УДК 519.7

Сравнение эквивалентностей непрерывно-временных сетей Петри относительно стратегий сброса часов

Зубарев А.Ю. (Институт систем информатики СО РАН)

Непрерывно-временные сети Петри (НВСП) — расширение сетей Петри, где каждый переход имеет собственные часы и временной интервал. Данная модель рассматривается в контексте слабой временной стратегии, в которой ход времени не заставляет переходы срабатывать. Для НВСП исследуются эквивалентности в дихотомиях «интерливинг — истинный параллелизм» и «линейное — ветвящееся время». Анализируются взаимосвязи между эквивалентностями относительно промежуточной и устойчиво атомарной стратегий, определяющих порядок сброса часов переходов.

Ключевые слова: непрерывно-временные сети Петри, слабая временная стратегия, промежуточная и устойчиво атомарная стратегии сброса часов, поведенческие эквивалентности, семантика интерливинга, процессно-сетевая семантика, языковая и бисимуляционная эквивалентность с сохранением истории

1. Введение

Безопасность функционирования современных информационно-компьютерных систем, ошибки в которых могут привести к большим убыткам или создать угрозу для жизни людей, имеет критическое значение. Эквивалентности помогают сравнивать поведение данных систем с точки зрения различных аспектов их работы, что играет важную роль в спецификации и верификации. При определении эквивалентностей моделей параллельных и распределенных систем принято рассматривать две дихотомии: «интерливинг — истинный параллелизм» и «линейное — ветвящееся время». Критерием первой дихотомии является степень учета частичного порядка между действиями системы, второй — степень учета точек недетерминированного выбора альтернативных действий моделируемой системы.

Сети Петри (СП) являются хорошо изученной моделью для анализа параллельных и распределенных систем. События и условия системы в данной модели наглядно представлены в виде переходов (барьеров) и мест (окружностей), образующих вершины двудоль-

ного направленного графа. Состояние СП определяется разметкой — множеством мест с фишками, которые обозначаются жирными точками в соответствующих окружностях. Допустимый переход, т.е. переход, имеющий фишки в каждом входном месте, может сработать и тем самым изменить разметку. Новая разметка получается в результате удаления фишек из входных мест перехода и добавления фишек в его выходные места.

Для учета непрерывно-временных (количественных) параметров системы были предложены различные временные расширения СП. В литературе представлены два типа подходов: дискретно-временные сети Петри (ДВСП) и непрерывно-временные сети Петри (НВСП). В ДВСП используются глобальные часы, и каждому переходу присваивается целочисленное значение, определяющее продолжительность его срабатывания. В то время как в НВСП каждый переход имеет собственные часы и временной интервал действительных чисел. Известно, что НВСП обладают той же вычислительной мощностью, что и машины Тьюринга, и включают в себя ДВСП, благодаря чему модели НВСП вызывают особый интерес у исследователей. Состояние НВСП описывается разметкой и вектором показаний часов допустимых переходов. Допустимый переход может сработать, если значение его часов принадлежит связанному с ним интервалу. Срабатывание перехода не занимает время, поэтому рассматривают два способа изменения состояний: ход времени (увеличение значений часов допустимых переходов) и срабатывание перехода (смена разметки и сброс часов некоторых переходов). В работе рассматривается слабая временная стратегия НВСП. Данная стратегия не ограничивает увеличение значений часов переходов. Таким образом, часы допустимого перехода могут пересечь верхнюю границу его временного интервала, что недопустимо в сильной стратегии. Было доказано, что НВСП со слабой временной стратегией (НВСП_{сл}) и НВСП с сильной временной стратегией не сравнимы по выразительной мощности [7].

После срабатывания перехода часы некоторых переходов сбрасываются, т.е. переустанавливаются в ноль. Порядок данного сброса определяется стратегией сброса часов. В литературе используются два подхода к сбросу часов: промежуточный и устойчиво атомарный. В промежуточной стратегии учитывается разметка, которая получается после удаления старых фишек и до добавления новых. Часы допустимого в новой разметке перехода сбрасываются, если он не был допустимым в промежуточной разметке. В устойчиво атомарной стратегии часы допустимого в новой разметке перехода сбрасываются только в том случае, если переход не был допустимым в старой разметке (до удаления фишек),

т.е. промежуточная разметка не учитывается. Известно, что для $HBC\Pi_{cn}$ промежуточная стратегия не является более выразительной, чем устойчиво атомарная [8]. Кроме того, существуют системы, где при моделировании использовать устойчиво атомарную стратегию предпочтительнее. С другой стороны, в промежуточной стратегии проблемы достижимости и ограниченности являются разрешимыми, в отличие от устойчиво атомарной стратегии [6, 8].

Определение эквивалентностей и изучение их взаимосвязей для моделей параллельных и распределенных систем является важной задачей, которой посвящено большое число работ. В работе [3] было проведено систематическое исследование эквивалентностей для «невременных» СП; исследованы невременные и временные эквивалентности ДВСП. Для НВСП с сильной временной стратегией и промежуточной стратегией сброса часов в работе [4] была предложена «истинно параллельная» сематическая модель. На основе данной модели в работе [9] были разработаны эквивалентности и построена их иерархия.

Поскольку предложенный в [4] метод построения «истинно параллельной» семантики не может быть использован для НВСП_{сл}, то в [10] нами была предложена конструкция временных процессов, где время связано с состояниями системы. Используя полученную семантическую модель, в [2] для НВСП_{сл} с устойчиво атомарной стратегией сброса часов были разработаны и изучены эквивалентности, построена их иерархия. Данная работа продолжает исследования [2, 10], посвященные семантическим моделям и эквивалентностям НВСП_{сл}, ее целью является исследование эквивалентностей относительно промежуточной и устойчиво атомарной стратегии сброса часов. Исходя из поставленной цели, в этой статье были решены следующие задачи: обобщение конструкций эквивалентностей работы [2] для промежуточной стратегии; изучение условий для совпадения данных эквивалентностей относительно разных стратегий сброса часов; исследование влияния выбора стратегии сброса часов на эквивалентность НВСП_{сл}.

Работа имеет следующую структуру. В разделе 2 мы познакомимся с НВСП_{сл}, промежуточной и устойчиво атомарной стратегиями сброса часов переходов. В разделе 3 изучим временные процессы, состоящие из ацикличной конструкции временных причинноследственных сетей и гомоморфизма в НВСП_{сл}. На основе данной конструкции в разделе 4 мы рассмотрим языковые и бисимуляционные эквивалентности для дихотомии «интерливинг — истинный параллелизм». В разделе 5 мы исследуем взаимосвязи рассмотренных эквивалентностей относительно стратегий сброса часов. В заключительном разделе 6 бу-

дут рассмотрены полученные результаты и описаны планы дальнейшей работы.

2. Непрерывно-временные сети Петри

Рассмотрим определение модели сетей Петри с временными интервалами, представляющими временные задержки срабатываний переходов. Сначала напомним синтаксис и семантику «невременных» сетей Петри.

Определение 1. (Помеченная на множестве действий Act) сеть Петри $(C\Pi)$ — это набор $\mathcal{N} = (P, T, F, M_0, L)$, где P — конечное множество мест u T — конечное множество
переходов такие, что $P \cap T = \emptyset$ u $P \cup T \neq \emptyset$; $F \subseteq (P \times T) \cup (T \times P)$ — отношение инцидентности; $\emptyset \neq M_0 \subseteq P$ — начальная разметка; $L: T \to Act$ — помечающая функция.

Для элемента $x \in P \cup T$ определим множество $\bullet x = \{y \mid (y, x) \in F\}$ входных u множесство $x^{\bullet} = \{y \mid (x, y) \in F\}$ выходных элементов, которые для подмножества элементов $X \subseteq P \cup T$ обобщаются соответственно до множеств $\bullet X = \bigcup_{x \in X} \bullet x$ u $X^{\bullet} = \bigcup_{x \in X} x^{\bullet}$.

Разметка M $C\Pi$ $\mathcal{N}-\mathfrak{mo}$ любое подмножество множества P. Переход $t\in T$ является допустимым в разметке M, если ${}^{\bullet}t\subseteq M$. Обозначим через En(M) множество всех переходов, допустимых в разметке M. Срабатывание перехода, допустимого в разметке M, приводит κ новой разметке $M'=(M\backslash {}^{\bullet}t)\cup t^{\bullet}$ (обозначается $M\stackrel{t}{\longrightarrow} M'$). Разметка M является достижимой в \mathcal{N} , если существует последовательность переходов $t_1\ldots t_n$ для $n\geq 0$ такая, что $M_0\stackrel{t_1}{\longrightarrow} M_1\ldots M_{n-1}\stackrel{t_n}{\longrightarrow} M_n=M$. СП \mathcal{N} называется бесконтактной, если для любой достижимой в \mathcal{N} разметки M и любого перехода t, допустимого в M, верно, что $(M\backslash {}^{\bullet}t)\cap t^{\bullet}=\emptyset$.

В работе рассматриваются *безопасные* сети Петри, т.е. при последовательном срабатывании переходов из начальной разметки сети каждое ее место будет иметь не более одной фишки. Это следствие определенного ранее свойства бесконтактности и того, что начальная маркировка — (обычное) множество.

Непрерывно-временная сеть Петри со слабой временной стратегией состоит из базовой сети Петри и статической временной функции, отображающей каждый переход во временной интервал. Подразумевается, что у каждого перехода есть собственные локальные часы, которые отсчитывают ход времени с момента, когда переход стал допустимым. Пусть $Interv = \{[a,b], [a,b) \mid a \in \mathbb{Q}, \ b \in (\mathbb{Q} \cup \{\infty\}), \ a \leq b\}$ — множество интервалов с границами из множества рацилнальных чисел.

Определение 2. (Помеченная на Act) непрерывно-временная сеть Петри со слабой временной стратегией $(HBC\Pi_{cn})$ — это пара $T\mathcal{N}=(\mathcal{N},\ D)$, где $\mathcal{N}=(P,\ T,\ F,\ M_0,\ L)$ — базовая (помеченная на Act) сеть Петри и $D:T\to Interv$ — статическая временная функция, сопоставляющая каждому переходу из T временной интервал из Interv.

Состояние $HBC\Pi_{cn}$ $\mathcal{TN} - \mathfrak{p}mo$ napa S = (M,I) makas, umo M - pasметка u $I: En(M) \to \mathbb{R}$ — динамическая временная функция. Π epexod $t \in En(M)$ может сработать в состоянии S, ecnu $I(t) \in D(t)$. Обозначим через Fi(S) множество всех переходов us En(M), которые могут сработать в состоянии S. Для $HBC\Pi_{cn}$ возможны два способа us изменения состояния S: ход времени u действие в результате срабатывания перехода.

- \circ Ход времени $\theta \in \mathbb{R}$ приводит κ новому состоянию S' = (M', I') (обозначается $S \xrightarrow{\theta} S'$), где M' = M и $I'(t) = I(t) + \tau$ для всех $t \in En(M')$.
- \circ Срабатывание перехода $t \in Fi(S)$ (действие L(t)) приводит κ новому состоянию S' = (M', I') (обозначается $S \xrightarrow{t}_{\dagger} S'$ или $S \xrightarrow{L(t)}_{\dagger} S'$) такому, что:

$$\begin{split} -M' &= (M \backslash {}^{\bullet}t) \cup t^{\bullet}; \\ -\forall t' \in En(M') : I'(t') &= \left\{ \begin{array}{ll} 0, & ecnu \uparrow enabled_{\dagger}(t', M, t), \\ I(t'), & uhave; \end{array} \right. \end{split}$$

где $\dagger \in \{I,A\}$ определяет стратегию сброса часов, а предикат \uparrow enabled $_{\dagger}(t',M,t)$ указывает на необходимость сброса часов для перехода t'.

I: В случае промежуточной стратегии производится сброс часов перехода, который не являлся допустимым в промежуточной разметке $M \setminus {}^{\bullet}t$ и стал допустимым в разметке M' (после срабатывания перехода t):

$$\uparrow enabled_I(t', M, t) = t' \notin En(M \setminus \bullet t) \land t' \in En(M').$$

А: В случае устойчиво атомарной стратегии производится сброс часов перехода, который не являлся допустимым в разметке M (до срабатывания перехода t) и стал допустимым в разметке M':

$$\uparrow enabled_A(t',M,t) = t' \notin En(M) \land t' \in En(M').$$

Начальное состояние $\mathcal{TN}-napa\ S_0=(M_0,I_0),\ \emph{rde}\ M_0-начальная разметка <math>u$ $I_0(t)=0\ \emph{dis}\ \emph{scex}\ t\in En(M_0).$

Eсли $\sigma = \theta_0 \ t_1 \ \theta_1 \dots t_n \ \theta_n \ \partial$ ля $n \geq 0 - n$ оследовательность временных значений $\theta_i \in \mathbb{R}$ $(0 \leq i \leq n)$ и срабатываний переходов $t_j \in T \ (0 < j \leq n)$ таких, что $S^0 \xrightarrow{\theta_0} \widetilde{S}^0 \xrightarrow{t_1}$

 $S^1 \xrightarrow{\theta_1} \widetilde{S}^1 \dots \widetilde{S}^{n-1} \xrightarrow{t_n} S^n \xrightarrow{\theta_n} \widetilde{S}^n$, то σ — пробег \mathcal{TN} из состояния S^0 (в состояние \widetilde{S}^n) относительно стратегии сброса часов \dagger (обозначается $S^0 \xrightarrow{\sigma}_{\dagger} \widetilde{S}^n$).

Пусть \mathcal{TN} — НВС $\Pi_{\text{сл}}$ и $\dagger \in \{I, A\}$. Обозначим через $\mathcal{RUN}_{\dagger}(\mathcal{TN}, S)$ множество всех пробегов НВС $\Pi_{\text{сл}}$ \mathcal{TN} из состояния S относительно стратегии сброса часов \dagger и $\mathcal{RUN}_{\dagger}(\mathcal{TN}) = \mathcal{RUN}_{\dagger}(\mathcal{TN}, S_0)$. Состояние S будем называть docmunicumum в \mathcal{TN} относительно стратегии сброса часов \dagger (обозначается $S \in \mathcal{RS}_{\dagger}(\mathcal{TN})$), если существует пробег из $\mathcal{RUN}_{\dagger}(\mathcal{TN})$ в данное состояние. НВС $\Pi_{\text{сл}}$ \mathcal{TN} называется deckohmakmhoù, если базовая сеть является бесконтактной. Кроме того, НВС $\Pi_{\text{сл}}$ является T-закрытоù, если $\bullet t \neq \emptyset$ и $t^{\bullet} \neq \emptyset$ для всех переходов сети. В дальнейшем будем рассматривать только бесконтактные и T-закрытые НВС $\Pi_{\text{сл}}$.

Результаты, представленные в работе [11], показывают, что для любого пробега из $\mathcal{RUN}_{\dagger}(\mathcal{TN})$ существует аналогичный пробег с той же последовательностью срабатываний переходов, в котором используются только целочисленные временные значения. Данный факт позволяет далее рассматривать ход времени в виде целых чисел.

Пример 1. Рассмотрим $HBC\Pi_{cn} \mathcal{TN}_1$, представленную на рисунке 1. На графике места сети изображены окружностями ($\{p_1, p_2, p_3, p_4\}$), переходы изображены барьерами ($\{t_1, t_2, t_3\}$), отношение инцидентности представлено направленными дугами, рядом с элементами указаны их имена. Каждому переходу ставится в соответствие временной интервал из Interv и действие из $Act = \{a, b\}$. Начальной разметке ($\{p_1, p_2\}$) соответствует множество мест с фишками (жирными точками). Покажем, что последовательность $\sigma = 0$ t_1 1 t_2 2 t_3 3 является пробегом $HBC\Pi_{cn} \mathcal{TN}_1$ из начального состояния относительно промежуточной стратегии сброса часов (I), т.е. $\sigma \in \mathcal{RUN}_I(\mathcal{TN}_1)$.

- Исходно сеть находится в состоянии $S_0 = (M_0, I_0)$, где $M_0 = \{p_1, p_2\}$ начальная разметка, $En(M_0) = \{t_1, t_2\}$ множество допустимых переходов в данной разметке и $I_0(t) = 0$ для кажедого перехода t из $En(M_0)$. Ход времени 0 не изменит состояние, т.е. $\widetilde{S}_0 = (\widetilde{M}_0, \widetilde{I}_0) = S_0$,
- Поскольку переход $t_1 \in En(\widetilde{M}_0)$ и $\widetilde{I}_0(t_1) = 0 \in D(t_1) = [0,1]$, то t_1 может сработать в состоянии \widetilde{S}_0 . Срабатывание перехода t_1 из \widetilde{S}_0 приведет к новому состоянию $S_1 = (M_1, I_1)$ ($\widetilde{S}_0 \xrightarrow{t_1} S_1$), где $M_1 = (\widetilde{M}_0 \backslash {}^{\bullet}t_1) \cup t_1 {}^{\bullet} = \{p_3, p_2\}$, $En(M_1) = \{t_2\}$ и $I_1(t_2) = 0$. Ход времени 1 из состояния S_1 приведет к состоянию $\widetilde{S}_1 = (\widetilde{M}_1, \widetilde{I}_1) = (M_1, \widetilde{I}_1)$ с $\widetilde{I}_1(t_2) = 1$.
- Переход t_2 является допустимым в разметке \widetilde{M}_1 и $\widetilde{I}_1(t_2)=1\in D(t_2)=[0,1],$

Рис. 1: Непрерывно-временная сеть Петри \mathcal{TN}_1

 $m.e.\ t_2$ может сработать в состоянии $\widetilde{S}_1.$ Срабатывание t_2 из \widetilde{S}_1 приведет κ новому состоянию $S_2=(M_2,I_2)\ (\widetilde{S}_1\stackrel{t_2}{\longrightarrow}_I S_2),$ где $M_2=(\widetilde{M}_1\backslash^{ullet}t_2)\cup t_2^{ullet}=\{p_3,p_4\},$ $En(M_2)=\{t_3\}$ и $I_2(t_3)=0,$ поскольку переход t_3 не являлся допустимым в промежсуточной разметке $\widetilde{M}_1\backslash^{ullet}t_2.$ Ход времени 2 из состояния S_2 приведет κ состоянию $\widetilde{S}_2=(\widetilde{M}_2,\widetilde{I}_2)=(M_2,\widetilde{I}_2)$ с $\widetilde{I}_2(t_3)=I_2(t_3)+2=2.$

-Допустимый переход $t_3 \in En(\widetilde{M}_2) = \{t_3\}$ готов сработать из \widetilde{S}_2 , поскольку $\widetilde{I}_2(t_3) = 2 \in D(t_3) = [1,2]$. Следовательно, $\widetilde{S}_2 \xrightarrow{t_3}_I S_3 = (M_3,I_3)$, где $M_3 = (\widetilde{M}_2 \backslash {}^{\bullet}t_3) \cup t_3 {}^{\bullet} = \{p_3,p_4\}$, $En(M_3) = \{t_3\}$ и $I_3(t_3) = 0$, так как переход t_3 не был допустимым в промежсуточной разметке $\widetilde{M}_2 \backslash {}^{\bullet}t_3$. Заметим, что в случае устойчиво атомарной стратегии не было бы сброса локальных часов перехода t_3 . Далее, $S_3 \xrightarrow{3} \widetilde{S}_3$ увеличит значение часов перехода t_3 , т.е. $\widetilde{S}_3 = (\widetilde{M}_3, \widetilde{I}_3) = (M_3, \widetilde{I}_3)$, где $\widetilde{I}_3(t_3) = 3$. Заметим, что такой ход времени был бы невозможен в случае сильной временной стратегии, поскольку значение времени на часах перехода t_3 превысило верхнюю границу его временного интервала $D(t_3) = [1, 2]$.

Значит,
$$S_0 \xrightarrow{0} \widetilde{S}_0 \xrightarrow{t_1}_I S_1 \xrightarrow{1} \widetilde{S}_1 \xrightarrow{t_2}_I S_2 \xrightarrow{2} \widetilde{S}_2 \xrightarrow{t_3}_I S_3 \xrightarrow{3} \widetilde{S}_3 \in \mathcal{RUN}_I(\mathcal{TN}_1)$$
.

3. Временные процессы

Данный раздел представляет предложенную в [10] модель временных причинноследственных процессов, используемую для описания поведения НВСП_{сл}. Сначала определим ацикличную причинно-следственную сеть (ПСС), состоящую из двух разных множеств — событий и условий, связанных отношением инцидентности. Каждое условие ПСС должно иметь не более одного входного и не более одного выходного условия. Кроме того, каждое событие ПСС должно иметь как входное, так и выходное условие. Определение 3. (Помеченная на Act) причинно-следственная сеть (ΠCC) — это ацикличная сеть $N=(B,\ E,\ G,\ l)$, где B — конечное множество условий $u\ E$ — конечное множество событий makue, что $B\cap E=\emptyset$; $G\subseteq (B\times E)\cup (E\times B)$ — отношение инцидентности makoe, что $|\ b^{\bullet}\ |\le 1$, $|\ ^{\bullet}b\ |\le 1$ для всех $b\in B$ $u\ E=\ ^{\bullet}B=B^{\bullet}$; $l:E\to Act$ — помечающая функция.

Для ПСС N = (B, E, G, l) введем дополнительные понятия и обозначения:

- $\circ x \prec x' \iff x G^+ x'$ и $x \preceq x' \iff x G^* x'$, где $x, x' \in B \cup E$, отношение причинной зависимости на элементах ПСС N.
- $\circ x \smile x' \iff \neg(x \preceq x') \land \neg(x' \preceq x)$, где $x, x' \in B \cup E$, отношение параллелизма на элементах ПСС N.
- $\circ \smile$ -множество ПСС N непустое подмножество условий $B'\subseteq B$ такое, что $b\smile b'$ для всех $b\neq b'\in B'$.
- \circ Сечение C ПСС N максимальное по включению \smile -множество.
- \circ $\mathcal{CUT}(N)$ множество всех сечений в $\Pi {\rm CC}\ N.$
- \circ ${}^{ullet}N=\{b\in B\mid {}^{ullet}b=\emptyset\}$ начальное сечение ПСС N.
- о $N^{\bullet} = \{b \in B \mid b^{\bullet} = \emptyset\}$ конечное сечение ПСС N.

Неформально говоря, сечение — это «разметка» ПСС. Событие $e \in E$ допустимо в сечении $C \in \mathcal{CUT}(N)$ (обозначается $e \in En(C)$), если $\bullet e \subseteq C$. В этом случае будем писать $C \stackrel{e}{\longrightarrow} C'$ или $C \longrightarrow C'$, где $C' = (C \setminus \bullet e) \cup e^{\bullet}$. На основе отношения (\longrightarrow) определяются отношения причинной зависимости и параллелизма на сечениях ПСС:

- \circ $C \prec C' \iff C \rightarrow^+ C'$ и $C \preceq C' \iff C \rightarrow^* C'$, где $C, C' \in \mathcal{CUT}(N)$, отношение причинной зависимости на сечениях ΠCC .
- \circ $C \smile C' \iff \neg(C \preceq C') \land \neg(C' \preceq C)$, где $C, C' \in \mathcal{CUT}(N)$, отношение параллелизма на сечениях ПСС.

Для сечения $C \in \mathcal{CUT}(N)$ обозначим:

- \circ $Cut(C) = \{C' \in \mathcal{CUT}(N) \mid C \smile C'\}$ множество сечений ПСС N, параллельных сечению C.
- $\circ \downarrow C = \{e \in E \mid e \preceq e', e' \in {}^{ullet}C\}$ множество событий ПСС N, предшествующих сечению C.

Описываемое сечением состояние достигается после того, как предшествующие сечению события произошли. Как следствие, $C \leq C' \iff \downarrow C \subseteq \downarrow C'$. Отметим, что $\downarrow^{\bullet} N = \emptyset$ и $\downarrow N^{\bullet} = E$, где E — множество всех событий ПСС N.

Рис. 2: Причинно-следственная сеть N_1

Пример 2. Рассмотрим изображенную на рисунке 2 сеть $N_1 = (B, E, G, l)$, где $B = \{b_1, \ldots, b_6\}$ — множество условий, $E = \{e_1, e_2, e_3\}$ — множество событий, $G = \{(b_1, e_1), (b_2, e_2), (e_1, b_3), (e_2, b_4), (b_3, e_3), (b_4, e_3), (e_3, b_5), (e_3, b_6)\}$ — отношение инцидентности и $l : E \to \{a, b\}$ — помечающая функция такая, что $l(e_1) = l(e_2) = a$ и $l(e_3) = b$. Видно, что $| {}^{\bullet}b | \leq 1$ и $| b^{\bullet} | \leq 1$ для всех $b \in B$. Кроме того, $E = {}^{\bullet}B = B^{\bullet}$. Значит, N_1 — помеченная на $Act = \{a, b\}$ ПСС.

Поскольку $b_1 \smile b_2$, т.е. $\neg(b_1 \preceq b_2) \land \neg(b_2 \preceq b_1)$, то $\{b_1, b_2\} - \smile$ -множество. Видно, что не существует $b \in B$ такого, что $b \smile b_1$ и $b \smile b_2$ одновременно. Значит, $\{b_1, b_2\} -$ максимальное по включению \smile -множество, т.е. сечение. Аналогично можено показать, что $\{b_1, b_4\}$, $\{b_2, b_3\}$, $\{b_3, b_4\}$, $\{b_5, b_6\}$ также являются сечениями. Сечение $\{b_1, b_2\}$ ($\{b_5, b_6\}$) с условиями без входных (выходных) событий — начальное (конечное) сечение ΠCC N_1 . Из ${}^{\bullet}e_1 \subseteq \{b_1, b_2\}$, $(\{b_1, b_2\} \backslash {}^{\bullet}e_1) \cup e_1 {}^{\bullet} = \{b_2, b_3\}$ следует, что $\{b_1, b_2\} \xrightarrow{e_1} \{b_2, b_3\}$ и $\{b_1, b_2\} \preceq \{b_2, b_3\}$. С другой стороны, $\{b_1, b_4\} \smile \{b_2, b_3\}$, так как $(\downarrow \{b_1, b_4\} = \{e_2\}) \not\subseteq (\downarrow \{b_2, b_3\} = \{e_1\})$ и $\downarrow \{b_2, b_3\} \not\subseteq \downarrow \{b_1, b_4\}$, т.е. $\neg(\{b_1, b_4\} \preceq \{b_2, b_3\})$ и $\neg(\{b_2, b_3\} \preceq \{b_1, b_4\})$.

Для определения связи между Π CC и $C\Pi$ используется гомоморфизм — отображение, сохраняющее отношение инцидентности и помечающую функцию.

Определение 4. Пусть $N = (B, E, G, l) - \Pi CC$, $\mathcal{N} = (P, T, F, M_0, L) - C\Pi$ и $M \subseteq P$ — разметка \mathcal{N} . Гомоморфизмом из N в \mathcal{N} относительно разметки M называется отображение $\varphi : (B \cup E) \to (P \cup T)$, для которого выполняется:

- $\circ \ \varphi(B) \subseteq P \ u \ \varphi(E) \subseteq T;$
- \circ сужение φ на подмножество ${}^{ullet}e$ биекция между ${}^{ullet}e$ и ${}^{ullet} arphi(e)$ для всех $e \in E;$
- \circ сужение φ на подмножество e^{ullet} биекция между e^{ullet} и $\varphi(e)^{ullet}$ для всех $e\in E;$
- \circ сужение φ на подмножество ${}^{\bullet}N$ биекция между ${}^{\bullet}N$ и M;
- \circ $l(e) = L(\varphi(e))$ для всех $e \in E$.

Пример 3. Рассмотрим базовую СП $\mathcal{N}_1 = (P,T,F,M_0,L)$ НВСП $_{c_1}$ $\mathcal{T}\mathcal{N}_1$, изображенную на рисунке 1, ПСС $N_1 = (B,E,G,l)$, изображенную на рисунке 2, и функцию $\varphi:(B\cup E)\to (P\cup T)$, связывающую условия и события ПСС N_1 соответственно с местами и переходами СП \mathcal{N}_1 так, что $\varphi(b_1)=p_1,\ \varphi(b_2)=p_2,\ \varphi(b_3)=\varphi(b_5)=p_3,\ \varphi(b_4)=\varphi(b_6)=p_4$ и $\varphi(e_i)=t_i$ для $1\leq i\leq 3$. Легко проверить, что сужение φ на подмножество \bullet e (e^\bullet) является биекцией между данным подмножеством и \bullet $\varphi(e)$ $(\varphi(e)^\bullet)$ для всех $e\in E$. Например, для события e_3 множество входных условий $\{b_3,b_4\}$ биективно отображается на множество входных мест $\{p_3,p_4\}$ перехода $\varphi(e_3)=t_3$, а множество выходных условий $\{b_5,b_6\}$ — на то же множество $\{p_3,p_4\}$ выходных мест t_3 . Видно, что сужение φ на подмножество \bullet $N_1 = \{b_1,b_2\}$ является биекцией между данным подмножеством и начальной разметкой $M_0 = \{p_1,p_2\}$. Кроме того, $l(e) = L(\varphi(e))$ для всех $e\in E$. Следовательно, φ — гомоморфизм из N_1 в \mathcal{N}_1 относительно начальной разметки M_0 .

Определим временное расширение ПСС, где сечениям ставится в соответствие временное значение (длительность соответствующего состояния) либо указывается, что сечение (состояние) недостижимо по времени.

Определение 5. (Помеченная на Act) временная ПСС $(B\Pi CC) - \mathfrak{p}mo$ napa $TN = (N, \tau)$, $\mathfrak{ede}\ N - (nomeченная\ ha\ Act)\ \Pi CC\ u\ \tau : \mathcal{CUT}(N) \to \mathbb{N} \cup \{\bot\}$ — временная функция makas, что для каждого сечения $C \in \mathcal{CUT}(N)$ выполняется:

$$\tau(C) = \bot \iff \exists C' \in Cut(C) \colon \tau(C') > 0.$$

 $\Pi ycmb \ \mathcal{RC}(TN) = \{C \in \mathcal{CUT}(N) \mid \tau(C) \in \mathbb{N}\}$ — множество всех временных сечений.

Рассмотрим ВПСС $TN = (N, \tau)$, где N = (B, E, G, l). Событие $e \in E$ может произойти $e \in C \in \mathcal{RC}(TN)$ (обозначается $e \in Fi(C)$), если $e \in En(C)$ и $C' = (C \setminus {}^{\bullet}e) \cup e^{\bullet} \in \mathcal{RC}(TN)$. В этом случае будем писать $C \stackrel{e}{\Longrightarrow} C'$ или $C \Longrightarrow C'$. Таким образом, отношение (\Longrightarrow) запрещает получение недостижимого по времени сечения в результате выполнения события, так как это означает, что время его выполнения еще не наступило. Заметим, что ${}^{\bullet}N, N^{\bullet} \in \mathcal{RC}(TN)$, поскольку они не имеют параллельных сечений.

Помеченные на одном и том же множестве Act ВПСС $TN = (N, \tau)$ и $TN' = (N', \tau')$, где N = (B, E, G, l) и N' = (B', E', G', l'), изоморфны (обозначается $TN \simeq TN'$ или $f: TN \simeq TN'$), если существует биективное отображение $f: B \cup E \to B' \cup E'$ (изоморфизм) такое, что:

- \circ f(B) = B' и f(E) = E';
- $\circ xGy \iff f(x)G'f(y)$ для всех $x,y \in B \cup E$;
- \circ $\tau(C) = \tau'(f(C))$ для всех $C \in \mathcal{CUT}(N)$;
- $\circ \ l(e) = l'(f(e)).$

Класс эквивалентности относительно изоморфизма, образованный ВПСС TN, будем обозначать как $[TN]_{\simeq}$.

Пусть $TN = (N, \tau) - \text{ВПСС}$, $\mathcal{TN} = (\mathcal{N}, D) - \text{НВСП}_{\text{сл}}$ и $S = (M, I) - \text{состояние } \mathcal{TN}$. Обозначим через $\mathcal{HOM}_S(TN, \mathcal{TN})$ множество всех гомоморфизмов из N в \mathcal{N} относительно разметки M.

Пример 4. Рассмотрим ПСС N_1 , изображенную на рисунке 2. Определим функцию $\tau: \mathcal{CUT}(N_1) = \{\{b_1, b_2\}, \{b_1, b_4\}, \{b_2, b_3\}, \{b_3, b_4\}, \{b_5, b_6\}\} \to \mathbb{N} \cup \{\bot\}$ следующим образом: $\tau(\{b_1, b_2\}) = 0, \tau(\{b_1, b_4\}) = \bot, \tau(\{b_2, b_3\}) = 1, \tau(\{b_3, b_4\}) = 2$ и $\tau(\{b_5, b_6\}) = 3$. Поскольку в данной сети только два параллельных сечения $\{b_1, b_4\} \smile \{b_2, b_3\}, \tau(\{b_1, b_4\}) = \bot$ и $\tau(\{b_2, b_3\}) = 1 > 0$, то функция τ удовлетворяет условию из определения 5. Следовательно, $TN_1 = (N_1, \tau) - B\Pi CC$ и $\mathcal{RC}(TN_1) = \{\{b_1, b_2\}, \{b_2, b_3\}, \{b_3, b_4\}, \{b_5, b_6\}\}$.

Рассмотрим последовательность событий ВПСС (временной график), для которой существует цепочка временных сечений, полученная в результате последовательного выполнения данных событий.

Определение 6. Пусть $TN = (N, \tau) - B\Pi CC \ u \ C, C' \in \mathcal{RC}(TN)$. Последовательность событий $\omega = e_1 \dots e_n \ (n \geq 0)$ называется временным графиком из C в C' $B\Pi CC \ TN$, если существует цепочка сечений из $\mathcal{RC}(TN)$ вида:

$$C = C_0 \stackrel{e_1}{\Longrightarrow} C_1 \dots C_{n-1} \stackrel{e_n}{\Longrightarrow} C_n = C'.$$

Пусть $\mathcal{GRF}_{C\Rightarrow C'}(TN)$ — множество всех временных графиков ВПСС TN из C в C'. Обозначим $\mathcal{GRF}_{\Rightarrow C}(TN) = \mathcal{GRF}_{\bullet_{N\Rightarrow C}}(TN)$ и $\mathcal{GRF}(TN) = \mathcal{GRF}_{\bullet_{N\Rightarrow N}\bullet}(TN)$.

Пример 5. Пусть $TN_1 = (N_1, \tau) - B\Pi CC$ из примера 4. Рассмотрим последовательность $\omega = e_1 \ e_2 \ e_3$. Очевидно, что $\{b_1, b_2\} \xrightarrow{e_1} \{b_3, b_2\} \xrightarrow{e_2} \{b_3, b_4\} \xrightarrow{e_3} \{b_5, b_6\}$. Из примера 4, $\{b_1, b_2\}, \{b_3, b_2\}, \{b_3, b_4\}, \{b_5, b_6\} \in \mathcal{RC}(TN_1)$. Значит, $\{b_1, b_2\} \xrightarrow{e_1} \{b_3, b_2\} \xrightarrow{e_2} \{b_3, b_4\} \xrightarrow{e_3} \{b_5, b_6\}$, где $\{b_1, b_2\} -$ начальное, а $\{b_5, b_6\} -$ конечное сечение. Следовательно, $\omega \in \mathcal{GRF}(TN)$.

Таким образом, временные графики иллюстрируют «выполнения» ВПСС. Следующее утверждение доказывает существование временного графика между двумя произвольными временными сечениями и, как следствие, между начальным и конечным сечением ВПСС.

Утверждение 1. Пусть $TN-B\Pi CC$. Если $C,C'\in\mathcal{RC}(TN)$ и $C\preceq C'$, то существует $\omega'\in\mathcal{GRF}_{C\Rightarrow C'}(TN)$.

Доказательство. Аналогично доказательству предложения 1 работы [1].

Определим функцию **Clock**, которая будет связывать временные конструкции ВПСС и НВСП_{сл} относительно промежуточной и устойчиво атомарной стратегий сброса часов. Данная функция определяется в контексте некоторого состояния НВСП_{сл} и гомоморфизма φ относительно разметки этого состояния. В качестве параметров функции выступают временное сечение C и переход t, допустимый в разметке $\varphi(C)$. Значение функции **Clock** определяется с помощью произвольного временного графика из начального сечения в сечение C и соответствует времени с того момента, как переход t стал допустимым и оставался таким до конца временного графика.

Пусть $\dagger \in \{I,A\}$, TN — ВПСС, \mathcal{TN} — НВСП_{сл}, S = (M,I) — состояние \mathcal{TN} и $\varphi \in \mathcal{HOM}_S(TN,\mathcal{TN})$. Для сечения $C \in \mathcal{RC}(TN)$, перехода $t \in En(\varphi(C))$ и временного графика $\omega = e_1 \dots e_n \in \mathcal{GRF}_{\Rightarrow C}(TN)$ из начального сечения в сечение C с последовательностью $C_0 \stackrel{e_1}{\Longrightarrow} C_1 \dots C_{n-1} \stackrel{e_n}{\Longrightarrow} C_n = C$ определим функцию $\mathbf{Clock}_{\varphi,S}^{\dagger}(\omega,t)$ следующим образом:

$$\mathbf{Clock}_{\varphi,S}^{I}(\omega,t) = \begin{cases} \sum_{\max(k) < i \leq n} \tau(C_i), \text{ если } \exists k < n \colon t \notin En(\varphi(C_k \cap C_n)), \\ \\ \sum_{0 \leq i \leq n} \tau(C_i) + I(t), \text{ иначе}; \end{cases}$$

$$\mathbf{Clock}_{\varphi,S}^{A}(\omega,t) = \begin{cases} \sum_{\max(k) < i \leq n} \tau(C_i), \text{ если } \exists k < n \colon t \notin En(\varphi(C_k)), \\ \\ \sum_{0 \leq i \leq n} \tau(C_i) + I(t), \text{ иначе}; \end{cases}$$

где † $\in \{I,A\}$ указывает на промежуточную или устойчиво атомарную стратегию сброса часов.

В работе [2] показано, что для временного сечения C значение функции **Clock** не зависит от выбора временного графика из начального сечения в сечение C. Кроме того, в качестве параметров функции **Clock** можно рассматривать только сечение $C \in \mathcal{RC}(TN)$

и переход $t \in En(\varphi(C))$.

Далее определим временной процесс как пару из ВПСС и гомоморфизма с ограничениями на корректность временных конструкций.

Определение 7. Пусть $\dagger \in \{I,A\}$, $\mathcal{TN} = (\mathcal{N},D) - HBC\Pi_{cn}$, $S = (M,I) \in \mathcal{RS}_{\dagger}(\mathcal{TN})$, $TN = (N,\tau) - B\Pi CC \ u \ \varphi \in \mathcal{HOM}_S(TN,\mathcal{TN})$. Пара $\pi = (TN,\varphi)$ называется временным процессом $HBC\Pi_{cn} \ \mathcal{TN}$ из состояния S относительно стратегии сброса часов \dagger , если для каждого сечения $C \in \mathcal{RC}(TN)$ и события $e \in Fi(C)$ выполняется:

$$\mathbf{Clock}_{\varphi,S}^{\dagger}(C,\varphi(e)) \in D(\varphi(e)).$$

Пусть $\mathcal{PRC}_{\dagger}(\mathcal{TN}, S)$ — множество всех временных процессов $\mathrm{HBC\Pi_{cn}}\,\mathcal{TN}$ из состояния $S \in \mathcal{RS}_{\dagger}(\mathcal{TN})$ относительно стратегии сброса часов \dagger . Кроме того, обозначим $\mathcal{PRC}_{\dagger}(\mathcal{TN}) = \mathcal{PRC}_{\dagger}(\mathcal{TN}, S_0)$, где S_0 — начальное состояние \mathcal{TN} . Временной процесс $\pi_0 = (((B_0, \emptyset, \emptyset, \emptyset), \tau_0), \varphi_0)$ такой, что φ_0 — гомоморфизм относительно начальной разметки $(\varphi(B_0) = M_0)$ и $\tau_0 \equiv 0$, называется *начальным*.

Два временных процесса $\pi = (TN, \varphi)$ и $\pi' = (TN', \varphi')$ из $\mathcal{PRC}_{\dagger}(TN, S)$, где $\dagger \in \{I, A\}$, $S \in \mathcal{RS}_{\dagger}(TN)$ и $TN = ((B, E, G, l), \tau)$, изоморфны (обозначается $\pi \simeq \pi'$ или $f : \pi \simeq \pi'$), если существует изоморфизм $f : TN \simeq TN'$ такой, что $\varphi(x) = \varphi'(f(x))$ для любого $x \in B \cup E$. Класс эквивалентности относительно изоморфизма, образованный временным процессом π , будем обозначать как $[\pi]_{\simeq}$.

Пример 6. Рассмотрим $HBC\Pi_{cn} \mathcal{TN}_1 = (\mathcal{N}_1, D)$ из примера 1, $B\Pi CC TN_1 = (N_1, \tau)$ из примера 4 и гомоморфизм φ из N_1 в \mathcal{N}_1 относительно начальной разметки из примера 3. Покажем, что пара $\pi = (TN_1, \varphi)$ является временным процессом \mathcal{TN}_1 из начального состояния $S_0 = (M_0, (I_0 \equiv 0))$ относительно промежуточной стратегии сброса часов. Для этого вычислим для каждого события е и сечения $C \in \mathcal{RC}(\mathcal{TN}_1)$, в котором оно может произойти, значение функции $\mathbf{Clock}_{\varphi,S_0}^I(C,\varphi(e))$ и убедимся, что оно принадлежит интервалу $D(\varphi(e))$. Напомним все временные сечения $B\Pi CC TN_1$: $C_0 = \{b_1, b_2\}$, $C_1 = \{b_3, b_2\}$, $C_2 = \{b_3, b_4\}$, $C_3 = \{b_5, b_6\}$. Легко проверить, что $C_0 \stackrel{e_1}{\Longrightarrow} C_1 \stackrel{e_2}{\Longrightarrow} C_2 \stackrel{e_3}{\Longrightarrow} C_3$. Тогда:

- \circ Clock $_{\varphi,S_0}^I(C_0,\varphi(e_1)) = \tau(C_0) = 0 \in D(\varphi(e_1) = t_1) = [0,1],$
- $\circ \ \mathbf{Clock}_{\varphi,S_0}^I(C_1,\varphi(e_2)) = \tau(C_0) + \tau(C_1) = 0 + 1 \in D(\varphi(e_2) = t_2) = [0,1],$
- \circ Clock $_{\varphi,S_0}^I(C_2,\varphi(e_3)) = \tau(C_2) = 2 \in D(\varphi(e_3) = t_3) = [1,2].$

Следовательно, $\pi = (TN_1, \varphi) \in \mathcal{PRC}_I(\mathcal{TN}_1)$.

Установим взаимосвязь между временными процессами и пробегами $HBC\Pi_{cn}$. Введем функцию, отображающую временной график в последовательность хода времени и срабатываний переходов $HBC\Pi_{cn}$.

Пусть \mathcal{TN} — НВСП_{сл}, TN — ВПСС, S — состояние \mathcal{TN} и $\varphi \in \mathcal{HOM}_S(TN, \mathcal{TN})$. Для временного графика $\omega = e_1 \dots e_n \in \mathcal{GRF}_{\Rightarrow C}(TN)$ из начального сечения в сечение $C \in \mathcal{RC}(TN)$ с последовательностью $C_0 \stackrel{e_1}{\Longrightarrow} C_1 \dots C_{n-1} \stackrel{e_n}{\Longrightarrow} C_n = C$ определим функцию Run_{φ} следующим образом: $Run_{\varphi}(TN, \omega) = \tau(C_0) \ \varphi(e_1) \ \tau(C_1) \dots \ \varphi(e_n) \ \tau(C_n)$.

Покажем, что если φ — гомоморфизм относительно начальной разметки и Run_{φ} отображает ω в пробег из начального состояния в состояние (M',I') относительно стратегии $\dagger \in \{I,A\}$, то $\varphi(C)=M'$ и значение $\mathbf{Clock}_{\varphi,S_0}^{\dagger}(C,t)$ равно I'(t) для любого перехода $t \in En(M')$.

Утверждение 2. $\Pi y cmb \uparrow \in \{I,A\}, \mathcal{TN} - HBC\Pi_{cn}, TN - B\Pi CC, \varphi \in \mathcal{HOM}_{S_0}(TN, \mathcal{TN})$ $u \omega = e_1 \dots e_n \in \mathcal{GRF}_{\Rightarrow C}(TN)$ для $C \in \mathcal{RC}(TN)$ c последовательностью $C_0 \stackrel{e_1}{\Longrightarrow} C_1 \dots C_{n-1} \stackrel{e_n}{\Longrightarrow} C_n = C$. Если $Run_{\varphi}(TN,\omega) \in \mathcal{RUN}_{\dagger}(\mathcal{TN}),$ m.e. $(M_0,I_0) \stackrel{\tau(C_0)}{\longrightarrow} (M_0,\widetilde{I_0}) \stackrel{\varphi(e_1)}{\longrightarrow}_{\dagger} (M_1,I_1) \stackrel{\varphi(C_1)}{\longrightarrow} (M_1,\widetilde{I_1}) \dots (M_{n-1},\widetilde{I_{n-1}}) \stackrel{\varphi(e_n)}{\longrightarrow}_{\dagger} (M_n,I_n) \stackrel{\varphi(C_n)}{\longrightarrow} (M_n,\widetilde{I_n}),$ то для кажедого $0 \leq i \leq n$ выполняется:

- (a) Сужение функции φ на C_i биекция между C_i и M_i .
- (б) $\mathbf{Clock}_{\varphi,S_0}^{\dagger}(C_i,t) = \widetilde{I}_i(t)$ для всех $t \in En(M_i)$.

Доказательство. Аналогично доказательству утверждения 2 работы [10].

Для временного процесса $\pi = (TN, \varphi)$ относительно стратегии $\dagger \in \{I, A\}$ обозначим через $\mathcal{RUN}_{\dagger}(\pi)$ множество всех последовательностей $Run_{\varphi}(TN, \omega)$, где $\omega \in \mathcal{GRF}(TN)$. Рассмотренные в работе [10] теоремы указывают на взаимно однозначное соответствие между пробегами $HBC\Pi_{cn}$ и временными графиками временных процессов $HBC\Pi_{cn}$, которое достигается при помощи функции Run.

Утверждение 3. $\Pi ycmb \dagger \in \{I,A\} \ u \ \mathcal{TN} - HBC\Pi_{cn}$.

- $\circ \ \textit{Echu } \pi \in \mathcal{PRC}_{\dagger}(\mathcal{TN}), \ \textit{mo } \mathcal{RUN}_{\dagger}(\pi) \subseteq \mathcal{RUN}_{\dagger}(\mathcal{TN}).$
- \circ Если $\sigma \in \mathcal{RUN}_{\dagger}(\mathcal{TN})$, то существует единственный с точностью до изоморфизма $\pi \in \mathcal{PRC}_{\dagger}(\mathcal{TN})$ такой, что $\sigma \in \mathcal{RUN}_{\dagger}(\pi)$.

Доказательство. Аналогично доказательствам теорем 1-3 работы [10].

Далее рассмотрим последовательности изменений (расширений) временных процессов и их взаимосвязи с состояниями НВСП_{сл}. Сначала введем конструкцию «подсети» ПСС

— части ПСС, заключенной между двумя её сечениями.

Пусть $N=(B,\ E,\ G,\ l)-\Pi$ СС и $C,C'\in\mathcal{CUT}(N)$ такие, что $C\preceq C'$. Определим $N_{C\to C'}=(B',\ E',\ G',\ l'),$ где:

$$\circ B' = \bigcup_{C \prec \widehat{C} \prec C'} \widehat{C};$$

$$\circ E' = \downarrow C' \setminus \downarrow C;$$

$$\circ \ G' = G \cap ((B' \times E') \cup (E' \times B'));$$

$$\circ l' = l|_{E'}.$$

Используя конструкцию причинно-следственных «подсетей», определим понятие расширения для ВПСС.

Пусть $\widetilde{TN}=(\widetilde{N},\ \widetilde{\tau})$ — ВПСС. Будем писать $TN\xrightarrow{\widehat{TN}}\widetilde{TN}$, если существует $\widetilde{C}\in\mathcal{RC}(\widetilde{TN})$ такое, что:

$$\circ TN = (N, \tau), \widehat{TN} = (\widehat{N}, \widehat{\tau});$$

$$\circ \ N = \widetilde{N}_{\bullet \widetilde{N} \to \widetilde{C}}, \ \widehat{N} = \widetilde{N}_{\widetilde{C} \to \widetilde{N} \bullet};$$

$$\circ \tau : \mathcal{CUT}(N) \to \mathbb{N} \cup \{\bot\}$$
 и $\tau(C) = \widetilde{\tau}(C)$ для всех $C \in \mathcal{CUT}(N) \setminus \widetilde{C}$;

$$\circ \ \widehat{\tau} : \mathcal{CUT}(\widehat{N}) \to \mathbb{N} \cup \{\bot\}$$
 и $\widehat{\tau}(\widehat{C}) = \widetilde{\tau}(\widehat{C})$ для всех $\widehat{C} \in \mathcal{CUT}(\widehat{N}) \backslash \widetilde{C}$;

$$\circ \ \ \widetilde{\tau}(\widetilde{C}) = \tau(\widetilde{C}) + \widehat{\tau}(\widetilde{C}).$$

Аналогично определим расширения для временных процессов $HBC\Pi_{cn}$.

Рассмотрим произвольный временной процесс $\widetilde{\pi} = (\widetilde{TN}, \widetilde{\varphi}) \in \mathcal{PRC}(\mathcal{TN})$. Будем писать $\pi \xrightarrow{\widehat{\pi}} \widetilde{\pi}$, если выполняется:

о
$$\pi = (TN, \varphi)$$
 и $\widehat{\pi} = (\widehat{TN}, \widehat{\varphi});$

$$\circ \ TN \xrightarrow{\widehat{TN}} \widetilde{TN};$$

$$\circ \varphi = \widetilde{\varphi}|_{B \cup E}$$
 и $\widehat{\varphi} = \widetilde{\varphi}|_{\widehat{B} \cup \widehat{E}}$.

В этом случае $\widetilde{\pi}$ — расширение π на $\widehat{\pi}$. Кроме того, π будем называть префиксом, а $\widehat{\pi}$ — $cy\phi\phi$ иксом $\widetilde{\pi}$.

В работе [1] показано, что префикс и суффикс расширения временного процесса НВСП_{сл} также являются временными процессами.

Пусть $\pi \xrightarrow{\widehat{\pi}} \widetilde{\pi}$ для $\widetilde{\pi} \in \mathcal{PRC}_{\dagger}(\mathcal{TN})$, НВСП_{сл} \mathcal{TN} и $\dagger \in \{I,A\}$. Рассмотрим частные случаи расширений временных процессов:

$$\circ \ \widetilde{\pi}$$
 — расширение π на время θ (обозначается $\pi \xrightarrow{\theta} \widetilde{\pi}$), если $\widehat{E} = \emptyset$ и $\widehat{\tau}(\widehat{B}) = \theta$;

$$\circ$$
 $\widetilde{\pi}$ — расширение π на действие a (обозначается $\pi \xrightarrow{a} \widetilde{\pi}$), если $\widehat{E} = \{e\}, \widehat{l}(e) = a$ и $\widehat{\tau} \equiv 0$.

4. Эквивалентности

Рассмотренная в предыдущей главе модель временных процессов позволяет сравнивать поведение $HBC\Pi_{cn}$ с учетом частичного порядка между их элементами. В этом разделе для $HBC\Pi_{cn}$ мы рассмотрим предложенные в [2] языковые (поведение описывается набором «линейных» последовательностей выполнений системы) и бисимуляционные (учитывают точки недетерминированного выбора альтернативных действий) эквивалентности для семантики интерливинга и процессно-сетевой семантики. Далее будем использовать $\dagger \in \{I,A\}$ для обозначения промежуточной или устойчиво атомарной стратегии сброса часов $HBC\Pi_{cn}$. Кроме того, через i будем обозначать интерливинговую, а через n — процессно-сетевую семантики.

Обобщим классическое определение языковой эквивалентности, основанное на пробегах сетей Петри. Для $HBC\Pi_{cn} \mathcal{TN}$ с помечающей функцией L и пробега $\sigma = \theta_0 \ t_1 \ \theta_1 \dots t_n \ \theta_n \in \mathcal{RUN}_{\dagger}(\mathcal{TN}, S)$ из произвольного состояния S определим последовательность из хода времени и действий $L(\mathcal{TN}, \sigma) = \theta_0 \ L(t_1) \ \theta_1 \dots L(t_n) \ \theta_n$.

Определение 8. Пусть TN, $TN' - HBC\Pi_{cn}$, помеченные на Act.

- $\circ \ Lang^{\dagger}(\mathcal{TN}) = \{ L(\mathcal{TN}, \sigma) \mid \sigma \in \mathcal{RUN}_{\dagger}(\mathcal{TN}) \}.$
- \circ \mathcal{TN} и \mathcal{TN}' интерливингово языково эквивалентны относительно стратегии † (обозначается $\mathcal{TN}\cong_i^\dagger \mathcal{TN}'$), если $Lang^\dagger(\mathcal{TN})=Lang^\dagger(\mathcal{TN}')$.

Далее определим языковые эквивалентности в двух семантиках, основанные на временных процессах НВС Π_{cn} . Для ВПСС $TN = ((B, E, G, l), \tau)$ и временного графика $\omega = e_1 \dots e_n \in \mathcal{GRF}(TN)$ с последовательностью сечений $C_0 \stackrel{e_1}{\Longrightarrow} C_1 \dots C_{n-1} \stackrel{e_n}{\Longrightarrow} C_n$ определим последовательность из хода времени и действий $l(TN, \omega) = \tau(C_0) \ l(e_1) \ \tau(C_1) \dots l(e_n) \ \tau(C_n)$. Определение 9. Пусть TN, $TN' - HBC\Pi_{cn}$, помеченные на Act, $u \star \in \{i, n\}$.

- $\circ \ Trace_i^{\dagger}(\mathcal{TN}) = \{l(TN, \omega) \mid (TN, \varphi) \in \mathcal{PRC}_{\dagger}(\mathcal{TN}), \omega \in \mathcal{GRF}(TN)\};$
- $\circ \ Trace_n^{\dagger}(\mathcal{TN}) = \{ [TN]_{\simeq} \mid (TN, \varphi) \in \mathcal{PRC}_{\dagger}(\mathcal{TN}) \}.$
- \circ \mathcal{TN} и \mathcal{TN}' *-языково эквивалентны относительно стратегии † (обозначается $\mathcal{TN} \equiv^{\dagger}_{+} \mathcal{TN}'$), если $Trace^{\dagger}_{+}(\mathcal{TN}) = Trace^{\dagger}_{+}(\mathcal{TN}')$.

Пример 7. Рассмотрим $HBC\Pi_{cn} \mathcal{TN}_2$ и \mathcal{TN}_3 на рисунке 3. Видно, что $Lang^A(\mathcal{TN}_2) = Lang^A(\mathcal{TN}_3)$. Значит, согласно определению 8, \mathcal{TN}_2 и \mathcal{TN}_3 интерливингово языково эквивалентны относительно устойчиво атомарной стратегии сброса часов, т.е. $\mathcal{TN}_2 \cong_i^A \mathcal{TN}_3$. С другой стороны, $\mathcal{TN}_2 \ncong_i^I \mathcal{TN}_3$, поскольку, например, $2b2a2 \in \mathcal{TN}_3$

 $Lang^I(\mathcal{TN}_2),\ no\ 2b2a2 \notin Lang^I(\mathcal{TN}_3).\$ Аналогично, $\mathcal{TN}_2\ \equiv_i^A\ \mathcal{TN}_3\ u\ \mathcal{TN}_2\not \not z_i^I\ \mathcal{TN}_3.$

Покажем, что $HBC\Pi_{cn} \mathcal{TN}_2$ и \mathcal{TN}_3 на рисунке 3 не являются n-языково эквивалентны ни относительно промежуточной, ни относительно устойчиво атомарной стратегии сброса часов, $m.e.\ \mathcal{TN}_2\not\equiv_n^I \mathcal{TN}_3$ и $\mathcal{TN}_2\not\equiv_n^A \mathcal{TN}_3$. Действительно, у \mathcal{TN}_3 найдется временной процесс из начального состояния, где события действий a и b будут параллельными, тогда как у \mathcal{TN}_2 подобного процесса не существует.

Рис. 3: Непрерывно-временные сети Петри \mathcal{TN}_2 и \mathcal{TN}_3

Бисимуляционные эквивалентности, в отличие от языковых, учитывают момент недетерминированного выбора между несколькими расширениями процесса (ветвления). Сначала рассмотрим обычные бисимуляционные эквивалентности. Начнем с определения интерливинговых бисимуляционных эквивалентностей, основанных на состояниях НВСП_{сл}. Определение 10. $HBC\Pi_{cn}$ TN u TN', помеченные над Act, являются интерливингово бисимуляционно эквивалентными относительно стратегии † (обозначается TN \sim_i^{\dagger} TN'), если существует отношение (бисимуляция) $R \subseteq \mathcal{RS}_{\dagger}(TN) \times \mathcal{RS}_{\dagger}(TN')$ такое, что $(S_0, S'_0) \in R$ u для всех $(S, S') \in R$ выполняется:

- (1) если $S \xrightarrow{x}_{\dagger} \widetilde{S}$, где $x \in Act \cup \mathbb{N}$, тогда существует пара $(\widetilde{S}, \widetilde{S}') \in R$ такая, что $S' \xrightarrow{x}_{\dagger} \widetilde{S}';$
- (2) как пункт (1), но роли TN и TN' меняются.

Теперь определим бисимуляционные эквивалентности, основанные на временных процессах ${\rm HBC}\Pi_{\rm c.r.}$

- (1) если $\pi \xrightarrow{\widehat{\pi}} \widetilde{\pi}$ для $\widetilde{\pi} \in \mathcal{PRC}_{\dagger}(\mathcal{TN})$ и
 - $\widetilde{\pi}$ расширение π на время $\theta \in \mathbb{N}$ (действие $a \in Act$), в случае $\star = i$,

тогда существует пара $(\widetilde{\pi},\widetilde{\pi}')\in R$ такая, что $\pi'\xrightarrow{\widehat{\pi}'}\widetilde{\pi}'$ и

- $\widetilde{\pi}'$ расширение π' на время θ (действие a), в случае $\star=i;$
- $\widehat{TN} \simeq \widehat{TN}'$, в случае $\star = n$;
- (2) как пункт (1), но роли TN и TN' меняются.

Пример 8. Рассмотрим $HBC\Pi_{cn}$ \mathcal{TN}_4 и \mathcal{TN}_5 на рисунке 4. Как можно видеть, $\mathcal{TN}_4 \equiv_n^\dagger \mathcal{TN}_5 \ (\dagger \in \{I,A\})$, согласно определению 9.

Покажем, что $\mathcal{TN}_4 \not=_i^\dagger \mathcal{TN}_5$. Предположим, что это не так, т.е. существует некоторая бисимуляция R, соответствующая определению 11. Тогда $(\pi_0, \pi_0') \in R$, согласно данному определению.

Рассмотрим временной процесс π'_1 $HBC\Pi_{cn}$ \mathcal{TN}_5 , который соответствует срабатыванию перехода t_2 и является расширением π'_0 на событие a, т.е. $\pi'_0 \stackrel{a}{\longrightarrow} \pi'_1$. Согласно определению 11, для π_0 должно существовать аналогичный временной процесс π_1 — расширение π_0 на событие a и $(\pi_1, \pi'_1) \in R$. Это означает, что π_1 соответствует срабатыванию перехода t_1 $HBC\Pi_{cn}$ \mathcal{TN}_4 .

Процесс π_1 может быть расширен до процесса π_2 в результате действия а (повторное срабатывание перехода t_1 НВС Π_{c_n} \mathcal{TN}_4), т.е. $\pi_1 \stackrel{a}{\longrightarrow} \pi_2$. Значит, по определению 11, должна существовать пара $(\pi_2, \pi_2') \in R$ такая, что $\pi_1' \stackrel{a}{\longrightarrow} \pi_2'$. Однако, процесс π_1' не имеет расширений в результате действия а. Полученное противоречие доказывает, что $\mathcal{TN}_4 \not=_i^{\dagger} \mathcal{TN}_5$.

Рис. 4: Непрерывно-временные сети Петри \mathcal{TN}_4 и \mathcal{TN}_5

В работе [2] показано, что интерливинговая языковая эквивалентность и интерливинговая бисимуляционная эквивалентность, основанные на пробегах и состояниях НВСП_{сл}, совпадают соответственно с интерливинговой языковой и интерливинговой бисимуляционной эквивалентностями, основанными на временных процессах. Данный факт подтверждает корректность предложенных определений эквивалентностей, основанных на временных процессах.

Утверждение 4. Для $HBC\Pi_{cn} \mathcal{TN}, \mathcal{TN}',$ помеченных на одном и том же множестве действий, выполняется:

- $\circ \ \mathcal{TN} \cong_i^{\dagger} \mathcal{TN}' \iff \mathcal{TN} \equiv_i^{\dagger} \ \mathcal{TN}';$
- $\circ \ \mathcal{TN} \ \sim_i^\dagger \ \mathcal{TN'} \iff \mathcal{TN} \ \backsimeq_i^\dagger \ \mathcal{TN'}.$

Доказательство. Аналогично доказательству теорем 1 и 2 работы [2].

Далее рассмотрим эквивалентности, которые учитывают предыдущее функционирование системы, ту часть процесса, которая привела из начального состояния в текущее. Для произвольных НВСП_{сл} \mathcal{TN} и \mathcal{TN}' определим множество изоморфизмов ВПСС их временных процессов следующим образом: $\mathcal{F}_{\dagger}(\mathcal{TN},\mathcal{TN}') = \{f : TN \simeq TN' \mid (TN,\varphi) \in \mathcal{PRC}_{\dagger}(\mathcal{TN}), (TN',\varphi') \in \mathcal{PRC}_{\dagger}(\mathcal{TN}')\}$. Через f_0 будем обозначать изоморфизм между ВПСС начальных временных процессов.

Определение 12. $HBC\Pi_{cn}$ \mathcal{TN} u \mathcal{TN}' , помеченные над Act, являются n-бисимуляционно эквивалентными с сохранением истории относительно стратегии \dagger (обозначается \mathcal{TN} $\cong_n^{h\dagger}$ \mathcal{TN}'), если существует отображение (бисимуляция) $R \subseteq \mathcal{PRC}_{\dagger}(\mathcal{TN}) \times \mathcal{PRC}_{\dagger}(\mathcal{TN}') \times \mathcal{F}_{\dagger}(\mathcal{TN}, \mathcal{TN}')$ такое, что $(\pi_0, \pi'_0, f_0) \in R$ u для всех $(\pi, \pi', f) \in R$ выполняется:

- (1) $f:TN \simeq TN'$;
- (2) если $\pi \to \widetilde{\pi}$ для $\widetilde{\pi} \in \mathcal{PRC}_{\dagger}(\mathcal{TN})$, тогда существует тройка $(\widetilde{\pi}, \widetilde{\pi}', \widetilde{f}) \in R$ такая, что $\pi' \to \widetilde{\pi}'$ и $f \subset \widetilde{f}$;
- (3) как пункт (2), но роли TN и TN' меняются.

Пример 9. Рассмотрим $HBC\Pi_{cn}$ \mathcal{TN}_6 и \mathcal{TN}_7 на рисунке 5. Покажем, что $\mathcal{TN}_6 \not=_n^{h\dagger} \mathcal{TN}_7$ для $\dagger \in \{I,A\}$. Предположим обратное, т.е. что существует бисимуляция R из определения 12. Тогда $(\pi_0, \pi'_0, f_0) \in R$.

Пусть π_1 — расширение π_0 , соответствующее срабатыванию перехода t_4 , т.е. $\pi_0 \to \pi_1$. Значит, по определению 12, существует тройка $(\pi_1, \pi'_1, f_1) \in R$ такая, что $\pi'_0 \to \pi'_1$ и $f_1: TN_1 \simeq TN'_1$. В этом случае, π'_1 соответствует срабатывание перехода t_1 НВСП_{сл} \mathcal{TN}_7 .

Далее, π'_1 может быть расширено до временного процесса π'_2 в результате срабатывания перехода t_2 с временной задержкой 2. Согласно определению 12, должна существовать тройка $(\pi_2, \pi'_2, f_2) \in R$ такая, что $\pi_1 \to \pi_2$ и $f_2 : TN_2 \simeq TN'_2$. Однако, такого расширения временного процесса π_1 с изоморфизмом ВПСС у \mathcal{TN}_6 не существует, что

приводит к противоречию. Следовательно, $\mathcal{TN}_6 \not\leq_n^{h\dagger} \mathcal{TN}_7$.

С другой стороны, данные сети п-бисимуляционно эквивалентны относительно промежуточной и устойчиво атомарной стратегий сброса часов.

Рис. 5: Непрерывно-временные сети Петри \mathcal{TN}_6 и \mathcal{TN}_7

В работе [2] рассмотрен ряд других эквивалентностей относительно устойчиво атомарной стратегии сброса часов, изучены взаимосвязи между ними. Заметим, что представленные в [2] определения аналогично можно рассмотреть относительно промежуточной стратегии, а доказательство иерархии данных эквивалентностей будет в точности повторять рассуждения, используемые для устойчиво атомарной стратегии.

Утверждение 5. Пусть \mathcal{TN} , \mathcal{TN}' — $\mathit{HBC\Pi_{cn}}$, помеченные на одном и том эксе мноэксестве действий. Для эквивалентностей R и \widetilde{R} из мноэксества $\{\cong_i^\dagger, \equiv_i^\dagger, \equiv_n^\dagger, \cong_i^\dagger, \cong_n^\dagger, \cong_n^\dagger, \cong_n^\dagger, \cong_n^\dagger\}$

$$\mathcal{T}\mathcal{N} \ R \ \mathcal{T}\mathcal{N}' \Rightarrow \mathcal{T}\mathcal{N} \ \widetilde{R} \ \mathcal{T}\mathcal{N}'$$

тогда и только тогда, когда в графе на Рисунке 6 существует путь от R к $\widetilde{R}.$

Рис. 6: Иерархия эквивалентностей

Доказательство. Является обобщением доказательства иерархии эквивалентностей работы [2] (Следствие 1). \Box

5. Сравнение эквивалентностей относительно стратегий сброса часов

В этом разделе будет исследовано, как изменение стратегии сброса часов $HBC\Pi_{cn}$ влияет на эквивалентность рассматриваемых сетей. Сначала исследуем данный вопрос на подклассе $HBC\Pi_{cn}$, исключающем места, которые являются одновременно входными и выходными для одного перехода.

Определение 13. Пусть $T\mathcal{N} = ((P, T, F, M_0, L), D) - HBC\Pi_{cn}$.

- \circ Пара $(p,t) \in P \times T$ петля, если $p \in {}^{\bullet}t \cap t^{\bullet}$.
- \circ TN называется простой $HBC\Pi_{cn}$ (без петель), если ${}^{\bullet}t \cap t^{\bullet} = \emptyset$ для всех $t \in T$.

Рассмотрим пример, сравнивающий поведение $HBC\Pi_{cn}$ с петлей относительно разных стратегий сброса часов.

Пример 10. Сеть TN_8 на рисунке 1 имеет петлю, образованную местом p_1 и переходом t_1 . При использовании промежуточной стратегии сброса часов, срабатывание перехода t_1 будет каждый раз сбрасывать часы данного перехода. Как следствие, последовательность $\sigma = 1$ t_1 1 t_1 1 будет являться пробегом из начального состояния относительно промежуточной стратегии сброса часов, т.е. $\sigma \in \mathcal{RUN}_I(TN)$. Напротив, при устойчиво атомарной стратегии часы перехода t_1 никогда не будут сбрасываться. Значит, $\sigma \notin \mathcal{RUN}_A(TN)$, поскольку второе срабатывание t_1 в данной последовательности невозможно (значение часов перехода 2 выйдет за пределы временного интервала [0,1] перехода). Следовательно, $\mathcal{RUN}_I(TN) \neq \mathcal{RUN}_A(TN)$, т.е. поведение \mathcal{HBCH}_{cn} для двух стратегий сброса часов будет отличаться.

Рис. 7: Непрерывно-временная сеть Петри \mathcal{TN}_8

Докажем, что промежуточная и устойчиво атомарная стратегии сброса часов порождают одинаковое поведение для простых ${\rm HBC}\Pi_{\rm cn}.$

Теорема 1. Пусть TN — простая $HBC\Pi_{c.n.}$ Тогда:

- $(a) \, \mathcal{R} \mathcal{U} \mathcal{N}_I(\mathcal{T} \mathcal{N}) = \mathcal{R} \mathcal{U} \mathcal{N}_A(\mathcal{T} \mathcal{N}),$
- (6) $\mathcal{PRC}_I(\mathcal{TN}) = \mathcal{PRC}_A(\mathcal{TN}).$

Доказательство. Сначала покажем, что для $HBC\Pi_{cn} \mathcal{TN}$ срабатывание перехода относительно промежуточной и устойчиво атомарной стратегий сброса часов приводит к одинаковым состояниям.

Замечание 1. Для состояния S=(M,I) и перехода $t\in Fi(S)$ НВСП_{сл} \mathcal{TN} выполняется $(M,I)\stackrel{t}{\longrightarrow}_I (M',I')\iff (M,I)\stackrel{t}{\longrightarrow}_A (M',I').$

Доказательство замечания. Поскольку, $t \in Fi(S)$, то $(M,I) \xrightarrow{t}_I (M',I')$ и $(M,I) \xrightarrow{t}_A (M',I'')$, где $M' = (M \backslash {}^{\bullet}t) \cup t^{\bullet}$, $I'(t') = \begin{cases} 0, & \text{если} \uparrow enabled_I(t',M,t), \\ I(t'), & \text{иначе}; \end{cases}$ и $I''(t') = \begin{cases} 1, & \text{иначе} \end{cases}$

 $\begin{cases} 0, & \text{если} \uparrow enabled_A(t',M,t), \\ I(t'), & \text{иначе}; \end{cases} \\ \text{что } \forall t' \in En(M') : I'(t) = I''(t), \text{ т.е. } \uparrow enabled_I(t',M,t) = \uparrow enabled_A(t',M,t). \ \text{Рассмотрим} \\ \text{произвольное } t' \in En(M). \ \text{По определению } 2, \uparrow enabled_I(t',M,t) = t' \notin En(M \backslash \bullet t) \land t' \in En(M'). \ \text{Если } t' \notin En(M \backslash \bullet t), \text{ то } t' \notin En(M) \ \text{или } \bullet t' \cap \bullet t \neq \emptyset. \ \text{Значит, } \uparrow enabled_I(t',M,t) = (t' \notin En(M) \vee \bullet t' \cap \bullet t \neq \emptyset) \land t' \in En(M') = (t' \notin En(M) \wedge t' \in En(M')) \vee (\bullet t' \cap \bullet t \neq \emptyset \wedge t' \in En(M')). \ \text{Предположим, } \bullet t' \cap \bullet t \neq \emptyset \land t' \in En(M') - \text{ истина. Тогда } \bullet t' \subseteq M' = (M \backslash \bullet t) \cup t^\bullet, \ \text{так как } t' \in En(M'). \ \text{Кроме того, из } \bullet t' \cap \bullet t \neq \emptyset \ \text{следует, что } ((M \backslash \bullet t) \cup t^\bullet) \cap \bullet t = ((M \backslash \bullet t) \cap \bullet t) \cup (t^\bullet \cap \bullet t) = t^\bullet \cap \bullet t \neq \emptyset. \ \text{Получили противоречие c тем, что } \bullet t \cap t^\bullet = \emptyset, \ \text{поскольку } \mathcal{TN} - \text{простая. Следовательно, } \bullet t' \cap \bullet t \neq \emptyset \land t' \in En(M') - \text{ложь. Получаем, } \uparrow enabled_I(t',M,t) = t' \notin En(M) \land t' \in En(M') = \uparrow enabled_A(t',M,t), \ \text{по определению 2.} \ \square$

Доказательство теоремы.

- (а) Рассмотрим произвольный пробег $\sigma = \theta_0 t_1 \theta_1 \dots t_n \theta_n \in \mathcal{RUN}_I(\mathcal{TN})$ с последовательностью состояний $(M_0, I_0) \xrightarrow{\theta_0} (M_0, \widetilde{I}_0) \xrightarrow{t_1} (M_1, I_1) \xrightarrow{\theta_1} (M_1, \widetilde{I}_1) \dots (M_{n-1}, \widetilde{I}_{n-1}) \xrightarrow{t_n} (M_n, I_n) \xrightarrow{\theta_n} (M_n, \widetilde{I}_n)$. По определению 2 и замечанию 1, $(M_0, I_0) \xrightarrow{\theta_0} (M_0, \widetilde{I}_0) \xrightarrow{t_1} (M_1, I_1) \xrightarrow{\theta_1} (M_1, \widetilde{I}_1) \dots (M_{n-1}, \widetilde{I}_{n-1}) \xrightarrow{t_n} (M_n, I_n) \xrightarrow{\theta_n} (M_n, \widetilde{I}_n)$, т.е. $\sigma \in \mathcal{RUN}_A(\mathcal{TN})$. Значит, $\mathcal{RUN}_I(\mathcal{TN}) \subseteq \mathcal{RUN}_A(\mathcal{TN})$. Аналогично доказывается, что $\mathcal{RUN}_A(\mathcal{TN}) \subseteq \mathcal{RUN}_I(\mathcal{TN})$. Следовательно, $\mathcal{RUN}_I(\mathcal{TN}) = \mathcal{RUN}_A(\mathcal{TN})$.
- (б) Рассмотрим произвольный временной процесс $\pi = (TN, \varphi) \in \mathcal{PRC}_I(\mathcal{TN}) = \mathcal{PRC}_I(\mathcal{TN}, S_0)$, где $TN = (N, \tau)$ и N = (B, E, G, l). Тогда для каждого сечения $C \in \mathcal{RC}(TN)$ и события $e \in Fi(C)$ выполняется $\mathbf{Clock}_{\varphi,S_0}^I(C, \varphi(e)) \in D(\varphi(e))$, по определению 7. Покажем, что $\pi = (TN, \varphi) \in \mathcal{PRC}_A(\mathcal{TN})$, т.е. $\mathbf{Clock}_{\varphi,S_0}^A(C, \varphi(e)) \in D(\varphi(e))$ для всех $C \in \mathcal{RC}(TN)$ и $e \in Fi(C)$.

Рассмотрим произвольные $C \in \mathcal{RC}(TN)$ и $e \in Fi(C)$. Тогда $C \stackrel{e}{\Longrightarrow} C'$ для C' =

 $(C \setminus {}^{\bullet}e) \cup e^{\bullet} \in \mathcal{RC}(TN)$. Так как ${}^{\bullet}N \preceq C$, $C' \preceq N^{\bullet}$ и ${}^{\bullet}N$, C, C', $N^{\bullet} \in \mathcal{RC}(TN)$, то, по утверждению 1, существует $\omega = e_1 \dots e_n \in \mathcal{GRF}(TN)$ такой, что ${}^{\bullet}N = C_0 \stackrel{e_1}{\Longrightarrow} C_1 \dots (C_{i-1} = C) \stackrel{(e_i=e)}{\Longrightarrow} C_i = C' \dots C_{n-1} \stackrel{e_n}{\Longrightarrow} C_n = N^{\bullet}$ для n > 0 и $0 < i \le n$. По утверждению 3, последовательность $Run_{\varphi}(TN, \omega) = \tau(C_0)\varphi(e_1)\tau(C_1)\dots\varphi(e_n)\tau(C_n) \in \mathcal{RUN}_I(\pi) \subseteq \mathcal{RUN}_I(TN)$ — пробег, т.е. имеет место последовательность состояний $(M_0, I_0) \stackrel{\tau(C_0)}{\Longrightarrow} (M_0, \widetilde{I_0}) \stackrel{\varphi(e_1)}{\Longrightarrow}_I (M_1, I_1) \stackrel{\tau(C_1)}{\Longrightarrow} (M_1, \widetilde{I_1}) \dots (M_{n-1}, \widetilde{I_{n-1}}) \stackrel{\varphi(e_n)}{\Longrightarrow}_I (M_n, I_n) \stackrel{\tau(C_n)}{\Longrightarrow} (M_n, \widetilde{I_n})$. Согласно определению 2 и замечанию 1, $(M_0, I_0) \stackrel{\tau(C_0)}{\Longrightarrow} (M_0, \widetilde{I_0}) \stackrel{\varphi(e_1)}{\Longrightarrow}_A (M_1, I_1) \stackrel{\tau(C_1)}{\Longrightarrow} (M_n, \widetilde{I_n})$. Кроме того, $\varphi(e_i) \in \mathcal{E}n(M_{i-1})$. Значит, $Clock_{\varphi,S_0}^A(C_{i-1}, \varphi(e_i)) = \widetilde{I}_{i-1}(\varphi(e_i)) = Clock_{\varphi,S_0}^I(C_{i-1}, \varphi(e_i))$, благодаря утверждению 2. Следовательно, $Clock_{\varphi,S_0}^A(C, \varphi(e)) = Clock_{\varphi,S_0}^A(C_{i-1}, \varphi(e_i)) = Clock_{\varphi,S_0}^I(C_{i-1}, \varphi(e_i)) = \mathcal{PRC}_I(TN)$. Аналогично доказывается, что $\mathcal{PRC}_I(TN) \subseteq \mathcal{PRC}_I(TN)$, т.е. $\mathcal{PRC}_I(TN) = \mathcal{PRC}_I(TN)$.

Из данной теоремы следует совпадение эквивалентностей относительно промежуточной и устойчиво атомарной стратегий сброса часов для класса простых ${\rm HBC}\Pi_{\rm cn}$.

Теорема 2. Пусть \mathcal{TN} , \mathcal{TN}' — простые $\mathit{HBC\Pi}_{cn}$, помеченные на одном и том же множестве действий. Тогда \mathcal{TN} R^I \mathcal{TN}' \iff \mathcal{TN} R^A \mathcal{TN}' , где R \in $\{\cong_i, \equiv_i, \equiv_n, \sim_i, \cong_i, \cong_n, \cong_n, \cong_n^h\}.$

Доказательство. Следует из теоремы 1 и определений 8-12.

Покажем, что в общем случае из эквивалентности ${\rm HBC\Pi_{cn}}$ относительно одной стратегии сброса часов не будет следовать эквивалентность данных сетей относительно другой стратегии сброса часов.

Теорема 3. Пусть TN, $TN' - HBC\Pi_{cn}$, помеченные на одном и том же множестве действий. Тогда:

- (a) $TN R TN' \Rightarrow TN \widetilde{R} TN'$,
- (6) $TN \widetilde{R} TN' \Rightarrow TN R TN'$,

$$\operatorname{\operatorname{\mathcal{C}\!\mathit{d}\!\mathit{e}}} R \in \{\; \cong_i^I \;,\; \equiv_i^I \;,\; \succeq_i^I \;,\; \hookrightarrow_i^I \;,\; \hookrightarrow_n^I \;,\; \hookrightarrow_n^{h\,I} \;\} \; u \; \widetilde{R} \in \{\; \cong_i^A \;,\; \equiv_i^A \;,\; \equiv_n^A \;,\; \sim_i^A \;,\; \hookrightarrow_i^A \;,\; \hookrightarrow_n^A \;,\; \hookrightarrow_n^{h\,A} \;\}.$$

 \mathcal{I} оказательство. (а) Рассмотрим НВСП_{сл} $\mathcal{T}\mathcal{N}_9$ и $\mathcal{T}\mathcal{N}_{10}$ на рисунке 8. Видно, что $\mathcal{T}\mathcal{N}_9 \cong_n^{hI} \mathcal{T}\mathcal{N}_{10}$. Покажем, что $\mathcal{T}\mathcal{N}_9 \not\cong_i^A \mathcal{T}\mathcal{N}_{10}$. Поскольку срабатывание пере-

хода t_1 в НВСП_{сл} \mathcal{TN}_9 при устойчиво атомарной стратегии сброса часов не сбрасывает часы этого перехода, то действие a может повторяться только в пределах временного интервала [0,1]. Как следствие, слова «1a1a1» языка $Lang^A(\mathcal{TN}_{10})$ не будет в языке $Lang^A(\mathcal{TN}_9)$, т.е. $Lang^A(\mathcal{TN}_9) \neq Lang^A(\mathcal{TN}_{10})$. Следовательно, $\mathcal{TN}_9 \not\cong_i^A \mathcal{TN}_{10}$, по определению 8. Значит, $\mathcal{TN} \cong_i^A \mathcal{TN}' \not\Rightarrow \mathcal{TN} \cong_i^A \mathcal{TN}'$. Так как $\mathcal{TN} \cong_n^A \mathcal{TN}' \Rightarrow \mathcal{TN} R \mathcal{TN}'$ и $\mathcal{TN} \widetilde{R} \mathcal{TN}' \Rightarrow \mathcal{TN} \mathcal{R} \mathcal{TN}'$, согласно утверждению 5, то $\mathcal{TN} R \mathcal{TN}' \not\Rightarrow \mathcal{TN} \widetilde{R} \mathcal{TN}'$.

Рис. 8: Непрерывно-временные сети Петри \mathcal{TN}_9 и \mathcal{TN}_{10}

(б) Рассмотрим НВС $\Pi_{\text{сл}}$ \mathcal{TN}_{11} и \mathcal{TN}_{12} на Рисунке 9. Видно, что в случае устойчиво атомарной стратегии сброса часов \mathcal{TN}_{11} $\stackrel{ch}{\rightleftharpoons}_{n}^{hA}$ \mathcal{TN}_{12} .

Покажем, что $\mathcal{TN}_{11} \not\cong_i^I \mathcal{TN}_{12}$. Поскольку срабатывание перехода t_2 в НВСП_{сл} \mathcal{TN}_{11} при промежуточной стратегии сбрасывает часы перехода t_1 , то действие a может следовать за действием b. Подобного поведения нет в НВСП_{сл} \mathcal{TN}_{12} . Как следствие, слова «1b0a1» языка $Lang^I(\mathcal{TN}_{11})$ не будет в языке $Lang^I(\mathcal{TN}_{12})$, т.е. $Lang^I(\mathcal{TN}_{11}) \neq Lang^I(\mathcal{TN}_{12})$. Следовательно, $\mathcal{TN}_{11} \not\cong_i^I \mathcal{TN}_{12}$, по определению 8. Значит, $\mathcal{TN} \cong_n^{hA} \mathcal{TN}' \not\Rightarrow \mathcal{TN} \cong_i^I \mathcal{TN}'$. Так как $\mathcal{TN} \cong_n^{hA} \mathcal{TN}' \Rightarrow \mathcal{TN} \stackrel{\sim}{R} \mathcal{TN}'$ и $\mathcal{TN} R \mathcal{TN}' \Rightarrow \mathcal{TN} \cong_i^I \mathcal{TN}'$, согласно утверждению 5, то $\mathcal{TN} \stackrel{\sim}{R} \mathcal{TN}' \not\Rightarrow \mathcal{TN} R \mathcal{TN}'$.

6. Заключение

В данной работе было показано, что выбор между промежуточной и устойчиво атомарной стратегиями сброса часов оказывает большое влияние на эквивалентность НВСП_{сл}. При исследовании рассматривались эквивалентности в двух дихотомиях: *«интерливинг* — истинный параллелизм» и *«линейное* — ветвящееся время». Для первой дихотомии ис-

Рис. 9: Непрерывно-временные сети Петри \mathcal{TN}_{11} и \mathcal{TN}_{12}

следовались интерливинговая и процессно-сетевая семантика, в то время как для второй дихотомии использовались языковая, обычная бисимуляционная и сохраняющая историю бисимуляционная семантики. Относительно каждой из стратегий сброса часов интерливинговая языковая эквивалентность является наиболее слабой, а процессно-сетевая сохраняющая историю бисимуляционная эквивалентность выступает как наиболее сильная. Основанные на данном факте примеры показали, что из произвольной эквивалентности двух $HBC\Pi_{cn}$ относительно одной из стратегий сброса часов не будет следовать ни одна из рассмотренных эквивалентностей тех же $HBC\Pi_{cn}$ относительно другой стратегии. Однако, был найден подкласс $HBC\Pi_{cn}$, для которых поведение будет схожим независимо от выбранной стратегии. Исключение из структуры $HBC\Pi_{cn}$ петель, т.е. переходов, множество входных и выходных мест которых пересекается, ведет к совпадению множеств пробегов из начального состояния относительно обеих стратегий сброса часов. Кроме того, было доказано, что в этом случае множество временных процессов при смене стратегий также остается одинаковым. Это приводит к совпадению эквивалентностей $HBC\Pi_{cn}$ относительно промежуточной и устойчиво атомарной стратегий.

В качестве дальнейшей работы планируется разработка и исследование «истиннопараллельных» семантик и эквивалентностей в терминах реверсивных сетей Петри [5] и их временных расширений, позволяющих моделировать вычисления как в прямом, так и в обратном направлениях.

Список литературы

1. Зубарев, А. Ю. Сравнение языковых и бисимуляционных эквивалентностей непрерывновременных сетей Петри со слабой временной стратегией / А. Ю. Зубарев // Проблемы информатики. — 2022. — N 4. — С. 5—27.

- 2. Зубарев, А. Ю. Иерархия эквивалентностей непрерывно-временных сетей Петри со слабой временной стратегией / А. Ю. Зубарев // Проблемы информатики. 2024. № 1. С. 5—40.
- 3. Тарасюк, И. В. Эквивалентности для поведенческого анализа параллельных и распределенных вычислительных систем / И. В. Тарасюк. Новосибирск : Академическое издательство "Гео", 2007.
- 4. Aura, T. A causal semantics for time Petri nets / T. Aura, J. Lilius // Theoretical Computer Science. 2000. Vol. 243, no. 1/2. P. 409—447.
- Barylska, K. Reversing Transitions in Bounded Petri Nets / K. Barylska, E. Erofeev, M. Koutny
 L. Mikulski, M. Piatkowski // Fundamenta Informaticae. 2018. Vol. 157 P. 341—357.
- 6. Be'rard, B. Comparison of the expressiveness of timed automata and time Petri nets / B. Be'rard // Formal Modeling and Analysis of Timed Systems FORMATS 2005 / ed. by P. Pettersson, W. Yi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. P. 211—225.
- Boyer, M. Comparison of the Expressiveness of Arc, Place and Transition Time Petri Nets / M. Boyer, O. Roux // Petri Nets and Other Models of Concurrency – ICATPN 2007 / ed. by J. Kleijn, A. Yakovlev. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. — P. 63–82
- 8. Reynier, P.-A. Weak time Petri nets strike back! / P.-A. Reynier, A. Sangnier // CONCUR 2009 Concurrency Theory / ed. by M. Bravetti, G. Zavattaro. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. P. 557–571.
- 9. Virbitskaite, I. True concurrent equivalences in time Petri nets / I. Virbitskaite, D. Bushin, E. Best // Fundamenta Informaticae. 2016. Vol. 149, no. 4. P. 401—418.
- 10. Virbitskaite, I. B. 'True Concurrency' Semantics for Time Petri Nets with Weak Time and Persistent Atomic Policies / I. B. Virbitskaite, A. Y. Zubarev // Programming and Computer Software. — 2021. — Vol. 47, no. 5. — P. 389—401.
- 11. Zubarev, A. State space reduction for time Petri nets with weak semantics / A. Zubarev // Bulletin of the Novosibirsk Computing Center. Series: Computer Science. 2019. No. 43. P. 39—52.