PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 9/10, 15/54, 15/62 C12N 15/80, 15/85

(11) International Publication Number:

WO 92/12238

A1

(43) International Publication Date:

23 July 1992 (23.07.92)

(21) International Application Number:

PCT/US91/09784

(22) International Filing Date:

30 December 1991 (30.12.91)

(30) Priority data:

635,756

4 January 1991 (04.01.91)

US

(71) Applicant: THE BOARD OF REGENTS, UNIVERSITY OF TEXAS SYSTEM [US/US]; 201 West 7th Street, Austin, TX 78701 (US).

(72) Inventors: DAVIES, Peter, J., A.; 5503 Cheltenham Drive, Houston, TX 77096 (US). STEIN, Joseph, P.; 1971 Chard Road, Cazenovia, NY 13035 (US).

(74) Agents: PARMELEE, Steven, W. et al.; Townsend and Townsend, One Market Plaza - 2000 Steuart Tower, San Francisco, CA 94105 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), CM (OAPI patent), CS, DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, RU, SD, SE, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent).

Published

With international search report.

(54) Title: CLONING AND EXPRESSION OF TISSUE TRANSGLUTAMINASES

(57) Abstract

Human and murine tissue transglutaminases are cloned, sequenced and expressed. The tissue transglutaminases herein are useful for, inter alia, therapeutic wound repair, stabilizing food preparations, and markers for identifying agents which act as agonists or antagonists of cellular apoptosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI on the front pages of pamphlets publishing international applications under the PCI.

¥3.7

CLONING AND EXPRESSION OF TISSUE TRANSGLUTAMINASES

5

DECENCIE: MO

0212238A1 L >

Background of the Invention

Transglutaminases are a group of calcium dependent
enzymes that catalyze the crosslinking of proteins by promoting
the formation of ε-(γ-glutaminyl)lysine isopeptide bonds
between protein-bound glutamine and lysine residues. These
enzymes are believed to be widely distributed in nature, as the
crosslinks are found in both prokaryotic and eukaryotic cells.

Although different transglutaminases appear to be very similar
in substrate specificity, several distinct forms of the enzymes
have been identified. See generally, Folk, Ann. Rev. Biochem.
49:517-531 (1980).

Transglutaminase-mediated protein crosslinking reactions have been implicated in both normal and pathological 20 processes in mammalian cells and tissues. The crosslink may act to maintain some forms of protein structure, such as in the terminal differentiation of epidermal cell layers and in other cellular architecture. An intracellular transglutaminase known as epidermal or Type I transglutaminase has been isolated and 25 cloned from rabbit epithelial cells (Floyd and Jetten, Mol. Cell. Biol. 9:4846-4851 (1989)), and a transglutaminase has been isolated and cloned from guinea pig liver cells (Ikura et al., Biochem. 27: 2898-2905 (1988)). Other transglutaminases include hair follicle transglutaminase, keratinocyte 30 transglutaminase, and prostate transglutaminase (Wilson et al., Fed. Proc. 38:1809 (1979)). Lee et al., Prep. Biochem. 16:321-335 (1986) have described the purification of a transglutaminase from human erythrocytes. These transglutaminases have been shown to be distinct from a plasma 35 transglutaminase, Factor XIII, an enzyme whose primary function appears to be stabilizing fibrin clots. Factor XIII has also been purified, cloned, and sequenced. (Ichinose, et al.,

2

Biochem. 25:6900-6906 (1986), Takahashi, et al., <u>Proc. Natl.</u>
Acad. Sci. U.S.A. 83:8018-8023 (1986)).

5

10

15

20

25

30

35

The transglutaminases have been employed for crosslinking purposes in a variety of fields. Certain microbial transglutaminases have found use in food technology to add texture to processed foods, particularly fish and cheese. Others have been used in enzyme catalyzed fluorescent labeling of proteins, in the introduction of cleavable crosslinks, and in the solid phase reversible removal of specific proteins from biological systems. Factor XIII preparations have been proposed for a variety of therapeutic uses, such as the treatment of subarachnoid hemorrhage and inflammatory bowel disease.

presently, a plasma derived Factor XIII is available as a fibrin sealant, but, as with most plasma-derived products, carries an inherent risk of viral contamination. Further, Factor XIII and certain other transglutaminases are zymogens, requiring some form of activation to become catalytically active. And, as each transglutaminase has a restricted range of substrates, their activity may be limited in certain applications. Accordingly, what is needed in the art are methods for producing by recombinant means human and murine transglutaminases, particularly those transglutaminases which do not require activation to become catalytically active. The present invention fulfills these and other related needs.

Summary of the Invention

The present invention provides the ability to produce human and murine tissue transglutaminases and polypeptides or fragments thereof by recombinant means, preferably in cultured eukaryotic cells. The expressed transglutaminase may or may not have the biological activity of the native enzyme, depending on the intended use. Accordingly, isolated and purified polynucleotides are described which code for the transglutaminases and fragments thereof, where the polynucleotides may be in the form of DNA, such as cDNA or

genomic DNA, or RNA. Based on these sequences probes may be designed for hybridization to identify these and related genes or transcription products thereof which encode human and murine tissue transglutaminases.

5

10

15

20

25

30

35

SNEDOCID: NAO

021223841 | 5

3

In related embodiments the invention concerns DNA constructs which comprise a transcriptional promoter, a DNA sequence which encodes the transglutaminase or fragment thereof, and a transcriptional terminator, each operably linked for expression of the enzyme or enzyme fragment. The constructs are preferably used to transform or transfect host cells, preferably eukaryotic cells, more preferably yeast or mammalian cells. For large scale production the expressed transglutaminase may be isolated from the cells by, for example, immunoaffinity purification.

Nucleic acid sequences which encode the transglutaminases of the invention and the recombinant transglutaminases themselves can also be used to develop compounds which can alter transglutaminase-associated apoptosis of a eukaryotic cell. Compounds may be screened for agonistic or antagonistic effects on transglutaminase-mediated metabolism in the host cell.

Brief Description of the Figures

Fig. 1 illustrates restriction maps of the mouse macrophage tissue transglutaminase cDNA clones, where the black portion of the boxes represents coding sequence for tissue transglutaminase, the white portion represents 3'-untranslated sequences, and the restriction sites are represented as A=Alu I, B=BamH I, and N=Nco I;

Fig. 2 illustrates the sequencing strategy for the human cDNA insert in clone hTG1;

Fig. 3 illustrates nucleotide sequences of human endothelial (SEQ. ID. No. 1) and mouse macrophage (SEQ. ID. No. 3) tissue transglutaminases and their predicted amino acid sequences (SEQ. ID. No. 2 and SEQ. ID. No. 4, respectively), where the wavy lines indicate the amino acid sequence of the

4

pentapeptide containing the active site cysteine residue, the nucleotide sequence corresponding to a putative polyadenylation signal in the mouse sequence is located at the position 3452-3457, and the nucleotide sequence derived from mouse heart cDNA library has been underlined;

Fig. 4 illustrates the identification of human tissue transglutaminase mRNA by blot hybridization, analyzing 10 μg of mRNA from HUVEC; and

Fig. 5 illustrates the identification of mouse transglutaminase mRNA by blot hybridization, analyzing 10 μ g of mRNA from each of the following tissues: L, liver; S, spleen; K, kidney; T, testis; H, heart; Lu, lung; Tm, thymus; and B, brain.

15

20

25

10

5

Description of the Preferred Embodiments

Tissue transglutaminase (or transglutaminase II) is an enzyme that catalyzes the crosslinking of protein-bound glutamine and primary amines, such as lysine residues. The present invention provides isolated nucleotide sequences of human tissue transglutaminase, thereby providing for the ultimate expression of human tissue transglutaminase polypeptides. Recombinant DNA expression systems provide convenient means for obtaining large quantities of human tissue transglutaminases in relatively pure form. The invention also provides cloned nucleotide sequences of murine tissue transglutaminase.

murine tissue transglutaminase polypeptides and fragments thereof having transglutaminase activity. By polypeptides and fragments is meant to include sequences of amino acids up to entire proteins, which have at least about 85% homology, preferably at least 90%, and more preferably at least about 95% or more homology to the amino acid sequences of the murine or human sequences of the invention, as shown in Fig. 3 and SEQ.

ID. Nos. 1-4. As will be appreciated by those skilled in the art, the invention also includes those polypeptides having

5

slight variations in amino acid sequences or other properties. Such variations may arise naturally as allelic variations (e.g., due to genetic polymorphism) or may be produced by human intervention (e.g., by mutagenesis of cloned DNA sequences), such as induced point, deletion and insertion mutants.

5

10

15

20

25

30

35

BNISDOCID: JMO

001000001 1 -

Nucleic acid sequences encoding human tissue transglutaminase as described herein can be cloned from a variety of human cell sources that express the enzyme. Preferred sources include human umbilical vein endothelial cells and retinoic acid stimulated macrophages. Useful nucleic acid sequences in this regard include mRNA, genomic DNA and For expression, cDNAs are generally preferred because they lack introns that may interfere with expression. obtain a human tissue transglutaminase clone, a human endothelial cell cDNA library is screened with, e.g., labeled probes from random primed mouse macrophage transglutaminase sequences, which probes preferably span the enzyme's active site and/or putative calcium binding site. To obtain the mouse tissue transglutaminase clone, an oligo-dT primed cDNA library can be constructed with polyA+ RNA purified from mouse peritoneal macrophages stimulated with retinoic acid. library is screened with, e.g., polyclonal antibodies to guinea pig liver tissue transglutaminase and/or labeled RNA probes. Partial clones may be used as probes in additional screening until the complete coding sequence is obtained. If necessary, partial clones are joined in the correct reading frame to construct the complete coding sequence. Joining is achieved by digesting clones with appropriate restriction endonucleases and joining the fragments enzymatically in the proper orientation. Depending on the fragments and the particular restriction endonucleases chosen, it may be necessary to remove unwanted DNA sequences through a "loop out" process of deletion mutagenesis or through a combination of restriction endonuclease cleavage and mutagenesis. It is preferred that the resultant sequence be in the form of a continuous open reading frame, that is, that it lack intervening sequences (introns). The sequence of one exemplary mouse clone described herein, TGHZ3, includes 29 nucleotides of 5'-untranslated

PCT/US91/09784

5

10

15

20

25

30

35

sequence and 1,775 nucleotides of coding sequence and is shown in Fig. 3 (SEQ. ID. NO. 3).

A human cDNA transglutaminase clone isolated as described herein includes the entire 5'-untranslated sequence, as determined by primer extension analysis, the coding domain, and 1,058 nucleotides of 3'-untranslated sequence, as shown in Fig. 3 (SEQ. ID. NO. 1). This clone lacks a consensus polyadenylation sequence and is slightly shorter than the 3.6 kb full length transcript, as determined by Northern blot analysis of human endothelial cell RNA, suggesting that it lacks approximately 300 bp of 3'-untranslated sequence. identity of the human tissue transglutaminase clone is confirmed by, for example, in vitro translation. As described further below, clone hTG-1 encodes a polypeptide that migrates at Mr 80,000 on SDS-polyacrylamide gels. Its deduced molecular The active site Cys residue was determined weight is 77,253. to be at position 277 as shown in Fig. 3.

With the nucleotide and deduced amino acid sequences of human tissue transglutaminase provided herein, genomic or cDNA sequences encoding tissue transglutaminase may be obtained from libraries prepared from other cells and tissues according to known procedures. For instance, using oligonucleotide probes derived from human endothelial transglutaminase sequences, generally of at least about fourteen nucleotides and up to twenty-five or more nucleotides in length, DNA sequences encoding transglutaminase of other tissues and/or mammalian species may be obtained. If partial clones are obtained, it is necessary to join them in proper reading frame to produce a full length clone, using such techniques as endonuclease cleavage, ligation and loopout mutagenesis.

for expression, a DNA sequence encoding tissue transglutaminase is inserted into a suitable expression vector, which in turn is used to transform or transfect appropriate host cells for expression. Expression vectors for use in carrying out the present invention will comprise a promoter capable of directing the transcription of a cloned DNA and a transcriptional terminator, operably linked with the sequence encoding the tissue transglutaminase so as to produce a

PCT/US91/09784 WO 92/12238

7

continuously transcribable gene sequence which produces sequences in reading frame and continuously translated to produce a transglutaminase polypeptide.

Host cells for use in practicing the present invention include mammalian, avian, plant, insect, bacterial and fungal cells, but preferably eukaryotic cells. Preferred eukaryotic cells include cultured mammalian cell lines (e.g., rodent or human cell lines) and fungal cells, including species of yeast (e.g., Saccharomyces spp., particularly S. cerevisiae, Schizosaccharomyces spp., or <u>Kluyveromyces</u> spp.) or filamentous fungi (e.g., Aspergillus spp., Neurospora spp.). Methods for producing recombinant proteins in a variety of prokaryotic and eukaryotic host cells are generally known in the art.

Techniques for transforming fungi are well known in the literature, and have been described, for instance, by Beggs 15 (ibid.), Hinnen et al. (Proc. Natl. Acad. Sci. USA 75: 1929-1933, 1978), Yelton et al. (Proc. Natl. Acad. Sci. USA 81: 1740-1747, 1984), and Russell (Nature 301: 167-169, 1983). genotype of the host cell will generally contain a genetic defect that is complemented by the selectable marker present on 20 the expression vector. Choice of a particular host and selectable marker is well within the level of ordinary skill in the art.

Suitable yeast vectors for use in the present 25 invention include YRp7 (Struhl et al., Proc. Natl. Acad. Sci. USA 76: 1035-1039, 1978), YEp13 (Broach et al., Gene 8: 121-133, 1979), POT vectors (Kawasaki et al, U.S. Patent No. 4,931,373, which is incorporated by reference herein), pJDB249 and pJDB219 (Beggs, Nature 275:104-108, 1978) and derivatives thereof. Such vectors will generally include a selectable 30 marker, which may be one of any number of genes that exhibit a dominant phenotype for which a phenotypic assay exists to enable transformants to be selected. Preferred selectable markers are those that complement host cell auxotrophy, provide antibiotic resistance or enable a cell to utilize specific carbon sources, and include LEU2 (Broach et al., ibid.), URA3 (Botstein et al., Gene 8: 17, 1979), HIS3 (Struhl et al., ibid.) or POT1 (Kawasaki et al., ibid.). Another suitable

35

5

10

15

20

25

30

35

selectable marker is the <u>CAT</u> gene, which confers chloramphenical resistance on yeast cells.

Preferred promoters for use in yeast include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255: 12073-12080, 1980; Alber and Kawasaki, J. Mol. Appl. Genet. 1: 419-434, 1982; Kawasaki, U.S. Patent No. 4,599,311) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals, Hollaender et al., (eds.), p. 355, Plenum, New York, 1982; Ammerer, Meth. Enzymol. 101: 192-201, 1983). In this regard, particularly preferred promoters are the TPI1 promoter (Kawasaki, U.S. Patent No. 4,599,311, 1986) and the ADH2-4^C promoter (Russell et al., Nature 304: 652-654, 1983; Irani and Kilgore, U.S. Patent Application Serial No. 183,130, which is incorporated herein by reference). The expression units may also include a transcriptional terminator. A preferred transcriptional terminator is the TPI1 terminator (Alber and Kawasaki, ibid.).

Additional vectors, promoters and terminators for use in expressing the transglutaminases of the invention in yeast are well known in the art and are reviewed by, for example, Emr, Meth. Enzymol. 185:231-279, (1990), incorporated herein by reference.

The transglutaminases of the invention may be expressed in Aspergillus spp. (McKnight and Upshall, described in U.S. Patent 4,935,349, which is incorporated herein by reference). Useful promoters include those derived from Aspergillus nidulans glycolytic genes, such as the ADH3 promoter (McKnight et al., EMBO J. 4:2093-2099, 1985) and the tpiA promoter. An example of a suitable terminator is the ADH3 terminator (McKnight et al., ibid.). Techniques for transforming fungi are well known in the literature, and have been described, for instance by Beggs (ibid.), Hinnen et al. (Proc. Natl. Acad. Sci. USA 75:1929-1933, 1978), Yelton et al. (Proc. Natl. Acad. Sci. USA 81:1740-1747, 1984), and Russell (Nature 301:167-169, 1983) each of which are incorporated herein by reference.

In addition to fungal cells, cultured mammalian cells may be used as host cells within the present invention.

Preferred cultured mammalian cells for use in the present invention include the COS-1 (ATCC CRL 1650) and BALB/c 3T3 (ATCC CRL 163) cell lines. In addition, a number of other mammalian cell lines may be used within the present invention, including BHK (ATCC CRL 10314), 293 (ATCC CRL 1573), Rat Hep I (ATCC CRL 1600), Rat Hep II (ATCC CRL 1548), TCMK (ATCC CCL 139), Human lung (ATCC CCL 75.1), Human hepatoma (ATCC HTB-52), Hep G2 (ATCC HB 8065), Mouse liver (ATCC CCL 29.1), NCTC 1469 (ATCC CCL 9.1) and DUKX cells (Urlaub and Chasin, Proc. Natl. Acad. Sci USA 77: 4216-4220, 1980).

Mammalian expression vectors for use in carrying out the present invention will include a promoter capable of directing the transcription of a cloned gene or cDNA. Preferred promoters include viral promoters and cellular promoters. Viral promoters include the immediate early cytomegalovirus 15 promoter (Boshart et al., Cell 41: 521-530, 1985), the SV40 promoter (Subramani et al., Mol. Cell. Biol. 1: 854-864, 1981), and the major late promoter from Adenovirus 2 (Kaufman and Sharp, Mol. Cell. Biol. 2: 1304-1319, 1982). Cellular promoters include the mouse metallothionein-1 promoter 20 (Palmiter et al., U.S. Patent No. 4,579,821), a mouse V promoter (Bergman et al., Proc. Natl. Acad. Sci. USA 81: 7041-7045, 1983; Grant et al., Nuc. Acids Res. 15: 5496, 1987) and a mouse V_H promoter (Loh et al., <u>Cell</u> 33: 85-93, 1983). Also contained in the expression vectors is a polyadenylation 25 signal located downstream of the coding sequence of interest. Polyadenylation signals include the early or late polyadenylation signals from SV40 (Kaufman and Sharp, ibid.), the polyadenylation signal from the Adenovirus 5 E1B region and the human growth hormone gene terminator (DeNoto et al., Nuc. 30 Acids Res. 9: 3719-3730, 1981). Vectors can also include enhancer sequences, such as the SV40 enhancer and the mouse μ enhancer (Gillies, Cell 33: 717-728, 1983). Expression vectors may also include sequences encoding the adenovirus VA RNAs. Vectors can be obtained from commercial sources (e.g., 35 Stratagene, La Jolla, CA).

Cloned DNA sequences may be introduced into cultured mammalian cells by, for example, calcium phosphate-mediated

10

transfection (Wigler et al., Cell 14: 725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7: 603, 1981; Graham and Van der Eb, Virology 52: 456, 1973), electroporation (Neumann et al., EMBO J. 1: 841-845, 1982), or DEAE-dextran mediated transfection (Ausubel et al., (ed.) Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY (1987), incorporated herein by reference). To identify cells that have stably integrated the cloned DNA, a selectable marker is generally introduced into the cells along with the gene or cDNA of interest. Preferred selectable markers for use in cultured mammalian cells include genes that confer resistance to drugs, such as neomycin, hygromycin, and methotrexate. The selectable marker may be an amplifiable selectable marker. Preferred amplifiable selectable markers are the DHFR gene and the Selectable markers are reviewed by neomycin resistance gene. Thilly (Mammalian Cell Technology, Butterworth Publishers, Stoneham, MA, which is incorporated herein by reference). The choice of selectable markers is well within the level of ordinary skill in the art.

Selectable markers may be introduced into the cell on a separate vector at the same time as the transglutaminase sequence of interest, or they may be introduced on the same vector. If on the same vector, the selectable marker and the transglutaminase sequence of interest may be under the control of different promoters or the same promoter, the latter arrangement producing a dicistronic message. Constructs of this type are known in the art (for example, Levinson and Simonsen, U.S. Patent No. 4,713,339). It may also be advantageous to add additional DNA, known as "carrier DNA" to the mixture which is introduced into the cells.

period of time, typically 1-2 days, to begin expressing the DNA sequence(s) of interest. Drug selection is then applied to select for growth of cells that are expressing the selectable marker in a stable fashion. For cells that have been transfected with an amplifiable selectable marker the drug concentration may be increased in a stepwise manner to select for increased copy number of the cloned sequences, thereby

5

10

15

20

25

30

15

20

25

30

35

increasing expression levels.

Promoters, terminators and methods for introducing expression vectors encoding transglutaminase into plant, avian and insect cells are well known in the art. The use of baculoviruses, for example, as vectors for expressing heterologous DNA sequences in insect cells has been reviewed by Atkinson et al. (Pestic. Sci. 28: 215-224,1990). The use of Agrobacterium rhizogenes as vectors for expressing genes in plant cells has been reviewed by Sinkar et al. (J. Biosci. (Banglaore) 11: 47-58, 1987).

Host cells containing DNA constructs of the present invention are then cultured to produce the transglutaminase. The cells are cultured according to standard methods in a culture medium containing nutrients required for growth of the chosen host cells. A variety of suitable media are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins and minerals, as well as other components, e.g., growth factors or serum, that may be required by the particular host cells. The growth medium will generally select for cells containing the DNA construct by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker on the DNA construct or co-transfected with the DNA construct.

Yeast cells, for example, are preferably cultured in a medium which comprises a nitrogen source (e.g., yeast extract), inorganic salts, vitamins and trace elements. The pH of the medium is preferably maintained at a pH greater than 2 and less than 8, preferably at pH 5-6. Methods for maintaining a stable pH include buffering and constant pH control, preferably through the addition of sodium hydroxide. Preferred buffering agents include succinic acid and Bis-Tris (Sigma Chemical Co., St. Louis, MO). Cultured mammalian cells are generally cultured in commercially available serum-containing or serum-free media. Selection of a medium appropriate for the particular cell line used is within the level of ordinary skill in the art.

In a preferred embodiment, human tissue transqlutaminase is expressed in yeast as an intracellular

12

product. The yeast host is a diploid strain homozygous for pep4, a mutation that reduces vacuolar protease levels, as described in Jones et al., Genetics 85:23-33 (1977), incorporated herein by reference. The strain is also homozygous for disruption of the endogenous TPI (triose phosphate isomerase) gene, thereby allowing the S. pombe POT1 gene to be used as a selectable marker. The vector includes the POT1 marker, a leu2-d marker and the ADH2-4c promoter. The POT1 marker in the TPI host allows for selection by growth in glucose. The host strain is grown in glucose-containing synthetic media with a glucose feed. An ethanol feed is then substituted for glucose to de-repress the promoter. The pH is maintained with NaOH. Other preferred means for expression are generally described in, e.g., EPO publication EP 268,772, incorporated herein by reference.

5

10

15

20

25

30

35

The tissue transglutaminase produced according to the present invention may be purified by affinity chromatography on an antibody column using antibodies directed against transglutaminase. Additional purification may be achieved by conventional chemical purification means, such as liquid chromatography, gradient centrifugation, and gel electrophoresis, among others. Methods of protein purification are known in the art (see generally, Scopes, R., Protein Purification, Springer-Verlag, NY (1982), which is incorporated herein by reference) and may be applied to the purification of the recombinant transglutaminase described herein. Substantially pure recombinant tissue transglutaminase of at least about 50% is preferred, at least about 70-80% more preferred, and 95-99% or more homogeneity most preferred, particularly for pharmaceutical uses. Once purified, partially or to homogeneity, as desired, the recombinant tissue transglutaminase may then be used in food preparation, protein chemistry, therapeutically, etc.

The human and murine tissue transglutaminases produced according to the present invention find a variety of uses. For example, tissue transglutaminases may be used in the preparation of food material, such as paste food, cheese, and can be added to dehydrated fish to prevent deterioration caused

by protozoans, e.g., myxamoeba. The transglutaminases can also be used in the preparation of ground meat of okiomi (<u>Euphasia superba</u>), by adding to dehydrated meat parts from 0.1 to 100 units, preferably about 1-40 U per gram of protein to improve meat texture and quality. Frozen granular meats can be improved by combining meat material with tissue transglutaminase of the invention at 1-500 U per gram protein, at 30-60°C for 10-120 min. to promote crosslinking between glutamine groups and lysine contained in meat preparations.

Other uses of the tissue transglutaminases described herein include the enzyme-catalyzed labeling of proteins and cell membranes (Iwanij, <u>Eur. J. Biochem.</u> 80:359-368 (1977), incorporated herein by reference), in the introduction of cleavable crosslinks, and in the solid phase reversible removal of specific proteins from biological systems.

The human transglutaminase of the invention also can be used therapeutically in humans. For example, the transglutaminase may be used in the repair of wounds and ulcerated lesions. As the tissue enzyme is relatively stable, active extracellularly, and binds avidly to collagen, it can be used to stabilize basement membrane structures. An appropriate endogenous substrate for the enzyme is fibronectin, which thus serves as a basis for crosslinking and stabilizing collagen/fibronectin complexes.

Transglutaminase expression can be used as a marker for screening for agonists and antagonists of cellular apoptosis. Identifying agents which inhibit the expression of transglutaminase by a cell provides a means to prevent or delay atrophic changes characteristic of many degenerative changes, particularly degenerative nerve diseases, such as Parkinson's disease and Alzheimer's disease. Inhibition of apoptosis may also enhance blood cell count; in chemotherapy patients. The tissue transglutaminase or the nucleic acids which encode the tissue transglutaminase of the invention can also be used to identify agents which induce apoptotic activity by a cell, for the control of, e.g., hyperproliferative disorders. The growth of cells such as adipocytes can be regulated with agents identified using the tissue transglutaminases provided herein

14

as a marker, providing a means for controlling fat depots in certain forms of obesity without the necessity for surgical intervention.

5

10

15

20

25

30

35

Sequences which encodes transglutaminases may be directly detected in cells with labeled synthetic oligonucleotide probes in a hybridization procedure similar to the Southern or dot blot. Also, the polymerase chain reaction (Saiki et al., <u>Science</u> 239:487 (1988), and U.S. Pat. No. 4,683,195) may be used to amplify DNA sequences, which are subsequently detected by their characteristic size on agarose gels, Southern blot of the gels using transglutaminase sequences or a oligonucleotide probe, or a dot blot using similar probes. The probes may comprise from about 14 nucleotides to about 25 or more nucleotides, sometimes 40 to 60 nucleotides, and in some instances a substantial portion or even the entire cDNA of a transglutaminase gene of the invention may be used. The probes are labeled with a detectable signal, such as an enzyme, biotin, a radionuclide, fluorophore, chemiluminescer, paramagnetic particle, etc.

The following examples are provided by way of illustration, not limitation.

EXAMPLE I

Cloning of Mouse and Human Tissue Transglutaminases

The following example describes the cDNA cloning and screening of mouse macrophage and heart tissue transglutaminase and human endothelial cell transglutaminase.

An oligo-dT primed cDNA library was constructed in the lambda gt11 vector with polyA⁺ RNA purified from mouse peritoneal macrophages essentially as described by Chiocca et al., J. Biol. Chem. 263:11584-11589 (1988), incorporated herein by reference. Briefly, mice (1200) were sacrificed and their peritoneal cavities were washed with RPMI. Cells were harvested from the wash by centrifugation. The cells were plated and macrophages were allowed to attach to the dishes for 60 minutes. The dishes were then washed and the macrophages

were recovered. To induce transglutaminase expression, the macrophages were stimulated with retinoic acid (10⁻⁶ M) for 6 RNA was then isolated from the cells, cDNA was synthesized and E. coli cells were infected with recombinant

To screen the recombinant clones goat polyclonal antibodies (made against guinea pig liver transglutaminase, as described in Murtagh et al., J. Biol. Chem. 258:11074-11081 (1983), incorporated herein by reference) were used. Clones TG700 and TG1600 were identified, and [32P]-labeled RNA 10 transcripts from these clones were used to rescreen the library, as generally described in Ausubel et al., supra. Two positive clones identified in the second screening were designated TG3000 and TG3400. Since none of the clones isolated in these initial rounds of screening was a full length 15 sequence or encoded the 5'-end of the cDNA, the macrophage library was then subjected to two more rounds of screening with short hybridization probes prepared from the 5'-ends of TG3000 and TG3400 (solid bars Fig. 1). All of these clones stopped short of the translation start site, so a mouse heart cDNA 20 library cloned into lambda ZAP (Stratagene) was screened with an oligonucleotide hybridization probe derived from the 5'-end of clone TG7.4 (Fig. 1). A heart transglutaminase cDNA isolated by this procedure (clone TGHZ3) included 29 nucleotides of 5'-untranslated region, the initiation codon ATG and 1775 nucleotides of coding sequence.

Primer extension analysis of RNA derived from control and retinoic acid stimulated mouse macrophages, performed as generally described in Ausubel et al., ibid., and Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982), incorporated by reference herein, was used to locate the transcription start site. A synthetic oligonucleotide of sequences included in the 5' end of cDNA clone TG7.4 was hybridized to macrophage RNA and then transcripts were synthesized in the presence of ³²P-dATP. A single prominent 255 nucleotide band, more abundant in transcripts from retinoic acid-stimulated than control macrophage RNA was detected, locating the transcription start

25

30

35

16

site at a position 103 nucleotides upstream of the initiation ATG.

Repetitive screening of a mouse macrophage and heart CDNA libraries resulted in the isolation of 12 overlapping cDNA clones encoding 3487 nucleotides that spanned nearly the entire mouse tissue transglutaminase mRNA. The overlapping clones included a consensus polyadenylation signal at the 3'-end. The 5'-end of the clone isolated from mouse heart library was 75 nucleotides short of the transcript start site. The clones were sequenced as described in Example II below.

To clone the human endothelial cell transglutaminase, an oligo-dT and random-primed cDNA library was constructed with polyA RNA from human umbilical vein endothelial cells (HUVEC) in the vector lambda ZAP (Stratagene Inc., La Jolla, CA). LI blue cells (Stratagene) were infected with recombinant phages and 2 x 10⁵ plaques were screened with a random-primed mouse macrophage transglutaminase [32p]-labeled DNA probe spanning the active site and the putative calcium binding domain (TG7.4) to facilitate isolation of full length cDNA. The hybridization procedure was done generally as described in Ausubel et al., ibid., at 55°C overnight with a final wash at 60°C in 0.1% SSC/0.1% SDS for 30 minutes. The initial screen of 2 \times 10⁵ recombinant phage yielded 5 positive clones. inserts in three of the clones, hTG2, 3 and 5, were totally included within the largest cDNA clone, hTG1, which was approximately 3.3 kilobases.

endothelial transglutaminase mRNA, a primer complementary to nucleotide positions 53 to 72 was synthesized and used to determine the size of the cDNA extension product. This reaction resulted in a transcript of 52 nucleotides, indicating the transcription start site is 135 nucleotides upstream from the initiator ATG and is likely coincident with the 5'-end of clone hTG-1.

5

10

15

20

25

10

15

20

25

30

35

EXAMPLE II

Nucleotide Sequence Analysis of Human and Mouse Tissue Transqlutaminase cDNA Clones

The following Example describes the sequencing of mouse and human cDNA clones obtained in Example I. The results show a substantial degree of sequence homology between the two species of tissue enzyme.

To determine the human tissue transglutaminase sequence, both strands of the human tissue transglutaminase cDNA clone (hTG-1) were sequenced by the dideoxy chain termination method with a Ser enase enzyme kit using synthetic oligonucleotide primers and deleted clones derived by exonuclease digestion (Fig. 2). As shown in Fig. 3 (SEQ. ID. NO. 1), the 3257 nucleotides included a single open reading frame encoding 687 amino acids (also SEQ.ID. NO. 2). initiation codon, located 136-138 nucleotides downstream from the transcription start site, was included within a consensus sequence (ACCATGG) recognized as optimal for the initiation of eukaryotic translation (Kozak sequence; Kozak, Cell 44:283-292 (1986)). A terminator codon (TAA), located at nucleotide 2194-2196, was followed by 1058 nucleotides of 3'-untranslated sequence. No consensus polyadenylation signal sequence was recognized in the 3'-untranslated region.

The nucleotide sequence of the mouse tissue transglutaminase (Fig. 3) (SEQ. ID. No. 3) was determined by sequencing of overlapping cDNA clones (Fig. 1). CsCl purified, double-stranded mouse cDNA was sequenced by both the chem_cal degradation (Maxam and Gilbert, Proc. Natl. Acad. Sci. USA 74:560-564 (1977)) and the dideoxy chain termination (Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977)) methods.

The entire murine transcription unit sequence was slightly larger than the human transglutaminase cDNA clone (Fig. 3). An open reading frame of 2055 nucleotides encoded a protein of 685 amino acid residues (SEQ. ID. NO. 4). The initiation ATG was included in a Kozak sequence. The terminator triplet (TAA) was followed by 1400 bp of 3'-untranslated sequence that included a consensus polyadenylation

18

sequence (AATAAA) at the 3' end of the clone.

The DNA and amino acid sequences were analyzed with computer programs NUCALN and PRTALN. See Wilbur and Lipman, Proc. Natl. Acad. Sci. USA 80:726-730 (1983), incorporated herein by reference. Fig. 3 compares the nucleotide sequences of the human and mouse tissue transglutaminase cDNA's. The sequence of the human enzyme is fully represented in the top line and the deduced amino acid sequence of the coding domain is shown below. The third line contains the deduced amino acid sequence of the mouse tissue transglutaminase. Residues identical with the human enzyme are shown in an asterisk, residues that are distinct are shown with the single letter code. The fourth line shows the nucleotide sequence of the mouse transglutaminase. Nucleotides identical to the human enzyme are shown with a dash.

Comparison of the overall nucleotide sequence of the human and mouse coding domains shows a high degree (>82%) of homology. Most substitutions are silent mutations in the third position of codons. The 3' untranslated region of the two cDNA's showed no significant homology. The overall homology at the amino acid level was 84%. Table I compares the amino acid composition and the calculated molecular weight of human and mouse tissue transglutaminase.

5

10

15

TABLE I: Amino acid composition of human and mouse tissue transglutaminases.

	Human	Endothelial	Mouse Macrophage
amino a	cid	n. res./mo	ol.
F =	25		22
L =	69		70
I =	32		30
M =	11		9
v =	57		54
s =	40		48
P =	32		30
T =	35	-	31
A =	40		37
Y =	23		27
H =	13		11
$\mathbf{E} =$	51		52
Q =	26		25
D =	38		44
и =	34		35
K =	32		32
C =	20		20
W =	13		13
R =	39		41
G =	51		51
deduced	Mr = 772	:53	76699

40

45

50

EXAMPLE V Northern Blot Analysis of Human and Mouse Transglutaminase mRNA

Hybridization probes suitable for detecting tissue transglutaminase mRNA in tissues were prepared as TG1600 antisense RNA (³²P labeled using ³²P-UTP). Northern blots were performed according to Thomas, <u>Proc. Natl. Acad. Sci. USA</u> 77:5201 (1980), incorporated herein by reference. Fig. 4 shows the Northern blot analysis of RNA from human umbilical vein

PCT/US91/09784

endothelial cells probed with radiolabeled cDNA prepared form the insert in clone hTG-1. A single band at approximately 3.5 kilobases was detected. Fig. 5 shows the results of Northern analysis of RNA's prepared from several mouse tissues (liver, spleen, kidney, testis, heart, lungs, thymus, and brain). Minimal levels of transglutaminase mRNA were detected in thymus and in brain tissues. The levels of this RNA were higher in liver, spleen and testis and were highest in the kidney, lung and heart.

10

EXAMPLE VI

Expression of Tissue Transqlutaminase in Eukaryotic Cells

15

20

25

30

A cDNA clone for human endothelial cell tissue transglutaminase (clone hTG1) was cloned into the Eco RI site of the eukaryotic expression vector pSG5 (Stratagene). This 3257 bp insert contained 138 nucleotides of 5'-untranslated sequence, the coding region of the enzyme and 1058 bp of 3'-untranslated sequence.

The human tissue transglutaminase expression plasmid was transiently transfected into COS-1 cells using a DEAE-Dextran mediated transfection protocol. Cells were cultured in DMEM containing 10% fetal calf serum (FCS). After 48 and 72 hours cells were washed, scraped and homogenized and the transglutaminase activity was measured as the calciumdependent covalent incorporation of radiolabeled putrescine into N,N-dimethylcasein (essentially as described by Murtagh et al., J. Biol. Chem. 261:614-621 (1986)). In control COS-1 cells transglutaminase activity was 5.6 fmols/min/mg. In the cells transfected with the transglutaminase expression vector the transglutaminase activity was 270 fmols/min/mg.

BALB/c 3T3 cells were co-transfected (via the CaPO₄
procedure) with the transglutaminase expression vector and an
SV-neo containing plasmid (obtained from Clontech). The cells
were grown for 48 hours in DMEM containing 10% FCS and 10%
Serum Plus (Hazelton Biologics, Inc., Lexena, KS). The cells

were washed and the medium was replaced with DMEM containing 10% FCS, 10% Serum Plus and 400 μ g/ml G-418. G-418 resistant Individual clones of transfected 3T3 cells cells were cloned. were grown to confluency. The cells were then lysed and expression of tissue transglutaminase was measured by Western blot (U.S. Pat. No. 4,452,901; Towbin et al., Proc. Natl. Acad. Sci. USA 76:4350-4358 (1979)) using a polyclonal antibody to guinea pig liver tissue transglutaminase and by enzymatic assay (using the assay described above). Three clones of 3T3 cells (clones 13, 15, and 19) were isolated and characterized in detail. Western blot of the three transfected clones showed a prominent 80,000 kD band of immunoreactivity in the three cell lines, with the abundance in the order cl 15 >> cl 13 > cl 19. No immunoreactive tissue transglutaminase was detected in the non-transfected 3T3 cell extracts. Enzymatic assay of homogenates of the transfected cells showed activities as follows:

	Control 3T3	< 0.17	pmol/min/mg
20	Clone 19	.051	••
	Clone 13	.188	**
	Clone 15	.775	***

10

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Davies, Peter JA Stein, Joseph P
 - (ii) TITLE OF INVENTION: CLONING AND EXPRESSION OF TISSUE TRANSGLUTAMINASE
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Steven W. Parmelee
 - (B) STREET: One Market Plaza, Steuart Tower, Suite 2000
 - (C) CITY: San Francisco
 - (D) STATE: California
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 94105
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.24
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/635,756
 - (B) FILING DATE: 04-JAN-1991
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Parmelee, Steven W.
 - (B) REGISTRATION NUMBER: 31,990
 - (C) REFERENCE/DOCKET NUMBER: 13952-7
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 543-9600
 - (B) TELEFAX: (415) 543-5043
 - (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3257 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

001003941 1 5

(iii) HYPOTHETICAL:	N
---------------------	---

(iv) ANTI-SENSE: N

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (D) DEVELOPMENTAL STAGE: Adult
- (F) TISSUE TYPE: Umbilical vein (G) CELL TYPE: Endothelial (H) CELL LINE: HUVEC

(vii) IMMEDIATE SOURCE:

(B) CLONE: hTG-1

(viii) POSITION IN GENOME:

(C) UNITS: bp

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 136..2199
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AACAGGCGTG ACGCCAGTTC TAAACTTGAA ACAAAACAAA	60
AGAACCTCCT TAAAGCATAA ATCTCACGGA GGGTCTCGGC CGCCAGTGGA AGGAGCCACC	120
GCCCCCGCCC CGACC ATG GCC GAG GAG CTG GTC TTA GAG AGG TGT GAT CTG Met Ala Glu Glu Leu Val Leu Glu Arg Cys Asp Leu 1 5 10	171
GAG CTG GAG ACC AAT GGC CGA GAC CAC CAC ACG GCC GAC CTG TGC CGG Glu Leu Glu Thr Asn Gly Arg Asp His His Thr Ala Asp Leu Cys Arg 15 20 25	219
GAG AAG CTG GTG GTG CGA CGG GGC CAG CCC TTC TGG CTG ACC CTG CAC Glu Lys Leu Val Val Arg Arg Gly Gln Pro Phe Trp Leu Thr Leu His 30	267
TTT GAG GGC CGC AAC TAC GAG GCC AGT GTA GAC AGT CTC ACC TTC AGT Phe Glu Gly Arg Asn Tyr Glu Ala Ser Val Asp Ser Leu Thr Phe Ser 45 50 55 60	315
GTC GTG ACC GGC CCA GCC CCT AGC CAG GAG GCC GGG ACC AAG GCC CGT Val Val Thr Gly Pro Ala Pro Ser Gln Glu Ala Gly Thr Lys Ala Arg 65 70 75	363
TTT CCA CTA AGA GAT GCT GTG GAG GAG GGT GAC TGG ACA GCC ACC GTG Phe Pro Leu Arg Asp Ala Val Glu Glu Gly Asp Trp Thr Ala Thr Val 80 85 90	411
GTG GAC CAG CAA GAC TGC ACC CTC TCG CTG CAG CTC ACC ACC CCG GCC Val Asp Gln Gln Asp Cys Thr Leu Ser Leu Gln Leu Thr Thr Pro Ala	459

AAC Asn	GCC Ala 110	CCC Pro	ATC Ile	GGC Gly	CTG Leu	TAT Tyr 115	CGC Arg	CTC Leu	AGC Ser	CTG Leu	GAG Glu 120	GCC Ala	TCC Ser	ACT Thr	GGC Gly	507
Tyr 125	CAG Gln	Gly	Ser	ser	130	vai	Leu	GIY	UTO	135					140	555
GCC Ala	TGG Trp	TGC Cys	CCA Pro	GCG Ala 145	GAT Asp	GCT Ala	GTG Val	TAC Tyr	CTG Leu 150	GAC Asp	TCG Ser	GAA Glu	GAG Glu	GAG Glu 155	CGG Arg	603
CAG Gln	GAG Glu	TAT Tyr	GTC Val 160	CTC Leu	ACC Thr	CAG Gln	CAG Gln	GGC Gly 165	TTT Phe	ATC Ile	TAC Tyr	CAG Gln	GGC Gly 170	TCG Ser	GCC Ala	651
AAG Lys	TTC Phe	ATC Ile 175	AAG Lys	AAC Asn	ATA Ile	CCT Pro	TGG Trp 180	AAT Asn	TTT Phe	GGG Gly	CAG Gln	TTT Phe 185	CAA Gln	GAT Asp	GGG Gly	699
ATC Ile	CTA Leu 190	GAC Asp	ATC Ile	TGC Cys	CTG Leu	ATC Ile 195	CTT Leu	CTA Leu	GAT Asp	GTC Val	AAC Asn 200	CCC Pro	AAG Lys	TTC Phe	CTG Leu	747
AAG Lys 205	AAC Asn	GCC Ala	GGC Gly	CGT Arg	GAC Asp 210	TGC Cys	TCC Ser	CGG Arg	CGC Arg	AGC Ser 215	AGC Ser	CCC Pro	GTC Val	TAC Tyr	GTG Val 220	795
	CGG Arg	GTG Val	GGT Gly	AGT Ser 225	GGC Gly	ATG Met	GTC Val	AAC Asn	TGC Cys 230	AAC Asn	GAT Asp	GAC Asp	CAG Gln	GGT Gly 235	GTG Val	843
CTG Leu	CTG Leu	GGA Gly	CGC Arg 240	TGG Trp	GAC Asp	AAC Asn	AAC Asn	TAC Tyr 245	GGG Gly	GAC Asp	GGC Gly	GTC Val	AGC Ser 250	CCC	ATG Met	891
TCC Ser	TGG Trp	ATC Ile 255	GGC Gly	AGC Ser	GTG Val	GAC Asp	ATC Ile 260	CTG Leu	CGG Arg	CGC Arg	TGG Trp	AAG Lys 265	AAC Asn	CAC His	GGC Gly	939
TGC Cys	CAG Gln 270	CGC Arg	GTC Val	AAG Lys	TAT Tyr	GGC Gly 275	CAG Gln	TGC Cys	TGG Trp	GTC Val	TTC Phe 280	GCC Ala	GCC Ala	GTG Val	GCC Ala	987
TGC Cys 285	ACA Thr	GTG Val	CTG Leu	AGG Arg	TGC Cys 290	CTA Leu	GGC Gly	ATC Ile	CCT Pro	ACC Thr 295	CGC Arg	GTC Val	GTG Val	ACC Thr	AAC Asn 300	1035
	AAC Asn	TCG Ser	GCC Ala	CAT His 305	GAC Asp	CAG Gln	AAC Asn	AGC Ser	AAC Asn 310	CTT Leu	CTC Leu	ATC Ile	GAG Glu	TAC Tyr 315		1083
CGC Arg	AAT Asn	GAG Glu	TTT Phe	GGG Gly	GAG Glu	ATC Ile	CAG Gln	GGT Gly	GAC Asp	AAG Lys	AGC Ser	GAG Glu	ATG Met	ATC : Ile	TGG Trp	1131

			320					325					330			
Asn	Phe	His 335	Cys	Trp	Val	Glu	340	Trp	met	THE	ALG	345	nap	Deu		1179
Pro	Gly 350	Tyr	Glu	Gly	Trp	355	Ala	Leu	Asp	PIO	360	PIO	GIII	314		1227
Ser 365	GAA Glu	Gly	Thr	Tyr	370	Cys	GIÀ	PIO	Val	375	AGI	arg	Alu		380	1275
GAG Glu	GGC Gly	GAC Asp	CTG Leu	AGC Ser 385	ACC Thr	AAG Lys	TAC Tyr	GAT Asp	GCG Ala 390	CCC Pro	TTT Phe	GTC Val	TTT Phe	GCG Ala 395	GAG Glu	1323
GTC Val	AAT Asn	GCC Ala	GAC Asp 400	GTG Val	GTA Val	GAC Asp	TGG Trp	ATC Ile 405	CAG Gln	CAG Gln	GAC Asp	GAT Asp	GGG Gly 410	TCT Ser	GTG Val	1371
CAC His	AAA Lys	TCC Ser 415	ATC Ile	AAC Asn	CGT Arg	TCC Ser	CTG Leu 420	ATC Ile	GTT Val	GGG Gly	CTG Leu	AAG Lys 425	ATC Ile	AGC Ser	ACT Thr	1419
AAG Lys	AGC Ser 430	GTG Val	GGC Gly	CGA Arg	GAC Asp	GAG Glu 435	CGG	GAG Glu	GAT Asp	ATC Ile	ACC Thr 440	CAC His	ACC Thr	TAC Tyr	AAA Lys	1467
TAC Tyr 445	CCA Pro	GAG Glu	GGG Gly	TCC Ser	TCA Ser 450	GAG Glu	GAG Glu	AGG Arg	GAG Glu	GCC Ala 455	TTC Phe	ACA Thr	AGG Arg	GCG Ala	AAC Asn 460	1515
CAC His	CTG Leu	AAC Asn	AAA Lys	CTG Leu 465	GCC Ala	GAG Glu	AAG Lys	GAG Glu	GAG Glu 470	Thr	GGG	ATG Met	GCC Ala	ATG Met 475	CGG Arg	1563
ATC Ile	CGT Arg	GTG Val	GGC Gly 480	Gln	AGC Ser	ATG Met	AAC Asn	ATG Met 485	GIY	AGT Ser	GAC Asp	TTT Phe	GAC Asp 490	VUI	TTT Phe	1611
GCC Ala	CAC His	ATC Ile 495	Thr	AAC Asn	AAC Asn	ACC Thr	GCT Ala 500	GIU	GAG Glu	TAC Tyr	GTC Val	TGC Cys 505	ALG	CTC Leu	CTG Leu	1659
CTC Leu	TGT Cys 510	Ala	CGC Arg	ACC Thr	GTC Val	AGC Ser 515	Tyr	TAA :	GGG Gly	ATC Ile	TTC Lev 520	Gry	CCC Pro	GAG Glu	TGT Cys	1707
GGC Gly 525	Thr	AAG Lys	TAC Tyr	CTG Leu	CTC Leu 530	ASI	CTA	ACC Thr	CTG Lev	GAG 1 Glu 535	LTC	r TTC o Phe	TCT Ser	GAG Glu	AAG Lys 540	1755
AGC Ser	GTI Val	CCI Pro	CTI Lev	TGC Cys	ATC	CTC	TAT	GAC	AA? Lys	A TAC	C CG!	g Asi	TGC Cys	CTI Lev	ACG Thr	1803

				545					550					555		
GAG Glu	TCC Ser	AAC Asn	CTC Leu 560	ATC Ile	AAG Lys	GTG Val	CGG Arg	GCC Ala 565	CTC Leu	CTC Leu	GTG Val	GAG Glu	CCA Pro 570	GTT Val		1851
AAC Asn	AGC Ser	TAC Tyr 575		CTG Leu	GCT Ala	GAG Glu	AGG Arg 580	GAC Asp	CTC Leu	TAC Tyr	CTG Leu	GAG Glu 585	AAT Asn	CCA Pro	GAA Glu	1899
Ile	Lys 590	Ile	Arg	IIe	Leu	595	GIU	PIO	цу		600	•	•	CTG Leu		1947
Ala 605	Glu	Val	Ser	Leu	610	ASI	PIO	Leu	110	615				GGC Gly	620	1995
ACC Thr	TTC Phe	ACT Thr	GTG Val	GAG Glu 625	GGG Gly	GCC Ala	GGC Gly	CTG Leu	ACT Thr 630	GAG Glu	GAG Glu	CAG Gln	AAG Lys	ACG Thr 635	GTG Val	2043
GAG Glu	ATC Ile	CCA Pro	GAC Asp 640	CCC Pro	GTG Val	GAG Glu	GCA Ala	GGG Gly 645	GAG Glu	GAA Glu	GTT Val	AAG Lys	GTG Val 650	AGA Arg	ATG Met	2091
GAC Asp	CTC Leu	GTG Val 655	CCG Pro	CTC Leu	CAC His	ATG Met	GGC Gly 660	CTC Leu	CAC His	AAG Lys	CTG Leu	GTG Val 665	GTG Val	AAC Asn	TTC Phe	2139
GAG Glu	AGC Ser 670	GAC Asp	AAG Lys	CTG Leu	AAG Lys	GCT Ala 675	GTG Val	AAG Lys	GGC Gly	TTC Phe	CGG Arg 680		GTC Val	ATC Ile	ATT Ile	2187
Gly 685	CCC Pro	Ala												TTGA		2239
TCC	CAAT	CCT !	ratc	CCAA	GC T	AGTG.	AGCA	A AA'	TATG	cccc	TTA	TTGG	GCC	CCAG	ACCCCA	2299
ccci	CAGG	ሮጥር (GGCA	GCCT	AT G	GGGG	CTCT	C GG.	AAAT	GGAA	TGT	GCCC	CTC	GCCC	ATCTCA	2359
GCC'	rccm	GAG (CCTG'	TGGG'	rc c	CCAC	TCAC	c cc	CTTT	GCTG	TGA	GGAA	TGC	TCTG	TGCCAG	2419
AAA	CAGT	GGG 2	AGCC	CTGA	CC T	GTGC	TGAC'	T GG	GGCT	GGGG	TGA	GAGA	GGA	AAGA	CCTACA	2479
ттс	CCTC	TCC '	TGCC	CAGA'	TG C	CCTT	TGGA	A AG	CCAT	TGAC	CAC	CCAC	CAT	ATTG	TTTGAT	2539
СТА	CTTC.	ATA (GCTC	CTTG	GA G	CAGG	CAAA	A AA	GGGA	CAGC	ATC	CCCI	TGG	CTGG	ATCAGG	2599
AAT	CCAG	CTC	CCTA	GACT	GC A	TCCC	GTAC	C TC	TTCC	CATG	ACT	GCAC	CCA	GCTC	CAGGGG	2659
CCC	TTGG	GAC .	ACCC	AGAG	CT G	GGTG	GGGA	C AG	TGAI	AGGC	CCF	AGGI	CCC	CTCC	ACATCC	2719
CAG	CAGC	CCA .	AGCT	TAAT	AG C	CCTC	cccc	T CA	ACCI	CACC	ATT	CGTGF	AGC	ACCI	ACTATG	2779

TGCTGGGTGC CTCCCACACT TGCTGGGGCT CACGGGGCCT CCAACCCATT TAATCACCAT 2839
GGGAAACTGT TGTGGGCGCT GCTTCCAGGA TAAGGAGACT GAGGCTTAGA GAGAGGAGGC 2899
AGCCCCCTCC ACACCAGTGG CCTCGTGGTT ATAAGCAAGG CTGGGTAATG TGAAGGCCCA 2959
AGAGCAGAGT CTGGGCCTCT GACTCTGAGT CCACTGCTCC ATTTATAACC CCAGCCTGAC 3019
CTGAGACTGT CGCAGAGGCT GTCTGGGGCC TTTATCAAAA AAAGACTCAG CCAAGACAAG 3079
GAGGTAGAGA GGGGACTGG GGACTGGGG TCAGAGCCCT GGCTGGTTC AGGTCCCACG 3139
TCTGGCCAGG CACTGCCTC TCCTCTCG GCCTTTGTTT CCTTGTTGGT CAGAGGAGTG 3199
ATTGAACCTG CTCATCTCA AGGATCCTCT CCACTCCATG TTTGCAATAC ACAATTCC 3257

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 687 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Glu Glu Leu Val Leu Glu Arg Cys Asp Leu Glu Leu Glu Thr 1 5 15

Asn Gly Arg Asp His His Thr Ala Asp Leu Cys Arg Glu Lys Leu Val 20 25 30

Val Arg Arg Gly Gln Pro Phe Trp Leu Thr Leu His Phe Glu Gly Arg
35 40 45

Asn Tyr Glu Ala Ser Val Asp Ser Leu Thr Phe Ser Val Val Thr Gly
50 55 60

Pro Ala Pro Ser Gln Glu Ala Gly Thr Lys Ala Arg Phe Pro Leu Arg 65 70 75 80

Asp Ala Val Glu Glu Gly Asp Trp Thr Ala Thr Val Val Asp Gln Gln 85 90 95

Asp Cys Thr Leu Ser Leu Gln Leu Thr Thr Pro Ala Asn Ala Pro Ile 100 105 110

Gly Leu Tyr Arg Leu Ser Leu Glu Ala Ser Thr Gly Tyr Gln Gly Ser 115 120 125

Ser Phe Val Leu Gly His Phe Ile Leu Leu Phe Asn Ala Trp Cys Pro 130 135 140

145					150						Glu	
				165					1,0		Phe	
			180					100			Leu 190	
_		195					200				Asn	
_	210					215					Arg	
225					230						Leu	
				245							Trp	
			260					203			Gln 270	
		275					200				Thr	
_	290					290						Ala
305					310							Phe 320
_				325					330			Cys
			340					343				Glu
		355					500					Thr
	370					373						Leu
385					390							Asp 400
Val	Val	Asp	Trp	Ile 405					420			Ile
	Arg		420					100				Gly Gly

Ser Ser Glu Glu Arg Glu Ala Phe Thr Arg Ala Asn His Leu Asn Lys 455 450 Leu Ala Glu Lys Glu Glu Thr Gly Met Ala Met Arg Ile Arg Val Gly 470 475 Gln Ser Met Asn Met Gly Ser Asp Phe Asp Val Phe Ala His Ile Thr 490 Asn Asn Thr Ala Glu Glu Tyr Val Cys Arg Leu Leu Cys Ala Arg 505 Thr Val Ser Tyr Asn Gly Ile Leu Gly Pro Glu Cys Gly Thr Lys Tyr Leu Leu Asn Leu Thr Leu Glu Pro Phe Ser Glu Lys Ser Val Pro Leu 540 Cys Ile Leu Tyr Glu Lys Tyr Arg Asp Cys Leu Thr Glu Ser Asn Leu 555 550 Ile Lys Val Arg Ala Leu Leu Val Glu Pro Val Ile Asn Ser Tyr Leu Leu Ala Glu Arg Asp Leu Tyr Leu Glu Asn Pro Glu Ile Lys Ile Arg 580 Ile Leu Gly Glu Pro Lys Gln Lys Arg Lys Leu Val Ala Glu Val Ser Leu Gln Asn Pro Leu Pro Val Ala Leu Glu Gly Cys Thr Phe Thr Val 620 615 Glu Gly Ala Gly Leu Thr Glu Glu Gln Lys Thr Val Glu Ile Pro Asp 635 630 625 Pro Val Glu Ala Gly Glu Glu Val Lys Val Arg Met Asp Leu Val Pro 650 Leu His Met Gly Leu His Lys Leu Val Val Asn Phe Glu Ser Asp Lys 665 670 660 Leu Lys Ala Val Lys Gly Phe Arg Asn Val Ile Ile Gly Pro Ala 680 675

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3486 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

PCT/US91/09784 WO 92/12238

30

(:	iii)	НУР	OTHE'	TICA	L: N											
,	(iv)	ANT	I-SE	NSE:	N											
	•	ORI	GINA) OR) DE) TI) CE	L SO GANI VELO SSUE	URCE SM: PMEN TYP	mous TAL : E: p	STAG erit	.onea	dult 1							
(v	iii)	POS (C	ITIO UN (n in its:	GEN bp	OME:										
		(A (B (D	TURE) NA) LO) OT	ME/K CATI HER	ON: INFO	30 RMAT	ION:	l	D NC):3:						
CGTC	(X1) TGAG	SEQ CT G	;TCGC	CGCI	A GC	:CTGG	ccc	3 000	CCX	GAG Glu	GAG Glu	CTG Leu 5	CTC Leu	CTA Leu	GAG Glu	53
AGG Arg	TGT Cys 10	GAT Asp	CTG Leu	GAG Glu	ATT Ile	CAG Gln 15	GCC Ala	AAT Asn	GGC Gly	CGT Arg	GAC Asp 20	CAC His	CAC His	ACG Thr	GCC Ala	101
Asp 25	CTA Leu	Cys	GIN	GIU	30 EVS	Den	Dea	,,,		CGT Arg 35					40	149
CTG Leu	Thr	Leu	Tyr	45	GIU	GIY	ura	U	50	GAG Glu				55		197
CTC Leu	ACG Thr	TTC Phe	GGT Gly 60	GCT Ala	GTG Val	ACC Thr	GGC Gly	CCA Pro 65	GAT Asp	CCC Pro	AGT Ser	GAG Glu	GAG Glu 70	GCA Ala	GGG	245
Thr	Lys	Ala 75	Arg	Pne	ser	Dea	80	11.DP		GTG Val		85				293
TCA Ser	GCC Ala	ser	CTG Leu	GTG Val	GAC Asp	CAG Gln 95	CAG Gln	GAC Asp	AAT Asn	GTC Val	CTG Leu 100	TCG Ser	CTG Leu	CAG Gln	CTC Leu	341
Cys	ACC Thr	CCA Pro	Ala	ASI	110	FIO	110	011							120	389
		ACT Thr	GGC	TAC Tyr	CAG Gln	GGC Gly	TCC Ser	AGC Ser	TTT Phe	GTG Val	CTG Leu	GGC	CAC His	TTC Phe	ATC Ile	437

	125		1:	30	135	
TTG CTC TA	AC AAT GCC yr Asn Ala 140	TGG TGC C	CA GCC GA Pro Ala As 145	AT GAT GTG T sp Asp Val T	AC CTA GAC yr Leu Asp 150	TCA 485 Ser
Glu Glu Gl	AG CGA CGG lu Arg Arg 55	Glu Tyr V	TC CTT AG al Leu Tl 60	CG CAA CAG G hr Gln Gln G 1	GC TTC ATC ly Phe Ile 65	TAC 533 Tyr
CAA GGC TO Gln Gly Se 170	CT GTC AAG er Val Lys	TTC ATC A Phe Ile L 175	AG AGT G ys Ser V	TG CCT TGG A al Pro Trp A 180	AC TTT GGG sn Phe Gly	CAG 581 Gln
TTC CAA GA Phe Gln As 185	AT GGA ATC sp Gly Ile	CTG GAC A Leu Asp T 190	CC TGC C'hr Cys L	TG ATG CTG T eu Met Leu L 195	TG GAT ATG eu Asp Met	AAC 629 Asn 200
CCC AAG TO	TC CTG AAG he Leu Lys 205	AAC CGT A Asn Arg S	er Arg A	AC TGC TCA C sp Cys Ser A 10	GC CGC AGC arg Arg Ser 215	AGT 677 Ser
CCC ATC TA	AT GTG GGC yr Val Gly 220	CGC GTG G Arg Val V	TG AGC G al Ser A 225	AC ATG GTC A sp Met Val A	AC TGC AAT sn Cys Asn 230	GAT 725 Asp
Asp Gln G	GT GTG CTT ly Val Leu 35	Leu Gly A	GC TGG G Arg Trp A 40	AC AAC AAC T sp Asn Asn T 2	TAT GGG GAT Tyr Gly Asp 145	GGT 773 Gly
ATC AGT CO Ile Ser Pr 250	CC ATG GCC ro Met Ala	TGG ATT G Trp Ile G 255	GC AGT G	TG GAC ATT Cal Asp Ile I 260	TTG CGG CGT eu Arg Arg	TGG 821 Trp
AAG GAA CA Lys Glu H: 265	AC GGC TGT is Gly Cys	CAG CAA G Gln Gln V 270	TC AAG T	PAC GGC CAG T Tyr Gly Gln C 275	rgc TGG GTG Cys Trp Val	TTT 869 Phe 280
GCA GCG G Ala Ala Va	TG GCC TGC al Ala Cys 285	ACA GTG C	eu Arg C	GC CTC GGC A cys Leu Gly 1 90	ATC CAT AAC lle His Asn 295	CGG 917 Arg
GTC GTG AG	CC AAC TAC hr Asn Tyr 300	AAC TCC G Asn Ser A	GCC CAC G Ala His A 305	SAC CAG AAC A Asp Gln Asn S	AGC AAC CTG Ser Asn Leu 310	CTC 965 Leu
Ile Glu T	AC TTC CGA yr Phe Arg 15	Asn Glu P	TTT GGG G Phe Gly G 320	AG CTG GAG A	ACG AAC AAG Thr Asn Lys 325	AGC 1013 Ser
GAG ATG A'Glu Met II	TC TGG AAC le Trp Asn	TTC CAC T Phe His C 335	GC TGG G Cys Trp V	TG GAG TCC Tal Glu Ser Tal Glu Glu Galler Tal Glu G	rGG ATG ACC Frp Met Thr	AGG 1061 Arg
CCA GAC C	TA CAG CCG eu Gln Pro	GGA TAT G	GAG GGC T Glu Gly T	rgg gag gcc (Trp Glu Ala I	CTA GAC CCC Leu Asp Pro	ACA 1109 Thr

								_	_							
345					350					355					360	
Pro	Gln	Glu	Lys	365	GIU	GGG Gly			370					375		1157
Arg	Ala	Ile	180	GIU	Gry	GAC Asp		385					390			1205
Val	Phe	Ala	GIU	vaı	Well	GCT Ala	400	•		_		405				1253
GAA Glu	GGG Gly 410		GTG Val	CTC Leu	AAA Lys	TGG Trp 415	ATG Met	AAC Asn	CGT Arg	TCC Ser	TTG Leu 420	GTC Val	GTG Val	GGG Gly	CAG Gln	1301
Lys		AGC Ser	ACT Thr	AAG Lys	AGT Ser 430	GTG Val	GGC Gly	CGT Arg	GAT Asp	GAC Asp 435	CGG Arg	GAG Glu	GAC Asp	ATC Ile	ACC Thr 440	1349
425 CAT His	ACA Thr	TAC Tyr	AAG Lys	TAC Tyr 445	CCA Pro	GAG Glu	GGG Gly	TCA Ser	CCC Pro 450	GAG Glu	GAG Glu	AGG Arg	GAA Glu	GTC Val 455	TTC Phe	1397
ACC Thr	AAG Lys	GCC Ala	AAC Asn 460	CAC His	CTG Leu	AAC Asn	AAA Lys	CTG Leu 465	GAC Asp	GAG Glu	AAA Lys	GAG Glu	GGG Gly 470	ACA Thr	GGG	1445
ATG Met	GCC Ala	Met	CGC Arg		CGA Arg	GTG Val	GGG Gly 480		TAT Tyr	GAG Glu	CAT His	GGC Gly 485	AAC Asn	GAC Asp	TTC Phe	1493
Asp	GTG Val 490	Phe	GCC Ala	HIS	ATC Ile	GGC Gly 495		GAC Asp	ACC Thr	TCG Ser	GAG Glu 500	ACT Thr	CGA Arg	GAG Glu	TGT Cys	1541
CGT Arg	CTC Leu				GCC Ala 510	CGC Arg		GTC Val	AGC Ser	TAC Tyr 515	AAC Asr	GGG Gly	GTG Val	CTC Lev	GGG Gly 520	1589
505 CCC Pro		TGT Cys	GGC Gly	ACT Thr	GAG		ATC	AAC Asn	CTG Lev	ACC Thr	CTC	GAT 1 Asp	CCC Pro	TAC Ty: 53!	C TCT c Ser	1637
GAG Glu	AAC Asn	: AGC	ATC	CCA		CGA Arg	ATC	CTC Lev	_	GAG Glu	AAC Lys	G TAC	Ser 550	GGG Gly	G TGC Y Cys	1685
CGT Arg	ACA	Glu	TCA		C CTC	C ATO	AAC Lys	• •	CG(G GGC G Gly	CT'	r CTO u Lev 569	C ATO	C GA ≥ Gl	A CCA u Pro	1733
GCI	r GCC	555 AAC	AGC	TAC	C CTC	G CTC			G AG	A GAT	r ct	C TA	C GT	G GA	G AAT	1781

Ala	Ala 570	Asn	Ser	Tyr	Leu	Leu 575	Ala	Glu	Arg	Asp	Leu 580	Tyr	Val	Glu	Asn	
CCC Pro 585	GAA Glu	ATC Ile	AAG Lys	ATC Ile	CGG Arg 590	GTT Val	TTG Leu	GGA Gly	GAA Glu	CCC Pro 595	AAG Lys	CAA Gln	AAC Asn	CGC Arg	AAA Lys 600	1829
CTG Leu	GTG Val	GCT Ala	GAG Glu	GTG Val 605	TCC Ser	CTG Leu	AAG Lys	AAC Asn	CCA Pro 610	CTT Leu	TCC Ser	GAT Asp	CCC Pro	CTG Leu 615	TAT Tyr	1877
GAC Asp	TGC Cys	ATC Ile	TTC Phe 620	ACT Thr	GTG Val	GAG Glu	GGG Gly	GCT Ala 625	GGC Gly	CTG Leu	ACC Thr	AAG Lys	GAG Glu 630	CAG Gln	AAG Lys	1925
TCT Ser	GTG Val	GAA Glu 635	GTC Val	TCA Ser	GAC Asp	CCG Pro	GTG Val 640	CCA Pro	GCG Ala	GGC Gly	GAT Asp	TTG Leu 645	GTC Val	AAG Lys	GCA Ala	1973
CGG Arg	GTC Val 650	GAC Asp	CTG Leu	TCC Ser	CCG Pro	ACT Thr 655	GAT Asp	ATT Ile	GGC Gly	CTC Leu	CAC His 660	AAG Lys	CTG Leu	GTG Val	GTG Val	2021
AAC Asn 665	TTC Phe	CAG Gln	TGT Cys	GAC Asp	AAG Lys 670	CTG Leu	AAG Lys	TCG Ser	GTG Val	AAG Lys 675	GGT Gly	TAC Tyr	CGG Arg	AAT Asn	GTT Val 680	2069
			CCG Pro		TAA	GGG	ACCC	CTT (CCCA	GACT(CA A	CCCC	ACCA	C		2117
CTG	CAA	ccc	CCAT	rcaa(CC TO	GTC:	rtta:	r cc	FAA G	ATAA	TGA	GCAA(CTT (CACC	CCATTC	2177
AGG	CTGA	CAT	GGCT	CCT	GG GG	CCT	CTTC	A GA	AGAC	agtg	TAC	TTCT(GGC (CCAA!	rcctgt	2237
TCCI	CTG	SAT	CTAT	rtcc	CC A	rcct(GTTC	C CT	ragt(GTGC	ACG	GAAG	GTC (CTGT	GCCGAC	2297
ACAC	TGG	ATE	CCTG	rgga/	AA GO	GGTA	AGAG	G AG	AGCC	ATCA	CCA	GCAC'	TCT (GTAT	CTCTGC	2357
ATTO	TTTC	GAA -	CTGT	CTCT	GG A	GCCT(CAGC	G CA	AGCA	CAAA	GGG.	ACCG'	TGC	GCAT	GGCACC	2417
ATC	AAG	GAA .	ACGA:	rcct:	rg G	AGCA(GGAA(C GC	TGTC	GGCA	CCA	TTTG	CGC	TCCT	GAATGG	2477
AACC	CATA:	rgt	GCAT	GTA(CT T	AGAT(CTTA	C GG	TACA	CCAG	CTA	GCGT.	ACA '	TCCG'	TGTAAC	2537
TTC	AGGT	GT.	ACAA	ACTG	AG G	CTGC'	rgtg	C TG	TACT	GGGA	CAG	TAGG	CAG	GCCA'	TCACTT	2597
GCAG	GGC	CAG	TGGG:	rgga	SC TO	GGAA'	raca(G GG	AATC	CATC	TGT	GACA	CCA	GCTC	TGACCT	2657
GAGO	CGGG:	rca	GAGA	GCT	AT C	rggg	GATG	A TG	AGCC	TCGC	GGT	GGTT	AGG	GTGA	GGAGTT	2717
GAGO	GTG	GGG	CGGG	GAGG	CC A	GAGA	ACTG	G GA	GTCA	GAGC	TTG	TGTT	TAA	GCCC	CAAGGA	2777
GAG	CTAC	ACT	CTAT	CCTC	CT C	TTCT	GGGC'	T TG.	ATCA	TTCT	TCA	CCAG	GGC	AGTG	CTTAAA	2837

CCAGGGGTCT	CCTGGCCCTA	TACTTCTAAA	GCCGTGCTTG	CCAGGCTCAG	TGCACTTCTG	2897
CCACCOCOLOL	ACTGCACCAG	ACCTGTACCC	GAGGTGTCCT	GCTTCTCACC	TATGACTGGG	2957
GGAAGGAGAC	CCCACTTCCA	GGGACTATCC	ACAAGCTACT	CACACAGTGC	CTAGACTAGA	3017
TTCCTCAGAT	oga coomma a	ътътссасас	TGGTCGCTAA	TCAGCAGGCC	ACACCTCCAC	3077
TTTCACAGAA	CGAGCCTIAN	ACA COCTOTA	GACACAGCAC	GTGTCTCCAG	AAAAGCGTGG	3137
CAGCCCCTCC	TCCTCAGCCA	GCAGCCICIA	ACCCCA CTCC	тасстстстс	TGGCTGGCCC	3197
AAGCCTGTGT	GTGGGTCATC	ATCCCAAGTT	AGCCCACTCC	OCAMCA CCTC	асастотото	3257
TCAACCTAGG	AAGGCTGGCA	GTGGTGGCCG	GGTCTCTGGG	CGATGAGGIC	AGAGTCTCTG	2217
GATCCCCTGA	AATCCCGGAG	AAGAGCCTGG	GAAGAATCAA	ACTGATGCAT	TTAACGCGTT	2227
CTGCTTTACA	CAGAGGATCG	CACCGTGAGC	CGTGCTATCT	GTCCTGTCCC	CACACGGTTC	3377
					GCTTTCAAAG	
CACATGTGAA	CACTGAAATA	AAGGTCTATT	TTTCACATTC	ACGGAATTC		3486

(2) INFORMATION FOR SEQ ID NO:4:

100

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 685 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met
1AlaGluGluLeu
5LeuGluArg
25GluArg
25LeuCys
10Asp
CysLeu
CysGluGluLys
GluLeu
GluAla
30ValArg
35GlyGlnArgPhe
40Arg
40LeuThrLeuTyrPhe
45GluGlyArgGlyTyr
50GluAlaSerValAsp
55SerLeuThrPhe
40GlyAlaValThrGlyPro
65AspProSerGluGluAlaGlySerTrpSerAlaSerLeuValAspGlnGlnAspAsnValLeuSerLeuGlnLeuCysThrProAlaAsnAlaProIle

Gly Leu Tyr Arg Leu Ser Leu Glu Ala Ser Thr Gly Tyr Gln Gly Ser

35

115 120 125 Ser Phe Val Leu Gly His Phe Ile Leu Leu Tyr Asn Ala Trp Cys Pro 135 130 Ala Asp Asp Val Tyr Leu Asp Ser Glu Glu Glu Arg Arg Glu Tyr Val 155 Leu Thr Gln Gln Gly Phe Ile Tyr Gln Gly Ser Val Lys Phe Ile Lys 170 Ser Val Pro Trp Asn Phe Gly Gln Phe Gln Asp Gly Ile Leu Asp Thr 185 Cys Leu Met Leu Leu Asp Met Asn Pro Lys Phe Leu Lys Asn Arg Ser Arg Asp Cys Ser Arg Arg Ser Ser Pro Ile Tyr Val Gly Arg Val Val 210 215 Ser Asp Met Val Asn Cys Asn Asp Asp Gln Gly Val Leu Leu Gly Arg 230 Trp Asp Asn Asn Tyr Gly Asp Gly Ile Ser Pro Met Ala Trp Ile Gly 245 250 Ser Val Asp Ile Leu Arg Arg Trp Lys Glu His Gly Cys Gln Gln Val 260 Lys Tyr Gly Gln Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys Leu Gly Ile His Asn Arg Val Val Thr Asn Tyr Asn Ser Ala 290 295 His Asp Gln Asn Ser Asn Leu Leu Ile Glu Tyr Phe Arg Asn Glu Phe Gly Glu Leu Glu Thr Asn Lys Ser Glu Met Ile Trp Asn Phe His Cys Trp Val Glu Ser Trp Met Thr Arg Pro Asp Leu Gln Pro Gly Tyr Glu 350 Gly Trp Glu Ala Leu Asp Pro Thr Pro Gln Glu Lys Ser Glu Gly Thr 360 Tyr Cys Cys Gly Pro Val Ser Val Arg Ala Ile Lys Glu Gly Asp Leu 375 Ser Thr Lys Tyr Asp Ala Pro Phe Val Phe Ala Glu Val Asn Ala Asp 385 390 Val Val Asp Trp Ile Arg Gln Asp Glu Gly Ser Val Leu Lys Trp Met 405 410

Asn	Arg	Ser	Leu 420	Val	Val	Gly	Gln	Lys 425	Ile	Ser	Thr	Lys	Ser 430	Val	Gly
Arg	Asp	Asp 435	Arg	Glu	Asp	Ile	Thr 440	His	Thr	Tyr	Lys	Tyr 445	Pro	Glu	Gly
Ser	Pro 450	Glu	Glu	Arg	Glu	Val 455	Phe	Thr	Lys	Ala	Asn 460	His	Leu	Asn	Lys
Leu 465	Asp	Glu	Lys	Glu	Gly 470	Thr	Gly	Met	Ala	Met 475	Arg	Ile	Arg	Val	Gly 480
Gln	Tyr	Glu	His	Gly 485	Asn	Asp	Phe	Asp	Val 490	Phe	Ala	His	Ile	Gly 495	Asn
Asp	Thr	Ser	Glu 500	Thr	Arg	Glu	Cys	Arg 505	Leu	Leu	Leu	Cys	Ala 510	Arg	Thr
Val	Ser	Tyr 515	Asn	Gly	Val	Leu	Gly 520	Pro	Glu	Cys	Gly	Thr 525	Glu	Asp	Ile
Asn	Leu 530	Thr	Leu	Asp	Pro	Tyr 535	Ser	Glu	Asn	Ser	Ile 540	Pro	Leu	Arg	Ile
Leu 545	Tyr	Glu	Lys	Tyr	Ser 550	Gly	Cys	Arg	Thr	Glu 555	Ser	Asn	Leu	Ile	Lys 560
Val	Arg	Gly	Leu	Leu 565	Ile	Glu	Pro	Ala	Ala 570	Asn	Ser	Tyr	Leu	Leu 575	Ala
Glu	Arg	Asp	Leu 580	Tyr	Val	Glu	Asn	Pro 585	Glu	Ile	Lys	Ile	Arg 590	Val	Leu
Gly	Glu	Pro 595	Lys	Gln	Asn	Arg	Lys 600	Leu	Val	Ala	Glu	Val 605	Ser	Leu	Lys
Asn	Pro 610	Leu	Ser	Asp	Pro	Leu 615	Tyr	Asp	Cys	Ile	Phe 620	Thr	Val	Glu	Gly
Ala 625	Gly	Leu	Thr	Lys	Glu 630	Gln	Lys	Ser	Val	Glu 635	Val	Ser	Asp	Pro	Val 640
Pro	Ala	Gly	Asp	Leu 645	Val	Lys	Ala	Arg	Val 650	Asp	Leu	Ser	Pro	Thr 655	Asp
Ile	Gly	Leu	His 660	Lys	Leu	Val	Val	Asn 665	Phe	Gln	Cys	Asp	Lys 670	Leu	Lys
Ser	Val	Lys 675	Gly	Tyr	Arg	Asn	Val 680	Ile	Ile	Gly	Pro	Ala 685			
		•													

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

BMCDOOID: 3MO 0010038A1

WO 92/12238 PCT/US91/09784

WHAT IS CLAIMED IS:

1. An isolated polynucleotide sequence which codes for human tissue transglutaminase.

5

- 2. The polynucleotide sequence of claim 1, wherein the transglutaminase is of endothelial cell origin.
- 3. The polynucleotide molecule of claim 1,

 wherein the polypeptide encoded thereby catalyzes the Ca⁺⁺

 dependent crosslinking of protein-bound glutamine and lysine residues.
- 4. The polynucleotide of claim 1, wherein the 15 sequence is substantially the human transglutaminase of Fig. 3.
 - 5. The polynucleotide of claim 1, which is a cDNA sequence.
- 20 6. An isolated polynucleotide sequence which codes for mouse tissue transglutaminase.
 - 7. The polynucleotide sequence of claim 6, wherein the mouse transglutaminase is of macrophage origin.

25

- 8. The polynucleotide of claim 6, wherein the sequence is substantially the murine transglutaminase of Fig. 3.
- 9. The polynucleotide molecule of claim 6, wherein the polypeptide encoded thereby catalyzes the Ca⁺⁺ dependent crosslinking of protein-bound glutamine and lysine residues.

35

PCT/US91/09784

5

15

25

- 10. A DNA construct for the expression of human tissue transglutaminase, which comprises the following operably linked elements:
 - a transcriptional promoter;
- a DNA sequence encoding a human tissue transglutaminase polypeptide; and
 - a transcriptional terminator.
- 11. The polypeptide which is encoded by the DNA 10 construct of claim 10.
 - 12. The polypeptide of claim 11, which catalyzes Ca⁺⁺ dependent crosslinking of protein-bound glutamine and lysine residues.
 - 13. The polypeptide of claim 12, which has substantially the amino acid sequence of human tissue transglutaminase of Fig. 3.
- 20 14. A cultured cell transformed or transfected with the DNA construct of claim 10.
 - 15. The cultured cell of claim 14, which is a eukaryotic cell.
 - 16. The eukaryotic cell of claim 15, which is a yeast cell or mammalian cell.
- 17. A method for producing human tissue
 30 transglutaminase, which comprises cultivating eukaryotic cells
 transformed or transfected with the DNA construct of claim
 11, and isolating the transglutaminase from the cells.
- 18. The method of claim 17, wherein the transformed eukaryotic cells are yeast cells.

PCT/US91/09784

- 19. A probe which comprises an oligonucleotide of at least about 14 nucleotides capable of specifically hybridizing with a gene which encodes a human or murine tissue transglutaminase polypeptide, wherein said probe is at least 85% homologous to a sequence of the human or murine transglutaminase of Fig. 3.
- 20. The probe of claim 19, which is labeled to provide a detectable signal.

Fig. 1

الم دع في

Kb

9.49

7.46

4.40

← TGase

2.37

1.35

0.24

Fig. 4

Kb
9.49
7.46

4.40

2.37

1.35

L S K T H Lu Tm B

Fig. 5

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/09784

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 6									
According to International Patent Classification (IPC) or to both National Classification and IPC									
IPC(5): C12N 9/10, 15/54, 15/62, 15/80, 15/85									
U.S.Cl.: 435/69.1, 193, 252.3, 320.1; 536/27; 935/8, 14, 68, 70									
II FIELDS SEARCHED									
Minimum Documentation Searched 7									
Classification System Classification Symbols									
Classification Symbols									
U.S.C	1.	435/69.1, 193, 252.3, 320	193, 252.3, 320.1; 536/27; 935/8, 14, 68, 70						
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched *									
APS, STN/Chemical Abstracts and DIALOG/Biosis databases									
III. DOCU	MENTS C	ONSIDERED TO BE RELEVANT							
Category *	Citati	on of Document, 11 with indication, where app	propriate, of the relevant passages 12	Relevant to Claim No. 13					
<u>X,0</u> <u>Y</u>	THE JOURNAL OF CELL BIOLOGY, Vol. 109, No. 4 Part 2, issued 9 November 1989, Gentile et al., "Isolation and Characterization of cDNA and Genomic Clones of Human Endothelial Cell Transglutaminases", page 198a, see abstract 1068.								
<u>X,O</u> Y	FASEB JOURNAL, Vol. 3, No. 4, issued 17 February 1989 Saydak et al., "cDNA Cloning of Mouse Macrophage Tissue Transglutaminase", page A1209, see abstract 5708.								
<u>X,O</u> Y	2nd INTERNATIONAL CONFERENCE ON TRANSGLUTAMINASES & PROTEIN CROSS-LINKING REACTIONS, 24-28 June 1990, Gentile et al., "Molecular Cloning and Sequence Analysis of cDNA for a Retinoic Acid-Inducible Tissue Transglutaminase from Human Umbilical Vein Endothelial Cells", see abstract.								
Y	US, A, 4,929,554, GOEDDEL et al., 29 May 1990, see 10-17 columns 17-21, figures 7-8 and 11-16.								
Y	EP, A, 0,268,772, DAVIE et al., 01 June 1988, see pages 16-20, Figures 5-11.								
*Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention filing date. "C" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the considered to involve an inventive step when the document published prior to the international filing date but later than the priority date claimed. "C'" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents. Such combination being obvious to a person skilled in the art. "C" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the documents. Such combination being obvious to a person skilled in the art. "C" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the documents. Such combination being obvious to a person skilled in the art. "C" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such as a considered to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand th									
Date of the Actual Completion of the International Search Date of Mailing of this International Search Report 20 APR 1992									
International Searching Authority Signature of Authorized Officer									
ISA/U	_		William W. Moore gp						

Form PCT/ISA/210 (second sheet) (Rev.11-87)