PCT/JP99/06986

10.12.99

JP99 6986

PATENT OFFICE JAPANESE GOVERNMENT 1577 C 4 FEB 2000

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1

4

1999年 3月10日

出 願 番 号 Application Number:

平成11年特許顯第063597号

出 類 人 Applicant (s):

積水化成品工業株式会社

2000年 1月21日

特許庁長官 Commissioner, Patent Office

近 藤 隆

特平11-063597

【書類名】

特許願

【整理番号】

103744

【提出日】

平成11年 3月10日

【あて先】

特許庁長官殿

【国際特許分類】

C08J 9/16

【発明者】

【住所又は居所】 奈良県天理市富堂町156-11

【氏名】

平井 孝明

【発明者】

【住所又は居所】 奈良県生駒市俵口町423-20

【氏名】

藤島 稔

【発明者】

【住所又は居所】 奈良県奈良市芝辻町1-5-7

【氏名】

上野 裕之

【発明者】

【住所又は居所】 滋賀県守山市守山4-1-14-203

【氏名】

松村 英保

【発明者】

【住所又は居所】

滋賀県近江八幡市中小森町659-15

【氏名】

森岡 郁雄

【特許出願人】

【識別番号】 000002440

【住所又は居所】 大阪府大阪市北区西天満二丁目4番4号

【氏名又は名称】

積水化成品工業株式会社

【代理人】

【識別番号】

100075155

【弁理士】

【氏名又は名称】 亀井 弘勝

【選任した代理人】

【識別番号】 100087701

【弁理士】

【氏名又は名称】 稲岡 耕作

【選任した代理人】

【識別番号】 100101328

【弁理士】

【氏名又は名称】 川崎 実夫

【手数料の表示】

【予納台帳番号】 010799

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9401517

要 【プルーフの要否】

【書類名】 明細書

【発明の名称】 熱可塑性ポリエステル系樹脂予備発泡粒子

【特許請求の範囲】

【請求項1】

全成分中に、イソフタル酸、およびシクロヘキサンジメタノールからなる群より選ばれた少なくとも1種の成分を、総量で0.5~10重量%の範囲で含有する熱可塑性ポリエステル系樹脂を、予備発泡させたことを特徴とする熱可塑性ポリエステル系樹脂予備発泡粒子。

【請求項2】

上記熱可塑性ポリエステル系樹脂を高圧溶融下、発泡剤と混合し、予備発泡させたのち切断して製造されたことを特徴とする請求項1記載の熱可塑性ポリエステル系樹脂予備発泡粒子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、二次発泡成形によって熱可塑性ポリエステル系樹脂の発泡成形体を成形するための原料として使用される、熱可塑性ポリエステル系樹脂の予備発泡粒子に関するものである。

[0002]

【従来の技術】

熱可塑性ポリエステル系樹脂は剛性が大きく、形状安定性がよく、耐薬品性などにもすぐれるという、ポリスチレンやポリエチレンには見られないすぐれた性質を有している。

そこで熱可塑性ポリエステル系樹脂を発泡させて、軽量で、しかも耐熱性、断 熱性、緩衝性などにもすぐれた発泡成形体を製造することが企図されている。

[0003]

熱可塑性ポリエステル系樹脂としては、たとえばジカルボン酸としてのテレフタル酸と、ジオールとしてのエチレングリコールやブチレングリコールとを重縮合反応させて合成される、ポリエチレンテレフタレート(PET)やポリブチレ

ンテレフタレート (PBT) などが、最も一般的に使用される。

熱可塑性ポリエステル系樹脂の発泡成形体を製造する方法の1つとして、ポリスチレンやポリエチレンの場合と同様に、まず樹脂に発泡剤を含浸させ(含浸工程)、ついでこの発泡剤を含浸させた樹脂を加熱して予備発泡させるとともに、粒子化して予備発泡粒子を得たのち(一次発泡工程)、この予備発泡粒子を金型に充てんし、加熱膨張させて発泡成形体を製造する(二次発泡成形工程)方法が考えられる。

[0004]

しかし、前記PETなどの熱可塑性ポリエステル系樹脂は、一般にガスバリヤー性にすぐれ、発泡剤を含浸するのに多大な時間を要するために、上記の方法では時間、コストおよび手間がかかるという問題点がある。

また、PETなどの通常の熱可塑性ポリエステル系樹脂は加熱によって結晶化しやすいために、上記含浸時、および次工程である予備発泡時に高温で長時間、加熱されると、製造された予備発泡粒子は、その結晶化度が過度に高く、かつ二次発泡成形時の発泡融着性が著しく低いものとなってしまう。

[0005]

そしてかかる予備発泡粒子、とくにその結晶化度が25%を超えるような予備 発泡粒子は、金型内で二次発泡成形しても粒子同士がほとんど融着しないために 、良好な発泡成形体が得られないという問題を生じる。

[0006]

【発明が解決しようとする課題】

特開昭51-50365号公報には、PETなどの熱可塑性ポリエステル系樹脂を、湿式成形もしくは乾式成形した未延伸成形物に、当該熱可塑性ポリエステル系樹脂に対して非溶媒または難溶媒である低沸点液体を含浸させたポリエステル系潜在発泡性成形物について記載されており、この潜在発泡性成形物を可塑化温度以上に加熱することによって、極めて嵩髙な発泡成形体が得られたことが報告されている。

[0007]

しかし上記の公報には、熱可塑性ポリエステル系樹脂に低沸点液体を含浸させ

特平11-063597

るための時間は長いほど好ましい旨の記載があり、実際には4~5時間以上含浸させていることから、この方法では、依然として時間、コストおよび手間がかかることが明らかである。

また上記の方法では、熱可塑性ポリエステル系樹脂を、あらかじめ所定の発泡成形体の元になる形状に成形した未発泡の成形物(未延伸成形物)に低沸点液体を含浸させたのち、発泡させて、最終製品である発泡成形体を製造しており、予備発泡粒子を金型内に充てんして二次発泡成形することについては何ら記載されていない。

[8000]

これは、前述したように長時間の加熱によって熱可塑性ポリエステル系樹脂の結晶化度が過度に高くなると、二次発泡成形時の発泡融着性が著しく低くなるためである。

それゆえ上記の方法では、未延伸成形物を製造する際と発泡成形体を製造する際のそれぞれの工程において、所定の形状に対応した別個の金型が必要であるため、通常の、予備発泡粒子を金型内に充てんして二次発泡成形する方法に比べて、発泡成形体の形状設計の自由度が制限されるとともに、コストが高くつくという問題がある。

[0009]

発明者らのうち平井は先に、他の発明者とともに、熱可塑性ポリエステル系樹脂を、押出機での高圧溶融下、発泡剤と混合し、大気圧中に押し出して予備発泡させたのち切断するなどして製造した発泡粒子を予備発泡粒子として、金型内に充てんして二次発泡成形する方法を提案した(特開平8-174590号公報)

[0010]

この方法によれば、熱可塑性ポリエステル系樹脂に発泡剤を含浸させる工程を 省略できるため、時間、コストおよび手間を省くことができるとともに、熱可塑 性ポリエステル系樹脂が、従来法のように長時間に亘って高温にさらされないた めに、製造される予備発泡粒子の結晶化度はあまり上昇せず、二次発泡成形時の 発泡融着性が著しく低くなることが防止される。

[0011]

このためこの方法によれば、耐熱性にすぐれた発泡成形体を、高い生産性でもって効率よく製造できるものの、粒子間の融着性がとくに良好で、すぐれた機械的強度を有する発泡体を求める要望を十分に満足させるには、たとえば多量の蒸気を型内に均一に供給できるなどの特殊な機能を付与した特殊な発泡成形機を用いて、特殊な成形条件で成形を行う必要があった。

[0012]

本発明の目的は、粒子間の融着性や機械的強度などをさらに向上させた発泡成 形体を、上記のような特殊な発泡成形機を使用せずに汎用の発泡成形機を使用し て、一般的な成形条件でもって容易にかつ効率的に製造するために好適な、二次 発泡成形時の発泡融着性にすぐれた新規な、熱可塑性ポリエステル系樹脂の予備 発泡粒子を提供することにある。

[0013]

【課題を解決するための手段】

上記課題を解決するために、発明者らは、予備発泡粒子の原料となる熱可塑性 ポリエステル系樹脂の組成について種々、検討を行った。

その結果、ジカルボン酸としてイソフタル酸を使用するか、あるいはジオールとしてシクロヘキサンジメタノールを使用するか、またはこの両者を併用するとともに、いずれか一方を単独で使用する場合はその単独での含有割合を、また両者を併用する場合はその合計の含有割合を、それぞれ全成分中の、0.5~10重量%の範囲に限定した熱可塑性ポリエステル系樹脂を使用すればよいことを見出し、本発明を完成するに至った。

[0014]

すなわち本発明の熱可塑性ポリエステル系樹脂予備発泡粒子は、全成分中に、イソフタル酸、およびシクロヘキサンジメタノールからなる群より選ばれた少なくとも1種の成分を、総量で0.5~10重量%の範囲で含有する熱可塑性ポリエステル系樹脂を、予備発泡させたことを特徴とするものである。

かかる本発明の予備発泡粒子を構成する、上記の熱可塑性ポリエステル系樹脂 は、イソフタル酸および/またはシクロヘキサンジメタノールの持つ、樹脂の結 晶化を抑制する作用によって、後述するように、通常のPETやPBTなどと比べて結晶化の速度が遅くなるために、たとえ長時間に亘って高温にさらされても、従来のように予備発泡粒子の結晶化度が過度に高くなることがなく、二次発泡成形時の発泡融着性が著しく低くなることが防止される。

[0015]

したがって本発明の熱可塑性ポリエステル系樹脂予備発泡粒子によれば、二次 発泡成形時の発泡融着性にすぐれるために、粒子間の融着性や機械的強度などを さらに向上させた発泡成形体を、特殊な発泡成形機を使用することなく、汎用の 発泡成形機を使用して、容易に製造することが可能となる。

また、上記熱可塑性ポリエステル系樹脂組成物を高圧溶融下、発泡剤と混合し、予備発泡させたのち切断して予備発泡粒子を製造した場合には、熱可塑性ポリエステル系樹脂に発泡剤を含浸させる工程を省略できるため、時間、コストおよび手間を省くことができるとともに、熱可塑性ポリエステル系樹脂が長時間に亘って高温にさらされることもないため、製造される予備発泡粒子の結晶化度はさらに低くなり、二次発泡成形時の発泡融着性の低下がさらに抑制される。

[0016]

【発明の実施の形態】

以下に、本発明を説明する。

本発明の予備発泡粒子を構成する熱可塑性ポリエステル系樹脂は、前記のようにジカルボン酸として、式(1):

[0017]

【化1】

[0018]

で表されるイソフタル酸を使用するか、あるいはジオールとしてシクロヘキサン ジメタノールを使用するか、またはこの両者を併用するとともに、いずれか一方 を単独で使用する場合はその単独での含有割合を、また両者を併用する場合はその合計の含有割合を、それぞれ全成分中の、0.5~10重量%の範囲に限定したものである。

[0019]

イソフタル酸および/またはシクロヘキサンジメタノールの含有割合が上記の 範囲に限定されるのは、以下の理由による。

すなわち両成分の含有割合が上記の範囲未満では、当該両成分を含有させたことによる、前述した樹脂の結晶化を抑制して、結晶化の速度を遅くする作用が低下するため、製造された予備発泡粒子は、結晶化度が過度に高く、かつ二次発泡成形時の発泡融着性が著しく低いものとなってしまう。このため、粒子間の融着性や機械的強度などにすぐれた発泡成形体を製造できないという問題を生じる。

[0020]

一方、両成分の含有割合が上記の範囲を超えた場合には、樹脂のガラス転移点が高くなるために二次発泡成形の条件幅が狭くなって成形が容易でない上、二次発泡成形時に、成形体の表面に収縮が発生しやすくなって外観の良好な発泡成形体が得られないという問題を生じる。また、製造された発泡成形体が脆くなってしまうという問題も生じる。

[0021]

なおイソフタル酸および/またはシクロヘキサンジメタノールの含有割合は、 上記の各特性のバランスを考慮して、良好な予備発泡粒子、ならびに良好な発泡 成形体を製造することを考慮すると、上記の範囲内でもとくに 0.6~9.5重 量%程度であるのが好ましく、0.7~9重量%程度であるのがさらに好ましい

[0022]

上記のうちシクロヘキサンジメタノールとしては、2つのメタノール部分がそれぞれシクロヘキサン環の1位と4位に置換した、式(2):

[0023]

【化2】

$$HOCH_2$$
— CH_2OH (2)

[0024]

で表される1,4-シクロヘキサンジメタノールが、基本的に使用されるが、2 つのメタノール部分がシクロヘキサン環の他の位置に置換した異性体も、少量で あれば併用可能である。

上記イソフタル酸、およびシクロヘキサンジメタノールとともに熱可塑性ポリエステル系樹脂を構成する他の成分のうちジカルボン酸としては、たとえばテレフタル酸やフタル酸などがあげられる。

[0025]

またジオール成分としては、たとえばエチレングリコール、 α ーブチレングリコール(1, 2 ーブタンジオール)、 β ーブチレングリコール(1, 3 ーブタンジオール)、テトラメチレングリコール(1, 4 ーブタンジオール)、2, 3 ーブチレングリコール(2, 3 ーブタンジオール)、ネオペンチルグリコールなどがあげられる。

[0026]

また、熱可塑性ポリエステル系樹脂の原料には、上記の各成分に加えて、たとえば酸成分として、トリメリット酸などのトリカルボン酸、ピロメリット酸などのテトラカルボン酸などの、三価以上の多価カルボン酸やその無水物、あるいはアルコール成分として、グリセリンなどのトリオール、ペンタエリスリトールなどのテトラオールなどの、三価以上の多価アルコールなどを、前述した、熱可塑性ポリエステル系樹脂の結晶性や結晶化の速度などに影響を及ぼさない範囲で少量、含有させてもよい。

[0027]

本発明で使用する熱可塑性ポリエステル系樹脂は、上記の各成分を所定の割合 、つまり前記のようにイソフタル酸および/またはシクロヘキサンジメタノール を、総量で0.5~10重量%の範囲で含有した原料を、従来同様に重縮合反応 させることによって製造される。

また、本発明で使用する熱可塑性ポリエステル系樹脂は、イソフタル酸および /またはシクロヘキサンジメタノールの含有割合の異なる2種以上の熱可塑性ポ リエステル系樹脂を、その全成分中に占めるイソフタル酸および/またはシクロ ヘキサンジメタノールの含有割合が、総量で0.5~10重量%の範囲内となる ように配合し、たとえば押出機などを用いて、加熱下で溶融、混合することによ っても製造できる。

[0028]

この方法によれば、予備発泡粒子の製造段階で、イソフタル酸および/またはシクロヘキサンジメタノールの含有割合の異なる2種以上の熱可塑性ポリエステル系樹脂の配合割合を変更するだけで、製造された予備発泡粒子における上記両成分の含有割合を調整できる。このため、樹脂の合成段階で両成分の含有割合を調整する場合に比べて調整作業を簡略化でき、仕様の変更などに柔軟に対応できるようになるという利点がある。

[0029]

また、たとえば配合する熱可塑性ポリエステル系樹脂の1種として、使用済みのペットボトルなどから回収、再生した材料などを使用することにより、資源の有効な再利用化とゴミの減量化、ならびに予備発泡粒子の低コスト化を図ることが可能となるという利点もある。

なお上記の方法においては、2種以上の熱可塑性ポリエステル系樹脂間でのエステル交換反応により各樹脂がアロイ化して均一な熱可塑性ポリエステル系樹脂となるように、加熱下で十分に溶融、混合してやるのが好ましい。

[0030]

なお本発明の予備発泡粒子を、後述するように押出機などを用いて、高圧溶融 下、発泡剤と混合したのち予備発泡させ、ついで切断して製造する場合には、上 記のように2種以上の樹脂の溶融、混合による均一な熱可塑性ポリエステル系樹 脂の作製を、発泡剤の混合に先だって上記の押出機中で行い、ついで連続して、 上記の製造方法を実施するのが、効率的であり好ましい。

[0031]

ただし、あらかじめ別の装置を用いて2種以上の樹脂を溶融、混合して作製しておいた均一な熱可塑性ポリエステル系樹脂を押出機に投入して、上記の製造方法により、本発明の予備発泡粒子を製造しても構わない。

本発明で使用する熱可塑性ポリエステル系樹脂の物性についてはとくに限定されない。

[0032]

しかし、本来的に結晶性である熱可塑性ポリエステル系樹脂は、前記のように 加熱によって結晶化度が上昇するので、結晶化の速度が速すぎると、たとえば二 次発泡成形時の予備発泡粒子が膨張して粒子同士の融着が始まる前に結晶化度が 高くなり、その結果として、粒子間の融着性が十分でない、機械的強度の低い成 形体しか得られなくなるおそれがある。このため結晶化の速度について制御する 必要がある。

[0033]

熱可塑性ポリエステル系樹脂の結晶化の速度は、示差走査熱量計 (DSC) を 使用して、日本工業規格JIS K7121所載の測定方法に準じて測定した樹脂の結晶化のピーク温度 (昇温時に結晶化が起こるピークの温度) によって評価 することができる。すなわち結晶化のピーク温度が高いほど樹脂は、結晶化を促進させるのに多量の熱を必要とする、つまり結晶化の速度が遅いと言える。

[0034]

具体的には、測定試料としての所定量の熱可塑性ポリエステル系樹脂をDSCの測定容器に充てんして、10℃/分の昇温速度で昇温しながら、上記結晶化ピーク温度が測定される。

このようにして測定された、本発明における、熱可塑性ポリエステル系樹脂の 結晶化ピーク温度の好適な範囲は、およそ130~180℃程度である。

[0035]

ピーク温度がこの範囲未満では、結晶化の速度が速すぎるために、前記のよう に予備発泡粒子の、二次発泡成形時の発泡融着性が不十分となって、粒子間の融 着性や機械的強度などにすぐれた発泡成形体を製造できなくなるおそれがある。 またピーク温度がこの範囲を超えた場合には、樹脂のガラス転移点が高くなる ために成形の条件幅が狭くなったり、製造される発泡成形体が脆くなったりする おそれがある。

[0036]

なお熱可塑性ポリエステル系樹脂のピーク温度は、上記の範囲内でもとくに1 32~175℃程度であるのが好ましく、135~170℃程度であるのがさら に好ましい。

また上記熱可塑性ポリエステル系樹脂は、予備発泡粒子を製造する際の溶融、 混合性や、製造された予備発泡粒子を用いて発泡成形体を成形する際の成形性な どを考慮すると、その固有粘度(測定温度:35℃、溶媒:オルソクロロフェノ ール)が0.6~1.5程度であるのが好ましい。

[0037]

本発明の熱可塑性ポリエステル系樹脂予備発泡粒子は、従来同様に、上記の熱可塑性ポリエステル系樹脂に発泡剤を含浸させたのち、加熱して予備発泡させるとともに粒子化して製造してもよい。

ただし、熱可塑性ポリエステル系樹脂に発泡剤を含浸させる工程を省略して時間、コストおよび手間を省くとともに、製造される予備発泡粒子の結晶化度をさらに低くして、二次発泡成形時の発泡融着性の低下をさらに抑制するためには、前述したように、上記熱可塑性ポリエステル系樹脂を高圧溶融下、発泡剤と混合し、予備発泡させたのち切断して熱可塑性ポリエステル系樹脂予備発泡粒子を製造するのが好ましい。

[0038]

熱可塑性ポリエステル系樹脂を高圧溶融下、発泡剤と混合して予備発泡させる 方法としては、押出機を用いた押出発泡法が効率的であり、好適に採用される。

使用できる押出機はとくに限定されず、通常この種の押出発泡成形に使用される単軸押出機、二軸押出機などであり、さらにはこれらを連結したタンデム型であっても良いが、十分な溶融、混合能力を有する押出機が好ましい。

[0039]

押出機の口金はとしていろいろなものを使用することができる。たとえば、円

環状の口金、フラット口金、ノズル口金、さらには複数のノズルが配置されたマルチノズル口金などがあげられる。これらの口金を使用して、シート状、板状、ロッド状などの、種々の形状の発泡体を作ることができる。

発泡体を、上述した所定の形状とするためには、いろいろな方法が採用される

[0040]

たとえばシート状の発泡体を得るには、円環状の口金から押し出された円筒状の発泡体を、マンドレル上を進行させてシート状としたり、フラット口金より押し出された厚みのある板状の発泡体を、チルロールによりシート状としたりすればよい。

また厚みのある板状の発泡体を得るためには、一対の金属板に密接させながら進行させて、所定の厚みとする方法などが採用される。

[0041]

発泡体の冷却方法としては、空冷や水冷のほか、温度調整された冷却装置に接触させるなど、いろいろな方法を用いることができる。

発泡体の冷却はできる限り速やかに行い、予備発泡粒子の結晶化が過度に進行するのを抑制することが重要である。

このようにして製造した各種形状の発泡体を適宜、切断して円柱状、角状、チップ状などとすることで、本発明の予備発泡粒子が完成する。

[0042]

上記発泡体の冷却と切断は、適宜のタイミングで行うことができる。

たとえば、口金より押し出された発泡体を、発泡中ないし発泡完了後の任意の 時点で水中に通すなどして冷却した後、ペレタイザーなどを用いて所定の形状、 大きさに切断してもよい。

また口金から押し出された、発泡完了直前もしくは発泡完了直後でかつ冷却前の発泡体をすぐさま切断したのち、冷却してもよい。

[0043]

さらに、シート状に押し出された発泡体は、一旦巻き取り機などによってロール状に巻き取って保管した後、粉砕機や切断機にて切断してもよい。

本発明の予備発泡粒子の大きさは、平均粒径で表しておよそ0.5~5mm程度が好ましい。

また、本発明の予備発泡粒子の結晶化度は、およそ1~8%程度であるのが好ましい。

[0044]

・予備発泡粒子の結晶化度が8%を超えると、加熱膨張させ発泡成形する際に二次発泡力が弱くなるとともに、予備発泡粒子同士の融着性が十分でないために、機械的強度の弱い発泡成形体となってしまうおそれがある。また結晶化度が1%より低くなると、予備発泡粒子をつくる際に、まだ余熱をもっている予備発泡粒子同士が合着しやすくなって好ましくない。

[0045]

なお予備発泡粒子の結晶化度は、上記の範囲内でもとくに1~7%程度であるのが好ましく、1~6%程度であるのがさらに好ましい。

結晶化度(%)は、先に述べた結晶化ピーク温度の測定と同様に、示差走査熱量計(DSC)を使用して、日本工業規格JIS K7121所載の測定方法に準じて測定した冷結晶化熱量と、融解熱量とから、次式によって求められる。

[0046]

【数1】

[0047]

なお式中の、完全結晶PETのモルあたりの融解熱量は、高分子データハンドブック [培風館発行] の記載から26.9kJとする。

具体的には、測定試料としての所定量の予備発泡粒子をDSCの測定容器に充てんして、10℃/分の昇温速度で昇温しながら冷結晶化熱量と融解熱量とを測定し、その測定結果から、上記式に基づいて予備発泡粒子の結晶化度が求められる。

[0048]

本発明の予備発泡粒子の密度は、当該予備発泡粒子を二次発泡成形して製造される発泡成形体の密度などに応じて適宜、調整できるが、通常は、上記発泡成形体とほぼ等しい密度であるのが好ましい。具体的には、嵩密度で表して0.01~ $1.0g/cm^3$ 程度であるのが好ましく、0.03~ $0.8g/cm^3$ 程度であるのがより一層あるのがさらに好ましく、0.04~ $0.6g/cm^3$ 程度であるのがより一層、好ましい。

[0049]

本発明の予備発泡粒子には、いろいろな添加剤を添加してもよい。

添加剤としては、発泡剤の他に、たとえば気泡調整剤、難燃剤、帯電防止剤、 着色剤などがあげられる。また、熱可塑性ポリエステル系樹脂の溶融特性を改良 するために、グリシジルフタレートのようなエポキシ化合物、ピロメリット酸二 無水物のような酸無水物、炭酸ナトリウムのような I a、II a 族の金属化合物な どを改質剤として単体、もしくは二種以上混合して添加することができる。とく にこれらの改質剤は、予備発泡粒子の発泡性を改善するだけでなく、得られた発 泡粒子の独立気泡率を向上するため、予備発泡粒子の膨張力を大きくできるので 有効である。

[0050]

本発明で使用できる発泡剤としては、大別すると、熱可塑性ポリエステル系樹脂の軟化点以上の温度で分解してガスを発生する固体化合物、加熱すると熱可塑性ポリエステル系樹脂内で気化する液体、加圧下で熱可塑性ポリエステル系樹脂に溶解させ得る不活性な気体などに別けられるが、この何れを用いてもよい。

このうち固体化合物としては、たとえばアゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾルジカルボンアミド、重炭酸ナトリウムなどがあげられる。また気化する液体としては、たとえばプロパン、ブタン、ペンタン、ヘキサンのような飽和脂肪族炭化水素、ベンゼン、キシレン、トルエンのような芳香族炭化水素、塩化メチル、フレオン(登録商標)のようなハロゲン化炭化水素、ジメチルエーテル、メチルーtertーブチルエーテルのようなエーテル化合物などがあげられる。さらに不活性な気体としては、たとえば二酸化炭素、窒

素などがあげられる。

[0051]

なお本発明の予備発泡粒子を、前述したように押出機を用いて高圧溶融下、発 泡剤と混合し、押し出して予備発泡させたのち、切断して熱可塑性ポリエステル 系樹脂予備発泡粒子を製造する場合には、押出機の口金から押し出された瞬間に 気化して溶融樹脂を発泡させるとともに、当該溶融樹脂の熱を奪う発泡剤、たと えば飽和脂肪族炭化水素、ハロゲン化炭化水素などを使用するのが好ましい。こ れらの発泡剤は、溶融した熱可塑性ポリエステル系樹脂を冷却する作用をし、予 備発泡粒子の結晶化度を低く抑える効果があるため好ましい。

[0052]

また本発明の予備発泡粒子には、熱可塑性ポリエステル系樹脂の結晶性や結晶 化の速度に大きな影響を及ぼさない範囲で、たとえばポリプロピレン系樹脂など のポリオレフィン系樹脂、ポリエステル系などの熱可塑性エラストマー、ポリカ ーボネート、アイオノマーなどを添加してもよい。

本発明の予備発泡粒子を用いて発泡成形体を製造する方法としては、閉鎖しうるが密閉し得ない金型に予備発泡粒子を充てんし、さらに加熱媒体としてスチームを導入して二次発泡成形する方法が好ましい。

[0053]

このときの加熱媒体としては、スチーム以外にも熱風やオイルなどを使用する ことができるが、効率的に成形を行う上ではスチームが最も有効である。

成形した発泡成形体は、冷却したのち金型から取り出せばよい。

スチームで二次発泡成形する場合には、予備発泡粒子を金型へ充てんした後、まず低圧(たとえば0.02MPa程度:以下すべてゲージ圧)で一定時間、スチームを金型内へ吹き込んで、粒子間のエアーを外部へ排出する。ついで、吹き込むスチームの圧を昇圧(たとえば0.06MPa程度)して、予備発泡粒子を二次発泡させるとともに粒子同士を融着せしめて成形体とするのが一般的な方法である。

[0054]

また予備発泡粒子を、あらかじめ密閉容器に入れて、炭酸ガス、窒素、ヘリウ

ム等の不活性ガスを圧入した後、金型での二次発泡成形に使用する直前まで、圧 入したガスの雰囲気下に保持することで、予備発泡粒子の、金型での二次発泡成 形時の膨張力をより大きくして、良好な発泡成形体を得ることもできる。

本発明の予備発泡粒子を二次発泡成形して得た発泡成形体における、粒子同士の融着性の基準となる融着率は40%以上、とくに50%以上、なかんずく60%以上であるのが好ましく、融着率がこの範囲で、格別に優れた融着性を示すといえる。

[0055]

また、発泡成形体の結晶化度は15%以上とすることが好ましく、20%以上とすることがさらに好ましい。

かくして得られた発泡成形体は、たとえば食品容器、包装容器、仕切材などとして使用後に回収したものを切断または粉砕することによって、予備発泡粒子として再利用することが可能である。使用済みの発泡成形体をこのように再利用することにより、資源の有効な再利用化とゴミの減量化に貢献できるとともに、発泡成形体の低コスト化を図ることもできる。

[0056]

【実施例】

以下、実施例、比較例をあげて、この発明のすぐれている点を具体的に説明する。なお、使用した熱可塑性ポリエステル系樹脂における結晶化ピーク温度、および製造された予備発泡粒子の結晶化度は、いずれも前述したようにJIS K7121所載の測定方法に準じて測定した結果より求めた。また、イソフタル酸および/またはシクロヘキサンジメタノールの含有割合、および嵩密度は、それぞれ下記の方法で測定した。

[0057]

イソフタル酸の含有割合の測定

試料約100mgを耐圧テフロン容器中に秤量後、和光純薬工業社製の吸光分析用ジメチルスルホキシド10mlと、5N水酸化ナトリウムーメタノール溶液6mlとを加えたのち、上記耐圧テフロン容器をSUS製の耐圧加熱容器に入れて確実に密閉後、100℃で15時間加熱した。

[0058]

つぎに、加熱後の耐圧加熱容器を室温冷却し、完全に冷却した状態で、耐圧テフロン容器を取り出し、内容物を200m1ビーカーに移して150m1程度まで蒸留水を加えた。

つぎに、内容物が完全に溶解したことを確認後、希塩酸にてpH6.5~7.5に中和し、中和後200mlまでメスアップしたものをさらに蒸留水で10倍に希釈して試料溶液とした。

[0059]

つぎにこの試料溶液と、イソフタル酸標準溶液とを用いて、高速液体クロマトグラフ (HPLC) 装置にて下記の条件で測定を行った。イソフタル酸標準溶液としては、東京化成工業社製のイソフタル酸試薬を蒸留水で溶解したものを使用した。

装置:Waters HPLC LC-module1

カラム:GL社製 Inertsil ODS-2 5μm(4.6×250)

カラム温度:常温

ポンプ温度:常温

移動相:0.1%リン酸/アセトニトリル=80/20

流速:0.5ml/min

分析時間:50分

注入量:50μ1

検出波長: 210 n m

つぎに、標準溶液から得たイソフタル酸のピーク面積をX軸に、濃度をY軸に とって検量線を作成し、得られた検量線を使用して、試料溶液中のイソフタル酸 の濃度(μg/m1)を算出した。

[0060]

そして上記濃度から、次式を使用して熱可塑性ポリエステル系樹脂中のイソフタル酸(IPA)の含有割合(重量%)を計算した。

[0061]

【数2】

[0062]

シクロヘキサンジメタノールの含有割合の測定

試料約100mgを耐圧テフロン容器中に秤量後、和光純薬工業社製の吸光分析用ジメチルスルホキシド10mlと、5N水酸化ナトリウムーメタノール溶液6mlとを加えたのち、上記耐圧テフロン容器をSUS製の耐圧加熱容器に入れて確実に密閉後、100℃で15時間加熱した。

[0063]

つぎに、加熱後の耐圧加熱容器を室温冷却し、完全に冷却した状態で、耐圧テフロン容器を取り出し、内容物を100mlビーカーに移して70ml程度まで特級試薬メタノールを加えた。

つぎに、内容物が完全に溶解したことを確認後、希塩酸にてpH6.5~7.5に中和し、中和後100mlまでメスアップしたものを特級試薬アセトンで10倍に希釈して試料溶液とした。

[0064]

つぎにこの試料溶液と、シクロヘキサンジメタノール標準溶液とを、それぞれ 別個に10m1遠沈管中に採取し、遠心分離しながら溶媒を蒸発乾固させたのち 、東京化成工業社製のTMS化剤0.2mlを加えて60℃で1時間、加熱した

そして加熱後の液を、ガスクロマトグラフ(GC)装置を用いて、下記の条件 で測定した。

[0065]

装置:Perkin Elmer GC AutoSystem

カラム: DB-5 (0. 25mm ϕ ×30m×0. 25 μ m)

オーブン温度:100℃ (2分間)~R1~200℃~R2~320℃ (5分

間)

昇温速度:R1=10℃/分、R2=40℃/分

分析時間:20分間

注入温度:300℃

検出器:FID (300℃)

ガス圧力: 18psi

つぎに、標準溶液から得たシクロヘキサンジメタノールのTMS化物のピーク面積をX軸に、濃度をY軸にとって検量線を作成し、得られた検量線を使用して、試料溶液中のシクロヘキサンジメタノールの濃度(μg/m1)を算出した。【0066】

そして上記濃度から、次式を使用して熱可塑性ポリエステル系樹脂中のシクロ ヘキサンジメタノール (CHDM) の含有割合 (重量%) を計算した。

[0067]

【数3】

[0068]

嵩密度の測定

日本工業規格JIS K8767に所載の方法に準拠して、次式により、発泡体としての予備発泡粒子、および発泡成形体の嵩密度(g/cm³)を求めた。

[0069]

【数4】

[0070]

実施例1

エチレングリコールとイソフタル酸とテレフタル酸とを重縮合反応させて合成された熱可塑性ポリエステル系樹脂 [イソフタル酸の含有割合:1.7重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%、結晶化ピーク温度:135.0℃、IV値:0.80]100重量部と、改質剤としてのピロメリット酸二無水物0.30重量部と、改質助剤としての炭酸ナトリウム0.03重量部とを押出機 [口径:65mm、L/D比:35] に投入し、スクリューの回転数50rpm、バレル温度270~290℃の条件で溶融、混合しながら、バレルの途中に接続した圧入管から、発泡剤としてのブタンを、混合物に対して1重量%の割合で圧入した。

[0071]

つぎに、溶融状態の混合物を、バレルの先端に接続したマルチノズル金型 [直線上に、直径 0.8 mmのノズルが 15 個、配置されたもの]の、各ノズルを通して押し出して予備発泡させたのち、直ちに冷却水槽で冷却した。

そして、冷却されたストランド状の発泡体を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して予備発泡粒子を製造した。

[0072]

得られた予備発泡粒子の嵩密度は0.14g/cm³、粒径は1.4~2.5 mm、結晶化度は4.8%であった。

実施例2

熱可塑性ポリエステル系樹脂として、エチレングリコールとイソフタル酸とテレフタル酸とを重縮合反応させて合成された、イソフタル酸の含有割合が7.3 重量%、1,4-シクロヘキサンジメタノールの含有割合が0重量%、結晶化ピーク温度が153.9 ℃、I V値が0.72であるもの100 重量部を使用するとともに、改質剤としてのピロメリット酸二無水物の量を0.25 重量部としたこと以外は実施例1 と同様にして予備発泡粒子を製造した。

[0073]

得られた予備発泡粒子の嵩密度は0.14g/cm³、粒径は1.4~2.5 mm、結晶化度は3.0%であった。

実施例3

熱可塑性ポリエステル系樹脂として、下記第1および第2の樹脂を、重量比で 25:75の割合で配合したのち溶融、混合してエステル交換させたもの [イソフタル酸の含有割合:1.8重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%、結晶化ピーク温度:135.5℃]100重量部を使用した こと以外は実施例1と同様にして予備発泡粒子を製造した。

[0074]

なおエステル交換のための溶融、混合は、前述した押出発泡用の押出機のバレ ル中で、発泡剤としてのブタンの圧入に先だって行った。

第1の樹脂:実施例2で使用したのと同じ、エチレングリコールとイソフタル酸とテレフタル酸とを重縮合反応させて合成されたもの〔イソフタル酸の含有割合:7.3重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%、IV値:0.72〕

第2の樹脂:ペットボトル回収ペレット〔イソフタル酸の含有割合:0重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%〕

得られた予備発泡粒子の嵩密度は 0. 14 g/c m³、粒径は 1. 4~2. 5 mm、結晶化度は 4. 8%であった。

[0075]

実施例4

熱可塑性ポリエステル系樹脂として、1,4-シクロヘキサンジメタノールとエチレングリコールとテレフタル酸とを重縮合反応させて合成された、イソフタル酸の含有割合が0重量%、1,4-シクロヘキサンジメタノールの含有割合が0.9重量%、結晶化ピーク温度が136.7℃、IV値が0.80であるもの100重量部を使用したこと以外は実施例1と同様にして予備発泡粒子を製造した。

[0076]

得られた予備発泡粒子の嵩密度は 0. 14 g/c m³、粒径は 1. 4~2. 5 mm、結晶化度は 2. 5%であった。

実施例5

特平11-063597

[0077]

なおエステル交換のための溶融、混合は、前述した押出発泡用の押出機のバレル中で、発泡剤としてのブタンの圧入に先だって行った。

第2の樹脂:実施例3で使用したのと同じペットボトル回収ペレット [イソフタル酸の含有割合:0重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%]

得られた予備発泡粒子の嵩密度は0.14g/cm³、粒径は1.4~2.5 mm、結晶化度は1.0%であった。

[0078]

実施例6

熱可塑性ポリエステル系樹脂として、下記第1ないし第3の樹脂を、重量比で10:5:85の割合で配合したのち溶融、混合してエステル交換させたもの[イソフタル酸の含有割合:0.7重量%、1,4-シクロヘキサンジメタノールの含有割合:0.9重量%、結晶化ピーク温度:136.9 \mathbb{C}] 100重量部を使用したこと以外は実施例1と同様にして予備発泡粒子を製造した。

[0079]

なおエステル交換のための溶融、混合は、前述した押出発泡用の押出機のバレ ル中で、発泡剤としてのブタンの圧入に先だって行った。

第1の樹脂:実施例2で使用したのと同じ、エチレングリコールとイソフタル

酸とテレフタル酸とを重縮合反応させて合成されたもの〔イソフタル酸の含有割合: 7.3 重量%、1,4-シクロヘキサンジメタノールの含有割合:0 重量%、IV値:0.72〕

第2の樹脂:実施例5で使用したのと同じ、1,4-シクロヘキサンジメタノールとエチレングリコールとテレフタル酸とを重縮合反応させて合成されたもの [イソフタル酸の含有割合:0重量%、1,4-シクロヘキサンジメタノールの含有割合:17.4重量%、IV値:0.75]

第3の樹脂:実施例3で使用したのと同じペットボトル回収ペレット [イソフタル酸の含有割合:0重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%]

得られた予備発泡粒子の嵩密度は 0. 14 g/c m³、粒径は 1. 4~2. 5 mm、結晶化度は 4. 5%であった。

[0800]

実施例7

熱可塑性ポリエステル系樹脂として、実施例6で使用したのと同じ第1ないし第3の樹脂を、それぞれ重量比で50:25:25の割合で配合したのち溶融、混合してエステル交換させたもの〔イソフタル酸の含有割合:3.7重量%、1,4-シクロヘキサンジメタノールの含有割合:4.4重量%、結晶化ピーク温度:148.8℃〕100重量部を使用するとともに、改質剤としてのピロメリット酸二無水物の量を0.35重量部としたこと以外は実施例1と同様にして予備発泡粒子を製造した。

[0081]

なおエステル交換のための溶融、混合は、前述した押出発泡用の押出機のバレ ル中で、発泡剤としてのブタンの圧入に先だって行った。

得られた予備発泡粒子の嵩密度は0.14g/cm³、粒径は1.4~2.5 mm、結晶化度は3.2%であった。

比較例1

熱可塑性ポリエステル系樹脂として、実施例3で使用したのと同じペットボトル回収ペレット [イソフタル酸の含有割合:0重量%、1,4-シクロヘキサン

ジメタノールの含有割合:0重量%、結晶化ピーク温度:126.3℃]100 重量部を使用したこと以外は実施例1と同様にして予備発泡粒子を製造した。

[0082]

得られた予備発泡粒子の嵩密度は 0. 1 4 g / c m ³、粒径は 1. 4 ~ 2. 5 m m 、結晶化度は 9. 4 %であった。

比較例2

熱可塑性ポリエステル系樹脂として、エチレングリコールとテレフタル酸とを重縮合反応させて合成された、イソフタル酸の含有割合が0重量%、1,4-シクロヘキサンジメタノールの含有割合が0重量%、結晶化ピーク温度が128.0℃、IV値が0.88であるもの100重量部を使用するとともに、改質剤としてのピロメリット酸二無水物の量を0.25重量部としたこと以外は実施例1と同様にして予備発泡粒子を製造した。

[0083]

得られた予備発泡粒子の嵩密度は 0. 14 g / c m ³、粒径は 1. 4 ~ 2. 5 m m、結晶化度は 9. 1%であった。

比較例3

熱可塑性ポリエステル系樹脂として、下記第1および第2の樹脂を、重量比で50:50の割合で配合したのち溶融、混合してエステル交換させたもの[イソフタル酸の含有割合:3.7重量%、1,4-シクロヘキサンジメタノールの含有割合:8.7重量%、結晶化ピーク温度:なし]100重量部を使用するとともに、改質剤としてのピロメリット酸二無水物の量を0.40重量部としたこと以外は実施例1と同様にして予備発泡粒子を製造した。

[0084]

なおエステル交換のための溶融、混合は、前述した押出発泡用の押出機のバレ ル中で、発泡剤としてのブタンの圧入に先だって行った。

第1の樹脂:実施例2で使用したのと同じ、エチレングリコールとイソフタル酸とテレフタル酸とを重縮合反応させて合成されたもの[イソフタル酸の含有割合:7.3重量%、1,4-シクロヘキサンジメタノールの含有割合:0重量%、IV値:0.72]

第2の樹脂:実施例5で使用したのと同じ、1,4-シクロヘキサンジメタノールとエチレングリコールとテレフタル酸とを重縮合反応させて合成されたもの [イソフタル酸の含有割合:0重量%、1,4-シクロヘキサンジメタノールの含有割合:17.4重量%、IV値:0.75]

得られた予備発泡粒子の嵩密度は 0. 14 g/cm^3 、粒径は 1.4 ~~ 2.5 mm、結晶化度は 4.5 ~~ 6 % であった。

[0085]

発泡成形体の製造

上記各実施例、比較例で得た予備発泡粒子をそれぞれ密閉容器に入れ、炭酸ガスを0.49MPaの圧力で圧入したのち4時間、保持した。

つぎに、密閉容器から取り出した予備発泡粒子336gを直ちに、内法寸法300mm×400mm×20mmの金型内に充てんして型締めしたのち、この型内に、ゲージ圧0.02MPaのスチームを10秒間、ついでゲージ圧0.06MPaのスチームを20秒間、導入して二次発泡成形を行って、上記金型の内法寸法と同じ300mm×400mm×20mmの外形寸法を有する発泡成形体を製造した。得られた発泡成形体の密度は、いずれも予備発泡粒子の嵩密度と同じ0.14g/cm³であった。

[0086]

製造した発泡成形体について、下記の試験を行って、その特性を評価した。

融着率の測定

各実施例、比較例の予備発泡粒子から製造した発泡成形体を折り曲げて厚み方向に破断させたのち、破断面に存在する全ての発泡粒子の個数と、そのうち粒子自体が材料破壊した発泡粒子の個数とを計数した。そして次式により、粒子同士の融着性の基準となる融着率(%)を求めた。

[0087]

【数5】

[0088]

曲げ物性の測定

各実施例、比較例の予備発泡粒子から製造した発泡成形体を、50mm×100mm×13mmの大きさに切り出したものを試験片として、下記の条件で曲げ試験を行い、最大曲げ強度(MPa)と、そのときの撓み量(mm)を求めた。

装置:テンシロン万能試験機

曲げ速度:50mm/分

先端治具:加圧くさび3.2R

支持台: 3. 2 R

スパン間距離:50mm

以上の結果を表1に示す。

[0089]

【表1】

		熱可塑性	熱可塑性ポリエステル系樹脂					
		IPA	СНДМ	結晶化	予備発泡 粒子の	発泡成形体		
		含有割合 (重量%)	含有割合 (重量%)	ピーク 温度 (℃)	結晶化度 (%)	融着率 (%)	最大曲げ 強度 [MPa]	撓み量 (mm)
実施例	1	1.7	0	135.0	4.8	70	1.28	7.77
	2	7.3	0	153.9	3.0	93	1.38	12.5
		1.8	0	135.5	4.8	65	1.24	6.54
	4	0	0.9	136.7	2.5	64	1.22	7.00
	5	0	8.7	151.2	1.0	93	1.32	11.2
	6	0.7	0.9	136.9	4.5	70	1.28	7.65
	7	3.7	4.4	148.8	3.2	90	1.30	10.5
比	1	0	0	126.3	9.4	34	0.72	1.40
較	2	0	. 0	128.0	9.1	30	0.58	1.23
例	3	3.7	8.7	なし	4.5	89	1.29	1.88

[0090]

特平11-063597

表より、イソフタル酸およびシクロヘキサンジメタノールをいずれも含有しない熱可塑性ポリエステル系樹脂にて形成された比較例1、2の予備発泡粒子はともに、当該予備発泡粒子を二次発泡成形して得た発泡成形体の融着率が低く、かつ曲げ強度および撓み量が小さいことから、二次発泡成形時の発泡融着性が悪いことがわかった。

[0091]

また、イソフタル酸およびシクロヘキサンジメタノールの含有割合の総量が10重量%を超える熱可塑性ポリエステル系樹脂にて形成された比較例3の予備発泡粒子は、当該予備発泡粒子を二次発泡成形して得た発泡成形体の撓み量が小さいことから、当該発泡成形体が脆くなってしまっていることが判明した。

これに対し、イソフタル酸およびシクロヘキサンジメタノールの含有割合の総量が0.5~10重量%の範囲内である熱可塑性ポリエステル系樹脂にて形成された各実施例の予備発泡粒子はいずれも、当該予備発泡粒子を二次発泡成形して得た発泡成形体の融着率が高く、しかも曲げ強度および撓み量が大きいことが確認された。

[0092]

【発明の効果】

以上、群述したように本発明によれば、粒子間の融着性や機械的強度などをさらに向上させて、剛性が大きく、形状安定性がよく、耐薬品性などにもすぐれるという、熱可塑性ポリエステル系樹脂が本来的に有しているすぐれた特性を生かした、軽量で、しかも耐熱性、断熱性、緩衝性などにすぐれた発泡成形体を、特殊な機能を付与した発泡成形機などを使用せずに、汎用の発泡成形機を使用して、一般的な成形条件でもって容易にかつ効率的に製造しうる熱可塑性ポリエステル系樹脂予備発泡粒子を提供できるという、特有の作用効果を奏する。

【書類名】 要約書

【要約】

【課題】 粒子間の融着性や機械的強度などを向上させて、剛性が大きく、 形状安定性がよく、耐薬品性などにもすぐれるという、熱可塑性ポリエステル系 樹脂が本来的に有しているすぐれた特性を生かした、軽量で、しかも耐熱性、断 熱性、緩衝性などにすぐれた発泡成形体を、特殊な機能を付与した発泡成形機な どを使用せずに、汎用の発泡成形機を使用して、一般的な成形条件でもって容易 にかつ効率的に製造しうる、新規な熱可塑性ポリエステル系樹脂予備発泡粒子を 提供する。

【解決手段】 全成分中に、イソフタル酸、およびシクロヘキサンジメタノールからなる群より選ばれた少なくとも1種の成分を、総量で0.5~10重量%の範囲で含有する熱可塑性ポリエステル系樹脂を予備発泡させたものである。

【選択図】 なし

出願人履歴情報

識別番号

[000002440]

1. 変更年月日

1995年 8月10日

[変更理由]

住所変更

住 所

大阪市北区西天満二丁目4番4号

氏 名

積水化成品工業株式会社