

Size Equation

Nano-Thermodynamics

	Bulk Material	Nano Material	
Size (L)	~ 1 m	$< 100 \text{ nm} = 10^{-7} \text{ m}$	
Property (A)	$A \neq A(L)$	A = A(L)	

- Characteristic lengths $\lambda_{C} \sim 1-100 \text{ nm}$
- Nano-physics: $L < \lambda_C$
- E.g.:
 - $-\lambda_e$ = electronic mean free path (10-100 nm)
 - $-\lambda_{avc}$ = excitonic Bohr radius (1-10 nm)
 - $-\lambda_{\rm M}$ = magnetic domain (30-50 nm)

control L = control A(L)

Size Equations

Size Equation:

- Evolution of the chemical-physical properties vs. the nanostructures size
- Top-down approach

$$A(N) = A(\infty) \left(1 + \frac{C_N}{N^{\alpha}} \right)$$

A = property $A(\infty) = bulk limit of A$

N = number of atoms R = NP radius

 C, α costants

Size Equations

Effective radius and atomic fraction at the surface

$$V = \frac{4\pi}{3} R_0^3 N = \frac{4\pi}{3} R_{eff}^3$$

$$S$$
 = cluster surface R_0 = atomic radius

V = cluster volume

$$S = 4\pi R_{eff}^2 = 4\pi R_0^2 N^{2/3}$$

$$R_{0,fcc} = \frac{a}{4}\sqrt{2}$$

$$N_{\text{sup}} = \frac{S}{S_{at}} = \frac{4\pi R_0^2 N^{2/3}}{\pi R_0^2} = 4N^{2/3}$$

 $R_{eff} = \left(\frac{V}{4\pi/3}\right)^{1/3} = R_0 N^{1/3}$

$$F = \frac{N_{\text{sup}}}{N} = \frac{4}{N^{1/3}} = \frac{4R_0}{R_{eff}}$$

F = fraction of surface atoms

N	F
10 ²	0.86
10 ³	0.40
10 ⁶	0.04

Unit Cell fcc

G.Mattei

Surface effect

Co f.c.c. $a = 0.35447 \text{ nm}, R_0 = a 2^{\frac{1}{2}}/4 = 0.1253 \text{ nm}$

n = 139 atoms

R_{eff} = 0.65 nm F = 77 %

R_{eff} = 0.90 nm F = 56 %

R_{eff} = 1.82 nm F = 28 %

(TSE)

Example of A = A(L)

Università

DEGLI STUDI

DI PADOVA

Given a spherical cluster with N atoms:

$$T_M(R) \quad \leftrightarrow \quad T_M(\infty)$$

At equilibrium between solid (S) and liquid (L) phases:

$$\mu_L(T,P) = \mu_S(T,P)$$

$$\mu \equiv \frac{\partial G}{\partial N}\Big|_{T,P} = \frac{\partial U}{\partial N}\Big|_{S,V}$$

First-order expansion of the chemical potential close to the bulk thermodynamic equilibrium (T_0, P_0) gives:

$$\mu(T, P) = \mu(T_0, P_0) + \frac{\partial \mu}{\partial T}(T - T_0) + \frac{\partial \mu}{\partial P}(P - P_0) + \dots$$

Considering U=U(S,V,N) and requiring that $U(\lambda S,\lambda V,\lambda N)=\lambda\ U(S,V,N)$ it results:

$$U \equiv TS - PV + \mu N$$

G.Mattei

$$SdT - VdP + Ndu = 0$$

$$d\mu = -\frac{S}{N}dT + \frac{V}{N}dP$$

$$d\mu = -sdT + \frac{1}{\rho}dP$$

$$s \equiv \frac{S}{N} = -\left(\frac{\partial \mu}{\partial T}\right)_{P}$$

$$\frac{1}{\rho} \equiv \frac{V}{N} = \left(\frac{\partial \mu}{\partial P}\right)_{T}$$

therefore:

$$0 = \mu_L(T_0, P_0) + \frac{\partial \mu_L}{\partial T}(T - T_0) + \frac{\partial \mu_L}{\partial P}(P_L - P_0) - \mu_S(T_0, P_0) - \frac{\partial \mu_S}{\partial T}(T - T_0) - \frac{\partial \mu_S}{\partial P}(P_S - P_0) + \dots$$

If T₀ and P₀ are at the triple point of the bulk phase:

$$\mu_L(T_0, P_0) = \mu_S(T_0, P_0)$$

$$0 = s_L(T - T_0) - \frac{1}{\rho_L}(P_L - P_0) - s_S(T - T_0) + \frac{1}{\rho_S}(P_S - P_0)$$

$$(s_L - s_S)(T - T_0) - \frac{1}{\rho_I}(P_L - P_0) + \frac{1}{\rho_S}(P_S - P_0) = 0$$

From Laplace law:

$$P_{L} = P_{ext} + 2 \frac{\gamma_{L}}{R_{L}} \approx 2 \frac{\gamma_{L}}{R_{L}}$$

$$P_{S} = P_{ext} + 2 \frac{\gamma_{S}}{R_{S}} \approx 2 \frac{\gamma_{S}}{R_{S}}$$

$$When R \Rightarrow 0$$

$$P_{ext} << P_{L'} P_{S}$$

$$R_{S} = \left(\frac{\rho_{L}}{\rho_{S}}\right)^{1/3} R_{L}$$

Considering the Latent heat of fusion per atom $L = (s_L - s_S)T_0$

$$(s_L - s_S)T_0\left(\frac{T}{T_0} - 1\right) + 2\left(\frac{\gamma_S}{R_S\rho_S} - \frac{\gamma_L}{R_L\rho_L}\right) + P_0\left(\frac{1}{\rho_L} - \frac{1}{\rho_S}\right) = 0$$

$$\Delta T = T - T_0$$
 2 $\left(-(\rho_c)^{2/3} \right)$ A

$$\frac{\Delta T}{T_0} \equiv \frac{T - T_0}{T_0} = -\frac{2}{LR_S \rho_S} \left(\gamma_S - \gamma_L \left(\frac{\rho_S}{\rho_L} \right)^{2/3} \right) = -\frac{A}{R} < 0$$

Hypoteses:

- 1. First-order expansion of the chemical potential
- 2. Spherical Cluster
- 3. $\rho_1 \sim \rho_S$

Size equation

$$T_{M}(R) = T_{M}(\infty) \left(1 - \frac{C}{R} \right)$$

$$C \equiv \frac{2}{L\rho_{S}} \left(\gamma_{S} - \gamma_{L} \left(\frac{\rho_{S}}{\rho_{L}} \right)^{2/3} \right)$$

For Au:

L = 62700 J/kg (latent heat of fusion)

 $T_0 = 1336 \text{ K} (bulk melting temperature)$

$$\rho_L$$
 = 17280 kg/m³ (density of the liquid phase)
 ρ_S = 18400 kg/m³ (density of the solid phase)

$$\gamma_L$$
 = 1.135 J/m² (surface tension liquid phase)
 γ_S = 1.380 J/m² (surface tension solid phase)
C(Au) = 0.34 nm

