Exercice 1

Soit ABC un triangle rectangle en A tell que:

$$BC = 5cm$$
 ; $AC = 3cm$; $AB = 4cm$

- 1) Calculer $\cos(\hat{B})$ et $\sin(\hat{B})$ et $\tan(\hat{B})$.
- 2) Calculer $\cos(\hat{C})$ et $\sin(\hat{C})$ et $\tan(\hat{C})$.

Exercice 2

Soit ABC un triangle rectangle en A tell que:

$$BC = 9cm$$
 ; $AC = 7$

- 1) Calculer $\sin(A\hat{B}C)$.
- 2) Montrer que: $AB = 4\sqrt{2}$.
- 3) Calculer $\cos(A\hat{B}C)$.
- 4) Calculer $tan(A\hat{B}C)$.

Exercice 3

Soit ABC un triangle rectangle en A tell que:

$$AB = 6cm \quad ; \quad \cos(\hat{ABC}) = \frac{12}{13}$$

- 1) Calculer $\sin(\hat{ABC})$ et $\tan(\hat{ABC})$.
- 2) Calculer: BC et AC.
- 3) Donner les proportions trigonométriques de l'angle $A\hat{C}B$.
- 4) Donner une valeur approchée a $A\hat{C}B$.

Exercice 4

Soit α est la mesure d'un angle aigu tell que:

$$\sin(\alpha) = \frac{\sqrt{5}}{3}$$

- 1) Calculer $\cos(\alpha)$.
- 2) Déduire que: $\tan(q) = \frac{\sqrt{3}}{2}$

Exercice 5

Soit α est la mesure d'un angle aigu tell que:

$$\sin(\alpha) = \frac{\sqrt{5}}{3}$$

- 1) Calculer $\cos(\alpha)$.
- 2) Déduire que: $\tan(\alpha) = \frac{\sqrt{5}}{2}$.

Exercice 6

Soit β est la mesure d'un angle aigu tell que:

$$\cos(\beta) = \frac{\sqrt{10}}{11}$$

1) Monter que $\cos(\beta) = \frac{\sqrt{21}}{11}$.

2) Déduire: $tan(\beta)$.

Exercice 7

Soit ABC un triangle rectangle en A tell que:

$$AB = \sqrt{3}$$
 ; $\tan(\hat{ABC}) = \sqrt{2}$

- 1) Montrer que: $AC = \sqrt{6}$.
- 2) Calculer la distance BC.
- 3) Calculer $\sin(A\hat{B}C)$ et $\cos(A\hat{B}C)$.

Exercice 8

Soit γ est la mesure d'un angle aigu.

- 1) Calculer $\cos(\gamma)$ et $\tan(\gamma)$ sachant que $\sin(\gamma) = \frac{2\sqrt{2}}{3}$.
- 2) Calculer $\sin(\gamma)$ et $\tan(\gamma)$ sachart que $\cos(\gamma) = \frac{\sqrt{5}}{3}$.
- 3) Calculer $\cos(\gamma)$ et $\sin(\gamma)$ sachant que $\tan(\gamma) = \sqrt{24}$.

Exercice 9

Calculer les expressions suivantes:

$$A = \cos 20^{\circ} + 2\sin^{2} 50^{\circ} - \sin 70^{\circ} + 2\sin^{2} 40^{\circ}$$

$$B = \cos^{2} 14^{\circ} + \cos^{2} 28^{\circ} + \cos^{2} 76^{\circ} + \cos^{2} 62^{\circ}$$

$$C = 5\sin^{2} 34^{\circ} + 3\cos^{2} 11^{\circ} + 5\sin^{2} 56^{\circ} + 3\cos^{2} 79^{\circ}$$

$$D = \sin^{2} 40^{\circ} - 4\cos^{2} 30^{\circ} + \sin^{2} 50^{\circ} + \tan^{2} 45^{\circ}$$

$$E = \tan 70^{\circ} + \frac{2}{\tan^{2} 22^{\circ}} - \frac{1}{\tan^{2} 68^{\circ} + 1}$$

$$G = 2\cos^{2} 30^{\circ} - \tan 45^{\circ} + 2\cos^{2} 60^{\circ} + 16\sin^{2} 60^{\circ}$$

Exercice 10

Calculer les expressions suivantes:

$$X_1 = \cos^2 35^\circ + \sin^2 33^\circ + \sin^2 35^\circ + \cos^2 33^\circ$$

 $X_2 = \cos^2 15^\circ + \cos^2 75^\circ - 2 \tan 35^\circ \times \tan 55^\circ$
 $X_3 = \sin 25^\circ - \sin 65^\circ + \cos 25^\circ - \cos 65^\circ$

Exercice 11

Soit α est la mesure d'un angle. Simplifier les expressions suivantes:

$$A = (\cos \alpha + \sin \alpha)^2 + (\cos \alpha - \sin \alpha)^2$$

$$B = 2\cos^2 \alpha + 3\sin^2 \alpha - 2$$

$$C = \frac{1}{1 + \cos \alpha} + \frac{1}{1 - \cos \alpha} - \frac{2}{\sin^2 \alpha}$$