Deep Reinforcement Learning

Scratching the surface

Deep Reinforcement Learning

Deep Reinforcement Learning: AI = RL + DL

Scenario of Reinforcement Learning Reinforcement Learning 3 大關鍵要素

Learning to paly Go

Learning to paly Go

Agent learns to take actions to maximize expected reward.

Learning to paly Go

- Supervised v.s. Reinforcement

Supervised: Learning from teacher

Next move: **"5-5"**

Next move: "3-3"

Reinforcement Learning

Learning from experience

First move many moves

(Two agents play with each other.)

Alpha Go is supervised learning + reinforcement learning.

Learning a chat-bot

- Supervised v.s. Reinforcement

Reinforcement

Learning a chat-bot

- Reinforcement Learning
- Let two agents talk to each other (sometimes) generate good dialogue, sometimes bad)

How old are you?

How old are you?

See you.

I though you were 12.

Learning a chat-bot

- Reinforcement Learning

- By this approach, we can generate a lot of dialogues.
- Use some pre-defined rules to evaluate the goodness of a dialogue

Machine learns from the evaluation

Deep Reinforcement Learning for Dialogue Generation https://arxiv.org/pdf/1606.01541v3.pdf

More applications

Interactive retrieval

More applications

- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Driving
 - https://www.youtube.com/watch?v=0xo1Ldx3L5Q
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered Al
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai
- Text generation
 - Hongyu Guo, "Generating Text with Deep Reinforcement Learning", NIPS, 2015
 - Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

Example: Playing Video Game

現成 Environment

- Widely studies:
 - Gym: https://gym.openai.com/
 - Universe: https://openai.com/blog/universe/

Machine learns to play video games as human players

- What machine observes is pixels
- Machine learns to take proper action itself

Example: Playing Video Game

Usually there is some randomness in the environment

Example: Playing Video Game

Start with observation s_1

Observation s_2

Observation s_3

After many turns

Game Over (spaceship destroyed)

Obtain reward r_T

This is an *episode*.

Learn to maximize the expected cumulative reward per episode

Action a_T

Difficulties of Reinforcement Learning

- Reward delay
 - In space invader, only "fire" obtains reward
 - Although the moving before "fire" is important
 - In Go playing, it may be better to sacrifice immediate reward to gain more long-term reward
- Agent's actions affect the subsequent data it receives
 - E.g. Exploration

Outline

Alpha Go: policy-based + value-based + model-based

Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016