${f M}{f C}$ ССЛЕДОВАНИЕ ЗАДАЧИ РАЗМЕЩЕНИЯ ${f P}{f O}$ ЛСА С ПРЯМОУГОЛЬНОЙ МЕТРИКОЙ НА ${f O}{f T}{f P}{f E}{f S}{f K}{f E}{f I}{f P}{f S}{f M}{f O}{f I}^1$

Кривулин Н. К., д.ф.-м.н., профессор кафедры статистического моделирования СПбГУ, nkk@math.spbu.ru

Плотников П. В., аспирант кафедры статистического моделирования СПбГУ, pavplot@gmail.com

Аннотация

В статье рассматривается задача размещения точечного объекта на плоскости с прямоугольной метрикой в терминах тропической математики с ограничениями на область размещения в виде отрезка прямой. Предложено полное решение задачи и рассмотрен численный пример.

Введение

Тропическая математика – раздел прикладной математики, занимающийся изучением полуколец с идемпотентным сложением [1, 2, 3, 4]. Модели и методы тропической математики находят применение для решения различных оптимизационных задач в технике, экономике и на производстве. Краткий обзор таких задач можно найти, например, в работе [5]. В частности, методы тропической оптимизации успешно применяются при решении ряда задач размещения в пространстве, включая минимаксные задачи размещения с чебышевской и прямоугольной метрикой [6, 7, 10].

Минимаксная задача размещения одиночного объекта на плоскости, которую также называют задачей Ролса или задачей посыльного, в прямоугольной метрике имеет при отсутствии ограничений на допустимую область размещения известное геометрическое решение [8, 9]. В работе [10] предложено полное алгебраическое решение такой задачи в явном виде в замкнутой форме.

В настоящей статье задача Ролса рассматривается при условии, что допустимое множество размещения имеет вид отрезка произвольной прямой. Сначала вводятся основные определения тропической математики, затем формулируется задача размещения на плоскости с прямоугольной метрикой в терминах тропической математики. Предлагается новое решение задачи, которое позволяет записать результат в более

 $^{^{1}}$ Работа выполнена при финансовой поддержке РГНФ, проект №16-02-00059.

компактной форме, чем решение, полученное в [11]. В заключение, приведен численный пример с графическими иллюстрациями.

Элементы тропической математики

Рассмотрим числовое множество $\mathbb X$, замкнутое относительно операций сложения \oplus и умножения \otimes . Заданное на $\mathbb X$ при помощи этих операций коммутативное полукольцо с нулем $\mathbb 0$ и единицей $\mathbb 1$ обозначим через $\langle \mathbb X, \mathbb 0, \mathbb 1, \oplus, \otimes \rangle$. Будем считать, что сложение обладает свойством идемпотентности, т.е. для любого числа $x \in \mathbb X$ выполняется $x \oplus x = x$, а умножение – обратимо, т.е. для каждого $x \neq \mathbb 0$ существует обратный элемент x^{-1} такой, что $x \otimes x^{-1} = \mathbb 1$. В силу того, что $\langle \mathbb X \setminus \{ \mathbb 0 \}, \mathbb 1, \otimes \rangle$ образует коммутативную группу по умножению, введенное полукольцо, обычно называется идемпотентным полуполем.

Степень числа с целым показателем вводится стандартным образом. Для любого ненулевого числа $x\in\mathbb{X}$ и натурального числа n определим $x^0=\mathbb{1},\,x^n=x\otimes x^{n-1},\,x^{-n}=(x^{-1})^n$ и $\mathbb{0}^n=\mathbb{0}$. Будем считать, что операция возведения в целую степень может быть распространена на случай произвольного показателя степени. В частности, для любого $x<\mathbb{1}$ при n=0 положим $x^{1/n}=\mathbb{0}$. Далее знак умножения \otimes в алгебраических выражениях, как обычно, опускается.

Примером идемпотентного полуполя являются вещественное полуполе $\mathbb{R}_{\max,+} = \langle \mathbb{R} \cup \{-\infty\}, -\infty, 0, \max, + \rangle$, где \mathbb{R} – множество вещественных чисел.

Нулевым элементом в $\mathbb{R}_{\max,+}$ является $-\infty$, единичным — число 0. Каждому числу $x \in \mathbb{R}$ в этом полуполе сопоставляется обратный элемент x^{-1} , равный -x в обычной алгебре. Для любой пары чисел $x,y \in \mathbb{R}$ определена степень x^y , значение которой соответствует арифметическому произведению xy.

Приложения к задачам размещения на прямой

Рассмотрим минимаксную задачу размещения точечного объекта на плоскости с прямоугольной метрикой и ограничениями на область размещения. Пусть задан набор исходных объектов и некоторое допустимое множество $S \subset \mathbb{R}^2$. Требуется разместить новый объект на множестве S, относительно уже имеющихся так, чтобы расстояние в прямоугольной метрике, от него до самой удаленного объекта, было минимальным.

Пусть на плоскости \mathbb{R}^2 имеются два вектора $\boldsymbol{x} = (x_1, x_2)^T$ и $\boldsymbol{y} = (y_1, y_2)^T$. Расстояние между этими векторами в прямоугольной метрике вычисляется по формуле $\rho(\boldsymbol{x}, \boldsymbol{y}) = |x_1 - y_1| + |x_2 - y_2|$.

Рассмотрим набор точек $\mathbf{r}_i = (r_{1i}, r_{2i})^T \in \mathbb{R}^2$ и чисел $w_i \in \mathbb{R}$, заданных для всех $i = 1, \dots, m$. Для произвольного вектора $\mathbf{x} = (x_1, x_2)^T$ введем функцию

$$\phi(\boldsymbol{x}) = \max_{1 \le i \le m} (\rho(\boldsymbol{r}_i, \boldsymbol{x}) + w_i) = \max_{1 \le i \le m} (|r_{1i} - x_1| + |r_{2i} - x_2| + w_i) = \phi(x_1, x_2),$$

которая определяет максимальное по всем i расстояние в прямоугольной метрике от точки x до точки r_i с учетом дополнительного слагаемого w_i .

Зададим множество размещения на плоскости в виде отрезка прямой

$$S = \{(x_1, x_2)^T \mid f \le x_1 \le g, \ x_2 = kx_1 + q\}. \tag{1}$$

Минимаксная задача размещения, или задача Ролса, состоит в том, чтобы найти все векторы $x \in S$, на которых достигается минимум

$$\min_{\boldsymbol{x} \in S} \quad \phi(\boldsymbol{x}). \tag{2}$$

В терминах идемпотентного полуполя $\mathbb{R}_{\max,+}$ расстояние между двумя векторами в прямоугольной метрике можно представить в форме $\rho(\boldsymbol{x},\boldsymbol{y})=(x_1^{-1}y_1\oplus y_1^{-1}x_1)(x_2^{-1}y_2\oplus y_2^{-1}x_2)$. Тогда целевая функция задачи (2) записывается следующим образом:

$$\phi(x_1, x_2) = \bigoplus_{i=1}^m w_i(x_1^{-1} r_{1i} \oplus r_{1i}^{-1} x_1)(x_2^{-1} r_{2i} \oplus r_{2i}^{-1} x_2),$$

а множество размещения (1) принимает вид

$$S = \{(x_1, x_2)^T \mid f \le x_1 \le g, \ x_2 = x_1^k q\}.$$

Размещение на произвольной прямой

Будем рассматривать задачу размещения на множестве S. Пусть заданы числа $f,g,q,k\in\mathbb{R}$ при условии $f\leq g$.

Следующий результат обеспечивает полное решение задачи в явном виде.

Лемма 1. Введем обозначения

$$a = \bigoplus_{i=1}^{m} w_i r_{1i} r_{2i}^{-1} q, \quad b = \bigoplus_{i=1}^{m} w_i r_{1i}^{-1} r_{2i} q^{-1},$$

$$c = \bigoplus_{i=1}^{m} w_i r_{1i} r_{2i} q^{-1}, \quad d = \bigoplus_{i=1}^{m} w_i r_{1i}^{-1} r_{2i}^{-1} q.$$

Тогда справедливы следующие утверждения:

1) если k < -1 или k > 1, то минимум в задаче (2) при условии (1) равен

$$\mu = a^{1/2}b^{1/2} \oplus a^{(k+1)/2k}c^{(k-1)/2k} \oplus b^{(k+1)/2k}d^{(k-1)/2k} \oplus c^{1/2}d^{1/2} \oplus a(f^{-(k-1)} \oplus g^{-(k-1)})^{-1} \oplus b(f^{k-1} \oplus g^{k-1})^{-1} \oplus c(f^{k+1} \oplus g^{k+1})^{-1} \oplus d(f^{-(k+1)} \oplus g^{-(k+1)})^{-1}$$

и достигается тогда и только тогда, когда

$$x_{1} = (((\mu a^{-1})^{-1/(k-1)} \oplus (\mu^{-1}b)^{-1/(k-1)})^{-1} \oplus$$

$$\oplus ((\mu^{-1}c)^{-1/(k+1)} \oplus (\mu d^{-1})^{-1/(k+1)})^{-1} \oplus f)^{1-\alpha}$$

$$(((\mu^{-1}a)^{-1/(k-1)} \oplus (\mu b^{-1})^{1/(k-1)})^{-1} \oplus$$

$$\oplus ((\mu c^{-1})^{1/(k+1)} \oplus (\mu^{-1}d)^{-1/(k+1)})^{-1} \oplus g^{-1})^{-\alpha},$$

$$x_{2} = qx_{1}^{k};$$

2) если $-1 \le k \le 1$, то минимум равен

$$\begin{split} \mu = a^{1/2}b^{1/2} \oplus a^{(k+1)/2}d^{-(k-1)/2} \oplus b^{(k+1)/2}c^{-(k-1)/2} \oplus c^{1/2}d^{1/2} \oplus \\ & \oplus aq^{k-1} \oplus bf^{-(k-1)} \oplus cq^{-(k+1)} \oplus df^{k+1} \end{split}$$

и достигается тогда и только тогда, когда

$$x_1 = ((\mu a^{-1})^{1/(k-1)} \oplus (\mu^{-1}c)^{1/(k+1)} \oplus f)^{1-\alpha}$$

$$((\mu b^{-1})^{1/(k-1)} \oplus (\mu^{-1}d)^{1/(k+1)} \oplus g^{-1})^{-\alpha},$$

$$x_2 = qx_1^k,$$

где α – любое число, удовлетворяющее условию $0 \le \alpha \le 1$.

При использовании обычных обозначений найденное решение описывается так:

Следствие 1. Введем обозначения

$$a = \max_{1 \le i \le m} (w_i - r_{1i} + r_{2i} + q), \qquad b = \max_{1 \le i \le m} (w_i + r_{1i} - r_{2i} - q),$$

$$c = \max_{1 \le i \le m} (w_i + r_{1i} + r_{2i} - q), \qquad d = \max_{1 \le i \le m} (w_i - r_{1i} - r_{2i} + q).$$

Тогда справедливы следующие утверждения:

1) если k < -1 или k > 1, то минимум в задаче (2) при условии (1) равен

$$\mu = \max\left(\frac{a+b}{2}, \frac{a(k+1)+c(k-1)}{2k}, \frac{b(k+1)+d(k-1)}{2k}, \frac{c+d}{2}, a+\min((k-1)f, (k-1)g), b-\max((k-1)f, (k-1)g), c-\max((k+1)f, (k+1)g), d+\min((k+1)f, (k+1)g)\right)$$

и достигается тогда и только тогда, когда

$$x_{1} = (1 - \alpha) \max \left(\min \left(\frac{\mu - a}{k - 1}, \frac{b - \mu}{k - 1} \right), \min \left(\frac{c - \mu}{k + 1}, \frac{\mu - d}{k + 1} \right), f \right)$$
$$-\alpha \max \left(\min \left(\frac{a - \mu}{k - 1}, \frac{\mu - b}{k - 1} \right), \min \left(\frac{\mu - c}{k + 1}, \frac{d - \mu}{k + 1} \right), -g \right),$$
$$x_{2} = kx_{1} + q;$$

2) если $-1 \le k \le 1$, то минимум равен

$$\mu = \max\left(\frac{a+b}{2}, \frac{a(k+1)-d(k-1)}{2}, \frac{b(k+1)-c(k-1)}{2}, \frac{c+d}{2}, \frac{c+$$

и достигается тогда и только тогда, когда

$$x_1 = (1 - \alpha) \max \left(\frac{\mu - a}{k - 1}, \frac{c - \mu}{k + 1}, f \right) - \alpha \max \left(\frac{\mu - b}{k - 1}, \frac{d - \mu}{k + 1}, -g \right),$$

 $x_2 = kx_1 + q,$

где α – любое число, удовлетворяющее условию $0 \le \alpha \le 1$.

Иллюстрация результатов на примерах

Рассмотрим числовой пример. Пусть задано множество точек

$$\mathbf{r}_1 = (1, 7)^T, \quad \mathbf{r}_2 = (3, 3)^T, \quad \mathbf{r}_3 = (4, 6)^T, \quad \mathbf{r}_4 = (5, 3)^T,$$

 $\mathbf{r}_5 = (7, 2)^T, \quad \mathbf{r}_6 = (9, 1)^T, \quad \mathbf{r}_7 = (9, 9)^T.$

Сначала рассмотрим решение задачи размещения (2), в которой допустимое множество представляет собой отрезок, заданный в виде

$$S_1 = \{(x_1, x_2)^T \mid 5 \le x_1 \le 8, \ x_2 = -2x_1 + 19\}.$$

Решение такой задачи приведено на Рис. 1, где выделенный жирным отрезок прямой представляет множество решений задачи без ограничений, отрезок обычной толщины — допустимое множество размещения, а точка на пересечении — решение задачи с ограничениями.

Перейдем к рассмотрению случая, в котором допустимая область размещения задана следующим образом:

$$S_2 = \{(x_1, x_2)^T \mid 4 \le x_1 \le 7, x_2 = 2x_1 - 6\}.$$

В этом случае, как показано на Рис. 2, допустимая область размещения не пересекается с множеством решений задачи без ограничений. Решение исходной задачи изображено точкой, лежащей на отрезке S_2 .

Рис.1 Размещение на отрезке S_1 . Рис.2 Размещение на отрезке S_2 .

Список литературы

- [1] *Маслов В. П., Колокольцов В. Н.* Идемпотентный анализ и его применение в оптимальном управлении. М.: Физматлит, 1994. 144 с.
- [2] Golan J. S. Semirings and Affine Equations Over Them. New York: Springer, 2003. Vol. 556 of Mathematics and Its Applications. 256 p.
- [3] Кривулин Н. К. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб.: Изд-во С.-Петерб. ун-та., 2009. 256 с.
- [4] Butkovič P. Max-linear Systems. Springer Monographs in Mathematics. London: Springer, 2010. 272 p.
- [5] Krivulin N. Tropical optimization problems // Advances in Economics and Optimization: Collected Scientific Studies Dedicated to the Memory of L. V. Kantorovich / Ed. by L. A. Petrosyan, J. V. Romanovsky, D. W. K. Yeung. New York: Nova Science Publ., 2014. P. 195–214.
- [6] Krivulin N. An algebraic approach to multidimensional minimax location problems with Chebyshev distance // WSEAS Trans. Math. 2011. Vol. 10, N 6. P. 191–200.
- [7] Krivulin N. A new algebraic solution to multidimensional minimax location problems with Chebyshev distance // WSEAS Trans. Math. 2012. Vol. 11, N 7. P. 605—614.
- [8] Elzinga J., Hearn D. W. Geometrical solutions for some minimax location problems // Transport. Sci. 1972. Vol. 6, N 4. P. 379–394.
- [9] Francis R. L. A geometrical solution procedure for a rectilinear distance minimax location problem // AIIE Trans. 1972. Vol. 4, N 4. P. 328–332.
- [10] Krivulin N. K., Plotnikov P. V. On an algebraic solution of the Rawls location problem in the plane with rectilinear metric // Vestnik St. Petersburg Univ. Math. 2015. Vol. 48, N 2. P. 75-81.
- [11] Krivulin N. K., Plotnikov P. V. Using tropical optimization to solve minimax location problems with a rectilinear metric on the line // Vestnik St. Petersburg Univ. Math. 2016. Vol. 49, N 4. P. 340-349.