EECS/BioE C106A/206A Introduction to Robotics

Lost Section 5

Oct 30 Fri 7 – 9 PM

Velocities and Jacobian, and Singularities

- The spatial velocity and Jacobian: $V^S = J^S \dot{\theta}$
- The body velocity and Jacobian: $V^b = J^b \dot{\theta}$
- Singularities

$$\xi=(v,\omega)^T\in\mathbb{R}^6$$

$$\hat{\xi} = \begin{bmatrix} \widehat{\omega} & \nu \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Spatial Jacobian:
$$V^S = J^S \dot{\theta}$$

$$\xi=(v,\omega)^T\in\mathbb{R}^6$$

$$\hat{\xi} = \begin{bmatrix} \widehat{\omega} & \nu \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Body Jacobian:
$$V^b = J^b \dot{\theta}$$

Example

Spatial Jacobian at $\theta = 0$

$$q'_1 = [0,0,0]^T, \omega'_1 = [0,0,1]^T$$

 $q'_2 = [L_1,0,0]^T, \omega'_2 = [0,-1,0]^T$
 $q'_3 = [0,0,-L_2]^T, \omega'_3 = [1,0,0]^T$

$$q'_{1} = [0,0,0]^{T}, \omega'_{1} = [0,0,1]^{T}$$

$$q'_{2} = [L_{1},0,0]^{T}, \omega'_{2} = [0,-1,0]^{T}$$

$$q'_{3} = [0,0,-L_{2}]^{T}, \omega'_{3} = [1,0,0]^{T}$$

$$J^{S} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -L_{2} \\ 0 & -L_{1} & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{\theta}$$

Body Jacobian at $\theta = 0$

$$q_{1}^{\dagger} = [0,0,-L_{1}]^{T}, \omega_{1}^{\dagger} = [-1,0,0]^{T}$$

$$q_{2}^{\dagger} = [-L_{2},0,0]^{T}, \omega_{2}^{\dagger} = [0,-1,0]^{T}$$

$$q_{3}^{\dagger} = [0,0,0]^{T}, \omega_{3}^{\dagger} = [0,0,1]^{T}$$

$$J^{b} = \begin{bmatrix} 0 & 0 & 0 \\ L_{1} & 0 & 0 \\ 0 & L_{2} & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{\theta}$$

$$J^b = \begin{bmatrix} 0 & 0 & 0 \\ L_1 & 0 & 0 \\ 0 & L_2 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{\theta}$$

You can choose other points for $q_1', q_2', q_3', q_1^{\dagger}, q_2^{\dagger}, q_3^{\dagger}$.

Example

Spatial Jacobian at $\theta = 0$

$$J^{s} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -L_{2} \\ 0 & -L_{1} & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{\theta}$$

Body Jacobian at $\theta = 0$

$$J^b = \begin{bmatrix} 0 & -L_2 & 0 \\ 0 & 0 & 0 \\ -L_1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{\theta}$$

Using the rigid body transformation
$$g(0) = \begin{bmatrix} 0 & 0 & 1 & L_1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

we can check $J^b = \operatorname{Ad}_{g^{-1}} J^s$.

Note that
$$\operatorname{Ad}_{g(0)} = \begin{bmatrix} 0 & 0 & 1 & 0 & L_2 & 0 \\ 0 & 1 & 0 & L_1 & 0 & -L_2 \\ -1 & 0 & 0 & 0 & L_1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$
, $\operatorname{Ad}_{g^{-1}(0)} = \begin{bmatrix} 0 & 0 & -1 & 0 & L_1 & 0 \\ 0 & 1 & 0 & L_2 & 0 & L_1 \\ 1 & 0 & 0 & 0 & -L_2 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

The Jacobian J^s (or J^b) is singular if J^s is not full rank.

- check the linear dependency of the columns in J^s with a particular θ
- find a particular θ such that the robot cannot achieve a certain direction of translational or angular velocity
- find a particular heta such that two axes are on the same line

The Jacobian J^s (or J^b) is singular if J^s is not full rank.

- check the linear dependency of the columns in J^s with a particular heta
- find a particular θ such that the robot cannot achieve a certain direction of translational or angular velocity
- find a particular heta such that two axes are on the same line

- The *y*-translational velocity cannot be achieved at the zero configuration.
- Six joints must cannot achieve the six dimensional velocities (translation + rotation)
- Thus, we have singularity at the zero configuration.

We should check all translational and angular velocities.

The Jacobian J^s (or J^b) is singular if J^s is not full rank.

- check the linear dependency of the columns in J^s with a particular heta
- find a particular θ such that the robot cannot achieve a certain direction of translational or angular velocity
- find a particular heta such that two axes are on the same line

- In this problem, for any θ , the robot is not singular.
- Note: at $\theta=0$, y-directional velocity cannot be achieved. However, the robot is not singular. We should also consider the angular velocity of the robot, which always span 1-dimensional space.

The Jacobian J^s (or J^b) is singular if J^s is not full rank.

- check the linear dependency of the columns in J^s with a particular heta
- find a particular heta such that the robot cannot achieve a certain direction of translational or angular velocity
- find a particular θ such that two axes are on the same line

Goal: find θ_2 and j such that $\xi_1 = \pm \xi_j$

Answer:

The Jacobian J^s (or J^b) is singular if J^s is not full rank.

- check the linear dependency of the columns in J^s with a particular heta
- find a particular θ such that the robot cannot achieve a certain direction of translational or angular velocity
- find a particular θ such that two axes are on the same line

