第2章 多元数据的数学表 达及R使用

武慧 wuh@hit.edu.cn

经济管理学院 哈尔滨工业大学 (威海)

本章内容

- 1. 收集和整理多元数据
- 2. 数据矩阵和数据框
- 3. 多元数据的数学表达
- 4. 多元数据的R语言调用

1. 收集和整理多元数据

收集多元数据

- •公开数据集:查找政府、学术机构和其他组织提供的公开数据。
- 调查问卷:设计并分发问卷收集原始数据。
- 访谈: 进行面对面的或在线访谈, 收集定性数据。
- 在线抓取: 使用网络爬虫技术从网站上提取数据。

数据变量类型: 按数据性质划分

- 定量变量(Quantitative Variables)
- ▶离散变量 (Discrete Variables): 只能取特定值, 通常为整数。 例如, 学生人数、投票数。
- ▶连续变量 (Continuous Variables): 可以在某个范围内取任意 值。例如,身高、体重、时间。
- 定性变量 (Qualitative Variables)
- ▶名义变量 (Nominal Variables): 没有内在顺序的分类变量。 例如,性别、颜色、城市。
- ▶顺序变量 (Ordinal Variables): 有内在顺序但没有固定间隔的变量。例如,满意度评分 (满意、中立、不满意)。

b

以下哪个变量属于离散变量?

- A 身高
- **B** 学生人数
- 温度
- 时间

哪种变量类型没有内在顺序?

- A 连续变量
- B 离散变量
- 顺序变量
- 名义变量

身高属于哪种类型的变量?

- A 离散变量
- B 名义变量
- 连续变量
- 顺序变量

以下哪个例子是顺序变量?

- A 颜色
- B 满意度评分
- 城市
- 投票数

关于名义变量的描述,以下哪项是正确的?

- A 具有固定的数值范围
- B 具有内在顺序
- 仅用于分类,没有顺序
- 可以取任意实数

整理数据

• 数据清洗:

- >去除重复项:确保数据的唯一性。
- ▶处理缺失值:选择填补缺失值的方法(如均值、中位数填补等)或删除缺失数据的记录。

• 数据转换:

- >归一化和标准化:将数据缩放到同一范围,便于比较。
- ▶編码分类变量:将分类数据转换为数值形式,以便进行分析(如独热编码)。

R语言实现

【例】下面我将通过一个简单的示例,介绍如何使用R语言进行多元数据整理,特别是数据清洗和数据转换的操作。

Name	Age	Score	Gender
Alice	23	85	F
Bob	25	NA	M
Alice	23	85	F
Charlie	NA	90	M
Dave	30	95	M
Eva	29	NA	F

步骤 1: 去除重复项distinct()

```
library(dplyr)
data <- data.frame(
    Name = c("Alice", "Bob", "Alice", "Charlie",
    "Dave", "Eva"),
    Age = c(23, 25, 23, NA, 30, 29),
    Score = c(85, NA, 85, 90, 95, NA),
    Gender = c("F", "M", "F", "M", "F")
    )
# 去除重复项
data_unique <- distinct(data)
# 结果
print(data_unique)
```


步骤 1: 去除重复项distinct()

> print(data_unique)

	Name	Age	Score	Gender
1	Alice	23	85	F
2	Bob	25	NA	M
3	Charlie	NA	90	M
4	Dave	30	95	M
5	Eva	29	NA	F

步骤 2: 处理缺失值

```
# 填补缺失值
data_cleaned <- data_unique %>%
    mutate(
        Age = ifelse(is.na(Age), mean(Age, na.rm = TRUE),
Age),
        Score = ifelse(is.na(Score), mean(Score, na.rm =
TRUE), Score)
    )
# 结果
print(data_cleaned)
```


步骤 2: 处理缺失值

> print(data_cleaned)

	Name	Age	Score	Gender
1	Alice	23.00	85	F
2	Bob	25.00	90	M
3	Charlie	26.75	90	M
4	Dave	30.00	95	M
5	Eva	29.00	90	F

步骤3: 归一化和标准化

```
# 标准化
data_normalized <- data_cleaned %>%
  mutate(
    Age = scale(Age),
    Score = scale(Score)
)

# 结果
print(data_normalized)
```


步骤3: 归一化和标准化

> print(data_normalized)

	Name	Age	Score	Gender
1	Alice	-1.3105561	-1.414214	F
2	Bob	-0.6115928	0.000000	M
3	Charlie	0.0000000	0.000000	M
4	Dave	1.1358153	1.414214	M
5	Eva	0.7863337	0.000000	F

步骤4: 编码分类变量

步骤4: 编码分类变量

> print(data_encoded)

	Name	Age	Score	GenderF	GenderM
1	Alice	-1.3105561	-1.414214	1	0
2	Bob	-0.6115928	0.000000	0	1
3	Charlie	0.0000000	0.000000	0	1
4	Dave	1.1358153	1.414214	0	1
5	Eva	0.7863337	0.000000	1	0

在数据清洗过程中,去除重复项的主要目的是为了:

- 增加数据的复杂性
- **B** 确保数据的唯一性
- 随机删除部分数据
- 改变数据的类型

数据归一化和标准化的主要目的是:

- **增加数据的维度**
- 图 将数据缩放到同一范围,便于比较
- 删除重复记录
- **D** 改变数据的格式

将分类数据转换为数值形式的过程称为:

- **数据清洗**
- B 数据转换
- 数据归一化
- 数据合并

在数据清洗中,什么情况下使用均值填补缺失值是合适的?

- A 数据分布为偏态分布时
- 数据分布为正态分布时
- 缺失值占比超过50%时
- 数据为分类变量时

2. 数据矩阵和数据框

【例 2.2】测得 12 名学生的生长发育指标:身高(x1)、体重(x2)的数据, 试用 R 语言表述该数据。

```
x1 171, 175, 159, 155, 152, 158, 154, 164, 168, 166, 159, 164
x2 57, 64, 41, 38, 35, 44, 41, 51, 57, 49, 47, 46
```

在R中可以用函数c()来创建向量:

```
x1 <- c(171, 175, 159, 155, 152, 158, 154, 164, 168, 166, 159, 164)
x2 <- c(57, 64, 41, 38, 35, 44, 41, 51, 57, 49, 47, 46)
```

在R中结果输出如下:

```
> x1 <- c(171, 175, 159, 155, 152, 158, 154, 164, 168, 166, 159, 164)

> x2 <- c(57, 64, 41, 38, 35, 44, 41, 51, 57, 49, 47, 46)

> x1

[1] 171 175 159 155 152 158 154 164 168 166 159 164

> x2

[1] 57 64 41 38 35 44 41 51 57 49 47 46
```



```
#将向量按列合并
cbind(x1,x2)
```

```
> cbind(x1, x2

x1 x2

[1,] 171 57

[2,] 175 64

[3,] 159 41

[4,] 155 38

[5,] 152 35

[6,] 158 44

[7,] 154 41

[8,] 164 51

[9,] 168 57

[10,] 166 49

[11,] 159 47

[12,] 164 46
```

#利用x1数据创建矩阵 matrix(x1,nrow=3,ncol=4) > matrix(x1,nrow=3,ncol=4)

```
[,1] [,2] [,3] [,4]
[1,] 171 155 154 166
[2,] 175 152 164 159
[3,] 159 158 168 164
```

```
#创建按照行排列的矩阵
```

matrix(x1,nrow=3,ncol=4, byrow=T)

```
> matrix(x1,nrow=3,ncol=4,byrow=T)

[,1] [,2] [,3] [,4]

[1,] 171 175 159 155

[2,] 152 158 154 164

[3,] 168 166 159 164
```

#创建两个相同的矩阵

A=B=matrix(1:12, nrow=3, ncol=4)

> A; B

```
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
```

#矩阵转置

t (A)

> t(A)

#矩阵加法

A+B

> A+B

#矩阵减法

A-B

> A-B

#矩阵相乘

A=matrix(1:12, nrow=3, ncol=4)

B=matrix(1:12, nrow=4, ncol=3)

A%*%B

```
[1,1] [,2] [,3]
[1,] 70 158 246
[2,] 80 184 288
[3,] 90 210 330
```

#获取对角线元素

A=matrix(1:16, nrow=4, ncol=4)

diag(A)

> diag(A)

[1] 1 6 11 16

#利用对角线元素创建对角矩阵 diag(diag(A))

> diag(diag(A))

```
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 6 0 0
[3,] 0 0 11 0
[4,] 0 0 0 16
```

#创建3阶单位矩阵 diag(3)

> diag(3)

```
[1,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
```

#求逆矩阵

A=matrix(rnorm(16), 4, 4)

solve(A)

> solve(A)

```
[,1] [,2] [,3] [,4] [1,] [0.2485820 -0.35092701 0.19955797 -0.03945507 [2,] -1.0308041 -0.18913835 -0.03197376 0.90517759 [3,] -0.9322897 0.22579897 0.25031260 0.46842094 [4,] 2.3471280 0.08939981 -0.36256217 -0.26584474
```

#求矩阵特征根与特征向量

A=diag(4)+1

A. e=eigen (A, symmetric=T)

\$values [1] 5 1 1 1

Svectors

```
[,1] [,2] [,3] [,4] [1,] -0.5 0.000000e+00 0.0000000 0.8660254 [2,] -0.5 -6.408849e-17 0.8164966 -0.2886751 [3,] -0.5 -7.071068e-01 -0.4082483 -0.2886751 [4,] -0.5 7.071068e-01 -0.4082483 -0.2886751
```

#矩阵的Choleskey分解

A. c=chol(A)

```
[,1] [,2] [,3] [,4] [1,] 1.414214 0.7071068 0.7071068 0.7071068 [2,] 0.000000 1.2247449 0.4082483 0.4082483 [3,] 0.000000 0.0000000 1.1547005 0.2886751 [4,] 0.000000 0.0000000 0.0000000 1.1180340
```



```
#矩阵奇异值分解
A=matrix(1:18, 3, 6)
A. s=svd(A)
Sd
[1] 4.589453e+01 1.640705e+00 3.627301e-16
Su
          [,1]
                      [,2]
                                 [,3]
[1,] -0.5290354 0.74394551 0.4082483
[2,] -0.5760715 0.03840487 -0.8164966
[3,] -0.6231077 -0.66713577 0.4082483
ŞV
                      [,2]
           [,1]
[1, ] -0.07736219 -0.71960032 -0.18918124
[2,] -0.19033085 -0.50893247 0.42405898
[3,] -0.30329950 -0.29826463 -0.45330031
[4,] -0.41626816 -0.08759679 -0.01637004
[5,] -0.52923682 0.12307105 0.64231130
```

[6,] -0.64220548 0.33373889 -0.40751869

```
#矩阵的维数
A=matrix(1:12,3,4)
dim(A)

[1] 3 4

#矩阵的行数
nrow(A)

[1] 3

#矩阵的行数
ncol(A)
```

#矩阵按行求和

rowSums (A)

[1] 22 26 30

#矩阵按行求均值

rowMeans (A)

[1] 5.5 6.5 7.5

#矩阵按列求和

col Sums (A)

[1] 6 15 24 33

#矩阵按列求均值

col Means (A)

[1] 2 5 8 11

#矩阵按行求和

apply (A, 1, sum)

[1] 22 26 30

#矩阵按行求均值

apply (A, 1, mean)

[1] 5.5 6.5 7.5

#矩阵按列求和

[,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,] 3 6 9 12

apply (A, 2, sum)

[1] 6 15 24 33

#矩阵按列求均值

aplly (A, 2, mean)

[1] 2 5 8 11

#矩阵按列求方差

A=matrix(rnorm(100), 20, 5)

aplly (A, 2, var)

#矩阵按列求函数结果

A=matrix(1:12,3,4)

apply (A, 2, function(x, a) x*a, a=2)

注意:

apply(A, 2, function(x, a) x*a, a=2)与A*2效果相同, 此处旨在说明如何应用 apply函数。

[1] 1.2748524 1.8964186 1.2920973 0.6991467 0.5818300

在R中,如何创建一个矩阵?

- matrix(data, nrow, ncol)
- mat(data, nrow, ncol)
- create.matrix(data, nrow, ncol)
- data.matrix(data)

在R中, 如何访问矩阵A的第2行第3列的元素?

- A A[2, 3]
- **B** A[2][3]
- A[3, 2]
- A(2, 3)

在R中,如何对矩阵A进行转置?

- (A)
- B transpose(A)
- A.t()
- rev(A)

多选题 1分

使用哪个函数可以在R中计算矩阵A的行和?

- rowSums(A)
- B sumRows(A)
- apply(A, 1, sum)
- apply(A, 2, sum)

数据框

——一种矩阵形式的数据,但其各列可以是不同类型的数据

矩阵、列表和数据 框为新的数据框提 供了尽可能多的各量 ,因为它们各或自 拥有列、元素或者 变量 数值向量、逻辑值、 因子保持原有格式, 而字符向量会被强 制转换成因子并且 它的水平就是向量 中出现的独立值

分量必须是向量 (数值,字符,逻辑)、因子、数值 矩阵、列表或者其 他数据框

数据框 录入限 制条件 在数据框中以变量 形式出现的向量长 度必须一致,矩阵 结构必须有一样的 行数

数据框

#由x1和x2构建数据框

X=data. frame (x1, x2)

#赋予数据框新的列标签

X=data. frame('身高'=x1, '体重'=x2)

	身高	体重
1	171	57
2	175	64
3	159	41
4	155	38
5	152	35
6	158	44
7	154	41
8	164	51
9	168	57
10	166	49
11	159	47
12	164	46

在R中,如何创建一个包含多个变量的数据框(data frame)?

- data.frame(var1, var2)
- B c(var1, var2)
- matrix(var1, var2)
- list(var1, var2)

3. 多元数据的数学表达

期望

总体期望(均值)

一元数据	多元数据 (p 维向量 X)	
标量: $\mu = E[X]$	向量: $\boldsymbol{\mu} = E[\mathbf{X}] = (E[X_1], \dots, E[X_p])^T$	
单变量的期望。	多变量各分量的期望组成的向量。	

样本期望(样本均值)

一元数据	多元数据 (n 个样本)
标量: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	向量: $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$
所有样本点的算术平均。	各分量的样本均值组成的向量。

方差 vs 协方差矩阵

一元数据 (方差)	多元数据(协方差矩阵)
标量: $\sigma^2 = E[(X - \mu)^2]$	矩阵: $\Sigma = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$
描述单变量的离散程度。	描述多变量间的 线性关系 : - 对角线元素为各变量方差, - 非对角线元素为协方差 $Cov(X_j, X_k)$ 。

样本方差 vs 样本协方差矩阵

一元数据(样本方差)	多元数据 (样本协方差矩阵)
标量: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$	矩阵: $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$
无偏估计 (分母 $n-1$)。	无偏估计 (分母 n - 1)

如果一组一元数据的方差很小, 这意味着:

- A 数据分布广泛
- 图 数据集中在均值附近
- 数据均匀分布
- 数据存在显著的偏差

样本方差的计算公式中,通常使用哪个值作为分母以获得无偏估计?

- A n
- B n-1
- n+1

关于多元数据的样本均值,下列说法哪个是正确的?

- A 它是一个标量值
- 它是一个向量,由每个维度的样本均值组成
- 它与方差相同
- 它不包含任何统计信息

在多元数据中, 协方差矩阵的主要作用是:

- A 计算每个数据点的均值
- 图 衡量各维度间的相关性和变异性
- 仅用于一维数据分析
- 作为样本均值的替代

例题

收集了 3 名学生的身高 (米) 和体重 (千克) 数据:

$$\mathbf{x}_1 = \begin{pmatrix} 1.6 \\ 50 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 1.7 \\ 55 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 1.8 \\ 70 \end{pmatrix}$$

计算样本协方差矩阵, 并解释身高与体重的相关性。

解析:

1. 样本均值:

$$\bar{\mathbf{x}} = \begin{pmatrix} \frac{1.6+1.7+1.8}{3} \\ \frac{50+55+70}{3} \end{pmatrix} = \begin{pmatrix} 1.7 \\ 58.33 \end{pmatrix}$$

2. 中心化数据:

$$\mathbf{x}_1 - \bar{\mathbf{x}} = \begin{pmatrix} -0.1 \\ -8.33 \end{pmatrix}, \quad \mathbf{x}_2 - \bar{\mathbf{x}} = \begin{pmatrix} 0 \\ -3.33 \end{pmatrix}, \quad \mathbf{x}_3 - \bar{\mathbf{x}} = \begin{pmatrix} 0.1 \\ 11.67 \end{pmatrix}$$

3. 外积求和:

$$\sum_{i=1}^{3} (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^T = \begin{bmatrix} 0.01 & 0.833 \\ 0.833 & 69.44 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 11.09 \end{bmatrix} + \begin{bmatrix} 0.01 & 1.167 \\ 1.167 & 136.11 \end{bmatrix} = \begin{bmatrix} 0.02 & 2.0 \\ 2.0 & 216.64 \end{bmatrix}$$

4. 标准化 (分母 n-1=2):

$$\mathbf{S} = \frac{1}{2} \begin{bmatrix} 0.02 & 2.0 \\ 2.0 & 216.64 \end{bmatrix} = \begin{bmatrix} 0.01 & 1.0 \\ 1.0 & 108.32 \end{bmatrix}$$

- 5. 解释:
 - 协方差 1.0 > 0, 说明身高与体重呈正相关 (身高越高, 体重可能越大)。

例题 (样本协方差矩阵的无偏性)

证明: 样本协方差矩阵 S 的无偏性, 即 $E[S] = \Sigma$ 。

解析 (关键步骤):

1. 定义样本协方差矩阵:

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

2. 展开并取期望:

$$E[\mathbf{S}] = \frac{1}{n-1} E\left[\sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})^T - n(\tilde{\mathbf{x}} - \boldsymbol{\mu})(\tilde{\mathbf{x}} - \boldsymbol{\mu})^T\right]$$

3. 利用线性性质化简:

$$E\left[(\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})^T\right] = \boldsymbol{\Sigma}, \quad E\left[(\tilde{\mathbf{x}} - \boldsymbol{\mu})(\tilde{\mathbf{x}} - \boldsymbol{\mu})^T\right] = \frac{1}{n}\boldsymbol{\Sigma}$$

4. 合并得:

$$E[S] = \frac{1}{n-1} \left(n\Sigma - n \cdot \frac{1}{n}\Sigma \right) = \Sigma$$

R语言实现

```
一元数据示例
数据定义
  x \leftarrow c(5, 6, 7, 8, 9)
样本均值 (Sample Mean)
  sample_mean_x <- mean(x) # 计算样本均值
  sample_mean_x
结果:
```

```
样本方差 (Sample Variance)

var_x <- var(x) # 计算样本方差</td>

var_x

结果:

[1] 2.5
```

R语言实现

多元数据示例

数据定义

```
# 多元数据
```

 $X \leftarrow matrix(c(23, 25, 30, 85, 90, 95), nrow = 3, byrow = TRUE)$

样本均值(Sample Mean Vector)

sample_mean_X <- colMeans(X) # 计算每列的样本均值 sample_mean_X

结果:

[1] 26 90

样本协方差 (Sample Covariance Matrix)

sample_cov_X <- cov(X) # 计算样本协方差矩阵 sample_cov_X

结果:

```
[,1] [,2]
[1,] 5.0000000 5.000000
[2,] 5.0000000 25.000000
```

4. 多元数据的R语言调用

从剪切板读取

选择需要进行计 算的数据块, 拷 贝之

在R中使用dat <read. table("clipboard", header=T)

02

从文本文件读取

X=read.table('textdata.txt', header=T)

第一行作为标题时

#读取名为textdata的txt格式文档

X=read. table("textdata. txt")

11 166 49 12 159 47 13 164 46

读取csv格式和excel格式

- 1. 下载读取excel文件的包 "readxl"
- 2. 调用包: library(readxl)
- 3. 读取文件: X=read_excel("data.xls")

也可以使用包 "openxIsx"

- 1. 下载读取excel文件的包 "openxlsx"
- 2. 调用包: library (openxlsx)
- 3. 读取文件: X=read. xlsx("data. xlsx")

X=read.csv("textdata.csv")

本章小结

- 1. 收集和整理多元数据
- 2. 数据矩阵和数据框
- 3. 多元数据的数学表达
- 4. 多元数据的R语言调用