MATH 7241 Fall 2020: Problem Set #8

Due date: Sunday November 22

Reading: relevant background material for these problems can be found on Canvas 'Notes 4: Finite Markov Chains'. Also Grinstead and Snell Chapter 11.

Exercise 1 Recall the Gambler's Ruin Problem: a random walk on the integers $\{0, 1, ..., N\}$ with probability p to jump right and q = 1 - p to jump left at every step, and absorbing states at 0 and N. Starting at $X_0 = k$, the probability to reach N before reaching 0 is

$$P_k = \frac{1 - (q/p)^k}{1 - (q/p)^N}$$
 for $p \neq \frac{1}{2}$, $P_k = \frac{k}{N}$ for $p = \frac{1}{2}$.

Starting at $X_0 = k$, let R_k be the probability to reach state N without returning to state k. Use the Gambler's Ruin result to compute R_k for all k = 0, ..., N, and for all 0 . [Hint: condition on the first step and use the formula given above].

Exercise 2 Consider a biased random walk X_n on the semi-infinite line $\{0, 1, 2, ...\}$, where at each step the walker either goes left with probability q or goes right with probability p, where p + q = 1. The point 0 is absorbing. Recall the solution of the Gambler's Ruin problem:

$$Q_k = \frac{(q/p)^N - (q/p)^k}{(q/p)^N - 1}, \quad q \neq p,$$
 $Q_k = 1 - \frac{k}{N}$ for $p = q$

was the probability of being absorbed at 0 before being absorbed at N, starting at k. By taking appropriate limits, use this result to find the probability that the walk X_n on the semi-infinite line is absorbed at 0, after starting at k (your answer will depend on q and p – be sure to include the case q = p).

Exercise 3 The Markov chain $X = \{X_n\}$ is defined on the state space $S = \{0, 1, 2, ...\}$. The chain is irreducible, aperiodic and positive persistent, with stationary distribution $\{w_k\}$ (k = 0, 1, 2, ...). Let $Y = \{Y_n\}$ be an independent copy of X, and define Z = (X, Y).

- a). Write down the transition matrix for Z, and compute its stationary distribution (your answer will depend on w).
- b). Given that the chain Z starts at the state (k, k) (so that $X_0 = Y_0 = k$), find an expression for the expected number of steps until the first return to (k, k).

Exercise 4 Let X_1, X_2, \ldots be IID random variables, where the moment generating function is

$$\mathbb{E}[e^{tX}] = \frac{4}{(2-t)^2}, \qquad t < 2$$

- a). Find the mean $\mathbb{E}[X]$.
- b). Let $Y_n = (1/n) \sum_{i=1}^n X_i$. For $x > \mathbb{E}[X]$ use Cramer's Theorem to compute

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(Y_n > x)$$

Exercise 5 A fair coin is tossed n times, coming up Heads N_H times and Tails $N_T = n - N_H$ times. Let $S_n = N_H - N_T$. Use Cramer's Theorem to show that for 0 < a < 1,

$$\lim_{n \to \infty} P(S_n > an)^{1/n} = \left[(1+a)^{1+a} (1-a)^{1-a} \right]^{-1/2}$$

Exercise 6 Let X_1, X_2, \ldots be IID r.v.'s, and $Y_n = n^{-1} \sum_{i=1}^n X_i$. For x > E[X] use Cramer's Theorem to compute

$$\lim_{n \to \infty} 1/n \log P(Y_n > x)$$

when X is a) exponential with rate λ , and b) uniform on [0,1]. [Note: for part (b) you will not achieve an explicit solution; instead produce a plot of the result as a function of x]

Exercise 7 For a branching process, calculate the probability of extinction when $p_0 = 1/6$, $p_1 = 1/2$, $p_2 = 1/3$.

Exercise 8 The number of offspring Z in a branching process has the following distribution:

$$p_0 = \mathbb{P}(Z=0) = p$$
, $p_1 = \mathbb{P}(Z=1) = q$, $p_2 = \mathbb{P}(Z=2) = 2p - \frac{1}{6}$

where $0 \le q \le 1$ and $1/9 \le p \le 4/9$. Also $\mathbb{P}(Z > 2) = 0$.

- a). Compute q as a function of p.
- b). Find the mean $\mathbb{E}[Z]$ (your answer should depend on p, but not on q).
- c). Find the largest value of p for which extinction is certain (your answer should be a number).
- d). Let p_m be the value computed in (c). Calculate the probability of extinction for $p > p_m$ (your answer should depend on p, but not on q).