

Shenzhen Huatongwei International Inspection Co., Ltd.

Keji S,12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China Phone:86-755-26748099 Fax:86-755-26748089 http://www.szhtw.com.cn

Zim Zhang Zim Zhang Walandiana

TEST REPORT

OET 65C and RSS 102

Compiled by

(position+printed name+signature)..: File administrators Tim Zhang

Supervised by

(position+printed name+signature)..: Test Engineer Eric Zhang

Approved by

(position+printed name+signature)..: Manager Wenliang Li

Date of issue...... Apr 26, 2013

Testing Laboratory Name Shenzhen Huatongwei International Inspection Co., Ltd

Address...... Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Applicant's name...... Hytera Communications Corporation Ltd.

Address...... HYT Tower, Hi-Tech Industrial Park North, Nanshan

District, Shenzhen China. 518057

Test specification:

Standard RSS 102

OET 65C

TRF Originator...... Shenzhen Huatongwei International Inspection CO., Ltd

Master TRF...... Dated 2006-06

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Digital Portable Radio

Trade Mark Hytera

Manufacturer Hytera Communications Corporation Ltd.

Model/Type reference...... PD702G U5/ PD705G U5/ PD706G U5/ PD708G U5/

HD705G U5

Listed Models /

Ratings..... DC 7.4 V

Modulation FM&4FSK

Channel Separation...... 12.5KHz&25KHz

Operation Frequency Range 806-825MHz/851-870MHz/896-902MHz/935-941MHz

Result..... Positive

TEST REPORT

Test Report No. :	TRE13030161	Apr 26, 2013
	INC 13030101	Date of issue

Equipment under Test : Digital Portable Radio

Model /Type : PD702G U5/ PD706G U5/ PD706G U5/ PD708G U5/

HD705G U5

Listed Models : /

Applicant : Hytera Communications Corporation Ltd.

Address : HYT Tower, Hi-Tech Industrial Park North, Nanshan

District, Shenzhen China. 518057

Manufacturer : Hytera Communications Corporation Ltd.

Address : HYT Tower, Hi-Tech Industrial Park North, Nanshan

District, Shenzhen China. 518057

Test Result according to the standards on page 4:	Positive
--	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment under Test	5
2.4.	Short description of the Equipment under Test (EUT)	6
2.5.	TEST Configuration	6
2.6.	EUT operation mode	6
2.7.	EUT configuration	6
2.8.	Note	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	8
3.4.	SAR Limits	8
3.5.	Equipments Used during the Test	9
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	10
4.1.	SAR Measurement Set-up	10
4.2.	DASY5 E-field Probe System	11
4.3.	Phantoms	12
4.4.	Device Holder	12
4.5.	Scanning Procedure	13
4.6.	Data Storage and Evaluation	14
4.7.	Tissue Dielectric Parameters for Head and Body Phantoms	15
4.8.	Tissue equivalent liquid properties	16
4.9.	System Check	16
4.10.	System Check Results	17
<u>5.</u>	TEST CONDITIONS AND RESULTS	18
5.1.	Conducted Power Results	18
5.2.	SAR Measurement Results	18
5.3.	Measurement Uncertainty	22
5.4.	System Check Results	24
5.5.	SAR Test Graph Results	26
<u>6.</u>	CALIBRATION CERTIFICATE	4 9
6.1.	Probe Calibration Ceriticate	49
6.2.	D835V2 Dipole Calibration Ceriticate	60
6.3.	DAE4 Calibration Ceriticate	68
<u>7.</u>	TEST SETUP PHOTOS	7 3
<u>8.</u>	EUT PHOTOS	77
<u>~ · </u>		11

1. TEST STANDARDS

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

<u>IEEE Std 1528™-2003:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

RSS-102 2010: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Report No.: TRE13030161 Page 5 of 86 Issued:2013-04-26

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Apr 10, 2013
Testing commenced on		Apr 10, 2013
Testing concluded on	:	Apr 26, 2013

2.2. Product Description

The Hytera Communications Corporation Ltd.'s Model: PD702G U5/ PD705G U5/ PD706G U5/ PD708G U5/ HD705G U5 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT		Digital Portable Radio			
Model Number	PD702G U5/ PD705G U5/ PD706G U5/ PD708G U5/ HD705G U5				
Rated Output Power	3 Watts(34.77dBm)/1 Watts(30.00dBm) for 806-825MHz/851- 870MHz 2.5 Watts(33.98dBm)/1 Watts(30.00dBm) for 896-902MHz/935- 941MHz				
Power tolerance	High power: $3W\pm0$.	5W 2.5W±0.5W			
Fower tolerance	Low power: 1.2 ± 0.5	5W			
	FM for Analog Voice				
Modilation Type		4FSK for Digital Voice/Digital Data			
	4FSK for Digital Data	4FSK for Digital Data			
	Analog	11K0F3E for 12.5KHz Channel Separation			
Emission Designator	Analog	16K0F3E for 25KHz Channel Separation			
Littission Designator	Digital	7K60FXD for Digital Voice			
	Digital	7K60FXW for Digital Data			
	Analog Voice	12.5KHz&25KHz			
Channel Separation	Digital Voice/Data	12.5KHz			
	Digital Data	12.5KHz			
Antenna Type	External				
Frequency Range		806-825MHz/851-870MHz/896-902MHz/935-941MHz			
Maximum SAR Values	FCC: 3.707 W/Kg For body worn(50% duty cycle) 1.871 W/Kg For face held (50% duty cycle) IC: 3.986 W/Kg For body worn(50% duty cycle) 1.983 W/Kg For face held (50% duty cycle)				

Note: The product has the same digital working characters when operating in both two digitized voice/data mode (7K60FXD and 7K60FXW). So only one set of test results for digital modulation modes are provided in this test report.

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

Report No.: TRE13030161 Page 6 of 86 Issued:2013-04-26

Modulation Type	Test Channel	Test Frequency
	Low Channel	806.5000 MHz
	Low Channel	823.5000 MHz
Analog/Digital	Middle Channel	851.5000 MHz
	Middle Channel	868.5000 MHz
	High Channel	899.0000 MHz
	High Channel	938.0000 MHz

2.4. Short description of the Equipment under Test (EUT)

Digital Portable Radio with GPS function(PD702G U5/ PD705G U5/ PD706G U5/ PD708G U5/ HD705G U5).

The spatial peak SAR values were assessed for UHF systems. Battery and accessories shell be specified by

the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

2.5. TEST Configuration

Face-held Configuration

The front of the EUT is towards the phantom.

The front surface of the EUT is positioned at 25mm parallel to the flat phantom.

Body-worn Configuration

Body-worn Configuration - Default Battery Selection - per FCC KDB 643646, Page 5, Section 1) A): Start by testing a PTT radio with the thinnest battery and a standard (default) Body-worn accessory.

Body-worn Configuration - Default Body-worn Accessory Selection - the belt-clip was selected as the default Body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the remaining accessories. Per FCC KDB 643646, Page 5, Section 1) A): "When multiple default Body-worn accessories are supplied with a radio, the standard Body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default Body-worn accessory for making Body-worn measurements."

Body-worn Configuration - Additional Body-worn Accessories - the remaining Body-worn accessories were evaluated based on the "additional Body-worn accessory" guidance provided in FCC KDB 643646, Page 7, Section 4). The remaining Body-worn accessories can be utilized with all the audio accessory options.

Body-worn Configuration - Selection of Default Audio Accessories by Category - the Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." The Remaining Audio Accessories by Category were evaluated on the highest SAR channel from the Default Audio Accessory evaluations.

2.6. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

Accessory name	Model	Description	Remark
Antenna	AN0873H02	806-941MHz	performed
Thicker Battery	BL2503	Battery,Li-Ion 2500 MAH,DMR	performed

Thin Battery	BL2006	Battery,Li-Ion 2000 MAH,DMR	performed
Belt	BC19	Belt Clip,DMR	performed
Pocket	LCY003	Care, leather w/Swivel,DMR	performed
Chest pack	LCBN13	Chest pack must used with belt-clip, The measure distance will be larger than only belt-clip.	Not performed
	SM18N2	Speaker Mic, Water-Proof Remote, DMR	performed
	ESS07	Earbud,Receive Only,DMR	performed
	ESS08	Earpiece,Receive Only,DMR	performed
	EHN12	D-Earset, w/ In-Line Mic and PTT,DMR	performed
	EAN16	Earpiece, w/ On-Mic PTT,DMR	performed
	EAN17/ EAN18	Earpiece, 3-wire Surveillance Kit,DMR They are just different in colour	performed
	ESN10	Earbud, w/ On-Mic PTT,DMR	performed
	EWN09	2-wire Earpiece with Wireless Earphone and Neck Loop(Beige)	performed
Audio Accessories	ESN12	Detachable Earpiece with Transparent Acoustic Tube, contains two parts, one is ACN-01, the other is ES-01	performed
	EAN23	Detachable Earpiece with Transparent Acoustic Tube, contains two parts, one is ACN-01, the other is ES-02	performed
710000001100	EHN16	Remote C-Earset, contains two parts, one is ACN-01, the other is EH-01	performed
	EHN17	Remote Swivel Earset, contains two parts, one is ACN-01, the other is EH-02	performed
	ACN-01	PTT&MIC cable(for use with Receive-Only Earpiece)	Please see ESN12, EAN23, EHN16, EHN17 Description
	EH-01	Receive—Only C Style Earloop(for use with PTT&MIC cable)	Please see ESN12 Description
	EH-02	Receive—Only Ajustable Earhook with Swivel Speaker(for use with PTT&MIC cable)	Please see EAN23 Description
	ES-01	Receiver - Only Earpiece (for use with PTT&MIC cable)	Please see EHN16 Description
	ES-02	Receive-Only Earpiece with Transparent Acoustic Tube(for use with PTT&MIC cable)	Please see EHN17 Description

2.8. Note

The EUT is a U frequency band (806-825MHz/851-870MHz/896-902MHz/935-941MHz) Digital Portable Radio, The functions of the EUT listed as below:

	Test Standards	Reference Report
SAR	RSS-102: 2010 OET 65C	TRE13030161

Report No.: TRE13030161 Page 8 of 86 Issued:2013-04-26

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 01, 2012. Valid time is until Feb. 28, 2015.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date Jul. 01, 2009, valid time is until Jun. 30, 2015.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.5. Equipments Used during the Test

				Calib	ration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last	Calibration
				Calibration	Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2013/02/27	1
E-field Probe	SPEAG	ES3DV3	3292	2013/02/24	1
System Validation Dipole D835V2	SPEAG	D835V2	4d134	2013/02/27	1
Network analyzer	Agilent	8753E	US37390562	2013/03/26	1
Signal generator	IFR	2032	203002/100	2012/10/27	1
Amplifier	AR	75A250	302205	2012/10/27	1

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 10 MHz to 4 GHz;

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g;

Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Report No.: TRE13030161 Page 14 of 86 Issued:2013-04-26

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) (DASY parameter) dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$${\rm H-field probes}$$
 :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With = compensated signal of channel i (i = x, y, z)Normi = sensor sensitivity of channel i

[mV/(V/m)2] for E-field Probes

= sensitivity enhancement in solution ConvF

= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

= electric field strength of channel i in V/m Εi Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters

Frequency	Head	Tissue	Body Tissue		
(MHz)	εr	O' (S/m)	εr	O' (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

4.8. Tissue equivalent liquid properties

Dielectric performance of Head tissue simulating liquid

Frequency	Description	Dielectric pa	aramenters
requeriey	Всооприон	ε _r	O
	Target Value + FW	41.5	0.90
835MHz(Head)	Target Value ±5%	(39.43-43.58)	(0.86-0.94)
, ,	Measurement Value	42.06	0.89
806 MHz(Head)	Measurement Value	41.62	0.87
868 MHz(Head)	Measurement Value	42.62	0.89
938 MHz(Head)	Measurement Value	42.89	0.92
Measurement Data: 2	2013-04-15	Measurement tempera	ature 20.6℃

Dielectric performance of Body tissue simulating liquid

Frequency	Description	Dielectric p	aramenters	
requeries	Всооприон	ε _r	O'	
	Torget Value + FW	55.20	0.97	
835MHz(Body)	Target Value ±5%	(52.44-57.96)	(0.92-1.01)	
	Measurement Value	55.25	0.96	
806 MHz(Body)	Measurement Value	53.42	0.93	
868 MHz(Body)	Measurement Value	55.60	0.97	
938 MHz(Body)	Measurement Value	55.96	0.98	
Measurement Data: 2	2013-04-15	Measurement temperature 20.6℃		

4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Report No.: TRE13030161 Page 17 of 86 Issued:2013-04-26

4.10. System Check Results

System check for head tissue simulating liquid

Frequency	Measured Result (250mW)	Normalized Result (1W)	Nominal value	Deviation $(\pm 10\%)$	Graph results
835MHz	2.43 W/Kg	9.72 W/Kg	9.37 W/Kg	3.73	See section 5.4
Measurement	Data: 2013-04-15				

System check for Body tissue simulating liquid

Frequency	Measured Result (250mW)	Normalized Result (1W)	Nominal value	Deviation $(\pm 10\%)$	Graph results
835MHz	2.32	9.28 W/Kg	9.49 W/Kg	2.21	See section 5.4
Measurement	Data: 2013-04-15				

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

Conducted power measurement results

Modulation Type	Channel	Test	Test	Power Level
Modulation Type	Separation	Channel	Frequency	(dBm)
		Low Channel	806.5000 MHz	35.21
		Low Channel	823.5000 MHz	34.87
Analog/EM	12.5KHz	Middle Channel	851.5000 MHz	35.09
Analog/FM	12.3KHZ	Middle Channel	868.5000 MHz	35.05
		High Channel	899.0000 MHz	34.26
		High Channel	938.0000 MHz	34.20
		Low Channel	806.5000 MHz	35.17
	25KHz	Low Channel	823.5000 MHz	34.80
Analog/FM		Middle Channel	851.5000 MHz	35.02
Allalog/Fivi	ZUNTZ	Middle Channel	868.5000 MHz	35.07
		High Channel	899.0000 MHz	35.23
		High Channel	938.0000 MHz	34.90
		Low Channel	806.5000 MHz	35.04
		Low Channel	823.5000 MHz	35.11
Digital	12.5KHz	Middle Channel	851.5000 MHz	34.20
Digital	IZ.JKHZ	Middle Channel	868.5000 MHz	34.25
		High Channel	899.0000 MHz	35.21
		High Channel	938.0000 MHz	34.87

5.2. SAR Measurement Results

1	1 g Avera	ge(W/Kg)	Power Drift(dB)	
Limits	8.	0	±0.21	Cranh regulta
Fraguenay	Duty	Cycle	Dower Drift(dD)	Graph results
Frequency	100%	50%	Power Drift(dB)	
The EU	T display towards ph	antom for 12.5KHz wi	ith Thicker(analog,fac	ce held)
806.5 MHz	3.48	1.740	0.08	Figure 1
	Worst case position	n with Thinner Batter	y(analog,face held)	
806.5 MHz	3.22	1.610	-0.06	Figure 2
The EUT disp	olay towards ground f			Accessory 1
		(Analog, Body-Worn)		
806.5 MHz	6.87	3.435	-0.10	Figure 3
823.5 MHz	6.01	3.005	0.08	Figure 4
851.5 MHz	5.40	2.700	0.10	Figure 5
868.5 MHz	5.85	2.925	-0.05	Figure 6
899.0 MHz	2.80	1.400	0.08	Figure 7
938.0 MHz	2.60	1.300	-0.10	Figure 8
The EUT display to	wards ground for 12.5			y 1 and Earphone 1
		(Analog, Body-Worn)	<u> </u>	
823.5 MHz	6.26	3.130	-0.06	Figure 9
The EUT display to	wards ground for 12.5			y 1 and Earphone 2
		(Analog, Body-Worn)		
823.5 MHz	5.55	2.775	-0.02	Figure 10
The EUT display to	wards ground for 12.5			y 2 and Earphone 3
		(Analog, Body-Worn)	1	ı
806.5 MHz	2.79	1.395	-0.06	Figure 11
The EUT display to	wards ground for 12.5	5 KHz with Thinner Ba (Analog, Body-Worn)		ry 2 and Earphone 4
806.5 MHz	4.93	2.465	-0.07	Figure 12

The EUT display to	wards ground for 12.	5 KHz with Thinner Ba (Analog, Body-Worn)		ry 2 and Earphone 5
806.5 MHz	3.47	1.735	-0.10	Figure 13
The EUT display to	wards ground for 12.	KHz with Thinner Ba	attery, Belt, Accessor	ry 2 and Earphone 6
		(Analog, Body-Worn)		
806.5 MHz	2.43	1.215	-0.08	Figure 14
The EUT display	towards ground for	12.5 KHz with Thinne (Analog, Body-Worn)		idio Accessory 3
806.5 MHz	2.60	1.30	-0.12	Figure 15
The EUT display	towards ground for	12.5 KHz with Thinne (Analog, Body-Worn)		idio Accessory 4
806.5 MHz	5.54	2.77	-0.13	Figure 16
The EUT display	towards ground for	12.5 KHz with Thinne (Analog, Body-Worn)	•	idio Accessory 5
806.5 MHz	2.55	1.275	-0.07	Figure 17
The EUT display	towards ground for	12.5 KHz with Thinne (Analog, Body-Worn)		idio Accessory 6
806.5 MHz	5.26	2.630	-0.11	Figure 18
The EUT display	towards ground for	12.5 KHz with Thinne (Analog, Body-Worn)		idio Accessory 7
806.5 MHz	2.57	1.285	0.00	Figure 19
The EUT displa	ay towards ground fo	r 12.5 KHz with Thinr (Analog, Body-Worn)		nd Accessory 1
806.5 MHz	2.65	1.325	-0.06	Figure 20
	ion of Analog for Digi	tal with Thinner Batte	ery, Belt and Accesso	
806.5 MHz	5.89	2.945	-0.07	Figure 21
Worst case	e position of Analog f	or 25KHz with Thinne (Body-Worn)	er Battery, Belt and A	ccessory 1
806.5 MHz	6.22	3.110	-0.10	Figure 22
	position with Thicke	r Battery, Belt and Ad	ccessory 1 (Analog, E	
806.5 MHz	5.74	2.870	-0.07	Figure 23

For FCC Review

Limits	1 g Avera	ige(W/Kg)	Power Drift(dB)	Power	Cooling	SAR Values Power Drift	and Scaling
	8	.0	±0.21	Drift	Scaling Factor	Duty (Cvcle
Frequency	Duty	Cycle	Power	10^(dB/10)		•	
rioquonoy	100%	50%	Drift(dB)			100%	50%
The EU	T display	towards pł	nantom for 12.5	KHz with Thi	cker(analo	g,face held)	
806.5 MHz	3.48	1.740	0.08	1.019	1.055	3.741	1.871
	Worst c	ase positio	n with Thinner	Battery(anal	og,face he	ld)	
806.5 MHz	3.22	1.610	-0.06	1.014	1.055	3.445	1.722
The EUT disp	olay towar	ds ground	for 12.5 KHz w		attery, Bel	t and Access	ory 1
	1		(Analog, Body	-Worn)			
806.5 MHz	6.87	3.435	-0.10	1.023	1.055	7.415	3.707
823.5 MHz	6.01	3.005	0.08	1.019	1.140	6.982	3.491
851.5 MHz	5.40	2.700	0.10	1.023	1.084	5.988	2.994
868.5 MHz	5.85	2.925	-0.05	1.012	1.094	6.477	3.238
899.0 MHz	2.80	1.400	0.08	1.019	1.125	3.210	1.605
938.0 MHz	2.60	1.300	-0.10	1.023	1.141	3.035	1.517
The EUT display to	wards gro	und for 12.			Belt, Acce	ssory 1 and I	Earphone 1
			(Analog, Body	-Worn)			
806.5 MHz	6.26	3.130	-0.06	1.014	1.055	6.697	3.348
The EUT display to	wards gro	und for 12.	5 KHz with Thi (Analog, Body		Belt, Acce	essory 1 and I	Earphone 2

Report No.: TRE13030161 Page 20 of 86 Issued:2013-04-26

	•	,		•	,		,				
806.5 MHz	5.55	2.775	-0.02	1.005	1.055	5.885	2.942				
The EUT display to	wards gro	und for 12.			Belt, Acce	essory 2 and	Earphone 3				
	1	1	(Analog, Body	-Worn)		T	1				
806.5 MHz	2.79	1.395	-0.06	1.014	1.055	2.985	1.492				
The EUT display to	wards gro	und for 12.			Belt, Acce	essory 2 and	Earphone 4				
	1	1	(Analog, Body	-Worn)	1	T	1				
806.5 MHz	4.93	2.465	-0.07	1.016	1.055	5.284	2.642				
The EUT display to	The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt, Accessory 2 and Earphone 5										
	I	I	(Analog, Body		1	T	1				
806.5 MHz	3.47	1.735	-0.10	1.023	1.055	3.745	1.873				
The EUT display to	wards gro	und for 12.		•	Belt, Acce	essory 2 and	Earphone 6				
	1	1	(Analog, Body			T					
806.5 MHz	2.43	1.215	-0.08	1.019	1.055	2.612	1.306				
The EUT display	towards (ground for			ery, Beit ar	id Audio Acc	essory 3				
000 5 MH	0.00	4.00	(Analog, Body	1.028	4.055	0.000	4 440				
806.5 MHz The EUT display	2.60	1.30	-0.12		1.055	2.820	1.410				
The EoT display	towarus	ground for	(Analog, Body		ery, beit ai	id Addio Acc	essory 4				
806.5 MHz	5.54	2.77	-0.13	1.030	1.055	6.020	3.010				
The EUT display	towards	ground for			ery, Belt ar	nd Audio Acc	essory 5				
	1	1	(Analog, Body	· · · · · · · · · · · · · · · · · · ·	1	T	1				
806.5 MHz	2.55	1.275	-0.07	1.016	1.055	2.733	1.367				
The EUT display	towards (ground for			ery, Belt ar	nd Audio Acc	essory 6				
	1	1	(Analog, Body		ı	Τ	T				
806.5 MHz	5.26	2.630	-0.11	1.026	1.055	5.694	2.847				
The EUT display	towards (ground for			ery, Belt ar	nd Audio Acc	essory 7				
000 5 MH	T		(Analog, Body								
806.5 MHz	2.57	1.285	0.00	1.000	1.055	2.711	1.356				
i ne Eu i aispi	ay toward	s grouna to	or 12.5 KHz witl (Analog, Body		ttery, Pock	et and Acces	ssory 1				
806.5 MHz	0.05	4.005		1.014	4.055	0.005	4 447				
Worst case posit	2.65	1.325	-0.06		1.055	2.835	1.417				
806.5 MHz	l			1.016	1.097						
	5.89	2.945	-0.07 for 25KHz with			6.565	3.282				
vvoist case	e hosition	oi Alialog	(Body-Wo		ery, Deil a	iiu Accessor	уі				
806.5 MHz	6.22	3.110	-0.10	1.023	1.064	6.770	3.385				
Worst case	position		er Battery, Belt	and Access							
806.5 MHz	5.74	2.870	-0.07	1.016	1.055	6.205	3.103				
1				ı							

For IC Review

Limits	1 g Average(W/Kg)		Power Drift(dB)	Power Drift	Scaling Factor	SAR Values Include the Power Drift and Scaling factor				
	8.0		±0.21	100 + - (ΔSAR x -		Duty Cycle				
Frequency	Duty Cycle		Power	1)/100		20.5, 6, 6.6				
	100%	50%	Drift(dB)			100%	50%			
The EUT display towards phantom for 12.5KHz with Thicker(analog,face held)										
806.5 MHz	3.48	1.740	0.08	1.08	1.055	3.965	1.983			
Worst case position with Thinner Battery(analog,face held)										
806.5 MHz	3.22 1.610		-0.06	1.06	1.055	3.601	1.800			
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt and Accessory 1										
(Analog, Body-Worn)										
806.5 MHz	6.87	3.435	-0.10	1.10	1.055	7.973	3.986			
823.5 MHz	6.01	3.005	0.08	1.08	1.140	7.400	3.700			
851.5 MHz	5.40	2.700	0.10	1.10	1.084	6.439	3.219			
868.5 MHz	5.85	2.925	-0.05	1.05	1.094	6.720	3.360			

899.0 MHz	2.80	1.400	0.08	1.08	1.125	3.402	1.701		
938.0 MHz	2.60	1.300	-0.10	1.10	1.141	3.263	1.632		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt, Accessory 1 and Earphone 1									
(Analog, Body-Worn)									
806.5 MHz	6.26	3.130	-0.06	1.06	1.055	7.001	3.500		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt, Accessory 1 and Earphone 2									
	1	1	(Analog, Body		I	т	_		
806.5 MHz	5.55	2.775	-0.02	1.02	1.055	5.972	2.986		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt, Accessory 2 and Earphone 3 (Analog, Body-Worn)									
200 5 1 11 1	0.70	4.005		· ·	4.0==	0.400	1 500		
806.5 MHz	2.79	1.395	-0.06	1.06	1.055	3.120	1.560		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt, Accessory 2 and Earphone 4 (Analog, Body-Worn)									
806.5 MHz	4.93	2.465	-0.07	1.07	1.055	5.565	2.783		
The EUT display to	wards gro	und for 12.	5 KHz with Thi	nner Battery,	Belt, Acce	essory 2 and	Earphone 5		
		1	(Analog, Body	-Worn)					
806.5 MHz	3.47	1.735	-0.10	1.10	1.055	4.027	2.013		
The EUT display to	wards gro	und for 12.		•	Belt, Acce	essory 2 and	Earphone 6		
	1	1	(Analog, Body		T	T			
806.5 MHz	2.43	1.215	-0.08	1.08	1.055	2.769	1.384		
The EUT display	towards (ground for			ery, Belt ar	nd Audio Acc	essory 3		
	1		(Analog, Body		ı	T			
806.5 MHz	2.60	1.30	-0.12	1.12	1.055	3.072	1.536		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt and Audio Accessory 4 (Analog, Body-Worn)									
806.5 MHz	5.54	2.77	-0.13	1.13	1.055	6.605	3.302		
The EUT display	towards	ground for	12.5 KHz with	Thinner Batte	ery, Belt ar	d Audio Acc	essory 5		
			(Analog, Body	-Worn)					
806.5 MHz	2.55	1.275	-0.07	1.07	1.055	2.879	1.439		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Belt and Audio Accessory 6									
	1	1	(Analog, Body		T	T			
806.5 MHz	5.26	2.630	-0.11	1.11	1.055	6.160	3.080		
The EUT display	towards (ground for			ery, Belt ar	nd Audio Acc	essory 7		
200 5 1 11 1	1 _		(Analog, Body			I			
806.5 MHz	2.57	1.285	0.00		1.055	2.711	1.356		
The EUT display towards ground for 12.5 KHz with Thinner Battery, Pocket and Accessory 1 (Analog, Body-Worn)									
806.5 MHz	2.65	1.325	-0.06	1.06	1.055	2.963	1.482		
Worst case posit	ion of Ana	log for Dig	ital with Thinne	er Battery, Be	elt and Acc	essory 1 (Bo	dy-Worn)		
806.5 MHz	5.89	2.945	-0.07	1.07	1.097	6.914	3.457		
Worst case posit	ion of Ana	alog for 25h	(Hz with Thinn	er Battery, B	elt and Acc	cessory 1(Bo	dy-Worn)		
806.5 MHz	6.22	3.110	-0.10	1.10	1.064	7.280	3.640		
Worst case position with Thicker Battery, Belt and Accessory 1 (Analog, Body-Worn)									
806.5 MHz	5.74	2.870	-0.07	1.07	1.055	6.480	3.240		
<u> </u>		•		•	•	•	•		

- Note: 1. For face-held configuration, battery "Thicker" was selected as the default battery (highest mAh).
 - 2. When the head SAR of an antenna tested on the highest output power channel with the default battery is < 3.5 W/kg, testing of all other required channels is not necessary.
 - 3. When the SAR for all antennas tested using the default battery is < 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas.
 - 4. For body-worn configuration, battery "Thinner" was selected as the default battery.
 - 5. When the body SAR of an antenna is \leq 3.5 W/kg, testing of all other required channels is not necessary for that antenna.
 - 6. When the highest SAR of an antenna tested with the default battery using the default body-worn and audio accessory is > 4.0 W/kg, test additional batteries with the default body-worn and audio accessory on the channel that resulted in the highest SAR for that antenna.
 - 7. The audio accessory Speaker Mic was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.

5.3. Measurement Uncertainty

For IEC62209-2 measurement procedures

Uncertainty Component	Unc. vaule ±%	Prob Dist.	Div.	C _i 1g	C _i 10g	Std.Unc. ±%.1g	Std.Unc. ±%.10g	Vi
Measurement System								
Probe Calibration	5.9	N	1	1	1	5.9	5.9	∞
Axial Isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	8
Boundary Effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Readout Electronics	0.3	N	1	1	1	0.3	0.3	8
Response Time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	80
Test Sample Related								
Test Sample Positioning 2.9		N	1	1	1	2.9	2.9	145
Device Holder Uncertainty	3.6	N	1	1	1	3.6	3.6	5
Output Power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
	Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
Conductivity Target - tolerance	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
Conductivity - measurement uncertainty	2.5	N	1	0.64	0.43	1.6	1.1	∞
Permittivity Target - tolerance	5.0	R	$\sqrt{3}$	0.60	0.49	1.7	1.4	8
Permittivity - measurement uncertainty 2.5		N	1	0.60	0.49	1.5	1.2	5
Combined Standard Uncertainty						±11.1%	±10.7%	387
Coverage Factor for 95%			2					
Expanded STD Uncertainty						±22.2%	±21.4%	

For IEEE 1528 measurement procedures

Uncertainty Component	Unc. vaule ±%	Prob Dist.	Div.	C _i 1g	C _i 10g	Std.Unc. ±%.1g	Std.Unc. ±%.10g	Vi
Measurement System								
Probe Calibration	5.9	N	1	1	1	5.9	5.9	8
Axial Isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	8
Boundary Effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Readout Electronics	0.3	N	1	1	1	0.3	0.3	~
Response Time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Test Sample Related								
Test Sample Positioning 2.1		N	1	1	1	2.1	2.1	150
Device Holder Uncertainty	3.6	N	1	1	1	3.6	3.6	5
Output Power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Conductivity Target - tolerance	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
Conductivity - measurement uncertainty	2.5	N	1	0.64	0.43	1.6	1.1	∞
Permittivity Target - tolerance	5.0	R	$\sqrt{3}$	0.60	0.49	1.7	1.4	8
Permittivity - measurement uncertainty 1.9		N	1	0.60	0.49	1.5	1.2	5
Combined Standard Uncertainty						±11.2%	±10.8%	387
Coverage Factor for 95%			2					
Expanded STD Uncertainty						+22.4%	±21.6%	

Report No.: TRE13030161 Page 24 of 86 Issued:2013-04-26

5.4. System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole835 MHz; Type: D835V2; Serial: 4d134

Date/Time: 04/15/2013 09:06:09 AM

Communication System: DuiJiangJi; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\epsilon r = 42.06$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.06, 6.06, 6.06); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (101x121x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.66 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.2 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 3.87 mW/g

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) =2.58 W/kg

System Performance Check 835MHz 250mW

Report No.: TRE13030161 Page 25 of 86 Issued:2013-04-26

System Performance Check at 835 MHz Body TSL

DUT: Dipole835 MHz; Type: D835V2; Serial: 4d134

Date/Time: 04/15/2013 10:12:14 AM

Communication System: DuiJiangJi; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.02$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.91 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.439 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 3.45 mW/g

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) =2.94 W/kg

System Performance Check 835MHz 250mW

Report No.: TRE13030161 Page 26 of 86 Issued:2013-04-26

5.5. SAR Test Graph Results

Face Held for 12.5 KHz with Thicker Battery, Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.91 \text{ mho/m}$; $\epsilon r = 43.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.06, 6.06, 6.06); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 4.10 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.652 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 7.425 mW/g

SAR(1 g) = 3.48 mW/g; SAR(10 g) = 2.47 mW/g

Maximum value of SAR (measured) = 4.03 W/kg

0 dB = 4.03 W/kg = 11.25 dB W/kg

Figure 1: Face Held for 12.5 KHz with Thicker Battery, Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 27 of 86 Issued:2013-04-26

Face Held for 12.5 KHz with Thinner Battery, Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.90 \text{ mho/m}$; $\epsilon r = 43.10$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.06, 6.06, 6.06); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 4.16 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.962 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 8.744 mW/g

SAR(1 g) = 3.22 mW/g; SAR(10 g) = 2.34 mW/g

Maximum value of SAR (measured) = 4.15 W/kg

Figure 2: Face Held for 12.5 KHz with Thinner Battery, Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 28 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.02$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =7.25 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 75.251 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 8.633 mW/g

SAR(1 g) = 6.87 mW/g; SAR(10 g) = 5.42 mW/g

Maximum value of SAR (measured) = 7.29 W/kg

0 dB = 7.29 W/kg = 18.26 dB W/kg

Figure 3: Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 29 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 423.5 MHz; $\sigma = 0.97 \text{ mho/m}$; $\epsilon r = 44.23$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.58 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 70.206 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 7.410 mW/g

SAR(1 g) = 6.01 mW/g; SAR(10 g) = 4.64 mW/g

Maximum value of SAR (measured) = 6.20 W/kg

0 dB = 6.20 W/kg = 14.85 dB W/kg

Figure 4: Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 30 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 851.5 MHz

Communication System: DuiJiangJi; Frequency: 851.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 851.5 MHz; $\sigma = 0.98 \text{ mho/m}$; $\epsilon r = 54.23$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.07 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.122 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 7.124 mW/g

SAR(1 g) = 5.40 mW/g; SAR(10 g) = 4.13 mW/g

Maximum value of SAR (measured) = 5.29 W/kg

0 dB = 5.29 W/kg = 17.23 dB W/kg

Figure 5: Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 851.5 MHz

Report No.: TRE13030161 Page 31 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 868.5 MHz

Communication System: DuiJiangJi; Frequency: 868.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 868.5 MHz; $\sigma = 0.98 \text{ mho/m}$; $\epsilon r = 54.54$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.50 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.161 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 7.332 mW/g

SAR(1 g) = 5.85 mW/g; SAR(10 g) = 4.51 mW/g

Maximum value of SAR (measured) = 6.11 W/kg

0 dB = 6.11 W/kg = 15.63 dB W/kg

Figure 6: Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 868.5 MHz

Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 899.0 MHz

Communication System: DuiJiangJi; Frequency: 899.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 899.0 MHz; σ = 0.99 mho/m; ϵ r = 54.54; ρ = 1000 kg/m

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =3.20W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.203 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 3.440 mW/g

SAR(1 g) = 2.80 mW/g; SAR(10 g) = 2.12 mW/g

Maximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 10.06 dB W/kg

Figure 7: Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 899.0 MHz

Report No.: TRE13030161 Page 33 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 938.0 MHz

Communication System: DuiJiangJi; Frequency: 938.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 938.0 MHz; σ = 0.98 mho/m; ϵ r = 54.03; ρ = 1000 kg/m

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =3.12 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.189 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 4.162 mW/g

SAR(1 g) = 2.60 mW/g; SAR(10 g) = 2.10 mW/g

Maximum value of SAR (measured) = 2.73 W/kg

0 dB = 2.73 W/kg = 9.68 dB W/kg

Figure 8: Body-worn for 12.5 KHz with Thinner Battery, Belt and Accessory 1, Front towards Phantom 938.0 MHz

Report No.: TRE13030161 Page 34 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 1 and Earphone1 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; σ = 0.99 mho/m; ϵ r = 54.03; ρ = 1000 kg/m

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.74 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 70.589 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) =7.746 mW/g

SAR(1 g) = 6.26 mW/g; SAR(10 g) = 4.62 mW/g

Maximum value of SAR (measured) =6.79 W/kg

0 dB = 6.43 W/kg = 17.16 dB W/kg

Figure 9: Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 1 and Earphone1 Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 35 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 1 and Earphone2 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.746 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 7.135 mW/g

SAR(1 g) = 5.55 mW/g; SAR(10 g) = 4.23 mW/g

Maximum value of SAR (measured) =6.03W/kg

0 dB = 6.03 W/kg = 16.20 dB W/kg

Figure 10: Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 1 and Earphone2 Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 36 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone3 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; σ = 0.99 mho/m; ϵ r = 54.03; ρ = 1000 kg/m

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =3.11 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 48.260 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.892 mW/g

SAR(1 g) = 2.79 mW/g; SAR(10 g) = 1.95 mW/g

Maximum value of SAR (measured) =2.63W/kg

Figure 11: Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone3 Front towards Phantom 806.5 MHz

Page 37 of 86 Report No.: TRE13030161 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone4 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =5.83 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.240 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 7.454 mW/g

SAR(1 g) = 4.93 mW/g; SAR(10 g) = 3.48 mW/g

Maximum value of SAR (measured) =5.31W/kg

0 dB = 5.31 W/kg = 14.26 dB W/kg

Figure 12: Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone4 Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 38 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone5 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; σ = 0.99 mho/m; ϵ r = 54.03; ρ = 1000 kg/m

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =4.07 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.210 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 5.412 mW/g

SAR(1 g) = 3.47 mW/g; SAR(10 g) = 2.67 mW/g

Maximum value of SAR (measured) =3.78 W/kg

Figure 13: Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone5 Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 39 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone6 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =2.61 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 40.336 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.208 mW/g

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.97 mW/g

Maximum value of SAR (measured) =2.55W/kg

0 dB = 2.55 W/kg = 8.17 dB W/kg

Figure 14: Body-worn for 12.5 KHz with Thinner Battery, Belt ,Accessory 2 and Earphone6 Front towards Phantom 806.5 MHz

Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory3 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =2.90 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 43.452 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.520 mW/g

SAR(1 g) = 2.6 mW/g; SAR(10 g) = 1.84 mW/g

Maximum value of SAR (measured) = 2. 78 W/kg

0 dB = 2.78 W/kg = 8.96 dB W/kg

Figure 15: Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory3
Front towards Phantom 806.5 MHz

Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory4 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.41 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 67.214 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 6.854 mW/g

SAR(1 g) = 5.54 mW/g; SAR(10 g) = 4.21 mW/g

Figure 16: Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory4 Front towards Phantom 806.5 MHz

Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory5 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =2.88 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.263 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.120 mW/g

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 2.03 mW/g

Maximum value of SAR (measured) = 2.76 W/kg

0 db = 2.70 vv/kg = 0.20 db vv/kg

Figure 17: Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory5
Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 43 of 86 Issued:2013-04-26

Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory6 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency:806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =5.84 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.336 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 6.325 mW/g

SAR(1 g) = 5.26 mW/g; SAR(10 g) = 4.20 mW/g

Maximum value of SAR (measured) = 5.72 W/kg

Figure 18: Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory6 Front towards Phantom 806.5 MHz

Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory7 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency:806.5 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =2.81 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 42.547 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.341 mW/g

SAR(1 g) = 2.57 mW/g; SAR(10 g) = 1.93 mW/g

Maximum value of SAR (measured) = 2.69 W/kg

0 dB = 2.69 W/kg = 8.59 dB W/kg

Figure 19: Body-worn for 12.5 KHz with Thinner Battery, Belt and Audio Accessory7
Front towards Phantom 806.5 MHz

Body-worn for 12.5 KHz with Thinner Battery, Pocket and Accessory1 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =3.02 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 42.520 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.410 mW/g

SAR(1 g) = 2.65 mW/g; SAR(10 g) = 1.98 mW/g

Maximum value of SAR (measured) = 3.01 W/kg

0 dB = 3.01 W/kg = 9.68 dB W/kg

Figure 20: Body-worn for 12.5 KHz with Thinner Battery, Pocket and Accessory1 Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 46 of 86 Issued:2013-04-26

Worst case position of analog 12.5KHz for Digital with Thinner Battery, Belt and Accessory 1 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =5.87 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.369 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 7.526 mW/g

SAR(1 g) = 5.89 mW/g; SAR(10 g) = 4.23 mW/g

Maximum value of SAR (measured) = 5.62 W/kg

Figure 21: Worst case position of analog 12.5KHz for Digital with Thinner Battery, Belt and Accessory 1

Front towards Phantom 806.5 MHz

Worst case position of analog 12.5KHz for 25KHz with Thinner Battery, Belt and Accessory 1 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.54 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 66.631 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 7.651 mW/g

SAR(1 g) = 6.22 mW/g; SAR(10 g) = 4.47 mW/g

Maximum value of SAR (measured) = 6.12 W/kg

Figure 22: Worst case position of analog 12.5KHz for 25KHz with Thinner Battery, Belt and Accessory 1
Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 48 of 86 Issued:2013-04-26

Worst case position with Thicker Battery, Belt and Accessory 1 Front towards Phantom 806.5 MHz

Communication System: DuiJiangJi; Frequency: 806.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806.5 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.03$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.14, 6.14, 6.14); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) =6.20 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.623 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 7.063 mW/g

SAR(1 g) = 5.74 mW/g; SAR(10 g) = 4.42 mW/g

Maximum value of SAR (measured) = 5.69 W/kg

Figure 23: Worst case position with Thicker Battery, Belt and Accessory 1
Front towards Phantom 806.5 MHz

Report No.: TRE13030161 Page 49 of 86 Issued:2013-04-26

6. Calibration Certificate

6.1. Probe Calibration Ceriticate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CIQ SZ (Auden)

Certificate No: ES3-3292_Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3292

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

February 24, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-12 (No. 217-01372)	Apr-13
Power sensor E4412A	MY41498087	31-Mar-12 (No. 217-01372)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-12 (No. 217-01369)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-12 (No. 217-01367)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-12 (No. 217-01370)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 654	3-May-12 (No. DAE4-654_May12)	May-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-12)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: February 27, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Report No.: TRE13030161 Page 50 of 86 Issued:2013-04-26

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques', December 2003
- IEC 62209-*, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Report No.: TRE13030161 Page 51 of 86 Issued:2013-04-26

ES3DV3 - SN:3292

February 24, 2013

Probe ES3DV3

SN:3292

Manufactured: Calibrated:

July 6, 2010

February 24, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Feb13

Page 3 of 11

February 24, 2013 ES3DV3-SN:3292

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.81	0.90	1.18	± 10.1 %
DCP (mV) ^B	105.9	104.7	102.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	(0.00	0.00	1.00	117.3	±2.2 %
			Y	0.00	0.00	1.00	94.2	
			Z	0.00	0.00	1.00	108.2	-

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Lucertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	6.71	6.71	6.71	0.15	1.80	± 13.4 %
835	41.5	0.90	6.06	6.06	6.06	0.26	2.19	± 12.0 %
900	41.5	0.97	6.03	6.03	6.03	0.29	2.00	± 12.0 %
1810	40.0	1.40	5.25	5.25	5.25	0.80	1.17	± 12.0 %
1900	40.0	1.40	5.21	5.21	5.21	0.63	1.38	± 12.0 %
2100	39.8	1.49	5.15	5.15	5.15	0.80	1.20	± 12.0 %
2450	39.2	1.80	4.47	4.47	4.47	0.63	1.50	± 12.0 %

Certificate No: ES3-3292_Feb13

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.09	1.00	± 13.4 %
835	55.2	0.97	6.14	6.14	6.14	0.42	1.57	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.48	1.49	± 12.0 %
1810	53.3	1.52	4.86	4.86	4.86	0.62	1.42	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.47	1.75	± 12.0 %
2100	53.2	1.62	4.76	4.76	4.76	0.70	1.39	± 12.0 %
2450	52.7	1.95	4.25	4.25	4.25	0.80	1.03	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

February 24, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

February 24, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

February 24, 2013

Dynamic Range $f(SAR_{head})$ (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ES3DV3- SN:3292 February 24, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz

February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Senscr X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3292_Feb13

Report No.: TRE13030161 Page 60 of 86 Issued:2013-04-26

6.2. D835V2 Dipole Calibration Ceriticate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CIQ SZ (Auden			lo: D835V2-4d134_Feb13
CALIBRATION C	ERTIFICATE		
Object	D835V2 - SN: 4d	1134	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	February 27, 201	3	
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical uprobability are given on the following pages a ry facility: environment temperature (22 \pm 3)	and are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-12 (No. 217-01451)	Oct-13
Power sensor HP 8481A	US37292783	05-Oct-12 (No. 217-01451)	Oct-13
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-12 (No. 217-01368)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-12 (No. 217-01371)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-12 (No. ES3-3205_Dec11)	Dec-13
DAE4	SN: 601	04-Jul-12 (No. DAE4-601_Jul11)	Jul-13
	Tax	200 200 200 2	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06 Network Analyzer HP 8753E	100005 US37390585 S4206	04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	In house check: Oct-13 In house check: Oct-13
Notwork Analyzor III Greece	0007000000 04200	10-Oct-01 (infloade check Oct-11)	in nouse check. Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Ofrew ex Daving
Approved by:	Katja Pokovic	Technical Manager	Threw Chraong
This calibration certificate shall no	of be reproduced except in	full without written approval of the laborator	Issued: February 27, 2013