Simulation einer Multikapillarsäule Abschlussvortrag Diplomarbeit

Elisabeth Böhmer

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl 11

24. September 2015

Betreuer: Prof. Dr. Sven Rahmann Prof. Dr. Jörg Rahnenführer Einleitung

Gliederung

- 1 Einleitung
- 2 Grundlagen
- 3 2-Zustände Modell
- 4 3-Zustände Modell
- 5 Zusammenfassung und Ausblick

Worum geht es?

Nettes Beispiel? Anwendungen?

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase
- Varianten:
 - Flüssigchromatographie
 - Gaschromatographie
 - Gepackte Säulen
 - Kapillarsäulen

Prinzip der Gaschromatographie

Einleitung

O mobile Phase Analyt

Lösung Adsorption

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks

- Alternativ: Weitere Analyse durch zum Beispiel
 - Massenspektrometrie (MS)
 - ► Ionen-Mobilitäts-Spektrometrie (IMS)

Peak charakterisiert durch:

- Lage des Maximums
- Form
 - ► Idealfall: Gaußkurve
 - ► Abweichung: Fronting, Tailing
 - Quartilskoeffizient
- Breite
 - ► IQR

PAA

Einleitung

TODO: Kurz anreissen Wofür ist der gut, was kann der PAA? Wie viel dazu? Gab es halt schon im Einführungsvortrag

Ziel

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

$$F:[0,1]^x \to \mathbb{R}^y$$
 $y=3$ x je nach Modell TODO Unbekannte Funktion

Modell für die Chromatographie

Prinzip:

- 2 Phasen: stationär und mobil
- Wechsel dazwischen, bzw. Verweilen in der Phase

Modell:

- \circ 2 Zustände: s und m
- Wechselwahrscheinlichkeiten
 - $\triangleright s \rightarrow s: p_s$
 - $ightharpoonup s
 ightharpoonup s
 ightharpoonup m: 1 p_s$
 - ightharpoonup m
 igh
 - $ightharpoonup m o s: 1-p_m$

Einleitung

Graphische Darstellung des Modells

	MCC	Simulation		
Länge der Säule	20 cm	1000 Raumschritte		
	1 Raumschritt $\equiv 0,\!2$ mm			
Durchlaufzeit Trägergas	0,1 s	1000 Zeitschritte		
	1 Zeitschritt $\equiv 0,1$ ms			
Geschwindigkeit Trägergas	2 m/s	1 Raumschritt / Zeitschritt		
Dauer des Experiments	240 s	2 400 000 Zeitschritte		

Simulationsarten

Einleitung

TODO: Kurz anreissen: Step-by-Step und By-Event Berechnungen der einzelschritte? Evtl auch Laufzeiten?

Simulationsergebnisse

Einfluss der Parameter auf einen Einzelpeak

TODO: Tabelle

Parameterkombinationen für gegebene Retentionszeit

Abhängiger Einfluss

Erreichbare Peakbreiten [1]

Erreichbare Peakbreiten [2]

TODO: Beschriftung ps/pm

Erreichbare Peakbreiten [3]

Schiefe

- Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten
- Zu frühen Zeitpunkten wird Maximalbreite nicht überschritten
- Peaks nur als Gaußkurven, kein Tailing
 - ► Eigentlich "perfekt", aber nicht realistisch

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - ► Keine Übergänge zwischen den stationären Zuständen

► Neuer Zustand als Zwischenzustand

Simulationsarten

Einleitung

Auch hier Step, Event und PAA, jeweils Besonderheiten? Wie ausführlich?

Zustandekommen von Tailing

- "2-Komponenten Modell":
 - Symmetrischer Peak durch 2 Phasen
 - 2 Tail durch selten erreichten, lange währenden Zustand

Tailing

Schiefe

Einfluss der Parameter auf einen Einzelpeak

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0 9991	0 99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0003	0,9991	0,99999	89,1	8,05	0,235
0,1	0,0007	0,9991	0,99999	100,04	6,22	0,12
0,1	0,0005	0,9991	0,99999	100,4	10,89	0,34
0,1	0,0005	0,999	0,99999	90,17	7,68	0,26
0,1	0,0005	0,9992	0,99999	112,77	8,64	0,2
0,1	0,0005	0 9991	0,999975	100,41	5,91	0,08
0,1	0,0005	0 9991	0,999993	100,12	9,93	0,34

Overlays!

Einfluss: pll abhängig von pml

Zeitpunkt

Einfluss: pll abhängig von pmm

Erreichbare Breiten und Schiefen für Zeitpunkt 100

Mehrere Parameterkombinationen für einen Peak [1]

Mehrere Parameterkombinationen für einen Peak [2]

Zusammenfassung

Einleitung

 Entsprechung von Peakcharakteristika zu Simulationsparametern

$$F:[0,1]^x\to\mathbb{R}^y$$

$$y = 3$$

x = 4 für 3-Zustände Modell

Auswirkungen der Parameter auf die Peaks gefunden

Ausblick

- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen
- Verifikation des Modells in größerem Rahmen
- Formel für Entsprechung