A *circle* is defined to be the collection of all points (x, y) that are equidistant from a fixed center point (h, k). The distance to this center point is called the radius r.

A Circle Centered at the Origin

Suppose a circle is centered at the origin (0, 0) and has a radius of length r. Then a point (x, y) on the circle creates a right triangle with sides having lengths x and y, and the hypotenuse having length r. By the *Pythagorean Theorem*, we can say

So $x^2 + y^2 = r^2$ is the equation of a circle centered at the origin with radius r.

Example 1. Give the equation of the circle centered at (0, 0) with radius 9/5. What points are on the circle for x = -6/5?

Solution. Using r = 9/5, then $r^2 = 81/25$; so the equation becomes $x^2 + y^2 = \frac{81}{25}$.

For x = -6/5, there are two possible y-values: $-\frac{6}{5}^2 + y^2 = \frac{81}{25}$ $\frac{36}{25} + y^2 = \frac{81}{25}$

$$y^2 = \frac{81}{25} - \frac{36}{25}$$
 $y^2 = \frac{45}{25}$ $y = \pm \sqrt{\frac{45}{25}} = \pm \frac{\sqrt{9 \times 5}}{5} = \pm \frac{3\sqrt{5}}{5}$. So the two points on the

circle are $-\frac{6}{5}$, $\pm \frac{3\sqrt{5}}{5}$

Upper and Lower Semicircle Functions

The circle $x^2 + y^2 = r^2$ defines two semicircle functions, which are the top-half and lower-half of the circle. These functions are obtained y solving for y:

$$x^{2} + y^{2} = r^{2}$$
 $y^{2} = r^{2} - x^{2}$ $y = \pm \sqrt{r^{2} - x^{2}}$

Domain: -r x r Range: 0 y r

Domain: -r x r Range: -r y 0

Upper Semi-circular Function

Lower Semi-circular Function

Example 2. (a) Give the equation of the upper-semicircle function centered at the origin with radius 6.

- (b) Graph the function and state its domain and range.
- (c) Solve for the x that make y = 4.
- (d) For which x is y = 4 and for which x is y < 4?

Solution. (a) Using r = 6, the entire circle has equation $x^2 + y^2 = 36$. So the uppersemi-circle function is $y = \sqrt{36 - x^2}$.

(c) If
$$y = 4$$
, then $x^2 + 4^2 = 36$ $x^2 = 20$
 $x = \pm \sqrt{20} = \pm \sqrt{4 \times 5} = \pm 2\sqrt{5}$

Domain: -6 x 6 Range: 0 y 6

(d) From the graph, we see that y = 4 when $-\sqrt{20} = x = \sqrt{20}$. We see that y < 4 when $-6 = x < -\sqrt{20}$ or when $\sqrt{20} < x = 6$.

General Equation of a Circle

The equation of the circle with center (h, k) and radius of length r is given by

$$(x-h)^2 + (y-k)^2 = r^2$$

Example 3. (a) Give the equation of the circle having center (4, -6) and radius 9.

- (b) Graph the circle by plotting the center and the 4 "directional" points on the circle.
- (c) Give the function form of the upper and lower semicircle functions determined by the circle and state the domain and range for each.

- Solution. Center: (4, -6) and r = 9 (a) Equation: $(x-4)^2 + (y+6)^2 = 81$
- (b) To find the four "directional" points, go to the center (4, -6) then add ± 9 to the xcoordinate to obtain the points (-5, 6) and (13, 6). Then go back to the center (4, -6) and add ± 9 to the y-coordinate to obtain the points (4, 3) and (4, -15).

(c) Now we solve for y to obtain the two semi-circle functions:

$$(x-4)^2 + (y+6)^2 = 81$$
 $(y+6)^2 = 81 - (x-4)^2$ $y+6 = \pm \sqrt{81 - (x-4)^2}$ $y = \pm \sqrt{81 - (x-4)^2} - 6$

Upper Semi-Circle Function

$$y = \sqrt{81 - (x - 4)^2} - 6$$

Lower Semi-Circle Function

$$y = -\sqrt{81 - (x - 4)^2} - 6$$

Exercises

- 1. Give the equation of the circle centered at (0, 0) with radius 5/3. Give the coordinates of the points on the circle that occur when x = -1/3.
- 2. (a) Give the equation of the upper-semicircle function centered at the origin with radius 3.
- (b) Graph the function and state its domain and range.
- (c) Solve for the x that make y = 2.
- (d) For which x is y < 2 and for which x is y < 2?
- 3. (a) Give the equation of the lower-semicircle function centered at the origin with radius 7.
- (b) Graph the function and state its domain and range.
- (c) Solve for the x that make y = -3.
- (d) For which x is y < -3 and for which x is y = -3?
- 4. (a) Find the equation of the circle with center (8, -2) and radius 4.
- (b) Graph the circle by plotting the center and the 4 directional points on the circle.
- (c) Give the function form of the upper semicircle and state the domain and range.
- (d) Give the function form of the lower semicircle and state the domain and range.

Solutions

1. Using $r = \frac{5}{3}$, the equation becomes $x^2 + y^2 = \frac{25}{9}$.

For
$$x = -\frac{1}{3}$$
, then $-\frac{1}{3}^2 + y^2 = \frac{25}{9}$ $y^2 = \frac{25}{9} - \frac{1}{9} = \frac{24}{9}$ $y = \pm \sqrt{\frac{24}{9}} = \pm \frac{\sqrt{4 \times 6}}{3} = \pm \frac{2\sqrt{6}}{3}$

So the points on the circle are $-\frac{1}{3}$, $\pm \frac{2\sqrt{6}}{3}$

 $x^2 + y^2 = 9$; so the upper semicircle (c) To solve y = 2, we have $\sqrt{9 - x^2} = 2$, function is $y = \sqrt{9 - x^2}$ for -3×3 . The range for y is [0, 3].

or $9 - x^2 = 4$. So $x^2 = 5$ and $x = \pm \sqrt{5}$.

(d) y 2 for
$$-\sqrt{5}$$
 x $\sqrt{5}$,

and y < 2 for x in [-3, $-\sqrt{5}$) or in $(\sqrt{5}, 3]$.

3. $x^2 + y^2 = 49$; so the lower semicircle is $y = -\sqrt{49 - x^2}$, for -7 x 7. The range for y is [-7, 0].

- (c) To solve y = -3, use $-\sqrt{49 x^2} = -3$, or $49 - x^2 = 9$. Then $x^2 = 40$ and $x = \pm \sqrt{40} = \pm 2\sqrt{10}$.
- (d) y < -3 for $-\sqrt{40} < x < \sqrt{40}$,

and y = -3for x in $[-7, -\sqrt{40}]$ or in $[\sqrt{40}, 7]$.

4 (a) Use $(x-h)^2 + (y-k)^2 = r^2$. Here $(x-8)^2 + (y+2)^2 = 16$.

The range for the upper-semicircle function is -2 y 2.

(d) $y = -\sqrt{16 - (x - 8)^2} - 2$ for 4 x 12 with range -6 y -2.