Stress Testing Machine Learning Population Change Projections with ACS MOEs

By Collin McCarter

Opinions and ideas are my own disclaimer ... Feel free to reach out on LinkedIn for any data digression!

Applied Demography Conference Annual Meeting, February 6th, 2024

https://www.linkedin.com/in/collin-mccarter/ ... https://github.com/collinmccarter-fl/stresstest_ACS_MOEs/

```
2022 - TODAY ... Data Science, Northwestern Mutual
2020 - 2022 ... Technology & Product Management, Trellance (Credit Unions)
2016 - 2020 ... Demographer, Nielsen (TV Ratings)
2014 - 2016 ... PK-12 School Enrollment Analyst, State of Florida
```

Background

Life as a data scientist ...

- Organizations link ACS data with a "client dataset" by small-area geographies
- Organizations are always searching for "new data sources" to differentiate the organization
- Discovering "new data sources" comes with a learning curve
- ACS MOE's can be a time consuming learning curve for big data practitioners, especially those without a survey background
- Stress testing examples may help to lessen the learning curve, which is possible with MOE-adjusted ACS variables

Life as an applied demographer ...

- Open source tools are *efficient*, *accessible*, *and reproducible* but are infrequently used in applied demography
- PIP packages are *maturing* in their documentation, peer-review credibility, and flexible options.
- Machine Learning practitioners are using these tools and data without domain knowledge
- Applied Demographers have the domain knowledge to maximize value from machine learning tools used in demographic analysis

What I did ... stress tested ACS1yr CA County projections

Python Jupyter Notebook completes the below in < 3min

- 1 sec Gather packages of functions (aka procedures) from PIP
- 9 sec Pull select api.census.gov data
 - ACS 1yr Data Profile
 - PEP Vintage 2010
 - o PEP Vintage 2020
 - PEP Vintage 2022
- 1 sec Transform and Merge US Census data into a training dataset for machine learning packages
- **150 sec** Train (fit), Predict, and Evaluate different projections based on below adjustments:
 - o ACS variables used as predictive features vs univariate timeseries
 - Adjusted ACS variables using MOEs vs ACS variable point estimates
 - Continuous Regression metrics (MAE, MSE, MAPE, r^2)
 - Models available on PIP (structureboost, statsforecast, catboost)

Los Angeles County 2yr Population Change Projections, Adjusting ACS Vars with MOEs (dashed)

Tulare County 2yr Population Change Projections, Adjusting ACS Vars with MOEs (dashed)

What I did ... PIP (package installer for Python)

1 sec Gather packages of functions (aka procedures) from PIP

General Machine Learning

Time Series Forecasting

Pygris - TIGER Mapping

Start-up from industry experts funded by investors

Brian Lucena, PhD (Brown) consultant

Kyle Walker, Associate Professor Texas Christian University

National Institute for Research in **Digital Science and Technology**

StructureBoost

What I did ... api.census.gov

9 sec Pull select api.census.gov data

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
ACS 1yr Profile															
PEPANNRES															

ACS 1yr Profile

```
state_fips = '06' # California
api_table = 'acs/acs1/profile'
var_strlist = 'DP03_0085PE,DP03_0085PM,...,DP03_0004PE,DP03_0004PM'
years = ['2019','2018',...,'2009','2008']

url =
f"https://api.census.gov/data/{year}/{api_table}?get={var_strlist}&for=county:*
&in=state:{state_fips}&key={api_key}"
```

PEPANNRES

```
state_fips = '06' # California
api_table = 'pep/population'
var_strlist = 'POP,DATE_CODE,DATE_DESC,NAME,GEO_ID'
year = '2019'
```

url =

f"https://api.census.gov/data/{year}/{api_table}?get={var_strlist}&for=county:*&in =state:{state_fips}&key={api_key}"

*PEP2022 required using ftp site with csv file due to API availability

What I did ... transform for machine learning

• 1 sec Transform US Census data for machine learning packages

Supervised Machine Learning - Data Prep

```
forecast_horizon_years = 2

dates = Y_df['ds'].unique()
dtrain = dates[:-h_var]
dtest = dates[-h_var:]
Y_train = Y_ts.query('ds in @dtrain')
Y_test = Y_ts.query('ds in @dtest')
X_train = X_ts.query('ds in @dtest')
X_test = X_ts.query('ds in @dtest')
train = Y_train.merge(X_ts, how = 'left', on = ['unique_id', 'ds'])
```

Adjust ACS 1yr Estimates within MOE Range

What I did ... train, predict, evaluate projections

• 150 sec Train (fit), Predict, and Evaluate different projections adjustments

Train & Predict

```
models = [Naive(), AutoARIMA()] # Add more models from Statsforecast

sf = StatsForecast(models=models,freq='A',n_jobs=-1)

horizon = 2
level = [95]

fcst = sf.forecast(df=train, h=horizon, X_df=X_test, level=level, fitted=True)
```

Evaluate

```
metrics = [mae_calc, mse_calc, mape_calc, r2_calc]
for metric in metrics:
    print(metric(fcst,0))
```

What just happened?

PIP Packages
US Census API
Machine Learning Insights
Role for Applied Demographers
ACS MOEs in Machine Learning

Thank You!

Collin McCarter