Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

A2819 Ag8F Chyp H

ALTERNATIVE FUTURES FOR WORLD FOOD IN 1985

VOLUME 3, WORLD GOL MODEL STRUCTURE AND EQUATIONS

U.S. DEPARTMENT OF AGRICULTURE
ECONOMICS, STATISTICS, AND COOPERATIVES SERVICE
FOREIGN AGRICULTURAL ECONOMIC REPORT NO. 151

ALTERNATIVE FUTURES FOR WORLD FOOD IN 1985, VOLUME 3, WORLD GOL MODEL STRUCTURE AND EQUATIONS. By Anthony Rojko, Hilarius Fuchs, Patrick O'Brien, and Donald Regier; Foreign Demand and Competition Division; Economics, Statistics, and Cooperatives Service; U.S. Department of Agriculture, Foreign Agricultural Economic Report No. 151.

ABSTRACT

The structure of the world grain-oilseeds-livestock (GOL) projections model is described, base period data are defined, and the 930 mathematical equations used in the model are presented. Tables of elasticities are also presented to facilitate evaluation of particular coefficients used in the model's equations. The simultaneous solutions of the model use a linear programming computer technique.

The GOL model projects world patterns of production, consumption, trade, stocks, and prices for major grains, oilseeds, and livestock commodities for up to 28 major world countries and regions. The model is designed to quantify the impact of alternative assumptions regarding population growth, income growth, policy variations, and agricultural productivity growth rates. The mathematical relationships can be modified to evaluate additional alternatives.

Key words: Projections, agriculture, world food problems, economic model, grains, oilseeds, livestock products, trade.

FOREWORD

The Economics, Statistics, and Cooperatives Service (ESCS) is working on a continuing basis on projections of changes in world export markets, population, income, and resource and environment constraints and on their impact on the U.S. agricultural sector. The affected U.S. variables include production, consumption, trade, prices, farm costs, and farm incomes.

Major components of the projections program are world, regional, and country projections of production, demand, trade, and prices of major commodities important in agricultural trade. These projections are useful in evaluating the broad issues of future world food prospects.

The projections are made within the framework of a mathematical world grainoilseeds-livestock (GOL) model. The model is designed to capture the main economic relationships of the three groups of commodities and to test the impact of different economic and policy assumptions on projected quantities and values.

Projections of U.S. agricultural exports generated by the GOL model are not official ESCS projections of U.S. trade in agricultural commodities. Rather, they are presented to aid users in evaluating the impact of different assumptions on world trade.

Structure and equations of the world GOL model are being presented in this Together with the other GOL volumes, this volume provides the model documentation. The GOL model is one analytical tool used along with other ESCS computer programmed mathematical models for analyzing future food and agricultural trade prospects.

Joseph W. Willett, Director

Foreign Demand and Competition Division Economics, Statistics, and Cooperatives

zeph W. Willet

Service

PREFACE

This study reports on one phase of an ongoing research effort in the Economics, Statistics, and Cooperatives Service (ESCS) aimed at generating and maintaining up-to-date price, production, consumption, and trade projections for agricultural commodities in the major countries and regions of the world. The study assesses alternative world food prospects through the use of a mathematical model of the world's grain-oilseeds-livestock economies (GOL) model.

The study is being published in four volumes. Volume 1, an analytical report, discusses the output of the model's projections to 1985. Volume 2 contains detailed country and regional supply-distribution tables and related price and growth rate tables. Volume 3, the present report, describes and presents the mathematical equations used in the GOL model. Volume 4 will be a users' manual. Volume 2 is expected to be updated periodically to maintain a current set of alternative projections.

This research effort requires substantial ongoing teamwork from members of the Commodities Program Area working with others in the Foreign Demand and Competition Division (FDCD) of ESCS and with other ESCS divisions in the area of econometric model development and country-specific analysis. Under the overall direction of Anthony S. Rojko, significant inputs have been made by Donald Regier (livestock and derived feed), Patrick O'Brien (grains), Arthur Coffing (oilseeds), Robert Barry (rice), Myles Mielke (dairy), and Linda Bailey. Several people helped to develop the computer programs, beginning with Francis Urban in the early stages, Hilarius Fuchs during the main development stage, and Fenton Sands and Martin Schwartz in the later stages. The contribution of Angela Wray in editing the materials in this volume is also acknowledged.

While it is impossible to cite all the individuals in FDCD who contributed to this work, special recognition is given to Wayne Denney, Gene Hasha, John Link, and John Parker for their contribution to the productivity aspects of the developing world. Recognition is also acknowledged to James B. Johnson, Leroy Quance, and Allen Smith for their contribution to the U.S. sector.

CONTENTS

		Page
WOF	RLD GOL MODEL STRUCTURE	1
VAF	RIABLE SPECIFICATION	11
	Endogenous Variables	11 14
EQU	JATION SPECIFICATION	15
APF	PENDIX	93
	TABLES	
1.	Variables used in the world grain-oilseeds-livestock model	6
2.	World GOL model commodities	7
3.	World GOL model currencies and exchange rates	8
4.	World GOL model regions	9
5.	Demand elasticities for meat	51
6.	Demand elasticities for dairy products	52
7.	Supply elasticities for meat	53
8.	Supply elasticities for dairy products	54
9.	Factors affecting use of grain as livestock feed	55
10.	Factors affecting use of oilmeal as livestock feed	57
11.	Factors affecting nonfeed use of grains and oilseeds	59
12.	Factors affecting supply of grains and oilseeds	62
13.	Base 1970 quantity documentation	65
14.	Base 1970 price documentation	77

ALTERNATIVE FUTURES FOR WORLD FOOD IN 1985

VOLUME 3, WORLD GOL MODEL STRUCTURE AND EQUATIONS

by

Anthony Rojko, Hilarius Fuchs, Patrick O'Brien and Donald Regier

WORLD GOL MODEL STRUCTURE

The relationships affecting production, consumption, trade, and prices of grains, oilseeds, and livestock products have long challenged analysts in this country and abroad. World models have been developed for individual commodities or small commodity groupings; in these models, the world is usually viewed as a number of regions. Multicommodity models have been developed for a given country, but they usually treat the rest of the world in a residual way.

The world grain-oilseeds-livestock (GOL) model presented here adopts both views. It contains a sufficient number of regions to capture regional detail. At the same time, a sufficient number of commodities are treated to trace out the impact of quantity and price changes for one commodity in a given region upon prices and availabilities of the same or other commodities elsewhere in the world.

The U.S. sector included in the GOL model is representative only. Full U.S. models are used along with the GOL model in ongoing projection work in the Economics, Statistics, and Cooperatives Service (ESCS) of USDA, especially to provide export projections which tie in with detailed domestic U.S. projections.

The GOL model can also provide an analytical framework for international agricultural and trade policy evaluations.

In matrix form, the world GOL model may be written as --

$$AX = H \tag{1}$$

where A is a square coefficient matrix of linear relationships containing 930 rows and columns, X is a vector of 930 endogenous variables, and H is a matrix of the exogenous part of the model. In general, A is not varied between projections runs. Variables in H, however, can take on different values or a different combination of variables, depending on the alternative assumptions about the future. Rewriting, equation (1) becomes

$$X = A^{-1}H \tag{2}$$

with equation (2) providing the projected values under different alternatives.

A, X, and H can be decomposed in various ways: by region (the GOL model contains 28), commodity (of which there are 14), and economic function (production, demand, price, trade, etc). Price variables are further broken down by currency (dollar, peso, etc.) and by market level (retail, wholesale, producer, trade, etc). Most variables are specified within individual regions. However, prices and trade are by nature internationally linked. Physical equilibrium is defined in a twofold

sense: (1) at the regional level and (2) at the world level. At the regional level, excess supply or excess demand help determine net trade and price pressures. At the world level, exports and imports sum to zero; consequently, production equals consumption unless provision is made in a specific alternative for stock accumulations or drawdowns. Using population and income growth rates, supply and demand elasticities, physical input-output rates, and policy assumptions as inputs, the model develops projections of area, production, food and feed use, trade levels, and prices for several commodities by regions.

Within a region, the GOL model consists of seven major blocks of equations:

- 1. Demand block Livestock products
- 2. Supply block Livestock products
- 3. Demand block Feed crops
- 4. Demand block Food crops
- 5. Supply block Crops
- 6. Price linkages within regions
- 7. Regional equilibrium

To relate and tie the regions together, two additional blocks of equations are needed:

- 8. Price equations linking regions
- 9. World equilibrium equations for each commodity

Figure 1 shows schematically the interrelationships tying these blocks together at the regional and world levels.

Typically, the equations in blocks 1 and 4, describing human demand for food commodities, contain (1) a set of endogenous variables, including direct price of the particular commodity and the prices of competing and complementary commodities, and (2) a set of exogenous variables, which includes per capita income, population, and sometimes a time trend describing shifts in tastes. Food crops typically include wheat, coarse grains, and rice. Livestock products include individual meats, beef and veal, pork, poultry, and mutton, as well as milk, cheese, butter, and eggs. Demand for table beef is identified in the United States. Soybeans are human food in some regions, notably Japan. But oilcake or meal is treated as livestock feed. The following are typical demand equations: 1/

. Wheat demand for food = F(prices of wheat, corn, rice; per capita income, population, changing tastes)

^{1/} While the model has all endogenous variables on the left-hand side of the equality and exogenous on the right, the presentation shows a single endogenous variable as functions of other variables.

SUPPLY AND DEMAND SECTORS FOR A TYPICAL REGION IN GOL MODEL

Figure 1

- Beef demand
- = F(prices of beef, pork, poultry;
 per capita income, population,
 changing tastes)

Block 2 defines livestock production. Meat production is shown as a function of individual meat prices to allow for competition between meats. The prices of individual feeds are also included to allow for the effect of production costs. A trend variable is included for improvements in productivity. These equations are typical:

- . Beef production
- . Milk production
- = F(prices of milk, butter, coarse grain, oilmeal; productivity growth)

Feed demand, the link between the livestock and crop sectors, is more complex. The basic link is a set of physical input-output rates expressing the tons of grain or oilseed meal used in producing a ton of a given livestock product. Feed prices and livestock product prices are used to adjust the effective input-output rates so that they are consistent with projected economic conditions. Typical equations are:

The supply block for both grains and oilseeds is determined within block 5. It includes (1) an area equation and (2) a production equation to represent yield. 2/Changes in total cropped area are dependent on the prices of key crops and such factors as reclamation and technology. Individual crops share the available total area on the basis of historic shares, relative prices of competing crops, and rate of expansion of available area. Production is a function of area and direct and competing prices; prices reflect higher input use in response to higher crop prices. Typical crop supply equations are shown below:

- . Total crop area
- = F(prices of wheat, corn, oilseeds; expansion of available area)

- . Wheat area
- = F(total crop area; prices of wheat, corn, oilseeds)
- . Wheat production
- = F(wheat area; price of wheat; physical input bundle)

Price linkage equations in block 6 connect internal prices at different marketing levels as well as international trade prices. The following equation forms are typical:

- . Wholesale price of wheat = F(trade price of wheat)

Price linkage equations in block 8 link the trade prices among regions. Regional equilibrium conditions comprising block 7 state the physical imbalance within a region, defining whether a region is an exporter or importer. The world equilibrium equations in block 9 provide for the summing up of all the regions to obtain world totals, with production equal to consumption, and with world exports equal to world imports except when stock changes are also included in the analysis.

For the developed countries, the GOL model captures the interaction of food demand, feed demand, and livestock production and consumption. However, for developing regions with only a modest livestock economy and little foreign trade in animal products, the livestock demand and supply blocks are not specified. Feed demand equations for these regions are direct functions of the exogenous factors affecting demand and supply of livestock products and of the livestock feeding rates:

^{2/} A yield equation could not be used directly because the endogenous part of the model is linear and area times yield is nonlinear.

The economies of Eastern Europe, the Soviet Union, and the People's Republic of China present a different situation. In each region, for each commodity representing a significant quantity of foreign trade, a single equation has been synthesized to relate net foreign trade directly to the usual demand determinants and other factors. However, the production and consumption links associated with a particular trade alternative are determined outside the GOL model. This is a typical equation:

While the matrix A must be linear, there is no such restriction on matrix ${\tt H}.$ The form of H depends on assumptions as to impacts expected of particular exogenous variables used. The general form of H is --

$$H = B (1 + R)^{T} + CZ + DT + E$$

--where the impacts may take one or some combination of the following forms:

$$H_{1} = B (1 + R)^{T} + E_{1}$$
 $H_{2} = CZ + E_{2}$
 $H_{3} = DT + E_{3}$

 $\rm H_1$, $\rm H_2$, and $\rm H_3$ sum to H in the general form and $\rm E_1$, $\rm E_2$, and $\rm E_3$ to E. In the first form, $\rm H_1$ is a compound growth process, where B is a vector of bases to be compounded, R is a set of growth rates for particular exogenous variables, and T is the number of years over which compounding occurs. The second form, $\rm H_2$, represents a linear relationship to some exogenous variable, where C is the coefficient matrix and Z a vector of exogenous variables. The third form, $\rm H_3$, is simply an allowance for linear trends, where D is the matrix of trend increments and T is the span of years over which the trends operate.

All terms in H must be individually projected for each projection alternative before the solution can be calculated and the variations in the endogenous variables, X, determined.

As indicated above, the livestock sector is not specified for all regions of the world. Table 1 indicates those regions which (1) produce or consume mainly grain, (2) consume significant quantities of livestock products, (3) produce commercially important quantities of livestock products, (4) employ sufficient quantities of feedstuffs to justify incorporating feed demand equations into the GOL model, and (5) are represented in the world model structure, at this stage, only by net trade equations.

Table 2 sets out the definitions of the commodities used in the GOL model. Table 3 displays the currencies and exchange rates used in particular regions. Table 4 is a listing of the countries in each region of the world.

Table 1--Variables used in the world grain-oilseeds-livestock model

untries 10 F AA D PA DF PA F PA D S D S P D P D P D P D P D P D P D P D	Region	Whe	Wheat	Rice		Coarse grain	se in	Oilseed meal	Milk	Cheese	Eggs	Beef	Beef	Pork	: Poultry:	Mutton and lamb
10 10 10 10 10 10 10 10		•• ••														
10	Developed countries:		ţ	-	ç		<u> </u>				٤					ç
10 2	United States	. DF	ra Pa	<u>ا</u> د	ГA		PA A				ъ, Б					٦
10 12 13 14 15 15 15 15 15 15 15	9-0-1	HG .			PA		ν				, Δ					
D) (F		PA	a E	PA		P A				, д					
D PA PA	ther Western Europe	DF	PA	Ω	PA		E A				4					
1	apan	Ω.	PA	DF	PA		PA				Q.					
T	lia/New	: DF	PA	D	PA		PA				Д					
T T T T T T T T T T T T T T T T T T T	South Africa	. D	PA	D			PA								Д	
T T T T T T T T T T T T T T T T T T T	trally planned countries	••														
T. T	astern Europe			H		⊱		Т					⊢	⊢		
Trica T	Soviet Union	E-		I		П		T					₽			
DF PA D PA DF PA F PA D P D P D P D P D P D P D P D P D P D	China			H		H		T						H		
DF PA D PA DF PA F PA F PA F PA PA PA PA	eloping countries:	••••														
Secretian	liddle America	: DF	PA	D	PA		PA									
1	rgentina	Q :	PA	D	PA		PA									
### South America	razil	. D	PA	D	PA		PA									
### South America	enezuela	. D	PA	D	PA		PA									
and Middle East : D PA D PA PP PA F w-income North Africa : D PA D PA PP PA F w-income North Africa : D PA D PA PP PA S st Africa : D PA D PA D PA PA PA F and Middle East : D PA D PA D PA	ther South America	. D	PA	D	PA		PA									
and Middle East """ """ """ """ """ """ """	ligh-income North Africa	••														
and Midle East	and Middle East	. D	PA	D	PA		PA	ĮΉ								
and Middle East : D PA D PA DF PA S sat Africa	North	••														
### Africa 10 PA D PA D PA P PA P PA	and Middle East	. D	PA	D	PA		PA	S								
### South Asia	ast Africa	. D	PA	D	PA		PA									
ther South Asia : D PA DF PA F PA ther South Asia : D PA DF PA PA ther South Asia : D PA DF PA ther Southeast Asia : D PA DF PA there Southeast Asia : D PA there Southeast Asia : D PA DF PA th	entral Africa	Q	S	Q	S		ιΩ	H								
ther South Asia ; D PA D PA PA Tailand ; D PA DF PA Ther Southeast Asia ; D PA DF PA Ther Southeast Asia ; D PA DF PA Ther Southeast Asia ; D PA D PA D PA Ther Southeast Asia ; D PA D PA PA There Southeast Asia ; D PA D PA PA There Southeast Asia ; D PA D PA There South	ndia		PA	Q	PA		Ą									
### Income East Asia	Other South Asia	0 :	PA	D	PA		PA									
ther Southeast Asia : D PA DF S Idonesia : D PA DF PA Idonesia : D PA DF PA Igh-income East Asia : D PA DF PA S Set of world : T T T T T T T T T T T T T T T	ניסין 1			C	<u>م</u>		*									
Ther Southeast Asia : D PA DF PA F PA F PA F PA Swincome East Asia : D PA DF PA F PA Swincome East Asia : D PA DF PA F PA St of world : T T T T T T T T T T T T T T T T T T	ingregation	 J 6		ם נ	£ 4		E .									
igh-income East Asia : D PA DF PA F PA Sw-income East Asia : D PA DF PA S S T T T T T T T T T T T T T T T T T	orner Southeast Asia	 J		ם נ	P K											
Demand, total or nonfeed Lgu-income East Asia : D FA DF PA S T T T T T T T T T T T T T T T	indonesta Habi income Ecot Acia	 J 6	ķ	ם נ	A 4		P.A	r								
est of world = Demand, total or nonfeed P = Production S = Supply	inguitincome East Asia		rA	۵ ۵	r A P A		r.A o									
= Demand, total or nonfeed		٠		1	:		\$	2								
= Demand, total or nonfeed P = Production S =	of	• ••								T			П	₽		H
= Demand, total or nonfeed S = Production S =																
	= Demand,	peq					П	roduction					Supply			

Table 2--World GOL model commodities

Code	Commodity
N.	Each or all of the commodities modeled
т.	Crops, each or all
G.	Grains, each or all
W.	Wheat, product weight
R.	Rice, milled equivalent, product weight
С.	Corn and other coarse grains, product weight
К.	Oilseeds, meal equivalent, product weight
S.	Soybeans, meal equivalent, product weight
Α.	Livestock products, each or all
М.	Meats, each or all
В.	Beef and veal, carcass weight
BT	Beef, table, carcass weight
BP	Beef, process, carcass weight
Р.	Pork, carcass weight
Z.	Poultry, ready-to-cook weight
V.	Mutton, lamb, and other meat, carcass weight
L.	Milk and dairy products, fluid equivalent, product weight
LM	Fluid milk, product weight
LC	Cheese, product weight
LB	Butter, product weight
E.	Eggs, product weight

Table 3--World GOL model currencies and exchange rates $\underline{1}/$

Region	Currency code	: Exchange rates :
	:	
	:	
Developed countries:	:	
United States	: CD	U.S. dollar
Canada	: CC	1 Canadian dollar = 1 dollar equivalent
European Community	: CU	1 unit of account = 1 dollar equivalent
Other Western Europe	: CU	Dollar equivalent
Japan	: CY	357.600 yen = 1 dollar equivalent
Australia/New Zealand	: CA	.897 Australian dollar = 1 dollar equivalent
South Africa	: CE	Dollar equivalent
	:	·
Centrally planned countries:	:	
Eastern Europe	: CE	Dollar equivalent
Soviet Union	: CE	Dollar equivalent
People's Republic of China		Dollar equivalent
respie a Republic of Online	•	porrar equivarent
Developing countries:	•	
Argentina	: CP	3.75 new peso = 1 dollar equivalent
•		•
Others	: CE	Dollar equivalent
	:	

^{1/2} Exchange rates as of July 1972. Dollar equivalent = 1 U.S. dollar.

	Region	: Code :	Composition
ı.	Developed Countries:		
	United States	US	United States
	Canada	CN	Canada
	EC-6	C6	Belgium, France, West Germany, Italy, Luxembourg, Netherlands
	EC-3	С3	Denmark, Ireland, United Kingdom
	Other Western Europe	WE	Austria, Finland, Greece, Iceland, Malta, Norway, Portugal, Spain, Sweden, Switzerland
	Japan	JP	Japan
	Oceania	AZ	Australia, New Zealand
	South Africa	SF	Botswana, Lesotho, Namibia, Republic of South Africa, Swaziland
II.	Centrally Planned Countries:		
	Eastern Europe	EE	Albania, Bulgaria, Czechoslovakia, East Germany, Hungary, Poland, Romania, Yugoslavia
	Soviet Union	sv	Soviet Union
	China	СН	People's Republic of China
III.	Developing Countries:		
	Middle America	МС	Mexico, Bahamas, Bermuda, Costa Rica, Dominican Republic, El Salvador, Guatemala, Haita, Honduras, British Honduras, Jamaica, Nicaragua, Panama, Trinidad & Tobago, Other Caribbean Islands
	Argentina	AR	Argentina
	Brazil	BZ	Brazil
	Venezuela	VN	Venezuela
	Other South America	LA	Bolivia, Chile, Colombia, Ecuador, French Guiana, Paraguay, Peru, Surinam, Uruguay

Table 4--World GOL model regions--Continued

Region	Code:	Composition
High-income North Africa and Middle East	NH	Algeria, Bahrain, Cyprus, Iran, Iraq, Israel, Kuwait, Libya, Oman, Qatar, Saudi Arabia, United Arab Emirates
Low-income North Africa and Middle East	NL	Egypt, Jordan, Lebanon, Morocco, Sudan, Syria, Tunisia, Turkey, Yemen (Aden), Yemen (Sana)
East Africa	EF	Kenya, Malagasy Republic, Malawi, Mozambique, Rhodesia, Tanzania, Uganda, Zambia
Central Africa	CF	Angola, Burundi, Cameroon, Central African Empire, Chad, Congo, Ethiopia, Djibouti, Benin, Gabon, Gambia, Ghana, Guinea, Equatorial Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Mauritana, Mauritius, Niger, Nigeria, Reunion, Rwanda, Senegal, Sierra Leone, Somalia, Togo, Upper Volta, Zaire
India	ND	India
Other South Asia	OS	Afghanistan, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka
Thailand	TH	Thailand
Other Southeast Asia	OE	Burma, Cambodia, Laos, South Vietnam <u>1</u> /
Indonesia	DO	Indonesia
High-income East Asia	EH	Hong Kong, Singapore, South Korea, Taiwan, Brunei
Low-income East Asia	EL	Malaysia, Philippine Islands
Rest of world	RW	North Korea, North Vietnam 1/, Mongolia, Cuba, Pacific Islands, Papua-New Guinea

 $[\]underline{1}/$ The model was designed before the reunification of North and South Vietnam into the People's Republic of Vietnam.

VARIABLE SPECIFICATION

An 8-place code is employed for specifying the price, quantity, and international trade interactions corresponding to 14 commodities, plus land area, for 28 regions of the world. The notation is standard for all commodities and regions.

In the code, the first and second characters identify region or country, the third and fourth designate function, such as demand or supply, the fifth and sixth identify the commodity, and the seventh and eighth specify the currency in which prices, incomes, or values are measured.

Endogenous Variables

The code for endogenous variables identifies region, economic function, commodity, and currency. The <u>first two</u> spaces (1 and 2) together constitute a regional code:

- US- United States
- CN- Canada
- C6- EC, Original Six
- C3- EC, New Three
- WE- Other Western Europe
- JP- Japan
- AZ- Oceania
- SF- South Africa
- EE- Eastern Europe
- SV- Soviet Union
- CH- People's Republic of China
- MC- Middle America
- AR- Argentina
- BZ- Brazil
- VN- Venezuela
- LA- Other South America
- NH- High-income North Africa and Middle East
- NL- Low-income North Africa and Middle East
- EF- East Africa

- CF- Central Africa
- ND- India
- OS- Other South Asia
- TH- Thailand
- OE- Other Southeast Asia
- DO- Indonesia
- EH- High-income East Asia
- EL- Low-income East Asia
- RW- Rest of world

The second two spaces (3 and 4) are functional indicators:

- -HA- Area in hectares
- -QD- Quantity demanded
- -QS- Quantity supplied
- -QT- Quantity traded internationally or interregionally, net. Imports are negative, exports are positive.
- -PD- Demand price
- -PS- Supply price
- -PT- Trade price
- -PL- Levy price (variable levy)
- -CO- Consumption quantity
- -EQ- Equilibrium condition
- -DS- Demand-supply equilibrium
- -SD- Supply-demand equilibrium
- -RP- Regional price
- -ST- Relationship between a supply price and a trade price
- -DT- Relationship between a demand price and a trade price

The <u>third two</u> spaces (5 and 6) signify commodities. Space 5 gives the broad designation, with further breakdown indicated in space 6:

- -B.- Beef, including veal
- -BT- Beef, table

- -BP- Beef, process
- -P.- Pork
- -Z.- Poultry
- -V.- Mutton, including lamb and goat
- -L.- Milk and dairy products
- -LM- Fluid milk
- -LB- Butter
- -LC- Cheese
- -E.- Eggs
- -G.- Total grain
- -GH- Grain for human demand
- -GF- Grain for livestock feed
- -W.- Wheat
- -WH- Wheat for human demand
- -WF- Wheat for livestock feed
- -R.- Rice
- -RH- Rice for human demand
- -C.- Coarse grains
- -CH- Coarse grains for human demand
- -CF- Coarse grains for livestock feed
- -K.- Oilseeds, meal equivalent, including principally soybeans
- -KH- Oilseeds for human demand
- -KF- Oilseeds for livestock feed
- -S.- Soybeans, meal equivalent
- -SH- Soybeans for human demand

In the context of land area (-HA-), spaces 5 and 6 have the following significance:

-T.- Total

The <u>fourth two</u> spaces (7 and 8) comprise a currency code, independently specified for each region:

- -CD U.S. dollar
- -CC Canadian dollar
- -CU European Community unit of account (=U.S. dollar in 1970)
- -CE Dollar equivalent
- -CY Japanese yen
- -CA Australian dollar
- -CP Argentine new peso

Most regions are specified with dollar-equivalent prices.

The code for endogenous variables identifies region, function, commodity, and currency. An example might be useful in clarifying the employment of the code. Consider the code name, WEQDCF. From the above specification, it is evident that --

- WE is Other Western Europe
- QD is quantity demanded, and
- CF is coarse grains used as livestock feed.

So, the variable name is decoded as: "The quantity of coarse grain demanded as livestock feed in the region called Other Western Europe (which is comprised of Austria, Finland, Greece, Iceland, Malta, Norway, Portugal, Spain, Sweden, and Switzerland)."

As an example of a price, consider the code name, THPDR.CE. The meanings of the elements can be looked up:

TH is Thailand,

PD is demand price,

R. is rice, and

CE is dollar equivalent.

Thus, the variable name has the meaning: "The demand price of rice measured in dollar-equivalent terms in Thailand (a region containing only one country)."

Alphanumeric suffixes are used sparingly to avoid confusion:

- A, B, ... etc. are endings to avoid confusion.
- 1, 2, ... etc. are terminations used in price relationships to avoid confusion and to provide a count of the number of regions interrelated.

Exogenous Variables

Exogenous variables are indicated by special code names:

POP	Population, of all countries
POPD	Population, of a developed country
POPLD	Population, of a less developed country
INCOME	Per capita national income, of all countries
INCOMED	Per capita national income, of a developed country
INCOMELD	Per capita national income, of a less developed country
PRDVTYD	Productivity, index of physical production response in a developed country with respect to a specific commodity
PRDVTYLD	Productivity, index of physical production response in a less developed country with respect to a specific commodity
TRENDD	Time trend, annual increment, in a developed country
TRENDLD	Time trend, annual increment, in a less developed country
TIME	Compound growth factor
ZI	Index of cost of physical inputs in a developed country
PRI	Index of physical use of a bundle of agricultural inputs, such as fertilizers, insecticides, in a developing country

EQUATION SPECIFICATION

The following pages present the mathematical equations used in alternative I. Tables 5 through 12 show the direct- and cross-price elasticities and income elasticities arrived at in the course of research and used in developing the equations. Tables 13 and 14 show the values for the 1970 base quantities and prices, respectively.

```
USQDBT + 1.922 USPDB - .9235 USPTB - .3629 USPDP = 2,381.35 + 5,952[1 + .4(.02921) + .00726]^{T}
USODBP - .8932 USPDB + 3.004 USPTB - .2952 USPDP - .5085 USPDZ = 967.48 + 4.841[1 + .3(.02921) + .00726]^{T}
USQTBT - .0217 USPDB + .0365 USPTB = .003 + 47[1 + .0100]^{T}
USQDP - 1.151 USPDB + 3.085 USPDP - .6644 USPDZ = 1,897.0 + 6,325[1 + .10(.02921) + .00726]^T
USQDZ - .6119 USPDB - .5467 USPDP + 4.709 USPDZ = 2,241.42 + 4,483[1 + .8(.02921) + .00726]^{T}
USQDLM + 50.19 USPDLM = 6.712.91 + 33.566[1 - .1(.02921) + .00726]^{T}
USQDLB + .2306 USPDLB = 350.05 + 500[1 + .00726]^{T}
USQDLC + .4407 USPDLC = 531.48 + 1,063[1 + .5(.02921) + .00726]^{T}
USODWH + 55.63 USPDW = 3.170.9 + 15.854[1 + .00726]^{T}
USODCH + 57.11 USPDC = 3.012.55 + 15.064[1 + .00726]^{T}
USQDRH + .5103 USPDR = 262.8 + 1,314[1 + .2(.02921) + .00726]^{T}
USQDWF - .0420 USQDGF + 150 USPDW - 150 USPDC = 940.58
USQDGF - 4.181 USQSB - 6.431 USQSP - 2.765 USQSZ - .3273 USQSL - 2.912 USQSE - 44.78 USPSB - 81.48 USPSP
                                             + 1,037 \text{ USPDC} - 160.6 \text{ USPDK} = - 151,624.25 + 136,772[1 + .003]^T
USQDCF - USQDGF + USQDWF = 0
USQDKF - .2842 USQSB - .4060 USQSP - .7883 USQSZ - .0301 USQSL - .4236 USQSE - 2.711 USPSB - 8.238 USPSP
                                                - 269.8 USPDC + 89.22 USPDK = - 24,717.55 + 14,234[1 + .01]^{T}
```

Supply Equations

```
USQSB - 4.49 USPSB + 38.15 USPDC + 5.909 USPDK = -502.68 + 10.063[1 + .016]^{T}
USOSP - 6.624 USPSP + 47.21 USPDC + 7.313 USPDK = 0 + 6.227[1 + .005]^{T}
USOSZ - 6.624 USPSZ + 52.98 USPDC + 10.94 USPDK = -466.2 + 4.659[1 + .025]^{T}
USQSE = 4,077[1 + .00726]^{T}
USQSL - 168.5 USPSL + 7.911 USPSB + 302.3 USPDC + 124.9 USPDK = 63,801.45 + 1,000 T
USQSLC - .4940 USPDLC + .3925 USPDLB = .051 + 993[1 + .5(.02921) + .00726]^{T}
USQSL - USQDLM - 20.9516 USQDLB - 8.8469 USQSLC = 335.23
USHAT - 951.6 USPTW - 2,168 USPTC - 438.4 USPTS = - 153.3 USZI - 138,017.06
USHAW - 809.0 USPTW + 603.0 USPTC + 112.0 USPTS - .243 USHAT = - 185.4
USHAC + 585.6 USPTW - 1.652 USPTC + 361.8 USPTS - .538 USHAT = - 18.355.2 - 487 T
USHAR - 4.414 USPTR = .0310 + 5 T
USHAK + 223.4 USPTW + 1.049 USPTC - 473.8 USPTS - .219 USHAT = 18,540.6 + 487 T
USQSW - 2.144 USHAW - 34.08 USPTW = 2,001.29 - 40.02 USZI + 590 T
USQSC - 4.023 USHAC - 290.5 USPTC = 16,582.15 - 331.7 USZI + 4,260 T
USQSR - 3.657 USHAR - 1.627 USPTR = - 287.92 + 51 T
USQSK - 1.193 USHAK - 3.483 USPTS = -400.19 + 872 T
```

Regional Equilibrium Conditions

- USQSB + USQDBT + USQDBP + USQTB = 0
- USQSP + USQDP + USQTP = 0
- USQSZ + 1.0393 USQDZ = 0

USQDV + USQTV = 0

 $USQTV = 54[1 + .0470]^{T}$

- USQSLB + USQDLB = 0
- USQSLC + USQDLC + USQTLC = 0
- USQSW + USQDWH + USQDWF + USQTW = 0
- USQSC + USQDCH + USQDCF + USQTC = 0
- USQSR + USQDRH + USQTR = 0
- USQSK + USQDKF + USQTK = 0

Supply-Demand Price Equations

USPSB - .65 USPDB = -756.7

USPSP - .40 USPDP = - 186

USPSZ - USPDZ = -319

USPDLM = $133.75[1 + .05(.02921)]^{T}$

USPDLB - .04773 USPDLB = 30.946

USPDLC - .11303 USPDLC = - 32.914

USPSL - .6314 USPDLM - .2034 USPSLB - .1652 USPSLC = 3.6170

USPTS - USPTK = 16.6

Demand-Trade Price Equations

USPDB - 1.0(1.0) USPTB = 909

USPDP - 1.0(1.0) USPTP = 76

USPDLC - .5 USPTLC = - 510

USPDW - 1.0(1.0) USPTW = - 1.73

USPDC - 1.0(1.0) USPTC = - 4.32

USPDR - 1.0(1.0) USPTR = 338.07

USPDK - 1.0(1.0) USPTK = - 13.15

```
CNQDB + .80 CNPDB - .3954 CNPDP - .3095 CNPDZ = 136.8 + 912[1 + .6(.03009) + .01436]<sup>T</sup>

CNQDP - .3459 CNPDB + .5948 CNPDP - .1995 CNPDZ = 88.21 + 588[1 + .15(.03009) + .01436]<sup>T</sup>

CNQDZ - .1888 CNPDB - .1237 CNPDP + .7747 CNPDZ = 128.43 + 428[1 + .8(.03009) + .01436]<sup>T</sup>

CNQDLM + 5.217 CNPDLM = + 742.2 + 3,711[1 - .1(.03009) + .01436]<sup>T</sup>

CNQDLB + .0717 CNPDLB = + 103.53 + 148[1 - .3(.03009) + .01436]<sup>T</sup>

CNQDLC + .0485 CNPDLC = + 55.48 + 111[1 + .6(.03009) + .01436]<sup>T</sup>

CNQDWH + 1.938 CNPDW - 1.39 CNPDC = 49.08 + 2,455[1 - .25(.03009) + .01436]<sup>T</sup>

CNQDCH - 1.682 CNPDW + 4.020 CNPDC = 106.5 + 2,130[1 - .3(.03009) + .01436]<sup>T</sup>

CNQDRH + .0773 CNPDR = 18.01 + 60[1 + .15(.03009) + .01436]<sup>T</sup>

CNQDGF - 4.6 CNQSB - 6.5 CNQSP - 2.9 CNQSZ - .33 CNQSL - 3.1 CNQSE - 5.627 CNPSB - 5.529 CNPSP + 115.5 CNPDC - 12.90 CNPDK = - 16,019.2 + 15,305[1 + .002]<sup>T</sup>

CNQDWF - .145 CNQDGF + 17.53 CNPDW - 17.53 CNPDC = 182.04

CNQDKF - .145 CNQDGF - CNQDGF = 0

CNQDKF - .1 CNQSB - .35 CNQSP - .6 CNQSZ - .03 CNQSL - .35 CNQSE - 1.132 CNPSP - 41.05 CNPDC + 7.167 CNPDK = - 3,027.88 + 870[1 + .005]<sup>T</sup>
```

Supply Equations

```
CNQSB - .5182 CNPSB + .1273 CNPSP + 3.325 CNPDC + .3713 CNPDK = -44.05 + 881[1 + .035]<sup>T</sup>

CNQSP + .1768 CNPSB - .5211 CNPSP + .2719 CNPDZ + 4.537 CNPDC + .5066 CNPDK = 180.32 + 601[1 + .019]<sup>T</sup>

CNQSZ + .0631 CNPSB + .1240 CNPSP - .6794 CNPSZ + 3.238 CNPDC + .7232 CNPDK = 85.81 + 429[1 + .0380]<sup>T</sup>

CNQSE = 329[1 + .01436]<sup>T</sup>

CNQSL - 20.57 CNPSL + 62.53 CNPDC + 13.97 CNPDK = 2,485.66 + 8,284[1 + .019]<sup>T</sup>

CNQSLC - .0530 CNPSLC + .0420 CNPDLB = + .02 + 101[1 + .6(.03009) + .01436]<sup>T</sup>

CNQSL - CNQDLM - 23.25 CNQSLB - 11.208 CNQSLC = 0

CNHAT - 79.42 CNPSW - 218.2 CNPTW = + 1,977.63

CNHAW - 95.52 CNPSW + 79.40 CNPSC + 13.61 CNPSK - .523 CNHAT = - 817.0 - 75 T

CNHAC + 87.00 CNPSW - 93.33 CNPSC + 11.65 CNPSK - .357 CNHAT = 1,995.97 + 50 T

CNHAK + 8.52 CNPSW + 13.93 CNPSC - 25.26 CNPSK - .120 CNHAT = - 1,178.97 + 25 T

CNQSW - 48.57 CNPSW - 1.75 CNHAW = 805.1 - 32.2 CNZI + 390 T

CNQSC - 55.99 CNPSC - 2.20 CNHAC = 861.86 - 34.6 CNZI + 590 T

CNQSK - 2.576 CNPSK - .487 CNHAK = - 65.11 - 1.96 CNZI + 30 T
```

Regional Equilibrium Conditions

- CNQSB + CNQDB + CNQTB = 0
- CNQSP + CNQDP + CNQTP = 0
- CNQSZ + 1.0023 CNQDZ = 0

Regional Equilibrium Conditions (Continued)

- CNQSLB + CNQDLB + CNQTLB = 0
- CNQSLC + CNQDLC + CNQTLC = 0
- CNQSW + CNQDWH + CNQDWF + CNQTW = 0
- CNQSC + CNQDCH + CNQDCF + CNQTC = 0
- CNQDRH + CNQTR = 0
- CNQSK + CNQDKF + CNQTK = 0

Supply-Demand Price Equations

- CNPSB CNPDB = 0
- CNPSP CNPDP = 0
- CNPSZ CNPDZ = 0
- CNPSW CNPDW = 13.61
- CNPSC CNPDC = -6.64
- CNPSK CNPDK = -17.33
- $CNPDLM = 142.27[1 + .05(.03009)]^{T}$
- CNPSLB .0430 CNPDLB = 41.294
- CNPSLC .08922 CNPDLC = 1.332

Demand-Supply Price Equation

CNPSL - .4480 CNPDLM - .4154 CNPSLB - .1366 CNPSLC = 0

Demand-Trade Price Equations

- CNPDB CNPTB = 0
- CNPDP CNPTP = 0
- CNPDW CNPTW = 0
- CNPDC CNPTC = 0
- CNPDK CNPTK = 0
- CNPDR CNPTR = 0
- CNPDLB .5 CNPTLB = 1,080.5
- CNPDLC .5 CNPTLC = 528.5

```
C60DB + 2.6972 C6PDB - 1.6403 C6PDP + .6907 C6PDZ = 1,448.4 + 4,828[1 + .6(.03263) + .00580]^{T}
C6ODP - 1.994 C6PDB + 4.528 C6PDP - .8590 C6PDZ = 899.3 + 4.997[1 + .5(.03263) + .00580]^{T}
C6QDZ - .5814 C6PDB - 1.0855 C6PDP + 2.934 C6PDZ = 363.88 + 1,917[1 + 1.0(.03263) + .00580 + .005]^{T}
C6QDV - .0276 C6PDB - .0392 C6PDP + .0594 C6PDV = -11.46 + 231[1 + .00580]^{T}
C6QDLM + 76.52 C6PDLM = 7.881.6 + 31.526[1 + .2(.03263) + .00580]^{T}
C6QDLB + 4799 C6PDLB = 837.91 + 1.197[1 + .2(.03263) + .00580]^{T}
C6QDLC + .7591 C6PDLC = 1,099.2 + 1,832[1 + .5(.03263) + .00580]^{T}
C60DWH + 44.46 C6PDW = 4.460.2 + 22.300[1 - .1(.03263) + .00580]^{T}
C60DCH + 21.38 C6PDC = 1,964.8 + 9.825[1 + .1(.03263) + .00580]^{T}
C6QDRH + .5425 C6PDR = 181.19 + 604[1 + .2(.03263) + .00580]^{T}
C6QDGF - 1.3 C6QSB - 3.6 C6QSP - 2.7 C6QSZ - .25 C6QSV - .1248 C6QSL - 3.1 C6QSE - 30.92 C6PSP
                                                + 253.67 \text{ C6PDC} - 45.72 \text{ C6PDK} = -51,128.84 + 46,625[1 + .005]^{\text{T}}
C6QDWF - .185 C6QDGF + 20 C6PDW + 50 C6PTW - 50 C6PTC = 2,150.28
C6QDCF + C6QDWF - C6QDGF = 0
C6QDKF - .16 C6QSB - .67 C6QSP - 1.18 C6QSZ - .0326 C6QSL - .71 C6QSE - 17.8 C6PSP - 103.3 C6PDC
                                                                 + 25.40 \text{ C6PDK} = - 30,474.74 + 10,546[1 + .004]^{\text{T}}
```

Supply Equations

```
C6QSB - 2.27 C6PSB + .8785 C6PSP - 6.431 C6PSL + 9.6104 C6PDC + 4.3307 C6PDK = -441.6 + 4.416[1 + .02]^{T}
C6QSP + 1.952 C6PSB - 4.698 C6PSP + 3.098 C6PSZ + 22.028 C6PDC + 9.926 C6PDK = 2,530.9 + 5,091[1 + .024]^{T}
C6QSZ + .494 C6PSB + .509 C6PSP - 2.743 C6PSZ + 8.356 C6PDC + 5.649 C6PDK = 768.0 + 1,920[1 + .044]^T
C6QSV + .0376 C6PSB - .284 C6PSL + .3183 C6PDC - .0602 C6PSV = 165.74
C6QSE = 2,576[1 + .00580]^{T}
C6QSL - 8.425 C6QSB - 252.9 C6PSL + 404.9 C6PDC + 218.9 C6PDK = -3,721.96 + 74,412[1 + .003]^{T}
C6QSLC = 1,859[1 + .5(.03263) + .010]^{T}
C6QSL - C6QDLM - 22.935 C6QSLB - 7.105 C6QSLC = 0
C6HAT - 29.05 C6PSC = -2.192.7 + 21.925[1 - .75(.03263) + .025]^{T}
C6HAW - 71.32 C6PSW + 91.67 C6PSC - .435 C6HAT = 347.41 - 80 T
C6HAC + 71.32 C6PSW - 91.67 C6PSC - .530 C6HAT = - 295.035 + 80 T
C6HAR - .2157 C6PSR = -38.791 + 194[1 + .003]^{T}
C6QSW - 81.26 C6PSW - 3.19 C6HAW = -1.574.99 - 63.07 C6ZI + 875 T
C6QSC - 156.18 C6PSC - 3.47 C6HAC = -3,932.2 - 78.59 C6ZI + 1,260 T
C6QSR - .735 C6PSR - 3.41 C6HAR = 65.58 - 1.983 C6ZI + 6 T
C60SK = 549 + 10 T
```

Regional Equilibrium Conditions

- C6QSB + C6QDB + C6QTB = 0
- C6QSP + C6QDP + C6QTP = 0
- C6QSZ + C6QDZ + C6QTZ = 0

Regional Equilibrium Conditions (Continued)

$$- C6QTZ - C3QTZ = - 44.0$$

$$- C6QSV + C6QDV + C6QTV = 0$$

$$-$$
 C6QSLC + C6QDLC + C6QTLC = 0

$$- C6QSW + C6QDWH + C6QDWF + C6QTW = 0$$

$$-$$
 C6QSC + C6QDCH + C6QDCF + C6QTC = 0

$$-$$
 C6QSR + C6QDRH + C6QTR = 0

-
$$C6QSK + C6QDKF + C6QTK = 0$$

Supply-Demand Price Equations

$$C6PSB - .7 C6PDB = 100.9 - 200[1 + .2(.03263)]^{T}$$

$$C6PSP - .8 C6PDP = 197.6 - 150[1 + .2(.03263)]^{T}$$

$$C6PSZ - .7 C6PDZ = 150.7 - 150[1 + .1(.03263)]^{T}$$

$$C6PSV - C6PDV = 0$$

$$C6PSL - .1324 C6PSB = - .3 T$$

$$C6PSW - C6PDW = - 3.30$$

Demand-Supply Price Equations

$$C6PDLM - C6PSL = 0$$

$$C6PDLB - 22.935 C6PSL = -616.305$$

Demand-Trade Price Equations

$$C6PDB - C6PTB - C6PLB = 0 + 209[1 + .3(.03263)]^{T}$$

C6PDP - C6PTP - C6PLP =
$$-150.0 + 150[1 + .3(.03263)]^{T}$$

$$C6PDV - 1.2 C3PTV = 0 + 134.4[1 + .3(.03263)]^{T}$$

$$C6PDW - C6PTW - C6PLW = - 21.82$$

$$C6PDC - C6PTC - C6PLC = -5.63 + .3 T$$

$$C6PDR - C6PTR - C6PLR = 2.64$$

$$C6PDK - C6PTK = 0$$

Price Equations Variable Levy

$$C6PLB + .2 C6PTB = 159.0 + 249[1 + .3(.03263)]^{T}$$

$$C6PLP + .2 C6PTP = 117.2 + 297[1 + .3(.03263)]^{T}$$

$$C6PLW + .2 C6PTW = 13.04 + 45[1 + .1(.03263)]^{T}$$

$$C6PLC + .2 C6PTC = 12.36 + 29[1 + .1(.03263)]^{T}$$

$$C6PLR + .2 C6PTR = 30.91 + 100[1 + .1(.03263)]^{T}$$

Regional Price Equations

$$C3PDZ - 1.4 C6PSZ = -127.4 + 77.4 DVZ + 3 T$$

Supply Equations

```
C3QSB - .6329 C3PSB + .2394 C3PSP - 2.106 C3PSL + 4.358 C3PDC + 1.247 C3PDK = - 133.3 + 1,334[1 + .025]<sup>T</sup>

C3QSP + .3271 C3PSB - 1.539 C3PSP + .4923 C3PSZ + 12.009 C3PDC + 3.436 C3PDK = 367.57 + 1,838[1 + .029]<sup>T</sup>

C3QSZ + .1627 C3PSB + .1641 C3PSP - .8575 C3PSZ + 4.482 C3PDC + 1.924 C3PDK = 274.34 + 686[1 + .025]<sup>T</sup>

C3QSV + .0475 C3PSB - .4087 C3PSL + .6542 C3PDC - .1147 C3PSV = 226.95

C3QSE = 1,002[1 + .0041]<sup>T</sup>

C3QSL - 76.55 C3PSL + 67.88 C3PDC + 19.424 C3PDK = - 1,038.85 + 20,778[1 + .0073]<sup>T</sup>

C3QSLC = 281[1 + .3(.01989) + .0041]<sup>T</sup>

C3QSL - C3QDLM - 21.478 C3QSLB - 8.719 C3QSLC = 0

C3HAT - 12.524 C3PSC = 4,892.0 + 20 T

C3HAW - 9.614 C3PSW + 9.695 C3PSC - .211 C3HAT = -60.06 + 5 T

C3QSW - 13.464 C3PSW - 9.695 C3PSC - .789 C3HAT = 60.06 - 5 T

C3QSW - 13.464 C3PSW - 4.20 C3HAW = - 10.21 C3ZID + 2.025 + 16 T

C3QSC - 48.469 C3PSC - 3.68 C3HAC = - 33.41 C3ZID - 2.168 + 226 T

C3QSK - 1.017 C3PSK = 533.12 + 10 T
```

Regional Equilibrium Conditions

```
- C3QSB + C3QDB + C3QTB = 0

- C3QSP + C3QDP + C3QTP = 0
```

- C6QTZ - C3QTZ = - 44.0

Regional Equilibrium Conditions (Continued)

$$- C3QSZ + C3QDZ + C3QTZ = 0$$

$$- C3QSV + C3QDV + C3QTV = 0$$

-
$$C3QSLB + C3QDLB + C3QTLB = 0$$

$$-$$
 C3QSW + C3QDWH + C3QDWF + C3QTW = 0

$$-$$
 C3QSC + C3QDCH + C3QDCF + C3QTC = 0

$$C3QDRH + C3QTR = 0$$

$$-$$
 C3QSK + C3QDKF + C3QTK = 0

Supply-Demand Price Equations

$$C3PSB - C3PDB = 0$$

2.

$$C3PSP - C3PDP = 0$$

$$C3PSZ - C3PDZ = 0$$

$$C3PSV - C3PDV = 0$$

$$C3PSW - C3PDW = 3.36 - 13.36 C3DVW$$

$$C3PSC - C3PDC = 7.71 - 17.71 C3DVC$$

$$C3PSL - C3PDLM = -3$$

$$C3PSK - C3PDK = 0$$

Regional Price Equations

$$C3PDB - C6PDB = -410 + 410 C3DVB$$

$$C3PDP - C3PDP = -47 + 47 C3DVP$$

$$C3PDV - C6PDV = -274 + 274 C3DVP$$

$$C3PDW - C6PDW = -27.85 + 27.85 C3DVW$$

$$C3PDC - C6PDC = -30.68 + 30.68 C3DVC$$

$$C3PDR - C6PDR = -168.00 + 168.00 C3DVR$$

$$C3PDLB - C6PDLB = -877 + 877 C3DVLB$$

C3PDLC - C6PDLC =
$$-644 + 644$$
 C3DVLC

$$C3PSL - C6PSL = -8 + 8 C3DVL$$

$$C3PDK - C6PTK = 5.0$$

```
WEQDB + .5986 WEPDB - .2831 WEPDP - .1788 WEPDZ = 375.1 + 1,250[1 + .7(.04161) + .00615]^T
WEQDP - .2370 WEPDB + 1.177 WEPDP - .4249 WEPDZ = 445.32 + 1,485[1 + .6(.04161) + .00615]^{T}
WEODZ - .0460 WEPDB - .1305 WEPDP + .6592 WEPDZ = 287.91 + 576[1 + .9(.04161) + .00615]^{T}
WEQDV - .0383 WEPDB - .0544 WEPDP + .0823 WEPDV = -16.03 + 320[1 + .00615]^{T}
WEQDLM + 12.24 WEPDLM = 2,594.9 + 12,971[1 + .3(04161) + .00615]^{T}
WEQDLB + .0683 WEPDLB = 121.92 + 244[1 + .3(.04161) + .00615]^T
WEQDLC + .1484 WEPDLC = 222.0 + 370[1 + .6(.04161) + .00615]^{T}
WEQDWH + 21.46 WEPDW - 11.32 WEPDC = 1,341.0 + 8,940[1 - .05(.04161) + .00615]^{T}
WEODCH - 5.439 WEPDW + 16.73 WEPDC = 755.14 + 3,777[1 + .10(.04161) + .00615]^{T}
WEQDRH - 1.104 WEPDW + 1.065 WEPDR = 57.54 + 575[1 + .2(.04161) + .00615]^{T}
WEQDGF - 2.46 WEQSB - 4.6 WEQSP - 2.8 WEQSZ - .28 WEQSL - 10.70 WEPSP + 127.68 WEPDC - 18.86 WEPDK
                                                                                  = 2.27 + 3,120[1 + .00615]^{\mathrm{T}}
WEQDWF - .092 WEQDGF + 8.929 WEPDW - 9.418 WEPDC = 190.11
WEODCF - WEODGF + WEODWF = 0
WEQDKF - .15 WEQSB - .65 WEQSP - 1.16 WEQSZ - .028 WEQSL - 3.914 WEPSP - 44.83 WEPDC + 5.517 WEPDK
                                                                      = -5902.62 + 594[1 + .00615]^{T} + 30 T
```

Supply Equations

```
WEQSB - .545 WEPSB + .2109 WEPSP + 2.684 WEPDC - 1.331 WEPSL + .9909 WEPDK = - 105.93 + 1,060[1 + .031]
WEQSP + .3838 WEPSB - .9901 WEPSP + .6094 WEPSZ + 5.670 WEPDC + 2.094 WEPDK = 522.6 + 1,493[1 + .020]^{T}
WEQSZ + .1373 WEPSB + .1416 WEPSP - .6539 WEPSZ + 2.028 WEPDC + 1.248 WEPDK = 186.9 + 534[1 + .060]^{T}
WEQSV - .0526 WEPSB - .0843 WEPSV + .5184 WEPDC - 3,428 WEPSL = - 41.01 + 273[1 + .006]^{T}
WEOSL - 54.55 WEPSL + 96.23 WEPDC + 20.30 WEPDK = 3.258.2 + 21.720[1 + .015]^{T}
WEQSLC - .1447 WEPSLC = - 216.47 + 433[1 + .6(.04161) + .0075]^{T}
WEQSL - WEQDLM - 19.656 WEQSLB - 8.5843 WEQSLC = 0
WEHAT - 32.50 WEPSC = 11,903.98 + 21 T
WEHAW - 15.60 WEPSW + 16.65 WEPSC - .410 WEHAT = - .748 - 49 T
WEHAC + 15.60 WEPSW - 16.65 WEPSC + .5095 WEPSK - .554 WEHAT = 45.93 + 39 T
WEHAR - .1762 WEPSR = 102.85
WEHAK - .5095 WEPSK + .036 WEHAT = 1,026.2 + 10 T
WEQSW - 25.27 WEPSW - 1.62 WEHAW = - 989.64 + 213 T - 14.82 WEZI
WEQSC - 59.22 WEPSC - 2.195 WEHAC = 2,712.6 + 250 T - 27.11 WEZI
WEQSR - .6553 WEPSR - 3.719 WEHAR = 0 + 4 T - .675 WEZI
WEQSK - 1.000 WEPSK - .587 WEHAK = 803.62 + 4 T - 1.605 WEZI
```

Regional Equilibrium Conditions

```
- WEQSB + QDB + WEQTB = 0
```

- WEQSP + WEQDP + WEQTP = 0

Regional Equilibrium Conditions (Continued)

$$-$$
 WEQSZ + $.9271$ WEQDZ = 0

- WEQSV + WEQDV + WEQTV =
$$0$$

$$-$$
 WEQSR + WEQDRH + WEQTR = 0

Supply-Demand Price Equations

WEPSP - .8 WEPDP =
$$197.6 - 150[1 + .2(.04161)]^{T}$$

WEPSZ - .7 WEPDZ =
$$150.7 - 150[1 + .1(.04161)]^{T}$$

WEPSV - WEPDV = 0

WEPSW - WEPDW = -6.43

WEPSC - WEPDC = 12.57

WEPSR - WEPDR = -59.0

WEPSK - WEPDK = 0

WEPSL - WEPDLM = - 92.56

Demand-Supply Price Equations

$$WEPDLC - WEPSLC = 0$$

Demand-Trade Equations

WEPDR -
$$1.0(1.0)$$
 WEPTR = 0

WEPDLC -
$$1.0(1.0)$$
 WEPTLC = - 59

WEPDLB -
$$1.0(1.0)$$
 WEPTLB = 0

Price Connections to C6

WEPDB - C6PDB = 0

WEPDP - C6PDP = 0

WEPDV - C6PDV = 0

WEPDW - C6PDW = 3.84

WEPDC - C6PDC = - 12.9

WEPDK - C6PDK = 5.0

```
JPQDB + .2529 JPPDB - .0812 JPPDP - .1349 JPPDZ = 172.8 + 293[1 + 1.2(.05452) + .01073 + .02]^{T}
JPODP - .096 \ JPPDB + .640 \ JPPDP - .0965 \ JPPDZ = 393.54 + 667[1 + .9(.05452) + .01073 + .02]^{T}
_{\rm JPDDZ} - .1759 _{\rm JPPDB} - .0886 _{\rm JPPDP} + .7078 _{\rm JPPDZ} = 210.32 + 489[1 + .6(.05452) + .01073 + .011^{\rm T}
JPDDV + .0475 \ JPPDB - .0352 \ JPPDP - .0651 \ JPPDZ + .4330 \ JPPDV = 49.53 + 165[1 + .5(.05452) + .01073]^{T}
JPQDLM + 18.39 \ JPPDLM = 2,420.3 + 3,458[1 + .95(.05452) + .01073]^{T}
JPQDLB + .0484 \ JPPDLB = 31.85 + 45.5[1 + 1.0(.05452) + .01073]^{T}
JPQDLC + .1187 \ JPPDLC = 72.41 + 42.9[1 + 1.25(.05452) + .01073]^{T}
JPQDWH + 61.88 JPPDW - 7.309 JPPDR = 1,257.7 + 5,030[1 + .2(.05452) + .01073]^{T} + 50 T
JPQDCH + 18.57 \ JPPDC = 466.66 + 1,867[1 + .2(.05452) + .01073]^{T}
JPQDR - 32.00 JPPDW + 12.76 JPPDR = 585.47 + 11,706[1 - .2(.05452) + .01073]^{T}
JPODKH - .8 JPODSH + .8 JPOSS = 0
JPQDSH + 2.498 JPPDS - .2215 JPPDP = -103.88 + 1,039[1 + .8(.01073)]^{T}
JPQDGF - 2.33 JPQSB - 5.09 JPQSP - 2.4 JPQSZ - .2 JPQSL - 2.4 JPQSE - 19.01 JPPSP + 242.4 JPPDC
                                                      - 19.53 JPPDK = - 10,119.9 + 10,153[1 + .005]^{T} + 200 \text{ T}
JPQDCF - JPQDGF - 700 JPDVC = - 905
JPQDKF - .5 JPQSB - 1.4 JPQSP - 1.2 JPQSZ - .08 JPQSL - .7 JPQSE - 17.537 JPPSP - 142.6 JPPDC
                                                                 + 18.76 \text{ JPPDK} = -10,482.84 + 3,124[1 + .01]^{\text{T}}
```

Supply Equations

```
JPQSB - .2939 JPPSB + .094 JPPSP + .1307 JPPSZ + 2.9964 JPPDC - 1.0393 JPPSL = - 50.2 + 251[1 + .02]^{T}
JPQSP - 1.6648 JPPSP + .6615 JPPSZ + 10.107 JPPDC + 2.4428 JPPDK + 1.972 JPPSL = 158.75 + 635[1 + .02]^{T}
JPQSZ + .3558 JPPSP - 1.7318 JPPSZ + 7.5607 JPPDC + 2.741 JPPDK = 95 + 475[1 + .05]^{T}
JPQSE = 1,760[1 + .01073]^{T}
JPQSL - 77.80 JPPSL + 46.73 JPPDC + 27.10 JPPDK = -1,174.5 + 4,697[1 + .050]^{T}
JPQSLC = 9.83[1 + 1.25(.05452) + .01073]^{T}
JPQSL - JPQDLM - 25.36 JPQSLB - 9.56 JPQSLC = 0
JPHAT - 1.179 JPPSR = 3,456.07 - 52 T
JPHAW - .062 JPHAT = - .556 - 3.9 T
JPHAC - .073 JPHAT = - .574 - 1.8 T
JPHAR + 1.212 JPPSS - .233 JPPSR - .8160 JPHAT = 13.845 - 5.4 T
JPHAS - 1.212 JPPSS + .233 JPPSR - .049 JPHAT = - 12.715 + 11.1 T
JPQSW - 2.816 JPPSW - 2.45 JPHAW = -111.27 - .55 JPZI + 4 T
JPQSC - 2.745 JPPSC - 2.73 JPHAC = - 107.2 - .725 JPZI + 3 T
JPQSR - 11.08 JPPSR - 3.84 JPHAR = 573.13 - 22.8 JPZI + 48 T
JPQSK - 1.881 JPPSK = 880.21 + 15 T
JPQSS - .8115 JPPSS - 1.25 JPHAS = 0 - .3375 JPZI + 5.1 T
```

Continued

+ 80 T

Regional Equilibrium Conditions

- JPQSB + JPQDB + JPQTB = 0
- JPQSP + JPQDP + JPQTP = 0
- JPQSZ + .9714 JPQZ = 0
- JPQDV + JPQTV = 0
- JPQSLB + JPQDLB + JPQTLB = 0
- JPQSLC + JPQDLC + JPQTLC = 0
- JPQSW + JPQDWH + JPQTW = 0
- JPQSC + JPQDCH + JPQDCF + JPQTC = 0
- JPQSR + JPQDR = 106 ·
- JPQSK + JPQDKH + JPQDKF + JPQTK = 0

Supply-Demand Price Equations

JPPSB - .65 JPPDB = - $476.5[1 + .1(.05452)]^{T}$

JPPSP - .8 JPPDP = $-483.4[1 + .03(.05452)]^{T}$

JPPSZ - .7 JPPDZ = - 340

JPPSL - JPPDLM = $-83.31[1 + .1(.05452)]^{T}$

JPPSW - JPPDW = 22.02

JPPSC - JPPDC = 40.90

JPPSR - JPPDR = 16.69

JPPSS - JPPDS = 0

JPPSK - JPPDK = 0

Demand-Supply Price Equations

JPPDLB - 25.36 JPPSL = - 566.89

JPPSS - .8 JPPDK = 0

Demand-Trade Price Equations

JPPDB - .4 JPPTB = $199.30 + 1,058[1 + .1(.05452)]^{T}$

JPPDP - .4 JPPTP = 768.35

JPPDV - 1.0 JPPTV = .09

JPPDLB - 1.0 JPPTLB = 411.97

JPPDLC - 1.0 JPPTLC = 392.22

JPPDW - 1.0 JPPTW = 13.06

JPPDC - 1.0 JPPTC = .398

JPPDK - 1.0 JPPTK = 0

```
AZQDB + .5477 AZPDB - .3554 AZPDV = 196.20 + 654[1 + .01769]<sup>T</sup>

AZQDP - .0693 AZPDB + .15 AZPDP = 41.43 + 207[1 + .1(.02913) + .01769]<sup>T</sup>

AZQDV - .4047 AZPDB + 1.3130 AZPDV = 241.60 + 604[1 - .3(.02913) + .01769]<sup>T</sup>

AZQDLM + 6.589 AZPDLM = 643.02 + 3,215[1 + .1(.02913) + .01769]<sup>T</sup>

AZQDLB + .0650 AZPDLB = 69.55 + 174[1 - .1(.02913) + .01769]<sup>T</sup>

AZQDLC + .0272 AZPDLC = 17.98 + 60[1 + .5(.02913) + .01769]<sup>T</sup>

AZQDWH + 5.841 AZPDW = 328.54 + 2,190[1 - .25(.02913) + .01769]<sup>T</sup>

AZQDCH + 4.404 AZPDC = 147.75 + 985[1 - .2(.02913) + .01769]<sup>T</sup>

AZQDCH + .0412 AZPDR = 6.14 + 61[1 + .1(.02913) + .01769]<sup>T</sup>

AZQDGF - .3 AZQSB - 3.4 AZQSF - 3.0 AZQSZ - .12 AZQSL - 3.0 AZQSE - 1.53 AZPSP + 25.13 AZPDC = - 3,953.7 + 2,810[1 + .002]<sup>T</sup>

AZQDWF + 4.321 AZPDW - .29 AZQGF = 238.1

AZQDKF + AZQDWF - AZQDGF = 0

AZQDK + .3478 AZPDK = 45.60 + 152[1 + .02]<sup>T</sup>
```

Supply Equations

```
AZQSB - .9279 AZPSB + .3764 AZPSV = -415.5 + 1,385[1 + .03]^{T}
AZQSP + .03551 AZPSB - .1152 AZPSP + 1.2638 AZPDC = 0 + 212[1 + .005]^{T}
AZQSZ = 153[1 + .7(.02913) + .01769]^{T}
AZQSV - .7163 AZPSV = - 263.6 + 1.318[1 + .022]^{T}
AZQSE = 236[1 + .01769]^{T}
AZQSL - 133.3 AZPSL + 81.91 AZPDC = -2,749.21 + 13,741[1 + .01]^{T}
AZQSLC - .2693 AZPDLC + .1664 APQDLB = .0407 + 178[1 + .5(.02913) + .01769]^{T}
AZQSL - AZQDLM - 19.794 AZQSLB - 9.539 AZQSLC = 0
AZHAT - 44.76 AZPSW - 197.35 AZPTW = - .3487 + 193 T
AZHAW - 57.58 AZPSW + 81.89 AZPSC - .642 AZHAT = - 378.04
AZHAC + 57.58 AZPSW - 81.89 AZPSC - .342 AZHAT = 378.3 - 11 T
AZHAR - .072 AZPSR = 33.33 + 2 T
AZHAK - .446 AZPSK - .016 AZHAT = - 58.75 + 11 T
AZQSW - 25.91 AZPSW - 1.20 AZHAW = .1399 - 14.13 AZZIØ + 160 T
AZQSC - 24.18 AZPSC - 1.30 AZHAC = - .04 - 8.112 AZZIØ + 115 T
AZQSR - .3745 AZPSR - 5.16 AZHAR = .08 - .191 AZZID
AZQSK - .069 AZPSK - .31 AZHAK = 3.50 - .06 AZZID + 2.4 T
```

Regional Equilibrium Conditions

- AZQSB + AZQDB + AZQTB = 0
- AZQSP + 1.024 AZQDP = 0
- AZQSV + AZQDV + AZQTB = 0

Regional Equilibrium Conditions (Continued)

$$-$$
 AZQSW + AZQDWH + AZQDWF + AZQTW = 0

$$-$$
 AZQSC + AZQDCH + AZQDCF + AZQTC = 0

-
$$AZQSR + AZQDRH + AZQTR = 0$$

-
$$AZQSK + AZQDK + AZQTK = 0$$

Supply-Demand Price Equations

$$AZPSB - AZPDB = 0$$

$$AZPSP - AZPDP = 0$$

$$AZPSV - AZPDV = 0$$

$$AZPSLB - .05052 AZPDLB = - 12.8064$$

$$AZPSLC - .10483 AZPDLC = - 28.04$$

$$AZPSW - AZPDW = -1.71$$

$$AZPSC - AZPDC = 0$$

$$AZPSR - .3 AZPDR = + 6.6$$

$$AZPSK - AZPDK = 0$$

Demand-Supply Equation

$$AZPDLM = 97.59[1 + (.02913)]^{T}$$

Demand-Trade Price Equations

$$AZPDB - .6406 AZPTB = 0$$

$$AZPDV - 1.0 AZPTV = 0$$

AZPDLB -
$$1.0$$
 AZPTLB = 443.9

$$AZPDW - .5 AZPTW = 31.50$$

AZPDC - 1.0 AZPTC =
$$-2.65$$

$$AZPDR - 1.0 AZPTR = 0$$

$$AZPDK - 1.0 AZPTK = 30.636$$

SFQDWH + 1.878 SFPDW - 2.251 SFPDC = $65.71 + 1,315[1 + .1(.02383) + .02964]^{T}$ SFQDCH - 1.016 SFPDW + 4.870 SFPDC = $177.82 + 3,556[1 - .05(.02383) + .02964]^{T}$ SFQDRH + .1262 SFPTR - 11.00 SFPDW = $11.54 + 77[1 + .1(.02383) + .02964]^{T}$ SFQDCF + 11.68 SFPDC = $682.35 + 2,274[1 + .25(.02383) + .02964]^{T}$ SFQDKF - .1869 SFQDCF = 0

Supply Equations

SFHAT - 13.96 SFPSC - 24.96 SFPTC = 5,084.84 + 61 T

SFHAW - 6.124 SFPSW - .268 SFHAT = - 732.87 + 15 T

SFHAC - 27.39 SFPTC + 17.71 SFPSK - .732 SFHAT = - 3.446 - 3 T

SFQSW - 3.821 SFPSW - .75 SFHAW = - 221.48 + 34 T - 1.46 SFZI

SFQSC - 44.92 SFPTC - 1.64 SFHAC = - 1,742.8 + 150 T - 8.715 SFZI

SFQSK - .7600 SFPTK = 615.6 + 15 T

Regional Equilibrium Conditions

- SFQSW + SFQDWH + SFQTW = 0 - SFQSC + SFQDCH + SFQDCF + SFQTC = 0 SFQDRH + SFQDRH = 0 - SFQSK + SFQDKF + SFQTK = 0

Supply-Demand Price Equations

SFPSW - SFPDW = -9.49SFPSC - SFPTC = -6.16

Demand-Trade Price Equations

SFPDW - SFPTW = 43.18 SFPDC - SFPTC = .22

EASTERN EUROPE--EE

Trade Equations

SOVIET UNION--SY

Trade Equations

CHINA--CH

Trade Equations

CHQTP =
$$143.0 - 2$$
 T

CHQTW + 33.33 USPTW = $4,342.57 + 3,915[1 + .0156]^T$

CHQTC = $100.0 + 500[1 + .3(.0239) + .0156]^T$

CHQTR - 2.866 THPTR = $438.50 - 8$ T

CHQTK = $-200.0 - 20$ T

MCQDB + .3715 MCPDB - .0724 MCPDP = 207.55 + 692[1 + .7(.02946) + .03103]^T

MCQDP - .0454 MCPDB + .1061 MCPDP = 67.61 + 338[1 + .6(.02946) + .03103]^T

MCQDWH + 8.482 MCPDW - 1.252 MCPDR - 4.879 MCPDC = 285.44 + 2,855[1 + .35(.02946) + .03103]^T

MCQDCH - 4.280 MCPDW + 22.97 MCPDC = 1,512.12 + 10,083[1 + .1(.02946) + .03103]^T

MCQDRH - 1.447 MCPDW + 1.495 MCPDR - .4853 MCPDC = 127.80 + 852[1 + .35(.02946) + .03103]^T

MCQDCF - .3 MCQSB - 3.0 MCQSP - .6301 MCPSP + 6.863 MCPDC = .1585 + 1,745[1 + .1(.02946) + .03103]^T

MCQDWF - .0315 MCQDCF = 0

MCQDWF - .0315 MCQDCF = 0

Supply Equations

MCQSB - .4526 MCPSB + .0882 MCPSP = - 252.87 + 843[1 + .0380]^T + 15 T MCQSP + .0454 MCPSB - .1061 MCPSP + 1.540 MCPDC = $67.57 + 338[1 + .0380]^{T}$ MCHAT - 39.96 MCPSC = 10,309.6 + 95 T MCHAW - 4.616 MCPSW + 2.907 MCPSC + .3740 MCPSK - .0582 MCHAT = - 96.10 - 8 T MCHAC + 3.023 MCPSW - 6.853 MCPSC + 1.534 MCPSK - .8575 MCHAT = - .54 + 2 T MCHAR - .2685 MCPSR - .0417 MCHAT = - 80.94 + 2 T MCHAK + 1.593 MCPSW + 3.946 MCPSC - 1.908 MCPSK - .0426 MCHAT = 97.03 + 4 T MCQSW - 5.745 MCPSW - 2.80 MCHAW = - 2,520.02 + 45 T + 2,100[1 + .75(0)]^T MCQSC - 14.03 MCPSC - 1.170 MCHAC = - 13,833.43 + 400 T + 12,930[1 + .75(0)]^T MCQSR - .240 MCPSR - 1.339 MCHAR = - 791.04 + 6 T + 719[1 + 1.125(0)]^T MCQSK - .2744 MCPSK - .7460 MCHAK = - 449.8 + 7.75 T + 791[1 + .3(0)]^T

Regional Equilibrium Conditions

- MCQSB + MCQDB + MCQTB = 0

- MCQSP + MCQDP + MCQTP = 0

- MCQSW + MCQDWH + MCQDWF + MCQTW = 0

- MCQSC + MCQDCH + MCQDCF + MCQTC = 0

- MCQSR + MCQDRH + MCQTR = 0

- MCQSK + MCQTK = 0

Supply-Demand Price Equations

MCPSB - MCPDB = 0

MCPSP - MCPDP = 0

MCPSW - MCPDW = -44.69

MCPSC - MCPDC = -23.28

MCPSR - MCPDR = 72.00

MCPSK - MCPDK = 0

Demand-Trade Price Equations

MCPDB - 1.0 (1.0) MCPTB = 0

MCPDP - 1.0 (1.0) MCPTP = 0

MCPDW - 1.0 (1.0) MCPTW = 49.78

MCPDC - 1.0 (1.0) MCPTC = 11.19

MCPDK - 1.0 (1.0) MCPTK = 0

MCPDR - 1.0 (1.0) MCPTR = 0

 $ARQDB + .3179 ARPDB = 746.11 + 1,865[1 + .2(.03125) + .01265]^{T}$ $ARQDP - .0183 ARPDB + .0628 ARPDP = 43.02 + 215[1 + .01265]^T$ $ARQDV - .0117 ARPDB + .0323 ARPDV = 27.4 + 137[1 + .01265]^{T}$ $ARQDW + 2.371 ARPDW - .9225 ARPDC = 211.26 + 4,225[1 - .1(.03125) + .01265]^T$ $ARODCH - .3611 ARPDW + .5620 ARPDC = 64.35 + 1,287[1 - .25(.03125) + .01265]^{T}$ $ARQDRH - .0455 ARPDW + .0873 ARPDR = 24.28 + 162[1 + .15(.03125) + .01265]^{T}$ ARQDCF - .5 ARQSB - 3.6 ARQSP - 1.128 ARPSP + 6.744 ARPDC = 0 + 3,101[1 + .2(.03125) + .01265]^T ARQDK - .0472 ARQDCF + .5000 ARPDK + 121.49

Supply Equations

 $ARQSB - 1.169 ARPSB = -1,252.0 + 2,503[1 + .0150]^{T}$ $ARQSP + .0206 ARPSB - .0484 ARPSP + .1930 ARPDC = 0 + 221[1 + .025]^{T}$ $ARQSV - .02157 ARPSV = - 36.6 + 183[1 + .002]^{T}$ ARHAT - 23.61 ARPSC - 35.11 ARPTC = 13.07 + 152 T ARHAW - 9.881 ARPSW + 5.959 ARPSC - .326 ARHAT = - 400.7 - 20 T ARHAC + 7.993 ARPSW - 8.887 ARPSC + 4.156 ARPSK - .502 ARHAT = 397.6 + 18 T ARHAR - .0873 ARPSR - .006 ARHAT = - 15.84 ARHAK + 1.888 ARPSW + 2.928 ARPSC - 4.156 ARPSK - .166 ARHAT = -2.8 + 2 TARQSW - 3.297 ARPSW - 1.335 ARHAW = - 1.7 - 5.875 ARZI + 138 T ARQSC - 8.59 ARPSC - 1.933 ARHAC = - 654.31 - 13.115 ARZI + 125 T ARQSR - .1863 ARPSR - 2.667 ARHAR = - 23.22 - .232 ARZI ARQSK - .4263 ARPSK - .462 ARHAK = - .72 - 1.036 ARZI + 7 T

Regional Equilibrium Conditions

- ARQSB + ARQDB + ARQTB = 0 - ARQSP + 1.028 ARQDP = 0- ARQSV + ARQDV + ARQTV = 0 - ARQSW + ARQDW + ARQTW = 0- ARQSC + ARQDCH + ARQDCF + ARQTC = 0 - ARQSR + ARQDRH + ARQTR = 0- ARQSK + ARQDK + ARQTK = 0

Supply-Demand Price Equations

ARPSB - .5 ARPDB = - 102.5ARPSP - ARPDP = 0ARPSV - ARPDV = 0ARPSW - ARPDW = 0

Supply-Demand Price Equations (Continued)

ARPDB - .57(3.75) ARPTB = - .12

ARPSC - ARPDC = 0ARPSR - ARPDR = - 122.0ARPSK - ARPDK = 0

Demand-Trade Price Equations

ARPDV - (3.75) ARPTV = 0ARPDW - (3.75) ARPTW = - 41.81ARPDC - (3.57) ARPTC = -1.625ARPDR - (3.57) ARPTR = 0ARPDK - (3.75) ARPTK = 0

```
BZQDB + 1.632 BZPDB - .7750 BZPDP = 511.76 + 1,705[1 + .4(.05893) + .02848]<sup>T</sup>

BZQDP - .1946 BZPDB + .5545 BZPDP = 243.96 + 610[1 + .4(.05893) + .02848]<sup>T</sup>

BZCOW + 9.65 BZPDW - 1.853 BZPDR - 7.326 BZPDC = 188.99 + 3,780[1 + .25(.05893) + .02848]<sup>T</sup>

BZQDW - BZCOW - .5 BZCORH + .5 BZQSR = 0

BZQDCH - 1.659 BZPDW - .7963 BZPDR + 9.44 BZPDC = 1162.45 + 3,249[1 + .10(.05893) + .02848]<sup>T</sup>

BZCORH - 9.609 BZPDW + 4.613 BZPDR - 1.824 BZPDC = - 94.07 + 4,705[1 + .1(.05893) + .02848]<sup>T</sup>

BZQDRH - .5 BZCORH - .5 BZQSR = 0

BZQDCF - 1.5 BZQSB - 3.6 BZQSP - 4.944 BZPSP + 84.31 BZPDC - 12.99 BZPDK = - 999.5 + 5,928[1 + .2(.05893) + .02848]<sup>T</sup>

BZQDKF - .0642 BZQDCF + 3.336 BZPDK = 279.0 + 80 T
```

Supply Equations

```
BZQSB - 1.461 BZPDB = - 916.05 + 1,832[1 + .0325]<sup>T</sup>

BZQSP + .0974 BZPSB - .3703 BZPSP + 3.552 BZPDC + 1.095 BZPDK = 91.61 + 611[1 + .035]<sup>T</sup>

BZHAT - 99.60 BZPSC - 53.97 BZPSK = 11,035.18 + 800 T

BZHAW - 12.01 BZPSW + 34.88 BZPSC - .100 BZHAT = .49 - 39 T

BZHAC + 12.01 BZPSW - 84.48 BZPSC + 29.91 BZPSK - .566 BZHAT = 197.38 - 187 T

BZHAR + 13.22 BZPSC - 10.85 BZPSR - .265 BZHAT = - 481.16 - 109 T

BZHAK + 36.38 BZPSC - 29.91 BZPSK - .069 BZHAT = \(\frac{1}{2}\)306.8 + 455 T

BZQSW - .8231 BZPSW - .96 BZHAW = - 1,854.7 + 52 T + 1,766[1 + .8(0)]<sup>T</sup>

BZQSC - 39.43 BZPSC - 1.40 BZHAC = - 16,016.15 + 405 T + 14,560[1 + 1.3(0)]<sup>T</sup>

BZQSR - 4.221 BZPSR - .973 BZHAR = - 5,129.1 + 4,749[1 + 1.2(0)]<sup>T</sup> + 60 T

BZQSK - 1.333 BZPSK - .807 BZHAK = - 1,116.55 + 207 T + 1,817[1 + .3(0)]<sup>T</sup>
```

Regional Equilibrium Conditions

- BZQSB + BZQDB + BZQTB = 0
- BZQSP + 1.0016 BZQDP = 0
BZQSW - BZQDW + BZQTW = 0
- BZQSC + BZQDCH + BZQDCF + BZQTC = 0
- BZQSR + BZQDRH + BZQTR = 0
- BZQSK + BZQDKF + BZQTK = 0

Supply-Demand Price Equations

BZPSB - BZPDB = 0

BZPSW - .6 BZPDW = 48.522

BZPSP - BZPDP = 0

BZPSC - BZPDC = - 14.67

BZPSR - BZPDR = - 114

BZPSK - BZPDK = - 15.54

Demand-Trade Price Equations

BZPDB - BZPTB = 0

BZPDW - BZPTW = 25.17 BZPDC - BZPTC = - 7.34 BZPDR - BZPTR = 93 BZPDK - BZPTK = 0

```
\begin{aligned} &\text{VNQDWH} + 3.333 \text{ VNPDW} - .4070 \text{ VNPDR} - 1.122 \text{ VNPDC} = 70.73 + 707[1 + .35(.02687) + .02948]^T \\ &\text{VNQDCH} - 1.756 \text{ VNPDW} + 2.956 \text{ VNPDC} = 74.48 + 745[1 + .15(.02687) + .02948]^T \\ &\text{VNQDRH} - .3583 \text{ VNPDW} + .0656 \text{ VNPDR} = - 11.4 + 114[1 + .15(.02687) + .02948]^T \\ &\text{VNQDCF} + 1.429 \text{ VNPDC} = 90.03 + 300[1 + .4(.02687) + .02948]^T \end{aligned}
```

Supply Equations

VNHAT - .9135 VNPSC = 657.0 + 2.7 T VNHAC - 1.143 VNPSC + .4365 VNPSR - .834 VNHAT = - 30.25 + 3 T VNHAR + 1.143 VNPSC - .4365 VNPSR - .166 VNHAT = 30.25 - 3 T VNQSC - 1.314 VNPSC - 1.149 VNHAC = - 804.74 + 17 T + $700[1 + 1.5(0)]^T$ VNQSR - .1408 VNPSR - 1.083 VNHAR = - $150.69 + 4 T + 131[1 + 1.375(0)]^T$

Regional Equilibrium Conditions

VNQDWH + VNQTW = 0
- VNQSC + VNQDCH + VNQDCF + VNQTC = 0
- VNQSR + VNQDRH + VNQDR = 0

Supply-Demand Price Equations

VNPSC - .5 VNPDC = 48.41 VNPSR - VNPDR = - 34.16

Demand-Trade Price Equations

VNPDC - VNPTC = - 3.91

VNPDW - VSPTW = 4.91

VNPDR - VNPTR = 51.69

LAQDW + 13.43 LAPDW - 1.587 LAPDR - 9.943 LAPDC = + .33 + 3,840[1 + .3(.01925) + .02760]^T

LAQDCH - 6.449 LAPDW + 13.93 LAPDC = 345.80 + 2,306[1 + .15(.01925) + .02760]^T

LAQDRH - 3.577 LAPDW + 1.057 LAPDR = + .003 + 1,279[1 + .35(.01925) + .02760]^T

LAQDCF + 11.08 LAPDC = 641.86 + 1,604[1 + .2(.01925) + .02760]^T

LAQDKF + 1.070 LAPDK - .21 LAQDCF = 106.46

Supply Equations

LAHAT - 14.59 LAPSC = 4,315.8 + 65 T

LAHAW - 2.654 LAPSW + .959 LAPSC - .268 LAHAT = - 218.92 - 11 T

LAHAC + 2.654 LAPSW - 1.954 LAPSC + .839 LAPSK - .524 LAHAT = 222.69 - 18 T

LAHAR + .663 LAPSC - .5777 LAPSR - .134 LAHAT = - 58.495 + 30 T

LAHAK + .332 LAPSC - .839 LAPSK - .074 LAHAT = - 53.889 - 1 T

LAQSW - 1.791 LAPSW - 1.35 LAHAW = - 2,145.77 + 28 T + 1,950[1 + 1(0)]^T

LAQSC - 2.387 LAPSC - 1.25 LAHAC = - 3,707.82 + 67 T + 3,531[1 + 1.2(0)]^T

LAQSR - 1.119 LAPSR - 1.936 LAHAR = - 1,612.04 + 9 T + 1,402[1 + .7(0)]^T

LAQSK - 3.843 LAPSK - .75 LAHAK = 2,705.82 + 30 T + 300[1 + .2(0)]^T

Regional Equilibrium Conditions

- LAQSW + LAQDW + LAQTW = 0
- LAQSC + LAQDCH + LAQDCF + LAQTC = 0
- LAQSR + LAQDRH + LAQTR = 0
- LAQSK + LAQDKF + LAQTK = 0

Supply-Demand Price Equations

LAPSW - .5 LAPDW = 73.135

LAPSC - .5 LAPDC = 45.005

LAPSR - .7 LAPDR = 18.6

LAPSK - LAPDK = 0

Demand-Trade Price Equations

LAPDW - LAPTW = 1.18

LAPDC - LAPTC = -2.36

LAPDR - LAPTR = 0

LAPDK - LAPTK = 0

```
NHQDW + 22.64 NHPDW - 2.187 NHPDC - 1.305 NHPDR = 1,861.56 + 9,306[1 + .25(.05864) + .03225]<sup>T</sup>

NHQDCH - 5.318 NHPDW + 6.423 NHPDC - 1.277 NHPDR = - 273.26 + 2,733[1 + .15(.05864) + .03225]<sup>T</sup>

NHQDR - 2.351 NHPDW - .651 NHPDC + 1.870 NHPDR = 103.14 + 1,334[1 + .3(.05864) + .03225]^T

NHQDCF + 2.933 NHPDC = 249.60 + 832 [1 + .3(.05864) + .03225]<sup>T</sup>

NHQDKF - .30 NHQDCF + .9307 NFPDK = 187.19
```

Supply Equations

NHHAT - 19.32 NHPSW = 10,032.32 + 100 T

NHHAW - 9.089 NHPSW + 3.125 NHPSC + 2.499 NHPSR - .706 NHHAT = - 361.0 + 16 T

NHHAC + 8.183 NHPSW - 3.125 NHPSC - .254 NHHAT = 527.01 - 17 T

NHHAR + .906 NHPSW - 2.499 NHPSR - .040 NHHAT = - 165.98 + 1 T

NHQSW - 3.636 NHPSW - .80 NHHAW = 175 T - 6,997.24 + 6,664[1 + 1.2(0)]^T

NHQSC - 1.563 NHPSC - .75 NHHAC = 50 T - 2,362.5 + 2,250[1 + .6(0)]^T

NHQSR - 1.374 NHPSR - 1.937 NHHAR = 15 T - 1.053.6 + 916[1 + 1.5(0)]^T

Regional Equilibrium Conditions

- NHQSW + NHQDW + NHQTW = 0
- NHQSC + NHQDCH + NHQDCF + NHQTC = 0
- NHQSR + NHQDR + NHQTR = 0

NHQDKF + NHQTK = 0

Supply-Demand Price Equations

NHPSW - NHPDW = - 11.13

NHPSC - NHPDC = -13.10

NHPSR = .5 NHPDR = -7

Demand-Trade Price Equations

NHPDW - NHPTW = 33.15

 $\dot{N}HPDC - NHPTC = 20.82$

NHPDR - NHPTR = 0

NHPDK - NHPTK = 0

NLQDWH + 61.62 NLPDW - 31.31 NLPDC - 23.72 NLPDR = - 988.07 + 19,771[1 + .05(.03301) + .02349]^T

NLQDCH - 22.02 NLPDW + 37.30 NLPDC - 7.538 NLPDR = .222 + 9,422[1 + .1(.03301) + .02349]^T

NLQDRH - 3,488 NLPDW - 2,363 NLPDC + 2.984 NLPDR = - .048 + 1,492[1 + .2(.03301) + .02349]^T

NLQDCF + 10.99 NLPDC = 694.02 + 4,628[1 + .1(.03301) + .02349]^T

Supply Equations

NLHAT - 15.34 NLPSW = 22,766.5 + 115 T

NLHAW - 25.26 NLPSW + 11.11 NLPSC - .549 NLHAT = - 1,257.53 + 81 T

NLHAC + 25.12 NLPSW - 11.11 NLPSC - .428 NLHAT = 1,237.79 - 86 T

NLHAR + .14 NLPSW - 1.282 NLPTR - .023 NLHAT = - 148.2 + 5 T

NLQSW - 17.68 NLPSW - 1.05 NLHAW = 405 T - 15,194.09 + 13,815[1 + 875(0)]^T

NLQSC - 10.31 NLPSC - 1.30 NLHAC = 323 T - 13,991.13 + 13,325[1 + .6(0)]^T

 $MLQSR - 2.885 MLPTR - 3.375 MLHAR = 6 T - 2,267.93 + 1,890[1 + .6(0)]^{T}$

Regional Equilibrium Conditions

- NLQSW + NLQDWH + NLQTW = 0
- NLQSC + NLQDCH + NLQDCF + NLQTC = 0
- NLQSR + NLQDRH + NLQTR = 0

Supply-Demand Price Equations

NLPSW - NLPDW = 13.96

NLPSC - NLPDC = 1.46

Demand-Trade Price Equations

NLPDW - NLPTW = 1.27

NLPDC - NLPTC = 2.60

NLPDR - NLPTR = - 6.00

```
EFQDWH + 1.992 EFPDW - 1.638 EFPDC - .3978 EFPDR = 56.54 + 20 \text{ T} + 565[1 + .35(.01579) + .03030]^{\text{T}}

EFQDCH - 1.463 EFPDW + 6.014 EFPDC - .8765 EFPDR = 124.49 + 6,225[1 + .1(.01579) + .03030]^{\text{T}}

EFQDRH - .2762 EFPDW - .6812 EFPDC + .8272 EFPDR = 0 + 235[1 + .3(.01579) + .03030]^{\text{T}}

EFQDCF + 1.449 EFPDC = -147.0 + 250[1 + .2(.01579) + .03030]^{\text{T}}
```

Supply Equations

EFHAT - 19.04 EFPSC = 5,034.6 + 36.5 T

EFHAW - .3035 EFPSW - .036 EFHAT = - 19.73 + 1 T

EFHAC - 17.58 EFPSC - .924 EFHAT = - 823.13 - .3 T

EFHAR - .6702 EFPSR - .040 EFHAT = - 46.52 - .7 T

EFQSW - .2795 EFPSW - 1.84 EFHAW = - 415.4 + 5.9 T + 396[1 + .9(0)]^T

EFQSC - 13.60 EFPSC - 1.16 EFHAC = - 6,979.78 + 100 T + 6,345[1 + .525(0)]^T

EFQSR - .4520 EFPSR - .899 EFHAR = - 246.06 + 1.8 T + 214[1 + 1.6(0)]^T

Regional Equilibrium Conditions

- EFQSW + EFQDWH + EFQTW = 0
- EFQSC + EFQDCH + EFQDCF + EFQTC = 0
- EFQSR + EFQDRH + EFQTR = 0

Supply-Demand Price Equations

EFPSW - EFPDW = - 14.24

EFPSC - EFPDC = -5.09

EFPSR - EFPDR = 0

Demand-Trade Price Equations

EFPDW - EFPTW = -1.84

EFPDC - EFPTC = -1.80

EFPDR - .5 EFPTR = - 27.98

$$CFCØG = 3,829[1 + .15(.0220) + .02759]^{T}$$

$$CFQDWH + CFQDCH - CFCØG = 0$$

$$CFQDCH - CFQSC = 0$$

$$CFQDRH + 5.70 CFPDR + 712.625 + 3,563[1 + .1(.02220) + .02759]^{T}$$

Supply Equations

$$CFQSW = 634 + 9 T$$

$$CFQSC = 2,925 + 40 T$$

$$CFQSR - 8.435 CFPSR = 2,294.42 + 75 T$$

Regional Equilibrium Conditions

- CFQSW + CFQDWH + CFQTW = 0
- CFQSC + CFQDCH + CFQTC = 0
- CFQSR + CFQDRH + CFQTR = 0

Supply-Demand Price Equation

CFPSR - .5 CFPDR = 5.5

Demand-Trade Price Equation

CFPDR - CFPTR = 3.0

Export Equation

CFQTK - 3.162 CFPTK = 11.44.84 + 30 T

```
NDCOW + 112.57 NDPDW - 35.53 NDPDR - 34.44 NDPDC = 3,374.7 + 22,500[1 + .7(.01364) + .0247]<sup>T</sup>

NDQDW = .8 NDCOW + .2 NDQSW + .5 NDCORH - .5 NDQSR

NDQDCH = 30.65 NDPDW + 25.79 NDPDR - 131.26 NDPDC + 3,674.7 + 24,501[1 + .2(.01364) + .0247]<sup>T</sup> - 210 T

NDCORH - 53.76 NDPDW + 180.98 NDPDR - 6.58 NDPDC = 12,465.1 + 42,983[1 + .7(.01364) + .0247]<sup>T</sup>

NDQDRH = .2 NDCORH + .8 NDQSR

NDQDCF = .15 NDQSC - 6.196 NDPDC - 3,253.1 + 1,012[1 + .4(.01364) + .0247]<sup>T</sup>

NDQDKF = - 6.495 NDPDK + 547.8 + 2,739[1 + .1(.01364) + .0247]<sup>T</sup>
```

Supply Equations

```
NDHAT - 33.41 NDPSW - 40.5 NDPSR = 106,164.37 + 195 T

NDHAW - 50.09 NDPSW + 31.1 NDPSC + 40.48 NDPSR - .150 NDHAT = 327.8 + 538 T

NDHAC + 22.48 NDPSW - 116.42 NDPSC + 52.07 NDPSR + 32.02 NDPSK - .386 NDHAT = 1,688.14 + 150 T

NDHAR + 19.54 NDPSW + 57.67 NDPSC - 107.85 NDPSR - .333 NDHAT = 3,204.73 + 280 T

NDHAK + 8.07 NDPSW + 27.65 NDPSC + 15.3 NDPSR - 32.02 NDPSK - .131 NDHAT = 1,208.8 + 346 T

NDQSW - 16.42 NDPSW - 1.23 NDHAW = - 22,489.9 + 625 T + 20,825[1 + 1.2(0)]<sup>T</sup>

NDQSC - 14.98 NDPSC - .56 NDHAC = - 23,365.06 + 630 T + 24,386[1 + .55(0)]<sup>T</sup>

NDQSR - 34.94 NDPSR - 1.108 NDHAR = - 44,668.85 + 600 T + 41,755[1 + .95(0)]<sup>T</sup>

NDQSK - 6.15 NDPSK - .234 NDHAK = - 3,981.9 + 19.5 T + 3,458[1 + .25(0)]<sup>T</sup>
```

Regional Equilibrium Conditions

- NDQSW + NDQDW + NDQTW = 0
- NDQSC + NDQDCH + NDQDCF + NDQTC = 0
- NDQSR + NDQDRH + NDQTR = 0
- NDQSK + NDQDKF + NDQTK = 0

Supply-Demand Price Equations

NDPSW - NDPDW = 21.45

NDPSC - NDPDC = 0

NDPSR - NDPDR = - 11.35

NDPSK - NDPDK = 0

Demand-Trade Price Equations

NDPDW - .7 NDPTW = 28.171

NDPDC - .4 NDPTC = 37.522

NDPDR - .4 NDPTR = 30.82

NDPDK - NDPTK = 0

Supply Equations

```
ØSHAT - 4.880 ØSPSR - 11.24 ØSPSW = 19,969.92 + 226 T

ØSHAW - 6.538 ØSPSW + 1.288 ØSPSC + 3,843 ØSPSR - .291 ØSHAT = - 170.97 - 3 T

ØSHAC + 4.414 ØSPSW - 1.288 ØSPSC - .079 ØSHAT = 306.26 - 4 T

ØSHAR + 2.124 ØSPSW - 3.843 ØSPSR - .630 ØSHAT = - 135.29 + 7 T

ØSQSW - 3.661 ØSPSW - 1.12 ØSHAW = 260 T - 7,344.1 + 6,994[1 + .9(0)]<sup>T</sup>

ØSQSC - .1948 ØSPSC - .53 ØSHAC = 30 T - 919.0 + 900[1 + .9(0)]<sup>T</sup>

ØSQSR - 5.40 ØSPSR - 1.170 ØSHAR = 316 T - 16,309.72 + 15,834[1 + .75(0)]<sup>T</sup>
```

Regional Equilibrium Equations

- $\phi s q s w + \phi s q d w + \phi s q d w = 0$
- ϕ SQSC + ϕ SQDC + ϕ SQTC = 0
- ØSQSR + ØSQDR + ØSQTR = 0

Supply-Demand Price Equations

ØSPSW - ØSPDW = - 11.48

ØSPSC - ØSPDC = 0

ØSPSR - ØSPDR = - 40.00

Demand-Trade Price Equations

ØSPDW - .7 ØSPTW = 55.221

ØSPDC - .7 ØSPTC = 43.726

ØSPDR - .4 ØSPTR = 80.00

THQDWH + .0464 THPDW - .1614 THPDR = - 10.35 + 69[1 + .2(.04392) + .03298]^T

THQDC + .3735 THPDC - .4912 THPDR = - 111.0 + 300[1 + .2(.04392) + .03298]^T

THQDR - 1.302 THPDC + 4.281 THPDR = 292.81 + 7,321[1 + .1(.04392) + .03298]^T

Supply Equations

THHAT - 19.05 THPSR - 19.33 THPTC = 4,952.4 + 100 T

THHAC - 1.368 THPSC - .1004 THHAT = - 76.47 + 13 T

THHAR - 4.284 THPSR - .8996 THHAT = - 342.77 - 13 T

THQSC - 3.486 THPSC - 2.549 THHAC = - 2,145.0 + 42 T + 1,950[1 + .35(0)]^T

THQSR - 11.12 THPSR - 1.2975 THHAR = $-9,782.66 + 120 \text{ T} + 8,893[1 + .45(0)]^{\text{T}}$

Regional Equilibrium Conditions

THQDWH + THQTW = O

-THQSC + THQDC + THQTC = O

-THQSR + THQDR + THQTR = O

Supply-Demand Price Equations

THPSR - THPDR = -5.50THPSC - THPDC = -.29

Demand-Trade Price Equations

THPDW - THPTW = O

THPDC - THPTC = -2.88

THPDR - .8 THPTR = -36.9

 \emptyset EQDWH + .4138 \emptyset EPTW - .4322 \emptyset EPDR = - 14.55 + 291[1 + .2(.01182) + .02364]^T \emptyset EQDCH = 85[1 + .15(.01182) + .02364]^T \emptyset EQDRH - 1.617 \emptyset EPTW + 5.629 \emptyset EPDR = 454.81 + 11,371[1 + .1(.01182) + .02364]^T \emptyset EQDCF - 1.523 THPTC = - 390.02 + 45 T + 300[1 + .2(.01182) + .02364]^T

Supply Equations

ØEHAR - 22.24 ØEPSR = 9,008.2 + 45 T

ØEQSC - 1.015 THPTC = -60 + 55 T +300[1 + .45(0)]^T

ØEQSR - 25.87 ØEPSR - 1.163 ØEHAR = -12,804.62 + 250 T + 11,640[1 + .4(0)]^T

Regional Equilibrium Conditions

 \emptyset EQDWH + \emptyset EQTW = 0 - \emptyset EQSC + \emptyset EQDCH + \emptyset EQDCF + \emptyset EQTC = 0 - \emptyset EQSR + \emptyset EQDRH + \emptyset EQTR = 0

Supply-Demand Price Equations

ØEPSR - .5 ØEPDR = -5.50

Demand-Trade Price Equations

 \emptyset EPDR - \emptyset EPTR = - 3.00

DOCOWH + 3.546 DOPDW - 3.298 DOPDR - 3.498 DOPDC = - 424.73 + $531[1 + .55(.025) + .02641]^{T} + 5 T$ DOQDWH - DOCOWH - .4 DOCORH + .4 DOQSR = 0

DOQDCH - .7996 DOPDW - 4.463 DOPDR + 11.833 DOPDC = - 71.9 + 2,395[1 + .3(.025) + .02641]^{T} + 50 T

DOCORH - 5.611 DOPDW + 19.573 DOPDR - 6.228 DOPDC = 2,268.8 + 12,605[1 + .45(.025) + .02641]^{T}

DOQDRH - .6 DOCORH - .4 DOQSR = 0

DOQDK + .6757 DOPDK = $37.6 + 188[1 + .3(.025) + .02641]^{T}$

Supply Equations

DOHAT - 14.95 DOPSR = 9,626.1 + 70 T

DOHAC - 5.043 DOPSC + 5.157 DOPSK - .239 DOHAT = - 106.2 - 20 T

DOHAR - 10.13 DOPSR + 3.187 DOPSC - .678 DOHAT = - 1,386.6 + 22 T

DOHAK + 1,856 DOPSC - 5.157 DOPSK - .083 DOHAT = - 193.2 - 2 T

DOQSC - 1.778 DOPSC - .95 DOHAC = - 2,863.0 + 160 T + 2,730[1 + .8(0)]^T

DOQSR - 7.377 DOPSR - 1.456 DOHAR = - 13,065.7 + 140 T + 11,877[1 + .575(0)]^T

DOQSK - .1804 DOPSK - .24 DOHAK = - 238.04 + 9.4 T + 502[1 + .25(0)]^T

Regional Equilibrium Conditions

DOQDWH + DOQTW = 0

- DOQSC + DOQDCH + DOQTC = 0

- DOQSR + DOQDRH + DOQTR = 0

- DOQSK + DOQDK + DOQTK = 0

Supply-Demand Price Equations

DOPSC - .7 DOPDC = 34.286

DOPSR - DOPDR = 0

DOPSK - DOPDK = 0

Demand-Trade Price Equations

DOPDW - DOPTW = 0

DOPDC - DOPTC = 1.60

DOPDR - DOPTR = -4.55

DOPDK - DOPTK = 0

EHCOWH + 10.640 EHPDW - 1.8 EHPDC - 2.953 EHPDR = 190.25 + 3,175[1 + .1(.05607) + .01948]^T

EHQDWH - EHCØWH - .4 EHCØRH + .4 EHQSR = 0

EHQDCH - 1.978 EHPDW + 7.524 EHPDC - 1.647 EHPDR = - .148 + 1,770[1 + .05(.05607) + .01948]^T

EHCORH - 13.070 EHPDW - 5.5260 EHPDC + 10.880 EHPDR = 779.60 + 7,799[1 + .05(.05607 + .01948]^T

EHQDRH - .6 EHCØRH - .4 EHQSR = 0

EHQDCF + 13.39 EHPDC = 944.93 + 1,890[1 + .4(.05607) + .01948]^T

Supply Equations

EHHAT - 4.022 EHPSR = 2,933.59 + 4 T

EHHAW - .1999 EHPSW + .1700 EHPSR - .042 EHHAT = - 6.77 + 2.9 T

EHQDKF + 2.181 EHPDK = $236.66 + 789[1 + .3(.05607) + .01948]^{T}$

EHHAR + .1999 EHPSW - 2.1745 EHPSR + 1.073 EHPSC + .1503 EHPSK - .564 EHHAT = - 134.9 - 4.6 T

EHHAC + 1.350 EHPSR - 1.534 EHPSC + .9077 EHPSK - .269 EHHAT = 47.67

EHHAK + .6545 EHPSR + .461 EHPSC - 1.058 EHPSK - .125 EHHAT = 94.0 + 1.7 T

EHQSW - .352 EHPSW - 2.20 EHHAW = - $409.24 + 2.8 \text{ T} + 341[1 + 1.0(0)]^{\text{T}}$

EHQSC - 2.127 EHPAC - 2.08 EHHAC = - 2,458.63 + 15.3 T + 2,049[1 + .75(0)]^T

EHQSR - 5.215 EHPSR - 3.07 EHHAR = - 7,299.71 + 11.3 T + 6,340[1 + .6(0)]^T

EHQSK - .0273 EHPSK - .31 EHHAK = - $145.25 + 1.4 T + 148[1 + .4(0)]^T$

Regional Equilibrium Conditions

- EHQSW + EHQDWH + EHQTW = 0

- EHQSC + EHQDCH + EHQDCF + EHQTC = 0

- EHQSR + EHQDRH + EHQTR = 0

- EHQSK + EHQDK + EHQTK = 0

Supply-Demand Price Equations

EHPSW - .5 EHPDW = 149.125

EHPSC - .5 EHPDC = 157.395

EHPSR - .5 EHPDR = 74.85

EHPSK - EHPDK = 0

Demand-Trade Price Equations

EHPDW - EHPTW = 21.87

EHPDC - EHPTC = 2.37

EHPDR - .5 EHPTR = 138.0

EHPDK - EHPTK = 0

```
ELQDWH + 5.111 ELPTW - 1.172 ELPTR - 3.025 ELPDC = .02 + 930[1 + .35(.00271) + .03297]^{T}

ELQDCH - 1.696 ELPTW - 2.723 ELPTR + 8.783 ELPDC = 107.94 + 2,160[1 + .2(.00271) + .03297]^{T}

ELQDRH - 3.975 ELPTW + 9.360 ELPTR - 4.118 ELPDC = 607.54 + 5,063[1 + .2(.00271) + .03297]^{T}

ELQDCF + 1.220 ELPDC = -175 + 250[1 + .2(.00271) + .03297]^{T}
```

Supply Equations

```
ELHAT - 14.41 ELPSR = 5,306.35 + 77 T

ELHAC - 3.696 ELPSC + 3.677 ELPSR - .383 ELHAT = - 1.08 + 28 T

ELHAR + 3.696 ELPSC - 3.677 ELPSR - .617 ELHAT = 1.08 - 28 T

ELQSC - 1.570 ELPSC - .85 ELHAC = 70 - 2,133.03 + 2,031[1 + 1.125(0)]<sup>T</sup>

ELQSR - 5.525 ELPSR - 1.165 ELHAR = 136 T - 4,847.87 + 4,489[1 + 1.4(0)]<sup>T</sup>

ELQSK - .4539 ELPTK = 175 + 20 T
```

Regional Equilbrium Conditions

ELQDWH + ELQTW = 0
- ELQSC + ELQDCH + ELQDCF + ELQTC = 0
- ELQSR + ELQDRH + ELQTR = 0
- ELQSK + ELQTK = 0

Supply-Demand Price Equations

ELPSC - ELPTC = 3.19

ELPSR - ELPTR = - 54.00

Demand-Trade Price Equations

ELPDC - ELPTC = -.98

RWQTB = $254 [1. + .3(.025) + .027]^{T}$ RWQTP = $147 [1 + .3(.025) + .027]^{T}$ RWQTV = $117 [1 + .015]^{T}$ RWQTLB + .1464 AZPTLB = 107.65

PRICE EQUATIONS LINKING REGIONS

<u>Beef</u>	Wheat
CNPTB65 USPTB = -157.85	C6PTW - USPTW = 6.47
MCPTB65 USPTB = -92.85	JPPTW - USPTW = 7.04
BZPTB65 USPTB = -210.85	SFPTW - USPTW = 3.10
USPTB - AZPTB = 250.00	DOPTW - USPTW = 31.13
JPPTB8 AZPTB = 96.80	ELPTW - USPTW = 4.95
ARPTB - AZPTB = 61.00	OEPTW - USPTW = 11.60
C6PTB65 ARPTB = 80.00	NDPTW - USPTW = 15.24
<u>Pork</u>	OSPTW - USPTW = 15.24
USPTP - 1.6 C6PTP = 626.40	NHPTW - USPTW = 10.90
CNPTP6 USPTP = 246.40	NLPTW - USPTW = 4.17
MCPTP6 C6PTP = 17.60	EFPTW - USPTW = 28.20
JPPTP - 1.25 C6PTP = 453.50	MCPTW - USPTW = 9.29
Mutton	LAPTW - USPTW = 11.60
C6PTV - AZPTV = 287.70	CNPTW - C6PTW = -1.87
JPPTV - AZPTV = 15.70	ARPTW - C6PTW = -6.53
ARPTV - C6PTV = -245.47	AZPTW - JPPTW = -10.61
Butter	EHPTW - AZPTW = 12.46
CNPTLB - AZPTLB = 29.00	THPTW - AZPTW = 19.18
WEPTLB - AZPTLB = 587.00	BZPTW - ARPTW = 14.09
JPPTLB - AZPTLB = -10.00	Coarse grains
Cheese	C6PTC - USPTC = 4.73
USPTLC - CNPTLC = 161.00	JPPTC - USPTC = 12.08
WEPTLC - CNPTLC = 324.00	DOPTC - USPTC = 2.04
CNPTLC - AZPTLC = 617.00	EHPTC - USPTC = 11.12
JPPTLC - AZPTLC -5.00	ELPTC - USPTC = 5.38

Coarse grains--Continued

NDPTC - USPTC = 12.44

OSPTC - USPTC = 12.44

NHPTC - USPTC = 7.20

NLPTC - USPTC = 3.47

MCPTC - USPTC = 19.51

VNPTC - USPTC = 9.83

LAPTC - USPTC = 3.21

CNPTC - C6PTC = -8.82

SFPTC - C6PTC = -3.61

EFPTC - C6PTC = -8.26

ARPTC - C6PTC = -.31

AZPTC - JPPTC = -28.80

THPTC - JPPTC = -10.05

BZPTC - LAPTC = -1.35

Rice

CNPTR - USPTR = 56.07

SFPTR - USPTR = 6.07

AZPTR - USPTR = -11.94

NHPTR - USPTR = 37.07

CFPTR - USPTR = -54.93

MCPTR - USPTR = 51.07

EHPTR - THPTR = 1.00

ELPTR - THPTR = -34.00

NDPTR - THPTR = 7.45

OSPTR - THPTR = -33.00

EFPTR - THPTR = 45.00

VNPTR - LAPTR = -120.00

Rice--Continued

LAPTR - USPTR = 65.07

USPTR - C6PTR = 22.43

OEPTR - C6PTR = -50.50

NLPTR - C6PTR = -23.50

BZPTR - C6PTR = -43.50

ARPTR - C6PTP = -55.57

C6PTR - THPTR = 1.50

WEPTR - THPTR = 9.00

DOPTR - THPTR = 12.55

<u>Oilseeds</u>

CNPTK - USPTK = 20.33

C6PTK - USPTK = 3.67

JPPTK - USPTK = 47.09

AZPTK - USPTK = 13.70

EHPTK - USPTK = 10.21

NHPTK - USPTK = 10.00

MCPTK - USPTK = 45.81

LAPTK - USPTK = -2.69

SFPTK - C6PTK = -11.97

ELPTK - C6PTK = -46.32NDPTK - C6PTK = -17.63

CFPTK - C6PTK = -11.47

BZPTK - C6PTK = -18.27

ARPTK - C6PTK = -37.17

DOPTK - JPPTK = -89.74

$$\frac{16}{\Sigma} QSK - \frac{3}{\Sigma} QDK - \frac{1}{\Sigma} QDK - \frac{1}{\Sigma} QDKH - \frac{12}{\Sigma} QDKF + \frac{21}{\Sigma} QTK = -1,184$$

Notes

General: The summation count is across regions, and the region count is indicated.

Beef: Includes Rest of world as a separate region to balance world trade. Pork: Includes Rest of world as a separate region to balance world trade.

Poultry: Trade specified only between C3 and C6.

Mutton: Includes Rest of world as a separate region to balance world trade. Butter: Includes Rest of world as a separate region to balance world trade.

Wheat: Feed use related directly to livestock production in only 7 regions.

Coarse grains: Feed use related directly to livestock production in only 10 regions.

Oilmeal: Feed use related directly to livestock production in only 9 regions.

Table 5 -- Demand elasticities for meat

		Elastic	ity with re	spect to price	of	: :
Item	1	Beef	Pork	: Poultry	: : :	Income elasticity
	Finished	Other	: POTK	: Fourtry	Mutton:	:
United States: Beef, finished Beef, other Pork Poultry Mutton	7 .4 .4 .3	. 2 8	.1 .1 8 .2	.1 .1 -1.0		.4 .3 .1 .8
Canada: Beef Pork Poultry Mutton		6 .4 .3	.3 7 .2	.15 .15 8		.7 .15 .9
EC-6: Beef Pork Poultry Mutton		7 .5 .38 .15	.3 8 .5 .15	.1 .12 -1.07	25	.6 .5 1.0 0
EC-3: Beef Pork Poultry Mutton		6 .18 .3 .1	.2 8 .3	.08 .2 6 .1	2 .17 1	.7 .45 1.0 0
Other Western Europe: Beef Pork Poultry Mutton		6 .2 .1 .15	.2 7 .2 .15	.1 .2 8	25	.7 .6 .9
Japan: Beef Pork Poultry Mutton		-1.2 .20 .50 4	.26 90 .17 .2	.35 .11 -1.10 .3	4	1.2 .9 .6 .5
Oceania: Beef Pork Poultry Mutton		5 .2 .4	4		.2	0 .1 0
Mexico & Central America Beef Pork Poultry Mutton		4 .1	.1			.7 .6
Argentina: Beef Pork Poultry Mutton		4 .2 .2	4		4	.3 0
Brazil: Beef Pork Poultry Mutton		6 .2	.3 6			.4 .4

Table 6 -- Demand elasticities for dairy products

	Elasticity	: Income		
Item	Milk	: Butter	Cheese	elasticity
United States:	:			
Milk, fluid	:2			1
Butter	•	 7	_	
Cheese	•		5	•5
Canada:	•			
Milk, fluid	·2			1
Butter	•	7		3
Cheese	•		 5	.6
EC-6:				
Milk, fluid	25			• 2
Butter		7		. 2
Cheese	•		6	.5
EC-3:				
Milk, fluid	15			.2
Butter	, 	 5		. 2
Cheese			6	.3
Other Western Europe:				
Milk, fluid	 2			.3
Butter		5		.3
Cheese			6	.6
Japan:				
Milk, fluid	 7			.95
Butter	• /	7		1.0
Cheese			-1.69	1.25
ceania:	•			
Milk, fluid	2			.1
Butter	• 2	4		1
Cheese		• •	3	.5

Table 7 -- Supply elasticities for meat

:	Elasticity with respect to price of									
Item .	Beef	Pork	Poultry	Mutton	Milk	Corn	Oilcake			
United States: Beef Pork Poultry Mutton	.3	. 5	.9			2 4 6	05 1 2			
Canada: : Beéf : Pork : Poultry : Mutton :	.4 2 1	1 .6 2	2 .7			2 4 4	05 1 2			
EC-6: : Beef : Pork : Poultry : Mutton :	.4 3 2 15	15 .7 2	3 .7	.3	.15	2 4 4 15	1 2 3			
EC-3: : Beef : Pork : Poultry : Mutton :	.4 15 2 15	15 .7 2	15 .7	.3	.15 .15	2 4 4 15	1 2 3			
Other Western Europe: : Beef : Pork : Poultry : Mutton :	.4 2 2 15	15 .5 2	2 .6	.3	.15	2 3 3 15	1 15 25			
Japan: Beef Pork Poultry Mutton	.5	1 .7 2	1 2 .7	.2	15	3 4 4	2 3			
Oceania: : Beef : Pork : Poultry : Mutton ::	.4 1	.3		1		2				
Mexico & Central America Beef : Pork : Poultry : Mutton :	.4 1	1				4				
Argentina: : Beef : Pork : Poultry : Mutton :	.5 1	.3		. 2		2				
Brazil: : Beef : Pork : Poultry : Mutton :	.5 1	.4				3	15			

Table 8--Supply elasticities for dairy products

T4	: Elast	Elasticity of				
Item	Milk	Butter	Cheese	Corn	Oilcake	joint output with beef
United States: Milk, total Cheese	: : : .4	6	. 6	3	2	
Canada: Milk, total Cheese	: : .30	6	. 6	40	20	
EC-6: Milk, total Cheese	: : .35		. 4	5	3	.5
EC-3: Milk, total Cheese	: : .35		. 4	2	1	
Other Western Europe: Milk, total Cheese	: : .3		.5	35	1	
Japan: Milk, total Cheese	: : .8 :			25	3	
Oceania: Milk, total Cheese	: : .4 :	-1.0	1.0	2		

Table 9--Factors affecting use of grain as livestock feed

:		:		:	: Other :	
Explanatory factors 1/	United	Canada :	EC-6	: EC-3	: Western :	Japan
	States	:		:	Europe	
		•		•	<u> </u>	
:		Kg. g	rain use p	er kg. produ	<u>ct</u>	
Input-output rates:						
Beef, finished $2/$:	5.74					
Beef, other $2/$:	2.02	4.60	1.30	2.27	2.46	2.33
Pork : Poultry :	6.43 2.76	6.50 2.90	3.60 2.70	4.22 2.70	4.60	5.09
Lamb and Mutton :	(1.86)	2.90	.25	.25	2.80	2.40
Milk :	.33	.33	,125	.21	.28	.20
Eggs :	2.91	3.10	3.10	3.10	• 20	2.40
:	Percent	age change in	grain use j	er unit perc	ent price change	
:						
Price elasticities: : Beef, finished 2/ :	.22					
Beef, other $2/$:	.03	.25				
Pork :	.25	.25	.50	.50	.40	.50
Corn	40	40	 50	 50	 50	60
Oilseed cake :	.10	.10	.10	.10	.10	.10
:					• • • • • • • • • • • • • • • • • • • •	•10
	Australia,	South :	Eastern	: Soviet	:	Mexico
•	New	Africa :	Europe	: Union	China	Central
:	Zealand	i i		: 0111011		America
: :		Kg	. grain use	per kg. pro	duct	
Input-output rates: :	20					
Beef <u>2</u> / : Pork :	.30		2.80	3.00		. 30
Poultry :	3.40 3.00		4.60	5.00	2.0	3.00
Milk :	.12		3.00 .30	3.50	1.0	
Eggs :	3.00		(3.10)	.30 3.50		
:	Perce	entage change :	in grain us	e per unit p	ercent price chang	ge
:						
Price elasticities: :						
Beef 2/	30		0.5			.20
Pork :	.30	30	.25 25			20
	Perce	entage change	in grain us	e per unit p	ercent income chan	nge
Income elasticity:						
Income per capita :		.25				.10

Continued

Table 9--Factors affecting use of grain as livestock feed--Continued

Explanatory Factors <u>1</u> /	Argentina	Brazil	Venezuela	Other South America	N. Africa- Middle East High	N. Africa- Middle East Low	
	:	<u>K</u> g	. grain use pe	r kg. pro	duct		
Input-Output Rates: Beef <u>2</u> / Pork	: : .50 : 3.60	1.50 3.60					
	: Perce	entage cha	ange in grain u	use per un	it percent pri	ce change	
Price elasticities: Pork Corn Oilseed cake	: : .30 :30	.30 40 .10	30	40	-,30	-,15	
	Perce	entage cha	ange in grain u	ıse per un	it percent ind	ome change	
Income elasticity: Income per capita	: : .20	.20	.20	.20	.30	,10	
	: East : : Africa :	Central Africa	: India :	Other South Asia	: Thailand :	Other Southeast Asia	
	Perce	entage cha	ange in grain (use per un	it percent pr	ice change	
Price elasticities: Corn	30		40	20	-,1	3	
	Perce	entage ch	ange in grain u	use per un	it percent ind	come change	
Income elasticity: Income per capita	.20	.15	.40	.20	.1	.2	
	Grain use as a proportion of commodity supply						
M 1 - 1 - 1	•						
Market shares: Commodity supply feed grain	: :		.15				
	Indor	nesia	.15 : East : Asia : High	:	East Asia Low	: Rest : of : World	
	:	nesia	: East Asia	: :	Asia	of	
Commodity supply feed grain Price elasticities:		30	East Asia High	: : : :	Asia Low	of World	

Note: Absence of terms indicates omission from the GOL model.

¹/ Factor categories include (1) input-output rates, (2) price elasticities, (3) income elasticities, and (4) market shares. Suppression of any factor heading in the table signifies omission from the GOL model for the regions concerned.

model for the regions concerned.

2/ "Finished beef" is only identified in the U.S. "Other beef" in the U.S. is comparable to "beef" in all other regions.

Explanatory factors 1/	: United : States :	Canada	EC-6	EC-3	Other Western Europe	Japan
	:	Kg	. oilmeal use	per kg. pro	duct	
Input-output rates:	:					
Beef, finished $2/$: .25					
Beef, other $2/$.44	.10	.16	.12	.15	.50
Pork	: .45	.35	.67 1.18	.55 1.05	.65	1.40
Poultry Lamb and mutton	: .87 : 1.72	•00	1.10	1.05	1.16	1.20
Milk	: .033	.03	.033	.025	.028	.80
Eggs	: .47	.35	.71	.60		.70
	: Pero	centage cha	nge in oilmeal	l use per ur	nit percent pr	ice change
Price elasticities:	:					
Beef, finished 2/	:10					
Beef, other 2/	: .23					
Pork	: .27	.90	1.20	1.80	1.00	1.20
Corn	: 1.00	2.50	.90	1.00	1.20	1.50
Oilseed cake	:53	98	25	 37	20	30
	Australia	: : South	: Eastern	: : Soviet	: :	Mexico
	New	: Africa	: Europe	Union	China	Central
	Zealand	:	:	:	: :	America
	: :	Kg.	oilmeal use p	per kg. prod	luct	
Input-output rates:	:					
Pork	:		.40	.40	.40	
Poultry Milk	•		.50	.50	.50	
Eggs	•		.01 .13	.01 .40		
	:		•13	. 40		
	Pero	centage char	nge in oilmea	l use per ur	it percent pr	ice change
Price elasticities:	:					
Corn	:					.20
Oilseed cake	:30					20
	:	<u>Oilmeal</u>	use as a proj	portion of o	commodity dema	<u>nd</u>
Market shares:	:					
Commodity demand feed grain	:	.19				.32
	:					
		<u> </u>	•	Other	: N. Africa-:	N Africa-
	Argentina	Brazil	: Venezuela	South	:Middle East:	
	:	:	:	: America	: High :	Low
	•	.	:	•	<u>: :</u>	
	Pero	centage cha	nge in oilmea	l use per ur	nit percent pr	ice change
Price elasticities:	:					
Oilseed cake	: :50	40		30		
	:	• • • •		50		
	:	<u>Oilmeal</u>	use as a proj	portion of o	commodity supp	<u>1y</u>
Market shares:	•					
Commodity demand feed grain	.047	.064		.21	.30	

Table 10--Factors affecting use of oilseed meal as livestock feed--Continued

Explanatory Factors 1/	East : Central : India : South : Thailand : Southeast : Asia : Asia
:	Percentage change in oilmeal use per unit percent price change
Price elasticities: : Oilseed cake :	20
:	Percentage change in oilmeal use per unit percent income change
Income elasticity: : Income per capita :	.10
- - - - - -	East East Rest Indonesia Asia of High Low World
:	Percentage change in oilmeal use per unit percent price change
Price elasticities: : Oilseed cake :	2030
:	Percentage change in oilmeal use per unit percent income change
Income elasticity: : Income per capita :	.30 .30

Note: Absence of terms indicates omission from the GOL model.

^{1/} Factor categories include (1) input-output rates, (2) price elasticities, (3) income elasticities, and (4) market shares. Suppression of any factor heading in the table signifies omission from the GOL model for the regions concerned.

^{2/ &}quot;Finished beef" is only identified in the U.S. "Other beef" in the U.S. is comparable to "beef" in all other regions.

Table 11--Factors affecting nonfeed use of grains and oilseeds $\underline{1}/$

	Elastic	ity with respec	ct to price o		Annual demand trend $\frac{2}{}$		
Item -	Wheat	: Rice	Coarse grains	- Income elasticity	Quantity:	Percent of 1969-71 base	
:					1,000 metric tons	Percent	
United States: : Wheat : Rice : Coarse grains : Oilseeds :	2	2	-∵. 2	.2			
Canada: Wheat Rice Coarse grains Oilseeds	~.05 .05	3	.03	25 .15 3			
EC-6: : : : : : : : : : : : : : : : : : :	2	3	2	1 .2 .1			
EC-3: Wheat Rice Coarse grains Oilseeds	,1	3	15	03 .2 .05			
Other Western Europe: Wheat Rice Coarse grains Oilseeds	25 .2 .15	-,3	.1	05 .2 .10			
Japan: : Wheat : Rice : Coarse grains : Oilseeds 3/ :	4 5 .10	.2 15	25 1	.2 20 .2 .8	50	.99	
Australia & Mew 7ealand: Wheat Rice Coarse grains Oilseeds	15	1	15	25 .1 2			
South Africa: Wheat Rice Coarse grains Oilseeds	15 .15 .03	(3)	.10	.1 .1 05			
Mexico & Central America: Wheat: Rice: Coarse grains: Oilseeds:	35 .2 .05	.10	.15 .05 2	.35 .35 .1			
Argentina: Wheat Rice Coarse grains Oilseeds.	1 .05 .05	2	.05 1	1 .15 25			
See footnotes at end of ta	ble.					Continued	

Table 11 -- Factors affecting nonfeed use of grains and oilseeds $\underline{1}/$ -- Continued

▼.	Elasticity	with respec	t to price of	-: Income	Annual demand trend 2/		
Item	: Wheat	: Rice	Coarse grains	elasticity	: : : : : : : : : : : : : : : : : : :	Percent of 1969-71 base	
	:	•			1,000 metric tons	Percent	
Brazil:	:	.10	.10	.25			
Wheat	:25 : .2	2	.02	.15			
Rice	: .05	.05	15	.1			
Coarse grains Oilseeds	:						
Venezuela:	:						
Wheat	:3	.1 1	.1	.35			
Rice	: .15	1	25	.15 .15			
Coarse grains Oilseeds	: .15		23	•15			
Other South America:	•						
Wheat	:25	.1	.15	.3			
Rice	: .2	2		.35			
Coarse grains Oilseeds	: .2		35	.15			
North Africa/Niddle EastHigh:	:						
Wheat	· :25	.03	.02	.25			
Rice	: .18	3	.04	.3			
Coarse grains Oilseeds	:2	.1	2	.15			
North Africa/Middle	: :						
EastLow:	: :35	1 c	10	٥٢			
Wheat	.15	.15 25	.10 .10	.05 .2			
Rice Coarse grains Oilseeds	: .15	.1	25	.1			
East Africa:	:						
Wheat	:3	.05	.15	.35	20	3.54	
Rice	: .1	25	.15	.3			
Coarse grains Oilseeds	: .02 :	.01	05	.1			
Central Africa:	:						
Wheat Rice	:	_					
Coarse grains Oilseeds	:	2		.1			
India:	:						
Wheat	:4	.15	.1	.7			
Rice	: .1	4	.01	.7			
Coarse grains Oilseeds	: .1	.10	35	.2	-210	86	
Other South Asia:	:						
Wheat	· :4	.25	.01	.4			
Rice	: .2	30	.03	.4			
Coarse grains Oilseeds	: .15 :	.2	20	.2			
Thailand:	:						
Wheat	05	. 2		.2			
Rice	:	05	.01	.1			
Coarse grains Oilseeds	:	.2	1	.2		:Inued	

Table 11--Factors affecting nonfeed use of grains and oilseeds $\underline{1}/\text{--}\text{Continued}$

Item :	: Flasticit	y with respec	t to price of	: Income	Annual demand trend 2/		
	: Wheat	: Rice	Coarse grains	: elasticity:	: Ouantity :	Percent of 1969-71 base	
	:		c		1,000	Damaana	
	:				metric tons	Percent	
Other Southeast Asia:	1	.15		.2			
Wheat	: .01	05		.1			
Rice	:	05		.15			
Coarse grains Oilseeds	:			•1.3			
Indonesia:	:						
Wheat	·6	1.0	.4	•55	5	.94	
Rice	: .04	25	.03	.45			
Coarse grains Oilseeds	.03	.3	3	.3	50	2.09	
East AsiaHigh:	:						
Wheat	3	.2	04	.10			
Rice	.15	3	.05	.05			
Coarse grains Oilseeds	.1	.2	3	.05			
East AsiaLow:	:						
Wheat	(35)	(.15)	.2	.35			
Rice	(.05)	(22)	.05	.2			
Coarse grains Oilseeds	(.05)	(.15)	25	.2			

^{1/} Including food use of soybeans in the case of Japan. The use of parentheses in the table indicates trade prices; the absence of parentheses indicates demand prices.

 $[\]frac{2}{3}$ Trend in demand independent of any price effect. $\frac{3}{2}$ The coefficient shown in the coarse grain column is an elasticity with respect to the price of soybeans.

Table 12--Factors affecting the supply of grains and oilseeds $\underline{1}/$

Item					Yield elasticity with respect to price of				
:	Wheat :	Rice	: Coarse : grains	:Oilseeds :	Wheat :	Rice	: Coarse : grains	· Oilseeds	
			: grains	<u></u>	•		; grains	<u>: </u>	
United States:	/ 2 = \				(05)				
Wheat :	(2.5)	(.8)	(-1.84)	(-,69)	(.05)	(.10)			
Coarse grains :	(83)	(00)	(2.3)	(-1.00)		(.10)	(.10)		
Oilseeds	(78)		(-3.60)	(3.25)			(.10)	(.02)	
Canada:									
Wheat :	.5		40	15	.15				
Pice :									
Coarse grains :	55		• 55 - 24	15 1.0			.15	20	
Oilseeds :	16		24	1.0				.20	
EC-6: :	7								
Wheat	.7	20	70		.25				
Rice :	61	.20	6.1			.20	20		
Coarse grains : Oilseeds :	01		.61				.30		
: CC-3:									
Wheat :	.65		55		.2				
Rice :									
Coarse grains : Oilseeds :	161		.147				.2	.02	
Other Western Europe: :									
Wheat	.25	1.5	25		.25				
Rice .	. 195	.15	105	10		.15	20		
Coarse grains . Oilseeds :	185		.185	.10 .10			.30	.10	
:									
Japan:									
Wheat		010		0.0	.30				
Rice :		.012		02		.15	25		
Coarse grains : Oilseeds :		2		.28			.25	.15	
·		- • 4		•20				د.ر.	
Nustralia & New Zealand: :									
Wheat :	.4		35	·	.15				
Rice :		.10				.1			
Coarse grains :	 75		.66	0.0			.15		
Oilseeds :				.30				.15	
South Africa:									
Wheat :	. 30				.25				
Rice :									
Coarse grains :			(.30)	(3)			(.30)		
Oilseeds :								(.10)	
lexico & Central America:									
Wheat :	.45		25	07	.20				
Rice :	0.0	.15	0.4	0.0		.10			
Coarse grains : Cilseeds :	02 21		. 04 46	02 .50			.07	.05	
: Argentina:									
Wheat :	. 4		31		.10				
Rice :		.25				. 30			
	21		. 3	15			.15		
Coarse grains :							* 1.2		
Coarse grains : Oilseeds :	1 5		30	.45			• 13	.10	

Table 12--Factors affecting the supply of grains and oilseeds $\underline{1}/$ --Continued

Item	: Area : elasticity with respect to price of				: Yield : elasticity with respect to price of				
Item		: Rice	: Coarse	:Oilseeds	: Wheat	: Rice	: Coarse	:Oilseeds	
		<u>:</u>	: grains		:	:	: grains	:	
Brazil: Wheat Rice Coarse grains Oilseeds		• 2	70 10 .3 -1.10	20 1.6	.05	.10	.08	.05	
Venezuela: Wheat Rice Coarse grains Oilseeds		.50 10	756 .15			.15	.15		
Other South America: Wheat Rice Coarse grains Oilseeds	.2	· . 15	05 .07 .05 08	n 3 .20	.10	.15	.05	.10	
North Africa/Middle EastHigh: Wheat Rice Coarse grains Oilseeds	.1 20 25	03 .50	03 .09		.05	.15	.05		
North Africa/Middle EastLow: Wheat Rice Coarse grains Oilseeds	.15 02 20	(.30)	06 .07		.10	(.20)	.05		
East Africa: Wheat Rice Coarse grains Oilseeds		.20	.15		.05	.15	.10		
Central Africa Wheat Rice Coarse grains Oilseeds						.20			
India: Wheat Rice Coarse grains Oilseeds	.30 05 05 055	20 .25 17 09	12 10 .17 12	062 .20	.08	.07	.04	.15	
Other South Asia: : Wheat : Rice : Coarse grains : Oilseeds :	.1 015 25	05 .025	02 .07		.05	.03	.02		
Thailand: : Wheat : Pice :		.05				.10			

Table 12--Factors affecting the supply of grains and oilseeds $\underline{1}/$ --Continued

Item	: Area				:	: Yield				
						: elasticity with respect to price of				
	Wheat	: Rice	: Coarse : grains	:011seeds	Whe.	at :	Rice	: Coarse : grains :		
	:									
Other Southeast Asia:	:									
Rice	•	.10					.10			
Coarse grains	•	• 117					.117	(.20)		
Oilseeds	:							(/		
Indonesia:	; ;									
Wheat	:									
Rice.	:	. 2	03				.10			
Coarse grains	:		.14	10				.05		
Oilseeds	:		15	.30					.02	
East Asia	· :									
Wheat	: .25	20			. 2)				
Rice	:02	•19	10	01			.15			
Coarse grains	:	25	.3	10				.20		
∩ilseeds	:	26	19	.25					.02	
East AsiaLow	· :									
Wheat.	:									
Rice	:	.06	06				.08			
Coarse grains	:	10	.1					.05		
011seeds	:								(.03)	

^{1/} The use of parentheses in the table indicates trade prices; the absence of parentheses indicates supply prices.

S

TOTAL GRAIN UTILIZATION

EXPORTS	1	46	4991.	• 0 7 7	•	45.	34	0 0	σ	877	.00		0		∞		•	0	•	16	0 • 0	•	17	•	77.	123.	263.	5676.	4	9686
IMPORTS	RIC TONS -	0	60.		962.	76.	•	0.00	ם המ	915	68.	•696	166.	70.	255.	ċ	404	778.	718.	51.	299.	43.	968.	35.	0	2230.	8073.	10840.0	1664.	0577.
TOTAL	1,000 MET	9004	9950		3465.	7222.	851.	6046.	6107	901.	15531.	4634	153.	1600.	1747.	•966	5883	4205	5313	392.	7053.	897.	866.	610.	0822.	9029.	74287.	64	99731.	80665
FOOD & OTHER USAGE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	232.	4645	11109.0	3292.	4948.	603.	3236.	• 0 C C D D	• •	15531.	2744.	153.	7600.	1747.	984.	5883.	3373.	0685	392.	7025.	190.	566.	734.	674.	425.	20794.	452.	70306.	89552.
FEED USASE	1 1	6772.	5305	20286.0	0173.	274.	248.	2810.	100	7070	0		0	•	0	•	0	832.	28	•	28.	07.	000	876.	148.	09	53493.	108195.0	29425	111
PERCENT OF WORLD SUPPLY	PERCENT	•	•	2 0 0 0 0		•	•	•	• ນ ດ	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7.	•	5	•
PRODUCTION	1,000 METRIC TONS	8733.	340	810.	8405.	6175.	2675.	5019	1200% 64668	394	14607.	730.	520.	0843.	1940.	996	3728.	9830.	030	427.	6955.	143.	31.	075.	9222.	83.	01708.	0964.	79336.	82008.
YIELD	METRIC TONS PER HECTARE	•	•	ດ ແ ດ ເກ	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.1	•
AREA	1.000 HECTARES	0671.	065.	140 575	456.	7264.	3458.	2047	77704 •	114322.0	11028.	208.	243.	619.	0084.	160.	1473.	1803.	3962	616.	923.	337.	36.	21.	1273.	• 466	42120.	•	54577.	51268.
REGION		ITE	NADA	FURD THREE	HER E EUR	AFRICA		71	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		SI	ASIA HI	ASIA L	2	S		S. ASIA	-M.EST HI	-M.EST	AL AFRIC	AFRICA	AA	JEL	BRAZIL	LINA	S AMER) REGIO	AL PLA	DEV-ED R	TOTA

S

COARSE GRAINS UTILIZATION

IMPORTS EXPORT	SNO1	2034 0000 0000 0000 0000 0000 0000 0000	344. 019.
TOTAL USAGE	- 1,000 METRIC	145787.0 15215.0 47850.0 21500.0 22690.0 11185.0 21830.0 47250.0 71876.0 71876.0 2395.0 2395.0 2160.0 25513.0 14125.0 14125.0 6253.0 14125.0 189820.0	00351. 62543.
FOOD & OTHER USAGE	; ; ;	15064.0 2130.0 9825.0 4739.0 37777.0 31658.0 24870.0 2355.0 2160.0 2150.0 2160.0 2160.0 2177.0 2170.0 2180.0 21	71021. 33122.
FEED USAGE	1	130723.0 13085.0 38025.0 16761.0 18313.0 2274.0 22000.0 47000.0 15592.0 47000.0 1890.0 1012.0 1012.0 300.0 10876.0 5148.0 5148.0	330. 421.
PERCENT OF WORLD SUPPLY	PERCENT		• •
PRODUCTION	1,000 METRIC TONS	555830 1439290 1807390 1807390 1807390 171330 171330 1729290 173929	027. 757.
YIELD	METRIC TONS PER HECTARE		• •
AREA	1,000 HECTARES		089. 525.
REGION		N X	DEV-ED R

WHEAT UTILIZATION

EXPORTS	17881.0 11750.0 11750.0 11750.0 0.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0 0.	.009
IMPORTS RIC TONS	4670 4670 7750	722.
TOTAL USAGE 1,000 METR	20000000000000000000000000000000000000	6474
FOOD & OTHER USAGE	15854.0 22300.0 22300.0 82855.0 8340.0 1315.0 2130.0 21310.0 22130.0 27748.0 27748.0 27748.0 27748.0 27748.0 27748.0 3175.0 3175.0 3175.0 4225.0 4225.0 4225.0 3780.0 64309.0	4782.
FEED USAGE	8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
PERCENT OF WORLD SUPPLY PERCENT	0	
PRODUCTION 1+000 METRIC TONS	40025 161000 3151000 3151000 9151000 14600 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 92800 9390 9390 9390 9390 9390 9390 9390 9	414.
YIELD METRIC TONS PER HECTARE		
AREA 1,000 HECTARES	18668 0 93200 0 1215 0 61100 0 19500 0 19500 0 10590 0 10590 0 10590 0 10590 0 10590 0 10500 0 1050	
REGION	UNITED STATES CANADA EURO SIX EURO SIX EURO THREE OTHER WEUROPE SOUTH AFRICA JAPAN AUST-N ZEALAND EAST EUROPE SOUTH AFRICA JAPAN AUST-N ZEALAND EAST EUROPE SOUTH AFRICA INDONESIA INDONESIA INDIA OTHER SE ASIA OTHER SAMERICA	ORLD TOTAL

RICE UTILIZATION

APRIL 1978

EXPORTS	1 1 1	•	56.0	0	•	0.0	•	0	5	•	•	•	0	•	71.	•	•	•	٠ د	•	•	-	•	10.	123.	51.	877.	19.	847.
IMPORTS	IC TONS -	0 0	. 0	5	•	ه د	• •	56.	•	•	28.	9	76.	•	0	95.	•	• ¢	5	21.	9	•	•	•	•	48.	574.	14.	836.
TOTAL	1,000 METR	40	0 4 0	5	75.	• '	619	03.	149.	453.	2605.	.661	063.	7321.	1371.	983	6223.	• 0	563	235.	52.	14.	05.	162.	279.	4545.	70005	7101.	01648.
FOOD & OTHER USAGE		4 0	04.	5.	75.	• ,	51.	03.	149.	8453.	605.	1799.	063.	7321.	1371.	983.	6223.	4 0	563	235.	52.	14.	05.	162.	279.	4545.	70005	7101.	01648.
FEEDUSAGE	1 1 1	•	0 0	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PERCENT OF WORLD SUPPLY	PERCENT	•	э м • • 0	•	•	•	• •	•	•	•	ល	•	•	•	ນ	•	•	• .	•	•	•	•	•	•	•	•	5	•	0
PRODUCTION	1,000 METRIC TONS	•	661.0	C	•	• •	191	47.	31.	9330.	877.	346.	489	893.	1640.	ກິດ	5834	916	689	214.	19.	31.	49.	32.	402.	5580.	08.	3949.	99837.
YIELD	METRIC TONS PER HECTARE	•) K	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AREA	1,000 HECTARES	•	194.0	0	•	• •	37.	94.	50	172.	158.	068.	853.	854.	0000	77.	3528	•	31.	238.	37.	21.	81.	87.	4	101.	4716.	.666	1816.
REGION		ш	ı V	O THRE	ER N EU	TH AFRIC	T-N 7FA	T EUROPE	IET UNI	CHINA	ONESI	T ASIA	T ASIA LO	ILAN	S S	A I	ER S. ASIA	No ATTO INCIDENT	TRAL AFRICA	T AFRICA	OLE AM	EZUEL	N	ANILU	ER S AM	-ED REGIO	TRAL PLAN	S DEV-ED R	LD TOTA

OILMEAL UTILIZATION

EXPORTS	1	•	35.	•	0.0	•	•	•	•	•	•	•	•	•		•	•	•		•	•		844.	•	665.	•
IMPORTS	IC TONS -	•	0.0	.166	2484.0	881.	•	5.	8	•	•	•	•	•	•	•	•	•	•	•	•	•	249.	166.	1066.0	481.
TOTAL	1,000 METRIC	•	•	546.	3028.0	951.	425.	9	* «	482.	• «	642.	8	9	9	0	9	•	•	• 00	3	•	5981.	726.	•	157.
FOOD & OTHER USAGE		•	•	•	0.0	•	•	•	52.	•	•	•	•	•	•	•	•	•	•	•	•	•			•	34.
FEEDUSAGE		34.	70.	546.	3028.0	951.	25.	24.	•	482.	•	642.	•	89.	86.	39.	36.	•	20.	98.	•	41.	5178.	726.	19.	923.
PERCENT OF WORLD SUPPLY	PERCENT	•	•	•	1.0	•	•	•	•		•	•	•	•		•	•	•		•	•	•	4	9	•	ċ
PRODUCTION	1+000 METRIC TONS	384.	•	•	544.0	•	•	•	•	316.	•	892.	•	•	•	•	0.0	•	•	817.	•	674.	•	•		
YIELD	METRIC TONS PER HECTARE	1.5	က • က	Û•Û	O•3	2.0	0.0	0.0	ܕ3	0.0	0.0	0.0	១ ១	€ • 3	9 • O	0.2	0.0	0 • 3	1.4	1.4	ດ • ນ	9.5	1.5	0.0	0.7	
A REA	1,000 HECTARES	16772.0	2680.0	•	0.0	•	0.0	G • O	195.0	0.0	0.0	0.0	950.0	11)	0.0	14800.0	•	0.0		1271.0	•	401.0	20192.0	O • U	20675.0	
RESION		UNITED STATES	CANADA	EURO SIX	EURO THREE			JAPAN	AUST-N ZEALAND	EAST EUROPE	SOVIET UNION	CHINA	INDONESIA	EAST ASIA HIGH	⋖	INDIA	m	AFRI	•		ARGENTINA	OTHER S AMERICA	DEV-ED REGICN	CENTRAL PLAN RG	1-ED R	ORLO TO

TABLE 13BASE	1970 QUANTITY	DOCUMENTATION	NCONTINUED	ED			APPIL 1978	
REGION	PRODUCTION	PERCENT OF WORLD SUPPLY	FEED USAGE	FOOD & OTHER USAGE	TOTAL	IMPORTS	EXPORTS	
	1 000 METRIC TONS	PERCENT	i		1,000	METRIC TONS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
MILK PRODUCTS	UTILIZATION							
NITED STATES	162.	27.0	•	•	•	•	•	
ADA	8 .	41	() () () () () () () () () ()	0	000		0.0	
S IX	4412.		•	•	•	• (•	
- ~ Р Ш	720.	•	•	•	•	•	•	
ZA	4597	•	•	•	•	•	•	
T-N ZEA	13741.	7.	•	•	•	•	•	
-ED REGION	6794.	•	•	•	•	•	•	
TRAL PL	•	•	•	•	•	•	•	
TOTAL	• •	100.0	• •	• •	• •	• • • •	• •	
FLUID MILK UTI	UTILIZATION							
E H	•	•	•	566.	566.	•	•	
NADA	•	•	•	3711.	3711.	•	•	
RO SI	•	•	•	1526.	1526.	•	•	
RO THRE	•	•	•	2443.	2443.	•	•	
THER WEUROPE	0.0	0.0	0.0	12971.0	12971.0	0 • 0	0 • 0	
PAN	•	•	•	3458.	3458.	•	•	
ST-N ZE	•	•	•	3215.	3215.	•	•	
V-ED REGION	•	•	•	890.	890.	•	•	
NTRAL PL	•	•	•	•	•	•	•	
SS DEV-ED R	•	•	•	•	• C	•	•	
RLD TOTA	•	•	•	•	•	•	•	
						CON	CONTINUED	

UAPAN

OTHER W EUROPE

EURO SIX EURO THREE

UNITED STATES

CANADA

DEV-ED REGION CENTRAL PLAN RG LESS DEV-ED RG

WORLD TOTAL

AUST-N ZEALAND

DEV-ED REGION CENTRAL PLAN RG LESS DEV-ED RG

WORLD TOTAL

AUST-N ZEALAND

OTHER W EUROPE JAPAN

EURO THREE

EURO SIX CANADA

UNITED STATES

EXPORTS	1 2 1 1		0.00	120	4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• •	27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IMPOPTS	METRIC TONS		<u></u>	• • •	289 0 • 0 0 • 0	• •	55.0 16.0 0.0 76.0 33.1 174.1 0.0 0.0 174.1
TOTAL	- 1+000		948	0 4 4 10 4 10 4 10 4 10 4 10 4 10 4 10	174.0 0.0 2871.5 0.0	71.	1063.0 1111.0 1832.0 357.0 370.0 42.9 60.0 3835.9
FOOD & OTHER USAGE	1 1 1 1		0 80 1	0 4 4 1 0 4 10 4	2871.5 0.0 0.0 0.0	• • D 	1063.0 1111.0 1832.0 357.0 370.0 42.9 60.0 3835.9
FEED USAGE	•		• • •	• • •		• •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PERCENT OF WGRLD SUPPLY	PERCENT			• • • • • • • • • • • • • • • • • • •	15.0 100.0 0.0	• •	25.8 4.82.0 11.22.0 100.0 100.0
PRODUCTION	1,000 METRIC TONS	Z	9 8 4	- M - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	446.0 0.0 2979.1	2979	993.0 101.0 1859.0 281.0 433.0 9.6 178.0 3854.8 0.0
REGION		BUTTER UTILIZATION	S X X		REST OF WORLD DEV-ED REGION CENTRAL PLAN RG	10 10 10	UNITED STATES CANADA EURO SIX EURO THREE OTHER W EUROPE JAPAN AUST-N ZEALAND DEV-ED REGION CENTRAL PLAN RG LESS DEV-ED RG

TOTAL MEAT UTILIZATION

EXPORTS	1 1 1	4	•	•		&	•		8	•64	3.	51.	28	7.	0	41.	234.	•	41.	
IMPORTS	METRIC TONS	4	44.	48.	43.	7.	53.	0 • 0	•	•	•	•	•	•	•	•		•	•	
TOTAL	1+000	1904.	928.	1973.	627.	631.	614.	1616.0	925.	058.	720.	030.	315.	217.	0	7293.	703.	5562	558.	
FOOD 8 OTHER USAGE	1 1 1	1904.	928.	1973.	627.	631.	614.	1616.0	925.	058.	720.	030.	315.	217.	.	7293.	8703.	•	1558.	
FEED USAGE	1	•	•	•	•	•	•	0.0	•	•	•	•	•	•	•	•	•	•	•	
PERCENT OF WORLD SUPPLY	PERCENT	•	2.6	•	•	•	•	4 • 3	•	•	•	1.6	•	•	•	•	•	0.6	100.0	
PRCDUCTION	1+000 METRIC TONS	199.	911.	592.	125.	360.	352.	3068.0	067.	107.	863.	181.	443.	907.	•	6617.	037.	•	185.	
REGION		NITE	CANADA	URO S	URO THRE	THER W	APA	EA	EAST EUROPE	OVIET UNI	HINA	IDDL	RA2	RGENTIN	EST OF WOR	EV-ED REGIO	ENTRAL PLAN	ESS	ORLD TOTA	

BEEF AND VEAL UTILIZATION

EXPORTS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.0 729.0 49.0 1127.0 635.0 140.0
IMPORTS	METRIC TONS	741.0 442.0 188.0 178.0 42.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1605.0
TOTAL USAGE	1 + 000	10793.0 912.0 1522.0 1252.0 1253.0 654.0 1761.0 5058.0 1795.0 1795.0 1865.0 6819.0 6819.0
FOOD & OTHER USAGE	1	10793.0 912.0 4828.0 1522.0 1252.0 293.0 654.0 1761.0 5058.0 1705.0 1705.0 6819.0 6819.0
FEED USAGE	•	
PERCENT OF WORLD SUPPLY	PERCENT	M H M H M H M M M M M M M M M M M M M M
PRODUCTION	1.000 METRIC TONS	10063.0 881.0 1434.0 1334.0 1060.0 251.0 1385.0 1852.0 5107.0 2563.0 19390.0 6959.0
REGION		UNITED STATES CANADA EURO SIX EURO THREE OTHER W EUROPE UAPAN AUST-N ZEALAND EAST EUROPE SOVIET UNION MIDDLE AMERICA BRAZIL ARGENTINA REST OF WORLD DEV-ED REGION CENTRAL PLAN RG LESS DEV-ED RG LESS DEV-ED RG

PORK UTILIZATION

EXPORTS	1	00	•	•	•	•	•	•	8	•	•	•	•	8	•	•	•	CONTINUED
IMPORTS	METRIC TONS	109.0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	CON
TOTAL	1 • 0 0 0	6325•0 588-6	997	52.	485.	67.	07.	164.	20.	38.	10.	15.	.	6121.	884.	•	168.	
FOOD & OTHER USAGE		6325.0	997	52.	485.	67.	07.	164.	20.	38	10.	15.	С	6121.	884.	•	168.	
FEEDUSAGE	1	() () () ()	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
PERCENT OF WORLD SUPPLY	PERCENT	21.2	•	•	•	•	•	-	•	•	•	•	•	4.	•	•	•	
PRODUCTION	1 • 000 METRIC TONS		061.	38.	493.	35.	12.	15.	863.	38.	11.	21.	•	6067.	2078.	•	9315.	
REGION		UNITED STATES	S	O THR	38 38 M	Z	AUST-N ZEALAND	r Eur	4 7	7	7 7	NITU	T OF WORL	DEV-ED REGION	TRAL PLAN	S DEV-ED	LD TOTA	

POULTRY UTILIZATION

EXPORTS	1 1 1 1		• •	000	•	•	•	•	•
IMPORTS	METRIC TONS	00				•		0 • 0	26.0
TOTAL	1+600		17. 45.		51.	•	•	•	•
FOOD & OTHER USAGE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩ Ø	17. 45.	576.0	51.	•	•	•	8689.0
FEED USAGE	•	000	• •	© ©	•	•	•	•	•
PERCENT OF WORLD SUPPLY	PERCENT	52.0	21.7	0 N 0 • 0	1.7		ი. ი	0 • 0	109.0
PRODUCTION	1.600 METRIC TONS	4659.0	1926.0 686.0	534 • 0 475 • 0	153.0	8856.0	0.0	0.0	8856.0
REGION		1.10	EURO SIX EURO THREE	OTHER W EUROPE JAPAN	AUST-N ZEALAND	EV-ED REGION	RAL PLAN	SS	WORLD TOTAL

LAMB AND MUTTON UTILIZATION

EXPORTS	1 1 1	000	• •	0.0	•	714.0	9	0°C	714.0	0	•	760.0
IMPORTS	METRIC TONS	•	341.0	•	•	0.0	•	•	•	•	•	642.0
TOTAL USAGE	1+960			20.	65.	04.	37.	•	•	•	137.0	2368.0
FOOD & OTHER USAGE	1			20.	65.	94.	37.	•	2231.0	•	137.0	68
FEED USAGE	·	000) C	•	•	•	•	•	•	•	•	•
PERCENT OF WORLD SUPPLY	PERCENT	10.1		11.0	0 • 0	53.6	7.4	3 • n	95.6	0.0	7.4	100.0
PRODUCTION	1.000 METRIC TONS	250 0	267.0	273.0	1.0	1318.0	183.0	0.0	2304.0	0.0	183.0	2487.0
REGION		UNITED STATES	EURO THREE	CTHER W EUROPE	CAPAN	AUST-N ZEALAND	ARGENTINA	REST OF WORLD	DEV-ED REGION	ENTR	ESS DEV-ED R	WORLD TOTAL

REGION IN THE GOL MODEL, NAMELY, MEAT IS A SUMMATION OF MEAT VEAL, PORK, POULTRY, LAMB AND NOTE: TOTAL GRAIN IS A SUMMATION OF GRAIN CATEGORIES INCLUDED BY COARSE GRAINS, WHEAT, AND RICE, WHERE EXPLICITLY MODELED. TOTAL CATEGORIES INCLUDED BY REGION IN THE GOL MODEL, NAMELY, BEEF AND MUTTON, AND OTHER MEAT, WHERE EXPLICITLY MODELED. SOURCE: FOR GRAINS AND OILMEAL, FOREIGN AGRICULTURAL SERVICE AND ECONOMICS, STATISTICS, AND COOPERATIVES SERVICE, USDA. FOR DAIRY AND MEAT, FOREIGN AGRICULTURAL SERVICE AND ECONOMICS, STATISTICS, AND COOPERATIVES SERVICE, USDA; ORGANIZATION FOR ECONOMIC COOPERATION AND DEVELOPMENT; AND FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS.

Table 14--Base 1970 price documentation

Price variables by region and commodity in the 1970 base. Prices are local currency units per metric ton of commodity and are for 1970 or a span of years centered on 1970. They are deflated by a local consumers price index (1970 = 1.0) and, where expressed in another currency equivalent, are converted by 1970 average foreign exchange rates. Footnotes are at the end of the table.

Poois- and	:		Price		: Description, :	Source
Region and commodity	Variable code	Units :	Currency	: : Notes	series title or : identification : :	or reference
<u>United States</u>						
Beef	PDB	2198.00	US\$	a	Beef, Choice, ave.	LMSTAT
	PSB	672.00	US\$	a	Slaughter steers, Choice, Omaha	LMSTAT
	PTB	1289.00	US\$	a	Cow beef, imported, 90% lean	NAPROV
Pork	PDP	1640.00	US\$	a	Pork, U.S. ave. retail	LMSTAT
	PSP	470.00	US\$	a	Slaughter hogs: Packer & shipper, barrows & gilts, Omaha	LMSTAT
	PTP	1564.00	US\$	a	Hams, shoulders, canned, import unit value, ave. U.S.	SRS
Poultry	PDZ	952.00	US\$	a	Retail of composite of broilers and turkeys	PESTAT
	PSZ	633.00	US\$	a	Composite of broilers (Grade A) & turkeys (Ready to cook)	PESTAT
Butter	PDLB	1518.00	US\$	a	Ave. wholesale, 92 score, Grade A, Chicago	DAIRYG
	PSLB	103.40	US\$	a	Weighted ave. price for mfg, grade milk	DAIRYG
Milk	PDLM	133.75	US\$	a	Ave. price for milk eligible for fluid use (Grade A)	DAIRYG
	PSL	126.18	US\$	a	Weighted ave. price for Mfg. grade and Grade A milk eligible for fluid use	DAIRYG
Cheese	PDLC	1206.00	US\$		Tot Trutu use	
oneese	PSLC	103.40	US\$			
	PTLC	1392.00	US\$			

Table 14--Base 1970 price documentation--Continued

	:	Pri	.ce	:	Description,	Source
Region and commodity	Variable code	Units :	Currency	Notes	series title or :	or reference
United States (Continued)						
Wheat	PDW	57.00	US\$	a	Kansas City No. 2 Hard Winter	GMNEWS
	PTW	58.73	US\$	a	Gulf ports, No. 2 Hard Red Winter	WHSIT
Coarse grain	PDC	52.76	US\$	a	Corn, No. 2 yellow, Chicago	GMNEWS
	PTC	57.08	US\$	a	Corn, No. 2 Yellow Gulf ports	FESIT
Rice .	PDR	515.00	US\$	a	Long grain, retail, U.S. ave. price in leading cities	RISIT
	PTR	176.93	us\$	a	Milled rice, U.S. NATO 2, fob mills, ave. of Southern head rice at milling centers	RISIT
Oilmeal	PDK	85.15	US\$	a	Soybean meal, fob Decatur, 44% protein	FOSIT
	PTK	98.30	US\$	a	Soybean meal, estimated fob export price for soybean meal + fob margi	FOSIT
	PTS	114.9	US\$	a	Soybeans #2, fob Gulf	
Canada						
Beef	PDB	680.00	CAN	a	Beef cattle, good steers	CNSTAT
	PSB	680.00	CAN	a	Idem.	CNSTAT
	PTB	680.00	CAN	a	Idem.	CNSTAT
Pork	PDP	692.00	CAN	a	Hogs, wt. ave. dressed	CNSTAT
	PSP	692.00	CAN	a	Idem.	CNSTAT
	PTP	692.00	CAN	a	Idem.	CNSTAT
Poultry	PDZ	442.00	CAN	a	Broilers, producers livewt.	FAOPROD
	PSZ	442.00	CAN	a	Idem.	FAOPROD
Butter	PDLB	1444.00	CAN	a	Bulk delivered, dairy to Wholesale, Montreal	DAPROD
	PSLB	103.40	CAN	a		
	PTLB	727.00	CAN	a	Import unit value Contin	FAOTRADE

Table 14--Base 1970 price documentation--Continued

D	:	F	rice		. Description, :	Source
Region and commodity	Variable code	: Units	: Currency	: Notes	: series title or : : identification : :	or reference
Canada (Continued)						
Milk	PDLM	142.27	CAN	a	Milk for liquid consump.	CNAGPOL
	PSL	120.81	CAN	a	Wt. ave. returns to producers for liquid and mfg. milk	CNAGPOL
Cheese	PDLC	1144.00	CAN	a	White cheddar, fob factory, Quebec	DAPROD
	PSLC	1144.00	CAN	a	Idem.	DAPROD
	PTLC	1231.00	CAN	a	Import unit value	FAOTRADI
Wheat	PDW	63.33	CAN	a	Board price, domestic use & export, Grade 1 - 2	CNGTQ
	PSW	49.72	US\$	a	Wt. ave. producer price all grades	CNSTAT
	PTW	63.33	CAN	a	Same as CNPDW	CNGTQ
Coarse grain	PDC	52.99	CAN	a	Board price for barley, export & domestic use	CNGTQ
	PSC	46.35	US\$	а	Board price for barley	CNGTQ
	PTC	52.99	US\$	а	Same as CNPDC	CNGTQ
Rice	PDR	233,00	CAN	а	Milled rice	WRICE
	PTR	233.00	CAN	a	Idem.	WRICE
Oilseeds	PDK	118.63	CAN	a	Wholesale, Unit value Oilmeal	FAO
	PSK	101.30	CAN	a	Soybeans	NIRAP
	PTK	118.63	CAN	a	Same as CNPDK	FAO
European CommunityEC-	<u>-6</u>					
Beef	PDB	1253.00	UA	a	Beef, carcass wt., 6 markets, W. Germany	AGWIRT
	PSB	778.00	UA	а	Cologne bulls, livewt. Class AExcludes value added tax	GRSTAT
	PTB	795.00	UA	a	Demand price less variabl levy (249) plus margin (2	

Table 14--Base 1970 price documentation--Continued

	:	1	Price		: Description, :	Source
Region and commodity	Variable code	Units	: Currency	: Notes	: series title or : : identification : :	or reference
EC-6 (Continued)						
Pork	PDP	883.00	UA	a	Pork sides, carcass wt. purchase price of slaughter halves	AGWIRT
	PSP	754.00	UA	a	Cologne fed pigs, 100- 119 kg livewt. Class C excl. value added tax	GRSTAT
	PTP	586.00	UA	a	Demand price minus variable levy (297 = ave. of loin (339) and shoulder (255))	Le
Poultry	PDZ	699.00	UA	a	Slaughter chickens, wholesale, Hamburg; up to 1972 fresh, delivered at retail store	FAOMB
	PSZ	490.00	UA	a	Chickens for roasting, livewt., Belgium-Deynze market	FRSTAT OECDAG
Mutton	PDV	972.00	UA	a	Fat sheep 18 mo. old livewt., Netherlands	CIJFERS
	PSV	972.00	UA	a	Idem.	CIJFERS
	PTV	698.00	UA	a	Demand price less marketing margin	
Butter	PDLB	1746.00	UA	a	EC Intervention Price	FACTS
Cheese	PDLC	1448.00	UA	а	Wholesale, Emmenthaler, Paris	DAPROD
Milk	PDLM	103.00	UA	a	EC Target Price for 3.7% butterfat milk	FACTS
	PSL	103.00	UA	a	Idem.	FACTS
Wheat	PDW	100.32	UA	a	Wheat, wholesale, Duisberg	MARCHES
	PSW	97.02	UA	a	Ble tendre, wholesale, France	FRSTAT
	PTW	65.20	UA	a	Import price cif Rotter-dam for Hardwinter No. 2 13% protein	BOURSE
Coarse grain	PDC	91.90	UA	a	Barley, producers price Germany	ECE

Table 14--Base 1970 price documentation--Continued

	:	P	rice		: Description, :	Source
Region and commodity	Variable code	Units	-	: Notes	series title or : identification : :	or reference
EC-6 (Continued)						
Coarse grain (Continued)	PSC	75.48	UA	а	Barley, purchases by agricultural co-ops, France	EUROSTAT
	PTC	61.81	UA	а	Corn, cif Rotterdam	OECDTR
Rice	PDR	334.00	UA	a	PTR (154.50) plus levy	
	PSR	179.84	UA	а	Milled, Common Origin- ario type, Milan	WRICE
	PTR	154.50	UA	a	Import price for Thai long grain, milled, Germany	STATBUND, PRAUSS
Oilmeal	PDK	101.97	UA	а	Same as C6PTK	
	PTK	101.97	UA	а	US Bulk 44% protein cif European ports	
European CommunityEC-3						
Beef	PDB	843.00	UA	a	Same as C3PSB	RMEATR
	PSB	843.00	UA	a	Bullock & Heifer sides Wholesale, Liverpool (about like US Good)	RMEATR
Pork	PDP	836.00	UA	a	Imported Danish bacon London (Smithfield)	FAOMB
	PSP	836.00	UA	а	Idem.	FAOMB
Poultry	PDZ	560.00	UA	a	Broilers, Good Quality wholesale slaughter, 4-market ave., England	FAOMB, FAOPROD
	PSZ	560.00	UA	а	Idem.	FAOMB, FAOPROD
Mutton	PDV	698.00	UA	а	Same as C3PSV	FAOMB, FAOPROD
	PSV	698.00	UA	a	New Zealand frozen car- casses, London (Smith- field)	FAOMB, FAOPROD
Butter	PDLB	869.00	UA	а	UK home produced, London Provincial Exchange	DAPROD
Cheese	PDLC	804.00	UA	а	Cheddar, white, English Factory Cheese	DAPROD
						Continued

Table 14--Base 1970 price documentation--Continued

	:	Pı	rice	: : Description, : Sou:	rce	
Region and commodity	:Variable:	Units	: Currency :	: Notes	: series title or : or	
European CommunityEC-3 (Continued)						
Milk	PDLM	98.00	UA	а	Ave. return to Dairy Board, all milk, England	FACTS
	PSL	95.00	UA	а	UK producer price, natural fat content	MARCHES
Wheat	PDW	72.47	UA	a	Wheat import prices, UK No. 2 Hard/Dark Hard Winter, 13.5% protein	IWS
	PSW	75.83	UA	а	UK guaranteed price	GUARD
Coarse grain	PDC.	61.22	UA	а	UK market price for barley	GUARD
	PSC	68.93	UA	а	UK barley price	GUARD
Rice	PDR	166.00	UA	a	Import unit value	FAO
Oilmeal	PDK	106.97	UA	а	Soybean meal import price, cif European ports, US Bulk 44% protein	
	PSK	106.97	UA	a	C6PTK plus 5.00	
Other Western Europe						
Beef	PDB	1253.00	UA	а	Same as C6PDB	
	PSB	778.00	UA	a	Same as C6PSB	
Pork	PDP	883.00	UA	a	Same as C6PDP	
	PSP	754.00	UA	а	Same as C6PSP	
Poultry	PDZ	699.00	UA	a	Same as C6PDZ	
	PSZ	490.00	UA	а	Same as C6PSZ	
Mutton	PDV	972.00	. UA	a	Same as C6PDV	
	PSV	972.00	UA	a	Same as C6PSV	
Butter	PDLB	1785.00	DE	Ъ	Ex-dairy price, Finland	ECE, REVAG
	PTLB	1785.00	DE	b	Idem.	ECE, REVAG

Table 14--Base 1970 price documentation--Continued

	:	P	rice		: : Description, :	Source
Region and commodity	Variable code	: Units	: Currency :	: Notes	series title or identification	or reference
Other Western Europe (Continued)						
Cheese	PDLC	1496.00	DE	ъ	Pasteurized cow milk, wholesale, Bern, Switz.	ECE, REVAG
	PSLC	1496.00	DE	Ъ	Idem.	ECE, REVAG
	PTLC	1555.00	DE	a	Unit value, Switz.	FAOTRADE
Milk	PDLM	212.00	DE	a	Pasteurized cow milk, wholesale, Bern, Switz.	FAS
	PSL	119.44	DE	a	Producer price, Wt. Ave.	FAO
Wheat	PDW	104.16	DE	a	Wt. ave. wholesale price OWE countries, by ERS	ECE, ERS
	PSW	97.73	DE	a	Wt. ave producer price OWE countries, by ERS	ECE, ERS
Coarse grain	PDC	79.00	DE	а	Barley and corn, wt. ave wholesale, OWE countries calculated by ERS	ECE, ERS
	PSC	91.57	DE	a	Barley & corn, wt. ave. producer price, OWE countries, by ERS	ECE, ERS
Rice	PDR	162.00	DE	a	Same as WEPTR	
	PSR	103.00	DE	a	Wt. ave. producer price, OWE countries, report. by ECE, calc. by ERS	ECE, ERS
	PTR	162.00	DE	a	Wt. ave, import unit value reptd. by FAO, calc. by ERS	FAO, ERS
Oilmeal	PDK	106.97	DE	a	C6PDK plus 5.00	
	PSK	106.97	DE	a	C6PTK plus 5.00	
Japan						
Beef	PDB	1390.00	YTH	a	Retail, Medium grade, Tokyo	JPRICE
	PSB	427.00	YTH	а	Steers, producer live- weight	JPAGST
	PTB	928.00	US\$	a	Import unit value	JPTRADE
					Con	ntinued

Table 14--Base 1970 price documentation -- Continued

	:		Price		: Description, : Sou	Source or reference
Region and commodity	Variable code	Units	: : Currency :	: Notes		
Japan (Continued)						
Pork	PDP	938.00	YTH	a	Retail, Medium grade J	PRICE
	PSP	267.00	YTH	a	Producer price, livewt. J	PAGST
	PTP	1186.00	US\$	a	Import unit value J	PTRADE
Poultry	PDZ	760.00	YTH	a	Retail, Medium grade J	PRICE
	PSZ	192.00	YTH	a	Broilers, producer price J	PAGST
Mutton	PDV	152.43	YTH	а	Import unit value J	PTRADE
	PTV	426.00	US\$	a	Import unit value J	PTRADE
Butter	PDLB	658.00	YTH	a	Wholesale price J	PINAN
	PTLB	688.00	US\$	a	Import unit value J	PTRADE
Cheese	PDLC	610.00	YTH	a	Wholesale price J	PINAN
	PTLC	609.00	US\$	a	Import unit value J	PTRADE
Milk	PDLM	131.61	ҮТН	a	Retail in 180 cc J bottles, Tokyo	PRICE
	PSL	48.30	YTH	a	Ave. farm gate price J	PAGST
Wheat	PDW	36.58	YTH	а	Wheat for food only J wholesale, Japan	PAGST
	PSW	58.60	YTH	a	Wheat producer price J	PAGST
	PTW	65.77	US\$	а	Ave. cif prices, No. 2 I Western White	WS
Coarse grain	PDC	25.13	YTH	а	Coarse grain for feed Sonly, wholesale	TAJAP
	PSC	66.03	YTH	a	Barley producer price J	PAGST
	PTC	69.16	US\$	a	J	PAGST
Rice	PDR	137.62	YTH	а	Milled rice, wholesale ave. grades 1 to 4	
	PSR	154.31	YTH	а	Milled rice, farm, ave. grades 1 to 4	
Soybeans	PDS	41.59	YTH	a	Ave. unit value	AOTRADE
	PSS	41.59	YTH	a	Idem.	

Table 14--Base price documentation--Continued

Region and		:	Price	: Description, :	Source	
commodity	Variable code	: : Units :	: Currency	: Notes	<pre>series title or identification :</pre>	or reference
Japan (Continued)						
Oilmeal	PDK	51.99	YTH	a	Av. price paid by feed manufacturers	
	PSK	51.99	YTH	a	Idem.	
	PTK	145.39	US\$	a	Export price	JPTRADE
Australia- New Zealand						
Beef	PDB	597.00	AD	a	Ox or heifer 650-700 export quality Sydney (Homebush)	AZAGEC
	PSB	597.00	AD	a	Idem.	AZAGEC
	PTB	1039.00	US\$	a	Export unit value to US (USPTB minus margin 249)	AZAGEC
Pork	PDP	552.00	AD	a	Hogs 140-150 lb. Sydney (Homebush)	AZAGEC
	PSP	552.00	AD	a	Idem.	AZAGEC
Mutton	PDV	368.00	AD	a	Lamb 29-36 lb. lst & 2nd export quality, dressed wt. basis	AZAGEC
	PSV	368.00	AD	a	Idem.	AZAGEC
	PTV	410.30	US\$	a		
Butter	PDLB	1070.00	AD	a	Choicest Bulk, wholesale Australia	
	PSLB	41.25	AD			
	PTLB	698.00	US\$	a	Export unit value, New Zealand	
Cheese	PDLC	661.00	AD	a	Choicest Cheddar cheese wholesale, Australia	
	PSLC	458.00	AD	a	Purchase price	NZDB
	PTLC	614.00	US\$	a	Export unit value	
Milk	PDLM	97.59	AD	a	Fluid milk, unit wholesale value	
	PSL	41.24	AD	a	Producers price of milk equivalent at dairy	

Table 14--Base price documentation--Continued

Region and	:	Pr	cice	: Description, :	Source	
commodity	Variable code	Units	: Currency	: Notes	: series title or : : identification : :	or reference
Australia- New Zealand (Continued)						
Wheat	PDW	56.24	AD	a	Wheat Board selling price	IWS
	PSW	54.53	AD	a	Supply price	IWS
	PTW	55.16	US\$	а	Export price, Oceania	IWS
Coarse grain	PDC	33.55	AD	a	Barley, Australian Wheat Board	AZWB
	PSC	33.55	AD	а	Idem.	AZWB
	PTC	40.36	US\$	a	Barley	AZWB
Rice	PDR	148.00	AD	a		WRICE
	PSR	51.00	AD	а		WRICE
	PTR	164.99	US\$	а		WRICE
Oilmeal	PDK	131.10	AD	а	Soybean meal	
	PSK	131.10	AD	a	Idem.	
	PTK	112.00	US\$			
Argentina						
Beef	PDB	2347.00	NP	a	Steers (novillos), livewt. Buenos Aires (Liniers)	CARNES
	PSB	1071.00	NP	a	Idem.	CARNES
	PTB :	1100.00	US\$	a	Dollar equiv of PDB	CARNES
Pork	PDP	1369.00	NP	a	Hogs, Avellaneda	CARNES
	PSP	1369.00	NP	a	Idem.	CARNES
Poultry	PDZ	1246.00	NP	a	Broilers, producer price	CARNES, ERS
	PSZ	1246.00	NP	a	Idem.	
Mutton	PDV	1697.00	NP	a	Wholesale price, esti- mated by ERS	CARNES, ERS
	PSV	1697.00	NP	а	Idem.	
	PTV	452.53	US\$		C	Continued

Table 14--Base price documentation--Continued

Posion and	:	Pri	ice	Description,	Source	
Region and commodity	Variable code	Units	: Currency	: Notes	<pre>: series title or : : identification : : :</pre>	or reference
Argentina (Continued)						
Wheat	PDW	178.20	NP	а	Miller, on wagon price Buenos Aires	BOLSA
	PSW	178.20	NP	a	Producer price same as ARPDW	BOLSA
	PTW	58.67	US\$	a	No. 1 Hard, fob Buenos Aires	IWS
Coarse grain	PDC	229.00	NP	a	Corn, wholesale, on wagon, interior points	BOLSA
	PSC	229.00	NP	a	Producer, same as ARPDC	BOLSA
	PTC	61.50	US\$	a	Argentine corn, import price, cif North Sea ports	IWS
Rice	PDR	371.00	NP	a	Same as ARPTR	
	PSR	249.00	NP	а	Farm price, ave. for all qualities	FAOPROD
	PTR	98.93	US\$	а	Export unit value (con- verted)	GRANOS
Oilmeal	PDK	243.00	NP	a	Prices and margins. Ave. meal prices, wholesale, mostly sunflower and linseed meal	ERS
	PSK	243.00	NP	a	Idem.	
	PTK	64.80	US\$	a	Idem.	
Brazil						
Beef	PDB	627.00	DE	a	Same as BZPTB, carcass wt.	
	PSB	627.00	DE	a	Same as BZPTB	
	PTB	627.00	DE	a	BZPTB = .65USPTB - 210.85	
Pork	PDP	660.00	DE	a	Same as BZPSP, carcass wt.	
	PSP	660.00	DE	a	BZPSP = 1.0526 BZPSB	
Wheat	PDW	97.63	DE	a	Wheat, wholesale unit value	BRPROGN
	PSW	107.28	DE	a	Wheat, farm unit value	BRPROGN
	PTW	72.76	DE	a	Import unit value	BRPROGN
					Con	ntinued

Table 14--Base 1970 price documentation--Continued

Region and		1	Price		_: Description,	: : Source
commodity	Variable code	Units	: Currency	: Notes	<pre>series title or identification</pre>	or reference
Brazil (Continued)						
Coarse grain	PDC	51.60	DE	a	Corn, wholesale unit value	BRPROGN
	PSC	36.93	DE	a	Corn, farm unit value	BRPROGN
	PTC	58.94	DE	a	Import unit value	BRPROGN
Rice	PDR	204.00	DE	a	Longgrain, retail	WRICE
	PSR	90.00	DE	a	Producer	WRICE
	PTR.	111.00	DE	a	Export unit value	FAO
Oilmeal	PDK	83.70	DE	a	Same as BZPTK	
	PSK	68.16	DE	a	Producer price received by farmers	VARGAS, PREAG
	PTK	83.70	DE	a	Export price as unit value	FAOPROD
Middle America						
Beef	PDB	745.00	DE	a	Beef, carcass wt., wholesale	FAS
	PSB	745.00	DE	a	Idem.	FAS
	PTB	745.00	DE	a	Idem.	FAS
Pork	PDP	956.00	DE	a	Pork, carcass wt. wholesale	FAS
	PSP	956.00	DE	a	Idem.	FAS
	PTP	956.00	DE	a	Idem.	FAS
Wheat	PDW	117.80	DE	a	Support price, Mexico	MEXBANK
	PSW	73.11	DE	а	Producer support price, Mexico	MEXBANK
	PTW	68.02	DE	a	Import price, Mexico	MEXSTAT
Coarse grain	PCD	87.78	DE	а	Corn, wholesale price, Mexico	MEXBANK
E	PSC	64.50	DE	a	Corn, supply price	MEXBANK
	PTC	76.59	DE	a	Corn, import price	MEXBANK

Table 14--Base 1970 price documentation--Continued

Region and commodity	: :	Pr	içe		Description, series title or identification	Source or reference
	Variable code	Units :	Currency	: Notes		
Middle America (Continued)						
Rice	PDR	228.00	DE	a	Same as MCPTR	
	PSR	300.00	DE	a	Wholesale price	WRICE
	PTR	228.00	DE	a	Import unit value	FAO
Oilmeal	PDK	144.11	DE	a	Wholesale price, soybeans amd meal	ERS
	PSK	144.11	DE	a	Idem.	ERS
	PTK	144.11	DE	а	Idem.	ERS
Other South America						
Wheat	PDW	71.51	DE	a	Farm price, Chile	FAOMB
	PSW	108.89	DE	a	Wholesale price, Chile	FAOMB
	PTW	70.33	DE	a	Import unit value, Chile	FAOMB
Coarse grain	PDC	57.93	DE	a	Corn, wholesale, Chile	FAOMB
	PSC	73.97	DE	a	Corn, producer, Chile	FAOMB
	PTC	60.29	DE	a	Corn, import price Chile	FAOMB
Rice	PDR	242.00	DE	a	Retail, Colombia	WRICE
	PSR	188.00	DE	a	Farm price, Peru	FAOPROL
	PTR	242.00	DE	a	Import unit value	FAO
Oilmeal	PDK	95.61	DE	a	Same as LAPTK	
	PSK	95.61	DE	a	Same as LAPTK	
	PTK	95.61	DE	a	Export price for soybeans and meal	ERS
<u>India</u>						
Wheat	PDW	79.95	DE	a	Whole price, India	INDSTAT
	PSW	101.40	DE	a	Producer price, India	INDSTAT
	PTW	73.97	DE	a	Import unit value	INDSTAT
Coarse grain	PDC	65.33	DE	а	Barley, wholesale	INDSTAT
	PSC	65.33	DE	a	Idem.	INDSTAT
	PTC	69.52	DE	a	Sorghum, import unit value	INDSTAT

Table 14--Base 1970 price documentation--Continued

Region and commodity	: :	Pr	ice	Description, :	Source	
	Variable code	Units	: Currency :	Notes	: series title or : identification : :	or reference
India						
Rice	PDR	95.00	DE	а	Retail, Good quality	WRICE
	PSR	83.65	DE	a	Farm, Good quality	WRICE
	PTR	160.45	DE	а	Import unit value	FAO
Oilmeal	PDK	84.34	DE	а	Same as NDPTK	
	PSK	84.34	DE	а	Same as NDPTK	
Oak Cak Asi-	PTK	84.34	DE	a	Peanut meal, export unit value	ERS
Other South Asia Wheat	PDW	107.00	DE	a	Wholesale, Pakistan	PAKSTAT
	PSW	95.52	DE	a	Producer, Pakistan	PAKSTAT
	PTW	73.97	DE	a	Import price, India	PAKSTAT
Coarse grain	PDC	92.39	DE	a	Same as OSPSC	
coarse grain	PSC	92.39	DE	a	Producer price, barley, Pakistan	PAKSTAT
	PTC	69.52	DE	a	Coarse grain ave. import price, Pakistan	PAKSTAT
Rice	PDR	128.00	DE	a	Retail, Bangladesh	BNGSTAT
	PSR	88.00	DE	a	Farm price, Pakistan	PAKSTAT
	PTR	120.00	DE	a	Import unit value	FAO
Indonesia						
Wheat	PDW	89.86	DE	a	Same as DOPTW	
	PTW	89.86	DE	a	Import unit value	FAO
Coarse grain	PDC	60.72	DE	а	Corn, wholesale	FAO
	PSC	76.79	DE	a	Corn, producer	FAO
	PTC	59.12	DE	а	Corn, export price	FAO
Rice	PDR	161.00	DE	а	Same as DOPSR	
	PSR	161.00	DE	a	Farm price, Indonesia	WRICE
	PTR	165.55	DE	а	Import price, Indonesia	WRICE
Oilmeal	PDK	55.65	DE	а	Same as DOPTK	
	PSK	55.65	DE	a	Same as DOPTK	
	PTK	55,65	DE	a	Coconut meal, Indonesia- Phillipines	ERS Continued

Table 14--Base 1970 price documentation--Continued

Region and commodity	:	P	rice	: Description, :	Source	
	Variable code	Units	: Currency :	Notes	: series title or :	or reference
Thailand						
Wheat	PDW	74.34	DE	а	Same as THPTW	
	PTW	74.34	DE	a	Import unit value	THAIMB
Coarse grain	PDC	56.23	DE	a	Corn, wholesale, Bangkok	THAIMB
	PSC	55.94	DE	а	Corn, producer price, ave.	THAIMB
	PTC	59.11	DE	а	Export unit value, corn	FAO
Rice	PDR	85.50	DE	а	Milled, wholesale, 5% broken	THAIBD
	PSR	80.00	DE	a	Milled, ave. wholesale for No. 1	THAIBD
	PTR	153.00	DE	a	Milled, 5% broken, white Govt.St. fob Bangkok	RISIT
East Asia- High Income						
Wheat	PDW	89.49	DE	a	Wholesale price, Korea	KORAG
	PSW	193.87	DE	a	Producer price, Korea	KORAG
	PTW	67.62	DE	a	Import unit value. Regional	FAO
Coarse grain	PDC	70.57	DE	a	Barley, wholesale, Korea	FAOMB
	PSC	192.68	DE	а	Barley, producer price	FAO
	PTC	68.20	DE	a	Corn import price	FAO
Rice	PDR	215.00	DE	a	High Quality, retail	WRICE
	PSR	182.35	DE	a	High Quality, farm	WRICE
	PTR	154.00	DE	a	Import unit value	FAO
Oilmeal	PDK	108.51	DE	a	Same as EHPTK	
	PSK	108.51	DE	a	Same as EHPTK	
	PTK	108.51	DE	a	Soybean meal, import unit value	ERS

Table 14--Base 1970 price documentation--Continued

Region and commodity	:	Pri	ce		: Description, : series title or : identification ; :	Source or reference
	Variable code	: Units :	Currency	: Notes		
North Africa Mideast-High						
Wheat	PDW	102.78	DE	а	Wt. ave. import unit value	FAS
	PSW	91.65	DE	a	Wt. ave. import unit value	FAS
	PTW	69.63	DE	а	Wt. ave. import unit value	FAS
Coarse grain	PDC	85.10	DE	а	Corn, import value wt.	FAS
	PSC	72.00	DE	a	Corn, wt. import value	FAS
	PTC	64.28	DE	a	Corn, wt. import value	FAS
Rice	PDR	214.00	DE	a	Same as NHPTR	
	PSR	100.00	DE	a	Farm price, Iran	IRANAG
	PTR	214.00	DE	a	Import unit value	, FAO
Oilmeal	PDK	108.30	DE	a	Same as NHPTK	
	PTK	108.30	DE	a	Soybean meal, import unit value	ERS

Notes:

The labor of documenting and sourcing which went into setting up this table is largely the work of Jan Feldstein Lipson.

<u>Price variable code</u>. See pages 11-14 for interpretation of the symbols. Since the region is named above in this table, its 2-character symbol is suppressed here.

<u>Currency</u>. US\$ is U.S. dollars; CAN is Canadian dollars; UA is the EC unit of account; DE is dollar equivalent; AD is Australian dollars; YTH is thousands of Japanese yen; NP is Argentine new pesos.

<u>Price notes</u>. This column specifies timing of the price variables, with the following symbols: a is a 3-year average 1969-1971; b is a 2-year average 1970-1971; c is the year 1970.

<u>Source or reference</u>. Abbreviations are listed in the appendix.

APPENDIX

ABBREVIATIONS OF THE NAMES OF ORGANIZATIONS REPORTING DATA USED IN THE WORLD GOL MODEL AND THEIR PUBLICATIONS

AGWIRT Agrarwirtschaft. Alfred Strothe Verlag. Hannover. Germany.

AMS Agricultural Marketing Service. USDA.

AZAGEC Statistical Handbook of the Meat Industry. Bureau of Agr. Econ.

Canberra. Australia.

AZMB Meat Producer and Exporter. Australian Meat Board. Melbourne.

Australia.

AZWB Australian Wheat Board. Melbourne. Australia.

BNGSTAT Statistical Digest of Bangladesh. Dacca. Bangladesh.

BOERSE Hamburg Boerse. Monthly. Hamburg. Germany.

BOLSA Bolsa de Cereales. Annual. Buenos Aires. Argentina.

BRPROGEN Prognostico. Federal Ministry of Agriculture. Brasilia. Brazil.

CARNES Sintesis Estadistica. Junta Nacional de Carnes. Buenos Aires.

Argentina.

CIJFERS Landbouwcijfers. Landbouw-Economish Instituut. The Hague.

Netherlands

CNAGPOL Agricultural Policy in Canada. Agr. Pol. Rpts. OECD. Paris. France.

CNGTQ Canadian Grain Trade Quarterly.

CNSTAT Statistics Canada. Periodical. Ottawa. Canada.

DAIRYG CED Dairy Group. ERS-USDA. Unpublished working tables.

DAPROD Dairy Produce. U.K. Commonwealth Secretariate. London. England.

DASIT Dairy Situation. Periodical. ERS-USDA.

ECC European Communities Commission. Brussels. Belgium.

ECE Economic Commission for Europe. Geneva. Switzerland.

EEC European Economic Community. Brussels. Belgium.

ERS Economic Research Service (now part of Economics, Statistics, and

and Cooperatives Service). USDA.

ESCS Economics, Statistics, and Cooperatives Service. USDA

EUROACCT Comptes Nationales. EUROSTAT. Luxembourg.

EUROAG Statistique Agricole. EUROSTAT. Luxembourg.

EUROCROP Production Vegetale. EUROSTAT. Luxembourg.

EUROGEN Monthly General Statistics Bulletin. EUROSTAT. Luxembourg.

EUROMEAT Statistique de la Viande. EUROSTAT. Luxembourg.

EUROPRIX Prix Agricoles. EUROSTAT. Luxembourg.

EUROSTAT Statistical Office of the European Communities. Luxembourg.

FACTS EEC Dairy Facts and Figures. Economics Div. U.K. Milk Marketing

Board.

FAO Food and Agricultural Organization of the United Nations. Rome.

Italy.

FAOMB Monthly Bulletin of Agricultural Economics and Statistics. FAO.

Rome. Italy.

FAOPROD FAO Production Yearbook. FAO. Rome. Italy.

FAOTRADE FAO Trade Yearbook. FAO. Rome. Italy.

FAS Foreign Agricultural Service. USDA.

FENEWS Feed Market News. Periodical. AMS-USDA

FESIT Feed Situation. Periodical. ERS-USDA.

FOSIT Fats and Oils Situation. Periodical. ERS-USDA.

FRSTAT Statistique Agricole. Ministry of Agriculture. Paris. France.

GMNEWS Grain Market News. Periodical. AMS-USDA.

GRANOS Junta Nacional de Granos. Buenos Aires. Argentina.

GRSTAT Statistisches Jahrbuch fuer die Bundesrepublik Deutschland.

STATBUND. Wiesbaden. Germany.

GUARD Annual Review and Determination of Guarantees. U.K. Ministry of

Agriculture, Fisheries and Food. London. England.

INDSTAT Indian Bulletin of Agriculture and Statistics. New Delhi. India.

IRANAG Ministry of Agriculture. Teheran. Iran.

IWS International Wheat Statistics. International Wheat Council. London.

England.

JPAGST Statistical Yearbook. Ministry of Agriculture and Fisheries. Tokyo.

Japan.

JPINAN Prices Indexes Annual. Statistical Department. Bank of Japan. Tokyo.

JPRICE Annual Report of the Retail Price Survey. Office of the Prime Minister. Tokyo. Japan.

JPTRADE Japan Exports and Imports. Ministry of Finance, ed. Tokyo: Japan Tariff Association.

KORAG Korean Agricultural Statistics. Seoul. Korea.

LMSIT Livestock and Meat Situation. Periodical. ERS-USDA.

LMSTAT Livestock and Meat Statistics. Stat. Bul. 522. ERS-USDA.

MARCHES Marches Agricoles. ECC. Brussels. Belgium.

MEXBANK National Bank of Mexico. Mexico.

MEXSTAT Anuario Estadistico del Comercio Exterior de las Estados Unidos Mexicanos. Mexico.

NAPROV National Provisioner. Periodical. Chicago.

NIRAP U.S. National Interregional Agricultural Production Model. ERS-USDA.

NZDB New Zealand Dairy Board. Wellington. New Zealand.

OECD Organization for Economic Cooperation and Development. Paris. France.

OECDAG Agricultural Statistics. OECD. Paris. France.

OECDTR Trade by Commodities, Market Summaries: Exports and Imports. OECD.

Paris. France.

PAKSTAT Pakistan Annual Report of the Ministry of Agriculture. Karachi. Pakistan.

PESTAT Poultry and Egg Statistics. Stat. Bul. 525. ERS-USDA.

PRAUSS Preise Loehne Wirtschaftsrechnungen. Reihe 1: Preise und Preisindizes fuer Aussenhandelsgueter. STATBUND. Wiesbaden. Germany.

PREAG Precos Recibidos pelos Agricultores. VARGAS. Average figures prepared for USDA.

REVAG Review of the Agricultural Situation in Europe. FAO/ECE Agricultural Div. Geneva. Switzerland.

RISIT Rice Situation. Periodical. ERS-USDA.

RMEATR Reuters Meat Report. London. England.

SRS Statistical Reporting Service (now part of Economics, Statistics, and Cooperatives Service). USDA.

STAJAP Statistical Abstract of Japan.

STATBUND Statistisches Bundesamt. Wiesbaden. Germany.

THAIMB Bank of Thailand Monthly Bulletin. Bangkok. Thailand.

THAIBD Board of Trade. Government of Thailand. Bangkok. Thailand.

USDA U.S. Department of Agriculture. Washington, D.C.

VARGAS Centro de Estudios Agricolas. Fundação Getulio Vargas. Rio de

Janeiro. Brazil.

WHSIT Wheat Situation. Periodical. ERS-USDA.

WRICE World Rice Model. ERS-USDA.

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D.C. 20250

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF
AGRICULTURE
AGR 101
THIRD CLASS

