MATH 5350

Homework XI

Michael Nameika

Section 7.1 Problems

7. (Inverse) Show that the inverse A^{-1} of a square matrix exists if and only if all the eigenvalues $\lambda_1, \dots, \lambda_n$ of A are different from zero. If A^{-1} exists, show that it has the eigenvalues $1/\lambda_1, \dots, 1/\lambda_n$.

Proof: First suppose that A^{-1} exists. Then we have $\det(A) \neq 0$, and notice $\det(A) = \det(A - 0 \cdot I) \neq 0$ so that 0 is not an eigenvalue by definition. Now suppose that 0 is not an eigenvalue. Then $\det(A - 0 \cdot I) = \det(A) \neq 0$ so that A is invertible.

Now, suppose A^{-1} exists and let λ be an eigenvalue of A and let v be an associated eigenvector of λ . Then

$$Av = \lambda v$$

multiplying the above equation on the left by A^{-1} , we have

$$A^{-1}Av = A^{-1}(\lambda v)$$
$$v = \lambda A^{-1}v$$

and since $\lambda \neq 0$ by the above proof, we may divide each side of the above equation by λ :

$$A^{-1}v = \frac{1}{\lambda}v$$

so that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} by definition. Thus, if λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} . Thus, $\frac{1}{\lambda_1}, \cdots, \frac{1}{\lambda_n}$ are eigenvalues of A^{-1} . We must now show that these are precisely the eigenvalues of A^{-1} . By the fundamental theorem of algebra and factorization theorem, we have

$$\det(A - \lambda I) = \prod_{k=1}^{n} (\lambda - \lambda_k)$$

where $\lambda_k, 1 \leq k \leq n$ are the eigenvalues of A. But then

$$\det(A^{-1} - \lambda I) = \prod_{k=1}^{n} (\lambda - \lambda'_k)$$

where $\lambda_k', 1 \leq k \leq n$ are the eigenvalues of A^{-1} . But since $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$ are eigenvalues of A^{-1} , we have

$$\det(A^{-1} - \lambda I) = \prod_{k=1}^{n} (\lambda - \frac{1}{\lambda_k})$$

so that $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$ are precisely the eigenvalues of A^{-1} .

14. Show that the geometric multiplicity of an eigenvalue cannot exceed the algebraic multiplicity.

Proof: Let X be a normed space and $\dim(X) = n$. Let $T: X \to X$ be a linear transformation and λ_0 an eigenvalue of T with algebraic multiplicity ℓ and geometric multiplicity m. Let $\{e_1, \dots, e_m\}$ be a basis for the eigenspace corresponding to λ_0 . We may extend this to a basis

$$e = \{e_1, \cdots, e_m, e_{m+1}, \cdots, e_n\}$$

MATH 5350 2

of X. We now find the matrix representation of T with respect to the basis e, $[T]_e$. Suppose

$$T = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, B, C, D are themselves matrices. Let v be an eigenvector corresponding to λ_0 and since $Tv = \lambda_0 v$, we see by the block matrix representation

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} v = \lambda_0 v$$

and definition of matrix-vector multiplication we see that $A = \lambda_0 I_m$ where I_m is the identity matrix relative to the basis $\{e_1, \dots, e_m\}$. We then have that $C = \mathbf{0}$, so that

$$[T]_e = \begin{bmatrix} \lambda_0 I_m & B \\ \mathbf{0} & D \end{bmatrix}.$$

Now, finding the characteristic equation of $[T]_e$, notice

$$\det(T - \lambda I_n) = \det(\lambda_0 I_m - \lambda I_m) \det(D - \lambda I_{n-m-1})$$
$$= (\lambda_0 - \lambda)^m \det(D - \lambda I_{n-m-1})$$

here I_n is the identity matrix relative to the basis e and I_{n-m-1} is the identity matrix relative to $\{e_{m+1}, \dots, e_n\}$. Notice that the above expression gives us that the algebraic multiplicity ℓ of λ_0 is greater than or equal to m, that is

$$\ell > m$$

which is what we sought to show.

Section 7.2 Problems

3. (Invariant subspace) A subspace Y of a normed space X is said to be invariant under a linear operator $T: X \to X$ if $T(Y) \subset Y$. Show that an eigenspace of T is invariant under T. Give examples.

Proof: Let λ be an eigenvalue of T and let E be the eigenspace of T corresponding to λ . Let $v \in E$. Then by definition, we have

$$Tv = \lambda v$$
.

Since E is itself a vector space and λ is a scalar, we have that $\lambda v \in E$. Thus, since $v \in E$ was chosen arbitrarily, we have

$$T(E) \subseteq E$$

so that E is invariant under T by definition.

For examples, considering the matrices in problems 12 and 13 from section 7.1, we have 12:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

which has eigenvalues $\lambda_1 = \lambda_2 = 1$ with associated eigenvector $v = (1,0)^T$. Now consider $x = a \cdot v$ for some scalar a. Notice

$$Ax = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} a \\ 0 \end{pmatrix}$$

MATH 5350 3

so that A maps elements of the eigenspace to the eigenspace.

13: Let

$$A_n = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

be an $n \times n$ matrix. We prove by induction that $\lambda_1 = \cdots = \lambda_n = 1$ for $n \ge 2$. For the case n = 2, see the above example. Now suppose this holds up to some integer k. We wish to show that A_{k+1} has eigenvalues of only 1. Well, notice

$$\det (A_{k+1} - \lambda I_{k+1}) = (1 - \lambda) \det (A_k - \lambda I_k)$$

(this follows from the cofactor definition of the determinant and the fact that the last row of $A_{k+1} = (0, 0, \dots, 0, 1)$) and since, by the induction hypothesis, A_k has eigenvalues that are all equal to 1, we see that the eigenvalues of A_{k+1} are all equal to one.

It is also easy to see that the associated eigenvector of A_n is $v = (1, 0, \dots, 0)^T$. Thus,

$$A_n(av) = av$$

so that A_n maps elements of its eigenspace to its eigenspace.

Section 7.3 Problems

4. Let $T: \ell^2 \to \ell^2$ be defined by y = Tx, $x = (\xi_j)$, $y = (\eta_j)$, $\eta_j = \alpha_j \xi_j$, where (α_j) is dense in [0,1]. Find $\sigma_p(T)$ and $\sigma(T)$.

Proof: I claim that $\sigma_p(T) = \{\alpha_j \mid j \geq 1\}$. Notice that if $x_j = (0, 0, \dots, 1, 0, \dots)$ (all zeros except a 1 in the j th position), we have that

$$Tx_j = (0, 0, \cdots, \alpha_j, 0, \cdots)$$
$$= \alpha_j x_j$$

so that x_j is an eigenvector with associated eigenvalue α_j . Now, suppose that there exists eigenvalues $\lambda \notin \{\alpha_j \mid j \geq 1\}$. Then by definition, we have

$$Tv = \lambda v$$

with $v = (\nu_1, \nu_2, \cdots)$. Note that $v \neq x_j, j \geq 1$ since if it were equal to an x_j, α_j would be an eigenvalue, contrary to our assumption. But

$$Tv = (\alpha_1 \nu_1, \alpha_2 \nu_2, \cdots)$$
$$= (\lambda \nu_1, \lambda \nu_2, \cdots)$$

which gives us either $v \equiv 0$ or $\lambda = \alpha_j$ for all α_j such that $\nu_j \neq 0$. Since λ is a single scalar, it must be the case that $v \equiv 0$ which is not an eigenvector by definition. Thus, if $\lambda \notin \{\alpha_j \mid j \geq 1\}$, then $\lambda \notin \sigma_p(T)$.

We now note that T is bounded since

$$||Tx||^2 = \sum_{j=1}^{\infty} \alpha_j^2 |\xi_j|^2$$

$$\leq \sum_{j=1}^{\infty} |\xi_j|^2 = ||x||^2$$

$$\implies ||Tx|| \leq ||x||.$$

MATH 5350 4

We now show that if $\lambda \in \mathbb{C}$ such that $\lambda \notin [0,1]$, we have that $\lambda \in \rho(T)$.

We must show that λ is a regular value of T. Consider $T_{\lambda} = T - \lambda I$. We must first show that T_{λ}^{-1} exists. To do so, suppose $x \in \ell^2$ such that $T_{\lambda}x = 0$. That is,

$$T_{\lambda}x = (T - \lambda I)x = 0$$

$$\implies Tx = \lambda x$$

which, if $x \neq 0$, gives us that λ is an eigenvalue by definition. But since $\lambda \notin [0,1]$, we have that λ is not an eigenvalue by our above work, so that it must be the case that x=0. Thus, $\mathcal{N}(T_{\lambda})=\{0\}$ so that T_{λ}^{-1} exists. We now show that T_{λ}^{-1} is surjective. Let $y \in \ell^2$, $y=(\eta_1,\eta_2,\cdots)$ and consider $x=(\xi_1,\xi_2,\cdots)$ with $\xi_j=\frac{\eta_j}{\alpha_j-\lambda}$. Note that there exists some $\varepsilon>0$ such that $|\alpha_j-\lambda|\geq \varepsilon$ for all $j\in\mathbb{N}$, for if there were no such ε , for some $j\in\mathbb{N}$, we would have

$$|\alpha_j - \lambda| < \varepsilon$$

for all $\varepsilon > 0$. But then λ is a limit point of (α_j) , and since (α_j) is dense in [0,1], we have $\lambda \in [0,1]$, a contradiction. Thus,

$$\frac{1}{\alpha_i - \lambda} \le \frac{1}{\varepsilon}$$

and so

$$\sum_{j=1}^{\infty} |\xi_j|^2 = \sum_{j=1}^{\infty} \frac{|\eta_j|^2}{|\alpha_j - \lambda|^2}$$
$$\leq \sum_{j=1}^{\infty} \frac{|\eta_j|^2}{\varepsilon^2} < \infty$$

since $y \in \ell^2$. Hence $x \in \ell^2$ and T_{λ}^{-1} is surjective and is hence bijective since T is injective. Since T is bounded, T_{λ} is bounded, and by the bounded inverse theorem, we have that T_{λ}^{-1} is bounded. Thus, $\lambda \in \rho(T)$.

Now, since T is bounded and ℓ^2 is a Banach space, we have that $\sigma(T)$ is closed, thus

$$\sigma_p(T) \subseteq \sigma(T) \subseteq [0,1]$$

and since $\sigma_p(T)$ is dense in [0, 1], and $\sigma(T)$ is closed, we have

$$\overline{\sigma_p(T)} = [0,1] \subseteq \overline{\sigma(T)} = \sigma(T)$$

SO

$$[0,1] \subseteq \sigma(T) \subseteq [0,1]$$

hence

$$\sigma(T) = [0, 1].$$