Understanding and Implementing Dummy Coding

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Regression with dummy variables

Limitations of one-hot encoding

The dummy variable trap

Overcoming the limitations of one-hot encoding with dummy encoding

Performing dummy or treatment coding in regression analysis

One-hot encoding: k columns for k categories

Dummy coding: k-1 columns for k categories

The Dummy Trap in Linear Regression

Proposed Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Not a great fit - regression line is far from all points!

We can easily plot a great fit for males...

...and another great fit for females

Two lines - same slope, different intercepts

Two lines - same slope, different intercepts

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$D = 0$$
 for males

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$= A_1 + B_X$$

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 1 for females

$$y = A_1 + (A_2 - A_1) + Bx$$

$$= A_2 + B_X$$

Original Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

The data contained 2 levels (groups), so we added 1 dummy variable and kept the intercept

The Dummy Trap

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Adding 2 dummy variables here would have led us into the Dummy Trap

Dummy Variable Trap

If a categorical variable is used as a feature (x-variable) in linear regression

And if that categorical variable has k levels

Trap: Using k dummy variables <u>and</u> an intercept

Causes multi-collinearity and an unstable regression model

Dummy Trap: Using k dummy variables <u>and</u> an intercept

Unstable regression model

Avoiding the Dummy Trap

Dummy Variable Trap

If a categorical variable is used as a feature (x-variable) in linear regression

And if that categorical variable has k levels

Trap: Using k dummy variables <u>and</u> an intercept

Causes multi-collinearity and an unstable regression model

Use either

- k dummy variables and exclude the intercept
- k-1 dummy variables and include the intercept

In either case, k levels need k variables (including the intercept)

Avoid the Dummy Variable Trap: k levels need k variables (including the intercept)

Use either

- k dummy variables and exclude the intercept
- k-1 dummy variables and include the intercept

In either case, k levels need k variables (including the intercept)

Use either

- k dummy variables and exclude the intercept
- k-1 dummy variables and include the intercept

In either case, k levels need k variables (including the intercept)

Using k-1 variables and including an intercept is the usual choice

The excluded level is called the reference level

Using k-1 variables and including an intercept is the usual choice

The excluded level is called the reference level

Reference Level

Represented by the intercept in the regression

The coefficients of other levels are expressed in terms of the reference level

Dummy and Other Categorical Variables

Dummy Variables

Binary - 0 or 1

Categorical Variables

Finite set of values - e.g. days of week, months of year...

To include non-binary categorical variables, simply add more dummies

Proposed Regression Equation:

$$y = A + BQ_1 + CQ_2 + DQ_3$$

returns

Average stock Quarter of the year

The data contains 4 groups, so we added 3 dummy variables

Proposed Regression Equation:

$$y = A + BQ_1 + CQ_2 + DQ_3$$

returns

Average stock Quarter of the year

The data contains 4 groups, so we added 3 dummy variables

$$y = A + BQ_1 + CQ_2 + DQ_3$$

The data contains 4 groups, so we added 3 dummy variables

```
Q_1 = 1 for Jan, Feb, Mar
```

= 0 for other quarters

 $Q_2 = 1$ for Apr, May, Jun

= 0 for other quarters

 $Q_3 = 1$ for July, Aug, Sep

= 0 for other quarters

$$y = A + BQ_1 + CQ_2 + DQ_3$$

The data contains 4 groups, so we added 3 dummy variables

```
Q_1 = 1 for Jan, Feb, Mar
```

= 0 for other quarters

 $Q_2 = 1$ for Apr, May, Jun

= 0 for other quarters

 $Q_3 = 1$ for July, Aug, Sep

= 0 for other quarters

$$y = A + BQ_1 + CQ_2 + DQ_3$$

The data contains 4 groups, so we added 3 dummy variables

```
Q_1 = 1 for Jan, Feb, Mar
```

= 0 for other quarters

$$Q_2 = 1$$
 for Apr, May, Jun

= 0 for other quarters

$$Q_3 = 1$$
 for July, Aug, Sep

= 0 for other quarters

Testing for Seasonality

$$y = A + BQ_1 + CQ_2 + DQ_3$$

The data contains 4 groups, so we added 3 dummy variables

```
Q_1 = 1 for Jan, Feb, Mar
```

= 0 for other quarters

 $Q_2 = 1$ for Apr, May, Jun

= 0 for other quarters

 $Q_3 = 1$ for July, Aug, Sep

= 0 for other quarters

Overcoming the Limitations of One-hot Coding

Avoid using one-hot encoded categories with intercept - this leads to the dummy trap

Dummy Variable Trap

If a categorical variable is used as a feature (x-variable) in linear regression

And if that categorical variable has k levels

Trap: Using k dummy variables <u>and</u> an intercept

Causes multi-collinearity and an unstable regression model

One-hot Encoded Cities

Category	New York	London	Paris	Bangalore
New York	1	0	O	O
London	O	1	0	O
Paris	O	0	1	O
Bangalore	0	0	0	1

k categories and k columns to represent k categories

One-hot Encoded Cities

Category	New York	London	Paris	Bangalore
New York	1	0	O	O
London	O	1	0	O
Paris	O	0	1	O
Bangalore	0	0	0	1

Cannot use directly if performing regression with intercept

Avoiding the Dummy Variable Trap

Use either

- k dummy variables and exclude the intercept
- k-1 dummy variables and include the intercept

In either case, k levels need k variables (including the intercept)

Solution: use one-hot encoding but **drop** one category column

Dummy encoding

Dummy Encoded Cities

Category	New York	London	Paris
New York	1	0	Ο
London	O	1	O
Paris	O	O	1
Bangalore	0	0	0

k categories and k-1 columns to represent k categories

Dummy Encoded Cities

Category	New York	London	Paris
New York	1	0	0
London	0	1	0
Paris	0	0	1
Bangalore	0	0	0

Bangalore is the reference level or category

Dummy Coding

Name used for scheme with k-1 dummy variables along with intercept

Excluded level is called the reference level

Reference Level

Represented by the intercept in the regression

The coefficients of other levels are expressed in terms of the reference level

Dummy Coding with Linear Regression

Application

Compare other levels to reference

Intercept

Mean of y-values of reference level

Coefficient for level(i)

Mean of y-values of level(i) - mean of y-value for reference level

If **no information** available for a data point i.e. all coefficients are zero

The y-value for that point is assumed to be the average y-value for the **reference** level

Intercept Value for Dummy Coding

Intercept (constant) will be the mean y-value for reference level

Coefficients of other dummies will be in terms of reference level too

Coefficient of each included variable = Mean of y-values of that level - Mean of y-values of reference level

A Simple Regression

Proposed Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

A Simple Regression

Intercept Value for Dummy Coding

Reference level = father (males)

Intercept = mean height of fathers (males) in data

Coefficient for height of mother = mean height of mothers (females) - mean height of fathers (males)

Assumptions in Dummy Coding

Dummy coding does not assume independence of coefficients

ANOVA assumes independent coefficients but linear regression does not

Which is why dummy coding is most often used with linear regression

Demo

Performing linear regression using dummy encoding

Summary

Regression with dummy variables

Limitations of one-hot encoding

The dummy variable trap

Overcoming the limitations of one-hot encoding with dummy encoding

Performing dummy or treatment coding in regression analysis