

## TD n°1 Matlab : Débuter avec Matlab et opérations su les tableaux

Répondez directement dans la fenêtre commande en utilisant les fonctions de Matlab si possible. Ne pas hésiter à faire appel à l'aide en ligne via l'instruction **help** ou **doc** suivie du nom de la commande concernée pour comprendre son fonctionnement.

## I) Débuter avec Matlab (30 min)

Tester les différentes fonctionnalités de Matlab mentionnées en cours

## II) Manipulation et opérations sur les tableaux

1) On considère les vecteurs et matrices suivants :

$$\boldsymbol{l} = (1\ 2\ 3\ 4\ 5), \quad \boldsymbol{v} = \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 2 & 0 & 0 & 0\\0 & 0 & 2 & 3 & 1\\0 & 0 & 0 & 2 & 2\\0 & 0 & 0 & 0 & 1\\1 & 1 & 1 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5\\2 & 3 & 4 & 5 & 6\\3 & 4 & 5 & 6 & 7\\4 & 5 & 6 & 7 & 8\\5 & 6 & 7 & 8 & 9 \end{pmatrix}$$

- a) Créer des tableaux correspondants à *l*, *v*, A et B
- b) Extraire la première ligne, la deuxième colonne et la sous-matrice  $(a_{ij})_{1 \le i \le 3, 1 \le j \le 5}$  de la matrice A, les termes diagonaux de la matrice B
- c) Vérifier la taille de *l*, *v*, A et B

2) On considère les vecteurs suivants : 
$$v_1 = (5, -3, 6), v_2 = (1, 2, 3, 4)$$
 et  $v_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ 

Créer les matrices suivantes à partir de  $v_1$ ,  $v_2$  et  $v_3$ :

$$A_1 = \begin{pmatrix} 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 \\ 0 & -6 & 0 & 0 \\ 0 & 0 & 12 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 5 & 0 & 0 \\ 10 & 2 & -3 & 0 \\ 0 & -6 & 3 & 6 \\ 0 & 0 & 12 & 4 \end{pmatrix}$$

- a) Vérifier la taille de  $v_1$  et  $A_3$
- b) Calculer le déterminant de  $A_3$
- c) Calculer la trace de  $A_3$  et le produit matriciel de  $A_2$  et  $A_3$
- d) Calculer le produit scalaire :  $v_1 \cdot v_1$  de trois manières différentes