3. (a)
$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

 $[c,d] = \{x \in \mathbb{R} \mid c \le x \le d\}$

- (b) Since $x \in [a, b]$, using the set build form above it can be converted to $a \le x \le b$. Then, simplify this statement into $x \le b$. Using the premise of $b \le d$, it is known that $x \le b \le d$. Once again, this can be simplified to $x \le d$, resulting in the desired statement.
- (c) Since $b \in [a, b]$, from the premise that $[a, b] \subseteq [c, d]$ and the fact that any element of a subset must also exist in the superset, it is known that $b \in [c, d]$. From the set build form above, this implies that $c \le b \le d$. This can be simplified to show that $b \le d$, demonstrating the desired statement.

- (e) No, for example $3 \in [3,5]$, but it's also the case that $3 \notin [4,8]$. So by definition of a subset, there is an element that exists in [3,5] that doesn't exist in [4,8], so $[3,5] \not\subseteq [4,8]$.
- (f) In this case $b \leq d$, but $a \nleq c$.

- (h) Yes, as can be seen in the example above every element of [4,7] exists in [2,9].
- (i) Since $[4,7] \subseteq [2,9]$, both statements should be true based on the proof above.