2.4 The Monotone Convergence Theorem and a First Look at Infinite Series

Definition 2.4.1. A sequence (a_n) is increasing if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$ and decreasing if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is monotone if it is either increasing or decreasing.

THEOREM 2.4.2 (Monotone Convergence Theorem). If a sequence is monotone and bounded, then it convergences

Proof. Let (a_n) be monotone and bounded. Let's assume (a_n) is increasing (the decreasing case is handled similarly), and consider the *set* of points $\{a_n : n \in \mathbb{N}\}$. Since the series is bounded, this set it also bounded, so using the Axiom of Completeness, we can let

$$s = \sup\{a_n : n \in \mathbf{N}\}$$

It seems reasonable for $\lim(a_n) = s$

Let $\epsilon > 0$ be arbitrary. Since s is the least upper bound, $s - \epsilon$ is not an upper bound, so there exists a point in the sequence a_N such that $s - \epsilon < a_N$. Now, since (a_n) is increasing, $a_N \leq a_n$ for all $n \geq N$. Hence,

$$s - \epsilon < a_N \le a_n \le s \le s + \epsilon$$

which implies $|a_n - s| < \epsilon$, as desired.

The Monotone Convergence Theorem is useful for infinite series, since it asserts convergences without any mention of the actual limit. **Definition 2.4.3.** Let (b_n) be a sequence. An *infinite series* is a formal expression of the form

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + b_3 + \dots$$

We define the corresponding sequence of partial sums (s_m) by

$$s_m = \sum_{n=1}^m b_n = b_1 + b_2 + b_3 + \dots + b_m$$

and say the the series $\sum_{n=1}^{\infty} b_n$ converges to B if the sequence (s_m) converges to B. In this case, we write $\sum_{n=1}^{\infty} b_n = B$.

THEOREM 2.4.7 (Cauchy Condensation Test). Suppose (b_n) is decreasing and satisfies $b_n \geq 0$ for all $n \in \mathbb{N}$. Then, the series $\sum_{n=1}^{\infty} b_n$ converges if and only if the series

$$\sum_{n=0}^{\infty} 2^n b_{2^n}$$

converges.

Proof. First, assume that $\sum_{n=0}^{\infty} 2^n b_{2^n}$ converges. Then the partial sums

$$t_k = b_1 + 2b_2 + 4b_4 + \dots + 2^k b_{2k}$$

are bounded. There exists an M > 0 such that $t_k \leq M$ for all $k \in \mathbb{N}$. Since $b_n \geq -$, we now that the partial sums are increasing, so we only need to show that

$$s_m = b_1 + b_2 + \dots + b_m$$

is bounded.

Fix m and let k be large enough to ensure $m \leq 2^{k+1}-1$. Then, $s_m \leq s_{2^{k+1}-1}$ and

$$s_{2^{k+1}-1} = b_1 + (b_2 + b_3) + (b_4 + b_5 + b_6 + b_7) + \dots + (b_{2^k} + \dots + b_{2^{k+1}-1})$$

$$\leq b_1 + (b_2 + b_2) + (b_4 + b_4 + b_4 + b_4) + \dots + (b_{2^k} + \dots + b_{2^k}) = b_1 + 2b_2 + 4b_4 + \dots + 2^k b_{2^k} = t_k$$

Thus, $s_m \leq t_k \leq M$, and the sequence (s_m) is bounded. By the Monotone Convergence Theorem, we can conclude that $\sum_{n=1}^{\infty} b_n$ converges.

Now, if $\sum_{n=0}^{\infty} 2^n b_{2^n}$ diverges. Fix m and let k be big enough to ensure $m \leq 2^k$. Then,

$$s_{2^k} = b_1 + b_2 + (b_3 + b_4) + (b_5 + b_6 + b_7 + b_8) + \dots + (b_{2^{k-1}+1} + \dots + b_{2^k}) \geq b_1 + b_2 + (b_4 + b_4) + (b_8 + b_8 + b_8) + \dots + (b_{2^k} + b_8) + \dots + (b_{$$

So, $s_m > (b_1 + t_k)/2$, which diverges since t_k diverges so s_m diverges.

Corollary 2.4.7 The series $\sum_{n=1}^{\infty} 1/n^p$ converges if and only if p > 1