Deep Learning Metric Learning

Person Identification

Feature Extraction

Classification vs Clustering

Classification vs Clustering

Class is important

Datasets

Many classes, few objects pre class

- Omniglot
- Person ReID
- LFW

Datasets. ReID

Metric. Query Gallery

Metrics. mAP

$$Recall_k = \frac{\text{\# predicted labels that are relevant}}{\text{\# all labels}}$$

$$Precision_k = \frac{\text{\# predicted labels that are relevant}}{\text{\# all predicted labels}}$$

$$AP_K = \sum_{k=1}^{K} (Recall_k - Recall_{k-1}) Precision_k$$

1	2	3	4
3	4	1	2

Metrics. Cumulative Matching Characteristics

$$Acc_k = \begin{cases} 1 & \text{if top-}k \text{ ranked gallery samples contain the query identity} \\ 0 & \text{otherwise} \end{cases}$$

$$CMC = \frac{1}{C} \sum_{C} Acc_k$$

1	2	3	4
3	4	1	2

Metric Learning

- Contrastive Loss
- Triplet Loss
- Cross Entropy
- Siamese Network

$$y_{\text{pred}} = \text{dist}(x_i, x_j)$$

$$y_{\text{target}} = \begin{cases} 1, & \text{if } c_i == c_j, \\ 0, & \text{otherwise} \end{cases}$$

$$y_{\text{pred}} = \text{dist}(x_i, x_j)$$

$$y_{\text{target}} = \begin{cases} 1, & \text{if } c_i == c_j, \\ 0, & \text{otherwise} \end{cases}$$

$$L = y_{\text{target}} y_{\text{pred}} - (1 - y_{\text{target}}) y_{\text{pred}}$$

$$y_{\text{pred}} = \text{dist}(x_i, x_j)$$

$$y_{\text{target}} = \begin{cases} 1, & \text{if } c_i == c_j, \\ 0, & \text{otherwise} \end{cases}$$

$$L = y_{\text{target}} y_{\text{pred}} + (1 - y_{\text{target}}) \max(0, m - y_{\text{pred}})$$

Triplet Loss

Triplet Loss

$$L = \operatorname{dist}(x_a, x_p) - \operatorname{dist}(x_a, x_n)$$

Triplet Loss

$$L = dist(x_a, x_p) + \max(0, m - dist(x_a, x_n))$$

Triplet Loss + Classification

$$L = L_{\text{triplet}} + L_{\text{CE}}$$

Sampling

- All Triplet
- Hard Triplet
- Hard Cluster Triplet
- Hierarchical Triplet

All Sampling

All Sampling

$$\mathcal{L}_{\text{BA}}(\theta; X) = \sum_{i=1}^{P} \sum_{a=1}^{K} \sum_{\substack{p=1\\p \neq a}}^{K} \sum_{\substack{j=1\\j \neq i}}^{P} \sum_{n=1}^{K} \left[m + d_{j,a,n}^{i,a,p} \right]_{+}, \quad (6)$$

$$d_{j,a,n}^{i,a,p} = D\left(f_{\theta}(x_{a}^{i}), f_{\theta}(x_{p}^{i})\right) - D\left(f_{\theta}(x_{a}^{i}), f_{\theta}(x_{n}^{j})\right).$$

Hard Sampling

Hard Sampling

$$\mathcal{L}_{\mathrm{BH}}(\theta;X) = \sum_{i=1}^{P} \sum_{a=1}^{K} \left[m + \max_{p=1...K} D\left(f_{\theta}(x_{a}^{i}), f_{\theta}(x_{p}^{i})\right) \right.$$

$$- \min_{\substack{j=1...P\\ n=1...K\\ j \neq i}} D\left(f_{\theta}(x_{a}^{i}), f_{\theta}(x_{p}^{i})\right) \right]_{+},$$
hardest negative

Hard Cluster Sampling

Hard Cluster Sampling

$$\begin{aligned} d_i^{inter} &= \min_{\forall i_d \in P, i_d \neq i} ||f_i^m - f_{i_d}^m||_2^2 \\ d_i^{intra} &= \max_K ||f(x) - f_i^m||_2^2 \\ Lb_c &= \sum_i^P \max((d_i^{intra} - d_i^{inter} + \alpha), 0) \end{aligned}$$

Hierarchical Sampling

Hierarchical Sampling

Hierarchical Sampling

$$egin{aligned} \mathcal{L}_{\mathcal{M}} &= rac{1}{2Z_{\mathcal{M}}} \sum_{\mathcal{T}^z \in \mathcal{T}^{\mathcal{M}}} \left[\left\| oldsymbol{x}_a^z - oldsymbol{x}_p^z
ight\| - \left\| oldsymbol{x}_a^z - oldsymbol{x}_n^z
ight\| + lpha_z
ight]_+. \ & lpha_z = eta + d_{\mathcal{H}(y_a, y_n)} - s_{y_a} \end{aligned}$$

$$f_1 = W_1 x$$

$$f_2 = W_2 x$$

$$dist(f_1, f_2) = cos(f_1, f_2)$$

$$f_1 = W_1 x = \cos(\theta_1) ||W_1|| ||x||$$

$$f_2 = W_2 x = \cos(\theta_2) ||W_2|| ||x||$$

$$\operatorname{dist}(f_1, f_2) = \cos(f_1, f_2)$$

$$f_1 = W_1 x = \cos(\theta_1) ||W_1|| ||x||$$

$$f_2 = W_2 x = \cos(\theta_2) ||W_2|| ||x||$$

$$\operatorname{dist}(f_1, f_2) = ||x|| (\cos(\theta_1) - \cos(\theta_2))$$

$$f_1 = W_1 x = \cos(\theta_1) ||W_1|| ||x||$$

$$f_2 = W_2 x = \cos(\theta_2) ||W_2|| ||x||$$

$$f_1 = W_1 x = \cos(\theta_1) ||W_1|| ||x||$$

$$f_2 = W_2 x = \cos(\theta_2) ||W_2|| ||x||$$

$$f_1 = W_1 x = \cos(\theta_1) ||W_1|| ||x||$$

$$f_2 = W_2 x = \cos(\theta_2) ||W_2|| ||x||$$

$$\operatorname{dist}(f_1, f_2) = ||x|| (m\cos(\theta_1) - \cos(\theta_2))$$

$$\operatorname{dist}(f_2, f_1) = ||x|| (\cos(\theta_1) - m\cos(\theta_2))$$

Method	Models	Data	LFW	YTF
Softmax Loss	1	WebFace	97.88	93.1
Softmax+Contrastive [26]	1	WebFace	98.78	93.5
Triplet Loss [22]	1	WebFace	98.70	93.4
L-Softmax Loss [16]	1	WebFace	99.10	94.0
Softmax+Center Loss [34]	1	WebFace	99.05	94.4
SphereFace	1	WebFace	99.42	95.0

CosFace

CosFace

$$L_{lmc} = \frac{1}{N} \sum_{i} -\log \frac{e^{s(\cos(\theta_{y_{i},i}) - m)}}{e^{s(\cos(\theta_{y_{i},i}) - m)} + \sum_{j \neq y_{i}} e^{s\cos(\theta_{j,i})}},$$

CosFace

Method	LFW	YTF
Softmax Loss [23]	97.88	93.1
Softmax+Contrastive [30]	98.78	93.5
Triplet Loss [29]	98.70	93.4
L-Softmax Loss [24]	99.10	94.0
Softmax+Center Loss [42]	99.05	94.4
A-Softmax [23]	99.42	95.0
A-Softmax-NormFea	99.32	95.4
LMCL	99.33	96.1

ArcFace

ArcFace

$$L_4 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(m_1 \theta_{y_i} + m_2) - m_3)}}{e^{s(\cos(m_1 \theta_{y_i} + m_2) - m_3)} + \sum_{j=1, j \neq y_i}^{n} e^{s \cos \theta_j}}.$$

ArcFace

Loss Functions	LFW	CFP-FP
ArcFace (0.4)	99.53	95.41
ArcFace (0.45)	99.46	95.47
ArcFace (0.5)	99.53	95.56
ArcFace (0.55)	99.41	95.32
SphereFace [18]	99.42	-
SphereFace (1.35)	99.11	94.38
CosFace [37]	99.33	-
CosFace (0.35)	99.51	95.44

Siamese Network

