## **Solutions of Tutorial-5**

## Problem set 4.3

- **12** (a) a = (1, ..., 1) has  $a^{T}a = m$ ,  $a^{T}b = b_1 + \cdots + b_m$ . Therefore  $\hat{x} = a^{T}b/m$  is the **mean** of the b's (their average value)
  - (b)  $e = b \hat{x}a$  and  $||e||^2 = (b_1 \text{mean})^2 + \cdots + (b_m \text{mean})^2 = \text{variance}$  (denoted by  $\sigma^2$ ).
  - (c) p = (3,3,3) and e = (-2,-1,3)  $p^{\mathrm{T}}e = 0$ . Projection matrix  $P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ .
- 13  $(A^TA)^{-1}A^T(b-Ax) = \hat{x} x$ . This tells us: When the components of Ax b add to zero, so do the components of  $\hat{x} x$ : Unbiased.
- 17  $\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$ . The solution  $\widehat{x} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$  comes from  $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 35 \\ 42 \end{bmatrix}$ .

## Problem set 4.4

- **1** (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal. For orthonormal vectors, (a) becomes (1,0), (0,1) and (b) is (.6,.8), (.8,-.6).
- **3** (a)  $A^{T}A$  will be 16I (b)  $A^{T}A$  will be diagonal with entries  $1^{2}, 2^{2}, 3^{2} = 1, 4, 9$ .
- **5** Orthogonal vectors are (1,-1,0) and (1,1,-1). Orthonormal after dividing by their lengths:  $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0\right)$  and  $\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$ .
- **10** (a) If  $q_1, q_2, q_3$  are *orthonormal* then the dot product of  $q_1$  with  $c_1q_1 + c_2q_2 + c_3q_3 = 0$  gives  $c_1 = 0$ . Similarly  $c_2 = c_3 = 0$ . This proves: *Independent q*'s
  - (b) Qx = 0 leads to  $Q^{\mathrm{T}}Qx = 0$  which says x = 0.
- **12** (a) Orthonormal a's:  $a_1^{\mathrm{T}}b = a_1^{\mathrm{T}}(x_1a_1 + x_2a_2 + x_3a_3) = x_1(a_1^{\mathrm{T}}a_1) = x_1$ 
  - (b) Orthogonal a's:  $a_1^{\mathrm{T}}b = a_1^{\mathrm{T}}(x_1a_1 + x_2a_2 + x_3a_3) = x_1(a_1^{\mathrm{T}}a_1)$ . Therefore  $x_1 = a_1^{\mathrm{T}}b/a_1^{\mathrm{T}}a_1$
  - (c)  $x_1$  is the first component of  $A^{-1}$  times b (A is 3 by 3 and invertible).

**20** (a) True because  $Q^{\mathrm{T}}Q=I$  leads to  $\left(Q^{-1}\right)\left(Q^{-1}\right)=I$ .

(b) True.  $Qx = x_1q_1 + x_2q_2$ .  $\|Qx\|^2 = x_1^2 + x_2^2$  because  $q_1 \cdot q_2 = 0$ . Also  $\|Qx\|^2 = x^TQ^TQx = x^Tx$ .

## Problem set 5.1

**3** (a) False:  $\det(I+I)$  is not 1+1 (except when n=1) (b) True: The product rule extends to ABC (use it twice) (c) False:  $\det(4A)$  is  $4^n \det A$ 

(d) False: 
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ ,  $AB - BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$  is invertible.

- **8**  $Q^{\mathrm{T}}Q=I\Rightarrow |Q^{\mathrm{T}}||Q|=|Q|^2=1\Rightarrow |Q|=\pm 1;\ Q^n$  stays orthogonal so its determinant can't blow up as  $n\to\infty$ .
- 11  $CD = -DC \Rightarrow \det CD = (-1)^n \det DC$  and not just  $-\det DC$ . If n is even then  $\det CD = \det DC$  and we can have an invertible CD.
- **19** For triangular matrices, just multiply the diagonal entries:  $\det(U) = 6$ ,  $\det(U^{-1}) = \frac{1}{6}$ , and  $\det(U^2) = 36$ . 2 by 2 matrix:  $\det(U) = ad$ ,  $\det(U^2) = a^2d^2$ . If  $ad \neq 0$  then  $\det(U^{-1}) = 1/ad$ .
- **22**  $\det(A) = 3$ ,  $\det(A^{-1}) = \frac{1}{3}$ ,  $\det(A \lambda I) = \lambda^2 4\lambda + 3$ . The numbers  $\lambda = 1$  and  $\lambda = 3$  give  $\det(A \lambda I) = 0$ . The (singular!) matrices are

$$A - I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } A - 3I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$