# High-Resolution Image Synthesis With Latent Diffusion Models

2023-03-21

## INTRODUCTION

- Image Synthesis 연구
  - Image Synthesis 는 최근 가장 많은 발전을 이룬 computer vision 분야 중 하나이며, 가장 큰 computational 수요를 가진 분야
- 기존 연구의 한계점
  - o (GANs)
    - 복잡한 multi-modal distributions 으로 scale 하기 힘든 adversarial learning 으로 인해 제한된 variability 를 가진 data 에 국한
  - o DMs
    - pixel space 에서 작동하기 때문에 powerful DMs 의 optimization 은 많은 GPU 가 필요하고 sequential evaluations 로 인해 긴 inference 시간이 필요

## INTRODUCTION

## **Departure to Latent Space**

- 대락적인 학습 단계(two stages)
  - a. perceptual compression stage
    - high-frequency details 을 제거하지만 아직 semantic variation 은 학습하지 않음.
  - b. semantic compression stage
    - 실제 generative model 이 데이터의 semantic and conceptual composition 학습함.
- perceptual and semantic compression
  - o digital image 의 대부분의 비트 : imperceptible details
    - DM은 responsible loss term 을 최소화하여 이러한 의미 없는 정보(imperceptible details) 제거 가능 그러나, (during training) gradients 및 neural network backbone (training and inference) 은 여전히 모든 pixel 에서 평가되어 과도한 computations 이 요구됨.

## INTRODUCTION

## **Departure to Latent Space**

- 논문의 목표
  - perceptually equivalent + computationally suitable space 찾아서 high-resolution image synthesis 을 위한 diffusion models 훈련
- Latent Diffusion Models(LDMs)
  - P Diffusion Model을 pixel space 가 아닌 pretrained autoencoders 의 latent space 에 적용 + cross-attention layers 도입 → latent diffusion models (LDMs) 제안
  - data space 와 perceptually equivalent 하면서도 lower-dimensional representational space 제공하는 autoencoder 학습 → 이전 연구들과 다르게 spatial compression 에 의존할 필요가 없다.
    - **?** : spatial dimensionality(공간적 차원; pixel space) 보다 더 좋은 scaling properties 을 가지고 있는 latent space 에서 DM을 학습하기 때문에
  - o lower dimensionality 인 compressed latent space 작동함으로써 2가지 단점을 해결함.
    - → 컴퓨팅 리소스 및 +synthesis quality 를 유지하면서도 inference speed 1



## **Method**

- perceptual compression : autoencoder
  - image space 와 인지적으로(perceptually) 동등한 space를 학습하면서도 computational complexity 가 크게 감소하는 autoencoding model 을 활용
  - 장점
    - high-dimensional image space 에서 벗어나 low-dimensional space 에서 sampling 이 수행되므로 훨씬 효율적인 DMs를 얻음.
    - UNet architecture based DM 의 inductive bias 을 활용하여 spatial structure 를 가진 data 에 특히 효과적이다.
      - → 기존 연구에서 요구하는 높은 spatial compression 을 완화

#### LDMs model



# Perceptual Image Compression (Pixel Space ↔ Latent Space)

perceptual compression model: AutoEncoder (ε,D)





- 인코더(encoder)  $\varepsilon$ :  $x \to z$ (latent representation)
- □코더(decoder) D: z(latent representation) → x<sup>~</sup>

고차원의 이미지(x)를 잘 표현하는 manifold 인 latent representation z 추출 → reconstruction 이미지(x~) 로 복원

#### data

- x ∈ R<sup>{H×W×3}</sup>: RGB 공간의 이미지
- encoder ε : x 를 latent representation z = ε(x)으로 인코딩 ⇒ x downsampling (factor f = H/h = W/w)
- $\mathbf{z} \in \mathbb{R}^{\{h \times w \times c\}} = \boldsymbol{\varepsilon}(\mathbf{x})$ : latent representation (2-dimensional structure)
- decoder **D** : latent representation(z) 를 single pass로 decoding 하여 x~ = D(z) = D(ε(x))를 제공
- **x**~ = D(z) = D(E(x)) : reconstruction □□□

본 논문에서는 각기 다른 downsampling factor  $f = 2^m$ ,  $m \in N$  에 대해 실험

#### Diffusion Model

- generative model(GAN, VAE, Flow-based models, Diffusion models)
   : 새로운 data instance를 생성해내는 모델 ⇒ Training Data distribution에 근사하는 특성
- 2가지 가정
  - 1. 이산 마코프 가정(Discrete Markov Process Assumption)

$$P\left[s_{t+1} \mid s_{t}
ight] = ext{P}\left[s_{t+1} \mid s_{1}, \ldots, s_{t}
ight]$$

- Markov 성질 : "특정 상태의 확률(t+1)은 오직 현재(t)의 상태에 의존한다."
- 이산 확률과정 : 이산적인 시간(0초, 1초, 2초, ..) 속에서의 확률적 현상
- 1. 정규성(Normality) 가정 : "특정 데이터가 정규 분포를 따를것이다."

ightarrow 1+2 : 평균과 분산( $\mu$ , $\Sigma$ )이라는 두가지 모수에 의해 결정되는 정규분포 그래프로서 Diffusion Model에서는 각 확률 단계가 Normal Distribution을 따를것이라 가정

$$p_{ heta}\left(X_{t-1}\mid X_{t}
ight)=N\left(X_{t};\mu_{X_{t-1}},\Sigma_{X_{t-1}}
ight)$$

● 2가지 가정과 Diffusion Model
Markov 가정과 간단한 분포(정규분포)를 단계별로 활용하여 점차 복잡한 데이터를 표현하는 것이 Diffusion Model의 핵심

#### Diffusion Model

denoising process 를 통해 data distribution p(x)를 학습하는 probabilistic model

→ denoising process : length T 의 fixed Markov Chain의 reverse process 학습





#### Forward diffusion process q

: 샘플 이미지  $x_0$ 가 시점 0-T 까지 작은 gaussian noise를 줘서 최종적으로 노이즈로 이루어진  $x_7$ 를 만드는 과정

- noise: 정규성 가정에 따라 정규 분포 형태를 따르는 임의의 Gaussian Noise 주입
- $x_1: x_0$ 에 noise 적용한 이미지  $\rightarrow q(x_1|x_0)$  time t에 대해 general 하게 표현한다면  $q(x_1|x_{t-1})$ 으로 표현할 수 있다.

**LDMs**: latent representation  $z = \varepsilon(x)$  (latent space에 매핑)  $\rightarrow z_T$ (noised latent representation)

ightarrow t-1에서 t번째 이미지가 되는 과정은 정의한 노이즈에 따라서 바로 알아낼 수 있어 학습이 필요 없지만 반대 과정은 알 수 없기 때문에 학습이 필요

#### Diffusion Model

denoising process 를 통해 data distribution p(x)를 학습하는 probabilistic model

→ denoising process : length T 의 fixed Markov Chain의 reverse process 학습





#### Reverse process

:  $q(x_t|x_{t-1})$  와는 반대로 점진적으로 noise 를 걷어내는 denoising process  $q(x_{t-1}|x_t)$ 

BUT, 노이즈가 추가된 데이터를 완벽하게 원래 상태로 되돌리는것은 불가능한 일

$$p_{\theta}(X_{t-1} \mid X_t) \approx q(X_{t-1} \mid X_t)$$
\*학습 대상

 $\rightarrow$  q( $x_{t-1}|x_t$ ) 가 아닌 model의 가정을 만족하면서도 q( $x_{t-1}|x_t$ ) 와 최대한 유사한 분포  $p_{\theta}(x_{t-1}|x_t)$  를 찾는다.

LDMs : noised latent representation z<sub>T</sub> 에서 latent representation z로 denoising

## Diffusion Model objective

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[ \|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2 \right], \qquad (1)$$

이 모델은 denoising autoencoder  $\epsilon_{\theta}(x_t,t)$ ; t=1,...,T의 weighted sequence로 볼 수 있으며, noisy input  $x_t$ 로 부터 원본 이미지 x를 predict

- ε: noise, forward diffusion process 를 진행할 때 사용한 실제 noise 값
- $\epsilon_{\theta}$ : denoising autoencoder
- x<sub>t</sub>: noised sample
- t : noise level, [t-1, t-2,...,0 (less-noisy)]
- $\epsilon_{\rm e}(xt,t)$ : denoising process  $\circ$  noise

 $L_{DM}$ : t  $\rightarrow$  t-1, [실제 noise - denoising process 의 noise] 값을 줄여나가는 과정 (loss minimize)

ightarrow 실제 분포와 근사한 분포를 만들어내기 위해 noising process 사용했던 noise  $\epsilon$  에 근사시키는 네트워크를 학습하는 것

Generative Modeling of Latent Representations



Latent Diffusion Model objective

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[ \|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right].$$
 (2)

- denoising model neural backbone  $\epsilon_{\theta}(\circ, t)$ : time-conditional UNet
- $x_t$ : noised sample  $\rightarrow z_t$ : noised latent representation( $\epsilon(x)$ )

 $L_{LDM}$  : Diffusion Process( $z \rightarrow z$ ,)사용했던 noise  $\epsilon$  에 근사시키는 네트워크를 학습하는 것

#### semantic compression



- LDM은 다양한 modalities 적용하기 위해 conditioning input y 도입
- diffusion model은 conditional distribution을 p(z|y)로 모델링 가능  $\rightarrow$  conditional denoising autoencoder  $\epsilon_{\theta}(z_t,t,\textbf{y})$  로 구현
  - 이미지 생성을 위한 conditioning input y (text, semantic maps)를 컨트롤하거나, image-to-image translation task를 수행

**BUT**, conditioning input y를 denoising autoencoder  $\epsilon_{\theta}$ 에 적용하기 위해서는 preprocessing 필요!

- preprocessing[text/image transformer]: domain specific encoder τ<sub>θ</sub> 도입
  - conditioning input y를 다양한 modalities(language prompts, semantic 맵과 같은)로부터 전처리하기 위해 τ<sub>θ</sub> 도입
  - $\circ$  domain specific encoder  $\tau_{\theta}$ : conditioning input  $y \to \text{intermediate representation } \tau_{\theta}(y) \in \mathbb{R}^{M \times d \tau}$  로 project 한다.
    - **semantic compression:** ϵ<sub>θ</sub>의 intermediate layers에 적합하게 encoding

• conditional denoising autoencoder  $\epsilon_{\theta}$  ( $z_t$ , t, y)





- denoising model neural backbone  $\epsilon_{\theta}(\cdot, t)$ : time-conditional UNet structure
  - o skip connection: 인코더 레이어와 디코더 레이어의 직접 연결
  - o concatenation: 이미지의 위치와 특징을 추출하기 위해 인코딩 단계의 각 레이어에서 얻은 특징을 디코딩 단계의 각 레이어에 합친다.
- ϵ<sub>θ</sub> intermediate layers: cross-attention mechanism 적용
  - o UNet backbone을 다양한 input modality에 대해 conditioning 할 수 있도록 cross-attention mechanism 으로 구성
    - → cross-attention mechanism 을 통해 다양한 input modality 를 model 에 적용

• conditional denoising autoencoder  $\epsilon_{\theta}$  ( $z_t$ , t, y)





- UNet 의 intermediate layers : cross-attention layer 로 구성
  - Attention(Q, K, V) = softmax(QK<sup>T</sup>/√d<sub>k</sub>)· V가 구현
  - o cross attention: 2 개의 embedding sequences 간의 correlation 학습
    - input: Query, Key, Value
    - key, value 의 경우 같은 sequence 에서 얻지만, query는 다른 sequence에서 얻음.(즉, query 출처 ≠ key, value 출처)

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y).$$

- Q :  $\phi_i(z_t) \in \mathsf{R}^{\mathsf{Nxd}^{\mathsf{A}}_{\underline{-}} \epsilon}$ : encoder  $\pmb{\epsilon_{\theta}}$  을 구현하는 UNet 의 (flattened) intermediate representation
- $W^{(i)}_{V} \in R^{d \times d^{\Lambda}_{i} \varepsilon}$ ,  $W^{(i)}_{Q}$  &  $W^{(i)}_{K} \in R^{d \times d_{\tau}}$ : learnable projection matrices
- **LDM** cross-attention: Q (intermediate representation) 을 생성할 때, conditioning input y 의 어떤 정보를 Attention 해야할지 파악하는 과정
  - $\rightarrow$  conditioning input y를 참고해서 noised latent representation  $z_t$ 를 denoising

conditional Latent Diffusion Model objective

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \left[ \|\epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y))\|_2^2 \right], (3)$$

- $\mathsf{T}_{\theta}$ ,  $\varepsilon_{\theta}$ : Eq. 3 을 통해 optimized
- this conditioning mechanism is flexible



- autoencoder loss (perceptual loss + a patch-based adversarial objective)
  - perceptual loss: feature map 거리 계산
  - patch based adversarial objective: patch 단위로 T/F를 판별하는 방식: local realism 실현, (L2 or L1 objectives)처럼 pixel 단위 loss를 사용했을 때 발생하는 blurriness 현상을 완화하여 reconstruction 이 image manifold 에만 국한되도록 보장





# LDM process



- 1. perceptual compression ε
  - :  $x \rightarrow$  latent representation  $z = \varepsilon(x)$  (latent space에 매핑)
- 2. diffusion process
  - : latent representation  $z \rightarrow z_T$  (noised latent representation)
- 3. conditioning mechanism & semantic compression  $\tau_{\theta}$ 
  - : conditioning input  $y \rightarrow$  intermediate representation  $\tau_{\theta}(y)$
- 4. denoising process
  - :  $\tau_{\theta}(y)$ 를 참고하여 noised latent representation  $z_T \to$  latent representation z
- 5. perceptual compression D
  - : latent representation  $z \rightarrow \text{reconstruction } 0 \square |X| \ x^{\sim} = D(z)$

- On Perceptual Compression Tradeoffs: different downsampling factors f 를 가진 LDMs 평가
  - downsampling factors f
    - f ∈ {1, 2, 4, 8, 16, 32} ; LDM-f 로 부름.
    - LDM-1 : pixel-based DMs
  - computational resources
    - o a single NVIDIA A100 으로 고정
    - 동일한 steps 과 parameters 개수로 train

#### □ class-conditional LDMs 의 sample quality



- LDM-{4-16} : efficiency and perceptual 간의 좋은 균형을 보임
- small downsampling factors for LDM-{1,2} : slow training progress
- 지나치게 높은 f(LDM-32) : 적은 training steps 후, sample quality 를 제한
  - 강한 perceptual compression 이 information loss 를 일으키고 sample quality 를 제한하기 때문

#### • Conditional Latent Diffusion - Transformer Encoders for LDMs

- text-to-image modeling,
  - o LAION-400M 에서 language prompts 에 따라 condition 된 parameter model 을 train
  - ο BERT-tokenizer 를 사용하고 τθ을 transformer 로 구현하여 cross-attention 을 통해 UNet latent code 를 생성한다.
  - [language representation ↔ visual synthesis] 를 학습하기 위한 domain specific encoder т<sub>θ</sub>는 user-defined text prompts 로 일반화

## ☐ <Text-To-Image>



Samples from our text-to-image LDM model for user-defined text prompts, which is trained on LAION-400M.

- Conditional Latent Diffusion Convolutional Sampling Beyond 256<sup>2</sup>
  - image-to-image translation models
    - $\circ$  spatially 하게 정렬된 conditioning information 을  $\epsilon_{ heta}$  input에 concat 함으로써 LDMs 은 image-to-image translation models 구현
    - large resolution
      - input resolution 256² (crops from 384²) 에 대해 train 하지만, 해당 모델은 larger resolutions 으로 일반화되며 convolutional 방식을 사용할 때 megapixel 까지 이미지를 생성할 수 있다.
      - o super-resolution models과 inpainting models에 적용하여 512² and 1024² 사이의 이미지 생성
  - □ large resolution (256 x 256  $\rightarrow$  512×1024)



256² resolution 으로 train된 LDM을 풍경 이미지의 conditioned tasks 에 대해 larger resolution (here: 512×1024) 으로 일반화

## Super-Resolution with Latent Diffusion

- concatenation을 통해 low-resolution image을 직접 conditioning함으로써 super-resolution을 train
- 실험 방법
  - o SR3 based, image degradation을 4x-downsampling 후, bicubic interpolation 으로 수정하고 SR3's data processing pipeline 을 따라 ImageNet 으로 train
  - o f = 4 autoencoding model pretrained on OpenImages 사용하고 low-resolution conditioning y 를 UNet 의 inputs 으로 연결
- ☐ ImageNet 64→256 super-resolution on ImageNet-Val.



- LDM-SR: realistic textures rendering
- SR3: 일관된 fine structures 를 합성할 수 있다.

## Inpainting with Latent Diffusion

- inpainting
  - masked regions of an image 을 새로운 컨텐츠로 채우거나 대체하는 작업
  - ☐ Comparison of inpainting performance

|                           | 40-50% masked |                      | All samples |                      |
|---------------------------|---------------|----------------------|-------------|----------------------|
| Method                    | FID↓          | LPIPS $\downarrow$   | FID↓        | LPIPS ↓              |
| LDM-4 (ours, big, w/ft)   | 9.39          | $0.246 \pm 0.042$    | 1.50        | $0.137 \pm 0.080$    |
| LDM-4 (ours, big, w/o ft) | 12.89         | $0.257 \pm 0.047$    | 2.40        | $0.142 \pm 0.085$    |
| LDM-4 (ours, w/ attn)     | 11.87         | $0.257 \pm 0.042$    | 2.15        | $0.144 \pm 0.084$    |
| LDM-4 (ours, w/o attn)    | 12.60         | $0.259 \pm 0.041$    | 2.37        | $0.145 \pm 0.084$    |
| LaMa [85] <sup>†</sup>    | 12.31         | <b>0.243</b> ± 0.038 | 2.23        | <b>0.134</b> ± 0.080 |
| LaMa [85]                 | 12.0          | 0.24                 | 2.21        | 0.14                 |
| CoModGAN [103]            | 10.4          | 0.26                 | 1.82        | 0.15                 |
| RegionWise [51]           | 21.3          | 0.27                 | 4.75        | 0.15                 |
| DeepFill v2 [100]         | 22.1          | 0.28                 | 5.20        | 0.16                 |
| EdgeConnect [57]          | 30.5          | 0.28                 | 8.37        | 0.16                 |

## □ 사용자 preference 연구

|                            | SR on Imag      | eNet  | Inpainting on Places |       |  |
|----------------------------|-----------------|-------|----------------------|-------|--|
| User Study                 | Pixel-DM $(f1)$ | LDM-4 | LAMA [85]            | LDM-4 |  |
| Task 1: Preference vs GT ↑ | 16.0%           | 30.4% | 13.6%                | 21.0% |  |
| Task 2: Preference Score ↑ | 29.4%           | 70.6% | 31.9%                | 68.1% |  |

- Task 1: ground truth, generated image 중 preference 요청
- Task 2: 2개의 generated images 중 preference 요청



## Conclusion

● quality 를 저하시키지 않으면서도 denoising diffusion model 의 training and sampling efficiency 크게 향상시킬 수 있는 latent diffusion model 제시

 cross-attention conditioning mechanism 을 기반으로, Conditional Image Synthesis task 에 다른 SOTA 모델들과 비교해도 손색이 없었다.