

La Dynamic Poogramming Intro le when to use DP Les steps for DP Les Halstairs -1423
Lo Sque
(A) AlgoPrep

/1 quick questions
mumbai - Jellhi
L 3#2:6
3 - goa
mumbai - Jellhi
mumbai - gelthi 3 borgalore - 2 y3+2
Algorrep

11 N Stairs

6 - NH stair.

Note: you can take steps of length 1 or 2.

N:J

NEH

Total ways = m+1 + y#1

No. of ways to black (N) = No. of ways to black (N-2)

N:1 \rightarrow 1

N:2 \rightarrow 2

119 suedo code

int 29 [N+1) = {-13

int Stairs (int N) {

if (M==111 n==2) { Neturn open]; }

int a = fib (n-1);

int b = fib (n=2);

defin] = att;

3 91eturn att;

N/N	Stairs
1. M	YA!KK

6 - NH stair.

Note: you can take steps of length 1 or 2 or 3

Total no. of ways: not 1 + y x 1 + 24!

Cholden oule of Recursion: Ly No. of Calls: No. of Choices.

Break till 9:30 pm

		D optimal Subs	itauctuse	
11Steps	for DP	O Optimal Subs	Sub Problem.	
	<i>,</i>			
	20.	•		
U	dr State	i what are	we trying to	solve of
		Ohe	instance.	
જ	Recurrence	Selation:		
U	110000		est Problem a	1 0 1 0 110
2		4 seccion 6	er revolety a	NO SUBPROBLEM
			base case	
		++(-)($\rightarrow PT$	
<u> </u>	dp toble	119		
	6	where we are	going & Stor	re answer of
	1 Insta		0 0	

2) Find minimum number of Perfect Equarel Required to Sum = N.


```
int de [4+2] = (-1);
int minsg (int ~) d
   if (N==0 | | N==1) ( octum N; ]
if (OP(N)!=-1) ( netwn dP[N]; }
       int Smallett: +00;
                                                    T.C. O(AIKN)
      for Cint i:1; ixic=n; i+1){

int temp: minsq(n-ixi);
                                                    S.C: O(N) 4
                                                          Stack Slace
                                                          =0 (N)
            Smaller: mathinin (smaller, temp);
          delis = Smallest +1;
         Return Smallest + 1%
                                N=6
                                             N=2
                     -N=1
          NEO
```

int ap C++1] = (-1);

dfl

int minsg (int N) d
if (N==0 N==1) (setum N;]
if (dela):=-1) (netwn dela); 3
int Smallest: +00;
Jos Cint i:1; ixi<=n; i+1)
int temp: minsq(N-idi);
Smaller: Mothamin (smallest, tend);
3 00 7 0 10 10 10
delaj = Smollest + 1;
Return Smallest + 13
AlgoPrep