1. (a) Prove that the series

$$\sum_{n=2}^{\infty} \frac{1}{(\log_2 n)^{p(\log_2 n)}}$$

is convergent for all p > 1. Here $\log_2 x$ denotes the logarithm base 2 of x. You may assume that $\log_2 n$ is increasing in n.

Proof. We attempt to satisfy the criterion in Rudin Theorem 3.27. Rewrite the series;

$$\sum_{k=1}^{\infty} \frac{2^k}{(\log_2 2^k)^{p \log_2 2^k}} = \sum_{k=1}^{\infty} \frac{2^k}{k^{pk}}$$
$$= \sum_{k=1}^{\infty} \left(\frac{2}{k^p}\right)^k.$$

(b) For a > 0 find the sum of the series

$$\sum_{k=2}^{\infty} \left(\frac{a}{a+1} \right)^k \quad \text{(show your work)}$$

Solution: We notice a geometric series; since a > 0, we can say a < a + 1 and $\frac{a}{a+1} < 1$. Then the sum is given by:

$$\left(\frac{a}{a+1}\right)^2 \frac{1}{1 - \frac{a}{a+1}} = \left(\frac{a}{a+1}\right)^2 \frac{1}{\frac{a+1}{a+1} - \frac{a}{a+1}}$$
$$= \left(\frac{a}{a+1}\right)^2 \frac{1}{\frac{1}{a+1}}$$
$$= \left(\frac{a}{a+1}\right)^2 (a+1)$$
$$= \frac{a^2}{a+1}.$$

2. (a) Prove that $f(x) = \sin(x^2)$ is not uniformly continuous in $[0, \infty)$.

f is uniformly continuous on $E \subset X$ if and only if $\forall \varepsilon > 0$, $\exists \delta > 0$, $d(x,y) < \delta \implies d(f(x),f(y)) < \varepsilon$

f is NOT uniformly continuous on $E \subset X$ if and only if $\exists \varepsilon > 0$, $\forall \delta > 0$, we can choose x, y so that $d(x, y) < \delta$ and $d(f(x), f(y)) \ge \varepsilon = 1$

Proof. Choose $\varepsilon=2$, and let $\delta>0$. Then we must choose $|x-y|<\delta$ but $|\sin x^2-\sin y^2|=2$ We choose $x< y-\delta$, say $x^2=n\pi+\frac{\pi}{2}$ for $n\in\mathbb{N}$ so $x=\sqrt{n\pi+\frac{\pi}{2}}$ (taking the positive root since we care only about the positive reals. Then we want $y^2-x^2=\pi$ so that the difference $\sin y^2-\sin x^2=2$. So choose $y^2=(n+1)\pi+\frac{\pi}{2}$, and then $y=\sqrt{(n+1)\pi+\frac{\pi}{2}}$.

We now have guaranteed that |f(x) - f(y)| = 2, and we must choose n so that $|x - y| < \delta$ for any given δ . Rewrite with the assumptions y > x, and with our expressions for x, y above, so we may find an expression for n in terms of δ .

$$y - x = \sqrt{n\pi}$$

(b) Show an example of a continuous function in (0,1) which is not uniformly continuous (no proof necessary).

Solution: $f(x) = \sin(\frac{1}{x^2})$ is continuous in (0,1) however it is not uniformly continuous (as shown in class)