Prime topological spaces

Shigeo Hattori

December 23, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Prime set of sub spaces

Blue texts indicate the words will be defined later.

This article defines new words, a prime set S of sub spaces of a topological space X, and a prime topological space. These abstract shared properties among different topological spaces.

6

8

9

12

17

18

21

A topological space X is a pair as $(\operatorname{Space}(X), T)$ where $\operatorname{Space}(X)$ denotes the set of all points of X and T denotes a topology on $\operatorname{Space}(X)$.

A metric space (X, M) is a topological space X with the metric table M to define X.

Let (X, M) denote R^1 , Euclidean space of 1-dimension. Take $\forall I$ as a closed interval on X. Take $\forall I_h$ as a homeomorphism from [0, 1] to I so that I_h can be an index system on I.

Take $\forall (S,X)$ such that: X is a topological space $and \land S \subset 2^{Space(X)}$. Let X_{*I} denote the topological space of the Cartesian product X*I. Let F be the function from X*I to X_{*I} such that: F(x,i)=(x,i). Take $\forall F_i$ such that: (*1 $and \land and \land *3$).

1.
$$(X_{*I}, X, I, F) \cong (X_{*I}, X, I, F_i)$$

2.
$$F[0] = F_i[0]$$

3. Take $\forall s1 :\in S, \forall t :\in I. \ (\exists s2 :\in S \ _{and} \land \ \mathrm{image}(F_i[t][s1]) = s2).$

	25
Then the set A of all instances of F_i is said the ambient system of (X, S) .	26
Especially, if *3 is exempted from the required condition, then A is said the	27
ambient system of X .	28
Instance of x : That is, $\forall y$ such that you can substitute y into x .	29
Definition 1.1 (Prime set of sub spaces). Take $\forall (S, X)$ such that: X is a topological state of X and X are X and X and X are	30
logical space $_{and} \land \ S \subset 2^{Space(X)}$. If $(*1 \ _{and} \land \ ((*2 \ _{and} \land \ *3) \rightarrow (*4 \ _{and} \land \ *5)))$	31
holds then S is said a prime set of sub spaces of X .	32
1. Take $\forall f$ as a bijection between subsets of S .	33
2. $\exists F$ as a member of the ambient system of X .	34
3. Take $\forall s :\in \text{domain}(f)$. Then $F[1][s] = f(s)$.	35
4. $\exists H$ as a member of the ambient system of (X, S) .	36
5. Take $\forall s :\in \text{domain}(f)$. Then $H[1][s] = f(s)$.	37
·	38
_	39
Isomorphisms:	40
For example, take $\forall (X1, X2, X3, X4)$ as topological spaces. If there exists	41
$\exists F$ as a bijection betweeb sets of points such that: some subset of F is a	42
homeomorphism from $X1$ to $X3$ and \wedge some subset of F is a homeomorphism	43
phism from $X2$ to $X4$, then you write as $(X1, X2) \cong (X3, X4)$.	44
	45
More formally:	46
Take $\forall F$ as a bijection between sets of points .	47
	48
Take $\forall (p1, p2)$. Define *1 to be equivalent to (*2 $_{or} \lor$ *3).	49
1. $p1 \cong_F p2$.	50
2. $F(p1) = p2$.	51
3. $p1 = p2$ and $(p1, p2) \notin (\operatorname{domain}(F) \cup \operatorname{image}(F))^2$.	52
$p_1 - p_2$ and $(p_1, p_2) \neq (\text{domain}(1)) \cap \text{mage}(1))$.	<i>⊕</i> ∠
	53
	54
Proposition 1. $p1 \cong_F p2 \equiv p2 \cong_{F^{-1}} p1$.	55

Proof. Take $\forall (p1,p2,F^{-1})$ as a counterexample. Hence (*2 $_{or}\lor$ *3) holds for $(p1,p2,F)$ in place of $(p1,p2,F)$ Assume *2 holds. Then *2 holds for $(p2,p1,F^{-1})$ in place of $(p1,p2,F)$. A contradiction. Assume *3 holds. Then *3 holds for $(p2,p1,F^{-1})$ in place of $(p1,p2,F)$. A contradiction. □	56 57 58 59 60 61
Take $\forall G:=(V,E,C)$ such that: (V,E) is a graph $_{and}\wedge C$ is a function from the vertex set V to a set. In detail: (V,E) can be any type of graphs if graph isomorphisms are defined for the type; C is called the content map on V . Then G is said a topological graph .	62 63 64 65 66 67 68
Definition 1.2 (Isomorphism between topological graphs). Take $\forall \{G_i\}_{i\in\{1,2\}}$ as a pair of topological graphs. Hence $G_i:=(V,E,C)_i$ where C_i denotes the content map on V_i . Take $\forall f$ as a graph isomorphism from V_1 to V_2 . Take $\forall F$ as a bijection between sets of points. Then F is said an isomorphism from G_1 to G_2 if *1; you write the fact as *2. And it is defined that: $*2 \to *3$.	69 70 71 72
1. Take $\forall v :\in V_1$, then $C_1(v) \cong_F C_2(f(v))$.	7 3
$2. G_1 \cong^F G_2.$	7 4
$3. G_1 \cong G_2.$	7 5
·	76
Proposition 2. $G_1 \cong^F G_2 \equiv G_2 \cong^{F^{-1}} G_1$.	77
<i>Proof.</i> Refer to the definition of isomorphism between toplogical graphs as MainDef. Take $\forall (G_1, G_2, F)$ as a counterexample. By graph theory, f^{-1} is a graph isomorphism from G_2 to G_1 . And F^{-1} is a bijection between sets of points. Hence the antecedent of MainDef holds for $(G_2, G_1, f^{-1}, F^{-1})$ in place of (G_1, G_2, f, F) except *1. Hence *1 of MainDef fails for it.	78 79 80 81 82
1. Hence: $\exists v :\in V_2 \ and \land \neg (C_2(v) \cong_{F^{-1}} C_1(f^{-1}(v))).$	83
2. Though: $(G_1 \cong^F G_2) \to (C_1(f^{-1}(v)) \cong_F C_2(v)).$	84

(*1 $_{and}\wedge$ *2) contradicts to Proposition 1. 85

86

2 Prime topological space	87
To define prime topological spaces, two new notions as preliminaries are required.	88 89
2.1 To specify a variable	90
	91
Take $\forall (x,y)$ as variables. That (x is specified on y) is equivalent to that: x	92
has exactly one solution in the sense of that y has exactly one solution.	93
For example, let y denote \mathbb{R}^2 as a topological space. Take $\forall M$ as a metric	94
table to define y . Let $x:=\{z\mid z\text{ is a circle in }y\text{ with }M$ }. Then it does not	95
specify x on y because infinitely many metric table can define y . In other words,	96
M is not specified on y .	97
Meanwhile, x is specified on (y, M) . ¹ Footnote	98
2.2 Subtext	99
Take $\forall e$ as a mathematical expression; for example $v = \{1, 2\}$. All subtext of	100
e is got as follows.	101
Interpret e into a tree g of (either binary or unary) logical operations. As	
a trival example, g can be $v = \{1, 2\}$. For more interesting example, g can be	
$(1 \in v \land (2 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\})))$. It is just a coincide that	
this g has no logical disjunction operation.	105
Next, select some vertex x of g. For example, x can be $(v = 2 \land v \subset$	106
$\{1, 2, 3, 4, 5, 6\}$). Or x can be $(2 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\}))$ as x .	107
Next, change the operator of x so that the new x returns exactly one term.	108
For example, the original operator "\" can be changed to "right identity"; that	109
is, the new x returns the right term. For the example, the new x returns ($ v =2$	110
$\land v \subset \{1, 2, 3, 4, 5, 6\}$).	111
In detail, if the operator is unary then it must be changed to the identity;	112
that is, the new x returns the only one term.	113
Finally the resultant expression for the modified tree is said a subtext of e .	114
For the example, the subtext of e is $(1 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\}))$.	115
Moreover the relation on the set of all mathematical expressions by (being	116
pair of a subtext and the original expression) is defined to be ${\bf transitive}.$ That	117
is, a subtext of a subtext of e is also a subtext of e .	118

¹As I omit the proof, I need to add "probably".

2.3 Prime topological space	119
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space.	120
Then X is said prime if the following main propositional function holds for X	121
in place of X .	122
Definition 2.2 (Main propositional function). Let X be the input topological	123
space.	124
Take $\forall (S1, S2, d2)$ such that (*1 $_{and} \land$ *2). Then (*3 $_{or} \lor$ (*4 $_{and} \land$ $_{and} \land$ *6)).	125 126
1. $S1$ is a prime set of sub spaces of X .	127
2. $d2$ is a definition to specify $S2$ on X so that $S2 \subset S1$.	128
	129
3. $S2$ is a prime set of sub spaces of X .	130
	131
4. $\exists (d3, S3).$	132
5. $d3$ is a subtext of $d2$ $_{and} \land d3$ specifies $S3$ on X .	133
6. $\varnothing \neq S3 \subset S1$ and \wedge S3 is a prime set of sub spaces of X.	134
•	135
3 Conjectures	136
3 Conjectures 3.1 Main conjecture for metric spaces	136 137
·	137
3.1 Main conjecture for metric spaces	137 138
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp	137 138 139 140
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as	137 138 139 140 141
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as the before to (*2 ₂ , *5 ₂) as the after respectively.	137 138 139 140
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as	137 138 139 140 141
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as the before to (*2 ₂ , *5 ₂) as the after respectively.	137 138 139 140 141 142
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X,M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as the before to (*2 ₂ , *5 ₂) as the after respectively. 2. $d2$ is a definition to specify $S2$ on X so that $S2 \subset S1$.	137 138 139 140 141 142
3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take $\forall (X,M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as the before to (*2 ₂ , *5 ₂) as the after respectively. 2. $d2$ is a definition to specify $S2$ on X so that $S2 \subset S1$.	137 138 139 140 141 142 143
 3.1 Main conjecture for metric spaces Conjecture 3.1 (Main conjecture). Take ∀(X, M) as a metric space where X denotes the topological space and M denotes the metric table to define X. Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X, with changes in the text of MainProp at (*2, *5) as the before to (*22, *52) as the after respectively. 2. d2 is a definition to specify S2 on X so that S2 ⊂ S1. 22. d2 is a definition to specify S2 on (X, M) so that S2 ⊂ S1. 	137 138 139 140 141 142 143 144

3.2 Sub conjecture	149
Conjecture 3.2 (Sub conjecture). Refer to the main conjecture as MainConj. The following (*1 $_{and} \land \dots _{and} \land *3$) holds true. Take $\forall M$ as a metric table to define a Euclidean space of 3-dimension. Let X denote the topological space defined by M .	151
1. X is a prime topological space.	154
Take $\forall k_0$ as a knot in X . $K := \{k \mid (X, k_0) \cong (X, k) \}.$	155 156 157
$2. \ (X, M, K, K_f)$ is an instance of $(X, M, S1, S2)$ of ManConj.	158
3. For (X, M, K, K_f) , the item *3 of ManConj ² holds.	159
Definition of K_f : $K_f := \{k \in K \mid f(k_0) = f(k) \}.$	160 161 162 163
Sub definitions with K as the domain:	164165166
	167 168
• $j3(k) := \{n \mid \exists j \ _{and} \land \ j \in j2(k) \ _{and} \land \ n \text{ is the number of 4double points on j} \}.$	169 170
• $f(k) := \{m \mid m \text{ is the maximal number from } j3(k) \}.$	171 172
	173

²Hence K_f is a prime set of sub spaces of X.

³Hence, j is a function from k to an infinite plane.

⁴That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point is a crossing or a tangent point.

3.3 Factor of a logical expression

Currently it is hard to show that the main conjecture implies the sub conjecture 175 because to analyze subtexts of a logical expression requires some computer- 176 assisted proof software available.

174

By the way, readers may criticize that, the item *3 of the main conjecture 178 fails for the sub conjecture due to (j3 and f). As an excuse for the possible 179 negative critique, let me briefly introduce a new notion named "factor".

Recall that, j3(k) returns a set of natural numbers. And f(k) takes the 181 maximum number from j3(k). For example, assume $j3(k_x) = \{7, 8, 9\}$. The 182 inverse image of $\{\{7, 8, 9\}\}$ over j3 is a subset of domain(f).

Let me analyze the equation which defines the inverse image; $y = \{7, 8, 9\}$. 184 It is equivalent to $(7 \in y \land 8 \in y \land \max(y) = 9 \land |y| = 3)$ where each term 185 of the logical conjunction is named as a **factor** of $y = \{7, 8, 9\}$ if the logical 186 conjunction is not redundant. For the example above, it happens to be not 187 redundant. And to use a factor of $y = \{7, 8, 9\}$ to define an inverse image is just 188 to use a subtext of $y = \{7, 8, 9\}$. For example, $\max(y) = 9$.

As a conclusion, if the definition is not redundant: j3 is not a subtext of f; 190 in stead f is a subtext of j3. Though non redundant definitions tend to have 191 less quality in human readability. So my definitions of f and j3 are inevitably 192 a little redundant.

Definition 3.1 (Redundant logical expression). Take $\forall e$ as a logical expression. 194 Then e is said **redundant** if some its subtext is equivalent to e.