What we can learn about musical performance practices by studying audio recordings

Johanna Devaney
Assistant Professor of Music Theory and Cognition
School of Music

The Ohio State University

Motivations.

1

A brief history

Quantitative approaches to performance analysis.

2

Extracting Performance Data from Recordings

MIDI-audio alignment for automatic analysis of recorded performances.

3

Experiments

Studies of intonation in the singing voice.

4

Conclusions

Summary and future directions.

5

Why study musical performance?

- Performances convey musicians' interpretations
- Performances are what listeners actually hear
- Studying performance can help us gain insight into
 - commonality between performers
 - how an individual's performance practice evolves as they gain more experience
 - how performance practices evolve over time

What do I mean by studying performance?

- Using (live) recorded performances
- Measuring performance parameters
 - timing
 - dynamics
 - tuning
 - timbre
- Assessing relationship between performance of various parameters and musical materials

Motivations.

1

A brief history

Quantitative approaches to performance analysis.

2

Extracting Performance Data from Recordings

MIDI-audio alignment for automatic analysis of recorded performances.

3

Experiments

Studies of intonation in the singing voice.

4

Conclusions

Summary and future directions.

5

A brief history

Pioneers

Binet and Courtier Sears Miller

1895–1930 195

1920-40s

1960s

1980s and 90s

1990s and 2000s

A brief history

University of Iowa

- Carl Seashore (1938) and colleagues studied timing, dynamics, intonation, and vibrato in pianists, violinists, and singers
 - Equipment: piano rolls, films of the movement of piano hammers during performance, phono-photographic apparati

Wave recorder for use with disk phonograph; the lever, acting like a pantograph, traces the waves on a revolving smoked drum

The tonoscope for analyzing the pitch of the tones on a disk phonograph record

Performance Scores

University of Iowa

Performance Scores

Digitizing the data

A brief history

A brief history

Popularity of the piano

- Large amount of solo repertoire
- Instrument's percussive nature
- Feasibility of using specially equipped pianos (e.g., MIDI)
 - cannot study existing recordings
 - new recordings are typically done in a lab environment

Bosendorfer SE piano at BRAMS, Montreal

A brief history

Motivations.

1

A brief history

Quantitative approaches to performance analysis.

2

Extracting Performance Data from Recordings

MIDI-audio alignment for automatic analysis of recorded performances.

3

Experiments

Studies of intonation in the singing voice.

4

Conclusions

Summary and future directions.

Studying Audio Recordings

Advantages and challenges of extracting data

Advantages

Allows for existing recordings to be studied

Challenges

- Difficulty of extracting data accurately
- Questions of how to model the extracted data in a perceptually meaningful way

AMPACT

Automatic Music Performance Analysis and Comparison

Toolkit

www.ampact.org

Moving towards polyphonic recordings

Still using MIDI-audio alignment

How to extract pitch and loudness data still an open question

Motivations.

1

A brief history

Quantitative approaches to performance analysis.

2

Extracting Performance Data from Recordings

MIDI-audio alignment for automatic analysis of recorded performances.

3

Experiments

Studies of intonation in the singing voice.

4

Conclusions

Summary and future directions.

5

Experiments with Performers

Why study the singing voice?

- In its most basic form singing is innate and universal
 - Training and enculturation refine specific practices of singing
- The voice is one of the most expressive instruments
- Singing research is complementary to speech research

Solo Singing

Dverview

Musical Material

- Schubert's "Ave Maria"
 - 3x a cappella & 3x accompanied

Singers

- 6 non-professional singers: undergraduate vocal majors
- 6 professional singers: possess at least one graduatelevel degree in voice performance
- Melodic semitones and whole tones analyzed
- Singers listened to and approved their own recordings

Ensemble Singing

Overview

- Musical Material
 - 3-part chord progression by Giambattista Benedetti
 - 4-part piece by Praetorius ("Es ist ein Ros entsprungen")
- Singers
 - combinations of professional SATB ensemble who performed with a conductor
- Melodic semitones and whole tones analyzed in different vertical (harmonic) contexts
- Conductor listened to and approved the recordings

Commonality between performers

Observable trends

TUNING SYSTEMS

 No strict adherence, on average smaller than equal temperament (more so for semitones than whole tones)

HARMONIC CONTEXT

Solo singing

 Non-pros exhibited a significant difference between semitones in leading tone and non-leading tone contexts

Ensemble singing

- **Benedetti**: Melodic whole tones sung over a P5 were 15 cents larger on average than those sung over a M3
- **Praetorius**: Vertical intervals in cadential contexts were significantly closer to Just Intonation than those in non-cadential contexts

Is there an effect of training?

Professions versus non-professions in solo experiment

EFFECT OF TRAINING

Accompaniment

- Non-pros' accompanied semitones were 3 cents larger than a cappella semitones

Consistency

- Pros were more consistent with one another

Interval size

 Pros' semitones were 6 cents larger on average (closer to equal temperament)

Meta-analysis example

Comparative analysis of Seashore and contemporary data

	H. Seashore <i>N</i> = 418	Devaney et al. 2011 <i>N</i> = 3981
Ascending semitones	96 (SD = 24)	96 (SD = 20)
Descending semitones	99 (SD = 24)	93 (SD = 18)
Ascending whole tones	192 (SD = 23)	198 (SD = 18)
Descending whole tones	197 (SD = 20)	201 (SD = 19)

Motivations.

1

A brief history

Quantitative approaches to performance analysis.

2

Extracting Performance Data from Recordings

MIDI-audio alignment for automatic analysis of recorded performances.

3

Experiments

Studies of intonation in the singing voice.

4

Conclusions

Summary and future directions.

5

Summary

Where we have been

This talk has

- provided a brief overview of the history of quantitative performance analysis
- highlighted some of the challenges of automatically extracting performance data from recordings and how to address them
- summarized some of my findings on vocal intonation practices in the western art music tradition

Future Work

Where I am going

- Developing more robust tools for automatic extraction of performance data from recordings
 - making the current tools more reliable and more accessible to other researchers

More contextualized experiments

- focused experiments about interactions in ensembles
- studying existing recordings of a singer performing the same piece at different points in their career

Integrating more qualitative information

- performers intentionality
- listener perception/reception

Acknowledgements

- School of Music and College of Arts and Sciences (OSU)
- Center for New Music and Audio Technologies (CNMAT)
- Distributed Digital Music Archives and Libraries (DDMAL)
- Centre for Research in Music Media and Technology (CIRMMT)
- Fonds de recherche sur la société et la culture (FQRSC)
- Social Sciences and Humanities Research Council of Canada (SSHRC)
- Advancing Interdisciplinary Research in Singing (AIRS)

Thank you!

References

Cary, H. December 1922. Are you a musician? Professor Seashore's specific psychological tests for specific musical abilities. *Scientific American* 326–327

Devaney, J. 2014. Estimating onset and offset asynchronies in polyphonic score-audio alignment. *Journal of New Music Research* 43 (3): 266–75..

Devaney, J., M. Mandel, D. Ellis, and I. Fujinaga. 2011. Automatically extracting performance data from recordings of trained singers. *Psychomusicology: Music, Mind and Brain* 21 (1–2).

Devaney, J., M. I. Mandel, and I. Fujinaga. 2012. Study of Intonation in Three-Part Singing using the Automatic Music Performance Analysis and Comparison Toolkit (AMPACT). *Proceedings of International Society for Music Information Retrieval conference*. 511–6.

Devaney, J., J. Wild, and I. Fujinaga. 2011 Intonation in solo vocal performance: A study of semitone and whole tone tuning in undergraduate and professional sopranos. In *Proceedings of the International Symposium on Performance Science*. 219–24.

Seashore, C. 1938. Psychology of Music. Iowa City, IA: University of Iowa Press.

Seashore, H. G. 1936. An objective analysis of artistic singing. In *University of Iowa Studies in the Psychology of Music. Vol. IV: Objective Analysis of Musical Performance*, ed. C. Seashore, 12–157. Iowa City, IA: University of Iowa...