2 Лабораторная работа №2

«Исследование полупроводниковых диодов и диодных схем»

2.1 Цель работы

Экспериментальные исследования характеристик полупроводниковых диодов и схем преобразования переменного тока в постоянный и схем стабилизации напряжений. Приобретение практических навыков измерения электрических параметров и регистрации временных диаграмм с помощью электро- и радиоизмерительных приборов.

2.2 Постановка задачи

- 2.2.1 Нарисовать схему снятия ВАХ диода в рабочем окне симулятора Proteus. Исследовать характеристику выпрямительного диода (англ. Rectifiers Diode) типа 1N4001 при прямом и обратном включении. В качестве задатчика напряжения на диоде использовать потенциометр RV1 сопротивлением 100 Ом. Величину ограничительного резистора R1 установить равным 20 Ом. Входное напряжение для прямой ветви характеристики 9 В, при измерении зависимости обратного тока входное напряжение 100 В.
- 2.2.2 Изменяя напряжение на диоде снять зависимость ID от UD. Количество точек должно быть не менее 10. При нулевых показаниях миллиамперметра переконфигурировать его на измерения микроампер.
- 2.2.3 Начертить в рабочем окне симулятора схему однополупериодного выпрямителя. В выпрямителе использовать диоды типа 1N4002. Входное напряжение установить равным 50 В. Используемый трансформатор TRAN-2P2S.
- 2.2.4 Снять осциллограммы входного и выходного напряжений без емкостного фильтра и при наличии фильтрующего конденсатора и определить величину пульсаций выходного напряжения.
- 2.2.5 Снять осциллограммы напряжений при изменении фильтрующей емкости от 0,1 мк Φ до 10 мк Φ .
- 2.2.6 Начертить в рабочем окне симулятора схему двухполупериодного выпрямителя. Используемый трансформатор TRAN-1P2S, остальные параметры элементов указаны на схеме.
- 2.2.7 Снять осциллограммы входного и выходного напряжений без емкостного фильтра и при наличии фильтрующего конденсатора.
- 2.2.8 Снять осциллограммы напряжений при изменении фильтрующей емкости от 1 мкФ до 100 мкФ.

- 2.2.9 Составить в области рабочего окна симулятора схему стабилизатора напряжения на основе стабилитрона (англ. Zener Diode). Напряжение стабилизации задается преподавателем.
- 2.2.10 Снять зависимость выходного напряжения стабилизатора при изменении входного напряжения на $\pm 20\%$ при неизменном сопротивлении нагрузки и рассчитать коэффициент стабилизации напряжения.
- 2.2.11 Снять зависимость выходного напряжения при изменении нагрузки на $\pm 20\%$ при неизменном входном напряжении.
 - 2.3 Ход работы
- 2.3.1 В рабочем окне симулятора Proteus нарисованы схемы снятия ВАХ диода при: прямом токе (Рисунок 2.1) и обратном (Рисунок 2.2).

Рисунок 2.1 – Схема снятия ВАХ диода (прямой ток)

Рисунок 2.2 – Схема снятия ВАХ диода (обратный ток)

2.3.2 Результаты снятия продемонстрированы в Таблице 2.1.

Таблица 2.1 – Результаты исследований

No	Сила тока, мА	Напряжение, В		
Прямой ток				
1	0.003	0.22		
2	0.023	0.3		
3	0.17	0.37		
4	0.125	0.45		
5	0.909	0.52		
6	0.605	0.6		
7	2.74	0.65		
8	6.88	0.69		
9	29.2	0.74		
10	44.5	0.76		
Обратный ток				
1	0.06	6.67		
3	0.2	20		
3	0.23	23.3		
4	0.37	36.7		
5	0.42	41.7		
6	0.46	45.8		
7	94.8	50.5		
8	151	50.5		
9	458	50.6		
10	816	50.6		
11	1020	50.6		

2.3.3 В рабочем окне симулятора Proteus нарисована схема однополупериодного выпрямителя (Рисунок 2.3).

Рисунок 2.3 — Схема однополупериодного выпрямителя

2.3.4 Сняты осциллограммы напряжений при наличии фильтрующего конденсатора (Рисунок 2.4) и без такового (Рисунок 2.5).

Рисунок 2.4 — Осциллограмма однополупериодного выпрямителя (с фильтрующим конденсатором)

Рисунок 2.5 — Осциллограмма однополупериодного выпрямителя (без фильтрующего конденсатора)

2.3.5 Сняты осциллограммы напряжений при изменении фильтрующей ёмкости от 0.1 до 10 мк Φ (Рисунки 2.6-2.12).

Рисунок 2.6 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 0.1мк Φ)

Рисунок 2.7 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 0.5мк Φ)

Рисунок 2.8 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 1мк Φ)

Рисунок 2.9 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 2.5мк Φ)

Рисунок 2.10 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 5мк Φ)

Рисунок 2.11 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 7.5мк Φ)

Рисунок 2.12 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 10мкФ)

2.3.6 Составлена схема двухполупериодного выпрямителя (Рисунок 2.13).

Рисунок 2.13 — Схема двухполупериодного выпрямителя

2.3.7 Сняты осциллограммы напряжений при наличии фильтрующего конденсатора (Рисунок 2.14) и без такового (Рисунок 2.15).

Рисунок 2.14 — Осциллограмма двухполупериодного выпрямителя (с фильтрующим конденсатором)

Рисунок 2.15 — Осциллограмма двухполупериодного выпрямителя (без фильтрующего конденсатора)

2.3.8 Сняты осциллограммы напряжений при изменении фильтрующей ёмкости от 1 до 100 мк Φ (Рисунки 2.16-2.22).

Рисунок 2.16 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 1мкФ)

Рисунок 2.17 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 5мкФ)

Рисунок 2.18 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 12мк Φ)

Рисунок 2.19 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 25мк Φ)

Рисунок 2.20 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 50мк Φ)

Рисунок 2.21 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 75мк Φ)

Рисунок 2.22 — Осциллограмма двухполупериодного выпрямителя (при ёмкости фильтрующего конденсатора 100мкФ)

2.3.9 Составлена схема стабилизатора напряжения на основе стабилитрона (Рисунок 2.23).

Рисунок Б.23 – Схема стабилизатора напряжения

2.3.10 Сняты показания приборов при изменении входного напряжения на $\pm 20\%$. Результаты исследования продемонстрированы в Таблице 2.2.

Таблица 2.2 – Результаты исследования

Входное напряжение, В	Выходное напряжение, В	Коэффициент стабилизации
5.75	4.07	3.7522
4.76	4.0	
3.83	3.64	

2.3.11 Сняты показания приборов при изменении сопротивления нагрузки на ±20%. Результаты исследования продемонстрированы в Таблице 2.3.

Таблица 2.3 – Результаты исследования (изменение сопротивления нагрузки)

Сопротивление нагрузки, кОм	Входное	Выходное
	напряжение, <u>В</u>	напряжение, В
2	4.76	4.00
1.58	4.76	3.99
1.28	4.76	3.99
0.9	4.76	3.97
0.48	4.76	3.90

Вывод

При выполнении данной лабораторной работы были получены навыки исследования характеристик полупроводниковых диодов и схем преобразования переменного тока в постоянный и схем стабилизации напряжения. После каждого исследования был сделан определённый вывод:

- 1. Был проведён анализ графика BAX диода, и сделан вывод, что при прямом токе при увеличении напряжения сила тока на диоде возрастает постепенно; при обратном токе при увеличении напряжения сила тока сначала увеличивается медленно, а при определённом значения напряжения наблюдается резкое увеличение силы тока.
- 2. При исследовании осциллограмм одно- и двухполупериодного выпрямителя напряжения был сделан вывод, что двухполупериодный выпрямитель даёт меньше пульсаций и что фильтрующий конденсатор сглаживает график напряжения, а чем больше ёмкость этого конденсатора, тем более сглаженным становится график.
- 3. Стабилизатор на стабилитроне стабилизирует напряжение, то есть при повышении входного напряжения благодаря стабилитрону выходное напряжение увеличивает незначительно, медленно.