Qualitative Constraint Language

Travaux dirigés du cours Contraintes (HAI910I)

Michael Sioutis

9 Oct 2023

1 Recap on Relations

Let us (re-)familiarize ourselves with relations and operations on them. We recall the following definition from basic math courses:

Definition 1. We call R a relation over sets $X_1, X_2, \ldots, X_{\epsilon}$ if

$$R \subseteq X_1 \times X_2 \times \ldots \times X_{\epsilon}$$

and we call ϵ the arity of R.

We sometimes write $R(x_1, x_2, \ldots, x_{\epsilon})$ meaning $(x_1, x_2, \ldots, x_{\epsilon}) \in R$; for a binary relation R we may also write x R y meaning $(x, y) \in R$. The relation $U = X_1 \times X_2 \times \ldots \times X_{\epsilon}$ is called the *universal relation* over $X_1 \times X_2 \times \ldots \times X_{\epsilon}$.

Since relations are subsets of U, we can perform computations using the usual set operations:

$$\begin{array}{rcl} R^{C} & = & \{(x,y) \in U \mid (x,y) \not \in R\} \\ R \cap S & = & \{(x,y) \in U \mid (x,y) \in R \land (x,y) \in S\} \\ R \cup S & = & \{(x,y) \in U \mid (x,y) \in R \lor (x,y) \in S\} \end{array}$$

We recall the definition of converse $(^{-1})$ and composition (\circ) :

$$R^{-1}(x,y) = R(y,x)$$

 $(R \circ S)(x,y) = \exists z \text{ such that } R(x,z) \land S(z,y)$

There are some commonly considered properties of a binary relation, we recall them as follows:

Definition 2. A binary relation R over a set U is called:

- reflexive iff, $\forall x \in U, R(x, x)$
- symmetric iff, $\forall x, y \in U, (R(x, y) \to R(y, x))$
- asymmetric iff, $\forall x, y \in U, (R(x, y) \rightarrow \neg R(y, x))$

- antisymmetric iff, $\forall x, y \in U, (R(x, y) \land R(y, x) \rightarrow x = y)^1$
- transitive iff, $\forall x, y, z \in U, (R(x, y) \land R(y, z) \rightarrow R(x, z))$
- strict partial order iff R is asymmetric and transitive

2 Exercices

Exercice 1. Let relations R and S be defined as the following binary relations over $\{a, b, c, d, e\}$:

$$R = \{(a,a), (a,b), (b,c), (c,e)\}$$

$$S = \{(a,a), (b,a), (e,b), (c,e)\}$$

Compute $(R^{-1} \circ S) \cap R$

Exercice 2. Consider a linear flow of time, and that events are being represented by real numbers.

- 1. Design a set of binary relations to represent the temporal order of time points.
- 2. For the relations you considered, which relational properties (e.g., reflexive, transitive) are satisfied?
- 3. Try to give an axiomatisation of the relations over time points in first-order logic. Do you run into any problems with specifying natural semantics in first-order logic?

Exercice 3. Compute the compositions between all Point Algebra relations; as a reminder, the set of Point Algebra base relations is $B = \{<, =, >\}$.

0	Ø	<	=	>	<u> </u>	>	#	В
Ø								
<		<	<	В				
=		<	=	>				
>		В	>	>				
\leq								
\geq								
\neq								
В						·		

¹Note that this definition is not pure first-order logic, as it assumes '=' to mean equal.

- 1. How does computation of composition differ when considering relations over finite and infinite sets respectively?
- 2. Can we avoid reasoning about each of the $8 \times 8 = 64$ entries, e.g., can be exploit some properties?
- 3. Give the definition of weak composition (\$\dightarrow\$), and explain how do composition (\$\dightarrow\$) and weak composition (\$\dightarrow\$) differ in the case of Point Algebra.

Exercice 4. Consider Interval Algebra from the course, a reminder of its base relations is provided in the figure below.

Figure 1: The 13 base relations of Interval Algebra; inverses are omitted

- 1. Give the definitions of relations m and o (using the endpoint representation of intervals).
- 2. Compute the compositions $m \diamond di$, $o \diamond b$, and $\{m, o\} \diamond \{di, b\}$.

3 Project (Optional)

Throughout the course we will develop a reasoning system capable of handling arbitrary algebras of qualitative relations; we will accomplish this by implementing reasoning methods independent of the underlying domain, be it points, intervals, or regions. You may choose any universal programming language you feel comfortable with.

Consider a relation algebra 2^{B} generated by a finite set B of JEPD relations over an infinite domain D.

- 1. How could a data type (e.g., class, data structure) be designed to represent elements of 2^{B} in a way that implements the set-theoretic operations as efficient as possible?
- 2. Relating to the first point, design an abstract data type to represent relations for an arbitrary set of JEPD base relations B that is given as a set of symbols. In other words, your program should ideally not depend on hard-coding a set of symbols like <, =, >, before, after, etc., but be usable with different sets of relations.
- 3. Implement the data type and the operations $\cap, \cup, {}^C$ of a set algebra.
- 4. Describe the complexity of your operations using big-O-notation with respect to the number of base relations $n = |\mathsf{B}|$.

Next, we will extend the implementation by providing composition and converse operations; you may already anticipate that in your design choices.