

Explainable AI as Collaborative Task Solving

Arjun Akula¹ Changsong Liu¹ Sinisa Todorovic² Joyce Chai³ Song-Chun Zhu¹

Qualitative Reliance

¹ UCLA Center for Vision, Cognition, Learning, and Autonomy ² Oregon State University, ³ Michigan State University

X-ToM: Explanation with Theory-of-Mind

UCLA

X-ToM for optimizing the dialog with a user towards estimating and increasing human trust.

XAI AS COLLABORATIVE TASK SOLVING

Through a dialog, we estimate Trust and Reliance in terms of pg^M , pg^{UinM} and pg^{MinU} .

Gender

Subject Pool Total 90 Subjects

EXPLANATION GENERATION IN X-TOM

Both the Machine and the User solve the image recognition tasks. The Machine interprets the image I as pg^{M} . The Human receives visual explanations – bubbles – optimized by the X-ToM Explainer.

TRUST ESTIMATION

It is possible for humans to feel positive trust with respect to certain tasks, while feeling negative trust (i.e. mistrust) on some other tasks. Justified Positive Trust (JPT):

$$JPT = \frac{1}{N} \sum_{i} \sum_{z=\alpha,\beta,\gamma} \Delta JPT(i,z)$$

$$\Delta JPT(i,z) = \frac{\|pg_{i,z,+}^{MinU} \cap pg_{i,+}^{M}\|}{\|pg_{i,+}^{M}\|}$$

Justified Negative Trust (JNT):

$$\begin{aligned} \text{JNT} &= \frac{1}{N} \sum_{i} \sum_{z=\alpha,\beta,\gamma} \Delta \text{JNT}(i,z), \\ \Delta \text{JNT}(i,z) &= \frac{\|pg_{i,z,-}^{MinU} \cap pg_{i,-}^{M}\|}{\|pg_{i,-}^{M}\|} \end{aligned}$$

Reliance (Rc): Reliance captures the extent to which a human can accurately predict the performer's inference results without over- or under-estimation.

$$\operatorname{Rc} = \frac{1}{N} \sum_{i} \sum_{z=\alpha,\beta,\gamma} \Delta \operatorname{Rc}(i,z),$$

$$\Delta \operatorname{Rc}(i,z) = \frac{\|pg_{i,z}^{MinU} \cap pg_{i,z}^{M}\|}{\|pg_{i}^{M}\|}$$

RESULTS OF OUR HUMAN STUDY

X-ToM significantly outperformed (p < 0.01) baselines (QA, Attention Maps) in terms of Appropriate Trust, Reliance, User-Machine Performance and Satisfaction.

Explanation Satisfaction

Gain in Reliance over sessions w.r.t α , β and γ processes. As we can see, with more sessions, we can further improve human reliance.