













Widiastuti, SKom., MMSI









### DEFINISI GRAPH

- Adalah kumpulan titik dan garis dimana masingmasing garis menghubungkan satu titik dengan titik yang lainnya.



• Jadi suatu graph mempunyai 2 himpunan :



- VERTEX/NODE
- EDGE / RUAS



• NOTASI:  $G = \{ VG, EG \}$ 



VG = Kumpulan node dari graph G



EG = Kumpulan edge dari graph G





























#### ISTIL&H - ISTIL&H





Size;

Banyaknya garis/ruas/edge.

Graph Ekivalen

Penggambaran graph yang sama.

Di mana posisi elemen graph tidak penting.



Multigraph;

Graph yang disajikan secara umum.

Ruas Berganda / Ruas Sejajar;

2 ruas yang memiliki titik ujung yang sama.

• Self Loop;

Edge yang dihubungkan oleh node ke dirinya sendiri.

Simple Graph;

Tidak memiliki self loop atau pun multiple edge.





- Walk/Perjalanan;
  - Barisan simpul dan ruas berganti-ganti.

- - Panjang Walk;
    - Menyatakan banyaknya ruas.

- Walk Tertutup;
- Bila V1 = Vn.
- Walk Terbuka;
- Bila V1 dan Vn adalah tidak sama.



• Trail;





Walk dengan semua simpul dalam barisan adalah berbeda.

Length;

Jumlah edge pada path.

- Cycle/Circuit;
  - Tidak ada edge yang muncul lebih dari 1 kali dalam
  - Awal node adalah sama dengan akhir node
  - Tidak ada node yang dikunjungi lebih dari 1 kali



Acyclic;



Graph yang tidak mempunyai cycle.

- Directed Graph/Digraph;
  - Graph yang elemennya memiliki arah/arkus.
- Derajat Graph;
- In-Degree/Derajat Dalam
  Memiliki-N edge yang mengarah masuk.
- Out-Degree/Derajat Keluar
  Memiliki-N edge yang mengarah keluar.
- Degree = In-Degree + OutDegree
- Jumlah derajat simpul Graph = 2 X banyak ruas.
- 📺 🔹 Jika Self Loop maka derajatnya dihitung 2x.



# MATRIKS ADJACENCY

- Graph dapat direpresentasikan sebagai Matriks
  Adjacency (tanpa ruas sejajar) dengan array A =
  N x N di mana ...
- Aij = { 1 jika dan hanya jika edge (Vi,Vj) ∈ EG
  0 jika dan hanya jika edge (Vi,Vj) ∉ EG









































|   | Α | В | С | D | Е |
|---|---|---|---|---|---|
| А | 0 | 1 | 0 | 1 | 0 |
| В | 1 | 0 | 1 | 0 | 1 |
| С | 0 | 1 | 0 | 1 | 1 |
| D | 1 | 0 | 1 | 0 | 1 |
| Е | 0 | 1 | 1 | 1 | 0 |



# MATRIKS INCIDENCY

- Matriks incidency dari graph G didefinisikan sebagai matriks M (tanpa self loop) berukuran N x M di mana ...
- mij = { 1 jika ruas ej insidensi simpul vi
  0 dalam hal lain



















|   | e1 | e2 | <b>e</b> 3 | e4 | <b>e5</b> | е6 | e7 |
|---|----|----|------------|----|-----------|----|----|
| Α | 1  | 1  | 0          | 0  | 0         | 0  | 0  |
| В | 1  | 0  | 1          | 1  | 0         | 0  | 0  |
| С | 0  | 0  | 1          | 0  | 1         | 0  | 1  |
| D | 0  | 1  | 0          | 0  | 1         | 1  | 0  |
| Е | 0  | 0  | 0          | 1  | 0         | 1  | 1  |

















#### LATIHAN





















|    | V1 | V2 | V3 | V4 | V5 | V6 |
|----|----|----|----|----|----|----|
| V1 | 0  | 1  | 0  | 0  | 0  | 0  |
| V2 | 1  | 1  | 1  | 0  | 0  | 0  |
| V3 | 0  | 1  | 0  | 1  | 1  | 1  |
| V4 | 0  | 0  | 1  | 0  | 0  | 0  |
| V5 | 0  | 0  | 1  | 0  | 0  | 0  |
| V6 | 0  | 0  | 1  | 0  | 0  | 0  |



















|    | V1 | V2 | V3 | V4 | V5 | V6 |
|----|----|----|----|----|----|----|
| V1 | 0  | 1  | 0  | 0  | 0  | 0  |
| V2 | 0  | 1  | 1  | 0  | 0  | 0  |
| V3 | 0  | 1  | 0  | 0  | 1  | 1  |
| V4 | 0  | 0  | 1  | 0  | 0  | 0  |
| V5 | 0  | 0  | 0  | 0  | 0  | 0  |
| V6 | 0  | 0  | 0  | 0  | 0  | 0  |



















|    | <b>e1</b> | e2 | <b>e</b> 3 | <b>e4</b> | <b>e5</b> | е6 | e7 | <b>e8</b> |
|----|-----------|----|------------|-----------|-----------|----|----|-----------|
| V1 | 1         | 1  | 0          | 1         | 1         | 0  | 0  | 0         |
| V2 | 1         | 0  | 1          | 0         | 0         | 0  | 0  | 0         |
| V3 | 0         | 1  | 1          | 0         | 0         | 1  | 1  | 0         |
| V4 | 0         | 0  | 0          | 1         | 0         | 1  | 0  | 1         |
| V5 | 0         | 0  | 0          | 0         | 0         | 1  | 0  | 1         |