SHARP

SERVICE MANUAL SERVICE-HANDBUCH

\$96R2VC-MH64G

VC-MH64GM/SM

VC-MH641GM

VC-MH64GM VC-MH64SM MODELLE VC-MH641GM

In the interests of user-safety (Required by safety regulations in some countries) the set should be restored to its original condition and only parts identical to those specified should be used.

Im Interesse der Benutzersicherheit (gemäß den Sicherheitsvorschriften in einigen Ländern) muß dieses Gerät stets wieder in den Originalzustand versetzt werden. Es sind ausschließlich Ersatzteile gemäß Spezifikation zu verwenden.

Page Seite	CONTENTS -		INHALT
\ ,	1. SPECIFICATIONS 2. DISASSEMBLY AND REASSEMBLY 3. FUNCTION OF MAJOR MECHANICAL PARTS 4. ADJUSTMENT, REPLACEMENT AND ASSEMBLY OF MECHANICAL UNITS 5. ELECTRICAL ADJUSTMENT 6. MECHANISM OPERATION FLOW CHART AND TROUBLESHOOTING 7. TROUBLESHOOTING 8. BLOCK DIAGRAMS 9. CIRCUIT DIAGRAM AND PWB LAYOUT 10. REPLACEMENT PARTS LIST 11. EXPLODED VIEWS	3 4 . 7 9 31 39 45 115 125 143 160	Seite 1. TECHNISCHE DATEN

SHARP CORPORATION

PRECAUTIONS IN PART REPLACEMENT

When servicing the unit with power on, be careful to the section marked white all over.

This is the primary power circuit which is live.

When checking the soldering side in the tape travel mode, make sure first that the tape has been loaded and then turn over the PWB with due care to the primary power circuit.

Make readjustment, if needed after replacement of part, with the mechanism and its PWB in position in the main frame.

- (1) Start and end sensors: Q851 and Q852 Insert the sensor's projection deep into the upper hole of the holder (LHLDZ1893AJ00). Referring to the PWB, fix the sensors tight enough.
- (2) Photocoupler RH-FX0005GEZZ: IC901 Refer to the symbol on the PWB and the anode marking of the part.
- (3) Cam switches A and B (RH-PX0238GEZZ): D852 and D853 Adjust the notch of the part to the white marker of the symbol on the PWB. Do not allow any looseness.
- (4) Take-up and supply sensors (RH-PX0252GEZZ): D855 and D854

 Be careful not to confuse the setting direction of the parts in reference to the symbols on the PWB. Do not allow any looseness.
- (5) Diode bridge (RH-DX0083GEZZ): D901

 Adjust the + marking of the part to the symbol's cathode marking on the PWB.

VORSICHTSMASSNAHMEN BEIM AUSWECHSELN VON TEILEN

Bei Wartungsarbeiten am Gerät mit eingeschalteter Stromversorgung ist besonders auf den weiß markierten Abschnitt zu achten. Es handelt sich um den Primärstromkreis, der spannungsführend ist.

Beim Überprüfen der Lötseite im Bandlaufmodus muß zunächst sichergestellt werden, daß das Band eingezogen wurde. Dann die Platine unter entsprechender Beachtung des Primärstromkreises umdrehen. Eine ggf. erforderliche Neueinstellung nach dem Auswechseln von Teilen durchführen, während sich Band-

laufwerk und Platine im Hauptrahmen befinden.

(1) Start- und Endsensoren: Q851 und Q852

Das vorstehende Teil des Sensors tief in die obere Öffnung des Halters (LHLDZ1893AJ00) führen. Die Sensoren in Bezug auf die Platine ausreichend befestigen.

- (2) Fotokoppler RH-FX0005GEZZ: IC901 Siehe Symbol auf der Platine und Anodenmarkierung des Teils.
- (3) Nockenschalter A und B (RH-PX0238GEZZ): D852 und D853 Die Kerbe des Teils mit der weißen Markierung des Symbols auf der Platine ausrichten. Die Teile müssen fest sitzen.
- (4) Aufwickel- und Abwickelsensoren (RH-PX0252GEZZ): D855 und D854

 Darauf achten, daß die Ausrichtung der Teile in Bezug auf die Symbole auf der Platine nicht vertauscht wird. Die Teile müssen fest sitzen.
- (5) Diodenbrücke (RH-DX0083GEZZ): D901 Die Markierung + des Teils mit der Kathodenmarkierung des Symbols auf der Platine ausrichten.

1. SPECIFICATIONS

1. TECHNISCHE DATEN

Format:

VHS PAL standard

Video recording system:

Two rotary heads.

helical scan system

Video signal:

PAL/SECAM colour

and B/G signals, 625 lines

Recording/playing time:

240 min max, with SHARP E-240 tape (SP)

480 min max. with SHARP E-240 tape (LP)

Tape width:

12.7mm

Tape speed:

23.39 mm/s (SP)

11.70 mm/s (LP)

Antenna:

75 ohm unbalanced

Receiving channel:

VHF Channel S1-S41, E2-E12

UHF Channel E21-E69

RF converter output signal:

UHF Channel E30-E39 (preset to CH E36)

Power requirement:

AC230V, 50Hz

Power consumption:

Approx. 19 W

Operating temperature:

5°C to 40°C

Storage temperature:

-20°C to 60°C Approx. 3.6 kg

Weight: Dimensions:

380 mm (W) x 290.5 mm (D)

x 93 mm (H)

VIDEO

Input:

0.5~2.0 Vp-p, 75 ohm

Output:

1.0 Vp-p, 75 ohm

S/N ratio:

45 dB

Horizontal resolution:

250 lines

AUDIO Input:

0 dBs = 0.775 VrmsLine: -3.8 dB, 47k ohm

Output:

Line: -3.8 dB, 1k ohm

S/N ratio:

42 dB

Frequency responce:

80 Hz ~ 10 kHz

Accessories included:

75 ohm coaxial cable

Operation manual

Infrared remote control

Battery (2pcs.)

Format:

VHS-, PAL-Norm

Video-

Schrägspuraufzeichnung mit zwei rotierenden Köpfen

Videosignal:

PAL/SECAM-Farb- und B/G-Weißsignale, 625 Zeilen

Aufzeichnungs-/

Wiedergabezeit:

Aufzeichnungssystem:

240 Minuten max.,

mit SHARP E240-Band (SP)

480 Minuten max.,

mit SHARP E240-Band (LP)

12,7 mm

Bandbreite: Bandgeschwindigkeit:

29,39 mm/s (SP) 11,70 mm/s (LP)

UHF-Kanal E30-39

(voreingestellt auf Kanal E36)

Wechselspannung 230 V, 50 Hz

Antenne: 75 Ohm unsymmetrisch Empfangskanäle: VHF-Kanäle E2-S41

UHF-Kanäle E21-E69

Ausgangssignal

HF-Wandler:

Stromversorgung:

Leistungsaufnahme:

J 1997 21

0.194

Betriebstemperatur:

Lagerungstemperatur:

Gewicht:

Ca. 3,6 kg Abmessungen:

380 mm (B) x 290,5 mm (T)

0.5~2.0 Vs-s, 75 Ohm

x 93 mm (H)

Ca. 19W

5° C bis 40° C

-20° C bis 60° C

VIDEO

Eingang:

Ausgang: 1,0 Vs-s, 75 Ohm 45 dB

Verhältnis Signal/Geräusch;

Horizontale Auflösung:

AUDIO

Eingang:

0 dB = 0,775 VeffDirekteingang: -3,8 dB, 47 kOhm

Ausgang:

Direktausgang: -3,8 dB, 1 kOhm

Signal/Rausch Abstand:

42 dB

250 Zeilen

Frequenzwiedergabe:

80 Hz ~ 10 kHz

Mitgeliefertes Zubehör: 75 Ohm-Koaxialkabel

> Bedienungsanleitung Infrarot-Fernbedienung

Batterie (2 Stück)

Note:

The antenna must correspond to the new standard DIN 45325 (IEC 169 - 2) for combined UHF/VHF antenna with 75 ohm connector.

As part of our policy of continuous improvement, we reserve the right to alter design and specifications without notice.

Hinweis:

Die Antenne muß der neuen DIN-Norm 45325 (IEC 169-2) für VHF-UHF-Kombiantennen mit 75 Ohm-Anschluß entsprechen.

Im Sinne der ständigen Verbesserung behalten wir uns das Recht vor, äußere Aufmachung und technische Daten ohne Vorankündigung zu ändern.

2. DISASSEMBLY AND REASSEMBLY

2-1 DISASSEMBLY OF MAJOR BLOCKS

TOP CABINET Remove 4 screws ①.

BOTTOM PLATE: Remove 2 screws 2 and 6 hooks 3.

FRONT: PANEL: Remove shuttle switch @.Remove 2

operation PWB: Remove 1 screw (2) and take it out of connector ®.

MECHANISM/ MAIN PWB **ASSEMBLY**

: Remove 1 screw (9, 2 screws (0), 2 screws (1), 1 screw (1) and MPX PWB holder, 1 screw (3) and 1 connector (4). Lift antenna terminal cover and take the assembly out of the main frame.

20-16-28

2-2 DISASSEMBLING THE MECHANISM/MAIN PWB ASSEMBLY

ANTENNA TERMINAL COVER case.

MECHANISM CHASSIS/

: Remove 4 screw (1). Remove the shield

: Remove 3 FFCs ® and 2 harnesses ®. Be carefull not to confuse the top and

CASSETTE HOUSING **ASSEMBLY**

bottom of the FFC. Remove 1 screw ® from behind the main PWB.

Remove the mechanism chassis assembly straight up from the main PWB with care not to damage theirs urrounding parts.

: Remove 2 screws 19.

CASSETTE HOUSING

2-3 PRECAUTIONS IN REASSEMBLING

MOUNTING THE CASSETTE CONTROLLER

Initial setting is indispensable before placing the cassette controller in the mechanism. The initial setting is made in two ways; electrical and mechanical.

Electrical setting:

Make a short-circuit between TP703 and TP704 and be sure that the mechanism is back to its initial setting position (*1). Now place the cassette controller in position. (This method is used when the mechanism has been already set on its PWB.)

· Gen 40138666

Mechanical setting:

Turn the loading motor's pulley feed gear using a screwdriver and be sure that the mechanism is back to its initial setting position (*1). Now place the cassette controller in position. (This method is applicable for the mechanism alone.)

COUPLING THE MECHANISM TO THE PWB

Match the mechanism's projections with the two symbols (round reference and oval sub-reference) on the main PWB. Place the mechanism straight down in position with due care so that the mechanism chassis's outer edges should not damage any parts nearby.

Tighten up the two screws (one for fixing the mechanism and the head amplifier shield, the other on the main PWB's soldering side and located near the loading motor) to fix the mechanism and main PWB. Reconnect the FFC cables (AN and AS) and harness (AB) between the mechanism and main PWB.

Parts to pay attention to:

Start and end sensors

Q851 and Q852

Rec tip switch

S851

Take special care of the AE connector (board to board) between the mechanism and main PWB.

3. FUNCTION OF MAJOR MECHANICAL PARTS (TOP VIEW)

No.	Function	No.	Function
1.	Full erase head ass'y Erase the old recording on the tape in the recording mode.	13.	Reverse guide lever ass'y Pulls out the tape and controls the tape drive train height with the upper and lower guides.
3.	Tension arm ass'y Detects the tension of tape while running, and brakes the supply reel disk via the tension band.	16.	Pinch roller lever ass'y Press-fits the tape to the capstan during tape
7.	Sup Main brake ass'y Brakes the supply reel disk to prevent tape slack-		running.
<u>.</u>	ening when the unit is stopped in fast forward or rewind mode.	18.	Loading motor A motive power which drives the mechanism. It
9.	Take-up main brake ass'y Brakes the take-up reel disk to prevent tape slackening when the unit is stopped in fast for- ward or rewind mode.		transmits the power to the master cam and cas- sette housing control assembly.

No.	Function	No.	Function
1.	Slow brake lever Gets in contact with the capstan D.D. motor linking to the master cam in the slow still mode,	6.	Limiter pulley ass'y Transmits the power of the capstan D.D. motor to the reel disk via the drive idler.
3.	and brakes it to a certain degree. Capstan D.D. motor	8.	Shifter Transmits the operation of the master cam to break ass'y. loading gear, tension arm and clutch lever.
R stagis	A motive power which runs the tape. It transmits the power via the Drive belt.	9.	Take-up Loading gear Shifts the take-up pole base and guide roller via
4.	Drive belt Transmits the power to run the tape to the Limiter pulley.		the loading gear T, and applies the tape around the drum assembly, as well as transmits the power to the loading gears.

4. ADJUSTMENT, REPLACEMENT AND ASSEMBLY OF MECHANICAL UNITS

Here we will describe a relatively simple service work in the field, not referring to the more complicated repairs which would require the use of special equipment and tools (drum assembly replacement, for example).

We are sure that the easy-to-handle tools listed below would be more than handy for periodical maintenance to keep the machine in its original working condition.

TOOLS NECESSARY FOR ADJUSTING THE MECHANICAL UNITS

The following tools are required for proper service and satisfactory repair.

No.	Jig Item	Part No.		Configuration	Remarks
1	Reel Disk Height Adjusting Jig	JiGRH0002	BR	<i>Q</i>	These Jigs are used for checking and
2	Master Plane Jig	JiGMP0001	ву	6.0	adjusting the reel disk height.
.4	Torque Gauge (90g)	JIGTG0090	СМ		
	Torque Gauge (1.2kg)	JiGTG1200	CN		These Jigs are used for checking and
5	Gauge Head	JiGTH0006	AW		adjusting the torque of take-up and sup- ply reel disks.
6	Cassette Torque Meter	JiGVHT-063	CZ		This cassette torque meter is used for checking and adjusting the torque of take-up for measuring tape back tension.
7	Tension Gauge (300g)	JiGCG0300	BF	(103)	There are two gauges used for the ten-
	Tension Gauge (2.0kg)	JiGSG2000	BS		sion measurements, 300 g and 2.0kg.
8	Hex Wrench (0.9mm)	JiGHW0009	AE		These Jigs are used for loosening or
	Hex Wrench (1.5mm)	JiGHW0015	AE		tightening special hexagon type screws.
9	Alignment Tape (PAL)	VROCPSV	ск		These tapes are especially used for electrical fine adjustment.
11	Tension Gauge Adapter	JiGADP003	вк		This Jig is used with the tension gauge. Rotary transformer clearance adjusting jig.
12	Special Bladed Serewdriver	JiGDRiVERH-4	AP		This screwdriver is used for adjusting the guide roller height.

No.	Jig Item	Part No.	2 2	Configuration	Remarks
14	Torque Driver		СВ		This is used to screw down resinmade parts: the specified torque is 5kg.
15	M3 type 5.5 mm square box driver for reverse guide	JiGDRiVER11055	AR		This Jig is used for height adjustment of the reverse guide (for reverse guide height adjustment).
17	Reverse Guide Height Adjust- ing Jig	JiGRVGH-F18	BU		This Jig is used for height adjustment of the reverse guide.
18	्रिक्षीच क्षेत्रीची विकासीत	JiGDRIVER-6	ВМ		For X value adjustment

MECHANICAL PARTS REQUIRING PERIODICAL INSPECTION

Use the following table as a guide to maintain the mechanical parts in good operating condition.

Maintained Parts	500 hrs.	1000 hrs.	1500 hrs.	2000 hrs.	Possible symptom encountered	Remarks
Guide roller ass'y				0		Abnormal rotation or significant vibration requires replacement.
Sup Guide Shaft					Lateral noises Head occasion-	
Retaining guide					ally blocked	Clean tape contact part with the specified cleaning liquid.
Slant pole				0		and opcomed eleaning liquid.
Upper and lower drum ass'y		0	0	00	Poor S/N ratio, no colour Poor flatness of the envelope with alignment tape	Clean tape contact area with
Full-erase head				0	Poor colour, beating	the specified cleaning liquid.
A/C head				0	Low or distorted audio	
Capstan D.D. Motor				0	No tape running, uneven colour	
Pinch roller				0	No tape running, tape slack	Clean rubber and rubber con-
Drive belt				0	No tape running, tape slack, no fast forward/rewind motion	tact area with the specified cleaning liquid.
Tension band ass'y			,	0		
Loading Motor				0	Cassette not loaded or unloaded	
Idler Wheel ass'y				0	No tape running	
Limiter pulley ass'y			: .	0		
Supply/take-up Main brake levers				0	Tape slack	
AHC (Auto Head Cleaner)		0		0		Replace the roller of the cleaner when it wears down. Just change the AHC roller assembly for new one.

NOTE:	O: Part replacement.
	\square : Cleaning (For cleaning, use a lint-free cloth dampened with pure isopropyl alcohol). \triangle : Oil refilling (The indicated point should be lubricated with high quality spindle oil every 1000hrs).
If t	the reading is out of the specified value, clean or replace the part.

REMOVAL AND REASSEMBLY OF CASSETTE HOUSING CONTROL ASSEMBLY

• Removal

- 1. Set the cassette ejected condition in the cassette eject mode.
- 2. Unplug the recorder from the main source.
- 3. Follow the procedures below in the specified order.
 - a) Remove the cassette housing installation screws ①.
 - b) Slide and pull out the cassette housing control assembly upward.

Figure 4-2.

- 2. Follow the procedures for removal in the reverse order. **Notes:**
- ① In using a magnet screw driver, be sure to keep it away from the A/C head, FE (Full Erase) head, and the drum.
- ② In removal and reassembly, take care not to hit the cassette housing control assembly and tools against the guide pin, drum, or the like there about.
- 3 Load the cassette once onto the cassette housing control assembly after reassembly.

TO RUN A TAPE WITHOUT THE CASSETTE HOUSING CONTROL ASSEMBLY

- Be sure to make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB before turning on the power.
- 2. Plug in the power cord.
- 3. Turn on the power switch.
- 4. Open the lid of a cassette tape by hand.
- 5. Hold the lid with two pieces of vinyl tape.
- 6. Set the cassette tape in the mechanism shassis.
- Stabilize the cassette tape with a weight (500g) to prevent floating.
- 8. Perform running test.

Figure 4-1.

Reassembly

1. Before installation of the cassette housing control assembly, make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Plug in the power cord. The cassette control drive gear starts and stops just when the big face gear shows in the mechanism chassis window. Engage the tooth 2 of the casecon drive gear with the tooth 3 of the cassette control drive angle as shown in Fig. 4-2, to position the cassette control on the mechanism chassis.

Figure 4-3.

Note:

The weight should not be more than 500g.

REPLACEMENT AND HEIGHT CHECKING AND ADJUSTMENT OF REEL DISKS

- Removal (Supply and Take-up reel disks)
- 1. Remove the cassette housing control assembly.
- 2. Pull the tension band out of the tension arm.
- 3. Release the supply/take-up auxiliary brake lever by hand, which makes unnecessary removal of the supply main brake and the take-up main brake.
- 4. Open the hook at the top of the reel disk, and remove the reel disk.

<In the EJECT or UL STOP mode>

- 1. Clean the reel disk shaft and apply oil to it.
- 2. Align the phase of the reel disk to that of the reel relay gear, and install a new supply reel disk onto the shaft.
- 3. Replace the tension band around the supply reel disk, and insert it into the hole of the tension arm with the supply auxiliary brake lever released.
- 4. Check the reel disk height.

Notes:

- Take enough care not to deform the tension band during installation of the supply reel disk.
- ② Be careful not to damage the supply main brake and the reel relay gear.

Reassembly (Take-up reel disk)

- 1. Clean the reel disk shaft and apply oil to it.
- 2. Release the take-up auxiliary brake lever to align the phase of the reel disk to that of the reel relay gear and to install a new take-up reel disk onto the shaft.
- 3. Check the reel disk height and reassemble the take-up main brake.

Take care not to damage the take-up main brake.

- After reassembly, check the video search rewind back tension (see page 16), and check the brake torque (see page 18).
- Height checking and adjustment

网络美国大学 斯斯 人名英国拉马特人 医线点 医多数原生 医毒性病毒 医二氏 Place the master plane onto the mechanism unit, taking care not to hit the drum (see Figure 4-6).

Jan 13 15

Figure 4-4.

Set the master plane releasing the reverse guide by a finger.

Note:

When the tension band is pressed in the direction of the arrow for removal, the catch is hard to be deformed.

Figure 4-5.

Figure 4-6.

 Check that the reel disk is lower than part A but higher than part B. If the height is not correct, readjust the reel disk height by changing the poly-slider washer under the reel disk.

Note:

Whenever replacing the reel disk, perform the height checking and adjustment.

Figure 4-7.

CHECKING AND ADJUSTMENT OF TAKE-UP TORQUE IN FAST FORWARD MODE

- · Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.

Setting

- Set a torque gauge to zero on the scale. Place it on the takeup reel disk.
- Press the FF button to set the mechanism to the fast forward mode.
- To calculate the remaining capacity of the play back mode, slowly rotate the supply reel disk, and then shift it into the forward mode.

Checking

- 1. Turn the torque gauge slowly (one rotation every 2 to 3 seconds) by hand in the take-up direction.
- 2. Check to see if the take-up torque is higher than 69 mN·m (700 gf·cm).

Figure 4-8.

• Adjustment

- If the take-up torque is outside the range, clean the capstan D.D. motor pulley, drive belt and limiter pulley with cleaning liquid, then recheck the torque.
- 2. If the take-up torque is still out of range, replace the drive belt. **Notes:**
- 1. Hold down the torque gauge so that it may not fly off.
- When checking the take-up torque, do not keep the reel disk locked for a longer time.

CHECKING AND ADJUSTMENT OF TAKE-UP TORQUE IN REWIND MODE

- Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.

Setting

- Set a torque gauge to zero on the scale. Place it on the supply reel disk.
- Press the REW button to set the mechanism to the rewind mode.
- 3. To calculate the remaining capacity, slowly rotate the take-up reel disk, and then shift it into the rewind mode.

Checking

- 1. Turn the torque gauge slowly (one rotation every 2 to 3 seconds) by hand in the take-up direction.
- 2. Check to see if the take-up torque is higher than 69 mN·m (700 af·cm).

Figure 4-9.

Adjustment

- If the take-up torque is outside the range, clean the capstan D.D. motor pulley, drive belt and limiter pulley with cleaning liquid, then recheck the torque,
- 2. If the take-up torque is still out of range, replace the drive belt. **Notes:**
- 1. Hold down the torque gauge so that it may not fly off.
- When checking the take-up torque, do not keep the reel disk locked for a longer time.

CHECKING AND ADJUSTMENT OF TAKE-UP TORQUE IN PLAYBACK MODE

- 1. Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.
- Open the lid of the cassette torque meter, and hold it with two pieces of vinyl tapes.
- 4. Load the cassette torque meter into the unit.
- 5. Put the weight (500g) on the cassette torque meter.
- 6. Press the REC button to put the unit in REC mode.

Set value LP 10.5 ± 3.8mN·m (107 ± 39gf·cm)

Figure 4-10.

CHECKING AND ADJUSTMENT OF TAKE-UP TORQUE IN VIDEO SEARCH REWIND MODE

- Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.

Setting

- 1. Push the PLAY button to place the ass'y in the playback mode.
- Push the REW button to place the ass'y in the video search rewind mode.

Checking

 Place the torque gauge on the supply reel disk, and turn it counterclockwise very slowly (one rotation every 1 to 2 seconds) and check that the torque is within the set value 14.0 ± 3.9mN·m (144 ± 40gf·cm).

Figure 4-11.

Checking

- Check that the torque is in the range of 10.5 ± 3.8mN·m (107 ± 39gf·cm).
- The torque fluctuates due to the rotational deviation of the limiter pulley ass'y. Use the center of the fluctuation as the value.
- Place the ass'y in the LP record mode, and check that the takeup torque is within the range.

Adjustment

If the take-up torque in the playback mode is outside the range, replace the limiter pulley ass'y.

Note:

Stabilize the cassette torque meter to prevent floating.

Note:

Set the torque gauge securely on the supply reel disk. If it is not secure, the measurement will be incorrect.

Adjustment

If the take-up torque in video search rewind mode is outside the range, replace the limiter pulley ass'y.

Note:

The torque fluctuates due to the rotational deviation of the limiter pulley ass'y. Use the center of the fluctuation at the value.

CHECKING THE VIDEO SEARCHD REWIND BACKITENSION HORSE AND MISUOPOT

- Remove the cassette housing control assembly.
- Make/a short-circuit between TP5005 and TP5006, both as located at the left on your side on the main PWB. Now turn realization make been on the power.
- Checking

6,500 minutes appropriate and

- 1.0 Push the RLAY button to place the ass'y in the playback mode.
- 2. Push the rewind button to place the ass'y in the video search. rewind mode.
- 3. Place the torque gauge on the take-up reel disk, and turn it counterclockwise very slowly (one rotation every 2)to/3/secis onds) and check that the torque is within the set value

in a section

Figure 4-12.

Notes:

- Set the torque gauge securely on the take-up reel disk. If it is not secure, the measurement will be incorrect.
- ② Measure the torque applying the torque gauge's weight.

CHECKING THE PINCH ROLLER PRESSURE

Remove the cassette housing control assembly.

e. F. Brefin T. F. C. Sc. Politik

Control of the Control of the Control of the

page to the second

- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.
- Checking

Push the PLAY button to place the ass'y in the playback mode.

Figure 4-13.

- 1. Detach the pinch roller from the capstan shaft.
- 2. Set the tension gauge by hooking the tension gauge adapter onto the pinch roller shaft.
- 3. Gradually release the pressure to allow the pinch roller to touch the capstan shaft. When the pinch roller just touches the capstan shaft, read the indication on the gauge.
- 4. Check that the reading of the tension gauge is in the range of 900 to 1200 a.

CHECKING AND ADJUSTMENT OF TENSION POLE POSITION

- Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.
- Setting
- 1. Open the lid of cassette tape (E-180), and hold it with two pieces of vinyl tapes.
- 2. Load the cassette tape into the unit.
- 3. Put the weight (500g) on the cassette tape.
- 4. Make the adjustment with the beginning of a E-180 tape.

Checking

1. Set a cassette tape, press the REC button and get the tape loaded. Now check the tension pole position.

general Living

1.6

· Stuff

11 V 31 6 1 1999

Jugar 00-0151 007

A A Symptogenerication (

Visually check to see if the center of the tension pole is in alignment with the line 1.3 mm left of the center line of the sup guide shaft. Readjust as required in the following steps.

1.3 Make the adjustment with the beginning of a E-180 tape. Figure 4-15.

① If the center of tension pole is at the left from the dotted line:

Put a bladed screwdriver into the tension pole ADJUSTER and turn it clockwise.

② If the end is at the right from the dotted line:

Figure 4-17.

Put a bladed screwdriver into the tension pole adjuster to turn it counter-clockwise.

- 3 Adjustable range of the tension pole ajuster.
- Adjustable range of tension pole adjusting cam.

Figure 4-18.

Adjust the tension pole adjuster so that the circle mark on the cam be within 90° left and right.

CHEKING AND ADJUSTMENT OF RECORD/ PLAYBACK BACK TENSION

- Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.
- Setting

93 1 . A. E.

- Open the lid of cassette torque meter, and hold it with two pieces of vinyl tapes.
- 2. Load the cassette torque meter into the unit.
- 3. Put the weight (500g) on the cassette torque meter.

Figure 4-19.

Checking

- 1. Push the REC button to place the unit in the record mode.
- 2. Check that the back tension indicated by the gauge is within the set range 31 to 38 g-cm.

Notes:

- Make sure that the video cassette tape is over the retaining guide.
- 2. Make sure that the tape is not slack nor damaged at either end.

Adjustment

(*) 8. Fig. 33

- 1. If the reading of the cassette torque meter is less than specified, move the tension spring hook toward A.
- 2. If the reading of the cassette torque meter is more than specified, move the tension spring hook toward B.

Figure 4-20.

CHECKING THE BRAKE TORQUE

· Checking the brake torque at the supply side

CCW: 5.9~9.8mN·m (60~100gf·cm) CW: 10~32mN·m (100~330gf·cm)

Figure 4-21.

- · Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.

Setting

- 1. Set a torque gauge to zero on the scale. Place it on the supply reel disk.
- 2. Switch from the FF mode to the STOP mode.
- 3. Disconnect the AC power plug.

Checking

Rotate the torque gauge (approx. one revolution per 2 seconds) in the clockwise (CW) direction and counterclockwise (CCW) direction of the supply brake so that the reel disk and the indicator of the torque gauge rotate at an equal rate. Check that the values are within the range of CW direction = 10~32mN·m (100~330gf·cm), CCW direction = 5.9~9.8mN·m (60~100gf·cm), and that the brake torque in the CW direction is at least twice as high as that in the CCW direction.

Checking the brake torque at the take-up side

Figure 4-22.

- Remove the cassette housing control assembly
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.

Setting

- Set a torque gauge to zero on the scale. Place it on the takeup reel disk.
- Switch from the FF mode to the STOP mode.
- 3. Disconnect the AC power plug.

Checking

- Rotate the torque gauge (approx. one revolution per 2 seconds) in the clockwise (CW) direction and counterclockwise (CCW) direction of the take-up brake so that the reel disk and the indicator of the torque gauge rotate at an equal rate. Check that the values are within the range of CCW direction= 9.8~34mN·m (100~340gf·cm), CW direction = 4~8.3mN·m (40~85gf·cm), and that the brake torque in the CCW direction is at least twice as high as that in the CW direction.
- Adjustment of the brake torque at the supply side and the take-up side
- If the supply or take-up brake torque is outside the range, clean the supply or take-up reel disk brake lever pad, then recheck the torque.
- 2. If the supply or take-up brake torque is still outside the range, replace the main brake ass'y.

Note:

When the main brake is replaced, perform the height checking and adjustment of reel disks (see page 13), and the brake torque checking.

RÉPLACEMENT OF A/C (Audio/Control) HEAD

- 1. Remove the cassette housing control assembly.
- 2. Place the unit in the unloading mode, and unplug the power cord.

Removal

- 1. Remove the screw ABC12.
- Unsolder the A/C head PWB soldered to the A/C head assembly.

Notes:

- After replacement, be sure to perform the adjustment of the tape drive train (see page 21). Under any circumstances, avoid touching the head. Clean the head, if touched with your finger, with alcohol.
- 2. Take care that the springs do not fly off when removing the screws (A) (B) (C).

Replacement

- Solder the removed A/C head PWB onto a new A/C head assembly.
- Using the slide calipers, set 10.3 mm for the height of the A/C head arm (bottom surface) to the A/C head plate (screw area). (3 places)
 (See the figure below.)

Figure 4-24.

33-Align the left and of the gear of the A/C head arm to the mark on the chassis, and temporarily tighten the screws ① and ②

(Reference: Temporary tightening torque: 0.2 N.m as:preferable)

DOM: MARKET

672102 sa

tin profit of

Figure 4-25.

Note

Take care that he adjustment or height of the A/C head may vary during final tightening if the screws ① or ② is temporarily tightened to be loose.

[A/C head height rough adjustment]

Figure 4-26.

- ① Set the cassette tape to the mechanism chassis.
- Press the PLAY button to the put the unit in the playback mode.
- ③ Roughly adjust the height of the A/C head by turning the screw
 ⑥ until the tape is in the position shown below.

Figure 4-27.

Adjustment

Adjust the screw (©) visually so that the control head is visible 0.3 to 0.5mm below the bottom of the tape.

HEIGHT ADJUSTMENT OF REVERSE GUIDE

[Height adjustment of reverse guide]

Figure 4-28.

- ① Remove open lever(Figure 4-29(a)).
- ②. In the tape load mode, make adjustment at the 13.38mm side first and then rotate the reverse guide adjuster nut by 1/10 turn counterclockwise.
- 3. Actually load the unit with a tape, put it in the play mode, and make sure the tape is free from wrinkles near the reverse guide.
- ①. Use a commercially available box driver to turn the height adjusting nut.

Figure 4-29 (a).

Figure 4-29 (b).

ADJUSTMENT OF TAPE DRIVE TRAIN

- 1. Remove the cassette housing control assembly.
- Make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB. Now turn on the power.
- 3. Check and adjust the position of the tension pole. (See page
- 4. Check and adjust the video search rewind back tension. (See page 16.)
- 5. Set the A/C head. (See page 19.)
- 6. Rough adjustment of tape drive train.
 - a) Connect the oscilloscope to the test point for PB CHROMA envelope output (TP301). Set the synchronism of the oscilloscope to EXT. The PB CHROMA signal is to be triggered by the head switching pulse (TP302).
 - b) Loosen the setscrew at the lower part of the guide roller, and adjust it with an adjusting screw driver (JiGDRIVERH-4) so that the guide roller turns smoothly. (Do not overloosen the setscrew, which causes insecurity of the guide roller.) (See Figure 4-30.)
 - c) Set the alignment tape (monoscope pattern) on the reel disk, and place the unit in the playback mode. (Place a 500 g weight on the cassette tape to prevent floating of the cassette tape.)

Figure 4-30.

Hexagon wrench

Figure 4-31.

- d) In the X value adjustment mode (see the Electrical Adjustment), change the envelope waveform from MAX to MIN, and MIN to MAX by pushing the (+) or (-) tracking button. and check a flat response is obtained on the waveform.
- e) If a flat response cannot be obtained, roughly adjust the guide rollers on the supply side and take-up side using an adjusting screw driver until a flat response can be obtained.
- f) Tighten the screw (A) to eliminate wrinkles from the tape of the retain guide flange area.
 - Replace the tape to check the tape on the retain guide flange area for wrinkles.
 - (1) No wrinkle is present.
 - Turn the screw (A) clockwise to generate wrinkles on the tape at the flange area, and then back off the screw (A) as far as the wrinkles are just eliminated.
 - (2) Wrinkles are present.
 - Turn the screw (A) counterclockwise as far as the wrinkles are just eliminated.

Reference:

If the screw (A) is turned clockwise, wrinkles will be produced on the lower flange.

Notes:

Editor in the Committee of

Minute Charles and a december 18 p. 18 (1) 8 (1) 18 p. 18 18 p.

- 1. Place the tracking control in the center position, and adjust the X-position so that the PB envelope becomes maximum for easier rough adjustment of the tape drive train.
- 2. In the rough adjustment, pay particular attention to the outlet side.

品类植物 抗压力

- 7. Adjustment of A/C head height and azimuth
 - a) Connect an oscilloscope to the audio output terminal.
 - b) Using the alignment tape with linear audio pre-recorded signal of 1 kHz, adjust the screws (and (a) to maximize the audio output, and adjust the screw (b) to eliminate wrinkles from the tape at the retain guide flange. (Refer to P21-6-f.) Repeatedly adjust the screws (b), (c) and (d) in this sequence until the audio output becomes the maximum. (1 to 3 times as ordinary)
 - c) Using the alignment tape which records a linear audio signal of 6 kHz, finally adjust the screw (B) until the audio output becomes the maximum.

- 8. Adjustment of tape drive train and X-Position
 - a) Connect the oscilloscope to the test points (TP301) for PB envelope output. Set the synchronism of the oscilloscope to EXT.
 - The PB signal is to be triggered by the head switching pulse (TP302).
 - b) Play back the tape drive train alignment tape.
 - c) Push the (+) or (-) button to change the envelope waveform from MAX to MIN, and MIN to MAX.

 Adjust the guide roller's height on the supply and take-up sides with an adjusting screw driver, to obtain an envelope waveform that is as flat as possible.
 - d) If the tape is above or below the helical lead, the PB waveform will take the shape shown in Figure 4-35.
 - e) Adjust for maximum flatness of the envelope as the step 6, e) in page 21.
 - f). Push the (+) or (-) tracking button to check that a flat response is obtained on the envelope waveform.
 - .g) Secure the guide roller by tightening the guide roller setscrew in the unloading mode.

uses with the residency to the con-

ENCOGRAPH COLLEGE CONTROL CONT

garanta and a design of weather the

	When the tape is abo	ove the helical lead.	When the tape is be	low the helical lead.
}	Supply side	Take-up side	Supply side	Take-up side
		.5) (1914)		
Adjustment	Supply side guide roller rotated in clockwise direction (lowers guide roller) to flatten envelope.	Take-up side guide roller rotated in clockwise direction (lowers guide roller) to flatten envelope.	Supply side guide roller rotated in counterclock-wise direction (raises guide roller) to make the tape float above the helical lead. The supply side guide roller is then rotated in the clockwise direction to flatten the envelope.	Take-up side guide roller rotated in counterclock-wise direction (raises guide roller) to make the tape float above the helical lead. The take-up side guide roller is then rotated in the clockwise direction to flatten the envelope.

Figure 4-35.

- h) Play back the tape drive train alignment tape to check that the envelope waveform does not change.
- 9. Adjustment of A/C head X-position.
 - a) In the X value adjustment mode (see the Electrical Adjustment), make a short-circuit between TP5005 and TP5006, both located at the left on your side on the main PWB, to center the tracking.
 - b) Move the A/C head arm with an adjusting gear driver, and adjust the A/C head position for maximum head switching pulse hi side envelope.

 Finally tighten the screws ① and ②. (First tighten the screw ①, and next the screw ②.) (Figure 4-36 ①②) (Reference: Final tightening torque: 0.6 N.m as preferable.)
 - c) Adjust the playback switching point.
 - d) Check the flatness of the envelope waveform and sound by playing back a recorded tape.

Figure 4-36.

REPLACEMENT OF THE CAPSTAN D.D. (DIRECT DRIVE) MOTOR

- Remove the cassette housing control assembly.
- Removal (Follow the order of indicated numbers.)
- 1. Disconnect from the board-to-board connector on the main PWB.
- 2. Remove the reel belt 1.
- 3. Remove the screws 2.

Figure 4-37.

Reassembly

- Mount the capstan motor on the mechanism chassis making sure not to allow the capstan shaft to hit the mechanism chassis, and attach it with the three screws.
- 2. Attach the reel belt. Reconnect to the board-to board connector on the main PWB.

Notes:

- After installing the capstan D.D. motor, be sure to rotate the capstan D.D. motor and chack the movement.
- 2. Check the servo circuit.

REPLACEMENT OF DRUM D.D. MOTOR

- 1. Put the unit in the cassette eject position.
- 2. Unplug the power cord.
- Removal (Reverse the order in reassembly.)
- 1. Disconnect the FFC cable ①.
- 2. Unscrew the D.D. stator assembly fixing screws ②.
- 3. Take out the D.D. stator assembly 3.
- 4. Unscrew the D.D. rotor assembly fixing screws 4.
- 5. Take out the D.D. rotor assembly (5).

Notes:

- In removing the D.D. stator assembly, part of the drum earth spring pops out of the pre-load collar.

 Be careful not to lose it.
- Secure the D.D. rotor assembly so that the installation positioning holes in the D.D. rotor assembly and upper drum assembly match.

(Match the upper drum's notch with the rotor's hole.)

- 3. Be careful not to damage the upper drum or the video head.
- 4. Be sure that the hall device and the D.D. stator assembly are not damaged by the D.D. rotor assembly or other parts.
- 5. After installation, adjust the playback switching point.

Figure 4-38.

ASSEMBLE THE MECHANISM'S PARTS REQUIRING THE PHASE MATCHING IN THE 548 79 A 1.570 STEPS BELOW.

- 1. Assembling the pinch roller assembly, reverse guide assembly and the pinch drive cam (on the front of the mechanism chassis).
- 2. Mounting the shifter (on the back of the mechanism chassis).
- 3. Mounting the master cam (on the back of the mechanism chassis).
- Mounting the connection gear, slow brake and loading motor assemblies (on the back of the mechanism chassis).
- 1. Assembling the pinch roller assembly, reverse guide assembly and the pinch drive cam (on the front of the mechanism chassis).

Place the following parts in position in numerical order.

, with all the trace and agree, the more distinct, the contract of the contrac

សម្រើកស្រីដូចនៅវិទាស់ ១០០០០០០០០០០០១៩២៩១៩១៨៩៩

with the action of the action of the action

, as a miss of the same

bara i min Lingui andific

a compared to the second of th

Figure 4-40-1.

③ Insert Pinch Roller/Pinch Double Action Lever Ass'y.

Figure 4-40-2.

4 Insert Open Lever.

Figure 4-40-3.

2. Mounting the shifter (on the back of the mechanism chassis).

- 1. Make sure that the loading gear is at the point @ as shown below.
- 2. Place the shifter in position, keeping in mind the 6 insertion points and the three-relief points.
- 3. For the phase matching at the insertion point ①, see the point ② as shown below.
- ② as shown below.

 4. Finally fix the shifter with two washers located on insert points
 ① and ④.

Figure 4-42.

3. Mounting the master cam (on the back of the mechanism chassis).

- (1) Make sure beforehand that the shifter is at the point as shown below.
- (2) Place the master cam in the position as shown below.

Note:

See the figure below for the phase matching between the master cam and the cassette control drive gear.

(3) Finally fix the master cam with E ring.

Casecon drive gear

Casecon drive gear

Casecon drive gear aligning its wide teeth

Insert the drive gear, aligning its wide tooth to the hole on the master cam.

Figure 4-43.

Agree of the property and a contract of the con-

• Removal Remove 2 screws.

Figure 4-44.

Replacement

① Take out the old loading motor. Place a replacement loading motor as shown above (Figure 4-44.).

REPLACEMENT OF LOADING MOTOR AND SET OF THE ALLEGATION, ALMOST ASSESSMENT OF THE REPLACEMENT OF THE PROPERTY O

solution windows are taken as an income and constitute

10 July 10 Jul

Figure 4-45.

Press-fit the loading motor pulley with a force of less than 98N (10 kgf). Be sure that the pulley is 7.7 $^0_{-0.1}$ mm away from the motor.

ASSEMBLY OF CASSETTE HOUSING

① Frame ass'y

Figure 4-46.

 $\frac{N^{\mathsf{m}}(\widehat{\Psi}_{n+1})^{\frac{1}{2}}}{2} = \frac{1}{n} + (1+\sqrt{n}) \prod_{k=0}^{n} e^{-kn}$

And the Gard of the second of the second of the second

Figure 4-47.

Figure 4-48.

5. ELECTRICAL ADJUSTMENT

Notes:

· Before the adjustment:

Electrical adjustments discussed here are often required after replacement of electronic components and mechanical parts such as video heads.

Check that the mechanism and all electric components are in good working condition prior to the adjustments, otherwise adjustments can not be completed.

	Instruments	required:
--	-------------	-----------

- O Colour TV monitor
- O Audio signal generator
- ODC voltmeter
- O Blank video cassette tape
- O Screwdriver for adjustment
- O Colour bar signal generator

- O Dual-trace oscilloscope
- O AC milli-voltmeter
- © Frequency counter
- O Alignment tape (VROCPSV)
- O Alignment tape (VROATSV)
- O Alignment tape (VROCBFFS)

X Servicing precations

When the IC804 (E²PROM) has been replaced, make the following reprogramming. Depending on models, the IC804 (E²PROM) has been factry-adjusted for it's memory function.

It's therefore necessary to reprogram the memory function for the model in question.

Note that the servo circuit requires readjustments for the head switching point, slow and still modes.

· Location of controls and test points

Figure 5-1.

SERVO CIRCUIT ADJUSTMENT

ADJUSTMENT OF HEAD SWITCHING POINT

1	
Measuring instrument	Dual-trace oscilloscope Colour TV monitor
Mode	Playback
Cassette	Alignment tape (VROCPSV)
Test point	TP302 (H.SW.P.) to CH-1, VIDEO OUT jack to CH-2 (CH-1 trigger slope switch at (+), Internal trigger at CH-1 side.)
Specification	6.5 ± 0.5H (lines)

- Remove the front panel and play the alignment tape. (VROCPSV)
 - (Playback picture on the monitor screen.)
- Make for a moment short-circuit between TP5001 and TP5002, both located at the front side on the main PWB.

Be sure that all the fluorescent display tubes light up into the TEST mode.

(See Note below)

3. Press the PLAY button.

Be sure the "PLAY" appears in the fluorescent display tubes flashing (about 1Hz) into the auto PG adjustment operating.

Note:

When the manual PG adjustment, observe the waveform with an oscilloscope and make adjustment FF or REW button so that the specification.

- 4. Stop the "PLAY" appears in the flashing of fluorescent display tubes at adjusted.
- 5. Press the STOP button in the return to normal mode.
- Make this checking of waveform on the oscilloscope screen be as shown in Figure 5-2. just after the head switching point have been adjusted.

Note:

- Set-up of TEST mode.
 - When the adjustment of HEAD SWITCHING POINT, AUTO TRACKING function is invalid.
- When the cassette housing control ass'y is removed, set-up of mechanism operating mode.
- 1) Replug the AC power cord it a few minutes later.
- Make a short-circuit between TP5005 and TP5006, both located at the front side on the main PWB with a 22 ohm resistor, to center the tracking.
- 3) AC power cord is plugged in.
- You can mechanism operating mode, Replug the AC power cord a few minutes later.

Figure 5-2.

ADJUSTMENT OF SP/LP SLOW TRACKING PRESET

Measuring instrument	Colour TV monitor
Mode	Playback
Cassette	Self-recorded tape (SP/LP mode) (See Note below)
Control	Tracking control buttons (+) or (-)
Specification	Minimized noise on monitor screen

- Have the unit to receive a good TV broadcast or feed a video signal to the VIDEO IN jack. (See note @ below)
- Set the tape speed in SP mode by using the remote control and record the signal on tape.
- Rewind and play the tape where signal was recorded in above step.
- Press the SLOW button on the remote control, and playback the recorded portion in the slow mode.
- 5. Make for a moment short-ciucuit between TP5001 and TP5002, both located at the front side on the main PWB.

Be sure that all the fluorescent display tubes light up into the TEST mode.

- Look at the monitor screen and adjust the (+) or (-) TRACKING buttons so that the there is noise disappears from the screen.
- 7. Press the STOP button to return to normal mode.
- Play the tape a few seconds then press the SLOW button again and make sure there is on noise in the screen.

(For the LP mode put adjustment at the same adjustment way as SP mode.)

Notes:

- ① Self-recorded tape means a cassette whose program was recorded by the unit being adjusted.
- ② The TV program will not be recorded if RCA or 21pin plugs are pluged in to the AUDIO/VIDEO input terminals.

ADJUSTMENT OF FV (False Vertical Sync) OF STILL PICTURE

Measuring instrument	Colour TV monitor
Mode	Playback still
Cassette	Self-recorded tape (See Note below ②)
Control	Tracking control buttons (+) or (-)
Specification	No vertical jitter of picture

- Play a cassette which was recorded by the unit in SP mode.
- 2. Press the PAUSE/STILL button to freeze the picture.
- Look at the monitor screen and adjust (+) or (-) TRACKING buttons so that the vertical jitter of the picture to be minimized.
- Play and freeze the self-recorded tape in SP mode and make sure vertical jitter of the picture is not noticeable.
 - (For the LP mode put adjustment at the same adjustment way as SP mode.)

Note:

- The FV goes back to the it's initial state when the unit is put into the system controller reset mode due to power failure, etc. In this case, preset the FV once again.
- Self-recorded tape is a cassette whose program was recorded by the unit being adjusted.

Y/C CIRCUIT ADJUSTMENT

CHECKING OF VIDEO E-E LEVEL

Measuring instrument	Oscilloscope
Mode	E-E or Record
Input signal	EIA colour bar (1.0Vp-p)
Test point	VIDEO OUT jack
Specification	0.95 ± 0.1Vp-p

- 1. Connect a 75 ohm terminating resistor to the VIDEO OUT jack and connect an oscilloscope across this terminating resistor. (See Note below.)
- 2. Feed a colour bar signal to the VIDEO IN jack.
- 3. Make sure that the E-E signal amplitude is 1.0Vp-p as shown in Figure 5-3.

Figure 5-3.

Notes:

If the 75 ohm terminating resistor is missing, the signal amplitude will be doubled.

CHECKING OF WHITE CLIP LEVEL

Measuring instrument	Oscilloscope
Mode	E-E or Record
Input signal	EIA colour bar (1.0Vp-p)
Test point	Pin(48) of IC401, GND
Specification	190 ± 5% (See note below)

- 1. Connect an oscilloscope to pin (48) of IC401 and
- 2. Feed the colour bar signal to the VIDEO IN jack and set the unit in E-E or recording mode.
- 3. Make sure that the overshoot of the video signal is clipped at 190% as shown in Figure 5-4.

Note:

From sync tip to white peak, the level is 100%. The white clip level is 90% above the white level.

Figure 5-4.

CHECKING OF RECORD LEVEL

Measuring instrument	Dual-trace oscilloscope
Mode	Record mode
Input signal	EIA colour bar (1.0Vp-p)
Test point	Chroma (Red) R514 terminal lead at L509 side (Sig.) ~ GND Sync tip R225 terminal lead at L210 side (Sig.) ~ GND
Specification	Chroma (Red): 400~600mVp-p Sync tip: 150~220mVp-p

- 1. Feed the colour bar signal to the VIDEO IN jack and set the unit in recording mode.
- 2. Connect a dual -trace oscilloscope to each test point shown in table.
- 3. Make sure so that the amplitude of the chroma (Red) portion and the synctip portion are specified as shown in Figure 5-5

Figure 5-5 (a).

Figure 5-5 (b).

CHECKING OF PLAYBACK LEVEL

Measuring instrument	Oscilloscope
Mode	Record/Playback
Input signal	EIA colour bar (1.0Vp-p)
Test point	VIDEO OUT jack
Specification	0.95 ± 0.1Vp-p

- 1. Be sure that E-E level has been correctly specificed.
- Connect a 75 ohm terminating resistor to the VIDEO OUT jack and connect an oscilloscope across this terminating resistor. (See Note below ①.)
- Feed a colour bar signal to the VIDEO IN jack and set the unit in recording mode.
- 4. Play the colour bar portion of the recorded tape.
- 5. Make sure that the output signal amplitude is 1.0Vp-p as shown in Figure 5-6.

Note:

- ① If the 75 ohm terminating resistor is missing, the signal amplitude will be doubled.
- 2 Set the S.PICTURE switch turn off.

Figure 5-6.

ADJUSTMENT OF S.PICTURE

Measuring instrument	DC voltmeter/Colour TV monitor
Mode	EE 0r Record
Input Signal	EIA colour bar (1.0Vp-p) or monoscope (1.0Vp-p)
Test point	TP401 (Sig.) ~ TP402 (GND)
Control	R430 S.PICTURE control
Specification	7.9 ± 0.1V

- Connect a DC voltmeter to the test points TP401 (Sig.) ~ TP402 (GND).
- Feed a colour bar or monoscope signal to the VIDEO IN jack.
- 3. Set the S.PICTURE switch turn on.
- Adjust R430 (S.PICTURE control) so that the DC voltmeter reads specified value, and checking of make sure so that the nothing unusual on the playback monoscope screen.

Hi-Fi AUDIO CIRCUIT ADJUSTMENT. IMPORTANT NOTES ON HI-FI SECTION.

Location of controls and test points

Figure 5-7.

1. Though adjustment procedures are written for the left channel, those for the right channel are basically the same.

Words shown in the bracket "[]" are for the right channel only.

- 2. SERVICING OF THE Hi-Fi block.
 - 1) "RECORD MODE". .

Under this condition record a stereo broadcast on tape and adjust control.

2) "PLAYBACK MODE".

Under this condition play a Hi-Fi tape and adjust control.

(You can select the audio output channels in the playback mode by pressing the AUDIO OUT button on the remoto control or the SET UP button on the VCR.

Set the desired Audio Output mode by pressing the (+) or (-) button.

The Audio output mode is controlled by the AU-DIO OUT button on the remote control. The VCR in normally set to the Hi-Fi mode, with L and R displaied on the VCR display, and normal stereo sound output. Press the AUDIO OUT button and only the Hi-Fi Left channel audio is heard from both the Right and Left speakers. Press the AUDIO OUT button again and only the Hi-Fi Right channel audio is heard from both the Right and Left speakers.

Press again and only the mono linear track is selected. The above sequence is then repeated each time the AUDIO OUT button is pressed.)

CHECKING OF E-E LEVEL

Measuring instrument	AC milli-voltmeter
Mode	E-E or REC mode
Input signal	1kHz, -5dBs (at RCA jack) 1kHz, -3.8dBs (at 21pin jack)
Test point	AUDIO OUT jack
Specification	−5 ± 3dBs (at RCA jack)−3.8 ± 3dBs (at 21pin jack)

- 1. Feed the audio signal shown in table to the left channel of the AUDIO IN tack.
- 2. Connect an AC milli-voltmeter to the left channel of the AUDIO OUT jack and right channel of the AUDIO OUT jack.
- Make sure that the milli-voltmeter reads special value. (Check the level is less than 2dBs both Left and Right channels.)

ADJUSTMENT OF FM CARRIER FREQUENCY

Measuring instrument	Frequency counter
Mode	E-E or REC mode
Input signal	Not required
Test point	TP6301 (Sig.) ~ TP6302 (GND)
Controls	R6310 [R6316] Carrier frequency control
Specification	1.4 [1.8] MHz ± 5kHz

- Put the unit in A/V input mode. Do not feed any signal to the VIDEO IN JACK.
 (Disconnect any cable from video input terminal.)
- Put the unit in E-E or recording mode and connect a frequency counter to test points TP6301 (Sig.) and TP6302 (GND).
- 3. Adjust R6310 [R6316] so that the counter reads specified value.

CHECKING OF LINEAR AUDIO PLAYBACK LEVEL

Measuring instrument	AC milli-voltmeter
Mode	Playback
Cassette	Alignment tape.(VROCPSV)
Test point	AUDIO OUT jack
Specification	-9 ^{+2dB} _{-1dB} (at RCA jack) -7.8 ^{+2dB} _{-1dB} (at 21pin jack)

- Connect an AC milli-voltmeter to the AUDIO OUT jack.
- 2. Playback the Alignment tape (VROCPSV).
- 3. Make sure that the audio output level is as specified.

CHECKING OF HI-FI AUDIO PLAYBACK LEVEL

Measuring instrument	AC milli-voltmeter
Mode	Playback
Cassette	Alignment tape (VROCBFFS)
Test point	AUDIO OUT jack
Specification	-5 ± 2dBs (at RCA jack) -3.8 ± 2dBs (at 21pin jack)

Connect an AC milli-voltmeter to the AUDIO OUT jack.

- 2. Play the alignment tape (VROCBFFS).
- 3. Make sure that the AUDIO OUT level is as specified. **Note:**

Check the PLAYBACK level is less than 2.0dBs both Left and Right channels.

CHECKING OF HI-FI/NOMAL AUDIO SELF-RECORD/PLAYBACK LEVEL

Measuring instrument	AC milli-voltmeter
Mode	Record/playback
Input signal	1kHz, -8.0dBs (at RCA jack) 1kHz, -3.8dBs (at 21pin jack)
Test point	AUDIO OUT jack
Specification	-8.0 ± 3dBs (at RCA jack) -3.8 ± 3dBs (at 21pin jack)

- 1. Feed the audio signal shown in table to the Left channel of the AUDIO IN jack.
- Connect an AC milli-voltmeter to the Left channel of the AUDIO OUT jack and Right channel of the AUDIO OUT jack.
- Make sure so that the milli-voltmeter reads spcified value.

Note:

Check the PLAYBACK level is less than 2.0dBs both Left and Right channels.

CHECKING OF ERASE VOLTAGE AND OSCILLATION FREQUENCY

	· · · · · · · · · · · · · · · · · · ·
Measuring instrument	Oscilloscope
Mode	Record
Test point	Full erase head
Control	T6301
Specification	70 ± 5kHz, 40Vp-p or greater

- 1. Put the unit in record mode.
- 2. Connect an oscilloscope across thefull erase head.
- 3. Make sure the erase voltage across the full erase head is approx. 40Vp-p or more and frequency is 70 ± 5kHz.

RF CIRCUIT

 $(\cdot,\cdot)_{i=1}^{n}$

ADJUSTMENT OF RF AGC CIRCUIT

Measuring instrument	DC voltmeter and VHF signal generator
Mode	RF signal at E12-CH (by VHF signal generator) (EBU colour bar signal at 87.5% modulated.)
Test point	TP1552 (Sig.) TP1554 (GND)
Control	VR101 AGC control
Specification	2.55 ± 0.1V

- Receive the E12 channel signal (colour bar signal at 87.5% modulated.) at Input field strength: 70dBμV of antenna terminal.
- 2. Connect a DC voltmeter to test points shown in table.
- 3. Adjust VR101 (AGC control) in the IF pack so that the voltage be specified.

6. MECHANISM OPERATION FLOWCHART AND TROUBLESHOOTING GUIDE

MECHANISM OPERATION FLOWCHART

CASSETTE INSERTION → STOP

選択を立

7. TROUBLESHOOTING

)

Replace IC901.

2

∀YES Check Ic9ở1. Replace T901.

2

Check short-circuit or leak of T901.

*YES

Check primary circuit, 0901, 0903

and C913.

▼YES

Replace IC801.

9

receiver and all the way up thru pin (15) of IC801.

Check between at pin (1) of

∀YES

经的 海际

BRUC GERRINGOT LUCTUAR BUTTE SEA GOLDWINARU WOLK

CONTRACTOR SERVICE SERVICES SERVICES

REPLACEMENT OF IC804 (E²PROM)

«Servicing precautions»

When the IC804 (E2PROM) has been replaced, make the following reprogramming.

Depending on models, the IC804 (E2PROM) has been factory adjusted for it's memory function.

It's therefore necessary to reprogram the memory function for the model in question.

Note that the servo circuit requires readjustments for the slow and still modes.

Memory function reprogramming.

- 1. Check the power off. (power is standby mode)
- 2. Make for a moment short-circuit between TP5001 and TP5002, both located at the front side on the main PWB. Be sure that all the fluorescent display tubes light up into the TEST mode.
- 3. Using the CHANNEL (+) and (-) buttons, select the right function numbers from among JP0-JP31, which appear in the fluorescent display tube, referring to the E²PROM map.

Press the DISPLAY button to pick up the functions (ON) and the CLEAR button to discard the functions (OFF). DISPLAY and CLEAR buttons, are located on the remote control unit.

- * When the DISPLAY button has been pressed (ON), the memory function No. starts flashing.
- * When the CLEAR button has been pressed (OFF), the memory function No. lights up.
- 4. Make a short-circuit between TP5003 and TP5004, both located at the front side on the main PWB, and the settings will be displayed in hexadecimal notation.
 - Now you can see if the settings are correct.
- Example: "ON" and "OFF" are taken as "1" and "0" respectively.
 The numbers JP0 to JP31 are divided into four groups and each group's setting is displayed in hexadecimal notation.

J31	J30	J29	J28	J27	J26	J25	J24	J23	J22	J21	J20	J19	J18	J17	J16
0	0	0	0	0	0	0	0	Ò	0	0	0	0	0	0	0
	1	}			1	Ĵ			1	}			7	ا •	
	SPA	CE		·	{	0)			()	
14 =		110													
J15	J14	J13	J12	J11	J10	109	J08	J07	J06	J05	J04	J03	J02	J01	100
0	0	0	0	0	1	0	0	0 .	0	0	0	1	1	0	1
	Ł	}			1	J.			- 1	ነ			Ĺ	J.	
	()			4	4			C))	

[&]quot;000040D" appears in the fluorescent display tube.

6. Finally make for a moment short-circuit between TP5001 and TP5002, both located at the front side on the main PWB to clear the TEST mode or press the OPERATE button to turn the power on.

	L
	Г
	Γ
	Γ
	Γ
	r
	r
	ľ
	l
	ľ
	l
	F
	l
ب	
₹	
≥	l
2	

M 0 M	ROM MAP																			ŀ	ľ				
	MODELS			MUSSIM	MHKITHM				M241GM		MASIGN			WSSISW	M431SM										
		MZ3HM	M24HM		MH64HM	MZ3LM	M24LM	MH64LM	M24GM	M25GM		MH64GM	MH641GM M			MH64SM N	MH641SM N	MZSFPM	M4SFPM	MH63FPM	MH64FPM (M230BM	M250BM	M430BM	MASOBM
JP31		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
98	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28		0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27	I-REPLAY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	÷	0	0	0	-	0	0	1	0	0	-	-	-	Ö	-	-	-	0	-	-	-	0	0	-	-
24	+	-	-	-	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-
83	+	0	0	0	-	0	0	-	0	0	0	-	-	0	0	-		0	0	-	-	0	0	0	0
22	+	0	0	-	-	0	0	-	-	-	-	-	-	0	0	-	-	-	-	-	-	0	0	0	0
72	-i	0	0	-	-	0	0	-	0	-	-	-	-	-	-	-	-	-	÷	-	-	0	0	0	-
202	$\overline{}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	NICAM 1	0	0	0	-	0	0	-	0	0	0	0	0	0	0	-	-	0	0	· ·	-	0	0	0	0
2	+	0	0	0	0	0	0	0	Ģ	0	0	0	0	0	0	-	-	0	0	-	-	0	0	0	0
17	÷	0	0	0	0	0	0	o	-		-	-	-	0	0	-	-	-	1	0	-	0	-	0	0
16	÷	0	-	1	-	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
15	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0
14	-	-		-	-	-	-	-	0	0	-	-	-	0	-	7	-	0	-	-	-	0	0	-	-
13	<u>-i</u>	0	0	0	-	0	0	-	0	0	0	-	-	0	0	-	-	0	0	0	-	0	0	0	Ö
2		0	0	-	-	0	0	-	0	-	-	-	-	-	-	7	-	-	-	÷-	-	0	0	0	0
F	-	0	0	0	0	-	-	-	-	-	-	1	-	-	-	T.	-	-	-	₩.	-	-	-	-	-
9	-	0	0	0	0	-	-	-	0	0	0	0	0	0	0	0	0	-	-	-	-	0	0	0	0
6	-	-	-	-	-	0	0	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	Ö	0	0
00	TUNERO	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	0	0	0	0
7	SYSTEM 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	+	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	ó	0	0
LC	•	 	-	-	-	-	-	-	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	0	0	0	0
(C)	SPETIALIZE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N	+	0	0	-	-	0	0		-	-	-	-	-	0	0	-	-	-	-	-	-	0	- ;	0	
	÷	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-		-!	-
0	-	0	0	0	0	0	0	0	1	-	-	-	-	ļ		-		0	0	0	0	٥	0	0	0
DISI	DISPLAY	1004320	1014320	1615324	1 2E97324	4 1004C	1004320 1014320 1615324 2E97324 1004C20 1014C20 2E97C2	10 ZE97C24	4 0420805	0621805	2625805	2E27805	2E27805 0	0201801	2205801	2EE7805	2EE7805	0621D162	2625D16	2ECSD162EE7D16 1000802	2EE7D16	1000802	1020806	3004802	3024806
				:	_																				

(Note: "1": flashing "0": lights up)

 $x_{\mathcal{F}_{n-1}}$

	MEMO	
;		· · · ·
		ryMac is The constant
	::	x 4.
		A STATE OF THE STA
	111000000000000000000000000000000000000	
	······································	

		15(49)+1511111111111111111111111111111111111

2. AUSBAU UND WIEDERZUSAMMENBAU

2-1 ZERLEGUNG DER WICHTIGSTEN BAUGRUPPEN

GEHÄUSEOBERTEIL BODENPLATTE : Die vier Schrauben ① lösen.

: 2 Schrauben ② und 6 Haken ③

entfernen.

FRONTPLATTE : Den Wechselschalter @ entfernen.

2 Schrauben (5) und 7 Klammern (6)

lösen.

BEDIENUNGSPLATINE: 1 Schraube 7 lösen und vom

Steckverbinder ® nehmen.

BAUGRUPPE

BANDLAUFWERK/

HAUPTPLATINEN

: 1 Schraube @, 2 Schrauben @,

2 Schrauben ①, 1 Schraube ② mit dem MPX-Platinenhalter, 1 Schraube ③ und 1

Steckverbinder @ entfernen.

entfernen. Die Abdeckung des

Antennenanschlusses anheben und die

Einheit aus dem Hauptrahmen nehmen.

2-2 ZERLEGUNG DER BAUGRUPPE LAUFWERK/HAUPTPLATINEN

ABDECKUNG DES: 4 Schrauben (§) lösen. Abschirmgehäuse

ANTENNENentfernen.

ANSCHLUSSES

BAUGRUPPE

KASSETTEN-

GEHÄUSE

LAUFWERK-CHASSIS/

: 3 flexible Flachkabel ® und 2 Kabelbäume

1 entfernen. Darauf achten, daß die Oberund Unterseite der flexiblen Flachkabel

nicht vertauscht wird. 1 Schraube ®

hinter der Hauptplatine lösen.

Das Laufwerkchassis gerade von der Hauptplatine ziehen. Darauf achten, daß die umliegenden Teile nicht beschädigt

werden.

KASSETTEN-

GEHÄUSE

: 2 Schrauben (9 lösen,

2-3 VORSICHTSMASSNAHMEN BEIM WIEDERZUSAMMENBAU

EINBAU DES KASSETTENSTEUERTEILS

Vor dem Einsetzen des Kassettensteuerteils muß die Anfangseinstellung erfolgen. Die Anfangseinstellung umfaßt eine elektrische und eine mechanische Einstellung.

Elektrische Einstellung:

Einen Kurzschluß zwischen TP703 und TP704 herstellen und kontrollieren, daß das Bandlaufwerk sich wieder in der Anfangseinstellposition (*1) befindet. Dann das Kassettensteuerteil einsetzen. (Dieses Verfahren erfolgt, wenn das Bandlaufwerk bereits auf die Platine gesetzt wurde.)

Mechanische Einstellung:

Das Riemenscheiben-Vorschubrad des Ladernotors mit einem Schraubendreher drehen und darauf achten, daß das Bandlaufwerk in seine Anfangseinstellposition (*1) zurückkehrt. Das Kassettensteuerteil einsetzen. (Dieses Verfahren ist nur für das Bandlaufwerk vorgesehen.)

VERBINDUNG DES BANDLAUFWERKS MIT DER PLATINE

Die vorstehenden Teile des Laufwerks mit den beiden Symbolen (rundes Bezugssymbol) und ovales Zusatzbezugssymbol) auf der Hauptplatine ausrichten. Das Laufwerk gerade nach unten einsetzen und darauf achten, daß die Außenkanten des Laufwerkchassis keine benachbarten Teile beschädigen.

Die beiden Schrauben (eine zur Feststellung des Laufwerks und der Kopfverstärkerabschirmung, die andere auf der Lötseite der Hauptplatine in der Nähe des Lademotors) anziehen, um das Laufwerk auf der Platine zu befestigen. Die flexiblen Flachkabel (AN und AS) und den Kabelbaum (AB) zwischen dem Laufwerk und der Platine wieder anschließen. Teile, auf die besonders zu achten ist:

Start- und Endsensoren Q851 und Q852

Löschschutzschalter S851

Der Steckverbinder AE (Platine zu Platine) zwischen dem Laufwerk und der Hauptplatine ist mit besonderer Vorsicht zu behandeln.

3. FUNKTIONEN DER WICHTIGSTEN MECHANISCHEN TEILE (DRAUFSICHT)

Nr.	Funktion	Nr.	Funktion
1.	Vollöschkopf Alte Bandaufnahmen im Aufnahmemodus löschen.	13.	Rücklaufführung Zieht das Band heraus und steuert mit den oberen und unteren Führungen die Bandantriebshöhe.
3.	Spannarm Erkennt die Bandspannung während des Bandlaufs und bremst die Abwickelspulenscheibe über das Spannband.	16.	Andruckrollenhebel Drückt das Band während des Bandlaufs an die Antriebsachse.
7.	Abwicklungshauptbremse Bremst die Abwickelspule, um beim Stoppen in den Betriebsarten Schneller Vorlauf oder Schneller Rücklauf eine lose Bandlage zu vermeiden.	18.	Lademotor Mechanischer Antrieb zur Steuerung des Laufwerks. Die Kraft wird über einen Riemenantrieb auf den Hauptnoken und die Kassettensteuerung übertragen.
9.	Hauptbremse Aufwickeleinheit Bremst die Aufwickelspule, um um beim Stoppen in den Betriebsarten Bandvorlauf und Bandrück- lauf eine lose Bandlage zu vermeiden.		

(ANSICHT VON-UNTEN) : Manches and antique of the Color of the Latter and the Manches

Nr.	Funktion	Nr.	Funktion
1. 3 entires 7	Langsambandlauf-Bremshebel Erhält im Modus Zeitlupe/Standbild Kontakt mit dem Capstan-Direktantriebsmotor, der mit dem Hauptnocken verbunden ist, und bremst ihn in einem gewissen Maß ab.	6.	Limiter-Riemenscheibe Überträgt die Kraft des Capstan-Direktantriebs- motors über das Spulenzwischenrad auf die Spu- lenscheibe.
3	Capstan-Direktantriebsmotor Mechanischer Antrieb des Laufwerks. Die Kraft wird über einen Antriebsriemen übertragen.	· 8.	Schieber Überträgt die Bewegung des Hauptnockens auf die Bremse, das Laderad, den Spannarm und den Kupplungshebel.
4.	Antriebsriemen Überträgt die Kraft, um das Band zur Limiter- Riemenscheibe zu transportieren.	9.	Aufwickel-Ladezahnrad Schaltet die Aufwickelstabbasis und die Führungsrolle durch das Ladezahnrad Tum und legt das Band um die Trommel. Außerdem überträgt es die Kraft auf die Ladezahnräder.

4. EINSTELLUNGEN, AUSTAUSCH UND MONTAGE DER MECHANISCHEN TEILE

Imfolgenden werden einige relativ einfache Wartungsmaßnahmen für diese Komponenten beschrieben. Die komplizierteren Reparaturen, die den Einsatz von Spezialinstrumenten und -werkzeugen erfordern (z.B. Austausch der Trommel) werden hier nicht erwähnt.

Die im folgenden aufgeführten, einfach zu handhabenden Werkzeuge eignen sich für die regelmäßige Wartung, um das Gerät im Originalzustand zu halten.

WERKZEUGE FÜR DIE EINSTELLUNG DER MECHANISCHEN TEILE

Die folgenden Werzeuge sind für eine ordnungsgemäße Wartung und zufriedenstellende Reparatur erforderlich.

Nr.	Werkzeug	Teil Nr.		Aussehen	Bemerkungen	
1	Einstellvorrichtung für die Spulenscheibenhöhe	JiGRH0002	BR	<i>Q</i>	Diese Werkzeuge dienen der Üt	
2	Hauptschablone	JiGMP0001	BY	(6.0)	prüfung und Einstellung der Spulen scheibenhöhe.	
4	Drehmomentmesser (90 g)	JIGTG0090	СМ			
. 	Drehmomentmesser (1,2 kg)	JiGTG1200	CN		Diese Werkzeuge dienen der Über prüfung und Einstellung des Dreh	
5	Drehmomentmesserkopf	JiGTH0006	AW		moments der Auf- und Abwickelspul	
6	Kasetten- Drehmomentmesser	JiGVHT-063	cz		Dieser Kassetten-Drehmomentmes wird zur Überprüfung und Einstelli des Drehmoments der Aufwickelsp und zum Messen des Bandrückzi verwendet.	
7	Spannungsmesser (300 g)	JIGCG0300	BF		Mit diesen beiden Werkzeugen (300 und 2,0 kg) wird die Spannung gemes	
	Spannungsmesser (2,0 kg)	JiGSG2000	BS		sen.	
8	Innensechskantschlüssel (0,9 mm)	JiGHW0009	AE		Mit diesen Werkzeugen werden di Innensechskantschrauben gelöst un	
	Innensechskantschlüssel (1,5 mm)	JiGHW0015	AE		angezogen.	
9	Abgleichband (PAL)	VROCPSV	СК		Mit diesen Spezialbändern ist ein elektrische Feineinstellung möglich.	
11	Adapter für Spannungsmesser	JiGADP003	вк	G R	Dieser Adapter wird zusammen mit der Spannungsmesser verwendet, um da Spiel des Drehtransformators einzu stellen.	
12	Spezialschraubendreher	JiGDRiVERH-4	AP		Mit diesem Schraubendreher wird di Höhe der Führungsrolle eingestellt.	

Ñr.	Werkzeug	Teil Nr.		Aussehen	Bemerkungen
14	Drehmoment- Schraubendreher	JiGTD1200	СВ		Mit diesem Werkzeug werden Kunst- stoffteile angezogen. Das Anzugs- moment beträgt 5 kg.
15	Vierkantsteckschlüssel M3x5,5 mm für Rückwärtsführung	JiGDRiVER11055	AR		Mit diesem Werkzeug wird die Höhe der Rückwärtsführung eingestellt.
17	Höheneinstellwerkzeug für Rückwärtsführung	JIGRVGH-F18	BU		Mit diesem Werkzeug wird die Höhe der Rückwärtsführung eingestellt.
18	Zahnschlüssel	JiGDRIVER-6	вм		Für X-Wert-Einstellung.

MECHANISCHE TEILE, DIE REGELMÄSSIG ÜBERPRÜFT WERDEN MÜSSEN

Die folgende Tabelle dient als Richtlinie für die Instandhaltung der mechanischen Teile.

Wartungsabstände Teile	500 Std.	1000 Std.	1500 Std.	2000 Std.	Mögliche Störungen	Bemerkungen	
Führungsrollenbaugruppe				0		Bei unregelmäßiger Drehung oder starker Vibration austauschen.	
Abwickelführungswelle					Seitengeräusche, Kopf	Bandkontaktbereich mit angegebenem Reinigungsmittel reinigen.	
Rückhalteführung					gelegentlich blockiert.		
Schrägstab				0			
Baugruppe obere und untere Trommel		00	00	00	Schlechter Rauschabstand, keine Farbwiedergabe. Unzu- reichende Flachheit der Hüllkurve mit dem Abgleichband.	Bandkontaktbereich mit angegebenem Reinigungsmittel reinigen.	
Vollöschkopf				0	Schlechte Farbwiedergabe, Überlagerungen.		
Ton-/Steuerkopf				0	Klangwiedergabe zu schwach oder verzerrt.		
Capstan-Direktantriebsmotor				0	Kein Bandtransport, ungleich- mäßige Farbwiedergabe.		
Andruckrolle				0	Kein Bandtransport, lose Bandlage.	Gummiteile und Gummikontaktbereich mit angegebenem Reinigungsmittel reinigen.	
Antriebsriemen				0	Kein Bandtransport, lose Bandlage, kein schneller Vorlauf/Rücklauf.		
Spannbandbaugruppe				0	Kassette wird nicht geladen		
Lademotor				0	oder nicht entladen.		
Spannrollenbaugruppe				0	Kein Bandtransport.		
Baugruppe Limiter-Riemenscheibe				0			
Hauptbremshebel Auf-/Abwicklung				0	Lose Bandlage.		
AHC (Automatischer Kopfreiniger)		0		0		Bei Abnutzung die Walze des Reinigers austauschen. Die AHC-Walzenbaugruppe komplett auswechseln.	

Till Tree C. Toll addition	HINWEIS:	O: Teil	auswec	hsel
----------------------------	----------	---------	--------	------

△: Ölen (die angegebene Komponente muß alle 1000 Betriebsstunden mit hochwertigem Spindelöl geschmiert werden).

Falls ein Meßwert außerhalb des angegebenen Bereiches liegt, das betreffende Teil reinigen oder austauschen.

^{☐:} Reinigung (zum Reinigen ein fusselfreies, mit reinem Isopropylalkohohl angefeuchtetes Tuch verwenden).

AUS- UND EINBAU DES KASSETTENSTEUERTEILS

Ausbau

- Den Modus Kassettenauswurf wählen und die Kassette auswerfen lassen.
- 2. Netzstecker ziehen.
- 3. Die nachfolgenden Schritte in der vorgegebenen Reihenfolge ausführen.
 - a) Die Montageschrauben (1) am Kassettengehäuse lösen.
 - b) Das Kassettensteuerteil verschieben und nach oben herausziehen.

Abbildung 4-2.

Das Verfahren für den Einbau in umgekehrter Reihenfolge durchführen.

Hinweise:

- Wenn ein Schraubendreher mit magnetisierter Spitze benutzt wird, diese unbegingt vom Ton-/Steuerkopf, Vollöschkopf und von der Trommel fernhalten.
- ② Beim Ausbau und Einbau darauf achten, daß das Kassettensteuerteil oder die Werkzeuge nicht gegen den Führungsstift, die Trommel oder andere Bauteile stoßen.
- ③ Kassette nach dem Einbau einmal in das Kassettensteuerteil einlegen.

BANDLAUF OHNE KASSETTENSTEUERTEIL

- Vor dem Einschalten einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine.
- 2. Netzstecker anschließen.
- 3. Gerät einschalten.
- 4. Kassettendeckel von Hand öffnen.
- 5. Deckel mit zwei Klebestreifen fixieren.
- 6. Kassette in das Laufwerkchassis einlegen.
- 7. Kassette mit einem Gewicht (500 g) stabilisieren, um ein Flattern zu verhindern.
- 8. Testlauf durchführen.

Abbildung 4-1.

• Einbau

 Vor dem Einbau des Steuerteils einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Netzstecker anschließen. Das Antriebsrad des Kassettensteuerteils bewegt sich und stoppt genau an dem Punkt, an dem das große Zahnrad im Fenster des Laufwerkchassis erscheint. Zahn 2 des Kassettensteuer-Zahnrades mit Zahn 3 des Antriebswinkels der Kassettensteuerung ausrichten, wie in Abb. 4-2 dargestellt. Damit wird das Kassettensteuerteil in seine korrekte Position auf dem Laufwerkchassis geführt.

Abbildung 4-3.

Hinweis:

Das Gewicht darf nicht schwerer als 500 g sein.

AUSWECHSELN, KONTROLLE DER HÖHENEINSTELLUNG UND EINSTELLUNG DER SPULENSCHEIBEN

- Ausbau (Abwickel- und Aufwickelspulenscheiben)
- 1. Kassettensteuerteil ausbauen.
- 2. Spannband aus dem Spannarm ziehen.
- Hilfsbremshebel der Abwickel-/Aufwickeleinheit per Hand lösen. Der Ausbau der Hauptbremse der Abwickel/ Aufwickeleinheit wird damit überflüssig.
- Haken an der Oberseite der Spulenscheibe öffnen und die Spulenscheibe herausnehmen.

<lm Modus EJECT oder UL STOP>

Abbildung 4-4.

Einbau (Abwickelspulenscheibe)

- 1. Spulenscheibenwelle reinigen und schmieren.
- Die Phase der Spulenscheibe mit der Phase des Spulenrelaiszahnrades ausrichten und eine neue Abwickelspulenscheibe auf der Welle montieren.
- Spannband um die Abwickelspulenscheibe montieren und in die Öffnung des Spannarms führen. Dabei muß der Hilfsbremshebel der Abwickelspule gelöst sein.
- 4. Spulenscheibenhöhe kontrollieren.

Hinweise:

- Darauf achten, daß das Spannband während des Einbaus der Abwickelspulenscheibe nicht verformt wird.
- ② Darauf achten, daß die Hauptbremse der Abwickeleinheit und das Spulenrelaiszahnrad nicht beschädigt werden.

Einbau (Aufwickelspulenscheibe)

- 1. Spulenscheibenwelle reinigen und schmieren.
- Hilfsbremshebel der Aufwickelspulenscheibe lösen und die Phase der Spulenscheibe mit der Phase des Spulenrelaiszahnrades ausrichten. Eine neue Aufwickelspulenscheibe auf der Welle montieren.
- Die H\u00f6he der Spulenscheibe kontrollieren und die Hauptbremse der Aufwickelspule einbauen

Hinweis:

Darauf achten, daß die Hauptbremse der Aufwickelspule nicht beschädigt wird.

* Nach dem Einbau die Rückzugkraft des Bildsuchrücklaufs (siehe Seite 16) sowie das Drehmoment der Bremse (siehe Seite 18) prüfen.

Überprüfung und Einstellung der Höhe Hinweis:

Die Hauptplatte auf dem Laufwerk montieren und darauf achten, daß sie nicht gegen die Trommel stößt (siehe Abb. 4-6).

Hauptplatte aufsetzen und Rücklaufführung mit dem Finger lösen.

Wenn das Spannband beim Ausbau in Pfellrichtung gedrückt wird, ist ein größerer Kraftaufwand zum Lösen der Arretierung erforderlich.

Abbildung 4-5.

Abbildung 4-6.

 Die Spulenscheibe muß zwischen den Positionen A und B liegen. Wenn die Höhe der Spulenscheibe nicht korrekt ist, wird sie durch Auswechseln der Poly-Schieberscheibe unter der Spulenscheibe justiert.

Hinweis:

Bei jedem Auswechseln der Spulenscheibe muß die Höhe gemessen und justiert werden.

Abbildung 4-7.

ÜBERPRÜFUNG UND EINSTELLUNG DES AUFWICKELDREHMOMENTS IM MODUS SCHNELLER VORLAUF

- Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.

Vorbereitung

- Einen Drehmomentmesser auf Null stellen und auf die Aufwickelspulenscheibe setzen.
- Die FF-Taste betätigen, um das Laufwerk in den Modus Schneller Vorlauf zu schalten.
- Um die Restkapazität des Wiedergabemodus zu pr
 üfen, die Abwickelspulenscheibe langsam drehen und dann in den Vorlaufmodus stellen.

Überprüfung

- Den Drehmomentmesser langsam von Hand in Aufwickelrichtung drehen (eine Drehung alle 2 bis 3 Sekunden).
- Überprüfen, ob das Aufwickeldrehmoment größer als 69 mNm (700 gf-cm) ist.

Abbildung 4-8.

Einstellung

- Wenn das Aufwickeldrehmoment außerhalb des angegebene Bereiches liegt, die Riemenscheibe des Capstan-Direktantriebsmotors, den Antriebsriemen und die Limiter-Riemenscheibe mit Reinigungsmittel reinigen. Das Drehmoment erneut kontrollieren.
- Wenn das Aufwickeldrehmoment noch immer außerhalb des Bereiches liegt, den Antriebsriemen austauschen.

Hinweise

- Den Drehmomentmesser nach unten drücken, damit er nicht abspringt.
- 2. Beim Überprüfen des Aufwickeldrehmoments die Spulenscheibe nicht für längere Zeit blockieren.

ÜBERPRÜFUNG UND EINSTELLUNG DES AUFWICKELDREHMOMENTS IM RÜCKLAUFMODUS

- · Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.

Vorbereitung

- Einen Drehmomentmesser auf Null einstellen und auf die Abwickelspulenscheibe setzen.
- Die REW-Taste betätigen, um das Laufwerk in den Rücklaufmodus zu schalten.
- 3. Um die Restkapazität zu prüfen, die Aufwickelspulenscheibe langsam drehen und dann in den Rücklaufmodus stellen.

Überprüfung

- Den Drehmomentmesser langsam von Hand in Aufwickelrichtung drehen (eine Drehung alle 2 bis 3 Sekunden).
- Überprüfen, ob das Aufwickeldrehmoment größer als 69 mN-m (700 gf-cm) ist.

Abbildung 4-9.

Einstellung

- Wenn das Aufwickeldrehmoment außerhalb des angegebenen Bereiches liegt, die Riemenscheibe des Capstan-Direktantriebsmotors, den Antriebsriemen und die Limiter-Riemenscheibe mit Reinigungsmittel reinigen. Das Drehmoment erneut kontrollieren.
- 2. Wenn das Aufwickeldrehmoment noch immer außerhalb des Bereiches liegt, den Antriebsriemen austauschen.

Hinweise:

- Den Drehmomentmesser nach unten drücken, damit er nicht abspringt.
- 2. Beim Überprüfen des Aufwickeldrehmoments die Spulenscheibe nicht für längere Zeit blockieren.

ÜBERPRÜFUNG UND EINSTELLUNG DES AUFWICKELDREHMOMENTS IM WIEDER-GABEMODUS

- 1. Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.
- Den Deckel des Kassetten-Drehmomentmessers öffnen und mit zwei Klebestreifen fixieren.
- 4. Den Kassetten-Drehmomentmesser in das Gerät legen.
- Das Gewicht (500 g) auf den Kassetten-Drehmomentmesser legen.
- REC-Taste drücken, um das Gerät in den Aufnahmemodus zu schalten.

LP-Einstellwert 10,5 \pm 3,8 mN-m (107 \pm 39 gf-cm)

Abbildung 4-10.

Überprüfung

- Kontrollieren, ob das Drehmoment in einem Bereich von 10,5 ± 3,8 mN-m (107 ± 39 gf-cm) liegt.
- Das Drehmoment schwankt aufgrund der Rotationsabweichung der Limiter-Riemenscheibe. Den Mittelwert der Messungen verwenden.
- Das Gerät in den LP-Aufnahmemodus schalten und kontrollieren, ob das Drehmoment innerhalb des o.a. Bereiches liegt.

Einstellung

Falls das Aufwickeldrehmoment im Wiedergabemodus außerhalb des Bereiches liegt, die Limiter-Riemenscheibe austauschen. Hinweis:

Den Kassetten-Drehmomentmesser stabilisieren, um eine Verschiebung zu vermeiden.

ÜBERPRÜFUNG UND EINSTELLUNG DES AUFWICKELDREHMOMENTS IM MODUS BILDSUCHRÜCKLAUF

- · Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.

Vorbereitung

- Die PLAY-Taste betätigen, um das Gerät in den Wiedergabemodus zu schalten.
- Die REW-Taste betätigen, um das Gerät in den Modus Bildsuchrücklauf zu schalten.

Überprüfung

 Den Drehmomentmesser auf die Abwickelspulenscheibe setzen und sehr langsam gegen den Uhrzeigersinn drehen (eine Umdrehung alle 1 bis 2 Sekunden). Kontrollieren, ob das Drehmoment mit dem Vorgabewert von 14,0 ± 3,9 mN-m (144 ± 40 gf-cm) übereinstimmt.

Abbildung 4-11.

Hinweis

Den Drehmomentmesser vorsichtig auf die Abwickelspulenscheibe setzen. Wenn er nicht korrekt aufliegt, werden falsche Meßergebnisse angezeigt.

Einstellung

Wenn das Aufwickeldrehmoment im Modus Bildsuchrücklauf außerhalb des angegebenen Bereiches liegt, muß die Limiter-Riemenscheibe ausgetauscht werden.

Hinweis:

Das Drehmoment schwankt aufgrund der Rotationsabweichung der Limiter-Riemenscheibe. Den Mittelwert der Messungen verwenden.

ÜBERPRÜEUNG DES RÜCKZUGS IN DER BILDSUCHLAUF-RÜCKSPUL-BETRIEBSART

- Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.

2010/19/04/03

good, Oha

- Überprüfung
- 1. Die PLAY-Taste betätigen, um das Gerät in den Wiedergabemodus zu schalten.
- 2. Die REW-Taste betätigen, um das Gerät in den Modus Bildsuchrücklauf zu schalten. 2 PMC 11 ORT 1
- 3. Den Drehmomentmesser auf die Aufwickelspulenscheibe setzen und sehr langsam gegen den Uhrzeigersinn drehen (eine Umdrehung alle 2 bis 3 Sekunden). Kontrollieren, ob das Drehmoment mit dem Vorgabewert von 3,0 ± 1 mN-m (31 ± 10 gf-cm) übereinstimmt.

Abbildung 4-12.

Hinweise:

- ① Den Drehmomentmesser vorsichtig auf die Aufwickelspulenscheibe setzen. Wenn er nicht korrekt aufliegt, werden falsche Meßergebnisse angezeigt.
- 2 Das Drehmoment messen, während das Gewicht des Drehmomentmessers auf die Spulenscheibe wirkt.

ÜBERPRÜFUNG DES ANDRUCKROLLEN-DRUCKS

• Kassettensteuerteil entfernen. setter in other many than

programmed the subward being

ROBERT CAR BUT A TO AND TO SEE

- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten. Paradolf I reflect the
- Überprüfung

Die PLAY-Taste betätigen, um das Gerät in den Wiedergabe modus zu schalten.

> Das Diehreum int schwert der Limiter-Hieron 🛴 👵 u

el e stelly la astra malestoa

一点,一点一点,不是要不是各种的基础

Abbildung 4-13.

- 1. Andruckrolle von der Capstan-Welle trennen.
- 2. Den Spannungsmesser montieren, indem der Adapter des Spannungsmessers an der Andruckrollenwelle eingehängt
- 3. Den Druck nach und nach verringern, bis die Andruckrolle die Capstan-Welle berührt. Genau in dem Augenblick den Meßwert ablesen.
- 4. Der Meßwert muß in einem Bereich von 900 g bis 1.200 g

ÜBERPRÜFUNG UND EINSTELLUNG DER **SPANNSTABPOSITION**

- Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.
- Vorbereitung
- 1. Den Deckel der Videokassette (E-180) öffnen und mit zwei Klebestreifen fixieren.
- 2. Die Kassette in das Gerät einlegen.
- 3. Das Gewicht (500 g) auf die Kassette legen.
- 4. Die Einstellung am Anfang des E-180-Bandes vornehmen.

Abbildung 4-14.

Überprüfung

1. Eine Kassette einlegen und die REC-Taste drücken. Wenn das Band eingezogen ist, die Position des Spannstabes kontrollieren.

 Visuell überprüfen, ob die Mitte des Spannstabes auf einer Linie 1,3 mm links von der Mittelline der Abwickel-Führungswelle liegt. Bei Bedarf eine Einstellung nach folgenden Schritten vornehmen.

Abbildung 4-15.

Talls die Mitte des Spannstabes links von der gepunkteten Linie liegt:

Abbildung 4-16.

Die Klinge eines Schraubendrehers in den EINSTELLER des Spannstabes führen und im Uhrzeigersinn drehen.

Wenn der Rand des Spannstabes rechts von der gepunkteten Linie liegt:

Abbildung 4-17.

Die Klinge eines Schraubendrehers in den Einsteller des Spannstabes führen und gegen den Uhrzeigersinn drehen.

- 3 Einstellbereich des des Spannstabeinstellers.
- ④ Einstellbereich des Spannstabeinstellnockens.

Abbildung 4-18.

Den Spannstabeinsteller so justieren, daß die Kreismarkierung auf dem Nocken innerhalb von 90° links und rechts von der Mitte liegt.

ÜBERPRÜFUNG UND EINSTELLUNG DES RÜCKZUGS BEI AUFNAHME/WIEDERGABE

- · Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.
- Vorbereitung
- Den Deckel der Drehmomentmesser-Kassette öffnen und mit zwei Klebestreifen fixieren.
- 2. Die Drehmomentmesser-Kassette in das Gerät einlegen.
- Das Gewicht (500 g) auf die Drehmomentmesser-Kassette legen.

Abbildung 4-19.

Überprüfung

- Die REC-Taste betätigen, um das Gerät in den Aufnahmemodus zu schalten.
- Kontrollieren, ob der Meßwert für den Rückzug in einem Bereich von 31 bis 38 g-cm liegt.

Hinweise.

- 1. Darauf achten, daß das Band um die Rückhalteführung läuft.
- 2. Darauf achten, daß das Band nicht lose aufgewickelt oder an einem Ende beschädigt ist.

• Einstellungmaßer engagn) indag i hab avoldbaar dilaam 3.70

at the state

- Wenn der Meßwert am Kassetten-Drehmomentmesser unter dem angegebenen Wert liegt; den Spannungsf\u00e9derh\u00e4ken nach A bewegen.
- Wenn der Meßwert am Kassetten-Drehmomentmesser über über dem angegebenen Wert liegt, den Spannungsfederhaken nach B bewegen.

into alter residu ion in the consideraci

Abbildung 4-20.

ÜBERPRÜFUNG DES BREMSDREHMOMENTS

• Überprüfung des Bremsdrehmomentes an der Abwickelseite

Gegen den Uhrzeigersinn: Im Uhrzeigersinn: 5.9~9.8mN·m (60~100gf·cm) 10~32mN·m (100~330gf·cm)

Abbildung 4-21.

- Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.
- Vorbereitung
- Einen Drehmomentmesser auf Null einstellen und auf die Abwickelspulenscheibe setzen.
- 2. Vom Schnellen Vorlauf in den STOP-Modus umschalten.
- 3. Den Netzstecker ziehen.

Überprüfung

1. Den Drehmomentmesser langsam (ca. eine Umdrehung in 2 Sekunden) im und gegen den Uhrzeigersinn der Abwickelbremse drehen. Die Spulenscheibe und der Zeiger des Drehmomentmessers müssen sich mit gleicher Geschwindigkeit drehen. Kontrollieren, ob die Werte beim Drehen im Uhrzeigersinnn in einem Bereich von 10~32 mN-m (100~330 gf-cm) und beim Drehen gegen den Uhrzeigersinn in einem Bereich von 5,9~9,8 mN-m (60~100 cf-cm) liegen. Das Bremsdrehmoment muß beim Drehen im Uhrzeigersinn mindestens doppelt so hoch wie beim Drehen gegen den Uhrzeigersinnsein sein.

Überprüfung des Bremsdrehmomentes an der Aufwickelseite

Gegen den Uhrzeigersinn: Im Uhrzeigersinn: 9.8~34mN·m (100~340gf·cm) 4~8.3mN·m (40~85gf·cm)

Abbildung 4-22.

- Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen. Beide befinden sich auf der linken Seite der Hauptplatine. Gerät einschalten.

Vorbereitung

- Ein Drehmomentmeter auf Null einstellen und auf die Aufwickelspulenscheibe setzen.
- 2. Vom Schnellen Vorlauf in den STOP-Modus umschalten.
- 3. Den Netzstecker ziehen.

Überprüfung

1. Den Drehmomentmesser langsam (ca. eine Umdrehung in 2 Sekunden) im und gegen den Uhrzeigersinn der Aufwikelbremse drehen. Die Spulenscheibe und der Zeiger des Drehmomentmessers müssen sich mit gleicher Geschwindigkeit drehen. Kontrollieren, ob die Werte beim Drehen im Uhrzeigersinnn in einem Bereich von 9,8~34 mN-m (100~340 gf-cm) und beim Drehen gegen den Uhrzeigersinn in einem Bereich von 4~8,3 mN-m (40~85 cf-cm) liegen. Das Bremsdrehmoment muß beim Drehen gegen den Uhrzeigersinn mindestens doppelt so hoch wie beim Drehen im Uhrzeigersinn sein.

Einstellung des Bremsdrehmomentes an der Abwickelund Aufwickelseite

- Wenn das Bremsdrehmoment außerhalb des angegebenen Bereiches liegt, den Bremshebelfilz der Abwickelspulenscheibe oder der Aufwickelspulenscheibe reinigen. Das Drehmoment erneut messen.
- Falls das Bremsdrehmoment an der Abwickel- oder Aufwickelseite noch immer außerhalb des Bereiches liegt, die Hauptbremse austauschen.

Hinweis:

Beim Austauschen der Hauptbremse die Höhe der Spulenscheiben überprüfen und einstellen (siehe Seite 13) und das Bremsdrehmoment kontrollieren.

AUSWECHSELN DES TON-/STEUERKOPFES

- 1. Kassettensteuerteil entfernen.
- Das Gerät in den Entlademodus schalten und den Netzstecker ziehen.

Ausbau

- Die Schrauben AB©①② lösen.
- Die Ton-/Steuerkopfplatine, die an die Ton-/Steuerkopfbaugruppe gelötet ist, lösen.

Hinweise:

- Nach dem Auswechseln stets den Bandantriebszug einstellen (siehe Seite 21). Der Kopf darf keinesfalls berührt werden. Den Kopf nach versehentlichem Berühren mit Alkohol reinigen.
- Darauf achten, daß die Federn beim Lösen der Schrauben (B)© nicht abspringen.

Abbildung 4-23.

Auswechseln

- Die ausgebaute Ton-/Steuerkopfplatine auf eine neue Ton-/ Steuerkopfbaugruppe löten.
- Die H\u00f6he des Ton-/Steuerkopfarms (Unterkante) zur Ton-/ Steuerkopfplatte (Schraubenbereich) mit den Schiebern auf 10,3 mm einstellen. (3 Positionen) (Siehe folgende Abbildung.)

Abbildung 4-24.

3. Die linke Seite des Zähnrades am Ton-/Steuerkopfarm mit der Markierung auf dem Chassis ausrichten. Die Schrauben ① und ② vorläufig so anziehen, daß sich der Ton-/Steuerkopfarm reibungslos bewegen läßt.

(Hinweis: Drehmoment für das vorläufige Anziehen der Schrauben: 0,2 Nm als Richtwert)

Hinweis:

Die Höheneinstellung des Ton-/Steuerkopfes kann beim endgültigen Anziehen der Schrauben variieren, wenn die Schrauben ① und ② vorläufig zu locker angezogen wurden.

[Grobeinstellung der Ton-/Steuerkopfhöhe]

Abbildung 4-26.

Vorbereitung

- ① Die Kassette in das Bandlaufwerk einlegen.
- Die PLAY-Taste betätigen, um das Gerät in den Wiedergabemodus zu schalten.
- ③ Die H\u00f6he des Ton-/Steuerkopfes durch Drehen der Schraube
 ⑤ grob einstellen, bis sich das Band in der folgenden Position befindet.

Abbildung 4-27.

Einstellung

Die Schraube (©) so einstellen, daß der Steuerkopf 0,3 bis 0,5 mm unterhalb der unteren Bandkante sichtbar wird.

HÖHENEINSTELLUNG DER RÜCKLAUF-FÜHRUNG

[Höheneinstellung der Rücklaufführung]

- ① Den Öffnungshebel entfernen (Abbildung 4-29(a)).
- ② Im Bandlademodus zunächst die Einstellung an der 13,38 mm-Seite vornehmen, Die Einstellmutter für die Rücklaufführung um 1/10 Drehung gegen den Uhrzeigersinn drehen.
- ③ Eine Kassette einlegen, den Wiedergabemodus einschalten und darauf achten, daß das Band in der Nähe der Rücklaufführung keine Falten aufweist:
- Mit einem handelsüblichen Steckschlüssel die Höheneinstellmutter justieren.

Abbildung 4-29 (a).

Abbildung 4-29 (b).

EINSTELLUNG DES BANDANTRIEBSZUGS

- Kassettensteuerteil entfernen.
- Einen Kurzschluß zwischen TP5005 und TP5006 herstellen.
 Beide befinden sich auf der linken Seite der Hauptplatine.
 Gerät einschalten.

- 5. Den Ton-/Steuerkopf einstellen. (Siehe Seite 19.)
- 6. Grobeinstellung des Bandantriebszugs.
 - a) Das Oszilloskop am Prüfpunkt für das Hüllkurvenausgangssignal PB CHROMA (TP301) anschließen. Die Synchronisation des Oszillators auf EXT einstellen. Das PB CHROMA-Signal wird durch den Kopfumschaltimpuls (TP302) ausgelöst.
 - b) Die Einstellschraube an der unteren Führungsrolle lösen und mit einem Justierschraubendreher (JiGDRIVERH-4) so einstellen, daß die Führungsrolle sich reibungslos dreht. (Die Einstellschraube nicht zu sehr lösen, da die Führungsrolle dadurch instabil wird.) (Siehe Abbildung 4-30.)
 - c) Das Abgleichband (Monoskopmuster) auf die Spulenscheibe setzen und das Gerät in den Wiedergabernodus schalten. (Ein Gewicht von ca. 500 g auf die Kassette legen, um sie zu stabilisieren.)
 - d) Im Einstellmodus für den X-Wert (siehe unter Elektrische

Abbildung 4-30.

Abbildung 4-31.

Einstellungen) die Hüllkurvenwellenform durch Betätigung der Spurlagentaste (+) oder (-) von MAX auf MIN und MIN auf MAX ändern. Überprüfen, ob die Wellenform linear ist.

- e) Wenn kein linearer Frequenzgang vorliegt, die Führungsrollen auf der Abwickel- und Aufwickelseite mit einem Justierschraubendreher grob einstellen, bis ein linearer Frequenzgang erreicht ist.
- f) Die Schraube (A) festziehen, um Falten im Band an den Flanschen der Rückhalteführung zu glätten.
 - Das Band herausnehmen, um es auf Faltenbildung im Flanschbereich der Rückhalteführung zu kontrollieren.
 - (1) Keine Faltenbildung.
 - Die Schraube (A) im Uhrzeigersinn drehen, bis im Flanschbereich Falten im Band entstehen. Die Schraube (A) dann exakt bis zu dem Punkt zurückdrehen, an dem die Falten sich auflösen.
 - (2) Faltenbildung erkennbar:
 - Die Schraube (A) gegen den Uhrzeigersinn exakt bis zu dem Punkt drehen, an dem die Falten sich auflösen.

Wenn die Schraube (A) im Uhrzeigersinn gedreht wird, entstehen Falten am unteren Flansch.

Hinweise:

- Den Spurlagenregler in die Mittelposition bringen und die X-Position so einstellen, daß die PB Hüllkurve den Maximalpegel erreicht. Dadurch vereinfacht sich die Grobeinstellung des Bandantriebszugs.
- Bei der Grobeinstellung besonders auf die Ausgangsseite achten.

Target

Abbildung 4-34.

- 7. Einstellung der Höhe von Ton-/Steuerkopf und Azimut
 - a) Ein Oszilloskop an die Audio-Ausgangsbuchse anschließen.
 - b) Ein Abgleichband mit linearem Standardsignal von 1 kHz einlegen. Die Schrauben (B) und (C) so einstellen, daß der Audioausgang seinen maximalen Wert erreicht. Schraube (A) so einstellen, daß keine Faltenbildung im Band an der Flansch der Rückhalteführung auftritt. (Siehe S. 21, Punkt 6.) Die Schrauben (B), (C) und (A) in dieser Reihenfolge wiederholt justieren, bis der Audioausgang seinen maximalen Wert erreicht (normalerweise ein- bis dreimal).
 - c) Ein Abgleichband mit einem linearen Audiosignal von 6 kHz einlegen. Schraube ® so einstellen, daß der Audioausgang seinen maximalen Wert erreicht.

- 8. Einstellung von Bandantriebszug und X-Position
 - a) Das Oszilloskop am Prüfpunkt für das Hüllkurvenausgangssignal PB (TP301) anschließen. Die Synchronisation des Oszillators auf EXT einstellen.
 Das PB Signal wird durch den Kopfumschaltimpuls (TP302) ausgelöst.
 - b) Das Abgleichband für den Bandantriebszug abspielen lassen.
 - c) Die Hüllkurvenwellenform mit der Taste (+) oder (-) von MAX auf MIN und von MIN auf MAX ändern. Die Führungsrollenhöhe auf der Abwickel- und Aufwickelseite mit einem Justierschraubendreher so einstellen, daß eine Hüllkurve mit möglichst linearem Frequenzgang entsteht.
 - d) Wenn sich das Band über oder unter der Bandschrägführung befindet, nimmt die PB Hüllkurve die in Abbildung 4-35 dargestellte Form an.
 - e) Die Hüllkurve auf den maximalen linearen Frequenzgang einstellen, wie in Schritt 6. e) auf Seite 21 erläutert.
 - f) Die Spurlagentaste (+) oder (-) betätigen, um zu sicherzustellen, daß ein linearer Frequenzgang für die Hüllkurve erreicht wurde.
 - g) Die Führungsrolle durch Feststellen der Führungsrollen-

	Wenn sich das Band über der Bandschrägführung befindet.		Wenn sich das Band unter der Bandschrägführung befindet	
	Abwickelseite	Aufwickelseite	Abwickelseite	Aufwickelseite
Einstellung	Die Führungsrolle auf der Abwickelseite im Uhrzeiger- sinn drehen (Führungsrolle wird abgesenkt), um einen linearen Frequenzgang der Hüllkurve zu erzielen.	Die Führungsrolle auf der Aufwickelseite im Uhrzeiger- sinn drehen (Führungsrolle wird abgesenkt), um einen linearen Frequenzgang der Hüllkurve zu erzielen.	Die Führungsrolle auf der Abwickelseite gegen den Uhr- zeigersinn drehen (Führungs- rolle wird angehoben), um das Band über der Band- schrägführung anzuordnen: Die Führungsrolle auf der Abwickelseite wird dann im Uhrzeigersinn gedreht, um einen Ilnearen Frequenzgang der Hüllkurve zu erzielen.	Die Führungsrolle auf der Aufwickelseite gegen den Uhr- zelgersinn drehen (Führungs- rolle wird ange-hoben), um das Band über der Band- schrägführung anzuordnen. Die Führungsrolle auf der Auf- wickelseite wird dann im Uhr- zeigersinn gedreht, um einen linearen Frequenzgang der Hüllkurve zu erzielen.

Abbildung 4-35.

- Einstellschraube im Endlademodus sichern.
- h) Das Abgleichband für den Bandantriebszug abspielen lassen und sicherstellen, daß sich die Hüllkurvenwellenform nicht ändert.
- 9. Einstellung der X-Position des Ton-/Steuerkopfes
 - a) Im Einstellmodus für den X-Wert (siehe unter Elektrische Einstellungen) einen Kurzschluß zwischen TP5005 und TP5006 herstellen, um die Spurlage zu zentrieren. Beide Bauelemente befinden sich auf der linken Seite der Hauptplatine.
 - b) Den Ton-/Steuerkopfarm mit einem Justierzahnschlüssel verstellen und die Position des Ton-/Steuerkopfes auf den maximalen Kopfumschaltimpuls an der oberen Flanke der Hüllkurve justieren.
 - Die Schrauben ① und ② festziehen. (Zuerst Schraube ①, dann Schraube 2 anziehen.) (Abbildung 4-36 ①2). (Hinweis: Anziehdrehmoment: 0,6 Nm als Richtwert.)
 - c) Den Wiedergabe-Umschaltpunkt einstellen.
 - d) Den linearen Frequenzgang der Hüllkurve sowie den Ton bei der Wiedergabe eines bespielten Bandes überprüfen.

AUSWECHSELN DES CAPSTAN-

DIREKTANTRIESMOTORS

- Kassettensteuerteil entfernen.
- Ausbau (in der Reihenfolge der angegebenen Nummern).
- 1. Den Platine-Platine-Steckverbinder auf der Hauptplatine lösen.
- 2. Den Spulenriemen (1) entfernen.
- Die Schrauben ② lösen.
- Einbau

- 1. Den Capstan-Motor auf dem Laufwerkchassis montieren. Darauf achten, daß die Capstan-Welle nicht gegen das Laufwerkchassis stößt. Mit den drei Schrauben befestigen.
- 2. Den Spulenriemen anbringen. Den Platine-Platine-Steckverbinder auf der Hauptplatine anbringen.

Hinweise:

- 1. Nach Einbau des Capstan-Direktantriebsmotors den Motor drehen und auf reibungslosen Lauf überprüfen.
- 2. Den Servoschaltkreis überprüfen.

AUSWECHSELN DES DIREKTANTRIEBS-MOTORS FÜR DIE TROMMEL

- 1. Das Gerät in den Kassettenauswurf-Modus schalten.
- 2. Den Netzstecker ziehen.
- Ausbau (umgekehrte Reihenfolge beim Zusammenbau)
- Das flexible Flachkabel lösen ①.
- 2. Die Befestigungsschrauben für die Statorbaugruppe des Direktantriebs lösen 2.
- 3. Die Statorbaugruppe herausnehmen (3).
- 4. Die Befestigungsschrauben für die Rotorbaugruppe des Direktantriebs lösen 4.
- 5. Die Rotorbaugruppe herausnehmen ⑤.

Hinweise:

- 1. Beim Herausnehmen der Statorbaugruppe springt ein Teil der Trommelmassefeder aus der Vorspannungsmuffe. Dieses Teil darf nicht verlorengehen.
- 2. Die Rotorbaugruppe so einsetzen, daß die Positionierungsöffnungen für die Installation in der Rotorbaugruppe und in der oberen Trommelbaugruppe aufeinanderliegen.
 - (Die Kerbe in der oberen Trommel mit der Öffnung im Rotor ausrichten.)
- 3. Darauf achten, daß die obere Trommel und der Videokopf nicht beschädigt werden.
- 4. Darauf achten, daß das Hall-Bauelement der Statorbaugruppe nicht durch die Rotorbaugruppe oder andere Teile beschädigt
- 5. Nach dem Einbau den Wiedergabe-Umschaltpunkt einstellen.

Abbildung 4-38.

EINBAU DER TEILE DES BANDLAUFWERKS. DIE EINE PHASENANPASSUNG ERFORDERN

- 1, Einbau der Andruckrolle, der Rücklaufführung und des Andruckrollen-Steuernockens (auf der Vorderseite des Laufwerkchassis).
- 2. Montage des Schiebers (auf der Rückseite des Laufwerkchassis).
- 3. Montage des Hauptnockens (auf der Rückseite des Laufwerkchassis).
- 4. Montage des Verbindungsrades, der Langsambremse und des Lademotors (auf der Rückseite des Laufwerkchas-
- 1. Einbau der Andruckrolle, der Rücklaufführung und des Andruckrollen-Steuernockens (auf der Vorderseite des Laufwerkchassis).

Die folgenden Teile in ihrer Reihenfolge anordnen.

Baugruppe des Rücklaufführungshebels einsetzen.

entraeus puredent in Miner

na abbandens Tell

Abbildung 4-39.

② Andruckrollen-Steuernocken einsetzen.

Baugruppe des Rücklaufführungshebels gegen den Uhrzeigersinn zum Stopper drehen.

Andruckrollen-Steuernocken einsetzen. Kerbe mit dem Vorsprung auf der Baugruppe des Andrucksteuerhebels ausrichten.

Baugruppe des Andrucksteuerhebels einsetzen. Kerbe mit dem Vorsprung am Chassis ausrichten,

Baugruppe des Andrucksteuerhebels

Abbildung 4-40-1.

. .

- ③ Baugruppe mit Andruckrolle/doppelwirkendem Andruckhebel einsetzen.
- ④ Öffnungshebel einsetzen.

Abbildung 4-40-2.

Triban

Abbildung 4-40-3.

2. Montage des Schiebers (auf der Rückseite des Laufwerkchassis).

- 1. Das Laderad muß sich in Position ①, wie unten dargestellt; befinden.
- 2. Den Schieber in seine Position bringen. Dabei die 6 Einsetzpunkte und die drei Freigabepunkte beachten.
- Für die Phasenpassung am Einsetzpunkt ① Punkt ② in der folgenden Abbildung beachten.
- Den Schieber mit zwei Scheiben an den Einsetzpunkten ① und ④ befestigen.

Abbildung 4-42.

3. Montage des Hauptnockens (auf der Rückseite des Laufwerkchassis)

- (1) Zunächst sicherstellen, daß sich der Schieber in der im folgenden markierten Position befindet.
- (2) Hauptnocken in die im folgenden dargestellte Position bringen.

Hinweis:

Die Phasenpassung zwischen dem Hauptnocken und dem Antriebsrad der Kassettensteuerung ist in folgender Abbildung dargestellt.

(3) Hauptnocken mit dem E-Ring befestigen.

Antriebsrad einsetzen, dabei den weißen Zahn mit der Öffnung im Hauptnocken ausrichten.

Abbildung 4-43.

AUSWECHSELN DES LADEMOTORS - STAMPRES

•ne Ausbaum configuration of contoning page as properties. Die 2 Schrauben lösen.

Abbildung 4-44.

Auswechseln

1 Den alten Lademotor ausbauen. Einen neuen Lademotor einsetzen, wie oben dargestellt (Abbildung 4-44).

orași Projecte antaro a profesio acub agrebată di (หรือของเขาของข้อย) ละเก ละเก็บข้อย 🕾 The Control of the Co

Abbildung 4-45.

Die Preßpassung der Lademotor-Riemenscheibe mit einer Kraft von weniger als 98 N (10 kgf) einstellen. Darauf achten, daß die Riemenscheibe einen Abstand von 7,7 $^0_{-0,1}$ mm vom Motor hat.

MONTAGE DES KASSETTENGEHÄUSES

① Rahmenbaugruppe

And Commence There

② Synchronisationsrad, Antriebsrad L und Antriebsrad R

Abbildung 4-47.

Abbildung 4-48.

5. ELEKTRISCHE EINSTELLUNGEN

Hinweise:

· Vor der Einstellung:

Die hier erläuterten elektrischen Einstellungen sind in vielen Fällen nach dem Auswechseln elektronischer Bauteile und mechanischer Komponenten, z.B. Videokopf, erforderlich.

Vor der Einstellung kontrollieren, ob der Mechanismus und alle elektrischen Komponenten in einwandfreiem Zustand sind. Ansonsten sind keine korrekten Einstellungen möglich.

- · Benötigte Instrumente:
 - © Farbbildschirm (TV)
 - Audiosignalgenerator
 - O Gleichstrom-Voltmeter
 - O Unbespielte Videokassette
 - O Schraubendreher für Einstellungen
 - O Farbbalkensignal-Generator

- Zweistrahloszilloskop
- Wechselstrom-Millivoltmeter
- © Frequenzzähler
- Abgleichband (VROCPSV)
- O Abgleichband (VROATSV)
- O Abgleichband (VROCBFFS)

※ Vorsichtsmaßnahmen bei Wartungsarbeiten

Position der Regler und Prüfpunkte

Wenn das IC804 (E2PROM) ausgetauscht wurde, die folgende Neuprogrammierung vorrehmen. In Abhängigkeit vom Modell ist das IC804 (E2PROM) ab Werk auf die Speicherfunktion eingestellt.

Daher muß die Speicherfunktion für das jeweilige Modell neu programmiert werden.

Am Servoschaltkreis sind Neueinstellungen für Kopfumschaltpunkt, Zeitlupen- und Standpildmodus erforderlich.

Abbildung 5-1.

EINSTELLUNG DES SERVOSCHALTKREISES

ADJUSTMENT OF HEAD SWITCHING POINT

Meßinstrument	Zweistrahloszilloskop Farbbildschirm (TV)	
Modus	Wiedergabe	
Kassette	Abgleichband (VROCPSV)	
Prüfpunkt	TP302 (H.SW.P) zu CH-1, VIDEO OUT-Buchse zu CH-2 (CH-1-Triggerneigungsschalter auf (+), interner Trigger auf CH-1-Seite)	
Spezifikation	6,5 ± 0,5 H (Zeilen)	

- Frontplatte abnehmen und das Abgleichband (VROCPSV) abspielen lassen.
 (Wiedergabebild auf dem Bildschirm.)
- Kurzfristig einen Kurzschluß zwischen TP5001 und TP5002 herstellen. Beide befinden sich vorn auf der Hauptplatine.

Alle Leuchtdioden müssen im TEST-Modus aufleuchten.

(Siehe Hinweis unten.)

3. PLAY-Taste drücken.

"PLAY" muß auf der Flüssigkristallanzeige blinken (etwa 1 Hz). Das Gerät befindet sich jetzt im automatischen PG-Einstellmodus...

Hinweis:

Im Modus Manuelle PG-Einstellung die Wellenform mit einem Oszilloskop beobachten und die Einstellung mit der FF- oder REW-Taste so vornehmen, daß die Spezifikation eingehalten wird.

- 4. Nach der Einstellung erlischt die blinkende Anzeige "PLAY" auf der Flüssigkristallanzeige.
- STOP-Taste drücken, um in den normalen Modus zurückzukehren.
- Die Überprüfung der Wellenform am Oszilloskop gemäß Abbildung 5-2 unmittelbar nach Einstellung des Kopfumschaltpunktes vornehmen.

Hinweis:

- TEST-Modus aktivieren, wenn eine korrekte Einstellung des KOPFUMSCHALTPUNKTES und der Funktion AUTOMATISCHE SPURLAGE nicht möglich ist.
- ② Das Kassettensteuerteil entfernen und das Bandlaufwerk in den Betriebsmodus setzen.
- Nach einigen Minuten den Netzstecker wieder anschließen.
- 2) Mit einem 22 Ohm-Widerstand einen Kurzschluß zwischen TP5005 und TP5006 herstellen, um die Spurlage zu zentrieren. Beide Bauelemente befinden sich vorn auf der Hauptplatine.
- 3) Der Netzstecker ist angeschlossen.
- 4) Der Betriebsmodus für das Laufwerk kann aktiviert werden. Den Netzstecker nach einigen Minuten wieder anschließen.

Abbildung 5-2.

JUSTIERUNG DER VOREINSTELLUNG FÜR DIE SP/LP-ZEITLUPENSPURLAGE

Meßinstrument	Farbbildschirm (TV)
Modus	Wiedergabe
Kassette	Band mit eigener Aufnahme (SP/LP-Modus) (siehe Hinweis unten)
Regler	Spurlagenregeltaste (+) oder (-)
Spezifkation	Minimale Störzeilen auf dem Bildschirm

- 1. Mit dem Gerät einen starken Fernsehsender einstellen oder ein Videosignal an die VIDEO IN-Buchse anlegen. (Siehe Hinweis @ unten.)
- Die Bandgeschwindigkeit im SP-Modus mit der Fernbedienung einstellen und das Signal auf Band aufzeichnen.
- Das Band zurückspulen und ab Beginn der Aufzeichnung des Signals abspielen.
- Die SLOW-Taste auf der Fernbedienung betätigen und den Bandteil mit der Aufzeichnung in Zeitlupe abspielen.
- Kurzfristig einen Kurzschluß zwischen TP5001 und TP5002 herstellen. Beide befinden sich vorn auf der Hauptplatine.
 - Alle Leuchtdioden müssen im TEST-Modus aufleuchten.
- Den Bildschirm beobachten und die TRACKING-Tasten (+) oder (–) so einstellen, daß keine Störungen mehr auf dem Bildschirm zu erkennen sind.
- 7. Die STOP-Taste betätigen, um in den normalen Modus zurückzukehren.
- Das Band einige Sekunden lang abspielen. Dann erneut die SLOW-Taste drücken und kontrollieren, ob keien Störungen mehr auf dem Bildschirm zu erkennen sind.

(Die Einstellung für den LP-Modus erfolgt auf dieselbe Weise wie für den SP-Modus.)

Hinweise:

- Band mit eigener Aufnahme bezeichnet eine Kassette, die an dem einzustellenden Gerät bespielt wurde.
- ② Das Fernsehprogramm wird nicht aufgezeichnet, wenn der Cinch- oder 21-Pin-Stecker an die AUDIO/VIDEO-Eingangsbuchse angeschlossen wird.

EINSTELLUNG DES FV (falsche vertikale Synchronisation) VOM STANDBILD

Meßinstrument	Farbbildschirm (TV)
Modus	Standbildwiedergabe
Kassette	Band mit eigener Aufnahme (SP-Modus) (siehe Hinweis unten)
Regler	Spurlagenregeltaste (+) oder (-)
Spezifikation	Kein vertikales Zittern des Bildes

- 1. Eine Kasette, die am Gerät im SP-Modus aufgenommen wurde, abspielen.
- Die PAUSE/STILL-Taste betätigen, um das Bild als Standbild wiederzugeben.
- 3. Den Bildschirm beobachten und die TRACKING-Tasten (+) oder (-) so einstellen, daß kein vertikales Zittern mehr auf dem Bildschirm zu erkennen sind.
- 4. Das Band mit der eigenen Aufnahme im SP-Wiedergabe- und Standbildmodus daraufhin überprüfen, daß kein vertikales Zittern des Bildes wahrnehmbar ist.
- (Die Einstellungfür den LP-Modus erfolgt auf dieselbe Weise wie für den SP-Modus.)

Hinweise:

- ① Die FV kehrt in den Ausgangszustand zurück, wenn die Systemsteuerung des Gerätes durch einen Stromausfall o.ä. zurückgesetzt wird (Reset). In diesem Fall FV erneut einstellen.
- ② Band mit eigener Aufnahme bezeichnet eine Kassette, die an dem einzustellenden Gerät bespielt wurde.

EINSTELLUNG DES Y/C-SCHALTKREISES

ÜBERPRÜFUNG DES VIDEO-E-E-PEGELS

Meßinstrument	Oszilloskop
Modus	E-E oder Aufnahme
Eingangssignal	EIA-Farbbaiken (1,0 Vs-s)
Prüfpunkt	VIDEO OUT-Buchse
Spezifikation	0,95 ± 0,1 Vs-s

- Einen 75 Ohm-Anschlußwiderstand an die VIDEO OUT-Buchse und ein Oszilloskop über diesen Anschlußwiderstand anschließen. (Siehe Hinweis unten.)
- 2. Ein Farbbalkensignal an die VIDEO IN-Buchse anlegen.
- Die Amplitude des E-E-Signals muß 1,0 Vs-s betragen, wie in Abbildung 5-3 dargestellt.

Hinweis:

Wenn der 75 Ohm-Anschlußwiderstand fehlt, verdoppelt sich die Signalamplitude.

ÜBERPRÜFUNG DER WEISSPEGEL-SPITZENBEGRENZUNG

Meßinstrument	Oszilloskop
Modus	E-E oder Aufnahme
Eingangssignal	EIA-Farbbalken (1,0 Vs-s)
Prüfpunkt	Pin (48) des IC401, GND
Spezifikation	190 ± 5 % (siehe Hinweis unten)

- Ein Oszilloskop an Pin (48) des IC401 und GND anschließen.
- Das Farbbalkensignal an die VIDEO IN-Buchse anlegen. Das Gerät in den Modus E-E oder Aufnahme schalten.
- 3. Die Überschwingung des Videosignals muß bei 190 % begrenzt werden, wie in Abbildung 5-4 dargestellt.

Hinweis:

Der Pegel von der Synchronisationsspitze zur Weißpegelspitze beträgt 100 %. Die Weißpegel-Spitzenbegrenzung erfolgt bei 90 % über dem Weißpegel.

ÜBERPRÜFUNG DES AUFNAHMEPEGELS

Meßinstrument	Zweistrahloszilloskop
Modus	Aufnahme
Eingangssignal	EIA-Farbbalken (1,0 Vs-s)
Prüfpunkt	Chroma (Rot) Klemmenzuleitung von R514 an L509 (Signal) ~ GND Synchronspitze Klemmenzuleitung von R225 an L210 (Signal) ~ GND
Spezifikation	Chroma (Rot): 400~600 mVs-s Synchronspitze: 150~220 mVs-s

- Das Farbbalkensignal an die VIDEO IN-Buchse anlegen und das Gerät in den Aufnahmemodus schalten.
- 2. Ein Zweistrahloszilloskop an die Prüfpunkte anschließen, wie in der Tabelle angegeben.
- Die Amplitude des Chroma-Teils (Rot) und des Synchronspitzenteils muß der Spezifikationa aus Abbildung 5-5 entsprechen.

Abbildung 5-5 (a).

Abbildung 5-5 (b).

ÜBERPRÜFUNG DES WIEDERGABEPEGELS

Meßinstrument	Oszilloskop
Modus	Aufnahme/Wiedergabe
Eingangssignal	EIA-Farbbalken (1,0 Vs-s)
Prüfpunkt	VIDEO OUT-Buchse
Spezifikation	0,95 ± 0,1Vs-s

- 1. Der E-E-Pegel muß der Spezifikation entsprechen.
- Einen 75 Ohm-Anschlußwiderstand an die VIDEO OUT-Buchse und ein Oszilloskop über diesen Anschlußwiderstand anschließen. (Siehe Hinweis unten (1).)
- 3. Ein Farbbalkensignal an der VIDEO IN-Buchse anlegen und das Gerät in den Aufnahmemodus schalten.
- Den Farbbalkenabschnitt der bespielten Kassette wiedergeben.
- 5. Die Amplitude des Ausangssignals muß 1,0 Vs-s betragen, wie in Abbildung 5-6 dargestellt.

Hinweis:

 Wenn der 75 Ohm-Anschlußwiderstand fehlt, verdoppelt sich die Signalamplitude.

all the second of the

2 Den Schalter S.PICTURE auf Aus setzen.

EINSTELLUNG DES SCHALTERS S.PICTURE

Meßinstrument	Gleichstrom-Voltmeter/ Farbbildschirm (TV)
Modus	E-E oder Aufnahme
Eingangssignal	EIA-Farbbalken (1,0 Vs-s) oder Monoskop (1,0 Vs-s)
Prüfpunkt	TP401 (Signal) ~ TP402 (Masse)
Regler	R430 S.PICTURE-Regler
Spezifikation	7,9 ± 0,1 V

- 1. Ein Gleichstrom-Voltmeter an die Prüfpunkte TP401 (Signal) TP402 (Masse) anschließen.
- 2. Ein Farbbalkensignal an der VIDEO IN-Buchse anlegen.
- 3. Den S.PICTURE-Schalter auf Ein setzen.
- Den R430 (S.PICTURE-Regler) so einstellen, daß das Gleichstrom-Voltmeter den angegebenen Wert anzeigt, Das Monoskop-Wiedergabebild darf keine ungewöhnlichen Signale aufweisen.

EINSTELLUNG DES HIFI- AUDIOSCHALTKREISES WICHTIGE HINWEISE ZUM HIFI-ABSCHNITT:

Anordnung der Regler und Prüfpunkte

Figure 5-7.

- Die Einstellverfahren sind für den linken Kanal beschrieben, gelten aber im wesentlichen auch für den rechten Kanal.
 - Begriffe, die in Klammern "[]" erscheinen, beziehen sich nur auf den rechten Kanal.
- 2. EINSTELLUNGEN AM HIFI-BLOCK.
 - 1) "AUFZEICHNUNGSMODUS".
 - In diesem Modus eine Stereosendung auf Band aufnehmen und die Steuerung einstellen.
 - 2) "WIEDERGABEMODUS".

In diesem Modus ein HiFi-Band abspielen und die Steuerung einstellen.

(Die Audio-Ausgangskanäle werden im Wiedergabemodus mit der Taste AUDIO OUT auf der Fern bedienung oder der Taste SET UP am Gerät gewählt.)

Den gewünschten Audio-Ausgangsmodus mit der Taste (+) oder (-) wählen.

Der Audio-Ausgangsmodus wird über die Taste AU-DIO OUT auf der Fernbedienung gesteuert. Der Videorecorder ist normalerweise auf den HiFi-Modus eingestellt. In diesem Modus erscheinen L und R auf dem Display, und es erfolgt eine normale Stereowiedergabe. Nach Betätigung der Taste AUDIO OUT wird nur der linke Kanal des HiFi-Signals über den rechten und linken Lautsprecher wiedergegeben. Wird die Taste AUDIO OUT ein zweites Mal betätigt, wird nur der rechte Kanal des HiFi-Signals über rechten und linken Lautsprecher wiedergegeben.

Mit einer dritten Tastenbetätigung wird die lineare Monospur gewählt, Wird die Taste AUDIO OUT dann nochmals gedrückt, wiederholt sich die Sequenz, wie oben beschrieben.)

ÜBERPRÜFUNG DES E-E-PEGELS

Meßinstrument	Wechselstrom-Millivoltmeter
Modus	E-E/Aufnahme
Eingangssignal	1 kHz, -5 dB (Cinch-Buchse) 1 kHz, -3,8 dB (SCART-Buchse)
Prüfpunkt	AUDIO OUT-Buchse
Spezifikation	-5 ± 3 dB (Cinch-Buchse) -3,8 ± 3 dB (SCART-Buchse)

- 1. Das in der Tabelle angegebene Audiosignal an den linken Kanal der AUDIO IN-Buchse anlegen.
- 2. Ein Wechselstrom-Millivoltmeter am linken und rechten Kanal der AUDIO OUT-Buchse anschließen.
- 3. Überprüfen, ob am Millivoltmeter der spezifizierte Wert erscheint. (Der Pegel für den linken und rechten Kanal muß weniger als 2 dB betragen.)

EINSTELLUNG DER FM-TRÄGERFREQUENZ

Meßinstrument	Frequenzzähler
Modus	E-E/Aufnahme
Eingangssignal	Nicht erforderlich
Prüfpunkt	TP6301 (Signal) - TP6302 (Masse)
Regler	R6310 [R6316] Trägerfrequenzregler
Spezifikation	1,4 [1,8] MHz ± 5 kHz

- Gerät in den A/V-Eingangsmodus schalten. Kein Signal an die VIDEO IN-Buchse legen. (Kabel ggf. vom Video-Eingangsanschluß lösen.)
- Gerät in den E-E- oder Aufnahmemodus schalten und einen Frequenzzähler an den Prüfpunkten TP6301 (Signal) und TP6302 (Masse) anlegen.
- 3. R6310 [R6316] so einstellen, daß der Zähler den spezifizierten Wert anzeigt.

ÜBERPRÜFUNG DES LINEAREN AUDIO-WIEDERGABEPEGELS

Meßinstrument	Wechselstrom- Millivoltmeter
Modus .	Wiedergabe
Kassette	Abgleichband (VROCPSV)
Prüfpunkt	AUDIO OUT-Buchse
Spezifikation	-9 ^{+2dB} _{-1dB} dB (Cinch-Buchse) -7,8 ^{+2dB} _{-1dB} dB (SCART-Buchse)

- Ein Wechselstrom-Millivoltmeter an der AUDIO OUT-Buchse anschließen.
- 2. Das Abgleichband (VROCPSV) abspielen.
- 3. Der Audio-Ausgangspegel muß den in der Tabelle angegebenen Wert haben.

ÜBERPRÜFUNG DES HIFI-AUDIO-WIEDERGABEPEGELS

Meßinstrument	Wechselstrom-Millivoltmeter
Modus	Wiedergabe
Kassette	Abgleichband (VROCBFFS)
Prüfpunkt	AUDIO OUT-Buchse
Spezifikation	-5 ± 2 dB (Cinch-Buchse -3,8 ± 2 dB (21-Pin-Buchse)

 Ein Wechselstrom-Millivoltmeter an der AUDIO OUT-Buchse anschließen.

- 2. Das Abgleichband (VROCBFFS) abspielen.
- 3. Der Audio-Ausgangspegel muß den in der Tabelle angegebenen Wert haben.

Hinweis:

Der WIEDERGABE-Pegel für den linken und rechten Kanal muß weniger als 2,0 dB betragen.

ÜBERPRÜFUNG DES HIFI-/NORMALEN AUDIOPEGELS IM MODUS AUFNAHME/ WIEDERGABE

Meßinstrument	Wechselstrom-Millivoltmeter
Modus	Aufnahme/Wiedergabe
Engangssignal	1 kHz, -8,0 dB (Cinch-Buchse) 1 kHz, -3,8 dB (21-Pin-Buchse)
Prüfpunkt	AUDIO OUT-Buchse
Spezifikation	-8,0 ± 3 dB (Cinch-Buchse) -3,8 ± 3 dB (21-Pin-Buchse)

- Das in der Tabelle angegebene Audiosignal an den linken Kanal der AUDIO OUT-Buchse anlegen.
- 2. Ein Wechselstrom-Millivoltmeter am linken und rechten Kanal der AUDIO OUT-Buchse anschließen.
- 3. Überprüfen, ob das Millivoltmeter den angegebenen Wert anzeigt.

Hinweis:

Der WIEDERGABE-Pegel für den linken und rechten Kanal muß weniger als 2,0 dB betragen.

ÜBERPRÜFUNG DER LÖSCHSPANNUNG UND DER SCHWINGUNGSFREQUENZ

Meßinstrument	Oszilloskop
Modus	Aufnahme
Prüfpunkt	Vollöschkopf
Regler	T6301
Spezifikation	70 ± 5 kHz, 40 Vs-s oder höher

- 1. Gerät in den Aufnahmemodus schalten.
- 2. Ein Oszilloskop über den Vollöschkopf anschließen.
- Die Löschspannung über den Vollöschkopf muß ca.
 Vs-s oder mehr betragen. Die Frequenz muß bei 70 ± 5 kHz liegen.

HF-SCHALTKREIS

EINSTELLUNG DES REGELSCHALT-KREISES FÜR DIE AUTOMATISCHE HF-VERSTÄRKUNG

Meßinstrument	Gleichstrom-Voltmeter und VHF-Signalgenerator
Modus	HF-Signal in Kanal E12 (durch VHF-Signalgenerator) (EBU-Farbbalkensignal zu 87,5 % moduliert)
Prüfpunkt	TP1552 (Signal) TP1554) (Masse)
Regler	VR101 Regler für automatische Verstärkung
Spezifikation	2,55 ± 0,1V

- 1. Das Signal von Kanal E12 (Farbbalkensignal zu 87,5 % moduliert) bei einer Eingangsfeldstärke von 70 dBmV am Antennenanschluß empfangen.
- Ein Gleichstrom-Voltmeter an die in der Tabelle angegebenen Prüfpunkte anschließen.
- VR101 (Regler für die automatische Verstärkung) im ZF-Block so einstellen, daß die Spannung dem angegebenen Wert entspricht.

6. ABLAUFDIAGRAMM ZUR LAUFWERKFUNKTION UND FEHLERSUCHTABELLE

ABLAUFDIAGRAMM ZUR LAUFWERKFUNKTION

EINLEGEN DER KASSETTE → STOP

-

; ·

The the state of the state of

1.1 年 2.4 東京 1.4

1 1 15

Die gesamte Schaltung zwischen Pin (14) des IC2501 und Pin (19) des IC2501 überprüfen.

\$ 1.00 miles

1...

AUSWECHSELN DES IC804 (E2PROM)

<< Vorsichtsmaßnahmen bei der Wartung>>

Nach dem Auswechseln des IC804 (E²PROM) sind folgende Programmierungen vorzunehmen. Je nach Modell wurde das IC804 (E²PROM) ab Werk auf die Speicherfunktion eingestellt. Es ist daher erforderlich, die Speicherfunktion für das entsprechende Modell neu zu programmieren. Der Servo-Schaltkreis muß für den Zeitlupen- und Standbildmodus ebenfalls neu eingestellt werden.

Programmierung der Speicherfunktion.

- 1. Das Gerät muß ausgeschaltet sein (Standby-Modus).
- 2. Vorübergehend einen Kurzschluß zwischen TP5001 und TP5002 herstellen. Beide Bauelemente befinden sich vorn auf der Hauptplatine. Alle Lämpchen der Flüssigkristallanzeige müssen im TEST-Modus aufleuchten.
- 3. Mit den CHANNEL (+) und (-)-Tasten die korrekten Funktionsnummern zwischen JP0 und JP31 wählen. Die entsprechenden Nummern erscheinen auf der Flüssigkristallanzeige (in Übereinstimmung mit der E²PROM-Tabelle).
 - Die DISPLAY-Taste drücken, um die Funktionen zu aktivieren (ON), und die CLEAR-Taste drücken, um sie zu deaktivieren (OFF).

Die Tasten DISPLAY und CLEAR befinden sich auf der Fernbedienung.

- * Wenn die DISPLAY-Taste gedrückt wird (ON), beginnt die Speicherfunktionsnummer zu blinken.
- * Wenn die CLEAR-Taste gedrückt wird (OFF), leuchtet die Speicherfunktionsnummer ununterbrochen.
- 4. Einen Kurzschluß zwischen TP5003 und TP5004 herstellen. Beide Bauelemente befinden sich vorn auf der Hauptplatine. Die Einstellungen werden im Hexadezimalformat angezeigt.

 Sie können jetzt ablesen, ob die Einstellungen korrekt sind.
- Sie können jetzt ablesen, ob die Einstellungen korrekt sind.

 5. Beispiel: "ON" und "OFF" werden als "1" und "0" ausgedrückt.

 Die Nummern JP0 bis JP31 sind in vier Gruppen unterteilt. Jede einzelne Einstellung innerhalb einer Gruppe wird im Hexadezimalformat dargestellt.

J31	J30 J29 J28	J27 J26 J2	5 J24 J23	J22, J21 J20	J19 J18	J17 J36
0	0 0	0 0 0	0 0	0 0 0	0 0	0 0
	SPACE	0		0	0	
'	the set of				And the second s	to the second second
J15		J11 J10 J0	i .	J06 J05 J04	J03 J02	J01 J00
0		0 1 0		0 0 0		0 7
	Φ	0000			1.12	
	0	4		0	. D	hamber his miner

[&]quot;000040D" erscheint auf der Flüssigkristallanzeige.

6. Vorübergehend einen Kurzschluß zwischen TP5001 und TP5002 herstellen. Beide Bauelemente befinden sich vorn auf der Hauptplatine. Der TEST-Modus wird aufgehoben. Alternativ die OPERATE-Taste drücken, um die Stromversorgung einzuschalten.

Щ
님
Щ
TABE
F
⇆
=

MAGORIA		0	1						_	0	- 1	+	-	-	- !			1				-				<u></u>	0		0	- !	1	ò	16UZ 30Z46UB	
MASOBA	O WHO	D	0	0	0	0			0	0		-	0	-	0	0	_		_	0		0	0		<u> </u>	0	0		0	0		0		
1929	0	0	0	0	٥	0	O,	-	0	o	0	ő	0	٥	-	0	0	0	0	0	-	0	0	0	٥	0	0	0	0	-	-	0	1020800	;
JBucory	3	1		1			ľ				- 1					- 1						i		1	- {	1			1	0	1		TUUUDON	
MEACON	O	0	0	0	0	ó	-	0	क्ट	-	-	0	-	-		0	0	-	·-	-	-	7	0	-	0	0	0	-	0	-	-	0	SEE/UI	٠.
Messe	MTDST-TM O	0	0	0	0	0		0	ļ	-	+	0	-	-	0	0	0	-	0	-	-	-	0	-	0	0	0	-	0	-	-	0	ECSUTOR	
AGEDA.		0	0	0	0	0		0	0	-	-	0	0	0	-	0	0	-	0	-	-	-	0	-	0	0	0	_	0	-		0	22501162	
PROBLEM N		1		ł L		; i	1			1	ľ			- !	1	١ ا		:			1		8		- 1	- :	- }		- 1	/=- 	- 1	0	₽ .	
ž	§ .	0	0	0	0	0	_	0	-			0	_	-	_	0	0	-		1	-	0	0	0	0	0	0	0	0	-	0	_	£	
	\$.;		- [· -	,						3 }		-		1		-				<u> </u>	٠,
W.		1	-	1								\dashv	-	1								-1-			-	- 1		-	-	1	, I	-	801 255	
M M431SM		0	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0		0	-	-	0	0	0		0	0	0	0	0	0	-	র	
M2315M	OM MZ35M	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	-	5 0201801	
, none	A C	0	0	Ö	0	0		0	-	-	-	0	0	٥	-	0	Ó	-	-	1	-	0	0	٥	0	0	0	0	0	-	0	-	5 2 2 2 7 8 0 5	
NO PORT	MITERIAM	0	0	0	0	0	-	0	-	-	-	0	0	0	-	0	0	-	-	1	-	٥	٥	0	0	٥	Ö	0	٥	-	0		ZE27805	
M451GM	M45GM O	0	0	0	0	0	-	0	0	-		0	0	0	-	0	0	-	0	-	-	0	0	0	٥	0	0	0	0	-	٥	-	2625805	
TO SE	MZSGM	0	0	0	0	0	0	0	0	-	-	0	0	0	-	0	0	0	0	-	-	0	0	0	0	0	0	0	0	-	0	-	0621805	
	_	0	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	0	-	0420805	
	25	0	0	0	0	0	-	0	-	-	-	0	-	0	0	-	0	-	-	-	-	-	0	0	0	0	-	0	0	-	0		2E97C24 0	
		0	0	0	0	0	0	-	. 0	0	0	0	0	0	0	-	0	-	0	0	-	-	0	0	0	0	-	0	0	0	0	0	14C2V Z1	ì
		0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0	0	-	-	o	0	0	0	-	0	0	0	0	0	4C20 10	
	W 23	0	-		-	i !	-		_		_	0		0					1	;			_		- 1	- [-		0	-	0		2E97324 1004C20 1014C20	
_		!				1		1									_	-	l 	!	\vdash	<u> </u>					_		_	-	-		324 2E9	
	22	0	-	1	-	-	0	1		-		0		0		1			-	-		-	-			0		0	0		-		1014320 1615324 2 "0" : leuchtet)	
	<u> </u>	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	-	0	0	0	0	-	-	0	0	-	0	0	0	0	0	20 1014320 "0" : le	
E CONTRACTOR DE	MZSHW	0	0	0	0	0	0	-	0	0	0	0	0	٥	0	0	0	-	0	0	0	0	-	-	0	0	-	0	٥	0	0	0	1004320 inkt	
ROM-TABELLE				: : : : : : : : : : : : : : : : : : : :	I-REPLAY	NTSC SKEW	HEAD 1	HEAD 0	田土	SORT/CLOCK	DECODER		NICAM 1	NICAM 0	G-CODE 1	G-CODE 0	OEM	0	FAV	2 SCART	CATV	TUNER 2	TUNER 1	TUNER 0	SYSTEM 1	SYSTEM 0	VCR 1	VCR 0	SPETIALIZE	VPS/PDC	COLOR 1	COLOR 0	DISPLAY 100 (Hinweis: "1" : blinkt	
74	- 1	: 1	; I	1	工	Z	Ï	Ξ	エ	S	ā	1	Z	Z	Ó	9	ΙŌ	5	Į IŽ	2	O	F	F	F	S	Ś	>	S	S	>	0	Õ	DISPLAY Iinweis:	

(Hinweis: "1" : blinkt "0" : leuchtet)

8. BLOCK DIAGRAMS SERVO BLOCK DIAGRAM

AUSWECHSELN DES IC804 (E²PROM)

<< Vorsichtsmaßnahmen bei der Wartung>>

Nach dem Auswechseln des IC804 (E²PROM) sind folgende Programmierungen vorzunehmen. Je nach Modell wurde das IC804 (E²PROM) ab Werk auf die Speicherfunktion eingestellt. Es ist daher erforderlich, die Speicherfunktion für das entsprechende Modell neu zu programmieren. Der Servo-Schaltkreis muß für den Zeitlupen- und Standbildmodus ebenfalls neu eingestellt werden.

Programmierung der Speicherfunktion.

1. Das Gerät muß ausgeschaltet sein (Standby-Modus).

2. Vorübergehend einen Kurzschluß zwischen TP5001 und TP5002 herstellen. Beide Bauelemente befinden sich vorn auf der Hauptplatine. Alle Lämpchen der Flüssigkristallanzeige müssen im TEST-Modus aufleuchten.

3. Mit den CHANNEL (+) und (-)-Tasten die korrekten Funktionsnummern zwischen JP0 und JP31 wählen. Die entsprechenden Nummern erscheinen auf der Flüssigkristallanzeige (in Übereinstimmung mit der E²PROM-Tabelle).

Die DISPLAY-Taste drücken, um die Funktionen zu aktivieren (ON), und die CLEAR-Taste drücken, um sie zu deaktivieren (OFF).

Die Tasten DISPLAY und CLEAR befinden sich auf der Fernbedienung.

* Wenn die DISPLAY-Taste gedrückt wird (ON), beginnt die Speicherfunktionsnummer zu blinken.

* Wenn die CLEAR-Taste gedrückt wird (OFF), leuchtet die Speicherfunktionsnummer ununterbrochen.

 Einen Kurzschluß zwischen TP5003 und TP5004 herstellen. Beide Bauelemente befinden sich vorn auf der Hauptplatine. Die Einstellungen werden im Hexadezimalformat angezeigt. Sie k\u00f6nnen jetzt ablesen, ob die Einstellungen korrekt sind.

Beispiel: "ON" und "OFF" werden als "1" und "0" ausgedrückt.
 Die Nummern JP0 bis JP31 sind in vier Gruppen unterteilt. Jede einzelne Einstellung innerhalb einer Gruppe wird im Hexadezimalformat dargestellt.

J31 0	J30 J29 J28 J27 J26 J25 J24 J23 J22 0 0 0 0 0 0 0 0	J21 J20 J19 J18 J17 J16 0 0 0 0 0 0
	SPACE	o o
J15 0	The state of the second	J05 J04 J03 J02 J01 J00 0 0 1 1 0 1 0 D

"000040D" erscheint auf der Flüssigkristallanzeige.

6. Vorübergehend einen Kurzschluß zwischen TP5001 und TP5002 herstellen. Beide Bauelemente befinden sich vorn auf der Hauptplatine. Der TEST-Modus wird aufgehoben. Alternativ die OPERATE-Taste drücken, um die Stromversorgung einzuschaften.

Щ
Ⅎ
竝
Æ
무
Ś
\sim

HOM-TABELLE													-				-							
						3	vař.						-				*							
	MEGM	MHPGM	MZSTHM	MH641HM MH64HW	MZ3LV	M24LM	MH64LM	M241GM M24GM	M25GM	M451GM M45GM	MH64GM	MH641GM M	MZ31SM M	M431SM M43SM N	MH64SM A	MH641SM	M25FPW M	M45FPM N	MH63FPM	MH64FPM M	230BM N	M250BM	M430BM	M450BM
1P34	0	0	0	0	$\overline{}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
788	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27 LAFPIAY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0
	0	0	0	0	-	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	2	0	0	0	0
\rightarrow	0	0	0	-	0	0	-	0	0	-	-	-	0	-	-	-	0	-	-	-	0	o l	-	
•	-	-	-	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-
+	0	0	0	-	0	0	7	0	0	0	-	-	0	0	-	-	0	0	-	-		0	0	0
+	0	0	-	-	0	0		-		-	-	-	0	0	-	-	-	-	-	-	0	0	0	0
÷	<u>:</u>	0	-	-	0	0	-	0	- 1 - 1	-	-	-	-	-	-	-	-	-!	-	-	0	0	0	-
-	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19 NICAM 1	0	o	0	-	0	0	-	0	0	0	0	0	0	0		-	0	0	-1	via		0	0	
+	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	-	-	0	0	-	-	0	0	0	
+	0	0	0	o	0	0	0	-	-	-	-	-	0	0	-		-	-	0		0	-	0	9
+	0	-	-	-	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
4	-	1	-	-	-	-	7	0	0	-	-	-	0	-	-	-	0	-	-	-		0	-	-
	0	0	0	-	0	0	\.\frac{1}{2}	0	0	0	-	-	0	0	-	-	0	0	0			0	0	0
+	0	0	-	-	0	0	-	0	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0
+	0	0	0	0	-	-	Ţ	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-
10 TUNER 2	0	О	0	٥	-	-	-	0	0	0	0	0	0	0	0	0	- 0	-	- 0	- -	0	0 0	0	0 0
9 TUNER 1	-	- ;	-	-	0	0	0	0	0	0	0	0	0	0	5 9) ·	> 1	0 +) -		2 0	5	
-	-	-	-	-	0	0	0	0	0	0 6	0	0	0	D	5 6	0	- 0	- c	-	- c	0 0	0	0	
<u> </u>	0	0 0	0	0	0 0	0 0	0 0	5	>	0	2 0	0 0		0	c	0		0	0	0	0	0	0	0
_	- c	-	-	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0
4 VCR 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	-	-	-	-	0	0	0	0
+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0		0	0	0
+	0	0	-	-	0	0	-	-		-	-	-	0	0	-	-	-	-	-		0	-	0	<u></u>
1 COLOR 1	0	0	٥	0	٥	0	0	0	0	0	0	0	0	0	0	0	-		-		-		-	-
0 COLOR 0	0	0	0	0	0	0	0	-	-	-	-				-	-	0	٥	0	0	0	0	0	О
DISPLAY	100432	1004320 1014320 1615324	1615324	1 2E97324	1004C	1004C20 1014C20	02E97C24	0420805	0621805	2625805	2E27805	2E27805	0201801 2	2205801	2EE7805	2EE7805	0621D16	2625D162	EC50162	EE7D16	1000802	1020806	3004802	3024806
(Hinweis: "1" : blinkt	olinkt); "O"	"0" ; leuchtet)	£		130 i	edis.						1					.1.	•				· · ·	
														3				· .]		,		+ 20 48		radi V
							i,								-				É					

(Hinweis: "1" : blinkt "0" : leuchtet)

8. BLOCK DIAGRAMS SERVO BLOCK DIAGRAM

MEMO

SCHEMATIC DIAGRAM

IMPORTANT SAFETY NOTICE:
BE SURE TO USE GENUINE PARTS FOR SECURING THE SAFETY AND RELIABILITY OF THE
SET.
PARTS MARKED WITH " A " AND PARTS
SHADED (IN BLACK) ARE ESPECIALLY IMPORTANT FOR MAINTAINING THE SAFETY AND
PROTECTING ABILITY OF THE SET.
BE SURE TO REPLACE THEM WITH PARTS OF
SPECIFIED PART NUMBER.

SAFETY NOTES:

- 1. DISCONNECT THE AC PLUG FROM THE AC OUTLET BEFORE REPLACING PARTS.
- 2. SEMICONDUCTOR HEAT SINKS SHOULD BE REGARDED AS POTENTIOL SHOCK HAZARDS WHEN THE CHASSIS IS OPERATING.

NOTES:

- 1. The unit of resistance "ohm" is omitted (k=1000 ohm, M=1 Meg ohm).
- 2. All resistors are 1/8 watt, unless otherwise noted.
- 3. The unit of capacitance "F" is omitted ($\mu=\mu F$, $p=\mu\mu F$).
- The values in parentheses are the ones in the PB mode; the values without parentheses are the ones in the REC mode.

VOLTAGE MEASUREMENT CONDITIONS:

- DC voltages are measured between points indicated and chassis ground by VTVM, with AC230V/ 50Hz supplied to unit and all controls are set to normal viewing picture unless otherwise noted.
- 2. Voltages are measured with 10000µV B & W or colour noted.

WAVEFORM MEASUREMENT CONDITIONS: 10000µV 87.5 percent modulated colour bar signal is fed into tuner.

CAUTION:

This circuit diagram is original one. Therefore there may be a slight difference from yours.

9. CIRCUIT DIAGRAM AND PWB FOIL PATTERN MAIN CIRCUIT (1) AND OPERATION CIRCUIT

PB..... Parentheses ()
REC..... Without Parentheses

VOLTAGE MEASUREMENT MODE PB Parentheses () REC Without Parentheses

VOLTAGE MEASUREMENT MODE PB Parentheses ()

REC Without Parentheses

VOLTAGE MEASUREMENT MODE PB Parentheses ()

REC Without Parentheses

PB Parentheses ()
REC Without Parentheses

VOLTAGE MEASUREMENT MODE PB Parentheses ()

PB..... Parentheses ()
REC..... Without Parentheses

PB Parentheses ()
REC Without Parentheses

TERMINAL PWB

OPERATION PWB

FRONT AV PWB

1 2 3 4 5 6 7 8 9 10 11 12

10. REPLACEMENT PARTS LIST PARTS REPLACEMENT

Many electrical and mechanical parts in video cassette recorder have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this manual; electrical components having such features are identified by \(\triangle \) and shaded areas in the Replacement Parts Lists and Schematic Diagrams. The use of a substitute replacement part which does not have the same safety characteristics as the factory recommended replacement parts shown in this service manual may create shock, fire or other hazards.

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following informations.

- 1. MODEL NUMBER
- 2. REF. NO.
- 3. PART NO.
- 4. DESCRIPTION
- 5. PRICE CODE

HOW TO IDENTIFY CHIP TRANSISTORS AND

DIODES BY ITS MARKING

Package	Marking	Parts No.
Fig. 1	BQ	VS2SC2412KQ-1
Fig. 1	FQ	VS2SA1037KQ-1
Fig. 1	25	VSDTC124EK/-1
Fig. 1	26	VSDTC144EK/-1
Fig. 1	24	VSDTC114EK/-1
Fig. 1	16	VSDTA144EK/-1

MARK	*:SPARE	PARTS-DE	LIVERY SECTION	١.
Ref. No.	Part No.	*	Description	Code

PRINTED WIRING BOARD ASSEMBLIES

(NOT REPLACEMENT ITEM)

DUNTK5290TEV4	-	Main Unit (VC-MH64GM/	_
		MH641GM)	
DUNTK5290TEVG	-	Main Unit (VC-MH64SM)	
DUNTK5291TEV0	-	Terminal Unit	_

Ref. No.	Part No.	*	Description	Code
	DUNTK5292TEV0	-	MPX Unit	_
			(VC-MH64GM)	
	DUNTK5292TEV3)	-	MPX UNIT	_
			(VC-MH64SM)	
	DUNTK5294TEV0	-	Operation Unit	_
	DUNTK5295TEV0	-	Front AV Unit	_

DUNTK5290TEV4 (VC-MH64GM/) DUNTK5290TEVG (VC-MH64SM) MAIN UNIT

TUNER AND ASSEMBLY

CNV4451	RCNVR0166UMZZ	U	Converter	BB
TU1551	VTUVTSR6HZ53/	Ų	Tuner	BD
UNT1501	RIFU-0661GEZZ	U	IF-Pack	► BA

INTEGRATED CIRCUITS

		, '			
	IC202	VHIMN3881S/1E	J	MN3881S-E1 SM	AL
	IC301	VHiAN3366\$/-1	\cdot J	AN3363AB	AP
·,A	IC401	VHiHA8201CF-1	J	HA1180201SB	. AW
٠.	IC701	VHiBA15218F1E	J	BA15218F	g age AF
Ji.	IC801	RH-iX1204GEN4	J	I.C. 1430335	ar. AZ
. , :		1.70		(VC-МН64GM/МН6	41GM)
F.	IC801	RH-iX1204GEN2	: J	I.C. Jan Day	Section AZ
200		er letter fierge	4.	(VC-MH64SM)	.)
1,6	IC802	VHiS806HZ//-1	J	\$-806H - 5182V	inde AC
١,	IC803	VHiBA6209//1E	J	BA6209-V3	- AG
• •	IC804	VHiXL24C04F-1	$\{J\}$	XL4C04F	AK
Δ	IC951	VHiUZT33///-1	J	I.C.	AC
	IC1801	VHISDA5649X1E	J	SDA5649X	AZ
	IC2401	VHiLA7217M/-1	J	LA7217M	AG
	IC5001	VHiUPD16312-1	J	UPD16312GB-3B4	AQ
	IC5901	RH-iX1054GEZZ	J	M35014-052SP	AM

TRANSISTORS

Q204	VS2SC2412KQ-1	J	2SC2412KQ	AA
Q205	VS2SA1037KQ-1	J	2SA1037KQ	AA
Q280	VSDTA144ES/-1	J	DTA144ES	AB
Q301	VS2SC2412KQ-1	J	2SC2412KQ	AA
Q302	VSDTC124EK/-1	J	DTC124EK	AB
Q303	VSDTC124EK/-1	J	DTC124EK	AB
Q304	VSDTC124EK/-1	J	DTC124EK	AB
Q305	VS2SC2412KQ-1	J	2SC2412KQ	AA
Q306	VS2SC2412KQ-1	J	2SC2412KQ	AA
Q308	V\$2SC2412KQ-1	J	2SC2412KQ	AA
Q401	VS2SC2412KQ-1	J	2SC2412KQ	AA
Q402	VS2SC2412KQ-1	J	2SC2412KQ	AA
Q403	VS2SC2412KQ-1	J	2SC2412KQ	AA

Ref. No.	Part No.	*	Description	Code	Ref. No.	Part No.	*	Description	Code
	TRANSITOF	RS (Continued)			DIODES	(Co	ntinued)	
Q404	VS2SC2412KQ-1	J	2SC2412KQ	AA	D706	RH-DX0053GEZZ	J	1SS132	AA
Q405	VS2SC2412KQ-1	J	2SC2412KQ	AA	D707	RH-DX0053GEZZ	J	1SS132	AA
Q406	VS2SC2412KQ-1	J	2SC2412KQ	AA	D801	RH-DX0053GEZZ	J	188132	AA
Q407	VS2SC2412KQ-1	J	2SC2412KQ	AA	D802	RH-DX0053GEZZ	J	1 S S132	AA
Q408	VS2SC2412KQ-1	J	2SC2412KQ	AA	D851	RH-PX0234GEZZ	٠J	Photo Diode	AD
Q409	VS2SA1037KQ-1	J	2\$A1037KQ	AA	D852	RH-PX0238GEZZ	j	Photo Diode	AF
Q410	VS2SA1037KQ-1	J	2SA1037KQ	AA	D853	RH-PX0238GEZZ	J	Photo Diode	AF
Q41.1	VSDTC144EK/-1	J	DTC144EK	AB	D854	RH-PX0252GEZZ	J	Photo Diode	AF
Q412	V\$2SC2412KQ-1	Ĵ	2SC2412KQ	AA	D855	RH-PX0252GEZŽ	J	Photo Diode	AF
Q413	VS2SA1037KQ-1	J	2SA1037KQ	AA	⚠ D901	RH-DX0083GEZZ	J.		AC
Q416	VSDTC144EK/-1		DTC144EK	AB	⚠ D902	VHDERA2206/-1	J		AC
Q417	VSDTC144EK/-1	J	DTC144EK	AB	⚠ D903	RH-DX0220CEZZ	j	**	AB
Q540	VSDTC144EK/-1	J		AB	⚠ D904	RH-DX0053GEZZ	J	1SS132	AA
Q543	VSDTC144EK/-1	J	DTC144EK	AB	⚠ D907	RH-EX0723GEZZ	J		AB
Q603	VS2C3939SQR-1	J	2SC3939SQR	40	∆ D908	RH-DX0053GEZZ	-	1SS132	4.7
			2SA1037KQ						AA
₂₁₁ Q702	VS2SA1037KQ-1	J		AA	⚠ D921	VHDFR103///-1		FR103	AC
Q703	VS2SA1037KQ-1	J	2SA1037KQ	AA	<u> ↑</u> D922	VHD1SS147//-1	J.		
Q801	VS2SA1037KQ-1	J	2SA1037KQ	AA	⚠ D923	VHD30DF2-FC-1	J		AE
Q802	VSDTC114EK/-1	J	DTC114EK	AB	⚠ D924	VHDRK34////-1	J		AE
▲ Q901	VS2SC4231QR-3	J	2SC4231QR	AH	⚠ D925	VHD1SS147//-1	J		AA
▲ Q903	V\$2SD2144S/-1	J	2SD2144S	AC	⚠ D926	RH-EX0807GEZZ	J	Zener Diode	AC
⚠ Q921	VS2SC2412KQ-1	J	2SC2412KQ	AA	⚠ D927	RH-EX0613GEZZ	J	Zener Diode	AA
▲ Q922	VS2SA1037KQ-1	J	2SA1037KQ	AA	⚠ D928	RH-DX0053GEZZ	Ą	1SS132	AA
⚠ Q923	VS2SA1037KQ-1	J	2SA1037KQ	AA	⚠ D929	RH-DX0053GEZZ	J	188132	AA
Q954	VS2SC2001LK-1	J	2SC2001LK	AA	▲ D930	RH-EX0619GEZZ	J	Zener Diode	AA
Q956	VS2SD468-C/-1	J	2SD468-C	AD	D931	VHD30DF2-FC-1	J	30DF2	AE
Q957	VSDTA144EK/-1	J	DTA144EK	AC	D953	RH-EX0642GEZZ	J	Zener Diode	AA
Q958	VS2SC2412KQ-1	J	2SC2412KQ	AA	D954	RH-EX0634GEZZ	J	Zener Diode	AA
Q963	VS2SD468-C/-1	J	2SD468-C	AD	D961	RH-DX0053GEZZ	J	1SS132	AA
Q964	VS2SC2001LK-1	J	2SC2001LK	AA	D964	RH-EX0609GEZZ	J	Zener Diode	AA
Q965	VSDTA144EK/-1	J	DTA144EK	AC	D965	VHD1A3-F///-1	J	1A3-F	AA
Q966	VSDTC114EK/-1	J	DTC114EK	AB	D966	VHD1A3-F///-1	J	1A3-F	AA
Q970	VS2SD468-C/-1	J	2SD468-C	ΑĎ	D967	RH-DX0053GEZZ	J	188132	. AA
Q2401	V\$2SA1037KQ-1	J	2SA1037KQ	AA	D2401	RH-DX0053GEZZ	J		AA
Q5901	VS2SA1037KQ-1	٠,	2SA1037KQ	AA	D5001	RH-DX0053GEZZ	J	188132	AA
					D5002	RH-DX0053GEZZ	J	1SS132	AA
			. *		D5003	RH-DX0053GEZZ	J		AA
					D5004	RH-DX0053GEZZ	J		AA
	DIA	ODI	E6		⚠ IC901	RH-FX0005GEZZ	J		AE
	יוט	וטט	E9		Q851	RH-PX0233GEZZ	J		AD
D343	RH-DX0053GEZZ	Ĵ	1SS132	AA	Q852	RH-PX0233GEZZ		Photo Diode	AD
D401	RH-DX0053GEZZ	J	188132	AA	G052	I II I NOZOGEZZ	J	. HOW DIVING	AD
D402	RH-DX0053GEZZ	J	15S132	AA		*			
D403	RH-DX0053GEZZ	J	188132	AA					
D405	RH-DX0053GEZZ	J	1SS132	AA				****	
D406	RH-DX0053GEZZ	J	1SS132	AA		PACKAG	ED	CIRCUIT	9
D407	RH-DX0053GEZZ	J	188132	AA	X501	RCRSB0166GEZZ	Z J	Crystal, 4.43MHz	AG
D540	RH-DX0053GEZZ	J	155132	AA	X801	RCRSB0190GEZZ			AM
D698	RH-DX0053GEZZ		188132	AA	X5901	RCRSB0184GEZZ		•	AM
D699	RH-DX0053GEZZ			AA				-	
D701	RH-DX0053GEZZ		188132	AA					
D702	RH-DX0053GEZZ			AA					
D702	RH-DX0053GEZZ		188132	· AA		COIL C AND T	D A	Neconvers	
D703	RH-DX0053GEZZ		1SS132	AA		COILS AND I		NSFORMERS	
	RH-DX0053GEZZ		1SS132	AA	FL2401	RFiLA0020CEZZ	J	Filter	AD
D705	I II PDAGGOGGEZZ	J	100102	AA	JA206	VP-XF2R2K0000	J	2.2µH	AB

Ref. No.	Part No.	*	Description	Co	de	Ref.	No.	Part No.	*	r	Ī	Desci	ription	Code
COIL	S AND TRANS	FOR	RMERS (Continu	ied)				CAPACIT	ORS	(Conti	nue	d)	
JA339	VP-XF4R7K0000	J	4.7µH		AB	(214	VCKYCY1CF22	24Z .	J	0.22	16V	Ceramic	AA
JA423	VP-XF4R7K0000	J	4.7µH		AB	(215	VCCCCY1HH1	01J .	J	100p	50V	Ceramic	AA
L205	VP-XF100K0000	J	10μH		AB	(216	VCCCCY1HH1			10p	50V	Ceramic	AA
L206	VP-DF470K0000	J	47μH		AB	(2217	VCKYCY1AF10)5Z .	J	1	10V	Ceramic	AC
L207	VP-XF560J0000	J	56µH		AB		2218	VCKYCY1HF10)3Z .	J	0.01	50V	Ceramic	AA
L208	VP-XF151K0000	J	150µH		AB	(2219	VCKYCY1HB10	02K .	J	1000p	50V	Ceramic	AA
L209	VP-XF121K0000	J	120µH		AB	(220	VCEAEM1HW3	35M .	J	3.3	50V	Electrolytic	
L210	VP-XF151K0000	J	150µH		AB	(221	VCKYCY1HF47	732	J	0.047	50V	Ceramic	AA
L301	VP-MK101K0000	J	100µH		AB		2222	VCKYCY1EF10		J		25V	Ceramic	AA
L302	VP-MK101K0000	J	100µH		AB	(2223	VCEAEM1HW3	35M .	J		50V	Electrolytic	
L303	VP-XF8R2K0000	J	8.2µH		AB		224	VCEAEM1HW2				50V	Electrolytic	
L401	VP-XF221J0000	J	220µH		AB		226	VCEAEM1HW4				50V	Electrolytic	
L402	VP-XF151K0000	J	150µH		AB		2228	VCKYCY1CF22		j		16V	Ceramic	AA
L403	VP-XF150J0000	J	15µH :		AB		229	VCKYCY1EF10				25V	Ceramic	AA
L404	VP-XF330J0000	J	33µH		AB		230	VOEAEMOJW1					Electrolytic	
L405	VP-XF2R7J0000	. j.	•		AC		232	VCKYD41CY10		-				
L406	VP-XF101K0000		100µH		AB		2233	VCKYD41CY10						AA
L407	VP-XF330K0000		33µH		AB			VCKYCY1HF47				16V	Ceramic Ceramic	AA
L408	VP-XF101K0000		100µH		AB		235							AA
L501	VP-MK561K0000		560µH		AB		236	VCEAEM1CW1				16V	Electrolytic	
L504	VP-XF150J0000		•					VCKYD41HF10					Ceramic	
			M5pHr Councillo		AB		237	VOCCGY1HH3			•			· AA
	"VP-XF100K0000		STOPHA NO CAO		AB			VCCCD41HH4I			•			
	VP-XF390K00000		39µH . M . 363 .		AB		239	VCCCCY1HH5						
	VP-XF151K0000	J	150pH 0120V		AB		C240	VCKYCY1HB39			390p		Ceramic :	AA
L511	VP-XF680K0000	J		21.37				VCCCCY1HHB					Ceramic	AA
	VP-XF390K0000		39µH		AB			VCCCCY1HH2					Ceramic	AA
	VP-DF221K0000	J	220µH		AB	, (VOKYCY1HF10						AA
	VP-XF2R2K0000	i J ,	2.2µH	\$35 J.	AB			VCKYD41CY10				16V	Ceramic	AA
⚠ L901	RCiLF0227GEZZ	J.	- Côi le 14 (14 (14 (14 (14 (14 (14 (14 (14 (14	3.5% (2)	AM	47.0	294	VECCCYTHHI	B0J .	J ·	18p	50V	Ceramic	-AA
	RCILP0171CEZZ	ل ٠	"Coil	15%	AD	× 4.0	2301 -	VCEAEM0JW4	76M 、) .	47	6.3V	Electrolytic	AB
⚠ L922	RCILP0175CEZZ	· J	Coil 1 DV	<i>4</i> 7	AD	(302	VCKYCY1HF10	03 Z (J	0.01	50V	Ceramic	AA
L923	RCILP0171CEZZ	J	Coil	•	AD	(2303	VCEAEM1HW1	05M v	j	1.5	50V	Electrolytic	AB
L1552	VP-XF120K0000	J	12µH		AB		304	VOKYOY1HF10)3Z .	J .	0.01	50V	Ceramic	AA
L1553	VP-XF120K0000	J	12µH 💮	13	AB		2305	VCKYCY1HF22	23Z .	J	0.022	50V	Ceramic	AB
L1554	VP-XF120K0000	J	12µH		AB	(2306	VCKYCY1HF22	23Z .	J	0.022	50V	Ceramic	AB
L1555	VP-XF120K0000	J	12µH	٠.	AB	(307	VCKYCY1HF22	23Z .	J	0.022	50V	Ceramic	AB
L1801	VP-XF101K0000	J	100µH		AB	(308	VCKYCY1HF22	23Z .	J	0.022	50V	Ceramic	AB
L1802	VP-XF8R2K0000	J	8.2µH		AB	(2309	VCCCCY1HH2	70J .	J	27p	50V	Ceramic	AA
L4402	VP-XF270K0000	J	27μΗ		AB	(2310	VCCCCY1HH2	70J .	J	27p	50V	Ceramic	AA
L5901	VP-XF150J0000	J	15µH		AB	(2311	VCCCCY1HH2	70J ,	J	27p	50V	Ceramic	AA
L5902	VP-DF101K0000	J	100µH		AB	(312	VCCCCY1HH2	70J .	J	27p :	50V	Ceramic	AA
L5903	VP-DF101K0000	J	100µH		AB	(2313	VCKYCY1HF10)3Z .	3	0.01		Ceramic	AA
T601	RTRNH0053GEZZ	J	OSC. Transformer		AE	(314	VCKYCY1HF10	3Z .				Ceramic	AA
№ T 901	RTRNZ0063UMZZ	U	Transformer		AQ	(2315	VCEAEM1HW2					Electrolytic	AB
							2316	VCKYD41CY10					Ceramic	AA
							317	VCKYCY1HF22			0.022		Ceramic	AB
	CON	TRO	OLS				2318	VCEAEM0JW4					Electrolytic	AB
D490					A D		319	VCKYCY1HF10					Ceramic	AA
R430	nvn-w4/82GEZZ	J	2.2k(B), S.S.P. Adj.	-	AB		320	VCKYCY1HF22			0.022		Ceramic	AB
							321	VCKYCY1HF22						
	045	O:-	one				322				1000		Ceramic	AB
	CAPA	CH	ORS					VCCCCY1HH1			100p		Ceramic	AA
C211	VCCCCY1HH330J	J	33p 50V Cerami	c .	AA		2323	VCKYCY1HF10					Ceramic	AA
C212	VCEAEM1HW474I	МJ	0.47 50V Electrol	ytic .	AB		2324	VCKYCY1HF10					Ceramic	AA
C213	VCKYCY1HB102K	J	1000p 50V Cerami	c .	AA		325	VCKYCY1EF10					Ceramic	AA
						C	2326	VCKYCY1HB10)2K .	J	1000p	50V	Ceramic	AA

Ref. No.	Part No.	*	Des	cription	Code	Ref. No.	Part No.	*	1	Descr	iption	Code
	CAPACITOR	RS (Continu	ed)			CAPACITO	RS	(Conti	nuec	i)	
C329	VCKYD41CY103N	J	0.01 16	/ Ceramic	AA	C590	VCKYCY1HF103	Z J	0.01	50V	Ceramic	AA
C330	VCKYCY1HF103Z	J	0,01 50	/ Ceramic	AA	.C621	VCEAEM1CW47	6M J	47	16V	Electrolytic	AB
C331	VCKYCY1HF103Z	J	0.01 50	/ Ceramic	AA	C622	VCKYCY1HF103	Z J	0.01	50V	Ceramic	AA
C343	VCKYD41CY103N	J	0.01 16	/ Ceramic	AA	C623	VCKYD41CY103	N J	0.01	16V	Ceramic	AA
C401	VCEAEM1CW476	ИJ	47 16	/ Electroly	tic AB	C624	VCQPYA2AA562	J J	5600p	100V	Mylar	AC
C402	VCKYCY1HF103Z	J	0.01 50	/ Ceramic	- : AA	- C625	VCCCCY1HH22 ⁻	IJ J	220p	50V	Ceramic	AA
C403	VCKYD41HB221K	J	220p 50	/ Ceramic	AA	C630	VCKYCY1HB102	K J	1000p	50V	Ceramic	AA
C404	VCKYCY1HB391K	J	390p 50	/ Ceramic	AA	C650	VCKYCY1HB102	K J	1000p	50V	Ceramic	AA
C405	VCCCCY1HH330J	J	33p 50°	V Ceramic	AA	C702	VCKYD41HB102	K J	1000p	50V	Ceramic	AA
C406	VCCCD41HH150J	J	15p 50	V Ceramic	AA	. C707	VCKYCY1HB102	k J	1000p	50V	Ceramic	AA
C408	VCCSD41HL390J	J	39p 50	V Ceramic	AA	C709	VCEAEM0JW476	6M J	47	6.3V	Electrolytic	: AB
C410	VCKYCY1HB102K	J	1000p 50	V Ceramic	AA	C710	VCEAEM0JW476	BM J	47	6.3V	Electrolytic	: AB
C411	VCKYCY1HB331K		330p 50	V Ceramic	AA	C711	VCKYCY1HF103	Z J	0.01	50V	Ceramic	AA
C412	VCKYCY1HB102K		1000p 50		AA	C712	VCEAEM1HW22	5M J	2.2	50V	Electrolytic	: AB
C414	VCKYCY1HF103Z		0.01 50	V Ceramic	. AA	:- A C713	VCEAEM1HW22	5M J	2.2	50V	Electrolytic	AB
C418	VCEAEM1HW474		0.47 50			: C714	VCEAEM1CW22			16V	Electrolytic	
C419	VCKYCY1HB392K		3900p 50			C715	VCKYCY1HB102				Ceramic	AA
C421	VCKYCY1HF103Z		0.01 50			C716	VCEAEM1CW22			16V	Electrolytic	
C422	VCKYCY1HF103Z		0.01 50			C717	VCEAEM1HW10			50V	Electrolytic	
C423	VCKYCY1HF103Z		0.01 50			C719	VCEAEM1HW10			50V	Electrolytic	
C424	VCKYCY1HF103Z	_	0.01 50			C720	VCKYCY1HF103			50V	Ceramic	AA
C427	VCKYCY1HF103Z		0.01 50			C721	VCKYCY1HF103			50V	Ceramic	AA
C428	VCKYD41CY103N		0.01 16			C722	VCKYCY1EF104			25V	Ceramic	AA
C429	VCKYD41CY103N		0.01 16			C723	VCKYCY1HF103			50V	Ceramic	AA
C501	VCKYCY1HB332K		. 3300p 50			C724	VCKYCY1HF103			50V	Ceramic	AA
C503	VCKYCY1HE332K		0.01 50			C725	VCKYCY1HB472				Ceramic	AA
C503	VCEAEMOJW107		100 6.3			C726	VCKYCY1HF103			50V		AA
C505	VCKYCY1HF473Z		0.047 50	•		C727	VCEAEMOJW10				Electrolytic	
	VCKYD41CY103N	_	0.047 30			C728	VCKYCY1HB47				Ceramic	AA
C506	VCKYCY1HF103Z		0.01 10			C728	VCKYCY1HF10		•	50V	Ceramic	AA
C508			0.01 50			C729	VCEAEMOJW33			6.3V		
C509	VCKYCY1EB153k											
C510	VCEAEM1HW335					C731	VCKYCY1HB10		1000p	300	Ceramic	AA
C511	VCCCCY1HH330.		33p 50			C732	RC-FZ5334BMN		0 1	OEM	Mylar	AB
C512	VCKYCY1HF103Z		0.01 50			C733	VCKYCY1EF104			25V	Ceramic	AA
C513	VCKYCY1EF104Z		0.1 25	, .		C734	VCKYCY1EF104			25V	Ceramic	AA
C514	VCKYCY1HF333Z		0.033 50			C737	VCKYCY1HB10		•		Ceramic	AA
C515	VCKYCY1HF473Z			V Ceramic		C740	VCKYCY1HB47				Ceramic	AA
C516	VCEAEM1HW475		4.7 50			C750	VCEAEM1CW47			16V	Electrolytic	
C517	VCCCCY1HH180.		18p 50			C751	VCEAEM1CW22				Electrolytic	
- C520	VCEAEM1HW474			-		C754	VCKYD41CY10			16V	Céramic	AA
C521	VCKYCY1HF223Z					C801	VCCCCY1HH10				Ceramic	AA
C522	VCKYCY1AF105Z	. J	1 10			C802	VCCCCY1HH47				Ceramic	AA
C523	VCEAEM1CW106			V Electroly		C803	VCCCCY1HH10			50V	Ceramic	AA
C525	VCKYD41CY103N	1 J	0.01 16	V Ceramic		C804	VCKYCY1EF104	4Z J	0.1	25V		AA
C526	VCCSD41HL680J	J	68p 50	V Ceramic	: AA	C805	VCEAEM1HW10	05M J	1 1	50V	Electrolyti	c AB
C527	VCCSD41HL470J	J	47p 50	V Ceramic	: AA	C807	VCCCCY1HH22	:0J J	22p	50V	Ceramic	AA
C528	VCCSD41HL560J	J	56p 50	V Ceramic	: AA	C808	VCCCCY1HH22	:0J J	22p	50V	Ceramic	AA
C529	VCEAEM1HW475	M J	4.7 50	V Electroly	tic AB	C811	VCKYCY1HF10	3Z .	0.01	50V	Ceramic	AA
C530	VCCCCY1HH121	J J	120p 50	V Ceramic	: AA	C812	VCKYCY1HF10	3Z .	0.01	50V	Ceramic	AA
C531	VCCCCY1HH1R0	C J	1p 50	V Ceramic	: AA	C813	VCKYCY1HF10	3Z J	0.01	50V	Ceramic	AA
C536	VCCCCY1HH181	L L	180p 50	V Ceramic	: AA	C814	VCKYCY1HF10	3Z J	0.01	50V	Ceramic	AA
C537	VCKYCY1HF1032					C815	VCKYCY1HF10			50V	Ceramic	AA
C539	VCCCCY1HH100					C816	VCKYD41CY10		0.01	16V		AA
C541	VCKYCY1EF104Z			V Ceramic		C817	VCKYCY1HB10					AA
C544	VCKYCY1HF103Z			V Ceramic		C819	VCEAGA0JW10					

Ref. No.	Part No.	*		Desc	ription (Code	F	Ref. No.	Part No.	*		Desci	ription	Code
	CAPACITO	ORS ((Cont	inue	d)				CAPACITO	RS	(Cont	inue	d)	•
C820	VCKYD41HF104	¥Z J	0.1	50V	Ceramic	AA		C1803	VCKYCY1HF333	Z J	0.033	50V	Ceramic	AA
C821	VCKYCY1HF103	3Z J	0.01	50V	Ceramic	AA		C1804	VCCCCY1HH151	JJ	150p	50V	Ceramic	AA
C823	VCKYCY1HF103	3Z J	0.01	50V	Ceramic	AA		C1806	VCEAEMOJW476	M J	47	6.3V	Electrolytic	AB
C824	VCEAEM1CW47	76M J	47	16V	Electrolytic	AB		C1810	VCKYD41CY103	V J	0.01	16V	Ceramic	AA
C825	VCKYCY1EF104	4Z J	0.1	25V	Ceramic	AA		C2202	VCE9EM1HW335			50V	Elect.(N.P.)	
C826	VCE9EM1HW10		1	50V	Elect.(N.P.)			C2255	VCEAEM1HW33			50V	Electrolytic	AB
C829	VCKYCY1HF103		0.01	50V	Ceramic	AA		C2401	VCKYCY1HF103			50V	Ceramic	AA
C830	VCKYCY1HB102		1000		Ceramic	AA		C2402	VCEAEM1CW10		10	16V		
C831	VCKYCY1HB102		1000		Ceramic	AA		C2403	VCKYCY1HF103				Electrolytic	AB
C832			•									50V	Ceramic	AA
	VCKYD41HB102		1000		Ceramic	AA		C2404	VCEAEM1HW10			50V	Electrolytic	AB
C833	VCKYCY1HB102		1000p		Ceramic	AA		C2405	VCKYCY1HB102				Ceramic	AA
C834	VCQYTA1HM47		0.047		Mylar	AA		C2406	VCKYCY1HF223				Ceramic	AB
C835	VCKYD41HB331		330p	50V	Ceramic	AA		C2407	VCQYTA1HM563	J J	0.056	50V	Mylar	AB
C840	VCKYD41HF104	IZ J	0.1	50V	Ceramic	AA		C2408	VCEAEM1HW10	M J	1	50V	Electrolytic	AB
⚠ C901	RC-FZ029CUMZ	ZZ U			Mylar	AD		C4404	VCEAEM1CW47	M J	47	16V	Electrolytic	AB
⚠ C905	RC-KZ0310CEZ	Z J		:	Ceramic	AC		C5001	VCKYD41CY103	L· V	0.01	.16V	Ceramic	AA
⚠ C906	RC-KZ0310CEZ	Z J		1	Ceramic	AC		C5002	VCEAEM0JW476	M J	47	6.3V	Electrolytic	AB
⚠ C907	RC-EZ0440GEZ	Z J	* 1		Electorolytic	" AH		C5003	VCKYCY1HF103	z J	0.01	50V	Ceramic	AA
⚠ C908	VCFYAA2GA333	3K J	0.033	400V	/ Mylar	'AD		C5004	VCKYCY1HF103	z J	0.01	50V	Ceramic	AA
⚠ C909	RC-KZ0112CEZ	Z J		1 200	Ceramic	AB		C5005	VCCCCY1HH470	JJ		50V	Ceramic	
⚠ C910	VCKYPA1HB472		4700r	550V	Ceramic	AA		C5006	VCKYD41HB221			50V	Ceramic	AA
⚠ C912	VCQYTA1HM27		0.027		Mýlar	AB		C5007	VCKYD41HB221		•	50V	Ceramic	
⚠ C913	VCQYTA1HM33		0.033		•	- FAA								AA
								C5008	VCKYD41HB2211		•		Ceramic	AA
⚠ C921	VCEAGA0JW10				Electrolytic	AB		C5009	VCKYD41HB221			50V	Ceramic	AA
⚠ ·C922	VCEAGA1HW10		10:		Electrolytic	AC		C5501	VCEAEMOJW476				Electrolytic	AB
⚠ C923	VCEAVA1VN477		470		Electrolytic	AD		C5901	VCCCCY1HH380			50V	Ceramic	AA
⚠ C924	RC-QZ0104GEZ				Mýlar	AC		C5902	VCCCCY1HH830		•	50V	Ceramic	·AA
⚠ C925	VCEAVA1AN477	7M : J	470	10V	Electrolytic	AC		64 C5903	VCCCCY1HH470	JiJ	47p	50V	Ceramic	- AA
⚠ C927	VCQYTATHM10	3J J	0.01	50V	Mylar 🦠	AA		C5906	VCEAEM1HW10	J. Mc	1 had	150V	Electrolytic	AB
⚠ C928	* VCEAGA1EW33	7M J	330	25V	Electrolytic	·AC		C5907	VCCCCY1HH470	J·J	47p	50V	Ceramic	AA.
▲ C929	VCEAGA1AW33	7M J	330	10V	Electrolytic	AB		C5908	VCKYCY1EF104	Z J	0.1	25V	Ceramic	'AA
⚠ C930	VCEAGA1HW47	'6M J	47	50V	Electrolytic	AB		C5909	VCCCCY1HH100	D J	10p	:50V	Ceramic ·	·AA
⚠ C931	VCEAEA1HW10	5M J	1	50V	Electrolytic	AB		C5910	VCCCCY1HH8R	L de		'50V	Ceramic	AA
⚠ C932	VCKYCY1EF104	Z J	0.1	25V	Ceramic	AA		C5911	VCEAEM0JW476			6.3V	Electrolytic	AB
⚠ C934	VCEAVA1VN477		470	35V	Electrolytic	AD		C5912	VCKYCY1HF103			50V	Ceramic	AA
⚠ C935	VCKYCY1EF104		0.1	25V	Ceramic	AA		C5913	VCKYCY1HF103			50V		
C936													Ceramic	AA
	VCEAGA1EW33			25V	Electrolytic	AC		C5914	VCEAEM1CW476			16V	Electrolytic	AB
C951	VCEAEM1HW10			50V	Electrolytic	AB		C5915	VCKYCY1HB221				Ceramic	AA
C952	VCEAEM1HW10			50V	Electrolytic	AB		C5916	VCKYD41HB102	< J	1000p	50V	Ceramic	AA
C957	VCEAEA1CW10			16V	Electrolytic	AB								
C958	VCEAEM1HW10)5M J	1	50V	Electrolytic	AB								
C961	VCEAEM1CW10	юм J	10	16V	Electrolytic	AB								
C989	VCKYCY1HF223	3Z J	0.022	50V	Ceramic	AB			RES	IST	ORS			
C151	VCQYTA1HM27	3J J	0.027	50V	Mylar	AB		D040				4/4001		
C155	VCKYCY1EF104	IZ J	0.1	25V	Ceramic	AA		R212	VRS-CY1JF222J				Metal Oxide	
C155	VCEAGA1CW10	7M J	100	16V	Electrolytic	AB		R213	VRS-CY1JF272J	J			Metal Oxide	
C155			0.01	50V	Ceramic	AA		R214	VRS-CY1JF103J	J			Metal Oxide	
C155			0.01	50V	Ceramic	AA		R215	VRS-CY1JF392J	J	3.9k	1/16W	Metal Oxide	AA
								R217	VRS-CY1JF102J	J	1k	1/16W	Metal Oxide	AA
C155			220	16V	Electrolytic	AC		R219	VRS-CY1JF122J	J	1.2k	1/16W	Metal Oxide	AA
C155				50V	Ceramic	AA		R220	VRD-RA2BE152J	J			Carbon	AA
C155			10	16V	Electrolytic	AB		R228	VRS-CY1JF102J		1k		Metal Oxide	
C156	VCCCCY1HH47	oj j	47p	50V	Ceramic	AA		R229	VRS-CY1JF103J	J			Metal Oxide	
C156	VCEAEM1CW10	6M J	10	16V	Electrolytic	AB		R230	VRS-CY1JF103J	J			Metal Oxide	
C180	VCKYCY1HF333	3Z J	0.033	50V	Ceramic	AA		R301						
C180	VCKYD41CX222	N J	2200r	16V	Ceramic	AA		11001	VRD-RA2BE682J	J	O.OK	1/044	Carbon	AA

Ref. No.	Part No.	*	Description	Co	de	Ref. No.	Part No.	*		Description	Code
	RESISTOR	S (C	ontinued)				RESISTOR	S (0	onti	nued)	
R304	VRD-RA2BE153J	J	15k 1/8W Carbon	n	AA	R435	VRS-CY1JF272J	J	2.7k	1/16W Metal Ox	ide AA
R305	VRD-RA2BE332J	J	3.3k 1/8W Carbon	n	AA	R436	VRS-CY1JF333J	J	33k	1/16W Metal Ox	ide AA
R307	VRS-CY1JF473J	J	47k 1/16W Metal (Oxide	AA	R437	VRS-CY1JF335J	J	3.3M	1/16W Metal Ox	ide AA
R308	VRD-RA2BE473J	J	47k 1/8W Carbon	n	AA	R438	VRD-RA2BE335J	J	3.3M	1/8W Carbon	AA
R309	VRS-CY1JF470J	j	47 1/16W Metal (Oxide	AA	R439	VRD-RA2BE103J	J	10k	1/8W Carbon	AA
:: R310	VRD-RA2BE470J	J	47 1/8W Carbon	n	AA	≅R440	VRD-RA2BE335J	J	3.3M	1/8W Carbon	AA
R311	VRS-CY1JF332J		3.3k 1/16W Metal		AA	R443	VRS-CY1JF473J	J	47k	1/16W Metal Ox	ide AA
R312	VRS-CY1JF152J		1.5k 1/16W Metal		AA	R444	VRS-CY1JF473J	J	47k	1/16W Metal Ox	ide AA
R313	VRS-CY1JF102J	-	1k 1/16W Metal		AA	R445	VRD-RA2BE103J	J	10k	1/8W Carbon	AA
R314	VRS-CY1JF152J		1.5k 1/16W Metal		AA	R490	VRD-RA2BE821J	J	820	1/8W Carbon	AA
R315	VRS-CY1JF222J		2.2k 1/16W Metal		AA	R501	VRS-CY1JF102J	J	1k	1/16W Metal Ox	
R316	VRS-CY1JF103J	j	10k 1/16W Metal		AA	R502	VRS-CY1JF821J	J	820	1/16W Metal Ox	
R317	VRS-CY1JF181J	J	180 1/16W Metal		AA	- R506	VRS-CY1JF103J	J	10k	1/16W Metal Ox	
R319	VRS-CY1JF180J	J	18 1/16W Metal		AA	R507	VRS-CY1JF103J	J	10k	1/16W Metal Ox	
		J	18k 1/16W Metal		AA	R508	VRS-CY1JF122J	J		1/16W Metal Ox	
- R320	VRS-CY1JF183J		10k 1/8W Carbo		AA	R510	VRS-CY1JF273J	J		1/16W Metal Ox	
R323	VRD-RA2BE103J		5.6k 1/16W Metal				VRS-CY1JF272J	J			
: R326	VRS-CY1JF562J	J			AA	R511					AA
R330	VRS-CY1JF103J	J	10k 1/16W Metal		AA	R513	VRD-RA2BE102J	J		1/8W Carbon	
R331	VRS-CY1JF102J	J	1k 1/16W Metal		AA	R517	VRS-CY1JF392J	J	3.9k		
R332	VRS-CY1JF333J	J	33k 1/16W Metal		AA	R520	VRD-RA2BE102J	J ,	1k	1/8W Carbon	AA
R333	VRS-CY1JF333J	J	33k 1/16W Metal		AA	R523	VRD-RA2BE103J	J	10k	1/8W Carbon	AA
R334	VRS-CY1JF152J	J	1.5k 1/16W Metal		AA	R524	VRD-RA2BE103J	J		1/8W Carbon	AA
R401	VRS-CY1JF272J	J	2.7k 1/16W Metal		AA	R540	VRS-CY1JF103J	J		1/16W Metal Ox	
R402	VRS-CY1JF821J	J	820 1/16W Metal		AA	R601	VRS-CY1JF100J	J		1/16W Metal Ox	
R403	VRS-CY1JF273J	. J	27k 1/16W Metal		AA	R631	VRS-CY1JF470J	J		1/16W Metal Ox	
R404	VRS-CY1JF103J	J ·			AA	R632	VRS-CY1JF682J	J		1/16W Metal Ox	
R405	VRS-CY1JF561J	J	560 1/16W Metal	Oxide	AA	R633	VRG-SC2EB4R7	J	4.7	1/4W Fuse Re	sistor AB
R406	VRD-RA2BE331J	J	330 1/8W Carbo	חמ	AA	R635	VRD-RA2BE273J			1/8W Carbon	AA
R407	VRS-CY1JF182J	٦	1.8k 1/16W Metal	Oxide	AA	R643	VRS-CY1JF272J	J	2.7k	1/16W Metal Ox	kide AA
R408	VRS-CY1JF152J	J	1.5k 1/16W Metal	Oxide	AA	R701	VRS-CY1JF272J	J	2.7k	1/16W Metal Ox	kide AA
R409	VRS-CY1JF101J	J	100 1/16W Metal	Oxide	AA	R705	VRS-CY1JF155J	J	1.5N	1 1/16W Metal Ox	kide AA
R410	VRS-CY1JF472J	J	4.7k 1/16W Metal	Oxide	AA	R707	VRS-CY1JF102J	7	1k	1/16W Metal Ox	cide AA
R411	VRS-CY1JF102J	J	1k 1/16W Metal	Oxide	AA	· R708	VRD-RA2BE103J	J	10k	1/8W Carbon	AA
R412	VRS-CY1JF821J	J	820 1/16W Metal	Oxide	AA	R709	VRS-CY1JF103J	J	10k	1/16W Metal Ox	kide AA
R413	VRD-RA2BE821J	J	820 1/8W Carbo	on	AA	R710	VRS-CY1JF102J	J	1k	1/16W Metal Ox	kide AA
R414	VRS-CY1JF273J	J	27k 1/16W Metal	Oxide	AA	R711	VRS-CY1JF102J	J	1k	1/16W Metal O:	xide AA
R415	VRS-CY1JF103J	J	10k 1/16W Metal	Oxide	AA	R713	VRD-RA2BE102J	J	1k	1/8W Carbon	AA
R416	VRS-CY1JF472J	J	4.7k 1/16W Metal	Oxide	AA	R714	VRS-CY1JF562J	J	5.6k	1/16W Metal O:	xide AA
R417	VRS-CY1JF332J	J	3.3k 1/16W Metal	Oxide	AA	. R715	VRS-CY1JF682J	J	6.8k	1/16W Metal O:	xide AA
R418	VRS-CY1JF222J	J	2.2k 1/16W Metal	Oxide	AA	R716	VRS-CY1JF393J	J	39k	1/16W Metal O:	xide AA
R419	VRS-CY1JF152J	J	1.5k 1/16W Metal	Oxide	AA	R717	VRS-CY1JF183J	J	18k	1/16W Metal O:	xide AA
R420	VRS-CY1JF562J	J	5.6k 1/16W Metal	Oxide	AA	R718	VRS-CY1JF102J	J	1k	1/16W Metal O	xide AA
R421	VRS-CY1JF102J		1k 1/16W Metal		AA	R719	VRS-CY1JF823J	J	82k	1/16W Metal O	xide AA
R422	VRS-CY1JF103J	Ĵ	10k 1/16W Metal		AA	R720	VRS-CY1JF153J	J	15k	1/16W Metal O	xide AA
R423`	VRS-CY1JF392J	J			AA	R723	VRS-CY1JF154J	J	150	k 1/16W Metal O	xide AA
R424	VRS-CY1JF471J	J			AA	R724	VRS-CY1JF154J	J		k 1/16W Metal O	xide AA
R425	VRS-CY1JF272J	J			AA	R725	VRS-CY1JF273J	J		1/16W Metal O	
	VRS-CY1JF822J	J			AA	R726	VRS-CY1JF564J	J		k 1/16W Metal O	
R426	VRS-CY1JF104J	7			AA	R727	VRS-CY1JF272J	J		1/16W Metal O	
R427					AA	R728	VRS-CY1JF224J	J		k 1/16W Metal O	
R428	VRD-RA2BE471J		470 1/8W Carbo							1/16W Metal O	
R429	VRS-CY1JF681J	J			AA	.: R729	VRS-CY1JF683J				
R431	VRS-CY1JF272J	J			AA	R730	VRS-CY1JF334J			k 1/16W Metal O	
R432	VRS-CY1JF103J	J	10k 1/16W Metal		AA	∴R731	VRS-CY1JF392J			1/16W Metal O	
R433	VRS-CY1JF103J	J	10k 1/16W Metal		AA	R732	VRS-CY1JF473J			1/16W Metal O	
R434	VRS-CY1JF103J	J	10k 1/16W Metal	I Oxide	AA	R733	VRS-CY1JF155J		1.5	/I 1/16W Metal O	xide AA

Ref. No.	Part No.	*		Description	Co	de	Re	f. No.	Part No.	*		Descr	iption C	ode
•	RESISTOR	S ((Conti	nued)					RESISTOR	5 (0	Conti	inued)	
R734	VRS-CY1JF223J	J	22k	1/16W Metal O	xide	AA	\triangle	R904	RR-WZ0003GEZZ	J	4.7	1/2W	Solid	AD
R735	VRS-CY1JF103J	J	10k	1/16W Metal O	xide	AΑ	Λ	R905	RR-SZ0007GEZZ	J	68	1/2W	Solid	AB
R736	VRS-CY1JF103J	J	10k	1/16W Metal O	xide	AA	\triangle	R906	VRD-RA2HD154J	J	150k	1/2W	Carbon	AA
R737	VRS-CY1JF103J	J	10k	1/16W Metal O	xide	AA	\triangle	R907	VRD-RA2HD154J	J	150k	1/2W	Carbon	AA
R738	VRS-CY1JF223J	J	22k	1/16W Metal O	xide	AA	Δ	R908	VRS-VV3AB820J	j	82	1W:	Metal Oxide	AA
R739	VRS-CY1JF473J	J	47k	1/16W Metal O	xide	AA	Λ	R916	VRD-RA2EE821J	J	820	1/4W	Carbon	AA
R741	VRS-CY1JF563J	J	56k	1/16W Metal O	xide	AA		R921	VRG-SC2EB1R0J	J	1	1/4W	Fuse Resisto	
R742	VRS-CY1JF223J	J		1/16W Metal O		AA		R922	VRD-RA2HD100J	J	10	1/2W	Carbon	AA
R743	VRS-CY1JF564J	J		1/16W Metal O		AA		R924	VRG-SC2EB100J	J	10		Fuse Resisto	
R746	VRS-CY1JF222J	J				AA		R925	VRD-RA2BE221J	J	220		Carbon	
R748	VRD-RA2BE223J	J	22k	1/8W Carbon		AA			VRS-CY1JF221J					AA
		_						R926		J	220		Metal Oxide	AA
R752	VRS-CY1JF471J	J		1/16W Metal O		AA	_	R927	VRD-RA2BE272J	J			Carbon	AA
R801	VRD-RA2BE102J	J		1/8W Carbon		AA		R928	VRS-CY1JF103J	J	10k		Metal Oxide	AA
R802	VRD-RA2BE102J	J		1/8W Carbon		AA		R929	VRS-CY1JF183J	J	18k		Metal Oxide	AA
R803	VRS-CY1JF471J	J	470	1/16W Metal O		AA		R930	VRS-CY1JF392J	J	3.9k	1/16W	Metal Oxide	AA
R804	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AA	Δ	R931	VRS-CY1JF682J	J	6.8k	1/16W	Metal Oxide	AA
R805	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AΑ	Δ	R932	VRS-CY1JF221J	J	220	-1/16W	Metal Oxide	AA
R806	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AA	\triangle	R933	VRD-RA2BE222J	J	2.2k	1/8W	Carbon	AA
R807	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AA		R934	VRD-RA2EE103J	J	10k	1/4W	Carbon	AA
R809	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AΑ		R952	VRD-RA2HD561J	J	560	1/2W	Carbon	AA
R811	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AA		R961	VRD-RA2BE330J	J	33	1/8W	Carbon	AA
R812	VRS-CY1JF471J	J	470	1/16W Metal O	xide	AA		R962	VRS-CY1JF223J	J	22k	1/16W	Metal Oxide	AA
R813	VRS-CY1JF103J	J	10k	1/16W Metal O	xide	AA		R963	VRS-CY1JF330J	J	33		Metal Oxide	AA
R814	VRS-CY1JF102J	J	1k	1/16W Metal O		AA		R965	VRS-CY1JF223J	, J	22k		Metal Oxide	AA
R815	VRS-CY1JF104J	Ĵ		1/16W Metal O		AA		R966	VRS-CY1JF103J	: J	10k		Metal Oxide	AA
R819	VRD-RA2BE102J	J		1/8W Carbon		AA		R967	VRD-RA2BE183J	J	18k		Carbon	
R821	VRS-CY1JF152J	J		1/16W Metal O		AA		R971	VRD-RA2HD561J					AA
R822	VRD-RA2BE183J	J		1/8W Carbon		AA				. J	560		Carbon	AA
		_					} -	R972	VRD-RA2BER56J	J			Carbon	AA
R824	VRS-CY1JF103J	J.		1/16W Metal O		AA		R973	VRD-RA2BER56J	્ય	1.5		Carbon	AA
R825	VRS-CY1JF103J	J		1/16W Metal O		AA		R976	VRD-RA2BE472J	J			Carbon	AA
R826	VRS-CY1JF103J	J		1/16W Metal O		AA		R979	VRD-RA2EE391J	J	390		Carbon	AA
R827	VRS-CY1JF103J		10k	1/16W Metal O	xide	AA		R980	VRS-CY1JF473J	J	47k	1/16W	Metal Oxide	AA
R831	VRD-RA2BE102J	J	1k	1/8W Carbon		AA		R981	VRS-CY1JF183J	J	18k	1/16W	Metal Oxide	AA
R832	VRS-CY1JF102J	J	1k	1/16W Metal O	xide	AA		R982	VRD-RA2EE391J	J	390	1/4W	Carbon	AA
R840	VRG-SC2EB2R2J	J	2.2	1/4W Fuse Re	esistor	AC		R983	VRS-CY1JF183J	J	18k	1/16W	Metal Oxide	AA
R841	VRG-SC2EB1R0J	J	1	1/4W Fuse Re	esistor	AB		R989	VRD-RA2BE333J	J	33k	1/8W	Carbon	AA
R851	VRD-RA2EE151J	J	150	1/4W Carbon		AA		R993	VRD-RA2HD392J	J	3.9k	1/2W	Carbon	AA
R854	VRD-RA2BE123J	J	12k	1/8W Carbon		AA		R995	VRD-RA2HD271J	J	270	1/2W	Carbon	AA
R855	VRD-RA2BE123J	J	12k	1/8W Carbon		AA		R1501	VRD-RA2BE822J	J	8.2k	1/8W	Carbon	AA
R856	VRS-CY1JF103J	J	10k	1/16W Metal O	xide	AA		R1502	VRS-CY1JF472J				Metal Oxide	AA
R857	VRD-RA2BE271J	J	270	1/8W Carbon		AA		R1503	VRD-RA2BE223J	J			Carbon	AA
R858	VRS-CY1JF104J	J	100k	1/16W Metal O		AA		R1510	VRD-RA2BE222J				Carbon	AA
R859	VRD-RA2BE271J			1/8W Carbon		AA		R1551	VRS-CY1JF334J	J			Metal Oxide	AA
R860	VRS-CY1JF104J			1/16W Metal O		AA		R1552	VRS-CY1JF474J	J				AA
R861	VRD-RA2BE102J		1k	1/8W Carbon		AA		R1553	VRS-CY1JF101J					
R862	VRD-RA2BE154J			1/8W Carbon						J			Metal Oxide	
						AA		R1801	VRS-CY1JF125J	J			Metal Oxide	
R863	VRD-RA2BE102J	J		1/8W Carbon		AA		R1802	VRS-CY1JF682J	J			Metal Oxide	
R864	VRS-CY1JF154J			1/16W Metal O		AA		R1803	VRS-CY1JF125J	J			Metal Oxide	
R865	VRS-CY1JF102J		1k	1/16W Metal O		AA		R1804	VRS-CY1JF682J	J	6.8k		Metal Oxide	AA
R866	VRS-CY1JF471J		470	1/16W Metal O		AA		R1805	VRS-CY1JF105J	J	1M	1/16W	Metal Oxide	AA
R867	VRS-CY1JF102J	J	1k	1/16W Metal O	xide	AA		R1806	VRS-CY1JF222J	J	2.2k	1/16W	Metal Oxide	AA
R891	VRS-CY1JF102J	J	1k	1/16W Metal O	xide	AA		R1807	VRS-CY1JF104J	J	100k	1/16W	Metal Oxide	AA
№ R901	VRD-RA2HD105J	J	1M	1/2W Carbon		AA		R2401	VRS-CY1JF392J	J	3.9k	1/16W	Metal Oxide	AA
⚠ R902	VRC-UA2HG685K	J	6.8M	1/2W Solid		AΑ		R2402	VRS-CY1JF681J	J	680	1/16W	Metal Oxide	AA
№ R903	VRC-UA2HG685K	J	6.8M	1/2W Solid		AA		R2403	VRS-CY1JF154J	J			Metal Oxide	ΔΔ

Ref.	No.	Part No.	*	Description Co	de	Ref. No.	Part Nö.	*	Description	Code
		RESISTORS) (C	Continued)		MIS	SCELLANEOUS	P/	ARTS (Continued)	
· F	R2404	VRS-CY1JF472J	J	4.7k · 1/16W Metal Oxide	AA	\$701	QSW-F0042AJZZ	٧	Switch(VC-MH64SM)	AG
F	R2405	VRS-CY1JF472J	J	4.7k 1/16W Metal Oxide	AA	S851	QSW-F0042AJZZ	V	Switch	AG
F	R2406	VRS-CY1JF272J	J	2.7k 1/16W Metal Oxide	AA	S5002	QSW-K0086GEZZ	J	Switch	AC
F	12410	VRS-CY1JF684J	J	680k 1/16W Metal Oxide	AA	S5003	QSW-K0086GEZZ	J	Switch	AC
F	32411	VRS-CY1JF103J	J	10k 1/16W Metal Oxide	AA	S5004	QSW-K0086GEZZ	J	Switch	AC
F	R2412	VRS-CY1JF104J	J	100k 1/16W Metai Oxide	AA	SC301	QSOCN1199REZZ	J	Socket, 11pin	
F	35001	VRD-RA2BE472J	J	4.7k 1/8W Carbon	AA	SC601	QSOCN0684REZZ	J	Socket, 6pin	AB
F	35002	VRD-RA2EE3R3J	J	3.3 1/4W Carbon	AA	SC701	QSOCN0795REZZ	J	Socket, 7pin	AC
F	35003	VRD-RA2BE393J	J	39k 1/8W Carbon	AA	SC1501	QSOCN0895REZZ	J	Socket, 8pin	. AC
		VRS-CY1JF123J	J	12k 1/16W Metal Oxide	AA					
		VRS-CY1JF472J	j	4.7k 1/16W Metal Oxide	AA				•	
	35006	VRS-CY1JF472J	J	4.7k 1/16W Metal Oxide	AA					
		VRS-CY1JF472J	J	4.7k 1/16W Metal Oxide	AA					
	35008	VRS-CY1JF472J	J	4.7k 1/16W Metal Oxide	AA					
		VRS-CY1JF223J	J	22k 1/16W Metal Oxide						
	R5501	VRD-RA2BE331J	J	330 1/8W Carbon	·AA	V.A				
		VRD-RA2BE181J	J	180 1/8W Carbon	AA					
		VRD-RA2BE181J	J		AA					
	R5904	VRD-RA2BE102J	J	1k 1/8W Carbon	AA					
'	R5910	VRD-RA2BE152J	J	1.5k 1/8W Carbon	AA					
		MISCELLAN	EC	US PARTS						
\triangle		QACCV2007AJZZ	٧	AC Cord	AS				•	
J	DG5001	VVK10BT143G-1	J	Fluorescent Display Tube	AV					
1	F901	QFS-C2026CEZZ	J	Fuse, T2AH/250V	AE					
ı	FB701	RBLN-0043CEZZ	J	Balun	AB					
	FB801	RBLN-0013GEZZ	J	Balun	AB					
	FB902	RBLN-0043CEZZ	J	Balun	AB					
		RBLN-0043CEZZ	J	Balun	AB					
	FH901	QFSHD1013CEZZ	J	Fuse Holder	AC					
	FH902	QFSHD1014CEZZ		Fuse Holder	AC					
	JA139	RBLN-0043CEZZ	J	Balun	AB					
	JA183	RBLN-0043CEZZ	J	Balun	AB		*			
	JA191	RBLN-0043CEZZ		Balun	AB					
			,		AB					
	P301	QPLGZ0331GEZZ	J	Plug, 3pin						
	P401	QPLGN0347REZZ	J ,	Plug, 3pin	AA					
	P601	QPLGN0247REZZ		Plug, 2pin	AA					
	P603	QPLGN0478GEZZ		Plug, 4pin	AB				•	
	P701	QPLGZ0631GEZZ		Plug, 6pin	AA					
	P702	QPLGN0247REZZ		Plug, 2pin	AA					
	P703	QPLGN0247REZZ	J	Plug, 2pin	AA					
	P704	QPLGZ0974GEZZ	J	Plug, 9pin	AD		.1			
\triangle	P901	QPLGN0269GEZZ	J	Plug, 2pin	AB					
	P1501	QPLGN0247REZZ	J	Plug, 2pin	AA					
	P1551	QPLGN0447REZZ	J	Plug, 4pin	AA					
	P2251	QPLGN0559REZZ	J	Plug, 5pin	AB					
		QPLGZ1431GEZZ	Ĺ	Plug, 14pin	AC					
	P4401			-	AC				•	
!		QPLGZ1131GEZZ	J	Plug, 11bin						
!	P4402	QPLGZ1131GEZZ QPLGZ1331GEZZ		Plug, 11pin Plug, 13pin						
!	P4402 P4403	QPLGZ1331GEZZ	J	Plug, 13pin	AC					•
!	P4402	•	J	= -			1			

Ref. No.	Part No.	*	Description	Code	Ref. No.	Part No.	*		Desc	ription	Code
	DUNTK	52	91TEV0		COIL	S AND TRANS	FO	RMEF	RS (C	ontinue	d)
	TERMI	NA	L UNIT		L6609	VP-XF3R3K0000	J	3.3µF	ı		AB
	INTEGRAT	En	CIRCUITS		L6610	VP-XF3R3K0000	J	3.3µ⊦	I		AB
ICGEO+											
IC2501		J		AM		CON	me	OLS			
IC6301 IC6302	VHIAN3965F/-1 VHIBA7755AF1E	J		AV	Donas			020			
IC6302		J		AE AE	R6310	RVR-M4495CEZZ					AD
IC6601	VHIBU4066BF1E	J		AD	R6316	RVR-M4495CEZZ	J				AD
IC6602	VHIBA15218F1E	J		AD AF							
100002	VIIIDA 13216F1E	U		AF		CAPA	CI	TORS			
					C2501	VCKYCY1AF105Z			10V	Ceramic	AC
	TRAN	SIS	TORS		C2502	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
Q2501	VS2SA1037KQ-1	J	2SA1037KQ	AA	C2503	VCEAEA0JW227N	1 J	220	6.3V	Electrolytic	
Q2502	VS2SA1037KQ-1	J	2SA1037KQ	AA	C2504	VCKYCY1HF103Z	J	0.01	50V	Ceramic	AA
Q2503	VS2SA1037KQ-1	J	2SA1037KQ	AA	C2506	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
Q2601	VSDTA144EK/-1	J	DTA144EK	AC	C2507	VCEA2A0JW477N			6.3V		
Q6302	VSDTC144EK/-1	J	DTC144EK	AB	C2508	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
Q6303	VS2SC2412KQ-1	J	2SC2412KQ	AA	C2509	VCEA2A0JW477N	ı J	470	6.3V	Electrolytic	
Q6304	VSDTC144EK/-1	J	DTC144EK	AB	C2512	VCEAEA1CW476		47	16V	Electrolytic	
Q6305	VSDTC144EK/-1	ˈJ	DTC144EK	AB	C2513	VCKYCY1HF103Z	J	0.01	50V	Ceramic	AA
Q6306	VSDTA124EK/-1	J	DTA124EK	AB	C2604	VCKYCY1HB102K	J	1000p	50V	Ceramic	AA
Q6307	VS2SD1306-D1E	J	2SD1306-D	AB	C2605	VCKYCY1HB102k	J			Ceramic	` AA
Q6308	VS2SD1306-D1E	J	2SD1306-D	AB	C6301	VCEAEA0JW476N	1 J	47	6.3V	Electrolytic	AB
Q6309	VS2SD1306-D1E	J	2SD1306-D	AB	C6302	VCKYCY1AF105Z		11	10V	Ceramic	AC
Q6314	VSDTC144EK/-1	J	DTC144EK	AB	C6304	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
Q6601	VSDTC144EK/-1	J	DTC144EK	AB	C6306	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
Q6602	VSDTA144EK/-1	J	DTA144EK	AC	C6308	VCEAEA1CW336I	ИJ	33	16V	Electrolytic	
Q6603	VS2SD1306-D1E	J	TRANSISTOR '	AB	C6309	VCKYCY1CB473k	J	0.047	16V	Ceramic	AA
Q6604	VS2SD1306-D1E	J	TRANSISTOR	AB	C6310	VCEAEA1HW225	ΛJ	2.2	50V	Electrolytic	
Q6605	VSDTC144EK/-1	J	DTC144EK	AB	C6311	VCEAEA0JW107N	ı J	100	6.3V		
		:		1.	C6312	VCKYCY1EB153K	J	0.015	25V	Ceramic	AA
					C6313	VCKYCY1EB103K	J	0.01	25V	Ceramic	AA
	DIC	DD	ES		C6314	VCKYCY1EB103K	J	0.01	25V	Ceramic	AA
D2501	RH-EX0646GEZZ	J	Zener Diode	AA	C6315	VCEAEA1CW106	ΛJ	10	16V	Electrolytic	
D2502	RH-EX0646GEZZ	J	Zener Diode	AA	C6318	VCKYCY1EB103K	J	0.01	25V	Ceramic	AA
D2503	RH-EX0646GEZZ	J	Zener Diode	AA	C6319	VCEAEA1HW224	ΛJ	0.22	50V	Electrolytic	AB
D2504	RH-EX0646GEZZ	J	Zener Diode	AA	C6320	VCKYCY1EB103K			25V	Ceramic	AA
D2505	RH-EX0646GEZZ	J	Zener Diode	AA	C6321	VCKYCY1EB153K	J	0.015	25V	Ceramic	AA
D2602	RH-EX0646GEZZ	J	Zener Diode	AA	C6322	VCEAEA0JW107N	IJ	100	6.3V	Electrolytic	
D2603	RH-EX0646GEZZ	J	Zener Diode	AA	C6323	VCEAEA1HW225N	ΛJ	2.2	50V	Electrolytic	AB
D6602	RH-EX0146GEZZ	J	Zener Diode	AA	C6324	VCEAEA1CW336N	ΛJ	33	16V	Electrolytic	AB
					C6325	VCKYCY1CB473K	J	0.047	16V	Ceramic	AA
					C6326	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
	COILS AND T	RA	NSFORMERS		C6327	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
L6302	VP-YF822J0000	J.	8200pH	AC	C6329	VCKYCY1AF105Z	J	1	10V	Ceramic	AÇ
L6303	VP-MK101K0000		100µH	AB	C6331	VCKYCY1AF105Z	J	1	10V	Ceramic	AC
L6601	VP-XF3R3K0000		3.3µH	AB	C6333	VCEAEA1CW476N	ΛJ	47	16V	Electrolytic	AB
L6602	VP-XF3R3K0000		3.3µH	AB	C6334	VCEAEM1CW106	VI J	10	16V	Electrolytic	AB
L6603	VP-XF2R2K0000		2.2µH	AB	C6335	VCQYTA1HM153J	J	0.015	50V	Mylar	AA
L6604	VP-XF2R2K0000		2.2µH	AB	C6336	VCEAEM1CW106	L N	10	16V	Electrolytic	AB
L6605	VP-XF2R2K0000		2.2µH	AB	C6338	VCEAEA1HW335N	/I J	3.3	50V	Electrolytic	AB
L6606	VP-XF2R2K0000		2.2µH	AB	C6339	VCKYCY1HB122K	J	1200p	50V	Ceramic	AA
L6607	VP-XF3R3K0000		3.3µH	AB	C6340	VCEAEA1CW106N	۱ J	10	16V	Electrolytic	AB
L6608	VP-XF3R3K0000		3.3µH	AB	C6341	VCEAEA1CW226N	ΙJ	22	16V	Electrolytic	AB

Ref. No.	Part No.	*		Descr	iption	Code	Ref. No.		Part No.	*		Description	Co	de
	CAPACITOR	S (Conti	nue	d)				RESISTORS	S (C	onti	nued)		
C6342	VCEAEA1CW226M	J	22	16V	Electrolytic	AB	R2510	0	VRD-RA2BE101J	J	100	1/8W Carbon		AA
C6343	VCEAEA1CW106M	J	10	16V	Electrolytic	AB	R251	1	VRS-CY1JF750J	J	75	1/16W Metal Oxid	ie	AA
C6344	VCEAEA1CW226M	J	22	16V	Electrolytic	AB	R2513	3	VRD-RA2BE223J	J	22k	1/8W Carbon		AA
C6345	VCEAEA1CW106M	J	10	16V	Electrolytic	AB	R2514	4	VRD-RA2BE223J	J	22k	1/8W Carbon		AA
C6346	VCEAEA1HW104M	J	0.1	50V	Electrolytic	AB	R251	5	VRS-CY1JF223J	J	22k	1/16W Metal Oxid	de	AA
C6347	VCKYCY1EB183K	J	0.018	25V	Ceramic	AA	R2510	6	VRS-CY1JF223J	J	22k	1/16W Metal Oxid	de	AA
C6348	VCKYCY1EB123K	J	0.012	25V	Ceramic	AA	R251	7	VRS-CY1JF223J	J	22k	1/16W Metal Oxid	ie	AA
C6357	VCCCCY1HH120J	J	12p	50V	Ceramic	AA	R2518	8	VRS-CY1JF103J	J	10k	1/16W Metal Oxid	elc	AA
C6358	VCCCCY1HH120J	J	12p	50V	Ceramic	AA	R2520	0	VRS-CY1JF223J	J	22k	1/16W Metal Oxid	de	AA
C6359	VCCCCY1HH680J	J	68p	50V	Ceramic	AA	R252	1	VRS-CY1JF223J	J	22k	1/16W Metal Oxid	de	AA
C6362	VCKYCY1HB332K	J	3300p	50V	Ceramic	AA	R252	2	VRS-CY1JF223J	j	22k	1/16W Metal Oxid	íe	AA
C6363	VCKYCY1AF105Z	J	1	10V	Ceramic	AC	R252	4	VRS-CY1JF102J	J	1k	1/16W Metal Oxid		AA
C6370	VCKYCY1HB681K		680p	50V	Ceramic	AA	R252		VRS-CY1JF472J	J	4.7k	1/16W Metal Oxid	de	AA
C6371	VCKYCY1HB681K		680p	50V	Ceramic	AA	R252	6	VRS-CY1JF821J	J	820	1/16W Metal Oxid	de	AA
C6378	VCEAEA1CW106M		10	16V	Electrolytic		R254		VRS-CY1JF101J	J	100	1/16W Metal Oxid		AA
C6380	VCEAEA1CW106M		10	16V	Electrolytic		R254		VRS-CY1JF101J	J	100	1/16W Metal Oxid		AA
C6381	VCEAEA1CW106M		10	16V	Electrolytic		R254		VRS-CY1JF185J	J		1/16W Metal Oxid		AA
C6382	VCKYCY1HB561K		560p	50V	Ceramic	AA	R260		VRD-RA2EE821J	J	820	1/4W Carbon		AA
C6383	VCEAEA1CW106N		10	16V	Electrolytic		R261		VRS-CY1JF153J	J		1/16W Metal Oxi	de	AA
C6384	VCKYCY1HB681K		680p	50V	Ceramic	AA	R261		VRS-CY1JF183J	J		1/16W Metal Oxi		AA
C6385	VCKYCY1HB681K		680p	50V	Ceramic	AA	R261		VRS-CY1JF103J	J		1/16W Metal Oxi		AA
C6387	VCKYCY1HB561K		560p	50V	Ceramic	AA	R261		VRS-CY1JF101J	J	100	1/16W Metal Oxi		AA
C6601	VCEAEA1CW106N		10	16V	Electrolytic		R630		VRS-CY1JF103J	.1	10k	1/16W Metal Oxi		AA
C6602	VCEAEA1CW106N		10	16V	Electrolytic		R630		VRD-RA2BE223J	J	22k	1/8W Carbon		AA
C6603	VCEAEA1CW106N		10	16V	Electrolytic		R630		VRS-CY1JF393J	J		1/16W Metal Oxi	de	AA
C6604	VCEAEA1CW106N		10	16V	Electrolytic		R630		VRS-CY1JF123J	J		1/16W Metal Oxi		AA
C6606	VCEAEA1CW106N		10	16V	Electrolytic		R630		VRS-CY1JF471J	J	470	1/16W Metal Oxi		AA
C6608	VCKYCY1HB222K				Ceramic	AA	R630		VRS-CY1JF472J	J		1/16W Metal Oxi		AA
C6609	VCKYCY1HB222K				Ceramic	AA	R630		VRS-CY1JF123J	J		1/16W Metal Oxi		AA
C6610	VCEAEA1CW226N			16V	Electrolytic		R630		VRS-CY1JF392J	J		1/16W Metal Oxi		AA
C6621	VCCCCY1HH101J				Ceramic	AA	R630		VRD-RA2BE153J	J		1/8W Carbon	40	AA
C6626	VCCCCY1HH101J		100p	50V	Ceramic	AA	R631		VRD-RA2BE183J	J		1/8W Carbon		AA
C6627	VCEAEA1CW106N		•	167	Electrolytic		R631		VRS-CY1JF152J	J		1/16W Metal Oxi	de	AA
C6628	VCEAEA1CW106N		10	167	Electrolytic		R631		VRD-RA2BE472J	J		1/8W Carbon	uc	AA
C6629	VCEAEA1CW226N			16V	Electrolytic		R631		VRS-CY1JF103J	j		1/16W Metal Oxi	ide	AA
					Ceramic	AA	R631			J		1/8W Carbon	uo	AA
C6631 C6632	VCKYCY1HB271K VCKYCY1HB271K					AA	R631		VRS-CY1JF123J	_		1/16W Metal Oxi	ide	
	VCKYCY1HB271K					AA	R631		VRS-CY1JF392J	J.		1/16W Metal Ox		
C6633	VCKYCY1HB271K					AA	R631		VRS-CY1JF472J			1/16W Metal Ox		
C6634							R632		VRS-CY1JF472J			1/16W Metal Ox		
C6635	VCCCCY1HH101J					AA			VRS-CY1JF183J			1/16W Metal Ox		
C6636	VCCCCY1HH101J					AA	R632		VRS-CY1JF103J	1		1/16W Metal Ox		
C6679	VCEAEA1CW476N	/ J	47	IOV	Electrolytic	: AB	R632			J		1/16W Metal Ox		
							R632		VRS-CY1JF103J	J				
•	DEC	et	ORS				R632		VRS-CY1JF223J	J		1/16W Metal Ox 1/16W Metal Ox		
	neo						R632		VRS-CY1JF335J	J				
R2501	VRD-RA2EE121J				Carbon	AA	R632		VRS-CY1JF682J	1		1/16W Metal Ox 1/16W Metal Ox		
R2502	VRD-RA2EE121J	J	120	1/4W	Carbon	AA	R632		VRS-CY1JF562J	J				
R2503	VRS-CY1JF101J	J	100		V Metal Oxid		R632		VRS-CY1JF224J	J		< 1/16W Metal Ox		
R2504	VRS-CY1JF101J	J	100	1/16	V Metal Oxid	de AA	R632		VRS-CY1JF181J	J		1/16W Metal Ox		
R2505	VRD-RA2EE151J	J	150	1/4W	Carbon	AA	R633		VRS-CY1JF273J	J		1/16W Metal Ox		
R2506	VRS-CY1JF750J	J	75	1/16\	V Metal Oxid	de AA	R633		VRS-CY1JF223J	J		1/16W Metal Ox		
R2507	VRS-CY1JF101J	J	100	1/16	V Metal Oxid	de AA	R633		VRS-CY1JF333J	J		1/16W Metal Ox		
R2508	VRS-CY1JF750J	J	75	1/16\	V Metal Oxid	AA ek	R633		VRS-CY1JF391J	J		1/16W Metal Ox		
R2509	VRS-CY1JF750J	J	75	1/16\	V Metal Oxid	ie AA	R633		VRS-CY1JF391J	J		1/16W Metal Ox		
							R633	35	VRS-CY1JF821J	J	820	1/16W Metal Ox	ıde	AA

Ref. No.	Part No.	*	Description	Co	ode	Ref. No.	Part No.	*	Description	Code
	CAPACITO	RS ((Continued)				MISCELLA	NEC	OUS PARTS	
R6336	VRS-CY1JF153J	J	15k 1/16W Metal O:	xide	AA	FB2501	RBLN-0043CEZ	Z J	Balun	AB
R6337	VRS-CY1JF153J	J	15k 1/16W Metal O:	xide	AA	FB2502	RBLN-0043CEZ	Z J	Balun	AB
R6338	VRS-CY1JF152J	J	1.5k 1/16W Metal O:		AA	FB6301	RBLN-0043CEZ	Z J	Balun	AB
R6339	VRS-CY1JF682J		6.8k 1/16W Metal O		AA	FB6302	RBLN-0043CEZ	Z J	Balun	AB
R6340	VRS-CY1JF682J		6.8k 1/16W Metal O		AA	J6601	QJAKF0046GEZ			AF
R6341	VRS-CY1JF682J	J			AA	P6301	QPLGN0478GE			AB
R6342	VRS-CY1JF562J	_	5.6k 1/16W Metal O:		AA	P6302	QPLGN0478GE		J. 1	AB
R6343	VRS-CY1JF391J	J	390 1/16W Metal O		AA	SC2501	QSOCZ2185GE			AF
R6344	VRS-CY1JF181J	j			AA		QSOCZ2185GE		Socket, 21pin	AF
R6345	VRS-CY1JF182J	J			AA		QSOCZ1431GE		•	AD
R6352	VRS-CY1JF331J	J	330 1/16W Metal O		AA		QSOCZ1131GE			AD
R6353	VRS-CY1JF331J	J					QSOCZ1331GE			
R6355	VRS-CY1JF154J		150k 1/16W Metal O		AA	000000	GOOOZ TOO TOE	د ح	oocket, Tapin	AD
R6357		J			AA					•
	VRS-CY1JF563J	J	56k 1/16W Metal Ox		AA					
R6370	VRS-CY1JF393J	J	39k 1/16W Metal Ox		AA					
R6371	VRS-CY1JF393J	J	39k 1/16W Metal Ox		AA				and the second second	•
R6601	VRS-CY1JF154J	J	150k 1/16W Metal Ox		AA					
R6602	VRS-CY1JF154J	, J	150k 1/16W Metal Ox		AA			1276	Na _e or	
R6603	VRS-CY1JF154J	J	150k 1/16W Metal Ox		AA				***	
R6604	VRS-CY1JF154J	١J٠	150k 1/16W Metal Ox	xide	AA	67. AC	The state of the state of		W V	
R6605	VRS-CY1JF154J	J	150k 1/16W Metal Ox	xide	AA	10 mg	net waste of the		fig. 11	
R6606	VRS-CY1JF154J	ال :	150k 1/16W Metal Ox	xide	AA					
R6607	VRS-CY1JF103J	J	10k 1/16W Metal Ox	xide	AA					
R6608	VRS-CY1JF472J	J	4.7k 1/16W Metal Of	xide	AA		1 44.	. (5 12	
R6611	VRS-CY1JF821J	J	820 1/16W Metal Ox	xide	AA	Me W	the diagnost pro-		auto den g a	
R6612	VRS-CY1JF821J	J.	820. 1/16W Metal Ox	xide .	:AA	***				14.7
R6613	VRS-CY1JF154J	J	150k 1/16W Metal Ox	xide	AA					
R6615	VRS-CY1JF222J	·J	2.2k 1/16W Metal Ox	kide.	AA					
R6616	VRS-CY1JF222J	J	2.2k 1/16W Metal Ox	kide	AA		3-1877. 西斯 姆克尔克克	aging di	Sec. WAS PROPER	
R6617	VRS-CY1JF472J	SJ	4.7k 1/16W Metal Ox	kide.	AA		100 111 100			
R6619	VRS-CY1JF153J	J	15k 1/16W Metal Ox	kide	AA	* .			, l. ()	•
R6621	VRS-CY1JF822J	J	8.2k 1/16W Metal Ox	kide	AA		1.41.81			
R6622	VRS-CY1JF822J	J	8.2k 1/16W Metal Ox	kide	AA	.*				
R6623	VRS-CY1JF153J	J	15k 1/16W Metal Ox	xide	AA	•	1.			
R6624	VRS-CY1JF154J	J	150k 1/16W Metal Ox	kide	AA					
R6628	VRS-CY1JF123J	J	12k 1/16W Metal Ox	kide	AA					
R6629	VRD-RA2BE393J	J	39k 1/8W Carbon		AA				•	
R6630	VRS-CY1JF123J		12k 1/16W Metal Ox	ride	AA					
R6631	VRS-CY1JF393J	J			AA					
R6632	VRS-CY1JF103J		10k 1/16W Metal Ox		AA					
R6633	VRS-CY1JF103J				AA					
R6640	VRS-CY1JF563J									
					AA					
R6641	VRS-CY1JF563J VRS-CY1JF331J		56k 1/16W Metal Ox		AA					
R6650			330 1/16W Metal Ox		AA					
R6651	VRS-CY1JF331J		330 1/16W Metal Ox	KIOE	AA					
R6652	VRD-RA2BE471J		470 1/8W Carbon		AA					
R6653	VRS-CY1JF272J		2.7k 1/16W Metal Ox		AA					
R6654	VRS-CY1JF471J		470 1/16W Metal Ox		AA					
R6655	VRS-CY1JF272J		2.7k 1/16W Metal Ox	ride	AA					
R6666	VRD-RA2EE561J	J	560 1/4W Carbon		AA					

- End of Terminal -

No.	Part No.	*	Description	Code	Ref. No.	Part No.	*	Description (odé
			(VC-MH64GM			CAPACITO	RS (Continued)	
אטע	MPX		(VC-MH64SM INIT	<i>)</i> *	C1706	VCEAEÁ1CW10	SM J		Al
					a - C1707	VCKYCY1EF104	7 .1	(VC-MH64SM) 0.1 25V Ceramic	A
	INTEGRATE			4	01707	VORTOTIEFTO	_ ,	(VC-MH64SM)	~
	VHiSA7283G2-1		(VC-MH64SM)	BM -AG	⁹ C1708	VCEAEA1CW10	J M6	10 16V Electrolytic	Α
	RH-iX0055GEZZ VHiTDA9840T-1	J		AS	. ()			(VC-MH64SM)	
C1902	VIII DA90401-1	3		. 70	C1709	VCKYCY1CF334	Z J	0.33 16V Ceramic	Α
					01710	VOEAEALOWHO	-B.4 I	(VC-MH64SM)	
	TRANS	ilS	TORS		C1710 t	VCEAEA1CW10	OIVI J	10 16V Electrolytic (VC-MH64SM)	Α
Q1701	VS2SC2735//1E	J	2SC2735(VC-MH64SM)	AC	C1713	VCKYCY1EF104	Z J	,	A
Q1702	VS2SA950-Y/1E	J	2SA950-Y(VC-MH64SM) AD	- :			(VC-MH64SM)	
Q1703	VSDTC124EK/-1	J	DTC124EK(VC-MH64SN	/I) AB	% C1716	VCEAEA1CW10	ĠΜ J	10 16V Electrolytic	A
Q1901	VS2SC2412KQ-1	J		AA		1.5		(VC-MH64SM)	
21902	VS2C1740SQR1E	J	2SC1740SQR	AC	C1717	VCKYCY1CF334	Z J	0.33 16V Ceramic	P
								(VC-MH64SM)	
	DIC	ום	ES		C1718	VCFYSA1HB473	N J	0.047 50V Mylar	F
D1701				AA	C1720	VCEAEA1CW10	6NA I	(VC-MH64SM) 10 16V Electrolytic	,
D1701 D1720	RH-DX0053GEZZ VHDQF4076//-1		1SS132(VC-MH64SM) OF4076(VC-MH64SM)	AC	01720	VOLALATOWIO	Olai O	(VC-MH64SM)	,
D1720	VIIDO! 40? 6//-1	Ü	O1 407 0(V O-WIT 1040W)	AO	C1721	VCKYCY1HF103	BZ J		,
					*1			(VC-MH64SM)	
	PACKAGE	ΞD	CIRCUIT		C1722	VCEAEA0JW476	M J	*	
X1701	RCRSB0183GEZZ	J	Crystal(VC-MH64SM)	AM	0.1700			(VC-MH64SM)	
X1901	RCRSB0174GEZZ	J	Crystal	AF	C1723	VCKYCY1HB22	IK J	220p 50V Ceramic (VC-MH64SM)	•
					C1724	VCKYCY1EF104	17 J		
	COILS AND TE	Λ C	NECODMEDO		01121	VOICTOT 12: 10		(VC-MH64SM)	·
					C1725	VCEAEA1CW10	6M J	10 16V Electrolytic	
	RFILC0063CEZZ		Filter	AG				(VC-MH64SM)	
L1701	VP-ZK6R8K0000		6.8µH(VC-MH64SM)	AA AA	C1726	VCKYCY1EF104	IZ J	0.1 25V Ceramic	
L1702	VP-ZK6R8K0000 VP-ZK6R8K0000		6.8µH(VC-MH64SM) 6.8µH(VC-MH64SM)	AA				(VC-MH64SM)	
L1703 L1704	VP-XF6R8K0000		6.8µH(VC-MH64SM)	AB	C1727	VCEAEA1HW10	5M J	•	
L1705	VP-ZK6R8K0000		6.8µH(VC-MH64SM)	AA				(VC-MH64SM)	
L1706	VP-ZK6R8K0000		6.8µH(VC-MH64SM)	AA	C1728	VCKYCY1HF10	3Z J	0.01 50V Ceramic	
T1901	RCiLi0089GEZZ		Coil	AD	04700	VOEAEATOWIO	CLE I	(VC-MH64SM) 10 16V Electrolytic	
T1902	RCiLi0489CEZZ	J	Coil	AE	. 01/29	VCEAEA1CW10	DIAL D	(VC-MH64SM)	
					·: C1730	VCEAEA1HW33	4M J	0.33 50V Electrolytic	
	0011		01.0					(VC-MH64SM)	
	CON	TR	OLS		C1731	VCKYCY1EB22	3K J	0.022 25V Ceramic	
R1961	RVR-M4809GEZZ	J		AC				(VC-MH64SM)	
					C1732	VCCCCY1HH10	1J J	100p 50V Ceramic	
	CAPA	CI.	TOPS					(VC-MH64SM)	
					, C1733	VCCCCY1HH10	17 7	100p 50V Ceramic	4
C1701	VCKYCY1HF103Z	J	0.01 50V Ceramic	AA	C1794	VCKACA4RE10	9 7 I	(VC-MH64SM)	
C1700	VOKVOVILLETOOZ	1	(VC-MH64SM) 0.01 50V Ceramic	AA	01734	VORTOTIBLE	JZ., U	0.01 50V Ceramic (VC-MH64SM)	
U1702	VUNTUT INFIUSZ	J	(VC-MH64SM)	MA	.C1735	VCEAEA1CW10	6M .I	•	
C1703	VCKYCY1HF1037	,1	0.01 50V Ceramic	AA	-51700		J.11 J	(VC-MH64SM)	ľ
J.103	7011.0111111002		(VC-MH64SM)	141	C1736	VCEAEA1HW47	'4M J	0.47 50V Electrolytic	
C1704	VCCCCY1HH391J	J	390p 50V Ceramic	AA				(VC-MH64SM)	
			(VC-MH64SM)		C1737	VCKYCY1HF10	3Z J	0.01 50V Ceramic	
C1705	VCCCCY1HH100D	L	10p 50V Ceramic	AA				(VC-MH64SM)	

Ref. No.	Part No.	*		Desci	ription	Code	Ref. No.	Part No.	*		Description	Code
	CAPACITOR	S (Cont	inue	d)		RESISTORS (Continued)					
C1738	VCEAEA1CW106M	J		16V VH649	Electrolytic	AB	R1710	VRS-CY1JF182J	J		1/16W Metal Oxide MH64SM)	AA
C1739	VCKYCY1EF104Z	J	0.1		Ceramic	AA	R1711	VRS-CY1JF333J	J	33k	1/16W Metal Oxide	AA
C1740	VCEAEA0JW476M	J	47	6.3V	Electrolytic	AB	R1712	VRS-CY1JF103J	J	10k	1/16W Metal Oxide	AA.
C1748	VCEAEA0JW476M	J	47		Electrolytic	AB	R1713	VRS-CY1JF223J	J	22k	MH64SM) 1/16W Metal Oxide	AA e
C1749	VCEAEA1AW336M	J	33		Electrolytic	AB	R1714	VRS-CY1JF105J	J	•	MH64SM) 1/16W Metal Oxide	AA
			,	MH645	*					•	MH64SM)	
C1906	VCCCCY1HH100D	J	10p	50 V	Ceramic	AA	R1715	VRS-CY1JF684J	J	680k	1/16W Metal Oxide	AA
C1907	VCCCCY1HH100D	J	10p	50V	Ceramic	AA				(VC-	MH64SM)	
C1908	VCEAEA1CW106N	J	10	16V	Electrolytic	AB	R1716	VRS-CY1JF102J	J	1k	1/16W Metal Oxide	AA
C1909	VCEAEA0JW227M	J	220	6.3V	Electrolytic	AC				(VC-	MH64SM)	
C1910	VCEAEA1CW106N	J	10	16V	Electrolytic	AB	R1719	VRS-CY1JF102J	J	1k	1/16W Metal Oxide	: AA
C1911	VCKYCY1HF103Z	ل .	0.01	50V	Ceramic	AA				(VC-	MH64SM)	
C1912	VCKYCY1EF104Z	J	0.1	25V	Ceramic	AA	R1721	VRS-CY1JF152J	J	1.5k	1/16W Metal Oxide	AA e
C1913	VCCCCY1HH470J	Ĵ	47p	50V	Ceramic	AA				(VC-	MH64SM)	
C1914	VCEAEA1CW106N	J.	10%	16V	Electrolytic	AB	R1909	VRS-CY1JF562J	J	5.6k	1/16W Metal Oxide	AA e
C1915	VCEAEA1CW106M	IJ	10	16V	Electrolytic	AB	R1913	VRD-RA2BE331J	J	330	1/8W Carbon	AA
C1916	VCEAEA1CW106M	J	10	16V	Electrolytic	AB	R1914	VRS-CY1JF332J	J	3.3k	1/16W Metal Oxide	AA e
C1917	VCEAEA1CW106M	J	10	16V	Electrolytic	AB	R1915	VRD-RA2BE332J	J	3.3k	1/8W Carbon	A#
C1918	VCKYCY1EB103K	J	0.01	25V	Ceramic	AA	R1916	VRS-CY1JF222J	J	2.2k	1/16W Metal Oxide	AA
C1919	VCKYCY1EB103K	J	0.01	25V	Ceramic	AA	R1918	VRS-CY1JF331J	J	330	1/16W Metal Oxide	A A
C1920	VCKYCY1HF103Z	J	0.01	50V	Ceramic	AA	R1951	VRD-RA2BE561J	J	560	1/8W Carbon	A
C1921	VCEAEA0JW476M	J	47	6.3V	Electrolytic	AB	R1952	VRD-RA2BE681J	J	680	1/8W Carbon	AA
C1930	VCEAEA1CW106M	J	10	16V	Electrolytic		R1953	VRS-CY1JF153J	J	15k	1/16W Metal Oxide	A/
C1931	VCEAEA1CW106M		10	16V	Electrolytic		R1954	VRS-CY1JF392J	J	3.9k	1/16W Metal Oxide	A/
C1939	VCCCCY1HH100D		10p	50V	Ceramic	AA	R1955	VRS-CY1JF331J	J	330	1/16W Metal Oxide	A/
C1940	VCCCCY1HH100D		10p	50V	Ceramic	AA	R1956	VRS-CY1JF4R7J	J	4.7	1/16W Metal Oxide	A/
C1945	VCKYCY1HF103Z		0.01	50V	Ceramic	AA	R1957	VRS-CY1JF151J	J	150	1/16W Metal Oxide	
C1951	VCKYCY1HF103Z		0.01	50V	Ceramic	AA	R1958	VRS-CY1JF152J	J	1.5k	1/16W Metal Oxide	A/
C1952	VCKYCY1HF103Z	J	0.01	50V	Ceramic	AA	R1960	VRS-CY1JF182J	J		1/16W Metal Oxide	
C1953	VCKYCY1HF103Z	J	0.01	50V	Ceramic	AA	R1963	VRS-CY1JF822J	٦		1/16W Metal Oxide	
C1954	VCKYCY1HF103Z	J	0.01	50V	Ceramic	AA	711000	THO OT TO OLLO		0,2,10	Trott Metal Oxide	, ,,,
C1955	VCKYCY1HF103Z	J		50V	Ceramic	AA						
	VCEAEA1CW106N				Electrolytic			MISCELLAN	ΙΕſ	2116	PARTS	
	VCCCCY1HH120J				Ceramic	AA	D4704					
01937	VCCCOT 11111200	J	12h	204	Ceramic	OO.	P1701 SC1701	QPLGN0478GEZZ QSOCN0895REZZ		-	•	AD
	RESI	ST	ors									
R1701	VRS-CY1JF392J	j		1/16V MH648	/ Metal Oxid	e AA						
R1702	VRS-CY1JF102J	J	1k		Metal Oxid	e AA						
R1703	VRS-CY1JF331J	J	330	1/160	/ Metal Oxid	le AA						
R1704	VRS-CY1JF330J	J	33		Metal Oxid	le AA						
R1705	VRS-CY1JF151J	J	150		/ Metal Oxid	e AA						
R1706	VRS-CY1JF101J	J	100		/ Metal Oxid	le AA						
			,	MH645								
R1707	VRS-CY1JF102J	J		1/16V MH645	/ Metal Oxid SM)	e AA					- End of MPX	

art No.	*	Description	Code.	Ref. No.	Part No.	*		Descr	ription	Code
DIBITIZE									•	
		94TEV0 ON UNIT			DUNTK5 FRONT)	
IISCELLAN	EC	US PARTS			COILS AND TE	RA	NSF	ORME	RS	
-K0002AJZZ	V	Switch	AD	L2301	VP-XF3R3K0000	L	3.3µ	Н		A
-K0002AJZZ	٧	Switch	AD	L2302	VP-XF3H3K0000					A
-K0077UMZZ	U	Switch	AB							
/-K0002AJZZ	٧	Switch	AD							•
-K0077UMZZ	U	Switch	AB		CAPA	Cl	rons	3		
-K0077UMZZ	U	Switch	AB	C2301	VCCSD41HL100J	.l	10n	50V	Ceramic	Α
-Z0001AJZZ	٧	Switch	AQ				•			A
CZ0631GEZZ	J	Socket, 6pin	AB		7,90,50 1,,110,000	·	ю	001	OOIQIIID	,,
			4	-	RESI	ST	ORS			
				R2301	VRD-RA2BE101J	J	100	1/8W	Carbon	. A
2				R2302	VRD-RA2BE750J	J	75 :	1/8W	Carbon	A
				44.4	,					
•		•			MISCELLAN	EC	ous	PART	'S	
•			•	J2301	QJAKG0003AJZZ	٧	Jack			Al
				SC2301	QSOCN0598REZZ	J	Soci	ket, 5pir	n	A
֡	IISCELLAN I-K0002AJZZ I-K0002AJZZ I-K0077UMZZ I-K0002AJZZ I-K0077UMZZ I-K0077UMZZ I-Z0001AJZZ	IISCELLANEC I-K0002AJZZ V I-K0002AJZZ V I-K0002AJZZ V I-K0007UMZZ U I-K0077UMZZ U I-K0077UMZZ U I-K0077UMZZ U I-K0077UMZZ V	/-K0002AJZZ V Switch /-K0077UMZZ U Switch /-K0007AJZZ V Switch /-K0077UMZZ U Switch /-K0077UMZZ U Switch /-Z0001AJZZ V Switch	## AD	### ### ### ### ### ### ### ### ### ##	## COILS AND TR ## CK0002AJZZ V Switch AD L2301 VP-XF3R3K0000 ## CK0002AJZZ V Switch AD L2302 VP-XF3R3K0000 ## CK0077UMZZ U Switch AB ## CAPA ## CCAPA ## CCAPA ## CZ301 VCCSD41HL100J ## CZ001AJZZ V Switch AB ## CZ301 VCCSD41HL100J ## CZ0631GEZZ J Socket, 6pin AB ## RESISTANCE AD VCCSD41HL100J ## RESISTANCE AD	### COILS AND TRAIN	### COILS AND TRANSFORM	COILS AND TRANSFORME	COILS AND TRANSFORMERS Coils AND TRANSFORM

ef. No.	Part No.	*	Description	Code	Ref. No.	Part No.	*	Description C	ode
ME	CHANISM C	:H	ASSIS PARTS		48	NPLYV0156GEZZ	J	Limitter Pulley Ass'y	ΑL
			AUDIO I AITT		49	NROLP0110GEZZ	J	Guide Roller	Aŀ
4	I DNDK4000EZZ		Taraira Barat Araba	A.T.	50	NSFTP0034GEZZ	J	Tension Pole Adjuster	A
1	LBNDK1009GEZZ	J	Tension Band Ass'y	AT	51	PGUMM0043GEZZ	J	Damper Rubber	AE
2	LBOSZ1001GEZZ	J	Tension Arm Boss	AC	52	PREFL1007GEZZ	J	Light Guide	AF
3	LBOSZ1002GEZZ	J	Slow Brake Boss	AR	53	QCNW-0247AJZZ	٧	FFC For Drum Motor	AC
4	LBOSZ1003GEZZ	J	Cassette Stay L	AR	54	QCNW-7501GEZZ	J	Lead Wire For Loading	ΑI
5	LCHSM0158GEZZ		Main Chassis Ass'y	AY				Motor	
6	LHLDZ1958GEZZ	J	Loading Motor Block	AR	55	QCNW-0272AJZZ	٧	FFC For Audio/Control	Al
7	LPOLM0056GEZZ	J	Supply Pole Base Ass'y					Head	
8	LPOLM0057GEZZ	J	Take-Up Pole Base Ass	•	56	QPWBF5243AJZZ	٧	Audio/Control Head PWE	A
9	MLEVF0459GEZZ	J	Take-Up Loading Arm	AS	57	QSOCN0685REZZ	J	Socket, 6 pin	Al
4.5			Ass'y		58	RHEDT0031GEZZ	J	Full Erase Head	Al
10	MLEVF0461GEZZ	J	Supply Loading Arm	AS	59	RHEDU0085GEZZ	_	Audio/Control Head Ass'y	
			Ass'y		60	RMOTM1062GEZZ		Loading Motor	AF
11	MLEVF0463GEZZ	J			61	RMOTN2053GEZZ		Capstan Motor	BI
12	MLEVF0464GEZZ	J	Pinch Roller Lever Ass'y		62	RMOTP1129GEZZ		Drum Drive Motor	A)
15	MLEVF0467GEZZ	J	Tension Arm Ass'y	AS	63	DDRMW0016TEV0			B
16	MLEVF0468GEFW		Audio/Control Head Arr		V -5	551,1111100101210	٠	Ass'y	_
17	MLEVP0271GEZZ		Sifter Drive Lever	AS	64	MSPRC0194GEFJ	J	Drum Earth Brush Spring	Α.
18	MLEVP0272GEZZ	J	Pinch Double Action	AS	65	QBRSK0034GEZZ	J	Drum Earth Brush	A
			Lever		66	XBPSD26P05J00	J	Drum Drive Motor	AI A/
19	MLEVP0273GEZZ	J	Reverse Guide Lever Ass'y	ΑT	00	XBI 3D20F03000	J	Mounting Screw	A
20	MLEVP0275GEZZ	J	Reverse Drive Lever	AB				(SW2.6P+5S)	
21	MLEVP0276GEZZ	J	Slow Brake	AS	67	PGIDC0055GEFW	J	Drum Base	A
22	MLEVP0277GEZZ	J	Open Lever	AS					
23	MLEVP0278GEZZ	J	Clutch Lever	AS					
24	MLEVP0279GEZZ	J	Supply Main Brake Ass'	y AS					
25	MLEVP0280GEZZ	i.J	Take-up Main Brake Ass'y	AS					
26	CLEVP0287AJZZ	٧	Auto Head Cleaner Ass	v AG					
27	MSLiP0008GEZZ	J	Sifter	AS					
28	MSPRC0205AJFJ	٧	Audio/Control Head Spring	AB					
29	MSPRD0165GEFJ	J	Reverse Guide Spring	AR					
30	MSPRT0402GEFJ	J	Loading Double Action	AR					
		Ī	Spring						
31	MSPRT0403GEFJ	J	Pinch Double Action Spring	AR					
33	MSPRT0405GEFJ	J	Tension Spring	AE					
34	NBLTK0066AJ00		Drive Belt	AE					
35	NDAiV1070GE00		Reel Disk	AS					
36	NGERH1267GEZZ	J	Loading Connect Gear	AS					
37	NGERH1268GE00	J		AS					
38			Cassette Control Drive Gear	AS					
39	NGERH1270GEZZ	J	Take-Up Loading Gear	AS					
40	NGERH1271GEZZ	J	Supply Loading Gear	AS					
41	NGERH1272GEZZ	J		AS					
42			Supply Reel Relay Gear	r AS					
43			Take-Up Reel Relay Ge						
44	NGERW1062GEZZ			AS					
45			Worm Wheel Gear	AS					
46	NiDR-0015GEZZ		Idler Wheel Ass'y	AS					
47	NPLYV0155GEZZ		-	AR	-	End of Mech	ar	ism Chassis Parts -	

CASSETTE HOUSING CONTROL PARTS

SCREWS, NUTS AND WASHERS

LX-WZ1073GE00 J CUT Washer

XBPSD30P08J00 J Drum Base Mounting

Screw

AB

AA

ASSI	ETTE HOUSIN	G	CONTROL PAR	113	301	ilvis, Nois		MD WASHERS	
300	CHLDX3074GE02	J	Cassette Housing	AZ	200	LX-XZ3030GEFD	J	Set Screw	AC
			Control Ass'y		201	LX-BZ3176GEZZ	J	Tilt Adjusting Screw	AD
301	LANGF9592GEFW	J	Upper Plate	AT	202	LX-HZ3082GEZZ	J	Audio/Control Head Screv	vAD
302	LHLDX1028GE00	J	Frame (L)	AS	203	XHPSD26P07WS0	J	Screw, C2.6P+7S (For	AA
303	LHLDX1029GE00	J	Frame (R)	AS	1			Capstan Motor)	
304	LHLDX1030GEZZ	J	Holder (L)	AR	204	XBPSD30P05J00	J	Screw, SW2.6P+5S (For	AA
305	LHLDX1031GEZZ	J	Holder (R)	AR				Loading Motor)	
306	MLEVF0469GEFW	J	Proof Lever (R)	AS	205	XHPSD26P06WS0	J	Screw, C2.6P+6S (For	AA
307	MLEVP0281GE00	J	Door Open Lever	AS		:		Loading Motor Block)	
308	MSLiF0073GEFW	J	Slider	AT	206	XHPSD26P08WS0	J	Screw, C2.6P+8S	AΑ
309	MSPRD0151GEFJ	J	Proof Lever (R) Spring	AB				(For F/E Head)	
310	MSPRD0166GEFJ	J	Drive Gear (R) Spring	AR	207	XHPSD30P08WS0	J	Screw, C3.0P+8S	AA
311	MSPRP0159GEFJ	J	Cassette Spring	AD				(For Drum Base)	
312	MSPRT0381GEFJ	J	Double Action Spring	ΑB	208	XRESJ40-06000	J	E-Ring, E-4	:AA
313	NGERH1278GEZZ	J	Drive Gear (L)	AS	209	XWHJZ52-05095	J	Washer, W5.2-9.5-0.5	ΑD
314	NGERH1279GEZZ	J	Drive Gear (R)	AS				(Reel Hight Adj.)	
315	NGERR1008GE00	J	Double Action Rack Gear	AS	210	XWHJZ52-03095	J	Washer, W5.2-9.5-0.3	AD
316	NGERR3005GEFW	J	Drive Angle Gear	AS				(Reel Hight Adj.)	
317	NSFTD0041GEFD	J	Main Shaft	AF	211	XWHJZ52-04095	J	Washer, W5.2-9.5-0.4	AD
					•			(Reel Hight Adj.)	
					212	XWHJZ52-06095	J	Washer, W5.2-9.5-0.6	AD
								(Reel Hight Adj.)	
					213	XWHJZ52-07095	J	Washer, W5.2-9.5-0.7	AD
								(Reel Hight Adj.)	
					214	PSPAP0009GEZZ	J	Reverse Guide Adjusting	AA
								Nut	
					215	LX-WZ1003GE00	J	CUT Washer	AA
					216	LX-WZ1041GE00	J	CUT Washer	AΑ

217

218

- End of Cassette Housing Control Parts -

---- End of Screws, Nuts And Washers -

ef. No.	Part No.	*	Description (Code	Ref. No.	Part No.	*	Description C	ode
	MECHAN	CA	AL PARTS		501-6	HDECQ1501UMSB	Ų	Foot Decoration (R) (VC-MH641GM)	AB
					501-7	JBTN-2725UMSA	U	-parate batter	AC
601	GCABB1172UMZ	z U	Main Frame	AQ				(VC-MH64GM/MH64SM)	
602	GCOVA1973UMZ	Z U	Antenna Terminal Cover	AE	501-7	JBTN-2770UMSA	U	Operate Button	AC
603	GCABA3102UMS	МU	Top Cabinet	ΑU				(VC-MH641GM)	
604	GBDYU3098UMF	W U	Bottom Plate	AH	501-8	JBTN-2727UMSA	Ų	Set Button	AC
605	LANGQ9065UMF	ΝU	Earth Angle(Conv.)	AB				(VC-MH64GM/MH64SM)	
606	LANGQ9063UMF	ΝU	Earth Angle(Pow.)	AB	501-8	JBTN-2771UMSA	U	Set Button	AC
607	PFLT-0016AJZZ	٧	Foot Felt	AB				(VC-MH641GM)	
608	PSLDM4531UMF	N U	Head Amp. Shield	AB	501-9	JBTN-2726UMSA	U	CHANNEL/REC Button	AC
609	XEBSD30P12000	J	Screw(Panel)	AA				(VC-MH64GM/MH64SM)	
609	XEBSD30P12000	J	Screw	AA	501-9	JBTN-2742UMSB	U	CHANNEL/REC Button	AC
611	XHPSD30P06WS	J	Screw	AA				(VC-MH641GM)	
612	XJPSD30P10WS0	J	Screw	AA	501-10	MSPRD0103AJFJ	٧	Cassette Spring	AB
616	PSPAZ0532AJZZ	٧	Spacer	AD	502	JKNBK1099UMSA	U	Dial (VC-MH641GM)	AD
617	LX-HZ3030GEFF	J	Screw(Top Cab)	AA	502	JKNBK1092UMSA	U	Dial	AD
618	LHLDZ1985UMZZ	U	Rear PWB Holder	AC				(VC-MH64GM/MH64SM)	
619	LHLDZ1938UMZZ	IJ	PWB Holder	AC	503	CBTN-2723TEV5	U	Button Ass'y	AL
620	LX-BZ3014GEFD	J	Screw(Conv.)	AA	503-1	JBTN-2723UMSA	U	Stop Button	AE
					503-2	LHLDZ1964UMZZ	U	Button Holder	AD
					503-3	JBTN-2734UMSB	U	Play Button	ΑE
						1.2			
	e e		3***						
	En	d o	f Mechanical Parts						

	FRO	NT	PANEL	PARTS
--	-----	----	-------	-------

			- Ta	
501	CPNLC2105TEV0	U	Panel Ass'y (VC-MH64GM)	AZ
501	CPNLC2105TEV1	U	Panel Ass'y (VC-MH64SM)	AZ
501	CPNLC2159TEV0	U	Panel Ass'y (VC-MH641GM)	AZ
501-2	HBDGB1008AJSA	٧	"SHARP" Badge	ΑE
501-3	HDECQ1477UMSA	U	Cassette Flap (VC-MH64GM)	AF
501-3	HDECQ1530UMSA	U	Cassette Flap (VC-MH64SM)	AF
501-3	HDECQ1531UMSA	U	Cassette Flap (VC-MH641GM)	AF
501-4	HDECQ1476UMSA	U	Window Decoration (VC-MH64GM/MH64SM)	АН
501-4	HDECQ1499UMSA	U	Window Decoration (VC-MH641GM)	АН
501-5	HDECQ1445UMSA	U	Foot Decoration (L) (VC-MH64GM/MH64SM)	AB
501-5	HDECQ1502UMSB	U	Foot Decoration (L) (VC-MH641GM)	AB
501-6	HDECQ1468UMSA	U	Foot Decoration (R) (VC-MH64GM/MH64SM)	AB

- End of Front Panel Parts -

SUPPLIED ACCESSORIES

ACCESORIES

QCNW-7544UMZZ	U	75ohm Coaxial Cable	AL
RRMCG0138AJSA	J	Infrared Remote Control	AY
		Unit	
93GHR14172001	J	Battery Civer, Infrared	ΑE
		Remote Control Unit	

ACCESORIES (NOT REPLACEMENT ITEM)

	· · · · · · · · · · · · · · · · · · ·
TINS-2885UMZZ	- Operation Manual -
	(VC-MH64GM/MH641GM)
TINS-2887UMZZ	- Operation Manual -
	(VC-MH64SM)
	•

End of Supplied Accessories

CASSETTE HOUSING CONTROL PARTS KASETTENSTEUERUNGS-TEILE 300 (302)

PRECAUTION ON FRONT PANEL SET-UP VORSICHTSMAßNAHMEN BEIM MONTIEREN DER FRONTPLATTE

Before attaching the front panel in position, make sure that the cassette cover open lever is in its right place (lower-most). If it is out of position, push it down with a finger.

Vor dem Anbringen der Frontplatte dafür sorgen, daßsichder Öffnungshebel für das Kassettenfach in der korrekten Position (ganz unten) befindet. Ist dies nicht der Fall, den Hebel mit dem Finger herunterdrücken.

Den Kassettenfachdeckel Keep the cassette over about auf ca. 45° offen halten und darauf achten, daß sich der Öffnungshebei 45° open and make sure that the cassette cover open lever is between the front panel and the cassette cover. Now zwischen der Frontplatte und dem Kassettenfachfix the front panel in place. deckel befindet. Front-

platte befestigen.

Do not mount the front panel with the cassette cover tilted too open. Otherwise the cassette cover might wrongly run on the cassette housing.

Die Frontplatte nicht mon-tieren, wenn der Kassettenfachdeckel zu weit geöffnet ist. Ansonsten kann der Kassettenfachdeckeldurch Reibung am Kassettengehäuse beschädigt werden.

Removing the cassette compartment cover. ① Open the cassette compartment cover

- Remove the center positioner.
- Slide the cover to the right.Slightly bend the cover.
- ⑤ Draw out the left-side rod.

Kassettenfachabdeckung entfernen.

① Die Kassettenfachabdeckung vollständig öffnen.

- ② Das Positionierungsteillinder Mitte entfernen.
 ③ Die Abdeckung nach rechts schieben.
- Die Abdeckung etwas biegen.
 Die Stange an der linken Seite herausziehen.

PRECAUTION ON FRONT PANEL SET-UP VORSICHTSMABNAHMEN BEIM MONTIEREN DER FRONTPLATTE

platte befestigen.

Before attaching the front panel in position, make sure that the cassette cover open lever is in its right place (lower-most). If it is out of position, push it down with a finger.

Vor dem Anbringen der Vor dem Anbringen der Frontplatte dafür sorgen, E Keep the cassette over about Den Kassettenfachdeckel daß sichder Öffnungshebel 45° open and make sure that auf ca. 45° offen halten the cassette cover open leur darauf achten, daß der korrekten Position der korrekten Position der korrekten Position (ganz unten) befindet. Ist dies nicht der Fall, den Hebel mit dem Finger herunterdrücken.

and the cassette cover. Now fix the front panel in place.

panel with the cassette cover tilted too open. Otherwise the cassette zwischen der Frontplatte und dem Kassettenfach-deckel befindet. Frontcover might wrongly run on the cassette housing.

Die Frontplatte nicht montieren, wenn der Kassetten-fachdeckel zu weit geöffnet ist. Ansonsten kann der Kassettenfachdeckeldurch Reibung am Kassettengehäuse beschädigt werden.

① Open the cassette compartment cover fully.

② Remove the center positioner.
③ Silde the cover to the right.
④ Slightly bend the cover.
⑤ Draw out the left-side rod.

- Kassettenfachabdeckung entfernen.

 Die Kassettenfachabdeckung vollständig öffnen.
- öffnen.

 ② Das Positionierungstell Inder Mitte entfernen.

 ③ Die Abdeckung nach rechts schieben.

 ④ Die Abdeckung etwas biegen.

 ⑤ Die Stange an der linken Seite herausziehen.

12. PACKING OF THE SET/VERPACKUNG DES GERÄTES

Setting position of the Knobs/ Einstellposition der Knöpfe

RF conv. CH. preset	at "E36" channel	Test Signal Switch	at "OFF" position
HF-Wandler, Kanal vorprogrammiert	auf Kanal "E36"	Testsignalschalter	auf Position "OFF"

MARK ★ Not Replacement Item
MARKIERUNG ★ Keine Ersatzteile

SHARP