Homework 2

1

- a) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 + x^3 y^3$ defines a scalar product in \mathbf{R}^3 .
- b) Show that $\langle \mathbf{x}, \mathbf{y} \rangle = x^1 y^1 + x^2 y^2$ does not define a scalar product in \mathbf{R}^3 .
- c) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 x^3 y^3$ does not define a scalar product in \mathbf{R}^3 .
- d) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + 3x^2 y^2 + 5x^3 y^3$ defines a scalar product in \mathbf{R}^3 .
- e^{\dagger}) Find necessary and sufficient conditions for entries a,b,c of symmetrical matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ such that the formula

$$(\mathbf{x}, \mathbf{y}) = (x^1, x^2) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix} = ax^1y^1 + b(x^1y^2 + x^2y^1) + cx^2y^2$$

defines scalar product in \mathbb{R}^2 .

- **2** The matrix $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ obeys the conditions $A^{^T}A = I$. Show that
- a) $\det A = \pm 1$
- b) if det A=1 then there exists an angle $\varphi:0\leq\varphi<2\pi$ such that $A=A_{\varphi}$ where

$$A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \text{ (rotation matrix)}$$

- c) if det A=-1 then then there exists an angle $\varphi:0\leq\varphi<2\pi$ such that $A=A_{\varphi}R$, where $R=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$ (a reflection matrix).
 - **3** Show that for matrix A_{φ} defined in the previous exercise the following relations are satisfied:

$$A_{\varphi}^{-1} = A_{\varphi}^{T} = A_{-\varphi} , \qquad A_{\varphi+\theta} = A_{\varphi} \cdot A_{\theta} .$$

4 Show that under the transformation $(\mathbf{e}_1', \mathbf{e}_2') = (\mathbf{e}_1, \mathbf{e}_2) A_{\varphi}$ an orthonormal basis transforms to an orthonormal one.

How coordinates of vectors change if we rotate the orthonormal basis $(\mathbf{e}_1, \mathbf{e}_2)$ on the angle $\varphi = \frac{\pi}{3}$ anticlockwise?

5 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be an orthonormal basis of Euclidean space \mathbf{E}^3 . Consider the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ which is expressed via basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ as in the exercise 6 of the Homework 1.

Write down explicitly transition matrix from the basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to the ordered set of the vectors $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$. What is the rank of this matrix? Is this matrix orthogonal?

Find out is the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis in \mathbf{E}^3 . Is this basis an orthonormal basis of \mathbf{E}^3 ? (you have to consider all cases a),b) c) and d)).

- 6^{\dagger} . Show that an arbitrary orthogonal transformation of two-dimensional Euclidean space can be considered as a composition of reflections.
 - 7[†] Prove the Cauchy–Bunyakovsky–Schwarz inequality

$$(\mathbf{x}, \mathbf{y})^2 \le (\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}),$$

where **x**, **y** are arbitrary two vectors and (,) is a scalar product in Euclidean space.

Hint: For any two given vectors \mathbf{x} , \mathbf{y} consider the quadratic polynomial $At^2 + 2Bt + C$ where $A = (\mathbf{x}, \mathbf{x})$, $B = (\mathbf{x}, \mathbf{y})$, $C = (\mathbf{y}, \mathbf{y})$. Show that this polynomial has at most one real root and consider its discriminant.