# Why is Compression Needed?







www.ImageProcessingPlace.com

Chapter 8

**Image Compression** 



## The reasons we can compress:



abc

FIGURE 8.1 Computer generated 256 × 256 × 8 bit images with (a) coding redundancy, (b) spatial redundancy, and (c) irrelevant information. (Each was designed to demonstrate one principal redundancy but may exhibit others as well.)



www.ImageProcessingPlace.com

#### Chapter 8







www.ImageProcessingPlace.com

Chapter 8







Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Image Compression



## **JPEG**





Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8







Chapter 8

**Image Compression** 



# Are all pixels equal?







Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8







www.ImageProcessingPlace.com

Chapter 8

**Image Compression** 



## Are all pixels/symbols equal?

| $r_k$                                | $p_r(r_k)$ | Code 1   | $I_I(r_k)$ | Code 2 | $I_2(r_k)$ |
|--------------------------------------|------------|----------|------------|--------|------------|
| $r_{87} = 87$                        | 0.25       | 01010111 | 8          | 01     | 2          |
| $r_{128} = 128$                      | 0.47       | 10000000 | 8          | 1      | 1          |
| $r_{186} = 186$                      | 0.25       | 11000100 | 8          | 000    | 3          |
| $r_{255} = 255$                      | 0.03       | 11111111 | 8          | 001    | 3          |
| $r_k$ for $k \neq 87, 128, 186, 255$ | O          | _        | 8          | _      | 0          |



Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Image Compression



## Are all pixels/symbols equal?

| $r_k$                                 | $p_r(r_k)$ | Code 1   | $I_I(r_k)$ | Code 2 | $I_2(r_k)$ |
|---------------------------------------|------------|----------|------------|--------|------------|
| $r_{87} = 87$                         | 0.25       | 01010111 | 8          | 01     | 2          |
| $r_{128} = 128$                       | 0.47       | 10000000 | 8          | 1      | 1          |
| $r_{186} = 186$                       | 0.25       | 11000100 | 8          | 000    | 3          |
| $r_{255} = 255$                       | 0.03       | 11111111 | 8          | 001    | 3          |
| $r_k$ for $k \neq 87$ , 128, 186, 255 | 0          | _        | 8          | _      | 0          |
|                                       |            |          |            |        |            |

025 x 2 + 0.47 x 1 + 0.25 x 3 + 0.03 x 3 =



Chapter 8

**Image Compression** 



## **Huffman Coding**

| Origina          | al source   | Source reduction |         |                |              |  |  |  |
|------------------|-------------|------------------|---------|----------------|--------------|--|--|--|
| Symbol           | Probability | 1                | 2       | 3              | 4            |  |  |  |
| $a_2$            | 0.4         | 0.4              | 0.4     | 0.4            | <b>-</b> 0.6 |  |  |  |
| $a_6$            | 0.3         | 0.3              | 0.3     | 0.3 -          | 0.4          |  |  |  |
| $a_1$            | 0.1         | 0.1              | → 0.2 ¬ | <b>→</b> 0.3 – |              |  |  |  |
| $a_4$            | 0.1         | 0.1 -            | 0.1     |                |              |  |  |  |
| a <sub>3</sub> * | 0.06        | <b>→</b> 0.1 –   |         |                |              |  |  |  |
| $a_5$            | 0.04 —      |                  |         |                |              |  |  |  |



Chapter 8



| C      | riginal source |       | Source reduction |        |      |     |      |      |      |   |  |
|--------|----------------|-------|------------------|--------|------|-----|------|------|------|---|--|
| Symbol | Probability    | Code  |                  | 1      | 2    | 2   | 2    | 3    | 4    | 4 |  |
| $a_2$  | 0.4            | 1     | 0.4              | 1      | 0.4  | 1   | 0.4  | 1    | -0.6 | O |  |
| $a_6$  | 0.3            | 00    | 0.3              | 00     | 0.3  | 00  | 0.3  | 00   | 0.4  | 1 |  |
| $a_1$  | 0.1            | 011   | 0.1              | 011    | -0.2 | 010 | -0.3 | 01 - |      |   |  |
| $a_4$  | 0.1            | 0100  | 0.1              | 0100   | 0.1  | 011 |      |      |      |   |  |
| $a_3$  | 0.06           | 01010 | -0.1             | 0101 - | I    |     |      |      |      |   |  |
| $a_5$  | 0.04           | 01011 |                  |        |      |     |      |      |      |   |  |



Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8



| C      | riginal source |       |      |        | S    | ource rec | luctio | n    |      |   |
|--------|----------------|-------|------|--------|------|-----------|--------|------|------|---|
| Symbol | Probability    | Code  | 1    | L      | 2    | 2         |        | 3    | 4    | 4 |
| $a_2$  | 0.4            | 1     | 0.4  | 1      | 0.4  | 1         | 0.4    | 1 _  | -0.6 | 0 |
| $a_6$  | 0.3            | 00    | 0.3  | 00     | 0.3  | 00        | 0.3    | 00 - | 0.4  | 1 |
| $a_1$  | 0.1            | 011   | 0.1  | 011    | -0.2 | 010 →     | -0.3   | 01 - |      |   |
| $a_4$  | 0.1            | 0100  | 0.1  | 0100 - | 0.1  | 011       |        |      |      |   |
| $a_3$  | 0.06           | 01010 | -0.1 | 0101 - |      |           |        |      |      |   |
| $a_5$  | 0.04           | 01011 |      |        |      |           |        |      |      |   |



Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8







www.ImageProcessingPlace.com

Chapter 8









Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8









Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8





Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8



$$T(u,v) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$
  
 $f(x,y) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} T(u,v) S(x,y,u,v)$   
 $f(x,y) = u=0$   $v=0$ 



Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8



$$\Gamma(x,y, M, \sigma) = S(x,y, M, \sigma) 
= \omega(M) \omega(V) \cos \frac{(2x+1)M^{2}}{2n} 
\omega(M) = (\sqrt{\frac{1}{2}} M = 0) \cos \frac{(2x+1)V^{2}}{2n} 
\omega(M) = (\sqrt{\frac{2}{2}} M \neq 0) \cos \frac{(2x+1)V^{2}}{2n}$$



www.ImageProcessingPlace.com

Chapter 8

**Image Compression** 



### Discrete Cosine Transform







Chapter 8

**Image Compression** 



# Why DCT?





Chapter 8

**Image Compression** 





a b c d

FIGURE 8.28 Approximations of Fig. 8.9(a) using 12.5% of the  $8 \times 8 DCT$ coefficients: (a)-(b) threshold coding results; (c)-(d) zonal coding results. The difference images are scaled by 4.



Chapter 8

#### Image Compression











abed

FIGURE 8.27 Approximations of Fig. 8.27(a) using 25% of the DCT coefficients and (b) 2 × 2 subimages, (c) 4 × 4 subimages, and (d) 8 × 8 subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).



Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8







Gonzalez & Woods www.ImageProcessingPlace.com

#### Chapter 8

#### Image Compression

highlights the



| 1  | 1  | 1 | 1  | 1 | 0: | 0  | 0 | 8  | 7. | 6  | -4 | 3  | 2   | 1  | .0 |
|----|----|---|----|---|----|----|---|----|----|----|----|----|-----|----|----|
| 1  | 1  | 1 | 1  | 0 | 0  | 0  | 0 | 7  | 6  | 5  | 4  | 3  | 2   | 1  | .0 |
| 1  | 1  | 1 | 0  | 0 | 0  | 0  | 0 | 6  | 5  | 4  | 3  | 3  | 1   | 1  | 0  |
| 1  | 1  | 0 | 0  | 0 | 0  | 0  | 0 | 4  | 4  | 3  | 3  | 2  | 1   | 0  | 0  |
| 10 | 0  | 0 | 0  | 0 | 0  | 0  | 0 | 3  | 3  | 3  | 2  | 1  | 1   | 0  | 0  |
| 0  | 0  | 0 | 0  | 0 | 0  | 0  | 0 | 2  | 2  | 1  | 1  | 1  | 0   | 0  | 0  |
| 0  | 0  | 0 | 0  | 0 | 0. | 0  | 0 | 1  | 1  | 1  | 0  | 0. | 0   | 0  | 0  |
| 0  | 0  | 0 | 0  | 0 | 0  | O. | 0 | 0  | 0  | Ω  | 0  | 0  | 0   | 0  | 0  |
| 1  | E  | 0 | 10 | 1 | 0  | 0  | 0 | 0  | 1  | 5  | 6  | 14 | 1.5 | 27 | 28 |
| 1  | 1  | 1 | 1) | 0 | 0  | 0  | 0 | 2  | 4  | 7  | 13 | 16 | 26  | 29 | 42 |
| 1  | 1  | 0 | 0  | 0 | 0  | 0  | 0 | 3  | 8  | 12 | 17 | 25 | 30  | 41 | 43 |
| 1  | 0  | 0 | 0  | 0 | 0. | 0  | 0 | 9: | 11 | 18 | 24 | 31 | 40  | 44 | 53 |
| 0  | 0  | 0 | 0  | 0 | 0  | -0 | 0 | 10 | 19 | 23 | 32 | 39 | 45  | 52 | 54 |
| 0  | 1. | 0 | 0  | 0 | 0  | 0  | 0 | 20 | 22 | 33 | 38 | 46 | 51  | 55 | 60 |
| 0  | 0  | O | 0  | 0 | 0  | 0  | 0 | 21 | 34 | 37 | 47 | 50 | 56  | 59 | 61 |
| 0  | 0  | 0 | 0  | 0 | 0  | 0  | 0 | 35 | 36 | 48 | 49 | 57 | 58  | 62 | 63 |

|                                                                 | F 0         | <br>2 |   |
|-----------------------------------------------------------------|-------------|-------|---|
| a b<br>c d                                                      | #<br>#<br>0 |       |   |
| A typical (a) zonal mask,                                       |             |       | М |
| (b) zonal bit<br>allocation,<br>(c) threshold<br>mask, and      | 2           |       |   |
| (d) thresholded<br>coefficient<br>ordering<br>sequence. Shading | 3           |       | S |



www.ImageProcessingPlace.com

#### Chapter 8

#### **Image Compression**





| 16 | 11  | 10 | 16 | 24  | 40  | 51  | 61  |
|----|-----|----|----|-----|-----|-----|-----|
| 12 | 12  | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13  | 16 | 24 | 40  | 57  | ń9  | 56  |
| 14 | 17  | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22  | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 3.5 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64  | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92  | 95 | 98 | 112 | 100 | 103 | 99  |

a b

FIGURE 8.30 (a) A threshold coding quantization curve [see Eq. (8.2-29)]. (b) A typical normalization matrix.

Students: Good place to take a break if you need it.





Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

#### Image Compression





| 16 | 11  | 10 | 16 | 24  | 40  | 51  | 61  |
|----|-----|----|----|-----|-----|-----|-----|
| 12 | 12  | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 1.3 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17  | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22  | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 3.5 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64  | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92  | 95 | 98 | 112 | 100 | 103 | 99  |

FIGURE 8.30
(a) A threshold coding quantization curve [see Eq. (8.2-29)]. (b) A typical normalization matrix.

a b



#### Chapter 8

### **Image Compression**



| 52 | 55 | 61 | 66  | 70  | 61  | 64 | 73 |
|----|----|----|-----|-----|-----|----|----|
| 63 | 59 | 66 | 90  | 109 | 85  | 69 | 72 |
| 62 | 59 | 68 | 113 | 144 | 104 | 66 | 73 |
| 63 | 58 | 71 | 122 | 154 | 106 | 70 | 69 |
| 67 | 61 | 68 | 104 | 126 | 88  | 68 | 70 |
| 79 | 65 | 60 | 70  | 77  | 63  | 58 | 75 |
| 85 | 71 | 64 | 59  | 55  | 61  | 65 | 83 |
| 87 | 79 | 69 | 68  | 65  | 76  | 78 | 94 |

EXAMPLE 8.17: JPEG baseline coding and decoding.



Chapter 8





FIGURE 8.31 Approximations of Fig. 8.9(a) using the DCT and normalization array of Fig. 8.30(b): (a) Z, (b) 2Z, (c) 4Z, (d) 8Z, (e) 16Z, and (f) 32Z.



#### Chapter 8

#### **Image Compression**





| 16 | 11  | 10 | 16 | 24  | 40  | 51  | 61  |
|----|-----|----|----|-----|-----|-----|-----|
| 12 | 12  | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13  | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17  | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22  | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 3.5 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64  | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92  | 95 | 98 | 112 | 100 | 103 | 99  |

#### a b

FIGURE 8.30 (a) A threshold coding quantization curve [see Eq. (8.2-29)]. (b) A typical normalization matrix.



Chapter 8

**Image Compression** 





a b c def

FIGURE 8.32 Two JPEG approximations of Fig. 8.9(a). Each row contains a result after compression and reconstruction, the scaled difference between the result and the original image, and a zoomed portion of the reconstructed image.



Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8







www.ImageProcessingPlace.com

Chapter 8

**Image Compression** 



# Predictive lossless compression







Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8









Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Image Compression



## Examples of predictors and JPEG-LS





#### Chapter 8













www.ImageProcessingPlace.com

Chapter 8











www.ImageProcessingPlace.com

Chapter 8

**Image Compression** 



## Temporal prediction (MPEG)



FIGURE 8.36 Macroblock motion specification.

Students: Good place to take a break if you need it.





Chapter 8













www.ImageProcessingPlace.com

Chapter 8





# **Bonus: Run-length Coding**

10,000







