AD-784 443

USER'S GUIDE TO AUXILIARY PROGRAMS FOR THE MINTZ-ARAKAWA ATMOSPHERIC MODEL

David S. Pass

RAND Corporation

Prepared for:

Defense Advanced Research Projects Agency

June 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

ARPA ORDER NO.: 189-1 3P10 Distributed Information Systems

R-1046-ARPA June 1974

11

User's Guide to Auxiliary Programs for the Mintz-Arakawa Atmospheric Model David S. Pass

A Report prepared for
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

The research described in this Report was sponsored by the Defense Advanced Research Projects Agency under contract No. DAHC15-73-C-0181. Reports of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research.

ia

Documents six computer programs used by the Rand/ARPA Climate Dynamics Project in sim lating the behavior of the global atmosphere to study the complex interactions that produce world climate. The primary research tool, the Mintz-Arakawa model, runs 25 hours computing time for a 60-day simulation, generating 2 billion numbers, of which 15 million are stored in 18 arrays. The MAPGEN, Map Display, and Zonal Profile programs, documented here, postprocess this output into manageable and comprehensible maps, profiles, and tables. The Difference program calculates the differences between experiments for plotting by Map Display. Two auxiliary programs are also documented, Quick Look and Disk Initializer, which greatly facilitate use of the M/A program. MAPGEN, a very large program, consists of about 4000 FORTRAN IV source cards, uses 1,250,000 bytes of core, and requires 50 minutes on one of the world's fastest computers to process the output from a 60-day simulation. The other programs are such smaller.

> UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

REPORT DOCUMENTATION	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
R-1046-ARPA	2. GOVT ACCESSION NO	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
User's Guide to Auxiliary Progr Mintz-Arakawa Atmospheric Model	ams for the	Computer documentation
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)
David S. Pass		DAHC15-73-C-0181
Performing Organization NAME AND ADDR The Rand Corporation 1700 Main Street	ESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Santa Monica, Ca. 90406		
I. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Defense Advanced Research Proje Arlington, VA	cts Agency	June 1974
		76
14. MONITORING AGENCY NAME & ADDRESS(II ditt	erent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		ISA. DECLASSIFICATION/DOWNGRADING
7. DISTRIBUTION STATEMENT (of the ebetrect ente	red !n Block 20, If different fro	m Report)
no restrictions		
8. SUPPLEMENTARY NOTES		
. KEY WORDS (Continue on reverse sids if necessary	and Identify by block and the	
Computer programs	Climate dyna	
Computer documentation	Weather	mi C2
Computer simulation	Atmosphere	
Computer graphics	Mintz-Arakaw	a Two-Level General
ABSTRACT (Continue on reverse side if necessary	Circulation and Identify by block number)	Model
see revers	e side	
	Reproduced by NATIONAL INFORMATION	TECHNICAL ION SERVICE
	U.S. Departme	ant of Commerce a VA 22151

PREFACE

The Rand/ARPA Climate Dynamics Project, sponsored by the Defense Advanced Research Projects Agency, uses computer simulations of the earth's climate as a means of understanding and predicting climate and its sensitivity to modification by human action, whether deliberate or inadvertent. The basic research tool is a Rand-adapted version of the Mintz-Arakawa (M/A) two-level atmospheric general circulation model developed at the University of California, Los Angeles, under National Science Foundation sponsorship (see A Documentation of the Mintz-Arakawa Two-Level Atmospheric General Circulation Model, Rand Report R-877-ARPA, by W. L. Gates, E. S. Batten, A. B. Kahle, and A. B. Nelson).

A characteristic of the M/A simulations is the production of large volumes of data. One 60-day simulation now produces roughly fifteen million numbers. This report documents several computer programs that handle this massive output, reducing it to more manageable and comprehensible form: three that generate maps, profiles, and tables; one that calculates and plots certain differences; and two auxiliary programs designed for more convenient and efficient use of the main program.

The author would like to thank Robert Mobley and E. S. Batten for reviewing an earlier draft of this report, and Marian Winston for her editorial help.

SUMMARY

This report is a user's guide to six computer programs employed by the Rand/ARPA Climate Dynamics Project in connection with simulations of the global atmosphere to study the highly complex interactions that produce world climate. The primary research tool of the project, the Mintz-Arakawa two-level general circulation model, is a massive program requiring 25 hours actual CPU computation time for a 60-day simulation and generating two billion numbers, of which 15 million are stored in 18 large arrays.

The MAPGEN, Map Display, and Zonal Profile programs, documented here, do postprocessing of this output, manipulating it into more manageable and comprehensible form--maps, profiles, and tables. The Difference program calculates the differences between experiments in a form that can be plotted by the Map Display program. Two auxiliary programs are documented here for completeness: Quick Look and Disk Initializer, which greatly facilitate use of the M/A program.

The MAPGEN and Map Display programs are run one after another to produce contour maps of the atmospheric variables. Together with the Zonal Profile program, they create a standard set of displays of the atmosphere over the earth's land masses and oceans. MAPGEN, a very large program, is used to obtain values and averages of a set of meteorological variables that are functions of the primary dependent variables; up to 28 variables can be obtained, some of them at both of two atmospheric levels, for each of the 3,312 nodes on the 46 × 72 latitude/longitude grid. These values are put on tape for input to Map Display. MAPGEN consists of about 4000 FORTRAN IV source cards, uses 1,250,000 bytes of core, and requires 50 minutes to process the output from a 60-day simulation.

Map Display uses about 150,000 bytes of core and about 20 seconds of computing time per contour plot. A contour map and a profile map of the zonal means are output for each set of values generated in MAP-GEN. The standard output package consists of 50 different contour maps and the zonal mean plots for each variable, accompanied by tables of

the values, the zonal means, the meridional means, the zonal means over oceans, and the global mean. Very little computing time is required for the profile plotting routines.

Since the standard M/A output uses six-hour accumulations, and certain variables change too rapidly to be satisfactorily represented by six-hour samplings, the Zonal Profile program works from the accumulation of half-hour values for the radiation, evaporation, and heating components. This program's output package consists of up to 32 profile graphs. Zonal Profile consists of about 1500 source cards and uses about 150,000 bytes of core and 18 seconds computing time for a 60-day simulation.

The Disk Initializer, Difference, and Quick Look programs are not formal output programs, but were written to facilitate the running of the M/A model. These are much smaller programs. Disk Initializer sets up a new disk for either a new or continuation experiment. Quick Look can be used to stop the M/A simulation, read the disk, and print out the values, to enable the researcher to determine if the M/A program is operating as expected—a particularly useful function with a program that runs so many hours. The Difference program, as mentioned above, expresses the difference between two simulation experiments in a form that can be plotted by Map Display.

CONTENTS

PREFACE	
SUMMARY	
FIGURES	is
TABLES	
Section	
-,	
	am
_	
	am
	gram
	gram
	port
organization of this ke	port
II. M/A DISK OUTPUT	
The Large Array Data Se	t (
The Time Record (TAU)	and Constant Array
	Output
III. USER'S GUIDE FOR MAPGEN .	
Input Formats	
Standard Output Map Des	criptions 19
MAPGEN Output	
Tape Output	2:
Punched Output	
Job Control Comments	
IV. USER'S GUIDE FOR MAP DISP	PLAY 2!
	20
	2
Job Control Comments	2
V. USER'S GUIDE FOR THE ZONA	AL PROFILE PROGRAM 33
	33
	3.
	3

VI.	USER'S GUIDE FOR THE QUICK LOOK PROGRAM	40
	Card Input	40
	Printout Description	41
	Job Control Comments	42
VII.	USER'S GUIDE FOR THE DISK INITIALIZER PROGRAM	43
VIII.	USER'S GUIDE FOR THE DIFFERENCE PROGRAM	44
Append	ix	
A.	LISTING OF STANDARD INPUT PACKAGE FOR MAPGEN	
	AND MAP DISPLAY	45
В.	DATA PRINTOUT FOR MAP DISPLAY OUTPUT FOR ONE VARIABLE	47
C.	CORRESPONDING MAP NUMBERS IN THE OLD AND NEW	
	VERSIONS OF MAPGEN	53
D.	PROGRAM VARIABLES AND SYMBOLS	55
REFERE	NCES	63

FIGURES

1.	Sample Contour Map Output by the Map Display Program	29
2.	Sample Plot of Zonal Means Output by the Map Display Program	30
3.	Sample Graph Output by the Zonal Profile Program	34
4.	Sample Input to the Zonal Profile Program	39

TABLES

1.	Symbols Used in the Topography Array	6
2.	Format for Each Complete Set of Time-Dependent Data	7
3.	Pre-COMP3 Arrays	8
4.	State Variables	8
5.	Precipitation Arrays	9
6.	Zonal Array Values in Disk Order	10
7.	Conversion Factors for Zonal Arrays on Disk	14
8.	Format of First Card of Each Set for MAPGEN Input	17
9.	Format of Map Cards for MAPGEN and Map Display Input	18
10.	Map Titles for MAPGEN Output	20
11.	Variables Not Covered in Gates, et al., by Map Number	21
12.	Zonal Profiles Available	33
13.	Control Words for the Zonal Profile Program	37
D1.	Symbols Used in MAPGEN Main Routine	56
D2.	The Large MAPGEN Arrays	57
D3.	Map Display Variables in Main Routine	59
D4.	Zonal Profile Program Variables	61
D5.	Subroutine MAPZON Variables	62

I. INTRODUCTION

This report is a user's guide to six computer programs used in the Rand/ARPA Climate Dynamics Project. Under the sponsorship of the Advanced Research Projects Agency, the project performs computer simulations of the global atmosphere to study the highly complex interactions that produce world climate. Human activities may have already produced significant changes in the atmosphere, yet our knowledge of the dynamics of climate is not advanced enough to permit us to predict with confidence the results of such changes.

The primary research tool of the Climate Dynamics Project is the computer simulation of world-wide circulation patterns, using a version of the Mintz-Arakawa (M/A) two-level general circulation model originally developed at the University of California. The basic Rand adaptation of the M/A model is documented in Ref. 1, which should be consulted for more complete descriptions of the physical variables and the equations used in the simulation. There have been changes made in the model output since that report was published, and some of these are documented here.

The output now comprises 18 arrays storing a total of 15 million numbers per 60-day simulation, rather than the 10 arrays stored previously. Three new programs--MAPGEN, Map Display, and Zonal Profile--do postprocessing of the M/A output. Three auxiliary programs--Ouick Look, Difference, and Disk Initializer--facilitate the use of the M/A program. An older version of MAPGEN, described in Ref. 1, is superseded by the version described below.

THE MINTZ-ARAKAWA PROGRAM

The basic numerical formulation concerns the division of the earth's atmosphere into a grid defined by 4 degrees of latitude and 5 degrees of longitude. Thus, there is a 46 × 72 array with 3,312 nodal points. For each node, the state variables of the atmosphere are defined at each of two levels defined by a sigma surface which is proportional to pressure. The values saved are calculated at the sigma

surfaces of one-quarter and three-quarters, where sigma equals zero at the top of the troposphere (200 mb) and 1 on the earth's surface. Selected meteorological variables (discussed more fully below) are computed for each node point every simulated half-hour. At six-hour intervals, the state variables at that time point are computed and stored in the arrays mentioned above.

The simulation of a 60-day period generates approximately 2 billion numbers, of which 15 million are stored on disk, and requires 25 hours CPU computing time on the IBM 360/91, one of the fastest computers in existence. The MAPGEN, Map Display, and Zonal Profile programs manipulate this massive output, reducing it to manageable and comprehensible form, and the Difference program can be used to plot the comparison between two simulation experiments.

THE M/A OUTPUT PROGRAMS

Certain output routines were included in the original Mintz-Arakawa two-level general circulation model as obtained from UCLA. Using an overlay technique, the program accumulated the output arrays as it ran, and after 30 simulated days, the output arrays were written and a contour map was printed. At Rand, A. B. Nelson deleted the original output option and wrote the first versions of MAPGEN and Map Display. The present versions and the Zonal Profile program were written by the author, under the direction of E. S. Batten and A. B. Kahle. The versions described here have been in use since February 1972.

MAPCEN is used to obtain values and averages of a set of meteorological variables, such as radiation, cloudiness, rain, evaporation, albedo, etc., which are functions of the primary dependent variables. These values are then put onto tape for the Map Display program. In the present version, up to 28 different variables can be obtained, with some of these available at more than one level. The standard output package consists of 50 different maps. Map Display is used to generate contour maps from the MAPGEN output. Using IGS S-C 4060 graphics

 $^{^{\}star}$ A mcdified version of the program now requires 15 hours CPU time.

routines (Ref. 2), contours of the data are drawn over a background map of the world, and the plots of zonal means are also drawn for each variable. The values themselves are also printed in tabular form, together with the zonal means, the meridional means, the zonal means over oceans, and the global mean.

Since MAPTON samples computed variables once every six simulated hours, the normal daily variation of some of these variables, such as radiation, evaporation, and heating components, can cause a significant sampling error in the results. For studies of heat, radiation, and moisture balance, it is desirable to eliminate this error. Therefore, to obtain more accurate zonal means, the present version of the M/A program accumulates zonal arrays each half-hour for these variables and stores the values on disk. The Zonal Profile program was written to collect and plot zonal profiles of these variables.

The MAPGEN Program

MAPGEN is a very large output program. The program consists of about 4000 FORTRAN IV source cards, and uses 1,250,000 bytes of core. To generate the values for the 50 standard maps for a 30-day accumulation, MAPGEN uses up to 25 minutes of CPU time, costing about \$250 on the IBM 360/91 at UCLA.

The principal output from MAPGEN is a tape of the time-averaged values and/or snapshot values (arrays at one time point). Twenty-eight different variables can be generated.

The Map Display Program

The Map Display program uses approximately 150,000 bytes of core and about 20 seconds of CPU time per contour plot on the 360/91. The printing and profile plots use very little CPU time.

For each set of values generated in MAPGEN, a contour map and a profile plot of the zonal means are generated in Map Display. The array values are also printed, together with the zonal means, the zonal means over oceans, the global means, the meridional means, and the map title. The contour map, identifying the local high and low values of the array, is drawn on a base map outlining the continents.

The values of the contours drawn are determined by specifying the contour interval and the value of one contour to be drawn as a dashed line. The other isoline values are positive and negative multiples of the isoline interval from the dashed-line value. Alternatively, the user may input up to 15 arbitrary isoline values, including his choice of the dashed-line value. See Fig. 1, p. 29, for a sample contour map.

The contour map is usually a rectangular projection, but polar projections can also be plotted if desired. The polar projections can be either stereographic or equidistant projections, and of course can be centered on either the North or the South Pole.

For the profile plot of the zonal means, the program finds the largest value of the zonal means and uses that as the scale factor for the graph. While this method of scaling has advantages, it makes comparison of these graphs difficult. (See Fig. 2 on p. 30 for a sample zonal means graph.)

Map Display output options enable the user to select the printout, contour map, and/or zonal means graph.

The Zonal Profile Program

The Zonal Profile Program uses approximately 150,000 bytes of core and requires nine seconds of CPU time to generate 32 profile graphs from a simulated 30-day period. The program consists of about 1500 FORTRAN IV source cards. A sample profile graph is given in Fig. 3 on p. 34.

From the zonal means saved during the integration of the M/A program, the Zonal Profile Program generates up to 32 different profiles, including profiles of radiation components, evaporation, cloudiness, and energy balance. The zonal variables are averaged over a given time period from values calculated each half-hour, and then are output in both printed and graphic forms.

The Smaller Programs

In addition to the three formal output programs, three smaller programs are necessary to use the M/A program effectively. These are called the Quick Look Program, the Difference Program, and the Disk Initializer Program.

The Quick Look Program reads the M/A disk output and prints out the data. At checkpoints throughout the M/A simulation, the M/A program may be stopped and the data on disk inspected, via Quick Look, to determine if the program is behaving as expected. Both the state variables and the accumulated zonal means are printed by the program.

The Difference program is used to calculate the differences between two experiments. Two data tapes generated by MAPGEN are used to form a new tape to be used by the Map Display program to form maps of the differences.

The Disk Initializer program is used exclusively by the programmer in conjunction with the running of the M/A program. This program will set up a new disk, either for the continuation of an experiment or for the beginning of a new experiment.

ORGANIZATION OF THIS REPORT

The next section describes the new format of the M/A disk output. This is followed by user's guides for the six programs.

Four appendices are given at the end of the program. Appendix A is a listing of the standard input package for MAPGEN and Map Display. Appendix B is a printout of the data on a simple variable (degrees Centigrade) from the Map Display program. Appendix C gives the correspondence between the new and old numbers for the MAPGEN map-types, as documented here and as documented previously in Ref. 1. And Appendix D presents tabular detail concerning program variables, symbols, and arrays.

II. M/A DISK OUTPUT

To understand any of the M/A output programs, the user must first understand what the M/A program has written onto disk during its simulation.

The M/A simulation program forms two data sets for a time history of the run. The larger of the data sets consists of large 46×72 grid-point arrays, with the smaller consisting of a number of 46×1 zonal arrays.

THE LARGE ARRAY DATA SET

At the beginning of the large array data set, two arrays that never change throughout the simulation are given. These are TOPOG, the surface topography indicator, and ALBEDO, the surface albedo, which appears as ALS in the COMP3 subroutine.

Table 1

SYMBOLS USED IN THE TOPOGRAPHY ARRAY

- 1. If TOPOG > 1.0, then the grid point is ocean and the value is the ocean temperature in degrees Kelvin.
- 2. If TOPOG < 1.0 and > -10⁶, then the grid point is land and the value is the negative of the altitude in meters multiplied by the gravitational constant, GRAV (9.81).
- 3. If TOPOG $< -1.0 \times 10^6$, then the grid point is land ice and the value is -1.0×10^6 minus the altitude in meters multiplied by the gravitational constant.
- 4. If TOPOG = -1.0×10^6 , then the grid point is sea ice.

Once every six hours of simulated time, the program writes data onto the disk in the two data sets. The large array data set can be divided into four sections: (1) time record, (2) the pre-COMP3 values

(explained below), (3) the state variables, and (4) the precipitation arrays. Table 2 gives the arrangement on disk for each time point for this data set. The other data sets consist of zonal arrays.

Table 2

FORMAT FOR EACH COMPLETE SET OF TIME-DEPENDENT DATA

TAIL C/0001

	TAU, C(800)
Pre-COMP3 Arrays	T(46,72,2) Q3(46,72) GW(46,72) GT(46,72)
State Variable Arrays	P(46,72) U(46,72,2) V(46,72,2) T(46,72,2) Q ³ (46,72) GW(46,72) GT(46,72)
Precipitation Arrays	ACPPLS (46,72) ACPPC1 (46,72) ACPPC3 (46,72)

The Time Record (TAU) and Constant Array

The first record at each time point contains the reference time, TAU, in hours, and an array, C, of 800 constants used in the M/A simulation and the output programs.

For historical reasons, the starting point of the Rand-M/A simulations is not TAU = 0, but TAU = 8160, or day 340. The time of year is determined by a variable (SDEDY) within the C-array. For experiments at RAND, day 340 corresponds to December 1.

Pre-COMP3 Arrays

Rather than save on disk all the variables which may be needed, the values of some state variables are saved before they are adjusted by subroutine COMP3, thereby allowing the variables defined in COMP3 to be obtained by a postprocessing pass. The pre-COMP3 variables saved are:

Table 3

PRE-COMP3 ARRAYS

- T Temperature at tropospheric levels 1 and 3 in degrees Kelvin
- Q3 Mixing ratio at level 3
- GT Ground temperature in degrees Kelvin
- GW Ground wetness fraction

State Variables

The state variables after the complete integration step are stored on the disk for each output time. The arrays are dimensioned 46×72 , representing the latitude/longitude grid points. The state variables include:

Table 4

STATE VARIABLES

- P Surface pressure in millibars, minus the troposphere pressure (200 mb)
- U Horizontal zonal wind at levels 1 and 3 in meters/sec
- V Meridional wind at levels 1 and 3 in meters/sec
- T Temperature at tropospheric levels 1 and 3 in degrees Kelvin $\,$
- Q3 Mixing ratio at level 3
- GW Ground wetness fraction
- GT Ground temperature in degrees Kelvin

For further explanation of these symbols and arrays, see Ref. 1.

Precipitation Arrays

Since precipitation rates can be highly variable and thus the true total precipitation be lost by sampling only every six hours, the M/A program accumulates the precipitation data every half-hour. This information is written onto disk in three arrays for each six hours of simulation.

Table 5

PRECIPITATION ARRAYS

- ACPPLS, representing PREC × P, where PREC is level 3 moisture change due to large-scale precipitation, and P is surface pressure. To obtain units of mm/day, multiply by 200/GRAV, where GRAV = 9.81 m/sec².
- 2. ACPPC1, representing (PC1 + C1) × P, where PC1 is level 1 temperature change due to penetrating convection, and C1 is level 1 temperature change due to mid-level convective latent heating. To obtain units of mm/day, multiply by 200/(GRAV × CLH) where GRAV = 9.81 and CLH = .24/580.
- 3. ACPPC3, representing (PC3 + C3) \times P, the equivalent values for level 3. To obtain units of mm/day, multiply by 200/GRAV \times CLH) where GRAV = 9.81 and CLH = .24/580.

ACCUMULATED ZONAL MEANS OUTPUT

At the same time that the precipitation data set is written, the M/A program writes into another data set a set of twenty-four or twenty-five accumulated zonal arrays, depending on the version of the M/A program used. The zonal arrays are accumulated every half-hour and are written onto the disk every six hours. At each time point, TAU, the time in hours, is written in one record, followed by the twenty-four or -five records, each containing a 46-word zonal mean array.

To insure that the zonal arrays are stored onto disk, the M/A model writes TAU and the zonal arrays followed by a dummy record at each time point. Then, before the next write, a backspace over the dummy record is performed. But, at the end of the data set, the dummy record remains. This record can be recognized by the fact that the first value is much smaller than TAU, approximately 10^{-82} . When two of these data sets are concatenated, TAU must be tested so that the dummy record can be skipped.

As the disk is written every six hours, and the computational sub-routine COMP3 which computes these values is executed every half-hour, each array on disk is the sum of the arrays for 12 time points. Therefore, the set of data arrays written at each time point is the accumulation from the previous six hours.

The array values are described below in the order in which they appear on the disk. A short mnemonic and a description is given for each variable. If a formula is given, the names used in the formula are described below or in the FORTRAN dictionary in Ref. 1. If a formula is not given, the mnemonic itself is a variable name described in that reference.

The following variable names are used in the formulas:

- L = latent heat of condensation = 580 cal/g
- CP = dry air specific heat at constant temperature = 0.24 cal/g/deg
 - $g = gravitational constant = 9.81 m/sec^2$
- p = surface pressure values, which change with time

The Zonal Array Values in disk order are given in Table 6.

Table 6

ZONAL ARRAY VALUES IN DISK ORDER

- 1. CL1--the deep convective cloudiness indicator; see the Map 14 description in the MAPGEN User's Guide.
- 2. CL2--the large-scale convective cloudiness indicator; see the Map 14 description in the MAPGEN User's Guide.
- 3. CL3--the low-level convective cloudiness indicator; see the Map 14 description in the MAPGEN User's Guide.
- 4. CL--the total cloudiness indicator; see the Map 14 description in the MAPGEN User's Guide.
- 5. E4--the surface evaporation rate.
- 6. F4--the surface sensible heat flux.
- 7. AS1--the insolation absorbed by the upper layer.
- 8. AS3--the insolation absorbed by the lower layer.
- R0--the net upward long-wave radiation flux at tropopause.
- R2--the net upward long-wave radiation flux at level
 2.
- 11. R4--the net upward long-wave radiation flux at the surface.

- S4--the total flux of short-wave radiation absorbed by 12. the ground.
- RETOT--the total solar radiation reflected from the Earth-atmosphere system. The variable RETOT is calculated in the following way:

RETOT = SS *
$$\left(\frac{\text{CL * ALAC * (1 - ALS)}}{1 - \text{ALAC * ALS}} + \frac{(1 - \text{CL}) * \text{ALAO * (1 - ALS)}}{1 - \text{ALAO * ALS}}\right)$$

+ FS4C + $\left(\frac{\text{S4 * ALS}}{1 - \text{ALS}} - \frac{\text{TEMS * CL}}{1 - \text{TEMP * ALS}}\right)$

where TEMS and TEMP are one of four sets of values depending on the cloudiness values CL1, CL2, and CL3, as follows:

- 1. If CL1, CL2, and CL3 \leq 0.0, TEMS = TEMP = 0.0
- 2. If CL3 > 0.0 and CL1, CL2 \leq 0.0, then:

TEMS = SA *
$$(1 - ALC3)$$
 * $(1 - .271 * [(EFV0 - EFV3)/COSZ + 1.66 * (EFVC3 + EFV3)] \cdot ^{303})$

TEMP = ALC3

3. If CL2 > 0 and $CL1 \le 0$, then:

TEMS = SA *
$$(1 - ALC2)$$
 * $(1 - .271 * [(EFV0 - EFV2)/COSZ + 1.66 * EFVC2 * COT + EFV3] \cdot 303)$
TEMP = ALC2

where COT = Min(1.0, (RH3 - 0.9) * 10.0)

4. If CL1 > 0, then:

TEMS = SA *
$$(1 - ALC1)$$
 * $(1 - .271 * [(EFVO - EFV1)/COSZ + 1.66 * (EFVC1 + EFV3)]^{.303})$

TEMP = ALC1.

- 14. SCOSZ--the total solar radiation at the top of the atmosphere.
- 15. STRA = SA ASOT--the short-wave absorption above the troposphere.
- 16. PPTOT = [PREC +(CP/L) * (C1 + C3 + PC1 + PC3)] (P/2g) * 4800—
 the total precipitation.
- 17. HL1 = (C1 + PC1) * 48--latent heating at sigma level 1/4.
- 18. HL3 = (C3 + PC3 + (CP/L) * (PREC) * 48--1 atent heating at sigma level 3/4.
- 19. HSW1 = AS1 * (2g/P) / (CP/10)—the short-wave heating at sigma level 1/4.
- 20. HSW3 = AS3 * (2g/P) / (CP/10)--the short-wave heating at sigma level 3/4.
- 21. HLW1 = (R2 R0) * (2g/P) / (CP/10)--the long-wave heating at sigma level 1/4.
- 22. HLW3 = (R4 R2) * (2g/P) / (CP/10)--the long-wave heating at sigma level 3/4.
- 23. HF4 = F4 \star (2g/P) / (CP/10)--the sensible heat from the Earth.
- 24. CICE = the heat rising through ice; see the Map 23 description in the MAPGEN User's Guide.
- 25. HDIF--the smoothed heating terms as computed in COMP3. H1 and H3 are the temperature changes at sigma surfaces 1/4 and 3/4 respectively. These values are smoothed before being added to the temperature, by area smoothing (H1 + H3)/2 and adding (H1-H3)/2 for sigma level 1/4 and subtracting (H1-H3)/2 for sigma level 3/4 temperature changes. HDIF is the smoothed value of (H1 + H3)/2.
- Note: This zonal array was not put onto disk in the version of the M/A program used in experiments 10-13. The error in calculating total heating with this term omitted is not large; however, the array has been added for the sake of accuracy.

The values saved on disk differ by a constant from the six-hour average quantities listed above. Each of these arrays has to be multiplied by the constant given in Table 7 in order to obtain desired units,

as shown. The number 12 appears in the constants because COMP3 is executed 12 times in each six-hour period, and 72 is the number of longitude points accumulated at each latitude. The radiation unit of langleys is abbreviated as ly.

Table 7

CONVERSION FACTORS FOR ZONAL ARRAYS ON DISK

Varia	able × C	onst. = Units	Variable	e × Const. =	Units
CL1	$\frac{1}{12 \cdot 72}$	fraction	RETOT	$\frac{1}{12 \cdot 72}$	ly/day
CL2	$\frac{1}{12 \cdot 72}$	fraction	SCOSZ	$\frac{1}{12 \cdot 72}$	ly/day
CL3	$\frac{1}{12 \cdot 72}$	fraction	STRA	$\frac{1}{12 \cdot 72}$	ly/day
CL	$\frac{1}{12 \cdot 72}$	fraction	PPTOT	$\frac{100}{36 \cdot g}$	mm/day
E4	1000	mm/day	HL1	$\frac{48}{12 \cdot 72}$	deg C/day
F4	$\frac{1}{12\cdot 72}$	ly/day	HL3	$\frac{48}{12 \cdot 72}$	deg C/day
AS1	$\frac{1}{12 \cdot 72}$	ly/day	HSW1	$\frac{2 \cdot g}{12 \cdot 72 \cdot 10 \cdot CP}$	deg C/day
AS3	$\frac{1}{12\cdot 72}$	ly/day	HSW3	$\frac{2 \cdot \mathbf{g}}{12 \cdot 72 \cdot 10 \cdot \mathbf{CP}}$	deg C/day
RO	$\frac{1}{12 \cdot 72}$	ly/day	HLW1	2 · g 12 · 72 · 10 · CP	deg C/day
R2	$\frac{1}{12 \cdot 72}$	ly/day	HLW3	2 · g 12 · 72 · 10 · CP	deg C/day
R4	$\frac{1}{12 \cdot 72}$	ly/day	HF4	2 · g 12 · 72 · 10 · CP	deg C/day
S 4	$\frac{1}{12 \cdot 72}$	ly/day	CICE	$\frac{1}{12\cdot 72}$	ly/day
			HDIF	$\frac{48}{12 \cdot 72}$	deg C/day

III. USER'S GUIDE FOR MAPGEN

The MAPGEN program reads the disk written during the M/A simulation program, combines variables stored on the disk into meteorologically meaningful parameters, and prepares a tape for the Map Display program which draws contour maps and graphs of the zonal averages. The standard output (see description below) consists of maps and zonal average graphs of 28 variables. Many of the variables can be mapped at more than one level. While the 28 variables are commonly used, new maps may be defined and included in MAPGEN, or some of the 28 may be excluded.

In order to recover the meteorological variables calculated during the integration of the M/A model within subroutine COMP3, MAPGEN uses the pre-COMP3 arrays on disk plus the subroutine COMP3 to recalculate these values. The version of COMP3 used for MAPGEN is different from the M/A COMP3, but the actual calculations are the same for both programs. Many experiments involve a change to COMP3 in the M/A program, and these changes must also be made to the MAPGEN version of COMP3 in order to obtain correct values. For this reason, as a general rule, COMP3 should always be compiled when MAPGEN is run. This listing can then be referred to if questions arise about the values calculated in MAPGEN.

MAPGEN can sample data from the history disk at specified single time points or collect and time-average data over specified time periods. In calculating the time averages, the starting and ending data points are given half the weight of each interior time point. If these times were, for example, 370.0 to 400.0--a thirty-day average--the values at each end point would be multiplied by one-half and then added to the values for each six hours from 370.25 to 399.75 days. At the end of the accumulations, the numbers are averaged by dividing the total by 120--not by 121, as would be the case if the beginning and ending days were counted at full value. Although a thirty-day average is most commonly requested, the averaging period is arbitrary and, like the other options, is controlled by the input cards.

INPUT FORMATS

The first card of the MAPGEN run is the header card (read only once for each run).

HEADER CARD FORMAT

Column	Format	Meaning
1	11	Describes new disk format; leave blank
2-77	19A4	A title printed at the beginning of MAPGEN output. In hap Display, this title is printed on each page and frame of output.

Following the header come the sets of map cards. The first card of each set inputs, among other things, the start and end times for the time averaging. In MAPGEN, a maximum of 40 maps may be called for with one set of data; however, in each run, as many sets may be input as needed. Each set, if it contains less than 40 map cards, is terminated by a blank card, and the last set is terminated by two blank cards. (If exactly 40 map cards are input, the sets should not be separated by a blank card.)

If a run consists of more than one set of data, the user should keep in mind that the computational subroutine, COMP3, uses most of the CPU time. This is true even though all of the variables computed by COMP3 at a time point are found in one pass through the subroutine. The 13 variables that use COMP3 should therefore be collected into one set of data, and those that do not, into another. The map numbers of the 15 variables that do not use COMP3 are 1-8, 10-13, and 15-17. The format of the first card of each set is given in Table 8, and the format for the map cards, in Table 9.

The data cards for MAPGEN can also be used for the Map Display program, which minimizes input preparation for the two programs. However, for Map Display, a blank card must always separate the sets of input cards.

Table 8

FORMAT OF FIRST CARD OF EACH SET FOR MAPGEN INPUT

Column	Format	Meaning
1-10	F10.0	Time to start in days, e.g., 370.0
11-20	F10.0	Time to end in days, e.g., 400.0 Note: The data for a single time point can be obtained by setting the start and end times to be the same.
21-30	F10.0	Projection type: 0.0 = rectangular 1.0 = north stereographic -1.0 = south stereo 2.0 = north equidistant -2.0 = south equidistant.
31-40	F10.0	If nonzero, cards of the zonal mean values are punched in MAPGEN. The value in these columns is truncated to an integer value and punched on the cards as the experiment number. See Punched Output described on page 23.

Table 9
FORMAT OF MAP CARDS FOR MAPGEN AND MAP DISPLAY INPUT

Column	Format	Meaning		
1-2	12	The map number, between 1 and 28, right adjusted.		
3-7	F5.0	SURF, the sigma surface, e.g., 0.25, 0.75, 1.0, or for some maps the pressure, e.g., 400.0 mb, 800.0 mb. For convenience, this value will be called SURF in later discussions. The sigma surface is 1.0 for the surface and 0.0 for the top of the troposphere.		
8-12	F5.0	The isoline interval. Isoline values are calculated using positive and negative multiples of this value, starting from the dashed-line isoline value.		
13-17	F5.0	Value of the isoline to be dashed.		
18-22	F5.0	Not used.		
23-27	F5.0	Number of copies of the array to be printed at this time, normally 1.0. If 0.0, the values are not printed.		
28-32	F5.0	Number of specific isoline values to be read (<15). If these columns are zero or blank, the isoline intervals described by 8-12 and 13-17 are used. Otherwise, one additional card is read for the map description. It contains the map number in columns 1-2 as usual, followed by as many as 15 specific values of isolines to be contoured (each in F5.0 format). This extra card does not count toward the limit of 40 map cards per set. Note that the dash line value has to be input among the values if it is to be drawn.		
33-37	F5.0	If not zero, then zonal means are not to be graphed in the Map Display program.		
38-42	F5.0	If not zero, the contour map is not graphed in the Map Display program.		

Only the first seven columns of the map cards are used by MAPGEN. The map number determines the variable to be used, and the value of SURF specifies the level at which the variable is desired.

STANDARD OUTPUT MAP DESCRIPTIONS

A standard set of variables is plotted for each simulation. This standard output package consists of two sets of data, the first not using COMP3 and the second using the subroutine. The card input for this package is listed in Appendix A. Some of the 28 different variables are available at more than one level. The value of SURF (meaning surface or pressure) usually denotes the sigma surface level, but it is sometimes a pressure level or, in some cases, simply a flag to distinguish different maps.

Table 10 gives the map numbers and titles, showing the units of the variables. The values of SURF are also given for the standard input package—SURF usually indicates the tropospheric level, expressed either as a sigma level or as a pressure in millibars, as described above. Some of the variables are identified by different map numbers in Chap. IV of Ref. 1, the Mintz-Arakawa documentation. The variables have since been renumbered. See Appendix C for the correspondence of map numbers. Variables not discussed in Ref. 1 are described in Table 11, below.

MAPGEN OUTPUT

The printed output of MAPGEN is very limited. The title card is printed, then the input cards of each data set are printed out, with the end of each set followed by a row of zeros. After the data set has been printed, the M/A disk data sets are read in. For each time record read, the time point in hours and days is written out. A new page is started when the first time point to be included is reached. When all of the values have been averaged, the information is written onto tape and a description of each map is written out, consisting of the first and last times of the accumulation, the number of accumulations, the map number, the SURF value, and the map title.

Table 10

MAP TITLES FOR MAPGEN OUTPUT

Map No.	SURF for Standard Output	Uses COMP3	Title
1	1.0	No	Topography (ocean temperature, deg C)
	3.0	No	Topography (surface elevation, hectofeet)
2	1.0	No	Sea Level Pressure Smoothed (mb - 1000)
3	0.25, 0.75, 1.0	No	Pressure at Sigma Surface (mb)
4	0.25, 0.75, 400, 800	No	Geopotential Height (hectometers)
5	0.25, 0.75, 400, 800	No	East-West (u) Wind Component (m/sec)
6	0.25, 0.75, 400, 800	No	North-South (v) Wind Component (m/sec)
7	0.5	No	Sigma Vertical Velocity (mb/hr)
8	1.0	No	Ground Temperature (deg C)
9	1.0	Yes	Surface Air Temperature (deg C)
10	0.25, 0.75, 400, 800	No	Temperature (deg C)
11	1.0	No	Ground Wetness (scaled zero to ten)
12	0.75	No	Relative Humidity (percent)
13	1.0	No	Precipitable Water (cm)
	0.25	Yes	CL1 - Deep Convective Cloudiness
14	0.75	Yes	CL2 - Large-Scale Cloudiness
	1.0	Yes	CL3 - Low-Level Convective Cloudiness
	2.0	Yes	CL - Total Cloudiness
15	1.0	Nc	Large-Scale Precipitation (mm/day)
16	1.0	No	Convective Precipitation (mm/day)
17	1.0	No	Total Precipitation (mm/day)
18	1.0	Yes	Evaporation (mm/day)
19	1.0	Yes	Surface Heating by Evaporation (100 ly/day)
20	1.0	Yes	Sensible Heat Flux (10 ly/day)
21	1.0	Yes	Surface Insolation Absorption (100 ly/day)
22	1.0	Yes	Surface Long-Wave Heating (100 ly/day)
23	1.0	Yes	Surface Heat Balance (100 ly/day)
24	0.25	Yes	Latent Heating in Layers (sigma = 0 to .5)(deg/day
	0.75	Yes	Latent Heating in Layers (sigma = .5 -1) (deg/day)
25	0.25, 0.75	Yes	Absorption of Insolation in Layers (deg C/day)
26	0.25, 0.75	Yes	Long-Wave Heating in Layers (deg C/day)
27	0.25, 0.75	Yes	Total Heating (deg C/day)
28	1.0	Yes	Net Albedo

Table 11

VARIABLES NOT COVERED IN GATES, ET AL., BY MAP NUMBER

Мар	Variable	Formula or Calculation Method		
3	Pressure	PTROP + SURF · 3		
		where PTROP = tropopause pressure = 200mh, SURF = sigma surface, P = surface pressure parsmeter		
7	Sigma Vertical Velocity Meridional Mass Flux	Defined in Ref. 1, p. 170. From these values, the zonal mean values of the meridional mass flux are calculated; these are printed and graphed in the Map Display program. Calculated at sigma surface of 1/2. SURF is not used. See p. 28 for formula.		
14	Cloudiness CL1 Deep convection CL2 Large-scale CL3 Low-level CL Total	Collected when SURF 2 0.5 Collected when SURF between 0.5 and 1.0 Collected when SURF over 1.0 Calculated in COMP3 by:		
		Deep Convective Cloudiness (CL1)		
	CL1	if both Cl and PCl 70.0, CLl = 0.0, i.e., if there is no positive temperature change in level 1 due to convective latent heating (Cl) or to penetrating convection (PCl); otherwise,		
		CL1 = Max [0.0, Min(RH3 · 1.25)25, 1.0)]		
	-	where RH3 is the level 3 relative humidity.		
		Large-Scale Cloudiness (CL2)		
	CL2	CL2 is either 0.0 or 1.0. CL2 = 1.0 if RH3 0.9, otherwise CL2 - 0.0.		
	•	Low-Level Convective Cloudiness (CL3)		
	CL3	CL3 is 0.0, except if the stability parameter for low-level convection (EX) is g than zero and the level 1 temperature change due to per strating convection (PC1) equal to 0.0, in which case:		
		CL3 = Max[0.0, Min(1.25 + RH3)7 + , 1.0)]		
		Total Cloudiness (CL)		
CL = Max (CL1, CL2, CL3)		CL = Max (CL1, CL2, CL3)		
		For these msps, SURF is not printed on the msp frames.		
15	Large-scale Precipitation	Computed from the accumulated half-hour values of PREC • P (precipitation at each grid point) that are saved at each output time. It is given by the expression:		
		$\frac{48}{2g} \cdot \frac{10^2}{\rho_W} \left(\frac{1}{12} \sum_{i=1}^{12} (PREC \cdot P)_i \right)$		
		where $v_{\rm W}$ = 1 g/cm, i represents the ith half-hour value, PREC is The level 3 molsture change due to large-scale condensation, and P is the surface pressure parameter. SURF is not used.		
16	Convective Precipitation	Produced from the accumulated half-hour values of (PC1 + C1) \cdot P and (PC1 + C3) \cdot that are saved at each output time. It is given by the expression:		
		$\frac{48}{2g} \cdot \frac{c^2}{c_w^2} \cdot \frac{c_p}{L} \left[\frac{1}{2} \left\{ \sum_{i=1}^{12} \left[(PC1 + C1) \cdot P \right]_i + \sum_{i=1}^{12} \left[(PC3 + C3) \cdot P \right]_i \right\} \right]$		
		SURF is not used.		

Table li--continued

Мар	Variabie	Formula or Calculation Method
19	Surface Heating by Evaporation	Computed from the expression:
		-L · E4 · 864.0
		where L = latent heat (580.0) and E4 = surface evaporation rate. SURF is not used.
22	Surface Long-wave Heating	The negative of this variable is described on p. 212 of Ref. 1. The expression is: $-R4/100$
		where R4 is the net upward iong-wave radistion st the Earth's surface. SURF is not used.
23	Surface Heat Balance	The values for this map equal
		Map 21 + Map 22 - (Map 20 \cdot 10 ⁻¹) + Map 19 + C1CE \cdot 10 ⁻¹
		where CICE is 0 for land or ice-free ocean. When this grid point is sea ice,
		CICE = TEM · (TICE - TG)
		where TEM = CTID/HiCE, the thermal conductivity of ice (=432) over the effective ice thickness (=300); TICE = melting point of ice (=273.1); and TG is the ground temperature. SURF is not used.
24	Latent Heating in Layers	The map for the sigma level 0 to one-half is described by:
		$(C1 + PC1) \cdot 48$
	S1gma ≤ 0.5	where Cl and PCl are level l temperature change due to mid-level convective latent heating and to penetrating convection, respectively. The number 48 puts the values in the units degs C/dsy .
- 1		The map for the sigma level one-half to 1.0 is described by:
- 1		$(C3 + PC3 + CLH \cdot PREC) \cdot 48$
	Sigma 0.5-1.0	where C3 and PC3 are level 3 temperature change due to mid-level convective latent heating and to penetrating convection, respectively, CLH is the latent heat to specific heat ratio (580/.24), and PREC is level 3 moisture change due to lsrge-scale condensation.
28	Net Albedo	Computed from the ratio of two time-averaged variables. At each grid point, the time averaged values of the following variables are collected:
		SCOSZ and RETOT
		where RETOT is the total reflected solar radiation, and SCOSZ is the total solar radiation at the top of the atmosphere. (See Sec. II for the formulation of RETOT.) The variable values are then formed using RETOT/SCOSZ. SURF is not used.

Tape Output

The important output of MAPGEN is the tape that contains the map data. For each map, a tape record is written describing the map data. These records are used as input to the Map Display Program, where the actual contour and zonal profile maps are drawn. If two experiments are to be compared, the data arrays can be input to the differencing program, which subtracts them, and Map Display can contour the differences.

The following information is put into each record by MAPGEN.

- 1. The start and end times in hours of the accumulation (2 words).
- 2. The (floating-point) weighting factor used to average the accumulations. If only one time point is used, this number is set to 1.0.
- 3. A 4-character identification, input in the M/A run.
- 4. The map number (integer).
- 5. The 52-character 13-word title of the map.
- 6. The sigma surface or pressure, SURF.
- 7. Two logical flags, one word each, stating whether the array data are on the π grid (the horizontal finite-difference grid) or the u,v wind velocity grid. See Ref. 1, p. 70.
- 8. A word no longer used.
- 9. The 46×72 array values.
- 10. The 46-word zonal mean of the variable.
- 11. The 46-word zonal mean of the variable over the oceans.
- 12. The global mean.

A dummy record of the same length is used to flag the end of the tape. The start and end times for this record are set to values over 100,000.

Punched Output

If the punched output for the zonal mean values is requested by the first card of the data set, then for each map in the data set, seven punched cards giving the zonal means and the global mean will be generated. The first three columns of the cards give the card number, 0 through 6. The next six columns give the input (integer) experiment number and the map number, followed by the SURF value in columns 10-16. The first card gives the start and end times in columns 17-24 and 25-32. The next five cards have eight zonal mean values per card in columns 17 through 80, 8 columns per value, with the values given to thousandths. The last card has the last six zonal mean values plus the global mean in columns 65-72.

JOB CONTROL COMMENTS

The program is run at UCLA on the IBM 360/91. The program uses 1250K of core, and is compiled on the H-compiler. The map data, along with other information, is written onto FORTRAN unit 9, in this case a tape, in one large record for each map.

The disk data sets written by the M/A program are input on FORTRAN unit 8. Two disk data sets may have to be concatenated as one disk holds only about 23 days simulation time.

IV. USER'S GUIDE FOR MAP LISPLAY

Map Display outputs the data generated by MAPGEN. The data can be displayed in three ways: The array and affiliated statistics can be printed, a contour map can be drawn, or the zonal mean values can be graphed. The type or types of output are controlled by card input.

The choice of the isolines to be drawn in the contour map is very important. These values may be a personal choice, or may depend on the data; one experiment may need different isolines from another. This is one reason why Map Display and MAPGEN are two programs; the array data may be used to generate many different contour maps with different isolines. However, the isolines used in the standard output package are very good for most runs. (See Appendix A.)

INPUT DESCRIPTION

There are three types of input for Map Display: the map descriptions similar to the MAPGEN input, the land outlines for the contour maps, and the array data from MAPGEN. The first two types are input with cards, and the MAPGEN output is on tape or disk.

To obtain an outline of the continents used in the M/A program, a set of input cards must be prepared for the Map Display program. For each M/A grid point, a value is input: zero if the point is ocean, and nonzero if the point is land. Note that sea ice is considered ocean (0) and land ice is considered land (1).

The land mass data are input using 144 cards. For each of 72 meridians, two cards are used to describe the 46 latitude values along the meridian. The first card has 25 values in the first 75 columns in F3.0 format (0.0 or 1.0), starting with the South Pole, and the second card has the remaining 21 values in the first 63 columns in F3.0 format, ending at the North Pole. The 72 pairs of cards start at 180° W longitude and proceed eastward to 175° E.

The input data sets described in the MAPGEN section (pp. 16-19) are also used for Map Display. The first card of the data set and the map descriptions are the same as those described in the MAPGEN User's

Guide. However, the input is more flexible for Map Display. For one thing, one data set can consist of any number of map descriptions, while MAPGEN is limited to 40. Incidentally, the order of the map descriptions does not have to be the same as on tape; they can be put into any order desired. To match the data on tape, only the start and end times, the map number, and the SURF value need to be the same; all the other values in the map description can be different in the Map Display run. Thus, in one Map Display run, several contour maps using different isolines can be drawn using the same array data.

PRINTED OUTPUTS

Appendix B presents an example of the printout from the Map Display program. Each map printout consists of five pages of printed output, with a standard heading on each page.

The output heading consists of three lines of data. The first line gives the map number and the run title that were input in columns 2 through 77 of the first card of the input. The second line gives the map title, the SURF value, the contour interval, and the global mean. The SURF value is identified as S/P, which means sigma surface or pressure level, and the contour interval is called CONINT. The third line consists of the four-character identification input in the M/A run, time points sampled from the M/A disk by MAPGEN, and the starting and ending days.

The global mean is calculated by area weighting the zonal means. There are two sets of weighting functions, one for the standard π latitude/longitude grid and the other for the wind grid (which is called the u,v grid in the M/A model). The weighting function (wf) for the π -grid is defined by:

wf (L) =
$$\begin{cases} 1 - \sin 88^{\circ} & \text{for } L = -90^{\circ} \text{ and } +90^{\circ} \\ \sin (L + 2^{\circ}) - \sin (L - 2^{\circ}) & \text{for } L = -86^{\circ} & \text{to } +86^{\circ} \end{cases}$$

where L proceeds from -90° to +90° by increments of 4°.

The weighting function for the u,v grid is given by:

wf (L) =
$$\sin (L + 2^{\circ}) - \sin (L - 2^{\circ})$$
 for L = -88° to $+88^{\circ}$

where L goes from -88 to +88 by 4° increments. The global average of a zonal mean, X(L), is then given by:

$$\frac{1}{2}$$
 \(\text{wf (L) \cdot X(L)}

The latitudes are printed on the left side of each page. The last row on the page, labeled AVG, represents the weighted meridional averages of the longitude. The longitude labels are directly under the page heading. The last page of output includes the zonal means and the zonal means over the oceans.

Whenever a local high or low value is found, an H or L is printed, respectively. In the case of the wind maps 5 and 6, these letters are replaced by W or E for map 5, and S or N for map 6.

The zonal means graph has the global mean printed at the right side of the graph. Below this, the zonal mean values are printed next to their respective latitudes. The line in the center of the graph area represents the zero value. The scale for the plot is determined by the zonal means themselves; the largest absolute value among the means is chosen as the scale factor. In the example in Fig. 2, the largest absolute value is -1.683, and thus the extreme left of the graph area is chosen to be -1.683 and the extreme right of the graph area is +1.683. The hash marks on the zero value line represent each of the 46 latitudes.

For map 7, which describes the sigma vertical velocity, an additional output is given. Zonal means of the horizontal mass flux of the simulation are printed with the other means. If a zonal mean graph for map 7 is to be plotted, the mass flux profile will be drawn, in addition to the graph of vertical velocity. A different map title is used for the horizontal mass flux profile. If ZM(J) is the original zonal mean then ZMF(J), the zonal mean of the horizontal mass flux, is defined by:

$$ZMF(J) = \begin{cases} 0.0 & \text{if } J = 1 \\ \\ ZMF(J-1) - 2.52 & * [ZM(J) * COS (4° * (J-1) - 86° \\ \\ & + ZM(J-1) * COS (4° * (J-2) - 86°) \end{cases} \text{ for } J = 2, 46$$

The unit of measurement is 10^{13} gm/sec.

PLOT OUTPUT

Examples of the two plots drawn by Map Display are given as Figs. 1 and 2. Figure 1 is the contour map and Fig. 2 is the corresponding plot of zonal means.

The heading is similar to the printout heading. The first line consists of the map number and the run title. The second line starts with the map title. The SURF value is normally printed, either with "SIG =" if SURF is a sigma surface, or with "MB" following the value if SURF is a pressure level. For maps 1 and 14, SURF is not printed at all, as SURF is strictly a flag in these maps. Following this, on the same line, is the message ISOLINES AT, followed by the smallest isoline value and the contour interval. The third line starts out defining the time intervals, giving the start and end time in days. Next a four-character identification is printed, which was input during the M/A simulation run. Next the dashed-line isoline value is printed, preceded by the message DASHED LINE IS.

For maps which use the u,v grid, a warning message, GRID OFFSET, is written at the end of this line. That is because the contours are drawn as if the values are on the π -grid, when actually the contour lines are displaced one-half grid interval to the left and upward.

The contour map has the latitude values printed every 20 degrees on the right side of the map. At each grid point in the oceans, a dot is plotted so that the latitude and longitude are more easily read. The land outline is drawn between the land and water grid points. Ice is not indicated on the map.

JCB CONTROL COMMENTS

To draw the maps, Map Display uses a Rand-developed software system called the Integrated Graphics Systems (IGS), described in Ref. 2.

Fig. 1 — Sample contour map output by the Map Display program. The accompanying graph of the zonal means appears as Fig. 2.

MAP 17 EXP DIFF. EXP 16 MINUS EXP 15 MAPS 13, 15, 16, 17

TOTAL PRECIPITATION (M M / DAY) SIG= 1.000

INTERVAL= 400.00 TO 430.00 LRL

Fig. 2 — Sample plot of zonal means output by the Map Display program.

The accompanying contour map is shown as Fig. 1.

IGS writes a 7-track, 800 bpi tape, which can be used by an S-C 4060 graphical output device to draw the pictures on microfilm and print them on 11×14 paper.

The execution step uses three FORTRAN units. In Rand's operating system, the S-C 4060 output uses the file name SC4060ZZ. FORTRAN unit 8 is the output MAPGEN-type tape, and FORTRAN unit 9 is the input unit for the cards describing the land masses.

V. USER'S GUIDE FOR THE ZONAL PROFILE PROGRAM

The Zonal Profile program graphs the time averages of the zonal arrays written by the M/A program. The graphs are created directly with no intermediate steps. The flow of the program is determined by the use of control cards, described below.

The program produces graphs very similar to those created by the Map Display program. However, the graph scale used by the Zonal Profile program is fixed, so that the profiles of variables from different experiments can be compared in magnitude as well as in shape. The zonal mean values are printed out automatically for each graph.

PROFILE DESCRIPTIONS

The zonal arrays written by the M/A program are used to form 32 different profile graphs. For a given time interval, only one profile can be drawn for each profile number.

The formulas describing the profiles are given by Table 12. The mnemonics used are given in Sec. II, and represent the zonal mean arrays after they have been multiplied by the constants given in Table 7. The profile titles and the nominal scale factors are also given by Table 12.

For convenience, some of the profile values are printed in two different units. For profiles 1-5 and 7-16, the values are given in terms of langleys per day and langleys per thousand minutes (KMIN). A sample profile graph is given in Fig. 3.

INPUT DESCRIPTIONS

The Zonal Profile program uses control cards input by the user to control the input and execution of the program.

Nine types of control cards are built into the Zonal Profile program. Only the first four columns are used to identify the control card, with the other 76 columns free for comments. If the program is expecting a control card and does not recognize the next card as a control card, the card is still printed, and three lines are then

Table 12

ZONAL PROFILES AVAILABLE

Profile		alea		
Number	Left	Right	Title	Formula
1	0	1600	Inaclation at the top of the Atmosphere (ly/dsy, ly/kmin)	scøsz
2	0	100	Short-Wave Absorption above the Troposphere (ly/dsy, ly/kmin)	STRA
3	0	800	Short-Wave Absorption in the Troposphere (ly/day, ly/kmin)	AS1 + AS3
4	0	800	Total Short-Wave Absorption in the Atmosphere (ly/day, ly/kmin)	AS1 + AS3 + STRA
5	0	1600	Total Reflection in the Earth-Atmoaphere System (ly/day, ly/kmin)	RETØT
6	0	1.0	Albedo (unitlesa)	RETØT/SCØSZ
7	0	800	Short-Wave Absorption by the Earth (ly/day, ly/kmin)	S4
8	0	800	Effective Long-Wave Radiation from the Earth (ly/day, ly/kmin)	R4
9	0	800	Long-Wave Radiation Lost to Space (ly/day, ly/kmin)	RO
10	0	800	Effective Long-Wave Radiation Loat from Atmosphere (ly/day, ly/kmin)	RO - R4
11	-200	600	Heat Lost by Evaporation from the Earth (ly/day, ly/kmin)	E4 * L/10
12	-400	400	Sensible Heat Loss from the Earth (ly/day, ly/kmin)	F4
13	-300 -800	500	Energy Balance of the Earth (ly/day, ly/kmin)	S4 - R4 - E4 * L/10 + C1CE
		0	Radiation Balance of the Atmosphere (ly/day, ly/kmin)	R4 - R0 + AS1 + AS3
15	-400	400	Energy Balance of the Atmosphere (ly/day, ly/kmin)	R4 - R0 + AS1 + AS3 + F4 + PPTØT * L/10 - E4 * L/10
16	-300 -1	500	Energy Balance of the Earth-Atmosphere System (ly/day, ly/kmin)	S4 + AS1 + AS3 - RO + CICE + PPTØT * L/10
18	0		Evaporation (mm/day)	E4
19	-5	10	Precipitation (mm/day)	РРТФТ
20	0	5	Moisture Balance of the Atmosphere (mm/day)	E4 - PPTØT
20	0	4	Latent Heating at Sigma 3/4 (deg/day)	HL3
22		4	Latent Heating at Sigma 1/4 (deg/dsy)	HL1
	0	4	Short-Wave Hesting at Sigma 3/4 (deg/day)	HSW3
23	0	4	Short-Wave Heating at Sigma 1/4 (deg/day)	HSW1
24	-4	0	Long-Wave Heating at Sigma 3/4 (deg/day)	HLW3
25	-4	0	Long-Wave Heating at Sigma 1/4 (deg/day)	HLW1
26	-2	2	Sensible Heat from the Earth (deg/day)	HF4
27	-2	2	Total Heating at Sigma 3/4 (deg/day)	HL3 + HSW3 + HLW3 + HF4 or
28	-2	2	Total Heating at Sigma 1/4 (deg/dsy)	HD1F + (HL3 + HSW3 + HLW3 + HF4)/2. - (HL1 + HSW1 + HLW1)/2.0 HL1 + HSW1 + HLW1
				or HDIF + (HL1 + HSW1 + HLW1)/2.0
29	0	1	CL1 Deep Convective Cloudiness	- (HL3 + HSW3 + HLW3 + HF4)/2.0
30	0	1	CL2 Large-Scale Cloudinesa	CL1
31	0	1	CL3 Low-Leval Convective Cloudiness	CL2
32	0	1	CL Total Cloudiness	CL3
				CL

Fig. 3 - Sample graph output by the Zonal Profile program

skipped in the printout to indicate the possible error. This continues until a control card is found.

The control card DATA controls the input of the profile descriptions. For each graph to be generated, the profile number, the start and end times, the delta time (measurement interval), and the four-character identification code word must be input.

To simplify the DATA card input, the user can input default values, or standard values. The user will in many cases wish to generate several profiles for the same time period, possibly using the same four-character identification code word. The user then inputs a default set of time values, plus a default code word, and need input only the profile number for the profile description. The code word serves no computational purpose; it is four arbitrary characters that the user can have printed on each graph for identification purposes.

The delta time tells how often to plot the accumulated profile values, input in units of days, so that more than one profile can be drawn with one profile description. If the delta time is zero, then one profile is drawn, using the full start to end time accumulation. If snapshots are desired, the delta time must be equal to the increment on disk (.25 day). For instance, if four profiles are wanted between 370.0 and 371.0 days, the three numbers to input are 370.0, 371.0 and .25 days.

A running count of the number of profile descriptions is kept, so that the standard values can be changed during a run. Suppose the standard values are used and two 30-day accumulations are desired. Then the standard values are input for the first 30 days, and the DATA control card reads in the descriptions for the 32 maps. In this case, only the profile numbers need to be input, as standard times and code words are used. Then the next standard times for the next 30 days are input and the DATA card is again used, again with only the profile numbers 1 through 32 on the cards. This procedure has input the data for 64 maps. The program has a limit of 128 profile descriptions for one reading of the M/A disk, but these sets of profiles can be repeated as many times as desired in one run.

Nine control cards are as follows:

TITLE: The card following this has the run title in columns 1-72. This title is printed on each subsequent profile and printout. Only one title is used for each set of profiles. The program expects a control card after the title.

DATA: This card tells the program that the profile descriptions follow. The profile descriptions are terminated by a blank card, after which the program expects another control card. Each of the five data elements uses 10 columns. The profile number is an integer, right adjusted in columns 1-10. The start, end, and delta times which follow the profile number are floating-point values. The code word is input in columns 47 through 50. If the start or end time is not a multiple of .25 day, or the delta time is greater than .25 day and is not a multiple of .25 day, an error message is written and the profile description is deleted.

The number of input profile descriptions, NMAP, cannot be over 128, but more profile descriptions can be accumulated again after the 128 are executed, by resetting NMAP to zero and reading in more data cards.

NMAP: This card resets the number of input profile descriptions. The number is input right adjusted in columns 1-10 of the next card. If a second set of profiles is to be generated by the GO control card, the number of descriptions has to be reset to zero. If the NMAP card is used to input a negative number, then the number of profile descriptions is reduced by that amount. The program expects a control card after the one data card.

CODE: This card sets a default four-character code word for the DATA cards. If the code word for the data description is blank, this word is inserted. It will usually be used to input the initials of the interested researcher for identification purposes. The code word is input in columns 1-4 of the next card.

STANDARD: The default start, end, and delta times are read in following this card. The data elements use 10 columns each, and are floating-point values, starting in column 1.

SCALES: This control card changes at least one of the default profile scales. For a specific experiment, the built-in scales of the

graph area may not be appropriate, and they can be changed here. One new scale is input per card; the data cards are followed by a blank card. The profile type number is input as a right-adjusted integer in columns 1-10, the left graph value in columns 11-20, and the right graph value is columns 21-30. Both values are input as floating-point numbers.

<u>GO</u>: This control card tells the program to execute the profiles that have been input. No data cards are input for this control card. The profile descriptions are printed out, and then the graphs and printout generated. After all the profiles are done, the program returns to process more control cards.

NUMZON: This control card determines the number of zonal mean arrays in the input data sets. Default is 24 arrays. Note: Experiments 10-13 have 24 arrays, experiments 14-17 have 25 arrays.

STOP: The program must end with this control card for normal termination. No cards are read beyond this control card.

Table 13 gives a short description of each of the control cards, with the number and format(s) of the data cards which follow each.

Table 13
CONTROL WORDS FOR THE ZONAL PROFILE PROGRAM

Control Word	Description	Number of Data Cards	Format of Data
TITLE	Run title	1	18A4
DATA	Profile descriptionsNo., times, ID	N	110, 6X, A
CØDE	Standard 4-character identification code word	1	A4
STANDARD	Standard start, end, and delta times	1	3F10.0
SCALES	Change profile scales	N	I10, 2F10.
GØ	Print out input and execute	0	None
NMAP	Change the number of input profile descriptions	1	110
NUMZÓN	Set the number of zonal means	1	10
STØP	End program normally	0	None

SAMPLE INPUT RUN

The card input listing in Fig. 4 is a valid input deck for the Zonal Profile program. First the title is input, followed by the standard times and code words. The data will be accumulated from day 340 to day 370, arbitrarily using the identification code STD, standing for the standard output. The DATA control card then inputs all 32 profiles, using the standard values. Note that only the profile numbers are input in this section.

As the rest of the maps for this pass are not standard, the code word is changed from STD to DSP. Then three profile descriptions are input; thus 35 profile descriptions have been input. The first of the new descriptions draws five graphs of profile No. 5 at the times 399.0, 399.25, 399.5, 399.75, and 400.0. As the M/A program accumulates these values, the maps represent six-hour accumulations, even though only one time point is read from disk for each.

The next profile description generates one graph, and accumulates the data for profile 8 between 395 and 400 days, with the code word WLG used. Again, the accumulation averages the dick time points 395.25 to 400.0.

The last profile description generates nine graphs of profile 10, using the nonstandard code word DSP. The times are 390 to 391, etc. Each accumulation uses four disk time sets for each day.

The control card GO then outputs the input profile descriptions, the scales, etc., and the profiles are generated. After the profiles are drawn, control is again returned to the input cards. The number of profile descriptions is reset to zero, and new standard values are input. In this case, the values are to be accumulated for 30 days, between day 400 and day 430, using the code name STD for all of the 32 profiles. These profiles are then executed with the GO control card, and the program ends with the STOF control card.

```
GO FXECUTE THESE PROFILE OFSCRIPTIONS
UP TO 12A DESCRIPTIONS CAN BE INPUT IN THE GO STEP. BUT FOR AN EXAMPLE.....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ANYTHING CAN GO WERE - THE PROGRAM ONFS NOT READ THESE CAROS
CONTINUE TO INPUT PROFILE DESCRIPTIONS 5 399,75 400.0 0.25 R 395.0 400.0 1.0 ML
                                                                                                                                                                                                                                                                STANDARD TIMES - ANDTHER 30 DAY AVERAGE 400.0 430.0 430.0 CODE NAME - STANDARD INPUT AGAIN DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EXECUTE THESE MAPS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           //GD.SYSIN DO *
THIS IS A SAMPLE INPUT DECK FOR THE ZONAL PROFILE PROGRAM.
THE INPUT IN EXACTLY THIS FORM WILL EXECUTE.
THE INPUT IN EXACTLY THIS FORM WILL EXECUTE.

TITLE — INPUT THE NOT THE STAND THE STAND AND STAN
                                                                                                                                                                                                                                                                                                                                                                                 - INPHT 1-32 PROFILES HISING STANDARD VALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - NEXT MAPS ARE NOT STANDARD DITTELL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CONE NAME
```

DATA

Fig. 4 -- Sample input for Zonal Profile program

VI. USER'S GUIDE FOR THE QUICK LOOK PROGRAM

Quick Look is designed to help the programmer and researcher to decide if the M/A program is running correctly. At checkpoints throughout the simulation, the M/A program may be stopped and the data on disk inspected to determine if the program is behaving as expected. The Quick Look program was designed primarily to do this.

Quick Look reads both the large array data set and the zonal mean data set. The program also has a limited capability of accumulating values; the three precipitation arrays are accumulated to form the total precipitation values, and all the zonal mean arrays can be accumulated. Of course, logic can be added to accumulate any of the arrays on the disk, but only those mentioned are automatically implemented.

At a specified time point, the program will print out all the restart arrays: P, Ul, U3, Vl, V3, Tl, T3, Q3, GW, and GT. The user inputs the start and end times of the disk, and at every Nth time point, where N is input by the user, values at a specified grid point from each large array are printed together with all the zonal mean arrays (accumulated from the previous six hours).

CARD INPUT

The first card of the input is a title, 80 columns long. The next cards describe the printout. The start and end times are given in columns 11-12 and 13-24, respectively. Time is input in days, and must be exactly the same as on the disk. Columns 25-36, right adjusted, give the integer number N, which controls the printout of the large arrays at the specified grid point and the snapshot of the zonal mean arrays. Columns 37-48, right adjusted, hold the integer flag for the accumulations over the entire time period. If it is zero, no accumulations are done; if not zero, the zonal means are accumulated and printed out. If the integer flag value is above 9, then the total precipitation values are also accumulated.

The time at which to print all the restart arrays is set within the program by a variable (PRTALL). This must be set by the programmer or researcher before compilation.

The Quick Look program executes the one-card instruction, and then looks for another data card. The one limitation on this following card is that its starting time must be greater than the ending time on the previous card. The program is terminated by a blank card.

PRINTOUT DESCRIPTION

Suppose the start and end times are 405 and 410, N is set to 200, and the flag set to 10. Then at day 405, the array grid-point values are printed out, followed by the zonal mean values accumulated for the previous six hours. The grid-point values are printed out at -14° latitude and 35° W longitude, corresponding to the latitude grid number 20 and longitude grid number 30. (This grid point can, of course, be easily changed within the program to any other grid point.) Since N was set to 200, this printout would be repeated after 200 disk time points, or 50 days, but as the end time come before then, this printout is done only at the start time, day 405.

Supposing that the print time, PRTALL, was set to 410, all the restart arrays and precipitation arrays are printed out at that time. Each array takes eight pages to print out; an eight-character identification for each array is built into the program and is printed at the top of each page. Next the accumulated zonal arrays are printed out, preceded by the title and the start and end times of the accumulation. The 24 zonal arrays are printed, each value preceded by its latitude, with a built-in four-character identification given as a heading. After this, the precipitation array is printed. Note that the zonal array values are always printed out after being multiplied by the conversion constants given in Table 7.

Two subroutines are included in the Quick Look program to do the printing of the large arrays and the zonal means. The array and a short name are input to the routines and the data are printed out. The printout of the large arrays gives the latitude and longitude of the rows and columns. Each data value is printed with five-place accuracy. The zonal arrays are printed next to the latitude values.

As a bonus, other data are automatically printed out. The first time that TAU and the constant C-array (see Sec. II) are read, all 800 constants of this C-array are printed out in three forms: as integers, binary-coded decimal characters, and floating-point values. The 24 or 25 constants used in converting zonal mean arrays are also printed out.

By adding one card, a feature can be used which really helps the researcher and/or programmer analyze the output. The topography array TOPOG gives the sea, land, and ice areas of the Earth. Within the program, this array is changed by setting 0.0 to represent ocean, 1.1111 to represent ice, and 9.9999 to represent land. The resultant array can be printed by adding one card, so that the user can determine at a glance whether a particular grid point is ocean, land, or ice.

JOB CONTROL COMMENTS

The Quick Look program uses less than 150K bytes of core, and takes less than two minutes to run on the 360/91. The number of pages generated may be very large, depending on what is being printed out. The restart disk data set is input on unit 10, and the zonal disk data set is input on unit 11. By concatenating data sets, 20 days or more can be investigated on one pass.

VII. USER'S GUIDE FOR THE DISK INITIALIZER PROGRAM

The Disk Initializer program is used in conjunction with the M/A program. It will read a time history up to a specified time point, then write the data onto a new disk so that the M/A program can continue its simulation. Because of the way the M/A program is written, it is easier and safer to use this program rather than the M/A program itself to switch disks when writing the time history data sets.

Disk Initializer has other uses, too. It can easily be modified to set up the initial conditions of a new experiment. Suppose the new experiment modifies the topography array; then the Initializer can read in the new values and initialize the new disk using these values. For printout purposes, the subroutine in the Quick Look program that prints out the large arrays can be copied and added to Disk Initializer to print out the old and new topography arrays.

Disk Initializer is useful in emergency situations. No computer is perfect, and when a program uses 30 hours of CPU time, it is exposed to a chance of malfunction. Sometimes a special emergency program has to be written to save all or part of an M/A disk; Disk Initializer can be used as a basis for the new program.

Disk Initializer uses 400K of core and less than one minute of CPU time. The old restart data set is on unit 11, the old zonal data set is on unit 13, the new restart data set is on unit 12, the new zonal data set is on unit 14, and the new last-time record is on unit 1. The time, in days, to read up to and write on the new units is set by the variable DAYS within the program itself. There are no cards input to this program.

VIII. USER'S GUIDE FOR THE DIFFERENCE PROGRAM

The Difference program is used in conjunction with MAPGEN and Map Display for the purpose of comparing two maps. Unlike the other two auxiliary programs, the Difference program is relatively stable and will not normally change from experiment to experiment.

Two tapes from MAPGEN runs are used as input to generate a third tape giving the differences of values on the original two tapes. This third tape can then be used as input to the Map Display program.

The card input is identical to the MAPGEN card input in format: a title card, followed by data sets consisting of the first-card time description, followed by the map descriptions. The map descriptions do not have to be in the same order as in MAPGEN, and the limit of 40 map descriptions per set does not apply.

The values differenced are the large 46×72 data arrays, the zonal means, the zonal means over the ocean, and the global means. The values from the "low" tape, the one on FORTRAN unit 10, are subtracted from the values from the "high" tape, on unit 9, and the differences put on the output tape on unit 11. Only the map descriptions input on cards are written on the tape. To match the two sets of values, the start and end times, the map number, and the SURF values must be the same. For each map, the values written on the output tape, such as the ID, the map title, and the number of accumulations, are the same as on the high tape.

The Difference program uses less than 150K bytes of core and takes less than two minutes of CPU time on the IBM 360/91.

APPENDIX A

LISTING OF STANDARD INPUT PACKAGE

FOR

MAPGEN AND MAP DISPLAY

THIS IS THE STANDARO INPUT PACKAGE FOR MAPGEN AND MAP DISPLAY. COLUMNS 1-2 - MAP NUMBER COLUMNS 3-7 - SURF COLUMNS 8-12 - CONTOUR INTERVAL COLUMNS 13-17 - OOTTED LINE COLUMNS 23-27 - NO. OF PRINTOUTS COLUMNS 28-32 - FLAG FOR USERS CONTOUR VALUES COLUMNS 33-37 - ZONAL MAP FLAG COLUMNS 38-42 - CONTOUR MAP FLAG

THE FOLLOWING FORMS ALL 3 TYPES OF OUTPUT IN MAP DISPLAY.

```
3 EXP. 10 - CONTROL EXPERIMENT - MARCH 72 - RAND
 370.0
             400.0
        2.0
             20.
                   0.0
                        1.0
 1 1.0
  3.0
        10.
              30.
                   0.0
                         1.0
 2 1.0
        5.0
            0.0
                   0.0
                         1.0
 3 .25
        10. 400.
                   0.0
                         1.0
   .75
        20. 800.
                   0.0
                         1.0
 3 1.0
        40. 1000.
                   0.0
                         1.0
  .25
        1.0
              70.
                   0.0
                         1.0
 4 .75
        2.5
              25.
                   0.0
                         1.0
 4 400 .
        1.0 70.
                   0.0
                         1.0
         . 5
 4 800.
             20.
                   0.0
                         1.0
  .25
        5.
            0.
                   0.0
                         1.0
   .75
              .0
                   0.0
                         1.0
   400 .
             0.0
                   0.0
                         1.0
 5 800. 5.
             0.0
                   0.0
                         1.0
 5 .25
              0.0
                   0.0
                         1.0
  . 75
              0.0
                   0.0
                         1.0
   400 .
              0.0
                   0.0
                         1.0
 5 800.
        5.
             0.0
                   0.0
                         1.0
   .5
        10.
              0.0
                   0.0
                         1.0
        5.
              0.0
                   0.0
                         1.0
 370.0
             400.0
 9 1.0
        5.0
              0.0 0.0
                         1.0
10 .25
              -20.
                   0.0
                         1.0
              0.0
                   0.0
                         1.0
10 .75
10 400. 5.
             -20.
                   0.0
                         1.0
             0.
                    0.0
                         1.0
10 AOO. 5.
11 1.
                    0.0
                         1.0
              6.
       20.
              50.
                   0.0
                         1.0
                    0.0
                         1.0
13 1.
         1.
              1.
14 .25 .04
             .12
                    0.0
                         1.0
14 .75
        . 3
             .5
                    0.0
                         1.0
        . 3
14 1.0
              .5
                    0.0
                         1.0
        .3
              .5
                    0.0
                         1.0
14 2.0
              4.0
                    0.0
                         1.0
15 1.0
         10.020.
                    0.0
                         1.0
15 1.0
         10. 20.
                    0.0
                         1.0
17 1.0
             10.
                    0.0
                         1.0
18 1.0
         5.
        1.0
             -1.0 0.0
                         1.0
19 1.0
              0.0
                  0.0
        10.
                         1.0
20 1.0
21 1.0 2.0
              10.
                    0.0
                          •0
          .5
                   0.0
                         1.0
              0.0
22 1.0
23 1.0
        2.0
                   0.0
                         1.0
              0.0
24 .25 .2
             0.0
                    0.0
                         1.0
24 .75
        .2
              0.0
                    0.0
                         1.0
                         1.0
                    0.0
25 .25
              2.0
25 .75
             2.0
                    0.0
                         1.0
         .5
              0.0
                          1.0
25 .25
                    0.0
25 .75
               0.0
                    0.0
                          1.0
         • 5
               0.0
                    0.0
                         1.0
27 .25
         5.
                         1.0
               0.0
                    0.0
27 .75
         ٥.
                    0.0
                         1.0
         5.0
               10.
```

APPENDIX B

DATA PRINTOUT FOR MAP DISPLAY OUTPUT
FOR ONE VARIABLE

	11	s.		4	40.	32.	25.		18.	16.	14.	5.			•	•	•	•	8	•	0	•	• 0	•			0	6		•	•	•	1-161	•	•			14.	16.	7	19.	8	-18.669	•	-0-457
00	151	95		3.96	3.94	1.23	3.35	-18.531	2.00	29.5	09	1.42	2	77	2	4	2	4	8.56	0.05	0.62	0. 79	000	000	000	5 5	0.32	9.71	82	34	1	73	1.22	2 :	17 . 7	1	9	13.75	16.27	17.09	_	19.29	-19.000	77.	-0.145
27344E 0	3	45.62	-45.689	43.25	38.35	25.96	21.91	17.46	16.09	5.52	3-24	0	-	_	9	7	0	N	2	•	~ I	- 1	٧ſ	- (ה כ	7 -	• ~	9.980	8	Ð	~	€ .	0 9	p q	Oς	vr	. ~	13.10	15.83	17.22	.84	19.55	-19-255	77.	0.203
MEAN = 0.	-	5.62	40.4	42.79	.67	29.61	16.0	16.65	3	4.88	49	7.47	4.65	6	1.02	7	21	54	86	9.66	0.54	88	1.03	9 4	1.10	07.	0.79	10.279	9.29	.54	08	67	1.12	9 :	01.0	7 7	0.70	2.40	5.46	17.27	-19.686	20.03	-19.430	177-61-	0.556
GLUBAL TO 400.		45.52	916	2.484	7.693	9.756	0.311	7.040	6.2	8	-9.645	6.9	4.0	٥.		T.	•	80	Э.	9.5	0.5	T. (0.	1:	7				9.3	S	0	8	-	0.0		יי יי		2.0	~	16.8		Ξ.	-19.384	,	6.828
AND 5.000 370.000	135W	45.02	* 1	42.357	37.740	30.241	20.458	17.596	5.589	2.152	9.31	6.11	2.98	82	5	95	5	24		7	0.54	96.0	1.14	1.26	1.03	77	1.22		43	.41	. 93	. 93	1.70	0.27	2.63	900	100	1.66	15.11	16.93	407	19.13	-19.141	•	1.128
CONINTE	1404	5.622	40.361	42.424	36.232	30.739	21.926	900	13.906	2.48	9.79	5.41	2.21	2	72	ED.	2	6	72	31	0.59	1.06	1.25	1.38	160:	1 0	1.36	0.7	39	3	80	13	1.68	0.66	76.7	4.43	, ,	1.53	14.93	16.67	.08	19.05	-19.282	77.	1.314
1 - MARC 00.000 SAMPLES	5	5.522	46. 503	42.075	8.512	31.742	24.538	9.271	14.417	2.53	. 35	9	.75	(L)	31	000	.42	90	• 76	. 92	. 72	1.17	1.38	. 51	*0°I	1,	3	12	9.27	6.86	4.73	3.35	1.19	-1.28	-3-13	-4.13	04.01	11.00	14.60	16.68	17.78	18.96	9	77.	1.335
11 S/P= 20	00	5.0	40.346	42.531	743	32.504	47.230	111	10.167	41	0	3	∹	'n	¿. 625	7	•	•	6		0	1.	:	1:	•	7 .		10.679	9.1		*	2.956	٠,			,	0 1	11.543	7 7	16.	17	18.	80	-:5-221	1.221
P. 11 -	55	5.5	214.05	156	59.412	4.216	29.7	4	10.9		1.0	9	٠.	.23	3.069	.7%			•	•	;	.	4.	<u>.</u>	<u>.</u>	₫.	: -	10.612	J.	6.701			• 54	1.80	3.5	612-6-		07 -01	3 82	16.6	. 0	17.55	19.4		1.679
ដ	3	20.0-	294 -97-	4 3 - 1 1	39.67	35.32	24.62	24.25	19.0	16.27	12.23	7.92	3.43	C. 33	15	ို	27	5.70	0.52	0. 55	1.15	1-54	1. 11	1 - 49	1. 34	1.45	1.00	- 10	93	7	90	20	0		3.71	5.33	10.00	0.01	13.50	15.47	16.20	16.45	6.	15.22	1.002
0 2 0	1:54	.5.622	10 O	2. 26.4	76 - 07	40-140	11.588	704.65	: 4.269	16.174	14.002	254 6-	-4. 320	154-0-	3-2-5	c.50c	A. 773	10.200	10.985	11.22C	11.347	11.640	11.88	11.995	12.051	12.045	11. 517	10.542	F. P. R.	6.852	1.741	2.237	-	•	· .	٠.	٠,	• -				8	-20.250	ċ	0.878
OFFIS CLATIGRADE	170	4,1		4	2	7	1 . 1	7.4		4 .	t • 1	1.3	بد	1.2		5.0) • ¢	2.0	1.3	1. f	1.5	1.7	1.9) ·	2	7.0	, .		2				0.0	2.5	7 1		7 · ·	10.	7 7 7	15.0	17.1	6.0	-20.4:1	15.2	0.654
UE CHE CTS		41	٠,		1	E	34	5	21.	21.	0	1,5	~	. 7	;		٠,	•	-:		-		N	٠.	ν.	J	٠.		,,,					3	3	Ü		- - - -	3 5		-	2	510.07-	Š	397.0
7.5 C P. K17U'E (DE	3	222.6	~) € 20 3 .• 1		900	4 0 6	107	1 4 7 8 1	4.240	3.025	6.7e7	5.750	4.1	3.47	1.15	5000	90.0	17.0	1.00	1 44 1	1.77	1.48	Z •) :	41.7	2.0	2.51	,,,,	- 4	2 0	5		7.	0.57	93	77.4	4	,	200	7 6	, ,	7.11	77.5	-20.523	5006	-3.00
AAF R	7															3	35	27	13	14	01	s	1 1	iiş T	9) - !	51-	122	42-	, (e ²	75-	-34	-4-	77-	120	7 u	υ (() ()	70	200	242	-76	-£2	39-) - C	àVS

TEM		UEUNFLS CENTIGRADE	CENT 1 GR	40£)	ū	ExF. 11 -	AC P=	I - MAR 00. 300	4 72 -	Z	GLUBAL	HE AN=	0.27344	00	
	ī						120	O SAMPLE	S	370.000		000			
LAI	1054	1004	160	406	100	104		70*	65W	MO 9	554	80M	454	*0*	350
ç	5 1-1	-45	-45	-45	-45.	-43.622	-45.622	-45.622	-45.62	-45.622	52	-45.622	-45.622	-45.622	-44.422
96	i	-46.51	-46.55	•	-46.26		-	•	1	5.29			.2	-44.007	-43.861
200	1	-4-	8.07	-47.	-47.98	:	.55	-47-21	1	.51	44	-41.628	87	68	
2	í	-45.75	-46.05	44	-47.03	;	~	-45.04		~	39.7	in	-34.536	-31.183	100
3 1	•	-42.27	-43.C5	•	-44-	-43.471	3-14	-45	85	8.27	4.8	- 30.455	26.45	-23.540	-20.655
0	٠	-36-13	B - 2 - 9	-36-	-39.68	-40.174	6.61	-39-12	2	4.84	93	-23.613	0	-17.974	-17.132
۵ '	Ü	-30.05	-36-15	-34.	-35.63		6.1	-35-59	-33.168	-29.61	5.5	8.2	1/4	-15.213	13.
29	1	-25.34		-30.	-32.48	-33.764	-34.279	-33.41	-31.255	-23.93	.3	14.7	13.80	-13.054	
24	٠	-21.55	-24.795	-27	-29.85	:	4.7	-32.62	-32.312	-28.00	-	-	15.21	-14.163	
54	1	-19.05		-54-	-56.4	-28.927	-30.430	-32.60	-31.822	-31.25	80		8.84	9	1
<u>ن</u> ا	1	7	-19.	-21.	-2	-:5.400	-	-28.85	3 -31.412	-27.	26.5	-23.064	-20.059	1	-14.166
4	٠	7	- <u>i</u> 4	=	-17.		1.07	-22-57	-24.316	-23,13	58	-19.539	22	4.08	
24	•	7	==	7	-13.53	-13.981	3	-15.60	-15.924	-15.38	14.10	-13.065		8.03	-5.418
36	•	•	1	-7-429	- 7	175-1-	7.98	-7.93	-7.397	-6.81	7	-5.120			-0.265
34	•	'	-2	-2	-2.05	-1.945	-1.593	-1.32	-1.035	-0.64	-0-211	0.485	-	8	2.927
2			2	~	2.50	3.302	. 73	9	3.994	4	4.520	4.570	4.865	2	5.455
5¢			•	ů	7.38	7.955	8.191	18		8.027	7.875	7.831	84		7.374
22			5	_			07	0.58	10.467	10.233	0	9.898	5.8	1	8.733
18		,-	7	_	14.66		11-790	3.45	11.603	11.365	_	11.027	0.78	10.346	758
1		_	=	7	14.	11.927	12.075	2.16	11.686	11.907	-	11.652	1.46	11.258	10.890
10		-		12-328	12	11.575	61	1.04	11.241	12.048	N	12.105	1.93	11.776	11.578
a (_	٦.	11,13	11.474	_	11.374	19.251	1:1	11.725	11.875	~	12.256	2.23	8	12.064
V		٦.	10.80	11.006	= :	10.739	35	1.88	15.241	12.217	ď	12.304	2.32	12.354	12.273
7 4			10.726	10.765	10.52		. 50	12.541	12.539	12.276	12.392	12.539	12.495	36	12.339
1		-	0	10.362	٦.	0.4.0	11.864	16.7	14.858	12.572	121	15.621	2.51	12.374	12.21
- 14	,	-	07 0	10. 382	2	15.167	0 0	9	13.686	80 :	~ .	12.815	5.52	12.271	12.249
-16	-	•	0.27	P OF	77	0000		* 0	14.433	2	∾ •	13.257	29.2	2	12.005
-22			9.34	8. 021	0		4 5		14.844	15.209	•	14.189	86.7	2	11.741
-26			7.21	6-913	78		1	, ,	11 754	'n		170.07	3.60	: :	11.233
- 30			5.95	5.519	36		70	11	11	1	: -	24.03		2	014.4
-34	4-656		4	3.745	53	3.289		3.946	6.003	7.212	8-62	7.702	4.597	2.415	4.770
- 38			2.21	66.		1.525	.83	68	39	3	.64	2	33	2 8	1.450
-42			0.03	0.440	3	-0.03	6 7	0-461	12	0	1.398	0.885	60	-1.031	-1.702
1 40	'	ı	-2.29	-2.528	-2.	.23	-2-157	*	*	-1.076	-1.553	13	2.83	28	-4.446
00-	-3-165	1	0-4-	-5.157	-5.62		.31	06.	-4.242	-4.331	151-4-	-4.971	;	2	-6.744
1 4	507.C-	1	0.0	-1.675	1.1	1.508		0	m.	-6.961	-7.278		-7.690	-7.785	-7.999
860	5 - 5 - 5 - 5	١.	-10.39	-10.791	-10.89	. 529	-10.231	4.0	8	•	6	-9.184	-9.283	5	
70-		٠,	-16.9	5 943	-12.76	15.529	•	~		.143	1.318	-11.504	-11.324	-11.017	
001	,		-14.	14.566	14.35	205		661-11-	14.51			-12.982	-12.374	8	:
2 6	60.01	ī,	7-01-	9-150	. 36	6.886	•	-17.572	0		1	15.765	-14.831	2	-14.399
1 2 1		٠.	44.01-	107-11	16.48	56	7.30	-17.368	-17.682 -	0	-17.563	-17.346	-16.219	2	-15.988
5 0	11.67		\$. D .	9. 466	18.37	1.981	18-24	- 563	-19:187	-18.592	.356	-18.095	-17.555	-17.043	-16.528
- 86	0 4		*******	10 · 0	19-44	065.9	55-64	-19.422	- 19.644	-19 616	049.	-18.810	-19.115	9	-18.710
Ch-	2	2 2	-15-227	227	-20-347	160.031	16 223	-20.003	-19.482	-19.653	466	20.0	-19.989	-19.969	-19.794
		77.	77.7	177061	77.61	133.61	77.	177.61-	122.61-	177-61-	17	-15.227	-15.227	-15.227	-15.227
2 VG	-0-566	-0.759	-1.160	-1.335	-1.608	-1.910	-1.965	-1.038	-0.558	0.044	0.719	1.277	1.352	1.518	1.761
													1		•

	406	279-64-	7.33	35.	6	0 4	10	24.	-23.238	-		-11-115	~	-3-193					2		23.000		16.254	13.658		•		9.045	5.516		9		• 39	10.	::	77	13.017	•	74			1.927
0	356		36.529	969.	23.563	26.148	24.166	23.156	22.579	20.951	876	1.77	7.93	9	25	45	14.776	19.886	23.591	26.062	24.725	16.988	17,923	17.882	13.624	12.505	11.558	9.061	5.239	-3-201	Ġ		-8.936	. 895	930		970	154	706	16.163 -		2.401
0.27344E UO	30E	770	106	33.656	26.165	47.8	21.991	21.520	1.050	833	423	858	-7.550	121-6-	10.0	9.329	656	276	3.808	5.316	12	5.129	19-121	90	2	2	en (v.	- 0	2 2	6.261	.31	91	110.11	11.960	01-51	15.358	076	. 0	16.365 -		2,205
ME AN= 0.	25E	0 0	35.20	-31.274	24.996	20-450	9.533	18, 969	18.861	8.961	16.584	2.989	-6.503	-2.435	4.503	8.677	4	•	m	3	~ 1	٠,	15.395	'n	12.779	12.628	12.332	8.252	3.209	-2-614	.07	67	-9.78	11.206	500	14 54	16-607	15.31	.41	15.227 -		2.251
GLUBAL TO 400.	S OF	-43.304	34.76	6	-26.971	4.4	0-9	5.4	6.7	-16.775	35	7-5	0 1	10.7-	9 0	•	4.1	0	3	'n.	.	• (13.330	~	å		676.6	\$10°	•		5	8	10.363	1.799	166	6.141	16.022	051	64.	-17.139 -		2.200
5.000 370.000	156	-43.239	34.28	27.	-117	-16.46	-15.90	-15.62	÷	** *8	3.13	3:	23	0 0	1	2	22	19.45	23.	22.	50.	•	16.230	16.	:	11.62	4.05		1 37	-1.19	4.74		10.185	\$10.21	000	4.273	15.911	17	.53	-17.244	į	2.585
72 - NINI*	10.	-43.2	-33.65	-25.3	100	•	-13.4	-12.1	-11.9	-11.2	-10.39	?		1.157	4.15	£	12.68	3.0	22.757	22.612	20.083	10.03	13.067	12.241	0.951	4. 544	7.188	0.110	1. KTO	-3.564	194	-7.168	-9.676		: :	4.246	15.38	7.5	9.00	-17.216	į	2.564
11 - MARCH 500.030 CC 0 SAMPLES	- W	7 6	-33.033	2.4	2	. 4	0.86	0.14	9.31	8.91	7.34	80	C y	-	0	9	7.	6.78		7	u .		12.033	ď	-	0	v .	P -1	4	2	Đ	-6.381	-9-510	11.51	, ,	14.	5	20	30	-17.157	-	2.592
HUTPAC S/P= 120.	9.5	-43.340	-32.85	6-52-	2.06	1.53	6. 39	7	9.71	79	70.4	2.7	10.	2	3	96	52	4.79	14.386	٠.	i	203-31	11.263	10.002	5.503	\$ 64.0 \$ 50.0 \$ 50.0	> =	5.075			33	:	-0. 90	07.	2. 74	1	5	67.0	-18.221	-17.514	•	7.687
AP. 11 -	5,5	.43	-35	# U		-10	÷	-7.594	-6.339	114.41	7.7.	799-1-		3.207	5.707	7.543	10.172	12.563	10.286	*14.414	12 21		11.199			475.4				0.038	•			36.0	4 +4	3 41	5.70	3	18.2	-17.705	•	751.7
u.	3 1	3.5	2.84	-18.40	17	-10.387	-7-	-6.06	9	-5-14	7.7	0.00	1.03	, r	6.073	=	6	= :		12	-		11	10	3	9 0	7.00	5.425	1 2	~	0	6.79	0 1	• -	2.32	3.39	6	B.47	18.	-18.074	-	71, 07
30£)	15H	-43.64		-17.85	-14.05	-10.53	-8.08	-6-81	٠	13.21	5	44	7. 63		5	7.4							11. 868				7.7	5.12	7	ı	-5.2	-7.2	201	9 =		5.5	5.6	3.07	3.67	-18.484	5	976 - 7
LNFLGR	202	69.27-		-18-23	-:41	-11.50	-8.7	0°6	-7.2	2.6	2	,	4	4.7	6.01	7.0	7.P4	5.6	11.0	12.02	1.9	11.78	11.729	11.52	0.5	7 0	7.44	7	1.60	-4.16	-5.¢7	-7.60	77	-13.5	-11.9	-13.5	-16.0	-14.1	-18.7	-19.111	-	*27.7
F 10 TUNE (EFU: EES CENTIURADE WEH	2.	1-43.7	-32.8	-1404	6 71-	-10.5	1-5-	0	7 -	5	-		3	5.4		1.1	C D	9.	111	12.0	12.07	11.	11.F	11.54	20.01	7	7	,	1.05	-2.64	-5.47	0.4	10.0	-10.49	-11.01	-13.84	-15.74	-17-54	25 - 21 -	-15.667		n - 1
20	30k				-16-414	-12-141	-I 0-324	-11.241	79/01/	7 450			3.514	5.542	6. 180	7 7 7 3		_	-		• • •		12.054	_		, ,	7.354	4.177	1.136	4		1 (000)		, ,	-	•	Ð	~	D.	-15-27	1.69	,
FAF 1	LA1	9	7 1	4	2	Ç	4	ot .	, <u>,</u>	7		38	4	30	36	27	E.	• •	3 6	,	12	١	-10	-14	1 7	-26	3.0	-34	ع. ا ^د ا	29-	9	04-	1	-6.7	79-	- 70	-7-	- 78	2	00-	, N.	

	5.945 5.945 6.246 7.316 7.570 5.815	1.113 6.205 5.886 7.979 1.549 1.549 2.209	2228222	22.91.05.45.05.05.05.05.05.05.05.05.05.05.05.05.05	0.270
	4444444	M - M - M - M - M - M - M - M - M - M -			320 -0
00	24444444	146 132 175 175 100 100			-0-3
27344E	105E 105E 145.818 145.853 145.864 145.664 145.664	-40-312 -37-232 -31-975 -25-126 -25-126 -25-67 5-815 11-884 14-155	15.791 15.791 12.638 12.055 12.396 13.366 12.495	112.052 11.393 7.8472 7.8472 7.8472 6.396 0.392 -3.294 -11.386 -11.386 -11.386 -11.386 -11.819 -11.819	-0.222
MEAN= 0.	001010000000000000000000000000000000000	- 40. - 31. - 31. - 10. - 11. - 10. - 11. - 10. - 10.	13.	200 200 200 200 200 200 200 200 200 200	-0-433
GLCBAL TO 400.	95E 5.622 5.391 4.758 4.837 5.516 3.956	-40.199 -37.190 -25.534 -17.371 -10.735 -3.393 3.270 7.675		241 163 163 163 163 163 164 164 164 164	-0.776
5.003 370.000	0 4 4 4 6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.068 6.881 1.807 7.299 0.706 0.706 0.052 5.934 1.304	11. 252 12. 377 12. 421 12. 481 12. 441 12. 412	969 323 323 323 323 323 323 323 323 323 32	-1.070
CONINIE	85-46-65-65-65-65-65-65-65-65-65-65-65-65-65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.295 12.295 12.295 12.939 12.501 12.423 12.426 12.426	24 1 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	-1.043
100-U30 SAMPLES	20	935-93 935-93 116-32 116-31 116-31 9-36 9-36		226254717765319	-0-886
NUTPAC 1 S/P= 8 120-0	75E 44-02 44-02 42-32 42-36 42-36 40-73	-36.996 -35.096 -26.661 -16.719 -10.827 -7.662 -2.318	10.427 11.497 11.961 12.359 12.359 12.477 12.477	-080001F-11/F00005-1-11/1/	-1.045
P. 11	2001112	80.000.000.000.000.000.000.000.000.000.	10.394 11.428 12.318 12.318 12.418 12.452 12.500		-1.088
T	44444000	35.70 33.42 29.02 23.89 116.72 -7.32 -7.32 7.65	10.475 11.968 11.289 12.599 12.599 12.576	24446666666666666666666666666666666666	-0.948
JE 1	4 4 4 20 41 40 40	-34.453 - -32.136 - -23.336 - -15.830 - -11.194 - -2.131 - 2.596 - -2.131 -			-0.695
CENTIGRA	11-11-11	TITTIT		12.658 112.646 112.646 10.445 10.445 5.620 2.015 -2.283 -2.283 -1.2.283 -1.2.255 -1.2.255 -1.2.251 -1.3.250 -1.5.221 -1.5.221	-0.395
OLGREES CENTIGRADE H	50E 3-622 3-150 9-225 6-362 5-236 1-61	28.363 28.363 25.035 21.767 21.0.363 1.629 1.629	10.449 13.473 15.602 15.105 13.403 12.955 13.946	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.259
MAP NG. = 10 TEMFERATURE (455 455 456 456 456 456 456 456 456 456	6.755 6.570 0.417 0.417 7.639 7.639 7.639	15.4517 15.461 15.461 16.455 16.402 13.7402	14.487 115.5520 115.5520 115.5520 116.640 11.4664 11.4664 11.11.082 11.5641 11.5.741 11.5.741	1.009
TENDE	A 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 8 4 0 3 6 3 4 3 4 5 5 6	10 - 2 - 10 10 10 10 10 10 10 10 10 10 10 10 10	4854 54 54 54 54 54 54 54 54 54 54 54 54 5	A VG

	Nood	0-400	75 6 3 3 5 5 7	127 308 689 366 680	041 015 006 705 329 147	2440 B 2 4 4 6 8 7 4 4 6 8 7 6 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	66 2 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
00	2002	-25- -24- -19-	1 1 5 1 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1		12.	7 4 7 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12.9
.27344E	2444	33.55	-22.98 -19.56 -14.63 -9.22 -4.37 -0.02	2.6 11.3 12.5 13.5 13.5	121 121 12 12 12 12 12 12 12 12 12 12 12	5.047 5.047 2.366 -0.283 -3.064 -5.353 -7.173	12.777 12.777 14.180 14.895 16.517 17.998 18.196
MEAN= 0	175E -45.62 -46.50	137.	-25.97 -23.13 -17.98 -11.06 -4.68	10.5	10000		13.012 14.568 15.274 16.878 16.878 20.354 15.227
0 GLUBAL 0 TO 400.	170	144.8 140.0 156.11	-28 -99 -25 -67 -15 -60 -5 -87 -0 -77	10. 11. 11. 11.		5.892 3.342 1.230 -1.286 -3.248 -5.613 -9.102	14.146 14.146 14.337 16.176 18.176 20.246 15.227
FANO 5-030	50.00	-45-39 -44-10 -44-10 -43-21 -43-11	66611	10.31 11.56 11.97 12.07	12-22 12-31 12-31 12-15 12-15 11-70 10-88 9-92	6-204 3-378 0-907 -1-192 -2-749 -4-923 -8-500	112.303 112.847 113.217 115.152 118.339 20.582 15.227
H 72 - CONINT	160E -45.62 -46.62 -40.15	-46.36 -45.95 -45.95 -46.43 -42.50	-37.7 -29.6 -22.1 -14.4 -7.6	10.1 11.5 12.0 12.1 12.1 12.1	12.2 12.3 12.3 12.2 11.7 11.2 10.5 8.9	6-437 3-223 0-659 -1-326 -2-395 -4-236	12.016 12.217 11.843 113.836 17.548 117.548 117.548
11 - MA FC0.300	125	-47-3 -47-3 -46-6 -43-0	-37.68 -30.32 -22.56 -14.78 -8.02 -2.31 2.81	10.0 11.5 12.0 12.2 12.1	W44W09114	6.750 2.909 0.413 -1.739 -2.357 -3.810 -7.377	-11.813 . -12.159 . -11.772 . -16.964 . -15.227 .
- HUTPA S/P= 120	150ë -45.62 -46.61 -46.67	-46.13 -48.05 -48.05 -47.24 -43.21 -40.95	-38-37 -30-59 -22-56 -14-67 -8-62 -2-36	9.89 11.50 12.11 12.24 12.22 12.22	12.34 12.55 13.06 12.52 12.33 12.26 9.77	6.770 2.436 -0.406 -2.331 -2.762 -3.797 -7.048	20 IO 20 IO 20
EXF. 11	145.62 145.62 146.562	- 48 - 29 - 45 - 45 - 45 - 45 - 45 - 45 - 45 - 4	-37 -30 -22 -14 -7 -7 -2	112121212121	22.22.22.22.22.22.22.22.22.22.22.22.22.	1.254 1.254 -1.325 -2.835 -3.286 -4.155 -7.215	25.7 25.7 25.7 25.7 25.7
_	140E -45.62 -46.48 -46.78	-49.06 -46.28 -46.85 -43.44	-36-4 -30-5 -21-4 -13-0 -6-8 -1-4 -1-4	9.9 11.3 12.0 12.2 12.2	12.33 12.67 12.47 12.47 13.30 15.31 8.98	4.5/4 0.416 -1.983 -3.463 -4.149 -5.029 -7.398	11.962 11.962 11.962 11.962 11.463 116.357 115.227
ADE)	135E -45.62 -46.364 -46.72	- 48 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	-26.478 -21.157 -12.251 -5.419 -0.342 4.525	9.974 11.295 12.036 12.235 12.222 12.133	12.151 12.191 12.207 12.878 13.984 13.704 8.625	0.380 0.380 -2.135 -4.554 -5.168 -7.117 -9.094	11.541 11.714 13.853 17.760 16.226 15.227
S. LENTIGE	2 2 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0 1 4 1 6 8	22.22	22222		11.9 113.8 13.8 17.6 16.6 15.2
CEEPLOFS CENTY						0 - 726 - 3 - 786 - 4 - 856 - 5 - 618 - 6 - 656 - 6 - 656 - 6 - 656 - 6 - 656 - 6 - 656	
7 =	1111	11111	77.		4 maps 4 pages 4	-1.438 -3.403 -5.227 -6.599 -7.723	77777
P.A.	1 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7 C 9 % 8 4	0 4 4 M M M M M	777 2 2 7 7	110 114 127 130 134	W 4 4 5 4 7 4 7 4 5	

APPENDIX C

CORRESPONDING MAP NUMBERS IN THE OLD AND NEW VERSIONS OF MAPGEN

Appendix C

CORRESPONDING MAP NUMBERS IN THE OLD AND NEW VERSIONS OF MAPGEN

New	Old	01d	New
1	5	1	2
2	1	2	5
3	27	3	6
4	6	4	10
1 2 3 4 5 6	2	5	1
6	2 3	5 6 7	4
7	10	7	
8	24	8	27
9	23	9	15
10	4	10	7
11	25	11	12
12	11	12	13
13	12	13	16
14	26	14	18
15	9	15	20
16	13	16	
17		17	
18	14	18	
19		19	26
20	15	20	25
21	22	21	
22	Neg of 30	22	21
23		23	9
24		24	8
25	20	25	11
26	19	26	14
27	8	27	3
28		28	
		29	
		30	Neg of 22
		31	23

a"Old" map numbers are those used in the earlier documentation (Ref. 1).

APPENDIX D
PROGRAM VARIABLES AND SYMBOLS

Table D1
SYMBOLS USED IN MAPGEN MAIN ROUTINE

Name	Meaning
AVE	Contour interval for Map Display
AVER (46,72,40)	Accumulation arrays for current data set
CONO	Flag for input contour intervals for Map Display
CØNST	Value of weighting factor for this time point
DLN	Dashed-line isoline value for Map Display
EACH	No longer used
EXPN	Flag for punched output, set to the integer NEXP
HEAD(19)	Run title
ID	Temporary storage for 4-character identification word
ISRC	Flag for M/A input data typeset to new disk format
KEYS(32)	Flags not used in MAPGEN
LEV	Flag, = true if SURF is a sigma level
LHLF	Flag used in some map routines; = true if SURF greater than 0.5
MAP(41)	Map numbers for current data set
NAME(13)	Temporary storage for map titles
NEXP	Integer value of EXPN
NOOUT	<pre>Flag for COMP3; call = 0 if COMP3 not called for the time point</pre>
P RNØ	Print flag for Map Display
SNT(40)	Storage for variables no longer used in MAPGEN
SRF(40)	SURF values for current data set
SURF	The sigma level, pressure, or flag describing the map
TEND	Ending time of accumulation of data set
TICE	The melting point of ice (= 273.1 deg K)
то	Starting time of accumulation of data set
WF(46,2)	Weighting functions for zonal means
WORK2(46,92)	The map values for the current time point
XID(40)	Storage for 4-character identification word for maps
XNAME(13,40)	Storage for map titles
XNØ (40)	Storage of weighting factors for accumulations
XSTAGI(40)	Flags for π or u , v grids in zonal direction
XSTAGJ(40)	Flags for m or u,v grids in meridional direction
XZM(46,40)	Accumulation of zonal means
XZMM(40)	Accumulation of global means
XZ12 (46,40)	Accumulation of zonal means over oceans
ZM(46)	Temporary storage for zonal means
ZMM	Temporary storage for global mean
ZM2 (46)	Temporary storage for zonal means over oceans
znø	Value of weighting factor for current map accumulation

Table D2
THE LARGE MAPGEN ARRAYS

Name	Dimensions	Description Howard / M. D. C.		
ACPPC1	-	Description, Use, and/or Map Reference	Also Called	Stored in
	(46,72)	Accumulated precipitation arraysee oser's Guide		MISC
ACPPC3	(46,72)	Accumulated precipitation arraysee User's Guide		MISC
ACPPLS	(46,72)	Accumulated precipitation array- see User's Guide		MISC
ACRETØ	(46,72)	Sum of RETØT arrayssee Map 28		DATA28
ACSCØS	(46,72)	Sum of SCØSZ arrayssee Map 28		DATA28
ALBEDØ	(46,72)	Surface albedo	ALS in CØMP3 and RETØT cal- culations	Misc
AVER	(46,72,40)	Sum of map data arrays		Local variable in MAIN
CC	(46,72,4)	Cloudiness: CL1, CL2, CL3, and CLsee Map 14		EXCØM
CONM	(46,72)	Temporary storage for Map 7, not in any common		Local variable MAP 7 routine
CØNV	(46,72)	Packed S4 and T4see Maps 9 and 21	SD	MESC
CPC1	(46,72)	Latent heating in layer 1, C1 + PC1see Map 24		EXCOM
CPC 3	(46,72)	Latent heating in layer 3, C3 + P3see Map 24		EXCOM
FD	(46,72)	Temporary storage, Map 7 and CØMP3	PU H(46,72,2) TD	MESC
GT	(46,72)	Ground temperature, part of the state vector		QARY
CW	(46,72)	Ground wetness, part of state vector		QARY
н	{(46,72,1)	Temporary storage for Map 7	PHF PV W	MISC
	(46,72,2)	Temporary storage Map 7 and CØMP3	FD TD	
P	(46,72)	Surface pressure parameter, part of state vector		QARY .
РНІ	(46,72,1)	Temporary storage for Map 7	H(46,72,E) PV W	MESC
PRCLH	(46,72)	Latent heating in layers, PREC / CLHsee Map 24		EXCOM
PREGT	(46,72)	Pre- 'MMP3 ground temperature		PRE3
PREGW	(46,72)	Pre-COMP3 ground wetness		PRE3
PREQ3	(46,72)	Pre-CMMP3 level 3 mixing ratio		PRE3
PRET	(46,72,2)	Pre-CMMP3 levels I and 3 temperatures		PRF3

Table D2--continued

-58-

Name	Dimensions	Description, Use, and/or Map Reference	Also Called	Stored in
PT	(46,72)	Packed, H1 and H3, total heatingsee Map 27		QTARY
PU	(46,72)	Temporary storage, Map 7 and C#MP3	FD H(46,72,2) TD	MISC
PV	(46,72)	Temporary storage for Map 7	H(46,72,1) PHI W	MISC
Q3	(46,72)	Level 3 mixing ratio, part of state vector		QARY
73T	(46,72)	CICE, heat rising through icesee Map 23		QTARY
RETØT	(46,72)	Total reflected solar radiationsee Map 28		EXC#M
SD	(46,72)	Packed S4 and T4see Maps 9 and 21	CONV	MISC
SN	(46,72)	Packed R2 - RO, R4 - R2see Map 26	VT (46,72,2)	QTARY
ssc ø sz	(46,72)	Solar radiation at top of atmosphere, SCØSZsee Map 28		EXC#M
Т	(46,72,2)	Levels 1 and 3 temperatures, part of state vector		QARY
TD	(46,72)	Temporary storage, Map 7 and CØMP3	FD H(46,72,2) PU	MISC
TØPØG	(46,72)	Topography; temperature positive for ocean, less than 10^{-6} for land ice		MISC
TS	(46,72,2)	R4 net upward long-wave radiation at surface see Map 22	UT(46,72,2)	QTARY
ΓT	{(46,72,1)	Packed AS1, AS3, solar absorption in layers see Map 25		QTARY
	(46,72,2)	Packed F4, E4, evaporation and sensible heat see Maps 18-20		
U	(46,72,2)	Zonal winds for levels 1 and 3, part of state vector		QARY
UT	(46,72,1)	Temporary storage in AVRX	wørk1	QTARY
	(46,72,2)	R4 net upward long-wave radiation at surface see Map 22	TS	}
v	(46,72,2)	Meridional winds for levels 1 and 3, part of state vector		QARY
VT	(46,72,1)	Temporary storage in map subroutines	WØRK2	QTARY
-	(46,72,2)	Packed R2 - R0, R4 - R2see Map 26	SN]
W	(46,72)	Temporary storage for Map 7	H(46,72,1) PHI PV	MISC
wørk i	(46,72)	Temporary storage in AVRX	UT (46,72,1)	QTARY
WØRK2	(46,72)	Temporary storage in map subroutines	VT (46,72,1)	QTARY

Table D3

MAP DISPLAY VARIABLES IN MAIN ROUTINE

Name	Description
AVE	Input contour interval, SINT set to it
AVO	Dashed-line value, set from DLN
CN	Current contour interval, initialized at the lowest contour value
CN2	The smallest grid value
CN3	The largest grid value
CONFLG	Flag for drawing the contour map
CONIN(15)	The input contour values, if any
CONINT(3)	BCD information - 'ISOLINES AT'
CONO	Input, real number of contour intervals; zero if non
CX(1500)	x-axis coordinates of lines forming the continental outlineseach set of two points defining a line
CY(1500)	y-axis coordinates of lines forming the continental outlineseach set of two points defining a line
DLAT	Number of degrees per grid point on y-axis
DLN	Input dashed-line value, AVO set to it
DLON	Number of degrees per grid point on x-axis
DT	Used in an older version of Map Display; should be input as zero in this version. At one time, MAPGE did not accumulate the arrays, but put each array on tape (one for each map every 6 hours, for usual case). Map Display then accumulated the arrays. The option was deleted, but some of the logic still exists in Map Display.
DTT	Small time increment used in time comparisons
DX .	Number of rasters corresponding to one grid interval on the x-axis in the contour map
DY	Number of rasters corresponding to one grid interval on the y-axis in the contour map
EACH	Not used; should be input as zero
XPN	Not used
FLAG7	Logical flag for the meridional mass flux profile map done in map 7
PREQ	Not used, but either this or EACH should be input as zero. Input slong with TA in columns 41-50
ıc	Number of points in CX, CY array. IC/2 lines drawn
М	Integer number of grid points on x-axis, set to XMAX
M	Integer number of grid points on y-axis, set to YMAX
AT (47)	Latitude grid points in degrees, used in POLP
.IN(3)	Used in CONTUR to speed up the isoline drawing in IGS. In COMMON/SPEED/
IAP I	Map number read from cards

Table D3--continued

Name	Description
MAPNO	Map number read from tape
NAME7	The BCD name for the meridional mass flux profile
NOPR	Integer number of times to print, set from PRNO
NOR	Integer flag for projection type; set from ZNOR
PI	= 3.1415963, used in the conversion of radians and degrees
POI(2)	No longer used
PRNO	Input, real number of times to print the map data
RAD	= 6.375 × 10 ⁶ meters, the radius of the earth
REW	Rewind flag to stop tape from being rewound twice while searching for a map's data record
SINT	Contour interval, set from AVE
SINTM	100 times SINT, the contour interval; used to prevent drawing of more than 100 contour intervals
SRF	SURF value read from card
SURF	SURF value read from tape
TA, TD	Starting time of map description, in days
TB, TE	Ending time of map description, in days
TC	A large time, set to 100 days beyond TB
TEND	End time read from tape, in hours
тот	Total number of grid points, floating point, a
TO	Start time read from tape, in hours
Tl	Start time read from tape, in days
T 2	End time read from tape, in days
WF(46,2)	Weighting functions used for the global means; (J,1) for the n-grid; (J,2) for the u,v grid
WORK1 (46,72)	Input continental outline data
WORK2 (46, 72)	Large array input from tape, equivalenced to WRK
WRK (46, 72)	Large array input from tape, equivalenced to WORK2
XMAX	Number of grid points on x-axis, floating point
K1	Start of the plotting surface on the x-axis
71	Start of the plotting surface on the y-axis
ZMM	Global mean, recalculated from tape value
M(46)	Zonal means for large array, recalculated
M2(46)	Zonal means of the oceans from tape
M3(46)	Array for the meridional mass flux values calculated in map 7
NCR	Input real flag for type of projection for contour flag; NOR, its integer value, is used
NT (3)	BCD information - 'INTERVAL='
OPI.	Flag for drawing the zonal means map

Table D4

ZONAL PROFILE PROGRAM VARIABLES

ZORAL I ROLLEL I ROCKALI VIRTIBES		
Name	Description	
ACCZON(46,128)	Storage for time accumulation of profiles	
CONSTS	In ACCVAL, the current weighting factor for the map data added to ACCZON	
CONV (30)	Conversion factors for the input zonal arrays	
FLGMAP	Flag indicating that a map is to be plotted, in EXEC	
ICARD(20)	Used to read the control cards	
IPRO(129)	Profile type number for maps	
ITITLE	Title for maps	
NAMCOD(129)	Four-character identification for each map	
NAMTYP(9)	Array containing the control words	
NCODE	Default value for NAMCOD. Normally blank	
NMAP	Number of profile maps inputcounter	
NPTZON	Number of zonal divisions, nominally 46	
NTYPES	Number of different control words	
NUM(129)	Number of accumulations in ACCZON array	
NUMUNT	Unit number of input zonal means	
NUMMAP	Number of types of profile maps	
NUMZON	Number of input zonal means	
SCALE(2,32)	Range for profile type in map area	
SUMWT	The weighting factor for the array ACCZON, in EXEQ	
T(3,129)	Start time, end time, and time range per profile (input in days, changed to hours)	
TAU	In EXEQ, time of disk data sets in hours	
TAULST	Time of last accumulated map data	
TIMDIF	Time increment of data sets on disk	
TIMMAX	Maximum time demanded in profile descriptions	
TIMMIN	Minimum time demanded in profile descriptions	
TISTD	Default value for start time. Nominally 0.1	
T2STD	Default value for end time. Nominally 0.1	
T3STD	Default value for time range. Nominally 0.4	
WT (46)	Weighting function used in calculating zonal means	
Z(200)	Mode set array for graphics programs	

Table D5
SUBROUTINE MAPZON VARIABLES

Name	Description	
DEL	Number of rasters from ZPT for the latitude labels	
DELTA	Number of rasters to move label if two columns of numbers are printed	
DIFFG	Number of rasters in the plotting surface in the x di- rection	
EDG	Length of the lines bracketing the plotting surface	
FLGINT	Flsg, - true if the accumulation is more than one time point	
FLGMIN	Flag, - true if two columns of numbers are printed in the profile map (the langleys/minutes column)	
GRIDX1	Left-hand x-axis value of the plotting surface	
GRIDX2	Right-hand x-axis value of the plotting surface	
GRIDY1	Lower y-axis value of the plotting surface	
GRIDY2	Upper y-axis value of the plotting surface	
IDUM	Dummy variable used in call to LINSEG	
IMAP	Profile map number to plot	
INØ(3)	BCD information, 'NO. MEAN -'	
ISØ(3)	BCD information, 'SO. MEAN -'	
12ØN(3)	BCD information, 'ZONAL MEANS'	
MAPNO	Profile type number	
NTIT(17)	Title for profile type	
PLATP	Latitude counter in loop	
SCALE1	Values at the left edge of the plotting surface	
SCALE2	Values at the right edge of the plotting surface	
SUMWT	Weighting factor for ACCZON	
TAU	Last time point accumulated for this profile	
Tl	Start time of accumulation for this profile	
T2	End time of accumulation for this profile	
VAL	Raster point along the x-axis to print latitude labels	
VALGBL	The global mean for the profile values	
VALNØ	Northern hemisphere's zonal mean	
VALS#	Southern hemisphere's zonal mean	
X1,Y1	Starting point of zonal mean line within plotting surface	
X2,Y2	End point of zonal mean line within plotting surface	
YLN1, to 5	Raster values of the y-axis for lines 1 (top line) to 5 of the headings	
YPT	Raster value of y-axis in drawing graph	
ZPT	Raster value of zero in the x-axis in the plotting surface	
Z2ARY (46)	Zonal mean values in units of ly/min, if used	

REFERENCES

- 1. Gates, W. L., E. S. Batten, A. B. Kahle, and A. B. Nelson, A Documentation of the Mintz-Arakawa Two-Level Atmospheric General Circulation Model, The Rand Corporation, R-877-ARPA, December 1971.
- 2. Brown, G. D., IGS--The Integrated Graphics System for the S-C 4060, The Rand Corporation, P-3722, November 1967.