

G1&2. ESTRUCTURA ATÓMICA Y ELECTRÓNICA. TABLA PERIÓDICA

1) A partir de los símbolos de los siguientes nucleidos:

- **b)** Indicar cuáles son isótopos y cuales isobaros entre si. $(=\geq)$ (=A)
- 2) Representar con su símbolo a los iones formados por:

 18 (-2

 i) 8 protones, 10 neutrones y 10 electrones.
 - ii) 14 neutrones, 13 protones y 10 electrones 13 AL
 - iii) 36 electrones, 49 neutrones y 37 protones.
 - iv) 92 protones, 143 neutrones, 90 electrones.
 - v) 45 neutrones, 35 protones y 36 electrones.
- 3) Completar el siguiente cuadro (puede utilizar la Tabla Periódica en los casos en que no se indique el símbolo del elemento químico).

Símbolo	Carga	z	Α	Número de:		
				Protones	Neutrones	Electrones
⁶⁴ ₃₀ Zn	0	30	64	30	34	30
?Br-	-1	35	91	26	46	36
	0			82	126	
	2+				124	80
⁵⁹ ₂₇ Co ³⁺						
	0		132			54
	2-	8			10	
	4+		118	50		
	1-				74	54
[?] Cu+	+1	১৪	63	29	34	28
30/4 of 7+	2+	80	202	సీ 0	122	78

- 4) El Cobre natural presenta dos variedades isotópicas, cuyos números másicos son 63 y 65 respectivamente. El isótopo más abundante es el Cu 63 con una distribución en la naturaleza del 64,4%. M = 63 64, 490 + 65, 4909 64, 490 = 63, 377
 - a) Calcular la masa atómica aproximada del cobre.
- 5) El Boro tiene una masa atómica 10,811 u y está formado por dos variedades isotópicas: B 10 y B 11. Sus respectivas masas isotópicas son 10,0129 u y 11,0093 u.
 - a) Calcular la abundancia natural de cada uno de estos isótopos.

- Si el número cuántico n de un electrón es 2 ¿Cuáles son los valores que podrían adoptar sus números 6) cuánticos I, m y s? Justificar la respuesta. = 001, M = -1, D, 1, $1 = \pm 1/2$
- Indicar cuáles de los siguientes conjuntos de números cuánticos NO son posibles. Justificar: 7)

Escribir las configuraciones electrónicas de los siguientes átomos:

[AF] ধৃত্ব 346
Para las siguientes configuraciones electrónicas correspondientes a átomos neutros:

i)
$$1s^22s^22p^3 6=15 P=2$$

ii)
$$1s^2 2s^2 2p^5 = 17 P = 2$$

- ਸੂਤ ਮ a) Indicar grupo y período de cada elemento.
- **b)** Indicar cuál es el elemento de mayor tamaño y cuál el de menor.
- 10) La configuración electrónica del ion X³⁻ es 1s²2s²2p⁶3s²3p⁶.
 - a) Identificar al elemento X y a su número atómico. Fട്രാ ക്രൂ വ
- b) Identificar a qué grupo y periodo pertenece este elemento \$\begin{align*} \equiv = 15 \\ \tau \\ \equiv \equiv \equiv \ \equiv \equiv
- - a) Agrupar a las especies que son isoelectrónicas entre sí.
- 12) Sean 4 elementos (A, B, C y D) que se encuentran en su estado electrónico fundamental y cuyos números atómicos son 7, 10, 19 y 31 respectivamente.
 - a) Escribir la configuración electrónica externa (CEE) de cada elemento, e indicar a que especie química corresponden. A: 25² 2/9³ N. B: 25² 2/9⁵, Ne. C: 4/5¹ K. D: 4/5² 34¹⁶ 4p¹, 6x, Me 10 H3 4¹⁰ 45² 4p¹
 b) Indicar cuales de los elementos citados tienen electrones desapareados, y cuantos.

 - N(3) K(1) % 6a (1) c) Indicar los números cuánticos que caracterizan a los electrones desapareados de los elementos C y D. K. (4,0,0\$1/2) Gai (4,1;-1,067; +1/2)
 - d) Para un electrón que se aloja en el orbital 3d del elemento D, ¿podría el número cuántico magnético (m) tener un valor de 3? $(3, 2, m_{\epsilon}(-2, -1, 0, 1, 2), \pm 1/2)$
- 13) El elemento A es un metal alcalinotérreo perteneciente al tercer periodo, mientras el elemento B es un halógeno del segundo periodo.
 - a) Escribir la configuración electrónica del ión más estable del elemento A y del elemento B. ハレン・コット アーニュシェハ
 b) ¿el radio atómico del elemento B es mayor que el del anión B ? Justificar la respuesta.

 - NO, Los tations de los a Mionen son maggres
 c) del ion B y el elemento A son isoelectrónicos? Justificar la respuesta. NO.
- 14) Para los siguientes elementos: Cl (Z = 17), Sr (Z = 38), S (Z = 16), Rb (Z = 37)
 - a) Predecir cuál es el ión sencillo más estable que forma cada uno

b) Indicar qué noble tiene una configuración electrónica análoga a cada uno de estos iones

- 615 Py βτρη 61 Py As: [Ar] 45 3 d¹⁰ 4p³ Br: [Ar] 45 3 d¹⁰ 4p⁵

 15) Para los siguientes tres elementos: As, Bry Rb:
 - કિંદ્રા કિંદ્ર કે કિંદ્ર
 - **b)** Ordenar los tres elementos en orden creciente de carácter metálico ${}^{7}R_{V} < A_{b} < R_{b}$
- 16) Indicar cuál especie es más pequeña (tiene menor diámetro) para cada uno de los siguientes pares, justificando la elección en términos de la estructura electrónica y la posición en la tabla periódica.
- ruterchan
 i) HoH
- ii) Al o <u>A</u>l³⁺

- vi) Mg²⁺ o Mg vii) Na⁺ o Cl⁻ viii) Cs⁺ o l⁻ ix) K⁺ o Ca²⁺ X(;; x) Br o K X

 17) Para los siguientes doce elementos: Al, F, Mg, Li, Ar, S, Mn, H, Se, Rb, Br, Ne
 - a) Asociar cada una de las siguientes afirmaciones con el elemento químico correspondiente de la lista:
 - a1) Elemento no metálico que forma aniones monovalentes con una configuración electrónica
 - a2) Elemento que presenta una configuración electrónica externa de 3s²3p⁴. ≤
 - a3) Metal que forma iones divalentes isoelectrónicos con el neón. Ma
 - a4) Elemento que forma cationes trivalentes isoelectrónicos con el anión monovalente del primer halógeno. $A \rightarrow A^{3t}$
 - a5) Elemento que forma aniones divalentes isoelectrónicos con el cuarto gas noble. Se
 - a6) Elemento que es isoelectrónico con el catión divalente del tercer metal alcalinotérreo. At
 - a7) Metal alcalino que en su estado fundamental no posee electrones cuyo número cuántico principal (n) es mayor a 2.
 - a8) Elemento que tiene parcialmente llena la subcapa de orbitales d más externa. Mm
 - **b)** Identificar al elemento químico de la lista que posee:
 - **b1)** Menor radio atómico.
 - **b2)** Mayor energía de ionización. N 🥙
 - **b3)** Menor electronegatividad. R_{h}
 - **b4)** Mayor afinidad electrónica (en valores absolutos)
- 18) Responder si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta:
 - a) El ion Cl^- (Z = 17) tiene la misma configuración electrónica que el gas noble argón (Z = 18). $\sqrt{}$
 - b) La cantidad total de electrones que puede haber en todos los orbitales del nivel n = 3 de un átomo es 16. F, en 18 352 3 p6 3 2 10
 - c) El Br (Z = 35) necesita ganar 1 electrón para adquirir la configuración externa típica de un gas noble. V
 - d) El Na (Z = 11) tiene 6 electrones que presentan el número cuántico secundario (/) igual a 0. F, sem S () ()
 - e) Los números cuánticos del electrón de mayor energía (más externo) del Al (Z = 13) son (3, 2, 0, +½). F
 - f) Los iones Zi^{+4} (Z = 40) y Se^{2-} (Z = 34) tienen la misma configuración electrónica.

- g) Un átomo de Ge (Z = 31) tiene tres electrones desapareados en su configuración electrónica fundamental. F
- **h)** El ion Fe³⁺ tiene 5 electrones en los orbitales 3d. (Fig. 3d 5 5 6 1 3 6 1 3 4 5 5 6 1 1 2 3 4 5 5 6 1 2 3 4 5 5 6 3 4 5 5 6 3 4 5 5 6 3 4 5 5 6 3 4 5 5 6 3 4 5 $^{$
- 19) Responder si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta:
 - a) Los elementos de los grupos 1 y 2 tienen electronegatividades más altas que los del grupo 17. F
 - b) El radio iónico de un catión es mayor que el de su átomo neutro. F
 - c) El cesio (Cs) tiene una electronegatividad más alta que el flúor (F). 🗲
 - d) La segunda energía de ionización de un elemento siempre es mayor que la primera.
 - e) El carácter metálico de los elementos aumenta de derecha a izquierda en un período. 🛝 🗸
 - f) El oxígeno tiene un radio atómico mayor que el sodio. F
 - g) Los gases nobles tienen valores de energía de ionización altos porque sus capas electrónicas están completas. \/
 - **h)** Los elementos con electronegatividades altas por lo general tienen valores de energía de ionización bajos. $\bigvee \left(\begin{smallmatrix} \bullet & 7 \\ \varsigma & \uparrow \end{smallmatrix} \right)$

Respuestas:

- a) i) 12 p+, 12 n, 12 e- ii) i) 56 p+, 74 n, 56 e- iii) 20 p+, 20 n, 20 e- iv) 14 p+, 14 n, 14 e- v) 19 p+, 21 n, 19 e- vi) 12 p+, 13 n, 12 e- vii) 9 p+, 10 n, 9 e- viii) i) 47 p+, 61 n, 47 e- ix) 19 p+, 20 n, 19 e- b) i) y vi) son isótpos, v) y ix) son isótopos, v) y viii) son isóbaros
- 2) i) ${}^{18}_{8}O^{2-}$ ii) ${}^{27}_{13}Al^{3+}$ iii) ${}^{86}_{37}Rb^{+}$ iv) ${}^{235}_{92}U^{2+}$ v) ${}^{80}_{35}Br^{-}$

3)

Símbolo	Carga	Z	Α	Número de:		
				Protones	Neutrones	Electrones
⁶⁴ Zn	0	30	64	30	34	30
⁸¹ ₃₅ Br ⁻	1-	35	81	35	46	36
²⁰⁸ ₈₂ Pb	0	82	208	82	126	82
²⁰⁸ ₈₂ Pb ²⁺	2+	82	206	82	124	80
⁵⁹ Co ³⁺	3+	27	59	27	32	24
¹³² ₅₄ Xe	0	54	132	54	78	54
¹⁸ ₈ 0 ²⁻	2-	8	18	8	10	10
¹¹⁸ ₅₀ Sn ⁴⁺	4+	50	118	50	68	46
127 ₅₃ I1-	1-	53	127	53	74	54
⁶³ ₂₉ Cu ⁺	1+	29	63	29	34	28
²⁰² ₈₀ Hg ²⁺	2+	80	202	80	122	78

- **4)** a) masa atómica Cu = 63,7 u
- 5) a) abundancia B-10 = 19,91%, abundancia B-11 = 80,09%
- 6) I puede valer 0 o 1, m puede valer -1, 0 o 1, s puede valer +1/2 o -1/2
- 7) i) y iii) no son posibles
- **8)** i) O: 1s²2s²2p⁴ ii) Ca: 1s²2s²2p⁶3s²3p⁶4s² iii) Mn: 1s²2s²2p⁶3s²3p⁶4s²3d⁵ iv) Mg²⁺: 1s²2s²2p⁶ v) Fe³⁺: 1s²2s²2p⁶3s²3p⁶4s²3d³ vi) F⁻: 1s²2s²2p⁶
- **9)** a) i) G: 15, P: 2 ii) G: 17, P: 2 iii) G: 1, P: 4 iv) G: 2, P: 3 b) el mayor es iii) y el menor es ii)
- **10)** a) el elemento es Fósforo (P) b) G: 15, P: 3
- **11)** a) C y B⁻ son isoelectrónicas (6 e-), O²⁻, F⁻ y Na⁺ son isoelectrónicas (10 e-), Ge²⁺ y Zn son isoelectrónicas (30 e-)
- **12)** a) A: [He]2s²2p³ corresponde a N, B: [He]2s²2p⁶ corresponde a Ne, C: [Ar]4s¹ corresponde a K, D: [Ar]3d¹04s²4p¹ corresponde a Ga b) N, K y Ga tienen 3, 1, 1 electrones desapareados respectivamente c) K: (4, 0, 0, ½), Ga: (4, 1, 0, ½), (4, 1, -1, ½), (4, 1, 1, ½) d) no es posible, el número cuántico m puede adoptar los valores -2, -1, 0, 1 o 2.
- **13)** a) elemento A (Mg): 1s²2s²2p⁶ (ión Mg²⁺) elemento B (F): 1s²2s²2p⁶ (ión F⁻) b) no, el radio del anion es mayor que el radio del elemento c) no son isoelectrónicos

- **14)** a) Cl^- , Sr^{2+} , S^{2-} , Rb^+ b) $Cl^- \rightarrow Ar$, $Sr^{2+} \rightarrow Kr$, $S^{2-} \rightarrow Ar$, $Rb^+ \rightarrow Kr$
- **15)** a) As: $[Ar]4s^23d^{10}4p^3$ G: 15, P:4 Br: $[Ar]4s^23d^{10}4p^5$ G: 17, P:4 Rb: [Kr]5s1 G: 1, P:5 b) Br < As < Rb
- 16) i) H ii) Al^{3+} iii) N iv) F v) Li^+ vi) Mg^{2+} vii) Na^+ viii) l^- ix) Ca^{2+} x) Br
- 17) a) a1) Br a2) S a3) Mg a4) Al a5) Se a6) Ar a7) Li a) Mn b) b1) H b2) Ne b3) Rb b4) F
- 18) a) Verdadero b) Falso c) Verdadero d) Verdadero e) Falso f) Verdadero g) Falso h) Verdadero
- 19) a) Falso b) Falso c) Falso d) Verdadero e) Verdadero f) Falso g) Verdadero h) Falso