Bank Runs, Deposit Insurance, and Liquidity

Presenter: DING Xianagyu

PHBS

1901212474@pku.edu.cn

November 8, 2020

Overview

- Mey Concepts
- Abstract
- Model
- Scenarios
- Discussion
- 6 Extensions

Key Concepts

Bank Run:

 A bank run occurs when a large number of customers of a bank or other financial institution withdraw their deposits simultaneously over concerns of the bank's solvency.

Deposit Insurance:

- A statutory insurance provided by FDIC in the US.
- Fund by assessing a premium on banks, to protect against bank's default on deposit up to \$250,000 per depositor, per insured bank.

• Liquidity:

- In finance: ability to quickly purchase or sell an asset without causing a drastic change in the asset price.
- In this paper: ability to have money to consume whenever you want.

Bank Run and Deposit Insurance in China

Sheyang Bank Run (Apr 2014)

Deposit Insurance Act (May 2015) 《存款保险条例》国务院令第660号

Abstract

- Why banks exist?
 - Consumption time risk: people have no plan when to consume.
 - Demand deposit: creation of liquid claims on illiquid asset.
- Model feature: multiple equilibrium of demand deposit:
 - Good equilibrium vs Bank run equilibrium
 - Bank run equilibrium cause real economic problems:
 - Illiquid Asset are liquidate early: return ↓
 - Even 'healthy' bank can fail.
- How to rule out the bank run equilibrium:
 - Suspension of convertibility
 - Deposit insurance

Model setup: Technology

- Technology:
 - t = 0: there is an investment opportunity cost \$1.
 - t = 1: you can liquidate the investment and get \$1 back.
 - t = 2: you can get full return R > \$1.

• Liquidating investment causes economic loss.

Model setup: Consumer

- Consumer:
 - Continuous with measure 1
 - People do not know when to consume at t = 0.
- t = 1: Uninsurable liquidity risk:
 - π proportion only care consumption at t=1.
 - $1-\pi$ proportion only care consumption at t=2.

$$U(c_1, c_2; \Theta) = \begin{cases} u(c_1) & \text{if j is of type 1 in state } \Theta \\ \rho u(c_2) & \text{if j is of type 2 in state } \Theta \end{cases}$$

Model setup: Consumer

- Consumer objective function at t = 0:
 - vN-M utility form:

$$U(c_1, c_2) = \pi u(c_1) + (1 - \pi)\rho u(c_2)$$

- $u(\cdot)$ satisfies Inada conditions.
- Relative risk aversion coefficient -cu''(c)/u'(c) > 1
- Information:
 - ullet First, we assume π is constant and public information.
 - However, Θ_j or whether a consumer is Type 1 or Type 2 is private information.

Scenario 1: Autarky

• Type 1 consumer will liquidate the consumption at t=1 and type 2 consumer will keep the investment to t=2.

$$U(c_1, c_2) = \pi u(1) + (1 - \pi)\rho u(R)$$

- Numerical example:
 - u(c) = 1 1/c
 - ullet Percentage of Type 1 consumer $\pi=0.25$
 - R=2 and utility discount rate $\rho=1$

$$U(c_1, c_2) = 0.25u(1) + 0.75u(2) = 0.375$$

• Not social optimal, because people are risk adverse, so they want to smooth consumption under two circumstances.

Scenario 2: Social planner

Social planner problem:

$$\max_{(c_1,c_2)\in R_+^2} \pi u(c_1) + (1-\pi)\rho u(c_2)$$

s.t.
$$\pi c_1 + (1 - \pi) \frac{c_2}{R} = 1$$
 (1)

FOC:

$$u'(c_1^*) = \rho R u'(c_2^*)$$
 (2)

- We can prove that $1 < c_1^* < c_2^* < R$. (See footnote 3)
- Consider the numerical example before, the optimal consumption bundle is $(c_1^*, c_2^*) = (1.28, 1.813)$

Scenario 2: Social planner

- Consider numerical example before:
 - u(c) = 1 1/c
 - Percentage of Type 1 consumer $\pi = 0.25$
 - R=2 and utility discount rate $\rho=1$
- The optimal consumption bundle is $(c_1^*, c_2^*) = (1.28, 1.813)$
- $U^* = 0.25u(1.28) + 0.75u(1.813) = 0.391 > 0.375$
- So if there is a financial contract that cost 1 at t=0 and pays (1.28, 1.813) for type 1 and type 2 consumer at t=1 and t=2. Consumer will be willing to buy it.
 - Require private information Θ!
 - But we can let customer select themselves.
 - Check self-selection constraints.

Scenario 3: Bank

- Bank: Demand deposit, and investment.
- Bank promises r_1 interest rate if withdraw at t = 1, and rest of the money left for people withdraw at t = 2.
- Sequential service constrain:
 - f: the proportion of t = 1 withdraw
 - f_j : number of withdraw before j as fraction of total population

$$V_1(f_j; r_1) = \begin{cases} r_1 & \text{if } f_j < r_1^{-1} \\ 0 & \text{if } f_j \ge r_1^{-1} \end{cases}$$

$$V_2(f; r_1) = max \left[R \frac{1 - r_1 f}{1 - f}, 0 \right]$$

• Where V_1 is the money received by people withdraw at t=1 and V_2 is the money received by people withdraw at t=2.

Scenario 3: Bank (Good Equilibrium)

Good Equilibrium

When $r_1 = c_1^*$ and only type 1 consumer withdraw at t = 1 $(f = \pi)$:

- The demand deposit contract achieve social optimal.
- It is a Nash equilibrium.
- Consider numerical example before:
 - u(c) = 1 1/c
 - ullet Percentage of Type 1 consumer $\pi=0.25$
 - R=2 and utility discount rate $\rho=1$
- $(V_1, V_2) = (c_1^*, c_2^*) = (1.28, 1.813)$ achieves social optimal.
 - Type 1 will not betray: consumption at t = 2 is useless.
 - Type 2 will not betray: $V_2 > V_1$
 - ⇒ Nash equilibrium

Scenario 3: Bank (Bank Run Equilibrium)

Bank Run Equilibrium

When $r_1 > 1$ and all consumers withdraw at t = 1 (f = 1):

- It is a Nash equilibrium.
- At t = 1, random r_1^{-1} proportion get r_1 , and the remaining get 0.
 - Type 1 will not betray: consumption at t = 2 is useless.
 - Type 2 will not betray: there is noting left if not withdraw.
 - ⇒ Nash equilibrium

Social welfare:

Good Equilibrium > Autarky (No Bank) > Bank Run Equilibrium

Scenario 4: Bank (Suspension of Convertibility)

- So how to protect against bank run (rule out the bad equilibrium)?
 - Suspension of convertibility
 - Government deposit insurance
- Suspension of convertibility
 - Bank stops return money at t=1 after \hat{f} of withdraw.

$$V_1(f_j; r_1) = \begin{cases} r_1 & \text{if } f_j \leq \hat{f} \\ 0 & \text{if } f_j > \hat{f} \end{cases}$$

$$V_2(f; r_1) = max \left[R \frac{1 - r_1 f}{1 - f}, R \frac{1 - r_1 \hat{f}}{1 - \hat{f}} \right]$$

Scenario 4: Bank (Suspension of Convertibility)

Suspension of Convertibility When π is Constant

When $\hat{f} \in \{\pi, (R - r_1)/r_1(R - 1)\}$:

- Good equilibrium is the only (dominate strategies) Nash equilibrium.
- It achieves social optimal.
- Check $\hat{f} = \pi$ as example:
 - Type 1 will not betray: consumption at t = 2 is useless
 - Type 2 will not betray: at t = 2 they can get at least as much as withdraw at t = 1.
- Suspension of convertibility during Greek Debt Crisis.

Scenario 4: Bank (Suspension of Convertibility)

Optimal Contract with Stochastic Withdraw

Any bank contracts which obey the sequential service constrain (including suspension of convertibility) **CANNOT** achieve social optimal with proportion of type 1 consumer π is stochastic and has a non-degenerate distribution.

- We can prove this by contradiction (P412-P413).
- Although it cannot be optimal, suspension of convertibility can also rule out bank run equilibrium when π is stochastic \Rightarrow welfare gain.

Scenario 5: Bank (Deposit Insurance)

- Government can impose tax after withdraw realized.
- Deposit insurance
 - Funded by wealth tax on all wealth on t = 1.
 - ⇒ Tax is determined after the government know how much withdraw f realized at t = 1.
 - \Rightarrow Proportionate tax as a function of f:

$$\tau(f) = \begin{cases} 1 - \frac{c_1^*(f)}{r_1} & \text{if } f \leq \bar{\pi} \\ 1 - r_1^{-1} & \text{if } f > \bar{\pi} \end{cases}$$

- Where $\bar{\pi}$ is the maximum possible realization of π .
- Tax is plowed back into bank for consumer withdraw at t = 2.

Scenario 5: Bank (Deposit Insurance)

• After-tax proceeds, per dollar of deposit of withdrawal at t=1, for $f_j \leq f$:

$$\hat{V}_1(f) = egin{cases} c_1^*(f) & ext{if } f \leq ar{\pi} \\ 1 & ext{if } f > ar{\pi} \end{cases}$$

• After-tax proceeds, per dollar of deposit of withdrawal at t = 2:

$$\hat{V}_{2}(f) = \begin{cases} R \frac{1 - c_{1}^{*}(f)f}{1 - f} = c_{2}^{*}(f) & \text{if } f \leq \bar{\pi} \\ R \frac{1 - f}{1 - f} = R & \text{if } f > \bar{\pi} \end{cases}$$

- Notice that $\hat{V}_2(f) > \hat{V}_1(f)$ for all $f \in [0,1]$:
 - ullet It means type 2 will not withdraw at t=1
 - Exist a unique (dominate strategies) Nash equilibrium.

Scenario 5: Bank (Deposit Insurance)

Demand Deposit Contracts with Deposit Insurance

Demand deposit contacts with government deposit insurance achieve the unconstrained **optimum** as a **unique** Nash equilibrium if the government imposes an optimal tax to finance the deposit insurance.

- At Nash equilibrium:
 - Only type 1 withdraw at t = 1, so f = t:

$$\hat{V}_1(f=t)=c_1^*(\pi)$$

$$\hat{V}_2(f=t) = R \frac{1 - \pi c_1^*}{1 - \pi} = c_2^*(\pi)$$

Discussion

- Them model provides insights in:
 - Risk sharing and liquidity provision function of banks
 - The strategic interaction between depositors
 - The cause, welfare loss of bank run, and how to protect against it
- This model assume single bank and riskless technology:
 - When there are multiple risky technology:
 - Moral hazard: Deposit insurance may encourage risk-taking investment.
- Government deposit insurance vs commercial deposit insurance
- Other application:
 - Discount window lending of central bank and inflation tax.
 - Bankruptcy protection ⇔ Suspension of convertibility.

Extensions

- Secondary market (Dong, P54.)
 - Two types of technologies
 - Trade between two types of investors
- Debt vs. equity contract (Dong, P57.)
 - Financial intermediate is a mutual fund rather than a bank.
 - Mutual fund is free from bank run equilibrium.
- Inter-bank asset market and multiple equilibrium (Dong, P59.).

The End! Thanks for listening!

