Flight Delay Prediction

MIDS w261: Machine Learning at Scale | UC Berkeley-School of Information I Summer 2021

Team 07. Atrevi Dasmahapatra, Kanika Mahajan, Kevin Fu, Lucas Barbosa

Business Case

- Predicting flight delays allow airlines to do better delay management, optimizing their operations and saving costs
- Ex. should a connecting flight be intentionally delayed if a feeder flight arrives with a delay?
- If not, transferring passengers will lose their connection; if yes, another delay might cause ripple effects in the network

With in advance delay predictions, airlines do have more flexibility to reschedule in an optimized way

Recall is key

- Since most of flights do not delay, a classifier that simply predicts that no flights will be delayed can achieve remarkably high accuracy rates
- Thus, our main challenge is to instead improve recall, the percentage of delayed flights that are correctly classified as delayed
- Key assumption: costs incurred in anticipation of a potentially delayed flight that doesn't delay are lower than the costs of a delayed flight for which the airline has not prepared itself

The datasets we used

- Airline Dataset: Bureau of Transportation Statistics (BTS).
 - o 31 million rows
 - o 109 potential features
- Weather Dataset: Integrated Surface Data (ISD)
 - o 630 million rows
 - 177 potential features
- Aviation Support Tables: Office of Airline Information, Bureau of Transportation Statistics
 - o 18K rows
 - 10 potential features

Key findings from EDA: weather data

- Many unusable/null values
 - 7 predictive features, 42 million rows remain
- Not one single feature indicates bad weather
 - 98.6% normal wind conditions
 - 4.2 m/s avg wind speed (gentle breeze)
 - o 0.8 correl (air temp, dew temp)
- Led to creation of Bad Weather Predictor:
 - >50% relative humidity &
 - Wind speed >15.2 m/s |
 - Required visibility < 1609 m |
 - Low sea pressure (bottom 10%)

Relative Humidity % =
$$\frac{E}{E_s}$$
 x 100

$$E_s = e^{\left(\frac{17.67 \times T}{243.5 + T}\right)}$$

T = Ambient Temperature in Celsius

Tdew = Dew Point in Celsius

S = Saturation Vapor Pressure

= Actual Vapor Pressure

Key findings from EDA: airlines data

- Duplicate and Missing Data (61 potential features)
- Cancelled and Diverted Flights
- Average delay time ~ 12 minutes
- Average flight duration (~800 miles, 2.5 hours)
- Imbalance in outcome of interest
- Delayed flights not uniform across days, airlines, airports

Flight delays and feature creation

- Air Carrier delays:
 - Average delayed flights (rolling window 30 days) for every aircraft.
- Late Aircraft delays:
 - Frequency of delayed flights at origin,
 destination airport and by airline carrier in the
 past 2, 4, 8 and 12 hours
- NAS delays:
 - Frequency of late arrivals in the departure airports
 - Delays in hubs in the past 2,4,8 and 12 hours
 - Part of Day (Morning, Afternoon etc.)

Joining Data Tables

- Nearest weather station to departing airport
 - Use Google geocode api to get latitude and longitude of departing city
 - Map back to matching weather station latitude and longitude using Haversine formula
 - Cross Join first and then inner join
 - Latest weather timestamp
 - 26513705 rows and 128 features
 - Very few empty rows (as expected)

Great-circle distance between two points on a sphere

Results

Conclusions and Challenges

- First ever ML project with datasets that couldn't be tweaked in Pandas
- Application of LR, RF, SVM and GBT algorithms
- LR from scratch: recall of 0.43 (vs 0.68) and a precision of 0.29 (vs. 0.37)
- Flight data lacked timestamps and had local time calculate local time zones convert both flight & weather data to unix timestamps
- A common column between the two data tables to join did not exist
- The joined dataframe gets saved as a parquet file without any complaints but count of the data frame is drastically lower upon reloading

OLD SLIDES REPOSITORY

Flight delays cause extra costs for passengers and airlines

- Missed connections
- Lengthy stays at airports

- Crew/aircraft availability
- Passenger reaccommodation
- Penalties/fines

Operational costs and brand reputation

Airlines Dataset: EDA

Data Overview

- Started with airlines 3 months data: Total 109 features and 161057 rows

Missing Data

- Removed features that had > 96% of data missing (mostly diverted flights)
- Usable features went down to 61

Data Cleaning

- Cancelled flights removed from dataset (unable to classify if delayed or not)
- Diverted flights left as such

Feature engineering - Airlines data

- Part of the day (snowball effect of delayed flights early in the day)
- Average delayed flights by aircraft (tail_num) rolling window 30 days
- Frequency of delays in the departure airport (for all airlines) in the past 2, 4, 8 and 12 hours
- Frequency of delays in the destination airport (for all airlines) in the past 2, 4, 8 and 12 hours
- Frequency of delays of the same airline (in the departure airport) in the past 2, 4, 8 and 12 hours
- Frequency of late arrivals in the departure airport (for all airlines) in the past 2, 4, 8 and 12 hours

Weather Dataset: EDA

- Remove Missing/Erroneous Features (Columns)
 - 161 out of 177 features had 50%+ missing data (91% reduction)
- Remove Missing/Erroneous Rows
 - 11,588,530 rows remain out of 29,823,926 (61% reduction)
- Data Cleaning
 - Total of 19 useable features, un-nested from 6 columns

Weather Dataset: EDA

- 0.70 correl(air temp, dew temp)
- -0.23 correl(sea level, visibility)

Feature engineering - Weather data

- 6 out of the 19 features could be predictive
 - Others were identifying features
 - To use Lasso as final judge to determine if var is sig predictor for flight delays
 - Filling in vs. Removing x million rows may make features more significant
- Good vs. Bad Weather
 - Within explicitly labeled variables, 90%+ "Good", <10% "Bad"
 - Need more "Bad" weather data points: must look into 6m/Full dataset for a complete Season/more Winter data points

Joined Dataset: EDA

- 26513705 rows and 128 features
- Very few empty rows (as expected)

Name of Origin City	Bad Weather Prediction
Chicago, IL	53932
DFW, TX	35192
Atlanta, GA	32135
Phoenix, AZ	29293

Logistic Regression: baseline results

Only 4 features survived after L1 reg.; none from the weather dataset

Features	Weights
Intercept	-1.680632
Total number of departure delays in the previous 2hrs in the origin airport	0.002778
Total number of departure delays in the previous 4hrs in the destination airport	0.228222
Total number of arrival delays in the previous 2hrs in the origin airport	0.008814
Total number of arrival delays in the previous 4hrs in the origin airport	0.000651

Recall of ~60%: too good to be true?

Performance metrics

Accuracy: 0.7984

Weighted Precision: 0.7902 Weighted Recall: 0.7984

F1-Score: 0.7938

Precision By Label: [0.8607, 0.5286] Recall By Label: [0.8878, 0.4670] F1-Score by Label: [0.8740, 0.4959]

Next steps

EDA and join on complete dataset

More feature engineering - Airport hubs and frequency of delays, Late arrivals and airports, Weather features

Lasso on additional combinations of features

Test on ensemble models based on classification trees