CS652 and CS/IT308 Machine Learning

Assignment-1

February 15, 2021

Hint-1: Refer to http://apps.usd.edu/coglab/schieber/pdf/Intuitive2DFFT.pdf **Hint-2:** Useful Python libraries: numpy, scipy, matplotlib.

Exercise 1

Generate and display following images:

$$I_{1}(n_{x}, n_{y}) = Q(\sin(2\pi f_{x} n_{x} T))$$

$$I_{2}(n_{x}, n_{y}) = Q(\sin(2\pi f_{x} n_{x} T + 2\pi f_{y} n_{y} T))$$

$$I_{3}(n_{x}, n_{y}) = Q(A + \cos(2\pi T (f_{x} n_{x} + f_{y} n_{y})))$$

where, n_x , $n_y \in [0, 99]$, f_x , $f_y \in \{1, 10, 20\}$. $Q(f(n_x, n_y))$ quantizes the values of a real function to integers $\in [0, 255]$. T is a sampling time interval. Take the sampling frequency to be 10 times $\{f_x, f_y\}_{max}$. Find out the discrete Fourier transform (DFT) of all the generated images and display them. Interprete your results. Now, change the sampling frequency from 10 times to 2 times the $\{f_x, f_y\}_{max}$ and finally just the $\{f_x, f_y\}_{max}$. Find the DFT of the same and display them. Could you see the aliasing effect? Comment on the symmetry of Fourier transform in 2-D.

Exercise 2

Generate a checker board image with size 100×100 and 256 gray levels. Use only 0 and 255 as alternating block colours. Vary the block size from 2^2 , 5^2 , 10^2 , and 50^2 pixels. Find the DFT of each image. Comment on your result.