

Application Note: AN_SY6902A

2A Single Cell High Efficiency Switching Charger Preliminary Specification

General Description

SY6902A is a 4.0-23V input, 2A single-cell synchronous Buck Li-Ion battery charger, suitable for portable application. The 800 kHz synchronous buck regulator integrates 23V rating FETs with ultra low onresistance to achieve high efficiency and simple circuit design.

Ordering Information

Temperature Range: -40°C to 85°C

Ī	Ordering Number	Package type	Note
ſ	SY6902AFAC	SO8	

Features

- Wide Input Voltage Range: 4.0V to 23V
- High Efficiency Int. Synchronous Buck Regulator with Fixed 800kHz Switching Frequency
- Trickle Current / Constant Current / Constant Voltage Charge Mode
- Programmable (2A Max) Constant Charge Current
- Charge Current with 10-step Soft-start
- Programmable Charging Timer
- Input Voltage UVLO and OVP
- Battery OVP
- Over Temperature Protection
- Output Short Circuit Protection
- Automatic Shutdown Prevents Reverse Energy
 Flow
- Charge Status Indication
- Normal Synchronous Buck Operation when Battery Removed
- Compact package SO8

Applications

- Cellular Telephones
- PDA, MP3 Players, MP4 Players
- Digital Cameras
- Bluetooth Applications
- PSP Game Players, NDS Game Players
- Notebook

Typical Applications

Figure 1. Schematic Diagram

Pinout (top view)

Top Mark: AIKxyz (device code: AIK, x=year code, y=week code, z= lot number code)

Name	Number	Description			
RS	6	Charge current program pin. Connect a current sense resistor from RS pin to BAT pin.			
KS		Average charge current is detected for both TC mode and CC mode.			
BAT	7	Battery positive pin.			
	8	Thermal protection pin. UTP threshold is about 75% V _{IN} and OTP threshold is about			
NTC		30% V _{IN} . Pull up to VIN can disable charge logic and make the IC operate as normal buck			
		regulator. Pull down to ground can shutdown the IC.			
GND	4	Ground pin.			
STAT	1	Charge status indication pin. It is open drain output pin and can be used to turn on a LED			
SIAI		to indicate the charge in process. When the charge is done, LED is off.			
LX	2	Switch node pin. This pin connects the drains of the integrated main and synchronous			
LA		power MOSFET switches. Connect to external inductor.			
	3	Positive power supply input pin. V _{IN} ranges from 4V to 23V for normal operation. It has			
IN		UVLO function and must be 300mV greater than the battery voltage to enable normal			
		operation.			
		Charge time limit pin. Connect this pin with a capacitor to ground. Internal current source			
TIM	5	charge the capacitor for TC mode and CC mode's charge time limit. TC charge time limit			
		is about 1/9 of CC charge time.			

Absolute Maximum Ratings (Note 1)

8 ()	
NTC, STAT,	
IN, BAT, LX,	0.5- 25V
TIM,	
RS	BAT-0.3V to BAT+0.3V
LX Pin current continuous	2A
Power Dissipation, Pp @ T _A = 25 C, SO8	1.1W
Package Thermal Resistance (Note 2)	
θ JA	88°C/W
θJC	45°C/W
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	65°C to 125°C
Recommended Operating Conditions	
NTC, STAT,	
IN, BAT, LX,	
TIM,	less than 3.6V
RS,	in the range of BAT-0.3V to BAT+0.3V
LX Pin current continuous	
Junction Temperature Range	
Ambient Temperature Range	

Electrical Characteristics

 $T_A=25^{\circ}C,\,V_{IN}=15V,\,GND=0V,\,C_{IN}=10uF,\,L_B=2.2uH,\,R_S=25m\Omega,\,C_{TIM}=470nF,\,unless\,\,otherwise\,\,specified.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Bias Supply (V						
V _{IN}	Supply voltage		4.0		23	V
V _{UVLO}	V _{IN} under voltage lockout threshold	V_{IN} rising and measured from V_{IN} to GND	_{IN} to GND		3.9	V
ΔV_{UVLO}	V _{IN} under voltage lockout hysteresis	Measured from V _{IN} to GND		190		mV
V _{OVP}	Input overvoltage protection	V_{IN} rising and measured from V_{IN} to GND			24	V
ΔV_{OVP}	Input overvoltage protection hysteresis	Measured from V _{IN} to GND		750		mV
Quiescent Cui						
I_{BAT}	Battery discharge current	NTC pull down to GND			25	uA
I _{IN}	Input quiescent current	Disable Charge			2.0	mA
Oscillator and	I PWM				70.	
f_{OSC}	Oscillator frequency		640	800	960	kHz
D	PFET duty cycle				100	%
Power MOSF				10		
R _{NFET}	R _{DS(ON)} of N-FET			150		mΩ
R _{PFET}	R _{DS(ON)} of P-FET			160		mΩ
Voltage Regul			<u> </u>	100		11132
Voltage Regul	Single-cell CV charge mode		4.16	4.20	4.24	V
V CV		-		4.20	4.24	<u>v</u>
$\Delta V_{ m RCH}$	Single-cell Voltage threshold for Recharge	$0^{\circ}\text{C} <= \text{T}_{\text{A}} <= 70^{\circ}\text{C}$	50	100	150	mV
V_{TRK}	Single-cell TC charge mode voltage threshold		2.2	2.5	2.8	V
Battery Conn	ect Detection					
$V_{ m DET}$	Detect voltage threshold	V CV CV	80%		90%	V_{IN}
t _{DET}	Detect delay time	$V_{SHOT} < V_{BAT} < V_{RCH}$		30		ms
Charge Curre	ent					
	Internal charge current accuracy for Constant Current Mode	I _{CC} =25mV/R _S	-10%		10%	
	Internal charge current accuracy for Trickle Current Mode	I _{TC} =2,5mV/R _S	-50%		50%	
Output Voltag		10)				
V _{OVP}	Output voltage OVP threshold	70.	108%	113%	118%	V_{CV}
Output Short		O	10070	11570	11070	
V _{SHOT}	Output short protection threshold	V _{BAT} falling edge	1.70	2.00	2.30	V
f _{FBK}	Frequency fold back	V _{BAT} <2V	1.70	12.5%	2.30	f _{OSC}
I _{LM}	Power FET current limit	V BAI \2 V		4.0		A
Timer	1 5 wor 1 E 1 current mint	I	1	7.0		А
T _{TC}	Trickle current charge timeout	I	0.23	0.5	0.67	hour
T_{CC}	Constant current charge timeout	C_{TIM} =330nF	3.0	4.5	6.0	hour
	Charge mode change delay time		3.0	30	0.0	ms
T _{MC}				30		
T _{TERM}	Termination delay time		 	30		ms
T _{RCHG}	Recharge time delay	l .	1	30		ms
Dattery Inern	nal Protection NTC	T	700/	7501	000/	
UTP	Under temperature protection Under temperature protection	Falling adga	70%	75%	80%	
	hysteresis	Falling edge		5%		17
. 0	Over temperature protection		28%	30%	32%	V_{IN}
ОТР	Over temperature protection hysteresis	Rising edge		2%		
Automatic Sh	, and the second	I .				
ΔV_{ASD}	ASD voltage threshold hysteresis	Measured from V _{IN} to V _{BAT}	140	280	420	mV
- ADD		IN CO , DAI		200	~	/

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3: The device is not guaranteed to function outside its operating conditions

Basic Li-Ion Battery Charge Operation Flow Chart

General Function Description

SY6902A is a 4.0-23V input, 2A single-cell synchronous Buck Li-Ion battery charger, suitable for portable application. The 800 kHz synchronous buck regulator integrates 23V rating FETs with ultra low on-resistance to achieve high efficiency and simple circuit design.

Charging Status Indication Description

- Charge-In-Process Pulls and keeps STAT pin to Low;
- Charge Done Pulls and keeps STAT pin to
- 3. Fault Mode Outputs high and low voltage alternatively with 0.5Hz frequency.

Connects a LED from VIN to STAT pin, LED ON indicates Charge-in-Process, LED OFF indicates Charge Done, LED Flash indicates Fault Mode.

Buck Regulator Operation Description

If the Li-Ion battery is removed suddenly, the voltage on NTC pin increases higher than 90% Vin. Then, it operates as a normal peak current mode controlled synchronous buck converter and the output voltage on BAT pin is regulated at V_{CV}. In this operation mode, the constant output current loop is still active, however the charge timeout and the trickle current charge are disabled. Sileray Corp. Cor

Protection Description

Thermal Protection-Thermal shutdown is active for both battery and IC. IC resumes normal work when the temperature backs in normal range again.

Short Circuit Protection- When V_{BAT} voltage is lower than the short circuit protection threshold, short circuit protection is active. In charger operation mode, the switching frequency is folded back to 12.5% of the default value and VC is folded back to 20% of the maximum value. The trickle charge timer is still active and would timeout the IC finally. In Buck operation mode, the switching frequency is folded back to 12.5% of the default value, and the VC initiates soft start periodically.

Over Current Protection-The internal current loop with different constant current capability is always active no matter in Buck mode or Battery Charging mode for the over current protection.

Over Voltage Protection-When V_{BAT} voltage is higher than the over voltage protection threshold no matter with or without battery connecting, IC shuts down and recovers to normal work when V_{BAT} backs to normal level. Input voltage has UVLO and OVP, which would make IC shutdown and recover to normal work when the V_{IN} backs to normal range.

Protection-Programmable protection is for both Trickle Current Charge Mode and Constant Current Charge Mode. Once timeout is active, IC stops the charge operation and latches off. Only power or battery re-plug in can get the latch logic reset and the IC restarted.

Typical Performance Characteristics

 T_A =25°C, V_{IN} =5V, R_S =20m Ω , unless otherwise specified.

Time (100uslyw)
Time (100uslyw)
Confidential Prepared (100uslyw)
C

Applications Information

Because of the high integration of SY6902A, the application circuit based on this regulator IC is rather simple. Only input capacitor C_{IN} , output capacitor C_{OUT} , inductor L, NTC resistors R1,R2 ,charge current sense resistor Rs and timer capacitor C_{TIM} need to be selected for the targeted applications specifications.

NTC resistor:

SY6902A monitors battery temperature by measuring the input voltage and NTC voltage. The controller triggers the UTP or OTP when the rate K (K= $V_{\rm NTC}/VIN$) reaches the threshold of UTP (Kut) or OTP (Kot). The temperature sensing network is showed as below.

Choose R1 and R2 to program the proper UTP and OTP points.

The calculation steps are:

- 1. Define Kut, $Kut = 70 \sim 80\%$
- 2. Define Kor, Kor = 28~32%
- 3. Assume the resistance of the battery NTC thermistor is Rut at UTP threshold and Rot at OTP threshold.
- 4. Calculate R2,

$$R2 = \frac{Kor(1 - Kor)Rut - Kur(1 - Kor)Rot}{Kut - Kor}$$

5. Calculate R

$$R1 = (1/K_{OT} - 1)(R2 + R_{OT})$$

If choose the typical values $K_{UT} = 75\%$ and $K_{OT} = 30\%$, then

$$R2 = 0.17R_{UT} - 1.17R_{OT}$$

$$R1 = 2.3(R2 + RoT)$$

Charge current sense resistor Rs

The charge current sense resistor Rs is calculated as below:

$$Rs = \frac{25}{I_{CHG}}$$
, Unit: mohm

While the Ichg is the battery constant charge current.

Timer capacitor CTIM

The charger also provides a programmable charge timer. The charge time is programmed by the capacitor connected between the TIM pin and GND. The capacitance is given by the formula:

$$C_{\text{TIM}} = 2*10^{-11} T_{\text{CC}}$$
 Unit: F

T_{CC} is the target constant charge time.

Input capacitor CIN:

The ripple current through input capacitor is greater than

$$I_{\text{CIN_MIN}} = I_{CHG} \sqrt{D(1-D)}$$

To minimize the potential noise problem, place a typical X7R or better grade ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by C_{IN}, and IN/GND pins.

Output capacitor Cout:

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For the best performance, it is recommended to use X7R or better grade ceramic capacitor with 10uF capacitance.

Output inductor L:

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the average input current. The inductance is calculated as:

$$L = \frac{V_{\text{OUT}}(1 - V_{\text{OUT}}/V_{\text{IN, MAX}})}{F_{\text{SW}} \times I_{\text{OUT, MAX}} \times 40\%}$$

where F_{SW} is the switching frequency and $I_{\text{OUT},\text{MAX}}$ is the maximum load current.

The SY6902A regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SAT, MIN} > I_{OUT, MAX} + \frac{V_{OUT}(1 - V_{OUT}/V_{IN, MAX})}{2 \times F_{SW} \times L}$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is The ca ... IM pin m PCB layout better to ground better to desirable to choose an inductor with DCR<10mohm to achieve a good overall

simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C_{IN} , L, R_1 and R_2 .

The layout design of SY6902A regulator is relatively

- 1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
- 2) C_{IN} must be close to Pins IN and GND. The loop area formed by C_{IN} and GND must be minimized.
- 3) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
- 4) The capacitor Crim and the trace connecting to the TIM pin must NOT be adjacent to the LX net on the PCB layout to avoid the noise problem. It should be better to ground GTIM to the output Capacitor's ground.

Layout Design:

SO8 Package outline & PCB layout design

Notes: All dimensions are in millimeters.

All dimensions don't include mold flash & metal burr.

Taping & Reel Specification

1. Taping orientation for packages (SO8)

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Reel width(mm)	Trailer length(mm)	Leader length (mm)	Qty per reel
SOP8	12	8	13"	12.4	400	400	2500