MATRICES ET APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES EN DIMENSION FINIE

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Rang d'une application linéaire et théorème du rang

Définition 1 Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et f une application linéaire de E dans F. On appelle rang de f et on note rg(f), l'entier naturel défini par

$$rg(f) = \dim(\operatorname{Im}(f)).$$

Proposition 1 Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et f une application linéaire de E dans F. Si $\mathcal{B} = (e_1, e_2, ..., e_n)$ est une base de E, alors

$$rg(f) = \dim (Vect(\{f(e_1), f(e_2), ..., f(e_n)\})).$$

Proposition 2 Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et f une application linéaire de E dans F. Alors

$$rg(f) \le \min(\dim(E), \dim(F)).$$

Théorème 1 (*Théorème du rang*) Soient E un \mathbb{K} -espace vectoriel de dimension finie, F un \mathbb{K} -espace vectoriel et f une application linéaire de E dans F. ALors

$$\dim(E) = \dim(\operatorname{Ker}(f)) + rg(f).$$

2 Applications linéaires entre deux espaces vectoriels de même dimension

Proposition 3 Soient E, F deux \mathbb{K} -espaces vectoriels et f un isomorphisme de E dans F. Si E (resp. F) est de dimension finie, alors F (resp. E) est de dimension finie et on $a \dim(E) = \dim(F)$.

Proposition 4 (Injectivité, sujectivité, bijectivité en dimension finie) Soient E et F deux \mathbb{K} -espaces vectoriels de même dimension et f une application linéaire de E dans F. Alors les assertions suivantes sont équivalentes :

- 1. L'application f est injective.
- 2. L'application f est surjective.
- 3. L'application f est bijective.

1 IONISX