```
CSCA 67 Exercise 8.
```

1
$$y_1 + y_2 + y_3 + y_4 = 7$$

 $c(7 + v + 1, 7) = c(0.7)$
 $p = y_1 = 4$,
 $0 \le y_2 \le 3$,
 $0 \le y_3 \le 5$
 $0 \le y_4 \le 5$.
 $if y_1 > 5$, $y_1 + y_2 + y_3 + y_4 = 7$
 $2i + y_2 + y_3 + y_4 = 2$
 $c(2 + v + 1, 2) = c(5.2)$
 $if y_2 > v$, $y_1 + y_2 + y_3 + y_4 = 3$.
 $c(3 + v + 1, 3) = c(6.3)$
 $if y_4 > 6$, $y_1 + y_2 + y_3 + y_4 = 1$
 $c(1 + v + 1, 1) = c(v + 1)$
 $if y_4 > 6$, $y_1 + y_2 + y_3 + y_4 = 1$
 $c(1 + v + 1, 1) = c(v + 1)$
 $c(1 + v + 1, 1) = c(v + 1)$

$$2 \left(\frac{72+5-1}{12}\right) = 1282975$$

$$y_{1+} y_{2} + y_{3} + y_{4} + y_{5} = 62$$
 $(62+5-1) = 720720$

b) There are 6 elements at exactly z heads $\frac{6}{16} = 0.375$ There are 11 dements at least 2 tails 11 = 0.6875 There are (100) ways of flipping exactly & heads using indirect method: $P(0 \text{ tail}) = \frac{1}{2100}$ $P(1 \text{ tail}) = \frac{(150)}{2100}$ 1- P(otail) - P(1 tail) = P (od least 2 tails) = 1- \frac{1}{2100} - \frac{(100)}{2100}