Update

Brueckenkurs SoSe24 Uebungen SoSe 2023

Prof. Dr. J. Harz / S. Weber

Aufgabenkatalog - März, 2024

Die Aufgaben sind unterteilt in

∘ Verständnisaufgaben, □ Vertiefungsaufgaben, * schwierige Aufgaben

Aufgabe 1: o Übungen zur Injektivität

Überprüfen Sie, ob die folgenden Funktionen injektiv sind. Falls ja, beweisen Sie es, falls nein, geben Sie ein Gegenbeispiel an.

a)
$$f(x) = x^2 - 3x + 2$$

b)
$$q(x) = e^x$$

c)
$$h(x) = \sin(x)$$

d)
$$k(x) = \sqrt{x}$$

e)
$$m(x) = x^3$$

f)
$$n(x) = \frac{1}{x}$$

$$g) p(x) = |x|$$

h)
$$q(x) = x^2 + 2x + 1$$

i)
$$r(x) = e^{x^2}$$

j)
$$s(x) = \frac{x^2 - 1}{x^2 + 1}$$

Aufgabe 2: o Übungen zur Surjektivität

Überprüfen Sie, ob die folgenden Funktionen surjektiv sind. Falls ja, beweisen Sie es, falls nein, geben Sie ein Gegenbeispiel an.

a)
$$f(x) = 2x + 3$$

b)
$$g(x) = \frac{1}{x}$$

c)
$$h(x) = x^2$$

$$d) k(x) = \sin(x)$$

e)
$$m(x) = e^x$$

f)
$$n(x) = |x|$$

$$g) p(x) = sgn(x)$$

h)
$$q(x) = x^3$$

i)
$$r(x) = e^{x^2}$$

j)
$$s(x) = \frac{x^2 - 1}{x^2 + 1}$$

Aufgabe 3: o Übungen zur Bijektivität

Überprüfen Sie, ob die folgenden Funktionen bijektiv sind. Falls ja, beweisen Sie es, falls nein, geben Sie ein Gegenbeispiel an.

a)
$$f(x) = 2x + 3$$

b)
$$g(x) = x^3$$

c)
$$h(x) = e^x$$

$$d) k(x) = \sin(x)$$

e)
$$m(x) = \frac{1}{x}$$

$$f) n(x) = x^2$$

g)
$$p(x) = \sqrt{x}$$

$$h) \ q(x) = |x|$$

i)
$$r(x) = x$$

j)
$$s(x) = -x + 1$$

Aufgabe 4: o Übungen zu Umkehrfunktionen

Bestimmen Sie die Umkehrfunktionen der folgenden Funktionen, falls diese existieren.

a)
$$f(x) = 3x + 4$$

b)
$$g(x) = \frac{1}{x}$$

c)
$$h(x) = x^2 + 5$$

$$d) k(x) = \sin(x)$$

e)
$$m(x) = e^x$$

$$f) \ n(x) = x^3$$

g)
$$p(x) = \sqrt{x}$$

$$h) q(x) = |x|$$

i)
$$r(x) = x + 2$$

$$j) s(x) = \frac{x}{2}$$

Aufgabe 5: o Unterschied Umkehrfunktion und inverse Funktion

Finden Sie eine inverse Funktion für die folgenden Funktionen. Sind diese auch Umkehrfunktionen?

a)
$$f(x) = 3x + 4$$

b)
$$g(x) = \frac{1}{x}$$

c)
$$h(x) = x^2 + 5$$

$$d) k(x) = \sin(x)$$

e)
$$m(x) = e^x$$

f)
$$n(x) = x^3$$

g)
$$p(x) = \sqrt{x}$$

h)
$$q(x) = |x|$$

i)
$$r(x) = x + 2$$

j)
$$s(x) = \frac{x}{2}$$

Aufgabe 6: \circ Funktionengraphen Zeichnen Sie folgende Funktionen

a)
$$f(x) = 3x + 4$$

b)
$$f(x) = x^2 + 2x + 4$$

c)
$$f(x) = 2\sqrt{x} - 1$$

d)
$$f(x) = 2ex - 3$$

e)
$$f(x) = 3\log(x-1) + 4$$

f)
$$f(x) = \sqrt[3]{x+1}$$

g)
$$f(x) = (x^5 - 2)$$

h)
$$f(x) = (x+2)(x-1)(x-2)$$

Aufgabe 7: o Trigonometrische Funktionen am Einheitskreis

Zeichnen Sie in einen Einheitskreis ein Dreieck mit einem Punkt auf dem Kreis, einer Seite auf der x-Achse und dem unten angegebenen Winkel. Zeichnen Sie Sinus, Kosinus und Tangens ein. Was sind deren Werte?

a)
$$\alpha = 45^{\circ}$$

b)
$$\alpha = 90^{\circ}$$

c)
$$\alpha = 135^{\circ}$$

d)
$$\alpha = 180^{\circ}$$

e)
$$\alpha = 225^{\circ}$$

Aufgabe 8: \circ Graphen trigonometrischer Funktionen Zeichnen Sie folgende Trigonometrische Funktionen

a)
$$\sin(x)$$

b)
$$\cos(x)$$

- c) tan(x)
- d) $\sin(x+2\pi)$
- e) $2\sin(x-\frac{\pi}{2})$
- f) $\cos(5x)$
- g) $\tan(x+\frac{\pi}{2})$

Aufgabe 9: • Umformungen von trigonometrischen Funktionen Vereinfachen Sie folgende Ausdrücke

- a) tan(x)cos(x)
- b) $\csc(x)\sin(x)$
- c) sec(x) sin(x)
- d) $\cot(x)\sin(x)$
- e) $\frac{\tan(x)}{\sec(x)}$

Aufgabe 10: • Übungen zur Verkettung von Funktionen Berechnen Sie die Verkettung $r = f \circ g$ und $s = g \circ f$ der folgenden Funktionen.

- a) f(x) = 2x + 3, $g(x) = x^2$
- b) $f(x) = \sin(x), \ q(x) = \cos(x)$
- c) $f(x) = x^2, q(x) = \sqrt{x}$
- d) $f(x) = e^x$, $q(x) = \ln(x)$
- e) $f(x) = 3x, g(x) = \frac{1}{x}$
- f) $f(x) = |x|, g(x) = x^2$
- g) f(x) = x + 2, $g(x) = \frac{1}{x}$
- h) $f(x) = x^3, g(x) = \sqrt{x}$
- i) $f(x) = \frac{x}{2}, g(x) = \cos(x)$
- j) $f(x) = x^2 3$, $q(x) = x^3$

Aufgabe 11: • Übungen zur Spiegelsymmetrie

Überprüfen Sie, ob die folgenden Funktionen spiegelsymmetrisch zur y-Achse sind. Falls ja, beweisen Sie es, falls nein, geben Sie ein Gegenbeispiel an.

- c) $h(x) = \frac{1}{x}$ d) $k(x) = e^x$
- $e) \ m(x) = |x|$

f)
$$n(x) = \sqrt{x}$$

g) $p(x) = x^3$
h) $q(x) = e^{x^2}$
i) $r(x) = x$

g)
$$p(x) = x^3$$

$$h) q(x) = e^{x^2}$$

i)
$$r(x) = x$$

$$s(x) = -x + 2$$

Aufgabe 12: o Übungen zur Monotonie

Untersuchen Sie die Monotonie der folgenden Funktionen und bestimmen Sie, ob sie monoton steigend, monoton fallend oder weder noch sind.

a)
$$f(x) = x^2$$

b)
$$g(x) = \sin(x)$$

c)
$$h(x) = \frac{1}{x}$$

$$d) k(x) = e^x$$

e)
$$m(x) = |x|$$

f)
$$n(x) = \sqrt{x}$$

$$g) p(x) = x^3$$

$$h) q(x) = e^{x^2}$$

$$i) r(x) = x$$

j)
$$s(x) = -x + 2$$

Aufgabe 13: • Übungen zur Beschränktheit

Untersuchen Sie die Beschränktheit der folgenden Funktionen und bestimmen Sie, ob sie beschränkt, unbeschränkt nach oben oder unbeschränkt nach unten sind.

a)
$$f(x) = \frac{1}{x}$$

b)
$$g(x) = \sin(x)$$

c)
$$h(x) = e^x$$

d)
$$k(x) = \sqrt{x}$$

e)
$$m(x) = x^3$$

$$f) \ n(x) = \ln(x)$$

$$g) p(x) = e^{x^2}$$

h)
$$q(x) = x^2 - 1$$

i)
$$r(x) = \frac{x}{2}$$

j)
$$s(x) = 2^x$$

Aufgabe 14: o Übungen zu Grenzwerten

Bestimmen Sie den Grenzwert der folgenden Funktionen.

a)
$$\lim_{x\to 0} (x^5 + 2x^4 + 2x^3 + 2x^2 + x + 1)$$

b)
$$\lim_{x \to \infty} \frac{1}{x}$$

c)
$$\lim_{x \to 1} (x^2 - 2x + 1)$$

d)
$$\lim_{x \to \infty} e^{-x}$$

e)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

f)
$$\lim_{x \to -\infty} \frac{1}{x^2}$$

$$g) \lim_{x \to 0^+} \ln(x)$$

h)
$$\lim_{x \to 3} \sqrt{x+1} - 2$$

$$i) \lim_{x \to \infty} \frac{x^2 + 3x - 1}{2x - 5}$$

$$\mathrm{j}) \lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

Aufgabe 15: • Übungen zur Stetigkeit

Untersuchen Sie die Stetigkeit der folgenden Funktionen an den angegebenen Stellen.

a)
$$f(x) = \frac{1}{x}$$
, bei $x = 1$

b)
$$g(x) = \sin(x)$$
, bei $x = \pi$

c)
$$h(x) = e^x$$
, bei $x = 0$

d)
$$k(x) = \sqrt{x}$$
, bei $x = 0$

e)
$$m(x) = x^3$$
, bei $x = 2$

f)
$$n(x) = \ln(x)$$
, bei $x = 1$

g)
$$p(x) = 2^x$$
, bei $x = 0$

h)
$$q(x) = x^2 - 1$$
, bei $x = 1$

i)
$$r(x) = \frac{x}{2}$$
, bei $x = 3$

j)
$$s(x) = \frac{1}{x}$$
, bei $x = 0$

Diese Gulgaloen sind schwieriger f Schrön, aber entsprechen von dur oschrift vorherigen Flufgeben. Bitte

Aufgabe 16: \square Definitions- und Wertebereich

Was sind die (maximal möglichen) Definitions- und dazugehörigen Wertebereiche der folgenden Funktionen

$$f(x) = \frac{1}{x^2 + 1}$$

b)
$$f(x) = \sqrt{x+2} - 1$$

$$f(x) = e^{5x+3}$$

$$f(x) = \sqrt{1 - e^x}$$

Aufgabe 17: \square Definitionsbereich

Was sind die (maximal möglichen) Definitionsbereiche der folgenden Funktionen:

a)
$$f(x) = \frac{3x+1}{x^2+x-6}$$

b)
$$f(x) = \frac{\sqrt{x^2 - 3x - 4}}{x + 5}$$

$$f(x) = \log(x^2 - x)$$

Aufgabe 18: \square Funktionen

Bestimmen Sie die Nullstellen und Pole folgender Funktionen und fertigen Sie jeweils eine Skizze an.

$$y = 3x - 4$$

$$y = x^3 - 2$$

c)
$$y = x^2 - 2x - 3$$

$$y = -\frac{1}{x}$$

e)
$$y = \frac{1}{x^2 + x + 1}$$

$$y = \frac{1}{x} + x$$

Aufgabe 19: \square Trigonometrische Funktionen

Zeichnen Sie die folgenden Funktionen und bestimmen Sie Nullstellen und Periode.

a)
$$f(x) = 2\sin\left(\frac{1}{2}x\right)$$

b)
$$f(x) = \sin\left(3x + \frac{1}{4}\right)$$
 c)
$$f(x) = \cos(4\pi x)$$

Aufgabe 20: \square *Umkehrfunktion*

Bilden Sie die Umkehrfunktion folgender Funktionen und geben Sie deren Definitionsund Wertebereiche an:

$$f(x) = 3x - 5$$

$$f(x) = \ln(2x)$$

$$f(x) = 2x^3 + 2$$

$$f(x) = \sin x - 2$$

Aufgabe 21: \square Mehr Grenzwerte Bestimmen Sie

a)
$$\lim_{x\to +\infty} \frac{x^5+3x^4}{e^x-1}$$

$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{\sqrt{x - 2}}$$

$$\lim_{x \to 0} x^2 \ln x$$

$$\lim_{x \to -\infty} \frac{\sin 3x}{x}$$

e)
$$\lim_{x \to 0} \frac{\ln \sin 2x}{\ln \sin x}$$

f)
$$\lim_{x \to 0} \frac{e^{2x} - e^{-2x}}{\sin 5x}$$

$$\lim_{x \to 0} \frac{1 + 3x - \sqrt{(1 + 2x)^3}}{x \sin x}$$