Clase 03 Introducción Variables Aleatorias Diplomado en Análisis de datos con R para la Acuicultura

Dr. José A. Gallardo y Dra. María Angélica Rueda. jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

05 October 2021

PLAN DE LA CLASE

1.- Introducción

- Clasificación de variables aleatorias.
- Observar y predecir una variable cuantitativa continua.
- Observar y predecir una variable cuantitativa discreta.
- Observar y predecir variables binarias.

2.- Práctica con R y Rstudio cloud

- Observa y predice una variable aleatoria continua con distribución Normal.
- Observa y predice variables aleatorias discretas con distribución Bernoulli o Binomial.
- Elabora un reporte dinámico en formato pdf.

TIPOS DE VARIABLES ALEATORIAS

VARIABLE ALEATORIA CUANTITATIVA CONTINUA

Definición: Puede tomar cualquier valor dentro de un intervalo (a,b), (a,lnf), (-lnf,b),(-lnf,lnf) y la probabilidad que toma cualquier punto es 0, debido a que existe un número infinito de posibilidades.

OBSERVAR UNA VARIABLE CUANTITATIVA CONTINUA

Al observar con un histograma **hist()** notamos que:

- 1. La frecuencia o probabilidad en un intervalo es distinta de cero.
- 2. Cuando aumenta el **n** muestral se perfila una distribución llamada **normal**.

PREDECIR UNA VARIABLE CUANTITATIVA CONTINUA

Podemos predecir la probabilidad de que la variable aleatoria tome un determinado valor usando la función de densidad empírica density().

PREDECIR VARIABLES CONTINUAS 2

Podemos predecir la probabilidad de que la variable aleatoria tome un valor menor o igual a un determinado valor, usando la función de distribución empírica acumulada **ecdf()**.

Función de distribución empírica acumulada

OBSERVAR CON BOXPLOT

Las gráficas de cajas y bigotes (**boxplot()**) son muy adecuadas para observar variables aleatorias continuas.

VARIABLES ALEATORIAS DISCRETAS

Las variables aleatorias discretas son aquellas que presentan un número contable de valores; por ejemplo:

- ► Color del salmón: Escala salmofan 20-34.
- Número de parásitos (1, 3, 5, 6, etc.).
- Número de días a la muerte durante desafío contra patógenos (1, 2, 3,..., 40).

IMPORTANCIA DE IDENTIFICAR Y ANALIZAR VARIABLES ALEATORIAS DISCRETAS

- En gran parte, la distribución de variables aleatorias discretas suelen ser asimétricas a derecha o a izquierda.
- Usualmente las variables en estudio son conteos, proporciones o variables binarias (0 y 1); deben ser tratadas como variables aleatorias discretas.
- Según sea la variable aleatoria discreta, tendrá una función de distribución de probabilidad asociada (Bernoulli, Binomial, Binomial Negativa, Poisson, entre otras).
- ► Es importante identificar la naturaleza que tiene nuestra variable en estudio, y así evitar errores en los análisis estadísticos que llevemos a cabo.

CASOS ESPECIALES

- 1.- Variable aleatoria binaria: Posee dos resultados posibles; por ejemplo, éxito o fracaso, macho o hembra, sano o enfermo, (0,1).
- 2.- Variable aleatoria dependiente del tiempo:
- a) Discreta: Días a la muerte de un organismo o fallo de un componente en un sistema en un tiempo t.
- **b) Continua:** Señales de sensores ambientales o señales biométricos.

Algunas de estas variables se conocen como **series de tiempo** y en términos estrictos son más bien una *sucesión de variables aleatorias* a través del tiempo.

EJEMPLO VARIABLE ALEATORIA BINARIA -DISTRIBUCIÓN BERNOULLI

Se saca un camarón al azar de una piscina, la probabilidad de que tenga sindrome de la mancha blanca es de 0.35. Sea X=1 si el camarón tiene sindrome de la mancha blanca y X=0 en el caso de que no tenga sindrome de la mancha blanca. ¿Cuál es la distribución de X?

	Fracaso	Éxito
X	0	1
f(x)=P(X=x)	1-p 0.65	p 0.35

$$f(x) = P(X = x) = \left\{egin{array}{ll} 1-p & ; si & x=0 \ p & ; si & x=1 \end{array}
ight.$$

EJEMPLO VARIABLE ALEATORIA DISCRETA - DISTRIBUCIÓN BINOMIAL

Figure 1: Número de parásitos por pez

FORMATO CORRECTO PARA IMPORTAR A R

	A	В	C	D E F		
1	sample_id	Weight	sex	Nombres de		
2	1	17,2	temale	Nombres de		
3	2	18,8	female	variables		
4	3	27,8	male	variables		
5	4	20,4	male			
6	5	20,6	male			
7	6	28,6	male			
8	7	22,3	male			
9	8	13,7	female			
10	9	16,6	female			
11	10	17,8	female			
12	11	26,1	female	Observaciones		
13	12	21,8	male	1 1		
14	13	22	male	o datos		
15	14	20,6	male			
16	15	17,2	female			
17	16	28,9	male			
18	17	22,5	male			
19	18	10,2	female			
20	19	23,5	male			
21	20	17,6	female			
22	21	14,7	female			
23	22	18,9	female			
24	23	14,9	female			
25	24	16,4	female			
26	25	16,9	female			
27	26	11.6	female			

Figure 2: Formato correcto de archivo excel para que sea importado a R

ERRORES EN FORMATO EXCEL

Figure 3: Errores comunes antes de importar a excel

Importante: No colocar símbolos matemáticos por ejemplo (%,\$,+) como nombres de las **(variables)**.

ERRORES EN FORMATO EXCEL 2

sample_id	Weight	sex	sample_id	Weight	sex	Observaciones
1	17,2	female	1	17,2	female	
2	18,8	female	2	18,8	female	
3	27,8	male	3	27,8	male	
4	20,4	male	4	20,4	male	
5	20,6	male	5	20,6	male	
6	28,6	male	6	28,6	male	
7	sin registro	male	7		male	
8	13,7	female	8	13,7	female	
9	16,6	female	9	16,6	female	
10	17,8	female	10	17,8	female	
11	26,1	male	11	26,1	male	
12	21,8	male	12	21,8	male	
13	22	Indeterminado	13	22	NA	Sexo Indeterminado
14	20,6	male	14	20,6	male	
15	17,2	female	15	17,2	female	
16	28,9	male	16	28,9	male	
17	22,5, cola deforme	male	17	22,5	male	cola deforme
18	10,2	female	18	10,2	female	
19	23,5	male	19	23,5	male	

Figure 4: Errores comunes antes de importar a excel

Importante: No colocar comentarios en las celdas de datos. Dejar celdas vacias o usar el simbolo *NA* es preferido cuando hay datos faltantes.

COMO IMPORTAR DATOS EXCEL A R

Antes de importar un archivo en formato excel (.xlsx o .xls) debe instalar y tener habilitada la librería readxl

```
library(readxl)
dat <- read_excel("shrimp.xlsx", sheet = 1)
dat <- read_excel("shrimp.xlsx", sheet = "shrimp")</pre>
```

PRÁCTICA ANÁLISIS DE DATOS

- 1.- Guía de trabajo Rmarkdown disponible en drive. Clase 03-Introducción variables aleatorias
- La tarea se realiza en Rstudio.cloud, proyecto (Clase 03-Introducción variables aleatorias).

RESUMEN DE LA CLASE

- Identificamos y clasificamos variables aleatorias.
- Observamos una variable cuantitativa continua usando histogramas y boxplot.
- Predecimos el comportamiento de una variable cuantitativa continua con distribución normal usando funciones de densidad y de distribución acumulada.
- Estudiamos sobre variables aleatorias discretas y algunas distribuciones de probabilidad asociadas (Bernoulli y Binomial).