Funções

- Função: definição, domínio e imagem.
- Maneiras de representar funções.
- Gráfico
- Funções Definidas por Partes
- Simetria
- Funções Crescentes e Decrescentes

Função

O que é função? O que você entende por função?

- Uma grandeza que depende de outra;
- Uma relação entre dois conjuntos;
- Ou a relação entre duas grandezas variáveis.
- As funções surgem quando uma quantidade depende de outra.

Quatro Maneiras de Representar uma Função

Consideremos as seguintes situações:

a) A área A do círculo depende do raio r do círculo.

A regra que conecta r e A é dada pela equação

$$A = \pi R^2$$

A cada número r positivo está associado um único valor de A e dizemos que A é uma função de r.

- b) O custo *C* de enviar um envelope grande depende do peso *w* do envelope. Embora não haja uma fórmula simples relacionando *w* e *C*, o correio tem uma fórmula que permite calcular *C* quando *w* é dado.
- c) A população humana do mundo *P* depende do tempo *t*.

A tabela mostra as estimativas da população mundial P (t) no momento t em certos anos.

Por exemplo,

$$P(1950) \approx 2,560,000,000$$

Porém, para cada valor do momento t há um valor correspondente de P, e dizemos que P é uma função de t.

Ano	População (milhões)
1900	1.650
1910	1.750
1920	1.860
1930	2.070
1940	2.300
1950	2.560
1960	3.040
1970	3.710
1980	4.450
1990	5.280
2000	6.080
2010	6.870

d) A aceleração vertical *a* do solo medida por um sismógrafo durante um terremoto é uma função do tempo decorrido *t*.

A Figura 1 demonstra um gráfico gerado por atividade sísmica durante o terremoto de Northridge t que chocou Los Angeles em 1994. Para um dado valor de *t*, o gráfico fornece um valor correspondente de *a*.

Definição

Uma função f é uma lei que associa, a cada elemento x em um conjunto D, exatamente um elemento, chamado f(x), em um conjunto E.

$$f: D \to E$$
$$x \mapsto f(x)$$

Diagrama de máquina para uma função f

Diagrama de flechas para f

Domínio e Imagem

Em geral consideramos as funções para as quais *D* e *E* são conjuntos de números reais.

$$f: D \subset \mathbb{R} \to E \subset \mathbb{R}$$
$$x \mapsto y = f(x)$$

O conjunto D é chamado de **domínio** da função.

O número f(x) é o valor de f em x e é lido " f de x."

A **imagem** de f é o conjunto de todos os valores possíveis de f(x) conforme x varia por todo o domínio.

$$Im f = \{ y = f(x); x \in D \}$$

O símbolo que representa um número arbitrário no domínio de uma função f é denominado uma **variável independente**.

Um símbolo que representa um número na *imagem* de *f* é denominado uma **variável dependente**.

Por exemplo a função

$$A = \pi R^2$$

A é a variável dependente e R é a variável independente.

Representações de Funções

É possível representar uma função de quatro maneiras:

verbalmente (descrevendo-a com palavras)

numericamente (por meio de uma tabela de valores)

visualmente (através de um gráfico)

algebricamente (utilizando-se uma fórmula explícita)

Gráfico

O método mais comum de visualizar uma função consiste em fazer seu gráfico.

Se f for uma função com Domínio D, então seu **gráfico** será o conjunto de pares ordenados

$$\{(x, f(x))/x \in D\}$$

Em outras palavras, o gráfico de f consiste de todos os pontos (x, y) no plano de coordenadas tal que y = f(x) e x está no domínio de f.

O gráfico de uma função f nos proporciona uma figura útil do comportamento ou "histórico" da função.

Uma vez que a coordenada y de qualquer ponto (x, y) sobre o gráfico é y = f(x), podemos ler o valor de f(x) como a altura do ponto no gráfico acima de x.

O gráfico de f também nos permite visualizar o domínio de f sobre o eixo x e a imagem sobre o eixo y, como na Figura.

Exemplo

O gráfico de uma função f está mostrado na Figura.

(a) Encontre os valores de f(1) e f(5).

- Vemos na figura que o ponto (1,3) encontra-se no gráfico de f, então, o valor de f em 1 é f(1) = 3.
- Quando x = 5, o ponto no gráfico que corresponde a esse valor está 0,7 unidade abaixo do eixo x e estimamos que $f(5) \approx -0.7$

(b) Quais são o domínio e a imagem de f?

Vemos que f(x) está definida quando $0 \le x \le 7$.

Logo, o domínio de f é o intervalo fechado [0, 7].

Observe que os valores de f variam de -2 até 4.

Assim, a imagem de f é

$${y/-2 \le y \le 4} = [-2, 4]$$

Exemplo

Encontre o domínio de cada função.

(a)
$$f(x) = \sqrt{x+2}$$

(a) Como a raiz quadrada de um número negativo não é definida (como um número real), o domínio de f consiste em todos os valores de x tais que $x+2 \ge 0$. Isso é equivalente a $x \ge -2$; assim, o domínio é o intervalo $[-2, \infty)$.

(b)
$$g(x) = \frac{1}{x^2 - x}$$

Uma vez que

$$g(x) = \frac{1}{x^2 - x} = \frac{1}{x(x - 1)}$$

e a divisão por 0 não é permitida, vemos que g(x) não está definida no caso x = 0 ou x = 1.

Dessa forma, o domínio de g é

$$\{x \mid x \neq 0, x \neq 1\}$$

que também pode ser dado na notação de intervalo como

$$(-\infty, 0) \cup (0, 1) \cup (1, \infty)$$

O gráfico de Uma Função

O gráfico de uma função é uma curva no plano xy. Mas surge a questão: quais curvas no plano xy são gráficos de funções? Essa pergunta será respondida por meio do teste a seguir.

Teste da Reta Vertical Uma curva no plano *xy* é o gráfico de uma função de *x* se e somente se nenhuma reta vertical cortar a curva mais de uma vez.

Exemplo

Por exemplo, a parábola $x = y^2 - 2$ na Figura

Note que a equação $x = y^2 - 2$ implica $y^2 = x + 2$, de modo que $y = \pm \sqrt{x + 2}$.

Funções Definidas por Partes

As funções nos quatro exemplos a seguir são definidas por fórmulas distintas em diferentes partes de seus domínios. Tais funções são chamadas funções definidas por partes.

1. Uma função *f* é definida por

$$f(x) = \begin{cases} 1 - x & \text{se } x \le -1 \\ x^2 & \text{se } x > -1 \end{cases}$$

Avalie f(-2), f(-1), e f(0) e esboce o gráfico.

SOLUÇÃO Lembre-se de que toda função é uma regra. Para esta função em particular a regra é a seguinte: primeiro olhe para o valor da entrada x. Se acontecer de $x \le -1$, então o valor de f(x) é 1 - x. Por outro lado, se x > -1, então o valor de f(x) é x^2 .

Uma vez que $-2 \le -1$, temos f(-2) = 1 - (-2) = 3.

Uma vez que $-1 \le -1$, temos f(-1) = 1 - (-1) = 2.

Uma vez que 0 > -1, temos $f(0) = 0^2 = 0$.

Como fazer o gráfico de f?

Observamos que se $x \le -1$, então f(x) = 1 - x, assim, a parte do gráfico de f à esquerda da reta vertical x = -1 deve coincidir com a reta y = 1 - x, essa última com inclinação -1 e intersecção com o eixo y igual a 1.

Se x > -1, então $f(x) = x^2$ e dessa forma, a parte do gráfico f à direita da reta x = -1 deve coincidir com o gráfico de $y = x^2$, que é uma parábola.

Isso nos permite esboçar o gráfico na Figura

O círculo cheio indica que o ponto (-1, 2) está incluso no gráfico; o círculo vazio indica que o ponto (-1, 1) está excluído do gráfico.

O próximo exemplo de função definida por partes é a função valor absoluto. Lembre-se de que o valor absoluto de um número a, denotado por |a|, é a distância de a até 0 sobre a reta real. Como distâncias são sempre positivas ou nulas, temos

$$|a| \ge 0$$
 para todo número a.

Por exemplo,

$$|3| = 3$$
 $|-3| = 3$ $|0| = 0$ $|\sqrt{2} - 1| = \sqrt{2} - 1$ $|3 - \pi| = \pi - 3$

Em geral, temos

$$|a| = a$$
 se $a \ge 0$
 $|a| = -a$ se $a < 0$

(Lembre-se de que se a for negativo, então -a será positivo.)

2. Esboce o gráfico da função valor absoluto f(x) = |x|.

Da discussão precedente sabemos que

$$|x| = \begin{cases} x & \sec x \ge 0 \\ -x & \sec x < 0 \end{cases}$$

Usando o mesmo método empregado no Exemplo 1, vemos que o gráfico de f coincide com a reta y = x à direita do eixo y e com a reta y = -x à esquerda do eixo y.

3. Encontre uma fórmula para a função f cujo gráfico está na Figura

SOLUÇÃO A reta que passa pelos pontos (0, 0) e (1, 1) tem inclinação m = 1 e intersecção com o eixo y, b = 0; assim, sua equação é y = x. Logo, para a parte do gráfico de f que liga os pontos (0, 0) e (1, 1), temos

$$f(x) = x$$
 se $0 \le x \le 1$.

A reta que passa pelos pontos (1, 1) e (2, 0) tem uma inclinação de m = -1, dessa maneira, a forma ponto-inclinação será

$$y - y_1 = m(x - x_1)$$

$$y - 0 = (-1)(x - 2)$$
 ou $y = 2 - x$.

Logo, temos

$$f(x) = 2 - x$$
 se $1 < x \le 2$.

Vemos também que o gráfico de f coincide com o eixo x para x > 2.

Juntando todas as informações, temos a seguinte fórmula em três partes para f:

$$f(x) = \begin{cases} x & \text{se } 0 \le x \le 1 \\ 2 - x & \text{se } 1 < x \le 2 \\ 0 & \text{se } x > 2 \end{cases}$$

4. No Exemplo B, no início desta seção, consideramos o custo C(w) do envio pelo correio de uma carta preferencial em Hong Kong com o peso w. Na realidade, esta é uma função definida por partes, pois a partir da tabela de valores, temos

$$C(w) = \begin{cases} 1,40 & \text{se } 0 < w \le 30 \\ 2,20 & \text{se } 30 < w \le 50 \\ 3,00 & \text{se } 50 < w \le 100 \\ 3,70 & \text{se } 100 < w \le 150 \\ 4,00 & \text{se } 150 < w \le 200 \end{cases}$$

w	C(w)
(gramas)	(dólar HKD)
$0 < w \le 30$ $30 < w \le 50$ $50 < w \le 100$ $100 < w \le 150$ $150 < w \le 200$:	1,40 2,20 3,00 3,70 4,00

O gráfico é mostrado na Figura

Você pode entender então por que funções similares a esta são chamadas funções escada – elas pulam de um valor para o próximo.

Simetria

Se uma função f satisfaz f(-x) = f(x) para todo número x em seu domínio, então f é chamada função par. Por exemplo, a função $f(x) = x^2$ é par, pois

$$f(-x) = (-x)^2 = x^2 = f(x)$$

O significado geométrico de uma função ser par é que seu gráfico é simétrico em relação ao eixo y (veja a Figura 19). Isso significa que se fizermos o gráfico de f para $x \ge 0$, então, para obter o gráfico inteiro, basta refletir esta parte em torno do eixo y.

FIGURA 19 Uma função par

Se f satisfaz f(-x) = -f(x) para cada número x em seu domínio, então f é chamada função ímpar. Por exemplo, a função $f(x) = x^3$ é ímpar, pois

$$f(-x) = (-x)^3 = -x^3 = -f(x).$$

O gráfico de uma função ímpar é simétrico em relação à origem (veja a Figura 20). Se já tivermos o gráfico de f para $x \ge 0$, poderemos obter o restante do gráfico girando esta parte 180° em torno da origem.

FIGURA 20 Uma função ímpar

Exemplo

Determine se a função é par, ímpar ou nenhum dos dois.

(a)
$$f(x) = x^5 + x$$
 (b) $g(x) = 1 - x^4$ (c) $h(x) = 2x - x^2$

(b)
$$g(x) = 1 - x^4$$

(c)
$$h(x) = 2x - x^2$$

$$f(-x) = (-x)^5 + (-x) = (-1)^5 x^5 + (-x)$$
$$= -x^5 - x = -(x^5 + x)$$
$$= -f(x)$$

Portanto, f é uma função ímpar.

$$g(-x) = 1 - (-x)^4 = 1 - x^4 = g(x)$$

Assim, g é par.

(c)
$$h(-x) = 2(-x) - (-x)^2 = -2x - x^2$$

Como $h(-x) \neq h(x)$ e $h(-x) \neq -h(x)$, concluímos que h não é par nem ímpar.

Os gráficos das funções no Exemplo 11 estão na Figura 21. Observe que o gráfico de h não é simétrico em relação ao eixo y nem em relação à origem.

Funções Crescentes e Decrescentes

Uma função f é chamada crescente em um intervalo I se

$$f(x_1) < f(x_2)$$
 quando $x_1 < x_2$ em I .

É denominada decrescente em I se

$$f(x_1) > f(x_2)$$
 quando $x_1 < x_2 \text{ em } I$.

Na definição de uma função crescente, é importante perceber que a desigualdade $f(x_1) < f(x_2)$ deve responder a *cada* par de números x_1 e x_2 em I com $x_1 < x_2$.

O gráfico da Figura 22 cresce de A para B, decresce de B para C, e cresce novamente de C para D. Digamos que a função f é crescente no intervalo [a, b], decrescente em [b, c] e crescente novamente em [c, d]. Note que se x_1 e x_2 são dois números quaisquer entre a e b com $x_1 < x_2$, então $f(x_1) < f(x_2)$. Utilizamos isso como a propriedade que define uma função crescente.

FIGURA 22

Você pode ver que na Figura 23 a função $f(x) = x^2$ é decrescente no intervalo $(-\infty, 0]$ e crescente no intervalo $[0, \infty)$.

FIGURA 23

Exercícios

Seção 1.1 – pág. 19.

Livro STEWART, J. Cálculo. Volume I. 7a edição