Connected Vehicles: Cognition Saves Lives

Bengi Aygun[†], Mahni Shayganfar*, and Alexander M. Wyglinski[†]

[†]Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA

*Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA

Email: {baygun, alexw}@wpi.edu, mshayganfar@wpi.edu

Abstract—Intelligent transportation systems (ITS) will form an integral part of society's transportation infrastructure within few years.

Index terms— cognition, connected vehicles ...

I. BECOME CONNECTED, BECOME AWARE

In 1999, the United States Federal Communication Commission (FCC) reserved 75 MHz spectrum consisting 6 channels in the 5.9 GHz band for dedicated short-range communications (DSRC), which is used for connected vehicle communications. In February 2014, the National Highway Traffic Safety Administration (NHTSA) announced that Intelligent Transportation Systems (ITS), including connected vehicle technology, will be required in all cars by 2019 [1]. Subsequently, there has been a significant increase in research activities with respect to on vehicular networks (VANETs) as a result of this urgent need to address vehicular traffic safety concerns [2]. The information flow within a connected vehicle network, which includes both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I), is managed via the broadcasting of control messages over a control channel. In Europe, these messages are referred to Cooperative Awareness Messages (CAMs) while in the United States they are called Basic Safety Messages (BSMs). Shared information, such as vehicle position, motion characteristics, and vehicle size, are used for increasing the overall environmental awareness in support of safety applications, (e.g., intersection movement assist, left turn assist, do not pass warning sign, and light violation warning) as well as mobility applications, (e.g., collision warning, road coefficient of friction, road conditions, parking management, and payment solutions) [3].

Self and fully autonomous vehicles serve a purpose of traffic safety by preventing human-driven mistakes. One of the mainstream trials on autonomous vehicles are performed by Google and Ford Fusion while Volvo and Honda work on increase the awareness through providing robust device connectivity in vehicular environment. Connected vehicles stands as a breakthrough

on intelligent transportation while bringing some technological challenges at the same time. In order to enable robust and efficient ITS mechanisms, several technical challenges associated with autonomous vehicles include the following:

- Human-driven mistakes confront autonomous systems with unexpected situations that makes predefined decision mechanisms insufficient
- Dynamic vehicular environment includes highly time-varying obstacles, number of vehicles, and road topology
- Decision making mechanisms on ITS are not delaytolerant since the network environment changes rapidly
- Periodically broadcasting between connected vehicles causes information overhead on computer processing unit at each vehicle

Some research groups are two sides of the same coin but taking this vital technology one step further by adding a promising functionality: *Cognition*. Toyota Group currently announced that they investigate \$50 M to design and produce artificial intelligence within vehicular networks [4]. *Cognition in vehicles assures learn, drive, repair and socialize with a driver, occupants and other vehicles* [5]. Moreover, the driver or passenger's thoughts and habits will be linked to decision processes. This feature provides a solution to the transition process from full human driven to half autonomous and half human driven, and finally to fully autonomous vehicle traffic on roads.

II. COGNITION PERSPECTIVE IN CONNECTED VEHICLES

A. Building Blocks of A Connected Vehicle

Hardware components shape the technical practicability and readiness of ITS solutions [3]. Proposed cognition paradigm uses only the existing components without requiring extra functionality. The intra-vehicle components are categorized in six main blocks as shown

Figure 1: Intra-vehicle components can be used for cognition [3].

in Figure 1. According to current vision, the internal vehicle components include two DSRC radios, whose standardization is still under development. One proposal is to dedicate one radio permanently to safety messages. An alternative one is to design a multi-channel hopping algorithm to adaptive use the radios. These radios provide the information sharing with the other ITS members to increase the awareness.

Another vital component for cognition in vehicles is Global Positioning System (GPS) receiver for gathering position and timekeeping information. A computer processing unit use this information with the data generated from onboard sensors such as heading, speed, acceleration to provide the information to intra- and inter- vehicles intelligence systems. Safety application electronic control unit prepares BSMs to periodically broadcast in order to run the safety applications. Memory unit satisfies the need of data acquisition system; as well record the historical data on the cognition of its own and other vehicles. Memory capability also provides a solution to store security certificates. Lastly, a drivervehicle interface would be essential for issuing warnings to the driver. Such warnings could be audible, visual, or haptic, e.g., tightening of the seat belt, vibrating the driver's seat.

B. Roads as Social Environments

A social environment refers to an individual's physical surroundings, resources and social relationships. A social relationship includes the interaction between two or more individuals in the environment. A social relationship is the most dynamic part of a social environment. Hence, developing and maintaining positive social relationships is crucial for a social environment and is influenced by the individuals' quality of interaction. Roads are social environments in which individual vehicles interact with each other through their "nonverbal" behaviors obeying the same traffic law. However, there are many violations

of the laws on the roads all over the world in daily basis which consequently leads to expensive and sorrowful failures. What causes these failures is mostly the failure of the drivers to effectively interpret their driving environment and make an appropriate decision with respect to their constraints such as lack of time, lack of perception, and plethora of cognitive load. Therefore, it is crucial to involve awareness in the vehicles to share the meaning of what they dynamically perceive rather than broadcasting the data coming from their sensory system. For example, any sensory information leading to an alert on a particular vehicle does not necessarily have the same meaning both for the occupants and the neighbors of that vehicle. The alert warns the occupants of the vehicle to be aware of an internal failure (e.g., malfunction in the transmission system), or an external adversary (e.g., an unexpected leaping of an animal into the road). The same alert has a different meaning for the close vehicle approaching from behind; no matter what caused the alert in the leading vehicle, the posterior vehicle should slow down effective immidiately. However, the same alert can be interpreted in a totally different way for a neighbor in front of the originally alerted vehicle. In fact, this vehicle can ignore the received alert and continue the safe drive. Ultimately, these type of improvements leads to a higher quality of vehicles' interaction which consequently increases the safety of the roads.

C. Driving Needs Pareto Optimal Decisions

Cognitive architectures are used to solve high-dimensional multi-objective tasks and to make proper decisions with respect to the dynamics of such environments. Most of the time the real world problems possess a high level of complexity due to the dynamism involved in the environment. A social environment is an example of such complex environments. A social environment includes humans as variety of sources making decisions independently but interrelated to each other. Roads are social environments and driving is the social act of drivers' behavior. It is clear that driving involves many decisions in which a driver needs to maintain its own objectives while recognizing objectives of the others.

Let's consider two general objectives, *Safety* and *Comfort*, for any driver while driving between the source and the destination. Indeed, all the drivers would like to maximize both of these objectives. However, while they need to obey the traffic law, they need to take into account their neighbors' driving behaviors, and respect their objectives. In the example shown in Figure 2, the red car's driver wants to maximize her own safety and comfort to her aspiration level for both objectives to

Figure 2: Pareto optimal decisions for the neighbors.

obtain the "preferred" point. We believe at least for certain redius, the red vehicle should consider objectives of the other vehicles in that neighborhood (four vehicles shown in green), and update their anticipated and its own state based on their behaviors. To achieve this goal, a cognitive system should be able to make decisions with which it is impossible to change the state of self better off without making the state of at least one of the neighbors worse off. Therefore, the cognitive system's decision for any given event should be a pareto optimal solution, since the neighboring connected vehicles' objectives are important for each individual vehicle. Here, we only used the concept of pareto optimality to discuss the type of decisions a cognitive system of a vehicle should make. Our cognitive system and the underlying mechanisms do not take a game theoretic approach to make decisions.

III. COGNITION SYSTEMS

Integration of cognition into connected vehicles needs us to understand the building blocks of cognition, how do they relate to each other, and what functional operations they provide. We choose Newell's general theory of cognitive control, PEACTIDM [6], to describle the underlying abstract processes of a cognitive system. PEACTIDM is a theory of cognitive control where cognition is decomposed into a set of eight abstract functional operations [6] all of which are hypothesized as the building blocks of one's immediate behavior. Figure 3 shows the sequence of PEACTIDM's building blocks.

Perceive is the reception of raw sensory data. For instance, connected vehicles receive data from both their own local sensory system (e.g., GPS) and their neighbor vehicles (e.g., an abrupt change in their velocities). *Encode* is the transformation of the sensory data into features that the cognitive system can process. In the

cognitive architectures using Bratman's BDI paradigm [7] each sensory data will be tranformed into a new belief. The cognitive architecture will be able to use these beliefs in different processes. For example, in connected vehicles there will be a belief about the current accelaration value of the vehicle which corresponds to the sensory data indicating this value. Attend is the act of shifting or maintaining the focus of attention on an event. For instance, an alert raised because of a sudden speed reduction of multiple leading neighbor vehicles needs to be attended immediately while the same alert does not need the same level of attention if the leading vehicles are a few miles apart. Comprehend is the act of trnasforming an event into a goal or taskspcific representation and inferring the curent status of the world. For instance, a vehicle receiving an alert requiring an immediate reaction needs to identify the cause of the problem even though the alert has raised and received from another vehicle. Thus, the receiver of the alert can apply replanning if necessary.

Figure 3: PEACTIDM

Tasking is the process of recognizing a goal based on the new state of the world. For example, a vehicle can recognize a goal in the plan to exit the highway with respect to the new beliefs about an accident a few miles ahead and the current state of the highway which causes constant speed reduction. Intend initiates a future action based on the current goal as response to the current event. For instance, if the current goal of the vehicle is to leave the highway, the vehicle begins to change the lane to the right most to be able to take the next exit. Decode translates the response based on the given intention into a series of motor actions. For instance, if the intention is changing the lane to the right, The vehicle applies a series of actions including using the right blinker, checking the occupancy status of the right lane, and turning the steering wheel to the right whenever it is appropriate. *Motor* executes the actions decoded based on the given intention. For example, in case of a lane change, the blinker starts to blink and the wheels turn to the right respective to the amount of change on

the steering wheel.

IV. AFFECTIVE MOTIVATIONAL COLLABORATION THEORY

Affective Motivational Collaboration Theory is about the interpretation and prediction of observable behaviors in a dyadic collaborative interaction. Affective Motivational Collaboration Theory specifies the processes involved in the progress of a collaboration and how they impact the collaboration's underlying structure. This theory is built on the foundations of the *SharedPlans* theory of collaboration [8] and the *cognitive appraisal* theory of emotions [9].

The theory focuses on the processes regulated by emotional states. It aims to explain both rapid emotional reactions to events as well as slower, more deliberative responses. The observable behaviors represent the outcome of reactive and deliberative processes related to the interpretation of the self's relationship to the collaborative environment. Affective Motivational Collaboration Theory aims to explain both rapid emotional reactions to events as well as slower, more deliberative responses. The reactive and deliberative processes are triggered by two types of events: *external* events, such as the other's *nonverbal behaviors* and *primitive actions*, and *internal* events, comprising changes in the self's mental states, such as belief formation and emotional changes.

Affective Motivational Collaboration Theory explains how emotions regulate the underlying processes when these events occur during collaboration. This theory elucidates the role of motives as goal-driven affect-regulated constructs with which an agent can form new intentions to cope with internal and external events. Therefore, a new motive can become a new intention and the self can take a new action based on the new intention. The focus of underlying mechanisms is on the ones depicted as mental processes in Figure 4 along with the mental states.

The *Mental States* includes ego's (vehicle's) beliefs, intentions, motives, goals and emotion instances as well as the anticipated Mental States of the neighbors (other vehicles). For instance, every sensory data, every threshold value, or every inferred information about the world has a corresponding belief in the Mental States. The *Collaboration* mechanism maintains constraints on actions, including task states and the ordering of tasks. Although maintaining safety and comfort is a goal for each individual vehicle, all vehicles also have a shared goal to achieve which is sharing the road with others – at least partially – to get to their destinations. Therefore, vehicles require a mechanism to maintain their full or

Figure 4: Computational framework based on Affective Motivational Collaboration Theory (arrows indicate primary influences between mechanisms).

partial shared plan. The Collaboration mechanism also provides processes to update and monitor the shared plan. The Appraisal mechanism is responsible for evaluating changes in the ego's Mental States, the anticipated Mental States of the neighbors, and the state of the collaboration environment. The outcome of appraisal impacts every vehicle as an evaluative, regulatory, or motivative process. For instance, expectedness of an event indicates how prepared is the ego to cope with the event, or how to maintain current state with respect to the current changes in neighbors' location. The Coping mechanism provides the ego with different coping strategies associated with changes in the ego's mental states with respect to the state of the collaboration. For instance, does ego need to change speed with respect to the current state of the road, or does it need to replan to get to the destination. The Motivation mechanism operates whenever the ego a) requires a new motive to form a new intention with respect to current event, or b) wants to interpret a neighbor's motive whenever the neighbor's behavior triggers an alarm after ego appraising the situation. The *Theory of Mind* mechanism is the mechanism that infers a model of the neighbor's anticipated mental state. The ego progressively updates this model during the collaboration. A neighbor's model impacts ego's decision with respect to the state of the neighbor.

V. EXAMPLE SCENARIO

According to the analysis of the lane change by the US' National Highway Traffic Safety Administration (NHTSA) in 2003 more than 38% of pre-crash movements in the highways was caused by typical lane change. Furthermore, according to the NHTSA's traffic

Figure 5: .

safety facts of February 2015, about the 94% of the critical reasons of pre-crashed events are attributed to the drivers. As mentioned in this report, about 41% of the driver-related critical reasons are because of the *drivers'* recognition errors including drivers inattention, internal and external distractions, and inadequate surveillance. Also, about 33% of pre-crash reasons are caused by the *driver's decision errors* such as driving too fast for conditions, too fast for the curve, false assumption of others actions, illegal maneuver and misjudgment of gap or others speed. In our hypothetical example, we show how the involvement of different mechanisms in our framework can improve safety and comfort for both the ego vehicle and the other neighbor(s) in the roads for such conditions.

In this example (see Figure 5), autonomous Vehicle *A* (ego vehicle) travelling in the right lane wants to take Exit *x* in two miles. However, the ego vehicle has decided to pass the slow-moving Truck *D* before taking Exit *x*, since it is late. At the same time, Vehicle *B*, travelling in the left lane, quickly approaches a slower car, Vehicle *C* in the same lane. Vehicle *B*'s driver decides to change lane to the middle lane to pass Vehicle *C*. Therefore, both the autonomous Vehicle *A* and the driver of Vehicle *B* want to go to the middle lane at the same time; since the middle lane is not occupied by any other vehicle. Hence, because both Vehicle *A* and Vehicle *B* are not aware of each other's intention, they can cause an accident irrespective of the responsibility of each vehicle with respect to the traffic law.

In this example, the ego vehicle perceives a sudden change of lane by Vehicle *B*; then it appraises this event as *relevant*, *undesirable*, *unexpected*, and *controllable*. The lane change by Vehicle *B* is relevant to ego vehicle since it decreases the utility of the current goal for the ego vehicle; it is undesirable since the ego vehicle's attempted goal (lane change) is not achieved (i.e., it is blocked); it is unexpected since the Vehicle *B* interrupted the ego vehicle pursuing its current goal; and it is controllable since the ego vehicle still has three alternative goals to pursue. The goal management process in our

Figure 6: I.

framework ranks all of the potential goals based on their status in the plan structure, and the outcome of the self and the reverse appraisal. Moreover, in this incident the ego vehicle does not have a behavior model of the Vehicle B, since Vehicle B has just reached to the ego vehicle and is perceived for the first time. Therefore, first, the ego vehicle replaces the current goal with stay-in-thelane goal for the prupose of recovering from the blocked goal. In general, the ego vehicle adopts one of the safe predefined tactical goals, e.g., stay-in-the-lane or reducespeed, as an alternative goal to which pursuing it raises unexpected and undesirable events. Next, the ego vehicle chooses the restraint coping strategy to immediately pull back into the right lane to yield the the middle lane to Vehicle B avoiding any possible accident. Therefore, choosing an appropriate coping strategy, the ego vehicle responds to the current goal change using the sensory system and taking appropriate actions to pursue the new stay-in-the-lane goal. The ego vehicle updates the Vehicle B's user model to a reckless driver. As shown in this example, the cognition of the autonomous vehicle prevented an accident which could happen because of the drivers' recognition error caused by their inadequate survillance in the highway.

In the next incident (see Figure 6), the ego vehicle perceives Vehicle *B* quickly approaching from behind in the middle lane (event 1). Vehicle *B* changes its lane to the right lane (instead of left) to pass the ego vehicle immediately after reaching the ego vehicle (event 2). As shown in Figure 6, Vehicle *B* has to switch back to the middle lane quickly (event 3), since there is a slow-moving truck in the right lane at a short distance ahead of the ego vehicle. However, Vehicle *D* makes another blockage for Vehicle *B* in the middle lane. Consequently, Vehicle *B* has to switch to the left lane to pass this blockage (event 4). All these four events happen in a few seconds in the neigborhood of the ego vehicle.

Similar to the first incident, the ego vehicle appraises the first event as highly *relevant*, *undesirable*, *unexpected* and *controllable* for the self, and *relevant*, *desirable* and *expected* with low value of *controllability* for Vehicle *B*. Therefore, the ego Vehicle, creates a behavior model

Figure 7: I.

for Vehicle B with a probability of having a speeding driver. The next three events will be also appraised in the same way. The ego vehicle updates Vehicle B's behavior model based on each event, raising the probability of Vehicle B having a speeding driver. Updating Vehicle B's behvior model based on several events leads to a more accurate behavior model of Vehicle B. Consequently, the ego vehicle will be able to evaluate Vehicle B's actions more accurately based on the reverse appraisal process. The outcome of the self and reverse appraisal processes causes the goal management process to employ another tactical goal, i.e., reduce-speed. Hence, the ego vehicle as the outcome of the appraisal and the behavior modeling processess adopts behavioral disengagement as the most appropriate coping strategy. Furthermore, Vehicle B's behavior model not only helps the ego vehicle to be safe while travelling in its neighborhood, but it can also inform other autonomous vehicles to drive carefully while Vehicle B is in a short distance from them.

In the last incident the ego vehicle (Vehcile A) simply passes another autonomous car (Vehicle B) which is driving in the right lane with a normal speed (see Figure 7). Vehicle B also detects the appearance of another autonomous vehicle in its own neighborhood. The ego vehicle receives an alert from Vehicle B regarding the car (Vehicle C) travelling a few hundred feet in front of them in the middle lane. The alert message contains a vector of probabilities of the Vehicle C's driver type indicating the following probabilities: 34% chance of being drowsy driver, 32% of chance of driving under the influence of drugs or alcohol, 28% chance of being distracted driver, and 6% chance of being a teenage driver. These values are computed by the Vehicle B's Bayesian behavior modelling process in the the Theory of Mind mechanism. Comoputing these probability values is based on Vehicle B's perception and appraisal of the road including the Vehicle C, even before the ego vehicle reaches to Vehicle B. Afterwards, the ego vehicle uses the content of the alert message to update it's own behavior model of the Vehicle C. Updating Vehicle C's behavior model does not change the ego vehicle's current goal. It also does not demand the ego vehicle to apply an immediate reactive

change in its own driving behavior. However, it replaces the current motive (i.e., maintain the current speed) of the ego vehicle with a new motive (i.e., maintain the current distance with Vehicle C). Forming this new motive is based on the outcome of the Theory of Mind (updated by another vehicle) and the Appraisal mechanisms. The new motive is urgent since it requires an immediate change in ego vehicle's driving behavior, and it is important since it is related to the current goal that the ego vehicle pursues. Therefore, the new motive causes the ego vehicle to adopt an *active coping strategy* to circumvent the stressor (i.e., Vehicle C) by maintaining its distance.

VI. CONCLUSION

REFERENCES

- [1] Planning Future Transportation: Connected Vehicles and ITS. [Online]. Available: http://www.its.dot.gov/factsheets/pdf/PlanningFutureTransportation_FactSheet.pdf
- [2] NTSB Calls for Immediate Action. [Online]. Available: http://www.ntsb.gov/news/press-releases/Pages/PR20150608b.aspx
- [3] "Vehicle-to-vehicle communications: Readiness of V2V technology for application," U.S. Department of Transportation National Highway Traffic Safety Administration, Tech. Rep. DOT HS 812 014, 2014.
- [4] Toyota Invests \$50*M* in Artificial Intelligence. [Online]. Available: http://www.freep.com/story/money/cars/2015/09/04/intelligent-cars-robots-focus-toyota-research-plans/71702672/
- [5] Forget Self-Driving Cars, See Why Cognitive Cars Could be the Future of the Auto Industry. [Online]. Available: http://www. 33rdsquare.com/2015/01/forget-self-driving-cars-see-why.html
- [6] A. Newell, *Unified Theories of Cognition*. Harvard University Press, 1990.
- [7] M. E. Bratman, *Intention, Plans, and Practical Reason*. Cambridge, Mass.: Harvard University Press, 1987.
- [8] B. J. Grosz and C. L. Sidner, "Plans for discourse," in *Intentions in Communication*, P. R. Cohen, J. Morgan, and M. E. Pollack, Eds. Cambridge, MA: MIT Press, 1990, pp. 417–444.
- [9] J. Gratch and S. C. Marsella, "A domain-independent framework for modeling emotion," *Cognitive Systems Research*, vol. 5, no. 4, pp. 269–306, 2004.