

Modelação 3D de objetos Apontamentos

Hélder Faria | João Leppänen Marco Silva | Susana Vilaça | A. Augusto de Sousa

Faculdade de Engenharia da Universidade do Porto | Julho 2011

Índice

<u>ÍND</u>	ÍNDICE		
1	SISTEMA DE COORDENADAS	3	
<u>2</u>	FORMAS 2D	5	
2.1	LINHAS	5	
2.2	RETÂNGULOS	6	
2.3	Círculos	6	
2.4	ARCOS	7	
2.5	POLÍGONOS REGULARES	7	
<u>3</u>	FORMAS 3D COM EXTRUSÃO LINEAR	9	
<u>4</u>	TRANSFORMAÇÕES GEOMÉTRICAS	11	
4.1	TRANSLAÇÃO	11	
4.2	ROTAÇÃO	12	
4.3	ESCALAMENTO SIMPLES	13	
4.4	EXERCÍCIO	15	
<u>5</u>	OS MODIFICADORES	17	
5.1	PUSH/PULL	17	
5.2	FOLLOW ME	18	
5.3	Offset	19	
5.4	OPERADORES BOOLEANOS	19	
5.4.	1 OPERADORES BOOLEANOS NO GOOGLE SKETCHUP	20	
5.5	ESCALAMENTO DE FACES	23	
5.6	Translação de Arestas e Faces	24	
5.7	EXERCÍCIOS SOBRE MODIFICADORES	25	

6 TEXTURAS	31
6.1 MAPEAMENTO DE TEXTURAS	31
6,2 MAPEAMENTO DE PARTE DE UMA TEXTURA	32
6.3 REPLICAÇÃO DE UMA TEXTURA	33
6.4 LISTA DE TEXTURAS NO GOOGLE SKETCHUP	34
6.5 COLOCAR TEXTURA SOBRE UM POLÍGONO	35
6.6 ALTERAR A FORMA DE UMA TEXTURA	36
6.6.1 MOVER TEXTURAS	37
6.6.2 ESCALAR HORIZONTALMENTE / TORCER TEXTURAS	37
6.6.3 COMPRESSÃO/ DISTORÇÃO DE TEXTURAS	38
6.6.4 ESCALAR VERTICALMENTE / RODAR TEXTURAS	39
6.7 Exercício Prático de Texturas	41
7 COMPONENTES	43
7.1 COMO UTILIZAR COMPONENTES	43
8 <u>CÂMARAS</u>	47
8.1 UTILIZAÇÃO DE CÂMARAS EM SKETCHUP	48
8.2 EXERCÍCIO	50
9 ANIMAÇÃO	53
9.1 Como produzir uma Animação em Google SketchUp?	53
9.2 Exercício	53

Nota Introdutória

Antes de iniciar o trabalho com o software Google SketchUp, convém alargar o conjunto de opções da barra de ferramentas. Assim, no menu "View", submenu "Toolbars":

- 1. Desselecione a opção "Getting Started" (a barra de ferramentas desaparece)
- 2. Selecione a opção "Large Toolset" (surge nova barra de ferramentas, mais completa)
- 3. Movimente, se necessário, a nova barra de ferramentas para a parte superior da janela de trabalho.

1 Manual de Instalação

Para instalar o Sketchup no seu PC, terá de descarregar primeiro a aplicação da Internet.

Para tal, abra o seu navegador e coloque o seguinte endereço:

http://sketchup.google.com/intl/en/download/index.html

Em seguida, escolha a opção "Download Google SketchUp", representada na Figura 1, pressione o botão "Agree and Download" e aguarde até que a transferência do ficheiro termine.

Figura 1 - Opção de descarga

Quando a transferência terminar, execute o instalador. Deverá surgir um ecrã como o apresentado na Figura 2. Siga as instruções apresentadas e clique sempre em "Next" e "Install", no passo apropriado.

Figura 2 - Ecrã inicial do instalador

Após a aplicação estar instalada, deverá aparecer um atalho no menu Iniciar, Figura 3. Execute a aplicação. A primeira vez que o Google SketchUp é executado, é-lhe pedido que escolha um "template". Este será o ambiente inicial do SketchUp das próximas vezes

que este for aberto. Sugerimos que selecione a opção "Simple Template – Meters", que apresenta um "template" simples, com o sistema de medição baseado em metros (Figura 4). Para terminar, clique em "Start using SketchUp". A aplicação deverá iniciar.

Figura 3 - Atalho no menu iniciar

Figura 4 - Escolha do "template"

2 Sistema de Coordenadas

Um sistema de coordenadas é uma forma de definir inequivocamente um ponto no espaço através de um conjunto de valores.

Aqui iremos utilizar as coordenadas cartesianas. Neste sistema de coordenadas um ponto é definido por um conjunto de 3 valores em que cada um corresponde ao valor que toma a projeção do ponto no eixo do X, do Y e do Z. No software SketchUp, os três eixos são marcados com cores vermelho, verde e azul.

Figura 5 - Sistema de coordenadas cartesiano

No SketchUp, para marcarmos um ponto com as coordenadas desejadas, devemos utilizar a ferramenta "Tape Measure".

Figura 6 - Ferramenta "Tape Measure"

Marca-se primeiro o ponto a partir do qual se quer medir a distância (o ponto origem) e move-se o rato até ao ponto pretendido.

Esta ferramenta também pode ser usada para criar pontos a distâncias fixas de outros: marca-se o ponto origem e usa-se o rato para definir a direção; com o teclado insere-se a distância exata pretendida.

3 Formas 2D

Um polígono é uma figura geométrica plana (2D) limitada por uma linha poligonal fechada. Por exemplo, o hexágono é um polígono de seis lados.

Os polígonos podem ter todos os lados iguais tomando, neste caso, a classificação de regulares; se tiverem lados de diferentes comprimentos, dizem-se irregulares.

No SketchUp, os polígonos podem ser feitos com base em várias ferramentas diferentes e ainda se podem fazer linhas curvas:

- Line Linha
- Rectangle Retângulo
- Circle Círculo
- Arc Arco
- Polygon Polígono

3.1 Linhas

Com a ferramenta "Line" é possível traçar uma sequência de linhas retas, as quais devem definir uma linha fechada de forma a formar um polígono.

Figura 7 - Ferramenta "Line" .

Figura 8 - Polígono formado com a ferramenta "Line" .

3.2 Retângulos

Com a ferramenta "Rectangle" podemos definir polígonos retangulares de vários tamanhos, bastando para isso "clicar" num vértice e arrastar.

Figura 9 - Ferramenta "Rectangle"

Figura 10 - polígono formado com a ferramenta "Rectangle"

3.3 Círculos

Com a ferramenta "Circle" é possível desenhar círculos de vários tamanhos, bastando para isso "clicar" e arrastar.

Figura 11 - Ferramenta "Circle"

Figura 12 - Polígono formado com a ferramenta "Circle".

3.4 Arcos

A ferramenta "Arc" possibilita a criação de um arco entre dois pontos. Para efetuar esta operação devemos primeiramente marcar com o rato os dois pontos, entre os quais o arco se situará. De seguida, "clica-se" sobre o ponto médio da linha que se forma e arrasta-se até se atingir a amplitude desejada do arco.

Figura 13 - Ferramenta "Arc"

Figura 14 - Polígono formado com a ferramenta "Line" e "Arc"

3.5 Polígonos Regulares

Utilizando a ferramenta "Polygon" podemos criar qualquer polígono regular, bastando para isso selecionar a ferramenta, selecionar o número de lados no canto inferior esquerdo da janela e, de seguida, "clicar" e arrastar. Podem seguir-se outros polígonos semelhantes; para alterar, por exemplo, para 10 lados escreve-se, no canto inferior esquerdo, "10s".

Figura 15 - Ferramenta "Polygon"

Figura 16 - Polígono formado com a ferramenta "Polygon".

4 Formas 3D com Extrusão Linear

A extrusão é o processo através do qual se efetua o varrimento espacial de um polígono previamente definido. Isto é, partindo de um polígono "desenhado" em 2D, podemos arrastá-lo de forma a obter um sólido em 3D.

Para fazer extrusão no SketchUp, partindo de polígonos já presentes, basta "clicar" sobre o polígono com a ferramenta "Push/Pull" e arrastar na direção em que se pretende projectar o polígono.

Figura 17 - Ferramenta "Push/Pull".

Figura 18 - Extrusão realizada com ferramenta "Push/Pull" no SketchUp.

5 Transformações Geométricas

Transformação geométrica é uma operação efetuada sobre uma figura geométrica de forma que, a partir dela, se forme outra geometricamente semelhante. De acordo com a operação, a figura pode ser rodada, aumentada ou diminuída de tamanho, etc...

As transformações geométricas principais são as seguintes:

- Translação
- Rotação
- Escalamento

Vamos então fazer uma incursão por essas transformações geométricas, explicando o que são e como as efetuar no SketchUp.

5.1 Translação

A translação corresponde a movimentar um objeto de um ponto a outro. Consiste em tomar um objeto inicial e movê-lo para outra posição sem qualquer alteração à sua forma geométrica, tal como se pode ver na Figura 19.

Figura 19 - Translação de um objeto

Por forma a efetuar uma translação, devemos selecionar o objeto que irá sofrer a translação e, de seguida, com a ferramenta "Move/Copy", "clicar" sobre o objeto e arrastá-lo para o local desejado. Carregando no "Ctrl" quando se usa esta ferramenta cria-se uma cópia do objeto original.

Figura 20 - Ferramenta "Move/Copy".

Pode ver-se na Figura 21 a translação de um paralelepípedo realizada no SketchUp.

Figura 21 - Translação de um paralelepípedo.

5.2 Rotação

A operação de rotação consiste em rodar um objeto em torno de:

- um ponto, para operações e objetos em 2D
- um eixo no caso de operações e objetos em 3D.

Em 3D, o eixo de rotação poderá ser:

- Um dos eixos do sistema de eixos x, y ou z
- Um eixo colocado arbitrariamente no espaço

Figura 22 - Rotação em torno dos eixos Z, X e Y.

Por forma a efetuarmos uma rotação no SketchUp, começamos por selecionar o objeto a rodar e, com a ferramenta "Rotate", "clicamos" sobre dois pontos à escolha, que definirão o eixo de rotação.

Figura 23 - Ferramenta "Rotate".

Seguidamente move-se o ponteiro livremente até à posição desejada.

Na Figura 24 pode ver-se a rotação de um objeto sobre um eixo paralelo ao eixo Y, centrado no próprio objeto.

Figura 24 - Rotação de um objeto no SketchUp

5.3 Escalamento Simples

A operação de escalamento baseia-se em alterar o tamanho de determinado objeto.

Figura 25 - Escalamento de um objeto.

Como se pode ver na Figura 25, partindo de um objeto, obtém-se um outro objeto maior (ou menor...) mas sem que a sua forma sofra qualquer alteração.

Para efetuar o escalamento de uma "peça" desenhada no SketchUp é necessário selecionar primeiramente todo o objeto com a ferramenta de seleção. Depois, com a ferramenta "Scale", seleciona-se um dos vértices da caixa que se forma à volta do objeto (vértice da direita, a vermelho, na Figura 28) e arrasta-se com o rato, de modo a obter o tamanho pretendido.

Figura 26 - Ferramenta "Scale".

Figura 27 - Objeto original.

Figura 28 - Objeto original selecionado com a ferramenta "Scale".

Figura 29 - Objeto escalado (reduzido)

Modelação e Transformações Geométricas

- 1. Constrói o sólido representado na Figura 30, constituído por 5 paralelepípedos. O primeiro tem dimensões 50mx5mx5m, o seguinte 40mx5mx5m e assim sucessivamente. As coordenadas do vértice "A" são (5m,5m,5m). Deves construir somente o primeiro paralelepípedo e obter os restantes através das ferramentas "Move/Copy", "Rotate", "Push/Pull" e com o auxílio da "Tape Measure".
- 2. Faz um escalamento ao teu gosto, sem deformação do objeto
- 3. Move o sólido de modo a que o vértice "A" fique situado na origem do referencial.
- 4. Roda o sólido de modo a este ficar invertido.

Figura 30 - Sólido para construir.

6 Os modificadores

Os modificadores são operadores do software SketchUp que obrigam a uma alteração da estrutura do objeto, isto é, algumas ou todas as distâncias relativas entre os seus vértices são alteradas e/ou são criados novos vértices, arestas e faces. Entre os modificadores existentes são de destacar:

- Push/Pull: adicionar ou subtrair volume a objetos 3D.
- Follow me: duplicação de um perfil ao longo de um determinado caminho.
- Offset: criação de linhas ou faces a uma distância uniforme das originais.
- Operadores Booleanos: intersecção e diferença de objetos 3D.

Ainda existem outros tipos de modificadores associados às transformações geométricas, nomeadamente ao escalamento e à translação.

6.1 Push/Pull

Este modificador é efetuado recorrendo à *Push/Pull Tool* do Google SketchUp (Figura 31) e é utilizado para, fazendo uma extrusão linear, adicionar ou subtrair volume a modelos 3D.

Figura 31 - Ferramenta Push/Pull no Google SketchUp

Podemos, por exemplo, a partir de um retângulo, obter um paralelepípedo; a partir de um círculo, obter um cilindro, etc.

Figura 32 - Adição de volume a um retângulo utilizando a ferramenta Push/Pull

Este modificador também serve para criar "buracos", ou seja, subtrair volume num sólido já existente, como se vê no exemplo da Figura 33.

Figura 33 - Subtração de volume utilizando a ferramenta Push/Pull

6.2 Follow me

Este modificador utiliza a *Follow me Tool* (Figura 34) e permite efetuar uma extrusão angular propagando um perfil ao longo de um determinado caminho circular.

Figura 34 - Ferramenta Follow me no Google SketchUp

Como exemplo, imaginemos a criação de um cone a partir de uma circunferência e de um triângulo como se apresenta na Figura 35.

Figura 35 - 1º passo da utilização da ferramenta Follow me

Neste caso, queremos "rodar" o triângulo ao longo da circunferência, de modo a formar um cone. Começamos por "clicar" com a *Follow me Tool* no triângulo e de seguida no caminho que queremos que ele percorra, ou seja, o círculo.

Figura 36 - Modo de utilização da ferramenta Follow me

6.3 Offset

Este modificador utiliza a *Offset Tool* e permite criar polígonos e linhas a uma certa distância dos originais.

Figura 37 - Ferramenta Offset no Google SketchUp

Este modificador é particularmente útil quando, por exemplo, queremos criar uma face cujas arestas estejam todas à mesma distância das arestas da face onde foram desenhadas.

O modo de utilização desta ferramenta é bastante simples: basta "clicar", com a ferramenta selecionada, na aresta ou na face à qual se deseja aplicar o modificador.

Figura 38 - Modo de utilização da ferramenta Offset

6.4 Operadores Booleanos

Os operadores Booleanos permitem combinar objetos para formar outros, mais complexos. Existem três tipos de operadores Booleanos:

- Intersecção: Dados dois objetos A e B, da sua intersecção resulta um objeto C constituído pelo volume que é comum aos dois objetos originais.
- União: Dados dois objetos A e B, da sua união resulta um objeto C constituído pelo volume que corresponde à junção dos dois objetos originais. Esta operação, no Google SketchUp, não está tão explícita como as restantes, uma vez que existem outras ferramentas, como a *Push/Pull Tool*, que fazem algo parecido com a

união de objetos.

Diferença: Dados dois objetos A e B, da sua diferença C=A-B resulta um objeto
C constituído pela subtração dos dois objetos originais, na ordem especificada.
Esta operação não é comutativa, pelo que resulta um objeto diferente se se fizer a
subtração complementar, ou seja, C=B-A.

Nas subsecções seguintes descrevem-se estes operadores com mais detalhe, por recurso a exemplos e ao Google SketchUp.

6.4.1 Operadores Booleanos no Google SketchUp

6.4.1.1 Intersecção

Dados os polígonos A e B, na seguinte posição (figura da esquerda), a sua intersecção resulta no polígono visível no lado direito.

Figura 39 - A intersecção em 2D

No Google SketchUp, a intersecção realiza-se recorrendo à ferramenta *Intersect*, acessível através de um "clique" no botão direito do rato, sobre um objeto.

Para ilustrar este operador, imaginemos que temos dois objetos: um cilindro e um paralelepípedo.

Figura 40 - Objetos exemplo - Cilindro e Paralelepípedo

Colocando-os de forma a que tenham pontos em comum ficam:

Figura 41 - Objetos exemplo numa posição onde existem pontos comuns entre si

"Clicando" com o botão direito em cima de um dos objetos e fazendo *Intersect -> with model* e apagando as arestas fora da intersecção, com a *Eraser Tool,* resulta no seguinte objeto:

Figura 42 - Resultado da intersecção dos objetos exemplo

6.4.1.2 Diferença

A nível 2D, dados os mesmos polígonos do exemplo anterior, podemos obter os seguintes resultados:

Figura 43 - A diferença em 2D

No Google SketchUp, a diferença de objetos faz-se exatamente da mesma forma que a intersecção mudando apenas as arestas que apagamos após a aplicação da ferramenta *Intersect*.

Para ilustrar este operador imaginemos o cilindro e o paralelepípedo do exemplo anterior, colocados exatamente nas mesmas posições.

Através da aplicação deste operador temos dois resultados possíveis, de acordo com a ordem de subtração. A Figura 44 mostra o resultado da subtração "paralelepípedo menos cilindro".

Figura 44 - Objeto resultante da subtração do cilindro ao paralelepípedo

A Figura 45 mostra o resultado da subtração "cilindro menos paralelepípedo".

Figura 45 - Objeto resultante da subtração do paralelepípedo ao cilindro

6.5 Escalamento de faces

O escalamento, como já vimos anteriormente, é uma transformação geométrica. No entanto, o Google SketchUp, permite escalar faces isoladamente, o que resulta como um modificador. Vejamos o seguinte objeto da Figura 46:

Figura 46 - Paralelepípedo exemplo

Ao aplicarmos um escalamento de redução à face superior, de acordo com a Figura 47...

Figura 47 - Escalamento da face superior

...resulta o objeto da Figura 48.

Figura 48 - Objeto resultante do escalamento da face superior

6.6 Translação de Arestas e Faces

Tal como no caso do escalamento, a translação também pode atuar como um modificador podendo ser aplicada a uma face ou aresta de um objeto. Tomando como exemplo o mesmo objeto da secção anterior, e aplicando uma translação à face superior, podemos obter o objeto da Figura 49.

Figura 49 - Translação da face superior do paralelepípedo exemplo

Se a translação for aplicada a uma aresta, é possível obter, por exemplo, o objeto da Figura 50.

Figura 50 - Translação de uma aresta do paralelepípedo exemplo

6.7 Exercícios sobre modificadores

- 1. Aplicação da ferramenta Push/Pull
 - a. Desenhe um retângulo e aplique a ferramenta *Push/Pull* para adicionar volume.
 - b. Desenhe as janelas e a porta da casa. (Nota: desenhe retângulos nas faces do paralelepípedo e depois aplique a ferramenta *Push/Pull*).

Figura 51 - Exercício de aplicação da ferramenta Push/Pull

- 2. Aplicação da translação de arestas e faces
 - a. Em primeiro lugar é necessário desenhar uma linha que divida a face superior do paralelepípedo a meio:

Figura 52 - Exercício de aplicação da translação de arestas e faces - parte 1

b. De seguida é necessário aplicar à aresta criada a ferramenta de translação de modo a ficar como na figura seguinte:

Figura 53 - Exercício de aplicação da translação de arestas e faces - parte 2

c. Podemos agora baixar o "telhado" de modo a ficar uma casa um pouco mais proporcional. Da mesma forma que utilizamos a translação para mover uma aresta, vamos agora utilizá-la para mover as faces do "telhado". O objetivo é obter um resultado semelhante ao da figura seguinte.

Figura 54 - Exercício de aplicação da translação de arestas e faces - parte 3

- 3. Operações Boleanas e escalamento de faces. Utilizando um cilindro e um paralelepípedo iremos aplicar os modificadores referidos de modo a obtermos um banco de jardim moderno.
 - a. Em primeiro lugar, é necessário desenhar o cilindro e o paralelepípedo e colocá-los numa posição semelhante à da figura seguinte.

Figura 55 - Aplicação de operações booleana e escalamento de faces - parte 1

b. De seguida, iremos aplicar o escalamento horizontal às bases do cilindro.

Figura 56 - Aplicação de operações booleana e escalamento de faces - parte 2

c. Finalmente, iremos efetuar a subtração "banco = paralelepípedo - cilindro", de modo a obtermos o banco.

Figura 57 - Aplicação de operações booleana e escalamento de faces – parte 3

- 4. Utilização da ferramenta Offset.
 - a. Para ilustrarmos a utilização desta ferramenta imginemos que queriamos fazer um modelo 3D do Empire State Building (http://www.esbnyc.com). Um modelo simplista do edificio podia ser feito dispondo paralelepípedos em torre (maiores por baixo). Uma forma de fazer isto em Sketchup é utilizar a ferramenta Offset para desenhar facilmente o paralelepípedo superior a uma distância uniforme do de baixo. O objetivo deste exercicio é fazer um modelo simplista do Empire State Building. O resultado esperado é semelhante ao apresentado na figura seguinte.

Figura 58 - Aplicação da ferramenta Offset

- 5. Utilização da ferramenta *Follow me*. Neste exercicio o objetivo é construir uma espécie de boia ou donut.
 - a. O primeiro passo é saber que polígonos utilizar. Como a boia é um objeto circular, iremos utilizar um círculo como caminho a percorrer pela ferramenta. Por outro lado, a forma de uma boia é redonda pelo que também iremos utilizar um círculo para a forma. O objetivo desta alínea é desenhar os círculos e dispô-los de uma forma semelhante à da figura seguinte.

Figura 59 - Aplicação da ferramenta Follow me - parte 1

b. O objetivo desta alínea é utilizar a ferramenta *Follow me* e criar uma boia semelhante à da figura seguinte (toróide).

Figura 60 - Aplicação da ferramenta Follow me - parte 2

7 Texturas

As texturas são utilizadas em Computação Gráfica como forma de aumentar o realismo de um objeto. Com as texturas podemos não só dar cor aos objetos, como lhes dar algum relevo.

7.1 Mapeamento de texturas

Para aplicar uma textura a um objeto a textura tem que ser mapeada sobre os polígonos que compõem esse objeto. Então para cada polígono é necessário aplicar a porção da textura correspondente a esse polígono.

Figura 61 - Textura Exemplo

Figura 62 - Polígono Retangular

Imaginemos que temos a textura representada na Figura 61 e a queremos mapear num polígono retangular, por exemplo o da Figura 62. Para fazer isso será necessário dizer como será "colada" a textura sobre o polígono, tal como se a textura fosse um papel de parede. Quando se cola papel de parede, começa-se por acertar as pontas nas posições que se deseja; aqui vamos fazer exatamente o mesmo, ou seja, vamos fazer corresponder na textura um sistema de coordenadas idêntico ao que se dá em matemática só que em vez de "X","Y" temos o "s" e "t" para distinguir do sistema de coordenadas do polígono, como se pode ver na **Figura 63**. Agora que sabemos as coordenadas de cada vértice da textura resta apenas dizer onde colocamos esses vértices no polígono.

Figura 63 - (s,t) de uma Textura

Nesta primeira fase de mapeamento de texturas, vamos fazer corresponder diretamente cada vértice da textura a um vértice do polígono. Assim ficamos com algo como está na Figura 64, sendo a textura totalmente mapeada no polígono.

Figura 64 - Polígono com textura

7.2 Mapeamento de parte de uma textura

Como vimos na secção anterior o mapeamento de texturas consiste em fazer corresponder a cada vértice de um polígono coordenadas da textura. Na Figura 64 as coordenadas usadas da textura correspondem aos vértices da mesma, mas isso nem sempre é o pretendido.

Figura 65 - Representação de mapeamento parcial de textura sobre polígono

Imaginemos que queremos usar somente uma parte da textura para cobrir o polígono, como está representado na Figura 65. Para fazer isso, e à semelhança do que foi feito quando mapeamos a textura toda, temos que escolher os pontos da textura que pretendemos fazer corresponder aos vértices do polígono, obtendo assim o resultado desejado, tal como podemos ver na Figura 66.

Figura 66 - Polígono com parte da textura mapeada

7.3 Replicação de uma textura

Nos casos anteriores usamos uma textura para cobrir o polígono inteiro. Imaginemos que esse polígono corresponde a uma parede, nesse caso provavelmente o efeito visual pretendido é o de repetição da textura ao longo da parede. Uma solução inicial seria partir o polígono inicial em muitos polígonos menores e mapear a textura completa em cada um dos polígonos obtendo o efeito que se pode ver na Figura 67.

Figura 67 - Mapeamento de textura por replicação de polígonos

O problema deste método é que aumentaria rapidamente o número de polígonos para um número tal que tornaria o conjunto difícil de processar. O que torna esta solução pouco viável.

Uma outra forma de resolver este problema, mais eficiente, é repetir a textura. O problema então passa a ser "como fazer para replicar a textura?". Para resolver esse problema necessitamos de responder a uma questão sobre o mapeamento de texturas: o que é que está para além do valor "1" em cada um dos eixos "s" e "t"?

Figura 68 - Eixos de uma textura replicada

Como podemos ver na Figura 68, a textura pode ser repetida quantas vezes for necessário, para totalizar a dimensão necessária (superior a "1").

Assim, no nosso exemplo, podemos utilizar valores superiores a 1 (ou, por semelhança, inferiores a 0), e assim obtermos o efeito desejado: apenas temos que mapear a textura no polígono com base nesses valores e no número de réplicas em ambas as direções que desejamos obter. O efeito final desejado é o que está representado na Figura 69.

Figura 69 - Polígono com textura replicada

7.4 Lista de Texturas no Google SketchUp

No Google SketchUp, as texturas são aplicadas com a ferramenta "paint bucket" que é acessível através do botão com o balde que se pode ver na Figura 70.

Figura 70 - Toolbar principal com indicação onde encontrar o "paint bucket"

Para utilizar a ferramenta, deve "clicar-se" sobre o botão do balde, o que faz abrir uma janela idêntica à da Figura 71, com a lista de texturas.

Figura 71 - Janela de Seleção de Materiais

Essa janela pode ser decomposta da forma que se encontra demonstrada na Figura 72.

Figura 72 - Janela de Seleção de Materiais com descrição

7.5 Colocar Textura sobre um Polígono

Para começar a colocar texturas num polígono, apenas é necessário selecionar a textura que desejamos utilizar recorrendo à lista de texturas apresentada e, de seguida, "clicar" no polígono em que a desejamos colocar, tal como pode ser visto na Figura 73.

Figura 73 - Aplicação de uma textura a um polígono

7.6 Alterar a forma de uma Textura

Quando a textura se encontrar mapeada no polígono, temos que ajustá-la ao mesmo, pelo que será necessário aceder ao modo de edição do mapeamento de texturas. Este modo pode ser ativado "clicando" com o botão direito sobre o polígono e escolhendo a opção "Texture" seguida de "Position" tal como pode ser visto na Figura 74.

Figura 74 - Figura demonstrando como entrar em modo de edição de uma textura

Nesta altura sobre o polígono podemos ver 4 "pins" com cores diferentes, tal como

demonstrado na Figura 75.

Figura 75 - Modo de edição

A forma de utilização destas 4 ferramentas é simplesmente por arrasto: basta arrastar o pin.

Também é possível mover os pins de posição sem utilizar a ferramenta: basta "clicar" uma vez sobre o pin e, sem o arrastar, "clicar" novamente onde desejar colocar o pin. Com base neste método de utilização, vamos então entender o que faz cada uma destas ferramentas.

7.6.1 Mover Texturas

Esta ação corresponde à ferramenta do pin Vermelho. A posição deste pin é um ponto de referência para os restantes "pins", funcionando como centro de rotação para a ferramenta de rotação e como ponto de referência para deformações verticais e horizontais das restantes 2 ferramentas. Também serve para mover a textura ao longo do polígono, para o que se deve arrastar o pin na direção desejada.

7.6.2 Escalar Horizontalmente / Torcer Texturas

Estas ações correspondem à ferramenta do pin Azul. Arrastando o pin ao longo da linha vertical que surge quando se utiliza a ferramenta, efetua-se um escalamento da textura nessa direção, tal como pode ser visto na Figura 76.

Figura 76 - Exemplo de uma textura esticada horizontalmente

Da mesma forma pode ser movido na direção horizontal: o pin faz com que a textura seja torcida na direção em que se for movido, dando o efeito que pode ser visto na Figura 77.

Figura 77 - Exemplo de uma textura torcida

7.6.3 Compressão/ Distorção de Texturas

Estas ações correspondem à ferramenta do pin amarelo. Arrastar este pin na direção vertical tem o efeito de comprimir ou esticar a textura nessa direção. Este processo acontece inversamente para cada um dos lados (esquerdo e direito) da textura, isto é, quando do lado esquerdo a textura estica, do lado direito ela comprime e vice-versa. Tal como acontece com os lados esquerdo e direito quando é movido verticalmente, acontecerá também com os lados do topo e da base quando o mesmo pin for movido horizontalmente (Figura 78 e Figura 79).

Figura 78 - Exemplo de distorção horizontal

Figura 79 - Exemplo de distorção vertical

7.6.4 Escalar Verticalmente / Rodar Texturas

Ao arrastar o pin Verde, a textura rodará em torno do centro (que corresponde ao ponto onde se encontra o pin Vermelho). Esta ferramenta também permite esticar a textura horizontalmente se o pin Verde for afastado do centro de rotação, ou comprimi-la, se o mesmo for aproximado do centro.

Estes efeitos podem ser vistos na Figura 80 e na Figura 81.

Figura 80 - Exemplo de uma textura comprimida verticalmente

Figura 81 - Exemplo de uma textura rodada

7.7 Exercício Prático de Texturas

- 1 Criar um dado.
 - i. A planificação do dado deve seguir o seguinte esquema:

- ii. A face 1 deve ficar voltada para cima e o 3 para a frente.
- iii. O resultado final deve ser o seguinte:

2 – Após realizada a tarefa, mudar a cor do dado para vermelho.

8 Componentes

Os componentes no **Google SketchUp** são conjuntos de polígonos guardados como um todo. No **SketchUp**, podemos, já após a instalação, encontrar variadíssimos objetos, numa biblioteca organizada em galerias por motivo. Para aceder a estes objetos, podemos abrir a janela **Components** (Figura 82), a partir do menu **Window**. (**Window** -> **Components**).

Figura 82 - Galeria Landscape na janela Components

8.1 Como utilizar Componentes

Além dos diversos componentes já incluídos na instalação do programa, podemos aceder a outros mais, numa biblioteca *online* chamada **3D Warehouse**, Figura 83. Podemos também, nesta galeria *online*, disponibilizar os nossos trabalhos, para o que é apenas necessário possuir uma conta **Google** (registo sem custos).

Para utilizarmos componentes online, abrimos o menu **File** e selecionamos **3D Ware-house->Get Model**; para partilharmos os nossos modelos com a restante comunidade, selecionamos **3D Warehouse->Share Models**.

Figura 83 - 3D Warehouse

Para criar componentes, selecionamos os objetos que queremos que passem a constituir um componente e "clicamos" no ícone (Make Component); alternativamente, através do menu Edit, selecionando a opção Make Component.

Figura 84 - Janela Create Component

Após termos criado um componente, podemos encontrá-lo na janela **Components**, Figura 84 e colocá-lo na cena quantas vezes quisermos. Isto é útil, por exemplo, se quisermos replicar diferentes janelas num mesmo edifício. Criamos um componente para uma janela e, replicando-o tantas vezes quantas as necessárias, conseguimos construir o nosso edifício de forma mais rápida e eficaz.

9 Câmaras

As câmaras, como objeto, são representações de perspetivas, definindo o que o utilizador ou espetador vê. As câmaras são definidas pelas suas componentes, entre elas a posição, a orientação e o campo de visão. A posição de uma câmara é o local no espaço de onde se observa a cena. A orientação corresponde à direção segundo a qual observamos. O campo de visão é a amplitude angular da vista; em termos práticos, influencia aquilo a que normalmente chamamos "zoom".

As figuras Figura 85 e Figura 86 são provenientes de outro programa de modelação e tentam mostrar uma câmara e a imagem que ela se encontra a captar.

Figura 85 - Representação de uma câmara como objeto.

Figura 86- Vista através da mesma câmara

Definimos a posição de uma câmara com um ponto (coordenadas no espaço); a orientação é definida por um vetor com início no ponto de posição; o campo de visão é definido por um ângulo. Podemos ver isso representado na Figura 87.

Figura 87 - Componentes da Câmara.

9.1 Utilização de Câmaras em SketchUp

No Google SketchUp existem várias câmaras standard; entre elas, destacam-se *Top*, *Front*, *Left* e *Iso*; correspondem, respetivamente, a vistas de Topo, Frente, Esquerda e perspetiva Isométrica. As diferentes perspetivas são úteis para criar ou modificar objetos, facilitando e, por vezes, garantindo, os resultados esperados.

Por exemplo: no caso de precisarmos de mover um objeto e quisermos evitar movê-lo na vertical é conveniente utilizar uma câmara correspondente à vista de Topo (Figura 88).

Figura 88 - - Objetos vistos de cima. (Top view).

Ao contrário de outros programas de modelação 3D não temos, no SketchUp, acesso a câmaras como objetos. No entanto, podemos, para simular múltiplas câmaras, utilizar diferentes cenas (**Scenes**).

Para isso, basta abrir a janela **Scenes** (Figura 89) no menu **Window-> Scenes**.

Figura 89 - Janela Scenes.

De seguida, adicionamos tantas cenas quantas as diferentes perspetivas desejarmos, utilizando o botão com o sinal "+". Selecionando uma cena, podemos então definir quais as características a memorizar e alterar o seu campo de visão, posição, etc. Para especificar a posição de uma câmara, podemos utilizar uma ferramenta chamada **Position Camera**. (menu **Camera-> Position Camera**).

Com esta ferramenta ativada, "clica-se" e arrasta-se para escolher o ponto de posição e a orientação. Por exemplo, na Figura 90, a câmara correspondente à "cena 4" foi colocada sobre a cena e um pouco à frente da mesma.

Figura 90 - Câmara da Cena 4.

9.2 Exercício

Começa por reiniciar o teu ambiente de modelação, selecionando no menu **File** a opção **new**. Grava o ambiente anterior, se assim desejares, ou te for pedido. No menu **Camera**, certifica-te que tens a opção **Parallel Projection** selecionada.

Faz a importação, do menu dos componentes, de um banco de jardim e coloca-o no teu ambiente de modelação, ficando uma perna na origem das coordenadas.

Abre a janela **Scenes** e adiciona cenas até um total de 5:

- 1) Escolhe a primeira cena e, utilizando apenas os controlos **pan** e **orbit**, coloca a tua visão de frente para o banco, o melhor que conseguires.
- Na segunda cena, escolhe uma visão frontal, mas através do menu. (Camera > Standart Views -> Front).
- 3) Compara resultados entre as câmaras anteriores e apresenta conclusões.

- 4) Na tua terceira cena, utilizando uma câmara adequada, conta quantas tábuas compõem o banco.
- 5) Na quarta cena, utiliza a ferramenta **Position Camera**, de forma a ficares a ver o banco de lado.
- 6) Na quinta e última cena, escolhe uma câmara que seja do teu agrado.

10 Animação

A animação é uma sequência de imagens coerentes que, quando observadas rapidamente, dão a ilusão de continuidade.

Para uma animação ser vista com fluidez, ou seja, sem "saltos entre imagens", é necessário que seja desenhada com, pelo menos, 12 imagens por segundo (idealmente 24).

10.1 Como produzir uma Animação em Google SketchUp?

O **Google SketchUp** não é dos melhores programas para realizar animação de objetos. As animações que permite efetuar são apenas animações de câmara, de luz ambiente e sombras.

Para se conseguir uma animação no **SketchUp**, é necessário criar duas ou mais cenas. Após criadas e devidamente configuradas do modo que queremos, pedimos ao programa que simule a passagem de uma cena para a outra. Por exemplo: no caso de termos diferentes cenas, cada qual com a sua Câmara, podemos criar uma animação de movimento de cada câmara para a seguinte. Esta é uma animação comum denominada, no SketchUp, por **Fly-by**.

Para corrermos uma animação, é apenas necessário "clicar" com o botão direito do rato num separador e escolher **Play Animation**. Podemos, de outra forma, no menu **View**, selecionar **Animation** e, de seguida, **Play Animation**. Desta forma abrimos a Janela Play Animation, Figura 91.

Figura 91 - Janela Play Animation

10.2 Exercício

Começa por reiniciar o teu ambiente de modelação, selecionando, no menu **File**, a opção **New**. Grava o anterior trabalho, se assim desejares ou te for pedido.

Utilizando o que já aprendeste sobre componentes, cria uma árvore utilizando os componentes disponíveis, perto do ponto de origem do referencial.

Cria 3 cenas:

- Na primeira, põe a câmara longe e observando de cima, mas certificando-te de que a árvore está mais ou menos centrada na imagem. Faz update da cena, "clicando" com o lado direito num separador da respetiva cena e selecionando update.
- Na segunda cena, coloca a câmara perto e de frente para a árvore; não se deve ver o topo da árvore, mas deve ver-se a sua base. Faz update da cena.
- Na terceira cena, coloca a câmara num outro ângulo de perspetiva, de forma a ver a árvore pelo outro "lado"; certifica-te, no entanto, de que toda a árvore esteja visível. Faz update da cena.
- Corre a animação.