CLAIM AMENDMENTS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Currently amended) A compound having formula (I):

$$R_3$$
 A
 R_4
 R_2
 (I) ;

wherein:

ring A is an aryl or heteroaryl ring wherein said aryl or heteroaryl ring is either unsubstituted or substituted with one or more substituents selected from halogen, $-R^{\circ}$, $-OR^{\circ}$, $-SR^{\circ}$, 1,2- methylene-dioxy, 1,2- ethylenedioxy; unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$, or $-CH_2(Ph)$ substituted $-CH_2(Ph)$ or (Ph), -O(Ph), $-CH_2(Ph)$, or $-CH_2(Ph)$ substituted with one or more $-R^{\circ}$ groups; $-NO_2$, -CN, $-N(R^{\circ})_2$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}C(O)N(R^{\circ})_2$, $-NR^{\circ}CO_2R^{\circ}$, $-R^{\circ}CO_2R^{\circ}$, -R

q is 0-2; and wherein:

each R° is independently selected from hydrogen, a C_{1-6} aliphatic, wherein said C_{1-6} aliphatic group is either unsubstituted or substituted with one or more substituents

selected from =0, =S, =NNHR*, =NN(R*)₂, =NNHC(0)R*, =NNHCO₂(alkyl), =NNHSO₂(alkyl), =NR*NH₂, NH(C₁₋₄ aliphatic), N(C₁₋₄ aliphatic)₂, halogen, C₁₋₄ aliphatic, OH, O(C₁₋₄ aliphatic), NO₂, CN, CO₂H, CO₂(C₁₋₄ aliphatic), O(halo C₁₋₄ aliphatic), or halo C₁₋₄ aliphatic; an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or $-CH_2(Ph)$, or wherein two occurrences of R°, on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein:

each R^* is independently selected from hydrogen or a C_{1-6} aliphatic group wherein said aliphatic group of R^* is either unsubstituted or substituted with one or more substituents selected from NH_2 , $NH(C_{1-4}$ aliphatic), $N(C_{1-4}$ aliphatic), halogen, C_{1-4} aliphatic, OH, $O(C_{1-4}$ aliphatic), NO_2 , CN, CO_2H , $CO_2(C_{1-4}$ aliphatic), $O(halo\ C_{1-4}$ aliphatic), or halo $(C_{1-4}$ aliphatic);

the nitrogen of any non-aromatic heterocyclic ring is either unsubstituted or substituted with one or more groups selected from $-R^+$, $-N(R^+)_2$, $-C(O)R^+$, $-OR^+$, $-CO_2R^+$, $-C(O)C(O)R^+$, $-C(O)CH_2C(O)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$, or $-NR^+SO_2R^+$; wherein:

 R^+ is hydrogen, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, an unsubstituted C_{1-6} aliphatic, unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$; or C_{1-6} aliphatic, phenyl(Ph), -O(Ph), $-CH_2(Ph)$, or $-CH_2(Ph)$ substituted with one or more groups selected from NH_2 , $NH(C_{1-4}$ aliphatic), $N(C_{1-4}$ aliphatic), NO_2 , CN, CO_2H , $CO_2(C_{1-4}$ aliphatic), $O(halo\ C_{1-4}$ aliphatic), or halo $(C_{1-4}$ aliphatic) or wherein two occurrences of R^+ , on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 R_a is -COOH; n is [[0-4]] 1;

 R_1 is [[H, or]] a hydroxyaliphatic, aminoaliphatic, aliphatic-COOH, aliphatic-CONH₂, or arylaliphatic wherein said hydroxyaliphatic, aminoaliphatic, aliphatic-COOH, aliphatic-CONH₂, or arylaliphatic is either unsubstituted or substituted with one or more substituents selected from halogen, $-R^{\circ}$, $-OR^{\circ}$, $-SR^{\circ}$, 1,2-methylene-dioxy, 1,2-ethylenedioxy; unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$ or (Ph), $-CH_2(Ph)$, or $-CH_2(Ph)$ substituted with one or more $-R^{\circ}$ groups; $-NO_2$, -CN, $-N(R^{\circ})_2$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}C(O)R(R^{\circ})_2$, $-RR^{\circ}C(O)R^{\circ}$, $-RR^{\circ}C(O)R(R^{\circ})_2$, $-RR^{\circ}C(O)R(R$

q is 0-2; and wherein:

each R° is independently selected from hydrogen, a C_{1-6} aliphatic, wherein said C_{1-6} aliphatic group is either unsubstituted or substituted with one or more substituents selected from =0, =S, =NNHR*, =NN(R^{*})₂, =NNHC(0) R^{*} , =NNHCO₂(alkyl), =NNHSO₂(alkyl), =NR*NH₂, NH(C_{1-4} aliphatic), N(C_{1-4} aliphatic)₂, halogen, C_{1-4} aliphatic, OH, O(C_{1-4} aliphatic), NO₂, CN, CO₂H, CO₂(C_{1-4} aliphatic), O(halo C_{1-4} aliphatic), or halo C_{1-4} aliphatic; an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or -CH₂(Ph), or wherein two occurrences of R° , on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein:

each R^{*} is independently selected from hydrogen or a C_{1-6} aliphatic group wherein said aliphatic group of R^{*} is either

unsubstituted or substituted with one or more substituents selected from NH_2 , $NH(C_{1-4} \ aliphatic)$, $N(C_{1-4} \ aliphatic)_2$, halogen, $C_{1-4} \ aliphatic$, OH, $O(C_{1-4} \ aliphatic)$, NO_2 , CN, CO_2H , $CO_2(C_{1-4} \ aliphatic)$, $O(halo \ C_{1-4} \ aliphatic)$, or halo $(C_{1-4} \ aliphatic)$;

the nitrogen of any non-aromatic heterocyclic ring is either unsubstituted or substituted with one or more groups selected from $-R^+$, $-N(R^+)_2$, $-C(O)R^+$, $-OR^+$, $-CO_2R^+$, $-C(O)C(O)R^+$, $-C(O)CH_2C(O)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$, or $-NR^+SO_2R^+$; wherein:

 R^+ is hydrogen, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, an unsubstituted C_{1-6} aliphatic, unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$; or C_{1-6} aliphatic, phenyl (Ph), -O(Ph), $-CH_2(Ph)$, or $-CH_2(Ph)$ substituted with one or more groups selected from NH_2 , $NH(C_{1-4}$ aliphatic), $N(C_{1-4}$ aliphatic), halogen, C_{1-4} aliphatic, OH, $O(C_{1-4}$ aliphatic), OH, $O(C_{1-4}$ aliphatic), or halo OH0 or wherein two occurrences of OH1, on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 R_2 is an unsubstituted aliphatic, or a cycloaliphaticaliphatic or heteroarylaliphatic, wherein said cycloaliphaticaliphatic or heteroarylaliphatic is either unsubstituted or substituted with one or more substituents selected from halogen, $-R^{\circ}$, $-OR^{\circ}$, $-SR^{\circ}$, 1,2-methylene-dioxy, 1,2-ethylenedioxy; unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$ or (Ph), -O(Ph), $-CH_2(Ph)$, or $-CH_2(Ph)$ substituted with one or more $-R^{\circ}$ groups; $-NO_2$, -CN, $-N(R^{\circ})_2$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}C(O)N(R^{\circ})_2$, $-NR^{\circ}CO_2R^{\circ}$, $-NR^{\circ}NR^{\circ}C(O)R^{\circ}$, $-CO_2R^{\circ}$, $-CO_2R^$

 $-NR^{\circ}SO_{2}N(R^{\circ})_{2}$, $-NR^{\circ}SO_{2}R^{\circ}$, $-C(=S)N(R^{\circ})_{2}$, $-C(=NH)-N(R^{\circ})_{2}$, or $-(CH_{2})_{G}NHC(O)R^{\circ}$; wherein:

q is 0-2; and wherein:

each R° is independently selected from hydrogen, a C_{1-6} aliphatic, wherein said C_{1-6} aliphatic group is either unsubstituted or substituted with one or more substituents selected from =0, =S, =NNHR*, =NN(R^{*})₂, =NNHC(0) R^{*} , =NNHCO₂(alkyl), =NNHSO₂(alkyl), =NR*NH₂, NH(C_{1-4} aliphatic), N(C_{1-4} aliphatic)₂, halogen, C_{1-4} aliphatic, OH, O(C_{1-4} aliphatic), NO₂, CN, CO₂H, CO₂(C_{1-4} aliphatic), O(halo C_{1-4} aliphatic), or halo C_{1-4} aliphatic; an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or -CH₂(Ph), or wherein two occurrences of R° , on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein:

each R^* is independently selected from hydrogen or a C_{1-6} aliphatic group wherein said aliphatic group of R^* is either unsubstituted or substituted with one or more substituents selected from NH_2 , $NH(C_{1-4}$ aliphatic), $N(C_{1-4}$ aliphatic), halogen, C_{1-4} aliphatic, OH, $O(C_{1-4}$ aliphatic), NO_2 , CN, CO_2H , $CO_2(C_{1-4}$ aliphatic), $O(halo\ C_{1-4}$ aliphatic), or halo $(C_{1-4}$ aliphatic);

the nitrogen of any non-aromatic heterocyclic ring is either unsubstituted or substituted with one or more groups selected from $-R^+$, $-N(R^+)_2$, $-C(O)R^+$, $-OR^+$, $-CO_2R^+$, $-C(O)C(O)R^+$, $-C(O)CH_2C(O)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$, or $-NR^+SO_2R^+$; wherein:

 R^+ is hydrogen, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, an unsubstituted C_{1-6} aliphatic, unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted -CH₂(Ph), unsubstituted -CH₂CH₂(Ph); or C_{1-6} aliphatic, phenyl(Ph), -O(Ph), -CH₂(Ph), or -CH₂CH₂(Ph) substituted with one or more groups selected from NH₂, NH(C_{1-4} aliphatic), N(C_{1-4} aliphatic)₂, halogen,

 C_{1-4} aliphatic, OH, O(C_{1-4} aliphatic), NO₂, CN, CO₂H, CO₂(C_{1-4} aliphatic), O(halo C_{1-4} aliphatic), or halo(C_{1-4} aliphatic) or wherein two occurrences of R^+ , on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 ${\rm R}^3$ and ${\rm R}^4$ are independently selected from ${\rm R}^{11}$, ${\rm R}^{12}$, ${\rm R}^{14}$ or ${\rm R}^{15}$;

wherein:

each R^{11} is independently selected from 1,2-methylenedioxy, 1,2-ethylenedioxy, R^6 or $(CH_2)_m$ -Y;

wherein m is 0, 1 or 2; and

Y is selected from halogen, CN, NO₂, CF₃, OCF₃, OH, SR⁶, S(O)R⁶, SO₂R⁶, NH₂, NHR⁶, N(R⁶)₂, NR⁶R⁸, COOH, COOR⁶ or OR⁶;

each R^{12} is independently selected from (C_1-C_6) -straight or branched alkyl, or (C_2-C_6) -straight or branched alkenyl or alkynyl; and each R^{12} optionally comprises up to 2 substituents, wherein:

the first of said substituents, if present, is selected from $\mbox{R}^{11}, \mbox{ } \mbox{R}^{14}$ and $\mbox{R}^{15},$ and

the second of said substituents, if present, is $\ensuremath{\mathbb{R}}^{11};$

each R^{14} is independently selected from OR^{15} , $OC(O)R^6$, $OC(O)R^{15}$, $OC(O)OR^6$, $OC(O)OR^{15}$

each R^{15} is a cycloaliphatic, aryl, heterocyclyl, or heteroaromatic; and each R^{15} optionally comprises up to 3 substituents, each of which, if present, is R^{11} ;

each R^6 is independently selected from H, (C_1-C_6) -straight or branched alkyl, or (C_2-C_6) straight or branched alkenyl; and each R^6 optionally comprises a substituent that is R^7 :

 R^7 is a cycloaliphatic, aryl, heterocyclyl, or heteroaromatic; and each R^7 optionally comprises up to 2 substituents independently chosen from H, (C_1-C_6) -straight or branched alkyl, (C_2-C_6) straight or branched alkenyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or $(CH_2)_p-Z$;

wherein p is 0, 1 or 2; and

Z is selected from halogen, CN, NO₂, CF₃, OCF₃, OH, $S(C_1-C_6)-alkyl,\ SO(C_1-C_6)-alkyl,\ SO_2(C_1-C_6)-alkyl,\ NH_2,\ NH(C_1-C_6)-alkyl,\ N((C_1-C_6)-alkyl)_2,\ N((C_1-C_6)-alkyl)_R^8,\ COOH,\ C(O)O(C_1-C_6)-alkyl)_3,\ and$

 R^8 is $-C(0)CH_3$, -C(0)Ph or $-SO_2Ph$; provided that:

 R^3 and R^4 are not simultaneously hydrogen; when R^3 is H, then R^4 is not chloro; and when R^4 is H, then R^3 is not -SCH₃ or -NH-C(O)CH₃.

2. (Currently amended) The compound according to claim 1, wherein ring A is an optionally substituted [[5 or]] 6 membered

aryl or heteroaryl ring, wherein said heteroaryl ring contains up to 2 ring heteroatoms independently selected from 0, S, or NH.

- 3. (Original) The compound according to claim 2, wherein ring A is phenyl.
- 4. (Currently amended) The compound according to claim 1, wherein R_1 is hydrogen, $-(CH_2)_q-X$, wherein q is 1-4, and X is OH, NH₂, COOH or CONH₂, (C1-C6)-alkyl, or benzyl.
- 5. (Currently amended) The compound according to claim 4, wherein R_1 is hydrogen, hydroxymethyl, methyl, -CH₂COOH, -CH₂CONH₂, aminobutyl, or isopentyl.
- 6. (Previously presented) The compound according to claim 1, wherein R_2 is selected from butyl, isobutyl, cyclopentyl, cyclohexylmethyl, pyridylmethyl, furanylmethyl, or thienylmethyl.
- 7. (Previously presented) The compound according to claim 6, wherein R_2 is selected from 2-furanylmethyl.
 - 8. (Canceled)
- 9. (Previously presented) A pharmaceutical composition comprising a compound according to any one of claims 1-7 and 17-18 and a pharmaceutically acceptable adjuvant or carrier.

10-16. (Canceled)

17. (Previously presented) The compound according to claim 1 wherein R_3 and R_4 are independently selected from hydrogen, halo, acetamido, allyloxy, thiophenyl, sulfoxyalkyl, or sulfoxyphenyl.

18. (Currently amended) A compound according to claim 1 selected from: