Prequel to Hawkes Processes: An Overview of Temporal and

Spatio-Temporal Point Processes and Some Simulations

Frances Lin

June 2021

Major Professor: James Molyneux

Committee Members: Lisa Madsen & Charlotte Wickham

Abstract

1 Introduction

Real-world data are often spatial, temporal, or spatio-temporal in nature. Spatial data (e.g. soil properties,

housing prices) often involve locations such as points and areas. Temporal data (e.g. sensor readings, stock

prices) often involve times such as moments and intervals. Spatio-temporal data are data that relates to

both locations and times. Examples of spatio-temoral data include forest inventories, remotely sensed images,

earthquake epicenters, disease cases, map services and travel times, to name a few.

There are various statistical models and methods suitable for modeling spatial, temporal, or spatio-temporal

data, and which models to use depend on questions of interest. For this project, we focus primarily on

the point process models. Point process models are useful for describing phenomena that occurs at random

locations, times, or locations and times, and the questions of interests typically are: Does the rate for the

occurrence of events vary with locations, times, or locations and times? Do events appear clustered? Do

events trigger subsequent events? (Reinhart, 2018)

Spatial data can be broadly categoried into three types: geostatistical (point process) data, areal data, and

point pattern data (Cressie, 2015). We focus on the third category in which point pattern data are realizations

of spatial point processes, and questions about point pattern data typically are: Is there clustering of events?

Can we define a point process that captures the events? **CITATIONS** Examples of such models include

Cox and cluster processes. On the other hand, when dealing with temporal data, (marked) point processes

1

are sometimes used interchangeable with time series, and vice versa **CITATIONS**. One major distinction, though, is that in point processes, time intervals are treated as continuous, whereas in time series, they are treated as discrete. Examples of such models include (temporal) Poisson and Hawkes processes.

Hawkes processes are also known as self-exciting point process. More specifically, the original Hawkes processes are temporal, whereas the more recently developed self-exciting point processes have been extended from temporal Hawkes processes to account for both the spatial and temporal aspects of the data.

The defining characteristic of Hawkes processes is that it self-excites. In other words, the occurrence of an event increases the occurrence of future events nearby in space or time, but the events don't self-excite in perpetuity. In addition, more recent events exert more influence on the rate at which events occur given the history of such events, as compared to older events. For example, in seismology, an event can be an earthquake occurrence that causes aftershocks. In criminology, an event can be a gang rivalry that triggers retaliations following the gang crime. In both cases, the initial event can continue to spawn 'offspring' events and the 'offspring' events can spawn 'offspring' events of their own, but the spawns die out eventually.

In addition to modeling earthquake epicenters (Ogata, 1988, 1998) and crime patterns (Mohler et al., 2011; Reinhart & Greenhouse, 2018), Hawkes processes have also been used in modeling events such as forest wildfires (Peng, et al., 2005), insurance claims (Stabile et al., 2010), financial transcations (Embrechts et al., 2011; Bacry et al., 2015), social network events (Zhao et al., 2015; Rizoiu et al., 2017), neuron activities (Gerhard et al., 2017), and disease spread or transmission (Meyer et al., 2012; Meyer & Held, 2014). Thus, it can be found in a wide variety of fields such as emergency and disaster management, insurance, finance, social network, neuroscience, and epidemiology. Recent work has extended the use of self-exciting point processes to novel applications such as mass shootings (Boyd & Molyneux, 2021), COVID-19 transmission (Chiang et al., 2020), and gang violence (Park et al., 2021). However, there is still much work to be done, which include computational advances to ease the burden of applying such models to bigger data sets (Holbrook et al., 2021), residual and model diagnostics, and methods that make the models more flexible and applicable.

Given the flexibility and applicability of Hawkess processes, it is surprising to see that Hawkess processes have not gained much attention from the machine learning communities, which would find their predictive capabilities beneficial. In addition, understanding Hawkes processes would benefit from knowing some of the relevant point processes (e.g. nonhomogeneous Poisson, Cox and cluster processes) which are often left out from graduate-level, introductory spatial statistics and stochastic processes courses. The objective of this project is to give an overview of various types of point processes so that readers of interest have the necessary background knowledge to understand Hawkes and self-exciting processes. The outline of this project is as follows: In Section 2, we introduce, define and discuss properties of counting processes,

homogeneous and nonhomogeneous Poisson processes, Cox processes, cluster processes, Hawkes processes, and spatio-temporal self-exciting process. In *Section 3*, we discuss in particular the thinning algorithms (acceptance-rejection method) and the **spatstat** package of R that are used to simulate selected processes in 1D and 2D, respectively. In *Section 4*, we discuss recent and future work of Hawkes and self-exciting processes.

2 Introductions, Definitions and Properties

2.1 Counting Process

A counting process counts the occurrences (or numbers) of events over time, space, space-time or, in the most general sense, any metric space in which events occur and can be counted. CITATIONS: Other or Daley and VereJones's An Introduction to the Theory of Point Processes

If we were to denote the time of arrival for customers at a super market, we would have a set of points in time in which we could count the number customers over some interval of time. On the other hand, if we consider the location of trees to occur at a point in space, then in some bounded region of the space, we could count the number of trees. An earthquake's epicenter would be the point in space but we also capture when the point appears in time.

Let us restrict ourselves to the temporal domain so that interpretations are easier to follow. The counting process requires that the total number of events N(t) up to some time t to be greater than zero, the total number of events must be an integer, the counts always increase, and the number of events in specific time interval can be obtained by subtracting the number of events in previous interval from that in current interval. In addition, counting processes are independent, stationary, and homogeneous. In other words, the numbers of events N(t) occurring in disjoint interval t are independent, the distribution of the numbers of events depends only on the length of the interval t, and the transition probability between any two states at two times depends only on the difference between the states. Reframe the transition probabilities part in non-stats language

Before formally defining a counting process, first we need to define stochastic processes and point processes. A stochastic process is a collection of random variables indexed by time, t, space, s or space-time, (s,t), but we restrict ourselves to the time domain, again. We follow with..... to define a stochastic process and a point process

Definition 2.1.1 (Stochastic Process) A stochastic process is a family of random variables indexed by time t and is defined as

$$\{X_t\}_{t\in T}$$

Definition 2.1.2 (Point Process) Let $\{T_i\}_{i\in\mathbb{N}}$ be a sequence of non-negative random variables such that $T_i < T_{i+1} \ \forall i \in \mathbb{N}$, a point process on R^+ is defined as

$$\{T_i\}_{i\in\mathbb{N}}$$

A point process relies on the occurrence of an event occurring at a specific point in time. Stochastic processes, on the other hand, are more general. It can be related to a time interval, a waiting time, a state (e.g. blue or red) that changes over time, etc.

A counting process is then defined as follows

Definition 2.1.3 (Counting Process) Let N(t) be the total number of events up to some time t such that the values are nonnegative, integer valued, and nondecreasing, a stochastic process is said to be a counting process and is defined as

$${N(t), t \ge 0}.$$

Let us look at a more explicit example, which we show in Figure 1. Suppose that N(t) counts the numbers of events up to some time t and events occur at times t = 0.1, 1, 1.5, 3, 5, etc, then N(2) = 3 since events occuring at 0.01, 1, and 1.5 all occur in the time interval (0, 2]. Similarly, N(4) = 4 since 4 events occur in the time interval (0, 4].

An alternative definition of a counting process is

Definition 2.1.4 (Counting Process) Let $\{T_i\}_{i\in\mathbb{N}}$ be a point process, a counting process associated with $\{T_i\}_{i\in\mathbb{N}}$ is defined as

$$N(t) = \sum_{i \in \mathbb{N}} I_{\{T_i \le t\}}$$

This equivalent definition may be more beneficial as we get into Poisson, cluster, etc. processes in later sections because it is easier to see that for $i \in \mathbb{N}$, if $T_i \leq t$, the indicator function $I_{\{T_i \leq t\}}$ is equal to 1. Then, we sum up all the 1s for events which have occurred.

A useful corollary of counting process, which describes more formally some of the properties we stated above and will be helpful to understand as we move into Poisson processes and then beyond is

Figure 1: Counting Process

Corollary 2.1.1 A counting process satisfies that

- 1. $N(t) \ge 0$
- 2. N(t) is an integer
- 3. If $t \le t + h$, then $N(t) \le N(t + h)$
- 4. If t < t + h, then N(t + h) N(t) is the number of events occur in the interval (t, t + h)

In other words, 1. An event has to occur for it to be counted. 2. We either count an event or we don't. There is no event that sort of occurs that results in decimal value. 3. Counts always increase because events don't disappear. Once we observe an event and count it, it remains in the counts. 4. The number of events in specific time interval can be obtained by subtracting the number of events in previous interval from that in the current interval.

2.2 Poisson Process

The homogeneous Poisson process (HPP) is one of the simplest yet most-widely used point processes (Baddeley et al., 2015). HPPs can be used to model the number of events such as bus arrivals at a bus stop, car accidents at a site, or the document requests on a web server over time. As we alluded to previously with counting processes, HPPs can also be considered over a space which is often taken to be a two-dimensional plane, such as the surface of Earth, or a three-dimensional volume, such as the interior of Earth.

Like counting processes, HPPs are also independent, stationary, and homogeneous. In addition, we assume that the numbers of events N(t) follows a Poisson distribution with a constant rate, λ , and the interarrival times between events, W, are exponentially distributed. HPPs can then be formally defined as

We follow with Obral (2016) and Chen (2016) to define a Poisson process

Definition 2.2.1 (Poisson Process) If the following conditions hold, a counting process $\{N(t), t \geq 0\}$ is said to be a Poisson Process with constant rate (or intensity) $\lambda > 0$

- 1. N(0) = 0
- 2. N(t) has independent increments

3.
$$P(N(t+h)) - N(t) = 1) = \lambda h + o(h)$$

4.
$$P(N(t+h)) - N(t) > 1) = o(h)$$

where the function of little o o(h) is given as

$$\lim_{h \to 0^+} \frac{o(h)}{h} = 0.$$

In other words, 1. An event has to occur for it to be counted. 2. For any disjoint time intervals, the occurrence of an event does not affect the probability of the occurrence of one another event. 3. λ is the rate (events over time) at which points occur and is constant. 4. No more than 1 event can occur at the same location.

An alternative way to think of HPP is that it is a uniformly random process. If we were to take a realization of a HPP over some time interval (0, T] and "bin" the number of events occurring in some set of equal intervals, then the histogram for the realization would resemble a realization of a uniform distribution over time 0 to T.

Let us look at a realization of a HPP in time, which we show in Figure 2. First, we note that the cumulative number of points is growing at a constant linear rate. In addition, we can see that the histogram of rate appears roughly uniform; the rates are roughly constant at $\lambda = 10$. The algorithm used for simulating this HPP can be found in the Appendix section.

For an HPP, the number of events in any time interval N(t) are Poisson distributed. More formally, we can say that the number of events in any time interval (t, t + h], N((t, t + h]), $\sim Pos(\lambda \cdot h)$. That is, for all

Figure 2: Homogeneous Poisson process

$$t, h \ge 0$$
 and $n = 0, 1, ...,$

$$P(N(t+h) - N(t) = n) = \frac{(\lambda h)^n e^{-\lambda h}}{n!}.$$

Additionally, let us denote the total number of events as N(t) and the interarrival times between events as W. For example, let T_0 denote the starting time of the process while T_1 is the time of the first occurrence of event and T_2 is the time of the second occurrence of event. The elapsed time between the start of the process and first event is W_1 and the elapsed time between the first event and second event is W_2 . The interarrival times W are exponentially distributed. More formally, the interarrival times W, $\sim exp(\frac{1}{\lambda})$. That is, for rate $\lambda > 0$, the interarrival time W_i i = 1, 2, ...,

$$P(W_1 > h) = P(N(h) = 0) = e^{-\lambda h}$$
.

This is because the probability of the first point arriving after time h can be thought of as the probability that the first point does not arrive in the time interval (0, h]. Similarly, W_2 is also $\sim exp(\frac{1}{\lambda})$ since

$$P(W_2 > h|W_1 = t) = P(N(t+h) - N(t)|N(t) - N(t^-) = 1) = P(N(t+h) - N(t) = 0) = P(N(h) = 0) = e^{-\lambda h}.$$

2.3 Nonhomogeneous Poisson Process

Assuming that the rate in which points occur is constant is often not realistic in practice. We may want a model that allows for more flexibility. Nonhomogeneous Poisson processes (NPPs) are a generalization of homogeneous Poisson processes that allow for the rate (or intensity) λ to vary as function of time t or space

s.

We assumed previously that for the HPP the intensity λ is constant. If we have reasons to believe that the intensity is not constant, we should use a NPP instead. This would be the case if, as in the supermarket example, we have reasons to believe that the arrival rate of customers is higher during lunch time as compared to say, 2am, or, as in the trees in a forest example, we speculate that environmental factors such as temperature, rainfall and light affect the spatial distribution of the trees.

Contrary then to the HPP, NPPs are independent but not stationary nor homogeneous. HPP has stationary increments since the distribution of the numbers of events N(t) that occur in any interval of time t depends only on the length of the interval t but not the location of the interval t. In contrast, NPP does not have stationary increments since the distribution of N(t) can change when shifted in t. Since stationary implies homogeneity, NPP is nonhomogeneous.

For HPP, we assume that the numbers of events in any time interval N(t) follows a Poisson distribution with a constant intensity λ . For NPP, we assume that N(t) follows a Poisson distribution too but with an intensity function $\lambda(t)$ such that the intensity now varies with a function of time. This then leads to the following definition of a NPP (Obral, 2016; Chen, 2016)

Definition 2.3.1 (Nonhomogeneous Poisson Process) If the following conditions hold, a counting process $\{N(t), t \geq 0\}$ is said to be a nonhomogeneous Poisson Process with intensity function of time $\lambda(t), t > 0$

- 1. N(0) = 0
- 2. N(t) has independent increments
- 3. $P(N(t+h)) N(t) = 1) = \lambda(t)h + o(h)$
- 4. P(N(t+h)) N(t) > 1) = o(h)

Nonhomogeneous Poisson processes have additional properties such as if the number of events in any time interval (t, t+h], denoted as N((t, t+h]), $\sim Pos(\Lambda(t) = \int_t^{t+h} \lambda(v) dv)$. That is, for all $v, t, h \geq 0$ and n = 0, 1, ...,

$$P(N(t+h) - N(t) = n) = \frac{\left(\int_t^{t+h} \lambda(v)dv\right)^n e^{-\int_t^{t+h} \lambda(v)dv}}{n!}.$$

where again, $\lambda(v)$ denotes a non-constant rate function.

Further, occurrence for the next point can be determined by utilizing the exponential distribution with

$$P(N(t,t+h)=0) = e^{-\int_t^{t+h} \lambda(v)dv}.$$

Figure 3: Left: HPP (rate = 100) Right: NPP (intensity = 400xy)

A Motivating Example

Before we delve further into other point processes, let us look at a motivating example, which we show in Figure 3. We demonstrate the processes in space so that visualizations are easier to look at and comprehend.

Let us look at HPP and NPP in space first. HPP in space is also called complete spatial randomness (CSR) (Baddeley et al., 2015). For HPP in space, the number of events in u with area |u|, denoted as N(u), $\sim Pos(\lambda|u|)$. The left figure of Figure 3 is a realization of HPP with constant rate = 100. We can see that HPP points appear uniformly distributed in u.

For NPP in space, the number of events in u, denoted as N(u), $\sim Pos(\int_u \lambda(v)dv)$. The right figure of Figure 3 is a realization of NPP with $intensity\ function = 400xy$. NPP points are not uniformly distributed; they are distributed according to the intensity function of the process. In this example, the points appear to concentrate at the upper-right corner.

2.4 Cox and Cluster Process

Even more flexible models than NPP are Cox and cluster processes that allow dependence between events. Previously, we assume independence between events. That is, whether events occur at a constant rate λ (e.g. HPP) or depend on an intensity function $\lambda(t)$ (e.g. NPP), they occur independently. Here, we discuss models that allow dependence between events.

Examples that can be modelled using Cox and cluster processes include seedlings and saplings of California redwood, locations of emergent plants, and locations of trees (Baddeley, 2015). In these examples, the patterns appear to be clustered.

We can think of Cox process as a hierarchical model with two levels and cluster process as a hierarchical model with three levels (Geyer, 2020). In Cox process, the first level is a Poisson process and the second

level can be a non-negative random variable. In cluster process, the first level is to generate 'parent' (or 'center') points, which can be a Poisson process or any other process. The second level is to generate counts, which is a non-negative interger-valued random variable, and the third level is to generate 'offspring' points for each 'parent' point and the corresponding count.

In Cox processes (or doubly stochastic Poisson processes), randomness arises from two parts. Not only the randomness occurs at different location of the time interval as in the case of a NPP, but instead of governing by a determinist function $\lambda(t)$ also as in the case of a NPP, the governing function $\Lambda(u)$ is also random. As a result, the intensity function $\Lambda(u)$ is treated as random. Mixed Poisson process, for one example, involves.....

In cluster processes, randomness arises from three parts: First, 'parent' points \mathbf{Y} is generated. Next, each 'parent' point $y_i \in \mathbf{Y}$ gives rise to a random number of 'offspring' points z_{ij} . Then, all the 'offspring' points Z_{ij} form a cluster process \mathbf{X} and only \mathbf{X} is observed.

Specific models of cluster processes depend on the choices of assumptions. Matern cluster process, for one example, involves generating homogeneous Poisson parents and each parent gives rise to Poisson number of offspring uniformmly distributed in a disc of radius r centered around the parent.

We follow with..... to define a Cox process and a cluster process

Definition 2.4.1 (Cox Process) Let $\Lambda = (\Lambda(u))_{u \in S \subseteq R^d}$ be a non-negative random field such that the values of $\Lambda(u)$ is nonnegative and $\Lambda(u)$ is a locally integrable function. If $X \mid \Lambda \sim Pos(\Lambda)$, then X is said to be a Cox process driven by Λ with intensity function $\lambda(u) = E(\Lambda(u))$. That is,

$$P(N(u) = n) = \frac{(\lambda(u))^n e^{-\lambda(u)}}{n!} = \frac{(E(\Lambda(u)))^n e^{-E(\Lambda(u))}}{n!} =$$

(?)

$$\Lambda(u) \stackrel{a.s.}{=} \int_{u} \lambda(x) dx$$

(?) How to get here

$$= \int_0^\infty \frac{x^n e^{-x} F_u(dx)}{n!}$$

Note. Λ is a random field means that $\Lambda(u)$ is a random variable $\forall u \in S$.

Note. $\Lambda(u)$ is a locally integrable function means that $E(\Lambda(u))$ exists and is locally integrable with probabiliy 1.

Cox processes have the following propertities

- 1. Propertities of Cox process X follow immediately from the properties of Poisson process X | Λ . For example, if Λ is stationary, then X is stationary.
- 2. For bounded $B \subseteq S$, the void probabilities are given by

$$\nu(B) = E(P(N(B) = 0)|\Lambda) = E(exp(-\int_B Z(u)du)).$$

Note. The void (or avoidance) probability ν is defined as the probability that no points of a point process N existing in B where B is a subset of the underlying space R^d .

Definition 2.4.2 (Cluster Process) Let x be points in a point process N and replacing every x with a cluster of points N_x , then the union of all the clusters forms a cluster process N_c . That is,

$$N_c = \bigcup_{x \in N} N_x$$

Note. Each N_x is a finite point process 'centered' at x and it is assumed that each N_x is independent of one another.

Note. N_x can be thought of as 'offspring'??

In addition, condition on....., the cluster process has the intensity function.....

We follow with Baddeley et al. (2015) to state the following model assumptions for cluster processes 1. 'Parent' points follow a Poisson distribution. 2. Clusters are independent of one another. 3. Clusters are identically distributed, which means that clusters, when shifted, have the same distributions. 4. The locations of 'offspring' points of each parent point are independently and identically distributed. 5. The number of 'offspring' points of each parent point follows a Poisson distribution. 6. Clusters are isotropic, which means that the distribution of 'offspring' points for each parent point depends only on the distance between the 'parent' and the 'offspring'.

Under assumption 1 - 4, it is a Neyman-Scott process. Under assumption 1 - 5, the cluster process is a Cox process. Under assumption 1 - 6, it can be a Matern cluster process or a Thomas cluster process.

Figure 4: Left: Cox (intensity = $\exp(n = 1, \text{ rate} = 1/100)$) Right: Matern (kappa = 20, r = 0.05, mu = 5)

The left and the right figure of Figure 4 is a realization of Cox process with intensity function = exp(1, 1/100) and Matern cluster process with kappa = 20, r = 0.05, mu = 5, respectively. Both Cox process and Matern cluster process points appear clustered, but the way the points cluster differ. Points in Cox process cluster accordingly to some specified distribution, whereas points in cluster process cluster in some defined area.

2.5 Hawkes Process

Hawkes process is also known as a self-exciting point process. Like Cox and cluster process, the model also allows dependence between events. However, their dependence differs. In Hawkes process, the occurrence rate of the events depends not only on time t but also past events \mathcal{H}_t^N up to some time t. Neither Cox nor cluster process captures the past history of events.

Examples that can be modelled using Hawkes processes include locations of earthquake epicenters, locations of crimes, and locations of patients with a disease. In these examples, the occurrence of an event increases the occurrence of subsequent events.

Because the intensity is now as a function of past history, a defining characteristic of Hawkes processes is that it self-excites. **WHY?** Another characteristic is that more recent events exert more influence on the intensity, as compared to older events. **HOW?** These characteristics are captured by the triggering part $\phi(\cdot)$ of the intensity function $\lambda(t|\mathcal{H}_t)$.

We can think of Hawkes process as a model that incorporates cluster process and conditional intensity function.

First we want to define conditional intensity function since it is through which a point process is fully characterized.

Figure 5: Hawkes Process

Conditional intensity function can be thought as the instantaneous rate of events per unit time, space or space-time. Restricting ourselves to the time domain again, for example, for HPP, $\lambda(t|\mathcal{H}_t) = \lambda$, for HPP, $\lambda(t|\mathcal{H}_t) = \lambda(t)$, for Cox process, $\lambda(t|\mathcal{H}_t)$ is a Papangelou conditional intensity function. For Hawkes process, $\lambda(t|\mathcal{H}_t)$ is a function of past history.

Definition 2.5.0 (Conditional Intensity Function) Let N(t) be the numbers of events N(t) that occur in any interval of time t, the conditional intensity function $\lambda(t)$ with respect to \mathcal{H}_t is defined as

$$\lambda(t|\mathcal{H}_t) = \lim_{h \to 0^+} \frac{P(N(t, t+h] > 0|\mathcal{H}_t)}{h} = \lim_{h \to 0^+} \frac{E(N(t, t+h)|\mathcal{H}_t)}{h}$$

where \mathcal{H}_t is the history prior to time t here in the case of a Hawkes process.

Definition 2.5.1 (Hawkes Process) A counting process $\{N(t), t \geq 0\}$ associated with past events $\{\mathcal{H}_t^N, t > 0\}$ is said to be a Hawkes process with conditional intensity function $\lambda(t|\mathcal{H}_t^N), t > 0$ and takes the form

$$\lambda(t|\mathcal{H}_t^N) = \lambda_0(t) + \sum_{i:T_i < t} \phi(t - T_i)$$

where

- $\lambda_0(t)$ is the base intensity function (or μ the constant background rate)
- $T_i < t$ are the events time occur before current time t

- $\phi(\cdot)$ is the kernel function (or $g(\cdot)$ the triggering function) through which intensity function depends on past events
- \mathcal{H}_t^N is the natural filtration (or simply \mathcal{H}_t the past history) which represents the internal history of N up to time t

Corollary 2.5.1 Hawkes process satisfies that

- 1. N(t) = 0
- 2. $\lambda(t|\mathcal{H}_t^N) = \lambda_0(t) + \int_{-\infty}^t \phi(t T_i) dN(s) = \lambda_0(t) + \sum_{i:T_i < t} \phi(t T_i)$
- 3. $P(N(t+h)) N(t) = 1|\mathcal{H}_t^N| = \lambda(t)h + o(h)$
- 4. $P(N(t+h)) N(t) > 1|\mathcal{H}_t^N) = o(h)$

Choices of $\phi(\cdot)$ include, for example, exponentially decaying function and power-law kernel, and they take the form of

$$\phi(x) = \alpha e^{-\beta x}$$

$$\phi(x) = \frac{\alpha}{(x+\beta)^{\eta+1}}.$$

There are two ways to view Hawkes processes

1. Intensity-based Hawkes Process

Here, Hawkes process is defined through conditional intensity process.

In Section 3.5, we discuss algorithm for simulating intensity-based Hawkes process in details.

2. Cluster-based Hawkes Process

Alternatively, Hawkes process can also be defined through marked Poisson cluster process.

2.6 Spatio-Temporal Hawkes Process

Spatio-temporal Hawkes processes is an extention of temporal Hawkes processes. Recall that temporal Hawkes processes take the form of

$$\lambda(t|\mathcal{H}_t) = \mu + \sum_{i:T_i < t} g(t - t_i).$$

Spatio-temporal Hawkes processes take the form of

$$\lambda(t|\mathcal{H}_t) = \mu(s) + \sum_{i:T_i < t} g(s - s_i, t - t_i).$$

where

- $s_i, i = 1, 2, ...$ are the sequence of locations of events
- $t_i, i = 1, 2, \dots$ are the times of events.

3 Algorithms and Simulations

Please refer to the Appendix section for the algorithms that are used to simulate some of the aforementioned point processes in 1D and the **spatstat** package of R that are used to simulate the processes in 2D.

4 Conclusions and Discussion

Acknowledgments

Reference

Bacry, E., Mastromatteo, I., & Muzy, J. F. (2015). Hawkes processes in finance. Market Microstructure and Liquidity, 1(01), 1550005.

Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: methodology and applications with R. CRC press.

Boyd, P., & Molyneux, J. (2021). Assessing the contagiousness of mass shootings with nonparametric Hawkes processes. PLoS one, 16(3), e0248437.

Chen, Y. (2016). Thinning algorithms for simulating point processes. Florida State University, Tallahassee, FL.

Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.

Chiang, W. H., Liu, X., & Mohler, G. (2020). Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates. medRxiv.

Embrechts, P., Liniger, T., & Lin, L. (2011). Multivariate Hawkes processes: an application to financial data. Journal of Applied Probability, 48(A), 367-378.

Gerhard, F., Deger, M., & Truccolo, W. (2017). On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs. PLoS computational biology, 13(2), e1005390.

Geyer, C. (2020). Spatial Point Processes. Retrieved from https://www.stat.umn.edu/geyer/8501/

Holbrook, A. J., Loeffler, C. E., Flaxman, S. R., & Suchard, M. A. (2021). Scalable Bayesian inference for self-excitatory stochastic processes applied to big American gunfire data. Statistics and Computing, 31(1), 1-15.

Krishna, R. (2015). Simulation of Non-Homogeneous Poisson Processes. Retrieved from https://radhakrishna.typepad.com/simulating-nonhomogeneous-poisson-process.pdf

Meyer, S., Elias, J., & Höhle, M. (2012). A space–time conditional intensity model for invasive meningococcal disease occurrence. Biometrics, 68(2), 607-616.

Meyer, S., & Held, L. (2014). Power-law models for infectious disease spread. Annals of Applied Statistics, 8(3), 1612-1639.

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., & Tita, G. E. (2011). Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493), 100-108.

Obral, K. (2016). Simulation, estimation and applications of hawkes processes. (Master's thesis, University of Minnesota).

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical association, 83(401), 9-27.

Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2), 379-402.

Park, J., Schoenberg, F. P., Bertozzi, A. L., & Brantingham, P. J. (2021). Investigating Clustering and Violence Interruption in Gang-Related Violent Crime Data Using Spatial—Temporal Point Processes With Covariates. Journal of the American Statistical Association, 1-14.

Peng, R. D., Schoenberg, F. P., & Woods, J. A. (2005). A space–time conditional intensity model for evaluating a wildfire hazard index. Journal of the American Statistical Association, 100(469), 26-35.

Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applications. Statistical Science, 33(3), 299-318.

Reinhart, A., & Greenhouse, J. (2018). Self-exciting point processes with spatial covariates: modeling the dynamics of crime. arXiv preprint arXiv:1708.03579.

Rizoiu, M. A., Lee, Y., Mishra, S., & Xie, L. (2017). A tutorial on hawkes processes for events in social media. arXiv preprint arXiv:1708.06401.

Rubak, E. (2011a). Spatial point processes: Theory and practice illustrated with R. Retrieved from https://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/documents/lecture1.pdf

Rubak, E. (2011b). Spatial point processes: Theory and practice illustrated with R. Retrieved from https://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/documents/lecture2.pdf

Rubak, E. (2011c). Spatial point processes: Theory and practice illustrated with R. Retrieved from https://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/documents/lecture3.pdf

Rizoiu, M. A., Lee, Y., Mishra, S., & Xie, L. (2017). A tutorial on hawkes processes for events in social media. arXiv preprint arXiv:1708.06401.

Pasupathy, R. (2010). Generating homogeneous poisson processes. Wiley encyclopedia of operations research and management science.

Stabile, G., & Torrisi, G. L. (2010). Risk processes with non-stationary Hawkes claims arrivals. Methodology and Computing in Applied Probability, 12(3), 415-429.

Zhao, Q., Erdogdu, M. A., He, H. Y., Rajaraman, A., & Leskovec, J. (2015, August). Seismic: A self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1513-1522).

Terminology

Stochastic Process

Counting Processes

Poisson Process

Nonhomogeneous Poisson Process

Cox Process

Appendix

Algorithm 1: HPP

Algorithm 1

Algorithm 2: NPP

Algorithm 2: NPP is omitted. Instead, we discuss the thinning algorithm (or acceptance-rejection method)

in details and show Algorithm 3 next.

Algorithm 3: Hawkes

In this example, we use the thinning algorithm to simulate a (temporal) Hawkes process since it is one of

the most popular choices for simulating both temporal and spatio-temporal NPP.

Broadly put, thinning algorithm involves randomly deleting points from a point pattern. **ELABORATE**

MORE.

Algorithm 3

Figure 4 as shown previously is a realization of a Hawkes process with the exponentially decaying triggering

function ($\mu = 0.5, \alpha = 0.7, \beta = 0.5$).

Simulations of HPP, NPP, Cox and Matern Cluster Process in 2D using the

spatstat package in R

All of the corresponding plots in 2D are created using the **spatstat** package in R.

HPP

NPP

Cox Process

Matern Cluster Process

Simulations of Matern cluster process are generated using the rMatClust function. Specifically, the process

involves generating homogeneous Poisson parents and each parent gives rise to Poisson number of offspring

20

uniformly distributed in a disc of radius r centered around the parent. kappa controls the intensity of the cluster centers and allows us to specify the number of clusters. \mathbf{r} specifies how far away cluster is from one another in radius, and \mathbf{mu} gives the mean number of points per cluster.