ax + M'.$$

2.2 Гоморфизмы модулей

Определение 2.4 Гомоморфизмом $f: M \to N$ А-модулей N и M будем называть гомоморфизм абелевых групп M и N, который коммутирует с действием μ кольца на группе.

Таким образом, гоморфизм f абелевых групп является гомоморфизмом модулей, если он делает следующую диаграмму коммутативной.

$$\begin{array}{ccc} A \times M \xrightarrow{1 \times f} A \times N \\ \downarrow^{\mu_M} & \downarrow^{\mu_N} \\ M \xrightarrow{f} N \end{array}$$

Где $\mu_M, \, \mu_N$ — действия кольца A на M и N, наделяющие эти группы структурами A-модулей.

Если M, N — векторные пространства над полем k, то гомоморфизмы k-модулей называются линейными отображениями.

Определение 2.5 *Изоморфизмом А*-модулей называется такой гомоморфизм, который является биективным отображением модулей как множеств.

Аналогично ядру, образу и коядру линейных отображений векторных пространств выделяют аналогичные подгруппы, связанные с гомоморфизмами A-модулей. Определение 2.6 Пусть $f: M \to N$ — гомоморфизм A-модулей M и N.

- 1. Ядром гомоморфизма f называется подгруппа $\ker f = \{x \in M \mid f(x) = 0\} < M,$
- 2. Образом гомоморфизма f называется подгруппа im f = f(M) < N,
- 3. Коядром гомоморфизма f называется coker f = N/im f.

При этом ядро, образ и коядро наделены структурами A-модулей.

Для модулей, как и для векторных пространств, справедливы три теоремы об изоморфизме.

Теорема 2.1 (Первая теорема об изоморфизме) [2] Пусть $f:M\to N-$ гомоморфизм A-модулей. Тогда

im
$$f \simeq M/\ker f$$
.

Теорема 2.2 (Вторая теорема об изоморфизме) [2] Пусть $M_1, M_2 - nod Mody-$ ли в M. Тогда

$$(M_1 + M_2)/M_2 \simeq M_2/(M_1 \cap M_2).$$

Теорема 2.3 (Третья теорема об изоморфизме) [2] Пусть $L \supseteq M \supseteq N$ — некоторые A-модули. Тогда

$$(L/N)/(M/N) \simeq L/M$$
.

2.3 Операции над модулями

Аналогично операциям произведения и частного идеалов можно ввести операцию умножения идеала на модуль и частного двух подмодулей. В общем случае произведение двух модулей ввести невозможно [2].

Определение 2.7 Пусть M-A-модуль, $\mathfrak{a}\subset A$ — идеал. Тогда *произведением* $\mathfrak{a}M$ назовем множество конечных сумм вида

$$\sum_i a_i x_i$$
, где $a_i \in \mathfrak{a}, x_i \in M$.

Произведение идеала на модуль M является подмодулем в M [2].

Определение 2.8 *Частным* (N:P) двух подмодулей N и P A-модуля M называется множество

$$(N:P) = \{ a \in A \mid aP \subseteq N \}.$$

Частное двух модулей является идеалом в A.

Определение 2.9 *Аннулятором* Ann(M) *А*-модуля M называется частное (0:M).

Упражнение 2.1 Пусть N, M-A-модули. Доказать следующие утверждения: 10

- 1. $\operatorname{Ann}(M+N) = \operatorname{Ann}(M) \cap \operatorname{Ann}(M)$.
- 2. (N:M) = Ann((N+M)/N).

Докажем 1.

Доказательство.

Выберем произвольный $x \in \text{Ann}(M+N)$. По определению, x(M+N)=0, следовательно xN+xM=0. Так как $xN\cup xM\subseteq xN+xM=0$, значит xN=xM=0, то есть $x\in \text{Ann}(M)\cap \text{Ann}(N)$.

Пусть теперь $x\in {\rm Ann}(M)\cap {\rm Ann}(N)$ это значит что xM=xN=0, откуда x(M+N)=0, следовательно $x\in {\rm Ann}(M+N)$. \blacksquare Докажем 2.

Доказательство.

Пусть $x \in \text{Ann}((N+M)/N)$. По определению

$$x((N+M)/N) = \overline{0},$$

что равносильно $x(y+N)\subseteq N$ при всех y=m+n, где $m\in M, n\in N$. Подставим выражение для y.

$$x(m+n+N) \subseteq N \Leftrightarrow xm+N \subseteq N$$
, при всех $m \in M$.

Откуда получаем, что $xM \subseteq N$, по определению $x \in (N:M)$.

Определение 2.10 Пусть M, N-A-модули. Их *прямой суммой* $M \oplus N$ называется множество всех пар (x,y), где $x \in M, y \in N$, на которых введены операции следующим образом:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

 $a(x, y) = (ax, ay).$

Данное определение прямой суммы двух A-модулей легко обобщить на прямую сумму произвольного семейства A-модулей:

Определение 2.11 *Прямой суммой семейства А-модулей* $\{M_i\}_{i\in I}$ назовем множество

$$\bigoplus_{i \in I} M_i = \{(x_i)_{i \in I} \mid (x_i)_{i \in I} - финитная последовательность и $x_i \in M_i\},$$$

с покомпонентным сложением и действием кольца A, определеяемым следующей формулой

$$\mu:(a,\ldots,m_i,\ldots)\mapsto(\ldots,\mu_i(a,m_i),\ldots),$$

где μ_i — действие кольца A на M_i .

¹⁰[2], Страница 30, упражнение 2.2

Если отбросить условие финитности последовательностей, то получим множество, называемое *прямым произведением*

$$\prod_{i\in I} M_i,$$

которое в случае конечного множества I совпадает с прямой суммой.

2.4 Конечно порожденные модули

Определение 2.12 A-модуль M называется свободным, если он изоморфен прямой сумме $\bigoplus_{i \in I} M_i$, где каждый M_i изоморфен A как A-модуль.

Свободный A-модуль обозначается как $A^{(I)}$.

Определение 2.13 *А*-модуль *М* порожден множеством $G \subset M$, если любой элемент $m \in M$ можно представить в виде финитной *А*-линейной комбинации элементо множества *G*. То есть для любого $m \in M$ найдутся такие $n \in \mathbb{N}$, $g_1, \ldots, g_n \in G$, $\lambda_1, \ldots, \lambda_n \in A$, что $m = \sum_{i=1}^n \lambda_i g_i$.

Подмножество G называется cucmeмой образующих или cucmeмой порожdaющих элементов A-модуля M.

Пусть $\oplus^{|G|}A$ — свободный A-модуль. Тогда имеет место сюръективный гомоморфизм $\varphi: \oplus^{|G|}A \twoheadrightarrow M$, определенный следующей формулой.

$$(\ldots,\lambda_i,\ldots)\mapsto \sum \lambda_i g_i,$$

где последовательность (λ_i) и A-линейная комбинация $\sum \lambda_i g_i$ финитны.

Определение 2.14 A-модуль *конечно порожден*, если в нем можно выбрать конечную систему образующих G

Вновь обратимся к векторным конечномерным пространствам над полем k. Так как любое векторное пространство V размерности $n=\dim V$ изоморфно k^n , значит, по определнию, любой модуль над полем k будет являться свободным.

Сформулируем критерий для конечно порожденных модулей.

Теорема 2.4 [2] A-модуль M конечно порожден тогда и только тогда, когда он изоморфен некоторому фактормодулю модуля A^n при некотором n > 0.

Теорема 2.5 [2] Пусть M — некоторый конечно порожденный A-модуль, $\mathfrak{a} \subset A$ — идеал, φ — такой эндоморфизм M, что $\varphi(M) \subseteq \mathfrak{a}M$. Тогда φ удовлетворяет уравнению вида

$$\varphi^n + a_1 \varphi^{n-1} + \dots + a_n = 0,$$

где все $a_i \in \mathfrak{a}$.

Теорема 2.6 (Лемма Накаямы) [2] Пусть M — конечно порожденный A-модуль, $\mathfrak{a} \subset \mathfrak{R}(A)$ — $u\partial ean\ a\ A$. Если $\mathfrak{a} M=M$, то M=0.

Следствие 2.7 [2] Пусть M — конечно порожденный A-модуль, $N \subset M$ — его подмодуль, $\mathfrak{a} \subseteq \mathfrak{R}(A)$ — идеал. Если $M = \mathfrak{a}M + N$, то M = N.

2.5 Модули и точные последовательности

Пусть имеется некоторый набор модулей $\{M_i\}$ и гомоморфизмы $f_i: M_{i-1} \to M_i$.

Определение 2.15 Последовательность вида

$$\cdots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \cdots$$

называется точной в члене M_i , если $\ker f_{i+1} = \operatorname{im} f_i$.

Определение 2.16 Последовательность A-модулей называется mочной, если она точна в каждом члене.

В некоторых простых случаях можно сформулировать условия точности [2]:

$$0 \to M' \xrightarrow{f} M$$
 точна $\Leftrightarrow f$ инъективен; (3)

$$M \xrightarrow{g} M'' \to 0$$
 точна $\Leftrightarrow g$ сюръективен; (4)

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$
 точна $\Leftrightarrow f$ инъективен, g сюръективен,
$$g$$
 индуцирует изоморфизм coker f на M'' .

Определение 2.17 Последовательность вида (5) называется короткой точной последовательностью или точной тройкой.

Далее в тексте работы будут использоваться дополнительно следующие обозначения:

(a,b) — наибольший общий делитель двух чисел a и b.

[a, b] — наименьшее общее кратное двух чисел a и b.

2.6 Понятие тензорного произведения модулей

Рассмотрим два модуля M и N над кольцом A. За $C = A^{(M \times N)}$ обозначим свободный A-модуль, порожденный парами $(m,n) \in M \times N$. Рассмотрим в C подмодуль D, порожденный элементами следующего вида:

$$(x + x', y) - (x, y) - (x', y)$$

$$(x, y + y') - (x, y) - (x, y')$$

$$(ax, y) - a(x, y)$$

$$(x, ay) - a(x, y)$$
(6)

Положим T:=C/D и для каждого $(x,y)\in C$ обозначим за $x\otimes y$ его образ в T при каноническом гомоморфизме A-модулей $C\to C/D$.

Определение 2.18 *Тензорным произведением А*-модулей M и N назовем построенный выше модуль T и обозначим

$$M \otimes_A N := T$$
.

Из (6) сразу следуют некоторые свойства элементов T:

$$(x + x') \otimes y = x \otimes y + x' \otimes y$$
$$x \otimes (y + y') = x \otimes y + x \otimes y'$$
$$(ax) \otimes y = a(x \otimes y)$$
$$x \otimes (ay) = a(x \otimes y)$$

Справедлива следующая теорема, носящая название универсального свойства тензорного произведения:

Теорема 2.8 [2] Пусть M и N-A-модули, тогда существует пара (T,q), состо-

ящая из A-модуля T и A-билинейного отображения $g: M \times N \to T$, со следующими свойствами:

- 1. Для любого А-модуля P и A-билинейного отображения $f: M \times N \to P$ существует единственное отображение $f': T \to P$, такое, что $f = f' \circ g$.
- 2. Если (T,g) и (T',g') две пары с таким свойством, то существует изоморфизм $j: T \to T'$ для которого $g' = j \circ g$.

2.7 Свойства тензорного произведения модулей

Для любых A-модулей M, N, P справедлив ряд свойств [2]:

$$M \otimes_A N \simeq N \otimes_A M. \tag{7}$$

$$M \otimes_A (N \otimes_A P) \simeq (M \otimes_A N) \otimes_A P \simeq M \otimes_A N \otimes_A P.$$
 (8)

$$(M \oplus N) \otimes_A P \simeq (M \otimes_A P) \oplus (N \otimes_A P). \tag{9}$$

$$M \otimes_A A \simeq M.$$
 (10)

Больший интерес представляют свойства точности тензорного произведения.

Теорема 2.9 [2] Пусть дана точная последовательность

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0,$$
 (11)

 $a\ N$ — произвольный A-модуль, тогда последовательность

$$M' \otimes_A N \xrightarrow{f \otimes 1} M \otimes_A N \xrightarrow{g \otimes 1} M'' \otimes_A N \to 0$$
 (12)

 $(rde\ 1-moжdecmвенное\ omoбражение)\ moчна.$

Тензорное произведение не сохраняет точность слева. Например, рассмотрим точную последовательность

$$0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}.$$

Умножим ее тензорно на \mathbb{Z}_2 над \mathbb{Z} . Получим

$$0 \to \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2 \xrightarrow{(\cdot 2) \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2. \tag{13}$$

Ho ker $((\cdot 2) \otimes 1) = \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$, так как $2x \otimes y = x \otimes 2y = x \otimes 0 = 0$; отсюда видим, что последовательность (13) не является точной.

2.8 Периодические произведения

2.8.1 Понятие свободной резольвенты А-модуля

Введем понятие свободной резольвенты A-модуля M.

Пусть M порожден системой образующих $\{x_j \mid j \in I\}$, то есть $M = \langle x_j \rangle_A$. Рассмотрим свободный A-модуль $F_0 \simeq \bigoplus_{i \in I} A =: A^{(I)}$ и сюръективный гомоморфизм A-модулей $\varphi_0 : F_0 \twoheadrightarrow M$. Гомоморфизм φ_0 определяется как композиция прямой суммы A-гомоморфизмов $g_i : A \to M$, где $\alpha \in A \mapsto \alpha x_i$ с гомоморфизмом суммирования $\Sigma : \bigoplus_{i \in I} M \to M$, где $(\ldots, m_j, \ldots) \mapsto \sum_{j \in I} m_j$. Важно, что при формировании прямой суммы участвуют финитные последовательности. Итак, гомоморфизм φ_0 определяется коммутативной диаграммой

$$\bigoplus_{j \in I} A \xrightarrow{\varphi_0} \bigoplus_{j \in I} M$$

Теперь охарактеризуем $\ker \varphi_0$ аналогичным образом: выберем систему образующих A-модуля $\ker \varphi_0$, свободный A-модуль F_1 и отобразим его сюръективно на $\ker \varphi_0$ с помощью A-гомоморфизма $\varphi_1: F_1 \to \ker \varphi_0$. Снова может случиться так, что $\ker \varphi_1$ нетривиально. Значит, рассмотрим еще один свободный A-модуль F_2 и повторим уже описанные выше действия.

Таким образом получим, возможно бесконечную, точную последовательность

$$\dots \xrightarrow{\varphi_{i+1}} F_i \xrightarrow{\varphi_i} \dots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} M \to 0.$$

Уберем из этой последовательности член M:

$$M_*: \dots \xrightarrow{\varphi'_{i+1}} F_i \xrightarrow{\varphi_i} \dots \xrightarrow{\varphi'_2} F_1 \xrightarrow{\varphi'_1} F_0 \xrightarrow{\varphi'_0} 0.$$
 (14)

Где $\varphi_i' = \varphi_i$ при $i \geqslant 1$, а φ_0 — постоянное отображение. Последовательность (14) точна во всех членах кроме члена с индексом 0. Однако, она обладает следующим свойством

$$\varphi_i' \circ \varphi_{i+1}' = 0$$
 для всех $i \geqslant 0$. (15)

Последовательность A-модулей (14) в которой выполнено условие (15) называется комплексом A-модулей. Далее последовательность вида (14) будем называть свободной резольвентой A-модуля M.

Свойство (15) в точности означает, что

im
$$\varphi_i' \subseteq \ker \varphi_i'$$

и позволяет определить фактормодуль

$$H_i(M_*) = \frac{\ker \varphi_i'}{\operatorname{im} \ \varphi_{i+1}'} \tag{16}$$

Он носит название модуля гомологий комплекса M_* в члене с номером i.

Если M_* — свободная резольвента A-модуля M, то $H_0(M_*)\simeq M,$ а $H_i(M_*)=0,$ при $i\geqslant 0.$

2.8.2 Понятие периодического произведения

Зафиксируем некоторый A-модуль M и рассмотрим операцию тензорно умножения $(-\otimes_A M)$ на этот модуль над кольцом A. Мы получим функтор, действующий из категории A-модулей в нее же. Рассмотрим A-модуль N и фиксируем его свободную резольвенту

$$N_*: \cdots \to N_i \to N_{i-1} \to \cdots \to N_1 \to 0.$$

Умножим ее тензорно на M.

$$\cdots \to N_i \otimes_A M \to N_{i-1} \otimes_A M \to \cdots \to N_1 \otimes_A M \to 0.$$

Так как тензорное умножение не является точным слева, точность в некоторых членах последовательности пропадет. Гомологии комплекса $H_i(N_* \otimes_A M)$ назваются ne

риодическими произведениями и обозначаются $\mathrm{Tor}_i^A(N,M)$, а сам $\mathrm{Tor}_i^A(-,M)$ является i-м левым производным функтором функтора $(-\otimes_A M)$. В некоторых случаях удается непосредственно вычислить $\mathrm{Tor}_i^A(N,M)$.

2.9 Непосредственное вычисление некоторых тензорных и периодических произведений

Предложение 2.1 Пусть n, m -натуральные числа. Тогда

$$\mathbb{Z}_n \otimes_{\mathbb{Z}} \mathbb{Z}_m \simeq \mathbb{Z}_{(n,m)}.$$

Доказательство. Рассмотрим точную последовательность

$$0 \to \mathbb{Z} \xrightarrow{\cdot m} \mathbb{Z} \to \mathbb{Z}_m \to 0$$

и тензорно умножим ее на \mathbb{Z}_n над \mathbb{Z} . Из свойств точности тензорного произведения следующая последовательность

$$\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_n \xrightarrow{(\cdot m) \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_n \to \mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \to 0$$

будет точна. Воспользуемся свойством (10) и упростим члены в последовательности:

$$\mathbb{Z}_n \xrightarrow{\cdot m} \mathbb{Z}_n \to \mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \to 0.$$

Из первой теоремы об изоморфизме $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \simeq \mathbb{Z}_n / \ker(\mathbb{Z}_n \to \mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n)$, а так как последовательность точна $\ker(\mathbb{Z}_n \to \mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n) = \operatorname{im}(\cdot m)$. Образом $\operatorname{im}(\cdot m)$ является ничто иное как $m\mathbb{Z}_n$. Значит

$$\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \simeq \mathbb{Z}_n/m\mathbb{Z}_n$$
.

Выясним вид подмодуля $m\mathbb{Z}_n$. Заметим, что $\mathbb{Z}_n = \langle \overline{1} \rangle$, а $m\mathbb{Z}_n = \langle \overline{m} \rangle = \langle m \cdot \overline{1} \rangle$. Вычислим теперь порядок элемента \overline{m} . Воспользуемся следующим утверждением:

Утверждение 2.1 [3] Пусть $g \in G$ — элемент группы G порядка $\operatorname{ord}_G g = n$. Тогда $\operatorname{ord}_G(g^k) = n/(k,n)$.

Из него непосредственно вытекает, что $\operatorname{ord}_{\mathbb{Z}_n}\overline{m}=n/(n,m)$. Значит

$$|m\mathbb{Z}_n| = n/(n, m). \tag{17}$$

Теперь вычислим $\mathbb{Z}_n/m\mathbb{Z}_n$. Так как факторгруппа циклической группы по подгруппе снова циклическая и все группы, участвующие в рассмотрении, конечны, осталось вычислить порядок данной факторгруппы. Из теоремы Лагранжа вытекает, что $|\mathbb{Z}_n| = k|m\mathbb{Z}_n|$, где k — число смежных классов по подгруппе $m\mathbb{Z}_n$, то есть порядок фактор-группы. Из (17) и теоремы Лагранжа вытекает, что

$$|\mathbb{Z}_n/m\mathbb{Z}_n|=(n,m),$$

а это значит что $\mathbb{Z}_n/m\mathbb{Z}_n\simeq \mathbb{Z}_{(n,m)}$. В итоге получаем, что

$$\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \simeq \mathbb{Z}_{(n,m)}$$
.

29

Из предложения 2.1 сразу видно, что при взаимно простых n и m имеем

$$\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n = 0.$$

Это значит что тензорное произведение двух нетривиальных A-модулей может давать тривиальный модуль.

Предложение 2.2 Пусть $A, B - \kappa$ онечные абелевы группы, u

$$A \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p_m^{k_m}},$$

$$B \simeq \mathbb{Z}_{q_1^{l_1}} \oplus \mathbb{Z}_{q_2^{l_2}} \oplus \cdots \oplus \mathbb{Z}_{q_s^{l_s}},$$

Tог ∂a

$$A \otimes_{\mathbb{Z}} B \simeq \bigoplus_{i=1}^m \bigoplus_{j=1}^s \mathbb{Z}_{(p_i^{k_i}, q_j^{l_j})}.$$

Доказательство. Воспользуемся свойствами (9) и (10) тензорного произведения:

$$A \otimes_{\mathbb{Z}} B \simeq \bigoplus_{i=1}^m \bigoplus_{j=1}^s (\mathbb{Z}_{p_i^{k_i}} \otimes_{\mathbb{Z}} \mathbb{Z}_{q_j^{l_j}}) \simeq \bigoplus_{i=1}^m \bigoplus_{j=1}^s \mathbb{Z}_{(p_i^{k_i}, q_j^{l_j})}.$$

Предложение 2.3

$$\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z}_{n}, \mathbb{Z}_{m}) = \begin{cases} \mathbb{Z}_{(n,m)}, & i = 0, 1; \\ 0, & i \geqslant 2. \end{cases}$$

Доказательство. Рассмотрим свободную резольвенту \mathbb{Z} -модуля \mathbb{Z}_n

$$C_*: 0 \to \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \to 0$$

и тензорно умножим ее на \mathbb{Z}_m над \mathbb{Z}

$$0 \to \mathbb{Z}_m \xrightarrow{\cdot n} \mathbb{Z}_m \to 0.$$

Можно сразу заметить, что все

$$\operatorname{Tor}_i^{\mathbb{Z}}(\mathbb{Z}_n,\mathbb{Z}_m)=0$$
 при $i>1.$

Заметим, что

$$\operatorname{Tor}_0^{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m) \simeq \mathbb{Z}_m/n\mathbb{Z}_m \simeq \mathbb{Z}_{(n,m)}.$$

Теперь, вычисляя первый модуль гомологий

$$H_1(C_* \otimes_{\mathbb{Z}} \mathbb{Z}_m) = \ker(\mathbb{Z}_m \xrightarrow{n} \mathbb{Z}_m) = \{ \overline{x} \in \mathbb{Z}_m \mid n\overline{x} = 0 \}.$$

Получаем что

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}_{n},\mathbb{Z}_{m}) = \{\overline{x} \in \mathbb{Z}_{m} \mid n\overline{x} = 0\}.$$

Но так как [5]

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}_{n},\mathbb{Z}_{m}) \simeq \operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}_{m},\mathbb{Z}_{n}),$$

то хотелось бы найти такой изоморфный ему модуль, чтобы была видна симметрия.

Утверждение 2.2 $\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_n,\mathbb{Z}_m) \simeq \mathbb{Z}_{(n,m)}$.

Докажем, что $\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_n,\mathbb{Z}_m)\simeq \langle \overline{q}\rangle\subseteq \mathbb{Z}_m$, где q=m/(n,m). Выберем произвольный представитель класса $\overline{q}k$ и умножим его на n:

$$\frac{knm}{(n,m)} = k[n,m],$$

где [n,m] — наименьшее общее кратное чисел n и m. Имеем, k[n,m] делится на m, а следовательно $\overline{q}k \in \text{Tor}_1(\mathbb{Z}_n,\mathbb{Z}_m)$.

С другой стороны $\forall x \in \text{Tor}_1(\mathbb{Z}_n, \mathbb{Z}_m)$ выполнено $xn \equiv 0 \pmod{m}$. Значит

$$xn = l[n, m] = l\frac{nm}{(n, m)} \Rightarrow x = l\frac{m}{(n, m)} \Rightarrow \overline{x} \in \langle \overline{q} \rangle.$$

Отсюда получаем, что $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}_{n},\mathbb{Z}_{m})\simeq\langle\overline{q}\rangle\subseteq\mathbb{Z}_{m}$. Заметим, что

ord
$$\overline{q} = \operatorname{ord}(\overline{1} \cdot q) = m / \left(\frac{m}{(n,m)} \cdot 1, \frac{m}{(n,m)}(n,m)\right) = (n,m).$$

Значит, $\langle \overline{q} \rangle \simeq \mathbb{Z}_{(n,m)}$, а следовательно и $\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_n,\mathbb{Z}_m) \simeq \mathbb{Z}_{(n,m)}$.

Обобщим предложение 2.3:

Предложение 2.4 Пусть A, B — конечно порожденные абелевы группы, u

$$A \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p_m^{k_m}} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z},$$

$$B \simeq \mathbb{Z}_{q_1^{l_1}} \oplus \mathbb{Z}_{q_2^{l_2}} \oplus \cdots \oplus \mathbb{Z}_{q_s^{l_s}} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z},$$

Тогда

$$\operatorname{Tor}_1^{\mathbb{Z}}(A,B) \simeq \bigoplus_{i=1}^m \bigoplus_{j=1}^s \mathbb{Z}_{(p_i^{k_i},q_j^{l_j})}.$$

Доказательство. Воспользуемся теоремой о конечно порожденных абелевых группах: представим каждую из них в виде прямой суммы примарных и бесконечных циклических групп [3]:

$$A \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p_m^{k_m}} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z},$$
$$B \simeq \mathbb{Z}_{q_1^{l_1}} \oplus \mathbb{Z}_{q_2^{l_2}} \oplus \cdots \oplus \mathbb{Z}_{q_s^{l_s}} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}.$$

Рассмотрим свободную резольвенту для \mathbb{Z}_{n^k}

$$C_*: 0 \to \mathbb{Z} \xrightarrow{p^k} \mathbb{Z} \to 0$$

и тензорно умножим ее на некоторую абелеву группу N

$$0 \to \mathbb{Z} \otimes_{\mathbb{Z}} N \xrightarrow{(\cdot p^k) \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} N \to 0.$$

Аналогично доказательству предложения 2.3 получаем, что

$$\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_{p^k}, N) = \{ n \in N \mid p^k n = 0 \}.$$

Теперь вернемся к исходным группам A и B.

$$\operatorname{Tor}_1^{\mathbb{Z}}(A,B) \simeq \bigoplus_{i=1}^m \bigoplus_{j=1}^s \operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_{p_i^{k_i}},\mathbb{Z}_{q_j^{l_j}}) \simeq \bigoplus_{i=1}^m \bigoplus_{j=1}^s \mathbb{Z}_{(p_i^{k_i},q_j^{l_j})}.$$

Заметим, что изоморфизм $A\otimes_{\mathbb{Z}}B\simeq \mathrm{Tor}_1^{\mathbb{Z}}(A,B)$ будет существовать, только когда A и B — конечные абелевы группы.

3 Кручения в некоторых тензорных произведениях модулей

В задачах алгебраической геометрии, связанных с разрешением особенностей когерентных алгебраических пучков, бывает необходимо исследовать поведение когерентного алгебраического пучка при преобразованиях базисного многообразия или схемы. Преобразование базисного многообразия подбирается так, чтобы трансформировать не локально свободный когерентный пучок в локально свободный пучок на новом многообразии или схеме.

Локальным аналогом этой задачи является исследование свойств тензорного произведения модуля M над коммутативным кольцом A на A-алгебру \widetilde{A} .

В [6] автором изложена одна из возможных конструкций разрешения особенностей когерентного пучка, локально сводящаяся к преобразованию $M \mapsto \widetilde{A} \otimes_A M$. Алгебра \widetilde{A} получается при этом следующим образом: $\widetilde{A} = \bigoplus_{s \geqslant 0} (I[t] + (t))^s / (t^{s+1})$, где $I \subset A$ – ненулевой собственный идеал, t – элемент, трансцендентный над кольцом A.

Рассмотрим коммутативное ассоциативное нетерово целостное кольцо A с единицей.

Определение 3.1 Пусть $I\subset A$ — идеал. Алгебра раздутия идеала I задается выражением

$$\widehat{A}:=\bigoplus_{s\geqslant 0}I^s.$$

При этом сложение и умножение элементов кольца \widehat{A} и действие элементов кольца A на элементы кольца \widehat{A} наследуются с операций кольца A.

Кольцо \widehat{A} градуировано, то есть, если $x \in I^s, y \in I^t$, то $xy \in I^{s+t}$. Если $x \in I^s$, то будем говорить, что x имеет степень s. Также отметим, следующее: если кольцо A — целостное, то и кольцо \widehat{A} тоже будет целостным.

Определение 3.2 Пусть M – произвольный A-модуль, A — целостное кольцо. Kpy-чением tors(M) называется множество

$$tors_A M = \{x \in M | \exists a \in A \setminus 0 : ax = 0\}.$$

Определение 3.3 Будем говорить, что A-модуль M является модулем без кручения, если ${\rm tors}_A \ M=0.$

Заметим, если A не является целостным кольцом, то $\mathrm{tors}_A\ M$ не обязательно является подмодулем в M.

Далее в тексте под tors(M) без нижнего индекса будем подразумевать $tors_A M$.

Пусть M — A-модуль без кручения. Поскольку тензорное произведение не является точным слева, при тензорном умножении M на алгебру раздутия \widehat{A} в модуле $\widehat{A}\otimes_A M$ может возникнуть кручение.

Решается следующая частная задача: описать подмодуль кручения $(\widehat{A}\otimes_A I)$ A-модуля $\widehat{A}\otimes_A I$.

Пусть, для простоты, идеал I=(x,y) порожден элементами $x,y\in A$. Выясним, как устроены его степени.

Теорема 3.1 Пусть $s \ge 1$, тогда $I^s = (x^s, x^{s-1}y, \dots, xy^{s-1}, y^s)$.

Доказательство. Действуем методом математической индукции. Пусть s=1. Тогда

 $I^1 = (x,y)$ – верно. Пусть утверждение верно для значений $s \leqslant r$. При s = r+1 имеем:

$$I^{r+1} = I^r I = \left\{ \left(\sum_{n=0}^r a_n x^n y^{n-r} \right) (b_1 x + b_0 y) \middle| a_n, b_m \in A, n = \overline{0, r}, m = \overline{0, 1} \right\}.$$

Теперь, раскрывая скобки, получим

$$I^{r+1} = \{b_0 a_0 y^{r+1} + (b_1 a_0 + b_0 a_1) x y^r + \dots + (b_1 a_{r-1} + b_0 a_r) x^r y + b_1 a_r x^{r+1} | a_n, b_m \in A, n = \overline{0, r}, m = \overline{0, 1}\}$$

Таким образом, в силу произвольности коэффициентов $a_i, b_j,$

$$I^{r+1} = (x^{r+1}, x^r y, \dots, xy^r, y^{r+1}),$$

что завершает доказательство теоремы.

Так как тензорное произведение дистрибутивно относительно прямой суммы, то справедлива цепочка равенств:

$$\widehat{A} \otimes_A I = \left(\bigoplus_{s \geqslant 0} I^s\right) \otimes_A I = \bigoplus_{s \geqslant 0} \left(I^s \otimes_A I\right).$$

Предложение 3.1 Пусть $\{M_j|j\in J\}$ – семейство А-модулей, и кольцо А – целостное. Тогда

$$\operatorname{tors}\left(\bigoplus_{j\in J} M_j\right) = \bigoplus_{j\in J} \operatorname{tors}\left(M_j\right).$$

Доказательство. Покажем, что $\operatorname{tors}\left(\bigoplus_{j\in J} M_j\right)\subset\bigoplus_{j\in J}\operatorname{tors}\left(M_j\right)$. Пусть $t\in\operatorname{tors}\left(\bigoplus_{j\in J} M_j\right)$. По определению, существует такое $a\in A\setminus 0$, что at=0. Заметим, что $t=(t_0,t_1,\ldots,t_j,\ldots)$, где только конечное число компонент t_j отлично от нуля. Так как умножение на элементы прямой суммы производится покомпонентно, то

$$at = (at_0, at_1, \dots, at_i, \dots) = 0,$$

из чего следует, что

$$at_1 = at_0 = \cdots = at_i = \cdots = 0$$

и $t_0 \in \text{tors}(M_0)$, $t_1 \in \text{tors}(M_1)$, ..., $t_j \in \text{tors}(M_j)$, Таким образом, $t \in \bigoplus_{j \in J} \text{tors}(M_j)$. Теперь докажем обратное включение. Пусть $t \in \bigoplus_{j \in J} \text{tors}(M_j)$. Пусть $t_{i_1}, t_{i_2}, \ldots, t_{i_k}$ – все компоненты t, отличные от нуля. Как отмечалось ранее, их будет конечное число. По определению, найдутся $a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A$ все отличные от нуля и такие, что $a_{i_1}t_{i_1} = a_{i_2}t_{i_2} = \cdots = a_{i_k}t_{i_k} = 0$. Обозначим $a := a_{i_1}a_{i_2} \ldots a_{i_k}$. Так как кольцо A целостное, то ни при каких отличных от нуля a_{i_l} их произведение не будет равно нулю. Тогда

$$at_{i_l} = (a_{i_1} \dots a_{i_{l-1}} a_{i_{l+1}} \dots a_{i_k}) a_{i_l} t_{i_l} = 0,$$

что справедливо для всех $l=\overline{1,k}$. Тем самым мы показали, что существует такое $a\in A\setminus 0$, что at=0. Значит $t\in \mathrm{tors}\left(\bigoplus_{j\in J} M_j\right)$.

Теперь, воспользовавшись предложением 3.1, можно записать седующее:

$$\operatorname{tors}\left(\bigoplus_{s\geqslant 0} \left(I^s \otimes_A I\right)\right) = \bigoplus_{s\geqslant 0} \operatorname{tors}\left(I^s \otimes_A I\right).$$

Таким образом, исходная задача свелась к вычислению подмодуля кручения $tors(I^s \otimes_A I)$ A-модуля $I^s \otimes_A I$.

Теорема 3.2 Пусть образующие иделала I = (x, y)? имеющие равные степени, алгебраически независимы. Тогда $tors(I^s \otimes_A I)$ описывается следующим образом:

$$tors (I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A.$$

Доказательство. Так как идеалы I^s и I являются конечно порожденными A-модулями, то, воспользовавшись свойством тензорного произведения для двух конечно порожденных модулей, имеем

$$I^s \otimes_A I = \langle x^n y^{s-n} \otimes x, x^n y^{s-n} \otimes y | n = \overline{0, s} \rangle_A$$
.

Пусть $\mu: I^s \otimes_A I \to I^{s+1}$ — гомоморфизм, который действует на образующих следующим образом: $x^n y^{s-n} \otimes x \mapsto x^{n+1} y^{s-n}, \ x^n y^{s-n} \otimes y \mapsto x^n y^{s-n+1}$. Докажем, что $\ker \mu = \operatorname{tors} (I^s \otimes_A I)$. Очевидно, что этот гомоморфизм сюръективен. Тогда, согласно теореме о гомоморфизме, $I^{s+1} \simeq (I^s \otimes_A I) / \ker \mu$. Так как кольцо A целостное, то I^{s+1} не имеет подмодуля кручения, следовательно, $\operatorname{tors} (I^s \otimes_A I) \subset \ker \mu$.

Чтобы показать обратное включение, вычислим $\ker \mu$. Пусть $z \in I^s \otimes_A I$, тогда z имеет вид

$$z = a_0(x^s \otimes x) + a_1(x^{s-1}y \otimes x) + \dots + a_s(y^s \otimes x) + b_1(x^s \otimes y) + \dots + b_s(xy^{s-1} \otimes y) + b_{s+1}(y^s \otimes y),$$

где $a_i, b_i \in A$. Тогда $\mu(z)$ будет иметь следующий вид:

$$\mu(z) = a_0 x^{s+1} + (a_1 + b_1) x^s y + \dots + (a_s + b_s) x y^s + b_{s+1} y^{s+1}.$$

Приравняв $\mu(z) = 0$ и воспользовавшись тем фактом, что x, y алгебраически независимы, мы получим условия на коэффициенты:

$$\begin{cases} a_0 = 0, \\ a_1 + b_1 = 0, \\ \dots \\ a_s + b_s = 0, \\ b_{s+1} = 0. \end{cases}$$

Отсюда, $a_0 = b_{s+1} = 0$, $a_i = -b_i$, $i = \overline{1,s}$ и

$$\ker \mu = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$
.

Покажем, что любая образующая $\ker \mu$, то есть $x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y$, является элементом кручения. Рассмотрим выражение $xy(x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y)$

и преобразуем его:

$$xy(x^ny^{s-n} \otimes x - x^{n+1}y^{s-n-1} \otimes y) =$$

$$x(x^ny^{s-n}) \otimes xy - y(x^{n+1}y^{s-n-1}) \otimes xy =$$

$$x^{n+1}y^{s-n} \otimes xy - x^{n+1}y^{s-n} \otimes xy = 0.$$

Действительно, каждая образующая $\ker \mu$ является элементом кручения. Тем самым мы показали включнение $\ker \mu \subset \mathrm{tors}\,(I^s \otimes_A I)$.

Таким образом, мы доказали, что tors $(I^s \otimes_A I) = \ker \mu$, и имеет место равенство

$$tors (I^s \otimes_A I) = \left\langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \right\rangle_A.$$

Результат данной теоремы можно обобщить следующим образом.

Теорема 3.3 Пусть образующие идеала I = (x, y) алгебраически независимы. Тогда подмодуль кручения $tors(I^s \otimes_A I^r)$ описывается следующим образом:

$$\operatorname{tors}\left(I^{s} \otimes_{A} I^{r}\right) = \left\{ \sum_{\substack{0 \leq n \leq s \\ 0 \leq m \leq r}} a_{nm} x^{n} y^{s-n} \otimes x^{m} y^{r-m} \right\},\,$$

где коэффициенты a_{ij} удовлетворяют соотношению

$$\sum_{i+j=n+m} a_{ij} = 0 \text{ для всех } n, m.$$

Доказательство. Доказательство проводится по схеме, аналогичной доказательству теоремы 3.2. Модуль $I^s \otimes_A I^r$ имеет вид

$$I^s \otimes_A I^r = \langle x^n y^{s-n} \otimes x^m y^{r-m} | n = \overline{0, s}, m = \overline{0, m} \rangle_A$$
.

Рассмотрим гомоморфизм $\mu: I^s \otimes_A I^r \to I^{s+r}$, который действует на образующих как $x^n y^{s-n} \otimes x^m y^{r-m} \mapsto x^{n+m} y^{s+r-n-m}$. Докажем, что $\ker \mu = \operatorname{tors} (I^s \otimes_A I^r)$. Очевидно, что μ сюръективен и, воспользовавшись теоремой о гомоморфизме, мы можем записать $I^{s+r} \simeq (I^s \otimes_A I^r) / \ker \mu$. Так как кольцо A целостное, то I^{s+r} является модулем без кручения, из чего следует, что $\operatorname{tors} (I^s \otimes I^r) \subset \ker \mu$.

Покажем обратное включение. Для этого вычислим $\ker \mu$. Любой элемент $z \in I^s \otimes_A I^r$ записывается в виде линейной комбинации образующих

$$z = \sum_{\substack{0 \le n \le s \\ 0 \le m \le r}} a_{nm} x^n y^{s-n} \otimes x^m y^{r-m},$$

где $a_{nm} \in A$. Вычислив $\mu(z)$, получим следующее

$$\mu(z) = \sum_{\substack{0 \le n \le s \\ 0 \le m \le r}} a_{nm} x^{n+m} y^{s+r-n-m}.$$

Сгруппируем слагаемые с одинаковыми степенями x и тогда полученное выражение

запишется в виде

$$\mu(z) = \sum_{k=0}^{s+r} \left(\sum_{i+j=k} a_{ij} \right) x^k y^{s+r-k}.$$

Так как образующие алгебраически независимы, то из равенства $\mu(z)=0$ следует, что

$$\sum_{i+j=k} a_{ij} = 0.$$

С учетом полученного соотношения, элементы ядра имеют вид

$$z = \sum_{k=0}^{s+r} \sum_{n=0}^{\min(s,k)} a_{n,k-n} x^n y^{s-n} \otimes x^{k-n} y^{r-k+n},$$
(18)

докажем, что $z\in {\rm tors}\,(I^s\otimes_A I^r)$. Действительно, зафиксируем $k,\ n\leqslant {\rm min}(s,k)$. Рассмотрим образующую $x^ny^{s-n}\otimes x^{k-n}y^{r-k+n}$ и умножим ее на x^ry^r , где r — показатель степени идеала I^r . Имеем

$$x^{r}y^{r}(x^{n}y^{s-n} \otimes x^{k-n}y^{r-k+n}) = x^{k-n}y^{r-(k-n)}x^{n}y^{s-n} \otimes x^{r-(k-n)}y^{k-n}x^{k-n}y^{r-k+n} = x^{k}y^{r+s-k} \otimes x^{r}y^{r}.$$

Умножив выражение (18) на $x^r y^r$, мы получим сумму следующего вида

$$x^{r}y^{r}\sum_{k=0}^{s+r}\sum_{n=0}^{\min(s,k)}a_{n,k-n}x^{n}y^{s-n}\otimes x^{k-n}y^{r-k+n} = \sum_{k=0}^{s+r}\left[\left(\sum_{n=0}^{\min(s,k)}a_{n,k-n}\right)x^{k}y^{r+s-k}\otimes x^{r}y^{r}\right] = 0,$$

где последнее равенство следует из условия, наложенного на коэффициенты a_{ij} . Данное равенство выполнено при всех $k=\overline{0,s+r}$. Таким образом, мы доказали, что $\ker \mu \subset \operatorname{tors}(I^s \otimes_A I^r)$.

Следствие 3.4 Пусть числа a, b – натуральные, $I = (x, y)^a, J = (x, y)^b,$ тогда

$$\operatorname{tors}\left(I^{s} \otimes_{A} J\right) = \left\{ \sum_{\substack{0 \leqslant n \leqslant as \\ 0 \leqslant m \leqslant b}} a_{nm} x^{n} y^{as-n} \otimes x^{m} y^{b-m} \right\},\,$$

где коэффициенты a_{ij} удовлетворяют соотношению

$$\sum_{i+j=n+m} a_{ij} = 0 \text{ для всех } n, m.$$

Заметим, что если на прямой сумме $\bigoplus_{s\geqslant 0}I^s$ рассмотреть покомпонентное умножение (вместо структуры градуированного кольца), то полученные нами результаты не изменятся.

Исходную задачу можно видоизменить, заменив алгебру раздутия на алгебру

$$\widetilde{A} := \bigoplus_{s \geqslant 0} (I[t] + (t))^s / (t^{s+1}),$$

где t — элемент, трансцендентный над A, а умножение определяется покомпонентно. Отметим, что алгебра \widetilde{A} является A-алгеброй без кручения, однако, если рассматривать \widetilde{A} как алгебру над \widetilde{A} , то возникают элементы кручения, например, $(0, t, 0, \dots)$. Далее будем работать с \widetilde{A} как с A-алгеброй.

Обозначим s-ое слагаемое в прямой сумме как $I_t^s:=(I[t]+(t))^s/(t^{s+1})$. Сформулируем вспомогательную теорему

Пемма 3.1 A-модуль I_t^s допускает следующее разложение в сумму своих A-подмодулей

$$I_t^s = \langle 1 \rangle_{I^s} + \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A. \tag{19}$$

Доказательство. Сразу отметим, что при вычислении I_t^s будем рассматривать многочлены степени не больше s, так как при факторизации по (t^{s+1}) большие степени обратятся в 0. По определению, $(I[t]+(t))^s$ состоит из произведений s произвольных элементов I[t]+(t). Поэтому, чтобы выяснить структуру $(I[t]+(t))^s$, необходимо рассмотреть произведение

$$\prod_{n=1}^{s} \left(a_{n0} + (a_{n1} + b_n)t + a_{n2}t^2 + \dots + a_{ns}t^s \right),\,$$

где $a_{nj} \in I, b_n \in A, n = \overline{1,s}, j = \overline{0,s}$. Выясним, к каким степеням идеала I принадлежат коэффициенты при $t^k, 0 \le k \le s$. Рассмотрим слагаемые в коэффициенте при t^k , которые имеют вид

$$b_{j_1}b_{j_2}\dots b_{j_k}a_{j_{k+1}0}\dots a_{j_s0},$$

где множества $\{j_1,\ldots,j_k\},\{j_{k+1},\ldots,j_s\}\subset\{1,\ldots,s\}$ не пересекаются, а $\{j_1,\ldots,j_s\}=\{1,\ldots,s\}$. Очевидно, что это слагаемое принадлежит I^{s-k} , при этом взять в произведении большее число множителей, необязательно принадлежащих идеалу I, нельзя, так как мы ограничены степенью k. Поэтому I^{s-k} является наименьшей степенью идеала, к которой могут принадлежать слагаемые в коэффициенте при t^k . Однако, отметим, что для любой степени идеала I^r , где $r \geqslant s-k$ найдется такое слагаемое в коэффициенте при t^k , что оно принадлежит I^r , например, пусть r=l+(s-k)

$$a_{11}a_{21}\dots a_{l1}b_{l+1}\dots b_k a_{k+1}\dots a_{s0}\in I^r$$
.

Так как все коэффициенты были произвольные, то имеет место разложение I_t^s как A-модуля в сумму своих A-подмодулей

$$I_t^s = \langle 1, t, \dots, t^s \rangle_{I^s} + \langle t, t^2, \dots, t^s \rangle_{I^{s-1}} + \dots + \langle t^{s-1}, t^s \rangle_I + \langle t^s \rangle_A.$$

Заметим, так как справедливы включения $I^s \subset I^{s-1} \subset \cdots \subset I \subset A$, то справедливы включения $\langle t^k \rangle_{I^s} \subset \langle t^k \rangle_{I^{s-k}}$. Поэтому исходное разложение можно переписать в виде

$$I_t^s = \langle 1 \rangle_{I^s} + \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A$$
.

Заметим, что сумма (19) является прямой внутренней суммой своих подмодулей. Теперь, зная строение A-модуля I_t^s , можно сформулировать теорему

Теорема 3.5 Пусть $J \subset A$ – идеал в A, тогда

$$tors (I_t^s \otimes_A J) = t^0 tors (I^s \otimes_A J) + t^1 tors (I^{s-1} \otimes_A J) + \dots + t^{s-1} tors (I \otimes_A J).$$

B частности,

$$tors (I_t^s \otimes_A I) = t^0 tors (I^s \otimes_A I) + t^1 tors (I^{s-1} \otimes_A I) + \dots + t^{s-1} tors (I \otimes_A I).$$

Доказательство. Так как тензорное произведение дистрибутивно относительно прямой суммы и, в силу теоремы 3.1, можно записать

$$tors (I_t^s \otimes_A J) = tors (\langle t^0 \rangle_{I^s} \otimes_A J) + tors (\langle t^1 \rangle_{I^{s-1}} \otimes_A J) + \dots + tors (\langle t^{s-1} \rangle_{I^1} \otimes_A J) + tors (\langle t^s \rangle_A \otimes_A J).$$

Так как t – элемент, трансцендентный над A, то его не аннулирует никакой многочлен с коэффициентами из A. Значит, он не даст вклада в кручение и его можно вынести за знак tors (·). Таким образом имеем

$$tors (I_t^s \otimes_A J) = t^0 tors (\langle 1 \rangle_{I^s} \otimes_A J) + t^1 tors (\langle 1 \rangle_{I^{s-1}} \otimes_A J) + \dots + t^{s-1} tors (\langle 1 \rangle_{I^1} \otimes_A J) + t^s tors (\langle 1 \rangle_A \otimes_A J).$$

Но $\langle 1 \rangle_{I^k}$, очевидно, является самим идеалом I^k . Таким образом, имеем

$$tors (I_t^s \otimes_A J) = t^0 tors (I^s \otimes_A J) + t^1 tors (I^{s-1} \otimes_A J) + \dots + t^{s-1} tors (I \otimes_A J).$$

Задача свелась к вычислению tors $(I^s \otimes J)$. Пусть J = I, тогда справедлива следующая

Теорема 3.6 Пусть образующие идеала I алгебраически независимы, тогда кручение A-модуля $I_t^s \otimes_A I$ дается суммой своих подмодулей:

$$tors (I_t^s \otimes_A I) = \langle x^{s-1}y \otimes x - x^s \otimes y, x^{s-2}y^2 \otimes x - x^{s-1}y \otimes y, \dots, y^s \otimes x - xy^{s-1} \otimes y \rangle_A + t \langle x^{s-2}y \otimes x - x^{s-1} \otimes y, x^{s-3}y^2 \otimes x - x^{s-2}y \otimes y, \dots, y^{s-1} \otimes x - xy^{s-2} \otimes y \rangle_A + \cdots + t^{s-1} \langle x \otimes y - y \otimes x \rangle_A.$$

Доказательство. Воспользуемся теоремой 3.5 и для каждого $(I^s \otimes_A I)$ применим теорему 3.2.

Как было отмечено ранее, \widetilde{A} является алгеброй с кручением как алгебра над \widetilde{A} с покомпонентным умножением. Выясним, какой вид имеет $\mathrm{tors}_{\widetilde{A}}$ \widetilde{A} . Заметим следующее

$$\operatorname{tors}_{\widetilde{A}} \widetilde{A} = \operatorname{tors}_{\bigoplus I_t^s} \bigoplus I_t^s = \bigoplus \operatorname{tors}_{I_t^s} I_t^s,$$

так как умножение в прямой сумме осуществляется покомпонентно. Таким образом, мы свели исходную задачу к следующей: описать $\operatorname{tors}_{I^s_t} I^s_t$. Справедлива

Теорема 3.7

$$\operatorname{tors}_{I_t^s} I_t^s = \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A.$$

Доказательство. Рассмотрим элемент I_t^s следующего вида

$$a_1t + a_2t^2 + \dots + a_st^s, \tag{20}$$

где $a_i \in I^{s-i}$, и умножим его на $1 \cdot t^s \neq 0$.

$$(a_1t + a_2t^2 + \dots + a_st^s)t^s = a_1t^{s+1} + a_2t^{s+2} + \dots + a_st^{2s} = 0,$$

то есть, мы показали, что элементы вида (20) действительно являются элементами кручения. Покажем, что никакие другие элементы вклада в кручение не дадут. Предположим, что

$$f = a_0 + a_1 t + a_2 t^2 + \dots + a_s t^s \in \text{tors}_{I_t^s} I_t^s$$

где $a_0 \neq 0$. По определению, существует такой элемент $g \in I_t^s \setminus 0$, что fg = 0. Пусть

$$g = b_0 + b_1 t + \dots + b_s t^s \neq 0.$$

Рассмотрим коэффициенты при t^k , $k = \overline{0,s}$ в произведении fg. Коэффициент при t^k обозначим как $[t^k]$.

$$[t^{0}] = a_{0}b_{0} = 0$$

$$[t^{1}] = a_{0}b_{1} + a_{1}b_{0} = 0$$

$$\vdots$$

$$[t^{s}] = a_{0}b^{s} + \dots + a_{s-1}b_{1} + a_{s}b_{0} = 0.$$

Так как кольцо целостное, $a_0 \neq 0$, то, из уравнения на $[t^0]$, получаем $b_0 = 0$. Подставив $b_0 = 0$ в уравнение на $[t^1]$ и воспользовавшись целостностью кольца, получим $b_1 = 0$. Повторяя эти рассуждения далее, получим, что $b_0 = b_1 = \cdots = b_s = 0$. Таким образом, f аннулирует только 0, значит $f \notin \operatorname{tors}_{I_s^s} I_t^s$.

Таким образом, действительно, только элементы вида (20) являются элементами кручения. Все такие элементы описываются суммой

$$\langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A$$
.

Рассмотрим следующую задачу. Описать кручение \widehat{A} -модуля $M \otimes_A \widehat{A}$, если A-модуль M включается в короткую точную последовательность вида

$$0 \to I_1 \xrightarrow{i} M \xrightarrow{\varepsilon} I_2 \to 0,$$

где $I_1, I_2 \subset A$ — идеалы в кольце A, A — целостное, нетерово кольцо.

Обозначим $\widehat{M} := M \otimes_A \widehat{A}$. Так как тензорное произведение не точно слева, то имеем последовательность вида

$$\widehat{I}_1 \xrightarrow{\widehat{i}} \widehat{M} \xrightarrow{\widehat{\varepsilon}} \widehat{I}_2 \to 0,$$

в которой $\hat{i}:=i\otimes 1,\ \widehat{\varepsilon}:=\varepsilon\otimes 1.$ Пусть $\tau:=\ker \widehat{i}.$ Тогда получим точную последовательность

$$0 \to \tau \to \widehat{I}_1 \xrightarrow{\widehat{i}} \widehat{M} \xrightarrow{\widehat{\varepsilon}} \widehat{I}_2 \to 0.$$

Справедливы вложения

$$0 \longrightarrow \tau \longrightarrow \widehat{I}_{1} \longrightarrow \widehat{i} \longrightarrow \widehat{M} \longrightarrow \widehat{i}_{2} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

где гомоморфизмы в нижней строке получены путем ограничения гомоморфизмов верхней строки на соответствующие множества. Разложим гомоморфизм $\hat{i'}$ в композицию сюръективного и инъективного гомоморфизмов и рассмотрим нижнюю строку

$$0 \longrightarrow \operatorname{tors}_{\widehat{A}} \tau \longrightarrow \operatorname{tors}_{\widehat{A}} \widehat{I}_{1} \xrightarrow{\widehat{i}'} \operatorname{tors}_{\widehat{A}} \widehat{M} \xrightarrow{\widehat{\varepsilon}'} \operatorname{tors}_{\widehat{A}} \widehat{I}_{2} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Отметим, что \widehat{I}_1 , \widehat{I}_2 конечно порождены, согласно предложению 2.17 книги [2], как \widehat{A} -модули, поэтому $\operatorname{tors}_{\widehat{A}}\widehat{I}_2$ конечно порожден как подмодуль нетерова модуля, $\frac{\operatorname{tors}_{\widehat{A}}\widehat{I}_1}{\operatorname{tors}_{\widehat{A}}\tau}$ конечно порожден как образ конечно порожденного модуля. Поэтому мы можем воспользоваться предложением 4 §4 гл. 1 книги [4], которое утверждает, что расширение последовательности

$$0 \to \frac{\operatorname{tors}_{\widehat{A}} \widehat{I}_1}{\operatorname{tors}_{\widehat{A}} \tau} \to \operatorname{tors}_{\widehat{A}} \widehat{M} \xrightarrow{\widehat{\varepsilon}'} \operatorname{tors}_{\widehat{A}} \widehat{I}_2 \to 0$$

порождено образами порождающих ядра и прообразами порождающих коядря последовательности. Пусть $\widehat{I}_2 = \langle \overline{z_1}, \overline{z_2}, \ldots, \overline{z_m} \rangle_{\widehat{A}}, \ z_i \in \operatorname{tors}_{\widehat{A}} \widehat{M}$ — произвольно выбранный прообраз $\overline{z_i} \ (i = \overline{1,m})$ и $\frac{\operatorname{tors}_{\widehat{A}} \widehat{I_1}}{\operatorname{tors}_{\widehat{A}} \tau} = \langle x_1, x_2, \ldots, x_n \rangle_{\widehat{A}}, \ \overline{x_j}$ — образ x_j в $\operatorname{tors}_{\widehat{A}} \widehat{M} \ (j = \overline{1,n}),$ тогда

$$\operatorname{tors}_{\widehat{A}} \widehat{M} = \langle \overline{x}_1, \overline{x}_2, \dots, \overline{x}_n \rangle_{\widehat{A}} + \langle z_1, z_2, \dots, z_m \rangle_{\widehat{A}}.$$
 (21)

Теперь выясним как охарактеризовать кручение произвольного \widehat{A} -модуля $M\otimes_A \widehat{A}$, при условии что M — нетеров A-модуль. Для этого нам потребуется утверждение:

Теорема 3.8 $M^{\vee} := \operatorname{Hom}_A(M,A) - \mathit{модуль}$ без кручения.

Доказательство. Известно, что любой конечно порожденный модуль является образом свободного модуля подходящего ранга [4], то есть точна тройка

$$0 \to K \to A^n \to M \to 0$$
,

где $K = \ker(A^n \to M)$. Перейдем от нее к двойственной. Получим последовательность

$$0 \to M^{\vee} \to A^n \to \dots$$

Так как A — целостное, то A^n — модуль без кручения, M^{\vee} обладает вложением в A^n , следовательно, M^{\vee} тоже модуль без кручения.

Пусть $m \in M^{\vee} \setminus 0$. Рассмотрим гомоморфизм $A \to M^{\vee}$, $\alpha \mapsto \alpha m$. Заметим, что этот гомоморфизм инъективен, так как в противном случае m являлся бы элементом кручения, что невозможно по теореме 3.8. Имеем точную тройку A-модулей:

$$0 \to A \to M^{\vee} \to N \to 0$$

Перейдя от нее к двойственной, получим последовательность, не являющуюся точной справа

$$0 \to N^{\vee} \to M^{\vee\vee} \to A \to \dots$$

Разложим гомоморфизм $M^{\vee\vee} \to A$ в композицию сюръективного и инъективного гомоморфизмов

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee\vee} \longrightarrow A \longrightarrow \dots$$

$$M^{\vee\vee}/N^{\vee}$$

Так как $M^{\vee\vee}/N^\vee$ обладает вложением в A как A-модуль, то имеет место изоморфизм $M^{\vee\vee}/N^\vee\simeq J\subset A$ — некоторый идеал в кольце A. Таким образом имеем новую точную тройку

$$0 \to N^{\vee} \to M^{\vee\vee} \to J \to 0.$$

Поскольку M — A-модуль без кручения, то имеет место вложение $M \stackrel{\varepsilon}{\hookrightarrow} M^{\vee\vee}: s \mapsto \varepsilon_s$, где $\varepsilon_s: t \mapsto t(s)$, включаемое в диаграмму

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee\vee} \longrightarrow J \longrightarrow 0$$

Обозначим $M_1 := \ker(M \to J_1), J_1 := \operatorname{im}(M \hookrightarrow M^{\vee\vee} \to J)$ — идеал в A, при этом выполнены вложения $J_1 \subset J \subset A$. Имеем диаграмму с точными строками

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee\vee} \longrightarrow J \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M_1 \longrightarrow M \longrightarrow J_1 \longrightarrow 0$$

Так как $M_1 \subset M$, M — нетеров, следовательно, M_1 тоже нетеров. Повторим эти же действия для M_1 , потом для M_2 и так далее. Имеем убывающую фильтрацию

$$\cdots \subset M_2 \subset M_1 \subset M. \tag{22}$$

Так как нетеров модуль необязательно артинов, то эта последовательность может быть бесконечной. Покажем что в нашем случае это не так и цепочка будет обрываться. Перейдем к локализации в нулевом идеале кольца $A.\ A \hookrightarrow A_0 =: Q(A)$ — поле частных кольца $A.\ \Pi$ о свойству точности локализации имеем точную тройку A_0 -векторных пространств

$$0 \to (M_{i+1})_0 \to (M_i)_0 \to (J_{i+1})_0 \to 0.$$

Так как $(J_{i+1})_0 \simeq A_0$, то из свойсва аддитивности A_0 -размерности (Предложение 2.11 книги [2]) имеют место равенства

$$\dim_{A_0}(M_i)_0 - \dim_{A_0} A_0 = \dim_{A_0}(M_i)_0 - 1 = \dim_{A_0}(M_{i+1})_0.$$

Таким образом, последовательность (22) действительно обрывается. В базовом случае будем иметь точную тройку вида

$$0 \to I_1 \to M_n \to I_2 \to 0$$
,

в которой для A-модуля M_n уже можем вычислить кручения \widehat{A} -модуля \widehat{M}_n .

Далее можно действовать индуктивно, где для шага индукции имеем точную тройку

$$0 \to M_{i-1} \to M_i \to I_{n-i+1} \to 0,$$

которая позволяет вычислить $\operatorname{tors}_{\widehat{A}}\widehat{M}_i$, используя $\operatorname{tors}_{\widehat{A}}\widehat{M}_{i-1}$ и $\operatorname{tors}_{\widehat{A}}\widehat{I}_{n-i+1}$ по формулам, аналогичным (21).

Заключение

В ходе работы были выполнены поставленные задачи: изучены понятия коммутативного кольца, идеала и модуля. Выполнены упражнения из книги [2], в ходе решения которых были доказаны различные условия при которых элементы конкретных колец обладают определенными свойствами (например, нильпотентность или обратимость). Были получены явные формулы для вычисления тензорных и периодических произведений в простейших случаях. В ходе работы были получены явные выражения для подмодуля кручения в некоторых тензорных произведениях, вычислены делители нуля алгебры $\bigoplus_{s\geqslant 0} (I[t]+(t))^s/(t^{s+1})$.

Список литературы

- [1] Айзенбад, Д. Коммутативная алгебра с прицелом на алгебраическую геометрию / Д. Айзенбад; пер. с англ. О.Н. Попова и др. под ред. Е.С. Голода. М.: МЦНМО, 2017. 752 с.
- [2] Атья, М. Введение в коммутативную алгебру / М. Атья, И. Макдональд; пер. с англ. Ю.И. Манин. М.: Издательство «Мир», 1972.-158 с.
- [3] Винберг, Э. Б. Курс алгебры. 3-е изд., дополненное. / Э.Б. Винберг. М.: МЦНМО, 2017. 592 с.
- [4] Зуланке, Р. Алгебра и геометрия: В 3-х т. Т.2.: Модули и алгебры / Р. Зуланке, А.Л. Онищик М.: МЦНМО, 2008. 336 с.: ил.
- [5] Маклейн, С. Гомология. / С. Маклейн; пер. с англ. М.С. Цаленко под ред. А.Г. Куроша. М.: Издательство «Мир», 1966. 534 с.
- [6] Тимофеева, Н.В. "Модули допустимых пар и модули Гизекера–Маруямы", Матем. сб., 210:5 (2019), 109–134.