Semantic parsing

Computational Linguistics

Alexander Koller

09 January 2024

Overview

- 1. Semantics in computational linguistics (up to 2000).
- 2. Classical semantic parsing (Geoquery, early 2000s).
- 3. Semantic graph parsing:
 - graph-based (JAMR, 2014)
 - compositional (AM dependency parsing, 2019)
 - finetuning of pretrained models (SPRING, 2021)

Computing with meanings

Aristotle

- Ancient problem: *inference*.
 - ▶ How can we tell whether a sentence follows from others?
 - ▶ Can we compute this automatically?

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

At the other end of Pennsylvania Avenue, people began to line up for a White House tour.

People formed a line at the end of Pennsylvania Avenue.

(Syllogism, Aristotle, 350 BC)

(MNLI dataset, 2018)

Formal meaning representations

- Aristotle with more modern tools (ca. 2000):
 - Compute *meaning representation* in some formal language (e.g. predicate logic)
 - so that it captures something relevant about the sentence's meaning (e.g. its truth conditions)
 - and then use reasoning tools for the formal language (e.g. a *theorem prover* for predicate logic)

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

 $\forall x. man(x) \rightarrow mortal(x)$

man(s)

mortal(s)

Compositional semantics

 $S \rightarrow NP VP$

 $\langle S \rangle = \langle NP \rangle (\langle VP \rangle)$

 $VP \rightarrow V NP$

 $\langle VP \rangle = \lambda y \langle NP \rangle (\langle V \rangle (y))$

 $NP \rightarrow Det N$

 $\langle NP \rangle = \langle Det \rangle (\langle N \rangle)$

 $NP \rightarrow John$

 $\langle NP \rangle = \lambda P P(j^*)$

 $V \rightarrow eats$

 $\langle V \rangle = eat'$

 $Det \rightarrow a$

 $\langle \text{Det} \rangle = \lambda P \lambda Q \exists x \ P(x) \land Q(x)$

 $N \rightarrow sandwich$

 $\langle N \rangle = sw'$

when you apply this syntax rule ...

... construct λ -term for parent from λ -terms for children like this

Example

 $\lambda P \lambda Q \exists x \ P(x) \wedge Q(x)$

Semantic parsing

- Open issue in classical semantics construction: Where do we get large grammar that supports it?
- Current approach in CL is *semantic parsing*: learn mapping from sentence to formal meaning representation using statistical methods.
- Started with Geoquery corpus (880 sentences):

```
What is the smallest state by area? answer(x_1, smallest(x_2, state(x_1), area(x_1, x_2)))
```

Combinatory categorial grammar

John	eats	a	big	sandwich	
NP	(S\NP)/NP	NP/N	N/N	N	_
		_		N	- /
				NP	- /
			S\NP		- >
			S		_ <

Semantics in CCG

$$\frac{X: a}{Y/(Y\backslash X): \lambda P.P(a)} > T \qquad \frac{X/Y: f}{X/Z: \lambda x.f(g(x))} > B \qquad \frac{X/Y: f}{X\backslash Z: \lambda x.f(g(x))} > Bx$$

$$\frac{X: a}{Y\backslash (Y/X): \lambda P.P(a)} < T \qquad \frac{Y\backslash Z: g}{X\backslash Z: \lambda x.f(g(x))} < B \qquad \frac{Y/Z: g}{X/Z: \lambda x.f(g(x))} < Bx$$

$$\frac{\text{John}}{\text{NP: }h^{*}} = \text{eats}$$

$$\frac{\text{S/(S\NP): }\lambda P.P(h^{*})}{\text{S/NP: }\lambda x.(\lambda P.P(h^{*}))(eat'(x)) \Rightarrow_{\beta} \lambda x.eat'(x)(h^{*})} > B$$

$$\frac{\text{S/NP: }\lambda x.(\lambda P.P(h^{*}))(eat'(x)) \Rightarrow_{\beta} \lambda x.eat'(x)(h^{*})}{\text{S: }(\lambda x.eat'(x)(h^{*}))(sandwich') \Rightarrow_{\beta} eat'(sandwich')(h^{*})} > B$$

Zettlemoyer & Collins

GENLEX: build candidates for lexicon entries

	Rules	Categories produced from logical form		
Input Trigger	Output Category	$ \operatorname{argmax}(\lambda x.state(x) \wedge borders(x, texas), \lambda x.size(x)) $		
constant c	NP:c	NP:texas		
arity one predicate p_1	$N:\lambda x.p_1(x)$	$N: \lambda x.state(x)$		
arity one predicate p_1	$S \backslash NP : \lambda x. p_1(x)$	$S \backslash NP : \lambda x.state(x)$		
arity two predicate p_2	$(S\backslash NP)/NP:\lambda x.\lambda y.p_2(y,x)$	$(S \backslash NP)/NP : \lambda x. \lambda y. borders(y, x)$		
arity two predicate p_2	$(S\backslash NP)/NP:\lambda x.\lambda y.p_2(x,y)$	$(S \backslash NP)/NP : \lambda x. \lambda y. borders(x,y)$		
arity one predicate p_1	$N/N: \lambda g.\lambda x.p_1(x) \wedge g(x)$	$N/N: \lambda g. \lambda x. state(x) \wedge g(x)$		
literal with arity two predicate p_2 and constant second argument c	$N/N: \lambda g.\lambda x.p_2(x,c) \wedge g(x)$	$N/N: \lambda g. \lambda x. borders(x, texas) \wedge g(x)$		
arity two predicate p_2	$(N\backslash N)/NP: \lambda x.\lambda g.\lambda y.p_2(x,y) \wedge g(x)$	$(N\backslash N)/NP: \lambda g.\lambda x.\lambda y.borders(x,y) \wedge g(x)$		
an $arg max / min$ with second argument arity one function f	$NP/N: \lambda g. \arg\max / \min(g, \lambda x. f(x))$	$NP/N: \lambda g. \arg\max(g, \lambda x. size(x))$		
an arity one numeric-ranged function f $S/NP: \lambda x. f(x)$		$S/NP: \lambda x.size(x)$		

Zettlemoyer & Collins

overall learning algorithm

Algorithm:

 \bullet For $t=1\dots T$

Step 1: (Lexical generation)

- For $i = 1 \dots n$:
 - Set $\lambda = \Lambda_0 \cup GENLEX(S_i, L_i)$.
 - Calculate $\pi = \text{PARSE}(\hat{S}_i, L_i, \hat{\lambda}, \bar{\theta}^{t-1})$.
 - Define λ_i to be the set of lexical entries in π .
- Set $\Lambda_t = \Lambda_0 \cup \bigcup_{i=1}^n \lambda_i$

Step 2: (Parameter Estimation)

• Set $\bar{\theta}^t = \text{ESTIMATE}(\Lambda_t, E, \bar{\theta}^{t-1})$

 Λ are CCG lexicons; λ contains new lexicon entries. π is a CCG parse tree.

 θ are parameters of a log-linear probability model.

analogous to Viterbi EM

Evaluation results

Cyctom	Vai	riable F	ree	Lambda Calculus					
System	Rec.	Pre.	F1	Rec.	Pre.	F1			
Cross Validation Results									
KRISP	71.7	93.3	81.1	_	_	_			
WASP	74.8	87.2	80.5	_	_	_			
Lu08	81.5	89.3	85.2		_	_			
λ -WASP	_	_	_	86.6	92.0	89.2			
Independent Test Set									
ZC05	_	<u> </u>	_	79.3	96.3	87.0			
ZC07	_	_	_	86.1	91.6	88.8			
UBL	81.4	89.4	85.2	85.0	94.1	89.3			
UBL-s	84.3	85.2	84.7	87.9	88.5	88.2			

Abstract Meaning Representations

- Limitations of Geoquery:
 - ▶ semantic representations are trees (too) easy
 - very small
- Since 2014, much larger corpora available, e.g. AMRBank:
 ~40k AMRs, graphs as semantic representations.

Dependency-style AMR parsing

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

JAMR; Flanigan et al. 2014

Issues with JAMR

- JAMR can draw edge between any two nodes; syntactic structure of sentence used only indirectly.
- Semantic representations for words don't know anything about their semantic arguments.
- Edges for control verbs added arbitrarily, not because linguistic principle of control discovered.
- No notion of compositionality!

Compositional semantic parsing

Learn to predict a (semantic) dependency tree, which then decodes into an AM term, which evaluates to a graph.

AM algebra

Two operations for combining s-graphs: Apply (= head + complement), Modify (= head + modifier).

AM terms

(Groschwitz et al., IWCS 2017)

Converting training data

Idea: Represent AM term as AM dependency tree.

Then semantic parser needs to learn:

- dependency parsing
- supertagging.

(Groschwitz et al., ACL 2018; *SEM 2021)

Parsing

- Convert (string, graph) training data into (string, supertags + dependencies) training data.
- Train neural supertagger + dependency parser to assign scores to supertags + dependencies.
 - easier than predicting the whole graph; compositional!
- At evaluation time, compute highest-scoring well-typed dependency tree.
 - well-typedness requirement makes this NP-complete
 - solve approximately with CKY-style parsing algorithm

Parsing across graphbanks

	D	M	PA	AS	PS	SD	EI	OS	AMR 2015	AMR 2017
	id F	ood F	id F	ood F	id F	ood F	Smatch F	EDM	Smatch F	Smatch F
Groschwitz et al. (2018)	-	-	-	-	-	-	-	-	70.2	71.0
Lyu and Titov (2018)	-	-	-	-	-	-	-	-	73.7	74.4 ± 0.16
Zhang et al. (2019)	-	-	-	-	-	-	-	-	-	76.3 ± 0.1
Peng et al. (2017) Basic	89.4	84.5	92.2	88.3	77.6	75.3	-	-	-	-
Dozat and Manning (2018)	93.7	88.9	94.0	90.8	81.0	79.4	-	-	-	-
Buys and Blunsom (2017)	-	-	-	-	-	-	85.5	85.9	60.1	-
Chen et al. (2018)	-	-	_	-	-	_	90.9 ^{1,2}	90.4 ¹	-	-
This paper (GloVe)	90.4 ± 0.2	84.3 ±0.2	91.4 ± 0.1	86.6 ± 0.1	78.1 ± 0.2	74.5 ± 0.2	87.6 ± 0.1	82.5 ± 0.1	69.2 ± 0.4	70.7 ± 0.2
This paper (BERT)	93.9 ±0.1	90.3 ±0.1	94.5 ±0.1	92.5 ±0.1	82.0 ±0.1	81.5 ±0.3	90.1 ± 0.1	84.9 ± 0.1	74.3 ±0.2	75.3 ± 0.2
Peng et al. (2017) Freda1	90.0	84.9	92.3	88.3	78.1	75.8	_	-	-	-
Peng et al. (2017) Freda3	90.4	85.3	92.7	89.0	78.5	76.4	-	-	-	-
This paper, MTL (GloVe)	91.2 ± 0.1	85.7 ± 0.0	92.2 ± 0.2	88.0 ± 0.3	78.9 ± 0.3	76.2 ± 0.4	88.2 ± 0.1	83.3 ±0.1	$(70.4)^3 \pm 0.2$	71.2 ± 0.2
This paper, MTL (BERT)	94.1 ±0.1	90.5 ±0.1	94.7 ±0.1	92.8 ±0.1	82.1 ±0.2	81.6 ±0.1	90.4 ± 0.1	85.2 ± 0.1	$(74.5)^3 \pm 0.1$	75.3 ± 0.1

- First semantic parser that does well across all six major graphbanks.
- Established new states of the art through use of pretrained BERT embeddings.
- Small improvements through multi-task learning on multiple graphbanks.
- Transition-based parser can be extremely fast (~10k tokens/sec) and accurate.

Progress in semantic parsing

Parsing accuracies on the AMR graphbank up to 2019; slide from ACL 2019 tutorial by Koller, Oepen, Sun.

Seq2seq Semantic Parsing

Compositional generalization

Structural: observe PPs in objects, generalize to PPs in subjects ("objPP to subjPP") s NP VP NP NP Noah ate NP PP the cake on the table burned Noah ate the cake on the plate. the cake on the plate *cake (x_3) ; *plate (x_6) ; eat.agent $(x_1, Noah) \land eat.theme(x_1, x_3)$ \land cake.nmod.on(x_3, x_6)

Compositional helps on COGS

Model Class	Model	Obj to Subj PP	STRUCT CP recursion	PP recursion al	LEX 118 other types	Overall
	BART	0	0	12	91	79
	BART+syn	0	5	8	93	80
	T5	0	0	9	97	83
	Kim and Linzen 2020	0	0	0	73	63
seq2seq	Akyürek and Andreas 2021	0	0	1	96	82
	Zheng and Lapata 2022	0	12	39	99	89
	Conklin et al. 2021	0	0	0	88	75
	Csordás et al. 2021	0	0	0	95	81
	Qiu et al. 2021 *	100	100	100	100	100
atmostrana arreana	Liu et al. 2021	93	100	99	99	99
structure-aware	Weißenhorn et al. 2022	78	100	99	100	98
AM pars	ser					

^{*)} Can still see this as a neurosymbolic model (uses compositional data augmentation); achieves perfect accuracy, up to depth seen in the augmented data.

Semantic parsing tasks

(picture adapted from Shaw et al., ACL 2021)

Conclusion

- Challenge in compositional semantic construction: Where do we get large-scale grammars?
- Semantic parsing: Learn such grammars from corpora with semantic annotations.
 - GeoQuery: small corpus of trees
 - graphbanks, e.g. AMRBank
 - also parsing into programs and other formal languages