Module-Test-10 (Physics-JEE)

January 18, 2023

Section-A (One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

1. A $2 \, \text{kg}$ block slides on a horizontal floor with a speed of $4 \, \text{m s}^{-1}$. It strikes a uncompressed spring and compresses it till the block is motionless. The kinetic friction force is $15 \, \text{N}$ and spring constant is $10000 \, \text{N/m}$. The spring compresses by

2. An open knife of mass m is dropped from a height h on a wooden floor. If the blade penetrates up to the depth d into the wood, the average resistance offered by the wood to the knife edge is

a)
$$mg\left(1+\frac{h}{d}\right)$$
 Ans.
b) $mg\left(1+\frac{h}{d}\right)^2$
c) $mg\left(1-\frac{h}{d}\right)$
d) $mg\left(1+\frac{d}{h}\right)$

a) 5.5 cm *Ans*.

c) 11.0 cm

3. A vertical spring is fixed to one of its end and a massless plank fitted to the other end. A block is released from a height *h* as shown. Spring is in relaxed position. Then choose the correct statement.

- a) The maximum compression of the spring does not depend on h
- b) The maximum kinetic energy of the block does not depend on \boldsymbol{h}
- c) The compression of the spring at maximum K.E. of the block does not depend on h Ans.
- d) The maximum compression of the spring does not depend on k

- 4. A spring of force constant $800\,\mathrm{N/m}$ has an extension of 5 cm. The work done in extending it from 5 cm to 15 cm is
 - a) 16J

b) 8J *Ans*.

c) 32J

- d) 24 J
- 5. A block of mass m is kept on a platform which starts from rest with constant acceleration $\frac{g}{2}$ upwards as shown in figure. Work done by normal reaction on block in time t is

a) $\frac{mg^2t^2}{g}$

b) $\frac{3mg^2t^2}{g}$ Ans.

c) 0

- $d) -\frac{mg^2t^2}{8}$
- 6. A force F = -k(yi + xj) (where, k is a positive constant) acts on a particle moving in the x-y plane. Starting from the origin, the particle is taken along the positive X-axis to the point (a, 0) and then parallel to the Y-axis to the point (a, a). The total work done by the force F on the particle is
 - a) $-2ka^2$

b) $2ka^2$

c) $-ka^2$ Ans.

- d) ka^2
- 7. The relationship between the force F and position x of a body is as shown in figure. The work done in displacing the body from x = 1 m to x = 5 m will be

a) 30 J

b) 15J Ans.

c) 25 J

- d) 20 J
- 8. If W_1 , W_2 and W_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m. Find the correct relation between W_1 , W_2 and W_3 .

a) $W_1 > W_2 > W_3$

b) $W_1 = W_2 = W_3$ Ans.

c) $W_1 < W_2 < W_3$

d) $W_2 > W_1 > W_3$

9	. A force acts on a 2 kg object, so that done by this force in first 5 seconds?	ts position is given as a function of time	e as $x = 3t^2 + 5$. What is the work
	a) 850 J	b) 900J <i>Ans</i> .	
	c) 950J	d) 875J	
10	A particle moves in one dimension from rest under the influence of a force that varies with the distance travelled by the particle as shown in the figure. The kinetic energy of the particle after it has travelled 3 m is		
	a) 4J	b) 2.5J	

a) 22 J

c) 6.5 J Ans.

b) 9J

d) 5J

c) 18J

- d) 4.5J Ans.
- 12. A particle which is experiencing a force, is given by $\vec{F} = 3\hat{i} 12\hat{j}$, undergoes a displacement of $\vec{d} = 4\hat{i}$. If the particle had a kinetic energy of 3J at the beginning of the displacement, what is its kinetic energy at the end of the displacement?
 - a) 9J

b) 15J Ans.

c) 12J

- d) 10J
- 13. Two masses of $1\,\mathrm{g}$ and $4\,\mathrm{g}$ are moving with equal kinetic energies. The ratio of the magnitudes of their momenta is
 - a) 4:1

b) $\sqrt{2}:1$

c) 1:2 Ans.

- d) 1:16
- 14. A body of mass $m=10^{-2}\,\mathrm{kg}$ is moving in a medium and experiences a frictional force $F=-k\,v^2$. Its initial speed is $v_0=10\,\mathrm{m\,s^{-1}}$. If, after 10 s, its energy is $\frac{1}{8}m\,v_0^2$, the value of k will be
 - a) 10^{-3} kg/s

b) 10^{-4} kg/m Ans.

c) 10^{-1} kg/m s

- d) 10^{-3} kg/m
- 15. A projectile is fired from the origin with a velocity v_0 at an angle θ with the x-axis. The speed of the projectile at an altitude h is
 - a) $v_0 \cos \theta$

b) $\sqrt{v_0^2-2gh}$ Ans.

c) $\sqrt{v_0^2 \sin^2 \theta - 2gh}$

- d) None of these
- 16. A particle moves under the action of a force $F = 20\hat{i} + 15\hat{j}$ along a straight line $3y + \alpha x = 5$, where, α is a constant. If the work done by the force F is zero, then the value of α is
 - a) $\frac{4}{9}$

b) $\frac{9}{4}$

c) 3

d) 4 Ans.

- 17. A mass of 0.5 kg moving with a speed of 1.5 m s⁻¹ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k = 50 \,\mathrm{N/m}$. The maximum compression of the spring would be
 - a) 0.15 m Ans.

b) 0.12 m

c) 0.5 m

- d) 0.25 m
- 18. At time t = 0, particle starts moving along the x-axis. If its kinetic energy increases uniformly with time t, the net force acting on it must be proportional to
 - a) \sqrt{t}

b) constant

c) *t*

- d) $\frac{1}{\sqrt{t}}$ Ans.
- 19. A block of mass m is connected to a spring of force constant k. Initially the block is at rest and the spring has natural length. A constant force F is applied horizontally towards right. The maximum speed of the block will be (there is no friction between block and the surface)

20. A block tied between two identical springs is in equilibrium. If upper spring is cut, then the acceleration of the block just after cut is 5 m s⁻². Now if instead of upper string lower spring is cut, then the acceleration of the block just after the cut will be (Take $g = 10 \,\mathrm{m\,s^{-2}}$)

a) $1.25 \,\mathrm{m \, s^{-2}}$

c) $10 \,\mathrm{m}\,\mathrm{s}^{-2}$

d) $2.5 \,\mathrm{m \, s^{-2}}$

Section-B (Numerical Answer Type)

This section contains 10 questions. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place).

Do any 5 questions out of 10 Questions.

- 21. A ball of mass 1 kg is dropped from a tower. Find power of gravitational force at time t = 2 s. Take g = 10 m s⁻². [200]
- 22. A block of mass 5 kg is raised from the bottom of the lake to a height of 3 m without change in kinetic energy. If the density of the block is $3000 \,\mathrm{kg/m^3}$, then the work done is equal to [100]
- 23. A body is displaced from origin to (1 m, 1 m) by a force $\vec{F} = 2y\hat{i} + 3x^2\hat{j}$ along the path $y = x^2$, if the work done along the path is W then [W] is (where [] is greatest integer function) [2]

24. Two masses $m_1 = 10 \, \text{kg}$ and $m_2 = 5 \, \text{kg}$ are connected by an ideal string as shown in the figure. The coefficient of friction between m_1 and the surface is $\mu = 0.2$. Assuming that the system is released from rest. Calculate the velocity of blocks when m_2 has descended by 4 m. $(g = 10 \, \text{m s}^{-2})$ [4]

25. In the figure shown, all surfaces are smooth and force constant of spring is $10 \,\mathrm{N/m}$. Block of mass 2 kg is not attached with the spring. The spring is compressed by 2 m and then released. Find the maximum distance d travelled by the block over the inclined plane. Take ($g = 10 \,\mathrm{m\,s^{-2}}$). [2]

- 26. A rod of length 1.0 m and mass 1 kg fixed at one end is initially hanging vertical. The other end is now raised until it makes an angle 90° with the vertical. How much work is required? $(g = 10 \,\mathrm{m\,s^{-2}})$ [5]
- 27. In the given figure, system is released from rest. Friction is absent and string is massless. In time t = 0.3 s, work done by gravity on 2 kg block is $(g = 10 \,\mathrm{m\,s^{-2}})$ [3]

28. For the given graph find the work done by the force. [4]

- 29. Suppose you drag a block slowly of mass 1 kg on a horizontal rough plane for 2 m by applying a force of 5 N, then find the magnitude of work done by the friction force. [10]
- 30. A force F = (2+2x) acts on a particle in x-direction where F is in newton and x in metre. Find the work done by this force during a displacement from x = 1.0 m to x = 2.0 m. [5]