VERSUCH NUMMER 602

Röntgenemission und Absorption

Tim Alexewicz Sadiah Azeem tim.alexewicz@udo.edu sadiah.azeem@udo.edu

Durchführung: 5.4.2022 Abgabe: 12.4.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung3.1 Überprüfung der Bragg-Bedingung3.2 Emissionsspektrum3.3 Absorptionsspektren	3
4	Diskussion	7
Lit	teratur	7

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Überprüfung der Bragg-Bedingung

Nach der Bragg-Bedingung ist das gemessene Intensitätsmaximum beim Glanzwinkel von —- zu erwarten.

Der experimentiell bestimmte Glanzwinkel liegt bei dem verwendeten KBr-Kristall bei — , so wird durch die in Tabelle aufgeführten – Werte der Sollwinkel (nicht??) verifiziert.

Tabelle 1: Die Werte für die Messung zur Verifikation der Bragg-Bedingung

2 · θ / °	N / Imp/s
21,8	219,0
21,9	233,0
22,0	249,0
22,1	247,0
$22,\!2$	258,0
22,3	259,0
22,4	275,0
$22,\!5$	295,0
22,6	289,0
22,7	282,0
22,8	288,0
22,9	287,0
23,0	266,0
23,1	257,0
23,2	266,0
23,3	267,0
23,4	258,0
23,5	244,0

3.2 Emissionsspektrum

Maximale Energie und minimale Wellenlänge

Das charakteristische Spektrum der Kupfer-Röntgenröhre ist in Abbildung 1 zu sehen. Mit zunehmendem Winkel erkennt man den Grenzwinkel bei K_{α} und K_{β} .

Abbildung 1: Emissionsspektrum der Kupfer-Röntgenröhre.

Aus dem Grenzwinkel

$$\theta_{min} =$$

lassen sich die maximale Energie und die minimale Wellenlänge

$$E_{max} =$$

$$\lambda_{min} =$$

berechnen.

Auflösungsvermögen der Apparatur

Mit Hilfe der Halbwertsbreite lässt sich auch das Auflösungsvermögen der Apparatur bestimmen.

Die Halbwertsbreite berechnet sich aus den Winkeln $\theta_1 =$ und $\theta_2 =$.

So ergeben sich die Energien zu E_1 und E_2 , aus deren Differenz $\Delta E=\text{keV}$ sich das Auflösungsvermögen nach — zu A=ergibt.

Abschirmkonstanten

Aus den berechneten Energien $E_{K\alpha}$ und $E_{K\beta}$ und dem Literaturwert $E_{K,\,abs}=8980.476$ eV können die Abschirmkonstanten $\sigma_1,\,\sigma_2$ und σ_3 von Kupfer wie folgt bestimmt werden.

Die Ordnungszahl lautet $Z=29,\,n=1,\,m=2$ und l=3. Aus

$$\begin{split} \sigma_1 &= Z - \sqrt{\frac{E_{Kabs}}{R_{\infty}}} \\ \sigma_2 &= Z - \sqrt{\frac{m^2}{n^2}(Z - \sigma_1)^2 - \frac{m^2}{R_{\infty}}E_{K\alpha}} \\ \sigma_3 &= Z - \sqrt{\frac{l^2}{n^2}(Z - \sigma_1)^2 - \frac{l^2}{R_{\infty}}E_{K\beta}} \end{split}$$

ergeben sie sich zu $\sigma_1=3,30^\circ,\,\sigma_2=13,57^\circ$ und $\sigma_3=??.$ —— gibt imaginäres ergebnis

3.3 Absorptionsspektren

Absorptionsspektrum von Zink

In Abbildung 2 ist das gemessene Absorptionsspektrum von Zink abgebildet. Darin ist die K-Kante bei $\theta=11,9^\circ$ zu sehen.

Nach Gl. — ist die ergibt sich die Absorptionsenergie $E_{Zn,\ K}=9,138 {\rm keV}.$ Daraus lässt sich die Abschirmkonstante $\sigma_{Zn,\ K}=4,08^\circ$ errechnen.

Abbildung 2: Absorptionsspektrum der Röntgenstrahlung von Zink.

Absorptionsspektrum von Gallium

Im Absorptionsspektrum von Gallium ist die K-Kante bei $\theta=10,5^{\circ}$ zu sehen. Nach Gl. — ist die ergibt sich die Absorptionsenergie $E_{Ga,\ K}=10,34{\rm keV}$. Daraus lässt sich die Abschirmkonstante $\sigma_{Ga,\ K}=3,43^{\circ}$ errechnen.

Absorptionsspektrum von Brom

Im Absorptionsspektrum von Brom ist die K-Kante bei $\theta=8,3^\circ$ zu sehen. Nach Gl. — ist die ergibt sich die Absorptionsenergie $E_{Br,\;K}=13,54 \mathrm{keV}$. Daraus lässt sich die Abschirmkonstante $\sigma_{Br,\;K}=3,45^\circ$ errechnen.

Absorptionsspektrum von Strontium

Im Absorptionsspektrum von Strontium ist die K-Kante bei $\theta=6,8^\circ$ zu sehen. Nach Gl. — ist die ergibt sich die Absorptionsenergie $E_{Sr,\ K}=15,9 \mathrm{keV}$. Daraus lässt sich die Abschirmkonstante $\sigma_{Sr,\ K}=3,81^\circ$ errechnen.

Absorptionsspektrum von Zirkonium

Im Absorptionsspektrum von Zirkonium ist die K-Kante bei $\theta=6,4^\circ$ zu sehen. Nach Gl. — ist die ergibt sich die Absorptionsenergie $E_{Zr,\;K}=16,9 \mathrm{keV}$. Daraus lässt sich die Abschirmkonstante $\sigma_{Zr,\;K}=4,75^\circ$ errechnen.

Moseleysches Gesetz

Die lineare Ausgleichsrechnung ergibt für die Ausgleichsgerade y=ax+b die Parameter $a=3,443\pm0,2283$ keV und $b=-5,864\pm7,9946$ keV. So ergibt sich für die experimentiell bestimmte Rydbergkonstante $R_{exp}=9,56\cdot10^6\frac{1}{m}$.

Abbildung 3: Die Quadratwurzel der Absorptionsenergie in Abhängigkeit von der Ordnungszahl Z mit Ausgleichsgeraden.

4 Diskussion

Literatur

[1] Versuch Röntgenemission und Absorption. TU Dortmund, Fakultät Physik.