Statistics Masters Comprehensive Exam

November 18, 2006

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let X_1, X_2 be two independent random variables from U(0,1) .
 - (a) Find the joint p.d.f. of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$.
 - (b) Find the marginal p.d.f. of Y_1 .
 - (c) Find the marginal p.d.f. of Y_2 .

2. Let X be a random variable with the p.d.f.

$$f(x; \theta) = \theta (1 - x)^{\theta - 1}, \quad 0 < x < 1, 0 < \theta < \infty.$$

- (a) Find the p.d.f. of $Y = -\ln(1 X)$.
- (b) Find the p.d.f. of $Y = \ln(X/(1-X))$.

3. Let X_1, X_2, \dots, X_n be a random sample taken from the distribution with the p.d.f.

$$f(x; \theta) = \theta \ x^{\theta - 1}, \quad 0 < x < 1, 0 < \theta < \infty.$$

- (a) Derive the moment estimator of θ .
- (b) Derive the maximum likelihood estimator of θ .

- 4. Suppose $X_1, X_2, X_3, ... X_{32}$ be a random sample with a *beta* distribution with the p.d.f. f(x) = 2x, 0 < x < 1.
 - (a) Let Y be the number of these random variables $(X_i, i = 1, 2, ..., 32)$ whose values less than 0.5. Find $P(Y \le 10)$.
 - (b) Approximate $P(\sum_{i=1}^{14} X_i > \sum_{i=15}^{32} X_i)$.

5. Let X be a random variable whose probability mass function under H_0 and H_1 is given by

x	1	2	3	4	5	6	7
$f(x H_0)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$f(x H_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

- (a) Use the Neyman-Pearson Lemma to find the most powerful test for H_0 vs. H_1 with size $\alpha = 0.05$.
- (b) Compute the probability of Type II error for the above test.

- 6. Let X_1 and X_2 be independent random variables with $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2), i = 1, 2$. Let $Y = X_1 + X_2$ and $Z = X_1 X_2$
 - (a) Find the distribution of X_1 given Y = y.
 - (b) Find Cov(Y, Z)
 - (c) If $\mu_1 = \mu_2 = 0$, are Y and Z independent? (Fully explain your answer.)

- 7. Let $X_{i1}, \ldots, X_{in_i}, i = 1, 2$ be independent random samples from exponential distributions with means $\theta_i, i = 1, 2$.
 - (a) Derive a likelihood ratio test for testing $H_0: \theta_1 = \theta_2$ versus $H_1: \theta_1 \neq \theta_2$
 - (b) Show that the test statistic can be expressed as

$$T = \frac{\sum_{j=1}^{n_1} X_{1j}}{\sum_{j=1}^{n_1} X_{1j} + \sum_{j=1}^{n_2} X_{2j}}$$

(c) Find the distribution of T when H_0 is true.

8. Let X_1, \ldots, X_n be a random sample from a population with density

$$f(x;\theta) = 3\theta x^2 e^{-\theta x^3}, \quad x > 0.$$

- (a) Let M be the median of this distribution. Find the MLE of M.
- (b) Suppose we put a $Gamma(\alpha, \beta)$ prior distribution on θ , find the Bayes estimate of θ using squared error loss function.

- 9. Let $\{X_1, \ldots, X_n\}$ be independently and identically distributed normal variables with mean 0 and variance 1. Put $Y_1 = \frac{1}{n} \sum_{i=1}^n X_i$ and $Y_2 = \sum_{i=1}^n (X_i Y_1)^2$.
 - (a) Show that Y_1 and Y_2 are independently distributed of each other stochastically.
 - (b) What is the sampling distribution of Y_2 ?

- 10. Let $\{X_1,\ldots,X_n\}$ be a random sample from the density $f(x;\theta)=e^{-\theta}\theta^x/x!, x=0,1,\ldots,\infty,\theta>0.$
 - (a) Obtain a sufficient and complete statistic for θ .
 - (b) Derive the UMVUE (Uniformly Minimum Varianced and Unbiased estimator) of $P\{X=1\}.$

- 11. Let $\{X_1,\ldots,X_n\}$ be a random sample from the density $f(x,\theta)=\theta^{-1}e^{-x/\theta},0< x; f(x,\theta)=0,$ if $x\leq 0.(\theta>0)$
 - (a) Derive the size- α UMP (Uniformly Most Powerful) test for testing $H_0: \theta = 1$ vs $H_1: \theta > 1$.
 - (b) Assume that the observed sample mean is 0.98 and n=20. Based on this observed data, obtain the p-value of your test. From on this analysis, what conclusions you will make?

12. Let $\{X_1, \ldots, X_{10}\}$ be a random sample from the normal density with mean μ and variance 1. Let the prior distribution of μ be given by $P(\mu) \propto e^{-\frac{1}{8}(\mu-2)^2}$, μ real.

Assume that the observed value of the sample mean is 1.5. Derive the 95% HPD (Highest Posterior Density) interval of μ .