TP 5: Relaciones

Producto Cartesiano

Definición:

Dados dos conjuntos A y B definimos el **producto cartesiano** $A \times B$ al conjunto formado por todos los pares posibles de elementos de A con elementos de B

Ejemplo:

Sean $A = \{1, 2, 3\}$ $B = \{4, 6\}$ se define el producto cartesiano $A \times B = \{(1, 4), (1, 6), (2, 4), (2, 6), (3, 4), (3, 6)\}$

Notación: #: cardinal - cantidad de elementos de un conjunto

Observaciones:

- 1) No es lo mismo que $B \times A$
- 2) $\#(A \times B) = \#A \cdot \#B$

Relación

Una relación entre dos conjuntos A y B es el conjunto formado por algunos (o todos) los pares del producto cartesiano $A \times B$

Es decir: $R: A \rightarrow B$ / $R \subseteq A \times B$

Observación: Si un par $(x, y) \in R$ entonces decimos que xRy

Ejemplo

Dados los conjuntos del ejemplo anterior $A = \{1, 2, 3\}$ $B = \{4, 6\}$, definimos en $A \times B$ las relaciones:

1.
$$R: A \to B$$
 $/ R = \{(x, y) \in A \times B / y = 2x\} \implies R = \{(2, 4), (3, 6)\}$

2.
$$R_2: A \to B$$
 / $R = \{(x, y) \in A \times B / y \ge x\}$ \Rightarrow $R_2 = A \times B$

3.
$$B \times A = \{(4,1), (4,2), (4,3), (6,1), (6,2), (6,3)\}$$

 $R_3 : B \to A \quad / \quad R = \{(x;y) \in B \times A / y = x - 5\} \implies R_3 = \{(6,1)\}$

4.
$$A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

 $R_4 : A \to A \quad / \quad R = \{(x,y) \in A \times A / y < x\} \quad \Rightarrow \quad R_4 = \{(2,1), (3,1), (3,2)\}$

Representaciones gráficas

Volviendo al ejemplo de $R = \{(2;4); (3;6)\}$ (esta relación viene dada por su **conjunto gráfico**)

• Diagrama de Venn

Matriz Booleana

A B	4	6
1	0	0
2	1	0
3	0	1

Representación
 Cartesiana

Elementos de una relación:

Sea $R: A \rightarrow B$, llamamos a A "el conjunto de salida" y llamamos a B "el conjunto de llegada"

1) DOMINIO:

$$Dom(R) = \{x \in A / \exists y \in B \land (x; y) \in R\} \subseteq A$$

"Son los valores de "x" que aparecen en la relación"

En el ejemplo

$$R = \{(2;4);(3;6)\}$$

$$Dom(R) = \{2,3\}$$

2) IMAGEN:

$$Im(R) = \{ y \in B / \exists x \in A \land (x; y) \in R \} \subseteq B$$

"Son los valores de "y" que aparecen en la relación"

En el ejemplo

$$R = \{(2;4);(3;6)\}$$

$$Im(R) = \{4, 6\}$$

Relación Inversa

Dada $R:A\to B$, llamamos relación inversa de R (y lo notamos R^{-1}) a la relación que satisface:

$$R^{-1}: B \to A$$
 / $R^{-1} = \{(y; x)/(x; y) \in R\} \subseteq B \times A$

En el ejemplo:

$$R = \{(2;4);(3;6)\}$$
 $R^{-1} = \{(4,2),(6,3)\}$

Observaciones

- $Dom(R^{-1}) = Im(R)$
- $\operatorname{Im}(R^{-1}) = \operatorname{Dom}(R)$

Relaciones definidas en un conjunto

$$R \subseteq A \times A = A^2$$

O sea, son relaciones tales que el conjunto de salida y de llegada es el mismo.

Ejemplos:

Dado el conjunto $A = \{1, 2, 3\}$ definimos el producto cartesiano

$$A \times A = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

Y allí definimos las siguientes relaciones:

1) Reflexividad: Todo elemento de A está relacionado consigo mismo.

$$\forall x \in A \quad (x \in A \Rightarrow (x; x) \in R)$$

¿Cuáles de las relaciones anteriores son reflexivas?

Sólo R_1 , pues es la única que tiene todos los pares (x,x). Gráficamente, equivale a que cada elemento del conjunto tenga una flecha que sale y llega a sí mismo.

2) Simetría: Si un elemento está relacionado con otro, éste está relacionado con el primero.

$$\forall x, y \in A: (x, y) \in R \Rightarrow (y, x) \in R$$

¿Cuáles de las relaciones anteriores son simétricas?

 R_1 , R_3 y R_5 son simétricas

Las que no son simétricas es porque tienen un par y no su simétrico. Por ejemplo R_2 tiene el par (1,2) y no tiene su simétrico, o sea no tiene el par (2,1).

3) *Transitividad*: Si un elemento está relacionado con otro, y éste, a su vez, está relacionado con un tercero, entonces el primero está relacionado con el tercero.

$$\forall x, y, z \in A$$
: $(x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$

¿Cuáles de las relaciones anteriores son transitivas?

 R_1 , R_4 y R_5 son transitivas.

Las que no son transitivas es porque les falta algún par para cumplir la definición. Por ejemplo R_2 tiene el par (1,2) y el par (2,3) pero no tiene el par (1,3).

Lo mismo sucede para R_3 , tiene el par (3,1) y el (1,3) pero no tiene el par (3,3)

4) Antisimetría: Si un elemento está relacionado con otro, y éste está relacionado con el primero, entonces ambos elementos son iguales (o sea, los únicos pares simétricos en la relación, son los idénticos)

$$\forall x, y \in A:$$
 $(x; y) \in R \land (y; x) \in R \Rightarrow x = y$

<u>Observación</u>: esta definición es equivalente a decir que si un par está en una relación, entonces no puede estar el par simétrico, a menos que sea un par idéntico.

¿Cuáles de las relaciones anteriores son transitivas?

 $R_{\scriptscriptstyle 2}$, $R_{\scriptscriptstyle 4}$ y $R_{\scriptscriptstyle 5}$ son antisimétricas.

Las que no lo son es porque tienen algún par (x,y) y también al par (y,x). Por ejemplo: R_1 tiene el par (1,3) y el (3,1)

Definamos ahora dos tipos de relaciones importantes:

Relación de Equivalencia

 $R \subseteq A^2$ es una relación de equivalencia \iff R es reflexiva, simétrica y transitiva

Relación de Orden

 $R \subseteq A^2$ es una relación de orden \Leftrightarrow R es reflexiva, antisimétrica y transitiva

Ejemplo 1

Dado el conjunto $A=\mathbb{Z}$, y la relación R definida en A tal que: $\left(x,y\right)\in R$ \longleftrightarrow $x^2=y^2$

Decidir si se trata de una relación de equivalencia o de una relación de orden.

Resolución:

Algunos pares de la relación son, por ejemplo: (2,2)(3,3)(3,-3)(-3,-3)...

Observemos que la relación entonces está formada por infinitos pares: $R = \{(1,1),(2,2),(3,3),(3,-3)...\}$

Veamos cuáles propiedades satisface:

Reflexividad:

 $\forall x \in A: (x,x) \in R$

 $\forall x \in \mathbb{Z}: \quad x^2 = x^2 \quad \text{se cumple}$

Simetría:

 $\forall x, y \in A: (x, y) \in R \rightarrow (y, x) \in R$

 $\forall x, y \in \mathbb{Z}: \quad x^2 = y^2 \rightarrow y^2 = x^2$ se cumple

Transitividad:

 $\forall x, y, z \in A: \left[(x, y) \in R \land (y, z) \in R \right] \rightarrow (x, z) \in R$

 $\forall x, y, z \in \mathbb{Z}: \left[x^2 = y^2 \wedge y^2 = z^2\right] \rightarrow x^2 = z^2$

dem:

 $x^2 = y^2 = z^2$ queda entonces demostrado

Antisimetría:

 $\forall x, y \in A: (x, y) \in R \land (y, x) \in R \rightarrow x = y$

 $\forall x, y \in \mathbb{Z}: \quad x^2 = y^2 \land y^2 = x^2 \rightarrow x = y$ no se cumple

Contraejemplo:

 $(3,-3) \in R \land (-3,3) \in R \not \prec 3 = -3$

Por lo tanto, la relación es de equivalencia.

Ejemplo 2

Dado el conjunto $A=\mathbb{R}$, y la relación S definida en A tal que: $(x,y)\in S$ \longleftrightarrow x+y=1

Decidir si se trata de una relación de equivalencia o de una relación de orden, o ninguna de ellas.

Resolución:

Algunos pares de la relación son, por ejemplo: $(0,1),(1,0),(\frac{1}{2},\frac{1}{2}),(3.4,-2.4),(7,-6),(-3,4)...$

Observemos que la relación entonces está formada por infinitos pares Veamos cuáles propiedades satisface:

Reflexividad:

 $\forall x \in A: (x,x) \in S$

 $\forall x \in \mathbb{R}: x + x = 1$ no se cumple

Contraejemplo:

 $(1,1) \notin S$

Simetría:

 $\forall x, y \in A: (x, y) \in S \rightarrow (y, x) \in S$

 $\forall x, y \in R: x + y = 1 \rightarrow y + x = 1$ se cumple pues x + y = y + x

Transitividad:

 $\forall x, y, z \in A: [(x, y) \in S \land (y, z) \in S] \rightarrow (x, z) \in S$

 $\forall x, y, z \in R: [x+y=1 \land y+z=1] \rightarrow x+z=1$ no se cumple

Contraejemplo:

 $(1,0) \in S \land (0,1) \in S \not\rightarrow 1+1=1$

Antisimetría:

 $\forall x, y \in A: (x, y) \in S \land (y, x) \in S \rightarrow x = y$

 $\forall x, y \in R: x + y = 1 \land y + x = 1 \rightarrow x = y$ no se cumple

Contraejemplo:

 $(-2,3) \in S \land (3,-2) \in S \not\to 3 = -2$

Por lo tanto, la relación no es ni de orden ni de equivalencia.

Ejemplo 3

$$A = \{a; b; c; d; e; f\}, \quad R \subseteq A^2 \quad / \quad R = \begin{cases} (a; a); (a; c); (c; a); (b; b); (c; c); (b; c); (c; b); (a; b); \\ (b; a); (e; f); (f; e); (e; e); (d; d); (f; f) \end{cases}$$

Resolución

Realicemos el diagrama de Venn:

Analicemos las propiedades que cumple:

Reflexividad: $\forall x \in A$: $(x,x) \in R$ se cumple

Simetría: $\forall x, y \in A: (x, y) \in R \rightarrow (y, x) \in R$ se cumple

<u>Transitividad:</u> $\forall x, y, z \in A: (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$ se cumple

Clases de Equivalencia y Conjunto Cociente

Sea R una relación de **equivalencia** en $A \neq \emptyset$

Si $x \in A$ se llama clase de equivalencia de x a la imagen por R de x

Lo notamos $Cl(x) = [x] = \{y \in A \mid (x, y) \in R\}$

En el Ejemplo 3

Se llama conjunto cociente de A al conjunto formado por las clases de equivalencia de A por R

Lo notamos $\frac{A}{R} = \{ [x] / x \in A \}$

En el Ejemplo 3:

$$\frac{A}{R} = \{\{a,b,c\},\{d\},\{e,f\}\}$$

Propiedades:

1)
$$[x] \subseteq A$$

2)
$$[x] \neq \emptyset$$

3)
$$\forall x, y \in A$$
: $si(x, y) \in R \text{ entonces } [x] = [y]$

Partición de un conjunto

Sean A un conjunto, I un conjunto de índices, $A_i \subseteq A$ con $i \in I$

El conjunto $\Pi = \{A_i \mid i \in I\}$ es una **partición** de A si se verifican:

i)
$$A_i \neq \emptyset \quad \forall i \in I$$

ii)
$$A_i \cap A_i = \emptyset$$
 si $i \neq j$

iii)
$$\bigcup_{i \in I} A_i = A$$

Observación: A cada A_i se lo llama bloque de la partición

En el Ejemplo 3: El conjunto cociente es una partición del conjunto A

Teorema

Los siguientes dos enunciados son verdaderos:

- 1) Si R es una relación de equivalencia en A entonces $\frac{A}{R}$ es una partición de A
- 2) Si $\Pi = \left\{ A_i \ / \ i \in I \right\}$ es una partición de A

Definimos la relación $R \subseteq A^2$ tal que $xRy \iff x \ e \ y$ pertenecen al mismo bloque de a partición

Entonces R resulta una relación de equivalencia

El teorema en palabras sería el siguiente:

"Toda relación de equivalencia definida en un conjunto A genera una partición de dicho conjunto, y recíprocamente, toda partición de un conjunto induce una relación de equivalencia".

Ejercicio 1

Dado el conjunto $A = \{1, 2, 3, 4, 5\}$ y la relación R definida por la siguiente matriz booleana:

A	1	2	3	4	5
1	0	0	0	0	0
2	0	1	0	1	0
3	0	1	0	0	0
4	0	0	0	1	0
5	1	0	0	0	1

- a) Determinar si R es una relación de equivalencia. En caso contrario, defina una relación de equivalencia T agregando a R la menor cantidad de pares ordenados posibles.
- b) Para T defina clases de equivalencia y la partición de A generada por T

Resolución

- a) Para ver si es de equivalencia hay que ver que se cumplan las 3 propiedades:
 - Reflexividad
 - Simetría
 - Transitividad

Armemos el conjunto gráfico de la relación: $R = \{(2,2),(2,4),(3,2),(4,4),(5,1),(5,5)\}$

Así definida no es de equivalencia (pues no cumple ni reflexividad, ni simetría ni transitividad)

Entonces, agregamos pares para que cumpla las tres propiedades:

reflexividad simetría transitividad

$$T = \begin{cases} (2,2), (2,4), (3,2), (4,4), (5,1), (5,5) \\ (1,1), (3,3), (1,5), (4,2), (2,3), (3,4), (4,3) \end{cases}$$

b) Las clases de equivalencia de T son:

$$[1] = \{1,5\} = [5]$$

$$\frac{A}{T} = \{\{1,5\}, \{2,3,4\}\}$$

Ejercicio 2

Dado el conjunto $A = \{1, 2, 3, 4, 5, 6, 7\}$ y la partición del conjunto A:

Determinar la relación de equivalencia inducida por dicha partición. (vale hacerlo con el diagrama o con los pares, o con la matriz booleana, etc...)

Resolución:

Damos el conjunto gráfico:
$$R = \begin{cases} (1,1),(5,5),(7,7),(1,5),(5,1),(1,7),(7,1),(5,7),(7,5),\\ (3,3),\\ (6,6),(2,2),(6,2),(2,6),\\ (4,4) \end{cases}$$

Observación: Hay dos tipos de relaciones de orden

- **Orden total:** Cumplen que $\forall x, y \in A$: $(x; y) \in R \lor (y; x) \in R$ (o sea, todo par de elementos que está relacionado entre sí)
- Orden parcial: No cumplen la definición de orden total
 (o sea, hay algún par de elementos que no están relacionados entre sí)

Ejercicio

Para las siguientes relaciones definidas en $A = \{2, 3, 6, 10\}$ indique si son relaciones de orden y en caso afirmativo, si son de orden total o parcial.

1)
$$R = \{(x; y) \in A^2 / x \le y \}$$

Resolución

Damos el conjunto gráfico de la relación: $R = \begin{cases} (2,2),(2,3),(2,6),(2,10), \\ (3,3),(3,6),(3,10) \\ (6,6),(6,10) \\ (10,10) \end{cases}$

- Es reflexiva, pues se cumple que: $\forall x \in A$: $(x, x) \in R$
- Es antisimétrica, pues se cumple que: $\forall x, y \in A$: $xRy \land yRx \rightarrow x = y$
- Es transitiva, pues se cumple que: $\forall x, y, z \in A$: $xRy \land yRz \rightarrow xRz$

Es de **orden total** pues cumple la definición: $\forall x, y \in A$: $(x, y) \in R \lor (y, x) \in R$

2)
$$R_2 = \{(x; y) \in A^2 / x \text{ es múltiplo de } y\}$$

Resolución

Recordemos que el conjunto $A = \{2, 3, 6, 10\}$, y demos el conjunto gráfico de la relación:

$$R_2 = \{(2,2),(3,3),(6,6),(10,10),(6,2),(10,2),(6,3)\}$$

El diagrama de Venn resulta el siguiente:

- Es reflexiva, pues se cumple que : $\forall x \in A$: $(x, x) \in R$
- Es antisimetría, pues se cumple que : $\forall x, y \in A$: $xRy \land yRx \rightarrow x = y$
- Es transitiva, pues se cumple que : $\forall x, y, z \in A$: $xRy \land yRz \rightarrow xRz$

Es de orden parcial, pues 3 y 2 no están relacionados entre sí (o bien, 6 y 10 no están relacionados entre sí)

Diagrama de Hasse

En una relación de orden se puede realizar el diagrama de Hasse, que tiene las siguientes características:

- Es una simplificación del diagrama de Venn
- Se omiten los bucles (pues se pueden deducir por reflexividad)
- Se omiten las aristas que se pueden deducir por transitividad
- Es convención construirlo (de abajo hacia arriba) desde los elementos minimales hacia los elementos maximales (estos elementos se definen más abajo)

Elementos distinguidos en una relación de orden

Dada una relación de orden $R \subseteq A^2$ decimos que:

- $m \in A$ es el elemento minimal, si $\forall x \in A$: $x \neq m \rightarrow (x, m) \notin R$
- $M \in A$ es el elemento maximal, si $\forall x \in A$: $x \neq M \rightarrow (M, x) \notin R$

Ejemplos:

Para las relaciones de los ejemplos anteriores, realizar el diagrama de Hasse de cada una.

$$A = \{2, 3, 6, 10\}$$

1)
$$R = \begin{cases} (2,2),(2,3),(2,6),(2,10),\\ (3,3),(3,6),(3,10)\\ (6,6),(6,10)\\ (10,10) \end{cases}$$

Diagrama de Hasse:

Elemento maximal: {10}

Elemento minimal: {2}

2)
$$R_2 = \{(2,2),(3,3),(6,6),(10,10),(6,2),(10,2),(6,3)\}$$

Maximales: {2,3} Minimales: {10,6}

Ejercicio

Dar la matriz booleana de la relación dada por el siguiente diagrama de Hasse

A	1	2	3	4
1	1	1	1	1
2	0	1	0	1
3	0	0	1	0
4	0	0	0	1

Maximales: {3,4} Minimal: {1}