Math 223: Homework 11

<Hardeep Bassi>

<05/03/2023>

Problem 1

For the van der Pol oscillator, $y'' + y + \epsilon (y^2 - 1)y' = 0$, apply the method of multiple scales and show that it has a stable limit cycle that is nearly circular with radius $r = 2 + O(\epsilon)$.

Using the method of time averaging, we see that we can take $h = (y^2 - 1)y' \Longrightarrow (r \cos^2 \theta - 1)(-r \sin \theta)$. This means we compute the following integrals:

$$In\{\theta\} \coloneqq \mathbf{Integrate} \left[-\frac{\mathbf{Sin}[\theta]^2 * \mathbf{Cos}[\theta]^2}{2\pi}, \{\theta, 0, 2\pi\} \right]$$

$$Out\{\theta\} \equiv 1$$

-

$$In[*]:=$$
 Integrate $\left[\frac{\sin[\theta]^2}{2\pi}, \{\theta, 0, 2\pi\}\right]$

Out[*]=

This yields that the first average equation is given by $r'(\tau) = \frac{-1}{8}r^3 + \frac{1}{2}r$. To solve for $r(\tau)$, we take:

In[*]:= DSolve
$$\left[r'[\tau] + \frac{r[\tau]^3}{8} - \frac{r[\tau]}{2} = 0, r[\tau], \tau\right]$$
Out[*]=

 $\left\{ \left\{ r[\tau] \rightarrow -\frac{2 e^{\tau/2}}{\sqrt{e^{\tau} + e^{8 c_1}}} \right\}, \left\{ r[\tau] \rightarrow \frac{2 e^{\tau/2}}{\sqrt{e^{\tau} + e^{8 c_1}}} \right\} \right\}$

Since we are discussing the radius, we take the positive solution. Taking the limit of this solution yields:

In[
$$\circ$$
]:= Limit $\left[\frac{2 e^{\tau/2}}{\sqrt{e^{\tau} + e^{8 c_1}}}, \tau \rightarrow \infty\right]$
Out[\circ]=

2

This means that the amplitude of the oscillator has a stable limit cycle with a radius of $2 + O(\epsilon)$.

Problem 2

Use the method of multiple scales to study $\frac{d^2y}{dt^2} + y + \epsilon y^2 \frac{dy}{dt} = 0$, y(0) = 1, y'(0) = 0. Describe the long time behavior of the solution based on your results.

Using the method of time averaging yields $h = y^2 y' = (r^2 \cos^2 \theta)(-r \sin \theta)$. This means we compute the following integral:

$$In[e]:= Integrate \left[-\frac{Sin[\theta]^2 * Cos[\theta]^2}{2\pi}, \{\theta, 0, 2\pi\} \right]$$

$$Out[e]=$$

$$-\frac{1}{8}$$

This means that the first averaged equation is given by $r'(\tau) = \frac{-1}{2} r^3$. To solve for $r(\tau)$, we take:

$$In[a]:= DSolve \left[r'[\tau] + \frac{r[\tau]^3}{8} = 0, r[\tau], \tau\right]$$

$$Out[a]:= \left\{\left\{r[\tau] \rightarrow -\frac{2}{\sqrt{\tau - 8c_1}}\right\}, \left\{r[\tau] \rightarrow \frac{2}{\sqrt{\tau - 8c_1}}\right\}\right\}$$

Now we compute the second averaged equation given by:

In[
$$\theta$$
]:= Integrate $\left[-\frac{\sin[\theta] * \cos[\theta]^3}{2\pi}, \{\theta, 0, 2\pi\}\right]$
Out[θ]=

This means that the second averaged equation is given by $r(\tau) \phi'(\tau) = 0 \Longrightarrow \phi(\tau) = \phi_0 \in \mathbb{R}$. Taking both of theses together, we can solve for A_0 (τ), B_0 (τ). First we see that:

$$A_0(\tau) = r(\tau)\cos(\phi_0) = \frac{2}{\sqrt{\tau - 8c_1}}\cos(\phi_0) = \frac{2}{\sqrt{\tau - 8c_1}}D$$

We also see that:

$$B_0(\tau) = r(\tau)\sin(\phi_0) = \frac{2}{\sqrt{\tau - 8c_1}}\sin(\phi_0) = \frac{2}{\sqrt{\tau - 8c_1}}\sqrt{1 - D^2}.$$

From here, we see that to satisfy the conditions of $A_0(0) = 1$, $B_0(0) = 0$, we have:

$$\frac{2}{\sqrt{-8c_1}}D = 1$$
 and $\frac{2}{\sqrt{-8c_1}}\sqrt{1-D^2} = 0$. In order to have a solution for c_1 , we can satisfy the second

condition by taking $D = 1 \Longrightarrow c_1 = \frac{-1}{2}$. This means the leading behavior is given by:

$$Y_0(t, \tau) = \frac{2}{\sqrt{\tau + 4}} \cos(t).$$

To validate, we see:

In[5]:= truesol =

$$NDSolveValue[\{y''[t] + y[t] + 0.001 * y[t] ^2 * y'[t] == 0, y[0] == 1, y'[0] == 0\}, y, \{t, 0, 40\}]$$

In[7]:= Plot[{truesol[t],
$$\frac{2}{\sqrt{0.001 * t + 4}} \cos[t]}$$
, {t, 0, 40},

PlotStyle → {Directive[Solid, Thickness[0.01]], Directive[Dashed, Thickness[0.01]]}, PlotLegends → {"true", "approximate"}, PlotRange → All

The limiting behavior then shows that our approximation does in fact decay to 0:

In[8]:= Limit
$$\left[\frac{2 \cos[t]}{\sqrt{4 + t * 0.001}}, t \rightarrow \infty\right]$$

Out[8]= **0.**