SPACE SET

SUBSET

(1,2,3,4,5,6) (2) (1,4) (1,5,6) (2,3,5,6)

add space set elements to array

find how many

elements are equal by comparing the

subset with the space set

```
main:
        addi $s0, $zero, 1
        addi $sl, $zero, 2
        addi $s2, $zero, 3
        addi $s3, $zero, 4
        addi $s4, $zero, 5
                                                       addi $t0, $zero, 0
        addi $s5, $zero, 6
                                                       addi $t4, $zero, 1
                                                       addi $t5, $zero, 4
       addi $t0, $zero, 0
                                                       beq $t4,$s0,countl
        sw $s0, myArray($t0)
                                                       beq $t4,$s1,countl
                addi $t0, $t0, 4
                                                       beq $t4,$s2,countl
        sw $sl, myArray($t0)
                                                       beq $t4,$s3,countl
                addi $t0, $t0, 4
                                                       beq $t4,$s4,countl
        sw $s2, myArray($t0)
                                                       beq $t4,$s5,countl
                addi $t0, $t0, 4
                                                     beq $t5,$s0,countl
        sw $s3, myArray($t0)
                                                       beq $t5,$s1,countl
                addi $t0, $t0, 4
                                                       beq $t5,$s2,count1
        sw $s4, myArray($t0)
                                                       beq $t5,$s3,countl
                addi $t0, $t0, 4
                                                       beq $t5,$s4,countl
        sw $s5, myArray($t0)
                                                       beq $t5,$s5,countl
```

I made this code for all

subset

then I compared the counters
I kept and saved the most t registers
I made this code for all subset

```
peq $T1,$S1,removel
beq $t1,$s2,remove2
beq $t1,$s3,remove3
beq $t1,$s4,remove4
beq $t1,$s5,remove5
beq $t2,$s0,remove
beg $t2,$s1,removel
beq $t2,$s2,remove2
beq $t2,$s3,remove3
beq $t2,$s4,remove4
beq $t2,$s5,remove5
beq $t3,$s0,remove
beq $t3,$s1,removel
beq $t3,$s2,remove2
beq $t3,$s3,remove3
beq $t3,$s4,remove4
beq $t3,$s5,remove5
beq $t4,$s0,remove
beq $t4,$s1,removel
beq $t4,$s2,remove2
beq $t4,$s3,remove3
beq $t4,$s4,remove4
beq $t4,$s5,remove5
remove3:
        addi $s3,$zero, O
remove:
        addi $s0,$zero, 0
remove1:
        addi $sl,$zero, 0
remove2:
        addi $s2,$zero, 0
```

after selecting the largest counter,

I delete elements from the subset
selected from the space set

After all, I compared the remaining elements in the space cluster with the remaining subsets and reached the space cluster.

```
Space Set
1,2,3,4,5,6,
,RESULT
2,3,5,6
,1,4
-- program is finished running --
```

OUTPUT

\$zero	0	0x00000000
\$at	1	0x10010000
\$v0	2	0x0000000a
\$vl	3	0x00000000
\$a0	4	0x00000004
\$al	5	0x00000000
\$a2	6	0x00000002
\$a3	7	0x00000000
\$t0	8	0x00000018
\$t1	9	0x00000002
\$t2	10	0x00000003
\$t3	11	0x00000005
\$t4	12	0x00000006
\$t5	13	0x00000003
\$t6	14	0x00000006
\$t7	15	0x00000003
\$80	16	0x00000001
\$sl	17	0x00000004
\$s2	18	0x00000000
\$83	19	0x00000000
\$84	20	0x00000000
\$85	21	0x00000000
\$86	22	0x00000001
\$87	23	0x00000004
\$t8	24	0x00000004
\$t9	25	0x00000000
\$k0	26	0x00000002
\$kl	27	0x00000006
\$gp	28	0x10008000
\$sp	29	0x7fffeffc
\$fp	30	0x00000000
\$ra	31	0x00000000
pc		0x004003bc
hi		0x00000000
10		0x00000000

\$t1,\$t2,\$t3,\$t4 first subset \$s0,s1 space set after deletion \$s6,\$s7 second subset

Refik Orkun Arslan