Théorie: la syntaxe

Une théorie est la donnée :

- d'un langage L
- d'un ensemble d'axiomes A1, A2, ... An

Langage

On se place dans le cadre d'un langage L du premier ordre.

1.1 Les symboles de L

• Les fonctions

d'arité (i.e nombre d'arguments) quelconque sont notées : f, g, h, f_i ,... les fonctions 0-aires sont appelées *constantes* et sont notées a, b, c, a_i ,...

• Les *prédicats*

d'arité quelconque sont notés : p, q, r, p_i,... les prédicats 0-aires sont appelés *propositions* et sont notés P, Q, R, ...

• Les *variables* sont notées x, y, z, x_i,...

• Les connecteurs logiques

$$\neg$$
 (not), \land (et), \lor (ou), \Rightarrow (implication), \Leftrightarrow (équivalent)

• Les quantificateurs

```
\forall (universel), \exists (existential)
```

La syntaxe de L

- Les termes de L sont définis récursivement par :
 - (T1) toute *constante* c est un terme
 - (T2) toute *variable* x est un terme
 - (T3) si t_1 , t_2 ,... t_n , sont des termes et f un symbole de fonction d'arité n, alors $f(t_1, t_2, ... t_n)$ est un terme
- Les atomes de L sont définis récursivement par :
 - (A1) toute *proposition* P est un atome
 - (A2) si t_1 , t_2 ,... t_n , sont des termes et p un symbole de prédicat d'arité n, alors $p(t_1, t_2,... t_n)$ est un atome

• Les formules de L sont définies récursivement par :

- (F1) tout *atome* est une formule
- (F2) si ϕ et ψ sont des formules alors $\phi \wedge \psi$, $\phi \vee \psi$, $\phi \Rightarrow \psi$, $\phi \Leftrightarrow \psi$ et $\neg \phi$ sont des formules
- (F3) si ϕ est une formule et si x est une variable de ϕ , \forall x ϕ et \exists x ϕ sont des formules
- (F4) □ représente la formule vide

Les formules sont notées ϕ , ψ , ϕ , ϕ _i,...

• Priorité (par ordre décroissant) :

- o les symboles de relations, la négation,
- o les quantificateurs
- o et
- o ou
- o implique

⇒ est associatif à droite :

$$\Phi_1 \Rightarrow \Phi_2 \Rightarrow \Phi_3$$

S'interprête

$$\Phi_1 \Rightarrow (\Phi_2 \Rightarrow \Phi_3)$$

Exemples:

```
fonctions: f (arité 1), g (arité 1), a (arité 0)
prédicats : p (arité 2), q (arité 2), r (arité 2), Q (arité 0)
termes: a, f(a), f(g(a)), f(x), x, f(f(f(x))), ...
atomes: p(x, y), p(x,f(x)), q(a,g(f(x))), Q, ...
formules : p(x, a) \vee p(x, f(x)) \wedge Q
            \exists x (p(x,f(x)) \Rightarrow q(a,g(f(x))))
             \forall x \exists y \ r(a,f(y)) \Leftrightarrow (\neg p(x,a) \land q(a,a))
```

Remarque: par abus de langage on pourra utiliser une notation infixe: par exemple x + y désigne le terme +(x,y) où + est un symbole de fonction, x < y désigne l'atome -(x,y) où -(x,y) ou symbole de prédicat

Exercice

- fonctions : f (arité 1), g (arité 1), a (arité 0)
- prédicats : p (arité 2), q (arité 2), r (arité 2), Q (arité 0)
- Les expressions suivantes sont-elles des formules du premier ordre ?
- $\phi_1 : \forall x (p(f(g(x)),a) \lor q(a))$
- $\phi_2 : \forall x \forall y (f(x) \vee q(x,y))$
- $\varphi_3 : \forall x (q (x,y) \lor Q \land r(f(x),g(a)))$

Variables libres ou liées

On note $V(\phi)$ les variables qui apparaissent dans ϕ , \equiv l'égalité syntaxique (même écriture des deux termes).

$BV(\phi)$ les variables liées (Bounded Variables) de ϕ sont définies par :

- $\operatorname{si} \phi \equiv r(t_1, t_2, ..., t_n)$ ou $\phi \equiv t_1 = t_2$ alors $\operatorname{BV}(\phi) = \emptyset$
- si $\phi \equiv \varphi$ op ω (avec op : $\wedge \vee \Rightarrow \Leftrightarrow$) alors $BV(\phi) = BV(\omega) \cup BV(\varphi)$
- si $\phi \equiv \neg \varphi$ alors BV(ϕ) = BV (φ)
- $si \phi \equiv \forall x \phi ou \phi \equiv \exists x \phi alors BV(\phi) = BV(\phi) \cup \{x\}$

```
Exemple: \phi_1: (x = y) \lor (x > y)
\phi_2: \forall \ x \ ((y < x) \lor (y=x))
```

 $BV(\phi_1) = \emptyset$: x et y sont libres dans ϕ_1

 $BV(\phi_2) = \{x\} : x \text{ est liée dans } \phi_2$

$FV(\phi)$ les *variables libres* (Free Variables) de ϕ sont définies par :

- $\operatorname{si} \phi \equiv \operatorname{r} (t_1, t_2, ..., t_n) \operatorname{ou} \phi \equiv t_1 = t_2 \operatorname{alors} \operatorname{FV}(\phi) = \operatorname{V}(\phi)$
- $\operatorname{si} \phi \equiv \varphi \operatorname{op} \omega \operatorname{(op valant} \wedge \vee \Rightarrow \Leftrightarrow) \operatorname{alors} \operatorname{FV}(\phi) = \operatorname{FV}(\omega) \cup \operatorname{FV}(\varphi)$
- $\operatorname{si} \phi \equiv \neg \varphi \operatorname{alors} \operatorname{FV}(\phi) = \operatorname{FV}(\varphi)$
- $si \phi \equiv \forall x \phi ou \phi \equiv \exists x \phi alors FV(\phi) = FV(\phi) \setminus \{x\}$

Exemple: $\phi_1 : \forall x, \forall y p(x,y)$

 $\phi_2: \forall x (q(x) \vee p(x,y))$

Exemples:

$$\bullet \phi_1 \equiv (p (x , f(y)) \lor \forall z r (a,z))$$

$$V(\phi_1) = \{x, y, z\} \quad BV(\phi_1) = \{z\} \quad FV (\phi_1) = \{x,y\}$$

•
$$\phi_2 \equiv (\forall \ x \ p(x,y,z)) \lor \forall \ z \ (p(z) \Rightarrow r(z))$$

 $V(\phi_2) = \{x, y, z\} \quad BV(\phi_2) = \{x, z\} \quad FV(\phi_2) = \{y, z\}$

Remarque : z est à la fois libre et liée dans ϕ_2

Exercice: Langage: ?

$$\forall x \quad ((x \subset y) \Leftrightarrow \forall t (t \in x \Rightarrow t \in y))$$

Libres:?

Liées:?

$$((x \subset y) \land \exists \ y \ (y \in x)) \Rightarrow \exists \ x \ (x \in y)$$

Libres:?

Liées:?

Formules particulières

- Si $FV(\phi) = \emptyset$ alors ϕ est une *formule close*
- Si FV(ϕ) = {x₁, x₂, ..., x_n} alors \forall x₁, x₂, ..., x_n ϕ *clôture universelle* \exists x₁, x₂, ..., x_n ϕ *clôture existentielle*
- Si $\phi = p(t_1, t_2, ..., t_n)$ alors ϕ est un atome ou *litteral positif*
- Si $\phi \equiv \neg p(t_1, t_2, ..., t_n)$ alors ϕ est un atome nié ou *litteral négatif*
- Si $\phi \equiv \forall x_1, x_2, ..., x_n (\phi_1 \lor \phi_2 \lor ... \lor \phi_n)$ avec ϕ_i un littéral alors ϕ est une *clause*
- Si $\phi \equiv \forall x_1, x_2, ..., x_n (\neg \phi_1 \lor \neg \phi_2 \lor ... \lor \neg \phi_n \lor \phi)$ où les ϕ_i et ϕ sont des atomes, alors ϕ est une *clause de Horn*

Axiomes

- Un axiome est utilisé pour faire des déductions
- On « identifie » les formules du langage par rapport aux axiomes pour faire ces déductions
- Quand on passe à un domaine sémantique, l'axiome doit être vrai et sa validité ne doit pas dépendre de la valeur de ses variables
 - → un axiome est une *formule close* c'est à dire que toutes ses variables sont liées

Exemple:

Soit $\phi 1$ et $\phi 2$ deux formules du langage L contenant deux symboles de relation = et <

$$\phi_1: \forall x, \forall y ((x = y) \lor (x > y) \lor (x < y))$$

$$\phi_2: \forall x ((y < x) \lor (y = x))$$

x et y sont liées dans ϕ_1 ; x est liée dans ϕ_2 ; y est libre dans ϕ_2 ϕ_1 n' a pas de variable libre

Quand on interprète ϕ_1 et ϕ_2 dans des mondes sémantiques, ϕ_1 est une Formule soit valide soit non valide. Par contre, la validité de ϕ_2 dépend de la valeur de y

Par exemple, pour les entiers positifs, ϕ_1 est toujours vraie mais ϕ_2 est vraie quand on interprète y comme la valeur 0 et elle est fausse sinon.

Un axiome est une formule close Les formules à démontrer sont aussi des formules closes