WC2019 模拟赛 Solution

Wearry

Stay determined!

Union

定义 f(s) 表示点集 s 构成的图联通方案数, g(s) 表示点集 s 构成的图不一定联通的方案数. 其中 g(s) 比较好求:

$$g(s) = \prod_{(u,v)\in s} (C_{u,v} + 1)$$

考虑 g(s) 中点集 s 中编号最小的点 u 所在联通块的集合 t, 不难得到:

$$g(s) = \sum_{u \in t, t \subset s} f(t)g(s-t)$$

注意到求解的过程中只需要考虑所有包含 1 号点的集合 s' 并计算所有 f(s') 即可.

倒过来考虑这个过程, 相当于用 f(s') 与 g(s-s') 进行子集卷积会得到 g(s). 现在求 f(s') 只需要用 g(s) 和 g(s-s') 做子集卷积意义下的除法即可.

Power

首先根据 k 的奇偶性, 可以将 $\sum x_i$ 分成若干段分别考虑贡献.

- 当 k 为奇数时, 需要考虑的范围是 $(-\infty, a], (a, +\infty)$.
- 当 k 为偶数时, 需要考虑的范围是 $(-\infty, -|a|], (-|a|, |a|], (|a|, +\infty).$

接下来要计算的是 $\sum x_i$ 恰好落在某一个区间内部的概率,为了方便,先假设所有变量都是在 $[0,+\infty)$ 上均匀随机的.

记 $p_n(s)$ 表示 n 个随机变量之和不超过 s 的概率, 更准确而言是满足这样条件的点在 n 维空间中所占的体积. 考虑枚举最后一个变量的取值, 可以得到:

$$p_n(s) = \int_0^s p_{n-1}(x) \mathrm{d}x$$

由于我们有边界条件:

$$\forall s, p_0(s) = 1$$

于是不难归纳得到:

$$p_n(x) = \frac{x^n}{n!}$$

类似地, 我们可以知道 n 个随机变量的和恰好等于 x 的概率 $q_n(x)$ 就等于 $p_{n-1}(x)$.

接下来要处理 l_i, r_i 的限制, 考虑容斥, 用 $s_i + y_i$ 表示 x_i , 其中 s_i 为 l_i 或者 r_i , 后者一定不合法. 这样 $\sum x_i = t$ 的概率就是 $q_n(t - \sum s_i)$, 所以区间 [l, r] 对答案的贡献就是:

$$\int_{l}^{r} q_n(x - \sum s_i) \max\{x^k, a^k\} dx$$

然而这样计算上界为 $+\infty$ 的积分时会出现问题, 这里需要一些变形的技巧, 用 $s_i - y_i$ 表示 x_i , s_i 等于 l_i 或 r_i , 这样是前者不合法, 同时 $\sum x_i = t$ 的概率等于 $q_n(\sum s_i - t)$.

由于容斥之外的计算只与 $\sum s_i$ 有关,因此可以使用背包 dp 优化,另外一个需要注意的细节是特 判 $l_i = r_i$ 的所有变量.

Traffic

在点 x 处计算答案时, 显然会从最大的联通块中选择一棵子树接到最小的联通块上.

首先二分答案, 转化成区间存在性问题, 并在每个点上维护子树内所有点的 *size* 信息. 接下来的部分有多种方法可以处理:

- 使用启发式合并,每次计算答案前删掉轻儿子维护的信息.
- 使用线段树合并直接维护每个点的信息进行计算.

需要特殊注意最大联通块来自父边的情况, 这样会改变从 1 号点到 x 号点这条链的子树大小.