COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

SIGN AND MAGNITUDE: ARITHMETIC OPERATIONS

```
    Add +5 and -2 = +3 (4-bit representation)

            101 +
            1010
             111 (7) wrong answer!!

    Subtract -6 and 1 = -7 (4-bit representation)

            1110 -
            0001
            101 (5) wrong answer!!
```

Hence, not suitable for arithmetic operations

1'S COMPLEMENT: ARITHMETIC OPERATION

```
    Add +1 and -1 = 0 (4-bit representation)

            0 001 +
            1 110
            111 (wrong answer!!)
            + 1
            000 (correct answer)
```

- Additional step (hardware) required to arrive at the correct answer.
- Hence, not suitable for arithmetic operations

2'S COMPLEMENT: ARITHMETIC OPERATION (ADDITION)

- Add +7 and -3
 - +7 is 0111 and -3 is 1101,
 - Locate 0111 in the diagram and move 1101 (13) steps in clockwise
 - Solution: 0100
 - 2's-complement representation of −3 is interpreted as an unsigned value for the number of steps to move.
- Adding bit pair wise:
 - ignore the carry-out

2'S COMPLEMENT: ADDITION

• +4 + (-6)
+4 → 0100 +

$$-6$$
 → 1010
-2 → 1110

■ -5 + (-2)

-5 → 1011 +

$$-2 \rightarrow 1110$$

-7 → 1001

Carry is ignored

■
$$+7 + (-3)$$
 $+7 \rightarrow 0111 + \\
-3 \rightarrow 1101$
 $+4 \rightarrow 0100$

Carry is ignored

b ₃ b ₂ b ₁ b ₀	Value in decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

2'S COMPLEMENT: ADDITION AND SUBTRACTION

- To add two numbers (X+Y),
 - Represent X and Y in binary format (2's complement representation)
 - add their n-bit representations,
 - ignore the carry-out bit from the most significant bit (MSB) position.
 - The sum will be the algebraically correct value in 2's-complement representation if the actual result is in the range -2^{n-1} through $+2^{n-1}-1$.
- To subtract two numbers X and Y(X-Y),
 - Represent X and Y in binary format (2's complement representation)
 - form the 2's-complement of Y,
 - add it to X using the add rule.
 - The result will be the algebraically correct value in 2's-complement representation if the actual result is in the range -2^{n-1} through $+2^{n-1}-1$.

2'S COMPLEMENT: SUBTRACTION

```
-7- (-5)
                1001 -
                                                  1001 +
        -7→
                                         -7→
        -5→ 1011
                       Becomes:
                                         <u>5→ 0101</u>
                                         -2→
                                                 1110
-7-(+1)
                                                  1001 +
        -7→
                1001 -
                                         -7→
                                         <u>-1→ 1111</u>
        +1 \rightarrow
                 0001
                         Becomes:
                                          -8→
                                                  1000
- +2- (-3)
                                                  0010 +
        +2\rightarrow
                 0010 -
                                          +2\rightarrow
        -3→
                                          <u>+3→</u>
                1101
                                                 0011
                         Becomes:
                                          +5<del>→</del>
                                                  0101
```

b ₃ b ₂ b ₁ b ₀	Value in decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

2'S COMPLEMENT: SUBTRACTION

■ -3- (-7)

-3→ 1101 - -3→ 1101 +

-7→ 1001 Becomes:
$$7→ 0111$$
+4→ 0100

■ +2- (+4)

+2→ 0010 - +2→ 0010 +

+4→ 0100 Becomes: $-4→ 1100$
-2→ 1110

■ +6→ 0110 - +6→ 0110 +

+3→ 0011 Becomes: $-3→ 1101$
+3→ 0011

$b_3b_2b_1b_0$	Value in decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

SIGNED INTEGERS: ADDITION AND SUBTRACTION

- Sign and Magnitude:
 - Undesired results
- l's Complement:
 - The results are not always correct
- 2's Complement:
 - simplicity of adding and subtracting signed numbers
 - used in modern computers

SIGN EXTENSION

- Represent a value given in a certain number of bits by using a larger number of bits
- Positive numbers: zeroes are added to the left
- Negative numbers: ones are added to the left
- To convert a given (w)-bit, signed integer x to (w+k)-bit integer with same value
 - Make k copies of sign bit:
 - $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$

SIGN EXTENSION: EXAMPLE

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal		Bina	ary	
Х	15213			00111011	01101101
ix	15213	00000000 00	0000000	00111011	01101101
У	-15213			11000100	10010011
iy	-15213	11111111 11	1111111	11000100	10010011

OVERFLOW IN INTEGER ARITHMETIC

- Arithmetic overflow:
 - The actual result of an arithmetic operation is outside the representable range
- Overflow occurs when
 - two positive numbers are added which results in a negative number or
 - two negative numbers are added which results in a positive number

OVERFLOW IN INTEGER ARITHMETIC

■ +7 + (+4)
carry: **0100**
+7 → 0111 +

$$+4$$
 → 0100
-5 → 1011

- The value of the carry-out bit from the sign-bit position is not an indicator of overflow
- Overflow occurs when carry-in to the high-order bit does not equal carry out

b ₃ b ₂ b ₁ b ₀	Value in decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

OVERFLOW IN INTEGER ARITHMETIC

■ +5 + (+3)
carry:
$$0111$$

+5 → 0101 +
 $+3$ → 0011
-8 → 1000

Overflow

■ -7 + (-2)

carry: 1000

-7 → 1001 +

$$-2 \rightarrow 1110$$

+7 → 0111

Overflow

- +5 + (+2)
carry:
$$0000$$

+5 \rightarrow 0101 + $+2 \rightarrow$ 0010
+7 \rightarrow 0111

No overflow

No overflow

b ₃ b ₂ b ₁ b ₀	Value in decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

CHARACTER REPRESENTATION

- The most common encoding scheme for characters is ASCII
- Alphanumeric characters, operators, punctuation symbols, and control characters represented using 7-bit codes
- 8-bit byte is used to represent and store a character
- The code occupies the low-order seven bits
- The high-order bit is usually set to 0

FLOATING-POINT NUMBERS

- The basic IEEE format is a 32-bit representation that comprises of
 - a sign bit,
 - 23 significant bits, and
 - 8 bits for a signed exponent of the scale factor
- IEEE standard also defines a 64-bit representation to accommodate
 - more significant bits, and
 - more bits for the signed exponent, resulting in much higher precision and a much larger range of values
- In general, a binary floating-point number can be represented by (2008 version of IEEE Standard 754):
 - a sign for the number
 - some significant bits
 - a signed scale factor exponent for an implied base of 2

TOPICS COVERED FROM

- Textbook 1:
 - Chapter 1: 1.4.1, 1.4.2, 1.5