Mathématiques pour l'informatique Évaluation intermédiaire

Durée: 1 heure.

5 mai 2010

Exercice 1:

Soit H la fonction d'Heaviside, et soit f une fonction causale continue sur \mathbb{R} .

- 1. Que représente H * f? Interpréter dans le langage "signaux-systèmes".
- 2. À titre d'exemple calculer H * H et H * f lorsque $f(t) = e^t H(t)$.
- 3. L'intégrateur est-il stable au sens BIBO?

Exercice 2:

Soit a > 0 et $f = \mathbf{1}_{[-a,a]}$.

- 1. Calculer f * f, $\mathcal{F}f$, $\mathcal{F}(f * f)$.
- 2. Calculer par deux méthodes

$$I_1 = \int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$$

3. Calculer

$$I_2 = \int_0^{+\infty} \frac{\cos x \sin^2 x}{x^2} dx$$

4. Calculer

$$I_3 = \int_0^{+\infty} \frac{\sin^4 x}{x^4} dx$$

Exercice 3:

Soit a > 0 et soit la gaussienne définie par $f_a(t) = e^{-at^2}$.

- 1. Déterminer une équation différentielle dont $\mathcal{F}f_a$ est solution. En déduire $\mathcal{F}f_a$.
- 2. Calculer $f_a * f_b$.

Exercice 4:

- 1. Soit $f(t) = \frac{1}{\sqrt{t}}H(t)$. Calculer f * f.
- 2. Dans la question précédente, $f \in L^1_{loc}$ et est causale, mais $f \notin \mathcal{C}^0_m$. Pourtant f * f existe. Démontrer qu'effectivement, si f et g sont deux fonctions localement intégrables et causales, alors f * f existe et est causale (on pourra s'inspirer des raisonnements du paragraphe sur la convolution des fonctions causales, et du paragraphe sur la convolution des fonctions intégrables; on pensera au théorème de Fubini).