Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Exercises. Lesson 2 Analog modulations

Problem 2.1

A zero-mean periodic signal x(t), with bandwidth 5kHz, amplitude 4V and normalized average power 0.5, DSB modulates a 1MHz carrier. The result is a signal with average power 400W. Determine:

- a. Carrier amplitude.
- b. Average power of the lower sideband.
- c. Outline of the detector needed to recover the signal x(t), and the value of its main parameters

RESULTS FOR PROBLEM

- 1. $A_c = 10V$
- 2. $P_{LSB} = 200W$
- 3. Synchronous detector $f_{LO}=1MHz$, $A_{LO}=\frac{2}{A_c}$ and $f_{lp}=5kHz$.

Problem 2.2

The signal $x(t) = cos(2\pi \cdot 10 \cdot 10^3 t) + 4 \cdot cos(2\pi \cdot 15 \cdot 10^3 t) + cos(2\pi \cdot 20 \cdot 10^3 t)$ DSB modulates the carrier $p(t) = 2 \cdot cos(2\pi \cdot 10^5 t)$ and passes through a filter with frequency response $H(\omega)$ before reaching the detector, as it can be observed in the figure

with

$$H(\omega) = \left\{ \begin{array}{ll} 0 & |\omega| < 200\pi k rad/s \\ 1 & |\omega| \ge 200\pi k rad/s \end{array} \right.$$

- a. Find the signal obtained at the output of the detector, when using an envelope detector of $K_D=1$ with DC suppression.
- b. b) Determine the detector needed to obtain a detected signal equal to the modulating signal. Please specify all necessary parameters.

RESULTS FOR PROBLEM

- 1. $y(t) = 2 \cdot \cos(2\pi \cdot 5 \cdot 10^3 t)$
- 2. Synchronous detector with $f_{LO}=2\cdot cos(\omega_c\cdot t)$ and a low pass filter with cut-off frequency of at least 20kHz.

v.20220124

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Problem 2.3

A transmitter has an average nominal power of 30W and a peak envelope power of 60W. Determine:

- a. The power in a sideband when the signal $x(t)=cos(\omega_m t)$ modulates the carrier given by $p(t)=A_p\cdot cos(\omega_p t)$, and the value of A_p in the following cases:
 - (a) AM modulation when the modulation index is 80%.
 - (b) DSB modulation
- b. Considering the first case for a), and knowing that the channel presents a non-uniform attenuation as depicted in the figure: Obtain the signal detected in the following cases:

- (a) Envelope detector
- (b) Synchornous detector

NOTE: Assume in both cases that a DC suppressor is present. RESULTS FOR PROBLEM

1. (a)
$$A_p = 6.08V$$
, $P_{BL} = 2.96W$

(b)
$$A_p = 10.95V$$
, $P_{BL} = 15W$

2. (a)
$$y_D(t) = k_D \cdot [A(t) - \langle A(t) \rangle]$$
, con:

$$A(t) = x_i(t) \cdot \left[1 + 0.5 \cdot \left(\frac{x_q(t)}{x_i(t)} \right)^2 \right]$$

$$x_i(t) = 0.6 \cdot A_p + 0.48 \cdot A_p \cdot \cos(\omega_m t)$$

•
$$x_q(t) = -0.08 \cdot A_p \cdot sen(\omega_m t)$$

(b)
$$y_D(t) = \frac{A_{OL}}{2} \cdot A_p \cdot 0.48 \cdot cos(\omega_m t)$$

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Problem 2.4

A 10kHz signal x(t) modulates a 100kHz carrier and the result, as observed using an oscilloscope, is presented in the figure. Determine:

- a. Modulation used.
- b. Modulation index.
- c. Carrier's power and Modulating signal's normalized power. Recovered signal when using a synchronous detector tuned to 100kHz and with an amplitude of 1V.
- d. Recovered signal when using an envelope detector.

Note: It can be assumed that $K_D=1$. Results for problem

- 1. AM
- 2. $m \approx 0.43$
- 3. $P_p = 0.98W$, $S_{xn} = 0.5$
- 4. $y_D(t) = 0.3 \cdot cos(2\pi \cdot 10^4 t)$
- 5. $y_D(t) = 0.6 \cdot \cos(2\pi \cdot 10^4 t)$

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Problem 2.5

Considering that $x_{FM}(t)$ is the signal obtained when FM modulating a signal x(t) with the carrier $p(t) = A_p \cdot cos(\omega_p t)$. Determine the condition needed to recover the signal x(t) if the system outlined in the figure is used.

RESULTS FOR PROBLEM $\omega_p - \omega_\Delta \cdot |x(t)|_{max} > 0$

Problem 2.6

The outline presented in the figure shows a FM modulator followed by a frequency converter and a band-pass filter (used to adapt the modulated signal to a suitable transmission frequency band). In order to set the system's parameters, a test tone x(t) is used. Determine:

- a. Modulation index D, and modulated signal's bandwidth.
- b. Value of the filter's bandwidth, B, and the filter's central frequency, ω_0 , considering that a frequency band that is above ω_1 has been assigned for our transmission.
- c. Average power of the output y(t) as a function of A_p considering that the filter attenuates the signal a 10%.

DATA:

•
$$x(t) = cos(\omega_m t) [V]$$

•
$$\omega_m = 2\pi \cdot 4krad/s$$

•
$$\omega_p = 2\pi \cdot 400 krad/s$$

•
$$\omega_1 = 2\pi \cdot 2Mrad/s$$

•
$$\omega_d = 2\pi \cdot 16krad/s \cdot V$$

RESULTS FOR PROBLEM

1.
$$D = 4$$
, $B_T = 2\pi \cdot 48krad/s$

2.
$$\omega_0 = \omega_1 + \omega_p$$
, $B \ge B_T$

3.
$$P_y = 0.81 \cdot \frac{A_p^2}{2}$$

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Problem 2.7

The signal $x(t) = cos(\omega_1 t) + cos(\omega_2 t)$ FM modulates the carrier $p(t) = A_p \cdot cos(\omega_p t)$. The modulated signal goes through a high pass filter with cutoff frequency $2\pi \cdot 350krad/s$, whose output signal is fed to a synchronous detector where the local oscillator is adjusted to the carrier frequency, following the expression given by $p_{OL}(t)$ (see Data and Figure).

Calculate the output signal y(t) as a function of A_p . DATOS:

- $\omega_1 = 2\pi \cdot 64krad/s$
- $\omega_2 = 2\pi \cdot 128krad/s$
- $\omega_d = 2\pi \cdot 2krad/s \cdot V$
- $\omega_p = 2\pi \cdot 400 krad/s$
- $p_{OL}(t) = 2 \cdot cos(\omega_p t)$

RESULTS FOR PROBLEM $y(t) = A_p \cdot \left[1 + \left(\frac{\omega_d}{2\omega_1} \right) \cos(\omega_1 t) + \left(\frac{\omega_d}{2\omega_2} \right) \cos(\omega_2 t) \right]$

Problem 2.8

A given 1kHz frequency tone x(t), with a 1V amplitude, DSB-AM modulates a 1MHz carrier c(t). The following figure shows the modulated signal y(t) characterized by a maximum value of 7V, and a minimum value of 1V.

a. State the type of modulation and determine the modulation index as well as the carrier's amplitude (with its units).