Korrektheit d. Resolution in Prädikatenlogik

Satz

Sei R die Resolvente zweier Klauseln K_1 und K_2 . Sei für eine Klausel K der **Allabschluss** $\forall K$ die Formel $\forall x_1, ..., \forall x_n, K$, wobei $x_1, ..., x_n$ alle in K vorkommenden Variablen sind.

Dann gilt: $\forall R$ ist eine Folgerung aus $\forall K_1 \land \forall K_2$.

Beweisidee: Analog dem Beweis für die aussagenlogische Resolution: Ein Modell für $\forall K_1 \land \forall K_2$ muss nach Streichung der durch Resolution wegfallenden Literale mindestens einen der Allabschlüsse der Restklauseln $\forall K'_1$ oder $\forall K'_2$ erfüllen, und damit auch $\forall R$.

Folgerung

Insbesondere gilt: Ist $\square \in \text{Res}^*(S)$, dann ist S inkonsistent.

Vollständigkeit der Resolution: Beweisgang

Jede Menge \mathcal{F} von Formeln ist als Klauselmenge S darstellbar. Sei S inkonsistent.

Endliche Menge S' von Grundklauseln ist inkonsistent.

AL-Resolution leitet \square aus S' ab.

Es gibt eine Widerlegung von S mit Resolution in Präd.-Logik

Das Lifting Lemma

Seien K_1 und K_2 Klauseln mit disjunkten Variablen; seien $K'_1=K_1\rho_1$ und $K'_2=K_2\rho_2$ beliebige Grundinstanzen davon, die aussagenlogisch resolvierbar sind mit Resolvente R'. Dann gibt es eine prädikatenlogische Resolvente R von K_1 und K_2 und Substitution ρ , sodass $R'=R\rho$ ist.

Beweisidee: Verwende als Unifikator in der PL-Resolution diejenigen Substitutionen aus ρ_1 , ρ_2 , welche die entsprechenden Literale aus K_1 und K_2 unifizieren. Diese muss es geben.

Beispiel für Lifting-Lemma-Konstruktion

Prädikatenlogik-Ebene rot, Aussagenlogik schwarz

Vollständigkeits- und Resolutionssatz für PL

Vollständigkeitssatz

Sei \mathcal{F} eine inkonsistente Formel in PL in Skolemform mit quantorenfreiem Teil \mathcal{F}^* in KNF. Dann ist $\square \in \text{Res}^*(\mathcal{F}^*)$ für prädikatenlogische Resolution.

Beweisgang: s. vorvorletzte Folie.

Resolutionssatz der Prädikatenlogik

Sei \mathcal{F} eine Formel mit Skolemform mit quantorenfreiem Teil \mathcal{F}^* in KNF. \mathcal{F} ist inkonsistent, gdw. $\square \in \text{Res}^*(\mathcal{F}^*)$.

Beweis: Zusammenfassung von Korrektheit und Vollständigkeit.

Bemerkung zur Faktorisierung

Resolution ohne Faktorisierung ist unvollständig!

Beispiel

- 1. $\{\neg P(x), \neg P(y)\}$
- 2. $\{P(u), P(v)\}$

Unterschiedliche Formulierungen von Resolution nehmen Faktorisierung entweder in die Resolutionsregel mit auf (wie in der Definition oben) oder definieren sie als eigene Inferenzregel (z.B. Ertel).

Spezialisierungen der Resolution

... sind dieselben wie in der AL!

Prinzip: Beschränkung der Auswahlmöglichkeiten für die Elternklauseln K_i , K_j

Insbesondere gibt es:

- Stützmengen-Resolution (set of support, nicht in dieser Vorlesung)
- Einsklausel/Unit-Resolution
- Input-Resolution
- SLD-Resolution

Alle Spezialisierungen "erben" Korrektheit!

Vollständigkeit (ggf. mit Einschränkungen) beweise jeweils mit Hilfe des Lifting Lemmas!

Maßnahmen zur Reduktion der Klauselmenge

- Wir hatten schon Tricks, die Klauselmenge um "Unnötiges" zu bereinigen: Lösche Tautologien, lösche Doubletten
- Alle Beweiser-Programme nutzen weitere korrekte Regeln zur Verkleinerung der Klauselmenge

Pure Literal Regel

- Lösche alle Klauseln, in denen ein Literal pur vorkommt!
- korrekt in Widerlegungsbeweisen

Subsumption

- Lösche in Klauselmenge \mathcal{F} alle Klauseln K, für die es eine Klausel $K' \subseteq K$ in \mathcal{F} gibt! (K' subsumiert K in \mathcal{F})
- korrekt in Widerlegungsbeweisen

Beispiel Resolution (1/3: Formalisierung)

Problembeschreibung

Prämisse: Auf verkaufte Ware erzielt man einen Gewinn.

Folgere: Wenn ich keinen Gewinn erzielt habe,

dann habe ich keine Ware verkauft.

Eine(!) mögliche Formalisierung

```
V(x,y): x verkauft y; W(x): x ist Ware; G(x): x ist Gewinn;
```

E(x,y): x erzielt y; i: ich

Prämisse: $\forall x. [\exists y. (V(x,y) \land W(y)) \Rightarrow \exists z. (G(z) \land E(x,z))]$

Folgerung: $\neg \exists z.(E(i,z) \land G(z)) \Rightarrow \forall y.(V(i,y) \Rightarrow \neg W(y))$

Beispiel Resolution (2/3: Klauselform)

Prämisse: $\forall x. [\exists y. (V(x,y) \land W(y)) \Rightarrow \exists z. (G(z) \land E(x,z))]$

Folgerung: $\neg \exists z. (E(i,z) \land G(z)) \Rightarrow \forall y. (V(i,y) \Rightarrow \neg W(y))$

Formulierung in Klauselform

- 1. $\{\neg V(x_1,y_1), \neg W(y_1), G(g(x_1,y_1))\}$
- 2. $\{\neg V(x_2,y_2), \neg W(y_2), E(x_2,y_2)\}$
- 3. $\{\neg E(i,z_3), \neg G(z_3)\}$
- 4. $\{V(i,a)\}$
- 5. $\{W(a)\}$

Prämisse

Negation der Folgerung (Korrektheit nachprüfen!)

indiziere Variablen mit Klauselnummer, um sie eindeutig zu machen

Beispiel Resolution (3/3: Widerlegung)

1.
$$\{\neg V(x,y), \neg W(y), G(g(x,y))\}$$

3.
$$\{\neg E(i,z), \neg G(z)\}$$

6. $\{\neg V(x,y), \neg W(y), \neg E(i,g(x,y))\}\$

1.
$$\{\neg V(x,y), \neg W(y), G(g(x,y))\}\$$

2.
$$\{\neg V(x,y), \neg W(y), E(x,g(x,y))\}$$

3.
$$\{\neg E(i,z), \neg G(z)\}$$

4.
$$\{V(i,a)\}$$

5.
$$\{W(a)\}$$

2.
$$\{\neg V(x,y), \neg W(y), E(x,g(x,y))\}$$

x/i

z/g(x,y)

Frage: Ist das eine ...

- Unit-Ableitung?
- Input-Ableitung?
- SLD-Ableitung?

Anwendungen (Beispiele)

- Vierfarbensatz wurde 1976 mit Hilfe eines Spezial-Beweisers erstmals bewiesen (Beweiser behandelte umfangreiche Fallunterscheidung)
- Inferenz in Wissensbasierten Systemen (auch Semantic Web: Ontologien in Beschreibungslogik!)
- automatische Programmverifikation
- Korrektheitsbeweis für sicherheitskritische Software/ Software, bei der Fehler hohe Kosten verursachten (Kryptographie-Protokolle, Software für Raumfahrt, Software für medizinische Einsätze, ...)

Anwendungsbeispiel PROLOG

Beispiel: Prozedur zur Vereinigung (ohne Doubletten!) zweier Listen (hier: nur erstes Argument auf Doubletten prüfen)

```
vng([],L) :- write(L).
vng([H|T],L) :- member(H,L), vng(T,L).
vng([H|T],L) :- not(member(H,L)), vng(T,[H|L]).
Beispiel:
?- vng([s,d,r,f,w,d,a,t,z,d,f,s],[q,w,e,r,t,z]).
[a, f, d, s, q, w, e, r, t, z]
Yes
```

- PROLOG-Antwortberechnung verwendet im Prinzip SLD-Resolution
- Außerlogische Konstrukte sind z.B. write, not, ! ("cut")

Fazit Prädikatenlogik und Resolution

- Prädikatenlogik 1. Stufe hat deutlich höhere Ausdrucksfähigkeit als Aussagenlogik. Sie ist als Basis für Formalismen der Wissensrepräsentation geeignet.
- Erfüllbarkeit in der Prädikatenlogik ist unentscheidbar.
- Resolution funktioniert wie in der AL, muss aber zusätzlich Unifikation und Faktorisierung verwenden.
- Resolution (+Faktorisierung) in PL ist korrekt&vollständig.
- Die Spezialisierungen von Resolution aus der AL können direkt weiter verwendet werden.
- Logikprogrammierung, CLP und Deduktionssysteme sind wichtige Anwendungen prädikatenlogischer Resolution.

2.5 Grenzen der Logik (Beispiele)

Zum Beispiel: Normalfallschließen (default reasoning)

Problem klassischer Logik bei vielen "natürlichen" Schlüssen:

- Im Normalfall gelten gewisse Konsequenzen;
- unter bekannten Ausnahmen gelten andere Konsequenzen;
- solange nicht bekannt ist, dass ein Ausnahmefall vorliegt, soll der Normalfall angenommen werden (kann zurückgenommen werden, wenn später Ausnahme-Information nachkommt!)

Beispiele

- Mangels Information übers Gegenteil nimm an, dass der Bundespräsident am Nachmittag derselbe ist wie vormittags
- Mangels Information übers Gegenteil nimm an, dass ein Vogel, von dem die Rede ist, fliegen kann

Normalfälle in klassischer Logik?

Beispiel: "Alle/Typische Vögel können fliegen"

- $\forall x. Vogel(x) \Rightarrow Kann_fliegen(x)$
- modelliert nicht das "typisch", insbesondere folgt aus

 $\forall x. Pinguin(x) \Rightarrow Vogel(x)$ dass

 $\forall x. Pinguin(x) \Rightarrow Kann_fliegen(x)!$

 $\forall x. Vogel(x) \land \neg Untypisch_{Vogel}(x) \Rightarrow Kann_fliegen(x) \text{ und}$ $\forall x. Pinguin(x) \lor Strau\beta(x) \lor Brathuhn(x) \Rightarrow Untypisch_{Vogel}(x).$

- ... funktioniert, aber erfordert ausdrückliche Aufzählung aller Ausnahmen (ausgenommen die Ausnahmen der Ausnahmen, ...)
- ... und bei jeder Ableitung (Amsel, Drossel, Fink & Star)
 Nachweis nötig, dass jeweils <u>keine</u> Atypie vorliegt!

großer Traum

Vogelflug in PROLOG

```
kannfliegen(X) :- vogel(X), not(untypischV(X)).
vogel(tweety).
vogel(hansi).
vogel(X) :- pinguin(X).
untypischV(X) :- pinguin(X).
pinguin(leonardo).
?- kannfliegen(X).
  = tweety ;
X = hansi;
No
pinguin(tweety).
?- kannfliegen(X).
X = hansi;
No
```

Prolog verwendet *negation by* finite failure, was hier das Gesuchte leistet! Aber:

- die logische Semantik davon ist nicht offensichtlich
- das geht so mit Formeln in Hornklausellogik – wie sähe es im Allgemeinen aus?

nicht monoton! (vgl. Folie 36)

Interpretation eines Vorlesungsverzeichnisses

Beispiel aus dem Vorlesungsverzeichnis:

Projektgruppen SS08 für Masterprogramm Informatik

- PG(SS08, 6.772, humanoide_Roboter, Riedmiller)
- PG(SS08, 6.774, Social_Network_Applications, Vornberger)

Frage:

Welche Projektgruppen laufen im SS08? Mögliche Antworten (≈Modelle) in reiner Prädikatenlogik:

- 2! (6.772, 6.774)
- 1! (6.772, 6.774 sind untersch. Namen desselben "Dings")
- 5! (6.772, 6.774, und dann noch 3 andere, deren Namen wir nicht kennen)

2 Annahmen zusätzlich zur Prädikatenlogik

Eindeutige Namensgebung, Unique Names Assumption, UNA

Unterschiedliche Namen bezeichnen unterschiedliche Individuen

Abgeschlossene Welt, Closed World Assumption, CWA: ...

Die Information (über positive Fakten) ist <u>abgeschlossen</u>:

Ist eine Grundformel nicht als wahr bekannt,
nimm an, dass sie falsch ist

CWA und Prolog

Im PG-Beispiel:

Eine PG, die nicht im Vorlesungsverzeichnis steht, existiert auch nicht.

Erinnerung an PROLOG:

not (p) ist wahr, wenn p nicht bewiesen werden kann.

Kein Junktor!

In PROLOG: Ein Prädikat
Allgemein: Ein außer-logisches Konstrukt

Mehr dazu Vorlesung "Wissensbasierte Systeme

Ausblick auf eine höhere Stufe

Da es Prädikatenlogik "1. Stufe" gibt, gibt es natürlich auch Prädikatenlogik höherer Stufen.

Beispiel:
$$\forall R.[\exists y.R(0,y) \land \forall x.(\exists y_1.R(x,y_1) \Rightarrow \exists y_2.R(x+1,y_2)) \Rightarrow \forall x.\exists y.R(x,y)]$$

Peano'sches Induktionsaxiom

- Logik der Stufe (n+1) erlaubt Äußerungen <u>über</u> Logiken der Stufe n (Meta-Sprache)
- Für Informatiker/innen: Meta-Sprachen braucht man z.B., um Signaturen formaler Systeme zu spezifizieren
- Für Mathematiker/innen: Meta-Sprachen braucht man z.B., um Theoreme über Strukturen zu formulieren