Question Number	Scheme	Marks
10(a)	$\frac{y4}{-4 - 1} = \frac{x6}{-6 - 4} \Rightarrow y + 4 = \frac{1}{2}(x + 6) \text{oe eg } y = \frac{1}{2}x - 1$	M1A1 (2)
(b)	$\left(\frac{3\times4+2\times-6}{5},\frac{3\times1+2\times-4}{5}\right) \Rightarrow (0,-1)$	M1A1 (2)
(c)	Gradient of perpendicular = -2 Allow all following work if x , y used instead of m , n	B1
	$-2 = \frac{n-1}{m-0} (\Rightarrow -2m = n+1)$	B1ft
	$(3\sqrt{5})^2 = (m-0)^2 + (n-1)^2 \Rightarrow 45 = m^2 + (n+1)^2$	
	$45 = m^2 + 4m^2 \Rightarrow 45 = 5m^2 \Rightarrow m = \pm 3$ negative required $m = -3$	M1A1
	$\Rightarrow n = -2m - 1 \Rightarrow n = -2 \times -3 - 1 = 5 \text{coordinates are } (-3, 5)$	A1 (5)
(d)(i)	$RQ = \sqrt{(-13 - 3)^2 + (0 - 5)^2} = 5\sqrt{5}$ $AB = \sqrt{(4 - 6)^2 + (1 - 4)^2} = 5\sqrt{5}$	M1
	$AB = \sqrt{(46)^2 + (14)^2} = 5\sqrt{5}$ With conclusion	Alcso
(ii)	Gradient of $AB = \frac{1}{2}$ Gradient of $RQ = \frac{5-0}{-3-13} = \frac{1}{2}$	M1
	With conclusion *	A1cso (4)
ALT	By vectors – combines both parts:	
	$\overrightarrow{AB} = 10\mathbf{i} + 5\mathbf{j}$ or equivalent column vector	M1
	$\overrightarrow{RQ} = 10\mathbf{i} + 5\mathbf{j}$ or equivalent column vector	M1
	So same length and parallel (provided both vectors are correct)	A1A1
(e)	Area is base × height $A = 3\sqrt{5} \times 5\sqrt{5} = 75$ (units) ²	M1A1 (2) [15]
ALT:	$A = \frac{1}{2} \begin{vmatrix} -3 & 4 & -6 & -13 & -3 \\ 5 & 1 & -4 & 0 & 5 \end{vmatrix} $ M1	
	$= \frac{1}{2} \left[(-3 - 20) + (-16 + 6) + (0 - 52) - (65 - 0) \right] = -75 \Rightarrow 75$ A1	

Question Number	Scheme	Marks
(a) M1 A1 (b)	Any complete method for obtaining an equation of l Correct equation in any form inc unsimplified	
M1 A1	Obtaining at least one of the coords of <i>P</i> . Must be correct. Can be by formula or diagram. Both coords correct. NB: If both coords are just written down, award M1A1 if both correct; M0A0 otherwise	
(c) B1 B1ft	Correct gradient of the perpendicular Correct equation connecting m and n from equating their gradient to -2 Can be unsimplified. Follow through their gradient of the perpendicular but must be negative reciprocal of gradient of l	
M1	Use Pythagoras (with + sign as shown oe)to find the length of PQ , equate this to 3 solve to $m =$	$\sqrt{5}$ and
A1 A1	Correct value for $m \pm 3$ allowed here Correct value for n Values do not have to be written in coordinate brackets. Only of answer or this mark is lost.	one final
(d) (i)M1 A1cso (ii)M1 A1cso	Use Pythagoras to find the length of RQ or AB Lengths of both lines correct with working for each and a conclusion shown Find the gradient of RQ Must show working Correct gradient of both lines and a conclusion shown	
ALT	M1M1 one M mark for each vector correct or working shown but slip made A1A1 one A mark for each conclusion provided the vectors are correct.	
(e) M1 A1	Obtaining the area of $ABPQ$ by using the formula for the area of a parallelogram Correct area	
ALT:	Use the "determinant" method.	
M1	Formula must be correct ie $\frac{1}{2}$ needed, 5 pairs of coordinates with first and last the	same,
A1	coordinates to be in order round the quadrilateral (clockwise or anticlockwise). An evaluate also needed. Correct area - must be positive.	attempt to

Question Number	Scheme	Marks
11(a)	$AC = \sqrt{12^2 + 8^2}$ $\left(=\sqrt{208} = 4\sqrt{13}\right)$ or AO or $OC = \sqrt{6^2 + 4^2}$ $\left(=2\sqrt{13}\right)$	M1
	$h = \sqrt{10^2 - 52} = \sqrt{48} = 4\sqrt{3} $ *	M1A1cso (3)
(b)	$\angle OCE = \cos^{-1}\left(\frac{2\sqrt{13}}{10}\right) = 43.8537 \approx 43.9^{\circ}$	M1A1 (2)
	or $\sin^{-1}\left(\frac{4\sqrt{3}}{10}\right)$ or $\tan^{-1}\left(\frac{4\sqrt{3}}{2\sqrt{13}}\right)$	M1A1 (2)
(c)	Let M be the midpoint of BC .	
	$EM = \sqrt{10^2 - 4^2} = 2\sqrt{21}$	M1
	$\cos\theta^{\circ} = \frac{4\sqrt{3}}{2\sqrt{21}} = \frac{2\sqrt{7}}{7} \qquad *$	M1A1cso
	or cosine rule $\cos \theta^{\circ} = \frac{(4\sqrt{3})^2 + (2\sqrt{21})^2 - 6^2}{2 \times 4\sqrt{3} \times 2\sqrt{21}} = \frac{2\sqrt{7}}{7}$	(3)
(d)	Let N be the midpoint of EM	
	$\sqrt{21} \qquad 40.9^{\circ}$ $\sqrt{21}$	
	$M \stackrel{\frown}{=} 0$	
	$NO = \sqrt{\left(\sqrt{21}\right)^2 + \left(4\sqrt{3}\right)^2 - 2 \times \sqrt{21} \times 4\sqrt{3} \times \frac{2\sqrt{7}}{7}} = \sqrt{21}$	M1A1ftA1
	hence triangle <i>NEO</i> is isoceles, so required angle ($\angle ENO$) $\angle ENO = 180 - 2 \times 40.8933 = 98.2134 \approx 98.2^{\circ}$	B1 (4)
ALT	Based on symmetry:	[12]
	$\tan\frac{\theta}{2} = \frac{\left(\frac{h}{2}\right)}{3} = \frac{2\sqrt{3}}{3}$	M1A1
	$\frac{\theta}{2} = 49.1066$	A1
	$\theta = 98.2^{\circ}$	A1(B1 on e-PEN)

Question Number	Scheme	Marks
(a) M1 M1 A1cso	Use Pythagoras with a + sign to find AC or AO or	
(b) M1 A1 (c)	Use any trig function to obtain angle <i>OCE</i> Correct size of angle <i>OCE</i> Must be 1 dp	
M1 M1	Use Pythagoras with a – sign to obtain the length of <i>EM</i> (need not be correct) $\cos \theta^{\circ} = \frac{4\sqrt{3}}{EM} \text{ with their } EM \text{ or cosine rule as shown. Must reach } \cos \theta = \dots \text{ if other form used}$	
A1cso (d)	at start. (NB not dependent) Correct completion to the given answer	
M1 A1ft A1	Use of cosine rule in $\triangle EON$ to obtain ON Correct numbers follow through their EM Correct length ON , exact or awrt 4.58 Correct size of angle, must be 1 dp unless already penalised in (b). (Can be obtained	ed by the
B1	isos triangle as shown or by cosine or sine rule in ΔEON) NB: No A1ft in alt method as h is given in (a)	ed by the
	1,2. 1.0 1111 in all method as n is given in (a)	