Customizable and Advanced Software for Tomographic

Reconstruction

What is CASTOR?

- Open source toolkit for 4D emission (PET/SPECT) and transmission (CT) tomographic reconstruction
- Focus on generic, modular and extensible
- High performance computing (parallel CPU computing, GPU)
- Dedicated to both specialists in the reconstruction field and "standard" users

INSERM UMR1101 Latim, Brest, France

- Julien BERT
- Thibaut MERLIN
- Didier BENOIT
- Dimitris VISVIKIS

UIMIV U1023 – SHFJ, Orsay, France

- Simon STUTE
- Claude COMTAT

CNRS UMR5287 INCIA, Bordeaux, France

• Frédéric LAMARE

- List-mode/Sinogram based reconstruction algorithms
- Statistical iterative reconstruction
- Stute et al. 2011 Image properties of various ML-based reconstructions of very noisy HRRT data ,IEEE MIC
- **Stute S and Comtat C 2013** Practical considerations for image-based PSF and blobs reconstruction in PET, *Phys. Med. Biol.* **58** 3849-3870
- Merlin T., Visvikis D., Fernandez P, Lamare F 2015 A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction process, *Medical Physics*, 2015, 42(2),804-849,O,M,GB

INSERM UMR1101 Latim, Brest, France

- Julien BERT
- Thibaut MERLIN
- Didier BENOIT
- Dimitris VISVIKIS

UIMIV U1023 – SHFJ, Orsay, France

- Simon STUTE
- Claude COMTAT

CNRS UMR5287 INCIA, Bordeaux, France

• Frédéric LAMARE

- List-mode/Sinogram based reconstruction algorithms
- Statistical iterative reconstruction
- Advanced projector modeling, TOF-PET
- GPU PET/SPECT and CT reconstruction
- Autret A, Bert J, Strauss O, Visvikis D 2013 Fully 3D PET List-Mode reconstruction including an accurate detector modeling on GPU architecture, Fully3D Image Reconstruction in Radiology and Nuclear Medicine
- Gaens M, Bert J, Pietrzyk U, Jon Shah N and Visvikis D 2013 GPU-accelerated Monte Carlo Based Scatter Correction in Brain PET/MR, IEEE NSS-MIC

INSERM UMR1101 Latim, Brest, France

- Julien BERT
- Thibaut MERLIN
- Didier BENOIT
- Dimitris VISVIKIS

UIMIV U1023 – SHFJ, Orsay, France

- Simon STUTE
- Claude COMTAT

CNRS UMR5287 INCIA, Bordeaux, France

• Frédéric LAMARE

- List-mode/Sinogram based reconstruction algorithms
- Statistical iterative reconstruction
- Advanced projector modeling, TOF-PET
- GPU PET/SPECT and CT reconstruction
- Dynamic imaging
- Lamare et al. 2007 List-mode based image reconstruction for respiratory motion correction in PET using non-rigid body transformations, *Phys. Med. Biol.* **52** 5187-5204
- Merlin et al. 2013 Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology, Annual meeting of the Society of Nuclear Medicine

INSERM UMR1101 Latim, Brest, France

- Julien BERT
- Thibaut MERLIN
- Didier BENOIT
- Dimitris VISVIKIS

UIMIV U1023 – SHFJ, Orsay, France

- Simon STUTE
- Claude COMTAT

CNRS UMR5287 INCIA, Bordeaux, France

• Frédéric LAMARE

- List-mode/Sinogram based reconstruction algorithms
- Statistical iterative reconstruction
- Advanced projector modeling, TOF-PET
- GPU PET/SPECT and CT reconstruction
- Dynamic imaging
- SPECT collimators
- Benoit D, Maîtrejean S, Mathy F, Montemont G, Buvat I, 2013: Impact of the depth of interaction in reconstruction of small-animal SPECT data acquired with a space-variable-focusing collimator, IEEE NSS-MIC

Why building a new platform from scratch?

- Methodologies spread out in distinct code/libraries
- Different programming languages
- Difficult to merge/combine code
- ➤ Time-consuming incorporation of new techniques
 - Require a more flexible approach
- Extend the platform for other users

CASTOR objectives

What are we aiming for ?

Customizable and **Advanced** Software for Tomographic Reconstruction

Customizable:

- Generic C++ core structure
- Modular architecture
- Straightforward plug-in integration
- Running on GPU or CPU
- Multi-platform (Linux, windows, mac)

Advanced methodologies:

- Forefront methods at various levels of tomographic reconstruction
- Multidimensional (2D, 3D, 4D)
 reconstruction
- Multimodality (PET, SPECT, CT)
- Regular updates with introduction of new methodologies
- Toolkit dedicated to both users and experienced developers

CASTOR objectives

What will we propose?

For users

- Access to basic and advanced methodologies
- Support for most PET/SPECT/CT geometry
- Command-line options as a first step (user interface as a second step)
- Full support of GATE datasets (data output, corrections)
- Various utilities (analytical simulation, datafile converter, etc..)

For developers

- User-friendly plug-in integration (Projector, optimizer, image convolver, kinetic model, new system, etc..)
- Multi-level documentation (user-friendly doc and Doxygen/LXR)

Customizable and Advanced Software for Tomographic Reconstruction

Architecture overview

Practical implementation

- Programming performed in standard C++
- Message Passing Interface (MPI) Clustering for the high-level splitting
- Parallelism at the event level is implemented through OpenMP
- No use of any external libraries as much as possible (ITK/VTK, Boost, etc..)
- I/O image file format : interfile
- Command-line options in the first version of the platform

Generic architecture

Generic « branch » management

- "Specific" code is transparent in the main loop of the program
- New child class addition does not require modifications of the generic classes (one class dedicated to the auto-inclusion of new child classes)
- Allows addition of new branches in the future with minimal changes

CASTOR Datafile format

Unique datafile format

- + Allow the definition of mandatory/optional fields for each modality
- + Extendable
- Require user to convert their own datafiles to CASToR format
 - -> Conversion tools provided for some scanners
 - -> Conversion templates
 - -> Complete support for GATE simulated datasets
 - -> Conversion and reconstruction could be merged into one operation

CASTOR Datafile format

CASTOR datafile format

ASCII header, containing information about acquisitions

```
Data filename:
                 ListTOTO Frm20.Cdf
Number of events:
                     53906430
Data mode:
Data type:
Start time: 0
Stop time:
              3600
Scanner name:
                 PET GE DRX
Axial compression:
Azymutal compression:
Max ring diff:
Calibration factor:
Isotope: unknown #(analytic projection)
TOF capability:
DOI capability:
                0,0,0
Attenuation correction flag:
Normalization correction flag:
Scatter correction flag:
Random correction flag
                          0
```

• Raw data file

CASToR scanner format

System geometry description

- User-friendly ASCII file
 - Mandatory/optional information
 - Geometry calculated at run-time
 - User-guide providing support for datafile conversion

```
comments
# positions in millimeters
# scanner axis is z
# Use comma without space as separator in the tables.
modality : PET
scanner name : PET GE DRX
scanner radius: 443 # Distance between the center of the scanner and the
center of a rsector (Gate:rsector)
# rsector are repeated on a ring
number of elements : 15120
                           : 70
number of rsectors
rsectors first angle
                            : 0 # optional (default is 0 deg)
rsectors angular span : 360 # optional (default is 360 deg)
rsectors ZShift : 0 # optional (default is 0mm) could be
                                            an array (example: [-10.0,3.0]).
number of modules transaxial : 1 # optional (default is 1)
number of modules axial \hspace*{0.4in}: 4 \hspace*{0.4in} optional (default is 1)
module step transaxial
                               : 0 # optional (default is 0mm)
module step axial
                                    : 1.75 # optional (default is 0mm)
```

CASToR scanner format

System geometry description

- User-friendly ASCII file
- User-made LUT (Look-Up Table)
 - ASCII header and binary files
 - Pre-computed by the user
 - Dedicated to scanner with "complex" geometry

```
PET GE DRX
scanner name:
modality : PET
scanner radius:
                   443
number of rings in scanner:
                                2.4
number of elements:
                       15120
number of layers:
number of crystals in layer:
                                 15120
layers size depth:
layers size transaxial:
                            4.23
layers size axial:
layers material:
                    LYSO
voxels number transaxial:
                              256
voxels number axial:
field of view transaxial:
                              700
field of view axial:
min angle difference:
                          40 #deg
mean depth of interaction: -1 # optional (default value : center of crystal )
```

CASToR scanner format

System geometry description

- User-friendly ASCII file
- User-made LUT (Look-Up Table)

Easy integration

- Scanner files located in a repository
- Geometry generated/loaded at run-time

Customizable and Advanced Software for Tomographic Reconstruction

Some illustrative results

Current implementation

CASTOR reconstruction:

- Siddon line-projector
- OSEM
- GE DRX scanner model

- NCAT anthropomorphic phantom
- Projection with CASToR (no noise model)
- OSEM (2 iterations, 16 subsets)

- List-mode patient [18F]-FDG dataset
- GE-DRX scanner
- OSEM (2 iterations, 16 subsets)

Current implementation

CASTOR reconstruction:

- Siddon line-projector
- OSEM (2iterations, 16 subsets)
- GE scanner model

Dynamic reconstruction

30s frame

5min frame

10min frame

3D reconstruction

4D reconstruction

- GATE simulation of a NCAT dynamic dataset
- Linear Temporal regularization using Gaussian basis functions

Motion-corrected image reconstruction

No motion correction

- Transformation parameters estimated from optical flow registration algorithm
- Amplitude-gated, 8 bins

Current implementation

Multithreading: speedup factor in relation with the number of cores

- OpenMP
- dual E5-2650 2GHz
- GE DRX, 46M LORs
- 256x256x94 voxels of 2x2x2 mm
- Projection on 16 threads: ≈1 min

Customizable and Advanced Software for Tomographic Reconstruction

General information and future plans

Future plans

Planned features for the first release (Second-half 2016)

Reconstruction

- List-mode & sinogram iterative reconstruction
- Basic and advanced projectors
- Basic and advanced PET optimizers
- SPECT reconstruction supporting basic features
- MPI clustering & multithreading
- Other features

Utilities

- GATE conversion tools
- Analytical simulation tool and other utilities
- Developer documentation

Future plans

Planned features for later releases

- Advanced features for PET/SPECT :
 - Penalty (optimization)
 - Pre-computed system matrix
 - Advanced resolution modeling
 - Dynamic imaging
- GPU implementation (main loop algorithm, projectors)
- GATE: estimation of corrections (scatter, random, ...) according to the input data
- Iterative CT reconstruction
- Analytical reconstruction algorithms
- Analytical simulation tools with advanced features

Information/Contribution

Distribution

- Open-source
- No use of external libraries
- Script to convert manufacturer datafiles to CASToR format distributed as binaries

Website & contact

- http://www.castor-project.org
- thibaut.merlin@univ-brest.fr

Customizable and Advanced Software for Tomographic Reconstruction

http://www.castor-project.org