cited in the European Search Report of EP 0571 2183.5

Your Ref.: FPOS- OOST-OOEP JB (PC)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

- (51) International Patent Classification 6: C07H 21/04, C12Q 1/68
- (11) International Publication Number: A1

WO 95/07289

(43) International Publication Date:

16 March 1995 (16.03.95)

(21) International Application Number:

PCT/US94/10129

(22) International Filing Date:

9 September 1994 (09.09.94)

(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

08/121,053

10 September 1993 (10.09.93) US **Published**

With international search report.

- (71) Applicant: AMOCO CORPORATION [US/US]; Patents and Licensing Dept., Suite 600, 55 Shuman Boulevard, Naperville, IL 60563-8487 (US).
- (72) Inventors: NIETUPSKI, Raymond, M.; 6 Cherry Street, Millbury, MA 01527 (US). STONE, Benjamin, B.; 121 Winthrop Street, Holliston, MA 01746 (US). WEISBURG, William, G.; 3 Jillson Circle, Milford, MA 01757 (US).
- (74) Agents: GALLOWAY, Norval, B. et al.; Amoco Corporation, Suite 600, 55 Shuman Boulevard, Naperville, IL 60563-8487 (US).

(54) Title: NUCLEIC ACID PROBES FOR LACTOBACILLUS DETECTION

(57) Abstract

Nucleic acid sequences which preferentially bind to the rRNA or rDNA of microorganisms which cause the spoilage of beer are disclosed. The beer spoilage microorganisms are predominantly of the genera Lactobacillus and Pedicoccus. The nucleic acids may be used as probes in assays to detect the presence of these microorganisms. Kits containing two or more probes are also described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	* Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	rr	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	ŢĴ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Demmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Pinland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA	Cohon			***	

3NSDOCID: <WO_____9507289A1_I_>

-1-

NUCLEIC ACID PROBES FOR LACTOBACILLUS DETECTION

5

This invention relates to nucleic acids, probes, kits, and methods for the detection of organisms, including *Pediococcus* sp. and *Lactobacillus* sp. which are involved with the spoilage of beer in the brewing environment.

10

15

20

25

Background of the Invention

The prevention of beer-spoilage by contaminating microorganisms is a major concern of commercial breweries. The predominant organisms which have been shown to spoil beer, or which have been associated with beer-spoilage are members of the genera *Lactobacillus* and *Pediococcus* (see <u>The Prokaryotes, Vol. II.</u> 2nd Edition, Balows, et al, Eds., 1991). These bacteria may be present in very low numbers and their detection may require three to five days or more by traditional culture methods.

Members of the genus *Pediococcus* are Gram-positive cocci which frequently form tetrads. They have complex nutritional requirements and are capable of fermenting a variety of sugars. They are facultative anaerobes found in a variety of habitats, most frequently associated with fermenting vegetation. There are eight species in this genus; *P. damnosus* is the primary member of the genus known to cause beer spoilage.

The genus Lactobacillus contains Gram-positive nonsporulating rods, utilizing strictly fermentative metabolism and having complex nutritional requirements. They are found in a variety of habitats, including water, dairy, meat and fish products, vegetation and fermenting vegetation, and in the mouth and intestinal tract of mammals.

Several studies have identified bacterial strains capable of spoiling beer, and the relative numbers of strains within the species so implicated were, in decreasing order of

BNSDOCID: <WO_____9507289A1_I_>

10

15

20

25

importance: Lactobacillus brevis, P. damnosus, L. casei, L. lindneri, L. coryniformis, L. buchneri, L. plantarum, and L. curvatus.

The current methods of detection of beer-spoilage organisms rely on classical microbiology and a general determination of the presence or absence of contamination by bacteria. These methods include: (a) culture, (b) direct fluorescence antibody (DFA), and (c) nucleic acid probes for culture confirmation. Actual identification of spoilage organisms requires classical biochemical tests and fulfillment of Koch's postulates, i.e. "reinfecting" fresh beer and showing it to become spoiled.

Description of the Invention

One aspect of this invention is to provide nucleic acids complementary to unique nucleic acid sequences within the ribosomal RNA (rRNA) and DNA (rDNA) of organisms which cause beer spoilage, but are not present in unspoiled beer. It is another aspect of this invention to provide nucleic acid probes which can hybridize to target regions which can be rendered accessible to probes under normal assay conditions. It is a further aspect of the invention to provide for probes which either (1) specifically discriminate between P. damnosus and non-Pediococcus species; (2) specifically discriminate between the majority of Pediococcus strains causing beer-spoilage and other species; (3) specifically discriminate between L. brevis and non-Lactobacillus species; (4) specifically discriminate between a cluster of Lactobacillus species (the cluster being a group of bacteria consisting of L. fructivorans, L. casei, L. curvatus, L. brevis, and L. buchneri) and non-cluster species; (5) specifically discriminate between the group of P. damnosus and L. brevis and other species; (6) specifically discriminate between the majority of Pediococcus and Lactobacillus species causing beer spoilage and other species; or (7) specifically discriminate between the majority of Pediococcus and Lactobacillus (and related species) and other species.

Bacterial ribosomes contain three distinct RNA molecules which, at least in *Escherichia coli* are referred to as 5S, 16S, and 23S rRNAs. In eukaryotic organisms, there are four distinct rRNA species, generally referred to as 5S, 18S, 28S and 5.8S.

NSDOCID: <WO 9507289A1 1 >

10

15

20

25

30

-3-

These names are historically related to the size of the RNA molecules, as determined by their sedimentation rate. In actuality, however, rRNA molecules vary substantially in size between organisms. This notwithstanding, 5S, 16S and 23S rRNA are art-recognized names referring to rRNA molecules in any bacteria and this convention will be used herein.

Description of the Figures

Figure 1 is a diagram of a sandwich assay.

Definitions

As used throughout the application and claims, the term "probe" will refer to synthetic or biologically produced nucleic acids, of 10 to 250 bases in length, which by design or selection, contain specific nucleotide sequences that allow specific and preferential hybridization under predetermined conditions to target nucleic acid sequences, and optionally contain a moiety for detection or enhancing assay performance. A minimum of ten nucleotides is generally necessary in order to statistically obtain specificity and form stable hybridization products, and a maximum of 250 nucleotides generally represents an upper limit of nucleotides in which reaction parameters can be adjusted to determine mismatched sequences and preferential hybridization. Therefore, in general, a preferred length of a probe will be between 10 and 250 nucleotides. Probes may also optionally contain certain constituents that pertain to their proper or optimal functioning under certain assay conditions. For example, probes may be modified to improve their resistance to nuclease degradation (such as by end-capping), to carry detection ligands (such as fluorescein, ³²P, biotin, etc.) or to facilitate their capture onto a solid support (e.g. poly-deoxyadenosine "tails").

"Preferential hybridization" or "hybridizing preferentially" is to be used in a relative sense; i.e. one hybridization reaction product is more stable than another one under identical conditions. Under some conditions, a hybridization reaction product may be formed with respect to one target, but not another potential binding partner. It is well within the skill of the ordinary artisan to compare stability of hybridization reaction products and evaluate which one is more stable, i.e. determine which one has bound "preferentially".

BNSDOCID: <WO_____9507289A1_I_>

WO 95/07289 PCT/US94/10129

-4-

As used herein, the terms "homology" and "homologous to" are meant to refer to the degree of similarity between two or more nucleic acid sequences, and is not meant to imply any taxonomic relatedness between organisms. The degree of similarity is expressed as a percentage, i.e. 90% homology between two sequences will mean that 90% of the bases of the first sequence are identically matched to the bases of the second sequence.

A "cluster of Lactobacillus species" means a group of Lactobacillus species selected from the group consisting of L. fructivorans, L. casei, L. curvatus, L. brevis, and L. buchneri.

"Specific" means that a nucleotide sequence will hybridize to a defined target sequence and will substantially not hybridize to a non-target sequence, or that hybridization to a non-target sequence will be minimal.

"Hybridization" is a process by which, under predetermined reaction conditions, two partially or completely complementary strands of nucleic acid are allowed to come together in an antiparallel fashion to form a double stranded nucleic acid with specific and stable hydrogen bonds, following explicit rules pertaining to which nucleic acid bases may pair with one another.

"Substantial hybridization" means that the amount of hybridization will be to an extent that one observing the results would consider the result positive in a clinical setting. Data which is considered "background noise" is not substantial hybridization.

"Stringent hybridization conditions" mean approximately 35°C to 65°C in a salt solution of approximately 0.9 molar NaCl. Stringency may also be governed by such reaction parameters as the concentration and type of ionic species present in the hybridization solution, the types and concentrations of denaturing agents present, and the temperature of hybridization. Generally as hybridization conditions become more stringent, longer probes are preferred if stable hybrids are to be formed. As a rule, the stringency of the conditions under which a hybridization is to take place will dictate certain characteristics of the preferred probes to be employed. Such relationships are well understood and can be readily manipulated by those skilled in the art.

5

10

15

20

25

3NSDOCID: <WO_____9507289A1_l_>

10

15

20

25

samples.

"Lactobacillus sp." refers to any member of the genus Lactobacillus, regardless of the species.

"Pediococcus sp." refers to any member of the genus Pediococcus, regardless of the species.

"Majority of" when referring to strains means more than half of the strains known or, more than half of the strains tested, when one tests a representative sampling of at least 25 strains. When referring to species, it means more than one half of the known species, or more than one half of the species tested, when one tests a representative number of species..

In accordance with this invention, there are provided nucleic acids having approximately 10 to 250 nucleotides which (1) hybridize preferentially to rRNA or rDNA of P. damnosus as compared to other non-Pediococcus species; (2) hybridize preferentially with the majority of Pediococcus strains causing beer-spoilage compared to other species; (3) hybridize preferentially with L. brevis compared to non-Lactobacillus species; (4) hybridize preferentially with a cluster of Lactobacillus species (selected from the group consisting of: L. fructivorans, L. casei, L. curvatus, L. brevis, and L. buchneri) compared to other species; (5) hybridize preferentially with the group of P. damnosus and L. brevis compared to other species; (6) hybridize preferentially with the majority of Pediococcus and Lactobacillus species causing beer spoilage as compared to other species; and (7) specifically discriminate between the majority of Pediococcus and Lactobacillus (and related species) and other species. Under those same hybridization conditions, the nucleic acids of this invention do not substantially hybridize to the rRNA or rDNA of non-target organisms, or the host or environmental matrix which may be present in test

The nucleic acids of this invention are useful for detecting the presence of an organism which would cause spoilage in beer. Probes which are either complementary to or at least 90% homologous to at least ten consecutive nucleic acids of the aforementioned nucleotides also form another aspect of this invention.

BNSDOCID: <WO 9507289A1 I >

10

15

20

25

One embodiment of this invention are nucleic acids and probes which are homologous to or hybridize to regions of 16S rRNA or rDNA of beer-spoiling microorganisms. The regions of 16S rRNA of particular interest are in reference to the numbering of the homologous regions in *E. coli*, a standard well known to those of ordinary skill in the art, include:

P. damnosus: 16S rRNA positions 285 to 320, 450 to 485, and 1435 to 1470;

L. brevis: 16S rRNA positions 75 to 105, and 450 to 485;

P. damnosus of L. brevis: 16S rRNA position 805 to 840;

Pediococcus and Lactobacillus: 16S rRNA positions 120 to 150, 210 to 245, 280 to 315, 485 to 515, and 750 to 785.

Another embodiment of this invention is nucleic acids and probes which hybridize to regions of 23S rRNA or rDNA of beer-spoiling microorganisms. The regions of 23S rRNA of particular interest are in reference to the numbering of the homologous regions in *E. coli*, a standard well known to those of ordinary skill in the art, include:

P. damnosus 23S rRNA positions 700 to 740, 870 to 910, 925 to 960, 1130 to 1165, and 1205 to 1245.

L. brevis 23S rRNA positions 280 to 320, 325 to 363, 1130 to 1165, 1265 to 1300 and 1480 to 1512.

P. damnosus and L. brevis 23S rRNA positions 600 to 635.

Preferably the nucleic acid composition is complementary to or homologous with at least 90% of a sequence comprising any ten consecutive nucleotides within sequences selected from the group of sequences defined by the group of probes consisting of: 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2892, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902. The sequences of these probes are presented below.

A further embodiment of this invention includes a kit for the detection of the presence of beer-spoiling microorganisms. The kit comprises a set of nucleic acids comprising at least two nucleic acids. Each nucleic acid is of 10 to 250 nucleotides and is of a different base sequence composition. Each nucleic acid is complementary to or

10

15

20

25

homologous with at least 90% of a sequence comprising any ten consecutive nucleotides selected from the group of sequences defined by probes 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2892, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902. A set of nucleic acids is particularly suited for detecting beer-spoiling microorganisms in a two probe, sandwich assay. The kit additionally comprises reagents, compositions, instructions, disposable hardware and suitable packaging to allow marketing in a convenient assembly.

A further embodiment of the present invention includes methods for the detection of the presence of beer-spoiling microorganisms. The method comprises the steps of contacting a sample suspected of containing a target with at least one nucleic acid. The nucleic acid has approximately 10 to 250 nucleotides which hybridize preferentially to rRNA or rDNA of: (1) P. damnosus; (2) the majority of Pediococcus strains causing beer-spoilage, but not other species; (3) L. brevis, but not other Lactobacillus species; (4) a cluster of Lactobacillus species (comprised of L. fructivorans, L. casei, L. curvatus, L. brevis, and L. buchneri), but not other species; (5) the group of P. damnosus and L. brevis, but not other species; (6) the majority of Pediococcus strains and Lactobacillus species which cause beer spoilage, but not other species; and (7) the majority of Pediococcus and Lactobacillus (and related species) but not other species. The method includes the steps of imposing hybridization conditions on the sample such that the nucleic acid binds preferentially to the target rRNA or rDNA to form nucleic acid complexes and detecting the complexes as an indication of the presence of the target organism(s). Preferably, the nucleic acid of the present invention is at least 90% homologous to a sequence comprising any ten consecutive nucleotides selected from the group consisting of sequences defined by probes 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2892, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902.

The probes of the present invention provide the basis for development of a nucleic acid hybridization assay for the specific detection of beer-spoilage organisms, in beer or in environmental samples. The probes of the present invention also form the

basis for confirmation of the presence of microorganisms which have been shown to spoil beer.

The first step taken in the development of the probes of the present invention involved the identification of the regions of 16S or 23S rRNA which potentially could serve as target sites for specific nucleic acid probes with the desired sensitivity. This included discovering which probe target sites were unique to: 1) P. damnosus; 2) the majority of Pediococcus strains causing beer-spoilage; 3) L. brevis; 4) a subgroup of the Lactobacillus sp.; 5) the group of P. damnosus and L. brevis; 6) the group of the majority of Pediococcus and Lactobacillus species which have been shown to spoil beer; and 7) the group of the majority of Pediococcus and Lactobacillus and related species. This involved finding sites which are:

- 1. different between *P. damnosus* and other *Pediococcus* and non-*Pediococcus* species;
 - 2. different between the majority of Pediococcus strains tested and other species;
- 3. different between L. brevis and other Lactobacillus and non-Lactobacillus species;
- 4. different between a cluster of Lactobacillus species (L. fructivorans, L. casei, L. curvatus, L. brevis, and L. buchneri) and other species;
 - 5. different between the group of P. damnosus and L. brevis and other species;
- 6. similar for all organisms which have been shown to cause beer-spoilage as demonstrated by a representative sampling of 25 strains, but different between the next closest evolutionary neighbors' sequences; and
- 7. similar between the majority of *Pediococcus* and *Lactobacillus* and related species, but different from other species except for *L. minutus*, *L. lacti*, members of the *Micrococcus* genus and members of the *Pectinatus* genus.

To accomplish the above analysis, precise alignments of *P. damnosus* and *L. brevis* 16S and 23S rRNA sequences were developed. The essentially complete 16S and 23S rRNA sequences of both *P. damnosus* and *L. brevis* were determined using standard laboratory protocols. The rDNAs so obtained were cloned into plasmid vectors from

3NSDOCID: <WO_____9507289A1_I_>

5

10

15

20

25

10

15

products produced by enzymatic amplification (such as that described in Weisburg, 1991, J. Bacteriol. 173:697-703, which is incorporated herein by reference). The P. damnosus and L. brevis sequences were aligned with homologous sequences of other Lactobacillus species, Gram-positive organisms and other eubacterial rRNA sequences including E. coli (which are widely used as standard reference sequences by those of ordinary skill in the art).

Based on the determined 16S and 23S rRNA sequences of *P. damnosus* and *L. brevis*, twenty-two probes were designed, synthesized, and tested. The specific behaviors of the probes are dependent to a significant extent on the assay format in which they are employed. Conversely, the assay format will dictate certain of the optimal features of the particular probes.

The discovery that probes could be generated with the extraordinary inclusivity and exclusivity characteristics of the present invention with the respect to *P. damnosus* and *L. brevis* without incurring undesirable levels of cross-reactivity was unpredictable and unexpected.

The first group of preferred probes are able to differentiate between *P. damnosus* and other species.

P. damnosus Specific 16S rRNA Probes

- P. damnosus Probe 2858 (28mer, 46% G+C) (SEQ ID NO:1) 5'-TCA CAG CCT TGG TGA GCC TTT ATC TCA T-3'
 - P. damnosus Probe 2861 (29mer, 48% G+C) (SEQ ID NO:2) 5'-CAC TGC ATG AGC AGT TAC TCT CAC ACA CT-3'
- 25 P. damnosus Probe 2867 (28mer, 61% G+C) (SEQ ID NO:3) 5'-CGG CTA GCT CCC GAA GGT TAC TCC ACC T-3'

A second group of preferred probes are able to detect the majority of *Pediococcus* beer-spoilage strains.

3ს

-10-

Majority of Pediococcus Genus 23S rRNA Probes

Pediococcus Genus Probe 2876 (32mer, 50% G+C) (SEQ ID NO:4) 5'-CCA CAG TCT CGG TAA TAT GTT TAA GCC CCG GT-3'

5

Pediococcus Genus Probe 2877 (31mer, 58% G+C) (SEQ ID NO:5) 5'CGC TCC AAC AGT CCT CAC GGT CTG CCT TCA T-3'

10

A third group of preferred probes are specific for L. brevis.

L. brevis Specific 16S rRNA Probes

L. brevis Probe 2868 (28mer, 43% G+C) (SEQ ID NO:6) 5'-CAA CGT CTG AAC AGT TAC TCT CAA ACG T-3'

15

L. brevis Probe 2869 (32mer, 41% G+C) (SEQ ID NO:7) 5'-CCG ATG TTA AAA TCC GTG CAA GCA CIT CAT TT-3'

L. brevis Specific 23S rRNA Probes

20

L. brevis Probe 2880 (31mer, 45% G+C) (SEQ ID NO:8) 5'-TGA GGG TTA TTG GTT TCG TTT ACG GGG CTA T-3'

25

L. brevis Probe 2891 (33mer, 48% G+C) (SEQ ID NO:9)
5'-CAG GCT TCC CAA CCT GTT CAA CTA CCA ACA ACT-3'

L. brevis Probe 2892 (30mer, 53% G+C) (SEQ ID NO:10) 5'-CCA CAA TTT GGT GGT ATC CTT AGC CCC GGT-3'

30

L. brevis Probe 2895 (32mer, 53% G+C) (SEQ ID NO:11) 5'-CAA CCC GGC TGC CAG CAT TTA ACT GGT AAC CT-3'

A fourth group of probes is specific to a cluster of *Lactobacillus* species. A preferred one is given below.

Cluster of Lactobacillus sp. 23S rRNA Probe

Lactobacillus cluster Probe 2899 (32mer, 47% G+C) (SEQ ID NO:12) 5'-TCG GTG GAT CAG ATT CTC ACT GAT CTT TCG CT-3'

-11-

A fifth group of probes can detect both *P. damnosus* and *L. brevis*. Preferred ones are given below.

P. damnosus and L. brevis 16S rRNA Probes

P. damnosus and L. brevis Probe 2904 (30mer, 43% G+C) (SEQ ID NO:13) 5'-CCA ACA CTT AGC ATT CAT CGT TTA CGG CAT-3'

P. damnosus and L. brevis 23S rRNA Probes

P. damnosus and L. brevis Probe 2896 (32mer, 44% G+C) (SEQ ID NO:14) 5'-TTC GCT ACG GCT CCG TTT TTT CAA CTT AAC CT-3'

A sixth group of probes hybridizes with the majority of *Pediococcus* and *Lactobacillus* species, and all beer-spoilage organisms. Preferred ones are given below.

15 16S rRNA Beer-Spoilage Organism Probes

Beer-spoilage organism Probe 2873 (28mer, 64% G+C) (SEQ ID NO:15) 5'-CCC CTG CTT CTG GGC AGG TTA CCC ACG T-3'

Beer-spoilage organism Probe 2881 (28mer, 57% G+C) (SEQ ID NO:16) 5'-TCG CTA CCC ATG CTT TCG AGC CTC AGC T-3'

Beer-spoilage organism Probe 2887 (30mer, 63% G+C) (SEQ ID NO:17) 5'-CGC CGC GGG TCC ATC CAG AAG TGA TAG CCT-3'

25

5

23s rRNA Beer-Spoilage Organism Probes

Beer-spoilage organism Probe 2875 (32mer, 50% G+C) (SEQ ID NO:18) 5' CTG AAT TCA GTA ACC CTA GAT GGG CCC CTA GT-3'

30

Beer-spoilage organism Probe 2901 (32mer, 44% G+C) (SEQ ID NO:19) 5'-TAT CAC TCA CCG TCT GAC TCC CGG ATA TAA AT-3'

A seventh group of probes will hybridize to the majority of *Pediococcus* and Lactobacillus species. Preferred ones are presented below.

Majority of Pediococcus and Lactobacillus species 16S rRNA Probes

Pediococcus/Lactobacillus Probe 2854 (27mer, 48% G+C) (SEQ ID NO:20) 5'-TAG TTA GCC GTG GCT TTC TGG TTG GAT-3'

5

Pediococcus/Lactobacillus Probe 2879 (28mer, 54% G+C) (SEQ ID NO:21) 5'-CGA TTA CCC TCT CAG GTC GGC TAC GTA T-3'

Majority of Pediococcus and Lactobacillus species 23S rRNA Probes

10

Pediococcus/Lactobacillus Probe 2902 (31mer, 58% G+C) (SEQ ID NO:22) 5'-TTC GGG CCT CCA GTG CGT TTT ACC GCA CCT T-3'

15

20

The probes of the present invention may be used in a "sandwich" assay. As shown in Figure 1, the "sandwich" assay involves use of a pair of probes simultaneously. One probe, designated the "capture" probe 12 is a bifunctional nucleotide made by adding a homopolymeric 3' tail to a probe with preferably high target specificity. The tail will hybridize to the complementary homopolymer 11 on a solid surface 10, such as a glass bead or a filter disc. Hybridization of the capture probe 12 to its target 15, in this case Pediococcus/Lactobacillus rRNA, would complex the target 15 with the solid support 10. The detector probe 13, preferably with some degree of specificity, would be a part of a detection scheme which may use virtually any sort of detection moiety 14, including radioactivity, fluorescence, chemiluminescence, color or other detector moiety. The detector probe may be incorporated as an RNA sequence into an amplifiable Q-beta midivariant as described by Kramer and Lizardi, 1989 Nature 339.

25

A sample, such as a swab or liquid aliquot is processed as to liberate the total nucleic acid content. The sample, putatively containing disrupted beer-spoilage organisms, is incubated in the presence of a capture probe, detector probe, and magnetic particle beads which have been derivatized with oligo-deoxyThymidine in a chaotropic buffer such as guanidinium isothiocyanate.

30

If target molecules (beer-spoilage microorganisms of the genus *Pediococcus* or *Lactobacillus*) are present, a Bead-Capture Probe-Target-Detector Probe hybridization complex is formed, as in Figure 1. The presence of a magnet near the bottom of the

reaction tube will cause the magnetic particle-hybridization complex to adhere to the side of the tube, enabling the removal of the sample matrix, unbound probe, and other constituents not hybridized. Repeated rehydration and denaturation of the Bead-Capture Probe-Target-Detector Probe complex would enable significant background reduction. The final detection may involve spotting the beads on a membrane and assaying by an appropriate method, such as autoradiography, if the detector probe was labelled with a radioisotope. Alternatively, the detector probe may be an amplifiable midivariant probe.

The following non-limiting Examples are presented to better illustrate the invention.

10

15

5

EXAMPLE 1

Dot-Blot Analysis of Probe Hybridization Behavior .

Dot-blot analysis, in accordance with well-known procedures, involves immobilizing a nucleic acid or a population of nucleic acids on a filter such as nitrocellulose, nylon or other derivatized membranes which can be readily be obtained commercially. Either DNA or RNA can be so immobilized and subsequently tested for hybridization under a variety of conditions (stringencies) with nucleotide sequences or probes of interest. Under stringent conditions, probes with nucleotide sequences with great complementarity to the target will exhibit a higher level of hybridization than probes whose sequences have less homology.

20

25

Probes of the present invention are tested in a dot-blot. One hundred nanograms RNA, is purified by phenol extraction and centrifugation through cesium trifluoroacetate gradients, denatured and spotted on a nylon membrane. Probes are isotopically labelled with the addition of a ³²P-Phosphorous moiety to the 5' end of the oligonucleotide by the established polynucleotide kinase reaction. Hybridization of the probes is conducted at a temperature of 60°C in the presence of 1.08M NaCl, 60mM sodium phosphate and 6mM ethylenediamine tetraacetic acid (EDTA), pH 7.4. Unhybridized probe is removed by washing at a salt concentration of one-third of the hybridization condition. The filters are exposed to X-ray film and the intensity of the hybridization signals is evaluated after three hours of autoradiographic exposure.

SUBSTITUTE SHEET (RULE 26)

WO 95/07289 PCT/US94/10129

-14-

The following TABLE 1 is a summary of results.

P. damnosus probes targeting 16S rRNA

Probe 2858: All P. damnosus strains

Probe 2861: All P. damnosus strains; one isolate of Lactobacillus.

5 Probe 2867: All P. damnosus strains

L. brevis probes targeting the 16S rRNA

Probe 2868: L. brevis specific. This probe misses some isolates identified as L. brevis, but this is thought to be to inaccurate identification of some environmental isolates.

Probe 2869: L. brevis specific.

15 Group of P. damnosus and L. brevis probes targeting the 16S rRNA

Probe 2904: P. damnosus and L. brevis. Also detects L. buchneri and other related species of Lactobacillus.

20 All beer-spoilage organisms targeting 16S rRNA

Probe 2873: Majority of *Pediococcus* and *Lactobacillus* strains; all but one spoilage isolate.

Probe 2881: Majority of *Pediococcus* and *Lactobacillus* strains. Also detects many Grampositive eubacteria.

25 Probe 2887: Majority of *Pediococcus* and *Lactobacillus strains*, all spoilage isolates.

Group of Majority of Pediococcus and Lactobacillus species probes, targeting 16S rRNA

Probe 2854: Majority of Pediococcus and Lactobacillus strains, also two Bacillus species.

Probe 2879: Majority of *Pediococcus* and *Lactobacillus* strains. Also detects some Grampositive bacteria.

Group of Majority of Pediococcus beer-spoilage organisms, probes targeting the 23S rRNA

Probe 2876: Most Pediococcus strains. Also detects some Lactobacillus isolates.

35 Probe 2877: Most *Pediococcus* strains. Also detects some *Lactobacillus* isolates.

L. brevis probes targeting the 23S rRNA

Probe 2880: L. brevis specific. Misses some isolates identified as L. brevis, but this may be due to inaccurate identification of some environmental isolates.

Probe 2891: L. brevis specific.

Probe 2892: L. brevis specific.

Probe 2895 L. brevis specific.

3NSDOCID: <WO_____9507289A1_I_>

30

46

10

Subgroup of Lactobacillus genus probes targeting 23S rRNA
Probe 2899: Most Lactobacillus species. Possibly some Pediococcus strains.

Group of P. damnosus and L. brevis probes targeting 23S rRNA

Probe 2896: P. damnosus and L. brevis. Also detects a few other species of Lactobacillus

All beer-spoilage organisms targeting 23S rRNA

Probe 2875: Majority of *Pediococcus* and *Lactobacillus* strains, misses some spoilage isolates.

Probe 2901: Majority of *Pediococcus* and *Lactobacillus* strains, misses some spoilage isolates.

Group of Majority of Pediococcus strains and Lactobacillus species, targeting 23S rRNA

Probe 2902: Majority of Pediococcus and Lactobacillus strains. Also some Gram-positive eubacteria.

The results of the dot blot assay are presented below as TABLE 2. In this table,

+ + + + indicates the strongest signals observed; + + + indicates strong signal observed;

+ + indicates a somewhat weaker, but definitely positive hybridization signal observed; +

indicates a weak signal; +- indicates a very weak, barely detectable signal; - indicates no

signal observed. ND indicates that this assay was not performed. If a probe binds

strongly (either ++++ or +++) to at least one target, but exhibits a weak hybridiza
tion (+ or +-) to a second target, the probe is considered to substantially hybridize only
with the targets giving the ++++ or +++ results.

TABLE 2 Pediococcus and Lactobacillus Dot Bloc Mybridization Results

					-
Ducks		2858	2861	2867	1660
Probe		Pediococci	us damno	eus 165	Eubacterial
	Designation				
Organisa	2011				
Pediococcus damnosus	P2	****	****	****	++
P.damosus	P5	++++	++++	++++	++++
P. damnesus	P10	****		+	+
P. dampeus	P17	***	****	****	****
P. damnosus	ATCC29358	****	****	****	++++
P. pentosaceus	ATCC33316	+	-	-	++++
P.pentosaceus	Pla Pla	-	-	-	++++
var. intermedius			_	-	++++
Pediococcus ep.	P140	-	-	<u>.</u>	***
Pediococcus sp.	P160	-		Ι	****
Pediococcus sp.	P167	•	· <u>-</u>	_	****
Pediocectus sp.	2172		-	_	++++
Lactobacillus delbruseki	i L4	-		-	++++
L.fructivorans	L9	-	_	_	***
L.case1	214	-	Ξ	_	****
L.delbrueckii	£17	-	_	_	++++
L.fructivorans	119	-	_	-	++++
L.curvatus	L20		-	-	****
L.casei	L22_	I	_	_	****
Lactobacillus sp.	£137	_	_	-	++++
Lactobacillus SP.	L174 L176	I	_	-	
Lactobacillus sp.	L178	_	-	-	· ++++
Lactobacillum sp.	L178	-	_	-	+++
Lactobacillus sp.	L179	_	-		
Lactobacillus sp.	1.185	_	-	-	+
Lactobacillus sp. Lactobacillus sp.	1193	•	-	-	***
Lactobacillus ap.	£194	•	-	+	
Spoilage isolate 1	PedioC4908	MD	-	MD.	
Spoilage isolate 2	Pedio53454	MO	-	XD	++++
Spoilage isolate 3	PedioC30655	360	++++	300	
Spoilage implate 4	PedioC3303F	100	-		++++
Spoilage isolate 5	Ped106667	MD	•	MD	++++
Spoilage isolate 7	B6665	300	-	160	+
Spoilage isolate &	LactoC58842	M	-	100	
Spoilage isolate 9	<u> [acto</u> [345]	XD	-	10	****
Spoilage isolate 11	LactoC5884A	30	-	TO TO	****
Spoilage isolate 13	LactoC3162)(D)	-		****
Spailage isolate 14	C4908	MD MD		100	****
Spoilage isolate 15	LactoC332S	100	_	100	****
Speilage isolate 10	Lacto small	20	_	7	****
Spoilage isolate 17	L. brevis GT4696	=	_	100	
Spoilage isolate D	L. casei GE4697	MD.	-	300	+++
Spoilage isolate A Spoilage isolate F	L. brevis GT4698	MD	-	XD	**** .
Spailage isolate B	L. casei GT4699	X	-	10	****
Spoilage isolate	L. Drevis GT4700	ED.	-	100	***
Spailage isolate J	L. brevis GT4702	300	-	100	++++
Spoilage isolate J	L. brevis GT4703	100	-	ND.	
Conilege iselate	L. brevis GT4704		-	100	++++
Spoilage isolate L.	delbrueckii GT4705	XD	-	*	***
Spoilage isolate 852	L. Inetivorans) ID	-	XD	+++
Spoilage iselate 853	L. fructivorans	MD	•	300	
L.acidophilus	ATCC4356	-	•	-	****
L.brevis	AICC8291	-	-	-	****
L.buchner1	ATCC1130S	-	=	-	****
L. casei	AZCC393	-	Ξ	-	
L.casei	ATCC7469	_	-		• • • •
ssp. Thampoous	ATCC11842	_	-	-	+
L.delbrueckii					
ssp. bulgarious					

-17-

TABLE 2 (continued)	Pediococcus a	nd Lactober	illus D	ot Blot	Hybridization Result
Probe		2858 Pediococo	2061 us daano	2867 sus 165	1660 Eubacterial
Organism	Designation				
	ATCC933B				1-1-1-1
L. Cermentum	ATCC33367	_	-	_	1-1-1
L.minutus	ATCCB014	_	_	-	
L.plantarus	ATCC14917	-	-	_	+++
L.plantarum Leuconostoc sp.	Leuco192	-	-	-	* * *
Leuco.mesenteroides	ATCC8293	-	-	-	+ + +
Acetobacter aceti	ATCC15973	-	-	-	
Acetobacter aceti	AICC23746	-	-	-	***
Acetobacter aceti	ATCCZ3747	-	-	=	***
Acetobacter Aceti	ATCC23748	-	-	_	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Aceto-hansenii	ATCC35959 ATCC14835	KED)MOD	MD	1470
Aceto.liquiaciens	ATCC12877	~	-	-	++++
Aceto.pasteurianus	ATCC12879	_	_	-	+++
Aceto.pasteurianus	ATCC23650	_	-	-	111
Aceto.pasteurianus Aceto.pasteurianus	ATCC23758	-	-	-	111
Aceto.pasteurianus	ATCC23764	-	-	-	+++
Aceto.pasteurianus	ATCC23765	-	-	-	***
Aceto.pasteurianus	ATCC23766	•	-	-	+
Aceto.pasteurianus	ATCC23767	-	-	-	+++
Aceto.pasteurianus	ATCC33445	-	-	-	+
Bacillus coagulans	ATCC7050	-	=	-	++
B. stearothermophilus	ATCC12980	ND	HD	ND	XD +→++
B. subtilis	ATCC21556	-	-	-	****
Citrobacter freundii	ATCCB090	-	-		****
Enterobacter aerogenes	ATCC13048	-			4-4-4
E. agglomerans	ATCC27155 ATCC13047	-	_	_	111
E. cloacae	ATCC13524	-	-	-	
Flavohacterium ferrugineum	ATCC11694	_	_	-	****
Gluconobacter baydans G.oxydans	ATCC19357	_	-	-	+++
G.oxydans	ATCC23755	-	-	-	+++
G. exydans	ATCC33446	-	-	-	***
G.orydans	ATCC33447	-	-	-	***
Hafnia alvei	ATCC13337	-	-	-	++++ +-++
Klebsiella ozytoca	ATCC13182	-	_	_	4-4-
Kleb.terrigena	ATCC33257 ATCC19435	-	_	_	4444
Lactococcus lactis	VTCC13433	•			
sep. lactis	ATCC43236	MD	MOD	NTD.	MD
Megasphaera cerevisiae Megasphaera cerevisiae	ATCC43254	ND	NID	MD	ND
Micrococcus kristinas	ATCC27570	•	-	_	++
Micrococcus varians	ATCC15306	-	-	-	++++
Obesumbecterium proteus	ATCC12841	-	-	-	
Pectinatus cerevisiiphilus	ATCC29359	•	-	-	+++ ++++
Pectinatus frisingensis	ATCC31332	-	-	-	****
Proteus mirabilis	ATCC29906	-	-	_	
Serratia surcessens	ATCC13880 ATCC14990	-	-	+	++++
Staphylococcus epidermidis	ATCC15305	-	_	÷	****
Staph.saprophyticus	ATCC31821	MID	ND	MD	ND
Zymomonas mobilis Saccharomyces cerevisias	ATCC19824	-	-	-	•
Saccharomyces cerevisias	ATCC2341	-		_	-
Saccharomyces cerevisias	ATCC36902	•	-	-	-
Chisay		-	-	-	-
Candida albicans	ATCC11006	-	-	-	_
Human/CaSKi		-	_	_	****
Stool RNA		-	_	_	-
Wheat germ RNA					

TABLE 2 (continued)	Pediococcus and	Lactob	acillum D	ot Blat !	Hybridiz.	etion Re	sults.
Probe		2854	2873	2879	2881	2887	2904
Prose .			Pediococ	cus / La	ctobacil.	lus 16S	
Organism	Designation						
	P2	****	++++	++++	****	****	++++
Pediococcus daenosus P.daenosus	P5	+	****		****	++++	***
P. damosus	P10	****	+	****	++	++++	T+++
P. damnosus	P17	++++	++++	***	++++	****	****
P. dannosus	ATCC29358 ATCC33316	****		****	+	****	_
P. pentosaceus	P18	++++	****	++++	****	++++	-
P.pentosaceus var. intermedius	****						
Pediococcus ap.	P140	***	****		++++	++++	-
Pediococcus sp.	P160	++	****	++++	****	***	-
Pediococcus sp.	P167	+	++++	****	****	++++	_
Pediococcus sp.	P172		++++	****	****	****	_
Lactobacillus delbrueckii	L4 L9	****	1111	****	++++	+	++
L.fructivorans L.cassi	īi.	****	•	-	++++	***	++
L.delbrueckii	E17	++++	++++		***	+	•
L. fructivorans	L19	++-	++++	++-+	****	**	++
L. curvatus	120	+++	++++	****	****	***	**
L.casei	L22 L137		++++	++++	+	***	+++
Lactobacillus sp.	L174	++++	-	++++	+++	++++	1-1
Lactobacillus sp. Lactobacillus sp.	L176	***		-	++++	***	++
Lactobacillus sp.	£177	++++	++	-	++++	****	
Lactobacillus sp.	L178	***	++++	++++	****	+++	***
Lactobacillus sp.	L179	****		****	****	***	++
Lactobacillus sp.	L185 L193	++++	++++	++++	****	∓	+7
Lactobacillus sp. Lactobacillus sp.	L193 L194	****	1111	++++	+	++++	TT
Spoilage isolate 1	PediaC490E	MD	++-+	***	++++	++++	ND
Spoilage isolate 2	Pedia53454	MD	+-+-+	++++	++++	++++	ND
Spoilage isolate 3	PedioCJ0655	MD.	++++	-	****	++++	MD MD
Spoilage isolate 4	PedioC3303F	XD	****	****	****	***	350
Spoilage isolate 5	Pedic 66 67 B 6 665	MD	****	****		***	ND
Spoilage isolate 7 Spoilage isolate 8	LactoCS8843	MD.	+	++++	****	+++	MD
Spoilage isolate 9	Lacte53453	MD	++++	++++		***	100
Spoilage isolate 11	LactoCS884A	MD	****	****	++++	***	ND ND
Spoilage isolate 13	LactoC5162	300	***	****	++++	+++	ND
Spoilage isolate 14	C4908 LacteC3325	100 100	****	***	***		MD
Spoilage isolate 15	Lacto small	140		****	****	++++	MI
Spoilage isolate 10 Spoilage isolate 12	Lacto large	MD	****		++++	++++	MID
Speilage isolate D L	Drevis GT4696	MD.	++++	****	++++	++++	MED MED
Spoilage isolate A L	. casei GT4697	700	++++	+++	++++	****	ND ND
	. brevis GT4698 . casai GT4699) D	****	+	***	++++) ID
	brevis GT4700	XD	***	++++	++++	++++	ND
	brevis GI4702	MD	***	•	++++	++++	XID
Spoilage isplate J	. bravis GI\$703	MD)	****		****	++++	MD MD
Contlage isolate	. Drevis GT4704	100	++++	++++	1444 4444	****	100 100
	brueckii GT4705	16D	••••	****	++++	7777	100
Speilage iselate 857 Speilage isolate 853	L. fructivorans L. fructivorans	100	++++	++++	+	++++	
L.acidophilus	ATCC4356		-	-		-	++
L.brevis	ATCC8291	++++	****	++	1111	++++	++++
L.buchneri	ATCC11305	***	•	****	****	+++	**
L. casei	ATCC393 ATCC7469	****	+	-	****	***	**
L.casei ssp. rhamnosus	4404/783	****	•				
L.delbrueckii	ATCC11842	-	-	-	++++	-	-
sep. bulgarious							

TABLE 2 (continued)	Pediococcus a	nd Lactoba	cillus [ot Blot	Hybridi:	tation Res	ults
Probe		2854	2873	2879	2881	2887	2904
Organism	Designation		Pedioc	occus /	Lactobac	:111ue 165	
organism	Designation	*					
L.fermentum	ATCC9338		****				
L.minutus	ATCC33267	_		-	****	***	7
L. plantarus	ATCCB014	••	++++			-	-
L. plantarum	ATCC14917	****	****	****	***	*	*
Leuconostoc ap.	Leucol92	-	****	7777	***	<u> </u>	+
Leuco.mesenteroides	A2CC8293	-	-	•	**	-	_
Acetobacter aceti	ATCC15973	-	_	_		_	- 1
Acetobacter aceti	ATCC23746	-	-	_	++	_	-
Acetobacter aceti	ATCE23747	-	-	-	++	-	-
Acetobacter aceti	ATCC23748	-	-	-	++	-	-
Aceto.hansenii	ATCC35959	•	-	-	**	-	-
Aceto-liqufaciens	ATCC14835	MD	MD	100	100	ND.	MD
Aceto.pasteurianus	ATCC12877	-	-	-	**	-	
Aceto.pasteurianus	ATCC12879	-	-	-	++	-	•
Aceto.pasteurianus	ATCC23650	•	_	-	++	-	-
Aceto.pasteurianus	ATCC23758	-	-	_		-	-
Aceto.pasteurianus	ASCC23764	-	-	-	++	-	-
Aceto.pasteurianus	ATCC23765	-	-	-	++	-	-
Aceto.pasteurianus	ATCC23766	-		•		-	-
Aceto.pasteurianus	ATCC23767	-	-	-	**	-	-
Aceto.pasteurianus	ATCC33445	-	-	-	++	•	-
Bacillus coaqulans	ATCC7050	++	-	++++	+-	•	+
B. stearothermophilus	ATCC12980	ND)AID)	MD	MD	ND	MD CK
B. subtilis	ATCC21556	****	-	****	•	-	+
Citrobacter freundii	ATCC2090	-	-	-	•	•	-
Enterobacter aerogenes	ATCC13048	-	-	-		-	_
E.agglomerans	ATCC27155	-	-	-	-	-	-
E. cloacae	ATCC13047	-	-	- '	-	-	-
Flavobacterium ferrugineum	ATCC13524	-	-	-		-	-
Gluconobacter oxydans	ATCC11894	-	-	-	**	•	
G. oxydans G. oxydans	ATCC19357	-	-	-	**	-	-
G. crydans	ATCC23755 ATCC33446	-	-	-	7*	-	-
G. ozydans	ATCC33447	-	-	-	+-	-	•
Hafnia alvei	ATCC13337	_	-	-	++	-	. 🗀
Klebsiella oxytoca	ATCC13182	-	-	-	<u>-</u>	-	-
Kleh. terrigena	ATCC33257	-	Ξ	_		-	-
Lactococcus lactis	ATCC19435	•	_	++++	****		-
sep. lactis			_	1111	****	_	-
Megasphaera cerevisiae	ATCC43236	100	MD.	MED	NEO	ND	ND
Megasphaera cerevisiae	ATCC43254	MD	360	10	X) TD	ND.
Micrococcus kristinas	ATCC27570	-		+			-
Micrococcus varians	ATCC15306	•	_	***	***	_	-
Obesumbacterium proteus	ATCC12841	•	-	-	-	_	_
Pectinatus cerevisiiphilus	ATCC29359	•	_	-	***	_	-
Pectinatus frisingensis	ATCC33332	•	-	-	***	•	-
Proteus mirabilia	ATCC29906	-	•		-	-	-
Serratia marcescena	ATCC13880	-	-	-	-	-	-
Staphylococcus epidermidia	ATCC14990	-	-	***	-	-	+
Staph.saprophyticus	A2CC15305		-	++++	_	-	+
Zymomonas mobilis	ATCC31821	ND	MD	MD	MD	ND	ND
Saccharonyces correlated	ATCC18824 ATCC2341	•	-	-	-	-	-
Saccharomyces cerevisiae Saccharomyces cerevisiae	ATCC36902	_	- .	-	-	-	-
Chinay	*T0C3920%	-	-	-	_	-	-
Candida albicans	ATCC11006	_	-	-	-	-	-
Haman/Ca5Ki	~~~~~	_	_	-	_	-	-
Stool RMA			1	- -	÷	-	-
Wheat care BM3		.	_			_	-

TABLE 2 (continued)	Pediococcus and	Lactoba	cillue 1	Dot Blot	Hybridiz	etion Re	sults
Probe		2875	2876	2877	2896	2901	2902
11000		Pedio	soccus :	235	Pedioco	ccus/Lac	tobacillus :
Organism	Designation						
Pediococcus damnosus	P2	++++	****	***	+	****	***
P. dannosus	75			++++	++++	****	***
P. daenosus	P10	++++	****	****	++++	++++	++++
P. dannosus	P17 ATCC29358	****	****	++++	1	****	****
P.damosus P.pentosacsus	ATCC33316	111 1	1771	++++	+++	****	
P. pentosaceus	PIS	· <u>-</u> ·	***	++++	•	****	****
var. intermedius							
Padiococcus sp.	P140 P160	=	++++	****	•	****	****
Pediococcus sp. Pediococcus sp.	P167	Ξ.	****	****	_	++++	***
Pediococcus sp.	P172	-	***	++++	_	****	++++
Lactobacillus delbrueckii	L4	-	-	+	-	-	7777
L. fructivorans	La	++++	-	-	-	++++	****
L.casei	L14 L17	****	-	-	-	++++	****
L.delbrueckii L.fructivorans	119	++++	-	-	-	****	++++
L.IFUCELVOFANS L. CUEVATUS	120	++++	-	-	-		++++
L. casei	122		-	-	-	-	-
Lactobacillus sp.	L137	-	**	++	7-7	++++	-
Lactobacillus sp.	L174 L176	****	-	:	-	-	-
Lactobacillus sp. Lactobacillus sp.	L176 L177	****	Ξ	-	Ξ	_	-
Lactobacillus sp.	1178	++++	-	-	-	+	***
Lactobacillus sp.	L179	++++	-	-		-	-
Lactobacillus sp.	L185	****	_	-	-	****	++++
Lactobacillus sp. Lactobacillus sp.	L193 L194	****	-	-	Ξ		++++
Spoilage isolate 1	FedioC4908	•	++++	++++	ND	++++	MD
Spoilage isolate 2	Ped1o53454	+	***	++++	NO.	++++	MD
Spoilage isolate 3	PedioC30655	++++	++++		MD	++++	
Spoilage isolate 4	PedioC3303F Pedio6667	****	****	++++	167D	****	100 100
Spoilage isolate 5 Spoilage isolate 7	26665	****	-	-	3670	++++	ND
Spoilage isolate 8	LactoC5884B	++++	-	-	MD	++++	MD
Spoilage isolate 9	Lacto53453	+	-	-	MD	+++	MD
Spoilage isolate 11	LactoC5884A	++++	-	-)(D)	****	16D 16D
Spoilage isolate 13 Spoilage isolate 14	LactoC5162 C4305	****		****	MD	****	ND
Spoilage isolate 15	LarteC3325		-	-	MD.	***	MD
Speilage isolate 10	Lacto small	++++	****	++++	MD	****	MD
Speilage isolate 12	Lacto large	**	++++	+++	MD	****	ND ND
	L. brevis GI4696 L. casei GI4697	****	_	_	170	*	ND.
	L. brevis GI4698	***	_	-	MD	+++	MD.
Spoilage iselate B	C. casei GT4699	****	-	-	MD	+	ND CK
Spoilage isolate	L. bravis CT4700	+	-	+	342) 342)	÷	ND ND
	L. brevis CT4702 L. brevis GT4703	++++	-	=	10	****	#D
	L. brewis G74704	****	-	-	300		MD
Spoilage isolate L. de	lbrueckii GI4705	4 4 4 4 4	-	-	300	+	MD
Spoilage isolate 853	L. fructivorans	+	***	**	NED STD	1177	RID RID
Speilage isolate 853	L. fructivorans ATCC4356	+	++++	**	#U		****
L.acidophilus L.brevis	ATCCB291	++++	-	-	****	****	1111
L.buchneri	ATCC11305	++++	-	-	**	****	****
L. casei	ATCC393	****	_	_	-	-	-
L.casei Esp. rhamnosus	ATCC7469	***	-	_	-	_	=
L.delbrueckii	ATCC11842	++++	-	-	-	•	
esp. bulgarious							

TABLE 2 (continued) Pediococcus and Lactobacillus Dot Blot Hybridization Results 2876 Probe 2875 2877 2896 2901 2902 Pediococcus 235 | Pediococcus/Lactobacillus Organisa Designation ATCC9338 L.fermentum + ATCC33267 L. minutus L. plantarum ATCCE014 ATCC14917 L.plantarum Lauconostoc sp. Leucol92 ATCC8293 Leuco.mesenteroides Leuco.mesenteroid Acetobacter aceti Acetobacter aceti Acetobacter aceti Acetobacter aceti ATCC15973 ATCC23746 ATCC23747 ATCC23748 ATCC35959 -Aceto.hansenii Aceto.liqufaciens ATCC14835 ND MD M ND MD Aceto.pasteurianus ATCC12877 ATCC12879 Aceto.pasteurianus Aceto. pasteurianus ATCC23650 _ _ Aceto. pasteurianus ATCC23758 ATCC23764 ATCC23765 Aceto. pasteurianus Aceto, pasteurianus ATCC23766 ATCC23767 ATCC33445 Aceto. pasteurianus Aceto. pasteurianus Aceto.parteurianus Bacillus coaquians _ _ ATCC7050 B.stearothermophilus ATCC12980 ND MD ND M ND ND ATCC21556 ATCC8090 B.subtilis Citrobacter freundii ATCC13048 Enterobacter aurogenes ATCC27155 ATCC13047 _ E.agglomerans E.cloacae Flavobacterium ferrugineum ATCC13524 Gluconobacter crydans G.oxydans ATCC11894 ATCC19357 G. oxydans ATCC23755 ATCC33446 G.oxydans G.oxydans ACCC33447 Hafnia alvei Klabsiella orytoca Klab.terrigena ATCC13337 ATCC13182 _ ATCC33257 ATCC19435 _ Lactococcus lactis • ** Mactococcus lactis
ssp. lactis
Megasphaera cerevisiae
Megasphaera cerevisiae
Micrococcus kristinae
Micrococcus varians
Obesumbacterium proteus
Pectinatus cerevisiiphilus
Pectinatus frizingensis
Proteus mirahilis ATCC43236 ATCC43254 M KD MD ND ND K M ND M M ND ND ATCC27570 ATCC15306 ATCC12841 ATCC29359 _ ATCC33332 ATCC29906 Proteus mirabilis ATCC13880 ATCC14990 Serratia marcescens Staphylococcus epidermidis Staph.saprophyticus ATCC15305 ¥ D Zymonas mobilis Saccharomyces cerevisiae Saccharomyces cerevisiae ND M MD M m ATCC31821 ATCC18824 ATCC2341 ATCC36902 Saccharonyens cerevisiae Chibay Candida albicans Human/CaSKi Stool RMA ATCC11006

Wheat gers RNA

TABLE 2 (continued	Pediococcus and	d Lactoba	cillus D	ot Blot	Hybridiza	tion Res	ults	
Probe -		2868 actobacil	2869 lus 165	2880	2891 Lactobaci	2892 illus 235	2895	2899
Organism	Designation							
n Africania di energia	P2	-	-	-	-	•	-	-
Pediococcus damnosus P.damnosus	PS	-	-	-	-	-	-	-
P. damosus	P10	-	-	_	-	-	-	-
P. damosus	P17	-	-	_	-	-	=	-
P. damnosus	ATCC2935E	-	:	-	-	-	-	-
P.pentosaceus ;	ATCC33316	•	-	-	-	-	-	_
P.pentosaceus	P18	•	-	_	_	_		
var. intermedius	P140	_	-	-	-	•	_	_
Pediococcus sp. Pediococcus sp.	P160	_		-	-	-	-	•
Pediocaccus sp.	P167	-	=	-	-	-	-	-
Pediococcus sp.	P172	•	-	-	-	-	-	-
Lactobacillus delbrueck	ii L4	-	-	~	-	-	-	-
L.fructivorans .	LS	-	-	-	-	-	-	++++
L. casei	£14	-		-	-	-	-	****
L.delbrueckii	£17	-	-	-		-	_	****
L.fructivorana	£19	-	-	-	-	_	-	****
L.curvatus	L20	-	_	_	_	-	_	****
L.casei	£22 £137	_	-	_	-	_	-	++++
Lactobacillus sp.	£174	-	-	-	-	-	-	+++-
Lactobacillus sp.	L176	_	-	-	•	_	_	++++
Lactebacillus Sp. Lactebacillus Sp.	£177	-	-	-	-	•	-	****
Lactobacillus ap:	1178	_	-	-	-	-	-	++++
Lactobacillus sp.	£179	-	-	-	-	-	-	****
Lactobacillus sp.	L185	-	-	-	-	-	-	***
Lactobacillus up.	£193	-	-	-	-	-	-	****
Lactobacillum sp.	£194	-	-	-	_	. 1800	MOD	- i
Speilage isolate l	Ped1aC4908	-	NO NO	-	រស	160	100 100	
Spoilage isolate 2	Pedio53454 PedioC30688	Į.	160	_	360	NTO	100	-
Spoilage isolate 3	PedioClion	-	100	_	120	MD	ND	+++
Spoilage isolate 4 Spoilage isolate 5	Ped106667	-	E	-	MID	100	MD	-
Spoilage isolate 7	36665	-	MED	-	100	MCD.	NO.	****
Spoilage isolate 8	LactoCS884B	-	300	_	ND	MD	NCD	-
Spoilage isolate 9	Lacto53453	-	MED	-	XCD	700 100	ND ND	+++-
Spoilage isolate 11	LactoC5884A	-	MED.	-	MD	M()	MD	****
Spoilage isolate 13	LactoC3162	-	MD)	-	100	160	ND.	
Spoilage isolate 14	C4908 . LecteC3325	-	MD	-	MD	MD	ND	***
Spoilage isolate 15	Lacto Saali	-	100	_	MD	MD	MD.	+
Spoilage isolate 10	Lacto large	-	100	_	NED.	100	XD	***
Spoilage isolate 12 Spoilage isolate D	L. brevis GT4696	_)ID	-	MD	MO	MD	***
Spoilage isolate A	L. casei 574697	-	XD	-) XID	10 0	MD	****
Spoilage isolate F	L. brevis GT4698	-	ND	-)ED	100	NED NED	****
Spoilage isolate B	L. casei GT4699	-	MO	-	*	MD MD	מת המ	****
Spoilage isolate	L. brevis GT4700	-	MD	-	30 0	16D	XD	++++
Spoilage isolate J	L. bravis GT4702	-	100 100	_	160	20	ND	++++
Spoilage isolate 7	L. brevis GT4703	****	100 100	****	20	E	100	****
Spailage isolate	L. brevis GT4704 delbrueckii GT4708	777	***		MD	300	MD	++++
Spoilage isolate I Spoilage isolate 152	L. fructivorane	-	55	=	MID	MD.	MD	****
Spoilage isolate 653	L. fructivorans	-	300)	-		100	MD	****
L.acidophilus	ATCC4356	•	-	-	-	-	-	+
L.brevis	ATCC8291	****	++++		++++	***	++++	+++
L.buchneri	ACC11305	-	-	-	-	-	-	***
L.casei	ACC393	-	_	=	-	=	-	****
L.cases	ATCC7469	-	-	_	_	_	-	
sep. rhamosus	ATCC11842	-	_	-	-	-	-	-
L.delbrueckii								

TABLE 2 (continued) Pediococcus and Lactobacillus Dot Blot Hybridization Results

Probe .		2868 Lactobacill	2869	2880	2891	2892 bacillus	2295	2899
American in the	Designatio		,			MC77401		
Organist								
L.fermentum	ATCC1338	-	-	-	-	-	-	-
L. minutus	ATCC33367	-	•	-	-	-	-	•
L. plantarus	ATCC8014	•	-	-	-	-	-	•
L.plantarum	A2CC14917	•	•	-	•	-		-
Leucanestor sp.	Leuco192	-	•	-	•	-	-	-
Leuco.mesenteroides	VICCASS2	-	•	=	-	-	Ξ	_
Acetobacter aceti	ATCC15973	-		-	-	-	•	
Acetobecter aceti	ATCE23746	_	-	-	Ξ	-		_
Acetobecter eceti	ATCC23747		-	_	•	_	-	•
Acetobacter Aceti	ATCE 35959		_		_	_	_	_
Aceto.bansenii	ATCC14835	10 0	MD	100	100	350	100	170
Acato.liquiacions	ATCC12877	-	~	=	=	_	-	•
Aceto.pasteurianus	ATCC12879		-	_	-	-	-	-
Aceto.pestourianus	ATCE23650	-	•	-	-	-	-	-
Aceto.pasteurianus	ATCC23758	•	-	-	-	-	-	-
Aceto.pasteurianus Aceto.pasteurianus	ATCC23764	-	_	-	. •	-	-	-
Aceto, pastouriamus	ATCC23765	-	-	-	-	-	-	-
Aceto, pasteurianus	ATCC23766	-	-	-	-	-	-	-
Aceto, pasteurianus	ACCC23767	-	-	-	-	-	-	•
Aceto, pasteurianus	ATCC33445	•	-	-	-	-	-	-
Racillus confulans	ATC:7080	•	-	-	-	-	-	-
B. stearethermophilus	ATCC12980	10	XD	30 0	100	100	100	12TD
B. subtilis	ATCC21556	-	-	-	-	-	-	. •
Citrobacter froundii	ATCCB090	-	-	-		-	-	-
Enterobacter agregenes	ATCC13048	-	-	•	- '-	-	-	-
L.agglonerans	ATCC27155	-		-	_	-	-	-
Z. cloacae	ATCC13047	•	•	-	-	-	-	•
Flavobacterium forrugineum	ATCC13534	•	-	-	•	-	•	•
Gluconobectet gardens	AFCC11894	-	-	-	-	-	-	-
C. orydans	ATCC19357	-	-	-	-	-	-	-
C. czydane	ATCC23785	-	- .	-	=	=	=	-
G-ampana	ATCC33446	=	-	-	-	_	-	_
C.exydens	ATCC33447	-	Ξ	-	_	-	_	-
Hafnia alvei	ASCC13337		Ξ	-	_	-	-	-
Klebsiella oxytoca	ATCC13182 ATCC33257	_	-	_	_	_	-	-
Kleb.terrigena	ATCC19435	-	_	-	_	•	-	-
Lactococcus lactis	WTCC13472	_	_	_				
ssp. lactis	ATCC43236	3673	MO	100		200	100	MD.
Hegasphanta curevisias	ATCC43254	5	5	=	100	MD.	100	320
Megasphaera cerevisias Micrococcus bristinas	ATCC27570	=	_	-	_	-	-	-
Micrococcus varians	ATCC15306	-	-	-	-	-	-	-
Obesubactorium protous	ATCE12841	•	-	-	-	•	-	_
Pectinatus cerevisiiphilus	ATCC29259	-	-	-	~	-	-	-
Pectinatus frisingensis	ASCC333332	-	-	-	-	-	-	-
Protous mirabilis	ATCC29906	-	-	-	-	-	-	-
Serratia marcescens	ATCC13880	-	-	-	-	-	-	-
Staphylococcus epidermidis	ATCC14990	-	-	-	-	=	:	-
Staph. saprophyticus	AZCC15305		-		10D	160	100	200
Zymomenas mobilis	72CC37837	MTD			_	, m	= 5	-
Saccharomyres cerevisias	ATCC18834	-	-	-	-	-	_	_
Saccharonyces cerevisias	A2CC2341	-	-	-	_	_	-	-
Saccharcuycos cerevisias	ATCC36902	_	-	_	=	Ţ	-	-
Chimay		:	-	-	-	_	-	_
Candida albicans	ATCC11006		-	-	-	-	_	-
Human/Calilli		Ξ	-	-	-	-	_	-
Steel MA		_	_	_	_		_	•

WO 95/07289 PCT/US94/10129

-24-

Example 2

Dual Probe Hybridization

For in-process testing, detection of specific spoilage organisms amongst the wide variety of normal brewery microflora might be most appropriate. For this type of sandwich assay, the following capture and detector probe sets are examples of preferred pairs or sets.

P. damnosus 16S rRNA: Probe 2858 + Probe 2861 Probe 2861 + Probe 2867

- L. brevis 16S rRNA: Probe 2868 + Probe 2869
 P. damnosus & L. brevis 16S rRNA: Probe 2904 + Probes 2868 + 2861
 Group of all spoilage 16S rRNA: Probe 2881 + Probes 2873 + 2887
 Group of majority of Pediococcus and Lactobacillus 16S rRNA: Probe 2854 + Probe 2879
- 15 L. brevis 23S rRNA: Probe 2880 + Probe 2891
 Probe 2892 + Probe 2895
 - P. damnosus & L. brevis 23S rRNA: Probe 2896 + Probes 2880 + 2876 Group of all spoilage 23S rRNA: Probe 2875 + Probes 2901 + 2899
- Group of majority of *Pediococcus* and *Lactobacillus* 23S rRNA: Probe 2902 + Probes 2875 + 2901.

Example 3

Brewery and End-Product Detection

25 of Beer-spoilage organisms

A sample, such as a swab or liquid aliquot from a bottle, can, keg or other container is processed to yield DNA. A probe of this invention is used in conjunction with the antiparallel complement of a second probe of this invention to enzymatically amplify a segment of a target organism gene encoding *Lactobacillus* rRNA in a polymerase chain reaction. Resultant material is then assayed in a sandwich assay. The

INSDOCID: <WO_____9507289A1_I_>

30

5

polymerase chain reaction can, itself be made either highly specific by employing probe/primers described herein, or the reaction may be made more general using probes such as those described in co-pending USSN 359,158 and then identifying the amplification product as a target organism using a sandwich assay.

For end-product testing, more generally targeted probes might be appropriate since most normal brewery microflora should have been removed or been inactivated. For this particular assay, the following capture detector and detector probes are examples of preferred pairs:

10 P. damnosus 16S rRNA: Probe 2858 + Probe 2861

Probe 2861 + Probe 2867

L. brevis 16S rRNA: Probe 2868 + Probe 2869

P. damnosus & L. brevis 16S rRNA: Probe 2904 + Probes 2868 + 2861

Group of all spoilage 16S rRNA: Probe 2881 + Probes 2873 + 2887

15 Group of majority of *Pediococcus* and *Lactobacillus* 16S rRNA: Probe 2854 + Probe 2879

L. brevis 23S rRNA: Probe 2880 + Probe 2891

Probe 2892 + Probe 2895

P. damnosus & L. brevis 23S rRNA: Probe 2896 + Probes 2880 + 2876

Group of all spoilage 23S rRNA: Probe 2875 + Probes 2901 + 2899

Group of majority of *Pediococcus* and *Lactobacillus* 23S rRNA: Probe 2902 + Probes 2875 + 2901.

25 Example 4

In situ hybridization as a cytological stain

The probes of this invention may be used as a cytological staining reagents. A liquid sample is applied to a microscope slide. After fixation and lysis, hybridization of probes is carried out in situ. For example, Probe 2858 is labelled with a florescent label

WO 95/07289 PCT/US94/10129

-26-

and used to stain the specimen. If *P. damnosus* is present in the sample, small fluorescent bodies will be visual under a fluorescent microscope.

Example 5

Confirmation of Presence of Beer-spoilage organisms following culture

Following a standard cultivation step for *Pediococcus/Lactobacillus/*beer spoilage organisms such as on modified MRS agar plates (Lawrence et al, 1979, <u>J. Instit. for Brewing</u> 85:119) or in liquid culture enrichment, a sample is tested for the presence of *Pediococcus/Lactobacillus/*beer spoilage organisms. One method is by use of the sandwich assay described in Example 2. Pure culture is not necessary.

3NSDOCID: <WO_____9507289A1_I_>

5

-27-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Nietupski, Raymond M. Stone, Benjamin B. Weisburg, William G.
 - (ii) TITLE OF INVENTION: Nucleic Acid Probes for the Detection of Bacteria of the Genera Pediococcus and Lactobacillus and Methods for the Detection and the Bacterial Agents Causing Spoilage of Beer
 - (iii) NUMBER OF SEQUENCES: 22
 - (iv) CORRESPONDENCE ADDRESS:

 - (A) ADDRESSEE: Amoco Corporation
 (B) STREET: 55 Shuman Blvd., Suite 600
 - (C) CITY: Naperville
 - (D) STATE: IL
 - (E) COUNTRY: USA (F) ZIP: 60563
 - (v) COMPUTER READABLE FORM:

 - (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE:

 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Giesser, Joanne M. (B) REGISTRATION NUMBER: 32,838 (C) REFERENCE/DOCKET NUMBER: 32,442
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (708) 717-2443 (B) TELEFAX: (708) 717-2430

WO 95/07289 PCT/US94/10129

(2) INFORMATION FOR SEQ ID NO:1:

CGGCTAGCTC CCGAAGGTTA CTCCACCT

-28-

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:	
TCACAGCCT	TT GGTGAGCCTT TATCTCAT	28
(2) INFO	RMATION FOR SEQ ID NO:2:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:2:	
CACTGCATO	GA GCAGTTACTC TCACACACT	29
(2) INFO	RMATION FOR SEQ ID NO:3:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:3:	

28

NSDOCID: <WO____9507289A1_I_>

(2) INFORMATION FOR SEQ ID NO:4:

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CCACAGTCT	TC GGTAATATGT TTAAGCCCCG GT	32
(2) INFOR	RMATION FOR SEQ ID NO:5:	•
(±)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
CGCTCCAAC	CA GTCCTCACGG TCTGCCTTCA T	31
(2) INFOR	RMATION FOR SEQ ID NO:6:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CAACGTCTC	GA ACAGTTACTC TCAAACGT	28

-30-

(2) 2	realizon for ppd in Moil:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:	
CCGATGTT	AA AATCCGTGCA AGCACTTCAT TT	32
(2) INFO	RMATION FOR SEQ ID NO:8:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(111)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:8:	
TGAGGGTT	AT TGGTTTCGTT TACGGGGCTA T	31
(2) INFO	RMATION FOR SEQ ID NO:9:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CAGGCTTC	CC AACCTGTTCA ACTACCAACA ACT	33

NSDOCID: <WO____9507289A1_I_>

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
CCACAATTTG GTGGTATCCT TAGCCCCGGT	30
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	•
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
CAACCCGGCT GCCAGCATTT AACTGGTAAC CT	32
(2) INFORMATION FOR SEQ ID NO:12:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TCGGTGGATC AGATTCTCAC TGATCTTTCG CT	32

-32-

(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CCAACACTTA GCATTCATCG TTTACGGCAT	30
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
TTCGCTACGG CTCCGTTTTT TCAACTTAAC CT	32
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CCCCTGCTTC TGGGCAGGTT ACCCACGT	28

NSDOCID: <WO_____9507289A1_I_>

(2) INFORMATION FOR SEQ ID NO:16:

-33-

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
TCGCTACCCA TGCTTTCGAG CCTCAGCT	28
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CGCCGCGGT CCATCCAGAA GTGATAGCCT	30
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CTGAATTCAG TAACCCTAGA TGGGCCCCTA GT	32

(2) INFORMATION FOR SEQ ID NO:19:

-34-

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(111)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	•
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:19:	
TATCACTC	AC CGTCTGACTC CCGGATATAA AT	32
(2) INFO	RMATION FOR SEQ ID NO:20:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:	44
TAGTTAGC	CG TGGCTTTCTG GTTGGAT	27
(2) INFO	RMATION FOR SEQ ID NO:21:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:	
CGATTACC	CT CTCAGGTCGG CTACGTAT	28

#NSDOCID: <WO_____9507289A1_I_>

What is claimed is:

- 1. An isolated and purified nucleic acid which hybridizes preferentially with a rRNA or rDNA of a microorganism which causes spoilage of beer.
- 2. A nucleic acid according to claim 1 wherein the microorganism is selected from the group consisting of the genera *Lactobacillus* and *Pediococcus*.
- 3. A nucleic acid according to claim 1 which is selected from the group of nucleic acids consisting of those which:
 - a) specifically discriminate between P. damnosus and non-Pediococcus species;
- b) specifically discriminate between the majority of *Pediococcus* strains causing beer-spoilage and other species;
 - c) Specifically discriminate between L. brevis and non-Lactobacillus species;
- d) specifically discriminate between a cluster of *Lactobacillus* species, said cluster consisting of: *L. fructivorans*, *L. casei*, *L. curvatus*, *L. brevis*, and *L. buchneri*, and non-cluster species,
- e) specifically discriminate between the group consisting of *P. damnosus* and *L. brevis* and other species;
- f) specifically discriminate between the majority of *Pediococcus* and *Lactobacillus* species causing beer spoilage and other species;
- g) specifically discriminate between the majority of *Pediococcus* and *Lactobacillus* and related species and other species.
- 4. A nucleic acid according to claim 1 which hybridizes preferentially to 16S rRNA.
- 5. A nucleic acid according to claim 1 which hybridizes preferentially to 23S rRNA.

SUBSTITUTE SHEET (RULE 26)

3NSDOCID: <WO____9507289A1_I_>

WO 95/07289

-35-

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 31 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 (D) TOPOLOGY: linear
- (111) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TTCGGGCCTC CAGTGCGTTT TACCGCACCT T

31

- 6. A nucleic acid according to claim 1 which is complementary to or homologous with at least 90% of a sequence comprising any ten consecutive nucleotides within sequences selected from the group of sequences defined by the group of probes consisting of: 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2892, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902.
- 7. A nucleic acid probe which hybridizes preferentially with a rRNA or rDNA of a microorganism which causes spoilage of beer.
- 8. A probe according to claim 7 wherein the microorganism is selected from the group consisting of the genera *Lactobacillus* and *Pediococcus*.
- 9. A probe according to claim 7 which is selected from the group of probes consisting of those which:
 - a) specifically discriminate between P. damnosus and non-Pediococcus species;
- b) specifically discriminate between the majority of *Pediococcus* strains causing beer-spoilage and other species;
 - c) specifically discriminate between L. brevis and non-Lactobacillus species;
- d) specifically discriminate between a cluster of *Lactobacillus* species, said cluster consisting of *L. fructivorans*, *L. casei*, *L. curvatus*, *L. brevis*, and *L. buchneri*, and non-cluster species;
- e) specifically discriminate between the group consisting of *P. damnosus* and *L. brevis* and other species;
- f) specifically discriminate between the majority of *Pediococcus* and *Lactobacillus* species causing beer spoilage and other species; and
- g) specifically discriminate between the majority of *Pediococcus* and *Lactobacillus* and related species and other species.
- 10. A probe according to claim 7 which hybridizes preferentially to 16S rRNA.

- 11. A probe according to claim 7 which hybridizes preferentially to 23S rRNA.
- 12. A probe according to claim 7 which is complementary to or homologous with at least 90% of a sequence comprising any ten consecutive nucleotides within sequences selected from the group of sequences defined by the group of probes consisting of: 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2892, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902.
- 13. A method of detecting the presence of microorganisms which cause the spoilage of beer comprising the steps:

contacting a sample suspected of containing a target with at least one nucleic acid which hybridizes preferentially to rRNA or rDNA of a organism selected from the group consisting of: (a) P. damnosus and non-Pediococcus species; (b) the majority of Pediococcus strains causing beer-spoilage but not other species; (c) L. brevis, but not other Lactobacillus species; (d) a cluster of Lactobacillus species consisting of L. fructivorans, L. casei, L. curvatus, L. brevis, and L. buchneri, but not other species; (e) the group of P. damnosus and L. brevis, but not other species; (f) the majority of Pediococcus and Lactobacillus species causing beer spoilage, but not other species; and (g) the majority of Pediococcus and Lactobacillus and related species, but not other species;

imposing hybridization conditions on the sample such that the nucleic acid binds preferentially to the target rRNA or rDNA to form nucleic acid complexes; and detecting the complexes as an indication of the presence of the target organisms.

14. A method according to claim 14 wherein the nucleic acid is at least 90% homologous to a sequence comprising any ten consecutive nucleotides selected from the group consisting of sequences defined by probes 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902.

- 15. A kit which is used for the detection of the presence of microorganisms which cause the spoilage of beer comprising:
- a) a set of nucleic acids comprising at least two nucleic acids, each nucleic acid comprising 10 to 250 nucleotides and having a different base sequence composition; wherein each nucleic acid is complementary to or homologous with at least 90% of a sequence comprising any ten consecutive nucleotides selected from the group of sequences defined by probes 2858, 2861, 2867, 2876, 2877, 2868, 2869, 2880, 2891, 2892, 2895, 2899, 2904, 2896, 2873, 2881, 2887, 2875, 2901, 2854, 2879, and 2902.
- 16. A kit according to claim 14 further comprising reagents, and instructions.

SUBSTITUTE SHEET (RULE 26)

FIGURE 1

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/10129

CIA	CCIEIC AMION OF CURIECO MAMPOR						
A. CLASSIFICATION OF SUBJECT MATTER							
	:C07H 21/04; C12Q 1/68						
US CL: 435/6; 536/24.32 According to International Patent Classification (IPC) or to both national classification and IPC							
		national classification and IPC	· · · · · · · · · · · · · · · · · · ·				
	LDS SEARCHED	<u>'</u>					
Minimum d	ocumentation searched (classification system follows	ed by classification symbols)					
	435/6; 536/24.32	•					
0.3.							
							
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched				
Electronic d	data base consulted during the international search (n	ame of data base and where practicable	search terms used)				
		, p. 20102010;	, scarcii arins uscu,				
APS, BI	OSIS, CA						
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT						
G-1							
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
X	SYSTEMATIC APPLIED MICROBI		1-3, 5, 7-9, 11				
	1991, Hertel et al., "23S rRNA	-targeted Oligonucleotide					
Υ	Probes for the Rapid Identificati		4, 6, 10, 12-16				
	pages 173-177, see entire docum		7, 0, 10, 12-10				
	pages 170-177, see entire docum	ent.	j				
Υ	US, A, 5,087,558 (WEBSTER, JF	l.) 11 February 1992, see	4, 6, 10, 12-16				
	entire document.						
1			•				
• 1							
İ							
1							
1							
i							
	•						
Furth	er documents are listed in the continuation of Box C	See patent family annex.					
• 500	cial categories of cited documents:	"T" later document published after the inte					
•		date and not in conflict with the applica	tion but cited to understand the				
	rument defining the general state of the art which is not considered se of particular relevance	principle or theory underlying the inve	ention				
"E" cari	lier document published on or after the international filing date	"X" document of particular relevance; the	claimed invention cannot be				
	nument which may throw doubts on priority claim(s) or which is	considered movel or cannot be consider when the document is taken alone	red to involve an inventive step				
· cite	d to establish the publication date of another citation or other	"Y." document of particular relevance: the					
•	oial reason (as specified)	considered to involve an inventive	step when the document is				
°O° doc	ument referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in th	documents, such combination				
	ument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent	family				
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report				
		DEC301994	- and soppose				
05 DECEN	MBER 1994	DEC 0 0 1337					
Name and mailing address of the ISA/US Authorized officer							
Name and m	1000 12						
Box PCT	ner of Patents and Trademarks	SCOTT HOUTTEMAN	132 Ker				
Washington, D.C. 20231							
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196					

Form PCT/ISA/210 (second sheet)(July 1992)*