DTU Course 02456 Deep learning 5 Un- and semi-supervised learning 2017 Updates

Ole Winther

Dept for Applied Mathematics and Computer Science Technical University of Denmark (DTU)

Objectives of lectures week 5

- Pro and cons of variational auto-encoders (VAE).
- Generative adversarial networks (GAN)
- Some extensions of VAE and GAN.

VAE pro and con

 Pro: variational auto-encoder computes a lower bound on the log likelihood

$$\log p(x) \ge \int q(z|x) \log \frac{p(x|z)p(z)}{q(z|x)}$$

- Quantitative model comparison for test data x_{test} : $\log p(x_{\text{test}})$.
- Pro: It is a generative model we can synthesise new data

$$z \sim p(z)$$

 $x \sim p(x|z)$

VAE pro and con

 Pro: variational auto-encoder computes a lower bound on the log likelihood

$$\log p(x) \ge \int q(z|x) \log \frac{p(x|z)p(z)}{q(z|x)}$$

- Quantitative model comparison for test data x_{test} : $\log p(x_{\text{test}})$.
- Pro: It is a generative model we can synthesise new data

$$z \sim p(z)$$

 $x \sim p(x|z)$

 Con: Too restricted choice of variational distribution → q(z|x) is far from

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

and the generative model we learn will be poor.

• Con: If our likelihood function p(x|z) is a poor fit to reality

Generative adversarial network (GAN)

- A latent variable (implicit) generative approach
- without explicit likelihood model p(x|z)

Generative adversarial network (GAN)

- A latent variable (implicit) generative approach
- without explicit likelihood model p(x|z)
- Pro: Not dependent on (wrong) likelihood function
- Pro: Synthesise new data
- Con: No quantitative model comparison only indirectly in for example semi-supervised learning.

Generative adversarial network (GAN)

- A latent variable (implicit) generative approach
- without explicit likelihood model p(x|z)
- Pro: Not dependent on (wrong) likelihood function
- Pro: Synthesise new data
- Con: No quantitative model comparison only indirectly in for example semi-supervised learning.

GAN

- GAN has two components:
 - Non-probabilistic generative model G(z):

$$z \sim p(z)$$
$$x = G(z)$$

should be able generate realistic data.

 Binary true/generated data discriminator D(x) should be able distinguish real and fake data.

GAN

- GAN has two components:
 - Non-probabilistic generative model G(z):

$$z \sim p(z)$$

 $x = G(z)$

should be able generate realistic data.

- Binary true/generated data discriminator D(x) should be able distinguish real and fake data.
- Objective:
 - Generated data $z \sim p(z)$, x = G(z):

$$\max_{D} \min_{G} \log(1 - D(G(z)))$$

True data x:

$$\max_{D} \log D(x)$$

GAN

- GAN has two components:
 - Non-probabilistic generative model G(z):

$$z \sim p(z)$$

 $x = G(z)$

should be able generate realistic data.

- Binary true/generated data discriminator D(x) should be able distinguish real and fake data.
- Objective:
 - Generated data $z \sim p(z)$, x = G(z):

$$\max_{D} \min_{G} \log(1 - D(G(z)))$$

True data x:

$$\max_{D} \log D(x)$$

- In practice hard to solve this min max objective.
- Generates very nice images.

Generating faces with GAN

Cycle GAN

- GAN very popular really nice images.
- Many variants here example on style transfer.
- Make two generators F and G for example:
 - F: Van Gogh \rightarrow Cezanne style
 - G: Cezanne \rightarrow Van Gogh style

Cycle GAN

- GAN very popular really nice images.
- · Many variants here example on style transfer.
- Make two generators F and G for example:
 - F: Van Gogh → Cezanne style
 - G: Cezanne → Van Gogh style
- Objective: normal GAN +
 - Van Gogh image x: $x \approx G(F(x))$
 - Cezanne image y: $y \approx F(G(y))$.

Grammar VAE

- When data has certain structure then the generative model becomes better if we can build that into the model →
- It will always generate data obeying the structure.
- Example context-free grammar:

Grammar VAE

- When data has certain structure then the generative model becomes better if we can build that into the model →
- It will always generate data obeying the structure.
- Example context-free grammar:

$$S \rightarrow S$$
 '+' $T \mid S$ '*' $T \mid S$ '/' $T \mid T$
 $T \rightarrow$ '(' S ')' | ' $\sin(' S$ ')' | ' $\exp(' S$ ')'
 $T \rightarrow$ ' x ' | '1' | '2' | '3'

Encoder model for SMILES representation of molecules:

References

- D P Kingma and M Welling, Auto-Encoding Variational Bayes, 2013 https://arxiv.org/pdf/1312.6114.pdf
- D J Rezende, S Mohamed and D Wierstra, Stochastic Backpropagation and Approximate Inference in Deep Generative Models, 2014 https://arxiv.org/pdf/1401.4082.pdf
- D P Kingma, D J Rezende, S Mohamed and M Welling, Semi-Supervised Learning with Deep Generative Models, 2014 https://arxiv.org/pdf/1406.5298.pdf
- I J Goodfellow et al, Generative Adversarial Networks, 2014 https://arxiv.org/pdf/1406.2661.pdf
- S Mohamed and B Lakshminarayanan. 2016 Learning in Implicit Generative Models https://arxiv.org/pdf/1610.03483.pdf
- T Salimans et al, Improved Techniques for Training GANs, 2016 https://arxiv.org/pdf/1606.03498.pdf
- J-Y Zhu et al, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017 https://arxiv.org/pdf/1703.10593.pdf
- M J Kusner, B Paige, J M Hernández-Lobato, Grammar Variational Autoencoder, 2017 https://arxiv.org/pdf/1703.01925.pdf

Thanks! Ole Winther