

Week4

Teacher: 廖裕評 Yu-Ping Liao

TA: 陳大荃 Da-chuan Chen, 陳恩妮 En-ni Chen

Class Rules

- 1. No drink besides water.
- 2. Bring a laptop and breadboard if needed.
- 3. Ask us TAs to sign and borrow development boards. Do not sign or ask others to sign for you without TAs' permission.
- 4. Arriving 10 minutes after the bell rings will be regarded as absent.
- 5. If you damage any borrowed equipment, you have to pay for it.

Homework Rules

- 1. Includes: A. Class content, B. Class exercise, C. Homework (screenshot or video)
- 2. Editing software: MS PowerPoint
- 3. File format: PDF
- 4. Filename: "date_group_studentID_name.pdf", like "0916_第1組_11028XXX_陳OO.pdf"
- 5. The homework deadline is 23:59 of the day before the next class. If you are late, then your grade will be deducted.

Contact

If you encounter any problems with this class, please get in touch with us with the following E-mails:

- 1. Teacher, Prof. Yu-Ping Liao 廖裕評: lyp@cycu.org.tw
- 2. TA, Da-chuan Chen 陳大荃: <u>dachuan516@gmail.com</u>
- 3. TA, En-ni Chen 陳恩妮: anna7125867@gmail.com

Or visit 篤信 Lab353 for further questions.

Outline of the Week

- 1. Timer Project.
- 2. Homework 4-1.
- 3. Homework 4-2.
- 4. Homework 4-3.

1. Execute "_CreatProject"

- 1. Go to "~/HT32_STD_5xxxx_FWLib_V1.5.1_7084/example/TM/PWM_Buzzer".
- 2. Double click "_CreateProject.bat".

2 > mc > HT32_STD_5xxxx_FV	VLib_V1.6.1_7190 > example >	TM > PWM_Buzzer		
名稱	日期	類型	大小	標籤
MDK_ARMv5	2023/9/20 上午 09:54	檔案資料夾		
MDK_ARMv537	2023/9/20 上午 09:54	檔案資料夾		
_ClearProject.bat	2023/9/20 上午 09:54	Windows 批次檔案	5 KB	
_ClearTarget.bat	2023/9/11 下午 10:42	Windows 批次檔案	3 KB	
CreateProject.bat	2021/2/1 下午 08:26	Windows 批次檔案	3 KB	
CreateProjectScript.b	2023/9/11 下午 10:42	Windows 批次檔案	27 KB	
ProjectConfig.ini	2023/8/30 上午 10:45	組態設定	3 KB	
ProjectSource.ini	2023/8/17 下午 06:56	組態設定	4 KB	
c buzzer_pwm.c	2021/2/5 上午 12:40	C來源檔案	10 KB	
c buzzer_pwm.h	2021/2/5 上午 12:39	C Header 來源檔案	3 KB	
tt32_board_config.h	2023/4/11 上午 10:56	C Header 來源檔案	10 KB	
c ht32f5xxxx_01_it.c	2020/8/11 下午 02:02	C來源檔案	6 KB	
c ht32f5xxxx_01_usbdco	2023/9/11 下午 10:40	C Header 來源檔案	18 KB	
c ht32f5xxxx_02_usbdco	2023/9/11 下午 10:40	C Header 來源檔案	22 KB	
c ht32f5xxxx_conf.h	2023/9/11 下午 10:40	C Header 來源檔案	20 KB	

2. Launch project

main

```
int main (void)
67
68
       Buzzer Funl();
                          function1
69
70
       Buzzer Fun2();
71
                          function2
72
       Buzzer Init (0); Initialization Setting
73
74
75
       while (1)
76
         Buzzer PlayTable();
77
                                 function3
78
79
```

Declare functions in the beginning

```
49  void Buzzer_Funl(void);
50  void Buzzer_Fun2(void);
51  void Buzzer_PlayTable(void);
```

funciton1

```
void Buzzer Funl(void)
86 - {
       /* Bee 4 times, 3 kHz, active 50 ms, inactive 50 ms
88
       Buzzer Init(0);
89
      Buzzer Start(4, 3000, 50, 50);
90
       while (Buzzer IsFinish()
91
89
      Buzzer Start (4, 3000, 50, 50);
        times, frequency, delay time in the beginning(ms), delay time in the end(ms)
```

funciton2

```
void Buzzer Fun2(void)
98
           Bee 2 times, 800 Hz, active 1000 ms, inactive 500 ms
100
       Buzzer Start (2, 800, 1000, 500); Initialization Setting
101
              (Buzzer IsFinish() == FALSE); valve, If success is not performed
102
103
       Buzzer Start(2, 800, 1000, 500);
          times, frequency, delay time in the beginning(ms), delay time in the end(ms)
```

function3

```
109 void Buzzer PlayTable(void)
110 - {
       static u32 i = 1; declare variable
111
112
113
       /* Bee 1 times, gBee Scale[i] Hz, active 250 ms, inactive 250 ms
       if (Buzzer_IsFinish() == TRUE && i <= 21) | Oop Setting
114
115
         Buzzer_Start(1, gBee_Scale[i],
116
117
         i++;
118
                                   do the frequency array
119
                    ul6 gBee Scale[] =
                55 -
                56
                       0,
                57
                                                          the frequency array
                58
                                                880, 988,
                59
                    1046, 1175, 1318, 1397, 1568, 1760, 1976
                60
```

Initialization Setting

```
TM_TimeBaseInitTypeDef TimeBaseInit;

TimeBaseInit.Prescaler = BEE_TM_PRE - 1; Setting the prescaler value
TimeBaseInit.CounterReload = uReload; Timer reload value
TimeBaseInit.RepetitionCounter = 0; Repeat counter's value
TimeBaseInit.CounterMode = TM_CNT_MODE_UP; Counter's mode
TimeBaseInit.PSCReloadTime = TM_PSC_RLD_IMMEDIATE;The pre-scaler is reloaded immediately after the trigger
TM_TimeBaseInit(HTCFG_BUZZER_PORT, &TimeBaseInit);

/* Clear Update Event Interrupt flag since the "TM_TimeBaseInit()" writes the UEVIG bit
TM_ClearFlag(HTCFG_BUZZER_PORT, TM_FLAG_UEV); Timer interrupt status
```

Timer Prescaler Resgister

Timer Prescaler Register - PSCR

This register specifies the timer prescaler value to generate the counter clock.

Offset: 0x084

Reset value.	000000_	_000	00															
	31		30		29		28		27		26		1	25		2	4	
									Reser	/ed								
Type/Reset																		
	23		22		21		20		19		18			17_		1	6	_
									Reser	/ed								╝
Type/Reset																		
	15		14		13		12		11		10			9		8	}	
									PSC	V								
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW		0
	7		6		5		4		3		2			1)	_
									PSC	V								
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW		0

Timer Counter Configuration Register

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the MCTM counter configuration.

Offset: 0x000

	31	30	29	28	27	26	25		24	ŀ
				Reserved					DIF	₹
Type/Reset									RW	0
	23	22	21	20	19	18	17		16	6
				Reserved					CMS	EL
Type/Reset							RW	0	RW	0
	15	14	13	12	11	10	9		8	
				Reserved					CKE	N∨
Type/Reset							RW	0	RW	0
	7	6	5	4	3	2	1		0	
				Reserved			UGDIS	3	UEV1	DIS
Type/Reset							RW	0	RW	0

Timer Counter Configuration Register

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the MCTM counter configuration.

Offset: 0x000

	31	30	29	28	27	26	25		24	ŀ
				Reserved					DIF	₹
Type/Reset									RW	0
	23	22	21	20	19	18	17		16	6
				Reserved					CMS	EL
Type/Reset							RW	0	RW	0
	15	14	13	12	11	10	9		8	
				Reserved					CKE	N∨
Type/Reset							RW	0	RW	0
	7	6	5	4	3	2	1		0	
				Reserved			UGDIS	3	UEV1	DIS
Type/Reset							RW	0	RW	0

Timer Repetition Register

Timer Repetition Register – REPR

This register specifies the timer repetition counter value.

Offset: 0x08C

	31		30		29		28		27		26		25		24	
									Reser	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reser	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
									Reser	/ed						
Type/Reset																_
	7		6		5		4		3		2		1		0	
									REP'	V						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Counter mode

Functional Descriptions

Counter Mode

Up-Counting

The counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register. Once the counter reaches the counter-reload value, the Timer Module generates an overflow event and the counter restarts to count once again from 0. This action will continue repeatedly. When the update event is generated by setting the UEVG bit in the EVGR register to 1, the counter value will also be initialized to 0.

Counter mode

Functional Descriptions

Counter Mode

Up-Counting

The counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register. Once the counter reaches the counter-reload value, the Timer Module generates an overflow event and the counter restarts to count once again from 0. This action will continue repeatedly. When the update event is generated by setting the UEVG bit in the EVGR register to 1, the counter value will also be initialized to 0.

Buzzer_Start

```
void Buzzer Start (u8 uBeeTimes, ul6 uFrequency, ul6 uActive ms, ul6 uInActive ms)
168 - {
169
       u32 uReload = (BEE SYS CLK / BEE TM PRE / uFrequency) - 1;
170
       u32 uCompare = ((uReload + 1) * (100 - BEE DUTY)) / 100;
171
172
       gBee Time = uBeeTimes;
                                                                      Parameter Calculation
173
       gBee Active = BEE TIME MS(uActive ms, uFrequency);
       gBee InActive = BEE TIME MS (uInActive ms, uFrequency);
174
       gBee Count = gBee Active + gBee InActive;
175
176
                                                          Set Counter Reload
177
       TM SetCounterReload(HTCFG BUZZER PORT, uReload);
       TM_SetCaptureCompare(HTCFG_BUZZER_PORT, HTCFG_BUZZER_CH, uCompare); Set Capture Compare
178
179
       TM_IntConfig(HTCFG_BUZZER_PORT, TM_INT_UEV, ENABLE); Interrupt Enable
180
       TM_ChannelConfig(HTCFG_BUZZER_PORT, HTCFG_BUZZER_CH, TM_CHCTL_ENABLE); Channel Enable
181
       TM Cmd (HTCFG_BUZZER_PORT, ENABLE); MCTM Enable
182
183
```

Add USART to check value

```
Serial Port Setting
     int main (void)
                                                     void RETARGET Configuration (void)
                                               118
                          Add the function
68
                                               119 - {
                                                   = #ifdef RETARGET IS UART
69
        RETARGET Configuration();
                                                       /* !!! NOTICE !!!
70
       Buzzer Funl();
                                                122
                                                         Notice that the local variable (structure) did not have a
71
                                                123
                                                          Please confirm that there are no missing members in the p
                                                124
       Buzzer Fun2();
                                               125
                                                       USART InitTypeDef USART InitStructure;
73
                                                      #ifdef RETARGET_UxART_BAUDRATE
       Buzzer Init(0);
                                                       USART InitStructure.USART BaudRate = 115200;
                                                128
                                                       #else
                                               129
                                                       USART InitStructure.USART BaudRate = 115200;
76
       while (1)
                                                       #endif
                                               130
                                                       USART InitStructure.USART WordLength = USART WORDLENGTH 8B;
                                               131
                                                       USART_InitStructure.USART_StopBits = USART_STOPBITS_1;
                                               132
          Buzzer PlayTable();
                                                       USART InitStructure.USART Parity = USART PARITY NO;
                                               133
                                                      USART InitStructure.USART Mode = USART MODE NORMAL;
                                               134
```

Edit Buzzer_Init(0)

116

117

119

121

122

123 124 125

126

127 128

```
74
                                   Buzzer Init(0);
                              75
                                    while (1)
                              77
                               78
                                     Buzzer PlayTable();
TM TimeBaseInitTypeDef TimeBaseInit;
TimeBaseInit.Prescaler = BEE TM PRE - 1;
TimeBaseInit.CounterReload = uReload;
TimeBaseInit.RepetitionCounter = 0;
TimeBaseInit.CounterMode = TM CNT MODE UP;
TimeBaseInit.PSCReloadTime = TM PSC RLD IMMEDIATE;
TM TimeBaseInit(HTCFG BUZZER PORT, &TimeBaseInit);
/* Clear Update Event Interrupt flag since the "TM TimeBaseInit()" writes the UEVIG bit
TM ClearFlag (HTCFG BUZZER PORT, TM FLAG UEV);
printf("\r Prescaler = %4d , CounterReload = %8d\n", TimeBaseInit.Prescaler, TimeBaseInit.CounterReload);
Outputs the value in the register to the Tera Term display.
```

int main (void)

Buzzer Funl();

Buzzer Fun2();

RETARGET Configuration();

68 - {

69

70 71 72

Scale Frequency Table

高音	Do	Do#	Re	Re#	Mi	Fa	Fa#	So	So#	La	La#	Si
頻率	1048	1108	1176	1244	1320	1396	1480	1568	1660	1760	1856	1976
中音	Do	Do#	Re	Re#	Mi	Fa	Fa#	So	So#	La	La#	Si
頻率	524	554	588	622	660	698	740	784	830	880	928	988
低音	Do	Do#	Re	Re#	Mi	Fa	Fa#	So	So#	La	La#	Si
頻率	262	277	294	311	330	349	370	392	415	440	464	494

Check the pin

```
114 = #if defined (USE HT32F52352 SK)
115
       #define HTCFG BUZZER GPIOX
                                                         A
116
       #define HTCFG BUZZER GPION
                                                         10
                HTCFG BUZZER IPN
117
       #define
                                                         MCTMO
118
       #define
                HTCFG BUZZER CHN
119
     #endif
```

```
F12
```


Experiment_Steps.md

Execute the example

Objective: Use timer to control buzzer and display in Tera Term.

Hint:

1. Wiring

2. TERA TERM show the value

Play a part of Bee's music

- Objective: Edit the frequency array to play a part of "Little Bee Song".
- Hint:
- 1. Use pin **A10**.
- 2. Look for numbered musical notation of "Little Bee Song".
- 3. Find the corresponding scale frequency.
- 4. Edit gBee_Scale.

Play music faster.

- Objective: Edit delay time.
- Hint:
- 1. Use pin A10.
- 2. Edit Buzzer_PlayTable function

Class Dismissed