Der PIO-Controller des Z80-Systems

01.12.2002

Anschlüsse und Belegung

Die Anschlüsse ...

- D0 bis D7 werden mit dem System-Datenbus verbunden
- B/A und C/D werden mit den Leitungen A1 bzw. A0 des System-Adreßbus verbunden, um nebeneinanderliegende I/O-Adressen für den PIO-Controller zu schaffen
- der Ports A und B dienen der Kommunikation mit der Peripherie

Verbleibende Anschlüsse werden mit den entsprechenden Leitungen des Systems verbunden.

Der PIO-Controller ist eine parallele Schnittstelle zwischen System und Peripherie.

Aufbau eines Ports

Betriebsmodi

Die PIO-Betriebsarten werden je Port festgelegt:

- Mode 0: Byte-Ausgabe im Handshake-Betrieb
- Mode 1: Byte-Eingabe im Handshake-Betrieb
- Mode 2: Byte-Ein-/Ausgabe im Handshake-Betrieb
- Mode 3: Bit-Ein-/Ausgabe mit Datenrichtungssteuerung

Arbeitsweise Mode 0 – Byteausgabe mit Handshake

Zeitpunkt	Ereignis		
1	Prozessor hat ein Datenwort im Ausgaberegister des Ports abgelegt		
2	Daten liegen zur Ausgabe bereit, Port aktiviert READY-Signal		
3	Peripheriegerät beginnt Datenübernahme		
4	Steigende Flanke des STROBE-Impulses signalisiert Abschluß der		
	Datenübernahme und löst Rücknahme des READY-Signals		
	und Interrupt (wenn erlaubt) aus		

Arbeitsweise Mode 1 – Byteeingabe mit Handshake

Zeitpunkt	Ereignis
1	Peripherie löst STROBE-Impuls aus,
	mit steigender Flanke werden Daten übernommen
2	READY-Signal des Ports wird gelöscht, Interrupt ausgelöst (wenn erlaubt)
3	READY wird erst wieder aktiviert, wenn empfangene Daten vom Prozessor
	übernommen worden sind

Arbeitsweise Mode 2 – Byte-Ein-/Ausgabe mit Handshake

- Für Mode 2 gelten folgende Einschränkungen:
 - nur an Port A möglich
 - Port B muß auf Mode 3 gesetzt sein
 - Port B darf keine Interrupts auslösen
- Datenaustausch über Dateneitungen von Port A
 - Für Ausgabe Benutzung der Handshake-Leitungen von Port A
 - Für Eingabe Benutzung der Handshake-Leitungen von Port B

Ausgabe

Zeitpunkt | Ereignis

Port übernimmt Daten von der CPU, Aktivierung von ARDY Peripheriegerät beginnt

Datenübernahme

Steigende Flanke des

ASTB-Signals zeigt Abschluß
der Datenübernahme an und
löst Rücknahme von ARDY und
Interrupt (so erlaubt) aus

Eingabe

Ereignis

Ablauf ähnlich Mode 1, steigende Flanke des BSTB-Signals veranlaßt Übernahme der Daten, Löschung von BRDY und (so erlaubt) Interrupt-Auslösung

Arbeitsweise Mode 3 - Bit-Ein-/Ausgabe mit Datenrichtungssteuerung

- Keine Benutzung der Handshake-Leitungen (RDY und STB)
- Initialisierung durch erweitertes Interrupt-Steuerwort S und Maskenwort M
- Datenrichtungssteuerung über Datenrichtungsregister:
 - Bit n im Datenrichtungsregister 1: Bit n des Ports als Eingang
 - Bit n im Datenrichtungsregister 0: Bit n des Ports als Ausgang

Adressierung der PIO-Register

Der PIO-Controller ist in den I/O-Adreßraum eingebunden.

• Adressierung der PIO-Register:

B/A	C/D	RD	adressiertes PIO-Register
0	0	0	Eingaberegister Port A
0	0	1	Ausgaberegister Port A
0	1	Χ	Steuerregister Port A
1	0	0	Eingaberegister Port B
1	0	1	Ausgaberegister Port B
1	1	Χ	Steuerregister Port B

X = don't care

- Die Steuerregister eines Ports werden über dieselbe I/O-Adresse angesprochen.
- Der Zustand des Eingangs RD ist beim Adressieren der Steuerregister ohne Bedeutung.

Initialisierung des PIO-Controllers

In der Initialisierungsphase wird der PIO-Controller auf die zu übernehmenden Aufgaben vorbereitet.

- Zur Initialisierung des PIO-Controllers muß die Steuerleitung C/D HIGH-Pegel führen
- Es müssen immer 3 (PIO-Modi 0 bis 2), 4 oder 5 (PIO-Mode 3) Steuerwörter übergeben werden
- Die Steuerwortfolge ist festgelegt:
 - Betriebsarten-Steuerwort B
 Im PIO-Mode 3 Datenrichtungs-Steuerwort D (obligatorisch)
 - 2. Interrupt-Vektor V für IM2 der CPU
 - 3. Interrupt-Steuerwort S Im PIO-Mode 3 Masken-Steuerwort M (optional)
- Die Steuerwörter B, V und S besitzen Kennsungsbits, um Verwechslungen auszuschließen.

Verwendete Literatur

Literatur

- [1] LUDOLF STEWEN. Lehrbuch der Mikroprozessortechnik. Hardware, Software, Anwendung. Hüthig Buch Verlag GmbH Heidelberg, 1989.
- [2] www.z80.info Official Support Page for the Z80 Family.