# Manifold Regularization

Lorenzo Rosasco

9.520 Class 06

February 26, 2007

### About this class

Goal To analyze the limits of learning from examples in high dimensional spaces. To introduce the semi-supervised setting and the use of unlabeled data to learn the intrinsic geometry of a problem. To define Riemannian Manifolds, Manifold Laplacians, Graph Laplacians. To introduce a new class of algorithms based on Manifold Regularization (LapRLS, LapSVM).

### Unlabeled data

#### Why using unlabeled data?

- labeling is often an "expensive" process
- semi-supervised learning is the natural setting for human learning

# Semi-supervised Setting

*u* i.i.d. samples drawn on *X* from the marginal distribution p(x)

$$\{x_1,x_2,\ldots,x_u\},$$

only n of which endowed with labels drawn from the conditional distributions p(y|x)

$$\{y_1,y_2,\ldots,y_n\}.$$

The extra u - n unlabeled samples give additional information about the marginal distribution p(x).

# The importance of unlabeled data





# Curse of dimensionality and p(x)

Assume X is the D-dimensional hypercube  $[0,1]^D$ . The worst case scenario corresponds to uniform marginal distribution p(x).

#### **Local Methods**

A prototype example of the effect of high dimentionality can be seen in nearest methods techniques. As *d* increases, local techniques (eg nearest neighbors) become rapidly ineffective.

# Curse of dimensionality and k-NN

- It would seem that with a reasonably large set of training data, we could always approximate the conditional expectation by k-nearest-neighbor averaging.
- We should be able to find a fairly large set of observations close to any  $x \in [0, 1]^D$  and average them.
- This approach and our intuition break down in high dimensions.

# Sparse sampling in high dimension

Suppose we send out a cubical neighborhood about one vertex to capture a fraction r of the observations. Since this corresponds to a fraction r of the unit volume, the expected edge length will be

$$e_D(r)=r^{\frac{1}{D}}.$$

Already in ten dimensions  $e_{10}(0.01) = 0.63$ , that is to capture 1% of the data, we must cover 63% of the range of each input variable!

No more "local" neighborhoods!



# Distance vs volume in high dimensions



## Intrinsic dimensionality

Raw format of natural data is often high dimensional, but in many cases it is the outcome of some process involving only few degrees of freedom.

#### Examples:

- Acoustic Phonetics ⇒ vocal tract can be modelled as a sequence of few tubes.
- Facial Expressions ⇒ tonus of several facial muscles control facial expression.
- Pose Variations ⇒ several joint angles control the combined pose of the elbow-wrist-finger system.

**Smoothness assumption:** *y*'s are "smooth" relative to natural degrees of freedom, **not** relative to the raw format.



# Manifold embedding



### Riemannian Manifolds

A d-dimensional manifold

$$\mathcal{M} = \bigcup_{\alpha} U_{\alpha}$$

is a mathematical object that generalizes domains in  $\mathbb{R}^d$ . Each one of the "patches"  $U_\alpha$  which cover  $\mathcal M$  is endowed with a system of coordinates

$$\alpha: U_{\alpha} \to \mathbb{R}^d$$
.

If two patches  $U_{\alpha}$  and  $U_{\beta}$ , overlap, the *transition functions* 

$$\beta \circ \alpha^{-1} : \alpha(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^d$$

must be smooth (eg. infinitely differentiable).

• The Riemannian Manifold inherits from its local system of coordinates, most geometrical notions available on  $\mathbb{R}^d$ : **metrics**, **angles**, **volumes**, **etc**.



# Manifold's charts



### Differentiation over manifolds

Since each point x over  $\mathcal{M}$  is equipped with a local system of coordinates in  $\mathbb{R}^d$  (its *tangent space*), all **differential operators** defined on functions over  $\mathbb{R}^d$ , can be extended to analogous operators on functions over  $\mathcal{M}$ .

Gradient: 
$$\nabla f(\mathbf{x}) = (\frac{\partial}{\partial x_1} f(\mathbf{x}), \dots, \frac{\partial}{\partial x_d} f(\mathbf{x})) \Rightarrow \nabla_{\mathcal{M}} f(x)$$
  
Laplacian:  $\triangle f(\mathbf{x}) = -\frac{\partial^2}{\partial x_1^2} f(\mathbf{x}) - \dots - \frac{\partial^2}{\partial x_d^2} f(\mathbf{x}) \Rightarrow \triangle_{\mathcal{M}} f(x)$ 

# Measuring smoothness over $\mathcal{M}$

#### Given $f: \mathcal{M} \to \mathbb{R}$

- ∇<sub>M</sub>f(x) represents amplitude and direction of variation around x
- $S(f) = \int_{\mathcal{M}} \|\nabla_{\mathcal{M}} f\|^2$  is a global measure of smoothness for f
- Stokes' theorem (generalization of integration by parts) links gradient and Laplacian

$$S(f) = \int_{\mathcal{M}} \|\nabla_{\mathcal{M}} f(x)\|^2 = \int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x)$$



## Manifold regularization Belkin, Niyogi, Sindhwani, 04

A new class of techniques which extend standard Tikhonov regularization over RKHS, introducing the additional regularizer  $\|f\|_I^2 = \int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x)$  to enforce smoothness of solutions relative to the underlying manifold

$$f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) + \lambda_A ||f||_K^2 + \lambda_I \int_{\mathcal{M}} f \triangle_{\mathcal{M}} f$$

- $\lambda_I$  controls the complexity of the solution in the **intrinsic** geometry of  $\mathcal{M}$ .
- $\lambda_A$  controls the complexity of the solution in the **ambient** space.

# Manifold regularization (cont.)

### Other natural choices of $\|\cdot\|_I^2$ exist

• Iterated Laplacians  $\int_{\mathcal{M}} f \triangle_{\mathcal{M}}^{s} f$  and their linear combinations. These smoothness penalties are related to Sobolev spaces

$$\int f(x) \triangle_{\mathcal{M}}^{s} f(x) \approx \sum_{\omega \in Z^{d}} \|\omega\|^{2s} |\hat{f}(\omega)|^{2}$$

- Frobenius norm of the Hessian (the matrix of second derivatives of f) Hessian Eigenmaps; Donoho, Grimes 03
- Diffusion regularizers  $\int_{\mathcal{M}} f e^{t\triangle}(f)$ . The semigroup of smoothing operators  $G = \{e^{-t\triangle_{\mathcal{M}}}|t>0\}$  corresponds to the process of diffusion (Brownian motion) on the manifold.



## An empirical proxy of the manifold

We cannot compute the intrinsic smoothness penalty

$$||f||_I^2 = \int_{\mathcal{M}} f(x) \triangle_{\mathcal{M}} f(x)$$

because we don't know the manifold  ${\mathcal M}$  and the embedding

$$\Phi: \mathcal{M} \to \mathbb{R}^D$$
.

But we assume that the unlabeled samples are drawn i.i.d. from the uniform probability distribution over  $\mathcal M$  and then mapped into  $\mathbb R^D$  by  $\Phi$ 

# Neighborhood graph

Our proxy of the manifold is a *weighted neighborhood graph* G = (V, E, W), with **vertices** V given by the points  $\{x_1, x_2, \ldots, x_u\}$ , **edges** E defined by one of the two following adjacency rules

- connect x<sub>i</sub> to its k nearest neighborhoods
- connect  $x_i$  to  $\epsilon$ -close points

and **weights**  $W_{ij}$  associated to two connected vertices

$$W_{ij} = e^{-rac{\|x_i - x_j\|^2}{\epsilon}}$$

**Note:** computational complexity  $O(u^2)$ 



# Neighborhood graph (cont.)



# The graph Laplacian

The graph Laplacian over the weighted neighborhood graph (G, E, W) is the matrix

$$\mathbf{L}_{ij} = \mathbf{D}_{ii} - \mathbf{W}_{ij}, \qquad \mathbf{D}_{ii} = \sum_{j} \mathbf{W}_{ij}.$$

**L** is the discrete counterpart of the manifold Laplacian  $\triangle_{\mathcal{M}}$ 

$$\mathbf{f}^T \mathbf{L} \mathbf{f} = \sum_{i,j=1}^n \mathbf{W}_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 \approx \int_{\mathcal{M}} \|\nabla f\|^2 dp.$$

Analogous properties of the *eigensystem*: nonnegative spectrum, null space

Looking for rigorous convergence results



### A convergence theorem Belkin, Niyogi, 05

Operator  $\mathcal{L}$ : "out-of-sample extension" of the graph Laplacian  $\boldsymbol{L}$ 

$$\mathcal{L}(f)(x) = \sum_{i} (f(x) - f(x_i))e^{-\frac{\|x - x_i\|^2}{\epsilon}} \quad x \in X, \ f: X \to \mathbb{R}$$

**Theorem:** Let the u data points  $\{x_1,\ldots,x_u\}$  be sampled from the uniform distribution over the embedded d-dimensional manifold  $\mathcal{M}$ . Put  $\epsilon=u^{-\alpha}$ , with  $0<\alpha<\frac{1}{2+d}$ . Then for all  $f\in C^\infty$  and  $x\in X$ , there is a constant C, s.t. in probability,

$$\lim_{u\to\infty} C\frac{\epsilon^{-\frac{d+2}{2}}}{u}\mathcal{L}(f)(x) = \triangle_{\mathcal{M}}f(x).$$

# Laplacian-based regularization algorithms (Belkin et al. 04)

Replacing the unknown manifold Laplacian with the graph Laplacian  $||f||_I^2 = \frac{1}{u^2} \mathbf{f}^T \mathbf{L} \mathbf{f}$ , where  $\mathbf{f}$  is the vector  $[f(x_1), \dots, f(x_u)]$ , we get the minimization problem

$$f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) + \lambda_A ||f||_K^2 + \frac{\lambda_I}{u^2} \mathbf{f}^T \mathbf{L} \mathbf{f}$$

- $\lambda_I = 0$ : standard regularization (RLS and SVM)
- $\lambda_A \rightarrow 0$ : out-of-sample extension for Graph Regularization
- n = 0: unsupervised learning, Spectral Clustering

## The Representer Theorem

Using the same type of reasoning used in Class 3, a Representer Theorem can be easily proved for the solutions of Manifold Regularization algorithms.

The expansion range over all the **supervised and unsupervised** data points

$$f(x) = \sum_{j=1}^{u} c_j K(x, x_j).$$

# LapRLS

Generalizes the usual RLS algorithm to the semi-supervised setting.

Set  $V(w, y) = (w - y)^2$  in the general functional.

By the representer theorem, the minimization problem can be restated as follows

$$\mathbf{c}^* = \arg\min_{\mathbf{c} \in \mathbb{R}^u} \frac{1}{n} (\mathbf{y} - \mathbf{J} \mathbf{K} \mathbf{c})^T (\mathbf{y} - \mathbf{J} \mathbf{K} \mathbf{c}) + \lambda_A \mathbf{c}^T \mathbf{K} \mathbf{c} + \frac{\lambda_I}{u^2} \mathbf{c}^T \mathbf{K} \mathbf{L} \mathbf{K} \mathbf{c},$$

where **y** is the *u*-dimensional vector  $(y_1, \ldots, y_n, 0, \ldots, 0)$ , and **J** is the  $u \times u$  matrix  $diag(1, \ldots, 1, 0, \ldots, 0)$ .



# LapRLS (cont.)

The functional is differentiable, strictly convex and coercive. The derivative of the object function vanishes at the minimizer  $\mathbf{c}^*$ 

$$\frac{1}{n}\mathbf{KJ}(\mathbf{y} - \mathbf{JKc}^*) + (\lambda_A \mathbf{K} + \frac{\lambda_I n}{u^2} \mathbf{KLK})\mathbf{c}^* = 0.$$

From the relation above and noticing that due to the positivity of  $\lambda_A$ , the matrix **M** defined below, is invertible, we get

$$\mathbf{c}^* = \mathbf{M}^{-1} \mathbf{y},$$

where

$$\mathbf{M} = \mathbf{JK} + \lambda_A n \mathbf{I} + \frac{\lambda_I n^2}{u^2} \mathbf{LK}.$$



# LapSVM

Generalizes the usual SVM algorithm to the semi-supervised setting.

Set  $V(w,y)=(1-yw)_+$  in the general functional above. Applying the representer theorem, introducing *slack variables* and adding the unpenalized *bias term b*, we easily get the primal problem

$$\mathbf{c}^* = \arg\min_{\mathbf{c} \in \mathbb{R}^u, \xi \in \mathbb{R}^n} \quad \frac{1}{n} \sum_{i=1}^n \xi_i + \lambda_A \mathbf{c}^T \mathbf{K} \mathbf{c} + \frac{\lambda_i}{u^2} \mathbf{c}^T \mathbf{K} \mathbf{L} \mathbf{K} \mathbf{c}$$
subject to: 
$$y_i \left( \sum_{j=1}^u c_j K(x_i, x_j) + b \right) \ge 1 - \xi_i \quad i = 1, \dots, n$$

$$\xi_i \ge 0 \qquad \qquad i = 1, \dots, n$$

# LapSVM: the dual program

Substituting in our expression for **c**, we are left with the following "dual" program:

$$\alpha^* = \arg\max_{\alpha \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2}\alpha^T \mathbf{Q}\alpha$$
subject to: 
$$\sum_{i=1}^n y_i \alpha_i = 0$$

$$0 \le \alpha_i \le \frac{1}{n} \qquad i = 1, \dots, n$$

Here, *vQ* is the matrix defined by

$$\mathbf{Q} = \mathbf{YJK} \left( 2\lambda_{\mathcal{A}} \mathbf{I} + 2 \frac{\lambda_{I}}{u^{2}} \mathbf{LK} \right)^{-1} \mathbf{J}^{T} \mathbf{Y}.$$

One can use a standard SVM solver with the matrix Q above, hence compute c solving a linear system.



## Numerical experiments

http://manifold.cs.uchicago.edu/manifold\_regularization

- Two Moons Dataset
- Handwritten Digit Recognition
- Spoken Letter Recognition

# Spectral Properties of the Laplacian

Ideas similar to those described in this class can be used in other learning tasks. The spectral properties of the (graph-) Laplacian turns out to be useful:

If M is *compact*, the operator  $\triangle_{\mathcal{M}}$  has a *countable* sequence of eigenvectors  $\phi_k$  (with *non-negative* eigenvalues  $\lambda_k$ ), which is a complete system of  $L_2(\mathcal{M})$ . If M is *connected*, the constant function is the only eigenvector corresponding to null eigenvalue.

# Manifold Learning

The Laplacian allows to exploit some geometric features of the manifold.

- Dimensionality reduction. If we project the data on the eigenvectors of the graph Laplacian we obtain the so called Laplacian eigenmap algorithm. It can be shown that such a feature map preserves local distances.
- Spectral clustering. The smallest non-null eigenvalue of the Laplacian is the value of the minimum cut on the graph and the associated eigenvector is the cut.