Reference No.: WTF13S0504193E Page 1 of 56

FCC TEST REPORT

: 2AAWUTL800US

Applicant : AVC Technology (International) Limited

Address : 6/F Enterprise Square Three, 39 Wang Chiu Road, Kowloon Bay, Hong

Kong.

Manufacturer : SHENZHEN SUNLIGHT TECHNOLOGY CO.,LTD

Address : Block B, Xinshidai gongrong Industrial Park, Shihuan RD, Shilong, Shiyan

street, Baoan, Shenzhen, China

Equipment Under Test (EUT):

Product Name : Lumen bulb Model No. : TL800US

Standards : FCC CFR47 Part 15 Section 15.247:2012

Date of Test : June 06~July 17, 2013

Date of Issue : August 07, 2013

Test Result : PASS

Remark:

* The sample described above has been tested to be in compliance with the requirements of ANSI C63.4:2003. The test results have been reviewed and comply with the rules listed above and found to meet their essential requirements.

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District,

Shenzhen 518105, China

Tel: +86-755-83551033 Fax: +86-755-83552400

Maikou Zhang / Project Engineer

Approved by:

Approved by:

Philo Zhong / Manager

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTF13S0504193E Page 2 of 56

2 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.247(d)	
Duty Cycle	15.35	PASS
Dand adap	15.247(d)	DAGG
Band edge	15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Maximum Permissible Exposure	4.4007/5\/4\	DAGO
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page				
1	COVER PAGE	1				
2	TEST SUMMARY					
3	CONTENTS	3				
4	GENERAL INFORMATION	5				
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE					
5	EQUIPMENT USED DURING TEST	7				
	5.1 EQUIPMENTS LIST	7				
6	CONDUCTED EMISSION					
	6.1 E.U.T. OPERATION6.2 EUT SETUP6.3 CONDUCTED EMISSION TEST RESULT	8				
7	RADIATED SPURIOUS EMISSIONS	11				
	7.1 EUT OPERATION: 7.2 TEST SETUP. 7.3 SPECTRUM ANALYZER SETUP. 7.4 TEST PROCEDURE. 7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION. 7.6 SUMMARY OF TEST RESULTS.					
8	DUTY CYCLE	23				
	8.1 TEST PROCEDURE					
9	BAND EDGE MEASUREMENT	25				
	9.1 TEST RESULT:					
10	10.1 Test Procedure:	32				
11	MAXIMUM PEAK OUTPUT POWER	34				
	11.1 TEST PROCEDURE: 11.2 TEST RESULT: 11.2					
12	HOPPING CHANNEL SEPARATION	37				
12	12.1 TEST PROCEDURE: 12.2 TEST RESULT: NUMBER OF HOPPING FREQUENCY	37				
13	13.1 Test Procedure:					
14	13.2 TEST RESULT:	40				
14	DWELL TIME	41				

	14.1	TEST PROCEDURE:	
	14.2	Test Result:	41
15	ANTE	NNA REQUIREMENT	45
16	RF EX	KPOSURE	40
	16.1	REQUIMENTS:	46
	16.2	TEST RESULT	46
17	PHOT	TOGRAPHS – TEST SETUP	47
	17.1	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	47
	17.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	48
18	РНОТ	TOGRAPHS - CONSTRUCTIONAL DETAILS	49
	18.1	External View	49
	18.2	EUT - Internal View	51

Reference No.: WTF13S0504193E Page 5 of 56

4 General Information

4.1 General Description of E.U.T.

Product Name : Lumen bulb

Model No. : TL800US

Operation Frequency : 2402MHz ~ 2480MHz, 79 channels in total

Type of Modulation : GFSK

Oscillator : Crystal 32MHz for RF module, Crystal 32.768KHz for MCU

Antenna installation : PCB Printed Antenna

Antenna Gain : 0 dBi

4.2 Details of E.U.T.

Technical Data : AC100-240V, 50/60Hz, 7W

Adapter : N/A

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

4.4 Test Mode

Test Item	Test Mode
Conducted Emissions	Normal linking
Radiated Emissions	Normal linking

Reference No.: WTF13S0504193E Page 6 of 56

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, July 12, 2012.

FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory 'has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.6 Test Location

All the tests were performed at: Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

5.1 Equipments List

Condu	Conducted Emissions							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	100947	Aug. 13,2012	Aug. 12,2013		
2.	LISN	R&S	ENV216	101215	Aug. 13,2012	Aug. 12,2013		
3.	Cable	Тор	TYPE16(3.5M)	-	Aug.14,2012	Aug. 13,2013		

3m Semi-anechoic Chamber for Radiation Emissions

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer	Agilent	E7405A	MY45114943	Aug. 13,2012	Aug. 12,2013
2.	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Aug. 13,2012	Aug. 12,2013
3.	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr. 20,2013	Apr. 19,2014
4.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr. 20,2013	Apr. 19,2014
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	399	Aug. 13,2012	Aug. 12,2013
6.	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.07,2013	Apr.06,2014
7.	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-148	Aug. 13,2012	Aug. 12,2013
8.	Cable	Тор	EWO2014-7	-	Apr. 20,2013	Apr. 19,2014
9.	Cable	Тор	TYPE16(13M)	-	Aug. 13,2012	Aug. 12,2013
10.	DC POWER SUPPLY	LWDQGS	PS-303D		Aug. 13,2012	Aug. 12,2013
11.	Humidity Chamber	GTH-225-40-1P	IAA061213		May. 15, 2013	May. 14, 2014
12.	Spectrum Analyzer	ROHDE & SCHWARZ	FSL6		Sep. 21, 2012	Sep. 20, 2013

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB
Radiated Spurious	(Bilog antenna 30M~1000MHz)
Emissions test	± 4.74 dB
	(Horn antenna 1000M~25000MHz)
Conducted Spurious	± 3.64 dB
Emissions test	(AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTF13S0504193E Page 8 of 56

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dB_μV between 0.15MHz & 0.5MHz

 $56 \text{ dB}_{\mu}\text{V}$ between 0.5MHz & 5MHz $60 \text{ dB}_{\mu}\text{V}$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-

Peak & Average if maximised peak within 6dB of Average

Limit

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1009 mbar

EUT Operation:

The test was performed in normal linking mode, the test data were shown in the report.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The EUT was placed on the test table in shielding room.

6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Test mode: normal linking mode

Live line:

9

10

11 12 0.4180

0.4180

0.8420

0.8420

30.60

23.48

26.33

17.83

9.91

9.91

9.97

9.97

40.51

33.39

36.30

27.80

57.49

47.49

56.00

46.00

-16.98

-14.10

-19.70

-18.20

QΡ

AVG

QΡ

AVG

Reference No.: WTF13S0504193E Page 11 of 56

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705

Test Result: PASS
Measurement Distance: 3m

Limit:

Littit.						
F	Field Strength		Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance uV/m (m)		dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation:

Operating Environment:

Temperature: 25.5 °C

Humidity: 51 % RH

Atmospheric Pressure:1011 mbar

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Aechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

3m

FUT

Turn Table

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9kHz to 25000MHz.

$D \sim$	low.	201	ᇄ	۱,

Delow Solvinz		
	Sweep Speed	. Auto
	IF Bandwidth	.10KHz
	Video Bandwidth	.10KHz
	Resolution Bandwidth	.10KHz
30MHz ~ 1GHz	Z	
	Sweep Speed	. Auto
	IF Bandwidth	.120 KHz
	Video Bandwidth	.100KHz
	Quasi-Peak Adapter Bandwidth	.120 KHz
	Quasi-Peak Adapter Mode	.Normal
	Resolution Bandwidth	.100KHz
Above 1GHz		
	Sweep Speed	.Auto
	IF Bandwidth	.120 KHz
	Video Bandwidth	.3MHz
	Quasi-Peak Adapter Bandwidth	.120 KHz
	Quasi-Peak Adapter Mode	.Normal
	Resolution Bandwidth	.1MHz

Reference No.: WTF13S0504193E Page 14 of 56

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table,

Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTF13S0504193E Page 15 of 56

7.6 Summary of Test Results

Test Frequency : Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1000MHz

Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the low Channel, so the data show was the low channel only.

Test mode: Normal Linking
Antenna polarization: Vertical

Antenna polarization: Horizontal

Test Frequency: 1GHz ~ 18GHz

AV = Peak +20Log₁₀(duty cycle) =PK+(-9)=PK-9 [refer to section 8 for more detail]

Test Channel: TX2402MHz
Antenna polarization: Vertical

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2402.000	-9	44.81	54	-9.19	AV	
2	4804.000	-9	26.02	54	-27.98	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2402.000	-9	36.29	54	-17.71	AV	
2	4804.000	-9	24.41	54	-29.59	AV	

Test Frequency: 1GHz ~ 18GHz
Test Channel: TX2440MHz
Antenna polarization: Vertical

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2441.000	-9	45.26	54	-8.74	AV	
2	4882.000	-9	29.89	54	-24.11	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2441.000	-9	38.78	54	-15.22	AV	
2	4882.000	-9	23.05	54	-30.95	AV	

N	No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
	1	2480.000	-9	39.64	54	-14.36	AV	
	2	4960.000	-9	26.37	54	-27.63	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2480.000	-9	45.81	54	-8.19	AV	
2	4960.000	-9	25.34	54	-28.66	AV	

Test Frequency: Above 18GHz

The measurements were more than 20 dB below the limit and not reported

8 Duty Cycle

Test Requirement: FCC Part 15.35
Test Mothed: ANSI C63.4:2003

Test Status: TX mode.

8.1 Test Procedure

- 1. The EUT was placed on a turntable which is 0.8m above ground plane
- 2. Set EUT as normal wrking mode
- 3. Set SPA center frequency = fundamental frequency, RBW = 1000 kHz, VBW = 1000 kHz, Span = 0 Hz, Adjacent sweep time.

8.2 Test Result

Date: 15.JUN.2013 17:12:18

Date: 15.JUN.2013 17:12:04

The EUT is auto. operation for transmitter, it is declared by the manufacturer as a duty cycle ratio of less than 100%.

The EUT's work time: Ton =pulse time=0.426 ms

The EUT's work period : $T=T_{ON}+T_{OFF}=$ transmission period =1.254 ms

The EUT's duty cycle : D = T_{on} /T = 0.426/1.254*100% =34%

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle)=20* Log₁₀(34 %)

= -9dB

Reference No.: WTF13S0504193E Page 25 of 56

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: DA 00-705

Measurement Distance: 3m

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto

Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function d= AVG

Trace = max hold

Test Mode: continuous transmitting

9.1 Test Result:

Lower Channel -Vertical

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
	(2)	(42)	(uBuviii)	(uBu v/iii)	(GD)		
1	2400.000	-9	21.60	54	-32.40	AV	
2	2401.970	-9	40.91	54	-13.09	AV	

Lower Channel –Horizontal

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2400.000	-9	20.09	54	-33.91	AV	
2	2402.000	-9	45.59	54	-8.41	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2479.958	-9	41.48	54	-12.52	AV	
2	2483.500	-9	18.43	54	-35.57	AV	

No	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2479.958	-9	43.64	54	-10.36	AV	
2	2483.500	-9	20.83	54	-33.17	AV	

Date: 15.JUN.2013 17:19:40

Upper Channel (Hopping on)

Date: 15.JUN.2013 17:21:32

Lower Channel (Hopping off)

Date: 15.JUN.2013 17:19:03

Upper Channel (Hopping off)

Date: 15.JUN.2013 17:21:49

10 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

10.2 Test Result:

Test Channel	Bandwidth
Low	1.108MHz
Middle	1.108MHz
High	1.108MHz

Test result plot as follows:

Date: 15.JUN.2013 16:54:02

Date: 15.JUN.2013 16:54:59

Date: 15.JUN.2013 16:55:57

Reference No.: WTF13S0504193E Page 34 of 56

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

Test Channel	Output Power (dBm)	Limit (dBm)
Low	-3.15	20.97
Middle	-3.31	20.97
High	-5.56	20.97

Test result plot as follows:

Date: 15.JUN.2013 17:00:36

Date: 15.JUN.2013 17:01:18

High Channel

Date: 15.JUN.2013 17:01:48

Reference No.: WTF13S0504193E Page 37 of 56

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 100kHz , Span = 4MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Test Channel	Separation (MHz)	Result
Low	1.018	PASS
Middle	1.008	PASS
High	1.005	PASS

Test result plot as follows:

Date: 15.JUN.2013 17:14:39

Date: 15.JUN.2013 17:15:45

High Channel

Date: 15.JUN.2013 17:17:11

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

13.2 Test Result:

Total Channels are 79 Channels.

Date: 15.JUN.2013 17:03:20

Reference No.: WTF13S0504193E Page 41 of 56

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result:

The test period: T = 0.4(s) * 79 = 31.6 (s)

So, the Dwell Time can be calculated as follows:

Low channel: Dwell Time =51 (times)/5(s)*0.424(ms)*31.6(s)= 0.137(s) Middle channel: Dwell Time =50(times)/5(s)*0.420(ms)*31.6(s)= 0.133(s) High channel: Dwell Time =51(times)/5(s)*0.424(ms)*31.6(s)= 0.137(s)

Note: Mkr Delta is once pulse time.

Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
2402 MHz	0.424	0.137	0.400	Pass
2440 MHz	0.420	0.133	0.400	Pass
2478 MHz	0.424	0.137	0.400	Pass

Low Channel

Date: 15.JUN.2013 17:06:55

Date: 15.JUN.2013 17:05:54

Middle Channel

Date: 15.JUN.2013 17:08:37

Date: 15.JUN.2013 17:07:36

Date: 15.JUN.2013 17:09:32

Date: 15.JUN.2013 17:10:01

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a permanent antenna, fulfill the requirement of this section.

Reference No.: WTF13S0504193E Page 46 of 56

16 RF Exposure

Test Requirement: FCC Part 1.1307

Test Method KDB 447498 D01 General RF Exposure Guidance v05

Test Mode: The EUT work in test mode(Tx).

16.1 Requiments:

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is <5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

16.2 Test Result

Conducted Peak power(mW)	Source-based time- averaged maximum conducted output power(mW)	Minimum test separation distance required for the exposure conditions (mm)	SAR Test Exclusion Thresholds(mW)
0.484	0.165	5	10

Remark: Duty factor is 34%, refer to section 8 for more details.

Calculation formula: Source-based time-averaged maximum conducted output power(mW)

=Conducted peak power(mW)*Duty factor

17 Photographs - Test Setup

17.1 Photograph – Radiation Spurious Emission Test Setup

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

17.2 Photograph – Conducted Emission Test Setup

18 Photographs - Constructional Details

18.1 External View

Reference No.: WTF13S0504193E Page 50 of 56

18.2 EUT - Internal View

Reference No.: WTF13S0504193E Page 53 of 56

Reference No.: WTF13S0504193E Page 54 of 56

Reference No.: WTF13S0504193E Page 55 of 56

=End of report=