

Artificial & Computational Intelligence AIML CLZG557

M4: Knowledge Representation using Logics

BITS Pilani

Pilani Campus

Dr. Sudheer Reddy

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time
M7	Ethics in Al

Gaming (Imperfect Decisions)

Computational Efficiency

How games can be designed to handle imperfect decisions in real-time?

Computational Efficiency

<u>Idea: Chance Node:</u>

Holds the expected values that are computed as a sum of all outcomes weighted by their probability (of dice roll)

Expecti Mini Max Algorithm

Expecti Mini Max Algorithm

0.3

0.7

6

4(0.6)+10(0.4) =6.4

0.4

min (4(0.8)+6(0.2), 6)

4

6

3

3

0.6

10

Game Playing (Interesting Case Studies)

Games in Image Processing

Source Credit:

2019 - Analyzing and Improving the Image Quality of StyleGAN

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

https://thispersondoesnotexist.com/

Games in Feature Engineering

Source Credit:

https://deepmind.com/blog/article/EigenGame

2021 - EigenGame: PCA as a Nash Equilibrium, Ian Gemp, Brian McWilliams, Claire Vernade, Thore Graepel

Games in Feature Engineering

Utility(
$$v_i | v_{j < i}$$
) = $var(v_i)$ — $\sum_{j < i}$ Align (v_i, v_j)

Source Credit:

https://deepmind.com/blog/article/EigenGame

2021 - EigenGame: PCA as a Nash Equilibrium, Ian Gemp, Brian McWilliams, Claire Vernade, Thore Graepel

Knowledge Representation Using Logics

Learning Objective

At the end of this class, students should be able to:

- 1. Represent a given knowledge base into logic formulation
- 2. Infer facts from KB using Resolution
- 3. Infer facts from KB using Forward Chaining
- 4. Infer facts from KB using Backward Chaining

Knowledge based Agent: Model & Represent

Concepts, logic Representation of a sample agent

Wumpus World Problem:

PEAS:

Performance Measure:

- +1000 for climbing out with gold,
- -1000 for falling into a pit or being eaten by Wumpus,
- -1 for each action taken and
- -10 for using an arrow

Environment: 4x4 grid of rooms. Always starts at [1, 1] facing right.

The location of Wumpus and Gold are random. Agent dies if entered a pit or live Wumpus.

Knowledge based Agent : Model & Represent

Concepts, logic Representation of a sample agent

1]

Wumpus World Problem:

Actuators –
Forward,
TurnLeft by 90,
TurnRight by 90,
Grab – pick gold if present,
Shoot – fire an arrow, it either hits a wall or kills wumpus. Agent has only one arrow.
Climb – Used to climb out of cave, only from [1,

Knowledge based Agent: Model & Represent

Concepts, logic Representation of a sample agent

Why do we need **Factored representation**

- To reason about steps
- To learn new knowledge about the environment
- To adapt to changes to the existing knowledge
- Accept new tasks in the form of explicit goals
- To overcome partial observability of environment

Knowledge based Agent : Model & Represent

Concepts, logic Representation of a sample agent

Wumpus World Problem:

PEAS:

Sensors. The agent has five sensors

Stench: In all adjacent (but not diagonal)

squares of Wumpus

Breeze: In all adjacent (but not diagonal)

squares of a pit

Glitter: In the square where gold is

Bump: If agent walks into a wall

Scream: When Wumpus is killed, it can be

perceived everywhere

Percept Format:

[Stench?, Breeze?, Glitter?, Bump?, Scream?] E.g., [Stench, Breeze, None, None, None]

Percept 1: [None, None, None, None, None]

Action: Forward

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK 1,1 A	2,1	3,1	4,1
OK	ОК	15	

Percept Format: [Stench?, Breeze?, Glitter?, Bump?, Scream?]

Representation

Agents based on Propositionallogic, TT-Entail for inference from truth table

Search Strategies

Propositional Logic

First Order Logic

Propositional Logic

Agentsbased on Propositional logic, TT-Entail for inference from truth table

A simple representation language for building knowledge-based agents

Proposition Symbol - A symbol that stands for a proposition.

E.g., W1,3 - "Wumpus in [1,3]" is a proposition and W1,3 is the symbol

Proposition can be true or false

Atomic: W_{1,3}

Conjuncts : $W_{1,3} \wedge P_{3,1}$

Disjuncts: $W_{1,3} \vee P_{3,1}$

Implications:

 $(W_{1,3} \land P_{3,1}) \Longrightarrow \neg W_{2,2}$

Biconditional: $W_{1,3} \Leftrightarrow \neg W_{2,2}$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK 1,1 A	2,1	3,1	4,1
OK	OK		

SSTSS Stench S		Breeze	PIT
10 %	SSSSS Stench S	PIT	Breeze
SSSSS Stench S		-Breeze	
START	-Breeze	PIT	Breeze
	2	2	1

Agents based on Propositional logic, TFEntail for inference from truth table

Tie break in search:

$$\neg \ , \ \land \ , \ \lor, \ \Longrightarrow \ , \Longleftrightarrow$$

 $(\neg A) \land B$ has precedence over $\neg (A \land B)$

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Percept 3: [Stench, None, None, None, None]

Action: Move to [2, 2]

Remembers (2,2) as possible PIT and no Stench.

achieve

innovate

lead

Representation by Propositional Logic

For each [x, y] location $P_{x,y}$ is true if there is a pit in [x, y] $W_{x,y}$ is true if there is a wumpus in [x, y] $B_{x,y}$ is true if agent perceives a breeze in [x, y] $S_{x,y}$ is true if agent perceives a stench in [x, y]

------R is the sentence in KB

$$R_1 : \neg P_{1,1}$$

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R_4: \neg B_{1,1}$$

$$R_5: B_{2.1}$$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
0K 1,1 A	2,1	3,1	4,1
ок	ок		

Query: $\neg P_{1,2}$ entailed by our KB?

Agents based on Propositional logic, TFEntail for inference from truth table

 $\neg P_{1,2}$ entailed by our KB?

Way -1:

- 1. Get sufficient information B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}
- Enumerate all models with combination of truth values to propositional symbols
- 3. In all the models, find those models where KB is true, i.e., every sentence R_1 , R_2 , R_3 , R_4 , R_5 are true
- 4. In those models where KB is true, find if query sentence $\neg P_{1,2}$ is true
- If query sentence ¬ P_{1,2} is true in all models where KB is true, then it entails, otherwise it won't

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false $false$	false false	false false	false false	false $false$	false false	$false \ true$	true true	true $true$	true false	true $true$	false false	false false
: false	: true	: false	: false	: false	: false	false	: true	\vdots	: false	: true	: true	: false
false false false	true true true	false false false	false false false	false false false	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\frac{true}{true}$
false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

TT – Entails Inference – Example

Agents based on Propositional logic, TFEntail for inference from truth table

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false $false$	false false	false false	false false	false $false$	false false	$false \ true$	true true	true $true$	true false	true $true$	false false	false false
: false	$\frac{:}{true}$: false	: false	: false	: false	: false	$\vdots \\ true$	$\vdots \\ true$	false	: true	: true	: false
false false false	true true true	$false \\ false \\ false$	false false false	$false \\ false \\ false$	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\frac{true}{true}$
false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

Inference: Properties

- 1. Entailment : $\alpha \models \beta$
- 2. Equivalence : $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
- 3. Validity
- 4. Satisfiability

Inference: Example – Theorem Proving (Self Study)

Propositional theorem proving-Proof by resolution

Logical Equivalence rules can be used as inference rules

Inference: Example – Theorem Proving

- 1. Modes Ponens
- 2. AND Elimination

 α : I walk in rain without the umbrella

β: I get wet

$$\alpha \rightarrow \beta$$
 β

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Inference: Example – Theorem Proving

- 1. Modes Ponens
- 2. AND Elimination

 α : I walk in rain without the umbrella

β: I get wet

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Inference: Example – Theorem Proving

$$R_1 : \neg P_{1,1}$$
 $R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 $R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 $R_4 : \neg B_{1,1}$
 $R_5 : B_{2,1}$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Query: $\neg P_{1,2}$. Can we prove if this sentence be entailed from KB using inference rules?

$$\begin{array}{lll} R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}) \\ R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}) & \text{Biconditional Elimination} \\ R_7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}) & \text{And Elimination} \\ R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})) & \text{Contraposition} \\ R_9: \neg (P_{1,2} \vee P_{2,1}) & \text{Modus Ponens} \\ R_{10}: \neg P_{1,2} \wedge \neg P_{2,1} & \text{Demorgans} \\ \textbf{R11:} \neg \textbf{P}_{1,2} & \text{And Elimination} \end{array}$$

Propositional Logic

Proof by Contradiction

Required Reading: AIMA - Chapter # 5.4, # 7

Note: Some of the slides are adopted from AIMA TB materials

Thank You for all your Attention