On fitting the Jack model

Terry Therneau

Mayo Clinic

Jan 2024

MCSA

- Examples from the Mayo Clinic Study of Aging
- Age and sex stratified random sample from Olmsted County, Minn.
- ▶ 12/2004 to present

Statistical models

- Linear model (LM)
 - $y_{ij} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots$
- ► Logisitic regression, generalized linear model (GLM)
 - $y_{ij} = f (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots)$
- ► LME, GLME

Jack model

► The Jack model is just a GLME

Jack model

- ► The Jack model is just a GLME
- Except
 - we don't know f a priori (the link function)
 - \triangleright a different f_k for each marker k
 - no 'out of the box' software

Solution

- Components
 - \triangleright Coefficients β_1, β_2, \dots
 - Per subject random effects α_i
 - Per marker transform $f_k(age + \beta_1APOE + ... + \alpha)$
- All at once (Therneau): slow, touchy
- \blacktriangleright First get approximate α values (Koscik, Betthauser)
- ► First get an approximate f (Jedynak, Donohue)

The real problem

What to do?

- More data
 - 1. Longer follow-up
 - 2. Less noisy markers
- ► Multiple markers + joint analysis

Challenge

- Multiple markers
 - ► Which ones, how many?
 - Longer delay times (pathology, cognition)
- Joint analysis across markers
 - ► GLM + shared random effects
 - Other models
 - Sensible constraints

Summary

- ► Many models doing essentially the same thing.
- ► More information per participant
 - Multiple markers. Which ones, how many?
- Comprehensive analysis across markers
 - ► GLM
 - Shared random effect
 - Correlated random effects
 - More comprehensive models
 - Co-pathology
 - Latent traits (HMM)