

Math 140 Linear Algebra

Test 2 Fall 2018

Student Name:	Instructor:
ID number:	Section number:

 $Please\ write\ your\ answers\ in\ detail\ and\ show\ your\ work\ to\ get\ full\ mark.\ Giving\ short\ answers\ might\ cause\ you\ losing\ points.$

Question	1	2	3	4	5	Total	
Grade	8	8	8	8	8	40	

1. Let P_2 be the vector space of polynomials of degree at most 2, with the usual polynomial addition and scalar multiplication.

(a) Let $S = \{ a_0 + a_1x + a_2x^2 \mid a_0 + a_1 - a_2 = 0 \}$. Is S a vector subspace?

this question is not covered in Test 2

(b) Let $V = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \text{ are integers } \}$. Is V a vector subspace?

- 2. Let \mathbb{R}^3 be the usual 3-dimensional Euclidean vector space (with the usual vector addition and scalar multiplication).
 - (a) Let $v_1 = (1, 2, 3)$ and $v_2 = (2, 3, 1)$. Are v_1 and v_2 linearly independent?

(b) Let $v_1 = (2,0,1)$, $v_2 = (-1,3,-1)$, $v_3 = (0,6,-1)$, $v_4 = (3,2,1)$ and $v_5 = (-2,6,-2)$. Let $S = \{v_1, v_2, v_3, v_4, v_5\}$. Is R^3 spanned by all these vectors? (Or, in other words, is $Span(S) = R^3$ true?)

3. Let P_2 be the vector space of polynomials of degree at most 2, with the usual polynomial addition and scalar multiplication. Determine whether the following sets of vectors form a basis for P_2 . Explain your answer briefly please.

(a)
$$p_1 = 1 - x + 5x^2$$
, $p_2 = -3 + 2x + 7x^2$, $p_3 = 6x - x^2$.

(b)
$$p_1 = 2 - x + x^2$$
, $p_2 = 3 - 10x + 6x^2$.

4. Given

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 6 & 13 \\ -1 & -2 & -2 & -4 \\ 2 & 4 & 6 & 8 \end{bmatrix}$$

(a) Find a basis of the null space. Find also the nullity of the matrix M.

(b) Find a basis of the column space, and a basis for the row space. Find also the rank of the matrix M.

5.	Given that matrix A has size 5×6 .
	(a) What is the maximum possible value of $\operatorname{rank}(A)$? What is the minimum possible value of $\operatorname{nullity}(A)$?
	(b) List an example of A such that $\operatorname{rank}(A)=3$ and $\operatorname{nullity}(A)=3$. (Note: You only need to list one matrix A . No further explanation or computation is required.)
	(c) What is the minimum possible value of $\operatorname{rank}(A)$? What is the maximum possible value of $\operatorname{nullity}(A)$?