Геометрия сферы \mathbb{S}^2

Во всех задачах a, b, c — стороны сферического треугольника, а α, β, γ — противолежащие им углы.

- 1. Докажите, что площадь двуугольника, который является частью сферы, ограниченной двумя прямыми, пересекающимися под острым углом α , равна 2α .
- **2.** Докажите, что площадь сферического треугольника равна $\alpha + \beta + \gamma \pi$. (В частности, сумма углов сферического треугольника всегда больше π .)
- **3.** Докажите первую теорему косинусов для сферы: $\cos a = \cos b \cos c + \cos \alpha \cdot \sin b \sin c$. Как выглядит теорема Пифагора на сфере?
- 4. Докажите вторую теорему косинусов для сферы: $\cos \alpha + \cos \beta \cos \gamma = \cos a \cdot \sin \beta \sin \gamma$.
- **5.** Докажите, что $a + b + c < 2\pi$.
- **6.** (**) Найдите площадь сферического диска радиуса r.
- **7.** (**) Докажите, что в любом сферическом треугольнике корректно определены вписанные и описанные окружности, а также точки пересечения медиан и высот.
- 8. Могут ли совпасть точки пересечения медиан и высот сферического треугольника?