

, j

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 2 OF 34

F i g. 2

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 3 OF 34

F i g. 3

Fig. 4

ь — М

F i g. 6

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 6 OF 34

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 7 OF 34

Fig.8

	Target material	Film material
Low refractive index material High refractive index material	Si	SiO ₂
	SiC	SiO ₂
	Alloy of Si and Al	SiO ₂ + Al ₂ O ₃
	Ti	TiO2
	Та	Ta ₂ O ₅
	Zr	ZrO ₂
	Zn	ZnO
	Nb	Nb ₂ O ₅

F i g. 9

Examples of substrate used in the present invention

For WDM	WMS manufactured by OHARA Corporation (glass ceramics)		
	Colorless sheet glass (high transmittance glass)		
	Hard glass (low expansion glass)		
For optical filter	Artificial crystal		
	Quartz		
	BK-7 (optical glass) manufactured by Schott Corporation		
	Fluorophosphate glass		
	Borosilicate glass		

F . 8. 1

1

F | g |

Fig. 12

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 11 OF 34

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 12 OF 34

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 13 OF 34

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 14 OF 34

Fig. 16

Distribution in advancing direction by target for slow film deposition in carousel type film deposition

Position on substrate in advancing direction (mm) (wherein center of substrate is defined as 0)

-m Target having an inclination angle of 5 deg

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET <u>15</u> OF <u>34</u>

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 16 OF 34

Fig. 18

Distribution in advancing direction by target for rapid film deposition in carousel type film deposition

Target having an inclination angle of 5 deg

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 17 OF 34

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET <u>18</u> OF <u>34</u>

Fig. 20

Change in transmittance of light having wavelength of 550 nm when TiO₂ (n=2.4) is deposited on glass substrate

Fig. 21

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 20 OF 34

F i g. 22

Fig. 23

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 22 OF 34

Fig. 24

Spectral transmittance for BPF having 29 layers and one cavity, and transmittance approximately converted based on measurement at incident wavelength of 550 nm

Actual spectral transmittance
Approximately converted spectral transmittance

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET <u>23</u> OF <u>34</u>

Fig. 25

Angular dependency of transmittance for BPF having 29 layers and one cavity

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 24 OF 34

F i g. 26

Spectral transmittance for BPF having 29 layers and one cavity, and transmittance approximately converted based on measurement at incident wavelength of 549 nm

Angle (deg)

Actual spectral transmittance
 Approximately converted spectral transmittance

*1: Sputtering power supply (Conventional magnetron for deposition of low refractive index film) **₩** 204 216 <u>206</u> 200 202 (Conventional magnetron for deposition of high refractive index film)

F i g. 27

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET <u>26</u> OF <u>34</u>

Fig. 28

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET <u>27</u> OF <u>34</u>

Fig. 29

Fig.30

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET <u>29</u> OF <u>34</u>

Fig. 31

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 30 OF 34

Fig. 32

Fig. 33

F i g. 34

				
	Application	Various kinds of cameras Displays etc.	Lighting equipment Projectors Various kinds of cameras Displays etc.	For WDM communi- cation
thod	Substrate holder Number of revolution (rpm)	8 to 60 rpm		4 to 20 rpm
film deposition method	Required precision of film thickness	1 to 5% or less	1% or less	0.01% or less 0.01% or less
and film de	Total film thickness (target)	0.1 to 0.3 µm	1.5 to	25 to 35 ym 20 to 25 ym
film structure	Number of film layer	1 to 4 layers (single side)	15 to 50 layers	100 to 200 layers 30 to 40 layers
Example of film s	Kind of film	Antireflective film	Infrared reflective film Ultraviolet reflective film Ultraviolet/infrared reflective film visual light reflective film Polarized separating film	Band pass filter Gain flattening target
	Film deposition method		AC (rapid deposition) method	Method wherein AC (rapid deposition) and DC (slow deposition) are combined

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 32 OF 34

(For deposition of low refractive index film) magnetron control 142 6 P.C. 27 Halogen lamp Monochro mator 8 **1** 1*: Processor for received light deposition 152 of high refractive 14 index film) <u></u> (For

F i g. 35

OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 33 OF 34

F i g. 36

erty

Evaluation result for film prop

	AC sputtering 10 layers 2.0 μm	DC sputtering 26 layers 3.0 µm	Product formed by vapor deposition 34 layers 4 µm
Film deposition rate (SiO ₂)	42 nm·m/min	11 nm·m/min	
(Ta ₂ O ₅)	52 nm·m/min	6 nm·m/min	
Film stress (SiO ₂)	-218 MPa	-67 MPa	•
(Ta_2O_5)	-78 MPa	-217 MPa	
Refractive index (Sio ₂)	1.472 at 550 nm	1.460 at 550 nm	•
(Ta_2O_5)	2.17 at 550 nm	2.10 at 550 nm	
Extinction	6 10 ⁻⁴	< 10 ⁻⁴	
	\$-V	9-VI /	1
Haze value	\$0.0	0.38	0.3%
Smoothness (Ra)	0.32 nm	0.30 nm	2.22 nm
Wavelength shift	mu l	1 mm	Leas than 2 nm
(60°C, 90%RH, 120 h)	1 /	****	
10.5	300000000000000000000000000000000000000	7. 1	The fact that is a fact that the fact that t

index and extinction refractive film stress, 500 nm) (With respect to film deposition rate, coefficient, result for single film of OBLON, SPIVAK, ET AL DOCKET #: 241315US-2CONT INV: Eiji SHIDOJI, et al. SHEET 34 OF 34

Fig. 37

Film property required for multilayer optical film

	Targeted value	
Film stress		
(SiO ₂)	Within range of ±300 MPa	
(Ta ₂ O ₅)		
Refractive index		
(SiO ₂)	1.45 or more and 1.48 or less	
(Ta ₂ O ₅)	2.15 or more and 2.25 or less	
Extinction coefficient	4	
(SiO ₂)	< 10 ⁻⁴	
(Ta ₂ O ₅)	< 10 ⁻⁴	
Haze value	< 0.1%	
Smoothness (Ra)	< 1.0 nm	
Wavelength shift	_	
(60°C, 90%RH, 120 h)	< 1 nm	