Midterm-Project in Dynamical Systems

By: Nadav Porat

Date: 15/12/20

Direction

My general direction is analyzing the parameters that affect the plateau-firing:

Dynamic 1 – The plateau

In order to analyze the plateau-firing, first we need to find what causes the plateau. In order to do that, let us look at the dynamics of V:

$$V' = -\frac{I_{ca} + I_{k} + I_{kca} + I_{bk}}{C_{m}}$$

$$I_{ca} = G_{ca}m_{\infty}(V)(V - V_{ca}) , I_{k} = G_{k}n(V - V_{k})$$

$$I_{kca} = G_{kca}s_{\infty}(c)(V - V_{k}), I_{bk} = G_{bk}b_{\infty}(V - V_{k})$$

The plateau is a state which satisfays $V' \to 0$, $V \approx -25$ *. Considering appropriate $(V - V_i)$, m_{∞} , $b_{\infty} \to 1$, and taking $n \approx 0.15$, $c \approx 0.32$ (from the n - c PP) we get during the plateau:

$$G_{ca} = \frac{2}{3}(0.15G_k + 0.3524G_{kca} + G_{BK})$$

Dynamic 1 – The plateau

Using the last equation and adjusting the G_i 's accordingly, we find:

The Biggest Plateau!

Dynamic $2 - G_k$

 G_k has a big impact on the overall dynamics, we can see this from its bifurcation:

Notice there is a (backwards) supercritical Hopf bifurcation at $G_k \approx 0.9$

Dynamic $2 - G_k$

Additionally, we see in the diagram that the unstable limit cycle (that indicates plateau-firing) becomes stable (indicates stable firing) at $G_k \approx 4.3$:

$$G_k = 4.2$$

 $G_k = 4.35$

Different values of C_m give different qualitative behaviors even though it does not change the nullclines:

$$C_m = 30$$

$$C_m = 34$$

It seems that there is a new stable limit cycle that is created at $C_m = 34$.

We can see exactly this limit cycle creation in the C_m bifurcation diagram:

That's another supercritical Hopf bifurcation!

It is interesting to look at the frequency plot that matches the previous bifurcation diagram:

And to confirm it:

 $C_m = 32$

 $C_m = 2$