朴素集合论与命题逻辑

请在 9 月 21 日课前提交纸质作业.

- 1. (10 分) 我们用 card(A) 来表示集合 A 的势(基数).
 - (1) 证明: $card(\mathbb{R}) > card(\mathbb{N})$.
 - (2) 假设集合 X 满足 $\operatorname{card}(X) > \operatorname{card}(\mathbb{N})$,那么对 X 的任意与 \mathbb{N} 等势的子集 S (即可数子集),集合 $X \setminus S = \{x \in X : x \notin S\}$ 满足 $\operatorname{card}(X \setminus S) = \operatorname{card}(X)$.
- 2. (10 分) 用 2^A 表示 A 的幂集,即 $2^A = \{S : S \subseteq A\}$. 证明:对任意集合 A, $card(A) < card(2^A)$.
- 3. $(15 \ f)$ 考虑只包含连接词 → 和 f 的命题逻辑, 它的自然证明系统 (natural deduction system) 包括如下内容:
 - 命题逻辑的公式,包括永假常元 1.
 - 没有公理.
 - 推导规则如下:

其中,横线上面是前提,下面是推导的结果(结论),横线右边是规则的名字(例如 $\wedge I$). 省略号表示省略的推导步骤;方括号表示假设该公式已经推出,在此基础上进行推理;除此之外,前提必须是已经推出的公式.

我们将 $\phi \to \bot$ 缩写为 $\neg \phi$ (注意, \neg 不属于字符集).

- (1) 证明:对任意公式 ψ 和 ϕ , $\psi \vdash \phi$ 当且仅当 $\vdash \psi \rightarrow \phi$.
- (2) 利用自然证明系统证明 $(\phi \to \psi) \land (\phi \to \neg \psi) \vdash \neg \phi$.
- (3) 利用完全性定理 (completeness theorem) 证明 $(\phi \to \psi) \land (\phi \to \neg \psi) \vdash \neg \phi$.