IN THE CLAIMS

Under 37 C.F.R. § 1.121(c), please amend the claims as indicated below; a complete listing of the claims is provided pursuant to 37 C.F.R. § 1.121(c)(1):

1. (Currently amended) A compound of the formula:

wherein

Q is oxygen or sulfur;

X is hydrogen and Y is $\frac{\text{CHR}^2R^2}{\text{R}^2}$, $\frac{\text{NHOR}^2}{\text{NHOR}^2}$, or $\frac{\text{NHNR}^2R^3}{\text{NHOR}^2}$; or X and Y are taken together to form $\frac{\text{CR}^2R^3}{\text{R}^2}$; $\frac{\text{NNR}^2}{\text{NHOR}^2}$; or $\frac{\text{NNR}^2R^2}{\text{NHOR}^2}$;

 $R^1,R^2,$ and R^3 are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C_1 -C₆ alkanoyloxy, optionally substituted benzoyloxy, C_1 -C₆ alkyl, C_1 -C₆ alkoxy, C_3 -C₈ cycloalkyl, C_3 -C₈ cycloalkoxy, C_2 -C₆ alkenyl, C_2 -C₆ alkynyl, C_1 -C₆ haloalkyl, C_1 -C₆ haloalkoxy, C_3 -C₈ halocycloalkyl, C_3 -C₈ halocycloalkoxy, amino, C_1 -C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C_1 -C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 -C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, -P(O)(OR⁴)₂, -P(O)(NR⁴R⁵)₂, and -P(O)(NR⁴R⁵)(OR⁴), where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 -C₆ alkyl, C_3 -C₈ cycloalkyl, C_1 -C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

 $\label{eq:when X and Y are taken together to form = NNR^2R^3, R^2 \ and \ R^3 \ are taken together with the attached nitrogen to form an optionally substituted heterocycle;$

providing that Y and R1 are not both alkyl;

 R^{Λ} represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, $C_1\text{-}C_6$ alkanoyloxy, optionally substituted benzoyloxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_8$ delenyl, $C_2\text{-}C_6$ alkenyl, $C_1\text{-}C_6$ haloalkyl, $C_1\text{-}C_6$ haloalkoxy, $C_3\text{-}C_8$ halocycloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_3\text{-}C_8$ halocycloalkoxy, amino, $C_1\text{-}C_6$ alkylamino, $(C_1\text{-}C_6$ alkyl)(C_1-C_6 alkyl)amino, alkylcarbonylamino, N-(C_1-C_6 alkyl)(C_1-C_6 alkyl)alkylcarbonylamino, aminoalkyl, $C_1\text{-}C_6$ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, $C_1\text{-}C_6$ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, -P(O)(OR⁴)₂, -P(O)(NR⁴R⁵)₂, and -P(O)(NR⁴R⁵)(OR⁴), where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

RA represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH2)mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, $-P(O)(OR^{4'})_{2}$, $-P(O)(NR^{4'}R^{5'})_{2}$, and $-P(O)(NR^{4'}R^{5'})(OR^{4'})$, where $R^{4'}$, $R^{5'}$, and $R^{6'}$ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C1-C6 alkyl; and

 R^B represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m·Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, $C_1\text{-}C_6$ alkanoyloxy, optionally substituted benzoyloxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkenyl, $C_1\text{-}C_6$ haloalkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_3\text{-}C_8$ halocycloalkoxy, amino, $C_1\text{-}C_6$ alkylamino, $(C_1\text{-}C_6$ alkyl)(C_1-C_6 alkyl)amino, alkylcarbonylamino, N-(C_1-C_6 alkyl)alkylcarbonylamino, aminoalkyl, $C_1\text{-}C_6$ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, $C_1\text{-}C_6$ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂R⁴", -CONR⁵'R⁶", -P(O)(OR⁴")₂, -P(O)(OR⁴"S⁵)₂, and -P(O)(NR⁴"R⁵")(OR⁴"), where R⁴", R⁵", and R⁶" are each independently selected in each occurrence from the group consisting of hydrogen, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m'Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C1-C6 alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂R^{4"}, -CONR^{5"}R^{6"}, $-P(O)(OR^{4''})_2$, $-P(O)(NR^{4''}R^{5''})_2$, and $-P(O)(NR^{4''}R^{5''})(OR^{4''})$, where $R^{4''}$, $R^{5''}$, and $R^{6''}$ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C1-C6 alkyl.-is-described.

- $\label{eq:compound} 2. \ \mbox{(Original)} \ \ \mbox{The compound of claim 1, wherein X and Y are taken together to form $= CR^2R^3$.}$
- (Original) The compound of claim 1, wherein X and Y are taken together to form =CR²R³, and the carbon-carbon double bond formed thereby is an E-double bond.
- 4. (Original) The compound of claim 1, wherein Z is selected from the group consisting of hydroxy, amino, C_1 - C_6 alkylamino, and nitro.
- 5. (Original) The compound of claim 1, wherein Z' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- $\label{eq:constant} 6. \mbox{ (Original)} \mbox{ The compound of claim 1, wherein Z'' is selected from the group consisting of C_1-C_6 alkoxy and nitro.}$
- 7. (Original) The compound of claim 1, wherein X and Y are taken together to form $= \mathbb{C}R^2R^3$; and R^2 is $\mathbb{C}_{1^*}C_6$ haloalkyl or aminoalkyl; and R^1 is hydrogen.
 - 8. (Canceled)
- 9. (Original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of the substituents are adjacent substituents and are taken together with the attached carbons to form an heterocycle selected from the group consisting of dioxolane and dioxane.
- 10. (Original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle; and Z'' is selected from the group consisting of C_{1} - C_{6} alkoxy and nitro.
- 11. (Original) The compound of claim 1, wherein Q is oxygen; and R^A is 2,3-bis(C1-C6 alkoxy).
- $12. \ \ (Original) \ The \ compound \ of \ claim \ 1, \ wherein \ Q \ is \ oxygen; \ and \ R^1 \ is \ C_1-C_6 \ alkyl, \\ aminoalkyl, \ or \ C_1-C_6 \ haloalkyl.$
- 13. (Original) The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C₁-C₆ alkoxy), R^B is 8,9-alkylenedioxy, and X and Y are taken together to form =C R^2R^3 , where R^2 is hydrogen.
- 14. (Original) The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C_1 - C_6 alkoxy), R^B is 8,9-alkylenedioxy, X and Y are taken together to form $=CR^2R^3$, R^2 is hydrogen, and R^1 is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_3 - C_8 halocycloalkyl, amino- C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino- C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino- C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino- C_1 - C_6 alkyl.

15.-23. (Canceled)

- 24. (Previously presented) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier, excipient, or diluent therefor.
- 25. (Currently amended) A method for treating a mammal in need of relief from a disease state including cancer, comprising administering to the mammal an effective amount of a compound according to claim 1.
 - 26.-27. (Canceled)
 - 28. (New) A compound of the formula:

$$X \bigvee_{11}^{1} \bigvee_{R^B}^{8} R^B$$

wherein

Q is oxygen or sulfur;

 $\label{eq:X} X \ is \ hydrogen \ and \ Y \ is \ CHR^2R^3, NHR^2, NHOR^2, or \ NHNR^2R^3; or \ X \ and \ Y \ are \ taken together to form = CR^2R^3; = NR^2; = NOR^2; or = NNR^2R^3;$

 R^1 , R^2 , and R^3 are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkyl, C_1 - C_6 alkyl)amino, C_1 - C_6 alkyl)amino, alkylcarbonylamino, N- C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)aminoalkyl, C_1 - C_6 alkyl)aminoalkyl, C_1 - C_6 alkyl)aminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, - CO_2 R⁴, -CONR⁵R⁶, - $P(O)(OR^4)_2$, - $P(O)(NR^4$ R⁵)₂, and - $P(O)(NR^4$ R⁵) $O(R^6)$, where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl, or

when X and Y are taken together to form $=NNR^2R^3$, R^2 and R^3 are taken together with the attached nitrogen to form an optionally substituted heterocycle;

providing that Y and R1 are not both alkyl;

 R^{Λ} represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C_1 -C₆ alkanoyloxy, optionally substituted benzoyloxy, C_1 -C₆ alkyl, C_1 -C₆ alkoxy, C_2 -C₈ cycloalkyl, C_3 -C₈ cycloalkyl, C_3 -C₈ cycloalkyl, C_3 -C₆ alkenyl, C_2 -C₆ alkenyl, C_2 -C₆ alkynyl, C_1 -C₆ haloalkyl, C_1 -C₆ haloalkoxy, C_3 -C₈ halocycloalkyl, C_3 -C₈ halocycloalkyl, amino, C_1 -C₆ alkylamino, C_1 -C₆ alkylamino, C_1 -C₆ alkyl)(C_1-C₆ alkyl)amino, alkylcarbonylamino, N-(C_1-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C_1 -C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 -C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, -P(O)(OR⁴')₂, -P(O)(NR⁴'R⁵)₂, and -P(O)(NR⁴R⁵)(OR⁴), where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 -C₆ alkyl, C_3 -C₈ cycloalkyl, C_1 -C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

RA represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, -P(O)(OR4')2, -P(O)(NR4'R5')2, and -P(O)(NR4'R5')(OR4'), where R4', R5', and R6' are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl. C2-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C1-C6 alkyl; and

 R^B represents 2-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m·Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl, C_3 - C_6 alkenyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkyl, alkylamino, C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z'' is selected from the group consisting of -N₃, -CO₃R^{4*}, -CONR^{5*}R^{6*}, -P(O)(OR^{4*})₂, -P(O)(OR^{4*}S^{5*})₂, and -P(O)(OR^{4*}S^{5*})(OR^{4*}), where R^{4*}, R^{5*}, and R^{6*} are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl, where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle.

- 29. (New) The compound of claim 28, wherein the heterocycle is selected from the group consisting of dioxolane and dioxane.
- 30. (New) The compound of claim 28, wherein Z is selected from the group consisting of hydroxy, amino, C_1 - C_6 alkylamino, and nitro.
- 31. (New) The compound of claim 28, wherein Z' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.