非決定性有限オートマトンと決定性有限オートマトン

離散数学・オートマトン

2020年後期

佐賀大学理工学部 只木進一

非決定性有限オートマトン:復習

- $\blacksquare M = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - ■Q:内部状態の集合
 - Σ: 入力アルファベット
 - $\delta: Q \times \Sigma \to 2^Q : 状態遷移関数$
 - ▶遷移先は複数の状態
 - $ightharpoonup q_0 ∈ Q$:初期状態
 - **P** *F* ⊆ *Q*: 受理状態

NFAからDFAへ

NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ に対応したDFA M'

- $\longrightarrow M' = \langle Q', \Sigma, \delta', [q_0], F' \rangle$
 - $Q' \in 2^Q$
 - Σ: 入力アルファベット
 - $\delta': Q' \times \Sigma \to Q': 状態遷移関数$
 - $ightharpoondown [q_0] ∈ Q'$:初期状態
 - $ightharpoonup F' = \{A \in 2^Q | A \cap F \neq \emptyset\}$: 受理状態


```
1. Q' = \{[q_0]\}
2. repeat{
3. forall (q' \in Q'){
        forall (q \in q'){
5.
           S = []
6.
           forall (a \in \Sigma){
7.
              forall (p \in \delta(q, a)){
                 if (p \notin S) S = S \cup \{p\}
8.
9.
           \delta'(q',a) = S
10.
11.
        Q'にSを追加
12.
13. }
14.}(新しいQ'の要素が見つからない)
```

©Shin-ichi T

€動作のある非決定性有限オート マトン

- $\blacksquare M = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - ■Q:内部状態の集合
 - Σ: 入力アルファベット
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q : 状態遷移関数$
 - ▶文字を読まずに遷移することがある
 - $-q_0$:初期状態
 - ightharpoonup F ⊆ Q: 受理状態

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_2\}$$

δ	0	1	ϵ
q_0	$\{q_0\}$	Ø	$\{q_1\}$
q_1	$\{q_1\}$	$\{q_1\}$	{q ₂ }
q_2	Ø	$\{q_2\}$	Ø

©Shin-ichi TADAKI

動作:入力"010"

ϵ -NFAに対するDFAの準備 ϵ -閉包

- Mの状態の集合 Q'の各要素から € 動作 のみで到達できる状態の集合
 - $ightharpoonup \epsilon$ -CL(Q')

$$Q' = \{q_0\}$$

$$\epsilon\text{-CL}(Q') = \{q_0, q_1, q_2\}$$

ε -NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ に対応 したDFA M'

- $\longrightarrow M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$
 - $Q' \in 2^Q$
 - Σ: 入力アルファベット
 - - $\bullet \delta' : (Q^*, a) \to \epsilon \text{-CL}(\bigcup_{q \in \epsilon CL(Q^*)} \delta(q, a)$

 - $ightharpoonup F' = \{A \in 2^Q | A \cap F \neq \emptyset\}$: 受理状態

©Shin-ichi TADAKI

DFAの簡素化

- ■同じ文字列を受理するDFAのうちで、状態数の最小のDFAへの変換
 - ●状態の集合から入力による遷移先の集合に 注目する

最小化アルゴリズム

- 1. 状態を受理状態の集合と、それ以外の状態の集合に分ける
- 2. 各状態集合に対して、各入力による遷移 先が同じ集合に分割する
- 3. 新たな状態集合が無くなるまで、2を繰り返す
- 4. 元の初期状態を含む状態集合を新たな初期状態に、元の受理状態のみを含む状態 集合を新たな受理集合に

- ▶終状態の集合{q2, q3}
 - \blacksquare aの入力で $\{q_2,q_3\}$ 、bの入力で $\{q_4\}$ と、同じ 状態に遷移するため、分割しない
- $\blacksquare \{q_0, q_1, q_4\}$
 - \blacksquare aの入力で $\{q_0, q_1\}$ は q_1 へ、 q_4 は $\{q_2, q_3\}$ へ
 - ■二つに分割
- ■再度全ての状態集合に確認し、新たな 分割は無い

