K-means Clustering and Principal Component Analysis

• K-means algorithm

Input:

- $-K(number\ of\ clusters);$
- Training set $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$.

$$x^{(i)} \in R^n$$
 (drop $x_0 = 1$ convention).

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

Repeat {

For
$$i = 1$$
 to m

 $c^{(i)} := \text{index(from 1 to } K) \text{ of cluster centroid closest to } x^{(i)}$

For
$$k = 1$$
 to K

 $\mu_k \coloneqq \text{average(mean) of points assigned to cluster } k$

}

• K-means optimization objective

 $c^{(i)}=$ index of cluster (1, 2, ..., K) to which example $x^{(i)}$ is currently assigned $\mu_k=$ cluster centroid k ($\mu_k\in R^n$)

 $\mu_{c^{(i)}} = ext{cluster centroid of cluster to which example } x^{(i)}$ has been assigned.

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\underbrace{\min_{\substack{c^{(1)},\ldots,c^{(m)}\\\mu_1,\ldots,\mu_K}}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

• Random initialization

Should have K < m;

Randomly pick K training examples;

Set μ_1, \dots, μ_K equal to these K examples.