The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

Lecture 16

Aryan Mokhtari

Monday, October 28, 2019.

Goal: In this lecture, we talk about Second-Order Cone Programming (SOCP), Robust Linear Programming, and Geometric Programming (GP).

1 Second-Order Cone Programming (SOCP)

Definition 1. A second-order cone program (SOCP) is an optimization problem of the form:

min:
$$\mathbf{q}^{\top} \mathbf{x}$$

s.t.: $\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{c}_i^{\top} \mathbf{x} + d_i, \quad i = 1, \dots, m.$
 $\mathbf{F} \mathbf{x} = \mathbf{g}.$

where $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable, and $\mathbf{q} \in \mathbb{R}^n$, $\mathbf{A}_i \in \mathbb{R}^{n_i \times n}$, $\mathbf{b}_i \in \mathbb{R}^{n_i}$, $\mathbf{c}_i \in \mathbb{R}^n$, $d_i \in \mathbb{R}$, $\mathbf{F} \in \mathbb{R}^{p \times n}$, and $\mathbf{g} \in \mathbb{R}^p$.

- The inequalities are called second-order cone (SOC) constraints.

Note that we can also write the equality constraint $\mathbf{F}\mathbf{x} = \mathbf{g}$ as a second-order cone constraint by setting $\mathbf{A}_{m+1} = \mathbf{F}$, $\mathbf{b}_{m+1} = -\mathbf{g}$, $\mathbf{c}_{m+1} = \mathbf{0}$, and $d_{m+1} = 0$.

Remark 1. As we discussed in Lecture 9, the second order cone in dimension n+1 is the set

$$\mathcal{L}^{n+1} = \{ (\mathbf{x}, t) \mid ||\mathbf{x}||_2 \le t \}.$$

Hence, the above optimization problem can also be written as

min:
$$\mathbf{q}^{\top}\mathbf{x}$$

s.t.: $(\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}, \mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}) \in \mathcal{L}^{n_{i}+1}, \quad i = 1, \dots, m.$

Observation: If $A_i = 0$ for i = 1, ..., m, then we obtain an LP. (LP \subset SOCP)

Observation: If we set $\mathbf{c}_i = \mathbf{0}$ for $i = 1, \dots, m$, then we obtain a QCQP. (QCQP \subset SOCP)

1.1 Robust linear programming

The parameters in optimization problems are often uncertain, e.g., in an LP:

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $\mathbf{a}_{i}^{\top}\mathbf{x} \leq b_{i}, \quad i = 1, \dots, m.$

there can be uncertainty in \mathbf{c} , \mathbf{a}_i , and b_i .

There are two different ways to address uncertainty in LP. (i) We assume that \mathbf{a}_i belong to a set of vectors $\mathbf{a}_i \in \mathcal{E}_i$ and we want to ensure for any of possible choices \mathbf{a}_i our solution is valid. This approach is also known as *deterministic approach*.

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $\mathbf{a}_{i}^{\top}\mathbf{x} \leq b_{i}$, for all $\mathbf{a}_{i} \in \mathcal{E}_{i}$, $i = 1, \dots, m$.

(ii) The second approach for modeling uncertainty in LP is assuming that \mathbf{a}_i is a random variable and constraints must hold with probability larger than a threshold η . This approach is also known as *stochastic approach*.

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $P(\mathbf{a}_{i}^{\top}\mathbf{x} \leq b_{i}) \geq \eta, \quad i = 1, \dots, m.$

1.1.1 Deterministic approach via SOCP

Consider deterministic robust linear programming when the set \mathcal{E}_i is an ellipsoid.

$$\mathcal{E}_i = \{\bar{\mathbf{a}}_i + \mathbf{P}_i \mathbf{u} \mid ||\mathbf{u}||_2 \le 1\}$$

where $\mathbf{P}_i \in \mathbb{R}^{n \times n}$ and $\mathbf{u} \in \mathbb{R}^n$. Here, \mathbf{P}_i and $\bar{\mathbf{a}}_i$ for i = 1, ..., m are given. For each constraint i, we want to ensure that the constraint $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$ is satisfied for all possible $\mathbf{a}_i \in \mathcal{E}_i$. Hence, the i-th constraint can be written as

$$\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$$
, for all $\mathbf{a}_i \in \mathcal{E}_i \quad \Leftrightarrow \quad (\sup_{\mathbf{a}_i \in \mathcal{E}_i} \mathbf{a}_i^{\top} \mathbf{x}) \leq b_i$

Further, note that

$$\sup_{\mathbf{a}_i \in \mathcal{E}_i} \mathbf{a}_i^{\top} \mathbf{x} = \sup_{\|\mathbf{u}\| \le 1} (\bar{\mathbf{a}}_i + \mathbf{P}_i \mathbf{u})^{\top} \mathbf{x}$$
$$= \bar{\mathbf{a}}_i^{\top} \mathbf{x} + \sup_{\|\mathbf{u}\|_2 \le 1} \mathbf{u}^{\top} \mathbf{P}_i^{\top} \mathbf{x}$$
$$= \bar{\mathbf{a}}_i^{\top} \mathbf{x} + \|\mathbf{P}_i^{\top} \mathbf{x}\|_2$$

Thus, the robust linear constraint can be expressed as

$$\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$$
, for all $\mathbf{a}_i \in \mathcal{E}_i \quad \Leftrightarrow \quad \bar{\mathbf{a}}_i^{\top} \mathbf{x} + \|\mathbf{P}_i^{\top} \mathbf{x}\|_2 \leq b_i$

which is evidently a second-order cone constraint. Hence, the Robust LP problem in this case can be written as

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $\bar{\mathbf{a}}_{i}^{\top}\mathbf{x} + \|\mathbf{P}_{i}^{\top}\mathbf{x}\|_{2} \leq b_{i}, \quad i = 1, \dots, m.$

which is an SOCP.

1.1.2 Stochastic approach via SOCP

The robust LP described above can also be considered in a statistical framework. Here we suppose that the parameters \mathbf{a}_i are independent Gaussian random vectors, with mean $\bar{\mathbf{a}}_i$ and covariance Σ_i . In this case, the constraint of the following LP

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $P(\mathbf{a}_{i}^{\top}\mathbf{x} \leq b_{i}) \geq \eta_{i}, \quad i = 1, \dots, m.$

Based on the probability distribution of \mathbf{a}_i , we know that $\mathbf{a}_i^{\top} \mathbf{x}$ is a Gaussian random variable with mean $\bar{\mathbf{a}}_i^{\top} \mathbf{x}$ and variance $\mathbf{x}^{\top} \mathbf{\Sigma}_i \mathbf{x}$. Hence,

$$P(\mathbf{a}_i^{\top} \mathbf{x} \le b_i) = \mathbf{\Phi} \left(\frac{b_i - \bar{\mathbf{a}}_i^{\top} \mathbf{x}}{\sqrt{\mathbf{x}^{\top} \mathbf{\Sigma}_i \mathbf{x}}} \right)$$
 where $\mathbf{\Phi}(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$

Hence, the *i*-th constraint can be written as (assuming that $\eta \geq 1/2$)

$$P(\mathbf{a}_{i}^{\top}\mathbf{x} \leq b_{i}) \geq \eta_{i} \quad \Leftrightarrow \quad \mathbf{\Phi}\left(\frac{b_{i} - \bar{\mathbf{a}}_{i}^{\top}\mathbf{x}}{\sqrt{\mathbf{x}^{\top}\boldsymbol{\Sigma}_{i}\mathbf{x}}}\right) \geq \eta_{i}$$

$$\Leftrightarrow \quad \frac{b_{i} - \bar{\mathbf{a}}_{i}^{\top}\mathbf{x}}{\sqrt{\mathbf{x}^{\top}\boldsymbol{\Sigma}_{i}\mathbf{x}}} \geq \mathbf{\Phi}^{-1}(\eta_{i})$$

$$\Leftrightarrow \quad \bar{\mathbf{a}}_{i}^{\top}\mathbf{x} + \mathbf{\Phi}^{-1}(\eta_{i}) \|\boldsymbol{\Sigma}_{i}^{1/2}\mathbf{x}\|_{2} \leq b_{i}$$

Hence, the Robust LP problem in this case can be written as

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $\bar{\mathbf{a}}_{i}^{\top}\mathbf{x} + \mathbf{\Phi}^{-1}(\eta_{i}) \|\mathbf{\Sigma}_{i}^{1/2}\mathbf{x}\|_{2} \leq b_{i}, \quad i = 1, \dots, m.$

which is an SOCP.

2 Geometric Programming (GP)

We proceed to study a family of optimization problems that are not convex in their natural form, but can be transformed to convex optimization problems, by a change of variables and a transformation of the objective and constraint functions.

Definition 2. A function $f: \mathbb{R}^n \to R$ with $\operatorname{dom} f = \mathbb{R}^n_{++}$ is called monomial, if it can be expressed as

$$f(\mathbf{x}) := cx_1^{a_1} \dots x_n^{a_n},$$

where c > 0 and $a_i \in \mathbb{R}$.

Definition 3. A sum of monomials, i.e., a function of the form

$$f(\mathbf{x}) := \sum_{k=1}^{K} c_k x_1^{a_{1k}} \dots x_n^{a_{nk}},$$

where $c_k > 0$ is called a posynomial function (with K terms), or simply, a posynomial.

We call an optimization problem a Geometric Program if it can be written as

min:
$$f_0(\mathbf{x})$$

s.t.: $f_i(\mathbf{x}) \le 1, \quad i = 1, ..., m.$
 $h_i(\mathbf{x}) = 1, \quad i = 1, ..., p.$

where $f_0, f_1, \dots f_m$ are posynomial and h_1, \dots, h_p are monomial.

2.1 Geometric program in convex form

Change variables to $y_i = \log x_i$ so that $x_i = \exp y_i$ If f is the monomial function of x mentioned above then we have

$$f(\mathbf{x}) := cx_1^{a_1} \dots x_n^{a_n} = c(e^{y_1})^{a_1} \dots (e^{y_n})^{a_n} = e^{\mathbf{a}^{\mathsf{T}} \mathbf{y} + b}$$

where $b = \log(c)$. Similarly, for a posynomial function we have

$$f(\mathbf{x}) := \sum_{k=1}^{K} c_k x_1^{a_{1k}} \dots x_n^{a_{nk}} = \sum_{k=1}^{K} e^{\mathbf{a}_k^{\top} \mathbf{y} + b_k}$$

where $\mathbf{a}_k = (a_{1k}, \dots, a_{nk})$ and $b_k = \log(c_k)$. The geometric program can be expressed in terms of the new variable \mathbf{y} as

min:
$$\sum_{k=1}^{K_0} e^{\mathbf{a}_{0k}^{\top} \mathbf{y} + b_{0k}}$$
s.t.:
$$\sum_{k=1}^{K_i} e^{\mathbf{a}_{ik}^{\top} \mathbf{y} + b_{ik}} \le 1, \quad i = 1, \dots, m.$$

$$e^{\mathbf{g}_i^{\top} \mathbf{y} + h_i} = 1, \quad i = 1, \dots, p.$$

Now we transform the objective and constraint functions, by taking the logarithm. This results in the problem

min:
$$\tilde{f}_0(\mathbf{y}) := \log \left(\sum_{k=1}^{K_0} e^{\mathbf{a}_{0k}^{\top} \mathbf{y} + b_{0k}} \right)$$

s.t.: $\tilde{f}_i(\mathbf{y}) := \log \left(\sum_{k=1}^{K_i} e^{\mathbf{a}_{ik}^{\top} \mathbf{y} + b_{ik}} \right) \le 0, \quad i = 1, \dots, m.$
 $\tilde{h}_i(\mathbf{y}) := \mathbf{g}_i^{\top} \mathbf{y} + h_i = 0, \quad i = 1, \dots, p.$

Since the functions \tilde{f}_i are convex, and \tilde{h}_i are affine, this problem is a convex optimization problem. If the posynomial objective and constraint functions all have only one term, i.e., are monomials, then the convex form geometric program reduces to a linear program!

Examples: Read the textbook.