

Objetivos

O aluno deverá ser capaz de:

- Conceituar e diferenciar uma arquitetura cliente servidor e uma arquitetura ponto a ponto;
- Compreender os principais serviços de rede existentes na Internet;

Conteúdo

- 2.1 Conceitos de arquitetura cliente-servidor e ponto a ponto (P2P);
- 2.2 Conceitos gerais dos serviços de rede: Telnet, SMTP, HTTP, FTP, DNS;

Protocolos de Redes e de Computadores Camada de Aplicação – Funcionalidades e Protocolos

Aplicação: A Interface entre as Redes

A camada de Aplicação fornece a conexão para a rede.

- Camada superior dos modelos OSI e TCP/IP
- Fornece a interface entre as aplicações que utilizamos para comunicação e a rede subjacente pela qual nossas mensagens são transmitidas
- Os protocolos da camada de aplicação são utilizados para troca de dados entre programas executados nos hosts de origem e de destino

- Dois importantes conceitos:
 - Camada de Aplicação:
 - O primeiro passo para transferir dados na rede
- Software de Aplicação:
 - O programa usado para a comunicação através da rede

- Por exemplo:
 - •Quando uma página web é exibida:
 - A camada de Aplicação usa o Potocolo HTTP
 - O Software da Aplicação é o seu browser.

- A funcionalidade dos protocolos da camada de aplicação TCP/IP se ajusta à estrutura das três camadas superiores do modelo OSI
- A maioria dos protocolos da camada de Aplicação TCP/IP foi desenvolvida antes do surgimento de computadores pessoais, interfaces gráficas de usuário e objetos multimídia
 - Implementam muito pouco da funcionalidade especificada nas camadas de Apresentação e Sessão do modelo OSI

- Funções da camada de Apresentação
 - Codificação e conversão de dados da camada de Aplicação
 - Compressão
 - Formatos de compressão e codificação: GIF, JPG, TIF
 - Criptografia

- Funções da Camada de Sessão:
 - Criar e manter diálogos entre as aplicações de origem e destino
 - Lida com a troca de informações para iniciar diálogos, mantê-los ativos e reiniciar sessões interrompidas ou ociosas por um longo período de tempo
 - Incorporado pela maioria das aplicações (e.g. Web Browser)

Camada de Aplicação- Modelos OSI e TCP/IP

DNS (Domain Name System): Resolve nomes de Internet (URLs) em endereços IP

Camada de Aplicação- Modelos OSI e TCP/IP

Telnet:

Simulador de Terminal - fornece acesso remoto a servidores e dispositivos de rede

Camada de Aplicação- Modelos OSI e TCP/IP

SMTP (Simple Mail Transfer Protocol): Transfere mensagens de email e anexos

Camada de Aplicação- Modelos OSI e TCP/IP

DHCP (Dynamic Host Configuration Protocol): Atribui endereços IP e outros parâmetros aos hosts

Camada de Aplicação- Modelos OSI e TCP/IP

HTTP (Hypertext Transfer Protocol): Transfere arquivos que são construídos pelas páginas web

Camada de Aplicação- Modelos OSI e TCP/IP

FTP (File Transfer Protocol): Transfere arquivos entre sistemas

Camada de Aplicação- Modelos OSI e TCP/IP

Normalmente, um único servidor funcionará como um servidor para multiplos protocolos da Aplicação

Protocolos de Redes e de Computadores Software da Camada de Aplicação

- Dentro da camada de Aplicação, há duas formas de programa de software ou processo que fornecem acesso à rede:
- Aplicações
- Serviços

- Aplicações que detectam redes:
 - Programas de software usados por pessoas para se comunicarem pela rede
 - Implementam os protocolos da camada de Aplicação e conseguem se comunicar diretamente com as camadas inferiores da pilha de protocolos
- Exemplos
 - Email Clients
 - Web Browsers

- Serviços da Camada de Aplicação:
- Alguns programas podem precisar da assistência dos serviços da camada de Aplicação para utilizar recursos de rede, por exemplo
 - Transferência de arquivos
 - Spooling de impressão em rede
- Esses serviços são os programas que fazem interface com a rede e preparam os dados para transferência

- A Camada de Aplicação utiliza protocolos implementados dentro de aplicações e serviços
 - Aplicações oferecem uma maneira de criar mensagens
 - Serviços da camada de aplicação estabelecem uma interface com a rede
 - Protocolos fornecem as regras e formatos que regem como os dados são tratados.

- Os protocolos da camada de Aplicação são utilizados pelos dispositivos de origem e destino durante uma sessão de comunicação
- Os protocolos da camada de aplicação implementados nos hosts de origem e destino devem corresponder

- Estabelecem regras coerentes para troca de dados entre aplicações e serviços carregados nos dispositivos participantes
- Especificam como os dados dentro das mensagens são estruturados e os tipos de mensagens enviados entre origem e destino
- Definem diálogos de mensagem, garantindo que uma mensagem enviada seja conhecida pela resposta esperada

Funcionalidade e Protocolos da Camada de Aplicação

Protocolos de Redes e de Computadores Introdução

- Ao acessar informações em dispositivos conectados a uma rede, os dados podem não estar fisicamente armazenados neles
- Se este for o caso, uma solicitação para acessar tais informações deve ser feita ao dispositivo onde os dados estão
- Há três métodos:
 - Modelo Cliente/Servidor
 - Aplicações de Rede Peer-to-Peer (P2P)
 - Hibrido

Protocolos de Redes e de Computadores Modelo Cliente/Servidor

Protocolos de Redes e de Computadores Modelo Cliente/Servidor Clientes – combinação de hardware/software que os usuários usam diretamente Pode exigir informações de controle, como autenticação de usuário e identificação de um arquivo de dados a ser transferido. Download O cliente inicia a troca solicitando dados do servidor Network O servidor responde com um ou mais streams de dados Upload

Recursos são armazenados no servidor

Modelo Cliente/Servidor

A maior vantagem do modelo cliente/servidor é a centralização dos recursos User Names and Senhas, Arquivos, Banco de dados

Protocolos de Redes e de Computadores Servidores

- Servidores s\u00e3o reposit\u00f3rios de informa\u00f3\u00f3es
- Processos no servidor controlam a entrega da informação ao cliente
- A informação é normalmente compartilhada com múltiplos clientes
 - Web Server
 - o FTP Server
 - Database Server

Protocolos de Redes e de Computadores Servidores

- Alguns servidores podem exigir a autenticação dos usuários para acessar os dados ou a rede
- Servidor FTP:
 Pode requerer uma conta e senha antes de permitir uma transferência
- Servidor de Dominio: Exigirá um usuário e senha para acesso a rede

Servidores

- O servidor executa um serviço, ou processo, às vezes chamado de daemon de servidor
- Daemons (como outros serviços):
 - Executados em segundo plano
 - Não estão sob o controle direto de um usuário final
 - São descritos como "ouvintes" de uma solicitação de um cliente
 - programados para responder sempre que o servidor recebe uma solicitação para o serviço fornecido pelo daemon
- Quando um daemon "ouve" uma solicitação de um cliente:
 - Troca as mensagens correspondentes com o cliente
 - Envia os dados solicitados ao cliente no formato adequado

Protocolos e Serviços da camada de Aplicação

- Servidores normalmente têm diversos clientes solicitando informações ao mesmo tempo
- Exemplo: servidor Telnet
- O daemon Telnet ouve as requisições que são recebidas na porta 23

Redes Peer-to-Peer (P2P)

- Dois ou mais computadores são conectados via rede e podem compartilhar recursos (como impressoras e arquivos) sem ter um servidor dedicado
- Cada dispositivo final conectado (conhecido como par (peer)) pode funcionar como cliente ou servidor

Redes Peer-to-Peer (P2P)

Desvantagem

- Recursos da rede descentralizados
- Segurança as contas de usuário e direitos de acesso devem ser definidos individualmente em cada dispositivo.

Redes Peer-to-Peer (P2P)

- Permite que um dispositivo atue como cliente e servidor na mesma comunicação
- Ambos podem iniciar uma comunicação e são considerados iguais no processo de comunicação
- cada cliente é um servidor e cada servidor é um cliente

Exemplos de Serviços e Protocolos da Camada de Aplicação

Protocolos de Redes e de Computadores Introdução

- Protocolos específicos usados comumente:
 - A camada de transporte utiliza um esquema de endereçamento chamado número de porta.
 - Os números de porta identificam aplicações e serviços da camada de Aplicação que são a origem e o destino dos dados
 - Programas de servidor geralmente utilizam números de porta pré-definidos comumente conhecidos por clientes
 - À medida que examinarmos os diferentes protocolos e serviços da camada de Aplicação TCP/IP, falaremos dos números de porta TCP e UDP normalmente associados a tais serviços

Protocolos de Redes e de Computadores Introdução

IP Header	TCP Header	HTT Head			Data	
Application / Service			Acronym		Port	
Domain Name System			DNS		53	
Hypertext Transfer Protocol			HTTP		80	
Simple Mail Transfer Protocol			SMTP		25	
Post Office Protocol			POP3		110	
Telnet			Telnet		23	
Dynamic Host Configuration Protocol			DHCP		67	
File Transfer Protocol			FTP		20, 21	

Protocolos de Redes e de Computadores Serviços e Protocolos da Camada de Aplicação

Domain Name System DNS

Resolução de Endereços (DNS)

Resolução de Endereços (DNS)

- O protocolo DNS define um serviço automatizado que alia os nomes de recursos com o endereço de rede numérico necessário
- DNS é um serviço cliente/servidor. Entretanto, ao invés dos outros serviços que utilizam um cliente que é uma aplicação (navegador Web, cliente de e-mail), o cliente DNS é executado como um serviço
- O cliente DNS (resolvedor DNS) suporta a resolução de nome para outras aplicações de rede e outros serviços que precisam dele

Resolução de Endereços (DNS)

 Ao configurar um dispositivo de rede, geralmente fornecemos um ou mais endereços de Servidor DNS que o cliente DNS pode utilizar para resolução de nome.

IP Address

192.168.25.25

Subnet Mask 255.255.255.0

Default Gateway 192.168.25.1

DNS Server

208.67.222.222

Resolução de Endereços (DNS)

- DNS e o Browser:
 - Primeiro, um nome ou URL é dado como entrada no campo de endereço do browser.
 O browser passa o nome para o resolvedor DNS

Resolução de Endereços (DNS)

DNS e o Browser:

- 2. O resolvedor de DNS envia uma requisição de DNS para o servidor de DNS
- O servidor então procura em seus registros e resolve o nome com o endereço IP correspondente

DNS e o Browser:

4. O servidor DNS então envia o endereço IP de volta ao cliente que fez a requisição. O endereço IP será usado no processo de encapsulamento, como o endereço de destino para o pacote enviado para novaoi.oi.com.br

Resolução de Endereços (DNS)

```
- - X
C:\Windows\system32\cmd.exe - nslookup
C:\>nslookup
Servidor Padròo: UnKnown
Address: 10.11.24.241
> www.estacio.br
Servidor: UnKnown
Address: 10.11.24.241
Não é resposta de autorização:
Nome: www03.estacio.br
Address: 200.216.152.71
Aliases: www.estacio.br
> www.estacio.br
Servidor: UnKnown
Address: 10.11.24.241
Não é resposta de autorização:
        www03.estacio.br
Address: 200.216.152.71
Aliases: www.estacio.br
```

- Utilitário nslookup:
 - Sistema Operacional Windows fornece o utilitário nslookup
 - Permite que o usuário consulte manualmente os servidores de nome para decidir um nome de host
 - Usado para corrigir problemas de resolução de nome e verificar o status atual dos servidores de nome

Resolução de Endereços (DNS)

Sistema hierárquico para criar um banco de dados de nomes para fornecer resolução do nome

Resolução de Endereços (DNS)

- Os servidores raiz mantêm registros sobre como chegar aos servidores de domínio de nível superior
- Os servidores de nível superior têm registros que levam aos servidores de domínio de nível secundário, e assim por diante ...

Resolução de Endereços (DNS)

- Os servidores DNS armazenam diferentes tipos de registro de recurso utilizados para definir nomes
- Esses registros contêm o nome, endereço e tipo de registro.
 - A endereço do dispositivo final
 - NS servidor de nome confiável
 - CNAME nome canônico (ou Nome de Domínio Completo) para um codinome; utilizado quando vários serviços têm um único endereço de rede, mas cada serviço tem sua própria entrada no DNS
 - MX registro de troca de correspondência; mapeia um nome de domínio para uma lista de servidores de troca de e-mail para tal domínio

Resolução de Endereços (DNS)

 Um servidor DNS fornece a resolução de nome utilizando o daemon do nome, chamado de named (name dee).

Por quê não centralizar o DNS?

- ponto único de falha
- volume de tráfego
- base de dados centralizada e distante
- □ manutenção (da BD)

Não é escalável!

 Nenhum servidor mantém todos os mapeamento nomepara-endereço IP

servidor de nomes local:

- cada provedor, empresa tem servidor de nomes local (default)
- pedido DNS de hospedeiro vai primeiro ao servidor de nomes local

servidor de nomes autoritativo:

- p/ hospedeiro: guarda nome, endereço IP dele
- pode realizar tradução nome/endereço para este nome

hospedeiro tucuxi.ufpa.br requer endereço IP de www.cs.columbia.edu

- Contata servidor DNS local, marajo.ufpa.br
- 2. marajo.ufpa.br contata servidor raíz, se necessário
- Servidor raíz contata servidor autoritativo cs.columbia.edu, se necessário

Servidor raíz:

- pode não conhecer o servidor de nomes autoritativo
- pode conhecer

 servidor de nomes

 intermediário: a quem

 contactar para

 descobrir o servidor

 de nomes autoritativo

consulta recursiva:

- transfere a responsabilidade de reolução do nome para o servidor de nomes contatado
- carga pesada?

consulta iterativa:

- servidor consultado responde com o nome de um servidor de contato
- "Não conheço este nome, mas pergunte para esse servidor"

Tipos de Servidores

- □ **Primário**: mantem as tabelas de configuração de DNS localmente
- □ Secundário (slave): recebe atualização do primário com informação sobre a zona
- □ Caching-only: Somente realiza cache dos domínios consultados, sem nenhuma informação local

Servidor Primário + Servidor(es) Secundário(s)

Observações Relevantes sobre DNS

- ☐ Dualidade sobre o protocolo de transporte
 - Oconsultas normalmente usam UDP (porta 53)
 - Osincronização de BDs usa TCP (porta 53)
- Desempenho
 - Oacesso lento ao DNS pode atrasar toda comunicação
 - Oerros em BDs do DNS podem causar falhas de coms.
 - Oacesso ao servidor DNS pode se tornar um gargalo
 - Oexemplo: servidor DNS atrás de um roteador congestionado

Protocolos de Redes e de Computadores Resolução de Endereços (DNS)

Utilitário:

- ipconfig /displaydns
- Mostra o conteúdo da cache do PC
- ipconfig /flushdns
- Limpa o conteúdo da cache do PC

Serviço WWW e Hypertext Transfer Protocol HTTP

Serviço WWW e HTTP

 Os navegadores Web são as aplicações cliente que nossos computadores utilizam para se conectar à World Wide Web e acessar recursos armazenados em um servidor Web

Protocolos de Redes e de Computadores Serviço WWW e HTTP

http: hypertext transfer protocol

- protocolo da camada de aplicação para WWW
- modelo cliente/servidor
 - cliente: browser que pede, recebe, "visualiza" objetos WWW
 - servidor: servidor
 WWW envia objetos em resposta a pedidos
- □ http1.0: RFC 1945
- http1.1: RFC 2068

Serviço WWW e HTTP

- HTTP é utilizado na World Wide Web para transferência de dados
- HTTP especifica um protocolo de solicitação/resposta
- Quando um cliente solicita uma página web, o protocolo HTTP define o tipo de mensagem que será trocada, por exemplo:
 - GET Solicitação de cliente para dados
 - PUT e POST são utilizados para enviar mensagens que fazem upload de dados ao servidor
 Web

Serviço WWW e HTTP

- O servidor responde ou com:
 - O objeto solicitado
 - Uma mensagem de erro, se for o caso
 - Ou outra mensagem de status

Códigos de status das respostas

200 OK

Requisição bem-sucedida, informação é entregue c/ resposta

301 Moved Permanently

 objeto requisitado foi removido permanentemente; nova localização é especificada no cabeçalho Location:. O cliente recupera automaticamente a nova URL

400 Bad Request

mensagem de requisição não foi entendida pelo servidor

404 Not Found

o documento requisitado n\u00e3o existe no servidor

505 HTTP Version Not Supported

Códigos de status das respostas

- Para comunicação segura pela Internet, o protocolo HTTP Seguro (HTTPS) é utilizado:
- Permite que servidores e clientes troquem informações com segurança pela Internet
- Pode utilizar autenticação e criptografia para proteger os dados
- Especifica regras adicionais para a passagem de dados entre a camada de Aplicação e a de Transporte.

Cache WWW

Meta: atender pedido do cliente sem envolver servidor de origem

- usuário configura
 browser: acessos WWW
 via procurador
- cliente envia todos pedidos http ao procurador
 - se objeto estiver no cache do procurador, este o devolve imediatamente na resposta http
 - senão, solicita objeto do servidor de origem, depois devolve resposta http ao cliente

Cache WWW

Suposição: cache está "próximo" do cliente (p.ex., na mesma rede)

- tempo de resposta menor: cache "mais próximo" do cliente
- diminui tráfego aos servidores distantes
 - muitas vezes é um gargalo o enlace que liga a rede da instituição ou do provedor à Internet

Simple Mail Transfer Protocol SMTP

Serviços de E-Mail e Protocolos SMTP/POP

- Revolucionou a forma como as pessoas se comunicam
- Aplicações e Serviços
 - Simple Mail Transfer Protocol (SMTP)
 - Post Office Protocol (POP and POP3)
 - Internet Message Access Protocol (IMAP)

Serviços de E-Mail e Protocolos SMTP/POP

- Mail User Agent (MUA) é usado para compor mensagens
 - o Também conhecida como cliente de e-mail
 - MUA permite que mensagens sejam enviadas e recebidas
 - Mensagens são colocadas na caixa de correio do cliente

Protocolos de Acesso ao Correio

- SMTP: entrega e armazenamento no servidor do destino
- Protocolos de acesso: recuperação de mensagens do servidor
 - POP: Post Office Protocol [RFC 1939]
 - autorização (agente <-->servidor) e descarga (download)
 - o IMAP: Internet Mail Access Protocol [RFC 1730]
 - mais recursos (mais complexo)
 - manipulação de mensagens armazenadas no servidor
 - HTTP: Hotmail , Yahoo! Mail, Gmail, etc.

Processos de Servidor de e-mail: MTA and MDA

Servidor de e-mail opera dois processos separados:

- Mail Transfer Agent (MTA):
 - o utilizado para encaminhar e-mail.
 - o recebe mensagens do MUA ou de outro MTA
 - Com base no cabeçalho da mensagem, ele determina como uma mensagem tem de ser encaminhada para chegar a seu destino
- Mail Transfer Agent (MTA):
 - Recebe as correspondências do MTA e as coloca nas caixas de correio dos usuários adequados

Processos de Servidor de e-mail: MTA and MDA

File Transfer Protocol FTP

File Transfer Protocol (FTP)

- FTP foi desenvolvido para possibilitar transferências de arquivos entre um cliente e um servidor
- Utilizado para carregar e baixar arquivos de um servidor que executa o daemon FTP (FTPd)

- transferir arquivo de/para hospedeiro remoto
- modelo cliente/servidor
 - cliente: lado que inicia transferência (pode ser de ou para o sistema remoto)
 - o servidor: hospedeiro remoto
- □ ftp: RFC 959
- servidor ftp: porta 21

- cliente ftp contata servidor ftp na porta 21, especificando TCP como protocolo de transporte
- são abertas duas conexõesTCP paralelas:
 - controle: troca comandos, respostas entre cliente, servidor.

"controle fora da banda"

- dados: dados de arquivo de/para servidor
- servidor ftp mantém
 "estado": directório corrente,
 autenticação realizada

File Transfer Protocol (FTP)

Conexão de controle Username and password...

Para cada arquivo transferido, o TCP abre e fecha a conexão de dados na Porta 20

Serviços e Protocolos da Camada de Aplicação

Dynamic Host Configuration Protocol DHCP

Dynamic Host Configuration Protocol (DHCP)

Endereço IP e outras configurações podem ser obtidas dinamicamente

Dynamic Host Configuration Protocol (DHCP)

- Endereço IP
- Mascara de sub-rede
- Default Gateway
- Nome de Dominio
- Servidor DNS
- Outros

Servidores DHCP podem estar em uma LAN, em um roteador ou um ISP

Dynamic Host Configuration Protocol (DHCP)

■ DHCP é um processo de quatro passos

1. Cliente transmite um pacote DHCP DISCOVER para identificar qualquer servidor DHCP disponível na rede. Pode ter mais que um disponível

Dynamic Host Configuration Protocol (DHCP)

DHCP é um processo de quatro passos

2. Um servidor DHCP responde com um DHCP OFFER (mensagem de oferta de aluguel) com informações de endereço IP atribuído, máscara de sub-rede, servidor DNS e gateway padrão, além da duração do aluguel

Dynamic Host Configuration Protocol (DHCP)

DHCP é um processo de quatro passos

3. Responde com um DHCP REQUEST que identifique o servidor explícito e a oferta de aluguel que o cliente está aceitando

Dynamic Host Configuration Protocol (DHCP)

DHCP é um processo de quatro passos

4. Se a oferta estiver válida, o servidor retornará uma mensagem DHCP ACK que confirma ao cliente que o aluguel foi finalizado. Se a oferta não for mais válida o servidor selecionado responderá com uma mensagem DHCP NAK

Compartilhamento de arquivos P2P

Protocolo Gnutella e Serviços P2P

Aplicações Peer-to-peer são responsáveis pela maior parte do tráfego total (50 a 90%) da Internet

Protocolos de Redes e de Computadores Protocolo Gnutella e Serviços P2P

Aplicações Peer-to-peer são responsáveis pela maior parte do tráfego total (50 a 90%) da Internet

Protocolo Gnutella e Serviços P2P

Aplicações Peer-to-peer são responsáveis pela maior parte do tráfego total (50 a 90%) da Internet

Compartilhamento de arquivos P2P: diretório centralizado

- Projeto original do Napster
- 1) quando um par se conecta, ele informa ao servidor central:
 - IP
 - Conteúdo
- 2) Alice consulta por "Hey Jude"
- 3) Alice requisita o arquivo de Bob

P2P: problemas com diretórios centralizados

- Ponto único de falha
- Gargalo de desempenho
- Violação dos direitos de cópia (Copyright)
- transferência de arquivos: descentralizada
- localização de conteúdo: centralizada

Protocolo Gnutella e Serviços P2P

- Pares (hosts) atuam como cliente e servidor
- Não há um servidor centralizado
- As transferências de arquivos reais geralmente usam serviços HTTP

Serviços e Protocolos da Camada de Aplicação

Telnet

Protocolos e Serviços Telnet

Telnet

 Desenvolvido para atender pessoas que precisavam de uma maneira de acessar remotamente os sistemas de computação da mesma forma que faziam com os terminais diretamente acoplados

Protocolos e Serviços Telnet

- Fornece um método padrão de simulação de dispositivos de terminal com base em texto na rede de dados
- Permite ao usuário acessar remotamente outro dispositivo (host, router, switch)
- Uma conexão que utiliza Telnet é chamada de sessão de Terminal Virtual (VTY)

Protocolos e Serviços Telnet

- Telnet utiliza software para criar um dispositivo virtual que forneça os mesmos recursos de uma sessão de terminal com acesso à interface de linha de comando (CLI) do servidor
- Clientes Telnet: Putty, Teraterm, HyperTerminal

Protocolos e Serviços Telnet

- Telnet suporta autenticação do usuário, mas não dados criptografados (texto claro)
- Secure Shell (SSH) protocolo que oferece um método seguro para acessar servidores
 - Autenticação forte, criptografia de dados