

Matériaux et structures composites

TP3 — Bords libres et contraintes hors-plan

Guillaume Couégnat

couegnat@lcts.u-bordeaux.fr

Stratifié [0/90]_s

Dimension 80mm x 20 mm —> symétrie en x, y et z : 1/8 de l'éprouvette modélisée

Epaisseur d'un pli : 1.25mm

Pli (Fibre carbone T300/matrice epoxy M18)

 E_1 = 170GPa, E_2 =9GPa, nu_{12} =0.34, G_{12} =4.8GPa, G_{13} = G_{23} =4.5GPa

Fichiers fournis: calcul1.inp et mesh1-twoplies-*.inp

Trois maillages:

- 1 élément par pli (mesh1-twoplies-oneperply.inp)
- 4 éléments par pli (mesh1-twoplies-fourperply.inp)
- · 8 éléments par pli (mesh1-twoplies-eightperply.inp)
- 1. Ouvrir le fichier calcul1.inp et examiner son contenu.
- 2. Pour chacun des trois maillages, lancer le calcul et observer la déformée le long du bord libre.

Eventuellement, vous pouvez amplifier la déformée :

Module "Visualization" > Options > Common

- 3. Pour le maillage le plus fin, tracer l'évolution des contraintes S_{23} et S_{33} le long de l'axe y au niveau de l'interface 0/90, du côté où le maillage est raffiné (x=0). Les contraintes devront d'abord être projetées dans le repère globale (cf. tutoriels).
- 4. Tracer l'évolution de la contraintes S₃₃ dans l'épaisseur de l'éprouvette pour un point situé près du bord libre.
- 5. Vérifier que les contraintes S₁₃ sont bien nulles partout dans le stratifié.

Stratifié [45/-45]_s

Dimension 80mm x 20 mm —> symétrie en z : 1/2 de l'éprouvette modélisée

Epaisseur d'un pli : 1.25mm

Pli (Fibre carbone T300/matrice epoxy M18)

 E_1 = 170GPa, E_2 =9GPa, nu_{12} =0.34, G_{12} =4.8GPa, G_{13} = G_{23} =4.5GPa

Fichiers fournis: mesh2-twoplies-*.inp

- 1. Renommer le fichier calcullinp en calcullinp, et modifier le pour mettre en données le nouveau calcul. Vous devrez:
 - i) utiliser les maillages mesh2-twoplies-*.inp,
 - ii) redéfinir les orientations (attention à conserver un repère à ORI-0 à 0° pour pouvoir projeter les contraintes dans le repère global),
 - iii) modifier les *solid section
 - iv) modifier les conditions limites.
- 2. Comme précédemment, observer la déformée obtenue pour les trois maillages

- 3. Tracer l'évolution le long de l'axe y des contraintes S_{33} , S_{23} et S_{13} au niveau de l'interface entre les plis. Vous les tracerez au centre de l'éprouvette (x=40) là où le maillage est raffiné.
- 4. À quoi peut-on s'attendre en bord d'éprouvette au vu des niveaux de contraintes horsplan ?

