ANALISI DEI DATI PER LA SICUREZZA A.A 2023/2024 Cellammare Gabriel

"MALWARE DETECTION"

Obiettivo del progetto

L'obiettivo del progetto è stato quello di individuare il modello migliore da addestrare e successivamente da utilizzare per la Malware detection, attraverso l'ausilio del **processo KDD.**

- DATASET: EMBER (https://github.com/elastic/ember)
 - Python 3.12
 - Librerie: Scikit-Learn, pandas, numpy, pickle
 - Data labeled (0 Goodware 1 Malware)
 - Train Data (12000, 2381)
 - Test Data (3000, 2381)

II processo KDD

Strutturazione del codice

Domain and data understanding

Durante questa fase, sono state visualizzate alcune caratteristiche dei dati

In questo caso, è stato visualizzato il numero degli esempi per ogni classe, evidenziando una proporzionalità tra le due.
Queste informazioni sono necessarie per strutturare le fasi successive del **Processo**.

Domain and data understanding: Data exploration

Successivamente, è stata analizzata una delle variabili più significative

Statistiche complessive della colonna 'byte_510':

- count 12000.000000
- mean 0.022943
- std 0.023579
- min 0.000000
- 25% 0.000077
- 50%0.013214
- 75% 0.050528
- max 0.079272

Domain and data understanding: Data exploration

In seguito, è stata paragonata alla variabile suddetta, che non discrimina nello specifico le due classi, come la precedente

Statistiche complessive della colonna 'imports_2060':

- count 12000.000000
- mean 0.024167
- std 0.205960
- min -4.000000
- 25% 0.000000
- 50%0.000000
- 75%0.00000
- max 4.000000

Data selection: Rimozione variabili indipendenți

Nelle fasi precedenti, i dati sono stati soltanto visualizzati e analizzati. In questa fase invece sono state eliminate dapprima le variabili che possedevano valori minimi uguali a quelli massimi. Dataset

Shape di Train_x before removing min=max: (12000, 2381)

Nuovo dataset di training con dimensione: '(12000, 2326)'

Le medesime colonne, dopo essere state salvate, sono state coerentemente rimosse anche nel dataset di test

Altre variabiliVariabili con MIN=MAX

Perché rimuovere tali variabili?

Data selection: Automatically feature selection (Mutual Info)

Sono state confrontate due tecniche diverse: Mutual Info e PCA

```
print( computing mutual info ranking...completed")
    retorna un dizionario
    return sorted_x
```

Data selection: Automatically feature selection (Mutual Info)

Successivamente, sono stati salvati i box plot delle prime n variabili indipendenti con un valore di mutual info molto alto e le ultime n con uno molto basso

```
BoxPlotAnalysisDataMutualInfo(x, y, boxPlotDir, mutualInfo, n print=10):
print("\nSaving Mutual info variables Box Plot in 'BoxPlotMutualInfo' Folder...\n")
boxPlotDirMutualInfoFirst = boxPlotDir / "MoreSignificant"
boxPlotDirMutualInfoLast = boxPlotDir / "LessSignificant"
       x['Label'] = y['Label']
        for tupla in mutualInfo:
            for col in x.columns:
                if (tupla[0] == col and tupla[1] != 0):
                        x.boxplot(column=col, by='Label')
                        plt.title(f'Boxplot della colonna {col}')
                        plt.ylabel('Dati')
                        file name = os.path.join(
                            boxPlotDirMutualInfoFirst, f'boxplot {col}.png')
                        plt.savefig(file name)
```

Data trasformation: (PCA)

In seguito, è stata applicata la PCA, che permette di trasformare le variabili attraverso combinazioni lineari, riducendo la loro dipendenza dalle altre

```
def pca(X):
    print("\nTraining PCA...\n")
    pca = PCA(n_components=len(X.columns))
    pca.fit(X)
    # Nome delle nuove feature del tipo pca0...pcan
    feature_names = pca.get_feature_names_out()
    print("\nCompleted!\n")
    return pca, feature_names, pca.explained_variance_ratio_
    def applyPCA(X, pca, pcalist):
    print("\nApplying PCA...\n")
    # Trasforma il DataFrame utilizzando PCA
    transformed = pca.transform(X)
    # Crea un nuovo DataFrame con le componenti principali
    df_pca = pd.DataFrame(transformed, columns=pcalist)
    print("\nCompleted!\n")
    return df_pca
```


Data trasformation: (PCA)

La PCA è una tecnica che permette di rimuovere la dipendenza dalle variabili e non di effettuare feature selection, ma in questo caso sono state selezionate le prime n variabili poiché «spiegano» la maggior parte della varianza del set di dati

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Determine Best Configuration

Per determinare la migliore configurazione di ogni algoritmo, e successivamente per rendere più efficiente la fase di valutazione, è stata utilizzata la tecnica K-Fold Cross Validation, che:

- Mescola il set di dati in modo casuale;
- Suddivide il set di dati in k «fold»
- Per ogni **fold**:
- Prende il **fold** come set di test;
- Prende i **fold** rimanenti come set di dati di
 - training;
- Addestra il modello scelto con il set di **training** e lo valuta con il set di **test**

Determine Best Configuration

Per effettuare tale procedura, è stata utilizzata la classe StratifiedKFold di scikit-learn

```
def stratifiedKFold(X, Y, folds=5):
   skf = StratifiedKFold(n splits=folds, shuffle=True, random state=seed)
   ListXTrain = []
   ListXTest = []
   ListYTrain = []
   ListYTest = []
   for i, (train index, test index) in enumerate(skf.split(X, Y)):
       ListXTrain.append(pd.DataFrame(X, index=train index))
       ListYTrain.append(pd.DataFrame(Y, index=train index))
       ListXTest.append(pd.DataFrame(X, index=test index))
       ListYTest.append(pd.DataFrame(Y, index=test index))
```

Classification models: Decision Tree

Il primo modello utilizzato è stato il **Decision Tree**

Il parametro **criterion** indica Gini o Entropy

```
def decisionTreeLearner(X, Y, c):
    clf = DecisionTreeClassifier(criterion=c, random_state=seed)
    clf.min_samples_split = 500  # Numero minimo di esempi per mettere uno split
    # Tree_ dentro c'è l'albero addestrata
    clf.fit(X, Y)
    # print(f"Number of nodes: {clf.tree_.node_count}")
    # print(f"Number of leaves: {clf.get_n_leaves()} ")
    # Return the number of leaves of the decision tree.)
```

Attraverso la funzione showTree è stato possibile salvare in pdf l'intero albero con delle specifiche ricevute come parametri della stessa

Evaluation models: Decision Tree

PCA

F-Score 86%

Mutual Info

F-Score 88%

Classification models: Instance-based

Il secondo modello utilizzato è stato un modello **Instance-Based**, nello specifico l'algoritmo **KNN**

```
def knnLearner(x, y, n_neighbors):
    knn = KNeighborsClassifier(n_neighbors=n_neighbors)
    knn.fit(x, np.ravel(y))
    return knn
```

La variabile **K** indica il numero dei vicini considerati

Il comando ravel di numpy, trasforma l'input in un array monodimensionale contiguo

Così come il **Decision Tree**, è stato salvato il **classification report** con la relativa **matrice di Confusione** nella cartella selezionata

Evaluation models: Instance-based

Mutual Info F-Score 87%

Classification models: Random forest

Il modello che ha restituito un livello di accuratezza più alto, è stato il Random Forest

I parametri indicano:

- n_estimators: Numero degli alberi della foresta
- Criterion: Gini o Entropy
- max_features: sqrt o log2 il numero delle feature da considerare per il calcolo del best split
- max_samples: Numero di campioni utilizzati in ogni decision tree
- random_state

Evaluation models: Random forest

- 1400

- 1200

- 1000

800

600

400

200

1387

1.0

92%

1430

110

0.0

0.0

1.0 -

Evaluation models: Random forest (Min samples 500)

86%

Classification models: Ensamble

Nella fase finale è stato valutato l'ensemble, formato dal Decision Tree, KNN e Random Forest

Il parametro Voting:

- Soft, si prenderà l'argmax delle somme delle probabilità previste (consigliato con modelli calibrati)
- Hard, si farà riferimento alla classe maggioritaria


```
def EnsambleLearner(x, y, clf1, clf2, clf3):
    eclf = VotingClassifier()
    estimators=[('dt', clf1), ('rf', clf2), ('knn', clf3)], voting='hard')
    eclf.fit(x, np.ravel(y))
    return eclf
```


Evaluation models: Ensamble

Mutual Info

F-Score 93%

Determine Best Configuration

Per ogni modello, è stato sviluppato un metodo che permettesse di scegliere iperparametri migliori attraverso il confronto dell'FSCORE

```
best criterion = None
best TH = None
bestN = None
best fscore = 0
criterion = ['gini', 'entropy']
for criteria in criterion:
    for thre in np.arange(min_t, max_t, step):
        avg fscore = 0
        selectedFeatures = topFeatureSelect(rank, thre)
                x train feature selected = ListXTrain[i].loc[:,
                                                      | selectedFeatures]
                y pred = clf.predict(x test)
        if (len(fscores) > 1):
            avg fscore = np.mean(fscores)
            print(f"Average F1 score: '{avg fscore}'")
            if avg_fscore == best_fscore:
                    best_fscore = avg_fscore
                    best criterion = criteria
                    best TH = thre
                    bestN = selectedFeatures
            if avg fscore > best fscore:
```

Serialization

Per migliorare l'intero **processo** è stata utilizzata la serializzazione attraverso il modulo **Pickle**, che implementa protocolli binari per la **serializzazione** e **deserializzazione** di oggetti.

```
erialize_dir = script_path.parent.parent / \
    "Serialized" / "MutualInfoTraining.pkl"

# Verifica se il file esiste
if os.path.exists(serialize_dir):
    # Se il file esiste, leggi i parametri
    with open(serialize_dir, "rh") as f;
    | serialize_dir = pickle_load(f)
        rank = serialize_dir

else:
    rank = mutualInfoRank(x, y)
    MutualInfoTraining = rank
    # print(f"X mutual_info: '{rank}'\n")
    # Salva il dizionario in un file usando pickle
    with open(serialize_dir, "wb") as f:
        pickle.dump(MutualInfoTraining, f)
```

s salva il dizionario in un file usando pickle
with open(serialize_dir, "wb") as f:
 pickle.dump(MutualInfoTraining, f)

Questo ha permesso di salvare tutte quante le configurazioni calcolate per ogni modello e i valori di mutual info riguardo ogni variabile indipendente

Serialized

- BestConfigurationMIPCADecisionTree.pkl
- BestConfigurationMIPCAEnsemble.pkl
- BestConfigurationMIPCAKNN.pkl
- BestConfigurationMIPCARandomForest.pkl
- BestConfigurationMutualInfoDecisionTree.pkl
- BestConfigurationMutualInfoEnsemble.pkl
- **≡** BestConfigurationMutualInfoKNN.pkl
- **≡** BestConfigurationMutualInfoRandomForest.pkl
- BestConfigurationPCADecisionTree.pkl
- BestConfigurationPCAEnsemble.pkl
- BestConfigurationPCAKNN.pkl
- BestConfigurationPCARandomForest.pkl
- MutualInfoTraining.pkl
- BestConfigurationPCARandomForest.pkl
- BestConfigurationPCAKNN.pki
- BestConfigurationPCAEnsemble.pkl

Risultati finali e Workflow

Data Exploration

· Visualizzazione box plot e valutazione variabili

Data Selection

- Ricerca e rimozione di variabili con valori con minimi e massimi uguali
- · Calcolo del Mutual Info

Data Trasformation

· Applicazione PCA

Data Mining

- \cdot Utilizzo di tutti i $\mathbf{modelli}$ analizzati con $\mathbf{algoritmi}$ specifici
- Ricerca dei parametri migliori attraverso la valutazione dell'FSCORE di diverse configurazioni

Evaluation

- · Utilizzo della K-Fold Cross Validation
- · Confronto dei risultati ottenuti

Random Forest (Mutual Info)

	·			
	Precision	Recall	FI-Score	Support
Goodware	0,93	0,95	0,94	1503
Malware	0,95	0,93	0,94	1497

	Accuracy	
Macro AVG	0,94	
Weighted AVG	0,94	

Idea: Utilizzo combinato di Mutual Info e PCA

Per ottimizzare ulteriormente il **processo**:

- È stata effettuata dapprima la feature selection con Mutual Info sull'intero training set (Utilizzando il thresold precedentemente calcolato nella «best configuration» della Random Forest)
- Successivamente, è stata applicata la PCA, ricercando il livello di thresold e i relativi parametri tramite «best configuration»

Cosa comporta la riduzione?

Feature selezionate

Del totale delle feature precedentemente utilizzate, è stato possibile ottenere gli stessi risultati soltanto con il 9.14% del totale (67 feature), con una riduzione del numero di feature del 90.86%

Idea: Utilizzo combinato di Mutual Info e PCA

Le perfomance sono state testate anche dal punto di vista temporale, passando dai 12,47 secondi di addestramento ai 5,70 con una riduzione circa del 55%.

Significherebbe per esempio,
passare da un ipotetico
addestramento di 72 ore ad uno
di 39.6 ore, mantenendo le
medesime prestazioni e con un
impatto economico e
infrastrutturale minore

Idea: Utilizzo combinato di Mutual Info e PCA

	Precisio n	Recall	FI-Score	Support
Goodwar e	0,93	0,95	0,94	1503
Malwar e	0,95	0,92	0,94	1497

	Accuracy
Macro AVG	0,94
Weighted AVG	0,94

ANALISI DEI DATI PER LA SICUREZZA A.A 2023/2024 Cellammare Gabriel

GRAZIE PER L'ATTENZIONE!