

Deterministic Finite State Transducers

A **Moore machine** $M = (K, \Sigma, O, \delta, D, s, A)$, where:

- K is a finite set of states
- \bullet Σ is an input alphabet
- O is an output alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states,
- δ is the transition function from $K \times \Sigma$ to K,
- *D* is the output function from *K* to *O**.

M outputs each time it lands in a state.

A Moore machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w).

A Simple US Traffic Light Controller

Deterministic Finite State Transducers

A **Mealy machine** $M = (K, \Sigma, O, \delta, s, A)$, where:

- K is a finite set of states
- $\bullet \Sigma$ is an input alphabet
- O is an output alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states
- δ is the transition function from $K \times \Sigma$ to $K \times O^*$

M outputs each time it takes a transition.

A Mealy machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w).

An Odd Parity Generator

After every four bits, output a fifth bit such that each group of four bits has odd parity.

0010 1100 0000 1111

A Bar Code Scanner

A Bar Code Scanner

English Morphology

