Reproducible Research - Notes

Tanner Prestegard

Course taken from 5/4/2015 - 5/31/2015

Reproducible research: concepts and ideas

- Replication the ultimate standard for strengthening scientific evidence is replication of findings and conducting studies with independent investigators, data, analytical methods, laboratories, and instruments.
- Replication is particularly important in studies that can impact broad policy or regulatory decisions.
- What's wrong with replication?
 - Some studies can't be replicated due to time, money, or opportunity constraints.
 - Some studies are just unique and the conditions can't be replicated.
- Reproducible research: make analytic data and code available so that others may reproduce your findings.
- Why do we need reproducible research?
 - New technologies increasing data collection throughput; data are more complex and high-dimensional.
 - Existing databases can be merged into new "megadatabases."
 - Computing power is greatly increase, allowing more sophisticated analyses.
 - For every field "X" there is now a field "Computational X".
- What do we need for reproducible research?
 - Analytic data are available.
 - Analytic code is available.
 - Documentation of code and data.
 - Standard means of distribution.
- Who are the players?
 - Authors
 - * Want to make their research reproducible.
 - * Want tools for reproducible research to make their lives easier.
 - Readers
 - * Want to reproduce and perhaps expand upon interesting findings.
 - * Want tools for reproducible research to make their lives easier.
- Challenges

- Authors must undergo considerable effort to make their data/results available on the web.
- Readers must download data/results individually and piece together which data go with which code sections, etc.
- Readers may not have the same resources as authors.
- Few tools to help authors/readers, although the toolbox is growing.
- In reality, what happens is:
 - Authors
 - * Just put stuff up on the web.
 - * Journal supplementary materials.
 - * There are some central databases for various fields.
 - Readers
 - * Just download the data and try to figure it out.
 - * Piece together the software and try to run it.
- Idea: literate statistic programming
 - An article is a stream of text and code.
 - Analysis code is divided into text and code "chunks."
 - Each code chunk loads data and computes results.
 - Presentation code formats results into tables, figures, etc.
 - Article text explains what is going on.
 - Literate programs can be weaved to produce human-readable documents and tangled to produce machine-readable documents.
- Literate programming is a concept that requires:
 - A documentation language (human readable).
 - A programming language (machine readable).
- Sweave uses IATEX and R as the documentation and programming languages, respectively.
 - Main website: http://www.statistik.lmu.de/~leisch/Sweave
 - Sweave limitations:
 - * Focused on LATEX, which is difficult to learn.
 - * Lacks features like caching, multiple plots per chunk, mixing programming languages, etc.
 - * Not frequently updated or very actively developed.
- The knitr package for R is an alternative for literate programming.
 - Uses R as the programming language (although others are allowed) and a variety of documentation languages, including L^AT_EX, Markdown, and HTML.
- Reproducible research is important as a minimum standard, particularly for studies that are difficult to replicate.
- Infrastructure is needed for creating and distributed reproducible documents, beyond what is currently
 available.
- There are a growing number of tools for creating reproducible documents.

Structure of a data analysis

- Steps in a data analysis
 - Define the question.
 - Define the ideal data set.
 - Determine what data you can access.
 - Obtain the data.
 - Clean the data.
 - Exploratory data analysis.
 - Statistical prediction/modeling.
 - Interpret results.
 - Challenge results.
 - Synthesize/write up results.
 - Create reproducible code.

• Defining a question

- The way you define your questions is extremely important!
- It's the most useful "dimension reduction" tool that you can employ.
- Example:
 - * General question: can I automatically detect emails that are spam and those that are not?
 - * Make it concrete: can I use quantitative characteristics of the emails to classify them as spam?

• Define the ideal data set

- The data set may depend on your goal.
 - * Descriptive: a whole population.
 - * Exploratory: a random sample with many variables measured.
 - * Inferential: the right population, randomly sampled.
 - * Predictive: a training and test data set from the same population.
 - * Causal: data from a randomized study.
 - * Mechanistic: data about all components of the system.

• Determine what data you can access

- Sometimes you can find data for free on the web.
- Other times you may need to buy the dta.
- Be sure to respect the terms of use.
- If the data don't exist, you may need to generate them yourself.

• Obtain the data

- Try to obtain the raw data.
- Be sure to reference the source.
- Polite emails go a long way.
- If you will load the data from an internet source, record the URL and the time you accessed the data.

• Clean the data

- Raw data often needs to be processed.
- If it is pre-processed, make sure that you understand how it was pre-processed.
- Understand the source of the data (census, sample, convenience sample, etc.).
- May need reformatting, subsampling, etc. Record these steps!
- Determine if the data are good enough if not, get new data or quit.

• Exploratory data analysis

- Look at summaries of the data.
- Check for missing data.
- Create exploratory plots.
- Perform exploratory analyses like clustering.

• Statistical prediction/modeling

- Should be informed by the results of your exploratory analysis.
- Exact methods depend on the question of interest.
- Transformations/processing should be accounted for when necessary.
- Measures of uncertainty should be reported.

• Interpret results

- Use the appropriate language words like "describe," "correlates with/associated with," "leads to/causes," "predicts."
- Give an explanation.
- Interpret coefficients.
- Interpret measures of uncertainty.

• Challenge results

- Challenge all steps: question, data source, processing, analysis, conclusions.
- Challenge measures of uncertainty.
- Challenge choices of terms to include in models.
- Think of potential alternative analyses.

• Synthesize/write up results

- Lead with the question.
- Summarize the analyses into the story.
- Don't include every analysis, only include it if:
 - * It is needed for the story.
 - * If it is needed to address a challenge.
- Order analyses according to the story, rather than chronologically.
- Include "pretty" figures that contribute to the story.

• Create reproducible code.

- Use Markdown, knitr, etc. to document your code and your analysis.

Organizing your analysis

- Data analysis files
 - Data: raw data, processed data.
 - Figures: exploratory figures, final figures.
 - R code: raw/unused scripts, final scripts, R Markdown files.
 - Text: README files, text of analysis/report.

• Raw data

- Should be stored in your analysis folder.
- If accessed from the web, include URL, description, and date accessed in a README file.

• Processed data

- Should be named so it's easy to see which script generated the data.
- The processing script -> processed data mapping should be described in the README file.
- Processed data should be **tidy**.

• Exploratory figures

- Made during the course of your analysis, not necessarily part of your final report.
- They do not need to be "pretty."

• Final figures

- Usually a small subset of the original figures.
- Axes/colors set to make the figure clear.
- Possibly multiple panels.

• Raw scripts

- May be less commented.
- May be multiple versions.
- May include analyses that are later discarded.

• Final scripts

- Clearly commented.
 - * Small comments used liberally what, when, why, how.
 - * Bigger commented blocks for whole sections.
- Include processing details.
- Only analyses that appear in the final write-up.

• R markdown files

- Can be used to generate reproducible reports.
- Text and R code are integrated.
- Very easy to create in RStudio

• README files

- Not necessary if you use R markdown.
- Should contain step-by-step instructions for analysis.
- Example: https://github.com/jtleek/swfdr/blob/master/README.md
- Text of the document
 - Should include a title, introduction (motivation), methods (statistics you used), results (including measures of uncertainty), and conclusions (including potential problems).
 - It should tell a coherent story.
 - It should not include every analysis that you performed.
 - References should be included for statistical methods.

Coding standards in R

- Always use text files and a text editor.
- Indent your code.
 - Indenting improves readability.
 - Suggested to use 4-8 spaces for indents.
- Limit the width of your code (80 columns or so).
- Limit the length of individual functions.

Markdown

- Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML or HTML.
- Syntax:
 - Italics: *text*
 - Bold: **text**
 - Headings:
 - * # Primary heading
 - * ## Secondary heading
 - * ### Tertiary heading
 - Unordered lists (can use characters other than "-"):
 - * first item
 - * second item
 - * third item
 - Ordered lists (don't have to be in order, Markdown will automatically put them in order):
 - * 1. first item
 - * 2. second item
 - * 3. third item
 - Links (two methods):
 - * [Text](URL)
 - * [Text][1], then at the bottom put [1]: URL "Text"
 - Newlines: double space after the end of a line.
- Resources: The Official Markdown Guide (daringfireball.net/projects/markdown/basics)

R Markdown

- Markdown is a simplified version of "markup" languages.
- Allows you to focus on writing as opposed to formatting.
- Simple/minimal intuitive formatting elements.
- Easily converted to valid HTML (and other formats) using existing tools.
- What is R Markdown?
 - The integration of R code with markdown.
 - Allows you to create documents containing "live" R code.
 - R code is evaluated as part of the processing of the markdown.
 - Results from R code are inserted into markdown document.
 - * You know that the code in the document will work, because it HAD to work in order to produce the document!
 - A core tool in literate statistical programming.
 - R Markdown can be converted to standard markdown using the knitr package in R.
 - Markdown can be converted to HTML using the markdown package in R.
 - Any basic text editor can be used to create a markdown document; no special editing tools needed.
 - The R Markdown -> Markdown -> HTML work flow can be easily managed using RStudio.
 - Can convert R Markdown to slides using the slidify package.

The knitr package

- How do I make my work reproducible?
 - Decide to do it! (ideally from the start)
 - Keep track of things, perhaps with a version control system to track snapshots/changes.
 - Use software whose operation can be coded (i.e, not GUI-based programming).
 - Don't save output like temporary data transformations, pre-processing, etc.
 - * Can provide raw data and pre-processing code.
 - Save data in non-proprietary formats.
- Literate programming
 - Pros:
 - * Text and code all in one place, in logical order.
 - * Data and results are automatically updated to reflect external changes.
 - * Code is live automatic "regression test" when building a document.
 - Cons:
 - * Text and code all in one place; can make documents difficult to read, especially if there is a lot of code
 - * Can substantially slow down processing of documents (although there are tools to help).
- What is knitr?
 - An R package (available on CRAN) that supports RMarkdown, LATEX, and HTML as documentation languages.

- Can export to PDF and HTML.
- Built right into RStudio for your convenience.
- Requirements:
 - * A recent version of R.
 - * A text editor.
 - * Some support packages that are available on CRAN.
 - * Some knowledge of Markdown, LATEX, or HTML (we will use Markdown).
- What is knitr good for?
 - Manuals.
 - Short/medium-length technical documents.
 - Tutorials.
 - Reports (especially if generated periodically).
 - Data pre-processing documents/summaries.
- What is knitr not good for?
 - Very long research articles.
 - Complex, time-consuming computations.
 - Documents that require precise formatting.
- To run knitr in R (not RStudio):

```
- library(knitr)
setwd("dir_name")
knit2html("document.Rmd")
browseURL("document.html")
```

• A few notes:

- knitr will fill a new document with filler text delete it!
- Code chunks begin with "`{r} and end with "`.
- All R code goes in between these markers.
- Code chunks can have names, which is useful when we start making graphics.

```
* '''{r firstchunk, echo=FALSE}
## R code goes here
```

- * echo=FALSE means that the code won't be echoed in the output document, only the result will be.
- * Set results="hide" to hide the results.
- By default, code in a code chunk is echoed, as are any results of a computation.
- Don't edit or save the .md or .html documents produced by knitr until you are finished!
- Can add code directly into a sentence.
 - * Example: The current time is 'r time'. My favorite random number is 'r rand'.
- Adjust figure height: "'{r scatterplot, fig.height=4}

- knitr embeds the figures in the HTML.
- Making tables with xtable:

```
- '''{r fitmodel}
library(datasets)
data(airquality)
fit <- lm(Ozone ~ Wind + Temp + Solar.R, data = airquality)

Here is a table of regression coefficients.
'''{r showtable, results="asis"}
library(xtable)
xt <- xtable(summary(fit))
print(xt, type="html")
'''</pre>
```

- Setting global options (for the entire document).
 - For example, we may want to suppress all code echoing and results output.
 - To do this, create a separate code chunk at the beginning of the document and use the opts_chunk function.

```
- '''{r setoptions, echo=FALSE}
opts_chunk$set(echo = FALSE, results = "hide")
```

- You can override the global options on a chunk-by-chunk basis.
- Some common options:

```
* results: "asis", "hide"
* echo: TRUE, FALSE
* fig.height: numeric
* fig.width: numeric
```

- Caching computations
 - What if one chunk takes a long time to run?
 - All chunks have to be re-computed every time you re-knit the file.
 - The cache=TRUE option can be set on a chunk-by-chunk basis to store results of a computation.
 - After the first run, the results for that chunk will be loaded from a cache (as long as nothing has changed).
- Caching caveats
 - If the data, code, or anything external changes, you have to re-run the cached code chunks.
 - Dependencies are not checked explicitly.
 - Chunks with significant side effects may not be cacheable (for example, if the code has some effect outside of the document).

Communicating results

- Hierarchy of information: research paper
 - Title/author list
 - Abstract
 - Body/results
 - Supplementary materials/gory details
 - Code/data/really gory details
- Hierarchy of information: e-mail presentation
 - Subject line/sender information
 - * At a minimum, at least include one.
 - * Can you summarize your findings in one sentence?
 - E-mail body
 - * A description of the problem in 1-2 paragraphs.
 - * If action needs to be taken as a result of this presentation, suggest some options and make them as concrete as possible.
 - * If questions need to be addressed, try to make them yes/no questions.
 - Attachments
 - * R Markdown file, knitr report, etc.
 - * Stay concise, don't spit out pages of code.
 - Links to supplementary materials
 - * Code/software/data
 - * GitHub repository/project website

RPubs

- RPubs.com, brought to you by RStudio.
- Easy web publishing from R, useful to share with other people or with the general public.
- Need to create an account.
- Can publish your documents directly from RStudio.

Reproducible research checklist

- DO: start with good science.
 - Garbage in = garbage out.
 - A coherent, focused question simplifies many problems.
 - Working with good collaborators reinforces good practices.
 - Something that's interesting to you will motivate good habits.
- DON'T: do things by hand.
 - Editing spreadsheets of data to clean it up.
 - Editing tables or figures (rounding, formatting, etc.).
 - Downloading data from a website by clicking links in a web browser.

- Moving data around on your computer, splitting/reformatting data files.
- "We're just going to do this once..."
- Things done by hand need to be precisely documented.

• DON'T: point and click.

- Many data processing/statistical analysis packages have GUIs.
- GUIs are convenient/intuitive, but the actions you take in them can be difficult to reproduce.
- Some GUIs produce a log file or script which includes equivalent commands; these can be saved for later examination.
- In general, be careful with data analysis software that is highly interactive; ease of use can sometimes lead to non-reproducible results.
- Other interactive software, like text editors, are usually fine.

• DO: teach a computer.

- If something needs to be done as a part of your analysis/investigation, try to automate it.
- In order to give your computer instructions, you need to write down exactly what you want to do
 and how it should be done.
- Teaching a computer almost guarantees reproducibility.

• DO: use version control.

- Slow things down.
- Add changes in small chunks (don't just do one massive commit).
- Track/tag snapshots; revert to old versions.
- Software like GitHub, BitBucket, or SourceForge make it easy to publish results.

• DO: keep track of your software environment.

- If you work on a complex project involving many tools/datasets, the software and computing environment can be critical for reproducing your analysis.
- Computer architecture: CPU, GPUs.
- Operating system: Windows, Mac, Linux/Unix.
- Software toolchain: compilers, interpreters, command shell, programming languages, database backends, data analysis software.
- Supporting software/infrastructure: libraries, packages, dependencies.
- External dependencies: web sites, data repositories, remote databases, software repositories.
- Version numbers: ideally, for everything (if available).
- Can use R function sessionInfo() to get a lot of this information.

• DON'T: save output.

- Avoid saving data analysis output (tables, figures, processed data, etc.) except temporarily for efficiency purposes.
- If a stray output file cannot easily be connected with the means by which it was created, then it is not reproducible.
- Save the data and code that generated the output rather than the output itself.
- Intermediate files are OK as long as there is clear documentation of how they were created.

- DO: set your seed.
 - Random number generators generate pseudo-random numbers based on an initial seed.
 - * In R, you can use the set.seed() function to set the seed and specify the random number generator to use.
 - Setting the seed allows for the stream of random numbers to be exactly reproducible.
 - Whenever you generate random numbers for a non-trivial purpose, always set the seed!
- DO: think about the entire pipeline.
 - Data analysis is a lengthy process; it is not just tables/figures/reports.
 - Raw data -> processed data -> analysis -> report.
 - How you got the data is just as important as the end result.
 - The more of the data analysis pipeline you can make reproducible, the better for everyone.

Evidence-based data analysis

- Replication
 - Focuses on the validity of a scientific claim is this claim true?
 - The ultimate standard for strengthening scientific evidence.
 - New investigators, data analytical methods, laboratories, instruments, etc.
 - Particularly important in studies that can impact broad policy or regulatory decisions.
- Reproducibility
 - Focuses on the validity of the data analysis can we trust this analysis?
 - Arguably a minimum standard for any scientific study.
 - New investigators, same data, same methods.
 - Important when replication is impossible.
- Background and underlying trends
 - Some studies cannot be replicated due to lack of money, time, or opportunity.
 - Technology is increasing data collection throughput; data are more complex and high-dimensional.
 - Existing databases can be merged to become bigger databases.
 - Computing power allows more sophisticated analyses, even on "small" data.
 - For every field "X", there is a "Computational X".
- The result?
 - Even basic analyses are difficult to describe.
 - Heavy computational requirements are thrust upon people without adequate training in statistics and computing.
 - Errors are more easily introduced into long analysis pipelines.
 - Knowledge transfer is inhibited.
 - Results are difficult to replicate or reproduce.
 - Complicated analyses can be hard to trust.
- What problem does reproducibility solve?

- What we get:

- * Transparency
- * Data availability
- * Software/methods availability
- * Improved transfer of knowledge

- What we do not get:

- * Validity/correctness of the analysis.
- An analysis can be reproducible but still WRONG.
- We really want to know if we can trust an analysis.
- Does requiring reproducibility deter bad analyses?

• Problems with reproducibility

- The premise of reproducible research is that with data/code available, people can check each other and the whole system is self-correcting.
 - * This addresses the most "downstream" aspect of the research process post-publication.
 - * Assumes that everyone plays by the same rules and wants to achieve the same goals (scientific discovery).

• Who reproduces research?

- For reproducibility to be effective as a means to check validity, someone needs to do something!
 - * Re-run the analysis, check that results match.
 - * Check the code for bugs/errors.
 - * Try alternative approaches, check sensitivity.
- The need for someone to do something is inherited from the traditional notion of replication.
- Who is "someone" and what are their goals?

• The story so far:

- Reproducibility brings transparency and increased transfer of knowledge.
- A lot of discussion about how to get people to share data.
- Key question of "can we trust this analysis?" is not addressed by reproducibility.
- Reproducibility addresses potential problems long after they've occurred ("downstream").
- Secondary analyses are inevitably colored by the interests/motivations of others.

• Evidence-based data analysis

- Most data analyses involve stringing together many different tools and methods.
- Some methods may be standard for a given field, but often others are applied ad hoc.
- We should apply thoroughly studied methods that are mutually agreed upon to analyze data whenever possible.
- There should be evidence to justify the application of a given method.
- Create analytic pipelines from evidence-based components standardize it.
- Once an evidence-based analytic pipeline is established, we shouldn't mess with it.
- Analysis with a "transparent box."
- Reduce the "researcher degrees of freedom."
- Analogous to a pre-specified clinical trial protocol.

Caching computations

- The cacher package add-on package for R
- Evaluates code written in files and stores intermediate results in a key-value database.
- R expressions are given SHA-1 hash values so that changes can be tracked and code reevaluated if necessary.
- "Cacher packages" can be built for distribution.
- Others can "clone" an analysis and evaluate subsets of code or inspect data objects.
- Using cacher as an author
 - The cachepackage function creates a cacher package storing the source file, cached data objects, and metadata.
 - The file is zipped and can be distributed.
 - Readers can unzip the file and immediately investigate its contents using the cacher package.
- Using cacher as a reader
 - library(cacher)
 - clonecache(id=sha1_string)
 - showfiles()
- Cloning an analysis
 - Local directories are created.
 - Source code files and metadata are downloaded.
 - Data objects are not downloaded by default.
 - References to data objects are loaded and corresponding data can be "lazy-loaded" on demand.
- Tracing code backwards: objectcode("objectname"). (must be in quotes)
- Running code
 - The runcode function executes code in the source file.
 - By defaults, expressions that result in an object being created are not run, and the resulting objects are lazy-loaded into the workspace.
 - Expressions not resulting in objects are evaluated.
- Checking code and objects
 - The checkcode function evaluates all expressions from scratch (no lazy-loading).
 - Results of the evaluation are checked against stored results to see if the results are the same as what the author calculated.
 - * Setting RNG seeds is critical for this to work.
 - The integrity of the data objects can be verified with the checkobjects function to check for possible data corruption.