Rule-based network analysis of complex reaction systems in biomass conversion

Srinivas Rangarajan Aditya Bhan Prodromos Daoutidis

October 19, 2011

2011 AIChE Annual Meeting, Minneapolis, MN

Session: Reaction Path Analysis II

Complex reaction networks in biomass conversion

Pyrolysis of fatty esters (gas phase, free radical)

JAOCS, 1988, 65, 1781

Hexoses
$$H^+$$
 HOH₂C O CHO H_2O/H^+ HOH₂C O CHO

Hexoses to Levulinic acid (homogenous, mineral acid catalyzed)

Chem. Rev. 2007, 107, 2411; Tetrahedron Lett. 1985, 26, 2111

Glycerol conversion on zeolites (heterogeneous, Bronsted acid catalyzed)

J. Catalysis 2008, 257, 163-171

Network generation and three applications

¹ Ind.Eng.Chem.Res. 1994, 33, 790; ² AIChE Journal 2006, 52, 718; ³ Chemical Engineering Science 1992, 47, 2713; ⁴ J.Chem.Inf.Model. 2003, 43, 36; ⁵ Comp. Chem.Eng. 2008, 32, 2455; 6 Combustion & Flame, 2001, 126, 1780

RING for network generation and analysis

RING Language Inputs & Reaction Network

Reaction rules

Sample reactions: Fructose-HMF

"O1C(CO)(O)C(O)C(O)C1(CO)"

REACTANT

SMILES string of Fructose

rule Protonation{

neutral reactant R1{

C labeled c1 {connected to 2 C}

O labeled o1 single bond to c1

positive reactant R2{

H+ labeled h1}

constraints{R1.size <15}</pre>

form bond (o1,h1)

modify atomtype (o1,O+)

modify atomtype (h1,H) }

REACTION CENTER

CONSTRAINTS

TRANSFORMATIONS

Graphical output of reactions using ChemDraw

RING Language Inputs & Reaction Network

Reaction rules

input reactant "O1C(CO)(O)C(O)C(O)C1(CO)"

rule Protonation{

neutral reactant R1{

C labeled c1 (connected to 2 C)

O labeled o1 single bond to c1

positive reactant R2{

H+ labeled h1}

constraints{R1.size <15}

form bond (o1,h1)

modify atomtype (o1,O+)

modify atomtype (h1,H) }

REACTANT

REACTION **CENTER**

CONSTRAINTS

TRANSFORMATIONS

Sample reactions: Fructose-HMF

C1(C(C(C(CO)O1)O)O)(CO)O,[H+]>>C1(C(C(C(CO)O1)[O+])O)(CO)OC1(C(C(C(CO)O1)[O+])O)(CO)O>>C1(C([C+]C(CO)O1)O)(CO)O.OC1(C([C+]C(CO)O1)O)(CO)O>>C1(C(C=C(CO)O1)O)(CO)O.[H+]

Graphical output of reactions using ChemDraw

Reaction network size for different chemical systems

System	Species	Reactions
Fructose-to-HMF	546	1149
Propane aromatization	6943	4115463

RING Language Inputs & Reaction Network

Reaction rules

input reactant "O1C(CO)(O)C(O)C(O)C1(CO)"

rule Protonation{

neutral reactant R1{

C labeled c1 (connected to 2 C)

O labeled o1 single bond to c1

positive reactant R2{

H+ labeled h1}

constraints{R1.size <15}

form bond (o1,h1)

modify atomtype (o1,O+)

modify atomtype (h1,H) }

REACTANT

REACTION **CENTER**

CONSTRAINTS

TRANSFORMATIONS

Sample reactions: Fructose-HMF

C1(C(C(C(CO)O1)O)O)(CO)O,[H+]>>C1(C(C(C(CO)O1)[O+])O)(CO)OC1(C(C(C(CO)O1)[O+])O)(CO)O>>C1(C([C+]C(CO)O1)O)(CO)O.OC1(C([C+]C(CO)O1)O)(CO)O>>C1(C(C=C(CO)O1)O)(CO)O.[H+]

Graphical output of reactions using ChemDraw

Pathways and Lumping instructions

// pathways instructions to HMF Find pathways to mol{ mol is "OCc1oc(C=O)cc1"} constraints{ Length < 16 contains <= 2 rule "HydrideShift"}</pre> //Lumping rules for molecules Lump all isomers { represent acyclic with farthest apart}

Pathways to HMF (Hydroxymethylfurfural)

Lumping instructions

Post-processing options with RING

Isomer Lumping

Functional equivalence

Mechanism enumeration

$$C_3H_8 + C_3H_6 \rightarrow C_6H_{12} + H_2$$

Pathways Identification

Mechanism hypothesis in complex systems

Mechanism of related system: Acetone conversion

Mechanism of related system: Acetone conversion

2 Acetone → butene + acetic acid

Proposing possible experiments: isotope labeling

Identification of synthetic routes

Synthesis pathways to alcohols from small oxygenates

Reactants: C2- and C3- acids, aldehydes, ketones, and alcohols

Chemistries: acid-catalyzed (dehydration, oligomerization, esterification), base-catalyzed (aldol condensation, ketonization), and metal catalyzed (hydrogenation/ dehydrogenation)

Querying most atom-efficient way to synthesize C₄-C₉ linear primary mono-alcohols

Nonionic surfactants: property estimation

Alkyl ethoxylates nonionic surfactants

$$C_nH_{2n+1}OH + mC_2H_4O \longrightarrow C_nH_{2n+1}(C_2H_4O)_mOH$$

Alcohol determines the hydrophobic part

Examples^{1, 2}:

Desired physical properties of nonionic surfactants

- Low Critical micelle concentration (CMC)
- High cloud point (CP)

Synthesis problem: Find synthetically feasible alcohols that will lead to a surfactant with low CMC and high CP.

Quantitative structure-property relationships for nonionic surfactants

- Critical Micelle concentration¹ & Cloud point²
 - Hydrophobic part topological indices for size, shape and branching
 - Hydrophilic part number of EO units / oxygen atoms

QSPR-based identification of alcohol ethoxylates

QSPR-based identification of alcohol ethoxylates

Mechanism Hypothesis through pathway analysis

Glycerol dehydration

Acetone conversion mechanism

Post-processing (lumps,

Synthetic pathways through mechanism analysis

QSPR based product property correlations

Synthetic pathways to alcohols

QSPR-based identification of products

RING is available upon request

Acknowledgements

- Eric Van Wyk group (Univ of Minnesota)
- Catalysis Center for Energy Innovation (US - DOE)
- NSF EFRI, IREE UMN