International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia Day 2 tasks

robots

Thai -1.0

น้องชายของมาริต้าทิ้งของเล่นกระจัดกระจายทั่วทั้งห้องนั่งเล่น! โชคดีที่มาริต้าได้พัฒนาหุ่นยนต์พิเศษที่ ใช้เก็บของเล่นเอาไว้ เธอต้องการความช่วยเหลือจากคุณในการเลือกว่าจะให้หุ่นยนต์ตัวใดเก็บของ เล่นชิ้นไหน

มีของเล่น T ชิ้น แต่ละชิ้นระบุน้ำหนัก W[i] เป็นจำนวนเต็ม และระบุขนาด S[i] เป็นจำนวนเต็มเช่นกัน หุ่นยนต์มีสองแบบ: *หุ่นยนต์อ่อนแอ* และ *หุ่นยนต์เล็ก*

- มีหุ่นยนต์อ่อนแอ A ตัว หุ่นยนต์อ่อนแอแต่ละตัวจะมีขีดจำกัดด้านน้ำหนักเป็น X[i] และสามารถ ยกของเล่นใด ๆ ที่มีน้ำหนักน้อยกว่า X[i] ได้ หุ่นยนต์อ่อนแอสามารถยกของเล่นขนาดใดก็ได้
- มีหุ่นยนต์เล็ก B ตัว หุ่นยนต์เล็กแต่ละตัวจะมีขีดจำกัดด้านขนาดเป็น Y[i] และสามารถยกของ เล่นใด ๆ ที่มีขนาดเล็กกว่า Y[i] ได้ หุ่นยนต์เล็กสามารถยกของเล่นน้ำหนักเท่าใดก็ได้

หุ่นยนต์แต่ละตัวของมาริต้าใช้เวลาหนึ่งนาทีในการเก็บของเล่นแต่ละชิ้น หุ่นแต่ละตัวจะยกของเล่นได้ที่ ละหนึ่งชิ้น แต่หุ่นยนต์หลายตัวสามารถทำงานพร้อม ๆ กันได้ กล่าวคือ ในเวลาหนึ่ง ๆ หุ่นหลายตัว สามารถเก็บของเล่นหลายชิ้นที่แตกต่างกันได้

งานของคุณคือตัดสินว่าหุ่นยนต์ของมาริต้าสามารถเก็บของเล่นทั้งหมดได้หรือไม่ ถ้าได้ให้คำนวณหา เวลาที่สั้นที่สุดที่สามารถทำได้

ตัวอย่าง

สำหรับตัวอย่างแรก สมมติว่ามีหุ่นยนต์อ่อนแอ A=3 ตัว ที่มีขีดจำกัดด้านน้ำหนัก X=[6,2,9] และหุ่น ยนต์เล็กจำนวน B=2 ตัว ที่มีขีดจำกัดด้านขนาด Y=[4,7] และมีของเล่น T=10 ชิ้น ดังระบุด้านล่าง

หมายเลขของเล่น	0	1	2	3	4	5	6	7	8	9
น้ำหนัก	4	8	2	7	1	5	3	8	7	10
ขนาด	6	5	3	9	8	1	3	7	6	5

เวลาที่น้อยที่สุดที่สามารถเก็บของเล่นได้คือสามนาที โดยมีขั้นตอนในการเก็บดังนี้

	หุ่นอ่อนแอ 0	หุ่นอ่อนแอ 1	หุ่นอ่อนแอ 2	หุ่นเล็ก 0	หุ่นเล็ก 1
นาทีที่ 1	ของเล่น 0	ของเล่น 4	ของเล่น 1	ของเล่น 6	ของเล่น 2
นาทีที่ 2	ของเล่น 5		ของเล่น 3		ของเล่น 8
นาทีที่ 3			ของเล่น 7		ของเล่น 9

สำหรับตัวอย่างที่สอง สมมติว่ามีหุ่นยนต์อ่อนแอ A=2 ตัว ที่มีขีดจำกัดด้านน้ำหนัก X=[2,5] และหุ่น ยนต์เล็กจำนวน B=1 ตัว ที่มีขีดจำกัดด้านขนาด Y=[2] และมีของเล่น T=3 ชิ้น ดังระบุด้านล่าง

หมายเลขของเล่น	0	1	2
น้ำหนัก	3	5	2
ขนาด	1	3	2

เนื่องจากไม่มีหุ่นยนต์ตัวใดที่สามารถยกของเล่นน้ำหนัก 5 และขนาด 3 ได้ ดังนั้นจึงเป็นไปไม่ได้ที่ บรรดาหุ่นยนต์จะเก็บของเล่นทั้งหมดได้

การเขียนโปรแกรม

คุณจะต้องส่งแฟ้มโปรแกรมที่เขียนฟังก์ชัน [putaway()] ดังที่ระบุด้านล่าง

ฟังก์ชัน putaway() ของคุณ

คำอธิบาย

ฟังก์ชันนี้จะคำนวณเวลาที่น้อยที่สุด (เป็นนาที) ที่หุ่นยนต์จะต้องใช้ในการเก็บของเล่นทั้งหมด หรือคืนค่า

พารามิเตอร์

- A: จำนวนหุ่นยนต์อ่อนแอ
- B: จำนวนหุ่นยนต์เล็ก
- T: จำนวนของเล่น
- 🗵: อาเรย์ขนาด 📵 ที่เก็บลำดับของจำนวนเต็มระบุขีดจำกัดด้านน้ำหนักสำหรับหุ่นยนต์อ่อนแอ แต่ละตัว
- (Y): อาเรย์ขนาด (B) ที่เก็บลำดับของจำนวนเต็มระบุขีดจำกัดด้านขนาดสำหรับหุ่นยนต์เล็กแต่ละ ตัว
- 🔹 🔞 : อาเรย์ขนาด 🗇 ที่เก็บลำดับของจำนวนเต็มที่ระบุน้ำหนักของของเล่นแต่ละชิ้น
- 🔳 🔞 : อาเรย์ขนาด 🗇 ที่เก็บลำดับของจำนวนเต็มที่ระบุขนาดของของเล่นแต่ละชิ้น
- คืนค่า: เวลาเป็นนาทีที่น้อยที่สุดที่ต้องใช้ในการเก็บของเล่นทั้งหมด, หรือ —1 ถ้าไม่สามารถทำได้

ตัวอย่างการติดต่อ

ด้านล่างเป็นการติดต่อของตัวอย่างแรก

พารามิเตอร์					F	่า				
A	3									
В	2									
T	10									
х	[6,	2,	9]							
Y	[4,	7]								
W	[4,	8,	2,	7,	1,	5,	3,	8,	7,	10]
S	[6,	5,	3,	9,	8,	1,	3,	7,	6,	5]
คืนค่า	3									

ด้านล่างเป็นการติดต่อในตัวอย่างที่สอง

พารามิเตอร์	ค่า
A	2
В	1
T	3
x	[2, 5]
Y	[2]
W	[3, 5, 2]
s	[1, 3, 2]
คืนค่า	(-1)

เงื่อนไขบังคับ

- ข้อจำกัดด้านเวลา 3 วินาที
- ข้อจำกัดด้านหน่วยความจำ 64 MiB
- $1 \le T \le 1,000,000$
- 0 ≤ A, B ≤ 50,000 และ 1 ≤ A + B
- $1 \le X[i], Y[i], W[i], S[i] \le 2,000,000,000$

ปัญหาย่อย

ปัญหาย่อย	คะแนน	เงื่อนไขเพิ่มเติมของข้อมูลนำเข้า
1	14	T = 2 และ A + B = 2 (มีของเล่นสองชิ้นและมีหุ่นยนต์สองตัว)
2	14	B = 0 (หุ่นยนต์ทุกตัวเป็นหุ่นยนต์อ่อนแอ)
3	25	T ≤ 50 และ A + B ≤ 50
4	37	T ≤ 10,000 และ A + B ≤ 1,000
5	10	(ไม่มี)

การทดลอง

เกรดเดอร์ตัวอย่างในเครื่องของคุณจะอ่านข้อมูลนำเข้าจากแฟ้ม [robots.in], ซึ่งจะต้องอยู่ในรูปแบบ ต่อไปนี้:

บรรทัด 1: A B T

■ บรรทัด 2: (x[0] ... x[A-1])

■ บรรทัด 3: [Y[0] ... Y[B-1]]

• อีก T บรรทัดถัดไป: พ[i] s[i]

ยกตัวอย่างเช่น ตัวอย่างแรก จะระบุในรูปแบบดังนี้

```
3 2 10
6 2 9
4 7
4 6
8 5
2 3
7 9
1 8
5 1
3 3
8 7
7 6
10 5
```

ถ้า [A=0] หรือ [B=0] บรรทัดในแฟ้มที่ระบุข้อมูลที่สอดคล้องกับข้อมูลดังกล่าว (บรรทัดที่ 2 หรือ บรรทัดที่ 3) จะต้องเป็นบรรทัดว่าง

หมายเหตุด้านภาษา

C/C++ คุณจะต้องประกาศ #include "robots.h" ที่ต้นโปรแกรม
Pascal คุณจะต้องนิยาม unit Robots อาเรย์ทั้งหมดจะเริ่มนับที่ () (ไม่ใช่ (1))
ดูตัวอย่างเทมเพลตในเครื่องของคุณ