MB590 Microbiome Analysis - Regression

Christine V. Hawkes

March 23, 2022

Contents

Libraries and Data	2
Install and load R packages	2
Load and prepare data	2
Open data file	2
VST transform otu data	2
Linear regression analysis of environmental vars on ordination axes	3
Ordination	3
Linear model design	4
Evaluate assumptions of linear regression	5
Run linear regression	8
LASSO regression of OTUs on plant traits	12
Reduce OTU pool via differential analysis	12
Prepare subsetted data for LASSO	15
LASSO on Plant height (H)	16
Coding Exercises	23
Session Info	24

We will explore two general approaches to regression with microbial community data today.

- 1. Ordinary least squares regression
 - + Examine relationship between Ordination axis 1 and putative explanatory variables
 - + 'olsrr' package
- 2. Lasso regression
 - + Identify "features" (ASVs) that explain plant traits or other dependent vars
 - + 'glmnet' package

Reference: Emmert-Streib & Dehmer (2019) High-dimensional LASSO-based computational regression models:

```
Data: Erlandson et al. (2018) Soil abiotic variables are more important than Salicaceae phylogeny or hat + DRYAD entry: https://datadryad.org/stash/dataset/doi:10.5061/dryad.5f24ks4
```

+ wk11 includes bacteria data w/ ps object, otu_table, tax_table, and sample_data files

Libraries and Data

Install and load R packages

```
#install.packages("olsrr")
#install.packages("corrplot")
#install.packages("glmnet")

library(tidyverse)
library(phyloseq)
library(DESeq2)
library(vegan)
library(olsrr)
library(corrplot)
library(glmnet)
library(ggplot2)
library(ggpubr)
```

Load and prepare data

Open data file

```
#download.file(githuburl, "wk11_data.Rdata")
load("wk11_data.RData")
```

VST transform otu data

```
ps_ds <- phyloseq::phyloseq_to_deseq2(ps_bac, ~Treatment + Ecology)

ps_ds <- DESeq2::estimateSizeFactors(ps_ds)
ps_ds = DESeq2::estimateDispersions(ps_ds, fitType = "parametric")

otu_vst<-DESeq2::getVarianceStabilizedData(ps_ds)
otu_vst<- t(otu_vst)
# min(otu_vst)
# ps_vst_pos <- transform_sample_counts(ps_vst, function(x) x+1.98)

ps_vst <- ps_bac
phyloseq::otu_table(ps_vst) <- phyloseq::otu_table(otu_vst, taxa_are_rows = FALSE)
ps_vst</pre>
```

Linear regression analysis of environmental vars on ordination axes

Ordination

PCoA on vst-transformed data

PCoA Euclidean samples

Merge ordination samples scores into new env data

```
# get environmental data
env vst <- phyloseq::sample data(ps vst)</pre>
# check that rownames match
all(rownames(sampleScores) == rownames(env_vst))
## [1] TRUE
# merge and replace rownames lost in merge
env_new <- merge(env_vst, sampleScores, by="row.names") %>%
         tibble::column_to_rownames(var = "Row.names")
env_new[1,]
          GardenID Garden.Location Number Treatment June July Aug Mean
## 11DAMYE
               11D Lawrence Strip
                                      9
                                                U -1.19 -1.39 -1.59 -1.39
##
                Nmin
                       NO3
                              NH4
                                   pH Spp Ecology Sample Genotype
## 11DAMYE 0.02300651 0.0351 0.3768 5.41 AMY
                                                g 11DAMYE
##
          Caged.E..Not.Caged Plant_Height_m Date_Sampled extraction_date
                                                                          Lat
## 11DAMYE
                                     0.21
                                               7/11/13
                                                             10/24/13 45.40912
               Long Plot
                                                   Dist3 order TLP WD SPI LSV
##
                                         Dist2
                              Dist1
157 -2.07 NA NA
                    RGR TLP.F WD.F SPI.F SLA.F
           RER SLA
                                                  Axis.1
                                                          Axis.2
## 11DAMYE 0.15 NA 0.082 -1.86 0.432 0.086 157.7 -12.67706 11.24489
phyloseq::sample_data(ps_vst) <- phyloseq::sample_data(env_new)</pre>
```

Linear model design

Examine env var correlations

```
# first limit file to quantitative vars with no NAs
env_corr <- subset(env_vst, select=c(Plant_Height_m, pH, Nmin, NO3, NH4, WD.F, SPI.F, SLA.F))
# visualize the correlations and limit model design to avoid highly correlated vars
corrplot::corrplot(cor(env_corr), method="number", type="lower", order="hclust")</pre>
```


Set model independent and dependent vars

```
model1 <- lm(Axis.1 ~ Plant_Height_m + pH + Nmin + WD.F + SPI.F + SLA.F, data = env_new)</pre>
model1
##
## Call:
## lm(formula = Axis.1 ~ Plant_Height_m + pH + Nmin + WD.F + SPI.F +
##
       SLA.F, data = env_new)
##
##
   Coefficients:
##
      (Intercept)
                    Plant_Height_m
                                                  pН
                                                                 Nmin
                                                                                  WD.F
       -139.30663
                           0.44056
                                            25.39786
                                                             51.95849
                                                                             -20.95408
##
##
                              SLA.F
             SPI.F
##
          2.57662
                          -0.01255
```

Evaluate assumptions of linear regression

For help, see

- https://cran.r-project.org/web/packages/olsrr/vignettes/residual_diagnostics.html
- $\bullet \ \ https://cran.r-project.org/web/packages/olsrr/vignettes/regression_diagnostics.html$
- $\bullet \ \ https://cran.r-project.org/web/packages/olsrr/vignettes/heteroskedasticity.html$

```
# "eyeball" test of non-linearity, unequal error variance, and outliers
# residuals should spread randomly around the zero line to indicate linearity
# residuals should also be in a horizontal band around 0 line for homogeneity of variance
# no residuals should be far away from the random pattern (= outliers)
olsrr::ols_plot_resid_fit(model1)
```

Residual vs Fitted Values

Shapiro-Wilk test of normality outperforms all others, followed by Anderson-Darling olsrr::ols_test_normality(model1)

```
## Test Statistic pvalue
## ------
## Shapiro-Wilk 0.9952 0.7372
## Kolmogorov-Smirnov 0.0525 0.5934
## Cramer-von Mises 15.6461 0.0000
## Anderson-Darling 0.3309 0.5114
```

```
# heteroskedasticity X2 test for constant error variance
olsrr::ols_test_breusch_pagan(model1, rhs=TRUE, multiple=TRUE)
```

```
##
## Breusch Pagan Test for Heteroskedasticity
## ------
```

```
Ho: the variance is constant
  Ha: the variance is not constant
##
##
##
                   Data
##
   _____
##
  Response : Axis.1
##
  Variables: Plant_Height_m pH Nmin WD.F SPI.F SLA.F
##
##
         Test Summary (Unadjusted p values)
##
##
   Variable
                   chi2
                             df
                                    р
##
   ______
   Plant_Height_m
                                0.04769470
##
                  3.92071109
                           1
                           1 0.14831469
##
                  2.08949916
                            1 0.22942282
##
   Nmin
                  1.44443616
##
   WD.F
                  1.03708786
                             1
                                 0.30849973
##
   SPI.F
                  0.64776154
                                0.42091412
                             1
   SLA.F
##
                  0.07430864
                                 0.78516371
##
  _____
                12.21690161
##
   simultaneous
                             6
                                 0.05730127
##
```

#test of collinearity; vif=1 indicates no correlations olsrr::ols_coll_diag(model1)

```
## Tolerance and Variance Inflation Factor
## -----
         Variables Tolerance
## 1 Plant_Height_m 0.7834913 1.276338
             pH 0.9853261 1.014892
## 3
             Nmin 0.8649843 1.156090
## 4
             WD.F 0.6900416 1.449188
## 5
             SPI.F 0.6493897 1.539907
             SLA.F 0.8726329 1.145957
##
##
## Eigenvalue and Condition Index
      Eigenvalue Condition Index
                                 intercept Plant_Height_m
## 1 6.5239500160
                  1.000000 1.477676e-05 0.002587152 1.858571e-05
## 2 0.2968959073
                      4.687629 5.662320e-05 0.008727644 7.375400e-05
## 3 0.1259518087
                      7.197027 6.510467e-05 0.817102753 7.453284e-05
## 4 0.0421487928
                      12.441213 4.422786e-04
                                              0.023560882 5.299633e-04
## 5 0.0083199935
                      28.002307 8.501847e-03 0.028457915 1.152380e-02
## 6 0.0023589245
                     52.589409 2.754894e-02 0.116165957 8.078691e-02
## 7 0.0003745572
                     131.976394 9.633704e-01
                                             0.003397697 9.069925e-01
                       WD.F
                                  SPI.F
           Nmin
## 1 0.004958291 7.406839e-05 0.0007099397 0.0003064333
## 2 0.758197949 3.558022e-04 0.0066973135 0.0012387661
## 3 0.162483671 5.952657e-04 0.0004204574 0.0049728173
## 4 0.061678231 7.781851e-06 0.5272746132 0.0719421168
## 5 0.001713595 5.493247e-02 0.3029609301 0.8792942196
## 6 0.009133509 8.703929e-01 0.1479974750 0.0313593725
## 7 0.001834753 7.364173e-02 0.0139392711 0.0108862744
```

Run linear regression

For help with olsrr see https://cran.r-project.org/web/packages/olsrr/vignettes/intro.html

Examines all possible models and provides R2 and information criteria to select best model For other options, see https://cran.r-project.org/web/packages/olsrr/vignettes/variable selection.html

```
M1_best <- olsrr::ols_step_best_subset(model1)</pre>
M1_best
```

```
##
               Best Subsets Regression
##
## Model Index
               Predictors
##
##
      1
               Nmin
##
      2
               pH Nmin
      3
               pH Nmin WD.F
##
               pH Nmin WD.F SLA.F
##
               Plant_Height_m pH Nmin WD.F SLA.F
##
               Plant_Height_m pH Nmin WD.F SPI.F SLA.F
##
##
##
##
                                                  Subsets Regression Summary
     -----
##
##
                      Adj.
                                 Pred
## Model R-Square
                    R-Square
                               R-Square
                                        C(p)
                                                                                        MSE
##
##
    1
            0.3614
                      0.3584
                                 0.3467
                                          45.6112
                                                   1577.4438
                                                               966.5991
                                                                          1587.5558
                                                                                     18980.
##
    2
            0.4782
                      0.4733
                                 0.4629
                                        0.6717 1536.0098
                                                               926.0174
                                                                          1549.4923
                                                                                     15581.
##
    3
            0.4815
                      0.4741
                                 0.4612
                                          1.3297 1536.6293
                                                               926.7398 1553.4824
                                                                                     15555.
                                          3.1187 1538.4114
                                                               928.5963 1558.6352
##
    4
            0.4820
                      0.4722
                                 0.4565
                                                                                     15614.
##
    5
            0.4823
                      0.4699
                                 0.4508
                                          5.0051
                                                   1540.2940
                                                               930.5517
                                                                          1563.8885
                                                                                     15680.
##
            0.4823
                      0.4674
                                  0.446
                                           7.0000
                                                    1542.2887
                                                               932.6140
                                                                          1569.2538
                                                                                     15756.
## AIC: Akaike Information Criteria
   SBIC: Sawa's Bayesian Information Criteria
##
## SBC: Schwarz Bayesian Criteria
## MSEP: Estimated error of prediction, assuming multivariate normality
```

FPE: Final Prediction Error

HSP: Hocking's Sp

APC: Amemiya Prediction Criteria

plot(M1_best)

page 2 of 2

Can include interaction terms in regression

```
model2 <- lm(Axis.1 ~ pH*Nmin, data = env_new)</pre>
M2_best <- olsrr::ols_step_best_subset(model2)</pre>
M2_best
```

##	Best Subse	ts Regression
##		
##	Model Index	Predictors
##		
##	1	pH:Nmin
##	2	Nmin pH:Nmin
	_	

pH Nmin pH:Nmin ##

##

##	Subsets Regression Summary						
##							
##		Adj.	Pred				
## Model	R-Square	R-Square	R-Square	C(p)	AIC	SBIC	SBC
##							

M

0.3914 0.3885 0.3776 91.1863 1567.0973 1577.2092 ## 1 -1116.0356 1808 ## 2 0.5697 0.5656 0.5587 4.6546 1494.5604 -3322.0927 1508.0430 1284 ## 0.5750 0.5690 0.5594 4.0000 1493.8724 -3339.2634 1510.7255 1275

AIC: Akaike Information Criteria

SBIC: Sawa's Bayesian Information Criteria

```
## SBC: Schwarz Bayesian Criteria
## MSEP: Estimated error of prediction, assuming multivariate normality
## FPE: Final Prediction Error
## HSP: Hocking's Sp
## APC: Amemiya Prediction Criteria
```

Note: can also include a specific interaction term as x1:x2

Graph main regression results

LASSO regression of OTUs on plant traits

Reduce OTU pool via differential analysis

Use DeSeq2 to identify taxa with differential "abundances" in the two main treatments

```
#assign otu table with pseudocount to remove zeros

otu <- otu_table(ps_bac)+1
env <- sample_data(ps_bac)
all(rownames(env) == colnames(otu))

## [1] FALSE

otu_t <- t(otu) %>% as.data.frame()
all(rownames(env) == colnames(otu_t))

## [1] TRUE

# for Deseq
dds <- DESeq2::DESeqDataSetFromMatrix(countData = round(otu_t), colData=env, design= ~ Treatment)
dds <- DESeq2::DESeq(dds)
# DESeq2::counts(dds)

# order and subset results by P value
res <- DESeq2::results(dds)

DESeq2::plotMA(res, ylim=c(-2,2)) # colored points are OTUs with P < 0.1</pre>
```


resOrdered <- res[order(res\$pvalue),]
resSig <- subset(resOrdered, pvalue < 0.001)
resSig</pre>

```
## log2 fold change (MLE): Treatment W vs U
## Wald test p-value: Treatment W vs U
## DataFrame with 159 rows and 6 columns
##
              baseMean log2FoldChange
                                           lfcSE
                                                       stat
                                                                 pvalue
                                                                                padj
##
             <numeric>
                             <numeric> <numeric> <numeric>
                                                              <numeric>
                                                                           <numeric>
## OTU_4
              11.34273
                                        0.125869 -13.34367 1.28959e-40 1.61843e-37
                              -1.67956
## OTU_64
                               1.65132
               2.35414
                                        0.167341
                                                    9.86799 5.72987e-23 3.59549e-20
## OTU_5
               9.77258
                              -1.35799
                                        0.139091
                                                   -9.76335 1.61717e-22 6.76517e-20
## OTU_1928
                              -1.56821
                                                   -9.60484 7.62747e-22 2.39312e-19
               2.65713
                                        0.163273
## OTU_37
               3.13894
                               1.30530
                                        0.140246
                                                    9.30721 1.31231e-20 3.29391e-18
##
## OTU_223
               3.18154
                              0.398261
                                        0.119209
                                                    3.34085 0.000835212
                                                                          0.00676252
## OTU 359
               1.82011
                              0.500183
                                        0.150871
                                                    3.31531 0.000915421
                                                                          0.00736444
                                                                          0.00778361
## OTU_123
               4.66640
                             -0.455294
                                        0.138122
                                                   -3.29631 0.000979628
## OTU 15324
               1.66899
                             -0.531353
                                        0.161200
                                                   -3.29623 0.000979929
                                                                          0.00778361
## OTU_314
               1.30477
                              0.576163
                                        0.175044
                                                    3.29153 0.000996445
                                                                          0.00786502
```

Subset data for LASSO based on DeSeq2 results

Prepare subsetted data for LASSO

Retrieve env and otu data, autoscale otus, then merge

```
# dependent vars are in the env matrix
# independent vars are in the otu matrix
env_sig <- sample_data(ps_sig)</pre>
colnames(env_sig)
## [1] "GardenID"
                              "Garden.Location"
                                                    "Number"
## [4] "Treatment"
                              "June"
                                                    "July"
                              "Mean"
## [7] "Aug"
                                                    "Nmin"
## [10] "NO3"
                              "NH4"
                                                    "Hq"
## [13] "Spp"
                              "Ecology"
                                                    "Sample"
## [16] "Genotype"
                              "Caged.E..Not.Caged" "Plant_Height_m"
## [19] "Date_Sampled"
                              "extraction_date"
                                                    "Lat"
                              "Plot"
## [22] "Long"
                                                    "Dist1"
## [25] "Dist2"
                              "Dist3"
                                                    "order"
## [28] "TLP"
                              "WD"
                                                    "SPI"
## [31] "LSV"
                              "RER"
                                                    "SLA"
                              "TLP.F"
                                                    "WD.F"
## [34] "RGR"
## [37] "SPI.F"
                              "SLA.F"
                                                    "Axis.1"
## [40] "Axis.2"
# otu - retrieve and autoscale (center by subtracting mean and scale by /sd)
otu_sig <- otu_table(ps_sig)</pre>
otu_sig_as <- scale(otu_sig, center=TRUE, scale=TRUE) %>% as.data.frame()
# check
all(rownames(env) == rownames(otu_sig_as))
## [1] TRUE
# merge
ENVOTU <- merge(env_sig, otu_sig_as, by = "row.names", all=TRUE) %>% as.data.frame()
```

Create train and test data

```
set.seed(20220316)
train <- ENVOTU %>% dplyr::sample_frac(0.8) # use 80% of data for training and 20% for testing
test <- dplyr::anti_join(ENVOTU, train, by = "Row.names")
train <- column_to_rownames(train, "Row.names")
test <- column_to_rownames(test, "Row.names")

x_train <- train %>% dplyr::select(starts_with("OTU"))
x_train <- as.matrix(x_train)
x_test <- test %>% dplyr::select(starts_with("OTU"))
x_test <- as.matrix(x_test)</pre>
```

LASSO on Plant height (H)

Assign x and y for train and test data

```
y_train <- train$Plant_Height_m
y_test <- test$Plant_Height_m
anyNA(y_test)

## [1] FALSE
anyNA(y_train)

## [1] FALSE
set.seed(20220317)</pre>
```

Use cross-validation (leave-one-out) to select lambda min


```
# plot coefficients for each OTU against lambda
plot(cvfit.H$glmnet.fit, xvar="lambda", label=TRUE)
```



```
# lambda minimum
cvfit.H$lambda.min
```

[1] 0.03603819

```
lam_min <- cvfit.H$lambda.min</pre>
```

Retrieve model coefficients and fit parameters at lambda min

```
# model coefficients at lambda min
coef(cvfit.H, s=lam_min)
```

```
## OTU 441
            -0.0302163968
## OTU_7
## OTU 9076
## OTU_2
## OTU_3
## OTU_1
## OTU 186
## OTU_292
               -0.0051508779
## OTU_192
## OTU_224
## OTU_223
## OTU_21
## OTU_5444
## OTU_215
## OTU_81
## OTU_632
## OTU_5632
## OTU 9
## OTU_106
## OTU_312
## OTU_105
## OTU_494
## OTU_299
               -0.0055865555
## OTU_568
## OTU_5
## OTU_4407
## OTU_184
## OTU_124
## OTU_25
## OTU_54
               -0.0549623759
## OTU_10
## OTU_283
## OTU_1670
               -0.0345473262
## OTU_4292
## OTU_27
## OTU_107
## OTU 242
## OTU_61
               -0.0062323717
## OTU_954
## OTU_589
## OTU 151
## OTU_32
## OTU_12296
## OTU_30
## OTU_169
## OTU_154
## OTU_180
## OTU_213
## OTU_29
## OTU_100
## OTU_359
## OTU 23
## OTU_13769
## OTU_15324
               -0.0130220956
```

```
## OTU_187
## OTU_8
## OTU_209
              -0.0173102228
## OTU_195
## OTU_24
## OTU_9274
## OTU_93
## OTU_14100
## OTU_52
## OTU_41
## OTU_50
## OTU_828
## OTU_9471
              -0.0081125343
## OTU_238
## OTU_64
## OTU_8024
## OTU_94
## OTU 4
## OTU_13
## OTU_95
## OTU_49
## OTU_260
## OTU_1370
              -0.0092949319
## OTU_800
## OTU_170
## OTU_45
## OTU_314
## OTU_5807
## OTU_69
## OTU_11754
              -0.0195371094
## OTU_60
## OTU_230
## OTU_254
## OTU_33
## OTU_440
## OTU_56
## OTU 18
## OTU_159
## OTU_263
            0.0496997660
## OTU_74
## OTU 220
## OTU_1826
## OTU_96
## OTU_79
## OTU_5154
## OTU_285
              -0.0505618624
## OTU_123
## OTU_78
## OTU_534
## OTU_39
## OTU_357
## OTU_117
## OTU_1928
## OTU_237
```

```
## OTU_2441
## OTU_55
## OTU 110
## OTU_26
               0.0389445312
## OTU_11921
## OTU_34
## OTU 104
                0.0008882859
## OTU_957
## OTU_91
## OTU_306
## OTU_477
## OTU_307
## OTU_160
## OTU_652
                0.0404960349
## OTU_454
## OTU_119
## OTU_1218
## OTU 210
               -0.0453856684
## OTU_836
## OTU_284
## OTU_167
## OTU_90
## OTU_278
## OTU_3372
## OTU_362
## OTU_11153
## OTU_86
## OTU_360
## OTU_162
## OTU_145
## OTU_1390
## OTU_279
## OTU_236
## OTU_290
## OTU_11241
## OTU_212
                0.0085385052
## OTU 705
## OTU_443
## OTU_514
## OTU_12450
## OTU 348
## OTU_571
## OTU_3294
## OTU_538
                0.0647348743
## OTU_217
# fit model with lambda minimum
best.H <- glmnet::glmnet(x_train, y_train, alpha = 1, lambda = lam_min)</pre>
best.H
##
## Call: glmnet::glmnet(x = x_train, y = y_train, alpha = 1, lambda = lam_min)
   Df %Dev Lambda
##
```

```
# assess model fit on test data
assess.H <- glmnet::assess.glmnet(best.H, newx = x_test, newy = y_test)
assess.H
## $mse
##
         s0
## 0.247926
## attr(,"measure")
## [1] "Mean-Squared Error"
##
## $mae
##
          s0
## 0.4300754
## attr(,"measure")
## [1] "Mean Absolute Error"
# if you want to retrieve r2 values for any linear relationship use
lm54 <- lm(ENVOTU$Plant_Height_m ~ ENVOTU$OTU_54)</pre>
summary(lm54)$adj.r.squared
```

[1] 0.08585157

Examine results: plot otu abundances vs. plant height

```
# plots for subset of otus with largest + and - coefficients
p263 <- ggplot2::ggplot(ENVOTU, aes(y=Plant_Height_m, x=OTU_263)) +
  geom_point(aes(colour=Treatment)) +
  geom_smooth(method="lm")
p538 <- ggplot2::ggplot(ENVOTU, aes(y=Plant_Height_m, x=OTU_538)) +
  geom_point(aes(colour=Treatment)) +
  geom_smooth(method="lm")
p652 <- ggplot2::ggplot(ENVOTU, aes(y=Plant_Height_m, x=OTU_652)) +
  geom_point(aes(colour=Treatment)) +
  geom_smooth(method="lm")
p54 <- ggplot2::ggplot(ENVOTU, aes(y=Plant_Height_m, x=OTU_54)) +
  geom_point(aes(colour=Treatment)) +
  geom_smooth(method="lm")
p123 <- ggplot2::ggplot(ENVOTU, aes(y=Plant_Height_m, x=OTU_123)) +
  geom_point(aes(colour=Treatment)) +
  geom_smooth(method="lm")
p210 <- ggplot2::ggplot(ENVOTU, aes(y=Plant_Height_m, x=OTU_210)) +
  geom_point(aes(colour=Treatment)) +
  geom_smooth(method="lm")
ggpubr::ggarrange(p263, p538, p652, p54, p123, p210, ncol=3, nrow=2, common.legend = TRUE)
```


Coding Exercises

1. Use the gls::nlme function to re-run the regression on PC Axis1 (as if homoscedasticity was violated)

- print the model info using the "summary(model)" command
- manual: https://cran.r-project.org/web/packages/nlme/nlme.pdf
- function: https://rdrr.io/cran/nlme/man/gls.html

2. Examine alpha diversity as function of soil and plant traits

- calculate observed richness (you know how!)
 - calculate on the untransformed data
 - note that if you use phyloseq::estimate_richness it may add an "X" prefix to your row names
 - replace row names before merging richness into the sample_data file
 - merge observed richness into the env_new
- define a model that includes plant and soil variables you think will be important
 - if needed, transform richness (for heteroskedastic or non-normal data)
 - if needed, remove highly collinear variables (or combine them into a single variable)
- select a regression approach and explain your choice
- plot and interpret results
- save ps vst to use next week once you add richness to the sample data
 - add the updated env_new to sample_data(ps_vst)
 - use grid view in the environment pane, select ps_vst, and hit save icon
 - save as wk11_data.Rdata

3. Rerun the LASSO regression on a different plant trait

- change the P value cutoff (e.g., 0.05 or 0.0001) and subset the data
- select a new plant trait (see Wk11_README.txt)
 - use tidyr::drop_na to remove rows with NA in your chosen variable
- rerun glmnet::lasso
- plot top results
- explain what you found

Session Info

sessionInfo()

```
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
## attached base packages:
## [1] stats4
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
  [1] ggpubr_0.4.0
                                    glmnet_4.1-3
## [3] Matrix_1.4-0
                                    corrplot_0.92
## [5] olsrr_0.5.3
                                    vegan_2.5-7
## [7] lattice_0.20-45
                                    permute_0.9-7
                                    SummarizedExperiment_1.24.0
## [9] DESeq2_1.34.0
## [11] Biobase 2.54.0
                                    MatrixGenerics 1.6.0
## [13] matrixStats_0.61.0
                                    GenomicRanges_1.46.1
## [15] GenomeInfoDb_1.30.1
                                    IRanges_2.28.0
## [17] S4Vectors_0.32.3
                                    BiocGenerics_0.40.0
## [19] phyloseq_1.38.0
                                    forcats_0.5.1
## [21] stringr 1.4.0
                                    dplyr_1.0.8
## [23] purrr_0.3.4
                                    readr_2.1.2
## [25] tidyr_1.2.0
                                    tibble_3.1.6
## [27] ggplot2_3.3.5
                                    tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
     [1] colorspace_2.0-3
                                ggsignif_0.6.3
                                                        ellipsis_0.3.2
     [4] XVector_0.34.0
##
                                fs_1.5.2
                                                        rstudioapi_0.13
     [7] farver_2.1.0
                                bit64_4.0.5
##
                                                        AnnotationDbi_1.56.2
## [10] fansi_1.0.2
                                lubridate_1.8.0
                                                        xm12_1.3.3
  [13] codetools_0.2-18
                                splines_4.1.2
                                                        cachem_1.0.6
## [16] geneplotter_1.72.0
                                knitr_1.37
                                                        ade4_1.7-18
## [19] jsonlite_1.8.0
                                broom_0.7.12
                                                        annotate_1.72.0
## [22] cluster_2.1.2
                                dbplyr_2.1.1
                                                        png_0.1-7
## [25] compiler_4.1.2
                                httr_1.4.2
                                                        backports_1.4.1
## [28] assertthat_0.2.1
                                fastmap_1.1.0
                                                        cli_3.2.0
## [31] htmltools_0.5.2
                                tools_4.1.2
                                                        igraph_1.2.11
## [34] gtable_0.3.0
                                glue 1.6.2
                                                        GenomeInfoDbData_1.2.7
## [37] reshape2_1.4.4
                                Rcpp_1.0.8.3
                                                        carData_3.0-5
## [40] cellranger_1.1.0
                                vctrs_0.3.8
                                                        Biostrings_2.62.0
```

##	[43]	rhdf5filters_1.6.0	multtest_2.50.0	ape_5.6-2
##	[46]	nlme_3.1-155	iterators_1.0.14	xfun_0.29
##	[49]	rvest_1.0.2	lifecycle_1.0.1	rstatix_0.7.0
##	[52]	goftest_1.2-3	XML_3.99-0.9	zlibbioc_1.40.0
##	[55]	MASS_7.3-54	scales_1.1.1	hms_1.1.1
##	[58]	parallel_4.1.2	biomformat_1.22.0	rhdf5_2.38.0
##	[61]	RColorBrewer_1.1-2	yaml_2.3.5	<pre>gridExtra_2.3</pre>
##	[64]	memoise_2.0.1	stringi_1.7.6	RSQLite_2.2.10
##	[67]	highr_0.9	<pre>genefilter_1.76.0</pre>	nortest_1.0-4
##	[70]	foreach_1.5.2	BiocParallel_1.28.3	shape_1.4.6
##	[73]	rlang_1.0.2	pkgconfig_2.0.3	bitops_1.0-7
##	[76]	evaluate_0.15	Rhdf5lib_1.16.0	labeling_0.4.2
##	[79]	cowplot_1.1.1	bit_4.0.4	tidyselect_1.1.2
##	[82]	plyr_1.8.6	magrittr_2.0.2	R6_2.5.1
##	[85]	generics_0.1.2	DelayedArray_0.20.0	DBI_1.1.2
##	[88]	pillar_1.7.0	haven_2.4.3	withr_2.5.0
##		mgcv_1.8-39	abind_1.4-5	KEGGREST_1.34.0
##	[94]	survival_3.2-13	RCurl_1.98-1.6	car_3.0-12
##	[97]	modelr_0.1.8	crayon_1.5.0	utf8_1.2.2
##	[100]	tzdb_0.2.0	rmarkdown_2.11	locfit_1.5-9.4
##		grid_4.1.2	readxl_1.3.1	data.table_1.14.2
##	[106]	blob_1.2.2	reprex_2.0.1	digest_0.6.29
##	[109]	xtable_1.8-4	munsell_0.5.0	