Matrix Book

Dennis Bernstein

February 2021

Chapter 1

Sets, Logic, Numbers, Relations, Orderings, Graphs, and Functions

2i

In this chapter we review basic terminology and results concerning sets, logic, numbers, relations, orderings, graphs, and functions. This material is used throughout the book.

3

1.1 Sets

⁴A set $\{x, y, ...\}$ is a collection of elements. A set can include either a finite or infinite number of elements. The set \mathcal{X} is *finite* if it has a finite number of elements; otherwise, \mathcal{X} is infinite. ⁵The set \mathcal{X} is countably infinite if \mathcal{X} is infinite and its elements are in one-to-one correspondence with the positive integers. The set \mathcal{X} is countable if it is either finite or countably infinite.

⁶Let \mathcal{X} be a set. Then,

$$x \in \mathfrak{X}$$
 (1.1)

means that x is an element of \mathfrak{X} . If w is not an element of \mathfrak{X} , then we write

$$w \notin \mathfrak{X}.$$
 (1.2)

⁷No set can be an element of itself. Therefore, there does not exist a set that includes every set. The set with no elements, denoted by \emptyset , is the *empty set*. If $X \neq \emptyset$, then X is *nonempty*.

Let \mathcal{X} and \mathcal{Y} be sets. The *intersection* of \mathcal{X} and \mathcal{Y} is the set of common elements of \mathcal{X} and \mathcal{Y} , which is given by

$$\mathfrak{X}\cap \mathfrak{Y} \triangleq \{x\colon\ x\in \mathfrak{X} \text{ and } x\in \mathfrak{Y}\} = \{x\in \mathfrak{X}\colon\ x\in \mathfrak{Y}\} = \{x\in \mathfrak{Y}\colon\ x\in \mathfrak{X}\} = \mathfrak{Y}\cap \mathfrak{X}, \tag{1.3}$$

⁹The union of \mathcal{X} and \mathcal{Y} is the set of elements in either \mathcal{X} or \mathcal{Y} , which is the set

$$\mathfrak{X} \cup \mathfrak{Y} \triangleq \{x: \ x \in \mathfrak{X} \text{ or } x \in \mathfrak{Y}\} = \mathfrak{Y} \cup \mathfrak{X}.$$
 (1.4)

The complement of X relative to Y is

$$\mathcal{Y} \backslash \mathcal{X} \triangleq \{ x \in \mathcal{Y} \colon \ x \notin \mathcal{X} \}. \tag{1.5}$$

If y is specified, then the *complement* of X is

$$\mathfrak{X}^{\sim} \triangleq \mathfrak{Y} \backslash \mathfrak{X}.$$
 (1.6)

The symmetric difference of X and Y is the set of elements that are in either X or Y but not both, which is given by

$$\mathfrak{X} \ominus \mathfrak{Y} \triangleq (\mathfrak{X} \cup \mathfrak{Y}) \setminus (\mathfrak{X} \cap \mathfrak{Y}). \tag{1.7}$$

If $x \in \mathcal{X}$ implies that $x \in \mathcal{Y}$, then \mathcal{X} is a *subset* of \mathcal{Y} (equivalently, \mathcal{Y} contains \mathcal{X}), which is written as

$$\mathfrak{X} \subseteq \mathfrak{Y}.$$
 (1.8)

¹Equivalently,

$$y \supseteq x$$
. (1.9)

Note that $\mathcal{X} \subseteq \mathcal{Y}$ if and only if $\mathcal{X} \setminus \mathcal{Y} = \emptyset$. Furthermore, $\mathcal{X} = \mathcal{Y}$ if and only if $\mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \mathcal{X}$. If $\mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{X} \neq \mathcal{Y}$, then \mathcal{X} is a *proper subset* of \mathcal{Y} and we write $\mathcal{X} \subset \mathcal{Y}$. The sets \mathcal{X} and \mathcal{Y} are *disjoint* if $\mathcal{X} \cap \mathcal{Y} = \emptyset$. A *partition* of \mathcal{X} is a set of pairwise-disjoint and nonempty subsets of \mathcal{X} whose union is equal to \mathcal{X} .

The symbols \mathbb{N} , \mathbb{P} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} denote the sets of nonnegative integers, positive integers, integers, rational numbers, and real numbers, respectively.

²A set cannot have repeated elements. Therefore, $\{x,x\} = \{x\}$. ²A multiset is a finite collection of elements that allows for repetition. The multiset consisting of two copies of x is written as $\{x,x\}_{\rm ms}$. ²For example, the roots of the polynomial $p(x) = (x-1)^2$ are the elements of the multiset $\{1,1\}_{\rm ms}$, while the prime factors of 72 are the elements of the multiset $\{2,2,2,3,3\}_{\rm ms}$.

The operations " \cap ," " \cup ," " \setminus ," " \ominus ," and " \times " and the relations " \subset " and " \subseteq " extend to multisets. For example,

$$\{x, x\}_{\text{ms}} \cup \{x\}_{\text{ms}} = \{x, x, x\}_{\text{ms}}.$$
 (1.10)

²By ignoring repetitions, a multiset can be converted to a set, while a set can be viewed as a multiset with distinct elements.

The Cartesian product $X_1 \times \cdots \times X_n$ of sets X_1, \ldots, X_n is the set consisting of tuples of the form (x_1, \ldots, x_n) , where, for all $i \in \{1, \ldots, n\}$, $x_i \in X_i$. A tuple with n components is an n-tuple. The components of a tuple are ordered but need not be distinct. Therefore, a tuple can be viewed as an ordered multiset. We thus write

$$(x_1, \dots, x_n) \in \underset{i=1}{\overset{n}{\times}} \mathfrak{X}_i \stackrel{\triangle}{=} \mathfrak{X}_1 \times \dots \times \mathfrak{X}_n.$$
 (1.11)

 \mathfrak{X}^n denotes $\times_{i=1}^n \mathfrak{X}$.

Definition 1.1.1. A sequence $(x_i)_{i=1}^{\infty} = (x_1, x_2, \ldots)$ is a tuple with a countably infinite number of components. Now, let $i_1 < i_2 < \cdots$. Then, $(x_{i_j})_{j=1}^{\infty}$ is a subsequence of $(x_i)_{i=1}^{\infty}$.

Let \mathfrak{X} be a set, and let $X \triangleq (x_i)_{i=1}^{\infty}$ be a sequence whose components are elements of \mathfrak{X} ; that is, $\{x_1, x_2, \ldots\} \subseteq \mathfrak{X}$. For convenience, we write either $X \subseteq \mathfrak{X}$ or $X \subset \mathfrak{X}$, where X is viewed as a set and the multiplicity of the components of the sequence is ignored. For sequences $X, Y \subset \mathbb{F}^n$, define $X + Y \triangleq (x_i + y_i)_{i=1}^{\infty}$ and $X \odot Y \triangleq (x_i \odot y_i)_{i=1}^{\infty}$, where " \odot " denotes component-wise multiplication. In the case n = 1, we define $XY \triangleq (x_i y_i)_{i=1}^{\infty}$.

33

1.2 Logic

Every *statement* is either true or false, and no statement is both true and false. ³⁵A *proof* is a collection of statements that verify that a statement is true. ³A *conjecture* is a statement that is believed to be true but whose proof is not known.

Let A and B be statements. The not of A is the statement (not A), the and of A and B is the statement (A and B), and the or of A and B is the statement (A or B). The statement (A or B) does not contradict the statement (A and B); hence, the word "or" is inclusive. The exclusive or of A and B is the statement (A xor B), which is [(A and not B) or (B and not A)]. Equivalently, (A xor B) is the statement [(A or B) and not(A and B)], that is, A or B, but not both. Note that (A and B) = (B and A), (A or B) = (B or A), and (A xor B) = (B xor A).

Let A, B, and C be statements. Then, the statements (A and B or C) and (A or B and C) are ambiguous. For clarity, we thus write, for example, [A and (B or C)] and [A or (B and C)]. In words, we write "A and either B or C" and "A or both B and C," respectively, where "either" and "both" signify parentheses. Furthermore,

$$(A \text{ and } B) \text{ or } C = (A \text{ and } C) \text{ or } (B \text{ and } C), \tag{1.12}$$

$$(A \text{ or } B) \text{ and } C = (A \text{ or } C) \text{ and } (B \text{ or } C).$$
 (1.13)

Let A be a statement. To analyze statements involving logic operators, define $\operatorname{truth}(A) = 1$ if A is true, and $\operatorname{truth}(A) = 0$ if A is false. Then,

$$truth(not A) = truth(A) + 1, (1.14)$$

where 0+0=0, 1+0=0+1=1, and 1+1=0. Therefore, A is true if and only if (not A) is false, while A is false if and only if (not A) is true. Note that

$$truth[not(not A)] = truth(not A) + 1$$
$$= [truth(A) + 1] + 1$$
$$= truth(A).$$

Furthermore, note that $\operatorname{truth}(A) + \operatorname{truth}(A) = 0$ and $\operatorname{truth}(A) \operatorname{truth}(A) = \operatorname{truth}(A)$. Let A and B be statements. Then,

$$\operatorname{truth}(A \text{ and } B) = \operatorname{truth}(A) \operatorname{truth}(B),$$
 (1.15)

$$truth(A \text{ or } B) = truth(A) truth(B) + truth(A) + truth(B), \tag{1.16}$$

$$\operatorname{truth}(A \operatorname{xor} B) = \operatorname{truth}(A) + \operatorname{truth}(B). \tag{1.17}$$

Hence,

$$\operatorname{truth}(A \text{ and } B) = \min \left\{ \operatorname{truth}(A), \operatorname{truth}(B) \right\}, \tag{1.18}$$

$$truth(A \text{ or } B) = \max\{truth(A), truth(B)\}. \tag{1.19}$$

Consequently, $\operatorname{truth}(A \text{ and } B) = \operatorname{truth}(B \text{ and } A)$, $\operatorname{truth}(A \text{ or } B) = \operatorname{truth}(B \text{ or } A)$, and $\operatorname{truth}(A \text{ xor } B) = \operatorname{truth}(B \text{ xor } A)$. Furthermore, $\operatorname{truth}(A \text{ and } A) = \operatorname{truth}(A \text{ or } A) = \operatorname{truth}(A)$, and $\operatorname{truth}(A \operatorname{xor} A) = 0$.

Let A and B be statements. The implication $(A \Longrightarrow B)$ is the statement [(not A) or B]. Therefore,

$$\operatorname{truth}(A \Longrightarrow B) = \operatorname{truth}(A)\operatorname{truth}(B) + \operatorname{truth}(A) + 1. \tag{1.20}$$

The implication $(A \Longrightarrow B)$ is read as either "if A, then B," "if A holds, then B holds," or "A implies B." The statement A is the hypothesis, while the statement B is the conclusion. If $(A \Longrightarrow B)$, then A is a sufficient condition for B, and B is a necessary condition for A. It follows from (1.20) that, if A and B are true, then $(A \Longrightarrow B)$ is true; if A is true and B is false, then $(A \Longrightarrow B)$ is false; and, if A is false, then $(A \Longrightarrow B)$ is true whether or not B is true. For example, both implications $[(2+2=5) \implies (3+3=6)]$ and $[(2+2=5) \Longrightarrow (3+3=8)]$ are true. Finally, note that $[(A \Longrightarrow B) \text{ and } A] = A$ and B.

A predicate is a statement that depends on a variable. Let X be a set, let $x \in X$, and let A(x) be a predicate. There are two ways to use a predicate to create a statement. An existential statement has the form

there exists
$$x \in \mathcal{X}$$
 such that $A(x)$ holds, (1.21)

whereas a universal statement has the form

for all
$$x \in \mathcal{X}, A(x)$$
 holds. (1.22)

Note that

$$\begin{aligned} \text{truth}[\text{there exists } x \in \mathfrak{X} \text{ such that } A(x) \text{ holds}] &= \max_{x \in \mathfrak{X}} \text{truth}[A(x)], \\ \text{truth}[\text{for all } x \in \mathfrak{X}, A(x) \text{ holds}] &= \min_{x \in \mathfrak{X}} \text{truth}[A(x)]. \end{aligned}$$
 (1.24)

$$\operatorname{truth}[\operatorname{for all} x \in \mathfrak{X}, A(x) \text{ holds}] = \min_{x \in \mathfrak{X}} \operatorname{truth}[A(x)]. \tag{1.24}$$

An argument is an implication whose hypothesis and conclusion are predicates that depend on the same variable. In particular, letting x denote a variable, and letting A(x)and B(x) be predicates, the implication $[A(x) \Longrightarrow B(x)]$ is an argument. For example, for each real number x, the implication $[(x = 1) \Longrightarrow (x + 1 = 2)]$ is an argument. Note that the variable x links the hypothesis and the conclusion, thereby making this implication useful for the purpose of inference. In particular, for all real numbers x, $\operatorname{truth}[(x=1) \Longrightarrow (x+1=2)] = 1$. The statements (for all $x, [A(x) \Longrightarrow B(x)]$ holds) and (there exists x such that $[A(x) \Longrightarrow B(x)]$ holds) are inferences.

Let A and B be statements. The bidirectional implication $(A \iff B)$ is the statement $[(A \Longrightarrow B) \text{ and } (A \Longleftarrow B)]$, where $(A \Longleftarrow B)$ means $(B \Longrightarrow A)$. If $(A \Longleftrightarrow B)$, then A and B are equivalent. Furthermore,

$$\operatorname{truth}(A \iff B) = \operatorname{truth}(A) + \operatorname{truth}(B) + 1.$$
 (1.25)

Therefore, A and B are equivalent if and only if either both A and B are true or both A and B are false.

Let A and B be statements, and assume that $(A \iff B)$. Then, A holds if and only if B holds. The implication $A \implies B$ (the "only if" part) is necessity, while $B \implies A$ (the "if" part) is sufficiency.

Let A and B be statements. The *converse* of $(A \Longrightarrow B)$ is $(B \Longrightarrow A)$. Note that

$$(A \Longrightarrow B) \Longleftrightarrow [(\text{not } A) \text{ or } B]$$

 $\iff [(\text{not } A) \text{ or not}(\text{not } B)]$
 $\iff [\text{not}(\text{not } B) \text{ or not } A]$
 $\iff (\text{not } B \Longrightarrow \text{not } A).$

Therefore, the statement $(A \Longrightarrow B)$ is equivalent to its *contrapositive* $[(\text{not } B) \Longrightarrow (\text{not } A)]$.

Let A, B, A', and B' be statements, and assume that $(A' \Longrightarrow A \Longrightarrow B \Longrightarrow B')$. Then, $(A' \Longrightarrow B')$ is a *corollary* of $(A \Longrightarrow B)$.

Let A, B, and A' be statements, and assume that $A \Longrightarrow B$. Then, $(A \Longrightarrow B)$ is a *strengthening* of $[(A \text{ and } A') \Longrightarrow B]$. If, in addition, $(A \Longrightarrow A')$, then the statement $[(A \text{ and } A') \Longrightarrow B]$ has a *redundant assumption*.

An interpretation is a feasible assignment of true or false to all statements that comprise a statement. For example, there are four interpretations of the statement (A and B), depending on whether A is assigned to be true or false and B is assigned to be true or false. Likewise, [(x = 1) and (x = 2)] has three interpretations, which depend on the value of x.

Let A_1, A_2, \ldots be statements, and let B be a statement that depends on A_1, A_2, \ldots Then, B is a *tautology* if B is true whether or not A_1, A_2, \ldots are true. For example, let B denote the statement (A or not A). Then,

$$truth(A \text{ or not } A) = 1, \tag{1.26}$$

and thus the statement (A or not A) is true whether or not A is true. Hence, (A or not A) is a tautology. Likewise, $(A \Longrightarrow A)$ is a tautology. Furthermore, since

$$\operatorname{truth}[(A \text{ and } B) \Longrightarrow A] = \operatorname{truth}(A)^2 \operatorname{truth}(B) + \operatorname{truth}(A) \operatorname{truth}(B) + 1 = 1,$$
 (1.27)

it follows that $[(A \text{ and } B) \Longrightarrow A]$ is a tautology. Likewise, $\operatorname{truth}([A \text{ and not } A] \Longrightarrow B) = 1$, and thus $([A \text{ and not } A] \Longrightarrow B)$ is a tautology.

Let A_1, A_2, \ldots be statements, and let B be a statement that depends on A_1, A_2, \ldots Then, B is a *contradiction* if B is false whether or not A_1, A_2, \ldots are true. For example, let B denote the statement (A and not A). Then,

$$truth(A \text{ and not } A) = 0, \tag{1.28}$$

and thus the statement (A and not A) is false whether or not A is true. Hence, (A and not A) is a contradiction.

Let A and B be statements. If the implication $(A \Longrightarrow B)$ is neither a tautology nor a contradiction, then $\operatorname{truth}(A \Longrightarrow B)$ depends on the truth of the statements that comprise A and B. For example, $\operatorname{truth}(A \Longrightarrow \operatorname{not} A) = \operatorname{truth}(A) + 1$, and thus the statement $(A \Longrightarrow \operatorname{not} A)$ is true if and only if A is false, and false if and only if A is true. Hence, $(A \Longrightarrow \operatorname{not} A)$ is neither a tautology nor a contradiction. A statement that is neither a tautology nor

a contradiction is a *contingency*. For example, the implication $[A \Longrightarrow (A \text{ and } B)]$ is a contingency. Likewise, for each real number x, $\operatorname{truth}[(x=1) \Longrightarrow (x=2)] = \operatorname{truth}(x \neq 1)$, and thus the statement $[(x=1) \Longrightarrow (x=2)]$ is a contingency.

An argument that is a contingency is a *theorem*, *proposition*, *corollary*, or *lemma*. A theorem is a significant result; a proposition is a theorem of less significance. The primary role of a lemma is to support the proof of a theorem or a proposition. A *corollary* is a consequence of a theorem or a proposition. A *fact* is either a theorem, proposition, lemma, or corollary.

In order to visualize logic operations on predicates, it is helpful to replace statements with sets and logic operations by set operations; the truth of a statement can then be visualized in terms of Venn diagrams. To do this, let \mathcal{X} be a set, for all $x \in \mathcal{X}$, let A(x) and B(x) be predicates, and define $\mathcal{A} \triangleq \{x \in \mathcal{X} : \operatorname{truth}[A(x)] = 1\}$ and $\mathcal{B} \triangleq \{x \in \mathcal{X} : \operatorname{truth}[B(x)] = 1\}$. Then, the logic operations "and," "or," "xor," and "not" are equivalent to " \cap ," " \cup ," " \ominus ," and " $^{\sim}$," respectively. For example, $\{x \in \mathcal{X} : \operatorname{truth}[(\operatorname{not} A(x)) \text{ and } B(x)] = 1\} = \mathcal{A}^{\sim} \cap \mathcal{B}$. Furthermore, since $[A(x) \Longrightarrow B(x)]$ is equivalent to $[(\operatorname{not} A(x)) \text{ or } B(x)]$, it follows that $\{x \in \mathcal{X} : \operatorname{truth}[A(x) \Longrightarrow B(x)] = 1\} = \mathcal{A}^{\sim} \cup \mathcal{B}$. Similarly, since $[A(x) \Longleftrightarrow B(x)]$ is equivalent to $[(A(x) \text{ or not } B(x)) \text{ and } ([\operatorname{not} A(x)] \text{ or } B(x))]$, it follows that $\{x \in \mathcal{X} : A(x) \Longleftrightarrow B(x)\} = (\mathcal{A} \cup \mathcal{B}^{\sim}) \cap (\mathcal{A}^{\sim} \cup \mathcal{B}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cup \mathcal{B})^{\sim}$.

Now, define \mathfrak{X} , A(x), B(x), \mathcal{A} , and \mathcal{B} as in the previous paragraph, and assume that, for all $x \in \mathfrak{X}$, $A(x) \Longrightarrow B(x)$. Therefore, $\mathcal{A}^{\sim} \cup \mathcal{B} = \{x \in \mathfrak{X} : \operatorname{truth}[(\operatorname{not} A(x)) \text{ or } B(x)] = 1\} = \mathfrak{X}$, and thus $\mathcal{A} \backslash \mathcal{B} = (\mathcal{A}^{\sim} \cup \mathcal{B})^{\sim} = \{x \in \mathfrak{X} : \operatorname{truth}[(\operatorname{not} A(x)) \text{ or } B(x)] = 0\} = \emptyset$. Consequently, $\mathcal{A} \subseteq \mathcal{B}$. This means that the logic operator " \Longrightarrow " is represented by " \subseteq ." For example, for all $x \in \mathfrak{X}$, let C(x) be a predicate, and define $\mathcal{C} \triangleq \{x \in \mathfrak{X} : \operatorname{truth}[C(x)] = 1\}$. Then, for all $x \in \mathfrak{X}$, $\operatorname{truth}[A(x)] : \mathcal{C}(x) : \mathcal{C}($

 $\operatorname{truth}([A(x) \text{ and } (B(x) \text{ or } C(x))] \iff [(A(x) \text{ and } B(x)) \text{ or } (A(x) \text{ and } C(x))]) = 1$ (1.29)

if and only if

$$\mathcal{A} \cap (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{C}). \tag{1.30}$$

Note that (1.30) represents a tautology.

1.3 Relations and Orderings

Let \mathcal{X} , \mathcal{X}_1 , and \mathcal{X}_2 be sets. A relation \mathcal{R} on $(\mathcal{X}_1, \mathcal{X}_2)$ is a subset of $\mathcal{X}_1 \times \mathcal{X}_2$. A relation \mathcal{R} on \mathcal{X} is a subset of $\mathcal{X} \times \mathcal{X}$. Likewise, a multirelation \mathcal{R} on $(\mathcal{X}_1, \mathcal{X}_2)$ is a multisubset of $\mathcal{X}_1 \times \mathcal{X}_2$, while a multirelation \mathcal{R} on \mathcal{X} is a multisubset of $\mathcal{X} \times \mathcal{X}$.

Let \mathcal{X} be a set, and let \mathcal{R}_1 and \mathcal{R}_2 be relations on \mathcal{X} . Then, the sets $\mathcal{R}_1 \cap \mathcal{R}_2$, $\mathcal{R}_1 \setminus \mathcal{R}_2$, and $\mathcal{R}_1 \cup \mathcal{R}_2$ are relations on \mathcal{X} . Furthermore, if \mathcal{R} is a relation on \mathcal{X} and $\mathcal{X}_0 \subseteq \mathcal{X}$, then we define the restricted relation $\mathcal{R}|_{\mathcal{X}_0} \triangleq \mathcal{R} \cap (\mathcal{X}_0 \times \mathcal{X}_0)$, which is a relation on \mathcal{X}_0 .

Definition 1.3.1. Let \mathcal{R} be a relation on the set \mathcal{X} . Then, the following terminology is defined:

- i) \mathcal{R} is reflexive if, for all $x \in \mathcal{X}$, it follows that $(x, x) \in \mathcal{R}$.
- ii) \Re is symmetric if, for all $(x_1, x_2) \in \Re$, it follows that $(x_2, x_1) \in \Re$.
- iii) \Re is transitive if, for all $(x_1, x_2) \in \Re$ and $(x_2, x_3) \in \Re$, it follows that $(x_1, x_3) \in \Re$.

iv) \mathcal{R} is an equivalence relation if \mathcal{R} is reflexive, symmetric, and transitive.

Proposition 1.3.2. Let \mathcal{R}_1 and \mathcal{R}_2 be relations on the set \mathcal{X} . If \mathcal{R}_1 and \mathcal{R}_2 are (reflexive, symmetric) relations, then so are $\mathcal{R}_1 \cap \mathcal{R}_2$ and $\mathcal{R}_1 \cup \mathcal{R}_2$. If \mathcal{R}_1 and \mathcal{R}_2 are (transitive, equivalence) relations, then so is $\mathcal{R}_1 \cap \mathcal{R}_2$.

Definition 1.3.3. Let \mathcal{R} be a relation on the set \mathcal{X} . Then, the following terminology is defined:

- i) The complement \mathcal{R}^{\sim} of \mathcal{R} is the relation $\mathcal{R}^{\sim} \triangleq (\mathcal{X} \times \mathcal{X}) \backslash \mathcal{R}$.
- ii) The support supp(\mathcal{R}) of \mathcal{R} is the smallest subset \mathcal{X}_0 of \mathcal{X} such that \mathcal{R} is a relation on \mathcal{X}_0 .
- iii) The reversal rev(\Re) of \Re is the relation rev(\Re) $\triangleq \{(y, x) : (x, y) \in \Re\}$.
- iv) The shortcut shortcut(\mathcal{R}) of \mathcal{R} is the relation shortcut(\mathcal{R}) $\triangleq \{(x,y) \in \mathcal{X} \times \mathcal{X} : x \text{ and } y \text{ are distinct and there exist } k \geq 1 \text{ and } x_1, \ldots, x_k \in \mathcal{X} \text{ such that } (x,x_1), (x_1,x_2), \ldots, (x_k,y) \in \mathcal{R}\}.$
- v) The reflexive hull $\operatorname{ref}(\mathcal{R})$ of \mathcal{R} is the smallest reflexive relation on \mathcal{X} that contains \mathcal{R} .
- vi) The symmetric hull $\operatorname{sym}(\mathcal{R})$ of \mathcal{R} is the smallest symmetric relation on \mathcal{X} that contains \mathcal{R} .
- vii) The $transitive\ hull\ trans(\mathcal{R})$ of \mathcal{R} is the smallest transitive relation on \mathcal{X} that contains \mathcal{R} .
- viii) The equivalence hull equiv(\mathcal{R}) of \mathcal{R} is the smallest equivalence relation on \mathcal{X} that contains \mathcal{R} .

Proposition 1.3.4. Let \mathcal{R} be a relation on the set \mathcal{X} . Then, the following statements hold:

- $i) \operatorname{ref}(\mathcal{R}) = \mathcal{R} \cup \{(x, x) \colon x \in \mathcal{X}\}.$
- ii) sym $(\Re) = \Re \cup rev(\Re)$.
- iii) trans(\Re) = \Re \cup shortcut(\Re).
- iv) If \mathcal{R} is symmetric, then trans $(\mathcal{R}) = \text{sym}(\text{trans}(\mathcal{R}))$.
- v) equiv $(\mathcal{R}) = \operatorname{trans}(\operatorname{sym}(\operatorname{ref}(\mathcal{R}))).$

Furthermore, the following statements hold:

- vi) \mathcal{R} is reflexive if and only if $\mathcal{R} = ref(\mathcal{R})$.
- vii) The following statements are equivalent:
 - a) \mathcal{R} is symmetric.
 - b) $\Re = \operatorname{sym}(\Re)$.
 - c) $\mathcal{R} = \operatorname{rev}(\mathcal{R})$.
- *viii*) \mathcal{R} is transitive if and only if $\mathcal{R} = \operatorname{trans}(\mathcal{R})$.
- ix) \Re is an equivalence relation if and only if $\Re = \text{equiv}(\Re)$.

For an equivalence relation \mathcal{R} on the set \mathcal{X} , $(x_1, x_2) \in \mathcal{R}$ is denoted by $x_1 \equiv x_2$. If \mathcal{R} is an equivalence relation and $x \in \mathcal{X}$, then the subset $\mathcal{E}_x \triangleq \{y \in \mathcal{X}: y \equiv x\}$ of \mathcal{X} is the equivalence class of x induced by \mathcal{R} .

Theorem 1.3.5. Let \mathcal{R} be an equivalence relation on a set \mathcal{X} . Then, the set $\{\mathcal{E}_x \colon x \in \mathcal{X}\}$ of equivalence classes induced by \mathcal{R} is a partition of \mathcal{X} .

Proof. Since $\mathfrak{X} = \bigcup_{x \in \mathfrak{X}} \mathcal{E}_x$, it suffices to show that, if $x, y \in \mathfrak{X}$, then either $\mathcal{E}_x = \mathcal{E}_y$ or $\mathcal{E}_x \cap \mathcal{E}_y = \emptyset$. Hence, let $x, y \in \mathfrak{X}$, and suppose that \mathcal{E}_x and \mathcal{E}_y are not disjoint so that there

exists $z \in \mathcal{E}_x \cap \mathcal{E}_y$. Thus, $(x, z) \in \mathcal{R}$ and $(z, y) \in \mathcal{R}$. Now, let $w \in \mathcal{E}_x$. Then, $(w, x) \in \mathcal{R}$, $(x, z) \in \mathcal{R}$, and $(z, y) \in \mathcal{R}$ imply that $(w, y) \in \mathcal{R}$. Hence, $w \in \mathcal{E}_y$, which implies that $\mathcal{E}_x \subseteq \mathcal{E}_y$. By a similar argument, $\mathcal{E}_y \subseteq \mathcal{E}_x$. Consequently, $\mathcal{E}_x = \mathcal{E}_y$.

The following result, which is the converse of Theorem 1.3.5, shows that a partition of a set \mathfrak{X} defines an equivalence relation on \mathfrak{X} .

Theorem 1.3.6. Let \mathcal{X} be a set, let \mathcal{P} be a partition of \mathcal{X} , and define the relation \mathcal{R} on \mathcal{X} by $(x,y) \in \mathcal{R}$ if and only if x and y belong to the same element of \mathcal{P} . Then, \mathcal{R} is an equivalence relation on \mathcal{X} .

Theorem 1.3.5 shows that every equivalence relation induces a partition, while Theorem 1.3.6 shows that every partition induces an equivalence relation.

Definition 1.3.7. Let \mathcal{X} be a set, let \mathcal{P} be a partition of \mathcal{X} , and let $X_0 \subseteq \mathcal{X}$. Then, X_0 is a representative subset of \mathcal{X} relative to \mathcal{P} if, for all $X \in \mathcal{P}$, exactly one element of X_0 is an element of X.

Definition 1.3.8. Let \mathcal{R} be a relation on the set \mathcal{X} . Then, the following terminology is defined:

- i) \Re is antisymmetric if $(x_1, x_2) \in \Re$ and $(x_2, x_1) \in \Re$ imply that $x_1 = x_2$.
- ii) \Re is a partial ordering if \Re is reflexive, antisymmetric, and transitive.
- *iii*) $(\mathfrak{X}, \mathfrak{R})$ is a partially ordered set if \mathfrak{R} is a partial ordering.

Let $(\mathfrak{X}, \mathfrak{R})$ be a partially ordered set. Then, $(x_1, x_2) \in \mathfrak{R}$ is denoted by $x_1 \leq x_2$. If $x_1 \leq x_2$ and $x_2 \leq x_1$, then, since \mathfrak{R} is antisymmetric, it follows that $x_1 = x_2$. Furthermore, if $x_1 \leq x_2$ and $x_2 \leq x_3$, then, since \mathfrak{R} is transitive, it follows that $x_1 \leq x_3$.

Definition 1.3.9. Let $(\mathfrak{X}, \mathfrak{R})$ be a partially ordered set. Then, the following terminology is defined:

- i) Let $S \subseteq X$. Then, $y \in X$ is a lower bound for S if, for all $x \in S$, it follows that $y \leq x$.
- ii) Let $S \subseteq X$. Then, $y \in X$ is an upper bound for S if, for all $x \in S$, it follows that $x \leq y$.

The following result shows that every partially ordered set has at most one lower bound that is "greatest" and at most one upper bound that is "least."

Lemma 1.3.10. Let $(\mathfrak{X}, \mathfrak{R})$ be a partially ordered set, and let $\mathfrak{S} \subseteq \mathfrak{X}$. Then, there exists at most one lower bound $y \in \mathfrak{X}$ for \mathfrak{S} such that every lower bound $x \in \mathfrak{X}$ for \mathfrak{S} satisfies $x \preceq y$. Furthermore, there exists at most one upper bound $y \in \mathfrak{X}$ for \mathfrak{S} such that every upper bound $x \in \mathfrak{X}$ for \mathfrak{S} satisfies $y \preceq x$.

Proof. For i = 1, 2, let $y_i \in \mathcal{X}$ be such that y_i is a lower bound for S and, for all $x \in \mathcal{X}$, $x \leq y_i$. Therefore, $y_1 \leq y_2$ and $y_2 \leq y_1$. Since " \leq " is antisymmetric, it follows that $y_1 = y_2$.

Definition 1.3.11. Let $(\mathcal{X}, \mathcal{R})$ be a partially ordered set. Then, the following terminology is defined:

- i) Let $S \subseteq X$. Then, $y \in X$ is the *greatest lower bound* for S if y is a lower bound for S and every lower bound $x \in X$ for S satisfies $x \leq y$. In this case, we write y = glb(S).
- ii) Let $S \subseteq X$. Then, $y \in X$ is the *least upper bound* for S if y is an upper bound for S and every upper bound $x \in X$ for S satisfies $y \leq x$. In this case, we write y = lub(S).
- iii) (\mathfrak{X}, \preceq) is a *lattice* if, for all distinct $x, y \in \mathfrak{X}$, the set $\{x, y\}$ has a least upper bound and a greatest lower bound.
- iv) (\mathfrak{X}, \preceq) is a *complete lattice* on \mathfrak{X} if every subset \mathfrak{S} of \mathfrak{X} has a least upper bound and a greatest lower bound.

Example 1.3.12. Consider the partially ordered set (\mathbb{P}, \preceq) , where $m \preceq n$ indicates that n is an integer multiple of m. For example, $3 \preceq 21$, but it is not true that $2 \preceq 3$. Next, note that the greatest lower bound of a subset S of \mathbb{P} is the greatest common divisor of the elements of S. For example, glb $\{9,21\}=3$. Likewise, the least upper bound of a subset S of \mathbb{P} is the least common multiple of the elements of S. For example, lub $\{2,3,4\}=12$. Therefore, (\mathbb{P}, \preceq) is a lattice. Next, note that 1 is a lower bound for every subset of \mathbb{P} . Since every subset of \mathbb{P} has a smallest element in the usual ordering, it follows that every subset of \mathbb{P} has an infinite number of elements has an upper bound. Therefore, (\mathbb{P}, \preceq) is not a complete lattice. Now, consider (\mathbb{N}, \preceq) . Note that 1 is a lower bound for every subset of \mathbb{N} . Since every subset of \mathbb{N} has a smallest element in the usual ordering, it follows that every subset of \mathbb{N} has a greatest lower bound. In particular, glb(\mathbb{N}) = 1. Furthermore, for all $m \in \mathbb{N}$, $0 = 0 \cdot m$, and thus 0 is an upper bound for every subset of \mathbb{N} . In particular, since 0 is the unique upper bound of \mathbb{N} , it follows that 0 is the least upper bound of \mathbb{N} . Hence, (\mathbb{N}, \preceq) is a complete lattice.

Proposition 1.3.13. Let (\mathfrak{X}, \preceq) be a lattice, and let $S_1, S_2 \subseteq \mathfrak{X}$. Then,

$$\operatorname{glb}(S_1 \cup S_2) = \operatorname{glb}[S_1 \cup \{\operatorname{glb}(S_2)\}], \quad \operatorname{lub}(S_1 \cup S_2) = \operatorname{lub}[S_1 \cup \{\operatorname{lub}(S_2)\}]. \tag{1.31}$$

Definition 1.3.14. Let $(\mathfrak{X}, \mathfrak{R})$ be a partially ordered set. Then, \mathfrak{R} is a *total ordering* on \mathfrak{X} if, for all $x, y \in \mathfrak{X}$, either $(x, y) \in \mathfrak{R}$ or $(y, x) \in \mathfrak{R}$.

Let $S \subseteq \mathbb{R}$. Then, it is traditional to write $\inf S$ and $\sup S$ for glb(S) and lub(S), respectively, where "inf" and "sup" denote infimum and supremum, respectively. If $S = \emptyset$, then we define $\inf \emptyset \triangleq \infty$ and $\sup \emptyset \triangleq -\infty$. Finally, if S has no lower bound, then we write $\inf S = -\infty$, whereas, if S has no upper bound, then we write $\sup S = \infty$.

The following result uses the fact that " \subseteq " is a partial ordering on every collection of sets.

Proposition 1.3.15. Let S be a collection of sets. Then,

$$glb(S) = \bigcap_{S \in S} S, \quad lub(S) = \bigcup_{S \in S} S.$$
 (1.32)

Hence, for all $S \in \mathcal{S}$,

$$glb(S) \subseteq S \subseteq lub(S).$$
 (1.33)

Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets. Then, by viewing S as the collection of sets $\{S_1, S_2, \ldots\}$, it follows that

$$glb(\mathcal{S}) = \bigcap_{i=1}^{\infty} S_i, \quad lub(\mathcal{S}) = \bigcup_{i=1}^{\infty} S_i.$$
 (1.34)

Hence, for all $i \geq 1$,

$$glb(S) \subseteq S_i \subseteq lub(S).$$
 (1.35)

Note that glb(S) and lub(S) are independent of the ordering of the sequence S.

Proposition 1.3.16. Let S be a collection of sets, let A be a set, let $S_0 \triangleq \{S \in S : A \subseteq S\}$, and assume that $S_0 \neq \emptyset$. Then, $A \subseteq \text{glb}(S_0)$. If, in addition, $\text{glb}(S_0) \in S_0$, then $\text{glb}(S_0)$ is the smallest element of S that contains A in the sense that, if $S \in S$ and $A \subseteq S$, then $\text{glb}(S_0) \subseteq S$.

Proposition 1.3.17. Let S be a collection of sets, let A be a set, and let $S_0 \triangleq \{S \in S : S \subseteq A\}$. Then, $\text{lub}(S_0) \subseteq A$. If, in addition, $\text{lub}(S_0) \in S_0$, then $\text{lub}(S_0)$ is the largest element of S that is contained in A in the sense that, if $S \in S$ and $S \subseteq A$, then $S \subseteq \text{lub}(S_0)$.

Definition 1.3.18. Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets. Then, the *essential greatest lower bound* of S is defined by

$$\operatorname{essglb}(\mathcal{S}) \stackrel{\triangle}{=} \bigcup_{i=1}^{\infty} \bigcap_{i=j}^{\infty} S_i, \tag{1.36}$$

and the essential least upper bound of S is defined by

$$\operatorname{esslub}(S) \stackrel{\triangle}{=} \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} S_i. \tag{1.37}$$

Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets. Then, the set essglb(S) consists of all elements of $\bigcup_{i=1}^{\infty} S_i$ that belong to all but finitely many of the sets in S. Furthermore, the set esslub(S) consists of all elements of $\bigcup_{i=1}^{\infty} S_i$ that belong to infinitely many of the sets in S. Therefore, essglb(S) and esslub(S) are independent of the ordering of the sequence S, and

$$glb(S) \subseteq essglb(S) \subseteq esslub(S) \subseteq lub(S).$$
 (1.38)

Note that $\text{lub}(S)\setminus \text{esslub}(S)$ is the set of elements of $\bigcup_{i=1}^{\infty} S_i$ that belong to at most finitely many of the sets in S.

Example 1.3.19. Consider the sequence of sets given by

$$(\{1,4\},\{1,2\},\{1,2,3\},\{1,2\},\{1,2,3\},\{1,2\},\{1,2,3\},\ldots).$$

Then,
$$(1.38)$$
 becomes $\{1\} \subseteq \{1,2\} \subseteq \{1,2,3\} \subseteq \{1,2,3,4\}$.

Definition 1.3.20. Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets, and assume that $\operatorname{essglb}(S) = \operatorname{esslub}(S)$. Then, the *essential limit* of S is defined by

$$\operatorname{esslim}(S) \stackrel{\triangle}{=} \operatorname{essglb}(S) = \operatorname{esslub}(S). \tag{1.39}$$

 \Diamond

Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets. Then, S is nonincreasing if, for all $i \in \mathbb{P}$, $S_{i+1} \subseteq S_i$. Furthermore, S is nondecreasing if, for all $i \in \mathbb{P}$, $S_i \subseteq S_{i+1}$.

Proposition 1.3.21. Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets. If S is nonincreasing, then

$$\operatorname{esslim}(S) = \operatorname{glb}(S) = \operatorname{essglb}(S) = \operatorname{esslub}(S). \tag{1.40}$$

Furthermore, if S is nondecreasing, then

$$\operatorname{esslim}(S) = \operatorname{essglb}(S) = \operatorname{esslub}(S) = \operatorname{lub}(S). \tag{1.41}$$

Example 1.3.22. Consider the nonincreasing sequence of sets

$$(\mathbb{N}, \mathbb{N}\setminus\{1\}, \mathbb{N}\setminus\{1,2\}, \mathbb{N}\setminus\{1,2,3\}, \ldots).$$

Then, (1.38) becomes $\{0\} = \{0\} \subseteq \mathbb{N}$. Now, consider the nondecreasing sequence of subsets of \mathbb{R} given by

$$(\{1\},\{1,2\},\{1,2,3\},\{1,2,3,4\},\ldots).$$

Then, (1.38) becomes $\{1\} \subseteq \mathbb{P} = \mathbb{P} = \mathbb{P}$, where \mathbb{P} is the set of positive integers. \diamond

Let $S \triangleq (S_i)_{i=1}^{\infty}$ be a sequence of sets. Then, the sequence $\hat{S} \triangleq (\cap_{j=1}^k [\cup_{i=j}^{\infty} S_i])_{k=1}^{\infty} = (\cup_{i=k}^{\infty} S_i)_{k=1}^{\infty} = (\hat{S}_k)_{i=1}^{\infty}$ is nonincreasing. Hence,

$$\operatorname{esslub}(S) = \operatorname{esslim}(\hat{S}) = \operatorname{glb}(\hat{S}) = \operatorname{essglb}(\hat{S}) = \operatorname{esslub}(\hat{S}). \tag{1.42}$$

Furthermore, the sequence $\tilde{S} \stackrel{\triangle}{=} (\bigcup_{j=1}^k [\cap_{i=j}^\infty S_i])_{k=1}^\infty = (\cap_{i=k}^\infty S_i)_{k=1}^\infty = (\tilde{S}_k)_{i=1}^\infty$ is nondecreasing. Hence,

$$\operatorname{essglb}(\tilde{S}) = \operatorname{esslim}(\tilde{S}) = \operatorname{essglb}(\tilde{S}) = \operatorname{esslub}(\tilde{S}) = \operatorname{lub}(\tilde{S}). \tag{1.43}$$

1.4 Directed and Symmetric Graphs

Let \mathcal{X} be a finite, nonempty set, and let \mathcal{R} be a multirelation on \mathcal{X} . Then, the pair $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ is a *directed multigraph*. The elements of \mathcal{X} are the *nodes* of \mathcal{G} , while the elements of \mathcal{R} are the *directed edges* of \mathcal{G} . If \mathcal{R} is a relation on \mathcal{X} , then $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ is a *directed graph*. We focus on directed graphs, which have distinct (that is, nonrepeated) directed edges.

The directed graph $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ can be visualized as a set of points in the plane representing the nodes in \mathcal{X} connected by the directed edges in \mathcal{R} . Specifically, the directed edge $(x,y) \in \mathcal{R}$ from x to y can be visualized as a directed line segment or curve connecting node x to node y. The direction of a directed edge can be denoted by an arrowhead. A directed edge of the form (x,x) is a self-directed edge.

If the relation \mathcal{R} is symmetric, then \mathcal{G} is a symmetric graph. In this case, it is convenient to represent the pair of directed edges (x,y) and (y,x) in \mathcal{R} by a single edge $\{x,y\}$, which is a subset of \mathcal{X} . For the self-directed edge (x,x), the corresponding edge is the single-element self-edge $\{x\}$. To illustrate these notions, consider a directed graph that represents a city with streets (directed edges) connecting intersections (nodes). Each directed edge represents a one-way street, while the presence of the one-way street (x,y) and its reverse (y,x) represents a two-way street. A symmetric relation is a street plan consisting entirely of two-way streets (that is, edges) and thus no one-way streets (directed edges), whereas an antisymmetric relation is a street plan consisting entirely of one-way streets (directed edges) and thus no two-way streets (edges).

Definition 1.4.1. Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph. Then, the following terminology is defined:

- i) If $x, y \in \mathcal{X}$ are distinct and $(x, y) \in \mathcal{R}$, then y is the head of (x, y) and x is the tail of (x, y).
- ii) If $x, y \in \mathcal{X}$ are distinct and $(x, y) \in \mathcal{R}$, then x is a parent of y, and y is a child of x.
- iii) If $x, y \in \mathcal{X}$ are distinct and either $(x, y) \in \mathcal{R}$ or $(y, x) \in \mathcal{R}$, then x and y are adjacent.
- iv) If $x \in \mathcal{X}$ has no parent, then x is a root.
- v) If $x \in \mathcal{X}$ has no child, then x is a leaf.

Definition 1.4.2. Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph. Then, the following terminology is defined:

- i) The reversal of \mathfrak{G} is the graph $\operatorname{rev}(\mathfrak{G}) \triangleq (\mathfrak{X}, \operatorname{rev}(\mathfrak{R}))$.
- *ii*) The *complement* of \mathcal{G} is the graph $\mathcal{G}^{\sim} \triangleq (\mathcal{X}, \mathcal{R}^{\sim})$.
- *iii*) The reflexive hull of \mathcal{G} is the graph ref(\mathcal{G}) \triangleq (\mathcal{X} , ref(\mathcal{R})).
- iv) The symmetric hull of \mathcal{G} is the graph $\operatorname{sym}(\mathcal{G}) \triangleq (\mathcal{X}, \operatorname{sym}(\mathcal{R}))$.

- v) The transitive hull of \mathcal{G} is the graph trans(\mathcal{G}) \triangleq (\mathcal{X} , trans(\mathcal{R})).
- vi) The equivalence hull of \mathcal{G} is the graph equiv $(\mathcal{G}) \triangleq (\mathcal{X}, \operatorname{equiv}(\mathcal{R}))$.
- vii) \mathcal{G} is reflexive if \mathcal{R} is reflexive.
- viii) 9 is transitive if \mathcal{R} is transitive.
- ix) \mathfrak{G} is an equivalence graph if \mathfrak{R} is an equivalence relation.
- x) \mathfrak{G} is antisymmetric if \mathfrak{R} is antisymmetric.
- xi) \mathcal{G} is partially ordered if \mathcal{R} is a partial ordering on \mathcal{X} .
- xii) \mathfrak{G} is totally ordered if \mathfrak{R} is a total ordering on \mathfrak{X} .
- *xiii*) \mathcal{G} is a tournament if \mathcal{G} is antisymmetric and $\operatorname{sym}(\mathcal{R}) = \mathcal{X} \times \mathcal{X} \setminus \{(x, x) : x \in \mathcal{X}\}.$

Definition 1.4.3. Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph. Then, the following terminology is defined:

- i) The directed graph $\mathfrak{G}' = (\mathfrak{X}', \mathfrak{R}')$ is a directed subgraph of \mathfrak{G} if $\mathfrak{X}' \subseteq \mathfrak{X}$ and $\mathfrak{R}' \subseteq \mathfrak{R}$.
- ii) The directed subgraph $\mathfrak{G}' = (\mathfrak{X}', \mathfrak{R}')$ of \mathfrak{G} is a spanning directed subgraph of \mathfrak{G} if $\operatorname{supp}(\mathfrak{R}) = \operatorname{supp}(\mathfrak{R}')$.
- $iii) \ \ \text{If} \ \mathfrak{X}_0 \subseteq \mathfrak{X}, \ \text{then} \ \ \mathfrak{G}|_{\mathfrak{X}_0} \triangleq (\mathfrak{X}_0, \, \mathfrak{R}|_{\mathfrak{X}_0}).$
- *iv*) If $\mathfrak{G}' = (\mathfrak{X}', \mathfrak{R}')$ is a directed graph, then $\mathfrak{G} \cup \mathfrak{G}' \triangleq (\mathfrak{X} \cup \mathfrak{X}', \mathfrak{R} \cup \mathfrak{R}')$ and $\mathfrak{G} \cap \mathfrak{G}' \triangleq (\mathfrak{X} \cap \mathfrak{X}', \mathfrak{R} \cap \mathfrak{R}')$.
- v) For $x, y \in \mathcal{X}$, a directed walk in \mathcal{G} from x to y is an n-tuple of directed edges of \mathcal{G} of the form $((x,y)) \in \mathcal{R}$ for n=1 and $((x,x_1),(x_1,x_2),\ldots,(x_{n-1},y)) \in \mathcal{R}^n$ for all $n \geq 2$. The length of the directed walk is n. The nodes x,x_1,\ldots,x_{n-1},y are the nodes of the walk. Furthermore, if $n \geq 2$, then the nodes x_1,\ldots,x_{n-1} are the intermediate nodes of the walk.
- vi) For $x, y \in \mathcal{X}$, a directed trail in \mathcal{G} from x to y is a directed walk in \mathcal{G} from x to y whose directed edges are distinct.
- vii) For $x, y \in \mathcal{X}$, a directed path in \mathcal{G} from x to y is a directed trail in \mathcal{G} from x to y whose intermediate nodes are distinct and do not include x and y.
- viii) For $x \in \mathcal{X}$, a directed cycle in \mathcal{G} at x is a directed path in \mathcal{G} from x to x whose length is at least 2.
- ix) 9 is directionally acyclic if 9 has no directed cycles.
- x) If \mathcal{G} has at least one directed cycle, then the *directed period* of \mathcal{G} is the greatest common divisor of the lengths of the directed cycles of \mathcal{G} .
- xi) \mathcal{G} is directionally aperiodic if it has at least one directed cycle and the greatest common divisor of the lengths of the directed cycles in \mathcal{G} is 1.
- xii) A directed Hamiltonian path is a directed path whose nodes include all of the nodes of Υ
- xiii) A directed Hamiltonian cycle is a directed cycle whose nodes include every node in \mathfrak{X} .
- xiv) \mathcal{G} is a directed tree if \mathcal{G} has exactly one root x and, for all $y \in \mathcal{X}$ such that $y \neq x, y$ has exactly one parent.
- xv) \mathcal{G} is a directed forest if \mathcal{G} is a union of disjoint directed trees.
- xvi) \mathcal{G} is a directed chain if \mathcal{G} is a tree and has exactly one leaf.
- xvii) \mathcal{G} is directionally connected if, for all distinct $x, y \in \mathcal{X}$, there exist directed walks in \mathcal{G} from x to y and from y to x.

- xviii) \mathcal{G} is bipartite if there exist nonempty, disjoint sets \mathcal{X}_1 and \mathcal{X}_2 such that $\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$ and $\mathcal{R} \cap (\mathcal{X}_1 \times \mathcal{X}_1) = \mathcal{R} \cap (\mathcal{X}_2 \times \mathcal{X}_2) = \emptyset$.
 - xix) The indegree of $x \in \mathcal{X}$ is indeg $(x) \triangleq \operatorname{card} \{y \in \mathcal{X} : y \text{ is a parent of } x\}$.
 - xx) The outdegree of $x \in \mathcal{X}$ is outdeg $(x) \triangleq \operatorname{card} \{y \in \mathcal{X}: y \text{ is a child of } x\}$.
- xxi) Let $\mathfrak{X} = \mathfrak{X}_1 \cup \mathfrak{X}_2$, where \mathfrak{X}_1 and \mathfrak{X}_2 are nonempty and disjoint, and assume that $\mathfrak{X} = \text{supp}(\mathfrak{G})$. Then, $(\mathfrak{X}_1, \mathfrak{X}_2)$ is a *directed cut* of \mathfrak{G} if, for all $x_1 \in \mathfrak{X}_1$ and $x_2 \in \mathfrak{X}_2$, there does not exist a directed walk from x_1 to x_2 .

A self-directed edge is a directed path; however, a self-directed edge is not a directed cycle.

A directed Hamiltonian cycle is both a directed Hamiltonian path and a directed cycle, both of which are directed paths.

Definition 1.4.4. Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a symmetric graph. Then, the following terminology is defined:

- i) For $x, y \in \mathcal{X}$, a walk in \mathcal{G} connecting x and y is an n-tuple of edges of \mathcal{G} of the form $(\{x,y\}) \in \mathcal{E}$ for n=1 and $(\{x,x_1\},\{x_1,x_2\},\ldots,\{x_{n-1},y\}) \in \mathcal{E}^n$ for $n \geq 2$. The length of the walk is n. The nodes x,x_1,\ldots,x_{n-1},y are the nodes of the walk. Furthermore, if $n \geq 2$, then the nodes x_1,\ldots,x_{n-1} are the intermediate nodes of the walk.
- ii) For $x, y \in \mathcal{X}$, a trail in \mathcal{G} connecting x and y is a walk in \mathcal{G} connecting x to y whose edges are distinct.
- iii) For $x, y \in \mathcal{X}$, a path in \mathcal{G} connecting x and y is a trail in \mathcal{G} connecting x and y whose intermediate nodes are distinct and do not include x and y.
- iv) For $x \in \mathcal{X}$, a cycle in \mathcal{G} at x is a path in \mathcal{G} connecting x and x whose length is at least 3.
- v) 9 is acyclic if 9 has no cycles.
- vi) If \mathcal{G} has at least one cycle, then the *period* of \mathcal{G} is the greatest common divisor of the lengths of the cycles of \mathcal{G} .
- vii) 9 is aperiodic if the period of 9 is 1.
- viii) A Hamiltonian path is a path whose nodes include every node in \mathfrak{X} .
- ix) \mathfrak{G} is Hamiltonian if \mathfrak{G} has a Hamiltonian cycle \mathfrak{P} , which is a cycle such that every node in \mathfrak{X} is a node of \mathfrak{P} .
- x) \mathcal{G} is a tree if there exists a directed tree $\mathcal{G}' = (\mathcal{X}, \mathcal{R}')$ such that $\mathcal{G} = \text{sym}(\mathcal{G}')$.
- xi) 9 is a forest if 9 is a union of disjoint trees.
- xii) \mathcal{G} is a chain if there exists a directed chain $\mathcal{G}' = (\mathcal{X}, \mathcal{R}')$ such that $\mathcal{G} = \text{sym}(\mathcal{G}')$.
- xiii) \mathcal{G} is connected if, for all distinct $x, y \in \mathcal{X}$, there exists a walk in \mathcal{G} connecting x and y.
- xiv) \mathcal{G} is bipartite if there exist nonempty, disjoint sets \mathcal{X}_1 and \mathcal{X}_2 such that $\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$ and $\{\{x,y\} \in \mathcal{R} \colon x \in \mathcal{X}_1 \text{ and } y \in \mathcal{X}_2\} = \emptyset$.
- xv) The degree of $x \in \mathcal{X}$ is $\deg(x) \stackrel{\triangle}{=} \operatorname{indeg}(x) = \operatorname{outdeg}(x)$.

A self-edge is a path; however, a self-edge is not a cycle.

A Hamiltonian cycle is both a Hamiltonian path and a cycle, both of which are paths. Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph, and let $w \colon \mathcal{X} \times \mathcal{X} \mapsto [0, \infty)$, where w(x, y) > 0 if $(x, y) \in \mathcal{R}$ and w(x, y) = 0 if $(x, y) \notin \mathcal{R}$. For each directed edge $(x, y) \in \mathcal{R}$, w(x, y) is the weight associated with the directed edge (x, y), and the triple $\mathcal{G} = (\mathcal{X}, \mathcal{R}, w)$ is a weighted directed graph. The graph $\mathfrak{G}'=(\mathfrak{X}',\mathfrak{R}',w')$ is a weighted directed subgraph of \mathfrak{G} if $\mathfrak{X}'\subseteq\mathfrak{X},\mathfrak{R}'$ is a relation on $\mathfrak{X}',\mathfrak{R}'\subseteq\mathfrak{R}$, and w' is the restriction of w to \mathfrak{R}' . Finally, if \mathfrak{G} is symmetric, then w is symmetric if, for all $(x,y)\in\mathfrak{R}, \ w(x,y)=w(y,x)$. In this case, w is defined on each edge $\{x,y\}$ of \mathfrak{G} .

1.5 Numbers

Let x and y be real numbers. Then, x divides y if there exists an integer n such that y = nx, In this case, we write x|y. For example, $6|12, 3| - 9, \pi| - 2\pi, 3|0$, and 0|0. The notation $x \nmid y$ means that x does not divide y.

Let n_1, \ldots, n_k be integers, not all of which are zero. Then, the *greatest common divisor* of the set $\{n_1, \ldots, n_k\}$ is the positive integer defined by

$$\gcd\{n_1,\ldots,n_k\} \triangleq \max\{i \in \mathbb{P} : i \text{ divides } n_1,\ldots,n_k\}.$$

For example, $gcd \{5, 10\} = 5$, and $gcd \{0, 2\} = 2$. The set $\{n_1, \ldots, n_k\}$ is *coprime* if $gcd \{n_1, \ldots, n_k\} = 1$. For example, $gcd \{-3, -7\} = 1$, and thus $\{-3, -7\}$ is coprime.

Let n_1, \ldots, n_k be nonzero integers. Then, the least common multiple of the set $\{n_1, \ldots, n_k\}$ is the positive integer defined by

$$\operatorname{lcm} \{n_1, \dots, n_k\} \stackrel{\triangle}{=} \min \{i \in \mathbb{P} : n_1, \dots, n_k \text{ divide } i\}.$$

For example, $lcm \{-3, -7\} = 21$, and $lcm \{-2, 3\} = 6$.

Let m be a nonzero integer, and let n be an integer. Then, m|n if and only if $\gcd\{m,n\} = |m|$.

Let n be an integer, and let k be a positive integer. Furthermore, let l be an integer, and let $r \in [0, k-1]$ be an integer satisfying n = kl + r. Then, we write

$$r = \operatorname{rem}_k(n). \tag{1.44}$$

where r is the remainder after dividing n by k. For example, $rem_3(-11) = 1$ and $rem_3(11) = 2$. Furthermore, k|n if and only if $rem_k(n) = 0$.

Proposition 1.5.1. Let m and n be integers, and let k be a positive integer. Then,

$$\operatorname{rem}_{k}(n-m) = \operatorname{rem}_{k}[\operatorname{rem}_{k}(n) - \operatorname{rem}_{k}(m)]. \tag{1.45}$$

Furthermore, k|n-m if and only if $rem_k(n) = rem_k(m)$.

Definition 1.5.2. Let n and m be integers, and let k be a positive integer. Then, n and m are congruent modulo k if k divides n-m. In this case, we write

$$n \stackrel{k}{\equiv} m. \tag{1.46}$$

Proposition 1.5.1 implies that $n \stackrel{k}{\equiv} m$ if and only if the remainders of n and m after dividing by k differ by a multiple of k. For example, $-1 \stackrel{3}{\equiv} 2 \stackrel{3}{\equiv} 8 \stackrel{3}{\equiv} 26 \stackrel{3}{\equiv} 29$.

Let n be an integer. Then, n is even if 2 divides n, whereas n is odd if 2 does not divide n. Now, assume that $n \geq 2$. Then, n is prime if, for all integers m such that $2 \leq m < n$, m does not divide n. Note that 2 is prime, but 1 is not prime. Letting p_n denote the nth prime, it follows that

$$(p_i)_{i=1}^{25} = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97).$$

The nth harmonic number is denoted by

$$H_n \triangleq \sum_{i=1}^n \frac{1}{i}.\tag{1.47}$$

Then,

$$(H_i)_{i=0}^{12} = \left(0,1,\frac{3}{2},\frac{11}{6},\frac{25}{12},\frac{137}{60},\frac{49}{20},\frac{363}{140},\frac{761}{280},\frac{7129}{2520},\frac{7381}{2520},\frac{83711}{27720},\frac{86021}{27720}\right).$$

For all $\alpha \in \mathbb{R}$, the nth generalized harmonic number of order α is denoted by

$$H_{n,\alpha} \stackrel{\triangle}{=} \sum_{i=1}^{n} \frac{1}{i^{\alpha}}.$$
 (1.48)

Define $H_0 \stackrel{\triangle}{=} H_{0,\alpha} \stackrel{\triangle}{=} 0$. Then,

$$(H_{i,2})_{i=0}^{10} = \left(0,1,\frac{5}{4},\frac{49}{36},\frac{205}{144},\frac{5269}{3600},\frac{5369}{3600},\frac{266681}{176400},\frac{1077749}{705600},\frac{9778141}{6350400},\frac{1968329}{1270080}\right).$$

The symbol $\mathbb C$ denotes the set of complex numbers. The elements of $\mathbb R$ and $\mathbb C$ are scalars. Define

$$j \stackrel{\triangle}{=} \sqrt{-1}.\tag{1.49}$$

Let $z \in \mathbb{C}$. Then, z = x + yj, where $x, y \in \mathbb{R}$. Define the *complex conjugate* \overline{z} of z by

$$\overline{z} \stackrel{\triangle}{=} x - y\jmath \tag{1.50}$$

and the real part $\operatorname{Re} z$ of z and the imaginary part $\operatorname{Im} z$ of z by

Re
$$z \stackrel{\triangle}{=} \frac{1}{2}(z + \overline{z}) = x$$
, Im $z \stackrel{\triangle}{=} \frac{1}{2\jmath}(z - \overline{z}) = \frac{1}{2}(\overline{z} - z)\jmath = y$. (1.51)

Furthermore, the absolute value |z| of z is defined by

$$|z| \triangleq \sqrt{x^2 + y^2}.\tag{1.52}$$

Finally, the argument $\arg z \in (-\pi, \pi]$ of z is defined by

$$\arg z \triangleq \begin{cases} 0, & y = x = 0, \\ \tan \frac{y}{x}, & x > 0, \\ -\frac{\pi}{2}, & y < 0, x = 0, \\ \frac{\pi}{2}, & y > 0, x = 0, \\ -\pi + \operatorname{atan} \frac{y}{x}, & y < 0, x < 0, \\ \pi + \operatorname{atan} \frac{y}{x}, & y \ge 0, x < 0, \end{cases}$$

$$(1.53)$$

where atan: $\mathbb{R} \mapsto \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Let z be a complex number. Then,

$$z = |z|e^{(\arg z)\jmath}. (1.54)$$

z is a nonnegative number if and only if arg z = 0, and z is a negative number if and only if arg $z = -\pi$. If z is not a nonnegative number, then arg $z \in (-\pi, 0) \cup (0, \pi]$ is the angle from the positive real axis to the line segment connecting z to the origin in the complex plane, where clockwise angles are negative and confined to the set $(-\pi, 0)$, and counterclockwise angles are positive and confined to the set $(0, \pi]$. Furthermore, if z is nonzero, then

$$\arg \frac{1}{z} = \begin{cases} -\arg z, & \arg z \in (-\pi, \pi), \\ \pi, & \arg z = \pi. \end{cases}$$
 (1.55)

Let z_1 and z_2 be nonzero complex numbers. Then, there exists $k \in \{-1,0,1\}$ such that

$$\arg z_1 z_2 = \arg z_1 + \arg z_2 + 2k\pi. \tag{1.56}$$

Hence, $2\pi |\arg z_1 z_2 - \arg z_1 - \arg z_2$. For example,

$$\arg(-1)(-1) = \arg 1 = 0 = \pi + \pi - 2\pi = \arg -1 + \arg -1 - 2\pi,$$

$$\arg(1)(-1) = \arg -1 = \pi = 0 + \pi = \arg 1 + \arg -1,$$

$$\arg(-\gamma)(-\gamma) = \arg -1 = \pi = -\pi/2 - \pi/2 + 2\pi = \arg -\gamma + \arg -\gamma + 2\pi.$$

The closed left half plane (CLHP), open left half plane (OLHP), closed right half plane (CRHP), and open right half plane (ORHP) are the subsets of \mathbb{C} defined by

OLHP
$$\triangleq \{x \in \mathbb{C}: \operatorname{Re} x < 0\}, \quad \operatorname{ORHP} \triangleq \{x \in \mathbb{C}: \operatorname{Re} x > 0\},$$
 (1.57)

$$CLHP \triangleq \{x \in \mathbb{C}: \operatorname{Re} x \le 0\}, \quad CRHP \triangleq \{x \in \mathbb{C}: \operatorname{Re} x \ge 0\}. \tag{1.58}$$

The imaginary numbers are represented by IA. Note that 0 is a real number, an imaginary number, and a complex number.

Next, we define the $open\ inside\ unit\ disk\ (OIUD)$ and the $closed\ inside\ unit\ disk\ (CIUD)$ by

OIUD
$$\triangleq \{x \in \mathbb{C}: |x| < 1\}, \quad \text{CIUD} \triangleq \{x \in \mathbb{C}: |x| \le 1\}.$$
 (1.59)

The complements of the open inside unit disk and the closed inside unit disk are given, respectively, by the *closed outside unit disk* (COUD) and the *open outside unit disk*, which are defined by

$$\mathrm{COUD} \triangleq \{x \in \mathbb{C} \colon \ |x| \geq 1\}, \quad \mathrm{OOUD} \triangleq \{x \in \mathbb{C} \colon \ |x| > 1\}. \tag{1.60}$$

The unit circle in \mathbb{C} is denoted by UC.

Since \mathbb{R} is a proper subset of \mathbb{C} , we state many results for \mathbb{C} . In other cases, we treat \mathbb{R} and \mathbb{C} separately. To do this efficiently, we use the symbol \mathbb{F} to consistently denote either \mathbb{R} or \mathbb{C} .

Let $n \in \mathbb{N}$. Then,

$$n! \stackrel{\triangle}{=} \begin{cases} n(n-1)\cdots(2)(1), & n \ge 1, \\ 1, & n = 0. \end{cases}$$
 (1.61)

Then,

 $(i!)_{i=0}^{12} = (1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600).$

Let $z \in \mathbb{C}$ and $k \in \mathbb{Z}$. Then,

In particular, if $n, k \in \mathbb{N}$, then

$$\binom{n}{k} = \begin{cases} \frac{n!}{(n-k)!k!}, & n \ge k \ge 0, \\ 0, & k > n \ge 0. \end{cases}$$
 (1.63)

Hence,

$$\binom{n}{n} = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$
 (1.64)

For example,

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} = 0, \quad \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -1, \quad \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0, \quad \begin{pmatrix} -1 \\ 0 \end{pmatrix} = 1, \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1,$$
$$\begin{pmatrix} -1 \\ 3 \end{pmatrix} = -1, \quad \begin{pmatrix} -\frac{1}{2} \\ 3 \end{pmatrix} = \frac{-5}{16}, \quad \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 0, \quad \begin{pmatrix} \frac{1}{2} \\ 3 \end{pmatrix} = \frac{1}{16}, \quad \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 0.$$

Note that, for all $n \geq k \geq 1$, $\binom{n}{k}$ is the number of k-element subsets of $\{1, \ldots, n\}$. Let $z, w \in \mathbb{C}$, and assume that $z \notin -\mathbb{P}$, $w \notin -\mathbb{P}$, and $z - w \notin -\mathbb{P}$. Then,

$$\begin{pmatrix} z \\ w \end{pmatrix} \triangleq \frac{\Gamma(z+1)}{\Gamma(w+1)\Gamma(z-w+1)}.$$
 (1.65)

For $k_1, \ldots, k_l \in \mathbb{N}$, where $\sum_{i=1}^l k_i = n$, we define the multinomial coefficient

$$\binom{n}{k_1, \dots, k_l} \triangleq \frac{n!}{k_1! \cdots k_l!}.$$
 (1.66)

Note that, if $1 \leq m \leq n$, then

$$\binom{n}{m} = \binom{n}{m, n-m}.$$

For $z \in \mathbb{C}$ and $k \in \mathbb{N}$, we define the falling factorial

$$z^{\underline{k}} \stackrel{\triangle}{=} \begin{cases} z(z-1)\cdots(z-k+1), & k \ge 0, \\ 1, & k = 0. \end{cases}$$
 (1.67)

In particular, if $n \in \mathbb{N}$, then $n^{\underline{n}} = n!$. Hence, if $z \in \mathbb{C}$ and $k \in \mathbb{Z}$, then

Furthermore, for all $z \in \mathbb{C}$ and $k \in \mathbb{N}$, we define the rising factorial

$$z^{\overline{k}} \stackrel{\triangle}{=} \begin{cases} z(z+1)\cdots(z+k-1), & k \ge 1, \\ 1, & k = 0. \end{cases}$$
 (1.69)

In particular, if $n \in \mathbb{N}$, then $1^{\overline{n}} = n!$. Finally, if $z \in \mathbb{C}$ and $k \in \mathbb{N}$, then

$$z^{\underline{k}} = (z - k + 1)^{\overline{k}}, \quad z^{\overline{k}} = (z + k - 1)^{\underline{k}}, \quad z^{\underline{k}} = (-1)^k (-z)^{\overline{k}}.$$
 (1.70)

The double factorial is defined by

$$n!! \stackrel{\triangle}{=} \begin{cases} n(n-2)(n-4)\cdots(2) = 2^{n/2}(n/2)!, & n \text{ even,} \\ n(n-2)(n-4)\cdots(3)(1) = \frac{(n+1)!}{2^{(n+1)/2}[\frac{1}{2}(n+1)]!}, & n \text{ odd.} \end{cases}$$
(1.71)

By convention, (-1)!! = 0!! = 1. Finally, if $n \ge 1$, then (2n)!!(2n-1)!! = (2n)! and (2n+1)!!(2n)!! = (2n+1)!.

1.6 Functions and Their Inverses

Let \mathcal{X} and \mathcal{Y} be nonempty sets. Then, a function f that maps \mathcal{X} into \mathcal{Y} is a rule $f: \mathcal{X} \mapsto \mathcal{Y}$ that assigns a unique element f(x) (the image of x) of \mathcal{Y} to each element x of \mathcal{X} . Equivalently, a function $f: \mathcal{X} \mapsto \mathcal{Y}$ can be viewed as a subset \mathcal{F} of $\mathcal{X} \times \mathcal{Y}$ such that, for each $x \in \mathcal{X}$, there exists a unique $y \in \mathcal{Y}$ such that $(x, y) \in \mathcal{F}$. In this case,

$$\mathcal{F} = \operatorname{Graph}(f) \stackrel{\triangle}{=} \{(x, f(x)) \colon x \in \mathcal{X}\}. \tag{1.72}$$

The set \mathcal{X} is the *domain* of f, while the set \mathcal{Y} is the *codomain* of f. For $\mathcal{X}_1 \subseteq \mathcal{X}$, it is convenient to define

$$f(\mathcal{X}_1) \triangleq \{ f(x) \colon \ x \in \mathcal{X}_1 \}. \tag{1.73}$$

The range of f is the set $\Re(f) \triangleq f(\mathcal{X})$. The function f is one-to-one if, for all $x_1, x_2 \in \mathcal{X}$ such that $f(x_1) = f(x_2)$, it follows that $x_1 = x_2$. The function f is onto if $\Re(f) = \mathcal{Y}$. The function $I_{\mathcal{X}}$: $\mathcal{X} \mapsto \mathcal{X}$ defined by $I_{\mathcal{X}}(x) \triangleq x$ for all $x \in \mathcal{X}$ is the identity mapping on \mathcal{X} . Finally, if $\mathcal{S} \subseteq \mathcal{X}$, $f_{\mathcal{S}}$: $\mathcal{S} \mapsto \mathcal{Y}$, and, for all $x \in \hat{\mathcal{X}}$, $f_{\mathcal{S}}(x) = f(x)$, then $f_{\mathcal{S}}$ is the restriction of f to \mathcal{S} .

Note that the subset \mathcal{F} of $\mathcal{X} \times \mathcal{Y}$ can be viewed as a relation on $(\mathcal{X}, \mathcal{Y})$. Consequently, a function can be viewed as a special case of a relation.

Let \mathcal{X} be a set, and let $\hat{\mathcal{X}}$ be a partition of \mathcal{X} . Furthermore, let $f \colon \hat{\mathcal{X}} \mapsto \mathcal{X}$, where, for all $\mathcal{S} \in \hat{\mathcal{X}}$, it follows that $f(\mathcal{S}) \in \mathcal{S}$. Then, f is a canonical mapping, and $f(\mathcal{S})$ is a canonical form. That is, for each element $\mathcal{S} \subseteq \mathcal{X}$ in the partition $\hat{\mathcal{X}}$ of \mathcal{X} , the function f assigns an element of \mathcal{S} to the set \mathcal{S} . For example, let $\mathcal{S} \triangleq \{1, 2, 3, 4\}$, $\hat{\mathcal{X}} \triangleq \{\{1, 3\}, \{2, 4\}\}$, $f(\{1, 3\}) = 1$, and $f(\{2, 4\}) = 2$.

Let \mathcal{X} and \mathcal{Y} be sets. If $f: \mathcal{X} \mapsto \mathcal{Y}$ is one-to-one and onto, then \mathcal{X} and \mathcal{Y} have the same *cardinality*, which is written as $\operatorname{card}(\mathcal{X}) = \operatorname{card}(\mathcal{Y})$. Consequently, if \mathcal{X} is finite, then $\operatorname{card}(\mathcal{X})$ is the number of elements of \mathcal{X} . If $f: \mathcal{X} \mapsto \mathcal{Y}$ is one-to-one, then $\operatorname{card}(\mathcal{X}) \leq \operatorname{card}(\mathcal{Y})$. If every function $f: \mathcal{X} \mapsto \mathcal{Y}$ that is one-to-one is not onto, then $\operatorname{card}(\mathcal{X}) < \operatorname{card}(\mathcal{Y})$. If

 $\operatorname{card}(\mathfrak{X}) = \operatorname{card}(\mathbb{P})$, then \mathfrak{X} is *countable*. Note that $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{P}) = \operatorname{card}(\mathbb{Z}) = \operatorname{card}(\mathbb{Q}) < \operatorname{card}([0,1]) = \operatorname{card}(\mathbb{R}) = \operatorname{card}(\mathbb{R}^2)$.

Let \mathcal{X} be a finite multiset. Then, $\operatorname{card}(\mathcal{X})$ is the number of elements in \mathcal{X} . Cardinality is not defined for infinite multisets.

Let \mathcal{X} be a set, and let $f: \mathcal{X} \mapsto \mathcal{X}$. Then, f is a function on \mathcal{X} . The element $x \in \mathcal{X}$ is a fixed point of f if f(x) = x.

Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be sets, let $f: \mathcal{X} \mapsto \mathcal{Y}$, and let $g: f(\mathcal{X}) \mapsto \mathcal{Z}$. Then, the *composition* of g and f is the function $g \circ f: \mathcal{X} \mapsto \mathcal{Z}$ defined by $(g \circ f)(x) \stackrel{\triangle}{=} g[f(x)]$. The following result shows that function composition is associative.

Proposition 1.6.1. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$, and \mathcal{W} be sets, and let $f: \mathcal{X} \mapsto \mathcal{Y}, g: \mathcal{Y} \mapsto \mathcal{Z}, h: \mathcal{Z} \mapsto \mathcal{W}$. Then,

$$h \circ (g \circ f) = (h \circ g) \circ f. \tag{1.74}$$

Hence, we write $h \circ g \circ f$ for $h \circ (g \circ f)$ and $(h \circ g) \circ f$.

Proposition 1.6.2. Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be sets, and let $f: \mathcal{X} \mapsto \mathcal{Y}$ and $g: \mathcal{Y} \mapsto \mathcal{Z}$. Then, the following statements hold:

- i) If $g \circ f$ is onto, then g is onto.
- ii) If $g \circ f$ is one-to-one, then f is one-to-one.

Proof. To prove i), note that $\mathcal{Z} = g(f(\mathcal{X})) \subseteq g(\mathcal{Y}) \subseteq \mathcal{Z}$. Hence, $g(\mathcal{Y}) = \mathcal{Z}$. To prove ii), suppose that f is not one-to-one. Then, there exist distinct $x_1, x_2 \in \mathcal{X}$ such that $f(x_1) = f(x_2)$. Therefore, $g(f(x_1)) = g(f(x_2))$, and thus $g \circ f$ is not one-to-one.

Let $f: \mathcal{X} \mapsto \mathcal{Y}$. Then, f is left invertible if there exists a function $f^{\mathsf{L}}: \mathcal{Y} \mapsto \mathcal{X}$ (a left inverse of f) such that $f^{\mathsf{L}} \circ f = I_{\mathcal{X}}$, whereas f is right invertible if there exists a function $f^{\mathsf{R}}: \mathcal{Y} \mapsto \mathcal{X}$ (a right inverse of f) such that $f \circ f^{\mathsf{R}} = I_{\mathcal{Y}}$. In addition, the function $f: \mathcal{X} \mapsto \mathcal{Y}$ is invertible if there exists a function $f^{\mathsf{Inv}}: \mathcal{Y} \mapsto \mathcal{X}$ (the inverse of f) such that $f^{\mathsf{Inv}} \circ f = I_{\mathcal{X}}$ and $f \circ f^{\mathsf{Inv}} = I_{\mathcal{Y}}$; that is, f^{Inv} is both a left inverse of f and a right inverse of f.

Let $f \colon \mathcal{X} \mapsto \mathcal{Y}$, and let $\tilde{\mathcal{X}}$ denote the set of subsets of \mathcal{X} . Then, for all $y \in \mathcal{Y}$, the set-valued inverse $f^{\mathsf{inv}} \colon \mathcal{Y} \mapsto \tilde{\mathcal{X}}$ is defined by $f^{\mathsf{inv}}(y) \triangleq \{x \in \mathcal{X} \colon f(x) = y\}$. If f is one-to-one, then, for all $y \in \mathcal{R}(f)$, the set $f^{\mathsf{inv}}(y)$ has a single element, and thus $f^{\mathsf{inv}} \colon \mathcal{R}(f) \mapsto \mathcal{X}$ is a function. If f is invertible, then, for all $y \in \mathcal{Y}$, $f^{\mathsf{inv}}(y) = \{f^{\mathsf{Inv}}(y)\}$. The inverse image $f^{\mathsf{inv}}(\mathcal{S})$ of $\mathcal{S} \subseteq \mathcal{Y}$ is the set

$$f^{\mathsf{inv}}(\mathbb{S}) \stackrel{\triangle}{=} \bigcup_{y \in \mathbb{S}} f^{\mathsf{inv}}(y) = \{ x \in \mathfrak{X} \colon \ f(x) \in \mathbb{S} \}.$$
 (1.75)

Note that $f^{\mathsf{inv}}(S)$ is defined whether or not f is invertible. In fact, $f^{\mathsf{inv}}(Y) = f^{\mathsf{inv}}[f(X)] = X$ and $f[f^{\mathsf{inv}}(Y)] = f(X)$.

Proposition 1.6.3. Let \mathcal{X} and \mathcal{Y} be sets, let $f: \mathcal{X} \mapsto \mathcal{Y}$, and let $g: \mathcal{Y} \mapsto \mathcal{X}$. Then, the following statements are equivalent:

- i) f is a left inverse of q.
- ii) g is a right inverse of f.

Proposition 1.6.4. Let \mathcal{X} and \mathcal{Y} be sets, let $f: \mathcal{X} \mapsto \mathcal{Y}$, and assume that f is invertible. Then, f has a unique inverse. Now, let $g: \mathcal{Y} \mapsto \mathcal{X}$. Then, the following statements are equivalent:

- i) g is the inverse of f.
- ii) f is the inverse of g.

Theorem 1.6.5. Let \mathfrak{X} and \mathfrak{Y} be sets, and let $f: \mathfrak{X} \mapsto \mathfrak{Y}$. Then, the following statements hold:

- i) f is left invertible if and only if f is one-to-one.
- ii) f is right invertible if and only if f is onto.

Furthermore, the following statements are equivalent:

- iii) f is invertible.
- iv) f has a unique inverse.
- v) f is one-to-one and onto.
- vi) f is left invertible and right invertible.
- vii) f has a unique right inverse.
- viii) f has a one-to-one left inverse.
- ix) f has an onto right inverse.

If, in addition, $\operatorname{card}(\mathfrak{X}) \geq 2$, then the following statement is equivalent to iii)-ix):

x) f has a unique left inverse.

Proof. To prove i), suppose that f is left invertible with left inverse $g \colon \mathcal{Y} \mapsto \mathcal{X}$. Furthermore, suppose that $x_1, x_2 \in \mathcal{X}$ satisfy $f(x_1) = f(x_2)$. Then, $x_1 = g[f(x_1)] = g[f(x_2)] = x_2$, which shows that f is one-to-one. Conversely, suppose that f is one-to-one so that, for all $y \in \mathcal{R}(f)$, there exists a unique $x \in \mathcal{X}$ such that f(x) = y. Hence, define the function $g \colon \mathcal{Y} \mapsto \mathcal{X}$ by $g(y) \triangleq x$ for all $y = f(x) \in \mathcal{R}(f)$ and by g(y) arbitrary for all $y \in \mathcal{Y} \setminus \mathcal{R}(f)$. Consequently, g[f(x)] = x for all $x \in \mathcal{X}$, which shows that g is a left inverse of f.

To prove ii), suppose that f is right invertible with right inverse $g \colon \mathcal{Y} \mapsto \mathcal{X}$. Then, for all $y \in \mathcal{Y}$, it follows that f[g(y)] = y, which shows that f is onto. Conversely, suppose that f is onto so that, for all $y \in \mathcal{Y}$, there exists at least one $x \in \mathcal{X}$ such that f(x) = y. Selecting one such x arbitrarily, define $g \colon \mathcal{Y} \mapsto \mathcal{X}$ by $g(y) \triangleq x$. Consequently, f[g(y)] = y for all $y \in \mathcal{Y}$, which shows that g is a right inverse of f.

Let $f: \mathcal{X} \to \mathcal{Y}$, and assume that f is one-to-one. Then, the function $\hat{f}: \mathcal{X} \to \mathcal{R}(f)$ defined by $\hat{f}(x) \triangleq f(x)$ is one-to-one and onto and thus invertible. For convenience, we write $f^{\mathsf{Inv}}: \mathcal{R}(f) \mapsto \mathcal{X}$.

The sine and cosine functions $\sin : \mathbb{R} \to [-1,1]$ and $\cos : \mathbb{R} \to [-1,1]$ can be defined in an elementary way in terms of ratios of sides of triangles. The additional trigonometric functions $\tan : \mathbb{R} \setminus \pi(\frac{1}{2} + \mathbb{Z}) \to \mathbb{R}$, $\csc : \mathbb{R} \setminus \pi\mathbb{Z} \to \mathbb{R}$, $\sec : \mathbb{R} \setminus \pi(\frac{1}{2} + \mathbb{Z}) \to \mathbb{R}$, and $\cot : \mathbb{R} \setminus \pi\mathbb{Z} \to \mathbb{R}$ are defined by

$$\tan x \stackrel{\triangle}{=} \frac{\sin x}{\cos x}, \quad \csc x \stackrel{\triangle}{=} \frac{1}{\sin x}, \quad \sec x \stackrel{\triangle}{=} \frac{1}{\cos x}, \quad \cot x \stackrel{\triangle}{=} \frac{\cos x}{\sin x}.$$
 (1.76)

The exponential function exp: $\mathbb{R} \mapsto (0, \infty)$ is defined by

$$\exp(x) \stackrel{\triangle}{=} e^x, \tag{1.77}$$

where $e \triangleq \lim_{x\to\infty} (1+1/x)^x \approx 2.71828...$ The exponential function can be extended to complex arguments as follows. For all $x \in \mathbb{R}$, the power series for "exp" is given by

$$\exp(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!}.$$
(1.78)

Hence, for all $y \in \mathbb{R}$, we define

$$\exp(yj) = e^{yj} \triangleq \sum_{i=0}^{\infty} \frac{(yj)^i}{i!} = \sum_{i=0}^{\infty} (-1)^i \frac{y^{2i}}{(2i)!} + \sum_{i=0}^{\infty} (-1)^{2i+1} \frac{y^{2i+1}}{(2i+1)!} j = \cos y + (\sin y)j.$$
(1.79)

Thus, for all $y \in \mathbb{R}$,

$$\sin y = \frac{1}{2j} (e^{yj} - e^{-yj}), \quad \cos y = \frac{1}{2} (e^{yj} + e^{-yj}).$$
 (1.80)

Now, let z = x + yj, where $x, y \in \mathbb{R}$. Then, exp: $\mathbb{C} \mapsto \mathbb{C} \setminus \{0\}$ is defined by

$$\exp(z) = \exp(x + yj) \stackrel{\triangle}{=} e^{x + yj} = e^x e^{yj} = e^x [\cos x + (\sin x)j]. \tag{1.81}$$

In particular, $e^{\pi j} = -1$.

The six trigonometric functions can now be extended to complex arguments. In particular, by replacing $y \in \mathbb{R}$ in (1.80) by $z \in \mathbb{C}$, we define $\sin : \mathbb{C} \mapsto \mathbb{C}$ and $\cos : \mathbb{C} \mapsto \mathbb{C}$ by

$$\sin z \stackrel{\triangle}{=} \frac{1}{2j} (e^{zj} - e^{-zj}), \quad \cos z \stackrel{\triangle}{=} \frac{1}{2} (e^{zj} + e^{-zj}). \tag{1.82}$$

Hence,

$$e^{z\jmath} = \cos z + (\sin z)\jmath, \quad e^{-z\jmath} = \cos z - (\sin z)\jmath. \tag{1.83}$$

Likewise, tan: $\mathbb{C}\backslash\pi(\frac{1}{2}+\mathbb{Z}) \mapsto \mathbb{R}$, csc: $\mathbb{C}\backslash\pi\mathbb{Z} \mapsto \mathbb{R}$, sec: $\mathbb{C}\backslash\pi(\frac{1}{2}+\mathbb{Z}) \mapsto \mathbb{R}$, and cot: $\mathbb{C}\backslash\pi\mathbb{Z} \mapsto \mathbb{R}$ are defined by

$$\tan z \triangleq \frac{\sin z}{\cos z}, \quad \csc z \triangleq \frac{1}{\sin z}, \quad \sec z \triangleq \frac{1}{\cos z}, \quad \cot z \triangleq \frac{\cos z}{\sin z}.$$
 (1.84)

Let $f: \mathcal{X} \mapsto \mathcal{Y}$. If f is not one-to-one, then f is not invertible. This is the case, for example, for a periodic function such as $\sin : \mathbb{R} \mapsto [-1,1]$, respectively. In particular, $\sin^{\mathsf{inv}}(1) = \{(4k+1)\pi/2 \colon k \in \mathbb{Z}\}$. However, it is convenient to define a *principal inverse* asin of \sin by choosing an element of the set $\sin^{\mathsf{inv}}(y)$ for each $y \in [-1,1]$. Although this choice can be made arbitrarily, it is traditional to define

asin:
$$[-1,1] \mapsto [-\frac{\pi}{2}, \frac{\pi}{2}].$$
 (1.85)

Similarly,

acos:
$$[-1,1] \mapsto [0,\pi]$$
, atan: $\mathbb{R} \mapsto (-\frac{\pi}{2},\frac{\pi}{2})$, (1.86)

acsc:
$$(-\infty, -1] \cup [1, \infty) \mapsto [-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}],$$
 (1.87)

asec:
$$(-\infty, -1] \cup [1, \infty) \mapsto [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi],$$
 (1.88)

acot:
$$\mathbb{R} \mapsto (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}].$$
 (1.89)

An analogous situation arises for the exponential function $f(z) = e^z$, which is not one-to-one and thus requires a principal inverse in the form of a logarithm defined on $\mathbb{C}\setminus\{0\}$. Let w be a nonzero complex number, and, for all $i \in \mathbb{Z}$, define

$$z_i \stackrel{\triangle}{=} \log|w| + (\arg w + 2i\pi)\jmath. \tag{1.90}$$

Then, for all $i \in \mathbb{Z}$,

$$e^{z_i} = |w|e^{(\arg w)\jmath}e^{2i\pi\jmath} = |w|e^{(\arg w)\jmath} = w.$$
 (1.91)

Consequently, $f^{\text{inv}}(w) = \{z_i : i \in \mathbb{Z}\}$. For example, $f^{\text{inv}}(1) = \{2i\pi \jmath : i \in \mathbb{Z}\}$, and $f^{\text{inv}}(-1) = \{(2i+1)\pi \jmath : i \in \mathbb{Z}\}$. The principal logarithm log w of w is defined by choosing z_0 , which yields

$$\log w \stackrel{\triangle}{=} z_0 = \log |w| + (\arg w)_{\mathcal{I}}. \tag{1.92}$$

Therefore,

$$\log: \mathbb{C}\backslash\{0\} \mapsto \{z: \operatorname{Re} z \neq 0 \text{ and } -\pi < \operatorname{Im} z \leq \pi\}. \tag{1.93}$$

Hence,

Re
$$\log w = \log |w|$$
, Im $\log w = \arg w$. (1.94)

Let w_1 and w_2 be nonzero complex numbers. Then, with $f: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ given by (1.81),

$$f^{\text{inv}}(w_1 w_2) = f^{\text{inv}}(w_1) + f^{\text{inv}}(w_2). \tag{1.95}$$

However,

$$\log w_1 w_2 = \log w_1 + \log w_2 \tag{1.96}$$

if and only if

$$\arg w_1 w_2 = \arg w_1 + \arg w_2. \tag{1.97}$$

For example,

$$\arg\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\jmath\right)^2 = \arg\jmath = \frac{\pi}{2} = \frac{\pi}{4} + \frac{\pi}{4} = \arg\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\jmath\right) + \arg\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\jmath\right),$$

and thus

$$\log\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\jmath\right)^2 = \log\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\jmath\right) + \log\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\jmath\right).$$

However,

$$\arg(-1)^2 = \arg 1 = 0 \neq 2\pi = \pi + \pi = \arg(-1) + \arg(-1),$$

and thus

$$\log{(-1)^2} = \log{1} = 0 \neq 2\pi j = \pi j + \pi j = \log(-1) + \log(-1).$$

Therefore, there exist nonzero complex numbers w_1 and w_2 such that the principal logarithm does not satisfy (1.96).

Let w be a nonzero complex number. Then,

$$w = e^{\log w}. (1.98)$$

Now, let z be a complex number. Then,

$$\log e^z = z - \left(\text{round } \frac{\text{Im } z}{2\pi}\right) 2\pi \jmath, \tag{1.99}$$

where, for all $x \in \mathbb{R}$, round(x) denotes the closest integer to x except in the case where 2x is an integer, in which case round(x) = |x|. Therefore, $\log e^z = z$ if and only if $\operatorname{Im} z \in (-\pi, \pi]$.

An analogous situation arises for nth roots. Consider $f : \mathbb{R} \mapsto [0, \infty)$ defined by $f(x) = x^2$. Then, for all $y \in [0, \infty)$, it follows that $f^{\mathsf{inv}}(y) = \{-\sqrt{y}, \sqrt{y}\}$, where \sqrt{y} represents the nonnegative square root of $y \geq 0$. For complex-valued extensions, let $n \geq 1$, and define $f : \mathbb{C} \mapsto \mathbb{C}$ by $f(z) = z^n$. Let w be a nonzero complex number. If z satisfies $z^n = w$, then $\log z^n = \log w = \log |w| + (\arg w)\jmath$, where " \log " is the principal log. Furthermore, z satisfies $z^n = w$ if and only if there exists an integer i such that $n \log z = \log |w| + (\arg w + 2i\pi)\jmath$. Therefore, for all $i \in \mathbb{Z}$, define

$$z_i \stackrel{\triangle}{=} e^{\frac{1}{n}[\log|w| + (\arg w + 2i\pi)j]},\tag{1.100}$$

which satisfies

$$z_i^n = w. (1.101)$$

Note that, for all $i \in \mathbb{Z}$, $z_{n+i} = z_i$. Therefore, for all $i \in \{0, \dots, n-1\}$, define the n distinct numbers

$$z_i \stackrel{\triangle}{=} \sqrt[n]{|w|} e^{\frac{\arg w}{n} j} e^{\frac{2i\pi}{n} j}, \tag{1.102}$$

where $\sqrt[n]{|w|}$ is the nonnegative *n*th root of |w|. Consequently, $f^{\text{inv}}(w) = \{z_0, \ldots, z_{n-1}\}$. The principal *n*th root $w^{1/n}$ of w is defined by choosing z_0 , which yields

$$w^{1/n} \stackrel{\triangle}{=} z_0 = \sqrt[n]{|w|} e^{\frac{\arg w}{n} j}. \tag{1.103}$$

In particular, if w is a positive number, then $w^{1/n} = \sqrt[n]{w}$, which is the positive nth root of w. However, for an odd integer n and a negative number a, a notational conflict arises between the principal nth root of a and the negative nth root of a. For example, $(-1)^{1/3} = e^{(\pi/3)j}$, whereas, for all odd integers n, it is traditional to interpret $\sqrt[n]{-1}$ as -1. In other words, for all a < 0 and odd $n \ge 1$, $\sqrt[n]{a} \triangleq -\sqrt[n]{|a|}$, and thus

$$a^{1/n} = \sqrt[n]{|a|}e^{(\pi/n)j} = \sqrt[n]{a}e^{[(1/n-1)\pi]j}.$$
(1.104)

Let z and α be complex numbers, and assume that z is not zero. As an extension of the functions $f(z) = z^n$ and $f(z) = z^{1/n}$, define

$$z^{\alpha} \stackrel{\triangle}{=} e^{\alpha \log z},\tag{1.105}$$

where $\log z$ is the principal logarithm of z. For example,

$$\frac{1}{j^{2j}} = e^{-2j\log j} = e^{-2j(\pi/2)j} = e^{\pi}.$$

Next, let z_1 and z_2 be complex numbers, and let α be a real number. Then, $(z_1z_2)^{\alpha} = z_1^{\alpha}z_2^{\alpha}$. Now, let α be a complex number. Then, $\alpha^{z_1}\alpha^{z_2} = \alpha^{z_1+z_2}$. However, $(z_1z_2)^{\alpha}$ and $z_1^{\alpha}z_2^{\alpha}$ are not necessarily equal. For example, $(-1)^{\jmath}(-1)^{\jmath} = e^{-\pi}e^{-\pi} = e^{-2\pi} \neq 1 = 1^{\jmath} = [(-1)(-1)]^{\jmath}$. However,

$$(z_1 z_2)^{\alpha} = z_1^{\alpha} z_2^{\alpha} e^{2n\pi\alpha j}, \tag{1.106}$$

where

$$n = \begin{cases} 1, & -2\pi < \arg z_1 + \arg z_2 \le -\pi, \\ 0, & -\pi < \arg z_1 + \arg z_2 \le \pi, \\ -1, & \pi < \arg z_1 + \arg z_2 \le 2\pi. \end{cases}$$
 (1.107)

Finally,

$$(\alpha^{z_1})^{z_2} = \alpha^{z_1 z_2} e^{2n\pi z_2 j}, \tag{1.108}$$

where

$$n = \left| \frac{1}{2} - \frac{(\operatorname{Im} z_1) \log |\alpha| + (\operatorname{Re} z_1) \arg \alpha}{2\pi} \right|. \tag{1.109}$$

For example, setting $\alpha = -1$, $z_1 = -1$, and $z_2 = \frac{1}{2}$ yields n = 1, and thus $j = (-1)^{1/2} = [(-1)^{-1}]^{1/2} = (-1)^{-1/2}e^{n\pi j} = (1/j)(-1) = j$. Furthermore,

$$(e^{z_1})^{z_2} = e^{z_1 z_2} e^{2n\pi z_2 j}, (1.110)$$

where $n = \left\lfloor \frac{1}{2} - \frac{\text{Im}\,z_1}{2\pi} \right\rfloor$. See [pennisi, pp. 108–114] and [ponnusamy, pp. 91, 114–119].

Finally, let z, α , and β be complex numbers. Then, $(z^{\alpha})^{\beta}$, $(z^{\beta})^{\alpha}$, and $z^{\alpha\beta}$ may be different as can be seen from the example $z=\frac{1}{2}\jmath$, $\alpha=2-\jmath$, and $\beta=-3-\jmath$, where $(z^{\alpha})^{\beta}\approx 0.03+0.04\jmath$, $(z^{\beta})^{\alpha}\approx 9104+10961\jmath$, and $z^{\alpha\beta}\approx 17+20\jmath$. A similar situation can occur in the case where z, α , and β are real. For example, if z=-1, $\alpha=1/2$, and $\beta=2$, then $(z^{\alpha})^{\beta}=z^{\alpha\beta}=-1\neq 1=(z^{\beta})^{\alpha}$. As a final example, let z=e, $\alpha=2\pi i\jmath$, where $i\geq 1$, and $\beta=\pi$. Then, $(z^{\beta})^{\alpha}=(e^{\pi})^{2\pi i\jmath}=e^{2\pi i\jmath\log e^{\pi}}=e^{2\pi^2 i\jmath}=z^{\alpha\beta}=\cos 2\pi^2 i+\jmath\sin 2\pi^2 i$ and $(z^{\alpha})^{\beta}=(e^{2\pi i\jmath})^{\pi}=1^{\pi}=e^{\pi\log 1}=e^{\pi 0}=1$. Since, for all $i\geq 1$, $\cos 2\pi^2 i+\jmath\sin 2\pi^2 i\neq 1$, it follows that $(z^{\beta})^{\alpha}=z^{\alpha\beta}\neq (z^{\alpha})^{\beta}$. See [nahinit, pp. 166, 167].

Definition 1.6.6. Let $\mathcal{I} \subset \mathbb{R}$ be a finite or infinite interval, and let $f: \mathcal{I} \mapsto \mathbb{R}$. Then, f is *convex* if, for all $\alpha \in [0,1]$ and $x,y \in \mathcal{I}$,

$$f[\alpha x + (1 - \alpha)y] \le \alpha f(x) + (1 - \alpha)f(y).$$
 (1.111)

Furthermore, f is strictly convex if, for all $\alpha \in (0,1)$ and distinct $x,y \in \mathcal{I}$,

$$f[\alpha x + (1 - \alpha)y] < \alpha f(x) + (1 - \alpha)f(y).$$
 (1.112)

Finally, f is (concave, strictly convex) if -f is (convex, strictly convex).

A more general definition of a convex function is given by Definition ??.

Let \mathcal{X} be a set, and let $\sigma \colon \mathcal{X} \times \cdots \times \mathcal{X} \mapsto \mathcal{X} \times \cdots \times \mathcal{X}$, where each Cartesian product has n factors. Then, σ is a permutation if, for all $(x_1, \ldots, x_n) \in \mathcal{X} \times \cdots \times \mathcal{X}$, the tuples (x_1, \ldots, x_n) and $\sigma[(x_1, \ldots, x_n)]$ have the same components with the same multiplicity but possibly in a different order. For convenience, we write $(\sigma(x_1), \ldots, \sigma(x_n))$ for $\sigma[(x_1, \ldots, x_n)]$. In particular, we write $(\sigma(1), \ldots, \sigma(n))$ for $\sigma[(1, \ldots, n)]$. The permutation σ is a transposition if $(\sigma(x_1), \ldots, \sigma(x_n))$ and (x_1, \ldots, x_n) differ by exactly two distinct interchanged components. Finally, let $\operatorname{sign}(\sigma)$ denote -1 raised to the smallest number of transpositions needed to transform $(\sigma(1), \ldots, \sigma(n))$ to $(1, \ldots, n)$. Note that, if σ_1 and σ_2 are permutations of $(1, \ldots, n)$, then $\operatorname{sign}(\sigma_1 \circ \sigma_2) = \operatorname{sign}(\sigma_1) \operatorname{sign}(\sigma_2)$.

1.7 Facts on Logic

Fact 1.7.1. Let A and B be statements. Then, the following statements hold:

- $i) [A \text{ and } (A \Longrightarrow B)] \Longrightarrow B.$
- ii) not $(A \text{ and } B) \iff [(\text{not } A) \text{ or not } B].$
- iii) not $(A \text{ or } B) \iff [(\text{not } A) \text{ and not } B].$
- iv) $(A \text{ or } B) \iff [(\text{not } A) \implies B] \iff [(A \text{ and } B) \text{ xor } (A \text{ xor } B)].$
- $v) \ (A \Longrightarrow B) \Longleftrightarrow [(\text{not } A) \text{ or } B] \Longleftrightarrow \text{not}(A \text{ and not } B)] \Longleftrightarrow [(A \text{ and } B) \text{ xor not } A].$
- vi) not $(A \text{ and } B) \iff (A \Longrightarrow \text{not } B) \iff (B \Longrightarrow \text{not } A).$
- vii) [A and not B] \iff [not(A \implies B)].

Remark: Each statement is a tautology. **Remark:** *ii*) and *iii*) are *De Morgan's laws*. See [blochbook, p. 24]. See Fact 1.8.1.

Fact 1.7.2. Let A and B be statements. Then, the following statements are equivalent:

- $i) A \iff B.$
- ii) (A or not B) and not(A and not B).
- iii) (A or not B) and [(not A) or B].
- iv) (A and B) or [(not A) and not B].
- v) not $(A \times B)$.

Remark: The equivalence of each pair of statements is a tautology.

Fact 1.7.3. Let A, B, and C be statements. Then,

$$[(A \Longrightarrow B) \text{ and } (B \Longrightarrow C)] \Longrightarrow (A \Longrightarrow C).$$

Fact 1.7.4. Let A, B, and C be statements. Then, the following statements are equivalent:

- $i) A \Longrightarrow (B \text{ or } C).$
- ii) [A and (not B)] $\Longrightarrow C$.

Remark: The statement that i) and ii) are equivalent is a tautology.

Fact 1.7.5. Let A, B, and C be statements. Then, the following statements are equivalent:

- i) $(A \text{ and } B) \Longrightarrow C.$
- ii) [B and (not C)] \Longrightarrow (not A).
- iii) [A and (not C)] \Longrightarrow (not B).

Source: To prove $i) \Longrightarrow ii$, note that $[(A \text{ and } B) \text{ or } (\text{not } B)] \Longrightarrow [C \text{ or } (\text{not } B)]$, that is, $[A \text{ or } (\text{not } B)] \Longrightarrow [C \text{ or } (\text{not } B)]$, and thus $A \Longrightarrow [C \text{ or } (\text{not } B)]$. Hence, $[B \text{ and } (\text{not } C)] \Longrightarrow (\text{not } A)$. Conversely, to prove $ii) \Longrightarrow i$, note that $[(B \text{ and } (\text{not } C)) \text{ or } (\text{not } B)] \Longrightarrow [(\text{not } A) \text{ or } (\text{not } A) \text{ or } (\text{not } B)]$

(not B)], that is, $[(\text{not }C) \text{ or } (\text{not }B)] \Longrightarrow [(\text{not }A) \text{ or } (\text{not }B)]$, and thus $(\text{not }C) \Longrightarrow [(\text{not }A) \text{ or }]$

(not B)]. Hence, $(A \text{ and } B) \Longrightarrow C$.

Fact 1.7.6. Let \mathcal{X} and \mathcal{Y} be sets, and let Z be a statement that depends on elements of \mathcal{X} and \mathcal{Y} . Then, the following statements are equivalent:

- i) Not[for all $x \in \mathcal{X}$, Z holds].
- ii) There exists $x \in \mathcal{X}$ such that Z does not hold.

Furthermore, the following statements are equivalent:

- iii) Not[there exists $y \in \mathcal{Y}$ such that Z holds].
- iv) For all $y \in \mathcal{Y}$, Z does not hold.

Finally, the following statements are equivalent:

- v) Not for all $x \in \mathcal{X}$, there exists $y \in \mathcal{Y}$ such that Z holds.
- vi) There exists $x \in \mathcal{X}$ such that, for all $y \in \mathcal{Y}$, Z does not hold.

1.8 Facts on Sets

Fact 1.8.1. Let \mathcal{A} and \mathcal{B} be subsets of a set \mathcal{X} . Then, the following statements hold:

- i) $A \cap A = A \cup A = A$.
- $ii) \ \mathcal{A} \backslash \mathcal{B} = \mathcal{A} \cap \mathcal{B}^{\sim}.$
- $(\mathcal{A} \cup \mathcal{B})^{\sim} = \mathcal{A}^{\sim} \cap \mathcal{B}^{\sim}.$
- iv) $(A \cap B)^{\sim} = A^{\sim} \cup B^{\sim}$.
- $v) (A \setminus B) \cup (A \cap B) = A.$
- $vi) \ \mathcal{A} \setminus (\mathcal{A} \cap \mathcal{B}) = \mathcal{A} \cap \mathcal{B}^{\sim}.$
- $vii) \ \mathcal{A} \cap (\mathcal{A}^{\sim} \cup \mathcal{B}) = \mathcal{A} \cap \mathcal{B}.$
- $viii) \ (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{B}^{\sim}) = \mathcal{A}.$
- ix) $[A \setminus (A \cap B)] \cup B = A \cup B$.
- $(A \cup B) \cap (A^{\sim} \cup B) \cap (A \cup B^{\sim}) = A \cap B.$
- $xi) \ (\mathcal{A}^{\sim} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{B}^{\sim}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A}^{\sim} \cap \mathcal{B}^{\sim}) = [(\mathcal{A} \cup \mathcal{B}) \setminus (\mathcal{A} \cap \mathcal{B})]^{\sim} = [(\mathcal{A} \cap \mathcal{B}^{\sim}) \cup (\mathcal{A}^{\sim} \cap \mathcal{B})]^{\sim}.$

Remark: *iii*) and *iv*) are De Morgan's laws. See Fact 1.7.1.

Fact 1.8.2. Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be subsets of a set \mathcal{X} . Then, the following statements hold:

- i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $iii) \ (A \setminus B) \setminus \mathcal{C} = A \setminus (B \cup \mathcal{C}).$
- $iv) (A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C).$
- $v) (A \cap B) \setminus (C \cap B) = (A \setminus C) \cap B.$
- $vi) \ \ (\mathcal{A} \cup \mathcal{B}) \backslash \mathcal{C} = (\mathcal{A} \backslash \mathcal{C}) \cup (\mathcal{B} \backslash \mathcal{C}) = [\mathcal{A} \backslash (\mathcal{B} \cup \mathcal{C})] \cup (\mathcal{B} \backslash \mathcal{C}).$
- $vii) (A \cup B) \setminus (C \cap B) = (A \setminus B) \cup (B \setminus C).$
- $viii) \ \mathcal{A} \setminus (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \setminus \mathcal{B}) \cap \mathcal{A} \setminus \mathcal{B}).$
- ix) $A \setminus (B \cap C) = (A \setminus B) \cup A \setminus B$).

Fact 1.8.3. Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be subsets of a set \mathcal{X} . Then, the following statements hold:

- i) $A \ominus \emptyset = \emptyset \ominus A = A$, $A \ominus A = \emptyset$.
- $ii) \mathcal{A} \ominus \mathcal{B} = \mathcal{B} \ominus \mathcal{A}.$
- $iii) \ \mathcal{A} \ominus \mathcal{B} = (\mathcal{A} \cap \mathcal{B}^{\sim}) \cup (\mathcal{B} \cap \mathcal{A}^{\sim}) = (\mathcal{A} \setminus \mathcal{B}) \cup (\mathcal{B} \setminus \mathcal{A}) = (\mathcal{A} \cup \mathcal{B}) \setminus (\mathcal{A} \cap \mathcal{B}).$
- $iv) \ \mathcal{A} \ominus \mathcal{B} = \{x \in \mathfrak{X} \colon (x \in \mathcal{A}) \text{ xor } (x \in \mathcal{B})\}.$
- v) $\mathcal{A} \ominus \mathcal{B} = \emptyset$ if and only if $\mathcal{A} = \mathcal{B}$.

- $vi) \ \mathcal{A} \ominus (\mathcal{B} \ominus \mathcal{C}) = (\mathcal{A} \ominus \mathcal{B}) \ominus \mathcal{C}.$
- $vii) \ (\mathcal{A} \ominus \mathcal{B}) \ominus (\mathcal{B} \ominus \mathcal{C}) = \mathcal{A} \ominus \mathcal{C}.$
- *viii*) $A \cap (B \ominus C) = (A \cap B) \ominus (A \cap C)$.

If, in addition, A and B are finite, then

$$\operatorname{card}(\mathcal{A}\ominus\mathcal{B})=\operatorname{card}(\mathcal{A})+\operatorname{card}(\mathcal{B})-2\operatorname{card}(\mathcal{A}\cap\mathcal{B}).$$

Fact 1.8.4. Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be finite sets. Then,

$$\operatorname{card}(\mathcal{A} \times \mathcal{B}) = \operatorname{card}(\mathcal{A}) \operatorname{card}(\mathcal{B}),$$

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B),$$

$$\operatorname{card}(\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}) = \operatorname{card}(\mathcal{A}) + \operatorname{card}(\mathcal{B}) + \operatorname{card}(\mathcal{C}) - \operatorname{card}(\mathcal{A} \cap \mathcal{B}) - \operatorname{card}(\mathcal{A} \cap \mathcal{C}) - \operatorname{card}(\mathcal{B} \cap \mathcal{C}) + \operatorname{card}(\mathcal{A} \cap \mathcal{B} \cap \mathcal{C}).$$

Remark: The second and third equalities are versions of the *inclusion-exclusion principle*. See [benjaminquinn, p. 82], [herman2, p. 67], and [rpstanley, pp. 64–67]. **Remark:** The inclusion-exclusion principle holds for multisets \mathcal{A} and \mathcal{B} with " $\mathcal{A} \cup \mathcal{B}$ " defined as the smallest multiset that contains both \mathcal{A} and \mathcal{B} . For example, $\operatorname{card}(\{1,1,2,2\}) = \operatorname{card}(\{1,1,2\} \cup \{1,2,2\}) = \operatorname{card}(\{1,1,2\}) + \operatorname{card}(\{1,2,2\}) - \operatorname{card}(\{1,2\})$; that is, 4 = 3+3-2. See [wildbergermultisets,].

Fact 1.8.5. Define $\mathcal{A} \triangleq \{x_1, \dots, x_1, \dots, x_n, \dots, x_n\}_{\mathrm{ms}}$, where, for all $i \in \{1, \dots, n\}$, k_i is the number of repetitions of x_i . Then, the number of multisubsets of \mathcal{A} is $\prod_{i=1}^n (k_i + 1)$. **Source:** [singhsingh,].

Fact 1.8.6. Let $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}$. Then, the following statements hold:

- $i) \sup(-A) = -\inf A.$
- ii) inf $(-A) = -\sup A$.
- iii) sup $(A + B) = \sup A + \sup B$.
- iv) $\sup(A B) = \sup A \inf B$.
- $v) \inf(A + B) = \inf A + \inf B.$
- vi) inf $(A B) = \inf A \sup B$.
- $vii) \sup(\mathcal{A} \cup \mathcal{B}) = \max \{ \sup \mathcal{A}, \sup \mathcal{B} \}.$
- viii) inf $(A \cup B) = \min \{\inf A, \inf B\}.$
- ix) If $0 \notin \mathcal{A}$, then

$$\sup \left\{ \frac{1}{x} \colon x \in \mathcal{A} \right\} = \max \left\{ \frac{1}{\inf[\mathcal{A} \cap (-\infty, 0)]}, \frac{1}{\inf[\mathcal{A} \cap (0, \infty)]} \right\}.$$

x) sup $\{xy \colon x \in \mathcal{A}, y \in \mathcal{B}\} = \max\{(\inf \mathcal{A})\inf \mathcal{B}, (\inf \mathcal{A})\sup \mathcal{B}, (\sup \mathcal{A})\inf \mathcal{B}, (\sup \mathcal{A})\sup \mathcal{B}\}.$ **Source:** [kaczor1, p. 3].

Fact 1.8.7. Let S_1, \ldots, S_m be finite sets, and let $n \triangleq \sum_{i=1}^m \operatorname{card}(S_i)$. Then,

$$\left\lceil \frac{n}{m} \right\rceil \le \max_{i \in \{1,\dots,m\}} \operatorname{card}(S_i).$$

In particular, if m < n, then there exists $i \in \{1, ..., m\}$ such that $\operatorname{card}(S_i) \ge 2$. **Remark:** This is the *pigeonhole principle*.

Fact 1.8.8. Let S_1, \ldots, S_m be sets, assume that, for all $i \in \{1, \ldots, m\}$, $\operatorname{card}(S_i) = n$, and assume that, for all distinct $i, j \in \{1, \ldots, m\}$, $\operatorname{card}(S_i \cap S_j) \leq k$. Then,

$$\frac{n^2m}{n+(m-1)k} \le \operatorname{card}\left(\bigcup_{i=1}^m S_i\right).$$

Source: [jukna, p. 23].

Fact 1.8.9. Let X be a set, let $n \triangleq \operatorname{card}(X)$, let $S_1, \ldots, S_m \subseteq X$, and assume that, for all distinct $i, j \in \{1, \ldots, m\}$, $S_i \setminus S_j$ and $S_j \setminus S_i$ are nonempty. Then, $m \leq \binom{n}{\lfloor n/2 \rfloor}$. **Source:** [matousek, p. 57]. **Remark:** This is a *Sperner lemma*.

Fact 1.8.10. Let X be a set, let $n riangleq \operatorname{card}(X)$, let $S_1, \ldots, S_m \subseteq X$, let $k \leq n/2$, assume that, for all $i \in \{1, \ldots, m\}$, $\operatorname{card}(S_i) = k$, and, for all distinct $i, j \in \{1, \ldots, m\}$, $S_i \cap S_j$ is nonempty. Then, $m \leq \binom{n-1}{k-1}$. **Source:** [matousek, p. 57]. **Remark:** This is the *Erdös-Ko-Rado theorem*.

Fact 1.8.11. Let X be a set, let $n \triangleq \operatorname{card}(X)$, let $S_1, \ldots, S_m \subseteq X$, assume that, for all $i \in \{1, \ldots, m\}$, $\operatorname{card}(S_i)$ is odd, and, for all distinct $i, j \in \{1, \ldots, m\}$, $\operatorname{card}(S_i \cap S_j)$ is even. Then, $m \leq n$. **Source:** [matousek, p. 57]. **Remark:** This is the *oddtown theorem*.

Fact 1.8.12. Let X be a set, let $n ext{ } ext{$\stackrel{\triangle}{=}$ } \operatorname{card}(X)$, let $S_1, \ldots, S_m \subseteq X$, let $p \geq 2$ be prime, and assume that, for all $i \in \{1, \ldots, m\}$, $\operatorname{card}(S_i) = 2p-1$, and, for all distinct $i, j \in \{1, \ldots, m\}$, $\operatorname{card}(S_i \cap S_j) \neq p-1$. Then, $m \leq \sum_{i=1}^{p-1} \binom{n}{i}$. **Source:** [matousek, p. 58]. **Remark:** Excluding intersections of cardinality p-1 restricts the number of possible subsets of X.

Fact 1.8.13. Let X be a set, let $S_1, \ldots, S_m, T_1, \ldots, T_m \subseteq X$, let $k \ge 1$ and $l \ge 1$, and assume that, for all $i \in \{1, \ldots, m\}$, $\operatorname{card}(S_i) = k$, $\operatorname{card}(T_i) = l$, and $S_i \cap T_i = \emptyset$, and, for all $i, j \in \{1, \ldots, m\}$ such that i < j, $S_i \cap T_j \ne \emptyset$. Then, $m \le \binom{k+l}{l}$. **Source:** [matousek, pp. 171–173].

Fact 1.8.14. Let S be a set, and let S denote the set of all subsets of S. Then, " \subset " and " \subseteq " are transitive relations on S, and " \subseteq " is a partial ordering on S.

Fact 1.8.15. Define the relation \mathcal{R} on $\mathbb{R} \times \mathbb{R}$ by

$$\mathcal{R} \triangleq \{((x_1, y_1), (x_2, y_2)) \in (\mathbb{R} \times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R}) \colon x_1 \leq x_2 \text{ and } y_1 \leq y_2\}.$$

Then, \mathcal{R} is a partial ordering.

Fact 1.8.16. Define the relation \mathcal{L} on $\mathbb{R} \times \mathbb{R}$ by

$$\mathcal{L} \triangleq \{((x_1,y_1),(x_2,y_2)) \in (\mathbb{R} \times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R}) \colon x_1 \leq x_2 \text{ and, if } x_1 = x_2, \text{ then } y_1 \leq y_2\}.$$

Then, \mathcal{L} is a total ordering on $\mathbb{R} \times \mathbb{R}$.

Remark: Denoting this total ordering by " \leq ," note that $(1,4) \leq (2,3)$ and $(1,4) \leq (1,5)$. **Remark:** This ordering is the *lexicographic ordering* or *dictionary ordering*, where "book" \leq "box". Note that the ordering of words in a dictionary is reflexive, antisymmetric, and transitive, and that every pair of words can be ordered. **Related:** Fact ??.

Fact 1.8.17. Let $n \ge 1$ and $x_1, \ldots, x_{n^2+1} \in \mathbb{R}$. Then, at least one of the following statements holds:

- i) There exist $1 \le i_1 \le \cdots \le i_{n+1} \le n^2 + 1$ such that $x_{i_1} \le \cdots \le x_{i_{n+1}}$.
- ii) There exist $1 \le i_1 \le \cdots \le i_{n+1} \le n^2 + 1$ such that $x_{i_1} \ge \cdots \ge x_{i_{n+1}}$.

Source: [radu, p. 53] and [steeleerdos,]. Remark: This is the Erdös-Szekeres theorem.

1.9 Facts on Graphs

Fact 1.9.1. Let $\mathfrak{G} = (\mathfrak{X}, \mathfrak{R})$ be a directed graph. Then, the following statements hold:

i) \mathcal{X} is the graph of a function on \mathcal{X} if and only if every node in \mathcal{X} has exactly one child.

Furthermore, the following statements are equivalent:

- ii) \mathcal{R} is the graph of a one-to-one function on \mathcal{X} .
- iii) \mathcal{R} is the graph of an onto function on \mathcal{X} .
- iv) \mathcal{R} is the graph of a one-to-one and onto function on \mathcal{X} .
- v) Every node in \mathfrak{X} has exactly one child and not more than one parent.
- vi) Every node in \mathfrak{X} has exactly one child and at least one parent.
- vii) Every node in X has exactly one child and exactly one parent.

Related: Fact 1.10.1.

- **Fact 1.9.2.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph, and assume that \mathcal{R} is the graph of a function $f \colon \mathcal{X} \mapsto \mathcal{X}$. Then, either f is the identity function or \mathcal{G} has a directed cycle.
- **Fact 1.9.3.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph, and assume that \mathcal{G} has a directed Hamiltonian cycle. Then, \mathcal{G} has no roots and no leaves.
- **Fact 1.9.4.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph. Then, \mathcal{G} has either a root or a directed cycle.
- **Fact 1.9.5.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph. If \mathcal{G} is a directed tree, then it is not transitive.
- **Fact 1.9.6.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph, and assume that \mathcal{G} is directionally acyclic. Furthermore, for all $x, y \in \mathcal{X}$, let " $x \leq y$ " denote the existence of directional path from x to y. Then, " \leq " is a partial ordering on \mathcal{X} . **Remark:** This result provides the foundation for the *Hasse diagram*, which illustrates the structure of a partially ordered set. See [schroderbook,trotter,].
- **Fact 1.9.7.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a directed graph. If \mathcal{G} is a directed forest, then \mathcal{G} is directionally acyclic.
- **Fact 1.9.8.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a symmetric graph, and let $n = \operatorname{card}(\mathcal{X})$. Then, the following statements are equivalent:
 - i) 9 is a forest.
 - *ii*) 9 is acyclic.
- iii) No pair of nodes in \mathfrak{X} is connected by more than one path.

Furthermore, the following statements are equivalent:

- iv) 9 is a tree.
- v) 9 is a connected forest.
- vi) 9 is connected and has no cycles.
- *vii*) \mathcal{G} is connected and has n-1 edges.
- *viii*) \mathcal{G} has no cycles and has n-1 edges.
- ix) Every pair of nodes in \mathfrak{X} is connected by exactly one path.
- **Fact 1.9.9.** Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a tournament. Then, \mathcal{G} has a directed Hamiltonian path. If, in addition, \mathcal{G} is directionally connected, then \mathcal{G} has a directed Hamiltonian cycle. **Remark:** The second statement is *Camion's theorem*. See [bangjensen, p. 16]. **Remark:** The directed edges in a tournament distinguish winners and losers in a contest where every

player (that is, node) encounters every other player exactly once.

Fact 1.9.10. Let $\mathcal{G} = (\mathcal{X}, \mathcal{R})$ be a symmetric graph without self-edges, where $\mathcal{X} \subset \mathbb{R}^2$, assume that $v \triangleq \operatorname{card}(\mathcal{X}) \geq 3$, assume that \mathcal{G} is connected, and assume that the edges in \mathcal{R} can be represented by line segments that lie in the same plane and that pairwise either are disjoint or intersect at a node. Furthermore, let e denote the number of edges of \mathcal{G} , and let e denote the number of disjoint regions in \mathbb{R}^2 whose boundaries are the edges of \mathcal{G} . Then,

$$f + v - e = 2$$
, $\frac{3}{2}f \le e \le 3v - 6$, $f \le 2v - 4$.

If, in addition, \mathcal{G} has no triangles, then $e \leq 2v - 4$. **Source:** [pearls, pp. 162–166] and [trudeau, pp. 97–116]. **Remark:** The equality gives the *Euler characteristic* for a planar graph. A related result for the surfaces of a convex polyhedron is given by Fact ??. See [richeson,].

1.10 Facts on Functions

Fact 1.10.1. Let \mathcal{X} and \mathcal{Y} be finite sets, and let $f: \mathcal{X} \mapsto \mathcal{Y}$. Then, the following statements hold:

- i) If $card(\mathfrak{X}) < card(\mathfrak{Y})$, then f is not onto.
- ii) If $\operatorname{card}(\mathcal{Y}) < \operatorname{card}(\mathcal{X})$, then f is not one-to-one.
- *iii*) If f is one-to-one and onto, then $card(\mathfrak{X}) = card(\mathfrak{Y})$.

Now, assume that $\operatorname{card}(\mathfrak{X}) = \operatorname{card}(\mathfrak{Y})$. Then, the following statements are equivalent:

- iv) f is one-to-one.
- v) f is onto.
- vi) card $[f(\mathfrak{X})] = \operatorname{card}(\mathfrak{X}).$

Related: Fact 1.9.1.

Fact 1.10.2. Let $f: \mathcal{X} \mapsto \mathcal{Y}$ be invertible. Then, f^{Inv} is invertible, and $(f^{\mathsf{Inv}})^{\mathsf{Inv}} = f$. **Fact 1.10.3.** Let $f: \mathcal{X} \mapsto \mathcal{Y}$. Then, for all $A, B \subseteq \mathcal{X}$, the following statements hold:

- i) $A \subseteq f^{\mathsf{inv}}[f(A)] \subseteq \mathfrak{X}.$
- ii) $f^{\mathsf{inv}}[f(\mathfrak{X})] = \mathfrak{X} = f^{\mathsf{inv}}(\mathfrak{Y}).$
- *iii*) If $A \subseteq B$, then $f(A) \subseteq f(B)$.
- iv) $f(A \cap B) \subseteq f(A) \cap f(B)$.
- v) $f(A \cup B) = f(A) \cup f(B)$.
- vi) $f(A)\backslash f(B) \subseteq f(A\backslash B)$.

Furthermore, the following statements are equivalent:

- vii) f is one-to-one.
- viii) For all $A \subseteq \mathfrak{X}$, $f^{\mathsf{inv}}[f(A)] = A$.
- ix) For all $A, B \subseteq \mathfrak{X}$, $f(A \cap B) = f(A) \cap f(B)$.
- x) For all disjoint $A, B \subseteq \mathfrak{X}$, f(A) and f(B) are disjoint.
- xi) For all $A, B \subseteq \mathcal{X}$, $f(A) \setminus f(B) = f(A \setminus B)$.

Source: [apostolbook, pp. 44, 45] and [carothers, p. 64]. **Remark:** To show that equality does not necessarily hold in iv), let $f(x) = x^2$, A = [-2, 1], and B = [-1, 2]. Then, $f(A \cap B) = [0, 1] \subset [0, 4] = f(A) \cap f(B)$. **Related:** Fact ??.

Fact 1.10.4. Let $f: \mathcal{X} \mapsto \mathcal{Y}$. Then, for all $A, B \subseteq \mathcal{Y}$, the following statements hold:

- i) $f[f^{\mathsf{inv}}(A)] = A \cap f(\mathfrak{X}) \subseteq A.$
- ii) $f[f^{inv}(y)] = f(x).$
- *iii*) If $A \subseteq B$, then $f^{\mathsf{inv}}(A) \subseteq f^{\mathsf{inv}}(B)$.
- iv) $f^{\mathsf{inv}}(A \cap B) = f^{\mathsf{inv}}(A) \cap f^{\mathsf{inv}}(B).$
- v) $f^{\mathsf{inv}}(A \cup B) = f^{\mathsf{inv}}(A) \cup f^{\mathsf{inv}}(B).$
- vi) $f^{\mathsf{inv}}(A) \setminus f^{\mathsf{inv}}(B) = f^{\mathsf{inv}}(A \setminus B).$

In addition, the following statements are equivalent:

- vii) f is onto.
- viii) For all $A \subseteq \mathcal{Y}$, $f[f^{\mathsf{inv}}(A)] = A$.

Source: [apostolbook, pp. 44, 45] and [carothers, p. 64]. **Related:** Fact ??.

Fact 1.10.5. Let $f: \mathfrak{X} \mapsto \mathfrak{Y}$. Then, the following statements hold:

- i) If f is invertible, then, for all $y \in \mathcal{Y}$, $f^{\text{inv}}(y) = \{f^{\text{Inv}}(y)\}$.
- ii) Assume that f is left invertible, and define $\hat{f}: \mathfrak{X} \mapsto \mathfrak{R}(f)$, where, for all $x \in \mathfrak{X}$, $\hat{f}(x) \triangleq f(x)$. Then, \hat{f} is invertible, and, for all $y \in \mathfrak{R}(f)$, $f^{\text{inv}}(y) = \{\hat{f}^{\text{Inv}}(y)\}$.
- iii) If f is left invertible and f^{L} is a left inverse of f, then, for all $y \in \mathcal{R}(f)$, $f^{\mathsf{inv}}(y) = \{f^{\mathsf{L}}(y)\}.$
- iv) If f is right invertible and f^{R} is a right inverse of f, then, for all $y \in \mathcal{Y}$, $f^{\mathsf{R}}(y) \in f^{\mathsf{inv}}(y)$.

Related: Fact ??.

Fact 1.10.6. Let $g: \mathcal{X} \mapsto \mathcal{Y}$ and $f: \mathcal{Y} \mapsto \mathcal{Z}$. Then, the following statements hold:

- i) If $A \subseteq \mathcal{Z}$, then $(f \circ g)^{\mathsf{inv}}(A) = g^{\mathsf{inv}}[f^{\mathsf{inv}}(A)]$.
- ii) $f \circ g$ is one-to-one if and only if g is one-to-one and the restriction $\hat{f} \colon g(\mathfrak{X}) \mapsto \mathfrak{Z}$ of f is one-to-one. If these conditions hold and g^{L} and \hat{f}^{L} are left inverses of g and \hat{f} , respectively, then $g^{\mathsf{L}} \circ \hat{f}^{\mathsf{L}}$ is a left inverse of $f \circ g$.
- iii) $f \circ g$ is onto if and only if the restriction $\hat{f} \colon g(\mathfrak{X}) \mapsto \mathfrak{Z}$ of f is onto. Let $\hat{g} \colon \mathfrak{X} \mapsto g(\mathfrak{X})$, where, for all $x \in \mathfrak{X}$, $\hat{g}(x) = g(x)$. If these conditions hold and \hat{g}^{R} and \hat{f}^{R} are right inverses of \hat{g} and \hat{f} , respectively, then $\hat{g}^{\mathsf{R}} \circ \hat{f}^{\mathsf{R}}$ is a right inverse of $f \circ g$.
- iv) $f \circ g$ is invertible if and only if g is one-to-one and the restriction $\hat{f} \colon g(\mathfrak{X}) \mapsto \mathfrak{Z}$ of f is one-to-one and onto. If these conditions hold, g^{L} is a left inverse of g, and \hat{f}^{Inv} is the inverse of \hat{f} , then $(f \circ g)^{\mathsf{Inv}} = g^{\mathsf{L}} \circ \hat{f}^{\mathsf{Inv}}$.

Remark: A matrix version of this result is given by Fact ?? and Fact ??.

Fact 1.10.7. Let $f: \mathcal{X} \mapsto \mathcal{Y}$, let $g: \mathcal{Y} \mapsto \mathcal{X}$, and assume that f and g are one-to-one. Then, there exists $h: \mathcal{X} \mapsto \mathcal{Y}$ such that h is one-to-one and onto. **Source:** [duren, pp. 311, 312] and [moschovakis, pp. 16, 17]. **Remark:** This is the *Schroeder-Bernstein theorem*.

Fact 1.10.8. Let \mathcal{X} and \mathcal{Y} be sets, let $f: \mathcal{X} \mapsto \mathcal{Y}$, and, for $i \in \{1, 2\}$, let $g_i: \mathcal{R}(f) \mapsto \mathbb{F}^n$ and $\alpha_i \in \mathbb{F}$. Then, $(\alpha_1 g_1 + \alpha_2 g_2) \circ f = \alpha_1 (g_1 \circ f) + \alpha_2 (g_2 \circ f)$. **Remark:** The composition operator $\mathcal{C}(g, f) \triangleq g \circ f$ is linear in its first argument.

1.11 Facts on Integers

Fact 1.11.1. Let $n, m \ge 0$ and $k, l \ge 2$. Then, $\prod_{i=1}^k (n+i) \ne m^l$. Source: [erdosselfridge,

-]. **Remark:** A product of consecutive integers cannot be a power of an integer.
- **Fact 1.11.2.** Let n be an integer. Then, $n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2$. Hence, n(n+1)(n+2)(n+3)+1 is a square. **Example:** $5(6)(7)(8)+1=41^2$. **Related:** Fact ??.
- **Fact 1.11.3.** Let x be a real number, and assume that $x + \frac{1}{2}$ is not an integer. Then, the integer closest to x is $\lfloor x + \frac{1}{2} \rfloor$.
- **Fact 1.11.4.** Let w, x, y, and z be real numbers, and let n and m be integers. Then, the following statements hold:
 - i) If w|x and y|z, then wy|xz.
 - ii) If x|y and x|z, then $x^2|yz$.
- *iii*) If x|y, then x|ny.
- iv) If x|y and y|z, then x|z.
- v) If x|y and x|z, then x|my + nz.
- **Fact 1.11.5.** Let n and m be integers, at least one of which is nonzero. Then, the following statements hold:
 - i) Assume that m is positive. Then, there exist unique integers q and $r \in [0, m-1]$ such that n = qm + r. In particular, $q = \lfloor n/m \rfloor$ and $r = \text{rem}_m(n) = n qm = n m \lfloor n/m \rfloor \in [0, m-1]$.
 - ii) If m is positive, then $\lceil n/m \rceil = \lfloor (n+m-1)/m \rfloor$.
- iii) If n|m, then $gcd\{n, m\} = |n|$.
- iv) If k is prime and k|mn, then either k|m or k|n.
- v) $\gcd\{n/\gcd\{n,m\}, m/\gcd\{n,m\}\}=1$.
- vi) If both n and m are prime and $m \neq n$, then n and m are coprime.
- vii) If n > 0 and m > 0, then $1 \le \gcd\{n, m\} \le \min\{n, m, |n m|\}$.
- $viii) (lcm \{n, m\}) gcd \{n, m\} = |nm|.$
- ix) n and m are coprime if and only if $lcm \{n, m\} = |nm|$.
- x) There exist integers k, l such that $gcd\{n, m\} = kn + lm$.

Now, assume that n and m are coprime, and let k be an integer. Then, the following statements hold:

- $xi) \gcd\{n-m, n+m, nm\} = 1.$
- $xii) \gcd\{n^k m^k, n^k + m^k\} < 2.$
- $xiii) \gcd\{(n-m)^k, (n+m)^k\} \le 2^k.$
- xiv) $gcd \{n^2 nm + m^2, n + m\} \le 3.$
- xv) $gcd \{nk, m\} = gcd \{k, m\}.$

Finally, let n_1, \ldots, n_k and m_1, \ldots, m_l be integers. Then, the following statement holds:

$$xvi) \gcd\{n_1m_1, n_1m_2, \dots, n_km_l\} = (\gcd\{n_1, \dots, n_k\})\gcd\{m_1, \dots, m_l\}.$$

Source: [sav, p. 12]. x)-xiv) are given in [larson, pp. 86, 89, 105]; xv) is given in [grimaldi, p. 123]. **Example:** $\gcd\{221,754\} = 13 = -17(221) + 5(754)$. See [larson, pp. 86, 87]. **Remark:** The first set in xvi) contains kl products. **Remark:** x) is the GCD identity. See [andersonfeil, p. 17].

Fact 1.11.6. Let $l, m, n \ge 1$. Then, the following statements hold:

- i) $\gcd\{l, m, n\} = \gcd\{\gcd\{l, m\}, \gcd\{m, n\}, \gcd\{n, l\}\}.$
- *ii*) $lmn = (\gcd\{lm, mn, nl\}) lcm \{l, m, n\}.$

- $iii) \gcd\{l, lcm\{m, n\}\} = lcm\{\gcd\{l, m\}, \gcd\{l, n\}\}.$
- iv) $lcm \{l, gcd \{m, n\}\} = gcd \{lcm \{l, m\}, lcm \{l, n\}\}.$
- v) $\gcd\{\operatorname{lcm}\{l, m\}, \operatorname{lcm}\{m, n\}, \operatorname{lcm}\{n, l\}\} = \operatorname{lcm}\{\gcd\{l, m\}, \gcd\{m, n\}, \gcd\{n, l\}\}.$
- vi) $lmn \gcd\{l, m, n\} = (lcm\{l, m, n\})(\gcd\{l, m\})(\gcd\{m, n\})\gcd\{n, l\}.$
- $vii) \ \gcd\{l,m\} = \gcd\{l+m, \operatorname{lcm}\{l,m\}\}.$

viii)

$$\frac{(\gcd\{l,m,n\})^2}{\gcd\{l,m\}\gcd\{m,n\}\gcd\{n,l\}} = \frac{(\ker\{l,m,n\})^2}{\ker\{l,m\}\ker\{m,n\}\ker\{n,l\}}.$$

Source: [larson, p. 105]. *i*) is given in [five, pp. 25, 144]; *viii*) is given in [gelca, p. 310].

Fact 1.11.7. Let $n \ge 1$. Then, $\gcd\{n^2+1, (n+1)^2+1\} \in \{1, 5\}$. Furthermore, $\gcd\{n^2+1, (n+1)^2+1\} = 5$ if and only if $n \stackrel{5}{=} 2$. **Source:** [five, pp. 31, 165].

Fact 1.11.8. Let k_1, \ldots, k_n be positive integers, and assume that $k_1 < \cdots < k_n$. Then,

$$\sum_{i=1}^{n-1} \frac{1}{\operatorname{lcm}\{k_i, k_{i+1}\}} \le 1 - \frac{1}{2^{n-1}}.$$

Source: [sav, p. 12].

Fact 1.11.9. Let m and n be integers. Then, the following statements are equivalent:

- i) Either both m and n are even or both m and n are odd.
- ii) $n \stackrel{2}{\equiv} m$.

Furthermore, the following statements are equivalent:

- iii) m|n.
- iv) $n \stackrel{|m|}{\equiv} 0.$
- $v) n \stackrel{|m|}{\equiv} m$

Fact 1.11.10. Let $k \geq 1$, and let m, n, p, q be integers. Then, the following statements hold:

- i) If n = m, then $n \stackrel{k}{\equiv} m$.
- ii) $n \stackrel{k}{\equiv} n$.

Furthermore, the following statements are equivalent:

- iii) k|(n-m).
- iv) $n \stackrel{k}{\equiv} m$.
- $v) \ m \stackrel{k}{\equiv} n.$
- $vi) -n \stackrel{k}{\equiv} -m.$
- vii) $n-m \stackrel{k}{\equiv} 0.$

Furthermore, the following statement holds:

viii) If $n \stackrel{k}{\equiv} m$ and $m \stackrel{k}{\equiv} p$, then $n \stackrel{k}{\equiv} p$.

Next, if $p \stackrel{k}{\equiv} q$ and $n \stackrel{k}{\equiv} m$, then the following statements hold:

- $ix) n+p \stackrel{k}{\equiv} m+q.$
- $x) \ n-p \stackrel{k}{\equiv} m-q.$

xi) $np \stackrel{k}{\equiv} mq$.

Finally, the following statements hold:

- *xii*) If $n \stackrel{k}{\equiv} m$, and p is a positive integer, then $pn \stackrel{k}{\equiv} pm$.
- *xiii*) If $n \stackrel{k}{\equiv} m$, and p is a positive integer, then $n^p \stackrel{k}{\equiv} m^p$.
- xiv) If $pn \stackrel{k}{\equiv} pm$, then $n \stackrel{k/\gcd\{k,p\}}{\equiv} m$.
- xv) If $pn \stackrel{k}{\equiv} pm$ and $\gcd\{k,p\} = 1$, then $n \stackrel{k}{\equiv} m$.
- xvi) $k! \prod_{i=0}^{k-1} (n+i)$. For example, 11(12)(13) = 6(286) and $(22)(23) \cdots (28) = 5040(1184040)$.
- xvii) If $n \stackrel{k}{\equiv} n_0$ and $m \stackrel{k}{\equiv} m_0$, then $nm \stackrel{k}{\equiv} \operatorname{rem}_k(n_0 m_0)$.

Source: xiv) is given in [underwood, pp. 30, 31]. **Remark:** " $\stackrel{k}{\equiv}$ " is an equivalence relation on \mathbb{Z} , which partitions \mathbb{Z} into $residue\ classes$.

Fact 1.11.11. Let $n \geq 1$, and let m be the sum of the decimal digits of n. Then, the following statements hold:

- i) 3|n if and only if 3|m.
- ii) $n \stackrel{9}{\equiv} m$.

Source: [underwood, pp. 31, 32].

Fact 1.11.12. Let n be a positive integer. Then, the following statements hold:

- i) $n^2 \stackrel{3}{\equiv} 0$ if and only if $n \stackrel{3}{\equiv} 0$.
- *ii*) $n^2 \stackrel{3}{\equiv} 1$ if and only if either $n \stackrel{3}{\equiv} 1$ or $n \stackrel{3}{\equiv} 2$.

Source: [nelsenpww,]. **Example:** $3 \stackrel{?}{=} 6 \stackrel{?}{=} 9 \stackrel{?}{=} 12 \stackrel{?}{=} 15 \stackrel{?}{=} 0$, $9 \stackrel{?}{=} 36 \stackrel{?}{=} 81 \stackrel{?}{=} 144 \stackrel{?}{=} 225 \stackrel{?}{=} 0$, $1 \stackrel{?}{=} 4 \stackrel{?}{=} 7 \stackrel{?}{=} 10 \stackrel{?}{=} 13 \stackrel{?}{=} 1$, $2 \stackrel{?}{=} 5 \stackrel{?}{=} 8 \stackrel{?}{=} 11 \stackrel{?}{=} 14 \stackrel{?}{=} 2$, and $1 \stackrel{?}{=} 4 \stackrel{?}{=} 16 \stackrel{?}{=} 25 \stackrel{?}{=} 49 \stackrel{?}{=} 64 \stackrel{?}{=} 100 \stackrel{?}{=} 121 \stackrel{?}{=} 169 \stackrel{?}{=} 196 \stackrel{?}{=} 1$.

Fact 1.11.13. Let $k, l, m, n \ge 1$. Then, the following statements hold:

- i) If $m \leq n$ is prime, then m does not divide n! + 1. Hence, there exists a prime $k \in [n+1, n! + 1]$ such that $k \mid n! + 1$.
- ii) None of the integers $n! + 2, n! + 3, \dots, n! + n$ are prime.
- iii) Assume that $n \geq 2$ is not prime, and let k be the smallest prime such that k|n. Then, $k \leq \sqrt{n}$. If, in addition, $\sqrt[3]{n} < k$, then n/k is prime.
- iv) If n is prime, then $(2^{n-1}-1)/n$ is an integer.
- v) If $n \ge 3$ is odd, then $n^2 \stackrel{8}{\equiv} 1$.
- vi) If n is prime and $n \geq 5$, then either $n \stackrel{6}{\equiv} 1$ or $n \stackrel{6}{\equiv} 5$.
- vii) If $n \stackrel{8}{\equiv} 7$, then n is not the sum of three squares of integers.
- *viii*) If n = 4, then n is not the sum of three cubes of integers.
- ix) The last digit of n^2 is neither 2, 3, 7, nor 8.
- x) Neither 3 nor 5 divides $(n+1)^3 n^3$.
- xi) If $n \ge 2$, then $n^4 + 4^n$ is not prime.
- $xii) \ 3|n(n^2-3n+8), \ 6|n^3+5n, \ 8|(n-1)(n^3-5n^2+18n-8).$
- xiii) $9|4^n + 15n 1, 30|n^5 n, 120|n^5 5n^3 + 4n.$

- xiv) 121 does not divide $n^2 + 3n + 5$.
- xv) $3^{n+1}|2^{3^n}+1$.
- xvi) 2^n does not divide n!.
- xvii) If $m \le n$, then $m! | n^{\underline{m}}$.
- xviii) $\gcd\{2^m 1, 2^n 1\} = 2^{\gcd\{m,n\}} 1$. Hence, n|m if and only if $2^n 1|2^m 1$.
- xix) If n and 6 are coprime, then $24|n^2-1$.
- xx) If n is even, then $n^2 1|2^{n!} 1$.
- xxi) If 6|k+l+m, then $6|k^3+l^3+m^3$.
- xxii) If $n \ge 4$ and $m \ge 4$ are prime, then $24|n^2 m^2$.
- *xxiii*) If *n* is not prime, then 2^n-1 is not prime. Furthermore, if $n \in \{2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279\}$, then 2^n-1 is prime.
- xxiv) If $n \ge 1$ and $2^n + 1$ is prime, then there exists $k \ge 0$ such that $n = 2^k$. If $k \in \{0, 1, 2, 3, 4\}$ then $2^{2^k} + 1$ is prime. If $5 \le k \le 32$, then $2^{2^k} + 1$ is not prime.
- xxv) If $n \ge 3$ is odd, then $3 \nmid 2^n 1$.
- xxvi) If $n \ge 4$ is even, then $3 \nmid 2^n + 1$.
- xxvii) If $4^n + 2^n + 1$ is prime, then there exists a positive integer m such that $n = 3^m$.
- xxviii) If $n \ge 5$ is prime, then there exists a positive integer m such that $n = \sqrt{24m+1}$.
- xxix) $\frac{n^5}{5} + \frac{n^4}{2} + \frac{n^3}{3} \frac{n}{30}$ is a positive integer.
- xxx) If $n \ge 12$, then $\sqrt{n^2 19n + 89}$ is not an integer.
- xxxi) If $n = k^2 + l^2 + m^2$, then there exist positive integers p, q, r such that $n^2 = p^2 + q^2 + r^2$.
- xxxii) There exist infinitely many multisets of integers $\{x, y, z, p, q, r\}_{\text{ms}}$ such that $x^2 + y^2 + z^2 = p^3 + q^3 + r^3$.
- xxxiii) If m and n are coprime, then $\{m+in: i \geq 1\}$ contains an infinite number of primes.
- xxxiv) If n is prime, then $(k+l)^n \stackrel{n}{\equiv} k^n + l^n$.
- xxxv) If kl = mn, then k + l + m + n is not prime.
- $xxxvi) \ 2(k^4 l^4) \neq m^2.$
- xxxvii) If k, l, m, n are nonnegative, $\{k, l\} \neq \{m, n\}$, and $k^2 + l^2 = m^2 + n^2$, then $k^2 + l^2$ is not prime.
- xxxviii) If m and n are prime and m < n, then $mn | \binom{n+m}{m} \binom{n}{m} 1$.
- xxxix) If $n \ge 3$ is prime, then $([(n-1)/2]!)^2 \stackrel{n}{\equiv} (-1)^{(n+1)/2}$.
 - $xl) 10|1+8^n-3^n-6^n.$
 - xli) $5|1+2^n+3^n+4^n$ if and only if n/4 is not an integer.
 - xlii) If $k \geq 3$ and $l \geq 5$ are consecutive primes, then k+l is the product of at least three primes.
 - xliii) $\sqrt{n^4+2n^3+2n^2+2n+1}$ is not an integer.

Source: [AMR, pp. 595–598], [engel, pp. 118, 131–137, 208]. *iii*) is given in [underwood, pp. 13, 19]; *viii*) and *ix*) are given in [underwood, pp. 31, 33]; *xi*) is given in [engel, p. 120]; xx) is given in [gelca, p. 266]; xxix) is given in [larson, p. 64]; xxxiii) is given in [steinfourier, chapter 8]; xxxiv) is given in [mollnf, p. 68]; xxxv)–xxxvii) are given in [AMR, pp. 595–599]; xviii) is given in [AMR2, pp. 51, 294, 295]; xxxix) is given in [aebi2,]; xvv)–xvviii) are given in [five, pp. 7, 11, 32, 36, 72, 73, 82, 167, 178]. **Remark:** vi) implies that, if vv is prime and vv in there exists a positive integer vv such that either vv in vv in

For example, $23 \stackrel{6}{=} 5$ and $31 \stackrel{6}{=} 1$. For k=20, neither n=6k-1=119=7(17) nor $n=6k+1=121=11^2$ is prime. **Remark:** i) and xxxiii) imply that there are an infinite number of primes. **Remark:** xxxiv) is Dirichlet's theorem. **Remark:** The prime numbers 2^n-1 listed in xxiii) are Mersenne primes. It is unknown whether or not there exist infinitely many Mersenne primes. **Remark:** The prime numbers 2^n+1 listed in xxiv), namely, 3, 5, 17, 257, 65537, are Fermat primes. These are the only known Fermat primes. **Example:** In xxxvii), $1^2+7^2=5^2+5^2=50$, $1^2+8^2=4^2+7^2=65$, and $0^2+10^2=6^2+8^2=100$ are not prime. **Example:** In xxivii, $2(3)|\binom{5}{2}-\binom{3}{2}-1$; that is, $6|6; 3(5)|\binom{8}{3}-\binom{5}{3}-1$, that is, 15|45; and $11(13)|\binom{11}{11}-\binom{11}{11}-1$, that is, 143|2496065.

Fact 1.11.14. Let $n \ge 1$. Then, there exist n consecutive positive integers whose sum of squares is prime if and only if $n \in \{2, 3, 6\}$. **Source:** [AMR3, pp. 74, 75]. **Example:** $1^2 + 2^2 = 5$, $2^2 + 3^2 + 4^2 = 29$, and $2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 139$.

Fact 1.11.15. Let $n \ge 2$ be prime, and let $k \ge 1$. Then, $n|k^n - k$. Equivalently, $k^n \stackrel{n}{\equiv} k$. **Source:** [benjaminquinn, p. 115], [dragovic,], [engel, p. 119]. **Remark:** This is *Fermat's little theorem*. **Remark:** An equivalent statement is the following: Let n be prime, let k be a positive integer, and assume that n and k are coprime. Then, $k^{n-1} \stackrel{n}{\equiv} 1$. See [underwood, p. 42]. **Example:** $4^7 - 4 = 7(2340)$ and $13^3 - 13 = 3(728)$. **Remark:** $341|2^{341} - 2$, but 341 = 11(31) is not prime. See [engel, p. 120].

Fact 1.11.16. Let $n \ge 2$ be prime, and let k and l be positive integers. Then, $(k+l)^n \stackrel{n}{\equiv} k^n + l^n$. Source: [apagodufd,].

Fact 1.11.17. Let $n \ge 2$. Then, n is prime if and only if $\sum_{i=1}^{n-1} i^{n-1} \stackrel{n}{\equiv} n-1$. **Remark:** Necessity follows from Fermat's little theorem given by Fact 1.11.15. Sufficiency is a conjecture. **Example:** $1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6 = 67171 = 7(9595) + 6 \stackrel{7}{\equiv} 6$.

Fact 1.11.18. Let n be prime, and let $k \geq 1$. Then,

$$\sum_{i=1}^{n} i^{k} \stackrel{p}{=} \begin{cases} -1, & n-1|k, \\ 0, & n-1 \nmid k. \end{cases}$$

Source: [macmillansondow,]. **Example:** Let n = 3 and k = 2. Then, $1^2 + 2^2 + 3^2 = 14 \stackrel{3}{=} -1$.

Fact 1.11.19. Let $n \geq 5$ be prime. Then,

$$\sum_{i=0}^{n-1} \binom{2i}{i} \stackrel{n}{\equiv} \begin{cases} 1, & n \stackrel{3}{\equiv} 1, \\ -1, & n \stackrel{3}{\equiv} 2. \end{cases}$$

Source: [apagodufd,].

Fact 1.11.20. Let $n \ge 2$. Then, n is prime if and only if n|(n-1)!+1. **Remark:** This is *Wilson's theorem*. **Remark:** n|(n-1)!+1 is equivalent to $(n-1)! \stackrel{n}{\equiv} -1$. **Example:** 4!+1=5(5) and 12!+1=13(36846277).

Fact 1.11.21. Let $n \ge 3$. Then, n is prime if and only if $\prod_{i=1}^{n-1} (2^i - 1)^{2^n - 1} n$. Remark: This is $Vantieghem's\ theorem$. **Example:** 4! + 1 = 5(5). **Source:** [gaitanas2,].

Fact 1.11.22. Let $p \ge 2$ be prime and let $1 \le n \le p$. Then, $p|(n-1)!(p-n)! + (-1)^{n+1}$. **Source:** [mollnf, p. 67]. **Remark:** This is an extension of Wilson's theorem given by Fact 1.11.20. **Example:** 4!6! + 1 = 11(1571) and 13!9! - 1 = 23(98246143821913).

Fact 1.11.23. Let $m, n \ge 1$. Then, $(m^2 - n^2)^2 + (2mn)^2 = (m^2 + n^2)^2$. Remark: This result characterizes all *Pythagorean triples* within an integer multiple. **Example:** If m = 2

and n = 1, then $3^2 + 4^2 = 5^2$; if m = 3 and n = 2, then $5^2 + 12^2 = 13^2$; if m = 4 and n = 1, then $8^2 + 15^2 = 17^2$; if m = 4 and n = 3, then $7^2 + 24^2 = 25^2$.

Fact 1.11.24. Let $n \ge 1$. Then, there exist $k \ge 1$ and $\delta_1, \ldots, \delta_k \in \{-1, 1\}$ such that $n = \sum_{i=1}^k \delta_i i^2$. **Source:** [five, pp. 33, 171] and [gelca, p. 9]. **Example:** 7 = 1 - 4 - 9 + 16 + 25 - 36, 12 = -1 + 4 + 9, and 18 = 1 - 4 - 9 + 16 + 25 - 36 - 49 - 64 + 81 - 100 + 121.

Fact 1.11.25. Let n be a positive integer. Then, the number of 4-tuples of integers (j,k,l,m) such that $j^2+k^2+l^2+m^2=n$ is equal to 8 times the sum of the distinct divisors of n that are not divisible by 4. **Source:** Fact ?? and [aez,zprice,]. **Remark:** This is Jacobi's four-square theorem. **Example:** The distinct divisors of 4 that are not divisible by 4 are 1 and 2. Accordingly, the number of ways of writing 4 as a sum of squares of the components of a 4-tuple of integers is 24. Two of these are $0^2 + 0^2 + 0^2 + 2^2$ and $1^2 + (-1)^2 + 1^2 + 1^2$.

Fact 1.11.26. Let $n \geq 0$. Then, the following statements hold:

- i) There exist nonnegative integers m_1, \ldots, m_4 such that $n = \sum_{i=1}^4 m_i^2$.
- ii) There exist nonnegative integers m_1, \ldots, m_9 such that $n = \sum_{i=1}^9 m_i^3$.
- iii) There exist nonnegative integers m_1, \ldots, m_{19} such that $n = \sum_{i=1}^{19} m_i^4$.
- iv) There exist nonnegative integers m_1, \ldots, m_{37} such that $n = \sum_{i=1}^{37} m_i^5$.
- v) There exist nonnegative integers m_1, \ldots, m_{73} such that $n = \sum_{i=1}^{73} m_i^6$.

Source: [gruber, pp. 372, 373]. **Remark:** These are solutions of *Waring's problem*. The first result is *Lagrange's four-square theorem*. For example, $3 = 0^2 + 1^2 + 1^2 + 1^2$ and $310 = 1^2 + 2^2 + 4^2 + 17^2$.

Fact 1.11.27. Let $n \geq 0$. Then, the following statements hold:

- i) There exist nonnegative integers m_1, \ldots, m_4 such that $n = m_1^2 + m_2^2 + m_3^2 + m_4^2$
- ii) There exist nonnegative integers m_1, \ldots, m_4 such that $n = m_1^2 + m_2^2 + 2m_3^2 + 2m_4^2$
- iii) There exist nonnegative integers m_1, \ldots, m_4 such that $n = m_1^2 + 2m_2^2 + 4m_3^2 + 14m_4^2$.
- iv) rem $(n,4) \neq 3$ if and only if there exist nonnegative integers m_1, \ldots, m_4 such that $n = m_1^2 + m_2^2 + 4m_3^2 + 4m_4^2$.
- v) If $n \geq 2$, then there exist nonnegative integers m_1, \ldots, m_4 such that $n = 2m_1^2 + 3m_2^2 + 4m_3^2 + 5m_4^2$.
- vi) Let k_1, k_2, k_3, k_4 be positive integers, and assume that, for all $k \in \{1, 2, 3, 5, 6, 7, 10, 14, 15\}$, there exist nonnegative integers m_1, \ldots, m_4 such that $k = k_1 m_1^2 + k_2 m_2^2 + k_3 m_3^2 + k_4 m_4^2$. Then, there exist nonnegative integers m_1, \ldots, m_4 such that $n = k_1 m_1^2 + k_2 m_2^2 + k_3 m_3^2 + k_4 m_4^2$.

Remark: i)-iii) are universal positive integer-matrix quaternary quadratic forms. There are 54 such forms. See [lure, pp. 123–125] and [williamsfour,]. **Related:** Fact ??.

Fact 1.11.28. Let i,j,k,l be odd positive integers. Then, there exist even nonnegative integers q,r,s,t such that $q^2+r^2+s^2+t^2=i^2+j^2+k^2+l^2$. If, in addition, i,j,k,l are distinct, then so are q,r,s,t. **Example:** $1^2+3^2+5^2+7^2=0^2+2^2+4^2+8^2$. **Source:** [nelsensquares,]. **Related:** Fact **??**.

Fact 1.11.29. Let $n \ge 1$, let d_1, \ldots, d_l be the distinct positive divisors of n, and, for all $i \in \{1, \ldots, l\}$, let a_i denote the number of distinct positive divisors of d_i . Then,

$$\sum_{i=1}^{l} a_i^3 = \left(\sum_{i=1}^{l} a_i\right)^2.$$

Source: [sav, p. 64]. **Remark:** This is *Liouville's theorem.* **Related:** Fact 1.12.1. **Example:** Let n = 8 so that $d_1 = 1$, $d_2 = 2$, $d_3 = 4$, $d_4 = 8$, $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, and $a_4 = 4$. Then, $1^3 + 2^3 + 3^3 + 4^3 = (1 + 2 + 3 + 4)^2$. Let n = 15 so that $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_1 = 1$, $d_2 = 2$, $d_3 = 2$, and $d_4 = 4$. Then, $d_1 = 1$, $d_2 = 3$, $d_3 = 5$, $d_4 = 15$, $d_$

Fact 1.11.30. The following statements hold:

- i) $1^2 + 7^2 = 5^2 + 5^2 = 50$, $1^2 + 8^2 = 4^2 + 7^2 = 65$, $2^2 + 9^2 = 6^2 + 7^2 = 85$, $2^2 + 11^2 = 5^2 + 10^2 = 125$.
- ii) $5^2 + 14^2 = 10^2 + 11^2 = 221$, $4^2 + 19^2 = 11^2 + 16^2 = 377$, $7^2 + 24^2 = 15^2 + 20^2 = 25^2 = 625$.
- $12 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2 = 325, 20^2 + 107^2 = 43^2 + 100^2 = 68^2 + 85^2 = 11849.$
- iv) $15^2 + 70^2 = 30^2 + 65^2 = 34^2 + 63^2 = 47^2 + 54^2 = 5125$, $10^2 + 11^2 + 12^2 = 13^2 + 14^2 = 365$.
- $v) 25^2 + 60^2 = 33^2 + 56^2 = 16^2 + 63^2 = 39^2 + 52^2 = 65^2 = 4225, 1 + 3 + 3^2 + 3^3 + 3^4 = 11^2.$
- vi) $7^2 + 74^2 = 14^2 + 73^2 = 22^2 + 71^2 = 25^2 + 70^2 = 41^2 + 62^2 = 50^2 + 55^2 = 5525.$
- vii) $5^2 + 17^2 + 18^2 = 9^2 + 14^2 + 19^2 = 638$, $21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2 = 2030$.
- viii) $36^2 + 37^2 + 38^2 + 39^3 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2 = 7230$.
- ix) $55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2 = 19855.$
- $x) 297^2 = (88 + 209)^2 = 88209, 7777^2 = (6048 + 1729)^2 = 60481729.$
- xi) $3^3 + 4^3 + 5^3 = 6^3 = 216$, $58^3 + 59^3 + 69^3 = 90^3 = 729000$, $1^3 + 12^3 = 9^3 + 10^3 = 1729$.
- xii) $10^3 + 27^3 = 19^3 + 24^3 = 20683$, $4^3 + 48^3 = 36^3 + 40^3 = 110656$, $1 + 18 + 18^2 = 7^3$.
- xiii) $167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3 = 87539319$, $11^3 + 12^3 + 13^3 + 14^3 = 20^3 = 8000$.
- xiv) $31^3 + 33^3 + 35^3 + 37^3 + 39^3 + 41^3 = 66^3 = 287496$, $2^4 + 2^4 + 3^4 + 4^4 + 4^4 = 5^4$.
- xv) $59^4 + 158^4 = 133^4 + 134^4 = 635318657$, $30^4 + 120^4 + 272^4 + 315^4 = 353^4 = 15527402881$.
- xvi) $240^4 + 340^4 + 430^4 + 599^4 = 651^4 = 179607287601.$
- xvii) $27^5 + 84^5 + 110^5 + 133^5 = 144^5 = 61917364224$, $1 + 7 + 7^2 + 7^3 = 20^2$.
- xviii) $1^6 2^6 + 3^6 = 3(6 + 6^3) = 2^2 + 3^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 = 666$.
- xix) $95800^4 + 217519^4 + 414560^4 = 422481^4 = 31858749840007945920321.$
- (20, 20) $(36 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6 = 160426514, 13^2 + 7^3 = 2^9, 2^7 + 17^3 = 71^2.$
- xxi) $10^7 + 14^7 + 123^7 + 149^7 = 15^7 + 90^7 + 129^7 + 146^7 = 2056364173794800.$
- xxii) $81^8 + 539^8 + 966^8 = 158^8 + 310^8 + 481^8 + 725^8 + 954^8 = 765381793634649192581218.$
- $xxiii) \ \ 42^9 + 99^9 + 179^9 + 475^9 + 542^9 + 574^9 + 625^9 + 668^9 + 822^9 + 851^9 = 917^9 \\ = 458483827502199203411828597.$
- $xxiv) \ 62^{10} + 115^{10} + 172^{10} + 245^{10} + 295^{10} + 533^{10} + 689^{10} + 927^{10} + 1011^{10} + 1234^{10} + 1603^{10} + 1684^{10} = 1772^{10} = 303518810756415395921574821458201.$
- xxv) For all $i \in \{1, 2, 3\}$, $1^i + 21^i + 36^i + 56^i = 2^i + 18^i + 39^i + 55^i$.
- xxvi) For all $i \in \{1, 3, 9\}$, $1^i + 13^i + 13^i + 14^i + 18^i + 23^i = 5^i + 9^i + 10^i + 15^i + 21^i + 22^i$.
- xxvii) For all $i \in \{-1, 1\}$, $4^i + 10^i + 12^i = 5^i + 6^i + 15^i$, $6^i + 14^i + 14^i = 7^i + 9^i + 18^i$, and $3^i + 40^i = 4^i + 15^i + 24^i = 5^i + 8^i + 30^i$.
- xxviii) For all $i \in \{-2, -1, 1, 2\}, (-230)^i + (-92)^i + 23^i + 46^i = (-220)^i + (-110)^i + 22^i + 55^i$.
- xxix) For all $i \in \{1, 2, 6\}$, $83^i + 211^i + (-300)^i = (-124)^i + (-185)^i + 303^i$, and $43^i +$

- $371^{i} + (-372)^{i} = 140^{i} + 307^{i} + (-405)^{i}.$
- xxx) For all $i \in \{1, 3, 5\}$, $(-51)^i + (-33)^i + (-24)^i + 7^i + 13^i + 38^i + 50^i = (-134)^i + (-75)^i + (-66)^i + 8^i + 47^i + 87^i + 133^i = 0$.
- xxxi) For all $i \in \{1, 2, 3, 9\}$, $(-621)^i + 51^i + 253^i + 412^i + 600^i = (-624)^i + 187^i + 100^i + 429^i + 603^i$.
- xxxii) For all $i \in \{1, 3, 5, 7\}$, $(-98)^i + (-82)^i + (-58)^i + (-34)^i + 13^i + 16^i + 69^i + 75^i + 99^i = (-169)^i + (-161)^i + (-119)^i + (-63)^i + 8^i + 50^i + 132^i + 148^i + 174^i = 0.$
- xxxiii) For all $i \in \{1, 2, 3, 4, 5\}, (-461)^i + (-233)^i + (-199)^i + 465^i + 237^i + 203^i = (-435)^i + (-343)^i + 1^i + 3^i + 347^i + 439^i.$
- xxxiv) $13! = 112296^2 79896^2 = 6227020800.$

Source: [bremner9,castellanos2,choudhrylike,ekl7,harper,Mclaughlin,piezas,] and [posamentier, pp. 48, 49]. **Remark:** xvii) and xix) are counterexamples to Euler's conjecture, which states that, for all $n \ge 4$, the nth power of a positive integer cannot be decomposed into the sum of n-1 or fewer nth powers of integers. Euler's conjecture is true in the case n=3; that is, the cube of a positive integer cannot be the sum of the cubes of two positive integers. This case is given by Fact 1.11.39.

Fact 1.11.31. Let i, j, k, l be positive integers. Then, there exist positive integers m, n, r, s such that $\{m, n\} \neq \{r, s\}$ and

$$(i^2 + j^2)(k^2 + l^2) = m^2 + n^2 = r^2 + s^2.$$

In particular, m = |ik - jl|, n = jk + il, r = ik + jl, and s = |il - jk|. Source: Fact ?? and [nahinit, pp. 25, 26]. **Example:** $(2^2 + 3^2)(4^2 + 5^2) = 533 = 7^2 + 22^2 = 23^2 + 2^2$.

Fact 1.11.32. Let $k, m, n \ge 1$, assume that k > m + n, let $x_1, \ldots, x_m, y_1, \ldots, y_n$ be integers, and assume that $\sum_{i=1}^m x_i^k = \sum_{i=1}^n y_i^k$. Then, m = n and $x^{\downarrow} = y^{\downarrow}$. **Remark:** This is *Euler's extended conjecture*. See [Ekl,LPS,].

Fact 1.11.33. Let $n \ge 0$. Then, there exist $k, l \ge 0$ such that $n = k^2 + l^2$ if and only if n does not have a prime factor of the form 4k + 3 raised to an odd exponent. **Source:** [aigner, Chapter 4] and [sierpinski, p. 378]. **Remark:** $29 = 2^2 + 5^2$, but neither 27, 71, nor 243 is the sum of two squares.

Fact 1.11.34. Let $n \ge 0$. Then, there exist $k, l, m \ge 0$ such that $n = k^2 + l^2 + m^2$ if and only if there do not exist $i, j \ge 0$ such that $n = 4^i(8j + 7)$. Hence, if $k, l \ge 1$, k = 3, and l = 5, then kl = 7, and thus kl is not the sum of three squares. **Source:** [grosswald, p. 38] and [lure, p. 59]. **Remark:** $14 = 1^2 + 2^2 + 3^2$, but $15 = 4^0(8 \cdot 1 + 7)$ is not the sum of three squares.

Fact 1.11.35. Let $n \ge 0$. Then, there exist positive integers k, l, m such that k < l < m and $n = k^2 + l^2 - m^2$. **Source:** [sav, pp. 56, 57]. **Example:** $0 = 3^2 + 4^2 - 5^2$, $1 = 4^2 + 7^2 - 8^2$, and $2 = 5^2 + 11^2 - 12^2$.

Fact 1.11.36. Let $l, m, n \ge 1$. Then, there exist integers j, k such that $j^2 + k^2 = (l^2 + m^2)^n$. Source: [larson, p. 115]. **Example:** $(2^2 + 3^2)^3 = 2197 = 9^2 + 46^2$.

Fact 1.11.37. Let n > 1. Then, the following statements are equivalent:

- i) There exist $k, l \ge 1$ such that $n = k^3 + l^3$.
- ii) There exists a divisor m of n such that $\sqrt[3]{n} \leq m \leq 2^{2/3} \sqrt[3]{n}$, $3|m^2 n/m$, and $\sqrt{\frac{4n}{3m} \frac{m^2}{3}}$ is an integer.

Furthermore, the following statements are equivalent:

iii) There exist k, l > 1 such that $n = k^3 - l^3$.

iv) There exists a divisor m of n such that $1 \le m \le \sqrt[3]{n}$, $3|m^2 - \frac{n}{m}$, and $\sqrt{\frac{4n}{3m} - \frac{m^2}{3}}$ is an integer.

Source: [broughan,]. **Example:** $91 = 3^3 + 4^3$ and m = 7.

Fact 1.11.38. Let $n \ge 2$. Then, H_n is not an integer. Source: [larson, p. 105].

Fact 1.11.39. Let $k, l, m \ge 1$ and $n \ge 3$. Then, $k^n + l^n \ne m^n$. Remark: This is Fermat's last theorem. Credit: A. Wiles.

Fact 1.11.40. Let $n \ge 2$ be prime, and assume that $n \stackrel{4}{\equiv} 1$. Then, there exist $k, l \ge 1$ such that $n = k^2 + l^2$. **Source:** [AAR, p. 41] and [zagier90,]. **Credit:** P. de Fermat. **Example:** 29 = 4 + 25 and 89 = 25 + 64.

Fact 1.11.41. Let $k, l, m, n \ge 2$, and assume that $k^l - m^n = 1$. Then, k = 3, l = 2, m = 2, and n = 3. **Remark:** This is *Catalan's conjecture*. **Credit:** P. Mihăilescu.

Fact 1.11.42. Let $n \ge 1$. Then, there exists a prime $m \in (n, 2n]$. If, in addition, $n \ge 2898242$, then there exists a prime $m \in (n, n + n/(111 \log^2 n)]$. **Source:** [aigner, Chapter 2] and [axler,trudgian,]. **Remark:** The first statement is *Bertrand's postulate*.

Fact 1.11.43. Let $n \geq 20$, and, for all $i \geq 1$, let p_i denote the *i*th prime. Then,

$$n(\log n + \log \log n - \frac{3}{2}) < p_n < n(\log n + \log \log n - \frac{1}{2}).$$

Source: [havil, p. 183] and [rosser,].

Fact 1.11.44. Let $n \ge 1$, and, for all $i \ge 1$, let p_i denote the *i*th prime. Then, $\prod p_i \le 4^n$, where the product is taken over all i such that $p_i \le n$. **Source:** [mollnf, p. 90].

Fact 1.11.45. For all $i \ge 1$, let p_i denote the *i*th prime. Then, for all $k \ge 4$, $p_{k+1}^2 < \prod_{i=1}^k p_i$. **Remark:** This is *Bonse's inequality*. **Remark:** 121 < 210 and 169 < 2310.

Fact 1.11.46. Let $n \ge 4$ be even. Then, there exist primes k and l such that n = k + l. **Remark:** This is the *Goldbach conjecture*. **Example:** 44 = 13 + 31 and 100 = 17 + 83. **Remark:** An incomplete proof is given in [bruckmanGC,].

Fact 1.11.47. Let $n \geq 1$, and let d_n denote the sum of all positive integers (not counting multiplicity) that divide n. Then, $d_n \leq H_n + e^{H_n} \log H_n$. **Remark:** This result is equivalent to the *Riemann hypothesis*. See [borweinchoi, p. 48] and [lagarias,]. Equivalent statements are given by Fact $\ref{eq:hamman}$. **Remark:** Let $r_n \triangleq d_n/(H_n + e^{H_n} \log H_n)$. Then, $r_{12} \approx .98864$, $r_{120} \approx .98344$, $r_{360} \approx .97111$, and $r_{2520} \approx .97831$.

Fact 1.11.48. Let $n \ge 1$, let $\{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_n\} = \{1, \ldots, 2n\}$, and assume that $a_1 < \cdots < a_n$ and $b_n < \cdots < b_1$. Then, $\sum_{i=1}^n |a_i - b_i| = n^2$. **Source:** [sav, p. 66].

Fact 1.11.49. If $n \ge 1$, then there exist finitely many multisets $\{k_1,\ldots,k_n\}_{\mathrm{ms}}$ of positive integers such that $\sum_{i=1}^n \frac{1}{k_i} = 1$. Now, define $S_1 \triangleq 2$ and, for all $n \ge 2$, define $S_n \triangleq 1 + \prod_{i=1}^{n-1} S_i$. In particular, $(S_i)_{i=1}^6 = (2,3,7,43,1807,3263443)$. If $n \ge 2$ and the positive integers k_1,\ldots,k_n satisfy $\sum_{i=1}^n \frac{1}{k_i} = 1$, then $\max\{k_1,\ldots,k_n\} \le S_{n-1} - 1$. **Source:** [rose, p. 288] and [sandowmac,].

Fact 1.11.50. Let $n \ge 1$. Then,

$$\frac{4}{4n+1} = \frac{1}{n} - \frac{1}{n(4n+1)}, \quad \frac{4}{4n-1} = \frac{1}{n} + \frac{1}{n(4n-1)}.$$

If n is odd, then

$$\frac{4}{n} = \frac{2}{n-1} + \frac{2}{n+1} - \frac{4}{n(n^2-1)}.$$

If $n \stackrel{3}{\equiv} 2$, then

$$\frac{4}{n} = \frac{1}{n} + \frac{3}{n+1} + \frac{3}{n(n+1)}.$$

Source: [wikiEfr,]. **Remark:** These equalities concern *Egyptian fractions* and are associated with the Erdös-Straus conjecture. See Fact 1.11.51.

Fact 1.11.51. Let $n \ge 2$. Then, there exist $k, l, m \ge 1$ such that 4/n = 1/k + 1/l + 1/m. **Example:** 4/5 = 1/2 + 1/4 + 1/20 = 1/2 + 1/5 + 1/10. **Remark:** This is the *Erdös-Straus conjecture*. **Related:** Fact 1.11.50.

Fact 1.11.52. Let $n \ge 1$. Then, $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$. **Source:** [five, pp. 19, 119].

1.12 Facts on Finite Sums

Fact 1.12.1. Let $n, k \ge 1$. Then,

$$\sum_{i=1}^{n} i^k = \frac{1}{k+1} \sum_{i=0}^{k} B_i \binom{k+1}{i} (n+1)^{k+1-i} = \frac{1}{k+1} \left[\left(\sum_{i=0}^{k+1} B_{k+1-i} \binom{k+1}{i} (n+1)^i \right) - B_{k+1} \right].$$

In particular,

$$\sum_{i=1}^{n} i = \binom{n+1}{2} = \frac{1}{2}n(n+1) = \frac{1}{2}n^2 + \frac{1}{2}n,$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{4}\binom{2n+2}{3} = \binom{n+1}{2} + 2\binom{n+1}{3} = \frac{1}{6}n(n+1)(2n+1) = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n,$$

$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \binom{n+1}{2}^2 = \frac{1}{4}n^2(n+1)^2 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2,$$

$$\sum_{i=1}^{n} i^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2 + 3n - 1) = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n,$$

$$\sum_{i=1}^{n} i^5 = \frac{1}{12}n^2(n+1)^2(2n^2 + 2n - 1) = \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{5}{12}n^4 - \frac{1}{12}n^2,$$

$$\sum_{i=1}^{n} i^6 = \frac{1}{42}n(n+1)(2n+1)(3n^4 + 6n^3 - 3n + 1) = \frac{1}{7}n^7 + \frac{1}{2}n^6 + \frac{1}{2}n^5 - \frac{1}{6}n^3 + \frac{1}{42}n,$$

$$\sum_{i=1}^{n} i^7 = \frac{1}{24}n^2(n+1)^2(3n^4 + 6n^3 - 4n + 2),$$

$$\sum_{i=1}^{n} i^8 = \frac{1}{90}n(n+1)(2n+1)(5n^6 + 15n^5 + 5n^4 - 15n^3 - n^2 + 9n - 3),$$

$$\sum_{i=1}^{n} i(i+1) = \frac{1}{3}n(n+1)(n+2), \qquad \sum_{i=1}^{n} i(i+1)(i+2) = \frac{1}{4}n(n+1)(n+2)(n+3),$$

$$\sum_{i=1}^{n} i(i+1)^2 = \frac{1}{12}n(n+1)(n+2)(3n+5), \quad \sum_{i=1}^{n} i(i+1)^3 = \frac{1}{60}n(n+1)(n+2)(12n^2+39n+29),$$

$$\sum_{i=0}^{n-1} (2i+1) = n^2, \quad \sum_{i=0}^{n-1} (2i+1)^2 = \frac{1}{3}n(4n^2-1), \quad \sum_{i=0}^{n-1} (2i+1)^3 = n^2(2n^2-1),$$

$$\sum_{i=0}^{n-1} (2i+1)^4 = \frac{1}{15}n(48n^4-40n^2+7), \quad \sum_{i=0}^{n-1} (2i+1)^5 = \frac{1}{3}n^2(16n^4-20n^2+7),$$

$$\sum_{i=0}^{n-1} (2i+1)^6 = \frac{1}{21}n(4n^2-1)(48n^4-72n^2+31), \quad \sum_{i=0}^{n-1} (2i+1)^7 = \frac{1}{3}n^2(48n^6-112n^4+98n^2-31).$$

Now, let $k \geq 1$ and $n \geq 1$, and define $p_k(n) \triangleq \sum_{i=1}^n i^k$. Then, the following statements hold:

- i) $p_k(n)$ is a polynomial whose degree is k+1 and whose leading coefficient is 1/(k+1).
- ii) The coefficient of n in $p_k(n)$ is $(-1)^k B_k$.
- *iii*) $p_k(1) = 1$.
- iv) For all $z \in \mathbb{C}$, $p'_{k}(z) = kp_{k-1}(z) + (-1)^{k}B_{k}$.
- v) p_2 divides p_{2k} , and p_3 divides p_{2k+1} .
- vi) $p_1(n)$ divides $p_{2k+1}(n)$.
- vii) $\sum_{i=1}^{k} {k+1 \choose i} p_i(n) = (n+1)^{k+1} n 1$.

Source: The first equality is the *Bernoulli formula*, where B_i is the *i*th Bernoulli number. See Fact \ref{Fact} . See [comtet, pp. 153–155], [GR, pp. 2, 3], [GKP, pp. 283, 284], and [torabi,]. i)–iv) are given in [wubernoulli,]; v) is given in [comtet, p. 155]; vi) is given in [macmillansondowdiv,]; and vii) is given in [schaum, p. 135]. **Remark:** v) is a statement about polynomials, whereas vi) is a statement about integers. **Remark:** A matrix approach to sums of powers of integers is given in [dubeau,]. The expressions involving binomial coefficients are given in [benjamincubes,] and [benjaminquinn, pp. 109–112]. See also [mackiw,]. **Related:** Fact 1.11.29, Fact 1.12.2, Fact \ref{Fact} ?, and [herman, p. 11].

Fact 1.12.2. Let $n \geq 1$, let $k \geq 0$, and define $\sigma_k \triangleq \sum_{i=1}^n i^k$. Then,

$$\begin{split} \sigma_1 &= \tfrac{1}{2}(n+\tfrac{1}{2})^2 - \tfrac{1}{8}, \quad \sigma_2 = \tfrac{1}{3}(n+\tfrac{1}{2})^3 - \tfrac{1}{12}(n+\tfrac{1}{2}), \quad 2\sigma_1^4 = \sigma_5 + \sigma_7, \\ \sigma_3 &= \sigma_1^2, \quad \sigma_4 = (\tfrac{6}{5}\sigma_1 - \tfrac{1}{5})\sigma_2, \quad \sigma_5 = \tfrac{4}{3}\sigma_1^3 - \tfrac{1}{3}\sigma_1^2, \quad \sigma_6 = (\tfrac{12}{7}\sigma_1^2 - \tfrac{6}{7}\sigma_1 + \tfrac{1}{7})\sigma_2, \\ \sigma_7 &= 2\sigma_1^4 - \tfrac{4}{3}\sigma_1^3 + \tfrac{1}{3}\sigma_1^2, \quad \sigma_1^3 = \tfrac{1}{4}\sigma_3 + \tfrac{3}{4}\sigma_5, \quad \sigma_1^5 = \tfrac{1}{16}\sigma_5 + \tfrac{5}{8}\sigma_7 + \tfrac{5}{16}\sigma_9, \\ 8\sigma_1^3 + \sigma_1^2 - 9\sigma_2^2 &= 0, \quad 81\sigma_2^4 - 18\sigma_2^2\sigma_3 + \sigma_3^2 - 64\sigma_3^3 = 0, \quad 16\sigma_3^3 - \sigma_3^2 - 6\sigma_3\sigma_5 - 9\sigma_5^2 = 0. \end{split}$$

Furthermore,

$$\sum_{i=0}^{k} {k+1 \choose i} \sigma_i = (n+1)^{k+1} - 1.$$

Next, define the polynomial

$$F_k(s) \triangleq \frac{1}{k+1} \sum_{i=0}^k B_i \binom{k+1}{i} (s+1)^{k+1-i}.$$

Then,

$$F_3(s) = s^2, \ F_4(s) = \frac{6}{5}s - \frac{1}{5}, \ F_5(s) = \frac{4}{3}s^3 - \frac{1}{3}s^2, \ F_6(s) = \frac{12}{7}s^2 - \frac{6}{7}s + \frac{1}{7}, \ F_7(s) = 2s^4 - \frac{4}{3}s^3 + \frac{1}{3}s^2.$$

If $k \geq 3$ is odd, then $\sigma_k = F_k(\sigma_1)$ and $\deg F_k = \frac{1}{2}(k+1)$. If $k \geq 2$ is even, then $\sigma_k = \sigma_2 F_k(\sigma_1)$ and $\deg F_k = \frac{1}{2}(k-2)$. **Source:** [beardon,]. **Remark:** F_k is a Faulhaber polynomial. Generating functions are given in [beardon,]. **Remark:** B_i is the *i*th Bernoulli number. See Fact ??. **Related:** Fact 1.12.1.

Fact 1.12.3. For all $n \geq 0$, define the *n*th triangular number by $T_n \triangleq \frac{1}{2}n(n+1)$. Then, the following statements hold:

- $i) \ \ (T_i)_{i=0}^{20} = (0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210).$
- ii) If $n \ge 1$, then $T_n = \sum_{i=1}^n i = \binom{n+1}{2} = \frac{1}{2}n(n+1) = \sqrt{\sum_{i=1}^n i^3}$.
- *iii*) $2T_nT_{n+1} = T_{n^2+2n}$, $T_nT_{n+2} = 2T_{(n^2+3n)/2}$, and $T_n \stackrel{?}{\equiv} \lfloor (n+1)/2 \rfloor$.
- iv) If $n \ge 1$, then $8T_n + 1 = (2n+1)^2$ and $T_n + T_{n+1} = (n+1)^2$.
- v) If $n \ge 2$, then $8T_n + 1 = T_{n+1} + 6T_n + T_{n-1}$.
- vi) If $n \ge 1$, then $T_n^2 = \sum_{i=1}^n i^3$, $T_{2n^2-1} = \sum_{i=1}^n (2i-1)^3$, and $\sum_{i=1}^{2n-1} (-1)^{i+1} T_i = n^2$.
- vii) If $n \ge 1$, then $9T_n + 1 = T_{3n+1}$, $T_{(n+1)^2} = T_n^2 + T_{n+1}^2 = T_{n^2} + T_{n+1}^2 T_{n-1}^2$, and $\sum_{i=0}^n 9^i = T_{(3^{n+1}-1)/2}$.
- viii) If $n \ge 1$, then $\sum_{i=1}^{n} T_i = \frac{n}{3} T_{n+1} = \frac{1}{3} (n+2) T_n = \frac{1}{6} n(n+1)(n+2)$ and $2T_n^2 = T_{n^2} + n^3$.
- ix) If $n \ge 2$, then $T_n^2 = T_n + T_{n-1}T_{n+1}$.
- x) If $n \geq 2$, then none of $\sqrt[3]{T_n}$, $\sqrt[4]{T_n}$, $\sqrt[5]{T_n}$ are integers.
- xi) If $n \ge 1$, then the last digit of T_n is not an element of $\{2, 4, 7, 9\}$.
- xii) If $n \ge 1$ and T_n is prime, then n = 2 and $T_n = 3$.
- xiii) If $n, m \ge 1$, then $T_{m+n} = T_m + T_n + mn$, $T_{mn} = T_m T_n + T_{m-1} T_{n-1}$, $T_{mn-1} = T_{m-1} T_n + T_m T_{n-1}$.
- xiv) For all $n \ge 1$, let τ_n be the nth positive integer such that T_{τ_n-1} is square. Then, $(\tau_i)_{i=1}^{12} = (1, 2, 9, 50, 289, 1682, 9801, 57122, 332929, 1940450, 11309769, 65918162).$
- xv) There are infinitely many square triangular numbers.
- xvi) For all $n \ge 1$, $\tau_{n+2} = 6\tau_{n+1} \tau_n 2$.
- xvii) For all $n \ge 1$, $\tau_n = \frac{1}{2}[(3-2\sqrt{2})^{n-1}+1]^2/(3-2\sqrt{2})^{n-1}$.
- xviii) For all $n \ge 1$, $\sqrt{\tau_n} \sqrt{\tau_n 1} = (\sqrt{2} 1)^{n-1}$.
 - xix) For all $n \geq 2$,

$$T_{\tau_n-1} = \left\lceil \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} 2^i \binom{n-1}{2i} \right\rceil^2 \left\lceil \sum_{i=0}^{\lfloor (n-2)/2 \rfloor} 2^i \binom{n-1}{2i+1} \right\rceil^2.$$

In particular, $(T_{\tau_i-1})_{i=1}^9 = (0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881)$.

- xx) For all $n \ge 1$, $T_{\tau_{n+2}} = (6\sqrt{T_{\tau_{n+1}}} \sqrt{T_{\tau_n}})^2$.
- xxi) $(\sqrt{T_{\tau_i-1}})_{i=1}^{12} = (0,1,6,35,204,1189,6930,40391,235416,1372105,7997214,46611179)$
- xxii) For all $n \ge 1$, $T_{\tau_{n+2}-1} = 34T_{\tau_{n+1}-1} T_{\tau_n-1} + 2$.
- xxiii) For all $n \ge 1$, $T_{\tau_n 1} = \frac{1}{32} [(1 + \sqrt{2})^{2n-2} (1 \sqrt{2})^{2n-2}]^2$.
- xxiv) n is a triangular number and a Fibonacci number if and only if $n \in \{1, 3, 21, 55\}$.
- xxv) Every nonnegative integer is the sum of three triangular numbers.

- xxvi) Every triangular number except T_1 and T_3 is the sum of three positive triangular numbers.
- $xxvii) \ T_{132}^2 + T_{143}^2 = T_{164}^2.$
- xxviii) If $n \geq 3$, then $\prod_{i=1}^{n} T_i < T_{n!}$.
- xxix) If $n \ge 0$, then $\sum_{i=0}^{n} {n \choose i} T_i = 2^{n-2} (T_{n+1} 1)$.
- xxx) If $n \ge 1$, then $T_{n^2+n-1} + T_{n^2+3n+1} = (n+1)^4$.

Source: [fasctrinumb,pandey,trottertri,]. xiii) and xxviii) are given in [asiru,]; xviii) is given in [ibstedt,]; xix) is given in [AMR2, pp. 55, 312, 313]; xx) is given in [keedwell,]; xxv) is given in [grosswald, p. 25] and [sunpent,]; xxix) is given in [gonzalezgci,]. xxx) is given in [marion,]. **Remark:** T_n is given by $P_2(n)$ in Fact 1.12.6. See Fact 1.20.1. **Related:** Fact ??.

Fact 1.12.4. For all $n \in \mathbb{N}$, define the *n*th pentagonal number by $P_n \triangleq \frac{1}{2}n(3n-1)$. Then the following statements hold:

- i) $(P_i)_{i=0}^{18} = (0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477).$
- *ii*) If $n \ge 1$, then $\frac{1}{n} \sum_{i=1}^{n} P_i = T_n$ and $3P_n = T_{3n-1}$.
- iii) If n is a pentagonal number, then $\frac{1}{6}(\sqrt{24n+1}+1)=n$.
- iv) Let $n \geq 1$. Then, the following statements are equivalent:
 - a) n is a pentagonal number.
 - b) 24n + 1 is a square, and $\sqrt{24n + 1} \stackrel{6}{=} 5$.
 - c) $\frac{1}{6}(\sqrt{24n+1}+1)$ is an integer.
- v) Every nonnegative integer is the sum of five pentagonal numbers.
- vi) If $n \ge 1$ and $n \notin \{9, 21, 31, 43, 55, 89\}$, then n is the sum of four pentagonal numbers.

Finally, for all $n \geq 1$, define the *n*th dual pentagonal number by $P'_n \triangleq \frac{1}{2}n(3n+1)$. Then, the following statements hold:

- vii) For all $n \ge 1$, $P_n < P'_n < P_{n+1}$.
- $viii) \ \ (P_i')_{i=1}^{18} = (2,7,15,26,40,57,77,100,126,155,187,222,260,301,345,392,442,495).$

Source: [sunpent,wolframpent,]. **Remark:** For all $n \ge 1$, $P'_n = P_{-n}$. **Remark:** See [fuchs, pp. 45–47]. **Related:** Fact ??.

Fact 1.12.5. For all $n \geq 0$, define the nth generalized pentagonal number by

$$g_n \stackrel{\triangle}{=} \begin{cases} \frac{1}{8}(n+1)(3n+1), & n \text{ odd,} \\ \frac{1}{8}n(3n+2), & n \text{ even.} \end{cases}$$

Then, the following statements hold:

- i) $(g_i)_{i=0}^{21} = (0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176).$
- ii) For all $n \ge 1$, $g_{2n-1} = \frac{1}{2}n(3n-1)$ and $g_{2n} = \frac{1}{2}n(3n+1)$.
- $(iii) (g_i)_{i=-\infty}^{\infty} = (\frac{1}{2}i(3i-1))_{i=-\infty}^{\infty}.$
- iv) For all $n \geq 0$,

$$g_n \stackrel{\triangle}{=} \begin{cases} P_{(n+1)/2}, & n \text{ odd,} \\ P_{-n/2} = P'_{n/2}, & n \text{ even.} \end{cases}$$

v) $(g_0, g_1, g_2, g_3, g_4, \ldots) = (P_0, P_1, P_1', P_2, P_2', \ldots)$, where P_n is the nth pentagonal number and P_n' is the nth dual pentagonal number.

vi) Every nonnegative integer is the sum of three generalized pentagonal numbers.

Source: [wikipentagonal,guy,sunpent,]. **Related:** Fact 1.12.4 and Fact ??.

Fact 1.12.6. Let $n, k \geq 1$, and define $P_k(n) \triangleq \operatorname{card} \{(i_1, \dots, i_k) : 1 \leq i_1 \leq \dots \leq i_k \leq n\}$. Then,

$$P_k(n) = \binom{n+k-1}{k}.$$

In particular,

$$P_2(n) = \sum_{i=1}^n i = \binom{n+1}{2} = \frac{n(n+1)}{2}, \quad P_2(n) = \binom{n+2}{3} = \sum_{i=1}^n \sum_{j=1}^i j = \frac{n(n+1)(n+2)}{6},$$

$$P_3(n) = \binom{n+3}{4} = \sum_{i=1}^n \sum_{j=1}^i \sum_{l=1}^j l = \frac{n(n+1)(n+2)(n+3)}{24}.$$

Remark: $P_2(n)$, $P_3(n)$, and $P_4(n)$ are the *triangular*, *tetrahedral*, and *pentatopic* numbers. **Remark:** $P_k(n)$ is the number of k-element multisubsets of $\{1, \ldots, n\}$; that is, $P_k(n) = \binom{n}{k}_r$. See Fact 1.16.16. **Related:** Fact 1.12.3.

Fact 1.12.7. Let $n \geq 0$ and $k \geq 3$, and define the (n,k) polygonal number $p_k(n) \triangleq (k-2)\binom{n}{2} + n$. Then, the following statements hold:

- i) $p_k(n) = \frac{1}{2}n[(k-2)n + 4 k].$
- ii) $p_3(n) = \frac{1}{2}n(n+1)$ is the nth triangular number.
- *iii*) $p_4(n) = n^2$.
- iv) $p_5(n) = \frac{1}{2}n(3n-1)$ is the *n*th pentagonal number.
- v) $p_k(n) = \frac{\mathrm{d}^n}{\mathrm{d}x^n} \frac{x[(k-3)x+1]}{n!(1-x)^3} \bigg|_{x=0}$.
- vi) Let $m \geq 0$. Then, there exist nonnegative integers n_1, \ldots, n_k such that $m = \sum_{i=1}^k p_k(n_i)$.

Source: [andrewseureka,guy,sunpent,wolfpolygonal,]. **Credit:** The last statement is due to A. L. Cauchy.

Fact 1.12.8. Let $n \ge 1$. Then,

$$\sum_{i,j=1}^{n} |i-j| = \frac{1}{3}n(n^2 - 1), \quad \sum_{i,j=1}^{n} (i-j)^2 = \frac{1}{6}n^2(n^2 - 1).$$

Now, let $k \geq 1$, and define $\sigma_k \stackrel{\triangle}{=} \sum_{i=1}^n i^k$. Then,

$$\sum_{i,j=1}^{n} |i^k - j^k| = 4\sigma_{k+1} - 2(n+1)\sigma_k, \quad \sum_{i,j=1}^{n} |(i-j)(i^k - j^k)| = 2n\sigma_{k+1} - n(n+1)\sigma_k.$$

Source: [benzceAS,]. Related: Fact ??.

Fact 1.12.9. Let $n \ge 1$. Then,

$$\exp \sum_{i,j=1}^{n} \left| \log \frac{i}{j} \right| = \frac{\prod_{i=1}^{n} i^{4i}}{(n!)^{2n+2}}, \quad \exp \sum_{i,j=1}^{n} \left| (i-j) \log \frac{i}{j} \right| = \left(\frac{\prod_{i=1}^{n} i^{2i}}{(n!)^{n+1}} \right)^{n}.$$

Source: [benzceAS,]. Related: Fact ??.

Fact 1.12.10. Let $1 \leq k \leq n$, let $r \in \mathbb{R}$, and define

$$S_{k,r} \stackrel{\triangle}{=} \sum \prod_{j=1}^{k} i_j^r,$$

where the sum is taken over all k-tuples (i_1, \ldots, i_k) such that $1 \le i_1 < \cdots < i_k \le n$. Then,

$$S_{1,1} = \frac{1}{2}n(n+1), \quad S_{2,1} = \frac{1}{24}n(n^2-1)(3n+2), \quad S_{3,1} = \frac{1}{48}(n-2)(n-1)n^2(n+1)^2,$$

$$S_{1,2} = \frac{1}{6}n(n+1)(2n+1), \quad S_{2,2} = \frac{1}{432}n(n+1)(2n+1)(10n^3 - 3n^2 - 13n + 6).$$

Furthermore, for all $r \in \mathbb{R}$,

$$S_{3,r} = \frac{1}{6}(2S_{1,3r} - 3S_{1,r}S_{1,2r} + S_{1,r}^2).$$

Source: [benezeAOI,].

Fact 1.12.11. Let $k \ge 1$ and $n \ge 1$. If $n^2 \le k \le (n+1)^2 - 1$, then $\lfloor \sqrt{k} \rfloor = n$. If $n^3 \le k \le (n+1)^3 - 1$, then $\lfloor \sqrt[3]{k} \rfloor = n$. Now, assume that $n \ge 2$. Then,

$$\sum_{i=1}^{n^2-1} \lfloor \sqrt{i} \rfloor = \frac{1}{6} n(n-1)(4n+1), \quad \sum_{i=1}^{n^3-1} \lfloor \sqrt[3]{i} \rfloor = \frac{1}{4} (n-1)n^2(3n+1).$$

Source: [five, pp. 39, 187].

Fact 1.12.12. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \left\lfloor \frac{i}{2} \right\rfloor = \frac{n^2}{4} + \frac{(-1)^n - 1}{8}, \quad \sum_{i=1}^{\lfloor n/2 \rfloor} \left\lfloor \frac{i}{2} \right\rfloor = \left\lfloor \frac{n}{4} \right\rfloor \left\lfloor \frac{n+2}{4} \right\rfloor.$$

Source: [beauregard,].

Fact 1.12.13. Let $n \geq 3$ and $m \geq 1$, assume that n is prime, and assume that $n \nmid m$. Then,

$$\sum_{i=1}^{n-1} \left\lfloor \frac{im}{n} \right\rfloor = \frac{1}{2}(n-1)(m-1), \quad \sum_{i=1}^{n-1} \left\lfloor \frac{(-1)^i i^2 m}{n} \right\rfloor = \frac{1}{2}(n-1)(m-1),$$

$$\sum_{i=1}^{n-1} \left\lfloor \frac{i^3 m}{n} \right\rfloor = \frac{1}{4} (n-1)(n^2 m - nm - 2), \quad \sum_{i=1}^{n-1} \left\lfloor \frac{(-1)^i i^4 m}{n} \right\rfloor = \frac{1}{2} (n-1)[m(n^2 - n - 1) - 1].$$

In particular,

$$\sum_{i=1}^{n-1} \left\lfloor \frac{i}{n} \right\rfloor = 0, \quad \sum_{i=1}^{n-1} \left\lfloor \frac{(-1)^i i^2}{n} \right\rfloor = 0, \quad \sum_{i=1}^{n-1} \left\lfloor \frac{i^3}{n} \right\rfloor = \frac{1}{4} (n-2) (n^2-1), \quad \sum_{i=1}^{n-1} \left\lfloor \frac{(-1)^i i^4}{n} \right\rfloor = \frac{1}{2} (n-2) (n^2-1).$$

If n is odd, then

$$\sum_{i=1}^{n-1} (-1)^i \left\lfloor \frac{i^2}{n} \right\rfloor = \frac{1}{2}(n-1).$$

If n is even and $\frac{n}{2} \stackrel{4}{\equiv} 1$, then

$$\sum_{i=1}^{n-1} (-1)^i \left\lfloor \frac{i^2}{n} \right\rfloor = 1 - \frac{n}{2}.$$

Finally, if n is an odd prime, then

$$\sum_{i=1}^{n-1} \left\lfloor \frac{i^n}{n^2} \right\rfloor = \frac{1}{n^2} \left(\sum_{i=1}^{n-1} i^n \right) - \frac{1}{2} (n-1).$$

Source: [AMR, pp. 428–432] and [koshycurious,].

Fact 1.12.14. Let $1 \le m \le n$. Then,

$$\sum \prod_{j=1}^{m} i_j = \frac{n}{(2m-1)!} \prod_{j=1}^{m-1} (n^2 - i^2),$$

where the sum is taken over all m-tuples (i_1, \ldots, i_m) of positive integers such that $\sum_{j=1}^m i_j = n$. In particular,

$$\sum ij = \frac{1}{6}n(n^2 - 1),$$

where the sum is taken over all ordered pairs (i, j) of positive integers such that i + j = n. **Source:** [comtet, pp. 33, 85].

Fact 1.12.15. Let $1 \le m < n$. Then,

$$\sum_{i=m+1}^{n} i \prod_{j=1}^{m} (i^2 - j^2) = \frac{(n+m+1)!}{2(m+1)(n-m-1)!}.$$

Source: [AMR2, pp. 31, 188].

Fact 1.12.16. Let $1 \le k \le n$. Then,

$$\sum \operatorname{card}(\cap_{i=1}^k S_i) = 2^{k(n-1)} n_i$$

where the sum is taken over all k-tuples (S_1, \ldots, S_k) of subsets of $\{1, \ldots, n\}$. In particular,

$$\sum \operatorname{card}(\mathfrak{S}_1 \cap \mathfrak{S}_2) = 4^{n-1}n,$$

where the sum is taken over all ordered pairs (S_1, S_2) of subsets of $\{1, \ldots, n\}$. Source: [comtet, pp. 33, 34].

Fact 1.12.17. Let $n \ge 2$. Then,

$$\operatorname{card}(\{(i,j) : i,j \in \{1,\ldots,n\} \text{ and } i < j\}) = \binom{n}{2}.$$

Fact 1.12.18. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} (2i-1) = n^2, \quad \sum_{i=1}^{2n} i = \sum_{i=1}^{n} (4i-1) = (2n+1)n, \quad \sum_{i=1}^{2n-1} i = \sum_{i=1}^{n} (4i-3) = (2n-1)n.$$

Fact 1.12.19. Let $m, n \ge 1$. Then,

$$\sum_{i=1}^{n} (mi-1) = \frac{1}{2}mn(n+1) - n, \quad \sum_{i=1}^{n} (mi-1)^2 = \frac{1}{6}m^2n(n+1)(2n+1) - mn(n+1) + n,$$

$$\sum_{i=1}^{n} (mi-1)^3 = \frac{1}{4}m^3n^2(n+1)^2 - \frac{1}{2}m^2n(n+1)(2n+1) + \frac{3}{2}mn(n+1) - n.$$

In particular,

$$\sum_{i=1}^{n} (2i-1) = n^2, \quad \sum_{i=1}^{n} (3i-1) = \frac{3}{2}n^2 + \frac{1}{2}n, \quad \sum_{i=1}^{n} (2i-1)^2 = \frac{4}{3}n^3 - \frac{1}{3}n,$$
$$\sum_{i=1}^{n} (3i-1)^2 = 3n^3 - \frac{3}{2}n^2 - \frac{1}{2}n, \quad \sum_{i=1}^{n} (2i-1)^3 = 2n^4 - n^2.$$

Source: [GR, pp. 2, 3] and [jeffrey, p. 37].

Fact 1.12.20. Let $m \ge n \ge 1$. Then,

$$\sum_{i,j=1}^{m,n} \min\left\{i,j\right\} = \frac{1}{6}n(n+1)(3m-n+1), \quad \sum_{i,j=1}^{m,n} \max\left\{i,j\right\} = \frac{1}{6}n(n^2-1) + \frac{1}{2}mn(m+1).$$

Source: [comtet, p. 168].

Fact 1.12.21. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} 2^{i} i = 2^{n+1} (n-1) + 2, \quad \sum_{i=1}^{n} 2^{i} i^{2} = 2^{n+1} (n^{2} - 2n + 3) - 6,$$

$$\sum_{i=1}^{n} 2^{i} i^{3} = 2^{n+1} (n^{3} - 3n^{2} + 9n - 13) + 26.$$

If $n \geq 2$, then

$$\sum_{i=1}^{n-1} 2^{i-1} (n-i) = 2^n - n - 1.$$

Source: [pwz, pp. 95, 97].

Fact 1.12.22. Let $n \ge 1$, let x be a complex number, and assume that $x \ne 1$. Then,

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}, \quad \sum_{i=1}^{n} x^{i} = \frac{x - x^{n+1}}{1 - x}, \quad \sum_{i=0}^{n-1} (n - i)x^{i} = \frac{x^{n+1} - (n+1)x + n}{(x-1)^{2}},$$

$$\sum_{i=1}^{n} ix^{i} = \frac{[nx^{n+1} - (n+1)x^{n} + 1]x}{(x-1)^{2}} = \frac{(nx^{n} - \sum_{i=0}^{n-1} x^{i})x}{x-1},$$

$$\sum_{i=1}^{n} i^2 x^i = \frac{([n(x-1)-1]^2 + x)x^{n+1} - x^2 - x}{(x-1)^3}$$

$$= \frac{[n^2(x-1)^2 - 2n(x-1) + x + 1]x^{n+1} - x^2 - x}{(x-1)^3}$$

$$= \frac{[n^2x^{n+1} - (n^2 + 2n - 1)x^n + 2\sum_{i=1}^{n-1}x^i + 1]x}{(x-1)^2}$$

$$= \frac{[n^2x^n - \sum_{i=0}^{n-1}(2i+1)x^i]x}{x-1}.$$

In particular,

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = \frac{2^{n+1} - n - 2}{2^{n}}, \quad \sum_{i=1}^{n} \frac{i^{2}}{2^{i}} = 6 - \frac{n^{2} + 4n + 6}{2^{n}}.$$

Source: [five, pp. 22, 132], [larson, pp. 54, 55], [man93,], and [pwz, pp. 95, 97]. **Related:** Fact ??.

Fact 1.12.23. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i+1} i = \begin{cases} -\frac{1}{2}n, & n \text{ even,} \\ \frac{1}{2}(n+1), & n \text{ odd,} \end{cases} \qquad \sum_{i=1}^{n} (-1)^{i+1} i^2 = \begin{cases} -\frac{1}{2}n(n+1), & n \text{ even,} \\ \frac{1}{2}n(n+1), & n \text{ odd.} \end{cases}$$

Now, let $m \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i+1} (mi-1) = \frac{1}{4} (-1)^{n} [2 - m(2n+1)] + \frac{1}{4} (m-2),$$

$$\sum_{i=1}^{n} (-1)^{i+1} (mi-1)^2 = \frac{1}{2} (-1)^{n+1} [m^2 n(n+1) - m(2n+1) + 1] + \frac{1}{2} (1-m).$$

Source: [demaio2,] and [GR, pp. 2, 3].

Fact 1.12.24. Let $n \ge 2$. Then,

$$\sum_{i=n+1}^{2n-1} \frac{1}{i^2} = 4 \sum_{i=1}^{n-1} (-1)^{n-1-i} \frac{\left(\frac{i}{n^2 - i^2}\right)^2}{\binom{2n}{n-i}}.$$

Source: [almkvist,]. **Example:** $\frac{1}{16} + \frac{1}{25} = \frac{8}{75} - \frac{1}{240} = \frac{41}{400}$ **Fact 1.12.25.** Let $n, m, k \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{[m+k(i-1)](m+ki)} = \frac{n}{m(kn+m)}, \quad \sum_{i=0}^{n} \frac{1}{(ki+m)(ki+m+k)} = \frac{n+1}{m(kn+m+k)}.$$

In particular.

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}, \quad \sum_{i=1}^{n} \frac{1}{4i^2 - 1} = \frac{n}{2n+1}, \quad \sum_{i=1}^{n} \frac{1}{(i+1)(i+2)} = \frac{n}{2n+4},$$

$$\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)} = \frac{n}{3n+9}, \quad \sum_{i=1}^{n} \frac{1}{(3i+1)(3i-2)} = \frac{n}{3n+1}, \quad \sum_{i=1}^{n} \frac{1}{(5i+2)(5i-3)} = \frac{n}{10n+4}.$$

Source: [GR, p. 3]. Related: Fact ??.

Fact 1.12.26. Let $n, k \geq 1$. Then,

$$\sum_{i=0}^{n} \frac{1}{(i+k)(i+k+1)} = \frac{n+1}{k(n+k+1)},$$

$$\sum_{i=0}^{n} \frac{1}{(i+k)(i+k+2)} = \frac{(n+1)[(2k+1)n+2(k+1)^{2}]}{2k(k+1)(n+k+1)(n+k+2)}.$$

Related: Fact ??.

Fact 1.12.27. Let $n \ge 1$. Then,

$$\begin{split} \sum_{i=1}^n \frac{1}{i(2i+1)} &= 2 - 2 \sum_{i=1}^{2n+1} (-1)^{i+1} \frac{1}{i}, \quad \sum_{i=1}^n \frac{i}{4i^4+1} = \frac{1}{4} - \frac{1}{4(2n^2+2n+1)}, \\ \sum_{i=1}^n \frac{2i^2-1}{4i^4+1} &= \frac{1}{2} - \frac{2n+1}{2(2n^2+2n+1)}, \quad \sum_{i=1}^n \frac{i}{i^4+4} = \frac{3}{8} - \frac{2n^2+2n+3}{4(n^2+1)(n^2+2n+2)}, \\ \sum_{i=1}^n \frac{i}{\prod_{j=0}^i (2j+1)} &= \frac{1}{2} - \frac{1}{2} \frac{1}{\prod_{i=0}^n (2j+1)}, \quad \sum_{i=1}^n \frac{1}{i(i+1)(i+2)} = \frac{n^2+3n}{4(n+1)(n+2)}, \\ \sum_{i=1}^n \frac{1}{i(i+1)(2i+1)} &= 1 + 4 \sum_{i=3}^{2n+1} (-1)^i \frac{1}{i} + \frac{1}{n+1}, \quad \sum_{i=1}^n \frac{2^i (i^2-2i-1)}{i^2 (i+1)^2} = \frac{2^{n+1}}{(n+1)^2} - 2, \\ \sum_{i=1}^n \frac{3i^2+3i+1}{i^3 (i+1)^3} &= \frac{-1}{(n+1)^3} + 1, \quad \sum_{i=1}^n \frac{6i+3}{4i^4+8i^3+8i^2+4i+3} = \frac{n^2+2n}{2n^2+4n+3}, \\ \sum_{i=1}^n \frac{i^2+3i+3}{i^4+2i^3-3i^2-4i+2} &= -\frac{2n^2+5n}{n^2+2n-1}, \quad \sum_{i=1}^n \frac{4^i i^2}{(i+1)(i+2)} &= \frac{2}{3} + \frac{4^{n+1}(n-1)}{3(n+2)}, \\ \sum_{i=1}^n \frac{2^i (i^3-3i^2-3i-1)}{i^3 (i+1)^3} &= \frac{2^n}{n^3}, \quad \sum_{i=0}^n \frac{i^3+6i^2+11i+5}{(i+3)!} &= \frac{5}{2} - \frac{n^2+6n+10}{(n+3)!}. \end{split}$$

If $n \geq 2$, then

$$\sum_{i=2}^{n} \frac{1}{i^2 - 1} = \frac{3n^2 - n - 2}{4n^2 + 4n} = \frac{3}{4} - \frac{2n + 1}{2n(n+1)}$$

If n > 3, then

$$\sum_{i=1,\,i\neq 2}^n \frac{1}{i^2-4} = \frac{3}{16} - \frac{1}{4(n-1)} - \frac{1}{4n} - \frac{1}{4(n+1)} - \frac{1}{4(n+2)} = \frac{3}{16} - \frac{2n^3 + 3n^2 - n - 1}{2(n-1)n(n+1)(n+2)}.$$

Source: [GR, pp. 2, 3]. The first equality is given in [bonar, p. 119]. The second equality is given in [MOC, p. 41]. The third equality is given in [bonar, p. 235]. The fourth equality is given in [bonar, p. 122]. The fifth equality is given in [larson, p. 171]. The sixth equality is given in [bonar, p. 118]. The penultimate equality is given in [GR, p. 3]. **Related:** Fact ?? and Fact ??.

Fact 1.12.28. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{i^{2}(i+1)^{2}} = 2\sum_{i=1}^{n} \frac{1}{i^{2}} - 3 + \frac{1}{(n+1)^{2}} + \frac{2}{n+1},$$

$$\sum_{i=1}^{n} \frac{(-1)^{i+1}}{i^{2}(i+1)^{2}} = 3 - 4\sum_{i=1}^{n} \frac{(-1)^{i+1}}{i} + \frac{(-1)^{n+1}}{(n+1)^{2}} + \frac{(-1)^{n+1}2}{n+1}.$$

Source: [AMR2, pp. 34, 203-205]. Related: Fact ??.

Fact 1.12.29. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{\prod_{j=1}^{n-1} (4i^4 + j^4)}{i^2 \prod_{i=1, j \neq i}^{n} (i^4 - j^4)} = \frac{1}{2n^2} \binom{2n}{n}.$$

Source: [almkvist,]. **Remark:** For n = 1, both products are set to 1.

Fact 1.12.30. Let $n \ge 1$. Then,

$$\sqrt{1 + \frac{1}{n^2} + \frac{1}{(n+1)^2}} = 1 + \frac{1}{n} - \frac{1}{n+1},$$

$$\sum_{i=1}^n \sqrt{1 + \frac{1}{i^2} + \frac{1}{(i+1)^2}} = \sum_{i=1}^n \frac{i^2 + i + 1}{i(i+1)} = \frac{n(n+2)}{n+1}, \quad \sum_{i=1}^n \frac{i^2 + i - 1}{i(i+1)} = \frac{n^2}{n+1}.$$

Source: [benczemayhem,].

Fact 1.12.31. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i} + \sqrt{i+1}} = \sqrt{n+1} - 1.$$

Source: [gelca, p. 121].

Fact 1.12.32. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{1 + (1 + 1/i)^2} + \sqrt{1 + (1 - 1/i)^2}} = \frac{1}{4} (\sqrt{(n+1)^2 + n^2} - 1).$$

Source: [AMR, pp. 3, 70, 71].

Fact 1.12.33. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{(\sqrt{i} + \sqrt{i+1})(\sqrt[4]{i} + \sqrt[4]{i+1})} = \sqrt[4]{n+1} - 1.$$

Source: [AMR, pp. 4, 73].

Fact 1.12.34. Let $n \ge 1$. Then,

$$\sum_{1 \le i \le n+1} \frac{1}{i} + \sum_{1 \le i < j \le n+1} \frac{1}{ij} + \dots + \sum \frac{1}{\prod_{j=1}^{n} i_j} = n+1 - \frac{1}{(n+1)!},$$

where the last sum is taken over all *n*-tuples (i_1, \ldots, i_n) such that $1 \le i_1 < \cdots < i_n \le n+1$. Furthermore,

$$\sum_{i=1}^{n} \sum \frac{1}{\prod_{j=1}^{i} k_j} = n,$$

where the last sum is taken over all *i*-tuples (k_1, \ldots, k_i) such that $1 \le k_1 < \cdots < k_i \le n$. Now, let $n \ge 2$. Then,

$$\sum_{i=1}^{n-1} (-1)^{i+1} \sum \frac{1}{\prod_{j=1}^{i} k_j} = \frac{n-1}{n}, \quad \sum_{i=1}^{n-1} (-1)^{i+1} \sum \frac{1}{\prod_{j=1}^{i} k_j^2} = \frac{n-1}{2n},$$
$$\sum_{i=1}^{n-1} (-1)^{i+1} \sum \frac{2^i}{\prod_{j=1}^{i} (k_j^3 + 1)} = \frac{(n-1)(n+2)}{3n(n+1)},$$

where the second sum in each equality is taken over all *i*-tuples (k_1, \ldots, k_i) such that $2 \le k_1 < \cdots < k_i \le n$. **Source:** [benczeabout,diaztelescopic,].

Fact 1.12.35. Let $n \ge 1$. Then,

$$\frac{2}{3}n^{3/2} < \left(\frac{2n}{3} + \frac{1}{8} - \frac{1}{8\sqrt{n+1}}\right)\sqrt{n+1} < \sum_{i=1}^n \sqrt{i} < \left(\frac{2n}{3} + \frac{1}{6} - \frac{1}{6\sqrt{n+1}}\right)\sqrt{n+1} < \frac{2}{3}n^{3/2} + \frac{1}{2}\sqrt{n}.$$

Source: [mercaAM,]. Remark: It is conjectured in [mercaAM,] that

$$\left| \frac{1}{n} \sum_{i=1}^{n} \sqrt{i} \right| = \left| \left(\frac{2}{3} + \frac{1}{6n} \right) \sqrt{n+1} \right|.$$

Fact 1.12.36. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n-1} i^2 < \frac{n^3}{3} < \sum_{i=1}^{n} i^2, \quad \sum_{i=1}^{n-1} i^3 < \frac{n^4}{4} < \sum_{i=1}^{n} i^3.$$

Fact 1.12.37. Let $n \ge 1$ and $p \ge 1$. Then,

$$n\left(\frac{n+1}{2}\right)^p \le \sum_{i=1}^n i^p.$$

Source: [cvet, p. 103].

Fact 1.12.38. Let $n \ge 1$. Then,

$$\frac{2}{3} < \sum_{i=n}^{2n} \frac{1}{i}, \quad 1 < \sum_{i=n+1}^{3n+1} \frac{1}{i}, \quad \frac{1}{2} < \sum_{i=3n+1}^{5n+1} \frac{1}{i} < \frac{2}{3}.$$

Source: [kaczor1, p. 9].

Fact 1.12.39. Let $n > m \ge 1$. Then, $\sum_{i=m}^{n} \frac{1}{i}$ is not an integer. **Source:** [havil, p. 24].

Fact 1.12.40. Let $n \ge 1$ and $p \in (0, \infty)$. Then,

$$\sum_{i=1}^{n} \left(\frac{1}{i}\right)^{1/p} < \frac{p}{p-1} n^{1-1/p}, \quad \sum_{i=1}^{n} \frac{1}{\sqrt{i}} < 2\sqrt{n}.$$

Source: [larson, p. 63] and [radu, p. 282].

Fact 1.12.41. Let $n \geq 1$. Then,

$$\frac{n}{\sqrt{n^2 + n}} < \sum_{i=1}^{n} \frac{1}{\sqrt{n^2 + i}} < \frac{n}{\sqrt{n^2 + 1}}.$$

Source: [larson, p. 278].

Fact 1.12.42. Let $n \ge 1$ and r > 0. Then,

$$\frac{n}{n+1} \le \left\lceil \frac{(n+1)\sum_{i=1}^{n} i^r}{n\sum_{i=1}^{n+1} i^r} \right\rceil^{1/r} \le \frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \le \sqrt{\frac{n}{n+1}}.$$

Source: [ABMP,bennettMI,qiineq,]. Remark: The first and second inequality are Alzer's inequality and Martins's inequality, respectively. **Related:** Fact 1.13.13.

Fact 1.12.43. Let $n \ge 1$, let p be a real number, and define the sequences

$$\mathfrak{S}_1(p) \stackrel{\triangle}{=} \left(\frac{\sum_{i=1}^n i^p}{n(n!)^{p/n}}\right)_{n=1}^{\infty}, \quad \mathfrak{S}_2(p) \stackrel{\triangle}{=} \left(\frac{n(n+1)^p}{\sum_{i=1}^n i^p}\right)_{n=1}^{\infty}.$$

Then, the following statements hold:

- i) If p > 0, then $S_1(p)$ is increasing.
- ii) If $p \in (0,1)$, then $S_2(p)$ is increasing.
- iii) If $p \in (-\infty, 0) \cup (1, \infty)$, then $S_2(p)$ is decreasing.

Source: [bennettMI,].

Fact 1.12.44. Let n > 1. Then

$$\sum_{i=1}^{2n} (-1)^{i+1} \frac{1}{i} = H_{2n} - H_n.$$

Source: [gelca, p. 10] and [sav, pp. 21, 22]. Remark: This is Catalan's identity. Example: $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{1}{3} + \frac{1}{4}$. **Fact 1.12.45.** Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} H_i = (n+1)(H_{n+1} - 1) = (n+1)H_n - n, \quad \sum_{i=1}^{n} iH_i = \frac{1}{4}n(n+1)(2H_{n+1} - 1),$$

$$\sum_{i=1}^{n} i^{2} H_{i} = \frac{1}{36} n(n+1) [6(2n+1)H_{n+1} - 4n - 5],$$

$$\sum_{i=1}^{n} i^{3} H_{i} = \frac{1}{48} n(n+1) [12n(n+1)H_{n+1} - 3n^{2} - 7n - 2], \quad \sum_{i=1}^{n} \frac{H_{i}}{i} = \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{ij} = \frac{1}{2} (H_{n}^{2} + H_{n,2}).$$

If, in addition, k > 0, then

$$(H_{n+k} - H_k)^2 + H_{n+k,2} - H_{k,2} = \left(\sum_{i=1}^n \frac{1}{i+k}\right)^2 + \sum_{i=1}^n \frac{1}{(i+k)^2} = \sum_{i=1}^n \sum_{j=1}^i \frac{2}{(i+k)(j+k)^2}$$

Furthermore,

$$\sum_{i=1}^{n} (-1)^{i} H_{i} = \begin{cases} \frac{1}{2} H_{n/2}, & n \text{ even,} \\ \frac{1}{2} H_{(n+1)/2} - H_{n+1}, & n \text{ odd.} \end{cases}$$

Source: [batailleharm,], [benjaminquinn, p. 91], [GKP, pp. 279, 280], and [sofosm,].

Fact 1.12.46. Let $n \ge 1$. Then,

$$\log n + \frac{1}{2n} + \frac{1}{2} < H_n < \log n + \frac{1}{n} + \frac{29}{50}$$

Now, let $n \geq 2$. Then,

$$\log n + \frac{1}{n} < H_n < \log n + 1, \quad \frac{1}{n} < H_n - \log n < 1,$$

$$n(\sqrt[n]{n+1}-1) < H_n \le n - \frac{n-1}{\sqrt[n-1]{n}} < n - \frac{n}{\sqrt[n]{n+1}} + \frac{n}{n+1} < 1 + n\left(1 - \frac{1}{\sqrt[n]{n}}\right).$$

Source: [havil, p. 47], [herman, pp. 158, 161], [kaczor1, p. 9], [larson, p. 250], and [radu, p. 10]. In the last string, the ordering of the third and fifth terms follows from the arithmetic-mean-geometric mean inequality. **Remark:** The second inequality in the last string is strict for all $n \geq 3$. **Related:** Fact ??.

Fact 1.12.47. Let $n \geq 2$. Then,

$$\frac{1}{2}(\lfloor \log_2 n \rfloor + 1) < H_n \le \lfloor \log_2 n \rfloor + 1.$$

Equivalently,

$$\frac{1}{2} \left(\left\lfloor \frac{\log n}{\log 2} \right\rfloor + 1 \right) < H_n \le \left\lfloor \frac{\log n}{\log 2} \right\rfloor + 1.$$

Source: [GKP, p. 276].

Fact 1.12.48. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{iH_i^2} < 1.85, \quad \sum_{i=1}^{n} \frac{1}{iH_i^3} < 1.34.$$

Source: [cvet, p. 183].

Fact 1.12.49. Let $n \ge 1$. Then,

$$\frac{n(3n+5)}{2(n+1)^2} \le H_{n,2} \le 2 - \frac{1}{n}.$$

Source: [benczeassi,].

Fact 1.12.50. Let $n \geq 5$ be prime. Then, the following statements hold:

- i) Let $H_{n-1}=N_{n-1}/D_{n-1}$, where N_{n-1} and D_{n-1} are positive coprime integers. Then, $n^2|N_{n-1}$.
- ii) Let $H_{n-1,2} = N_{n-1,2}/D_{n-1,2}$, where $N_{n-1,2}$ and $D_{n-1,2}$ are positive coprime integers. Then, $n|N_{n-1,2}$.

Source: [wikiwolst,] and [mollnf, pp. 29, 305]. **Example:** $H_{18} = 14274301/4084080 = (19)^2 39541/$

4084080 and $H_{10,2} = 1968329/1270080 = (11)178939/1270080$.

Fact 1.12.51. Le $n \ge 1$. Then,

$$\exp \frac{2n}{2n+1} \le \exp \frac{en^{n+1}}{(n+1)^{n+1}} \le \left(1 + \frac{1}{n}\right)^n \le \exp \sqrt{\frac{n}{n+1}},$$

$$\exp\frac{2}{n+2} \le \exp\frac{e}{(n+1)^{(n+1)/n}} \le (n+1)^{1/n} \le \exp\frac{1}{\sqrt{n+1}},$$

$$\sum_{i=1}^{n} \log^2 \left(1 + \frac{1}{i} \right) \le \frac{n}{n+1}, \quad \prod_{i=1}^{n} \log(i+1) \le \sqrt{\frac{n!}{n+1}}, \quad (n+1)! \le \exp \sum_{i=1}^{n} \frac{i}{\sqrt{i+1}}.$$

Source: [benczesnie,].

1.13 Facts on Factorials

Fact 1.13.1. Let n and m be positive integers such that m < n. Then, $n^{\underline{m}}$ is the number of m-tuples whose components are distinct elements of $\{1, \ldots, n\}$. **Remark:** $n^{\underline{m}}$ is the number of permutations of m distinct elements chosen from a set of n elements.

Fact 1.13.2. Let $n \geq 3$, and assume that n is prime. Then,

$$(n-1)!! \stackrel{n}{=} \prod_{i=1}^{n-1} i! \stackrel{n}{=} (-1)^{(n-1)/2} \prod_{i=1}^{n-1} i^i.$$

Source: [aebi2,].

Fact 1.13.3. Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1, \quad \sum_{i=1}^{n} (i^2+1)i! = n(n+1)!,$$

$$\sum_{i=0}^{n} \frac{1}{i!} = \frac{\lfloor en! \rfloor}{n!}, \quad \sum_{i=1}^{n} \frac{i}{(i+1)!} = 1 - \frac{1}{(n+1)!}, \quad \sum_{i=1}^{n} \frac{i^2+i-1}{(i+2)!} = \frac{1}{2} - \frac{n+1}{(n+2)!},$$

$$\sum_{i=1}^{n} \frac{i^2+3i+1}{(i+2)!} = \frac{3}{2} - \frac{n+3}{(n+2)!}, \quad \sum_{i=1}^{n} \frac{(4i+1)i!}{(2i+1)!} = 1 - \frac{n!}{(2n+1)!},$$

$$\sum_{i=1}^{n} \frac{i^3+6i^2+11i+5}{(i+3)!} = \frac{5}{3} - \frac{n^2+6n+10}{(n+3)!} = \frac{5}{3} - \frac{1}{(n+1)!} - \frac{1}{(n+2)!} - \frac{1}{(n+3)!}.$$

Source: The second equality is given in [gelca, p. 123]. The third equality is given in [cameron, pp. 33, 34] and [hassani,]. The fourth equality is given in [sav, pp. 4, 5]. The seventh equality is given in [pwz, p. 78]. The last inequality is given in [kaczor1, pp. 28, 165].

Fact 1.13.4. Let $n \ge 1$ and $k \ge 1$. Then,

$$\sum_{i=1}^{n} i!(i^2 + ki + 1) = (n+1)!(n+k) - k.$$

In particular,

$$\sum_{i=1}^{n} i!(i^2+i+1) = (n+1)!(n+1) - 1, \quad \sum_{i=1}^{n} i!(i+1)^2 = (n+1)!(n+2) - 2.$$

Source: [MOC, p. 39] and [benjaminquinn, p. 92].

Fact 1.13.5. Let $n \geq 2$ and $k \in \{1, ..., n\}$. Then,

$$\prod_{i=1, i \neq k}^{n} (k-i) = (-1)^{n-k} (n-k)!(k-1)!.$$

Source: [korus,].

Fact 1.13.6. Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} (1+i-\sqrt{i})\sqrt{i!} = (n+1)\sqrt{n!}.$$

Source: [mollnf, p. 8].

Fact 1.13.7. Let $n \ge 2$. Then,

$$\sum_{i=1}^{n} \frac{1}{(i-1)!} \sum_{j=0}^{n-i} (-1)^{j} \frac{1}{j!} = 1, \quad \sum_{i=1}^{n} \frac{i}{(i-1)!} \sum_{j=0}^{n-i} (-1)^{j} \frac{1}{j!} = 2.$$

Source: [gelca, p. 313].

Fact 1.13.8. Let $n \ge 2$. Then,

$$\sum_{i=1}^{n} (-1)^{i} \frac{1}{i!} \sum \frac{1}{\prod_{j=1}^{i} k_{j}} = \sum_{i=1}^{n} (-1)^{i} \frac{1}{i} \sum \frac{1}{\prod_{j=1}^{i} k_{j}!} = 0,$$

where the second and fourth sums are taken over all *i*-tuples (k_1, \ldots, k_i) of positive integers such that $\sum_{i=1}^{i} k_i = n$. **Source:** [frumosu,].

Fact 1.13.9. Let $n \ge 1$. Then,

$$(n+1)! \le \sqrt[n]{\prod_{i=1}^{n} (2i)!}.$$

Source: [larson, p. 63].

Fact 1.13.10. Let $n \ge 2$. Then, $2^{H_n} \le \sqrt[n]{n!} < \frac{1}{2}(n+1) < e^{H_n}$. Source: [AMR3, pp. 172–174].

Fact 1.13.11. Let $n \ge 1$. Then,

$$\sqrt[n]{n!} \le \prod p^{1/(p-1)},$$

where the product is taken over all primes p that divide n. Source: [larson, p. 169]. **Remark:** This implies there are infinitely many primes.

Fact 1.13.12. If $n \ge 2$, then

$$(n-1)! < \frac{n^n}{e^{n-1}} < n! \le \frac{(n+1)^n}{2^n}, \quad n! \le \left\lceil \frac{(n+1)(2n+1)}{6} \right\rceil^{n/2}.$$

If $n \geq 3$, then

$$n! < 2^{n(n-1)/2}.$$

If $n \geq 6$, then

$$\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n.$$

Source: [five, pp. 13, 89, 90], [experimentation, p. 210], [herman, p. 137], and [radu, p. 346].

Fact 1.13.13. Let $n \geq 1$. Then,

$$\sqrt[n]{n!} < \sqrt[n+1]{(n+1)!}, \quad \frac{n}{\sqrt[n]{n!}} < \frac{n+1}{\sqrt[n+1]{(n+1)!}}, \quad \frac{n+1}{\sqrt[n]{n!}} < \frac{n+2}{\sqrt[n+1]{(n+1)!}}$$

Source: [bennettMI,]. **Remark:** The first inequality is the *Minc-Sathre inequality*. The second inequality is given by Fact 1.12.42.

Fact 1.13.14. Let n > 1. Then

$$\left(\frac{n}{e}\right)^n \sqrt{2\pi \left(n + \frac{1}{6}\right)} < n! \le \left(\frac{n}{e}\right)^n \sqrt{2\pi \left(n + \frac{e^2}{2\pi} - 1\right)},$$

$$n^{n/2} \le n! \le \left(\frac{n+1}{2}\right)^n, \qquad \sqrt{2n\pi} \left(\frac{n}{e}\right)^n < n! < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{1/(12n)},$$

$$\frac{\sqrt{2\pi e}}{e^{(3-\sqrt{3})/3}} \left(\frac{n + (3-\sqrt{3})/3}{e}\right)^{n+1/2} < n! < \frac{\sqrt{2\pi e}}{e^{(3+\sqrt{3})/3}} \left(\frac{n + (3+\sqrt{3})/3}{e}\right)^{n+1/2}.$$

Now, let $n \ge 3$. Then, $n^{n/2} < n!$ and

$$2\left(\frac{n}{e}\right)^n < e\left(\frac{n}{e}\right)^n < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n < \frac{n+\frac{13}{12}}{n+1}\sqrt{2n\pi} \left(\frac{n}{e}\right)^n < n! < \frac{n-\frac{23}{12}}{n-2}\sqrt{2n\pi} \left(\frac{n}{e}\right)^n < \sqrt{\frac{n}{n-1}}\sqrt{2n\pi} \left(\frac{n}{e}\right)^n < \left(\frac{n+1}{2}\right)^n < e\left(\frac{n}{2}\right)^n.$$

Therefore,

$$\frac{2}{\sqrt[n]{e}} < \frac{2n}{n+1} < \sqrt[2n]{\frac{n-1}{n}} \frac{e}{\sqrt[2n]{2n\pi}} < \sqrt[n]{\frac{n-2}{n-\frac{23}{12}}} \frac{e}{\sqrt[2n]{2n\pi}}$$

$$< \frac{n}{\sqrt[n]{n!}} < \sqrt[n]{\frac{n+1}{n+\frac{13}{12}}} \frac{e}{\sqrt[2n]{2n\pi}} < \frac{e}{\sqrt[2n]{2n\pi}} < \frac{e}{\sqrt[n]{e}} < \frac{e}{\sqrt[n]{e}}.$$

Finally,

$$\sqrt[2n]{2n\pi} \frac{n}{\sqrt[n]{n!}} < \sqrt[n]{\frac{n+\frac{13}{12}}{n+1}} \sqrt[2n]{2n\pi} \frac{n}{\sqrt[n]{n!}} < e < \sqrt[n]{\frac{n-\frac{23}{12}}{n-2}} \sqrt[2n]{2n\pi} \frac{n}{\sqrt[n]{n!}} < \sqrt[2n]{\frac{n}{n-1}} \sqrt[2n]{2n\pi} \frac{n}{\sqrt[n]{n!}}.$$

Now, let $6 \le n \le 9$. Then,

$$n^{n/2} \le 2\left(\frac{n}{e}\right)^n < e\left(\frac{n}{e}\right)^n < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n < n! < \left(\frac{n}{2}\right)^n.$$

Finally, let $n \geq 10$. Then,

$$n^{n/2} < \left(\frac{n}{3}\right)^n < 2\left(\frac{n}{e}\right)^n < e\left(\frac{n}{e}\right)^n < \sqrt{2n\pi}\left(\frac{n}{e}\right)^n < n! < \left(\frac{n}{2}\right)^n.$$

Source: [BBplausible, p. 197], [batirfac,], [gelca, p. 10], [hirschhornrefine,], [kaczor1, p. 10], [sandordebnath,], and [taorandom, pp. 35–37]. **Remark:** $\sqrt{2n\pi} \left(\frac{n}{e}\right)^n < n!$ is Stirling's formula. See Fact ??. **Remark:** $\sqrt{2\pi} < e < 2\sqrt{\pi}$ and $e \approx (\pi^4 + \pi^5)^{1/6}$. See [castellanos1,]. **Remark:** $0.16666 \approx 1/6 < e^2/(2\pi) - 1 \approx 0.17600$. **Related:** Fact ??.

Fact 1.13.15. Let $n \ge 1$. Then,

$$\begin{split} \sum_{i=0}^{n}(i+1)i!! &= (n+1)!! + (n+2)!! - 2, \quad \sum_{i=0}^{n}(-1)^{i}(i+1)i!! = (-1)^{n}[(n+2)!! - (n+1)!!], \\ \sum_{i=0}^{n}\frac{i}{(i+1)!!} &= 2 - \frac{1}{(n+1)!!} - \frac{1}{n!!}, \quad \sum_{i=0}^{n}\frac{1}{(2i)!!(2n-2i)!!} = \frac{1}{n!}, \\ \sum_{i=0}^{n}\binom{n}{i}(2i-1)!!(2n-2i-1)!! &= (2n)!!, \quad \sum_{i=0}^{n}\frac{(2i-1)!!(2n-2i-1)!!}{(2i)!!(2n-2i)!!} = 1, \\ \prod_{i=1}^{n}\frac{2i}{2i-1} &= \frac{\sqrt{\pi}\Gamma(n+1)}{\Gamma(n+\frac{1}{2})} = \frac{(2n)!!}{(2n-1)!!} = \frac{[(2n)!!]^{2}}{(2n)!} = \frac{4^{n}}{\binom{2n}{n}}. \end{split}$$

If, in addition, $n \geq 5$, then

$$\begin{split} \sqrt{2n} &< \sqrt{2n+1} < \sqrt{3n+1} < \sqrt{\frac{2n(2n+1)\pi}{4n+1}} < \sqrt{(n+\frac{1}{4})\pi} < \frac{(2n)!!}{(2n-1)!!} \\ &< \frac{\sqrt{\pi}(2n+1)}{\sqrt{4n+3}} < \sqrt{\frac{(4n+3)(2n+1)\pi}{8n+8}} < \sqrt{(n+\frac{4}{\pi}-1)\pi} < \sqrt{(n+\frac{1}{2})\pi} < 2\sqrt{n}. \end{split}$$

Source: [castellanos1,chenqi,jameson,], [koshcat, pp. 49, 52], and [sav, p. 51]. **Remark:** This result yields the Wallis product given by Fact ??. **Related:** Fact ?? and Fact ??.

Fact 1.13.16. Let $n, m \ge 1$. Then, m!n!(m+n)!|(2m)!(2n)!. **Source:** [comtet, p. 79].

Fact 1.13.17. Let $n, m \ge 1$. Then, $(n!)^m | (mn)!$. Now, define $m \triangleq \max \{k^l : k \text{ is prime}, l \ge 1$, and $k^l \le n\}$. Then, $(n!)^{m+1} | (mn)!$. **Source:** [morris3,].

1.14 Facts on Finite Products

Fact 1.14.1. If n > 1, then

$$\begin{split} \prod_{i=1}^n \left(1 + \frac{1}{i}\right) &= n+1, \quad \prod_{i=1}^n \left(1 + \frac{1}{i^2}\right) = \frac{\sinh(\pi)\Gamma(n+1-j)\Gamma(n+1+j)}{\pi(n!)^2}, \\ \prod_{i=1}^n \left(1 + \frac{1}{i^3}\right) &= \frac{(n+1)\cosh(\sqrt{3}\pi/2)\Gamma(n+1/2-\sqrt{3}j/2)\Gamma(n+1/2+\sqrt{3}j/2)}{\pi(n!)^2}, \\ \prod_{i=1}^n \frac{1}{4i^2 - 1} &= \frac{(n!)(n+1)!2^{2n+1}}{(2n)!(2n+2)!}. \end{split}$$

If $n \geq 2$, then

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i} \right) = \frac{1}{n}, \quad \prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}, \quad \prod_{i=2}^{n} \left(1 - \frac{1}{i^4} \right) = \frac{(n+1) \prod_{i=1}^{n} (1+i^2)}{4n^3 [(n-1)!]^2},$$

$$\prod_{i=2}^{n} \frac{i^2}{i^2 - 1} = \frac{2n}{n+1}, \quad \prod_{i=2}^{n} \frac{i^3 - 1}{i^3 + 1} = \frac{2(n^2 + n + 1)}{3n(n+1)}.$$

Source: [MOC, p. 39]. Related: Fact ??.

1.15 Facts on Numbers

Fact 1.15.1. Let $n \ge 1$, let q_1, \ldots, q_n and p_1, \ldots, p_n be positive rational numbers, and assume that $q_1^{p_1}$ is an irrational number. Then, $\sum_{i=1}^n q_i^{p_i}$ is an irrational number. **Source:** [havilirrational, p. 129] and [patruno,]. **Related:** Fact ??.

Fact 1.15.2. Let a be a nonzero rational number. Then, e^a is irrational. **Source:** [aigner, Chapter 7]. **Remark:** If $x \in (0, \infty)$ is transcendental, then, for all $n \geq 1$, x^n is irrational.

Fact 1.15.3. There exist positive irrational numbers a and b such that a^b is rational.

Source: Note that $\sqrt{2}$ is irrational, and define $\alpha \triangleq \sqrt{2}^{\sqrt{2}}$. Then, $\alpha^{\sqrt{2}} = 2$. Suppose that α is irrational. Then, the result holds with $a = \alpha$ and $b = \sqrt{2}$. Alternatively, suppose that α is rational. Then, the result holds with $a = b = \sqrt{2}$. **Remark:** This proof does not depend on knowing whether or not $\sqrt{2}^{\sqrt{2}}$ is irrational. In fact, $\sqrt{2}^{\sqrt{2}}$ and e^{π} are irrational.

Fact 1.15.4.

$$\sqrt{3+2\sqrt{2}} = 1+\sqrt{2}, \quad \sqrt{5+2\sqrt{6}} = \sqrt{2}+\sqrt{3}, \quad \sqrt{3\sqrt{2}-4} = \sqrt[4]{2}(\sqrt{2}-1),$$

$$\sqrt{19-4\sqrt{21}} = 2\sqrt{3}-\sqrt{7}, \quad \sqrt{21-4\sqrt{17}} = \sqrt{17}-2, \quad \sqrt{25-4\sqrt{21}} = \sqrt{21}-2,$$

$$\sqrt[3]{2+\sqrt{5}} = \frac{1}{2}(1+\sqrt{5}), \quad \sqrt[3]{\sqrt{5}-2} = \frac{1}{2}(\sqrt{5}-1),$$

$$\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{\sqrt{5}-2} = \sqrt{5}, \quad \sqrt[3]{2+\sqrt{5}} - \sqrt[3]{2-\sqrt{5}} = 1,$$

$$\sqrt[3]{2+\frac{10\sqrt{3}}{9}} + \sqrt[3]{2-\frac{10\sqrt{3}}{9}} = 2, \quad \sqrt[3]{16+12\sqrt[3]{7}+9\sqrt[3]{49}} = 2\sqrt[3]{3\sqrt[3]{7}-5} + \sqrt[3]{2+3\sqrt[3]{49}},$$

$$(19+17\sqrt[3]{2}+22\sqrt[3]{4})(5\sqrt[3]{2}-\sqrt[3]{4}-3) = 129, \quad \sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{1/9} - \sqrt[3]{2/9} + \sqrt[3]{4/9},$$

$$\sqrt{\sqrt[3]{5}-\sqrt[3]{4}} = \frac{1}{3}(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}), \quad \sqrt{\sqrt[3]{28}-\sqrt[3]{27}} = \frac{1}{3}(\sqrt[3]{98}-\sqrt[3]{28}-1),$$

$$\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}} = \sqrt[4]{\frac{5}+1}, \quad \sqrt[5]{1+\sqrt[5]{2}+\sqrt[5]{8}} \sqrt[10]{5} = \sqrt{1+\sqrt[5]{4}},$$

$$\sqrt[3]{\sqrt[5]{32/5}-\sqrt[5]{27/5}} = \sqrt[5]{1/25}+\sqrt[5]{3/25}-\sqrt[5]{9/25}, \quad \sqrt[6]{7\sqrt[3]{20}-19} = \sqrt[3]{5/3}-\sqrt[3]{2/3}.$$

Source: [berele,hirschhornlost,landauhow,sofogen,witula2,]. **Remark:** $\sqrt[3]{2-\sqrt{5}} = \frac{1}{2}(1-\sqrt{5})$.

Fact 1.15.5. Let $n \ge 1$. Then,

$$\sqrt[3]{3n-1+n\sqrt{8n-3}} + \sqrt[3]{3n-1-n\sqrt{8n-3}} = 1.$$

In particular,

$$\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}} = \sqrt[3]{5+2\sqrt{13}} + \sqrt[3]{5-2\sqrt{13}} = \sqrt[3]{8+3\sqrt{21}} + \sqrt[3]{8-3\sqrt{21}} = 1.$$

Source: [sofogen,]. **Remark:** For a < 0, $\sqrt[3]{a} = -\sqrt[3]{|a|}$.

Fact 1.15.6. Let $n \ge 1$, and define $\alpha \triangleq \frac{1}{2}(\sqrt{5}+1)$. Then,

$$\underbrace{\sqrt{-2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{5}}}}}_{n+1 \text{ square roots}} = \alpha^{2^{-n}} - \alpha^{-2^{-n}}, \quad \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{5}}}}}_{n+1 \text{ square roots}} = \alpha^{2^{-n}} + \alpha^{-2^{-n}}.$$

In particular,

$$\sqrt{\alpha} - \frac{1}{\sqrt{\alpha}} = \sqrt{\sqrt{5} - 2}, \quad \sqrt{\alpha} + \frac{1}{\sqrt{\alpha}} = \sqrt{2 + \sqrt{5}}.$$

Source: [nyblomrad,].

Fact 1.15.7. Define

$$\pi_{-12} \triangleq \frac{223}{71}, \quad \pi_{-11} \triangleq \sqrt[3]{31}, \quad \pi_{-10} \triangleq \frac{1}{3}\sqrt{120 - 18\sqrt{3}}, \quad \pi_{-9} \triangleq \frac{7^7}{4^9}, \quad \pi_{-8} \triangleq \frac{52163}{16604},$$

$$\pi_{-7} \triangleq \frac{20^3 + 47^3}{30^3} - 1, \quad \pi_{-6} \triangleq \frac{689}{396\log\frac{689}{396}}, \quad \pi_{-5} \triangleq \frac{66\sqrt{2}}{33\sqrt{29} - 148}, \quad \pi_{-4} \triangleq \sqrt[4]{\frac{2143}{22}},$$

$$\pi_{-3} \triangleq \frac{3\log 5280}{\sqrt{67}}, \quad \pi_{-2} \triangleq \frac{3\log(640320)}{\sqrt{163}}, \quad \pi_{-1} \triangleq \frac{\log(640320^3 + 743)}{\sqrt{163}},$$

$$\pi_{1} \triangleq \frac{\log(640320^3 + 744)}{\sqrt{163}}, \quad \pi_{2} \triangleq \sqrt[4]{\frac{35444733}{363875}}, \quad \pi_{3} \triangleq \frac{63(17 + 15\sqrt{5})}{25(7 + 15\sqrt{5})}, \quad \pi_{4} \triangleq \frac{104348}{33215},$$

$$\pi_{5} \triangleq \sqrt[5]{\frac{77729}{254}}, \quad \pi_{6} \triangleq \frac{99^2}{2206\sqrt{2}}, \quad \pi_{7} \triangleq \frac{99}{80} \left(\frac{7}{7 - 3\sqrt{2}}\right), \quad \pi_{8} \triangleq \frac{355}{113}, \quad \pi_{9} \triangleq \log_{5} 157,$$

$$\pi_{10} \triangleq \frac{7}{3} \left(1 + \frac{\sqrt{3}}{5}\right), \quad \pi_{11} \triangleq \sqrt{7 + \sqrt{6 + \sqrt{5}}}, \quad \pi_{12} \triangleq \frac{9}{5} + \frac{3}{\sqrt{5}}, \quad \pi_{13} \triangleq \frac{19\sqrt{7}}{16},$$

$$\pi_{14} \triangleq \frac{22}{7}, \quad \pi_{15} \triangleq \sqrt{2} + \sqrt{3}.$$

Then, $\pi_{-12} < \cdots < \pi_{-1} < \pi < \pi_1 < \cdots < \pi_{15}$. **Source:** [BBplausible,castellanos1,fuks,], [hardyetal, pp. xxxiv, 34, 35], [havil, p. 96], and [parkps,].

Fact 1.15.8. Let x be a nonzero rational number. Then, $\tan x$ is an irrational number. **Source:** [havilirrational, pp. 104–107]. **Remark:** Since $\tan \pi/4 = 1$, it follows that π is an irrational number.

Fact 1.15.9. Let x < 0 and $p \in \mathbb{R}$. Then, the following statements hold:

- i) x^p is real if and only if p is an integer.
- ii) x^p is positive if and only if p is an even integer.

Remark: $(-1)^{1/3} = \frac{1}{2} + \frac{\sqrt{3}}{2} \jmath$, and $\sqrt[3]{-1} = -1$.

Fact 1.15.10. Let $x \in [-11/4, -5/4] \cup [5/4, 11/4]$. Then,

$$[e^{(x-1/4)\pi j}]^{x+1/4} + [e^{(x+1/4)\pi j}]^{x-1/4} = 0.$$

Facts on Binomial Coefficients 1.16

Fact 1.16.1. Let n and k be positive integers. Then, the following statements hold:

- i) $\binom{n}{k}$ is an integer.
- ii) $\binom{2n}{n}$ is an even integer.
- *iii*) $\frac{1}{n+1} \binom{2n}{n}$, $\frac{3}{n} \binom{2n}{n-3}$, $\frac{3}{n} \binom{3n}{n+1}$, and $\frac{4}{(3n+1)(3n+2)} \binom{3n+2}{n}$ are integers.
- *iv*) If $n \ge 3$, then $\frac{(3n)!}{n!(n+1)!(n+2)!}$ is an integer.
- v) $\frac{(nk)!}{n!(k!)^n}$, $\frac{(2n)!(2k)!}{n!k!(n+k)!}$, $\frac{\gcd\{n,k\}(n+k-1)!}{n!k!}$, and $\frac{\left[\binom{2n}{n}\binom{2k}{k}\right]^2}{\binom{n+k}{k}}$ are integers.
- vi) If $1 \le k \le n$, then $\frac{\gcd\{n,k\}}{n} \binom{n}{k}$ and $\frac{\gcd\{n+1,k\}}{n-k+1} \binom{n}{k}$ are integers. If, in addition, $\gcd\{n,k\} = 1$, then $n \mid \binom{n}{k}$.
- vii) Let $n \geq 2$ be prime, and assume that k < n < 2k. Then, n|(2k)! and $n|\binom{2k}{k}$. In addition, $\frac{(k)!}{n}$ is not an integer.
- *viii*) If *n* is prime, then $\binom{2n}{n} \stackrel{n}{\equiv} 2$.
- ix) Let $p \geq 2$ be prime, and assume that $\max\{k, n-k\} . Then, <math>p \mid \binom{n}{k}$. In particular, if $k \leq p-1$, then $p|\binom{p}{k}$.
- x) If $\gcd\{n,k\} = \gcd\{n-1,k\} = 1$, then $\frac{1}{2}n(n-1)|\binom{n}{k}$.
- xi) If $2k \leq n$, then $\binom{n}{k}$ has a prime factor $p_1 \geq k+1$ and a prime factor $p_2 \leq n$ $\max \{n/k, n/2\}.$
- xii) If k is prime, then $\binom{n}{k} \stackrel{k}{\equiv} \lfloor \frac{n}{k} \rfloor$.
- xiii) If n is prime and $k \le n-2$, then $\binom{n-1}{k} \stackrel{n}{=} (-1)^k$.
- *xiv*) If *n* is prime and $k \le n 3$, then $\binom{n-2}{k} \stackrel{n}{\equiv} (-1)^k (k+1)$.
- xv) If n is prime and $k \le n-4$, then $\binom{n-3}{k} \stackrel{n}{\equiv} (-1)^k \binom{k+2}{2}$.
- xvi) Assume that $n \geq 3$. Then, n is prime if and only if, for all $i \in \{1, ..., n-1\}$, $\binom{n-1}{i} \stackrel{n}{\equiv} (-1)^i.$
- xvii) If $n \neq 3$ is prime, then $n^2 | \sum_{i=1}^{n^2-1} {2i \choose i}$.
- xviii) If $n \ge 5$ is prime and $k \ge l \ge 1$, then $\binom{kn-1}{n-1} \stackrel{n^3}{\equiv} 1$, $\binom{kn}{ln} \stackrel{n^3}{\equiv} \binom{k}{l}$, and $\binom{kn}{n} \stackrel{n^3}{\equiv} k$.
- xix) There exist integers $0 \le m_1 < \cdots < m_k$ such that $n = \sum_{i=1}^k {m_i \choose i}$.
- xx) If $n \geq 5$ is prime, then $\binom{n^2}{n} \stackrel{n^5}{\equiv} n$.
- $xxi) \text{ If } n \geq 5 \text{ is prime and } k, l, m \geq 1, \text{ then } \binom{\ln^k}{mn^k} \stackrel{n^{3k}}{=} \binom{\ln^{k-1}}{mn^{k-1}}.$ $xxii) 2(2n+1)\binom{2n}{n} \left| \binom{6n}{3n} \binom{3n}{n}, \binom{2k}{k} \right| \binom{4n+2k+2}{2n+k+1} \binom{2n+k+1}{2k} \binom{2n-k+1}{n}, \binom{2k}{k} \left| C_{n+k} (2n+1) \binom{2n}{n} \binom{n+k+1}{2k}.$

Source: [koshcat, pp. 9–11, 15, 18, 21, 23, 25, 44, 45, 65]. *i*) is given in [gelca, p. 296]; xii)-xv) are given in [comtet, pp. 78, 79]; xvi) is given in [AMR2, pp. 21, 142]; xvii) is given in [callanp,]; xviii) is given in [siong,]; xix) is given in [comtet, p. 75]; xx) and xxi) are given in [fuchs, pp. 37–39]; xxii) is given in [zwsun,]. **Example:** To illustrate xix), let k=3 and note that $1 = \binom{0}{1} + \binom{1}{2} + \binom{3}{3}$, $2 = \binom{0}{1} + \binom{2}{2} + \binom{3}{3}$, $3 = \binom{1}{1} + \binom{2}{2} + \binom{3}{3}$, $4 = \binom{0}{1} + \binom{1}{2} + \binom{4}{3}$, $5 = \binom{0}{1} + \binom{2}{2} + \binom{4}{3}$, and $6 = \binom{1}{1} + \binom{2}{2} + \binom{4}{3}$.

Fact 1.16.2. Let $n \ge 1$. Then, the following statements hold:

i)
$$2^{n-1} \le \operatorname{lcm}\{1, 2, \dots, n\} \le 3^n$$
.
ii) $\sqrt{n}2^{n-2} \le n\binom{n-1}{\lfloor (n-1)/2 \rfloor} \le \operatorname{lcm}\{1, 2, \dots, n\} \le 3^n$.

iii) As $n \to \infty$, $\log \operatorname{lcm}\{1, 2, \dots, n\} \sim n$

$$iv$$
) $\operatorname{lcm}\left\{\binom{n}{0},\binom{n}{1},\ldots,\binom{n}{n}\right\} = \frac{\operatorname{lcm}\left\{1,2,\ldots,n+1\right\}}{n+1}.$

Source: [farhi,]. Remark: If $n \ge 4$, then $2^{n-1} \le \sqrt{n}2^{n-2}$

Fact 1.16.3. Let $n \geq 5$, and assume that n is prime. Then,

$$4^{n-1} \stackrel{n^3}{\equiv} \pm \binom{n-1}{\frac{1}{2}(n-1)}.$$

Source: [aebi,]. **Remark:** For each $n \ge 5$, the congruence holds for either "+" or "-." **Credit:** F. Morley. **Example:** $256 = 4^4 \stackrel{125}{\equiv} 6 = \binom{4}{2}$ and $4096 = 4^6 \stackrel{343}{\equiv} -20 = -\binom{6}{3}$.

Fact 1.16.4. Let $n \ge 1$ and $k \ge 1$. Then,

$$n^k = \sum_{i=1}^k \alpha_{i,k} \binom{n}{i},$$

where, for all $i \in \{1, \ldots, k\}$,

$$\alpha_{i,k} = \sum_{j=0}^{i} (-1)^{i-j} \binom{i}{j} j^k.$$

In particular,

$$n = \binom{n}{1}, \quad n^2 = 2\binom{n}{2} + \binom{n}{1}, \quad n^3 = 6\binom{n}{3} + 6\binom{n}{2} + \binom{n}{1}, \quad n^4 = 24\binom{n}{4} + 36\binom{n}{3} + 14\binom{n}{2} + \binom{n}{1}.$$

Source: [hirschhornbin,].

Fact 1.16.5. Let $n \ge 1$. Then,

$$\binom{n}{2} = \frac{1}{2}(n^2 - n), \quad \binom{n+1}{2} = \binom{n}{2} + n = \frac{1}{2}(n^2 + n), \quad \binom{n+1}{2} + \binom{n}{2} = n^2,$$

$$\binom{2n+2}{n+1} = \frac{4n+2}{n+1} \binom{2n}{n}, \quad \binom{\binom{n}{2}}{2} = 3\binom{n+1}{4},$$

$$\sum_{i=1}^{n} \frac{1}{2}i(i+1) = \sum_{i=1}^{n} \binom{i+1}{2} = \binom{n+2}{3} = \frac{1}{6}n(n+1)(n+2),$$

$$\sum_{i=1}^{n} (2i-1)^2 = \binom{2n+1}{3} = \frac{1}{3}n(2n-1)(2n+1),$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{4} \binom{2n+2}{3} = 2\binom{n+1}{3} + \binom{n+1}{2} = \frac{1}{6}n(n+1)(2n+1),$$

$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \binom{n+1}{2}^2 = \frac{1}{4}n^2(n+1)^2 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2,$$

$$\sum_{i=1}^{n} i^4 = \frac{1}{20}(3n^2 + 3n - 1)\binom{2n+2}{3} = \frac{1}{30}n(n+1)(2n+1)(3n^2 + 3n - 1),$$

$$\sum_{i=1}^{n} i^{5} = \binom{n+1}{2} + 30 \binom{n+2}{4} + 120 \binom{n+3}{6}.$$

Source: [five, pp. 17, 110] and [beardon,demaio,].

Fact 1.16.6. Let $n \ge 0$. Then,

$$\prod_{i=0}^{n} \binom{n}{i} = \frac{(n!)^{n+1}}{\prod_{i=0}^{n} (i!)^{2}}.$$

Source: [hirschhornabo,].

Fact 1.16.7. Let $x_0, x_1, ..., x_n, y_0, y_1, ..., y_n$ be complex numbers. Then, for all $k \in \{0, 1, ..., n\}$,

$$y_k = \sum_{i=0}^k \binom{k}{i} x_i$$

if and only if, for all $k \in \{0, 1, \dots, n\}$,

$$x_k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} y_i.$$

Furthermore, for all $k \in \{0, 1, \dots, n\}$,

$$y_k = \sum_{i=0}^{k} (-1)^{i+1} \binom{k}{i} x_i$$

if and only if, for all $k \in \{0, 1, \dots, n\}$,

$$x_k = \sum_{i=0}^k (-1)^{i+1} \binom{k}{i} y_i.$$

Source: Each equality is a *binomial transform*. See [boyadzhiev3,].

Fact 1.16.8. The following statements hold:

i) Let $n \geq 0$. Then,

$$\binom{0}{n} = \operatorname{truth}(n=0), \quad \binom{n}{0} = \binom{n}{n} = 1, \quad \binom{n}{1} = n + \operatorname{truth}(n=0).$$

ii) Let $k, n \geq 0$. Then,

$$\binom{n}{k} = \binom{n}{n-k}, \quad \binom{n+k}{n} = \binom{n+k}{k}, \quad (n-k)\binom{n}{k} = n\binom{n-1}{k}, \quad \binom{n}{k} = \frac{n+1-k}{n+1}\binom{n+1}{k},$$

$$k\binom{n}{k} = n\binom{n-1}{k-1} = (n+1-k)\binom{n}{k-1}, \quad k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}, \quad \binom{kn}{k} = n\binom{kn-1}{k-1},$$

$$\binom{n+k}{2} = \binom{n}{2} + \binom{k}{2} + nk, \quad \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} = (-1)^k \binom{k-n-1}{k}.$$

iii) Let $n \geq 1$. Then,

$$\binom{2n}{n} = 2 \binom{2n-1}{n} = \frac{n+1}{2n+1} \binom{2n+1}{n} = \frac{n+1}{2(2n+1)} \binom{2n+2}{n+1} = \frac{(2n)!}{(n!)^2},$$

$$\binom{2n}{n} = (n+1) \binom{2n+1}{n+1} - 2(n+1) \binom{2n}{n+1} = \sum_{i=0}^{n} \frac{(n!)^2}{(i!)^2 [(n-i)!]^2}, \quad \binom{2n}{n}^2 = \sum_{i=0}^{n} \frac{(2n)!}{(i!)^2 [(n-i)!]^2}.$$

iv) Let $0 \le k \le n$. Then,

$$\binom{-n}{k} = \frac{-n(-n-1)\cdots(-n-k+1)}{k!} = (-1)^k \binom{n+k-1}{k}.$$

For example, $\binom{-1}{n} = (-1)^n$.

v) Let $k \geq 0$ and $n \geq 1$. Then,

$$\binom{n+k}{k+1} = \frac{1}{k!} \sum_{i=0}^{n-1} \frac{(k+i)!}{i!}.$$

vi) Let $n \geq k \geq 0$, and let m be prime. Then,

$$\binom{mn}{mk} \stackrel{\underline{m}}{\equiv} \binom{n}{k}, \quad \binom{mn}{mk} \stackrel{\underline{m}^2}{\equiv} \binom{n}{k}.$$

If, in addition, $m \geq 5$, then

$$\binom{mn}{mk} \stackrel{m^3}{\equiv} \binom{n}{k}.$$

vii) Let m be prime, and let n, k, q, r be nonnegative integers such that q < m and r < m. Then,

$$\binom{mn+q}{mk+r} \stackrel{m}{\equiv} \binom{n}{k} \binom{q}{r}.$$

viii) Let $0 \le k \le n$. Then,

$$\binom{n-\frac{1}{2}}{k} = \frac{\binom{2n}{n}\binom{n}{k}}{4^k\binom{2n-2k}{n-k}} = \frac{(2n-1)!!}{(2n-2k-1)!!(2k)!!},$$

$$\binom{n+\frac{1}{2}}{n-k} = \frac{2n+1}{2k+1} \frac{\binom{2n}{n}\binom{n}{k}}{4^{n-k}\binom{2k}{k}} = \frac{(2n+1)!!}{(2n-2k)!!(2k+1)!!}.$$

ix) Let $1 \le k \le n$. Then,

$$\frac{1}{n+1} \binom{n+1}{k} \binom{n+1}{k+1} = \binom{n}{k}^2 - \binom{n}{k-1} \binom{n}{k+1},$$

$$\frac{n+2}{n+1} \binom{n+1}{k} \binom{n+1}{k+1} = \binom{n}{k-1} \binom{n}{k} + \binom{n}{k} \binom{n}{k+1} + 2\binom{n}{k}^2,$$

$$\frac{n}{n+1} \binom{n+1}{k} \binom{n+1}{k+1} \binom{k+1}{2} = \frac{n}{n+1} \binom{n+1}{k-1} \binom{n+1}{k} \binom{n-k+2}{2} = \binom{n}{k-1} \binom{n}{k} \binom{n+1}{2}.$$

x) Let $1 \le k \le n$. Then,

$${n \choose k}^3 + {n \choose k+1}^3 + 3{n \choose k}{n \choose k+1}{n+1 \choose k+1} = {n+1 \choose k+1}^3,$$

$$\frac{1}{{n+1 \choose k}^3} + \frac{1}{{n+1 \choose k+1}^3} + \frac{3(n+2)}{(n+1){n \choose k}{n+1 \choose k}{n+1 \choose k+1}} = \frac{(n+2)^3}{(n+1)^3{n \choose k}^3}.$$

Source: [benczeAOI,], [benjaminquinn, pp. 123, 124], [chuzhangqi,], [fuchs, p. 31], [goulddouble,], [GKP, p. 174], [herman, p. 10], and [koshcat, pp. 5, 43]. *viii*) is given in [grimaldi, p. 274]. **Example:** $252 = \binom{10}{5} \stackrel{125}{=} \binom{2}{1} = 2$.

Fact 1.16.9. The following statements hold:

i) Let $x \in \mathbb{C}$. Then,

$$\begin{pmatrix} x \\ 0 \end{pmatrix} = 1, \quad \begin{pmatrix} x \\ 1 \end{pmatrix} = x.$$

ii) Let $k \geq 1$ and $x \in \mathbb{C}$. Then,

$$\binom{x}{k} = \frac{x}{k} \binom{x-1}{k-1} = \frac{x+1-k}{k} \binom{x}{k-1}.$$

iii) Let $k \geq 2$ and $x \in \mathbb{C}$. Then,

$$\binom{x}{k} = \frac{x(x-1)}{k(k-1)} \binom{x-2}{k-2}.$$

iv) Let $k \geq 0$ and $x \in \mathbb{C}$. Then,

$$(x-k)\binom{x}{k} = x\binom{x-1}{k}.$$

v) Let $0 \le k \le n$ and $x \in \mathbb{C}$. Then,

$$\begin{pmatrix} x \\ k \end{pmatrix} = \begin{pmatrix} x-1 \\ k \end{pmatrix} + \begin{pmatrix} x-1 \\ k-1 \end{pmatrix}.$$

vi) Let $k \geq 0$ and $x \in \mathbb{C}$. Then,

$$\binom{x}{k} = (-1)^k \binom{k-x-1}{k}.$$

vii) Let $n, k \geq 0$ and $x \in \mathbb{C}$. Then,

$$\binom{n}{k}\binom{x+n}{n} = \binom{x+n}{n-k}\binom{x+k}{k}.$$

Fact 1.16.10. The following statements hold:

i) Let $x, y, z \in \mathbb{C}$ and $n \geq 0$. Then,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x(x-iz)^{i-1} (y+iz)^{n-i}.$$

In particular,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i} = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

ii) Let $0 \le k \le m \le n$. Then,

$$\sum_{i=m}^{n} \binom{i}{k} = \binom{n+1}{k+1} - \binom{m}{k+1}.$$

In particular,

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k}.$$

iii) Let $n \geq k \geq 0$ and $m \geq 0$. Then,

$$\sum_{i=k}^{n} \binom{m+i}{i} = \binom{n+m+1}{n} - \binom{k+m}{k-1}.$$

In particular,

$$\sum_{i=0}^{n} \binom{m+i}{i} = \sum_{i=0}^{n} \binom{m+i}{m} = \binom{n+m+1}{n} = \binom{n+m+1}{m+1},$$

$$\sum_{i=0}^{n} \binom{n+i}{i} = \sum_{i=0}^{n} \binom{n+i}{n} = \binom{2n+1}{n}.$$

iv) Let $n, m \geq 1$. Then,

$$\sum_{i=1}^{m} \binom{n+m-i}{n} = \binom{n+m}{n+1}.$$

v) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{1}{2^{i}} \binom{n+i}{i} = 2^{n}, \quad \sum_{i=0}^{n} \frac{i}{2^{i}} \binom{n+i}{i} = \frac{n+1}{2^{n+1}} \left[2^{2n+1} - \binom{2n+2}{n+1} \right].$$

vi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$$

Let $n \geq 3$ be odd. Then,

$$\sum_{i=1}^{\lfloor n/2\rfloor} \binom{n}{i} = 2^{n-1} - 1.$$

Let $n \geq 2$ be even. Then,

$$\sum_{i=1}^{n/2} \binom{n}{i} = \frac{1}{2} \binom{n}{n/2} + 2^{n-1} - 1.$$

vii) Let $n, k \ge 1$. Then,

$$\sum_{i=0}^{\lfloor n/k \rfloor} \binom{n}{ki} = \frac{2^n}{k} \sum_{i=1}^k \cos^n \frac{i\pi}{k} \cos \frac{ni\pi}{k}.$$

In particular,

$$\sum_{i=0}^{\lfloor n/2\rfloor} \binom{n}{2i} = \sum_{i=0}^{\lfloor (n-1)/2\rfloor} \binom{n}{2i+1} = 2^{n-1}.$$

viii) Let $n \geq 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (2i - x) \binom{x}{i} = (n - x) \binom{x}{n} = -(n+1) \binom{x}{n+1}.$$

ix) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} i \binom{n}{i} = 2^{n-1} n.$$

x) Let $n, k \ge 1$, and define

$$S_{n,k} \triangleq \sum_{i=1}^{n} i^{k} \binom{n}{i}.$$

Then,

$$S_{n,k+1} = n(S_{n,k} - S_{n-1,k}).$$

xi) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} i^{2} \binom{n}{i} = 2^{n-2} n(n+1), \quad \sum_{i=1}^{n} i^{3} \binom{n}{i} = 2^{n-3} n^{2} (n+3),$$

$$\sum_{i=1}^{n} i^{4} \binom{n}{i} = 2^{n-4} n(n+1)(n^{2} + 5n - 2).$$

xii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{1}{i+1} \binom{n}{i} = \frac{2^{n+1}-1}{n+1}.$$

xiii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{(i+1)!}{(n+1)^{i+1}} \binom{n}{i} = 1.$$

xiv) Let $n \geq 0$. Then,

$$\sum_{i=1}^{\lfloor (n+1)/2 \rfloor} \frac{1}{2i} \binom{n+1}{2i} = \sum_{i=0}^n \frac{2^i-1}{i+1}.$$

xv) Let $n \geq 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} \frac{x^{i+1}}{i+1} \binom{n}{i} = \frac{(x+1)^{n+1} - 1}{n+1}.$$

xvi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} {2n+1 \choose i} = \sum_{i=0}^{n} {2n+1 \choose 2i} = \sum_{i=0}^{2n} {2n \choose i} = 4^{n}.$$

xvii) Let $n \geq 0$. Then,

$$\sum_{i=0}^n \binom{2n}{n-i} = \sum_{i=0}^n \binom{2n}{i} = \frac{1}{2} \left[4^n + \binom{2n}{n} \right], \quad \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{2n}{n-2i} = \frac{1}{2} \binom{2n}{n} + 4^{n-1},$$

$$\begin{split} \sum_{i=0}^{\lfloor n/3 \rfloor} \binom{2n}{n-3i} &= \frac{1}{2} \binom{2n}{n} + \frac{1}{3} (2^{2n-1}+1), \quad \sum_{i=0}^{\lfloor n/4 \rfloor} \binom{2n}{n-4i} &= \frac{1}{2} \binom{2n}{n} + 2^{2n-3} + 2^{n-2}, \\ \sum_{i=0}^{\lfloor n/5 \rfloor} \binom{2n}{n-5i} &= \frac{1}{2} \binom{2n}{n} + \frac{1}{5(2^n)} [2^{3n-1} + (3+\sqrt{5})^n + (3-\sqrt{5})^n], \\ \sum_{i=0}^{\lfloor n/6 \rfloor} \binom{2n}{n-6i} &= \frac{1}{2} \binom{2n}{n} + \frac{1}{6} (2^{2n-1} + 3^n + 1), \quad \sum_{i=1}^{n} \binom{2n-1}{n-i} &= 4^{n-1}. \end{split}$$

If $n \geq 2$, then

$$\sum_{i=1}^{\lfloor n/3 \rfloor} \binom{2n-3}{n-3i} = \frac{1}{3} (4^{n-2} - 1).$$

If $n \geq 3$, then

$$\sum_{i=1}^{\lfloor n/5\rfloor} \binom{2n-5}{n-5i} = \frac{1}{5} 4^{n-3} - \frac{1}{5(2^{2n-5})} [(\sqrt{5}+1)^{2n-5} - (\sqrt{5}-1)^{2n-5}].$$

xviii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} i \binom{2n}{i} = \frac{1}{2} 4^n n.$$

xix) Let n > 1. Then,

$$\sum_{i=0}^{n} i^{2} \binom{2n}{i} = 4^{n-1} n (2n+1) - \frac{1}{2} n^{2} \binom{2n}{n}.$$

xx) Let n > 1. Then,

$$\sum_{i=0}^{n-1} (n-i)^2 \binom{2n}{i} = 4^{n-1}n.$$

xxi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} i \binom{2n+1}{2i} = (2n+1)2^{2n-2}.$$

xxii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} i^2 \binom{2n+1}{2i} = (n+1)(2n+1)2^{2n-3}.$$

xxiii) Let $n \ge 1$ and $k \ge 1$. Then,

$$\begin{split} \sum_{i=0}^n k^i \binom{n}{i} &= (k+1)^n, \quad \sum_{i=0}^n k^i i \binom{n}{i} = kn(k+1)^{n-1}, \\ \sum_{i=0}^n k^i i^2 \binom{n}{i} &= kn(kn+1)(k+1)^{n-2}, \quad \sum_{i=0}^n k^i i^3 \binom{n}{i} = kn(k^2n^2 + 3kn + 1 - k)(k+1)^{n-3}, \end{split}$$

$$\sum_{i=0}^{n} k^{i} i^{4} \binom{n}{i} = kn[k^{3}n^{3} + 6k^{2}n^{2} + (7k - 4k^{2})n + (k - 2)^{2} - 3](k + 1)^{n-4}.$$

In particular,

$$\begin{split} \sum_{i=0}^{n} 2^{i} \binom{n}{i} &= 3^{n}, \quad \sum_{i=0}^{n} 2^{i} i \binom{n}{i} = 2n3^{n-1}, \quad \sum_{i=0}^{n} 2^{i} i^{2} \binom{n}{i} = 2n(2n+1)3^{n-2}, \\ \sum_{i=0}^{n} 2^{i} i^{3} \binom{n}{i} &= 2n(4n^{2}+6n-1)3^{n-3}, \quad \sum_{i=0}^{n} 2^{i} i^{4} \binom{n}{i} = 2n(8n^{3}+24n^{2}-2n-3)3^{n-4}, \\ \sum_{i=0}^{n} 3^{i} \binom{n}{i} &= 4^{n}, \quad \sum_{i=0}^{n} 3^{i} i \binom{n}{i} = 3n4^{n-1}, \quad \sum_{i=0}^{n} 3^{i} i^{2} \binom{n}{i} = 3n(3n+1)4^{n-2}, \\ \sum_{i=0}^{n} 3^{i} i^{3} \binom{n}{i} &= 3n(9n^{2}+9n-2)4^{n-3}, \quad \sum_{i=0}^{n} 3^{i} i^{4} \binom{n}{i} = 3n(27n^{3}+54n^{2}-15n-2)4^{n-4}, \\ \sum_{i=0}^{n} 4^{i} \binom{n}{i} &= 5^{n}, \quad \sum_{i=0}^{n} 4^{i} i \binom{n}{i} = 4n5^{n-1}, \quad \sum_{i=0}^{n} 4^{i} i^{2} \binom{n}{i} = 4n(4n+1)5^{n-2}, \\ \sum_{i=0}^{n} 4^{i} i^{3} \binom{n}{i} &= 4n(16n^{2}+12n-3)5^{n-3}, \quad \sum_{i=0}^{n} 4^{i} i^{4} \binom{n}{i} = 4n(64^{3}+96n^{2}-36n+1)5^{n-4}. \end{split}$$

xxiv) Let $n \geq 1$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} 4^i \binom{n}{2i} = \frac{1}{2} [3^n + (-1)^n], \quad \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} 5^{2i+1} \binom{n}{2i+1} = \frac{1}{2} [6^n - (-4)^n].$$

xxv) Let $n \geq 1$, and let F_n denote the nth Fibonacci number. Then,

$$\sum_{i=1}^{\lfloor (n+1)/2\rfloor} \binom{n-i}{i-1} = F_k, \quad \sum_{i=0}^{\lfloor n/3\rfloor} 2^{n-3i} \binom{n-i}{2i} = F_{2n} + 1.$$

xxvi) Let $n \ge 1$, and let L_n denote the nth Lucas number. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} = L_n, \quad \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{2^i n}{n-i} \binom{n-i}{i} = 2^n + (-1)^n,$$

$$\sum_{i=0}^{\lfloor n/2 \rfloor} 2^i \binom{n-i}{i} = \frac{1}{3} [2^{n+1} + (-1)^n], \quad \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{2^i i}{n-i} \binom{n-i}{i} = \frac{1}{3} [2^n + (-1)^n 2].$$

xxvii) Let $n \geq 1$, and let F_n and L_n denote the nth Fibonacci number and nth Lucas number, respectively. Then,

$$\sum_{i=1}^{\lfloor (n-1)/2 \rfloor} i \binom{n-i-1}{i} = \frac{1}{10} [(5n-4)F_n - nL_n],$$

$$\sum_{i=1}^{\lfloor (n-1)/2 \rfloor} i^2 \binom{n-i-1}{i} = \frac{1}{50} [(15n^2 - 20n + 4)F_n - (5n^2 - 6n)L_n].$$

xxviii) Let $n \geq 1$, and let P_n denote the nth Pell number. Then,

$$\sum_{i=0}^{\lfloor n/4 \rfloor} 2^{n+1-4i} \binom{n-2i}{2i} = P_{n+1} + n + 1.$$

xxix) Let $n \ge k \ge 0$. Then,

$$\sum_{i=k}^{n} \binom{n}{i} = \sum_{i=0}^{n-k} 2^{i} \binom{n-i-1}{k-1}.$$

xxx) Let $n \geq 1$. Then,

$$S_{n} \triangleq \sum_{i=0}^{n} {n \choose i}^{-1} = \frac{n+1}{2^{n}} \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{1}{2i+1} {n+1 \choose 2i+1} = \frac{n+1}{2^{n}} \sum_{i=0}^{n} \frac{2^{i}}{i+1},$$

$$\sum_{i=0}^{n} i {n \choose i}^{-1} = \frac{n}{2} S_{n} = \frac{n(n+1)}{2^{n+1}} \sum_{i=0}^{n} \frac{2^{i}}{i+1}, \quad \sum_{i=0}^{n} i^{2} {n \choose i}^{-1} = \frac{(n+1)(n-2)}{4} S_{n} + \frac{(n+1)^{2}}{2},$$

$$\sum_{i=0}^{n} i^{3} {n \choose i}^{-1} = \frac{n(n^{2} - 3n - 6)}{8} S_{n} + \frac{3n(n+1)^{2}}{4},$$

$$\sum_{i=0}^{n} i^{4} {n \choose i}^{-1} = \frac{(n+1)(n^{3} - 7n^{2} - 2n + 16)}{16} S_{n} + \frac{(7n-8)(n+1)^{3}}{8}.$$

Furthermore, for all $n \geq 2$,

$$S_n = \frac{n+1}{2n} S_{n-1} + 1.$$

xxxi) Let $n \ge 1$ and $z \in \mathbb{C}$, and assume that $\text{Re } z \ne -1$. Then,

$$\sum_{i=0}^{n} \binom{n}{i}^{-1} z^{i} = (n+1) \left(\frac{z}{z+1} \right)^{n+1} \sum_{i=1}^{n+1} \frac{1}{i} \frac{(1+z^{i})(1+z)^{i-1}}{z^{i}}.$$

In particular.

$$\sum_{i=0}^{n} \binom{n}{i}^{-1} = \frac{n+1}{2^{n+1}} \sum_{i=1}^{n+1} \frac{2^i}{i} = \frac{n+1}{2^n} \sum_{i=0}^{n} \frac{2^i}{i+1}.$$

xxxii) Let $n \geq 2$ and $m \geq 0$. Then,

$$\sum_{i=n}^{n+m} \binom{i}{n}^{-1} = \frac{n}{n-1} \left[1 - \binom{n+m}{n-1}^{-1} \right].$$

xxxiii) Let $n \geq 0$ and $x, y \in \mathbb{C}$, assume that $x + y \neq 0$, and define

$$S_n \triangleq \sum_{i=0}^n \binom{n}{i}^{-1} x^i y^{n-i}.$$

Then,

$$S_n = x^n + (n+1) \left(\frac{xy}{x+y}\right)^n \sum_{i=0}^{n-1} \frac{[(i+1)y^{i+2} + yx^{i+1}](x+y)^i}{(xy)^{i+1}(i+1)(i+2)}.$$

Furthermore, for all $n \geq 2$,

$$S_n = \frac{(n+1)xy}{n(x+y)} S_{n-1} + \frac{x^{n+1} + y^{n+1}}{x+y}.$$

xxxiv) Let $n \geq 0$, and define

$$S_n \stackrel{\triangle}{=} \sum_{i=0}^n \binom{n}{i}^{-2}.$$

Then,

$$S_n = 1 + \frac{(n+1)^2(n+1)!}{4^n(\frac{1}{2})^{\overline{n+2}}} \sum_{i=0}^{n-1} \frac{4^i(\frac{1}{2})^{\overline{i+2}}(3i^2 + 12i^2 + 18i + 10)}{(i+1)^2(i+2)^3(i+1)!}.$$

Furthermore, for all $n \geq 2$,

$$S_n = \frac{(n+1)^3}{2n^2(2n+3)} S_{n-1} + \frac{3n+3}{2n+3}.$$

xxxv) Let $n \ge 1$ and $k \ge 1$. Then,

$$\sum_{i=0}^{n} \binom{n}{i}^{-k} = (n+1)^k \sum_{i=0}^{n} \left[\sum_{j=0}^{i} (-1)^i \frac{1}{n+1+j-i} \binom{i}{j} \right]^k.$$

In particular,

$$\sum_{i=0}^{n} \binom{n}{i}^{-1} = (n+1) \sum_{i=0}^{n} \frac{1}{2^{i}(n+1-i)} = (n+1) \sum_{i=0}^{n} \sum_{j=0}^{i} \frac{(-1)^{j}}{n+1+j-i} \binom{i}{j},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{-2} = (n+1)^2 \sum_{i=0}^{n} \frac{2}{n+1-i} \sum_{j=0}^{i} \frac{(-1)^j}{n+2+j} \binom{i}{j} = (n+1)^2 \sum_{i=0}^{n} \left[\sum_{j=0}^{i} \frac{(-1)^j}{n+1+j-i} \binom{i}{j} \right]^2.$$

Furthermore.

$$\lim_{n \to \infty} \sum_{i=0}^{n} \binom{n}{i}^{-k} = 2.$$

xxxvi) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} {2n \choose 2i}^{-1} = \frac{2(2n+1)}{2^{2n+2}} \sum_{i=0}^{2n+1} \frac{2^{i}}{i+1}.$$

xxxvii) Let $n, m \ge 0$ and $1 \le k \le m$. Then,

$$\sum_{i=0}^{n} \frac{\binom{n}{i}}{\binom{n+m}{k+i}} = \frac{n+m+1}{(m+1)\binom{m}{k}}.$$

xxxviii) Let $n \ge 1$. Then,

$$\sum_{i=n}^{n^2-n+1} \frac{\binom{(n-1)^2}{i-n}}{i\binom{n^2}{i}} = \frac{1}{n\binom{2n-1}{n}}.$$

xxxix) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{1}{i^{2} \binom{2i}{i}} = \frac{2}{3} H_{n,2} - \frac{1}{3} \sum_{i,j=1}^{n} \frac{(i-1)!(j-1)!}{(i+j)!}.$$

xl) Let $n \ge 0$. Then,

$$\sum_{i=0}^{n} \frac{4^{i}}{\binom{2i}{i}} = \frac{4^{n+1}(2n+1)}{3\binom{2n+2}{n+1}} + \frac{1}{3}.$$

xli) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{4^{i}}{i\binom{2i}{i}} = \frac{2(4^{n})}{\binom{2n}{n}} - 2.$$

xlii) Let $n \geq 2$. Then,

$$\sum_{i=1}^{n-1} \frac{4^i}{i(2i+1)\binom{2i}{i}} = 2 - \frac{4^n}{n\binom{2n}{i}}.$$

xliii) Let $n \geq 3$. Then,

$$\sum_{i=2}^{n-1} \frac{4^i}{i(i-1)\binom{2i}{i}} = 4 - \frac{4^n(2n-1)}{n(n-1)\binom{2n}{i}}.$$

xliv) Let $n \geq 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{\lfloor n/2\rfloor} \binom{n}{2i} x^{n-2i} = \frac{1}{2} (x+1)^n + \frac{1}{2} (x-1)^n,$$

$$2x\sum_{i=0}^{n} \binom{n}{i} x^{2\lfloor i/2 \rfloor} = (1+x)^{n+1} - (1-x)^{n+1}.$$

xlv) Let $n \geq 0$ and $x \in \mathbb{C}$. Then,

$$x\sum_{i=0}^{n} {n+i \choose 2i} \left(\frac{x^2-1}{4}\right)^{n-i} = \left[\frac{1}{2}(x+1)\right]^{2n+1} + \left[\frac{1}{2}(x-1)\right]^{2n+1}.$$

xlvi) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} \frac{1}{i} \binom{n+i-1}{2i-1} (x-1)^{2i} x^{n-i} = \frac{1}{n} (x^n-1)^2.$$

xlvii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} H_i \binom{n}{i} = 2^n \left(H_n - \sum_{i=1}^{n} \frac{1}{2^i i} \right).$$

xlviii) Let $n \ge k \ge 1$. Then,

$$\sum_{i=k}^{n} H_i \binom{i}{k} = \binom{n+1}{k+1} \left(H_{n+1} - \frac{1}{k+1} \right).$$

xlix) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} H_i \binom{n}{i}^2 = (2H_n - H_{2n}) \binom{2n}{n}.$$

l) Let $n \ge k \ge 1$. Then,

$$\sum_{i=k}^{n} \frac{1}{n+1-i} \binom{i}{k} = \binom{n+1}{k} (H_{n+1} - H_k).$$

li) Let $n \ge k \ge 1$. Then,

$$\sum_{i=0}^{k-1} \sum_{j=k}^{n} (-1)^{i+j-1} \frac{1}{j-i} \binom{n}{i} \binom{n}{j} = \sum_{i=0}^{k-1} \binom{n}{i}^2 (H_{n-i} - H_i),$$

$$\sum_{i=1}^{n} i \binom{n}{i}^{2} (H_{i} - H_{n-i}) = \sum_{i=1}^{n} (2i - n) \binom{n}{i}^{2} H_{i} = \binom{2n-1}{n}.$$

lii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \frac{i}{4^{i}} {2i \choose i} = \frac{n(n+1)(n+2)}{6(4^{n})} C_{n+1} = \frac{(2n+2)!}{6(4^{n})(n+1)!(n-1)!}.$$

liii) Let $n \geq 0$ and $m \geq 1$. Then,

$$\sum_{i=0}^{n} {n+1 \choose i} \sum_{j=1}^{m} j^{i} = (m+1)^{n+1} - 1.$$

liv) Let p be prime and $n \ge 1$. Then,

$$\sum \binom{n}{i} \stackrel{p}{=} 0,$$

where the sum is taken over all $i \in \{1, \dots, n-1\}$ such that (p-1)|i. Equivalently,

$$\sum_{i=1}^{\left\lfloor \frac{n-1}{p-1} \right\rfloor} \binom{n}{(p-1)i} \stackrel{p}{\equiv} 0.$$

- $lv) \ \, \text{Let} \,\, n \geq 2.$ Then, $\sum_{i=1}^{n-1} \binom{n}{i}$ is even.
- lvi) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n-1} i^{n-i} (n-i)^i \binom{n}{i} = (-1)^n n! \left(1 + \sum_{i=1}^{n-2} (-1)^i \frac{n^i}{i!} \right).$$

- lvii) Let p be prime and $n \in [p, 2p-2]$. Then, $p \mid \binom{n}{p-1}$.
- lviii) Let $n \geq 0$ and $x, y \in \mathbb{C}$. Then,

$$(x+y)^{\underline{n}} = \sum_{i=0}^{n} \binom{n}{i} x^{\underline{n-i}} y^{\underline{i}}.$$

lix) Let $n, m \geq 0$ and $x \in \mathbb{C}$. Then,

$$(1-x)^{n+1} \sum_{i=0}^{m} \binom{n+i}{i} x^i + x^{m+1} \sum_{i=0}^{n} \binom{m+i}{i} (1-x)^i = 1.$$

lx) Let $n \geq 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} \binom{n}{i}^{2} x^{i} = \sum_{i=1}^{n} \binom{n}{i} \binom{2n-i}{n} (x-1)^{i}.$$

lxi) Let $x_0, x_1, \ldots, x_n \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} x_i \binom{n}{i} = \sum_{i=0}^{n-1} (x_i + x_{i+1}) \binom{n-1}{i}.$$

lxii) Let $n \geq 1$. Then,

$$\sum_{i=1, i \text{ odd}}^{n} \binom{n}{i} = \sum_{i=0, i \text{ even}}^{n} \binom{n}{i} = \frac{1}{2} \sum_{i=0}^{n} \binom{n}{i} = 2^{n-1}.$$

lxiii) Let $n \geq 1$ and let $z \in \mathbb{C}$, where |z| < 1/4. Then,

$$\sum_{i=0}^{\lfloor n/2\rfloor} \binom{n-i}{i} z^i = \frac{1}{\sqrt{1+4z}} \left[\left(\frac{1+\sqrt{1+4z}}{2} \right)^{n+1} - \left(\frac{1+\sqrt{1-4z}}{2} \right)^{n+1} \right],$$

$$\sum_{i=0}^{\lfloor n/2\rfloor} \frac{n}{n-i} \binom{n-i}{i} z^i = \left(\frac{1+\sqrt{1+4z}}{2} \right)^n + \left(\frac{1+\sqrt{1+4z}}{2} \right)^n.$$

lxiv) Let $n \geq 1$ and let $z \in \mathbb{C}$, where |z| > 2. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n-i}{i} z^{n-2i} = \frac{1}{\sqrt{z^2-4}} \left[\left(\frac{z+\sqrt{z^2-4}}{2} \right)^{n+1} - \left(\frac{z-\sqrt{z^2-4}}{2} \right)^{n+1} \right].$$

lxv) Let $n \geq 2$. Then,

$$\sum_{i=0}^{\lfloor (n-1)/2\rfloor} \binom{n}{i} (n-2i) = n \binom{n-1}{\lfloor n/2\rfloor}.$$

lxvi) Let $n \geq 0$, and assume that n is even. Then,

$$\sum_{i=0}^{2n} \binom{2n}{i} |n-i| = n \binom{2n}{n}.$$

lxvii) Let $n \geq 1$. Then,

$$\begin{split} \sum_{i=1}^n \frac{i}{i+2} \binom{n}{i} &= 2^n - \frac{2(2^{n+1}n+1)}{(n+1)(n+2)}, \quad \sum_{i=1}^n \frac{i}{i+3} \binom{n}{i} &= 2^n - \frac{6(2^n n^2 + 2^n n + 2^{n+1} - 1)}{(n+1)(n+2)(n+3)}, \\ \sum_{i=1}^n \frac{i}{i+4} \binom{n}{i} &= 2^n - \frac{8(2^n n^3 + 3(2^n)n^2 + 2^{n+3}n + 3)}{(n+1)(n+2)(n+3)(n+4)}. \end{split}$$

lxviii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} 2^{n-i} \binom{n+i}{2i} = \frac{1}{3} (2^{2n+1} + 1).$$

lxix) Let $n \geq 0$ and $k \geq 0$, and define

$$S_k(n) \stackrel{\triangle}{=} \sum_{i=0}^n i^k \binom{n+i}{i}.$$

Then,

$$S_{0}(n) = \binom{2n+1}{n}, \quad S_{1}(n) = \frac{n(n+1)}{n+2} \binom{2n+1}{n}, \quad S_{2}(n) = \frac{n(n+1)^{3}}{(n+2)(n+3)} \binom{2n+1}{n},$$

$$S_{3}(n) = \frac{n^{2}(n+1)^{2}(n^{2}+4n+5)}{(n+2)(n+3)(n+4)} \binom{2n+1}{n}, \quad S_{4}(n) = \frac{n(n+1)^{3}(n^{4}+7n^{3}+17n^{2}+9n-4)}{(n+2)(n+3)(n+4)(n+5)} \binom{2n+1}{n},$$

$$S_{k+1}(n) = (n+1) \left[S_{k}(n+1) - S_{k}(n) - (n+1)^{k} \binom{2n+2}{n+1} \right].$$

Furthermore, as $n \to \infty$, $S_k(n) \sim 2n^k \binom{2n}{n}$.

lxx) Let $n \geq 2$. Then,

$$\sum_{i=1}^{n-1} \frac{in^{n-i}}{i+1} \binom{n}{i} = \frac{n(n^n-1)}{n+1}.$$

Source: [benjaminquinn, pp. 64-68, 78], [gould,], [greene, pp. 1, 2], and [herman, pp. 2-10]. ii) and iii) are given in [plazaPT,]; iv) is given in [pandc, p. 159]; v) is given in [engel, pp. 96, 97, 207], [GKP, p. 167], and [larcombemlip,]; vi) follows from i) with x = y = 1; vii) is given in [benjaminguinn, pp. 65, 81]; viii) is given in [pwz, pp. 95, 97]; ix) is given in [benjaminquinn, p. 66]; x) is given in [gonzalezgci,]; xi) is given in [engel, pp. 95, 96], [gonzalezgci,], and [herman2, p. 62]; xii) is given in [jeffrey, pp. 35, 36]; xiii) is given in [comtet, p. 173]; xiv) is given in [SuryWZ,]; xv) is given in [GR, p. 5]; xvi) is given in [herman, p. 3], [Ilbook, p. 16], and [chuzhangqi,]; xvii) is given in [GR, p. 12] and [mercacos,]; xviii) and xix) are given in [GR, p. 12]; xx) is given in [chuzhangqi,]; xxi) and xxii) are given in [Hbook, p. 16]; xxiii) is given in [bona, p. 77] and [herman2, p. 55]; xxiv) is given in [bona, p. 78]; xxv) is given in [bruckmanagain,], [engel, p. 205], and [gelca, p. 301]; xxvi) is given in [kisielewicz,koshyflp,]; xxvii) is given in [gauthierbinom,]; xxviii) is given in [bruckmanpell,]; xxix) is given in [comtet, p. 72]; xxx) is given in [experimentation, p. 55] and [pippenger,rockett,sprugnoli1,SuryWZ,]; xxxi) is given in [comtet, p. 294]; xxxii) is given in [bonar, pp. 136, 137]; xxxiii) is given in [apagodu,]; xxxiv) is given in [apagodu, ; xxxv) is given in [apagodu, mansour,]; xxxvi) is given in [mansour,]; xxxvii) is given in [trif,]; xxxviii) is given in [stanford,]; xxxix) is given in [wolfharm,]; xl)-xliii) are given in [sprugnolicentral,]; xliv) is given in [benjaminquinn, p. 113]; xlv) and xlvi) are given in [wilf, p. 174]; xlvii) is given in [boyadzhiev3,]; xlviii) is given in [benjaminquinn, p. 92] and [GKP, pp. 279, 280]; xlviv) is given in [chuharm,]; l) is given in [benjaminquinn, p. 92]; li) is given in [sondow2005,]; lii) is given in [koshcat, p. 57]; liii)-lv) and lvii) are given in [macmillansondow,]; lvi) is given in [melzak, p. 179]; lviii) is given in [gelca, p. 298] and [gonzalezgci,]; lix) is given in [koornwinder,]; lx) is given in [comtet, p. 168]; lxi) and lxii) are given in [gonzalezgci,]; lxiii) is given in [GKP,]; lxiv) is given in [wilf, pp. 131, 132]; lxv) and lxvi) are given in [tuenter,]; lxvii) is given in [lopezaguayo,]; lxviii) is given in

[wilf, p. 133]; lxix) is given in [larcombesps,parislarcombe,]; lxx) is given in [benczebinom,]. **Remark:** i) is the $Abel\ identity$; the special case z=0 is the $binomial\ identity$. See [comtet, pp. 128–130] and [guojen,]. An extension is given in [abelleib,]. liii) is $Pascal's\ identity$. See [macmillansondow,].

Fact 1.16.11. The following statements hold:

i) Let $0 \le k \le n$. Then,

$$\sum_{i=0}^{k} (-1)^i \binom{n}{i} = (-1)^k \binom{n-1}{k}.$$

ii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0.$$

iii) Let $n \geq 1$. Then,

$$\begin{split} \sum_{i=0}^{n} (-1)^i \binom{2n}{i} &= (-1)^n \frac{1}{2} \binom{2n}{n}, \quad \sum_{i=0}^{n} (-1)^i \binom{2n}{n-i} &= \frac{1}{2} \binom{2n}{n}, \\ \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{2n}{n-2i} &= \frac{1}{2} \binom{2n}{n} + 2^{n-1}, \quad \sum_{i=0}^{\lfloor n/3 \rfloor} (-1)^i \binom{2n}{n-3i} &= \frac{1}{2} \binom{2n}{n} + 3^{n-1}, \\ \sum_{i=0}^{\lfloor n/4 \rfloor} (-1)^i \binom{2n}{n-4i} &= \frac{1}{2} \binom{2n}{n} + \frac{1}{4} [(2+\sqrt{2})^n + (2-\sqrt{2})^n], \\ \sum_{i=0}^{\lfloor n/5 \rfloor} (-1)^i \binom{2n}{n-5i} &= \frac{1}{2} \binom{2n}{n} + \frac{1}{5(2^n)} [(5+\sqrt{5})^n + (5-\sqrt{5})^n]. \end{split}$$

iv) Let $n \geq 2$. Then,

$$\sum_{i=1}^{n} (-1)^{i} i \binom{n}{i} = 0.$$

v) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} 2^{i} \binom{n}{i} = (-1)^{n}.$$

vi) Let $n \ge 1$ and $1 \le k \le n - 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i} i^{2k} \binom{2n}{n+i} = 0.$$

Furthermore,

$$\sum_{i=1}^n (-1)^i \binom{2n}{n+i} = -\frac{1}{2} \binom{2n}{n}, \quad \sum_{i=1}^n (-1)^i i^{2n} \binom{2n}{n+i} = (-1)^n \frac{1}{2} (2n)!.$$

vii) Let $n > k \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^i i^k \binom{n}{i} = 0.$$

In particular, if $n \geq 3$, then

$$\sum_{i=1}^{n} (-1)^{i} i^{2} \binom{n}{i} = 0.$$

viii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i} i^{n} \binom{n}{i} = (-1)^{n} n!.$$

ix) Let $n \geq 1$ and $x \in \mathbb{C}$. Then

$$\sum_{i=0}^{n} (-1)^{i} (x+i)^{n} \binom{n}{i} = (-1)^{n} n!.$$

x) Let $n > k \ge 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} (x+i)^{k} \binom{n}{i} = 0.$$

xi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n}{2i} = 2^{n/2} \cos \frac{n\pi}{4}, \quad \sum_{i=0}^{\lfloor n/3 \rfloor} (-1)^i \binom{n}{3i} = (2) 3^{n/2-1} \cos \frac{n\pi}{6}.$$

xii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor (n-1)/2 \rfloor} (-1)^i \binom{n}{2i+1} = 2^{n/2} \sin \frac{n\pi}{4}.$$

xiii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n-i}{i} = \begin{cases} -1, & n \stackrel{6}{=} 3 \text{ or } n \stackrel{6}{=} 4, \\ 0, & n \stackrel{6}{=} 2 \text{ or } n \stackrel{6}{=} 5, \\ 1, & n \stackrel{6}{=} 0 \text{ or } n \stackrel{6}{=} 1. \end{cases}$$

xiv) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i 2^{n-2i} \binom{n-i}{i} = n+1, \quad \sum_{i=0}^{\lfloor n/3 \rfloor} (-1)^i 2^{n-3i} \binom{n-2i}{2i} = F_{n+3} - 1.$$

xv) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} 4^{i} \binom{n+i}{2i} = (-1)^{n} (2n+1).$$

xvi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{4n+1} (-1)^{i(i+1)/2} \binom{4n+1}{i} = 0, \quad \sum_{i=0}^{4n+3} (-1)^{i(i+1)/2} \binom{4n+3}{i} = (-4)^{n+1},$$

$$\sum_{i=0}^{2n+2} (-1)^{i(i+1)/2} \binom{2n+2}{i} = (-1)^{(n+1)(n+2)/2} 2^{n+1}.$$

xvii) Let $n, k \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} (n-i)^{k} \binom{n}{i} = \begin{cases} 0, & k < n, \\ n!, & k = n, \\ \frac{1}{2} n(n+1)!, & k = n+1. \end{cases}$$

xviii) Let $n \geq 1$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \frac{n}{n-i} \binom{n-i}{i} = \begin{cases} -2, & n \stackrel{6}{\equiv} 3, \\ -1, & n \stackrel{6}{\equiv} 2 \text{ or } n \stackrel{6}{\equiv} 4, \\ 1, & n \stackrel{6}{\equiv} 1 \text{ or } n \stackrel{6}{\equiv} 5, \\ 2, & n \stackrel{6}{\equiv} 0. \end{cases}$$

xix) Let $k > n \ge 0$. Then,

$$\sum_{i=0}^{n} (-1)^{n-i} \frac{1}{k-i} \binom{n}{i} = \frac{1}{(k-n)\binom{k}{n}}.$$

xx) Let $n \geq 1$. Then,

$$\sum_{i=0}^{\lfloor n/2\rfloor} (-1)^i 2^{n-2i} \frac{n}{n-i} \binom{n-i}{i} = 2.$$

xxi) Let $n \geq 1$ and $x, y \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \binom{n}{i} \frac{1}{i} (x+iy)^n = x^n H_n + nx^{n-1} y.$$

xxii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \binom{n}{i} \frac{1}{i} (n-i)^n = n^n (H_n - 1).$$

xxiii) Let $n \ge 1$ and $1 \le k \le n$. Then,

$$\sum_{i=1}^{n} (-1)^{i+1} \frac{1}{i^k} \binom{n}{i} = \sum_{i=1}^{n} \frac{1}{i_i},$$

where the sum is taken over all k-tuples (i_1, \ldots, i_k) of positive integers such that $1 \le i_1 \le \cdots \le i_k \le n$. In particular,

$$\sum_{i=1}^{n} (-1)^{i+1} \frac{1}{i} \binom{n}{i} = H_n.$$

xxiv) Let $n \geq 0, 0 \leq k \leq n$, and $x \in \mathbb{C}$, and assume that $-x \notin \{0, \dots, n\}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{i^{k}}{i+x} \binom{n}{i} = (-1)^{k} \frac{n! x^{k}}{x^{n+1}}, \sum_{i=0}^{n} (-1)^{i} \frac{1}{i+x} \binom{n}{i} = \frac{n!}{x^{n+1}} = \frac{1}{x} \prod_{i=1}^{n} \frac{i}{x+i} = \frac{1}{x\binom{x+n}{n}} = \frac{1}{(n+1)\binom{x+n}{n+1}},$$

$$\sum_{i=0}^{n} (-1)^{i} \frac{x}{i+x} \binom{n}{i} = \frac{1}{\binom{n+x}{n}}, \quad \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \left(\frac{x}{x+i}\right)^{2} = \left(\prod_{i=1}^{n} \frac{i}{x+i}\right) \left(1 + \sum_{i=1}^{n} \frac{x}{x+i}\right).$$

If $n \geq 2$, then

$$\sum_{i=1}^{n} (-1)^{n-i+1} \frac{i^{n-2}}{x+i} \binom{n-1}{i-1} = \frac{(n-1)! x^{n-2}}{\prod_{i=1}^{n} (x+i)}.$$

xxv) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{i+1} \binom{n}{i} = \frac{1}{n+1}, \quad \sum_{i=1}^{n} (-1)^{i+1} \frac{1}{i+1} \binom{n}{i} = \frac{n}{n+1}.$$

xxvi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{2i+1} \binom{n}{i} = \frac{4^{n}}{(2n+1)\binom{2n}{n}} = \frac{(2n)!!}{(2n+1)!!} = \frac{4^{n}(n!)^{2}}{(2n+1)!}.$$

xxvii) Let $n, m \ge 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{m+i+1} \binom{n}{i} = \frac{1}{(n+m+1)\binom{n+m}{m}} = \frac{n!m!}{(n+m+1)!}.$$

xxviii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{n+i} \frac{1}{2n-2i+1} \binom{2n+1}{i} = \frac{2^{4n}}{(n+1)\binom{2n+1}{n}}.$$

xxix) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \frac{1}{i} \binom{n}{i} = H_n, \quad \sum_{i=1}^{n} (-1)^{i-1} \frac{1}{i+1} \binom{n}{i} = \frac{n}{n+1}, \quad \sum_{i=1}^{n} (-1)^{i-1} \frac{H_i}{i+1} \binom{n}{i} = \frac{H_n}{n+1},$$

$$\sum_{i=1}^n (-1)^{i-1} \frac{1}{i+2} \binom{n}{i} = \frac{n(n+3)}{2(n+1)(n+2)}, \quad \sum_{i=1}^n (-1)^{i-1} \frac{1}{i+3} \binom{n}{i} = \frac{n(n^2+6n+11)}{3(n+1)(n+2)(n+3)}.$$

xxx) Let $n \ge 0$ and $m \ge 1$. Then

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{(i+m)^{2}} \binom{n}{i} = \frac{(H_{n+m} - H_{m-1})}{m \binom{n+m}{n}}.$$

In particular,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{(i+1)^{2}} \binom{n}{i} = \frac{H_{n+1}}{n+1}, \quad \sum_{i=0}^{n} (-1)^{i} \frac{1}{(i+2)^{2}} \binom{n}{i} = \frac{H_{n+2} - 1}{(n+1)(n+2)},$$

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{(i+3)^{2}} \binom{n}{i} = \frac{2H_{n+3} - 3}{(n+1)(n+2)(n+3)}.$$

Furthermore,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{(i+m)^{3}} \binom{n}{i} = \frac{(H_{n+m} - H_{m-1})^{2} + H_{n+m,2} - H_{m-1,2}}{2m \binom{n+m}{n}}, \quad \sum_{i=0}^{n} (-1)^{i} \frac{1}{(i+m)^{4}} \binom{n}{i}$$

$$= \frac{(H_{n+m} - H_{m-1})^{3} + 3(H_{n+m} - H_{m-1})(H_{n+m,2} - H_{m-1,2}) + 2(H_{n+m,3} - H_{m-1,3})}{6m \binom{n+m}{n}}.$$

xxxi) Let $n \geq 1$, $k \in \{0, 1, ..., n\}$, and $x, y \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (ix+y)^{k} = \begin{cases} 0, & 0 \le k \le n-1, \\ n! (-x)^{n}, & k = n. \end{cases}$$

xxxii) Let $n \ge 1$ and $k \in \{1, \ldots, n\}$, and assume that n and k are odd. Then,

$$\sum_{i=0}^{(n-1)/2} (-1)^i \binom{n}{i} (n-2i)^k = \begin{cases} 0, & k < n, \\ 2^{n-1} n!, & k = n. \end{cases}$$

xxxiii) Let $n \geq 2$ and $k \in \{2, \ldots, n\}$, and assume that n and k are even. Then,

$$\sum_{i=0}^{(n-2)/2} (-1)^i \binom{n}{i} (n-2i)^k = \begin{cases} 0, & k < n, \\ 2^{n-1} n!, & k = n. \end{cases}$$

xxxiv) Let $k, n \ge 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} (x - ki)^{n} \binom{n}{i} = k^{n} n!.$$

xxxv) Let $n \geq 1$, let $p \in \mathbb{F}[s]$, assume that $\deg p \leq n$, and let $\alpha \in \mathbb{C}$ be the coefficient of s^n in p(s). Then,

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} p(i) = \alpha (-1)^{n} n!.$$

If, in particular, $\deg p < n$, then,

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} p(i) = 0.$$

xxxvi) Let $n \ge 1$ and $k \in \{0, 1, ..., n\}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} i^{k} \binom{n}{i} = \begin{cases} 0, & k < n, \\ (-1)^{n} n!, & k = n. \end{cases}$$

xxxvii) Let $n, k \ge 1$, and assume that n is prime. Then,

$$\sum_{i=1}^{n-1} (-1)^i i^k \binom{n-1}{i} \stackrel{n}{\equiv} \begin{cases} -1, & n-1|k, \\ 0, & \text{otherwise.} \end{cases}$$

xxxviii) Let $n \ge 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} H_i \binom{n}{i} x^{n-i} = H_n(x+1)^n - \sum_{i=1}^{n} \frac{1}{i} x^i (x+1)^{n-i}.$$

In particular,

$$\sum_{i=1}^n (-1)^{i+1} H_i \binom{n}{i} = \frac{1}{n}, \quad \sum_{i=1}^n H_i \binom{n}{i} = 2^n H_n - \sum_{i=1}^n \frac{2^{n-i}}{i},$$

$$\sum_{i=1}^{n} (-1)^{i} 2^{n-i} H_i \binom{n}{i} = H_n - \sum_{i=1}^{n} \frac{2^{i}}{i}, \quad \sum_{i=1}^{n} (-1)^{n-i} 2^{i} H_i \binom{n}{i} = H_n - \sum_{i=1}^{n} (-1)^{i} \frac{1}{i}.$$

xxxix) Let $n \ge 1$ and $1 \le k \le \lfloor n/2 \rfloor$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n-i}{i} C_{n-k-1} = 0.$$

xl) Let $n \geq 1$ and $k \in \{0, 1, \dots, n\}$. Then,

$$\sum_{i=k}^{n} (-1)^{i} \binom{n}{i} \binom{i}{k} = \begin{cases} 0, & k < n, \\ (-1)^{n}, & k = n. \end{cases}$$

xli) Let $n \ge 1$ and $k \in \{0, 1, ..., n\}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{k} = \begin{cases} 0, & k < n, \\ n!, & k = n. \end{cases}$$

xlii) Let $n, m \ge 1$ and $k \in \{0, 1, ..., n - 1\}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (mi)^{k} = 0.$$

xliii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{\binom{n}{i}} = \begin{cases} 0, & n \text{ odd,} \\ \frac{2n+2}{n+2}, & n \text{ even,} \end{cases} \sum_{i=0}^{2n} (-1)^{i} \frac{1}{\binom{2n}{i}} = \frac{2n+1}{n+1}.$$

xliv) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i+1} \frac{1}{\binom{2n}{i}} = \frac{1}{2(n+1)} + \frac{(-1)^{i+1}}{2\binom{2n}{n}}, \quad \sum_{i=1}^{2n-1} (-1)^{i+1} \frac{i}{\binom{2n}{i}} = \frac{n}{n+1}.$$

xlv) Let $n \geq 0$. Then,

$$\sum_{i=0}^{2n} (-1)^i \frac{\binom{2n}{i}}{\binom{4n}{2i}} = \frac{4n+1}{2n+1}, \quad \sum_{i=0}^{2n} (-1)^i \frac{\binom{4n}{2i}}{\binom{2n}{i}} = \frac{1}{1-2n}, \quad \sum_{i=0}^n (-1)^i \frac{4^i \binom{n}{i}}{\binom{2i}{i}} = \frac{1}{1-2n}.$$

xlvi) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i} \frac{4^{i} \binom{n}{i}}{i \binom{2i}{i}} = H_{n} - 2H_{2n}, \quad \sum_{i=1}^{n} (-1)^{i} \frac{4^{i} \binom{n-1}{i-1}}{i^{2} \binom{2i}{i}} = \frac{1}{n} (H_{n} - 2H_{2n}).$$

xlvii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (H_i - 2H_{2i}) = \frac{4^n}{n \binom{2n}{n}}.$$

xlviii) Let $n \ge 1$ and $k \ge 2$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{\binom{kn}{i}}{\binom{2kn}{2i}} = \begin{cases} 0, & kn \text{ odd,} \\ \frac{2kn+1}{2(kn+1)}, & kn \text{ even,} \end{cases} \sum_{i=0}^{n} (-1)^{i} \frac{i\binom{kn}{i}}{\binom{2kn}{2i}} = \begin{cases} -\frac{(kn+1)(2kn+1)}{2(kn+2)}, & kn \text{ odd,} \\ \frac{kn(2kn+1)}{2(kn+1)}, & kn \text{ even,} \end{cases}$$

xlix) Let $n, k \geq 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{\binom{n+k}{i+k}} = \frac{n+k+1}{n+k+2} \left[\binom{n+k+1}{k}^{-1} + (-1)^{n} \right],$$

$$\sum_{i=0}^{n} (-1)^{i} \frac{i}{\binom{n+k}{i+k}} = (-1)^{n} (n+1) \frac{n+k+1}{n+k+2} - \frac{n+k+1}{n+k+3} \left[\binom{n+k+2}{k+1}^{-1} + (-1)^{n} \right].$$

l) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \sum_{j=1}^{n} \frac{1}{i+j} \binom{n}{i} = \frac{1}{n} \left[1 - \binom{2n}{n}^{-1} \right].$$

li) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \frac{1}{(i+k)^{2}} = \frac{(k-1)!}{(n+1)^{\overline{k}}} (H_{n+k} - H_{k-1}), \quad \frac{(k-1)!}{(n+1)^{\overline{k}}} = \sum_{i=1}^{k} (-1)^{i-1} \frac{1}{n+i} \binom{k-1}{i-1}.$$

In particular,

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{1}{(i+1)^{2}} = \frac{H_{n+1}}{n+1}, \quad \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{1}{(i+2)^{2}} = \frac{H_{n+2} - 1}{(n+1)(n+2)},$$

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{1}{(i+3)^{2}} = \frac{2H_{n+3} - 3}{(n+1)(n+2)(n+3)}.$$

lii) Let n, k > 1. Then,

$$\begin{split} \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{H_{i}}{\binom{k+i}{i}} &= \frac{k}{n+k} (H_{k-1} - H_{n+k-1}), \quad \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{iH_{i}}{\binom{k+i}{i}} &= \frac{nk(H_{n+k-2} - H_{k-1} - 1)}{(n+k)(n+k-1)}, \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{i^{2}H_{i}}{\binom{k+i}{i}} &= \frac{nk[2n-k+(k-n)(H_{n+k-3} - H_{k-1})}{(n+k)(n+k-1)(n+k-2)}. \end{split}$$

liii) Let $n, k \geq 1$. Then,

$$\begin{split} \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{H_{k+i} - H_{k}}{\binom{k+i}{i}} &= \frac{kH_{n+k}}{n+k}, \quad \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{i(H_{k+i} - H_{i})}{\binom{k+i}{i}} &= \frac{nk(1-H_{n+k})}{(n+k)(n+k-1)}, \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{i(H_{k+i} - H_{k})}{\binom{k+i}{i}} &= \frac{n(n^{2} - n - k^{2})}{(n+k)^{2}(n+k-1)^{2}}, \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \frac{i^{2}(H_{k+i} - H_{i})}{\binom{k+i}{i}} &= \frac{nk(1+k-2n) + nk(n-k)H_{n+k}}{(n+k)(n+k-1)(n+k-2)}. \end{split}$$

liv) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \frac{\binom{n}{i}}{i^2 \binom{n+i}{n}} = \sum_{i=1}^{n} (-1)^{i-1} \frac{\binom{2n}{n+i}}{i^2 \binom{2n}{n}} = \frac{1}{2} H_{n,2}.$$

lv) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \frac{1}{i} \binom{n}{i} \sum_{i=1}^{i} \frac{H_j}{j} = 3 \sum_{i=1}^{n} (-1)^{i-1} \frac{(n!)^2 \binom{n}{i}}{i^3 \prod_{j=1}^{n} (i^2 + ij + j^2)} = H_{n,3}.$$

lvi) Let $n \ge 1$ and $k \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \frac{\binom{n}{i}}{i^k \prod_{j=1}^{n} \left(\sum_{l=0}^{k-1} (j/i)^l \right)} = \frac{1}{k} H_{n,k}.$$

lvii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{1-2i} \binom{n}{i} = \frac{4^{n}}{\binom{2n}{n}}.$$

lviii) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \frac{i}{(2i-1)^2} \binom{n}{i} = \frac{4^n}{2\binom{2n}{n}} \sum_{i=1}^{n} \frac{1}{2i-1}.$$

lix) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i-1} \frac{n+i}{(2i-1)^3} \binom{2n}{n+i} = \frac{16^n}{4\binom{2n}{n}} \sum_{i=1}^{n} \frac{1}{(2i-1)^2}.$$

lx) Let $n \geq 1$ and $z \in \mathbb{C}$. Then

$$\sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} (1-z^{i}) = (1-z)^{n}.$$

lxi) Let $m \ge 0$, $k \ge 1$, and $n \ge km + 1$. Then,

$$\sum_{i=1}^{n-m} (-1)^{i+1} \binom{n}{i} \binom{n-i}{m}^k = \binom{n}{m}^k.$$

lxii) Let $n \ge 1$. If $0 \le k \le n-1$, then

$$\sum_{i=k+1}^{n} (-1)^{k+i-1} \frac{1}{i-k} \binom{n}{i} = \binom{n}{k} (H_n - H_k).$$

If $1 \le k \le n$, then

$$\sum_{i=0}^{k-1} (-1)^{k+i-1} \frac{1}{k-i} \binom{n}{i} = \binom{n}{k} (H_n - H_{n-k}), \ \sum_{i=0}^{k-1} \sum_{j=k}^n (-1)^{i+j-1} \frac{1}{j-i} \binom{n}{i} \binom{n}{j} = \sum_{i=0}^{k-1} \binom{n}{i}^2 (H_{n-i} - H_i).$$

lxiii) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (H_{i}^{2} - 3H_{i,2}) = \frac{2}{n} (H_{n} + H_{n-1}),$$

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (H_{i}^{3} - 9H_{i}H_{i,2} + 14H_{i,3}) = -\frac{3}{n} [(H_{n} + H_{n-1})^{2} + H_{n,2} - H_{n-1,2}].$$

Source: i) and ii) are given in [gelca, p. 295]; iii) is given in [koshcat, p. 84] and [mercacos, ; *iv*), *vii*)-x) are given in [jeffrey, pp. 35, 36] and [GR, pp. 4, 5]; v) is given in [pwz, p. 133]; vi) is given in [koshcat, pp. 40-42]; the first equality xi) and xii) are given in [herman, p. 75]; the second equality in xi) is given in [wilf, pp. 54, 55]; xiii), xvii), and xviii) are given in [benjaminquinn, pp. 85, 86, 89, 90]; xiv) is given in [bruckmansnake,] and [comtet, p. 168]; xv) is given in [larson, pp. 183–185]; xvi) is given in [plazafalcon,]; xix) is given in [IIbook, pp. 48–52]; xx) follows from Fact ??; xxi) and xxii) are given in [GKP, pp. 280–282]; xxiii) is given in [boyadzhiev3,dilcher,], [GR, p. 5], and [larson, pp. 160, 161]; xxiv) is given in [wenghangjat, furduilim, petersonbin,] and [pwz, p. 31]; xxvi) is given in [IIbook, p. 166]; xxvii) is given in [spivey16,SuryWZ,]; xxviii) is given in [clarkewallis,]; xxix) is given in [srivastavachoi, p. 254]; xxx) is given in [chuharm,larcombetasb,] and [larson, p. 163]; xxxi)-xxxii) are given in [katsuurabinom,]; xxxiv) is given in [equalsums,]; xxxv) is given in [fengming,gonzalezgei,katsuurabinom,]; xxxvi) is given in [fengming,]; xxxvii) is given in [apostolnumbertheory, p. 275]; xxxviii) is given in [boyadzhiev2,munarini,]; xxxix) is given in [koshcat, p. 131]; xl)-xliii) are given in [fengming,]; xliv) is given in [sprugnoli2,]; xlv) is given in [sprugnolicentral,trif,]; xlvi) and xlvii) are given in [sprugnolicentral,]; l) is given in [SuryWZ,]; xlix) is given in [SuryWZ,trif,]; l) is given in [koshcat, p. 38]; li)-liii) are given in [chuharm,]; liv) is given in [korus,]; lv) is given in [guoqibang,korus,]; lvi) is given in [korus,]; lvii) is given in [sprugnolicentral,]; lviii) and lix) are given in [korus,]; lx) is given in [barrerojl,]; lxi) is given in [abelpow,]; lxii) is given in [sondowciec,] and [srivastavachoi, p. 254]; lxiii) is given in [wangjia,]. Related: Fact ??.

Fact 1.16.12. The following statements hold:

i) Let $n \geq 0$ and $l \geq 1$, and define $\omega \stackrel{\triangle}{=} e^{(2\pi/l)j}$. Then,

$$\sum_{i=0}^{\lfloor n/l\rfloor} \binom{n}{li} = \frac{1}{l} \sum_{i=0}^{l-1} (1+\omega^i)^n.$$

ii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n}{2i} = 2^{n-1}, \quad \sum_{i=0}^{\lfloor n/3 \rfloor} \binom{n}{3i} = \frac{1}{3} \left(2^n + 2 \cos \frac{n\pi}{3} \right), \quad \sum_{i=0}^{\lfloor n/4 \rfloor} \binom{n}{4i} = \frac{1}{2} \left(2^{n-1} + 2^{n/2} \cos \frac{n\pi}{4} \right).$$

iii) Let $k, l, n \geq 0$, assume that k < l, and define $\omega \triangleq e^{(2\pi/l)j}$. Then,

$$\sum_{i=0}^{\lfloor (n-k)/l\rfloor} \binom{n}{li+k} = \frac{1}{l} \sum_{i=0}^{l-1} \omega^{-ik} (1+\omega^i)^n.$$

iv) Let $n \geq 0$. Then,

$$\begin{split} \sum_{i=0}^{\lfloor (n-1)/2\rfloor} \binom{n}{2i+1} &= 2^{n-1}, \quad \sum_{i=0}^{\lfloor (n-1)/3\rfloor} \binom{n}{3i+1} &= \frac{1}{3} \left(2^n + 2\cos\frac{(n-2)\pi}{3} \right), \\ \sum_{i=0}^{\lfloor (n-2)/3\rfloor} \binom{n}{3i+2} &= \frac{1}{3} \left(2^n + 2\cos\frac{(n-4)\pi}{3} \right), \quad \sum_{i=0}^{\lfloor (n-1)/4\rfloor} \binom{n}{4i+1} &= \frac{1}{2} \left(2^{n-1} + 2^{n/2}\sin\frac{n\pi}{4} \right), \\ \sum_{i=0}^{\lfloor (n-2)/4\rfloor} \binom{n}{4i+2} &= \frac{1}{2} \left(2^{n-1} - 2^{n/2}\cos\frac{n\pi}{4} \right), \quad \sum_{i=0}^{\lfloor (n-3)/4\rfloor} \binom{n}{4i+3} &= \frac{1}{2} \left(2^{n-1} - 2^{n/2}\sin\frac{n\pi}{4} \right). \end{split}$$

v) Let $n \geq 1$. Then,

$$\sum_{i=0}^{\lfloor n/3\rfloor} \frac{2^i n}{n-i} \binom{n-i}{2i} = 2^{n-1} + \cos \frac{n\pi}{2}.$$

vi) Let $n, k \geq 1$. Then,

$$\sum_{\substack{0 \le i \le n \\ k \ge n-n}} \binom{n}{i} = \frac{2^n}{k} \sum_{i=0}^{k-1} \cos^n \frac{2i\pi}{k}.$$

vii) Let $n, k \ge 1$, and assume that k divides n. Then,

$$\sum_{i=0}^{n} \binom{n}{ki} = \frac{2^n}{k} \sum_{i=0}^{k-1} (-1)^{ni/k} \cos^n \frac{i\pi}{k}.$$

Source: [benjaminchen,], [jeffrey, p. 35], [krebs,], and [pwz, p. 104]. **Remark:** If l=1, then $\omega=1$ and i) yields v) of Fact 1.16.10. If l=2, then $\omega=-1$ and i) yields the first equality in ii). If l=3, then $\omega=\frac{1}{2}(-1+\sqrt{3}j)$ and i) yields the second equality in ii). For example,

$$\binom{8}{0} + \binom{8}{3} + \binom{8}{6} = 1 + 56 + 28 = \frac{1}{3}(2^8 - 1) = 85.$$

If l=4, then $\omega=j$, and i) yields the third equality in ii). For example,

$$\binom{13}{0} + \binom{13}{4} + \binom{13}{8} + \binom{13}{12} = 1 + 715 + 1287 + 13 = \frac{1}{2}(2^{12} - 2^6) = 2016.$$

Remark: The second equality in *ii*) can be written as

$$\sum_{i=0}^{\lfloor n/3\rfloor} \binom{n}{3i} = \frac{1}{3}(2^n + m),$$

where m=2,1,-1,-2,-1,1 correspond to $n\stackrel{6}{\equiv}0,1,2,3,4,5$, respectively. Likewise,

$$\sum_{i=0}^{\lfloor n/4\rfloor} \binom{n}{4i} = \frac{1}{4} (2^n + m2^{\lceil n/2 \rceil}),$$

where m=3,1,0,-1,-2,-1,0,1 correspond to $n\stackrel{8}{\equiv} 0,1,2,3,4,5,6,7$, respectively. See [benjaminscott,].

Fact 1.16.13. The following statements hold:

i) Let $k, m \geq 0$ and $x \in \mathbb{C}$. Then,

$$\binom{x}{k} \binom{k}{m} = \binom{x}{m} \binom{x-m}{k-m}.$$

ii) Let $k, m \geq 0$ and $x \in \mathbb{C}$. Then,

$$\binom{x}{k} \binom{x-k}{m} = \binom{x}{m} \binom{x-m}{k}.$$

iii) Let $k, m \geq 0$ and $x \in \mathbb{C}$. Then,

$$\binom{k}{m}\binom{x-m}{k} = \binom{x-m}{k-m}\binom{x-k}{m}.$$

iv) Let $k, l, m, n \geq 0$. Then,

$$\sum_{i=l-m}^{n-k} \binom{n}{k+i} \binom{m}{l-i} = \binom{n+m}{k+l}, \quad \sum_{i=\max\{-k,-l\}}^{\min\{n-k,m-l\}} \binom{n}{k+i} \binom{m}{l+i} = \binom{n+m}{n-k+l}.$$

In particular,

$$\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i-1} = \binom{2n}{n+1}.$$

v) Let $m, n \geq 0$ and $0 \leq k \leq m$. Then,

$$\sum_{i=0}^{\min\{n,k\}} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}.$$

vi) Let $k, m, n \ge 0$. If $k \le m$, then

$$\sum_{i=0}^{\min\{n,k\}}i\binom{n}{i}\binom{m}{k-i}=n\binom{n+m-1}{k-1}.$$

If $k \leq m-1$ and $n \leq m$, then

$$\sum_{i=\max\{1,n+k-m\}}^{\max\{n,k\}} i \binom{n}{i} \binom{m-n}{k-i} = \frac{kn}{m-k} \binom{m-1}{k}.$$

vii) Let $n, k \geq 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} \binom{x}{k+i} = \binom{n+x}{n+k}.$$

viii) Let $n, m \geq 0$. Then,

$$\sum_{i=0}^{\min\{n,m\}} \binom{n}{i} \binom{m}{i} = \binom{n+m}{n}.$$

In particular,

$$\sum_{i=0}^n \binom{n}{i}^2 = \binom{2n}{n}, \quad \sum_{i=0}^n \binom{n}{i} \binom{2n}{i} = \binom{3n}{n}.$$

ix) Let $n \ge 0$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} \binom{2n}{n-i} = \binom{3n}{n}.$$

x) Let $n \geq 0$ and $x, y \in \mathbb{C}$. Then

$$\sum_{i=0}^{n} \binom{x}{i} \binom{y}{n-i} = \binom{x+y}{n}.$$

xi) Let $l, m \ge 0$, and assume that $n \ge k \ge 0$. Then,

$$\sum_{i=0}^{l} \binom{l-i}{m} \binom{k+i}{n} = \binom{l+k+1}{m+n+1}.$$

xii) Let $0 \le k \le n/2$. Then,

$$\sum_{i=k}^{n-k} \binom{i}{k} \binom{n-i}{k} = \binom{n+1}{2k+1}.$$

xiii) Let $n, m, k \geq 0$. Then,

$$\sum_{i=0}^{k} \binom{n+k-i}{n} \binom{m+i}{m} = \binom{n+m+k+1}{k}.$$

xiv) Let $0 \le k \le n$. Then,

$$\sum_{i=0}^{n-k} \binom{n}{i} \binom{n}{i+k} = \sum_{i=k}^{n} \binom{n}{i} \binom{n}{i-k} = \binom{2n}{n+k} = \frac{(2n)!}{(n-k)!(n+k)!}.$$

xv) Let $n \geq 0$ and $1 \leq l \leq k$. Then,

$$\sum_{i=l}^{n+l-k} \binom{i-1}{l-1} \binom{n-i}{k-l} = \binom{n}{k}.$$

xvi) Let $0 \le k \le n$. Then,

$$\sum_{i=0}^{k} \binom{n}{i} \binom{n-i}{k-i} = 2^k \binom{n}{k}.$$

xvii) Let $0 \le k \le n$. Then,

$$\sum_{i=k}^{n} \binom{n}{i} \binom{i}{k} = 2^{n-k} \binom{n}{k}.$$

xviii) Let $n \ge 1$ and $0 \le k \le \lfloor n/2 \rfloor$. Then,

$$\sum_{i=k}^{\lfloor n/2\rfloor} \binom{n}{2i} \binom{i}{k} = \frac{2^{n-2k-1}n}{n-k} \binom{n}{k}.$$

xix) Let $0 \le k \le n-1$. Then,

$$\sum_{i=\lceil k/2 \rceil}^{\lfloor n/2 \rfloor} \binom{n}{2i} \binom{2i}{k} = 2^{n-k-1} \binom{n}{k}.$$

xx) Let $n, k \ge 1$. If $k \le n$, then

$$\sum_{i=0}^{k} 2^{2i} \binom{n}{k-i} \binom{n-k+i}{2i} = \binom{2n}{2k}.$$

If $2k + 1 \le n$, then

$$\sum_{i=0}^{k} 2^{2i+1} \binom{n}{k-i} \binom{n-k+i}{2i+1} = \binom{2n}{2k+1}.$$

xxi) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{\lfloor x/2\rfloor} 2^{2i+1} \binom{x-2i}{n-i} \binom{x+1}{2i+1} = \binom{2x+2}{2n+1}.$$

xxii) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} i \binom{n}{i} \binom{x}{i} = n \binom{n+x-1}{n}.$$

xxiii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} i \binom{n}{i}^2 = \frac{n}{2} \binom{2n}{n} = n \binom{2n-1}{n-1} = (2n-1) \binom{2n-2}{n-1}.$$

xxiv) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} i^2 \binom{n}{i}^2 = \frac{n^3}{2n-1} \binom{2n-1}{n-1}.$$

xxv) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{1}{4^{2i}(i+1)} {2i \choose i}^2 = \frac{(2n+1)^2}{4^{2n}(n+1)} {2n \choose n}^2.$$

xxvi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{(4i-1)}{4^{2i}(2i-1)^2} \binom{2i}{i}^2 = \frac{(4n-1)}{4^{2n}(4n-1)} \binom{2n}{n}^2.$$

xxvii) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} \frac{\binom{n}{i}^2}{(2i+1)\binom{2n}{2i}} = \frac{2^{4n}(n!)^4}{(2n+1)!(2n)!}.$$

xxviii) Let $m, n \ge 1$. Then,

$$\sum_{i=0}^{\min\left\{m,n\right\}}4^{i}\frac{\binom{m}{i}\binom{n}{i}}{\binom{2i}{i}}=\frac{\binom{2m+2n}{2m}}{\binom{m+n}{m}}.$$

In particular,

$$\sum_{i=0}^{n} 4^{i} \frac{\binom{n}{i}^{2}}{\binom{2i}{i}} = \frac{\binom{4n}{2n}}{\binom{2n}{n}}.$$

xxix) Let $n, k \geq 1$. Then,

$$\sum_{i=0}^{n} \binom{2i}{i} \binom{2n-2i}{n-i} = \sum_{i=0}^{n-m} \binom{2i+k}{i} \binom{2n-2i-k}{n-i} = 4^n, \quad \sum_{i=1}^{n} i^2 \binom{2i}{i} \binom{2n-2i}{n-i} = \frac{4^{n-1}}{2} n(3n+1),$$

$$\sum_{i=0}^{n} \binom{4i}{2i} \binom{4n-4i}{2n-2i} = 2^{4n-1} + 2^{2n-1} \binom{2n}{n}.$$

xxx) Let $n, k \geq 1$. Then,

$$\sum_{i=1}^{n} i \binom{n}{i} \binom{k}{k-i} = n \binom{n+k-1}{k-1},$$

$$\sum_{i=1}^{\min\{n,k\}} \binom{2n}{n-i} \binom{2k}{k-i} = \frac{1}{2} \left[\binom{2n+2k}{n+k} - \binom{2n}{n} \binom{2k}{k} \right],$$

$$\sum_{i=1}^{\min\{n,k\}} i \binom{2n}{n-i} \binom{2k}{k-i} = \frac{nk}{2(n+k)} \binom{2n}{n} \binom{2k}{k},$$

$$\sum_{i=0}^{\min\{n,k\}} (2i+1) \binom{2n+1}{n-i} \binom{2k+1}{k-i} = \frac{(2n+1)(2k+1)}{n+k+1} \binom{2n}{n} \binom{2k}{k}.$$
icular,

In particular,

$$\sum_{i=1}^n \binom{2n}{n-i}^2 = \frac{1}{2} \left[\binom{4n}{2n} - \binom{2n}{n}^2 \right].$$

xxxi) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{1}{2i+1} {2i \choose i} {2n-2i \choose n-i} = \frac{16^n}{(2n+1){2n \choose n}},$$

$$\sum_{i=0}^{n} \frac{1}{(2i+1)(2n-2i+1)} {2i \choose i} {2n-2i \choose n-i} = \frac{16^n}{(n+1)(2n+1){2n \choose n}}.$$

xxxii) Let $n \ge 1$ and $0 \le k \le n$. Then

$$\sum_{i=k}^{n} \frac{1}{i+1} \binom{2i}{i} \binom{2n-2i}{n-i} = \frac{n-k+1}{2(n+1)} \binom{2k}{k} \binom{2n+2-2k}{n+1-k}.$$

In particular,

$$\sum_{i=0}^{n} \frac{1}{i+1} \binom{2i}{i} \binom{2n-2i}{n-i} = \binom{2n+1}{n}.$$

xxxiii) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor n/2\rfloor} 2^{n-2i} \binom{2i}{i} \binom{n}{2i} = \sum_{i=0}^{\lfloor n/2\rfloor} 2^{n-2i} \binom{n}{i} \binom{n-i}{i} = \binom{2n}{n}.$$

xxxiv) Let $n \geq 1$. Then,

$$\sum_{i=0}^{\lfloor n/2\rfloor} \frac{1}{4^i} \binom{2i}{i} \binom{n}{2i} = \frac{1}{2^{n-1}} \binom{2n-1}{n-1}.$$

xxxv) Let $n \geq 0$ and $x, y, z \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} \frac{x}{x+iz} \binom{x+iz}{i} \binom{y-iz}{n-i} = \binom{x+y}{n}.$$

xxxvi) $n \ge k \ge 0$. Then,

$$\sum_{i=0}^{n-1} \frac{1}{i+1} \binom{2i}{i} \binom{n+k-2i-1}{n-i-1} = \binom{n+k}{n-1}.$$

xxxvii) $n \ge 1$. Then,

$$\sum_{i=1}^n \frac{n+1}{i(n-i+1)} \binom{2i-2}{i-1} \binom{2n-2i}{n-i} = \binom{2n}{n}.$$

xxxviii) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n-1} \sum_{j=i+1}^{n+1} \binom{n}{i} \binom{n+1}{j} = 4^n - 1.$$

xxxix) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} 2^{n-i} \binom{n}{i} \binom{i}{\lfloor i/2 \rfloor} = \binom{2n+1}{n}.$$

xl) Let $n \ge 1$ and $1 \le k \le (n-1)/2$. Then,

$$\sum_{i=k}^{(n-1)/2} \binom{n}{2i+1} \binom{i}{k} = 2^{n-2k-1} \binom{n-k-1}{k}.$$

xli) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} 2^{i} \binom{2n-2i}{n-i} \binom{n+i}{n} = \frac{2^{n}}{n!} \prod_{i=1}^{n} (4i-1).$$

xlii) Let $n \ge 1$ and $k \ge 2$. Then,

$$\sum_{i=0}^{n} \frac{1}{kn - ki + 1} \binom{kn - ki + 1}{i} \binom{ki}{n - i} = \frac{1}{kn + 1} \binom{kn + 1}{n}.$$

In particular,

$$\sum_{i=0}^{n} \frac{1}{2n-2i+1} \binom{2n-2i+1}{i} \binom{2i}{n-i} = C_n.$$

xliii) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} \binom{n}{i}^2 \binom{3n+i}{2n} = \binom{3n}{n}^2.$$

xliv) Let $n \ge k \ge 1$. Then,

$$\sum_{i=0}^k \binom{k}{i}^2 \binom{n+2k-i}{2k} = \binom{n+k}{n}^2, \quad \sum_{i=0}^n \binom{n}{i}^2 \binom{3n-i}{2n} = \binom{2n}{n}^2.$$

xlv) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j}^{3} = \sum_{i=0}^{n} \binom{n}{i}^{2} \binom{2i}{i}.$$

xlvi) Let $n \ge 1$ and $0 \le k \le n-1$. Then,

$$\sum_{i=0}^k \binom{2n}{2i+1} \binom{n-i-1}{k-i} = 2^{2k+1} \binom{n+k}{2k+1}, \quad \sum_{i=0}^k \binom{2n-1}{2i} \binom{n-i-1}{k-i} = 4^k \binom{n+k-1}{2k},$$

$$\sum_{i=0}^k \binom{2n}{2i} \binom{n-i}{k-i} = \frac{n4^k}{2k} \binom{n+k-1}{2k-1}, \quad \sum_{i=0}^k \binom{m+i}{i} \binom{n-i}{k-i} = \binom{n+m+1}{k},$$

$$\sum_{i=0}^{k} {2n-1 \choose 2i+1} {n-i-1 \choose k-i} = \frac{(2n-1)4^k}{2k+1} {n+k-1 \choose 2k}.$$

xlvii) Let $n \geq 1$ and $x \in \mathbb{C}$. Then

$$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \binom{n+i}{i} (1+x)^{i} = \sum_{i=0}^{n} \binom{n}{i} \binom{n+i}{i} x^{i},$$

$$\sum_{i=0}^{n} \binom{n}{i} \binom{n+i}{i} (x-\frac{1}{2})^{i} = (-1)^{n} \sum_{i=0}^{n} \binom{n}{i} \binom{n+i}{i} (-x-\frac{1}{2})^{i}.$$

xlviii) Let $k, m, n \geq 0$. Then,

$$\sum_{i=0}^{m-k+l} \binom{m-k+l}{i} \binom{n+k-l}{n-i} \binom{k+i}{m+n} = \binom{k}{m} \binom{l}{n}.$$

xlix) Let $n \geq 0$. Then,

$$\sum \binom{i+j}{i} \binom{j+k}{j} \binom{k+i}{k} = \sum_{i=0}^{n} \binom{2i}{i}, \quad \sum \binom{2i}{i} \binom{2j}{j} \binom{2k}{k} = (2n+1) \binom{2n}{n},$$

where both sums are taken over all 3-tuples (i, j, k) of nonnegative integers such that i + j + k = n.

l) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} \binom{i}{\lfloor i/2 \rfloor} \binom{n-i}{\lfloor (n-i)/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor} \binom{n+1}{\lfloor (n+1)/2 \rfloor}.$$

li) Let $n \geq 0$, and define

$$S(n) \stackrel{\triangle}{=} \sum_{i=0}^{n} \binom{n}{i}^{3} = \sum_{i=0}^{n} \binom{n}{i}^{2} \binom{2i}{n}.$$

Then, for all $n \geq 2$,

$$S(n) = \frac{7n^2 - 7n + 2}{n^2}S(n-1) + \frac{8(n-1)^2}{n^2}S(n-2).$$

In particular, S(0) = 1, S(1) = 2, S(2) = 10, S(3) = 56, S(4) = 346, and S(5) = 2252.

lii) Let n > 0. Then,

$$\sum_{i=0}^{n} \left[\sum_{j=0}^{i} \binom{n}{j} \right]^{3} = n2^{3n-1} - 2^{3n} - 3n2^{n-2} \binom{2n}{n}.$$

liii) Let $n \geq 0$, and define

$$S(n) \triangleq \sum_{i=0}^{n} {n \choose i}^2 {n+i \choose i}^2.$$

Then.

$$S(n) = \frac{34n^3 - 51n^2 + 27n - 5}{n^3}S(n-1) - \frac{(n-1)^3}{n^3}S(n-2).$$

In particular, S(0) = 1, S(1) = 5, S(2) = 73, S(3) = 1445, S(4) = 33001, and S(5) = 819005.

liv) Let $n \geq 1$. Then,

$$S(n) \stackrel{\triangle}{=} \sum_{i=0}^{n} \binom{n}{i}^4 = \sum_{i,j=0}^{n} (-1)^{n+i+j} \binom{n}{i} \binom{n}{j} \binom{n+i}{i} \binom{n+j}{j} \binom{2n-i-j}{n}.$$

Furthermore, for all $n \geq 2$,

$$S(n) = \frac{2(2n-1)(3n^2-3n+1)}{n^3}S(n-1) + \frac{(4n-3)(4n-4)(4n-5)}{n^3}S(n-2).$$

In particular, S(0) = 1, S(1) = 2, S(2) = 18, S(3) = 164, S(4) = 1810, and S(5) = 21252.

lv) Let $n \geq k \geq 0$ and $z \in \mathbb{C}$.

$$\sum_{i=0}^{k} {z \choose i} {-z \choose n-i} = \frac{n-k}{n} {z-1 \choose k} {-z \choose n-k}.$$

In particular,

$$\sum_{i=0}^{n} {z \choose i} {-z \choose n-i} = 0.$$

lvi) Let $n > k \ge 0$ and $z \in \mathbb{C}$.

$$\sum_{i=0}^{n} \binom{z}{i} \binom{1-z}{n-i} = \frac{(n-1)(1-z)-k}{n(n-1)} \binom{z-1}{k} \binom{-z}{n-k-1}.$$

lvii) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} \binom{n}{i}^2 \binom{n+i}{i}^2 = \sum_{i=0}^{n} \sum_{j=0}^{i} \binom{n}{i} \binom{n+i}{i} \binom{j}{j}^3.$$

lviii) Let $n \geq 1$ and $z \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} \binom{n+i}{2i} \binom{2i}{i} \binom{2i}{i+1} z^{i-1} (z+1)^{i+1} = n(n+1) \sum_{i=0}^{n} \left[\binom{n+i}{2i} C_i z^i \right]^2.$$

lix) Let $n \geq 1$. Then,

$$\sum_{i=1}^{n} H_i \binom{n}{i}^2 = H_n \binom{2n}{n} - \sum_{i=1}^{n} \frac{1}{i} \binom{2n-i}{n-i}, \quad \sum_{i=1}^{n} H_i \binom{n}{i} \binom{2n}{i} = H_n \binom{3n}{n} - \sum_{i=1}^{n} \frac{1}{i} \binom{3n-i}{n-i}.$$

lx) Let $n \geq 0$ and $z_1, \ldots, z_m \in \mathbb{C}$. Then,

$$\sum \prod_{i=1}^{m} \binom{i_j + z_j}{i_j} = \binom{n + m - 1 + \sum_{i=1}^{m} z_i}{n},$$

where the sum is taken over all multisets $\{i_1, \ldots, i_m\}_{ms}$ of nonnegative integers such that $\sum_{j=1}^m i_j = n$.

lxi) Let $n \ge 1$ and $k \ge 1$. Then,

$$\sum (-1)^{\sum_{j=1}^{n} i_j} {\binom{\sum_{j=1}^{n} i_j}{i_1, \dots, i_n}} \prod_{j=1}^{n} {\binom{n}{j}}^{i_j} = {\binom{n+k-1}{k}},$$

where the sum is over all *n*-tuples (i_1, \ldots, i_n) of nonnegative integers such that $\sum_{j=1}^n j i_j = n$.

lxii) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} \sum_{j=0}^{n} {i+j \choose i}^2 {4n-2i-2j \choose 2n-2i} = (2n+1) {2n \choose n}^2.$$

lxiii) Let $n \geq 1$. Then,

$$\sum_{i=0}^n \sum_{j=0}^n \binom{i+j}{i} \binom{n-i}{j} \binom{n-j}{n-i-j} = \sum_{i=0}^n \binom{2i}{i}.$$

lxiv) Let $m, n \geq 1$. Then,

$$\sum_{i=0}^{m} \sum_{j=0}^{n} \binom{i+j}{i} \binom{m-i+j}{j} \binom{n-j+i}{i} \binom{m+n-i-j}{m-i} = \frac{(m+n+1)!}{m!n!} \sum_{i=0}^{\min{\{m,n\}}} \frac{1}{2i+1} \binom{m}{i} \binom{n}{i}.$$

lxv) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} \frac{1}{4^{i}} \binom{2i}{i} \binom{2n-i}{n} = \sum_{i=0}^{n} \frac{1}{4^{i}} \binom{2i}{i} \binom{2n+1}{2i} = \frac{1}{4^{n}} \binom{4n+1}{2n}.$$

lxvi) Let $n \ge 1$. Then,

$$\sum \prod_{i=1}^{m} {2i_j \choose i_j} = \frac{4^n \Gamma(n+m/2)}{\Gamma(m/2)},$$

where the sum is taken over all m-tuples (i_1, \ldots, i_m) of nonnegative integers such that $\sum_{j=1}^m i_j = n$.

lxvii) Let $n \geq 0$ and $z_1, \ldots, z_m \in \mathbb{C}$. Then,

$$\sum \prod_{j=1}^{m} {z_j \choose i_j} = {\sum_{i=1}^{m} z_i \choose n},$$

where the sum is taken over all *m*-tuples (i_1, \ldots, i_m) of nonnegative integers such that $\sum_{j=1}^m i_j = n$.

lxviii) Let $n, m \geq 1$. Then

$$\sum_{i,j=-n}^{n} \binom{2n}{n+i} \binom{2n}{n+j} |i^2 - j^2| = 2n^2 \binom{2n}{n}^2.$$

lxix) Let $n \geq 1$. Then,

$$\sum_{i=1}^{2n} 4^i \binom{\frac{1}{2}}{i} \binom{-\frac{1}{2}}{i} \binom{-2i}{2n-i} = \frac{4n+1}{16^n} \binom{2n}{n}^2.$$

lxx) Let $n \ge 0, 0 \le k \le 2n+1$, and $x \in \mathbb{C}$, and assume that $-x \notin \{0, 1, \dots, n\}$. Then,

$$\sum_{i=0}^{n} \binom{n}{i}^{2} \left[\frac{(-i)^{k}}{(x+i)^{2}} + \frac{(-i)^{k-1}}{x+i} [k - 2i(H_{i} - H_{n-i})] \right] = \left(\frac{n!}{x^{\overline{n+1}}} \right)^{2} x^{k},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{2} \left[\frac{1}{(x+i)^{2}} + \frac{2}{x+i} (H_{i} - H_{n-i}) \right] = \left(\frac{n!}{x^{\overline{n+1}}} \right)^{2},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{2} \binom{n+i}{i} \left[\frac{1}{(x+i)^{2}} + \frac{1}{x+i} (3H_{i} - 2H_{n-i} - H_{n+i}) \right] = \frac{n!(1-x)^{\overline{n}}}{(x^{\overline{n+1}})^{2}},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{2} \binom{n+i}{i}^{2} \left[\frac{1}{(x+i)^{2}} + \frac{2}{x+i} (2H_{i} - H_{n-i} - H_{n+i}) \right] = \left(\frac{(1-x)^{\overline{n}}}{x^{\overline{n+1}}} \right)^{2},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{2} (H_{i} - H_{n-i}) = 0, \quad \sum_{i=0}^{n} \binom{n}{i}^{2} \binom{n+i}{i} (3H_{i} - 2H_{n-i} - H_{n+i}) = 0,$$

$$\sum_{i=0}^{n} \binom{n}{i}^{2} \binom{n+i}{i}^{2} (2H_{i} - H_{n-i} - H_{n+i}) = 0, \quad \sum_{i=0}^{n} (2i-n) \binom{n}{i}^{2} (H_{i} - H_{n-i}) = \binom{2n}{n}.$$

lxxi) Let $n \geq 0$ and $x \in \mathbb{C}$, and assume that $-x \notin \{0, 1, \dots, n\}$. Then,

$$\frac{1}{x} + \sum_{i=1}^{n} \binom{n}{i}^{2} \binom{n+i}{i}^{2} \left[\frac{-i}{(x+i)^{2}} + \frac{1+2iH_{n+i}+2iH_{n-i}-4H_{i}}{x+i} \right] = x \left[\frac{(1-x)^{\overline{n}}}{x^{\overline{n+1}}} \right]^{2},$$

$$1 + \sum_{i=1}^{n} {n \choose i}^2 {n+i \choose i}^2 \left[\frac{i^2}{(x+i)^2} - \frac{2i^2}{x+i} \left(\frac{1}{i} + H_{n+i} + H_{n-i} - 2H_i \right) \right] = \left[\frac{(1-x)^{\overline{n}}}{(1+x)^{\overline{n}}} \right]^2.$$

Furthermore,

$$\sum_{i=1}^{n} {n \choose i}^2 {n+i \choose i}^2 (1 + 2iH_{n+i} + 2iH_{n-i} - 4H_i) = 0,$$

$$\sum_{i=1}^{n} i^2 {n \choose i}^2 {n+i \choose i}^2 \left(\frac{1}{i} + H_{n+i} + H_{n-i} - 2H_i\right) = n(n+1).$$

lxxii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} \binom{n}{i}^{2} [2H_{i} + (n-2i)(2H_{i}^{2} + H_{i,2})] = -\frac{1}{n},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{3} [1+3(n-2i)H_{i}] = (-1)^{n}, \quad \sum_{i=1}^{n} \binom{n}{i}^{3} [2H_{i} + (n-2i)(3H_{i}^{2} + H_{i,2})] = (-1)^{n} 2H_{n},$$

$$\sum_{i=1}^{n} \binom{n}{i}^{4} [1+4(n-2i)H_{i}] = (-1)^{n} \binom{2n}{n}, \quad \sum_{i=0}^{n} \binom{n}{i} \binom{2n}{i} \binom{2n}{n+i} [1+(n-2i)(2H_{i} + H_{n+i})] = (-1)^{n}.$$

lxxiii) Let $n \ge 0$ and $0 \le k \le 2n + 1$. Then,

$$\sum_{i=0}^{n} i^{k-1} \binom{n}{i}^{2} [k - 2i(H_i - H_{n-i})] = \begin{cases} 0, & 0 \le k \le 2n, \\ (n!)^2, & k = 2n + 1. \end{cases}$$

lxxiv) Let $n \geq 1$. Then,

$$\sum_{i=0}^n \frac{1}{(2i+1)(2n-2i-1)} \binom{2i}{i} \binom{2(n-i-1)}{n-i-1} = \frac{16^n}{8n^2 \binom{2n}{n}}.$$

lxxv) Let n, m, k_1, \ldots, k_m be positive integers, and define $k \triangleq \sum_{i=1}^m k_i$. Then,

$$\sum \prod_{j=1}^{m} \binom{i_j + k_j - 1}{i_j} = \binom{n+k-1}{n},$$

where the sum is taken over all $\binom{n+m-1}{n}$ m-tuples (i_1,\ldots,i_m) of nonnegative integers such that $\sum_{j=1}^m i_j = n$.

Source: *i*), *iii*), *iv*), *xi*), and *lxvii*) are given in [GKP, pp. 167, 169, 171, 172]; *ii*) is given in [bona, p. 75]; v), xii), xv), xvii), xix), xxiii), and xxiv) are given in [benjaminquinn, pp. 64-68, 78; vi) is given in [gonzalezgci,nihous,]; vii) is given in [greene, p. 2] and [pwz, p. 31]; viii) is given in [benjaminquinn, p. 78] and [pwz, p. 130]; ix) is given in [wilf, p. 138]; x) is given in [vignat,]; xiii) is given in [cossali,]; xiv) is given in [herman, p. 9]; xvi) is given in [herman2, p. 62]; xviii) is given in [shattuckls,]; xx) is given in [schottpaper,]; xxi) is given in [pwz, p. 31]; xxii) is given in [pwz, p. 138]; xxiv) follows from [larson, p. 163]; xxv) and xxvi) are given in [pwz, pp. 95, 96]; xxvii) is given in [poghosyan,]; xxviii) is given in [chamberlandLAA13,]; xxix) is given in [bruckmanps,changxu,gauthiereval,vignat,] and [GKP, p. 187]; xxx) is given in [benjaminquinn, p. 79] and [chamberlandLAA13,popescu,]; xxxi) is given in [koshcat, p. 84] and [sprugnolicentral,]; xxxii) is given in [koshcat, p. 140]; xxxiii) is given in [amdeberhan,], [benjaminquinn, p. 78], and [koshcat, p. 97]; xxxiv) is given in [pwz, p. 113]; xxxv) is given in [chuabel,], [GKP, p. 201], [guojen,], and [pwz, p. 142; xxxvi) and xxxvii) are given in [herman2, p. 66]; xxxviii) is given in [larson, pp. 161, 162]; xxxix)-xl) are given in [gelca, pp. 300, 303]; xli) is given in [Hbook, p. 156]; xlii) is given in [callanflex,]; xliv) is given in [comtet, p. 173]; xlv) is given in [callanJIS,]; xlvi) is given in [hirschhorn,rzad,] and [koshcat, p. 96]; xlvii) is given in [gouldcur,]; xlix) is given in [ghalayini,] and [pwz, p. 22]; l) is given in [gelca, p. 304]; li) is given in [comtet, p. 90], [mollnf, p. 171], and [strehl,]; lii) is given in [calkin,] liii) is given in [AAR, pp. 399, 400] and [mollnf, p. 171]; liv) is given in [comtet, p. 90], [mollnf, p. 171], and [pwz, p. 33]; lv) and lvi) are given in [comtet, p. 169]; lvii) is given in [strehl,]; lviii) is given in [sunacta,]; lix) is given in [munarini,]; lx) is given in [abelleib,]; lxi) is given in [mercatrudi,]; lxii)-lxiv) are given in [chentelescope,]; lxv) is given in [amdeberhanpbi,]; lxvi)-lxvii) are given in [vignat,]; lxviii) is given in [tuenter,]; lxix) is given in [gesselthesum,]; lxx) and lxxi) are given in [wenghangpfd,wenghangjat,]; lxxii) is given in [wangjia,]; lxxiii) is given in [wenghangjat,]; lxxiv) is given in [chenpseia,]; lxxv) is given in [kataria,]. **Remark:** v) is Vandermonde's convolution. xxxv) is Rothe's identity; see [chuabel, guojen,]. S(n) in l) is the nth Franel number. See Fact ??.

Fact 1.16.14. The following statements hold:

i) Let $n, m \geq 0$. Then,

$$\sum_{i=0}^{\min\{n,m\}} (-1)^i \binom{n+m}{n+i} \binom{m+n}{m+i} = \binom{n+m}{n} = \binom{m+n}{m}.$$

ii) Let $n, m \geq 0$. Then,

$$\sum_{i=-m}^{m} (-1)^i \binom{2n}{n-i} \binom{2m}{m-i} = \sum_{i=-n}^{n} (-1)^i \binom{2n}{n-i} \binom{2m}{m-i} = \frac{\binom{2n}{n}\binom{2m}{m}}{\binom{n+m}{n}} = \frac{\binom{2n}{n}\binom{2m}{m}}{\binom{n+m}{m}} = \frac{(2n)!(2m)!}{n!m!(n+m)!}.$$

iii) Let $0 \le n \le k \le m$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{m+i}{k} = (-1)^{n} \binom{m}{k-n}.$$

In particular,

$$\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} \binom{m+i}{k} = (-1)^{k}.$$

iv) Let $0 \le k \le n$. Then,

$$\sum_{i=k}^{n} (-1)^{i} \binom{n}{i} \binom{i}{k} = \begin{cases} 0, & k < n, \\ (-1)^{n}, & k = n. \end{cases}$$

v) Let $n, m, k \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{m+i}{k} = \begin{cases} 0, & k < n, \\ (-1)^{n}, & k = n, \\ (-1)^{n} \frac{m^{k-n}}{(k-n)!}, & k > n. \end{cases}$$

vi) Let $n, m, k, l \ge 0$. Then,

$$\sum_{i=\max\{-m,n-k\}}^{l-m} (-1)^i \binom{l}{m+i} \binom{k+i}{n} = (-1)^{l+m} \binom{k-m}{n-l}.$$

vii) Let $n, m, k, l \geq 0$. Then,

$$\sum_{i=n}^{\min{\{l-m,k+n\}}} (-1)^i \binom{l-i}{m} \binom{k}{i-n} = (-1)^{l+m} \binom{k-m-1}{l-m-n}.$$

viii) Let $n \ge k \ge 1$. Then,

$$\sum_{i=0}^{k} (-1)^{i+1} \binom{n}{i} \binom{n-i}{k-i} = 0.$$

ix) Let $n \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^i \frac{1}{2^i} \binom{2i}{i} \binom{n}{i} = \begin{cases} 0, & n \text{ even,} \\ \frac{1}{2^n} \binom{n}{n/2}, & n \text{ odd.} \end{cases}$$

x) Let $n \geq 0$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{i+x}{i} = (-1)^{n} \binom{x}{n}.$$

xi) Let $n \ge 1$.

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{i+1} \binom{2i}{i} \binom{n+i}{2i} = 0.$$

xii) Let $n \ge k \ge 1$. Then,

$$\sum_{i=0}^{n-k} (-1)^i \frac{1}{i+1} \binom{2i}{i} \binom{n+i}{k+2i} = \binom{n-1}{k-1}.$$

xiii) Let $n, k \geq 0$. Then,

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \binom{2k}{k-n+i} = (-1)^n \frac{\binom{2n}{n}\binom{2k}{k}}{\binom{n+k}{n}}.$$

In particular,

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i}^2 = (-1)^n \binom{2n}{n}.$$

xiv) Let $n \geq 0$. Then,

$$\sum_{i=0}^{\lfloor n/2\rfloor} (-1)^i \binom{n}{i} \binom{2n-2i}{n} = \sum_{i=0}^{\lfloor n/2\rfloor} (-1)^i \binom{n-i}{i} \binom{2n-2i}{n-i} = 2^n,$$

$$\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n+1}{i} \binom{2n-2i}{n} = n+1, \quad \sum_{i=0}^n (-1)^i \binom{2i}{i} \binom{2n-2i}{n-i} = \begin{cases} 2^n \binom{n}{n/2}, & n \text{ even,} \\ 0, & n \text{ odd.} \end{cases}$$

xv) Let $n, k \geq 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{(n-i)k}{n+1} = nk^{n-1} \binom{k}{2}.$$

xvi) Let $n \ge 0$. Then,

$$\sum_{i=0}^{2n+1} (-1)^i \binom{2n+1}{i}^2 = 0.$$

xvii) Let $n, k \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n+k+1}{k+i+l} \binom{k+i}{k} = 1.$$

xviii) Let $n, m \ge 0$. Then,

$$\sum_{i=0}^n (-1)^i \binom{n}{i} \binom{2n-i}{m-i} = \binom{n}{m}.$$

xix) Let $n \ge 1$ and $1 \le m \le 2n$. Then,

$$\sum_{i=0}^{\min{\{n,2n-m\}}} (-4)^i \binom{n}{i} \binom{2n-2i}{m-i} = (-1)^m \binom{2n}{m}.$$

xx) Let $n \ge 1$ and $1 \le m \le n$. Then,

$$\sum_{i=m}^{n} (-1)^i 4^{n-i} \binom{n}{i} \binom{2i}{i-m} = \binom{2n}{n-m}.$$

In particular,

$$\sum_{i=0}^{n} (-1)^i 4^{n-i} \binom{n}{i} \binom{2i}{i} = \binom{2n}{n}.$$

xxi) Let $n, k \geq 0$. Then,

$$\sum_{i=0}^{n} (-1)^{i+k} 2^{n-2i} \binom{n-i}{i} \binom{i}{k} = \binom{n+1}{2k+1}.$$

xxii) Let $n \ge 0$ and $k \ge n + 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{i+1} \binom{k}{i} \binom{k-1-i}{n-i} = \frac{1}{k+1} \left[\binom{k}{n+1} + (-1)^{n} \right].$$

xxiii) Let $n \ge k \ge 0$. Then,

$$\sum_{i=k}^{n} \sum_{i=0}^{n-j} (-1)^i \binom{i+j}{j} \binom{j}{k} = 1.$$

In particular,

$$\sum_{j=0}^{n} \sum_{i=0}^{n-j} (-1)^{i} {i+j \choose j} = \sum_{j=1}^{n} \sum_{i=0}^{n-j} (-1)^{i} j {i+j \choose j} = 1.$$

xxiv) Let $n \geq 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{4^{i} \binom{n}{i}}{\binom{2i}{i}} = \frac{1}{1-2n}.$$

xxv) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{\binom{n}{i}^{2}}{\binom{2n}{i}} = \frac{1}{\binom{2n}{n}}.$$

xxvi) Let $n \geq 0$ and $x \in \mathbb{C}$, and, if $n \geq 1$, assume that $-x \notin \{1, \ldots, n\}$. Then,

$$\sum_{i=0}^{n} (-1)^i \frac{\binom{n}{i}}{\binom{x+i}{i}} = \frac{x}{x+n}.$$

xxvii) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{\binom{n}{i}}{\binom{n+i}{i}} = \sum_{i=1}^{n} (-1)^{i+1} \frac{\binom{n}{i}}{\binom{n+i}{i}} = \frac{1}{2}.$$

xxviii) Let $n \ge 1$. Then,

$$(-1)^n \sum_{i=0}^{2n} (-1)^i \binom{2n}{i}^3 = \sum_{i=-n}^n (-1)^i \binom{2n}{n+i}^3 = \frac{(3n)!}{(n!)^3}.$$

xxix) Let $n \geq 0$. Then,

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \binom{2i}{i} \binom{4n-2i}{2n-i} = \binom{2n}{n}^2.$$

xxx) Let $k, m, n \geq 0$. Then,

$$\sum_{i=-k}^k (-1)^i \binom{2k}{k+i} \binom{2m}{m+i} \binom{2n}{n+i} = \frac{(k+m+n)!(2k)!(2m)!(2n)!}{(k+m)!(m+n)!(n+k)!k!m!n!}.$$

xxxi) Let $k, l, m, n, p \ge 0$. Then,

$$\sum_{i,j=0}^{\min\{k,n\}} (-1)^{i+j} \binom{i+j}{j+l} \binom{k}{i} \binom{n}{j} \binom{p+n-i-j}{m-i} = (-1)^l \binom{n+k}{n+l} \binom{p-k}{m-n-l}.$$

xxxii) Let $n \ge 1$ and $x, y \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{x+i}{i} \binom{y+n}{n-i} = \binom{y-x+n-1}{n}, \quad \sum_{i=0}^{n} (-1)^{i} \frac{\binom{n}{i} \binom{x+i}{i}}{\binom{y+i}{i}} = \frac{(y-x)^{\overline{n}}}{(y+1)^{\overline{n}}}.$$

xxxiii) Let $n, k \ge 1$ and $x \in \mathbb{C}$, where $x \notin \{-n, \dots, -1, 0\}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \frac{\binom{n}{i}}{\binom{x+i}{i}} \sum_{j=1}^{n} \frac{1}{x+i_{j}} = \frac{x}{(x+n)^{k+1}},$$

where the second sum is taken over all k-tuples of integers (i_1, \ldots, i_k) such that $0 \le i_1 \le \cdots \le i_k \le i$. In particular,

$$\begin{split} \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} \sum \prod_{j=1}^{k} \frac{1}{i_{j}} &= \frac{1}{n^{k}}, \quad \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} \sum_{j=1}^{i} \sum_{l=1}^{j} \frac{1}{jl} &= \frac{1}{n^{2}}, \\ \sum_{i=0}^{n} (-1)^{i} \frac{\binom{n}{i}}{\binom{x+i}{i}} \sum_{j=1}^{i} \sum_{l=1}^{j} \frac{1}{(x+j)(x+l)} &= \frac{x}{(x+n)^{3}}, \\ \sum_{i=1}^{n} (-1)^{i+1} \frac{\binom{n}{i}}{\binom{x+i}{i}} \sum_{j=1}^{i} \sum_{l=1}^{j} \frac{1}{(x+j)(x+l)} &= \frac{n}{(x+n)^{3}}, \\ \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} \left(\sum_{j=1}^{i} \frac{1}{j^{3}} + \sum_{1 \leq j < k \leq i} \frac{1}{jk(j+k)} + \sum_{1 \leq j < k < l \leq i} \frac{1}{jkl} \right) &= \frac{1}{n^{3}}. \end{split}$$

xxxiv) For all $n \ge 1$ and $k \ge 0$,

$$\sum_{i=1}^{n} (-1)^{i+1} \frac{1}{i^2} \binom{n}{i} = \frac{1}{2} (H_n^2 + H_{n,2}) = \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{ij},$$

$$\sum_{i=0}^{n} (-1)^{i} \frac{\binom{n}{i}}{\binom{i+k}{k}} \sum_{j=1}^{i} \frac{1}{j+k} = -\frac{n}{(n+k)^2}, \quad \sum_{i=0}^{n} (-1)^{i} H_i \binom{n}{i} = -\frac{1}{n},$$

$$\sum_{i=1}^{n} (-1)^{i} \frac{\binom{n}{i}}{\binom{i+k}{k}} \sum_{j=1}^{i} \sum_{l=1}^{j} \frac{1}{(j+k)(l+k)} = -\frac{n}{(n+k)^3},$$

$$\begin{split} \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \sum_{j=1}^{i} (-1)^{j+1} \frac{1}{j^{2}} \binom{i}{j} &= -\frac{1}{2} \sum_{i=1}^{n} (-1)^{i} (H_{i}^{2} + H_{i,2}) \binom{n}{i} = \frac{1}{n^{2}}, \\ \sum_{i=1}^{n} (-1)^{i} \frac{\binom{n}{i}}{\binom{i+k}{k}} \left[\left(\sum_{j=1}^{i} \frac{1}{j+k} \right)^{3} + 3 \left(\sum_{j=1}^{i} \frac{1}{j+k} \right) \sum_{j=1}^{i} \frac{1}{(j+k)^{2}} + 2 \sum_{j=1}^{i} \frac{1}{(j+k)^{3}} \right] &= -\frac{6n}{(n+k)^{4}}, \\ \sum_{i=1}^{n} (-1)^{i} (H_{i}^{3} + 3H_{i}H_{i,2} + 2H_{i,3}) \binom{n}{i} &= -\frac{6}{n^{3}}, \\ \sum_{i=1}^{n} (-1)^{i} (H_{i}^{4} + 6H_{i}^{2}H_{i,2} + 3H_{i,2}^{2} + 8H_{i}H_{i,3} + 6H_{i,4}) \binom{n}{i} &= -\frac{24}{n^{4}}, \\ \sum_{i=1}^{n} (-1)^{i} H_{i}^{3} \binom{n}{i} &= \frac{1}{2n} \left(5H_{n-1,2} + \frac{4}{n}H_{n-1} - H_{n-1}^{2} - \frac{2}{n^{2}} \right), \\ \sum_{i=1}^{n} (-1)^{i} H_{i}H_{i,2} \binom{n}{i} &= \frac{1}{2n} \left(H_{n-1,2}^{2} + H_{n-1}^{2} + \frac{2}{n}H_{n-1} + \frac{2}{n^{2}} \right). \end{split}$$

If $n+k \geq 2$, then

$$\sum_{i=1}^{n} (-1)^{i} i \frac{\binom{n}{i}}{\binom{i+k}{k}} \sum_{j=1}^{i} \frac{1}{j+k} = \frac{n(n^{2}-n-k^{2})}{(n+k)^{2}(n+k-1)^{2}},$$

$$\sum_{i=1}^{n} (-1)^{i} i \frac{\binom{n}{i}}{\binom{i+k}{k}} \left[\left(\sum_{j=1}^{i} \frac{1}{j+k} \right)^{2} + \sum_{j=1}^{i} \frac{1}{(j+k)^{2}} \right] = \frac{2n[2n^{3} + 3n^{2}(k-1) - n(3k-1) - k^{3}]}{(n+k)^{3}(n+k-1)^{3}}.$$

If $n \geq 2$, then

$$\sum_{i=1}^{n} (-1)^{i} i H_{i} \binom{n}{i} = \frac{1}{n-1}, \quad \sum_{i=1}^{n} (-1)^{i} i (H_{i}^{2} + H_{i,2}) \binom{n}{i} = \frac{2(2n-1)}{n(n-1)^{2}},$$

$$\sum_{i=1}^{n} (-1)^{i} i (H_{i}^{3} + 3H_{i}H_{i,2} + 2H_{i,3}) \binom{n}{i} = \frac{6(3n^{2} - 3n + 1)}{n^{2}(n-1)^{3}}.$$

xxxv) Let $n \geq 0$, $m \in \mathbb{Z}$, and $x \in \mathbb{C}$. Then,

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \binom{x+i}{2n+m} \binom{x+2n-i}{2n+m} = (-1)^n \binom{2n}{n} \binom{x+n}{2n+m} \frac{\binom{x+n}{n+n}}{\binom{x+n}{n}}.$$

In particular,

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \binom{x+i}{2n} \binom{x+2n-i}{2n} = (-1)^n \binom{x}{n} \binom{x+n}{n},$$

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \binom{x+i}{2n+1} \binom{x+2n-i}{2n+1} = (-1)^n \frac{x}{n+1} \binom{2n}{n} \binom{x+n}{2n+1}.$$

xxxvi) Let $n, m, k \geq 0$. Then,

$$\sum_{i=0}^{\min{\{n,m,k\}}} (-1)^i \binom{n+m}{n+i} \binom{m+k}{m+i} \binom{k+n}{k+i} = \frac{(n+m+k)!}{(n!)(m!)(k!)}.$$

xxxvii) Let $n \geq 0$ and $x \in \mathbb{C}$, and assume that $-x \notin \{0, \ldots, n\}$. Then,

$$\sum_{i=0}^n (-1)^i \frac{1}{x+i} \binom{n}{i} \binom{n+i}{i} = \frac{(1-x)^{\overline{n}}}{x^{\overline{n+1}}},$$

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i}^{3} \left(\frac{1}{(x+i)^{3}} + \frac{3}{(x+i)^{2}} (H_{i} - H_{n-i}) + \frac{3}{2(x+i)} [3(H_{i} - H_{n-i})^{2} + H_{i,2} + H_{n-i,2}] \right) = \left(\frac{n!}{x^{n+1}} \right)^{3}.$$

Furthermore.

$$\sum_{i=0}^{n} (-1)^{i} [3(H_{i} - H_{n-i})^{2} + H_{i,2} + H_{n-i,2}] \binom{n}{i}^{3} = 0.$$

xxxviii) Let $n \ge 0$ and $x \in \mathbb{C}$, and assume that $-x \notin \{0, \pm 1, \dots, \pm (n+1)\}$. Then,

$$\sum_{i=1}^{n} (-1)^{i} \frac{1}{(n+1)(x-i)} \frac{\binom{2n}{n+i}}{\binom{n+i}{n+1}} + \sum_{i=0}^{n} \left[\frac{1}{(x+i)^{2}} + \frac{H_{i} + H_{n+i} - 2H_{n-i}}{x+i} \right] \binom{n}{i} \binom{2n}{n+i} = \frac{n!(2n)!}{(x^{\overline{n+1}})^{2}(1-x)^{\overline{n}}}.$$

Furthermore,

$$\sum_{i=1}^{n} (-1)^{i} \frac{1}{n+1} \frac{\binom{2n}{n+i}}{\binom{n+i}{n+1}} = \sum_{i=0}^{n} (2H_{n-i} - H_i - H_{n+i}) \binom{n}{i} \binom{2n}{n+i}.$$

xxxix) Let $n \geq 1$ and $x, y \in \mathbb{C}$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \frac{\binom{y+i}{i}}{\binom{x+i}{i}} = \frac{\binom{x-y+n-1}{n}}{\binom{x+n}{n}}.$$

xl) Let $n \ge 1$. Then,

$$\begin{split} \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{n+i}{i} H_{i} &= (-1)^{n} 2H_{n}, \quad \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{n+i}{i} (H_{i}^{2} + H_{i,2}) &= (-1)^{n} 4H_{n}^{2}, \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{n+i}{i} (H_{i}^{3} + 3H_{i}H_{i,2} + 2H_{i,3}) &= (-1)^{n} 4(2H_{n}^{3} + H_{n,3}), \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{n+i}{i} (H_{i}^{4} + 6H_{i}^{2}H_{i,2} + 8H_{i}H_{i,3} + 3H_{i,2}^{2} + 6H_{i,4}) &= (-1)^{n} 16H_{n} (H_{n}^{3} + 2H_{n,3}), \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{2n+i}{i} H_{i} &= (-1)^{n} \binom{2n}{n} H_{2n}, \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{2n+i}{i} (H_{i}^{2} + H_{i,2}) &= (-1)^{n} \binom{2n}{n} (2H_{n,2} + H_{2n}^{2} - H_{2n,2}), \\ \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{2n+i}{i} (H_{i}^{3} + 3H_{i}H_{i,2} + 2H_{i,3}) &= (-1)^{n} \binom{2n}{n} (H_{2n}^{3} + 2H_{2n,3} + 3H_{2n} (2H_{n,2} - H_{2n,2}). \end{split}$$

Source: i), vi), vii), xxxi), and xxxvi) are given in [GKP, pp. 167, 169, 171, 172, 187]; ii) is given in [larcombeszily,]; iii) is given in [greene, p. 2]; iv) is given in [benjaminquinn, p. 84]; v) is a corrected version of a result given in [henrici, p. 26]; viii) is given in [herman2, p. 62]; ix) is given in [pwz, pp. 63, 114]; x) is given in [pwz, p. 133]; xi) is given in [pwz, p. 115]; xii) is given in [AAR, p. 108]; xiii) is given in [GR, p. 5] and [menikhes,]; xiv) is given in [AMR, pp. 45, 247, 248] and [spivey14,]; xv) is given in [coxthieu,]; xvi) is given in [GR, p. 5]; xvii) is given in [IIbook, p. 65]; xviii) is given in [henrici, p. 26]; xviv) is given in [koshcat, p. 72]; xx) is given in [melhammore,]; xxi) is given in [bataillebinom,]; xxii) is given in [AAR, pp. 107, 108]; xxiii) is given in [janjic,]; xxiv), xxvii, xxviii), and xxix) are given in [pwz, pp. 22, 32, 44-47]; xxv) is given in [koshcat, p. 85]; xxvii) is given in [latulippe,]; xxx) is given in [AAR, pp. 108, 109]; xxxii) is given in [chuharm,]; xxxiii) is given in [chuharm,barreroj],diazbarreroRS,srivastavaCS,srivastavaOSI,]; xxxiv) is given in [wenghangpfd,sofosm,wangjia,]; xxxv) is given in [gouldvos,]; xxxvii) and xxxviii) are given in [wenghangpfd,wenghangjat,]; xxxix) and xl) are given in [wangjia,]. **Remark:** If n > k, then both terms in iv) are zero. ii) is Dixon's identity. See [pwz, p. 43]. xxviii) is a special case. Remark: xxxv) is Vosmansky's identity. Remark: Additional equalities for products of binomial coefficients are given in [riordan, pp. 141–146].

Fact 1.16.15. The following statements hold:

i) If $n \geq 2$, then

$$2^{n} < \frac{4^{n}}{n+1} < \frac{4^{n}}{2\sqrt{n}} < \binom{2n}{n} < \frac{4^{n}}{\sqrt{(n+1/4)\pi}} < \left\{ \frac{\frac{4^{n}}{\sqrt{n\pi}}}{\frac{4^{n}}{\sqrt{3n+1}}} \right\} < \frac{4^{n}}{\sqrt{2n+1}} < \frac{4^{n}\log 3}{\log(2n+3)} < 4^{n}.$$

ii) If $n \geq 3$, then

$$2^n < \frac{4^n}{n+1} < \frac{4^n}{2\sqrt{n}} < \frac{4^n}{\sqrt{n\pi}} \left(1 - \frac{1}{4n}\right) < \binom{2n}{n} < \frac{4^n}{\sqrt{(n+1/4)\pi}} < \frac{4^n}{\sqrt{n\pi}}.$$

iii) If $n \geq 1$, then

$$\binom{2n+1}{n} < 4^n.$$

If, in addition, $n \geq 4$, then

$$\binom{2n+2}{n+1} < 4^n.$$

iv) If $n \geq 11$, then

$$\frac{2^{2n+1}}{n+1} < \binom{2n}{n}.$$

v) If $n \geq 1$, then

$$\prod_{\substack{n+1 \le i \le 2n, \\ i \text{ prime}}} i \le \binom{2n}{n}.$$

vi) If $n \geq 2$ and $1 \leq k \leq n-1$, then

$$\binom{n}{k-1} \binom{n}{k+1} \le \binom{n}{k}^2.$$

vii) If $n \ge 1$ and $0 \le k \le n-1$, then

$$\binom{n-1}{k} \binom{n+1}{k} \le \binom{n}{k}^2.$$

viii) If $1 \le k \le n$, then

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \min\left\{\frac{n^k}{k!}, 2^n\right\}.$$

ix) If $1 \le k < n/2$, then

$$\binom{n}{k} \le \binom{n}{k+1}.$$

x) If $0 \le k \le n$, then

$$(n+1)^k \binom{n}{k} \le n^k \binom{n+1}{k}.$$

xi) If $1 \le k \le n-1$, then

$$\sum_{i=1}^k i(i+1) \binom{2n}{k-i} < \frac{2^{2n-2}k(k+1)}{n}.$$

xii) If $1 \le k < n$, then

$$n^k \le (k+1)^{k-1} \binom{n}{k} \le k^{k/2} (k+1)^{(k-1)/2} \binom{n}{k}.$$

xiii) If $n \geq 2$, then

$$\prod_{i=0}^{n} \binom{n}{i} \le \left(\frac{2^n - 2}{n - 1}\right)^{n - 1}.$$

xiv) If $n \ge 1$, then

$$\sum_{i=1}^{n} \sqrt{\binom{n}{i}} \le \sqrt{n(2^{n}-1)}.$$

xv) If $n \ge 2$, and $1 \le k \le n-1$, then

$$\frac{1}{n+1} < \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k}.$$

xvi) If $n \ge 2$, $k \ge 0$, and 2k + 1 < n, then

$$\sum_{i=0}^{k} \binom{n}{i} < \frac{2^n(k+1)}{n+1}.$$

xvii) If $n \geq 2$, $k \geq 1$, and n < 2k + 1, then

$$\frac{2^n(k+1)}{n+1} < \sum_{i=0}^k \binom{n}{i}.$$

xviii) If $n \ge 1$, then

$$\left| \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} \binom{2n}{i} \right| \le (2\sqrt{2})^{n}.$$

xix) If $n \ge 1$, then

$$\left| \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{3n}{i} \right| \le 4^{n}.$$

xx) If $n \ge 1$, then

$$\sum_{i=1}^{n} \frac{1}{i!} \binom{n-1}{i-1} < \frac{2^n}{n}.$$

xxi) If $n \ge 1$, then

$$\frac{4}{n+1} \le \sum_{i=0}^{n} \frac{\binom{n}{i}^2}{\binom{2n-1}{i}^2}.$$

Source: i) is given in [bruckmanGC,], [experimentation, p. 210], [herman, p. 137], and [koshcat, pp. 45–50]; ii) is given in [hirschhornAMM15,]; iii) is given in [grimaldi, p. 156]; iv) is given in [thuan3602,]; v) is given in [bak, p. 287]; vi) and vii) are given in [bona, pp. 76, 80]; viii and ix) is given in [zeilberger52,]; x) is given in [herman, p. 111]; xi) is given in [chuzhangqi,]; xii) is given in [elsnerBLMS,]; xiii) is given in [kaczor1, p. 14] and [larson, p. 253]; xiv) is given in [kaczor1, p. 14]; xv)–xvii) are given in [lopezmarengo,]; xvii) and xix) are given in [bak, pp. 157, 160]; xx) is given in [thuan3602,]; xxi) is given in [diaztelescopic,]. **Remark:** If $k = n \ge 1$, then $\sum_{i=0}^k \binom{n}{i} = \frac{2^n(k+1)}{n+1} = 2^n$, while, if $n \ge 1$ is odd and 2k+1=n, then $\sum_{i=0}^k \binom{n}{i} = \frac{2^n(k+1)}{n+1} = 4^n$. See Fact 1.16.10.

Fact 1.16.16. Let $n \ge k \ge 1$, and let $\binom{n}{k}_r$ denote the number of k-element multisubsets of $\{1, \ldots, n\}$. Then,

$$\binom{n}{k}_{x} = \binom{n+k-1}{k}.$$

Furthermore, for all $z \in \mathbb{C}$,

$$\begin{pmatrix} z \\ k \end{pmatrix}_{\mathbf{r}} = \begin{pmatrix} z+k-1 \\ k \end{pmatrix} = \frac{z^{\underline{k}}}{k!}, \quad \begin{pmatrix} z \\ k \end{pmatrix}_{\mathbf{r}} = \begin{pmatrix} z \\ k-1 \end{pmatrix}_{\mathbf{r}} + \begin{pmatrix} z-1 \\ k \end{pmatrix}_{\mathbf{r}},$$

Source: [comtet, pp. 15–17]. **Remark:** $\binom{n}{k}_r$ is the binomial coefficient with repetition. **Related:** Fact 1.12.6 and Fact ??.

Fact 1.16.17. Let $n \ge 1$. Then,

$$n^n = \sum \binom{n}{k_1, \dots, k_{n-1}} = \sum \frac{n!}{k_1! \dots k_{n-1}!},$$

where the sum is taken over all n-1-tuples (k_1,\ldots,k_{n-1}) such that $0 \le k_1 \le 1,\ 0 \le k_1+k_2 \le 2,\ \ldots,\ 0 \le k_1+\cdots+k_{n-1} \le n-1$. **Source:** [benjaminjuhnke,]. **Example:** $3^3 = \binom{3}{0,0} + \binom{3}{0,1} + \binom{3}{0,2} + \binom{3}{1,0} + \binom{3}{1,1} = 6+6+3+6+6 = 27$.

Fact 1.16.18. Let $n, m \geq 1$, and assume that $m \leq n$. Then,

$$\binom{2n}{m} = \sum_{i=0}^{\lfloor m/2 \rfloor} 2^{m-2i} \binom{n}{i, m-2i, n-m+i}.$$

Source: [sullivan,].

1.17 Facts on Fibonacci, Lucas, and Pell Numbers

Fact 1.17.1. Define $F_1 \triangleq F_2 \triangleq 1$ and, for all $k \in \mathbb{Z}$, define F_k by $F_{k+2} = F_{k+1} + F_k$. Then,

$$(F_i)_{i=-5}^{18} = (5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584).$$

Furthermore, for all $k, l \in \mathbb{Z}$, the following statements hold:

- i) If $k \geq 2$, then F_k is the number of tuples each of whose components is either 1 or 2 and the sum of whose components is n-1.
- ii) If $k \geq 3$, then F_k is the number of subsets of $\{1, \ldots, k-2\}$ that do not contain a pair of consecutive integers.
- $iii) F_{-k} = (-1)^{k+1} F_k.$
- iv) If 3|k, then F_k is even.
- v) If 4|k, then $3|F_k$; if 5|k, then $5|F_k$; if 6|k, then $8|F_k$.
- vi) If $k \geq 3$ is prime, then $k|F_{2k} F_k$.
- $vii) \gcd \{F_k, F_l\} = F_{\gcd \{k, l\}}.$
- viii) If k|l, then $F_k|F_l$. Hence, $F_k|F_{lk}$.
- ix) $gcd {F_k, F_{k+1}} = gcd {F_k, F_{k+2}} = 1.$
- x) If $k \geq 4$, then $F_k + 1$ is not prime.
- xi) If $n \ge 1$, then there exists a unique set $\{i_1, \ldots, i_m\}$ of integers $2 \le i_1 < \cdots < i_m$ such that, for all $j \in \{1, \ldots, m-1\}$, $i_j + 1 < i_{j+1}$ and such that $n = \sum_{j=1}^m F_{i_j}$.
- xii) For all $k \in \mathbb{Z}$,

$$F_{2k+2} = 2F_{2k} + F_{2k-1} = F_{k+1}^2 + 2F_k F_{k+1} = F_{k+2}^2 - F_k^2 = F_k F_{k+1} + F_{k+1} F_{k+2},$$

$$F_{2k+3} = F_k F_{k+2} + F_{k+1} F_{k+3} = F_{k+2} F_{k+3} - F_k F_{k+1}, \quad F_k F_{k+2} = F_{k+1}^2 + (-1)^{k+1},$$

$$F_{k+5} F_{k+2} = F_{2k+5} + F_{k+3} F_k, \quad F_{k+4} + F_k = 3F_{k+2}, \quad F_{3k+3} = F_{k+2}^3 + F_{k+1}^3 - F_k^3,$$

$$F_{3k+6} = 4F_{3k+3} + F_{3k}, \quad F_k^2 = F_{k+3} F_{k-3} + 4(-1)^{3-k}, \quad F_{2k+1} = F_{k+1}^2 + F_k^2,$$

$$F_k^2 + F_{k+3}^2 = 2(F_{k+2}^2 + F_{k+1}^2), \quad F_{2k}^2 + 1 = F_{2k-1} F_{2k+1}, \quad F_{2k}^2 = F_{2k-2} F_{2k+2} + 1,$$

$$F_{2k+1}^2 = F_{2k} F_{2k+2} + 1, \quad F_{k+2}^2 + F_k^2 = F_{k+1}^2 + F_k F_{k+3} = 3F_{k+1}^2 + 2(-1)^{k+1},$$

$$F_{2k+1}^2 = F_{2k} F_{2k+2} + 1, \quad F_{k+1}^2 F_{k+2} - F_k F_{k+3} = (-1)^k,$$

$$F_{k+2}^2 - F_{k+1}^2 = F_k F_{k+3}, \quad F_{k+1}^2 - F_k F_{k+1} - F_k^2 = (-1)^k, \quad 2F_{2k+1} = 5F_k^2 + F_{2k} + 2(-1)^k,$$

$$F_{2k+2}^2 = F_k F_{k+2} + F_{k+2}^2 + (-1)^k, \quad F_k^2 + F_{k+4}^2 = F_{k+1}^2 + 4F_{k+2}^2 + F_{k+3}^2,$$

$$F_{2k+1}^2 = (2F_k F_{k+1})^2 + (F_{k+1}^2 - F_k^2)^2, \quad F_{2k+3}^2 = (F_k F_{k+3})^2 + (2F_{k+1} F_{k+2})^2,$$

$$F_{k+3}^2 = 2F_{k+2}^2 + 2F_{k+1}^2 - F_k^2 = 4F_{k+2} F_{k+1} + F_k^2, \quad F_{k+4}^2 = (F_{k+2} + F_{k+3})^2 = (2F_k + 3F_{k+1})^2,$$

$$\begin{aligned} 5F_k^3 &= F_{3k} + 3(-1)^{k+1}F_k, & 25F_k^5 &= F_{5k} + 5(-1)^{k+1}F_{3k} + 10F_k, \\ F_{k+1}^3 &= F_{k+3}F_k^2 + (-1)^kF_{k+2}, & F_{k+4}^3 &= 3F_{k+3}^3 + 6F_{k+2}^3 - 3F_{k+1}^3 - F_k^3, \\ F_{k+2}^3 &= F_{3k+3} - F_{k+1}^3 + F_k^3 &= F_{k+1}^3 + F_k^3 + 3F_kF_{k+1}F_{k+2} &= F_kF_{k+3}^2 + (-1)^kF_{k+1}, \\ F_kF_{k+1}F_{k+2} &= F_{k+1}^3 + (-1)^{k+1}F_{k+1}, & F_{k+1}F_{k+2}F_{k+6} &= F_{k+3}^3 + (-1)^kF_k, \\ F_kF_{k+4}F_{k+5} &= F_{k+3}^3 + (-1)^{k+1}F_{k+6}, & F_{3k+9} &= F_{k+2}F_{k+5}^2 + F_{k+1}F_{k+4}^2 - F_kF_{k+3}^2, \\ F_{k+2}^4 &= F_kF_{k+1}F_{k+3}F_{k+4} + 1, & (F_k^2 + F_{k+1}^2 + F_{k+2}^2)^2 &= 2(F_k^4 + F_{k+1}^4 + F_{k+2}^4), \\ 2F_{4k+6} &= F_{k+3}^4 + 2F_{k+2}^4 - 2F_{k+1}^4 - F_k^4, & F_kF_{k+4}^3 &= F_{k+3}^4 + (-1)^{k+1}(F_{k+2}F_{k+6} + 2F_{k+3}^2), \\ 6F_{4k+4} &= F_{k+3}^4 + 3F_{k+2}^4 - 3F_k^4 - F_{k+1}^4, & F_{k+5}^4 &= 5F_{k+4}^4 + 15F_{k+3}^4 - 15F_{k+2}^4 - 5F_{k+1}^4 + F_k^4, \\ 6F_{2k+3}^2 &= F_k^4 + 4F_{k+1}^4 + 4F_{k+2}^4 + F_{k+3}^4, & 10F_{2k+3}^3 &= F_k^6 + 8F_{k+1}^6 + 8F_{k+2}^6 + F_{k+3}^6, \\ 6F_{2k+4}^2 &= F_k^4 - 4F_{k+1}^4 - 10F_{k+2}^4 - F_{k+3}^4 + F_{k+4}^4, \\ 56F_{2k+6}^2 &= F_k^4 - 4F_{k+1}^4 - 10F_{k+2}^4 - F_{k+3}^4 + F_{k+4}^4, \\ 56F_{2k+6}^2 &= F_k^4 + 81F_{k+2}^4 - 520F_{k+4}^4 + 81F_{k+6}^4 - 20, \\ 216F_{2k+8}^2 &= -F_k^4 + 81F_{k+2}^4 - 520F_{k+4}^4 + 81F_{k+6}^4 - F_{k+8}^4, \\ 1224F_{2k+9}^2 &= F_k^4 + 46F_{k+3}^4 + 319F_{k+6}^4 + F_{k+9}^4 + 480, \\ 20304F_{2k+12}^2 &= F_k^4 - 256F_{k+3}^4 - 4930F_{k+6}^4 - F_{k+9}^4 + 480, \\ 20304F_{2k+12}^2 &= F_k^4 - 256F_{k+3}^4 - 4930F_{k+6}^4 - 256F_{k+9}^4 + F_{k+12}^4, \\ (F_kF_{k+1})^2 + (F_kF_{k+2})^2 + (F_{k+1}F_{k+2})^2 &= (F_k^2 + F_{k+1}F_{k+2})^2, \quad F_{k+1}^2 F_{k+3}^2 - 6F_{k+2}^5 - 3F_{k+1}^5 + F_{k+1}^5, \\ (F_k^2 + F_{k+1}^2)^2 + (F_{k+1}F_{k+2})^2 &= (F_k^2 + F_{k+1}F_{k+2})^2, \quad F_{k+1}^2 F_{k+3}^2 - 6F_{k+2}^5 - 3F_{k+1}^5 + F_{k+1}^5, \\ (F_k^2 + F_{k+1}^2)(F_{k+2}^2 + F_{k+3}^2) &= F_{2k+3}^2 + 1, \quad (F_k^2 + F_{k+2}^2)(F_{k+4}^2 + F_{k+6}^2) = F_{2k+6}^2 + [2F_{k+3}^2 - 5(-1)^k]^2, \\ \sum_{i=0}^5 F_{k+i}$$

xiii) For all $k \geq 1$,

$$\operatorname{atan} \frac{1}{F_{2k+1}} + \operatorname{atan} \frac{1}{F_{2k+2}} = \operatorname{atan} \frac{1}{F_{2k}}.$$

xiv) For all $k \ge 0$,

$$\sum_{i=0}^{\lfloor k/2 \rfloor} {k-i \choose i} = (-1)^k \sum_{j=0}^k \sum_{i=0}^{\lfloor (k-j)/2 \rfloor} (-2)^j {k-i \choose i} {k-2i \choose j} = F_{k+1},$$

$$\sum_{i=0}^{\lfloor k/2 \rfloor} 5^i {k+1 \choose 2i+1} = 2^k F_{k+1}, \quad \sum_{i=0}^k {k+i \choose 2i} = F_{2k+1}, \quad \sum_{i=0}^k {k+i+1 \choose 2i+1} = F_{2k+2}.$$

xv) For all $k \geq 1$,

$$\sum_{i=1}^{k} F_{i} = F_{k+2} - 1, \quad \sum_{i=1}^{k} F_{2i-1} = F_{2k}, \quad \sum_{i=1}^{k} F_{2i} = F_{2k+1} - 1, \quad \sum_{i=1}^{k} F_{4i-2} = F_{2k}^{2},$$

$$\sum_{i=1}^{k} F_{4i-1} = F_{2k}F_{2k+1}, \quad \sum_{i=1}^{k} (-1)^{i+1}F_{i+1} = (-1)^{k-1}F_{k}, \quad \sum_{i=1}^{k} iF_{i} = kF_{k+2} - F_{k+3} + 2,$$

$$5\sum_{i=1}^{k} F_{2i-1}^{2} = F_{4k} + 2k, \quad \sum_{i=1}^{k} F_{i}^{2} = F_{k}F_{k+1}, \quad \sum_{i=1}^{2k-1} F_{i}F_{i+1} = F_{2k}^{2}, \quad \sum_{i=1}^{2k} F_{i}F_{i+1} = F_{2k+1}^{2} - 1,$$

$$\begin{split} \sum_{i=1}^k F_i F_{i+1} &= F_{k+1}^2 - \frac{1}{2} [1 + (-1)^k], \quad \sum_{i=1}^k F_i F_{3i} = F_k F_{k+1} F_{2k+1}, \quad \sum_{i=1}^{k-1} F_i F_{k-i} = \frac{1}{5} [2k F_{k+1} - (k+1) F_k, \\ \sum_{i=1}^k F_i^2 F_{i+1} &= \frac{1}{2} F_k F_{k+1} F_{k+2}, \quad \sum_{i=0}^k (F_i F_{i+1})^3 = \frac{1}{4} (F_k F_{k+1} F_{k+2})^2, \quad \sum_{i=1}^k \frac{1}{F_{2i}} = 2 - \frac{F_{2^k-1}}{F_{2^k}}, \\ \sum_{i=1}^k \binom{k}{i} F_i &= F_{2k}, \quad \sum_{i=0}^k \binom{k}{i} F_{i+1} &= F_{2k+1}, \quad \sum_{i=1}^k \binom{k+1}{i+1} F_i &= F_{2k+1} - 1, \\ \sum_{i=1}^k 2^i \binom{k}{i} F_i &= \sum_{i=1}^k 2^{k-i} \binom{k}{i} F_{k-i} &= F_{3k}, \quad \sum_{i=0}^k 2^i \binom{k}{i} F_{i+1} &= F_{3k+1}, \quad \sum_{i=0}^k 2^i \binom{k}{i} F_{i+2} &= F_{3k+2}, \\ \sum_{i=1}^k \frac{1}{2^i} \binom{2k}{i} F_{3i} &= G_{6k}, \quad \sum_{i=1}^{2k} \frac{1}{3^i} \binom{2k}{i} F_{3i} &= \left(\frac{20}{9}\right)^k F_{2k}, \quad \sum_{i=0}^{2k+1} \frac{1}{3^i} \binom{2k+1}{i} F_{3i} &= \frac{2}{3} \left(\frac{20}{9}\right)^k L_{2k+1}, \\ \sum_{i=1}^k 2^{2k-i} \binom{2k}{i} F_i &= 5^k F_{2k}, \quad \sum_{i=1}^{2k+1-i} 2^{2k+1-i} \binom{2k}{i} F_i &= 5^k L_{2k+1}, \quad \sum_{i=0}^k \binom{3}{2^i} \binom{k}{i} F_i &= \frac{1}{2^k} F_{4k}, \\ \sum_{i=1}^{k-1} \binom{2k}{2^i} F_{4i} &= \frac{1}{2} (5^k + 1) F_{2k}, \quad \sum_{i=1}^k \binom{2k+1}{2^i} F_{4i+2} &= \frac{1}{2} (5^{k+1/2} L_{2k+1} + F_{2k+1}), \\ \sum_{i=0}^k \binom{2k}{2^i} F_i &= F_{3k}, \quad \sum_{i=0}^k \binom{2k}{i} F_{2i} &= 5^k F_{6k}, \quad \sum_{i=1}^{2k+1-i} \binom{1}{2^{2k+1}} F_{2i+2} &= 5^k L_{6k+3}, \\ \sum_{i=1}^k \binom{2k}{i} F_{2i} &= 5^k F_{2k}, \quad \sum_{i=0}^k \binom{2k}{2^i} F_{2i} &= 5^k F_{6k}, \quad \sum_{i=1}^{2k+1} \binom{-1}{2^{2k+1-i}} \binom{2k+1}{i} F_{2i} &= 5^k L_{6k+3}, \\ \sum_{i=1}^k \binom{2k}{i} F_{2i} &= 5^k F_{2k}, \quad \sum_{i=0}^k \binom{2k}{2^i} F_{2i} &= 5^k F_{6i}, \quad \sum_{i=1}^{2k+1} \binom{-1}{2^{2k+1-i}} \binom{2k+1}{i} F_{2i} &= 5^k L_{6k+3}, \\ \sum_{i=0}^k \binom{2k}{i} F_{2i} &= 5^k F_{2k}, \quad \sum_{i=0}^k \binom{2k+1}{2^i} F_{2i+1} &= \sum_{i=0}^k F_{2i-1} F_{k-i} &= \frac{1}{2} (F_{2k} - F_k), \\ \sum_{i=0}^k \binom{2k}{i} F_{3i} &= 2^k F_{2k}, \quad \sum_{i=0}^k \binom{2k}{2^i} F_{4i} &= \frac{1}{2} F_{2k} \binom{2k+1}{i} F_{2i+1} &= \frac{1}{2} \binom{5^k}{2^k} L_{2k} - F_k), \\ \sum_{i=0}^k \binom{2k}{i} F_{3i} &= 2^k F_{2k}, \quad \sum_{i=0}^k \binom{2k}{2^i} F_{4i} &= \frac{1}{2} F_{2k} \binom{2k+1}{i} F_{2i} &= \frac{1}{2} \binom{5^k}{2^k} L_{2k} - F_k), \\ \sum_{i=0}^k \binom{k}{i} F_$$

$$\sum_{i=1}^{2k} (-1)^{i} 2^{i-1} \binom{2k}{i} F_{i} = 0, \quad \sum_{i=1}^{2k+1} \binom{2k+1}{i} F_{i}^{2} = 5^{k} F_{2k+1},$$

$$\sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^{i} \frac{k}{k-i} \binom{k-i}{i} F_{2k-3i} = F_{k}, \quad \sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^{i} \frac{k}{k-i} \binom{k-i}{i} L_{2k-3i} = L_{k} + 2,$$

$$\sum_{i=1}^{k} \binom{2k}{2i} F_{6i} = 2^{2k-1} (F_{4k} + F_{2k}), \quad \sum_{i=1}^{k} \binom{2k+1}{2i} F_{6i} = 4^{k} (F_{4k+2} - F_{2k+1}),$$

$$\sum_{i=0}^{k} \binom{2k}{2i+1} F_{6i+3} = 2^{2k-1} (F_{4k} - F_{2k}), \quad \sum_{i=0}^{k} \binom{2k+1}{2i+1} F_{6i+3} = 4^{k} (F_{4k+2} + F_{2k+1}),$$

$$2F_{k+2} + 2 \sum_{1 \le i < j \le k} F_{i}F_{j} = F_{2k+1} + F_{k}F_{k+1} + 1, \quad F_{k}^{5} + F_{k+1}^{5} + \frac{5}{7} \left(\frac{F_{k+2}^{7} - F_{k+1}^{7} - F_{k}^{7}}{F_{k+2}^{2} - F_{k}F_{k+1}} \right) = F_{k+2}^{5},$$

$$\sum_{i=1}^{k} \sum_{j=1}^{i} \sum_{k=1}^{i} \sum_{j=1}^{k} F_{j}^{4} = \frac{1}{100} [4F_{k+2}^{4} + (k+2)^{4} - 5(k+2)^{2}].$$

xvi) For all $k \ge 2$,

$$\sum_{i=1}^{k} F_{4i-6} = F_{2k-3}F_{2k-1} - 1, \quad \sum_{i=1}^{k} F_{4i-7} = F_{2k-3}F_{2k-2}.$$

xvii) For all $n, k \ge 1$,

$$5^n F_k^{2n+1} = \sum_{i=0}^n (-1)^{i(k+1)} \binom{2n+1}{i} F_{[2(n-i)+1]k},$$

$$5^{n}F_{k}^{2n} = \sum_{i=0}^{n-1} (-1)^{i(k+1)} {2n \choose i} L_{2(n-i)k} + (-1)^{n(k+1)} {2n \choose n}.$$

xviii) For all $n \geq 4$,

$$\left| \left(\sum_{i=n}^{2n} \frac{1}{F_i} \right)^{-1} \right| = F_{n-2}.$$

xix) For all $n \ge 1$ and $k \ge 3$,

$$\left[\left(\sum_{i=2n}^{2kn} \frac{1}{F_i} \right)^{-1} \right] = F_{2n-2}, \quad \left| \left(\sum_{i=2n+1}^{k(2n+1)} \frac{1}{F_i} \right)^{-1} \right| = F_{2n-1} - 1.$$

xx) For all $n \ge 1$ and $k \ge 2$,

$$\left[\left(\sum_{i=2n}^{2kn} \frac{1}{F_i^2} \right)^{-1} \right] = F_{2n} F_{2n-1} - 1, \quad \left[\left(\sum_{i=2n-1}^{k(2n-1)} \frac{1}{F_i^2} \right)^{-1} \right] = F_{2n-1} F_{2n-2}.$$

xxi) For all $k, l \in \mathbb{Z}$,

$$F_{k} = F_{l+1}F_{k-l} + F_{l}F_{k-l-1}, \quad F_{k+l+1} = F_{k+1}F_{l+1} + F_{k}F_{l},$$

$$(-1)^{k}F_{k-l} = F_{l+1}F_{k} - F_{l}F_{k+1}, \quad F_{k+l+2} = F_{k+1}F_{l} + F_{k+2}F_{l+1} = F_{k+2}F_{l+2} - F_{k}F_{l},$$

$$F_{k+l+1}^{2} = F_{k+1}^{2}F_{l+1}^{2} + \frac{1}{3}F_{k}F_{l}(F_{k+3}F_{l+3} + 2F_{k-1}F_{l-1}),$$

$$F_{k+l+1}^{2} + F_{k-l}^{2} = F_{2k+1}F_{2l+1}, \quad F_{k}^{2} + F_{k+2l+1}^{2} = F_{2l+1}F_{2k+2l+1},$$

$$F_{k+2l}^{2} - F_{k}^{2} = F_{2l}F_{2k+2l}, \quad F_{k}^{2} = F_{k-l}F_{k+l} + (-1)^{k+l}F_{l}^{2},$$

$$F_{k+l+1}F_{k+l-1} = F_{k+l}^{2} + (F_{k+1}F_{k-1} - F_{k})^{2}(F_{l+1}F_{l-1} - F_{l}^{2}),$$

 $F_{k+l+2} = F_k F_{l+1} + F_{k+1} F_l + F_{k+1} F_{l+1}, \quad F_{k+2} F_{l+2} = F_k F_l + F_k F_{l+1} + F_{k+1} F_l + F_{k+1} F_{l+1}.$

xxii) For all $k, l \in \mathbb{Z}$,

$$\sum_{i=1}^{2k} 2^{2k-i} \binom{2k}{i} F_{i+l} = 5^k F_{2k+l}, \quad \sum_{i=1}^{2k+1} 2^{2k+1-i} \binom{2k}{i} F_{i+l} = 5^k L_{2k+1+l}.$$

xxiii) For all $k \ge 1$ and $l \ge 1$,

$$\sum_{i=0}^{k} \binom{k}{i} F_{3i+l} = 2^k F_{2k+l}.$$

xxiv) For all $k \ge 1$ and $l \ge 2$,

$$\sum_{i=1}^{k} (-1)^{k-i} \binom{k}{i} \frac{F_{il}}{F_{l-1}^i} = \left(\frac{F_l}{F_{l-1}}\right)^k F_k.$$

xxv) For all $k \ge 1$ and $l \ge 3$,

$$\sum_{i=1}^{k} \binom{k}{i} \left(\frac{F_l}{F_{l-1}}\right)^i F_i = \frac{F_{kl}}{F_{l-1}^k}.$$

xxvi) For all $k \ge 1$ and $l \in \{0, ..., k\}$, $F_{2k+1-l}^2 + F_l^2 = F_{2k+1}F_{2k-2l+1}$.

xxvii) For all $k \in \mathbb{Z}$ and $l \in \{0, 1, 2, 3\}$, $F_{3k+1}F_{k+l+1}^3 + F_{3k+2}F_{k+l}^3 = F_{l-2k-1}^3 + F_{3k+1}F_{3k+2}F_{3l}$.

xxviii) For all $k \in \mathbb{Z}$ and $l \ge 1$,

$$\sum_{i=1}^{l} F_{k+i} = F_{k+l+2} - F_{k+2}.$$

xxix) For all $k \geq 0$ and $l \in \mathbb{Z}$,

$$\sum_{i=0}^{k} \binom{k}{i} F_{i+l} = F_{2k+l}.$$

xxx) For all $k, l, m \in \mathbb{Z}$,

$$F_{k+l}F_{k+m} = F_kF_{k+l+m} + (-1)^kF_lF_m,$$

$$F_{k+l+m+3} + F_kF_lF_m = F_{k+2}F_{l+2}F_{m+2} + F_{k+1}F_{l+1}F_{m+1}.$$

xxxi) For all $n \ge 1$,

$$\prod_{i=1}^{n} \left(1 + 4\sin^2 \frac{2i\pi}{n} \right) = \left[1 + F_n - 2F_{n+1} + (-1)^n \right]^2,$$

$$F_{2n+1} = \prod_{i=1}^{n} \left(5 - 4\sin^2 \frac{2i\pi}{2n+1} \right), \quad F_{4n+2} = \prod_{i=1}^{n} \left(5 + 4\sin^2 \frac{i\pi}{2n+1} \right).$$

xxxii) For all $n \geq 1$ and $z \in \mathbb{C}$,

$$\prod_{i=0}^{n-1} \left[3 + 2\cos\left(\frac{2i\pi}{n} - z\right) \right] = 5F_n^2 + 4(-1)^n \sin^2\frac{nz}{2}.$$

xxxiii) For all $n \geq 2$,

$$F_n = \frac{2^{n-1}}{n} \sqrt{\prod_{i=1}^{n-1} \left[1 - \left(\cos \frac{i\pi}{n} \right) \cos \frac{3i\pi}{n} \right]}.$$

xxxiv) For all $n \geq 4$,

$$F_n = \prod_{i=1}^{\lfloor (n-1)/2\rfloor} \left(1 + 4\sin^2\frac{i\pi}{n}\right) = \prod_{i=1}^{\lfloor (n-1)/2\rfloor} \left(1 + 4\cos^2\frac{i\pi}{n}\right) = \prod_{i=1}^{\lfloor (n-1)/2\rfloor} \left(3 + 2\cos\frac{2i\pi}{n}\right).$$

xxxv) For all $k \ge 1$,

$$\sum_{0 \le j \le i \le k} \binom{k}{i-j} \binom{k-i}{j} = F_{2k-1}, \quad \sum_{i,j=1}^k \binom{k-i}{j-1} \binom{k-j}{i-1} = F_{2k},$$

$$\sum_{i,j=0}^{k} {k+i \choose 2j} {k+j \choose 2i} = F_{4k-1}, \quad \sum_{i,j=0}^{k} {k+i \choose 2j-1} {k+j \choose 2i} = F_{4k}, \quad \sum_{i,j=0}^{k} {k+i \choose 2j+1} {k+j \choose 2i+1} = F_{4k-3}.$$

xxxvi) Let $n \ge 0$. Then, there exists $k \ge 0$ such that $n = F_k$ if and only if either $\sqrt{5n^2 - 4}$ or $\sqrt{5n^2 + 4}$ is an integer.

xxxvii) Let $n \geq 1$, and define $\mathcal{A}_n \triangleq \{(i_1, \dots, i_k) \in \times_{i=1}^k \{1, 2\} : k \geq 1 \text{ and } \sum_{j=1}^k i_j = n\}$. Then, $\operatorname{card}(\mathcal{A}_n) = F_{n+1}$.

xxxviii) For all $n \ge 0$, $9F_n^2 \le F_{n+3}^2$.

xxxix) For all $n \notin \{-2, -1\}$,

$$\left(1 + \frac{F_n}{F_{n+1}} - \frac{F_n}{F_{n+2}}\right)^2 = 1 + \left(\frac{F_n}{F_{n+1}}\right)^2 + \left(\frac{F_n}{F_{n+2}}\right)^2.$$

Source: [AMR, pp. 63, 330, 331], [AMR3, pp. 186, 187, 239–241], [benczeassi,], [benjaminquinn, pp. 10–12, 70, 78, 125, 126, 144], [bibak,chamberlandusing,chamberlandtrig,chamberlandLAA13,chenchenfib,clarkeqi,d], [engel, p. 206], [fairgrieve,], [fuchs, p. 63], [garnier,], [gelca, p. 297], [grimaldi, pp. 10, 11, 12, 38, 39, 56, 57, 61, 109, 115, 116, 117, 121], [griffithsrv,griffithsext,griffiths,griffithsfrom,griffiths2,kasturiwale,keskin,kilic,], [koshy, pp. 6–8, 239–241, 362, 363], [koshcat, pp. 78, 79], [langlang,], [larson, pp. 72, 175], [mahonado,melhamfam,melhammore,melhamsome,melhamsimson,], [mollnf, pp. 110–113], [ohtsukasc,ohtsukahigher,ohtsukaH766,ollerton,simons,terrana,], [vajda, pp. 37, 70–72, 182,

183], [wangwen,welukar,werman,]. **Remark:** F_n is the nth Fibonacci number. **Remark:** Concerning ii), $\binom{n-k-1}{k}$ is the number of k-element subsets of $\{1,\ldots,n-2\}$ that do not contain a pair of consecutive integers. See [AMR3, p. 187]. **Remark:** xi) is Zeckendorf's theorem. **Related:** Fact ??. The generating function is given by Fact ??.

Fact 1.17.2. Define $L_1 \triangleq 1$, $L_2 \triangleq 3$ and, for all $k \in \mathbb{Z}$, define L_k by $L_{k+2} = L_{k+1} + L_k$. Then,

$$(L_i)_{i=-5}^{16} = (-11, 7, -4, 3, -1, 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207).$$

Then, for all $k \in \mathbb{Z}$, the following statements hold:

- i) $L_{-k} = (-1)^k L_k$.
- ii) L_{3k} is even.
- *iii*) If k is prime, then $L_k \stackrel{k}{\equiv} 1$.
- iv) 5 divides $L_{k+1} 3L_k$, $3^{k-1} L_k$, $kL_{k+1} + 2F_k$, and $T_kL_{k+1} + (k+1)F_k$.
- v) 10 divides $4kL_{k+1} 2F_k$.
- $vi) \gcd\{L_k, L_{k+1}\} = \gcd\{L_k, L_{k+2}\} = 1.$

For all $k \in \mathbb{Z}$,

$$L_k^2 = L_{2k} + 2(-1)^k, \quad L_{k+1}^2 = L_k L_{k+2} + 5(-1)^{k+1}, \quad L_{2k}^2 = L_{4k} + 2,$$

$$L_{k+1}^2 - L_{k+1} L_k - L_k^2 = 5(-1)^{k+1}, \quad L_k^2 + L_{k+1}^2 = L_{2k} + L_{2k+2},$$

$$L_{3k} = L_k [L_{2k} + (-1)^{k+1}], \quad (L_k^2 + L_{k+1}^2 + L_{k+2}^2)^2 = 2(L_k^4 + L_{k+1}^4 + L_{k+2}^4),$$

$$L_{k+3}^2 = 2L_{k+2}^2 + 2L_{k+1}^2 - L_k^2, \quad L_{k+4}^3 = 3L_{k+3}^3 + 6L_{k+2}^3 - 3L_{k+1}^3 - L_k^3,$$

$$L_{k+2}^3 + L_{k+1}^3 - L_k^3 = 5L_{3k+3}, \quad L_{k+5}^4 = 5L_{k+4}^4 + 15L_{k+3}^4 - 15L_{k+2}^4 - 5L_{k+1}^4 + L_k^4,$$

$$2L_{k+1} = L_k + 5F_k, \quad 2L_{k+2} = 3L_k + 5F_k, \quad L_{k+1} = F_k + F_{k+2}, \quad L_{k+2} = 3F_{k+1} + F_k,$$

$$5F_{k+1} = L_k + L_{k+2}, \quad 2F_{k+1} = F_k + L_k, \quad 2F_{k+2} = 3F_k + L_k, \quad F_{k+4} = F_k + L_{k+2}, \quad F_{2k+4} = F_{2k} + L_{2k+2},$$

$$2L_k = L_k^2 + 5F_k^2, \quad L_{2k} = 5F_k^2 + 2(-1)^k, \quad 5F_{2k+1} = L_k^2 + L_{k+1}^2, \quad F_{2k+1} + F_k L_k = F_{k+1} L_{k+1},$$

$$F_{2k} = F_k L_k, \quad F_{k+1} L_k = F_{2k+1} + (-1)^k, \quad 2L_{2k} = L_k^2 + 5F_k^2, \quad L_k^2 = 5F_k^2 + 4(-1)^k,$$

$$L_{k+3}^2 = F_k F_{k+4} + F_{k+4} F_{k+5} + F_{k+2}^2, \quad 5F_{2k+3} F_{2k-3} = L_{4k} + 18, \quad F_k \stackrel{?}{=} L_k,$$

$$L_{2k+1}^2 + F_{k+1}^2 = 2F_{k+2}^2 + 2F_k^2, \quad 25F_{k+1}^2 + L_{k+1}^2 = 2L_{k+2}^2 + 2L_k^2,$$

$$L_{2k+7} = F_{k+4}^2 + L_{k+3}^2 - F_k F_{k+4} + F_{2k+4} + F_{2k+2} + 2L_k^2,$$

$$L_{2k+7} = F_{k+4}^2 + L_{k+3}^4 - F_k F_{k+4} + F_{2k+4} + F_{2k+4} + 2L_{k+3}^4 + F_{2k+4}^4 + 25F_{k+2}^4 = 9(L_{k+1}^4 + L_{k+2}^4 + L_{k+3}^4),$$

$$2F_k^2 L_{k+6}^2 = -17F_{k+1}^4 + 57F_{k+2}^4 + 402F_{k+3}^4 + 113F_{k+4}^4 - 25F_{k+5}^4,$$

$$50L_k^2 F_{k+6}^2 = -17L_{k+1}^4 + 57L_{k+2}^4 + 402L_{k+3}^4 + 113L_{k+4}^4 - 25L_{k+5}^4,$$

$$F_k^3 + F_{k+1}^3 + 3F_k F_{k+1} F_{k+2} = F_{k+2}^3, \quad L_k^3 + L_{k+1}^3 + 3L_k L_{k+1} L_{k+2} = L_{k+5}^3,$$

$$F_k^3 + F_{k+1}^3 + 3F_k F_{k+1} F_{k+2} = F_{k+2}^3, \quad L_k^3 + L_{k+1}^3 + 3L_k L_{k+1} L_{k+2} = L_{k+5}^3,$$

$$50L_k^2 F_{k+6}^2 = -17L_{k+1}^4 + 57L_{k+2}^4 + 402L_{k+3}^4 + 113L_{k+4}^4 - 25L_{k+5}^4,$$

$$F_k^3 + F_{k+1}^3 + 3F_k F_{k+1} F_{k+2} = F_{k+2}^3, \quad L_k^3 + L_{k+1}^3 + 3L_k L_{k+1} L_{k+2}$$

$$\begin{split} \sum_{i=0}^k L_i &= L_{k+2} - 1, \quad \sum_{i=1}^k L_{2i-1} = L_{2i} - 2, \quad \sum_{i=0}^k L_{2i} = L_{2k+1} + 1, \quad \sum_{i=0}^k L_i^2 = L_k L_{k+1} + 2, \\ \sum_{i=1}^k L_{2i-1}^2 &= F_{4k} - 2k, \quad \sum_{i=1}^k i L_i = k L_{k+2} - L_{k+3} + 4, \quad \sum_{i=0}^k 2^i L_i = 2^{n+1} F_{k+1}, \\ \sum_{i=0}^k 3^i L_i + \sum_{i=0}^{k+1} 3^{i-1} F_i &= 3^{k+1} F_{k+1}, \quad \sum_{i=0}^k \binom{k}{i} L_i = L_{2k}, \quad \sum_{i=0}^{2k} (-1)^i 2^{i-1} \binom{2k}{i} L_i = 5^i, \\ \sum_{i=0}^k \binom{k}{i} L_i L_{k-i} &= 2^k L_k + 2, \quad 5 \sum_{i=0}^k \binom{k}{i} F_i F_{k-i} &= 2^k L_k - 2, \quad \sum_{i=0}^k \binom{k}{i} F_i L_{k-i} &= 2^k F_k, \\ \sum_{i=0}^k (-1)^i L_{k-2i} &= 2 F_{k+1}, \quad \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} L_i &= (-1)^k L_k, \quad \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} L_{2i} &= L_k, \\ \sum_{i=0}^{k-1} (-1)^i \binom{2k}{i} L_{2k-2i} &= 1 + (-1)^{n-1} \binom{2k}{k}, \quad \sum_{i=0}^k (-1)^i \binom{2k+1}{i} L_{2k+1-2i} &= 1, \\ \sum_{i=0}^{2k} \binom{2k}{i} L_{2i} &= \sum_{i=0}^{2k} \binom{2k}{i} L_i^2 &= 5^k L_{2k}, \quad \sum_{i=0}^{2k+1} \binom{2k+1}{i} L_{2i} &= \sum_{i=0}^{2k+1} \binom{2k+1}{i} L_i^2 &= 5^{k+1} F_{2k+1}, \\ \sum_{i=0}^{2k+1} \binom{2k+1}{i} F_{2i} &= 5^k L_{2k+1}, \quad \sum_{i=0}^{2k} \binom{2k}{i} F_i^2 &= 5^{k-1} L_{2k}, \quad \sum_{i=0}^k F_i L_{k-i} &= (k+1) F_k, \quad \sum_{i=0}^{\lfloor k/2 \rfloor} 5^i \binom{k}{2i} &= 2^{k-1} L_k, \\ L_{2k} &= 2 + \prod_{i=0}^{k-1} \binom{1+4 \sin^2\frac{i\pi}{k}}{k} &= 2 \prod_{i=1}^k \binom{1}{4} + \frac{5}{4} \tan^2\frac{(2i-1)\pi}{4k}, \quad L_{2k+1} &= \prod_{i=1}^k \binom{1}{4} + \frac{5}{4} \tan^2\frac{2i\pi}{2k+1}, \\ \sum_{i=1}^{2k} \frac{1 \tan^2\frac{2i\pi}{2k+1}}{2k+1} &= \frac{(2k+1) F_{2k}}{4L_{2k+1}}, \quad \sum_{i=1}^n \frac{\tan^2\frac{(2i-1)\pi}{4k}}{4L_{2k+1}} &= \frac{k E_{k-1}}{2L_k}. \\ 1 + 10 \sum_{i=1}^{\lfloor (n-1)/2 \rfloor} \frac{\cos^2\frac{i\pi}{k}}{3 + 2\cos^2\frac{i\pi}{k}} &= \frac{k L_{k-1}}{2F_k}. \end{split}$$

For all $k, l \in \mathbb{Z}$,

$$L_{k+l} + (-1)^{l}L_{k-l} = L_{k}L_{l}, \quad L_{k+l} = 5F_{k}F_{l} + (-1)^{l}L_{k-l}, \quad L_{2k}L_{2l} = L_{k+l}^{2} + 5F_{k-l}^{2},$$

$$5F_{k}F_{l} = L_{k+l} + (-1)^{l+1}L_{k-l}, \quad 5F_{k}^{2} = L_{2k} + 2(-1)^{k+1},$$

$$2L_{k+l} = L_{k}L_{l} + 5F_{k}F_{l}, \quad 2(-1)^{l}L_{k+l} = L_{k}L_{l} - 5F_{k}F_{l}, \quad 2(-1)^{l}L_{k-l} = L_{k}L_{l} - 5F_{k}F_{l},$$

$$2F_{k+l} = F_{k}L_{l} + F_{l}L_{k}, \quad F_{k+l} + (-1)^{l}F_{k-l} = F_{k}L_{l}, \quad F_{k+l} + (-1)^{l}F_{k-l} = F_{k}L_{l},$$

$$F_{k}L_{l} = L_{k}F_{l} + 2(-1)^{l}F_{k-l}, \quad L_{k+l+1} = F_{k+1}L_{l+1} + F_{k}L_{l}, \quad L_{k+l+1}^{2} + L_{k-l}^{2} = 5F_{2k+1}F_{2l+1},$$

$$F_{k}^{4} + [(-1)^{l+1}L_{2l} + 1](F_{k+l}^{4} + F_{k+2l}^{4}) + F_{k+3l}^{4} = F_{l}L_{2l}F_{3l}F_{2k+3l}^{2} + 10(-1)^{l}F_{l-1}F_{l}^{4}F_{l+1},$$

$$(-1)^{l+1}F_{k}^{6} + (L_{4l} + 1)[F_{k+l}^{6} + (-1)^{l+1}F_{k+2l}^{6}] + F_{k+3l}^{6} = F_{l}F_{3l}F_{5l}F_{3k+3l}^{3} + 15(-1)^{l}F_{l-1}F_{l}^{4}F_{l+1}F_{3l}F_{2k+3l},$$

$$(-1)^{l+1}F_{l}F_{k}^{4} + (-1)^{l}L_{l}^{3}F_{2l}(F_{k+l}^{4} + F_{k+3l}^{4}) - [L_{4l} + 2(-1)^{l}L_{2l} + 4]F_{3l}F_{k+2l}^{4} + (-1)^{l+1}F_{l}F_{k+4l}^{4} = 3F_{2l}^{2}F_{3l}F_{2k+4l}^{2}.$$

For all $k, l, m \in \mathbb{Z}$,

$$L_{m+k}L_{m+l-1} = L_{m-1}L_{m+l+k} + (-1)^{m-1}F_{k+1}(L_l - 2L_{l+1}).$$

If p is prime, then

$$\sum_{i=0}^{\lfloor (p-1)/2 \rfloor} (-1)^i \binom{2i}{i} \stackrel{p}{=} F_p, \quad \sum_{i=0}^{\lfloor (p-1)/2 \rfloor} 5^i \binom{p}{2i} \stackrel{p}{=} L_p, \quad \sum_{i=0}^{\lfloor (p-1)/2 \rfloor} (-1)^i (i+1)^{p-2} \binom{2i}{i} \stackrel{p}{=} L_{p-1}.$$

For all $n \geq 1$,

$$\begin{split} \sum_{i=1}^n F_{n-i}H_i &= F_{2n}H_n - \sum_{i=1}^n \frac{F_{2n-i}}{i}, \quad \sum_{i=1}^n 2^{n-i}F_{n-i}H_i = F_{3n}H_n - \sum_{i=1}^n \frac{2^iF_{3n-2i}}{i}, \\ \sum_{i=1}^n L_{n-i}H_i &= L_{2n}H_n - \sum_{i=1}^n \frac{L_{2n-i}}{i}, \quad \sum_{i=1}^n 2^{n-i}L_{n-i}H_i = L_{3n}H_n - \sum_{i=1}^n \frac{2^iL_{3n-2i}}{i}, \\ \sum_{i=1}^n \binom{n+i+1}{n-i}H_i &= \sum_{i=1}^n \frac{1}{i}(L_{2i}-2)F_{2n-2i+2}, \quad \sum_{i=1}^n \binom{n+i}{n-i}\frac{2n+1}{2i+1}H_i &= \sum_{i=1}^n \frac{1}{i}(L_{2i}-2)L_{2n-2i+1}, \\ \sum_{i=1}^n F_{2i}^3 &= \frac{1}{4}F_{2n-1}F_{2n}^2L_{2n+1}^2L_{2n+2}, \quad \sum_{i=1}^{2n+1} F_{2i}^3 &= \frac{1}{4}L_{2n}L_{2n+1}^2F_{2n+2}^2F_{2n+3}, \\ \sum_{i=1}^n F_{2i}^3 &= \frac{1}{4}(F_{2n+1}-1)^2(F_{2n+1}+2), \quad \prod_{i=0}^{n-1} [1+e^{(2\pi i/n)j}-e^{(4\pi i/n)j}] &= (-1)^{n+1}L_n+(-1)^n+1, \\ \text{atan } \frac{2}{L_{2n-1}} &= 2 \arctan \frac{1}{L_{2n}} + \arctan \frac{1}{L_{2n}}, \quad \arctan \frac{2}{L_{2n+1}} &= \arctan \frac{1}{F_{2n}} - \arctan \frac{1}{L_{2n}}, \\ \text{atan } \frac{2}{L_{2n-1}} &= \arctan \frac{1}{L_{2n-2}} + \arctan \frac{1}{L_{2n}}, \quad \arctan \frac{2}{L_{2n+1}} &= \arctan \frac{1}{F_{2n}} - \arctan \frac{1}{\sqrt{5}F_{2n+1}}, \\ \text{atan } \frac{F_{2n}}{F_{2n+1}} &= \sum_{i=1}^n \arctan \frac{1}{L_{2i}} &= \arctan 1 - \frac{1}{2} \arctan \frac{1}{2} - \frac{1}{2} \arctan \frac{2}{L_{4n+1}}, \\ \text{atan } \frac{F_{2n}}{F_{2n}} &= \arctan 2 - \sum_{i=1}^{2n-1} \arctan \frac{1}{L_{2i}} &= \arctan 1 - \frac{1}{2} \arctan \frac{1}{2} + \frac{1}{2} \arctan \frac{2}{L_{4n-1}}, \\ [5F_k^2 + (-1)^k 4]^{2/3} L_k^{2/3} &= 5^{1/3} [L_k^2 + (-1)^{k+1} 4]^{2/3} F_k^{2/3} + (-1)^k 4, \\ \sum_{i=1}^n \frac{2}{F_{i+3}} &\leq \log F_{n+2}, \quad \sum_{i=1}^n \frac{2}{L_{i+3}} &\leq \log L_{n+2}. \end{aligned}$$

For all $n, k \geq 1$,

$$L_k^{2n+1} = \sum_{i=0}^n (-1)^{ik} \binom{2n+1}{i} L_{[2(n-i)+1]k}, \quad L_k^{2n} = \sum_{i=0}^{n-1} (-1)^{ik} \binom{2n}{i} L_{2(n-i)k} + (-1)^{nk} \binom{2n}{n}.$$

For all $k \ge 1$ and $n \ge 1$,

$$\left[\frac{1}{2}(L_k \pm \sqrt{5}F_k)\right]^n = \frac{1}{2}(L_{nk} \pm \sqrt{5}F_{nk}), \quad F_{2^k n} = F_n \prod_{i=1}^k L_{2^{k-i}n}, \quad \sum_{i=0}^k (-1)^{in} \frac{1}{L_{(i+1)n}L_{in}} = \frac{F_{(k+1)n}}{2F_nL_{(k+1)n}}.$$

Source: [adegoke,], [AMR, pp. 36, 195], [AMR3, p. 187], [benczeAOI,benczesnie,], [ben-jaminquinn, pp. 10–12, 78, 125, 126, 144], [bibak,chamberlandtrig,chenchenfib,deshpande5,griffithsfrom,], [grimaldi, pp. 97–99, 108, 110], [hindin,keskin,], [koshy, pp. 6–8, 239–241, 362, 363], [koshcat, pp. 78, 79], [koshyflp,lewisb,marquesnew,melhamfam,melhamcertain,], [mollnf, p. 112], [munarini,ohtsukaoom,suryAMM14,terrana,], [vajda, pp. 70–72, 182, 183], and [voll,]. **Remark:** L_n is the nth $Lucas\ number$. **Remark:** The generating function is given by Fact ??. **Remark:** F_n and L_n are analogous to the sine and cosine functions, respectively. See [lewisb,].

Fact 1.17.3. Define $P_1 \triangleq 1$, $P_2 \triangleq 2$ and, for all $k \in \mathbb{Z}$, define P_k by $P_{k+2} = 2P_{k+1} + P_k$. Then,

$$(P_i)_{i=-5}^{14} = (29, -12, 5, -2, 1, 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782)$$

For all $k \in \mathbb{Z}$,

$$P_{k} = \frac{\sqrt{2}}{4} [(1+\sqrt{2})^{k} - (1-\sqrt{2})^{k}], \quad P_{k+1}P_{k-1} = P_{k}^{2} + (-1)^{k},$$

$$P_{2k+1} = P_{k}^{2} + P_{k+1}^{2}, \quad 5P_{6k+3} = P_{3k}^{2} + P_{3k+3}^{2},$$

$$P_{k+3}^{2} = 5P_{k+2}^{2} + 5P_{k+1}^{2} - P_{k}^{2}, \quad P_{k+4}^{3} = 12P_{k+3}^{3} + 30P_{k+2}^{3} - 12P_{k+1}^{3} - P_{k}^{3},$$

$$P_{k+5}^{4} = 29P_{k+4}^{4} + 174P_{k+3}^{4} - 174P_{k+2}^{4} - 29P_{k+1}^{4} + P_{k}^{4},$$

$$(2P_{k}P_{k+1})^{2} + (P_{k+1}^{2} - P_{k}^{2})^{2} = (P_{k+1}^{2} + P_{k}^{2})^{2}.$$

For all $k \geq 1$,

$$P_k = \sum_{i=0}^{\lfloor (k-1)/2 \rfloor} 2^i \binom{k}{2i+1}, \quad P_{k+1} = \sum_{0 \le i \le j \le k} \binom{k-i}{j} \binom{j}{i},$$

$$\sum_{i=1}^{4k+1} P_i = \left[\sum_{i=1}^n 2^i \binom{2n+1}{2i} \right]^2 = (P_{2k} + P_{2k+1})^2, \quad \sum_{i=0}^{\lfloor (k-1)/4 \rfloor} \frac{1}{16^i} \binom{k-1-2i}{2i} = \frac{1}{2^k} (P_k + k),$$

$$2^{2-k} \sum_{i=0}^{\lfloor (k-3)/4 \rfloor} \binom{4k-2}{2k-8i-5} = 2^{k-2} (4^{k-1}+1) - P_{2k-1}, \quad \sum_{i=0}^n 5^i 2^{n-i} \binom{n}{i} P_i = P_{3n}.$$

Source: [chenchenfib,diazego,gauthierpell,kilic,mahonsum,seiffertpell,]. **Remark:** P_n is the nth $Pell\ number$.

1.18 Facts on Arrangement, Derangement, and Catalan Numbers

Fact 1.18.1. For all $n \geq 1$, let a_n denote the *n*th arrangement number, which is the number of k-tuples whose components are distinct elements of $\{1, \ldots, n\}$ and where $0 \leq k \leq n$. Define $a_0 = 1$. Then,

 $(a_i)_{i=0}^{12} = (1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 108505112, 1302061345, 16926797486).$

For all $n \geq 1$,

$$a_n = \sum_{i=0}^n n^{\underline{i}} = n! \sum_{i=0}^n \frac{1}{i!} = \lfloor n!e \rfloor, \quad a_{n+1} = na_{n-1} + 1.$$

Remark: a_n is the *n*th arrangement number. See [comtet, p. 75]. **Remark:** The five arrangements of $\{1,2\}$ are \varnothing , (1), (2), (1,2), and (2,1). **Remark:** The generating function is given by Fact ??. **Related:** Fact ??.

Fact 1.18.2. For all $n \ge 1$, let d_n denote the number of permutations of $(1, \ldots, n)$ that leave no component unchanged. Define $d_0 = 1$. Then,

 $(d_i)_{i=0}^{13} = (1,0,1,2,9,44,265,1854,14833,133496,1334961,14684570,176214841,2290792932). \\$

For all $n \geq 1$,

$$d_n = n! \sum_{i=0}^n (-1)^i \frac{1}{i!} = \sum_{i=0}^n (-1)^i \binom{n}{i} (n-i)! = \left\lfloor \frac{n!}{e} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{n!}{e} + \frac{1}{n} \right\rfloor = \int_0^\infty e^{-x} (x-1)^n \, \mathrm{d}x,$$

and, for all $n \ge 1$,

$$d_{n+1} = n(d_n + d_{n-1}) = (n+1)d_n + (-1)^{n+1}, \quad n! = \sum_{i=0}^n \binom{n}{i} d_{n-i}, \quad d_n \stackrel{n}{\equiv} (-1)^n.$$

Finally,

$$\lim_{n \to \infty} \frac{d_n}{n!} = \frac{1}{e}.$$

Source: $d_n \stackrel{n}{\equiv} (-1)^n$ is given in [aebi2,]. **Remark:** d_n is the *n*th derangement number. See [cameron, pp. 57, 58] and [hassani,]. **Remark:** The permutation $(1,2,3,4,5) \mapsto (3,1,2,4,5)$ is not a derangement, but $(1,2,3,4,5) \mapsto (3,1,2,5,4)$ is a derangement. Each derangement is represented by a permutation matrix whose diagonal entries are zero. **Remark:** The generating function is given by Fact ??. **Related:** Fact 1.18.3.

Fact 1.18.3. For all $n_1, \ldots, n_k \geq 1$, let D_{n_1, \ldots, n_k} denote the number of permutations of $(1, \ldots, 1, 2,$

 $\ldots, 2, \ldots, n, \ldots, n$) that leave no component unchanged, where i appears n_i times. Then,

$$D_{n_1,\dots,n_k} = (-1)^{\sum_{i=1}^k n_i} \int_0^\infty e^{-x} \prod_{i=1}^n L_{n_i}(x) \, \mathrm{d}x.$$

Source: [evengillis,]. **Remark:** $D_{n_1,...,n_k}$ is a generalized derangement number, where the nth derangement number is $d_n = D_{1,...,1}$. See Fact 1.18.2. L_n is the nth Laguerre polynomial. See Fact ??.

Fact 1.18.4. Let $n \geq 0$, and let C_n denote the number of ways that n factors can be grouped for multiplication. Then,

 $(C_i)_{i=0}^{15} = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845).$

For all $n \geq 1$,

$$\begin{split} C_n &= \binom{2n}{n} - \binom{2n}{n+1} = 2\binom{2n}{n} - \binom{2n+1}{n} = 4\binom{2n-1}{n} - \binom{2n+1}{n} = \binom{2n+1}{n+1} - 2\binom{2n}{n+1}, \\ C_n &= \frac{1}{n}\binom{2n}{n-1} = \frac{1}{n}\binom{2n}{n+1} = \frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}, \\ C_n &= \frac{2^n(2n-1)!!}{n!} = \prod_{i=2}^n \frac{n+i}{i} = \frac{4^n\Gamma(n+\frac{1}{2})}{\sqrt{\pi}\Gamma(n+2)}, \\ C_n &= \frac{1}{n+1}\sum_{i=0}^n \binom{n}{i}^2 = \frac{1}{n}\sum_{i=1}^n \binom{n}{i}\binom{n}{i-1} = \sum_{i=0}^{\lfloor n/2\rfloor} \left[\binom{n}{i} - \binom{n}{i-1}\right]^2 = \sum_{i=0}^{\lfloor n/2\rfloor} \left[\frac{n+1-2i}{n+1}\binom{n+1}{i}\right]^2, \\ C_{n+1} &= \frac{4n+2}{n+2}C_n = 2C_n + \frac{2}{n}\binom{2n}{n-2} = \sum_{i=0}^{\lfloor n/2\rfloor} \binom{n}{2i}2^{n-2i}C_i, \quad \sum_{i=0}^n \binom{2n-2i}{n-i}C_i = \binom{2n+1}{n}, \\ C_{n+1} &= \sum_{i=0}^n C_iC_{n-i} = \frac{n+3}{2n}\sum_{i=1}^n C_iC_{n+1-i} = \frac{1}{4^{n+1}}\sum_{i=0}^{n+1} C_{2i}C_{2n+2-2i}, \\ \sum_{i=1}^n iC_iC_{n-i} &= \frac{n}{2}C_{n+1}, \quad \sum_{i=1}^n i^2C_iC_{n-i} &= \frac{n^2+2n+2}{2}C_{n+1} - 4^n, \\ \sum_{i=1}^n i^3C_iC_{n-i} &= \frac{n}{2}[(n^2+3n+3)C_{n+1}-3(4^n)], \quad C_{2n+1} &= \sum_{i=1}^{n+1} \left[\frac{2i}{n+1+i}\binom{2n+1}{n+1-i}\right]^2, \\ \sum_{i=0}^{n-1} \frac{i+1}{2i+1}C_iC_{n-i+1} &= \frac{1}{2(2n+1)}\left[(n+1)C_n + \frac{2^{4n-1}}{n(n+1)C_n}\right]. \end{split}$$

For all $n \geq 2$,

$$\sum_{i=1}^{\lfloor n/2\rfloor} (-1)^i \binom{n-i}{i} C_{n-1-i} = 0.$$

Furthermore, C_n is odd if and only if there exists $k \ge 1$ such that $n = 2^k - 1$. In addition, C_n is prime if and only if n = 3. Finally,

$$\lim_{n \to \infty} \frac{C_{n+1}}{C_n} = 4.$$

Source: [wikicatalan,chamberlandLAA13,cofman,gauthiercat,gauthierconvol,], [gelca, p. 299], [koshcat, pp. 112, 123, 127, 129, 329, 330], [larcombeutil,larcombegessel,], [mollnf, pp. 184, 186], and [penson,]. **Remark:** C_n is the nth $Catalan\ number$. See Fact \ref{Fact} and Fact \ref{Fact} . **Remark:** Additional interpretations of the Catalan numbers are given in [stanleycat,].

1.19 Facts on Cycle, Subset, Eulerian, Bell, and Ordered Bell Numbers

Fact 1.19.1. For $n \ge k \ge 1$, let $\begin{bmatrix} n \\ k \end{bmatrix}$ denote the number of permutations of $(1, \dots, n)$ that have exactly k cycles. Furthermore, define $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \triangleq 1$, and, for all $k \ge 1$, define $\begin{bmatrix} k \\ 0 \end{bmatrix} \triangleq 0$. Then, the following statements hold:

i) Let $n \geq 1$. Then,

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!, \quad \begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$$
$$\begin{bmatrix} n \\ 3 \end{bmatrix} = \frac{(n-1)!}{2}(H_{n-1}^2 - H_{n-1,2}), \quad \begin{bmatrix} n \\ 4 \end{bmatrix} = \frac{(n-1)!}{3!}(H_{n-1}^3 - 3H_{n-1}H_{n-1,2} + 2H_{n-1,3}).$$

ii) Let
$$n \ge 0$$
. Then, $\begin{bmatrix} n \\ n \end{bmatrix} = 1$ and $\sum_{i=0}^{n} \begin{bmatrix} n \\ i \end{bmatrix} = n!$.

$$iii)$$
 Let $n \ge 1$. Then, $\begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}$.

iv) Let
$$n \ge 2$$
. Then, $\binom{n}{n-2} = 2\binom{n}{3} + 3\binom{n}{4} = \frac{3n-1}{4}\binom{n}{3}$.

v) Let
$$n \ge 3$$
. Then, $\begin{bmatrix} n \\ n-3 \end{bmatrix} = 6 \binom{n}{4} + 20 \binom{n}{5} + 15 \binom{n}{6} = \binom{n}{2} \binom{n}{4}$.

vi) Let
$$n \ge 4$$
. Then, $\begin{bmatrix} n \\ n-4 \end{bmatrix} = \frac{1}{48}(15n^3 - 30n^2 + 5n + 2)$.

$$vii) \text{ Let } n > k \geq 1. \text{ Then, } \begin{bmatrix} n \\ n-k \end{bmatrix} = (-1)^k \binom{n-1}{k} \left. \frac{\mathrm{d}^k}{\mathrm{d}z^k} \frac{z^n}{(e^z-1)^n} \right|_{z=0}.$$

viii) Let $n \ge k \ge 1$. Then

$$\begin{bmatrix} n \\ n-k \end{bmatrix} = (-1)^k \frac{1}{(n-k-1)!} \sum_{j=1}^k (-1)^k \frac{(n+\kappa-1)!}{\prod_{j=1}^k i_j! [(j+1)!]^{i_j}},$$

where $\kappa \triangleq \sum_{j=1}^k i_j$ and the sum is taken over all k-tuples (i_1, \ldots, i_k) of nonnegative integers such that $\sum_{j=1}^k j i_j = k$.

ix) Let $n \ge k \ge 1$. Then,

$$\sum \frac{1}{\prod_{j=1}^{k} i_j} = \frac{k!}{n!} \begin{bmatrix} n \\ k \end{bmatrix},$$

where the sum is taken over all k-tuples (i_1, \ldots, i_k) of positive integers such that $\sum_{i=1}^k i_i = n$.

Source: [benjaminquinn, pp. 93–96], [GKP, pp. 257–267], and [zwillinger, p. 139]. viii) is given in [malenfant,], and ix) is given in [comtet, p. 172]. **Remark:** The permutation $(1,2,3,4,5) \mapsto (3,1,2,5,4)$ has two cycles, while the permutation $(1,2,3,4,5) \mapsto (3,1,2,4,5)$ has three cycles. Each cycle is represented by a diagonally located block in the canonical form of a permutation matrix given by Fact **??. Remark:** $\begin{bmatrix} n \\ k \end{bmatrix}$ is a cycle

number, which is related to the Stirling number of the first kind $s(n,k) = (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}$.

See [benjaminquinn, pp. 103–107]. **Remark:** vii) relates the cycle number $\begin{bmatrix} n \\ n-k \end{bmatrix}$ to the coefficients of the power series for $z^n/(e^z-1)^n$. See [malenfant,]. In particular,

$$\frac{\mathrm{d}}{\mathrm{d}z} \frac{z^n}{(e^z - 1)^n} \bigg|_{z=0} = -\frac{n}{2}, \quad \frac{\mathrm{d}^2}{\mathrm{d}z^2} \frac{z^n}{(e^z - 1)^n} \bigg|_{z=0} = \frac{1}{12} n(3n - 1), \quad \frac{\mathrm{d}^3}{\mathrm{d}z^3} \frac{z^n}{(e^z - 1)^n} \bigg|_{z=0} = -\frac{1}{8} n^2 (n - 1),$$

$$\frac{\mathrm{d}^4}{\mathrm{d}z^4} \frac{z^n}{(e^z - 1)^n} \bigg|_{z=0} = \frac{1}{240} n(15n^3 - 30n^2 + 5n + 2), \quad \frac{\mathrm{d}^5}{\mathrm{d}z^5} \frac{z^n}{(e^z - 1)^n} \bigg|_{z=0} = -\frac{1}{96} n^2 (3n^3 - 10n^2 + 5n + 2),$$

$$\left.\frac{\mathrm{d}^6}{\mathrm{d}z^6}\frac{z^n}{(e^z-1)^n}\right|_{z=0} = \frac{1}{4032}n(63n^5-315n^4+315n^3+91n^2-42n-16).$$
 For the case $k=3$, note that, for all $n\geq 4$, $8\binom{n}{2}\binom{n}{4}=n^2(n-1)\binom{n-1}{3}$. Example: $\begin{bmatrix}4\\2\end{bmatrix}=11$,

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \frac{3!}{2}(H_3^2 - H_{3,2}) = 6, \ \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 50, \ \begin{bmatrix} 5 \\ 3 \end{bmatrix} = 35, \ \begin{bmatrix} 5 \\ 4 \end{bmatrix} = 10, \ \begin{bmatrix} 6 \\ 2 \end{bmatrix} = 274, \ \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 225, \ \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 85, \ \begin{bmatrix} 6 \\ 5 \end{bmatrix} = 15.$$
 To illustrate ix), note that

$$\frac{1}{3 \cdot 1} + \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 2} = \frac{2!}{4!} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \frac{11}{12}, \quad \frac{1}{1 \cdot 1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 1} + \frac{1}{2 \cdot 1 \cdot 1} = \frac{3!}{4!} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \frac{3}{2}.$$

Related: Fact ?? and Fact ??.

Fact 1.19.2. The following statements hold:

i) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} \begin{bmatrix} n \\ i \end{bmatrix} x^i = x^{\overline{n}}.$$

In particular,

$$\sum_{i=1}^{n} 2^{i} \begin{bmatrix} n \\ i \end{bmatrix} = (n+1)!.$$

ii) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} (-1)^{n-i} \begin{bmatrix} n \\ i \end{bmatrix} x^{i} = x^{\underline{n}}.$$

iii) Let $n \geq 2$. Then,

$$\sum_{i=0}^{n} (-1)^i \begin{bmatrix} n \\ i \end{bmatrix} = 0.$$

iv) Let $n \ge k \ge 1$. Then,

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

v) Let $k, n \ge 0$. Then,

$$\sum_{i=k}^{n} \begin{bmatrix} n \\ i \end{bmatrix} \binom{i}{k} = \begin{bmatrix} n+1 \\ k+1 \end{bmatrix}.$$

vi) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} i \begin{bmatrix} n \\ i \end{bmatrix} = \begin{bmatrix} n+1 \\ 2 \end{bmatrix} = n! H_n.$$

vii) Let $n, k \geq 0$. Then,

$$\sum_{i=0}^{k} (n+i) \begin{bmatrix} n+i \\ i \end{bmatrix} = \begin{bmatrix} n+k+1 \\ k \end{bmatrix}.$$

viii) Let $n, k \geq 0$. Then,

$$\sum_{i=k}^n \frac{n!}{i!} \begin{bmatrix} i \\ k \end{bmatrix} = \sum_{i=k}^n n^{\underline{n-i}} \begin{bmatrix} i \\ k \end{bmatrix} = \begin{bmatrix} n+1 \\ k+1 \end{bmatrix}.$$

ix) Let $n, k, l \ge 0$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} \begin{bmatrix} i \\ l \end{bmatrix} \begin{bmatrix} n-i \\ k \end{bmatrix} = \begin{bmatrix} n \\ l+k \end{bmatrix} \binom{l+k}{l}.$$

x) Let $n \ge k \ge 0$. Then,

$$\sum_{i=k}^{n} (-1)^{k-i} \binom{i}{k} \begin{bmatrix} n+1 \\ i+1 \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}.$$

xi) Let $n \ge 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i} \binom{2n}{i} \begin{bmatrix} 2n-i \\ n-i \end{bmatrix} = \prod_{i=1}^{n} (2i-1).$$

Source: [benjaminquinn, pp. 93-96], [kauers,], and [zwillinger, p. 139]. Example:

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} z - \begin{bmatrix} 3 \\ 2 \end{bmatrix} z^2 + \begin{bmatrix} 3 \\ 3 \end{bmatrix} z^3 = z - 3z^2 + z^3 = z(z-1)(z-2) = z^{\underline{3}}.$$

Fact 1.19.3. For $n \geq k \geq 1$, let $\binom{n}{k}$ denote the number of partitions of a set of n elements into k subsets. Furthermore, define $\binom{0}{0} \triangleq 1$ and, for all $n, k \geq 1$, define $\binom{n}{0} \triangleq 0$ and $\binom{0}{k} \triangleq 0$. Then, the following statements hold:

i) Let n > k > 1. Then

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \frac{1}{k!} \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} (k-i)^n = \frac{1}{k!} \sum_{i=1}^k (-1)^{k-i} \binom{k}{i} i^n = \sum_{i=1}^k (-1)^{k-i} \frac{i^{n-1}}{(i-1)!(k-i)!} \\
= \frac{n!}{k!} \sum_{i=1}^k \frac{1}{i_1! \cdots i_k!} = \sum_{i=1}^k \frac{n!}{(1!)^{i_1} i_1! (2!)^{i_2} i_2! \cdots (n!)^{i_n} i_n!},$$

where the penultimate sum is taken over all k-tuples (i_1, \ldots, i_k) of positive integers whose sum is n, and the last sum is taken over all n-tuples (i_1, \ldots, i_n) of nonnegative integers whose sum is k and satisfy $\sum_{j=1}^{n} j i_j = n$. In particular, if $n \geq 1$, then

$$\left\{ \begin{matrix} n \\ 1 \end{matrix} \right\} = \left\{ \begin{matrix} n \\ n \end{matrix} \right\} = 1, \quad \left\{ \begin{matrix} n \\ 2 \end{matrix} \right\} = 2^{n-1} - 1, \quad \left\{ \begin{matrix} n \\ n-1 \end{matrix} \right\} = \binom{n}{2},$$

$$\left\{ {n \atop n-2} \right\} = \binom{n}{3} + 3\binom{n}{4} = \frac{1}{4}\binom{n}{3}(3n-5), \quad \left\{ {n \atop n-3} \right\} = \binom{n}{4} + 10\binom{n}{5} + 15\binom{n}{6} = \frac{1}{2}\binom{n}{4}(n^2 - 5n + 6).$$

ii) Let $n \geq k \geq 0$. Then

$$\begin{Bmatrix} n \\ k \end{Bmatrix} \le \begin{bmatrix} n \\ k \end{bmatrix}, \quad k^{n-k} \le \begin{Bmatrix} n \\ k \end{Bmatrix} \le \binom{n-1}{k-1} k^{n-k}.$$

iii) Let $n \geq k \geq 1$. Then,

$${n \brace n-k} = \sum \frac{n!}{(n-k-\kappa)! \prod_{i=1}^k i_i! [(j+1)!]^{i_i}},$$

where $\kappa \triangleq \sum_{j=1}^{k} i_j$ and the sum is taken over all k-tuples (i_1, \ldots, i_k) of nonnegative integers such that $\sum_{j=1}^{k} j i_j = k$.

iv) Let $n, k, m \ge 1$. Then,

$$\sum x_{ij}^n = k \sum_{i=1}^n i! \begin{Bmatrix} n \\ i \end{Bmatrix} \binom{k+m-1}{m-i},$$

where the sum is over all k-tuples (i_1, \ldots, i_k) of nonnegative integers such that $\sum_{j=1}^k i_j = m$.

v) Let $n \geq 2$. Then,

$$\sum_{i=1}^{n} (-1)^{i} (n-1)! \begin{Bmatrix} n \\ i \end{Bmatrix} = 0.$$

Source: [benjaminquinn, p. 103] and [zwillinger, p. 140]. *i*) is given in [aldrovandi, p. 159], [frumosu,], and [johnsoncurious,] (see (2.1)); *ii*) is given in [GKP, p. 260] and [comtet, p. 292]; *iii*) is given in [malenfant,]; *iv*) is given in [comtet, pp. 172, 173]; *v*) is given in [murty,]. **Remark:** $\binom{n}{k}$ is a *subset number*, which is also called a *Stirling number of the second kind* denoted by S(n,k). The curly braces are reminiscent of set notation. See [benjaminquinn, pp. 103–107], [GKP, pp. 257–267], and [knuthnotes,]. **Example:** $\binom{3}{2} = 3, \, \binom{4}{2} = 7, \, \binom{5}{2} = 15, \, \binom{6}{2} = 31, \, \binom{4}{3} = 6, \, \binom{5}{3} = 25, \, \binom{6}{3} = 90, \, \binom{6}{4} = 65.$ **Related:** Fact ??.

Fact 1.19.4. The following statements hold:

i) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} \begin{Bmatrix} n \\ i \end{Bmatrix} x^{\underline{i}} = x^{n}.$$

ii) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$\sum_{i=1}^{n} (-1)^{n-i} \begin{Bmatrix} n \\ i \end{Bmatrix} x^{\overline{i}} = x^n.$$

iii) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$x^{\overline{n}} = \sum_{i=1}^{n} {n \brack i} x^{i} = \sum_{i=1}^{n} \sum_{j=i}^{n} {n \brack j} {i \brack i} x^{\underline{i}} = \sum_{i=1}^{n} {n \choose i} \frac{(n-1)!}{(i-1)!} x^{\underline{i}}.$$

iv) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$x^{\underline{n}} = \sum_{i=1}^{n} (-1)^{n-i} \begin{bmatrix} n \\ i \end{bmatrix} x^{i} = \sum_{i=1}^{n} \sum_{j=1}^{i} (-1)^{n-j} \begin{bmatrix} n \\ i \end{bmatrix} \begin{Bmatrix} i \\ j \end{Bmatrix} x^{\overline{j}}.$$

v) Let $k \ge 1$ and $n \ge k + 1$. Then,

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}.$$

vi) Let $n, k \geq 0$. Then,

$$\sum_{i=1}^{\min\{k,n\}} i! \begin{Bmatrix} k \\ i \end{Bmatrix} \binom{n}{i} = n^k.$$

vii) Let $n, k \geq 0$. Then,

$$\sum_{i=1}^{\min{\{k,n\}}}i!\left\{k\atop i\right\}\binom{n+1}{i+1}=\sum_{i=1}^ni^k.$$

viii) Let $n \ge 1$. Then,

$$\sum_{i=1}^{n} (-1)^{i} (i-1)! \begin{Bmatrix} n \\ i \end{Bmatrix} = 0.$$

ix) Let $n \ge k \ge 1$. Then,

$$\sum_{i=1}^{k} (-1)^{k-i} i^n \binom{k}{i} = k! \begin{Bmatrix} n \\ k \end{Bmatrix}.$$

x) Let $n, k \geq 0$. Then,

$$\sum_{i=k}^{n} \binom{n}{i} \begin{Bmatrix} i \\ k \end{Bmatrix} = \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix}.$$

xi) Let $n, k \geq 0$. Then,

$$\sum_{i=1}^{k} i \begin{Bmatrix} n+i \\ i \end{Bmatrix} = \begin{Bmatrix} n+k+1 \\ k \end{Bmatrix}.$$

xii) Let $n, k \geq 0$. Then,

$$\sum_{i=0}^{n} \begin{Bmatrix} i \\ k \end{Bmatrix} (k+1)^{n-i} = \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix}.$$

xiii) Let $n \ge k \ge 0$. Then,

$$\sum_{i=k}^{n} (-1)^{n-i} \binom{n}{i} \begin{Bmatrix} i+1 \\ k+1 \end{Bmatrix} = \begin{Bmatrix} n \\ k \end{Bmatrix}.$$

xiv) Let $n, k \geq 0$. Then,

$$\sum_{i=1}^k (-1)^i \left\{ k \atop i \right\} i^n = (-1)^k k! \left\{ n \atop k \right\}.$$

xv) Let $n \geq 0$. Then,

$$\sum_{i=1}^{n} (-1)^{i} \frac{i!}{i+1} \left\{ {n \atop i} \right\} = B_{n}.$$

$$xvi$$
) Let $n \ge k \ge 1$. Then,

$$\sum_{i=k}^{n} \begin{bmatrix} n \\ i \end{bmatrix} \begin{Bmatrix} i \\ k \end{Bmatrix} = \binom{n}{k} \frac{(n-1)!}{(k-1)!}.$$

$$xvii$$
) Let $n \ge k \ge 1$. Then,

$$\sum_{i=k}^{n} (-1)^{n-i} \begin{bmatrix} n \\ i \end{bmatrix} \begin{Bmatrix} i \\ k \end{Bmatrix} = \begin{Bmatrix} 1, & n=k, \\ 0, & n \neq k. \end{Bmatrix}$$

xviii) Let
$$n \ge k \ge 1$$
. Then,

$$\sum_{i=k}^{n} (-1)^{n-i} \begin{Bmatrix} n \\ i \end{Bmatrix} \begin{bmatrix} i \\ k \end{bmatrix} = \begin{Bmatrix} 1, & n=k, \\ 0, & n \neq k. \end{Bmatrix}$$

$$xix$$
) Let $n, k \geq 0$. Then,

$$\sum_{i=k}^{n} (-1)^{k-i} \begin{Bmatrix} n+1 \\ i+1 \end{Bmatrix} \begin{bmatrix} i \\ k \end{bmatrix} = \binom{n}{k}.$$

$$xx$$
) Let $n \ge k \ge 0$. Then,

$$\sum_{i=h}^{n} {n+1 \brack i+1} \begin{Bmatrix} i \\ k \end{Bmatrix} = \frac{n!}{m!}.$$

$$xxi$$
) Let $n \ge k \ge 0$. Then,

$$\sum_{i=k}^{n} (-1)^{k-i} \begin{bmatrix} n+1\\i+1 \end{bmatrix} \begin{Bmatrix} i\\k \end{Bmatrix} = n^{\underline{n-k}}.$$

xxii) Let $n, k \geq 0$, and assume that $k \leq n + 1$. Then,

$$\sum_{i=0}^{n} (-1)^{i+1-k} \frac{1}{i+1} \begin{bmatrix} i+1 \\ k \end{bmatrix} \begin{Bmatrix} n \\ i \end{Bmatrix} = \frac{1}{n+1} \binom{n+1}{k} B_{n+1-k}.$$

xxiii) Let $n, k \geq 0$. Then,

$$\sum_{i=1}^{k} (-1)^{i+1} i \begin{bmatrix} n+1 \\ n+1-i \end{bmatrix} \begin{Bmatrix} n+k-i \\ n \end{Bmatrix} = \sum_{i=1}^{n} i^{k}.$$

xxiv) Let $n, k, l \geq 0$. Then,

$$\sum_{i=0}^{n} \binom{n}{i} \begin{Bmatrix} i \\ l \end{Bmatrix} \begin{Bmatrix} n-i \\ k \end{Bmatrix} = \binom{l+k}{l} \begin{Bmatrix} n \\ l+k \end{Bmatrix}.$$

xxv) Let $n \geq k \geq 0$. Then,

$$\sum_{i=0}^{n} \binom{k-n}{k+i} \binom{k+n}{n+i} \begin{bmatrix} k+i \\ i \end{bmatrix} = \begin{Bmatrix} n \\ n-k \end{Bmatrix}.$$

xxvi) Let $n \ge k \ge 0$. Then,

$$\sum_{i=0}^{n} \binom{k-n}{k+i} \binom{k+n}{n+i} \begin{Bmatrix} k+i \\ i \end{Bmatrix} = \begin{bmatrix} n \\ n-k \end{bmatrix}.$$

xxvii) Let $n \ge k \ge 0$. Then,

$$\begin{bmatrix} n \\ k \end{bmatrix} = \sum_{i=0}^{n-k} (-1)^i \binom{n-1+i}{n-k+i} \binom{2n-k}{n-k-i} \begin{Bmatrix} n-k-i \\ i \end{Bmatrix},$$

where $\kappa \triangleq \sum_{j=1}^{k} i_j$ and the sum is taken over all k-tuples (i_1, \ldots, i_k) such that, for all $j \in \{1, \ldots, k\}$, $0 \le i_j \le k$ and such that $\sum_{j=1}^{k} j i_j = k$.

Source: [benjaminquinn, pp. 103, 106, 107], [boyadzhiev,daboullah,], [engel, p. 95], [frumosu,gonzalezgci,], [GKP, pp. 264, 265, 289], and [merceafaul,riordan,]. **Remark:** In xv, B_n is the nth Bernoulli number. See Fact ??. **Remark:** The coefficient $L(n,k) \triangleq \binom{n}{k}\binom{n-1}{k-1}(n-k)! = \binom{n}{k}\frac{(n-1)!}{(k-1)!}$ in iii) is a Lah number. See [daboullah,]. **Example:**

$$1^{2} + 2^{2} + 3^{2} = {2 \choose 1} {4 \choose 2} 1! + {2 \choose 2} {4 \choose 3} 2! = 1(6)(1) + 1(4)(2) = 14,$$

$${3 \atop 1} z + {3 \atop 2} z(z-1) + {3 \atop 3} z(z-1)(z-2) = z + 3z(z-1) + z(z-1)(z-2) = z^3.$$

Fact 1.19.5. Let $n \ge 1$, let $0 \le k \le n-1$, and let $\binom{n}{k}$ denote the number of permutations of $(1, \ldots, n)$ in which exactly k components are larger than the previous component. Then, the following statements hold:

i) Let $n \ge 1$ and $0 \le k \le n - 1$. Then,

ii) Let $n \geq 1$. Then,

iii) Let $n \ge 1$ and $0 \le k \le n-1$. Then,

$$\left\langle {n\atop k}\right\rangle = \left\langle {n\atop n-1-k}\right\rangle, \quad \left\langle {n\atop k}\right\rangle = (k+1)\left\langle {n-1\atop k}\right\rangle + (n-k)\left\langle {n-1\atop k-1}\right\rangle,$$

where $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \stackrel{\triangle}{=} 1$ and $\begin{pmatrix} 0 \\ k \end{pmatrix} \stackrel{\triangle}{=} 0$.

iv) Let $n \geq 1$ and $x \in \mathbb{C}$. Then,

$$x^{n} = \sum_{i=0}^{n-1} \left\langle {n \atop i} \right\rangle {x+i \choose n}.$$

In particular,

$$x^2 = \binom{x}{2} + \binom{x+1}{2}, \ x^3 = \binom{x}{3} + 4\binom{x+1}{3} + \binom{x+2}{3}, \ x^4 = \binom{x}{4} + 11\binom{x+1}{4} + 11\binom{x+2}{4} + \binom{x+3}{4}.$$

v) Let $k \geq 1$ and $1 \leq n \leq k$, Then

$$k^{n} = \sum_{i=0}^{n-1} \left\langle {n \atop i} \right\rangle \binom{k+i}{n} = \sum_{i=0}^{n-1} \left\langle {n \atop i} \right\rangle \binom{k+n-i-1}{n}.$$

vi) If $k, n \ge 1$, then

$$\sum_{i=1}^{k} i^n = \sum_{i=0}^{n-1} \left\langle {n \atop i} \right\rangle \binom{k+i+1}{n+1}.$$

vii) If $k, n \ge 1$, then

$$\left\{ \begin{matrix} n \\ k \end{matrix} \right\} = \frac{1}{k!} \sum_{i=n-k}^n \left\{ \begin{matrix} n \\ i \end{matrix} \right\} \binom{i}{n-k}, \quad \left\langle \begin{matrix} n \\ k \end{matrix} \right\rangle = \sum_{i=1}^{n-k} (-1)^{n-k-i} i! \left\{ \begin{matrix} n \\ i \end{matrix} \right\} \binom{n-i}{k}.$$

viii) If $n \geq 2$, then

$$\sum_{i=0}^{n-1} (-1)^i \frac{\binom{n}{i}}{\binom{n-1}{i}} = 0, \quad \sum_{i=0}^{n-1} (-1)^i \frac{\binom{n}{i}}{\binom{n}{i}} = (n+1)B_n.$$

Source: [GKP, pp. 267–269], [knuth3, pp. 35–39], and [petersen2,]. **Remark:** $\binom{n}{m}$ is an *Eulerian number*. An alternative definition is used in [belbachir,]. **Remark:** iv) is *Worpitzky's identity*. **Related:** Fact ??.

Fact 1.19.6. Let \mathcal{B}_n denote the number of partitions of $\{1,\ldots,n\}$, and define $\mathcal{B}_0 \triangleq 1$. Then, the following statements hold:

i) Let $n \geq 1$. Then,

$$\mathcal{B}_n = \sum_{i=1}^n \left\{ {n \atop i} \right\} = \sum_{i=0}^n \frac{1}{i!} \sum_{j=0}^i (-1)^{i-j} {i \choose j} j^n = 1 + \left\lfloor \frac{1}{e} \sum_{i=1}^{2n} \frac{i^n}{i!} \right\rfloor.$$

- $ii) \ (\mathcal{B}_i)_{i=0}^{13} = (1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597,27644437).$
- *iii*) If p is prime, then $\mathfrak{B}_{n+p} \stackrel{p}{=} \mathfrak{B}_n + \mathfrak{B}_{n+1}$.
- iv) If $n, m \ge 1$, then

$$\mathcal{B}_{n+m} = \sum_{i=0}^{n} \sum_{j=1}^{m} \begin{Bmatrix} m \\ j \end{Bmatrix} \binom{n}{i} j^{n-i} \mathcal{B}_i, \quad \mathcal{B}_{n+1} = \sum_{i=0}^{n} \binom{n}{i} \mathcal{B}_i.$$

v) Let $k \geq n \geq 1$. Then,

$$\mathcal{B}_n = \sum_{i=1}^k \frac{i^n}{i!} \sum_{j=0}^{k-i} (-1)^j \frac{1}{j!} = \sum_{i=1}^n \frac{i^n}{i!} \sum_{j=0}^{n-i} (-1)^j \frac{1}{j!}.$$

Remark: \mathcal{B}_n is the *n*th *Bell number*. See [aldrovandi, p. 160], [bressoud, p. 623], and [spivey,]. **Related:** Fact ??.

Fact 1.19.7. For all $n \geq 1$, let \mathcal{O}_n denote the number of possible orderings of the multiset $\{i_1, \ldots, i_n\}_{\text{ms}}$ of real numbers, and define $\mathcal{O}_0 \triangleq 1$. Then, the following statements hold:

i) Let $n \geq 1$. Then,

$$\mathcal{O}_n = \sum_{i=1}^n i! \left\{ {n \atop i} \right\}.$$

- $(0_i)_{i=0}^{11} = (1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573).$
- iii) Let $n \geq 1$. Then,

$$\mathcal{O}_n = \sum_{i=0}^{n-1} \binom{n}{i} \mathcal{O}_i = (-1)^{n-1} + 2\sum_{i=0}^n (-1)^{n-i} \binom{n}{i} \mathcal{O}_i = \sum_{i=0}^n \sum_{j=0}^i (-1)^{i-j} \binom{i}{j} j^n = \sum_{i=0}^\infty \frac{i^n}{2^{i+1}} = \sum_{i=0}^{n-1} 2^i \binom{n}{i}.$$

iv) Let $n \geq 1$. Then,

$$\sum_{i=1}^n \mathbb{O}_{i-1} \mathbb{O}_{n-i} \binom{n}{i} = \frac{n}{2} \mathbb{O}_{n-1} + \frac{1}{2} \sum_{i=1}^n i! H_i \left\{ \begin{matrix} n \\ i \end{matrix} \right\},$$

$$\sum_{i=1}^n \mathbb{O}_{i-1} \mathbb{O}_{n-i} \binom{n}{i} = \frac{n+1}{2} \mathbb{O}_{n-1} - \frac{1}{4} \delta_{n,1} + \frac{1}{4} \sum_{i=1}^n i! H_i \left\{ {n+1 \atop i+1} \right\}.$$

Source: [dil,dilgf,munarini,]. **Remark:** \mathfrak{O}_n is the nth ordered Bell number. **Remark:** For n=3, the 13 possible orderings of $\{x,y,z\}_{\mathrm{ms}}$ are $x=y=z,\ x< y=z,\ y=z< x,\ y< x=z,\ x=z< y,\ z< x=y,\ x=y< z,\ x< y< z,\ x< z< y,\ y< x< z,\ y< z< x,\ z< x< y< z< x$. **Remark:** The generating function is given by Fact $\ref{eq:condition}$?

1.20 Facts on Partition Numbers, the Totient Function, and Divisor Sums

Fact 1.20.1. For all $n \geq 1$, let p_n denote the number of partitions of the n-element multiset $\{1,\ldots,1\}_{\mathrm{ms}}$. Equivalently, for all $n\geq 1$, let p_n denote the number of ways of representing n as a sum of one or more positive integers. Define $p_0 \triangleq 1$. Furthermore, for all $n,k\geq 1$, let $p_{n,k}$ denote the number of ways of representing n as a sum of k positive integers, and, for all $n,k,l\geq 1$, let $p_{n,k,l}$ denote the number of ways of representing n as a sum of k positive integers the largest of which is k. Then, the following statements hold:

- i) For all $n \ge 1$, $p_n = \text{card}\{(k_1, ..., k_n) \in \mathbb{N}^n : k_1 \le ... \le k_n \text{ and } \sum_{i=1}^n k_i = n\}.$
- ii) For all $n \ge 1$, $p_n = \operatorname{card} \{(k_1, \dots, k_n) \in \mathbb{N}^n : \sum_{i=1}^n i k_i = n\}$.
- $(p_i)_{i=0}^{20} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627).$
- iv) For all $n \in \{1, 2\}$, $p_n = \mathcal{B}_n$. For all $n \geq 3$, $p_n < \mathcal{B}_n$.
- v) For all $n \in \{1, 2, 3, 4\}$, $p_n = F_{n+1}$. For all n > 5, $p_n < F_{n+1}$.
- vi) For all $n, k \geq 1$, $p_{n,k}$ is the number of ways of representing n as a sum of positive integers, the largest of which is k.
- vii) Let $n \ge 1$. Then, $\sum_{i=1}^{n} p_{n,i} = p_n$.

viii) Let $n \geq 1$. Then,

$$p_{n,1} = p_{n,n-1} = p_{n,n} = 1, \quad p_{n,2} = \frac{1}{4} [2n+3+(-1)^n], \quad p_{n,3} = \left\lfloor \frac{1}{12} (n+3)^2 + \frac{1}{2} \right\rfloor,$$

$$p_{n,4} = \left\lfloor \frac{1}{144} (n+5) (n^2+n+22+18 \lfloor n/2 \rfloor) + \frac{1}{2} \right\rfloor,$$

$$p_{n,5} = \left\lfloor \frac{1}{2880} (n+8) (n^3+22n^2+44n+248+180 \lfloor n/2 \rfloor) + \frac{1}{2} \right\rfloor,$$

$$\sum_{i=1}^{2} p_{n,i} = 1 + \left\lfloor \frac{n}{2} \right\rfloor, \quad \sum_{i=1}^{3} p_{n,i} = 1 + \left\lfloor \frac{n^2+6n}{12} \right\rfloor.$$

ix) Let $k \geq 1$. Then, as $n \to \infty$,

$$\sum_{i=1}^{k} p_{n,i} \sim \frac{n^{k-1}}{k!(k-1)!}.$$

x) Let $n \ge k \ge 1$. Then,

$$\sum_{i=1}^{n} p_{n,i,k} = \sum_{i=1}^{n} p_{n,k,i} = p_{n,k}.$$

In particular,

$$\sum_{i=1}^{n} p_{n,i,1} = \sum_{i=1}^{n} p_{n,1,i} = \sum_{i=1}^{n} p_{n,i,n-1} = \sum_{i=1}^{n} p_{n,n-1,i} = \sum_{i=1}^{n} p_{n,i,n} = \sum_{i=1}^{n} p_{n,n,i} = 1.$$

xi) Let $n \ge k \ge 1$. Then, the number of ways of representing n as a sum of k or fewer positive integers is

$$P_{n,k} \triangleq \sum_{i,j=1}^{n,k} p_{n,i,j} = \sum_{i,j=1}^{n,k} p_{n,j,i} = \sum_{i=1}^{k} p_{n,i}.$$

Furthermore,

$$P_{n,k+1} = P_{n-k-1,k+1} + P_{n,k}.$$

xii) Let $n, m \ge 1$. Then, the number of ways of representing all of the positive integers less than or equal to mn as the sum of n or fewer positive integers, the largest of which is less than or equal to m, is

$$\sum_{i,j,k=1}^{mn,m,n} p_{i,j,k} = \binom{n+m}{m} - 1.$$

- xiii) For all $n \ge 1$, $5|p_{5n+4}$, $7|p_{7n+5}$, $11|p_{11n+6}$, and $13|p_{17303n+237}$.
- xiv) For each prime m, there exists $n \ge 1$ such that $m|p_n$.
- xv) For all $n \geq 1$,

$$p_n = \frac{1}{n} \sum_{i=1}^n s_i p_{n-i},$$

where s_i is the sum of the divisors of i.

xvi) For all $n \geq 1$,

$$p_n = \sum_{i=1}^{n-1} (-1)^{\lfloor (i-1)/2 \rfloor} p_{n-g_i} = \sum_{i=1}^{n-1} (-1)^i (p_{n-P_i} + p_{n-P'_i}) = \sum_{i=1}^{n-1} e_i p_{n-i},$$

where the first sum is taken over all $i \geq 1$ such that $g_i \leq n$, the second sum is taken over all $i \geq 1$ such that $P_i \leq n$ and $P'_i \leq n$, and, for all $k \geq 0$,

$$e_k \stackrel{\triangle}{=} \begin{cases} 1, & k = 0, \\ (-1)^i, & k \in \{g_{2i-1}, g_{2i}\} = \{\frac{1}{2}i(3i-1), \frac{1}{2}i(3i+1)\}, \\ 0, & \text{otherwise.} \end{cases}$$

- xvii) For all $n \geq 2$, let (n_e, n_o) denote the number of partitions of $\{1, \ldots, n\}$ into an (even, odd) number of subsets. Then, $n_e n_o = e_n$.
- xviii) Let $n \geq 1$, define $\mathfrak{P}_n \stackrel{\triangle}{=} \{(k_1, \dots, k_n) \in \mathbb{N}^n : k_1 \leq \dots \leq k_n \text{ and } \sum_{i=1}^n k_i = n\}$, and let $i \in \{1, \dots, n\}$. Then,

$$\sum \sum_{j=1}^{n} \operatorname{truth}(k_j = i) = \sum \sum_{j=1}^{n} \operatorname{card} \left\{ j \in \{1, \dots, n\} \colon \sum_{l=1}^{n} \operatorname{truth}(k_l = j) \ge i \right\},$$

where the first sum on both sides is taken over all $(k_1, \ldots, k_n) \in \mathcal{P}_n$. (Example: The number 1 appears 12 times over all 7 elements of \mathcal{P}_5 , while the number of times that an integer appears 1 or more times in each element of \mathcal{P}_n summed over all elements of \mathcal{P}_5 is 12. Likewise, the number 2 appears 4 times over all the 7 elements of \mathcal{P}_5 , while the number of times that an integer appears 2 or more times in each element of \mathcal{P}_n summed over all 7 elements of \mathcal{P}_5 is 4.)

Remark: p_n is the nth partition number. See [andrewspart, p. 70], [AAR, pp. 553–576], [andrewseriksson, pp. 58–61, 125], [benjaminquinn, p. 79], [bressoud, pp. 624–627], [comtet, Chapter II], [hirschhorncong,], [OHC,], [zwillinger, p. 138]. xvii) is given in [santosdasilva,]. **Remark:** To illustrate $p_5 = 7$, note that 5 = 1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 + 1 = 2 + 2 + 1 = 3 + 1 + 1 = 4 + 1 = 3 + 2. **Remark:** P_i is the P_i in the P_i is the P_i is the P_i in the P_i is the P_i in the P_i is the P_i in the P_i interpretable P_i in the P_i in the P_i in the P_i in the

Fact 1.20.2. For all $n \ge 1$, let s_n denote the sum of the distinct positive divisors of n, and define $(p_i)_{i=0}^{\infty}$ and $(e_i)_{i=1}^{\infty}$ as in Fact 1.20.1. Then, the following statements hold:

- i) If n is prime and $k \geq 1$, then $s_{n^k} = \frac{n^{k+1}-1}{n-1}$.
- ii) If $n \ge 1$ and $m \ge 1$ are coprime, then $s_{nm} = s_n s_m$.
- *iii*) Let $n \geq 2$, and let m_1, \ldots, m_l be distinct primes and k_1, \ldots, k_l be positive integers such that $n = \prod_{i=1}^l m_i^{k_i}$. Then, $s_n = \prod_{i=1}^l s_{m_i^{k_i}}$.

- iv) Let $n \ge 1$. Then, $s_n = -ne_n \sum_{i=0}^{n-1} e_{n-i} s_i = -ne_n \sum_{i=1}^n e_n s_{n-i}$, where $s_0 \triangleq n$.
- v) Let $n \ge 1$. Then, $s_n = -\sum_{i=1}^n ie_i p_{n-i}$.

Source: [OHC,]. **Remark:** The generating function for $(s_i)_{i=1}^{\infty}$ is given by Fact $\ref{eq:condition}$? Remark: To illustrate iv), note that $12 = s_6 = -6e_6 - e_6 s_0 - e_5 s_1 - e_4 s_2 - e_3 s_3 - e_2 s_4 - e_1 s_5 = -6(0) - 0(12) - (1)1 - 0(3) - 0(4) - (-1)(7) - (-1)6 = 12$. **Remark:** To illustrate v), note that $12 = s_6 = -[e_1 p_5 + 2e_2 p_4 + 3e_3 p_3 + 4e_4 p_2 + 5e_5 p_1 + 6e_6 p_0] = -[1(-1)7 + 2(-1)5 + 3(0)3 + 4(0)2 + 5(1)1 + 6(0)1] = 12$.

Fact 1.20.3. Let $n \ge 1$, let $\tau(n)$ be the number of positive divisors of n, and let $\sigma(n)$ be the sum of the positive divisors of n, where \sqrt{n} is counted and summed twice if \sqrt{n} is an integer. Then, $\sqrt{n} \le \sigma(n)/\tau(n)$. **Source:** [kaczor1, p. 17]. **Example:** $\sqrt{4} \le (1+2+2+4)/4 = 9/4$ and $\sqrt{20} \le (1+2+4+5+10+20)/6 = 7$. **Related:** Fact ??.

Fact 1.20.4. Let $k \ge 1$, and let $\phi(k) \triangleq \operatorname{card} \{i \in \{1, \dots, k\} : \operatorname{gcd} \{k, i\} = 1\}$. Then, the following statements hold:

- $i) \ \ (\phi(i))_{i=1}^{28} = (1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20,12,18,12).$
- ii) Let $n \geq 2$ be prime. Then, $\phi(n) = n 1$.
- iii) Let m be an integer, let $n \geq 1$, and assume that m and n are coprime. Then, $m^{\phi(n)} \stackrel{n}{\equiv} 1$.
- iv) Let $n \geq 1$, let n_1, \ldots, n_l be distinct primes, let $i_1, \ldots, i_l \geq 1$, and assume that $n = \prod_{j=1}^l n_j^{i_j}$. Then,

$$\phi(n) = n \prod_{i=1}^{l} \left(1 - \frac{1}{n_i} \right).$$

If, in addition, $i_1 = \cdots = i_l = 1$, then $\phi(n) = \prod_{i=1}^l (n_i - 1)$.

- v) Let $n \ge 1$ and $m \ge 1$, and assume that n and m are coprime. Then, $\phi(nm) = \phi(n)\phi(m)$.
- vi) Let $n \ge 1$. Then, $\sum \phi(i) = n$, where the sum is taken over all $i \ge 1$ that divide n.
- vii) If $n \geq 2$, then $\sqrt{n/2} \leq \phi(n)$. If, in addition, $n \geq 3$ and $n \neq 6$, then $\sqrt{n} \leq \phi(n)$.
- viii) Let c_n denote the *n*th positive number such that n and $\phi(n)$ are coprime. Then, $(c_i)_{i=1}^{27} = (1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71).$
- ix) Let $n \ge 3$. Then, n and $\phi(n)$ are coprime if and only if n has distinct prime factors and, for all distinct prime factors k and l of n such that k < l, $k \nmid l 1$.

Source: [benjaminquinn, pp. 116, 117]. vii) is given in [kendallosburn,]. **Remark:** ϕ is the totient function. See [apostolnumbertheory, pp. 25–28]. **Remark:** iii) is Euler's theorem. See [larson, p. 148]. **Example:** For iii), note that, for m=4 and n=3, $4^2-1=3\cdot 5$. Furthermore, for m=7 and n=5, $7^4-1=5\cdot 480$. **Example:** For iv), note that $\phi(23)=22=23(1-1/23)$, $6=\phi(9)=9(1-1/3)$, and $40=\phi(55)=55(1-1/5)(1-1/11)$. **Example:** For v), note that $\phi(35)=24=4\cdot 6=\phi(5)\phi(7)$ and $\phi(68)=32=2\cdot 16=\phi(4)\phi(17)$. **Example:** For vi), note that $20=\phi(1)+\phi(2)+\phi(4)+\phi(5)+\phi(10)+\phi(20)=1+1+2+4+4+8$ and $23=\phi(1)+\phi(23)=1+22$. **Remark:** c_n is the nth cyclic number. See Fact ??. **Remark:** The first ten cyclic numbers that are not prime are 1,15,33,35,51,65,69,77,85,87. **Related:** Fact ??.

1.21 Facts on Convex Functions

Fact 1.21.1. let $a, b \in \mathbb{R}$, assume that a < b, and let $f: (a, b) \mapsto \mathbb{R}$. Then, the following statements are equivalent:

- i) f is convex.
- ii) For all $x_1, x, x_2 \in (a, b)$ such that $x_1 < x < x_2$,

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$

iii) For all $x_1, x, x_2 \in (a, b)$ such that $x_1 < x < x_2$,

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$

iv) For all $x_1, y_1, x_2, y_2 \in (a, b)$ such that $x_1 \neq y_1, x_2 \neq y_2, x_1 \leq x_2, \text{ and } y_1 \leq y_2,$

$$\frac{f(x_1) - f(y_1)}{x_1 - y_1} \le \frac{f(x_2) - f(y_2)}{x_2 - y_2}.$$

Furthermore, the following statements are equivalent:

- v) f is strictly convex.
- vi) For all $x_1, x, x_2 \in (a, b)$ such that $x_1 < x < x_2$,

$$\frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x)}{x_2 - x}.$$

vii) For all $x_1, y_1, x_2, y_2 \in (a, b)$ such that $x_1 \neq y_1, x_2 \neq y_2, x_1 < x_2, \text{ and } y_1 < y_2,$

$$\frac{f(x_1) - f(y_1)}{x_1 - y_1} < \frac{f(x_2) - f(y_2)}{x_2 - y_2}.$$

Source: [gruber, p. 4] and [kadelburg,].

Fact 1.21.2. Let a and b be nonnegative numbers such that a < b, let $f: [a, b] \mapsto \mathbb{R}$, assume that f is convex, and let x_1, \ldots, x_n be positive numbers such that $\sum_{i=1}^n x_i \leq b-a$. Then,

$$\sum_{i=1}^{n} f(a+x_i) \le f\left(a + \sum_{i=1}^{n} x_i\right) + (n-1)f(a).$$

Source: [kadelburg,].

Fact 1.21.3. Let a, b, c be nonnegative numbers such that $0 \le a \le b \le c$, let $f: [0, c] \mapsto \mathbb{R}$, and assume that f is convex. Then,

$$f(c-b+a) + f(b) \le f(c) + f(a).$$

Source: Fact 1.21.2 and [kadelburg,].

Fact 1.21.4. Let \mathcal{I} be a finite or infinite interval, and let $f: \mathcal{I} \to \mathbb{R}$. Then, in each case below, f is convex:

- i) $\Im = (0, \infty), f(x) = -\log x.$
- $ii) \ \Im = (0, \infty), \ f(x) = x \log x.$

- iii) $\mathfrak{I}=(0,\infty), f(x)=x^p$, where p<0.
- iv) $\mathfrak{I} = [0, \infty), f(x) = -x^p, \text{ where } p \in (0, 1).$
- v) $\mathfrak{I} = [0, \infty), f(x) = x^p, \text{ where } p \in (1, \infty).$
- vi) $\Im = [0, \infty), f(x) = (1 + x^p)^{1/p}, \text{ where } p \in (1, \infty).$
- vii) $\Im = \mathbb{R}$, $f(x) = \frac{a^x b^x}{c^x d^x}$, where 0 < d < c < b < a and $f(0) \triangleq (\log a/b)/\log c/d$.
- $viii) \ \ \Im = \mathbb{R}, f(x) = \log \tfrac{a^x b^x}{c^x d^x}, 0 < d < c < b < a, ad \geq bc, \text{ and } f(0) \triangleq \log[(\log a/b)/(\log c/d)].$
- ix) $\mathfrak{I} = \mathbb{R}, f(x) = \log \frac{c^x d^x}{a^x b^x}, 0 < d < c < b < a, ad < bc, and <math>f(0) \stackrel{\triangle}{=} \log[(\log c/d)/(\log a/b)].$
- $f(x) = (0, \infty), f(x) = \log \Gamma(x) \Gamma(1/x).$

Source: vii) and viii) are given in [experimentation, p. 39]; x) is given in [jamesonmia,].

Fact 1.21.5. Let $\mathcal{I} \subseteq (0, \infty)$ be a finite or infinite interval, let $f: \mathcal{I} \to \mathbb{R}$, and define $g: \mathcal{I} \to \mathbb{R}$ by g(x) = xf(1/x). Then, f is (convex, strictly convex) if and only if g is (convex, strictly convex). **Source:** [niculescupersson, p. 13].

Fact 1.21.6. Let $f: \mathbb{R} \to \mathbb{R}$, assume that f is convex, and assume that there exists $\alpha \in \mathbb{R}$ such that, for all $x \in \mathbb{R}$, $f(x) \leq \alpha$. Then, f is constant. **Source:** [niculescupersson, p. 35].

Fact 1.21.7. Let $\mathcal{I} \subseteq \mathbb{R}$ be a finite or infinite interval, let $f: \mathcal{I} \mapsto \mathbb{R}$, and assume that f is continuous. Then, the following statements are equivalent:

- i) f is convex.
- ii) For all $n \in \mathbb{P}$, $x_1, \ldots, x_n \in \mathcal{I}$, and $\alpha_1, \ldots, \alpha_n \in [0, 1]$ such that $\sum_{i=1}^n \alpha_i = 1$, it follows that

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i).$$

Remark: This is Jensen's inequality. **Remark:** Setting $f(x) = x^p$ yields Fact ??, whereas setting $f(x) = \log x$ for all $x \in (0, \infty)$ yields the arithmetic-mean–geometric-mean inequality given by Fact ??. **Related:** Fact ??.

Fact 1.21.8. Let $[a,b] \subset \mathbb{R}$, let $f:[a,b] \mapsto \mathbb{R}$ be convex, and let $x,y \in [a,b]$. Then,

$$\tfrac{1}{2}[f(x)+f(y)]-f[\tfrac{1}{2}(x+y)] \leq \tfrac{1}{2}[f(a)+f(b)]-f[\tfrac{1}{2}(a+b)].$$

Remark: This is *Niculescu's inequality*. See [bagdasar, p. 13].

Fact 1.21.9. Let $\mathcal{I} \subseteq \mathbb{R}$ be a finite or infinite interval, let $f: \mathcal{I} \mapsto \mathbb{R}$. Then, the following statements are equivalent:

- i) f is convex.
- ii) f is continuous, and, for all $x, y, z \in \mathcal{I}$,

$$\tfrac{2}{3}(f[\tfrac{1}{2}(x+y)] + f[\tfrac{1}{2}(y+z)] + f[\tfrac{1}{2}(z+x)]) \leq \tfrac{1}{3}[f(x) + f(y) + f(z)] + f[\tfrac{1}{3}(x+y+z)].$$

Remark: This is *Popoviciu's inequality*. See [niculescupersson, p. 12]. **Remark:** For a scalar argument and f(x) = |x|, this result implies Hlawka's inequality given by Fact ??. See Fact ?? and [nicpop,]. **Problem:** Extend this result so that it yields Hlawka's inequality for vector arguments.

Fact 1.21.10. Let $[a,b] \subset \mathbb{R}$, let $f: [a,b] \mapsto \mathbb{R}$, and assume that f is convex. Then,

$$f[\frac{1}{2}(a+b)] \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \le \frac{1}{2} [f(a) + f(b)].$$

Source: [niculescupersson, pp. 50–53], [sandorhadamard1,sandorhadamard2,]. **Remark:** This is the *Hermite-Hadamard inequality*.

Fact 1.21.11. Let $[a,b] \subset \mathbb{R}$, let $f: [a,b] \mapsto \mathbb{R}$, assume that f is concave, and let p and q be positive numbers such that p < q. Then,

$$\left(\frac{q+1}{b-a}\int_a^b [f(x)]^q dx\right)^{1/q} \le \left(\frac{p+1}{b-a}\int_a^b [f(x)]^p dx\right)^{1/p}.$$

Source: [PPT, p. 216].

1.22 Notes

Some of the preliminary material in this chapter can be found in [naylor,]. A related treatment of mathematical preliminaries is given in [robbin,]. An extensive introduction to logic and mathematical fundamentals is given in [blochbook,]. In [blochbook,], the notation " $A \to B$ " denotes an implication, which is called a *disjunction*, while " $A \Longrightarrow B$ " denotes a tautology.

The "truth" operator is represented by square brackets in [GKP,]. See [knuthnotes,]. Multisets are discussed in [blizard,grattan,singhsingh,wildbergermultisets,].

Partially ordered sets are considered in [schroderbook,trotter,]. Lattices are discussed in [blochbook,]. For a pair of elements x,y, $\mathrm{glb}(\{x,y\})$ is alternatively written as $x \wedge y$, where " \wedge " is the *meet* operator. Similarly, $\mathrm{lub}(\{x,y\})$ is alternatively written as $x \vee y$, where " \vee " is the *join* operator.

A directed graph is also called a *digraph*. A directionally connected graph is traditionally called *strongly connected* [westgraph, p. 56].

Alternative terminology for "one-to-one" and "onto" is *injective* and *surjective*, respectively, while a function that is injective and surjective is *bijective*.

Subtle aspects of compositions of complex functions are discussed in [boasmoc,].