

Modulhandbuch

für den Studiengang:

Erneuerbare Energien

im Master - Studiengang 120 Leistungspunkte

(Modulversionstand vom 07.03.2023)

Inhalt:

Anorganische Chemie im Nebenfach (AC-N I)	Seite 3
Businessplan Seminar	Seite 6
Charakterisierung von Nanostrukturen, Wahlpflicht	Seite 9
Chemie im Nebenfach (AC-OC-N II)	Seite 12
Elektrodynamik	Seite 15
Energiewandlungspraktikum	Seite 17
Energiewirtschaft	Seite 19
Festkörperphysik	Seite 21
Grundlagen der Betriebswirtschaftslehre	Seite 23
Grundlagen der Energieumwandlung und Energiespeicherung	Seite 27
Grundlagen der Materialwissenschaften	Seite 29
Gründungsmanagement und Unternehmertum	Seite 31
Industrie- / Forschungspraktikum	Seite 33
Kontinuumsmechanik und Nichtlineare Systeme / ergphys_C	Seite 35
Master-Arbeit (ErnEnM)	Seite 38
Methodenkenntnis und Projektplanung (ErnEnM)	Seite 40
Physik der Solarzelle	Seite 42
Physikalische Chemie für das Nebenfach III (PC-N III)	Seite 44
Physikalische Methoden zur Strukturaufklärung - Mikroskopie und Streuexperimente /	
ergphys_A	Seite 46
Physikalische und elektronische Messtechnik	Seite 48
Polymere, Wahlpflicht	Seite 50
Praxisseminar: Fallstudien zur Unternehmensgründung	Seite 52
Prototypen Labor	Seite 54
Quantenmechanik	Seite 57
Struktur der Materie	Seite 59
Technische Chemie (TC)	Seite 61
Technische Chemie und Physikalische Chemie Erneuerbarer Energien	Seite 65

Modul: Anorganische Chemie im Nebenfach (AC-N I)

Identifikationsnummer:

CHE.00840.04

Lernziele:

- Grundkenntnisse der Allgemeinen und Anorganischen Chemie
- Erlernen aktueller und grundlegender Konzepte der Anorganischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente

Inhalte:

- Stöchiometrie
- Atombau, Periodizität, chemische Bindung
- Energiebilanz chemischer Reaktionen
- Chemisches Gleichgewicht
- Fällungsreaktionen
- Säure-Base-Reaktionen
- Redoxreaktionen
- Chemie der Hauptgruppenelemente
- Komplexbildung
- Beispiele zur Chemie der 3d-Metalle

Verantwortlichkeiten (Stand 09.02.2017):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	JProf. Dr. Wouter Maijenburg
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 14.12.2021):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik mit	3.	Wahlpflichtmodul	Benotet	5/154
	Anwendungsfach - 180 LP				
	1. Version 2006				
Bachelor	Mathematik - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/149
	Version 2013				
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotet	5/136
	2006				
Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotet	5/138
	2012				
Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Geographie - 180 LP 1.	1.	Wahlpflichtmodul	Benotet	5/125
	Version 2006				

Bachelor	Geographie - 180 LP 1.	1.	Wahlpflichtmodul	Benotet	5/125
	Version 2011				
Bachelor	Geographie - 180 LP 1.	1.	Wahlpflichtmodul	Benotet	5/125
	Version 2013				
Bachelor (2-Fach)	Geographie - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/85
	Version 2006				
Bachelor (2-Fach)	Geographie - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/85
	Version 2011				
Bachelor (2-Fach)	Geographie - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/85
	Version 2013				
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teil nahme vor aussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Seminar	2	30	Wintersemester
Selbststudium	0	90	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis Ende April

1. Wiederholungstermin: im anschließenden Sommersemester

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Businessplan Seminar

Identifikationsnummer:

WIW.06765.02

Lernziele:

- Praxisnahes Wissen zur Unternehmensgründung
- Entwicklung einer tragfähigen Geschäftsidee als Gruppe und deren Umsetzung in einem Businessplan
- Weiterentwicklung von Team- und Konfliktfähigkeit sowie Präsentationsfähigkeit
- Verbesserung der beruflichen Entscheidungs- und Sozialkompetenz
- Kritische Auseinandersetzung mit Feedback zum Businessplan inklusive angemessene Einarbeitung des Feedbacks

Inhalte:

- Das Modul soll Studierenden die Bestandteile eines Businessplans näherbringen, der anschließend für konkrete Geschäftsideen durch Gründerteams erstellt wird.
- Der Schwerpunkt des Moduls liegt auf praktischem, unmittelbar anwendbarem Wissen.
- Wesentliche Inhalte sind neben der Entwicklung einer tragfähigen Geschäftsidee zentrale betriebliche Funktionen wie Marketing, Organisation, Personalwesen, Rechtsformen, Steuern, Rechnungswesen, Finanzplanung und Finanzierung.
- Außerdem wird durch umfassendes Feedback an der Verfeinerung der Geschäftsidee gearbeitet.

Verantwortlichkeiten (Stand 20.01.2023):

Fakultät	Institut	Verantwortliche/r
Juristische und	Wirtschaftswissenschaftlicher	Prof. Dr. Julia Müller-Seeger
Wirtschaftswissenschaftliche	Bereich	
Fakultät -		

Studienprogrammverwendbarkeiten (Stand 13.08.2020):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Human Resources	2. oder 4.	Wahlpflichtmodul	Benotet	5/120
	Management - 120 LP 1.				
	Version 2020				
Master	Betriebswirtschaftslehre	2. oder 4.	Wahlpflichtmodul	Benotet	5/120
	(Business Studies) - 120 LP				
	1. Version 2019				
Master	Erneuerbare Energien - 120	2.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Wirtschaftsinformatik	2. oder 4.	Wahlpflichtmodul	Benotet	5/120
	(Business Information				
	Systems) - 120 LP 1.				
	Version 2020				

Teilnahmevoraussetzungen:

Obligatorisch:

Bei einer Interessentenanzahl, die eine im Rahmen dieses Kurses nötige Projektbetreuung unmöglich macht, erfolgt die Auswahl der Teilnehmer nach zwei Kriterien: a) Vorliegen eines erfolgreichen Abschlusses des Moduls Einführung in die Betriebswirtschaftslehre bzw. Principles of Management (oder äquivalentes Modul), b) Zufallsauswahl über Stud.IP.

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	30	Sommersemester
Businessplan	0	75	Sommersemester
Vorbereitung der Präsentation	0	35	Sommersemester
Nachbereitung (überarbeiteter	0	10	Sommersemester
Businessplan)			

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen block 1:

Modulteilleistungen block	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
1			
Businessplan	Businessplan	Businessplan	50 %
Präsentation	Präsentation	Präsentation	40 %
überarbeiteter Businessplan	überarbeiteter Businessplan	überarbeiteter Businessplan	10 %
(Nachbereitung schriftlich)	(Nachbereitung schriftlich)	(Nachbereitung schriftlich)	

Termine für Modulteilleistung Nr. 1:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Termine für Modulteilleistung Nr. 2:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Termine für Modulteilleistung Nr. 3:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Modul: Charakterisierung von Nanostrukturen, Wahlpflicht

Identifikationsnummer:

CHE.00032.04

Lernziele:

- Kenntnis und Verständnis der physikalisch-chemischen Grundlagen der wichtigsten Charakterisierungsmethoden für nanoporöse und nanoskalige Festkörper
- Anwendung des erlernten Wissens im praktischen Umgang mit verschiedenen Standardverfahren zur Charakterisierung (nano-)poröser und %u2013strukturierter Festkörper

Inhalte:

Vorlesung:

- Einführung (Was sind Nanostrukturen? Definitionen, Klassifizierung, Auswahl nanoporöser Materialien (Zeolithe, ALPO`s, Aktivkohle, poröse Gläser, Kieselgele, geordnete mesoporöse Materialien, Metallorganische Gerüststrukturen)
- Stickstoff-Tieftemperatur-Adsorption, Quecksilber-Intrusion, Heliumdichtemessungen, Molekülsondenmethode, Thermoporometrie (Messprinzipien, Auswertemethoden, Limitierungen)
- Stofftransport (Wicke-Kallenbach-Zelle, Permeabilität, katalytische Testreaktion)
- Oberflächeneigenschaften (Oberflächengruppen, Bestimmung (qualitativ, quantitativ), Oberflächenmodifizierungen)
- Weitere Charakterisierung von Katalysatoren und porösen Stoffen (Inverse Gaschromatographie, Röntgenweitwinkelstreuung, temperaturprogrammierte Adsorption/Desorption/Reduktion
- Grundlagen der Elektronenmikroskopie (Gerätetechnik und Abbildungsverfahren, ortsaufgelöste Materialanalytik)
- Optische Spektroskopie (Ramanmikroskopie, Ellipsometrie, Plasmonenresonanz)
- Rastersondenmethoden
- Theorie und Praxis der Röntgenkleinwinkelstreuung (RKWS) mit Anwendungen
- Einführung und Anwendungen der ortho-Positronium Lebensdauer-Spektroskopie (Phasenübergänge, Nanoporöse Festkörper, Polymere, Halbleiter)

 Praktikum:
- praktischer Umgang mit ausgewählten Charakterisierungsmethoden

Verantwortlichkeiten (Stand 09.09.2022):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	JProf. Dr. Frederik Haase
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 04.02.2015):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Chemie (Gymnasium) 1.	5. oder 7.	Wahlpflichtmodul	Benotung	erfolgreicher
Gymnasien	Version 2007			ohne Anteil	Abschluss
Bachelor	Chemie - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/168
	Version 2006				
Bachelor	Chemie - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/168
	Version 2013				
Bachelor	Chemie - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/168
	Version 2021				
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2009			ohne Anteil	
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2019			ohne Anteil	

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Physikalische Chemie I (PC-I)
- Experimentalphysik A / exphys_A
 oder
- Physikalische Chemie I (Für Lehramt) oder
- Physikalische Chemie I (PC-I)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Praktikum	3	45	Wintersemester
Selbststudium	0	45	Wintersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Chemie im Nebenfach (AC-OC-N II)

Identifikationsnummer:

CHE.00168.03

Lernziele:

- Erlernen aktueller und grundlegender Konzepte der Anorganischen und Organischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente
- Einführung in grundlegende Analysemethoden
- Grundkenntnisse der Allgemeinen und Anorganischen sowie Organischen und Bioorganischen Chemie

Inhalte:

- Aufbau der Materie (Atome, chemische Elemente, Moleküle, chemische Bindungen, heterogene Stoffgemische)
- Chemische Reaktionen (chemische Gleichungen, thermodynamische Grundlagen, Grundlagen der Kinetik,Säure-Base-Reaktionen, Puffer, Redoxreaktionen, Salze und komplexe Metalle)
- Chemisch-analytische Verfahren (elektromagnetische Strahlung, NMR-, Infrarot-, UV/VIS- und Massenspektroskopie)
- Aliphatische und aromatische Kohlenwasserstoffe
- Heterocyclen
- Alkohole, Phenole, Ether, Thiole, Thioether, Amine
- Aldehyde, Ketone, Chinone, Carbonsäuren und Derivate
- Stereochemie
- Aminosäuren und Peptide
- Kohlenhydrate
- Lipide
- Nucleinsäuren
- Polymere
- Nachweis funktioneller Gruppen

Verantwortlichkeiten (Stand 16.12.2021):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Reinhard Paschke
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 09.05.2018):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Agrarwissenschaft - 180 LP	1.	Pflichtmodul	Benotet	10/170
	1. Version 2013				
Bachelor	Agrarwissenschaft - 180 LP	1.	Pflichtmodul	Benotet	10/170
	1. Version 2018				
Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotet	10/136
	2006				
Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotet	10/138
	2012				
Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Angewandte	1.	Pflichtmodul	Benotet	10/160
	Geowissenschaften				
	(Applied Geosciences) -				
	180 LP 1. Version 2021				
Bachelor	Management natürlicher	1. bis 2.	Pflichtmodul	Benotet	10/160
	Ressourcen - 180 LP 1.				
	Version 2015				
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	10/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung AC/OC-NII	3	45	Wintersemester
Übungen AC/OC-NII	1	15	Wintersemester
Experimentalübungen	1	15	Wintersemester
Ausarbeitung der Versuche	0	45	Wintersemester
Klausurenkurs	0	30	Wintersemester
Selbststudium	0	150	Wintersemester

Studienleistungen:

- erfolgreiches Absolvieren der Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis Ende April

1. Wiederholungstermin: frühestens 6 Wochen nach dem ersten Termin

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Die Vorlesung Organische Chemie wird durch den Bereich Organische Chemie abgesichert.

Modul: Elektrodynamik

Identifikationsnummer:

PHY.05030.01

Lernziele:

- Beherrschung der grundlegenden Konzepte, Methoden und Denkweisen der theoretischen Physik
- Verständnis für die spezifische Rolle der Theorie im Aufbau der Physik, ihre Arbeitsstrategien und Denkformen

Inhalte:

- Maxwell-Gleichungen, Folgerungen und Anwendungen
- Elektromagnetische Wellen im Vakuum
- Elektrodynamik in Materie
- Grundlagen der Wellenoptik
- Spezielle Relativitätstheorie

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	PD Dr. Angelika Chassé
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 04.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Elektrodynamik`	2	30	Wintersemester
Seminar `Elektrodynamik`	1	15	Wintersemester
Selbststudium	0	105	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: <u>Energiewandlungspraktikum</u>

Identifikationsnummer:

PHY.05037.01

Lernziele:

- Kenntnis von grundlegenden, aber auch spezialisierten physikalisch/chemischen Experimenten mit Bezug zur Energiewandlung und -speicherung
- Erlernen von praktischen Fähigkeiten und Fertigkeiten im Umgang mit moderner Messtechnik
- Erkennen und Bewerten von Fehlerquellen bei physikalisch/chemischen Messungen
- Auswertung und grafische Darstellung von experimentellen Ergebnissen
- Anfertigung schriftlicher wissenschaftlicher Berichte und Präsentation von wissenschaftlichen Ergebnissen im Vortrag

Inhalte:

- Durchführung von 5 Versuchen (jeweils ganztätig an drei Tagen) mit Auswertung, Fehlerbetrachtung und Bericht. Versuchsliste aus denen die Versuche ausgewählt werden (wird gelegentlich überarbeitet, aktualisiert und erweitert):

Strom-Spannungscharakteristik und Quantenausbeutecharakteristik von Solarzellen

Ertragsermittlung verschiedener photovoltaischer Technologien im Feldeinsatz

Brennstoffzellen

Akkumulatoren

Photoelektrokatalyse

Verbrennungsprozesse

Stirling-Motor

Elektromotor

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Dr. Wolfgang Fränzel
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	3.	Pflichtmodul	keine	
	LP 1. Version 2015			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Laborpraktikum	7	105	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	180	Wintersemester

Studienleistungen:

- Testate zu den Praktikumsversuchen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Seminarvortrag	Seminarvortrag	Seminarvortrag	100 %

Termine für die Modulleistung:

1.Termin: innerhalb des Semesters, versuchsbegleitend

1. Wiederholungstermin: Wiederholungstermine für einzelne Versuche werden im Laufe des

Semesters angeboten

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Energiewirtschaft

Identifikationsnummer:

CHE.05038.02

Lernziele:

- Kennenlernen und Verstehen der wichtigsten technischen, ökonomischen und sozialen Aspekte der regionalen, der nationalen und weltweiten Energieversorgung
- Vertiefte Kenntnisse bezüglich der elektrischen Energieversorgung

Inhalte:

- Angebot und Nachfrage von Energie in verschiedenen Bilanzräumen
- Energieversorgungsunternehmen: Aufgaben und Lösungskonzepte
- Energierecht und Energiehandel

Verantwortlichkeiten (Stand 12.02.2015):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Thomas Hahn
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 07.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	3.	Pflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Grundlagen der Betriebswirtschaftslehre

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Energiewirtschaft`	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Übung `Energiewirtschaft`	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- regelmäßige Bearbeitung und Lösung von Übungs- und Seminaraufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Festkörperphysik

Identifikationsnummer:

PHY.05031.01

Lernziele:

- Kenntnis, Verständnis und Anwendung der grundlegenden Konzepte der Experimentalphysik im Bereich Kondensierte Materie mit Schwerpunkt Festkörperphysik

Inhalte:

- Chemische Bindung und Wechselwirkungen in kondensierter Materie
- Kristallstruktur: Einheitszelle, Kristallgitter, reziprokes Gitter, Brillouinzonen, Streubedingungen und Strukturanalyse
- Dynamik des Kristallgitters: Phononen, akustische und optische Phononen, Zustandsdichte und spezifische Wärme
- Elektronen im Festkörper: Drude-Modell, Fermi-Gas-Modell, Bloch-Wellen, Bändermodell: fast freie und stark gebundene Elektronen, Halbleiter, Dotierung
- Magnetismus: Einführung Dia-, Para- und Ferromagnetismus, Hall-Effekt, Zyklotron-Resonanz
- Supraleiter: Supraleitung, Meissner-Effekt, Cooper-Paare
- Struktur ungeordneter Festkörper, Gläser, Flüssigkristalle und Flüssigkeiten

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Prof. Dr. Wolf Widdra
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf. Studien-	Modulart	Benotung	Anteil der Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Festkörperphysik`	3	45	Wintersemester
Seminar `Festkörperphysik`	1	15	Wintersemester
Selbsstudium	0	90	Wintersemester

Studienleistungen:

- Lösung von Seminaraufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Grundlagen der Betriebswirtschaftslehre

Identifikationsnummer:

WIW.00388.04

Lernziele:

- Verständnis der Betriebswirtschaftslehre als Wissenschaft und Verortung innerhalb der Wirtschafts- und Sozialwissenschaften
- Kenntnisse Grundbegriffe der BWL
- Wissen über die betrieblichen Grundfunktionen
- Fähigkeit zur Auseinandersetzung mit grundlegenden betriebswirtschaftlichen Entscheidungsaufgaben
- Grundlegende Kenntnisse der Prozesse, Methoden und Prinzipien der BWL

Inhalte:

- Grundlagen der BWL
- Funktionen von Management und Managementsystemen
- Führung, Management und Strategie
- Prozess des Strategischen Managements
- Geschäftsmodell
- Strategische Prinzipien
- Unternehmensumwelt und interne Prozesse
- Strategien auf verschiedenen Ebenen
- Evaluation von Strategien mit Hilfe der Balanced Scorecard
- Leistungserstellungsprozessen auf der funktionalen Ebene

Verantwortlichkeiten (Stand 06.07.2022):

Fakultät	Institut	Verantwortliche/r
Juristische und	Wirtschaftswissenschaftlicher	Prof. Dr. Julia Müller-Seeger
Wirtschaftswissenschaftliche	Bereich	
Fakultät -		

Studienprogrammverwendbarkeiten (Stand 13.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik mit	3.	Wahlpflichtmodul	Benotet	5/154
	Anwendungsfach - 180 LP				
	1. Version 2006				
Bachelor	Mathematik - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/149
	Version 2013				
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Betriebswirtschaftslehre	1.	Pflichtmodul	Benotet	5/160
	(Business Studies) - 180 LP				
	1. Version 2020				
Bachelor	Geographie - 180 LP 1.	1.	Wahlpflichtmodul	Benotet	5/125
	Version 2006				
Bachelor	Geographie - 180 LP 1.	1.	Wahlpflichtmodul	Benotet	5/125
	Version 2011				

Bachelor	Geographie - 180 LP 1.	1.	Wahlpflichtmodul	Renotet	5/125
Dacheloi	Version 2013	1.	wampinentinodui	Denotet	3/123
Bachelor	Geographie - 180 LP 1.	3.	Wahlpflichtmodul	Danatat	5/120
Dacheloi	Version 2021]3.	wampinentinodui	Denotet	3/120
Bachelor	Wirtschaftsinformatik	1.	Pflichtmodul	Benotet	5/165
Bachelol	(Business Information	1.	Thentmodu	Denotet	3/103
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Volkswirtschaftslehre	1.	Pflichtmodul	Benotet	5/165
Buchelor	(Economics) - 180 LP 1.	1.	Tinentinodui	Benotet	3/103
	Version 2020				
Bachelor	Wirtschaftsmathematik -	3.	Wahlpflichtmodul	Renotet	5/142
Bucheror	180 LP 1. Version 2013]	, vampinentinodar	Benotet	3/112
Bachelor	Wirtschaftsmathematik -	1. oder 3.	Wahlpflichtmodul	Renotet	5/105
Buchelor	180 LP 1. Version 2022	1. 0001 3.	Wampinentinodar	Benotet	3/103
Bachelor	Informatik - 180 LP 1.	3.	Wahlpflichtmodul	Renotet	5/155
Duction	Version 2016].	, ampinentinodui	Denotet	3,133
Bachelor	Informatik - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/155
Buchelor	Version 2018].	Wampinentinodar	Benotet	3/133
Bachelor	Informatik - 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Benotet	5/155
Bueneror	Version 2023	3. 6461 3.	, ampineminodar	Benotet	
Bachelor	Gesundheits- und	8.	Pflichtmodul	Benotet	5/105
Bueneror	Pflegewissenschaften - 180	0.		Benotet	37103
	LP 1. Version 2007				
Bachelor	Management natürlicher	5.	Pflichtmodul	Benotet	5/160
	Ressourcen - 180 LP 1.				
	Version 2015				
Bachelor	Management natürlicher	3.	Pflichtmodul	Benotet	5/160
	Ressourcen - 180 LP 1.				
	Version 2021				
Bachelor (2-Fach)	Geographie - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/85
	Version 2006				
Bachelor (2-Fach)	Geographie - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/85
	Version 2011				
Bachelor (2-Fach)	Geographie - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/85
	Version 2013				
Bachelor (2-Fach)	Wirtschaftswissenschaften	1.	Pflichtmodul	Benotet	5/110
	(Economics and				
	Management) - 120 LP 1.				
	Version 2016				
Bachelor (2-Fach)	Wirtschaftswissenschaften	1.	Pflichtmodul	Benotet	5/105
	(Economics and				
	Management) - 120 LP 1.				
	Version 2020				<u> </u>
Bachelor (2-Fach)	Grundlagen	1.	Wahlpflichtmodul	Benotet	5/50
	Wirtschaftswissenschaften				
	(Fundamental Economics				
	and Management) - 60 LP				
	1. Version 2008				

Bachelor (2-Fach)	Grundlagen	1.	Pflichtmodul	Benotet	5/60
	Wirtschaftswissenschaften				
	(Fundamental Economics				
	and Management) - 60 LP				
	1. Version 2016				
Bachelor (2-Fach)	Grundlagen	1.	Pflichtmodul	Benotet	5/55
	Wirtschaftswissenschaften				
	(Fundamental Economics				
	and Management) - 60 LP				
	1. Version 2020				
Master	Erneuerbare Energien - 120	1.	Pflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	International Area Studies -	1. bis 4.	Wahlpflichtmodul	Benotet	5/120
	120 LP 1. Version 2011				
Master	International Area Studies -	1. bis 4.	Wahlpflichtmodul	Benotet	5/120
	120 LP 1. Version 2019				
Master	Wirtschaftsrecht/Business	1. oder 2.	Wahlpflichtmodul	Benotet	5/60
	Law and Economic Law -				
	60 LP 1. Version 2020				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Übung	2	30	Wintersemester
Selbststudium	0	45	Wintersemester
Klausurvorbereitung	0	15	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur /	Klausur /	Klausur /	100 %
Open-Book-Prüfung /	Open-Book-Prüfung /	Open-Book-Prüfung /	
Take-Home-Prüfung / mdl.	Take-Home-Prüfung / mdl.	Take-Home-Prüfung / mdl.	
Prüfung	Prüfung	Prüfung	

Termine für die Modulleistung:

1.Termin: bis 4 Wochen nach Ende der Vorlesungszeit

1. Wiederholungstermin: bis zum Beginn der Vorlesungszeit des folgenden Semesters

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Modul: <u>Grundlagen der Energieumwandlung und Energiespeicherung</u>

Identifikationsnummer:

CHE.05035.01

Lernziele:

- Kenntnis und Anwendung der grundlegenden Konzepte der Thermodynamik des Gleichgewichts und des Nichtgleichgewichts, insbesondere die verschiedenen Energieformen und deren Umwandlung
- Vertiefte Kenntnisse bezüglich der technischen Ausführung von Energiewandlern, Energiespeichern und Energietransportsystemen, sowie quantitative Beurteilung der Wandlungsketten

Kenntnisse zu den prinzipbedingten Leistungsgrenzen der Wandlungs- und -Speicherungsverfahren, des aktuellen Stands der Technik und der aktuellen Möglichkeiten zur Leistungssteigerung

Inhalte:

- Energie, Thermodynamische Zustandsbeschreibung, Gleichgewichtszustand und Anwendungen, statistische Beschreibungen, irreversible Zustandsänderungen
- Mechanische, thermische, chemische und elektrische/elektromagnetische Energiespeicher
- Grundprinzipien und Beispiele zur etablierten elektrischen und thermischen Energieumwandlung, Vergleiche zu Verfahren auf der Basis erneuerbarer Energien

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Thomas Hahn
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1.	Pflichtmodul	Benotet	15/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Vorkenntnisse in Elektrodynamik, Quantenphysik, Statistischer Physik, Material- und Energiebilanzierung

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Thermodynamik`	2	30	Wintersemester
Vorlesung `Energiespeicher`	2	30	Sommersemester
Vorlesung `Energietechnik`	2	30	Sommersemester
Selbststudium	0	170	Winter- und
			Sommersemester
Exkursion	0	10	Winter- und
			Sommersemester
Seminar `Rechenübung Γ	2	30	Wintersemester
Seminar `Rechenübung II`	2	30	Sommersemester
Selbststudium	0	120	Winter- und
			Sommersemester

Studienleistungen:

- regelmäßige Bearbeitung und Lösung von Übungs- und Seminaraufgaben
- Seminarvortrag

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum B

1. Wiederholungstermin: bis spätestens 6 Monate nach Semesterende

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Grundlagen der Materialwissenschaften

Identifikationsnummer:

PHY.07162.02

Lernziele:

- Kenntnis physikalischer Grundlagen zu Aufbau, Struktur und Gefüge von Materialien
- Vermittlung eines Überblicks über die wichtigen Materialgruppen
- Kenntnis grundlegender mechanischer Verhaltenstypen und wichtiger Prüfmethoden

Inhalte:

Vorlesung Grundlagen der Materialwissenschaften mit den Themen (z.B.):

- Materialwissenschaften und Werkstoffkunde
- Überblick über amorphe Strukturen, Kristallaufbau und Gefüge von Materialien
- Strukturumwandlungen (Phasen-, Zustandsänderungen, Diffusion, Sintern, ...)
- Überblick über physikalische Eigenschaften (optisch, magnetisch, elektrisch, ferroelektrische Phänomene) und Materialgruppen

Verantwortlichkeiten (Stand 05.12.2022):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Prof. Dr. Ralf Wehrspohn
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 10.11.2020):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotet	5/70
	2019				
Master	Medizinische Physik - 120	1.	Wahlpflichtmodul	Benotet	5/80
	LP 1. Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Projektseminar	4	60	Wintersemester
Selbststudium	0	90	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder	Klausur oder	Klausur oder	
Seminarvortrag oder	Seminarvortrag oder	Seminarvortrag oder	
Hausarbeit	Hausarbeit	Hausarbeit	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens 6 Monate nach Semesterende

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Gründungsmanagement und Unternehmertum

Identifikationsnummer:

WIW.06665.01

Lernziele:

Studierende...

- verstehen und vertiefen die grundlegenden Konzepte, Theorien und Rahmenbedingungen des Gründungsmanagements und können diese analysieren und voneinander abgrenzen
- werden befähigt, die theoretischen Konstrukte der Erstellung eines Businessplans im Kontext von Unternehmensgründungen anzuwenden
- erwerben die Fähigkeit, theoriebasiert Lösungsansätze für spezifische Problemstellungen von Start-Ups zu konzipieren und Handlungsempfehlungen für die Praxis zu reflektieren bzw. abzuleiten
- erlangen ein tiefgreifendes Verständnis über Einflussfaktoren auf und Aufgaben von Unternehmerpersönlichkeiten
- verbessern ihre Präsentations- und Gruppenarbeitstechnik durch die eigenständige Konzeption einer Präsentation
- können sich selbstständig in die aktuelle Forschungsliteratur einarbeiten, wesentliche In-halte eigenständig zusammenfassen, bewerten und diese kritisch reflektieren

Inhalte:

- Bearbeitung zentraler Fragestellungen, Methoden und Forschungsergebnisse des Gründungsmanagements
- Analyse praxisrelevanter Problemstellungen im Rahmen der Bearbeitung von Fallstudien zu ausgewählten Start-Ups im Team
- Betrachtung der Elemente eines Businessplans und Vorgehensweise bei der Erstellung eines Businessplans
- Betrachtung der Elemente von Geschäftsmodellen und Vorgehensweise bei der Erarbeitung von Geschäftsmodellen
- Einbindung von Übungen, Praxisvorträgen neu gegründeter bzw. etablierter Unternehmen sowie Exkursion

Verantwortlichkeiten (Stand 26.07.2019):

Fakultät	Institut	Verantwortliche/r
Juristische und	Wirtschaftswissenschaftlicher	Dr. Ulf-Marten Schmieder
Wirtschaftswissenschaftliche	Bereich	
Fakultät -		

Studienprogrammverwendbarkeiten (Stand 22.07.2019):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Betriebswirtschaftslehre	1. oder 3.	Wahlpflichtmodul	Benotet	5/120
	(Business Studies) - 120 LP				
	1. Version 2019				
Master	Erneuerbare Energien - 120	1. oder 3.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Accounting, Taxation and	1. oder 3.	Wahlpflichtmodul	Benotet	5/120
	Finance - 120 LP 1.				
	Version 2016				

Master	Wirtschaftsinformatik	1. oder 3.	Wahlpflichtmodul	Benotet	5/120
	(Business Information				
	Systems) - 120 LP 1.				
	Version 2016				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium und Vorbereitung der	0	120	Wintersemester
Präsentation			

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Präsentation	Präsentation	Präsentation	100 %

Termine für die Modulleistung:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Modul: <u>Industrie- / Forschungspraktikum</u>

Identifikationsnummer:

CHE.05033.01

Lernziele:

- Erlernen (Einblicke) der Arbeits- und Vorgehensweise der industriellen Praxis und/oder angewandter Forschungsinstitutionen
- Übung schriftlicher Präsentationstechniken

Inhalte:

- Einblick in Energieforschung und Energiewirtschaft

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Hochschullehrer der Institute
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	3.	Pflichtmodul	keine	
	LP 1. Version 2015			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Physik der Solarzelle
- Grundlagen der Energieumwandlung und Energiespeicherung
- Grundlagen der Energieumwandlung und Energiespeicherung

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Labortätigkeit	0	100	Winter- und
			Sommersemester
Selbststudium	0	50	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Lehrforschungsbericht	Lehrforschungsbericht	Lehrforschungsbericht	100 %

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1.Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters2.Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Es ist gewünscht, das Praktikum in einem Betrieb aus dem Bereich der Energiewirtschaft oder der erneuerbaren Energien durchzuführen, alternativ sind Forschungspraktika an außeruniversitären Forschungseinrichtungen vorgesehen. Forschungspraktika in Arbeitsgruppen der Universität sollen nur angeboten werden, wenn keine ausreichenden außeruniversitären Praktikumsplätze zur Verfügung stehen. Es wird erwartet, dass sich die Studierenden aktiv an der Suche nach einem Praktikumsplatz beteiligen. Sie werden dabei von den Hochschullehren des Studiengangs unterstützt.

Modul: Kontinuumsmechanik und Nichtlineare Systeme / ergphys_C

Identifikationsnummer:

PHY.00862.04

Lernziele:

- Kenntnis der Grundgleichungen der Elastizitätstheorie und der Hydromechanik sowie Fähigkeit zu deren Anwendung für die Herleitung einfacher Zusammenhänge und Lösung entsprechender Übungsaufgaben
- Kenntnis qualitativer und quantitativer Ansätze zur Charakterisierung nichtlinearer Systeme und selbständige Anwendung auf mechanische und interdisziplinäre Beispiele
- Fähigkeit, dynamische Systeme mit analytischen und numerischen Methoden zu charakterisieren und

Zustandsübergänge zu identifizieren, auch unter Nutzung der Software Mathematica

Inhalte:

1. Kontinuumsmechanik:

Grundgleichungen der Elastizitätstheorie Spannungstensor und Verschiebungstensor Eulersche Gleichungen idealer Flüssigkeiten Einfache Probleme der Hydromechanik Zähe Flüssigkeiten

2. Nichtlineare Systeme:

Nichtlineare Probleme der klassischen Mechanik Nichtlineare Systeme und Chaotisches Verhalten Lineare Stabilität und Ljapunovexponent

Verantwortlichkeiten (Stand 05.11.2020):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	PD Dr. Jan Kantelhardt
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 27.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik mit	3.	Wahlpflichtmodul	Benotet	5/154
	Anwendungsfach - 180 LP				
	1. Version 2006				
Bachelor	Mathematik - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/149
	Version 2013				
Bachelor	Mathematik - 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Physik - 180 LP 1. Version	4.	Wahlpflichtmodul	Benotet	5/136
	2006				
Bachelor	Physik - 180 LP 1. Version	4.	Wahlpflichtmodul	Benotet	5/138
	2012				

Bachelor	Physik - 180 LP 1. Version	4.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Physik und Digitale	4.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Erneuerbare Energien - 120	2.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Informatik - 120 LP 1.	2.	Wahlpflichtmodul	Benotet	5/120
	Version 2013				
Master	Informatik - 120 LP 1.	2.	Wahlpflichtmodul	Benotet	5/120
	Version 2016				
Master	Informatik - 120 LP 1.	2.	Wahlpflichtmodul	Benotet	5/120
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

gleichzeitiger Besuch des Moduls Theoretische Physik A / theophys_A

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Seminar	1	15	Sommersemester
Selbststudium	0	100	Sommersemester
Projektarbeit	0	5	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder mündliche	Klausur oder mündliche	Klausur oder mündliche	100 %
Prüfung	Prüfung	Prüfung	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Master-Arbeit (ErnEnM)

Identifikationsnummer:

PHY.05955.01

Lernziele:

- Fähigkeit zur Kooperation in einem Forschungsteam und Fähigkeit zur interdisziplinären Zusammenarbeit

Inhalte:

- Erstellung der Masterarbeit

Verantwortlichkeiten (Stand 04.02.2015):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Hochschullehrer der Institute
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 15.01.2015):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	4.	Pflichtmodul	Benotet	30/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

Abschluss von Master-Modulen im Umfang von 80 LP

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

900 Stunden

Leistungspunkte:

30 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Master-Arbeit	0	900	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen block 1:

Nr.	Modulteilleistungen block	1. Wiederholung	2. Wiederholung	Anteil an
	1			Modulnote
1	Master-Arbeit	Master-Arbeit	nicht möglich laut	75 %
			RStPOBM §20 Abs.13	
2	Kolloquium	Kolloquium	nicht möglich laut	25 %
			RStPOBM §20 Abs.13	

Termine für Modulteilleistung Nr. 1:

1.Termin: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der

Masterarbeit

1. Wiederholungstermin: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der

Masterarbeit und Vergabe eines neuen Themas

Termine für Modulteilleistung Nr. 2:

1.Termin: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der

Masterarbeit

1. Wiederholungstermin: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der

Masterarbeit und Vergabe eines neuen Termines

Hinweise:

Angebotsturnus: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der Masterarbeit

Modul: Methodenkenntnis und Projektplanung (ErnEnM)

Identifikationsnummer:

PHY.05052.01

Lernziele:

- Erlernen typischer, relevanter experimenteller oder theoretischer Methoden in dem Teilgebiet der gewählten Spezialisierung
- exemplarische Planung eines Forschungsprojekts
- Übung schriftlicher Präsentationstechniken

Inhalte:

- Methodenkenntnis in Abhängigkeit der gewählten Spezialisierung
- Formulierung, Projektierung, Planung und Vorbereitung eines Forschungsprojekts unter Anleitung eines Hochschullehrers

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Prof. Dr. Roland Scheer
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf. Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Master	Erneuerbare Energien - 120	3.	Pflichtmodul	keine	
	LP 1. Version 2015			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Physik der Solarzelle
- Grundlagen der Energieumwandlung und Energiespeicherung
- Grundlagen der Energieumwandlung und Energiespeicherung

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Labortätigkeit	0	75	Winter- und
			Sommersemester
Selbststudium	0	75	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Lehrforschungsbericht	Lehrforschungsbericht	Lehrforschungsbericht	100 %

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Modulbestandteile (kann z. T. variieren je nach gewählter Spezialisierung): - Literaturstudium (Monographien, Publikationen aus Zeitschriften) - praktische Arbeit am Experiment oder Computer, theoretische Rechnungen - Aufbau experimenteller Apparaturen, Erstellung oder Erweiterung von Computerprogrammen

Modul: Physik der Solarzelle

Identifikationsnummer:

PHY.05034.01

Lernziele:

- Heranführung an die Forschung auf dem Gebiet der Photovoltaik, Anwendung des erlernten Wissens in Seminaren
- Vermittlung der physikalischen Grundlagen der Photovoltaik
- Kenntnis grundlegender technologischer und energiewirtschaftlicher Aspekte der Photovoltaik

Inhalte:

- Vorlesung Einführung in die Halbleiterphysik mit den Themen (z.B.): Kristallstruktur und Defekte, Energiebänder, Elektronische Eigenschaften, Elektronischer Transport, Halbleiterbauelemente
- Vorlesung Physik und Technologie der Solarzellen mit den Themen (z.B.): Energiesituation, Sonnenenergie, Thermodynamik der Energieumwandlung, optische Eigenschaften von Halbleitern und Heterostrukturen,pn-Übergang unter Belichtung, Struktur von Solarzellen, Parameter und Kennlinien, Wirkungsgrad, Typen von Solarzellen und Solarmodulen, PV-Systeme, Solarzellen der nächsten Generation
- Forschungsseminar: Erarbeiten von Vorträgen auf Basis grundlegender und aktueller Forschungsergebnisse aus der Photovoltaik unter der Anleitung eines Hochschullehrers

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Prof. Dr. Roland Scheer
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1.	Pflichtmodul	Benotet	10/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Einführung in die	3	45	Wintersemester
Halbleiterphysik`			
Seminar `Einführung in die	1	15	Wintersemester
Halbleiterphysik`			
Vorlesung `Physik und Technologie der	2	30	Sommersemester
Solarzellen`			
Seminar `Physik und Technologie der	1	15	Sommersemester
Solarzellen`			
Forschungsseminar	2	30	Winter- und
			Sommersemester
Selbststudium	0	165	Winter- und
			Sommersemester

Studienleistungen:

- Lösung von Seminaraufgaben
- Seminarvortrag

Modulvorleistungen:

- Klausur oder Testat zur Vorlesung `Einführung in die Halbleiterphysik`

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum B

1. Wiederholungstermin: bis spätestens 6 Monate nach Semesterende

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie für das Nebenfach III (PC-N III)

Identifikationsnummer:

CHE.03183.02

Lernziele:

- Grundlagen der Chemischen Thermodynamik und deren Anwendung auf Reaktionsgleichgewichte
- Kenntnisse der Grundlagen der Elektrochemie
- Kenntnisse der Grundlagen der Physikalischen Chemie der Grenzflächen
- Anwendung der in der Vorlesung erworbenen theoretischen Kenntnisse auf physikalisch-chemische Problemstellungen
- Befähigung zur Gewinnung, Darstellung und Auswertung physikalisch-chemischer Messdaten

Inhalte:

- Grundlagen der Chemischen Thermodynamik der Reaktionsgleichgewichte und deren Abhängigkeiten von äußeren Parametern, Zusammenhang mit der Reaktionskinetik
- elektrochemische Gleichgewichte, Potentialmessungen, Batterien, Brennstoffzellen
- Physikalische Chemie der Grenzflächen, Kolloide
- Durchführung praktischer Versuche zur Reaktionsthermodynamik und zur physikalischen Chemie der Kolloide und Grenzflächen

Verantwortlichkeiten (Stand 14.06.2021):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 13.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik mit	3.	Wahlpflichtmodul	Benotet	5/154
	Anwendungsfach - 180 LP				
	1. Version 2006				
Bachelor	Mathematik - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/149
	Version 2013				
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Physik - 180 LP 1. Version	3.	Wahlpflichtmodul	Benotet	5/136
	2006				
Bachelor	Physik - 180 LP 1. Version	3.	Wahlpflichtmodul	Benotet	5/138
	2012				
Bachelor	Physik - 180 LP 1. Version	3.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Informatik - 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Benotet	5/155
	Version 2016				
Bachelor	Informatik - 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Benotet	5/155
	Version 2018				

Bachelor	Informatik - 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Benotet	5/155
	Version 2023				
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Praktikum	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens sechs Wochen nach Ende der Lehrveranstaltungen des

Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Methoden zur Strukturaufklärung - Mikroskopie und Streuexperimente / ergphys_A

Identifikationsnummer:

PHY.00860.03

Lernziele:

- Überblick über mikroskopische Methoden und Streuexperimente in der Physik mit engem Bezug zur Anwendung, Verständnis der zugrunde liegenden physikalischen Konzepte

Inhalte:

- Begriffsklärung Abbildung, Auflösungsvermögen
- Auffrischung Grundlagen der geometrischen Optik und Wellenoptik
- Abbildung mit Strahlen, Wellen, Abbildungs- und Linsenfehler
- Optische Mikroskopie, Röntgenmikroskopie, Elektronenmikroskopie, Ultraschallmikroskopie
- Rastersondentechniken: STM, AFM, SNOM...
- Bildverarbeitung in der Mikroskopie
- Streumethoden: typischer Aufbau eines Streuexperiments, Photonen, Neutronen, Elektronen als Sonden, Bragg-Reflexe Kristallographische Experimente, Mesoskopische Strukturen Kleinwinkelstreuung

Verantwortlichkeiten (Stand 12.11.2019):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Prof. Dr. Georg Woltersdorf
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 04.02.2015):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Physik - 180 LP 1. Version	3.	Wahlpflichtmodul	Benotet	5/136
	2006				
Bachelor	Physik - 180 LP 1. Version	3.	Wahlpflichtmodul	Benotet	5/138
	2012				
Bachelor	Physik - 180 LP 1. Version	3.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Physik und Digitale	3.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Experimentalphysik A / exphys_A

Wünschenswert:

Einführungsveranstaltung in Mathematik (Analysis)

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Physikalische Methoden zur	2	30	Wintersemester
Strukturaufklärung			
Seminar Physikalische Methoden zur	1	15	Wintersemester
Strukturaufklärung			
Selbststudium	0	105	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische und elektronische Messtechnik

Identifikationsnummer:

PHY.03076.01

Lernziele:

- Kenntnis und Verständnis der Grundlagen der elektronischen Messtechnik und physikalischen Experimentiertechnik
- Anwendung des erlernten Wissens in praktischen Beispielen

Inhalte:

Grundlagen der Elektronik

- Lineare Netze
- Halbleiterbauelemente
- Signalverarbeitung (analog / digital)
- DA/AD-Wandlung

Ausgewählte Teilbereiche der physikalischen Messtechnik

- Weg- und Geschwindigkeitsaufnehmer
- Temperaturmessung
- Messung elektromagnetischer Felder und Strahlung
- Vakuummessung

Verantwortlichkeiten (Stand 22.01.2021):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	Dr. Nicki Hinsche, Dr. Franz-Josef
II - Chemie, Physik und		Schmitt
Mathematik		

Studienprogrammverwendbarkeiten (Stand 04.02.2015):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Physik (Sekundarschule) 1.	5.	Wahlpflichtmodul	Benotung	erfolgreicher
Sekundarschulen	Version 2007			ohne Anteil	Abschluss
Lehramt	Physik (Sekundarschule) 1.	5.	Wahlpflichtmodul	Benotung	erfolgreicher
Sekundarschulen	Version 2012			ohne Anteil	Abschluss
Lehramt	Physik (Gymnasium) 1.	5.	Wahlpflichtmodul	Benotet	examens-
Gymnasien	Version 2007				relevant
Lehramt	Physik (Gymnasium) 1.	5.	Wahlpflichtmodul	Benotet	examens-
Gymnasien	Version 2012				relevant
Lehramt	Physik (Sekundarschule) 1.	5.	Wahlpflichtmodul	Benotung	erfolgreicher
Förderschulen	Version 2012			ohne Anteil	Abschluss
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Experimentalphysik LA-A

Wünschenswert:

Modul Experimentalphysik LA-B

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	105	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Medienformen:

- Tafelbilder
- Folien / PowerPoint Präsentationen
- Versuchsaufbauten

Modul: Polymere, Wahlpflicht

Identifikationsnummer:

CHE.00033.01

Lernziele:

- Kenntnisse der Chemie der Polymere, insbesondere der Struktur, chemischer und physikalische Prinzipien beim Polymeraufbau (Polymerisationschemie, Polymerisationskinetik, Kettenstatistik), chemische Synthese und Herstellung von Polymeren (radikalische Polymerisation, ionische Polymerisation, Polykondensation), Chemie der Polymere, Thermodynamik von Polymerlösungen und Polymermischungen, Grundlagen der Polymerspektroskopie (IR, RAMAN, NMR), Polymernetzwerke, thermische Eigenschaften von Polymeren, Polymerkristallisation
- chemische und physikalische Eigenschaften von amorphen und semikristallinen Polymeren, Darstellung der Eigenschaften der wichtigsten Polymerklassen, präparative Herstellung und Analytik von Polymeren

Inhalte:

- Grundlagen der Chemie der Polymere und Makromoleküle
- physikalische Eigenschaften ausgewählter Polymere

Verantwortlichkeiten (Stand 10.05.2017):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wolfgang Binder
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 21.03.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Chemie (Gymnasium) 1.	5. oder 7.	Wahlpflichtmodul	Benotung	erfolgreicher
Gymnasien	Version 2007			ohne Anteil	Abschluss
Bachelor	Chemie - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/168
	Version 2006				
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2009			ohne Anteil	
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2019			ohne Anteil	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

sehr gute Kenntnisse der englischen Sprache gute Kenntnisse in der Organischen Chemie

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Übungen	1	15	Wintersemester
Selbststudium	0	15	Wintersemester
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

maximale Teilnehmerzahl: 25

Modul: Praxisseminar: Fallstudien zur Unternehmensgründung

Identifikationsnummer:

WIW.06802.01

Lernziele:

Studierende...

- können die Erfordernisse und Hintergründe von Innovationen, Unternehmensgründungen und Entrepreneurship erklären und herleiten
- können unternehmerische Gelegenheiten identifizieren und bewerten sowie Handlungsmöglichkeiten zu deren Nutzung ableiten
- erkennen die Bedeutung des Geschäftsmodells und des Verwertungsmodells in Bezug auf eine Innovation oder eine Gründungsidee, können Zusammenhänge eigenständig herstellen und Handlungsempfehlungen abgeben
- kennen die Bedeutung von Innovationen im Gründungsprozess sowie deren Auswirkungen auf Geschäftsprozesse und Geschäftsfelder
- reflektieren aktuelle Forschungsansätze zum Innovations- und Gründungsmanagement und setzen sich vertieft damit auseinander
- entwickeln ihre Team- und Konfliktfähigkeit sowie ihre Präsentationsfähigkeit weiter
- verbessern ihre berufliche Entscheidungs- und Sozialkompetenz

Inhalte:

- zentrale Begriffe, Theorien und Methoden des Innovations- und Gründungsmanagements
- Auseinandersetzung mit ausgewählten betriebswirtschaftlichen Fragestellungen im Zusammenhang mit Innovationen und Unternehmensgründungen
- praxisorientierte Erarbeitung von Lösungen zu einer konkreten Problemstellung aus den Bereichen Strategie, Organisation, Marketing oder Finanzen ausgewählter Start-Ups im Team
- theoretische Reflexion der Problemstellungen sowie der erarbeiteten Lösungen

Verantwortlichkeiten (Stand 29.01.2020):

Fakultät	Institut	Verantwortliche/r
Juristische und	Wirtschaftswissenschaftlicher	Dr. Susanne Hübner
Wirtschaftswissenschaftliche	Bereich	
Fakultät -		

Studienprogrammverwendbarkeiten (Stand 14.07.2020):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1. oder 3.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Vorbereitung Präsentation	0	60	Wintersemester
schriftliche Ausarbeitung der Fallstudie	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen block 1:

Modulteilleistungen block 1. Wiederholung		2. Wiederholung	Anteil an Modulnote
1			
Präsentation und	Präsentation und	Präsentation und	50 %
Diskussion	Diskussion	Diskussion	
schriftliche Ausarbeitung	schriftliche Ausarbeitung	schriftliche Ausarbeitung	50 %

Termine für Modulteilleistung Nr. 1:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Termine für Modulteilleistung Nr. 2:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Modul: Prototypen Labor

Identifikationsnummer:

WIW.05856.02

Lernziele:

Studierende ...

- erhalten einen Überblick über den aktuellen Forschungsstand, Modelle und Begrifflichkeiten des Prototyping Ansatzes im Kontext des Innovations- und Gründungsmanagements,
- setzen sich insbesondere mit der sozialen Dimension von Prototypen in Bezug auf die spezifischen interaktiven und organisationalen Erfordernisse an Gründer- und Innovationteams auseinander,
- reflektieren die Bedeutung und Funktion von Prototypen im Innovationsprozess, insbesondere in Bezug auf die Geschäftsmodellentwicklung,
- lernen die Methoden des Ideenmanagements auf konkrete Problemstellungen anzuwenden,
- bewerten Problemlösungspotenziale von Prototypen aus Sicht potenzieller Kunden und anderer Stakeholder,
- entwickeln gemeinsam einen Prototypen und reflektieren den Prozess,
- entwickeln Ansätze zum Management von Unsicherheiten im Gründungs- und Innovationsprozess,
- können Theoriekonzepte auf praktische Fragestellungen des Prototypings im Kontext von Unternehmensgründungen und Innovationsmanagement in KMUs und Großunternehmen anwenden.
- können sich selbständig in aktuelle Forschungsliteratur einarbeiten, wesentliche Inhalte zusammenfassen und kritisch reflektieren,
- entwickeln unternehmerisches Denken und Handeln.

Inhalte:

- Begriffsklärung Prototyping: Typologien, Dimensionen, Funktionen, Prozesse
- Anwendung von Theoriekonzepten auf praktische Fragestellungen der Prototypenentwicklung im Gründungs- und Innovationsprozess
- Entwicklung von prototypischen Lösungsansätzen zu konkreten Problemstellungen im Gründungs- und Innovationsprozess
- Methoden der Analyse und Bewertung von Stakeholderbedürfnissen (insb. Kunden)
- Bewertung von unternehmerischen Chancen / Gelegenheiten
- Führung von interdisziplinären Gründungs- und Innovationsteams
- Social prototyping: Einsatz von Prototyping für erfolgreiche Kommunikation im Team und mit externen Stakeholdern

Verantwortlichkeiten (Stand 19.11.2019):

Fakultät	Institut	Verantwortliche/r
Juristische und	Wirtschaftswissenschaftlicher	Prof. Dr. Anne-Katrin Neyer
Wirtschaftswissenschaftliche	Bereich	
Fakultät -		

Studienprogrammverwendbarkeiten (Stand 16.12.2019):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Human Resources	2. oder 4.	Wahlpflichtmodul	Benotet	5/120
	Management - 120 LP 1.				
	Version 2020				
Master	Betriebswirtschaftslehre	2. oder 4.	Wahlpflichtmodul	Benotet	5/120
	(Business Studies) - 120 LP				
	1. Version 2019				
Master	Erneuerbare Energien - 120	2.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				
Master	Wirtschaftsinformatik	2. oder 4.	Wahlpflichtmodul	Benotet	5/120
	(Business Information				
	Systems) - 120 LP 1.				
	Version 2020				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Praxisseminar	2	30	Sommersemester
Innovationsexperiment	2	30	Sommersemester
Übung (online)	0	15	Sommersemester
Vorbereitung Präsentation	0	30	Sommersemester
Selbststudium	0	45	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen block 1:

Nr.	Modulteilleistungen block	1. Wiederholung	2. Wiederholung	Anteil an
	1			Modulnote
1	Prototyp	Prototyp	Prototyp	70 %
2	Präsentation des Prototyps	Präsentation des Prototyps	Präsentation des Prototyps	30 %

Termine für Modulteilleistung Nr. 1:

1.Termin: bis spätestens 11 Wochen nach Beginn der Vorlesungszeit

1. Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Termine für Modulteilleistung Nr. 2:

1.Termin: semesterbegleitend1.Wiederholungstermin: nach Vereinbarung

2. Wiederholungstermin: binnen eines Jahres nach dem 1. Wiederholungstermin

Modul: Quantenmechanik

Identifikationsnummer:

PHY.05029.01

Lernziele:

- Beherrschung der grundlegenden Konzepte, Methoden und Denkweisen der theoretischen Physik
- Verständnis für die spezifische Rolle der Theorie im Aufbau der Physik, ihre Arbeitsstrategien und Denkformen

Inhalte:

- Grundlagen der Quantenmechanik
- Schrödingers Wellenmechanik
- Wasserstoffatom
- Wechselwirkung mit äußeren Feldern

Verantwortlichkeiten (Stand 08.05.2012):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	PD Dr. Angelika Chassé
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf. Studien-	Modulart	Benotung	Anteil der Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	2.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Quantenmechanik`	2	30	Sommersemester
Seminar `Quantenmechanik`	1	15	Sommersemester
Selbsstudium	0	105	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Struktur der Materie

Identifikationsnummer:

PHY.05951.01

Lernziele:

- Kenntnis, Verständnis und Anwendung der grundlegenden Konzepte der Quantentheorie, der Atom- und Molekülphysik und der Festkörperphysik

Inhalte:

- Prinzipien der Quantenmechanik und einfache Anwendungen (Darstellung physikalischer Größen, Unbestimmtheitsrelation, Energieeigenwertproblem, Kastenpotential, Harmonischer Oszillator, Zentralfeld, Wasserstoffatom)
- Teilchenspin
- Vielteilchensysteme (Pauliprinzip)
- Molekülbindung
- Chemische Bindung und Wechselwirkungen in kondensierter Materie
- Kristallstruktur (Einheitszelle, Kristallgitter, reziprokes Gitter, Brillouinzonen)
- Dynamik des Kristallgitters (Phononen, akustische und optische Phononen)
- Elektronen im Festkörper (Fermi-Gas-Modell, Bloch-Wellen, Bändermodell, fast freie und stark gebundene Elektronen)

Verantwortlichkeiten (Stand 29.01.2015):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Physik	JProf. Dr. Jörg Schilling
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 14.11.2014):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	1.	Wahlpflichtmodul	Benotet	5/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	90	Wintersemester

Studienleistungen:

- Lösung von Übungsaufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens 6 Monate nach Semesterende

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauffolgenden

Studienjahr

Hinweise:

Das Modul kann nur gewählt werden, wenn NICHT das Modul "Festkörperphysik" im Unterwahlbereich Ing belegt wird.

Modul: Technische Chemie (TC)

Identifikationsnummer:

CHE.00028.05

Lernziele:

- Kenntnis und Verständnis der grundlegenden Konzepte und Methoden der Technischen Chemie
- Fähigkeit zur Anwendung der Konzepte auf ausgewählte technologisch wichtige Herstellungsverfahren
- Erwerben von praktischen Erfahrungen im Umgang mit Unit-Operations und ausgewählten Prozess-Stufen
- Vertiefen von Techniken der Erfassung, Verarbeitung, Visualisierung und Bewertung Chemisch-Technischer Prozesse in Teamarbeit und fachwissenschaftliche Präsentation eigener Versuchsergebnisse

Inhalte:

- 1. Vorlesung TC I:
 - Einführung
 - Definition, Aufgabengebiete und historische Entwicklung, Berufliche Aufgaben und Perspektiven, Ausbildung, Zusammenhang und Abgrenzung zu anderen Gebieten, Literatur
 - Technische Chemie an der MLU: Historie und Innovationen, aktu¬elle Forschungs-schwerpunkte und Lehrprogramm
 - Ursprünge und historische Entwicklung der Chemischen Industrie (Anorganische Großchemie: Fallbeispiel Soda-Herstellung, Organische Großchemie: Fallbeispiel: Teerfarben und Pharmazeutika
 - Chemieindustrie und Chemiewirtschaft

Chemische Industrie und Chemische Prozessindustrie, Struktur der Chemischen Industrie, wirtschaftlichen Grundlagen der chemischen Produktion, Umweltschutz

- Rohstoffe und Energie

Kohle, Erdöl und Erdgas (Reichweite und Funktion der fossilen Energieträger), Treibhauseffekt, Alternative "Energiequellen", Wasserstofftechnologie, Nachwachsende Rohstoffe

- Verfahrensentwicklung - vom Labor zur Industrieanlage

Aufgaben - Methoden - Hilfsmittel (Stoff- und Energiebilanzierung (Basic Design), Strömungslehre (Einführung), Wärmeübertragung (Einführung)

- Grundoperationen (Unit Operations)
 - * Mechanische Grundoperationen
 - Zerteilen (Mahlen, Zerstäuben)
 - Agglomeration (Aufbauagglomeration, Pelletieren, Mischeragglomeration, Wirbelschichtagglomeration, Pressagglomeration, Agglomeration in Suspensionen (Flockung))
 - Mechanische Trennprozesse

(Klassieren (Siebklassieren, Hydroklassieren)

Sortieren (nach Eigenschaften)(Klauben (Farbe, Glanz), Dichtesortieren

Sortieren im Magnetfeld

Sortieren im elektrischen Feld, Flotation (Benetzbarkeit)

Flüssigkeitsabtrennung (Sedimentation, Filtration)

Entstaubung (Abscheidung im Zentrifugalfeld, Filtration, Abscheidung im elektrischen Feld, Nassabscheidung)

- Mischen (Mischen von Feststoffen, Mischen von Fluiden (Rühren, Suspendieren, Dispergieren, Begasen)
- Lagern
- * Thermische Grundoperationen

Trocknung

Kristallisation

Destillation, Rektifikation

Extraktion

- Reaktionstechnik

Triebkraft chemischer Reaktionen: optimale Reaktionsbedingungen

Chemische Kinetik (Formalkinetik komplexer Systeme, Kinetik in heterogenen Systemen (Einführung))

Ideale Reaktoren (Klassifikation, Geschlossener Rührkessel (Batch Reactor)

- Idealer Rohrreaktor (Plug Flow Reactor), Offener Rührkessel (Continous Stirred Tank Reactor), Rührkesselkaskade (Multistage Reactor)

Sicherheitsaspekte (thermische Stabilität CSTR)

- 2. Vorlesung TC II:
 - Einführung

Fossile Rohstoffe - Zusammensetzung, Gewinnung, Aufarbeitung (Einführung, Erdöl, Erdgas, Kohle

Fossile Rohstoffe als Basis für Energieträger (Kraftstoffraffinerie, Kraftstoffe auf Basis von Kohle und Erdgas

- X1 Exkurs 1: Katalyse, Zeolithe (Prinzipien der Katalyse, Spielarten der Katalyse, Typen von Katalysatoren, Zeolithe als Beispiel für saure Katalysatoren)
- X1 Exkurs 2: Erneuerbare Energien Möglichkeiten, Grenzen, Beiträge der Chemie

Fossile Rohstoffe als Chemierohstoffe (Der Begriff Grund- oder Plattformchemikalien, Alkane, die petrochemische Raffinerie, der Steamcracker (Prozess, Aufarbeitung der Crackgase und des Crackbenzins)

Acetylen, Synthesegas und Synthesegaschemie (Steamreforming, Methanol-Synthese und Methanol-Folgechemie, Fischer-Tropsch-Synthese)

Technische Chemie nachwachsender Rohstoffe (Stand der Technik und Perspektiven)

- Anorganische Grundchemikalien

Ammoniak

Salpetersäure und Düngemittel

Schwefelsäure

Chlor und Chlorchemie

- Von der Grundchemikalie zum Endprodukt

Technische Chemie der Polymere

Vom Erdöl zum Polymer: ausgewählte Zwischenprodukte

Tenside

Farbstoffe

- Technische Siliziumchemie

Silizium für Halbleiteranwendungen

Silicone

Zement und Glas

- 3. Praktikum
 - praktischer Umgang mit ausgewählten Unit-Operations und Prozess-Stufen

-

- Messwerterfassung und Anwendung statistischer Methoden zur Darstellung und Beurteilung experimenteller Beobachtungen
- Darstellung, Erklärung und Kommentieren der erhaltenen Ergebnisse

Verantwortlichkeiten (Stand 28.04.2021):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Thomas Hahn
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 23.02.2021):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Chemie - 180 LP 1.	5.	Pflichtmodul	Benotet	10/168
	Version 2006				
Bachelor	Chemie - 180 LP 1.	5.	Pflichtmodul	Benotet	10/168
	Version 2013				
Bachelor	Chemie - 180 LP 1.	5. bis 6.	Pflichtmodul	Benotet	10/168
	Version 2021				
Master	Erneuerbare Energien - 120	1. bis 2.	Wahlpflichtmodul	Benotet	10/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Physikalische Chemie I (PC-I)
- Physikalische Chemie II (PC-II)

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	6	90	Winter- und
			Sommersemester
Selbststudium	0	60	Winter- und
			Sommersemester
Praktikum	4	60	Sommersemester
Selbststudium	0	70	Sommersemester
Exkursion	0	20	Sommersemester

Studienleistungen:

- Praktikumsbericht; Teilnahme an Exkursion

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: <u>Technische Chemie und Physikalische Chemie Erneuerbarer</u> <u>Energien</u>

Identifikationsnummer:

CHE.05036.01

Lernziele:

- Kenntnisse alternativer Energieträger, ihrer Möglichkeiten und Grenzen sowie ihres Entwicklungspotentials im Vergleich zu fossilen Energieträgern
- Verständnis der physikalisch-chemischen und technisch-chemischen Grundlagen der Energiewandlung insbesondere im Bereich erneuerbarer Energien

Kenntnisse der technologisch-chemischen Aspekte der Erzeugung, Speicherung und Umwandlung alternativer Energieträger

Inhalte:

- Fossile Energieträger, ihre Verarbeitung und ihre Nutzung
- Perspektiven der Effizienzsteigerung in der Nutzung fossiler Energieträger
- Grundlegende physikalisch-chemische Aspekte der Erzeugung und Umwandlung alternativer Energieträger: Chemie an Grenzflächen, Ladungstransfer an Grenzflächen, elektrochemische, elektrokatalytische und photoelektrokatalytische Prozesse, thermochemische und katalytische Umwandlungsprozesse
- Praktische Aspekte der Erzeugung, Umwandlung und energetische Nutzung nachwachsender Rohstoffe (Biogas, Biodiesel, Bioethanol...)
- Vergasung von Biomasse und Synthesegaschemie
- Brennstoffzellen für mobile und stationäre Anwendungen
- Elektrolyse
- Methanol und Wasserstoff als Energieträger
- Chemische Aspekte der Energiespeicherung in Batterien und Akkumulatoren
- Perspektiven: Photoelektrokatalytische Wasserstofferzeugung, Nutzung von CO2, weitere aktuelle Trends in Forschung und Entwicklung

Verantwortlichkeiten (Stand 09.01.2019):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Michael Bron
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeiten (Stand 08.05.2012):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Master	Erneuerbare Energien - 120	2.	Pflichtmodul	Benotet	10/100
	LP 1. Version 2015				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Sommersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Elektrochemische	3	45	Sommersemester
Energiewandlung`			
Seminar `Elektrochemische	1	15	Sommersemester
Energiewandlung`			
Selbsstudium	0	120	Sommersemester
Vorlesung `Chemie der Energiewandlung	2	30	Wintersemester
an Grenzflächen`			
Seminar `Chemie der Energiewandlung an	1	15	Wintersemester
Grenzflächen`			
Selbststudium	0	75	Wintersemester

Studienleistungen:

- Seminarvortrag

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Prüfungszeitraum B

1. Wiederholungstermin: bis spätestens 6 Monate nach Semesterende

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden