Lecture 8

CONGRUENCES

(đồng dư)

Tan Kai Meng (NUS)

1 / 16

Definition

Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that a is congruent to b modulo n, denoted $a \equiv b \pmod{n}$, if and only if $n \mid (a - b)$.

Note

Equivalent definitions of $a \equiv b \pmod{n}$ include:

- There exists $k \in \mathbb{Z}$ such that a = b + kn.
- $a \mod n = b \mod n$.

Example

- $17 \equiv 2 \pmod{5}$; $-17 \equiv 7 \pmod{8}$; $3 \not\equiv 17 \pmod{12}$.
- For all integers a, $a \equiv (a \mod n) \pmod n$.

Tan Kai Meng (NUS)

Semester 1, 2019/20

2 / 16

Let $n \in \mathbb{Z}^+$. Then:

- $\forall a, b, c \in \mathbb{Z}$ $\left(\left(\left(a \equiv b \pmod{n} \right) \land \left(b \equiv c \pmod{n} \right) \right) \right) \Rightarrow \left(a \equiv c \pmod{n} \right) \right).$

Proof.

Easy exercise.

Let $a, b, c, d, n \in \mathbb{Z}$ with n > 0. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n};$$

 $a - c \equiv b - d \pmod{n};$
 $ac \equiv bd \pmod{n}.$

Proof.

- **1** $n \mid (a-b)$ and $n \mid (c-d)$.
- ② Thus $n \mid (a-b) \pm (c-d) = (a \pm c) (b \pm d)$, so that $a \pm c \equiv b \pm d \pmod{n}$.
- **3** Also, $n \mid (a-b)c + (c-d)b = ac bd$, so that $ac \equiv bd \pmod{n}$.

Generally if $ac \equiv bc \pmod n$, it is not necessary that $a \equiv b \pmod n$ even when $c \not\equiv 0 \pmod n$. (For example, $2 \cdot 4 = 8 \equiv 2 \pmod 6 \equiv 2 \cdot 1 \pmod 6$, but $4 \not\equiv 1 \pmod 6$.)

Lemma

Let $a, b, c, n \in \mathbb{Z}$ with n > 0. Suppose that $ac \equiv bc \pmod{n}$. Then

$$a \equiv b \pmod{\frac{n}{\gcd(c,n)}}$$
.

Proof.

- **1** $n \mid (ac bc) = (a b)c$.
- ② Let $n' = \frac{n}{\gcd(c,n)}$ and $c' = \frac{c}{\gcd(c,n)}$. Then $\gcd(n',c') = 1$. (Tut 7, Qn 6.)
- 3 Since $n \neq 0$, $\frac{(a-b)c}{n} \in \mathbb{Z}$.
- **5** By (3) and (4), $n' \mid (a-b)c'$.
- lacktriangledown By (2) and (5), $n' \mid (a-b)$ (part (2) of Lemma in Slide 29 of LECT8-1.pdf).

Solving Congruence Equations

Let $a,b,n\in\mathbb{Z}$ with n>0. Suppose that we want to solve $ax\equiv b\pmod n$, i.e. we want to find $x\in\mathbb{Z}$ such that $ax\equiv b\pmod n$.

Note

Although not strictly necessary, it is useful to replace a and b with $a \bmod n$ and $b \bmod n$ if they are not between 0 and n (and we can do so because of the last two lemmas).

For example, the congruence equation $97x \equiv -54 \pmod{13}$ can be replaced by the much less daunting $6x \equiv 11 \pmod{13}$.

There exists $x \in \mathbb{Z}$ such that $ax \equiv b \pmod{n}$ if and only if $\gcd(a, n) \mid b$.

Proof.

Let $g = \gcd(a, n)$.

- ① If there exists $x \in \mathbb{Z}$ such that $ax \equiv b \pmod{n}$, then:
 - **1** $n \mid (ax b)$.
 - **2** $g \mid n$, so $g \mid (ax b)$.
 - **3** $g \mid a \text{ and } g \mid (ax b), \text{ so } g \mid a(x) (ax b)(1) = b.$
- ② If $g \mid b$ then:
 - **1** There exists $y, z \in \mathbb{Z}$ such that ay + nz = g by Bézout's Identity.
 - 2 Let $x = \frac{b}{a}y$. Then $x \in \mathbb{Z}$ and

$$ax = a \frac{b}{g}y = \frac{b}{g}(g - nz) = b - \frac{b}{g}nz \equiv b \pmod{n}.$$

Tan Kai Meng (NUS) Semester 1, 2019/20 7 / 16

Let $a,b,n\in\mathbb{Z}$ with n>0, and assume that $\gcd(a,n)\mid b$. Then

$$\forall x \in \mathbb{Z} \left(ax \equiv b \pmod{n} \Leftrightarrow \frac{a}{\gcd(a,n)} x \equiv \frac{b}{\gcd(a,n)} \pmod{\frac{n}{\gcd(a,n)}} \right)$$

Note

$$\gcd(\frac{a}{\gcd(a,n)}, \frac{n}{\gcd(a,n)}) = 1$$
 (Tutorial 7, Qn 6).

Proof.

- ① Let $g=\gcd(a,n)$, $a_1=\frac{a}{\gcd(a,n)}$, $b_1=\frac{b}{\gcd(a,n)}$, and $n_1=\frac{n}{\gcd(a,n)}$. Then $a_1,b_1,n_1\in\mathbb{Z}$ with $n_1>0$, and $a=a_1g$, $b=b_1g$ and $n=n_1g$.
- ② If $ax \equiv b \pmod{n}$ where $x \in \mathbb{Z}$, then $a_1gx \equiv b_1g \pmod{n_1g}$, so that $a_1x \equiv b_1 \pmod{n_1}$ by Slide 5.
- **3** Conversely, if $a_1x \equiv b_1 \pmod{n_1}$, then $a_1x = b_1 + kn_1$ for some $k \in \mathbb{Z}$. Thus $ax = a_1gx = b_1g + kn_1g = b + kn$, so that $ax \equiv b \pmod{n}$.

8 / 16

Tan Kai Meng (NUS) Semester 1, 2019/20

Multiplicative Inverse Modulo n

Definition

Let $a, n \in \mathbb{Z}$ with n > 0. An integer x is a multiplicative inverse of a modulo n if and only if $ax \equiv 1 \pmod{n}$.

Example

- Both 2 and 5 are multiplicative inverses of 2 modulo 3.
- 4 has no multiplicative inverse modulo 6.

Lemma

Let $a, n \in \mathbb{Z}$ with n > 0. Then a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1.

Proof.

This follows from Slide 6: $ax \equiv 1 \pmod{n}$ has an integer solution for x if and only if $gcd(a, n) \mid 1$, if and only if gcd(a, n) = 1.

Corollary

Let $a, n \in \mathbb{Z}$ with n > 0. Suppose that gcd(a, n) = 1 and let a' be a multiplicative inverse of a modulo n. Then

$$\forall x \in \mathbb{Z} \ (ax \equiv b \pmod{n} \Leftrightarrow x \equiv a'b \pmod{n}).$$

Proof.

- ① If $ax \equiv b \pmod{n}$, then $a'b \equiv a'(ax) \pmod{n} \equiv (a'a)x \pmod{n} \equiv (1)x \pmod{n} \equiv x \pmod{n}$.
- **②** Conversely, if $x \equiv a'b \pmod n$, then $ax \equiv a(a'b) \pmod n \equiv (aa')b \pmod n \equiv 1(b) \pmod n \equiv b \pmod n$.

Tan Kai Meng (NUS)

Theorem

Let $a, b, n \in \mathbb{Z}$ with n > 0. Then

$$(\exists x \in \mathbb{Z} \ ax \equiv b \pmod{n}) \Leftrightarrow \gcd(a, n) \mid b,$$

in which case

$$\forall x \in \mathbb{Z} \left(ax \equiv b \pmod{n} \Leftrightarrow x \equiv a' \frac{b}{\gcd(a,n)} \pmod{\frac{n}{\gcd(a,n)}} \right),$$

where a' is a multiplicative inverse of $\frac{a}{\gcd(a,n)}$ modulo $\frac{n}{\gcd(a,n)}$.

Proof.

The necessary and sufficient condition for the existence of solution follows from Slide 6, while the set of all solutions, when the condition holds, follows from Slide 7 and last Corollary (Slide 9).

ロト (個) (量) (量) (量) (例)(例

Corollary

Let $a, n \in \mathbb{Z}$ with n > 0, and suppose that $\gcd(a, n) = 1$. Let a' be a multiplicative inverse of a modulo n. Then for any $x \in \mathbb{Z}$, x is a multiplicative inverse of a modulo n if and only if $x \equiv a' \pmod n$.

Proof.

Just apply the last theorem with b = 1.

Computing Multiplicative Inverses Modulo *n*

- If a' is a multiplicative inverse of a modulo n, then a' \mathbf{mod} n is also a multiplicative inverse of a modulo n by the last Corollary. But $0 \le a'$ \mathbf{mod} n < n, so one can go through the list $0, 1, \dots, n-1$ to see if any of this when multiplied with a gives 1 modulo n. This is the **trial and error method** (or guess and check method), and works well for small n.
- In general, especially when it is not practical to use the trial and error method, we can rely on the Euclidean algorithm to obtain integer x and y such that ax + ny = 1 (since $\gcd(a, n) = 1$ for a to have a multiplicative inverse modulo n), in which case x is a multiplicative inverse of a modulo n.
- After one multiplicative inverse of a has been found, the others can be obtained by adding multiples (both positive and negative) of n to it.

Tan Kai Meng (NUS) Semester 1, 2019/20 13 / 16

Example

Compute the multiplicative inverses of a modulo n for each of the following pairs of a and n:

(a)
$$a = 2$$
, $n = 7$; (b) $a = 7$, $n = 31$.

Solution:

- (a) Since $4(2) = 8 \equiv 1 \pmod{7}$, we see that 4 is a multiplicative inverse of 2 modulo 7. In general, $x \in \mathbb{Z}$ is a multiplicative inverse of 2 modulo 7 if and only if $x \equiv 4 \pmod{7}$.
- (b) Using the Euclidean Algorithm, we get 1=7(9)+31(-2), so that 9 is a multiplicative inverse of 7 modulo 31. In general, $x\in\mathbb{Z}$ is a multiplicative inverse of 7 modulo 31 if and only if $x\equiv 9\pmod{31}$.

Tan Kai Meng (NUS) Semester 1, 2019/20 14 / 16

Example

Find all solutions $x \in \mathbb{Z}$ (if any) that satisfies:

(a) $21x \equiv 32 \pmod{93}$; (b) $21x \equiv 33 \pmod{93}$.

Solution:

Observe first that gcd(21, 93) = 3.

- (a) This has no solution since $gcd(21, 93) \nmid 32$.
- (b) $21x \equiv 33 \pmod{93} \Leftrightarrow 7x \equiv 11 \pmod{31} \Leftrightarrow x \equiv 9(11) \pmod{31} \equiv 6 \pmod{31}$. (Note that 9 is a multiplicative inverse of 7 modulo 31 from the last Example.)

15 / 16

Tan Kai Meng (NUS) Semester 1, 2019/20

Summary

We have covered:

- Definition of congruences
- Modular arithmetic
- Multiplicative inverse modulo n
- Solving congruence equation of the form $ax \equiv b \pmod{n}$