CLAIMS

1. A method of forming an optical component, comprising:

forming a mask over a light transmitting medium so as to protect a region of the light transmitting region where a waveguide is to be formed; and

applying an etching medium to the light transmitting medium so as to form one or more surfaces of the waveguide, the etching medium including a fluorine containing gas and one or more partial passivants.

- 2. The method of claim 1, wherein the fluorine containing gas includes SF₆ and the partial passivant includes CHF₃.
- 3. The method of claim 1, wherein the fluorine containing gas includes SF_6 and the partial passivant includes C_4F_8 .
 - 4. The method of claim 1, where the etching medium excludes oxygen.
- 5. The method of claim 1, wherein the fluorine containing gas is selected from a group consisting of SF₆, Si₂F₆ and NF₃.
- 6. The method of claim 1, wherein the partial passivant is selected from a group consisting of HBr, SiF₄, C₄F₈, CH₂F₂ and CHF₃.
- 7. The method of claim 1, wherein the one or more surfaces includes a sidewall of the waveguide.
- 8. The method of claim 1, wherein the one or more surfaces include a waveguide facet.

The state of the s

- 9. The method of claim 1, wherein the etching medium is applied at a pressure of 1 mTorr to 600 mTorr.
- 10. The method of claim 1, wherein the etching medium is applied at a pressure of 1 mTorr to 60 mTorr.
- 11. The method of claim 1, wherein the etching medium is applied at a pressure of 10 mTorr to 30 mTorr.
- 12. The method of claim 1, wherein the etching medium includes one or more other media.
- 13. The method of claim 1, wherein the one or more other media is selected from the group consisting of SiF₄ and SiF₆
- 14. The method of claim 1, wherein the one or more other media include a noble gas.
- 15. The method of claim 1, wherein the etching medium has a molar ratio of partial passivant to fluorine containing gas of 0.1:1 to 100:1.
- 16. The method of claim 1, wherein the etching medium has a molar ratio of partial passivant to fluorine containing gas of .5:1 to 10:1.
- 17. The method of claim 1, wherein the etching medium has a molar ratio of partial passivant to fluorine containing gas of 1:1 to 2:1.

0-2 (LIGHT1901)

Docket No. LIGH

- 18. The method of claim 1, wherein the mask is formed so as to protect a region of the light transmitting region where a plurality of waveguides are to be formed and the etching medium is applied to as to form one or more surfaces on at least one of the waveguides.

17

- 19. The method of claim 1, wherein the mask is an oxide mask.
- 20. The method of claim 1, wherein the mask is a photoresist.
- The method of claim 1, wherein the etching medium is applied in an 21. inductively coupled plasma etch.
- 22. A method of forming an optical component, comprising: obtaining an optical component having a light transmitting medium positioned over a base; and

applying an etching medium to the light transmitting medium so as to form at least one surface of a waveguide in the light transmitting medium, the etching medium including a fluorine containing gas and one or more partial passivants.

- 23. The method of claim 22, wherein the fluorine containing gas includes SF₆ and the partial passivant includes CHF₃.
- 24. The method of claim 22, wherein the fluorine containing gas includes SF_6 and the partial passivant includes C_4F_8 .
 - 25. The method of claim 22, where the etching medium excludes oxygen.
- 26. The method of claim 22, wherein the fluorine containing gas is selected from a group consisting of SF₆, CF₄, Si₂F₆ and NF₃.

- 27. The method of claim 22, wherein the partial passivant is selected from a group consisting of HBr, SiF₄, C₄F₈, CH₂F₂ and CHF₃.
- 28. The method of claim 22, wherein obtaining the optical component includes receiving the optical component from a supplier.
- 29. The method of claim 22, wherein the etching medium is applied at a pressure of 1 mTorr to 200 mTorr.
- 30. The method of claim 22, wherein the etching medium is applied at a pressure of , 5 mTorr to 60 mTorr.
- 31. The method of claim 22, wherein the etching medium includes a second fluorine containing gas selected from the group consisting of SiF₄ and SiF₆.
- 32. The method of claim 22, wherein the etching medium also includes a noble gas.
- 33. The method of claim 22, wherein the etching medium has a molar ratio of partial passivant to fluorine containing gas less than 100:1.
- 34. The method of claim 22, wherein the etching medium has a molar ratio of partial passivant to fluorine containing gas of about .5:1 to 10:1.
- 35. The method of claim 22, wherein the etching medium has a molar ratio of partial passivant to fluorine containing gas of about 1:1 to 2:1.

- 36. The method of claim 22, wherein the mask is formed so as to protect a region of the light transmitting region where a plurality of waveguides are to be formed and the etching medium is applied to as to form one or more surfaces on at least one of the waveguides.
- 37. The method of claim 22, wherein the etching medium is applied so as to form at least one surface on a plurality of waveguides.
- 38. The method of claim 22, wherein the etching medium consists of only SF6 as the fluorine containing gas, CHF₃ as the partial passivant and Oxygen.
- 39. The method of claim 22, wherein the etching medium is applied in an inductively coupled plasma etch.