Remarque:

Nous disposons de deux méthodes pour calculer les coefficients a et b d'une fonction affine. La méthode par le calcul permet d'avoir des valeurs exactes pour a et b alors que la méthode graphique ne permet que de lire des valeurs approchées.

5) Signe d'une fonction affine

Propriété triviale :

Si f est une fonction affine définie sur \mathbb{R} par f(x)=ax+b, avec $a\neq 0$, alors f s'annule en $x=-\frac{b}{a}$.

Démonstration :

Idée : On va résoudre l'équation f(x) = 0 quel que soit les nombres réels a et b.

Par hypothèse, on sait que $a \neq 0$.

$$f(x) = 0 \iff ax + b = 0$$
$$\iff ax = -b$$
$$\iff x = -\frac{b}{a}$$

Propriété:

Soit une fonction affine définie sur \mathbb{R} par f(x) = ax + b, avec $a \neq 0$.

Si a>0 (coefficient directeur positif):

- $\ \, \bullet \ \, f \, {\rm est} \, \, {\rm croissante} \, \, {\rm sur} \, \, \mathbb{R} \, \, ; \\$
- f est négative sur $\left[-\infty; -\frac{b}{a}\right];$
- f est positive sur $\left| -\frac{b}{a}; +\infty \right|$.

x	$-\infty$ $-\frac{b}{a}$ +	-∞
f(x)	- 0 +	
f	0	

Si a < 0 (coefficient directeur négatif) :

- $\bullet f$ est décroissante sur $\mathbb R$;
- f est négative sur $\left[-\frac{b}{a}; +\infty \right[$.

x	$-\infty$ $-\frac{b}{a}$ $+\infty$
f(x)	+ 0 -
f	0

<u>Démonstration</u>:

Pour connaître le signe d'une fonction affine définie sur \mathbb{R} par f(x) = ax + b, il faut résoudre l'inéquation : f(x) > 0.

$$f(x) > 0 \iff ax + b > 0$$

 $\iff ax > -b$
Si $m > 0$, alors $x > -\frac{b}{a}$
Si $m < 0$, alors $x < -\frac{b}{a}$

Rappel : Le tableau résumant le signe d'une fonction f s'appelle un tableau de signes alors que celui résumant les variations d'une fonction f s'appelle un tableau de variations.