Ejercicio 26 - Guía Diodo N3

26. Un diodo N⁺P con $N_D=10^{19} {\rm cm}^{-3}$, área $A=0.01 {\rm mm}^2$ y con parámetros $\phi_b=900 {\rm mV}$ y $\tau_T=18 {\rm ns}$. Considere el circuito de la figura 6a donde $V_S=8 {\rm V}$ y

$$v_s(t) = \begin{cases} 0 & \text{si } t < t_0 \\ 500 \,\text{mV} & \text{si } t \ge t_0 \end{cases}$$

 $con t_0 = 1 \text{ ns y } R = 4.7 \text{ k}\Omega.$

- a) Calcular la polarización.
- b) Hallar el modelo de pequeña señal.
- c) ¿Cuál es la corriente predominante, la de huecos o la de electrones?
- d) Encuentre la respuesta temporal de la tensión $v_D(t)$.
- e) Si V_S disminuye a la mitad, ¿cómo se modifica la respuesta temporal de v_d(t)?

 $egin{aligned} extbf{Dotos} \ N_D &= 10^{19} \, ext{cm}^{-3} \ A &= 0.01 \, ext{mm}^2 \ au_T &= 18 \, ext{ns} \ V_S &= 8 \, ext{V} \ v_s(t) &= u(t-t_0)500 \, ext{mV} \ t_0 &= 1 \, ext{ns} \end{aligned}$

 $R = 4.7 \,\mathrm{k}\Omega$

a) Calcular la polarización.

 V_{S}

Inversa:

$$I_D = -I_0 \approx 0$$

$$V_S = V_R - V_D$$

$$V_D = -V_S = -8V$$

Datos

$$N_D = 10^{19} \, \text{cm}^{-3}$$
 $A = 0.01 \, \text{mm}^2$
 $\tau_T = 18 \, \text{ns}$

$$V_S = 8 \text{ V}$$

$$v_s(t) = u(t - t_0)500 \text{ mV}$$

$$t_0 = 1 \, \text{ns}$$

 $R = 4.7 \, \text{k}\Omega$

c) ¿Cuál es la corriente predominante, la de huecos o la de electrones?

$$J = J_n + J_p = qn_i^2 \left(\frac{1}{N_a} \frac{D_n}{W_p - x_p} \right) \left(\exp \frac{qV}{kT} - 1 \right)$$

$$I = qAn_i^2 \left(\frac{1}{N_a} \frac{D_n}{W_p - x_p} + \frac{1}{N_d} \frac{D_p}{W_n - x_n} \right) \left(\exp \frac{qV}{kT} - 1 \right)$$

$$I = I_o \left(\exp \frac{qV}{kT} - 1 \right)$$

Datos

$$N_D = 10^{19} \, \mathrm{cm}^{-3}$$

$$A = 0.01 \, \mathrm{mm}^2$$

$$\tau_T = 18\,\mathrm{ns}$$

$$V_S = 8 \, \mathrm{V}$$

$$v_s(t) = u(t - t_0)500 \,\mathrm{mV}$$

$$t_0 = 1 \, \mathrm{ns}$$

$$R=4.7\,\mathrm{k}\Omega$$

$$\phi_B = 0.9 \,\mathrm{V}$$

$$PN^+ \longrightarrow N_a << N_d$$

La corriente predominante será la de electrones.

Rango de validez del modelo de pequeña señal

¿A qué nos referimos cuando decimos "si v(t) es lo suficientemente pequeña"?

El error que cometemos entre el valor estimado de señal i_d y el valor real $i_D - I_D$ debe ser pequeño.

Aplicaremos el criterio del 10%:

$$i_D(t) - (I_D + i_d(t)) < 10\% (i_D(t) - I_D)$$

Como esta inecuación no tiene solución ⇒ pedimos que el término de segundo órden de Taylor (primer término de error) sea despreciable frente al término lineal:

$$\frac{1}{2} \frac{\partial^2 i_D}{\partial v_D^2} |_{V_D} \cdot v_d^2 < 10\% \ i_d(t)$$

$$\frac{1}{2} \frac{q^2 (I_D + I_o)}{(kT)^2} \cdot v_d^2 < 0, 1 \left(\frac{q(I + I_o)}{kT} v \right)$$

En inversa $(I_D \approx -I_o)$, no tiene sentido evaluar este error y siempre puede aplicarse el modelo de pequeña señal

En directa $(I_D \gg I_o)$:

$$\begin{split} \frac{1}{2} \frac{q^2 I_D}{(kT)^2} &\cdot v_d^2 < 0, 1 \; \frac{q I_D}{kT} \; \cdot v_d \\ v_d < 0, 2 \; \frac{q}{kT} \end{split}$$

Considerando temperatura ambiente se obtiene:

$$v_d \approx 5, 2 \,\mathrm{mV}$$

En la práctica se tolera:

$$|v_d| < 10 \,\mathrm{mV} \; \mathrm{(pico)}$$