Problem C. Watchmen

Time limit 3000 ms **Mem limit** 262144 kB

Los Watchmen están en peligro y el Doctor Manhattan junto a su amigo Daniel Dreiberg tienen que alertarlos lo más pronto posible. Hay n watchmen en un plano, el i-ésimo watchman está ubicado en un punto (x_i, y_i) .

Necesitan coordinar un plan pero hay algunas dificultades. Como imaginarás, el Doctor Manhattan usa la distancia Manhattan, esto es que entre los watchmen i y j la distancia es $|x_i - x_j| + |y_i - y_j|$. Daniel, como una persona normal, usa la fórmula $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$.

El éxito de la operación depende de cuantos pares (i,j) $(1 \le i \le j \le n)$, cumplen que la distancia entre el watchman i y el watchman j es igual para el Doctor Manhattan y Daniel. La pregunta es cuantos pares cumplen esta condición.

Entrada

La primera linea del input tiene un solo entero n ($1 \le n \le 200\ 000$) — la cantidad de watchmen.

Las siguientes n lineas contienen dos enteros x_i , y_i ($|x_i|$, $|y_i| \le 10^9$).

Las posiciones pueden coincidir.

Salida

Imprime el número de pares de watchmen tal que la distancia calculada por el Doctor Manhattan es igual a la distancia calculada por Daniel.

Eiemplo 1

Entrada	Salida
3	2
1 1	
7 5	
1 5	

Ejemplo 2

[2023-1] Tarea 1 Mar 28, 2023

Entrada	Salida
6	11
0 0 0 1	
0 2 -1 1	
0 1	
1 1	

Note

En el primer ejemplo, la distancia entre el watchman 1 y el watchman 2 es igual a |1-7|+|1-5|=10 para el Doctor Manhattan y $\sqrt{(1-7)^2+(1-5)^2}=2\cdot\sqrt{13}$ para Daniel. Para los pares (1,1), (1,5) y (7,5), (1,5) Doctor Manhattan y Daniel tendrán las mismas distancias.