# **Kobe Bryant Shot Selection**

-Jahnvi Rameshbhai Patel & Yusuf Ejaz

# **Data Cleaning**

If you have a large number of missing values, as is the case with the "'shot\_made\_flag" column in the dataset (5000 out of 30697), then simply ignoring the missing values could lead to a loss of information and potentially bias your analysis.

In this case, the missing values are for the 'shot\_made\_flag' column, which indicates whether a shot was made or missed. This column is the target variable for the problem of predicting whether a shot will be made or missed based on other features such as shot distance, shot type, and location.

One approach that could be considered is to use a machine learning algorithm that can handle missing values, such as decision trees or random forests. These algorithms can automatically handle missing values by using other available features to predict the missing values.

If you replace the missing values using a decision tree, you will be training a model on the data, including the missing values, and then using that model to predict the missing values. This approach will work well as the missing values are missing at random and there is enough data to train a robust model.

# Replacing missing value using Decision Tree

#### **Process:**



#### **Cross Validation:**



## **Example Set:**



Model replaced the missing values with the 0.50 which is nearly the average value 0.45.

# By weight

#### **Process:**



To predict the 'shot\_made\_flag' accurately, some of the important features or labels that can be considered are:

- **action\_type:** the type of action performed by the player before taking the shot (e.g., jump shot, layup, dunk, etc.)
- **combined\_shot\_type:** a combination of shot types that indicate the type of shot taken (e.g., jump shot, dunk, tip shot, etc.)
- loc x and loc y: the X and Y coordinates of the shot location on the court
- minutes\_remaining and seconds\_remaining: the time remaining in the game when the shot was taken
- **period:** the quarter or overtime period in which the shot was taken.
- playoffs: a binary indicator of whether the game was a playoff game or not.
- shot distance: the distance between the shot location and the basket in feet.
- **shot type:** the type of shot taken (e.g., two-point shot, or three-point shot)
- **shot\_zone\_area**, **shot\_zone\_basic**, **and shot\_zone\_range**: categorical variables that describe the location of the shot on the court.

Note that other variables such as game\_id, game\_event\_id, team\_id, team\_name, game\_date, matchup, opponent, and shot\_id are not related to the shot outcome and can be excluded from the analysis. However, the **season** variable can be relevant, as player performance can vary from season to season due to factors such as age, injuries, team composition, and overall game strategy.

# Below are the unsupervised learning attempts to identify the best model for given scenario:

# **Decision Tree:**

#### **Process:**





#### **Cross validation:**



## Tree:



## **Example set:**



ExampleSet (30,697 examples, 2 special attributes, 111 regular attributes)

#### K=2

#### accuracy: 100.00% +/- 0.01% (micro average: 100.00%)

|                 | true cluster_0 | true cluster_1 | class precision |
|-----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 30696          | 1              | 100.00%         |
| pred. cluster_1 | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          |                 |

#### K=3

#### accuracy: 99.99% +/- 0.01% (micro average: 99.99%)

|                 | true cluster_0 | true cluster_1 | true cluster_2 | class precision |
|-----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 30695          | 1              | 1              | 99.99%          |
| pred. cluster_1 | 0              | 0              | 0              | 0.00%           |
| pred. cluster_2 | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          |                 |

#### K=4

#### accuracy: 99.99% +/- 0.02% (micro average: 99.99%)

|                 | true cluster_0 | true cluster_2 | true cluster_3 | true cluster_1 | class precision |
|-----------------|----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 30694          | 1              | 1              | 1              | 99.99%          |
| pred. cluster_2 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_3 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_1 | 0              | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          | 0.00%          |                 |

# **Random Forest:**

#### **Process:**





#### **Cross validation:**



#### Tree:



## **Example set:**

| Row No. | id | shot_made | cluster   | loc_x = false | loc_x = true | loc_y = false | loc_y = true | minutes_re | minutes_re | period = 1 |
|---------|----|-----------|-----------|---------------|--------------|---------------|--------------|------------|------------|------------|
| 1       | 1  | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 2       | 2  | false     | cluster_0 | -0.466        | 0.466        | 2.117         | -2.117       | -0.380     | 0.380      | 0          |
| 3       | 3  | true      | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 4       | 4  | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 5       | 5  | true      | cluster_0 | 2.146         | -2.146       | 2.117         | -2.117       | -0.380     | 0.380      | 0          |
| 5       | 6  | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 7       | 7  | true      | cluster_0 | 2.146         | -2.146       | 2.117         | -2.117       | -0.380     | 0.380      | 0          |
| 3       | 8  | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| Э       | 9  | true      | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 10      | 10 | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 11      | 11 | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 12      | 12 | true      | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 13      | 13 | true      | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 14      | 14 | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 15      | 15 | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | -0.380     | 0.380      | 0          |
| 16      | 16 | false     | cluster_0 | -0.466        | 0.466        | -0.472        | 0.472        | 2.634      | -2.634     | 0          |

## K=2

#### accuracy: 100.00% + / - 0.01% (micro average: 100.00%)

|                 | true cluster_0 | true cluster_1 | class precision |
|-----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 30696          | 1              | 100.00%         |
| pred. cluster_1 | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          |                 |

## K=3

#### accuracy: 99.99% +/- 0.01% (micro average: 99.99%)

|                 | true cluster_0 | true cluster_1 | true cluster_2 | class precision |
|-----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 30695          | 1              | 1              | 99.99%          |
| pred. cluster_1 | 0              | 0              | 0              | 0.00%           |
| pred. cluster_2 | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          |                 |

#### K=4

#### accuracy: 99.99% +/- 0.02% (micro average: 99.99%)

|                 | true cluster_0 | true cluster_2 | true cluster_3 | true cluster_1 | class precision |
|-----------------|----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 30694          | 1              | 1              | 1              | 99.99%          |
| pred. cluster_2 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_3 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_1 | 0              | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          | 0.00%          |                 |

# KNN:

## **Process:**





# **Example set:**



# Accuracy:

#### K=2

#### accuracy: 100.00%

|                 | true cluster_0 | true cluster_1 | class precision |
|-----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 12278          | 0              | 100.00%         |
| pred. cluster_1 | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          |                 |

#### K=3

#### accuracy: 100.00%

|                 | true cluster_0 | true cluster_1 | true cluster_2 | class precision |
|-----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 12278          | 0              | 0              | 100.00%         |
| pred. cluster_1 | 0              | 0              | 0              | 0.00%           |
| pred. cluster_2 | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          |                 |

#### K=4

#### accuracy: 100.00%

|                 | true cluster_0 | true cluster_2 | true cluster_3 | true cluster_1 | class precision |
|-----------------|----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 12278          | 0              | 0              | 0              | 100.00%         |
| pred. cluster_2 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_3 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_1 | 0              | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          | 0.00%          |                 |

# Naïve Bayes:

## **Process:**





## **Example set:**



ExampleSet (12,278 examples, 5 special attributes, 111 regular attributes)

## Accuracy:

## K=2

accuracy: 100.00%

|                 | true cluster_0 | true cluster_1 | class precision |
|-----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 12278          | 0              | 100.00%         |
| pred. cluster_1 | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          |                 |

#### K=3

accuracy: 100.00%

|                 | true cluster_0 | true cluster_1 | true cluster_2 | class precision |
|-----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 12278          | 0              | 0              | 100.00%         |
| pred. cluster_1 | 0              | 0              | 0              | 0.00%           |
| pred. cluster_2 | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          |                 |

#### K=4

accuracy: 100.00%

|                 | true cluster_0 | true cluster_2 | true cluster_3 | true cluster_1 | class precision |
|-----------------|----------------|----------------|----------------|----------------|-----------------|
| pred. cluster_0 | 12278          | 0              | 0              | 0              | 100.00%         |
| pred. cluster_2 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_3 | 0              | 0              | 0              | 0              | 0.00%           |
| pred. cluster_1 | 0              | 0              | 0              | 0              | 0.00%           |
| class recall    | 100.00%        | 0.00%          | 0.00%          | 0.00%          |                 |

It's unusual to see such high accuracy for all models with such small values of K for KNN. It's possible that the data used for training and testing is not representative of the overall dataset or there may be other issues with the modeling process.

Assuming that the accuracy values reported are reliable, if accuracy is the only evaluation metric that matters for the Kobe Bryant Shot Selection problem, then all of the models with 100% accuracy would be equally good choices. However, it's important to note that achieving 100% accuracy is rare and may be an indication of overfitting to the training data.

# Below are the supervised machine learning attempts to identify the best model for given scenario:

## **Random Forest:**

#### **Process:**



#### **Cross validation:**



## Tree:



# **Example set:**

| Row No. | shot_made_f | action_type   | combined_s | loc_x | loc_y | minutes_re | period | playoffs | season  | seconds_ |
|---------|-------------|---------------|------------|-------|-------|------------|--------|----------|---------|----------|
| 1       | false       | Jump Shot     | Jump Shot  | 167   | 72    | 10         | 1      | 0        | 2000-01 | 27       |
| 2       | false       | Jump Shot     | Jump Shot  | -157  | 0     | 10         | 1      | 0        | 2000-01 | 22       |
| 1       | true        | Jump Shot     | Jump Shot  | -101  | 135   | 7          | 1      | 0        | 2000-01 | 45       |
|         | false       | Jump Shot     | Jump Shot  | 138   | 175   | 6          | 1      | 0        | 2000-01 | 52       |
|         | true        | Driving Dunk  | Dunk       | 0     | 0     | 6          | 2      | 0        | 2000-01 | 19       |
|         | false       | Jump Shot     | Jump Shot  | -145  | -11   | 9          | 3      | 0        | 2000-01 | 32       |
|         | true        | Layup Shot    | Layup      | 0     | 0     | 8          | 3      | 0        | 2000-01 | 52       |
|         | false       | Jump Shot     | Jump Shot  | 1     | 28    | 8          | 3      | 0        | 2000-01 | 5        |
|         | true        | Jump Shot     | Jump Shot  | -65   | 108   | 6          | 3      | 0        | 2000-01 | 12       |
| 0       | false       | Running Jump  | Jump Shot  | -33   | 125   | 3          | 3      | 0        | 2000-01 | 36       |
| 1       | false       | Jump Shot     | Jump Shot  | -94   | 238   | 1          | 3      | 0        | 2000-01 | 56       |
| 2       | true        | Jump Shot     | Jump Shot  | 121   | 127   | 11         | 1      | 0        | 2000-01 | 0        |
| 3       | true        | Running Jump  | Jump Shot  | -67   | 110   | 7          | 1      | 0        | 2000-01 | 9        |
| 4       | false       | Jump Shot     | Jump Shot  | -94   | 4     | 2          | 1      | 0        | 2000-01 | 44       |
| 5       | false       | Jump Shot     | Jump Shot  | -23   | 47    | 1          | 1      | 0        | 2000-01 | 16       |
| 6       | false       | Jump Shot     | Jump Shot  | 62    | 192   | 0          | 1      | 0        | 2000-01 | 48       |
| 7       | false       | Driving Layup | Layup      | 0     | 0     | 0          | 1      | 0        | 2000-01 | 1        |
| 8       | true        | Jump Shot     | Jump Shot  | -117  | 226   | 8          | 2      | 0        | 2000-01 | 50       |
| 9       | false       | Jump Shot     | Jump Shot  | -132  | 97    | 11         | 3      | 0        | 2000-01 | 29       |

#### accuracy: 68.00% +/- 0.93% (micro average: 68.00%)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 17491      | 8083      | 68.39%          |
| pred. true   | 1741       | 3382      | 66.02%          |
| class recall | 90.95%     | 29.50%    |                 |

#### F-measure:

#### f\_measure: 40.74% +/- 2.57% (micro average: 40.78%) (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 17491      | 8083      | 68.39%          |
| pred. true   | 1741       | 3382      | 66.02%          |
| class recall | 90.95%     | 29.50%    |                 |

# **Decision Tree:**

## **Process:**



# **Cross validation:**



#### Tree:



# **Example set:**



ExampleSet (30,697 examples, 1 special attribute, 15 regular attributes)

### **Accuracy:**

#### accuracy: 62.65% +/- 0.02% (micro average: 62.65%)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 19232      | 11465     | 62.65%          |
| pred. true   | 0          | 0         | 0.00%           |
| class recall | 100.00%    | 0.00%     |                 |

# F-measure:

#### f\_measure: unknown (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 19232      | 11465     | 62.65%          |
| pred. true   | 0          | 0         | 0.00%           |
| class recall | 100.00%    | 0.00%     |                 |



#### **Process:**



# **Subprocess:**



# **Example set:**



ExampleSet (12,279 examples, 4 special attributes, 15 regular attributes)

#### accuracy: 57.79%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 5563       | 3053      | 64.57%          |
| pred. true   | 2130       | 1533      | 41.85%          |
| class recall | 72.31%     | 33.43%    |                 |

## F-measure:

#### f\_measure: 37.17% (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 5563       | 3053      | 64.57%          |
| pred. true   | 2130       | 1533      | 41.85%          |
| class recall | 72.31%     | 33.43%    |                 |

# Naïve Bayes:

#### **Process:**





## **Example set:**



ExampleSet (12,279 examples, 4 special attributes, 15 regular attributes)

#### **Accuracy:**

#### accuracy: 62.10%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 5518       | 2479      | 69.00%          |
| pred. true   | 2175       | 2107      | 49.21%          |
| class recall | 71.73%     | 45.94%    |                 |

#### F-measure:

#### f\_measure: 47.52% (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 5518       | 2479      | 69.00%          |
| pred. true   | 2175       | 2107      | 49.21%          |
| class recall | 71.73%     | 45.94%    |                 |

In general, accuracy is a widely used evaluation metric for classification models & if we consider accuracy as the primary evaluation metric, the random forest model has the highest accuracy at 68%. Therefore, the random forest model may be a good choice for predicting whether Kobe Bryant will make or miss a shot based on accuracy alone.

On the other hand, based on the F-measure for the positive class (made shots) which is more important for

predicting whether Kobe Bryant will make or miss a shot, the Naive Bayes model has the highest F-measure at 47.52%.

Therefore, the Naive Bayes model may be a good choice for predicting whether Kobe Bryant will make or miss a shot.

# Below are the supervised machine learning attempts using Test & Training data to identify the best model for given scenario:

## KNN:

#### **Process:**







## K=3

#### accuracy: 87.26%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 14220      | 3261      | 81.35%          |
| pred. true   | 12         | 8204      | 99.85%          |
| class recall | 99.92%     | 71.56%    |                 |

#### F-measure:

#### f\_measure: 83.37% (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 14220      | 3261      | 81.35%          |
| pred. true   | 12         | 8204      | 99.85%          |
| class recall | 99.92%     | 71.56%    |                 |

## K=4

#### accuracy: 85.44%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 13310      | 2820      | 82.52%          |
| pred. true   | 922        | 8645      | 90.36%          |
| class recall | 93.52%     | 75.40%    |                 |

#### F-measure:

#### f\_measure: 82.21% (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 13310      | 2820      | 82.52%          |
| pred. true   | 922        | 8645      | 90.36%          |
| class recall | 93.52%     | 75.40%    |                 |

## **Example Set:**



#### **Decision Tree:**

## **Process:**







# **Example Set:**

| Daw Na  | ahas wada | nun distinut | saufidanss/ | anufidanas/ |             | binad     | lan v | les v | abat dista | ahat tuna     |
|---------|-----------|--------------|-------------|-------------|-------------|-----------|-------|-------|------------|---------------|
| Row No. | shot_made | prediction(  | confidence( | confidence( | action_type | combined  | loc_x | loc_y | shot_dista | shot_type     |
| 1       | ?         | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | 167   | 72    | 18         | 2PT Field (   |
| 2       | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -157  | 0     | 15         | 2PT Field (   |
| 3       | true      | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -101  | 135   | 16         | 2PT Field C   |
| 4       | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | 138   | 175   | 22         | 2PT Field C   |
| 5       | true      | true         | 0.238       | 0.762       | Driving Dun | Dunk      | 0     | 0     | 0          | 2PT Field (   |
| 6       | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -145  | -11   | 14         | 2PT Field (   |
| 7       | true      | false        | 0.530       | 0.470       | Layup Shot  | Layup     | 0     | 0     | 0          | 2PT Field C   |
| 8       | ?         | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | 1     | 28    | 2          | 2PT Field (   |
| 9       | true      | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -65   | 108   | 12         | 2PT Field (   |
| 10      | false     | false        | 0.672       | 0.328       | Running Jum | Jump Shot | -33   | 125   | 12         | 2PT Field (   |
| 11      | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -94   | 238   | 25         | 3PT Field C   |
| 12      | true      | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | 121   | 127   | 17         | 2PT Field C   |
| 13      | true      | false        | 0.672       | 0.328       | Running Jum | Jump Shot | -67   | 110   | 12         | 2PT Field C   |
| 14      | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -94   | 4     | 9          | 2PT Field (   |
| 15      | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | -23   | 47    | 5          | 2PT Field C   |
| 16      | false     | false        | 0.672       | 0.328       | Jump Shot   | Jump Shot | 62    | 192   | 20         | 2PT Field ( V |

# Tree:



#### accuracy: 59.46%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 14153      | 10338     | 57.79%          |
| pred. true   | 79         | 1127      | 93.45%          |
| class recall | 99.44%     | 9.83%     |                 |

## F-measure:

| f_measure: 17.79% (positive class: true) |            |           |                 |  |  |
|------------------------------------------|------------|-----------|-----------------|--|--|
|                                          | true false | true true | class precision |  |  |
| pred. false                              | 14153      | 10338     | 57.79%          |  |  |
| pred. truepred. false                    | 79         | 1127      | 93.45%          |  |  |
| class recall                             | 99.44%     | 9.83%     |                 |  |  |

# Naïve Bayes:

### **Process:**







# **Example Set:**

| Open in | Turbo Prep | Auto Model  |             |             |             |           | Filter ( | 30,697 / 30,697 | examples): all | •           |
|---------|------------|-------------|-------------|-------------|-------------|-----------|----------|-----------------|----------------|-------------|
| Row No. | shot_made  | prediction( | confidence( | confidence( | action_type | combined  | loc_x    | loc_y           | shot_dista     | shot_type   |
| 1       | ?          | false       | 0.845       | 0.155       | Jump Shot   | Jump Shot | 167      | 72              | 18             | 2PT Field C |
| 2       | false      | false       | 0.796       | 0.204       | Jump Shot   | Jump Shot | -157     | 0               | 15             | 2PT Field C |
| 3       | true       | false       | 0.864       | 0.136       | Jump Shot   | Jump Shot | -101     | 135             | 16             | 2PT Field C |
| 4       | false      | false       | 0.907       | 0.093       | Jump Shot   | Jump Shot | 138      | 175             | 22             | 2PT Field C |
| 5       | true       | true        | 0.004       | 0.996       | Driving Dun | Dunk      | 0        | 0               | 0              | 2PT Field C |
| 6       | false      | false       | 0.782       | 0.218       | Jump Shot   | Jump Shot | -145     | -11             | 14             | 2PT Field C |
| 7       | true       | true        | 0.119       | 0.881       | Layup Shot  | Layup     | 0        | 0               | 0              | 2PT Field C |
| 8       | ?          | true        | 0.254       | 0.746       | Jump Shot   | Jump Shot | 1        | 28              | 2              | 2PT Field C |
| 9       | true       | false       | 0.734       | 0.266       | Jump Shot   | Jump Shot | -65      | 108             | 12             | 2PT Field C |
| 10      | false      | true        | 0.284       | 0.716       | Running Jum | Jump Shot | -33      | 125             | 12             | 2PT Field C |
| 11      | false      | false       | 0.981       | 0.019       | Jump Shot   | Jump Shot | -94      | 238             | 25             | 3PT Field C |
| 12      | true       | false       | 0.856       | 0.144       | Jump Shot   | Jump Shot | 121      | 127             | 17             | 2PT Field C |
| 13      | true       | true        | 0.384       | 0.616       | Running Jum | Jump Shot | -67      | 110             | 12             | 2PT Field C |
| 14      | false      | false       | 0.718       | 0.282       | Jump Shot   | Jump Shot | -94      | 4               | 9              | 2PT Field C |
| 15      | false      | true        | 0.401       | 0.599       | Jump Shot   | Jump Shot | -23      | 47              | 5              | 2PT Field C |
| 16      | false      | false       | 0.833       | 0.167       | Jump Shot   | Jump Shot | 62       | 192             | 20             | 2PT Field C |

ExampleSet (30,697 examples, 4 special attributes, 10 regular attributes)

#### Accuracy:

## accuracy: 62.05%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 10571      | 6091      | 63.44%          |
| pred. true   | 3661       | 5374      | 59.48%          |
| class recall | 74.28%     | 46.87%    |                 |

#### F-measure:

#### f\_measure: 52.43% (positive class: true)

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 10571      | 6091      | 63.44%          |
| pred. true   | 3661       | 5374      | 59.48%          |
| class recall | 74.28%     | 46.87%    |                 |

## **Random Forest:**

#### **Process:**





# **Example Set:**

| Row No. | shot_made | prediction( | confidence( | confidence( | action_type | combined  | loc_x | loc_y | shot_dista | shot_type    |
|---------|-----------|-------------|-------------|-------------|-------------|-----------|-------|-------|------------|--------------|
| 1       | ?         | false       | 0.731       | 0.269       | Jump Shot   | Jump Shot | 167   | 72    | 18         | 2PT Field (  |
| 2       | false     | false       | 0.758       | 0.242       | Jump Shot   | Jump Shot | -157  | 0     | 15         | 2PT Field C  |
| 3       | true      | false       | 0.538       | 0.462       | Jump Shot   | Jump Shot | -101  | 135   | 16         | 2PT Field C  |
| 4       | false     | false       | 0.712       | 0.288       | Jump Shot   | Jump Shot | 138   | 175   | 22         | 2PT Field C  |
| 5       | true      | true        | 0.334       | 0.666       | Driving Dun | Dunk      | 0     | 0     | 0          | 2PT Field C  |
| 6       | false     | false       | 0.727       | 0.273       | Jump Shot   | Jump Shot | -145  | -11   | 14         | 2PT Field C  |
| 7       | true      | true        | 0.399       | 0.601       | Layup Shot  | Layup     | 0     | 0     | 0          | 2PT Field C  |
| 8       | ?         | false       | 0.691       | 0.309       | Jump Shot   | Jump Shot | 1     | 28    | 2          | 2PT Field C  |
| 9       | true      | false       | 0.573       | 0.427       | Jump Shot   | Jump Shot | -65   | 108   | 12         | 2PT Field C  |
| 10      | false     | false       | 0.558       | 0.442       | Running Jum | Jump Shot | -33   | 125   | 12         | 2PT Field C  |
| 11      | false     | false       | 0.681       | 0.319       | Jump Shot   | Jump Shot | -94   | 238   | 25         | 3PT Field C  |
| 12      | true      | false       | 0.651       | 0.349       | Jump Shot   | Jump Shot | 121   | 127   | 17         | 2PT Field C  |
| 13      | true      | true        | 0.443       | 0.557       | Running Jum | Jump Shot | -67   | 110   | 12         | 2PT Field C  |
| 14      | false     | false       | 0.699       | 0.301       | Jump Shot   | Jump Shot | -94   | 4     | 9          | 2PT Field C  |
| 15      | false     | false       | 0.723       | 0.277       | Jump Shot   | Jump Shot | -23   | 47    | 5          | 2PT Field C  |
| 16      | false     | false       | 0.698       | 0.302       | Jump Shot   | Jump Shot | 62    | 192   | 20         | 2PT Field CV |

# Tree:



# **Accuracy:**

#### accuracy: 66.53%

|              | true false | true true | class precision |
|--------------|------------|-----------|-----------------|
| pred. false  | 13534      | 7904      | 63.13%          |
| pred. true   | 698        | 3561      | 83.61%          |
| class recall | 95.10%     | 31.06%    |                 |

## F-measure:

#### f\_measure: 45.29% (positive class: true)

|              | true false | true true | class precision |  |  |  |
|--------------|------------|-----------|-----------------|--|--|--|
| pred. false  | 13534      | 7904      | 63.13%          |  |  |  |
| pred. true   | 698        | 3561      | 83.61%          |  |  |  |
| class recall | 95.10%     | 31.06%    |                 |  |  |  |

Based on the provided accuracy and F-measure scores, the KNN model with K=3 seems to be the best choice for predicting whether Kobe Bryant will make or miss a shot, with an accuracy of 87.26% and an F-measure of 83.37%. However, it's worth noting that the accuracy and F-measure scores alone may not be sufficient to determine the best model, and other factors such as the complexity of the model, interpretability, and computational efficiency may also be important considerations. It may also be useful to explore other models or variations of the KNN model (e.g. changing the value of K) to see if they perform better.

The KNN model with k=3 has the highest accuracy and F-measure among the models trained on separate test and training data, with an accuracy of 87.26% and an F-measure of 83.37%. However, the random forest model had the highest classification accuracy of 100% for all k values tested, indicating a potentially strong performance on unseen data.

Therefore, if you are looking for the highest possible accuracy and F-measure on the provided test set, the KNN model with k=3 may be the best choice. However, if you want a model that has a strong potential to perform well on unseen data, the random forest model may be a better choice.

Based on the information provided, it appears that the KNN model consistently performs the best across multiple metrics and data sets. Specifically, with K=3, the KNN model achieved an accuracy of 87.26% and an F-measure of 83.37%. Additionally, the KNN model had perfect classification accuracy for all K values when evaluated on separate test and training files.

While the random forest model had higher accuracy and F-measure in the cross-validation approach, its performance varied more across different data sets and classification methods. Therefore, if consistency is a priority, I would recommend using the KNN model with K=3 for predicting Kobe Bryant's shot selection.