A 2024. február 19-i gyakorlat

- 1. Egy ötelemű minta esetén a mintaelemek összege 155, a mintaelemek négyzeteinek összege 4837. Határozza meg a mintaátlagot és a szórás torzítatlan becslését! átlag=31; s=2,83
- 2. Határozza meg a standard normális eloszlás
 - (a) 0.95-öd rendű kvantilisét, 1,645
 - (b) 0.975-öd rendű kvantilisét, 1,96
 - (c) 0.05-öd rendű kvantilisét, -1,645
 - (d) 0.025-öd rendű kvantilisét! -1,96
- 3. Határozza meg a 9 szabadsági fokú t-eloszlás
 - (a) 0.95-öd rendű kvantilisét, 1,83
 - (b) 0.975-öd rendű kvantilisét, 2,26
 - (c) 0.05-öd rendű kvantilisét, -1,83
 - (d) 0.025-öd rendű kvantilisét! -2,26
- 4. Az Ezt idd teát 200 grammos dobozokban árulják, a csomagológép szórása 4 gramm. A Fogyasztóvédelmi Felügyelőség lemérte öt véletlenszerűen kiválasztott teásdoboz tömegét, melyekre az alábbi grammban kifejezett értékek adódtak:

- (a) Hipotéziseit pontosan megfogalmazva és feltételezve, hogy a teásdobozok tömege normális eloszlást követ, döntsön 99%-os szinten, hogy az átlagos töltőtömeg tényleg 200 gramm, avagy kevesebb annál! Elfogadjuk, hogy az átlagos töltőtömeg 200 gramm (H0).
- (b) Hogyan döntene, ha a szórás ismeretlen lenne? Elfogadjuk, hogy az átlagos töltőtömeg 200 gramm (H0).
- 5. Egy áruházban 150 vásárlót kérdeztek a vásárlásukról. Átlagosan 14000 ft-ot költöttek, a szórás 2540 ft volt. Előző évben 13000 ft volt az átlag. Hipotéziseit pontosan megfogalmazva döntse el 99%-os szinten, hogy növekedett-e az átlagos költekezés?
 - (a) Tegyük fel, hogy a költött összeg normális eloszlású! Elfogadjuk, hogy nőtt az átlagos költekezés (H1).
 - (b) Hogyan döntünk, ha nem feltételezzük a normalitást? Elfogadjuk, hogy nőtt az átlagos költekezés (H1).
- 6. Egy péküzem egyik gyártósorán új adagoló gépet telepítettek. A beállítások és az előzetes tesztek alapján minden elkészült cipó tömege 380 gramm. Miután elkezdődött a termelés, szerették volna ellenőrizni, hogy megfelelően működik-e az adagoló, ezért 10 cipót véletlenszerűen kiválasztva és lemérve azok tömegét az alábbi, grammokban kifejezett értékeket kaptuk:

Ismert, hogy a cipók tömege normális eloszlású 6 gramm szórással. 95%-os döntési szintet használva vizsgálja meg azt az állítást, hogy a cipók átlagosan 380 grammot nyomnak! Elfogadjuk, hogy a cipók átlagosan 380 grammot nyomnak (H0).

A 2024. február 26-i gyakorlat

1. Egy péküzem egyik gyártósorán új adagoló gépet telepítettek. A beállítások és az előzetes tesztek alapján minden elkészült cipó tömege 380 gramm. Miután elkezdődött a termelés, szerették volna ellenőrizni, hogy megfelelően működik-e az adagoló, ezért 10 cipót véletlenszerűen kiválasztva és lemérve azok tömegét az alábbi, grammokban kifejezett értékeket kaptuk:

- (a) Ismert, hogy a cipók tömege normális eloszlású 6 gramm szórással. 95%-os megbízhatósági szintet használva vizsgálja meg azt az állítást, hogy a cipók átlagosan 380 grammot nyomnak! február 19. / 6. feladat
- (b) Ha csak a cipók tömegének normalitását tesszük fel, de a szórás ismeretlen, akkor hogyan dönt ugyanerről a kérdésről? Elfogadjuk, hogy a cipók átlagosan 380 grammot nyomnak (H0).
- 2. Egy üzem gyártósorán az egyik szerelési feladatra megadott szintidő 9 perc. Az e ponton dolgozó alkalmazottak már több kérvényben kérték a szintidő felemelését, mivel véleményük szerint az nem elegendő a feladat elvégzésére. Az üzem vezetősége egy ellenőrt küldött ki, aki 12 véletlenszerűen kiválasztott alkalommal megmérte a feladat elvégzéséhez szükséges időt. Az eredmények az alábbiak:

Hipotéziseit és az adatokra vonatkozó feltételeit pontosan megfogalmazva döntsön 99%-os szinten, igazuk van-e a munkásoknak! Elfogadjuk, hogy 9 percnél többre van szükség a feladatra (H1).

SPSS: Analyze \rightarrow Compare Means \rightarrow One-Sample T Test

	One-Sample Statistics								
N Mean/Átlag Std. Deviation/Szórás Std. Error Mean/Átlag szórása									
Szintido	12	9,2250	,22208	,06411					

	One-Sample Test											
Test $Value = 9$												
	95 % Confidence Interval											
					of the D	ifference						
	t	df	Sig.(2-tailed)	Mean Difference	Lower	Upper						
Szintido	3,510	11	0,005	0,22500	,0839	,3661						

3. Takarmánykukorica csőhossz adatokból (mm-ben) számított statisztikák értékeit foglalja össze az alábbi táblázat. A vizsgált kukoricacsöveket egy szállítmányból véletlenszerűen választották ki.

T-Test

One-Sample Statistics

	N	Mean	Std.Deviation	Std. Error Mean
Csohossz	25	98.7212	4,98925	0,99785

One-Sample Test

		Test Value = 120										
	95% Confidence Interv											
				Mean	of the Difference							
	t	df	Sig. (2-tailed)	Difference	Lower	Upper						
Csohossz	-21,325	24	0,025	-21,2788		-19.2194						

- (a) Legfeljebb mekkora érték lehetett a "Sig. (2-tailed)" rovatban, és miért?
- (b) Számítsa ki az üres helyeken levő értékeket ha tudjuk, hogy az "Std. Error Mean" rovatban 0.99785 van!
- (c) A vizsgált kukoricaszállítmány termelője azt állítja, hogy a fajtára jellemző csőhossz 105 mm. Az átvevő ezt sokallja. Adja meg a hipotéziseket és a b)-ben számolt értékeket is használva döntse el 90%-os biztonsággal, hogy kinek van igaza! Átvevőnek van igaza (H1).
- (d) Határozza meg a c) részben használt próbához tartozó empirikus szignifikancia szintet (p-értéket vagy megfigyelt elsőfajú hibát)!
- (e) A csőhosszra vonatkozó milyen alapfeltétel teljesülése esetén érvényesek az előző részben kapott eredmények? A minta mely másik jellemzőjétől függ az, hogy szükséges-e az előző alapfeltétel teljesülése? Az értékek normális eloszlásúak.
- 4. Űrlapok kitöltésével kapcsolatos monoton munkát végzők bizonyos hibaszázalékkal dolgoznak. A feltételezések szerint egy hónapban 35 darab az elrontott űrlapok várható száma. A vizsgált változó normális eloszlása feltételezhető. A szórás korábbi tapasztalatok szerint 6 darab. A tíz főre kiterjedő mintában az elrontott űrlapok száma egy hónapban az alábbi volt:

Hipotézisét pontosan megfogalmazva 5%-os szignifikanciaszinten döntsön arról, hogy a hibás űrlapok számának szórása lehet-e 6 darab! Elfogadjuk, hogy a szórás lehet 6 darab (H0).

5. Egy csővágó-automata gépnek 1200 mm hosszú csődarabokat kell levágnia. A gyártásközi ellenőrzés feladata, annak megállapítása, hogy a gép által gyártott darabok hosszmérete megfelel-e az előírásoknak. Előző adatfelvételből ismert, hogy a szóban forgó gép által gyártott darabok hossza normális eloszlású 3 mm szórással. A gyártásközi ellenőrzéshez kiválasztottak egy 16 elemű mintát. A csődarabok hossza a mintában:

$$1208, 1204, 1202, 1202, 1194, 1195, 1205, 1194, 1197, 1193, 1205, 1202, 1191, 1195, 1194, 1187$$

A gyár részlegvezetője azt mondja, hogy a csövek hosszának szórása nem haladja meg a 3 mm-t. Hipotézisét pontosan megfogalmazva döntsön 1%-os szignifikanciaszinten arról, hogy igaza van-e a részlegvezetőnek!

$$\left(\sum_{i=1}^{16} x_i = 19168, \quad \sum_{i=1}^{16} x_i^2 = 22963808\right)$$

Nincsen igaza, elfogadjuk, hogy a szórás nagyobb egyenlő, mint 3 mm (H0).

A 2024.március 4-i gyakorlat

Nemparaméteres χ^2 -próbák

1. A lapvásárlási szokásokat vizsgálták négy kategória alapján: napilap, sportlap, bulvár, egyéb. A vásárlók a kedvenc kategóriájukat jelölték meg. 200 vásárlót megkérdezve az alábbi eredményt kapták: 60 (napilap), 47 (sport), 53 (bulvár), 40 (egyéb). Egyenletes eloszlást követ-e a kedvenc lap választása a vásárlók körében, azaz azonos arányban vásárolják-e/preferálják-e a négy kategória lapjait? Hipotéziseit pontosan megfogalmazva döntését 95% biztonsággal hozza meg!

Elfogadjuk, hogy egyenletes eloszlást követ (H0).

SPSS: Data \rightarrow Weight Cases

Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow Chi-square

2. Egy ifjúsági baseball bajnokságon a szülők szabályszerűséget (kapcsolatot) véltek felfedezni a gyerekek mezének száma (melyet 3 csoportba osztottak: 0-9, 10-19, 20 vagy annál több) és a pályán lévő pozíciójuk (külső mező, belső mező és dobójátékosok) között. Ezért úgy döntöttek, hogy feljegyzéseket készítenek. Az adatok az alábbi táblázatban találhatóak.

	Belső mező	Külső mező	Dobójátékos
	(Infield)	(Outfield)	(Pitcher)
0-9	12	5	5
10-19	5	10	2
$20 \leq$	4	4	7

Hipotéziseit pontosan megfogalmazva egy alkalmas próba segítségével dötsön 95%-os szinten a vizsgált kérdésről!

SPSS: Data \rightarrow Weight Cases

Elfogadjuk, hogy a mezszám függ a pozíciótól (H1).

Analyze \rightarrow Descriptive Statistics \rightarrow Crosstabs

3. Egy felmérésben azt vizsgálták, hogy Indiana állam fiatal népességében különbözik-e egymástól a férfiak és a nők családi állapotának eloszlása. A 18-29 év közötti korú népességből vett 100 elemű mintában a 48 férfi és az 52 nő családi állapot szerinti megoszlása:

	férfiak	nők
nőtlen, hajadon	43,75%	17,31%
házas	41,67%	71,15%
özvegy, elvált	14,58%,	11,54%
összesen	100%	100%

- (a) Döntse el 95%-os megbízhatósági szinten a felmérésben vizsgált kérdést! Ha azt a döntést fogadta el, hogy más az eloszlás, akkor hol vannak a hiányzó férjek?
- (b) A következő SPSS outputban töltse ki a kipontozott helyeket! Döntsön 5%-os szignifikanciaszinten arról, hogy a Nem és a Családi állapot független-e egymástól!
 - a) Azt fogadjuk el, hogy a megoszlás nem egyezik meg (H1).
 - b) Elfogadjuk, hogy a Nem és a Családi állapot függenek egymástól (H1).

Crosstabs

családi állapot szerinti összetétel * NEM Crosstabulation

Count

		NE	EM	
		Férfi	Nő	Total
Családi állapot	nőtlen, hajadon	21	9	30
szerinti összetétel	házas	20	37	57
	özvegy, elvált	7	6	13
Total		48	52	100

Chi-Square Tests

			Asymp.
			Sig.
	Value	df	(2-sided)
Pearson Chi-Square	9,803 a	2	
Likelihood Ratio	10.002		
Linear-by-Linear Association	3.373	1	.066
N of Valid Cases	100		

- a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 6.24.
- 4. Egy csavargyárban a gyártott csavarok méretpontosságát és szakítószilárdságát vizsgálták. A 100 elemű mintából 60 mindkét szempontból megfelelő volt, 10 egyik szempontból sem. 20 csak méret, 10 csak szakítószilárdság szempontjából volt hibás.
 - (a) Döntse el 95%-os szinten, hogy van-e kapcsolat a nem megfelelő szakítószilárdság (a továbbiakban anyaghiba) és a mérethibásság között! A két tényező függ egymástól (H1).
 - (b) Döntse el 99%-os szinten, hogy a mérethelyes és a mérethibás csavarok között az anyaghibásak aránya ugyanaz-e!
 - (c) A szabványelőírás szerint a gyártott csavarok 70%-a mindkét szempontból megfelelő és 20% a mérethibásak aránya. Teljesül-e a szabványelőírás 95%-os szinten?

A 2024. március 11-i gyakorlat

Kétmintás paraméteres próbák

1. Az Árelhajlásvizsgáló Hivatal összehasonlította két konkurens hipermarket élelmiszerárait. Tíz véletlenszerűen kiválasztott terméket vizsgáltak, melyek árait az alábbi táblázat tartalmazza:

Termék	Α	В	С	D	Е	F	G	H	I	J
Alfa Hipermarket	464	158	376	112	98	92	38	74	66	38
Beta Hipermarket	432	148	416	104	84	98	36	62	76	34

Az árkülönbségeket normális eloszlásúnak tételezve fel döntsön 5%-os szignifikancia szinten (95%-os megbízhatósági szinten), van-e eltérés a két hipermarket élelmiszereinek árszintje között!

SPSS: Analyze \rightarrow Compare Means \rightarrow Paired-Samples T Test Nincsen eltérés az árak között (H0).

2. Egy felmérésben 12 azonos életkorú sportoló pulzusát mérik terhelés után azonnal és egy perc múlva. Az eredmények az alábbiak voltak:

Sportoló	1	2	3	4	5	6	7	8	9	10	11	12
azonnal	170	165	148	175	165	140	160	145	160	140	156	140
1 perc múlva	140	160	140	136	160	130	110	125	113	132	150	132

A pulzust normálisnak tételezve fel, döntsön 10%-os szinten arról, igaz-e, hogy terhelés után egy perccel átlagosan 20-szal kevesebb a sportolók pulzusa, mint közvetlenül terhelés után!

SPSS: Transform → Compute Variable: kulonbseg = azonnal - egy perc mulva Igaz (H0).

3. Általános iskolai tanulók féléves értékelése során megállapították, hogy Hajdú-Bihar vármegyében a 6. osztályos tanulók irodalom tantárgyból elért átlaga 4.33, szórása pedig 0.64. Egy debreceni általános iskola 6. osztályos diákjainak osztályfőnöke véletlenszerűen kiválasztotta 8 tanítványát és az alábbi irodalom érdemjegyeket jegyezte fel:

Egy hajdúszoboszlói általános iskolában szintén sor került a tanulók féléves értékelésre, amely során 6 véletlenszerűen kiválasztott 6. osztályos diák az alábbi érdemjegyeket szerezte irodalomból:

Hipotéziseit pontosan megfogalmazva döntsön 2%-os szignifikancia szinten (98%-os megbízhatósági szinten), hogy a hajdúszoboszlói diákok átlaga magasabb-e, mint a debrecenieké! A diákok félév során elért érdemjegyéről feltehetjük, hogy normális eloszlást követ, szórása pedig megegyezik a vármegye teljes diákságának körében mért értékkel. Nem magasabb (H0).

- 4. A Felsődörgicsei Sátorcövekgyár kilenc véletlenszerűen kiválasztott termékének hosszából számolt korrigált tapasztalati szórásnégyzet 63 mm². A konkurens Alsődörgicsei Cövek és Póznagyárban gyártott tizenhárom ugyancsak véletlenszerűen kiválasztott cövek esetén ez az érték 225 mm².
 - (a) Döntsünk 10%-os szignifikancia szinten (90%-os megbízhatósági szinten), van-e különbség a különböző gyárakból származó cövekek szórása között! Van különbség a szórások között (H1).
 - (b) Milyen, az adatokra vonatkozó feltételekre van szükség, hogy az előző pontbeli hipotézisvizsgálat végrehajtható legyen! Az értékek normális eloszlásúak legyenek.

5. Az angliai New Dumber golflabdagyárában egy újfajta golflabda borítást fejlesztettek ki. A tesztek azt mutatták, hogy ez az új borítás jóval ellenállóbb, mint a hagyományos. Felmerült azonban a kérdés hogy az új borítás nem változtatja-e meg az átlagos ütéstávolságot. Ennek eldöntésére 42 labdát próbáltak ki, 26 hagyományosat és 16 labdát az újak közül. A labdákat géppel lőtték ki, elkerülve ezzel az emberi tényező okozta szóródást. A yardban mért ütéstávolságok összesítő adatait, mely távolságokat mindkét esetben normális eloszlásúnak tételezzük fel, az alábbi táblázat tartalmazza:

Borítás	Mintaelemszám	Mintaátlag	Korrigált empirikus szórásnégyzet
Hagyományos	26	271.4	35.58
Új	16	268.7	48.47

- (a) 10%-os szignifikancia szinten (90%-os megbízhatósági szinten) igazoljuk, hogy nincs különbség az ütéstávolságok szórása között! Nincsen különbség a szórások között (H0).
- (b) Az (a) pontbeli szinten vizsgáljuk meg, hogy az új borítás megváltoztatja-e az átlagos ütéstávolságot! Nem változtatja meg az ütéstávolságot (H0).
- 6. Informatikus hallgatók a Programozás 1. tantárgy keretein belül választhattak a félév elején, hogy melyik nyelven szeretnének megtanulni programozni. A csoport egyik része a Python, a másik fele a Java nyelvet választotta. Az első zárthelyi dolgozat alkalmával ugyanazon feladat elvégzésére képes kódot kellett megírnia a hallgatóknak. Az alábbi táblázat 6 véletlenszerűen kiválasztott Python nyelven programozó és 4 Java-t tanuló hallgató kódjának futási sebességeit tartalmazza:

Programozási nyelv	Futási idő (sec)								
Phyton	0.025 0.03 0.002 0.021 0.011 0.025								
Java	0.001	$oxed{0.001} oxed{0.0011} oxed{0.00012} oxed{0.00012}$							

Hipotéziseit pontosan megfogalmazva döntsön 5%-os szignifikancia szinten (azaz 95%-os megbízhatósági szinten), hogy a Python nyelven kódoló hallgatók futási idejének átlaga magasabb-e, mint a Java-t preferálóké! A futási időről feltehetjük, hogy normális eloszlást követ. (A szöveg kissé eltér a forrásként használttól, ami a megoldás menetét is befolyásolja.)

SPSS: Analyze \rightarrow Compare Means \rightarrow Independent-Samples T Test

Magasabb az átlaga, mint a Javasoké (H1).

5. Az Debreceni Egyetemen az egyik statisztika szemináriumvezető minden hétfőn, szerdán és pénteken autóval jár ki a Tócóskertből a város másik végén fekvő Kassai úti campusra. Otthonról mindig azonos időben indul el és ugyanazon az útvonalon autózik. Úgy érzi azonban, hogy a menetideje függ attól, hogy a hét melyik napján van órája. Ezért aztán márciusban, áprilisban és májusban véletlenszerűen kiválasztott 5-5 hétfőt, szerdát és pénteket és lejegyezte a menetidőket. Adatainak összegzését az alábbi táblázat tartalmazza:

Nap	Menetidő					Összeg	Négyzet összeg
	(x)					$(\sum x)$	$(\sum x^2)$
Hétfő	28	34	29	34	30	155	4837
Szerda	24	27	25	25	22	123	3 039
Péntek	25	28	27	26	21	127	3 255
Összesen						405	11 131

(a) Töltse ki a szórásfelbontó táblázatot!

A szóródás oka	Eltérés négyzetösszeg	df	σ^2 becslése	F
Utazás napja	SSK =	M-1=	$s_k^2 =$	$s_k^2/s_b^2 =$
Hiba	SSB	n-M=	$s_b^2 =$	
Összesen	SST=	n-1=		

(b) Hipotéziseit pontosan megfogalmazva döntsön 1%-os szinten, igaz-e a szemináriumvezető sejtése!

SPSS: Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA

2024. március 25-i gyakorlat ¹

ANOVA és sokasági arány

1. Az Debreceni Egyetemen az egyik statisztika szemináriumvezető minden hétfőn, szerdán és pénteken autóval jár ki a Tócóskertből a város másik végén fekvő Kassai úti campusra. Otthonról mindig azonos időben indul el és ugyanazon az útvonalon autózik. Úgy érzi azonban, hogy a menetideje függ attól, hogy a hét melyik napján van órája. Ezért aztán márciusban, áprilisban és májusban véletlenszerűen kiválasztott 5-5 hétfőt, szerdát és pénteket és lejegyezte a menetidőket. Adatainak összegzését az alábbi táblázat tartalmazza:

Nap	Menetidő					Összeg	Négyzet összeg
	(x)					$(\sum x)$	$(\sum x^2)$
Hétfő	28	34	29	34	30	155	4837
Szerda	24	27	25	25	22	123	3 0 3 9
Péntek	25	28	27	26	21	127	3255
Összesen						405	11 131

(a) Töltse ki a szórásfelbontó táblázatot!

A szóródás oka	Eltérés négyzetösszeg	df	σ^2 becslése	F
Utazás napja	SSK= 121,6	M-1=2	$s_k^2 = 6,2$	$s_k^2/s_b^2 = 9,806$
Hiba	SSB= 74,4	n-M=12	$s_b^2 = 60.8$	
Összesen	SST= 196	n-1= 14		

(b) Hipotéziseit pontosan megfogalmazva döntsön 1%-os szinten, igaz-e a szemináriumvezető sejtése! H1-et fogadjuk el.

SPSS: Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA

2. Azt vizsgálták, hogy fiatalkorban van-e kapcsolat az intelligencia foka és a családi állapot között. Egy felmérésben Indiana állam 18-29 év közötti korú népességéből 100 elemű mintát vettek. A mintabeli 48 férfit és 52 nőt a családi állapotuk szerint 3-3 csoportba sorolták. A 6 csoporton belüli átlagos intelligenciahányadosok (IQ), valamint a férfiak és nők átlagos IQ-ja:

	férfiak	nők
nőtlen, hajadon	117.65	112.22
házas	106.37	111.53
özvegy, elvált	106.00	106.71
összes	111.00	111.00

(a) Az alábbi három táblázat rendre a következő b), c) és d) kérdéssel kapcsolatos. Töltse ki a kipontozott helyeket! Az alsó táblázat kitöltésekor vegye figyelembe a fenti táblázat utolsó sorát!

Oneway

NEM=ferfi

ANOVA^a

IQ

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between Groups	1517.028	2	758.514	8.207	.001
Within Groups	4158.99	45	92.422		
Total	5676.018	47			

a.NEM=ferfi

NEM=nö

ANOVA^a

IQ

	Sum of		Mean		
	Squares	$\mathrm{d}\mathrm{f}$	Square	F	Sig.
Between Groups	152.044	2	76.022	1.054	.356
Within Groups	3533.956	49	72.122		
Total	3686.000	51			

a.NEM=nö

Oneway

ANOVA

IQ

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between Groups		2			.002
Within Groups	8208.839	97	84.627		
Total		99			

A következőkben feltesszük, hogy az IQ normális eloszlásúnak tekinthető.

- (b) Döntse el 5%-os szinten, hogy az indianai fiatal férfiak esetében van-e kapcsolat az intelligencia foka és a családi állapot között! Van kapcsolat (H1).
- (c) Döntse el 5%-os szinten ugyanezt az indianai fiatal nők esetében! Nincsen kapcsolat (H0).
- (d) Döntse el 5%-os szinten ugyanezt az indianai teljes fiatal népesség esetében! Van kapcsolat (H1).
- 3. Péter talált egy elgörbült pénzérmét és kíváncsi volt, hogy ez befolyásolja-e a fej dobás valószínűségét. 400 alkalommal feldobta az érmét, ami 219 alkalommal mutatott fejet. Döntsön 95%-os szinten, hogy az elgörbült érmén azonos-e a fej, illetve az írás valószínűsége!

SPSS: Analyze → Nonparametric Test → Legacy Dialogs → Binomial Azonos a valószínűségük (H0).

- 4. Az egyik élemiszerbolt-hálózat üzleteibe érkező import baracknak eddig átlagosan 15%-a sérült meg szállítás közben. Miután beszállítót váltottak, az új szállítmányból megvizsgáltak 100 barackot. Ezek között 6 sérültet találtak. 5%-os szinten döntsön abban a kérdésben, megérte-e lecserélni a régi beszállítót! Megérte lecserélni (H1).
- 5. Egy felmérés során a háztartások mikrohullámú sütővel való ellátottságát vizsgálták. A véletlenszerűen kiválasztott 1000 háztartás 56%-ában találták meg a kérdéses háztartási gépet. 5%-os döntési szintet használva vizsgálja meg azt az állítást, miszerint a háztartásoknak kevesebb, mint 60%-a rendelkezik mikrohullámú sütővel! Igaz az állítás (H1).
- 6. A Kiskacsa Párt jelenleg nem tagja a parlamentnek, de a vezetői állítják, hogy bejutnak a közelgő választásokon. A bejutási határ 5%. Előzetes felmérés alapján 600 megkérdezettből 16-an szavaznának a Kiskacsa Pártra, 400-an a kormánypártra és 184-en az ellenzékre. Döntsön 5%-os szinten, hogy igaza van-e a Kiskacsa párt vezetőinek! Nincsen igazuk (H1).
- 7. Egy áruházból kifelé menet 500 főt, köztük 350 nőt és 150 férfit kérdeztek meg véletlenszerűen arról, hogy vásároltak-e. A nők közül 210-en, a férfiak közül 60-an válaszoltak igennel. Ellenőrizze 5%-os szignifikanciaszinten azt a feltevést, hogy a nők legalább 10%-ponttal nagyobb arányban vásárolnak, mint a férfiak! Igaz a feltevés (H0).
- 8. Az egyik országos közvélemény-kutató cég 1000 elemű független, azonos eloszlású mintával dolgozik. Két, egymás után 1 hónapos eltéréssel megismételt közvélemény-kutatás eredménye szerint valamely politikust a lakosság 32%-a, illetve 38%-a tartotta rokonszenvesnek. Vizsgáljuk meg 5%-os szignifikanciaszinten azt a feltevést, hogy adott politikus iránt nőtt-e a rokonszenv!

 Nőtt a rokonszenv (H1).