Context

- Imagine you are working as a Data Scientist for an Online Wine Shop named "The Wine Land"
- As the name suggests, the online store specializes in selling different v arieties of wines.
- The online store receives a decent amount of traffic and reviews from its users.
- Leverage the "reviews" data and draw actionable insights from it.

What is Expected?

- Build a predictive model for predicting the wine "variety". Provide the o utput along with all features to a CSV file. Both Training & test data is p rovided here
- ullet Submit the source code used for building models in a zip or share the lin k to the GitHub repository.
- Also submit a short summary: Model used, features extracted, Model accura cy in train. Along with some visualization of data and top 5 actionable Insights from the Data.

• .

The Data Description is as follows:

- user name user name of the reviewer
- country -The country that the wine is from.
- review_title The title of the wine review, which often contains the vin tage.
- review_description A verbose review of the wine.
- designation The vineyard within the winery where the grapes that made the wine are from.
- points ratings given by the user. The ratings are between 0 -100.
- price The cost for a bottle of the wine
- province The province or state that the wine is from.
- region 1 The wine-growing area in a province or state (ie Napa).
- region_2 Sometimes there are more specific regions specified within a w ine-growing area (ie Rutherford inside the Napa Valley), but this value can sometimes be blank.
- winery The winery that made the wine
- variety The type of grapes used to make the wine. Dependent variable for task 2 of the assignment

Load Libreries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
%matplotlib inline
sns.set_style('whitegrid')
```

Load Train Data

In [3]:

```
train_raw_df = pd.read_csv('Knight ML Assignment/Data/train.csv')
train_raw_df.head()
```

Out[3]:

	user_name	country	review_title	review_description	designation	points	price	provin
0	NaN	Australia	Andrew Peace 2007 Peace Family Vineyard Chardo	Classic Chardonnay aromas of apple, pear and h	Peace Family Vineyard	83	10.0	Austra Otl
1	@wawinereport	US	North by Northwest 2014 Red (Columbia Valley (This wine is near equal parts Syrah and Merlot	NaN	89	15.0	Washing
2	NaN	Italy	Renato Ratti 2007 Conca (Barolo)	Barolo Conca opens with inky dark concentratio	Conca	94	80.0	Piedm
3	@vossroger	France	Domaine l'Ancienne Cure 2010 L'Abbaye White (B	It's impressive what a small addition of Sauvi	L'Abbaye	87	22.0	Southw Frar
4	@vossroger	France	Château du Cèdre 2012 Le Cèdre Vintage Malbec	This ripe, sweet wine is rich and full of drie	Le Cèdre Vintage	88	33.0	Frar Otl
4								•

In [4]:

```
train_raw_df.shape
```

Out[4]:

(82657, 12)

Load New Test Data

In [5]:

```
test_raw_df = pd.read_csv('Knight ML Assignment/Data/test.csv')
test_raw_df.head()
```

Out[5]:

	user_name	country	review_title	review_description	designation	points	price	provinc
0	@paulgwine	US	Boedecker Cellars 2011 Athena Pinot Noir (Will	Nicely differentiated from the companion Stewa	Athena	88	35.0	Orego
1	@wineschach	Argentina	Mendoza Vineyards 2012 Gran Reserva by Richard	Charred, smoky, herbal aromas of blackberry tr	Gran Reserva by Richard Bonvin	90	60.0	Mendoz Provinc
2	@vboone	US	Prime 2013 Chardonnay (Coombsville)	Slightly sour and funky in earth, this is a re	NaN	87	38.0	Californi
3	@wineschach	Argentina	Bodega Cuarto Dominio 2012 Chento Vineyard Sel	This concentrated, midnight-black Malbec deliv	Chento Vineyard Selection	91	20.0	Mendoz Provinc
4	@kerinokeefe	Italy	SassodiSole 2012 Brunello di Montalcino	Earthy aromas suggesting grilled porcini, leat	NaN	90	49.0	Tuscan
4								•

Remove Duplicate Rows

In [6]:

```
train_raw_df.drop_duplicates(keep = "first", inplace = True, ignore_index=True)
```

In [7]:

```
train_raw_df.shape
```

Out[7]:

(77641, 12)

Remove Unwanted Columns

• The Features 'user_name', 'designation', 'region_1', 'region_2' have lots of missing values and also these features are not much affected to predict target variable i.e, 'variety' of grapes.

```
In [8]:
train_raw_df.drop(['user_name', 'designation', 'region_1', 'region_2'], axis=1, inp
```

Remove Unwanted Columns From New Test Data

```
In [9]:
test raw df.drop(['user name', 'designation', 'region 1', 'region 2'], axis=1, inpl
```

Handle NULL values

```
In [10]:
def count null(df):
    print('*Column wise Count Of Null Values*\n')
    for i in range(len(df.columns)):
        print(df.columns[i], ":", len(df[df[df.columns[i]].isnull()==True]))
```

```
In [11]:
count null(train raw df)
*Column wise Count Of Null Values*
country: 33
review title : 0
review description: 0
points: 0
price : 5285
province: 33
winery: 0
variety: 0
In [12]:
count null(test raw df)
*Column wise Count Of Null Values*
```

```
country: 4
review_title : 0
review_description : 0
points: 0
price : 1394
province: 4
winery: 0
```

Drop NaN values

 The feature 'province' have 33 NaN values. Here we can't fill the data average data. Because 'province' depends on 'country'.

Train Data

In [13]:

```
train_raw_df.dropna(subset=['province'], inplace=True)
train_raw_df.reset_index(drop=True, inplace=True)
```

In [14]:

```
count_null(train_raw_df)

*Column wise Count Of Null Values*

country : 0
review_title : 0
review_description : 0
points : 0
price : 5281
province : 0
```

Test New Data

winery : 0
variety : 0

In [15]:

```
test_raw_df.dropna(subset=['province'], inplace=True)
test_raw_df.reset_index(drop=True, inplace=True)
```

In [16]:

```
count_null(test_raw_df)
```

```
*Column wise Count Of Null Values*
```

```
country : 0
review_title : 0
review_description : 0
points : 0
price : 1394
province : 0
winery : 0
```

Fill NAN Values or Imputation

- The feature 'price' have 5281 NaN values.
- So I fill the most frequent prices of apropreate countries instade of NaN values in 'price'.

Train Data

```
In [17]:
```

```
price_missed_countries = train_raw_df[train_raw_df['price'].isnull()==True]['countr

for country in price_missed_countries:
   indexes = train_raw_df[(train_raw_df['price'].isnull()==True) & (train_raw_df['
   for i in indexes:
        train_raw_df.loc[i, 'price'] = train_raw_df[train_raw_df['country'] == coun
```

In [18]:

```
count_null(train_raw_df)
```

Column wise Count Of Null Values

country : 0
review_title : 0
review_description : 0
points : 0
price : 0
province : 0
winery : 0

Test New Data

variety: 0

In [19]:

```
price_missed_countries = test_raw_df[test_raw_df['price'].isnull()==True]['country'

for country in price_missed_countries:
   indexes = test_raw_df[(test_raw_df['price'].isnull()==True) & (test_raw_df['coufor i in indexes:
        test_raw_df.loc[i, 'price'] = test_raw_df[test_raw_df['country'] == country
```

In [20]:

```
count_null(test_raw_df)

*Column wise Count Of Null Values*
```

country : 0
review_title : 0
review_description : 0

points : 0
price : 0
province : 0
winery : 0

Seperate Dependent (X) Variables and Independent (y) Variables of Train Data

```
In [21]:
```

```
train_df = train_raw_df.copy()
print('Train_Data_Shape', train_df.shape)
```

Train Data Shape (77608, 8)

In [22]:

```
X = train_df.drop(['variety'], axis=1)
y = train_df['variety']
```

In [23]:

```
print('X shape', X.shape)
print('y shape', y.shape)
```

```
X shape (77608, 7) y shape (77608,)
```

New Test Data

In [24]:

```
test_df = test_raw_df.copy()
print('New Data Shape', test_df.shape)
```

New Data Shape (20661, 7)

Visualization Of Target Variable

In [25]:

```
target_classes = y.value_counts()

print('Total Number Of Prediction Classes : ', len(target_classes))
print('-'*50)
print('\nCount of each class :\n'+'-'*50,'\n', target_classes)
```

Total Number Of Prediction Classes : 28

Count of each class :

Pinot Noir	9963
Chardonnay	8833
Cabernet Sauvignon	7153
Red Blend	6721
Bordeaux-style Red Blend	5206
Riesling	3876
Sauvignon Blanc	3748
Syrah	3117
Rosé	2606
Merlot	2336
Nebbiolo	2112
Zinfandel	2091
Sangiovese	2006
Malbec	1985
Portuguese Red	1843
White Blend	1774
Sparkling Blend	1621
Tempranillo	1364
Rhône-style Red Blend	1102
Champagne Blend	1075
Pinot Gris	1062
Cabernet Franc	1027
Grüner Veltliner	976
Portuguese White	835
Pinot Grigio	820
Bordeaux-style White Blend	806
Gewürztraminer	791
Gamay	759

Name: variety, dtype: int64

localhost:8888/notebooks/InternShala/2/TypesOfGrapesInWine.ipynb

In [26]:

```
plt.figure(figsize=(20, 5))
plt.xticks(rotation=60)
sns.countplot(x='variety', data=train_df, order = target_classes.index)
plt.show()
```


Conavert the Target Vriable Categorical to Numeric

In [27]:

```
target_dict = {}
i = 1
for cls in target_classes.keys():
   target_dict[cls] = i
   i += 1
print(target_dict)
```

```
{'Pinot Noir': 1, 'Chardonnay': 2, 'Cabernet Sauvignon': 3, 'Red Blen d': 4, 'Bordeaux-style Red Blend': 5, 'Riesling': 6, 'Sauvignon Blan c': 7, 'Syrah': 8, 'Rosé': 9, 'Merlot': 10, 'Nebbiolo': 11, 'Zinfande l': 12, 'Sangiovese': 13, 'Malbec': 14, 'Portuguese Red': 15, 'White B lend': 16, 'Sparkling Blend': 17, 'Tempranillo': 18, 'Rhône-style Red Blend': 19, 'Champagne Blend': 20, 'Pinot Gris': 21, 'Cabernet Franc': 22, 'Grüner Veltliner': 23, 'Portuguese White': 24, 'Pinot Grigio': 25, 'Bordeaux-style White Blend': 26, 'Gewürztraminer': 27, 'Gamay': 28}
```

In [28]:

```
y = y.map(target_dict)
y.head()
```

Out[28]:

```
0 2
1 4
2 11
3 26
4 14
```

Name: variety, dtype: int64

Visualization Of Independent Variable

In [29]:

X.head()

Out[29]:

	country	review_title	review_description	points	price	province	winery
0	Australia	Andrew Peace 2007 Peace Family Vineyard Chardo	Classic Chardonnay aromas of apple, pear and h	83	10.0	Australia Other	Andrew Peace
1	US	North by Northwest 2014 Red (Columbia Valley (This wine is near equal parts Syrah and Merlot	89	15.0	Washington	North by Northwest
2	Italy	Renato Ratti 2007 Conca (Barolo)	Barolo Conca opens with inky dark concentratio	94	80.0	Piedmont	Renato Ratti
3	France	Domaine l'Ancienne Cure 2010 L'Abbaye White (B	It's impressive what a small addition of Sauvi	87	22.0	Southwest France	Domaine l'Ancienne Cure
4	France	Château du Cèdre 2012 Le Cèdre Vintage Malbec	This ripe, sweet wine is rich and full of drie	88	33.0	France Other	Château du Cèdre

Replace space with underscore

In [30]:

```
X['country'].replace(' ', '_',regex=True, inplace=True)
```

Load Machine Learning Libreries

In [31]:

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.preprocessing import Normalizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from scipy.sparse import hstack
from sklearn import metrics
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report
from sklearn.model_selection import RandomizedSearchCV
from xgboost import XGBClassifier
```

Split Train data into Train, CrossValidation and Test

In [32]:

```
# train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_st

X_train, X_cv, y_train, y_cv = train_test_split(X_train, y_train, test_size=0.33, random_st)

**Train test split**

**Train test spl
```

Prepare Data

Declare Set1 for Bag Of Words & Set2 for TF-IDF

```
In [33]:
```

```
features_names_set1 = [] #set1 for BoW
features_names_set2 = [] #set2 for TfIdf
```

1. One Hot Encoding

1. country

In [35]:

```
# One hot Encoding for country
print("Before Vectorizations")
print('Train Shape : X', X_train.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test.shape, ', y', y_test.shape)
print("="*100)
# X_train_country = pd.get_dummies(X_train['country'], drop_first=True)
# X cv country = pd.get dummies(X train['country'], drop first=True)
# X test country = pd.get dummies(X train['country'], drop first=True)
vectorizer = CountVectorizer(max features=5000)
vectorizer.fit(X train['country'].values) # fit has to happen only on train data
# we use the fitted CountVectorizer to convert the text to vector
X train country = vectorizer.transform(X train['country'].values)
X cv country = vectorizer.transform(X cv['country'].values)
X test country = vectorizer.transform(X test['country'].values)
print("After Vectorizations")
print('Train Shape : X', X_train_country.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_country.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_country.shape, ', y', y_test.shape)
#print(X test school state.toarray()[0])
print("="*100)
print(vectorizer.get feature names())
for i in vectorizer.get feature names():
    features names set1.append(i)
    features_names_set2.append(i)
print('\nfeatures names set1 :', len(features names set1))
print('features_names_set2 :', len(features_names set2))
Before Vectorizations
Train Shape : X (34837, 7) , y (34837,)
CV Shape : X (17160, 7) , y (17160,)
Test Shape : X (25611, 7) , y (25611,)
After Vectorizations
Train Shape : X (34837, 38) , y (34837,)
         : X (17160, 38) , y (17160,)
Test Shape : X (25611, 38) , y (25611,)
['argentina', 'australia', 'brazil', 'bulgaria', 'canad
```

localhost:8888/notebooks/InternShala/2/TypesOfGrapesInWine.ipynb

ne', 'uruguay', 'us']

a', 'chile', 'croatia', 'cyprus', 'czech_republic', 'england', 'france', 'georgia', 'germany', 'greece', 'hungary', 'india', 'israel',

'italy', 'lebanon', 'luxembourg', 'macedonia', 'mexico', 'moldova',
'morocco', 'new_zealand', 'peru', 'portugal', 'romania', 'serbia',
'slovenia', 'south_africa', 'spain', 'switzerland', 'turkey', 'ukrai

features_names_set1 : 38
features_names_set2 : 38

2. Label Encoding

- 1. province
- 2. winery

In [36]:

```
# Source : https://stackoverflow.com/a/56876351
# Custom Class For LabelEncoder
class LabelEncoderExt(object):
    def
        init (self):
        It differs from LabelEncoder by handling new classes and providing a value
        Unknown will be added in fit and transform will take care of new item. It q
        self.label encoder = LabelEncoder()
        # self.classes = self.label encoder.classes
   def fit(self, data list):
        This will fit the encoder for all the unique values and introduce unknown v
        :param data list: A list of string
        :return: self
        self.label encoder = self.label encoder.fit(list(data list) + ['Unknown'])
        self.classes = self.label encoder.classes
        return self
   def transform(self, data list):
        This will transform the data list to id list where the new values get assig
        :param data list:
        :return:
        new data list = list(data list)
        for unique_item in np.unique(data_list):
            if unique item not in self.label encoder.classes :
                new_data_list = ['Unknown' if x==unique_item else x for x in new_da
        return self.label encoder.transform(new data list)
```

In [37]:

```
# Label Encoding for province
label encoder = LabelEncoderExt()
label encoder.fit(X train['province']) # fit has to happen only on train data
# print(X train['points'].shape)
# o/p : (34837,) need to reshape
# this will rise an error Expected 2D array, got 1D array instead:
# array=[105.22 215.96 96.01 ... 368.98 80.53 709.67].
# Reshape your data either using
# array.reshape(-1, 1) if your data has a single feature
                                                           (column)
# array.reshape(1, -1) if it contains a single sample.
                                                           (row)
# we use the LabelEncoder to convert the categorical data to numerical
X train province = label encoder.transform(X train['province']).reshape(-1,1)
X cv province = label encoder.transform(X cv['province']).reshape(-1,1)
X test province = label encoder.transform(X test['province']).reshape(-1,1)
print("After Label Encodeing")
print('Train Shape : X', X_train_province.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_province.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_province.shape, ', y', y_test.shape)
print("="*100)
features names set1.append(1)
features names set2.append(1)
print('\nfeatures_names_set1 :', len(features_names_set1))
print('features names set2 :', len(features names set2))
After Label Encodeing
Train Shape : X (34837, 1) , y (34837,)
CV Shape : X (17160, 1) , y (17160,)
Test Shape : X (25611, 1) , y (25611,)
features names set1: 39
```

features names set2: 39

In [38]:

```
# Label Encoding for winery
label encoder = LabelEncoderExt()
label encoder.fit(X train['winery']) # fit has to happen only on train data
# print(X train['points'].shape)
# o/p : (34837,) need to reshape
# this will rise an error Expected 2D array, got 1D array instead:
# array=[105.22 215.96 96.01 ... 368.98 80.53 709.67].
# Reshape your data either using
# array.reshape(-1, 1) if your data has a single feature
                                                           (column)
\# array.reshape(1, -1) if it contains a single sample.
                                                           (row)
# we use the LabelEncoder to convert the categorical data to numerical
X train winery = label encoder.transform(X train['winery']).reshape(-1,1)
X cv winery = label encoder.transform(X cv['winery']).reshape(-1,1)
X test winery = label encoder.transform(X test['winery']).reshape(-1,1)
print("After Label Encodeing")
print('Train Shape : X', X_train_winery.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_winery.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_winery.shape, ', y', y_test.shape)
print("="*100)
features names set1.append(1)
features names set2.append(1)
print('\nfeatures_names_set1 :', len(features_names_set1))
print('features names set2 :', len(features names set2))
After Label Encodeing
Train Shape : X (34837, 1) , y (34837,)
         : X (17160, 1) , y (17160,)
CV Shape
Test Shape : X (25611, 1) , y (25611,)
```

features_names_set1 : 40
features_names_set2 : 40

3. Encoding Numerical Features

1. points

2. price

In [39]:

```
# Normalize points
normalizer = Normalizer()
# print(X train['points'].shape)
# o/p : (34837,) need to reshape
# normalizer.fit(X train['price'].values)
# this will rise an error Expected 2D array, got 1D array instead:
# array=[105.22 215.96 96.01 ... 368.98 80.53 709.67].
# Reshape your data either using
# array.reshape(-1, 1) if your data has a single feature
                                                            (column)
# array.reshape(1, -1) if it contains a single sample.
                                                           (row)
normalizer.fit(X train['points'].values.reshape(-1,1))
X train points norm = normalizer.transform(X train['points'].values.reshape(-1,1))
X cv points norm = normalizer.transform(X cv['points'].values.reshape(-1,1))
X test points norm = normalizer.transform(X test['points'].values.reshape(-1,1))
print("After Label Encodeing")
print('Train Shape : X', X train_points_norm.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_points_norm.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_points_norm.shape, ', y', y_test.shape)
print("="*100)
features names set1.append(1)
features names set2.append(1)
print('\nfeatures_names_set1 :', len(features_names_set1))
print('features names set2 :', len(features names set2))
After Label Encodeing
Train Shape: X (34837, 1), y (34837,)
CV Shape
           : X (17160, 1) , y (17160,)
Test Shape : X (25611, 1) , y (25611,)
```

features_names_set1 : 41
features_names_set2 : 41

In [40]:

```
# Normalize price
normalizer = Normalizer()
# print(X train['points'].shape)
# o/p : (34837,) need to reshape
# normalizer.fit(X train['price'].values)
# this will rise an error Expected 2D array, got 1D array instead:
# array=[105.22 215.96 96.01 ... 368.98 80.53 709.67].
# Reshape your data either using
# array.reshape(-1, 1) if your data has a single feature
                                                            (column)
# array.reshape(1, -1) if it contains a single sample.
                                                           (row)
normalizer.fit(X train['price'].values.reshape(-1,1))
X train price norm = normalizer.transform(X train['price'].values.reshape(-1,1))
X cv price norm = normalizer.transform(X cv['price'].values.reshape(-1,1))
X test price norm = normalizer.transform(X test['price'].values.reshape(-1,1))
print("After Label Encodeing")
print('Train Shape : X', X train_price_norm.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_price_norm.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_price_norm.shape, ', y', y_test.shape)
print("="*100)
features names set1.append(1)
features names set2.append(1)
print('\nfeatures_names_set1 :', len(features_names_set1))
print('features names set2 :', len(features names set2))
```

```
After Label Encodeing
Train Shape : X (34837, 1) , y (34837,)
CV Shape : X (17160, 1) , y (17160,)
Test Shape : X (25611, 1) , y (25611,)
```

features_names_set1 : 42
features names set2 : 42

4. BoW

- 1. review title
- 2. review_description

In [41]:

```
# Bag of Word for review_title

vectorizer = CountVectorizer(min_df=10,ngram_range=(1,4), max_features=5000)
vectorizer.fit(X_train['review_title'].values) # fit has to happen only on train da

# we use the fitted CountVectorizer to convert the text to vector
X_train_review_title_bow = vectorizer.transform(X_train['review_title'].values)
X_cv_review_title_bow = vectorizer.transform(X_cv['review_title'].values)
X_test_review_title_bow = vectorizer.transform(X_test['review_title'].values)

print("After Vectorizations")
print('Train Shape : X', X_train_review_title_bow.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_review_title_bow.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_review_title_bow.shape, ', y', y_test.shape)

print("="*100)

for i in vectorizer.get_feature_names():
    features_names_set1.append(i)

print('\nfeatures_names_set1 :', len(features_names_set1))
```

```
After Vectorizations
Train Shape : X (34837, 5000) , y (34837,)
CV Shape : X (17160, 5000) , y (17160,)
Test Shape : X (25611, 5000) , y (25611,)
```

features_names_set1 : 5042

In [42]:

```
# Bag of Word for review description
vectorizer = CountVectorizer(min df=10,ngram range=(1,4), max features=5000)
vectorizer.fit(X train['review description'].values) # fit has to happen only on tr
# we use the fitted CountVectorizer to convert the text to vector
X train review description bow = vectorizer.transform(X train['review description']
X cv review description bow = vectorizer.transform(X cv['review description'].value
X test review description bow = vectorizer.transform(X test['review description'].v
print("After Vectorizations")
print('Train Shape : X', X_train_review_description_bow.shape, ', y', y_train.shape
print('CV Shape : X', X_cv_review_description_bow.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_review_description_bow.shape, ', y', y_test.shape)
print("="*100)
for i in vectorizer.get_feature_names():
    features names set1.append(i)
print('\nfeatures names set1 :', len(features names set1))
After Vectorizations
Train Shape: X (34837, 5000), y (34837,)
CV Shape
            : X (17160, 5000) , y (17160,)
```

Test Shape : X (25611, 5000) , y (25611,)

features names set1 : 10042

4. TF-IDF

- 1. review title
- 2. review description

In [43]:

```
# TF-IDF of review title
# We are considering only the words which appeared in at least 10 documents(rows or
vectorizer = TfidfVectorizer(min df=10)# its a countvectors used for convert text t
vectorizer.fit(X train['review title'].values)# that is learned from trainned data
# we use the fitted CountVectorizer to convert the text to vector
X train review title tf = vectorizer.transform(X train['review title'].values)
X_cv_review_title_tf= vectorizer.transform(X_cv['review_title'].values)
X test review title tf = vectorizer.transform(X test['review title'].values)
print("After Vectorizations")
print('Train Shape : X', X_train_review_title_tf.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_review_title_tf.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_review_title_tf.shape, ', y', y_test.shape)
print("="*100)
for i in vectorizer.get_feature_names():
    features names set2.append(i)
print('\nfeatures names set2 :', len(features names set2))
After Vectorizations
```

Train Shape: X (34837, 2352), y (34837,) : X (17160, 2352) , y (17160,) CV Shape Test Shape : X (25611, 2352) , y (25611,)

features names set2 : 2394

```
In [44]:
```

```
# TF-IDF of review description
# We are considering only the words which appeared in at least 10 documents(rows or
vectorizer = TfidfVectorizer(min df=10)# its a countvectors used for convert text t
vectorizer.fit(X train['review description'].values)# that is learned from trainned
# we use the fitted CountVectorizer to convert the text to vector
X train review description tf = vectorizer.transform(X train['review description'].
X_cv_review_description_tf= vectorizer.transform(X_cv['review_description'].values)
X test review description tf = vectorizer.transform(X test['review description'].va
print("After Vectorizations")
print('Train Shape : X', X_train_review_description_tf.shape, ', y', y_train.shape)
print('CV Shape : X', X_cv_review_description_tf.shape, ', y', y_cv.shape)
print('Test Shape : X', X_test_review_description_tf.shape, ', y', y_test.shape)
print("="*100)
for i in vectorizer.get_feature_names():
    features names set2.append(i)
print('\nfeatures_names_set2 :', len(features names set2))
After Vectorizations
Train Shape: X (34837, 4861), y (34837,)
            : X (17160, 4861) , y (17160,)
Test Shape : X (25611, 4861) , y (25611,)
```

features_names_set2 : 7255

Concatinating all the features (Set1)

```
In [45]:
```

```
# merge two sparse matrices: https://stackoverflow.com/a/19710648/4084039
from scipy.sparse import hstack
# Train
X_train_set1 = hstack((X_train_country, X_train_province, X_train_winery, X_train_p
               X train price norm, X train review title bow, X train review descrip
# Cross-Validation
X_cv_set1 = hstack((X_cv_country, X_cv_province, X_cv_winery, X_cv_points_norm, X_c
               X cv review title bow, X cv review description bow)).tocsr()
# Test
X_test_set1 = hstack((X_test_country, X_test_province, X_test_winery, X_test_points)
               X_test_price_norm, X_test_review_title_bow, X_test_review_description
#
#
print("Final Data matrix")
print(X train set1.shape, y train.shape)
print(X cv set1.shape, y cv.shape)
print(X test set1.shape, y test.shape)
print("="*100)
Final Data matrix
(34837, 10042) (34837,)
(17160, 10042) (17160,)
(25611, 10042) (25611,)
```

Concatinating all the features (Set2)

In [46]:

```
# merge two sparse matrices: https://stackoverflow.com/a/19710648/4084039
from scipy.sparse import hstack
# Train
X_train_set2 = hstack((X_train_country, X_train_province, X_train_winery, X_train_p
               X train price norm, X train review title tf, X train review descript
# Cross-Validation
X_cv_set2 = hstack((X_cv_country, X_cv_province, X_cv_winery, X_cv_points_norm, X_c
               X cv review title tf, X cv review description tf)).tocsr()
# Test
X_test_set2 = hstack((X_test_country, X_test_province, X_test_winery, X_test_points
               X_test_price_norm, X_test_review_title_tf, X_test_review_description
#
#
#
print("Final Data matrix")
print(X train set2.shape, y train.shape)
print(X_cv_set2.shape, y_cv.shape)
print(X_test_set2.shape, y_test.shape)
print("="*100)
Final Data matrix
(34837, 7255) (34837,)
(17160, 7255) (17160,)
(25611, 7255) (25611,)
```

Applying Model (XGBClassifier) on Train Data

I use the XGBClassifier based on type of Data

Using Bag Of Word (Set1)

Find Best Hyperparameters Using RandomizedSearchCV

In XGBClassifier, Hyperparameters are 'n_estimators' and 'learning_rate'

```
In [123]:
```

```
gbdt = XGBClassifier(objective='multi:softmax')
grid_params = {'n_estimators': [10, 50, 100, 150, 200], 'learning_rate':[0.0001, 0.
rs_cv_set1 = RandomizedSearchCV(gbdt,grid_params ,cv=3, scoring='roc_auc_ovr', n_jors_cv_set1.fit(X_train_set1, y_train)
```

Out[123]:

```
RandomizedSearchCV(cv=3, error score=nan,
                   estimator=XGBClassifier(base score=None, booster=No
ne,
                                            colsample bylevel=None,
                                            colsample bynode=None,
                                            colsample bytree=None, gamm
a=None,
                                            gpu id=None, importance typ
e='gain',
                                            interaction constraints=Non
e,
                                            learning rate=None,
                                            max delta step=None, max de
pth=None,
                                            min child weight=None, miss
ing=nan,
                                            monotone constraints=None,
                                            reg lambda=None,
                                            scale pos weight=None,
                                            subsample=None, tree method
=None,
                                            validate parameters=False,
                                            verbosity=None),
                   iid='deprecated', n iter=10, n jobs=-1,
                   param distributions={'learning rate': [0.0001, 0.00
1, 0.01,
                                                            0.1],
                                          'n estimators': [10, 50, 100,
150,
                                                           2001},
                   pre dispatch='2*n jobs', random state=None, refit=T
rue,
                    return_train_score=False, scoring='roc_auc_ovr', ve
rbose=0)
```

In [121]:

```
from sklearn.externals import joblib

# Save the model as a pickle in a file
# joblib.dump(rs_cv_set1, 'rs_cv_set1.pkl')

# # Load the model from the file
# rs_cv_set1 = joblib.load('rs_cv_set1.pkl')
```

Out[121]:

```
['rs cv.pkl']
```

In [130]:

The Best Hyperparameters

```
print('Best score: ', rs cv set1.best score )
print('k value with best score: ', rs_cv_set1.best_params_)
Best score: 0.9994549063487673
k value with best score: {'n_estimators': 100, 'learning_rate': 0.1}
Use Best Hyperparameter and Build Model
In [47]:
xgb set1 = XGBClassifier(objective='multi:softmax', n estimators=100, learning rate
xgb set1.fit(X_train_set1, y_train)
Out[47]:
XGBClassifier(base score=0.5, booster=None, colsample bylevel=1,
              colsample bynode=1, colsample bytree=1, gamma=0, gpu id=
-1,
              importance_type='gain', interaction_constraints=None,
              learning rate=0.1, max delta step=0, max depth=6,
              min child weight=1, missing=nan, monotone constraints=No
ne,
              n_estimators=100, n_jobs=0, num_parallel_tree=1,
              objective='multi:softprob', random state=0, reg alpha=0,
              reg_lambda=1, scale_pos_weight=None, subsample=1,
              tree method=None, validate parameters=False, verbosity=N
one)
In [49]:
from sklearn.externals import joblib
# Save the model as a pickle in a file
joblib.dump(xgb_set1, 'xgb_model_set1.pkl')
# # Load the model from the file
# xgb set1 = joblib.load('xgb model set1.pkl')
Out[49]:
['xgb model set1.pkl']
In [66]:
```

Predict Cross Validation Data

```
In [50]:

y_cv_set1_pred = xgb_set1.predict(X_cv_set1)
```

Confusion Matrix For Cross Validation Data

In [51]:

```
CM = confusion_matrix(y_cv, y_cv_set1_pred)
plt.figure(figsize=(20, 20))
ax = plt.axes()
sns.heatmap(CM, annot=True, xticklabels=list(target_classes.keys()), yticklabels=li
ax.set title('Confusion Matrix')
plt.show()
Bordeaux-style White Blend
```

Detail Report For Cross Validation Accuracy

In [52]:

<pre>print(classification_</pre>	report(v cv.	v cv set1 pred.	target names=li	st(target classes.
print (ctassification_	repore(y_ev,	y_cv_scti_prcu,	carge c_names—ci	.5 c (ca i g c c c ca 5 5 c 5 i

<u> </u>	·- ·				
	precision	recall	f1-score	support	
Pinot Noir	1.00	0.99	0.99	2203	
Chardonnay	0.99	1.00	0.99	1953	
Cabernet Sauvignon	1.00	1.00	1.00	1582	
Red Blend	0.87	0.91	0.89	1486	
Bordeaux-style Red Blend	0.93	0.92	0.92	1151	
Riesling	1.00	1.00	1.00	857	
Sauvignon Blanc	1.00	0.98	0.99	829	
Syrah	0.99	0.99	0.99	689	
Rosé	0.98	0.98	0.98	576	
Merlot	0.99	0.97	0.98	516	
Nebbiolo	0.99	1.00	0.99	467	
Zinfandel	1.00	1.00	1.00	462	
Sangiovese	0.93	0.88	0.90	444	
Malbec	1.00	0.99	0.99	439	
Portuguese Red	1.00	1.00	1.00	408	
White Blend	0.95	0.96	0.96	392	
Sparkling Blend	1.00	0.97	0.98	358	
Tempranillo	0.96	0.99	0.98	302	
Rhône-style Red Blend	0.87	0.79	0.83	244	
Champagne Blend	1.00	0.97	0.99	238	
Pinot Gris	1.00	1.00	1.00	235	
Cabernet Franc	0.99	1.00	0.99	227	
Grüner Veltliner	1.00	1.00	1.00	216	
Portuguese White	0.99	1.00	0.99	184	
Pinot Grigio	1.00	1.00	1.00	181	
Bordeaux-style White Blend	0.90	0.88	0.89	178	
Gewürztraminer	1.00	1.00	1.00	175	
Gamay	0.98	0.99	0.99	168	
accuracy			0.97	17160	
macro avg	0.97	0.97	0.97	17160	
weighted avg	0.97	0.97	0.97	17160	

Predict Test Data

In [53]:

```
y_test_set1_pred = xgb_set1.predict(X_test_set1)
```

Confusion Matrix For Cross Validation Data

In [54]:

```
CM = confusion_matrix(y_test, y_test_setl_pred)
plt.figure(figsize=(20, 20))
ax = plt.axes()
sns.heatmap(CM, annot=True, xticklabels=list(target_classes.keys()), yticklabels=li
ax.set_title('Confusion Matrix')
plt.show()
```


Detail Report For Test Accuracy

In [55]:

print(classification_report(y_test, y_test_set1_pred, target_names=list(target_clas

	precision	recall	f1-score	support	
Pinot Noir	1.00	0.99	0.99	3288	
Chardonnay	0.99	1.00	0.99	2915	
Cabernet Sauvignon	1.00	1.00	1.00	2360	
Red Blend	0.87	0.90	0.89	2218	
Bordeaux-style Red Blend	0.93	0.90	0.92	1718	
Riesling	1.00	1.00	1.00	1279	
Sauvignon Blanc	0.99	0.99	0.99	1237	
Syrah	0.99	1.00	0.99	1029	
Rosé	0.98	0.98	0.98	860	
Merlot	0.99	0.98	0.99	771	
Nebbiolo	0.99	1.00	0.99	697	
Zinfandel	1.00	1.00	1.00	690	
Sangiovese	0.92	0.89	0.91	662	
Malbec	1.00	0.99	1.00	655	
Portuguese Red	0.99	1.00	1.00	608	
White Blend	0.95	0.97	0.96	585	
Sparkling Blend	0.99	0.97	0.98	535	
Tempranillo	0.94	0.99	0.97	450	
Rhône-style Red Blend	0.89	0.83	0.86	364	
Champagne Blend	0.99	0.96	0.97	355	
Pinot Gris	1.00	1.00	1.00	350	
Cabernet Franc	0.97	0.99	0.98	339	
Grüner Veltliner	1.00	1.00	1.00	322	
Portuguese White	0.99	0.99	0.99	276	
Pinot Grigio	1.00	1.00	1.00	271	
Bordeaux-style White Blend	0.97	0.89	0.93	266	
Gewürztraminer	1.00	1.00	1.00	261	
Gamay	0.97	1.00	0.98	250	
accuracy			0.97	25611	
macro avg	0.97	0.97	0.97	25611	
weighted avg	0.97	0.97	0.97	25611	

Using TF-IDF (Set2)

Find Best Hyperparameters Using RandomizedSearchCV

• In XGBClassifier, Hyperparameters are 'n_estimators' and 'learning_rate'

```
In [125]:
```

```
gbdt = XGBClassifier(objective='multi:softmax')
grid params = {'n estimators': [10, 50, 100, 150, 200], 'learning rate': [0.0001, 0.
rs cv set2 = RandomizedSearchCV(gbdt, grid params, cv=3, scoring='roc auc ovr', n j
rs cv set2.fit(X train set2, y train)
Out[125]:
```

```
RandomizedSearchCV(cv=3, error score=nan,
                   estimator=XGBClassifier(base score=None, booster=No
ne,
                                            colsample bylevel=None,
                                            colsample bynode=None,
                                            colsample bytree=None, gamm
a=None,
                                            gpu id=None, importance typ
e='gain',
                                            interaction constraints=Non
e,
                                            learning rate=None,
                                            max delta step=None, max de
pth=None,
                                            min child weight=None, miss
ing=nan,
                                            monotone constraints=None,
                                            reg lambda=None,
                                            scale pos weight=None,
                                            subsample=None, tree method
=None,
                                            validate parameters=False,
                                            verbosity=None),
                   iid='deprecated', n iter=10, n jobs=-1,
                   param distributions={'learning rate': [0.0001, 0.00
1, 0.01,
                                                            0.1],
                                          'n estimators': [10, 50, 100,
150,
                                                           200]},
                   pre dispatch='2*n jobs', random state=None, refit=T
rue,
                    return_train_score=False, scoring='roc_auc_ovr', ve
rbose=0)
```

The Best Hyperparameters

```
In [127]:
```

```
print('Best score: ',rs_cv_set2.best_score_)
print('k value with best score: ',rs_cv_set2.best_params_)
Best score: 0.9993549068686683
k value with best score: {'n_estimators': 150, 'learning_rate': 0.1}
```

```
In [128]:
```

```
from sklearn.externals import joblib

# Save the model as a pickle in a file
joblib.dump(rs_cv_set2, 'rs_cv_set2.pkl')

# # Load the model from the file
# rs_cv_set2 = joblib.load('rs_cv_set2.pkl')

Out[128]:
['rs_cv_set2.pkl']
```

Use Best Hyperparameter and Build Model

```
In [56]:
```

```
xgb_set2 = XGBClassifier(objective='multi:softmax', n_estimators=150, learning_rate
xgb_set2.fit(X_train_set2, y_train)
```

Out[56]:

In [57]:

Out [57]:

['xgb_model_set2.pkl']

```
from sklearn.externals import joblib

# Save the model as a pickle in a file
joblib.dump(xgb_set2, 'xgb_model_set2.pkl')

# # Load the model from the file
# xgb_set2 = joblib.load('xgb_model_set2.pkl')
```

Predict Cross Validation Data

```
In [58]:
y_cv_set2_pred = xgb_set2.predict(X_cv_set2)
```

Confusion Matrix For Cross Validation Data

In [59]:

Detail Report For Cross Validation Accuracy

In [60]:

print(classificat	ion report(v cv.	v cv set2 pred.	target names=lis	t(target classes.
print (classificat.	ron_reperent	y_cv_3cc2_prca,	carge c_names—crs	c (car gc c_c casses i

<u> </u>					~ —
	precision	recall	f1-score	support	
Pinot Noir	0.99	0.99	0.99	2203	
Chardonnay	0.99	0.99	0.99	1953	
Cabernet Sauvignon	1.00	1.00	1.00	1582	
Red Blend	0.87	0.92	0.89	1486	
Bordeaux-style Red Blend	0.93	0.91	0.92	1151	
Riesling	1.00	1.00	1.00	857	
Sauvignon Blanc	1.00	0.98	0.99	829	
Syrah	0.99	0.99	0.99	689	
Rosé	0.98	0.96	0.97	576	
Merlot	0.98	0.97	0.98	516	
Nebbiolo	0.99	1.00	1.00	467	
Zinfandel	1.00	1.00	1.00	462	
Sangiovese	0.95	0.89	0.92	444	
Malbec	1.00	0.99	0.99	439	
Portuguese Red	1.00	1.00	1.00	408	
White Blend	0.96	0.96	0.96	392	
Sparkling Blend	0.99	0.97	0.98	358	
Tempranillo	0.96	0.99	0.97	302	
Rhône-style Red Blend	0.87	0.80	0.83	244	
Champagne Blend	0.99	0.97	0.98	238	
Pinot Gris	0.99	1.00	0.99	235	
Cabernet Franc	0.99	1.00	0.99	227	
Grüner Veltliner	1.00	1.00	1.00	216	
Portuguese White	0.99	1.00	1.00	184	
Pinot Grigio	1.00	1.00	1.00	181	
Bordeaux-style White Blend	0.91	0.88	0.89	178	
Gewürztraminer	1.00	1.00	1.00	175	
Gamay	0.99	0.99	0.99	168	
accuracy			0.97	17160	
macro avg	0.97	0.97	0.97	17160	
weighted avg	0.97	0.97	0.97	17160	

Predict Test Data

In [61]:

```
y_test_set2_pred = xgb_set2.predict(X_test_set2)
```

Confusion Matrix For Test Data

```
In [62]:
```

```
CM = confusion_matrix(y_test, y_test_set2_pred)
plt.figure(figsize=(20, 20))
ax = plt.axes()
sns.heatmap(CM, annot=True, xticklabels=list(target_classes.keys()), yticklabels=li
ax.set title('Confusion Matrix')
plt.show()
```

Detail Report For Test Accuracy

In [63]:

nrint/claccification	ranart(v tact	v tact cat2 arad	<pre>target_names=list(targe</pre>	t clack
hi Tiir (crassti Trartoii	repurtly test,	, y test setz pieu,	target mames-tist(targe	t Clas

	precision	recall	f1-score	support
Pinot Noir	0.99	0.99	0.99	3288
Chardonnay	0.99	1.00	0.99	2915
Cabernet Sauvignon	1.00	1.00	1.00	2360
Red Blend	0.87	0.91	0.89	2218
Bordeaux-style Red Blend	0.93	0.90	0.92	1718
Riesling	1.00	1.00	1.00	1279
Sauvignon Blanc	0.99	0.99	0.99	1237
Syrah	0.99	0.99	0.99	1029
Rosé	0.98	0.95	0.97	860
Merlot	0.99	0.98	0.98	771
Nebbiolo	0.99	1.00	0.99	697
Zinfandel	1.00	1.00	1.00	690
Sangiovese	0.91	0.90	0.91	662
Malbec	1.00	0.99	0.99	655
Portuguese Red	0.99	1.00	1.00	608
White Blend	0.96	0.97	0.96	585
Sparkling Blend	0.98	0.97	0.98	535
Tempranillo	0.94	0.99	0.97	450
Rhône-style Red Blend	0.89	0.80	0.84	364
Champagne Blend	0.99	0.96	0.97	355
Pinot Gris	1.00	1.00	1.00	350
Cabernet Franc	0.97	0.99	0.98	339
Grüner Veltliner	1.00	1.00	1.00	322
Portuguese White	0.99	1.00	0.99	276
Pinot Grigio	1.00	1.00	1.00	271
Bordeaux-style White Blend	0.95	0.89	0.92	266
Gewürztraminer	1.00	1.00	1.00	261
Gamay	0.96	0.99	0.98	250
accuracy			0.97	25611
macro avg	0.97	0.97	0.97	25611
weighted avg	0.97	0.97	0.97	25611

In []:

Conclusion

- From above Confusion Matrix and Classification Report the acccuracy of both Set1(i.e, using BoW) & Set2(i.e, using TF-IDF) have near about same accuracy.
- So we can use either BOF or TF-IDF.
- Here, I use both and create CSV.

In []:

Prepare Data for Final Model (Use All Train Data & Unseen Test Data)

1. One Hot Encoding

1. country

In [64]:

```
# One hot Encoding for country
print("Before Vectorizations")
print('Train Shape : X', X.shape, ', y', y.shape)
print('Test Shape : X', test df.shape)
print("="*100)
vectorizer = CountVectorizer(max features=5000)
vectorizer.fit(X['country'].values) # fit has to happen only on train data
# we use the fitted CountVectorizer to convert the text to vector
train country = vectorizer.transform(X['country'].values)
test country = vectorizer.transform(test df['country'].values)
print("After Vectorizations")
print('Train Shape : X', train_country.shape, ', y', y.shape)
print('Test Shape : X', test country.shape)
print("="*100)
print(vectorizer.get feature names())
Before Vectorizations
Train Shape : X (77608, 7) , y (77608,)
Test Shape : X (20661, 7)
After Vectorizations
Train Shape: X (77608, 38), y (77608,)
Test Shape : X (20661, 38)
```

```
['argentina', 'australia', 'austria', 'brazil', 'bulgaria', 'canada', 'chile', 'croatia', 'cyprus', 'czech_republic', 'england', 'france', 'georgia', 'germany', 'greece', 'hungary', 'india', 'israel', 'italy', 'lebanon', 'luxembourg', 'macedonia', 'mexico', 'moldova', 'morocco', 'new_zealand', 'peru', 'portugal', 'romania', 'serbia', 'slovenia', 's outh_africa', 'spain', 'switzerland', 'turkey', 'ukraine', 'uruguay', 'us']
```

2. Label Encoding

- 1. province
- 2. winery

In [65]:

```
# Label Encoding for province
label_encoder = LabelEncoderExt()
label_encoder.fit(X['province']) # fit has to happen only on train data
# we use the LabelEncoder to convert the categorical data to numerical
train_province = label_encoder.transform(X['province']).reshape(-1,1)
test_province = label_encoder.transform(test_df['province']).reshape(-1,1)
print("After Label Encodeing")
print('Train Shape : X', train_province.shape, ', y', y.shape)
print('Test Shape : X', test_province.shape)
```

```
After Label Encodeing
Train Shape : X (77608, 1) , y (77608,)
Test Shape : X (20661, 1)
```

In [66]:

```
# Label Encoding for winery
label_encoder = LabelEncoderExt()
label_encoder.fit(X['winery']) # fit has to happen only on train data
# we use the LabelEncoder to convert the categorical data to numerical
train_winery = label_encoder.transform(X['winery']).reshape(-1,1)
test_winery = label_encoder.transform(test_df['winery']).reshape(-1,1)
print("After Label Encodeing")
print('Train Shape : X', train_winery.shape, ', y', y.shape)
print('Test Shape : X', test_winery.shape)
```

```
After Label Encodeing
Train Shape : X (77608, 1) , y (77608,)
Test Shape : X (20661, 1)
```

3. Encoding Numerical Features

- 1. points
- 2. price

In [67]:

```
# Normalize points
normalizer = Normalizer()

normalizer.fit(X['points'].values.reshape(-1,1))

train_points_norm = normalizer.transform(X['points'].values.reshape(-1,1))

test_points_norm = normalizer.transform(test_df['points'].values.reshape(-1,1))

print("After Label Encodeing")
print('Train Shape : X', train_points_norm.shape, ', y', y.shape)
print('Test Shape : X', test_points_norm.shape)
```

After Label Encodeing Train Shape : X (77608, 1) , y (77608,) Test Shape : X (20661, 1)

In [68]:

```
# Normalize price
normalizer = Normalizer()

normalizer.fit(X['price'].values.reshape(-1,1))

train_price_norm = normalizer.transform(X['price'].values.reshape(-1,1))

test_price_norm = normalizer.transform(test_df['price'].values.reshape(-1,1))

print("After Label Encodeing")
print('Train Shape : X', train_price_norm.shape, ', y', y.shape)
print('Test Shape : X', test_price_norm.shape)
```

After Label Encodeing Train Shape : X (77608, 1) , y (77608,) Test Shape : X (20661, 1)

4. BoW

- 1. review title
- review_description

In [69]:

```
# Bag of Word for review_title

vectorizer = CountVectorizer(min_df=10,ngram_range=(1,4), max_features=5000)
vectorizer.fit(X['review_title'].values) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
train_review_title_bow = vectorizer.transform(X['review_title'].values)
test_review_title_bow = vectorizer.transform(test_df['review_title'].values)

print("After Vectorizations")
print('Train Shape : X', train_review_title_bow.shape, ', y', y.shape)
print('Test Shape : X', test_review_title_bow.shape)
```

After Vectorizations Train Shape : X (77608, 5000) , y (77608,) Test Shape : X (20661, 5000)

In [70]:

```
# Bag of Word for review_description

vectorizer = CountVectorizer(min_df=10,ngram_range=(1,4), max_features=5000)
vectorizer.fit(X['review_description'].values) # fit has to happen only on train da

# we use the fitted CountVectorizer to convert the text to vector
train_review_description_bow = vectorizer.transform(X['review_description'].values)
test_review_description_bow = vectorizer.transform(test_df['review_description'].va

print("After Vectorizations")
print('Train Shape : X', train_review_description_bow.shape, ', y', y.shape)
print('Test Shape : X', test_review_description_bow.shape)
```

After Vectorizations Train Shape : X (77608, 5000) , y (77608,) Test Shape : X (20661, 5000)

4. TF-IDF

- 1. review_title
- 2. review description

In [71]:

```
# TF-IDF of review title
# We are considering only the words which appeared in at least 10 documents(rows or
vectorizer = TfidfVectorizer(min df=10)# its a countvectors used for convert text t
vectorizer.fit(X['review title'].values)# that is learned from trainned data
# we use the fitted CountVectorizer to convert the text to vector
train review title tf = vectorizer.transform(X['review title'].values)
test review title tf = vectorizer.transform(test df['review title'].values)
print("After Vectorizations")
print('Train Shape : X', train_review_title_tf.shape, ', y', y.shape)
print('Test Shape : X', test review title tf.shape)
After Vectorizations
Train Shape: X (77608, 4752), y (77608,)
Test Shape : X (20661, 4752)
In [72]:
# TF-IDF of review description
# We are considering only the words which appeared in at least 10 documents(rows or
vectorizer = TfidfVectorizer(min df=10)# its a countvectors used for convert text t
vectorizer.fit(X['review_description'].values)# that is learned from trainned data
# we use the fitted CountVectorizer to convert the text to vector
train review description tf = vectorizer.transform(X['review description'].values)
test review description tf = vectorizer.transform(test df['review description'].val
print("After Vectorizations")
print('Train Shape : X', train_review_description_tf.shape, ', y', y.shape)
print('Test Shape : X', test review description tf.shape)
```

```
After Vectorizations
Train Shape : X (77608, 7128) , y (77608,)
Test Shape : X (20661, 7128)
```

Concatinating all the features (BoW)

In [73]:

Concatinating all the features (TF-IDF)

In [74]:

(20661, 11922)

Train Model (using BoW)

In [75]:

Predict (BoW)

```
In [76]:
```

```
test_bow_pred = xgb_bow.predict(test_bow)
```

Create Dataframe (BoW)

In [77]:

```
test_bow_pred_df = pd.DataFrame({'variety': test_bow_pred})
# Convert Numerical Label to Categorical
inv_map_target_dict = dict(zip(target_dict.values(), target_dict.keys()))
test_bow_pred_df = test_bow_pred_df.replace({'variety': inv_map_target_dict})
```

In [78]:

predicted_test_bow_df = pd.concat([test_df, test_bow_pred_df], axis=1)
predicted_test_bow_df.head()

Out[78]:

	country	review_title	review_description	points	price	province	winery	variety
0	US	Boedecker Cellars 2011 Athena Pinot Noir (Will	Nicely differentiated from the companion Stewa	88	35.0	Oregon	Boedecker Cellars	Pinot Noir
1	Argentina	Mendoza Vineyards 2012 Gran Reserva by Richard	Charred, smoky, herbal aromas of blackberry tr	90	60.0	Mendoza Province	Mendoza Vineyards	Malbec
2	US	Prime 2013 Chardonnay (Coombsville)	Slightly sour and funky in earth, this is a re	87	38.0	California	Prime	Chardonnay
3	Argentina	Bodega Cuarto Dominio 2012 Chento Vineyard Sel	This concentrated, midnight-black Malbec deliv	91	20.0	Mendoza Province	Bodega Cuarto Dominio	Malbec
4	Italy	SassodiSole 2012 Brunello di Montalcino	Earthy aromas suggesting grilled porcini, leat	90	49.0	Tuscany	SassodiSole	Sangiovese

Make CSV (BoW)

In [79]:

predicted_test_bow_df.to_csv('predicted_test_bow.csv', index=False)

Train Model (using TF-IDF)

```
In [80]:
```

Predict (TF-IDF)

```
In [81]:
```

```
test_tfidf_pred = xgb_tfidf.predict(test_tfidf)
```

Create Dataframe (TF-IDF)

```
In [82]:
```

```
test_tfidf_pred_df = pd.DataFrame({'variety': test_bow_pred})
# Convert Numerical Label to Categorical
inv_map_target_dict = dict(zip(target_dict.values(), target_dict.keys()))
test_tfidf_pred_df = test_tfidf_pred_df.replace({'variety': inv_map_target_dict})
```

In [83]:

 $\label{eq:predicted_test_tfidf_df} $$predicted_test_tfidf_df = pd.concat([test_df, test_tfidf_pred_df], axis=1)$ $$predicted_test_tfidf_df $$$

Out[83]:

	country	review_title	review_description	points	price	province	winery	1
0	US	Boedecker Cellars 2011 Athena Pinot Noir (Will	Nicely differentiated from the companion Stewa	88	35.0	Oregon	Boedecker Cellars	Pin
1	Argentina	Mendoza Vineyards 2012 Gran Reserva by Richard	Charred, smoky, herbal aromas of blackberry tr	90	60.0	Mendoza Province	Mendoza Vineyards	I
2	US	Prime 2013 Chardonnay (Coombsville)	Slightly sour and funky in earth, this is a re	87	38.0	California	Prime	Char
3	Argentina	Bodega Cuarto Dominio 2012 Chento Vineyard Sel	This concentrated, midnight-black Malbec deliv	91	20.0	Mendoza Province	Bodega Cuarto Dominio	I
4	Italy	SassodiSole 2012 Brunello di Montalcino	Earthy aromas suggesting grilled porcini, leat	90	49.0	Tuscany	SassodiSole	Sanç
		•••				***		
20656	US	Yorkville Cellars 2013 Rennie Vineyard Caberne	Clearly focused and fruit-driven, this wine ha	91	34.0	California	Yorkville Cellars	Cŧ
20657	France	Château Ribaute 2015 Senhal d'Aric Rosé (Corbi	Herbal tones of bay and rosemary are upfront o	84	20.0	Languedoc- Roussillon	Château Ribaute	
20658	US	Daou 2014 Reserve Cabernet Sauvignon (Paso Rob	Mocha cream, pencil shaving and dried herb aro	94	85.0	California	Daou	Ca Sau
20659	Spain	Peñascal 2011 Tempranillo Rosé (Vino de la Tie	Loud citrus and berry aromas precede an overlo	80	9.0	Northern Spain	Peñascal	
20660	US	Langtry 2005 Tephra Ridge Vineyard Cabernet Sa	With very ripe fruit and firm tannins, this mo	87	40.0	California	Langtry	Ca Sau

20661 rows × 8 columns

Make CSV (TF-IDF)

In []:						
<pre>predicted_test_tfidf_df.to_csv('predicted_test_tfidf.csv', index=False)</pre>						
In []:						
In []:						

* Observations *

- 1. The data is complicated.
- 2. The data have lots of missed values which affectes on predicion accuracy.
- 3. So the data need to proper imputation. So I apply folloing Imputation,
 - The feature 'price' have 5281 NaN values.
 - So I fill the most frequent prices of apropreate countries instade of NaN values in 'price'.
- 4. The data have the most categorical values so based on these type of data I decide to use the XGBClassifier because XGBClassifier doesn't based on distance algorithm.

In []:			