Name: Matr.-No.:

Question 1: Probabilities: $(\Sigma=2)$

(a) Given p(x|c) and p(c) for $c \in \{1, ..., C\}$, give an equation to compute p(c|x).

(2 pts)

Question 2: Probability Density Estimation: $(\Sigma=4)$

(a) You are given the set of data points $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$ with $\mathbf{x}_i \in \mathbb{R}^2$ as shown in the plot below. Each point belongs to one of two classes as denoted by blue and red colors. You decide to use the K-means algorithm with K=2 to cluster the data in order to classify the points. Do you think that the result will be accurate? Give a justification for your answer.

(b) What is a good strategy for initializing the parameters of a Mixture Model in Expectation-(1 pt) Maximization?

EleMLDS WS 23/24 Page 1 of 3

(c) Which of the images below corresponds to the contour plots of a Gaussian with covariance matrix $\begin{bmatrix} 0.2 & 0 \\ 0 & 1.2 \end{bmatrix}$? Exactly one answer is correct. Justify your choice.

Answers with no justification will not receive any points.

Question 3: Linear Discriminants: $(\Sigma=3)$

(a) Plot the error contribution plot for the squared error function for the case of binary (1 pt) classification (i.e. target values $t_n \in \{-1, 1\}$).

Hint: Use the second plot to correct your drawing. Cross out wrong answers.

(b) In their basic form, linear discriminants are given by $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$. Write down the **(2 pts)** error function that is optimized by a linear least-squares classifier. Explain the terms and variables you use.

Name:		MatrNo.:	