### Robust investments under risk and ambiguity

Harold Zurcher's robust replacement policy

#### Maximilian Blesch & Philipp Eisenhauer

April 8, 2020



#### **Table of Content**

- Introduction
- Decision making under risk: Revisiting Rust (1987)
- Assessing the ambiguity
- Decision making under risk and ambiguity
- Application
- Conclusion

#### Introduction

#### Introduction

- Policy makers vote for climate change mitigation efforts facing uncertainty about future costs and benefits (Barnett, Brock, & Hansen, 2020).
- Investors trade with assets uncertain about future returns (Epstein & Schneider, 2008).
- Young adults decide on their careers in light of uncertainty about future job outcomes (Keane & Wolpin, 1997).

#### Notion of Robust decision rule



#### Questions addressed in our research

- How sensitive is the performance of the optimal decision rule?
- When does a robust decision rule perform better?
- How to construct a robust decision rule?

Decision making under risk: Revisiting Rust (1987)

### A brief summary



**General State** 

Mileage/Age

New Engine (\$\$\$)

Maintenance (\$-\$\$)





#### The framework

- Single agent Markov decision problem over infinite horizon.
- The agent decides each month t to maintain  $i_t = 0$  or replace  $i_t = 1$  the bus engine.
- Mileage x<sub>t</sub> is discretized in states of length 5000 miles.
- If the engine is replaced,  $x_t$  is set to 0.

### Optimal decision

The optimal decision in each period t can be inferred from the Bellman equation (Bellman (1954)):

$$V_{\theta}(x_{t}) = \max_{i_{t} \in \{0,1\}} \left[ u(x_{t}, i_{t}, \theta_{1}) + \epsilon_{t}(i_{t}) + \beta EV_{\theta}(x_{t}, i_{t}) \right]$$

with

$$u(x_t, i_t, \theta_1) = \begin{cases} -c(x_t, \theta_1) & \text{if} \quad i_t = 0 \\ -RC & \text{if} \quad i_t = 1 \end{cases}$$

and unobserved utility shock  $\epsilon_t(i_t)$ .

### **Estimation strategy**

Rust (1987) assumes Conditional Independence (CI):

$$p(x_{t+1}, \epsilon_{t+1}|x_t, \epsilon_t, i_t, \theta_2, \theta_3) = q(\epsilon_{t+1}|\theta_2) p(x_{t+1}|x_t, i_t, \theta_3)$$

This allows to estimate the model in two steps:

$$\max_{\theta_3} \prod_{t=1}^{T} p(x_t | x_{t-1}, i_{t-1}, \theta_3)$$

Second:

$$\max_{RC,\theta_1} \prod_{t=1}^{l} P(i_t|x_t,\theta)$$

## Differences in estimation quality



## Assessing the ambiguity

## Constructing the ambiguity set



### Calibrating the ambiguity set

Following Ben-Tal et al. (2013), we can calibrate the size of the ambiguity set with the number of observations  $N_X$  for state  $X \in X$ :

$$\omega = \mathbb{P}\{p_x^* \in \mathcal{P}_x\}$$

$$= \mathbb{P}\{p_x^* \in \{p : D(p||\hat{p}_x) \le \rho_x\}\}$$

$$\approx \mathbb{P}\{\chi_{|X|-1}^2 \le 2N_x\rho_x\}$$

$$= F_{|X|-1}(2N_x\rho_x)$$

$$\Rightarrow \rho_x = F_{|X|-1}^{-1}(\omega)/2N_x$$

### Probability simplex



### Decision making under risk and ambiguity

### Theory

Ben-Tal, El Ghaoui, and Nemirowski (2009) develop, building on Wald (1950), the following idea of robust decision making:

- Robust decision making can be modeled as a game agent vs. nature.
- First the agent chooses his action to maximize his present value.
- Then nature chooses the transition probabilities accordingly to minimize the agent's value.
- As the agent and nature have common information, the agent chooses in the first step the alternative with the highest (max) minimal (min) value.

### Rectangularity

The set of all transition probabilities associated with decision rule *d*:

$$\mathcal{F}^d = \{ \mathbf{p} : \forall x \in X, p(x) \in \mathcal{P}_x^{d(x)} \}.$$

We assume that the set of probability distributions on the set of all possible histories  ${\cal H}$  is rectangular:

$$\left\{\boldsymbol{P}:\forall\,h\in\mathcal{H},\,\boldsymbol{P}(h)=\prod_{t=0}^{\infty}p(x_{t}),p(x_{t})\in\mathcal{F}^{d},t=0,1,\dots\right\}=\prod_{t=0}^{\infty}\mathcal{F}^{d}$$

⇒ nature's choices are uncoupled over time and states.

#### Theory

Rectangularity allows to carry over the results of the classic dynamic programming problem. The robust Bellman equation in the model setup of Rust (1987):

$$V_{\theta}(x_t) = \max_{i_t \in \{0,1\}} \left[ u(x_t, i_t, \theta_1) + \epsilon_t(i_t) + \beta \min_{p_x \in \mathcal{P}_x^{i_t}} EV_{\theta}(x_t, i_t) \right]$$

In comparison, the standard Bellman equation from before:

$$V_{\theta}(x_t) = \max_{i_t \in \{0,1\}} \left[ u(x_t, i_t, \theta_1) + \epsilon_t(i_t) + \beta EV_{\theta}(x_t, i_t) \right]$$

## **Application**

### Setup and structure

#### Setup:

- Original transition probabilities, but mimicked state specific estimation.
- Increased cost of maintenance and engine replacement.

#### Structure of analysis:

- Transition probabilities
- Policy features
- Policy performance

### Transition probabilities

## Estimated transition probabilities



#### Worst case distribution





Variation in  $\omega$ , ( $N_x = 55$ )

Variation in  $N_x$ , ( $\omega = 0.95$ )

## **Policy features**

## Shift in maintenance probabilities



## Simulation setup



## Mean mileage at replacement



## Policy performance

## Performance of optimal policy



## Performance on the boundary



### **Validation**



### **Validation**



### Conclusion

# Thank you for your attention

#### References I

- Barnett, M., Brock, W., & Hansen, L. P. (2020, 02). Pricing uncertainty induced by climate change. *The Review of Financial Studies*, 33(3), 1024-1066.
- Bellman, R. E. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503–515.
- Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., & Rennen, G. (2013). Robust solutions of optimization problems affected by uncertain probabilities. *Management Science*, 59(2), 341–357.
- Ben-Tal, A., El Ghaoui, L., & Nemirowski, A. (2009). *Robust optimization*. Princeton, NJ: Princeton University Press.
- Epstein, L. G., & Schneider, M. (2008). Ambiguity, information quality, and asset pricing. *Journal of Finance*, 63(1), 197-228.

#### References II

- Keane, M. P., & Wolpin, K. I. (1997). The career decisions of young men. *Journal of Political Economy*, 105(3), 473–522.
- Rust, J. (1987). Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher. *Econometrica*, 55(5), 999–1033.
- Wald, A. (1950). Statistical decision functions. New York City, NY: John Wiley & Sons.