

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: **0 477 631 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91115145.4

(51) Int. Cl.⁵: **C07C 251/48, A01N 37/50**

(22) Anmeldetag: **07.09.91**

(30) Priorität: **22.09.90 DE 4030038**

(43) Veröffentlichungstag der Anmeldung:
01.04.92 Patentblatt 92/14

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI NL SE

(71) Anmelder: **BASF Aktiengesellschaft**
Carl-Bosch-Strasse 38
W-6700 Ludwigshafen(DE)

(72) Erfinder: **Brand, Siegbert, Dr.**
Eyersheimer Strasse 42
W-6701 Birkenheide(DE)
Erfinder: **Ammermann, Eberhard, Dr.**
Sachsenstrasse 3

W-6700 Ludwigshafen(DE)

Erfinder: **Lorenz, Gisela, Dr.**

Erlenweg 13

W-6730 Neustadt(DE)

Erfinder: **Sauter, Hubert, Dr.**

Neckarpromenade 20

W-6800 Mannheim 1(DE)

Erfinder: **Oberdorf, Klaus, Dr.**

Gartenstrasse 4

W-6904 Eppelheim(DE)

Erfinder: **Kardorff, Uwe, Dr.**

D 3,4

W-6800 Mannheim 1(DE)

Erfinder: **Kuenast, Christoph, Dr.**

Salierstrasse 2

W-6701 Otterstadt(DE)

(54) Ortho-substituierte Phenylessigsäureamide.

(57) Ortho-substituierte Phenylessigsäureamide I

EP 0 477 631 A1

(R¹ = H, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Phenylalkinyl, Alkoxyalkyl, Alkoxycarbonyl, Phenyl, Phenylalkyl, Phenylalkenyl oder Phenoxyalkyl, 5-/6-gliedriger Heterocyclus mit 1-3 Heteroatomen, an den ein Benzolring oder ein 5-/6-gliedriger Heterocyclus annellierte sein kann; R², R³ = H, CN, Halogen, Alkyl, Alkoxy; R⁴, R⁵ = H, Alkyl und R⁴ oder R⁵ = Alkoxy; Y = O, S, SO, SO₂, N=N, O-CO, CO-O, CO-O-CH₂, Alkylen- oder Halogenalkylenkette, Alkenylenkette, Alkinylenkette, Oxyalkylenkette, Thioalkylenkette, Alkylenoxykette, Carbonylalkylen- oder Alkylencarbonylkette W = Alkoximinogruppe, Alkoxymethylengruppe, Alkylthiomethylengruppe), ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carbonyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten.

Die Verbindungen I eignen sich als Fungizide und zur Bekämpfung von Schädlingen.

Die vorliegende Erfindung betrifft neue ortho-substituierte Phenylessigsäureamide der allgemeinen Formel I

in der die Variablen die folgende Bedeutung haben:

- 15 R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroesten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;
- 20 einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom anelliert sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;
- 25 R²,R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
- 30 R⁴,R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;
- 35 Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkylenkette, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;
- 40 W eine C₂-C₄-Alkenylen- oder C₂-C₄-Alkinylenkette, eine Oxy-(C₁-C₄)-alkylen-, Thio-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylenoxykette oder eine Carbonyl-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylen-carbonylkette;
- 45 ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carboonyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten.

50 Außerdem betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen, ihre Verwendung als Fungizide und ihre Verwendung als Insektizide, Nematizide und Akarizide sowie fungizide Mittel und Mittel zur Bekämpfung von Schädlingen, welche diese Verbindungen als wirksame Substanzen enthalten.

Aus der EP-A 310 954 sind unter anderem fungizid wirksame ortho-substituierte Phenylessigsäureamide vom Typ der Verbindungen I sowie deren Phenylacetonitril-Vorprodukte bekannt, wobei R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carboxymethylen und

W Methoxymethylen oder Methylthiomethylen bedeuten. Ähnliche Verbindungen sind aus EP 398 692 bekannt.

Der Erfindung lagen neue fungizid wirksame ortho-substituierte Phenylessigsäurederivate sowie neue insektizide, akarizide und nematizide Wirkstoffe als Aufgabe zugrunde.

5 Demgemäß wurden die eingangs definierten ortho-substituierten Phenylessigsäureamide der Formel I gefunden.

Im einzelnen haben die Substituenten in den erfindungsgemäßen Verbindungen I die folgende Bedeutung:

R¹

- 10 - Wasserstoff;
- eine verzweigte oder unverzweigte C₁-C₁₈-Alkylgruppe wie Methyl, Ethyl, n-Propyl, Isopropyl, 1,1-Dimethylprop-1-yl, 2,2-Dimethylprop-1-yl, n-Butyl, sec.-Butyl, Isobutyl, tert.-Butyl, 3-Methylbutyl, n-Pentyl, n-Hexyl, n-Heptyl, 2,6-Dimethylhept-1-yl, n-Octyl, n-Nonyl, n-Decyl, n-Pentadecyl, n-Heptadecyl und n-Octadecyl, bevorzugt eine C₁-C₁₀-Alkylgruppe;
- 15 - eine C₃-C₈-Cycloalkylgruppe wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl, die noch einen bis drei Substituenten tragen können, ausgewählt aus der einer Gruppe von 3 Halogenatomen wie Fluor, Chlor, Brom und Jod, insbesondere Fluor und Chlor, 3 C₁-C₄-Alkylgruppen wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl und tert.-Butyl, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe wie 2,2-Dichlorethenyl, und einer Phenylgruppe, die noch ein bis zwei Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor, und/oder eine C₁-C₄-Alkylgruppe wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl und tert.-Butyl und/oder eine C₁-C₄-Alkoxygruppe wie Methoxy, Ethoxy, n-Propoxy, Isoproxy, n-Butoxy und tert.-Butoxy tragen kann; bevorzugt sind Cyclopropyl, 1-Methylcycloprop-1-yl, 2,2-Dichlorcycloprop-1-yl, (2',2'-Dichlorvinyl)cycloprop-1-yl, 1-Phenylcycloprop-1-yl, 1-(p-Fluorphenyl)-cycloprop-1-yl, Cyclohexyl und 1-Methylcyclohex-1-yl;
- 20 - eine C₂-C₁₀-Alkenylgruppe wie Vinyl, Allyl, Prop-1-en-1-yl, Prop-2-en-2-yl, 2-Methylprop-1-en-1-yl, But-2-en-1-yl, But-2-en-2-yl, 3-Methylbut-2-en-1-yl, 1,3-Pentadien-1-yl, 2,6-Dimethylhept-5-en-1-yl und 2,6-Dimethyl-1,5-heptadien-1-yl;
- 25 - eine C₂-C₄-Alkinylgruppe wie Ethinyl und Prop-2-in-1-yl, die noch einen Phenylrest tragen kann, z.B. 2-Phenylethinyll;
- eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe wie Methoxymethyl, Ethoxymethyl, n-Propoxymethyl, Isopropoxymethyl, n-Butoxymethyl, tert.-Butoxymethyl, 1-Methoxyethyl, 2-Methoxyethyl, 1-Ethoxyethyl, 2-Ethoxyethyl und 2-n-Propoxyethyl;
- 30 - eine C₁-C₄-Alcoxycarbonylgruppe wie Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl, n-Butoxycarbonyl und tert.-Butoxycarbonyl, bevorzugt Methoxycarbonyl;
- die Phenylgruppe, eine Phenyl-C₁-C₄-alkylgruppe wie Benzyl, Phenethyl, 3-Phenyl-n-propyl und 4-Phenyl-n-butyl, eine Phenyl-C₂-C₄-alkenylgruppe wie Styryl und 2-Phenylprop-2-en-1-yl oder eine Phenoxy-C₁-C₄-alkylgruppe wie Phenoxyethyl, 2-Phenoxyethyl, 3-Phenoxypropyl und 4-Phenoxybutyl, wobei die genannten Gruppen am Phenylring jeweils noch insgesamt einen bis fünf Reste tragen können, davon insbesondere:
 - eine oder zwei Nitrogruppen,
 - eine oder zwei Cyanogruppen,
- 40 - bis zu 5 Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor,
- bis zu 3 C₁-C₄-Alkylgruppen wie vorstehend genannt,
- bis zu 3 partiell oder vollständig halogenierte C₁-C₄-Alkylgruppen wie Fluormethyl, Chlormethyl, Trifluormethyl, Trichlormethyl, Dichlorfluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl, insbesondere Trifluormethyl,
- 45 - bis zu 3 C₂-C₄-Alkenylgruppen wie Ethenyl, Prop-1-en-1-yl, Prop-2-en-1-yl, 1-Methylethen-1-yl, But-1-en-1-yl, But-2-en-1-yl, But-3-en-1-yl, 1-Methyl-prop-1-en-1-yl, 2-Methyl-prop-1-en-1-yl, 1-Methyl-prop-2-en-1-yl und 2-Methyl-prop-2-en-1-yl, insbesondere Ethenyl und Prop-2-en-1-yl,
- 50 - bis zu 3 partiell oder vollständig halogenierte C₂-C₄-Alkenylgruppen wie 2-Fluorethenyl, 2-Chlorethenyl, Trifluorethenyl, Trichlorethenyl und 2-Chlorprop-2-en-1-yl und
- 55 - bis zu 3 C₁-C₄-Alkoxygruppen wie Methoxy, Ethoxy, n-Propoxy, Isoproxy, n-Butoxy und tert.-Butoxy,

- 5 - eine Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiogruppe, die ihrerseits noch einen oder zwei der folgenden Substituenten tragen kann: Cyano, Halogen wie vorstehend genannt, insbesondere Fluor und Chlor oder C₁-C₄-Alkyl wie vorstehend genannt; bevorzugt sind Phenyl, 2-Nitrophenyl, 4-Nitrophenyl, 2-Fluorphenyl, 3-Fluorphenyl, 4-Fluorphenyl, 2-Chlorphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 2-Bromphenyl, 3-Bromphenyl, 4-Bromphenyl, 2-Jodphenyl, 2,3-Dichlorphenyl, 2,4-Dichlorphenyl, 2,5-Dichlorphenyl, 2,6-Dichlorphenyl, 2,3,4-Trichlorphenyl, 2,3,5-Trichlorphenyl, 2,3,6-Trichlorphenyl, 3,4,5-Trichlorphenyl, Pentafluorphenyl, Pentachlorphenyl, 2-Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 2-Ethylphenyl, 3-Ethylphenyl, 4-Ethylphenyl, 3-Isopropylphenyl, 4-Isopropylphenyl, 3-tert.-Butylphenyl, 4-tert.-Butylphenyl, 2,3-Dimethylphenyl, 2,4-Dimethylphenyl, 2,5-Dimethylphenyl, 3,4-Dimethylphenyl, 3,5-Dimethylphenyl, 4-tert.-Butyl-2-methylphenyl, 3,5-Diethylphenyl, 2,3,5-Trimethylphenyl, 2,4,6-Trimethylphenyl, 4-Cyclohexylphenyl, 3-Phenoxyphenyl, 4-Phenoxyphenyl, 4-Phenylthiophenyl, 3-Benzoyloxyphenyl, 4-Benzoyloxyphenyl, 2-Trifluormethylphenyl, 3-Trifluormethylphenyl, 4-Trifluormethylphenyl, 2-Chlormethylphenyl, 3-Chlormethylphenyl, 4-Chlormethylphenyl, Benzyl, 4-Chlorbenzyl, Phenethyl, 4-Chlorphenethyl, Styryl, 4-Chlorstyryl, Phenoxy, 2-Chlorphenoxy, 3-Chlorphenoxy, 4-Chlorphenoxy, 2-Methylphenoxy, 3-Methylphenoxy, 4-Methylphenoxy, 2-Trifluormethylphenoxy, 3-Trifluormethylphenoxy, 4-Trifluormethylphenoxy, Phenoxyethyl und 2-Phenoxyethyl;
- 10 - einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff-, Sauerstoff- oder Schwefelatom anelliert sein kann, beispielsweise Pyrrol-2-yl, Pyrrol-3-yl, Furan-2-yl, Furan-3-yl, Thien-2-yl, Thien-3-yl, Pyrazol-3-yl, Pyrazol-4-yl, Pyrazol-5-yl, Oxazol-2-yl, Oxazol-4-yl, Oxazol-5-yl, Benzoxazol-2-yl, Thiazol-2-yl, Thiazol-4-yl, Thiazol-5-yl, Benzothiazol-2-yl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl, Imidazol-2-yl, Imidazol-4-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,3,4-Oxadiazol-2-yl, 1,2,4-Triazol-3-yl, 1,3,4-Triazol-2-yl, Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Pyridazin-3-yl, Pyridazin-4-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl, Pyrazin-2-yl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl,
- 15 wobei die Heterocyclen noch ein Halogenatom wie vorstehend genannt, insbesondere Fluor und Chlor, eine oder zwei C₁-C₄-Alkylgruppen wie vorstehend genannt, insbesondere Methyl oder einen Phenylrest tragen können, beispielsweise 5-Chlorbenzothiazol-2-yl, 6-Chlorpyridin-2-yl, 6-Methylpyridin-2-yl, 6-Ethylpyridin-2-yl, 6-n-Propylpyridin-2-yl, 6-Isopropylpyridin-2-yl, 6-n-Butylpyridin-2-yl, 6-sec.-Butylpyridin-2-yl und 6-tert.-Butylpyridin-2-yl, 6-Phenylpyridin-2-yl und 4,8-Dimethylchinolin-2-yl;
- 20 besonders bevorzugt werden Halogenphenyl, C₁-C₄-Alkylphenyl, Di-(C₁-C₄)-alkylphenyl und Benzothiazol-2-yl;
- 25 R², R³
- 30 - Wasserstoff, Cyano, Halogen wie vorstehend genannt, insbesondere Fluor und Chlor,
- eine verzweigte oder unverzweigte C₁-C₄-Alkylgruppe wie vorstehend genannt, insbesondere Methyl, Ethyl und Isopropyl;
- eine C₁-C₄-Alkoxygruppe wie vorstehend genannt, insbesondere Methoxy;
- 35 R⁴, R⁵
- 40 - Wasserstoff,
- eine verzweigte oder unverzweigte C₁-C₄-Alkylgruppe wie vorstehend genannt, insbesondere Methyl, Ethyl, n-Propyl und n-Butyl;
- einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe wie vorstehend genannt, insbesondere Methoxy;
- 45 Y
- 50 - Sauerstoff oder Schwefel;
- eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, bevorzugt -O-CO-, -CO-O- und -CO-O-CH₂-,
- eine C₁-C₄-Alkylenkette, die partiell oder vollständig halogeniert sein kann, insbesondere fluoriert oder chloriert, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl wie vorstehend genannt, partiell oder vollständig halogeniertes

- C₁-C₄-Alkyl wie vorstehend genannt, C₂-C₄-Alkenyl wie vorstehend genannt, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl wie vorstehend genannt, C₁-C₄-Alkoxy wie vorstehend genannt, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen wie vorstehend genannt, insbesondere Fluor und Chlor oder C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Methyl; bevorzugt ist die Methylen- oder Ethylenkette;
- 5 - eine C₂-C₄-Alkenylenkette wie Ethenylen, Prop-2-enylen und But-2-enylen, bevorzugt Ethenylen;
- 10 - eine C₂-C₄-Alkylenkette wie Ethinylen, Prop-2-nylen und But-2-nylen, bevorzugt Ethinylen;
- 15 - eine Oxy-(C₁-C₄)-alkylenkette wie Oxymethylen, Oxyethylen, Oxy-n-propylen und Oxy-n-butylén, bevorzugt Oxymethylen;
- 20 - eine Thio-(C₁-C₄)-alkylenkette wie Thiomethylen, Thioethylen, Thio-n-propylen und Thio-n-butylén, bevorzugt Thiomethylen;
- 25 - eine C₁-C₄-Alkylenoxykette wie Methylenoxy, Ethylenoxy, n-Propylenoxy und n-Butylenoxy, bevorzugt Methylenoxy;
- 30 - eine Carbonyl-(C₁-C₄)-alkylenkette wie Carbonylmethylen, Carbonylethylen, Carbonyl-n-propylen und Carbonyl-n-butylén, bevorzugt Carbonylmethylen;
- 35 - eine C₁-C₄-Alkylencarbonylkette wie Methylencarbonyl, Ethylencarbonyl, n-Propylencarbonyl und n-Butylencarbonyl, bevorzugt Methylencarbonyl;
- 40 - eine Carboxy-(C₁-C₄)-alkylenkette wie Carboxymethylen, Carboxyethylen, Carboxy-n-propylen und Carboxy-n-butylén, bevorzugt Carboxymethylen;
- 45 bevorzugt ist eine C₁-C₄-Alkoxyiminogruppe.

Besonders geeignete ortho-substituierte Phenyllessigsäureamide I sind Tabelle 1 zu entnehmen, wobei

- 35 Verbindungen mit R², R³ Wasserstoff, R⁴ Methyl, R⁵ Wasserstoff und W Methoxyimino oder Methoxymethylen besonders bevorzugt sind. Ganz besonders gut geeignet sind 2-Methoxyimino-2-[2'-(o-methylphenoxy-methyl)-phenyl]essigsäure-N-methylamid und 2-Methoxyimino-2[2'-(o-methylphenoxy-methyl)-phenyl]-essigsäure-N-methoxyamid.

- 40 Die Verbindungen I können bei der Herstellung als E/Z-Isomerengemische anfallen, wobei sich die beiden Isomeren durch die cis- oder trans-Stellung der Alkoxy- oder Alkylthiogruppe des Substituenten W zum Säureamidteil unterscheiden. Die Isomeren können gewünschtenfalls nach den hierfür üblichen Methoden, z.B. durch Kristallisation oder Chromatographie, getrennt werden. Verbindungen mit E-Konfiguration (trans-Stellung der Alkoxy- bzw. Alkylthiogruppe des Substituenten W zum Säureamidteil) sind besonders bevorzugt.

- 45 Die ortho-substituierten Phenyllessigsäureamide I sind auf verschiedene Weise erhältlich, und zwar vorzugsweise nach einer der folgenden Methoden:

- a) Umsetzung von Phenyllessigsäurederivaten II mit Aminen III

L bedeutet Halogen, insbesondere Chlor und Brom, oder C₁-C₄-Alkoxy, insbesondere Methoxy.

Zur Herstellung von ortho-substituierten Phenylessigsäureamiden I, wobei R⁴ oder R⁵ C₁-C₄-Alkoxy bedeutet, geht vorzugsweise von den Phenylessigsäurechloriden II (L = Cl) aus.

Die Umsetzung erfolgt normalerweise nach an sich bekannten Methoden (z.B. Organikum, 16. Auflage 1985, Seiten 409 bis 412) in einem inerten Lösungs- oder Verdünnungsmittel, vorteilhaft in Anwesenheit einer Base.

Als Lösungs- oder Verdünnungsmittel kommen insbesondere chlorierte Kohlenwasserstoffe wie Dichlormethan, Ether wie Dioxan sowie Alkohole wie Methanol und Ethanol in Betracht.

Als Basen eignen sich beispielsweise Alkalimetallhydroxide wie Natrium- und Kaliumhydroxid, Alkalimetallcarbonate wie Natrium- und Kaliumcarbonat, Alkalimetallalkoholate wie Natriummethylat und Natriumethylat, insbesondere tertiäre Amine wie Triethylamin und heteroaromatische Amine wie Pyridin und 4-Dimethylaminopyridin. Es kann aber auch das Amin III selbst als Base verwendet werden, und zwar für eine vollständige Umsetzung in mindestens der stöchiometrischen Menge, bezogen auf die Menge an II.

Zweckmäßig setzt man alle Ausgangsverbindungen in etwa stöchiometrischem Verhältnis ein, jedoch kann in manchen Fällen auch ein Überschuss der einen oder anderen Komponente, etwa bis zu 10 mol-%, empfehlenswert sein.

Verwendet man das Amin III als Base, so liegt es in einem größeren Überschuss vor.

Im allgemeinen liegt die Reaktionstemperatur zwischen 0 und 120 °C, insbesondere bei der Siedetemperatur des jeweiligen Lösungsmittels.

Bedeutet L Halogen, so ist die Durchführung der Reaktion auch in einem 2-Phasensystem unter Phasentransfer-Katalyse möglich. Dazu kann vorteilhaft eine Mischung aus einem chlorierten Kohlenwasserstoff wie Methylchlorid, wässriger Lauge, z.B. Natronlauge, und einem Phasentransferkatalysator wie Tetra-n-butylammoniumhydroxid verwendet werden. In diesem Fall arbeitet man z.B. bei Temperaturen zwischen 10 °C und der Siedetemperatur einer der Komponenten des Lösungsmittelgemisches.

Normalerweise arbeitet man bei Atmosphärendruck. Geringerer oder höherer Druck ist möglich, bringt aber im allgemeinen keine Vorteile.

Phenylessigsäurederivate II, wobei L Halogen bedeutet, sind bekannt oder können nach bekannten Verfahren dargestellt werden (z.B. Organikum, 16. Auflage 1985, Seiten 415, 622 und 423).

Die Phenylessigsäurederivate II, wobei L C₁-C₄-Alkoxy bedeutet, sind aus den Patentanmeldungen EP-A 178 826 und EP-A 226 917 (X = -CH-O-Alkyl), EP-A 244 077 (X = -CH-S-Alkyl) sowie EP-A 253 213 und EP-A 254 426 (X = -N-O-Alkyl) bekannt oder können nach analogen Verfahren hergestellt werden.

Beispielsweise erhält man die Phenylessigsäurederivate II mit Y = Oxymethylen, Thiomethylen oder -CO-O-CH₂- durch nucleophile Substitution an Benzylhalogeniden VI

b) Hydrolyse von Phenylacetonitrilen IV

Die Hydrolyse der Phenylacetonitrile IV erfolgt normalerweise säure- oder basenkatalysiert nach an sich bekannten Methoden [vgl. z.B. Beckwith in: Zabicky "The chemistry of Amides", Seiten 119 bis 125 (1970) und Synthesis, 243 (1980)] in einem inerten Lösungs- oder Verdünnungsmittel.

Als Lösungsmittel eignen sich insbesondere Alkohole wie tert.-Butanol und Ethylenglykol.

45 Als Säuren kommen bevorzugt konzentrierte Mineralsäuren wie Salzsäure, Schwefelsäure und Phosphorsäure in Betracht, als Basen bevorzugt Alkalimetallhydroxide wie Natrium- und Kaliumhydroxid.

Normalerweise liegt die Reaktionstemperatur zwischen 0 und 200 °C, insbesondere zwischen 20 °C und der Siedetemperatur des Lösungsmittels.

Bezüglich der Mengenverhältnisse und des Druckes gelten die Angaben für Methode (a).

Bezüglich der Mengenverhältnisse und des Druckes gelten die Angaben für Methode (a).
50 Phenylacetonitrile der Formel IV sind beispielsweise aus der EP-A 310 954 bekannt oder können nach den dort beschriebenen Methoden hergestellt werden.

Die ortho-substituierten Phenylessigsäureamide I, wobei R⁴ und R⁵ Wasserstoff bedeuten, können nach an sich bekannten Verfahren [z.B. Challis in: Zabicky "The Chemistry of Amides", Seiten 731 bis 857 (1970)] am Stickstoff der Amidgruppe alkyliert werden:

werden.

Zu den schädlichen Insekten gehören:

- aus der Ordnung der Schmetterlinge (Lepidoptera) beispielsweise *Agrotis ypsilon*, *Agrotis segetum*, *Alabama argillacea*, *Anticarsia gemmatalis*, *Argyresthia conjugella*, *Autographa gamma*, *Bupalus piniarius*, *Cacoecia murinana*, *Capua reticulana*, *Cheimatobia brumata*, *Choristoneura fumiferana*, *Choristoneura occidentalis*, *Cirphis unipuncta*, *Cydia pomonella*, *Dendrolimus pini*, *Diaphania nitidalis*, *Diatraea grndiosella*, *Earias insulana*, *Elasmopalpus lignosellus*, *Eupoecilia ambiguella*, *Evetria bouliana*, *Feltia subterranea*, *Galleria mellonella*, *Grapholita funebrana*, *Grapholita molesta*, *Heliothis armigera*, *Heliothis virescens*, *Heliothis zea*, *Hellula undalis*, *Hibernia defoliaria*, *Hyphantria cunea*, *Hyponomus malinellus*, *Keifferia lycopersicella*, *Lambdina fiscellaria*, *Laphygma exigua*, *Leucoptera coffeella*, *Leucoptera scitella*, *Lithocolletis blancardella*, *Lobesia botrana*, *Loxostege sticticalis*, *Lymantria dispar*, *Lymantria monacha*, *Lyonetia clerkella*, *Malacosoma neustria*, *Mamestra brassicae*, *Orgyia pseudotsugata*, *Ostrinia nubilalis*, *Panolis flamea*, *Pectinophora gossypiella*, *Peridroma saucia*, *Phalera bucephala*, *Phthorimaea operculella*, *Phylloconistis citrella*, *Pieris brassicae*, *Plathypena scarbra*, *Plutella xylostella*, *Pseudoplusia includens*, *Phyaconia frustrana*, *Scrobipalpula absoluta*, *Sitotroga cerealella*, *Sparganothis pilleriana*, *Spodoptera frugiperda*, *Spodoptera littoralis*, *Spodoptera litura*, *Thaumatopoea pityocampa*, *Tortrix viridana*, *Trichoplusia ni* und *Zeiraphera canadensis*;
- aus der Ordnung der Käfer (Coleoptera) beispielsweise *Agrilus sinuatus*, *Agriotes lineatus*, *Agriotes obscurus*, *Amphimallus solstitialis*, *Anisandrus dispar*, *Anthonomus grandis*, *Anthonomus pomorum*, *Atomaria linearis*, *Blastophagus piniperda*, *Blitophaga undata*, *Bruchus rufimanus*, *Bruchus pisorum*, *Bruchus latus*, *Byctiscus betulae*, *Cassida nebulosa*, *Cerotoma trifurcata*, *Ceuthorrhynchus assimilis*, *Ceuthorrhynchus napi*, *Chaetocnema tibialis*, *Conoderus vespertinus*, *Crioceris asparagi*, *Diabrotica longicornis*, *Diabrotica 12-punctata*, *Diabrotica virgifera*, *Epilachna varivestis*, *Epitrix hirtipennis*, *Eutinobothrus brasiliensis*, *Hylobius abietis*, *Hypera brunneipennis*, *Hypera postica*, *Ips typographus*, *Lema bilineata*, *Lema melanopus*, *Leptinotarsa decemlineata*, *Limonius californicus*, *Lissorhoptrus oryzophilus*, *Melanotus communis*, *Meligethes aeneus*, *Melolontha hippocastani*, *Melolontha melolontha*, *Oncomyza oryzae*, *Otiorrhynchus sulcatus*, *Otiorrhynchus ovatus*, *Phaedon cochleariae*, *Phyllotreta chryscephala*, *Phyllophaga* sp., *Phyllopertha horticola*, *Phyllotreta nemorum*, *Phyllotreta striolata*, *Popillia japonica*, *Sitona lineatus* und *Sitophilus granaria*;
- aus der Ordnung der Zweiflügler (Diptera) beispielsweise *Aedes aegypti*, *Aedes vexans*, *Anastrepha ludens*, *Anopheles maculipennis*, *Ceratitis capitata*, *Chrysomya bezziana*, *Chrysomya hominivorax*, *Chrysomya macellaria*, *Contarinia sorghicola*, *Cordylobia anthropophaga*, *Culex pipiens*, *Dacus cucurbitae*, *Dacus oleae*, *Dasineura brassicae*, *Fannia canicularis*, *Gasterophilus intestinalis*, *Glossia morsitans*, *Haematobia irritans*, *Haplodiplosis equestris*, *Hylemyia platura*, *Hypoderma lineata*, *Liriomyza sativae*, *Liriomyza trifolii*, *Lucilia caprina*, *Lucilia cuprina*, *Lucilia sericata*, *Lycoria pectoralis*, *Mayetiola destructor*, *Musca domestica*, *Muscina stabulans*, *Oestrus ovis*, *Oscinella frit*, *Pegomya hysocyma*, *Phorbia antiqua*, *Phorbia brassicae*, *Phorbia coarctata*, *Rhagoletis cerasi*, *Rhagoletis pomonella*, *Tabanus bovinus*, *Tipula oleracea* und *Tipula paludosa*;
- aus der Ordnung der Thripse (Thysanoptera) beispielsweise *Frankliniella fusca*, *Frankliniella occidentalis*, *Frankliniella tritici*, *Scirtothrips citri*, *Thrips oryzae*, *Thrips palmi* und *Thrips tabaci*;
- aus der Ordnung der Hautflügler (Hymenoptera) beispielsweise *Athalia rosae*, *Atta cephalotes*, *Atta sexdens*, *Atta texana*, *Hoplocampa minuta*, *Hoplocampa testudinea*, *Monomorium pharaonis*, *Solenopsis geminata* und *Solenopsis invicta*;
- aus der Ordnung der Wanzen (Heteroptera) beispielsweise *Acrosternum hilare*, *Blissus leucopterus*, *Cyrtopeltis notatus*, *Dysdercus cingulatus*, *Dysdercus intermedius*, *Eurygaster integriceps*, *Euchistus impictiventris*, *Leptoglossus phyllopus*, *Lygus lineolaris*, *Lygus pratensis*, *Nezara viridula*, *Piesma quadrata*, *Solubea insularis* und *Thyanta perditor*;
- aus der Ordnung der Pflanzensauger (Homoptera) beispielsweise *Acyrthosiphon onobrychidis*, *Adelges laricis*, *Aphidula nasturtii*, *Aphis fabae*, *Aphis pomi*, *Aphis sambuci*, *Brachycaudus cardui*, *Brevicoryne brassicae*, *Cerosipa gossypii*, *Dreyfusia nordmanniana*, *Dreyfusia piceae*, *Dyaspis radicola*, *Dysaulacorthrum pseudosolani*, *Empoasca fabae*, *Macrosiphum avenae*, *Macrosiphum euphorbiae*, *Macrosiphon rosae*, *Megoura viciae*, *Metopolophium dirhodum*, *Myzodes persicae*, *Myzus cerasi*, *Nilaparvata lugens*, *Pemphigus bursarius*, *Perkinsiella saccharicida*, *Phorodon humuli*, *Psylla mali*, *Psylla piri*, *Rhopalomyzus ascalonicus*, *Rhopalosiphum maidis*, *Sappaphis mala*, *Sappaphis mali*, *Schizaphis graminum*, *Schizoneura lanuginosa*, *Trialeurodes vaporariorum* und *Viteus vitifolii*;
- aus der Ordnung der Termiten (Isoptera) beispielsweise *Calotermes flavicollis*, *Leucotermes flavipes*, *Reticulitermes lucifugus* und *Termes natalensis*;
- aus der Ordnung der Gerafflügler (Orthoptera) beispielsweise *Acheta domestica*, *Blatta orientalis*,

Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bimaculatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus und Tachycines asynamorus;

- 5 - aus der Klasse der Arachnoidea beispielsweise Spinnentiere (Acarina) wie Amblyomma americanum, Arglyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Brevipalpus phoenicis, Bryobia praetiosa, Dermacentor silvarum, Eotetranychus carpini, Eriophyes sheldoni, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodoros moubata, Otobius megnini, Paratetranychus pilosus, Pernanyssus gallinae, Phyllocoptes oleivora, Polyphagotarsonemus latus, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcopes scabiei, Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius und Tetranychus urticae;
- aus der Klasse der Nematoden beispielsweise Wurzelgallennematoden, z.B. Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Zysten bildende Nematoden, z.B. Globodera rostochiensis, Heterodera avenae, Heterodera glycinae, Heterodera schatii, Heterodera trifolii, Stock- und Blattlättchen, z.B. Belonolaimus longicaudatus, Ditylenchus destructor, Ditylenchus dipsaci, Heliocotylenchus multicinctus, Longidorus elongatus, Radopholus similis, Rotylenchus robustus, Trichodorus primitivus, Tylenchorhynchus claytoni, Tylenchorhynchus dubius, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus und Pratylenchus goodeyi.

20 Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollen in jedem Fall eine feine und gleichmäßige Verteilung des orthosubstituierten Phenylessigsäureamids gewährleisten. Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter 25 Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkulierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitstet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

40 Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfinsäure, Naphthalinsulfinsäure, Phenolsulfinsäure, Dibutylnaphthalinsulfinsäure, Alkylarylsulfonate, Alkylsulfonate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfinsäure mit Phenol und 45 Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylene, Laurylalkoholpolyglykoletheracetal, Sorbitester, Lignin-Sulfatablaugen und Methylcellulose in Be tracht.

50 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden.

Ganz allgemein enthalten die Mittel zwischen 0,0001 und 95, vorzugsweise zwischen 0,01 und 90 Gew-% Wirkstoff.

Formulierungen mit mehr als 95 Gew.-% Wirkstoff können mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) ausgebracht werden, wobei sogar der Wirkstoff ohne Zusätze verwendet werden kann.

Beispiele für solche Zubereitungen sind:

- I. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 87 und 10 Gew.-Teilen N-Methyl- α -pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;
- II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 93, 80 Gew.-Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion.
- 5 III. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 133, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;
- IV. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 242, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;
- V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 252, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin- α -sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;
- 10 VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 449 und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubermittel enthält 3 Gew.-% Wirkstoff;
- VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 494, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprührt wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;
- 20 VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 585, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;
- IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 587, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls.
- 25 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerde, wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talcum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.
- 30 Die Aufwandmengen in fungiziden Mitteln liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha. Die neuen Verbindungen können auch im Materialschutz (Holzschutz) eingesetzt werden, z.B. gegen Paecilomyces variotii.
- Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g, vorzugsweise 35 0,01 bis 10 g je Kilogramm Saatgut benötigt.
- 40 Die Aufwandmenge an Wirkstoff für die Bekämpfung von Insekten beträgt unter Freilandbedingungen 0,02 bis 10, vorzugsweise 0,1 bis 2,0 kg/ha.
- Die erfindungsgemäßen Mittel können in diesen Anwendungsformen auch zusammen mit anderen Wirkstoffen vorliegen, z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit 45 Düngemitteln. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1 : 10 bis 10 : 1, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Beim Vermischen mit Fungiziden oder Insektiziden erhält man dabei in vielen Fällen eine Vergrößerung des Wirkungsspektrums.
- 50 Die Mittel bzw. die daraus hergestellten gebrauchsfertigen Zubereitungen wie Lösungen, Emulsionen, Suspensionen, Pulver, Stäube, Pasten oder Granulate werden in bekannter Weise angewendet, beispielsweise durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Beizen oder Gießen.

Herstellungsbeispiele

55 Beispiel 1

2-Methoxyimino-2-[2'-(m-chlorphenoxyethyl)-phenyl]-essigsäureamid

(Verbindung Nr. 89)

5

10

Zu einer Mischung aus 50 ml Glykol und 10 ml einer 25 gew.-%igen wässrigen Kalilauge gab man 7,0 g (23 mmol) 2-Methoxyimino-2-[2'-(m-chlorphenoxyethyl)]-phenylacetonitril und erhitzte das Reaktionsgemisch anschließend 2 Stunden auf 80 °C. Danach wurde der gebildete Feststoff abgetrennt, mit Methyl-tert.-butylether gewaschen und getrocknet. Ausbeute: 58 %;

¹⁵ **1H-NMR** (in CDCl₃, TMS als Standard): δ = 4.00(s,3H); 5.18(s, 2H); 6.10(sbr,1H); 6.75(sbr,1H); 6.78(d,1H); 6.92(m,2H); 7.10-7.50(m,5H).

Beispiel 2

20 2-Methoxyimino-2-[2'-(o,p-dimethylphenoxy methyl)-phenyl]-essigsäure-N-methylamid

(Verbindung Nr. 494)

25

0,465 g (15 mmol) über Kaliumhydroxid getrocknetes Monomethylamin wurden bei etwa 25 °C in eine Lösung aus 5,0 g (15 mmol) 2-Methoxyimino-2-[2'-(o,p-dimethylphenoxy)methyl]-phenylessigsäurechlorid in 30 ml Dichlormethan eingegast. Diese Mischung wurde eine Stunde gerührt und anschließend mit 70 ml 35 Dichlormethan verdünnt. Nach Extraktion von Nebenprodukten mit 100 ml Wasser arbeitete man die „

organische Phase wie üblich auf das Produkt hin auf. Ausbeute: 88 % (OI);
¹H-NMR (in CDCl₃, TMS als Standard): δ = 2.20(s,3H); 2.25(s,3H); 2.90(d,3H); 3.94(s,3H); 4.93(s,2H); 6.70-7.60(m,7H).

40 Beispiel 3

2-Methoxyimino-2-(2'-Benzylxyphenyl)-essigsäure-N,N-dimethylamid

(Verbindung Nr. 206)

58

Eine Lösung aus 4,9 g (16,4 mmol) 2-Methoxyimino-2-(2'-Benzylxy)-phenylessigsäure-methylester und 0,9 g (20 mmol) Dimethylamin in 20 ml Methanol wurden 60 Stunden bei etwa 25 °C gerührt. Nach Entfernen des Lösungsmittels wurde das Rohprodukt mittels Chromatographie (an Kieselgel; Methyl-tert.-butylether/Hexan Gemisch als Laufmittel) gereinigt. Ausbeute: 66 %.

¹H-NMR (δ in CDCl₃, TMS als Standard): d = 3.38(s 3H); 3.49(s 3H); 4.01(s 3H); 5.03(s 2H); 6.90-7.10(m 2H);

7.30-7.40(m,6H); 8.75(d,1H).

Beispiel 4

5 2-Methoxyimino-2-[2'-(o,p-dimethylphenoxyethyl)-phenyl]-essigsäure-N,N-dimethylamid

(Verbindung Nr. 252)

15

Analog Beispiel 2 wurden 0,675 g (15 mmol) getrocknetes Dimethylamin mit 5,0 g (15 mmol) 2-Methoxyimino-2-[2'-(o,p-dimethylphenoxyethyl)-phenyl]-phenylessigsäurechlorid umgesetzt. Ausbeute: 78 % (Öl);
1H-NMR (in CDCl₃, TMS als Standard): d = 2.20(s,3H); 2.23(s,3H); 3.02(s,3H); 3.18(s,3H); 3.95(s,3H); 5.02-20 (s,2H); 6.60-7.60(m,7H).

In Tabelle 1 sind noch weitere Endprodukte I aufgeführt, welche auf die gleichen Weisen hergestellt wurden oder herstellbar sind.

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle

Nr.	Y	R ¹	physik. Daten			
			R ⁴	R ⁵	W	
1	CH ₂	H	H	H	N-OCH ₃	
2	CHCl	H	H	H	N-OCH ₃	
3	CHBr	H	H	H	N-OCH ₃	
4	CHJ	H	H	H	N-OCH ₃	
5	CH ₂ -CH ₂	C ₆ H ₅	H	H	N-OCH ₃	
6	CH ₂ -CH ₂	2-F-C ₆ H ₄	H	H	N-OCH ₃	
7	CH ₂ -CH ₂	3-F-C ₆ H ₄	H	H	N-OCH ₃	
8	CH ₂ -CH ₂	4-F-C ₆ H ₄	H	H	N-OCH ₃	
9	CH ₂ -CH ₂	2-Cl-C ₆ H ₄	H	H	N-OCH ₃	
10	CH ₂ -CH ₂	3-Cl-C ₆ H ₄	H	H	N-OCH ₃	
11	CH ₂ -CH ₂	4-Cl-C ₆ H ₄	H	H	N-OCH ₃	
12	CH ₂ -CH ₂	2-Br-C ₆ H ₄	H	H	N-OCH ₃	
13	CH ₂ -CH ₂	4-Br-C ₆ H ₄	H	H	N-OCH ₃	
14	CH ₂ -CH ₂	2-J-C ₆ H ₄	H	H	N-OCH ₃	
15	CH ₂ -CH ₂	2-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R^1	R^4	R^5	W	physik. Daten
16	CH ₂ -CH ₂	3-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
17	CH ₂ -CH ₂	4-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
18	CH ₂ -CH ₂	2-OCH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
19	CH ₂ -CH ₂	3-OCH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
20	CH ₂ -CH ₂	4-OCH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
21	CH ₂ -CH ₂	2-CF ₃ -C ₆ H ₄	H	H	N-OCH ₃	
22	CH ₂ -CH ₂	3-CF ₃ -C ₆ H ₄	H	H	N-OCH ₃	
23	CH ₂ -CH ₂	4-CF ₃ -C ₆ H ₄	H	H	N-OCH ₃	
24	CH ₂ -CH ₂	2,4-C ₁₂ -C ₆ H ₃	H	H	N-OCH ₃	
25	CH ₂ -CH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	H	H	N-OCH ₃	
26	CH ₂ -CH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₂	H	H	N-OCH ₃	
27	CH ₂ -CH ₂	Pyridin-3-yl	H	H	N-OCH ₃	
28	CH ₂ -CH ₂	Furan-2-yl	H	H	N-OCH ₃	
29	CH ₂ -CH ₂	6-CH ₃ -Pyridin-2-yl	H	H	N-OCH ₃	
30	CH ₂ -CH ₂	Benzothiazol-2-yl	H	H	N-OCH ₃	
31	CH=CH	C ₆ H ₅	H	H	N-OCH ₃	
32	CH=CH	2-F-C ₆ H ₄	H	H	N-OCH ₃	
33	CH=CH	3-F-C ₆ H ₄	H	H	N-OCH ₃	
34	CH=CH	4-F-C ₆ H ₄	H	H	N-OCH ₃	
35	CH=CH	2-C ₁ -C ₆ H ₄	H	H	N-OCH ₃	
36	CH=CH	3-C ₁ -C ₆ H ₄	H	H	N-OCH ₃	
37	CH=CH	4-C ₁ -C ₆ H ₄	H	H	N-OCH ₃	
38	CH=CH	2-Br-C ₆ H ₄	H	H	N-OCH ₃	
39	CH=CH	4-Br-C ₆ H ₄	H	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
40	CH=CH	2-J-C6H4	H	H	N-OCH3	
41	CH=CH	2-CH3-C6H4	H	H	N-OCH3	
42	CH=CH	3-CH3-C6H4	H	H	N-OCH3	
43	CH=CH	4-CH3-C6H4	H	H	N-OCH3	
44	CH=CH	2-OCH3-C6H4	H	H	N-OCH3	
45	CH=CH	3-OCH3-C6H4	H	H	N-OCH3	
46	CH=CH	4-OCH3-C6H4	H	H	N-OCH3	
47	CH=CH	2-CF3-C6H4	H	H	N-OCH3	
48	CH=CH	3-CF3-C6H4	H	H	N-OCH3	
49	CH=CH	4-CF3-C6H4	H	H	N-OCH3	
50	CH=CH	2,4-C12-C6H3	H	H	N-OCH3	
51	CH=CH	2,4-(CH3)2-C6H3	H	H	N-OCH3	
52	CH=CH	2,4,6-(CH3)3-C6H2	H	H	N-OCH3	
53	CH=CH	Pyridin-3-yl	H	H	N-OCH3	
54	CH=CH	Furan-2-yl	H	H	N-OCH3	
55	CH=CH	6-CH3-Pyridin-2-yl	H	H	N-OCH3	
56	CH=CH	Benzothiazol-2-yl	H	H	N-OCH3	
57	CH2O	C6H5	H	H	N-OCH3	
58	CH2O	2-F-C6H4	H	H	N-OCH3	
59	CH2O	3-F-C6H4	H	H	N-OCH3	
60	CH2O	4-F-C6H4	H	H	N-OCH3	
61	CH2O	2-C1-C6H4	H	H	N-OCH3	
62	CH2O	3-C1-C6H4	H	H	N-OCH3	
63	CH2O	4-C1-C6H4	H	H	N-OCH3	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R2	R3	R4	R5	M	physik. Daten
64	CH ₂ O	2-Br-C ₆ H ₄					N-OCH ₃	
65	CH ₂ O	4-Br-C ₆ H ₄					N-OCH ₃	
66	CH ₂ O	2-J-C ₆ H ₄					N-OCH ₃	
67	CH ₂ O	2-CH ₃ -C ₆ H ₄					N-OCH ₃	
68	CH ₂ O	3-CH ₃ -C ₆ H ₄					N-OCH ₃	
69	CH ₂ O	4-CH ₃ -C ₆ H ₄					N-OCH ₃	
70	CH ₂ O	2-OC ₂ H ₅ -C ₆ H ₄					N-OCH ₃	
71	CH ₂ O	3-OC ₂ H ₅ -C ₆ H ₄					N-OCH ₃	
72	CH ₂ O	4-OC ₂ H ₅ -C ₆ H ₄					N-OCH ₃	
73	CH ₂ O	2-CF ₃ -C ₆ H ₄					N-OCH ₃	
74	CH ₂ O	3-CF ₃ -C ₆ H ₄					N-OCH ₃	
75	CH ₂ O	4-CF ₃ -C ₆ H ₄					N-OCH ₃	
76	CH ₂ O	2,4-Cl ₂ -C ₆ H ₃					N-OCH ₃	
77	CH ₂ O	2,4-(CH ₃) ₂ -C ₆ H ₃					N-OCH ₃	
78	CH ₂ O	2,4,6-(CH ₃) ₃ -C ₆ H ₂					N-OCH ₃	
79	CH ₂ O	Pyridin-3-yl					N-OCH ₃	
80	CH ₂ O	Furan-2-yl					N-OCH ₃	
81	CH ₂ O	6-CH ₃ -Pyridin-2-yl					N-OCH ₃	
82	CH ₂ O	Benzothiazol-2-yl					N-OCH ₃	
83	O-CH ₂	H					N-OCH ₃	
84	O-CH ₂	C ₆ H ₅					N-OCH ₃	
85	O-CH ₂	2-F-C ₆ H ₄					N-OCH ₃	
86	O-CH ₂	3-F-C ₆ H ₄					N-OCH ₃	

5
10
15
20
25
30
35
40
45
50
55

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	physik. Daten
87	O-CH ₂	4-F-C ₆ H ₄	H	H	N-OCH ₃	Fp. 127-90°C; IR(KBr) : 3371, 3184, 1652, 1507, 1249, 1050, 824 cm ⁻¹
88	O-CH ₂	2-C1-C ₆ H ₄	H	H	N-OCH ₃	
89	O-CH ₂	3-C1-C ₆ H ₄	H	H	N-OCH ₃	Fp. 104-50°C; IR(KBr) : 3416, 1663, 1559, 1482, 1249, 1045, 904, 775 cm ⁻¹
90	O-CH ₂	4-C1-C ₆ H ₄	H	H	N-OCH ₃	Fp. 105-100°C
91	O-CH ₂	2-Br-C ₆ H ₄	H	H	N-OCH ₃	Fp. 88-90°C; ¹ H-NMR(CDCl ₃) : δ = 4.13 (s, 3H), 5.35 (s, 2H), 6.85 (m, 2H), 7.25 (m, 1H), 7.58 (m, 3H), 7.78 (d, 1H), 7.86 (d, 1H)
92	O-CH ₂	4-Br-C ₆ H ₄	H	H	N-OCH ₃	
93	O-CH ₂	2-J-C ₆ H ₄	H	H	N-OCH ₃	Fp. 148-500°C; IR(KBr) : 3373, 1652, 1474, 1249, 1055, 749
94	O-CH ₂	2-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
95	O-CH ₂	3-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
96	O-CH ₂	4-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	Fp. 100-20°C; IR(KBr) : 1674, 1510, 1239, 1042, 814
97	O-CH ₂	2-OCH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
98	O-CH ₂	3-OCH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
99	O-CH ₂	4-OCH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
100	O-CH ₂	2-CF ₃ -C ₆ H ₄	H	H	N-OCH ₃	
101	O-CH ₂	3-CF ₃ -C ₆ H ₄	H	H	N-OCH ₃	
102	O-CH ₂	4-CF ₃ -C ₆ H ₄	H	H	N-OCH ₃	
103	O-CH ₂	2, 4-C12-C ₆ H ₃	H	H	N-OCH ₃	
104	O-CH ₂	2, 4-(CH ₃) ₂ -C ₆ H ₃	H	H	N-OCH ₃	
105	O-CH ₂	2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	H	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
106	O-CH2	2-CH3-4-C1-C6H3	H	H	N-OCH3	
107	O-CH2	3-t-C4H9-C6H4	H	H	N-OCH3	
108	O-CH2	4-C6H5-C6H4	H	H	N-OCH3	
109	O-CH2	2-Cl, 4-CH3-6H3	H	H	N-OCH3	
110	O-CH2	Pyridin-2-yl	H	H	N-OCH3	
111	O-CH2	6-CH3-Pyridin-2-yl	H	H	N-OCH3	
112	O-CH2	2-Cl-Pyridin-2-yl	H	H	N-OCH3	
113	O-CH2	Benzothiazol-2-yl	H	H	N-OCH3	
114	O	H	H	H	N-OCH3	
115	O	C6H5	H	H	N-OCH3	
116	O	3-C6H5-C6H4	H	H	N-OCH3	
117	O	3-OC3H4-C6H4	H	H	N-OCH3	
118	O	Pyridin-2-yl	H	H	N-OCH3	
119	O	6-C6H5-Pyridin-2-yl	H	H	N-OCH3	
120	O	CH2-CH=CH2	H	H	N-OCH3	
121	O	3-C6H5O-C6H4	H	H	N-OCH3	
122	O	3-C6H5S-C6H4	H	H	N-OCH3	
123	O	3-C6H5CH20-C6H4	H	H	N-OCH3	
124	C=C	CH3	H	H	N-OCH3	
125	C=C	C6H5	H	H	N-OCH3	
126	S	C6H5	H	H	N-OCH3	
127	S	2-C1-C6H4	H	H	N-OCH3	
128	S-CH2	C6H5	H	H	N-OCH3	
129	S-CH2	4-C1-C6H4	H	H	N-OCH3	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
130	S-CH ₂	4-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
131	S-CH ₂	6-CH ₃ -Pyridin-2-yl	H	H	N-OCH ₃	
132	S-CH ₂	6-C ₁ -Pyridin-2-yl	H	H	N-OCH ₃	
133	S-CH ₂	Benzothiazol-2-yl	H	H	N-OCH ₃	Fp. 171-80°C; IR(KBr): 3388, 3155, 1650, 1429, 1037, 989, 748 cm ⁻¹
134	S-CH ₂	5-C ₁ -Benzothiazol-2-yl	H	H	N-OCH ₃	
135	S-CH ₂	6-C ₁ -Benzothiazol-2-yl	H	H	N-OCH ₃	
136	-CO-O-	CH ₃	H	H	N-OCH ₃	
137	-CO-O-	C ₆ H ₅	H	H	N-OCH ₃	
138	-O-CO-	CH ₃	H	H	N-OCH ₃	
139	-O-CO-	C ₆ H ₅	H	H	N-OCH ₃	
140	-O-CO-	H	H	H	N-OCH ₃	
141	-CO-CH ₂ -	H	H	H	N-OCH ₃	
142	-CO-CH ₂ -	CH ₃	H	H	N-OCH ₃	
143	-CO-CH ₂ -	C ₆ H ₅	H	H	N-OCH ₃	
144	-CO-CH ₂ -	2-CH ₃ -C ₆ H ₄	H	H	N-OCH ₃	
145	-CO-CH ₂ -	2,4-(CH ₃) ₂ C ₆ H ₃	H	H	N-OCH ₃	
146	-CO-CH ₂ -	2-C ₁ -C ₆ H ₄	H	H	N-OCH ₃	
147	-CH ₂ -CO-	H	H	H	N-OCH ₃	
148	-CH ₂ -OO-	C ₆ H ₅	H	H	N-OCH ₃	
149	-N=N-	C ₆ H ₅	H	H	N-OCH ₃	
150	CH ₂	H	CH ₃	CH ₃	N-OCH ₃	
150	CH ₂	H	CH ₃	CH ₃	N-OCH ₃	
151	CHCl	H	CH ₃	CH ₃	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	CH ₂ Y	R ¹	R ⁴	R ⁵	W	physik. Daten
152		CH ₂ Y	H	CH ₃	CH ₃	N-OCH ₃	
153	CH ₃		H	CH ₃	CH ₃	N-OCH ₃	
154	CH ₂ -CH ₂		C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
155	CH ₂ -CH ₂	2-F-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
156	CH ₂ -CH ₂	3-F-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
157	CH ₂ -CH ₂	4-F-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
158	CH ₂ -CH ₂	2-Cl-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
159	CH ₂ -CH ₂	3-Cl-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
160	CH ₂ -CH ₂	4-Cl-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
161	CH ₂ -CH ₂	2-Br-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
162	CH ₂ -CH ₂	4-Br-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
163	CH ₂ -CH ₂	2-J-C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
164	CH ₂ -CH ₂	2-CH ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
165	CH ₂ -CH ₂	3-CH ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
166	CH ₂ -CH ₂	4-CH ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
167	CH ₂ -CH ₂	2-OCH ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
168	CH ₂ -CH ₂	3-OCH ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
169	CH ₂ -CH ₂	4-OCH ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
170	CH ₂ -CH ₂	2-CF ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
171	CH ₂ -CH ₂	3-CF ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
172	CH ₂ -CH ₂	4-CF ₃ -C ₆ H ₄		CH ₃	CH ₃	N-OCH ₃	
173	CH ₂ -CH ₂	2,4-C ₁₂ -C ₆ H ₃		CH ₃	CH ₃	N-OCH ₃	
174	CH ₂ -CH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃		CH ₃	CH ₃	N-OCH ₃	
175	CH ₂ -CH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₂		CH ₃	CH ₃	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
176	CH ₂ -CH ₂	Pyridin-3-yl	CH ₃	CH ₃	N-OCH ₃	
177	CH ₂ -CH ₂	Furan-2-yl	CH ₃	CH ₃	N-OCH ₃	
178	CH ₂ -CH ₂	6-CH ₃ -Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	
179	CH ₂ -CH ₂	Benzothiazol-2-yl	CH ₃	CH ₃	N-OCH ₃	
180	CH=CH	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
181	CH=CH	2-F-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
182	CH=CH	3-F-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
183	CH=CH	4-F-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
184	CH=CH	2-C ₁ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
185	CH=CH	3-C ₁ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
186	CH=CH	4-C ₁ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
187	CH=CH	2-Br-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
188	CH=CH	4-Br-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
189	CH=CH	2-J-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
190	CH=CH	2-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
191	CH=CH	3-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
192	CH=CH	4-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
193	CH=CH	2-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
194	CH=CH	3-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
195	CH=CH	4-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
196	CH=CH	2-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
197	CH=CH	3-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
198	CH=CH	4-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
199	CH=CH	2,4-Cl ₂ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	physik. Daten
200	CH=CH	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	
201	CH=CH	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	CH ₃	N-OCH ₃	
202	CH=CH	Pyridin-3-yl	CH ₃	CH ₃	N-OCH ₃	
203	CH=CH	Furan-2-yl	CH ₃	CH ₃	N-OCH ₃	
204	CH=CH	6-CH ₃ -Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	
205	CH=CH	Benzothiazol-2-yl	CH ₃	CH ₃	N-OCH ₃	
206	CH ₂ O	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
207	CH ₂ O	2-F-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
208	CH ₂ O	3-F-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
209	CH ₂ O	4-F-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
210	CH ₂ O	2-Cl-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
211	CH ₂ O	3-Cl-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
212	CH ₂ O	4-Cl-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
213	CH ₂ O	2-Br-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
214	CH ₂ O	4-Br-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
215	CH ₂ O	2-J-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
216	CH ₂ O	2-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
217	CH ₂ O	3-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
218	CH ₂ O	4-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
219	CH ₂ O	2-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
220	CH ₂ O	3-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
221	CH ₂ O	4-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
222	CH ₂ O	2-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
223	CH ₂ O	3-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	

Tabelle (Fortsetzung)

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
246	OCH ₂	3-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
247	OCH ₂	4-OCH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
248	OCH ₂	2-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
249	OCH ₂	3-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
250	OCH ₂	4-CF ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
251	OCH ₂	2,4-C ₁₂ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	
252	OCH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	δ ₁ : ¹ H-NMR(CDCl ₃): δ = 2.23(s, 3H), 2.27(s, 3H); 3.03, 3.182s, 6H); 3.93(s, 3H); 5.02(s, 2H); 6.75(d, 1H); 6.9(m, 2H), 7.35(m, 3H); 7.57(d, 1H)
253	OCH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	CH ₃	N-OCH ₃	
254	OCH ₂	2-CH ₃ , 4-C ₁ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	
255	OCH ₂	3-t-C ₄ H ₉ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
256	OCH ₂	2-C ₁ , 4-CH ₃ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	
257	OCH ₂	4-C ₆ H ₅ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
258	OCH ₂	Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	
259	OCH ₂	6-CH ₃ -Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	
260	OCH ₂	6-C ₁ -Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	
261	OCH ₂	Benzothiazol-2-yl	CH ₃	CH ₃	N-OCH ₃	
262	O	H	CH ₃	CH ₃	N-OCH ₃	
263	O	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
264	O	3-C ₆ H ₅ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
265	O	3-n-C ₃ H ₇ -O-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
266	O	Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	
267	O	6-C ₆ H ₅ -Pyridin-2-yl	CH ₃	CH ₃	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
268	0	CH ₂ -CH=CH ₂	CH ₃	CH ₃	N-OCH ₃	
269	0	3-C ₆ H ₅ O-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
270	0	3-C ₆ H ₅ S-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
271	0	3-C ₆ H ₅ CH ₂ O-C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
272	C=C	CH ₃	CH ₃	CH ₃	N-OCH ₃	
273	C=C	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
274	S	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
275	S	2-C ₁ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
276	S-CH ₂	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
277	S-CH ₂	4-C ₁ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
278	S-CH ₂	4-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
279	S-CH ₂	2-CH ₃ -Pyrildin-2-y1	CH ₃	CH ₃	N-OCH ₃	
280	S-CH ₂	6-C ₁ -Pyrildin-2-y1	CH ₃	CH ₃	N-OCH ₃	
281	S-CH ₂	Benzothiazol-2-y1	CH ₃	CH ₃	N-OCH ₃	
282	S-CH ₂	5-C ₁ -Benzothiazol-2-y1	CH ₃	CH ₃	N-OCH ₃	
283	S-CH ₂	6-C ₁ -Benzothiazol-2-y1	CH ₃	CH ₃	N-OCH ₃	
284	CO-O-	CH ₃	CH ₃	CH ₃	N-OCH ₃	
285	CO-O-	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
286	O-CO-	CH ₃	CH ₃	CH ₃	N-OCH ₃	
287	O-CO-	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
288	O-CO-	H	CH ₃	CH ₃	N-OCH ₃	
289	CO-CH ₂	H	CH ₃	CH ₃	N-OCH ₃	
290	CO-CH ₂	CH ₃	CH ₃	CH ₃	N-OCH ₃	
291	CO-CH ₂	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	Physik. Daten
292	CO-CH ₂	2-CH ₃ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
293	CO-CH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	CH ₃	N-OCH ₃	
294	CO-CH ₂	2-C ₁ -C ₆ H ₄	CH ₃	CH ₃	N-OCH ₃	
295	CO-CH ₂	Pyrrolidin-2-yl	CH ₃	CH ₃	N-OCH ₃	
296	CO-CH ₂	Furan-2-yl	CH ₃	CH ₃	N-OCH ₃	
297	CO-CH ₂	Benzothiazol-2-yl	CH ₃	CH ₃	N-OCH ₃	
298	CH ₂ -CO	H	CH ₃	CH ₃	N-OCH ₃	
299	CH ₂ -CO	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
300	N=N	C ₆ H ₅	CH ₃	CH ₃	N-OCH ₃	
301	CO-OCH ₂	CH ₃	CH ₃	CH ₃	N-OCH ₂	
302	CO-OCH ₂	tert.-C ₄ H ₉	CH ₃	CH ₃	N-OCH ₂	
303	CO-OCH ₂	3-Heptyl	CH ₃	CH ₃	N-OCH ₂	
304	CO-OCH ₂	cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
305	CO-OCH ₂	1-Methylcyclopropyl	CH ₃	CH ₃	N-OCH ₂	
306	CO-OCH ₂	2-Methylcyclopropyl	CH ₃	CH ₃	N-OCH ₂	
307	CO-OCH ₂	2,2-Dimethylcyclopropyl	CH ₃	CH ₃	N-OCH ₂	
308	CO-OCH ₂	2,2-Dichlorcyclopropyl	CH ₃	CH ₃	N-OCH ₂	
309	CO-OCH ₂	2,2-Dimethyl-3-(2',2'-Dichlor-vinyl)cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
310	CO-OCH ₂	2-Phenylcyclopropyl	CH ₃	CH ₃	N-OCH ₂	
311	CO-OCH ₂	1-(2'-Fluorophenyl)cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
312	CO-OCH ₂	1-(2'-Chlorophenyl)cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
313	CO-OCH ₂	1-(2',6'-Difluorophenyl)-cyclopropyl	CH ₃	CH ₃	N-OCH ₂	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	V	R ¹	R ⁴	R ⁵	W	physik. Daten
			CH ₃	CH ₃	N-OCH ₂	
314	CO-OCH ₂	1-(2',4'-Dichlorophenyl)-cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
315	CO-OCH ₂	1-(4'-Chlorophenyl)cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
316	CO-OCH ₂	1-(4'-Methoxyphenyl)-cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
317	CO-OCH ₂	1-(2'-Methylphenyl)cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
318	CO-OCH ₂	1-(4'-Methylphenyl)cyclopropyl	CH ₃	CH ₃	N-OCH ₂	
319	CO-OCH ₂	1-Benzylcyclopropyl	CH ₃	CH ₃	N-OCH ₂	
320	CO-OCH ₂	Phenyl	CH ₃	CH ₃	N-OCH ₂	
321	CO-OCH ₂	4-Methylphenyl	CH ₃	CH ₃	N-OCH ₂	
322	CO-OCH ₂	4-Chlorophenyl	CH ₃	CH ₃	N-OCH ₂	
323	CO-OCH ₂	4-Fluorophenyl	CH ₃	CH ₃	N-OCH ₂	
324	CO-OCH ₂	2-Heptyl	CH ₃	CH ₃	N-OCH ₃	
325	CO-OCH ₂	Propargyl	CH ₃	CH ₃	N-OCH ₃	
326	CO-OCH ₂	1-Methylcyclohexyl	CH ₃	CH ₃	N-OCH ₃	
327	CO-OCH ₂	Cyclohexyl	CH ₃	CH ₃	N-OCH ₃	
328	OCH ₂	C ₆ H ₅	C ₂ H ₅	C ₂ H ₅	N-OCH ₃	
329	OCH ₂	C ₆ H ₅	n-C ₃ H ₇	CH ₃	N-OCH ₃	
330	OCH ₂	C ₆ H ₅	CH ₃	H	N-OCH ₃	
331	CH ₂	H	CH ₃	H	N-OCH ₃	
332	CHCl	H	CH ₃	H	N-OCH ₃	
333	CHBr	H	CH ₃	H	N-OCH ₃	
334	CHJ	H	CH ₃	H	N-OCH ₃	
335	CH ₂ O	H	CH ₃	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
336	CH2-0-SO2	CH3	CH3	H	N-OCH3	
337	CH2-0-SO2	C6H4-CH3	CH3	H	N-OCH3	
338	CH2CH2	C6H5	CH3	H	N-OCH3	
339	CH2CH2	2-F-C6H4	CH3	H	N-OCH3	
340	CH2CH2	3-F-C6H4	CH3	H	N-OCH3	
341	CH2CH2	4-F-C6H4	CH3	H	N-OCH3	
342	CH2CH2	2-Cl-C6H4	CH3	H	N-OCH3	
343	CH2CH2	3-Cl-C6H4	CH3	H	N-OCH3	
344	CH2CH2	4-Cl-C6H4	CH3	H	N-OCH3	
345	CH2CH2	2-Br-C6H4	CH3	H	N-OCH3	
346	CH2CH2	3-Br-C6H4	CH3	H	N-OCH3	
347	CH2CH2	4-Br-C6H4	CH3	H	N-OCH3	
348	CH2CH2	2-J-C6H4	CH3	H	N-OCH3	
349	CH2CH2	2-CH3-C6H4	CH3	H	N-OCH3	
350	CH2CH2	3-CH3-C6H4	CH3	H	N-OCH3	
351	CH2CH2	4-CH3-C6H4	CH3	H	N-OCH3	
352	CH2CH2	2-OCH3-C64	CH3	H	N-OCH3	
353	CH2CH2	3-OCH3-C6H4	CH3	H	N-OCH3	
354	CH2CH2	4-OCH3-C6H4	CH3	H	N-OCH3	
355	CH2CH2	2-CF3-C6H4	CH3	H	N-OCH3	
356	CH2CH2	3-CF3-C6H4	CH3	H	N-OCH3	
357	CH2CH2	4-CF3-C6H4	CH3	H	N-OCH3	
358	CH2CH2	4-i-C3H7-C6H4	CH3	H	N-OCH3	
359	CH2CH2	4-t-C4H9-C6H4	CH3	H	N-OCH3	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
360	CH ₂ CH ₂	4-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
361	CH ₂ CH ₂	2,4-C ₁₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
362	CH ₂ CH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
363	CH ₂ CH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
364	CH ₂ CH ₂	2,4,6-C ₁₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
365	CH ₂ CH ₂	Pyridin-2-yl	CH ₃	H	N-OCH ₃	
366	CH ₂ CH ₂	Pyridin-3-yl	CH ₃	H	N-OCH ₃	
367	CH ₂ CH ₂	Furan-2-yl	CH ₃	H	N-OCH ₃	
368	CH ₂ CH ₂	6-CH ₃ -Pyridin-2-yl	CH ₃	H	N-OCH ₃	
369	CH ₂ CH ₂	6-Cl-Pyridin-2-yl	CH ₃	H	N-OCH ₃	
370	CH ₂ CH ₂	Benzothiazol-2-yl	CH ₃	H	N-OCH ₃	
371	CH=CH	C ₆ H ₅	CH ₃	H	N-OCH ₃	
372	CH=CH	2-F-C ₆ H ₄	CH ₃	H	N-OCH ₃	
373	CH=CH	3-F-C ₆ H ₄	CH ₃	H	N-OCH ₃	
374	CH=CH	4-F-C ₆ H ₄	CH ₃	H	N-OCH ₃	
375	CH=CH	2-C ₁ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
376	CH=CH	3-C ₁ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
377	CH=CH	4-C ₁ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
378	CH=CH	2-Br-C ₆ H ₄	CH ₃	H	N-OCH ₃	
379	CH=CH	3-Br-C ₆ H ₄	CH ₃	H	N-OCH ₃	
380	CH=CH	4-Br-C ₆ H ₄	CH ₃	H	N-OCH ₃	
381	CH=CH	2-J-C ₆ H ₄	CH ₃	H	N-OCH ₃	
382	CH=CH	2-CH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
383	CH=CH	3-CH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R1	R4	R5	R6	W	physik. Daten
384	CH=CH	4-CH3-C6H4	CH3	H	N-OCH3		
385	CH=CH	2-OCH3-C6H4	CH3	H	N-OCH3		
386	CH=CH	3-OCH3-C6H4	CH3	H	N-OCH3		
387	CH=CH	4-OCH3-C6H4	CH3	H	N-OCH3		
388	CH=CH	2-CF3-C6H4	CH3	H	N-OCH3		
389	CH=CH	3-CF3-C6H4	CH3	H	N-OCH3		
390	CH=CH	4-CF3-C6H4	CH3	H	N-OCH3		
391	CH=CH	4-i-C3H7-C6H4	CH3	H	N-OCH3		
392	CH=CH	4-t-C4H9-C6H4	CH3	H	N-OCH3		
393	CH=CH	4-C6H5-C6H4	CH3	H	N-OCH3		
394	CH=CH	2,4-C12-C6H3	CH3	H	N-OCH3		
395	CH=CH	2,4-(CH3)2-C6H3	CH3	H	N-OCH3		
396	CH=CH	2,4,6-(CH3)3-C6H2	CH3	H	N-OCH3		
397	CH=CH	2,4,6-C13-C6H2	CH3	H	N-OCH3		
398	CH=CH	Pyridin-2-yl	CH3	H	N-OCH3		
399	CH=CH	Pyridin-3-yl	CH3	H	N-OCH3		
400	CH=CH	Furan-2-yl	CH3	H	N-OCH3		
401	CH=CH	6-CH3-Pyridin-2-yl	CH3	H	N-OCH3		
402	CH=CH	6-Cl-Pyridin-2-yl	CH3	H	N-OCH3		
403	CH=CH	Benzothiazol-2-yl	CH3	H	N-OCH3		
404	CH20	C6H5	CH3	H	N-OCH3		
405	CH20	2-F-C6H4	CH3	H	N-OCH3		
406	CH20	3-F-C6H4	CH3	H	N-OCH3		
407	CH20	4-F-C6H4	CH3	H	N-OCH3		

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ₁	R ⁴	R ₅	W	physik. Daten
408	CH ₂ O	2-C ₁ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
409	CH ₂ O	3-C ₁ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
410	CH ₂ O	4-C ₁ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
411	CH ₂ O	2-Br-C ₆ H ₄	CH ₃	H	N-OCH ₃	
412	CH ₂ O	3-Br-C ₆ H ₄	CH ₃	H	N-OCH ₃	
413	CH ₂ O	4-Br-C ₆ H ₄	CH ₃	H	N-OCH ₃	
414	CH ₂ O	2-J-C ₆ H ₄	CH ₃	H	N-OCH ₃	
415	CH ₂ O	2-CH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
416	CH ₂ O	3-CH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
417	CH ₂ O	4-CH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
418	CH ₂ O	2-OCH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
419	CH ₂ O	3-OCH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
420	CH ₂ O	4-OCH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
421	CH ₂ O	2-CF ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
422	CH ₂ O	3-CF ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
423	CH ₂ O	4-CF ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
424	CH ₂ O	4-I-C ₃ H ₇ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
425	CH ₂ O	4-t-C ₄ H ₉ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
426	CH ₂ O	4-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
427	CH ₂ O	2,4-Cl ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
428	CH ₂ O	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
429	CH ₂ O	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
430	CH ₂ O	2,4,6-C ₁ ₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
431	CH ₂ O	Pyridin-2-yl	CH ₃	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
432	CH20	Pyridin-3-yl	CH3	H	N-OCH3	
433	CH20	Furan-2-yl	CH3	H	N-OCH3	
434	CH20	6-CH3-Pyridin-2-yl	CH3	H	N-OCH3	
435	CH20	6-Cl-Pyridin-2-yl	CH3	H	N-OCH3	
436	CH20	Benzothiazol-2-yl	CH3	H	N-OCH3	
437	OCH2	H	CH3	H	N-OCH3	
438	OCH2	C6H5	CH3	H	N-OCH3	
439	OCH2	2-F-C6H4	CH3	H	N-OCH3	
440	OCH2	3-F-C6H4	CH3	H	N-OCH3	
441	OCH2	4-F-C6H4	CH3	H	N-OCH3	
442	OCH2	2-Cl-C6H4	CH3	H	N-OCH3	
443	OCH2	3-Cl-C6H4	CH3	H	N-OCH3	
444	OCH2	4-Cl-C6H4	CH3	H	N-OCH3	
445	OCH2	2-Br-C6H4	CH3	H	N-OCH3	
446	OCH2	3-Br-C6H4	CH3	H	N-OCH3	
447	OCH2	4-Br-C6H4	CH3	H	N-OCH3	
448	OCH2	2-J-C6H4	CH3	H	N-OCH3	
449	OCH2	2-CH3-C6H4	CH3	H	N-OCH3	Fp. 105°C; 1H-NMR(CDCl3): δ=2.22(s, 3H); 2.85(d, 3H); 3.85(s, 3H); 4.95(s, 2H); 6.70(sbr, 1H); 6.80(m, 2H); 7.0-7.5(m, 6H)
450	OCH2	3-CH3-C6H4	CH3	H	N-OCH3	
451	OCH2	4-CH3-C6H4	CH3	H	N-OCH3	
452	OCH2	2-OCH3-C6H4	CH3	H	N-OCH3	
453	OCH2	3-OCH3-C6H4	CH3	H	N-OCH3	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ₁	R ₂	R ₃	R ₄	R ₅	W	physik. Daten
454	OCH ₂	4-OCH ₃ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
455	OCH ₂	2-CF ₃ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
456	OCH ₂	3-CF ₃ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
457	OCH ₂	4-CF ₃ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
458	OCH ₂	2-NO ₂ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
459	OCH ₂	4-NO ₂ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
460	OCH ₂	2-CH ₂ C ₁ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
461	OCH ₂	3-CH ₂ C ₁ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
462	OCH ₂	4-CH ₂ C ₁ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
463	OCH ₂	2-C ₂ H ₅ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
464	OCH ₂	3-C ₂ H ₅ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
465	OCH ₂	4-C ₂ H ₅ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
466	OCH ₂	3- <i>t</i> -C ₃ H ₇ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
467	OCH ₂	4- <i>t</i> -C ₃ H ₇ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
468	OCH ₂	3- <i>t</i> -C ₄ H ₉ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
469	OCH ₂	4- <i>t</i> -C ₄ H ₉ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
470	OCH ₂	3-C ₆ H ₅ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
471	OCH ₂	4-C ₆ H ₅ -C ₆ H ₄		CH ₃	H	N-OCH ₃		
472	OCH ₂	4- <i>t</i> -C ₃ H ₇ O-C ₆ H ₄		CH ₃	H	N-OCH ₃		
473	OCH ₂	4- <i>t</i> -C ₄ H ₉ O-C ₆ H ₄		CH ₃	H	N-OCH ₃		
474	OCH ₂	3-C ₆ H ₅ O-C ₆ H ₄		CH ₃	H	N-OCH ₃		
475	OCH ₂	4-C ₆ H ₅ O-C ₆ H ₄		CH ₃	H	N-OCH ₃		
476	OCH ₂	3-C ₆ H ₅ CH ₂ O-C ₆ H ₄		CH ₃	H	N-OCH ₃		
477	OCH ₂	4-C ₆ H ₅ CH ₂ O-C ₆ H ₄		CH ₃	H	N-OCH ₃		

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R1	R4	R5	W	Physik. Daten
478	OCH ₂	2,3-C ₁₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
479	OCH ₂	2,4-C ₁₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
480	OCH ₂	2,5-C ₁₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
481	OCH ₂	2,6-C ₁₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
482	OCH ₂	2,3,4-C ₁₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
483	OCH ₂	2,3,5-C ₁₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
484	OCH ₂	2,3,6-C ₁₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
485	OCH ₂	3,4,5-C ₁₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
486	OCH ₂	C ₆ C ₁₅	CH ₃	H	N-OCH ₃	
487	OCH ₂	C ₆ F ₅	CH ₃	H	N-OCH ₃	
488	OCH ₂	2-F, 4-C ₁ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
489	OCH ₂	4-F, 2-C ₁ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
490	OCH ₂	2-CH ₃ , 4-t-C ₄ H ₉ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
491	OCH ₂	2-CH ₃ , 4-c-C ₆ H ₁₁ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
492	OCH ₂	2-CH ₃ , 4-C ₃ H ₇ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
493	OCH ₂	2,3-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
494	OCH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
495	OCH ₂	2,5-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
496	OCH ₂	2,3,5-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
497	OCH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	N-OCH ₃	
498	OCH ₂	3,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
499	OCH ₂	3,5(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
						FP. 88-89°C; IR(KBr): 3411, 1660, 1512, 1226, 1036, 982, 798, 766

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ₁	R ₄	R ₅	W	physik. Daten
500	OCH ₂	3, 5(C ₂ H ₅) ₂ -C ₆ H ₃	CH ₃	H	N-OCH ₃	
501	OCH ₂	4-cyclohexyl-C ₆ H ₄	CH ₃	H	N-OCH ₃	
502	OCH ₂	CH ₂ -CH=CH ₂	CH ₃	H	N-OCH ₃	
503	OCH ₂	CH ₂ -CH=CHCH ₃	CH ₃	H	N-OCH ₃	
504	OCH ₂	CH ₂ -CH=C(CH ₃) ₂	CH ₃	H	N-OCH ₃	
505	OCH ₂	CH ₂ -C(CH ₃)=CH ₂	CH ₃	H	N-OCH ₃	
506	OCH ₂	CH ₂ -C ₆ H ₅	CH ₃	H	N-OCH ₃	
507	OCH ₂	cyclohexyl	CH ₃	H	N-OCH ₃	
508	OCH ₂	CH ₂ -C=CH	CH ₃	H	N-OCH ₃	
509	OCH ₂	CH ₂ CH=CH-C ₆ H ₅	CH ₃	H	N-OCH ₃	
510	OCH ₂	CH ₂ CH ₂ -O-C ₆ H ₅	CH ₃	H	N-OCH ₃	
511	0	H	CH ₃	H	N-OCH ₃	
512	0	C ₆ H ₅	CH ₃	H	N-OCH ₃	
513	0	3-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
514	0	3-n-C ₃ H ₇ O-C ₆ H ₄	CH ₃	H	N-OCH ₃	
515	0	Pyridin-2-yl	CH ₃	H	N-OCH ₃	
516	0	6-C ₆ H ₅ -Pyrildin-2-yl	CH ₃	H	N-OCH ₃	
517	0	CH ₂ -CH=CH ₂	CH ₃	H	N-OCH ₃	
518	0	3-C ₆ H ₅ O-C ₆ H ₄	CH ₃	H	N-OCH ₃	
519	0	3-C ₆ H ₅ -S-C ₆ H ₄	CH ₃	H	N-OCH ₃	
520	0	3-C ₆ H ₅ CH ₂ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
521	0	4-C ₆ H ₅ O-C ₆ H ₄	CH ₃	H	N-OCH ₃	
522	0	4-C ₆ H ₅ OCH ₂ -C ₆ H ₄	CH ₃	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	Physik. Daten
523	C≡C	CH ₃	CH ₃	H	N-OCH ₃	
524	C≡C	C ₆ H ₅	CH ₃	H	N-OCH ₃	
525	S	C ₆ H ₅	CH ₃	H	N-OCH ₃	
526	S	2-C1-C ₆ H ₄	CH ₃	H	N-OCH ₃	
527	SCH ₂	C ₆ H ₅	CH ₃	H	N-OCH ₃	
528	SCH ₂	2-C1-C ₆ H ₄	CH ₃	H	N-OCH ₃	
529	SCH ₂	4-C1-C ₆ H ₄	CH ₃	H	N-OCH ₃	
530	SCH ₂	4-F-C ₆ H ₄	CH ₃	H	N-OCH ₃	
531	SCH ₂	4-CH ₃ -C ₆ H ₄	CH ₃	H	N-OCH ₃	
532	SCH ₂	4-CH ₃ -Pyridin-2-yl	CH ₃	H	N-OCH ₃	
533	SCH ₂	6-C1-Pyridin-2-yl	CH ₃	H	N-OCH ₃	
534	SCH ₂	Benzothiazol-2-yl	CH ₃	H	N-OCH ₃	
535	SCH ₂	5-C1-Benzothiazol-2-yl	CH ₃	H	N-OCH ₃	
536	OCH ₂	6-C1-Benzothiazol-2-yl	CH ₃	H	N-OCH ₃	
537	OCH ₂	4,8-(CH ₃) ₂ -Chinolin-2-yl	CH ₃	H	N-OCH ₃	
538	CO-O	CH ₃	CH ₃	H	N-OCH ₃	
539	CO-O	C ₆ H ₅	CH ₃	H	N-OCH ₃	
540	O-O	CH ₃	CH ₃	H	N-OCH ₃	
541	O-O	C ₆ H ₅	CH ₃	H	N-OCH ₃	
542	O-O	C ₆ H ₅ -CH ₂	CH ₃	H	N-OCH ₃	
543	O-O	H	CH ₃	H	N-OCH ₃	
544	CO-CH ₂	H	CH ₃	H	N-OCH ₃	
545	CO-CH ₂	CH ₃	CH ₃	H	N-OCH ₃	
546	CO-CH ₂	C ₆ H ₅	CH ₃	H	N-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
547	CO-CH2	2-CH3-C6H4	CH3	H	N-OCH3	
548	CO-CH2	2,4-(CH3)2-C6H3	CH3	H	N-OCH3	
549	CO-CH2	2-Cl-C6H4	CH3	H	N-OCH3	
550	CH2-CO	H	CH3	H	N-OCH3	
551	CH2-CO	C6H5	CH3	H	N-OCH3	
552	N=N	C6H5	CH3	H	N-OCH3	
553	CO-OCH2	CH3	CH3	H	N-OCH3	
554	CO-OCH2	tert.-C4H9	CH3	H	N-OCH3	
555	CO-OCH2	3-Heptyl	CH3	H	N-OCH3	
556	CO-OCH2	Cyclopropyl	CH3	H	N-OCH3	
557	CO-OCH2	1-Methylcyclopropyl	CH3	H	N-OCH3	
558	CO-OCH2	2-Methylcyclopropyl	CH3	H	N-OCH3	
559	CO-OCH2	2,2-Dimethylcyclopropyl	CH3	H	N-OCH3	
560	CO-OCH2	2,2-Dichlorocyclopropyl	CH3	H	N-OCH3	
561	CO-OCH2	2,2-Dimethyl-3-(2',2'-Dichlorovinyl)cyclopropyl	CH3	H	N-OCH3	
562	CO-OCH2	1-Phenylcyclopropyl	CH3	H	N-OCH3	
563	CO-OCH2	1-(2'-Fluorophenyl)cyclopropyl	CH3	H	N-OCH3	
564	CO-OCH2	1-(2'-Chlorophenyl)cyclopropyl	CH3	H	N OCH3	
565	CO-OCH2	1-(2',6'-Difluorphenyl)-cyclopropyl	CH3	H	N-OCH3	
566	CO-OCH2	1-(2',4'-Dichlorophenyl)-cyclopropyl	CH3	H	N-OCH3	

5
10
15
20
25
30
35
40
45
50

Tabelle (Fortsetzung)

Nr.	V	R ¹	R ⁴	R ⁵	W	physik. Daten
567	CO-OCH ₂	1-(4'-Chlorophenyl)cyclopropyl	CH ₃	H	N-OCH ₃	
568	CO-OCH ₂	1-(4'-Methoxyphenyl)cyclopropyl	CH ₃	H	N-OCH ₃	
569	CH ₂	H	C ₂ H ₅	H	N-OCH ₃	
570	CHCl	H	C ₂ H ₅	H	N-OCH ₃	
571	CHBr	H	C ₂ H ₅	H	N-OCH ₃	
572	CH ₂ CH ₂	C ₆ H ₅	C ₂ H ₅	H	N-OCH ₃	
573	CH=CH	C ₆ H ₅	C ₂ H ₅	H	N-OCH ₃	
574	OCH ₂	C ₆ H ₅	C ₂ H ₅	H	N-OCH ₃	
575	CH ₂ O	C ₆ H ₅	C ₂ H ₅	H	N-OCH ₃	
576	O	C ₆ H ₅	C ₂ H ₅	H	N-OCH ₃	
577	OCH ₂	C ₆ H ₅	OCH ₃	H	N-OCH ₃	
578	CH=CH	C ₆ H ₅	OCH ₃	H	N-OCH ₃	
579	CH ₂	H	OCH ₃	H	N-OCH ₃	
580	CHCl	H	OCH ₃	H	N-OCH ₃	
581	CHBr	H	OCH ₃	H	N-OCH ₃	
582	CH ₂	H	OCH ₃	CH ₃	N-OCH ₃	
583	OCH ₂	C ₆ H ₅	OCH ₃	CH ₃	N-OCH ₃	
584	OCH ₂	C ₆ H ₅	OCH ₂ H ₅	H	N-OCH ₃	
585	OCH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	OCH ₃	CH ₃	N-OCH ₃	
586	OCH ₂	2-CH ₃ -C ₆ H ₄	OCH ₃	CH ₃	N-OCH ₃	
						δ ₁ : ¹ H-NMR(CDC ₁₃): δ=2.24, 2.28(2s, 6H); 3.21(s, 3H); 3.52(br, 3H); 3.98(s, 3H); 5.05(s, 2H); 6.75(d, 1H); 6.83(m, 2H), 7.40(mc, 3H); 7.64(d, 1H) fp: 550°C; ¹ H-NMR (CDC ₁₃) δ=2.30(s, 3H); 3.20, 3.48(2s, 6H); 3.98(s, 3t); 5.08(s, 2H); 6.85(t, 2H); 7.10(m, 2H); 7.40(mc, 3H); 7.65(d, 1H)

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle (Fortsetzung)

Nr.	V	R ₁	R ₄	R ₅	W	physik. Daten
587	OCH ₂	2-CH ₃ -C ₆ H ₄	OCH ₃	H	N-OCH ₃	¹ H-NMR(CDC ₁₃) δ=2.22(s, 3H); 3.75(s, 3H); 3.94(s, 3H); 4.98(s, 2H); 6.80(m, 2H); 7.13(m, 2H); 7.25(d, 1H); 7.40(m, 2H); 7.55(d, 1H); 9.15(s, 1H)
588	OCH ₂	2-CH ₃ -C ₆ H ₄	C ₂ H ₅	C ₂ H ₅	N-OCH ₃	¹ H-NMR(CDC ₁₃) δ=1.18(t, 3H); 2.25(s, 3H); 3.45(d, 3H); 3.93(s, 3H); 5.09(s, 2H); 6.85(m, 2H); 7.10(m, 2H); 7.4(m, 3H); 7.60(d, 1H)
589	CH ₂	H	CH ₃	H	CH-OCH ₃	
590	CHCl	H	CH ₃	H	CH-OCH ₃	
591	CHBr	H	CH ₃	H	CH-OCH ₃	
592	CHJ	H	CH ₃	H	CH-OCH ₃	
593	CH ₂	OH	CH ₃	H	CH-OCH ₃	
594	CH ₂ -O-SO ₂	CH ₃	CH ₃	H	CH-OCH ₃	
595	CH ₂ -O-SO ₂	C ₆ H ₄ -CH ₃	CH ₃	H	CH-OCH ₃	
596	CH ₂ -CH ₂	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
597	CH ₂ -CH ₂	2-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
598	CH ₂ -CH ₂	3-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
599	CH ₂ -CH ₂	4-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
600	CH ₂ -CH ₂	2-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
601	CH ₂ -CH ₂	3-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
602	CH ₂ -CH ₂	4-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
603	CH ₂ -CH ₂	2-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
604	CH ₂ -CH ₂	3-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
605	CH ₂ -CH ₂	4-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R ¹	R ⁴	R ⁵	W	physik. Daten
606	CH ₂ -CH ₂	2-J-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
607	CH ₂ -CH ₂	2-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
608	CH ₂ -CH ₂	3-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
609	CH ₂ -CH ₂	4-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
610	CH ₂ -CH ₂	2-OC ₂ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
611	CH ₂ -CH ₂	3-OC ₂ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
612	CH ₂ -CH ₂	4-OC ₂ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
613	CH ₂ -CH ₂	2-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
614	CH ₂ -CH ₂	3-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
615	CH ₂ -CH ₂	4-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
616	CH ₂ -CH ₂	4-I-C ₃ H ₇ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
617	CH ₂ -CH ₂	4-t-C ₄ H ₉ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
618	CH ₂ -CH ₂	4-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
619	CH ₂ -CH ₂	2,4-C ₁ ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
620	CH ₂ -CH ₂	2,4-(CH ₃) ₄ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
621	CH ₂ -CH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	CH-OCH ₃	
622	CH ₂ -CH ₂	2,4,6-C ₁ ₃ -C ₆ H ₂	CH ₃	H	CH-OCH ₃	
623	CH ₂ -CH ₂	Pyridin-2-y ₁	CH ₃	H	CH-OCH ₃	
624	CH ₂ -CH ₂	Pyridin-3-y ₁	CH ₃	H	CH-OCH ₃	
625	CH ₂ -CH ₂	Furan-2-y ₁	CH ₃	H	CH-OCH ₃	
626	CH ₂ -CH ₂	6-CH ₃ -Pyrildin-2-y ₁	CH ₃	H	CH-OCH ₃	
627	CH ₂ -CH ₂	6-C ₁ -Pyrildin-2-y ₁	CH ₃	H	CH-OCH ₃	
628	CH ₂ -CH ₂	Benzothiazol-2-y ₁	CH ₃	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	physik. Daten
629	CH=CH	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
630	CH=CH	2-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
631	CH=CH	3-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
632	CH=CH	4-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
633	CH=CH	2-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
634	CH=CH	3-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
635	CH=CH	4-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
636	CH=CH	2-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
637	CH=CH	3-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
638	CH=CH	4-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
639	CH=CH	2-J-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
640	CH=CH	2-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
641	CH=CH	3-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
642	CH=CH	4-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
643	CH=CH	2-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
644	CH=CH	3-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
645	CH=CH	4-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
646	CH=CH	2-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
647	CH=CH	3-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
648	CH=CH	4-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
649	CH=CH	4-i-C ₃ H ₇ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
650	CH=CH	4-t-C ₄ H ₉ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
651	CH=CH	4-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
652	CH=CH	2,4-Cl ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
653	CH=CH	2,4-(CH ₃) ₄ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
654	CH=CH	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	CH-OCH ₃	
655	CH=CH	2,4,6-C ₁₃ -C ₆ H ₂	CH ₃	H	CH-OCH ₃	
656	CH=CH	Pyridin-2-y1	CH ₃	H	CH-OCH ₃	
657	CH=CH	Pyridin-3-y1	CH ₃	H	CH-OCH ₃	
658	CH=CH	Furan-2-y1	CH ₃	H	CH-OCH ₃	
659	CH=CH	6-CH ₃ -Pyridin-2-y1	CH ₃	H	CH-OCH ₃	
660	CH=CH	6-Cl-Pyridin-2-y1	CH ₃	H	CH-OCH ₃	
661	CH=CH	Benzothiazol-2-y1	CH ₃	H	CH-OCH ₃	
662	CH ₂ O	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
663	CH ₂ O	2-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
664	CH ₂ O	3-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
665	CH ₂ O	4-F-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
666	CH ₂ O	2-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
667	CH ₂ O	3-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
668	CH ₂ O	4-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
669	CH ₂ O	2-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
670	CH ₂ O	3-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
671	CH ₂ O	4-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
672	CH ₂ O	2-J-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
673	CH ₂ O	2-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
674	CH ₂ O	3-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
675	CH ₂ O	4-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
676	CH ₂ O	2-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R1	R4	R5	W	Physik. Daten
677	CH20	3-OCH3-C6H4	CH3	H	CH-OCH3	
678	CH20	4-OCH3-C6H4	CH3	H	CH-OCH3	
679	CH20	2-CF3-C6H4	CH3	H	CH-OCH3	
680	CH20	3-CF3-C6H4	CH3	H	CH-OCH3	
681	CH20	4-CF3-C6H4	CH3	H	CH-OCH3	
682	CH20	4-i-C3H7-C6H4	CH3	H	CH-OCH3	
683	CH20	4-t-C4H9-C6H4	CH3	H	CH-OCH3	
684	CH20	4-C6H5-C6H4	CH3	H	CH-OCH3	
685	CH20	2, 4-C12-C6H3	CH3	H	CH-OCH3	
686	CH20	2, 4-(CH3)4-C6H3	CH3	H	CH-OCH3	
687	CH20	2, 4, 6-(CH3)3-C6H2	CH3	H	CH-OCH3	
688	CH20	2, 4, 6-C13-C6H2	CH3	H	CH-OCH3	
689	CH20	Pyrildin-2-y1	CH3	H	CH-OCH3	
690	CH20	Pyrildin-3-y1	CH3	H	CH-OCH3	
691	CH20	Furan-2-y1	CH3	H	CH-OCH3	
692	CH20	6-CH3-Pyridin-2-y1	CH3	H	CH-OCH3	
693	CH20	6-Cl-Pyridin-2-y1	CH3	H	CH-OCH3	
694	OCH2	Benzothiazol-2-y1	CH3	H	CH-OCH3	
695	OCH2	H	CH3	H	CH-OCH3	
696	OCH2	C6H5	CH3	H	CH-OCH3	
697	OCH2	2-F-C6H4	CH3	H	CH-OCH3	
698	OCH2	3-F-C6H4	CH3	H	CH-OCH3	
699	OCH2	4-F-C6H4	CH3	H	CH-OCH3	
700	OCH2	2-Cl-C6H4	CH3	H	CH-OCH3	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
701	OCH ₂	3-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
702	OCH ₂	4-Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
703	OCH ₂	2-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
704	OCH ₂	3-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
705	OCH ₂	4-Br-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
706	OCH ₂	2-J-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
707	OCH ₂	2-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
708	OCH ₂	3-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
709	OCH ₂	4-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
710	OCH ₂	2-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
711	OCH ₂	3-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
712	OCH ₂	4-OCH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
713	OCH ₂	2-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
714	OCH ₂	3-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
715	OCH ₂	4-CF ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
716	OCH ₂	2-NO ₂ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
717	OCH ₂	4-NO ₂ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
718	OCH ₂	2-CH ₂ Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
719	OCH ₂	3-CH ₂ Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
720	OCH ₂	4-CH ₂ Cl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
721	OCH ₂	2-C ₂ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
722	OCH ₂	3-C ₂ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
723	OCH ₂	4-C ₂ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	physik. Daten
724	OCH ₂	3-1-C ₃ H ₇ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
725	OCH ₂	4-1-C ₃ H ₇ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
726	OCH ₂	3-t-C ₄ H ₉ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
727	OCH ₂	4-t-C ₄ H ₉ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
728	OCH ₂	3-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
729	OCH ₂	4-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
730	OCH ₂	4-1-C ₃ H ₇ 0-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
731	OCH ₂	4-t-C ₄ H ₉ 0-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
732	OCH ₂	3-C ₆ H ₅ 0-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
733	OCH ₂	4-C ₆ H ₅ 0-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
734	OCH ₂	3-C ₆ H ₅ CH ₂ 0-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
735	OCH ₂	4-C ₆ H ₅ CH ₂ 0-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
736	OCH ₂	2, 3-C ₁ 2-C ₆ H ₃	CH ₃	H	CH-OCH ₃	
737	OCH ₂	2, 4-C ₁ 2-C ₆ H ₃	CH ₃	H	CH-OCH ₃	
738	OCH ₂	2, 5-C ₁ 2-C ₆ H ₃	CH ₃	H	CH-OCH ₃	
739	OCH ₂	2, 6-C ₁ 2-C ₆ H ₃	CH ₃	H	CH-OCH ₃	
740	OCH ₂	2, 3, 4-C ₁ 3-C ₆ H ₂	CH ₃	H	CH-OCH ₃	
741	OCH ₂	2, 3, 5-C ₁ 3-C ₆ H ₂	CH ₃	H	CH-OCH ₃	
742	OCH ₂	2, 3, 6-C ₁ 3-C ₆ H ₂	CH ₃	H	CH-OCH ₃	
743	OCH ₂	C ₆ C ₁ 5	CH ₃	H	CH-OCH ₃	
744	OCH ₂	C ₆ F ₅	CH ₃	H	CH-OCH ₃	
745	OCH ₂	2-F, 4-C ₁ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
746	OCH ₂	4-F, 2-C ₁ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
747	OCH ₂	2-CH ₃ , 4-t-C ₄ H ₉ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R1	R4	R5	W	physik. Daten
748	OCH ₂	2-CH ₃ , 4-Cyclohexyl-C ₆ H ₃	CH ₃	H	CH-OCH ₃	
749	OCH ₂	2-CH ₂ , 4-i-C ₃ H ₇ , -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
750	OCH ₂	2,3-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
761	OCH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
762	OCH ₂	2,5-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
763	OCH ₂	2,3,5-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	CH-OCH ₃	
764	OCH ₂	2,4,6-(CH ₃) ₃ -C ₆ H ₂	CH ₃	H	CH-OCH ₃	
765	OCH ₂	3,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
766	OCH ₂	3,5-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
767	OCH ₂	3,5-(C ₂ H ₅) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
768	OCH ₂	4-Cyclohexyl-C ₆ H ₄	CH ₃	H	CH-OCH ₃	
769	OCH ₂	CH ₂ CH=CH ₂	CH ₃	H	CH-OCH ₃	
770	OCH ₂	CH ₂ =CH-CH(CH ₃) ₃	CH ₃	H	CH-OCH ₃	
771	OCH ₂	CH ₂ =CH-C(CH ₃) ₂	CH ₃	H	CH-OCH ₃	
772	OCH ₂	CH ₂ -C(CH ₃)=CH ₂	CH ₃	H	CH-OCH ₃	
773	OCH ₂	CH ₂ -C ₆ H ₅	CH ₃	H	CH-OCH ₃	
774	OCH ₂	Cyclohexyl	CH ₃	H	CH-OCH ₃	
775	OCH ₂	CH ₂ -C=CH	CH ₃	H	CH-OCH ₃	
776	OCH ₂	CH ₂ CH=CH-C ₆ H ₅	CH ₃	H	CH-OCH ₃	
777	OCH ₂	CH ₂ CH ₂ -O-C ₆ H ₅	CH ₃	H	CH-OCH ₃	
778	0	H	CH ₃	H	CH-OCH ₃	
779	0	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
780	0	3-C ₆ H ₅ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
781	0	3-n-C ₃ H ₇ -O-C ₆ H ₄	CH ₃	H	CH-OCH ₃	

Tabelle (Fortsetzung)

Nr.	γ	R^1	R^4	R^5	w	Physik. Daten
782	0	Pyridin-2-yl	CH ₃	H	CH-OC ₂ H ₅	
783	0	6-C ₆ H ₅ -Pyridin-2-yl	CH ₃	H	CH-OC ₂ H ₅	
784	0	CH ₂ -CH=CH ₂	CH ₃	H	CH-OC ₂ H ₅	
785	0	3-C ₆ H ₅ O-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
786	0	3-C ₆ H ₅ -S-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
787	0	3-C ₆ H ₅ -CH ₂ O-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
788	0	4-C ₆ H ₅ O-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
789	0	4-C ₆ H ₅ OCH ₂ -C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
790	C=C	CH ₃	CH ₃	H	CH-OC ₂ H ₅	
791	C=C	C ₆ H ₅	CH ₃	H	CH-OC ₂ H ₅	
792	S	C ₆ H ₅	CH ₃	H	CH-OC ₂ H ₅	
793	S	2-Cl-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
794	SCH ₂	C ₆ H ₅	CH ₃	H	CH-OC ₂ H ₅	
795	SCH ₂	2-Cl-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
796	SCH ₂	4-Cl-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
797	SCH ₂	4-F-C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
798	SCH ₂	4-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OC ₂ H ₅	
799	SCH ₂	6-CH ₃ -Pyridin-2-yl	CH ₃	H	CH-OC ₂ H ₅	
800	SCH ₂	6-Cl-Pyridin-2-yl	CH ₃	H	CH-OC ₂ H ₅	
801	SCH ₂	Benzothiazol-2-yl	CH ₃	H	CH-OC ₂ H ₅	
802	SCH ₂	5-Cl-Benzothiazol-2-yl	CH ₃	H	CH-OC ₂ H ₅	
803	SCH ₂	6-Cl-Benzothiazol-2-yl	CH ₃	H	CH-OC ₂ H ₅	
804	SCH ₂	4,8-(CH ₃) ₂ -Chinolin-2-yl	CH ₃	H	CH-OC ₂ H ₅	

5

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	γ	R ¹	R ⁴	R ⁵	W	physik. Daten
805	CO-O	CH ₃	CH ₃	H	CH-OCH ₃	
806	CO-O	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
807	O-CO	CH ₃	CH ₃	H	CH-OCH ₃	
808	O-CO	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
809	O-CO	CH ₂ C ₆ H ₅	CH ₃	H	CH-OCH ₃	
810	O-CO	H	CH ₃	H	CH-OCH ₃	
811	CO-CH ₂	H	CH ₃	H	CH-OCH ₃	
812	CO-CH ₂	CH ₃	CH ₃	H	CH-OCH ₃	
813	CO-CH ₂	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
814	CO-CH ₂	2-CH ₃ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
815	CO-CH ₂	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	H	CH-OCH ₃	
816	CO-CH ₂	2-C ₁ -C ₆ H ₄	CH ₃	H	CH-OCH ₃	
817	CH ₂ -CO	H	CH ₃	H	CH-OCH ₃	
818	CH ₂ -CO	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
819	N=N	C ₆ H ₅	CH ₃	H	CH-OCH ₃	
820	CO-OCH ₂	CH ₃	CH ₃	H	CH-OCH ₃	
821	CO-OCH ₂	tert.-C ₄ H ₉	CH ₃	H	CH-OCH ₃	
822	CO-OCH ₂	1-Methyl-cyclopropyl	CH ₃	H	CH-OCH ₃	
823	CO-OCH ₂	2,2-Dichlorocyclopropyl	CH ₃	H	CH-OCH ₃	
824	CO-OCH ₂	2-Phenylcyclopropyl	CH ₃	H	CH-OCH ₃	
825	CO-OCH ₂	1-(2-chlorophenyl)cyclopropyl	CH ₃	H	CH-OCH ₃	
826	CH ₂	H	C ₂ H ₅	H	CH-OCH ₃	
827	CHCl	H	C ₂ H ₅	H	CH-OCH ₃	
828	CHBr	H	C ₂ H ₅	H	CH-OCH ₃	

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	physik. Daten
829	CH ₂ CH ₂	C ₆ H ₅	C ₂ H ₅	H	CH-OCH ₃	
830	CH=CH	C ₆ H ₅	C ₂ H ₅	H	CH-OCH ₃	
831	OCH ₂	C ₆ H ₅	C ₂ H ₅	H	CH-OCH ₃	
832	CH ₂ 0	C ₆ H ₅	C ₂ H ₅	H	CH-OCH ₃	
833	O	C ₆ H ₅	C ₂ H ₅	H	CH-OCH ₃	
834	OCH ₂	C ₆ H ₅	OCH ₃	H	CH-OCH ₃	
835	CH=CH	C ₆ H ₅	OCH ₃	H	CH-OCH ₃	
836	CH ₂	H	OCH ₃	H	CH-OCH ₃	
837	CHC ₁	H	OCH ₃	H	CH-OCH ₃	
838	CHBr	H	OCH ₃	H	CH-OCH ₃	
839	CH ₂	H	OCH ₃	CH ₃	CH ₃	CH-OCH ₃
840	OCH ₂	C ₆ H ₅	OCH ₃	CH ₃	CH ₃	CH-OCH ₃
841	OCH ₂	C ₆ H ₅	OCH ₂ H ₅	H	CH ₃	CH-OCH ₃
842	CH ₂ CH ₂	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
843	CH=CH	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
844	CH ₂	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
845	OCH ₂	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
846	O	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
847	C=C	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
848	S	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
849	SCH ₂	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
850	CO-O	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
851	O-CO	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃
852	CO-CH ₂	C ₆ H ₅	H	H	CH ₃	CH-OCH ₃

5

10

15

20

25

30

35

40

45

50

55

Tabelle (Fortsetzung)

Nr.	Y	R1	R4	R5	W	physik. Daten
853	CH ₂ -CO	C ₆ H ₅	H	H	CH-OMe	
854	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
855	CH=CH	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
856	CH ₂ O	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
857	OCH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
858	O	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
859	C≡C	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
860	S	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
861	SCH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
862	CO-O	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
863	O-CO	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
864	CO-CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
865	CH ₂ -CO	C ₆ H ₅	CH ₃	CH ₃	CH-OMe	
866	OCH ₂	C ₆ H ₅	C ₂ H ₅	CH ₃	CH-OMe	
867	OCH ₂	C ₆ H ₅	C ₃ H ₇	CH ₃	CH-OMe	
868	CH ₂ CH ₂	C ₆ H ₅	H	H	CH-SCH ₃	
869	CH=CH	C ₆ H ₅	H	H	CH-SCH ₃	
870	CH ₂ O	C ₆ H ₅	H	H	CH-SCH ₃	
871	OCH ₂	C ₆ H ₅	H	H	CH-SCH ₃	
872	O	C ₆ H ₅	H	H	CH-SCH ₃	
873	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	
874	CH=CH	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	
875	CH ₂ O	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	
876	OCH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	

5

10

15

20

25

30

35

40

45

50

Tabelle (Fortsetzung)

Nr.	Y	R ¹	R ⁴	R ⁵	W	physik. Daten
877	O	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	
878	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	
879	CH=CH	C ₆ H ₅	CH ₃	CH ₃	CH-SCH ₃	
880	CH ₂ O	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
881	OCH ₂	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
882	O	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
883	CO-OCH ₂	1-Methylcyclopropyl	CH ₃	H	CH-SCH ₃	
884	C≡C	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
885	S	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
886	S-CH ₂	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
887	CO-O	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
888	O-CO	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
889	CO-CH ₂	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
890	CH ₂ -CO	C ₆ H ₅	CH ₃	H	CH-SCH ₃	
891	O-CH ₂	C ₆ H ₅	OCH ₃	H	CH-SCH ₃	
892	O-CH ₂	C ₆ H ₅	OCH ₃	CH ₃	CH-SCH ₃	

Anwendungsbeispiele

55

Als Vergleichssubstanz diente

10 bekannt aus der EP-A 310 954 (Verbindung Nr. 312; E/Z-Isomerengemisch)

Beispiel 5

15 Wirksamkeit gegen Rebenperonospora

Blätter von Topfreben der Sorte "Müller-Thurgau" wurden mit 0,025 gew.%igen wäßrigen Suspensionsen, die 80 Gew.% Wirkstoff (der Wirkstoffe gemäß den Tabellenbeispielen 87, 89, 93, 96, 242, 252, 449, 494, 585 und 586) und 20 Gew.% Emulgator in der Trockensubstanz enthielten, besprüht. Zur Beurteilung 20 der Wirkungsdauer der Wirkstoffe wurden die Pflanzen nach dem Antrocknen des Spritzbelages 8 Tage im Gewächshaus aufgestellt. Erst dann wurden die Blätter mit einer Sporenaufschwemmung von Plasmopara viticola (Rebenperonospora) infiziert und die Pflanzen 48 Stunden in einer wasserdampfgesättigten Kammer bei 24 °C aufgestellt. Anschließend wurden die Reben 5 Tage in einem Gewächshaus bei Temperaturen zwischen 20 und 30 °C und zur Beschleunigung des Sporangienträgerausbruchs abermals für 16 Stunden 25 in der feuchten Kammer kultiviert. Danach erfolgte die Beurteilung des Ausmaßes des Pilzbefalls auf den Blattunterseiten.

Gegenüber einem Kontrollversuch (keine Behandlung, 60 % Pilzbefall) und der bekannten Vergleichsverbindung A (35 % Pilzbefall) zeigte sich, daß die mit den Wirkstoffen 87, 89, 93, 96, 242, 252, 449, 494, 585 und 586 behandelten Pflanzen nur einen Pilzbefall von 0 bis 5 % hatten.

30 Beispiel 6

Wirksamkeit gegen Weizenmehltau

35 Blätter von in Töpfen gewachsenen Weizenkeimlingen der Sorte "Frühgold" wurden mit 0,025 gew.%igen wäßrigen Wirkstoffaufbereitungen, die 80 Gew.% Wirkstoff (der Wirkstoffe gemäß den Tabellenbeispielen 449 und 587) und 20 Gew.% Emulgiermittel in der Trockenmasse enthielten, besprüht und 24 Stunden nach dem Antrocknen des Spritzbelages mit Sporen des Weizenmehltaus (*Erysiphe graminis* var. tritici) bestäubt. Die Versuchspflanzen wurden anschließend im Gewächshaus bei Temperaturen zwischen 40 20 und 22 °C und 75 bis 80 % relativer Luftfeuchtigkeit aufgestellt. Nach 7 Tagen wurde das Ausmaß der Mehltautwicklung beurteilt.

Gegenüber einem Kontrollversuch (keine Behandlung, 70 % Pilzbefall) und der bekannten Vergleichsverbindung A (35 % Pilzbefall) zeigte sich, daß die mit den Wirkstoffen 449 und 587 behandelten Pflanzen keinen Pilzbefall aufwiesen.

45 Beispiel 7

Wirksamkeit gegen Pyricularia oryzae (vorbeugende Behandlung)

50 Blätter von in Töpfen gewachsenen Reiskeimlingen der Sorte "Bahia" wurden mit wäßrigen Emulsionsen, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielten, tropfnäß besprüht und 24 Stunden später mit einer wäßrigen Sporensuspension von Pyricularia oryzae infiziert. Die Versuchspflanzen wurden anschließend in Klimakammern bei Temperaturen zwischen 20 und 24 °C und 95-99 % relativer Luftfeuchtigkeit aufgestellt. Nach 6 Tagen wurde das Ausmaß des Pilzbefalls ermittelt.

55 Das Ergebnis zeigt, daß die Wirkstoffe 242, 252, 449, 585 und 588 bei der Anwendung als 0,05 %ige (Gew.-%) wäßrige Wirkstoffaufbereitung eine viel bessere fungizide Wirkung aufweisen (93 %) als die bekannte Vergleichssubstanz A (20 %).

Patentansprüche**1. Ortho-substituierte Phenylsäureamide der allgemeinen Formel I**

5

10

I,

15 wobei die Variablen folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroesten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;

einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom annelliert sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

R², R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

R⁴, R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;

Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkylenkette, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,

eine C₂-C₄-Alkylen- oder C₂-C₄-Alkinylketten, eine Oxy-(C₁-C₄)-alkylen-, Thio-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylenoxyketten oder eine Carbonyl-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylen carbonylkette;

W eine C₁-C₄-Alkoxyiminogruppe, eine C₁-C₄-Alkoxy methylengruppe oder eine C₁-C₄-Alkyl-hiomethylengruppe,

ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carbonyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten.

2. Ortho-substituierte Phenylsäureamide der Formel I nach Anspruch 1, wobei R² und R³ Wasserstoff bedeuten.

3. Ortho-substituierte Phenylsigsäureamide der Formel I nach Anspruch 1, wobei R², R³, R⁵ Wasserstoff, R⁴ Methyl und W Methoxyimino oder Methoxymethylen bedeuten.
4. Ortho-substituierte Phenylsigsäureamide der Formel I nach Anspruch 1 wobei R¹ Halogenphenyl, C₁-C₄-Alkylphenyl, Di-(C₁-C₄)-alkylphenyl oder Benzothiazol-2-yl, R² und R³ Wasserstoff und W C₁-C₄-Alkoxyimino bedeuten.
5. Verfahren zur Herstellung der Ortho-substituierten Phenylsigsäureamide I der allgemeinen Formel I

10

15

wobei die Variablen folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis

drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder

Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;

einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom annelliert sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

R², R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

R⁴, R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;

Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkenenkette, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,

eine C₂-C₄-Alkenyen- oder C₂-C₄-Alkinyenkette, eine Oxy-(C₁-C₄)-alkyen-, Thio-(C₁-C₄)-alkyen- oder C₁-C₄-Alkylenoxykette oder eine Carbonyl-(C₁-C₄)-alkyen- oder C₁-C₄-Alkylen carbonylkette;

W eine C₁-C₄-Alkoxyiminogruppe, eine C₁-C₄-Alkoxymethylengruppe oder eine C₁-C₄-Alkyli-hiomethylengruppe,

ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-

cyclopropyl, R² bis R⁵ Wasserstoff, Y Carbonyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten, dadurch gekennzeichnet, daß man ein Phenylessigsäurederivat der Formel II

10 wobei L Halogen oder C₁-C₄-Alkoxy bedeutet, gewünschtenfalls in Gegenwart einer Base mit einem Amin der Formel III

umsetzt.

20 6. Verfahren zur Herstellung der ortho-substituierten Phenylessigsäureamide I gemäß Anspruch 1, wobei R⁴ und R⁵ Wasserstoff oder C₁-C₄-Alkyl bedeuten, dadurch gekennzeichnet, daß man ein Phenylacetonitril der Formel IV

30 in Gegenwart einer Säure oder Base hydrolysiert und das Verfahrensprodukt gewünschtenfalls am Amidstickstoff einmal oder zweimal alkyliert.

35 7. Fungizides Mittel, enthaltend einen flüssigen oder festen Trägerstoff und mindestens ein ortho-substituiertes Phenylessigsäureamid I der allgemeinen Formel I

45 wobei die Variablen folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis 50 drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat 55 jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-

5 C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;

10 einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom annellierte sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

15 R², R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
R⁴, R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;

20 Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkenenkette, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,

25 W eine C₂-C₄-Alkenyen- oder C₂-C₄-Alkinyenkette, eine Oxy-(C₁-C₄)-alkylen-, Thio-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylenoxykette oder eine Carbonyl-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylencarbonylkette;

30 W ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carbonyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten.

- 35 8. Schädlingsbekämpfungsmittel, enthaltend einen inerten Trägerstoff und mindestens ein ortho-substituiertes Phenylessigsäureamid I der allgemeinen Formel I

wobei die Variablen folgende Bedeutung haben:

45 R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxycarbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-

Alkyl;

5 einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom anelliert sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

10 R²,R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

15 R⁴,R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;

Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkenenkette, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,

20 eine C₂-C₄-Alkenylen- oder C₂-C₄-Alkinylenkette, eine Oxy-(C₁-C₄)-alkylen-, Thio-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylenoxykette oder eine Carbonyl-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylen carbonylkette;

25 W eine C₁-C₄-Alkoxyiminogruppe, eine C₁-C₄-Alkoxymethylengruppe oder eine C₁-C₄-Alkylihomethylengruppe, ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)cyclopropyl, R² bis R⁵ Wasserstoff, Y Carboonylmethylen und W Methoxymethylen oder Methylthiomethylen bedeuten.

9. Verfahren zur Bekämpfung von Pilzen, dadurch gekennzeichnet, daß man eine fungizid wirksame Menge eines ortho-substituierten Phenylessigsäureamids I der allgemeinen Formel I

40 wobei die Variablen folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe

45 und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanoresten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;

50 einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelato-

55

men, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom annelliert sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

- 5 R²,R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
 R⁴,R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;
- Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkylketten, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,
- 10 eine C₂-C₄-Alkenylen- oder C₂-C₄-Alkinylenketten, eine Oxy-(C₁-C₄)-alkenylen-, Thio-(C₁-C₄)-alkenylen- oder C₁-C₄-Alkyleneoxyketten oder eine Carbonyl-(C₁-C₄)-alkenylen- oder C₁-C₄-Alkylene carbonylkette;
- 15 W eine C₁-C₄-Alkoxyiminogruppe, eine C₁-C₄-Alkoxymethylengruppe oder eine C₁-C₄-Alkyl-hiomethylengruppe,
- 20 ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carbonyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten, auf Pilze, vom Pilzbefall bedrohte Pflanzen, deren Lebensraum oder auf das Saatgut der bedrohten Pflanzen einwirken lässt.

- 25 10. Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, daß man eine insektizid, nematizid und/oder akarizid wirksame Menge eines ortho-substituierten Phenylessigsäureamids I der allgemeinen Formel I

wobei die Variablen folgende Bedeutung haben:

- R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;
- 40
- 45
- 50
- 55
- einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom annelliert sein kann und

wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

R²,R³ unabhängig voneinander Wasserstoff, Cyano, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

R⁴,R⁵ unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe oder einer der beiden Substituenten eine C₁-C₄-Alkoxygruppe;

Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkylenkette, die partiell oder vollständig halogeniert sein kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,

eine C₂-C₄-Alkenylen- oder C₂-C₄-Alkinylenkette, eine Oxy-(C₁-C₄)-alkylen-, Thio-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylenoxykette oder eine Carbonyl-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylen carbonylkette;

W eine C₁-C₄-Alkoxyiminogruppe, eine C₁-C₄-Alkoxymethylengruppe oder eine C₁-C₄-Alkythiomethylengruppe,

ausgenommen Verbindungen, bei denen R¹ Wasserstoff, Phenyl oder 2,2-Dimethyl-3-(2',2'-dichlorvinyl)-cyclopropyl, R² bis R⁵ Wasserstoff, Y Carboxyloxymethylen und W Methoxymethylen oder Methylthiomethylen bedeuten, auf Insekten, Nematoden und/oder Akariden bzw. deren Lebensraum einwirken lässt.

11. Ortho-substituierte Phenylessigsäureamide der Formel I nach Anspruch 1, wobei

R¹ 2-Methylphenyl oder 2,4-Dimethylphenyl;

R²,R³ Wasserstoff;

R⁴,R⁵ unabhängig voneinander Wasserstoff oder Methyl;

Y -O-CH₂;

W -NOCH₃

bedeuten.

12. Ortho-substituierte Phenylessigsäureamide der Formel I nach Anspruch 1, wobei die Variablen folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₁₈-Alkylgruppe, eine C₃-C₈-Cycloalkylgruppe die noch einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe von 3 Halogenatomen, 3 C₁-C₄-Alkylgruppen, einer partiell oder vollständig halogenierten C₁-C₄-Alkenylgruppe und einer Phenylgruppe, die noch ein bis zwei Halogenatome und/oder eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe tragen kann, eine C₂-C₁₀-Alkenylgruppe, eine C₂-C₄-Alkinylgruppe, die einen Phenylrest tragen kann, eine C₁-C₄-Alkoxy-C₁-C₄-alkylgruppe, eine C₁-C₄-Alkoxy carbonylgruppe, die Phenylgruppe, eine Phenyl-C₁-C₄-alkyl- oder Phenyl-C₂-C₄-alkenylgruppe oder eine Phenoxy-C₁-C₄-alkylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanosten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;

einen 5- oder 6-gliedrigen Heterocyclus mit einem bis drei Heteroatomen, ausgewählt aus einer Gruppe von zwei Sauerstoffatomen, zwei Schwefelatomen und drei Stickstoffatomen, ausgenommen Verbindungen mit zwei benachbarten Sauerstoff- und/oder Schwefelatomen, wobei an den Heterocyclus noch ein Benzolring oder ein 5- oder 6-gliedriger Heteroaromat mit einem Stickstoff, Sauerstoff oder Schwefelatom annellierte sein kann und wobei der Heterocyclus zusätzlich noch ein Halogenatom, einen oder zwei C₁-C₄-Alkylreste oder einen Phenylrest tragen kann;

R²,R³ Wasserstoff;

R⁴,R⁵ unabhängig voneinander Wasserstoff und Methoxy oder Methyl und Methoxy;

Y Sauerstoff, Schwefel, eine Gruppe -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO-, -CO-O- oder -CO-O-CH₂-, eine C₁-C₄-Alkylenkette, die partiell oder vollständig halogeniert sein

5 kann, und die noch zusätzlich einen der folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, Phenyl oder Phenoxy, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl,
 10 eine C₂-C₄-Alkenylen- oder C₂-C₄-Alkinylenkette, eine Oxy-(C₁-C₄)-alkylen-, Thio-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylenoxykette oder eine Carbonyl-(C₁-C₄)-alkylen- oder C₁-C₄-Alkylencarbonylkette;

10 W
 bedeuteten.

13. Ortho-substituierte Phenylessigsäureamide der Formel I nach Anspruch 1, wobei wobei die Variablen folgende Bedeutung haben:

15 R¹ die Phenylgruppe, wobei der Aromat jeweils noch einen bis fünf Substituenten tragen kann, ausgewählt aus einer Gruppe von 2 Nitroresten, 2 Cyanoresten, 5 Halogenatomen und jeweils drei der folgenden Reste: C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₂-C₄-Alkenyl, partiell oder vollständig halogeniertes C₂-C₄-Alkenyl und C₁-C₄-Alkoxy und einem Phenyl-, Benzyl-, Phenoxy-, Benzyloxy- oder Phenylthiorest, wobei die letzten beiden Reste ihrerseits noch einen oder zwei der folgenden Substituenten tragen können: Cyano, Halogen oder C₁-C₄-Alkyl;

20 R²,R³ Wasserstoff;

R⁴,R⁵ unabhängig voneinander Wasserstoff oder Methyl oder einer der beiden Substituenten Methoxy;

Y -O-CH₂-;

25 W -CH-OCH₃;

bedeuten.

30

35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EINSCHLÄGIGE DOKUMENTE			EP 91115145.4
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.)
D, P, X	<u>EP - A - 0 398 692</u> (SHINONOGI SEIYAKU KABUSHIKI KAISHA) * Ansprüche 1-8, 10, 14-16 *	1-5, 7-10, 12	C 07 C 251/48 A 01 N 37/50
D, X	<u>EP - A - 0 310 954</u> (BASF) * Ansprüche 1, 3, 4 *	1-3, 7-10, 13	
X	<u>DE - A - 2 808 317</u> (CIBA-GEIGY) * Ansprüche 1-3, 12, 21, 30 *	1, 7-10	
X	<u>CH - A - 636 601</u> (CIBA-GEIGY) * Anspruch 1 *	1	
A	<u>EP - A - 0 354 571</u> (BASF) * Zusammenfassung *	1, 7-10	
A	<u>EP - A - 0 088 325</u> (BASF) * Zusammenfassung *	1, 7-10	RECHERCHIERTE SACHGEBiete (Int. Cl.)
			C 07 C 251/00
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
WIEN	12-12-1991	REIF	
KATEGORIE DER GENANNTEN DOKUMENTEN		E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist	
X : von besonderer Bedeutung allein betrachtet		D : in der Anmeldung angeführtes Dokument	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie		L : aus andern Gründen angeführtes Dokument	
A : technologischer Hintergrund		& : Mitglied der gleichen Patentfamilie, überein- stimmendes Dokument	
O : nichtschriftliche Offenbarung			
P : Zwischenliteratur			
T : der Erfindung zugrunde liegende Theorien oder Grundsätze			