Що таке LoRA

Як пам'ятаємо з трансформерів, у механізмі attention використовуються матриці Q (query), K (key), V (value) — вони відповідають за те, як модель уважно дивиться на різні частини вхідного тексту.

LoRA — це метод тюнінгу, який не змінює основні (pretrained) ваги моделі, а вставляє додаткові маленькі low-rank матриці (A та B) в ключові лінійні шари, такі як q_proj, v_proj, o_proj

У цих шарах ми фактично не змінюємо основну матрицю W, а додаємо LoRA-доповнення

W(x) + A @ B @ x — і навчаємо тільки A та B.

Ми зберігаємо усі pretrain-знання, адаптуємо до нової задачі + економимо час та ресурси :)

Trainable Матриці пояснення

Назва шару	Що це таке	
q_proj	Query-проєкція— формує запит (що шукати у self-attention)	
k_proj	Key-проєкція— що є в пам'яті (які ознаки/позиції зіставляються із query)	
v_proj	Value-проєкція— значення, що зчитуються при увазі	
o_proj	Output-проєкція— перетворення результату після self-attention	
up_proj	Внутрішній шар feedforward-мережі— розширення розмірності (MLP)	
down_pro	Вихідний шар feedforward-мережі— стискання назад до розміру ембедінгу	
gate_pro j	Gated activation — допомагає моделі керувати активацією	
lm_head	Генератор токенів— лінійний шар, який перетворює hidden state у токен	

Ціль	target_modules		
Швидкий базовий fine-tune	["q_proj", "v_proj"]		
Більше впливу, краща якість	["q_proj", "k_proj", "v_proj", "o_proj"]		
Глибока модифікація (експерт)	["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj", "lm_head"]		

Параметризація LoRA

Параметр	Що це таке	Типове значення	Просте пояснення
r	Ранг low-rank матриць LoRA	8, 16, 32	Скільки "нових знань" LoRA може вивчити
lora_alpha	Масштаб LoRA-вкладу	= r або 2*r	Наскільки сильно LoRA впливає на результат
target_modul es	Які шари моделі тюнити через LoRA	["q_proj", "v_proj"]	Де саме вставити LoRA (attention, FFN тощо)
lora_dropout	Dropout перед LoRA-обчисленн ям	0.05,0.1	Регуляризація під час навчання (захист від оверфіту)

bias	Що робити з bias-термінами	"none", "lora_only"	Чи оновлювати bias y Linear шарах
modules_to_s ave	Що ще (окрім LoRA) зберігати під час тюнінгу	["lm_head"] або ["decode_hea d"]	Наприклад, класифікаційний head або генератор
task_type	Тип задачі (для PEFT/Trainer)	"CAUSAL_LM"	Вказує, яку архітектуру/режим тренування використовувати

Рекомендації

Рекомендую почати з базових налаштувань, а далі пробувати ускладнювати

```
lora_config = LoraConfig(
    r=8, // Мінімум параметрів для навчання, але достатньо щоб вже побачити ефект
    lora_alpha=16, // Регулює вплив LoRA-частини на загальний шар
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.05, // Запобігає оверфіту, особливо на малих датасетах
    bias="none",
    task_type="CAUSAL_LM" // Для моделей на кшталт GPT — генерація тексту
)
```

https://arxiv.org/pdf/2106.09685

https://huggingface.co/docs/peft/main/conceptual_guides/lora#common-lora-parameters-in-peft