Analog IC DESIGN

Lecture 1 Introduction

Digital vs Analog

Digital benefits

- Noise immunity
- Easier to store and process
- Easier to automate the design and testing
- Direct benefit of scaling

Digital vs Analog

Analog Benefits:

- You need analog interface to sense any physical phenomena and convert it to digital
- At high speed digital design is analog design
- You will always Amplifiers, ADC's, DAC's and Power Management blocks

Why CMOS?

- Consumed negligible static power in the past but not now (due to leakage)
- Required very few devices per gate (for example And or not)
- Can be scaled down and get higher density and lower power consumption
- Lower fabrication cost
- For Analog:
 - CMOS is used today because market is mainly driven by digital which driven by CMOS
 - And we want to integrate analog and digital on the same ship

Analog IC Design Challenges

- Device scaling
 - Transistors become faster, but the gain declines
- Supply voltage scaling
 - Will limit the available headroom for the transistor
- Complexity
 - Continuous increase in transistor count and system complexity
- PVT variations
 - Tolerate large process, voltage, and temperature variations

Analog IC Design Flow (Simplified)

