Khôlles de Mathématiques - Semaine 19

Hugo Vangilluwen, George Ober, Kylian Boyet

3 Mars 2024

$$\mathbf{1} \quad (A \times B)^T = B^T \times A^T$$

Pour une matrice $A \in \mathcal{M}_{(n,p)}(\mathbb{K})$, la matrice transposée est définie :

$$\forall (k,l) \in [1,p] \times [1,n], [A^T]_{kl} = A_{lk}$$

Formellement, la transposition est une application de $\mathcal{M}_{(n,p)}(\mathbb{K})$ dans $\mathcal{M}_{(p,n)}(\mathbb{K})$.

Démonstration. Soit $(A, B) \in \mathcal{M}_{(n,p)}(\mathbb{K}) \times \mathcal{M}_{(p,q)}(\mathbb{K})$. $(A \times B)^T \in \mathcal{M}_{(q,n)}(\mathbb{K})$. Soit $(i,j) \in [1,q] \times [1,n]$.

$$\begin{aligned} \left[\left(A \times B \right)^T \right]_{i,j} &= \left[A \times B \right]_{j,i} \\ &= \sum_{k=1}^p A_{j,k} \times_{\mathbb{K}} B_{k,i} \\ &= \sum_{k=1}^p B_{k,i} \times_{\mathbb{K}} A_{j,k} \\ &= \sum_{k=1}^p \left[B^T \right]_{i,k} \times_{\mathbb{K}} \left[A^T \right]_{k,j} \\ &= \left(B^T \right) \times \left(A^T \right) \end{aligned}$$

2 Calculer $E^{i,j} \times E^{k,l}$ en fonction de i, j, k, l et des symboles de Kronecker

Le symbole de Kronecker est défini de la manière suivante :

$$\forall (x,y) \in \mathbb{R}^2, \delta_{xy} = \begin{cases} 0 \text{ si } x \neq y \\ 1 \text{ si } x = y \end{cases}$$

La matrice $E^{i,j} \in \mathcal{M}_{(n,p)}(\mathbb{K})$ avec $(i,j) \in [1,n] \times [1,p]$ ne possède que des coefficients nuls sauf le coefficient de la i^e ligne et j^e colonne qui vaut 1. Formellement :

$$\forall (r,s) \in [\![1,n]\!] \times [\![1,p]\!], \ \left[E^{i,j}\right]_{rs} = \delta_{ir}\delta_{js}$$

Démonstration. Calculons $E^{i,j}(n,p) \times E^{k,l}(p,q)$. Soient $(r,s) \in [1,n] \times [1,q]$ fq

$$\begin{split} \left[E^{i,j} \times E^{k,l}\right]_{rs} &= \sum_{t=1}^{n} E_{r,t}^{i,j} E_{t,s}^{k,l} \\ &= \sum_{t=1}^{n} \delta_{ir} \delta_{jt} \delta_{kt} \delta_{ls} \\ &= \delta_{jk} \delta_{ir} \delta_{ls} \\ &= \delta_{jk} \left[E^{i,l}\right]_{rs} \end{split}$$

Donc $E^{i,j} \times E^{k,l} = \delta_{ik} E^{i,l}$. Ainsi, pour le calcul de $(E^{i,j})^2$, $q \leftarrow n$, $k \leftarrow i$, $l \leftarrow j$.

$$(E^{i,j})^2 = \delta_{ji}E^{i,j} = \begin{cases} E^{i,j} \text{ si } i = j\\ 0_{n,p} \text{ si } i \neq j \end{cases}$$

Les matrices triangulaires supérieures forment un sousanneau de $\mathcal{M}_n(\mathbb{K})$

Démonstration. $\mathcal{T}_n^+(\mathbb{K}) \subset (M)_n(\mathbb{K})$ et $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau. $\mathcal{T}_n^+(\mathbb{K}) \neq \emptyset$ car $I_n \in \mathcal{T}_n^+(\mathbb{K})$ $(I_n$ est le neutre multiplicatif de $\mathcal{M}_n(\mathbb{K})$). Soient $(A, B) \in \mathcal{T}_n^+(\mathbb{K})^2$. Soient $(i, j) \in [1, n]^2$ tels que i > j.

$$(A - B)_{i,j} = \underbrace{A_{i,j}}_{=0 \text{ car } A \in \mathcal{T}_n^+(\mathbb{K})} - \underbrace{B_{i,j}}_{=0 \text{ car } B \in \mathcal{T}_n^+(\mathbb{K})} = 0$$

Donc, $A - B \in \mathcal{T}_n^+(\mathbb{K})$.

$$(A \times B)_{i,j} = \sum_{k=1}^{n} A_{i,k} \times_{\mathbb{K}} B_{k,j}$$

$$= \sum_{k=1}^{j} \underbrace{A_{i,k}}_{=0 \text{ car } i > j \geqslant k \text{ et } A \in \mathcal{T}_{n}^{+}(\mathbb{K})} \times_{\mathbb{K}} B_{k,j} + \sum_{k=j+1}^{n} A_{i,k} \times_{\mathbb{K}} \underbrace{B_{k,j}}_{=0 \text{ car } k > j \text{ et } B \in \mathcal{T}_{n}^{+}(\mathbb{K})}$$

$$= 0$$

Donc, $A \times B \in \mathcal{T}_n^+(\mathbb{K})$.

Si A est une matrice d'ordre n et λ un scalaire non nul d'un corps, alors la transposée de A et λA sont inversibles aussi.

Démonstration. Soient $A, \lambda \in \mathcal{GL}_n(\mathbb{K}) \times \mathbb{K}^*$, avec \mathbb{K} un corps. Par définition, il existe $B \in \mathcal{GL}_n(\mathbb{K})$ tel que $AB = BA = I_n$. Ainsi :

$$(AB)^T = I_n^T \iff B^T A^T = I_n,$$

donc A^T admet un inverse à gauche, B^T , donc un inverse tout court et donc A^T est inversible (on notera que A^T reste dans les matrices d'ordre n). De même,

$$\lambda AB = \lambda I_n \iff (\lambda A)B = \lambda I_n \iff (\lambda A)\left(\frac{1}{\lambda}B\right) = I_n,$$

car les scalaires commutent avec toutes les matrices. Ainsi, λA admet un inverse à droite, donc un inverse tout court, donc est inversible, d'inverse $\frac{1}{\lambda}B.$ Concluant la preuve.

Si N est une matrice d'ordre n nilpotente, alors $I_n + \lambda N$ 5 est inversible pour tout λ , scalaire d'un corps.

 $D\acute{e}monstration$. Soient N une matrice d'ordre n à coefficient dans K, un corps, nilpotente, d'indice de nilpotence k (un entier naturel donc) et $\lambda \in \mathbb{K}$. Calculons :

$$I_n^{2k+1} + (\lambda N)^{2k+1} = I_n^{2k+1} - (-\lambda N)^{2k+1} = (I_n + \lambda N) \sum_{i=0}^{2k} (-\lambda N)^i = (I_n + \lambda N) \sum_{i=0}^{k-1} (-\lambda N)^i,$$

car λN commute avec I_n , or le membre de gauche est égal à I_n car 2k+1>k, donc $I_n+\lambda N$ est inversible à droite, donc inversible tout court, d'inverse $\sum_{i=0}^{k-1} (-\lambda N)^i$. Ce qui conclut la preuve.

6 Caractérisation de l'inversibilité pour les matrices

 $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}$ admet une unique solution.

$$\forall A \mathcal{M}_n(\mathbb{K}), A \in \mathcal{GL}_n(\mathbb{K}) \iff \forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1} : AX = Y$$
 (1)

Démonstration. Supposons que $A \in \mathcal{GL}_n(\mathbb{K})$. Soit $Y \in \mathcal{M}_{n,1}(\mathbb{K})$ fixé quelconque . $AX = Y \iff A^{-1}AX = A^{-1}Y \iff X = A^{-1}Y$ donc l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}$ admet une unique solution.

Supposons maintenant que $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1} : AX = Y$. Pour $i \in [1; n]$, notons X_i la solution de $AX = E^{i,1}$.

Posons
$$B = \begin{bmatrix} X_1 & X_2 & \dots & X_n \end{bmatrix}$$
.

Calculons $AB = \begin{bmatrix} AX_1 & AX_2 & \dots & AX_n \end{bmatrix} = \begin{bmatrix} E^{1,1} & E^{2,1} & \dots & E^{n,1} \end{bmatrix} = I_n$.

Ainsi A est inversible à droite donc $A \in \mathcal{GL}_n(\mathbb{K})$ et $A^{-1} = B$.

7 Caractérisation des matrices diagonales inversibles

Une matrice diagonale est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

$$\forall D = diag(d_1, d_2, \dots, d_n) \in \mathcal{D}_n(\mathbb{K}), D \in \mathcal{GL}_n(\mathbb{K}) \iff \prod_{i=1}^n d_i \neq 0$$
 (2)

Démonstration. Soit $D \in \mathcal{D}_n(\mathbb{K})$ de coefficients diagonaux $d_1, d_2, \dots, d_n \in \mathbb{K}^n$.

Soit
$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$
. Étudions l'équation $DX = Y$ d'inconnue $X = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$.

$$DX = Y \iff \begin{cases} d_1x_1 & = y_1 \\ d_2x_2 & = y_2 \\ \vdots & \vdots \\ d_nx_n & = y_n \end{cases}$$

- Si $\exists i_0 \in [1; n]$: $d_{i_0} = 0$, la i_0 -ème ligne du système ci-dessus deviens une condition de compatibilité $0 = y_{i_0}$ qui ne sera pas respecté pour $Y = E^{i_0,1}$. Donc $D \notin \mathcal{GL}_n(\mathbb{K})$.
- Sinon $\forall i \in [1; n] : d_i \neq 0$, le système est donc triangulaire à coefficients diagonaux non nuls. Il admet donc une unique solution. Ainsi $D \in \mathcal{GL}_n(\mathbb{K})$.

$$DX = Y \iff \begin{cases} x_1 & = d_1^{-1}y_1 \\ x_2 & = d_2^{-1}y_2 \\ & \ddots & = & \ddots \\ & x_n & = & d_n^{-1}y_n \end{cases}$$

Ainsi $D^{-1} = diag(d_1^{-1}, d_2^{-1}, \dots, d_n^{-1})$