Московский государственный технический университет

имени Н.Э. Баумана

Факультет «Фундаментальные науки»

Кафедра «Математическое моделирование»

С.Н. Ефремова, А.В. Косова, Т.А. Ласковая

ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Методические указания к выполнению домашнего задания

Москва

© 2016 МГТУ им. Н.Э. БАУМАНА

С.Н. Ефремова, А.В. Косова, Т.А. Ласковая

Прямая и плоскость в пространстве. Методические указания к выполнению домашнего задания по курсу Аналитическая геометрия. - М. : Изд-во МГТУ имени Н.Э. Баумана, 2016. - 37 с.

Кратко изложен теоретический материал по теме «Прямая и плоскость в пространстве», рассмотрены основные понятия, даны алгоритмы решения типовых задач и пояснения к характеру основных действий при выполнении этого алгоритма. Приведено большое количество задач с подробными решениями, которые помогут как в решении домашнего задания, так и при подготовке к экзамену.

Методические указания составлены в соответствии с учебной программой для бакалавров факультетов ИУ, РЛ и БМТ 1-го курса.

Рекомендовано Учебно-методической комиссией НУК «Фундаментальные науки» МГТУ им. Н.Э. Баумана

Ефремова Светлана Николаевна

Косова Анна Владимировна

Ласковая Татьяна Алексеевна

ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ПЛОСКОСТЬ В ПРОСТРАНСТВЕ	4
1.1 Уравнение плоскости, проходящей через три различные точки	8
1.2. Взаимное расположение плоскостей. Угол между плоскостями	10
1.3. Расстояние от точки до плоскости	11
1.4. Уравнение плоскости «в отрезках»	11
2. ПРЯМАЯ В ПРОСТРАНСТВЕ	13
2.1 Угол между прямыми.	16
2.2 Угол между прямой и плоскостью	17
3. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМЫХ И ПЛОСКОСТЕЙ	18
4. РЕШЕНИЕ ЗАДАЧ ТИПОВОГО ВАРИАНТА ДОМАШНЕГО ЗАДАНИ	оп к
ТЕМЕ «ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ»	25
ЗАКЛЮЧЕНИЕ	29
СПИСОК ЛИТЕРАТУРЫ	30

ВВЕДЕНИЕ

Данная работа написана в помощь студентам первого курса и имеет своей целью дать подробное объяснение основных понятий курса «Аналитическая геометрия» и умение применять их для решения задач, используя необходимый математический аппарат, а также сделать учебный материал более доступным и структурированным.

Тема «Прямая и плоскость в пространстве» сложна в первую очередь огромным разнообразием задач. Поскольку изложение материала опирается на важные понятия аналитической геометрии, изученные ранее, в работе

упомянуты основные определения, понятия и теоремы курса, наиболее часто используемые при решении задач.

Целью работы является разъяснение сущности аналитического метода и применение его в различных ситуациях, а не слепое запоминание формул. Для этого при решении задач сделан акцент на подробное объяснение того, каким образом используются свойства векторов, а также скалярного, векторного и смешанного произведений.

После освоения темы студенты должны знать и уметь применять методы векторной алгебры и аналитической геометрии в решении задач, а также приобрести навыки практического применения базовых понятий курса для решения более сложных и интересных задач.

Работа содержит большое количество задач как базового уровня, так и более сложные примеры. Методические указания призваны помочь студентам в решении задач типового расчета и подготовке к рубежному контролю и экзамену.

1. ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Большинство задач, рассматриваемых в данной работе, решены с использованием методов векторной алгебры. Поэтому, напомним основные определения и теоремы, на которые мы будем наиболее часто ссылаться и использовать в дальнейшем.

Прежде всего, отметим, что в курсе аналитической геометрии рассматриваются так называемые *свободные векторы*. Под свободным вектором понимается множество направленных отрезков, расположенных на параллельных прямых и имеющих одинаковую длину и направление. При таком подходе все множество направленных отрезков в пространстве разбивается на множество классов равных направленных отрезков. Любой

направленный отрезок $\overline{AB} = \overline{a}$ может быть представителем вектора \overline{a} . Таким образом, для любого вектора точка приложения может быть выбрана произвольно.

Коллинеарными называются векторы, лежащие на одной или на параллельных прямых.

Компланарными называются векторы, лежащие в одной плоскости или в параллельных плоскостях.

Отметим несколько важных теорем, необходимых нам в дальнейшем.

Теорема 1. (критерий ортогональности векторов) Векторы \bar{a} и \bar{b} ортогональны тогда и только тогда, когда их скалярное произведение (\bar{a}, \bar{b}) равно нулю.

Теорема 2. (1-й критерий коллинеарности векторов) Векторы \bar{a} и \bar{b} коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны.

Теорема 3. (2-й критерий коллинеарности векторов) Векторы \bar{a} и \bar{b} коллинеарны тогда и только тогда, когда их векторное произведение $\bar{a} \times \bar{b}$ равно нулю.

Теорема 4. (критерий компланарности векторов) Векторы \bar{a} , \bar{b} и \bar{c} компланарны тогда и только тогда, когда их смешанное произведение $(\bar{a}, \bar{b}, \bar{c})$ равно нулю.

Перейдем к понятию плоскости.

Теорема 5. Всякая плоскость в пространстве R^3 в прямоугольной системе координат задается уравнением первой степени Ax + By + Cz + D = 0 и наоборот, всякое уравнение первой степени задает плоскость.

Любой ненулевой вектор, ортогональный плоскости называется нормальным вектором плоскости.

Возьмем на плоскости точку $M_0(x_0, y_0, z_0)$ и вектор $\bar{n} = \{A, B, C\}$ нормальный вектор плоскости. Пусть M(x,y,z) - произвольная точка. Она принадлежит плоскости тогда и только тогда, когда M_0M вектор принадлежит плоскости И, следовательно, ортогонален вектору $\overline{n} = \{A, B, C\}$ Рис.1 Следовательно, согласно критерию ортогональности (Теорема 1), скалярное произведение этих векторов должно быть равно нулю: $(\overline{M_0M}, \overline{n}) = 0$.

Переходя к вычислению скалярного произведения векторов в ортонормированном базисе, получим: $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$. Раскроем скобки и приведем подобные:

$$Ax + By + Cz + D = 0,$$
 (1)
где $D = -(Ax_0 + By_0 + Cz_0).$

Это общее уравнение плоскости, проходящей через заданную точку $M_{_0}\big(x_0,y_0,z_0\big)$ и имеющей нормальный вектор $\bar{n}=\{\mathrm{A},\mathrm{B},\mathrm{C}\}$.

Задача 1. Точка P(2;-1;-1) служит основанием перпендикуляра, опущенного из начала координат на плоскость. Составить уравнение этой плоскости.

Решение: Пусть точка M(x,y,z)- произвольная точка плоскости, уравнение которой необходимо написать. Поскольку плоскость проходит через точку P, то вектор \overline{PM} также принадлежит плоскости и, следовательно, ортогонален вектору нормали. Для решения задачи остается только найти его координаты.

Из условия задачи следует, что это вектор $\overline{OP} = \{2; -1; -1\}$. Запишем скалярное произведение этих векторов и приравняем его нулю: $(\overline{PM}, \overline{n}) = 0$. Получим 2(x-2)-1(y+1)-1(z+1)=0. Раскроем скобки и приведем подобные, чтобы записать общее уравнение плоскости: 2x-y-z-6=0.

Задача 2. Составить уравнение плоскости, проходящей через точку M_0 (3;4;-5) параллельно векторам \bar{a} {3;1;-1} и \bar{b} {1;-2;1}.

Решение: Поскольку плоскость параллельна векторам $\bar{a}\{3;1;-1\}$ и $\bar{b}\{1;-2;1\}$, то ее нормальный вектор перпендикулярен этим векторам. Поэтому, для нахождения нормального вектора плоскости необходимо найти какой-либо ненулевой вектор, перпендикулярный двум заданным. В качестве такого вектора можно взять вектор, коллинеарный векторному произведению векторов \bar{a} и \bar{b} . Пользуясь выражением векторного произведения в

координатах, вычислим $\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 1 & -1 \\ 1 & -2 & 1 \end{vmatrix} = \{-1; -4; -7\}$. Возьмем в качестве

вектора нормали вектор \bar{n} {1;4;7}. Условие ортогональности произвольного вектора плоскости $\overline{M_0M}$ и \bar{n} будет иметь вид $(\overline{PM}, \bar{n}) = 0$. Вычислив скалярное произведение, получим уравнение плоскости:

$$1(x-3)+4(y-4)+7(z+5)=0$$
 или $x+4y+7z+16=0$.

Задача 3. Составить уравнение плоскости, проходящей через точки $M_1(2;-1;3)$ и $M_2(3;1;2)$ параллельно вектору $\overline{a}\{3;-1;4\}$.

Решение: Найдем нормальный вектор плоскости. Так как точки $M_1(2;-1;3)$ и $M_2(3;1;2)$ принадлежат плоскости, то вектор $\overline{M_1M_2}$ принадлежит плоскости. Следовательно, он перпендикулярен

нормальному вектору плоскости, также как и вектор \bar{a} {3;-1;4} (рис.2).

Вычислим векторное произведение этих векторов $\overline{a} \times \overline{M_1 M_2} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & -1 & 4 \\ 1 & 2 & -1 \end{vmatrix} = \{-7; 7; 7\} \ . \ B$ качестве вектора нормали можно взять вектор

 \overline{n} {1;-1;-1}, коллинеарный полученному. Запишем уравнение плоскости, проходящей через данную точку M_1 (2;-1;3) перпендикулярно найденному вектору \overline{n} {1;-1;-1}: 1(x-2)-(y+1)-(z-3)=0. Получим общее уравнение плоскости x-y-z=0.

1.1 Уравнение плоскости, проходящей через три различные точки

Кроме того, можно вывести уравнение плоскости, проходящей через три различные точки $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2), M_3(x_3,y_3,z_3)$, не лежащие на одной прямой. Поскольку данные три точки не лежат на одной прямой, векторы $\overline{M_1M_2}=\{x_2-x_1,y_2-y_1,z_2-z_1\}$ и $\overline{M_1M_3}=\{x_3-x_1,y_3-y_1,z_3-z_1\}$ не коллинеарны, а

поэтому произвольная точка M(x,y,z) принадлежит плоскости тогда и только тогда, когда векторы $\overline{M_1M_2}$, $\overline{M_1M_3}$ и $\overline{M_1M} = \{x-x_1,y-y_1,z-z_1\}$ принадлежат одной плоскости, т.е. компланарны (рис. 3).

Согласно критерию компланарности Рис.3 (Теорема 4), их смешанное произведение равно нулю: $(\overline{M_1M}, \overline{M_1M_2}, \overline{M_1M_3}) = 0$.

Используя формулу для вычисления смешанного произведения в ортонормированном базисе, получим:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Это и есть уравнение плоскости, проходящей через три заданные точки. Раскрывая определитель и приводя подобные, можно получить общее уравнение плоскости.

Задача 4. Составить уравнение плоскости, проходящей через точки $M_1(3;-1;2), M_2(4;-1;-1), M_3(2;0;2).$

Решение: Эту задачу можно решить двумя способами. Можно найти нормальный вектор плоскости (аналогично тому, как мы сделали в задачах 2 и 3) для того, чтобы воспользоваться уравнением плоскости, проходящей через заданную точку, перпендикулярно найденному вектору. В этом случае в качестве вектора нормали можно взять векторное произведение векторов $\overline{M_1M_2}$ и $\overline{M_1M_3}$, поскольку $\overline{M_1M_2} \subset P \Rightarrow \overline{M_1M_2} \perp \overline{n}$, $\overline{M_1M_3} \subset P \Rightarrow \overline{M_1M_3} \perp \overline{n}$, а следовательно $\overline{n} \parallel \overline{M_1M_2} \times \overline{M_1M_3}$.

Имеем $\overline{n} = \overline{M_1 M_2} \times \overline{M_1 M_3} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 0 & -3 \\ -1 & 1 & 0 \end{vmatrix} = \{3; 3; 1\}$. Запишем уравнение плоскости,

проходящей через точку $M_1(3;-1;2)$, перпендикулярно найденному вектору $\bar{n}\{3;3;1\}$: 3(x-3)+3(y+1)+(z-2)=0. Получим общее уравнение плоскости 3x+3y+z-8=0.

Но для решения этой задачи гораздо удобнее воспользоваться уравнением плоскости, проходящей через три точки. Найдем координаты векторов $\overline{M_1M_2}=\left\{1,0,-3\right\}$, $\overline{M_1M_3}=\left\{-1,1,0\right\}$, $\overline{MM_1}=\left\{x-3,y+1,z-2\right\}$ и приравняем нулю их

смешанное произведение. Получим $\begin{vmatrix} x-3 & y+1 & z-2 \\ 1 & 0 & -3 \\ -1 & 1 & 0 \end{vmatrix} = 0$. Раскрывая

определитель по первой строке, имеем 3(x-3)+3(y+1)+(z-2)=0 или 3x+3y+z-8=0.

Задача 5. Проверить, можно ли провести плоскость через точки A(3;1;0), B(0;7;2), C(-1;0;-5), D(4;1;5).

Решение: Точки принадлежат одной плоскости, если векторы $\overline{AB}\{-3,6,2\}$, $\overline{AC}\{-4,-1,-5\}$ и $\overline{AD}\{1,0,5\}$ компланарны. В этом случае смешанное произведение этих векторов равно нулю. Вычислим его.

$$\begin{vmatrix} -3 & 6 & 2 \\ -4 & -1 & -5 \\ 1 & 0 & 5 \end{vmatrix} = (-30+2)+5(3+24) = -28+135=107 \neq 0$$
. Следовательно, векторы не

компланарны, а точки не принадлежат одной плоскости.

1.2. Взаимное расположение плоскостей. Угол между плоскостями.

Угол φ между плоскостями определяется как угол между их нормальными векторами \overline{n}_1 {A₁, B₁, C₁} и \overline{n}_2 {A₂, B₂, C₂}. Это определение дает не один, а два угла (острый и тупой), дополняющие друг друга до π . Вычисляется он с помощью формулы скалярного произведения $(\overline{n}_1, \overline{n}_2) = |\overline{n}_1| |\overline{n}_2| \cos \varphi$. Получаем $\cos \left(P_1, P_2\right) = \cos \varphi = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$. Если угол между плоскостями острый, то его косинус неотрицателен.

Если плоскости перпендикулярны, то и их нормальные векторы $\overline{n}_1\{A_1,B_1,C_1\}$ и $\overline{n}_2\{A_2,B_2,C_2\}$ ортогональны, следовательно их скалярное произведение равно нулю, то есть $A_1A_2+B_1B_2+C_1C_2=0$.

Если плоскости параллельны, то их нормальные векторы коллинеарны: $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2} \text{ . Если же } \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} \text{, то плоскости совпадают.}$

Задача 6. Составить уравнение плоскости, проходящей через точку M(3;2;-7), параллельно плоскости 5x-3y+2z-3=0.

Решение: Поскольку плоскости параллельны, их нормальные векторы можно считать равными. Запишем уравнение плоскости, перпендикулярной вектору $\bar{n}\{5;-3;2\}$, проходящей через точку M(3;2;-7): $5(x-3)-3(y-2)+2(z+7)=0 \Rightarrow 5x-3y+2z+4=0$.

Задача 7: Выяснить взаимное расположение плоскостей 4x+2y-4z+5=0 и 2x+y+2z-1=0. Если плоскости пересекаются — найти острый двугранный угол между ними.

Решение: Нормальные векторы плоскостей: \overline{n}_1 {4;2;-4} и \overline{n}_2 {2;1;2}. Так как $\frac{4}{2} = \frac{2}{1} \neq \frac{-4}{2} \neq \frac{5}{-1}$, то плоскости не параллельны и не совпадают. Остается единственный вариант – плоскости пересекаются. Найдем острый угол между ними. Для этого сразу возьмем модуль соответствующего выражения:

$$\cos \varphi = \frac{\left| \overline{n}_1 \cdot \overline{n}_2 \right|}{\left| \overline{n}_1 \right| \cdot \left| \overline{n}_2 \right|} = \frac{\left| 8 + 2 - 8 \right|}{\sqrt{16 + 4 + 16} \cdot \sqrt{4 + 1 + 4}} = \frac{2}{18} = \frac{1}{9} \Rightarrow \varphi = \arccos \frac{1}{9}.$$

1.3. Расстояние от точки до плоскости

Расстояние от точки $M_0\left(x_0,y_0,z_0\right)$ до плоскости Ax+By+Cz+D=0 находится по формуле: $\rho=\frac{\left|Ax_0+By_0+Cz_0+D\right|}{\sqrt{A^2+B^2+C^2}}$.

Задача 8. На оси *OX* найти точку, равноудаленную от плоскостей: x+4y-3z-2=0 и 5x+z+8=0.

Решение: Точка лежит на оси *OX* , следовательно, ее координаты $(x_0;0;0)$. Найдем расстояния от нее до плоскостей и приравняем их: $\frac{|x_0-2|}{\sqrt{1+16+9}} = \frac{|5x_0+8|}{\sqrt{25+1}} \Rightarrow x_0-2 = \pm (5x_0+8) \Rightarrow \begin{bmatrix} x_0=-1 \\ x_0=-2,5 \end{bmatrix}$ Условию задачи удовлетворяют две точки: (-1;0;0) и (-2,5;0;0).

1.4. Уравнение плоскости «в отрезках»

Если в уравнении плоскости (1) Ax + By + Cz + D = 0 все коэффициенты A, B, C и D отличны от нуля, то уравнение плоскости называется **полным** и может быть приведено к следующему виду:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,\tag{2}$$

называемому уравнением плоскости «в отрезках».

В самом деле, так как все коэффициенты отличны от нуля, перепишем уравнение плоскости в виде:

$$\frac{x}{-\frac{D}{A}} + \frac{y}{-\frac{D}{B}} + \frac{z}{-\frac{D}{C}} = 1,$$

 $-\frac{1}{A}$ $-\frac{1}{B}$ $-\frac{D}{C}$ а затем положим $a=-\frac{D}{A}$, $b=-\frac{D}{B}$, $c=-\frac{D}{C}$.

Заметим, что в уравнении «в отрезках» (2) числа a, b и c имеют простой геометрический смысл: они равны абсциссе, ординате и аппликате точек пересечения плоскости с координатными осями (рис. 4).

Задача 9. Найти точки пересечения плоскости 2x-3y-4z-24=0 с осями координат.

Решение: Запишем уравнение плоскости в отрезках: $2x-3y-4z=24\Rightarrow \frac{x}{12}+\frac{y}{-8}+\frac{z}{-6}=1$. Здесь a=12,b=-8,c=-6 - отрезки, отсекаемые

плоскостью на осях координат. Поэтому A(12,0,0), B(0,-8,0), C(0,0,-6) - точки пересечения с осями координат.

Задача 10. Плоскость проходит через точки $M_1(1;2;-1)$ и $M_2(-3;2;1)$ и отсекает на оси ординат отрезок b=3. Составить для этой плоскости уравнение в отрезках.

Решение: Поскольку точка B(0;3;0)- точка пересечения плоскости с осью Ox, то она принадлежит искомой плоскости. Запишем уравнение плоскости, проходящей через три точки M_1 , M_2 и B. Для этого приравняем нулю смешанное произведение векторов \overline{BM} , $\overline{M_1B}$ и $\overline{M_2B}$:

$$(\overline{BM}, \overline{M_1B}, \overline{M_2B}) = \begin{vmatrix} x & y-3 & z \\ -1 & 1 & 1 \\ 3 & 1 & -1 \end{vmatrix} = 0$$
. Поэтому

$$-2x+2(y-3)-4z=0 \Rightarrow x-y+2z=-3 \Rightarrow \frac{x}{-3}+\frac{y}{3}+\frac{z}{-3/2}=1.$$

Задача 11. Составить уравнение плоскости, которая проходит через точки $M_1(-1;4;-1)$, $M_2(-13;2;-10)$ и отсекает на осях абсцисс и аппликат отличные от нуля отрезки одинаковой длины.

Решение: Возможны два случая: $\frac{x}{a} + \frac{y}{b} + \frac{z}{a} = 1$ (I) или $\frac{x}{a} + \frac{y}{b} + \frac{z}{-a} = 1$ (II). Умножив обе части уравнений на ab, получим: bx + ay + bz - ab = 0 (I) и bx + ay - bz - ab = 0 (II).

Подставим в уравнение (I) координаты точек $M_{\scriptscriptstyle 1}$ и $M_{\scriptscriptstyle 2}$ для нахождения

$$a$$
 и b :
$$\begin{cases} -b+4a-b-ab=0 \\ -13b+2a-10b-ab=0 \end{cases} \Rightarrow \begin{cases} b=\frac{4a}{2+a} \\ \frac{-92a+4+2a^2-4a^2}{2+a} = 0 \end{cases}$$
. Продолжим решение

системы: $\begin{cases} b = \frac{4a}{2+a} \\ a^2 + 44a = 0 \end{cases} \Rightarrow \begin{cases} a = -44 \\ b = \frac{88}{21} \end{cases}$. Тогда уравнение первой плоскости,

удовлетворяющей условию задачи: 2x-21y+2z+88=0.

2. ПРЯМАЯ В ПРОСТРАНСТВЕ

Любую прямую линию в пространстве можно задать как линию пересечения двух различных и не параллельных плоскостей. Предположим, что две различные плоскости, уравнения которых известны, пересекаются по прямой L. Следовательно, ее можно задать системой двух уравнений этих плоскостей:

$$L \begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$
 (3)

Два уравнения системы совместно определяют прямую в том и только в том случае, когда коэффициенты A_1, B_1, C_1 одного из них не пропорциональны коэффициентам A_2, B_2, C_2 другого.

Для решения многих задач более удобным является специальный вид уравнений прямой. Пусть дана некоторая прямая. Любой ненулевой вектор, лежащий на данной прямой или параллельный ей, называется **направляющим вектором этой прямой**. Обозначим этот вектор $\overline{s} = \{l, m, n\}$ и зададим точку $M_0(x_0, y_0, z_0)$, принадлежащую этой прямой. Пусть точка M(x, y, z) - произвольная точка прямой. Тогда, вектор $\overline{M_0M}$ коллинеарен вектору $\overline{s} = \{l, m, n\}$. Следовательно, их соответствующие координаты пропорциональны:

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n} \,. \tag{4}$$

Этим соотношениям удовлетворяют координаты любой точки M, лежащей на прямой. Эти уравнения принято называть *каноническими уравнениями прямой*. Заметим, что в канонических уравнениях (4) одно или два из чисел могут оказаться равными нулю (обращение в ноль одного из знаменателей означает обращение в ноль и соответствующего числителя).

Параметрические уравнения прямой легко получаются из канонических уравнений (4). Для этого нужно принять за параметр t каждое из отношений (4), и затем выразить из полученных соотношений x, y, z. Параметрические уравнения прямой имеют вид:

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$$
 (5)

При изменении t от $-\infty$ до $+\infty$ точка M «пробегает» всю прямую. Параметрические уравнения прямой удобно применять в тех случаях, когда нужно найти точку пересечения прямой с плоскостью.

Задача 12. Составить канонические уравнения прямой, параллельной оси OY, проходящей через точку M(2;0;-1).

Решение: Поскольку прямая параллельна оси *OY*, то в качестве направляющего вектора прямой можно взять орт оси OY $\overline{s} = \overline{j} = \{0;1;0\}$. Запишем канонические уравнения: $\frac{x-2}{0} = \frac{y}{1} = \frac{z+1}{0}$.

Если известны две точки, лежащие на прямой $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$, то можно легко получить канонические уравнения прямой, проходящей через две различные точки. Направляющим вектором этой прямой будет вектор $\overline{M_1M_2}$. Поэтому уравнения имеют вид:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}.$$

Задача 13. Составить параметрические уравнения прямой, проходящей через точку M(1;2;-4) параллельно прямой $\frac{x-2}{3} = \frac{y+1}{1} = \frac{z}{-2}$.

Решение: Так как прямые параллельны, их направляющие векторы равны. Следовательно, \overline{s} {3;1;-2}. Запишем параметрические уравнения прямой:

$$\begin{cases} x = 3t + 1 \\ y = t + 2 \\ z = -2t - 4 \end{cases}$$

Задача 14. Составить канонические уравнения прямой, проходящей через точки $M_1(2;0;-1)$ и $M_2(-6;6;-5)$.

Решение: Найдем вектор $\overline{M_1M_2} = \{-6-2,6-0,-5+1\} = \{-8,6,-4\}$. Поскольку в качестве направляющего вектора прямой можно взять любой вектор, коллинеарный данному, возьмем $\overline{s} = \{4;-3;2\}$. Теперь запишем условия коллинеарности произвольного вектора прямой $\overline{M_1M}$ и вектора $\overline{M_1M_2}$:

$$\frac{x-2}{4} = \frac{y}{-3} = \frac{z+1}{2}$$
.

Рассмотрим, как составить канонические уравнения прямой (4) в том случае, если прямая задана пересечением двух плоскостей, т.е. системой уравнений (3).

Задача 15. Найти канонические и параметрические уравнения прямой

$$\begin{cases} x - 10y + 2z + 14 = 0 \\ 3x - 2y - z + 3 = 0 \end{cases}$$
 (3.1)

Решение: Для того, чтобы записать канонические уравнения, нужно найти направляющий вектор этой прямой и хотя бы одну точку M_0 , лежащую на ней. Поскольку линия пересечения плоскостей принадлежит обеим плоскостям, то ее направляющий вектор \bar{s} ортогонален каждому из нормальных векторов $\bar{n}_1\{1;-10;2\}$ и $\bar{n}_2\{3;-2;-1\}$ плоскостей. Поэтому в качестве вектора \bar{s} можно взять любой вектор, ортогональный векторам \bar{n}_1 и \bar{n}_2 , например их векторное произведение (рис.5).

Имеем
$$\overline{n_1} \times \overline{n_2} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -10 & 2 \\ 3 & -2 & -1 \end{vmatrix} = 14\overline{i} + 7\overline{j} + 28\overline{k}$$
.

Поскольку все координаты векторного произведения кратны 7, можно в качестве направляющего вектора взять вектор $\bar{s} = \{2,1,4\}$.

Рис.5

Теперь найдем точку M_0 , принадлежащую прямой. Положим x=0 в системе уравнений (3.1). Получим систему $\begin{cases} 10y+2z+14=0\\ -2y-z+3=0 \end{cases}$. Поскольку в данной системе определитель $\begin{vmatrix} 10 & 2\\ -2 & -1 \end{vmatrix} \neq 0$, определим соответствующие значения $y=\frac{10}{7}$ и $z=-\frac{1}{7}$. Таким образом, имеем точку $M_0\left(0,\frac{10}{7},-\frac{1}{7}\right)$, принадлежащую прямой. Записав условия коллинеарности векторов $\overline{M_0M}=\left\{x,y-\frac{10}{7},z+\frac{1}{7}\right\}$ и $\overline{s}=\{2,1,4\}$, получим канонические уравнения прямой $\frac{x}{2}=\frac{y-\frac{10}{7}}{1}=\frac{z+\frac{1}{7}}{4}$.

Параметрические уравнения прямой будут иметь вид:
$$\begin{cases} x = 2t \\ y = t + \frac{10}{7} \\ z = 4t - \frac{1}{7} \end{cases}$$

Задача 16. Составить канонические уравнения прямой, образованной пересечением плоскости 3x-y-7z+9=0 с плоскостью, проходящей через ось *OX* и точку E(3;2;-5).

Решение: Для начала составим уравнение второй плоскости. Поскольку плоскость проходит через ось OX и точку E(3;2;-5), то она содержит векторы $\overline{i}\{1;0;0\}$ и $\overline{OE}\{3;2;-5\}$. В качестве нормального вектора плоскости возьмем

векторное произведение этих векторов: $\overline{n_2} = \overline{i} \times \overrightarrow{OE} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 0 & 0 \\ 3 & 2 & -5 \end{vmatrix} = \{0; 5; 2\}$. Тогда

уравнение плоскости, проходящей через точку O (или E) перпендикулярно вектору $\overline{n_2}\{0;5;2\}$ будет иметь вид: 5y+2z=0. Теперь запишем общие уравнения прямой: $\begin{cases} 3x-y-7z+9=0\\ 5y+2z=0 \end{cases}$.

Для того, чтобы записать канонические уравнения прямой, необходимо найти ее направляющий вектор. Так как прямая принадлежит обеим плоскостям, ее направляющий вектор ортогонален нормальным векторам этих

плоскостей. Следовательно, $\overline{s} = \overline{n}_1 \times \overline{n}_2 = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & -1 & -7 \\ 0 & 5 & 2 \end{vmatrix} = \{33; -6; 15\}$. Найдем точку на прямой: пусть $y = 0 \Rightarrow z = 0 \Rightarrow x = -3 \Rightarrow M\left(-3; 0; 0\right)$. Запишем канонические

прямой: пусть $y = 0 \Rightarrow z = 0 \Rightarrow x = -3 \Rightarrow M(-3;0;0)$. Запишем канонические уравнения прямой: $\frac{x+3}{33} = \frac{y}{-6} = \frac{z}{15}$.

2.1 Угол между прямыми.

Угол между прямыми определяется как угол между их направляющими векторами $\overline{s_1} = \{l_1, m_1, n_1\}$ и $\overline{s_2} = \{l_2, m_2, n_2\}$. Пользуясь формулой $\cos \alpha = \frac{(\overline{s_1}, \overline{s_2})}{\left|\overline{s_1}\right| \cdot \left|\overline{s_2}\right|},$ имеем

$$\cos\left(L_{1}, L_{2}\right) = \frac{l_{1}l_{2} + m_{1}m_{2} + n_{1}n_{2}}{\sqrt{l_{1}^{2} + m_{1}^{2} + n_{1}^{2}} \sqrt{l_{2}^{2} + m_{2}^{2} + n_{2}^{2}}}.$$

Если прямые параллельны, то из условия коллинеарности направляющих векторов, получим условие параллельности двух прямых:

$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} .$$

Если же прямые ортогональны, то из условия ортогональности направляющих векторов, получим условие ортогональности двух прямых:

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

Задача 17. Найти угол α между прямыми: $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}$ и $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z+3}{1}$.

Решение: Запишем направляющие векторы прямых: \bar{s}_1 {3;2;-2}, \bar{s}_2 {3;2;1}. Тогда $\cos\left(\bar{L}_1,\bar{L}_2\right) = \cos\left(\bar{s}_1,\bar{s}_2\right) = \frac{9+4-2}{\sqrt{9+4+4}\sqrt{9+4+1}} = \frac{11}{\sqrt{17}\sqrt{14}} = \frac{11\sqrt{238}}{238}$. Следовательно $\alpha = \arccos\frac{11\sqrt{238}}{238}$.

2.2 Угол между прямой и плоскостью

Угол φ между прямой $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ и плоскостью

Ax + By + Cz + D = 0 определяется как угол между прямой и ее проекцией на эту

плоскость. Это определение дает не один, а два угла, дополняющие друг друга до π , причем каждый из этих углов заключен между 0 и π . В зависимости от выбора направляющего вектора прямой и нормального вектора к плоскости имеем всего четыре угла, образующие две пары

вертикальных углов. Чтобы его найти, заметим, что искомый угол φ является дополнительным к углу ψ между направляющим вектором $\overline{s}=\{l,m,n\}$ прямой и нормальным вектором плоскости $\overline{n}=\{A,B,C\}$ (рис. 6). Поскольку $0\leq\varphi\leq\pi$, то из равенства $\sin\varphi=|\cos\psi|$, получим для определения угла между прямой и плоскостью следующую формулу:

$$\sin \varphi = \sin \left(\hat{L}, P \right) = \left| \cos \left(\bar{s}, \bar{n} \right) \right| = \frac{\left| Al + Bm + Cn \right|}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}} \,. \tag{6}$$

Если прямая $\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}$ параллельна плоскости Ax+By+Cz+D=0, то направляющий вектор прямой $\overline{s}=\{l;m;n\}$ и нормальный вектор плоскости $\overline{n}=\{A,B,C\}$ перпендикулярны , следовательно их скалярное произведение равно нулю. Таким образом, условие параллельности прямой и плоскости имеет вид: Al+Bm+Cn=0.

Если же прямая $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ перпендикулярна плоскости Ax+By+Cz+D=0, то векторы $\overline{s}=\{l;m;n\}$ и $\overline{n}=\{A,B,C\}$ параллельны,

следовательно их координаты пропорциональны. Таким образом, условие перпендикулярности прямой и плоскости имеет вид: $\frac{A}{I} = \frac{B}{m} = \frac{C}{n}$.

Задача 18. Найти угол α между прямой $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z}{-6}$ и плоскостью 2x+3y+z-1=0.

Решение: Направляющий вектор прямой $\overline{s} = \{1; -2; -6\}$, а вектор нормали $\overline{n} = \{2, 3, 1\}$. Теперь воспользуемся формулой (6):

$$\sin\left(\hat{L}, P\right) = \left|\cos\left(\bar{s}, \bar{n}\right)\right| = \frac{\left|Al + Bm + Cn\right|}{\sqrt{A^2 + B^2 + C^2}\sqrt{l^2 + m^2 + n^2}} = \frac{\left|2 - 6 - 6\right|}{\sqrt{1 + 4 + 36}\sqrt{4 + 9 + 1}} = \frac{5\sqrt{574}}{267}.$$

Следовательно $\alpha = \arcsin \frac{5\sqrt{574}}{267}$.

3. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМЫХ И ПЛОСКОСТЕЙ

Две прямые $L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ и $L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ могут

лежать или не лежать в одной плоскости. Если две прямые в пространстве лежат в одной плоскости, то они могут либо **пересекаться**, либо быть **параллельными**. В противном случае (когда они не лежат в одной плоскости) они **скрещиваются**.

Установим условие принадлежности двух прямых одной плоскости.

Чтобы две прямые принадлежали одной плоскости, необходимо и достаточно, чтобы векторы \overline{s}_1 , \overline{s}_2 , $\overline{M_1M_2}(x_2-x_1;y_2-y_1;z_2-z_1)$ были компланарны (рис. 7). А для этого необходимо и достаточно, чтобы смешанное произведение этих векторов было равно

нулю $(\overline{M_1M_2}, \overline{s_1}, \overline{s_2}) = 0$. Записывая это условие в координатах, получим условие принадлежности двух прямых одной плоскости:

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$$
 (7)

Следовательно, прямые скрещиваются тогда и только тогда, когда равенство (7) не выполнено.

Задача 19. Выяснить взаимное расположение прямых: $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-5}{4}$ и $\frac{x-7}{3} = \frac{y-2}{2} = \frac{z-1}{-2}$. Если они пересекаются, найти точку их пересечения. Если они скрещиваются или параллельны, то найти расстояние между ними.

Решение: Из уравнений этих прямых, найдем два направляющих вектора: $\overline{s}_1\{2;-3;4\}$ и $\overline{s}_2\{3;2;-2\}$. Зная координаты двух точек $M_1(1,-2,5)$ и $M_2(7,2,1)$, лежащих на этих прямых, найдем вектор $\overline{M_1M_2}\{6;4;-4\}$. Выясним взаимное расположение прямых, для чего вычислим смешанное произведение этих

векторов $(\overline{M_1M_2}, \overline{s_1}, \overline{s_2})$. Определитель $\begin{vmatrix} 2 & -3 & 4 \\ 3 & 2 & -2 \\ 6 & 4 & -4 \end{vmatrix} = 0$, следовательно, прямые

принадлежат одной плоскости (либо параллельны, либо пересекаются). Поскольку $\frac{2}{3} \neq \frac{-3}{2} \neq \frac{4}{-2}$, то направляющие векторы этих прямых не коллинеарны и, следовательно, прямые пересекаются. Для нахождения точки

пересечения запишем параметрические уравнения первой прямой: $\begin{cases} x = 2t + 1 \\ y = -3t - 2 \\ z = 4t + 5 \end{cases}$

Подставим эти значения в уравнения второй прямой и найдем значение параметра t, соответствующее точке пересечения: $\frac{2t-6}{3} = \frac{-3t-4}{2} = \frac{4t+4}{-2} \Rightarrow \begin{cases} 4t-12 = -9t-12 \\ 6t+8 = 8t+8 \end{cases} \Rightarrow t=0$. Подставим найденное значение в параметрические уравнения первой прямой: x=1; y=-2; $z=5 \Rightarrow M(1;-2;5)$.

Задача 20. Выяснить взаимное расположение прямых: $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z}{2}$ и $\frac{x-7}{6} = \frac{y-1}{8} = \frac{z-3}{4}$. Если прямые лежат в одной плоскости — составить уравнение этой плоскости, если при этом прямые параллельны - найти расстояние между ними.

Решение: Из уравнений этих прямых, найдем два направляющих вектора: $\bar{s}_1(3;4;2)$ и $\bar{s}_2(6;8;4)$. Поскольку $\frac{3}{6} = \frac{4}{8} = \frac{2}{4}$, то эти векторы коллинеарны и прямые параллельны, следовательно, принадлежат одной плоскости. Составим уравнение этой плоскости. Зная координаты двух точек $M_1(2,-1,0)$ и $M_2(7,1,3)$, лежащих на этих прямых, найдем вектор $\overline{M_1M_2}(5;2;3)$. Найдем

нормальный вектор искомой плоскости: $\overline{n} = \overline{s_1} \times \overline{M_1 M_2} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 4 & 2 \\ 5 & 2 & 3 \end{vmatrix} = \left\{ 8; 1; -14 \right\}.$

Теперь запишем уравнение плоскости из условия $(\overline{M_1M}, \overline{n}) = 0$. Получим 8(x-2)+(y+1)-14z=0. Следовательно, уравнение плоскости имеет вид 8x+y-14z-15=0.

Чтобы найти расстояние между двумя параллелограмм на векторах \overline{s} и $\overline{M_1M_2}$ (рис. 8). Высота h этого параллелограмма, опущенная на сторону \overline{s} , будет равна расстоянию между этими прямыми. Площадь параллелограмма равна модулю векторного произведения векторов \overline{s} и $\overline{M_1M_2}$. Тогда

векторного произведения векторов
$$\overline{s}$$
 и $\overline{M_1M_2}$. Тогда
$$h = \frac{S}{|\overline{s}|} = \frac{\left|\overline{s} \times \overline{M_1M_2}\right|}{|\overline{s}|} = \frac{\left|\overline{n}\right|}{|\overline{s}|} = \frac{\sqrt{64+1+196}}{\sqrt{9+16+4}} = \frac{\sqrt{261}}{\sqrt{29}} = 3.$$

прямыми,

построим

Задача 21. Убедиться, что прямые $L_1: \frac{x}{1} = \frac{y-9}{4} = \frac{z+2}{-3}$ и $L_2: \frac{x-2}{2} = \frac{y}{-2} = \frac{z+7}{9}$ скрещиваются. Найти расстояние между ними. Написать уравнение общего перпендикуляра к этим прямым.

Решение: Если прямые скрещиваются, то $(\overline{s}_1, \overline{s}_2, \overline{M_1 M_2}) \neq 0$. Проверим:

$$\left(\overline{s}_{1}, \overline{s}_{2}, \overline{M_{1}M_{2}}\right) = \begin{vmatrix} 1 & 4 & -3 \\ 2 & -2 & 9 \\ 2 & -9 & -5 \end{vmatrix} = 245 \neq 0$$
. Заметим, что поскольку векторы \overline{s}_{1} , \overline{s}_{2} и $\overline{M_{1}M_{2}}$

некомпланарны, то на них можно построить параллелепипед. Длина высоты этого параллелепипеда, опущенная на грань,

образованную векторами $\overline{s_1}$ и $\overline{s_2}$, будет равна расстоянию между скрещивающимися прямыми (рис. 9). Найдем ее по формуле $\rho = h = \frac{V_{nap-\partial a}}{S}$.

Поскольку
$$V_{nap-\partial a}=\left|\left(\overline{s}_1,\overline{s}_2,\overline{M}_1\overline{M}_2\right)\right|=245$$
 , а
$$S_{_{\Box}}=\left|\overline{s}_1\times\overline{s}_2\right|,$$
 найдем

$$\overline{s}_{1} \times \overline{s}_{2} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 4 & -3 \\ 2 & -2 & 9 \end{vmatrix} = (30; -15; -10) \Rightarrow |\overline{s}_{1} \times \overline{s}_{2}| = \sqrt{900 + 225 + 100} = 35.$$
Тогда
$$\rho = \frac{V_{nap - \partial a}}{S} = \frac{|\overline{s}_{1} \cdot \overline{s}_{2} \cdot \overline{M_{1}} \overline{M_{2}}|}{|\overline{s} \times \overline{s}_{1}|} = \frac{245}{35} = 7.$$

Прямая L, являющаяся общим перпендикуляром к прямым L₁ и L₂, должна быть перпендикулярна каждой из них, следовательно, в качестве

направляющего вектора \bar{s} этой прямой можно взять вектор, коллинеарный векторному произведению направляющих векторов \bar{s}_1 и \bar{s}_2 :

$$|\overline{s}| |\overline{s}_1 \times \overline{s}_2| = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 4 & -3 \\ 2 & -2 & 9 \end{vmatrix} = (30; -15; -10) \Rightarrow \overline{s} = \{6; -3; -2\}.$$

Кроме того, прямая L должна пересекать и первую, и вторую прямую. Вместо того, чтобы искать эти точки, используя дополнительные выкладки, используем способ задания прямой как линии пересечения двух плоскостей P_1 и P_2 (рис. 10).

Проведем плоскость P_1 , которая содержит прямую L_1 и вектор \overline{s} . Ее уравнение получим из условия компланарности векторов $\overline{M_1M}$, \overline{s} и $\overline{s_1}$

:

$$(\overline{M_1M}, \overline{s}, \overline{s_1}) = 0 \Rightarrow \begin{vmatrix} x & y-9 & z+2 \\ 6 & -3 & -2 \\ 1 & 4 & -3 \end{vmatrix} = 0 \Rightarrow 17x+16(y-9)+27(z+2) = 0.$$

Уравнение плоскости P_1 имеет вид 17x+16y+27z-90=0.

Плоскость P_2 содержит прямую L_2 и вектор \overline{s} . Ее уравнение получим из условия компланарности векторов $\overline{M_2M}$, \overline{s} и $\overline{s_2}$:

$$(\overline{M_2M}, \overline{s}, \overline{s_2}) = 0 \Rightarrow \begin{vmatrix} x-2 & y & z+7 \\ 6 & -3 & -2 \\ 2 & -2 & 9 \end{vmatrix} = 0 \Rightarrow -31(x-2) - 58y - 6(z+7) = 0.$$

Уравнение плоскости P_2 имеет вид 31x + 58y + 6z - 20 = 0.

Очевидно, что обе плоскости пересекутся по общему перпендикуляру – прямой L.

Тогда уравнение общего перпендикуляра будет иметь вид:

$$\begin{cases} 17x + 16y + 27z - 90 = 0\\ 31x + 58y + 6z - 20 = 0 \end{cases}$$
 (L)

Задача 22. Написать уравнение плоскости, проходящей через прямую $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}$ и точку M(1;2;-3).

Решение: Из канонических уравнений прямой находим направляющий вектор прямой $\overline{s} = \{3, 2, -2\}$ и координаты точки M_{\perp} ,

лежащей на этой прямой $M_1 = (2, -1, 3)$. Поскольку искомая плоскость содержит и прямую, и точку M, то нормальный вектор плоскости ортогонален и вектору \overline{S} , и вектору $\overline{M_1M}$ (рис. 11). Поэтому в качестве вектора нормали можно взять векторное произведение этих векторов:

$$\overline{n} = \overline{s} \times \overline{M_1 M} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 2 & -2 \\ -1 & 3 & -6 \end{vmatrix} = \{-6; 20; 11\}$$
. Тогда запишем уравнение плоскости,

проходящей через заданную точку M(1;2;-3) и имеющей нормальный вектор $\overline{n} = \{-6,20,11\}$:

$$-6(x-1)+20(y-2)+11(z+3)=0 \Rightarrow 6x-20y-11z+1=0$$
.

Задача 23. Написать уравнение плоскости, проходящей через точку M(1;2;-3) перпендикулярно прямой L: $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}$. Найти проекцию точки M(1;2;-3) на данную прямую и расстояние от точки до прямой.

Решение: Поскольку прямая перпендикулярна плоскости, то направляющий вектор прямой является нормальным вектором плоскости. Тогда можно записать уравнение искомой плоскости:

 $3(x-1)+2(y-2)-2(z+3)=0 \Rightarrow 3x+2y-2z-13=0$. Проекция точки M на прямую будет совпадать с точкой пересечения H этой плоскости и прямой L. Точка пересечения H принадлежит и прямой, и плоскости. Следовательно, чтобы найти ее координаты, удобно воспользоваться параметрическими уравнениями прямой и подобрать такое значение параметра t, при котором координаты точки на прямой будут удовлетворять уравнению плоскости. Для этого решим систему, содержащую параметрические уравнения прямой

и уравнение плоскости:

$$\begin{cases} x = 3t + 2 \\ y = 2t - 1 \\ z = -2t + 3 \\ 3x + 2y - 2z - 13 = 0 \end{cases} \Rightarrow \begin{cases} x = 3t + 2 \\ y = 2t - 1 \\ z = -2t + 3 \\ 9t + 6 + 4t - 2 + 4t - 6 - 13 = 0 \end{cases} \Rightarrow \begin{cases} t = \frac{15}{17} \\ x = 3t + 2 \\ y = 2t - 1 \\ z = -2t + 3 \end{cases} \Rightarrow H\left(\frac{79}{17}; \frac{13}{17}; \frac{21}{17}\right).$$

Точка H - проекция точки M на прямую L. Следовательно, расстояние от точки M до прямой L - длина вектора $\left|\overline{MH}\right| = \left\|\left(\frac{62}{17}; -\frac{21}{17}; \frac{72}{17}\right)\right\| = \frac{1}{17}\sqrt{9469}$.

Задача 24. Найти точку G, симметричную точке P(1;3;-4) относительно плоскости 3x + y - 2z = 0.

Решение: Для начала составим уравнение прямой, перпендикулярной плоскости и проходящей через точку Р. В качестве направляющего вектора нормальный вектор плоскости $\bar{n} = \{3,1,-2\}$. Имеем прямой возьмем $\frac{x-1}{3} = \frac{y-3}{1} = \frac{z+4}{2}$.

Затем, чтобы получить проекцию точки точки Р на заданную плоскость, найдем точку пересечения Q этой прямой и плоскости (рис. 12):

$$Q = \begin{cases} 3x + y - 2z = 0 \\ x = 3t + 1 \\ y = t + 3 \\ z = -2t - 4 \end{cases} \Rightarrow \begin{cases} 9t + 3 + t + 3 + 4t + 8 = 0 \\ x = 3t + 1 \\ y = t + 3 \\ z = -2t - 4 \end{cases} \Rightarrow Q(-2; 2; -2).$$

Эта точка Q является серединой отрезка GP и ее координаты равны полусуммам соответствующих координат точек P и G:

$$\begin{cases} x_{Q} = \frac{x_{P} + x_{G}}{2} \\ y_{Q} = \frac{y_{P} + y_{G}}{2} \Rightarrow \begin{cases} x_{G} = 2x_{Q} - x_{P} = -4 - 1 = -5 \\ y_{G} = 2y_{Q} - y_{P} = 4 - 3 = 1 \\ z_{G} = 2z_{Q} - z_{P} = -4 + 4 = 0 \end{cases} \Rightarrow \begin{cases} x_{G} = -4 - 1 = -5 \\ y_{G} = 4 - 3 = 1 \\ z_{G} = -4 + 4 = 0 \end{cases}$$

Тогда G(-5;1;0).

Задача 25. Через точку M(4;0;-1) провести прямую так, чтобы она пересекала прямые: L_1 : $\frac{x-1}{2} = \frac{y+3}{4} = \frac{z-5}{3}$ и L_2 : $\frac{x}{5} = \frac{y-2}{-1} = \frac{z+1}{2}$.

Решение: Для начала отметим, что точка M не лежит на прямых L_1 и L_2 , поскольку ее координаты не удовлетворяют уравнениям этих прямых. После этого выясним взаимное расположение этих прямых. Поскольку

$$\overline{s}_1 \cdot \overline{s}_2 \cdot \overline{M}_1 M_2 = \begin{vmatrix} 2 & 4 & 3 \\ 5 & -1 & 2 \\ -1 & 5 & -6 \end{vmatrix} = 176 \neq 0,$$
 To

прямые скрещиваются. Следовательно, задача имеет единственное решение.

Теперь проведем плоскость через прямую L_1 и точку M (рис. 13). Нормальный вектор этой плоскости будет ортогонален векторам \overline{s}_1 и \overline{MM}_1 . Поэтому

Рис.13

$$\bar{n} \parallel \bar{s}_1 \times \overline{MM}_1 = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 2 & 4 & 3 \\ -3 & -3 & 6 \end{vmatrix} = (33; -21; 6) \Rightarrow \bar{n} = \{11; -7; 2\}.$$
 Запишем уравнение

плоскости, имеющей нормальный вектор $\bar{n} = \{11; -7; 2\}$ и проходящей через точку $M: 11(x-4)-7y+2(z+1)=0 \Rightarrow 11x-7y+2z-42=0$.

После этого найдем точку A пересечения этой плоскости и прямой L_2 :

$$\begin{cases} 11x - 7y + 2z - 42 = 0 \\ x = 5t \\ y = -t + 2 \\ z = 2t - 1 \end{cases} \Rightarrow \begin{cases} 55t + 7t - 14 + 4t - 2 - 42 = 0 \\ x = 5t \\ y = -t + 2 \\ z = 2t - 1 \end{cases} \Rightarrow A\left(\frac{145}{33}; \frac{37}{33}; \frac{25}{33}\right).$$

Прямая, проходящая через точки A и M, и будет являться искомой прямой (рис.13). Найдем ее направляющий вектор \overline{AM} .

$$\overline{AM}\left(-\frac{13}{33}; -\frac{37}{33}; -\frac{58}{33}\right) \Rightarrow \overline{s} = \{13; 37; 58\}.$$

Следовательно, уравнения искомой прямой имеют вид: $\frac{x-4}{13} = \frac{y}{37} = \frac{z+1}{58}$.

Задача 26. На прямой
$$\begin{cases} x+2y+z-1=0\\ 3x-y+4z-29=0 \end{cases}$$
 найти точку M , равноудаленную от точек $A(3,11,4)$ и $B(-5,-13,-2)$.

Решение: Множество точек пространства, равноудаленных от A и B, будут образовывать плоскость P, проходящую через середину отрезка [AB], перпендикулярно ему. Найдем уравнение этой плоскости. Нормальным вектором \overline{n} плоскости P будет любой вектор, коллинеарный \overline{AB} . Поскольку

 \overline{AB} = (-8, -24, -6), в качестве нормали возьмем вектор \overline{n} = (4,12,3). Теперь найдем координаты точки O — середины отрезка [AB]:

$$x_o = \frac{x_A + x_B}{2} = -1;$$
 $y_o = \frac{y_A + y_B}{2} = -1;$ $z_o = \frac{z_A + z_B}{2} = 1.$

Запишем уравнение плоскости P из условия $(\overline{AB}, \overline{OM}) = 0$:

$$4(x+1)+12(y+1)+3(z-1)=0$$
$$4x+12y+3z+13=0$$

Поскольку, по условию, точка M, равноудаленная от точек A и B, должна лежать на данной прямой, она будет являться точкой пересечения этой прямой и найденной плоскости. Следовательно, ее координаты будут удовлетворять системе трех уравнений:

$$\begin{cases} x + 2y + z = 1 \\ 3x - y + 4z = 29 \\ 4x + 12y + 3z = -13 \end{cases}$$

Решим систему с помощью формул Крамера:

$$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 4 \\ 4 & 12 & 3 \end{vmatrix} = 3; \quad \Delta_x = \begin{vmatrix} 1 & 2 & 1 \\ 29 & -1 & 4 \\ -13 & 12 & 3 \end{vmatrix} = 6; \quad \Delta_y = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 29 & 4 \\ 4 & -13 & 3 \end{vmatrix} = -9; \quad \Delta_z = \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 29 \\ 4 & 12 & -13 \end{vmatrix} = 15.$$

$$x = \frac{\Delta_x}{\Lambda} = 2;$$
 $y = \frac{\Delta_y}{\Lambda} = -3;$ $z = \frac{\Delta_z}{\Lambda} = 5$. Получим координаты точки $M(2, -3, 5)$.

4. РЕШЕНИЕ ЗАДАЧ ТИПОВОГО ВАРИАНТА ДОМАШНЕГО ЗАДАНИЯ ПО ТЕМЕ «ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ»

В параллелепипеде $ABCDA_1B_1C_1D_1$ известны координаты четырех вершин: $A(0,3,2), B(-1,4,2), D(0,1,2), A_1(1,2,0)$.

- 1. Написать уравнения плоскостей:
- а) Р, проходящей через точки А, В, D;
- **б**) P_1 , проходящей через точку A и прямую A_1B_1 ;
- в) P_2 , проходящей через точку A_1 параллельно плоскости P ;
- г) Р₃, содержащей прямые AD и AA₁;

25

- д) P_4 , проходящей через точки A и C_1 , перпендикулярно плоскости P.
- **2**. Найти расстояние между прямыми, на которых лежат ребра AB и CC_1 ; написать канонические и параметрические уравнения общего к ним перпендикуляра.
- **3**. Найти точку A_2 , симметричную точке A_1 относительно плоскости основания ABCD (плоскости P).
- **4**. Найти угол между прямой, на которой лежит диагональ A_1C и плоскостью основания ABCD (плоскостью P).
- **5**. Найти острый угол между плоскостями P и P₁.

Решение:

1а). Напишем уравнение плоскости P, проходящей через точки A, B, D (см. задачу 4).

Пусть точка M(x, y, z)— произвольная точка плоскости. Запишем уравнение плоскости, проходящей через три точки, приравняв нулю смешанное произведение векторов $\overline{AM} = \{x, y-3, z-2\}$, $\overline{AB} = \{-1,1,0\}$ и $\overline{AD} = \{0,-2,0\}$.

Имеем:
$$(\overline{AM}, \overline{AB}, \overline{AD}) = 0 \Rightarrow \begin{vmatrix} x & y-3 & z-2 \\ -1 & 1 & 0 \\ 0 & -2 & 0 \end{vmatrix} = 0$$
. Уравнение плоскости $P: z-2=0$

16). Напишем уравнение плоскости P_1 , проходящей через точку A и прямую A_1B_1 (см. задачу 22).

Поскольку ребра AB и A_1B_1 параллелепипеда параллельны, то $\overline{AB}=\overline{A_1B_1}$. Нормальный вектор плоскости $\overline{n_1}$ будет коллинеарен векторному

произведению
$$\overline{AA_1} \times \overline{AB}$$
. Имеем $\overline{AA_1} \times \overline{AB} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -1 & -2 \\ -1 & 1 & 0 \end{vmatrix} = 2\overline{i} + 2\overline{j} \Rightarrow \overline{n_1} = \{1,1,0\}$.

Запишем уравнение плоскости, проходящей через точку A(0,3,2), перпендикулярно вектору $\overline{n}_1 = \{1,1,0\}$:

$$1(x-0)+1(y-3)=0$$
. Уравнение плоскости $P_1: x+y-3=0$

1в). Напишем уравнение плоскости P_2 , проходящей через точку A_1 параллельно плоскости P (см. задачу 6).

Так как $P_2 \parallel P$, то $\overline{n}_2 = \overline{n} = \{0,0,1\}$. Запишем уравнение плоскости, проходящей через точку $A_1(1,2,0)$, перпендикулярно вектору $\overline{n}_2 = \{0,0,1\}$. Получим уравнение плоскости $P_2: z=0$

1г). Напишем уравнение плоскости P_3 , содержащей прямые AD и AA₁ (см. задачу 2). Найдем нормальный вектор плоскости:

$$\overline{n}_3 \mid\mid \overline{AD} \times \overline{AA_1} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & -2 & 0 \\ 1 & -1 & -2 \end{vmatrix} = 4\overline{i} + 2\overline{k} \Rightarrow \overline{n}_3 = \{2,0,1\}$$
. Запишем уравнение плоскости,

проходящей через точку A(0,3,2) перпендикулярно вектору $\overline{n}_3 = \{2,0,1\}$: 2x+1(z-2)=0. Уравнение плоскости $P_3:2x+z-2=0$.

1д). Напишем уравнение плоскости P_4 , проходящей через точки A и C_1 , перпендикулярно плоскости P.

Найдем вектор $\overline{AC_1} \in P_4$:

 $\overline{AC_1} = \overline{AB} + \overline{AD} + \overline{AA_1} = (-1,1,0) + (0,-2,0) + (1,-1,-2) = (0,-2,-2)$. Поскольку плоскости P и P_4 перпендикулярны, то вектор \overline{n}_4 ортогонален вектору \overline{n} . Таким образом, имеем два вектора $\overline{AC_1}$ и \overline{n} , ортогональные \overline{n}_4 . Поэтому $\overline{n}_4 \parallel \overline{AC_1} \times \overline{n}$. Имеем:

$$\overline{AC_1} imes \overline{n} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & -2 & -2 \\ 0 & 0 & 1 \end{vmatrix} = -2\overline{i} \Rightarrow \overline{n}_4 = (1,0,0)$$
. Запишем уравнение плоскости,

проходящей через точку A(0,3,2) перпендикулярно вектору $\overline{n}_4 = \{1,0,0\}$: $P_4: x=0$.

2. Поскольку прямые, на которых лежат ребра AB и CC_1 , скрещиваются можно воспользоваться решением аналогичной задачи 21. Получим:

$$\rho(AB, CC_1) = \frac{\left| \left(\overline{AB}, \overline{AC}, \overline{CC_1} \right) \right|}{\left| \overline{AB} \times \overline{CC_1} \right|} = \frac{\begin{vmatrix} -1 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & -1 & -2 \end{vmatrix}}{\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -1 & 1 & 0 \\ 1 & -1 & -2 \end{vmatrix}} = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Уравнение общего перпендикуляра также ищем по алгоритму, описанному в задаче 21. Найдем направляющий вектор \bar{s} общего перпендикуляра:

27

$$\overline{s} \parallel \overline{AB} \times \overline{CC_1} = \overline{AB} \times \overline{AA_1} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -1 & 1 & 0 \\ 1 & -1 & -2 \end{vmatrix} = -2\overline{i} - 2\overline{j} \Rightarrow \overline{s} = \{1, 1, 0\}.$$

Теперь запишем уравнения плоскости P_1 , содержащей прямую AB и вектор

$$ar{s}:\ P_1:\overline{AB}\subset P_1; ar{n}\subset P\Rightarrow \left(\overline{AM},\overline{AB},ar{n}
ight)=0\Rightarrow egin{bmatrix} x&y-3&z-2\\-1&1&0\\1&1&0 \end{bmatrix}=0\Rightarrow -2(z-2)=0$$
 . Получим

уравнение плоскости $P_1: z-2=0$.

Чтобы записать уравнение плоскости P_2 , содержащей прямую CC_1 и вектор \bar{s} , найдем координаты точки C:

$$\overline{AC} = \overline{AB} + \overline{AD} = \{-1,1,0\} + \{0,-2,0\} = \{-1,-1,0\}.$$

$$\overline{AC} = \overline{R_C} - \overline{R_A} \Longrightarrow \overline{R_C} = \overline{AC} + \overline{R_A} = \{-1, -1, 0\} + \{0, 3, 2\} = \{-1, 2, 2\} \Longrightarrow C(-1, 2, 2) .$$

$$P_2: \overline{CC_1} \subset P_2; \overline{n} \subset P \Rightarrow \left(\overline{CM}, \overline{CC_1}, \overline{n}\right) = 0 \Rightarrow \begin{vmatrix} x+1 & y-2 & z-2 \\ 1 & -1 & -2 \\ 1 & 1 & 0 \end{vmatrix} = 0 \Rightarrow 2(x+1) - 2(y-2) + 2(z-2) = 0$$

Получим уравнение плоскости $P_2: x-y+z+1=0$

Тогда уравнение общего перпендикуляра имеет вид:

$$L = P_1 \cap P_2 \Rightarrow L : \begin{cases} z - 2 = 0, \\ x - y + z + 1 = 0. \end{cases}$$

Перейдем к каноническим уравнениям прямой L. Направляющий вектор

$$\overline{s} = \{1, 1, 0\} . M_0(x, 0, z) \in L \Rightarrow \begin{cases} z - 2 = 0 \\ x + z + 1 = 0 \end{cases} \Rightarrow M_0(-3, 0, 2) .$$

Тогда
$$L: \frac{x+3}{1} = \frac{y}{1} = \frac{z-2}{0} \Leftrightarrow \begin{cases} x = t-3, \\ y = t, \\ z = 2. \end{cases}$$

3. Найдем точку A_2 , симметричную точке A_1 относительно плоскости основания ABCD (плоскости P) (см. задачу 24).

Проведем прямую, перпендикулярную плоскости P, проходящую через точку A_1 :

$$\frac{x-1}{0} = \frac{y-2}{0} = \frac{z}{1}$$
.

Найдем точку О – точку пересечения этой прямой и плоскости Р:

$$\begin{cases} x = 1, \\ y = 2, \\ z = t, \\ z - 2 = 0 \end{cases} \Leftrightarrow t = 2 \Rightarrow O(1, 2, 2).$$

Поскольку $\overline{A_1 A_2} = 2\overline{A_1 O} = \{0, 0, 4\} \Rightarrow A_2(1, 2, 4)$.

4. Найдем угол между прямой, на которой лежит диагональ A_1C и плоскостью основания ABCD (плоскостью P) (см. задачу 18).

$$\overline{A_1C} = \overline{AB} + \overline{AD} - \overline{AA_1} = \{-2, 0, 2\}.$$

$$\sin \varphi = \left|\cos \phi\right| = \frac{\left|\left(\overline{A_1C}, \overline{n}\right)\right|}{\left|\overline{A_1C}\right| \cdot \left|\overline{n}\right|} = \frac{2}{2\sqrt{2} \cdot 1} = \frac{\sqrt{2}}{2} \Rightarrow \varphi = \frac{\pi}{4}.$$

5. Найдем острый угол между плоскостями P и P₁ (см. задачу 7).

Из решения задачи 1 имеем:
$$\overline{n}=(0,0,1), \overline{n}_1=(1,1,0)\Rightarrow \cos\varphi=\frac{\left|\left(\overline{n},\overline{n}_1\right)\right|}{\left|\overline{n}\right|\cdot\left|\overline{n}_1\right|}=\frac{0}{\sqrt{2}}\Rightarrow\varphi=\frac{\pi}{2}$$
.

ЗАКЛЮЧЕНИЕ

В данном пособии были рассмотрены геометрические объекты, определяемые линейными уравнениями, а именно плоскости и прямые линии в пространстве. Основными методами при решения типовых задач по этой теме являются методы векторной алгебры, которые представляет собой наиболее подходящий инструмент при исследовании взаимного расположения прямых и плоскостей в пространстве. Дальнейшее изучение геометрических объектов приводит нас к понятию кривых и поверхностей второго порядка, которые определяются в декартовых координатах алгебраическими уравнениями второй степени. Мы рассмотрим их подробнее в следующей методических указаний.

СПИСОК ЛИТЕРАТУРЫ

Основная литература

- 1. Канатников А.Н., Крищенко А.П. Аналитическая геометрия. М.:Издво МГТУ им. Н.Э.Баумана, 2014. 408с.
- 2. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.:Физматлит, 2008. 312c.
- 3. Беклемишева Л.А. и др. Сборник задач по аналитической геометрии и линейной алгебре: Учебное пособие М., издательская группа URSS, 2016. 384c.

Дополнительная литература

- 4. Гусак А.А. Аналитическая геометрия и линейная алгебра: Справочное пособие к решению задач Минск: HTOOO «ТетраСистемс», 2001. 288с.
- 5. Сборник задач по математике для втузов. Ч.1. Линейная алгебра и основы математического анализа: Учебное пособие для втузов / Под ред. А.В.Ефимова, Б.П.Демидовича. М.:Наука, 1993. 478с.
- 6. Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии: Учебное пособие для ВУЗов,- М.:Государственное издательство технико-теоретической литературы, 1956. 356с.