Polymers & Manufacturing

Briefing Session 4

What are Plastics?

Plastics is a general term that describes materials composed of very large molecules called polymers that are synthetically made or modified from small components called monomers.

Plastics are solids that in some stage have been shaped by flow or molding in the liquid, molten or softened form.

Plastics are those materials which are considered to be plastics by common acceptance.

General characteristics of plastics materials

Versatility Design Flexibility

Low specific gravity Transparency

Colorability Low energy requirements

Chemical resistance Range of mechanical properties

Electrical insulation Thermal insulation

Re-usability Flammability

Poor weather resistance Thermal expansion

Polymers and Plastics

Although the words polymers and plastics are often used interchangeably, there is a distinction between the two. Polymer is the pure material which is the main end product of polymerisation. Pure polymers are seldom used on their own and it is when additives are present that the term plastic is applied.

PLASTIC = POLYMER + ADDITIVES

Classification of plastics

Thermoplastics vs Thermosets

Thermoplastics

- Processing is reversible change --> Recyclable
- Lower total part cost
- Greater design freedom due to higher ductility
- Stable Electrical Properties

Thermosets

- Processing is irreversible change --> Not Recyclable
- Lower Material Cost
- High Heat/Creep resistance
- High arc resistance

Manufacturing Plastics

Raw Materials

Extrusion

Manufacturing Plastics

Extrusion

Sheet extrusion

Film thickness: 0.5 - 20 mil (1 mil = 0.001 inch)

Extrusion blow molding

Typical products
Bottles and containers
Automotive fuel tanks
Venting ducts
Watering cans

Pipe extrusion

Fig. 5.1 Schematic diagram of a pipe die.

extrusion: internal sizing mandrel.

Fig. 5.4 Pipe extrusion - external sizing: (a) pressure sizing; (b) vacuum sizing.

Tubular blown film extrusion

Injection Molding

- Injection molding is the most important process used to manufacture plastic products.
- More than one third of all thermoplastic materials are injection molded.
- It is ideally suited to manufacture massproduced parts of complex shapes that require precise dimensions.

Injection Molding

- Most common method for plastics and works at high Pressures (70 to 200 MPa)
- Single or multiple parts can be produced in one cycle (Typical cycle times of 5 to 60 secs)
- Size of parts are usually small but sometimes large
- Thermoplastics are more commonly injection molded than thermosets
- Temperature, pressure and velocity are important which dictate mechanical properties
- Mold is an important part of system which has cavity corresponding to geometry of the part and are subjected to high pressures and temperatures
- Injection molding machine is specified by its clamping force

Manufacturing Plastics

Injection Molding

Mould Close & IU Forward

DOSING

INJECTION UNIT RETRACT

MOULD OPEN

Basic Structure of an Injection Mold

Azomom TM

Pressure Requirements

Part Design Impact

Part Design for Injection Molding - Draft

through boss snap fit for screw "mouse" hole shut off hole пb side vents boss with gusset side action nominal hole side boss wall wall

Process Impact Fill Time

Slow vs. Fast Fill Time

Long Fill Time
Low Injection Speed

Short Fill Time
High Injection Speed

How Cooling Affects the Cycle Time

Reduce Cooling Time Reduce Cycle Time Increase profits!

How Wall Thickness Impacts Cooling Time

Cooling Time ~ (Heaviest Wall Thickness)²
Thermal Diffusivity of the Melt

Better Design

Good Cooling vs. Bad Cooling

Proper Cooling

Poor Cooling

Better Part in Shorter Time

Poor Part in Longer Time

Residual Stress

What Causes Residual Stress?
Unbalanced Residual Stress

What Causes Residual Stress?

What Causes Residual Stress?

What Causes Residual Stress?

Unbalanced Residual Stress

Unbalanced Residual Stress

Post-Molding Stage: Asymmetrical Thermal-Induced Residual Stress

Unbalanced Residual Stress

Warped Part

Examples of modern Car Components

<u>Interiors</u>

- Cockpit
- Instrument Panel
- Door Trim
- Consoles
- Interior Hard Trims
- (Pillar Trims)
- Air Vents
- Cup Holders
- Ash Trays
- Bezels

Exteriors

- Bumper Systems
- Front Grills
- Body Side Claddings
- Cowls
- Auger Finger

Under the Hood

- Radiator End Tanks
- Expansion Tanks
- Water Outlets

Customer	Model	Scope	
Existing Programme Tata Motors	Indica/Indigo Sumo	Part Optimisation, Tool and Logistics Development	
Fiat, India	Siena Palio	Tool Development In-house Productionisation	
New Programme	New Indica (X1)	Soft IP design and development	
Tata Motors	New UV (X2)	Building modularity between LHD, RHD,	_[
Door & Interior Hard Trims			

Door & Interior Hard Trims

Customer	Model	Scope	
Existing Programme	Indica	Design and Development, Tool development, Productionisation and logistics development	
Tata Motors	Safari	Productionisation and logistics development	
Ford, India	B 226	Design Improvement, Tooling development, Productionisation and Logistics development Tooling and Part Development	
General Motors,	Corsa		
India			
Toyota, India	Innova (IMV)		
New Progamme		Part Design, Tooling Development, Productionisation,	
Tata Motors	New Indica	Logistics development	
General Motors	Kalos	Tooling Development, Productionisation and Logistics development	

3. Thermoforming

Copyright © 2008 CustomPartNet

Thermoforming (Vacuum Forming)

Copyright @ 2008 CustomPartNet

Thermoforming (Pressure Forming)

Extrusion blow molding

Typical products
Bottles and containers
Automotive fuel tanks
Venting ducts
Watering cans

Parison Extrusion Blow Molding Part Formed
(Cross-section) (Cross-section)

Blow Molding

Rotational Molding

Various Containers

Accessories for Aquaparks and Playgrounds

Garbage Containers

