

Linear Algebra I

Chapter 5. Inner Product Spaces

Boqing Xue

WELCOME! 2023 Fall

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

A Quick Review

• Fact: Every real *n*-dimensional vector space V is isomorphic to \mathbb{R}^n .

Observation: Vectors in \mathbb{R}^n have norm, distance, angle, orthogonality, etc. Question: What about vectors in V?

- Dot product in \mathbb{R}^n : $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$.
- Norm in \mathbb{R}^n : $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.
- Distance in \mathbb{R}^n : $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$.
- Angle in \mathbb{R}^n : $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$.

General Definition of Inner Product

Definition. Let V be an \mathbb{F} -vector space. An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that the following axioms are satisfied.

(i)
$$\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$$
 $(\forall \mathbf{u}, \mathbf{v} \in V)$.

(ii)
$$\langle k\mathbf{u} + \ell\mathbf{v}, \mathbf{w} \rangle = k \langle \mathbf{u}, \mathbf{w} \rangle + \ell \langle \mathbf{v}, \mathbf{w} \rangle$$
 $(\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V, \forall k, l \in \mathbb{R}).$

(iii)
$$\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$$
 $(\forall \mathbf{v} \in V)$. And $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$.

In this case, we call $(V, \langle \cdot, \cdot \rangle)$ a inner product space.

Remark: When $\mathbb{F} = \mathbb{R}$, we may ignore the "conjugate".

Remark: When $\mathbb{F} = \mathbb{R}$, we also call it real inner product space;

When $\mathbb{F} = \mathbb{C}$, we also call it unitary space.

Remark: One always has
$$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{0} \rangle = 0$$
.

Remark: By (i) and (ii), we have

$$\langle \mathbf{w}, k\mathbf{u} + I\mathbf{v} \rangle = \overline{k} \langle \mathbf{w}, \mathbf{u} \rangle + \overline{I} \langle \mathbf{w}, \mathbf{v} \rangle.$$

Example. Let $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{R}^n$. For $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$, define

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + \ldots + u_n v_n.$$

Then $(V, \langle \cdot, \cdot \rangle)$ forms a real inner product space.

Example. Let $\mathbb{F} = \mathbb{C}$ and $V = \mathbb{C}^n$. For $\mathbf{z} = (z_1, \dots, z_n)$ and $\mathbf{v} = (w_1, \dots, w_n)$, define

$$\langle \mathbf{z}, \mathbf{w} \rangle = z_1 \overline{w_1} + \ldots + z_n \overline{w_n}.$$

Then $(V, \langle \cdot, \cdot \rangle)$ forms a real inner product space.

Example. Let $\mathbf{u}=(u_1,u_2)$, $\mathbf{v}=(v_1,v_2)$. Prove that $\langle\cdot,\cdot\rangle$ given below is a real inner products on \mathbb{R}^2 : $\langle\mathbf{u},\mathbf{v}\rangle=u_1v_1+u_1v_2+u_2v_1+2u_2v_2$.

Proof:

Example. Let $A \in M_n(\mathbb{R})$ be invertible. Suppose that $\langle \cdot, \cdot \rangle$ is a real inner product on \mathbb{R}^n . Prove that $\langle \cdot, \cdot \rangle_A$ defined by (view $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ as column matrices) $\langle \mathbf{u}, \mathbf{v} \rangle_A = \langle A\mathbf{u}, A\mathbf{v} \rangle$, $(\mathbf{u}, \mathbf{v} \in \mathbb{R}^n)$ is also a real inner product on \mathbb{R}^n .

Proof:

Norm and Distance

Definition. If $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, then the norm of a vector $\mathbf{v} \in V$ is

 $\|\mathbf{v}\| = \sqrt{\langle v, v \rangle}.$

The distance between two vectors is

$$d(u,v)=\|u-v\|.$$

Vectors with norm 1 are called unit vectors.

Example. In \mathbb{R}^2 , let $\mathbf{u}=(1,0)$ and $\mathbf{v}=(0,1)$. Evaluate $\|\mathbf{u}\|$, $\|\mathbf{v}\|$ and $d(\mathbf{u},\mathbf{v})$ with the following two inner products, respectively.

- (a) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$;
- (b) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_1 v_2 + u_2 v_1 + 2 u_2 v_2.$

Solution:

Basic Properties

Theorem. If \mathbf{u}, \mathbf{v} are vectors in an inner product space, and if k is a scalar, then

- $\diamond \|\mathbf{v}\| \ge 0$ with equality if and only if $\mathbf{v} = 0$.
- $\diamond \|k\mathbf{v}\| = |k| \cdot \|\mathbf{v}\|.$
- $\diamond d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u}).$
- $\diamond d(\mathbf{u}, \mathbf{v}) \geq 0$ with equality if and only if $\mathbf{v} = \mathbf{u}$.

Parallelogram Equation & Polarization identity

Theorem. (Parallelogram Equation) If \mathbf{u}, \mathbf{v} are vectors in an inner product space, then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$

Theorem. (Polarization identity) Let u,v are vectors in an inner product space. When $\mathbb{F}=\mathbb{R},$ we have

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4} \sum_{k=0}^{1} \left\| \mathbf{u} + (-1)^k \mathbf{v} \right\|^2 = \frac{1}{4} \left(\| \mathbf{u} + \mathbf{v} \|^2 - \| \mathbf{u} - \mathbf{v} \|^2 \right).$$

When $\mathbb{F} = \mathbb{C}$, it satisfies that

$$\begin{split} \langle \mathbf{u}, \mathbf{v} \rangle &= \frac{1}{4} \sum_{k=0}^{3} \|\mathbf{u} + \mathbf{i}^{k} \mathbf{v}\|^{2} \\ &= \frac{1}{4} \left(\|\mathbf{u} + \mathbf{v}\|^{2} + \mathbf{i} \|\mathbf{u} + \mathbf{i} \mathbf{v}\|^{2} - \|\mathbf{u} - \mathbf{v}\|^{2} - \mathbf{i} \|\mathbf{u} - \mathbf{i} \mathbf{v}\|^{2} \right) \end{split}$$

Example. Show that the following $\langle \cdot, \cdot \rangle$ is an inner products on V, respectively. And compute the inner products, norms and the distances.

(1)
$$\mathbb{F} = \mathbb{R}$$
, $V = C[-\pi, \pi]$, $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt$.
Let $f(t) = t$, $g(t) = t^2$. Evaluate $||f||$, $||g||$ and $\langle f, g \rangle$.

(2)
$$\mathbb{F} = \mathbb{R}$$
, $V = M_n(\mathbb{R})$, $\langle A, B \rangle = \text{tr}(B^T A)$.
Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$. Evaluate $\langle A, B \rangle$, $||A||$ and $d(A, B)$.

Solution:

Problem*: (1)'
$$\mathbb{F} = \mathbb{C}$$
, $V = C_{\mathbb{C}}[-\pi, \pi]$ (continuous complex-valued functions), $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$.

Problem*: (2)'
$$\mathbb{F} = \mathbb{C}$$
, $V = M_n(\mathbb{C})$, $\langle A, B \rangle = \operatorname{tr}(B^*A)$.

Example. Show that the following $\langle \cdot, \cdot \rangle$ is an inner products on P_n (with real coefficinets), respectively. And compute the inner products, norms and the distances.

(3)
$$\mathbb{F} = \mathbb{R}$$
, $V = P_n$, $\left\langle \sum_{k=0}^n a_k x^k, \sum_{k=0}^n b_k x^k \right\rangle = \sum_{k=0}^n a_k b_k$.

(4) $\mathbb{F} = \mathbb{R}$, $V = P_n$, given distinct $x_0, x_1, \dots, x_n \in \mathbb{R}$,

$$\langle p, q \rangle = \sum_{j=0}^{n} p(x_j) q(x_j)$$
 (called evaluation inner product).

In (3) and (4), let
$$n=2$$
, $x_0=-2$, $x_1=0$, $x_2=2$. Take $p(x)=x^2$ and $q(x)=1+x$. Evaluate $\langle p,q\rangle$ and $\|p\|$.

Solution:

Problem*: (3)' $\mathbb{F} = \mathbb{R}$, $V = P_n$ (with complex coefficients), $\left\langle \sum_{k=0}^{n} a_k x^k, \sum_{k=0}^{n} b_k x^k \right\rangle = \sum_{k=0}^{n} a_k \overline{b_k}$.

Example.

Show that the following $\langle \cdot, \cdot \rangle$ is an inner products on V.

(5)
$$V = \mathbb{R}^{\infty} = \{(x_1, x_2, \dots, x_n, \dots) : \sum_{i=1}^{\infty} x_i^2 < \infty\}, \langle (x_i), (y_i) \rangle = \sum_{i=1}^{\infty} x_i y_i.$$

Proof:

Self-adjoint Hermitian Matrix

Definition. Let $\mathbf{u}, \mathbf{v} \in M_{n \times 1}(\mathbb{C})$ be column vectors. Then the (complex) inner product of \mathbf{u} and \mathbf{v} is given by

$$\mathbf{u}\cdot\mathbf{v}=\mathbf{v}^*\,\mathbf{u}.$$

Example. Suppose that $A \in M_{m \times n}(\mathbb{C})$, $u \in M_{n \times 1}(\mathbb{C})$ and $v \in M_{m \times 1}(\mathbb{C})$. Then $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^*\mathbf{v}$.

Definition. A matrix $A \in M_n(\mathbb{C})$ is said to be self-adjoint/Hermitian if $A^* = A$.

Example. The eigenvalues of an Hermitian matrix are real numbers. Proof:

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

A SECONDARY OF SEC

Norm and Distance

Now we always assume $ig(V,\,\langle\cdot,\cdot
angleig)$ is a real inner product space.

Theorem. For $\mathbf{u}, \mathbf{v} \in V$, we have

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|.$$

Proof:

Remark: $-1 \leq \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \leq 1$. So it is reasonable to define the angle θ between vectors u and v as

$$\theta = \arccos\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}\right).$$

Corollary. For $\mathbf{u}, \mathbf{v} \in V$, the following inequalities hold.

$$\diamond \|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$
. (Triangular inequality)

$$\diamond d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$
. (Triangular inequality)

Orthogonality

ullet $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$.

Definition. We say that \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Example. Prove that the following vectors are pairwise orthogonal in given inner product spaces.

(1)
$$V = M_2$$
, $\langle A, B \rangle = \operatorname{tr}(B^T A)$.

Take
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$.

Proof:

Orthogonality

Example. Prove that the following vectors are pairwise orthogonal in given inner product spaces.

(2)
$$\mathbb{F} = \mathbb{R}$$
, $V = C[-\pi, \pi]$, $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt$.
Take $f_m(t) = \sin mt$, $g_n(t) = \cos nt$ and $h(t) = 1/\sqrt{2}$.

(3)
$$\mathbb{F} = \mathbb{C}$$
, $V = C_{\mathbb{C}}[-\pi, \pi]$ $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$. (the space of all continuous complex-valued functions) Take $f_n(t) = e^{\mathrm{i}nt} \ (n \in \mathbb{Z})$.

Proof:

Gou-Gu Theorem

Theorem. (Gou-Gu Theorem) Suppose \mathbf{u} and \mathbf{v} are orthogonal vectors in an inner product space. Then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Example. Let
$$\mathbb{F} = \mathbb{R}$$
, $V = P_2$ and $\langle p, q \rangle = \int_{-1}^1 p(x) q(x) dx$. Verify Gou-Gu Theorem with $p(x) = x$ and $q(x) = x^2$.

Orthogonal Complements

Definition. If W is a subspace of an inner product space V, then the orthogonal complement of W is defined by

$$W^{\perp} = \{ \mathbf{v} : \langle \mathbf{v}, \mathbf{w} \rangle = 0 (\forall \mathbf{w} \in W) \}.$$

Theorem. Let W be a subspace of an inner product space V.

- (1) W^{\perp} is a subspace of V.
- (2) $W^{\perp} \cap W = \{ \mathbf{0} \}.$
- (3) If V is finite-dimensional, then $(W^{\perp})^{\perp} = W$.

Proof:

Remark: The statement (3) may be incorrect when V is infinite-dimensional. It would be correct provided that W is a "closed" subspace.

Recall: Examples

Example. Let W be the subspace of \mathbb{R}^6 spanned by the vectors

$$\mathbf{w}_1 = (1, 3, -2, 0, 2, 0), \quad \mathbf{w}_2 = (2, 6, -5, -2, 4, -3)$$

 $\mathbf{w}_3 = (0, 0, 5, 10, 0, 15), \quad \mathbf{w}_4 = (2, 6, 0, 8, 4, 18).$

Find a basis for the orthogonal complement of \ensuremath{W} under Euclidean inner product.

Solution:

Example. Let V = C[-1, 1], and

$$\langle f,g\rangle=\int_{-1}^1f(x)g(x)dx,\quad (f,g\in V).$$

Let V_e (V_o) be the space of even (odd, respectively) functions in V. Prove that $V_o^\perp = V_e$.

Proof:

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- $\S 5.2$ Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Orthonormal Sets

Philosophy: Basis is designed for a vector space. Now there is a inner product, the basis vectors can have "angles".

Definition.

- \diamond A set of two or more vectors in an inner product space is called orthogonal if all pairs of distinct vectors in the set are orthogonal.
- ♦ An orthogonal set in which each vectors has norm 1 is called orthonormal.
- ♦ If a basis is orthogonal, then we say it is an orthogonal basis.
- ♦ If a basis is orthonormal, then we say it is an orthonormal basis.

Example. In \mathbb{R}^3 with Euclidean inner product, let $S=\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$, where $\mathbf{u}_1=(0,1,0),\quad \mathbf{u}_2=(1,0,1),\quad \mathbf{u}_3=(1,0,-1).$

Verify that the set S is orthogonal. Construct an orthonormal basis by normalising these vectors.

Solution:

Example. Show that the following sets are orthonormal in given inner product spaces.

- (1) $V = M_n$, $\langle A, B \rangle = \text{tr}(B^T A)$, the standard basis.
- (2) $V = P_n$, $\left\langle \sum_{k=0}^n a_k x^k, \sum_{k=0}^n b_k x^k \right\rangle = \sum_{k=0}^n a_k b_k$. $B = \{1, x, x^2, \dots, x^n\}$.

Proof:

Example. Show that the following sets are orthonormal in given inner product spaces.

(3)
$$V = C[-\pi, \pi], \quad \langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt.$$

$$B = \left\{ \frac{1}{\sqrt{2}}, \sin x, \sin 2x, \dots, \sin kx, \cos x, \cos 2x, \dots, \cos \ell x \right\}.$$

(4)
$$V = C_{\mathbb{C}}[-\pi, \pi], \quad \langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt.$$

 $B = \left\{ e^{inx} : |n| \le N \right\}.$

Proof:

Properties of Orthogonal Basis

Theorem. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthogonal set of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$, then S is linearly independent.

Proof:

Theorem. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthogonal basis for an inner product space V, and if \mathbf{u} is any vector in V, then

$$\boldsymbol{u} = \frac{\langle \boldsymbol{u}, \boldsymbol{v}_1 \rangle}{\|\boldsymbol{v}_1\|^2} \boldsymbol{v}_1 + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_2 \rangle}{\|\boldsymbol{v}_2\|^2} \boldsymbol{v}_2 + \dots + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_n \rangle}{\|\boldsymbol{v}_n\|^2} \boldsymbol{v}_n.$$

Proof:

Remark: When S is an orthonormal basis,

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Example. Let $\mathbf{v}_1 = (0, 2, 0)$, $\mathbf{v}_2 = (3, 0, 3)$, $\mathbf{v}_3 = (-4, 0, 4)$ and $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$.

- (1) Verify that S form an orthogonal basis for \mathbb{R}^3 with Euclidean inner product.
- (2) Find $[u]_B$, where u = (1, 2, 4).

Solution:

Orthogonal Projections

Theorem. (Projection Theorem) If W is a subspace of a finite-dimensional inner product space V, then every vector \mathbf{u} in V can be expressed in exactly one way as

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2,$$

where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

Remark: We denote $\mathbf{w}_1 = \mathsf{proj}_W(\mathbf{u})$ and $\mathbf{w}_2 = \mathsf{proj}_{W^{\perp}}(\mathbf{u})$.

Theorem. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and W be a subspace of V with an orthogonal basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$. Then for any $\mathbf{u} \in V$,

$$\mathsf{proj}_{\mathcal{W}} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_1 + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_r \rangle}{\|\mathbf{v}_r\|^2} \mathbf{v}_r$$

Proof:

Remark: When S is an orthonormal basis for W,

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2} + \cdots, + \langle \mathbf{u}, \mathbf{v}_{r} \rangle \mathbf{v}_{r}.$$

Example. Let $\mathbb{F} = \mathbb{R}$, $V = C[-\pi, \pi]$ and

$$\langle f,g\rangle=rac{1}{\pi}\int_{-\pi}^{\pi}f(t)g(t)dt,\quad (\forall f,g\in V).$$

Find the orthogonal projection of h(t) = t on the subspace $W = \text{span}\{\cos t, \sin t\}$.

Solution:

Gram-Schmidt Process

Theorem. Every nonzero finite-dimensional inner product space has an orthonormal basis.

Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 be a basis for V .

Step 1-1. Take
$$\mathbf{u}_1 = \mathbf{v}_1$$
.

Step 1-2. Take
$$\mathbf{u}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 = \text{proj}_{\text{span}\{\mathbf{u}_1\}^{\perp}}(\mathbf{v}_2).$$

Step 1-3. Take
$$\mathbf{u}_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 - \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 = \text{proj}_{\text{span}\{\mathbf{u}_1, \mathbf{u}_2\}^{\perp}}(\mathbf{v}_3).$$

.

Step 1-n. Take

$$\boldsymbol{u}_n = \boldsymbol{v}_n - \frac{\langle \boldsymbol{v}_n, \boldsymbol{u}_1 \rangle}{\|\boldsymbol{u}_1\|^2} \boldsymbol{u}_1 - \ldots - \frac{\langle \boldsymbol{v}_n, \boldsymbol{u}_{n-1} \rangle}{\|\boldsymbol{u}_{n-1}\|^2} \boldsymbol{u}_{n-1} = \operatorname{proj}_{\operatorname{span}\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_{n-1}\}^{\perp}} (\boldsymbol{v}_n).$$

Conclusion of step 1:

We obtain an orthogonal basis $S' = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ for V.

Step 2. Let
$$\mathbf{w}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$$
 $(1 \le i \le n)$.

Conclusion of step 2:

We obtain an orthonormal basis $S'' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ for V.

Example. Consider $\mathbb{F} = \mathbb{R}$ and P_2 with the inner product given by

$$\langle p,q\rangle=\int_{-1}^{1}p(x)q(x)dx,\quad (\forall p,q\in P_2).$$

Apply the Gram-Schmidt process to transform the standard basis $\{1, x, x^2\}$ for P_2 into an orthonormal basis $\{q_1(x), q_2(x), q_3(x)\}$.

Solution:

Remark: These polynomials are called Legendre polynomials.

Extention of Orthonormal Basis

By the Gram-Schmidt process, orthonormal sets can be extened to orthonormal bases.

Theorem. If W is a finite-dimensional inner product space, then:

- (a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W.
- (b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.

QR-Decomposition

Theorem. Suppose that $A \in M_{m \times n}$ and $\operatorname{rank}(A) = n$. Then A can be factored as A = QR, where $Q \in M_{m \times n}$ is an matrix with orthonormal column vectors, and R is an invertible upper triangular matrix.

$$A = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \langle \mathbf{c}_1, \mathbf{q}_1 \rangle & \langle \mathbf{c}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{c}_1, \mathbf{q}_2 \rangle & \langle \mathbf{c}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{c}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{c}_1, \mathbf{q}_n \rangle & \langle \mathbf{c}_2, \mathbf{q}_n \rangle & \cdots & \langle \mathbf{c}_n, \mathbf{q}_n \rangle \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \langle \mathbf{c}_1, \mathbf{q}_1 \rangle & \langle \mathbf{c}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{c}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{c}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{c}_n, \mathbf{q}_n \rangle \end{bmatrix} = QR.$$

An Example

Example. Find a
$$QR$$
-decomposition of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

Solution:

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Definition of Orthogonal Matrix

Recall: "Orthonormal basis" play an important role in an inner product space.

Question: What is the relationship between two orthonormal bases?

How does the transition matrix look like?

(from an orthonormal basis to standard bases)

Definition. A matrix $A \in M_n(\mathbb{R})$ is said to be orthogonal if one of the following equivalent conditions holds:

- $(1) A^T A = AA^T = I_n;$
- $(2) A^{-1} = A^{T};$
- (3) The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product;
- (4) The column vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product

Proof of the equivalence:

Examples

Example. Show that the matrix

$$\begin{bmatrix}
3/7 & 2/7 & 6/7 \\
-6/7 & 3/7 & 2/7 \\
2/7 & 6/7 & -3/7
\end{bmatrix}$$

is orthogonal. Solution:

Example. Let
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
.

Whether the matrices R_{θ} , R_{θ}^{T} , R_{θ}^{-1} , $R_{\theta}R_{\theta'}$ orthogonal? Solution:

Definition of Unitary Matrix

Definition. A matrix $A \in M_n(\mathbb{C})$ is said to be unitary if one of the following equivalent conditions holds:

- (1) $A^*A = AA^* = I_n$;
- (2) $A^{-1} = A^*$;
- (3) The row vectors of A form an orthonormal set in \mathbb{C}^n with the Euclidean inner product;
- (4) The column vectors of A form an orthonormal set in \mathbb{C}^n with the Euclidean inner product

Example. Show that a 1×1 matrix $[z] \in M_1(\mathbb{C})$ is unitary if and only if |z| = 1.

Proof:

Properties of Orthogonal/Unitary Matrix

Theorem. Let $A, B \in M_n(\mathbb{R})$ be orthogonal matrices. Then

- $\diamond A^T$ is orthogonal;
- $\diamond A^{-1}$ is orthogonal;
- ♦ AB is orthogonal;
- $\diamond \det(A) = \pm 1. \quad |\det(A)| = 1$

Proof:

Theorem. Let $A, B \in M_n(\mathbb{C})$ be unitary matrices. Then

- ♦ A* is unitary;
- $\diamond A^{-1}$ is unitary;
- ♦ AB is unitary;
- $\diamond \det(A) = e^{i\theta}$ for some $0 \le \theta < 2\pi$. $|\det(A)| = 1$

Properties of Orthogonal/Unitary Matrix

Theorem. If $A \in M_n(\mathbb{R})$, then the following are equivalent.

- (1) A is orthogonal.
- (2) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .
- (3) $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Proof:

Remark: As a linear transformation, T_A preserves norm, angle and area. And it preserve (or reverses) the orientation if its determinant is 1 (or -1, respectively).

Corollary. All possible eigenvalues of an orthogonal matrix are ± 1 .

Proof:

Problem*: Suppose that A is an $n \times n$ orthogonal matrix, where n is odd.

Also suppose that det(A) = 1. Prove that 1 is an eigenvalue of A.

Properties of Orthogonal/Unitary Matrix

Theorem. If $A \in M_n(\mathbb{C})$, then the following are equivalent.

- (1) A is unitary.
- (2) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{C}^n .
- (3) $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

Corollary. Any possible eigenvalue λ of a unitary matrix satisfies that $|\lambda|=1$.

Transition Matrix

Theorem. Let S be an orthonormal basis for an n-dimensional inner product space V over \mathbb{F} . Let $(\mathbf{u})_S = (u_1, u_2, \cdots, u_n)$ and $(\mathbf{v})_S = (v_1, v_2, \cdots, v_n)$. Then

Remark: When $\mathbb{F} = \mathbb{R}$, we may ignore the "conjugate".

Theorem. Let V be a finite-dimensional inner product space. If P is the transition matrix from one orthonormal basis to another orthonormal basis for V, then P is an orthogonal/unitary matrix.

Proof:

Adjoint Operator*

Theorem. Let $(V, \langle \cdot, \cdot \rangle_V)$ be a finite-dimensional complex inner product spaces. Suppose that $T:V\to V$ is a linear operator. Then there exists a unique linear transformation $T^*:V\to V$ such that

$$\langle T\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, T^*\mathbf{y} \rangle, \quad (\forall \mathbf{x}, \mathbf{y} \in V).$$

Remark: We do not prove the above theorem here.

Remark: Under a given orthonormal bases, we have $[T^*] = [T]^*$.

The main purpose of this page is:

"(conjugate) transpose" can be defined in an abstract way.

Remark: A linear operator $U: V \to V$ is said to be unitary if $UU^* = U^*U = I$.

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Concept of Diagonalisazion

Recall: "Orthonormal basis" play an important role in an inner product space.

Recall: A "diagonalizable" matrix is relatively easy to determine.

Our interest: an operator T on V such that eigenvectors form an orthonormal basis for V.

Example. The projection on the xz-plane in \mathbb{R}^3 is given by

$$T(x, y, z) = (x, 0, z), (x, y, z) \in \mathbb{R}^3.$$

Indeed, it has standard matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

The vectors \mathbf{e}_1 and \mathbf{e}_3 are eigenvectors corresponding to the eigenvalue 1; and \mathbf{e}_2 is an eigenvector corresponding to 0.

Conditions for Orthogonal Diagonalizability

Definition. Let $A \in M_n(\mathbb{R})$. If

$$P^T A P = P^{-1} A P = D$$

for some orthogonal matrix P and some diagonal matrix D, then we say that A is orthogonally diagonalizable and P orthogonally diagonalizes A.

Remark: In numerical algorithms, the complexity of dealing with P^T is much less than with P^{-1} .

Theorem. Let $A \in M_n(\mathbb{R})$, then the following are equivalent.

- (1) A is orthogonally diagonalizable.
- (2) A has an orthonormal set of n eigenvectors.
- (3) A is symmetric.

Problem*: Prove $(1)\Leftrightarrow(2)$ and $(1)\Rightarrow(3)$.

Remark: The proof of (3) \Rightarrow (1) is beyond the scope of the course.

Remark:
$$P = [\begin{array}{c|ccc} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{array}], D = \begin{bmatrix} \lambda_1 & \dots & \lambda_n \\ & \ddots & & \\ & & & \lambda_n \end{bmatrix}.$$

Here $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ $(1 \le i \le n)$, and the set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is orthonormal.

Conditions for Unitary Diagonalizability

Definition. Let $A \in M_n(\mathbb{C})$. If

$$U^*AU = U^{-1}AU = D$$

for some unitary matrix U and diagonal matrix D, then we say that A is unitarily diagonalizable and U unitarily diagonalizes A.

Theorem. Let $A \in M_n(\mathbb{C})$, then the following are equivalent.

- (1) A is unitarily diagonalizable.
- (2) A has an orthonormal set of n eigenvectors.
- (3) A is normal, i.e., $A^*A = AA^*$.

Remark: Hermitian, unitary matrices are all normal.

Remark: The proof of this theorem is beyond the scope of the course.

Orthogonal Diagonalization

Theorem. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix, then eigenvectors from different eigenspaces are orthogonal. Proof:

(33)

Remark: Same holds for an Hermitian matrix in the complex case.

Example. Suppose that $A \in M_3(\mathbb{R})$ is symmetric and rank(A) = 2. Suppose that

$$A \left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \\ -1 & 1 \end{array} \right] = \left[\begin{array}{cc} -2 & 1 \\ 0 & 2 \\ 2 & 1 \end{array} \right]$$

Find all the eigenvalues of A. For each eigenvalue, find an eigenvector corresponding to it.

Proof:

An Example

Fact: Suppose that all the distinct eigenvalues of $A \in M_n$ are $\lambda_1, \ldots, \lambda_k$, and $\{\mathbf{u}_{i,1}, \ldots, \mathbf{u}_{i,i_n}\}$ are an orthonormal basis for $E_{\lambda_i}(A)$ $(1 \le i \le k)$. Then

$$\left\{\textbf{u}_{1,1}, \dots, \textbf{u}_{1,n_1}, \textbf{u}_{2,1}, \dots, \textbf{u}_{2,n_2}, \dots, \textbf{u}_{k,1}, \dots, \textbf{u}_{k,n_k}\right\}$$

form an orthonormal basis for \mathbb{R}^n .

Remark: We only need to apply Gram-Schmidt process on each eigenspaces.

Example. Orthogonal diagonalize the matrix $A = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{bmatrix}$.

Problem*: Summarize the main steps of orthogonal diagonalization.

An Example

Example. Consider

$$A=\left[egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight]\in \mathcal{M}_2(\mathbb{C}).$$

Find a unitary matrix U and unitarily diagonalize A.

Proof:

Spectral Decomposition of Symmetric Matrix

Theorem. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Then there are $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and orthonormal vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ such that $A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$.

Proof:

Remark: The above equality is called a spectral decomposition of A.

Remark: In above theorem, $A\mathbf{u}_i = \lambda_i \mathbf{u}_i \ (1 \le i \le n)$.

And A is orthogonally diagonalized by $P = [\begin{array}{cccc} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \end{array}]$.

Problem: Prove that the square matrix $\mathbf{u}_1\mathbf{u}_1^T$ is the orthogonal projection on span $\{\mathbf{u}_1\}$.

Spectral Decomposition of Normal Matrix*

Theorem. Let $A \in M_n(\mathbb{C})$ be a normal matrix. Then there are $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and orthonormal vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n \in \mathbb{C}^n$ such that

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^* + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^* + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^*.$$

Remark: When A is normal, there are matrices E_1, \ldots, E_k with

- (i) $E_i^2 = E_i = E^* (1 \le i \le k)$;
- (ii) $E_i E_j = 0 \ (1 \le i \ne j \le k);$
- (iii) $\sum_{i=1}^k E_i = I$,

and distinct numbers $\mu_1,\ldots,\mu_k\in\mathbb{C}$ such that

$$A = \sum_{i=1}^k \mu_i E_i.$$

Indeed, the numbers μ_1, \ldots, μ_k are all different eigenvalues of A, and E_i is the orthogonal projection on the eigenspace $E_{\mu_i}(A)$.

Spectral Decomposition of Hermitian Matrix*

In quantum physics, each observable can be viewed as an Hermitian (self-adjoint) operator, whose spectral are real. Let

$$A = \sum_{i=1}^{k} \mu_i E_i, \tag{1}$$

where $\mu_1 < \mu_2 < ... < \mu_n$.

Remark: For an operator on infinite-dimensional space, there spectrum may contain "continuous" part. Then the summation ' \sum ' in (1) becomes integration ' \int '.

Common (Complex) Eigenvectors*

Theorem. Suppose that the two matrices $A, B \in M_n(\mathbb{C})$ commute, i.e., AB = BA. Then they have a common eigenvector.

Remark: The eigenvalues of A and B, to which this common eigenvector corresponds, can be different.

Remark: In physics, two commutative observables (i.e., Hermitian operators) have common eigenvectors that forming an orthonormal basis, which means that they can be observed simultaneously.

The Nondiagonalizable Real Matrix*

Theorem. (Schur's Theorem) If the characteristic polynomial of $A \in M_n(\mathbb{R})$ has n roots $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, then there is an orthogonal matrix P such that P^TAP is an upper triangular matrix of the form

$$P^{T}AP = \begin{bmatrix} \lambda_{1} & * & * & \cdots & * \\ 0 & \lambda_{2} & * & \cdots & * \\ 0 & 0 & \lambda_{3} & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} := S$$

In particular, $A = PSP^T$ is called a Schur decomposition of A.

Remark: In numerical algorithms,

- \diamond the matrix S is much simpler than A;
- the orthogonal matrix does not magnify round-off error, i.e.,

$$\mathbf{x} = \hat{\mathbf{x}} + \mathbf{e} \implies \|P\mathbf{x} - P\hat{\mathbf{x}}\| = \|P\mathbf{e}\| = \|\mathbf{e}\|.$$

The Nondiagonalizable Real Matrix*

Theorem. (Hessenberg's Theorem) If $A \in M_n(\mathbb{R})$, then there is an orthogonal matrix P such that

$$P^{T}AP = \begin{bmatrix} * & * & \dots & * & * & * \\ * & * & \dots & * & * & * \\ 0 & * & \ddots & * & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & * & * & * \\ 0 & 0 & \dots & 0 & * & * \end{bmatrix} := H.$$

In particular, $A = PHP^T$ is called an upper Hessenberg decomposition of A.

Remark: In numerical algorithms,

- \diamond the matrix H is much simpler than A;
- the orthogonal matrix does not magnify round-off error.

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Property of $A^T A$

Background: In application, data usually form a matrix A in $M_{m \times n}(\mathbb{R})$, where m and n may be different.

Idea: Find square matrices that contain as much information as A does. Direction: $A^TA \in M_n(\mathbb{R})$; $AA^T \in M_m(\mathbb{R})$!

```
Theorem. Let A \in M_{m \times n}(\mathbb{R}). Then \diamond Null(A) = \text{Null}(A^T A); \diamond Row(A) = \text{Row}(A^T A); \diamond Col(A^T) = \text{Col}(A^T A); \diamond rank(A) = \text{rank}(A^T A).
```


Singular Value

Theorem. Let $A \in M_{m \times n}(\mathbb{R})$. Then:

- $\diamond A^T A$ is orthogonally diagonalizable;
- \diamond The eigenvalues of A^TA are nonnegative.

Proof:

Definition. Let $A \in M_{m \times n}(\mathbb{R})$, and $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of $A^T A$. Then the numbers

$$\sigma_1 = \sqrt{\lambda_1}, \ \sigma_2 = \sqrt{\lambda_2}, \ \dots, \ \sigma_n = \sqrt{\lambda_n}.$$

are called the singular values of A.

Remark: We usually assume that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, and so $\sigma_1 > \sigma_2 > \ldots > \sigma_n$.

Examples

Example. Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Find the singular values of A and A^T , respectively.

Solution:

Question*: Prove that the singular values of A and A^T are same, except for some zero values.

Singular Value Decomposition (A Quick View)

A quick view on "SVD":

Let $A \in M_{m \times n}(\mathbb{R})$ and rank(A) = r. Then there are orthogonal matrix $U \in M_m$ and $V \in M_n$ such that

$$A = U\Sigma V$$
,

where

Notations occur in next several pages: Let $A \in M_{m \times n}(\mathbb{R})$ and rank(A) = r. Eigenvalues of $A^T A$ are

$$\lambda_1 > \lambda_2 > \cdots > \lambda_r > \lambda_{r+1} = \ldots = \lambda_n = 0$$
,

with corresponding orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$. The singular values of A are $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > \sigma_{r+1} = \dots = \sigma_n = 0$.

Singular Value Decomposition (Geometric Version)

Theorem. Let $A \in M_{m \times n}(\mathbb{R})$ and rank(A) = r. There there is

- \diamond an orthonormal basis $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ for \mathbb{R}^n ;
- \diamond an orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$ for \mathbb{R}^m ;
- \diamond positive scalars $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$, such that

$$A\mathbf{v}_i = \begin{cases} \sigma_i \mathbf{u}_i, & (1 \le i \le r), \\ 0, & (r < i \le n), \end{cases} \quad A^T \mathbf{u}_i = \begin{cases} \sigma_i \mathbf{v}_i, & (1 \le i \le r), \\ 0, & (r < i \le m). \end{cases}$$

Proof:

Take $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$. Here $||A \mathbf{v}_i|| = \sigma_i$.

Then extend it to an orthonormal basis.

Remark: There exist orthonormal basis $\mathbf{v}_1,\ldots,\mathbf{v}_n$ such that $A\mathbf{v}_1,\ldots,A\mathbf{v}_n$ are orthogonal. The quantities σ_i turns $A\mathbf{v}_1,\ldots,A\mathbf{v}_r$ into unit vectors $\mathbf{u}_1,\ldots,\mathbf{u}_r$.

Remark: In matrix notation, we have $A = U_r \Sigma_r V_r^T$, i.e.,

$$A_{m\times n}\left[\begin{array}{c|c|c|c} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_r \end{array}\right]_{n\times r}=\left[\begin{array}{c|c|c} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{array}\right]_{m\times r}\left[\begin{array}{c|c|c} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{array}\right]_{r\times r}.$$

Effect of a 2×2 Matrix

By geometric SVD, there must be orthonormal vectors $\mathbf{v}_1, \mathbf{v}_2$ such that $A\mathbf{v}_1, A\mathbf{v}_2$ are orthogonal.

Example. Shears of \mathbb{R}^2 :

$$M = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \quad M^T = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}, \qquad M^T M = \begin{bmatrix} 1 & k \\ k & 1 + k^2 \end{bmatrix}.$$

$$M^T M = \left[\begin{array}{cc} 1 & k \\ k & 1 + k^2 \end{array} \right]$$

When k = 2, one has

$$\begin{split} &\lambda_{1,2} = 3 \pm 2\sqrt{2}, \quad \sigma_{1,2} = \sqrt{2} \pm 1, \\ &\mathbf{v}_{1,2} = \left(\frac{1}{\sqrt{4 \pm 2\sqrt{2}}}, \frac{1 \pm \sqrt{2}}{\sqrt{4 + 2\sqrt{2}}}\right), \\ &\mathbf{u}_{1,2} = \left(\frac{\pm 1 + \sqrt{2}}{\sqrt{4 \pm 2\sqrt{2}}}, \frac{\pm 1}{\sqrt{4 \pm 2\sqrt{2}}}\right). \end{split}$$

Singular Value Decomposition (Full Version)

Theorem. Let $A \in M_{m \times n}(\mathbb{R})$ and rank(A) = r. Then there are

- \diamond an orthogonal matrix $U \in M_m(\mathbb{R})$;
- \diamond an orthogonal matrix $V \in M_n(\mathbb{R})$;
- \diamond positive scalars $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$, such that $A = U \Sigma V^T$, where

$$\Sigma = \left[egin{array}{ccc} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & & \end{array}
ight]_{m imes n}.$$

Proof:

Remark: We have

$$U = \left[\begin{array}{c|c} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{array}\right]_{\substack{m \times m}}, \qquad \mathbf{V}^T = \left[\begin{array}{c|c} \mathbf{v}_1^T \\ \hline \mathbf{v}_2^T \\ \hline \vdots \\ \hline \mathbf{v}_n^T \end{array}\right]_{\substack{n \times n} \\ n \times n}.$$

Singular Value Decomposition (Condensed Version)

```
Theorem. Let A \in M_{m \times n}(\mathbb{R}) and rank(A) = r. Then there are
\diamond an orthonormal set \{\mathbf{v}_1,\ldots,\mathbf{v}_r\} in \mathbb{R}^n;
```

- \diamond an orthonormal set $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ in \mathbb{R}^m ;
- \diamond positive scalars $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$,
- such that

$$A = \mathbf{u}_1 \sigma_1 \mathbf{v}_1^T + \dots + \mathbf{u}_r \sigma_r \mathbf{v}_r^T,$$

or equivalently,
$$A = U_r \Sigma_r V_r^T$$

Example. The shear of \mathbb{R}^2 with k=2 has SVD:

$$\left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} \frac{\sqrt{2}+1}{\sqrt{4+2\sqrt{2}}} & \frac{\sqrt{2}-1}{\sqrt{4-2\sqrt{2}}} \\ \frac{1}{\sqrt{4+2\sqrt{2}}} & \frac{-1}{\sqrt{4-2\sqrt{2}}} \end{array}\right] \left[\begin{array}{cc} \sqrt{2}+1 & 0 \\ 0 & \sqrt{2}-1 \end{array}\right] \left[\begin{array}{cc} \frac{1}{\sqrt{4+2\sqrt{2}}} & \frac{1+\sqrt{2}}{\sqrt{4+2\sqrt{2}}} \\ \frac{1}{\sqrt{4-2\sqrt{2}}} & \frac{1-\sqrt{2}}{\sqrt{4-2\sqrt{2}}} \end{array}\right].$$

$$\begin{bmatrix} \frac{\sqrt{2}-1}{\sqrt{4-2\sqrt{2}}} \\ \frac{-1}{\sqrt{4-2\sqrt{2}}} \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{2}+1 & 0 \\ 0 & \sqrt{2}-1 \end{bmatrix}$$

$$\frac{1}{\sqrt{4+2\sqrt{2}}} \frac{1}{\sqrt{4+2\sqrt{2}}}$$

$$\frac{1}{\sqrt{4-2\sqrt{2}}} \frac{1-\sqrt{2}}{\sqrt{4-2\sqrt{2}}}$$

More Properties of SVD*

Fundamental spaces of a matrix:

- $\diamond \operatorname{Col}(A) = \operatorname{Col}(U_r).$
- $\diamond \operatorname{Null}(A) = \operatorname{Col}(V_{n-r}).$
- $\diamond \operatorname{\mathsf{Row}}(A) = \operatorname{\mathsf{Col}}(A^T) = \operatorname{\mathsf{Col}}(V_r).$

Approximation of a matrix:

 \diamond When $k \leq r$, the best approximation of matrix is given by

$$||A - A_k|| = \min_{\mathsf{rank}(B) \le k} ||A - B||.$$

Here $\|\cdot\|$ is some certain norm on M_n , and

$$A_k = \mathbf{u}_1 \sigma_1 \mathbf{v}_1^T + \ldots + \mathbf{u}_k \sigma_k \mathbf{v}_k^T.$$

The most important information of A gathers at upper left part of SVD!

Applications of SVD

Full Version

Condensed Version

Remark: For applications, the condensed version only remains the most important part, which saves space and simplified computations.

Remark: Recall that $\sigma_1 \geq \sigma_2 \geq \dots$

One can even discard the smaller singular values: denoise!

UESTC

压缩后的图像如下图所示。

$$uv^H = egin{pmatrix} 0 & 0 & \cdots & 0 \\ 0.1 & 0.1 & \cdots & 0.1 \\ 0.2 & 0.2 & \cdots & 0.2 \\ \vdots & \vdots & & \vdots \\ 0.9 & 0.9 & \cdots & 0.9 \end{pmatrix} \quad \begin{array}{c} uobie15 \\ uobie15 \\ uobie25 \\ uobie25 \\ uobie25 \\ uobie25 \\ uobie35 \\ uobie25 \\ uobie35 \\$$

Examples

Example. Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

Find a singular value decomposition of A .

Solution:

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Least Squares Fitting to Data

In this section, we only consider real case, i.e., $\mathbb{F} = \mathbb{R}$.

Problem: To obtain a mathematical relationship y = f(x) by "fitting" a curve to points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n).$

Which coefficients $c_0, c_1, \ldots, c_{n-1}$ of a polynomial of n-1 minimizes

$$\sum_{k=1}^{m} |y_k - (c_0 + c_1 x_k + \ldots + c_{n-1} x_k^{n-1})|^2?$$

Matrix Form:

Least Squares Solution

Fact: A linear system $A\mathbf{x} = \mathbf{b}$ may be inconsistent.

Aim: Find a vector that is as "close" to a solution as possible.

Problem: Find a vector $\hat{\mathbf{x}}$ that minimizes $||A\mathbf{x} - \mathbf{b}||$, i.e.,

$$\sum_{i=1}^{m} (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2$$

We call such a vector a least squares solution of the system

If the least squares solution $\hat{\mathbf{x}}$ exists, then

$$||A\hat{\mathbf{x}} - \mathbf{b}|| = \min_{\mathbf{w} \in \mathsf{Col}(A)} ||\mathbf{w} - \mathbf{b}||.$$

Best Approximation

Theorem. (Best Approximation) If W is a subspace of a finite-dimensional inner product space V, and if \mathbf{b} is a vector in V, then $\operatorname{proj}_W(\mathbf{b})$ is the best approximation to \mathbf{b} from W in the sense that

$$\|\mathbf{b} - \operatorname{proj}_{W}(\mathbf{b})\| < \|\mathbf{b} - \mathbf{w}\|$$

for any $\mathbf{w} \in W \setminus \{\operatorname{proj}_W(\mathbf{b})\}.$

Proof:

Remark: $\|\mathbf{b} - \operatorname{proj}_{W}(\mathbf{b})\| = \min_{\mathbf{w} \in W} \|\mathbf{b} - \mathbf{w}\|$. The minimum takes uniquely.

Remark: A least square solution $\hat{\mathbf{x}}$ of the system $A\mathbf{x} = \mathbf{b}$ satisfies

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| = \min_{\mathbf{w} \in Col(A)} \|\mathbf{b} - \mathbf{w}\| \iff A\hat{\mathbf{x}} = \operatorname{proj}_{Col(A)}(\mathbf{b}).$$

Method of Least Squares

Theorem. (1) Least square solutions of a linear system $A\mathbf{x} = \mathbf{b}$ always exist. For any least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$, the orthogonal projection of \mathbf{b} on Col(A) is

$$\operatorname{proj}_{\operatorname{Col}(A)}\mathbf{b} = A\hat{\mathbf{x}}.$$

And it satisfies that $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

(2) For every linear system $A\mathbf{x} = \mathbf{b}$, the associated normal system

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

is consistent, and all solutions are least squares solutions of $A\mathbf{x} = \mathbf{b}$.

Proof:

Remark: $A^T \mathbf{u} = \mathbf{0}$ if and only if $\mathbf{u} \in \text{Col}(A)^{\perp}$

An Example

Example. Find all least squares solutions of the linear system

$$\begin{cases} x_1 + x_2 &= 0 \\ x_2 &= 1 \\ x_1 &= 2 \end{cases}$$

Solution:

Remark: The matrix A^TA may be singular.

An Example

Example. Find the orthogonal projection of the vector $\mathbf{b}=(0,1,2)$ on the subspace W of \mathbb{R}^3 spanned by the vectors

$$\mathbf{w}_1 = (1,0,1), \quad \mathbf{w}_2 = (1,1,0).$$

Least Squares Fitting to Data

Which coefficients $c_0, c_1, \ldots, c_{n-1}$ minimizes

$$\sum_{k=1}^{m} |y_k - (C_0 + c_1 x_1 + \ldots + c_{m-1} x_{m-1}^n)|^2?$$

Method. Consider fitting a polynomial of given degree m, i.e.,

$$y(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1},$$

to m points $(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)$. The coefficients $c_0, c_1, \ldots, c_{n-1}$ can be determined by

$$M^T M \mathbf{c} = M^T \mathbf{y},$$

where the vector \mathbf{c} minimizes $\|\mathbf{y} - M\mathbf{v}\|$ for $\mathbf{v} \in \mathbb{R}^n$. Here

$$M = \begin{bmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_m & \dots & x_m^{n-1} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix}.$$

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Definition of Quadratic Form

Definition. A polynomial with terms all of degree 2, i.e.,

$$Q(x_1, x_2, \ldots, x_n) = \sum_{1 \le i \le j \le n} c_{ij} x_i x_j,$$

is called a quadratic form.

Example. The following are quadratic forms.

$$\diamond Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3.$$

$$Q(x,y) = (x/a)^2 + (y/b)^2$$
.

$$Q(x,y) = (x/a)^2 - (y/b)^2$$
.

$$\diamond Q(x,y)=xy.$$

$$\diamond Q(x_1, x_2, x_3) = 2x_1^2 + 6x_1x_2 - 5x_2^2 + 3x_2x_3.$$

Quadratic Form and Symmetric Matrix

• Since $x_1x_2 = x_2x_1$ as polynomials, we rewrite

$$c_{12}x_1x_2=\frac{c_{12}}{2}x_1x_2+\frac{c_{12}}{2}x_2x_1.$$

Now

$$Q(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j,$$

where $a_{ii} = c_{ii}$ for $1 \le i \le n$ and

$$a_{ij} = \frac{1}{2}c_{ij}, (i < j), \quad a_{ij} = \frac{1}{2}c_{ji}, (i > j).$$

• The matrices appear as

$$Q(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \mathbf{x}^T A \mathbf{x}.$$

Here A is a symmetric matrix.

Quadratic Form and Symmetric Matrix

• For any matrix $C = [c_{ij}] \in M_n(\mathbb{R})$,

$$Q_C(\mathbf{x}) := \mathbf{x}^T C \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_i x_j$$

defines a quadratic form.

- Fact: One has C = A + B, where $A = \frac{1}{2}(C + C^T)$ is symmetric; $B = \frac{1}{2}(C C^T)$ is skew-symmetric.
- Fact: One has $Q_B(\mathbf{x}) = 0$, since $B = -B^T$. Why?
- Conclusion: $Q_C(\mathbf{x}) = Q_A(\mathbf{x})$. The effective part is the symmetric matrix A.

Definition. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. The quadratic form $Q_A(\mathbf{x})$ associated with A is defined to be

$$Q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}, \quad (\forall \mathbf{x} \in \mathbb{R}^n).$$

Remark: If V is a general inner product space, and L is a general operator such that $L^T = L$, then we may also define a quadratic form as $Q_L(\mathbf{v}) = \langle L\mathbf{v}, \mathbf{v} \rangle$ ($\mathbf{v} \in V$).

Examples

Example. Express the quadratic form in the matrix notation $\mathbf{x}^T A \mathbf{x}$, where A is symmetric.

- (1) $2x^2 + 6xy 5y^2$.
- (2) $x_1^2 + 7x_2^2 3x_3^2 + 4x_1x_2 2x_1x_3 + 8x_2x_3$.

Change of Variable in a Quadratic Form

Definition. \diamond The substitution $\mathbf{x} = P\mathbf{y}$ is called a change of variable if P is invertible.

 \diamond The substitution $\mathbf{x} = P\mathbf{y}$ is called an orthogonal change of variable if P is orthogonal.

• We have

$$\mathbf{x}^T A \mathbf{x} = (P\mathbf{y})^T A (P\mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y}.$$

Remark: When P is orthogonal, the right-hand side equals $\mathbf{y}^T(P^{-1}AP)\mathbf{y}$.

Recall: Any symmetric matrix in $M_n(\mathbb{R})$ is orthogonal diagonalizable.

Theorem. If $A \in M_n(\mathbb{R})$ is a symmetric matrix, then there is an orthogonal change of variable $\mathbf{x} = P\mathbf{y}$ that transforms the quadratic form $Q_A(\mathbf{x})$ into a quadratic form $Q_A(\mathbf{y})$ with no cross product terms, i.e.,

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T (P^T A P) \mathbf{y} = \lambda_1 y_1^2 + \ldots + \lambda_n y_n^2$$

Here $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A corresponding to the eigenvectors that form the successive columns of P.

Examples

Example. Find a variable change that diagonalizes the quadratic form

$$Q = 2x_1^2 + 2x_2^2 + 2x_3^2 + 6x_1x_2 + 6x_1x_3 + 6x_2x_3,$$

and express Q in terms of the new variables.

Quadratic Forms in Two Variables

 After orthogonal change of variables, a quadratic form in two variables becomes

$$Q(x,y) = \lambda_1 x^2 + \lambda_2 y^2.$$

Case 1.
$$\lambda_1 > 0$$
, $\lambda_2 > 0$: $Q(x, y) \ge 0$, but = 0 only for $(x, y) = (0, 0)$.

Case 2.
$$\lambda_1 > 0$$
, $\lambda_2 < 0$: $Q(1,0) > 0$ and $Q(0,1) < 0$.

Case 3.
$$\lambda_1 > 0$$
, $\lambda_2 = 0$: $Q(x, y) \ge 0$, but $Q(0, 1) = 0$.

For other cases, we reverse the signs of λ_1 or/and λ_2 .

Positive Definite Matrix / Quadratic Forms

Definition. A symmetric matrix $A \in M_n(\mathbb{R})$, or a quadratic form $\mathbf{x}^T A \mathbf{x}$, is said to be

- \diamond positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$;
- \diamond negative definite if $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq 0$;
- \diamond semi-positive definite if $\mathbf{x}^T A \mathbf{x} \ge 0$ for all \mathbf{x} ;
- \diamond semi-negative definite if $\mathbf{x}^T A \mathbf{x} \leq 0$ for all \mathbf{x} ;
- \diamond indefinite if it has both positive and negative values.

Theorem. If A is a symmetric matrix, then:

- (a) $\mathbf{x}^T A \mathbf{x}$ is positive definite if and only if all eigenvalues of A are positive.
- (b) $\mathbf{x}^T A \mathbf{x}$ is semi-positive definite if and only if all eigenvalues of A are non-negative.
- (c) $\mathbf{x}^T A \mathbf{x}$ is negative definite if and only if all eigenvalues of A are negative.
- (d) $\mathbf{x}^T A \mathbf{x}$ is semi-negative definite if and only if all eigenvalues of A are non-positive.
- (e) $\mathbf{x}^T A \mathbf{x}$ is indefinite if and only if A has both positive and negative eigenvalues.

Equivalent Definition of Positive Definite Matrix*

Theorem. Let $A \in M_n(\mathbb{R})$ be symmetric. Then the following statements are equivalent.

- (i) A is positive definite, i.e., $x^T A x > 0$ for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$.
- (ii) All eigenvalues of A are positive.
- (iii) There is some invertible matrix C such that $A = C^T C$.
- (iv) There is some positive definite matrix B such that $A = B^2$. (v...) ...

Theorem. Let $A = [a_{ij}] \in M_n(\mathbb{R})$ be a positive definite matrix. Then

- (1) $\det(A) > 0$.
- (2) $a_{ii} > 0$ for any $1 \le i \le n$.

An Example

Example. Prove that the matrix

$$H = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

is positive definite.

Complex Case*

Definition. A matrix $A \in M_n(\mathbb{C})$, or a quadratic form $\mathbf{x}^* A \mathbf{x}$, is said to be

- \diamond positive definite if $\mathbf{x}^* A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$;
- \diamond negative definite if $\mathbf{x}^* A \mathbf{x} < 0$ for all $\mathbf{x} \neq 0$;
- \diamond semi-positive definite if $\mathbf{x}^* A \mathbf{x} \ge 0$ for all \mathbf{x} ;
- \diamond semi-negative definite if $\mathbf{x}^* A \mathbf{x} \leq 0$ for all \mathbf{x} ;
- ♦ indefinite if it has both positive and negative values.

Theorem. If A is a normal matrix, i.e., $AA^* = A^*A$, then:

- (a) $\mathbf{x}^* A \mathbf{x}$ is positive definite if and only if all eigenvalues of A are positive.
- (b) x^*Ax is semi-positive definite if and only if all eigenvalues of A are non-negative.

Constrained Extremum Problems

Main Problem:

To find the maximum or minimum values of a quadratic form $\mathbf{x}^T A \mathbf{x}$ subject of the constraint $\|\mathbf{x}\| = 1$.

Theorem. Let $A(\mathbb{R})$ be a symmetric matrix whose eigenvalues in order of decreasing size are $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Then

- (1) the quadratic form $\mathbf{x}^T A \mathbf{x}$ attains a maximum value and a minimum value on the set of all unit vectors;
- (2) the maximum value attained in part (1) occurs at a unit vector corresponding to the eigenvalue λ_1 ;
- (3) the minimum value attained in part (1) occurs at a unit vector corresponding to the eigenvalue λ_n .

Proof:

Constrained Extremum Problems

Example. Find the maximum and minimum values of the quadratic form $z = 5x^2 + 5y^2 + 4xy$ subject to the constraint $x^2 + y^2 = 1$.

Chapter 5. Inner Product Spaces

- §5.1 Inner Products
- §5.2 Angle and Orthogonality in Inner Product Spaces
- §5.3 Gram-Schmidt Process; QR-Decomposition
- §5.4 Orthogonal and Unitary Matrices
- §5.5 Orthogonal Diagonalization
- §5.6 Singular Value Decomposition
- §5.7 Best Approximation; Least Squares
- §5.8 Quadratic Forms
- §5.9 Polar Decomposition*

Polar Decomposition

Observation: Complex number $z=re^{i heta}$, where $r\geq 0$ and $|e^{i heta}|=1$.

Theorem. Let $A \in M_n(\mathbb{R})$. Then there an orthogonal matrices P and two semi-positive definite matrix H, H' such that

$$A = HP = PH'$$
.

Proof:

Remark: If A = HP, then $A^TA = P^TH^THP = P^TH^2P$. Process to find P and H:

- \diamond Orthogonally diagonalizion: $A^TA = PDP^T$, where D is a diagonal elements with non-negative diagonal elements $\sigma_1, \ldots, \sigma_n$.
- \diamond $H=P\sqrt{D}P^T$, where \sqrt{D} is the diagonal elements with non-negative diagonal elements $\sqrt{\sigma_1},\ldots,\sqrt{\sigma_n}$.

Problem*: Find a process to find P and H' directly.

An Overview for Complex Square Matrix

	C	$M_n(\mathbb{C})$	Eigenvalue
Unitary	2 z = 22 = 1 (z)=1	U*U=UU*= In	\lambda = 1.
Hermitian	Z=Z ZER	H*=H	лeR
Semi-positive	2≥0	∀xeC", X*Rx ≥0 ∃BeMn(C), Q=B*B	λ > 0
Orthogonal Projection	2=0 or 1.	E ² = E = E*	$\lambda \in \{0,1\}$
Rectangular Decomposition	Z= Z+vy (z,je1R)	A= H+ iK (H, K Hernitran)	
Polon Decomposistion	Z= Yeild (rzo, 0804)	A = QU Q semi-positive, U mitary	