Problem 1.1. (8 points) Showing your work, compute the determinants below:

(a)
$$\begin{vmatrix} 0 & 0 & 1 \\ 1 & 4 & 5 \\ 1 & 3 & 6 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 0 & 0 & 1 & -7 & -8 \\ 0 & 0 & 0 & 7 & 1 \\ 3 & 8 & -1 & -2 & -5 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 2 & -3 & -4 & -6 \end{vmatrix}$$

Problem 1.2. (10 points) Showing your work, diagonalize the matrix A (if possible):

$$A = \begin{bmatrix} 1 & -2 \\ 2 & 2 \end{bmatrix}$$

Problem 1.3. (9 points) Showing your work, determine if each of the sets of vectors below is linearly dependent or linearly independent:

(a)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\1\\1 \end{bmatrix} \right\}$$

Problem 1.4. (8 points) Give a basis for each of the four fundamental subspaces of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}.$$

Problem 1.5. (11 points) If possible, diagaonalize the matrix $\begin{bmatrix} -1 & 2 & 2 \\ -2 & 3 & 2 \\ -1 & 0 & 4 \end{bmatrix}$.

Problem 1.6. (9 points) Find the least squares solution(s) of each of the following linear systems:

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Problem 2. (10 points) Evaluate the truth of each statement below. If the statement is true write T in the box preceding the statement. Otherwise, write F .	
(a)	The determinant of a projection matrix must be zero.
(b)	For a 5×5 matrix, the row space is unequal to the null space.
(c)	If x and y are orthogonal vectors in \mathbb{R}^n , then
$ \mathbf{x} + \mathbf{y} ^2 = \mathbf{x} ^2 + \mathbf{y} ^2.$	
(d)	A real $n \times n$ matrix must have n eigenvalues each with a different value.

The Gram matrix of a real matrix must be symmetric.

Problem 3. (10 points) Show the output of the last MATLAB command below.

```
>> A = [1 2 3; 4 5 6; 7 8 9];
>> [F, pivots] = rref(A) % rref and pivot list for A
F =
      1
          0 -1
              2
      0
          1
      0
          0
              0
pivots =
          2
      1
>> r = rank(A);
                         % rank of A
>> SS = A(:,pivots)
                         % pivot columns of A
SS =
          2
      1
      4
          5
      7
          8
>> FF=F(1:r,:)
                      % nonzero rows of rref(A)
FF =
            -1
      1
          0
      0
          1
             2
>> SS*FF
ans =
```

Problem 4. (15 points) The vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2\\0\\1\\1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}, \qquad \mathbf{v}_4 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix},$$

are eigenvectors of the matrix
$$A = \begin{bmatrix} -1 & -4 & -2 & 6 \\ 1 & 0 & -2 & 0 \\ -2 & -4 & -1 & 6 \\ 1 & -1 & -2 & 1 \end{bmatrix}$$
.

(a) Find the eigenvalues for each of the eigenvectors above.

(b) Diagonalize A. That is, find an invertible matrix S and a diagonal matrix D such that $A = SDS^{-1}$; evaluating S^{-1} is not required.

(c) Diagonalize A^3 . That is, find an invertible matrix \tilde{S} and a diagonal matrix \tilde{D} such that $A^3 = \tilde{S}\tilde{D}\tilde{S}^{-1}$; evaluating \tilde{S}^{-1} is not required.

Problem 5. (10 points) Let $\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ with $\theta \in \mathbb{R}$ and define

$$A = \mathbf{a}\mathbf{a}^T$$
, $B = \mathbf{b}\mathbf{b}^T$, $U = I - 2A$, and $V = I - 2B$.

(a) Show that A and B are orthogonal projection matrices.

(b) Show that U and V are orthogonal matrices.

(c) Find ϕ such that $UV = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ or explain why this is impossible.

Extra Credit. (5 points) Find the point on the plane z=2x+3y closest to the point (4,5,6).

Extra Extra Credit. (5 points) Find the orthogonal projection matrix P that projects onto $\operatorname{col}(A)$ where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \end{bmatrix}.$$