

Second Semester 2020 - 2021 Course Handout

Date: 16/01/2021

In addition to Part I (General Handout for all courses appended to the Time Table) this portion further specific details regarding the course.

Course No. : CHE F498 (3 0 3)

Course Title : Colloids and Interface Engineering

Instructor-in-charge: NANDINI BHANDARU

Scope and Objective of the Course:

This course deals with the application aspects of colloids chemistry and engineering aspects of fluid-fluid and fluid-solid interfaces. Being an interdisciplinary course, its main focus is to present fundamental knowledge of colloids and interfaces to the students. This course underlines that how this knowledge can be used to enhance the efficiency in any application involving surface active agents. Based on the basic principles of chemistry, physics, thermodynamics, fluid mechanics and mass transfer this course covers some frontiers of chemical engineering.

Text book(s) [TB]

- **1.** P. C. Hiemenz, and R. Rajagopalan, Principle of colloid and surface chemistry, 3rd edition, Mercel Dekher, N.Y. 1997.
- **2.** Pallab Ghosh, Colloid and Interface Science, 1st Edition, PHI Learning, 2009.

Reference book(s) [RB]:

- **1.** Tharwat F. Tadros, Applied Surfactants Principles and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
- **2.** Drew Myers, Surfaces, Interfaces and Colloids, 3rd Edition, Wiley, 2006.
- 3. M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley-Interscience Publication, New York, 2004.

Course Plan / Schedule:

Lec.	Learning	Topics to be Covered	Chapter in
No.	Objectives		the Text
			Book
1	Introduction	Overview of colloidal systems, interfaces and surface	Chapter1
			(TB1)
2-6	Surface &	Surface and interfacial tension, surface free energy, Surface active	Chapter 6, 7
	Interface tension	agent: Surfactant, Surface Pressure, surface excess and Gibbs	(TB1)
		equation, Theory of surface tension, contact angle, and wetting.	
		Adsorption at fluid-fluid and fluid-solid interfaces	
7-12	Interfacial &	Laplace equation, Kelvin equation, Young-Laplace equation,	Chapter 6, 7
	Capillary	Capillary rise, kinetics of capillary rise, Wicking, Capillarity and	(TB1)
	Phenomena	porosimetry, liquid displacement from capillaries	

13-14	Measurement	Measurement techniques of surface tension, Interface tension,	TBA
	Techniques	contact angle, zeta potential, particle size.	
15-20	Colloidal	Colloidal stability. Kinetic theory of colloidal systems:	Chapter 2,11,
	Systems	sedimentation, centrifugation, diffusion, Intermolecular forces	12 (TB1)
		relevant to colloidal systems: Electrostatic and van der Waals	
		forces. DLVO theory and its applications.	
21-23	Association	Structure of micelles; Thermodynamics of micellization;	Chap 8 (TB1)
	Colloids	Solubilization; Mixed micellar properties	
24-26	Emulsion, Micro	Preparation, mechanistic details of stabilization of emulsions;	Chap 8
	emulsion and	classification and stability of microemulsions; preparation and	(TB1), Chap
	foams	stability of foams	9 (TB2)
27-32	Advanced	Interfacial rheology and transport process; Surface modification	Chap 7 & 8
	Interfacial	processes and Thin liquid films	(TB2)
	phenomena		
33-36	Nanomaterials	Classification of nanomaterials; Self-assembly; Nanofluidics;	Chap 11
		Functional coatings; Lithographic techniques	(TB2)
37-39	Industrial	Overview of industrial applications of various interfacial	TBA
	Applications	phenomena in the industries.	
40-42	Seminar	Individual presentations by students on PROJECTS	NA

Evaluation scheme:

Sl. No	Evaluation Component	Duration (Minutes)	Weightage%	Date & Time	Nature
1	Mid Semester Test	90	30 %	02/03 3.30 - 5.00PM	OB
2	Class Test (2)	15	10 %	Evenly	
3	Assignment (1)	TBA	10%	spaced	
4	Project Seminar (1)	ТВА	15 %	throughout the semester	
5	Comprehensive Exam	120	35 %	05/05 AN	OB

All these components are OPEN BOOK

- A student will be likely to get "NC", if he / she doesn't appear / appear for the sake of appearing for the evaluation components / scoring zero in pre-comprehensive total.
- **Chamber consultation hour and mode** will be announced in the class.
- The **notices**, if any, concerning the course, will be displayed in CMS /Google Classroom.
- Make-up will be granted for genuine cases only. Prior permission of IC is compulsory.
- Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Nandini Bhandaru Instructor-in-charge | CHE F498

