CN A - Error Theory

Felipe B. Pinto 71951 – EQB 19 de janeiro de 2025

Conteúdo

<u> 1 Definitions</u> 2

1 Definitions

Defining errors

Let Q and \hat{Q} be the true and approximate values of a physical quantity.

$$arepsilon_Q = \Delta Q = Q - ilde{Q}$$
 (Error)
 $|arepsilon_Q| = |\Delta Q| = |Q - ilde{Q}|$ (Abolute Error)
 $r_Q = \left| \frac{\Delta Q}{Q} \right| = \left| 1 - \frac{ ilde{Q}}{Q} \right|$ (Relative Error)

$$\varepsilon_Q egin{cases} < 0 & \text{Approximating by excess} \\ > 0 & \text{Approximating by defect} \end{cases}$$

Categorizing errors

There are two kinds of errors:

Random/Precision errors are caused by unpredictable changes in the environment, can be easily detected and analyzed by statistical methods.

Systematic errors are the result of how an experiment is conducted and can be identified by leading to results that are too high or too low.

1.1 Intervalo que contem x

$$I_x = [\hat{x} - \eta_x, \hat{x} + \eta_x]: |x - \hat{x}| \leq \eta_x$$

$$egin{aligned} \eta_x egin{cases} 0.5*10^{-i} & : \hat{x}*10^i \in \mathbb{Z} \ \eta_x & : \hat{x} \pm \eta_x \ y*10^{-i} & : \hat{x}\left(y
ight) \wedge \hat{x}*10^i \in \mathbb{Z} \end{cases} \end{aligned}$$

12.3

Resposta

$$|x - \hat{x}| \le 0.5 * 10^{-1} = \eta_x$$

$$\therefore I_x = [12.3 - 0.05, 12.3 + 0.05] =$$

$$= [12.25, 12.35]$$

Resposta

$$|x - \hat{x}| \le 0.07 = \eta_x$$

$$\therefore I_x = |87.9 - 0.07, 87.9 + 0.07| = |87.83, 87.97|$$

400.32(6)

Resposta

$$|x - \hat{x}| \le 6 * 10^{-2} = \eta_x$$

 $\therefore I_x = [400.26, 400.38]$

87.9 ± 0.07

$$x = 1/17$$
 $\hat{x} = 0.059$

Resposta

(i) Erro Absoluto

$$|\varepsilon_x| = |x - \hat{x}| = |1/17 - 0.059| = 0.17647... E^{-3} \le 0.177 E^{-3}$$

(ii) Erro relativo

$$r_x = \frac{|x - \hat{x}|}{|x|} = \frac{|1/17 - 0.059|}{|1/17|} = 0.300 \,\mathrm{E}^-2$$