Problem Set 5

To solve these problems, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.

Definition (Jacobian ideal). Let k be a field and $R = k[x_1, ..., x_n]/I$, where $I = (f_1, ..., f_r)$ has pure height h. The Jacobian matrix of R is the matrix given by

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ & \ddots & \\ \frac{\partial f_r}{\partial x_1} & \dots & \frac{\partial f_r}{\partial x_n} \end{pmatrix}.$$

The jacobian ideal of R is the ideal generated by the h-minors of the Jacobian matrix.

Turns out the Jacobian ideal is indeed well-defined – meaning, our definition does not depend on the choice of presentation for R – and that it determines the nonsmooth locus of R. For proofs of these well-known facts, see Section 16.6 of Eisenbud's Commutative Algebra with a view towards algebraic geometry.

Theorem (Jacobian criterion). Let $R = k[x_1, ..., x_n]/I$ with k a perfect field, and assume that I has pure height h. The Jacobian ideal J defines the nonsmooth locus of R: a prime P in $k[x_1, ..., x_n]$ contains J if and only if R_P is not a regular ring.

Problem 1. Let (R, \mathfrak{m}) be a regular local ring and I be an ideal in R.

a) Show that there is a short exact sequence

$$0 \longrightarrow \frac{I + \mathfrak{m}^2}{\mathfrak{m}^2} \longrightarrow \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \frac{\mathfrak{m}}{\mathfrak{m}^2 + I} \longrightarrow 0$$

and conclude that $\dim_k \left(\frac{I+\mathfrak{m}^2}{\mathfrak{m}^2}\right) = \operatorname{embdim}(R) - \operatorname{embdim}(R/I)$.

- b) Show that if R/I is regular, then there exists a minimal set of generators x_1, \ldots, x_d for \mathfrak{m} such that $I = (x_1, \ldots, x_n)$ for some n.
- c) Conclude that if I is not generated by a regular sequence, then R/I is not regular.

Problem 2. Let I be a radical ideal in $R = k[x_1, \ldots, x_n]$, where k is a perfect field, and let J be the Jacobian ideal of I. Prove that $I^{(n)} = (I^n : J^{\infty})$ for all $n \ge 1$.

Problem 3. Let k be a field, R = k[x, y, z], and I = (xy, xz, yz). Find the Jacobian ideal J of I, and show directly that $I^{(n)} = (I^n : J^{\infty})$ for all $n \ge 1$ without using Problem 2.

Problem 4. For each of the following ideals I, find an **element** t such that $I^{(n)} = (I^n : t^{\infty})$ for all $n \ge 1$.

- a) I = (xz, xw, yz, yw) in R = k[x, y, z, w], where k is any field.
- b) I is the defining ideal of the second Veronese in 3 variables $\mathbb{Q}[x,y,z]^{(2)}$.

Problem 5. Let k be a field, R = k[x, y, z], and I = (xy, xz, yz).

- a) Show that $I^{(2n)} = (I^{(2)})^n$ for all $n \geqslant 1$.
- b) Show that $I^{(2n+1)} = I(I^{(2)})^n$ for all $n \ge 1$.
- c) Show that the symbolic Rees algebra of I is a noetherian ring.