

Conectividad

Comunicación entre Dispositivos

Topología Estrella

Ventajas

- Nodos envían directamente a Gateway
- Gateway releva los datos y los procesa o transmite a la nube
- Nodos pueden *dormir* entre mensajes

Desventajas

 Los nodos deben estar dentro del rango de acceso al Gateway

Tecnologías

• WiFi, LoRaWAN, SigFox, Ethernet

Topología Punto a Punto

Ventajas

Comunicación simple (unidireccional o bidireccional)

Desventajas

• Sólo permite conexión con un dispositivo a la vez

Tecnologías

 Bluetooth, Bluetooth Low Energy (BLE), Zigbee, RS232, Ethernet

Topología Malla

Ventajas

- Cada nodo envía a todos los nodos cercanos extendiendo la red
- Si falla un nodo, la red puede seguir funcionando

Desventajas

 Los dispositivos deben mantenerse activos para distribuir mensajes

Tecnologías

• Zigbee, WiFi Mesh, BLE Mesh

Tecnologías en ESP32 - WiFi

WiFi

- Adhiere a estándar IEEE 802.11 b/g/n
- Permite modo estación y/o punto de acceso
- Velocidad de transferencia de hasta 30Mb por UDP o 20Mb por TCP
- Seguridad: WPA2/WPA3

• WiFi Mesh (sólo ESP-IDF)

- Construido sobre protocolo WiFi
- Cada nodo actúa como estación y punto de acceso
- o Cada nodo responde a un nodo padre o router
- Cada nodo puede tener hijos asociados

Tecnologías en ESP32 - Bluetooth 4.2

- Bluetooth Clásico (sólo ESP-IDF)
 - o Banda 2.4 GHz
 - 79 canales de 1MHz
 - o 1 Mb/s, 2 Mb/s, 3 Mb/s
- Bluetooth Low Energy
 - o Banda 2.4 GHz
 - 40 canales de 2MHz
 - o 125 Kb/s, 500 Kb/s, 1 Mb/s, 2 Mb/s
- Bluetooth Low Energy Mesh (sólo ESP-IDF)

Módulos Externos

Sigfox

- Red inalámbrica global
- Requiere licencia
- Alto alcance

- Estándar abierto
- Requiere instalar un Gateway en caso de no haber cobertura en la zona
- Alto alcance

Cobertura Sigfox/LoRa

Módulos Externos

Zigbee

- Low Rate Wireless Area Network (IEEE 802.15.4)
- Corto alcance
- Módulos programables con entradas y salidas disponibles

Ejemplo BLE

BLE - Roles

Broadcaster

Anuncia periódicamente datos a todos los dispositivos cercanos

Observer

Escanea anuncios periódicos de otros dispositivos para ver cuáles están en cercanía

Peripheral

 Dispositivo de bajo consumo que emite información a un nodo central. Solo puede estar conectado a un central en simultáneo

Central

Se puede conectar a uno o más periféricos

Ejemplo BLE UART

Requiere ble_simple_peripheral.py y ble_advertising.py que proveen los ejemplos de MicroPython (disponible en campus)

```
import bluetooth
from time import sleep_ms

from ble_simple_peripheral import BLESimplePeripheral

ble = bluetooth.BLE()
p = BLESimplePeripheral(ble)

Declaración de interfaz
BLE y periférico
```


Ejemplo BLE UART

```
def on_rx(v):
                                Definición del callback de
        print("RX", v)
10
                                recepción de mensaje
11
   p.on write(on rx)
13
   while True:
                                       Envío mensajes
        if p.is_connected():
15
                                       periódicamente
            p.send("mensaje")
16
17
        sleep ms(100)
```


Ejemplo BLE UART

Una vez ejecutado el programa, se puede conectar un dispositivo central (celular Android) para interactuar con el dispositivo

Serial Bluetooth Terminal

Ejemplo BLE UART - En Android

Ejemplo BLE UART - En Thonny

```
MicroPython v1.19.1 on 2022-06-18; ESP32 module with ESP32
Type "help()" for more information.
>>> %Run -c $EDITOR_CONTENT

Starting advertising
New connection 0
RX b'prueba\r\n'
```


Ejemplo Zigbee

Módulo XBee PRO S2C

Especificaciones:

- Distancia: hasta 90m en interiores, 3200m en espacio abierto
- Potencia emitida: 63 mW
- Sensibilidad de recepción: -101dBm
- Alimentación: 2.7V 3.6V

Modulo disponible: XBee PRO S2C

Módulo XBee PRO S2C

Configuración Módulo XBEE

Configuración Módulo XBEE

	Update firmwar	e
Update the radio mod Configure the firmware th	ule.	
Select the product family Product family	of your device, the new function se	et and the firmware version to flash:
XBP24C	802.15.4 TH PRO DigiMesh 2.4 TH PRO ZIGBEE TH PRO	2003 (Newest) 2002 2001
Can't find your firmware? Click here Force the module to maintain its current configuration		View Release Notes Select current
		Cancel Update

Red ZigBee 802.15.4

Módulo UART MicroPython

```
from machine import UART

uart = UART(2, baudrate=9600)

while True:
    if uart.any() > 0:
        buf = uart.read()
        print(buf.decode(), end="")
```

Pines asignados para cada puerto UART

	UARTO (USB)	UART1 (FLASH)	UART2
tx	1	10	17
rx	3	9	16

