第三章: 语法分析

LR(0)语法分析 SLR1(1)方法

例子

设有文法G(S):

 $S \rightarrow E$ \$

 $E \rightarrow E + T$

 $\overline{\mathsf{E}} \to \overline{\mathsf{T}}$

 $T \rightarrow idl(E)$

1.1 LR分析模型

1.2.1 LR分析表

☐ Action表:

状态×(V_⊤U{#})→动作

动作包括: Shift / Reduce / Accept / Error (移入、归约、成功、失败)

□ Goto表:

状态×VN→状态|error

1.2.2 LR(0)分析表的构造

假设IS_k为LR(0)项目集,

action矩阵:

- 1. 若A→α•aβ∈IS_k,且GO(IS_k, a)= IS_i,a∈V_T,则action(IS_k, a)=S_i,表示移入动作。
- 2. 若 $A \rightarrow \alpha \bullet \in IS_k$,则对任意 $a \in V_T \cup \{\#\}$,令action(IS_k , a)= R_j ,其中产生式 $A \rightarrow \alpha$ 的编号为j,表示用编号为j的产生式进行归约。
- 3. 若Z→α•∈IS_k,且Z为拓广产生式的左部非终极符(文法的开始符),则action(IS_k, #)=**Accept**。
- 4. 其它情形,则Error(n),表示出错标志,也可不填。

goto矩阵:

若GO(IS_k , A)= IS_i , A \in V_N, 则goto(IS_k , A)=i。

1.2.3 LR(0)分析 表的构造 例子

 $[1]S \rightarrow E \$$ $[2]E \rightarrow E + T$ $[3]E \rightarrow T$ $[4]T \rightarrow id$ $[5]T \rightarrow (E)$

	action表						goto表	
	\$	+	i	()	#	Е	Т
0			S ₅	S ₆			1	9
1	S ₂	S_3						
2						Ac		
3			S ₅	S ₆				4
4	R_2	R_2	R_2	R_2	R_2	R_2		
5	R ₄							
6			S ₅	S ₆			7	9
7		S_3			S ₈			
8	R_5	R_5	R_5	R_5	R_5	R ₄		
9	R_3	R_3	R_3	R_3	R_3	R_3		

1.3 LR分析表提供的信息

合法性检查信息 $[A \rightarrow \alpha \bullet a\beta]$ 移入/归约信息 $[A \rightarrow \alpha \bullet a\beta][A \rightarrow \pi \bullet]$ 移入/归约后的转向状态信息

设当前格局是:

#	X ₁	X_2	•••	X _k	•••	X _t
S _{i0}	S _{i1}	S _{i2}	•••	S _{ik}	•••	S _{it}

 $a_{i}a_{i+1}...a_{n} #$

移入动作:设S_i的a_i输入边所指向的状态为S*

#	X_1	X_2	•••	X _k	•••	X _t	a _i
S _{i0}	S _{i1}	S _{i2}	•••	S _{ik}	•••	S _{it}	S*

归约动作:设按 $A \rightarrow X_{k+1} X_{k+2} ... X_{t}$ 进行归约,则首先归约为A

#	X ₁	X_2	•••	X _k	A.	X _t
S _{i0}	S _{i1}	S _{i2}	• • •	S _{ik}	•••	S _{it}

Sik的A输出边所指向的状态设为S*,则格局变为: (输入流不变)

#	X_1	X_2	•••	X_k	Α
S _{i0}	S _{i1}	S _{i2}	• • •	S _{ik}	S*

1.4 LR驱动程序

状态栈、符号栈和输入流的开始格局为: (#S1,#, a1a2...an#)

移入: 若当前格局为(#S₁S₂…S_n,#X₁X₂…X_n, a_ia_{i+1}…a_n#),且Action(S_n, a_i)=S_j,a_i∈V_T,则a_i 入符号栈,第j个状态S_j入状态栈。即移入后的 格局变为: (#S₁S₂…S_n S_j,#X₁X₂…X_na_i, a_{i+1}…a_n#)

1.4 LR驱动程序

归约: 若当前格局为($\#S_1S_2...S_n,\#X_1X_2...X_n$, $a_ia_{i+1}...a_n\#$),且Action(IS_n , a)= R_j ,a \in $V_T \cup \{\#\}$,则按照第j个产生式进行归约,符号栈和状态栈相应元素退栈,归约后的文法符号入栈。假设第j个产生式为A \rightarrow a,k= $|\alpha|$ ($\alpha=X_{n-k+1}...X_n$),则归约后的格局变为:

(# $S_1S_2...S_{n-k}S$,# $X_1X_2...X_{n-k}A$, $a_ia_{i+1}...a_n$ #) 其中 $S=Goto(S_{n-k}, A)$ 。

1.4 LR驱动程序

成功: 若状态栈的栈顶状态为S_i,输入流当前值为#,且action(S_i, #)=Accept,则分析成功。

失败: 若状态栈的栈顶状态为S_i, 输入流当前值为a, 且action(S_i, a)=Error或空, 则转向出错处理程序。

1.5 LR(0)文法的限定条件

□ 定义:在可归前缀图中,如果一个状态含有两个或两个以上的以上的归约项目,则称有**归约/归约冲突**。如果同时含有移入项目和归约项目,称为**移入/归约冲突**,这类状态称为二义性状态。

有些情况LR(0)方法解决不了,例如有文法:

 $[1]M \rightarrow T$

 $[2]T \rightarrow F$

 $[3]T \rightarrow F*T$

 $[4]F \rightarrow a$

如果某个状态有如下项目集:

- { A→α•, B→β•, D→μ•dγ}, 则存在着归约 -归约, 移入-归约冲突
- □ 若用A→α•归约,则当前输入符应在A的 Follow集中
- □若用B→β•归约,则当前输入符应在B的 Follow集
- □若移入,则当前输入符应为d。

SLR(1)分析条件

□ LRSM₀中存在着状态

$$\{ A_1 \rightarrow \alpha_1 \bullet, \dots, A_n \rightarrow \alpha_n \bullet, \\ B_1 \rightarrow \beta_1 \bullet a_1 r_1, \dots, B_m \rightarrow \beta_m \bullet a_m r_m \}$$

则集合:

Follow(A₁)、…、Follow(A_n)、a₁,…,a_m}两 两之间互不相交

2.2 SLR(1)分析表的构造

假设IS_k为LR(0)项目集,则 action矩阵:

- □ 若A→α•aβ∈IS_k,且GO(IS_k, a)= IS_i,a∈V_T,则 action(IS_k, a)=S_i,表示移入动作。
- □ 若A→α•∈ IS_k , **则对任意a∈V**_T, **a∈Follow(A)**, 令 action(IS_k , a)= R_j , 其中产生式A→α的编号为j, 表示用编号为j的产生式进行归约。
- □ 若Z→α•∈IS_k,且Z为拓广产生式的左部非终极符(文法的开始符),则action(IS_k, #)=Accept。
- □ 其它情形,则Error(n),表示出错标志,也可不填。

goto矩阵:

□ 若GO(IS_k, A)=IS_i, A∈V_N, 则goto(IS_k, A)=i。

2.3 SLR(1)语法分析表

[1] $M \rightarrow T$ [2] $T \rightarrow F$ [3] $T \rightarrow F*T$ [4] $F \rightarrow a$ Follow(M)={#} Follow(T)={#} Follow(F)={*,#}

	action表			goto表		
	а	*	#	Т	F	
0	S_2			1	3	
1			Ac			
2		R_4	R_4			
3		S ₄	R_2			
4	S ₂			5	3	
5			R_3			

2.4 SLR(1)文法限定条件

限定条件

□语法分析表单值

LR(0)和SLR(1)分析能力对比

□ LR(0)只看分析栈的内容,不考虑当前输入符; SLR(1)考虑输入符,用follow集来解决冲突,因此SLR(1)要比LR(0)分析能力强。

SLR(1)的分析过程

a*a*a	_			
状态栈	符号栈	输入串	分析动作	转向状态
0		a*a*a#	S2	. , , , , , , ,
02	а	*a*a#	R4	3
03	F	*a*a#	S4	
034	F*	a*a#	S2	
0342	F*a	*a#	R4	3
0343	F*F	*a#	S4	
03434	F*F*	a#	S2	
034342	F*F*a	#	R4	3
034343	F*F*F	#	R2	5
034345	F*F*T	#	R3	5
0345	F*T	#	R3	5
01	T	#	AC	