Leitura do artigo

Dense Passage Retrieval for Open-Domain Question Answering

Conceitos importantes

"Open-domain question answering (QA)":

Responder questões usando uma base grande de documentos

Normalmente resolvido com um estágio de TF-IDF/BM25

Representação densa:

Tokens são representados por um vetor com *n* features. Esses vetores são gerados após um treinamento e a ideia é que vetores que representam palavras similares tenham algum grau de similaridade.

Sugestão para resolver o problema de QA usando representação densa, com os embeddings extraídos após o treinamento de 2 encoders usando uma base de treinamento relativamente pequena.

Treinamento:

O corpus é formado por um conjunto de passagens: $C = \{p_1, p_2, ..., p_M\}$

Cada passagem é formada por uma sequência de tokens: p_i = [wⁱ₁, ..., wⁱ_{|pi|}]

Há uma query associada a cada uma dessas passagens: (q_i, p_i)

Há dois encoders. O primeiro responsável por gerar os embeddings das passagens e, o outro, das queries. Os embeddings são dados pelo T[CLS] (primeiro elemento da última camada).

Treinamento:

A organização dos dados fica assim:

Tokens						
Query	1	q1_t1	q1_t2	:	q1_tT	q1
	2	q2_t1	q2_t2	:	q2_tT	q2
ð	М	qM_t1	qM_t2	:	qM_tT	qM
	Mx ⁻					

	_					
Passagem	1	p1_t1	p1_t2	:	p1_tT	p1
	2	p2_t1	p2_t2		p2_tT	p2
	[
Ъ	М	pM_t1	pM_t2	:	pM_tT	pM
	M				ď	

E a similaridade é calculada como QP^T (no artigo está Q^TP, mas organizei diferente):

q1p1	q1p2		q1pM
q2p1	q2p2	:	q2pM
		:	
qMp1	qMp2	:	q1pM

Treinamento:

Cálculo da loss:

q1p1	q1p2	q1pM
q2p1	q2p2	 q2pM
qMp1	qMp2	 q1pM

MxM

Usa essa loss pra fazer o fine-tuning de dois encoders.

Inferência:

Etapa offline - Gera os embeddings de todos os documentos e guarda.

Quando uma query for apresentada, usa o encoder de queries para calcular o vetor de query.

O score é calculado como QP^T, da mesma forma que o cálculo da similaridade na loss.

Obrigado

Leandro Carísio carisio@gmail.com