

Final decomposition model

ESTP Training

Regression model

Additive case:

$$y_c = \alpha \cdot cal + \beta \cdot out + \gamma \cdot reg + \mu$$

Multiplicative case:

$$ln(y_c) - ln(lp) = \alpha \cdot cal + \beta \cdot out + \gamma \cdot reg + \mu$$

- $cal = [tde \ ee \ omhe]$
- $out = [out_t \quad out_s \quad out_i]$
- $reg = [reg_t \ reg_s \ reg_i \ reg_{sa} \ reg_y \ reg_u]$
- μ = "linearized series"

Handling of the regression variables

Code	Description	Y_lin	Т	S	1	SA
tde	Trading days (default, holidays, user-defined)	X		X		
ee	Easter	X		Х		
omhe	Other moving holidays (TODO: Ramadan)	X		Х		
AO	Additive outlier	Х			Х	X
TC	Transitory change	X			Х	X
LS	Level shift	X	Х			X
SO, SLS	Seasonal outlier / seasonal level shift	X		Х		
Reg_i	Regression variables allocated to irregular, IV (p)	X			Х	X
Reg_t	Regression variables allocated to trend, ramps, IV (p)	Х	х			х
Reg_s	Regression variables allocated to seasonal, IV (p)	X				
Reg_sa	Regression variables allocated to seas. adjusted	X				X
Reg_y	Regression variables removed before decomposition					
Reg_u	Regression variables unallocated to a component	X	р	р	р	р

p stands for partially

Decomposition

Additive case:

$$\gamma_u \cdot reg_u + \mu = y_{cmp} = t_{cmp} + s_{cmp} + i_{cmp}$$

• Multiplicative case:

$$\gamma_{u} \cdot reg_{u} + \mu = y_{lin} = t_{lin} + s_{lin} + i_{lin}$$

$$exp(\gamma_{u} \cdot reg_{u} + \mu) = y_{cmp}$$

$$= t_{cmp} \cdot s_{cmp} \cdot i_{cmp}$$

Final decomposition

Additive case:

```
 ✓ t = out_t + reg_t + t_{cmp} 
 ✓ s = cal + out_s + reg_s + s_{cmp} 
 ✓ i = out_i + reg_i + i_{cmp} 
 ✓ sa = t + i + reg_{sa} = y_c - reg_y - s 
 ✓ y_c = s + t + i + reg_v
```

Multiplicative case:

```
 ✓ t = exp(out_t \cdot reg_t) \cdot t_{cmp} 
 ✓ s = exp(cal \cdot lp \cdot out_s \cdot reg_s) \cdot s_{cmp} = exp(\overline{cal} \cdot out_s \cdot reg_s) \cdot s_{cmp} 
 ✓ i = exp(out_i \cdot reg_i) \cdot i_{cmp} 
 ✓ sa = t \cdot i \cdot exp(reg_{sa}) = (y_c/exp(reg_y))/s 
 ✓ y_c/exp(reg_v) = s \cdot t \cdot i
```

