Лекция 1: Теоретическая информатика

1 Информатика как наука

Определение 1. Информатика - наука, изучающая аспекты:

- получаения информации;
- хранения информации;
- использования информации;
- передачи информации.

Определение 2. Информатика - это наука о формализации любых задач, разработки алгоритмов для их решения и решение этих задач с использованием компьютеров и компьютерных сетей.

1.1 Задачи информатики

- Исследование информационных процессов любой природы;
- Создание новых технологий переработки информации;
- Решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники во всех сферах жизни.

Определение 3. Информация - множество фактов о различных объектах, событиях и процессах природы и общества, которое воспринимается в виде образов различной физической природы.

Определение 4. Информация - это мера уменьшения неопределённости нашего знания о состоянии какого-либо объекта.

1.1.1 Схема обработки информации:

Внешние сигналы \to Данные \to Неформальный смысл, выраженный в ощущениях \to Полуформальный смысл, выраженный в словах \to Формальный смысл, выраженный в терминах логики

1.1.2 Свойства информации

- 1. Достоверность отражает истинное состояние объекта;
- 2. Ясность информация должна быть понятной тому, для кого она предназначена;
- 3. Полезность (ценность) возможность использовать полученную информацию для достижения заданной цели;

- 4. Полнота (достаточность) информация содержит минимальный, но достаточный для принятия правильного решения набор сведений;
- Устойчивость информация должна реагировать на изменение входных данных.
- 6. **Устойчивость** способность реагировать на изменения исходных данных без нарушения необходимой точности.
- 7. Способность информации к накоплению и размножению.
- 8. Информация порождает новую информацию.
- 9. Информация товар, т.е. подлежит купле-продаже.

1.1.3 Количественная мера информации

Система X может принимать N состояний x_1, x_2, \ldots, x_n с вероятностями p_1, p_2, \ldots, p_n .

Энтропия - мера неопределённости системы - вычисляется по следующей формуле:

$$H(X) = -\sum_{i=1}^{n} p_i \log_a p_i$$

Если система имеет 2 равновероятных состояния, то энтропия измеряется в "двоичных единицах битах.

Лекция 2: Программирование

2 Системы исчисления

2.1 Виды систем исчисления

Определение 5. Система исчисления - совокупность приёмов и правил для записи чисел цифровыми знаками.

Определение 6. Символы, используемые в любой системе исчисления, называются **цифрами**.

Определение 7. Совокупность цифр для записи чисел называется **ал-**фавитом.

2.1.1 Непозиционные системы исчисления

Определение 8. Если в системе счисления каждой цифре в любом месте числа соответствует одно и то же значение, то такая система нахвается **непозиционной**.

Пример. Римская система - с некоторыми докущениями

Римские числа

Значение цифры не зависит от её местоположения.

- Если цифра с меньшим значение стоит слева от цифры с большим значением, то её знак "минус".
- Если цифра с меньшиими значением стоит справа от цифры с большиим значением, то её знак "плюс"
- Вычитать из 10^n можно только один раз, не перепрыгивая через разряды.

Недостатки непозиционных систем исчисления:

- Трудность записи больших чисел
- Трудность выполнения арифметических операций

2.1.2 Позиционные системы исчисления

Определение 9. Система исчисления называется **позиционной**, если одна и та же цифра имеет различное значение, которое определяется её позицией в последовательности цифр, обозначающей запись числа.

$$\overline{x_nx_{n-1}\dots x_0}=x_nq_n+x_{n-1}q_{n-1}+\dots+x_0q_0$$
, где x_n,x_{n-1},\dots,x_0 - символы, обозначающие целые числа; q_n,q_{n-1},\dots,q_0 - веса.

Определение 10. Номер позиции, котрой определяет вес цифры, расположенной на этой позиции, называется **разярдом**.

Особый интерес представляют системы исчисления, в которых веса цифры - геометрическая прогрессия со знаменателем q. Тогда число имеет вид:

$$x_q = \sum_{i=-m}^{i=m} x_i q^i$$

Определение 11. **Основание** q **базис** позиционной системы исчисления - количество знаков или символов, используемых для отображения числа в данной системе.

2.1.3 Перевод чисел из одной системы счисления в другую

Алгоритм перевода состоит из двух этапов:

1. Последовательное деление целой части и образующихся целыъ частных на основание новой системы счисления.

2. Последовательное умножение дробной части и дробных частей, получающихся произведений на то же основание новой системы счисления, записанное цифрами исходной системы счисления.

Таблица 1: Значения чисел в различных системах счисления

bin	oct/hex	bin	hex
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F