CS2040S Data Structures and Algorithms

Hashing III

Hashing overview

• What is a hash function?

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing

Hashing overview

What is a hash function?

Collision resolution: chaining

Java hashing

Collision resolution: open addressing

Table (re)sizing

Abstract Data Types

Symbol Table

```
public interfaceSymbolTablevoid insert (Key k, Value v)insert (k,v) into tableValue search (Key k)get value paired with kvoid delete (Key k)remove key k (and value)boolean contains (Key k)is there a value for k?int size()number of (k,v) pairs
```

Note: no successor / predecessor queries.

Direct Access Tables

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
2 3	null
4	null
5	item3
6	null
7	null
8	item2
9	null

Universe $U=\{0..9\}$ of size m=10.

(key, value)

(2, item1)

(8, item2)

(5, item3)

Assume keys are distinct.

Problem:

- Huge universe U of possible keys.
- Smaller number *n* of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

- The table size is smaller than the universe size.
- The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Resolving Collisions

- Basic problem:
 - What to do when two items hash to the same bucket?

- Solution 1: Chaining
 - Insert item into a linked list.

- Solution 2: Open Addressing
 - Find another free bucket.

Chaining

Each bucket contains a linked list of items.

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / buckets.

- Expected search time = 1 + n/m

hash function + array access

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - $m = \Omega(n)$ buckets, e.g., m = 2n

- Expected search time = 1 + n/m= O(1)

Resolving Collisions

- Basic problem:
 - What to do when two items hash to the same bucket?

- Solution 1: Chaining
 - Insert item into a linked list.

- Solution 2: Open Addressing
 - Find another free bucket.

Advantages:

- No linked lists!
- All data directly stored in the table.
- One item per slot.

0	null
1	null
2	\mathbf{A}
3	null
4	null
5	null
6	null
7	null
8	В
9	null

On collision:

On collision:

On collision:

On collision:

On collision:

Hash Function re-defined:

```
h(\text{key, i}): U \rightarrow \{1..m\}
```

Two parameters:

- key : the thing to map
- i : number of collisions

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Example: Linear Probing		null
$- h(k, 1) = hash of key k \dots$	1	null
	2	\mathbf{A}
- h(k, 2) = h(k, 1) + 1	3	\mathbf{C}
- h(k, 3) = h(k, 1) + 2	4	D
	5	F
- h(k, 4) = h(k, 1) + 3	6	null
	7	null
1 /1 () 1 /1 1)	8	В
$- h(k, i) = h(k, 1) + i \mod m$	9	null

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Two properties of a good hash function:

- 1. h(key, i) enumerates all possible buckets.
 - For every bucket *j*, there is some *i* such that:

$$h(key, i) = j$$

- The hash function is permutation of $\{1..m\}$.
- For linear probing: true!

What goes wrong if the sequence is not a permutation?

- 1. Search incorrectly returns key-not-found.
- 2. Delete fails.
- 3. Insert puts a key in the wrong place
- 4. Returns table-full even when there is still space left.

Two properties of a good hash function:

2. Simple Uniform Hashing Assumption

Every key is equally likely to be mapped to every bucket, independently of every other key.

For h(*key*, 1)?

For every h(key, i)?

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432
- •

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1 2 3 4 Pr(1/m)
- 1243 Pr(0) NOT Linear Probing
- 1 4 2 3 Pr(0)
- 1 4 3 2 Pr(0)

•

Linear probing

In practice, linear probing is very fast!

- Why? Caching!
- It is cheap to access nearby array cells.
 - Example: access T[17]
 - Cache loads: T[10..50]
 - Almost 0 cost to access T[18], T[19], T[20], ...
- If the table is 1/4 full, then there will be clusters of size: $\theta(\log n)$
 - Cache may hold entire cluster!
 - No worse than wacky probe sequence.

Properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432

•

Double Hashing

• Start with two ordinary hash functions:

• Define new hash function:

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

- Note:
 - Since f(k) is good, f(k, 1) is "almost" random.
 - Since g(k) is good, the probe sequence is "almost" random.

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

- Assume not: then for some distinct i, j < m:

$$f(k) + i \cdot g(k) = f(k) + j \cdot g(k) \mod m$$

- $\rightarrow i \cdot g(k) = j \cdot g(k) \mod m$
- $(i-j) \cdot g(k) = 0 \mod m$
- \rightarrow g(k) not relatively prime to m, since $(i,j \le m)$

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

Example: if $(m = 2^r)$, then choose g(k) odd.

Performance of Open Addressing

If (m==n), what is the expected insert time, under uniform hashing assumption?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. None of the above.

• Chaining:

- When (m==n), we can still add new items to the hash table.
- We can still search efficiently.

• Open addressing:

- When (m==n), the table is full.
- We cannot insert any more items.
- We cannot search efficiently.

Define:

- Load $\alpha = n / m$ Average # items / bucket
- Assume α < 1.

Define:

- Load $\alpha = n/m$ Average # items / bucket
- Assume $\alpha < 1$.

Claim:

For *n* items, in a table of size *m*, assuming *uniform hashing*, the expected cost of an operation is:

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

- Third probe: probability is full: (n-2)/(m-2)

Proof of Claim:

Proof of Claim:

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$
First probe Second probe Third probe

Proof of Claim:

Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

– Note:

$$\frac{n-i}{m-i} \le \frac{n}{m} \le \alpha$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

$$\leq \frac{1}{1-\alpha}$$

Define:

- Load $\alpha = n / m$
- Assume $\alpha < 1$.

Average # items / bucket

Claim:

For n items, in a table of size m, assuming uniform hashing, the expected cost of an operation is:

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Advantages...

Open addressing:

- Saves space
 - Empty slots vs. linked lists.
- Rarely allocate memory
 - No new list-node allocations.
- Better cache performance
 - Table all in one place in memory
 - Fewer accesses to bring table into cache.
 - Linked lists can wander all over the memory.

Disadvantages...

Open addressing:

- More sensitive to choice of hash functions.
 - Clustering is a common problem.
 - See issues with linear probing.
- More sensitive to load.
 - Performance degrades badly as $\alpha \rightarrow 1$.

Disadvantages...

Open addressing:

- Performance degrades badly as $\alpha \rightarrow 1$.

Hashing overview

• What is a hash function?

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing

How large should the table be?

- Assume: Hashing with Chaining
- Assume: Simple Uniform Hashing
- Expected search time: O(1 + n/m)
- Optimal size: $m = \Theta(n)$
 - if (m < 2n): too many collisions.
 - if (m > 10n): too much wasted space.

- Problem: we don't know *n* in advance.

Idea:

- Start with small (constant) table size.
- Grow (and shrink) table as necessary.

Example:

- Initially, m = 10.
- After inserting 6 items, table too small! Grow...
- After deleting *n*-1 items, table too big! Shrink...

How to grow the table:

- 1. Choose new table size *m*.
- 2. Choose new hash function h.
 - Hash function depends on table size!
 - Remember: $h: U \rightarrow \{1..m\}$
- 3. For each item in the old hash table:
 - Compute new hash function.
 - Copy item to new bucket.

Not like Java hashCode!

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.
- Costs:
 - Scanning old hash table: $O(m_1)$
 - Inserting each element in new hash table: O(1)
 - Total: $O(m_1 + n)$

Time complexity of growing the table:

- Assume:
 - Size $m_1 < n$.
 - Size $m_2 > 2n$

- Costs:
 - Total: $O(m_1 + n)$. = O(n)

Time complexity of growing the table:

Wait! What is the cost of initializing the new table?

Initializing a table of size x takes x time!

– Costs:

Total: $O(m_1 + m_2 + n)$

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.

– Costs:

- Scanning old hash table: $O(m_1)$
- Creating new hash table: $O(m_2)$
- Inserting each element in new hash table: O(1)
- Total: $O(m_1 + m_2 + n)$

Idea 1: Increment table size by 1

$$- \text{ if } (n == m): m = m+1$$

- Cost of resize:
 - Size $m_1 = n$.
 - Size $m_2 = n + 1$.
 - Total: O(n)

Initially: m = 8What is the cost of inserting n items?

- 1. O(n)
- 2. O(n log n)
- \checkmark 3. O(n²)
 - 4. $O(n^3)$
 - 5. None of the above.

Idea 1: Increment table size by 1

- When (n == m): m = m+1
- Cost of each resize: O(n)

Table size	8	8	9	10	11	12	•••	n+1
Number of items	0	7	8	9	10	11	•••	n
Number of inserts		7	1	1	1	1	•••	1
Cost		7	8	9	10	11		n

- Total cost:
$$(7 + 8 + 9 + 10 + 11 + ... + n) = O(n^2)$$

Idea 2: Double table size

- if (n == m): m = 2m

– Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = 2n$.
- Total: O(n)

Idea 2: Double table size

- When (n == m): m = 2m
- Cost of each resize: O(n)

Table size	8	8	16	16	16	16	16	16	16	16	32	32	32	•••	2n
# of items	0	7	8	9	10	11	12	13	14	15	16	17	18	• • •	n
# of inserts		7	1	1	1	1	1	1	1	1	1	1	1	•••	1
Cost		7	8	1	1	1	1	1	1	1	16	1	1		n

- Total cost:
$$(7 + 15 + 31 + ... + n) = O(n)$$

Idea 2: Double table size

Cost of Resizing:

Table size	Total Resizing Cost
8	8
16	(8 + 16)
32	(8+16+32)
64	(8+16+32+64)
128	(8+16+32+64+128)
• • •	• • •
m	$<(1+2+4+8++m) \le O(m)$

Idea 2: Double table size

- if (n == m): m = 2m

- Cost of resize: O(n)
- Cost of inserting n items + resizing: O(n)

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Average cost: O(1)

Idea 3: Square table size

- When (n == m): $m = m^2$

Table size	Total Resizing Cost
8	?
64	?
4,096	?
16,777,216	?
• • •	•••
m	?

Assume: square table size What is the cost of inserting *n* items?

- 1. $O(\log n)$
- 2. $O(\sqrt{n})$
- 3. O(n)
- 4. $O(n \log n)$
- 5. $O(n^2)$
- 6. $O(2^n)$
- 7. None of the above.

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

– Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = n^2$.
- Total: $O(m_1 + m_2 + n)$ = $O(n + n^2 + n)$ = $O(n^2)$

How fast to grow?

Idea 3: Square table size

- When (n == m): $m = m^2$

# Items	Total Resizing Cost
8	64
64	(64 + 4,096)
4,096	(64 + 4,096 +)
• • •	• • •
n	$> n^2$
	$= O(n^2)$

How fast to grow?

Idea 3: Square table size

- When (n == m): $m = m^2$

# Items	Resizing Cost	Insert Cost		
8	64	8		
64	(64 + 4,096)	64		
4,096	(64 + 4,096 +)	4,096		
• • •	• • •	• • •		
n	$> n^2$	n		
	$< O(n^2)$	O(n)		

How fast to grow?

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

- Cost of resize:
 - Total: $O(n^2)$

- Cost of inserts:
 - Total: O(n)

Why else is squaring the table size bad?

- 1. Resize takes too long to find items to copy.
- 2. Inefficient space usage.
- 3. Searching is more expensive in a big table.
- 4. Inserting is more expensive in big table.
- 5. Deleting is more expensive in a big table.

Basic procedure: (chained hash tables)

Delete(key)

- 1. Calculate hash of *key*.
- 2. Let *L* be the linked list in the specified bucket.
- 3. Search for item in linked list *L*.
- 4. Delete item from linked list L.

Cost:

- Total: O(1 + n/m)

What happens if too many items are deleted?

- Table is too big!
- Shrink the table...

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

Rules for shrinking and growing:

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

- Example problem:
 - Start: n=100, m=200
 - Delete: n=99, $m=200 \rightarrow$ shrink to m=100
 - Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Example execution:

```
• Start: n=100, m=200
```

```
cost=100 • Delete: n=99, m=200 \rightarrow shrink to m=100
```

```
cost=100 • Insert: n=100, m=100 \rightarrow \text{grow to } m=200
```

```
cost=100 • Delete: n=99, m=200 \rightarrow shrink to m=100
```

```
cost=100 • Insert: n=100, m=100 \rightarrow \text{grow to } m=200
```

- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Rules for shrinking and growing:

- Try 2:
 - If (n == m), then m = 2m.
 - If (n < m/4), then m = m/2.

Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Technique for analyzing "average" cost:

- Common in data structure analysis
- Like paying rent:
 - You don't pay rent every day!
 - Pay 900/month = 30/day.

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost = 7

insert: 5
 insert: 5
 5+5 <= 2*7 = 14
 insert: 5
 5+5+5 <= 3*7 = 21
 insert: 13
 5+5+5+13 <= 4*7 = 28
 insert: 7
 5+5+5+13+7 <= 5*7 = 35

"amortized" is NOT "average"

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost **NOT** 7

```
    insert: 13
    insert: 5
    insert: 7
    insert: 7
```

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: (Hash Tables)

- Inserting k elements into a hash table takes time O(k).
- Conclusion:

The insert operation has amortized cost O(1).

Accounting Method (paying rent)

- Imagine a bank account B.
- Each operation adds money to the bank account.
- Every step of the algorithm spends money:
 - Immediate money: to perform the operation.
 - Deferred money: from the bank account.
- Total cost execution = total money
 - Average time / operation = money / num. ops

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account, uses O(1) dollars to insert element.
- A table with k new elements since last resize has k dollars in bank.

Bank account \$2 dollars

	_
0	null
1	null
2	(k ₁ , A)
3	null
4	null
5	null
6	null
7	null
8	(k ₂ , B)
9	null

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

– Claim:

- Resizing a table of size m takes O(m) time.
- If you resize a table of size m, then:
 - at least m/2 new elements since last resize
 - -bank account has $\Theta(m)$ dollars.

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.
- Pay for resizing from the bank account!
- Strategy:
 - Analyze inserts ignoring cost of resizing.
 - Ensure that bank account always is big enough to pay for resizing.

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Counter ADT:

- increment()
- read()

Counter ADT:

- increment()
- read()

increment()

Counter ADT:

- increment()
- read()

increment(), increment()

0	0	0	0	0	0	0	0	1	0
---	---	---	---	---	---	---	---	---	---

Counter ADT:

- increment()
- read()

increment(), increment()

What is the worst-case cost of incrementing a counter with max-value n?

- 1. O(1)
- **✓**2. O(log n)
 - 3. O(n)
 - 4. $O(n^2)$
 - 5. I have no idea.

Counter ADT:

- increment()
- read()

Some increments are expensive...

Question: If we increment the counter to *n*, what is the amortized cost per operation?

- Easy answer: $O(\log n)$
- More careful analysis....

Observation:

During each increment, only <u>one</u> bit is changed from: $0 \rightarrow 1$

Observation:

During each increment, many bits may be changed from: $1 \rightarrow 0$

Observation:

Accounting method: each bit has a bank account.

Whenever you change it from $0 \rightarrow 1$, add one dollar.

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar. Whenever you change it from $1 \rightarrow 0$, pay one dollar.

Counter ADT

Counter ADT

increment()

Counter ADT

increment(), increment()

Counter ADT

increment(), increment()

Counter ADT

increment()

Observation:

Amortized cost of increment: 2

- One operation to switch one $0 \rightarrow 1$
- One dollar (for bank account of switched bit).

(All switches from $1 \rightarrow 0$ paid for by bank account.)

Table Size Rules

Rules for shrinking and growing:

- If (n == m), then m = 2m.
- If (n < m/4), then m = m/2.

- Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Amortized Analysis

Accounting Method

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

– Claim:

- Resizing a table of size m takes O(m) time.
- If you resize a table of size m, then:
 - at least m/2 new elements since last resize
 - -bank account has $\Theta(m)$ dollars.

Amortized Analysis

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Hash Table Resizing

Conclusion: Hashing with Chaining

with Simple Uniform Hashing Assumption (SUHA)

Cost per operation:

- Insert operation: amortized O(1)
- Search operation: expected O(1)

Notes:

- Inserts are amortized because of table resizing.
- Inserts are not randomized (because no searching for duplicates).
- Searches are expected (but not amortized) since no resizing on a search.

Hashing overview

• What is a hash function?

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing

Reality Fights Back

Simple Uniform Hashing doesn't exist.

- Keys are not random.
 - Lots of regularity.
 - Mysterious patterns.
- Patterns in keys can induce patterns in hash functions unless you are very careful.

Example:

- One bucket for each letter [a..z]
- Hash function: h(string) = first letter.
 - E.g., h("hippopotamus") = h.

– Bad hash function: why??

Example:

- One bucket for each letter [a..z]
- Hash function: h(string) = first letter.
 - E.g., h("hippopotamus") = h.

 Bad hash function: many fewer words start with the letter x than start with the letter s.

Example:

- One bucket for each number from [1..26*28]
- Hash function: h(string) = sum of the letters.
 - E.g., h("hat") = 8 + 1 + 20 = 29.

– Bad hash function: why??

Example:

- One bucket for each number from [1..26*28]
- Hash function: h(string) = sum of the letters.
 - E.g., h("hat") = 8 + 1 + 20 = 29.

 Bad hash function: lots of words collide, and you don't get a uniform distribution (since most words are short).

But pretty good hash functions do exist...

Optimism pays off!

Moral of the story:

- Don't design your own hash functions.
- Ever.
- Unless you really need to.

Goal: find a hash function whose values *look* random.

- Similar to pseudorandom generators:
 - When you use Java random, there is no real randomness.
 - Instead, it generates a sequence of numbers that looks random.
- For every hash function, some set of keys is bad!

- If you know the keys in advance, you can choose a hash function that is always good!
 - But if you change the keys, then it might be bad again.

Two common hashing techniques...

- Division Method
- Multiplication Method

Division Method

- $h(k) = k \mod m$
 - For example: if m=7, then h(17) = 3
 - For example: if m=20, then h(100) = 0
 - For example: if m=20, then h(97) = 17

- Two keys k_1 and k_2 collide when:

$$k_1 = k_2 \mod m$$

Collision unlikely if keys are random.

Division Method

- (Bad) idea: choose $m = 2^x$

Very fast to calculate $k \mod m$ via shifts

Recall:
$$001001 >> 1 = 00100$$

 $001001 >> 2 = 0010$
 $001001 >> 3 = 001$

Division Method

- (Bad) Idea: choose $m = 2^x$

Very fast to calculate $k \mod m$ via shifts:

$$k \mod 2^x = k - ((k >> x) << x)$$

Division Method

- (Bad) Idea: choose $m = 2^x$ Very fast to calculate $k \mod m$ via shifts
- Problem: Regularity
 - Input keys are often regular
 - Assume input keys are even.
 - Then $h(k) = k \mod m$ is even!

$$k \mod m + i(m) = k$$
even

Division Method

Assume k and m have common divisor d.

$$k \mod m + i * m = k$$
divisible by d

- Implies that $h(k) = k \mod m$ is divisible by d.

If *d* is a divisor of *m* and every key *k*, then what percentage of the table is used?

- **✓**1. 1/d
 - 2. 1/k
 - 3. 1/m
 - 4. d/n
 - 5. m/n
 - 6. *d/m*

Division Method

Assume k and m have common divisor d.

- Implies that h(k) is divisible by d.

If all keys are divisible by d, then
 you only use 1 out of every d slots

_	
0	A
1	null
2	null
d = 3	В
4	null
5	null
2d = 6	C
7	null
8	null
3d =9	D

Division Method

- $h(k) = k \mod m$
- Choose m = prime number
 - Not too close to a power of 2.
 - Not too close to a power of 10.
- Division method is popular (and easy), but not always the most effective.
- Division is slow.

Two common hashing techniques...

- Division Method
- Multiplication Method

Multiplication Method

- Fix table size: $m = 2^r$, for some constant r.
- Fix word size: w, size of a key in bits.
- Fix (odd) constant A.

$$h(k) = (Ak) \mod 2^w \gg (w - r)$$

Multiplication Method

- Given m, w, r, A: $h(k) = (Ak) \mod 2^w \gg (w - r)$

Multiplication Method

- Given m, w, r, A: $h(k) = (Ak) \mod 2^w \gg (w - r)$

Multiplication Method

- Faster than Division Method
 - Multiplication, shifting faster than division

- Works reasonably well when A is an odd integer $> 2^{w-1}$
 - Odd: if it is even, then lose at least one bit's worth
 - Big enough: use all the bits in A.

Hashing overview

• What is a hash function?

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing