Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty

N.Drougard

under D.Dubois, J-L.Farges and F.Teichteil-Königsbuch supervision
doctoral school: EDSYS institution: ISAE-SUPAERO
laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Autonomous robotics

Onera, System Control & Flight Dynamics Department
Control Engineering, Artificial intelligence, Cognitive Sciences

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

context

Autonomous robotics

Onera, System Control & Flight Dynamics Department Control Engineering, Artificial intelligence, Cognitive Sciences

- autonomy and human factors
- decision making, planning
- experimental/industrial applications: UAVs, exploration robots, human-machine interaction

 $\overline{ ext{context}}$ π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

 $\overline{ ext{context}}$ π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

 $\overline{ ext{context}}$ π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

Partially Observable Markov Decision Processes (POMDPs)

St

 $\overline{ ext{context}}$ π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

context

belief state, strategy, criterion

POMDP: $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update

$$b_t$$
 T, O

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update

$$\begin{array}{c}
b_t \\
T,O
\end{array}
\qquad \mathbf{p}(s',o'\mid b_t,a_t)$$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update received observation

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

conclusion

context

belief state, strategy, criterion

 π -modeling

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update

$$b_t$$
 observation O_{t+1} fixed

hybrid model

conclusion

strategy $d_t:b_t\mapsto a_t\in\mathcal{A}$

maximizing
$$\mathbb{E}_{s_0\sim b_0}\left[\sum_{t=0}^{+\infty}\gamma^t\cdot r\Big(s_t,\delta(b_t)\Big)
ight]$$
, $0<\gamma<1$

Flaws of the POMDP model POMDPs in practice

context

optimal strategy computation PSPACE-hard
 (Papadimitriou et al., 1987)

conditional probabilities are imprecisely known

prior ignorance semantic/management?

context

practical issues: Complexity, Vision and Initial Belief

■ POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- $\rightarrow \mathsf{approximate}\ \mathsf{computations}$

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- \rightarrow image in the database representative enough of the reality?

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

context

practical issues: Complexity, Vision and Initial Belief

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- ightarrow image in the database representative enough of the reality?

Lack of prior information on the system state: initial belief state b_0

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- ightarrow image in the database representative enough of the reality?

- Lack of prior information on the system state: initial belief state b_0
- \rightarrow uniform probability distribution \neq ignorance!

Qualitative Possibility Theory presentation – (max,min) "tropical" algebra

finite scale \mathcal{L}

usually
$$\{0, \frac{1}{k}, \frac{2}{k}, \dots, 1\}$$

entirely possible
quite plausible
:
almost impossible
impossible

events $E \subset \Omega$ (universe) sorted using possibility degrees $\Pi(E) \in \mathcal{L}$ \neq quantified with frequencies $\mathbb{P}(E) \in [0,1]$ (probabilities)

presentation - (max,min) "tropical" algebra

finite scale \mathcal{L}

 π -modeling

context

usually $\{0, \frac{1}{\nu}, \frac{2}{\nu}, \dots, 1\}$

entirely possible quite plausible almost impossible impossible

events
$$E \subset \Omega$$
 (universe)

sorted using possibility **degrees** $\Pi(E) \in \mathcal{L}$

quantified with frequencies
$$\mathbb{P}(E) \in [0,1]$$
 (probabilities)

$$\Pi(E) = \max_{e \in F} \Pi(\lbrace e \rbrace) = \max_{e \in F} \pi(e)$$

 π -modeling

(context)

Criteria from special cases of Sugeno integral

Probability /	Qualitative Possibility Theories
+	max
×	min
$\sum_{x} \mathbf{p}(x) = 1$	$\max_{x} \pi(x) = 1$
$X \in \mathbb{R}$	$X \in \mathcal{L}$
$\mathbb{P}ig(Aig) = 1 - \mathbb{P}ig(\overline{A}ig)$	$\mathcal{N}ig(Aig) = 1 - \Piig(\overline{A}ig) \; ext{(necessity)}$
	optimistic:
	$\mathbb{S}_{\Pi}[X] = \max_{x \in X} \min\{x, \pi(x)\}$
$\mathbb{E}[X] = \sum_{x} x \cdot \mathbf{p}(x)$	pessimistic:
	$\mathbb{S}_{\mathcal{N}}[X] = \min_{x \in X} \max\{x, 1 - \pi(x)\}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

 π -POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

context

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}^{\pi}, \mathcal{O}^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP \Leftrightarrow MDP with **infinite** space π -POMDP \Leftrightarrow π -MDP with **finite** space
- problem becomes decidable

context

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle S, A, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' \mid s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' \mid s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP ⇔ MDP with infinite space π -POMDP $\Leftrightarrow \pi$ -MDP with **finite** space
- problem becomes decidable

 $\forall s \in \mathcal{S}, \ \pi(s) = 1 \Leftrightarrow \text{total ignorance about } s$ each state possible, none necessary

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \Big\{ \text{ possibility distributions } \Big\} : \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow \textit{i.e.}$ finite belief space

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$T^{\pi}$$
, O^{π}

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$T^{\pi}, O^{\pi} \longrightarrow \pi(s', o' | \beta_t, a_t)$$

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$T^{\pi}, O^{\pi} \longrightarrow \pi(s', o' \mid \beta_t, a_t) \xrightarrow{\text{observation} \atop o_{t+1} \text{ fixed}} \circ b_{st}^{08}$$

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$

 \rightarrow *i.e.* finite belief space

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update

$$T^{\pi}, O^{\pi} \longrightarrow \pi(s', o' \mid \beta_t, a_t) \xrightarrow{\text{observation} \atop o_{t+1} \text{ fixed}} \circ b_{0,t+1}$$

■ Markovian update: only depends on o_{t+1} , a_t and b_t^{π}

Overview

(context)

Qualitative Possibility Theory:

ightarrow simplification, imprecision/prior ignorance modeling

Overview

context

Qualitative Possibility Theory:

- → simplification, imprecision/prior ignorance modeling
 - context
 - introductory example: qualitative possibilistic modeling
 - ightarrow human-machine interaction (HMI)
 - with Sergio Pizziol

- **2 advances** in π -POMDP:
 - → mixed-observability & indefinite horizon
- **3** simplifying computations:
 - → ADD-based solver & factorization
- 4 probabilistic-possibilistic (hybrid) approach
- conclusion

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

Issue: incorrect human assessment of the machine state

→ accident risk

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

Issue: incorrect human assessment of the machine state

ightarrow accident risk

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

Issue: incorrect human assessment of the machine state

→ accident risk

π -POMDP without actions: π -Hidden Markov Process

- **system space** \mathcal{S} : set of human assessments \rightarrow **hidden**
- **observation space** \mathcal{O} : feedbacks/human manipulations

Example: Human-Machine Interaction (HMI)

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Example: Human-iviacnine interaction (Hivi

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi \left(s_B', o_f' \mid s_A \right) = 1$ "but may lose a feedback" $o \pi \left(s_A', o_f' \mid s_A \right) = \frac{2}{3}$

Example: Human-Machine Interaction (HMI)

Human error model from expert knowledge

 $(\pi$ -modeling)

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

"manipulation o_m' is normal under s_A " $\to \pi \left(s_B', o_m' \mid s_A\right) = 1$ "is abnormal" $\to \frac{1}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

"manipulation o'_m is normal under
$$s_A$$
" $\to \pi \left(s_B', o_m' \mid s_A \right) = 1$
"is abnormal" $\to = \frac{1}{3}$

■ impossible cases: possibility degree 0

Qualitative Possibilistic Hidden Markov Process: π -HMP, detection & diagnosis tool for HMI (with **Sergio Pizziol**)

Qualitative Possibilistic Hidden Markov Process: π -HMP, detection & diagnosis tool for HMI (with Sergio Pizziol)

- estimation of the human assessment

 ⇔ possibilistic belief state
- detection of human assessment errors + diagnosis
- validated with pilots on flight simulator missions

Applicability of the π -POMDPs advances

- lack of proof of optimality in indefinite horizon settings
- criterion/proof
- curse of dimensionality:
 - ightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- in practice, part of $s \in \mathcal{S}$ is visible \Rightarrow complexity reduction

Applicability of the π -POMDPs advances

- lack of proof of optimality in indefinite horizon settings
- criterion/proof
- **urse of dimensionality:**
 - ightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- in practice, part of $s \in \mathcal{S}$ is visible \Rightarrow complexity reduction

Applicability of the π -POMDPs advances

- lack of proof of optimality in indefinite horizon settings
- criterion/proof
- curse of dimensionality:
 - ightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- in practice, part of $s \in S$ is visible \Rightarrow complexity reduction

Indefinite Horizon, Mixed-Observability, Simulations contribution UAI 2013

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$orall s \in \mathcal{S}$$
, maximizing $\mathbb{S}_{\Pi}\Big[\Psi(S_{\#\delta})\Big|S_0=s\Big]$

with respect to the strategy $\delta: (t, s) \mapsto a_t \in \mathcal{A}$.

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$\begin{split} \forall s \in \mathcal{S}, \text{ maximizing } \mathbb{S}_{\Pi} \Big[\Psi(S_{\#\delta}) \Big| S_0 &= s \Big] \\ &= \max_{(s_1, \dots, s_{\#\delta})} \min \left\{ \left. \min_{t=0}^{\#\delta - 1} \pi\Big(s_{t+1} \Big| s_t, \delta_t(s_t) \Big), \Psi(s_{\#\delta}) \right\} \end{split}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$\begin{split} \forall s \in \mathcal{S}, \text{ maximizing } \mathbb{S}_{\Pi} \Big[\Psi(S_{\#\delta}) \Big| S_0 &= s \Big] \\ &= \max_{(s_1, \dots, s_{\#\delta})} \min \left\{ \left. \min_{t=0}^{\#\delta - 1} \pi\Big(s_{t+1} \Big| s_t, \delta_t(s_t) \Big), \Psi(s_{\#\delta}) \right\} \end{split}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Dynamic Programming scheme: # iterations $< \#\mathcal{S}$

- lacktriangle assumption: \exists artificial "stay" action as in classical planning / γ counterpart
- criterion value non decreasing with iterations

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$\begin{split} \forall s \in \mathcal{S}, \text{ maximizing } \mathbb{S}_{\Pi} \Big[\Psi(S_{\#\delta}) \Big| S_0 &= s \Big] \\ &= \max_{(s_1, \dots, s_{\#\delta})} \min \left\{ \min_{t=0}^{\#\delta - 1} \pi\Big(s_{t+1} \Big| s_t, \delta_t(s_t)\Big), \Psi(s_{\#\delta}) \right\} \end{split}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Dynamic Programming scheme: # iterations $< \# \mathcal{S}$

- assumption: \exists artificial "stay" action as in classical planning / γ counterpart
- criterion value non decreasing with iterations
- action update for states increasing the criterion
- proof of optimality of the resulting stationary strategy

Scalability capabilities with Mixed-Observability

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

graphical model of a π -MOMDP:

Mixed-Observability (*Ong et al., 2005*): $s \in S = S_v \times S_h$ *i.e.* state s = visible component s_v & hidden component s_h

Scalability capabilities with Mixed-Observability

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

graphical model of a π -MOMDP:

Mixed-Observability (Ong et al., 2005): $s \in S = S_v \times S_h$ i.e. state s = visible component s_v & hidden component s_h

■ belief states only over S_h (component s_v observed)

Scalability capabilities with Mixed-Observability

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

graphical model of a π -MOMDP:

Mixed-Observability (*Ong et al., 2005*): $s \in S = S_v \times S_h$ *i.e.* state s = visible component s_v & hidden component s_h

- belief states only over S_h (component s_v observed)
- $\blacksquare \to \pi$ -POMDP: belief space $\Pi^{\mathcal{S}}_{\mathcal{L}} = \#\mathcal{L}^{\#\mathcal{S}}$
 - $o\pi$ -MOMDP: computations on $\mathcal{X}=\mathcal{S}_{\nu} imes\Pi_{\mathcal{L}}^{\mathcal{S}_{h}}$

 $\#\mathcal{X} \sim \#\mathcal{S}_{v} \cdot \#\mathcal{L}^{\#\mathcal{S}_{h}} \stackrel{\sim}{\ll} \#\Pi_{\mathcal{L}}^{\mathcal{S}}$

Experimental results

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target

Experimental results

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target real model: takes into account the error zone $(P_{bad} > \frac{1}{2})$

Experimental results

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target real model: takes into account the error zone $(P_{bad} > \frac{1}{2})$

Experimental results

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object *A*
- noisy observations of the

probabilistic model inappropriate when probabilities too imprecise

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target real model: takes into account the error zone $(P_{bad} > \frac{1}{2})$

Factored π -MOMDP and computations with ADDs qualitative possibilistic models to reduce complexity

```
contribution (AAAI-14): factored \pi-MOMDP \Leftrightarrow state space \mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} = \text{Boolean variables } (X_1, \dots, X_n) + \text{independence assumptions} \Leftarrow \text{graphical model}
```


Factored π -MOMDP and computations with ADDs qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} = \text{Boolean variables } (X_1, \dots, X_n) + \text{independence assumptions } \Leftarrow \text{ graphical model}$

■ **factorization:** transition functions $T_i^a = \pi(X_i' \mid parents(X_i'), a)$ stored as **Algebraic Decision Diagrams (ADD)** probabilistic case: SPUDD (Hoey et al., 1999)

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

■ factorization ⇒ each DP step divided into n stages
→ smaller ADDs ⇒ faster computations

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- factorization ⇒ each DP step divided into n stages
 → smaller ADDs ⇒ faster computations
- computations on trees: CU Decision Diagram Package.

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $... \Rightarrow$ graphical model

d-Separation
$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l)$

$$\beta_i \in \Pi_{\mathcal{L}}^{\mathcal{S}_{h,i}}$$
, belief over $s_{h,i}$

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

⊥⊥ assumptions on state & observation variables

- → belief variable factorization
- ightarrow additional computation savings

Simplify computations with π -MOMDPs

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al., 1999)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion context

Simplify computations with π -MOMDPs

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al., 1999)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

Performance, function of the problem index

reached goal frequency

higher is better

steps to reach the goal

lower is better

Simplify computations with π -MOMDPs

Experiments - perfect sensing: Navigation problem

computation time

max size of ADDs

lower is better

- PPUDD + M2 (pessimistic criterion)

 faster with same performance as SPUDD
- SPUDD only solves the first 5 instances
- verified intuition: ADDs are smaller

Simplify computations with π -MOMDPs

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, 2008, solver MOMDP) symbolic HSVI (*Sim et al.*, 2008, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

Simplify computations with $\pi\text{-MOMDPs}$

Experiments - imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, 2008, solver MOMDP) symbolic HSVI (*Sim et al.*, 2008, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

computation time:

lower is better

average of rewards

higher is better

approximate model + exact resolution solver can be
 better than exact model + approximate resolution solver

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

PPUDD + BDD mask over reachable states.

average of rewards over simulations - higher is better

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

average of rewards over simulations - higher is better

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

- granulated belief space (discrete)
- ullet efficient problem **simplification** (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

- granulated belief space (discrete)
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling
- ADD methods ~ state space search methods → winners of IPPC 2014: 2× better than PPUDD
- choice of the qualitative criterion (optimistic/pessimistic)
- preference → non additive degrees
 → same scale as possibility degrees (commensurability)
- coarse approximation of probabilistic model
 → no frequentist information

A hybrid model a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

A hybrid model

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

Usefulness

- → heuristic for solving POMDPs: results in a standard (finite state space) MDP
- → problem with qualitative & quantitative uncertainty

Transitions and rewards

belief-based transition and reward functions

■ possibility distribution $\beta \to \text{probability distribution } \overline{\beta}$ using poss-prob tranformations (Dubois & Prade)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

context

belief-based transition and reward functions

possibility distribution $\beta \to \text{probability distribution } \beta$ using poss-prob tranformations (Dubois & Prade)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

reward pessimistic according to β

Pessimistic Choquet Integral

$$r(\beta, a) = \sum_{i=1}^{\#\mathcal{L}-1} (\pi_i - \pi_{i+1}) \cdot \min_{B_i} r(s, a)$$
$$B_i = \{ s \in \mathcal{S} \text{ s.t. } \beta(s) \geqslant \pi_i \}$$

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$

output: the MDP $\langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle$

translation from hybrid POMDP to MDP – contribution (SUM-15):

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle
```

■ state space $\ddot{S} = \Pi_{\mathcal{L}}^{S}$ the set of the possibility distributions over S

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle$

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$ the set of the possibility distributions over S
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$ transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta' | \beta, a)$

context

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$

advances in π -POMDP

- state space $\tilde{S} = \Pi_c^S$ the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}, \forall a \in \mathcal{A}$ transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$

context

translation from hybrid POMDP to MDP - contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$

- state space $\tilde{S} = \Pi_c^S$ the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}, \forall a \in \mathcal{A}$ transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$

criterion:
$$\mathbb{E}_{\beta_t \sim \tilde{T}} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot \tilde{r} \left(\beta_t, d_t \right) \right]$$

context

Belief variable factorization

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_v \in \mathbb{S}_v$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables - contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

inferred hidden $s'_h \in \mathbb{S}_h$

context

Belief variable factorization

3 classes of state variables – contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

$$S_{v}' \xrightarrow{S_{v}' = O_{v}'} O_{v}'$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

context

Belief variable factorization

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables - contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables - contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$S_h^a$$
 S_h^c
 S_V^c

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$eta_{t+1}\Big(extit{parents}(o_i')\Big) = eta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$
 $\propto^{\pi} \pi\Big(o_i', extit{parents}(o_i')\Big|eta_t, a\Big)$

fully hidden
$$s'_f \in \mathbb{S}_f$$

3 classes of state variables – contribution (SUM-15)

variable: visible $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$
$$\propto^{\pi} \pi\Big(o'_i, parents(o'_i)\Big|\beta_t, a\Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden
$$s'_f \in \mathbb{S}_f$$

3 classes of state variables - contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$eta_{t+1}\Big(extit{parents}(o_i')\Big) = eta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$
 $\propto^{\pi} \pi\Big(o_i', extit{parents}(o_i')\Big|eta_t, a\Big)$

 S_h^a S_h^b S_h^c

 $\wedge \mathcal{P}(o_i)$ may contain visible variables.

3 classes of state variables – contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

$$S'_f \longrightarrow O'_i$$

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

context

3 classes of state variables – **contribution (SUM-15)**

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o_i')\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \left(o_i', parents(o_i') \middle| \beta_t, a \right)$$

 S_h^a S_h^b S_h^c

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s'_f \in \mathbb{S}_f$

 \rightarrow observations don't inform belief state on s'_f .

$$S'_f \longrightarrow O'_i$$

$$\beta_{t+1}(s'_f) = \pi(s'_f \mid \beta_t, a)$$

(hybrid model)

context

global belief state from marginal belief variables

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n | a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \left(parents(o_i') \right) \Biggr] \Biggr\}$$

context

global belief state from marginal belief variables

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n | a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \left\{ \min_{s_j' \in \mathbb{S}_v} \left[\mathbb{1}_{\left\{ s_j' = o_j' \right\}} \right], \min_{s_j' \in \mathbb{S}_f} \left[\beta_{t+1}(s_j') \right], \min_{o_i' \in \mathbb{O}_h} \left[\beta_{t+1} \left(parents(o_i') \right) \right] \right\}$$

- min of marginals = a **less informative** belief state
- computed using marginal belief states
 - → factorization & smaller state space

Conclusion contributions

lacktriangledown modeling efforts: ightarrow human-machine interaction

- $lue{}$ modeling efforts: ightarrow human-machine interaction
- advances: → mixed-observability modeling
 - $\rightarrow \mathsf{indefinite}\;\mathsf{horizon}\;+\;\mathsf{optimality}\;\mathsf{proof}$

- **modeling efforts**: → human-machine interaction
- advances: → mixed-observability modeling
 → indefinite horizon + optimality proof
- simplifying computations: factorization work& PPUDD algorithm

- lacktriangledown modeling efforts: ightarrow human-machine interaction
- advances: → mixed-observability modeling → indefinite horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- experimentations: realistic problems
 - ightarrow robust recognition mission with possibilistic beliefs
 - ightarrow validation of the computation time reduction
 - → IPPC 2014

- **modeling efforts**: → human-machine interaction
- advances: → mixed-observability modeling → indefinite horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- experimentations: realistic problems
 - ightarrow robust recognition mission with possibilistic beliefs
 - \rightarrow validation of the computation time reduction
 - → IPPC 2014
- hybrid POMDP
 - \rightarrow formalization
 - \rightarrow factored POMDP $\xrightarrow{\text{translation}}$ factored **finite** MPD

Conclusion perspectives

■ refined criteria, intermediate preferences (Weng 2005, Dubois & Fortemps 2005)

$$\Rightarrow$$
 finer π -POMDP

- **state** space heuristic search for π -POMDPs
- combination with reinforcement learning (Sabbadin 2001)

Conclusion perspectives

■ refined criteria, intermediate preferences (Weng 2005, Dubois & Fortemps 2005)

$$\Rightarrow$$
 finer π -POMDP

- state space heuristic search for π -POMDPs
- combination with reinforcement learning (Sabbadin 2001)

hybrid model

- IPPC problems (factored POMDPs);
- tests of this approach:
 - **1 simplification:** π distributions definition?
 - 2 imprecision: robust in practice?

Thank you!

produced work:

- Qualitative Possibilistic Mixed-Observable MDPs, UAI-2013
- Structured Possibilistic Planning Using Decision Diagrams,
 AAAI-2014
- Planning in Partially Observable Domains with Fuzzy Epistemic States and Probabilistic Dynamics.
 SUM-2015
- Processus Décisionnels de Markov Possibilistes à Observabilité Mixte.

Revue d'Intelligence Artificielle (RIA french journal)

 A Possibilistic Estimation of Human Attentional Errors, submitted to IEEE-TFS journal

Uncertainty theories

Most known uncertainty theories and their relations

- IPT: most general uncertainty theory. Use of sets of probability measures over Ω .
- BFT: use of a mass function $m: 2^{\Omega} \to [0,1]$, with $\sum_{A \subset \Omega} m(A) = 1$.
 - **1** plausibility measure: $\forall A \subset \Omega$, $PI(A) = \sum_{B \cap A \neq \emptyset} m(B)$.
 - **2** belief function: $\forall A \subset \Omega$, $bel(A) = \sum_{B \subset A} m(B)$.

Focal sets of a mass function $m: 2^{\Omega} \to [0,1]$: subsets A of $\Omega = \{\omega_1, \dots, \omega_7\}$ such that m(A) > 0.

- if focal sets are all singletons
 - \rightarrow probability distribution (bel = Pl = \mathbb{P})
- if focal sets are nested, e.g. $F_3 \subset F_2 \subset F_1 = \Omega$,
 - \rightarrow possibility distribution:

bel=necessity measure, Pl=possibility measure.

probabilistic case

possibilistic case

Probabilistic belief update

the **system states** are the gray circular nodes,

- the action is the red arrows rede
- the action is the red square node ,
- and the observation is the blue circular node.

The belief state b_t (resp. b_{t+1}) is the probabilistic estimation of the current (resp. next) system state s_t (resp. s_{t+1})

probabilistic belief update

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in S} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

Rewritings of parameters PROBABILISTIC parameters

 $T_j^a(\mathbb{S}, s_j') = T_j^a(\mathcal{P}(s_j'), s_j');$ $O_i^a(\mathbb{S}', o_i') = O_i^a(\mathcal{P}(o_i'), o_i').$

Rewritings of parameters PROBABILISTIC parameters

- $T_j^a\left(\mathbb{S},s_j'\right) = T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

$$\mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) = O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right)$$
$$= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right).$$

Rewritings of parameters PROBABILISTIC parameters

context

- $T_j^a\left(\mathbb{S},s_j'\right) = T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

2P(0') 2Q(0')

$$\mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) = O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right)$$
$$= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right).$$

observation probabilities

epistemic state
$$b^{\pi}(\mathbb{S}) \xrightarrow{\mathbf{marginalization}} b^{\pi}(\mathcal{Q}(o'_i)) \xrightarrow{\mathbf{pignistic}} \overline{b^{\pi}}(\mathcal{Q}(o'_i))$$

$$\mathbf{p}\left(o_{i}'\mid b^{\pi}, a\right) = \sum \mathbf{p}\left(o_{i}', \mathcal{P}(o_{i}')\mid \mathcal{Q}(o_{i}'), a\right) \cdot \overline{b^{\pi}}(\mathcal{Q}(o_{i}'))$$

Parameters rewritings POSSIBILISTIC parameters

context

- $\pi \left(s'_j \mid S, a \right) = \pi \left(s'_j \mid \mathcal{P}(s'_j), a \right);$
- $\blacksquare \ \pi\left(o_i' \mid \mathbb{S}', a\right) = \pi\left(o_i' \mid \mathcal{P}(o_i'), a\right).$

Parameters rewritings POSSIBILISTIC parameters

- $\blacksquare \pi(s'_j \mid \mathbb{S}, a) = \pi(s'_j \mid \mathcal{P}(s'_j), a);$
- $\blacksquare \pi(o'_i | \mathbb{S}', a) = \pi(o'_i | \mathcal{P}(o'_i), a).$

marginal possibilistic belief states

$$egin{aligned} orall o_i' \in \mathbb{O}, \ b_{t+1}^\pi \Big(\mathcal{P}(o_i') \Big) \propto^\pi \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \end{aligned}$$

Parameters rewritings POSSIBILISTIC parameters

context

- $\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$
- $\blacksquare \ \pi(o'_i | \mathbb{S}', a) = \pi(o'_i | \mathcal{P}(o'_i), a).$

marginal possibilistic belief states

$$\begin{aligned} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \end{aligned}$$

- $\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$
- $\blacksquare \ \pi\left(\left.o_{i}'\right|\ \mathbb{S}',a\right) = \pi\left(\left.o_{i}'\right|\ \mathcal{P}(o_{i}'),a\right).$

marginal possibilistic belief states

$$\begin{split} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^\pi \Big(\mathcal{P}(o_i') \Big) & \propto^\pi \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^\pi \Big(\mathcal{Q}(o_i') \Big) \right\} \\ & \qquad \qquad \text{denoted by } \pi \Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a \Big). \end{split}$$

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

ightarrow finite belief space

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ egin{array}{ll} 1 & ext{if } \pi\left(\left.o', s' \left|\right. \right. b_{t}^{\pi}, a
ight) = \pi\left(\left.o' \left|\right. b_{t}^{\pi}, a
ight) }{\pi\left(\left.o', s' \left|\right. b_{t}^{\pi}, a
ight)} & ext{otherwise.} \end{array}
ight.$$

denoted by
$$b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$$

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ egin{array}{ll} 1 & ext{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a
ight) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a
ight) \ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a
ight) \end{array}
ight. ext{ otherwise.}$$

denoted by $b^\pi_{t+1}(s') \propto^\pi \pi \left(o', s' \mid b^\pi_t, a \right)$

$$\pi\left(o'\mid s',a\right) = \max_{s'\in\mathcal{S}} \pi\left(o',s'\mid b_t^{\pi},a\right).$$

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \Big\{ \text{ possibility distributions } \Big\} \colon \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a\right.\right) \\ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) & \text{otherwise.} \end{array} \right.$$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

 \blacksquare the update **only depends on** o' **and** a.

conclusion

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

$$\forall x \in \mathcal{X}, \ V_0(x) = \rho(x)$$
 preference,

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \rho(x)$ preference, and, until convergence,

$$\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\},\,$$

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \rho(x)$ preference, and, until convergence,

$$\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}, \text{ and }$$

if
$$V_{i+1}(x) > V_i(x)$$
, $\delta(x) = \underset{a \in \mathcal{A}}{\operatorname{argmaxmaxmin}} \{\pi(x' \mid x, a), V_i(x')\}$.

Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
\begin{array}{lll} & V^* \leftarrow 0 \; ; V^c \leftarrow \mu \; ; \; \delta \leftarrow \overline{a} \; ; \\ & \mathbf{2} \; \; \mathbf{while} \; V^* \neq V^c \; \mathbf{do} \\ & \mathbf{3} & V^* \leftarrow V^c \; ; \\ & \mathbf{4} & \mathbf{for} \; a \in \mathcal{A} \; \mathbf{do} \\ & \mathbf{5} & \mathbf{6} & q^a \leftarrow \mathrm{swap} \; \mathrm{each} \; X_i \; \mathrm{variable} \; \mathrm{in} \; V^* \; \mathrm{with} \; X_i' \; ; \\ & \mathbf{6} & \mathbf{7} & \mathbf{6} & \mathbf{7} & \mathbf{6} & \mathbf{6} \\ & \mathbf{7} & \mathbf{8} & q^a \leftarrow \overline{\min} \big\{ q^a, \pi(X_i' \mid parents(X_i'), a) \big\} \; ; \\ & \mathbf{8} & q^a \leftarrow \overline{\max}_{X_i'} q^a \; ; \\ & \mathbf{9} & \mathbf{V}^c \leftarrow \overline{\max} \big\{ q^a, V^c \big\} \; ; \\ & \mathbf{10} & \mathbf{V}^c \leftarrow \mathbf{1} & \mathbf{V}^c \leftarrow \mathbf{1} \\ & \mathbf{11} \; \mathbf{return} \; (V^*, \; \delta) \; ; \\ \end{array}
```

computations on trees: CU Decision Diagram Package.

Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
 \begin{array}{lll} 1 & V^* \leftarrow 0 \; ; \, V^c \leftarrow \mu \; ; \, \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} & & & & & \\ \mathbf{3} & V^* \leftarrow V^c \; ; & & & & & & \\ \mathbf{4} & V^* \leftarrow V^c \; ; & & & & & & \\ \mathbf{5} & \mathbf{6} & V^* \leftarrow \mathbf{s} & \mathbf{do} & & & & & \\ \mathbf{7} & \mathbf{6} & \mathbf{1} \leqslant i \leqslant n \; \mathbf{do} & & & & & \\ \mathbf{7} & \mathbf{8} & & & & & & \\ \mathbf{9} & \mathbf{10} & & & & & & \\ \mathbf{9} & \mathbf{10} & & & & & & \\ \mathbf{1} & \mathbf{return} \; (V^*, \delta) \; ; & & & & \\ \mathbf{11} & \mathbf{return} \; (V^*, \delta) \; ; & & & & \\ \end{array}
```

computations on trees: CU Decision Diagram Package.

Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

computations on trees: CU Decision Diagram Package.

Pignistic transformation and transitions Pignistic transformation

numbering of the n = #S system states:

$$1=b^{\pi}(s_1)\geqslant\ldots\geqslant b^{\pi}(s_n)\geqslant b^{\pi}(s_{n+1})=0.$$

pignistic transformation $-P:\Pi_{\mathcal{S}}\to\mathbb{P}_{\mathcal{S}}$

$$\overline{b^\pi}(s_i) = \sum_{j=i}^{\#\mathcal{S}} \frac{b^\pi(s_j) - b^\pi(s_{j+1})}{j}.$$

- probability distribution $\overline{b^{\pi}} = \mathbf{gravity}$ center of the represented probabilistic distributions;
- Laplace principle: ignorance → uniform probability.

Pignistic transformation

Examples of pignistic transformations (red) of possibility distributions (blue)

hybrid POMDP and π -POMDP

differences with possibilistic models

Amundsu.	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions	few quantitative
	-large POMDP	Tew quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid model:

- only belief states are possibilistic:
- \rightarrow agent knowledge = **possibility** distribution;
 - probabilistic dynamics:
- → **approximated** (prob.) transition between epistemic states.

factorized POMDP definition

■ S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;

factorized POMDP

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- **transition** function of s'_j , $T_i^a(\mathbb{S}, s'_i) = \mathbf{p}\left(s'_i \mid \mathbb{S}, a\right)$, $\forall j \in \{1, ..., m\}$ et $\forall a \in \mathcal{A}$;

factorized POMDP

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- **transition** function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right), \ \forall j \in \{1, \dots, m\} \ \text{et} \ \forall a \in \mathcal{A};$
- \blacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;

factorized POMDP

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- **transition** function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

factorized POMDP

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

independences:

$$o orall s_i', s_i' \in \mathbb{S}', \qquad s_i' \perp \!\!\! \perp s_i' \mid \{\mathbb{S}, a \in \mathcal{A}\},$$

$$\rightarrow \forall o'_i, o'_i \in \mathbb{O}', \quad o'_i \perp \!\!\!\perp o'_i \mid \{\mathbb{S}', a \in \mathcal{A}\}.$$

Notations

some variables does not interact with each other

variables about the current system state,

variable s'_j about the **next** state.

some variables does not interact with each other

variables about the current system state,

$$s_k o s_j'$$
 \updownarrow

 $\exists a \in \mathcal{A}$, such that

 $T_j^a(\mathbb{S}, s_j')$ depends on s_k .

context

some variables does not interact with each other

variables about the **current** system state,

Notations

concerning observation variables

next state

context

concerning observation variables

$$s'_j \rightarrow o'_i$$
 \updownarrow

 $\exists a \in \mathcal{A}$, such that

$$O_i^a(\mathbb{S}',o_i')$$

depends on s_i' .

next state

context

concerning observation variables

 $\exists a \in \mathcal{A}$, such that

$$O_i^a(\mathbb{S}',o_i')$$

depends on s_i' .

current state

next state

context

Variables de croyance different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

■ $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_{\nu} \in \mathbb{S}_{\nu}$, 1 variable β'_{ν} is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,

$$\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$$
 boolean variables β'_h .

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

 $\forall s'_{v} \in \mathbb{S}_{v}, 1 \text{ variable } \beta'_{v} \text{ is enough.}$

advances in π -POMDP

 $p_i = \# \mathcal{P}(o'_i).$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,
 $\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$ boolean variables β_h' .

 $\forall s'_{\epsilon} \in \mathbb{S}_{\epsilon}$, $\lambda^2 - (\lambda - 1)^2 = 2\lambda - 1$ belief states, $\Rightarrow \lceil \log_2(2\lambda - 1) \rceil$ boolean variables β'_{ϵ} .

resulting MDP in practice final structured MDP

factorized model's variables: $\#\mathbb{O} + \#\mathbb{S}_{\nu} +$

$$+\sum_{i=1}^{\#\mathbb{O}_h} \left\lceil \log_2 \left(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}} \right) \right\rceil + \#\mathbb{S}_f \cdot \left\lceil \log_2 \left(2\lambda - 1 \right) \right\rceil$$

initial hybrid model's variables:

$$\left\lceil \log_2\left(\lambda^{2^{\#\mathbb{S}}}-(\lambda-1)^{2^{\#\mathbb{S}}}
ight)
ight
ceil$$

resulting MDP in practice final structured MDP

factorized model's variables:

$$\leqslant \#\mathbb{O} + \#\mathbb{S}_{v} + \sum_{i=1}^{\#\mathbb{O}_{h}} \log_{2}(\lambda) \cdot 2^{p_{i}} + \#\mathbb{S}_{f} \cdot (1 + \log_{2}(\lambda))$$

initial hybrid model's variables:

$$\geqslant \log_2(\lambda) \cdot (2^{\#\mathbb{S}} - 1).$$

Variable classification

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

inferred hidden $s_h' \in \mathbb{S}_h$

fully hidden $s_f' \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$S'_{\nu} \xrightarrow{S'_{\nu} = O'_{\nu}} O'_{\nu}$$

inferred hidden $s_h' \in \mathbb{S}_h$

fully hidden $s'_f \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

$$\mathbf{p}\left(s_{v}' \mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}\left(\mathcal{P}(s_{v}'), s_{v}'\right) \cdot \overrightarrow{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')\right)$$

inferred hidden $s'_h \in \mathbb{S}_h$

fully hidden $s'_f \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

<u>variable</u>: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s'_h \in \mathbb{S}_h$

fully hidden $s_f' \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

<u>variable</u>: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s'_h \in \mathbb{S}_h$

fully hidden $s_f' \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

<u>variable</u>: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c)$$

fully hidden $s'_f \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

<u>variable</u>: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden
$$s'_h \in \mathbb{S}_h$$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c) \ \propto^{\pi} \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a\Big).$$

fully hidden $s_f' \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 $\propto \pi(o_i, \tau(o_i)|o_t, u).$

 $\wedge \mathcal{P}(o_i')$ may contain visible variables

fully hidden
$$s_f' \in \mathbb{S}_f$$

Variable classification

3 classes of state variables – state space factorization

<u>variable</u>: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 $\bigwedge \mathcal{P}(o_i')$ may contain visible variables

$$S_h^a$$
 S_h^b
 S_h^c

fully hidden $s'_f \in \mathbb{S}_f$

Variable classification

3 classes of state variables – state space factorization

<u>variable:</u> visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}' \mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}\left(\mathcal{P}(s_{v}'), s_{v}'\right) \cdot \overline{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')\right)$$

inferred hidden
$$s_h' \in \mathbb{S}_h$$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables

fully hidden
$$s_f' \in \mathbb{S}_f$$

$$b_{t+1}^{\pi}(s_f') = \max_{\mathcal{D}(f')} \min \left\{ \pi(s_f' \middle| \mathcal{P}(s_f'), a), b_t^{\pi}(\mathcal{P}(s_f'))
ight\}$$

Variable classification

3 classes of state variables – state space factorization

variable: visible $s'_{v} \in \mathbb{S}_{v}$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}' \mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}\left(\mathcal{P}(s_{v}'), s_{v}'\right) \cdot \overline{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')\right)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o'_i)) &= b^\pi_{t+1}(s_h, s^a_h, s^b_h, s^c_h) \ &\propto^\pi \pi\Big(o'_i, \mathcal{P}(o'_i)\Big|b^\pi_t, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o_i')$ may contain visible variables

$$C(o_i')$$
 may contain visible variables

fully hidden $s_f \in \mathbb{S}_f$

$$\rightarrow$$
 observations don't inform belief state on s'_f

$$b_{t+1}^{\pi}(s_f') = \max_{\mathcal{P}(s_f')} \min \left\{ \pi(s_f' | \mathcal{P}(s_f'), a), b_t^{\pi}(\mathcal{P}(s_f')) \right\}$$

Toy example: 2 machine states, 3 occurrences

columns		1	2	3	4	5
SITUATION						
V'	$V_{\mathcal{A}}$	1				1
	VB		1			
	VC	1			1	
h	$S_{\mathcal{A}}$	1	1		1	
	s _B			1		1
BEHAVIOUR						
h'	s_A					1
	s _B		1		1	
EFFECT		ē	ẽ	ē	ê	<u>e</u>
POSSIBILITY		1	ε	1	λ	δ

context

```
Probability
                                                      Possibility:
                \mathbf{p}(e_1) + \mathbf{p}(e_2 \cap \overline{e_1})
                                                        \max\left\{\pi(e_1),\pi(e_2)\right\}
                                                    \min \{ \pi(e_1), \pi(e_2 \mid e_1) \}
                  p(e_1).p(e_2 | e_1)
e_1 and e_2
```

Back to general POMDP: Partially Observable Criteria

Rewriting: belief dependent reward (belief trick)

- $\mathbf{r}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ reward function
- $ho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$ preference function

Probability	/ Possibility:	
$R(b_t, d_t)$	optimistic: $\overline{\Psi}(\beta_t, \delta_t)$	
$=\sum_{s}r(s,d_t)\cdot b_t(s)$	$= \max_{s} \min \left\{ \rho(s, \delta_t), \beta_t(s) \right\}$	
3	pessimistic: $\underline{\Psi}(\beta_t, \delta_t)$	
	$= \min_{s} \max \left\{ \rho(s, \delta_t), 1 - \beta_t(s) \right\}$	
$\mathbb{E}[r(S_t, d_t)] = \mathbb{E}[R(b_t, d_t)]$	$\mathbb{S}_{\Pi}[ho(\mathcal{S}_t,d_t)]=\mathbb{S}_{\Pi}[\overline{\Psi}(eta_t,d_t)]$	
	$\mathbb{S}_{\mathcal{N}}[\rho(S_t, d_t)] = \mathbb{S}_{\mathcal{N}}[\underline{\Psi}(\beta_t, d_t)]$	

Note: $\mathbb{S}_{\Pi}[\Psi(\beta_t, d_t)]$; $\mathbb{S}_{\mathcal{N}}[\overline{\Psi}(\beta_t, d_t)]$?

knowledge is not always encouraged with POMDPs

$$b_0(s_A) = 1$$

 $b_0(s_A)=1$

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

context

Why model ignorance?

knowledge is not always encouraged with POMDPs

$$b_1(s_B) = 0.5$$
 $r(s_B) = 10$
 $c_{C}(s_C) = 0.5$ $r(s_C) = 0$
 $c_{C}(s_C) = 0$

$$\mathbb{E}_{s_0 \sim b_0} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot r(s_t) \, \middle| \, a_0 = \tilde{\mathbf{a}} \text{ or } \mathbf{a'} \right] = r(s_0) + 5\gamma.$$
 the safe action is not preferred.

Why model ignorance? Choquet integral and rewards

Why model ignorance? Choquet integral and rewards

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$$

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$$

the safe action is prefered! dispersion reduced

Why model ignorance? Choquet integral and rewards

- $Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$
- $Ch(r, N_{b_1^{\pi}} \mid a_0 = a') = \min_{s \in S} r(s, a') = 0.$

the safe action is prefered! dispersion reduced

if
$$\mathcal{N}_{b_1^{\pi}}$$
 replaced by $b_1 \Rightarrow \mathit{Ch}(r, b_1) = \mathbb{E}_{s \sim b_1}[r(s, a)]$.

Choquet integral and rewards

pessimistic evaluation of the rewards - necessity measure

imprecision of b^{π} = agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Choquet integral and rewards

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi:2^{\mathcal{S}}\rightarrow\mathcal{L}$

necessity $\mathcal N$ such that $\forall A \subseteq \mathcal S$, $\mathcal N(A) = 1 - \Pi(\overline{A})$.

Choquet integral and rewards

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi} =$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to ${\mathcal N}$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{\infty} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace) \qquad (1)$$

(2)

Choquet integral and rewards

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to ${\mathcal N}$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{n} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace)$$
 (1)

$$= \sum_{i=1}^{\#\mathcal{L}-1} (l_i - l_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ b^{\pi}(s) \geqslant l_i}} r(s)$$
 (2)

notation $\mathcal{L} = \{ l_1 = 1, l_2, l_3, \dots, 0 \}.$

resulting MDP in practice

trick: "flipflop" variable

boolean variable "flipflop" f changes state at each time step \rightarrow defines 2 phases:

- 1 observation generation,
- 2 belief update (deterministic knowing the observation)

MDP variables:

$$\begin{split} \tilde{\mathbb{S}} &= \\ \mathbf{beliefs} \colon \beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f} \\ &\times \\ \mathbf{visible} \\ \mathbf{variables} \colon v = f \times s_v^1 \times \ldots \times s_v^{m_v} \times o_1 \times \ldots \times o_k. \end{split}$$

 π -modeling advances in π -POMDP solver & factorization hybrid model conclusion context

resulting MDP in practice final structured MDP

$$\tilde{\mathbb{S}} =$$

beliefs:
$$\beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f}$$

visible variables :
$$v = f \times s_v^1 \times ... \times s_v^{m_v} \times o_1 \times ... \times o_k$$
.