سلسلة كامبردج في الكيمياء

الوحدة الأولى الاتزان في المحاليل المائية Equilibria in Aqueous Solutions

الأحماض و القواعد

الحصة الأولئ

مقدمة

الرقم الهيدروجيني PH

- ♦ مقياس لتركيز أيونات الهيدروجين في المحاليل
- ♦ أو اللوغاريتم السالب لتركيز أيون الهيدروحين
 أهمية الرقم الهيدروجيني PH:
- ♦ استنتاج ما إذا كانت مادة ما حمضية أم قاعدية أم متعادلة حيث أن

مقياس لدرجة الحموضة أو القلوية ويأخذ أرقام من صفر: ١٤وحالاته .

أ -اذا كانت قيمة {PH} أكبر من 7 يكون المحلول قاعدي علل

لأن تركيز أيون الهيدروجين الموجب أقل من تركيز أيون الهيدروكسيل السالب ٠

ب-اذا كانت قيمة {PH} تساوي 7 يكون المحلول متعادل علل

لأن تركيز أيون الهيدروجين الموجب مساوي لتركيز أيون الهيدروكسيل السالب ٠

ج-اذا كانت قيمة {PH} اقل من 7 يكون المحلول حامضي علل

لأن تركيز أيون الهيدروجين الموجب أكبر من تركيز أيون الهيدروكسيل السالب ٠

/L	تزداد الحامضية ويزداد تركيز ⁺ H								تزداد القاعدية ويقل تركيز ⁺ H						
V	0	1	2	3	4	5	6	7	8	9	10	11	12 \	13	14
	قوبة	مماض	أح		ضعيفة	ماض د	— أح	متعادل		عيفة	قواعد ض			ىد قوية	قواء

مقياس PH

نظرية أرهينيوس:

دور الكيميائي السويدي سفانت أرهينيوس Svante Arrhenius :

- وضع أول تعريف للحمض والقاعدة
- افترض أن جزئيات الأحماض والقواعد تذوب في الماء لتتأين جزئيًا أو كليًا إلى أيونات،
 - أطلق على هذه العملية التأين.

المادة التي تذوب في الماء و تتأيّن لتكوّن أيونات هيدروجين.

معادلة تأين كلوريد الهيدروجين:

$$HCI(g) \xrightarrow{H_2O} H^+(aq) + CI^-(aq)$$

تعريف التأين

هو عملية تحول جزيئات غير متأينة إلي أيونات

التأين غيرالتام (الضعيف)

هو عملية تحول جزء ضئيل من الجزيئات غير المتأينة إلي أيونات ويظل الجزء الباقي كما هو ويحدث في الإلكتروليتات الضعيفة

 $CH_3COOH_{(aq)} \longrightarrow CH_3COO^{-}_{(aq)} + H^{+}_{(aq)}$

التأين التام

هو عملية تحول كل الجزيئات غير المتأينة إلي أيونات ويحدث في الإلكتروليتات القوية

 $HCl_{(g)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$

التأين للأحماض أحادية البروتون: يحدث في خطوة واحده:

مثال :

 $\text{HClO}_{4(g)} \rightarrow \text{H}^+_{(aq)} + \text{ClO}_4^-_{(aq)}$

 \mathbf{H}^+ , $\mathbf{ClO_4}^-$: الأيونات التي توجد في محلول

التأين في الاحماض ثنائية البروتون: يحدث على خطوتين

مثال:

 $H_2SO_{4(g)} \rightarrow H^+_{(aq)} + HSO_4^-_{(aq)}$

 $H_2SO_4^-(g)$ \longrightarrow $H^+(aq) + SO_4^{2-}(aq)$

التأين في الاحماض ثنائية البروتون يحدث على ٣ خطوات:

$$H_{3}PO_{4} \longrightarrow H^{+} + H_{2}PO_{4}^{-}$$
 $H_{2}PO_{4}^{-} \longrightarrow H^{+} + HPO_{4}^{-2}$
 $HPO_{4}^{-2} \longrightarrow H^{+} + PO_{4}^{-3}$

H^{+} , $H_{2}PO_{4}^{-1}$, HPO_{4}^{-2} , PO_{4}^{3} : هي : $H_{3}PO_{4}$ هي توجد في محلول الأيونات التي توجد في محلول القوية والأحماض الضعيفة :

ض الضعيفه	الأحماد			الكرك بيل الوكما الأحماض القوية
اً عند ذوبانها في الماء أي أن جزء ضئيل				
و. موجود علي هيئة جزيئات غير متأينة				" الماء أي أن جميع الجزيئات تتحول إل
	فة	محاليل الأحماض الضعي	<u> </u>	عاليل الاحماض المعدنية القوية
C	CH ₃ COOH	حمض الخليك		$ m H_{2}SO_{4}$ مض الكبريتيك
(الكربوكسيلية)	كل الأحماض العضوية (HNO_3 مض النيتريك
	HF	حمض الهيدروفلوريك		مض البيروكلوريك HClO4
	H_2CO_3	حمض الكربونيك		مض الهيدروكلوريك HCl
	H ₃ PO4	حمض الفوسفوريك		مض الهيدروبروميك
	HNO_2	حمض النيتروز		مض الهيدرويوديك HI
	HCN	حمض الهيدروسيانيك		
قبل التأين 100% م 99%	بعد التأين		بل التأين 🕈	بعد التأين 🛕 قب
100%			100%	100%
			4	- 1
			1 0	- j
5.5			5,5	- \$.5.
2.3	1% 1%	6	3 3	23

CI-

لاحظ ان

 ثثل معادلة تأين الحمض القوي بسهم واحد فقط في اتجاة النواتج .

$$HCl_{(g)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

- تمثل معادلة تأين الحمض الضعيف بسهمين في الاتجاه الأمامي والعكسي.

$$CH_{3}COOH_{(aq)} \stackrel{\longleftarrow}{\longleftarrow} CH_{3}COO^{\textstyle \cdot}_{(aq)} \ + H^{^{+}}{}_{(aq)}$$

♦ الجدول التالي يوضح الصيغ الكيميائية لبعض الأحماض الشائعة والأيونات المتكوّنة نتيجة تأيّنها في الماء.

الأيونات الناتجة من تأيّن جزيء واحد من الحمض في الماء	الصيغة الكيميائية	اسم الحمض
H+ (CIT	HCI	حمض الهيدروكلوريك
H+ • NO ₃	HNO ₃	حمض النيتريك
H+ · HSO ₄ · SO ₄ ²⁻	H ₂ SO ₄	حمض الكبريتيك
CH₃COO⁻ · H⁺	CH3COOH	حمض الإيثانويك
C ₆ H ₅ COO⁻ ⋅ H⁺	C _s H _s COOH	حمض البنزويك

القواعد:

عبارة عن أكاسيد أو هيدروكسيدات الفلزات التي تتفاعل مع الاحماض مكونة ملح وماء.

القلويات:

المادة (القاعدة) التي تذوب في الماء و تتأيّن (تتفكك) لتكوّن أيونات هيدروكسيد في المحلول.

♦ معادلة تأين هيدروكسيد الصوديوم:

$$NaOH_{(S)}$$
 \longrightarrow $Na^+_{(aq)} + OH^-_{(aq)}$

♦ معادلة تأين هيدروكسيد البوتاسيوم:

$KOH_{(S)}$	$\mathbf{K}_{(\mathbf{aq})} + \mathbf{OH}_{(\mathbf{aq})}$
القواعد الضعيفة	القواعد القوية
هي القواعد التي تتأين تأيناً غير تاماً عند ذوبانها	هي القواعد الذي تتأين تأيناً تاماً عند ذوبانها
في الماء أي أن جزء ضئيل جداً يتحول إلى أيونات	في الماء أي أن جميع الجزيئات تتحول إلى أيونات
والجزء الأكبر موجود علي هيئة جزيئات غير متأينة	, and the second
محاليل القلويات الضعيفة	محاليل القلويات القوية
$\mathrm{NH_4OH}$ هيدروكسيد الأمونيوم	هيدروكسيد الصوديوم
$\operatorname{Fe(OH)}_2$ الحديد	هيدروكسيد البوتاسيوم KOH
$Fe(OH)_3$ III هيدروكسيد الحديد	$\operatorname{Ba(OH)}_2$ هيدروكسيد الباريوم هيدروكسيد الباريوم
$\operatorname{Cu(OH)}_2$ II هيدروكسيد النحاس	$\operatorname{Ca(OH)}_2$ هيدروكسيد الكالسيوم

الجدول التالي يوضِح الصيغ الكيميائية لبعض القواعد الشائعة والأيونات المتكونة نتيجة تأيّنها في الماء:

اسم القاعدة	الصيغة الكيميائية	الأيونات الناتجة من تأين القاعدة في الماء
كسيد الكالسيوم	CaO	Ca ²⁺ • 20H ⁻
كسيد البوتاسيوم	K ₂ O	2K+ · 2OH-
هيدروكسيد الصوديوم	NaOH	Na⁺ ∙ OH⁻
هيدروكسيد الكالسيوم	Ca(OH) ₂	Ca ²⁺ · 2OH ⁻

ا\ مهاب السقا

س أ. اكتب معادلة كيميائية توضح ذوبان هيدروكسيد الباريوم Ba(OH)₂ في الماء:

ب. اكتب معادلة كيميائية توضح ذوبان حمض النيتريك السائل (HNO₃) في الماء.

قصور نظرية أرهينيوس:

بالرغم من أن نظرية أرهينيوس فسرت سلوك الأحماض والقواعد إلا أنها اقتصرت فقط على المحاليل المائية لهذه المواد

نظرية برونستد- لوري

نظریة برونستد- لوری:

في الّعام ١٩٢٣ م اقتّر ت كل من الكيميائي الدنماركي برونستد والكيميائي البريطاني لوري تعريفًا أكثر . شمولية للأحماض والقواعد ،

وهو أنه في تفاعل الأحماض والقواعد، ينتقل بروتون (أيون الهيدروجين + H) من الحمض نحو القاعدة. تفاعل الحمض مع القاعدة هو انتقال البروتون من الحمض الى القاعدة .

: Brønsted-Lowry acid حمض برونستد- لوري

مادة تمنح البروتون (أيون $^+$ H)

: Brønsted-Lowry base قاعدة برونستد - لورى

مادة تستقبل البروتون (أيون + H)

الحمض المرافق:

هو المادة الناتجة عندما تكتسب القاعدة بروتوناً.

القاعدة المرافقة:

هى المادة الناتجة عندما يمنح الحمض بروتوناً.

مثال ١ : عند ذوبان غاز كلوريد الهيدروجين (HCl) في الماء :

- ♦ يتكون أيون الهيدرونيوم (+ H₃O)
 - 💧 وأيون الكلوريد (- Cl)
- ♦ ويلاحظ أن الماء يدخل في التفاعل كقاعدة كما هوموضّح في المعادلة الآتية:

$$HCl_{(g)}$$
 + $H_2O_{(l)}$ \longrightarrow $Cl^-_{(aq.)}$ + $H_3O^+_{(aq.)}$ \longrightarrow $Cl^-_{(aq.)}$ + $Cl^-_{(aq.)}$ \longrightarrow $Cl^-_{(aq.)}$ + $Cl^-_{(aq.)}$ + $Cl^-_{(aq.)}$

92594064

مثال ۲ : ذوبان النشادر (الأمونيا) في الماء :
$$NH_{3(g)} + H_2O_{(l)} \longrightarrow NH_4^+_{(aq.)} + OH_{(aq.)}^-$$
 قاعدة مرافقة حمض مرافق حمض مرافق

$$H^+$$
 يمنح H^+ يمنح $WH_3(g) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ هاعدة

الشكل ١-٢ تفاعل حمض وقاعدة وفق نظرية برونستد-لوري.

- ♦ الماء يعتبر حمضا:
- ♦ لأنه يمنح بروتون الى النشادر
- ♦ النشادر يعتبر قاعدة:
 - ♦ لأنه يكتسب بروتون
- ♦ و يصبح أيون الأمونيوم حمض مرافق
 - ♦ وأيون الهيدروكسيل قاعدة مرافقة

علل: يعتبر النشادر من القواعد رغم عدم احتوائه على ايون الهيدروكسيل:

ج: لأنها تذوب في الماء مكونه محلول قلوى و كذلك تتعادل مع الأحماض

ملاحظة:

أى أيون سالب ما عدا أيون الهيدروكسيل يعتبر قاعدة برونشتد ـ لورى .

المواد المتذبذبة (amphoteric) أو المواد المترددة.

المواد التي يمكن أن تسلك إمّا كحمض أو كقاعدة بأنها

مثال: الماء.

لا تقتصر أحماض وقواعد برونستد- لورى على المحاليل المائية فقط.

(CH_3COOH) مع حمض الإيثانويك ($HCIO_4$) (VII) مع حمض الإيثانويك (CH_3COOH) مثال : فی (مذیب خامل)

♦ المذبب الخامل:

المذيب الذي لا يشارك في التفاعل الكيميائي

: هو الحمض لأنه يمنح البروتون إلى (CH₃COOH) بينما HClO₄

СН3СООН : هو القاعدة لأنها تستقبل البروتون.

حدد الحمض والقاعدة بناءً على نظرية برونستد - لورى في التفاعلين الآتيين:

$$NH4^{+}_{(aq)} + H_2O(l) \rightleftharpoons NH_{3(aq)} + H_3O^{+}_{(aq)}$$

 $.HCOOH + HClO₂ \rightleftharpoons HCOOH₂⁺ + ClO₂⁻$

التفاعل المتزن

تفاعل فيه تتحول المواد الناتجة إلى مواد متفاعلة بمعدل السرعة نفسه الذى تتحول فيه المواد المتفاعلة إلى مواد ناتجة.

التفاعل العكسى:

تفاعل تتحول فيه المواد الناتجه الى مواد متفاعله

ويمكن أخذ التفاعل العكسى في ضوء نظرية برونستد لورى للأحماض والقواعد. فإذا كان لديك التفاعل الآتي:

$$H^+$$
يمنح H^+
 $NH_3(g) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$
قاعدة حمض حمض قاعدة

في التفاعل العكسي:

 $^-$ ايون ($^+$ $^+$ $^+$ $^-$) يعمل على منح بروتون واحد إلى أيون ($^ ^ ^ ^ ^-$

 (NH_4^+) يسلك كحمض

OH- يسلك كقاعدة

الزوج المترافق .Conjugate pair

الزوج الناتج إذا ارتبطت مادة متفاعلة بمادة ناتجة عبر انتقال بروتون واحد

في التفاعل الأمامي يلاحظ ما يلي: \mathbf{F}^- هو القاعدة المرافقة للحمض $\mathbf{H}\mathbf{F}$ وأن $\mathbf{H}_3\mathbf{O}^+$ هو الحمض المرافق للقاعدة $\mathbf{H}_3\mathbf{O}^+$

وفي التفاعل العكسي يلاحظ ما يلي: \mathbf{F} هو الحمض المرافق للقاعدة $\mathbf{H}_3\mathbf{O}^+$ هو القاعدة المرافقة للحمض $\mathbf{H}_3\mathbf{O}^+$

الزوج المترافق (حمض- قاعدة):

زوج من حمض وقاعدة يرتبط أحدهما بالآخر عن طريق انتقال بروتون واحد.

: Conjugate base القاعدة المرافقة

مادة تتكوّن بعد فقد الحمض لبروتون.

: Conjugate acid الحمض المرافق

مادة تتكون بعد إكتساب القاعدة لبروتون.

يُرمز إلى الأحماض والقواعد المترافقة أحيانًا بالاصطلاح (الحمض 1/القاعدة 1) و(الحمض 2/القاعدة 2). كما في الجدول (١-٣) وتوضح المعادلة الآتية الزوجَين المترافقين في تفاعل الاتزان بين الأمونيا والماء الذي يكوّن أيونات الأمونيوم وأيونات الهيدروكسيد:

القاعدة المرافقة	الحمض المرافق	القاعدة	الحمض	التفاعل
قاعدة (2)	حمض (1)	قاعدة (1)	حمض (2)	التفاعل الأمامي
قاعدة (1)	حمض (2)	قاعدة (2)	حمض (1)	التفاعل العكسي

الشكل المقابل يوضح تركيز أيون الهيدروكسيل [OH] لبعض القواعد الافتراضية الضعيفة A, B, C, D ما هو الترتيب الصحيح لهذه لقواعد حسب قيمة pH ؟

B>A>D>C (C>D>A>B

A>B>D>C 3 D>C>A>B

 $: [H^+]$ الترتيب الصحيح حسب تزايد

 $D \leftarrow A \leftarrow C \leftarrow B$

 $B \leftarrow C \leftarrow D \leftarrow A \bigcirc$

 $C \leftarrow A \leftarrow B \leftarrow D \bigcirc$

 $A \leftarrow D \leftarrow C \leftarrow B$ (5)

pН	رمز المحلول
1	A
13	В
8.4	С
3.5	D

ربة زراعية خضعت للتحليل الكيميائى فأظهر التحليل أن التربة تحتوى على تركيز عالى جداً من H^+ ابونات H^+

أى المواد التالية تستخدم في معالجة هذه التربة ؟

D	С	В	Α	المادة
0	3	7	12	pН

В \Theta

D (3)

A ①

CO

B > A > D > C (i)

C>D>A>B

A > B > D > C (3)

D>C>A>B (>

الجدول التالي يوضح قيمة الرقم الهيدروجيني (pH) لأربعة محاليل :

рН	المحلول
1	A
13	В
8.4	С
3.5	D

الترتيب الصحيح لهذه المحاليل حسب تزايد تركيز أيونات الهيدرونيوم فيها هو

أ. حدد الحمض والقاعدة الموجودين على الطرف الأيمن لتفاعلي الاتزان الآتيين:

$$HSO_4^-(aq) + OH^-(aq) \rightleftharpoons SO_4^{2-}(aq) + H_2O(1)$$
 . 1

$$H_2S(aq) + H_2O(1) \rightleftharpoons HS^-(aq) + H_3O^+(aq)$$
 . Y

ب. حدد الحمض المرافق الموجود على الطرف الأيمن للمعادلة الآتية، وقاعدته الموجودة على طرفها الأيسر: CH,NH₂ + H₂O ⇒ CH,NH₂ + OH⁻

حدُّد الحمض المرافق والقاعدة المرافقة في التفاعل الأمامي في كل من تفاعلَي الاتزان الآتيين:

$$H_2S(aq) + H_2O(I) \rightleftharpoons HS^-(aq) + H_3O^+(aq)$$

ظلل الإجابة الصحيحة من بين البدائل المعطاة :

أولاً نظرية برونستد - لورى للأحماض والقواعد

$$HSO_{4(aq)}^{-} + HSO_{3(aq)}^{-} \Longrightarrow H_2SO_{3(aq)} + SO_{4(aq)}^{2-} : في التفاعل الآتي (١)$$

ووفقاً لنظرية برونستد – لورى ، فإن الحمضين الموجودين في هذا التفاعل هما :

$$H_2SO_3 \circ HSO_4^- \odot$$

$$SO_4^{2-} \circ HSO_3^-$$
 (3)

(٢) توصف القاعدة حسب نظرية برونستد - لورى بأنها:

(أ) تمنح البروتون

ج تمنح الهيدروكسيد

$$H_3 AsO_{4(aq)} + H_2 O_{(l)} \Longleftrightarrow H_2 AsO_{4(aq)}^- + H_3 O_{(aq)}^+ :$$
 في التفاعل الآتي $H_3 AsO_{4(aq)} + H_3 O_{(l)}^+ + H$

$$H_2AsO_4^ \Theta$$

H2O (1)

H3O + (E)

$$HY + X^- \longrightarrow HX + Y^-$$

 $HZ + Y^- \longrightarrow HY + Z^-$

جميع الاستنتاجات التالية صحيحة ما عدا:

القاعدة المرافقة على :	مصطلح	يطلق	– لوري	برونستد	نظرية	ضوء	في	(0)
------------------------	-------	------	--------	---------	-------	-----	----	-----

- (أ) الحمض بعد فقده البروتون.
- القاعدة بعد فقدها البروتون .
- ج الحمض بعد اكتسابه البروتون
- القاعدة بعد اكتسابها البروتون.

(٦) في التفاعل الآتي :
$$H_2CO_{3(aq)} + H_2O_{(l)} \Longrightarrow HCO_{3(aq)}^- + H_3O_{(aq)}^+$$
 القاعدة المرافقة للحمض هي :

 H_3O^+ \odot $HCO_3^ \bigcirc$ H_2O \bigcirc H_2CO_3 \bigcirc

 $HSO_{4(aq)}^{-} + HSO_{3(aq)}^{-} \Longrightarrow H_2SO_{3(aq)} + SO_{4(aq)}^{2-} :$ في التفاعل الآتي (v)

القاعدتين الموجودتين في التفاعل حسب نظرية لوري – برونستد هما :

 $H_2SO_3 \circ SO_4^{2-}$ HSO₃ ₉ HSO₄ •

 $SO_4^{2-} \circ HSO_3^{-}$ (3) H2SO3 9 HSO4 @

(٨) القاعدة المرافقة في التفاعل:

 $: \omega = C_6 H_5 N H_{2(aq)} + H_2 O_{(I)} \Longrightarrow C_6 H_5 N H_{3(aq)}^+ + O H_{(aq)}^-$

OH - O C6H5NH2 @ $H_2O \odot C_6H_5NH_3^+$

(٩) الحمض المرافق للقاعدة الافتراضية (B) وفق نظرية برونستد – لوري هي :

B ⁻ ③ BH ⁻ ② BH ⁺ ⊕

HB (1)

(١٠) أحد المواد الآتية يسلك سلوك الحمض والقاعدة معا : $H_2PO_4^{2-}$ \bigcirc $HCOO^{-}$ \bigcirc CN^{-} \bigcirc $C_2O_4^{2-}$ \bigcirc

(١١) كل عندما تفقد المادة بروتوناً بصعوبة فإنها تنتج :

(أ) حمضاً مرافقا قوياً (ب) حمضاً مرافقاً ضعيفاً

 عاعدة مرافقة قوية (c) قاعدة مرافقة ضعيفة

(١٢) 😭 ما المادة التي تمثل حمضاً مرافقاً في التفاعل:

 $NH_{4(aq)}^{+} + H_2O_{(l)} \rightleftharpoons NH_{3(aq)} + H_3O_{(aq)}^{+}$

 NH_3 © H_2O Θ NH_4^+ (1) H30 + (3)

(١٣) 🌿 العبارة التي ينطبق عليها مفهوم لوري - بونستد للأحماض والقواعد هي :

- أ الحمض هو المادة التي تستقبل بروتوناً.
- الحمض القوي ينتج قاعدة مرافقة ضعيفة .
- القاعدة هي التي تستقبل أيونات هيدروكسيد سالبة .
- القاعدة هي المادة التي تمنح أيونات هيدروجين موجبة.

 $HCN_{(aq)} + CH_3NH_{2(aq)} \Longrightarrow CN_{(aq)}^- + CH_3NH_{3(aq)}^+ + CH_3NH_{3(aq)}^+$ وي التفاعل الآتي: (١٤) و الحمض والقاعدة المرافقة للتفاعل:

القاعدة	الحمض	
HCN	CN -	(1)
CN -	$CH_3NH_3^+$	(9)
$CH_3NH_3^+$	HCN	(3)
CH_3NH_2	$CH_3NH_3^+$	(3)

$$H_3AsO_{4(aq)} + H_2O_{(l)} \Longrightarrow H_2AsO_{4(aq)}^- + H_3O_{(aq)}^+$$
 (10)

: H₂AsO₄ يُعد

(ب) حمضاً مرافقاً قوياً

أ حمضاً مرافقاً ضعيفاً

(د) قاعدة مرافقة قوية

ج قاعدة مرافقة ضعيفة

أولاً نظرية برونستد - لوري للأحماض والقواعد

اكتب معادلات رمزية للتفاعلات التالية ثم وضح ، في ضوء نظرية برونستد - لوري أزواج
 الأحماض والقواعد المرافقة :

- أ التفاعل بين حمض (HF) والماء .
- . HCN وحمض CH₃COO التفاعل بين أيون الخلات CH₃COO وحمض
- 🔽 ادرس التفاعل الآتي ، ثم أجب عما يليه من أسئلة وفقاً لنظرية برونستد لوري :

- 🕦 حدد الحمض والقاعدة .
- حدد الحمض المرافق والقاعدة المرافقة .
- . عكن اعتبار الأيون $\left(HSO_4^-\right)$ حمضاً ، وكذلك يمكن اعتباره قاعدة .
 - 🛐 وضح المقصود بالعبارة التالية :

(مِكن للماء أن يكون حمضاً في بعض المحاليل ، وقاعدة في محاليل أخرى)

في التفاعلين التاليين حدد كلاً من الزوجين المرافقين من الحمض والقاعدة :

$$CO_{3(aq)}^{2-} + H_2O_{(l)} \Longrightarrow HCO_{3(aq)}^{-} + OH_{(aq)}^{-}$$

 $Al(H_2O)_{6(aq)}^{3+} + H_2O_{(l)} \Longrightarrow H_3O_{(aq)}^{+} + Al(H_2O)_5(OH)_{(aq)}^{2+}$

سلسلة كامبردج

اعداد الأستاذ /

مهاب عثمان السقا ماجيستير في الكيمياء العضويه مؤلف كتابي مندليف وزويل في الكيمياء

92594064

