Computer Vision Homework 7

How to run it

python image.py lena.bmp

Principal code fragment

```
# delete pixel when retrun true
def firstThinning( neighbors ):
    if sum(neighbors)-neighbors[0] >= 2 and sum(neighbors)-neighbors[0] <=6 and clockwiseCheck(neighbors)
    if( neighbors[1]*neighbors[3]*neighbors[5] == 0 and neighbors[3]*neighbors[5]*neighbors[7] == 0 ):
    return True
    return False

# delete pixel when retrun true
def secondThinning( neighbors ):
    if sum(neighbors)-neighbors[0] >= 2 and sum(neighbors)-neighbors[0] <=6 and clockwiseCheck(neighbors)
    if( neighbors[1]*neighbors[3]*neighbors[7] == 0 and neighbors[1]*neighbors[5]*neighbors[7] == 0 ):
    return True
    return False</pre>
```

Description

Check every pixel's neighbors in image.

- A(P₁) = number of 0, 1 patterns (transitions from 0 to 1) in the ordered sequence of P₂, P₃, P₄, P₅, P₆, P₇, P₈, P₉, P₂.
- B(P₁) = P₂ + P₃ + P₄ + P₅ + P₆ + P₇ + P₈ + P₉ (number of black or 1 pixel, neighbors of P₁).

Step 1 conditions for selecting black points to remove:

```
Condition 1: 2 <= B(P_1) <= 6;

Condition 2: A(P_1) = 1;

Condition 3: P_2 \cdot P_4 \cdot P_6 = 0;

Condition 4: P_4 \cdot P_6 \cdot P_8 = 0.
```

Step 2 conditions for selecting black points to remove:

Condition 1: $2 \le B(P_1) \le 6$ (the same condition as step 1); Condition 2: $A(P_1) = 1$ (the same condition as step 1);

Condition 3: $P_2 \cdot P_4 \cdot P_8 = 0$;

Condition 4: $P_2 \cdot P_6 \cdot P_8 = 0$.

Result

