2000 Iran MO (2nd round)

National Math Olympiad (Second Round) 2000

Day	1

Day 1		
1	21 distinct numbers are chosen from the set $\{1,2,3,\dots,2046\}.$ Prove that we can choose three distinct numbers a,b,c among those 21 numbers such that $bc<2a^2<4bc$	erdos view topic
2	The points D,E and F are chosen on the sides BC,AC and AB of triangle ABC , respectively. Prove that triangles ABC and DEF have the same centroid if and only if $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}$	alip Amir Hossein view topic
3	Let $M=\{1,2,3,\ldots,10000\}$. Prove that there are 16 subsets of M such that for every $a\in M$, there exist 8 of those subsets that intersection of the sets is exactly $\{a\}$.	ahp Amir Hossein view topic
Day 2		
1	Find all positive integers n such that we can divide the set $\{1,2,3,\dots,n\}$ into three sets with the same sum of members.	Amir Hossein
2	In a tetrahedron we know that sum of angles of all vertices is 180° . (e.g. for vertex A , we have $\angle BAC + \angle CAD + \angle DAB = 180^\circ$.) Prove that faces of this tetrahedron are four congruent triangles.	
3	Super number is a sequence of numbers $0,1,2,\ldots,9$ such that it has infinitely many digits at left. For example $\ldots 3030304$ is a super number. Note that all of positive integers are super numbers, which have zeros before they're original digits (for example we can represent the number 4 as $\ldots,00004$). Like positive integers, we can add up and multiply super numbers. For example: \[\begin{array}{cc}& \ \ \ \ \ \dots 3030304 \ &+ \ldots 4571378\ & \qquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	
	And	
	\[\begin{array}{cc}& \\\\ldots 3030304 \ &\times \ldots4571378\ &\overline{\qquad \qquad }\ &\\\\ldots 4242432 \ &\\\\ldots 212128 \ &\\\\ldots 90912 \ &\\\\ldots 0304 \ &\\\\ldots 128 \ &\\\\ldots 20 \ &\\\\\ldots 6 \ &\overline{\qquad \qquad \qquad }\ &\\\\\ldots 5038912 \end{array}\]	
	a) Suppose that A is a super number. Prove that there exists a super number B such that $A+B=\stackrel{\leftarrow}{0}$ (Note: $\stackrel{\leftarrow}{0}$ means a super number that all of its digits are zero).	

b) Find all super numbers A for which there exists a super number B such that $A\times B=0$ 1 (Note: 0 1 means the super number . . . 00001).

c) Is this true that if $A\times B=\stackrel{\leftarrow}{0}$, then $A=\stackrel{\leftarrow}{0}$ or $B=\stackrel{\leftarrow}{0}$? Justify your answer.

© 2016 Art of Problem Solving

Terms

Privacy

Contact Us

About Us

Copyright © 2016 Art of Problem Solving