A Semantics-First Approach for Word-learning using Visuo-Linguistic corpus

Experiments and Results

Nikhil Sudhakar Joshi (Y9111015)

Supervisor:

Prof. Amitabha Mukerjee

Department of Computer Science Indian Institute of Technology, Kanpur

14th June, 2011

Experiments and Results

Outline

- Introduction
 - Language Learning Word Learning
- 2 Symbol Learning Framework

Visuo-Linguistic Corpus Discovering visual categories Attention Model Label Association

3 Experiments and Results

Experimental settings Association Measures Incremental Analysis Learning labels for trajectories Minimizing the minimal supervision Attention Model

Summary

What does it mean to learn a language?

Rationalists'

Introduction

- Innatism
- Learning a generative syntax
- Empiricists' view
 - Language comes from usage
 - Learning mapping between language and the world.

Language and thought

Figure: Semiotic Triangle: Odgen and Richards, 1923

Cognitive Grammar

Figure: Cognitive Grammar: Processes (Langacker, 1987)

Experiments and Results

What is word-learning?

- What does it mean to learn a word?
- Bootstrapping problem in word learning?
 - Conceptual development affects word-learning
 - Linguistic usage affects conceptual structure
 - How and where to start?
- Symbol Grounding problem (Harnad, 1990)

Approaches to initial word learning

- Nativists (Chomsky)
 - Word-to-semantics mapping is taken to be inborn
- Piagetian (Piagets)
 - Words and their semantics are learnt simultaneously

Experiments and Results

- Semantics-First (Mandler, Quinn)
 - Based on Preverbal conceptual development
 - Semantics is learnt first before the words

Related Work

Introduction

- Learning words from pictures (Barnard, 2003)
- Learning words from sensorimotor data (Oates, 2000)
- Learning visually grounded semantics (Roy-Pentland, 2002; Yu-Ballard, 2004; Guha-Mukerjee, 2008)
- Shortcomings :
 - Scenes with simple objects and descriptions in constrained language
 - Provision for Feedback
 - Predefined or hand-coded semantics
 - Lack of referential ambiguity

Our approach

Introduction

- Semantics-first approach
- Visuo-Linguistic corpus
 - A complex and real traffic scenario with multiple objects
 - Free and unconstrained parratives with full sentences
- Attention Model
 - Handles referential uncertainty
- Learn linguistic units for concepts learnt before

Symbol Learning Framework

Key Assumptions

- Availability of Visuo-Linguistic corpus
- Video shot from static camera (Stable background)
- Shared attention between speaker and listener (theory of mind)

Experiments and Results

Linguistic focus follows perceptual focus.

Collecting Narrations

Introduction

- Collected Narrations in three different ways from 44 subjects.
 - Free Unconstrained Narratives (11 subjects)
 - Feedback based Narratives (20 subjects)
 - Child Directed Narratives (13 subjects)
- Transcribed the narrations into text
- Time-stamped the narrations at sentence boundaries and long pauses.

Experiments and Results

Discovering visual categories

- Discovering object categories (Gopi, 2010)
 - Foreground Extraction
 - Object Tracking (Guha, 2008)
 - Object Clustering
- Discovering motion categories
 - Modeling trajectory
 - Trajectory clustering

Foreground Extraction

- Learning stable patterns of the background
- Background subtraction

Figure: Segmented object blobs after background subtraction.

Object Tracking

Introduction

- Mean-shift based object tracking
- Considers overlapping sequences of blobs.

Figure: Agents as sequences of isolated foreground blobs.

PHOW and Object Clustering

- A code-book of 300 SIFT words
- Blobs are projected as PHOW over 300 SIFT words
- Object models clustered into 30 clusters using k-means algorithm

Figure: Representative views from all agents in cluster C0

Object clustering:Results

Introduction

Class: # agents	Clusters	Purity
н:52	C1,C2,C4,C10,	51/63 (81%)
	C11,C12,C14,C21	
м:36	C3,C8,C9,C22,	35/48 (73%)
	C23,C24,C26	
в:32	C5,C6,C7,C15,	22/25 (88%)
	C20,C28	
T:21	C0,C16,C17,	15/27 (56%)
	C18,C25	
L:12	C12,C29	11/13 (83%)
C:16	C19	9/10 (90%)
N:8	C27	2/4 (50%)

Table: Purity of Clusters from k- means (k = 30).

Learning Trajectories

Trajectory of agent a

$$T_a = \{(t_i, f_i) | i = 1, 2, ..., n\}$$

- Features: Position and velocity $f_i = (x_i, y_i, vx_i, vy_i)$
- 10 points per trajectory.
- 192 agents clustered into 7 clusters using k-means

Figure: Representative Trajectories

Learning Trajectories:Results

Introduction

Ground-Truth	LR	RL	Т	С	N	Total	% Purity
Cluster							
C1 (RL)	0	20	0	0	1	21	95
C2 (LR)	15	0	1	0	1	17	88
C3 (LR)	20	0	2	0	1	23	87
C4 (RL)	0	26	8	1	3	38	68
C5 (LR)	21	2	4	8	4	39	54
C6 (LR)	13	8	4	2	7	34	38
C7 (T)	0	3	14	3	0	20	70
Total	69	59	33	14	17	192	

Table: Ground-Truth distribution of Trajectory clusters:

Experiments and Results

Attention Model

- Tries to predict the perceptual focus based on visual saliency
- Two Types of Attention Models
 - Top-Down (Task dependent)
 - Bottom-Up (Task independent)
- Bottom-Up Attention Model based on
 - Blob size
 - Velocity
 - Confidence measure (Singh-Maji, 2006)

Associating language labels

Introduction

- Align co-occurring sentences with most salient objects
- Segmenting sentences into smaller linguistic units
- Associate Linguistic units with the appropriate concept
- Maximally associated unit is a label for the concept.

Association Measure

Introduction

 Utterance probability of a linguistic unit I for the speaker s at time t

$$P(I|s,t) = \begin{cases} 1 & \text{if } I \text{ is uttered by s at time t} \\ 0 & \text{otherwise} \end{cases}$$

Attention Probability

$$P(c|t) = \left\{ egin{array}{ll} 1 & ext{if } c ext{ is visually salient at time t} \ 0 & ext{otherwise} \end{array}
ight.$$

Joint Probability

$$J(I,c) = \frac{1}{T} * \sum_{t=1}^{T} P(c|t) * P(I|t)$$

where

$$P(I|t) = \frac{1}{|S|} \sum_{s \in S} P(I|s, t)$$

Issues to be addressed

- What should be the linguistic unit of association?
- What should be the association measure?
- Which of the linguistic units should be associated?
- Usefulness and necessity of attention model
- When can we say a word is learnt?

Summary of experimental settings

L	M	T	G	Α	٧	D
W	DJ	T+	G+	A+	obj	ADULT-1
S	CP	<i>T</i> -	G-	A —	traj	ADULT-2
P_w	MI					CDS
Ps						ALL

Experiments and Results

Table: Parameters of experimentation:

Word-level Association: Results

	(W, CP, T+, G+, A+, obj, ALL)								
	k = 1		k = 2		k = 3				
С	1	CP	1	CP	1	CP			
	Tempo	4.46	ek Trak	2.52	dAe.N se bAe.N	1.08			
T	kAr	4.33	ek Tempo	2.16	Ai Ai TI	0.87			
	pe	4.25	ek kAr	1.84	do OTo aur	0.79			
	sAikal	1.95	ek sAikal	1.14	sAikal jA rahl	0.32			
В	moTarsAikal	0.79	aur sAikal	0.32	gais silinDar le	0.32			
	pe	0.63	lefTsAiD	0.32	silinDar le ke	0.32			
	pe	8.60	ek Tempo	4.39	sAmAn le ke	1.45			
М	bAik	7.12	ek bAik	3.27	aur ek bAik	1.44			
	Tempo	6.56	ek OTo	3.19	ek sAikal pe	1.03			
	Trak	17.29	ek Trak	10.67	se ek Trak	1.74			
L	pe	3.24	tln sAikalwAle	2.01	ek Trak nikalA	1.47			
	sAikal	2.84	Trak gayA	1.76	niilii ra.ng kl	1.25			
	saD.ak	7.50	krOs kar	3.93	krOs kar rahA	3.04			
Н	krOs	6.68	ek Tempo	2.68	roD krOs kar	1.46			
	roD	6.54	roD krOs	2.52	IAI sharT me.n	1.16			
	kAr	7.76	ek kAr	4.89	bAe.N se dAe.N	1.41			
С	gADI	3.99	ek gADI	2.31	kAr jA rahl	1.12			
	nikalii	2.81	krOs kar	1.44	krOs kar rahA	1.11			

Experiments and Results

00000000000000000

Syllabic-level Association

Words in an utterance merged across word boundaries.

Experiments and Results

- Identify syllables in continuous utterance
 - Syllable as vowel terminated string.
- Associate Syllabic k-grams with visual categories.

Figure: **FSM**: To identify syllabic units

Syllabic-level Association: Results

	k :	= 2	$\mathbf{k} = 3$	3	k = 4	
Concept	1	CP	1	CP	1	CP
	ik	12.23	taraf	6.81	sAikal	5.79
TEMPO	jAr	9.23	rek	6.45	aurek	5.22
	kal	8.76	sAik	6.32	jArahAhai	4.52
	ik	3.4	sAik	3.06	sAikal	2.9
BICYCLE	sAi	3.06	ikal	2.9	eksAi	1.3
	kal	2.91	eksA	1.3	ksAik	1.3
	ik	19.09	sAik	10.54	sAikal	9.24
MOTORCYCLE	jAr	13.43	ikal	9.24	rsAik	7.21
	sAi	12.41	bAik	8.88	jArahAhai	6.02
	Trak	19.23	ekTra	11.83	ekTrak	11.83
TRUCK	kTra	11.83	kTrak	11.83	sAikal	6.41
	jAr	10.2	rahehai.n	8.61	jArahAhai	4.67
	hlhai	14.37	saD.ak	7.66	sAikal	6.35
HUMAN	jAr	10.86	aAdaml	7.62	jArahAhai	6.29
	kal	10.78	taraf	7.26	ekaAd	5.2
	kkA	5.32	ekkA	5.32	ekkAr	5.15
CAR	jAr	4.51	kkAr	5.15	ekaur	2.63
	hlhai	4.33	rahlhai	4.33	jArahlhai	2.46

Experiments and Results

Table: Poly-syllabic Associations:

Phrase-level Association

- Fragment
 - k-gram I_k is a fragment with respect to an n-gram I_n (n > k) for a category c if I_k is contained in I_n and $\frac{M(I_n,c)}{M(I_k,c)} > \tau$
- Independent Unit
 - A smaller k-gram I_k is independent of a higher n-gram I_n
 w.r.t. a concept c if I_k is not a fragment of I_n.
- Unit Independence Conjecture
 - Only those smaller k-grams l_k which are independent of all higher n-grams l_n w.r.t a concept c can be labels for c.

Phrase-level Association: Results

$(P_w, \mathbf{CP} / \mathbf{MI}, \mathbf{T}_+, \mathbf{G}_+, \mathbf{A}_+, \mathbf{obj}, \mathbf{ALL})$							
	СР		MI				
Concept (c)	1	M(I,c)	1	M(I,c)			
	Tempo	4.46	kAr	7.41			
TEMPO	kAr	4.33	bAik	7.34			
	pe	4.25	Tempo	6.54			
	sAikal	1.95	sAikal	1.34			
BICYCLE	ek sAikal	1.14	ek sAikal	0.96			
	moTarsAikal	0.79	gais silinDar	0.53			
	pe	8.60	pe	12.88			
MOTORCYCLE	bAik	7.12	bAik	11.64			
	Tempo	6.56	skUTar	8.99			
	Trak	17.29	Trak	15.01			
TRUCK	ek Trak	10.67	ek Trak	9.91			
	pe	3.24	tln sAikalwAle	2.37			
	saD.ak	7.50	saD.ak	27.90			
HUMAN	krOs	6.68	krOs	20.76			
	roD	6.54	roD	18.19			
	kAr	7.76	kAr	9.30			
CAR	ek kAr	4.89	ek kAr	6.61			
	gADI	3.99	gADI	4.38			

Table: Phrase-level Associations: Top3 word k-grams (k= 1 to 4 $\stackrel{?}{=}$

Phrase-level Association: Results

(P_s , CP / MI, T+, G+, A+, obj, ALL)								
	С	P	l N	AI .				
Concept (c)	1	M(I,c)	1	M(I,c)				
	ik	12.23	ik	29.68				
TEMPO	jAr	9.23	jAr	21.35				
	kal	8.76	kal	19.70				
	sAikal	2.90	sAikal	2.81				
BICYCLE	jAr	1.62	eksAi	1.60				
	eksAi	1.30	ksAik	1.60				
	ik	19.09	ik	39.35				
MOTORCYCLE	D	15.08	D	28.61				
	jAr	13.43	Tar	26.42				
	Trak	19.23	Trak	22.55				
TRUCK	ekTrak	11.83	ekTrak	14.70				
	jAr	10.20	jAr	9.42				
	hAhai	14.37	hAhai	62.35				
HUMAN	D	13.85	D	53.54				
	jAr	10.86	wAlA	46.14				
	ekkAr	5.15	ekkAr	9.38				
CAR	jAr	4.51	gADI	6.12				
	rahlhai	4.33	rahlhai	5.05				

Table: Syllabic phrase level Association

Different Association Measures

- Dominance Weighted Joint Probability (DJ)
 - Considers distribution of joint probability of label and a concept over concept space
 - favours peaky distributions over flat ones
- Conditional Probability (CP) of label given concept.
- Mutual Information (MI)

Experiments and Results

Association Measures: Results

(W, M*, T-, G+, A+, obj, ALL)							
	DJ			CP CP	MI		
Concept (c)	1	M(I,c)	1	M(I,c)	1	M(I,c)	
	hai	1.11	hai	21.62	hai	21.50	
TEMPO	aur	0.90	aur	15.74	aur	17.04	
	jΑ	0.52	se	10.35	se	10.32	
	gais	0.03	ek	2.58	sAikal	0.86	
BICYCLE	sAikal	0.02	hai	1.96	gais	0.45	
	uspar	0.02	sAikal	1.95	silinDar	0.32	
	ek	1.40	ek	36.83	ek	31.58	
MOTORCYCLE	hai	1.22	hai	30.37	hai	28.32	
	skUTar	0.76	aur	15.80	jΑ	14.90	
	Trak	0.41	ek	30.99	ek	12.21	
TRUCK	ek	0.25	hai	21.93	Trak	12.11	
	Ta.Nkar	0.21	Trak	17.29	hai	8.52	
	hai	5.84	ek	34.11	hai	62.17	
HUMAN	ek	5.39	hai	31.32	ek	58.05	
	rahA	3.61	aur	15.64	rahA	33.77	
	kAr	0.40	ek	18.20	kAr	7.43	
CAR	camcamAtI	0.23	hai	12.58	ek	6.29	
	mahAshay	0.22	kAr	7.76	hai	4.12	

Table: Word-level Associations for different probability measures

Association Measures: Results

(W, M*, T+, G+, A+, obj, ALL)						
	DJ		СР		MI	
Concept (c)	1	M(I,c)	1	M(I,c)	1	M(I,c)
	bAik	0.42	Tempo	4.46	mArutl	2.24
TEMPO	kAr	0.40	kAr	4.33	bAik	1.92
	piilii	0.36	pe	4.25	kAr	1.72
	sAikal	0.02	sAikal	1.95	silinDar	0.16
BICYCLE	uspar	0.02	moTarsAikal	0.79	l.njin	0.14
	l.njin	0.02	pe	0.63	Dilaks	0.14
	skUTar	0.76	pe	8.60	bAik	4.65
MOTORCYCLE	bAik	0.70	bAik	7.12	pe	4.43
	a.ndar	0.54	Tempo	6.56	skUTar	4.30
	Trak	0.41	Trak	17.29	Trak	6.22
TRUCK	Ta.Nkar	0.21	pe	3.24	peTrol	1.47
	peTrol	0.16	sAikal	2.84	Ta.Nkar	1.13
	saD.ak	2.74	saD.ak	7.50	saD.ak	12.51
HUMAN	biThAke	2.12	krOs	6.68	krOs	7.06
	rikshAwAlA	1.84	roD	6.54	biThAke	5.81
	kAr	0.40	kAr	7.76	kAr	3.61
CAR	camcamAtI	0.23	gADI	3.99	gADI	1.46
	mahAshay	0.22	nikalii	2.81	nikalii	1.33
				4 □ ▶ 4 🗇	▶ 4 분 > 4 분	

Consistent Dominance and confidence in learning

Figure: Increasing usage: Effect on word-level associations.

Random order and stability of learning

Experiments and Results

Figure: Random usage: Effect on word-level associations for TRUCK.

Labels for trajectories: Results

(W, CP, T*, G-, A+, traj, ALL)							
	Top 1000 retaine	ed (T-)	Top 1000 remove	ed (T+)			
Concept (c)	k = 3	CP	k = 3	CP			
	jA rahA hai	2.84	aur ek bAik	0.79			
C1	jA rahe hai.n	1.52	krOs kar rahA	0.78			
	jA rahl hai	1.39	geT kI taraf	0.61			
	jA rahA hai	3.96	krOs kar rahA	2.24			
C2	kar rahA hai	2.76	IAI sharT me.n	1.17			
	jA rahl hai	2.31	roD krOs kar	0.92			
	jA rahA hai	6.49	bAe.N se dAe.N	2.12			
C3	jA rahl hai	2.39	pUch rahA hai	1.47			
	bAe.N se dAe.N	2.12	pAr hotI hai	1.24			
	jA rahA hai	3.35	roD krOs kar	2.18			
C4	jA rahl hai	3.15	krOs kar rahA	2.16			
	kar rahA hai	3.03	saD.ak krOs kar	0.84			
	jA rahA hai	3.92	roD krOs kar	2.43			
C5	jA rahl hai	3.62	krOs kar rahA	2.38			
	kar rahA hai	2.95	geT kI taraf	1.54			
	jA rahe hai.n	3.19	ek aur Tempo	0.75			
C6	jA rahl hai	2.44	blaik kalar kl	0.74			
	jA rahA hai	1.70	pe ek aAdaml	0.66			
	jA rahl hai	5.28	geT kI taraf	1.36			
C7	jA rahA hai	4.47	TI ke geT	1.20			

Incremental Analysis

Figure: Incremental Analysis of Trajectory-labels

Experiments and Results

Cluster	1	CP	I	MI
	kAr	4.98	bAik	2.4
C0 (T)	bAik	4.96	moTarsAikal	2.13
	Tempo	4.5	kAr	2.01
	bAik	14.22	skUTar	4.57
C8 (M)	skUTar	12.66	bAik	3.7
	pe	12.53	pe	2.27
	sAikalwAle	8.82	sAikal	3.64
C15 (B)	sAikal	7.12	sAikalwAle	3.63
	dAe.N	6.85	dAe.N	1.67
	kAr	8.27	kAr	3.78
C19 (C)	gADI	4.05	gADI	1.4
	nikalii	2.85	nikalii	1.27
	roD	6.82	roD	0.41
C22 (M)	pe	2.68	khAll	0.3
	skUTar	1.92	laDkl	0.29
	Tempo	18.33	Tempo	5.62
C25 (T)	pe	11.75	mUD	3.05
	sAikal	6.87	pe	2.75
	Tempo	12.36	Tempo	3.02
C28 (B)	sAikal	8.48	sAikalwAle	3.01
	sAikalwAle	6.27	mUD	1.83
	Trak	26.4	Trak	4.83
C29 (L)	pe	8.02	sAmAn	1.51
	sAmAn	5.95	Ore.nj	1.25

Evaluating usefulness

Introduction

Evaluating necessity

Introduction

(W, CP, T+, G+, A*, obj, ALL)							
	With Attention	on (A+)	Without Atter	ntion (A-)			
Concept (c)	1	CP	1	CP			
	Tempo	4.46	Tempo	9.71			
TEMPO	kAr	4.33	pe	5.79			
	pe	4.25	ОТо	5.51			
	sAikal	1.95	sAikal	1.63			
BICYCLE	moTarsAikal	0.79	moTarsAikal	0.69			
	pe	0.63	pe	0.59			
	pe	8.60	pe	7.17			
MOTORCYCLE	bAik	7.12	bAik	6.25			
	Tempo	6.56	roD	5.55			
	Trak	17.29	Trak	14.39			
TRUCK	pe	3.24	sAikal	4.40			
	sAikal	2.84	pe	3.87			
	saD.ak	7.50	krOs	6.76			
HUMAN	krOs	6.68	roD	6.68			
	roD	6.54	saD.ak	6.32			
	kAr	7.76	vain	7.89			
CAR	gADI	3.99	kAr	7.73			
	nikalii	2.81	gADI	5.68			

Table: Word-level Association with and without attention model

Conclusion

- Learnt words as labels for several object categories based on
 - Minimally supervised object discovery from complex 3D-Video
 - Bottom-up attention model
 - Multiple narrations describing the scene
- Attempted to learn directional concepts and their labels
- Knowledge of word-boundaries is not a pre-requisite to word-learning.
- Consistent Dominance to assess the confidence in word learning.
- Tried to evaluate the usefulness and necessity of attention model.

Experiments and Results

Future-Work

- Language-driven attention model
- Learning synonyms.
- Symoblic theft.
- Incremental word-learning.
- Proving domain and language independence of the approach.