

Relational Learning between Multiple Pulmonary Nodules via Deep Set Attention Transformers

Jiancheng Yang, Haoran Deng, Xiaoyang Huang, Bingbing Ni, Yi Xu April 2020

Introduction

Challenges:

1/ Diagnosis of multiple pulmonary nodules is **complex**

2/ Previous methods use **solitary**-nodule approaches for **multiple** pulmonary nodules, *i.e.*, ignore the relations

Solutions:

Relational learning between multiple nodules via **Set Attention Transformers**

Illustration by Jessica Olah, Verywell

https://www.verywellhealth.com/multiple-lung-nodules-causes-and-diagnosis-2249390

Methodology: Set Attention Transformers

We propose **Set Attention Transformers (SATs)**, inspired from our previous study, **Point Attention Transformers** for point clouds:

- Permutation-equivariant for sets
- Relational learning between set elements
- Parameter-efficient
- Group Shuffle Attention

Check our CVPR'19 study on point clouds

Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling.

L____Point
Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou, Qi Tian

Methodology: 3D DenseNet Backbone

We use a parameter-efficient 3D DenseNet for representation backbone, adapted from our previous study:

Check our Cancer Research study on tumor invasiveness

3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas.
Wei Zhao*, Jiancheng Yang*, Yingli Sun, et al. (*equal contribution).

Methodology: NoduleSATs

Combining 3D DenseNet backbone with the proposed Set Attention

Transformers (SATs), we proposed end-to-end NoduleSATs:

Experiments: Lung Nodule Detection

Dataset	Method	Average FROC (CPM)
LUNA16 [10]	2D-CNN [11] 3D-CNN [12] 3D DenseNet NoduleSAT	0.790 0.908^{2} 0.884 0.916
Tianchi VAL	3D DenseNet NoduleSAT	0.677 0.716

1/ LUNA16 False Positive Reduction: 888 subjects with 1186 nodules, totally 754,975 candidates, 10-fold cross validation.

2/ Tianchi Lung Nodule Detection: 800 subjects with 1,224 nodules, 5,531 candidates on the training set, 1,515 candidates on the validation set.

Experiments: Malignancy Classification

93.5 93.17 93 2175 92.48 92.5 92 91.5 91.62 1183 91.5 91 90.5 90 Nodule SAT 3D DenseNet Nodule SAT w. masked loss Models

Data Samples ——AUC

94

(a) Nodule Count Distribution

(b) Model Performance

LIDC-IDRI: one of the largest public available lung cancer screening databases

Patients in LIDC-IDRI dataset have 1 - 23 nodules

527 malignant + 656 benign + 992 undefined-label

Conclusion

- We propose a Set Attention Transformer (SAT), to explicitly learn relational information between multiple pulmonary nodules from a same subject.
- Integrated with a 3D DenseNet, the proposed end-to-end trainable NoduleSAT encourages the model to learn top-down relations from bottom-up inter-nodule nodule-level representations.
- We empirically prove the benefit of relation learning between multiple pulmonary nodules.

Thanks for Listening