ANALYSIS OF ALGORITHMS

LECTURE 9: MINIMUM WEIGHTED SPANNING TREES

BASED ON SECTION 5.2

WEIGHTED GRAPHS

- This algorithm will consider weighted graphs
- In these graphs the edges have some weight attached.

Meaning is problem specific

EXAMPLE: LOW COST COMPUTER NETWORK

- We may want to construct a subgraph that uses less weight
- For example:

- That made it cost less but the vertices are still connected
- Could it still cost less though?

MINIMUM WEIGHTED GRAPHS

What's the cheapest subgraph of our original graph?

- But we'd like the vertices to still be connected, otherwise it's kind of pointless
- Minimum Weighted Connected Graphs!

MINIMUM WEIGHTED CONNECTED GRAPHS

What's the cheapest connected subgraph of our original graph?

- But we'd like to include all the original vertices, otherwise it's kind of pointless
- Minimum Weighted Connected Spanning Graphs

MINIMUM WEIGHTED CONNECTED SPANNING GRAPHS

- What's the cheapest connected spanning subgraph of our original graph?
 - Is it possible to contain cycles?

- Minimum Weighted Connected Acyclic Spanning Graphs
- Minimum Weighted Spanning Trees

- How do we construct one?
- Greedy Algorithms

- How do we construct one?
- Start off with a tree with any one vertex

- How do we construct one?
- Start off with a tree with any one vertex
- Repeatedly
 - Add the cheapest edge from the original graph going from a vertex in the tree to one not in the tree
 - Stop when you have all the vertices from original tree

- How do we construct one?
- Start off with a tree with any one vertex
- Repeatedly
 - Add the cheapest edge from the original graph going from a vertex in the tree to one not in the tree
 - Stop when you have all the vertices from original tree

- How do we construct one?
- Start off with a tree with any one vertex
- Repeatedly
 - Add the cheapest edge from the original graph going from a vertex in the tree to one not in the tree
 - Stop when you have all the vertices from original tree

- How do we construct one?
- Start off with a tree with any one vertex
- Repeatedly
 - Add the cheapest edge from the original graph going from a vertex in the tree to one not in the tree
 - Stop when you have all the vertices from original tree

- How do we construct one?
- Start off with a tree with any one vertex
- Repeatedly
 - Add the cheapest edge from the original graph going from a vertex in the tree to one not in the tree
 - Stop when you have all the vertices from original tree

- How do we construct one?
- Start off with a tree with any one vertex
- Repeatedly
 - Add the cheapest edge from the original graph going from a vertex in the tree to one not in the tree
 - Stop when you have all the vertices from original tree

- How do we know this algorithm is correct?
 - Read and understand the proof in the book!

- How do we know this algorithm is correct?
 - Read and understand the proof in the book!
- But... How does that proof work?

- The intuition is that the algorithm is iterative, and after every iteration, we have a subtree of a minimum weighted spanning tree.
- So let's consider when we start. Our tree is a single vertex. Is this a subtree of the minimum weighted spanning tree?

- Now what we need is that if we start off with a subtree T of a MWST and then we add the cheapest edge going from a vertex in T to a vertex not in T, we end up with a new tree $T^{\#}$, which is also a subtree of a MWST
- This would be an important result, because what it's saying is that we can start of with a subtree of the MWST, and iteratively grow it.
- Since it is growing, it will eventually contain all the vertices, so it will be a MWST

- Now what we need is that if we start off with a subtree T' of a MWST and then we add the cheapest edge (x, y) going from a vertex in T' to a vertex not in T', we end up with a new tree $T^{\#} = T' + (x, y)$, which is also a subtree of a MWST
- Ok, so let's let T be a MWST of a graph G. Let T' be a subtree of that graph.
- Let the cheapest edge in G going from a vertex in T' to a vertex not in T' be (x, y)
- Ok, now there's two possibilities Either (x, y) is in T or it's not in T
- If it is in T, then T' + (x, y) is a subtree of T, because T' was, and then we added something that was in T

- But what if (x, y) is NOT in T?
- Then T' + (x, y) is not a subtree of T.
- But we didn't say it had to be. We just said it had to be a subtree of a MWST. There could be many MWSTs of ${\it G}$
- Now, consider the path in T from x to y. It's not the edge (x, y) because (x, y) is not in T
- Let's write the path as $(x, v_1), (v_1, v_2), \dots, (v_n, y)$
- We know that x is in T' and y is not in T' because that's how we chose the edge
- So, on the path between x and y in T, there must be some edge that goes from a vertex in T to a vertex not in T. Call this edge (v_{i-1}, v_i)

- Now, construct a new tree T^* , which is $T (v_{i-1}, v_i) + (x, y)$
- T' + (x, y) is a subtree of T^*
- We want to show that T^* is another MWST of G
- First, is T* a tree? Well, is it connected?
 - We removed (v_{i-1}, v_i) . Can we still get from v_{i-1} to v_i ?
 - Well, we know there was a path in T that went from x to v_{i-1} and from v_i to y
 - That means in T^* we can walk from v_{i-1} to x, then from x to y, then from y to v_i .
 - So its connected

- But is T^* a tree?
 - Well, T had n-1 edges because it was a tree
 - Now we've removed an edge and added an edge
 - So T^* also has n-1 edges
 - So it's connected and has n-1 edges That means it's a tree!

- Ok, but is T^* minimum weighted?
 - Well,T was minimum weighted
 - $T^* = T (v_{i-1}, v_i) + (x, y)$
 - Now, we chose (x, y) as the cheapest edge that goes from a vertex in T' to a vertex not in T'
 - But (v_{i-1}, v_i) is an edge that goes from a vertex in T' to a vertex not in T'
 - So weight(x, y)<= weight (v_{i-1} , v_i)
 - That means that weight(T*)<=weight(T)
 - But T was an MWST "Minimum"
 - So weight(T*)=weight(T)
 - So T^* is a MWST of G

- And T' + (x, y) is a subtree of T^*
- So T' + (x, y) is a subtree of a MWST