U. S. ELECTRICITY MARKETS AND DIRECTIONS

March 4, 2015 India Smart Grid Week

Paul J. Feldman

PaulFeldman@Gmail.com

www.linkedin.com/in/paulfeldman

http://www.energycollection.us/335.pdf = Presentation in PDF format

US Interconnections

Regulatory Models

- Competition is the method of choice to maximize outcomes for customers.
- Simulation of competition is the method of choice for direct regulation. Regulator price setting is a last resort.
- Natural Monopolies are situations where the lowest total cost can be delivered to customers via 1 supplier.
 - Natural Monopolies must be regulated to prevent the exercise of market power over customers.
- Discussion of these subjects and subsequent choices and decisions will greatly determine utility strategy and actions. (especially on the CSOM)
- Generation and Transmission can be managed via "competitive" models. (U.S. FERC decision)

Wholesale Management - ISOs/RTOs

ISO/RTO Decision Making

- RTOs are independent, not-for-profit organizations
- Pricing (P=MC)
 - Attributes Energy, Capacity, Regulation, Reserves
 - Temporal 5 minute pricing
 - Locational thousands in MISO alone
- The last dispatched resource sets the price for all.
 - Line losses and transmission constraints determine locational prices
- RTOs form products for reliability/cost optimization.
- RTO actions are transparent
- Clearing Markets (RTOs) inform
 - Bilateral Markets
 - Other trading markets

Pricing: Energy & Ancillary Services; Time of Use (ToU); Place of Use (PoU)

U.S. ISO/RTO Challenges Ahead

- Capacity Margins Tightening
 - Paying more attention to RTO "products" needed to run the grid
 - Paying more attention to scarcity pricing
 - Paying more attention to electricity-gas interactions
- US EPA rules loom large
 - Massive and complicated state-by-state impacts
 - Massive uncertainty about the future
- New capacity brings new challenges
 - Renewables and intermittency
 - Natural Gas and ADSM are the "fuels" of choice for new "dispatchable" capacity
- U.S. Demand Response is in a state of change
 - FERC Orders / Court Decisions mechanics up in the air.
 - Legacy DR applications and thinking slow progress to ADSM.
 - Value in Wholesale vs Distribution Markets
 - But, all scenarios point towards more importance and growth

PJM (ISO) Example

- PJM (Pennsylvania-New Jersey-Maryland Interconnection) operates a competitive wholesale electricity market which serves 20 distinct regions (T&D Utilities)
- 63,000 miles of Transmission Lines
- 61 million people
- Peak Demand of 165,000 MW
- Generation Capacity of 184,000 MW
- DR Capacity of ~11,000 MW
- DR Program Costs:

2009	\$410 M and n	ot used 🙎	
2010	\$584 M for 5 d	lays of use \$	25,000 /MWh
2011	\$420 M for 1 d	ay of use \$	35,000 /MWh
2012	\$268 M for 2 d	ays of use \$	24,000 /MWh
2013	\$560 M for 5 d	lays of use \$	8,000 /MWh

Total: \$2.2 Billion

PJM: Estimate >\$4 Billion for < 100 hours over 15 years

Never Dispatched more than 50% of Available Capacity
Largest Event was 3.5% of Peak Demand
Equivalent Capacity Factor: 0.09%

SCE Example

- SCE represents approximately one half of the CAISO territory
- 14 million people
- Peak Demand of 23,000 MW

		20)13	Reduction	Hours
•	Interruptible Tariffs	\$	81.4 M	23 MW	1 <u>hr</u>
•	Price Responsive Programs	\$	8.1 M	2 to 221 MW	24 <u>hrs</u>
•	Aggregator DR Programs	\$	13.0 M	2 to 140 MW	50 <u>hrs</u>
•	Auto-DR	\$	12.2 M		Not called
•	Summer Discount Programs	\$	92.0 M	100 to 361 MW	24 <u>hrs</u>
•	Outreach Programs	\$	10.6 M		8 <u>hrs</u>
•	Program Administration	\$	4.4 M		

Total: \$ 220 M 12,400 MWh \$18,000 /MWh

Largest Single Day Event was 2.0% of Peak Demand Equivalent Capacity Factor: 0.6%

SCE Example

- SCE represents approximately one half of the CAISO territory
- 14 million people
- Peak Demand of 23,000 MW

•	Interruptible Tariffs Price Responsive Programs Aggregator DR Programs Auto-DR Summer Discount Programs Outreach Programs Program Administration	2013 \$ 81.4 M \$ 8.1 M \$ 13.0 M \$ 12.2 M \$ 92.0 M \$ 10.6 M \$ 4.4 M	settlement, system, legal or administrative costs. Also does not include TA (\$100/kW) and TI (\$400/kW) Estimate >\$500M
---	--	---	---

Total: \$ 220 M 12,400 <u>MWh</u> \$18,000 /<u>MWh</u>

Does not include any

Largest Single Day Event was 2.0% of Peak Demand Equivalent Capacity Factor: 0.6%

Demand Response (DR) in a new world

- Traditional Demand Response (U.S. model) is a very successful failure
- The "Internet of Things" and some innovative thinking enables a new paradigm replacing DR with ADMS – <u>Automated Demand Side Management.</u>
 - It is not DR automated
 - It is better never to have heard of, or implemented DR to move forward with ADSM
- India like in other areas can leap ahead leveraging new possibilities with new thinking and implement ADSM
 - As an integral part of professional future grid management
 - As a part of the quest to universal service by freeing capacity
 - As a way to align Utility / Regulator / Customer interests.

Duck Curve - CAISO

Unbundling and Retail Choice

Retail Choice (Unbundled Model)

The IoT - Internet of Things - gives rise to new business models

Disintermediation can come fast

San Francisco – traditional taxi rides declined 65% in 15

months.

Better service

Less expensive

Safer service

Utilities executives expect	2013	2014
Performance Grid faults to increase by 2020 as a result of distributed, renewable generation (low-voltage connection)	41%	61%
Grid faults to increase by 2020 as a result of large-/utility-scale renewables (medium-voltage connection)	33%	53%
Revenue impacts Distributed generation to have an impact on revenue reduction by 2030	43%	61%
Microgrids to have an impact on revenue reduction by 2030	30%	51%
Competition Competition from new entrants in power electronics hardware and services will increase in the next five years	46%	73%
Competition from plug-in vehicles and associated charging infrastructure will increase in the next five years	59%	81%

Source: Accenture's Digitally Enabled Grid program, 2013 and 2014 executive surveys.

Distribution Considerations

- Distribution is a natural monopoly and must be regulated.
 - U.S. Electricity bills are \$364B,
 - Outages cost customers \$112B.
- Technology (IoT) is driving activity on the Distribution side-of-the-meter (new).
- Technology (IoT) is driving even more activity on the Customer side-of-the-meter (new).
- Customers expectations are up, and will rise more lots more.
- Distribution management via productive interaction with customers is THE opportunity.
- Who should be doing what? It depends!

Possibilities and Intellectual Debates - Resource Use and/or Pricing Approaches

Customer Side of the Meter Strategy

Questions:

- What is Competitive and what is a regulated Monopoly?
- Who crafts new Products and Services?
- How do we determine, value and implement Products and Services that contribute to better Distribution reliability and lowest cost?

Answers:

- Some Products and Services do fit the Monopoly definition.
- Some Products and Services fit the direct Competitor model.
- Utilities need to proactively lead with new business models and answers that serve customers better.

Distribution MC Decision Making can be different than Customer Pricing.

Bits/Electrons Ratio

(related to electricity)

Monopolies and Competition, Green Buttons, Energy Efficiency, Solar, ...

- Monopolies and Competition
 - Solar
 - Customer side of Meter (CSOM) own premise
 - Customer side of Meter share of utility or third party installation
 - Utility scale
 - Energy Efficiency
 - CSOM EE should be a competitive model probably
 - EE is not related to running a grid.
 - Where can utilities properly contribute? Green Buttons and?
 - Social programs can be implemented by not distracting the utility.
 - Storage?
 - Micro Grids?
 - EV Charging?
 - CSOM Generation ?

Distribution Regulatory Models

- Competition Model 1
 - Everything on the customer side of the meter is competitive
 - Regulators try to get the Distribution companies to do the right thing.
- Some Monopoly some Competitive Model 2
 - Regulators work with Distribution companies to structure use of customer side assets to improve Distribution reliability and lower Distribution costs.
- Some Monopoly, some Competitive Model 3
 - Independent Distribution Grid Planner recommending actions tied to target reliability and lowest cost.

Distribution Strategy - Utilities

- Pursue win / win / win scenarios Regulator / Utility / Customers
- Timing and Decision Making:
 - Distribution companies should immediately claim and implement customer side-of-the-meter opportunities.
 - Distribution balances embedded-grid and supply side
 - Use simple pricing mechanisms, and sophisticated cost understanding to pursue high reliability at lowest cost.
 - Lack of action forces regulators to attempt competitive outcomes through quasi-regulation that may complicate distribution management.
 - Lack of action allows non-regulated "competitors" to move into any productive void unfilled by the utility.

Distribution Strategy - Regulators

- Pursue win / win / win scenarios Regulator / Utility / Customers
- Hold fast to basic principles monopoly and competition
 recognizing there are shades of grey
- Consider the larger picture that includes CSOM capability/needs, fostering innovation, leapfrogging other countries.
- Look forward not back at other countries have done.
- Listen to those that come with data in hand.
- Insist on measurements and verification.
- Get a short and long term plan from the utilities.

Additional Information

- PaulFeldman@Gmail.com
- http://www.energycollection.us/335.pdf = Presentation in PDF format
- Additional slides follow to support answers to possible questions that may arise.

Energy Sources and Sinks

Smart Grid - Tomorrow

Customer - Tomorrow

RTO Transmission Planning

RTO Planning > Distribution Planning

RDSO Distribution Planning Changes

RDSO Distribution Planning

Commodity delivery Energy services

The Distribution System Platform (DSP)

