Title might include words such as: {approximate, auctions, substitutes, budgets}

Thành Nguyen Alex Teytelboym

Purdue and Oxford

June 2, 2023 New Perspectives on Substitutes, Paris

- In high-value auctions, bidders are often budget constrained.
- Dynamic designs—e.g., SMRA or CCA—help bidders "manage budgets", but are not always effective (Janssen et al., 2017; Marsden and Sorensen, 2017; Fookes and McKenzie, 2017).
- Budgets are typically not elicited directly in sealed-bid combinatorial auctions or in the allocation phase of CCAs.
- With indivisible goods, markets might not clear with budget constraints even in trivial settings.

- In high-value auctions, bidders are often budget constrained.
- Dynamic designs—e.g., SMRA or CCA—help bidders "manage budgets", but are not always effective (Janssen et al., 2017; Marsden and Sorensen, 2017; Fookes and McKenzie, 2017).
- Budgets are typically not elicited directly in sealed-bid combinatorial auctions or in the allocation phase of CCAs.
- With indivisible goods, markets might not clear with budget constraints even in trivial settings.

- In high-value auctions, bidders are often budget constrained.
- Dynamic designs—e.g., SMRA or CCA—help bidders "manage budgets", but are not always effective (Janssen et al., 2017; Marsden and Sorensen, 2017; Fookes and McKenzie, 2017).
- Budgets are typically not elicited directly in sealed-bid combinatorial auctions or in the allocation phase of CCAs.
- With indivisible goods, markets might not clear with budget constraints even in trivial settings.

- In high-value auctions, bidders are often budget constrained.
- Dynamic designs—e.g., SMRA or CCA—help bidders "manage budgets", but are not always effective (Janssen et al., 2017; Marsden and Sorensen, 2017; Fookes and McKenzie, 2017).
- Budgets are typically not elicited directly in sealed-bid combinatorial auctions or in the allocation phase of CCAs.
- With indivisible goods, markets might not clear with budget constraints even in trivial settings.

Contribution

- Derive worst-case-yet-practical bounds on market-clearing for auctions for substitutes with budget constraints.
- Pin down and control the tradeoff between relaxing the supply and the budget constraints.
- Allows introduction of budget constraints to existing bidding languages for substitutes.

Contribution

- Derive worst-case-yet-practical bounds on market-clearing for auctions for substitutes with budget constraints.
- Pin down and control the tradeoff between relaxing the supply and the budget constraints.
- Allows introduction of budget constraints to existing bidding languages for substitutes.

Contribution

- Derive worst-case-yet-practical bounds on market-clearing for auctions for substitutes with budget constraints.
- Pin down and control the tradeoff between relaxing the supply and the budget constraints.
- Allows introduction of budget constraints to existing bidding languages for substitutes.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods, we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- Classic GE with indivisible goods: Starr (1969); Dierker (1971); Mas-Colell (1977); Khan and Rashid (1982)...
- No exact eqm or even quasieqm: Net substitutes (Baldwin et al., 2023; Jagadeesan and Teytelboym, 2023) or generalized substitutes (Nguyen and Vohra, 2022) do not hold in our model.
- Closest papers: Gul et al. (2019) and Nguyen and Vohra (2022).
- Gul et al. (2019) have ~model (Section 2), exact ex ante market-clearing, inspire several steps; our results clear the market approximately ex post.
 - Budish et al. (2013): special case of Gul et al. (2019) for additive valuations and assignment messages.
- Nguyen and Vohra (2022) have ~approximation methods for near-substitutes and income effects, but no budget constraints.
 - Budish (2011) has perturbed budget constraints, general preferences in a pseudomarket, but market-clearing approximation in L_2 that scales with # goods; we offer a scale-free bound that holds good by good (L_{∞}).
- Auctions for substitutes without budget constraints: Milgrom (2009) and Klemperer (2010). Arctic Product-Mix Auction has budget constraints, but for divisible goods.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_i s_j$.
- There are n buyers $i \in N$.
- Buyer *i* can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}_{\geq 0}^m$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i: \{0,1\}^m \to \mathbb{R} \cup \{-\infty\}$ $(V_i(x_i) = -\infty \text{ iff } x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_i s_i$.
- There are n buyers $i \in N$.
- Buyer *i* can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}_{\geq 0}^m$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i: \{0,1\}^m \to \mathbb{R} \cup \{-\infty\}$ $(V_i(x_i) = -\infty \text{ iff } x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer *i* can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}_{\geq 0}^m$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i : \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \ \text{iff} \ x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer *i* can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}_{\geq 0}^m$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i : \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \ \text{iff} \ x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer i can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}_{\geq 0}^m$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i : \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \text{ iff } x_i \notin \mathcal{X}_i).$
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer i can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}^m_{\geq 0}$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer i's valuation is $V_i: \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \ \text{iff} \ x_i \notin \mathcal{X}_i)$
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer i can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}^m_{\geq 0}$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i: \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \ \text{iff} \ x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer i can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}^m_{\geq 0}$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i: \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \ \text{iff} \ x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \geq 0$.

- There is a single seller (can extend to multiple sellers).
- There are m goods $j \in M$.
- The available supply of good j is s_j ; cost of supplying a unit of good j is $c_j \ge 0$; so the total cost of supply is $\sum_{i \in M} c_j s_j$.
- There are n buyers $i \in N$.
- Buyer i can buy a bundle $x_i \in \{0,1\}^m$ (can extend $\{0,1\}^m$ to $\mathbb{Z}_{\geq 0}^m$).
- The set of feasible bundles for buyer *i* is denoted $\mathcal{X}_i \subseteq \{0,1\}^m$.
- Buyer *i*'s valuation is $V_i: \{0,1\}^m \to \mathbb{R} \cup \{-\infty\} \ (V_i(x_i) = -\infty \ \text{iff} \ x_i \notin \mathcal{X}_i)$.
- Assume that $V_i(0) = 0$.
- Each buyer *i* has a money budget $b_i \ge 0$.

Agent i solves

$$\max_{x_i \in \mathcal{X}_i} V_i(x_i) - p \cdot x_i$$
 subject to $p \cdot x_i \leq b_i$.

- See, e.g., Bhattacharya et al. (2010); Dobzinski et al. (2012); Pai and Vohra (2014); Gul et al. (2019); Jagadeesan and Teytelboym (2023)...
- The demand correspondence of agent *i* is

$$D_i(p) = \arg\max_{x_i \in \mathcal{X}_i} \{V_i(x_i) - p \cdot x_i \,|\, p \cdot x_i \leq b_i\}.$$

Agent i solves

$$\max_{x_i \in \mathcal{X}_i} V_i(x_i) - p \cdot x_i$$
 subject to $p \cdot x_i \leq b_i$.

- See, e.g., Bhattacharya et al. (2010); Dobzinski et al. (2012); Pai and Vohra (2014); Gul et al. (2019); Jagadeesan and Teytelboym (2023)...
- The demand correspondence of agent *i* is

$$D_i(p) = \arg\max_{x_i \in \mathcal{X}_i} \{V_i(x_i) - p \cdot x_i \,|\, p \cdot x_i \leq b_i\}.$$

Competitive and approximate equilibrium

Definition

A competitive equilibrium for the economy $((V_i)_{i\in N}, b, s)$ is a price vector $p \ge c$ and demands $x_i \in D_i(p)$ for all $i \in N$ such that $\sum_{i \in N} x_i \le s$, holding with equality for each $j \in M$ for which $p_j > c_j$.

Definition

An (α, β) -competitive equilibrium for the economy $((V_i)_{i \in N}, b, s)$ is a competitive equilibrium for the economy $((V_i)_{i \in M}, b', s')$ where $|s'_j - s_j| \le \alpha$ for every $j \in M$ and $|b'_i - b_i| \le \beta$ for every $i \in N$.

Competitive and approximate equilibrium

Definition

A competitive equilibrium for the economy $((V_i)_{i\in N}, b, s)$ is a price vector $p \ge c$ and demands $x_i \in D_i(p)$ for all $i \in N$ such that $\sum_{i \in N} x_i \le s$, holding with equality for each $j \in M$ for which $p_j > c_j$.

Definition

An (α, β) -competitive equilibrium for the economy $((V_i)_{i \in N}, b, s)$ is a competitive equilibrium for the economy $((V_i)_{i \in M}, b', s')$ where $|s'_j - s_j| \le \alpha$ for every $j \in M$ and $|b'_i - b_i| \le \beta$ for every $i \in N$.

First general result: additive valuations

Theorem

Suppose that V_i is an additive valuation for all i. Then every economy has a $(0, \max_j p_j)$ -competitive equilibrium. Moreover, the total cost of supply does not increase.

Main general result: substitutes

Theorem

Suppose that V_i is a substitutes valuation for all i. Then every economy has a $(1 + \lfloor \frac{2}{t} \rfloor, (2 + \lfloor 2t \rfloor) \max_j p_j)$ -competitive equilibrium for any t > 0. Moreover, the total cost of supply does not increase.

Examples of the supply-budget constraint relaxation tradeoff:

- t = 2.01, we have $(1, 6 \max_{j} p_{j})$ -CE
- t = 1.01, we have $(2, 4 \max_{j} p_{j})$ -CE
- t = 0.67, we have $(3, 3 \max_{j} p_{j})$ -CE
- t = 0.41, we have $(5, 2 \max_{j} p_{j})$ -CE

Main general result: substitutes

Theorem

Suppose that V_i is a substitutes valuation for all i. Then every economy has a $(1 + \lfloor \frac{2}{t} \rfloor, (2 + \lfloor 2t \rfloor) \max_j p_j)$ -competitive equilibrium for any t > 0. Moreover, the total cost of supply does not increase.

Examples of the supply-budget constraint relaxation tradeoff:

- t = 2.01, we have $(1, 6 \max_{j} p_{j})$ -CE
- t = 1.01, we have $(2, 4 \max_{j} p_{j})$ -CE
- t = 0.67, we have $(3, 3 \max_{j} p_{j})$ -CE
- t = 0.41, we have $(5, 2 \max_{j} p_{j})$ -CE

Practical consequences of the results

- Can elicit budget constraints directly from bidders in the product-mix auction, assignment message auction, or final round of the CCA.
- Designer can optimize over different approximate equilibria.
- Especially useful for large-ish auctions: many items and reasonable supply.

Proof: Step 1/5

• Convexify the economy by replacing the demand correspondence with its convex hull $conv(D_i(p))$. Agents consume lotteries over bundles.

Definition (Milgrom and Strulovici, 2009)

A pseudoequilibrium for the economy $((V_i)_{i\in M}, b, s)$ is a price vector $p \geq c$ and demands $x_i \in \text{conv}(D_i(p))$ for all $i \in N$ such that $\sum_{i \in N} x_i \leq s$ with equality for each $j \in M$ for which $p_j > c_j$.

Lemma

For any economy $((V_i)_{i \in M}, b, s)$, a pseudoequilibrium exists.

• At the pseudoequilibrium, there is a market-clearing price vector p agent i buys a random bundle X_i , expected payment is $E(p \cdot X_i)$ (note that $p \cdot X_i$ can exceed the budget for some X_i), payoff is $E(V(X_i)) - E(p \cdot X_i)$. Expectations are taken over some probability distribution over bundles.

Proof: Step 1/5

• Convexify the economy by replacing the demand correspondence with its convex hull $conv(D_i(p))$. Agents consume lotteries over bundles.

Definition (Milgrom and Strulovici, 2009)

A pseudoequilibrium for the economy $((V_i)_{i\in M}, b, s)$ is a price vector $p \geq c$ and demands $x_i \in \text{conv}(D_i(p))$ for all $i \in N$ such that $\sum_{i \in N} x_i \leq s$ with equality for each $j \in M$ for which $p_j > c_j$.

Lemma

For any economy $((V_i)_{i\in M}, b, s)$, a pseudoequilibrium exists.

• At the pseudoequilibrium, there is a market-clearing price vector p agent i buys a random bundle X_i , expected payment is $E(p \cdot X_i)$ (note that $p \cdot X_i$ can exceed the budget for some X_i), payoff is $E(V(X_i)) - E(p \cdot X_i)$. Expectations are taken over some probability distribution over bundles.

Proof: Step 1/5

• Convexify the economy by replacing the demand correspondence with its convex hull $conv(D_i(p))$. Agents consume lotteries over bundles.

Definition (Milgrom and Strulovici, 2009)

A pseudoequilibrium for the economy $((V_i)_{i\in M}, b, s)$ is a price vector $p \geq c$ and demands $x_i \in \text{conv}(D_i(p))$ for all $i \in N$ such that $\sum_{i \in N} x_i \leq s$ with equality for each $j \in M$ for which $p_j > c_j$.

Lemma

For any economy $((V_i)_{i \in M}, b, s)$, a pseudoequilibrium exists.

• At the pseudoequilibrium, there is a market-clearing price vector p agent i buys a random bundle X_i , expected payment is $E(p \cdot X_i)$ (note that $p \cdot X_i$ can exceed the budget for some X_i), payoff is $E(V(X_i)) - E(p \cdot X_i)$. Expectations are taken over some probability distribution over bundles.

• Convexify the economy by replacing the demand correspondence with its convex hull $conv(D_i(p))$. Agents consume lotteries over bundles.

Definition (Milgrom and Strulovici, 2009)

A pseudoequilibrium for the economy $((V_i)_{i\in M}, b, s)$ is a price vector $p \geq c$ and demands $x_i \in \text{conv}(D_i(p))$ for all $i \in N$ such that $\sum_{i \in N} x_i \leq s$ with equality for each $j \in M$ for which $p_j > c_j$.

Lemma

For any economy $((V_i)_{i \in M}, b, s)$, a pseudoequilibrium exists.

• At the pseudoequilibrium, there is a market-clearing price vector p agent i buys a random bundle X_i , expected payment is $E(p \cdot X_i)$ (note that $p \cdot X_i$ can exceed the budget for some X_i), payoff is $E(V(X_i)) - E(p \cdot X_i)$. Expectations are taken over some probability distribution over bundles.

Need to show structure of agents' random bundles at equilibrium. Taking k to be the index of a bundle, each agent i chooses z_k to solve

$$\max \sum_k z_k (V_i(x_k) - p \cdot x_k)$$

subject to:
$$z_k \geq 0$$
, $\sum z_k = 1$, and $\sum_k z_k \cdot p \cdot x_k \leq b_i$.

Dual variables are $\alpha_i \geq 0, \omega_i \geq 0$, by dual feasibility and complementary slackness

$$\alpha + \omega a_k \le V_i(x_k) - p \cdot x_k \quad \forall k$$
; and with equality when $z_k > 0$.

Bundle x_k with +ve prob. z_k is in $\arg\max_k\{(V_i(x_k)-(p+\omega_i\cdot p)\cdot x_k)\}$ for some $\omega_i\geq 0$.

Need to show structure of agents' random bundles at equilibrium. Taking k to be the index of a bundle, each agent i chooses z_k to solve

$$\max \sum_k z_k (V_i(x_k) - p \cdot x_k)$$

subject to:
$$z_k \geq 0$$
, $\sum z_k = 1$, and $\sum_k z_k \cdot p \cdot x_k \leq b_i$.

Dual variables are $\alpha_i \geq 0, \omega_i \geq 0$, by dual feasibility and complementary slackness

$$\alpha + \omega a_k \le V_i(x_k) - p \cdot x_k \quad \forall k$$
; and with equality when $z_k > 0$.

Bundle x_k with +ve prob. z_k is in $\arg\max_k\{(V_i(x_k)-(p+\omega_i\cdot p)\cdot x_k)\}$ for some $\omega_i\geq 0$.

Need to show structure of agents' random bundles at equilibrium. Taking k to be the index of a bundle, each agent i chooses z_k to solve

$$\max \sum_k z_k (V_i(x_k) - p \cdot x_k)$$

subject to:
$$z_k \geq 0$$
, $\sum z_k = 1$, and $\sum_k z_k \cdot p \cdot x_k \leq b_i$.

Dual variables are $\alpha_i \geq \mathbf{0}, \omega_i \geq \mathbf{0}$, by dual feasibility and complementary slackness

$$\alpha + \omega a_k \le V_i(x_k) - p \cdot x_k \quad \forall k$$
; and with equality when $z_k > 0$.

Bundle x_k with +ve prob. z_k is in $\arg\max_k\{(V_i(x_k)-(p+\omega_i\cdot p)\cdot x_k)\}$ for some $\omega_i\geq 0$.

- A binary polytope is the convex hull of a finite set of (0,1)-vectors.
- A binary polytope is *special* if the edges have at most 2 non-zero coordinates and they are of opposite signs.
- Since valuations satisfy the substitutes condition, $conv(D_i(p))$ is a special polytope Q_i (Theorem 4.1 in Nguyen and Vohra). Note that with single-copy demand Q_i is the *demand complex cell* of Baldwin and Klemperer (2019).
- A face of a convex polytope is any intersection of the polytope with a halfspace such that none of the interior points of the polytope lie on the boundary of the halfspace.
- A face containing *x* is *minimal* if there is no other face with a lower dimension containing *x*.

- A binary polytope is the convex hull of a finite set of (0,1)-vectors.
- A binary polytope is *special* if the edges have at most 2 non-zero coordinates and they are of opposite signs.
- Since valuations satisfy the substitutes condition, $conv(D_i(p))$ is a special polytope Q_i (Theorem 4.1 in Nguyen and Vohra). Note that with single-copy demand Q_i is the *demand complex cell* of Baldwin and Klemperer (2019).
- A face of a convex polytope is any intersection of the polytope with a halfspace such that none of the interior points of the polytope lie on the boundary of the halfspace.
- A face containing **x** is *minimal* if there is no other face with a lower dimension containing **x**.

- A binary polytope is the convex hull of a finite set of (0,1)-vectors.
- A binary polytope is *special* if the edges have at most 2 non-zero coordinates and they are of opposite signs.
- Since valuations satisfy the substitutes condition, $conv(D_i(p))$ is a special polytope Q_i (Theorem 4.1 in Nguyen and Vohra). Note that with single-copy demand Q_i is the *demand complex cell* of Baldwin and Klemperer (2019).
- A face of a convex polytope is any intersection of the polytope with a halfspace such that none of the interior points of the polytope lie on the boundary of the halfspace.
- A face containing **x** is *minimal* if there is no other face with a lower dimension containing **x**.

- A binary polytope is the convex hull of a finite set of (0,1)-vectors.
- A binary polytope is *special* if the edges have at most 2 non-zero coordinates and they are of opposite signs.
- Since valuations satisfy the substitutes condition, $conv(D_i(p))$ is a special polytope Q_i (Theorem 4.1 in Nguyen and Vohra). Note that with single-copy demand Q_i is the *demand complex cell* of Baldwin and Klemperer (2019).
- A face of a convex polytope is any intersection of the polytope with a halfspace such that none of the interior points of the polytope lie on the boundary of the halfspace.
- A face containing *x* is *minimal* if there is no other face with a lower dimension containing *x*.

- A binary polytope is the convex hull of a finite set of (0,1)-vectors.
- A binary polytope is *special* if the edges have at most 2 non-zero coordinates and they are of opposite signs.
- Since valuations satisfy the substitutes condition, $conv(D_i(p))$ is a special polytope Q_i (Theorem 4.1 in Nguyen and Vohra). Note that with single-copy demand Q_i is the *demand complex cell* of Baldwin and Klemperer (2019).
- A face of a convex polytope is any intersection of the polytope with a halfspace such that none of the interior points of the polytope lie on the boundary of the halfspace.
- A face containing x is minimal if there is no other face with a lower dimension containing x.

- Denoting the "average" bundle is $y_i = E(X_i)$, consider an "expected equilibrium" in which expected budget constraints are met $(p \cdot y_i \leq b_i)$ and markets clear in expectation $(\sum_i y_i = s)$.
- When $y_i \in \mathcal{Q}_i$, Gul et al. (2019) show that such an "expected" equilibrium can be implemented as a lottery over allocations.
- Nguyen and Vohra (2022) show how to round capacity to ensure that markets clear ex post, but have no budget constraints.
- Recall we want to ensure that capacities and budgets are minimally violated ex post.

- Denoting the "average" bundle is $y_i = E(X_i)$, consider an "expected equilibrium" in which expected budget constraints are met $(p \cdot y_i \leq b_i)$ and markets clear in expectation $(\sum_i y_i = s)$.
- When $y_i \in Q_i$, Gul et al. (2019) show that such an "expected" equilibrium can be implemented as a lottery over allocations.
- Nguyen and Vohra (2022) show how to round capacity to ensure that markets clear ex post, but have no budget constraints.
- Recall we want to ensure that capacities and budgets are minimally violated ex post.

- Denoting the "average" bundle is $y_i = E(X_i)$, consider an "expected equilibrium" in which expected budget constraints are met $(p \cdot y_i \leq b_i)$ and markets clear in expectation $(\sum_i y_i = s)$.
- When $y_i \in Q_i$, Gul et al. (2019) show that such an "expected" equilibrium can be implemented as a lottery over allocations.
- Nguyen and Vohra (2022) show how to round capacity to ensure that markets clear ex post, but have no budget constraints.
- Recall we want to ensure that capacities and budgets are minimally violated ex post.

- Denoting the "average" bundle is $y_i = E(X_i)$, consider an "expected equilibrium" in which expected budget constraints are met $(p \cdot y_i \leq b_i)$ and markets clear in expectation $(\sum_i y_i = s)$.
- When $y_i \in Q_i$, Gul et al. (2019) show that such an "expected" equilibrium can be implemented as a lottery over allocations.
- Nguyen and Vohra (2022) show how to round capacity to ensure that markets clear ex post, but have no budget constraints.
- Recall we want to ensure that capacities and budgets are minimally violated ex post.

• We need to round each y_i to a vertex x_i of Q_i with minimal violations.

4a Solve this linear program to obtain a corner solution

$$\min \mathbf{c} \cdot \left(\sum_{i \in N} z_i\right) \text{subject to:} \tag{1}$$

$$z_1,..,z_n \in \mathcal{Q}_1 \times ... \times \mathcal{Q}_n;$$
 (2)

$$\left(\sum_{i \in N} z_i\right)_j = s_j \text{ for every good } j \tag{3}$$

$$\mathbf{p} \cdot \mathbf{z}_i \le \mathbf{b}_i$$
 for every agent i (4)

4b Let $Q' = Q'_1 \times ... \times Q'_n$ be the minimal faces that contain that solution.

- If Q' is a vertex then done.
- Else, fixing a t > 0, drop a binding budget constraint with at most $2 + \lfloor 2t \rfloor$ coordinates with fractional values or supply constraints that contains at most $1 + \lfloor \frac{2}{t} \rfloor$, coordinates with fractional values. Return to step 4a with Q'.

Lemma

Such a constraint in step 4b exists.

• We need to round each y_i to a vertex x_i of Q_i with minimal violations. 4a Solve this linear program to obtain a corner solution

$$\min \mathbf{c} \cdot \left(\sum_{i \in N} \mathbf{z}_i\right)$$
 subject to: (1)

$$z_1,..,z_n \in \mathcal{Q}_1 \times .. \times \mathcal{Q}_n;$$
 (2)

$$\left(\sum_{i \in N} z_i\right)_j = \mathbf{s}_j \text{ for every good } j \tag{3}$$

$$p \cdot z_i \le b_i$$
 for every agent i (4)

4b Let $Q' = Q'_1 \times ... \times Q'_n$ be the minimal faces that contain that solution.

- If Q' is a vertex then done.
- Else, fixing a t > 0, drop a binding budget constraint with at most $2 + \lfloor 2t \rfloor$ coordinates with fractional values or supply constraints that contains at most $1 + \lfloor \frac{2}{t} \rfloor$, coordinates with fractional values. Return to step 4a with \mathcal{Q}' .

Lemma

Such a constraint in step 4b exists.

• We need to round each y_i to a vertex x_i of Q_i with minimal violations. 4a Solve this linear program to obtain a corner solution

$$\min \mathbf{c} \cdot \left(\sum_{i \in N} \mathbf{z}_i\right)$$
 subject to: (1)

$$z_1,...,z_n \in \mathcal{Q}_1 \times ... \times \mathcal{Q}_n;$$
 (2)

$$\left(\sum_{i \in N} z_i\right)_j = s_j \text{ for every good } j \tag{3}$$

$$p \cdot z_i \le b_i$$
 for every agent i (4)

4b Let $Q' = Q'_1 \times ... \times Q'_n$ be the minimal faces that contain that solution.

- If Q' is a vertex then done.
- Else, fixing a t > 0, drop a binding budget constraint with at most $2 + \lfloor 2t \rfloor$ coordinates with fractional values or supply constraints that contains at most $1 + \lfloor \frac{2}{t} \rfloor$, coordinates with fractional values. Return to step 4a with Q'.

Lemma

Such a constraint in step 4b exists.

Definition

- Fact 1 For $x \in \mathcal{Q}$, let \mathcal{Q}' be the minimal face of \mathcal{Q} containing x. A coordinate i is free w.r.t \mathcal{Q}' iff $0 < x_i < 1$.
- Fact 2 Let x be corner point of $Q \cap \{Ax = b\}$. Let Q' be the minimal face of Q containing x, then the dimension of Q' is at most the number of constraints in $\{Ax = b\}$.
- Fact 3 Let \mathcal{Q} be a binary polytope with edges having at most 2 non-zero coordinates, then the number of free coordinates w.r.t \mathcal{Q} is at most $2 \dim(\mathcal{Q})$.

Definition

- Fact 1 For $x \in \mathcal{Q}$, let \mathcal{Q}' be the minimal face of \mathcal{Q} containing x. A coordinate i is free w.r.t \mathcal{Q}' iff $0 < x_i < 1$.
- Fact 2 Let x be corner point of $Q \cap \{Ax = b\}$. Let Q' be the minimal face of Q containing x, then the dimension of Q' is at most the number of constraints in $\{Ax = b\}$.
- Fact 3 Let \mathcal{Q} be a binary polytope with edges having at most 2 non-zero coordinates, then the number of free coordinates w.r.t \mathcal{Q} is at most $2 \dim(\mathcal{Q})$.

Definition

- Fact 1 For $x \in \mathcal{Q}$, let \mathcal{Q}' be the minimal face of \mathcal{Q} containing x. A coordinate i is free w.r.t \mathcal{Q}' iff $0 < x_i < 1$.
- Fact 2 Let x be corner point of $\mathcal{Q} \cap \{Ax = b\}$. Let \mathcal{Q}' be the minimal face of \mathcal{Q} containing x, then the dimension of \mathcal{Q}' is at most the number of constraints in $\{Ax = b\}$.
- Fact 3 Let \mathcal{Q} be a binary polytope with edges having at most 2 non-zero coordinates, then the number of free coordinates w.r.t \mathcal{Q} is at most $2 \dim(\mathcal{Q})$.

Definition

- Fact 1 For $x \in \mathcal{Q}$, let \mathcal{Q}' be the minimal face of \mathcal{Q} containing x. A coordinate i is free w.r.t \mathcal{Q}' iff $0 < x_i < 1$.
- Fact 2 Let x be corner point of $\mathcal{Q} \cap \{Ax = b\}$. Let \mathcal{Q}' be the minimal face of \mathcal{Q} containing x, then the dimension of \mathcal{Q}' is at most the number of constraints in $\{Ax = b\}$.
- Fact 3 Let \mathcal{Q} be a binary polytope with edges having at most 2 non-zero coordinates, then the number of free coordinates w.r.t \mathcal{Q} is at most $2 \dim(\mathcal{Q})$.

- Using Fact 3. Each edge of Q' has at most 2 non-zero coordinates. If the dimension of Q' is d, then the number of free coordinates w.r.t Q' is at most 2d.
- Using Fact 2, the dimension of \mathcal{Q}' is at most the number of binding budget (n_2) and supply constraints (n_1) that has not been dropped. Therefore, # free coordinates $\leq 2(n_1+n_2)$. So, for example, setting $t=2\dots$ If $n_1>2n_2$, then # free coordinates $< 2(n_1+n_1/2)=3n_1$, by pigeonhole principle, there is 1 supply constraint with at most 2 free coordinates. If $n_1\leq 2n_2$, then # free coordinates $\leq 2(2n_2+n_2)=6n_2$, by pigeonhole principle, there is 1 budget constraint with at most 6 free coordinates.
- Using Fact 1, we convert these constraint violations into size violations.
- More generally, we can compare n_1 with tn_2 to get the trade-off between the violation of capacity and budget constraint and to obtain the general result.

- Using Fact 3. Each edge of Q' has at most 2 non-zero coordinates. If the dimension of Q' is d, then the number of free coordinates w.r.t Q' is at most 2d.
- Using Fact 2, the dimension of \mathcal{Q}' is at most the number of binding budget (n_2) and supply constraints (n_1) that has not been dropped. Therefore, # free coordinates $\leq 2(n_1+n_2)$. So, for example, setting $t=2\dots$ If $n_1>2n_2$, then # free coordinates $< 2(n_1+n_1/2)=3n_1$, by pigeonhole principle, there is 1 supply constraint with at most 2 free coordinates. If $n_1\leq 2n_2$, then # free coordinates $\leq 2(2n_2+n_2)=6n_2$, by pigeonhole principle, there is 1 budget constraint with at most 6 free coordinates.
- Using Fact 1, we convert these constraint violations into size violations.
- More generally, we can compare n_1 with tn_2 to get the trade-off between the violation of capacity and budget constraint and to obtain the general result.

- Using Fact 3. Each edge of Q' has at most 2 non-zero coordinates. If the dimension of Q' is d, then the number of free coordinates w.r.t Q' is at most 2d.
- Using Fact 2, the dimension of \mathcal{Q}' is at most the number of binding budget (n_2) and supply constraints (n_1) that has not been dropped. Therefore, # free coordinates $\leq 2(n_1+n_2)$. So, for example, setting $t=2\dots$ If $n_1>2n_2$, then # free coordinates $< 2(n_1+n_1/2)=3n_1$, by pigeonhole principle, there is 1 supply constraint with at most 2 free coordinates. If $n_1\leq 2n_2$, then # free coordinates $\leq 2(2n_2+n_2)=6n_2$, by pigeonhole principle, there is 1 budget constraint with at most 6 free coordinates.
- Using Fact 1, we convert these constraint violations into size violations.
- More generally, we can compare n_1 with tn_2 to get the trade-off between the violation of capacity and budget constraint and to obtain the general result.

- Using Fact 3. Each edge of Q' has at most 2 non-zero coordinates. If the dimension of Q' is d, then the number of free coordinates w.r.t Q' is at most 2d.
- Using Fact 2, the dimension of \mathcal{Q}' is at most the number of binding budget (n_2) and supply constraints (n_1) that has not been dropped. Therefore, # free coordinates $\leq 2(n_1+n_2)$. So, for example, setting $t=2\dots$ If $n_1>2n_2$, then # free coordinates $< 2(n_1+n_1/2)=3n_1$, by pigeonhole principle, there is 1 supply constraint with at most 2 free coordinates. If $n_1\leq 2n_2$, then # free coordinates $\leq 2(2n_2+n_2)=6n_2$, by pigeonhole principle, there is 1 budget constraint with at most 6 free coordinates.
- Using Fact 1, we convert these constraint violations into size violations.
- More generally, we can compare n_1 with tn_2 to get the trade-off between the violation of capacity and budget constraint and to obtain the general result.

- Multiple sellers (matching market)
- Multiple units

- Tighter result for assignment messages
- General cost of funds for buyers
- Ordinary/∆ substitutes? Complements? Unimodular basis changes of substitutes?

- Multiple sellers (matching market)
- Multiple units

- Tighter result for assignment messages
- General cost of funds for buyers
- Ordinary/∆ substitutes? Complements? Unimodular basis changes of substitutes?

- Multiple sellers (matching market)
- Multiple units

- Tighter result for assignment messages
- General cost of funds for buyers
- Ordinary/∆ substitutes? Complements? Unimodular basis changes of substitutes?

- Multiple sellers (matching market)
- Multiple units

- Tighter result for assignment messages
- General cost of funds for buyers
- Ordinary/∆ substitutes? Complements? Unimodular basis changes of substitutes?

- Multiple sellers (matching market)
- Multiple units

- Tighter result for assignment messages
- General cost of funds for buyers
- Ordinary/ Δ substitutes? Complements? Unimodular basis changes of substitutes?

Thank you!

References L

- Baldwin, E., R. Jagadeesan, P. Klemperer, and A. Teytelboym (2023). The equilibrium existence duality. *Journal of Political Economy*.
- Baldwin, E. and P. Klemperer (2019). Understanding preferences: "demand types", and the existence of equilibrium with indivisibilities. *Econometrica* 87(3), 867–932.
- Bhattacharya, S., G. Goel, S. Gollapudi, and K. Munagala (2010). Budget constrained auctions with heterogeneous items. In *Proceedings of the Forty-Second ACM Symposium on Theory of Computing*, STOC '10, New York, NY, USA, pp. 379–388. Association for Computing Machinery.
- Budish, E. (2011). The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. *Journal of Political Economy 119*(6), 1061–1103.
- Budish, E., Y.-K. Che, F. Kojima, and P. Milgrom (2013). Designing random allocation mechanisms: Theory and applications. *American economic review 103*(2), 585–623.

References II

- Dierker, E. (1971). Equilibrium analysis of exchange economies with indivisible commodities. *Econometrica*, 997–1008.
- Dobzinski, S., R. Lavi, and N. Nisan (2012). Multi-unit auctions with budget limits. *Games and Economic Behavior 74*(2), 486–503.
- Fookes, N. and S. McKenzie (2017). *Impact of Budget Constraints on the Efficiency of Multi-lot Spectrum Auctions*, pp. 764–782. Cambridge University Press.
- Gul, F., W. Pesendorfer, M. Zhang, et al. (2019). Market design and walrasian equilibrium. Technical report, Working paper.
- Jagadeesan, R. and A. Teytelboym (2023). Matching and prices. Technical report, Working paper, Stanford University.
- Janssen, M., V. A. Karamychev, and B. Kasberger (2017). *Budget Constraints in Combinatorial Clock Auctions*, pp. 318–337. Cambridge University Press.
- Khan, M. A. and S. Rashid (1982). Approximate equilibria in markets with indivisible commodities. *Journal of Economic Theory* 28(1), 82–101.

References III

- Klemperer, P. (2010). The product-mix auction: A new auction design for differentiated goods. *Journal of the European Economic Association 8*(2-3), 526–536.
- Marsden, R. and S. T. Sorensen (2017). *Strategic Bidding in Combinatorial Clock Auctions A Bidder Perspective*, pp. 748–763. Cambridge University Press.
- Mas-Colell, A. (1977). Indivisible commodities and general equilibrium theory. *Journal of Economic Theory 16*(2), 443–456.
- Milgrom, P. (2009). Assignment messages and exchanges. *American Economic Journal: Microeconomics* 1(2), 95–113.
- Nguyen, T. and R. Vohra (2022). (near) substitute preferences and equilibria with indivisibilities. Technical report, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Pai, M. M. and R. Vohra (2014). Optimal auctions with financially constrained buyers. *Journal of Economic Theory 150*, 383–425.

References IV

Starr, R. M. (1969). Quasi-equilibria in markets with non-convex preferences. *Econometrica*, 25–38.