Teorico Estructuras Algebraicas

Javier Vera

October 11, 2024

1	C^{1}	ase	1
	•	1150	- 1

- 2 Clase 2
- 3 Clase 3
- 4 Clase 4
- 5 Clase 5
- 6 Clase 6
- 7 Clase 7
- 8 Clase 8
- 9 Clase 9

10 Clase 10

Corolario 10.0.1

Sea $X \neq \emptyset$ normado, $x \in X$ fijo $x \neq 0$ entonces

(a.)
$$\exists f \in X' \text{ tal que } ||f|| = 1 \quad f(x) = ||x||$$

(b.)
$$||x|| = \sup\{|f(x)| : f \in X', ||f|| = 1\} = \sup A$$

(c.) Si
$$y \in X$$
 con $x \neq y$, $\exists f \in X'$ tal que $f(x) \neq f(y)$

(En particular, X normado, $x \neq 0$ entonces $X' \neq \emptyset$)

Proof. (a.) Por [[Teórico 10 3a0090]] usando $W = \{0\}$

- (b.) Veamos
 - 2.1 a. $\sup A \ge ||x||$
 - 2.2 $|f(x)| \le ||f|| ||x||$ (Vale siempre truco de $\frac{x}{||x||}$) entonces $\sup\{|f(x)| : ||f|| = 1\} \le ||x||$
- (c.) 3.1 (Ejercicio) $W=Sp\{y\}$ y usando [[3a0090]] $\delta>0$ por que $\|-x+y\|\neq 0$ por que son distintos (suponiendo que $x\not\in Sp\{y\}$)
 - 3.2 Si no supusiera eso es trivial $f(x) \neq \alpha f(x) = f(\alpha x)$
 - 3.3 Entonces $f(-x) = \delta$ osea $f(x) = \delta \neq 0$ pero $f|_W \equiv 0$ entonces como $y \in W$ sucede f(y) = 0

11 Clase 11

Corolario 11.0.1

Si $x_1, \ldots, x_n \in X$ son linealmente independientes entonces existe $f_1, \ldots, f_n \in X'$ tal que

$$f_j(x_k) = \delta_{k_j} \quad 1 \le j, k \le n$$

Proof. 1. Si $W = Sp\{x_1, \ldots, x_n\}$ por [[Teórico 10 3a0090]] conseguimos $f_{1,W}, \ldots, f_{n,W} \in W'$ que cumplen lo que queremos. No deberiamos usar $Sp\{x_2, \ldots, x_n\}$ y aplicar teo para conseguir $f_{1,W}$ esta cunpliria segun el teo $f_{1,W}(x_i) = 0$ si $i = 2, \ldots n$.. no me queda claro porque δ seria 1. Pero asi hacemos lo mismo y conseguimos todas las funciones que necesitamos

2. Entonces por [[Teórico 10 8c080d]] existen $f_{i,X} = f_i \in X'$ extensiones

Teorema 11.1

DUDA X' separable entonces X separable

Proof. 1. Sea $B = \{ f \in X' : ||f|| = 1 \} \subseteq X'$

- 2. Como X' es separable $\exists F = \{f_i\} \subseteq B$ tal que F es denso en B (B separable porque X' separable)
- 3. Para $n \in \mathbb{N}$ sea w_n con $||w_n|| = 1$ y $f_n(w_n) \ge \frac{1}{2}$ (Existe por def de ||f|| supremo)
- 4. Sea $W = \overline{Sp}\{w_j\}$ si $W \subsetneq X$ usando Teórico tenemos $f \in B$ tal que $f(w) = 0 \quad \forall w \in W$
- 5. $\frac{1}{2} \le |f_n(w_n)| = |f_n(w_n) f(w_n)| \le ||f_n f|| ||w_n|| = ||f_n f|| \quad \forall n \in \mathbb{N} \text{ (Por que } f(w_n) = 0)$
- 6. Esto contradice la densidad de F en B. Entonces W = X.
- 7. Ahora razonando como en Teórico Parte 2, la vuelta.
- 8. Tomamo un $x \in \overline{Sp}\{w_j\}$ como es clausura existe $Sp\{w_j\}$ tal que x
- 9. Entonces $\exists n_0 \in \mathbb{N}$ tal que $|| || < \frac{\epsilon}{2}$
- 10. Como $Sp\{w_j\}$ entonces c_nw_n y a esta si la podemos aproximar por con coeficientes racionales
- 11. Se puede ver que las combinaciones lineales finitas con coeficientes racionales son densas (y claramente son numerables). Por ende *X* es separable

Observación

X separable no implica X' separable

- 1. no es separable por que vimos que si $p \in [1, \infty)$, $q \in (1, \infty]$ hay un isomorfismo de en con $\frac{1}{p} + \frac{1}{q}$ entonces si fuese separable entonces seria separable
- 2. separable pero es isomorfo isometricamente a que no es separable. Por lo tanto no puede haber isomorfismo entre y pues es separable y no es separable

Teorema 11.2 (Hahn-Banach sobre \mathbb{R})

X espacio vectorial $p: X \to \mathbb{R}$ Teórico Supongamos $\exists W \subseteq X$ subespacio $y f_W: W \to \mathbb{R}$ lineal tal que $f_W(w) \le p(w) \quad \forall w \in W$ Entonces $\exists f_X: X \to \mathbb{R}$ extension de f_W tal que $f_X(x) \le p(x) \quad \forall x \in X$

Proof. X espacio vectorial real, sea E el conjunto de funciones lineal f en X tales que:

- f esta definida en un subespacio D_f con $W \subseteq D_f \subseteq X$
- $f = f_W$ en W
- $f \leq p$ en D_f

- 1. Notar que E es el conjunto de todas las extensiones de f_W a subespacios $D_f \subseteq X$ tales que safistacen el teorema de Hahn-Banach en reales, pero con $X = D_f$ ($E \neq 0$ por que $f_W \in E$)
- 2. Definimos un orden $f < g \iff D_f \subseteq D_g$ y f = g en D_f . Es facil ver que es orden parcial
- 3. Sea $\tilde{E} \subseteq E$ con \tilde{E} totalmente ordenado, osea una cadena de E. Entonces $\forall f,g \in \tilde{E}$ sucede que g es extension de f y $D_f \subseteq D_g$ o viceversa)
- 4. Sea $Z_{\tilde{E}} = \bigcup_{f \in \tilde{E}} D_f$. Es directo ver que $Z_{\tilde{E}}$ es subespacio.
- 5. Sea $x, y \in Z_{\tilde{E}}$ y $\alpha, \beta \in \mathbb{R}$ entonces $x \in D_f$ e $y \in D_g$
- 6. Por ser \tilde{E} totalmente ordenado (o cadena) sin perdida de generalidades $f \leq g$ por lo tanto $D_f \subseteq D_g$ entonces $x, y \in D_g$ como D_g subespacio $\alpha x + \beta y \in D_g$
- 7. Definimos $f_{\tilde{E}}: Z_{\tilde{E}} \to \mathbb{R}$ de la siguiente manera.
- 8. Dado $z \in Z_{\tilde{E}}$ sabemos $\exists \delta \in \tilde{E}$ tal que $z \in D_{\delta}$ entonces $f_{\tilde{E}}(z) = \delta(z)$
- 9. La definicion es buena ya que si $z \in D_{\mu}$ como \tilde{E} es orden total $D_{\mu} \subseteq D_{\delta}$ entonces $\delta = \mu$ coinciden en D_{μ} o viceversa entonces $\delta(z) = \mu(z)$
- 10. Usando el orden total de \tilde{E} y razonando como arriba es facil ver que $f_{\tilde{E}}$ es lineal.
- 11. Mas aun $f_{\tilde{E}} \in E$ (Osea cumple las hipotesis) y ademas $f \leq f_{\tilde{E}}$ en el sentido de la relacion de orden. Entonces $f_{\tilde{E}}$ es cota superior de \tilde{E} por *Lema de Zorn E* tiene un elemento maximal f_{max}
- 12. Suponemos $D_{f_{max}} \neq X$. Por Teórico sucede que f_{max} tiene una extension que esta claramente en E (osea cumple las hipotesis) contradiciendo que f_{max} fuera maximal.

Definición 11.1

Funcional de Minkowski $C \subseteq X$ normado real, con $0 \in C$ y C abierto. El funcional de Minkowski p_C de C esta dado por

$$p_C(x) = \inf\{\alpha 0 : \alpha x \in C\} \quad \forall x \in X$$

Como $0 \in C$ y C abierto p_C esta bien definido.

Observación

DUDA Notar que si $C = B_1(0)$ entonces $p_c(x) = ||x||$ y si $C = B_r(0)$ entonces $p_C(x) = \frac{||x||}{r}$

Proof. 1. Sea α tal que $\|x\| < \alpha$ entonces $\left\|\frac{x}{\alpha}\right\| < \left\|\frac{x}{\|x\|}\right\| = 1$ entonces $C = B_1(0)$

- 2. Entonces $p_C(x) \le ||x||$ (en todo caso menor que α)
- 3. Si fuera $p_C(x) < \|x\|$ por def de infimo $\exists \alpha \in (p_C(x), \|x\|)$ intervalo, tal que $\frac{x}{\alpha} \in C$
- 4. Entonces $\left\| \frac{x}{\alpha} \right\|$ 1 que es absurdo

Lema 11.3

Sean $\emptyset \neq C \subseteq X$ normado real, C abierto y convexo con $0 \in C$. Entonces el Teórico nombrado p_C es sublineal y

- 1. (a) $C = \{x : x \in X, p_C(x) < 1\}$
- 2. (b) $0 \le p_C(x) \le c||x|| \quad \forall x \in X$

Proof. DUDA Sublineal

- 1. Para $x, y \in X$ sean $\alpha p_C(x)$ con $\beta p_C(y)$.
- 2. Sea $r = \alpha + \beta$ entonces $r\alpha$ y $r\beta$ (DUDA no tengo que pedir que ademas sean mayores que 0. Si no en 4. $\frac{\alpha}{r}$ podria ser negativo)

- 3. Entonces como p_C es funcional lineal, multiplico α y llego a que αC . Analogo C.
- 4. Luego como C convexo $\frac{1}{r}(x+y) = \frac{\alpha}{r}\alpha C$ (Notar que $\frac{\alpha}{r} + \frac{\beta}{r} = 1$ con $\frac{\alpha}{r}$, $\frac{\beta}{r} < 1$ por 2. por eso esta en C recordar por convexidad $(1-t)x+ty \in C$)
- 5. entonces $p_C\left(\frac{1}{r}(x+y)\right) < 1$ por lo tanto $p_C(x+y) < r = \alpha + \beta$
- 6. Como α , β son arbitrarios se sigue que $p_C(x+y) \le p_C(x) + p_C(y)$ (DUDA) (Osea p_C cumple desigualdad triangular)
- 7. Y es claro que $p_C(\alpha x) = \alpha p_C(x) \quad \forall \alpha \geq 0$. Mostrando que p_C es Teórico

(b)

- 1. Por otro lado $0 \in C$ abierto entonces $\exists \delta 0$ tal que $||z|| \le \delta$ implica $z \in C$ (Definicion de abierto). Entonces para tales z sucede $p_C(z) \le 1$.
- 2. Si elegimos ahora $z=\frac{\delta}{2}.\frac{x}{\|x\|}$ vale $\|z\|<\delta$ y $\frac{\delta}{2}.\frac{1}{\|x\|}p_C(x)=p_C(z)\leq 1$. (Por sublinealidad)
- 3. Por lo tanto $p_C(x) \le \frac{2}{\delta} ||x||$ entonces vale (b)
- 4. $p_C(x)$ 0 por definicion de Teórico

(a)

- 1. (\subseteq) Si $x \in C$ entonces C para algun $\alpha < 1$ por que $\|\alpha\| = \alpha x\|$ y agrando el α hasta que este metido en una bola centrada en 0 adentro de C que existe por que C es abierto (DUDA pero si $\|x\|$ es muy grane α tiene que ser muy grande quizas mas que 1)
- 2. Entonces $p_C(x) \le \alpha < 1$
- 3. (\supseteq) Si tomamos x tal que $p_C(x) < 1$ entonces $\exists \alpha 0$ tal que $p_C(x) < \alpha < p_C(x) + \epsilon < 1$ tal que αC (Por def de infimo) por lo tanto $\alpha < 1$
- 4. Luego como 0 ∈ C convexo, $x = \alpha \alpha$)0 ∈ C entonces $x \in C$

Teorema 11.4 (Teorema de Separacion (DUDA))

X normado real o complejo. Sean $A, B \subseteq X$ conjuntos disjuntos no vacios y convexos

• (a) Si A abierto $\exists f \in X' \text{ con } \gamma \in R \text{ tal que}$

$$Re(f(a)) < \gamma \le Re(f(b)) \quad \forall a \in A \quad \forall b \in B$$

• (*b*) Si *A* compacto y *B* cerrado entonces $\exists f \in X' \text{ con } \delta, \gamma 0 \text{ tales que }$

$$Re(f(a)) \le \gamma - \delta < \gamma + \delta \le Re(f(b)) \quad \forall a \in A \quad \forall b \in B$$

Proof. (a)

- 1. Supongo X es real. Sean $a_0 \in A$, $b_0 \in B$ y $w_0 = b_0 a_0$ con $C = w_0 + A B$
- 2. Entonces $0 \in C = \bigcup_{b \in B} (w_0 + A b)$ abierto (union de abiertos por que A es abierto y trasladar abiertos es abierto) (DUDA esto no es en espacio vectorial topologico??)
- 3. C convexo veamoslo, sean $a_1-b_1+w_0\in C$ y $a_2-b_2+w_0\in C$

$$\alpha(a_1 - b_1 + w_0) + (1 - \alpha)(a_2 - b_2 + w_0) \tag{1}$$

$$= \alpha a_1 + (1 - \alpha)a_2 - (\alpha b_1 + (1 - \alpha)b_2) + w_0 \tag{2}$$

$$= a_3 - b_3 + w_0 \in C \tag{3}$$

para ciertos $a_3 \in A$, $b_3 \in B$ que existen pues A y B son abiertos

- 1. Como A y B son disjuntos y C conexo $w_0 \notin C$ entonces por Teórico (negandolo) $p_C(w_0) \ge 1$
- 2. Sea $W = Sp\{w_0\}$ y $f_W : W \to \mathbb{R}$ lineal dada por $f_W(\alpha w_0) = \alpha$
- 3. Si $\alpha \geq 0$. $f_W(\alpha w_0) = \alpha \leq \alpha p_C(w_0) = p_C(\alpha w_0)$
- 4. Si $\alpha < 0$ tenemos $f_W(\alpha w_0) \le 0 \le p_C(\alpha w_0)$
- 5. Entonces $f_W \le p_C$ en W por Teórico (dado que estamos en el caso real) $\exists f_X$ extension lineal tal que $f_X(x) \le p_C(x) \quad \forall x \in X$.
- 6. Por Teórico sucede $f_X(x) \le p_C(x) \le c ||x|| \quad \forall x \in X$
- 7. Por otro lado $-f_X(x) = f_X(-x) \le p_C(-x) \le c||-x|| = c||x||$ entonces $f_X(x) \ge -c||x||$
- 8. Entonces $|f_X(x)| \le c||x||$ por lo tanto f_X continua
- 9. Ahora $\forall a \in A \ y \ b \in B$

$$1 + f_X(a) - f_X(b) = f_X(w_0) + f_X(a) - f_X(b) = f(w_0 + a - b) \le p_C(w_0 + a - b) < 1$$

La ultima desigualdad vale por que $w_0 + a - b \in C$

- 10. Entonces $f_X(a) < f_X(b) \quad \forall a \in A \quad \forall b \in B$
- 11. Ahora tomo $\gamma = \inf\{f(b) : b \in B\}$ y tenemos $f_X(a) \le \gamma \le f_X(b)$
- 12. Supongamos existe $a \in A$ tal que $f_X(a) = \gamma$.
- 13. Como *A* es abierto, $\exists \delta 0$ tal que $a + \delta w_0 \in A$
- 14. $f_X(a + \delta w_0) = f_X(a) + \delta f_W(w_0) = \gamma + \delta \gamma$ (Por def de $f_W(w_0)$) que es absurdo por 11.
- 15. Entonce vale (*a*)

(b)

- 1. Como *A* compacto y *B* cerrado. Entonces $\epsilon = \frac{1}{4}\inf\{\|a b\| : a \in A, b \in B\}$ 0
- 2. Sean $A_{\epsilon}=A+B_{\epsilon}(0)$ y $B_{\epsilon}=B+B_{\epsilon}(0)$ (Son bolas las B_{ϵ})
- 3. Es facil ver que $A_{\epsilon} \cap B_{\epsilon} = \emptyset$ (usando desigualdad triangular)
- 4. Ademas A_{ϵ} y B_{ϵ} son abiertos por que son union de abiertos $A_{\epsilon} = \bigcup_{a \in A} a + B_{\epsilon}(0)$
- 5. Y son convexos (Sale similas a convexidad de C)
- 6. Luego vale (a) con A_{ϵ} y B_{ϵ} en lugar de A y B.
- 7. Sea $\delta=\frac{\epsilon}{2\|w_0\|}$ entonces $a+\delta w_0\in A_\epsilon$. Pues $\delta w_0\in B_{\frac{\epsilon}{2}}(0)$
- 8. Entonces $f_X(a) = f(Xa + \delta w_0) \delta f_W(w_0) \le \gamma \delta$ (Recordar $f_W(w_0) = 1$)
- 9. Analogamente $\gamma + \delta \leq f(b) \quad \forall b \in B$ entonces vale (b)

12 Clase 12

Definición 12.1

 $H \subseteq X$ normado es hiperplano si

$$H = \{x \in X : f(x) = \gamma\}$$

con $f: X \to \mathbb{F}$ lineal no necesariamente continuo. $f \not\equiv 0$ y $\gamma \in Im(f)$. Dados $A, B \subseteq X$ decimos que H separa A y B sii

$$f(x) \le \gamma \quad \forall x \in A \quad y \quad f(x) \ge \gamma \quad \forall x \in B$$

Y que separa estrictamente sii

$$f(x) \le \gamma - \epsilon \quad \forall x \in A \quad y \quad f(x) \ge \gamma + \epsilon \quad \forall x \in B$$

Observación • El Teorema de Separacion dice que bajo las condiciones de (a) existe hiperplano que separa A y B y bajo las condiciones (b) separa estrictamente

- Si A o B no es convexo (a) del teo no es cierto
- Si A no es comacto (b) en general no es cierto

Observación

Es equivalente llamar hiperplano a $\tilde{H} = x_0 + Ker(f)$ (y en este caso decimos que pasa por x_0) para cierto $f: X \to \mathbb{F}$ lineal tal que $f \not\equiv 0$ pues sea $x_0 \in H$ fijo con $\gamma = f(x_0)$. Entonces si $x \in H$ tenemos

$$x = x - x_0 + x_0$$
 y $f(x - x_0) = f(x) - f(x_0) = 0$

osea $x - x_0 \in Ker(f)$ luego $x \in \tilde{H}$.

Reciprocamente si $x \in \tilde{H}$ entonces $x = x_0 + z$ con f(z) = 0 entonces $f(x) = f(x_0) = \gamma$ osea $x \in H$

Teorema 12.1

 $W \subseteq X$ subespacio. Entonces W es hiperplano que pasa por 0 sii $W \neq X$ y $X = W \oplus Sp\{y\}$ para cualquier $y \in X \setminus W$ *Proof.* (\Rightarrow)

1. Supongamos W hiperplano que pasa por 0 (W=Ker(f)). Como $f\not\equiv 0$ existe $z\in X$ con $f(z)\not\equiv 0$ Osea existe $z\in X\setminus W$ entonces $X\not\equiv W$

- 2. Sea $y \in X \setminus W$ arbitrario entonces $f(y) \neq 0$
- 3. Para $x \in X$ escribo $x = x \beta y + \beta y$ con $\beta = \frac{f(x)}{f(y)}$
- 4. Como $f(x \beta y) = 0$ entonces $x \beta y \in Ker(f) = W$
- 5. Entonces $x \in Sp\{y\} + Ker(f)$ y ademas $W \cap Sp\{y\} = \{0\}$
- 6. Entonces $X = W \oplus Sp\{y\}$

 (\Leftarrow)

1. Si $X = W \oplus Sp\{y\}$ dado $x \in X$ entonces $x = w + \alpha y$.

2. Definimos $f: X \to \mathbb{F}$ dada por $f(x) = \alpha$ es claro que es lineal y que $f \not\equiv 0$ y Ker(f) = W

12.1 El segundo dual, espacios reflexivos, opradores duales

Observación

Sea X normado entonces sabemos que X' es Banach y tambien X'' es Banach

[!proposition] Para cualquier $x \in X$ la aplicacion $F_x : X' \to \mathbb{F}$ dada por $F_x(f) = f(x)$ satisface que $F_x \in X''$ y $||F_x|| = ||x||$

Proof. 1. Sean $\alpha, \beta \in \mathbb{F}$ y $f, g \in X'$ entonces $F_x(\alpha f + \beta g) = (\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x) = \alpha F_x(f) + \beta F_x(g)$ entonces F_x es lineal

- 2. Ademas $|F_x(x)| = |f(x)| \le ||x|| ||f|| = k||x||$ entonces F_x es continua por lo tanto $F_x \in B(X', \mathbb{F}) = X''$
- 3. $||x|| = \sup\{|f(x)| : ||f|| = 1\} = \sup\{|F_x(f)| : ||f|| = 1\} = ||F_x||$ (El ultimo igual de definición de norma en $B(X', \mathbb{F})$) (El primer igual es por (2.) Teórico

Definición 12.2

Para X normado definimos $J_X: X \to X''$ por $J_X x = J_X(x) = F_X$ osea $F_X(f) = J_X(x)(f) = f(x) \quad \forall x \in X \quad \forall f \in X'$. (Es claro que J_X es lineal)

Corolario 12.1.1

 $J_X: X \to X''$ es una isometria. En particular:

- 1. X es isometricamente isomorfo a un subconjunto de X'' (de hecho a $I_X(X)$)
- 2. X es isometricamente isomorfo a un suconjunto denso de un Banach

Proof. DUDA

- 1. Inyectiva es por ser una isometria. Sobreyectiva es por que $J_X(X) = Im(J_X)$
- 2. Como X'' es Banach entonces $\overline{I_X(X)}$ es Banach (por ser cerrado en un Banach)

Observación

Si X no es Banach entonces $J_X(X)$ no es Banach por que son isometricamente isomorfos por lo tanto $J_XX \neq X''$. Pues X'' es Banach

Definición 12.3

Reflexivo Si $J_X(X) = X''$ decimos que X es reflexivo (Luego normado y reflexivo entonces Banach). Osea X reflexivo sii $\forall \psi \in X'' \quad \exists x_{\psi} \in X \text{ tal que } \psi = J_X(x_{\psi}). \text{ (Osea } \psi(f) = J_X(x_{\psi})(f) = f(x_{\psi}) \quad \forall f \in X' \text{ (DUDA Osea si } J_X \text{ es sobre??)}$

Teorema 12.2 1. Si X es normado con dim $X = n < \infty$ entonces X es reflexivo

2. Si H es Hilbert entonces H es reflexivo

Proof. DUDA

- 1. Como dimension de X es finita sabemos que dim $X = \dim X' = \dim X''$ (DUDA Por teorema pasado cual??) y como $J_X : X \to X''$ lineal e inyectiva (por ser isometria) entonces es sobre
- 2. Por Teórico tenemos que $T_{\mathcal{H}}: \mathcal{H} \to \mathcal{H}'$ dada por $T_{\mathcal{H}}(y) = f_y \operatorname{con} f_y(x) = (x, y)$ es biyeccion. Y \mathcal{H}' es Hilbert con

$$(T_{\mathcal{H}}(z), T_{\mathcal{H}}(y))_{\mathcal{H}'} = (y, z)_{\mathcal{H}} \quad (I)$$

3. Ahora como \mathcal{H}' es Hilbert entonces re aplicando teorema $T_{\mathcal{H}'}:\mathcal{H}'\to\mathcal{H}''$ dada por $T_{\mathcal{H}'}(g)=\psi_g$ con

$$T_{\mathcal{H}'}(g)(f) = \psi_g(f) = (f, g)_{\mathcal{H}'} \quad (II)$$

es biveccion (v \mathcal{H}'' es Hilbert)

4. En particular si $f \in \mathcal{H}'$ y $\psi \in \mathcal{H}''$ entonces $\exists ! x, y \in H$ tales que $f = T_{\mathcal{H}}x$ y $\psi = T_{\mathcal{H}'}(T_{\mathcal{H}}y)$ (Unicos por que [[Teórico nos dice que son biyectivas, para la parte de ψ seria usar dos veces biyectividad)

5. Ahora dado $\psi \in \mathcal{H}''$ y $f \in \mathcal{H}'$ tenemos

$$\begin{split} J_{\mathcal{H}}(y)(f) &= f(y) = (y,x)_{\mathcal{H}} \\ &= (T_{\mathcal{H}}(x),T_{\mathcal{H}}(y))_{\mathcal{H}'} \\ &= (f,T_{\mathcal{H}(y)})_{\mathcal{H}'} \\ &= T_{\mathcal{H}'}(T_{\mathcal{H}}(y))(f) \\ &= \psi(f) \end{split} \qquad \begin{array}{l} \text{(Por Riesz-Frechet)} \\ \text{(Por def de } f) \\ \text{(Por (II))} \\ \forall f \in \mathcal{H}' \text{ (Por def de } \psi) \\ \end{array}$$

6. Osea $\psi = J_{\mathcal{H}}(y)$. Luego $J_{\mathcal{H}}$ es sobreyectiva (DUDA Por?? si y=0 no es sobre) entonces \mathcal{H} es [[Teórico

Teorema 12.3

X Banach entonces *X* reflexivo sii *X'* reflexivo ($\iff J_{X'}: X' \to X'''$ es sobre)

Proof. DUDA (\Rightarrow)

- 1. Sea $\rho \in X'''$ como $\rho : X'' \to \mathbb{F}$ y $J_X : X \to X''$. Entonces $f = \rho \circ J_X \in X'$ pues ambos son lineales y continuas.
- 2. Sea $\psi \in X''$ como X reflexivo $\exists x \in X$ tal que $\psi = J_X(x)$ osea $\psi(f) = (J_X x)(f) = f(x) \quad \forall f \in X'$
- 3. $(J_{X'}(f))(\psi) = \psi(f) = f(x) = \rho \circ J_X(x) = \rho(\psi)$ (Recordar $J_{X'}(f)$ es el funcional evaluar en f)
- 4. Osea $\rho = I_{X'}(f)$ y $I_{X'}$ es sobre entonces X' es reflexivo

 (\Leftarrow)

- 1. Supongamos X' reflexivo pero $\exists \tilde{x} \in X'' \setminus J_X(X)$. (Osea negar que X sea refelxivo)
- 2. X es Banach y entonces $J_X(X)$ tambien (pues son isomorfos [[Teórico y $J_X(X) \subseteq X''$ que es Banach y por lo tanto es $J_X(X)$ es cerrado (El X'' es metrico?)
- 3. Por [[Teórico ($W=J_X(X)$ y tenemos $\tilde{x}\in X''\setminus J_X(X)$ pero cumple? $\delta 0$) (DUDA) Existe $k\in X'''$ tal que $k(\tilde{x})\neq 0$ y $k(J_X(x))=k|_{J_Y(X)}=0 \quad \forall x\in X$
- 4. Ademas como X' es reflexivo $J_{X'}: X' \to X'''$ es sobre en particular $\exists g \in X'$ tal que $k = J_{X'}(g)$ osea $k(\psi) = (J_{X'}(g))(\psi) = \psi(g) \quad \forall \psi \in X''$ (Recordar $J_{X'}(f)$ es el funcional evaluar en f)
- 5. Luego $g(x) = (J_X(x))(g) = k(J_X(x)) = 0 \quad \forall x \in X$. osea $g \equiv 0$.
- 6. Pero como $\tilde{x} \in X''$ por 4. tenemos $\tilde{x}(g) = k(\tilde{x}) \neq 0$ (esto ultimos por 3.). Absurdo por que $g \equiv 0$ y \tilde{x} es funcional lineal

Teorema 12.4

X reflexiva, $Y \subseteq X$ subespacio vectorial cerrado entonces Y reflexivo

Proof. 1. Y reflexiva $\iff \forall \psi \in Y''$ existe $y_{\psi} \in Y$ tal que $J_Y(y_{\psi}) = \psi$ osea

$$\psi(g) = J_Y(y_{\psi})(g) = g(y_{\psi}) \quad \forall g \in Y' \quad (a)$$

- 2. Como [[Teórico dice que $g = f|_Y$ para algun $f \in X'$. (osea para toda $g \in Y'$ existe extension $f \in X'$ por ser extension $f|_Y = g$)
- 3. Entonces (a) es equivalente a ver que dado un $\psi \in Y''$ existe $\psi_{\psi} \in Y$ tal que

(I)
$$f|Y(y\psi) = \psi(f|_Y) \quad \forall f \in X'$$

4. Definimos $\phi: X' \to \mathbb{F}$ dada por

(II)
$$\phi(f) = \psi(f|_{Y})$$

- 5. Resulta que $|\phi(f)| \le ||\psi|| ||f|| \le ||\psi|| ||f|| = k||f||$ osea es continua ergo $\phi \in X''$
- 6. Como X reflexiva $\exists x_{\phi} \in X$ tal que $J_X(x_{\phi}) = \phi$ osea

(III)
$$f(x_{\phi}) = \phi(f) \quad \forall f \in X'$$

- 7. Veamos que $x_{\phi} \in Y$. Supongamos que no. Como Y cerrado por [[Teórico existe $h \in X'$ tal que $h \equiv 0$ en Y y $h(x_{\phi}) \neq 0$ pero $0 \neq h(x_{\phi}) = \phi(h) = \phi(h|_{Y}) = 0$ (la igualdad del medio vale por (II), (III) y la ultima por ser ϕ lineal y $h|_{Y} \equiv 0$)
- 8. Pero entonces dicho $x_{\phi} \in Y$ que estabamos buscando. Por que usando (II), (III)

$$f|_{Y}(x)(\phi) = f(x_{\phi}) = \phi(f) = \psi(f|_{Y}) \quad \forall f \in X'$$

Definición 12.4

Anuladores X normado $\emptyset \neq W \subseteq X$ y $\emptyset \neq Z \subseteq X'$ defino los anuladores de W y Z como

$$W^{\circ} = \{ f \in X' : f(x) = 0 \quad \forall x \in W \}$$

$$^{\circ}Z = \{x \in X : f(x) = 0 \quad \forall f \in Z\}$$

Lema 12.5

X normado $\emptyset \neq W_1 \subseteq W_2 \subseteq X$ $y \emptyset \neq Z_1 \subseteq Z_2 \subseteq X'$ entonces

- 1. $W_2^{\circ} \subseteq W_1^{\circ} \quad {}^{\circ}Z_2 \subseteq {}^{\circ}Z_1$
- 2. $W_1 \subseteq^{\circ} (W_1^{\circ})$ $Z_1 \subseteq ({}^{\circ}Z_1)^{\circ}$
- 3. W_1° , ${}^{\circ}Z_1$ son subespacios cerrados

Proof. ejercicio

Teorema 12.6

X normado $W \subseteq X$ subespacio cerrado $Z \subseteq X'$ subespacio cerrado entonces

- (a.) $W = {}^{\circ}(W^{\circ})$
- (b.) Si X reflexivo $Z = ({}^{\circ}Z)^{\circ}$

Proof. (a.) 1. Sabemos que $W \subseteq {}^{\circ}(W^{\circ})$

- 2. Supongamos $p \in W$
- 3. Como W cerrado por [[Teórico 103a0090]] existe $f \in X'$ tal que $f(p) \neq 0$ y $f \equiv 0$ en W osea $f \in W^{\circ}$
- 4. Entonces $p \notin {}^{\circ}(W^{\circ})$. Absurdo
- (b.) 1. Sabemos $Z \subseteq ({}^{\circ}Z)^{\circ}$. Supongamos que $\exists g \in ({}^{\circ}Z)^{\circ} \setminus Z$
 - 2. Como en parte 1. sabemos $\exists \psi \in X''$ tal que $(I) \psi(g) \neq 0$ y $\psi(f) = 0 \quad \forall f \in Z$
 - 3. Como X reflexivo $\exists q \in X$ tal que $\psi = J_X(q)$ osea (II) $\psi(f) = f(q)$ $\forall f \in X'$
 - 4. Luego $f(q) = \psi(f) = 0 \quad \forall f \in \mathbb{Z}$ osea que $q \in {}^{\circ}\mathbb{Z}$
 - 5. Pero $g(q) = \psi(g) \neq 0$ por (I), (II) entonces $q \notin ({}^{\circ}Z)^{\circ}$. Absurdo

I ama 12 7

Sea $V = \{a = \{a_n\} \in \ell^1 : \sum_{n=1}^{\infty} (-1)^n a_n = 0\}$ y c_0 subsucesiones de ℓ^{∞} que convergen a 0. Sea

$$T_{c_0}:\ell^1\to c_0'$$

dada por $T_{c_0}(a) = f_a$. Donde para $x = \{x_n\} \in c_0$ sucede $f_a(x) = \sum_{n=1}^{\infty} a_n x_n$. ¿Sea $Z = T_{c_0}(V)$ entonces V y Z son subespacios propios y cerrados de ℓ^1 y c'_0 respectivamente y ademas $({}^{\circ}Z)^{\circ} = c'_0(\supsetneq Z)$ y T_{c_0} es isomorfismo

13 Clase 13

Corolario 13.0.1

Los espacios c_0 y ℓ^{∞} no son reflexivos

Proof. 1. Vimos en Lema 12.7 que $({}^{\circ}Z)^{\circ} = c_0' \neq Z$

- 2. Luego c_0 no puede ser reflexivo por Teorema 12.6 b)
- 3. Ademas como c_0 cerrado en ℓ^{∞} y no es reflexivo tampoco puede serlo ℓ^{∞} por Teorema 12.4

Teorema 13.1

 $X, Y \text{ normados }, T \in B(X, Y) \text{ entonces } \exists !T' \in B(Y', X') \text{ tal que}$

$$T'(f)(x) = f(Tx) \quad \forall f \in Y' \quad \forall x \in X$$

Proof. 1. Para $f \in Y'$ definimos $T'f = f \circ T$.

- 2. Como T, f son lineales y continuas T'f lo es entonces $T'(f) \in X'$
- 3. Ademas $T': Y' \longrightarrow X$ cumple que

$$T'(f)(x) = f(Tx) \quad \forall x \in X, \forall f \in Y'$$

- 4. Si hubiera otra $S_iB(Y',X')$ tal que S(f)(x)=f(Tx) $\forall x\in X\forall y\in Y'$ entonces S(f)=T'(f) $\forall f\in Y'$ osea S=T'
- 5. Veamos que es lineal y continua. Sean f, g_iY' , α , $\beta \in \mathbb{F}$ entonces

$$(\alpha f + \beta g) \circ T = \alpha (f \circ T) + \gamma (g \circ T)$$

Osea $T'(\alpha f + \beta g) = \alpha T'(f) + \beta (T')g$

6. Ademas $||T(f)|| = ||f \circ T|| = ||f|| ||T||$. Por lo tanto T es continua (mas aun $||T'|| \le ||T||$)

Proposición 1

X, Y normados $T \in B(X, Y)$ entonces

- 1. |T'| = ||T||
- 2. $Ker(T') = (ImT)^{\circ}$
- 3. $Ker(T) = \circ (ImT)$

Proof. 1. 1.1 Por Corolario Hahn Banach Corolario $\exists f \in Y'$ tal que f(Tx) = ||Tx|| ||y|| ||f|| = 1

- 1.2 Entonces $||Tx|| = f(Tx) = T(f)(x) \le ||T'|| ||f|| ||x||$ y sabemos ||f|| = 1. Por lo tanto $||T|| \le ||T'||$ (La otra desigualdad vale por Desigualdad)
- 2. 2.1 (\subseteq) Sea $f \in KerT'$ y $z \in ImT$ entonces $\exists x \in X$ tal que z = Tx
 - 2.2 Luego f(z) = f(Tx) = T'(f)(x) = 0
 - 2.3 (\supseteq) Sea $f \in (ImT)^{\circ}$ entonces $\forall x \in X$ sucede T(f)(x) = f(Tx) = 0 pues $Tx \in ImT$
 - 2.4 Osea T(f) = 0 por lo tanto $f \in KerT'$
- 3. (Ejercicio)

Teorema 13.2

X, Y normados $T \in B(X, Y)$

- 1. Si T es isomorfismo entonces T' es isomorfismo con $(T')^{-1}=(T^{-1})'$. (En particular si son isomorfos X e Y tambien lo son X' e Y')
- 2. Si T isomorfismo isometrico entonces T' isomorfismo isometrico

Proof. 1. 1.1 Sea $S = T^{-1}$ entonces $S \in B(Y, X)$ y ademas esta bien definida $S' \in B(X', Y')$ por Teorema 13.1 1.2 Ahora $\forall x \in X, f \in X'$ tenemos

$$T'(S'(f))(x) = S'(f)(Tx) = f(S(Tx)) = f(x)$$

Osea T(S'(f)) = f por lo tanto $T' \circ S' = Id_{X'}$

- 1.3 Analogamente vemos $S' \circ T' = Id$
- 2. 2.1 por (1.) basta ver que T' es isometria.
 - 2.2 Por una parte $||T'(f)(x)|| = ||f(Tx)|| \le ||f|| ||T|| ||x||$ (Con ||T|| = 1 por ser isometria)
 - 2.3 Entonces $||T'(f)|| \le ||f||$
 - 2.4 Por otro lado $\forall \epsilon > 0 \ \exists y \in Y \ \text{con} \ \|y\| = 1 \ \text{tal que} \ |f(y)| \ge \|f\| \epsilon \ \text{(Por def de supremo)}$
 - 2.5 Sea $x = T^{-1}y$ entonces ||x|| = 1 (Pues $1 = ||y|| = ||T(T^{-1}y)|| = ||Tx|| = ||x||$)
 - 2.6 Por lo tanto $||T'(f)|| \ge |T'(f)(x)| = |f(Tx)| = |f(y)| \ge ||f|| \epsilon$
 - 2.7 Mostrando que ||T'(f)|| = ||f||