Outbreak Investigation

Dr. Rajaa M. Al-Raddadi MBBS,ABCM,RICR

Outbreaks: The basics

Definition

- Occurrence in a region/community of a disease/healthrelated event clearly in excess of normal expectancy
 - Relative to usual frequency

Goals of an outbreak investigation

- To identify the source of illness
- To guide public health intervention

• Ways to recognize an outbreak

- Routine surveillance activities
- Reports from physician and laboratories

Why investigate an outbreak?

- Characterize the problem
 - Extent, impact (including economic)
- Identify preventable risk factors
 - New research insights into disease

CASE STUDY

INITIAL CALL

• Late June, 2007: Calls from 4 Doctors

reporting 6 patients with bloody diarrhea

and E. coli O157:H7 infection

INITIAL CALL

- Late June, 2007: Calls from 4 Doctors porting 6 patients with bloody diarrhea and *E. coli* O157:H7 infection
- 1 day later: Call from Department of preventive medicine in Jeddah
- Increase in laboratory reports of *E. coli* O157:H7
 - June 2007 = 52

1. Verify the Diagnosis

1. Verify the Diagnosis

- Escherichia coli O157:H7 first identified as a human pathogen in 1982 in the US
- Sporadic infections and outbreaks since reported from many parts of the world (e.g., N. America, Western Europe, Australia, Asia, and Africa)
- Cattle are the primary reservoir for *E. coli* O157:H7
- Implicated foods are typically those derived from beef, hamburger, raw milk
- Infection has also been transmitted through contact with infected persons, contaminated water, and other contaminated food products.

1. VERIFY THE DIAGNOSIS

• Infection with $E.\ coli$ O157:H7 is diagnosed by detecting the bacterium in the stool.

1. Verify the Diagnosis

- 1. Verify the diagnosis
- 2. Confirm the outbreak

Trends in E. Coli O157 Cases

WHAT COULD ACCOUNT FOR THE INCREASE IN CASES?

WHAT COULD ACCOUNT FOR THE INCREASE IN CASES?

Real increase

- Increase in population size
- Changes in population characteristics
- Random variation
- Outbreak

Artificial increase

- New testing protocol
- Changes in reporting procedures

Initial Investigation

- No substantial changes in population size
- No appreciable changes in the population characteristics
- No laboratory based changes
 - Surveillance / testing
 - Reporting protocol

Initial Investigation

• Any other way to see if there is a relationship between these *E. coli* isolates?

MOLECULAR EPIDEMIOLOGY

- DNA fingerprinting
- Pulsed Field Gel Electrophoresis (PFGE) most common in outbreak investigations
- A cluster of isolates with the same PFGE pattern suggests they arose from the same parent (same source)
- Still need an epidemiologic investigation

- 1. Verify the diagnosis
- 2. Confirm the outbreak

- 1. Verify the diagnosis
- 2. Confirm the outbreak
- 3. Case definition

3. Develop a Case Definition

- Incubation period for *E. coli* O157:H7 ranges from 3-8 days with a median of 3-4 days.
- The infection often causes severe bloody diarrhea and abdominal cramps, but can also cause a non-bloody diarrhea or result in no symptoms.
- In some persons, particularly children under 5 years of age and the elderly, infection can be complicated by hemolytic uremic syndrome (occurs in about 2-7% of infections)

Case Definition?

CASE DEFINITION

- Outbreak investigation definition:
 - 1. diarrhea (>3 loose bowel movements a day) and/or abdominal cramps
 - 2. resident of Jeddah
 - 3. onset of symptoms between June 15 and July 15
 - 4. stool culture yielding $E.\ coli$ O157:H7 with the outbreak strain PFGE pattern.

- Verify the diagnosis
- Confirm the outbreak
- Case definition

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive Epidemiology

CHARACTERIZATION OF CASES

Of the initial 38 persons who met the case definition, 26 (68%) were female with a median age of 31 years.

Table 1. Age group and gender distribution for persons with *E. coli* O157:H7 infection (with PFGE pattern), Jeddah, June 15 - July 15, 2007. (N=38)

Age group	Gen		
(years)			TOTAL
	Male	Female	
0-9	2 (17%)*	2 (8%)	4 (11%)
10-19	2 (17%)	3 (12%)	5 (13%)
20-39	3 (25%)	9 (35%)	12 (32%)
40-59	2 (17%)	8 (31%)	10 (26%)
60+	3 (25%)	4 (15%)	7 (18%)
TOTAL	12 (101%)	26 (101%)	38 (100%)

^{*} percentages refer to column totals.

Cases

Age group (years)	Gender		TOTAL
	Male	Female	
0-9	2 (17%)*	2 (8%)	4 (11%)
10-19	2 (17%)	3 (12%)	5 (13%)
20-39	3 (25%)	9 (35%)	12 (32%)
40-59	2 (17%)	8 (31%)	10 (26%)
60+	3 (25%)	4 (15%)	7 (18%)
TOTAL	12 (101%)	26 (101%)	38 (100%)

EPIDEMIC CURVE

Figure 1. Date of illness onset for persons with *E. coli* O157:H7 infection and the outbreak PFGE pattern, June 15 - July 15, 2007. (N=38)

EPIDEMIC CURVES

- How to set it up
- What it tells you
 - Mode of transmission
 - Propagated
 - Common source
 - Timing of exposure
 - Course of exposure

EPIDEMIC CURVE

Figure 2. Date of illness onset for persons with *E. coli* O157:H7 infection and the outbreak PFGE pattern, June 15 - July 15, 2007. (N=38)

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive Epidemiology
- Develop a hypothesis

Developing a Hypothesis

Determining the Probable Period of Exposure

- Mean/Median incubation period
- Minimum/maximum incubation period

ESTIMATING DATE OF EXPOSURE

ESTIMATING DATE OF EXPOSURE

E. COLI EPIDEMIC CURVE

Figure 3. Average incubation period = 4 days (range 3-8 days)

FINDINGS

- The median age of patients is 31 years (range 2
 - -76); 68% of cases are among females.
- Factors present in over 50% of cases:
 - Female, milk, hamburger, lettuce, alfalfa sprouts
 - water exposure?

Hypothesis?

Hypothesis of Investigators

• Lettuce and/or parsley consumption is associated with *E. coli* infection

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology
- Develop a hypothesis

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology
- Develop a hypothesis
- Test the hypothesis

PICK A CONTROL GROUP

Controls Selected

- 2 controls selected for every case
- Matched to the case by:
 - Age group
 - o(0-<2 years, 2-<5 years, 5-<12 years, 12-<18 years, 18-<60 years, and 60+ years)
 - Sex

SELECTION OF CONTROLS

- Exposure information among cases was collected for the 7 days before onset of illness.
- For controls, exposure information was collected for the 7 days before the interview and for the 7 days before the onset of illness in the matching case.
- Twenty-seven case-control sets were interviewed; the remaining case-patients could not be reached.

Interview Results

Varrialble	Cases (m=27)	Controls (in 54)
Female	18 (6'/%)	36 (67%)
Mod Age	31	31
Rec water exposure	9 (33%)	21 (39%)
Other III person	6 (2,2,%)	9 (17%)
Day care	16 (59%)	33 (61%)
Farm	2. (1%)	2. (4.%)
Fair	12. (44%)	24 (44%)
Travel	8 (30%)	13 (24%)
Mamburger	17 (63%)	36 (67%)
Mcat	14 (52%)	26 (48%)
Milk	21 (78%)	44 (81%)
Alfalfa sprouts	15 (56%)	4 (1%)
Ilettuce	18 (6'/%)	34 (62%)

$E.\ COLI$ AND PARSLEY?

Variable Cases Controls OR (95%CI) 15 (56%) 4 (7%) 25 (4-528)

No other food item was significantly associated with

illness.

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology
- Develop a hypothesis
- Test the hypothesis

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology
- Develop a hypothesis
- Test the hypothesis
- Refine hypothesis / Execute additional studies

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology
- Develop a hypothesis
- Test the hypothesis
- Refine hypothesis / Execute additional studies
- Implement control and prevention measures

- Verify the diagnosis
- Confirm the outbreak
- Case definition
- Descriptive epidemiology
- Develop a hypothesis
- Test the hypothesis
- Refine hypothesis / Execute additional studies
- Implement control and prevention measures
- Communicate findings

Conclusions

- Importance of applying the multi-step approach in outbreak investigation
- Utility of new subtyping methods such as PFGE
- Importance of disease reporting
- Flexibility of hypothesis generation
 - New vehicle for the transmission of *E. coli* O157:H7
- Increasing geographic dissemination of outbreaks