

Indian Institute of Technology Kharagpur

End-Autumn Semester 2024 – 2025

Date of Examination:

Session:

Duration 3 hrs

Full Marks 140

Subject Number: CH61017

Subject: Rheology of Complex Fluids

Department: Chemical Engineering

Specific Instructions: Assume and write any assumption and data that you feel are missing.

Graph paper: one log-log plot, one semi-log plot and one linear-scale plot.

Q1. Explain that why Dynamic light scattering techniques is recommended only for dilute suspensions of particles/polymers?

Q2. Figure below shows strain evolution during a creep-recovery test of an Electrorheological fluids.

- a) Plot the instantaneous elastic strain (ε_1) as a function of electric field intensity qualitatively, and explain? (3+3)
- b) Plot the strain-time curve during creep for different electric field intensities in the same plot qualitatively, and explain? (3+3)
- c) Suggest a model to capture the above shown strain evolution during creep-recovery test. Kindly also mention that which component/components of your model will be dependent on electric field and why? (7+3)
- d) Solve the above model and obtain the strain as a function of time during creep (over time 0 to t₁) and during recovery (t>t₁). Choose your own model parameters.

Q3. The radius of gyration of a polymer is defined as the radius of circle encompassing the polymer in random coil configuration, as shown below. This radius of gyration provides insight on polymer-solvent interaction.

In table-1, the data of normalized autocorrelation function $(g_2(\tau) = 1 + b * \exp(-Dq^2\tau))$ obtained from Dynamic Light Scattering measurements for two suspensions of the same polymer in solvent-X and solvent-Y. Using the data given in table-1, determine the radius of gyration of polymer in both solvents and then comment and explain that in which solvent polymer is more compatible? Other information: λ =650 nm, viscosity of both solvent are roughly equal to water-viscosity (10⁻³ Pa.s).

Stokes-Einstein equation: $D = \frac{k_b T}{6\pi\mu R_h}$, where $k_b = 1.380649 \times 10^{-23}$ joule/K. All DLS measurements done at T=298K. $q = \frac{4\pi}{\lambda} sin \frac{\theta}{2}$, where $\theta = 60^\circ$ is the scattering angle. (15+10)

	Solvent-	Solvent-	
τ(s)	$g_2(\tau)$	$g_2(\tau)$	
0.000337	1.945132	1.994227	
0.000862	1.74626	1.849345	
0.00146	1.570193	1.709858	
0.00185	1.478413	1.631479	
0.002404	1.372849	1.534785	
0.0027	1.326351	1.489344	
0.003362	1.242275	1.401202	
0.00398	1.183456	1.333307	
0.004501	1.145115	1.285079	
0.004972	1.117399	1.247514	
0.005395	1.09705	1.218015	
0.006795	1.051688	1.143246	
0.00795	1.030737	1.101298	
0.008389	1.025227	1.088798	

Q4. Relaxation modulus decay data for a polymer melt at five different temperatures is given below:

					-
log (t) -1.16827 -0.92308	80°C G(t) 100 90.68745	log (t) -1.09135	70°C G(t) 220.97318	log (t) -1.46154	60°C G(t) 450
-0.61538 -0.27885 0.16827	78.74559 76.22112 76.22112	-0.625 -0.22115 0.37019 0.5	149.46112 111.47301 85.89387 81.35368	-1.15865 -0.77404 -0.3125 0.25481 0.80288 0.94231	375 277.58511 200 131.19717 92.67892 89.70777
	log (t) -1.96635 -1.16346 -0.86058 -0.16346 0.4375 0.91827	50°C G(t) 900 730 660 499.01449 356.35825 238.42867	log (t) -1.45673 -1.16346 -0.50962 -0.16346 0.36538 0.84615	40°C G(t) 1102.68847 957.48513 813.53702 745.83284 647.62069 521.17206	

a) Demonstrate time-temperature superposition by creating a master curve (Consider curve for 40°C as the reference curve). List down the shift factors. (13+5)

b) Report the relaxation modulus value at 10³s for 60°C using the master curve. Explain the advantage of time-temperature superposition.

(5+5)

Short Answer type questions (answer briefly and precisely in few lines)

- 4) Why soft glassy materials possess a yield stress?
- 5) Draw a nice schematic of a particle-based Pickering emulsion, and explain the physics . Provide two applications of Pickering emulsion. (5)
- 6) Concentrated polymers suspensions show die-swelling effect. Which rheological property is responsible for such phenomenon? Explain the physics of this phenomenon? (7)
- 7) Explain the glass transition temperature and its significance by citing two real life examples? (5+5)
- 8) Describe shear thinning and shear thickening fluids and plot the stress as a function of shear rate qualitatively for both fluids? (5+5)
- 9) Consider a Bingham Fluid, whose constitutive equation is given by

$$\tau = \tau_{\nu} + K\dot{\gamma}$$

The typical velocity profile for a pressure driven laminar pipe flow is shown below.

The pressure gradient across pipe is linear $\frac{(P_1-P_2)}{L}$

- (a) Derive the expression for the radius of plug zone (r_p) .
- (b) Derive the velocity profile in annular region.
- (c) Find out the velocity of central plug.

(5)

(5)

- (5)
- (5)