Alex Valentino Homework 7
452

10.2 Let $\zeta = e^{\frac{2\pi i}{17}}$, $\sigma : \zeta \mapsto \zeta^3$, $K = \mathbb{Q}(\zeta)$, and the intermediate fields $\mathbb{Q} \subset L_1 \subset L_2 \subset L_3 \subset K$ which correspond to the subgroups of $\mathbb{Z}\backslash 16\mathbb{Z}$. We want to construct the generators of L_2 explicitly. Note that $[L_2 : \mathbb{Q}] = 4$, and $L_2 = K^{<\sigma^4>}$, therefore we must find 4 elements which are invariant under σ^4 . We know from artin that σ has the following cycle on the exponents of ζ : [1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1], Thus counting off every 4th one from 3 yields [1,13,16,4]. Therefore the number $\alpha_1 = \zeta + \zeta^{13} + \zeta^{14} + \zeta^4$ is invariant under σ^4 . Furthermore we can construct $\alpha_2, \alpha_3, \alpha_4$ by $\sigma^{i-1}(\alpha_1) = \alpha_i$ for i = 2,3,4, which exactly correspond to the cosets of [1,13,16,4], $\alpha_1 : [1,13,16,4], \alpha_2 : [3,5,14,12], \alpha_3 : [9,15,8,2], \alpha_4 : [10,11,7,6]$. Note that $\mathbb Q$ is the field which is fixed by σ , therefore by theorem 16.5.2, since the orbit of α_1 is $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$, thus the irreducible polynomial over $\mathbb Q$ for α_1 is degree 4, and as established before $[L_2 : \mathbb Q] = 4$. Additionally since $\mathbb Q(\alpha_1)$ contains a single root of the irreducible polynomial of α_1 then it contains $\alpha_2,\alpha_3,\alpha_4$. Thus $\mathbb Q(\alpha_1) = L_2$, making α_1 the generator of L_1 .

- 10.9b Let $\zeta = e^{\frac{2\pi}{p}i}$. Note that $(-1)^{\frac{p(p-1)}{2}}\prod_{k=0}^{p-1}f'(\zeta) = (-1)^{\frac{p(p-1)}{2}}\prod_{i=0}^{p-1}p\zeta^{k(p-1)} = (-1)^{\frac{p(p-1)}{2}}p^p\zeta^{\frac{p(p-1)^2}{2}} = (-1)^{\frac{p(p-1)}{2}}p^p 1^{\frac{(p-1)^2}{2}} = (-1)^{\frac{p(p-1)}{2}}p^p$. Additionally we know that the discriminate is equivalent to $\prod_{i< j}^p(\zeta^i-\zeta^j)^2$, therefore trivially we can take the square root as $\prod_{i< j}^p(\zeta^i-\zeta^j)$. Thus we know that $\mathbb{Q}(\zeta)$ contains $\sqrt{(-1)^{\frac{p(p-1)}{2}}p^p}$. Furthermore since we assume p is odd then there exists p=2n+1, thus we have $p^n\sqrt{(-1)^{\frac{p(p-1)}{2}}p}$, and since $p^n\in\mathbb{Q}$ then our quadratic extension contains $\sqrt{(-1)^{\frac{p(p-1)}{2}}p}$. If $p\equiv 1 \mod 4$ then $\frac{p-1}{2}\equiv 0 \mod 2$, thus $\sqrt{(-1)^{\frac{p(p-1)}{2}}p}=\sqrt{p}$. If $p\equiv 1 \mod 2$, thus $\sqrt{(-1)^{\frac{p(p-1)}{2}}p}=\sqrt{p}$.
- 11.1 Let f(x) be a cubic in F[x], and let K be the splitting field of f. Suppose that the discriminant of f is not a square in F. We want to show that we can't obtain the roots by adjoining a cube root. Suppose for contradiction that we can. We know that the discriminate being square free implies that $G(K/F) = S_3$. Furthermore if our roots are contained within $K = \sqrt[3]{l}$, $l \in F$ then they are of the form $u_i = a_i + b_i \sqrt[3]{l} + c_i \sqrt[3]{l^2}$. The issue is that there is only 1 F-automorphisms of K, because if we send $\sqrt[3]{l} \mapsto \sqrt[3]{l^2}$ would imply that $\sqrt[3]{l^2} \mapsto l\sqrt[3]{l}$, which would contradict it being an automorphism unless $l^2 = l$, which only occurs if l = 1, contradicting that one adjoined a cube root. Since we only have a field with 1 automorphism and we know that we must have 6 automorphisms then we have a contradiction.
- 12.4 a We want to show that the field of rational functions on n variable, F(u), is the galois extension of $F(s_1, \dots, s_n)$ where s_i is the ith symmetric function on u_1, \dots, u_n , and that $G(F(u)/F(s_1, \dots, s_n)) = S_n$. Observe that F(u) is a galois extension of $F(s_1, \dots, s_n)$ since

$$(x - u_1) \cdots (x - u_n) = x^n - s_1 x^{n-1} + s_2 x^{n-2} + \cdots + (-1)^{n \mod 2} s_n,$$

and clearly this polynomial only factors if u_1, \dots, u_n are contained in the field. Furthermore, our polynomial above is invariant under any possible permutation of the roots, thus the galois group must be S_n .

Alex Valentino Homework 7
452

c Let G finite group G with |G| = n. Note that by Cayley's theorem that G has an embedding in S_n as a subgroup. Therefore let $F(s_1, \dots, s_n)$ be the base field. We know by the main theorem of Galois theory that the fixed field $F(u)^G$ is a subfield of F(u) and $G(F(u)/F(u)^G) = G$. This demonstrates the desired result.