МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Факультет прикладной математики, информатики и механики Кафедра прикладной механики и информатики

Отчет по лабораторной работе №4

на тему:

«Численное исследование приближения функции методом кубических сплайнов при увеличении количества отрезков разбиения»

Выполнил: студент 3 к. 1 гр. ПМИ в.о.

Бедарев Анатолий Андреевич

Проверил: к.ф-м.н, доц.

Гудович Николай Николаевич

Содержание

Постановка задачи	3
Указания к выполнению лабораторной работы	4
Ход выполнения работы	5
Выводы по работе	10
Список литературы	11
Приложение (листинг)	12

Постановка задачи

1. Составить и отладить программу приближенного нахождения значения функции с использованием методом интерполяции кубическими сплайнами. Запрограммировать вычисление аппроксимирующего многочлена в произвольной точке х* отрезка [a, b].

Входные данные:

- отрезок [a, b];
- функция F(x), по которой производится расчет значений в узлах интерполяции (значения которой приближаются интерполяционным многочленом)

$$F(x) = \frac{1-x}{1+x^2}, x \in [-1;2]; (1)$$

- произвольная точка x^* отрезка [a, b], для которой считается значение интерполяционного многочлена.

В программе предусмотреть вычисление набора узловых точек x_0 , x_1 , ..., x_n (считать равноотстоящими друг от друга на отрезке [a, b]).

Выходные данные:

- значение многочлена в точке x^* (приближенное значение функции).
- 2. Составить и отладить программу построения графиков исходной функции F(x) и ее интерполяционных кубических сплайнов, построенных по равноотстоящим узлам интерполяции на отрезке [a, b].
- **3**. Провести численный эксперимент для выяснения о сходимости графика интерполяционного сплайна к графику исходной функции и влиянии количества отрезков разбиения на точность интерполяции.

Указания к выполнению лабораторной работы

Приближение сплайном — это другой способ приближения функций, отличный как от интерполяции, так и от метода наименьших квадратов.

Хотя интерполяция все-таки присутствует в определенном смысле при приближении сплайном.

Если функция f задана на отрезке [a, b] и требуется приблизить ее на этом отрезке алгебраическим многочленом, то можно воспользоваться глобальной интерполяцией, а именно можно выбрать достаточно высокую степень п приближающего многочлена, разбить отрезок [a, b] на n подотрезков длины

$$h=\frac{b-a}{n}$$
, (1)

точками $x_i = a + i \cdot h$, (2)

где i = 0, 1, ..., n.

Далее рассматривается многочлен $P_n(x)$ степени не выше n, т.е.

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$
 (3)

При этом коэффициенты приближающего многочлена (3) подбираются из условий интерполяционности, т.е. условия совпадения значений многочлена P_n в точках x_i из формулы (2) со значениями приближающей функции:

$$P_n(x) = f(x_i), (4)$$

при i = 0, 1, ..., n.

Построенный многочлен называется глобальным интерполяционным многочленом для функции f(x) на отрезке [a,b].

Кроме глобальной, можно использовать еще *покальную интерполяцию*. Чаще всего для этого используют кубические сплайны. Под этим названием понимают функцию ϕ , заданную на всем отрезке [a, b], где нужно приблизить исходную функцию f(x), если эта функция ϕ удовлетворяет следующим требованиям:

- на каждом частичном отрезке разбиения $[x_{i-1}, x_i]$ функция ϕ совпадает с некоторым многочленом степени не выше 3;
- во всех внутренних точках хi значение производной k-го порядка должно совпадать со значением производной того же порядка в точке x_{i+1} ;
- условию интерполяционности кубического сплайна.

Ход выполнения работы

Выполнение лабораторной работы проводилось на языке технического моделирования MatLab R2017a.

Для выполнения поставленных задач было разработано несколько программных модулей (см. Приложение).

На первом этапе в среде MatLab разработан алгоритмы для нахождения коэффициентов интерполяционных кубических сплайнов, который оформлен отдельным программным модулем в файле:

• *coefSpline.m* – модуль, реализующий вычисление коэффициентов.

Для вычисления значений функции F(x) для узла x использовался реализованный ранее в первых трех лабораторных работах модуль f.m.

Модуль *coefSpline* получает на вход в качестве параметров концы отрезка [a, b] и количество подотрезков (отрезков разбиения исходного отрезка, то есть количество сплайнов), возвращая двумерный массив коэффициентов всех найденных сплайнов, в котором каждая строка — набор коэффициентов кубического сплайна.

Вызов модуля осуществляется командой:

Модуль возвращает матрицу коэффициентов С, чтобы затем на ее основе можно было рассчитать значение интерполяционного сплайна в любой точке внутри отрезка [a, b].

На втором этапе в среде MatLab разработан модуль *pointSpline.m*, реализующий вычисление значения интерполяционного сплайна в точке x, а также дополнительные модули для формирования графиков.

Первый модуль (pointSpline) получает в качестве передаваемых параметров концы отрезка [a, b], количество подотрезков разбиения N и значение x, для которого надо посчитать Spline(x):

$$Spline_x = pointSpline(a, b, N, x)$$

Построение графиков выполняют следующие модули:

- *plotSpline.m* выводит график сплайна, совмещенный с графиком функции и узловыми точками;
- *plotDeltaSpline.m* выводит совмещенные графики зависимости средней абсолютной ошибки интерполяции от количества отрезков разбиения N;
- *deltaSpline.m* вспомогательный модуль для расчета средней абсолютной ошибки интерполяции.

Вызываются эти модули следующим образом:

```
plotSpline(a, b, N)
plotDeltaSpline(a, b, N_start, N_end)
deltaSpline(Y1, Y2)
```

где а и b - границы отрезка, N – количество отрезков разбиения, N_start , N_end – начальное и конечное значение диапазона перебора числа узловых точек.

При построении графиков равноотстоящие узлы интерполяции дополняются промежуточными точками, поскольку узловых точек недостаточно для демонстрации расхождения графиков (в узловых точках они совпадают).

На третьем этапе для выяснения вопроса о сходимости графика интерполяционного сплайна к графику исходной функции и влиянии количества отрезков разбиения на точность интерполяции выполнен численный эксперимент. Результаты представлены на рис. 1 и 2.

Рисунок 1 — Сравнение точности приближения при различных значениях количества отрезков разбиения

Рисунок 2 Сравнение точности приближения при различных значениях количества отрезков разбиения

Изменяя степень количество отрезков разбиения от 2 до 50, были получены сравнительные графики (рис. 1 и 2). Их анализ показал, прежде всего, что интерполяционный сплайн для нашей функции обладает сходимостью с точностью до некоторой постоянной ошибки вычисления.

График зависимости ошибки интерполяции (рис. 3) имеет участок интенсивного снижения ошибки (соответствует количеству отрезков разбиения от 2 до 7), после чего снижение ошибки практически полностью останавливается. Очевидно, что на практике для нашей функции достаточно ограничиться количеством отрезков разбиения равным 7, а в некоторых случаях даже 6 и 5.

Рисунок 3 — Зависимость средней ошибки интерполяции от количества отрезков разбиения

Таким образом, интерполяция кубическими сплайнами является очень эффективным способом приближения сложных функций, поскольку оперирует только решением разрешимых СЛАУ и в силу этого не требует серьезных вычислительных ресурсов, а также ввиду того, что она дает высокий уровень сходимости даже при небольшом количестве отрезков разбиения (а значит и узлов интерполяции), что указывает на серьезное преимущество перед методом интерполяции многочленом Лагранжа (глобальным).

К отрицательной стороне метода можно отнести необходимость определения для каждого участка интерполяции своего собственного интерполяционного многочлена, что означает, что мы теряем универсальность приближения одной и той же функцией для всего отрезка [a, b].

Выводы по работе

- 1. В ходе лабораторной работе рассмотрен способ приближения функции с использованием метода интерполяции кубическими сплайнами; разработаны функциональные модули для системы MatLab, с помощью которых можно проводить интерполяцию функций.
- 2. В результате численного эксперимента установлено, что интерполяционный кубический сплайн для заданной функции обладает сходимостью с точностью до некоторой ошибки, которая тем меньше, чем больше количество отрезков N разбиения участка [a, b]. При высоких значениях N ошибка интерполяции обусловлена прежде всего ошибками округления.
- 3. Преимуществом способа приближения функции с использованием метода интерполяции кубическими сплайнами перед методом наименьших квадратов (МНК) являются низкие требования к вычислительным ресурсам, что обусловлено низкой степенью интерполяционного полинома и использование разрешимых СЛАУ для нахождения коэффициентов интерполяционных полиномов, тогда как МНК требует гораздо более серьезной вычислительной нагрузки.
- 4. Преимуществом способа приближения функции с использованием метода интерполяции кубическими сплайнами перед методом интерполяции многочленом Лагранжа (глобальным) является наличие сходимости и более низкая ошибка интерполяции при тех же значениях степени полинома.
- 5. К отрицательной стороне способа приближения функции с использованием метода интерполяции кубическими сплайнами можно отнести необходимость определения для каждого участка интерполяции своего собственного интерполяционного многочлена, что означает, что мы теряем универсальность приближения одной и той же функцией для всего отрезка [a, b].
- 6. Для рассматриваемой в работе функции достаточный уровень приближения достигается при количестве отрезков разбиения N = 7. Дальнейшее увеличение N дает несущественный прирост точности.

Список литературы

- 1. *Гудович Н.Н.* Элементы численных методов: учебное пособие. Вып 4. Кубические сплайны. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2017 г. 36 с.
- 2. *Кетков, Ю.Л. и др.* Matlab 7: программирование, численные методы / Ю.Л. Кетков, А.Ю. Кетков, М.М. Шульц, СпБ.: БХВ-Петербург, 2005 г. -752 с.

Приложение (листинг)

Модуль MatLab f.m

```
function Y=f(X)
Y = (1-X)./(1+X.^2);
end
```

Модуль MatLab coefSpline.m

```
function C = coefSpline(a, b, N)
% Функция для определения формы сплайна (массив коэффициентов каждого
% сплайна)
% Входные параметры:
% а - левый конец отрезка интерполяции,
% b - правый конец отрезка интерполяции,
% N - количество отрезков разбиения отрезка
% 1 определяем узловые точки:
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
% 2 Определяем рр-форму сплайна (используемую в m-файлах ppval, mkpp, unmkpp)
pp = spline(X, Y);
% 3 Находим коэффициенты и сопутствующие параметры:
[breaks, coeffs, I, k] = unmkpp(pp);
C = coeffs;
end
```

Модуль MatLab pointSpline.m

```
function plotSpline(a, b, N)

% Функция построения сравнительного графика f(x)

% и вычисленных значений интерполяционных кубических сплайнов

% Входные параметры:

% а - левый конец отрезка интерполяции,
```

```
% b - правый конец отрезка интерполяции,
% N - количество отрезков разбиения отрезка
% 1 Создаем новое окно для графика и подписываем оси
figure;
xlabel('x');
ylabel('y');
hold on;
grid on;
% 2 Печатаем узловые точки:
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
plot (X, Y, 'ro');
% 3 Вычисляем сплайны и находим значения в 10000 точек отрезка:
XI = linspace(a, b, 10000); % 10000 расчетных точек
YI = spline(X, Y, XI);
plot (XI, YI, 'b');
% 4 Печатаем график функции:
Y = f(XI);
plot(XI, Y, 'r--');
% 5 Подписываем легенду
title('Интерполяция кубическими сплайнами', 'FontName', 'Courier');
h1 = legend('Узловые точки', 'Кубические сплайны', 'Функция');
set(h1, 'FontName', 'Courier');
% 6 Выставляем более-менее приемлемый масштаб:
axis([a b min(Y)-0.2 max(Y)+0.2])
end
```

Модуль MatLab plotSpline.m

```
function YS = pointSpline(a, b, N, x)

% Функция для определения значений сплайна в точке x (или массиве точек x)

% Входные параметры:
```

```
% а - левый конец отрезка интерполяции,
% b - правый конец отрезка интерполяции,
% N - количество отрезков разбиения отрезка
% x - точка или массив точек, в которых нужно посчитать значения сплайна
% 1 определяем узловые точки:
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
% 2 Определяем рр-форму сплайна (используемую в m-файлах ppval, mkpp, unmkpp)
pp = spline(X, Y);
% 3 Вычисляем pp-форму в узловых точках сетки:
YS = ppval(pp, x);
end
```

Модуль MatLab deltaSpline.m

```
function d = deltaSpline(Y1, Y2)
% Функция вычисления погрешности между значениями функции и значениями
% кубических сплайнов
% Ү1 - массив значейний функции f(x)
% Ү2 - массив значений кубических сплайнов
n = length(Y1); % Количество узловых точек
D = Y1 * 0; % Матрица разности
for i = 1 : n
D(i) = Y1(i) - Y2(i);
end
d = 0;
for i = 1 : n
d = d + abs(D(i));
end
d = d / n;
end
```

Модуль MatLab plotDeltaSpline.m

```
function plotDeltaSpline(a, b, N_start, N_end)
% Функция для построения графика зависимости погрешности интерполяции от
% количества точек разбиения N
% Входные параметры:
% а - левый конец отрезка интерполяции,
% b - правый конец отрезка интерполяции,
% N start - начальное количество отрезков разбиения отрезка
% N end - конечное количество отрезков разбиения отрезка
% 1 Создаем новое окно для графика и подписываем оси
figure;
xlabel('Количество отрезков разбиения, N');
ylabel('Средняя абсолютная погрешность');
grid on; hold on;
% 2 Считаем погрешности для каждого значения N из промежутка N_start, N_end
EN = N_start : N_end;
E = EN * 0; % Создаем матрицу ошибок
k = 1;
for N = N_start : N_end
% 1 Находим узловые точки:
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
% 2 Вычисляем сплайны и находим значения в 10000 точек отрезка:
XI = linspace(a, b, 10000); % 10000 расчетных точек
Y1 = spline(X, Y, XI);
% 3 Вычисляем значения функции в этих точках:
Y2 = f(XI);
% 4 Считаем значения ошибок
E(k) = deltaSpline(Y1, Y2);
k = k+1;
end
```

```
% 3 Печатаем график:

plot (EN, E, 'b');

% 5 Подписываем легенду

title('Точность интерполяции кубическими сплайнами', 'FontName', 'Courier');

h1 = legend('Погрешность');

set(h1, 'FontName', 'Courier');

% 6 Выставляем более-менее приемлемый масштаб:

% axis([N_start N_end 0 0.23]) % axis([size1 size2 0-2 3+2])

end
```