Basic RNASeq DGE analysis using R HSPH-IID Virtual Workshop

Quantitative Biomedical Research Center (QBRC) email: qbrc@hsph.harvard.edu

Basic RNASeq Data exploratory Analysis

Identify patterns that are biologically meaningful

Objectives

- Basic bulk RNASeq experiment workflow
- · RNASeq read data processing, quantification, and normalization
- Basic methods in exploratory analysis

What is RNA-Seq

- Using NGS technology to sequence RNA transcripts
- Typically refers to the sequencing of <u>mRNA</u>
- Different RNA species (i.e. miRNA, snoRNA, tRNA) require different preparation protocol
- Any type of RNA from any sample sources, such as cell, body fluid, stool, water, etc. can be the sequenced
- Sample from different sample sources, such as cell, body fluid, stool, water, etc, require different extraction method

Why do RNA-Seq?

 Which genes are differentially expressed in different conditions?

- Are genes being transcribed in alternatively spliced transcript isoforms?
- Are there mutations being transcribed such as insertions, deletions, or novel isoforms?

Transcriptomic Profiling

Basic types of alternative splicing

RNA-Seq Experiment Workflow

Sequencing Library Structure

Adaptor – 58 bp nucleotide sequence to fix sequence library onto flow cell

Barcode – optional index sequence for sample multiplexing

cDNA insert – fragmented cDNA sequence generated from mRNA of interest. The insert typically range between 300-500bp for mRNA

Sequence by Synthesis (SBS)

Reads are ready.

Big Fastq files (2-30Gb)

- Reads represent real biology.
- · More reads corresponding to a transcript indicate higher abundance of that transcript.
- Reads may represent novel transcripts or novel arrangements of exons that are not present in any known reference genome.

Most common questions asked from RNA-Seq data?

Is there biases affecting the results?

What samples are similar/different?

What genes are differentially over/under-expressed?

What are the functional pathways affected by these genes?

RNA-Seq Differential Expression Analysis Workflow

Transcript quantification

Exploratory
Analysis

Differential Analysis

Functional Annotation

- Quantify genes and transcripts
- Computationally intensive
- Analytical services are available*

- Unsupervised analysis
- Use to discover biases and unexpected variability
- PCA and
 Hierarchical
 Clustering

- Guided analysis
- Test experimental hypothesis
- Identify important
- features/genes
- DESeq2

- Interpret the biology
- Find molecular functions or pathway affected by different conditions
- MSigDB and GSEA

Transcript Quantification

Counting reads and quantifying gene expression across different samples for comparison

Aligning to Transcript model

Different philosophies of transcript quantification

 Alignment-based: Sequence alignment followed by counting of reads overlapping with a given annotated gene

Pseudo-Alignment: Sometimes called 'Alignment Free', Quantify the number of reads that are consistent with a given transcript (the exact location within the transcript is ignored)

Alignment-based: STAR Aligner

Rationale: Mapping of split reads is computationally slow.

Solution:

- 1. Use K-mer index
- 2. look for maximal mappable prefix/ maximum matching portion (MMP) by extension
- 3. Split only when extension is not possible
- 4. Pieces back the split reads

Results: Much faster and more sensitive algorithm in detecting transcript

Counting Mapped Readsby HTSeq

- Operate on aligned BAM files
- Total number of reads aligned to a gene is used as surrogate for gene expression level (called 'raw read counts')
- However, how reads are being counted is very much user defined !!!

Pseudo-Align: Kallisto

Rationale:

- 1. Alignment based transcript reconstruction is computationally expensive
- 2. Read counting method introduces ambiguity

Kallisto Algorithm:

- 1. Construct a graphical model (de Brujin) for all know transcript isoforms
- 2. Allocate reads onto the graph model
- 3. Use Expectation-Maximization (EM) algorithm to estimate the number of transcripts

Summary

Alignment-Based Pros:

 Generate BAM files can be used for extensive QC and visualization

Cons:

- Computationally expensive
- Maybe less accurate for transcript quantification

Pseudo-Alignment Pros:

- Very fast and likely more accurate in most cases
- Computationally cheaper

Cons:

- Does not generate BAM file
- Cannot visualize on IGV
- Less robust with low quality sequence data

Gene Quantification and Normalization

Raw counts: number of reads (or fragments) overlapping with the union of exons of a gene

Raw Count != Expression level

Raw Count is strongly influenced by:

- gene length
- transcript sequence (% GC)
- sequencing depth
- expression of all other genes in the same sample

may cause variations for different genes expressed at the same level

may cause variations for same genes in different sample

Common Normalized Measurements

- Raw Counts: number of reads/fragments overlapping all the exons of a gene
- RPKM/FPKM*: Reads/fragments per kilobase of gene per million reads mapped
- TPM: transcripts per million reads mapped=[gene / read count per bp/all gene count per all gene bp]
- rlog: log2-transformed count data normalized for small counts and library size. There are many variations:
 - Trimmed mean of M values (TMM)
 - DESeq2
 - Upper-Quartile (UQ)

$$RPKM_i = \frac{X_i}{\left(\frac{l_i}{103}\right)\left(\frac{N}{106}\right)}$$

$$TPM_i = \frac{X_i}{l_i} * \frac{10^6}{\sum \frac{X_j}{l_k}}$$

Exploratory Analysis

Discover sample groups from global gene expression pattern without prior knowledge

How similar are the samples?

How to quantitatively measure how similar are two samples?

How similar are the samples?

How to quantitatively measure how similar are two samples?

Distance between samples

Euclidean distance:

$$d(q, p) = \sqrt{\sum_{n=0}^{i} (q_i - p_i)^2}$$

Pearson's distance:

$$d(q,p) = 1 - \rho_{q,p}$$

Pythagorean theorem

Where $\rho_{q,p}$ is Pearson correlation coefficient between q, p

Distance between samples

Euclidean distance:

$$d(S1,S2) = \sqrt{\sum_{p_1}^{i} d(p,q)^2 = (q_1 - p_1)^2 + (q_2 - p_2)^2 \atop q_1 - p_1} d(S1,S2) = \sqrt{\sum_{n=0}^{i} (S1_i - S2_i)^2} = \sqrt{1^2 + 3^2 + 3^2 + 7^2 + 6^2} = 76.5$$

Distance between samples

Gene Expression

Compute pairwise distances

	S1	S2	S 3	S4
S1	0	76	120	220
S2	76	0	96	198
S 3	120	96	0	132
S4	220	198	132	0

Similarity Distance Matrix

Feature Reduction Technique

Goal: Reduce the dataset to fewer dimensions yet approx. preserve the distance between the individual samples

Principle Component Analysis

Principle Component Analysis (PCA) convert a set of observations of possibly correlated variables into a set of linearly uncorrelated variables (Principle Component or PC's)

Principle Component Analysis and Visualization

starting point: matrix with expression values per gene and sample, e.g. 22,100 genes x 67 samples

22,100 Principle components x 67 Samples
 PC1-3 usually sufficient to capture the major trend

Selected	PC1	PC2
TCGA-BL-A13J-11A-13R-A10U-07	39.2507	3.9165
TCGA-BT-A20N-11A-11R-A14Y-07	40.1933	-2.6946
TCGA-BT-A20Q-11A-11R-A14Y-07	38.8414	5.5994
TCGA-BT-A20R-11A-11R-A16R-07	39.0328	-3.6043
TCGA-CU-A0YN-11A-11R-A10U-07	35.2515	3.2868
TCGA-CU-A0YR-11A-13R-A10U-07	26.4164	-1.7572

Recap

- RNASeq experiment results in short reads (75-150bp) data
- RNASeq data can be quantified by either alignment-based or pseudoalignment based methods
- Gene counts need to be normalized to remove experimental variation
- Selection of normalization method can affect down stream results
- Unsupervised analysis such as PCA and hierarchical clustering are used for first-pass data exploration