Lycée L	a Martinière	Monplaisir
PSI*		

Année 2024/2025 Mathématiques

Feuille d'exercice n° 04 : Espaces vectoriels normés

I. Normes et distances

Exercice 1 ($^{\circ}$) Soit E l'espace vectoriel des fonctions de classe \mathscr{C}^1 sur [0,1] telles que f(0)=0.

- 1) On pose pour tout $f \in E$, $N(f) = ||f||_{\infty} + ||f'||_{\infty}$. Montrer que N est une norme sur E.
- **2)** Montrer que, si $f \in E$ alors, pour tout $x \in [0,1]$: $f(x) = e^{-x} \int_0^x e^t (f(t) + f'(t)) dt$.
- 3) On pose, pour tout $f \in E$, $N'(f) = ||f + f'||_{\infty}$. Montrer que N' est une norme sur E, équivalente à N.

Exercice 2 Soit $E = \mathcal{C}([0,1], \mathbb{R})$ le \mathbb{R} -espace vectoriel des applications continues de [0,1] vers \mathbb{R} , muni de la norme N_{∞} :

$$N_{\infty}(f) = \max_{x \in [0,1]} |f(x)|$$
.

Soit $g \in E$. Pour toute function f de E, on pose $N_q(f) = N_{\infty}(fg)$.

- 1) Donner une condition nécessaire et suffisante sur la fonction g pour que N_g soit une norme sur E.
- 2) Dans ce cas, à quelle condition sur g les normes N_g et N_∞ sont-elles équivalentes ?

Exercice 3 (**S**) Pour tout $(x,y) \in \mathbb{R}^2$, on note : $N(x,y) = \sup_{t \in \mathbb{R}} \frac{|x+ty|}{1+t^2}$.

- 1) Montrer que l'application $(x,y) \mapsto N(x,y)$ est une norme de \mathbb{R}^2 .
- 2) On cherche à comparer cette norme à la norme euclidienne. Soit $(x,y) \in \mathbb{R}^2$.
 - (i) En utilisant l'inégalité de Cauchy-Schwarz, majorer N(x,y) à l'aide de $\|(x,y)\|$.
 - (ii) Montrer que $N(x,y) \geqslant \max\left(\frac{|x+y|}{2},\frac{|x-y|}{2}\right)$, et en déduire une minoration de N(x,y) à l'aide de $\|(x,y)\|$.
 - (iii) Calculer N(x, y) pour (x, y) = (0, 1) et (x, y) = (1, 0).
 - (iv) Conclure.

Exercice 4 Pour une suite $L = (\ell_k) \in \mathbb{R}^{\mathbb{N}}$, on associe à un polynôme $P \in \mathbb{R}[X]$ écrit sous forme développée-réduite $P = \sum_{k=0}^{+\infty} a_k X^k$ la valeur

$$N_L(P) = \sum_{k=0}^{+\infty} |a_k \ell_k|.$$

- 1) Donner une CNS sur L pour que N_L soit une norme sur $\mathbb{R}[X]$.
- 2) Soit $L, M \in (\mathbb{R}^*)^{\mathbb{N}}$. Donner une CNS sur (L, M) pour que N_L et N_M soient équivalentes.

Exercice 5 ($^{\circ}$) Soit $E = \mathbb{R}[X]$.

1) Montrer que l'on définit deux normes sur E, en posant pour $P = \sum_{i=0}^{p} a_i X^i$:

$$||P|| = \int_0^1 |P(t)| dt \quad ||P||_1 = \sum_{i=0}^p |a_i|$$

- **2)** Montrer qu'il existe $\alpha > 0$ tel que $\forall P \in \mathbb{R}[X], \|P\| \leq \alpha \|P\|_1$.
- **3)** Existe-t-il $\beta > 0$ tel que $\forall P \in \mathbb{R}[X], \|P\|_1 \leqslant \beta \|P\|$?

Exercice 6 (\circlearrowleft) Soit E l'espace vectoriel des fonctions réelles de classe \mathscr{C}^1 sur [0,1]. Pour $f \in E$, on note :

$$N(f) = |f(0)| + \int_0^1 |f'(t)| dt \text{ et } ||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

- 1) Montrer que N est une norme sur E.
- **2)** Pour $n \in \mathbb{N}^*$ et $x \in [0, 1]$, on pose:

$$f_n(x) = \frac{1}{n}\sin(\pi nx).$$

- a) Calculer $||f_n||_{\infty}$ et $N(f_n)$.
- **b)** Vérifier que la suite $(f_n)_n$ converge vers 0 pour la norme $\|.\|_{\infty}$ et ne converge pas vers 0 pour la norme N.
- 3) Montrer qu'il n'existe pas de constante C telle que :

$$\forall f \in E, \ N(f) \leqslant C \|f\|_{\infty}.$$

4) Montrer que:

$$\forall f \in E, \ \|f\|_{\infty} \leqslant N(f).$$

Exercice 7 On note L le \mathbb{R} -e.v. des applications lipschitziennes de [0,1] dans \mathbb{R} , et $E_1 = \mathscr{C}^1([0,1],\mathbb{R})$.

1) Montrer que $\|.\|: L \to \mathbb{R}$ définie par :

$$||f|| = |f(0)| + \sup_{\substack{x,y \in [0,1]\\x \neq y}} \frac{|f(x) - f(y)|}{|x - y|}$$

est une norme sur L, et qu'elle n'est pas équivalente à $\|.\|_{\infty}$.

2) Montrer que $N_1: E_1 \to \mathbb{R}$ définie par :

$$N_1(f) = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$$

est une norme sur E_1 , et qu'elle coïncide avec $\|.\|$.

Exercice 8 Soit E un espace normé, x et x' dans E, r et r' dans \mathbf{R}^+, B (resp. B') la boule fermée de centre x et de rayon r (resp. de centre x' et de rayon r'). Caractériser à l'aide de x, x', r, r' l'inclusion $B \subset B'$.

II. Convexité

Exercice 9 Soit C_1, C_2 deux parties convexes d'un espace vectoriel réel E et soit $s \in [0,1]$. On pose $C = sC_1 + (1-s)C_2 = \{sx + (1-s)y; x \in C_1, y \in C_2\}$. Démontrer que C est convexe.

Exercice 10 Soit C une partie convexe d'un ev E. Montrer :

$$\forall p \in \mathbb{N}^*, \ \forall \ (z_1, \dots, z_p) \in C^p, \ \forall \ (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^{+p},$$

$$\lambda_1 + \dots + \lambda_p = 1 \Longrightarrow \sum_{k=1}^p \lambda_k z_k \in C.$$

III. Suites à valeurs dans un espace vectoriel normé

Exercice 11 Soit $A, B \in \mathcal{M}_p(\mathbb{R})$. On suppose que $: (AB)^n \xrightarrow[n \to +\infty]{} 0$.

Montrer que :
$$(BA)^n \xrightarrow[n \to +\infty]{} 0$$

Exercice 12 Soit (A_n) une suite de $\mathcal{M}_p(\mathbb{R})$ vérifiant les propriétés suivantes :

- (i) $A_n \xrightarrow[n \to +\infty]{} A \in \mathscr{M}_p(\mathbb{R})$
- (ii) pour tout $n \in \mathbb{N}$, A_n est inversible
- (iii) $A_n^{-1} \xrightarrow[n \to +\infty]{} B \in \mathscr{M}_p(\mathbb{R})$
- 1) Montrer que A est inversible et que $A^{-1} = B$.
- 2) Peut-on enlever la propriété (iii) ?

Exercice 13 On considère, dans \mathbb{R}^3 , $(Z_n) = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ définie par :

$$Z_0 = \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix} \text{ et } \forall n \begin{cases} u_{n+1} = \frac{1}{3}u_n - \frac{1}{6}w_n + \frac{1}{2} \\ v_{n+1} = \frac{1}{3}u_n + \frac{1}{6}v_n - \frac{1}{3}w_n - \frac{2}{3} \\ w_{n+1} = \frac{1}{3}u_n + \frac{1}{3}v_n + \frac{1}{6}w_n - \frac{7}{6} \end{cases}.$$

- 1) Montrer que la suite (Z_n) vérifie une relation matricielle de la forme : $Z_{n+1} = AZ_n + B$.
- **2)** Montrer $\exists k \in]0,1[$ t.q. $\forall X \in \mathbb{R}^3, \|AX\|_{\infty} \leqslant k \|X\|_{\infty}.$
- 3) Montrer que l'équation X = AX + B admet une unique solution L dans \mathbb{R}^3 .
- 4) En déduire une inégalité concernant $||Z_n L||_{\infty}$, $||Z_0 L||_{\infty}$, n et k. Conclure quant à la convergence de la suite (Z_n) .

Exercice 14 Soit E un espace-vectoriel réel normé et (u_n) et (v_n) deux suites de vecteurs de E telles que :

- (i) pour tout $n \in \mathbb{N}$, u_n et v_n sont colinéaires ;
- (ii) il existe $u \in E$ tel que $u_n \xrightarrow[n \to +\infty]{} u$;
- (iii) il existe $v \in E$ tel que $v_n \xrightarrow[n \to +\infty]{} v$.

Montrer que u et v sont colinéaires.

