CMPE185 Autonomous Mobile Robots

Fall 2022 Homework 1

Problem 1. (50 pts) Suppose a two-wheel differential drive mobile robot equipped with a 2D range sensor starts at position x = 1.0m, y = 2.0m, with heading $\theta = \pi/4$. A range sensor is attached to the center of the robot. The range sensor detects an obstacle and returns a reading of $\alpha = -\pi/6$ and d = 1.0m.

- **a.** What is the position of the obstacle in the global coordinate frame?
- **b.** For the same robot, suppose the wheel radius is 0.3m and the length of the axles is 1.6m. For the wheel encoder, the total ticks per revolution is 50. After a while, 20 ticks were recorded for the left wheel, and 40 ticks were recorded for the right wheel, will the car collide with the obstacle? Write down all your work.

Problem 2. PID Controller (50 pts)

- **a.** Implement a PID go-to-goal controller to control a differential drive mobile robot to move from a starting position to a goal position. Open the "CMPE185_HW_1_p2.m" file and implement the PID controller in the given place. Choose the proper values of the proportional gain K_P, the integral gain K_I, and the derivative gain K_D.
- **b.** Change the values of K_P, K_I, and K_D and observe how the trajectory changes. Plot the corresponding trajectories of the mobile robot and discuss the results.

Submission:

Submit a single Pdf file for Problem 1 and Problem 2.b. Submit the .m file for Problem 2.a. with the name "first name + last name + HW1.m".

Note: the assignment should be completed individually. Do not share results and code with others.