Langages rationnels Corrigé partiel de la feuille de travaux dirigés n°5

9 mars 2009

1. On considère que $L = L_1 \cap L_2$ avec $L_1 = (aa)^*$ et $L_2 = (aaa)^*(a + aa)$. On construit un automate A_1 pour reconnaître L_1 puis un automate A_2 pour reconnaître L_2 :

Et un automate produit pour reconnaître l'intersection :

$ \begin{array}{c} \delta_{A_1 \times A_2} \\ \rightarrow 01 \\ 12 \\ \leftarrow 03 \\ 11 \\ \leftarrow 02 \end{array} $	a 12 03 11 renuméroté 02 13	$ \begin{array}{c cccc} \delta & a \\ \hline \rightarrow 0 & 1 \\ 1 & 2 \\ \leftarrow 2 & 3 \\ 3 & 4 \\ \leftarrow 4 & 5 \end{array} $	d'où le système : {	$Z_0 = Z_5 a + \varepsilon$ $Z_1 = Z_0 a$ $Z_2 = Z_1 a$ $Z_3 = Z_2 a$ $Z_4 = Z_3 a$
$\leftarrow 02$ 13	13 01	$ \begin{array}{c c} & 1 \\ & 4 & 5 \\ & 5 & 0 \end{array} $		$Z_4 = Z_3 a$ $Z_5 = Z_4 a$

D'où $Z_0=Z_4aa+\varepsilon$, $Z_2=Z_0aa$ et $Z_4=Z_2aa$. Nous pouvons remarquer que cela correspond à l'automate : obtenu par substitution de aa à la place du a.

La suite des substitutions donne : $Z_0=Z_0a^6+\varepsilon$, $Z_2=Z_0a^2$ et $Z_4=Z_0a^4$. Ainsi nous obtenons la solution : $Z_0 = (a^6)^*, Z_2 = (a^6)^*a^2$ et $Z_4 = (a^6)^*a^4$ d'où $L = (aaaaa)^*(aa + aaaa)$.

Nous aurions pu déduire cette expression par la substitution dans de aa à a dans l'expression rationnelle du deuxième langage.

Une autre manière de procéder est :

$$L_1 = (aa)^* = \{a^i : i \equiv 0 \mod 2\} = \{a^i : i \equiv 0, 2 \text{ ou } 4 \mod 6\}$$

 $L_2 = (aaa)^*(a + aa) = \{a^i : i \equiv 1 \text{ ou } 2 \mod 3\} = \{a^i : i \equiv 1, 2, 4 \text{ ou } 5 \mod 6\}$
 $L_1 \cap L_2 = \{a^i : i \equiv 2 \text{ ou } 4 \mod 6\} = (aaaaaa)^*(aa + aaaa)$

2. On procède de manière analogue à l'exercice précédent : Soit A_1 un automate qui reconnaît $L_1 = (0+11)^*$ et A_2 qui reconnaît $L_2 = (01 + 10)^*$.

$$\begin{array}{c|cccc} \delta_{A_1} & 0 & 1 \\ \longleftrightarrow 0 & 0 & 1 \\ 1 & - & 0 \end{array}$$

$$\begin{array}{c|cccc} \delta_{A_2} & 0 & 1 \\ \hline \leftrightarrow 1 & 2 & 3 \\ 2 & - & 1 \\ 3 & 1 & - \end{array}$$

L'automate produit correspondant (et sa renumérotation) est :

$\delta_{A_1 \times A_2}$	0	1	nouveau no
$\leftrightarrow 01$	02	13	0
02	—	11	1
13	_	_	2
11	_	03	3
03	01	_	4

renuméroté:

Nous obtenons donc $Z_0 = Z_0 0110 + \varepsilon \Rightarrow Z_0 = (0110)^*$. Donc $L = (0110)^*$.

3. On reconnaît ici les deux langages de l'exercice précédent. La différence est qu'au lieu de faire l'intersection, on effectue une différence ensembliste i.e. on s'intéresse aux mots de L_1 qui ne sont pas dans L_2 , autrement dit aux mots qui sont à la fois dans L_1 et dans le complémentaire de L_2 .

On construit donc un automate qui reconnaît L_2^C déduit de A_2 de l'exercice précédent dûment complété :

L'automate produit est alors :

On obtient:

$$\begin{cases} Z_1 = Z_600 + 0 \\ Z_3 = Z_10 + Z_3(0+11) + Z_6(011+11) + 11 \\ Z_6 = Z_111 \end{cases} \Rightarrow \begin{cases} Z_1 = Z_11100 + 0 = 0(1100)^* = (0110)^*0 \\ Z_3 = Z_3(0+11) + Z_1(0+11011+1111) + 11 \\ Z_6 = (0110)^*011 \end{cases}$$

Ainsi nous avons $Z_3 = [(0110)^*(00 + 011011 + 01111) + 11](0 + 11)^*$

Ce qui donne l'expression rationnelle correspondant au langage :

$$L = [(0110)^*(00 + 011011 + 01111) + 11](0 + 11)^* + (0110)^*0 + (0110)^*011$$

Cette expression peut être simplifiée, car si on note T=0110 nous avons :

$$T^{\star}(00+T11+01111)+11=T^{\star}(00+01111)+(T^{\star}T11+11)=T^{\star}(00+01111)+T^{\star}11=T^{\star}(00+11+01111)$$

et nous obtenons:

$$L = (0110)^*[(11 + 00 + 01111)(0 + 11)^* + 0 + 011]$$

En minimisant, on constate que les états 2 et 5 sont équivalents. On peut donc les fusionner.

- **4.** Il suffit de combiner ce qu'on a vu jusqu'ici. En effet, on peut construire l'automate non déterministe qui reconnaît le langage, et ce de la manière décrite dans la preuve du Théorème de Kleene. Ensuite on déterminise et on minimise, puis il suffit de vérifier est-ce qu'on est dans un des cas suivants :
- Un automate avec un seul état qui est la poubelle (cas $L = \emptyset$).
- Un automate à deux états, avec l'initial état d'acceptation et l'autre poubelle, vers lequel mênent toutes les transactions ($L = \{\varepsilon\}$).
- Un automate avec un seul état qui est d'acceptation ($L = \Sigma^*$).