Forward Kinematics for 6 DoF Robotic Arm

By Mohammed Alsaggaf

Presentation Flow

Why not using the old method?

Denavit-Hartenberg Parameters & Rules

Multiply Matrices in MATLAB

Arduino Code

Check Solution

Double Check Solution

Forward Kinematics for 3 DoF Robotic Arm

Denavit-Hartenberg Parameters

- a_i : The length distance from z_i to z_{i+1} measured along z_i
- α_i : The twist angle between z_i and z_{i+1} measured about x_i
- d_i : The offset distance from x_i to x_{i+1} measured along z_i
- θ_i : The angle between x_i and x_{i+1} measured about z_i

$$Ai = \begin{bmatrix} C\theta i & -S\theta i C\alpha i & S\theta i S\alpha i & ai C\theta i \\ S\theta i & C\theta i C\alpha i & -C\theta i S\alpha i & ai S\theta i \\ 0 & S\alpha i & C\alpha i & di \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg Rules

- I. Z in the axis of rotation
- II. X_i axis is perpendicular to Z_i and Z_{i-1} and intersects Z_{i-1}
- III. Y direction is found by the right hand rule

Multiply Matrices


```
#include <Servo.h>
Servo S1;
Servo S2;
Servo S3:
Servo S4;
Servo S5;
Servo S6;
//Given Parameters
  float a3=20;
  float d5=5;
                  POWER ANALOGEN
  float t1=0.5;
  float t2=0.5
  float t3=0.5;
  float t4=0.5;
  float t5=0.5;
  float t6=0.5;
 float pi=3.141592654; //Pi, the mathmatical constant
//Known Orientation Parameters
```

```
float nx; float ny; float nz;
float ox; float oy; float oz;
float ax; float ay; float az;

//Unknown Position Parameters
float px; //End effector's X coordinate
float py; //End effector's Y coordinate
float pz; //End effector's Z coordinate
float pz; //End effector's Z coordinate
```

```
void setup()
{
   //Attaching Servo Motors to the digital pins
   S1.attach(2);
   S2.attach(3);
```

Thanks for listening

The end of the presentation

- [1] M. Alsaggaf, "6 DoF Robotic Arm Forward Kinematics," TinkerCAD, 28 07 2020. [Online]. Available: https://www.tinkercad.com/things/56EDMEckwu9.
- [2] A. Sodemann, "Robotics 1 U1 (Kinematics) S3 (Rotation Matrices) P4 (6-DoF Example and Error Checking)," YouTube, 27 08 2017. [Online]. Available: https://youtu.be/KslFPohHkxA. [Accessed 24 07 2020].
- [3] milfordrobotics, "Forward and Inverse Kinematics Part 1," YouTube, 03 08 2011. [Online]. Available: https://youtu.be/VjsuBT4Npvk. [Accessed 24 07 2020].
- [4] milfordrobotics, "Forward and Inverse Kinematics Part 2," YouTube, 04 08 2011. [Online]. Available: https://youtu.be/3ZcYSKVDIOc. [Accessed 24 07 2020].
- [5] "Create Symbolic Numbers, Variables, and Expressions," MathWorks, [Online]. Available: https://www.mathworks.com/help/symbolic/create-symbolic-numbers-variables-and-expressions.html [Accessed 27 07 2020].