

- -

- -

«

• • • •

2

: 519.8(075) . . 2. – , 2013. – 105 . **« « ».**

•

«

. 29. .: 9 .

© . . , 2013 © . . , 2013

© , 2013

1. 1.1. () (. . 3). 1.2. f(X) $_{0}=(_{1},$ f(X), ..., x_i , ..., n $f(X_0 + h) \le f(X_0)$ $h = (h_1, ..., h_j, ..., h_n)$ $|h_j|$ j. f(0). f0 f(X), h $f(X_0+h) \ge f(X_0).$. 1.1 f(x)[, *b*]. x_1, x_2, x_3, x_4 f(x). x_1, x_3 6

 $f(x_6)$

 x_2

 $f(x_6) = \max\{f(x_1), f(x_3), f(x_6)\},\$

f(x).

 x_4 -

```
f(x_1) f(x_3) –
                                  f(x_4)
                                                                    , a f(x_2) –
                       f(x).
              f(X)▲
                           а
                                    X<sub>2</sub>
                                           Х3
                                               X4
                                                     X 5
                                                           x_6
                                                               b
                                             . 1.1
                                                                                            f(x)
                                     1
. 1.1),
                                                                                f(x)
                                                                                            f(x)
        c f(x_1).
                           f(x),
                                                                                   3,
                                      f(x_1).
                                                                                   f(x)
                                                              4,
                                                      0
                         f(x),
                                          f(X_0+h) \le f(X_0),
                 f(X_0 + h) < f(X_0),
                                         h -
                                                                                   f(
         . 1.1
                                                                            0
                                                               )
                                                f
                                                                           5.
                                                                           (
```

1.2.1.

```
f(X).
                                                                                                                                             f(X)
                                                  X.
                      1.
                                                          f(X),
                                                             \nabla f(X_0) = 0.
                                                                                                                    0 < 1
                                                f(X)
                                   f(X_0 + h) - f(X_0) = \nabla f(X_0)h + \frac{1}{2}h^T H h|_{X_0 + \theta h},
h –
                                                                                                                    \frac{1}{2}h^T H h
                                                                       /h_j/
                                h_j^2.
                                f(X_0 + h) - f(X_0) = \nabla f(X_0)h + O(h_j^2) \approx \nabla f(X_0)h.
                                                                               f(X).
                                              f(X)
             \nabla f(X_0)
                                                                                                   0
                                               \frac{\partial f(X_0)}{\partial x_i} < 0 \qquad \frac{\partial f(X_0)}{\partial x_i} > 0.
           h_j
                                                           h_j \frac{\partial f(X_0)}{\partial x_j} < 0.
                                          h_j
                                                       f(X_0 + h) < f(X_0).
                                                                             \nabla f(X_0)
                                                                                                            \nabla f(X_0) = 0,
                        2.
                                                                                                                                     0
```

1.1

$$f(x_1, x_2, x_3) = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2.$$

$$\nabla f(X_0) = 0$$

$$\frac{\partial f}{\partial x_1} = 1 - 2x_1 = 0,$$

$$\frac{\partial f}{\partial x_2} = x_3 - 2x_2 = 0,$$

$$\frac{\partial f}{\partial x_3} = 2 + x_2 - 2x_3 = 0.$$

 $_0 = (1/2, 2/3, 4/3).$

$$H|_{X_0} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}.$$

$$H|_{X_0} = -2, 4 = -6$$

 $H\mid_{X_0}$,

 $_0 = (1/2, 2/3, 4/3)$

, $H\mid_{X_0}$, 0

.

•

2.)

•

$$f(x_1, x_2) = 8x_1x_2 + 3x_2^2$$

$$\nabla f(x_1, x_2) = (8x_2, 8x_1 + 6x_2) = (0, 0).$$

$$0 = (0, 0).$$

1.2

$$H = \begin{bmatrix} 0 & 8 \\ 8 & 6 \end{bmatrix}$$

•

$$H_{t} = \begin{bmatrix} -\frac{64}{6} & 0\\ 0 & 6 \end{bmatrix},$$

, , t (,

),

t,

•

, 0=

, $_{0}-$, $_{f},$;

1) $f''(y_0) < 0$

 $y_0;$

 $f''(y_0) < 0$ 0.

 $f''(y_0) < 0,$

3. 0 f(y) (-1) $f^{(n)}(y_0) \neq 0. = 0 f(y) :$

1) , – ;

 $npu \quad f^{(n)}(y_0) < 0$ npu $f^{(n)}(y_0) > 0$.

1.3 $f(y) = {}^{4} g(y) = {}^{3}.$ $f(y) = y^{4}$

$$f'(y) = 4y^{3} = 0,$$

$$0 = 0.$$

1.2.2.

$$\nabla f(X_0) = 0 f()$$

,

$$f_i(X) = 0, i = 1, 2, \dots, m.$$
^k

 $f_i(X) \approx f_i(X^k) + \nabla f_i(X^k)(X - X^k), i = 1, 2, ..., m.$

$$J_i(\Lambda) \approx J_i(\Lambda) + VJ_i(\Lambda)(\Lambda - \Lambda), i - 1, 2, \dots, m.$$

$$f_i(X^k) + \nabla f_i(X^k)(X - X^k) = 0, i = 1, 2, ..., m.$$

$$A_k + B_k(X - X^k) = 0.$$

$$, \hspace{1cm} f_{i}(\hspace{0.1cm}) \hspace{1cm} ,$$

$$X = X^k - B_k^{-1} A_k.$$

_

0

$$m \approx m-1$$

f(x) 1.3.

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$
 $f'(x^k) = \frac{f(x^k)}{x^k - x^{k+1}}$

. 1.3

$$f(x) k, tg\theta = f'(x^k).$$

. 1.3

, .

.

1.3.

.

1.3.1

, . 1.3.2 – .

1.3.1.

(

z = f()

 $g(\)=0,$

 $X = (x_1, x_2, ..., x_n),$ $g = (g_1, g_2, ..., g_n).$

f() $g_i()$, i=1, 2, ..., m,

 $f(\)$, $g(\)=0.$

· . 1.2,

 $f(x_1,x_2)$,

. 1.4.

 $g(x_1, x_2) = x_2 - b = 0,$ b - . 1.4 , ,

 $, f(x_1, x_2),$

 $f(x_1,x_2)$ ABC. B,

 $X + \Delta X$ X

 $f(X + \Delta X) - f(X) = \nabla f(X) \Delta X + O(\Delta x_j^2), \quad g(X + \Delta X) - g(X) = \nabla g(X) \Delta X + O(\Delta x_j^2).$ $\Delta x_j \to 0$

 $\partial f(X) = \nabla f(X)\partial X, \ \partial g(X) = \nabla g(X)\partial X.$ $g(\) = 0, \ \partial g(\) = 0$

 $\partial f(X) - \nabla f(X) \partial X = 0, \ \nabla g(X) \partial X = 0.$

+ 1 + 1

 $\partial f(X) = \partial X$. $\partial f(X)$

, ∂X . , ,

. 1.7

> -

(). = ,

 $\partial X = 0$. X

X = (Y, Z),

 $Y = (y_1, y_2, ..., y_m)$ $Z = (z_1, z_2, ..., z_{n-m})$

g

 $\nabla f(Y,Z) = (\nabla_Y f, \nabla_Z f), \quad \nabla g(Y,Z) = (\nabla_Y g, \nabla_Z g).$ $J = \nabla_{Y} g = \begin{bmatrix} \nabla_{Y} g_{1} \\ \vdots \\ \nabla_{Y} g_{m} \end{bmatrix}, C = \nabla_{Z} g = \begin{bmatrix} \nabla_{Z} g_{1} \\ \vdots \\ \nabla_{Z} g_{m} \end{bmatrix}.$ $C_{m \times (n-m)}$ – $\boldsymbol{J}_{\scriptscriptstyle{m\! imes\!m}}$ Y X \boldsymbol{J} $\partial f(X)$ ∂X $\partial f(Y,Z) = \nabla_Y f \partial Y + \nabla_Z f \partial Z, \quad J \partial Y = -C \partial Z.$ \mathcal{J}^{-1} . $\partial Y = -J^{-1}C\partial Z$. $\partial f(Y,Z)$, дf ∂Z $\partial f(Y, Z) = (\nabla_Z f - \nabla_Y f J^{-1} C) \partial Z.$ $\nabla_{c} f = \frac{\partial_{c} f(Y, Z)}{\partial_{c} Z} = \nabla_{Z} f - \nabla_{Y} f J^{-1} C,$ $\nabla_c f$ *Z*. $\nabla_c f(Y,Z)$. 1.2. *Z*.

 $\nabla_c f = \nabla_Z f - WC.$

i-

14 $\partial \nabla_{c} f / \partial z_{i}$. W – *Y*, a *Y*, Ζ. Z_i $\frac{\partial w_j}{\partial z_i} = \frac{\partial w_j}{\partial y_i} \frac{\partial y_j}{\partial z_i}$. 1.4 $f(X) = x_1^2 + 3x_2^2 + 5x_1x_2^2,$ $g_1(X) = x_1x_2 + 2x_2 + x_2^2 + 11 = 0,$ $g_2(X) = x_1^2 + 2x_1x_2 + x_3^2 + 14 = 0.$ $^{0} = (1, 2, 3).$ 0 $f (= \partial_{x} f)$ $Y = (x_1, x_3)$ Z = 2. $\nabla_Y f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right) = (2x_1 + 5x_3^2, 10x_1x_3), \quad \nabla_Z f = \frac{\partial f}{\partial x_2} = 6x_2,$

 $Z = (x_1, x_3) Z = 2.$ $\nabla_Y f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_3}\right) = (2x_1 + 5x_3^2, 10x_1x_3), \quad \nabla_Z f = \frac{\partial f}{\partial x_2} = 6x_2,$ $J = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_3} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_3} \end{bmatrix} = \begin{bmatrix} x_3 & x_1 \\ 2x_1 + 2x_2 & 2x_3 \end{bmatrix}, \quad C = \begin{bmatrix} \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_2 + 2 \\ 2x_1 \end{bmatrix}.$ $\partial_C f 0 = (1, 2, 3),$ $\partial x_2 = 0,01, 0 = (1, 2, 3),$

 $J^{-1}C = \begin{bmatrix} 3 & 1 \\ 6 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{6}{12} & -\frac{1}{12} \\ -\frac{6}{12} & \frac{3}{12} \end{bmatrix} \begin{bmatrix} 6 \\ 2 \end{bmatrix} \approx \begin{bmatrix} 2,83 \\ -2,50 \end{bmatrix}.$

 $\partial_c f = (\nabla_Z f - \nabla_Y f J^{-1} C) \partial Z = \left(6 \times 2 - (47,30) \begin{bmatrix} 2.83 \\ -2.50 \end{bmatrix} \right) \partial x_2 \approx -46 \partial x_2 = -0,46.$

 2,

 $\partial Y = -J^{-1}C\partial Z$.

 $\partial x_2 = 0.01$ $\begin{bmatrix} \partial x_1 \\ \partial x_2 \end{bmatrix} = J^{-1}C\partial x_2 = \begin{bmatrix} -0.0283 \\ 0.0250 \end{bmatrix}.$

 $\partial_c f$,

(-0.477)

$$f X^0 X^0 + \partial X.$$

$$X^0 + \partial X = (1 - 0,0283; 2 + 0,01; 3 + 0,025) = (0,9717; 2,01; 3,025).$$

 $f(X^{0}) = 58 f(X^{0} + \partial X) = 57,523$ $\partial_{0} f = f(X^{0} + \partial X) - f(X^{0}) = -0,477.$

 $\partial_c f$.

-0,46)

0•

1.5

$$f(X) = x_1^2 + x_2^2 + x_3^2$$

$$g_1(X) = x_1 + x_2 + 3x_3 - 2 = 0,$$

$$g_2(X) = 5x_1 + 2x_2 + x_3 - 5 = 0.$$

$$\nabla_{Y} f = \left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right) = (2x_{1}, 2x_{2}), \quad \nabla_{Z} f = \frac{\partial f}{\partial x_{3}} = 2x_{3}, \quad J = \begin{bmatrix} 1 & 1 \\ 5 & 2 \end{bmatrix}, \quad J^{-1} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{5}{3} & -\frac{1}{3} \end{bmatrix}, \quad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

$$\nabla_{c} f = \frac{\partial_{c} f}{\partial_{c} x_{3}} = 2x_{3} - (2x_{1}, 2x_{2}) \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{5}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \frac{10}{3} x_{1} - \frac{28}{3} x_{2} + 2x_{3}.$$

$$\nabla_c f = 0,$$

$$g_1(X) = 0$$
 $g_2(X) = 0$

().

$$\begin{bmatrix} 10 & -28 & 6 \\ 1 & 1 & 3 \\ 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}$$

$$X^{0} \approx (0.81; 0.35; 0.28).$$

,
$$\nabla_c f = 0 \qquad , \qquad X_3 - V_c f = 0$$

$$\frac{\partial_c^2 f}{\partial_c x_3^2} = \frac{10}{3} \left(\frac{dx_1}{dx_2} \right) - \frac{28}{3} \left(\frac{dx_2}{dx_3} \right) + 2 = \left(\frac{10}{3}, -\frac{28}{3} \right) \left[\frac{\frac{dx_1}{dx_2}}{\frac{dx_2}{dx_3}} \right] + 2.$$

$$\begin{bmatrix} \frac{dx_1}{dx_2} \\ \frac{dx_2}{dx_3} \end{bmatrix} = -J^{-1}C = \begin{bmatrix} \frac{5}{3} \\ -\frac{14}{3} \end{bmatrix}.$$

$$\frac{\partial_c^2 f}{\partial_c x_2^2} = \frac{460}{9} > 0.$$

 $_{0}$ -

$$J^{-1}$$
 ,

,
$$\partial f$$

,
$$\partial f$$
 , ∂f , ∂

$$\frac{\partial_{c} f}{\partial_{c} z_{j}} = \frac{\frac{\partial(f, g_{1}, g_{2}, ..., g_{m})}{\partial(z_{j}, y_{1}, y_{2}, ..., y_{m})}}{\frac{\partial(g_{1}, ..., g_{m})}{\partial(z_{m}, ..., g_{m})}},$$

$$\frac{\partial(f,g_{1},\ldots,g_{m})}{\partial(z_{j},y_{1},\ldots,y_{m})} = \begin{vmatrix} \frac{\partial f}{\partial z_{j}} & \frac{\partial f}{\partial y_{1}} & \ldots & \frac{\partial f}{\partial y_{m}} \\ \frac{\partial g_{1}}{\partial z_{j}} & \frac{\partial g_{1}}{\partial y_{1}} & \ldots & \frac{\partial g_{1}}{\partial y_{m}} \\ \ldots & \ldots & \ldots & \ldots \\ \frac{\partial g_{m}}{\partial z_{j}} & \frac{\partial g_{m}}{\partial y_{1}} & \ldots & \frac{\partial g_{m}}{\partial y_{m}} \end{vmatrix} = \frac{\partial(g_{1},\ldots,g_{m})}{\partial(y_{1},\ldots,y_{m})} = \begin{vmatrix} \frac{\partial g_{1}}{\partial y_{1}} & \ldots & \frac{\partial g_{1}}{\partial y_{m}} \\ \ldots & \ldots & \ldots \\ \frac{\partial g_{m}}{\partial y_{1}} & \frac{\partial g_{m}}{\partial y_{1}} & \ldots & \frac{\partial g_{m}}{\partial y_{m}} \end{vmatrix} = |J|.$$

$$\frac{\partial_c f}{\partial_c z_i} = 0, j = 1, 2, \dots, n - m.$$

$$\frac{\partial Y}{\partial Z} = -J^{-1}C$$

$$(i, j)$$

 $\frac{\partial y_i}{\partial z_j} = -\frac{\frac{\partial (g_1, \dots, g_m)}{\partial (y_1, \dots, y_{i-1}, z_j, y_{i+1}, \dots, y_m)}}{\frac{\partial (g_1, \dots, g_m)}{\partial (y_i, \dots, y_m)}},$

 $z_{j}.$ i-

 $W \equiv \nabla_{Y} f J^{-1} \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$

$$w_{i} = \frac{\frac{\partial(g_{1}, \dots, g_{i-1}, f, g_{i+1}, \dots, g_{m})}{\partial(y_{1}, \dots, y_{m})}}{\frac{\partial(g_{1}, \dots, g_{m})}{\partial(y_{1}, \dots, y_{m})}}.$$

 $\frac{\partial_c f}{\partial_c x_3} = \frac{\begin{vmatrix} 2x_3 & 2x_1 & 2x_2 \\ 3 & 1 & 1 \\ 1 & 5 & 2 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 5 & 2 \end{vmatrix}} = \frac{10}{3}x_1 - \frac{28}{3}x_2 + 2x_3.$

f , , , ,

5.

, , , , ,

,

$$\begin{split} \partial f(Y,Z) &= \nabla_{Y_f} \partial Y + \nabla_{Z_f} \partial Z, \\ \partial g &= J \partial Y + C \partial Z. \\ \partial g &= J, \\ \partial Y &= J^{-1} \partial g - J^{-1} C \partial Z, \\ \partial f(Y,Z) &= \nabla_{Y_0} f J^{-1} \partial g + \nabla_{c} f \partial Z, \\ &\vdots & \partial f(Y,Z), \\ \partial f(Y,Z) &= \nabla_{Y_0} f J^{-1} \partial g + \nabla_{c} f \partial Z, \\ &\vdots & \partial f(Y,Z), \\ f &\vdots &\vdots &\vdots \\ \partial Z &: & &\vdots &\vdots \\ \partial f(Y_0,Z_0) &= \nabla_{Y_0} f J^{-1} \partial g(Y_0,Z_0) & \frac{\partial f}{\partial g} &= \nabla_{Y_0} f J^{-1}, \\ \partial G &\vdots &\vdots &\vdots \\ \partial$$

0,0867.

 $\partial g_2 = 1$

0,3067.

$$z = 2x_1 + 3x_2$$

$$x_1 + x_2 + x_3 = 5,$$

$$x_1 - x_2 + x_4 = 3,$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

$$(x_{j} 0) w_{j}^{2}$$

$$(x_{j} - w_{j}^{2} = 0 x_{j} = w_{j}^{2}.$$

$$z = 2w_{1}^{2} + 3w_{2}^{2}$$

$$w_1^2 + w_2^2 + w_3^2 = 5,$$

 $w_1^2 - w_2^2 + w_4^2 = 3.$
 $Y = (w_1, w_2)$ $Z = (w_3, w_4).$ (
 Y Z
.)

$$J = \begin{bmatrix} 2w_1 & 2w_2 \\ 2w_1 & -2w_2 \end{bmatrix}, C = \begin{bmatrix} 2w_3 & 0 \\ 0 & 2w_4 \end{bmatrix}, \nabla_Y f = (4w_1, 6w_2), \nabla_Z f = (0, 0),$$

$$J^{-1} = \begin{bmatrix} \frac{1}{4w_1} & \frac{1}{4w_1} \\ \frac{1}{4w_2} & \frac{-1}{4w_2} \end{bmatrix}, w_1 \quad w_2 \neq 0$$

$$\nabla_c f = (0,0) - (4w_1, 6w_2) \begin{bmatrix} \frac{1}{4w_1} & \frac{1}{4w_1} \\ \frac{1}{4w_2} & \frac{-1}{4w_2} \end{bmatrix} \begin{bmatrix} 2w_3 & 0 \\ 0 & 2w_4 \end{bmatrix} = (-5w_3, w_4).$$

 $V_c f$ $w_1 = 2$

 $w_2 = 1$, $w_3 = 0$, $w_4 = 0$.

$$H_{c} = \begin{bmatrix} \frac{\partial_{c}^{2} f}{\partial_{c} w_{3}^{2}} & \frac{\partial_{c}^{2} f}{\partial_{c} w_{3} \partial_{c} w_{4}} \\ \frac{\partial_{c}^{2} f}{\partial_{c} w_{3} \partial_{c} w_{4}} & \frac{\partial_{c}^{2} f}{\partial_{c} w_{4}^{2}} \end{bmatrix} = \begin{bmatrix} -5 & 0 \\ 0 & 1 \end{bmatrix}.$$

 H_c

 $w_3 w_4 (,$ Y Z. , $Y = (w_2, w_4)$ $Z = (w_1, w_3)$. $\nabla_c f = (4w_1, 0) - (6w_2, 0) \begin{vmatrix} \frac{1}{2w_2} & 0 \\ \frac{1}{2w_1} & \frac{1}{2w_1} \end{vmatrix} \begin{bmatrix} 2w_1 & 2w_3 \\ 2w_1 & 0 \end{bmatrix} = (-2w_1, 6w_3).$ $w_1 = 0$, $w_2 = \sqrt{5}$, $w_3 = 0$, $w_4 = \sqrt{8}$. $H_c = \begin{bmatrix} -2 & 0 \\ 0 & -6 \end{bmatrix}$ $(_{1} = 4, _{2} = 1)$, $(_{1} = 0, _{2} = 5)$. 1.5.

 $x_1 = 0, \quad {}_2 = 0$

 $abla_{Y_0}fJ^{-1}$

, u_1 2

 $w_1 = 0$, $w_2 = \sqrt{5}$, $w_3 = 0$, $w_4 = \sqrt{8}$

 $(u_1, u_2) = \nabla_{Y_0} f J^{-1} = (6w_2, 0) \begin{bmatrix} \frac{1}{2w_2} & 0\\ \frac{1}{2w_4} & \frac{1}{2w_4} \end{bmatrix} = (3, 0).$

 $(3, 0) 5u_1 + 3u_2 = 15$

,

,

• ,

, - .

,

. $z_j - c$

,

• -

 $\frac{\partial f}{\partial g} = \nabla_{Y_0} f J^{-1}$

2.6

 $\lambda = \nabla_{Y_0} f J^{-1} = \frac{\partial f}{\partial g} \ .$, $\partial f - \lambda \partial g = 0.$

 ∂f

, $\frac{\partial f}{\partial g} \qquad , \qquad \nabla_c f = 0.$

 $\mathcal{X}_{j},$

 $\frac{\partial}{\partial x_j}(f - \lambda g) = 0, j = 1, 2, \dots, n.$

, X , .

 $L(X,\lambda) = f(X) - \lambda \partial g(X).$ $L \qquad , \qquad X -$

L , , A – ,

,

$$\frac{\partial L}{\partial \lambda} = 0$$
 $\frac{\partial L}{\partial X} = 0$

g(X) = 0.f(X)

$$H^{B} = \begin{bmatrix} 0 & | & P \\ - & - & - \\ P^{T} & | & Q \end{bmatrix}_{(m+n)\vee(m+n)},$$

$$P = \begin{bmatrix} \nabla g_1(X) \\ \vdots \\ \nabla g_m(X) \end{bmatrix}_{m \times n} \qquad Q = \left\| \frac{\partial^2 L(X, \lambda)}{\partial x_i \partial x_j} \right\|_{m \times n} \qquad i \quad j.$$

. $L(\ ,\)$ $(\ _0,\ _0)$ $(\ _0,\ _0)$. $(\ _0,\ _0)$ 1)

.
$$\Delta = \begin{bmatrix} 0 & P \\ P^T & Q - \mu I \end{bmatrix},$$

$$(0, 0), \quad \mu - \Delta, \quad -$$

 u_i

$$|\Delta| = 0$$

:

1)

2)

1.7

1.5.

$$L(X,\lambda) = x_1^2 + x_2^2 + x_3^2 - \lambda_1(x_1 + x_2 + 3x_3 - 2) - \lambda_2(5x_1 + 2x_2 + x_3 - 5).$$

:

$$\frac{\partial L}{\partial x_1} = 2x_1 - \lambda_1 - 5\lambda_2 = 0,$$

$$\frac{\partial L}{\partial x_2} = 2x_2 - \lambda_1 - 2\lambda_2 = 0,$$

$$\frac{\partial L}{\partial x_3} = 2x_3 - 3\lambda_1 - \lambda_2 = 0,$$

$$\frac{\partial L}{\partial \lambda_1} = -(x_1 + x_2 + 3x_3 - 2) = 0,$$

$$\frac{\partial L}{\partial \lambda_2} = -(5x_1 + 2x_2 + x_3 - 5) = 0.$$

$$X_0 = (x_1, x_2, x_3) = (0.81; 0.35; 0.28),$$

 $\lambda = (\lambda_1, \lambda_2) = (0.0867; 0.3067).$

1.5 1.6.

Y

1.6.

$$H^{B} = \begin{bmatrix} 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 5 & 2 & 1 \\ 1 & 5 & 2 & 0 & 0 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 0 & 0 & 2 \end{bmatrix}.$$

$$n = 3, m = 2$$
 $n - m = 1.$

 $(-1)^2$ $\det H^B = 460 > 0,$.

X,

X. , X,

•

(122)

- (. 1.2.2). **1.8**

•

 $z = x_1^2 + x_2^2 + x_3^2$

 $4x_1 + x_2^2 + 2x_3 - 14 = 0.$

 $L(X, \lambda) = x_1^2 + x_2^2 + x_3^2 - \lambda(4x_1 + x_2^2 + 2x_3 - 14).$

 $\frac{\partial L}{\partial x_1} = 2x_1 - 4\lambda = 0,$

 $\frac{\partial L}{\partial x_2} = 2x_2 - 2\lambda x_2 = 0,$

 $\frac{\partial L}{\partial x_2} = 2x_3 - 2\lambda = 0,$

 $\frac{\partial L}{\partial \lambda} = -(4x_1 + x_2^2 + 2x_3 - 14) = 0,$

 $(X_0, \lambda_0)_1 = (2; 2; 1; 1),$

 $(X_0, \lambda_0)_2 = (2; -2; 1; 1),$

 $(X_0, \lambda_0)_3 = (2, 8; 0; 1, 4; 1, 4).$

 $H^{B} = \begin{bmatrix} 0 & 4 & 2x_{2} & 2 \\ 4 & 2 & 0 & 0 \\ 2x_{2} & 0 & 2 - 2\lambda & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}.$

= 1 = 3, ,

3 - 1 = 2

 $(-1)^m = -1.$

$$(X_0, \lambda_0)_1 = (2; 2; 1; 1)$$

$$\begin{vmatrix} 0 & 4 & 4 \\ 4 & 2 & 0 \\ 4 & 0 & 0 \end{vmatrix} = -32 < 0 \quad \begin{vmatrix} 0 & 4 & 4 & 2 \\ 4 & 2 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 \end{vmatrix} = - \quad <$$

$$(X_0, \lambda_0)_2 = (2; -2; 1; 1)$$

$$\begin{vmatrix} 0 & 4 & -4 \\ 4 & 2 & 0 \\ -4 & 0 & 0 \end{vmatrix} = -32 < 0 \qquad \begin{vmatrix} 0 & 4 & -4 & 2 \\ 4 & 2 & 0 & 0 \\ -4 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 \end{vmatrix} = - \qquad <$$

,
$$(X_0, \lambda_0)_3 = (2, 8; 0; 1, 4; 1, 4)$$

$$\begin{vmatrix} 0 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & -0.8 \end{vmatrix} = 12.8 > 0 \quad \begin{vmatrix} 0 & 4 & 0 & 2 \\ 4 & 2 & 0 & 0 \\ 0 & 0 & -0.8 & 0 \\ 2 & 0 & 0 & 2 \end{vmatrix} = \quad >$$

$$(X_0)_1 \quad (_0)_2 - \qquad \qquad .$$

 $(0)_3$

,

·

$$\Delta = \begin{bmatrix} 0 & 4 & 2x_2 & 2 \\ 4 & 2-\mu & 0 & 0 \\ 2x_2 & 0 & 2-2\lambda-\mu & 0 \\ 2 & 0 & 0 & 2-\mu \end{bmatrix}.$$

$$(X_0, \lambda_0)_1 = (2; 2; 1; 1)$$

$$|\Delta| = 9\mu^2 - 26\mu + 16 = 0,$$

$$\mu = 2 \quad \mu = 8/9. \qquad \mu > 0, \quad (X_0)_1 = (2; 2; 1) - (X_0, \lambda_0)_2 = (2; -2; 1; 1)$$

$$|\Delta| = 9\mu^2 - 26\mu + 16 = 0,$$

$$, (_{0})_{2} = (2; -2; 1)$$

,
$$(X_0, \lambda_0)_3 = (2, 8; 0; 1, 4; 1, 4)$$

$$|\Delta| = 5\mu^2 - 6\mu + 8 = 0,$$

$$\mu = 2 \qquad \mu = -0.8, \qquad ,$$

 $\binom{0}{3} = (2,8; 0; 1,4)$

1.3.2.

z = f(X)

 $g_i(X) \le 0, i = 1, 2, ..., m.$

X 0,

f(X)

1. z = f(X).

k = 12.

(. . 2. k f(X)

k

f() k , k = 1, 2,

k ..., *m*. k

3.

3. k = ,

k = k + 1

2.

< *q*,

f(X)q

q

1.9

 $z = -(2x_1 - 5)^2 - (2x_2 - 1)^2$

 $x_1 + 2x_2 \le 2,$ $x_1, x_2 \ge 0.$

(. 1.6)

$$\frac{dz}{dx_1} = -4(2x_1 - 5) = 0,$$

$$\frac{dz}{dx_2} = -4(2x_2 - 1) = 0.$$

$$(x_{1, 2}) = (5/2, 1/2).$$

$$x_1 + 2x_2 \le 2,$$

$$x_1 = 0.$$

$$L(x_1, x_2, \lambda) = -(2x_1 - 5)^2 - (2x_2 - 1)^2 - \lambda x_1.$$

$$\frac{dL}{dx_1} = -4(2x_1 - 5) - \lambda = 0,$$

$$\frac{dL}{dx_2} = -4(2x_2 - 1) = 0,$$

$$\frac{dL}{d\lambda} = -x_1 = 0.$$

$$(x_1, x_2) = (0, 1/2),$$

$$(x_1, x_2) = (0, 1/2) - (0$$

9),

(

30 9, z = f(X)g(X)0. $g_i(X)$ 0, $S = (S_1, S_2, ..., S_m)^T$ $S^2 = S_1^2 S_2^2 ... S_m^2 T^T$ *m* – $L(X,S,\lambda) = f(X) - \lambda [g(X) + S^{2}].$

 $g(X) = \int (X) - \lambda \left[g(X) + \beta \right].$ g(X) = 0 (\qquad) $\lambda.$

. f

λ

 $g, \quad \cdot \quad \cdot$ $\lambda = \frac{\delta f}{\delta g},$

g(X) = 0

 $\lambda \geq 0.$

 $, \qquad , \qquad \lambda \leq 0.$ $, \quad . \quad . \quad g(X) \, = \, 0,$

λ

 $X, S \quad \lambda$

 $\frac{\delta L}{\delta X} = \nabla f(X) - \lambda \nabla g(X) = 0,$

 $\frac{\delta L}{\delta S_i} = -2\lambda_i S_i = 0, i = 1, 2, \dots, m,$

 $\frac{\delta L}{\delta \lambda} = -(g(X) + S^2) = 0.$

 $, S_i^2 = 0.$ 1. λ_i

 $S_i^2 > 0, \qquad \lambda_i = 0.$

f(..

 $\lambda_i = \frac{\delta f}{\delta g_i} = 0$).

 $\lambda_i g_i(X) = 0, i = 1, 2, ..., m.$

 $g_i(X) < 0 S_1^2 > 0$, $\lambda_i > 0, \qquad g_i(X) = 0 \qquad S_1^2 = 0.$, $\lambda_i = 0$.

λ

$\lambda \geq 0$,
$\nabla f(X) - \lambda \nabla g(X) = 0,$
$\lambda_i g_i(X) = 0, i = 1, 2, \dots, m$
$g(X) \leq 0$

, λ ,

,

_ 1 1

. 1.1. 1.1

•

, ,

$$z = f(x)$$

$$g_i(x) \le 0, i = 1, 2, ..., r,$$

 $g_i(x) \ge 0, i = r + 1, ..., p,$
 $g_i(x) = 0, i = p + 1, ..., m.$

$L(X, S, \lambda) = f(X) - \sum_{i=1}^{r}$	$\lambda_i \left[g_i(X) + S_i^2 \right] - \sum_{i=r+1}^p \lambda_i$	$\int_{a} \left[g_i(X) - S_i^2 \right] - \sum_{i=p+1}^{m} A_i$	$\lambda_i g_i(X),$	
λ_{i} —	,	i-		
, . 1.2.			_	,
. 1.2		,		. 1.1.
,				

, , ,

, . 1.2.

1.2

f(X)	$g_i(X)$	i	
		0	$(1 \le i \le r)$
		0	$(r+1 \le i \le p)$
			$(p+1 \le i \le m)$
		0	$(1 \le i \le r)$
		0	$(r+1 \le i \le p)$
			$(r+1 \le i \le p)$ $(p+1 \le i \le m)$

. 1.2 , $L(X, S, \lambda)$. $g_i(X) - ,$, $\lambda_i g_i(X)$. $\lambda_i \geq 0$. .

f , -f

1.10

$$f(X) = x_1^2 + x_2^2 + x_3^2$$

$$g_1(X) = 2x_1 + x_2 - 5 \le 0,$$

$$g_2(X) = x_1 + x_3 - 2 \le 0,$$

$$g_3(X) = 1 - x_1 \le 0,$$

$$g_4(X) = 2 - x_2 \le 0,$$

 $g_5(X) = -x_3 \le 0.$

 $\lambda \leq 0$.

 $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) \leq 0,$

$$(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}) \leq 0,$$

$$(2x_{1}, 2x_{2}, 2x_{3}) - (\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}) \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = 0,$$

 $\lambda_1 g_1 = \lambda_2 g_2 = \ldots = \lambda_5 g_5 = 0,$ $g(X) \leq 0$.

$$\begin{split} \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 &\leq 0, \\ 2x_1 - 2\lambda_1 - \lambda_2 + \lambda_3 &= 0, \\ 2x_2 - \lambda_1 + \lambda_4 &= 0, \\ 2x_3 - \lambda_2 + \lambda_5 &= 0, \\ \lambda_1(2x_1 + x_2 - 5) &= 0, \\ \lambda_2(x_1 + x_3 - 2) &= 0, \\ \lambda_3(1 - x_1) &= 0, \\ \lambda_4(2 - x_2) &= 0, \\ \lambda_5x_3 &= 0, \\ 2x_1 + x_2 &\leq 5, \\ x_1 + x_3 &\leq 2, \end{split}$$

: $x_1 = 1, x_2 = 2, x_3 = 0, \lambda_1 = \lambda_2 = \lambda_5 = 0, \lambda_3 = -2, \lambda_4 = -4.$ g(X) = 0f(X),

 $L(X,S,\lambda)$

 $x_1 \ge 1, x_2 \ge 2, x_3 \ge 0.$

. 3.

1.4.

, . 1.1 1.2,

•

2.

2.1.

($f(x), x \in D(f) \subset \mathbb{R},$ D(f),

> $f(x) \to min, x \in D(f) \subset \mathbb{R},$ (2.1) $f = f(x_*)$ f(x) $x_* \in D(f),$

f(x) .

f(x) D(f) , (2.1),

f(x)D(f)D(f) – f(x)

D(f)

f(x)D(f)

(2.1)

 $f(x) \rightarrow inf, x \in D(f) \subset \mathbb{R}$. (2.2)D(f)

> { } D(f),

 $\lim_{n\to\infty} f(x_n) = \inf_{x_n\in D(f)} f(x) = \widetilde{f}_*,$ (2.3)

f(x)D(f) $f_*, \qquad \widetilde{f}_* = f_*.$

f(x) = 1 /D(f) = [1, 2)

> $ilde{f}_*$ 1/2.

[1. 2), (2.3),

 $\{2-1/n\}.$

 $f(x_n) = \frac{1}{x_n} = \frac{1}{2 - 1/n} = \frac{n}{2n - 1}$ $\{f(x_n)\}$ $\frac{1}{2} = \tilde{f}_*$.

 $f(x) = x^4$

 $f_* = 0$ $x_* = 0$

 $f(x) = {}^{4} - 2^{2} + 2$

 $f_* = 1$ $x_* = \pm 1$. $f(x) = \cos x$ $D_* = \{x \in R: x = \pi + 2\pi k, k \in Z\},\$ f(x) = |x+1|

+ + |x - 1| - $D_* = [-1; 1].$

f(x)[, b],

```
x_*\in [a,b],
                                                                                                  [a,
                                                                      f(x)
x_*)
                                               (x_*, b]
                                                        . 2.1.
                                         0 a
                                                               On
                                                       b x
                                                \vec{x}_*
                          x_*
                                                 б
                           a
                   Уļ
                                                               \overline{O} \overline{a}
                                         O = x_*
                                                 ò
                           s
                                                                         [ , b] ( . . a < x* < b,
                \chi_*
    . 2.1 – )
                                                                  (x*=a 	 x*=b,
                                                                                           . 2.1,
     ).
                                                                                              [ , b]
     . 2.1, , ).
                                                             [\ ,b]
                    f(x),
                           x \in [a, b],
                                                                 x \in [a, x_*]
                                                                                         [\ ,b]\,(
     x \in [x_*, b],
           2.1
        . 2.1, ).
                                       D(f)
                                                                                      f(x)
                                                                               D(f),
                     D(f),
                           ).
```

2.2. f_* f(x)[, b]. $x \in [a, b].$: $x_k, k = 1, 2, ..., N,$ N 1)); 2) x_k (). f_* f_* $x_k, k = 1, 2, ..., N;$ f_* $x_k, k = 1, 2, \ldots,$ *N* – $x_k, k = 1, 2, ...,$ N Ν, f(x).

 x_k –

```
x_k
                                                                  x_i, i = 1, 2, ..., k-1
                   f(x_i)
                                             f(x)
                                                                                                                               x_k
                                     f(x_k)
                                                                                                               x_k
                                                                                                          n
                                  f(x).
(
                       )
                                          l_n,
                                                                                                                                  f_*.
                                                                           x_*
l_n \leq \varepsilon_*,
                        \mathcal{E}_*
                      l
                                                                                                                 p,
                                                 f(x), ... l_n = l_n(p, f).
                                                                                                                 l
                                                                                                                               p
                                       f_*
                                                                                  f(x).
                                         P
                                                                            = N
                      F
              x \subset \mathbf{R}.
                                                                          p \in P
                                                   l_n(p) = \max_{f \in F} l_N(p, f).
                     ,,
                                                    l_n(p) = \sup_{f \in F} l_N(p, f).
                             l_N(P)
                                                                                                                                   f_*
                                      x_* \in X
                                           f \in F,
p \in P
                N
                   l_N(p^*) = \min_{\substack{p \in P \\ f \in F}} \max l_N(p, f)
                                                                l_N(p^*) = \min_{\substack{p \in P \\ f \in F}} \sup l_N(p, f).
```

```
F
                                                    x \subset R
                                                              \chi_*
f_*
                                                       f \in F.
                                                                                      F,
               X = [0, 1].
                                                               [ , b],
                                                                                                [\ ,\, b]
           [0,1]
                    b –
                                                      f(x)
            [\ ,\ b] (
                   ),
                                                                            [, b],
                                f_*
f_*,
            f_*
                    2.1
                                   D(f)
X
                                                                              f(x)
                                                                                               [,b]
                                          f(x)
x_0 \in X,
                      x \ge x_0
                                x = x_* \in X
                                                                                                     X
                                                          h > 0
                                                                                                      \boldsymbol{\mathcal{X}}
             f(x),
                                                  f(x) f(x_1), x_1 = x_0 + h.
             o X*,
```

 $f(x_0) \leq f(x_1).$

 $[\ ,\ b]$

```
[0, 1].
                                                                                 f(x_k)
                                                                                                     x_k =
 _0 + h / 2^{k-1}, k = 2, 3, ...,
                                                [,b] = [x_0, x_{k-1}] ( . 2.2 [,b] = [x_0, x_2],
f(x_k) \le f(x_0).
                                                                    [x_0, x_3],
                                                                                                      [x_3,
x_2]).
                                                                                              . 2.2).
                                                       f(x
ho)
                f(x_1)
                \frac{f(x_2)}{f(x_0)}
                f(x_3)
                                  . 2.2
                                                                        .2.3
               f(x_0) > f(x_1),
                          x_k' = {}_0 + (k-1)h, k = 2, 3, ...,
                 f(x_{k-1}') \le f(x_k'),
                                                                      [a, b] = [x_{k-2}', x_k'] (
                                                                                               [x_2', x_3'],
2.3 [a, b] = [x_2', x_4'],
                                                 \chi_*
                      [x_3', x_4']).
                                                              . 2.3
      2.3.
                                                                                       x_* \in [0, 1],
                                               [0, 1]
                                                                   f(x)
             f_* = f(x_*).
                                                                                             N
                                 [0, 1].
               n = 1,
                                   I = 1/2 ( . 2.4).
                                                       f_* \leq f(1/2).
                                       f(x)
```

 $l_1^* = 1$

```
x_* \in [0, 1] _1 = 1/2
                               \Delta_1^* = l_1^*/2 = 1/2.
                                                    \Delta_1 \geq \Delta_1^*,
                                    x_* = x_1
 1
                                                               [0, 1].
        \chi_*
                                                 . 2.4
                    n = 2 ( .2.5)
                                                                                       [0,1]
                                                      ... 1 = 1/3 x_2 = 2/3,
                                                        \Delta_2^* = 1/3,
        x_* \in [0, 1]
                                                   l_2^* = 2\Delta_2^* = 2/3.
f(1/3) < f(2/3) ( . 2.5, ),
                                                                                   f()
                                                x_* \in [0, 2/3].
[2/3, 1]
                                                       \Delta_2 = 1/3 \quad f_* \approx f(1/3).
x_* = 1/3
               f(1/3) > f(2/3) ( . 2.5, ),
                                                                                           [0,1/3]
                 x^* \in [1/3, 1].
                                                                        x_* = 1/3
                              \Delta_2 = 1/3  f_* \approx f(1/3).
                                                                                 f(1/3) = f(2/3)
                         x_* \in [0, 1].
                                                                               [0, 1]
                                                                                        1/3
                                \chi_*
                             \Delta_2 > {\Delta_2}^* = 1/3.
                     f(2/3)
                     f(1/3)
                                                              1/3
                                                                    2/3
                                  a
                                                 . 2.5
                                                                          n = 3
                                                      [0,1]: x_1 = 1/4, x_2 = 2/4, x_3 = 3/4,
                          \Delta_3^* = 1/4
                                                                x \in [0, 1]
        l_3^* = 1/2
                                                                                           n \in N
```

44

), $x_* \in [c, b]$, [,]

. 2.6

 $\mathcal{X}*.$

2.4.

$$x_* \in [0, 1],$$
 $f(x)$ $f_* = f(x_*).$, $x_*,$

. $[_{k+1}, b_{k+1}] \subset [_k, b_k].$ l_k+1

 \mathcal{E}^* , $(k+1)- \qquad , \qquad k- \\ l_{k+1} \leq \mathcal{E}^*, \qquad \qquad x^* = \left(\begin{array}{c} k+1 + b_{k+1} \end{array} \right)/2.$

 $l_{k+1} = l_k / 2 + \delta$, $l_{k+1} - 2\delta = (l_k - 2\delta) / 2$,

46

 $l_k - 2\delta = \frac{l_1 - 2\delta}{2^{k-1}}.$

 l_k [$_k$,

 b_k], k-

 $l_k = \frac{l_1 - 2\delta}{2^{k-1}} + 2\delta. {(2.6)}$

 $(2.6) , l_k \to 2\delta k \to \infty, l_k > 2\delta.$

 $l_{k+1} < \varepsilon_*,$

 $x_*,$ $2\delta < \varepsilon_*.$

,

 $\tilde{f}(x)$ f(x).

 Δ_* x_* (. 2.7).

 δ , . .

 $\Delta_* < 2\delta < \varepsilon_*. \tag{2.7}$

 $\tilde{f}(x_{k1}) - \tilde{f}(x_{k2})$

 $f(x_{k1})-f(x_{k2}),$

k-

 $x_{k1} = (a_k + b_k)/2 - x_{k2} = (a_k + b_k)/2 + ,$

 $[\ _{k},\ b_{k}] \qquad \qquad l_{k}.$

 $[k_{k+1}, b_{k+1}]$ l_{k+1} N = 2k

k-

k-

. (2.6)

 $l_1=1,$

 $l_N^d = l_{k+1} = \frac{1 - 2\delta}{2^{k+1}} + 2\delta = \frac{1 - 2\delta}{2^{\frac{N}{2}}} + 2\delta.$ (2.8)

(2.8) (2.5), ,

•

 $k_1 k_2 [k_{+1}, b_{k+1}],$

f(x)

•

•

k- , k=2,

, $[_{+1}, b_{k+1}].$

```
[ k, b_k]
                               k-
                                                          [ k, b_k]
                x_{k1}, x_{k2}, x_{k1} < x_{k2}
                                                                               [ k, b_k ] ( 2.8 )
                                                                                            [ , b_k].
              [ b_{k+1}, b_{k+1} ]
                                                                                                         x_{k1}, x_{k2} (
                                                          ),
                                         [ b_{k+1}, b_{k+1}].
[ x, x_{k1}]
                                                               (k + 1)
                [x_{k2}, b_k].
                                                                                                                       x_{k+1,1}
                                                                                                                       l_k / l_{k+1}
x_{k+1,2}
                                               \frac{l_k}{l_{k+1}} = \frac{l_{k+1}}{l_{k+2}} = r = const.
                                                                                                                       (2.9)
                    r
                                                                                          k-
                                                                   [ k, b_k]
                                                                                             x_1, x_{k2}
                                                                                                                                 r
                                                                                                                           x_{k1}
                                                                                                                      [ k, b_k],
x_{k2}, x_{k1} < x_{k2},
                                             b_k - x_{k2} = x_{k1} - a_k = l_k - l_{k-1}.
                                                        k–
                                                                                                     [ k, x_{k2}].
     . 2.8).
(k + 1)
                                                                      (
                                                                                                                             x_{k1}.
```

 $f(\widetilde{x}_k)$

 \hat{x}_{k}

 $\hat{x}_k = a_k + b_k - \tilde{x}_k$ $\hat{x}_k < \tilde{x}_k, \qquad x_{k1} = \hat{x}_k \qquad x_{k2} = \tilde{x}_k,$ $x_{k1} = \tilde{x}_k \quad x_{k2} = \hat{x}_k.$ $\hat{x}_k < \tilde{x}_k$, (.2.8) $x_{k1} = \hat{x}_k$, $x_{k2} = \tilde{x}_k$. $[a_k, x_{k2}], \ldots$ $f(x_{k1}) < f(x_{k2}),$ $a_{k+1} = a_k, b_{k+1} = x_{k2},$ $[x_{k1}, b_k], \ldots$ $a_{k+1} = x_{k1}, b_{k+1} = b_k,$ $\tilde{x}_{k+1} = x_{k1},$ $[a_{k+1}, b_{k+1}]$ $\widetilde{x}_{k+1} = x_{k2}$. l_{k+1} \mathcal{E}_* $(l_{k+1} < \varepsilon_*).$ $(l_{k+1} \geq \varepsilon_*)$ $x_* \approx a_k + b_k / 2.$

.

•

 $N=k+1 \qquad .$

 $l_{k+1}=l_1 \ / \ r^k=1 \ / \ r^k, \qquad \qquad l_{N}^z$

 $[l_{k+1}, b_{k+1}]$ $l_{k+1} = l_1 / r^k = 1 / r^k,$ N

 $l_N^z = l_{k+1} = \frac{1}{r^k} = \frac{1}{r^{N-1}}. (2.10)$

 $x_{k1}, x_{k2} \qquad [k, b_k] \qquad k-$

 l_k/r , a $x_{k2} - x_{k1} = (2/r - 1)l_k = (\sqrt{5} - 2) l_k \approx 0.236068 l_k$.

 $x_* \in [0, 1],$ [0, 1] f(x)

,

<< 1,

,

(2.8)

(2.10)

 $r \approx 1,618$

NN > 2N-1 $[a_k, b_k]$ x_{k1} , x_{k2} l_k/l_{k+1} $l_{k-1}=l_k+l_{k+1}, k=2, 3,...$ (2.11) $x_k \in [0, 1], k = \overline{1,N},$ N f(x), χ_* [0, 1].(N-1)- $[a_{N-1}, b_{N-1}]$ l_{N-1} x_{N-1} \mathcal{X}_N , 2 . 2.9). $f(x_N)$ $f(x_{N-1})$ f(x). $l_{\scriptscriptstyle N} = l_{\scriptscriptstyle N-1} /2 +$ $f(x_N) < f(x_{N-1}),$ $[a_N, b_N]$ x_N , x_{N-1} $f(x_{N-1})$ $f(x_N)$ $O \mid a_{N-1} \mid x_N \mid x_{N-1}$. 2.9 χ_* \mathcal{X}_N $l_{\scriptscriptstyle N}$ $[a_N, b_N].$

$$l_{N-1} = 2l_N - 2$$
 $[a_{N-1}, b_{N-1}].$

$$l_{N-2} = l_{N-1} + l_N = 3l_N - 2$$
 , $l_{N-3} = l_{N-2} + l_{N-1} = 5l_N - 4$
 $l_{N-4} = l_{N-3} + l_{N-2} = 8l_N - 6$, $l_{N-5} = l_{N-4} + l_{N-3} = 13l_N - 10$

$$l_{N-K} = F_{K+2}l_N - 2F_K\delta, K = \overline{0, N-1},$$
 (2.12)

 F_{m}

$$F_m = F_{m-1} + F_{m-2}, \ m = \overline{3, N-1}, \ F_1 = F_2 = 1.$$
 (2.13)

$$K = N - 1$$
 $l_{N-K} = l_1 = 1$ [0, 1]

(2.12)

$$l_N^f = \frac{l_1}{F_{N+1}} + 2\delta \frac{F_{N-1}}{F_{N+1}}.$$
 (2.14)

,

(2.14).

 F_m N

*. . 2.1

m = 25.

2.1

m	F_m	m	F_m	m	F_m	m	F_m	m	F_m
1	1	6	8	11	89	16	987	21	10946
2	1	7	13	12	144	17	1597	22	17711
3	2	8	21	13	233	18	2584	23	28657
4	3	9	34	14	377	19	4181	24	46368
5	5	10	55	15	610	20	6765	25	75025

 l_k ,

$$x_k \in [0, 1], k = \overline{1, N},$$

,

)

$$(k = 1, K = N - 1)$$

$$(2.12) (2.14) l_2 [_1, b_2]$$

$$l_2 = F_N l_N - 2\delta F_{N-2} = \frac{F_N}{F_{N+1}} l_1 + 2\delta \frac{F_N F_{N-1} - F_N F_{N-2}}{F_{N+1}} = \frac{F_N}{F_{N+1}} l_1 + (-1)^{N+1} \frac{2\delta}{F_{N+1}} .$$

, , . .

52

 $\frac{l_1}{l_2} = \frac{F_{N+1}}{F_N}.$ (2.15)

,
$$(N-1)$$
-
 x_{N-1} x_N (. 2.9).

 $N = 11$ $F_{12}/F_{11} = 144/89$ 1,617978,
 $= 17711/10946$ 1 618034

 $F_{22}/F_{21} = 17711/10946$ 1,618034, N = 21

 10^{-6} . r

$$l_1 = 1$$
 (2.15) $l_2 = F_N/F_{N+1}$, (2.13),

[0, 1],
$$x_1 = l_2 = \frac{F_N}{F_{N+1}}, \ x_2 = 1 - l_2 = 1 - \frac{F_N}{F_{N+1}} = \frac{F_{N-1}}{F_{N+1}}, \ x_2 < x_1,$$

$$d_1 = x_1 - x_2 = \frac{F_N}{F_{N+1}} - \frac{F_{N-1}}{F_{N+1}} = \frac{F_{N-2}}{F_{N+1}}.$$

$$[a_2, a_1], -x_k'.$$

$$k$$
-
$$(2.12),$$
 $K = N - k,$

$$(2.14) \qquad [a_k, b_k] \qquad l_k = F_{N+2-k} / F_{N+1}$$

$$l_k / l_{k+1} = F_{N+2-k} / F_{N+1-k} p .$$

$$\alpha_k \qquad \beta_k,$$

 $\alpha_k = \alpha_k + \frac{F_{N-k}}{F_{N+1}}, \ \beta_k = \beta_k + \frac{F_{N+1-k}}{F_{N+1}}, \ \alpha_k < \beta_k, \ k = \overline{1, N-1}.$

N ().

11 12 $[a_1, b_1].$ N

,

•

2.5.

•

n ,

.....

,

,

3.

3.1.

3.1.1.

k- X^k .

 $X^k \quad X^{k+1}$

 X^{k+1}

 $h(r) = f(X^k + r^k \nabla f(X^k)),$

f(x). X^0 – f(x). , $\nabla f(X^k)$ –

df/dp

 $X^{k+1} = X^k + r^k \nabla f(X^k),$

f.

h(r)

55 r^k h(r)r, h(r)h(r) X^{k+1} X^{k} $r^k \nabla f(X^k) \approx 0.$ $r^k \neq 0$, $\nabla f(X^k)=0.$ 3.1 $f(x_1, x_2) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2.$ $f(x_1, x_2)$ $(x_1^*, x_2^*) = (1/3; 4/3).$ 3.1) ($\nabla f(X) = (4 - 4x_1 - 2x_2, 6 - 2x_1 - 4x_2).$ $f(\mathbf{X}) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$

$$\nabla f(X^0) = (-2, 0).$$

 X^{1}

. 3.1

 $X^0 = (1, 1).$

$$X = (1, 1) + r(-2, 0) = (1 - 2r, 1).$$

$$h(r):$$

$$h(r) = f(1 - 2r, 1) = -2(1 - 2r)^{2} + 2(1 - 2r) + 4.$$

$$r, \qquad h(r)$$

$$1/4. \qquad , \qquad X^{1} = (1/2, 1).$$

$$\nabla f(X^1) = (0, 1).$$

$$X^2$$

$$X = (\frac{1}{2}, 1) + r(0, 1) = (\frac{1}{2}, 1 + r).$$

 $h(r) = -2(1+r)^2 + 5(1+r) + 3/2.$ $r = 1/4 \quad X^2 = (1/2, 5/4).$

$$\nabla f(X^2) = (-1/2, 0).$$

 X^3

$$X = \left(\frac{1}{2}, \frac{5}{4}\right) + r\left(-\frac{1}{2}, 0\right) = \left(\frac{1-r}{2}, \frac{5}{4}\right).$$

,

$$h(r) = -\frac{1}{2}(1-r)^2 + \frac{3}{4}(1-r) + \frac{35}{8}.$$

$$r = 1/4 \quad X^3 = (3/8, 5/4).$$

$$\nabla f(X^3) = (0, \frac{1}{4}).$$

 X^4

$$X = \left(\frac{3}{8}, \frac{5}{4}\right) + r\left(0, \frac{1}{4}\right) = \left(\frac{3}{8}, \frac{5+r}{4}\right).$$

$$h(r) = -\left(\frac{1}{8}\right)(5+r)^2 + \left(\frac{21}{16}\right)(5+r) + \frac{39}{32}.$$

$$r = 1/4 \quad X^4 = (3/8, 21/16).$$

$$\nabla f(X^4) = (-1/8, 0).$$

 X^5

$$X = \left(\frac{3}{8}, \frac{21}{16}\right) + r\left(-\frac{1}{8}, 0\right) = \left(\frac{3-r}{8}, \frac{21}{16}\right).$$

$$h(r) = -\left(\frac{1}{32}\right)(3-r)^2 + \left(\frac{11}{64}\right)(3-r) + \frac{567}{128}.$$

$$r = 1/4 \quad X^5 = (11/32, 21/16).$$

$$\nabla f(X^5) = (0, 1/16).$$

$$\nabla f(X^5) \approx 0,$$

$$X^5 = (0,3437; 1,3125).$$

$$X^* = (0,3333; 1,3333).$$

3.2.

$$() z = f(X)$$

$$g(X) \le 0$$
.

$$X \ge 0$$

$$f(x)$$
 $g(X)$

, , ,

, _ ,

$$f(x) \quad g(X)$$

.

, ·

3.2.1.

 $f(x_1, x_2, ..., x_n)$ (

 $f_1(x_1), f_2(x_2),$

 $\dots, f_n(x_n), \dots$

(

 $f(x_1, x_2, ..., x_n) = f(x_1) + f(x_2) + ... + f(x_n).$

 $h(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$ $h(x_1, x_2, x_3) = x_1^2 + x_1 \sin(x_2 + x_3) + x_2 e^{x_3}$ a_i , i = 1, 2, ..., n

 $z = x_1 x_2$.

ln y =

 $ln x_1 + ln x_2$,

z = y

 $ln y = ln x_1 + ln x_2,$

 x_1 x_2

 $(... x_1, x_2 \ge 0),$ x_2 x_1

 $w_1 = x_1 + \delta_1$ $w_2 = x_2 + \delta_2$.

 $x_1x_2 = w_1w_2 - \delta_2w_1 - \delta_1w_2 + \delta_1\delta_2.$

 $y = w_1 w_2$,

 $z = y - \delta_2 w_1 - \delta_1 w_2 + \delta_1 \delta_2$

 $ln \ y = ln \ w_1 + ln \ w_2, \ w_1 \ge \delta_1, \ w_2 \ge \delta_2.$

 $e^{x_1+x_2}$ $x_1^{x_2}$

•

,

•

,

f(x)

f(x)

f(x)

[a, b]. $a_k, k = 1, 2, ..., K, k$ [, b], $a = a_1 < a_2 < ... < a_k = b$. f(x)

- :

 $f(x) \approx \sum_{k=1}^{k} f(a_k) t_k, \ x = \sum_{k=1}^{k} a_k t_k,$

 t_k – , k-

•

 $\sum_{k=1}^k t_k = 1.$

• ,

.

1.

2. t_k ,

 $t_{k+1} t_{k-1}$.

,

 $() z = \sum_{i=1}^{n} f_i(x_i)$

$$\sum_{i=1}^{n} g_i^j(x_i) \le b_j, j = 1, 2, ..., m.$$

 K_i $a_i^k - k$ x_i , i-

) $z = \sum_{i=1}^{n} \sum_{k=1}^{K_i} f_i(a_i^k) t_i^k$

 $\sum_{i=1}^{n} \sum_{k=1}^{K_i} g_i^j(a_i^k) t_i^k \leq b_j, j = 1, 2, ..., m,$

 $0 \le t_i^{1} \le y_i^{1}, \ 0 \le t_i^{k} \le y_i^{k-1}, \ k = 2, 3, \dots, K_i - 1,$ $0 \le t_i^{Ki} \le y_i^{Ki-1},$

 $\sum_{k=1}^{K_i-1} y_i^k = 1,$

 $\sum_{i=1}^{K_i} t_i^k = 1,$

 $y_i^k = 0$ 1, $k = 1, 2, ..., K_i$, i = 1, 2, ..., n. $t_i^k y_i^k.$

 t_i^k ,

 $(z_i^k - c_i^k)$ t_i^k

 t_i^k

· ,

,

3.2

 $z = x_1 + x_2^4$ $3x_1 + 2x_2^2 \le 9,$

 $x_1, x_2 \ge 0.$

 $z^* = 20,25.$ $f_1(x_1) = x_1,$ $f_2(x_2) = x_2^4,$ $g_1^{-1}(x_1) = 3x_1,$ $g_1^{-2}(x_2) = 2x_2^{-2}.$

 $f_1(x_1) \quad g_1^{\ 1}(x_1)$

 $f_2(x_2) g_1^2(x_2) ,$ $(K_2 = 4).$

3,

k	$a_2^{\ k}$	$f_2(a_2^k)$	$g_1^2(a_2^k)$
1	0	0	0
2	1	1	2
3	2	16	8
4	3	81	18

$$f_2(x_2) \approx t_2^{-1} f_2(a_2^{-1}) + t_2^{-2} f_2(a_2^{-2}) + t_2^{-3} f_2(a_2^{-3}) + t_2^{-4} f_2(a_2^{-4}) = 0 \times t_2^{-1} + 1 \times t_2^{-2} + 16 \times t_2^{-3} + 81 \times t_2^{-4} = t_2^{-2} + 16t_2^{-3} + 81t_2^{-4}.$$

$$g_1^2(x_2) \approx 2t_2^2 + 8t_2^3 + 18t_2^4.$$

$$z = x_1 + t_2^2 + 16t_2^3 + 81t_2^4$$

$$3x_{1} + 2t_{2}^{2} + 8t_{2}^{3} + 18t_{2}^{4} \le 9,$$

$$t_{2}^{1} + t_{2}^{2} + t_{2}^{3} + t_{2}^{4} = 1,$$

$$t_{2}^{k} \ge 0, k = 1, 2, 3, 4.$$

$$x_{1} \ge 0.$$

	x_1	t_2^2	t_2^3	t_2^4	S_1	t_2^{-1}	
Z	-1	-1	-16	-81	0	0	0
S_1	3	2	8	18	1	0	9
t_2^{-1}	0	1	1	1	0	1	1

 $S_1 (\geq 0) - \tag{}$

.)

 t_2^4 .

)

 t_2^{1} ,

	x_1	t_2^2	t_2^3	t_2^4	S_1	t_2^{-1}	
Z	-1	15	0	-65	0	16	16
S_1	3	-6	0	10	1	-8	1
t_2^3	0	1	1	1	0	1	1

 t_2^3 ,

.

 S_1 .

	x_1	t_2^2	t_2^3	t_2^4	S_1	t_2^{-1}	
z	37/2	-24	0	0	13/2	-36	45/2
t_2^4	3/10	-6/10	0	1	1/10	-8/10	1/10
$t_2^{\ 3}$	-3/10	16/10	1	0	-1/10	18/10	9/10

 t_{2}^{2} . t_{2}^{1} , t_{2}^{1} , t_{2}^{2} , t_{2}^{2} , t_{2}^{2} .

,

 $t_2^3 = 9/10 t_2^4 = 1/10,$ $x_1 x_2.$ $x_2 \approx 2t_2^3 + 3t_2^4 = 2\left(\frac{9}{10}\right) + 3\left(\frac{1}{10}\right) = 2,1$

 $x_1 = 0, z = 22.5.$ $x_2 = 2.1$, 2.12. $g_i{}^j(x_i)$, , , $f_i(x_i)$

 $f_i(x_i) \qquad f_i(x_i)$ $f_i(x_i)$

 $x_i = a_{ki}, k = 0, 1, ..., K_i.$

 $\begin{array}{c} f_i(x_i) \\ \hline a_{0i} & a_{1i} & a_{2i} & a_{3i} & x_i \\ \hline & . & 3.2 \end{array}$

 $x_{ki} - x_i \qquad (a_{k-1}, a_{ki}),$

 $k = 1, 2, ..., K_i, \rho_{ki}$

 $f_{i}(x_{i}) \approx \sum_{k=1}^{K_{i}} \rho_{ki} x_{ki} + f_{i}(a_{0i}), \ x_{i} = \sum_{k=1}^{K_{i}} x_{ki}.$ $0 \le x_{ki} \le a_{ki} - a_{k-1}, k = 1, 2, ..., K_{i}.$ $f_{i}(x_{i}) , \rho_{1i} < \rho_{2i} < \rho_{k,i}. ,$ p < q $x_{pi} x_{qi}. , x_{qi}.$ $x_{qi}.$

 x_{ki}

 $(a_{ki} - a_{k-1, i}).$ $g_i^{\ j}(x_i)$

 $ho_{k_i}^j$ - k- $g_i^j(x_i)$. $g_i^j(x_i)$

$$g_i^j(x_i) \approx \sum_{k=1}^{K_i} \rho_{ki}^j x_{ki} + g_i^j(a_{0i}).$$

,

$$z = \sum_{i=1}^{n} \left(\sum_{k=1}^{K_i} \rho_{ki}^{j} x_{ki} + g_i^{j} (a_{0i}) \right),$$

$$\sum_{i=1}^{n} \left(\sum_{k=1}^{K_{i}} \rho_{ki}^{j} x_{ki} + g_{i}^{j} (a_{0i}) \right) \leq b_{j}, j = 1, 2, ..., m,$$

$$0 \leq x_{ki} \leq a_{ki} - a_{k-1,i}, k = 1, 2, ..., K_{i}, i = 1, 2, ..., n,$$

$$\rho_{ki} = \frac{f_i(a_{ki}) - f_i(a_{k-1,i})}{a_{ki} - a_{k-1,i}},$$

$$\rho_{ki}^j = \frac{g_i^j(a_{ki}) - g_i^j(a_{k-1,i})}{a_{ki} - a_{k-1,i}}.$$

 $\rho_{1i} > \rho_{2i} > \rho_{k,i},$

p < q x_{pi}

 x_{qi} .

, ()

3.3

$$z = x_1^2 + x_2^2 + 5$$

$$3x_1^4 + x_2 \le 243,$$

$$x_1 + 2x_2^2 \le 32,$$

$$x_1, x_2 \ge 0.$$

$$f_1(x_1) = x_1^2, f_2(x_2) = x_2^2 + 5,$$

$$g_1^{-1}(x_1) = 3x_1^{-4}, g_2^{-1}(x_2) = x_2,$$

$$g_1^{-2}(x_1) = x_1, g_2^{-2}(x_2) = 2x_2^2.$$

$$x_{1} x_{2},$$

$$0 \le x_{1} \le 3 0 \le x_{2} \le 4.$$

$$x_{1} x_{2}.$$

 $K_1 = 3 K_2 = 4. a_{01} = a_{02} = 0$

i = 1

k	a_{k1}	ρ_{k1}	ρ^{1}_{k1}	ρ^2_{k1}	x_{k1}
0	0	_	_	_	_
1	1	1	3	1	x_{11}
2	2	3	45	1	x_{21}
3	3	5	195	1	<i>x</i> ₃₁

i = 2

k	a_{k2}	$ ho_{k2}$	$ ho^{1}_{k2}$	ρ^2_{k2}	x_{k2}
0	0	_	_	_	_
1	1	1	1	2	<i>x</i> ₁₂
2	2	3	1	6	x_{22}
3	3	5	1	10	<i>x</i> ₃₂
4	4	7	1	14	x_{42}

 $z \approx x_{11} + 3x_{21} + 5x_{31} + x_{12} + 3x_{22} + 5x_{32} + 7x_{42} + 5$

$$3x_{11} + 45x_{21} + 195x_{31} + x_{12} + x_{22} + x_{32} + x_{42} \le 243,$$

$$x_{11} + x_{21} + x_{31} + 2x_{12} + 6x_{22} + 10x_{32} + 14x_{42} \le 32,$$

$$0 \le x_{k1} \le 1, k = 1, 2, 3,$$

$$0 \le x_{k2} \le 1, k = 1, 2, 3, 4.$$

 x^*_{k1} x^*_{k2} -

 $x_1 - x_2$

$$x^*_1 = \sum_{k=1}^3 x_{k1}^*, x^*_2 = \sum_{k=1}^4 x_{k2}^*.$$

3.2.2.

$$z = CX + X^{T}DX$$

$$AX \leq b, X \geq 0,$$

$$X = (x_{1}, x_{2}, ..., x_{n})^{T},$$

$$C = (c_{1}, c_{2}, ..., c_{n}),$$

$$b = (b_{1}, b_{2}, ..., b_{m})^{T},$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix},$$

$$D = \begin{bmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \cdots & \vdots \\ d_{n1} & \cdots & d_{nn} \end{bmatrix}.$$

$$X^{T}DX, \qquad D \qquad -$$

D

D

 \mathcal{Z} X

Z

 $z = CX + X^T DX$

68

$$G(X) = \begin{bmatrix} A \\ -I \end{bmatrix} X - \begin{bmatrix} b \\ 0 \end{bmatrix} \le 0.$$

$$\lambda = (\lambda_1, \ \lambda_2, \ \dots, \ \lambda_m)^T \quad U = (\mu_1, \ \mu_2, \ \dots, \ \mu_n)^T$$

$$AX - b \le 0 \quad -X \le 0.$$

- ,

$$\lambda \ge 0, \ U \ge 0,$$

$$\nabla z - (\lambda^{T}, U^{T}) \ \nabla G(X) = 0,$$

$$\lambda \left(b_{i} - \sum_{j=1}^{n} a_{ij} x_{j} \right) = 0, \ i = 1, 2, ..., m,$$

$$\mu_{j} x_{j} = 0, j = 1, 2, ..., n,$$

$$AX \le b, -X \le 0.$$

$$\nabla z = C + 2X^{T}D,$$

$$\nabla G(X) = \begin{bmatrix} A \\ -I \end{bmatrix}.$$

$$S = b - AX \ge 0$$
(

$$-2X^{T}D + \lambda^{T}A - U^{T} = C,$$

$$AX + S = b,$$

$$\mu_{j}x_{j} = 0 = \lambda_{i}S_{i}, \qquad i \quad j$$

$$\lambda, U, X, S \ge 0.$$

 $D^T = D,$

$$-2DX + A^T\lambda - U = C^T.$$

,

$$\begin{bmatrix} -2D & A^T & -I & 0 \\ A & 0 & 0 & I \end{bmatrix} \begin{bmatrix} X \\ \lambda \\ U \\ S \end{bmatrix} = \begin{bmatrix} C^T \\ b \end{bmatrix},$$

$$\mu_j x_j = 0 = \lambda_i S_i, \qquad i \quad j$$

$$\lambda, U, X, S \ge 0.$$

$$\mu_j x_j = 0 = \lambda_i S_i,$$
X, , U S.

 $\mu_i x_i = 0 = \lambda_i S_i$.

Ζ,

,

, ·

I

 $\mu_j x_j = 0 = \lambda_i S_i.$

, S_i

,

,

3.4

 $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$

 $x_1 + 2x_2 \le 2,$

 $x_1, x_2 \ge 0.$

 $z = (4,6) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + (x_1, x_2) \begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

 $(1,2) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le 2,$

 $x_1, x_2 \ge 0.$

-

 $\begin{bmatrix} 4 & 2 & 1 & -1 & 0 & 0 \\ 2 & 4 & 2 & 0 & -1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \lambda_1 \\ \mu_1 \\ \mu_2 \\ S_1 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 2 \end{bmatrix}.$

- I

 R_1 R_2 .

	x_1	x_2	λ_1	μ_1	μ_2	R_1	R_2	S_1	
r	6	6	3	-1	-1	0	0	0	10
R_1	4	2	1	-1	0	1	0	0	4
R_2	2	4	2	0	-1	0	1	0	6
S_1	1	2	0	0	0	0	0	1	2

 $\mu_1 = 0,$ $x_1,$ $R_1.$

- .

	x_1	x_2	λ_1	μ_1	μ_2	R_1	R_2	S_1	
r	0	3	3/2	1/2	-1	-3/2	0	0	4
x_1	1	1/2	1/4	-1/4	0	1/4	0	0	1
R_2	0	3	3/2	1/2	-1	-1/2	1	0	4
S_1	0	3/2	-1/4	1/4	0	-1/4	0	1	1

 $\mu_2=0, x_2.$

•

	x_1	x_2	λ_1	μ_1	μ_2	R_1	R_2	S_1	
r	0	0	2	0	-1	-1	0	-2	2
x_1	1	0	1/3	-1/3	0	1/3	0	-1/3	2/3
R_2	0	0	2	0	-1	0	1	-2	2
x_2	0	1	-1/6	1/6	0	-1/6	0	2/3	2/3

 $S_1 = 0,$ $\lambda_1.$

- .

	x_1	x_2	λ_1	μ_1	μ_2	R_1	R_2	S_1	
r	0	0	0	0	0	-1	-1	0	0
x_1	1	0	0	-1/3	1/6	1/3	-1/6	0	1/3
λ_1	0	0	1	0	-1/2	0	1/2	-1	1
x_2	0	1	0	1/6	-1/12	-1/6	1/12	1/2	5/6

1 . r = 0, $x_1 = 1/3$, $x_2 = 5/6$.

4,16.

3.2.3.

). $z = f(x) = \sum_{j=1}^{N} U_{j},$ $U_{j} = c_{j} \prod_{i=1}^{n} x_{i}^{a_{ij}}, j = 1, 2, ..., N.$ $c_{j} > 0, \qquad N$ $a_{ij} \qquad . \qquad f(X)$, $a_{ij} \qquad . \qquad .$

f(X). x_{i} $x_{i} \leq 0$

 $x_i \neq 0$

z

 $\frac{\partial z}{\partial x_{k}} = \sum_{j=1}^{N} \frac{\partial U_{j}}{\partial x_{k}} = \sum_{j=1}^{N} c_{j} a_{kj} (x_{k})^{a_{kj}-1} \prod_{i \neq k} (x_{i})^{a_{ij}} = 0, k = 1, 2, ..., n.$ $x_{k} > 0,$ $\frac{\partial z}{\partial x_{k}} = 0 = \frac{1}{x_{k}} \sum_{i=1}^{n} a_{kj} U_{j}, k = 1, 2, ..., n.$

```
z. 	 , 	 z^* > 0,
                                                                                                  x_k > 0.
                                                                                                                                                                                                                                                                                    y_j = \frac{U_j^*}{\tau^*}.
                                                                                                                                                                                                          y_j > 0 \qquad \sum_{j=1}^N y_j = 1.
j- \qquad U_j
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              y_j
                                                                                                                                                                          \sum_{j=1}^{n} a_{kj} y_{j} = 0, k = 1, 2, ..., n,
                                                                                                                                                                     \sum_{j=1}^{N} y_{j} = 1, y_{j} > 0
                                                                                                                                                          n + 1 = N.
                                                                                                                                                                                                                                                                                 z^* 	 x_j^*, i = 1, 2, ..., n,
                                                                                                                                                                                                                                   z^* = (z^*)^{\sum_{j^*=1}^N y_j^*}.
                                                    z^* = \frac{U_j^*}{v_j^*},
z^* = \left(\frac{U_1^*}{y_1^*}\right)^{y_1^*} \left(\frac{U_2^*}{y_2^*}\right)^{y_2^*} \dots \left(\frac{U_N^*}{y_N^*}\right)^{y_N^*} = \left\{\prod_{j=1}^N \left(\frac{c_j}{y_j^*}\right)^{y_j^*}\right\} \left\{\prod_{j=1}^N \left(\prod_{i=1}^n (x_i^*)^{a_{ij}}\right)^{y_j^*}\right\} = \left\{\prod_{j=1}^N \left(\frac{c_j}{y_j^*}\right)^{y_j^*}\right\} \left\{\prod_{j=1}^N \left(\prod_{i=1}^n (x_i^*)^{a_{ij}}\right)^{y_j^*}\right\} = \left\{\prod_{j=1}^N \left(\prod_{i=1}^n (x_i^*)^{a_{ij}}\right)^{y_i^*}\right\} \left\{\prod_{j=1}^N \left(\prod_{i=1}^n (x_i^*)^{a_{ij}}\right)^{y_j^*}\right\} \left\{\prod_{j=1}^N \left(\prod_{i=1}^n (x_i^*)^{a_{ij}}\right)^{y_j^*}\right\} = \left\{\prod_{j=1}^N \left(\prod_{i=1}^n (x_i^*)^{a_{ij}}\right)^{y_j^*}\right\} \left\{\prod_{j=1}
                                                                                                             = \left\{ \prod_{j=1}^{N} \left( \frac{c_{j}}{y_{j}^{*}} \right)^{y_{j}^{*}} \right\} \left\{ \prod_{i=1}^{n} \left( x_{i}^{*} \right)^{\sum_{j=1}^{N} a_{ij} y_{j}^{*}} \right\} = \prod_{j=1}^{N} \left( \frac{c_{j}}{y_{j}^{*}} \right)^{y_{j}^{*}}.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \sum\nolimits_{j=1}^{N}a_{ij}y_{j}=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      y_j.
                                                                                                                                                    U_j^* = c_j \prod_{i=1}^n (x_i^*)^{a_{ij}}, j = 1, 2, ..., N.
```

Z y_j . y_j *z*. $z = \sum_{j=1}^{N} y_j \left(\frac{U_j}{y_j} \right).$ $w = \prod_{j=1}^{N} \left(\frac{U_{j}}{y_{j}} \right)^{y_{j}} = \prod_{j=1}^{N} \left(\frac{c_{j}}{y_{j}} \right)^{y_{j}}.$ $\sum_{j=1}^{N} y_j = 1 \qquad y_j > 0,$ 1 $w \leq z$. ($z_j > 0$ $\sum_{j=1}^{N} w_j z_j \ge \prod_{j=1}^{N} (z_j)^{w_j}, \qquad w_j > 0 \qquad \sum_{j=1}^{N} w_j = 1.$ w, $w^* = \max_{y_j} w = \min_{x_i} z = z^*.$ $w (= w^*)$ $z = z^*$ y_j x_i . 3.5 N > n + 1. $z = 7x_1x_2^{-1} + 3x_2x_3^{-2} + 5x_1^{-3}x_2x_3 + x_1x_2x_3.$

 $z = 7x_1^{1}x_2^{-1}x_3^{0} + 3x_1^{0}x_2^{1}x_3^{-2} + 5x_1^{-3}x_2^{1}x_3^{1} + x_1^{1}x_2^{1}x_3^{1},$

$$(c_1, c_2, c_3, c_4) = (7, 3, 5, 1),$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -3 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & -3 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$y_1^* = \frac{12}{24}, \ y_2^* = \frac{4}{24}, \ y_3^* = \frac{5}{24}, \ y_4^* = \frac{3}{24}.$$

$$z^* = \left(\frac{7}{\left(\frac{12}{24}\right)}\right)^{\frac{12}{24}} \left(\frac{3}{\left(\frac{4}{24}\right)}\right)^{\frac{4}{24}} \left(\frac{5}{\left(\frac{5}{24}\right)}\right)^{\frac{5}{24}} \left(\frac{1}{\left(\frac{3}{24}\right)}\right)^{\frac{3}{24}} \approx 15,22.$$

$$U_j^* \approx y_j^* z^* \qquad ,$$

$$7x_1x_2^{-1} = U_1 = \left(\frac{1}{2}\right)(15,22) = 7,61,$$
$$3x_2x_3^{-2} = U_2 = \left(\frac{1}{6}\right)(15,22) = 2,54,$$

$$5x_1^{-3}x_2x_3 = U_3 = \left(\frac{5}{24}\right)(15,22) = 3,17,$$

$$x_1 x_2 x_3 = U_4 = \left(\frac{1}{8}\right) (15,22) = 1,90.$$

 $x_1^* = 1,315, \ x_2^* = 1,21, \ x_3^* = 1,2,$

3.6

$$z = 5x_1x_2^{-1} + 2x_1^{-1}x_2 + 5x_1 + x_2^{-1}$$
.

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

$$N > n + 1$$
,

$$y_{j}. y_{1}, y_{2} y_{3} y_{4},$$

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ y_{4} \\ 1 - y_{4} \end{bmatrix},$$

$$y_{1} = \frac{(1 - 3y_{4})}{2},$$

$$y_{2} = \frac{(1 - y_{4})}{2},$$

$$y_{3} = y_{4}.$$

$$w = \left[\frac{5}{0.5(1-3y_4)}\right]^{0.5(1-3y_4)} \left[\frac{2}{0.5(1-y_4)}\right]^{0.5(1-y_4)} \left(\frac{5}{y_4}\right)^{y_4} \left(\frac{1}{y_4}\right)^{y_4}.$$

$$w = \left[\frac{1}{0.5(1-3y_4)}\right]^{0.5(1-3y_4)} \left[\frac{1}{0.5(1-y_4)}\right]^{0.5(1-y_4)} \left(\frac{1}{y_4}\right)^{y_4}.$$

$$\ln w = 0.5(1 - 3y_4)\{\ln 10 - \ln(1 - 3y_4)\} + 0.5(1 - y_4)\{\ln 4 - \ln(1 - y_4)\} + y_4\{\ln 5 - \ln y_4 + \ln 1 - \ln y_4)\}$$

 y_4 , $\ln w$,

,

$$\begin{split} \frac{\partial \ln w}{\partial y_4} = & \left(\frac{-3}{2} \right) \ln 10 - \left\{ \left(\frac{-3}{2} \right) + \left(\frac{-3}{2} \right) \ln (1 - 3y_4) \right\} + \left(\frac{-1}{2} \right) \ln 4 - \left\{ \left(\frac{-1}{2} \right) + \left(\frac{-1}{2} \right) \ln (1 - y_4) \right\} \\ & + \ln 5 - \left\{ 1 + \ln y_4 \right\} + \ln 1 - \left\{ 1 + \ln y_4 \right\} = 0 \; . \end{split}$$

$$-\ln\left(\frac{2\times10^{\frac{3}{2}}}{5}\right) + \ln\left[\frac{(1-3y_4)^{\frac{3}{2}}(1-y_4)^{\frac{1}{2}}}{y_4^2}\right] = 0$$

$$\frac{\sqrt{(1-3y_4)^3(1-y_4)}}{y_4^2} = 12,6,$$

$$y_4^* \approx 0,16.$$

$$y_3^* = 0,16, y_2^* = 0,42, y_1^* = 0,26.$$

$$z^* = w^* = \left(\frac{5}{0,26}\right)^{0.26} \left(\frac{2}{0,42}\right)^{0.42} \left(\frac{5}{0,16}\right)^{0.16} \approx 9,661.$$

$$U_3 = 0.16 \times 9.661 = 1.546 = 5x_1,$$

 $U_4 = 0.16 \times 9.661 = 1.546 = x_2^{-1},$

$$x_1^* = 0.309$$
 $x_2^* = 0.647$.

3.2.4.

,

•

·

 $z = \sum_{i=1}^{n} c_i x_i$

 $P\left\{\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}\right\} \geq 1 - \alpha_{i}, i = 1, 2, ..., m; x_{j} \geq 0$ j.

,

 $1-\alpha_i,\ 0<\alpha_i<1. \qquad , \qquad a_{ij} \quad b_i$

. 3 . a_{ij} . b_i . b_i

,

1. , a_{ij}

 $M\{a_{ij}\}$ $Cov\{a_{ij}, a_{i'j'}\}$

 $a_{ij}, a_{i'j'}$.

i-e $P\left\{\sum_{n=0}^{n} a_{n} < h\right\} > 1 - \alpha$

$$P\left\{\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}\right\} \ge 1 - \alpha_{i}$$

$$h_i = \sum_{j=1}^n a_{ij} x_j.$$

$$h_i$$
 $M\{h_i\} = \sum_{j=1}^n M\{a_{ij}\}x_j$ $D\{h_i\} = X^T D_i X,$ $X = (x_1, x_2, ..., x_n)^2,$

$$D_i = i - \begin{bmatrix} D\{a_{i1}\} & \cdots & cov\{a_{i1}, a_{in}\} \\ \vdots & & \vdots \\ cov\{a_{in}, a_{i1}\} & \cdots & D\{a_{in}\} \end{bmatrix}.$$

$$P\{h_i \leq b_i\} = P\left\{\frac{h_i - M(h_i)}{\sqrt{D\{h_i\}}} \leq \frac{b_i - M(h_i)}{\sqrt{D\{h_i\}}}\right\} \geq 1 - \alpha_i,$$

$$\frac{h_i - M(h_i)}{\sqrt{D\{h_i\}}} -$$

 $P\{h_i \leq b_i\} = \left(\frac{b_i - M(h_i)}{\sqrt{D\{h_i\}}}\right),$

 α_i –

 $(K_{\alpha_i})=1-\alpha_i$. $P\{h_i \leq b_i\} \geq 1 - \alpha_i$

 $\frac{b_i - M(h_i)}{\sqrt{D\{h_i\}}} \ge K_{\alpha_i}.$

$$\sum_{j=1}^{n} M\{a_{ij}\}x_j + K_{\alpha_i} \sqrt{X^T D_i X} \le b_i.$$

,
$$a_{ij}$$
 - $cov\{a_{ij}, a_{i'j'}\} = 0$

$$\sum_{j=1}^{n} M\{a_{ij}\}x_{j} + K_{\alpha_{i}} \sqrt{\sum_{j=1}^{n} D\{a_{ij}\}x_{j}^{2}} \leq b_{i}.$$

. 3.2.1),

$$y_i = \sqrt{\sum_{j=1}^n D\{a_{ij}\}x_j^2}$$
 i.

,
$$\sum_{j=1}^{n} M\{a_{ij}\}x_j + K_{\alpha_i}y_i \leq b_i,$$

$$\sum_{j=1}^{n} D\{a_{ij}\}x_{j}^{2} - y_{i}^{2} = 0.$$

2.

 $M\{b_i\}$ $D\{b_i\}.$

1.

$$P\bigg\{b_i \geq \sum_{j=1}^n a_{ij} x_j\bigg\} \geq \alpha_i.$$

$$P\left\{b_{i} \geq \sum_{j=1}^{n} a_{ij} x_{j}\right\} \geq \alpha_{i}.$$

$$P\left\{\frac{b_{i} - M(b_{i})}{\sqrt{D\{b_{i}\}}} \geq \frac{\sum_{j=1}^{n} a_{ij} x_{j} - M(b_{i})}{\sqrt{D\{b_{i}\}}}\right\} \geq \alpha_{i}.$$

$$\frac{\sum_{j=1}^{n} a_{ij} x_{j} - M(b_{i})}{\sqrt{D\{b_{i}\}}} \leq K_{\alpha_{i}}.$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \le M\{b_{i}\} + K_{\alpha_{i}} \sqrt{D\{b_{i}\}}.$$

3. b_i

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}$$

$$\sum_{i=1}^n a_{ij} x_j - b_i \le 0.$$

 a_{ii} b_i

$$\sum_{j=1}^{n} a_{ij} x_j - b_i$$

1

3.7

$$z = 5x_1 + 6x_2 + 3x_3$$

$$P\{a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \le 8\} \quad 0,95,$$

$$P\{5x_1 + x_2 + 6x_3 \le b_2\} \quad 0,10,$$

$$x_j \ge 0. \qquad a_{1j} -$$

:

$$M\{a_{11}\} = 1, M\{a_{12}\} = 3, M\{a_{13}\} = 9,$$

 $D\{a_{11}\} = 25, D\{a_{12}\} = 16, D\{a_{13}\} = 4.$
 b_2

7

9.

$$K_{a1} = K_{0,05} \approx 1,645, K_{a2} = K_{0,10} \approx 1,285.$$

$$x_1 + 3x_2 + 9x_3 + 1.645\sqrt{25x_1^2 + 16x_2^2 + 4x_3^2} \le 8$$
,

 $5x_1 + x_2 + 6x_3 \le 7 + 1.285 \times 3 = 10,855.$

$$y^2 = 25x_1^2 + 16x_2^2 + 4x_3^2,$$

$$z = 5x_1 + 6x_2 + 3x_3$$

$$x_1 + 3x_2 + 9x_3 + 1,645y \le 8,$$

$$25x_1^2 + 16x_2^2 + 4x_3^2 - y^2 = 0,$$

$$5x_1 + x_2 + 6x_3 \le 10,855,$$

$$x_1, x_2, x_3, y \ge 0,$$

3.2.5.

 X^{k+1} .

z = f(X)AX b, X 0. . 3.1.2). $f(X) \quad f(X^k) + \nabla f(X^k)(X - X^k) = f(X^k) - \nabla f(X^k)X^k + \nabla f(X^k)X.$ $X = X^*$, f(X) $f(X^k) - \nabla f(X^k)X^k$ $w_k(X) = \nabla f(X^k)X$ AX b, X 0.f(X) $w_k(X^*) > w_k(X^k).$ X^{k+1} , $w_k(X^*) > w_k(X^k)$ (X^k, X^*) $f(X^{k+1}) > f(X^k).$

 $X^{k+1} = (1-r)X^k + rX^* = X^k + r(X^* - X^k), 0 < r \le 1.$

81 X^{k+1} X^{k} X^* . 3.1.2), X^{k+1} f(X). X^{k+1} X^{k+1} r, $h(r) = f[X^* + r(X^* - X^k)].$ k $w_k(X^*) \leq w_k(X^k).$ X^{k} 3.8 3.4. $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ $x_1 + 2x_2 \le 2,$ $x_1, x_2 \ge 0.$ $X^0 = (1/2, 1/2) \nabla f(X) = (4 - 4x_1 - 2x_2, 6 - 2x_1 - 4x_2).$ $\nabla f(X^0) = (1, 3).$ $w_1 = x_1 + 3x_2$

 $w_1 = x_1 + 3x_2$ $X^* = (0, 1).$ w_1 $X^0 \quad X^*$ $X^* \quad 2 \quad 3 \quad .$

$$X^{1} = \left(\frac{1}{2}, \frac{1}{2}\right) + r\left[(0,1) - \left(\frac{1}{2}, \frac{1}{2}\right)\right] = \left(\frac{1-r}{2}, \frac{1+r}{2}\right).$$

$$h(r) = f\left(\frac{1-r}{2}, \frac{1+r}{2}\right)$$

r=1.

$$, X^{1} = (0, 1) \quad f(X^{1}) = 4.$$

$$\nabla f(X^1) = (2, 2).$$

$$w_2 = 2x_1 + 2x_2.$$
 $-X^* = (2, 0).$ w_2 X^1 X^* 2 4 ,

$$X^2 = (0, 1) + r[(2, 0) - (0, 1)] = (2r, 1 - r).$$

r = 1/6.

$$h(r) = f(2r, 1 - r)$$

, $X^2 = (1/3, 5/6)$, $f(X^2)$ 4,16.

$$\nabla f(X^2) = (1, 2).$$

 $w_3 = x_1 + 2x_2.$

 $X^* = (0, 1)$ $X^* = (2, 0).$ w_3 X^2 .

 $: X^2 = (1/3, 5/6) c$

 $f(X^2)$ 4,16.

3.2.6.

f(X)

 $g_i(X)$ –

 W_3

(. 3.1.2).

```
p(X,t) = f(X) + t \left( \sum_{i=1}^{m} \frac{1}{g_i(X)} - \sum_{j=1}^{n} \frac{1}{x_j} \right),
      t –
                                                       -x_j \leq 0
                                  g_i(X) \leq 0.
                                                                                    g_i(X)
1 / g_i(X)
                                                                                 p(X, t)
                                                X.
                                                                                                    p(X, t)
                                                                                                     p(X, t).
                                                                                                  X^{0}
                                                                  t.
                                                       t
              p(X, t)
                                            -1/x_j
                       1/g_i(X)
                                                                                                  p(X, t),
                 t,
                                                                                                                     t,
                    0 < t'' < t'.
                                                                                                                            t
                                                                         Χ,
                                           p(X, t),
```

,

t,

•

3.3.

·

,

,

•

4. 4.1. j (_i), (G(X, U), 1 4 . 4.1, . 1, (. 4.1,) 0 x_1 4• G, . . 1 2 3 u_1 3 6• (2-1, 1

G: $\{u_1, u_2, u_5\}$, $\{u_1, u_4, u_7\}$ $\{u_1, u_8, g\}$.

. 4.1

,

 $\{\ _{1},\ _{3},\ _{6}\}$. $_{1}\ M\setminus M_{1}.$ 2- $1\ (\ .\ .4.1,\).$

 M_1 2 1 \ 2,

2. 2• x_1 $_{4}-x_{1}$, $_{2}$, $_{3}$, $-u_1, u_5,$ 3 . 4.1,). 1. . 4.1, 4.2. $F(M_i)$

i, $F(M_i)$).), **>> «**

_

(G.) *G*, . 4.3

G ,

 $_{1}$ $\overline{\boldsymbol{M_{1}}}$ -G(X, U), ₂ ⊂ ₁ − 1; $u_5; \quad \overline{M_2} \subset _1 -$ 5; u_1 3 - $G: \{u_1, u_5, u_6\},\$ 12. M_1 (u_1) \overline{M}_1 M_2 (u_5) \overline{M}_2 \overline{M}_3 . 4.3 1n – n $i = \overline{1,n}$). *I*=1, *n* M_i^1 M_n^{-1} ${\rm M_1}^1$ *j*=1 M_i^2 M_1^2 M_n^2 *j*=2 $M_1^j \stackrel{!}{\bigcirc} \dots$ M_{i}^{j} ($\mathsf{M}_n^{\ j}$ $M_1^k \bigcirc \dots M_i^k \bigcirc$. 4.4.

```
n
                                                            \leftrightarrow X.
                                \boldsymbol{X}
                                                                                                        (
                                                              ).
                                                                                                X, i = \overline{1,n}.
                                                                        n
                                                         X_i
                                                                                                      X^{l}_{i} (X^{l}_{i})
                                                                                      x ∈
                      M^{j}_{i}), j_{i} \cap X^{j}_{p} = \emptyset
                                                        i, p \in I = \overline{1, n}.
                                                            1-
\ll 0»
         «1».
                                                                                    «0»
                                                                                                «1».
                            «0»
                                         «1» (
                                                   ).
                                                       ( . 4.5 –
                            11).
```

),

 x_k

 M_t

 χ_5 \boldsymbol{G} 7• 3 4 ($_3 = \{ _{1} \ _{5}, _{4} \} \ F_3 = 17$ $_4 = \{x_1, x_5, _7\}$ $F_4 = 29$). $F_1 = 10$ $F_1 = 10, F_3 = 17$ $F_4 = 29),$ 1 5 $F_5 =$ 6 x_4 . 3 $F_3 = 17$ $F_6 = 16$ 41 $F_6 = 16$. 3 6 $\{ 1, 5, x_4 \}$ $\{\mathbf x_1,$

4.

 x_8

G

 x_1

. 4.6

3.

4.3. 1. $(\qquad -F \ (\quad _{i})$

F(i) > F,

, . 2. ,

, ,

•

1. ()

· , . .

96) 2. . 3.). $F(M_i^k)$ $F_H(M_j)$ $F(\{M_i^k\})$ ().

(

G, . 4.7, . , , . . , $M_i,$, $G\{(x_i, x_j), ...,$

 (x_i, x_k) .

.4.7(.4.8 - 4.12)

G. , , G,

- , G.

1, — 6.

1, — 6.

٠

$$c_1 = \{x_1, x_2, x_5, x_6\};$$

$$c_2 = \{x_1, x_2, x_4, x_5, x_6\};$$

$$c_3 = \{x_1, x_2, x_4, x_6\};$$

$$c_4 = \{x_1, x_4, x_5, x_6\};$$

$$c_5 = \{x_1, x_4, x_6\};$$

$$c_5 = \{x_1, x_3, x_6\};$$

. 4.7, .

G

G

. 4.8.

1

6

. 4.8

 $(1, 2), u(x_1, x_4), (1, 3)$ {1, 2, 3}

G, 2, 5

1.

 $-\{4, 5, 2, 3\}$

6, 5, 5, 4.

 $-{4, 5, 2, 6},$ 6

-6, 5, 5, 11.

 x_1 , 3,

11.

 ${4, 5, 2}.$

{4, 7, 2}. 6, 7 5

5.

7

4-

3.

```
(
                 7).
                     5-
                                                2;
                11,
                                                         9,
                              9
                                                         10
            6-
                                     4,
                12,
                                                         10,
                      11
                                                             7 - 1, 2,
                               7.
5, 6
```

,

```
. 4.7, , :
                   F_B = 2 + \max\{4, 3\} + \max\{6, 4, 2\} + \max\{2\} = 14.
                                                                     2 ( . . 4.7, ).
       G
                                                                                       , F = \{Fx_i / 
        G(X, F).
                            X = \{x_i / i = \overline{1,6}\} -
                                                                       , \quad . \quad . \quad Fx_i = X_i \subset
                                                            X
i = \overline{1,6} \}
                                 x_j \in X,
                                Fx_i
                                               L_i = \{l(x_i, x_j)\} / \forall j \in Fx_i\}.
                                                                             l(x_1, \quad _4) = 5.
                                                               Fx_4 = \{x_5, 6\}
                l(4, 5) l(4, 6).
                . 4.7,
                 . 4.9
(
                                                                               ),
                                                                                             . 4.10 –
```

. 4.10, , . 4.10, $F = 20(x_1)$. 4.9 $F_{\rm B}=20(x_1)$ $F = 20(x_1)$. 4.10 . 4.11 . 4.8). . 4.12 . 4.12, . 4.12, –).

. 4.11

. 4.12

```
X.
    1.
                   », 2007.
         «
    2.
                                                                     , 2003.
    3.
2007.
    4.
                                                                       , 2010.
    5.
                                               , 2010.
    6.
                                              :
                                           , 2010.
    7.
                                                , 2005.
    8.
                             , 2010.
    9.
        , 2001.
```

1.	3
1.1.	3
1.2.	3
1.2.1.	
	4
1.2.2.	9
1.3.	10
1.3.1.	11
1.3.2.	27
1.4.	35
2.	36
2.1.	36
2.2.	39
2.3.	42
2.4.	45
2.5.	53
3.	54
3.1.	54
<i>3.1.1.</i>	54
3.2.	57
<i>3.2.1.</i>	58
<i>3.2.2.</i>	67
<i>3.2.3.</i>	71
<i>3.2.4</i> .	76
<i>3.2.5.</i>	80
<i>3.2.6.</i>	82
3.3.	84
4.	-
•••••	85
4.1.	85
4.2.	, 87
4.3.	94
	103

. .

020565 23.06.1997 . 60 84 1/16.

. . . . - 7,0. . - . . . - 6,8. 300 .

« »

17 , , 28, , 44

, 28, , 44