Формальная верификация криптографических протоколов с использованием Proverif

Винарский Евгений

Институт системного программирования

28 июля 2021

Слабые места защиты информации

- Атаки на архитектуру (Криптографическая система не может быть надежнее использованных в ней отдельных алгоритмов шифрования)
- Атаки на конкретные реализации
 - Переполнение буферов
 - Не стёртая до конца секретная информация
- Атаки на сетевое оборудование
- Атаки на пользователей
- Атаки с использованием побочных каналов
- . . .

Для того чтобы преодолеть систему защиты, достаточно взломать любой из ее компонентов

Криптографические примитивы

- Алгоритмы симметричного шифрования
- Алгоритмы ассимметричной криптографии (выработка общих сессионных ключей и т.д.)
- Датчик псевдослучайных чисел
- Алгоритмы хэширования

В этом блоке считаем, что все криптографические примитивы не могут быть скомпрометированы раньше, чем перестанут использоваться

Какие достоинства и недостатки асимметричной криптографии?

Модель противника

- Модель атаки Возможности противника по взаимодействию с системой
- Ресурсы противника Предположения о вычислительных и информационных ресурсах противника
- Угроза Задача противника по нарушению свойств безопасности

Уязвимости криптосистемы возникают, если неправильно выбраны

- модель атаки
- угроза
- предположения о ресурсах

Модель противника (2)

- Пассивный противник (противник может читать зашифрованные пересылаемые данные в открытом канале)
- Dolev-Yao (Активный) Противник может:
 - читать сообщения в канале
 - модифицировать сообщения в канале
 - удалять сообщения из канала
- Противник, учитывающий временные задержки (может определить, какая именно проверка не прошла, ...)
- . . .

Рассуждать о стойкости криптосистемы можно только в терминах модели противника

Протокол (алгоритм) Диффи-Хеллмана

Схема протокола Диффи-Хеллмана

Модель противника

Протокол Диффи-Хелммана при активном противнике

- Е пассивный противник, слушающий незащищённый канал
- ullet известно значение g,N и y_A,y_B

Угроза: Противник E узнал выработанный общий ключ $K=g^{k_Ak_B} \pmod{N}$

Модель противника

Протокол Диффи-Хелммана при активном противнике

- Е пассивный противник, слушающий незащищённый канал
- ullet известно значение g,N и y_A,y_B

Угроза: Противник E узнал выработанный общий ключ $K = g^{k_A k_B} \pmod{N}$ Пусть E скомпрометировал $K = g^{k_A k_B} \pmod{N}$, тогда:

- vзнал *k*⊿
 - решил задачу дискретного логарифмирования, т.е. вычислил k_A из уравненя $y_A = g^{k_A} \pmod{N}$
- узнал k_B
 - решил задачу дискретного логарифмирования, т.е. вычислил k_B из уравненя $y_B = g^{k_B} \pmod{N}$
- узнал k_A * k_B

Протокол Диффи-Хэллмана стойкий по отношении к пассивному противнику

Свойства безопасности протоколов выработки общих ключей обмена

- Аутентификация
 - Ложная аутентификация
 - Unknown key share (Неизвестный общий ключ)
- Установление одинаковых ключей
- Секретность ключей обмена
- Уникальность установленных ключей обмена
- Forward secrecy (Прямая секретность)
- Backward secrecy (Обратная секретность)

Протокол Нидхема-Шрёдера

Протокол выработки общего сессионного ключа (N_A,N_B)

Alice (pkA, privA)		Bob (pkB, privB)
- генерация Na - шифрует <a, na="">_{pk(B)}</a,>	<a, na="">pk(B)</a,>	
	<na, nb="">pk(A)</na,>	 дешифровка сообщения <a, na="">pk(B)</a,> <na, nb="">pk(A)</na,>
- дешифровка сообщения pk(A) - pk(B)	<nb>pk(B)</nb>	

Уязвимость протокола Нидхема-Шрёдера

Alice	Intruder (pkl, privl)	Bob
- генерация Na - шифрует <a, na="">_{pk(l)}</a,>		
<a, na="">pk(I)</a,>		
	 дешифрует <a, na="">pk(I)</a,> шифрует <a, na="">pk(B)</a,> <a, na="">pk(B)</a,> 	
		- дешифровка сообщения <a, na="">pk(B) - <na, nb="">pk(A)</na,></a,>
		<na, nb="">pk(A) <</na,>

Уязвимость протокола Нидхема-Шрёдера (2)

	<na, nb="">pk(A)</na,>	
- дешифровка сообщения pk(A) - pk(I) >		
	- дешифровка <nв>pk(I)</nв>	
	<nb>pk(B)</nb>	
(NA, N	/в) общий секрет, который и	известен <i>I</i>

Пример 1: код на Proverif


```
fun Exp(bitstring, bitstring, bitstring.
fun Sign(bitstring, bitstring): bitstring.
reduc forall msg:bitstring, sign, key:bitstring;
  CheckSign(Sign(msg, sign_key), Exp(xCurve, xBase, sign_key)) = msg.
fun Encrypt(bitstring, bitstring): bitstring;
  reduc forall a0:bitstring, al:bitstring;
  Decrypt(Encrypt(a0, al), al) = a0.
fun A Encrypt(bitstring, bitstring): bitstring,
  reduc forall a0:bitstring, a, key:bitstring;
  A Decrypt(A Encrypt(a0, Exp(xCurve, xBase, a key)), a key) = a0.
```

Пример 1: код на Proverif (2)


```
new k:bitstring;
let msq1 = A Encrypt(siqC, pkS) in
let s = Decrypt(msq2, k) in
event Client end(s).
let sigC = A Decrypt(msql, skS) in
let msq2 = Encrypt(s, k) in
```

Пример 1: описание протокола дизъюнктами Хорна


```
Дизъюнкты
                                  Хорна,
                                                           пред-
ставляющие
                                                   протокол
attacker(pk(x))
    \Rightarrow attacker(pencrypt(sign(k[pk(x)], sk<sub>A</sub>[]), pk(x)))
attacker(pencrypt(sign(y, sk_A[]), pk(sk_B[])))
   \Rightarrow attacker(sencrypt(s, y))
Дизъюнкты
                                  Хорна,
                                                           пред-
ставляющие
                                               противника
attacker(m) \land attacker(pk) \Rightarrow attacker(pencrypt(m, pk))
attacker(sk) \Rightarrow attacker(pk(sk))
attacker(pencrypt(m, pk(sk))) \land attacker(sk) \Rightarrow attacker(m)
attacker(m) \land attacker(sk) \Rightarrow attacker(sign(m, sk))
attacker(sign(m, sk)) \Rightarrow attacker(m)
\operatorname{attacker}(\operatorname{sign}(m, sk)) \wedge \operatorname{attacker}(\operatorname{pk}(sk)) \Rightarrow \operatorname{attacker}(m)
attacker(m) \land attacker(k) \Rightarrow attacker(sencrypt(m, k))
```

Выводимо ли событие attacker(s)?

Пример 1: выводимость события attacker(s)

Последовательность применения дизъюнктов Хорна, приводящая к нарушению секретности s

- attacker(a[])
- 3 $attacker(pencrypt(sign(k[pk(a[])], skA[]), pk(a[]))) \land attacker(a[]) \Rightarrow attacker(sign(k[pk(a[])], skA[]))$
- $attacker(sign(k[pk(a[])], skA[])) \land attacker(pk(skB[])) \Rightarrow attacker(k[pk(a[])])$
- $\textbf{ 3} \ \ \, attacker(sencrypt(s,k[pk(a[])])) \land attacker(k[pk(a[])]) \Rightarrow attacker(s)$

Протокол Диффи-Хеллмана Proverif

- $(pr_C, pk_C) долговременные$ (закрытый, открытый) ключи клиента
- $(pr_S, pk_S) долговременные$ (закрытый, открытый) ключи сервера
- (x, g^x) сессионные (закрытый, открытый) ключи клиента
- (y, g^y) сессионные (закрытый, открытый) ключи сервера

Лиффи-Хеллман

Client (pkC, privC)		Server (pkS, privS)
 генерация g^x 	< <i>pkC</i> , g^x>	
	<pks, g^y=""> <</pks,>	- генерация g^y
- client_key = g^y^x		- server_key = g^x^y

Противник отправляет серверу сообщение $\stackrel{< pk_{E,g}x>}{\rightarrow}$ от лица клиента

Протокол Диффи-Хэллмана не является стойким по отношении к активному противнику

Протокол Диффи-Хеллмана Proverif

- $(pr_C, pk_C) долговременные$ (закрытый, открытый) ключи клиента
- $(pr_S, pk_S) долговременные$ (закрытый, открытый) ключи сервера
- (x, g^x) сессионные (закрытый, открытый) ключи клиента
- (y, g^y) сессионные (закрытый, открытый) ключи сервера

Лиффи-Хеллман

Client (pkC, privC)		Server (pkS, privS)
 генерация g^x 	< <i>pkC</i> , g^x>	
	<pks, g^y=""> <</pks,>	- генерация g^y
- client_key = g^y^x		- server_key = g^x^y

Противник отправляет серверу сообщение $\stackrel{< pk_{E,g}x>}{\rightarrow}$ от лица клиента

Протокол Диффи-Хэллмана не является стойким по отношении к активному противнику

Tamarin Prover: пример описания протокола BADH

- (pr_C, pk_C) долговременные (закрытый, открытый) ключи клиента
- (x, g^x) сессионные (закрытый, открытый) ключи клиента
- $sig_C(mess)$ ЭЦП на закрытом ключе клиента

- (pr_S, pk_S) долговременные (закрытый, открытый) ключи сервера
- (y, g^y) сессионные (закрытый, открытый) ключи сервера
- $sig_S(mess)$ ЭЦП на закрытом ключе сервера

Client (pkC, privC)		Server (pkS, privS)
- генерация g^ <i>x</i>	<g^x>></g^x>	
	<g^y, g^y)="" pks,="" sig_s(g^x,=""> <</g^y,>	- генерация g^y
- client_key = g^y^x	<pre><pkc, g^x)="" sig_c(g^y,="">></pkc,></pre>	- <u>server_key</u> = g^x^y
	key = g^(х*у) общий секрет	

Практическое задание

Необходимо построить модель на языке Tamarin протокола **ISO** и прислать её на почту vinevg2015@gmail.com или в телеграмм до 27.11.2020

- (pr_C, pk_C) долговременные (закрытый, открытый) ключи клиента
- (x,g^x) сессионные (закрытый, открытый) ключи клиента
- $sig_C(mess) ЭЦП$ на закрытом ключе клиента

- (pr_S, pk_S) долговременные (закрытый, открытый) ключи сервера
- (y, g^y) сессионные (закрытый, открытый) ключи сервера
- $sig_S(mess)$ ЭЦП на закрытом ключе сервера

Client (pkC, privC)		Server (pkS, privS)
- генераци я g^x	<pkc, g^x=""> ></pkc,>	
	<pre><pks, g^y,="" pkc)="" sig_s(g^x,=""> <</pks,></pre>	- генерация g^y
- client_key = g^y^x	<sig_c(g^y, g^x,="" pks)=""></sig_c(g^y,>	- <u>server_key</u> = g^x^y
	<i>key</i> = g^(<i>x</i> * <i>y</i>) общий секрет	