Energy conversion I

Lecture 1:

Course overview, introduction to electric machinery and application

EE Course No: 25741 Energy Conversion I Sharif University of Technology 1

EE Course No: 25741 Energy Conversion I

COURSE OUTLINES

Course Staff:

Course Lecturer: M.R. Zolghadri, Room EE419,

zolghadr@sharif.edu, Tel 6616 5965

Teaching Assistants: Hamed Valipour, hamed_vlpr@yahoo.com

Lab Demonstrators: Amirreza Poorfakhraei, Yasaman Ghasempour, Amir

Negahdari

2. Course Details

Credits: This is a 4 Credit course; expected workload is 10-12 hours per week throughout the 15 week session.

Contact hours: The course consists of 3 hours of lectures per week, 1 hour of tutorials per week, and 3 hours of laboratory sessions per week:

Lectures:

G1: 10:30 -12:00, Saturday Ebn 25, Monday EE301

Laboratory:

G1: Sunday, 13:30-16:30, Electric Machine Lab

Tutorials: G1: 12:30 - 13:30, TBF

Consultations: Saturday 15:00 -16:00 & Sunday 11:00-12:00 (other times by appointment)

EE Course No: 25741 Energy Conversion I Sharif University of Technology 3

7. Course Schedule

	Course overview, introduction to electric machinery and application
Lecture1-4:	Topic 1 - Magnetic Materials and Circuits: equivalent circuits, inductance,
	induced voltage, properties of magnetic materials, Permanent magnet Materials
	(Chapman, e4, Ch. 1)
	Topic 2 - Transformers: types and applications, ideal transformer, equivalent
Lecture 5-11:	circuit, parameters measurement, efficiency and voltage regulation, per-unit
	system, autotransformer, three-phase transformers (Chapman, Ch. 2)
	Topic 3- Fundamentals of AC Machines: induced force and voltage on moving
Lecture 12-14:	wires and rotating loops, mmf of distributed windings, rotating magnetic field,
	induced voltage and torque in AC machines (Chapman, Ch. 4)
	Topic 4- Synchronous Machines: construction, operation principles, excitation
	system, steady-state equivalent circuit of cylindrical rotor SM, power and torque,
	reactive power control, paralleling synchronous machines, power factor
	correction, starting and speed control (Chapman Ch. 5 & 6)
	Topic 5- Induction Machines: construction, standstill and rotating operation
Lecture 19-24:	principles, slip, equivalent circuit, power and torque, output characteristics,
	starting and speed control, parameter measurement tests (Chapman, Ch. 7)
	Topic 6- DC Machines: operation principles, induces voltage and torque,
Lecture 25-29:	commutation problems and corrective methods, excitation methods, equivalent
	circuit, output characteristics of DC motors, speed control and starting of shunt
	and series DC motors (Chapman, Ch. 8 & 9)

Midterm exam: Thursday 30th Aban

EE Course No: 25741 Energy Conversion I Sharif University of Technology

8. Resources for Students

Textbooks:

Stephen J. Chapman, *Electric Machinery Fundamentals*,4th ed., McGraw-Hill Publisher, 2005.

Reference books:

A.E. Fitzgerald, C. Kingsley, & S.D.Umans, *Electric Machinery*, McGraw Hill, 6th ed., 2003.
 P.C. Sen, *Principles of Electric Machines and Power Electronics*, John Wiley & Sons,

■G.R. Slemon & A. Straghen, *Electric Machines*, Addison-Wesley Publishing Company, 1992

The web site for this course is: "cw.sharif.edu". It contains lecture notes, tutorials, laboratory materials, past exam papers, as well as other relevant information and announcements about this course.

Interesting URLs:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machines-fall-2005/

http://www.ece.umn.edu/users/riaz/animations/listanimations.html http://www.animations.physics.unsw.edu.au/jw/electricmotors.html http://peemrc.ornl.gov/projects.shtml http:// ceme.ece.illinois.edu /

EE Course No: 25741 Sharif University of Energy Conversion I Technology 5

6. Assessment details

Assignments: 5% overall weight

Laboratory work: 20% overall weight (Including Lab performance, Reports and Final

Test)

Quizzes: 15% overall weight Mid-term exam: 20% overall weight Final exam: 40% overall weight

Laboratory work: Students are required to attend all the scheduled laboratory sessions. Assessment of the laboratory work will be on the basis of (i) detailed written reports to be submitted on experiments, (ii) oral examination conducted by the demonstrators during each laboratory session and (iii) final practical lab exam. Marks are awarded based on sound explanation of the experiment concept and theoretical analysis, correct computed results and their interpretation. Students should thus use a laboratory notebook to record detailed documentation of the work performed.

A satisfactory performance (50% or greater) in the laboratory component is a necessary requirement to pass this course, irrespective of the marks obtained in the other components. Reports are due on the due date by 5pm. Late submissions carry a 50% penalty for the first week and will not be accepted beyond one week delay. Delays on medical grounds are accepted. The reports should be delivered to the Lab demonstrators.

EE Course No: 25/41 Snarii University or Energy Conversion I Technology

introduction to electric machinery and application

Electric Machines: Electromechanical Energy Converters

Electric machines Versus others

Electric Motor	Weight	Peak power	Power Density	applications
Panasonic MSMA202S1G AC servo motor	6.5 kg	2 kW	0.31 kW/kg	Conveyor belts, Robotics
Canopy Tech. Cypress 32 MW 15 kV AC	33,557 k	32 MW	0.95 kW/kg	Electric Power stations
Toyota Brushless AC NdFeB PM motor	36.3 kg	50 kW	1.37 kW/kg	Toyota Prius 2004
Hi-Pa Drive HPD40 Brushless DC wheel hub motor	25 kg	120 kW	4.8 kW/kg	Mini QED HEV, Ford F150 HEV
ElectriFly GPMG4805 Brushless DC	1,48kg	8.kW	5.68 kW/kg	Radiocontrolled aircraft

Electric Motor	Peak power	Power Density	applications
Panasonic MSMA202S1G AC servo motor	2 kW	0.31 kW/kg	Conveyor belts, Robotics
ElectriFly GPMG4805 Brushless DC	8.kW	5.68 kW/kg	Radiocontrolled aircraft
Combustion Engines			
GM 6.6 L Duramax LMM (LYE option) V8 Turbo Diesel engine	246kW	0.65kW/kg	Chevrolet Kodiak ^[•] , GMC Topkick
GE LM2500+ marine turboshaft Brayton gas turbine	30,200 kW	1.31kW/kg	GTS Millennium cruiseship, QM2 ocean liner
O.S. Engines 49-PI Type II 4.97 cc UAV Wankel engine	0.93kW	2.8kW/kg	Model aircraft, Radio- controlled aircraft
GE CF6-80C2 Brayton high- bypass turbofan jet engine	44,700 kW	5.67kW/kg	Boeing 747 ^[-] , 767, Airbus A300
GE90-115B Brayton turbofan jet engine	83,164 kW	10kW/kg	Boeing 777
PWR RS-24 (SSME) Block I H ₂ Brayton turbopump	53,690	153kW/kg	Space Shuttle

Energy Conversion I

Technology

Electric Motor	Peak power	Power Density	applications
Panasonic MSMA202S1G AC servo motor	2 kW	0.31 kW/kg	Conveyor belts, Robotics
ElectriFly GPMG4805 Brushless DC	8.kW	5.68 kW/kg	Radiocontrolled aircraft
Thermoelectric generators			
Boeing ²³⁸ Pu MMRTG MSL	123 W e	2.79 W/kg	Mars Science Laboratory
Fuel cell	Electric Generation		
Ballard Power Systems FCgen- 1030 1.2 kW CHP PEMFC	1.2kW	100 W/kg	Residential, cogeneration
Ballard Power Systems FCvelocity-HD6 150 kW PEMFC	150kW	375 W/kg	Bus and heavy duty
PhotoVoltaic	Electric Generation		
SUNTECH, HiPerforma PLUTO220-Udm 220W Ga-F22	220W	13.1W/kg	
Able (AEC) PUMA 6 kW GalnP2/GaAs/Ge-on-Ge Triplejunction PV array Course No: 25741		65 W/kg	
ergy Conversion I Technology			

EE Course No: 25741 Energy Conversion I

Some applications

Electric machines can be used whenever something needs to be moved:

Home appliance:

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

11

Some applications

Automotive industry:

150 motors in a Mercedes S Class!

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Fig. 1.1 Small motors in an automobile.

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Some applications

Industrial applications:

BOILER FEED PUMP

12 MW .___ ...

hot rolling of steel

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Some applications

Industrial automation:

EE Course No: 25741 Energy Conversion I Sharif University of Technology 15

Some applications

Industrial automation:

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Some applications

Traction systems:

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

17

Some applications

Electric Power Generation:

Energy Conversion I

Higher efficiency motors:

Better design and material Permanent magnet Superconductor

Permanent Magnet motors with variable speed control instead of ON-OFF control

EE Course No: 25741 Energy Conversion I Sharif University of Technology 19

Recent Applications and Trends

Permanent Magnet Low speed Wind Turbo-generators

EE Course No: 25741 Energy Conversion I Sharif University of Technology

High Temperature Superconductor (HTS) Electric Propulsion Motors

Recent Applications and Trends

High Temperature Superconductor (HTS) Electric Propulsion Motors / Generator

EE Course No: 25741 Energy Conversion I Sharif University of Technology

High Temperature Superconductor (HTS)
Electric Propulsion Motors / Generator

✓Up to three-times higher torque density than alternative technologies, machines are more compact and lighter in weight. The size and make HTS machines less expensive and easier to transport and install, allowing for arrangement flexibility in the ship.

√Absence of iron stator teeth reduce the structure borne noise

✓ High efficiency from full-to-low speed, boosting fuel economy, sustained and mission range, all key mission parameters for warships.

✓ Isothermal field winding is well suited for repeated load changes.

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

Recent Applications and Trends

Linear Motors

Industrial applications

Recent Applications and Trends

Linear Motors

Military applications

With a maximum design thrust of 132,000 kgf, Electromagnetic Aircraft Launch System (EMALS) offers 28% more thrust than steam catapults. Proposed EMALS could accelerate 45,000-kg aircraft to 60m/s² in 100m.

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Linear Motors

Military applications

Recent Applications and Trends

Magnetic Bearing

Magnetic bearings support moving machinery without physical contact.

Higher speed motors

Recent Applications and Trends

All Electric / Hybrid Electric Vehicles

In wheel motor

EE Course No: 25741 Energy Conversion I Sharif University of Technology 31

Recent Applications and Trends

Modular structure Electric machines

Easier production and repair

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

Future

The world is waiting for new ideas from new generation of engineers studying electric machinery now!

EE Course No: 25741 Energy Conversion I Sharif University of Technology

This document was cr The unregistered vers	reated with Win2PDF a ion of Win2PDF is for e	vailable at http://www.daevaluation or non-comm	aneprairie.com. nercial use only.