## Additional Cheat Sheet

### **OLS** matrix notation

The general econometric model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

Can be written in matrix notation as:

$$y = X\beta + u$$

Let's call  $\hat{u}$  the vector of estimated residuals ( $\hat{u} \neq u$ ):

$$\hat{u} = y - X\hat{\beta}$$

The **objective** of OLS is to **minimize** the SSR:

$$\min_{\mathbf{T}} SSR = \min_{\mathbf{T}} \sum_{i=1}^{n} \hat{u}_{i}^{2} = \min_{\mathbf{T}} \hat{u}^{\mathsf{T}} \hat{u}$$

• Defining  $\hat{u}^{\mathsf{T}}\hat{u}$ :

$$\hat{u}^{\mathsf{T}}\hat{u} = (y - X\hat{\beta})^{\mathsf{T}}(y - X\hat{\beta}) = y^{\mathsf{T}}y - 2\hat{\beta}^{\mathsf{T}}X^{\mathsf{T}}y + \hat{\beta}^{\mathsf{T}}X^{\mathsf{T}}X\hat{\beta}$$

• Minimizing  $\hat{u}^{\mathsf{T}}\hat{u}$ :

$$\frac{\partial \hat{u}^{\mathsf{T}} \hat{u}}{\partial \hat{\beta}} = -2X^{\mathsf{T}} y + 2X^{\mathsf{T}} X \hat{\beta} = 0$$
$$\hat{\beta} = (X^{\mathsf{T}} X)^{-1} (X^{\mathsf{T}} y)$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} n & \sum x_1 & \dots & \sum x_k \\ \sum x_1 & \sum x_1^2 & \dots & \sum x_1 x_k \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_k & \sum x_k x_1 & \dots & \sum x_k^2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \sum y \\ \sum y x_1 \\ \vdots \\ \sum y x_k \end{bmatrix}$$

The second derivative  $\frac{\partial^2 \hat{u}^{\mathsf{T}} \hat{u}}{\partial \hat{\beta}^2} = X^{\mathsf{T}} X > 0$  (is a min.)

# Variance-covariance matrix of $\hat{\beta}$

Has the following form:

$$\operatorname{Var}(\hat{\beta}) = \hat{\sigma}_{u}^{2} \cdot (X^{\mathsf{T}}X)^{-1} = \begin{bmatrix} \operatorname{Var}(\hat{\beta}_{0}) & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) & \dots & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{k}) \\ \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{0}) & \operatorname{Var}(\hat{\beta}_{1}) & \dots & \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{k}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{0}) & \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{1}) & \dots & \operatorname{Var}(\hat{\beta}_{k}) \end{bmatrix}$$

where:  $\hat{\sigma}_u^2 = \frac{\hat{u}^\mathsf{T} \hat{u}}{n-k-1}$ 

The standard errors are in the diagonal of:

$$\operatorname{se}(\hat{\beta}) = \sqrt{\operatorname{Var}(\hat{\beta})}$$

#### Error measurements

- SSR =  $\hat{u}^\mathsf{T} \hat{u} = y^\mathsf{T} y \hat{\beta}^\mathsf{T} X^\mathsf{T} y = \sum (y_i \hat{y}_i)^2$
- SSE =  $\hat{\beta}^{\mathsf{T}} X^{\mathsf{T}} y n \overline{y}^2 = \sum (\hat{y}_i \overline{y})^2$
- SST = SSR + SSE =  $y^{\mathsf{T}} \overline{y} n \overline{y}^2 = \sum (y_i \overline{y})^2$

### Variance-covariance matrix of u

Has the following shape:

$$\operatorname{Var}(u) = \begin{bmatrix} \operatorname{Var}(u_1) & \operatorname{Cov}(u_1, u_2) & \dots & \operatorname{Cov}(u_1, u_n) \\ \operatorname{Cov}(u_2, u_1) & \operatorname{Var}(u_2) & \dots & \operatorname{Cov}(u_2, u_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(u_n, u_1) & \operatorname{Cov}(u_n, u_2) & \dots & \operatorname{Var}(u_n) \end{bmatrix}$$

When there is no heterocedasticity and no auto-correlation, the variance-covariance matrix of u has the form:

$$\operatorname{Var}(u) = \sigma_u^2 \cdot I_n = \begin{bmatrix} \sigma_u^2 & 0 & \dots & 0 \\ 0 & \sigma_u^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_u^2 \end{bmatrix}$$

where  $I_n$  is an identity matrix of  $n \times n$  elements. When there is **heterocedasticity** and **auto-correlation**, the variance-covariance matrix of u has the shape:

$$Var(u) = \sigma_u^2 \cdot \Omega = \begin{bmatrix} \sigma_{u_1}^2 & \sigma_{u_{12}} & \dots & \sigma_{u_{1n}} \\ \sigma_{u_{21}} & \sigma_{u_{2}}^2 & \dots & \sigma_{u_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{u_{n1}} & \sigma_{u_{n2}} & \dots & \sigma_{u_{nn}}^2 \end{bmatrix}$$

where  $\Omega \neq I_n$ .

- Heterocedasticity:  $Var(u) = \sigma_{u_i}^2 \neq \sigma_u^2$
- Auto-correlation:  $Cov(u_i, u_j) = \sigma_{u_{ij}} \neq 0, \ \forall i \neq j$

### Variable omission

Most of the time, is hard to get all relevant variables for an analysis. For example, a true model with all variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + v$$

where  $\beta_2 \neq 0$ , v is the error term and  $Cov(v|x_1, x_2) = 0$ . The model with the available variables:

$$y = \alpha_0 + \alpha_1 x_1 + u$$

where  $u = v + \beta_2 x_2$ .

Relevant variable omission causes OLS estimators to be **biased** and **inconsistent**, because there is no weak exogeneity,  $Cov(x_1, u) \neq 0$ . Depending on the  $Corr(x_1, x_2)$  and the sign of  $\beta_2$ , the bias on  $\hat{\alpha}_1$  could be:

- (+) bias:  $\hat{\alpha}_1$  will be higher than it should be (it includes the effect of  $x_2$ )  $\rightarrow \hat{\alpha}_1 > \beta_1$
- (-) bias:  $\hat{\alpha}_1$  will be lower than it should be (it includes the effect of  $x_2$ )  $\rightarrow \hat{\alpha}_1 < \beta_1$

If  $Corr(x_1, x_2) = 0$ , there is no bias on  $\hat{\alpha}_1$ , because the effect of  $x_2$  will be fully picked up by the error term, u.

#### Variable omission correction

#### Proxy variables

Is the approach when a relevant variable is not available because it is non-observable, and there is no data available.

• A proxy variable is something related with the nonobservable variable that has data available.

For example, the GDP per capita is a proxy variable for the life quality (non-observable).

#### Instrumental variables

When the variable of interest (x) is observable but **endogenous**, the proxy variables approach is no longer valid.

• An instrumental variable (IV) is an observable variable (z) that is related with the variable of interest that is endogenous (x), and meet the requirements:

 $Cov(z, u) = 0 \rightarrow instrument exogeneity$  $Cov(z, x) \neq 0 \rightarrow instrument relevance$ 

Instrumental variables let the omitted variable in the error term, but instead of estimate the model by OLS, it utilizes a method that recognizes the presence of an omitted variable. It can also solve error measurement problems.

• Two-Stage Least Squares (TSLS) is a method to estimate a model with multiple instrumental variables. The Cov(z, u) = 0 requirement can be relaxed, but there has to be a minimum of variables that satisfies it.

The TSLS estimation procedure is as follows:

1. Estimate a model regressing x by z using OLS, obtaining  $\hat{x}$ :

$$\hat{x} = \hat{\pi}_0 + \hat{\pi}_1 z$$

2. Replace x by  $\hat{x}$  in the final model and estimate it by OLS:

$$y = \beta_0 + \beta_1 \hat{x} + u$$

There are some important things to know about TSLS:

 TSLS estimators are less efficient than OLS when the explanatory variables are exogenous. The Hausman test can be used to check it:

 $H_0$ : OLS estimators are consistent.

If  $H_0$  is accepted, the OLS estimators are better than TSLS and vice versa.

There could be some (or all) instrument that are not valid. This is known as over-identification, Sargan test can be used to check it:

 $H_0$ : all instruments are valid.

#### Information criterion

It is used to compare models with different number of parameters (p). The general formula:

$$\operatorname{Cr}(p) = \log(\frac{\operatorname{SSR}}{n}) + c_n \varphi(p)$$

where:

- SSR is the Sum of Squared Residuals from a model of order p.
- $c_n$  is a sequence indexed by the sample size.
- $\varphi(p)$  is a function that penalizes large p orders.

Is interpreted as the relative amount of information lost by the model. The p order that min. the criterion is chosen. There are different  $c_n \varphi(p)$  functions:

• Akaike: AIC(p) =  $\log(\frac{SSR}{n}) + \frac{2}{n}p$ 

• Hannan-Quinn:  $HQ(p) = \log(\frac{SSR}{n}) + \frac{2\log(\log(n))}{n}p$ 

• Schwarz:  $Sc(p) = \log(\frac{SSR}{n}) + \frac{\log(n)}{n}p$ 

Sc(p) < HQ(p) < AIC(p)

# The non-restricted hypothesis test

Is an alternative to the F test when there are few hypothesis to test on the parameters. Let  $\beta_i, \beta_j$  be parameters,  $a, b, c \in \mathbb{R}$  are constants.

- $H_0: a\beta_i + b\beta_i = c$
- $H_1: a\beta_i + b\beta_i \neq c$

Under 
$$H_0$$
: 
$$t = \frac{a\hat{\beta}_i + b\hat{\beta}_j - c}{\sqrt{\operatorname{Var}(a\hat{\beta}_i + b\hat{\beta}_j)}}$$
$$= \frac{a\hat{\beta}_i + b\hat{\beta}_j - c}{\sqrt{a^2 \operatorname{Var}(\hat{\beta}_i) + b^2 \cdot \operatorname{Var}(\hat{\beta}_j) \pm 2ab\operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j)}}$$

If  $|t| > |t_{n-k-1,\alpha/2}|$ , there is evidence to reject  $H_0$ .

### **ANOVA**

Decompose the total sum of squared in sum of squared residuals and sum of squared explained: SST = SSR + SSE

|   | Variation origin | Sum Sq. | df    | Sum Sq. Avg. |
|---|------------------|---------|-------|--------------|
| Ī | Regression       | SSE     | k     | SSE/k        |
|   | Residuals        | SSR     | n-k-1 | SSR/(n-k-1)  |
|   | Total            | SST     | n-1   |              |

$$F = \frac{\text{SSA of SSE}}{\text{SSA of SSR}} = \frac{\text{SSE}}{\text{SSR}} \cdot \frac{n-k-1}{k} \sim F_{k,n-k-1}$$

The F statistic:  $F = \frac{\text{SSA of SSE}}{\text{SSA of SSR}} = \frac{\text{SSE}}{\text{SSR}} \cdot \frac{n-k-1}{k} \sim F_{k,n-k-1}$  If  $F > F_{k,n-k-1}$ , there is evidence to reject  $H_0$ : There is no difference among group means.

#### Incorrect functional form

To check if the model **functional form** is correct, we can use Ramsey's RESET (Regression Specification Error Test). It test the original model vs. a model with variables in powers.

 $H_0$ : the model is correctly specified.

Test procedure:

1. Estimate the original model and obtain  $\hat{y}$  and  $R^2$ :

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

2. Estimate a new model adding powers of  $\hat{y}$  and obtain the new  $R_{\text{new}}^2$ :

$$\tilde{y} = \hat{y} + \tilde{\gamma}_2 \hat{y}^2 + \dots + \tilde{\gamma}_l \hat{y}^l$$

3. Define the test statistic, under  $\gamma_2 = \cdots = \gamma_l = 0$  as null hypothesis:

$$F = \frac{R_{\text{new}}^2 - R^2}{1 - R_{\text{new}}^2} \cdot \frac{n - (k+1) - l}{l} \sim F_{l,n-(k+1)-l}$$
 If  $F > F_{l,n-(k+1)-l}$ , there is evidence to reject  $H_0$ .

# Logistic regression

When there is a binary (0, 1) dependent variable, the linear regression model is no longer valid, we can use logistic regression instead. For example, a **logit model**:

$$P_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i} + u_{i})}} = \frac{e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}$$

$$P_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i} + u_{i})}} = \frac{e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}$$

$$P_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i} + u_{i})}} = \frac{e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}$$

$$P_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i} + u_{i})}} = \frac{e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}$$

$$P_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i} + u_{i})}} = \frac{e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}$$

where  $P_i = E(y_i = 1 \mid x_i)$  and  $(1 - P_i) = E(y_i = 0 \mid x_i)$ The **odds ratio** (in favor of  $y_i = 1$ ):

$$\frac{P_i}{1 - P_i} = \frac{1 + e^{\beta_0 + \beta_1 x_i + u_i}}{1 + e^{-(\beta_0 + \beta_1 x_i + u_i)}} = e^{\beta_0 + \beta_1 x_i + u_i}$$

Taking the natural logarithm of the odds ratio, we obtain the **logit**:

$$L_i = \ln\left(\frac{P_i}{1 - P_i}\right) = \beta_0 + \beta_1 x_i + u_i$$

 $P_i$  is between 0 and 1, but  $L_i$  goes from  $-\infty$  to  $+\infty$ .

If  $L_i$  is positive, it means that when  $x_i$  increments, the probability of  $y_i = 1$  increases, and vice versa.



### Statistical definitions

Let  $\xi, \eta$  be random variables,  $a, b \in \mathbb{R}$  constants, and P denotes probability.

#### Mean

Definition:  $E(\xi) = \sum_{i=1}^{n} \xi_i \cdot P[\xi = \xi_i]$ 

Population mean:

$$E(\xi) = \frac{1}{N} \sum_{i=1}^{N} \xi_i \qquad E(\xi) = \frac{1}{n} \sum_{i=1}^{n} \xi_i$$

Some properties:

- E(a) = a
- $E(\xi + a) = E(\xi) + a$
- $E(a \cdot \xi) = a \cdot E(\xi)$
- $E(\xi \pm \eta) = E(\xi) + E(\eta)$
- $E(\xi \cdot \eta) = E(\xi) \cdot E(\eta)$  only if  $\xi$  and  $\eta$  are independent.
- $E(\xi E(\xi)) = 0$
- $E(a \cdot \xi + b \cdot \eta) = a \cdot E(\xi) + b \cdot E(\eta)$

#### Variance

Definition:  $Var(\xi) = E(\xi - E(\xi))^2$ 

Population variance: Sample variance:

$$Var(\xi) = \frac{\sum_{i=1}^{N} (\xi_i - E(\xi))^2}{N} \quad Var(\xi) = \frac{\sum_{i=1}^{n} (\xi_i - E(\xi))^2}{n-1}$$

Some properties:

- Var(a) = 0
- $Var(\xi + a) = Var(\xi)$
- $Var(a \cdot \xi) = a^2 \cdot Var(\xi)$
- $Var(\xi \pm \eta) = Var(\xi) + Var(\eta) \pm 2 \cdot Cov(\xi, \eta)$
- $\operatorname{Var}(a \cdot \xi \pm b \cdot \eta) = a^2 \cdot \operatorname{Var}(\xi) + b^2 \cdot \operatorname{Var}(\eta) \pm 2ab \cdot \operatorname{Cov}(\xi, \eta)$

#### Covariance

Definition:  $Cov(\xi, \eta) = E[(\xi - E(\xi)) \cdot (\eta - E(\eta))]$ 

Population covariance: Sample covariance:

$$\frac{\sum_{i=1}^{N} (\xi_i - E(\xi)) \cdot (\eta_i - E(\eta))}{N} \frac{\sum_{i=1}^{n} (\xi_i - E(\xi)) \cdot (\eta_i - E(\eta))}{n - 1}$$

Some properties:

- $Cov(\xi, a) = 0$
- $Cov(\xi + a, \eta + b) = Cov(\xi, \eta)$
- $Cov(a \cdot \xi, b \cdot \eta) = ab \cdot Cov(\xi, \eta)$
- $Cov(\xi, \xi) = Var(\xi)$
- $Cov(\xi, \eta) = Cov(\eta, \xi)$

## Hypothesis testing (extra)

|              | $H_0$ true              | $H_0$ false             |
|--------------|-------------------------|-------------------------|
| Reject $H_0$ | False positive          | True positive           |
|              | Type I Error $(\alpha)$ | $(1-\beta)$             |
| Accept $H_0$ | True negative           | False negative          |
|              | $(1-\alpha)$            | Type II Error $(\beta)$ |





where  $(1 - \alpha)$  is the confidence level,  $\alpha$  is the significance level, C is the critical value,  $(1-\beta)$  is the statistical power.

## **Bootstraping**

**Problem** - Asymptotic approximations to the distributions of test statistics do not work on small samples.

Solution - Boostrap is basically sampling with replacement. The observed data is treated like a population, and multiple samples are exacted to recalculate an estimator or test statistic multiple times (improve accuracy).

# VAR (Vector Autoregressive)

VAR(p):

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + B_0 x_t + \dots + B_q x_{t-q} + CD_t + u_t$$

where:

- $y_t = (y_{1t}, \dots, y_{Kt})^\mathsf{T}$  is a vector of K observable endogenous time series variables.
- $A_i$ 's are  $K \times K$  coefficient matrices.
- $x_t = (x_{1t}, \dots, x_{Mt})^{\mathsf{T}}$  is a vector of M observable exogenous time series variables.
- $B_i$ 's are  $K \times M$  coefficient matrices.
- D<sub>t</sub> is a vector that contains all deterministic terms, that may be a: constant, linear trend, seasonal dummy, and/or any other user specified dummy variables.
- C is a coefficient matrix of suitable dimension.
- $u_t = (u_{1t}, \dots, u_{Kt})^\mathsf{T}$  is a vector of K white noise series.

The process is **stable** if:

$$\det(I_K - A_1 z - \dots - A_n z^p) \neq 0 \quad \text{for} \quad |z| \leq 1$$

this is, there are **no roots** in and on the complex unit circle.

For example, a VAR model with two endogenous variables (K=2), two lags (p=2), an exogenous contemporaneous variable (M=1), a constant (const) and a trend (Trend<sub>t</sub>):

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} a_{11,1} & a_{12,1} \\ a_{21,1} & a_{22,1} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} a_{11,2} & a_{12,2} \\ a_{21,2} & a_{22,2} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-2} \\ y_{2,t-2} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} \cdot \begin{bmatrix} x_t \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \cdot \begin{bmatrix} const \\ Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$
Visualizing the separate equations:

 $y_{1t} = a_{11.1}y_{1.t-1} + a_{12.1}y_{2.t-1} + a_{11.2}y_{1.t-2} + a_{12.2}y_{2.t-2} + b_{11}x_t + c_{11} + c_{12}\text{Trend}_t + u_{1t}$  $y_{2t} = a_{21,1}y_{2,t-1} + a_{22,1}y_{1,t-1} + a_{21,2}y_{2,t-2} + a_{22,2}y_{1,t-2} + b_{21}x_t + c_{21} + c_{22}\text{Trend}_t + u_{2t}$ If there is an unit root, the determinant is zero for z=1, then some or all variables are integrated and a VAR model is no longer appropriate (is unstable).

## VECM (Vector Error Correction Model)

A VAR model captures dynamic interactions between time series variables. The If cointegrating relations are present in a system of variables, the VAR form is not the most convenient. It is better to use a VECM, that is, the levels VAR substracting  $y_{t-1}$ from both sides. The VECM(p-1):

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta y_{t-p+1} + B_0 x_t + \dots + B_q x_{t-q} + CD_t + u_t$$
 where:

- $y_t$ ,  $x_t$ ,  $D_t$  and  $u_t$  are as specified in VAR.
- $\Pi = -(I_K A_1 \cdots A_p)$  for  $i = 1, \ldots, p-1$ ;  $\Pi y_{t-1}$  is referred as the long-term
- $\Gamma_i = -(A_{i+1} + \dots + A_p)$  for  $i = 1, \dots, p-1$  is referred as the **short-term** parameters.
- $A_i$ ,  $B_i$  and C are coefficient matrices of suitable dimensions.

If the VAR(p) process is unstable (there are roots),  $\Pi$  can be written as a product of  $(K \times r)$  matrices  $\alpha$  (loading matrix) and  $\beta$  (cointegration matrix) with  $\operatorname{rk}(\Pi) = \operatorname{rk}(\alpha) = \operatorname{rk}(\beta) = r$  (cointegrating rank) as follows  $\Pi = \alpha \beta^{\mathsf{T}}$ .

•  $\beta^{\mathsf{T}} y_{t-1}$  contains the cointegrating relations.

For example, if there are three endogenous variables (K=3) with two cointegrating relations (r=2), the long term part of the VECM:

$$\Pi y_{t-1} = \alpha \beta^\mathsf{T} y_{t-1} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32} \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{21} & \beta_{31} \\ \beta_{12} & \beta_{22} & \beta_{32} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \\ y_{3,t-1} \end{bmatrix} = \begin{bmatrix} \alpha_{11}ec_{1,t-1} + \alpha_{12}ec_{2,t-1} \\ \alpha_{21}ec_{1,t-1} + \alpha_{22}ec_{2,t-1} \\ \alpha_{31}ec_{1,t-1} + \alpha_{32}ec_{2,t-1} \end{bmatrix}$$

where:

$$ec_{1,t-1} = \beta_{11}y_{1,t-1} + \beta_{21}y_{2,t-1} + \beta_{31}y_{3,t-1}$$
  

$$ec_{2,t-1} = \beta_{12}y_{1,t-1} + \beta_{22}y_{2,t-1} + \beta_{32}y_{3,t-1}$$