Announcements for Thursday, 14NOV2024

- Replacement Grade Policy
 - See Canvas announcement from Nov 14 for details
- Exam 2 is now available for reviewing through Gradescope
- Requests for Exam Question Regrades Now Open
 - Wednesday, 13NOV2024, 12:01 AM (EST) Friday, 15NOV2024, 11:59 PM (EST)
 - MUST be submitted through *Gradescope* (do not email instructors)
 - see Canvas announcement from Nov 12 for regrading policies and procedure
 - after the deadline, Exam 2 grades will not be changed

ANY GENERAL QUESTIONS? Feel free to see me after class!

• A 1.40-L gaseous system absorbs 75 J of heat and expands its volume to 2.00 L against an external pressure of 1.02 atm. What is the change in internal energy for this process? 1 L·atm = 101.3 J

$$\Delta V = V_{final} - V_{initial} = 2.00 L - 1.40 L = +0.60 L$$

$$w = -P_{ext}\Delta V = -(1.02 \text{ atm})(0.60 \text{ L}) = -0.612 \text{ L} \cdot \text{atm} \times \frac{101.3 \text{ J}}{1 \text{ L} \cdot \text{atm}} = -62.0 \text{ J}$$

absorbs 75 J of heat:
$$q = +75 J$$
 expands its volume: $w = -62 J$ $\Delta E = q + w = (+75 J) + (-62 J) = +13 J$

• When **1.550 g** of liquid hexane (C_6H_{14}) undergoes combustion in a bomb calorimeter, the temperature of the calorimeter rises from 25.87 °C to 38.13 °C. Find ΔE_{rxn} for the combustion of **1** *mole* of hexane in kJ. The heat capacity of the bomb calorimeter is 5.73 kJ/°C.

2 frames of reference: the reaction (rxn) and the calorimeter, and we're monitoring energy transfer between them

bomb calorimeter = constant-volume calorimetry, so $\Delta V = 0$ and no work being done by the reaction ($w_{rxn} = 0$) $\Delta E_{rxn} = q_{rxn} + w \rightarrow \Delta E_{rxn} = q_{rxn}$ (change in internal energy due solely to transfer of heat of the reaction (q_{rxn}))

 ΔT of the calorimeter = 38.13 – 25.87 = +12.26 °C; the calorimeter is absorbing energy from the reaction and $q_{calorimeter} = -q_{rxn}$

$$q_{calorimeter} = (C_{calorimeter})(\Delta T_{calorimeter}) = (5.73 \text{ kJ/} ^{\circ}\text{C})(12.26 ^{\circ}\text{C}) = 70.2 \text{ kJ}$$

 $q_{rxn} = -q_{calorimeter} = -70.2 \text{ kJ} = \Delta E_{rxn}$ for the combustion of 1.550 g hexane

 ΔE for the combustion of **1** mole hexane:

$$\frac{-70.2 \text{ kJ}}{1.550 \text{ g C}_6 \text{H}_{14}} \times \frac{86.17 \text{ g C}_6 \text{H}_{14}}{1 \text{ mol C}_6 \text{H}_{14}} = -3.90 \times 10^3 \text{ kJ/mol C}_6 \text{H}_{14}$$

Enthalpy (H)

• the enthalpy of a system is defined as the sum of a system's internal energy (E) and the product of its pressure and volume (PV)

$$H = E + PV$$
$$\Delta H = \Delta E + P\Delta V$$

- essentially it's the heat of a reaction under constant pressure (q_P)
 - for this course, always assume reactions are at constant pressure unless explicitly stated
 - $q_P = \Delta H_{rxn}$
- absolute enthalpy values cannot be determined
 - $\Delta H_{rxn} = H_{products} H_{reactants}$ but only ΔH can be measured directly

The Signs of ΔH

- exothermic reaction = heat released by reaction = (-) ΔH
 - heat released into the surroundings
 - temperature of the surroundings increases and "it feels hot"

- endothermic reaction = heat absorbed by reaction = (+) ΔH
 - heat absorbed from the surroundings
 - temperature of the surroundings decreases and "it feels cold"

• $\Delta H_{\rm rxn}$ can be measured by doing calorimetry under constant pressure

Constant-Pressure Calorimetry

- an experimental technique that allows the direct measurement of ΔH for aqueous chemical reactions (ΔH_{rxn})
 - similar in concept to constant-volume calorimetry
 - reactions are run under constant pressure so that $q_{rxn} = \Delta H_{rxn}$

 as with all calorimetry, temperature of the surroundings (the calorimeter and water) are measured to calculate q_{solution}

•
$$-q_{solution} = q_{rxn} = \Delta H_{rxn}$$

The Coffee-Cup Calorimeter

© 2018 Pearson Education, Inc.

Summary of Calorimetry

experimental conditions under which the reaction is taking place	property of reaction being directly measured by calorimeter	apparatus used to perform heat measurements	property of reaction being indirectly established
constant volume	q _v (heat of reaction under constant volume)	bomb calorimeter	ΔE_rxn
constant pressure	q _P (heat of reaction under constant pressure)	coffee-cup calorimeter	ΔH_{rxn}

Stoichiometry and ΔH

- the ΔH of a reaction can be used as a conversion factor to convert amount product/reactant \leftrightarrow amount of energy
 - all the previous "rules" and procedures of stoichiometry still apply

• the ΔH of a reaction is for the amounts of reactants/products specified by the balanced reaction coefficients

for example: $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g) \Delta H_{rxn} = -906 \text{ kJ}$

- 906 kJ released for every 4 moles of NH₃ consumed
- 906 kJ released for every 5 moles of O₂ consumed
- 906 kJ released for every 4 moles of NO produced
- 906 kJ released for every 6 moles of H₂O produced

Stoichiometry and ΔH (continued)

$$(4 \text{ NH}_3(g))$$
+ 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH_{rxn} = -906 kJ

What mass of NH_3 (MM = 17.03 g/mol) needs to be reacted with excess oxygen to produce 255 kJ?

$$-255 \text{ kJ} \times \frac{4 \text{ mol NH}_3}{-906 \text{ kJ}} \times \frac{17.03 \text{ g NH}_3}{1 \text{ mol NH}_3} = 19.2 \text{ g NH}_3$$

• The enthalpy of combustion for 1 mole of propane (C_3H_8) is -2044 kJ. What is the minimum mass of propane needed to react in excess oxygen to generate enough heat to raise the temperature of 10.0 moles of silver by 25.0 °C? The specific heat of silver is 0.235 J/g·°C.

250.0 mL of 1.00 M HCl(aq) was added to 250.0 mL of 1.00 M NaOH(aq) in a coffee-cup calorimeter. Both solutions initially are at 20.00 °C. Upon mixing, the temperature of the mixture increases to 26.84 °C. Using this data, calculate the enthalpy change for the following reaction:

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(\ell)$$
 $\Delta H_{rxn} = ?$

Assume that the density and heat capacity of the mixture are 1.00 g/mL and 4.18 J/g·°C, respectively.

Some questions to consider:

Why is the temperature of the mixture increasing?

Where is the heat that warms the mixture coming from?

What can we deduce about the sign of ΔH_{rxn} ?

How does ΔH_{rxn} relate to $q_{solution}$?

What amounts of HCl and NaOH are actually reacting?

What amounts of HCl and NaOH are being depicted in the reaction?

Methods to Determine ΔH_{rxn}

directly by doing calorimetry at constant pressure

may not be practical to do especially if side-reactions are possible

indirectly by doing calculations

- ΔH is a **state function** and the path to get from reactants to products doesn't matter
- 1. Hess's law
- 2. using Bond Energies

$$\Delta H_{\rm rxn} = \sum (\Delta H' \text{s bonds broken}) + \sum (\Delta H' \text{s bonds formed})$$

3. using Standard Enthalpies of Formation

$$\Delta H_{\rm rxn}^{\rm o} = \sum n_{\rm p} \Delta H_{\rm f}^{\rm o}$$
 (products) $-\sum n_{\rm r} \Delta H_{\rm f}^{\rm o}$ (reactants)

Hess's Law

- a computational approach to determine enthalpy changes for reactions that are not easily studied by calorimetry
- based on the fact that the change in enthalpy for a stepwise process is the sum of the enthalpy changes of each step
 - the number of steps is unimportant
 - what ultimately matters is that the individual steps "add up" to the reaction you are concerned with (i.e., the reaction of interest)
- the purpose of Hess's law is to manipulate "helper reactions" (and their associated ΔH values) such that when you "add" the helper reactions (and their ΔH s) up, you are left with a reaction of interest (and its ΔH).

What is
$$\Delta H$$
 for 2C(s) + 2 O₂(g) \rightarrow 2 CO₂(g)?

for
$$2 C(s) + O_2(g) \rightarrow 2 CO(g)$$
 $\Delta H = -221.0 \text{ kJ}$
for $2 C(g) + O_2(g) \rightarrow 2 CO_2(g)$ $\Delta H = -566.0 \text{ kJ}$
 $2 C(s) + 2 O_2(g) \rightarrow 2 CO_2(g)$ $\Delta H = (-221.0) + (-566.0) = -787.0 \text{ kJ}$

Hess's Law – Manipulating the Helpers

helper reactions can be manipulated by:

- 1. changing the direction of the reaction
 - this changes the sign of ΔH_{rxn}

2 C(s) + O₂(g)
$$\rightarrow$$
 2 CO(g) $\Delta H = -221.0 \text{ kJ}$
2 CO(g) \rightarrow 2 C(s) + O₂(g) $\Delta H = +221.0 \text{ kJ}$

- 2. multiplying the coefficients of the reaction by a certain factor
 - since enthalpy is an extensive property, ΔH_{rxn} gets multiplied by the same factor

$$\frac{1}{2} \times (2 \text{ C(s)} + \text{O}_2(g) \rightarrow 2 \text{ CO(g)})$$
 $\frac{1}{2} \times (\Delta H = -221.0 \text{ kJ})$
C(s) + $\frac{1}{2} \text{ O}_2(g) \rightarrow \text{CO(g)}$ $\Delta H = -110.5 \text{ kJ}$

when adding up the helper reactions, like species on opposite sides of the arrow cancel, and the reaction of interest should be left over

• adding up the adjusted ΔH values gives the ΔH of the reaction of interest

Hess's Law – Example

Calculate the enthalpy change for the following reaction

Reaction of Interest:
$$BrCl(g) \rightarrow Br(g) + Cl(g)$$
 $\Delta H = +219.0 \text{ kJ}$

given the following data

a)
$$Br_2(\ell) \rightarrow Br_2(g)$$
 $\Delta H = +30.90 \text{ kJ}$

b)
$$Br_2(g) \to 2 Br(g)$$
 $\Delta H = +192.9 \text{ kJ}$

c)
$$Cl_2(g) \rightarrow 2 Cl(g)$$
 $\Delta H = +243.4 \text{ kJ}$

d)
$$Br_2(\ell) + Cl_2(g) \rightarrow 2 BrCl(g)$$
 $\Delta H = +29.2 kJ$

reverse d)
$$\times \frac{1}{2}$$
 BrCl(g) $\rightarrow \frac{1}{2}$ Br₂(e) + $\frac{1}{2}$ El₂(g)

b)
$$\times \frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

c)
$$\times \frac{1}{2}$$
 $1\frac{1}{2}$ Cl₂(g) \rightarrow Cl(g)

a)
$$\times \frac{1}{2}$$
 $\frac{1}{2}(\ell) \rightarrow \frac{1}{2} \operatorname{Br}_{2}(g)$

$$\Delta H = \frac{-29.2}{2} = -14.6 \text{ kJ}$$

$$\Delta H = \frac{+192.9}{2} = +96.45 \text{ kJ}$$

$$\Delta H = \frac{+243.4}{2} = +121.7 \text{ kJ}$$

$$\Delta H = \frac{+30.90}{2} = +15.45 \text{ kJ}$$

+219.0 kJ

 $BrCl(g) \rightarrow Br(g) + Cl(g)$ our reaction of interest!

Calculate the enthalpy change for the following reaction

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$
 $\Delta H = ?$

given the following data

a)
$$C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(\ell)$$
 $\Delta H = -1410.9 \text{ kJ}$

b)
$$2 C_2H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2O(\ell)$$
 $\Delta H = -3119.4 \text{ kJ}$

c)
$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(\ell)$$
 $\Delta H = -571.6 \text{ kJ}$