Machine Learning for Data Science (CS4786) Lecture 12

Clustering

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

CLUSTERING

W-means clustering: Find cluster assignments and centroids to minimize,

$$\sum_{k=1}^K \sum_{x_t \in C_k} \|x_t - r_k\|_2^2$$
 k depends on Data 但实际上k = n时值最小

Single link clustering: Find cluster assignments to maximize,

$$\min_{x_t, x_s: c(x_t) \neq c(x_s)} d(x_t, x_s)$$
 $k = 1 \text{ d}$

Spectral clustering: Find cluster assignments to minimize,

$$NCut = \sum_{j=1}^{K} \frac{Cut(C_j)}{\#Edges(C_j)}$$
k=1 bfd \(\text{bfd} \)

(Can convert distances between points into weighted graph).

HOW DO WE FIND ?

- Find *K* that optimizes objective?
 - What is optimal *K* for K-means, single link, for Spectral clustering (normalized or unnormalized)?
- Is there a good strategy to pick *K*?
 - Single link, stop merging when
 - Between cluster distance becomes smaller than threshold θ
 - Between cluster distance becomes smaller than $\alpha \cdot \max_{\mathbf{x}_t, \mathbf{x}_2} d(\mathbf{x}_s, \mathbf{x}_t)$
 - Spectral clustering, pick *K* by looking for jump (gap) in eigen value
 - K-means add penalty for larger K (Eg. penalize by number of clusters)
- Is there a universal way to select K?

PROPERTIES OF CLUSTERING?

- Given n points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and distance function $d: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}^+$, produce clustering C(d) (or c_d).
- Desirable properties:

C: clustering assignment C(d): given distance function d, the clustering assignment under d

① Scale invariance: for any d and any $\alpha > 0$, let $d_{\alpha}(\mathbf{x}_s, \mathbf{x}_t) = \alpha \cdot d(\mathbf{x}_t, \mathbf{x}_s)$ for all pairs of points in \mathcal{X} . We would like,

$$C(d) = C(d_{\alpha})$$

② Consistency: Let d be any distance function. Let d' be such that:

```
same clustering, distance not goes larger \forall \mathbf{x}_t, \mathbf{x}_s S.t. c_d(\mathbf{x}_t) = c_d(\mathbf{x}_s), d'(\mathbf{x}_t, \mathbf{x}_s) \leq d(\mathbf{x}_t, \mathbf{x}_s) ==> C(d') = C(d) different clustering, distance not goes smaller \forall \mathbf{x}_t, \mathbf{x}_s S.t. c_d(\mathbf{x}_t) \neq c_d(\mathbf{x}_s), d'(\mathbf{x}_t, \mathbf{x}_s) \geq d(\mathbf{x}_t, \mathbf{x}_s)
```

only 2 of these 3 will hold for any algorithm

Richness/Universality:

{1} {2} {3} {4} and {1}, {2}, {3,4} should all be possible

Range(C) = Set of all partitions

PROPERTIES OF CLUSTERING?

```
Stop when dist > theta
Fixed K:
 K-means, single link, spectrum
                                                                              single link
                      depend on normalized or not
  yes
                                                                                no
         yes
                      depends
        yes
  yes
                                                                                ves
                      depends
  no
            no
                                                                                yes
```

- Which properties do the various algorithms satisfy?
 - Fixed *K*: Kmeans, Single link
 - Thresholded single-link

Can any clustering algorithm have all 3 desired properties?

IMPOSSIBILITY

Theorem

Any clustering algorithm that has scale invariance and consistency does not have richness.

IMPOSSIBILITY

 If algorithm has scale invariance and consistency, then algorithm cannot produce refinements of clusters.

Eg. $\{1,2\}$, $\{3\}$, $\{4,5,6\}$ is a refinement of partition $\{1,2,3\}$, $\{4,5,6\}$

• Why is refinement a problem for "scale invariance + consistency"?

