P4 de Álgebra Linear I – 2002.1 Data: 14 de junho de 2002.

Nome:	Matrícula:		
Assinatura:	Turma:		

Questão	Valor	Nota	Revis.
1	2.5		
2a	0.5		
2b	0.5		
2c	0.5		
2d	0.5		
2e	0.5		
3a	0.5		
3b	0.5		
3c	0.5		
3d	0.5		
3e	0.5		
4a	0.5		
4b	0.5		
4c	0.5		
4d	0.5		
4e	0.5		
Total	10.0		

Instruções:

- Não é permitido usar calculadora. Desligue o celular.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 2, 3 e 4 justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.
- Nas questões 2, 3 e 4 da prova não haverá pontuação menor que 0.5 Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

Para uso exclusivo do professor	****	****
Certas:	$\times 0.3$	
Erradas:	\times -0.2	
****	Total	

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta \mathbf{N} vale 0. Respostas confusas e ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			

1.a) Considere as retas de equações paramétricas

$$r = (p_1 + tv_1, p_2 + tv_2, p_3 + tv_3), \quad e \quad s = (q_1 + tw_1, q_2 + tw_2, q_3 + tw_3), \quad t \in \mathbb{R}.$$

Suponha que

$$(p_1 - q_1, p_2 - q_2, p_3 - q_3) \cdot (v_1, v_2, v_3) \times (w_1, w_2, w_3) = 0.$$

Então as retas se interceptam em um ponto.

- 1.b) A multiplicação de duas matrizes ortogonais é uma matriz ortogonal.
- **1.c**) Sejam A uma matriz 3×3 cujo polinômio caraterístico é

$$p(\lambda) = -(\lambda - 1)^2(\lambda - 2).$$

Então A não é diagonalizável.

- ${\bf 1.d)}$ Seja Auma matriz 2×2 ortogonal e simétrica. Então A representa um espelhamento.
- **1.e)** Considere o plano π de equação cartesiana ax + by + cz = d e a reta $r = (p_1 + tv_1, p_2 + tv_2, p_3 + tv_3)$. Suponha que $(a, b, c) \cdot (v_1, v_2, v_3) = 0$. Então a reta e o plano têm exatamente um ponto de interseção.
 - 1.f) Considere a matriz

$$A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 6 & 0 \\ 3 & 0 & 2 \end{array}\right).$$

Os autovalores de A são 0, 6 e 2.

1.g) Considere uma transformação linear P de \mathbb{R}^3 tal que $P^2 = P \circ P = P$.

Então P é uma projeção ortogonal.

- 1.h) O produto de duas matrizes inversíveis é uma matriz inversível.
- **1.i)** Os vetores $\{(1,1,1),(1,0,-1),(1,-2,1)\}$ formam uma base ortonormal.
- **2)** Considere o plano x+y+z=0, o ponto p=(1,1,1) e as retas $r_1=(t,1-t,t)$ e $r_2=(1-t,1+t,t)$, $t\in\mathbb{R}$. Determine
 - (2.a) A equação da reta r que contém o ponto p e é perpendicular a π .
 - (2.b) A equação do plano que contém o ponto p e é paralelo a r_1 e r_2 .
 - (2.c) A distância entre as retas r_1 e r_2 .
 - (2.d) A posição relativa das retas r_1 e r_2 .
 - (2.e) A posição relativa da reta r_2 e o plano π .
- **3)** Considere a projeção ortogonal P no plano 2x + 2y + 2z = 0 e a projeção Q no plano x + y + z = 0 na direção da reta $(t, -t, 0), t \in \mathbb{R}$.
 - (3.a) Determine os autovalores de P e de Q.
 - (3.b) Determine bases de autovetores de P e de Q.
- (3.c) Escreva P da forma $P = MDM^{-1}$, onde D é uma matriz diagonal. Determine explicitamente M e M^{-1} .
- (3.d) Escreva Q da forma $Q = NEN^{-1}$, onde E é diagonal. Determine explicitamente N.
- (3.e) Determine a relação entre as transformações $Q \circ P$ e P.
 - 4) Considere a matriz

$$A = \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 6 & 0 \\ 3 & 0 & 1 \end{array}\right).$$

- (4.a) Determine os autovalores de A.
- (4.b) Determine uma base de autovetores A.
- (4.c) Determine uma forma diagonal D de A.
- (4.d) Escreva A da forma $A = MDM^{-1}$ onde D é uma matriz diagonal. Determine explicitamente M e M^{-1} .
- (4.e) Escreva, caso exista, a matriz A^{-1} inversa de A da forma $A^{-1} = NEN^{-1}$, onde E é uma matriz diagonal. Determine explicitamente N e N^{-1} .