Ministerul Educației, Cercetării și Țineretului Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Se consideră sarcina electrică elementară $e = 1.6 \cdot 10^{-19}$ C

SUBIECTUL I -(15 puncte)

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Știind că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură a energiei electrice disipate de un consumator poate fi scrisă în funcție de alte unități de măsură din S.I. în

forma:

a. V · A **b.** $V \cdot A \cdot s$ c. $V^2 \cdot A \cdot s$

d. $\Omega^2 \cdot A \cdot s$ (2p)

2. În circuitul din figura alăturată sursa și aparatele de măsură sunt ideale. Ampermetrul și voltmetrul indică valorile I_1 , respecțiv U_1 când întrerupătorul k este dechis. Dacă se închide întrerupătorul, noile valori măsurate l_2 , U_2 vor fi:

a. $I_2 > I_1$; $U_2 > U_1$

b. $I_2 = I_1$; $U_2 > U_1$

c. $I_2 < I_1$; $U_2 < U_1$ **d.** $I_2 > I_1$; $U_2 = U_1$.

(5p)

3. Un bec cu rezistenta de 100 Ω este conectat la tensiunea de 50 V. Intervalul de timp în care becul este străbatut de o sarcină electrică de 1 C este :

b. 0.5 s

c. $2 \cdot 10^{-4}$ s

d. $2 \cdot 10^{-3}$ s

(3p)

(3p)

4. Căderea de tensiune pe rezistența interioară r a unei surse cu t.e.m. E care are conectat la borne un rezistor de rezistentă electrică R, este:

c. $\frac{ER}{2r}$

d. $\frac{Er}{R+r}$

(2p)

5. Două generatoare au aceleași tensiuni electromotoare, dar rezistențe interne diferite. Puterea maximă pe care o poate debita primul generator pe un circuit exterior este P_1 , iar puterea maximă pe care o poate debita al doilea generator pe un circuit exterior este P_2 . Cele două generatoare conectate în serie pot debita circuitului exterior o putere maximă:

a. $P = P_1 + P_2$ **b.** $P = P_1 P_2$

c. $P = \frac{P_1 P_2}{P_1 + P_2}$ **d.** $P = \frac{4P_1 P_2}{P_1 + P_2}$