Multi-model Analysis of Hemodynamics in VSD

Group 7
Sijie Li, Xu Shen, Yushan Wei

BACKGROUND VSD

Xu Shen

Introduction of VSD

Ventricular septal defect (VSD) is one of the most common congenital heart diseases, accounting for approximately **20-30%** of all congenital cardiac defects.

Larger defects can lead to symptoms such as failure to thrive, recurrent pulmonary infections, and heart failure

VSD leads to left-to-right shunting.

¹Qp/Qs≥1.5 indicates hemodynamic significance, requiring intervention.

1 Qp: Pulmonary Blood Flow; Qs: Systemic Blood Flow

Penny, D. J., & Vick, G. W. (2011)

ORIFICE PLATE MODEL

Xu shen

Orifice Plate Model

The classic formula for the orifice flow model

$$Q = c_d A \sqrt{\frac{2\Delta p}{\rho}}$$

Q: the **flow rate** through the orifice

c_d: is the **flow coefficient**

A: the **effective cross-sectional area** of the orifice

Δp: the **pressure difference** across the orifice

ρ: the **density** of the fluid

Orifice Plate Model

$$Q_c = c_d A \sqrt{\frac{2\Delta p}{\rho}}$$

$$\frac{Q_p}{Q_s} = \frac{Q_s + Q_c}{Q_s} = 1 + \frac{Q_c}{Q_s}$$

$$c_d = 0.6$$

$$\Delta p = (60, 110) \text{ mmHg}$$

$$\rho = 1.06 \text{ g/ml}$$

 Q_c = shunt flow in the cardiac septal defect

 Q_p = blood ejected from the right ventricle

 Q_s = blood returning from the systemic

circulation

Orifice Plate Model

Limitations

- Neglect pressure variations caused by cardiac cycles
- Disregard vascular elasticity
- Idealize the defect as a perfect circle

Future studies

- Enhance the model by incorporating time-varying pressure terms
- Considering vascular wall elasticity

TUBE MODEL Model

Sijie Li

Newtonian

- Rigid
- Uniform

cylindrical tubes

Straight

- Steady
- Laminar
- Incompressible

INPUT

Constants

 $D_R P_{RV}$

L_C P_{LV}

Variables

 L_{R} X

OUTPUT

P'_{RV}

Description

Poiseuille's law

$$R=rac{128\eta L}{\pi D^4}$$

$$Q = \frac{\Delta P}{R} = \frac{\Delta P \pi D^4}{128 \eta L}$$

$$\Delta Q_R = Q_c$$

$$Q_c = rac{(P_L - P_R)\pi x^4}{128\eta L_c}$$

$$egin{align} \Delta Q_R &= rac{P_R - P_{R0}^{'}}{R_R} - rac{P_R - P_R^{'}}{R_R} \ &= rac{P_{R0}^{'} - P_R^{'}}{128 \eta L_R} \pi D_R^4 \ \end{gathered}$$

Description

Poiseuille's law

$$R=rac{128\eta L}{\pi D^4}$$

$$Q=rac{\Delta P}{R}=rac{\Delta P\pi D^4}{128\eta L}$$

$$egin{align} \Delta Q_R &= Q_c \ Q_c &= rac{(P_L - P_R)\pi x^4}{128\eta L_c} \ \Delta Q_R &= rac{P_R - P_{R0}'}{R_R} - rac{P_R - P_R'}{R_R} \ &= rac{P_{R0}' - P_R'}{128\eta L_R}\pi D_R^4 \ \end{pmatrix}$$

$$egin{aligned} \Delta P_R &= P_R' - P_{R0}' \ &= rac{(P_L - P_R) x^4 \cdot L_R}{L_c \cdot D_R^4} \end{aligned}$$

TUBE MODEL Result

Sijie Li

5.5

Tendency

3.5

4.5

Diameter of the Connecting Tube: x (mm)

$$P_L=110\,\mathrm{mmHg}$$
 $D_R=15\,\mathrm{mm}$

$$P_R=25\,\mathrm{mmHg}$$
 $L_c=8.5\mathrm{mm}$

More Hallmarks for Clinical determination

increases sharply

---- call for precise clinical threshold

Increases with L_R

Dynamic

$$L_R=40\,\mathrm{mm}$$

$$p_{LV}(t) = 65 + 55\sin(7.85t)$$

$$p_{RV}(t) = 15 + 10 \sin\Bigl(7.85t + rac{\pi}{6}\Bigr)$$

Time Dimension

enables a more accurate assessment

- mean pressure
- oscillation amplitude

TUBE MODEL Discussion

Sijie Li

Discussion

Model Limitations

- Assumptions Matter!
- Highly Specific

Not suitable for evaluating other metrics like $\frac{Q_p}{Q_s}$

BUT, may not necessary!

Idealized Simulation

- Sinusoidal approximates pulsation
- captures general trends!

Future Work

 identify intervention thresholds

Data correlation. eg. meta-analysis to establish pressure-damage relationships

- Incorporate realistic conditions
 - Non-Newtonian blood
 - flow dynamics

Pressure-Volume Model

Yushan Wei

Ventricular Parameter

 V_{LV} P_{LV}

 K_{LV} $F_{LV}(t)$

 $X X_0$

Blood Parameter

P_{LA} P_B

q_{in} q_{out}

 \mathbf{q}_{vsd}

Model

Rigid

Massless

Blood

Steady

Incompressible

$$\frac{dV_{LV}}{dt} = q_{in} - q_{out} - q_{vsd}$$

$$\frac{dV_{LV}}{dt} = \frac{P_{LA} - P_{LV}}{R} - \frac{P_{LV} - P_B}{R} - C_d A \sqrt{\frac{2\Delta P}{\rho}}$$

Flow rate in valve

$$q = \frac{P_u - P_d}{R}$$

Orifice Plate Model

$$q_{vsd} = C_d A \sqrt{\frac{2\Delta P}{\rho}}$$

$$\frac{dV_{LV}}{dt} = \frac{P_{LA} - P_{LV}}{R} - \frac{P_{LV} - P_B}{R} - C_d A \int_{\rho}^{2\Delta P}$$

$$P_{LV}A = K_{LV}(X - X_0) + F_{LV}(t)$$

$$P_{LV} = E_{LV}(V_{LV} - V_{unlv}) + G_{LV}(t)$$

$$\frac{dP_{LV}}{dt} = E_{LV}\frac{dV_{LV}}{dt} + \frac{dG_{LV}(t)}{dt}$$

Replace A with V

$$E_{LV} = \frac{K_{LV}}{A^2}$$

$$V_{unlv} = X_0 A$$

$$G_{LV}(t) = \frac{F_{LV}(t)}{A}$$

 $G_{LV}(t)$ can be approximated as a sin function

$$\frac{dG_{LV}(t)}{dt} = 113.75\pi\sin\frac{\pi t}{0.4}$$

$$\frac{dV_{LV}}{dt} = \frac{P_{LA} - P_{LV}}{R} - \frac{P_{LV} - P_B}{R} - C_d A \sqrt{\frac{2\Delta P}{\rho}}$$
$$\frac{dP_{LV}}{dt} = E_{LV} \frac{dV_{LV}}{dt} + \frac{dG_{LV}(t)}{dt}$$

$$\frac{dP_{LV}}{E_{LV}dt} + \frac{2}{R}P_{LV} + C_dA\sqrt{\frac{2(P_{LV} - P_{RV})}{\rho}} = \frac{dG_{LV}(t)}{E_{LV}dt} + \frac{P_{LA}}{R} + \frac{P_B}{R}$$

$$\frac{1}{E_{LV}(t)} = \frac{1}{E_{LV}(t)} + \frac{1}{E_{LV}} + \frac{1}{E_{LV}}$$

$$\frac{dP_{RV}}{E_{RV}dt} + \frac{2}{R}P_{RV} - C_dA \sqrt{\frac{2(P_{LV} - P_{RV})}{\rho}} = \frac{dG_{RV}(t)}{E_{RV}dt} + \frac{P_{RA}}{R} + \frac{P_{PA}}{R}$$

Results

Initial Value:

 $P_{LV0} = 110 \text{ mmHg}$

 $P_{RV0} = 25 \text{ mmHg}$

Special parameter

 $E_{LV} = 0.1 \, mmHg/ml$

 $E_{RV} = 0.07 \, mmHg/ml$

$$\frac{dG_{LV}(t)}{dt} = 113.75\pi sin\frac{\pi t}{0.4}$$

$$\frac{dG_{RV}(t)}{dt} = 25.25\pi sin\frac{\pi t}{0.4}$$

$$R = 0.04$$

Results

Left ventricular blood pressure decreases with VSD

Right ventricular blood pressure increases with VSD

Discussion

Limitation

Many average values are used for simplicity

Advantage

It considers the interaction between ventricular pressure and volume simulate the key components of the ventricle

Future Work

The model can be improved to study the effect of blood pressure on cardiac deformation

Reference List

American Society of Echocardiography, & European Association of Cardiovascular Imaging. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1), 1-39. https://doi.org/10.1016/j.echo.2014.10.003

Ben-Tal, A., Elstad, M., Noreen, S., Paton, J., Ramchandra, R., & Sweatman, W. L. (2022). Mathematical modelling of atrial and ventricular pressure-volume dynamics and their change with heart rate. Mathematical Biosciences, 344, 108766. https://doi.org/10.1016/j.mbs.2018.108766

Eckerström, F., Nyboe, C., Maagaard, M., Redington, A., & Hjortdal, V. E. (2023). Survival of patients with congenital ventricular septal defect. European Heart Journal, 44(1), 54-61.

Ethier, C. R., & Simmons, C. A. (2007). Introductory biomechanics: From cells to organisms. Cambridge University Press.

Fox, R. W., McDonald, A. T., & Pritchard, P. J. (2011). Introduction to fluid mechanics (8th ed., SI version). John Wiley & Sons, Inc.

Gupta, S. S., & Sinha, A. (2016). Ventricular septal defect. QJM: An International Journal of Medicine, 109(10), 691–692. https://doi.org/10.1093/qjmed/hcw112

Miyake, T. (2020). A review of isolated muscular ventricular septal defect. World Journal of Pediatrics, 16, 120-128.

Nayak, S., Patel, A., Haddad, L., Kanakriyeh, M., & Varadarajan, P. (2020). Echocardiographic evaluation of ventricular septal defects. Echocardiography, 37, 2185-2193.

Phillips, G., & Others, A. (1977). Health instruction packages: Cardiac anatomy. Retrieved from https://www.proquest.com/encyclopedias-reference-works/health-instruction-packages-cardiac-anatomy/docview/63617137/se-2

Stergiopulos, N., Westerhof, N., & Noble, M. I. M. (2010). Snapshots of hemodynamics: An aid for clinical research and graduate education (2nd ed.). Springer.

Turner, M. E., Bouhout, I., Petit, C. J., & Kalfa, D. (2022). Transcatheter closure of atrial and ventricular septal defects: JACC focus seminar. Journal of the American College of Cardiology, 79(22), 2247-2258.