$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$

$$\begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix}$$

$$\frac{dN1}{d\xi} = -0.25(1 - \eta)$$

$$\frac{dN1}{d\eta} = -0.25(1 - \xi)$$

$$\frac{dN2}{d\xi} = 0.25(1 - \eta)$$

$$\frac{dN2}{d\eta} = -0.25(1 + \xi)$$

$$\frac{dN2}{d\xi} = 0.25(1 - \eta)$$

$$\frac{dN3}{d\xi} = 0.25(1+\eta)$$

$$\frac{dN3}{d\xi} = 0.25(1+\eta)$$

$$\frac{dN4}{d\xi} = -0.25(1+\eta)$$

$$\frac{dN1}{dn} = -0.25(1 - \xi)$$

$$\frac{dN2}{d\eta} = -0.25(1+\xi)$$

$$\frac{dN3}{d\eta} = 0.25(1+\xi)$$

$$\frac{dN4}{d\eta} = 0.25(1 - \xi)$$

$$\begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix} = \frac{1}{\det[J]} \begin{bmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_i}{\partial \xi} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix} = 6400 \begin{bmatrix} 0,0125 & 0 \\ 0 & 0,0125 \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}$$

det[j] = 0,000156251/det[i] = 6400

$$\begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix} = \begin{bmatrix} 80 & 0 \\ 0 & 80 \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}$$

Dla pc1

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$

$$\begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix} = \begin{bmatrix} 80 & 0 \\ 0 & 80 \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}$$

	dN1/dξ	dN2/dξ	dN3/dξ	dN4/dξ
pc1 🎤	-0,39434	0,394338	0,105662	-0,10566
pc2	-0,39434	0,394338	0,105662	-0,10566
pc3	-0,10566	0,105662	0,394338	-0,39434
pc4	-0,10566	0,105662	0,394338	-0,39434
	dN1/dη	dN2/dη	dN3/dη	dN4/dη
pc1	-0,39434	-0,10566	0,105662	0,394338
pc2	-0,10566	-0,39434	0,394338	0,105662
pc3	-0,1 <mark>0566</mark>	-0,39434	0,394338	0,105662
pc4	-0, <mark>3</mark> 9434	- ø ,10566	0,105662	0,394338

$$\frac{dN_1}{dX} = 80 * \frac{dN_1}{d\xi} + 0.0 * \frac{dN_1}{d\eta} = 80 * (-0.39434) + 0.0 * (0.39434) = -31.547$$

$$\frac{dN_2}{dX} = 80 * \frac{dN_2}{d\xi} + 0.0 * \frac{dN_2}{d\eta} = 80 * (0.39434) + 0.0 * (-0.10566) = 31.547$$

рс	dN1/dx	dN2/dx	dN3/dx	dN4/dx	рс	dN1/dy	dN2/dy	dN3/dy	dN4/dy
1	-31,547	31,54701	8,452995	-8,452995	1	-31,547	-8,453	8,45299	31,547
2	-31,547	31,54701	8,452995	-8,452995	2	-8,45299	-31,547	31,547	8,45299
3	-8,453	8,452995	31,54701	-31,54701	3	-8,45299	-31,547	31,547	8,45299
4	-8,453	8,452995	31,54701	-31,54701	4	-31,547	-8,453	8,45299	31,547

Obliczanie macierzy H dla pierwszego punktu całkowania

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$

рс	dN1/dx	dN2/dx	dN3/dx	dN4/dx	рс	dN1/dy	dN2/dy	dN3/dy	dN4/dy
1	-31,547	31,54701	8,452995	-8,452995	1	-31,547	-8,453	8,45299	31,547
2	-31,547	31,54701	8,452995	-8,452995	2	-8,45299	-31,547	31,547	8,45299
3	-8,453	8,452995	31,54701	-31,54701	3	-8,45299	-31,547	31,547	8,45299
4	-8,453	8,452995	31,54701	-31,54701	4	-31,547	-8,453	8,45299	31,547

Obliczanie macierzy H dla pierwszego punktu całkowania

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$

рс	dN1/dx	dN2/dx	dN3/dx	dN4/dx	рс	dN1/dy	dN2/dy	dN3/dy	dN4/dy
1	-31,547	31,54701	8,452995	-8,452995	1	-31,547	-8,453	8,45299	31,547

$$[H] = \int_{V} 30 \left(\begin{cases} -31,54 \\ 31,54 \\ 8,45 \\ -8,45 \end{cases} \right) \{-31,54 \quad 31,54 \quad 8,45 \quad -8,45\} + \left\{ \begin{cases} -31,54 \\ -8,45 \\ 8,45 \\ 31,54 \end{cases} \right\} \{-31,54 \quad -8,45 \quad 8,45 \quad 31,54\} dV$$

Obliczanie macierzy H dla pierwszego punktu całkowania

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$

dV realizujemy poprzez przemnożenie wyniku przez Jakobian przekształcenia tego punktu całkowania

5	0,915	-2,5	-3,415
0,915	0,67	0,915	-2,5
-2,5	0,915	5	-3,415
-3,415	-2,5	-3,415	9,33

ID	1	2	3	4
Х	0	0,025	0,025	0
У	0	0	0,025	0,025

$\frac{1}{\sqrt{3}}$ [H]pc3

0,66 0,916 0,91 -2,5 0,91 -3,41 -2,5 -2,5 9,33 -3,41 -3,4 5 0,916 -2,5 -3,41 $w_1 = 1$

[H]pc1

9,33	-3,41	-2,5	-3,41
-3,41	5	0,91	-2,5
-2,5	0,91	0,66	0,91
-3,41	-2,5	0,91	5

9,33	-3,41	-2,5	-3,41	
-3,41	5	0,91	-2,5	
-2,5	0,91	0,66	0,91	1
-3,41	-2,5	0,91	5	
	•			1/.5

$w_1 = 1$	-1	$w_2 = 1$	
$\frac{1}{\overline{3}}$		$\frac{1}{\sqrt{3}}$	

 $Pc_1(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$

 $Pc_4(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$

 $\mathsf{Pc}_2(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$

 $\mathsf{Pc}_{3}(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$

5	-3,41	-2,5	0,91
-3,41	9,33	-3,41	-2,5
-2,5	-3,41	5	0,91
0,914	-2,5	0,914	0,66

[H]pc2

ID	1	2	3	4
X	0	0,025	0,025	0
У	0	0	0,025	0,025

20	-5	-10	-5
-5	20	-5	-10
-10	-5	20	-5
-5	-10	-5	20

Zadanie domowe – zrealizuj całkowanie macierzy H

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$

Implementacja pętli po elementach

Obliczamy macierz Jakobiego, Jakobian i Jakobian odwrotny dla każdego punktu całkowania

Obliczamy Macierz H w poszczególnych punktach całkowania Sumujemy macierze H z punktów całkowania

$$H = H_{pc1} + H_{pc} + H_{pc3} + H_{pc4}$$