Analysis of ChIP-seq data BIOC8145

Chongzhi Zang

zang@virginia.edu zanglab.org

BIOC8145 – Spring 2020 April 6, 2020

Outline

- Lecture 1
 - ChIP-seq technique introduction
 - ChIP-seq data analysis strategy
 - Read mapping (bowtie2)
 - Data formats
- Lecture 2
 - Peak calling (macs2)
 - Data visualization (IGV)
 - Quality control
- Lecture 3
 - Downstream analysis and integration
 - Online resources

Lecture 2: ChIP-seq Analysis

- Data processing (continued)
- Peak calling using macs2
- Quality control
- Data visualization

ChIP-seq: Data processing

alignment of each sequence read: bowtie2 or BWA

cannot map to the reference genome
can map to multiple loci in the genome
can map to a unique location in the genome

redundancy control:

Redundancy Control

mapped reads:
non-redundant reads:
locations w/ reads:
locations w/ 1 read:
7

Non-redundant rate:

8/12 = 66.7%

PBC (PCR Bottleneck Coefficient):

7/8 = 87.5%

DNA fragment size estimation

peak model

cross-correlation

$$C(r) = \frac{1}{X} \int_{x} \left(T_{+}(x) - \overline{T_{+}} \right) \left(T_{-}(x+r) - \overline{T_{-}} \right)$$

Pile up: visualization

bedGraph:

chr4	10344200	10344250	5
chr4	10344250	10344300	10
chr4	10344300	10344350	25
chr4	10344350	10344400	15
chr4	10344400	10344450	8

wiggle:

```
track type=wiggle_0
variableStep chrom=chr4 span=50
10344200 5
10344250 10
10344300 25
10344350 15
10344400 8
```

bigWig: indexed binary format

ChIP-seq: Study design

- Background Control: Input or IgG
 - Input chromatin: sonicated/digested chromatin without immunoprecipitation
 - IgG: "unspecific" immunoprecipitation

- Study Control:
 - Control exp sample: ChIP + input
 - Treated exp sample: ChIP + input

ChIP-seq: Peak calling

- Goal: Identify regions in the genome enriched for sequence reads:
 - Compared to genomic background

FoxA1 ChIP-Seq tag number / 10 kb

MACS: model

- Model-based Analysis for ChIP-Seq
- Read distribution along the genome ~ Poisson distribution (λ_{BG} = total tag / genome size)
- ChIP-seq show local biases in the genome
 - Chromatin and sequencing bias
 - 200-300bp control windows have to few tags
 - But can look further

Dynamic
$$\lambda_{local}$$
 = max(λ_{BG} , [λ_{ctrl} , λ_{1k} ,] λ_{5k} , λ_{10k})

- B-H adjustment to correct for FDR
 - p-value → q-value

Zhang et al, Genome Bio, 2008

MACS: Critical input parameters

macs2 callpeak [-h] -t TFILE [TFILE ...] [-c [CFILE]] [-q GSIZE] [-q QVALUE | -p PVALUE] [-outdir OUTDIR] [-n NAME] [-B] -q GSIZE Effective genome size. It can be 1.0e+9 or 1000000000, or shortcuts: 'hs' for human (2.7e9), 'mm' for mouse (1.87e9), 'ce' for C. elegans (9e7) and 'dm' for fruitfly (1.2e8), Default:hs -q QVALUE Minimum FDR (q-value) cutoff for peak detection. DEFAULT: 0.05. -q, and -p are mutually exclusive. --outdir OUTDIR If specified all output files will be written to that directory. Default: the current working directory -n NAME Experiment name, which will be used to generate output file names. DEFAULT: "NA" -B, --bdqWhether or not to save extended fragment pileup, and local lambda tracks (two files) at every bp into a bedGraph file. DEFAULT: False

MACS: Output interpretation

```
# This file is generated by MACS version 2.1.2
# Command line: callpeak -t ../bowtie2/AR.sam -g hs -n AR --bdg
# ARGUMENTS LIST:
\# name = AR
# format = AUTO
# ChIP-seq file = ['../bowtie2/AR.sam']
# control file = None
# effective genome size = 2.70e+09
# band width = 300
# model fold = [5, 50]
# qvalue cutoff = 5.00e-02
# The maximum gap between significant sites is assigned as the read length/tag size.
# The minimum length of peaks is assigned as the predicted fragment length "d".
# Larger dataset will be scaled towards smaller dataset.
# Range for calculating regional lambda is: 10000 bps
# Broad region calling is off
# Paired-End mode is off
```

MACS: Output interpretation

```
# tag size is determined as 51 bps
# total tags in treatment: 19442622
# tags after filtering in treatment: 17218335
# maximum duplicate tags at the same position in treatment = 1
# Redundant rate in treatment: 0.11
\# d = 141
# alternative fragment length(s) may be 141 bps
chr
       start
              end
                      length abs summit
                                            pileup -log10(pvalue) fold enrichment
log10(qvalue)
              name
chr1
       2603
              2989
                      387
                             2870
                                     18.00
                                            6.685963.528253.66748AR peak 1
       138179 138371 193
chr1
                             138281 18.00
                                            14.90779
                                                           7.9302111.47829
                                                                                 AR peak 2
chr1
       36515
              36714
                      200
                             36609
                                    16.00
                                            12.59143
                                                           7.053949.25447AR peak 3
chr1
       201091 201231 141
                             201114 10.00
                                            7.582935.238594.50002AR peak 4
chr1
       69373
              69558
                      186
                             69452
                                     18.00
                                            9.619044.937376.41821AR peak 5
```

MACS: Output interpretation

Excel

chr	start	end	length	abs_sum	nmit	pileup -log10((pvalue) fold_enri	chment -
log10(d	qvalue)	name						
chr1	2603	2989	387	2870	18.00	6.685963.52825	3.66748AR_peak_1	
chr1	138179	138371	193	138281	18.00	14.90779	7.9302111.47829	AR_peak_2
chr1	36515	36714	200	36609	16.00	12.59143	7.053949.25447AR	_peak_3
chr1	201091	201231	141	201114	10.00	7.582935.23859	94.50002AR_peak_4	
chr1	69373	69558	186	69452	18.00	9.619044.93737	76.41821AR_peak_5	

narrowPeak

		score		fold p	q	sm
chr1	591170 591325 AR_peak_290	82	•	6.6390011.50806	8.21785	25
chr1	629218 629993 AR_peak_291	295	•	3.4237433.50185	29.54851	636
chr1	630286 630453 AR_peak_292	106	•	2.3945814.04047	10.64496	81
chr1	630765 631382 AR_peak_293	239	•	3.1428327.79379	23.97848	480
chr1	631877 632366 AR_peak_294	224	•	3.0664526.24850	22.47273	380

Data Visualization

- bedGraph to bigWig
- macs2 output data
- IGV

Quality Control

- FRiP (Fraction of Reads in Peaks) score
 - 1-10% for TF is normal
- Number of peaks
 - Number of peaks with high fold-enrichment, e.g, 5, 10, ...

-2000

Sequence conservation

- Fraction of peaks within regulatory regions
 - 80%

Data flow and QC summary

Questions?

zang@virginia.edu zanglab.org