## MAT224 Notes

## Tianyu Du

## January 2018

## Info.

Created: January. 9 2018

Last modified: January 24, 2018

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.



## Contents

| 1        | Lec | ture1 Jan.9 2018                          | 2  |
|----------|-----|-------------------------------------------|----|
|          | 1.1 | Vector spaces                             |    |
|          | 1.2 | Examples of vector spaces                 |    |
|          | 1.3 | Some properties of vector spaces          | 3  |
| <b>2</b> | Lec | ture2 Jan.10 2018                         | 4  |
|          | 2.1 | Some properties of vector spaces-Cont'd   | 4  |
|          | 2.2 | Subspaces                                 | 4  |
|          | 2.3 | Examples of subspaces                     | 5  |
|          | 2.4 | Recall from MAT223                        | 6  |
| 3        | Lec | ture3 Jan.16 2018                         | 6  |
|          | 3.1 | Linear Combination                        | 6  |
|          | 3.2 | Combination of subspaces                  | 7  |
| 4        | Lec | ture4 Jan.17 2018                         | 10 |
|          | 4.1 | Cont'd                                    | 10 |
|          | 4.2 |                                           | 11 |
| 5        | Lec | ture5 Jan.23 2018                         | 12 |
|          | 5.1 | Linear independence, recall definitions   | 12 |
|          |     |                                           | 12 |
|          | 5.2 |                                           | 12 |
|          | 5.3 |                                           | 14 |
|          |     | 5.3.1 Consequences of fundamental theorem | 15 |

|    | 5.3.2 Use dimension to prove facts about linearly (in)dependent sets and subspaces | 15              |
|----|------------------------------------------------------------------------------------|-----------------|
| 6  | Lecture Jan. 24 2018 6.1 Basis and Dimension                                       | <b>16</b><br>16 |
| 1  | Lecture1 Jan.9 2018                                                                |                 |
| 1. | 1 Vector spaces                                                                    |                 |

**Definition** A  $\underline{\text{real}}$  <sup>1</sup> **vector space** is a set V together with two vector operations vector addition and scalar multiplication such that

- 1. **AC** Additive Closure:  $\forall \vec{x}, \vec{y} \in V, \vec{x} + \vec{y} \in V$
- 2. C Commutative:  $\forall \vec{v}, \vec{y} \in V, \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 3. **AA** Additive Associative:  $\forall \vec{x}, \vec{y}, \vec{z} \in V, (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- 4. **Z** Zero Vector:  $\exists \vec{0} \in Vs.t. \forall \vec{x} \in V, \vec{x} + \vec{0} = \vec{x}$
- 5. **AI** Additive Inverse:  $\forall \vec{x} \in V, \exists -\vec{x} \in V s.t. \vec{x} + (-\vec{x}) = \vec{0}$
- 6. **SC** Scalar Closure:  $\forall \vec{x}, c \in \mathbb{R}, c\vec{x} \in V$
- 7. **DVA** Distributive Vector Additions:  $\forall \vec{x}, \vec{y} \in V, c \in \mathbb{R}, c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 8. **DSA** Distributive Scalar Additions:  $\forall \vec{x} \in V, c, d \in \mathbb{R}, (c+d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. SMA Scalar Multiplication Associative:  $\forall \vec{x} \in V, c, d \in \mathbb{R}, (cd)\vec{x} = c(d\vec{x})$
- 10. **O** One:  $\forall \vec{x} \in V, 1\vec{x} = \vec{x}$

**Note** For V to be a vector space, need to know or be given operations of vector additions multiplication and check all 10 properties hold.

#### 1.2 Examples of vector spaces

**Example 1**  $\mathbb{R}^n$  w.r.t. usual component-wise addition and scalar multiplication.

**Example 2**  $\mathbb{M}_{m \times n}(\mathbb{R})$  set of all  $m \times n$  matrices with real entry. w.r.t. usual entry-wise addition and scalar multiplication.

**Example 3**  $\mathbb{P}_n(\mathbb{R})$  set of polynomials with real coefficients, of degree <u>less or equal</u> to n, w.r.t. usual degree-wise polynomial addition and scalar multiplication.

<sup>&</sup>lt;sup>1</sup>A vector space is real if scalar which defines scalar multiplication is real.

**Note** If define  $\mathbb{P}_n^{\star}(\mathbb{R})$  as set of all polynomials of degree <u>exactly equal</u> to n w.r.t. normal degree-wise multiplication and addition.

Then it is **NOT** a vector space.

**Explanation**: 
$$(1+x^n), (1-x^n) \in \mathbb{P}_n^{\star}(\mathbb{R})$$
 but  $(1+x^n)+(1-x^n)=2 \notin \mathbb{P}_n^{\star}(\mathbb{R})$ 

**Example 4** Something unusual, define V as

$$V = \{(x_1, x_2) | x_1, x_2 \in \mathbb{R}\}\$$

with vector addition

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$

and scalar multiplication

$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

This is a vector space.

## 1.3 Some properties of vector spaces

Suppose V is a vector space, then it has the following properties.

**Property 1** The zero vector is unique. *proof.* 

Assume  $\vec{0}, \vec{0}^*$  are two zero vectors in V

WTS: 
$$\vec{0} = \vec{0}$$

Since  $\vec{0}$  is the zero vector, by  $\vec{Z} \ \vec{0}^{\star} + \vec{0} = \vec{0}^{\star}$ 

Similarly, 
$$\vec{0} + \vec{0} = \vec{0}$$

Also,  $\vec{0} + \vec{0^*} = \vec{0^*} + \vec{0}$  by commutative vector addition.

So, 
$$\vec{0} = \vec{0}$$

**Property 2**  $\forall \vec{x} \in V$ , the additive inverse  $-\vec{x}$  is unique. *proof.* 

Exercise.

Property 3  $\forall \vec{x} \in V, 0\vec{x} = \vec{0}.$  proof.

By property of number 0: 
$$0\vec{x} = (0+0)\vec{x}$$
  
By DSA:  $0\vec{x} = 0\vec{x} + 0\vec{x}$   
By AI,  $\exists (-0\vec{x})s.t.$   
 $0\vec{x} + (-0\vec{x}) = 0\vec{x} + 0\vec{x} + (-0\vec{x})$   
By AA  
 $\implies 0\vec{x} = \vec{0}$ 

Property 4  $\forall c \in \mathbb{R}, c\vec{0} = \vec{0}$  proof. Exercise.

## 2 Lecture Jan. 10 2018

## 2.1 Some properties of vector spaces-Cont'd

**Property 5** For a vector space V,  $\forall \vec{x} \in V$ ,  $(-1)\vec{x} = (-\vec{x})$ . (we could use this property to find the <u>additive inverse</u> with scalar multiplication with (-1)). proof.

$$(-\vec{x})=(-\vec{x})+\vec{0}$$
 By property of zero vector 
$$=(-\vec{x})+0\vec{x}$$
 By property3 
$$=(-\vec{x})+(1+(-1))\vec{x}$$
 By property of zero as real number 
$$=(-\vec{x})+1\vec{x}+(-1)\vec{x}$$
 
$$=\vec{0}+(-1)\vec{x}$$
 
$$=(-1)\vec{x}$$

**Property 6** For a vector space V, let  $\vec{x} \in V$  and  $c \in \mathbb{R}$ , then,

$$c\vec{x} = \vec{0} \implies c = 0 \lor \vec{x} = \vec{0}$$

proof.

Exercise.

## 2.2 Subspaces

**Loosely** A subspace is a space contained within a vector space.

**Definition** Let V be a vector space and  $W \subseteq V$ , W is a **subspace** of V if W is itself a vector space w.r.t. operations of vector addition and scalar multiplication from V.

**Theorem** Let V be a vector space, and  $W \subseteq V$ , W has the same operations of vector addition and scalar multiplication as in V. Then, W is a subspace of V iff:

- 1. W is non-empty.  $W \neq \emptyset$ .
- 2. W is closed under addition.  $\forall \vec{x}, \vec{y} \in W, \ \vec{x} + \vec{y} \in W$ .
- 3. W us closed under scalar multiplication.  $\forall \vec{x} \in W, c \in \mathbb{R}, c\vec{x} \in W$ .

## Proof.

Forward:

If W is a subspace

$$\implies \vec{0} \in W$$

$$\implies W \neq \emptyset$$

Also, additive and scalar multiplication closures  $\implies$  (ii), (iii)

Backward:

Let 
$$W \neq \emptyset \land (ii) \land (iii)$$

WTS. 10 axioms in definition of vector space hold

- $(ii) \implies \text{Additive Closure}$
- $(iii) \implies \text{Scalar Multiplication Clousure}$

Because  $W \subseteq V$ , and V is a vector space, so properties hold  $\forall \vec{w} \in W$ .

Additive inverse: by property 5 and scalar multiplication closure,

$$\forall \vec{x} \in W, -\vec{x} = (-1)\vec{x} \in W.$$

Also, existence of additive identity:  $(-\vec{x}) + \vec{x} = \vec{0} \in W$ .

#### 2.3 Examples of subspaces

**Example 1** Let  $V = \mathbb{M}_{n \times n}(\mathbb{R})$ , V is a subspace.

**Example 2** Define W as

$$W = \{ A \in \mathbb{M}_{n \times n}(\mathbb{R}) | A \text{ is } \underline{\text{not}} \text{ symmetric} \}$$

Explanation: Let 
$$A_1 = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix}$$
 and  $A_2 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$   $A_1, A_2 \in W$  but  $A_1 + A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin W$ .

**Example 3** Let  $V = \mathbb{P}_2(\mathbb{R})$ , is W defined as following,

$$W = \{ p(x) \in V | p(1) = 0 \}$$

a subspace of V ? proof.

WTS: (i)

Let z(x) = 0 or  $z(x) = x^2 - 1$ ,  $\forall x \in \mathbb{R}$   $\Rightarrow W \neq \emptyset$ WTS: (ii)

Let  $p_1, p_2 \in W$ , which means  $p_1(1) = p_2(1) = 0$   $(p_1 + p_2)(1) = p_1(1) + p_2(1) = 0 + 0 = 0$   $\Rightarrow p_1 + p_2 \in W$   $\Rightarrow W$  is closed under addition.

WTS: (iii) Let  $p \in W$  and  $c \in \mathbb{R}$   $\Rightarrow p(1) = 0$ Since (c \* p)(x) = c \* p(x), we have (c \* p)(1) = c \* p(1) = c \* 0 = 0  $\Rightarrow cp \in W$ .

So W is a subspace of V.

#### 2.4 Recall from MAT223

Let  $A \in \mathbb{M}_{m \times n}(\mathbb{R})$ , then Nul(A) is a subspace of  $\mathbb{R}^n$  and Col(A) is a subspace of  $\mathbb{R}^m$ .

## 3 Lecture 3Jan. 16 2018

#### 3.1 Linear Combination

**Definition** Let V be a vector space,  $\vec{v_1}, \ldots, \vec{v_n} \in V$ ,  $a_1, \ldots, a_n \in \mathbb{R}$  the expression

$$c_1\vec{v_1} + \dots + c_n\vec{v_n}$$

is called a linear combination of  $\vec{v_1}, \dots, \vec{v_n}$ .

**Theorem** Let V be a vector space, W is a subspace of V,  $\forall \vec{w_1}, \dots \vec{w_k} \in W, c_1, \dots, c_k \in \mathbb{R}$ , we have

$$c_1\vec{w_1} + \dots + c_k\vec{w_k} \in W$$

Subspaces are <u>closed</u> under linear combinations, since subspaces are closed under scalar multiplication and vector addition.

**Theorem** Let V be a vector space, let  $\vec{v_1}, \ldots, \vec{v_k} \in V$  then the set of all linear combination of  $\vec{v_1}, \ldots, \vec{v_k}$ 

$$W = \{ \sum_{i=1}^{k} c_i \vec{v_i} | c_i \in \mathbb{R} \forall i \}$$

is a subspace of V. proof.

Consider 
$$\vec{0} \in W$$
  
So,  $W \neq \emptyset$   
Let  $c \in \mathbb{R}$ , Let  $\vec{x} \in W \land \vec{y} \in W$   
By definition of span, we have,  

$$\vec{x} = \sum_{i=1}^{k} a_i \vec{v_i}, \quad \vec{y} = \sum_{i=1}^{k} b_i \vec{v_i}$$
Consider,  $\vec{x} + c\vec{y}$   

$$\vec{x} + c\vec{y} = \sum_{i=1}^{k} a_i \vec{v_i} + c \sum_{i=1}^{k} b_i \vec{v_i} = \sum_{i=1}^{k} (a_i + cb_i) \vec{v_i} \in W$$

**Definition** Let V be a vector space,  $\vec{v_1}, \ldots, \vec{v_k} \in V$ , **span** of the set of vectors  $\{\vec{v_i}\}_{i=1}^k$  is defined as the collection of all possible linear combinations of  $\{\vec{v_i}\}_{i=1}^k$ . By pervious theorem, span is a subspace.

#### 3.2 Combination of subspaces

**Definition** Let  $W_1, W_2$  be two sets, then the **union** of  $W_1, W_2$  is defined as:

$$W_1 \cup W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \land \vec{w} \in W_2 \}$$

the **intersection** of  $W_1, W_2$  is defined as:

$$W_1 \cap W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \lor \vec{w} \in W_2 \}$$

Now consider  $W_1, W_2$  to be two subspaces of vector space V, then we have,

- 1.  $W_1 \cup W_2$  is **not** a subspace.
- 2.  $W_1 \cap W_2$  is a subspace.

proof.

Falsify the statement by providing counter-example:

Consider,

$$\begin{aligned} W_1 &= \{(x_1, x_2) \mid x_1 \in \mathbb{R}, x_2 = 0\} \\ W_2 &= \{(x_1, x_2) \mid x_2 \in \mathbb{R}, x_1 = 0\} \\ \binom{0}{1} \in W_1 \cup W_2 & \binom{1}{0} \in W_1 \cup W_2 \\ \text{But}, & \binom{0}{1} + \binom{1}{0} = \binom{1}{1} \notin W_1 \cup W_2 \end{aligned}$$

proof.

Because  $W_1$  and  $W_2$  are both subspaces, so

$$\vec{0} \in W_1 \cap W_2 \implies W_1 \cap W_2 \neq \emptyset$$
Let  $\vec{x}, \vec{y} \in W_1 \cap W_2, c \in \mathbb{R}$ 
Consider,  $\vec{x} + c\vec{y}$ 
Sine  $W_1, W_2$  are subspaces,
 $\vec{x} + c\vec{y} \in W_1 \wedge \vec{x} + c\vec{y} \in W_2$ 
 $\implies \vec{x} + c\vec{y} \in W_1 \cap W_2$ 
So,  $W_1 \cap W_2$  is a subspace.

**Definition** Let  $W_1, W_2$  be subspaces of vector space V, define the **sum** of two subspaces as:

$$W_1 + W_2 = \{ \vec{x} + \vec{y} \mid \vec{x} \in W_1 \land \vec{y} \in W_2 \}$$

**Note** Let  $\vec{x} = \vec{0} \in W_1$ ,  $\forall \vec{y} \in W_2$ ,  $\vec{y} \in W_1 + W_2$  so that,  $W_2 \subseteq W_1 + W_2$ . Similarly, let  $\vec{y} = 0 \in W_2$ ,  $\forall \vec{x} \in W_1$ ,  $\vec{x} \in W_1 + W_2$ . so that,  $W_1 \subseteq W_1 + W_2$ . So we have  $\forall \vec{v} \in W_1 \cap W_2$ ,  $\vec{v} \in W_1 + W_2$ . So that,

$$W_1 \cap W_2 \subseteq W_1 + W_2$$

**Note**  $W_1 + W_2$  is a subspace of V. *proof.* 

Let 
$$\vec{x_1}, \vec{x_2} \in W_1, \vec{y_1}, \vec{y_2} \in W_2$$
  
By properties of subspaces,  
 $\forall c \in \mathbb{R}, \vec{x_1} + c\vec{x_1} \in W_1 \land \vec{y_2} + c\vec{y_2} \in W_2$   
Consider,  $\vec{x_1} + \vec{y_1} \in W_1 + W_2, \vec{x_2} + \vec{y_2} \in W_1 + W_2$   
 $(\vec{x_1} + \vec{y_1}) + c(\vec{x_2} + \vec{y_2})$   
 $= (\vec{x_1} + c\vec{x_2}) + (\vec{y_1} + c\vec{y_2}) \in W_1 + W_2$ 

**Definition** Let  $W_1, W_2$  be subspaces of vector space V, say V is **direct sum** of  $W_1$  and  $W_2$ , written as  $V = W_1 \bigoplus W_2$ , if every  $\vec{x} \in V$  can be written <u>uniquely</u> as  $\vec{x} = \vec{w_1} + \vec{w_2}$  where  $\vec{w_1} \in W_1$  and  $\vec{w_2} \in W_2$ .

**Equivalently** Let  $W_1$  and  $W_2$  be subspaces of V,  $V = W_1 \bigoplus W_2 \iff V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}.$ 

## 4 Lecture 4 Jan. 17 2018

#### 4.1 Cont'd

Cont'd Proof of Theorem *proof.* 

(Forward direction) Suppose 
$$V = W_1 \bigoplus W_2$$
 WTS.  $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$ 

Let 
$$V = W_1 \bigoplus W_2$$

 $\implies \forall \vec{x} \in V$ , can be written uniquely as

$$\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \ \vec{w_2} \in W_2$$

 $\implies V = W_1 + W_2$  by definition of sum. Let  $\vec{x} \in W_1 \cap W_2$ 

Decomposition, let  $\vec{z} \in W_1 \cap W_2$ 

$$\vec{z} = \vec{z} + \vec{0}, \ \vec{z} \in W_1, \vec{0} \in W_2$$

$$\vec{z} = \vec{0} + \vec{z}, \ \vec{0} \in W_1, \vec{z} \in W_2$$

Since decomposition is unique,  $\vec{z} = \vec{0}$ 

So, 
$$W_1 \cap W_2 = \{\vec{0}\}\$$

(Backward direction) Suppose  $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}\$ 

WTS. 
$$V = W_1 \bigoplus W_2$$

Assume  $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \vec{w_2} \in W_2$ 

$$\vec{x} = \vec{w_1'} + \vec{w_2'}, \ \vec{w_1'} \in W_1, \vec{w_2'} \in W_2$$

$$\implies \vec{w_1} + \vec{w_2} = \vec{w_1'} + \vec{w_2'}$$

$$\implies \vec{w_1} - \vec{w_2} = \vec{w_1} - \vec{w_2}$$

Where, by definition of subspace,  $\vec{w_1} - \vec{w_1'} \in W_1 \land \vec{w_2'} - \vec{w_2} \in W_2$ 

So, 
$$\vec{w_1} - \vec{w_1'}$$
,  $\vec{w_2'} - \vec{w_2} \in W_1 \cap W_2$ 

Since 
$$W_1 \cap W_2 = \{\vec{0}\}\$$

$$\implies \vec{w_1} = \vec{w_1'} \wedge \vec{w_2} = \vec{w_2'}$$

So the decomposition is unique.

10

## 4.2 Linear Independence

Theorem (Redundancy theorem) Let V be a vector space,  $\{\vec{x_1}, \dots \vec{x_n}\}$ , let  $\vec{x} \in \{\vec{x_1}, \dots \vec{x_n}\}$ , then

$$span\{\vec{x_1}, \dots \vec{x_n}, \vec{x}\} = span\{\vec{x_1}, \dots \vec{x_n}\}$$

we say  $\vec{x}$  is the **redundant** vector that contributes nothing to the span. proof.

let 
$$\vec{x} \in span\{\vec{x}, \dots, \vec{x_n}\}$$

$$\vec{x} = \sum_{i=1}^{n} c_i \vec{x_i} \text{ for } c_i \in \mathbb{R} \ \forall i$$
So,  $span\{\vec{x_1}, \dots, \vec{x_n}, \vec{x}\} = \{\sum_{i=1}^{n} a_i \vec{x_i} + d\vec{x} \mid a_i, d \in \mathbb{R} \ \forall i\}$ 

$$= \{\sum_{i=1}^{n} a_i \vec{x_i} + \sum_{i=1}^{n} c_i \vec{x_i} \mid a_i, c_i \in \mathbb{R} \ \forall i\}$$

$$= \{\sum_{i=1}^{n} (a_i + c_i) \vec{x_i} \mid a_i, c_i \in \mathbb{R} \ \forall i\}$$

$$\text{Let } d_i = a_i + c_i \in \mathbb{R}$$

$$= \{\sum_{i=1}^{n} d_i \vec{x_i} \mid d_i \in \mathbb{R} \ \forall i\}$$

$$= span\{\vec{x_1}, \dots, \vec{x_n}\}$$

**Definition** Let V be a vector space, let  $\{\vec{x_1}, \ldots, \vec{x_n}\} \in V$ , we say  $\{v_i\}_{i=1}^n$  is **linearly independent** if the only set of scalars  $\{c_1, \cdots, c_n\}$  that satisfies,

$$\sum_{i=1}^{n} c_i \vec{x_i} = 0$$

is  $\{0, \dots, 0\}$ .

**Definition** In contrast, we say a set of vector, with size n, is **linearly dependent** if

$$\exists \vec{c} \neq \vec{0} \in \mathbb{R}^n, \ s.t. \ \sum_{i=1}^n c_i \vec{v_i} = 0$$

**Theorem** Let V be a vector space,  $\{\vec{v_i}\}_{i=1}^n \in V$  is *linearly dependent* if and only if,

$$\exists \vec{x_j} \in \{\vec{v_i}\}_{i=1}^n \ s.t. \ \vec{x_j} \in span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{v_j}\}\}$$

**Theorem** Let V be a vector space,  $\{\vec{v_i}\}_{i=1}^n \in V$  is *linearly independent* if and only if,

$$\forall \vec{x_i} \in {\{\vec{v_i}\}_{i=1}^n, \ \vec{x_i} \notin span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{v_i}\}\}}$$

## 5 Lecture Jan. 23 2018

#### 5.1 Linear independence, recall definitions

Acknowledgment: special thanks to Frank Zhao.

**Definition** Let  $\{\vec{x_1}, \dots \vec{x_k}\}$  is **linearly independent** if only scalars  $c_1 \dots c_k$  s.t.

$$\sum_{i=1}^{k} c_1 \vec{x_k} = 0(\star)$$

are  $c_1 = \dots = c_k = 0$ 

linearly dependent means at least one  $c_i \neq 0$ ,  $(\star)$  still holds.

## 5.1.1 Alternative definitions of linear independency

**Definition(Alternative.1)**  $\{\vec{x_1} \dots \vec{x_k}\}$  is **linearly independent** iff none of them can be written as a linear combination of the remaining k-1 vectors.

**Definition(Alternative.2)**  $\{\vec{x_1} \dots \vec{x_k}\}$  is **linearly dependent** <u>iff</u> at least one of them can be written as a linear combination of the remaining k-1 vectors.

#### 5.2 Basis

**Definition** Let V be a vector space, a non-empty set S of vectors from V is a **basis** for V if

- 1.  $V = span\{S\}$
- 2. S is linearly independent.

**Theorem** Characterization of basis, non-empty subset  $S = \{\vec{x_i}\}_{i=1}^n$  of vector space V is basis for V iff every  $\vec{x} \in V$  can be written <u>uniquely</u> as linear

combination for vectors in S.

proof.

#### **Forwards**

Suppose S is a basis for V

So every  $\vec{x} \in V$  can be written as a linear combination of vectors in S

To prove the uniqueness, assume two expressions of  $\vec{x} \in V$ 

$$\vec{x} = \begin{cases} c_1 \vec{x_1} + \dots + c_k \vec{x_k} \\ b_1 \vec{x_1} + \dots + d_k \vec{x_k} \end{cases}$$

Consider.

$$c_1 \vec{x_1} + \dots + c_k \vec{x_k} - (b_1 \vec{x_1} + \dots + d_k \vec{x_k}) = \vec{0}$$

$$\iff \sum_{i=1}^k (c_i - b_i) \vec{x_1} = \vec{0}$$

Since vectors in basis S are linear independent,

$$c_i = b_i \forall i \in \mathbb{Z} \cap [1, k]$$

So the representation is unique.

#### **Backwards**

Suppose every  $\vec{x} \in V$  can be written uniquely as linear combination of vectors in S.

WTS:  $V = span\{S\} \wedge S$  is linearly independent

By the assumption, spanning set is shown.

All we need to show is linear independence.

Consider,

$$\sum_{i=1}^{n} c_i \vec{x}_i = \vec{0}$$

Also, we know

$$\sum_{i=1}^{n} 0\vec{x_i} = \vec{0}$$

By the uniqueness of representation

We have identical expression 
$$\sum_{i=1}^{n} c_i \vec{x}_i = \sum_{i=1}^{n} 0 \vec{x}_i$$

$$\therefore c_i = 0 \ \forall i \in \mathbb{Z} \cap [1, n]$$

Example

$$V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}$$
  
$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$

$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

Show that  $\{(1,0),(6,3)\}$  is a basis of V.

By theorem,  $\{(1,0),(6,3)\}$  is basis if every  $(a,b) \in V$  can be written uniquely as linear combination of  $\{(1,0),(6,3)\}$ .

 $\exists$  unique scalars  $c_1, c_2 \in \mathbb{R}$  s.t.  $c_1(1,0) + c_2(6,3) = (a,b)$ 

proof.

By definition of scalar multiplication and vector addition in this space,

Consider
$$(a, b) = c_1(1, 0) + c_2(6, 3) = (2c_1 - 1, c_1 - 1) + (7c_2 - 1, 4c_2 - 1)$$
  
=  $(2c_1 + 7c_2 - 1, c_1 + 4c_2 - 1)$ 

Consider the coefficients of variables

$$\begin{cases} 2c_1 + 7c_2 - 1 = a \\ c_1 + 4c_2 - 1 = b \end{cases}$$

WTS, the above system of linear equations has unique solution for all a, b

The system has a unique solution  $\forall a, b \in \mathbb{R}$ 

Since the coefficient matrix has rank 2

$$rank(\begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}) = 2$$

Since obviously the columns are linearly independent.

5.3 Dimensions

**Definition** For a vector space V, the **dimension** of V is the minimum number of vectors required to span V.

**Fundamental Theorem** if V vector space is spanned by m vectors, then any set of more than m vectors from V must be linearly dependent.

Fundamental Theorem (Alternative) If V is vector space spanned by m vectors, then any <u>linearly independent</u> set in V must contain less or equal to m vectors.

#### 5.3.1 Consequences of fundamental theorem

**Theorem** if  $S = \{\vec{v}_i\}_{i=1}^k$  and  $T = \{\vec{w}_i\}_{i=1}^l$  are two bases of vector space V then l = k.

proof.

Since S spans V and T is linearly independent

$$\therefore l \leq k$$

(flip) Since T spans V and S is linearly independent

**Definition** So we can define the **dimension** of V, as dim(V) as the number vectors in any basis for V. For special case  $V = \{\vec{0}\}$ , dim(V) = 0.

Example

- $dim(\mathbb{R}^n) = n$
- $dim(\mathbb{P}_n(\mathbb{R})) = n+1$
- $dim(\mathbb{M}_{m\times n}(\mathbb{R})) = m\times n$

# 5.3.2 Use dimension to prove facts about linearly (in)dependent sets and subspaces

**Theorem** If V is a vector space, dim(V) = n,  $S = \{\vec{x_k}\}_{i=1}^k$  is subset of V, if k > n then S is linearly dependent.

Note  $k \leq n \Rightarrow S$  is linear dependent.

**Theorem** If W is subspace of vector space V, then

- 1.  $dim(W) \leq dim(V)$
- 2.  $dim(W) = dim(V) \iff W = V$

proof.

(1) Suppose 
$$dim(V) = n, dim(W) = k$$
  
WTS,  $k < n$ 

Any basis for W is a linearly independent set of k vectors from V.

Since V is spanned by n vectors, since dim(V) = n

By fundamental theorem,  $k \leq n$ 

$$\iff dim(W) \le dim(V)$$

(2) By contradiction, assume  $\dim(V) = \dim(W) = n$  but  $V \neq W$ 

Then 
$$\exists \vec{x} \in V \land \vec{x} \notin W$$

Take S as a basis of W, then  $\vec{x} \notin span\{S\}$ 

Then  $S \cup \vec{x}$  is linearly independent

 $\implies S \cup \{\vec{x}\}\$ is linearly independent in V containing n+1 vectors

This contradicts the assumption by fundamental theorem since dim(V) = n so it could not contain more than n linearly independent vectors

## 6 Lecture Jan. 24 2018

#### 6.1 Basis and Dimension

**Theorem** Let V be a vector space, S is a spanning set of V, and I is a linearly independent subset of V, s.t.  $I \subseteq S$ , then  $\exists$  basis B for V s.t.  $I \subseteq B \subseteq S$ .

#### **Explaining**

- 1. Any spanning set for V cab be **reduced** to basis for V by removing the linearly dependent (redundant) vector in the spanning set, using <u>redundancy theorem</u> to get a linearly independent spanning set.
- 2. Linear independent set can be enlarged to a basis for V.

proof.

omitted.

**Corollary** Let V be a vector space and dim(V) = n, any set of n linearly independent vectors from V is a basis for V.

*proof.* If n linearly independent vectors did not span V, then could be enlarged to a basis of V by pervious theorem, but then have a basis containing more than n vectors from V, which is impossible by the fundamental theorem since we given the dim(V) = n, proven by contradiction.

16

**Example** Let  $V = P_2(\mathbb{R})$ ,  $p_1(x) = 2 - 5x$ ,  $p_2(x) = 2 - 5x + 4x^2$ , find  $p_3 \in P_2(\mathbb{R})$  s.t.  $\{p_1(x), p_2(x), p_3(x)\}$  is basis for  $P_2(\mathbb{R})$ 

**Note** Since  $dim(P_2(\mathbb{R})) = 3$  so any 3 linearly independent vectors from  $P_2(\mathbb{R})$  will be a basis for  $P_2(\mathbb{R})$ .

**Solutions** e.g. constant function  $p_3(x) = 1$ , since  $1 \notin span\{p_1(x), p_2(x)\}$ , so  $\{p_1(x), p_2(x), p_3(x)\}$  is a basis of  $P_2(\mathbb{R})$ . e.g.  $p_3(x) = x$ , since  $x \notin span\{p_1(x), p_2(x)\}$ 

**Theorem** Let U and W be subspaces of vector space V, then we have

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

proof.

Let 
$$\{\vec{v_i}\}_1^k$$
 be basis for  $U \cap W$   
 $\implies dim(U \cap W) = k$ 

Since  $\{\vec{v_i}\}_1^k$  is basis for  $U \cap W$  then it's a linearly independent subset of U So it could be enlarged to basis for U,  $\{\vec{v_1}, \dots, \vec{v_k}, \vec{y_1}, \dots, \vec{y_r}\}$ 

So 
$$dim(U) = k + r$$

We also could enlarge a basis for W  $\{\vec{v_1}, \dots, \vec{v_k}, \vec{z_1}, \dots, \vec{z_s}\}$ 

$$\implies dim(V) = k + s$$

WTS.  $\{\vec{v_1}, \dots, \vec{v_k}, \dots, \vec{y_1}, \dots, \vec{y_r}, \vec{z_1}, \dots, \vec{z_s}\}$  is a basis for U + W

(If we could show this) dim(U+W)=k+r+s=(k+r)+(k+s)-k=  $dim(U)+dim(W)-dim(U\cap W)$ 

WTS.  $\{\vec{v_1}, \dots, \vec{v_k}, \dots, \vec{y_1}, \dots, \vec{y_r}, \vec{z_1}, \dots, \vec{z_s}\}$  is linearly independent

Consider  $a_1 \vec{v_1} + \dots + a_k \vec{v_k} + b_1 \vec{y_1} + \dots + b_r \vec{y_r} + c_1 \vec{z_1} + \dots + c_s \vec{z_s} = \vec{0} (\star)$ 

From 
$$(\star) \implies \sum (c_i \vec{z_i}) = -\sum (a_i \vec{v_i}) - \sum b_i \vec{y_i}$$
  
 $\implies \sum (c_i \vec{z_i}) \in U \land \sum (c_i \vec{z_i}) \in W$   
 $\iff \sum (c_i \vec{z_i}) \in U \cap W$ 

Since  $\{\vec{v_i}\}$  is a basis for  $U \cap W$ 

$$\implies \sum (c_i \vec{z_i}) = \sum (d_i \vec{v_i})$$

 $\implies c_i = d_i = 0 \text{ since } \{\vec{z_i}, \vec{v_i}\} \text{ is a basis}$ Rewrite  $(\star)$ 

 $\sum (a_i \vec{v_i}) + \sum b_i \vec{y_i} = 0$ 

 $\implies a_i = b_i = 0 \text{ since } \{\vec{v_i}, \vec{y_i}\} \text{ is a basis for } U$ 

**Corollary** For direct sum, since the intersection is  $\{\vec{0}\}$ 

$$dim(U \bigoplus W) = dim(U) + dim(W)$$

**Example** Let U,W are subspaces of  $\mathbb{R}^3$  such shat dim(U)=dim(W)=2, why is  $U\cap W\neq \{\vec{0}\}$ 

**Solutions** Geometrically, U and W are planes through origin then the intersection would be a line through  $\operatorname{origin}(U \neq W)$  or a plane through  $\operatorname{origin}(U = W)$ , so shown.

**Question** V is a vector space, dim(V) = n,  $U \neq W$  are subspaces of V but dim(U) = dim(V) = (n-1), proof:

- 1. V = U + W
- 2.  $dim(U \cap W) = (n-z)$