Filesystem

Stat 133 by Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

How does a data analysis project look like from the files standpoint?

Example of files in a lab session

Relationships among files

A Toy Project

Basic Project example

Relationships among files

Another example

A More Complete Project

data code images report slides other README.md LICENSE

project/

Gaston Sanchez

```
project/
  data/
    rawdata.csv
  cleandata.csv
```

```
project/
  data/
    rawdata.csv
  cleandata.csv
code/
  functions/
    clean-data.R
    plots.R
    scripts/
    cleaning.R
    analysis.R
```

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
```

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  report/
    doc.tex
    doc.pdf
  README, md
```

THIS IS THE TYPICAL VIEW WE HAVE OF A PROJECT'S STRUCTURE

BUT THERE'S ANOTHER WAY TO LOOK AT A PROJECT'S FILES

Gaston Sanchez

There's a network of relationships among files

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  report/
    doc.tex
    doc.pdf
  README.md
```

```
project/
  data/
   -rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  report/
    doc.tex
    doc.pdf
  README.md
```

```
project/
  data/
   -rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  report/
    doc.tex
    doc.pdf
  README.md
```

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  report/
    doc.tex
    doc.pdf
  README.md
```

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png-
    plot2.png
  report/
    doc.tex
    doc.pdf
  README.md
```

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  README.md
```

Drawing a flow diagram showing the inputs and outputs

Project Workflow

Files can be inputs
Files can be outputs
Or both

```
project/
  data/
    rawdata.csv
    cleandata.csv
  code/
    functions/
      clean-data.R
      plots.R
    scripts/
      cleaning.R
      analysis.R
  images/
    plot1.png
    plot2.png
  report/
    doc.tex
    doc.pdf
  README, md
```

You'll be working with files (some of them will be inputs, some outputs, some both)

Lesson 1: Learn how to refer to the files in a project

File System

Main Unix Concepts

Everything is a **File** (including directories)

Files organized in a tree structure

The filesystem is a hierarchy (of folders & files)

Folder = Directory

No concept of "disk"

Typical filesystem in UNIX-like OS

Directory/Folder	Contents
/	Root
/bin	Binaries and programs (UNIX stuff)
/sbin	System binaries
/dev	Devices: hard drives, keyboard, mouse
/etc	System configurations
/home	User home directories (except on Mac)
/lib	Libraries of code
/tmp	Temporary files
/var	Various (files the system uses)
/usr /usr/bin /usr/etc /usr/lib /usr/local	User programs, tools and libraries

Mac-only files and directories

Directory/Folder	Contents
/Applications	Mac programs
/Library	Mac libraries of code
/Network	Networked devices
/System	Mac OS X
/Users	User home directories
/Volumes	Mounted volumes (hard drive, dvd, etc)
.DS_Store	Holds folder view options, icon positions
~/.MacOSX	Directory for Mac OS X to store options
~/.Trash	User trash can

Main Unix Concepts

At any given time we are inside a directory

The current directory is the working directory

From that directory we can move up or down

When a new R session is started, a working directory will be associated to the session

When a **terminal** is started the working directory is the **home directory**

Paths

Each file and directory has a unique name in the filesystem called a path

Special Directories

/	root directory
~	home directory (i.e. /home/user)
•	current directory
• •	parent directory

Gaston Sanchez

Absolute Paths

Absolute paths: an absolute pathname begins with the root directory and follows the tree branch by branch

Relative Paths

Relative paths: a relative pathname begins at some working directory, moving either up or down the tree

- ../C
- ./B

Your turn

Write the following Absolute Paths

From root to C:

From root to z:

From A to y:

From A to z:

Write the following Relative Paths

From D to C:

To x from within C:

To y in D from within C: