MIMIC

The Medical Information Mart for Intensive Care

MinDong Sung, M.D.

DHLab, Yonsei University College of Medicine

2021-07-01

Introduction

MIMIC-III

- Provide critical care data for over 40,000 patients admitted to ICU at the Beth Israel Deaconess Medical Center (BIDMC).
- deidentified, and patient identifiers were removed
- MIMIC-III has been integral in driving large amounts of research in clinical informatics, epidemiology, and machine learning.

MIMIC-IV

- MIMIC-IV is intended to carry on the success of MIMIC-III
- Support a broad set of applications within healthcare.
- MIMIC-IV adopts a modular approach to data organization,
- Highlight data provenance
- Facilitate both individual and combined use of disparate data sources.

Methods

Acquisition

- Inclusion criteria
 - who were admitted to the BIDMC ED or any the ICU, 2008 2019.
- Extracted from the respective hospital databases
- A master patient list was created
- All source tables were filtered to only rows related to patients in the master patient list.

Preparation

- The data were reorganized to better facilitate retrospective data analysis.
 - the de-normalization of tables
 - removal of audit trails
 - reorganization into fewer tables
 - to simplify retrospective analysis of the database.
- Data cleaning steps were not performed
 - to ensure the data reflects a real-world clinical dataset.

Methods

De-identify

- Patient identifiers as stipulated by HIPAA were removed.
- Patient identifiers were replaced using a random cipher, resulting in deidentified integer identifiers for patients, hospitalizations, and ICU stays.
- Structured data were filtered using look up tables and allow lists.
- If necessary, a free-text deidentification algorithm was applied to remove PHI from free-text.
- Finally, date and times were shifted randomly into the future using an offset measured in days. A single date shift was assigned to each subject_id. As a result, the data for a single patient are internally consistent.

Backgrouds for hostpital data

How the patient data have been generated?

CASE

Think about patient flows in hospital

- Patient
- Admission
- Chartevents
- Provider orders(poe)/medication administration(emar)
- Labevents
- Chest X ray
- Diagnoses_icd
- Transfer
- chartevents
- datetimeevents
- inputevents
- outputevents
- procedureevents
- icustays

Papers from MIMIC data

Researches based on MIMIC data

Clinical Model for clinicians Algorithm Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the MIMIC-III database (Annals of Intensive Care, 2018)

Vincent, JL., Nielsen, N.D., Shapiro, N.I. et al. Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the MIMIC-III database. Ann. Intensive Care 8, 107 (2018).

Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database (ICM, 2018)

Method	OR	CI		p value
		2.5%	97.5%	
Doubly robust with unbalanced covariates	0.78	0.68	0.90	< 0.001
Doubly robust with all covariates	0.64	0.52	0.78	< 0.001
Propensity score IPW	0.84	0.78	0.92	< 0.001
Propensity score matching	0.78	0.66	0.92	< 0.001
Multivariate	0.64	0.53	0.78	< 0.001

Feng, M., McSparron, J.I., Kien, D.T. et al. Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database. Intensive Care Med 44, 884–892 (2018).

An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU (CCM 2018)

Nemati, Shamim et al., An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU, Critical Care Medicine: April 2018 - Volume 46 - Issue 4 - p 547-553

Early prediction of circulatory failure in the intensive care unit using machine learning (Nature Medicine 2020)

Hyland, Stephanie L., et al. "Early prediction of circulatory failure in the intensive care unit using machine learning." Nature medicine 26.3 (2020): 364-373.

Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques (Artificial Intelligence in Medicine, 2020)

Fig. 1. Block diagram of the proposed model.

Fen Miao et al., Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques, Artificial Intelligence in Medicine, Volume 108, 2020

Clinical concept extraction using transformers (JAMIA 2020)

Figure 1. An overview of the workflow for a transformer-based NER pipeline using BERT as an example.

Xi Yang, Jiang Bian, William R Hogan, Yonghui Wu, Clinical concept extraction using transformers, Journal of the American Medical Informatics Association, Volume 27, Issue 12, December 2020, Pages 1935–1942,

Tables

What kind of data the MIMIC has?

Modular structure of MIMIC IV - Core

Patients

• Information that is consistent for the lifetime of a patient is stored in this table.

Admissions

 The admissions table gives information regarding a patient's admission to the hospital. Since each unique hospital visit for a patient is assigned a unique hadm_id, the admissions table can be considered as a definition table for hadm_id. Information available includes timing information for admission and discharge, demographic information, the source of the admission, and so on.

Transfers

Physical locations for patients throughout their hospital stay.

Modular structure of MIMIC IV - Hosp

- laboratory measurements (labevents),
- microbiology cultures (microbiologyevents)
- provider orders (poepoe_detail),
- medication administration (emar emar_detail)
- medication prescription (prescriptions pharmacy)
- hospital billing information (diagnoses_icd, procedures_icd, hcpcsevents])
- service(department information) related information (services).

Modular structure of MIMIC IV - ICU

- charted information (chartevents).
 - Charted items occurring during the ICU stay. Contains the majority of information documented in the ICU.
- intravenous and fluid inputs (inputevents)
 - Information documented regarding continuous infusions or intermittent administrations.
- patient outputs (outputevents)
 - Information regarding patient outputs including urine, drainage, and so on.
- procedures (procedureevents)
 - Procedures documented during the ICU stay (e.g. ventilation), though not necessarily conducted within the ICU (e.g. x-ray imaging).
- information documented as a date or time (datetimeevents)
 - Documented information which is in a date format (e.g. date of last dialysis).

Modular structure of MIMIC IV - code dictionary

d_icd_diagnoses

• Dimension table for diagnoses_icd; provides a description of ICD-9/ICD-10 billed diagnoses.

d_icd_procedures

• Dimension table for procedures_icd; provides a description of ICD-9/ICD-10 billed procedures.

d_labitems

• Dimension table for labevents; provides a description of all lab items.

d_items

• Dimension table describing itemid. Defines concepts recorded in the events table in the ICU module.

Other data related to MIMIC

MIMIC-CXR (MIMIC IV)

- 1. Johnson AE, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng CY, Mark RG, Horng S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific Data. 2019;6.
- 2. https://github.com/MIT-LCP/mimic-cxr

MIMIC-Waveform (MIMIC III)

- Waveforms almost always include one or more ECG signals, and often include continuous arterial blood pressure (ABP) waveforms, fingertip photoplethysmogram (PPG) signals, and respiration, with additional waveforms (up to 8 simultaneously) as available.
- Numerics typically include heart and respiration rates, SpO2, and systolic, mean, and diastolic blood pressure, together with others as available.
- Recording lengths also vary; most are a few days in duration, but some are shorter and others are several weeks long.

How to access the data

Access

SHOW tables;

SELECT * **FROM** chartevents **WHERE** itemid **IN** (220050, 220051, 220052, 220045;

subject_id \(\psi	hadm_id \(\phi	stay_id \	charttime 🝦	storetime	itemid 🌲	value 🖣	v
10003700	28623837	30600691	2165-04-24T05:30:00Z	2165-04-24T05:37:00Z	220045	65	
10003700	28623837	30600691	2165-04-24T06:00:00Z	2165-04-24T06:09:00Z	220045	56	
10003700	28623837	30600691	2165-04-24T06:09:00Z	2165-04-24T06:09:00Z	220045	55	
10003700	28623837	30600691	2165-04-24T07:00:00Z	2165-04-24T07:51:00Z	220045	57	
10003700	28623837	30600691	2165-04-24T08:00:00Z	2165-04-24T08:19:00Z	220045	56	
10004235	24181354	34100191	2196-02-24T16:39:00Z	2196-02-24T17:48:00Z	220045	136	
10004235	24181354	34100191	2196-02-24T17:00:00Z	2196-02-24T17:48:00Z	220045	134	
10004235	24181354	34100191	2196-02-24T17:16:00Z	2196-02-24T17:17:00Z	220045	144	
10004235	24181354	34100191	2196-02-24T17:48:00Z	2196-02-24T17:48:00Z	220045	133	
10004235	24181354	34100191	2196-02-24T18:00:00Z	2196-02-24T18:14:00Z	220045	124	
10004235	24181354	34100191	2196-02-24T19:00:00Z	2196-02-24T19:43:00Z	220045	113	
10004235	24181354	34100191	2196-02-24T20:00:00Z	2196-02-24T20:41:00Z	220045	105	
1000/225	2/10125/	2/100101	2106 02 24T21.00.007	2106 02 24T21·04·007	220045	110	

SELECT * FROM d_labitems LIMIT 10;

itemid 🔷	label		category 🛊	loinc_code
50801	Alveolar-arterial Gradient	Blood	Blood Gas	
50802	Base Excess	Blood	Blood Gas	
50803	Calculated Bicarbonate, Whole Blood	Blood	Blood Gas	
50804	Calculated Total CO2	Blood	Blood Gas	
50805	Carboxyhemoglobin	Blood	Blood Gas	

SELECT * FROM labevents LIMIT 10;

labevent_id \(\ \ \ \	subject_id \	hadm_id \(\psi	specimen_id \	itemid 🛊	charttime 💠	storetii
5	10000019	25058216	74089533	51200	2129-05-21T21:10:00Z	2129-05-21T2:
13	10000019	25058216	74089533	51250	2129-05-21T21:10:00Z	2129-05-21T2
44	10000032		52958335	50900	2180-03-23T11:51:00Z	2180-03-23T1
69	10000032		52958335	51000	2180-03-23T11:51:00Z	2180-03-23T1
93	10000032		81886159	51200	2180-03-23T11:51:00Z	2180-03-23T1

Reference

- 1. https://physionet.org/content/mimiciv/1.0/
- 2. https://mimic.mit.edu/iv/