Analisi Matematica 1 A

Davide Peccioli Anno accademico 2021-2022

Indice

1	Lim	uiti					
	1.1	Introduzione al concetto di limite					
	1.2	Estensione di \mathbb{R}					
	1.3	Estensione di \mathbb{R}^n					
	1.4	Limite di una funzione					

1 Limiti

1.1 Introduzione al concetto di limite

Data una funzione $f: D \to \mathbb{R}$, con $D \subseteq \mathbb{R}^n$ e $x_0 \in \mathbb{R}^n$, ci poniamo l'obiettivo 11 ott 2021 di descrivere il comportamento della funzione quando x si "avvicina" a x_0 .

Indichiamo con $x\to x_0$: "avvicinarsi a x_0 ", "essere nei pressi di x_0 ". In alcuni casi è intuitivo.

• caso 1:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

$$x = 2 \implies f(x) = 4$$
 $x \to 2$ $f(x) \to 4$ $x = 3 \implies f(x) = 9$ $x \to 3$ $f(x) \to 9$ $x = -1 \implies f(x) = 1$ $x \to -1$ $f(x) \to 1$

Dobbiamo comunque chiarirlo in termini rigorosi.

• caso 2: f(t) rappresenta un impulso luminoso istantaneo al tempo t=2

dove

$$f(t) = \begin{cases} 0 & t \neq 2\\ 3 & t = 2 \end{cases}$$

- 1.2 Estensione di \mathbb{R}
- 1.3 Estensione di \mathbb{R}^n
- 1.4 Limite di una funzione