

Facultad Ingeniería y Ciencias Agropecuarias Carrera Ingeniería en Producción Industrial EIP 412 / Mecánica para Ingenieros

Período académico 2017-2

1. Identificación

Número de sesiones: 64 sesiones

Número total de horas de aprendizaje: 160 h= 64 presenciales + 96 h de trabajo

autónomo.

No. de créditos (malla actual): 4.0 Profesor: Ing. Omar Flor Unda. Msc

Correo electrónico del docente (Udlanet): o.flor@udlanet.ec

Coordinador: Ing. Christian Chimbo

Campus: Queri

Pre-requisito: FIS 100 MAT 310 Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	Χ
Práctica	

Organización curricular

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	Χ
Unidad 3: Titulación	

Campo de formación:

Campo de formación								
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes				
	X							

2. Descripción del curso

Mecánica para ingeniería estudiar, reconoce, diferencia y analiza los diferentes tipos de cargas que actúan sobre elementos estructurales simples relacionándolos con su comportamiento de movimiento o reacciones, para así determinar el estado estático o dinámico de un cuerpo.

3. Objetivo del curso

Analizar las cargas que actúan sobre estructuras básicas y elementos simples de máquinas a fin de fundamentar las bases para su estudio desde la perspectiva estática y/o dinámica. Estos criterios son indispensables en la comprensión y posterior análisis de sistemas móviles y diseño de maquinaria.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Adquiere fundamentos físicos y matemáticos básicos para el análisis, interpretación y solución de problemas de ingeniería en general	7. Analiza, selecciona e integra con efectividad las tecnologías manufactureras (maquinaria, materiales, energía, etc.) adaptadas a cada proceso productivo, utilizando herramientas de alta tecnología y coordinando con especialistas del área (mecánica, eléctrica, automatismos, etc.).	Inicial (x) Medio () Final ()

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1 35% Sub componentes:

- 1. Mapas mentales (evaluación formativa)
- 2. Portafolio de ejercicios (evaluación formativa).
- 3. Prueba de control 15%.
- 4. Prueba de progreso 1 20%

Reporte de progreso 2 35% Sub componentes

- 1. Mapas mentales (evaluación formativa)
- 2. Portafolio de ejercicios (evaluación formativa)
- 3. Prueba de control4. Prueba de progreso 220%

Evaluación final Sub componentes 30%

1. Examen final

30%

Asistencia: A pesar de que la asistencia no tiene una nota cuantitativa, es obligatorio tomar asistencia en cada sesión de clase. Además, tendrá incidencia en el examen de recuperación.

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que estudiante haya asistido por lo menos al 80% del total de sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

En progreso 1 y 2:

- Mapas mentales (ESCENARIO DE APRENDIZAJE AUTONOMO, VIRTUAL evaluación formativa): El estudiante debe realizar una lectura de correspondiente a los temas indicados en cada resultado de aprendizaje, y luego realizará un mapa mental (ordenador gráfico) de cada uno de ellos, el cual se subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo (Se adjunta rúbrica)
- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará a lo largo de cada progreso, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar cada período. (Se adjunta rúbrica)
- **Prueba de control 15% (ESCENARIO DE APRENDIZAJE PRESENCIAL)**: de los temas tratados hasta el 70% de cada progreso
- **Prueba Progreso 20% (ESCENARIO DE APRENDIZAJE PRESENCIAL):** Acumulativa de los temas desarrollados en cada período. **(**Se adjunta rúbrica**)**

Evaluación final:

 Mapa mental (ESCENARIO DE APRENDIZAJE AUTONOMO, VIRTUAL - evaluación formativa): El estudiante debe realizar una lectura de correspondiente a los temas indicados en el último resultado de aprendizaje, y luego realizará un mapa mental

(ordenador gráfico) del mismo, el cual se subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo (Se adjunta rúbrica)

- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar el período de evaluación final. (Se adjunta rúbrica)
- Examen final 30% (ESCENARIO DE APRENDIZAJE PRESENCIAL): Implica el estudio de toda la asignatura.
- 6.1. **Escenario de aprendizaje presencial.** Se efectuarán talleres en clase y realimentación de problemas generados en el portafolio de ejercicios que se resuelven en casa mediante la página virtual, y pruebas para complementar y asegurar el aprendizaje y el conocimiento práctico, evaluando periódicamente su esfuerzo.

6.2. Escenario de aprendizaje virtual.

El curso consiste en un aprendizaje continuo mediante lecturas programadas semanalmente sobre los temas especificados en la asignatura y presentados debidamente en el aula virtual, mapas mentales y organizadores gráficos relacionados a las lecturas, que permitan consolidar el aprendizaje de los temas a desarrollar durante el curso. Además se presentarán videos en el aula virtual para sustentar el conocimiento.

6.3. Escenario de aprendizaje autónomo.

Se realizaran lecturas semanales sobre temas pertinentes a la materia en el sistema de aulas virtuales, para estimular el conocimiento teórico, además de portafolio de ejercicios, mapas mentales y organizadores gráficos, que permitan al estudiante evaluar su aprendizaje de forma periódica y continua, permitiendo un resultado de aprendizaje escalonado durante el semestre

7. Temas y subtemas del curso

RdA	Temas	Subtemas
1. Adquiere fundamentos físicos y matemáticos	1. Algebra	1.1 Escalares y vectores
básicos para el análisis, interpretación y solución	vectorial	1.2 Operaciones
de problemas de ingeniería en general		1.3 Vector Posición.
		1.4 Vector a lo largo de
		una línea
		1.5 Producto punto
1. Adquiere fundamentos físicos y	2. Equilibrio de	2.1 Condiciones para el
matemáticos básicos para el análisis,	una partícula	equilibrio de una
interpretación y solución de problemas		partícula
de ingeniería en general		2.2 Sistemas de fuerzas
		coplanares

		2.2 Ciatara
		2.3 Sistemas
		tridimensionales de
		fuerzas.
1. Adquiere fundamentos físicos y matemáticos	3. Momento de	3.1 Momento de una
básicos para el análisis, interpretación y solución	una fuerza	fuerza
de problemas de ingeniería en general		3.2 Producto cruz
		3.3 Momento de una
		fuerza respecto a un eje
		3.4 Momento de una par
	4. resultantes de	4.1 sistemas
1. Adquiere fundamentos físicos y	sistemas de	equivalentes
matemáticos básicos para el análisis,	fuerzas	4.2 Resultante de una
interpretación y solución de problemas		fuerza y un par
de ingeniería en general		4.3 Reducción adicional
		del sistema de una
		fuerza y un par.
1. Adquiere fundamentos físicos y matemáticos	5. Equilibrio de	5.1 Condiciones de
básicos para el análisis, interpretación y solución	Cuerpo Rígido y	equilibrio de un cuerpo
de problemas de ingeniería en general	análisis estructural	rígido
		5.2 Equilibrio en dos
		dimensiones
		5.3 Equilibrio en tres
		dimensiones
		5.4 Armaduras Planas
		5.5 Armaduras
		Espaciales.
1. Adquiere fundamentos físicos y matemáticos	6. Cinemática de	6.1 Cinemática
básicos para el análisis, interpretación y solución	partículas	rectilínea: Posición,
de problemas de ingeniería en general	'	velocidad, aceleración.
		6.2 Cinemática
		curvilínea: posición,
		velocidad, aceleración.
		6.3 Coordenadas
		rectangulares.
		6.4 Coordenadas
		tangencial – normal
		6.5 Coordenadas radial –
		transversal
		6.6 Movimiento relativo
		6.7 Movimiento
		dependiente
1. Adquiere fundamentos físicos y matemáticos	7. Fundamentos de	7.1 Segunda ley de
básicos para el análisis, interpretación y solución	Dinámica	Newton
de problemas de ingeniería en general	Dinamica	7.2 Ecuación del
		movimiento
		7.3 Trabajo y energía
		cinética.
		cirictica.

8. Planificación secuencial del curso

	Semanas: 1	L - 6			
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	1. Algebra vectorial	1.1 Escalares y vectores 1.2 Operaciones 1.3 Vector Posición. 1.4 Vector a lo largo de una línea 1.5 Producto punto	 Mapa Mental sobre algebra vectorial (1.1 a 1.5). Presentación magistral: algebra vectorial, operaciones, vector posición, vector a lo largo de una línea, producto punto. Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre algebra vectorial 	1.1 a 1.5 Lectura sobre algebra vectorial (Hibbeler, 2010, pp 17-21, 55, 56, 58, 68, 69, 70) 1.1 a 1.5 Solución de ejercicios propuestos en el portafolio de ejercicios (Hibbeler, 2010, pp 27-76)	1. Mapa Mental sobre algebra vectorial: Organizador gráfico (Fecha de entrega: Semana 1: 11/03/2016) 2. Mapa Mental sobre equilibrio de una partícula: Organizador gráfico (Fecha de entrega: Semana 3: 24/03/2016) 3. Mapa Mental sobre momento de una fuerza: Organizador gráfico. Fecha de
1	2. Equilibrio de una partícula	2.1 Condiciones para el equilibrio de una partícula 2.2 Sistemas de fuerzas coplanares 2.3 Sistemas tridimensionales de fuerzas.	 4. Mapa Mental sobre equilibrio de una partícula (2.1 a 2.8). 5. Presentación magistral: equilibrio de una partícula 6. Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre equilibrio de una partícula 	2.1 a 2.3 Lectura sobre equilibrio de una partícula (Hibbeler, 2010, pp 81-83, 85-99) 2.1 a 2.3 Solución de ejercicios propuestos en el portafolio de ejercicios (Hibbeler, 2010, pp 91-108) 3.1 a 3.4 Lectura sobre momento de una fuerza (Hibbeler, 2010, pp 113-150)	entrega: Semana 5: (08/04/2016) 4. Portafolio de ejercicios: solución de ejercicios sobre algebra vectorial, equilibrio de una partícula, momento de una fuerza. (Fecha de entrega: Semana 6: 15/04/2016) 5. Prueba de control (15%) (Rubrica) (Fecha de entrega: Semana 5: 08/04/2016). 6. Prueba de progreso 1 (20%) (Rubrica) (Fecha de entrega: Semana 6: 15/04/2016).

3. Momento	3.1 Momento	7.	Mapa Mental sobre		
de una	de una fuerza		momento de una	3.1 a 3.4 Solución	
fuerza	3.2 Producto		fuerza (3.1 a 3.4).	de ejercicios	
	cruz	8.	Presentación	propuestos en el	
	3.3 Momento		magistral:	portafolio de	
	de una fuerza		momento de una	ejercicios	
	respecto a un		fuerza	(Hibbeler, 2010,	
	eje	9.	Taller práctico en	pp 131-159)	
	3.4 Momento		clase: Trabajo		
	de una par		grupal solución de		
			ejercicios		
			propuestos sobre		
			momento de una		
			fuerza		

	Semana: 7 – 13	3					
RdA	Tema	Sub tema	Act	tividad/	Tarea/		MdE/Producto/
			est	rategia de clase	trabajo	fec	ha de entrega
					autónomo		
1	4. resultantes de sistemas de fuerzas	4.1 sistemas equivalentes 4.2 Resultante de una fuerza y un par 4.3 Reducción adicional del sistema de una fuerza y un par.	1. 2. 3.	Mapa Mental sobre resultantes de sistemas de fuerzas (4.1 a 4.4). Presentación magistral: resultantes de sistemas de fuerzas Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre resultantes de sistemas de fuerzas	4.1 a 4.3 Lectura sobre resultantes de sistemas de fuerzas (Hibbeler, 2010, pp 138-150) 3.1 a 3.4 Solución de ejercicios propuestos en el portafolio de ejercicios (Hibbeler, 2010, pp 176-179)	 3. 	Mapa Mental sobre resultantes de sistemas de fuerzas: Organizador gráfico (Fecha de entrega: Semana 7: 22/04/2016) Mapa Mental sobre equilibrio de cuerpo rígido y análisis estructural: Organizador (Fecha de entrega: Semana 9: 06/05/2016) Mapa Mental sobre cinemática de partículas: Organizador gráfico (Fecha de entrega: Semana 10:
1	5. Equilibrio de Cuerpo Rígido y análisis estructural	5.1 Condiciones de equilibrio de un cuerpo rígido 5.2 Equilibrio en dos dimensiones 5.3 Equilibrio en tres dimensiones	 4. 5. 	Mapa Mental sobre equilibrio de cuerpo rígido y análisis estructural (5.1 a 5.5). Presentación magistral: equilibrio de cuerpo rígido y	5.1 a 5.5 Lectura sobre equilibrio de cuerpo rígido y análisis estructural (Hibbeler, 2010, pp 193-241,	4.	13/05/2016) Portafolio de ejercicios: solución de ejercicios sobre sistemas equivalentes de fuerzas, equilibrio de cuerpo rígido y análisis estructural, cinemática de partículas. (Fecha de entrega:

		5.4 Armaduras Planas 5.5 Armaduras Espaciales.	6.	análisis estructural Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre equilibrio de cuerpo rígido y análisis estructural	257-261, 283) 5.1 a 5.5 Solución de ejercicios propuestos en el portafolio de ejercicios (Hibbeler, 2010, pp 223-251, 270-286)	5.	Semana 13: 03/06/2016) Prueba de control (15%) (Rubrica) (Fecha de entrega: Semana 11: 20/05/2016). Prueba de progreso 1 (20%) (Rubrica) (Fecha de entrega: Semana 13: 03/06/2016).
1	6. Cinemática de partículas	6.1 Cinemática rectilínea: Posición, velocidad, aceleración. 6.2 Cinemática curvilínea: posición, velocidad, aceleración. 6.3 Coordenadas rectangulares. 6.4 Coordenadas tangencial – normal 6.5 Coordenadas radial – transversal 6.6 Movimiento relativo 6.7 Movimiento dependiente	 7. 8. 9. 	Mapa Mental sobre cinemática de partículas (6.1 a 6.7). Presentación magistral: cinemática de partículas Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre cinemática de partículas	6.1 a 6.7 Lectura sobre cinemática de partículas (Beer, Johnston y Cornvell, 2010, pp 603-687) 6.1 a 6.7 Solución de ejercicios propuestos en el portafolio de ejercicios (Beer, Johnston y Cornvell, 2010, pp 603-687)		

RdA	Tema	Sub tema		tividad/	Tarea/		MdE/Producto/	
			estrategia de clase		trabajo	fec	ha de entrega	
					autónomo			
1	7. Cinética	7.1 Segunda	1.	Mapa Mental	7.1 a 7.4	1.	Mapa Mental sobre	
	de	ley de Newton		sobre cinética	Lectura		cinética de	
	partículas	7.2 Ecuación		de partículas	sobre		partículas:	
		del		(7.1 a 7.4).	cinética de		Organizador	
		movimiento	2.	Presentación	partículas		gráfico(Fecha de	
				magistral:	(Beer,			

7.2 Tuels - i		-t 441d	La la calata de la calata		
7.3 Trabajo y		cinética de	Johnston y		entrega: Semana
energía		partículas	Cornvell,		14: 10/06/2016)
cinética.	3.	Taller práctico	2010, pp	2.	Portafolio de
7.4		en clase:	693-694,		ejercicios: solución
Conservación		Trabajo grupal	698-721,		de ejercicios sobre
de la energía		solución de	723-724,		cinética de
mecánica		ejercicios	730-735,		partículas. (Fecha
		propuestos	759-790,		de entrega:
		sobre cinética	798-810)		Semana 16:
		de partículas	,		24/06/2016)
		·		3.	Examen de
			7.1 a 7.4		evaluación final
			Solución de		(30%)
			ejercicios		(Rubrica) (Fecha de
			propuestos		entrega: Semana
			en el		de exámenes
			portafolio		finales
			de ejercicios		illiaics
			(Beer,		
			,		
			Johnston y		
			Cornvell,		
			2010, pp		
			693-694,		
			698-721,		
			723-724,		
			730-735,		
			759-790,		
			798-810)		

9. Normas y procedimientos para el aula

- 9.1. El docente ingresará al aula de clase, y en el momento que cierre la puerta y comience la misma, no se permitirá ingresar a estudiantes que estén atrasados.
- 9.2. Se prohíbe el uso de celular durante las sesiones de clase, estudiante que se encuentre empleando el mismo, se le solicitará que salga del aula y se registrará inasistencia.
- 9.3. El portafolio de ejercicios se entregará vía plataforma virtual en cada período, y se evaluará de acuerdo a la ponderación indicada en el sílabo, y su entrega se limitará a las condiciones y tiempos que la plataforma indique. No se receptarán entregas atrasadas.
- 9.4. Los mapas conceptuales, resultado de las lecturas propuestas por el docente sobre los temas a tratar en clase, serán subidas a la plataforma virtual para que se registre su evidencia de aprendizaje, y se evaluará de acuerdo a la ponderación indicada en el sílabo, y su entrega se limitará a las condiciones y tiempos que la plataforma indique. No se receptarán entregas atrasadas.
- 9.5. No se evaluarán pruebas atrasadas.

10. Referencias bibliográficas

10.1. Principales.

- 1. Hibbeler, R. (2010). *Mecánica Vectorial Para Ingenieros: Estática.* (10ma. Ed.). México, México: Editorial Pearson.
- 2. Beer, F., Jonhston, R. y Cornvell, P. (2010). Mecánica Vectorial Para Ingenieros Dinámica. (9va. Ed.). México, México: Mc Graw Hill.

10.2. Referencias complementarias.

- 1. Beer, F. Johnston, R. (2007). *Mecánica Vectorial para Ingenieros: Estática*. México, México: Mc Graw Hill.
- 2. Hibbeler, R. (2004). Mecánica Vectorial Para Ingenieros: Dinámica. (10ma. Ed.). México, México: Editorial Pearson.
- 3. Das, B., Kassimali, A. y Sami, S. (1999). Mecánica Para Ingenieros Dinámica. México, México: Limusa

11. Perfil del docente

Nombre de docente: Omar Flor Unda

"Maestría en Automática, Robótica y Telemática (Escuela Técnica de Ingenieros, Sevilla-España), Ingeniero Mecánico (Escuela Politécnica del Ejército). Experiencia en:

- 1. Diseño de estructuras, elementos de máquina y simulación.
- 2. Sistemas Neumáticos e hidráulicos
- 3. Automatización, Robótica y programación.
- 4. Selección de Materiales de ingeniería.
- 5. Educación Superior: ESPE-UIDE-UDLA

Contacto: omar.flor@udla.edu.ec, o.flor@udlanet.ec

Teléfono: 3981000 ext 488