Solving Issue of Negative Entries

• Consider $Q'' = (Q')^{\otimes 2}$ and $K'' = (K')^{\otimes 2}$

• Q', K' are sketches for degree p/2

• All entries of $Q'' \cdot (K'')^\mathsf{T}$ are **non-negative**!

- One of our **technical contributions** is that if Q' and K' have AMM property for degree p/2, then Q'' and K'' have AMM property for degree p

• $\|Q''\cdot (K'')^\mathsf{T} - Q^{\otimes p}(K^{\otimes p})^\mathsf{T}\|_F$ is small

• Just compute $\mathsf{LT}(Q'' \cdot (K'')^\mathsf{T}) \cdot V$

The model converges!

Solving Issue of Negative Entries

- Consider $Q'' = (Q')^{\otimes 2}$ and $K'' = (K')^{\otimes 2}$
 - Q', K' are sketches for degree p/2
- All entries of $Q'' \cdot (K'')^T$ are non-negative!
- One of our **technical contributions** is that if Q' and K' have AMM property for degree p/2, then Q'' and K'' have AMM property for degree p
 - $\|Q'' \cdot (K'')^\mathsf{T} Q^{\otimes p}(K^{\otimes p})^\mathsf{T}\|_F$ is small
- Just compute $\mathrm{LT}(Q''\cdot (K'')^{\mathsf{T}})\cdot V$
- The model converges!

Our Sketch

