

TD n°2: Algèbre I

Informatique Appliquée - S1 - 2023/2024 - Pr. El Mahjour

Ensembles et Applications

Exercice 1

Montrer par contraposition les assertions suivantes, E étant un ensemble :

1.
$$\forall A, B \in \mathscr{P}(E) \quad (A \cap B = A \cup B) \Rightarrow A = B$$
,

2.
$$\forall A, B, C \in \mathscr{P}(E)$$
 $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C.$

[01]

Exercice 2

Soient E et F deux ensembles, $f: E \rightarrow F$. Démontrer que :

•
$$\forall A, B \in \mathscr{P}(E) \quad (A \subset B) \Rightarrow (f(A) \subset f(B)),$$

•
$$\forall A, B \in \mathscr{P}(E)$$
 $f(A \cap B) \subset f(A) \cap f(B)$,

•
$$\forall A, B \in \mathscr{P}(E)$$
 $f(A \cup B) = f(A) \cup f(B)$,

•
$$\forall A, B \in \mathscr{P}(F)$$
 $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$,

•
$$\forall A \in \mathscr{P}(F)$$
 $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$.

•
$$\forall A, B \in \mathscr{P}(F)$$
 $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

[02]

Exercice 3

Montrer que chacun des ensembles suivants est un intervalle, éventuellement vide ou réduit à un point :

(i)
$$I_1 = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^2} \right]$$

(ii)
$$I_2 = \bigcap_{n=1}^{+\infty} \left[-2 - \frac{1}{n}, 4 + n^2 \right].$$

(iii)
$$I_3 = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right[$$

(iv)
$$I_4 = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right]$$

[03]

Exercice 4 *** Théorème de CANTOR

- 1. Montrer qu'il existe une injection de E dans $\mathscr{P}(E)$.
- 2. En considérant la partie $A = \{x \in E \mid x \notin f(x)\}$, montrer qu'il n'existe pas de bijection f de E sur $\mathscr{P}(E)$.

[04]

Exercice 5

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x/(1+x^2)$.

- 1. *f* est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g: [-1,1] \rightarrow [-1,1]$ g(x) = f(x) est une bijection.
- 4. Retrouver ce résultat en étudiant les variations de f.

[05]

Exercice 6 *

Montrer que : $(g \circ f \text{ injective}) \Rightarrow f \text{ injective})$ et $(g \circ f \text{ surjective}) \Rightarrow g \text{ surjective})$.

[06]

Exercice 7

Dans $\mathbb C$ on définit la relation $\mathscr R$ par :

$$z\Re z' \Leftrightarrow |z| = |z'|.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de chaque $z \in \mathbb{C}$.

Indication ▼ [07]

Indication pour l'exercice 7 ▲

Un dessin vous sera utile