

D. Szélturbinák

Feladat	Wind Turbines
Időkorlát	4 másodpec
Memóriakorlát	1 gigabyte

Annát azzal a feladattal bízták meg, hogy tervezze meg egy új, Északi-tengeren épülő tengeri szélerőműpark összeköttetéseit, amely N turbinából áll $(0,1,\ldots,N-1$ sorszámozva). Célja, hogy minden turbina a lehető legolcsóbban csatlakozzon a parthoz.

Annának van egy listája M darab lehetséges csatlakozásról, amelyek mindegyike két szélturbinát köt össze és meghatározott költséggel jár.

Ezen kívül a közeli város beleegyezett, hogy fedezi a parthoz csatlakozás költségeit egy, egymást követő $[\ell,r]$ intervallumban levő indexű turbinasornak. Vagyis minden t turbina ebben a tartományban ($\ell \leq t \leq r$) közvetlenül és ingyenesen csatlakozik a parthoz.

Ha minden lehetséges csatlakozás kiépül, akkor bármelyik szélturbina bármely másikból elérhető. Ez azt jelenti, hogy amint az egyik szélturbinát csatlakoztatják a parthoz, ki lehet úgy építeni a teljes csatlakozást, hogy az összes turbina által termelt energiát át lehet vinni a partra. Természetesen minél több a part menti csatlakozás, annál olcsóbb lehet az összköltség. Megjegyzés: egyedül a közvetlen csatlakozás a parthoz ingyenes.

Anna feladata, hogy kiválasszon egy részhalmazt a lehetséges csatlakozások közül úgy, hogy minimalizálja a költségek összegét, miközben biztosítja, hogy minden szélturbina elérje a partot (lehetséges, hogy csak más szélturbinákon keresztül).

A megalapozott döntés meghozatalához a város Q lehetőséget kínál Annának az $[\ell,r]$ intervallumon. A város megkéri Annát, hogy számítsa ki a minimális költséget ezen forgatókönyvek mindegyikére.

Bemenet

A bemenet első sora három egész számot tartalmaz: N , M és Q.

A következő M sor mindegyike három egész számot tartalmaz: u_i , v_i és c_i . Az i. sorban egy lehetséges csatlakozást jelent az u_i és a v_i szélturbinák között, amelynek költsége c_i . Ezek a

kapcsolatok irányítatlanok és két különböző turbinát kötnek össze. Nincs két kapcsolat, amely ugyanazt a turbinapárt kötné össze.

Garantált, hogy ha minden lehetséges kapcsolat kiépül, bármelyik szélturbina elérhető bármely másikból (közvetlenül vagy közvetve).

A következő Q sor mindegyike pontosan két egész számot tartalmaz: ℓ_i és r_i , ahol a part az $\ell_i, \ell_i+1,\ldots,r_i$ szélturbinákhoz közvetlenül csatlakozik.

Megjegyzés: $r_i=\ell_i$ is előfordulhat, azaz amikor a part közvetlenül csak egyetlen szélturbinához csatlakozik .

Kimenet

A kimenet Q sorának mindegyike pontosan egy egész számot tartalmaz, amely a Q lehetőségben az összes turbina minimális összekapcsolási költsége, amellyel az áramot a partra is tudják vezetni.

Korlátok és pontozás

- $2 \le N \le 100000$.
- $1 \le M \le 100\,000$.
- $1 \le Q \le 200\,000$.
- $0 \le u_i, v_i \le N-1$.
- $u_i
 eq v_i$, és minden szélturbina-pár között legfeljebb egyetlen közvetlen kapcsolat van.
- $1 \le c_i \le 1\,000\,000\,000$.
- $0 \le \ell_i \le r_i \le N 1$.

A megoldásodat tesztcsoportokra teszteljük, minden tesztcsoport adott pontot ér. Minden tesztcsoport több tesztesetet tartalmaz. Egy tesztcsoport pontjainak megszerzéséhez az adott tesztcsoport összes tesztesetére helyesen kell futnia a megoldásodnak.

Csoport	Pontozás	Korlátok
1	8	$M=N-1$ és az i . $(u_i\ v_i)$ élre $u_i=i$ és $v_i=i+1$, azaz ha minden öszeköttetés kiépítésre kerül, a turbinák a $0\leftrightarrow 1\leftrightarrow 2\leftrightarrow\ldots\leftrightarrow N-1$ útvonalat hozzák létre
2	11	$N,M,Q \leq 2000$ és $\sum (r_i - \ell_i + 1) \leq 2000$
3	13	$r_i = \ell_i + 1$ minden i -re
4	17	$1 \leq c_i \leq 2$ minden i -re, azaz minden összeköttetés költsége vagy 1 vagy 2
5	16	$\sum (r_i-\ell_i+1) \leq 400000$
6	14	$\ell_i=0$ minden i -re

Csoport	Pontozás	Korlátok
7	21	Nincsenek további korlátok

Példák

Az első példában az alábbi gráf írja le az összes lehetséges csatlakozást.

Ezt követően három ajánlatot kapunk.

Az első esetén az 1. turbina az egyetlen, amelyik csatlakozik a parthoz. Ekkor a 0. és a 2. turbina közötti kapcsolatot kivéve minden kapcsolatot meg kell tartanunk, így a teljes költség 2+3+6+3=14 lesz.

A következő esetben a 3. és 4. turbinák közvetlenül csatlakoznak a parthoz. Ebben az esetben megtartjuk a (1,0), az (1,2) és a (2,4) csatlakozásokat, melynek összköltsége 8.

A harmadik esetben a 0. turbinát kivéve az összes többi a parthoz van csatlakoztatva. Ekkor csak ezt az egyet kell egy másik turbinához csatlakoztatnunk, ami a (0,1) kapcsolat. Ezeket a megoldásokat az alábbi ábrák szemléltetik:

Az első és a hatodik példa a 2., az 5. és a 7. tesztcsoportok feltételeinek felel meg.

A második és a hetedik példa az 1., a 2., az 5. és a 7. tesztcsoportok feltételeit elégíti ki.

A harmadik példa a 2., a 3., az 5. és a 7. tesztcsoportok feltételeit elégíti ki.

A negyedik példa a 2., a 4., az 5. és a 7. tesztcsoportok feltételeinek felel meg.

Az ötödik példa a 2., az 5., a 6. és a 7. tesztcsoportok feltételeit elégíti ki.

Bemenet	Kimenet
5 5 3 1 0 2 0 2 5 1 2 3 3 0 6 2 4 3 1 1 3 4 1 4	14 8 2
5 4 4 0 1 3 1 2 1 2 3 5 3 4 2 0 4 2 3 2 4 2 2	0 6 4 11
7 7 4 6 4 3 1 4 5 3 2 4 0 3 2 5 2 3 4 0 1 1 3 1 0 1 2 3 4 5 5 6	12 10 10 10

Bemenet	Kimenet
7 7 3	5
2 6 1	4
1 0 1	6
0 5 1	
1 2 2	
3 4 1	
5 3 1	
5 4 1	
5 6	
1 3	
3 4	
7 7 4	7
6 4 3	0
1 4 5	12
3 2 4	6
0 3 2	
5 2 3	
4 0 1	
1 3 1	
0 3	
0 6	
0 1	
0 4	

Bemenet	Kimenet
9 13 4 0 1 1 2 0 3 1 2 4 5 4 4 2 5 6 3 1 7 8 1 4 6 3 9 0 3 5 3 5 3 4 3 2	1 14 22 24
6 2 4 7 8 5 1 8 4 7 6 7 1 2	
6 5 1 0 1 1000000000 1 2 1000000000 2 3 1000000000 3 4 1000000000 4 5 1000000000 1 1	500000000