ACADEMIA DE STUDII ECONOMICE DIN BUCUREȘTI FACULTATEA DE CIBERNETICĂ, STATISTICĂ ȘI INFORMATICĂ ECONOMICĂ SPECIALIZAREA INFORMATICĂ ECONOMICĂ

PACHETE SOFTWARE

Analiza performanțelor educaționale ale studenților și factori asociați

Coordonator:

Prof. univ. dr. OPREA SIMONA-VASILICA

Studenți:

Petrișor Lucas-Ervin

Radu Mihaela-Daniela

BUCUREȘTI,

2025

CUPRINS

INTRODUCERE	1
Descrierea variabilelor	1
1. Pachetul Python: Aplicație de analiză a datelor cu Streamlit	3
1.1. Încărcarea și standardizarea setului de date	3
1.2. Tratarea valorilor lipsă	4
1.3. Codificarea variabilelor categorice	6
1.4. Normalizarea/Standardizarea variabilelor numerice	7
1.5. Eliminarea valorilor extreme (outliers)	8
1.6. Analiză descriptivă	9
1.7. Relații între variabile și testul ANOVA	15
2. Pachetul SAS	23
2.1. Importul fișierului CSV într-un set de date SAS	23
2.2. Crearea de formate definite de utilizator	24
2.3. Crearea unui subset de date pe baza unei condiții	27
2.4. Procesare condițională și crearea unei noi variabile categorice	30
2.5. Utilizarea funcțiilor SAS	32
2.6. Combinarea seturilor de date prin proceduri specifice SAS și SQL	35
2.7. Generarea graficelor	38
2.8. Statistici descriptive	41
2.9. Corelații între indicatorii de performanță academică	42
CONCLUZIE	46
BIBLIOGRAFIE	46
ANEXĂ	46
FIGURI	46

INTRODUCERE

Stilul de viață al studenților este un subiect complex, iar analiza datelor asociate poate oferi perspective interesante despre cum putem găsi, ca studenți, un echilibru între studiu, odihnă, activități extracurriculare și socializare. Acest proiect explorează obiceiurile de viață ale studenților și modul în care acestea influențează performanța academică și nivelul de stres. Setul de date utilizat reflectă provocările și comportamentele zilnice ale studenților, și ne ajută să înțelegem cum noi, ca studenți, putem găsi un echilibru între performanțele academice și nevoia de divertisment. Având în vedere că succesul educațional este din ce în ce mai legat de starea mentală și stilul nostru de viață, analiza acestor aspecte devine esențială pentru a ne găsi stabilitatea în anii de studenție. Cu acest proiect urmărim să identificăm care dintre obiceiurile și condițiile personale ale studenților contribuie cel mai mult la rezultatele lor școlare.

Setul de date utilizat în acest proiect se numește **Students Grading Dataset** și a fost preluat de pe platforma Kaggle (<u>link</u>). Este un set de date creat de Mahmoud ElHemaly care oferă o imagine de ansamblu asupra performanței academice a studenților, precum și asupra stilului lor de viață. Fiecare observație din set corespunde unui student, iar variabilele descriu caracteristici academice, comportamentale și socio-economice. Setul de date include atât variabile cantitative (scoruri, vârstă, ore), cât și calitative (gen, departament, acces la internet).

Descrierea variabilelor

- Student ID: Identificator unic al studentului.
- First Name, Last Name: Numele complet al studentului.
- Email: Adresa de email a studentului.
- **Gender**: Sexul biologic al studentului (*male* sau *female*).
- Age: Vârsta studentului în ani.
- **Department**: Facultatea sau departamentul în care este înscris studentul (*CS*, *Business*, *Mathematics*, *Engineering*).
- Attendance (%): Procentajul de prezență la cursuri al studentului.

- Midterm Score: Scorul obținut la examenul intermediar.
- Final Score: Scorul obținut la examenul final.
- Assignments Avg: Media generală a lucrărilor scrise.
- Quizzes Avg: Media testelor de tip quiz.
- Participation Score: Punctaj acordat pentru participare la cursuri.
- **Projects Score**: Punctaj obtinut în projectele practice.
- **Total Score**: Scorul total cumulat din toate activitătile academice.
- Grade: Nota finală (literă) acordată studentului (A, B, C, D, F).
- Study Hours per Week: Numărul de ore de studiu pe săptămână.
- Extracurricular Activities: Participarea la activităti extracurriculare (Yes / No).
- Internet Access at Home: Accesul studentului la internet acasă (Yes / No).
- Parent_Education_Level: Nivelul educațional al părinților (High School, Bachelor, Master's).
- Family_Income_Level: Venitul familiei (Low, Medium, High).
- Stress Level (1-10): Nivelul de stres perceput, pe o scară de la 1 la 10.
- Sleep Hours per Night: Numărul mediu de ore de somn pe noapte.

Această structură a setului de date ne oferă o oportunitate unică de a înțelege legăturile dintre factorii personali și cei academici. Prin explorarea relațiilor dintre aceste variabile, putem descoperi tipare ascunse care nu sunt întotdeauna evidente la prima vedere. Cu atât mai mult, această analiză nu permite doar o descriere a realității, ci și o idee bazată pe predicții: putem anticipa din timp ce rezultate va avea și putem aduce soluții pentru succes academic. Astfel, datele nu rămân simple statistici: ele devin informații utile care îi ajută pe profesori să decidă cum să-i ofere fiecărui student sprijin academic și personal, dar și pe noi, studenții, să schimbăm factorii care dăunează performanta academică.

1. Pachetul Python: Aplicație de analiză a datelor cu Streamlit

Această aplicație Python dezvoltată cu ajutorul Streamlit, oferă un instrument interactiv pentru analiza vizuală a datelor, în special a performanței studenților. Utilizatorul poate încărca un fișier CSV cu informații educaționale și poate aplica diverse etape de preprocesare, cum ar fi curățarea antetelor, tratarea valorilor lipsă, codificarea variabilelor categorice și scalarea celor numerice. Aplicația include analize statistice, vizualizări și modele predictive simple, fiind organizată în tab-uri ușor de navigat.

Figură 1. Interfața aplicației Streamlit pentru analiza vizuală a performanței studenților.

1.1. Încărcarea și standardizarea setului de date

Cerință: Utilizatorul trebuie să poată încărca un fișier CSV ce conține date despre studenți, pentru a începe analiza acestora. Deoarece anteturile pot conține spații sau caractere speciale, acestea trebuie curătate pentru a asigura procesarea ulterioară fără erori.

- folosim funcția *pd.read_csv()* din pachetul Pandas pentru a citi conținutul fișierului CSV într-un obiect de tip DataFrame.
- aplicăm o serie de transformări pe antetele coloanelor: .str.strip() pentru a elimina spațiile de la începutul și sfârșitul denumirilor, .str.replace() pentru înlocuirea spațiilor, parantezelor, simbolului % și a slash-urilor (/) cu caractere compatibile cu sintaxa Python, și .str.title() pentru a formata fiecare antet cu literă mare la început.

În urma aplicării acestor operații, setul de date este pregătit pentru procesare ulterioară. Coloanele devin ușor de apelat în cod, iar orice posibilă eroare cauzată de formate inconsistente este eliminată.

```
uploaded_file = st.file_uploader("Incarca fisierul CSV", type="csv")
if uploaded_file:

df = pd.read_csv(uploaded_file, sep=";")

df.columns = df.columns.str.strip() \

.str.replace('', '_') \

.str.replace('%', 'Perc') \

.str.replace('(', '') \

.str.replace(')', '') \

.str.replace(')', '') \

.str.replace(')', ''_') \

.str.replace(')', ''_') \

.str.replace(')', ''_') \

.str.replace(')', ''_') \

.str.title()

df raw = df.copy()
```

1.2. Tratarea valorilor lipsă

Cerință: După încărcarea setului de date, oferiți utilizatorului posibilitatea de a identifica și completa valorile lipsă, deoarece acestea pot afecta negativ acuratețea analizelor statistice și a modelelor predictive.

Rezolvare:

În orice analiză de date reale, valorile lipsă sunt frecvente și pot duce la rezultate incorecte. Dacă nu sunt tratate corespunzător, pot distorsiona interpretările și deciziile luate pe baza datelor.

Pentru a preveni aceste probleme, aplicația pe care am construit-o oferă un set de metode flexibile de completare a valorilor lipsă, pe care utilizatorul le poate selecta din interfață. Printre opțiunile disponibile se numără: completarea cu zero (fillna(0)), potrivită în situațiile în care lipsa implică absență, completarea cu media (pentru variabile numerice). De asemenea, sunt disponibile metode de completare secvențială, cum ar fi propagarea valorii anterioare sau următoare (ffill și bfill), utile în serii temporale.

Valori lipsa	
Age	0.0400
Department	0.0600
Attendance_Perc	0.4000
Midterm_Score	0.7400
Final_Score	0.4800
Assignments_Avg	0.4400
Quizzes_Avg	0.3600
Participation_Score	0.3600
Projects_Score	0.2200
Total_Score	0.1000
Grade	0.1600
Study_Hours_Per_Week	4.7600
Extracurricular_Activities	0.3800
Internet_Access_At_Home	0.5000
Parent_Education_Level	21.0800
Family_Income_Level	0.4800
Stress_Level_1-10	0.3400
Sleep_Hours_Per_Night	0.2800

Figură 2. Procentajul valorilor lipsă pentru fiecare variabilă din setul de date

Figură 3. Vizualizarea grafică a valorilor lipsă pentru toate variabilele din setul de date utilizând heatmap-ul

```
if metoda == "zero":

  df = df.fillna(0)

elif metoda == "media/moda":

for col in df.columns:
```

```
df[col] = df[col].fillna(df[col].mean() if df[col].dtype != "object" else df[col].mode()[0])
elif metoda == "interpolare":

df = df.interpolate()
elif metoda == "mice":

df_num = df.select_dtypes(include=[np.number])

df[df_num.columns] = pd.DataFrame(mice(df_num.values), columns=df_num.columns)
```

1.3. Codificarea variabilelor categorice

Cerință: După încărcarea și preprocesarea setului de date, permiteți utilizatorului transformarea variabilelor categorice în format numeric, pentru ca acestea să poată fi utilizate în analize statistice și modele predictive.

Rezolvare:

În cadrul setului de date utilizat pentru analiză, variabilele categorice reprezintă coloanele care conțin informații textuale, cum ar fi "gen" (feminin/masculin) sau "departament" (IT, Marketing, HR). Aceste variabile nu pot fi procesate direct de către majoritatea algoritmilor statistici sau de învățare automată, deoarece aceștia funcționează exclusiv pe baza valorilor numerice.

Pentru a rezolva această problemă, aplicația noastră identifică automat toate coloanele de tip obiect și oferă utilizatorului, în interfața din bara laterală, o opțiune de transformare numerică a acestora. Metoda implementată este Label Encoding, o tehnică simplă, dar eficientă, prin care fiecărei valori unice dintr-o coloană i se asociază un număr întreg. Dacă există mai multe categorii, ele sunt numerotate în ordine crescătoare în funcție de apariție.

Această formă de codificare este potrivită în special pentru variabilele nominale, adică acele categorii care nu au o ordine logică sau ierarhică. În urma transformării, coloanele devin compatibile cu algoritmii de regresie, clasificare sau selecție de caracteristici, astfel este permisă utilizarea completă si corectă a datasetului în etapele ulterioare ale analizei.

Figură 4. Figura 4. Selectarea metodei de transformare a variabilelor categorice

for col in df.select_dtypes(include='object').columns:

df[col] = pd.factorize(df[col])[0]

1.4. Normalizarea/Standardizarea variabilelor numerice

Cerință: Pentru a asigura o analiză corectă și performanță optimă în cadrul modelelor predictive, puneți-le la dispoziție utilizatorilor opțiunea de a scala valorile variabilelor numerice.

Rezolvare:

În datele brute, valorile numerice pot avea scări diferite. Aceste diferențe pot influența algoritmii care folosesc distanțe, ponderi sau coeficienți și pot duce la modele dezechilibrate sau greu de interpretat. Pentru a evita aceste probleme, detectăm automat toate coloanele numerice și permitem utilizatorului să aleagă una dintre cele mai frecvent utilizate metode de scalare, printr-un meniu lateral intuitiv:

- StandardScaler aduce datele la o distribuție cu media 0 și deviația standard 1. Este recomandată atunci când datele au o distribuție normală.
- *MinMaxScaler* rescalează valorile într-un interval standard, de regulă [0, 1]. Este util în modele care sunt sensibile la valori mari (ex: rețele neuronale).
- RobustScaler folosește mediana și intervalul intercuartilic, fiind mai puțin influențat de valori extreme (outliers).
- Fără scalare opțiune implicită, folosită atunci când utilizatorul nu dorește aplicarea transformărilor.

Figură 5. Selectarea metodei de scalare pentru variabilele numerice

```
if metoda_scalare != "Fara scalare":
    scaler = {"Standard": StandardScaler(),
        "MinMax": MinMaxScaler(),
        "Robust": RobustScaler()}[metoda_scalare]
    df[numerice] = scaler.fit_transform(df[numerice])
```

1.5. Eliminarea valorilor extreme (outliers)

Cerință: Pentru a preveni denaturarea rezultatelor analitice sau predictive, aplicația trebuie să permită utilizatorului filtrarea valorilor extreme.

Rezolvare:

Valorile extreme sunt observații care se abat puternic de la restul datelor. În analiza de date, eliminarea controlată a acestora este adesea necesară pentru a obține rezultate corecte și modele stabile. În aplicație, utilizatorul are la dispoziție, din sidebar, două metode intuitive pentru identificarea și eliminarea outlierilor:

- *Z-Score* < 3 această metodă calculează scorul z pentru fiecare valoare (cât de departe este de medie, în unități de deviație standard) și păstrează doar valorile cu scor absolut mai mic decât 3. Este potrivită pentru date aproximativ normale.
- Quantile 1%-99% elimină extremele din ambele capete ale distribuției, păstrând doar valorile dintre percentila 1 și 99. Este o metodă care nu presupune o distribuție anume.

Figură 6. Selectarea metodei de detectare a valorilor extreme

```
if\ metoda == "Z-Score < 3":
z = np.abs((df[col] - df[col].mean()) / df[col].std())
df = df[z < 3]
elif\ metoda == "Quantile 1%-99%":
q1 = df[col].quantile(0.01)
q99 = df[col].quantile(0.99)
df = df[(df[col] >= q1) & (df[col] <= q99)]
```

1.6. Analiză descriptivă

În tabul "Analiza descriptivă", aplicația oferă utilizatorului o interfață interactivă.. Interacțiunea se realizează prin elemente grafice precum meniuri de selecție (selectbox) și butoane radio (radio), ce facilitează alegerea tipului de analiză și a coloanelor relevante.

Aplicația identifică automat coloanele numerice și categorice din setul de date, filtrând și afișând opțiunile corespunzătoare în funcție de contextul fiecărei vizualizări. Astfel, utilizatorul poate selecta o coloană numerică pentru a analiza distribuția valorilor sau relațiile de corelație între variabile, respectiv o coloană categorică pentru a vizualiza frecvența apariției valorilor sau pentru a compara medii pe categorii.

1.6.1. Vizualizarea distribuției unei variabile categorice

Cerință: Implementați o metodă prin care utilizatorul să poată selecta o coloană categorică pentru a vizualiza frecvența apariției valorilor acesteia.

Pentru a îndeplini această cerință, am identificat automat toate coloanele categorice, definite fie prin tipul de date (object), fie prin număr redus de valori unice (≤ 20). Acestea sunt afișate într-un meniu selectbox dedicat, care permite utilizatorului să aleagă coloana dorită.

După selecție, aplicația generează un grafic de tip bar chart, utilizând funcția countplot din biblioteca seaborn. Acest grafic afișează pe axa X categoriile existente, iar pe axa Y frecvența fiecărei categorii.

Astfel, utilizatorul poate observa dacă datele sunt echilibrate sau dacă anumite clase sunt semnificativ mai numeroase decât altele, informație esențială în interpretarea statistică sau în pregătirea pentru modelare.

Figură 7. Distribuția frecvenței pe gen în cadrul setului de date

Figură 8. Distribuția frecvenței studenților pe departamente

if viz type == "Categorica":

```
categorical_cols = [
   "Gender", "Department", "Grade", "Extracurricular_Activities",
   "Internet_Access_At_Home", "Family_Income_Level", "Stress_Level_1-10"]
categorical_cols = [col for col in categorical_cols if col in df.columns]
selected_cat = st.selectbox("Coloană:", categorical_cols)
fig, ax = plt.subplots(figsize=(6, 4))
x_vals = df[selected_cat].astype(str)
sns.countplot(x=x_vals, ax=ax)
ax.set_xlabel(selected_cat.replace("_", " "))
ax.tick_params(axis='x', rotation=45)
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.pyplot(fig, use_container_width=False)
```

1.6.2. Vizualizarea distribuției unei variabile numerice

Cerință: Aplicația trebuie să permită utilizatorului selecția unei variabile numerice pentru a-i examina distribuția.

Rezolvare:

După selectarea coloanelor numerice, aplicația oferă un dropdown în care utilizatorul poate alege o variabilă numerică de interes. Odată selectată, este generat un grafic de tip histogramă (folosind *sns.histplot()*), care poate include și o curbă de densitate estimată (*KDE*) pentru o interpretare mai intuitivă a distribuției.

Figură 9. Distribuția scorurilor

Distribuția scorurilor la testul intermediar (*Midterm Score*) evidențiază o performanță generală bună a studenților, cu o concentrare semnificativă a valorilor în intervalul 80–100. Această tendință poate reflecta un nivel ridicat de pregătire în rândul studenților sau un test accesibil, cu un grad de dificultate moderat.

```
if viz_type == "Numerica":
    selected_num = st.selectbox("Coloană:", num_cols)
    fig, ax = plt.subplots(figsize=(6, 4))
    sns.histplot(df[selected_num], kde=True, ax=ax)
    ax.set_xlabel(selected_num.replace("_", " "))
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
    st.pyplot(fig, use container width=False)
```

1.6.3. Vizualizarea corelațiilor dintre variabile numerice

Cerință: Utilizatorul trebuie să aibă acces la o vizualizare a corelațiilor dintre toate variabilele numerice din setul de date.

Rezolvare:

Aplicația detectează automat toate coloanele de tip numeric (variabile continue sau discrete exprimate prin numere) și calculează matricea de corelații Pearson între acestea. Această matrice este apoi afișată sub forma unei hărți heatmap, utilizând biblioteca Seaborn.

Fiecare celulă din hartă indică intensitatea și direcția corelației dintre două variabile:

- Valorile apropiate de +1 indică o corelație pozitivă puternică (când una crește, și cealaltă tinde să crească).
- Valorile apropiate de −1 indică o corelație negativă puternică (când una creşte, cealaltă scade).
- Valorile apropiate de 0 indică lipsa unei relații liniare semnificative.

Prin afișarea directă a acestei hărți interactive, aplicația ajută utilizatorul să descopere rapid legături importante (sau colinearitate excesivă), fără a parcurge calcule manuale sau tabele greu de interpretat.

Figură 10. Matricea corelațiilor între variabilele numerice

1.6.4. Compararea mediilor unei variabile numerice pe categorii

Cerință: Aplicația trebuie să permită utilizatorului selecția unei coloane categorice pentru a compara valorile medii ale unei variabile numerice între categoriile respective.

Rezolvare:

Aplicația detectează automat variabilele categorice, iar printr-un meniu selectbox, utilizatorul alege variabila de grupare. Apoi, folosind funcția *groupby()* din Pandas, sunt calculate valorile medii ale scorului (Total_Score) pentru fiecare categorie. Rezultatul este afișat sub forma unui grafic de tip bar chart, oferind o comparație vizuală clară între grupuri.

Această comparație ajută la identificarea discrepanțelor și poate ghida decizii educaționale, strategii de intervenție sau ajustări de curriculum.

Figură 11. Compararea mediilor scorului total în funcție de nivelul de stres (1–10)

Graficul evidențiază o ușoară tendință descendentă a mediei scorului total (Total_Score) pe măsură ce nivelul declarat de stres crește. Studenții care declară un nivel de stres scăzut (ex: 1–3) tind să aibă scoruri medii puțin mai ridicate, comparativ cu cei cu un nivel de stres mai ridicat (8–10). Această observație sugerează o posibilă corelație negativă slabă între stres și performanța academică, confirmând ipoteza conform căreia stresul crescut poate avea un impact negativ asupra rezultatelor.

selected_group = st.selectbox("Grupare dupa:", cat_cols)
if selected_group:

```
means = df.groupby(selected_group)["Total_Score"].mean().sort_values(ascending=False)
fig, ax = plt.subplots(figsize=(6, 4))
sns.barplot(x=means.index, y=means.values, palette="Blues_d", ax=ax)
ax.set_xlabel(selected_group.replace("_", " "))
ax.set_ylabel("Media Total_Score")
ax.set_title("Compararea mediilor Total_Score intre categorii")
plt.xticks(rotation=45, ha="right", fontsize=8)
st.pyplot(fig)
```

1.7. Relații între variabile și testul ANOVA

În această secțiune sunt explorate relațiile dintre variabilele din setul de date pentru a identifica factori care pot influența performanța studenților. Analiza include atât metode statistice clasice, cât și modele predictive. Scopul este de a înțelege dacă diferențele observate între grupuri sunt semnificative și dacă anumite variabile pot fi utilizate pentru a prezice performanța academică. Această etapă contribuie la evidențierea factorilor relevanți și la fundamentarea deciziilor educaționale sau intervențiilor personalizate.

1.7.1. Vizualizarea relațiilor între variabile

Cerință: Permiteți explorarea relațiilor dintre variabile numerice și categorice pentru a evidenția diferențe semnificative între grupuri.

Rezolvare:

Această subsecțiune permite analizarea relațiilor dintre o variabilă numerică și una categorială, pentru a verifica dacă mediile diferă semnificativ între grupuri. Vizualizarea se face prin două tipuri de grafice:

- Boxplot + Stripplot: oferă o imagine clară a dispersiei și a valorilor individuale.
- Violin Plot: combină distribuția datelor cu valorile medii și extreme, pentru o analiză vizuală detaliată.

Pentru analiza statistică se aplică testul *ANOVA* (Analysis of Variance), care testează ipoteza că mediile tuturor grupurilor sunt egale. Un p-value < 0.05 indică faptul că există diferențe

semnificative statistic între grupuri. Astfel, acest test ajută la identificarea influenței pe care o variabilă categorială o poate avea asupra unei variabile de interes numeric.

Figură 12. Distribuția numărului de ore de somn pe noapte în funcție de gen și testul ANOVA

Boxplotul și violin plotul din imagine compară distribuția numărului de ore de somn (Sleep_Hours_Per_Night) între genuri (Female vs. Male). Se observă diferențe vizuale ușoare între cele două grupuri, bărbații raportând în medie mai multe ore de somn decât femeile.

```
with coll:
    st.markdown("**Boxplot**")

fig, ax = plt.subplots(figsize=(5, 3))

sns.boxplot(data=df, x=selected_plot_cat, y=selected_plot_num, palette="Set2", ax=ax)

ax.set_xlabel(selected_plot_cat.replace("_", " "))

ax.set_ylabel(selected_plot_num.replace("_", " "))

ax.set_title("Distributia scorurilor per categorie")

st.pyplot(fig)

with col2:
    st.markdown("**Violin Plot**")
```

```
fig, ax = plt.subplots(figsize=(5, 3))

sns.violinplot(data=df, x=selected_plot_cat, y=selected_plot_num, palette="Set2", ax=ax)

ax.set_xlabel(selected_plot_cat.replace("_", " "))

ax.set_ylabel(selected_plot_num.replace("_", " "))

ax.set_title("Distributia scorurilor per categorie")

st.pyplot(fig)
```

1.7.2. Regresie Liniară

Cerință: Implementați construirea un model de regresie liniară pentru a estima Total_Score pe baza unor variabile predictive selectate.

Rezolvare:

Utilizatorul selectează variabilele predictive dorite dintr-o listă interactivă. Se construiește modelul folosind metoda OLS (Ordinary Least Squares) din pachetul statsmodels, iar rezultatul este afișat sub forma unui rezumat statistic cu coeficienți, erori standard, valori p și intervale de încredere.

Informații oferite:

- Coeficienții regresiei (mărimea și direcția influenței).
- Semnificația statistică (p-value) pentru fiecare predictor.
- Posibilitatea de a evalua multicoliniaritatea și relevanța predictivilor aleși.

Acest model oferă o perspectivă detaliată asupra variabilelor care influențează cel mai mult scorul total al studentului și poate ghida decizii educaționale bazate pe dovezi.

Figură 13. Rezultatele regresiei liniare pentru predicția variabilei Total_Score

Printre predictori, doar Projects_Score are un efect semnificativ statistic (p = 0.044), având o influență negativă asupra scorului total – deși contraintuitiv, acest lucru poate indica o suprasarcină a studenților implicați în proiecte, afectând restul performanțelor. Sleep_Hours_Per_Night este la limita semnificației (p = 0.074), sugerând o relație slabă negativă.

```
st.subheader("Regresie liniara (Total_Score)")

reg_cols = st.multiselect("Predictori:", [col for col in df_model.columns if col!= "Total_Score"])

if reg_cols:

X = df_model[reg_cols].select_dtypes(include=[np.number])

y = df_model["Total_Score"]

X = sm.add_constant(X)

if X.shape[1] > 1:

model = sm.OLS(y, X).fit()

st.markdown("Rezumat regresie")

summary_df = pd.read_html(model.summary().tables[1].as_html(), header=0, index_col=0)[0]

st.dataframe(summary_df)
```

else:

st.warning("Alege minim 1 coloana numerica.")

1.7.3. Regresie Logistică

Cerință: Aplicația trebuie să permită utilizatorului antrenarea unui model de regresie logistică pentru a prezice probabilitatea ca un student să obțină un scor total peste medie.

Rezolvare:

Pentru îndeplinirea cerinței, aplicația construiește o variabilă țintă binară (Target_Binar) pe baza valorii mediane a scorului total (Total_Score), atribuind valoarea 1 studenților cu scoruri peste medie și 0 celor cu scoruri sub medie. Utilizatorul poate selecta manual predictorii dintr-o listă ce conține atât variabile numerice, cât și categorice. Variabilele categorice sunt automat codificate numeric prin label encoding pentru a putea fi procesate de model.

Modelul este construit folosind algoritmul LogisticRegression din biblioteca scikit-learn şi este antrenat pe un set de antrenament (80% din date), fiind ulterior testat pe restul de 20%. Aplicația oferă, opțional, selecția automată a celor mai relevanți predictori folosind SelectKBest. După antrenare, sunt afișate următoarele grafice: matricea de confuzie, raportul de clasificare (precizie, recall, F1-score), acuratețea generală a modelului, precum și curba ROC și scorul AUC dacă modelul este binar.

Această analiză logistică ne oferă posibilitatea de a identificarea probabilității de succes academic pe baza factorilor selectați, oferind astfel un instrument valoros pentru prevenirea eșecului școlar.

```
Predictori:

Department × Extracurricular_... × Study_Hours_Pe... × Grade ×

Age × Gender × Midterm_Score × Attendance_Perc ×

Assignments_Avg × Final_Score × Participation_Sc... × Quizzes_Avg ×

Total_Score × Projects_Score × Internet_Access... × Parent_Educatio... ×

Family_Income_... × Sleep_Hours_Pe... × Stress_Level_1-10 ×
```

Figură 14. Predictori utilizați în regresia logistică pentru clasificarea performanței

Figură 15. Matricea de confuzie

Aceste rezultate indică o precizie foarte ridicată a modelului, cu un echilibru bun între sensibilitate și specificitate. Modelul este performant și adecvat pentru clasificarea în contextul educațional analizat.

Raport	de clas	itica	re							
	precision	recall	f1-score	support						
	0.9644	0.9583	0.9613	480						
	0.9618	0.9673	0.9645	520						
accuracy	0.963	0.963	0.963	0.963						
macro avg	0.9631	0.9628	0.9629	1,000						
weighted avg	0.963	0.963	0.963	1,000						
Acuratete: 0.96										

Figură 16. Raport de clasificare – Regresie logistică (fără SelectKBest)

Modelul de regresie logistică aplicat a atins o acuratețe generală de **96.3%**, ceea ce semnalează o capacitate remarcabilă de a prezice corect performanța studenților.

- Pentru clasa **0** (performanță scăzută), modelul are o precizie de 96.44% și un recall de 95.83%, indicând o bună capacitate de identificare a acestei categorii.
- Pentru clasa 1 (performanță ridicată), precizia este 96.18%, iar recall-ul 96.73%, ceea ce confirmă o clasificare eficientă și echilibrată între clase.

Figură 17. Curba ROC – Regresie logistică

Graficul evidențiază performanța modelului de regresie logistică în clasificarea binară. Linia albastră reprezintă curba ROC a modelului, iar linia punctată portocalie este linia de bază (clasificator aleatoriu). Valoarea AUC = 1.00 (area under curve) indică un model perfect, capabil să distingă fără eroare între clasele 0 și 1.

```
feat_cols = st.multiselect("Predictori:", [col for col in df_model.columns if col != target], key="logreg")
if feat_cols:
    X = df_model[feat_cols]
    y = df_model[target]
    for col in X.select_dtypes(include=["object", "category"]).columns:
        X[col] = pd.factorize(X[col])[0]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    model = LogisticRegression(max_iter=100, solver="liblinear")
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
```

1.7.4. Selectarea caracteristicilor și îmbunătățirea modelelor

Cerință: Pentru a obține un model predictiv mai precis și mai eficient, faceți ca aplicația permită selecția automată a celor mai relevante variabile (predictori) utilizate în clasificare.

Am implementat opțiunea *SelectKBest*, disponibilă sub forma unei bifări în aplicație, care permite selecția automată a celor mai semnificative variabile numerice pe baza scorurilor statistice (ex: funcția f_regression). La activarea acestei opțiuni, aplicația reține doar predictorii cu cea mai mare influență asupra variabilei țintă binare (Target_Binar), iar regresia logistică se antrenează folosind doar aceste coloane.

În urma aplicării SelectKBest, modelul a păstrat 5 variabile relevante: Gender, Final_Score, Total_Score, Projects_Score și Sleep_Hours_Per_Night. Clasificatorul logistic a fost antrenat cu acest subset și a obținut o acuratețe de 0.971, în creștere față de modelul complet, care avea o acuratețe de 0.963. De asemenea, metrica f1-score a depășit valoarea de 0.97 pentru ambele clase, ceea ce indică un echilibru foarte bun între precizie și recall.

Această tehnică demonstrează că eliminarea predictorilor inutili poate contribui semnificativ la performanța și eficiența modelului, reducând totodată complexitatea acestuia.

Figură 18. Selectarea celor mai relevanți predictori folosind SelectKBest

Figură 19. Matricea de confuzie după aplicarea SelectKBest

```
if st.checkbox("SelectKBest"):
    selector = SelectKBest(f_regression, k=min(5, X.shape[1]))
    X_new = selector.fit_transform(X, y)
    selected = X.columns[selector.get_support()]
    X = pd.DataFrame(X new, columns=selected)
```


Figură 20. Performanța modelului de regresie logistică folosind predictorii selectați

2. Pachetul SAS

2.1. Importul fișierului CSV într-un set de date SAS

Cerință: Crearea unui set de date SAS dintr-un fișier extern (.csv).

Rezolvare:

Importul unui fișier .csv într-un set de date SAS presupune citirea unui fișier text delimitat și conversia acestuia într-o structură de date SAS compatibilă, care poate fi analizată în continuare. Operația se realizează cu ajutorul procedurii PROC IMPORT, care automatizează procesul de mapare a datelor din fișier către variabilele SAS.

```
proc import datafile="/home/u64202433/Pachete_Software_Proiect/Students_Grading_Dataset.csv"

out=work.students
dbms=csv
replace;
delimiter=';';
getnames=yes;
run;
```

Figură 21. Importul fișierului CSV într-un set de date SAS

Figură 22. izualizarea structurii tabelului WORK.STUDENTS după importul fișierului CSV

2.2. Crearea de formate definite de utilizator

Cerință: Utilizarea formatelor personalizate pentru a interpreta mai clar valorile variabilelor, în special în cazul celor cu valori codificate sau greu de înțeles intuitiv.

În SAS, formatele definite de utilizator sunt utilizate pentru a transforma modul în care valorile variabilelor sunt afișate, fără a modifica datele originale din setul de date. Aceste formate sunt deosebit de utile în cazul variabilelor categorice, pentru a oferi semnificație semantică valorilor brute, în special atunci când sunt utilizate în proceduri precum PROC PRINT sau PROC FREQ.

Pentru această aplicație, au fost definite mai multe formate personalizate, aplicabile variabilelor Gender, Extracurricular_Activities, Internet_Access_at_Home, Parent_Education_Level și Family_Income_Level. Toate aceste variabile aveau valori textuale în limba engleză sau codificări standardizate, care au fost înlocuite cu etichete descriptive în limba română.

```
proc format;
    value $gender_fmt
        "Male" = "Barbat"
        "Female" = "Femeie";
    value $yn_fmt
        "Yes" = "Da"
        "No" = "Nu";
    value $edu fmt
        "High School" = "Liceu"
        "Bachelor's" = "Licenta"
        "Master's" = "Master"
        "PhD" = "Doctorat"
        "No formal education" = "Fara studii";
    value $income fmt
        "Low" = "Venit scazut"
        "Medium" = "Venit mediu"
        "High" = "Venit ridicat";
run;
```

Figură 23. Definirea formatelor personalizate pentru variabilele Gender, Extracurricular_Activities, Internet_Access_at_Home,

Parent Education Level și Family Income Level

	Date formatate - primele 10 randuri												
Obs	Gender	Extracurricular_Activities	Internet_Access_at_Home	Parent_Education_Level	Family_Income_Level								
1	Femeie	Da	Nu	Master	Venit mediu								
2	Barbat	Nu	Nu	Liceu	Venit scazut								
3	Barbat	Da	Nu	Liceu	Venit scazut								
4	Femeie	Nu	Da	Liceu	Venit scazut								
5	Femeie	Da	Nu	Master	Venit mediu								
6	Barbat	Da	Nu	None	Venit mediu								
7	Barbat	Da	Nu	Licenta	Venit ridicat								
8	Barbat	Da	Da	None	Venit scazut								
9	Femeie	Nu	Da	Doctorat	Venit ridicat								
10	Femeie	Da	Nu	None	Venit ridicat								

Figură 24. Aplicarea formatelor în cadrul PROC PRINT

Aplicarea formatelor personalizate asupra variabilelor categorice din setul de date are un mare avantaj asupra datelor folosite. Așa cum se observă în Figura 24, afișarea primelor 10 observații este acum mult mai clară și orientată către utilizator. În locul valorilor codificate sau în

limbi străine sunt afișate etichete descriptive în limba română și astfel, ne ajută să înțelegem mai bine setul de date.

Figură 25. Aplicare PROC FREQ

Gender	Freque	ncy Per	rcent	Cumul		Cumul Per	ative rcent	
Femeie	2	449 4	18.98	:	2449		48.98	
Barbat	2	2551 51.02		5000		10	00.00	
					Cun	nulative	Cum	nulative
Extracurricular_Ac	ctivities	Frequency		Percent		quency		Percent
Nu		2	481	49.81		2481		49.81
Da		2	500	50.19		4981		100.00
		Frequenc	cy Mis	ssing = 1	9			
					Cur	nulative	Cur	nulative
Internet_Access_a	t_Home	Frequency		Percent		quency		Percent
Nu		2	467	49.59		2467	,	49.59
Da		2	508	50.41		4975	j	100.00
		Frequenc	cy Mis	ssing = 2	5			
Parent_Education	_Level	Frequen	ю	Percent		ulative quency		ulative Percent
Licenta		10	011	20.35		1011		20.35
Licenta)11)38	20.35 18.88		1011 1949		20.35 39.24
		9						
Liceu		8	38	18.88		1949		39.24
Liceu Master		9 10	938	18.88 19.91		1949 2938		39.24 59.15
Liceu Master None		9 9 10	938 989 921 908	18.88 19.91 20.56	3	1949 2938 3959		39.24 59.15 79.71
Liceu Master None		9 9 10	938 989 921 908	18.88 19.91 20.56 20.29	3	1949 2938 3959		39.24 59.15 79.71
Liceu Master None	Level	9 9 10	938 989 921 908 cy Mis	18.88 19.91 20.56 20.29	Cumu	1949 2938 3959	Cumu	39.24 59.15 79.71 100.00
Liceu Master None Doctorat	Level	9 10 10 Frequence	938 989 921 908 ey Mis	18.88 19.91 20.56 20.29 ssing = 3	Cumu	1949 2938 3959 4967	Pe	39.24 59.15 79.71 100.00
Liceu Master None Doctorat Family_Income_	Level	g 10 10 Frequence	938 989 921 908 909 Mis	18.88 19.91 20.56 20.29 ssing = 3	Cumu	1949 2938 3959 4967	Pe	39.24 59.15 79.71 100.00
Liceu Master None Doctorat Family_Income_ Venit ridicat	Level	Frequence	038 089 021 008 008 Exy Mis	18.88 19.91 20.56 20.29 ssing = 3: Percent 32.76	Cumu	1949 2938 3959 4967	Pe	39.24 59.15 79.71 100.00 lative

Figură 26. Output PROC FREQ

În figura 25 este prezentat output-ul generat de PROC FREQ, care calculează distribuțiile de frecvență pentru variabilele formatate. Variabila Gender indică o distribuție echilibrată între

"Bărbat" (51.02%) și "Femeie" (48.98%), iar in cazul activităților extracurriculare, proporțiile sunt aproape egale: 50.19% dintre studenți participă, iar 49.81% nu. Aproximativ jumătate din respondenți au acces la internet acasă (50.41%), distribuția de educație a părinților este echilibrată pentru toate categoriile și nivelul venitului familial este la fel, destul de apropiat ca valoare pentru toate categoriile.

2.3. Crearea unui subset de date pe baza unei condiții

2.3.1. Studenți cu performanță înaltă

Cerință: Extrageți studenții care au obținut un scor final (Total Score) de cel puțin 70.

Rezolvare:

```
data studenti_buni;
    set studenti;
    where Total_Score >= 70;
run;
```

Figură 27. Cod SAS pentru extragerea studenților cu scor final ≥ 70

	Total columns: 2 Firet_Name		Email	Gender	Age Department	Attendance (%)	Midterm_Score	Final_Score	Assignments_Avg	Quizzee_Avg	Participation_Score	Projects_Score	Total_Score Grade	Rows 1-100 Study_Hours_per_Week Extracurricular_Activitie
\$1000	Omar	Williams	student0@university.com	Female	22 Mathematics	97.26	40.61	\$9.61	73.69	\$3.17	0.34	62.94	83.49 C	. Yes
\$1001	Maria	Brown	student1@university.com	Male	18 Business	97.71	57.27	74	74.23	98.23		98.23	92.29 F	. No
\$1002	Ahmed	Jones	student2@university.com	Male	24 Engineering	99.52	41.94	63.95	85.95	50	0.47	91.22	93.55 F	. Yes
\$1004	John	Smith	student4@university.com	Female	23 CS	59.41	53.13	61.77	67.66	83.98	0.43	87.43	90.91 A	. Yes
\$1005	Liam	Brown	student\$@university.com	Male	21 Mathematics	40.4	70.21	64.49	87.95	\$2.24	0.49	47.45	92.66 D	. Yes
\$1006	Ahmed	Jones	studenté@university.com	Male	24 Business	67.01	90.85	93.74	89	54.17	0.55	87.51	79.78 A	. Yes
\$1007	Ahmed	Smith	student7@university.com	Male	19 Engineering	45.91	91.72	59.47	50.72	53.93	0.49	90.04	74 F	. Yes
\$1010	John	Smith	student10@university.com	Female	23 Business	86.2	70	85.54	67.58	77.77	0.49	93.14	74,52 D	. Yes
\$1011	Omer	Williams	student11@university.com	Female	20 Mathematics	59.3	93.34	87.9	64.57	80.18	0.28	44.17	93.25 B	. Yes
\$1012	John	Davis	student12@university.com	Male	21 Engineering	95.48	67.24	97.23	83.43	67.3	0.13	54.02	90.16 D	. No
\$1013	John	Williams	student13@university.com	Male	18 Business	91.39	54.43	87.73	91.41	\$0.94	0.14	\$1.26	74.8 A	23 No
\$1014	Liam	Williams	student14@university.com	Male	19 CS	58.18	94,98	64.46	59.6	51.08	0.28	55.5	89.28 C	. No
\$1015	Ahmed	Jones	student1S@university.com	Male	18 CS	93.54	63.29	89.29	78.15	94.42		\$0.21	88.27 B	, Yes
\$1016	Maria	Jones	student16@university.com	Female	21 Business	63.61	70.2	70.52	68.39	55.13	0.21	66.35	78.95 D	. No
\$1022	Sara	Davis	student22@university.com	Male	22 Business	99.44	40.24	43.79	81.34	84.72	0.91	42.64	87.98 F	. No
\$1025	Emma	Davis	student25@university.com	Male	18 Mathematics	60.65	85.44	75.21	55.85	60.09	0.48	95.32	99.29 B	. No
\$1026	Emma	Johnson	student26@university.com	Male	18 Business	\$3.94	43.04	90.43	77.95	91.05	0.94	94.23	89.76 B	. No
\$1027	Sara	Johnson	student27@university.com	Male	18 Engineering	63.85	73.21	51.01	65.02	62.87	0.71	89.32	87.53 F	. No
\$1029	Maria	Jones	student29@university.com	Female	23 Mathematics	61.73	48.02	70.39	70.3	99.95	0.49	\$4.18	82.09 D	. Yes
\$1030	Ahmed	Brown	student30@university.com	Female	22 Business	59.64	86.31	44,03	60.61	66.37		74.39	74,94 D	, Yes
\$1031	Ali	Johnson	student31@university.com	Male	22 Engineering	79.74	\$3.05	48.49	81.44	71.14	0.41	\$2.74	81.19 A	. Yes
\$1032	Maria	Smith	student32@university.com	Female	21 Business	66.41	53.42	58.54	62.21	99.5	0.91	99.92	71.79 A	. Yes
\$1033	Sara	Williams	student33@university.com	Male	19 Engineering	91.02	\$4.5	42.61	74.7	68.47	0.57	47.92	74.55 F	. No
\$1034	Emma	Davis	student34@university.com	Female	21 CS	59.2	75.21	58.56	74.13	68.31	0.41	97.92	99.42 F	. No
\$1037	Ali	Williams	student37@university.com	Male	21 Mathematics	74.09	\$4.51	55.94	40.93	41.49	0.23	\$5.92	72.42 F	. Yes
\$1038	Ali	Williams	student38@university.com	Male	18 Business	52.79	65.86	99.66	95.22	71.16	0.57	61.86	76.22 B	. Yes
\$1040	John	Johnson	student40@university.com	Male	24 Business	89.53	93.05	\$4.25	66.66	52.16	0.41	91.5	90.3 A	. Yes
\$1041	Omar	Smith	student41@university.com	Male	23 CS	74.51	87.26	81.21	59.03	68.7		98.97	71.1 C	. Yes
\$1042	Sara	Davis	student42@university.com	Male	20 CS	\$4.00	77.55	91.54	63.99	67.21	0.51	54.41	70.44 D	. No
\$1043	Liam	Williams	student43@university.com	Male	18 Engineering	79.62	60.28	63.22	66.63	62.24	0.26	57.8	82.94 D	. Yes
\$1044	Maria	Smith	student44@university.com	Male	22 Business	87.94	92.04	92.54	77.95	82.71	0.17	52.12	88.66 A	. No
\$1045	Maria	Brown	student45@university.com	Male	21 CS	\$9.54	90.62	60.41	52.32	64.5	0.14	63.02	99.3 A	. Yes
\$1049	Emma	Jones	student49@university.com	Male	24 Engineering	90.15	74.3	62.03	55.46	63.33		72.32	94.04 B	. No
\$1050	Omar	Jones	student50@university.com	Female	19 Engineering	93.97	58.73	80.37	62.93	58.53	0.27	66.29	77.42 9	. Yes
\$1051	Emma	Jones	student51@university.com	Female	20 Engineering	94.66	84.75	54.22	91.99	52.83	0.19	80.92	92.62 F	. No
\$1052	John	Brown	student52@university.com	Female	19 CS	70.28	52.41	82.06	80.76	80.96	0.94	75.12	99.26 B	16 Yes
\$1053	Maria	Smith	student53@university.com	Female	23 Business	79.44	84.77	40.95	61.37	83.64	0.94	66.74	77.51 A	. No
\$1057	Δli	Johnson	student\$7@university.com	Male	20 CS	50.68	\$1.55	54.32	92.38	53.72	0.23	97.86	92,47 B	, Yes
\$1059	Ahmed	Johnson	student59@university.com	Male	24 Business	64.05	84.6	83.31	75.07	84.45	0.47	70.92	79.41 F	. No

Figură 28. Output – primii 10 studenți incluși în subsetul studenti_buni

Filtrarea s-a realizat folosind instrucțiunea WHERE, direct în cadrul instrucțiunii DATA ... SET, care este mai eficientă decât o filtrare IF aplicată post-import.

2.3.2: Studenți fără acces la internet acasă

Cerință: Extrageți studenții care nu au acces la internet acasă.

Rezolvare:

```
data fara_internet;
    set studenti;
    where Internet_Access_at_Home = "No";
run;
```

Figură 29. Cod SAS pentru extragerea studenților fără acces la internet

Student I	D Fine Nat	ITA LASS KATS	Cnall	Gandar	Age Department	Attendance (%)	Midtern Score	Final Score	Assignments Aug	Outzan Avg	Participation Score	Projects Score	Total Score Grade	Study Hours per Week Extracurricular Activities	Internet Access at Figure	Parent Education Level	Family Income Level	Street Level (1-10)	Sleep Hours per Nig
\$1000	9***	Witness	distant Commence of the second	Female	22 Mathematics	97.84	49.41	29.41	72.49	\$9.17	0.04	42.44	82.47 C	. Ven	Ne	Masterla	Medical	4	
\$1001	Maria	See.	student Consenty sem	Male	18 Barrens	97.71	\$7.27	74	74.23	99.22		19.22	92.29 F	. Ne	No	High Sahard	Law	4	
\$1000	diam'r.	James .	auto-Otherseyas-	Male	26 Engineering	99.52	4184	45.65	85.65	90	9.47	91.22	99.55 F	. Van	No.	Rept Sales	Leave		
\$1004	deba	Seed	state of the county same	Female	22 CE	29.41	99.19	41.77	47.44	83.98	0.42	67.63	90.91 &	. Ven	Ne	Masterla	Medical	4	
\$1005	Com	See.	audentitumenty sen	Male	21 Mathematics	40.4	70.21	60.00	47.45	\$2.24	0.48	47.45	92.44 b	. Van	No	Nese	Medical	4	
\$1004	diam'r.	James .	autorithmentyse-	Male	26 Barrens	47.01	90.85	99.74	29	\$6.17	0.55	87.51	79.79 4	. Ven	Ne	Backeton's	Pet	2	
\$1009	Same	9-16	distant Device types	Female	22 Burness	89.65	92.49	94.97	40.45	94.0	9.91	89.00	61.99 €	. Van	Ne	Nese	Nat.		
\$1011	0	Witness	student (Burnard) sem	Female	20 Mathematics	20.2	92.24	47.0	44.27	80.18	0.24	44.17	99.25 9	. Van	Ne	Nene	Lear	7	
\$1012	Jako	Davis	autoritäturentysen	Male	21 Engineering	95.00	47.24	97.22	83.43	47.2	0.13	\$4.02	90.16 5	. Ne	Ne	Neve	Media-		
\$1013	Jahr	Witness	student Studenty sen	Male	18 Burrens	91.00	5445	97.79	91.41	\$0.94	9.56	\$1.54	768 4	22 No.	Ne	No	Media-		
21012	diam'r.	James	Audion/18 county sen	Male	18 CS	93.24	43.24	49.29	74.12	94.42		\$0.21	44.27 0	. Van	Ne	Backeteris	Law	2	
\$1017	Com-	Davis	student 78 university sem	Female	22 CE	\$4.04	\$9.72	24.44	75.29	99.99	0.92	64.97	41.02 C	. Na	Ne	Barbara	Median		
\$1000	E	See	Auto-20th-monty-serv	Male	18 Burrens	\$478	4132	427	\$9.41	97.45	9.17	99.6	\$0.56 C	. Na	Ne	No	Res.	2	
\$1001	diam'r.	James	student filter constraint	Male	22 Barrens	42.94	92.99	\$1.07	24.22	48.11	0.79	19.00	\$4.03 9	No.	Ne	Name	Hat	10	
\$1025	inn.	Davis	auto-110 company	Male	12 Mathematics	40.45	25.64	75.21	55.65	40.09	0.68	99.00	99.29 2	Na Na	Ne	Hà	Median	10	
\$1006	i	Jahrens	auto-200 company	Male	18 Burrens	\$2.94	49.04	90.49	77.96	91.00	0.00	96.22	89.76 8	. Na	No.	No	Page .	4	
91009	State	Design	distant Million and page	Female	21 Engineering	42.44	\$7.7	96.1	99.67	66.16	0.18	44.42	49.74 F	. Van	Ne	Masteria	Lear	7	
\$1031	45	Jahrens	student 10 months are	Male	22 Engineering	79.74	\$2.05	68.68	91.66	71.14	0.41	\$2.74	\$1.19 4	. Van	Ne	Masterla	Leav	2	
\$1000	Maria	2-4	distribution to the	Female	21 Burner	44.61	\$2.42	\$8.54	40.21	99.5	0.91	99,92	71.79 A	, Ven	Ne	Masterla	Media		
\$1033	Sara	Witness	distant Statement years	Male	19 Engineering	91.02	14.5	42.41	74.7	69.47	0.97	47.92	74.88 F	. Ne	Ne	Neve	Medical	7	
\$1035	About	Smile	autostitico company	Female	25 CE	79.22	79.50	43.4	72.44	91.29	0.42	88.64	44.0 #	Na Na	Ne	Bestelerin	Leav	4	
\$1038	45	Wilson	auto-180 mentione	Male	18 Barrens	\$2.79	45.84	99.44	95.22	71.14	0.97	41.84	74.22 9	. Ven	Ne	Masteria	Het.	2	
\$1039	deba	debrases	Audio (20)	Female	22 Mathematics	98.89	29.92	\$619	99.57	85.00	9.94	60.45	24.28 9	. Na	Ne	No	Leave		
\$1040	Jako	Jahrens	audentititum entyren	Male	26 Barrens	89.53	99.05	\$4.35	4444	\$2.14	0.41	91.5	903 4	, Van	No.	Masterla	Madam	4	
\$1042	Sere	Davis	auto-120-menty-sen	Male	20 CS	\$4.32	77.55	91.54	45.94	47.21	0.91	\$4.41	70.44 b	Na Na	Ne	High Saharal	Lew	2	
91066	Sec.	2-0	distributions and seen	Male	24 CS	79.41	79.40	\$1.00	99.70	80.04	0.77	91.00	20.40 5	, Ven	Ne	Neve	Median		
\$1047	0	James	student/20uncerty-sen	Female	22 Barrens	90.71	97.07	\$9.76	\$4.92	79.22		29.91	47.24 F	29 Na	Ne	High Sahard	Hat	2	
\$1048	inn.	Seed	autorititum engage	Male	18 Engineering	99.61	94.95	74.54	45.94	40.44		77.20	\$8.01 F	Na Na	Ne	Masterla	Lev	,	
91093	deba	See.	auto-600-renty ser	Female	19 65	70.00	\$2.41	92.04	90.74	80.94	0.94	79.10	99.04 9	14 Ven	Ne	No	les		
\$1023	Maria	Seeds	state of 10 county see	Female	22 Business	79.44	94.77	49.40	41.97	\$2.44	0.94	44.74	77.81 4	. Ne	Ne	No	Medical	1	
\$1040	Jako	Davis	automitiburoses pare	Female	20 Burrens	42.12	92.12	\$4.05	44.7	\$2.5	0.49	87.56	\$\$.\$1 b	Ven	No.	Name	Les	,	
\$1042	direct.	2	make of 2th county and	Female	22 Engineering	95.64	49.45	79.00	77.67	98.98		44.29	42.81 9	. Van	Ne	Backeter's	Median	4	
81048	Sere	Witness	district Decreases	Female	24 CS	86.67	44	71.00	92.94	68.92	0.94	99.92	80.74 &	. Ne	Ne	Master's	Median		
\$1044	Maria	Wilson	automitibusers pare	Male	21 Mathematics	42.54	75.49	49.89	47.65	\$7.21	0.14	44.77	88.6 D	. Ven	Ne	Ha	Median	7	
\$1047	45	Witness	distant/Discounty and	Male	18 Burren	42.44	96.62	49.77	9676	76.66	0.27	94.49	99.49 F	, Van	Ne	Name	Page .	- 1	
91048	Maria	Serie	esterither was see	Male	22 CS	91.66	9619	41.22	92.62	23.24	9.65	79.76	94.99 G	. Van	No.	Master's	Median.		
\$1073	Sere	James	maken/180, managasan	Male	21 Variances	79.07	92.41	44.44	94.93	72.92	0.44	88-0	70.17 8	. Van	No	Masteria	Hg4		
\$1075	Sara	Witness	maken 710 annually seen	Female	18 Burner	90.62	99.49	77.52	73.29	68.04	0.98	72.92	84.58 0	Ne Ne	No.	High Salesal	Leav	2	
91079	2	delicano	natural Marchael and	Male	22 Barrens	98.2	4544	24.00	89.1	20.02	0.99	79.99	44.94 C	. No.		Bernary .	ien	4	
81081	Maria	Jahren	student (Burnaraty sam	Female	22 Vathematics	24.24	49.09	41.14	49.77	42.45	9.91	\$4.04	49.07 C	No.		Mester's	Medical	4	
\$1085	2454	Attende	national designation of	Female	20 CS	\$6.14	88.79	\$3.29	98.66	21.79	9.74	72.59	94.99 C	No.		No	Median		

Figură 30. Output – primii 10 studenți fără internet acasă

Am extras un subset format din studenții care au declarat că nu au acces la internet acasă (Internet_Access_at_Home = "No"). Acest grup poate fi analizat separat în comparație cu cei care beneficiază de conectivitate constantă.

2.3.3: Studenți din familii cu venit scăzut și scor sub 60

Cerință: Întocmiți o analiză asupra studenților aflați în risc educațional.

```
data risc_educational;
    set studenti;
    where Family_Income_Level = "Low" and Total_Score < 60;
run;</pre>
```

Figură 31. Cod SAS pentru selecția cazurilor cu risc educațional

	Total columns: 2		F	0 1		4 1 (0/)		F1 1 0		Rows 1-100
Student_ID	First_Name	Last_Name	Email	Gender	Age Department	Attendance (%)	Midterm_Score	Final_Score	Assignments_Avg	Quizzes_Av
S1060	John	Davis	student60@university.com	Female	20 Business	63.12	93.18	54.05	68.7	52.
S1064	Omar	Davis	studentó4@university.com	Male	20 CS	87.08	99.35	49.45	79.7	91.1
S1092	Sara	Davis	student92@university.com	Female	24 Business	62.95	55.71	60.57	64	53.42
S1114	Omar	Johnson	student114@university.com	Female	18 Business	73.18	96.87	89.32	76.01	78.84
S1121	Ahmed	Johnson	student121@university.com	Male	20 Mathematics	56.55	92.18	57.92	73.57	69.29
S1159	Maria	Smith	student159@university.com	Male	24 Business	55.17	59.93	92.14	92.04	53.09
1 S1164	Sara	Williams	student164@university.com	Male	22 Engineering	60.23	96.43	76	94.4	66.49
S1165	Ali	Johnson	student165@university.com	Male	18 CS	84.14	45.59	62.56	59.85	90.99
S1184	Ali	Williams	student184@university.com	Male	22 CS	92.81	70.8	74.5	85.86	85.6
7 S1195	Sara	Smith	student195@university.com	Male	18 Business	72.34	99.68	82.71	80.69	66.6
S1241	Omar	Williams	student241@university.com	Female	23 Business	86.14	50.22	69.28	78.06	95.23
S1258	Liam	Smith	student258@university.com	Female	24 Business	62.93	47.39	84.25	60.48	65.18
S1266	Maria	Davis	student266@university.com	Male	23 Business	53.87	63.38	52.44	79.39	66.72
S1268	Omar	Jones	student268@university.com	Female	23 Business	59.47	93.9	51.73	55.18	85.44
S1281	Maria	Brown	student281@university.com	Male	20 Business	95.81	66.69	65.86	84.34	90.08
S1290	Ali	Johnson	student290@university.com	Male	18 Engineering	63.27	40.73	92.85	81.75	91.33
\$1313	Omar	Brown	student313@university.com	Male	22 Business	70.45	73.95	43.48	59.96	78.32
S1346	John	Brown	student346@university.com	Female	24 Business	77.28	50	98.05	88.04	97.34
5 \$1348	Liam	Williams	student348@university.com	Female	22 Mathematics	67.37	60.41	68.65	74.84	66.89
7 \$1395	Maria	Jones	student395@university.com	Male	20 CS	51.58		76.52	84.96	94.85
S1398	Liam	Davis	student398@university.com	Female	23 Mathematics	82.3	54.81	77.49	61.68	65
S1401	Maria	Davis	student401@university.com	Male	19 CS	86.46	75.75	78.07	96.93	70.87
S1417	Sara	Williams	student417@university.com	Male	24 CS	85.26	82.99	94.74	83.02	59.88
S1436	Liam	Brown	student436@university.com	Male	20 Engineering	55.36	78.54	99.85	97.37	96.18
	-		1 1000 1 1		10 00		07.00	70.10	50.00	

Figură 32. Output – studenți având risc educațional scăzut

Pentru a identifica posibile cazuri de risc educațional, s-a creat un subset alcătuit din studenții provenind din familii cu venituri reduse care au obținut un scor sub 60. Această combinație evidențiază o categorie vulnerabilă atât din punct de vedere socio-economic, cât și educațional.

2.3.4: Studenți cu părinți fără studii și scor ridicat (≥ 85)

Cerință: *Identificați exemplele de reușită academică în contexte defavorizate.*

```
data reusite_context_defavorizat;
    set studenti;
    where Parent_Education_Level = "None" and Total_Score >= 85;
run;
```

Figură 33. Cod SAS pentru identificarea reușitelor în contexte defavorizate

Tota	l rows: 300 To	otal columns: 2	3								Rows 1-100
	Student_ID	First_Name	Last_Name	Email	Gender	Age	Department	Attendance (%)	Midterm_Score	Final_Score	Assignments_Avç
1	S1005	Liam	Brown	student5@university.com	Male	21	Mathematics	60.6	70.21	64.48	87.85
2	S1011	Omar	Williams	student11@university.com	Female	20	Mathematics	59.3	93.34	87.9	64.57
3	S1012	John	Davis	student12@university.com	Male	21	Engineering	95.48	67.24	97.23	83.43
4	S1067	Ali	Williams	student67@university.com	Male	18	Business	62.64	86.63	65.77	84.70
5	S1070	Sara	Jones	student70@university.com	Male	21	CS	93.82	46.89	51.54	82.25
6	S1096	Sara	Jones	student96@university.com	Female	19	Mathematics	58.78	97.23	62.71	69.12
7	S1117	Emma	Brown	student117@university.com	Female	21	Mathematics	75.61	97.23	44.79	81.90
8	S1152	Ali	Davis	student152@university.com	Male	23	Mathematics	75.8	46.3	60.45	75.35
9	S1168	Omar	Brown	student168@university.com	Male	19	Business	64.61	69.88	80.11	82.0
10	S1191	John	Jones	student191@university.com	Male	22	Mathematics	87.33	69.49	50.61	73.08
11	S1199	John	Smith	student199@university.com	Male	20	CS	57.16	42.8	93.41	89.94
12	S1211	Omar	Smith	student211@university.com	Female	21	Engineering	59.17	85.66	58.5	77.94
13	S1216	Maria	Brown	student216@university.com	Female	20	CS	57.54	80.75	87.87	55.44
14	S1242	Maria	Brown	student242@university.com	Male	19	CS	98.2	41.32	53.5	80.97

Figură 34. Output – Studeți cu reușite academice având contexte defavorizate

Pentru a evidenția cazurile pozitive, s-a extras un subset de studenți cu scor final ridicat (≥ 85), dar care provin din medii familiale cu părinți fără studii.

2.4. Procesare condițională și crearea unei noi variabile categorice

2.4.1. Etichetarea studenților în funcție de implicare

Cerință: Clasificați studenții în funcție de nivelul de implicare educațională și socială, prin combinarea scorului de participare la cursuri și a implicării în activități extracurriculare.

```
data studenti_eticheta;
    set studenti;
    length Tip_Student $15;
    if Participation_Score >= 70 and Extracurricular_Activities = "Yes" then
        Tip_Student = "Activ complet";
    else if Participation_Score >= 70 then
        Tip_Student = "Activ la curs";
    else if Extracurricular_Activities = "Yes" then
        Tip_Student = "Activ social";
    else
        Tip_Student = "Pasiv";
run;
```

Figură 35. Cod SAS pentru etichetarea studentilor în funcție de implicare

otal_Score	Grade	Study_Hours_per_Week	Extracurricular_Activities	Internet_Access_at_Home	Parent_Education_Level	Family_Income_Level	Stress_Level (1-10)	Sleep_Hours_per_Night	Tip_Student
83.49	С		Yes	No	Master's	Medium	1	5	Activ social
92.29	F		No	No	High School	Low	4	4	Pasiv
93.55	F		Yes	No	High School	Low	9	ó	Activ social
51.03	Α		No	Yes	High School	Low	8	4	Pasiv
90.91	A		Yes	No	Master's	Medium	6	4	Activ social
92.66	D		Yes	No	None	Medium	6	5	Activ social
79.78	A		Yes	No	Bachelor's	High	2	4	Activ social
74	F		Yes	Yes	None	Low	5	7	Activ social
55.55	D		No	Yes	PhD	High	9	4	Pasiv
61.98	С		Yes	No	None	High	8	7	Activ social
74.52	D		Yes	Yes	High School	Low	4	8	Activ social
93.25	В		Yes	No	None	Low	7	8	Activ social
90.16	D		No	No	None	Medium	9	6	Pasiv
74.8	A	23	No	No	PhD	Medium	5	7	Pasiv
89.28	С		No	Yes	Bachelor's	High	2	6	Pasiv
88.29	В		Yes	No	Bachelor's	Low	2	6	Activ social
78.95	D		No	Yes	High School	High	8	6	Pasiv
61.02	С		No	No	Bachelor's	Medium	8	7	Pasiv
67.4	A		Yes	Yes	High School	High	8	7	Activ social

Figură 36. Output – eticheta Tip_Student aplicată

Rezolvare:

Pentru a obține o imagine clară asupra tipurilor de implicare ale studenților, am utilizat o structură condiționată *IF-THEN-ELSE* care etichetează fiecare student astfel:

- "Activ complet" participare ≥ 70 si activ extracurricular
- "Activ la curs" doar participare ≥ 70
- "Activ social" doar activ extracurricular
- "Pasiv" niciuna

Această etichetare ne ajută la realizarea unor analize comparative între tipologii de studenți și pentru a ne da seama ce pattern-uri comportamentale avem noi, ca studenți

2.4.2. Marcarea studenților eligibili pentru burse

Cerință: Identificați automat studenții eligibili pentru burse, pe baza unor criterii de performanță și venit.

Rezolvare:

```
data studenti_clasificati;
   set studenti;
   length Scor_Categorie $10;
   if Total_Score >= 90 then Scor_Categorie = "Ridicat";
   else if Total_Score >= 60 then Scor_Categorie = "Mediu";
   else Scor_Categorie = "Scăzut";
run;
```

Figură 37. Cod SAS pentru marcarea eligibilității la bursă

icore	Total_Score	Grade	Study_Hours_per_Week	Extracurricular_Activities	Internet_Access_at_Home	Parent_Education_Level	Family_Income_Level	Stress_Level (1-10)	Sleep_Hours_per_Night Scor_Categorie
52.84	83.49	С		Yes	No	Master's	Medium	1	5 Mediu
8.23	92.29	F		No	No	High School	Low	4	4 Ridicet
71.22	93.55	F		Yes	No	High School	Low	9	6 Ridicat
55.48	51.03	A		No	Yes	High School	Low	8	4 Scăzut
37.43	90.91	Α		Yes	No	Master's	Medium	6	4 Ridicat
7.65	92.66	D		Yes	No	None	Medium	6	5 Ridicat
37.51	79.78	А		Yes	No	Bachelor's	High	2	4 Mediu
20.04	74	F		Yes	Yes	None	Low	5	7 Mediu
57.57	55.55	D		No	Yes	PhD	High	9	4 Scăzut
33.09	61.98	С		Yes	No	None	High	8	7 Mediu
73.14	74.52	D		Yes	Yes	High School	Low	4	8 Mediu
66.17	93.25	В		Yes	No	None	Low	7	8 Ridicat
54.02	90.16	D		No	No	None	Medium	9	6 Ridicat
51.36	74.8	Α	23	No	No	PhD	Medium	5	7 Mediu
55.5	89.28	С		No	Yes	Bachelor's	High	2	6 Mediu
50.21	88.29	В		Yes	No	Bachelor's	Low	2	6 Mediu
6.35	78.95	D		No	Yes	High School	High	8	6 Mediu
4.97	61.02	С		No	No	Bachelor's	Medium	8	7 Mediu
5.52	67.4	Α		Yes	Yes	High School	High	8	7 Mediu
2.56	58.2	С		No	Yes	Møster's	Low	5	7 Scăzut
99.6	50.36	С		No	No	PhD	High	2	7 Scăzut
5.05	54.03	В		No	No	None	High	10	8 Scăzut
2.64	87.98	F		No	Yes	PhD	Low	8	7 Mediu

Figură 38. Output – studenții marcați cu pentru Eligibil_Bursa

Pentru a selecta studenții eligibili pentru burse, pentru care s-a aplicat condiția Total_Score ≥ 85. Cu ajutorul instrucțiunii *IF-THEN-ELSE*, a fost creată variabila Eligibil_Bursa pentru cei care îndeplinesc criteriile de a primi bursă

2.4.3. Numărarea componentelor unde studentul a avut peste 70 de puncte

Cerință: Calculați numărului de componente de evaluare în care un student a avut o performanță bună, definită ca $scor \ge 70$.

```
data scoruri_bune;
    set studenti;
    array note[5] Midterm_Score Final_Score Projects_Score Quizzes_Avg Assignments_Avg;
    Nr_Componente_Bune = 0;

    do i = 1 to 5;
        if note[i] >= 70 then Nr_Componente_Bune + 1;
    end;

    drop i;
run;
```

Figură 39. Cod SAS pentru numărarea componentelor cu scor ≥ 70

Total_Score	Grade	Study_Hours_per_Week	Extracurricular_Activities	Internet_Access_at_Home	Parent_Education_Level	Family_Income_Level	Stress_Level (1-10)	Sleep_Hours_per_Night	Nr_Componente_Bune
83.49	С		Yes	No	Master's	Medium	1	5	1
92.29	F		No	No	High School	Low	4	4	4
93.55	F		Yes	No	High School	Low	9	6	2
51.03	A		No	Yes	High School	Low	8	4	(
90.91	Α		Yes	No	Master's	Medium	6	4	2
92.66	D		Yes	No	None	Medium	6	5	2
79.78	A		Yes	No	Bachelor's	High	2	4	4
74	F		Yes	Yes	None	Low	5	7	2
55.55	D		No	Yes	PhD	High	9	4	2
61.98	С		Yes	No	None	High	8	7	4
74.52	D		Yes	Yes	High School	Low	4	8	4
93.25	В		Yes	No	None	Low	7	8	3
90.16	D		No	No	None	Medium	9	6	2
74.8	A	23	No	No	PhD	Medium	5	7	2
89.28	С		No	Yes	Bachelor's	High	2	6	1
88.29	В		Yes	No	Bachelor's	Low	2	6	3
78.95	D		No	Yes	High School	High	8	6	2
61.02	С		No	No	Bachelor's	Medium	8	7	2
67.4	A		Yes	Yes	High School	High	8	7	2
58.2	С		No	Yes	Master's	Low	5	7	4
50.36	С		No	No	PhD	High	2	7	2

Figură 40. Output – numărul de componente cu performanță ridicată

Am folosit o buclă DO pentru a parcurge cele cinci componente de evaluare (Midterm, Final, Projects, Quizzes, Assignments). Cu fiecare iterație, dacă scorul a fost ≥ 70, s-a incrementat contorul Nr_Componente_Bune. Această variabilă indică consistența performanței unui student și poate fi utilizată în analiza individuală sau comparativă.

2.5. Utilizarea funcțiilor SAS

2.5.1. Etichetă personalizată cu numele complet și tipul venitului

Cerință: Obțineți o nouă coloană denumită Etichetă care reprezintă numele complet al studentului și venitul familiei sale.

```
data eticheta_student;
  set studenti;
  Nume_Complet = catx(" ", upcase(First_Name), upcase(Last_Name));
  Eticheta = catx(" - ", Nume_Complet, Family_Income_Level);
run;
```

Figură 41. Cod SAS pentru eticheta studentului

Eticheta
OMAR WILLIAMS - Medium
MARIA BROWN - Low
AHMED JONES - Low
OMAR WILLIAMS - Low
JOHN SMITH - Medium
LIAM BROWN - Medium
AHMED JONES - High
AHMED SMITH - Low
OMAR SMITH - High
SARA SMITH - High
JOHN SMITH - Low
OMAR WILLIAMS - Low
JOHN DAVIS - Medium
JOHN WILLIAMS - Medium
LIAM WILLIAMS - High
AHMED JONES - Low
MARIA JONES - High
LIAM DAVIS - Medium
LIAM JONES - High
JOHN JOHNSON - Low
EMMA DAVIS - High
AHMED JONES - High
SARA DAVIS - Low
LIAM WILLIAMS - Low

Figură 42. Output – etichete compuse

- upcase() → transformă textul în majuscule (pentru standardizare)
- catx(" ", ...) → concatenează cu separator spațiu între prenume și nume
- catx(" ", ...) → combină numele complet cu nivelul venitului, folosind separator vizual

2.5.2. Calcularea diferenței dintre scorul final și cel mediu al quizurilor (ABS)

Cerință: Determinați diferența absolută dintre scorul total (Total_Score) și media quizurilor (Quizzes Avg) pentru fiecare student.

Rezolvare:

```
data diferente_quiz;
  set studenti;
  Diferenta = abs(Total_Score - Quizzes_Avg);
run;
```

Figură 43. Cod SAS pentru calculul diferenței față de quizuri

Diferenta
30.32
5.94
43.55
15.24
6.93
40.4
25.61
20.17
23.53
32.82
3.25
13.07
22.86
23.86
38.2
6.13
23.82
38.97
9.18
25.53
47.09
14.08
1.26

Figură 44. Output – diferențe absolute

2.5.3. Calcularea diferenței dintre scorul final și cel mediu al quizurilor (ABS)

Cerință: Calculați media aritmetică simplă a celor 5 componente de evaluare: Midterm, Final, Projects, Quizzes și Assignments.

```
data medie_generala;
  set studenti;
  Medie_Componente = mean(Midterm_Score, Final_Score, Projects_Score, Quizzes_Avg, Assignments_Avg)
run:
```

Figură 45. Cod SAS pentru calculul mediei generale pe componente

Medie_Componente
57.984
80.392
66.552
55.988
70.794
68.49
83.054
69.156
66.712
84.24
78.806
78.432
73.844
67.614
65.124
75.07
66.118
71.328
66.546
82.82
69.378

Figură 46. Output – media componentelor

Funcția mean calculează media doar din valorile nenule, astfel evităm erorile dacă lipsesc unele scoruri, și este utilă pentru clasificarea și analizarea generală a studenților.

2.6. Combinarea seturilor de date prin proceduri specifice SAS și SQL

În analiza datelor, este adesea necesar să combinăm informații provenite din surse diferite. Cele mai comune modalități sunt: concatenarea (adaugă rânduri din mai multe tabele care au aceeași structuă), îmbinarea (combină 2 tabele pe baza unui identificator comun) și join (alăturări flexibile între tabele, ca în SQL).

2.6.1 – Concatenarea a două fișiere de studenți (SET)

Cerință: Se dorește simularea adăugării a două loturi de studenți (ex. anii 2023 și 2024) într-un tabel unic. Această operație este utilă atunci când se colectează date în serii temporale sau pe grupe.

Rezolvare:

Pentru această demonstrație, s-au împărțit observațiile din tabelul studenti în două subseturi: studenti_2023 și studenti_2024. Apoi, s-a realizat concatenarea cu instrucțiunea SET. Acesta este un exerciție demonstrativ, deoarece nu dispunem de generații diferite de studenți, însă pentru un set real de date, această concatenare ne poate ajuta la analiza comparativă între generații.

```
data studenti_2023 studenti_2024;
    set studenti;
    if mod(_N_, 2) = 0 then output studenti_2023;
    else output studenti_2024;
run;
data toti_studentii;
    set studenti_2023 studenti_2024;
run;
```

Figură 47. Cod SAS pentru concatenarea fișierelor de studenți

Total rows: 5000 Total columns: 23						
	Student_ID	First_Name	Last_Name	Email	Gender	
1	S1001	Maria	Brown	student1@university.com	Male	
2	S1003	Omar	Williams	student3@university.com	Female	
3	S1005	Liam	Brown	student5@university.com	Male	
4	S1007	Ahmed	Smith	student7@university.com	Male	
5	S1009	Sara	Smith	student9@university.com	Female	
6	S1011	Omar	Williams	student11@university.com	Female	
7	S1013	John	Williams	student13@university.com	Male	
8	S1015	Ahmed	Jones	student15@university.com	Male	
9	S1017	Liam	Davis	student17@university.com	Female	
10	S1019	John	Johnson	student19@university.com	Male	
11	S1021	Ahmed	Jones	student21@university.com	Male	
12	S1023	Liam	Williams	student23@university.com	Female	
13	S1025	Emma	Davis	student25@university.com	Male	
14	S1027	Sara	Johnson	student27@university.com	Male	
15	S1029	Maria	Jones	student29@university.com	Female	

Figură 48. Output – toți studenții combinați într-un singur tabel

2.6.2 – Îmbinarea a două tabele pe baza ID-ului (MERGE)

Cerință: Separați datele academice de cele socio-demografice și uniți-le pe baza coloanei Student ID.

Rezolvare:

Acest exercițiu își propune să reunească într-un singur tabel informațiile academice și cele socio-demografice ale fiecărui student. Pentru asta, s-au separat mai întâi două seturi de date: unul cu scorurile și notele, celălalt cu informații precum genul, venitul familiei sau educația părinților. Apoi, prin funcția MERGE, cele două fișiere au fost combinate pe baza unui identificator comun, Student ID.

Această procedură este foarte utilă atunci când lucrăm cu fișiere diferite pentru aceeași populație. Ne ajută să avem într-un singur loc toate datele de care avem nevoie pentru analize mai complexe, cum ar fi influența factorilor sociali asupra performanței școlare.

```
data academice;
   set studenti;
   keep Student_ID Midterm_Score Final_Score Total_Score Grade;
run;

data socio;
   set studenti;
   keep Student_ID Gender Family_Income_Level Parent_Education_Level;
run;

proc sort data=academice; by Student_ID; run;
proc sort data=socio; by Student_ID; run;

data studenti_combinati;
   merge academice socio;
   by Student_ID;
run;
```

Figură 49. Cod SAS pentru îmbinarea datelor academice și socio-economice

: WORK.SOCIO View	w: Co	lumn names 🔻	-	😘 📱 Filter: (none)				
WORK.ACADEMICE	te	tel rows: 5000 Total columns: 4						
WORK.SOCIO		Student_ID	Gender	Parent_Education_Level	Family_Income_Level			
WORK.STUDENTI_COMBII	T	S1000	Female	Master's	Medium			
▲ Gender	2	S1001	Male	High School	Low			
▲ Parent_Education_Level		S1002	Male	High School	Low			
▲ Family_Income_Level	4	S1003	Female	High School	Low			
	5	S1004	Female	Master's	Medium			
	6	S1005	Male	None	Medium			
	7	S1006	Male	Bachelor's	High			
	8	S1007	Male	None	Low			
	9	S1008	Female	PhD	High			
	10	S1009	Female	None	High			

Figură 50. Output – tabelul combinat cu date socio-demografice.

2.6.3 – JOIN cu PROC SQL între studenți și bursieri

Cerință: Se dorește extragerea doar a studenților care îndeplinesc condițiile de bursă și completarea datelor lor generale cu tipul bursei acordate.

Rezolvare:

În acest exercițiu, am folosit PROC SQL pentru a face o selecție a studenților care se califică pentru bursă, pe baza scorului total. Am creat mai întâi un tabel cu doar acei studenți care au avut peste 85 de puncte și le-am atribuit o etichetă de tipul bursei (de exemplu, "Merit"). Apoi, folosind INNER JOIN, am combinat această listă cu tabelul complet al studenților, pentru a obține o variantă finală care conține doar bursierii, împreună cu datele lor personale.

Această metodă este foarte practică atunci când vrem să extragem rapid un grup țintă și să-i combinăm cu alte date – de exemplu, pentru a genera o listă cu bursierii care urmează să fie notificați sau sprijiniți financiar.

```
data bursieri;
  set studenti;
  if Total_Score >= 85 then do;
    Tip_Bursa = "Merit";
    output;
  end;
run;

proc sql;
  create table studenti_bursieri as
  select s.Student_ID, s.First_Name, s.Last_Name, s.Total_Score, b.Tip_Bursa
  from studenti as s
  inner join bursieri as b
  on s.Student_ID = b.Student_ID;
quit;
```

Figură 51. Cod SAS pentru alăturare cu PROC SQL JOIN

Figură 52. Output – lista bursierilor

2.7. Generarea graficelor

Graficele sunt o metodă esențială pentru a înțelege mai bine structura și tendințele datelor. În această secțiune vom prezentata câteva exemple de grafice utile în analiza datelor educaționale, care evidențiază distribuții, corelații și comparații între variabile.

2.7.1. Bar chart – Media scorurilor totale în funcție de gen

Cerință: Se dorește compararea performanțelor academice între genuri prin afișarea mediei scorului total pentru fiecare categorie de gen (masculin și feminin).

Rezolvare:

Pentru a evidenția diferențele de performanță între genuri, se creează un grafic cu bare verticale care ilustrează media notelor finale pentru fiecare categorie de gen (masculin/feminin). Acest tip de vizualizare este util pentru a observa tendințe generale în performanță în funcție de gen și poate ghida eventuale analize suplimentare sau intervenții educaționale.

```
proc sgplot data=students;

vbar Gender / response=Total_Score stat=mean datalabel;
yaxis label="Media Notei Finale";
xaxis label="Gen";
run;
```

Figură 53. Cod pentru generarea graficului cu media scorurilor totale pe gen

Figură 54. Media scorurilor finale în funcție de gen

Această reprezentare grafică sugerează că genul nu influențează semnificativ performanța finală, cel puțin în cadrul acestui eșantion de date. Ambele medii sunt aproape egale, ceea ce sprijină ideea unui mediu educațional echitabil, în care rezultatele sunt similare indiferent de gen. Această concluzie poate fi utilă în analiza echității academice sau în fundamentarea unor decizii legate de politici educaționale.

2.7.2. Pie chart – Distribuția studenților pe niveluri de venit

Cerință: Se dorește reprezentarea procentuală a studenților în funcție de nivelul venitului familial (scăzut, mediu, ridicat).

Rezolvare:

```
proc freq data=studenti noprint;
  tables Family_Income_Level / out=venituri_freq;
run;
proc gchart data=venituri_freq;
  pie Family_Income_Level / sumvar=Count value=inside percent=inside slice=outside;
  title "Distributia studentilor in functie de nivelul venitului familial";
run;
```

Figură 55. Cod pentru generarea distribuției între studenți pe nivelurile de venit

Figură 56. Pie chart – distribuția studenților pe niveluri de venit

Acest grafic circular reprezintă vizual proporțiile studenților pe categorii de venit. Fiecare felie indică atât procentul, cât și numărul efectiv al studenților care se încadrează într-o anumită clasă socio-economică. Graficul este util pentru a înțelege cât de echilibrată sau dezechilibrată este distribuția financiară a eșantionului. Această distribuție aproape uniformă sugerează că setul de date nu este dezechilibrat din punct de vedere socio-economic

2.7.3. Histogramă – Distribuția scorurilor totale

Cerință: Se dorește analizarea distribuției scorurilor finale pentru a observa dacă valorile sunt concentrate în jurul unei medii sau dispersate.

```
proc sgplot data=studenti;
  histogram Total_Score / binwidth=5;
  density Total_Score;
  title "Distributia scorurilor totale";
run;
```

Figură 57. Cod - histogramă pentru distribuția scorurilor totale

Figură 58. Histogramă – distribuția scorurilor totale

Histograma evidențiază frecvența scorurilor în intervale de câte 5 puncte. Linia de densitate oferă o imagine generală asupra formei distribuției (simetrică, concentrată, sau întinsă). Scorurile sunt distribuite relativ simetric, ceea ce sugerează o populație omogenă din punct de vedere al performanței. Există o ușoară concentrație în zona scorurilor medii (75–85), iar extremele (sub 50 și peste 100) sunt rare. Linia de densitate (curba albastră) confirmă tendința unei distribuții apropiate de normală.

2.8. Statistici descriptive

Cerință: *Utilizarea procedurilor statistice de bază*.

Rezolvare:

Pentru a analiza distribuția și variabilitatea performanței academice, se utilizează procedura PROC MEANS din SAS. Aceasta calculează statistici descriptive esențiale pentru un set de variabile numerice relevante, precum: nota finală (Nota_Finala), scorul parțial (Scor_Partial), media temelor (Media_Teme), media testelor (Media_Teste), scorul proiectelor (Scor_Proiect) și scorul total (Total_Scor).

```
proc means data=students mean std min max maxdec=2;
var Final_Score Total_Score Quizzes_Avg Assignments_Avg Projects_Score;
run;
```

Figură 59. Statistici descriptive pentru variabilele de performanță academică

The MEANS Procedure								
Variable	Mean	Std Dev	Minimum	Maximum				
Final Score	69.55	17.11	40.01	99.98				
Total Score	75.02	14.32	50.01	99.99				
Quizzes Avg	74.84	14.42	50.00	99.99				
Assignments Avg	74.96	14.40	50.00	99.99				
Projects Score	74.78	14.54	50.00	100.00				

Figură 60. Statistici descriptive ale variabilelor de performanță academică

Media scorurilor este relativ ridicată pentru toate categoriile, oscilând între 69.55 (pentru Final_Score) și 75.02 (pentru Total_Score), ceea ce sugerează o performanță general bună a studenților. Se observă că Final_Score are cea mai mică medie și totodată cea mai mare abatere standard (17.11), indicând o variație mai largă a notelor la evaluarea finală comparativ cu celelalte componente.

Valorile minime și maxime arată că toți indicatorii evaluați variază între aproximativ 50 și 100, cu excepția Final_Score, care are o valoare minimă de 40.01, semnalând prezența unor performanțe semnificativ mai slabe în cadrul acestui scor.

2.9. Corelatii între indicatorii de performantă academică

2.9.1. Regresie liniară – Estimarea scorului total

Cerință: Să se realizeze analiza impactului orelor de studiu și al stresului asupra scorului total obținut de studenți.

Rezolvare:

```
proc reg data=studenti;
  model Total_Score = Study_Hours_per_Week "Stress_Level (1-10)"n;
  title "Regresie liniara: efectul stresului si a studiului asupra scorului total";
run;
```

Figură 61. Cod SAS - regresia liniară

Figură 62. Output 1 - regresia liniară

Figură 63. Output 2 - regresia liniară

Modelul de regresie liniară aplicat pentru a analiza influența stresului și a orelor de studiu asupra scorului total nu este semnificativ din punct de vedere statistic (p = 0.8021, R² = 0.0001). Coeficienții ambelor variabile sunt negativi și nesemnificativi, ceea ce sugerează că, în cadrul acestui eșantion, nici nivelul de stres și nici timpul dedicat studiului nu explică variația scorurilor academice. Diagramele de diagnostic confirmă lipsa unei relații clare, indicând o dispersie aleatoare a reziduurilor și un model slab ajustat.

2.9.2. Regresie logistică – Predicția scorului final ridicat

```
proc logistic data=studenti_logistic;
  class Family_Income_Level Internet_Access_at_Home / param=ref;
  model High_Performer(event='1') = Family_Income_Level Internet_Access_at_Home "Stress_Level (1-10)"n;
  title "Regresie logistica: probabilitatea unui scor final ≥ 85";
run;
```

Figură 64. Cod SAS - regresia logistică

Figură 65. Output 1 - regresia logistică

	Type 3 Analysis of Effects										
	Effect				DF	Chi	Wald -Square	Pr > C	hiSq		
		Family_	Income	Leve	1 2		1.6085	0.4	4474		
		Internet	Acces	s_at_l	H 1		0.4520	0.8	5014		
		Stress_	Level (1	-10)	1		0.8313	0.3	3619		
		A	nalvsis	of Ma	ximum l	ikeli	hood Esti	mates			
Par	rameter			DF	Estima		Standard Error		Wald Square	Pr > Ch	iS
Inte	ercept			1	-1.17	61	0.0945	15	4.9170	<.0	00
Far	mily_Incom	e_Level	High	1	0.10	00	0.0831		1.4469	0.2	29
Far	mily_Incom	e_Level	Low	1	0.07	94	0.0828		0.9194	0.3	37
Inte	ernet_Acce	ss_at_H	No	1	-0.0454		0.0675		0.4520	0.5	01
Str	Stress_Level (1-10)			1	-0.0107		0.0117		0.8313	0.3	61
				Odd	s Ratio	Estin	nates				1
	Effect					Poi	nt Estima	te Co	95% V nfidenc	Vald e Limits	
	Family_In	come_Le	vel Higl	n vs N	ledium		1.10	05 (0.939	1.301	1
	Family_Income_Level Low vs			vs M	edium	dium 1.083 0.92		0.920	1.273		
	Internet_Access_at_H No vs Ye			vs Ye	5	0.956 0.83		0.837	1.091		
	Stress_Level (1-10)						0.98	89 (0.967	1.012	
	Ass	sociation	of Pred	icted I	Probabi	lities	and Obse	erved Re	sponse	25	
	Percent Concordant					50.8	Somer	s' D	0.03	33	
	Percent Discordant				47.5	Gamm	a	0.03	34		
	Percent Tied				1.7	Tau-a		0.0	12		
	Pairs							_			

Figură 66. Output 2 - regresia logistică

Modelul de regresie logistică a fost utilizat pentru a prezice probabilitatea ca un student să obțină un scor final ridicat (≥ 85), în funcție de venitul familial, accesul la internet și nivelul de stres. Rezultatele arată că niciunul dintre predictorii incluși nu este semnificativ statistic (p > 0.05), indicând că acești factori nu influențează în mod semnificativ probabilitatea de a obține un scor mare în acest eșantion. Odds ratio-urile calculate sugerează doar ușoare variații în șansele de performanță ridicată în funcție de venit sau accesul la internet, dar intervalele largi de încredere subliniază lipsa robusteții. Prin urmare, modelul nu are putere predictivă relevantă în această formulare.

CONCLUZIE

Lucrarea de față a avut ca obiectiv principal analizarea performanței academice a studenților prin intermediul unor metode statistice moderne și al prelucrării datelor, utilizând instrumente precum Python (cu ajutorul bibliotecii Streamlit) și SAS. Procesul analitic a fost structurat riguros, parcurgând etapele fundamentale ale unui demers științific: importul și curățarea datelor, transformarea variabilelor, tratarea valorilor lipsă, analiza descriptivă și exploratorie, modelarea relațiilor dintre variabile, precum și aplicarea unor tehnici predictive relevante.

Rezultatele obținute evidențiază importanța unor factori precum scorurile la teme, teste sau proiecte, dar și a unor variabile contextuale (ex. gen, nivel de stres, acces la internet) în explicarea și anticiparea performanței academice. Modelele de regresie liniară și logistică au permis nu doar identificarea relațiilor semnificative dintre variabile, ci și formularea unor previziuni robuste, în special în cazul clasificării binare a performanței (sub și peste medie), cu un nivel de acuratețe ridicat.

De asemenea, utilizarea testului ANOVA și a matricei corelațiilor a oferit o înțelegere aprofundată a modului în care anumite categorii influențează rezultatele numerice, susținând luarea deciziilor bazate pe date concrete. Vizualizările generate au contribuit la claritatea interpretărilor și la o comunicare eficientă a rezultatelor.

În concluzie, proiectul demonstrează potențialul analizei statistice și al științei datelor în sprijinirea procesului educațional, oferind o bază solidă pentru intervenții direcționate, politici educaționale și strategii de îmbunătățire a performanței studenților.

BIBLIOGRAFIE

1. Materiale puse la dispoziție în cadrul seminarului

ANEXĂ

FIGURI

Figură 1. Interfața aplicației Streamlit pentru analiza vizuală a performanței studenților.	3
Figură 2. Procentajul valorilor lipsă pentru fiecare variabilă din setul de date	5
Figură 3. Vizualizarea grafică a valorilor lipsă pentru toate variabilele din setul de date utilizând heatm	ap-ul 6
Figură 4. Figura 4. Selectarea metodei de transformare a variabilelor categorice	7
Figură 5. Selectarea metodei de scalare pentru variabilele numerice	8
Figură 6. Selectarea metodei de detectare a valorilor extreme	9

Figură 7. Distribuția frecvenței pe gen în cadrul setului de date	10
Figură 8. Distribuția frecvenței studenților pe departamente	11
Figură 9. Distribuția scorurilor	12
Figură 10. Matricea corelațiilor între variabilele numerice	13
Figură 11. Compararea mediilor scorului total în funcție de nivelul de stres (1–10)	14
Figură 12. Distribuția numărului de ore de somn pe noapte în funcție de gen și testul ANOVA	16
Figură 13. Rezultatele regresiei liniare pentru predicția variabilei Total Score	18
Figură 14. Predictori utilizați în regresia logistică pentru clasificarea performanței	19
Figură 15. Matricea de confuzie	20
Figură 16. Raport de clasificare – Regresie logistică (fără SelectKBest)	20
Figură 17. Curba ROC – Regresie logistică	21
Figură 18. Selectarea celor mai relevanți predictori folosind SelectKBest	22
Figură 19. Matricea de confuzie după aplicarea SelectKBest	22
Figură 20. Performanța modelului de regresie logistică folosind predictorii selectați	23
Figură 21. Importul fișierului CSV într-un set de date SAS	23
Figură 22. izualizarea structurii tabelului WORK.STUDENTS după importul fișierului CSV	24
Figură 23. Definirea formatelor personalizate pentru variabilele Gender, Extracurricular Activities,	2.
Internet Access at Home, Parent Education Level şi Family Income Level	25
Figură 24. Aplicarea formatelor în cadrul PROC PRINT	25
Figură 25. Aplicare PROC FREQ	26
Figură 26. Output PROC FREQ	26
Figură 27. Cod SAS pentru extragerea studenților cu scor final ≥ 70	27
Figură 28. Output – primii 10 studenți incluși în subsetul studenti buni	27
Figură 29. Cod SAS pentru extragerea studenților fără acces la internet	28
Figură 30. Output – primii 10 studenți fără internet acasă	28
Figură 31. Cod SAS pentru selecția cazurilor cu risc educațional	28
Figură 32. Output – studenți având risc educațional scăzut	29
Figură 33. Cod SAS pentru identificarea reușitelor în contexte defavorizate	29
Figură 34. Output – Studeți cu reușite academice având contexte defavorizate	29
Figură 35. Cod SAS pentru etichetarea studenților în funcție de implicare	30
Figură 36. Output – eticheta Tip_Student aplicată	30
Figură 37. Cod SAS pentru marcarea eligibilității la bursă	31
Figură 38. Output – studenții marcați cu pentru Eligibil Bursa	31
Figură 39. Cod SAS pentru numărarea componentelor cu scor ≥ 70	32
Figură 40. Output – numărul de componente cu performanță ridicată	32
Figură 41. Cod SAS pentru eticheta studentului	32
Figură 42. Output – etichete compuse	33
Figură 43. Cod SAS pentru calculul diferenței față de quizuri	34
Figură 44. Output – diferențe absolute	34
	34
Figură 45. Cod SAS pentru calculul mediei generale pe componente Figură 46. Output – media componentelor	35
Figură 47. Cod SAS pentru concatenarea fișierelor de studenți	36
Figură 48. Output – toți studenții combinați într-un singur tabel	36
Figură 49. Cod SAS pentru îmbinarea datelor academice și socio-economice	37
Figură 50. Output – tabelul combinat cu date socio-demografice.	37
Figură 51. Cod SAS pentru alăturare cu PROC SQL JOIN	38
Figură 52. Output – lista bursierilor	38
Figură 53. Cod pentru generarea graficului cu media scorurilor totale pe gen	39
Figură 54. Media scorurilor finale în funcție de gen	39
Figură 55. Cod pentru generarea distribuției între studenți pe nivelurile de venit	40

Figură 56. Pie chart – distribuția studenților pe niveluri de venit	40
Figură 57. Cod - histogramă pentru distribuția scorurilor totale	41
Figură 58. Histogramă – distribuția scorurilor totale	41
Figură 59. Statistici descriptive pentru variabilele de performanță academică	42
Figură 60. Statistici descriptive ale variabilelor de performanță academică	42
Figură 61. Cod SAS - regresia liniară	42
Figură 62. Output 1 - regresia liniară	43
Figură 63. Output 2 - regresia liniară	43
Figură 64. Cod SAS - regresia logistică	44
Figură 65. Output 1 - regresia logistică	44
Figură 66. Output 2 - regresia logistică	45