SINH LÝ HỆ MẠCH ĐIỀU HÒA HOẠT ĐỘNG MẠCH

ThS. BS. ĐẶNG HUỲNH ANH THƯ Bộ môn Sinh lý – Sinh lý bệnh miễn dịch

MỤC TIÊU

- Trình bày hai đặc tính của động mạch và chức năng hệ động mạch.
- Định nghĩa huyết áp và mô tả các phương pháp đo huyết áp
- Giải thích các yếu tố ảnh hưởng đến huyết áp.
- Giải thích cơ chế trao đổi vật chất giữa mao mạch và dịch kẽ.
- 5. Trình bày chức năng tĩnh mạch và các yếu tố giúp máu về tim.
- 6. Trình bày chức năng hệ bạch huyết.

MỤC TIÊU

- 7. Trình bày cơ chế điều hòa tại chỗ của tế bào nội mô.
- 8. Giải thích cơ chế thần kinh điều hòa mạch.
- 9. Phân tích cơ chế thể dịch điều hòa mạch.
- 10. Phân tích cơ chế thần kinh trong điều hòa huyết áp nhanh và vai trò ưu thế của thận trong điều hòa huyết áp dài hạn

Sự phân phối thể tích máu trong cơ thể

Sự thay đổi áp suất trong hệ thống tuần hoàn:

THIẾT DIỆN

Vessel	Cross-Sectional	Area	(cm²)
--------	-----------------	------	-------

Aorta	2
Small arteries	20
Arterioles	40
Capillaries	2500
Venules	250
Small veins	80
Venae cavae	8

Lưu lượng(F) tính theo ĐL Ohm:

Lưu lượng (F) theo CT Poiseuille – Hange:

$$F = \frac{\pi \Delta P r^4}{8 \eta l}$$

η: độ nhớt máu.

r: bán kính mm.

I: chiều dài.

KHÁNG LỰC MẠCH MÁU (R)

■ Từ 2 CT:

$$F = \frac{\Delta P}{R} \quad \text{và} \quad F = \frac{\pi \Delta P r^4}{8\eta l}$$

$$\Rightarrow R = 8 \cdot l \cdot \eta / (\pi \cdot r^4)$$

Trong hệ mạch độ nhớt và chiều dài không đổi →R sẽ tỉ lệ nghịch với bán kính r.

→ tiểu ĐM và mao mạch có R cao nhất

Sự ảnh hưởng độ nhớt máu lên kháng lực:

- Kháng lực R tỉ lệ thuận độ nhớt máu.
- Độ nhớt phụ thuộc vào:
 - + Tế bào máu: tăng → độ nhớt tăng và ngược lại.

VD: Dung tích HC (Hct) tăng → độ nhớt tăng.

- + Thành phần protein trong huyết tương.
- + Sức kháng của tế bào khi bị biến dạng VD: bệnh HC hình cầu, tb máu bị cứng → độ nhớt tăng.

Đặc tính của động mạch

- Tính đàn hồi
- Tính co thắt

1

HA động mạch

1.Định nghĩa:

HA ĐM là lực của máu tác động lên một đơn vị diện tích thành ĐM

2.Huyết áp tâm thu:

Là giới hạn cao nhất, thể hiện sức bơm máu của tim.

Bình thường khoảng 120mmHg.

3. Huyết áp tâm trương:

Là giới hạn thấp nhất, thể hiện sức cản của mạch.

Bình thường khoảng 80mmHg.

4.Hiệu áp (áp suất đẩy):

Là hiệu số giữa HA tối đa và HA tối thiểu.

Systolic pressure Aortic valve closure Mean pressure Diastolic pressure

5. Huyết áp trung bình:

- Là trung bình của tất cả áp suất máu được đo trong một chu kỳ thời gian
- Là áp suất tạo ra dòng máu chảy liên tục và có lưu lượng bằng cung lượng tim.
- HA trung bình = HA tâm trương + 1/3 hiệu áp.

= (HA tâm thu + 2. HA tâm trương)/3.

VD: HA: 120/80 mmHg.

 \rightarrow HA trung bình = (120 + 2 x 80)/3 = 93,3 mmHg.

Các yếu tố quyết định huyết áp

Thay đổi sinh lý của huyết áp:

- Tuối: càng cao HA càng tăng, mức độ tăng song song độ xơ cứng ĐM.
- Giới tính: nam cao hơn nữ.
- Trọng lực: ĐM cao hơn tim 1cm HA giảm 0,77mmHg và ngược lại.
- Vận động: lúc đầu HA tăng nhiều, sau đó có giảm nhưng vẫn cao hơn bình thường.
- Ngày và đêm: ban ngày HA cao hơn đêm.
- Chế độ ăn: ăn măn, ăn nhiều thịt HA tăng

PP đo huyết áp.

- PP trực tiếp:
- PP gián tiếp:
 - + PP nghe.
 - + PP bắt mạch

Chức năng của mao mạch:

- Là trao đổi chất.
- Qua 3 cơ chế:
 - + Khuếch tán: quan trong nhất
 - + Âm bào: chất có trọng lượng phân tử > 7 nm
 - + Siêu lọc

•

Cơ chế siêu lọc tại mao mạch

- Sự chuyển dịch = $k [(P_c + \pi_i) (P_i + \pi_c)]$
- K: hệ số lọc của mao mạch (0,08 0,015)
- $ho_{\rm c}$: áp suất thủy tĩnh máu tại mao mạch (đầu ĐM 32mmHg, đầu TM 15 mmHg)
- π_i : áp suất keo tại mô kẽ
 (8 mmHg)
- P_i: áp suất thủy tĩnh của mô kẽ (-2 mmHg)
- > π_c : áp suất keo tại mao mạch (25 28 mmHg)
- → đầu ĐM = 17 mmHg, Đầu TM = 7 → -3 mmHg

.

Cơ chế siêu lọc tại mao mạch phổi

- Sự chuyển dịch = $k [(P_c + \pi_i) (P_i + \pi_c)]$
- ho P_c : áp suất thủy tĩnh máu tại mao mạch phổi (ĐM 7 10mmHg)
- $\succ \pi_i$: áp suất keo tại mô kẽ không đáng kể (mô kẽ hẹp)
- P_i: áp suất thủy tĩnh của mô kẽ (-8 mmHg)
- \rightarrow $\pi_{\rm c}$: áp suất keo tại mao mạch (25 28 mmHg)
- → Áp suất = -7 mmHg
- → Nước được hút từ phế nang → mô kẽ → mao mạch: giúp phế nang khô

85% dịch lọc tái hấp thu lại mao mạch, 15% qua hệ bạch huyết

Mạch bạch huyết

Hệ tĩnh mạch

Điều hòa hoạt động mạch

Cơ chế điều hòa tại thành mạch

- □ Hiện tượng tự điều chỉnh và điều hòa do cơ
- □ Điều hòa qua trung gian tế bào nội mô
- □ Điều hòa do cơ chế chuyển hóa

Cơ chế thần kinh

- □ Trung tâm vận mạch
- Những đường xung động thần kinh vào trung tâm vận mạch
- □ Thần kinh thực vật

Cơ chế thể dịch

Cơ chế tại thành mạch

■ Do co:

- □ ↑ P trong lòng mạch → cơ trơn thành mạch căng → co mạch và ngược lại
- □ Là đáp ứng độc lập với tế bào nội mô

Do chuyển hóa:

- + dãn mạch: ↓O2, ↑ CO2, ↑ nhiệt độ, histamin, adenosin.
- + co mạch: ↓ nhiệt độ, serotonin.

■ Do tế bào nội mô:

- + dãn mạch: EDRF (Endothelial

 derived relaxing factor, NO).
- + co mạch: endothelin.

Cơ chế thần kinh

Trung tâm vận mạch:

- + ở hành não, gồm 2 vùng: vùng co mạch và vùng ức chế
- + xung đi ra là giao cảm: co mạch và tăng huyết áp
- + Luôn có tín hiệu giao cảm nhất định xuống mạch làm mạch hơi co tạo trương lực mạch

Cơ chế thần kinh

- + Từ thụ thể áp suất:
- √ ở xoang cảnh chỉ bị kích thích khi P> 60 mmHg
- √ ở quai ĐMC chỉ bị kích thích khi P> 90 mmHg
- ✓ ↑ HA → ức chế vùng co mạch →
 ↓ giao cảm → dãn mạch
- ✓ ↓ HA→ giảm ức chế vùng co
 mạch → ↑ giao cảm → co mạch

Cơ chế thần kinh

- + Từ thụ thể hóa học:
- ✓ Ngoại biên: ở quai động mạch chủ và ở bên xoang cảnh
- ✓ Trung ương: vùng hóa cảm thụ ở hành não
- ✓ \downarrow P O2, \uparrow pH → kích thích vùng co mạch
- + Thần kinh thực vật:
- ✓ giao cảm: co mạch, norepinephrin
- ✓ phó giao cảm: dãn mạch, acetylcholin

Cơ chế thể dịch

- Nhóm kinin:
 - Bradykinin trong huyết tương,
 Lysylbradykinin trong mô
 - co cơ trơn nội tạng, làm giãn cơ trơn mạch máu
- Norepinephrin: co mạch
- Các chất gây co mạch khác : hormon ADH, angiotensin II, serotonin.
- Acetylcholin: làm giãn mạch
- ANP: tâm nhĩ bài tiết, làm giảm huyết áp

Hệ thống renin – angiotensin

Agure 13–12. The renin-angiotensin mechanism. Begin at "Decreased B. P." and see Table 13–3 for numbered steps.

10

TÀI LIỆU THAM KHẢO

Tài liệu tiếng Việt

- 1. Đặng Huỳnh Anh Thư, 2016. Sinh lý hệ mạch. Sinh lý học y khoa (Bộ môn Sinh Lý học, Đại học Y Dược Tp.HCM). Nhà xuất bản Y học. pp
- 2. Đặng Huỳnh Anh Thư, 2016. Điều hòa hoạt động mạch. Sinh lý học y khoa (Bộ môn Sinh Lý học, Đại học Y Dược Tp.HCM). Nhà xuất bản Y học. pp

TÀI LIỆU THAM KHẢO

Tài liệu tiếng Anh

- 1. Guyton A.C., Hall J.E (2016). The Circulation.
 Textbook of Medical Physiology, 13th ed., Elsevier Inc, pp 169 256
- 2. Barrett KE, Barman SM (2010). Blood as a Circulatory Fluid & the Dynamics of Blood & Lymph Flow. Ganong's Review of Medical Physiology, 23th, Appleton & Lange, pp 521 – 554
- 3. Barrett KE, Barman SM (2010). Cardiovascular Regulatory Mechanisms. *Ganong's Review of Medical Physiology*, 23th, Appleton & Lange, pp 555 – 567.