

Preet Middle of Pyramid - Test # 33 - Some Basic Concepts of Contact Number: 9667591930 / 8527521718 Chemistry

1.	(1) 17.4
Which has maximum number of molecules?	(2) 16.2
(a) 7g N ₂	(3) 16.5
(b) 2g H ₂	(4) 17
(c) 16g NO ₂	7.
(d) 16g O ₂	$KClO_3$ on heating decomposes to KCl and O_2 . The volume of O_2 at STP liberated by 0.1 mole KClO ₃ is
2.	_
What volume of oxygen gas (O_2) measured at $0^{\circ}\mathrm{C}$ and 1	(1) $4.36 L$
atm, is needed to burn completely 1L of propane gas (C_3H_8) measured under the same conditions?	(2) $3.36 L$
	(3) $2.36 L$
(a) 7L	(4) none of these
(b) 6L	8.
(c) 5L (d) 10L	At S.T.P. the density of CCl ₄ vapour in g/L will be nearest to [CBSE PMT 1988]
3.	(1) 6.84
The product of atomic mass and specific heat of a metal	(2) 3.42
is approximately 6.4. This was given by: (a) Dalton's law	(3) 10.26
(b) Avogadro's law	(4) 4.57
(c) Newton's law (d) Dulong Petit's law	9.
4.	4.4 g of an unknown gas occupies 2.24 litres of volume at
A gas is found to have the formula (CO)x. Its VD is 70.	NTP. The gas may be [MP PMT 1995]
The value of x must be:	(1) Carbon dioxide
(a) 7	(2) Carbon monoxide
(b) 4	(3) Oxygen
(c) 5	(4) Sulphur dioxide
(d) 6	10.
5.	The mass of carbon present in 0.5 mole of $K_4[Fe(CN)_6]$ is
2 gm Iron pyrite (FeS ₂) is burnt with O_2 to form Fe ₂ O_3 and SO ₂ . The mass of SO ₂ produced is (Fe=56, S=32,	(1) 1.8 g
O=16)	(2) 18 g
1. 2 gm	(3) 3.6 g
2. 2.13 gm	(4) 36 g
3. 4 gm	11.
4. 4.26 gm	The number of moles of oxygen in one litre of air
6.	containing 21% oxygen by volume under standard conditions is [CBSE PMT 1995]
Oxygen contains 90% O^{16} and 10% O^{18} . Its atomic mass is [KCET 1998]	(1) 0.186 mole Pa

Page: 1

Middle of Pyramid - Test # 33 - Some Basic Concepts of Chemistry Contact Number: 9667591930 / 8527521718

- (2) 0.21 mole
- (3) 0.0093 mole
- (4) 2.10 mole

12.

The empirical formula of an organic compound containing carbon and hydrogen is CH_2 . The mass of one litre of this organic gas is exactly equal to that of one litre of N_2 . Therefore, the molecular formula of the organic gas is **[EAMCET 1985]**

- $(1) C_2 H_4$
- $(2) C_3 H_6$
- $(3) C_6 H_{12}$
- $(4) C_4 H_8$

13.

An organic compound containing C, H and N gave the following on analysis: C = 40%, H = 13.3% and N = 46.67%. Its empirical formula would be **[CBSE PMT 1999, 2002]**

- (1) CHN
- (2) C_2H_2N
- (3) CH₄N
- (4) C_2H_7N

14.

The volume of oxygen at STP required to completely burn 30 *ml* of acetylene at STP is **[Orissa JEE 1997]**

- (1) 100 ml
- (2) 75 ml
- (3) 50 ml
- (4) 25 ml

15.

If Avogadro number N_A , is changed from 6.022 x 10^{23} mol⁻¹ to 6.022 x 10^{20} mol⁻¹ this would change

- (a) the definition of mass in units of grams
- (b) the mass of one mole of carbon
- (c) the ratio of chemical species to each other in a balanced equation
- (d) the ratio of elements to each other in a compound

 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of the solution is

- (a) 0.02 M
- (b) 0.01 M
- (c) 0.001 M
- (d) $0.1 \, \text{M}$

17.

The maximum amount of BaSO₄ precipitated on mixing 20mL of 0.5 M BaCl₂ with 20 mL of 1 M H₂SO₄ is:

- 1. 0.25 mole
- 2. 0.5 mole
- 3. 1 mole
- 4. 0.01 mole

18.

Insulin contains 3.4% sulphur: The minimum molar mass of insulin is:

- 1.941 g
- 2. 1000 g
- 3. 841 g
- 4. 1041 g

19.

1.60~g of a metal were dessolved in HNO_3 to prepare its nitrate. The nitrate on strong heating gives 2~g oxide. The equivalent mass of metal is:

- 1, 16
- 2.32
- 3.48
- 4. 12

20.

100 ml each of 0.5 N NaOH, N/5 HCl and N/10 $\rm H_2SO_4$ are mixed together. The resulting solution will be

- 1. Acidic
- 2. Alkaline
- 3. Neutral
- 4. Can't be determine

21.

An element A (at. wt. = 75) and B (at. wt. = 25) combine to form a compound contains 75% A by weight. The formula of the compound will be

- 1. A₂B
- 2. A_3B
- $3. AB_3$
- 4. AB

22.

The ratio of number of atoms in 4.4 gm CO

neet Middle of Pyramid - Test # 33 - Some Basic Concepts of Contact Number: 9667591930 / 8527521718 Chemistry

2 and 1.7 gm NH3 is

1.1:1

2.3:4

3.4:3 4. 1:2

23.

 $2\,\mathrm{SO}_2 \ + \ \mathrm{O}_2 \ o \ 2\,\mathrm{SO}_3$, 6.4 gm SO_2 and 3.2 gm O_2 to form SO₃. How much maximum mass of SO₃ is formed?

1. 32 gm

2. 16 gm

3.8 gm

4. 4 gm

24.

A metallic nitride(M_3N_2) contains 20% nitrogen. Equivalent weight of metal is

1.37.33

2.18.67

3. 112

4.56

25.

The weight of iron which will be converted into oxide (Fe_3O_4) by the action of 18 gm of steam of it will be (at.

wt. of Fe = 56)

1. 168 gm

2.84 gm

3. 42 gm

4. 21 gm

26.

Calculate the molality of 20% CaCO₃ solution is (by mass). The density of solution is 1.2 gm/ml

1. 1.25 m

2. 2.5 m

3. 2.08 m

4. 1.5 m

27.

A mixture of methane and ethene in the molar ratio of x: y has a mean molar mass of 20. What would be the mean molar mass. if the gases are mixed in the molar ratio of y : x?

(A) 22

(B) 24

(C) 20.8

(D) 19

28.

the number of water molecules present in two drop of water at room temperature is:

1. 12.046×10^{19}

2. 1.084×10^{18}

3. 4.84×10^{17}

4. 6.023×10^{23}

29.

Carbon and oxygen combine to form two oxides, carbon monoxide and carbon dioxide in which the ratio of the weights of carbon and oxygen is respectively 12:16 and 12:32. These figures illustrate the:

1. Law of multiple proportions

2. Law of reciprocal proportions

3. Law of conservation of mass

4. Law of constant proportions

30.

The formula of an acid is HXO_2 . The mass of 0.0242 moles of the acid 1.657 g. What is the atomic weight of

1. 35.5

2. 28.1

3. 128

4, 19.0

31.

A 6.58 g sample of the hydrates $Sr(OH)_2$ xH₂O is dried in an oven to give 3.13 g of anhydrous $Sr(OH)_2$. What is the value of x? (Atomic weights : Sr=87.60, O=16.0, H=1.0)

1. 8

2. 12

3. 10

4. 6

32.

A sample of phosphorus that weights 12.4 g exerts a pressure 8 atm in a 0.821 litre closed vessel at 527°C. The molecular formula of the phosphorus vapour is:

1. P_2

2. P_4

3. P_6

neet Middle of Pyramid - Test # 33 - Some Basic Concepts of Contact Number: 9667591930 / 8527521718 Chemistry

4. P₈

33.

Phosphoric acid (H₃ PO₄) prepared in a two step

(1)
$$P_4 + 5O_2 \rightarrow P_4O_{10}$$

(2)
$$P_4O_{10} + 6H_2O \rightarrow 4H_3 PO_4$$

We allow 62g of phosphorus to react with react with excess oxygen which form P₄O₁₀ in 85% yield. In the step (2) reaction 90% yield of $H_3 PO_4$ is obtained. Produced mass of H_3 PO₄ is:

- 1. 37.485 g
- 2. 149.949 g
- 3. 125.47 g
- 4. 564.48 g

34.

What volume of HCl solution of density 1.2 g/cm³ and containing 36.5% by weight HCl, must be allowed to react with zinc(Zn) in order to liberate 4.0 g of hydrogen?

- 1. 333.33 mL
- 2. 500 mL
- 3. 614.66 mL
- 4. None of these

35.

What is the molar mass of diacidic organic Lewis base (B), if 12 g of chloroplatinate salt $(BH_2 PtCl_6)$ on ignition produced 5 gm residue of Pt?

- 1. 52
- 2. 58
- 3, 88
- 4. None of these

36.

What volume of $O_2(g)$ measured at 1 atm and 273 K will be formed by action of 100 mL of 0.5 N KMnO4 on hydrogen peroxide in an acid solution? The skeleton equation for the reaction is

 $\mathrm{KMnO_4} + \mathrm{H_2SO_4} + \mathrm{H_2O_2}$

$$ightarrow K_2SO_4 + MnSO_4 + O_2 + H_2O$$

- 1. 0.12 litre
- 2. 0.028 litre
- 3. 0.56 litre

4. 1.12 litre

37.

Cisplatin, an anticancer drug, has the molecular formula $Pt(NH_3)_2$ Cl_2 . What is the mass (in gram) of one molecule? (Atomic weights: Pt=195, H=1.0, N=14, Cl=35.5)

- 1. 4.98×10^{-21}
- 2. 4.98×10^{-22}
- 3. 6.55×10^{-21}
- 4. 3.85×10^{-22}

38.

The conversion of oxygen to ozone occurs to the extent of 15% only. The mass of ozone that can be prepared from 67.2 L oxygen at 1 atm and 273 K will be:

- 1. 14.4 gm
- 2.96 gm
- 3.640 gm
- 4. 64 gm

39.

Average atomic mass of magnesium is 24.31 a.m.u. This magnesium is compound of 79 mole% of 24Mg and remaining 21 mole % of $_{25}{
m Mg}$ and $_{26}{
m Mg}$. Calculate mole% of 26Mg.

- 1. 10
- 2. 11
- 3. 15
- 4. 16

40.

Calculate the % of free SO_3 in oleum (a solution of SO_3 in $H_2 SO_4$) that is labelled 109% $H_2 SO_4$.

- 1.40
- 2.30
- 3.50
- 4. None

41.

Suppose two elements X and Y combine to form two compounds XY_2 and X_2Y_3 when 0.05 mole of XY_2 weighs 5 g while 3.011 $\!\times\!10^{23}$ molecules of X_2Y_3 Page: 4

reet Middle of Pyramid - Test # 33 - Some Basic Concepts of Contact Number: 9667591930 / 8527521718 Chemistry

weighs 85 g. The atomic masses of x and y are respectively:

- 1. 20, 30
- 2. 30, 40
- 3. 40, 30
- 4. 80, 60

42.

The impure 6 g of NaCl is dissolved in water and then treated with excess of silver nitrate solution. The weight of precipitate of silver chloride is found to be 14 g. The % purity of NaCl solution would be:

- 1. 95%
- 2. 85%
- 3. 75%
- 4. 65%

43.

60 mL of a mixture of nitrous oxide and nitric oxide was exploded with excess of hydrogen. If 38 mL of N_2 was formed, calculate the volume of each gas in the mixture. All measurements are made at constant P and T.

- 1.20 ml +30 ml
- 2. 44 ml + 16 ml
- 3. 10 ml+40 ml
- 4.25 ml +25 ml

44.

The haemoglobin from the red blood corpuscles of most mammals contains approximately 0.33% of iron by mass. The molar mass of haemoglobin as 67,200. The number of iron atoms in each molecule of haemoglobin is (atomic mass of iron=56):

- 1. 2
- 2. 3
- 3. 4
- 4. 5

45.

Volume strength of 1 M solution of H_2O_2 is:

- 1. 11.2 2. 22.4
- 3. 10.8 4. 21.6