Interactive Lecture - One

Dr. Conor Brennan Dublin City University

September 14, 2018

Dr. Conor Brennan

School of Electronic Engineering Dublin City University Ireland

Email: conor.brennan@dcu.ie

Interactive web applications available at https://apps.eeng.dcu.ie/ESOA/index.html

Example - Plane wave in lossy medium

Consider a wave travelling in \hat{z} direction with \vec{E} in x-direction and no variation in y or x. Therefore Helmholtz equation becomes

$$\frac{d^2}{dz^2}E_x(z)=\gamma^2E_x(z)$$

where $\gamma = \alpha + \jmath \beta$ and so

$$E_{x}(z) = E_{0}e^{-\gamma z}$$

$$\mathcal{E}_{x}(z,t) = \Re \left(E_{0}e^{-\gamma z}e^{\jmath \omega t}\right)$$

$$= |E_{0}|e^{-\alpha z}\cos(\omega t - \beta z + \phi) \text{ where } E_{0} = |E_{0}|e^{\jmath \phi}$$

Quantity	Symbol	Expression
Attenuation constant	α	$\omega\sqrt{\mu\epsilon}\left\{rac{1}{2}\left[\sqrt{1+\left(rac{\sigma}{\omega\epsilon} ight)^2}-1 ight] ight\}^{rac{1}{2}}$
Phase constant	β	$\omega\sqrt{\mu\epsilon}\left\{rac{1}{2}\left[\sqrt{1+\left(rac{\sigma}{\omega\epsilon} ight)^2}+1 ight] ight\}^{rac{1}{2}}$
Wave impedance	η	$\sqrt{rac{\jmath\omega\mu}{\sigma+\jmath\omega\epsilon}}$
Wavelength	λ	$rac{2\pi}{eta}$
Velocity	V	$rac{\omega}{eta}$
Skin depth	δ	$\frac{1}{\alpha}$

Question One:

Figure (1) depicts, at a specific moment in time, the electric field of a plane wave propagating with frequency f=100 MHz in a lossless medium. Given the data in the picture compute ϵ_r for the material. Note that for this simulation ϵ_r was chosen to be an integer and you can assume that $\mu_r=1$. What is the phase velocity of this wave and what is the impedance of the material? If instead you were told that f=200 MHz what would you compute ϵ_r to be?

Figure: Figure for Question One

Question Two: Given that

$$\alpha = \omega \sqrt{\mu \epsilon} \left(\frac{1}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2} - 1 \right] \right)^{\frac{1}{2}}$$

$$\beta = \omega \sqrt{\mu \epsilon} \left(\frac{1}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2} + 1 \right] \right)^{\frac{1}{2}}$$

Show that for good dielectrics (satisfying $\left(\frac{\sigma}{\omega\epsilon}\right)^2\ll 1$)

$$\alpha \simeq \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$$
$$\beta \simeq \omega \sqrt{\mu \epsilon}$$

Question Three: Consider the scenario in figure (2). It depicts, at a specific moment in time, the electric field of a plane wave propagating with frequency f=1GHz in a good dielectric with some loss. Given the data in the figure estimate σ and ϵ_r . Note that σ was chosen to be $n\times 10^{-3}$ for n an integer while ϵ_r was also chosen to be an integer. NB The points chosen are adjacent local maxima.

Figure: Figure for Question Three

Question Four: A plane wave propagates through free space. At a particular point at time t=0 the electric field E has amplitude 1. At time $t=\frac{1}{8\times 10^9}$ seconds the magnetic field H has amplitude $\frac{1}{377\sqrt{2}}$. What are the possible values for the frequency f?