Time Complexity

Mohammed Rizin Unemployed

March 20, 2025

1 Time Complexity

1.1 Simple For Loop

```
Algorithm 1 Simple for loop

for i \leftarrow 0 to n-1 do

....STMT....
end for
```

Time complexity: O(n).

1.2 Simple Reverse Loop

```
Algorithm 2 Simple reverse loop

for i \leftarrow n down to 1 do

....STMT....
end for
```

Time complexity: O(n).

1.3 For Loop with Step

```
Algorithm 3 Simple for loop with step for i \leftarrow 0 to n-1 step 2 do ....STMT.... end for
```

Time complexity: O(n) (as n/2 is asymptotically O(n)).

1.4 Nested Loops

Time complexity: $O(n^2)$.

i	j	STMT	Total STMT	Total Time	Time Complexity
0	0	1	1	1	1
1	0	1	2	3	3
1	1	1	3	6	6
2	0	1	4	10	10
2	1	1	5	15	15
2	2	1	6	21	21

The total number of executions is n(n+1)/2, so the time complexity is $O(n^2)$.

1.5 Summation Loop

Algorithm 5 Summation loop

```
 \begin{array}{c} p \leftarrow 0 \\ \textbf{for } i \leftarrow 1 \ \textbf{while} \ p \leq n \ \textbf{do} \\ p \leftarrow p + i \\ \textbf{end for} \end{array}
```

i	p	STMT	Total STMT	Total Time	Time Complexity
1	1	1	1	1	1
2	3	1	2	3	3
3	6	1	3	6	6
4	10	1	4	10	10
5	15	1	5	15	15
6	21	1	6	21	21
:	:	:	:	:	:
k	$\frac{k(k+1)}{2}$	1	$\stackrel{\cdot}{k}$	$\frac{k(k+1)}{2}$	$\frac{k(k+1)}{2}$

Assuming $p \leq n$:

$$p = \frac{k(k+1)}{2},$$

$$\frac{k(k+1)}{2} > n,$$

$$k^2 > n,$$

$$k > \sqrt{n}.$$

Time complexity: $O(\sqrt{n})$.

1.6 Multiplication Loop

Algorithm 6 Multiplication loop

```
\label{eq:constraint} \begin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{while} \ i \leq n \ \mathbf{step} \ 2 \cdot i \ \ \mathbf{do} \\ ... Statement... \\ \mathbf{end} \ \mathbf{for} \end{array}
```

step	i
1	2
2	4
3	8
4	16
5	32
:	:
k	2^k

This stops when i > n:

i.e.
$$2^k > n$$
,
$$\log_2 2^k > \log_2 n$$
$$k \cdot \log_2 2 > \log_2 n$$
$$k > \log_2 n$$

Time complexity: $O(\log_2 n)$.

However, If you notice log function, which gives both float and integer values, then should we take floor or ceil of the floating point value.

n = 8
1
2
4
8 < 8 fails !!
So in total we could execute it for 3 iterations. $\log_2 8 = 3$

n = 10
1
2
4
8
16 < 10 fails !!
So in total we could execute it for 4 iterations. $\log_2 10 = 3.32$
$ceil(\log_2 10) = 4$

1.7 Division Loop

Algorithm 7 For Loop with Division

for
$$i \leftarrow n$$
 while $i \ge 1$ step $\frac{i}{2}$ do Statement end for

step	i
1	n
2	$\frac{n}{2}$
3	$\frac{\tilde{n}}{2^2}$
4	$\frac{\overline{n}}{23}$
5	$\frac{\frac{n}{2^2}}{\frac{n}{2^3}}$ $\frac{n}{2^4}$
:	:
k	$\frac{n}{2^{k-1}}$
k+1	$\frac{\frac{n}{2^{k-1}}}{\frac{n}{2^k}}$

The loop stops when:

$$\begin{split} \frac{n}{2^{k-1}} &< 1, \\ 2^{k-1} &> n, \\ k-1 &> \log_2 n, \\ k &> \log_2 n + 1. \end{split}$$

Thus, the time complexity is $O(\log_2 n)$.

1.8 Square Loop

Algorithm 8 Loop till square of i is less than n

i	i^2
0	0
1	1
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	4
3	9
:	:
k	k^2

The loop stops when:

$$k^2 \ge n$$
$$k \ge \sqrt{n}$$

Thus, the time complexity is $O(\sqrt{n})$.

1.9 Independent loop

Algorithm 9 Independent for loops

```
\begin{array}{l} \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ ....STMT.... \\ \mathbf{end \ for} \\ \mathbf{for} \ j \leftarrow 0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ ....STMT.... \\ \mathbf{end \ for} \end{array}
```

Since this is not nested. They are independent loops. They have O(n) for both the loops adding to T(n)=2n.

But **Time complexity:** O(n).

1.10 One loop dependent on another

Thus this algorithm takes $O(\log \log n)$

2 Analysis of If & While loops

```
T(n) = 2n + 2
Time complexity: O(n)
```

2.1 While with two variables

Algorithm 12 While with two variables $i \leftarrow 1$ $j \leftarrow 1$ while j < n doStatement $j \leftarrow j + i$ $i \leftarrow i + 1$ end while

Let us trace the values of i and j:

i	j
1	1
2	2
3	2+2
4	2 + 2 + 3
5	2+2+3+4
6	2+2+3+4+5
:	:
k .	$2+2+3+4+\cdots+k-1$
k+1	$2+2+3+4+\dots+k \approx \frac{k \cdot (k+1)}{2}$

The loop stops when:

$$\frac{k(k+1)}{2} \ge n,$$
$$k^2 \gtrapprox n,$$
$$k \gtrapprox \sqrt{n}.$$

Thus, the time complexity is $O(\sqrt{n})$. The equivalent for loop is:

```
Algorithm 13 For loop with two variables
```

```
for i \leftarrow 1 while j < n do Statement j \leftarrow j + i end for
```

2.2 Example: GCD of two numbers

Algorithm 14 GCD of two numbers

```
while a \neq b do

if a > b then

a \leftarrow a - b

else

b \leftarrow b - a

end if

end while
```

Lets trace the values of a = 10 and b = 15:

a	b	$a \neq b$
10	15	True
5	15	True
5	10	True
5	5	False

So it took 3 iterations to find the GCD of 10 and 15.

Time complexity: $O(\max(a,b))$ min Time complexity: O(1) and max Time complexity: O(n)

2.3 Example: Test Algorithm

Algorithm 15 Test Algorithm

```
\begin{array}{c} \mathbf{procedure} \ \mathbf{TEST}(n) \\ \mathbf{if} \ n < 5 \ \mathbf{then} \\ \mathbf{print} \ n \\ \mathbf{else} \\ \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ \mathbf{print} \ i \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{if} \\ \mathbf{end} \ \mathbf{procedure} \end{array}
```

This algorithm has two parts:

- 1. If n < 5, then it prints n.
- 2. If $n \geq 5$, then it prints 0 to n-1.

Thus, the time complexity is O(n) at worst. At best, it is O(1).

3 Conclusion

for $i \leftarrow 0$ to $n-1$ do Statement	ightharpoonup O(n)
end for	
for $i \leftarrow 0$ to $n-1$ step $i+2$ do Statement end for	$ ightharpoonup rac{n}{2} ightharpoonup O(n)$
for $i \leftarrow n$ to 1 do Statement end for	ightharpoonup O(n)
for $i \leftarrow 0$ to $n-1$ step $i \cdot 2$ do Statement end for	$\rhd \blacktriangleright O(\log_2 n)$
for $i \leftarrow 0$ to $n-1$ step $i \cdot 3$ do Statement end for	$\triangleright \blacktriangleright O(\log_3 n)$
for $i \leftarrow n$ to 1 step $\frac{i}{2}$ do Statement end for	$\rhd \blacktriangleright O(\log_2 n)$