NB.03.F4

July 23, 2024

1 Proposition

We know that $\delta_2 = 0$ in general gives that

$$P_3 = (s_{14}s_{15}s_{22} - s_{12}^2s_{45})P_1 + s_{12}(s_{11}s_{45} - s_{14}s_{15})P_2$$

hence, for some values of s_{ij} , the point P_3 is not defined. Here we want to see when this happens. The conclusion is that P_3 is always uniquely defined, unless: 1) the points of the V-configuration are such that $s_{12}=0$, $s_{14}=0$ (or $s_{13}=0$, $s_{15}=0$, or...). In this case the unique cubic is a cubic in which the eigenpoints are in configuration (5). 2) the points of the V-configuration satisfy the condition $s_{12}=0$, $s_{23}=0$. In this case, the line $P_1\vee P_2$ of the V-configuration is tangent in P_2 to the isotropic conic, so the matrix $\Phi(P_1,P_2,P_3)$ has rank 5 and P_5 can be chosen in a free way on the line $P_1\vee P_4$ and the matrix $\Phi(P_1,P_2,P_3,P_4,P_5)$ has rank 9, (unless $P_1\vee P_4$ is tangent to the isotropic conic...) 3) The points satisfy the conditions $\sigma(P_1,P_2)=0$ and $\sigma(P_1,P_4)=0$. In this case the V-configuration is given by a point P_1 not on the isotropic conic and the other points on the two tangents to the isotropic conic through P_1 . If no points of the V-configurations are on the isotropic conic, the two tangent lines are lines of eigenpoints, if (say) P_2 and P_4 are on the isotropic conic, the matrix $\Phi(P_1,P_2,P_3,P_4)$ has rank 8.

```
[41]: load("basic_functions.sage")
```

We define three points P_1 , P_2 , and P_4 .

```
[42]: P1 = vector(S, (A1, B1, C1))
P2 = vector(S, (A2, B2, C2))
P4 = vector(S, (A4, B4, C4))
```

We write δ_2 in terms of the quantities s_{ij}

In general, we have that 5 points in a V-configuration are eigenpoints iff

$$P_3 = (s_{14}s_{15}s_{22} - s_{12}^2s_{45})P_1 + s_{12}(s_{11}s_{45} - s_{14}s_{15})P_2$$

unless the two coefficients of P_1 and P_2 are 0. Here we study this particular case.

We compute the primary decomposition of the radical of the ideal J_s :

[45]: pd = Js.radical().primary_decomposition()

We get 6 ideals:

[46]: assert(len(pd)==6)

1.1 The ideal (s_{12}, s_{14})

The first ideal is generated by s_{14} and s_{12} :

[47]: assert(S.ideal(s12, s14) in pd)

If P_1 , P_2 , and P_4 are such that $s_{12} = 0$, $s_{14} = 0$, then, as vectors, P_1 is the cross product of P_2 and P_4 .

[48]: P1 = wedge_product(P2, P4)

[49]: assert(scalar_product(P1, P2) == 0) assert(scalar_product(P1, P4) == 0)

We construct P_3 and P_5 so that the 5 points are in a V-configuration

[50]: P3 = u1*P1+u2*P2P5 = v1*P1+v2*P4

With this choice, we have $\delta_2(P_1, P_2, P_3, P_4, P_5) = 0$

[51]: assert(delta2(P1, P2, P3, P4, P5) == 0)

We see therefore that we can define P_3 and P_5 in an arbitrary way: for any choice δ_2 is zero.

From here the computations are exactly the computations in the file config5.sage (up to a permutation of the points) and we see that in this case the eigenpoints of the cubic are in configuration (5).

CONCLUSION: If $s_{12} = s_{14} = 0$, then the V-configuration has $\delta_2 = 0$ and P_3 and P_5 can be freely chosen on the line $P_1 \vee P_2$ and $P_1 \vee P_4$, respectively.

1.2 The ideal (s_{12}, s_{22}, s_{23})

[62]: assert(S.ideal(s12, s22, s23) in pd)

An easy computation shows that if $s_{22} = 0$ and $s_{12} = 0$, then $s_{23} = 0$, (or if $s_{12} = 0$ and \$s_{23} = \$0, then $s_{22} = 0$), so the ideal (s_{12}, s_{22}, s_{23}) is generated by s_{12} and s_{22} .

In particular, the line $P_1 \vee P_2$ is tangent to the isotropic conic in P_2 , hence the matrix $\Phi(P_1, P_2, P_3)$ has rank 5.

Therefore, for all P_3 and P_5 the rank of the matrix $\Phi(P_1, P_2, P_3, P_4, P_5)$ is ≤ 9 , thus we have a V-configuration which satisfies $\delta_2(P_1, P_2, P_3, P_4, P_5) = 0$ for any choice of the points P_3 and P_5 .

CONCLUSION FOR THE CASE s12, s22: the V-configuration is of eigenpoints, for every choice of P_3 and P_5 (if also $P_1 \vee P_4$ is tangent to the isotropic conic, the two tangent lines are lines of eigenpoints, as claimed in the section on eigenpoints of positive dimension).

Here is an example: it shows that in case $s_{12} = s_{22} = 0$ we have 7 eigenpoints with (apparently) no particular specific properties.

```
[63]: Q1, Q2 = vector(S, (0, 0, 1)), vector(S, (1, ii, 0))
Q3 = vector(S, (1, -ii, 0))
rt1 = matrix([Q1, Q2, (x, y, z)]).det()
rt2 = matrix([Q1, Q3, (x, y, z)]).det()

p1 = 1*Q1
p2 = 1*Q2
p3 = 2*p1+5*p2
p4 = vector(S, (3, 1, 5))
p5 = p1+3*p4
assert(condition_matrix([p1, p2, p3, p4, p5], S, standard="all").rank() == 9)
cb = cubic_from_matrix(condition_matrix([p1, p2, p3, p4, p5], S, u
standard="all"))
assert(cb.is_prime())
```

1.3 The ideal (s_{15}, s_{12})

```
[59]: assert(S.ideal(s15, s12) in pd)
```

This case is analog to the case (s_{12}, s_{14}) by swapping 4 and 5

1.4 The ideal (s_{45}, s_{14})

```
[60]: assert(S.ideal(s45, s14) in pd)
```

In this case we have $s_{44} = 0$, indeed

$$\begin{split} \langle P_4, v_1 P_1 + v_2 P_4 \rangle &= 0 \\ v_1 \langle P_1, P_4 \rangle + v_2 \langle P_4, P_4 \rangle &= 0 \\ 0 + v_2 \langle P_4, P_4 \rangle &= 0 \\ \langle P_4, P_4 \rangle &= 0 \end{split}$$

because $v_2 \neq 0$.

CONCLUSION: THIS CASE IS THE SAME AS THE CASE (s_{12}, s_{22}, s_{23})

1.5 The ideal (s_{45}, s_{15})

```
[]: assert(S.ideal(s45, s15) in pd)
```

In this case we have $s_{55} = 0$ as in (s_{45}, s_{14})

CONCLUSION: THIS CASE IS THE SAME AS THE CASE (s_{12}, s_{22}, s_{23})

1.6 The ideal $(s_{13}s_{22} - s_{12}s_{23}, s_{14}s_{15} - s_{11}s_{45}, s_{12}s_{13} - s_{11}s_{23}, s_{12}^2 - s_{11}s_{22})$

In this case we determine the ideal in the variables A_1, \dots, C_4 , but first we have to re-define the points.

```
[65]: P1 = vector(S, (A1, B1, C1))
P2 = vector(S, (A2, B2, C2))
P4 = vector(S, (A4, B4, C4))
P3 = u1*P1+u2*P2
P5 = v1*P1+v2*P4
```

```
[66]: I = S.ideal(
              s13*s22 - s12*s23,
              s14*s15 - s11*s45,
              s12*s13 - s11*s23,
              s12^2 - s11*s22
          ]
      J = I.subs(
          {
              s11: scalar_product(P1, P1),
              s22: scalar_product(P2, P2),
              s13: scalar_product(P1, P3),
              s12: scalar_product(P1, P2),
              s23: scalar_product(P2, P3),
              s14: scalar_product(P1, P4),
              s15: scalar_product(P1, P5),
              s45: scalar_product(P4, P5)
          }
      )
```

We saturate J w.r.t. the condition that $v_2 \neq 0$ and w.r.t. the condition that P_1 , P_2 , and P_4 are not aligned.

```
[68]: J = J.saturation(v2)[0]
J = J.saturation(matrix([P1, P2, P4]).det())[0]
```

We study the ideal J

J contains the two polynomials $\sigma(P_1,P_2)$ and $\sigma(P_1,P_4)$:

```
[69]: assert(sigma(P1, P2) in J) assert(sigma(P1, P4) in J)
```

Moreover, J and the ideal $(\sigma(P_1, P_2), \sigma(P_1, P_4))$ coincide if P_1 , P_2 , and P_4 are not aligned:

```
[70]: I = S.ideal(sigma(P1, P2), sigma(P1, P4)).saturation(matrix([P1, P2, P4]).

→det())[0]

assert(J == I)
```

Hence, in this case the V-configuration is obtained by a point P_1 and the two tangents to the isotropic conic passing through P_1 .

In general, the V-configuration is such that the two lines are lines of eigenpoints and the cubic splits into the conic $(x^2 + y^2 + 2/3 * z^2)$ and a line. This case is discussed in the section on eigenpoints of positive dimension.

Here is an example: example of $P_1 \vee P_2$ tangent to the isotropic conic in P_2 :

```
[73]: Q1, Q2, Q3 = vector(S, (0, 0, 1)), vector(S, (1, ii, 0)), vector(S, (1, -ii, 0))
rt1 = matrix([Q1, Q2, (x, y, z)]).det()
rt2 = matrix([Q1, Q3, (x, y, z)]).det()

p1 = 1*Q1
p2 = Q1+3*Q2
p3 = 2*Q1+5*Q2
p4 = Q1+7*Q3
p5 = Q1-2*Q3

M = condition_matrix([p1, p2, p3, p4, p5], S, standard="all")
assert(M.rank() == 9)
cb = cubic_from_matrix(M)
assert(cb == z*(x^2 + y^2 + 2/3*z^2))
```

In the particular case in which P_2 and P_4 are on the isotropic conic, the matrix $\Phi(P_1, P_2, P_3, P_4, P_5)$ has rank 8 and a generic cubic of the corresponding pencil of cubics is smooth and has 7 eigenpoints. The case is studied in the section on V-configurations of rank 8.

Here is an example:

```
[75]: Q1, Q2, Q3 = vector(S, (0, 0, 1)), vector(S, (1, ii, 0)), vector(S, (1, -ii, 0))
rt1 = matrix([Q1, Q2, (x, y, z)]).det()
rt2 = matrix([Q1, Q3, (x, y, z)]).det()

p1 = 1*Q1
p2 = 1*Q2
p3 = 2*Q1+5*Q2
p4 = 1*Q3
p5 = Q1-2*Q3

M = condition_matrix([p1, p2, p3, p4, p5], S, standard="all")
```

```
assert(M.rank() == 8)
M1 = M.matrix_from_rows([1, 2, 3, 4, 7, 9, 10, 13])
assert(M1.rank() == 8)
M2 = M1.stack(vector(S, (1, 3, 6, -4, 0, 3, 2, 1, -5, 7)))
M2 = M2.stack(vector(S, mon))
cb = M2.det()
```