Information Theory: Compression and Predictability

UCLA Directed Reading Program

Dylan Wilbur

June 12, 2024

Introduction to Information Theory

- How can we quantify information?
- What are the theoretical limits of data compression?
- How can we measure and quantify uncertainty?

Figure: $H = -\sum p_i \log_2(p_i) = 0.5 + 0.5 + 0 + 0 = 1$ (Note: we define $0 \log 0$ here to be 0)

Figure: $H = -\sum p_i \log_2(p_i) = 1.5$

Figure: $H = -\sum p_i \log_2(p_i) = 0$

Figure:
$$H = -\sum p_i \log_2(p_i) = 2$$

Figure: $H = -\sum p_i \log_2(p_i) = 2.5$

Entropy is Concave

Figure: Plot of $H(p, 1-p) = -(p \log_2 p + (1-p) \log_2 (1-p))$

How Can We Measure the Difference in Uncertainty Between Two Distributions?

Answer: Relative Entropy

Figure:
$$D(b \parallel p) = \sum_{i} b_{i} \log_{2} \left(\frac{b_{i}}{p_{i}}\right) = 0.5$$

Horse Racing and Gambling

Let's generalize this. Consider a sequence of random variables, X_i , representing the result of successive horse races, with distribution \mathbf{p} .

- Our betting strategy is defined as a vector \mathbf{b} in which b_i is the amount of money bet on horse i.
- Another vector o will be the odds vector, so then at the end of the race, our wealth is multiplied by a factor of b_io_i
- Our wealth after *n* races can be represented by

$$S_n = \prod_{i=1}^n S(X_i) \tag{1}$$

where $S(X_i) = b_i o_i$ with probability p_i .

Horse Racing and Gambling

Certainly, we would want to maximize this value S_n . We will take this time to define the doubling rate $W(\mathbf{b}, \mathbf{p})$, or the rate at which S_n grows with n, according to probability distribution \mathbf{p} over the horses

$$S_n = 2^{nW(\mathbf{b}, \mathbf{p})} \tag{2}$$

$$W(\mathbf{b}, \mathbf{p}) = E(\log S(X)) = \sum_{k=1}^{m} p_k \log b_k o_k$$
 (3)

Look familiar? Let's justify this definition.

Derivation

First recall the Law of Large Numbers from probability theory:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\text{a.s.}} \mathbb{E}[X] \quad \text{as} \quad n \to \infty$$
 (4)

We can use this to derive:

$$S_n = \prod_{i=1}^n o_i b_i \tag{5}$$

$$=2^{\log_2(\prod_{i=1}^n o_i b_i)} \tag{6}$$

$$=2^{n(\frac{1}{n}\sum_{i=1}^{n}\log_2(o_ib_i))}$$
 (7)

$$\rightarrow 2^{nE(\log o_i b_i)} \tag{8}$$

$$=2^{nW(\mathbf{b},\mathbf{p})}\tag{9}$$

Let's Optimize this

Since our wealth S_n grows exponentially with factor $W(\mathbf{b}, \mathbf{p})$, our goal is to maximize this value for given \mathbf{b} and \mathbf{p} . How can we use our notion of entropy to achieve this? For a fixed \mathbf{p} , we have

$$W(\mathbf{b}) = \sum_{i} p_{i} \log b_{i} o_{i} \tag{10}$$

$$= \sum_{i} p_{i} \log(\frac{b_{i}}{p_{i}} p_{i} o_{i}) \tag{11}$$

$$= \sum_{i} p_i \log o_i + \sum_{i} p_i \log p_i + \sum_{i} p_i \log \left(\frac{b_i}{p_i}\right)$$
 (12)

$$= \sum_{i} p_{i} \log o_{i} - H(\mathbf{p}) - D(\mathbf{p}||\mathbf{b})$$
 (13)

Key Takeaways

$$W(\mathbf{b}) = \sum_{i} p_{i} \log o_{i} - H(\mathbf{p}) - D(\mathbf{p}||\mathbf{b})$$
 (13)

- Note that for fixed \mathbf{p} , our doubling rate only relies on \mathbf{b} in our relative entropy. Therefore, we can achieve a maximal doubling rate with $D(\mathbf{p}||\mathbf{b}) = 0$, or $\mathbf{b} = \mathbf{p}$ (Kelly Betting)
 - Our choice of betting strategy does not rely on the odds!
- Under optimal betting strategy, our doubling rate is equal to $\sum_i p_i \log o_i H(\mathbf{p})$. Therefore, our growth rate is inversely proportional to the entropy.
 - Why does this make sense? Intuitively, we can make more money on more predictable races.

How Does This Relate to Data Compression?

Suppose we have a sequence of data we want to compress. A string of n characters can be thought of as a sequence of horse races. Perhaps this is:

- A genome sequence, ATGTCCA.... We can represent this as a sequence of horse races with a sample space of 4, like our earlier examples.
- The English language: a horse race with 27 outcomes(including a space)
- A bit string, 0111010.... WLOG, horse races with *n* horses can be represented in this way.

A Good Gambler is a Good Data Compressor!

Let's consider a horse race with $\mathbf{p}=<\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{8}>$. We calculate the entropy of this distribution as

$$H = -\sum p_i \log_2(p_i) = \frac{7}{4}$$
 (14)

Betting on this horse race, our optimal growth rate would be

$$W = \sum_{i} p_i \log o_i - 7/4 \tag{15}$$

depending on the odds **o** given by a bookie. Similar to how the entropy of the distribution limits our growth rate, the entropy of our distribution also limits how much we can compress a sequence of results! Let's see this in action.

Huffman Coding our Sequence

- On the left, we have an average string length of $\frac{7}{4}$, and on the right we have an average length of 2.
- This is the average number of binary questions needed to answer "Is our random variable X = x?"
- The best we can encode our results is $H(\mathbf{p})$

Comparing results

Sequence: 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 3, 3, 2, 2, 4, 1, 1, 4, 1, 4, 2, 1, 1, 1, 2, 4, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 2, 2, 1, 2, 1

• Scheme 1:

• Scheme 2:

Information Theory Takeaways

- Predictable sequences are compressible.
- High predictability implies low entropy.
- Techniques and ideas shown here will scale

Acknowledgements

- My mentor, Robert Miranda
- Elements of Information Theory, Cover and Thomas
- A Mathematical Theory of Communication, Claude Shannon

Next Steps

- Future study: application to stock markets, machine learning
- Questions? Email me at dylan.m.w@icloud.com
- dylanwilbur.github.io