Lecture 4

Ko Sanders

DCU

1. Operations on Functions 1

There are many ways to combine functions into new ones. Here are three of them:

Let D be any set, $f: D \to R$ and $g: D \to R$ functions with the same domain D and $c \in R$, We define the functions f + g, $f \cdot g$ and $c \cdot f$ as follows:

The sum $f + g: D \to R$ is given by (f + g)(x) = f(x) + g(x),

The sum $f.g: D \to R$ is given by (f.g)(x) = f(x).g(x),

The sum $c. g: D \to R$ is given by (c. g)(x) = c. g(x),

Remark: For any $x \in D$, the right-hand side is a sum or product of real numbers, but f and g are not numbers, so f + g, $f \cdot g$ and $c \cdot f$ are operations on functions that we defined in terms of their function values at every $x \in D$.

Examples

For
$$f(x) = x - 3$$
 and $g(x) = 2x^2 + 1$ (with domain R) and $c = \frac{-1}{2}$:

$$(f+g)(x) = f(x) + g(x) = x - 3 + 2x^2 + 1 = 2x^2 + x - 2$$

 $(f,g)(x) = f(x), g(x) = (x - 3), (2x^2 + 1) = 2x^3 - 6x^2 + x - 3$

$$(\frac{-1}{2} \cdot f)(x) = \frac{-1}{2} \cdot f(x) = \frac{-1}{2} \cdot (x-3) = \frac{-1}{2} \cdot x + 1 \cdot \frac{1}{2}$$

We have seen that all linear functions are determined by their slope m and intecept b. We can now write this as follows.

Example

Consider the identity function $id: R \to R: x \to x$

and the constant function $1_{c:}R \to R: x \to 1$

For any $m \in R$ and $b \in R$:

$$(m.id + b. 1_c)(x) = (m.id)(x) + (b. 1_c)(x)$$

= $m.id(x) + b. 1_c(x)$
= $m. x + b. 1_c$

so the linear function with slope m and intercept b can be written as:

$$m.id + b.1_c$$

(In practice this is rarely the most convenient name for this function.)

For any function $f: D \to R$ we often write f^2 intead of f. f, f^3 instead of f. f, f, etc.

2. Polynomials

A polynomial is a function $f: R \to R$ whose formula is of the form

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_2 \cdot x^2 + a_1 \cdot x + a_0$$

for some $n \in N$ (or n = 0) and real coefficients a_n , a_{n-1} , ..., a_2 , a_1 , a_0 .

Examples

*
$$f(x) = 7x^3 - 2x^2 - 4x + 11$$

$$g(x) = 3 - \pi x^{38}$$

*
$$h(x) = \sqrt{2}x^2 + \frac{1}{2}x^4 - 1$$
 are polynomials

Every linear function f(x) = m. x + b is a polynomial with n = 1, $a_1 = m$ and $a_0 = b$

Every quadratic function $f(x) = ax^2 + bx + c$ is a polynomial with n = 2, $a_2 = a$, $a_1 = b$ and $a_0 = c$

Every monomial f(x) = a. x^n is a polynomial with $a_n = a$ and $a_{n-1} = \cdots = a_2 = a_1 = a_0 = 0$, so only one term is left

The **degree** of a polynomial is the largest numbers $n \in \mathbb{N} \cup \{^{\circ}\}$ with $a_n \neq 0$

A polynomial of degree 0 is a constant function

A polynomial of degree 1 is a linear function with slope $m \neq 0$

A polynomial of degree 2 is a quadratic function

A polynomial of degree 3 is a cubic function

A polynomial of degree 4 is a quartic function

Example

Using id(x) = x and $1_c(x) = x$ we can build any polynomial

$$f(x) = a_n \cdot x^n + \dots + a_1 \cdot x + a_0$$

by setting

$$f = a_n . id^n + \cdots + a_1 . id + a_0 . 1_c$$

in terms of operations on functions. E.g. we have

$$id^{2}(x) = (id.id)(x) = id(x).id(x) = x. x = x^{2}$$

$$id^3(x) = (id.id^2)(x) = id(x).id^2(x) = x. x^2 = x^3$$

etc, with the general formula

$$id^2(x) = x^n$$

for all $x \in R$, (you can prove this by mathematical induction)