Recursive Graphics

By: Zach Albanese, Alex Bergeron, Stephen Brown and Kyle Nadeau

. What are Recursive Graphics?

What they are

Recursive graphics are sect of computer graphics using recursion to generate images

Famous examples include
 Koch Snowflake and
 Sierpinski Triangle

How they work

- Apply a set of rules to a shape ie.
 square, triangle, circle, L-shape
- Repeat them, upscale or downscale the shapes

Through repeated transformations create complex patterns like fractals

Applications

- Comp graphics and animation
 - Complex shapes and patterns
- Data visualization
 - Appealing and intuitive visual of data
- Video games
 - Generate terrain/landscapes
- Art
 - Fractal patterns/L-systems

Image from Recursive Graphics Gallery

Our Graphics

Koch Snowflake

- The Koch Snowflake is named after Swedish Mathematician Helge von Koch
- Fractal involving nested triangles
- Start with a straight line, break it into three parts, and replace the center line with an arch

Sierpinski Triangle

 Named after Polish mathematician Wacław Sierpiński

 Start with an equilateral then divide it into 4 smaller triangles by connecting the midpoints of each side

Hilbert Curve

- Continuous fractal space filling curve
- Begins with 3 sides of a square
- Bridges to further empty squares to make the shape displayed

Dragon Curve

Member of a family of fractal curves

 Self-replicating, can be scaled to create larger and smaller copies

Peano Gosper

 Another member of the fractal curve family

From mathematicians Bill
 Gosper and Giuseppe Peano

Hilbert Curve II

Variant of the original Hilbert
 Curve

- Begins with an S instead of a U shape
- Emphasizes the butterfly effect found in fractal geometry

Square Curve

Bottom left corner of pyramid displays the base case

Builds off of initial structure with step shape fractals to form a larger overall pyramid shape

Algorithms

L-Systems

Formula used to describe the fractal shape using text.

- Move forward "F"
- Turn right by specified degree "+"
- Turn left by specified degree "-"

Once formula is determined, use recursive function to replace patterns with scaled up versions.

Ex. F-> F+F-F turns into F+F-F+F-F-F+F-F by substituting the pattern into each appearance of F.

Our Program

The first few functions defined in our program were created the more difficult way, by reverse engineering the pattern from a manually created correct L-System text file for various orders of magnitude.

For the extra graphics, we found pre-existing L-system formula that we easily substituted into recursive functions, such as the Dragon Curve formula describing the two patterns used:

Python Plotter

The python plotting script was created for Lab 6. It takes the L-System text file, and creates a plot via matplotlib by following the instructions embedded within.

A commonly used analogy is the Turtle. He follows the set of rules, dictated by forward motions (F), and turns (+/-) of a specific angle, fed in as a CLA.

Sample CLA's: file.txt image.png <degrees>

Python Coloring Book

As a fun twist we added created a small python program functioning off of the Pillow and tkinter libraries. By simply running the program it allows you to color in your png after uploading it, an even has the functionality to save.

Our Source Code

Questions