ЛАБОРАТОРНАЯ РАБОТА № 2 ЦЕПИ ОДНОФАЗНОГО СИНУСОИДАЛЬНОГО ТОКА

1. Синусоидальный ток в сопротивлении

1.1. Соберите схему. Установите u и R в соответствии с вариантом задания.

1.2. Измерьте с помощью приборов ток и напряжение на сопротивлении. Измерьте с помощью маркеров Oscilloscope (AC) фазовый сдвиг между током и напряжением на сопротивлении (Oscilloscope измеряет задержку одного напряжения относительно другого в секундах, а фазовый сдвиг измеряется в градусах). Результаты всех измерений занесите в таблицу.

u, B	I, A	$U_{\mathrm{R}},\mathbf{B}$	ф, град

1.3. По данным таблицы постройте векторную диаграмму тока и напряжения. Сделайте выводы.

2. Синусоидальный ток в индуктивности

2.1. Соберите схему. Установите u, R и L в соответствии с вариантом задания.

2.2. Измерьте с помощью приборов ток, напряжение на сопротивлении и напряжение на индуктивности. Измерьте с помощью маркеров **Oscilloscope** (AC) фазовый сдвиг между током и напряжением на индуктивности. Результаты всех измерений занесите в таблицу.

u R I A II_D R II_I R (0 FD9)

4. Резонанс напряжений

4.1. Соберите схему для измерения резонанса напряжений. Установите u, R_{κ} , и L в соответствии с вариантом задания.

4.2. Рассчитайте C_0 для режима резонанса напряжений используя формулу

$$\omega_0 = \frac{1}{\sqrt{LC_0}}$$
,

где $\omega_0 = 2\pi f$ – резонансная частота; f = 50 Гц; L – соответствует вариану задания.

- 4.3. Установите рассчитанную емкость C_0 в схему. Измерьте с помощью приборов ток, напряжение на индуктивности и напряжение на емкости. Измерьте с помощью маркеров **Oscilloscope** (AC) фазовый сдвиг между током и входным напряжением.
- 4.4. Повторите пункт 4.3. для $C = 2C_0$ и для $C = C_0/2$. Результаты всех измерений занесите в таблицу.

	u, B	I, A	$U_{\rm L},{f B}$	$U_{\rm C},{ m B}$	ф, град
$C = C_0$					
$C = 2C_0$					
$C = C_0 / 2$					

4.5. По данным таблицы постройте векторные диаграммы тока и напряжений. Сделайте выводы.

Варианты заданий

Вариант	<i>u</i> , B	R, Om	<i>R</i> _к , Ом	<i>L</i> , мГн	<i>С</i> , мкФ
1	20	1	1	10	2000
2	36	9	1,8	18	1600
3	52	17	2,6	26	1280
4	68	25	3,4	34	1024
5	84	33	4,2	42	819
6	100	41	5	50	655
7	116	49	5,8	58	524
8	132	57	6,6	66	419
9	148	65	7,4	74	336
10	164	73	8,2	82	268
11	21	2	1,1	11	1990
12	37	10	1,9	19	1590
13	53	18	2,7	27	1270
14	69	26	3,5	35	1014
15	85	34	4,3	43	809
16	101	42	5,1	51	645
17	117	50	5,9	59	514
18	133	58	6,7	67	409
19	149	66	7,5	75	326
20	165	74	8,3	83	258
21	22	3	1,2	12	1980
22	38	11	2	20	1580
23	54	19	2,8	28	1260
24	70	27	3,6	36	1004
25	86	35	4,4	44	799
26	102	43	5,2	52	635
27	118	51	6	60	504
28	134	59	6,8	68	399
29	150	67	7,6	76	316
30	166	75	8,4	84	248
31	23	4	1,3	13	1970
32	39	12	2,1	21	1570
33	55	20	2,9	29	1250
34	71	28	3,7	37	994
35	87	36	4,5	45	789
36	103	44	5,3	53	625
37	119	52	6,1	61	494
38	135	60	6,9	69	389
39	151	68	7,7	77	306
40	167	76	8,5	85	238
41	24	5	1,4	14	1960
42	40	13	2,2	22	1560
			1		1