NCA Tutorial

Yingbo Ma

February 12, 2019

1 Introduction

This is an introduction to NCA.jl, a software for noncompartmental analysis (NCA). In this tutorial we will show how to use NCA.jl to analysis data.

1.1 Installation

Currently, NCA.jl is a submodule in PuMaS.jl, so you only need to install PuMaS.jl, and everything will be ready to go.

1.2 Getting Started

To load the package, use

```
using PuMaS.NCA
```

First, let's load the example NCA data inside PuMaS.jl. This data have 24 individuals, and each of them has 16 data points.

```
using PuMaS, CSV
file = PuMaS.example_nmtran_data("nca_test_data/dapa_IV")
data = CSV.read(file)
```

	ID	TIME	TAD	CObs	AMT_IV	AMT_ORAL	Formulation
	Int64	Float64	Float64	Float64	Float64	Float64	String
1	1	0.0	0.0	157.021	5000.0	0.0	IV
2	1	0.05	0.05	141.892	0.0	0.0	IV
3	1	0.35	0.35	116.228	0.0	0.0	IV
4	1	0.5	0.5	109.353	0.0	0.0	IV
5	1	0.75	0.75	66.4814	0.0	0.0	IV
6	1	1.0	1.0	74.7532	0.0	0.0	IV
7	1	2.0	2.0	39.1933	0.0	0.0	IV
8	1	3.0	3.0	25.4495	0.0	0.0	IV
9	1	4.0	4.0	13.0165	0.0	0.0	IV
10	1	6.0	6.0	3.81448	0.0	0.0	IV
11	1	8.0	8.0	1.47339	0.0	0.0	IV
12	1	10.0	10.0	1.10532	0.0	0.0	IV
13	1	12.0	12.0	0.911367	0.0	0.0	IV
14	1	16.0	16.0	0.830115	0.0	0.0	IV
15	1	20.0	20.0	0.624201	0.0	0.0	IV
16	1	24.0	24.0	0.653632	0.0	0.0	IV
17	2	0.0	0.0	59.7702	5000.0	0.0	IV
18	2	0.05	0.05	66.354	0.0	0.0	IV
19	2	0.35	0.35	55.507	0.0	0.0	IV
20	2	0.5	0.5	59.0243	0.0	0.0	IV
21	2	0.75	0.75	55.8154	0.0	0.0	IV
22	2	1.0	1.0	53.6728	0.0	0.0	IV
23	2	2.0	2.0	38.8955	0.0	0.0	IV
24	2	3.0	3.0	30.9587	0.0	0.0	IV
				• • •	• • •	• • •	

here is what the dataset looks like

first(data, 6) # take first 6 rows

	ID	TIME	TAD	CObs	AMT_IV	AMT_ORAL	Formulation
	Int64	Float64	Float64	Float64	Float64	Float64	String
1	1	0.0	0.0	157.021	5000.0	0.0	IV
2	1	0.05	0.05	141.892	0.0	0.0	IV
3	1	0.35	0.35	116.228	0.0	0.0	IV
4	1	0.5	0.5	109.353	0.0	0.0	IV
5	1	0.75	0.75	66.4814	0.0	0.0	IV
6	1	1.0	1.0	74.7532	0.0	0.0	IV

2 Efficient Computation of Multiple NCA Diagnostics

2.1 AUC and AUMC

We can compute the area under the curve (AUC) from the first observation time to infinity. Below we are accessing the concentration and corresponding time array for the first individual. By default, the auc function computes the AUC from initial time to infinity (AUCinf).

```
NCA.auc(data[:C0bs][1:16], data[:TIME][1:16])

263.792662196049

NCA.auc(data[:C0bs][1:16], data[:TIME][1:16], method=:linuplogdown)
```

the keyword argument method can be :linear, :linuplogdown, or :linlog, and it defaults to :linear. This is a simple interface, however it is not efficient if you want to compute many quantities. The recommended way is to create an NCASubject or an NCAPopulation object first and then call the respective NCA diagnostic on the data object. To parse data to an NCAPopulation object one can call the parse_ncadata function and give column names

of id, time, conc (concentration), amt (dosage), formulation, iv (IV bolus name). Note that, by default, the lower limit of quantization (LLQ) is 0, and concentrations that are below LLQ (BLQ) are dropped. Also, we can add units by providing timeu, concu, and amtu.

```
timeu = u"hr"
concu = u''mg/L''
amtu = u''mg''
pop = parse_ncadata(data, id=:ID, time=:TIME, conc=:CObs, amt=:AMT_IV,
   formulation=:Formulation, iv="IV",
  llq=0concu, timeu=timeu, concu=concu, amtu=amtu)
NCAPopulation (24 subjects):
  ID: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2
0, 21, 22, 23, 24]
    concentration: mg L^-1
    time:
                   hr
    auc:
                   mg hr L^-1
                   mg hr^2 L^-1
    aumc:
                   hr^-1
    \lambda z:
    dose:
```

Here, each element of pop has the type NCASubject. It is a lazy data structure and actual computations are not performed. When we are instantiating NCASubject, it only performs data checking and cleaning. To calculate AUC, one can do:

```
NCA.auc(pop)
```

257.8586273987722

	id	auc
	Int64	Unitful
1	1	263.793 mg hr L-1
2	2	$323.253~\mathrm{mg}$ hr L -1
3	3	$339.848~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
4	4	373.361 mg hr L-1
5	5	132.145 mg hr L-1
6	6	$303.86~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
7	7	$380.275~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
8	8	$279.126~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{=}1$
9	9	239.831 mg hr L-1
10	10	$260.862~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
11	11	$146.864~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
12	12	$359.489 \text{ mg hr L} \hat{1}$
13	13	$522.905~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
14	14	$262.988~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
15	15	$378.993~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
16	16	$206.926~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
17	17	$341.551~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
18	18	195.925 mg hr L - 1
19	19	$433.443~\mathrm{mg}$ hr L -1
20	20	$214.27 \text{ mg hr L} \hat{1}$
21	21	$232.537~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
22	22	471.515 mg hr L-1
23	23	292.413 mg hr L-1
24	24	170.305 mg hr L-1

AUClast is the area under the curve from the first observation to the last observation. To compute AUClast on the second individual, one would do:

```
NCA.auc(pop[2], auctype=:last)
```

302.24594 mg hr L^-1

Or to compute the AUC on every individual, one would do:

NCA.auc(pop, auctype=:last)

	id	auc
	Int64	Unitful
1	1	246.932 mg hr L-1
2	2	$302.246~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
3	3	$288.58~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
4	4	$333.804~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
5	5	$129.061 \text{ mg hr L} \hat{1}$
6	6	$291.951~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
7	7	$333.994~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
8	8	$259.967~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
9	9	$233.643 \text{ mg hr L} \hat{1}$
10	10	$242.719~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
11	11	$141.435 \text{ mg hr L} \hat{1}$
12	12	$311.005~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
13	13	$427.174~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
14	14	$246.329~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
15	15	311.131 mg hr L-1
16	16	$196.672 \text{ mg hr L} \hat{1}$
17	17	$319.297~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
18	18	$185.399~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
19	19	$403.216~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
20	20	$202.64 \text{ mg hr L} \hat{1}$
21	21	$222.77~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
22	22	$364.756~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
23	23	265.663 mg hr L-1
24	24	156.806 mg hr L-1

One can also compute AUC on a certain interval. To compute AUC on the interval $[10, \infty]$ on the first individual

```
NCA.auc(pop[1], interval=(10,Inf).*timeu)
```

27.824427196048966 mg hr L^-1

Note that we need to apply the time unit to the interval for units compatibility. One can also specify multiple intervals

```
NCA.auc(pop[1], interval=[(10,Inf).*timeu, (10, 15).*timeu])
2-element Array{Unitful.Quantity{Float64,M*T*L^-3,Unitful.FreeUnits{(mg, hr, L^-1),M*T*L^-3,nothing}},1}:
27.824427196048966 mg hr L^-1
4.6593795 mg hr L^-1
```

In many cases, the AUC commands may need to extrapolate in order to cover the desired interval. To see the percentage of extrapolation ($\frac{\text{extrapolated AUC}}{\text{Total AUC}} \cdot 100$), you can use the command:

```
NCA.auc_extrap_percent(pop[1])
```

6.391564517256502

Area under the first moment of the concentration (AUMC) is

$$\int_{t_0}^{t_1} t \cdot \text{concentration}(t) dt.$$

The interface of computing AUMC is exactly the same with AUC, and one needs to change auc to aumc for calculating AUMC or related quantities. For instance,

```
NCA.aumc_extrap_percent(pop[1])
NCA.aumc(pop[1])
```

1411.6198735770822 mg hr^2 L^-1

2.2 Terminal Rate Constant (λz)

The negative slope for concentration vs time in log-linear scale is the terminal rate constant, often denoted by λz . To compute λz , one can call

```
NCA.lambdaz(pop[1])
```

0.03876710923615265 hr⁻¹

To get the coefficient of determination (r^2) , the adjusted coefficient of determination $(adjr^2)$, the y-intercept, the first time point used, and the number of points used while computing λz , one can do:

```
NCA.lambdazz1(pop)
NCA.lambdazadjr2(pop)
NCA.lambdazintercept(pop)
NCA.lambdaztimefirst(pop)
NCA.lambdaznpoints(pop)
```

	id	lambdaznpoints
	Int64	Int64
1	1	5
2	2	3
3	3	5
4	4	6
5	5	5
6	6	10
7	7	4
8 9	8	4
9	9	7
10	10	4
11	11	6
12	12	5
13	13	4
14	14	6
15	15	3
16	16	6
17	17	4
18	18	5
19	19	7
20	20	3
21	21	5
22	22	3
23	23	4
24	24	3

By default, λz calculation checks last 10 or less data points, one can change it by providing the keyword threshold, e.g.

```
NCA.lambdaz(pop[1], threshold=2)
```

0.029877467931765923 hr^-1

One can also specify the exact data points by passing their indices

0.10617388957053892 hr^-1

You can also pass their time points

0.5387479621404708 hr^-1

2.3 Simple functions

 T_{max} is the time point at which the maximum concentration (C_{max}) is observed, and they can be computed by:

```
NCA.tmax(pop[1])
NCA.cmax(pop[1])
NCA.cmax(pop[1], interval=(20, 24).*timeu)
NCA.cmax(pop[1], interval=[(20, 24).*timeu, (10, 15).*timeu])

2-element Array{Unitful.Quantity{Float64, M*L^-3, Unitful.FreeUnits{(mg, L^-1), M*L^-3, nothing}},1}:
0.653632 mg L^-1
1.10532 mg L^-1
```

Note that cmax returns C_max and normalized C_max if dose is provided. If dose is provided in the NCASubject, that dose will be used by all computations where dose can be used.

T_last is the time of the last observed concentration value above the lower limit of quantization (LLQ), and the corresponding concentration value is (C_last). They can be computed by the command

```
NCA.tlast(pop[1])
NCA.clast(pop[1])

0.653632 mg L^-1
The half-life can be computed by:
NCA.thalf(pop[1])
```

1.2865889604594312 hr

One may need to interpolate or to extrapolate the concentration-time data. For example, if you wanted to interpolate the concentration at t = 12 using linear interpolation, you would do:

```
NCA.interpextrapconc(pop[1], 12timeu, method=:linear)
0.911367 mg L^-1
method can be :linear, :linuplogdown, or :linlog.
```

3 Plots and Summary

To generate linear and log-linear plots, one can do:

using Plots # load the plotting library
plot(pop)

to only generate the linear plot:

plot(pop, loglinear=false)

Similarly, to generate log-linear plot:

To calculate all NCA quantities, one can do

```
report = NCAReport(pop)
```

NCAReport

```
keys: (:lambdaz, :lambdazr2, :lambdazadjr2, :lambdazintercept, :lambdaznp
oints, :lambdaztimefirst, :cmax, :tmax, :cmin, :tmin, :c0, :clast, :tlast,
:thalf, :auc, :aumc, :auc_extrap_percent, :aumc_extrap_percent, :cl, :clf,
:vss, :vz, :tlag, :mrt, :fluctation, :accumulationindex, :swing, :bioav, :t
au, :cavg, :mat)
```

The NCAReport object holds all quantities, and one can call NCA.to_dataframe to get a DataFrame object.

NCA.to_dataframe(report)

	id	lambdaz	lambdazr2	lambdazadjr2	lambdazintercept	lambdaznpoints	lambda
	Int64	Unitful	Float64	Float64	Float64	Int64	Ur
1	1	0.0387671 hr^2	0.876585	0.835447	0.420709	5	10
2	2	0.0817121 hr^2	0.99798	0.99596	2.49292	3	16
3	3	0.0397477 hr^2	0.974958	0.96661	1.63628	5	10
4	4	0.0581041 hr21	0.875383	0.844229	2.12623	6	8.
5	5	$0.0662631 \text{ hr}\hat{-}1$	0.990272	0.987029	0.0418686	5	10
6	6	0.146807 hr	0.954561	0.948881	3.66418	10	2.
7	7	0.0662241 hr21	0.973581	0.960371	2.66532	4	12
8	8	0.0591092 hr2	0.994796	0.992194	1.54269	4	12
9	9	0.112094 hr1	0.914916	0.8979	2.03001	7	6.
10	10	$0.0758397 \text{ hr} \hat{-} 1$	0.994204	0.991306	2.16764	4	12
11	11	0.0663746 hr21	0.94937	0.936713	0.442621	6	8.
12	12	0.0541511 hr2	0.929973	0.90663	2.17602	5	10
13	13	0.0445008 hr21	0.955804	0.933706	2.4707	4	12
14	14	$0.0664999 \text{ hr}\hat{-}1$	0.967734	0.959668	1.61075	6	8.
15	15	0.0314503 hr2	0.99291	0.985821	1.50681	3	16
16	16	$0.0756395 \text{ hr} \hat{-} 1$	0.980329	0.975412	1.53717	6	8.
17	17	$0.0763209 \text{ hr}\hat{-}1$	0.991771	0.987657	2.32757	4	12
18	18	0.0396862 hr21	0.972902	0.963869	0.0346782	5	10
19	19	0.0778716 hr21	0.985955	0.983147	2.70697	7	6.
20	20	$0.0534663 \text{ hr} \hat{-} 1$	0.993466	0.986931	0.81816	3	16
21	21	0.113931 hr	0.999478	0.999304	2.83811	5	10
22	22	$0.0307751 \text{ hr} \hat{-} 1$	0.959955	0.91991	1.91362	3	16
23	23	0.0597314 hr2	0.999868	0.999802	1.89977	4	12
24	24	0.0404818 hr ¹	0.994011	0.988021	0.36	3	16

4 Multiple dose

The interface of doing NCA with multiple doses is the same as doing single dose NCA. To load the data with multiple doses, one can do

```
multiple_doses_file = PuMaS.example_nmtran_data("nca_test_data/dapa_IV_ORAL")
mdata = CSV.read(multiple_doses_file)
timeu = u"hr"
concu = u''mg/L''
amtu = u"mg"
mpop = parse_ncadata(mdata, time=:TIME, conc=:COBS, amt=:AMT, formulation=:FORMULATION,
    occasion=:0CC,
                                      iv="IV", timeu=timeu, concu=concu, amtu=amtu)
NCAPopulation (24 subjects):
  ID: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2
0, 21, 22, 23, 24]
    concentration: mg L^-1
    time:
    auc:
                   mg hr L^-1
                   mg hr^2 L^-1
    aumc:
                   hr^-1
    \lambda z:
    dose:
```

To plot:

plot(mpop)

To compute AUC and λz :

NCA.auc(mpop)

	id	occasion	auc
	Int64	Int64	Unitful
1	1	1	263.793 mg hr L-1
2	1	2	$201.822~\mathrm{mg}$ hr L -1
3	1	3	$421.23~\mathrm{mg}$ hr L -1
4	1	4	$1047.38~\mathrm{mg}$ hr L -1
5	2	1	323.253 mg hr L-1
6	2	2	252.802 mg hr L -1
7	2	3	491.18 mg hr L-1
8	2	4	$1222.78~\mathrm{mg}$ hr L -1
9	3	1	$339.848~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
10	3	2	$245.088~\mathrm{mg}$ hr L -1
11	3	3	481.385 mg hr L -1
12	3	4	$1187.11~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
13	4	1	$373.361~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
14	4	2	$302.196~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
15	4	3	$582.565~\mathrm{mg}$ hr L -1
16	4	4	$1352.82~\mathrm{mg}$ hr L -1
17	5	1	$132.145~\mathrm{mg}$ hr L -1
18	5	2	105.753 mg hr L-1
19	5	3	$196.432~\mathrm{mg}$ hr L -1
20	5	4	483.226 mg hr L -1
21	6	1	303.86 mg hr L -1
22	6	2	251.367 mg hr L - 1
23	6	3	$462.525~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
24	6	4	1119.53 mg hr L -1
			• • •

To get a summary, we need to provide a reference dose. In this example, we are going to let the first dose be the reference dose.

```
rep = NCAReport(mpop, ithdose=1)
NCA.to_dataframe(rep)
```

	id	occasion	lambdaz	lambdazr2	lambdazadjr2	lambdazintercept	lambdaznpoin
	Int64	Int64	Unitful	Float64	Float64	Float64	Int64
1	1	1	0.0387671 hr^2	0.876585	0.835447	0.420709	5
2	1	2	0.192171 hr^2	0.75655	0.726119	2.91033	10
3	1	3	0.0320026 hr^2	0.997517	0.995033	0.727804	3
4	1	4	0.0244296 hr^2	0.855536	0.783304	1.44802	4
5	2	1	0.0817121 hr^2	0.99798	0.99596	2.49292	3
6	2	2	$0.102657~\mathrm{hr} -1$	0.9924	0.9886	2.62369	4
7	2	3	0.145337 hr - 1	0.944494	0.937556	4.2038	10
8	2	4	0.0919952 hr2	0.965349	0.953798	4.1059	5
9	3	1	0.0397477 hr^2	0.974958	0.96661	1.63628	5
10	3	2	0.0478226 hr21	0.93242	0.909894	1.46381	5
11	3	3	0.0578421 hr21	0.946466	0.933083	2.3107	6
12	3	4	$0.0621692 \text{ hr}\hat{-}1$	0.996529	0.993057	3.3814	3
13	4	1	0.0581041 hr21	0.875383	0.844229	2.12623	6
14	4	2	$0.0566557 \text{ hr} \hat{-} 1$	0.99282	0.985641	1.90658	3
15	4	3	0.0518813 hr2	0.944628	0.916943	2.40633	4
16	4	4	0.0815239 hr21	0.928549	0.910686	3.83982	6
17	5	1	0.0662631 hr21	0.990272	0.987029	0.0418686	5
18	5	2	0.0239926 hr21	0.984904	0.969808	-1.101	3
19	5	3	0.0664184 hr21	0.924111	0.905138	0.480106	6
20	5	4	0.0815214 hr21	0.999949	0.999898	1.55726	3
21	6	1	0.146807 hr^2	0.954561	0.948881	3.66418	10
22	6	2	$0.068555~\mathrm{hr}\hat{-}1$	0.998942	0.997884	2.03372	3
23	6	3	0.098923 hr21	0.946162	0.932703	3.31109	6
24	6	4	$0.150275~\mathrm{hr}\hat{-}1$	0.946905	0.941005	5.1108	11
		• • •	• • •	• • •	•••	• • •	