Market impact with multi-timescale liquidity

Junliang Zhou, Likun Ouyang

Baruch College, Master of Financial Engineering

May 3, 2018

Outline

- Introduction to LLOB model
 - Deficiencies of LLOB model
- Market impact profile under finite memory
 - Price trajectories with finite cancel and deposit rates
 - Linear permanent impact with finite memory
- The double-frequency framework
 - LLOB model with fast and slow agents
 - From linear to square-root impact
- The multi-frequency framework
 - Resolution of the "diffusivity puzzle"
 - Meta-order impact

Introduction to LLOB model

- Introduction to LLOB model
 - Deficiencies of LLOB model
- 2 Market impact profile under finite memory
 - Price trajectories with finite cancel and deposit rates
 - Linear permanent impact with finite memory
- 3 The double-frequency framework
 - LLOB model with fast and slow agents
 - From linear to square-root impact
- 4 The multi-frequency framework
 - Resolution of the "diffusivity puzzle"
 - Meta-order impact

Introduction to LLOB model

The latent volume densities of limit orders in the order book $\phi_b(x,t)$ (bid side) and $\phi_a(x,t)$ (ask side) follows

$$\partial_t \phi_b = D \partial_{xx} \phi_b - \nu \phi_b + \lambda \Theta(x_t - x) - R_{ab}(x)$$

$$\partial_t \phi_a = D \partial_{xx} \phi_a - \nu \phi_a + \lambda \Theta(x - x_t) - R_{ab}(x)$$
(1)

The price x_t is defined as the solution of

$$\phi(x_t, t) = \phi_b(x, t) - \phi_a(x, t) = 0$$

$$\partial_t \phi = D\partial_{xx}\phi - \nu\phi + \lambda \operatorname{sign}(x_t - x)$$
(2)

Introduction to LLOB model

The stationary order book is given by

$$\phi^{\rm st}(\xi) = -\frac{\lambda}{\nu} \operatorname{sign}(\xi) \left[1 - \exp\left(-\frac{|\xi|}{\xi_c}\right) \right]$$
 (3)

where $\xi_c = \sqrt{D\nu^{-1}}$ and $\xi = x - x_t$.

Figure 1: Stationary order book under LLOB model.

Deficiencies of LLOB model

- The original LLOB model focused on the infinite memory limit, namely $\nu, \lambda \to 0$ while keeping $\mathcal{L} \sim \lambda \nu^{-1/2}$ constant, such that the latent order book becomes exactly linear since in that limit $\xi_c \to \infty$; while in reality we are facing finite memory.
- A strict square-root law is only recovered in the limit where the execution rate m_0 of the meta-order is larger than the normal execution rate J of the market itself; whereas most meta-order impact data is in the opposite limit $m_0 \lesssim 0.1 J$.
- The theoretical inverse square-root impact decay is too fast and leads to significant short time mean-reversion effects, not observed in real prices.

Price and impact profile under finite memory

- Introduction to LLOB model
 - Deficiencies of LLOB model
- Market impact profile under finite memory
 - Price trajectories with finite cancel and deposit rates
 - Linear permanent impact with finite memory
- The double-frequency framework
 - LLOB model with fast and slow agents
 - From linear to square-root impact
- The multi-frequency framework
 - Resolution of the "diffusivity puzzle"
 - Meta-order impact

Price and impact profile under finite memory

We introduce a buy meta-order as the source of market impact with intensity rate m_t , then equation (2) becomes

$$\partial_t \phi = D \partial_{xx} \phi - \nu \phi + \lambda \operatorname{sign}(x_t - x) + m_t \delta(x - x_t) \mathbb{1}_{[0,T]}$$
 (4)

Focusing on constant participation rates $m_t = m_0$, we consider

- Small participation rate $m_0 \ll J \ v.s.$ large participation rate $m_0 \gg J.$
- Fast execution $\nu T \ll 1$ v.s. slow execution $\nu T \gg 1$.
- Small meta-order volumes $Q = m_0 T \ll Q_{\text{lin}} \ v.s.$ large meta-order volumes $Q = m_0 T \gg Q_{\text{lin}}$.

Price trajectories with finite cancel and deposit rates

For fast execution and small meta-order volumes, we have the price trajectory as

$$x_t = \alpha \left[z_t^0 + \sqrt{\nu} z_t^1 + \mathcal{O}(\nu) \right]$$
 (5)

While for slow execution and/or large meta-order volumes,

$$x_t = \frac{m_0 \nu}{\lambda} t \tag{6}$$

Price trajectories with finite cancel and deposit rates

Figure 2: Top graph: Price trajectory during and after a buy meta-order execution for $\nu T \ll 1$. Bottom graph: Price trajectory for $\nu T \gg 1$.

Linear permanent impact with finite memory

We find that the permanent impact I_{∞} follows

$$I_{\infty} = \frac{1}{2} \xi_c \frac{Q}{Q_{\text{lin}}} \tag{7}$$

which is linear in execution volume Q in both small and large participation regime. (see to x_{∞} in Figure 2)

The result is dictated by non-arbitrage arguments and compatible with the classical Kyle model.

The double-frequency framework

- Introduction to LLOB model
 - Deficiencies of LLOB model
- Market impact profile under finite memory
 - Price trajectories with finite cancel and deposit rates
 - Linear permanent impact with finite memory
- The double-frequency framework
 - LLOB model with fast and slow agents
 - From linear to square-root impact
- The multi-frequency framework
 - Resolution of the "diffusivity puzzle"
 - Meta-order impact

The double-frequency framework

Consider there are two sorts of agents co-exists in the market:

- Slow agents with vanishing cancellation and deposition rates: $\nu_s T \to 0$, while keeping the corresponding liquidity $\mathcal{L}_s := \lambda_s / \sqrt{\nu_s D}$ finite.
- Fast agents with large cancellation and deposition rates: $\nu_f T \gg 1$, such that $\mathcal{L}_f := \lambda_f / \sqrt{\nu_f D} \gg \mathcal{L}_s$.

LLOB model with fast and slow agents

 $\phi_{\rm s}$ and $\phi_{\rm f}$ follows equation (4) with their own coefficients ν, λ, m_t respectively. With the conditions below,

$$m_{st} + m_{ft} = m_0$$

$$x_{st} = x_{ft} = x_t$$
(8)

Then the total order book volume is given by

$$\phi^{\rm st}(x) = \phi^{\rm st}_{\rm s}(x) + \phi^{\rm st}_{\rm f}(x) \tag{9}$$

where

$$\phi_{\rm s}^{\rm st} \approx -\mathcal{L}_{\rm s} x$$

$$\phi_{\rm f}^{\rm st} \approx -\frac{\lambda_{\rm f}}{\nu_{\rm f}} {\rm sign}(x)$$
(10)

LLOB model with fast and slow agents

Figure 3: Stationary double-frequency order book.

From linear to square-root impact

Consider the meta-order intensity is large compared to the average transaction rate of slow traders while small compared to the total transaction rate of the market. That is $J_s \ll m_0 \ll J_f$.

Equation (4) and equation (8) yield that

$$m_{\rm ft} = \frac{m_0}{\sqrt{1 + \frac{t}{t^*}}}, \quad t^* := \frac{1}{2\nu_{\rm f}} \frac{J_{\rm f}^2}{J_{\rm s}m_0}$$

$$m_{\rm st} = m_0 - m_{\rm ft}$$
(11)

From linear to square-root impact

The resulting price trajectory reads

$$x_t = \frac{\lambda_{\rm f}}{\mathcal{L}_{\rm s}\nu_{\rm f}} \left(\sqrt{1 + \frac{t}{t^*}} - 1 \right) \tag{12}$$

The most of the incoming meta-order is executed against the rapid agents for $t < t^*$ but the slow agents then take over for $t > t^*$.

The result leads to a market impart that crosses over from a linear regime when $t \ll t^*$ to a square root regime for $t \gg t^*$.

The impact decay behaves asymptotically $(t \gg T)$ to zero as $x_t \sim t^{-1/2}$.

From linear to square-root impact

Figure 4: Execution rates m_{it} (top) and price trajectory (bottom) within the double-frequency order book model.

The multi-frequency framework

- Introduction to LLOB model
 - Deficiencies of LLOB model
- Market impact profile under finite memory
 - Price trajectories with finite cancel and deposit rates
 - Linear permanent impact with finite memory
- The double-frequency framework
 - LLOB model with fast and slow agents
 - From linear to square-root impact
- The multi-frequency framework
 - Resolution of the "diffusivity puzzle"
 - Meta-order impact

The multi-frequency framework

The double-frequency framework can be extended to the more realistic case of a continuous range of cancellation and deposition rates.

$$\partial_t \phi_{\nu} = D \partial_{xx} \phi_{\nu} - \nu \phi_{\nu} + \lambda_{\nu} \operatorname{sign}(x_{\nu t} - x) + m_{\nu t} \delta(x - x_{\nu t})$$
 (13)

where $\phi_{\nu}(x,t)$ denotes the contribution of agents with typical frequency ν to the latent order book and $\lambda_{\nu} = \mathcal{L}_{\nu} \sqrt{\nu D}$.

Equation (13) must then be completed with:

$$\int_{0}^{\infty} \rho(\nu) m_{\nu t} d\nu = m_{t}$$

$$x_{\nu t} = x_{t}, \quad \forall \nu$$
(14)

where $\rho(\nu)$ denotes the distribution of cancellation rates ν , and where we have allowed for an arbitrary order flow m_t .

20 / 23

Resolution of the "diffusivity puzzle"

With $\langle x_t^2 \rangle \propto t^{1-\gamma}$, the latent liquidity in the LLOB case is too persistent and prevents the price from diffusing.

With the power-law distribution $\rho(\nu)$ as

$$\rho(\nu) = Z\nu^{\alpha - 1}e^{-\nu t_c} \tag{15}$$

The price diffusion under multi-frequency framework is given by

$$\langle x_t^2 \rangle \propto t^{1+2\alpha-\gamma} \tag{16}$$

When the liquidity memory times are themselves fat-tailed, mean-reversion effects induced by a persistent order book can exactly offset trending effects induced by a persistent order flow.

Meta-order impact

Figure 5: Price trajectory during a constant rate meta-order execution within the multi-frequency order book model. For $\gamma=1/2$, the impact crosses over from a $t^{3/4}$ to a $t^{5/8}$ regime.

References

M. Benzaquen and J.P. Bouchaud (2017)

Market impact with multi-timescale liquidity

J. Donier, J. Bonart, I. Mastromatteo, and J.P. Bouchaud (2015)

A fully consistent, minimal model for non-linear market impact