The Tomita data sets

M. Tomita 1982, "Dynamic construction of finitestate automata from examples using hill-climbing," in Proc. of the Fourth Annual Cognitive Science Conf., pp. 105–108

• NEG={0, 10, 01, 00, 011, 110, 000, 111111110, 101111111}

- POS={ 10, 1010, 101010, 10101010, 101010101010 }
- NEG={ 1, 0, 11, 00, 01, 101, 100, 1001010, 10110, 11010101}

- POS={ 1, 0, 01, 11, 00, 100, 110, 111, 000, 100100, 110000011100001, 111101100010011100 }
- •NEG={ 10, 101, 010, 1010, 1110, 1011, 10001, 111010, 1001000, 11111000, 0111001101, 11011100110 }

POS={ 1, 0, 10, 01, 00, 100100, 11100, 0010, 0011111110100, 0100100100 }

• NEG={ 000, 11000, 0001, 000000000, 11100, 0010, 0011111110100, 0000, 11111000011, 101001001, 00000, 1101010000010111 }

POS={ 11, 00, 1001, 0101, 1000111101, 1010, 1001100001111010, 111111, 0000 }

- POS={ 10, 01, 1100, 101010, 111, 000000, 10111, 0111101111, 100100100 }
- NEG={ 1,0,11,00,101,011,11001,1111, 00000000, 010111, 101111011111,1001001001 }

- POS={ 1, 0, 10, 01, 11111, 000, 00110011, 0101, 0000100001111, 00100, 011111011111, 00}
- NEG={ 1010, 00110011000, 01010101, 1011010, 10101, 010100,101001, 100100110101}

Table 3. The seven regular languages proposed by Tomita and their respective training sets.

Lan.	Description	Positive instance	Negative instance
1	1*	1, 11, 111, 1111, 11111, 111111,	0, 10, 01, 00, 011, 110, 000,
		1111111, 11111111	11111110, 10111111
2	(1 0)*	10, 1010, 101010, 10101010,	1, 0, 11, 00, 01, 101, 100, 1001010,
		10101010101010	10110, 110101010
3	no odd 0-string	1, 0, 01, 11, 00, 100, 110, 111,	10, 101, 010, 1010, 1110, 1011,
	after an odd1 string	000, 100100, 110000011100001	10001, 111010, 1001000, 11111000,
		, 111101100010011100	0111001101, 11011100110
4	no "000" as a substring	1, 0, 10, 01, 00, 100100,	000, 11000, 0001, 000000000,
		11100, 0010, 001111110100,	0000, 11111000011, 101001001,
		0100100100	00000, 1101010000010111
5	even number of 0's	11, 00, 1001, 0101, 1000111101,	0, 111, 10, 000000000, 1000,
	and even number 1's	1010, 1001100001111010,	01, 10, 1110010100, 0101111111110
		11111, 0000	, 0001, 011
6	(number of 1s	10, 01, 1100, 101010, 111,	1,0,11,00,101,011,11001,
	- number of 0s) mod 3 = 0	000000, 10111, 0111101111	1111, 00000000, 010111,
		, 100100100	101111011111,1001001001
7	0*1*0*1*	1, 0, 10, 01, 11111, 000, 00110011,	1010, 00110011000, 0101010101,
		0101, 0000100001111, 00100	1011010, 10101, 010100,
		,011111011111,00	101001, 100100110101