TRAFFIC SIGN RECOGNITION

Jose Pablo Cereceda Meca Diego Martin Crespo

CS512 - Fall 2018

INTRODUCTION

Introduction

- Motivation
- $Reference \rightarrow Traffic Sign Recognition for Computer Vision Project-Based Learning$
- Dataset \rightarrow KUL Belgium traffic signs and classification benchmark datasets

APPROACH

Approach (I)

Approach (II)

Image Preprocessing

Detection

Classification

IMPLEMENTATION

Image Data Modeling

Linköpings University traffic sign dataset

STEPS:

- Definition of 14 classes -> 13 traffic signs and 1 error class
- Cleaning the dataset-> removing bad images with high noise

Image Preprocessing

Three main steps:

1. Contrast limit

2. Edge detection

3. Binary

Sign Detection

Steps:

- Remove small components
- 2. Find contours
- 3. Detect sign shapes
- 4. Select largest contour
- 5. Crop image

Image Classification

STEPS:

- 1. Loading Data Images
- 2. SVM class definition
- 3. Get HOG descriptors
- 4. Deskew images
- 5. Training Process
- 6. Testing Process

Image Classification II

SVM

Class definition with 4 different functions for initialise the model, train it, save it and predict

ADVANTAGES:

- High accuracy, high flexibility
- Naturally handle large dimensional data
- Sparse representation of the solutions

HOG

Algorithm implementation steps:

- 1. Gradient Computation
- 2. Orientation binning
- 3. Descriptor Blocks
- 4. Block Normalization
- 5. Object Recognition

Image Classification

Deskew

Training and Testing

- 90% TRAINING
- 10% TEST

Get Label

- 14 LABELS
 - 13 TRAFFIC SIGNS
 - 1 ERROR LABEL

RESULTS

Image Preprocessing

Sign Detection (I)

Sign Detection (II)

Image Classification

Image Classification II

Modifying the following parameters:

- MAX-NUMBER of images per traffic sign type equal to 80
- HOG parameters: lower down to 5 bins

Accuracy of 93.52%

CONCLUSION & FUTURE IMPROVEMENTS

Conclusion

Good learning experience

 Program susceptible to improvements in every phase.

Future improvements

1. Use a CNN as a classifier

2. Sign detection by top-down sliding windows algorithm

3. Video support