HALO2

ZK-School session: Inseon Yu

Outline

- 1. Halo2 overview
- 2. Plonkish Arithmetization
- 3. IPA based Halo2 (ZCash)
- 4. Kate pairing based Halo2

1. Halo2 overview

- PLONKish Arithmetization
- Modified Inner Product Argument
- Proof aggregation

Vanilla PLONK

$$\rightarrow (q_L) \cdot a + (q_R) \cdot b + (q_O) \cdot c + (q_M) \cdot ab + (q_C) = 0$$

- Add: $(1) \cdot a + (1) \cdot b + (-1) \cdot c + (0) \cdot ab + (0) = a + b c = 0$
- Mul: $(0) \cdot a + (0) \cdot b + (-1) \cdot c + (1) \cdot ab + (0) = -c + a \cdot b = 0$
- Copy constraint via Permutation check

Permutation check

$\mathbf{a_0}$	a ₁	a ₂	a ₃	a ₄
$input_0$	$input_1$	input ₂		output
va_1	vb_1	vc_1		vd_1
va_2	vb_2	vc_2		vd_2
va_3	vb_3	vc_3		vd_3
va_4	vb_4	vc ₄		vd_4
ya_5	vb_5	vc ₅ /		vd_5
va ₆	vb ₆	vc ₆		vd_6
va ₇	vb ₇	vc_7		vd_7
va ₆	vb ₆	coc ₆		vd_6
va ₇	vb_7	vc ₇		vd_7

$$\rightarrow vb_4 = vc_6 = vb_6 = va_6$$

Custom gate

$$q_{add} \cdot (a_0 + a_1 - a_2) + y \cdot q_{mul} \cdot (a_0 \cdot a_1 - a_2) + y^2 \cdot q_{bool} \cdot (a_0 \cdot a_0 - a_0) = 0$$

- Defining bespoke gates (EC point additions, Hashes, ...)
- Reduces # of gates
- Verifier challenge to keep gates linearly independent

a ₀	a ₁	a ₂	a ₃	a ₄
$input_0$	$input_1$	input ₂		output
va_1	vb_1	vc_1		vd_1
va ₂	vb_2	vc_2		vd_2
va_3	vb_3	vc_3		vd_3
va_4	vb_4	vc_4		vd_4
va_5	vb_5	vc_5		vd_5
va ₆	vb ₆	vc ₆		vd ₆
va ₇	vb ₇	vc_7		vd_7
va ₆	vb ₆	vc ₆		vd_6
va ₇	vb ₇	vc ₇		vd_7

$$\rightarrow va_3 \cdot vb_3 \cdot vc_3 + vc_2 - vb_4 = 0$$

a ₀	a ₁	a ₂	a ₃	a ₄
$input_0$	$input_1$	input ₂		output
va_1	vb_1	vc_1		vd_1
va_2	vb_2	vc_2		vd_2
va_3	vb_3	vc_3		vd_3
va_4	vb ₄	vc ₄		vd_4
va_5	vb_5	vc ₅		vd_5
va_6	vb_6	vc ₆		vd_6
va_7	vb_7	vc ₇		vd_7
va ₆	vb_6	vc ₆		vd_6
va_7	vb_7	vc ₇		vd_7

$$\rightarrow vb_1 \cdot vc_1 + vc_2 - vc_3 = 0$$

High degree & More customized

$$\rightarrow va_7 \oplus vb_7 = vc_7$$

Lookup argument

- Calculate in advance a lookup table composed of valid input and output
- Prover proves that witness exist in the table

Plookup VS Halo2 Lookup

- Both protocols can prove that $f \subset t$
- Plookup: needs f and t to build a new sequence sThen, proves $s \subset t$ by compairing the non-zero distance sets of elements in s are equal $f \subset s \subset t \to f \subset t$
- Halo2-lookup: proves $f \subset t$ directly (more concise)
- Both require sorting and completing the set Plookup: |t| = |f| + 1
 - Halo2-lookup: $|t| = |f| = 2^k$

Inner Product Argument

• Transparent setup: sample random $gp = (G_0, G_1, \ldots, G_d)$ in $\mathbb G$

• Commit:
$$f(x) = f_0 + f_1 x + f_2 x^2 + \dots + f_d x^d$$

$$com_f = f_0 G_0 + f_1 G_1 + \dots + f_d G_d$$

$$gp = (G_0, G_1, G_2, G_3)$$

$$com_f = f_0G_0 + f_1G_1 + f_2G_2 + f_3G_3$$

Prover $v = f_0 + f_1 u + f_2 u^2 + f_3 u^3$ $v_L = f_0 + f_1 u \qquad v_R = f_2 + f_3 u$ $v_L = f_0 + f_1 u \qquad v_R = f_2 + f_3 u$ $v' = r v_L + v_R u^2$

Combine polynomials via random linear combination

$$gp = (G_0, G_1, G_2, G_3)$$

$$com_f = f_0G_0 + f_1G_1 + f_2G_2 + f_3G_3$$

Prover

Verifier

$$v = f_0 + f_1 u + f_2 u^2 + f_3 u^3$$

$$v = f_0 + f_1 u + f_2 u^2 + f_3 u^3$$

$$v = v_L + v_R u^2$$

$$v_L = f_0 + f_1 u \qquad v_R = f_2 + f_3 u$$

$$v' = rv_L + v_R$$

$$gp' = (r^{-1}G_0 + G_2, r^{-1}G_1 + G_3)$$

$$com' = rL + com_f + r^{-1}R$$

Compute new commitment via L, R

Proof recursion

• Let $\mathbb G$ be an group of order p, defined over $\mathbb F_q$ The prover supports circuits over $\mathbb F_p$, but verifier needs $\mathbb F_q$ for group ops.

A cycles of groups [BCTV'14]

- \mathbb{G}_1 has order p, defined over \mathbb{F}_q
- \mathbb{G}_2 has order q, defined over \mathbb{F}_p

4. KZG based Halo2

$$f(x) - f(u) = (x - u) \ q(x)$$

$$e(G, G)^{f(\tau) - f(u)} = e(G, G)^{(\tau - u)} \ q(\tau)$$

4. KZG based Halo2

	Halo2 (ZCash)	Halo2-KZG
Curves	Pasta curves	BN256
Proving scheme	IPA	KZG
Zero-knowledge	Uncompromisable	Optianal

Thank you!!