

CHAPTER 6 LINEAR TRANSFORMATIONS

- **6.1 Introduction to Linear Transformations**
- 6.2 The Kernel and Range of a Linear Transformation
- **6.3 Matrices for Linear Transformations**
- **6.4 Transition Matrices and Similarity**
- **6.5 Applications of Linear Transformations**

6.1 Introduction to Linear Transformations

■ Function *T* that maps a vector space *V* into a vector space *W*:

$$T: V \xrightarrow{\text{mapping}} W$$
, V, W : vector space

V: the domain of *T*

W: the codomain of T

■ Image of v under *T*:

If v is in V and w is in W such that

$$T(\mathbf{v}) = \mathbf{w}$$

Then \mathbf{w} is called the image of \mathbf{v} under T.

• the range of T:

The set of all images of vectors in V.

• the preimage of w:

The set of all v in V such that T(v)=w.

• Ex 1: (A function from R^2 into R^2)

$$T: R^2 \to R^2$$
 $\mathbf{v} = (v_1, v_2) \in R^2$
 $T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$

(a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11)

Sol:

(a)
$$\mathbf{v} = (-1, 2)$$

 $\Rightarrow T(\mathbf{v}) = T(-1, 2) = (-1 - 2, -1 + 2(2)) = (-3, 3)$

(b)
$$T(\mathbf{v}) = \mathbf{w} = (-1, 11)$$

 $T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2) = (-1, 11)$
 $\Rightarrow v_1 - v_2 = -1$
 $v_1 + 2v_2 = 11$

 $\Rightarrow v_1 = 3, \ v_2 = 4$ Thus $\{(3, 4)\}$ is the preimage of w=(-1, 11).

- Linear Transformation (L.T.):
- T is a linear transformation of V into W if (1) (2) are true for all u and v in V and any scalar c.

 $V,W\square$ vector space

 $T: V \to W \square V$ to W linear transformation

(1)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in V$$

(2)
$$T(c\mathbf{u}) = cT(\mathbf{u}), \forall c \in R$$

Notes:

(1) A linear transformation is said to be operation preserving.

(2) A linear transformation $T: V \to V$ from a vector space into itself is called a **linear operator**.

• Ex 2: (Verifying a linear transformation T from R^2 into R^2)

$$T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$$

Pf:

$$\mathbf{u} = (u_1, u_2), \ \mathbf{v} = (v_1, v_2) : \text{vector in } R^2, \ c : \text{any real number}$$

$$(1) \text{Vector addition :}$$

$$\mathbf{u} + \mathbf{v} = (u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$

$$T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2)$$

$$= ((u_1 + v_1) - (u_2 + v_2), (u_1 + v_1) + 2(u_2 + v_2))$$

$$= ((u_1 - u_2) + (v_1 - v_2), (u_1 + 2u_2) + (v_1 + 2v_2))$$

$$= (u_1 - u_2, u_1 + 2u_2) + (v_1 - v_2, v_1 + 2v_2)$$

 $=T(\mathbf{u})+T(\mathbf{v})$

(2) Scalar multiplication

$$c\mathbf{u} = c(u_1, u_2) = (cu_1, cu_2)$$

$$T(c\mathbf{u}) = T(cu_1, cu_2) = (cu_1 - cu_2, cu_1 + 2cu_2)$$

$$= c(u_1 - u_2, u_1 + 2u_2)$$

$$= cT(\mathbf{u})$$

Therefore, T is a linear transformation.

• Ex 3: (Linear transformation or not?)

$$f(x)=x+1$$

$$f(x_1 + x_2) = x_1 + x_2 + 1$$

$$f(x_1) + f(x_2) = (x_1 + 1) + (x_2 + 1) = x_1 + x_2 + 2$$

$$f(x_1 + x_2) \neq f(x_1) + f(x_2)$$

$$\Leftarrow f(x) = x + 1 \text{ is not}$$
linear transformation

- Notes: Two uses of the term "linear".
 - (1) f(x) = x + 1 is called a linear function because its graph is a line.
 - (2) f(x) = x + 1 is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication.

• Ex 3: (Functions that are not linear transformations)

(a)
$$f(x) = \sin x$$

$$\sin(x_1 + x_2) \neq \sin(x_1) + \sin(x_2) \Leftarrow f(x) = \sin x \text{ is not}$$

$$\sin(\frac{\pi}{2} + \frac{\pi}{3}) \neq \sin(\frac{\pi}{2}) + \sin(\frac{\pi}{3})$$
linear transformation

(b)
$$f(x) = x^2$$

 $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ $\Leftarrow f(x) = x^2$ is not linear
 $(1+2)^2 \neq 1^2 + 2^2$ transformation

(c)
$$f(x) = x + 1$$

 $f(x_1 + x_2) = x_1 + x_2 + 1$
 $f(x_1) + f(x_2) = (x_1 + 1) + (x_2 + 1) = x_1 + x_2 + 2$
 $f(x_1 + x_2) \neq f(x_1) + f(x_2) \Leftarrow f(x) = x + 1 \text{ is not}$

linear transformation_{0/101}

Two simple linear transformations

Zero transformation:

$$T: V \to W$$
 $T(\mathbf{v}) = 0, \ \forall \mathbf{v} \in V$

• Identity transformation:

$$T: V \to V$$
 $T(\mathbf{v}) = \mathbf{v}, \ \forall \mathbf{v} \in V$

■ Thm 6.1: (Properties of linear transformations)

$$T:V\to W, \quad \mathbf{u},\mathbf{v}\in V$$

- $(1) T(\mathbf{0}) = \mathbf{0}$
- $(2) T(-\mathbf{v}) = -T(\mathbf{v})$
- (3) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$

(4) If
$$\mathbf{v} = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

Then $T(\mathbf{v}) = T(c_1 v_1 + c_2 v_2 + \dots + c_n v_n)$

$$= c_1 T(v_1) + c_2 T(v_2) + \dots + c_n T(v_n)$$

Ex 4: (Linear transformations and bases)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (2,-1,4) T(0,1,0) = (1,5,-2)T(0,0,1) = (0,3,1)

Find T(2, 3, -2).

$$(2,3,-2) = 2(1,0,0) + 3(0,1,0) - 2(0,0,1)$$

$$T(2,3,-2) = 2T(1,0,0) + 3T(0,1,0) - 2T(0,0,1) (T is a L.T.)$$

$$= 2(2,-1,4) + 3(1,5,-2) - 2T(0,3,1)$$

$$= (7,7,0)$$

Ex 5: (A linear transformation defined by a matrix)

The function
$$T: R^2 \to R^3$$
 is defined as $T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

(a) Find $T(\mathbf{v})$, where $\mathbf{v} = (2,-1)$

(b) Show that T is a linear transformation form R^2 into R^3

Sol: (a)
$$\mathbf{v} = (2,-1)$$

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix}$$

$$T(2,-1) = (6,3,0)$$

(b)
$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = T(\mathbf{u}) + T(\mathbf{v})$$
 (vector addition)
 $T(c\mathbf{u}) = A(c\mathbf{u}) = c(A\mathbf{u}) = cT(\mathbf{u})$ (scalar multiplication)

■ Thm 6.2: (The linear transformation given by a matrix)

Let A be an $m \times n$ matrix. The function T defined by

$$T(\mathbf{v}) = A\mathbf{v}$$

is a linear transformation from \mathbb{R}^n into \mathbb{R}^m .

Note: $R^{n} \text{ vector} \qquad R^{m} \text{ vector}$ $A\mathbf{v} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix} = \begin{bmatrix} a_{11}v_{1} + a_{12}v_{2} + \cdots + a_{1n}v_{n} \\ a_{21}v_{1} + a_{22}v_{2} + \cdots + a_{2n}v_{n} \\ \vdots \\ a_{m1}v_{1} + a_{m2}v_{2} + \cdots + a_{mn}v_{n} \end{bmatrix}$ $T(\mathbf{v}) = A\mathbf{v}$ $T \cdot R^{n} \longrightarrow R^{m}$

• Ex 7: (Rotation in the plane)

Show that the L.T. $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

has the property that it rotates every vector in \mathbb{R}^2 counterclockwise about the origin through the angle θ .

Sol:

$$v = (x, y) = (r \cos \alpha, r \sin \alpha)$$
 (polar coordinates)

r: the length of v

 α : the angle from the positive x-axis counterclockwise to the vector v

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r \cos \alpha \\ r \sin \alpha \end{bmatrix}$$
$$= \begin{bmatrix} r \cos \theta \cos \alpha - r \sin \theta \sin \alpha \\ r \sin \theta \cos \alpha + r \cos \theta \sin \alpha \end{bmatrix}$$
$$= \begin{bmatrix} r \cos(\theta + \alpha) \\ r \sin(\theta + \alpha) \end{bmatrix}$$

r: the length of $T(\mathbf{v})$

 $\theta + \alpha$: the angle from the positive x-axis counterclockwise to the vector $T(\mathbf{v})$

Thus, $T(\mathbf{v})$ is the vector that results from rotating the vector \mathbf{v} counterclockwise through the angle θ .

• Ex 8: (A projection in R^3)

The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

is called a projection in R^3 .

• Ex 9: (A linear transformation from $M_{m \times n}$ into $M_{n \times m}$)

$$T(A) = A^{T}$$
 $(T: M_{m \times n} \rightarrow M_{n \times m})$

Show that *T* is a linear transformation.

Sol:

$$A, B \in M_{m \times n}$$

$$T(A+B) = (A+B)^{T} = A^{T} + B^{T} = T(A) + T(B)$$

$$T(cA) = (cA)^{T} = cA^{T} = cT(A)$$

Therefore, T is a linear transformation from $M_{m \times n}$ into $M_{n \times m}$.

6.2 The Kernel and Range of a Linear Transformation

• Kernel of a linear transformation *T*:

Let $T: V \to W$ be a linear transformation

Then the set of all vectors \mathbf{v} in V that satisfy $T(\mathbf{v}) = 0$ is called the kernel of T and is denoted by $\ker(T)$.

$$\ker(T) = \{ \mathbf{v} \mid T(\mathbf{v}) = 0, \forall \mathbf{v} \in V \}$$

• Ex 1: (Find the kernel of a linear transformation)

$$T(A) = A^T \quad (T: M_{3\times 2} \rightarrow M_{2\times 3})$$

$$\ker(T) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

• Ex 2: (The kernel of the zero and identity transformations)

(a)
$$T(\mathbf{v}) = \mathbf{0}$$
 (the zero transformation $T: V \to W$)
 $\ker(T) = V$

(b) $T(\mathbf{v}) = \mathbf{v}$ (the identity transformation $T: V \to V$)

$$\ker(T) = \{\mathbf{0}\}$$

• Ex 3: (Find the kernel of a linear transformation)

$$T(x, y, z) = (x, y, 0) \qquad (T: R^3 \to R^3)$$

$$\ker(T) = ?$$

$$ker(T) = \{(0,0,z) \mid z \text{ is a real number}\}$$

• Ex 5: (Find the kernel of a linear transformation)

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad (T: \mathbb{R}^3 \to \mathbb{R}^2)$$

$$\ker(T) = ?$$

$$\ker(T) = \{(x_1, x_2, x_3) \mid T(x_1, x_2, x_3) = (0, 0), x = (x_1, x_2, x_3) \in \mathbb{R}^3\}$$

$$T(x_1, x_2, x_3) = (0, 0)$$

$$\begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ -1 & 2 & 3 & 0 \end{bmatrix} \xrightarrow{G.J.E} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \ker(T) = \{t(1,-1,1) \mid t \text{ is a real number}\}$$
$$= \operatorname{span}\{(1,-1,1)\}$$

• Thm 6.3: (The kernel is a subspace of V)

The kernel of a linear transformation $T: V \to W$ is a subspace of the domain V.

Pf: :
$$T(0) = 0$$
 (Theorem 6.1)

 \therefore ker(T) is a nonempty subset of V

(sufficient by showing the closure property)

Let **u** and **v** be vectors in the kernel of T. then

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) = 0 + 0 = 0 \implies \mathbf{u} + \mathbf{v} \in \ker(T)$$

$$T(c\mathbf{u}) = cT(\mathbf{u}) = c0 = 0$$
 $\Rightarrow c\mathbf{u} \in \ker(T)$

Thus, ker(T) is a subspace of V.

Note:

The kernel of T is sometimes called the **nullspace** of T.

Ex 6: (Find a basis for the kernel)

Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$, where \mathbf{x} is in \mathbb{R}^5 and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$$

Find a basis for ker(T) as a subspace of \mathbb{R}^5 .

Sol:

$$\begin{bmatrix}
A & 0 \\
1 & 2 & 0 & 1 & -1 & 0 \\
2 & 1 & 3 & 1 & 0 & 0 \\
-1 & 0 & -2 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 8 & 0
\end{bmatrix}
\xrightarrow{G.J.E}
\begin{bmatrix}
1 & 0 & 2 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2s+t \\ s+2t \\ s \\ -4t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

 $B = \{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}$: one basis for the kernel of T

Corollary to Thm 6.3:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the L.T given by $T(\mathbf{x}) = A\mathbf{x}$

Then the kernel of T is equal to the solution space of $A\mathbf{x} = 0$

$$T(\mathbf{x}) = A\mathbf{x}$$
 (a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$)

$$\Rightarrow Ker(T) = NS(A) = \{ \mathbf{x} \mid A\mathbf{x} = 0, \forall \mathbf{x} \in R^m \} \text{ (subspace of } R^m \text{)}$$

■ Range of a linear transformation *T*:

Let $T: V \to W$ be a L.T.

Then the set of all vectors w in W that are images of vector in V is called the range of T and is denoted by range(T)

$$range(T) = \{ T(\mathbf{v}) \mid \forall \mathbf{v} \in V \}$$

■ Thm 6.4: (The range of *T* is a subspace of *W*)

The range of a linear transformation $T: V \to W$ is a subspace of W.

Pf:

$$T(0) = 0$$
 (Thm.6.1)

 \therefore range(T) is a nonempty subset of W

Let $T(\mathbf{u})$ and $T(\mathbf{v})$ be vector in the range of T

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \in range(T) \quad (\mathbf{u} \in V, \mathbf{v} \in V \Rightarrow \mathbf{u} + \mathbf{v} \in V)$$

$$T(c\mathbf{u}) = cT(\mathbf{u}) \in range(T)$$
 $(\mathbf{u} \in V \Rightarrow c\mathbf{u} \in V)$

Therefore, range(T) is W subspace.

Notes:

 $T:V\to W$ is a L.T.

- (1)Ker(T) is subspace of V
- (2)range(T) is subspace of W

Corollary to Thm 6.4:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the L.T. given by $T(\mathbf{x}) = A\mathbf{x}$ Then the range of T is equal to the column space of A

$$\Rightarrow$$
 range $(T) = CS(A)$

Since Ax=b. Detail see page 312

• Ex 7: (Find a basis for the range of a linear transformation)

Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$, where \mathbf{x} is \mathbb{R}^5 and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$$

Find a basis for the range of *T*.

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix} \xrightarrow{G.J.E} \begin{bmatrix} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = B$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \qquad w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5$$

- $\Rightarrow \{w_1, w_2, w_4\} \text{ is a basis for } CS(B)$ $\{c_1, c_2, c_4\} \text{ is a basis for } CS(A)$
- \Rightarrow {(1, 2, -1, 0), (2, 1, 0, 0), (1, 1, 0, 2)} is a basis for the range of T

Def.: Rank and Nullity of a L. T

• Rank of a linear transformation $T:V \rightarrow W$:

$$rank(T)$$
 = the dimension of the range of T

• Nullity of a linear transformation $T:V \rightarrow W$:

$$nullity(T)$$
 = the dimension of the kernel of T

Note:

Let
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 be the L.T. given by $T(\mathbf{x}) = A\mathbf{x}$, then $rank(T) = rank(A)$ $nullity(T) = nullity(A)$

Thm 6.5: (Sum of rank and nullity)

Let $T: V \to W$ be a L. T. from an n-dimensional vector space V into a vector space W. then

$$rank(T) + nullity(T) = n$$

 $\dim(\text{range of } T) + \dim(\text{kernel of } T) = \dim(\text{domain of } T)$

Let T is represented by an $m \times n$ matrix A

Assume rank(A) = r

Pf:

- (1) rank(T) = dim(range of T) = dim(column space of A)= rank(A) = r
- (2) nullity(T) = dim(kernel of T) = dim(solution space of A) = n - r

$$\Rightarrow$$
 rank(T) + nullity(T) = r + (n - r) = n

• Ex 8: (Find the rank and nullity of a linear transformation)

Find the rank and nullity of the L.T. $T: \mathbb{R}^3 \to \mathbb{R}^3$ define by

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$rank(T) = rank(A) = 2$$

nullity(T) = dim(domain of T) - rank(T) = 3 - 2 = 1

- Ex 9: (Find the rank and nullity of a linear transformation)
 - Let $T: \mathbb{R}^5 \to \mathbb{R}^7$ be a linear transformation.
 - (a) Find the dimension of the kernel of *T* if the dimension of the range is 2
 - (b) Find the rank of T if the nullity of T is 4
 - (c) Find the rank of T if $ker(T) = \{0\}$

- (a) dim(domain of T) = 5 dim(kernel of T) = n – dim(range of T) = 5 - 2 = 3
- (b) rank(T) = n nullity(T) = 5 4 = 1
- (c) rank(T) = n nullity(T) = 5 0 = 5

One-to-one:

A function $T: V \to W$ is called one - to - one if the preimage of every w in the range consists of a single vector. T is one - to - one iff for all u and v in V, $T(\mathbf{u}) = T(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$.

Onto:

A function $T: V \to W$ is said to be onto if every element in **w** has a preimage in V

(T is onto W when W is equal to the range of T.)

■ Thm 6.6: (One-to-one linear transformation)

Let $T: V \to W$ be a L.T.

Then T is 1-1 iff $ker(T) = \{0\}$

Suppose *T* is 1-1

i.e.
$$ker(T) = \{0\}$$

Suppose
$$ker(T) = \{0\}$$
 and $T(u) = T(v)$

$$T(u-v) = T(u) - T(v) = 0$$
T is a L.T.

$$:: u - v \in \ker(T) \Rightarrow u - v = 0$$

$$\Rightarrow T \text{ is } 1-1$$

• Ex 10: (One-to-one or not one-to-one linear transformation)

(a) The L.T. $T: M_{m \times n} \to M_{n \times m}$ given by $T(A) = A^T$

is

(b) The zero transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is

• Thm 6.7: (Onto linear transformation)

Let $T: V \to W$ be a L.T., where W is finite dimensional.

Then T is onto iff the rank of T is equal to the dimension of W.

■ Thm 6.8: (One-to-one and onto linear transformation) Let $T: V \to W$ be a L.T. with vector space V and W both of dimension n. Then T is one - to - one if and only if it is onto.

Pf:

If T is one - to - one, then $\ker(T) = \{0\}$ and $\dim(\ker(T)) = 0$ $\dim(\operatorname{range}(T)) = n - \dim(\ker(T)) = n = \dim(W)$ Consequently, T is onto.

If *T* is onto, then dim(range of *T*) = dim(W) = n dim(ker(T)) = n – dim(range of T) = n – n = 0 Therefore, T is one - to - one.

• Ex 11:

The L. T. $T: \mathbb{R}^n \to \mathbb{R}^m$ is given by $T(\mathbf{x}) = A\mathbf{x}$, Find the nullity and rank of T and determine whether T is one — to — one, onto, or neither.

$$(a)A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad (b)A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$(c)A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix} \qquad (d)A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Sol:

 $T:R^n \to R^m$ dim(domain of T) rank(T) nullity(T) 1-1 onto

(a) $T:R^3 \to R^3$ (b) $T:R^2 \to R^3$ (c) $T:R^3 \to R^2$ (d) $T:R^3 \to R^3$

BIJECTION X h Y

• Isomorphism:

A linear transformation $T: V \to W$ that is one to one and onto is called an isomorphism. Moreover, if V and W are vector spaces such that there exists an isomorphism from V to W, then V and W are said to be isomorphic to each other.

■ Thm 6.9: (Isomorphic spaces and dimension)

Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension.

Pf:

Assume that V is isomorphic to W, where V has dimension n.

 \Rightarrow There exists a L.T. $T: V \to W$ that is one to one and onto.

T is one - to - one

 $\Rightarrow \dim(Ker(T)) = 0$

 \Rightarrow dim(range of T) = dim(domain of T) - dim(Ker(T)) = n - 0 = n

Elementary Linear Algebra: Section 6.2, p.317

42/10°

: T is onto.

$$\Rightarrow$$
 dim(range of T) = dim(W) = n

Thus
$$\dim(V) = \dim(W) = n$$

• Assume that V and W both have dimension n.

Let
$$\{v_1, v_2, \dots, v_n\}$$
 be a basis of V, and let $\{w_1, w_2, \dots, w_n\}$ be a basis of W.

Then an arbitrary vector in V can be represented as

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

and you can define a L.T. $T: V \to W$ as follows.

$$T(\mathbf{v}) = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \dots + c_n \mathbf{w}_n$$

It can be shown that this L.T. is both 1-1 and onto.

Thus V and W are isomorphic.

Ex 12: (Isomorphic vector spaces)

The following vector spaces are isomorphic to each other.

$$(a)R^4 = 4$$
 - space

(b)
$$M_{4\times 1}$$
 = space of all 4×1 matrices

(c)
$$M_{2\times 2}$$
 = space of all 2×2 matrices

$$(d)P_3(x)$$
 = space of all polynomials of degree 3 or less

(e)
$$V = \{(x_1, x_2, x_3, x_4, 0), x_i \text{ is a real number}\}$$
 (subspace of R^5)

6.3 Matrices for Linear Transformations

■ Two representations of the linear transformation $T:R^3 \rightarrow R^3$:

$$(1)T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, -x_1 + 3x_2 - 2x_3, 3x_2 + 4x_3)$$

$$(2)T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Five reasons for matrix representation of a linear transformation:
 - Simpler to write.
 - Simpler to read.
 - More easily adapted for computer use.
 - Easy to represent using a basis representation of a matrix
- Elementary Linear Argebra: Section 6.3, p.320 Elementary Linear Argebra: Section 6.3, p.320

• Thm 6.10: (Standard matrix for a linear transformation)

Pf:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$

T is a L.T.
$$\Rightarrow T(\mathbf{v}) = T(v_1 e_1 + v_2 e_2 + \dots + v_n e_n)$$

= $T(v_1 e_1) + T(v_2 e_2) + \dots + T(v_n e_n)$
= $v_1 T(e_1) + v_2 T(e_2) + \dots + v_n T(e_n)$

$$A\mathbf{v} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + \cdots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \cdots + a_{2n}v_n \\ \vdots & \vdots & \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \cdots + a_{mn}v_n \end{bmatrix}$$

$$= v_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + v_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + v_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

$$= v_1 T(e_1) + v_2 T(e_2) + \dots + v_n T(e_n)$$

Therefore, $T(\mathbf{v}) = A\mathbf{v}$ for each \mathbf{v} in R^n

• Ex 1: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T. $T: \mathbb{R}^3 \to \mathbb{R}^2$ define by

$$T(x,y,z) = (x-2y,2x+y)$$

Sol:

Vector Notation

$$T(e_1) = T(1, 0, 0) = (1, 2)$$

$$T(e_2) = T(0, 1, 0) = (-2, 1)$$

$$T(e_3) = T(0, 0, 1) = (0, 0)$$

Matrix Notation

$$T(e_1) = T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$T(e_2) = T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix}$$

$$T(e_3) = T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

Check:

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 2y \\ 2x + y \end{bmatrix}$$

i.e.
$$T(x, y, z) = (x - 2y, 2x + y)$$

■ Ex 2: (Finding the standard matrix of a linear transformation)
The linear transformation $T: R^2 \to R^2$ is given by projecting each point in R^2 onto the x - axis. Find the standard matrix for T. Sol:

$$T(x,y) = (x,0)$$

$$A = [T(e_1) \mid T(e_2)] = [T(1,0) \mid T(0,1)] = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Notes:

- (1) The standard matrix for the zero transformation from R^n into R^m is the $m \times n$ zero matrix.
- (2) The standard matrix for the identity transformation from R^n into R^n is the $n \times n$ identity matrix I_n .

■ Composition of $T_1:R^n \to R^m$ with $T_2:R^m \to R^p$:

$$T(\mathbf{v}) = T_2(T_1(\mathbf{v})), \quad \mathbf{v} \in \mathbb{R}^n$$

 $T = T_2 \circ T_1$, domain of T = domain of T_1

■ Thm 6.11: (Composition of linear transformations)

Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be L.T. with standard matrices A_1 and A_2 , then

- (1) The composition $T: \mathbb{R}^n \to \mathbb{R}^p$, defined by $T(\mathbf{v}) = T_2(T_1(\mathbf{v}))$, is a L.T.
- (2) The standard matrix A for T is given by the matrix product A = ?

Pf:

Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^n and let \mathbf{c} be any scalar then

$$T(\mathbf{u} + \mathbf{v}) = T_2(T_1(\mathbf{u} + \mathbf{v})) = T_2(T_1(\mathbf{u}) + T_1(\mathbf{v}))$$

= $T_2(T_1(\mathbf{u})) + T_2(T_1(\mathbf{v})) = T(\mathbf{u}) + T(\mathbf{v})$

$$T(c\mathbf{v}) = T_2(T_1(c\mathbf{v})) = T_2(cT_1(\mathbf{v})) = cT_2(T_1(\mathbf{v})) = cT(\mathbf{v})$$

 $(2)(A_2A_1)$ is the standard matrix for T

$$T(\mathbf{v}) = T_2(T_1(\mathbf{v})) = T_2(A_1\mathbf{v}) = A_2A_1\mathbf{v} = (A_2A_1)\mathbf{v}$$

Note: (1)
$$T_1 \circ T_2 \neq T_2 \circ T_1$$

(2) $T(v) = T_n(T_{n-1} \cdots (T_2(T_1(v))) \cdots)$
 $A = A_n A_{n-1} \cdots A_2 A_1$

• Ex 3: (The standard matrix of a composition)

Let T_1 and T_2 be L.T. from R^3 into R^3 s.t.

$$T_1(x, y, z) = (2x + y, 0, x + z)$$

 $T_2(x, y, z) = (x - y, z, y)$

Find the standard matrices for the compositions

$$T = T_2 \circ T_1$$
 and $T' = T_1 \circ T_2$,

Sol:

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ (standard matrix for } T_{1})$$

$$A_{2} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ (standard matrix for } T_{2})$$

The standard matrix for $T = T_2 \circ T_1$

$$A = A_2 A_1 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The standard matrix for $T' = T_1 \circ T_2$

$$A' = A_1 A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

• Inverse linear transformation:

If $T_1: \mathbb{R}^n \to \mathbb{R}^n$ and $T_2: \mathbb{R}^n \to \mathbb{R}^n$ are L.T. s.t. for every \mathbf{v} in \mathbb{R}^n

$$T_2(T_1(\mathbf{v})) = \mathbf{v}$$
 and $T_1(T_2(\mathbf{v})) = \mathbf{v}$

Then T_2 is called the inverse of T_1 and T_1 is said to be invertible

Note:

If the transformation T is invertible, then the inverse is unique and denoted by T^{-1} .

• Thm 6.12: (Existence of an inverse transformation)

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a L.T. with standard matrix A, Then the following condition are equivalent.

- (1) T is invertible.
- (2) T is an isomorphism.
- (3) A is invertible.

Note:

If T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1} .

• Ex 4: (Finding the inverse of a linear transformation)

The L.T. $T \square R^3 \to R^3$ is defined by

$$T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3)$$

Show that T is invertible, and find its inverse.

Sol:

The standard matrix for T

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix} \leftarrow 2x_1 + 3x_2 + x_3$$

$$\leftarrow 3x_1 + 3x_2 + x_3$$

$$\leftarrow 2x_1 + 4x_2 + x_3$$

$$[A \mid I_3] = \begin{bmatrix} 2 & 3 & 1 \mid 1 & 0 & 0 \\ 3 & 3 & 1 \mid 0 & 1 & 0 \\ 2 & 4 & 1 \mid 0 & 0 & 1 \end{bmatrix}$$

Therefore T is invertible and the standard matrix for T^{-1} is A^{-1}

$$A^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix}$$

$$T^{-1}(\mathbf{v}) = A^{-1}\mathbf{v} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ 6x_1 - 2x_2 - 3x_3 \end{bmatrix}$$

In other words,

$$T^{-1}(x_1, x_2, x_3) = (-x_1 + x_2, -x_1 + x_3, 6x_1 - 2x_2 - 3x_3)$$

• the matrix of T relative to the bases B and B':

$$T: V \to W$$
 (a L.T.)
 $B = \{v_1, v_2, \dots, v_n\}$ (a basis for V)
 $B' = \{w_1, w_2, \dots, w_m\}$ (a basis for W)

Thus, the matrix of T relative to the bases B and B' is

$$A = [[T(v_1)]_{B'}, [T(v_2)]_{B'}, \cdots, [T(v_n)]_{B'}] \in M_{m \times n}$$

Transformation matrix for nonstandard bases:

Let V and W be finite - dimensional vector spaces with basis B and B', respectively, where $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

If $T: V \to W$ is a L.T. s.t.

$$[T(\mathbf{v}_1)]_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad [T(\mathbf{v}_2)]_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \quad [T(\mathbf{v}_n)]_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

then the $m \times n$ matrix whose n columns correspond to $[T(\mathbf{v}_i)]_{R'}$

$$A = [T(v_1)_{B'} | T(v_2)_{B'} | \cdots | T(v_n)_{B'}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is such that $[T(\mathbf{v})]_{B'} = A[\mathbf{v}]_B$ for every \mathbf{v} in V.

Ex 5: (Finding a matrix relative to nonstandard bases)

Let $T \square R^2 \rightarrow R^2$ be a L.T. defined by $T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2)$

Find the matrix of T relative to the basis

$$B = \{(1, 2), (-1, 1)\}$$
 and $B' = \{(1, 0), (0, 1)\}$

Sol:

$$T(1,2) = (3,0) = 3(1,0) + 0(0,1)$$

$$T(-1,1) = (0,-3) = 0(1,0) - 3(0,1)$$

$$[T(1,2)]_{B'} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, [T(-1,1)]_{B'} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$$

the matrix for T relative to B and B'

$$A = [[T(1,2)]_{B'} \quad [T(1,2)]_{B'}] = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$

• Ex 6:

For the L.T. $T \square R^2 \to R^2$ given in Example 5, use the matrix A to find $T(\mathbf{v})$, where $\mathbf{v} = (2, 1)$

Sol:

$$\mathbf{v} = (2,1) = 1(1,2) - 1(-1,1) \qquad B = \{(1,2), (-1,1)\}$$

$$\Rightarrow [\mathbf{v}]_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\Rightarrow [T(\mathbf{v})]_{B'} = A[\mathbf{v}]_B = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\Rightarrow T(\mathbf{v}) = 3(1,0) + 3(0,1) = (3,3) \qquad B' = \{(1,0), (0,1)\}$$

Check:

$$T(2,1) = (2+1,2(2)-1) = (3,3)$$

Notes:

- (1)In the special case where V = W and B = B', the matrix A is called the matrix of T relative to the basis B
- $(2)T:V \to V$: the identity transformation

$$B = \{v_1, v_2, \dots, v_n\}$$
: a basis for V

 \Rightarrow the matrix of T relative to the basis B

$$A = [[T(v_1)]_B, [T(v_2)]_B, \dots, [T(v_n)]_B] = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_n$$