

MATLAB® SIMULINK®

Electromechanical

3 2008 The MathWorks, Inc.

System-level design of electrohydraulic and mechatronic systems

Steve Miller

Technical Marketing, Physical Modeling Tools

The MathWorks GmbH, Munich, Germany

Steve.Miller@mathworks.de

http://physical-modeling.mathworks.com/

Key Points

1. Testing different actuator designs in one environment saves time and encourages innovation

3. Simulating at different levels of fidelity is required throughout the development process

Agenda

- Trends in the automotive industry
 - Industry trends
 - Strategies for improvement
 - How simulation can help
- Example: Power steering system
 - Model explanation
 - Tradeoff study
 - System optimization
 - Assess implementation effects
- Conclusions

10 min

15 min

Industry Trends

- System needs
 - Vehicles must produce less pollution
 - Vehicles must be more efficient

- Energy losses in vehicles
 - Friction and accessories reduce efficiency significantly

Environmental zone sign Stuttgart, Germany

Losses due to friction = 10% Fuel economy loss due to power steering pump = 1km/L

Argonne National Laboratory, 2006

Strategies include advancing technology, vehicle-level design

Strategies for Improved Vehicle Design

- Technology: Electrical actuation
 - Fewer losses than hydraulic actuation
 - Only needs to be turned on when in use
 - Tend to be more reliable, cleaner, and safer
- Vehicle-level design and optimization
 - Integration with other systems
 - Optimization of integrated systems

Electric Power Steering

BMW Z4 Coupe Audi A3 Toyota Prius Peugeot 307 Ford Escape Chevrolet Cobalt

Hybrid Electric Vehicles

Integrated power sources
Regenerative braking

Simulation can help with each of these strategies

How Simulation Can Help

- 1. Tradeoff studies to test electrical and hydraulic systems
 - Determine actuator requirements
 - Test hydraulic and electrical actuator designs
- 2. System-level models
 - Required to test system integration
 - Few key parameters and quick simulation
- 3. Simulating at different levels of fidelity
 - Enable rapid iteration and test impact of design implementation
 - Reuse work done at system level (Model-Based Design)

Example: Power Steering System

- 1. Determine requirements for actuation systems
- 2. Test performance with electrical or hydraulic actuation
- 3. Optimize the actuation system
- 4. Assess effects of system implementation

Determining Actuator Requirements

Model:

Problem: Determine the requirements for hydraulic and electric power steering actuators

Solution: Use <u>SimMechanics™</u> to model the steering system and <u>Simscape™</u> for an ideal actuator

Test Electrical and Hydraulic Designs

Problem: Test different actuator designs in the system

Solution: Use <u>SimHydraulics™</u> and <u>SimElectronics™</u> to model the actuators, and configurable subsystems to exchange them

Actuator System-Level Designs

- Valve position controller
- Directional valve
- Double-acting hydraulic cylinder
- Fixed-displacement pump
- Pressure-relief valves

- DC Motor
- Current sensor and current controller
- Hall effect sensor and speed controller
- PWM and H-bridge driver

Optimize System Performance

Model:

<u>Problem</u>: Optimize the speed controller to meet system requirements

Solution: Use Simulink Response
Optimization™ to tune the
controller parameters

Assess Implementation Effects

Problem: Assess the effects of design implementation on system performance

Solution: Use SimElectronics[™] to add a PWM signal and analog circuit implementation

Conclusion

1. Testing different actuator designs in one environment saves time and encourages innovation

3. Simulating at different levels of fidelity is required throughout the development process

MATLAB® SIMULINK®

MathWorks Products Used

- Simscape[™]
 - Multidomain physical systems

- SimMechanics[™]
 - 3-D mechanical systems
- SimHydraulics[®]
 - Hydraulic (fluid power) systems
- SimElectronics[™] (new)
 - Electronic and electromechanical systems
- Simulink Parameter Estimation
- Simulink[®] Response Optimization[™]

Physical Modeling Master Class (4:00 – 5:30PM)

- Build up pieces of power steering system (electric, hydraulic)
- Tune parameters using measurement data
- Build custom components (valves, etc.)

