ROBOTIC CONTROL SMULATORS

for off-road environment

FINAL REPORT

SNOW SM Project

Team:

Bachelor's intern: Isabelle Eysseric

Supervisor: François Pomerleau

Co-supervisor: Luc Coupal

PROJECT SNOW (Self-driving Navigation Optimized for Winter)

Current Self-Driving Research:

- Urban traffic
- Type of terrain: asphalt

Unexplored issues in autonomous driving:

- Winter driving
- Complex, unstructured and uncertain environment

PROJECT SNOW-SIM

Real Training:

- Lots of data
- Challenge: cost and limited time

Virtual Training:

- Generate lots of data
- Challenge: Simulation to Real

Simulator

NORLAB

Best simulator for:

- Development
- Training
- Validation
- And more security
 - No damage(material/physical)

Mandate: Find and deploy a simulator

INTERNSHIP: OBJECTIVE

STAGE 1: RESEARCH

• Research and analyze different simulation platforms.

STAGE 2: TESTING

• Experiment with successful candidate platforms

STAGE 3: DEPLOYMENT

Deploy the selected simulator

Annexe: Presentation of

STAGE 1: RESEARCH AND ANALYSIS

Definition:

- Problem
- Requirements

Physic:

- Base of physic
- Physics for modelling

Simulators:

- Candidate
- Selected
- To follow

PROBLEM

Environment

- Off-Road (in the subarctic region)
- Complex/uncertain environment

Autonomous Driving

- Vehicle dynamics
- Environment dynamics

Extreme Climate

• Winds, Flurries, Blizzards, ...

Simulation in the snow

REQUIREMENTS

Reliability of physics engines

- Mobile robotics
- Real time, Realistic physics

Hardware requirements

- Linux
- ROS, Sensors, Headless mode

Software

- Maintenance
- Support Community

ANALIZED PHYSICS

Basic physics

- Kinematic
- System dynamics,
- Particle & Fluid dynamics

Body physics

• Rigid, Multi & Soft body

Vehicle physics

• Drivetrain, sterring, tires, ...

Modeling environment

- Objects
- Terrain, surface
- Climate

CANDIDATE SIMULATORS

Gazebo Ignition	GEM, Highway,	CoppeliaSim
AGX Dynamics	WMRDE, MujoCo	<u>BeamNG</u>
Nvidia Omniverse	(OpenAl Gym	Havok, AirSim
CARLA	Environment)	Chrono Project
SVL (discontinued)		<u>Applied Intuition</u>

IMPORTANT FEATURES

Physics engine		Modelization
	Headless mode	
ROS		Sensors

SELECTED CANDIDATES

Gazebo Ignition

Complete, Modeling, Robotics, OpenAl Gym Add/Customengines like Chrono (All-terrain vehicles), Environments like MuJoCo ...

AGX Dynamics

Complete, Modeling, Fast & Robust, ML-Agents, Plugin/3rd party Havok (Physics), MuJoCo (Learning)...

Nvidia Omniverse (Optional)

Complete, Modeling, Fast & Robust, Plugin/3rd party Unreal(Physics), Maya, Blender (Rendering), ...

CANDIDATES TO FOLLOW

Simulators

CARLA Wait for fluid dynamics and offroad

Beam NG Wait for Linux support, environ Ment

CoppeliaSim Wait for more infos & community

Physics engines

Havok Wait for robotics, doc & community

-> Add in AGXDynamics for **Unity**

Chrono Wait for more developments

-> Add in Gazebo Ignition, CARLA

Annexe:

Presentation of testing

STAGE 2: TESTING

Hardware

- Itegration ROS
- Platform
- Software

Files

- Creation
- Import / export
- Modeling

Modelling

- Dynamic
- Terrain
- Surface
- Climat

HARDWARE

Integration ROS

ROS 1 (Melodic 18-23, Noetic 20-25) ROS 2 (Foxy 20-23, Galactic 21-22)

Platform

Linux (Ubuntu 18.04, 20.04) Windows 10, MacOS

Software

Documentation, API, Community, Service Visualization

HARDWARE: INTERFACES

Visualization, Addition, Modification, Terrain deformation, Mixed surface

Gazebo Ignition

AGX Unity

AGX Dynamics

Annexe: Files SDF Blender MeshLab Unity3D

FILES

Creation

SDF with Worlds
Languages: C++, Python

Import / export of files

URDF with Meshes

Third-party software

Blender, MeshLab, ... Unity3D, VFX Graph

BLENDER - MESHLAB

BLENDER

MESHLAB

Annexe

Rigid vs Soft Body Method & Approch

MODELING

Dynamics

System, Fluid, Particle, Soft Body

Complex Terrain

Uneven ground, Terrain deformation,

Surface

Mixed surface, Deformable surface

Climate

Blizzard, Flurries, Winds, Rain, Snow, ...

Modeling Event Simulation

Changing weather, Landslide, Micro-avalanche

DYNAMICS: PARTICLE DYNAMICS

Gazebo Ignition

AGX Dynamics

SURFACE: Mixed surface

EXRTEME CLIMATE: Blizzard, Flurries, Winds, ...

DYNAMICS: FLUID DYNAMICS

Gazebo Ignition

AGX Dynamics

SURFACE: Mixed surface

EXRTEME CLIMATE: Blizzard, Flurries, Winds, ...

DYNAMICS: SOFT BODY

Gazebo Ignition

AGX Dynamics

DYNAMICS: Vehicle

Gazebo Ignition

AGX Dynamics

COMPLEX TERRAIN: Uneven ground, deformation

ANALYSIS: GAZEBO IGNITION vs AGX DYNAMIC

SIMULATORS	POINTS FORTS	POINTS FAIBLES
Gazebo Ignition	Interface	Tools modelisation
	Community, Forum	Models interaction
	ROS1 & ROS2 integration	
	API Fuel with model & worlds	
	Physics engine	
AGX Dynamic	Interface (Unity)	Interface AGX Dynamics
	Tools modelisation (Unity)	Platform Windows (AGX & AGXUnity)
	Models interaction	No soft Body,
	Good service	No interaction objets Unity-AGX
	Robust	No ROS1 integration
		No forum, No Free

STAGE 3: DEPLOYMENT

Tutorials

- Scripts for the installation
- Templates files for modelling
- Troubleshooting
- Resources, Wiki and README

Docker images

- Docker image: Gazebo Ignition
- Docker compose: Ignition + ROS 1 Noetic

ANNEXES

PRESENTATION OF SIMULATORS

Simulators	Physics Engines	Rendering Engines	Learning ML/DL/RL	Sensors	Supports	Applications	Options
Gazebo Ignition	DART, ODE, TPE, Bullet, Simbody + add & custom	Ogre, Optix	OpenAl Gym (Gym-Ignition)	Cameras, LIDAR, IMU, GPS	ROS, Docker, YARP		Headless mode
AGX Dynamics for Unity	Unreal Engine Unity 3D	Unity, Unreal, OSG + add &custom	OpenAl Gym (gym- agx) IsaacSim, DriveSim Kaolin app, ML Agents	Cameras, LIDAR, Depth, proximity	ROS, Docker MATLAB Simulink RobotStu dio	Powerline, Drivetrain, Tire, Terrain, Granular, Hydro dynamics,	Headless mode Offroad Plugin Havok for Unity
Nvidia Omniverse	Nvidia PhysX Plugin: Unreal	RTX Renderer Plugin: Blender, Houdini, CityEngine	Isaac Sim, Isaac Gym Kaolin app	Cameras, LIDAR	ROS, Docker	Plugin: Maya, 3DS max, Blender, CityEngine, Optix,	Headless mode Ray tracing, Fast
CARLA	Unreal Engine <u>Co-sim</u> : SUMO, PT-Vissim	Vulkan Ope nDrive	OpenAl Gym (gym- carla) Anys Real Time Radar (RTR)	Cameras, LIDAR, IMU, GPS, GNSS, Semantic LIDAR	ROS, Docker, AWZ MATLAB Simulink		Headless mode (No-rendering mode; Off-screen mode)
CoppeliaSim (V- REP)	Bullet, ODE, Vortex, Newton		OpenAl Gym (gym-vrep)	Cameras, LIDAR, IMU, GPS, Laser 2D, 3D	ROS MA TLAB Simulink, Octave BlueZero		Headless mode
B e a m N G	BeamNG.trive BeamNG.tech	Torque 3D Vulkan (soon)	OpenAl Gym (beamnggym)	Camera, LIDAR, IMU ultrasonic, electric	ROS, Docker	SUMO, BeamNGpy Traffic Simulation, Roads, 12World ADAS algorithmes	No Headless mode
Project C hrono	Chrono Bullet (collision) + Cosimulation	Internal	OpenAl Gym (gym-chrono)	Camera, LIDARs, GPS, Radar,	ROS Chrono- Gazebo MATLAB Simulink	Vehicle, Cosimulation,	headless rendering capabilities Multi-core CPUs, GPU and distribued
Havok Games Dynamics S D K	Havok Physiks FX Havok Cloth	Internal	Havok Al	NA	ROS	Havok Physics, Al, Cloth	Havok Unity/ Unreal, Multicore, GPU, 3Ds Max, Maya,
Applied Intuition	Unreal Engine	Unreal	NA	Camera, LIDAR, IMU, GPS, Radar Simulate sensors	CARLA, ROS 1 ROS 2, Gazebo, Docker, Cloud: AWS, Azure, Google	Vehicle Dynamics: CarSim, TruckSim, BikeSim, SuspensionSim	Synthetic data Urban & highways, Off-road Rare or difficult events with limited sensor input
AirSim (Aerial Informatics and Robotics Simulation)	Unreal UE4 Unity	Unreal UE4 Unity	OpenAl Gym (airsim-gym, AirGym API)	Camera, LIDAR, IMU, GPS, Distance	ROS 1, ROS 2 Gazebo, Docker	Plugin for Unity,	Headless mode, GPUs API, Github, Unity APIs

PRESENTATION OF PYSICS AND MODELING

SIMULATORS	BASIC PHYSICS					BODY PHYSICS			HICLE PHY	/SICS	ENVIRONMENT PHYSICS			
	Kinematic	Particle Dynamics	System Dynamics	Fluid Dynamic s	Rigid Body	Soft Body	Multi Body	Vehicle Dynamics	Vehicl e Behavio r	Collision Detection	Terrain Modeling	Surface Modeling	Climate Modeling	
Gazebo I gnition	√ +inverse	✓	√	√	✓	✓	√	√	√	√ Discrete Continuous	√ Uneven, Defor mable	√	✓	
AGX Dynamics for Unity	√ + inverse	√	✓	√	✓	✓	√	✓	✓	✓	√ Uneven, Deformable, Mixe	√ Changing surface	√ Changing weather Landslide, Avalanche	
Nvidia Omni verse	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
CARLA	✓	✓	✓	-	√	-	✓	√	✓	✓	✓	√ Behavior s Dynamic world environment	√ Precipitation, wind, fog, wet, cloud	
CoppeliaSim (V- REP)	√ + Inverse	✓	√	-	✓	√ (soon)	√	√	✓	√ Discrete Continuous	N A U n e v e n	√ Adhesive, friction	√ Fog, water et air jet	
B e a m N G		✓	√	√	√	✓	✓	√	√	NA	√ Forest, Grassland, Jungle, River	NA Asphalt, dirt, gravel, mud, ice, rocky dirt, wave, foam, réflexion, bending effect	N A	
Project C hrono	√ + Inverse	✓	√	✓	√ DAE	✓	√ & F E M	√	✓	✓	√ Deformable, Granular dynamic	√ Fluid-solid interaction	N A	
Havok Games Dynami cs S D K	√ + Inverse	✓	✓	✓	✓	✓	(√)	√	✓	√ Continuous	√ Havok Al	√ Havok AI	√ Fog, Smoke	
Applied Intuition	✓	✓	✓	✓	✓	NA	✓	√	✓	✓	√ Bumpy, uneven	√ Interaction terrain & vegetation, dirt	√ Weather, Wind effect, lighting	
AirSim	✓	(√) Unreal	(√) Unreal	(√) Unreal	✓	NA	NA	✓	NA	✓		Road wetness, Snow, leaves, Dust, bumps / flickering	Rain, Snow, Failling leaves, Fog, Wind direction	

 (\checkmark) :by deduction

PRESENTATION OF PHYSICS FOR VEHICLES

SIMULATORS			VI	EHICLE DYN.	VEHIC	CLE BEHAV	IOR	EQUATIONS			
	Drivetrain	Braking	Suspension	Steering	Tires	Mass Di stribution	Aerodynamics	Vehicle Behaviors	DoF	Loops SIL/HIL	
Gazebo Ignition	√	√	NA	✓	√	√	√	√ body	NA	NA	ODE: iterative & exact solver
AGX Dynamics for Unity	√	✓	✓	√	√	√	✓	√	NA	NA	Iterative solver Direct solver DEMs -> non-smooth
N v i d i a Omniverse	NA	✓	✓	✓	✓	√	√	NA	NA	NA	Newtonian equations of motion
CARLA	√ Transmission	✓	√ Soft to Rigid	✓	✓	✓	NA	✓	9	SIL/HIL MIL/DIL	NA
CoppeliaSim (V-REP)	√ Powertrain	✓	√ Damping	NA	NA	√	NA	√ planning	6		Determinist solver
B e a m N G	✓	✓	✓	✓	✓	√ Mass' node	✓	✓	NA	MIL	Deterministic mode
Project Chrono	√ Powertrain	√	√	√	✓	NA	NΑ	NA	NA	NA	DAE -> connect PDE -> Deform DVI -> non-smooth contact DAEs -> smooth contact DAEs and PDEs -> fluid-solid ODE -> First-order dynamic
Havok Games Dynam ics SDK	✓	NA	✓	✓	NA	NA	✓	NA	NA	NA	Newtonian equations of motion
Applied Intuition	√ Powertrain (CarSim)	√ (CarSim)	√ (SuspensionSim)	✓	√ (CarSim)	NA	√ (CarSim)	√	NA	NA	NA
AirSim	NA	NA	NA	✓	NA	NA	NA	NA	NA	SIL/HIL	NA

ANALYSIS REPORT

Gazebo Ignition

Strength: Robotics and Community

Advantages: Particle/Fluid dynamics, Soft body, Add-Custom physics engine

Disadvantages: Slow with Bullet, Few ready-made models

AGX Dynamics for Unity

Strength: Off-road vehicle control, Environment modeling

Advantages: Powerful engines (Unreal, Unity), MuJoCo plugins, Havok, ...

Disadvantages: Annual Academic License (1: €2945, group: €5890)

Nvidia Omniverse

Strength: Powerful (Multi-GPU), Plugins and Lots of Middleware

Advantages: Particle and fluid dynamics, plugins,...

Disadvantages: Lots of middleware, License

CARLA (Car Learning to Act)

Strength: Vehicle Traffic, Cosimulation and RL Learning

Advantages: Physics (Unreal), Rllib integrations, Chrono, CarSim

Disadvantages: No Soft body

CoppeliaSim (V-REP)

Strength: Full kinematic (IK et FK), Multi-robot application

Advantages: Complete, Multi-physics (Bullet, ODE, Vortex and Newton)

Disadvantages: Lack of information on terrain modeling

BeamNG (Beam Next Generation)

Strength: Drive vehicle complete

Advantages: Particle & Fluid dynamics, Soft body, Offroad, RL

Disadvantages: No Linux support, no Headless mode, more for gaming.

Havok Games Dynamics SDK

Strength: Robust simulation and AI for modeling environments

Advantages: Particle & Fluid dynamics, Soft body, AI

Disadvantages: No ROS support, more for video games.

Project Chrono

Strength: Multi-physics simulation, Multi-body analysis and FEM finite

Advantages: Multi-physics, Vehicle-Terrain interaction, Fluid-Solid interaction

Disadvantages: Recent, No much documentation, maintained by community

Applied Intuition

Strength: Physics vehicle, urban and Highways environment

Advantages: Vehicle-Terrain interaction, Offroad, Software tools for vehicles

Disadvantages: No API or documentation, Difficult to contact, ROS, Particle, fluid?

AirSim de Microsoft

Strength: Flight simulator

Advantages:

Disadvantages: Better on Windows

LEARNING ENVIRONMENTS

<u>OpenAl Gym</u>: is a toolkit for developing and comparing reinforcement learning algorithms.

Environments based on OpenAI Gym:

<u>Gym-Ignition</u> is designed for repeatable results and allows <u>parallel</u> or <u>headless</u> mode simulation while providing common <u>rigid body dynamics</u> utilities.

Wheeled Mobile Robot Dynamics Engine (WMRDE) is for simulation and modeling of wheeled mobile robots (WMR) and tracked vehicles.

<u>Highway-Env</u>: A collection of environments for autonomous driving and tactical decision-making tasks.

<u>Gym Electric Motor (GEM)</u> is an OpenAI Gym environment for simulating <u>electric motor control</u> and RL experiments.

<u>MuJoCo</u> (Multi-Joint dynamics with Contact) is intended for continuous control tasks, performed in a multi-body dynamics simulator with contact.

<u>Gym-Chrono</u> is a **set of continuous state and action space** DRL environments based on the **Chrono physics engine**.

INTERFACE: GAZEBO IGNITION (IMAGES)

INTERFACE AGX DYNAMICS FOR UNITY (IMAGES)

INTERFACE AGX DYNAMICS FOR UNITY (VIDEOS)

DYNAMICS: RIGID BODY

Rigid Body: the object is fixed.

Soft Body: the relative distance of two points on the object is not fixed and e corp garde sa forme contrairement à un Fluide

Méthodes:

- Approximative: Effet visuel mais non exacte
- Précise: Finite element simulation (FEM)

SOFT BODY DYNAMICS

Approaches:

- Spring/mass models,
- Finite element simulation (FEM),
- Energy minimization methods,
- Shape matching
- Rigid-body based deformation (Havok Destruction)

Solveurs basés

- Force-Based Dynamics or Pressure-Based Dynamics: is a system of ODEs (couteux)
 - The mass-spring model is a polygonal mesh representation 2D or 3D) and is solved via standard ODE solvers
- Position-Based Dynamics (PBD): PhysX, Havok Cloth, Maya nCloth
 - The mass-spring model is converted into a system of constraints and is solved sequentially and iteratively.

Maillage hexaédrique

TYPES OF MESHES

tétraèdre

prisme

hexaèdre

Triangle + Quadrilatere

== Hybride

Souvent lineaire ==

Polyotopes

3D

linéaire

p = 1

quadratique

p = 2

cubique

p = 3

SOFT BODY DYNAMICS

Properties of deformables objects

SOFT BODY (Meshes)

SOFT BODY (Meshes)

