Лабораторная работа №4

«ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПЯХ ПЕРВОГО ПОРЯДКА»

Вариант №5

Моделирование в среде Multisim RL-цепи

Вариант	E , B	R_1 , кОм	R ₂ , кОм	R4 ,кОм	L , мГн
5	48	1	20	5	60

Переходные процессы в цепях с RC-элементами

Наименование параметра	Значение параметра во время действия t						
	Импульса мкс			Паузы мкс			
	0	5	10	0	5	10	
$I_L(t), 10^{-3} A$	0.2	0.8	1.3	7.6	6.9	6.4	
U _L (t), B	44.4	40.8	37.6	-45	-41,4	-38.2	

Расчет значений I_L(t):

Импульс

IL(0) =
$$2.204 * 10^{-6} * 100 = \mathbf{0.2} * \mathbf{10^{-3} A}$$

IL(5) = $8.149 * 10^{-6} * 100 = \mathbf{0.8} * \mathbf{10^{-3} A}$
IL(10) = $13.554 * 10^{-6} * 100 = \mathbf{1.3} * \mathbf{10^{-3} A}$

Пауза

$$IL(0) = 75.605 * 10^{-6} * 100 = \mathbf{7.6} * \mathbf{10^{-3}} \text{ A}$$
 $IL(5) = 69.583 * 10^{-6} * 100 = \mathbf{6.9} * \mathbf{10^{-3}} \text{ A}$
 $IL(10) = 64.093 * 10^{-6} * 100 = \mathbf{6.4} * \mathbf{10^{-3}} \text{ A}$
Найдем τ :

Теоретически

$$au = L/R = 10.08$$
мкс $R = R4 + R1 * R2/(R1 + R2) = 5.95$ кОм

Экспериментально

$$I_{-}max = 76.292$$
мкА $0.63I_{-}max = 48.06$ мкА $\tau = T1 - T2 = 9.764$ мкс

Моделирование в среде Multisim RC-цепи

Варианты	E , B	R ₁ , кОм	R ₂ , кОм	R ₃ , Ом	R4 ,кОм	С, мкФ
5	11	1.5	2	0.01	1	0.1

Наименование параметра	Значение параметра во время действия t						
	Импульса мкс			Паузы мкс			
	0	5	10	0	5	10	
$I_c(t), 10^{-3} A$	1.3	2.8	2.6	-3.14	-2.86	-2.62	
U _c (t), B	0.5	1	1.46	5,83	5.33	4.86	

Расчет значений $I_c(t)$:

Импульс

$$Ic(0) = 13,141 * 10^{-6} * 100 = 1. 3 * 10^{-3} A$$

$$Ic(5) = 28.443 * 10^{-6} * 100 = 2. 8 * 10^{-3} A$$

$$Ic(10) = 25.985 * 10^{-6} * 100 = 2. 6 * 10^{-3} A$$

Пауза

$$Ic(0) = -31.414 * 10^{-6} * 100 = -3.14 * 10^{-3} A$$

$$Ic(5) = -28.698 * 10^{-6} * 100 = -2.86 * 10^{-3} A$$

$$Ic(10) = -26.214 * 10^{-6} * 100 = -2.62 * 10^{-3} A$$

Найдем τ:

Теоретически

$$au = C * R = \mathbf{0}. \mathbf{22} mc$$
 $R = R4 + R1 * R2/(R1 + R2) = \mathbf{2}. \mathbf{2} \kappa \mathbf{0} m$

Экспериментально

$$U max = 5.883B$$

 $0.63U max = 3.7B$
 $\tau = T1 - T2 = 0.15 mc$