Finally, the angles $\angle AFB \cong \angle EFC$ since they are vertical angles (remember that A-F-E and B-F-C). Therefore, $\triangle AFB \cong \triangle EFC$ by AAS. In particular, $\overline{BF} \cong \overline{FC}$. This provides the existence of midpoints.

Let B and B' be midpoints of AC, and let \leq be an ordering of \overrightarrow{AC} such that $A \leq C$. Without the loss of generality, we may assume that $B' \leq B$. In particular, A - B' - B - C. Then $\overline{AB'} \leq \overline{AB} \cong \overline{BC} \leq \overline{B'C} \cong \overline{AB'}$.

Hence, $\overline{AB'}\cong \overline{AB}$. But by the uniqueness of Segment Translation, we conclude that B=B', that is, midpoints are unique.

Finally, the angles $\angle AFB \cong \angle EFC$ since they are vertical angles (remember that A - F - E and B - F - C). Therefore, $\triangle AFB \cong \triangle EFC$ by AAS. In particular, $\overline{BF} \cong \overline{FC}$. This provides the existence of midpoints.

Let B and B' be midpoints of AC, and let \leq be an ordering of \overrightarrow{AC} such that $A \leq C$. Without the loss of generality, we may assume that $B' \leq B$. In particular, A - B' - B - C. Then

$$\overline{AB'} \leq \overline{AB} \cong \overline{BC} \leq \overline{B'C} \cong \overline{AB'}$$
.

Hence, $\overline{AB'} \cong \overline{AB}$. But by the uniqueness of Segment Translation, we conclude that B = B', that is, midpoints are unique.