

COMP3065 Computer Vision

Topic 2 – Describing Image Regions and Patches

Dr. Tianxiang Cui 2025 Spring

Outline

- Image and its feature descriptor
- Common features used in CV:
 - Colour features
 - Texture features
 - Shape features
 - Edge features
- Some common feature vectors
 - Colour histograms
 - Local binary patterns
 - Histograms of Gradient Orientations (HoG)

What is an Image?

A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	2 55	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

Common to use one byte per value: 0 = black, 255 = white

Regions and Patches

- Segments (irregular) or rectangular image patches are widely used in computer vision tasks.
 - Matched between views to recover 3D.
 - Matched over time to track objects.
 - Compared to pre-stored models to detect object classes and recognize specific objects.
- To do this we need to describe them.

Features and Feature Vectors

 We need to define a set of descriptive features and concatenate them to produce a feature vector, e.g.

 We should choose features that reflect the relevant properties of the viewed object, such as color features, texture features, shape features, etc.

Traditional CV vs. DL CV

- DL is sometimes overkill traditional CV techniques can solve a problem much more efficiently (e.g., classify lemon and orange)
- Traditional CV techniques are not class-specific, they are very general and perform the same for any image – features learned from a deep neural net are specific to your training dataset
- Traditional CV techniques often used for the applications like image stitching/3D mesh reconstruction which don't require specific class knowledge – can also be achieved by training large datasets, require huge effort
- Traditional CV techniques can be deployed on low-cost microcontrollers

Colour Features

Colour correlates well with class identity.

Human vision works hard to preserve colour constancy: presumably because colour is useful.

- Histograms
 - Are invariant to translation and rotation.
 - Change slowly as viewing direction changes.
 - Change slowly with object size.
 - Change slowly with occlusion.

Colour histograms summarise target objects quite well, and should match a good range of images.

Colour Histograms

- Histogram
 - X-axis: bins of intensity (colour) value intervals
 - Y-axis: number of pixels whose value falls into those bins.
- Which <u>colour space</u>? depend on colour models
 - RGB: red, green, blue channels.
 - YUV: Y (luma), U (chrominance), V (chrominance) channels.
- How many bins? 256 (0 255) or 32 (0-7, 8-15, ...)

Texture Features

- Colour is a property of a single pixel, texture features capture the frequency with which patterns of colour/grey level appear.
- E.g. Local Binary Patterns (LBP)
 - For each pixel p, create an 8-bit number b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 , where b_i =0 if neighbor i has value less than or equal to p's value and 1 otherwise.

LBP Feature Vector

- Divide the patch into cells e.g. 16 x 16 pixels per cell.
- Compute the local patch description number of each pixel.
 - As described in previous slide.
- Histogram these numbers over each cell.
 - Usually a 256-d feature vector.
- Optionally normalize each histogram (so its bins sum to 1).
- Concatenate (normalized) histograms to make the feature vector.

Shape Features

- Focus on image gradient measures:
 - The gradient of an image measures how it is changing.
 - The boundaries of objects are often associated with large gradients.

 Distributions of gradients and gradient orientations reflect boundary shape (and internal boundaries between parts, surfaces, etc.).

Mean gradient of a large set of person images

Edge Detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Characterizing Edges

 An edge is a place of rapid change in the image intensity function

Image Derivatives

 In calculus, the derivative of a function represents its rate of change. For continuous valued functions:

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

With image data, the smallest possible delta x is 1

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

 Image gradient: a vector to measure the change in pixel values along the x-direction and the y-direction around each pixel

Image Gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Image Gradient: Example

Magnitude =
$$\sqrt{(38)^2 + (38)^2} = 53.74$$

Angle =
$$\arctan\left(\frac{38}{38}\right)$$
 = 0.785 rads
= 45 degrees

Image Gradient: Example

Change in x-direction

Change in y-direction

Image Gradient: Example

Magnitude =
$$\sqrt{(38)^2 + (38)^2} = 53.74$$

Angle =
$$\arctan\left(\frac{38}{38}\right)$$
 = 0.785 rads
= 45 degrees

Image Transformations

- We can think of a (grayscale) image as a function, f, from R² to
 - -f(x,y) gives the intensity at position (x,y)
- As with any function, we can apply operators to an image

$$g(x,y) = f(-x,y)$$

Noise Reduction

Given a camera and a still scene, how can you reduce noise?

Image Filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Some function

Local image data

Modified image data

Linear Filtering

- Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Original

23

Identical image

0	0	0
1	0	0
0	0	0

Original

Shifted left By 1 pixel

Blur (with a mean filter)

Original

Sharpening filter (accentuates edges)

Target image

Target image

Target image

 Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results.

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

$$P_{(x-1,y-1)}$$
 $P_{(x,y-1)}$ $P_{(x+1,y-1)}$ $P_{(x-1,y)}$ $P_{(x-1,y)}$ $P_{(x-1,y+1)}$ $P_{(x,y+1)}$ $P_{(x,y+1)}$

Filter Window

Picture Window

 Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results.

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

P _(x-1,y-1)	P _(x,y-1)	P _(x+1,y-1)
P _(x-1,y)	$P_{(x,y)}$	P _(x+1,y)
P _(x-1,y+1)	P _(x,y+1)	P _(x+1,y+1)

 $F_{(-1,-1)} \times P_{(x-1,y-1)}$

Filter Window

Picture Window

 Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

$$\begin{array}{|c|c|c|c|c|c|}\hline P_{(x-1,y-1)} & P_{(x,y-1)} & P_{(x+1,y-1)} \\ \hline \\ P_{(x-1,y)} & P_{(x,y)} & P_{(x+1,y)} \\ \hline \\ P_{(x-1,y+1)} & P_{(x,y+1)} & P_{(x+1,y+1)} \\ \hline \end{array}$$

$$F_{(-1,-1)} \times P_{(x-1,y-1)}$$

+ $F_{(0,-1)} \times P_{(x,y-1)}$

Filter Window

Picture Window

 Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

$$F_{(-1,-1)} \times P_{(x-1,y-1)}$$
+ $F_{(0,-1)} \times P_{(x,y-1)}$
+ $F_{(+1,-1)} \times P_{(x+1,y-1)}$

Filter Window

Picture Window

Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

$$F_{(-1,-1)} \times P_{(x-1,y-1)}$$
+ $F_{(0,-1)} \times P_{(x,y-1)}$
+ $F_{(+1,-1)} \times P_{(x+1,y-1)}$
+ $F_{(-1,0)} \times P_{(x-1,y)}$

Filter Window

Picture Window

Spatial Filtering: Convolution

Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

$$F_{(-1,-1)} \times P_{(x-1,y-1)}$$
+ $F_{(0,-1)} \times P_{(x,y-1)}$
+ $F_{(+1,-1)} \times P_{(x+1,y-1)}$
+ $F_{(-1,0)} \times P_{(x-1,y)}$
+ ...

Filter Window

Picture Window

Result

Spatial Filtering: Convolution

 Many filters follow a similar pattern - multiplying each image value by a corresponding filter entry, and summing the results

F _(-1,-1)	F _(0,-1)	F _(+1,-1)
F _(-1,0)	F _(0,0)	F _(+1,0)
F _(-1,+1)	F _(0,+1)	F _(+1,+1)

Picture Window

$$F_{(-1,-1)} \times P_{(x-1,y-1)}$$
+ $F_{(0,-1)} \times P_{(x,y-1)}$
+ $F_{(+1,-1)} \times P_{(x+1,y-1)}$
+ $F_{(-1,0)} \times P_{(x-1,y)}$
+ ...
+ $F_{(+1,+1)} \times P_{(x+1,y+1)}$
Result

Derivative Filters

Sobel Operators

G_{x}				
-1	0	1		
-2	0	2		
-1	0	1		

G_{y}				
-1	-2	-1		
0	0	0		
1	2	1		

 Applied separately and results combined to estimate overall gradient magnitude.

Derivative Filters

 $\boldsymbol{G}_{\boldsymbol{x}}$

Oriented derivative filters only respond to edges in one direction.

 G_{y}

Gradient Magnitude

A few simple image processing operations provide image gradient and gradient direction at each pixel.

- First used for person detection (<u>Dalal and Triggs, CVPR 2005</u>)
 cited in thousands (~47243) of computer vision papers
- Objective: human (object) recognition
- Basic idea:
 - Local shape information often well described by the distribution of intensity gradients or edge directions
 - Convert the image (width*height*channels) into a feature vector, then apply the classification algorithms
 - The intent is to generalize the object in such a way that the same object (e.g., person) produces as close as possible to the same feature descriptor when viewed under different conditions

HOG Feature Descriptor

➤ Divide the patch into small **cells**.

> Define slightly larger **blocks**, covering several cells.

- ➤ Divide the patch into small **cells**.
- Define slightly larger blocks, covering several cells.
- Compute gradient magnitude and orientation at each pixel.
- Compute a local weighted histogram of gradient orientations for each cell, weighting by some function of magnitude.

- > Divide the patch into small cells.
- > Define slightly larger **blocks**, covering several cells.
- Compute gradient magnitude and orientation at each pixel.
- Compute a local weighted histogram of gradient orientations for each cell, weighting by some function of magnitude.
- Concatenate histogram entries to form a HoG vector for each block.
- Normalize vector values by dividing by some function of vector length.
 - For improved accuracy, the local histograms can be contrast-normalized by calculating a measure of the intensity across a larger region of the image, called a block, and then using this value to normalize all cells within the block.

Preprocessing

Original Image: 720 x 475

Calculating the Gradients

- Calculate Histogram of Gradients in cells
- Human detector (8*8 to capture interesting features)
- The 8*8 cell can be represented by 128 numbers

2	3	4	4	3	4	2	2
5	11	17	13	7	9	3	4
11	21	23	27	22	17	4	6
23	99	165	135	85	32	26	2
91	155	133	136	144	152	57	28
98	196	76	38	26	60	170	51
165	60	60	27	77	85	43	136
71	13	34	23	108	27	48	110

Gradient Magnitude

80	36	5	10	0	64	90	73	
37	9	9	179	78	27	169	166	
87	136	173	39	102	163	152	176	
76	13	1	168	159	22	125	143	
120	70	14	150	145	144	145	143	
58	86	119	98	100	101	133	113	
30	65	157	75	78	165	145	124	
11	170	91	4	110	17	133	110	

Gradient Direction

- The histogram is a vector of 9 bins corresponding to angles 0, 20, 40, 60 ... 160
- A bin is selected based on the direction, and the vote (the value that goes into the bin) is selected based on the magnitude

- If the angle is greater than 160 degrees, split the contribution to 0 degree bin and 160 degree bin
- E.g, 165 = 160*0.75 + 180*0.25, apply the same for the magnitude

 The contributions of all the pixels in the 8*8 cells are added up to create the 9-bin histogram

- Gradients of an image are sensitive to overall lighting
- We would like to normalize the histogram so they are not affected by lighting variations
- A 16*16 block has 4 histograms which can be concatenated to form a 36*1 element vector
- Divide each element of a vector by its vector length (I2-norm)

- How many positions of the 16*16 block do we have for this 64*128 image?
- What is the dimension of the HoG vector for this 64*128 image?

- The HOG descriptor of an image patch is usually visualized by plotting the 9*1 normalized histograms in the 8*8 cells
- Figure right: dominant direction of the histogram captures the shape of the person

Alternative derivative filters are available.

centered

uncentered

cubic-corrected

diagonal

Sobel

Different cell and block sizes

Alternative derivative filters are available.

centered

uncentered

cubic-corrected

0	1
-1	0

diagonal

-1	0	1
-2	0	2
-1	0	1

Sobel

Different cell and block sizes

10x10 cells

Alternative derivative filters are available.

centered

uncentered

cubic-corrected

0	1
-1	0

diagonal

-1	0	1
-2	0	2
-1	0	1

Sobel

Different cell and block sizes

10x10 cells

20x20 cells

Different block geometries (Rectangular or Circular)

Different weighting functions e.g. magnitude².

Different normalization functions.

Person Identification

 Dalal and Triggs used HoGs very successfully to detect pedestrians in natural images: More later.

Conclusion

- Rectangular image patches are often used.
- To examine and compare them we need to produce descriptions of them: feature vectors.
- Some common feature vectors.
 - Colour histograms
 - Local binary patterns
 - Histograms of Gradient Orientations (HoG)