BANGALORE INSTITUTE OF TECHNOLOGY K.R.ROAD, V.V.PURAM, BANGALORE-560 004

Department of Computer Science & Engineering

DBMS LABORATORY WITH MINI PROJECT Manual V- Sem CSE 15CSL58

Prepared By:

B.N. SHANKAR GOWDA & SAVITHA S.K

DEPT OF CSE 2018

DBMS LABORATORY WITH MINI PROJECT

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018)

SEMESTER – V

Subject Code	15CSL58	IA Marks 20
Number of Lecture Hours/Week	01I + 02P	Exam Marks 80
Total Number of Lecture Hours	40	Exam Hours 03

CREDITS - 02

Course objectives: This course will enable students to

- Foundation knowledge in database concepts, technology and practice to groom Students into well-informed database application developers.
- Strong practice in SQL programming through a variety of database problems.
- Develop database applications using front-end tools and back-end DBMS.

Description (If any):

PART-A: SQL Programming (Max. Exam Mks. 50)

• Design, develop, and implement the specified queries for the following problems using Oracle, MySQL, MS SQL Server, or any other DBMS under

LINUX/Windows

Environment.

• Create Schema and insert at least 5 records for each table. Add appropriate Database constraints.

PART-B: Mini Project (Max. Exam Mks. 30)

• Use Java, C#, PHP, Python, or any other similar front-end tool. All applications must be demonstrated on desktop/laptop as a stand-alone or web Based application (Mobile apps on Android/IOS are not permitted.)

Lab Experiments:

1. Consider the following schema for a Library Database:

BOOK(Book id, Title, Publisher Name, Pub Year)

BOOK_AUTHORS(Book_id, Author_Name)

PUBLISHER(Name, Address, Phone)

BOOK_COPIES(Book_id, Branch_id, No-of_Copies)

BOOK LENDING(Book id, Branch id, Card No, Date Out, Due Date)

LIBRARY BRANCH(Branch id, Branch Name, Address)

Write SQL queries to

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies in each branch, etc.
- 2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.
- 3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- 5. Create a view of all books and its number of copies that are currently available in

the

Library.

2. Consider the following schema for Order Database:

SALESMAN(Salesman_id, Name, City, Commission)

CUSTOMER(Customer_id, Cust_Name, City, Grade, Salesman_id)

ORDERS(Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries to

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesman who had more than one customer.
- 3. List all the salesman and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- 5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.
 - 3. Consider the schema for Movie Database:

ACTOR(Act_id, Act_Name, Act_Gender)

DIRECTOR(Dir_id, Dir_Name, Dir_Phone)

MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST(Act_id, Mov_id, Role)

RATING(Mov_id, Rev_Stars)

Write SQL queries to

- 1. List the titles of all movies directed by 'Hitchcock'.
- 2. Find the movie names where one or more actors acted in two or more movies.
- 3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).
- 4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
- 5. Update rating of all movies directed by 'Steven Spielberg' to 5.
- 4. Consider the schema for College Database:

STUDENT(USN, SName, Address, Phone, Gender)

SEMSEC(SSID, Sem, Sec)

CLASS(USN, SSID)

SUBJECT(Subcode, Title, Sem, Credits)

IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SOL queries to

- 1. List all the student details studying in fourth semester 'C' section.
- 2. Compute the total number of male and female students in each semester and in each section.
- 3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.
- 4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.
 - 5. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

5. Consider the schema for Company Database:

EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo)

DEPARTMENT(DNo, DName, MgrSSN, MgrStartDate)

DLOCATION(DNo,DLoc)

PROJECT(PNo, PName, PLocation, DNo)

WORKS_ON(SSN, PNo, Hours)

Write SQL queries to

1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the

project

- 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise.
- 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department
- 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator).
- 6. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000...

Part B: Mini project

- For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process.
- Make sure that the application should have five or more tables, at least one trigger and

one stored procedure, using suitable frontend tool.

• Indicative areas include; health care, education, industry, transport, supply chain, etc.

Course outcomes: The students should be able to:

- Create, Update and query on the database.
- Demonstrate the working of different concepts of DBMS
- Implement, analyze and evaluate the project developed for an application.

Conduction of Practical Examination:

- 1. All laboratory experiments from part A are to be included for practical examination.
- 2. Mini project has to be evaluated for 30 Marks.
- 3. Report should be prepared in a standard format prescribed for project work.
- 4. Students are allowed to pick one experiment from the lot.
- 5. Strictly follow the instructions as printed on the cover page of answer script.
- 6. Marks distribution:
 - a) Part A: Procedure + Conduction + Viva:10 + 35 +5 =50 Marks
 - b) Part B: Demonstration + Report + Viva voce = 15+10+05 = 30 Marks
- 7. Change of experiment is allowed only once and marks allotted to the procedure part

be made zero.

to

1. Consider the following schema for a Library Database:

BOOK(Book_id, Title, Publisher_Name, Pub_Year)
BOOK_AUTHORS(Book_id, Author_Name)
PUBLISHER(Name, Address, Phone)
BOOK_COPIES(Book_id, Branch_id, No_of_Copies)
BOOK_LENDING(Book_id, Branch_id, Card_No, Date_Out, Due_Date)
LIBRARY BRANCH(Branch_id, Branch_Name, Address)

CREATE TABLE PUBLISHER
(NAME VARCHAR2 (20),
PHONE INTEGER,
ADDRESS VARCHAR2 (20),
CONSTRAINT PKP PRIMARY KEY(NAME));

CREATE TABLE BOOK
(BOOK_ID VARCHAR(8),
TITLE VARCHAR2 (20),
PUBLISHER_NAME VARCHAR(20),
PUB_YEAR INTEGER,
CONSTRAINT PKB PRIMARY KEY(BOOK_ID),
CONSTRAINT FKB FOREIGN KEY(PUBLISHER_NAME) REFERENCES
PUBLISHER(NAME));

CREATE TABLE BOOK_AUTHORS
(BOOK_ID VARCHAR(8),
AUTHOR_NAME VARCHAR2 (20),
CONSTRAINT PKBA PRIMARY KEY (BOOK_ID,AUTHOR_NAME),
CONSTRAINT FKBA FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID)ON
DELETE CASCADE);

CREATE TABLE LIBRARY_BRANCH (BRANCH_ID VARCHAR(6), BRANCH_NAME VARCHAR2 (20), ADDRESS VARCHAR2 (20), CONSTRAINT PKLB PRIMARY KEY(BRANCH_ID));

CREATE TABLE BOOK_COPIES
(BOOK_ID VARCHAR(8),
BRANCH_ID VARCHAR2(6),
NO_OF_COPIES INTEGER,
CONSTRAINT PKBC PRIMARY KEY(BOOK_ID, BRANCH_ID),
CONSTRAINT FKBC FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID)ON
DELETE CASCADE,
CONSTRAINT FKBB FOREIGN KEY(BRANCH_ID) REFERENCES
LIBRARY_BRANCH(BRANCH_ID));

CREATE TABLE BOOK_LENDING
(BOOK_ID VARCHAR(8),
BRANCH_ID VARCHAR2(6),
CARD_NO INTEGER,
DATE_OUT DATE,
DUE_DATE DATE,
CONSTRAINT PKBL PRIMARY KEY(BOOK)

CONSTRAINT PKBL PRIMARY KEY(BOOK_ID, BRANCH_ID,CARD_NO), CONSTRAINT FKBL FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID)ON DELETE CASCADE);

INSERT INTO PUBLISHER VALUES ('MCGRAW-HILL', 9989076587, 'BANGALORE'); INSERT INTO PUBLISHER VALUES ('PEARSON', 9889076565, 'NEWDELHI'); INSERT INTO PUBLISHER VALUES ('RANDOM HOUSE', 7455679345, 'HYDRABAD'); INSERT INTO PUBLISHER VALUES ('HACHETTE LIVRE', 8970862340, 'CHENAI'); INSERT INTO PUBLISHER VALUES ('GRUPO PLANETA', 7756120238, 'BANGALORE');

SQL> SELECT * FROM PUBLISHER;

NAME	PHONE	ADDRESS
MCGRAW-HILL	9989076587	BANGALORE
PEARSON	9889076565	NEWDELHI
RANDOM HOUSE	7455679345	HYDRABAD
HACHETTE LIVRE	8970862340	CHENAI
GRUPO PLANETA	7756120238	BANGALORE

INSERT INTO BOOK VALUES ('1','DBMS', 'MCGRAW-HILL',2017); INSERT INTO BOOK VALUES ('2','ADBMS', 'MCGRAW-HILL',2016); INSERT INTO BOOK VALUES ('3','CN', 'PEARSON',2016); INSERT INTO BOOK VALUES ('4','CG', 'GRUPO PLANETA',2015); INSERT INTO BOOK VALUES ('5','OS', 'PEARSON',2016);

SQL> SELECT * FROM BOOK;

BOOK_ID TITLE		PUBLISHER_NAME	PUB_YEAR	
1	DBMS	MCGRAW-HILL	2017	
2	ADBMS	MCGRAW-HILL	2016	
3	CN	PEARSON	2016	
4	CG	GRUPO PLANETA	2015	
5	OS	PEARSON	2016	

INSERT INTO BOOK_AUTHORS VALUES ('1','NAVATHE'); INSERT INTO BOOK_AUTHORS VALUES ('2','NAVATHE'); INSERT INTO BOOK_AUTHORS VALUES ('3','TANENBAUM'); INSERT INTO BOOK_AUTHORS VALUES ('4','EDWARD ANGEL'); INSERT INTO BOOK_AUTHORS VALUES ('5','GALVIN');

SQL> SELECT * FROM BOOK_AUTHORS;

BOOK_ID AUTHOR_NAME

- 1 NAVATHE
- 2 NAVATHE
- 3 TANENBAUM
- 4 EDWARD ANGEL
- 5 GALVIN

INSERT INTO LIBRARY_BRANCH VALUES ('10','VV PURAM','BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('11','BIT','BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('12','RAJAJI NAGAR', 'BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('13','JP NAGAR','BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('14','JAYANAGAR','BANGALORE');

SQL> SELECT * FROM LIBRARY_BRANCH;

BRANCH	BRANCH_NAME	ADDRESS
10	VV PURAM	BANGALORE
11	BIT	BANGALORE
12	RAJAJI NAGAR	BANGALORE
13	JP NAGAR	BANGALORE
14	JAYANAGAR	BANGALORE

INSERT INTO BOOK_COPIES VALUES ('1','10', 10); INSERT INTO BOOK_COPIES VALUES ('1','11', 5); INSERT INTO BOOK_COPIES VALUES ('2','12', 2); INSERT INTO BOOK_COPIES VALUES ('2','13', 5); INSERT INTO BOOK_COPIES VALUES ('3','14', 7); INSERT INTO BOOK_COPIES VALUES ('5','10', 1); INSERT INTO BOOK_COPIES VALUES ('4','11', 3);

SQL> SELECT * FROM BOOK_COPIES;

BOOK_ID	BRANCH	NO_OF_COPIES
1	10	10
1	11	5
2	12	2
2	13	5
3	14	7
5	10	1
4	11	3

INSERT INTO BOOK_LENDING VALUES ('1', '10', 101,'01-JAN-17','01-JUN-17'); INSERT INTO BOOK_LENDING VALUES ('3', '14', 101,'11-JAN-17','11-MAR-17'); INSERT INTO BOOK_LENDING VALUES ('2', '13', 101,'21-FEB-17','21-APR-17'); INSERT INTO BOOK_LENDING VALUES ('4', '11', 101,'15-MAR-17','15-JUL-17'); INSERT INTO BOOK_LENDING VALUES ('1', '11', 104,'12-APR-17','12-MAY-17')

SQL> SELECT * FROM BOOK_LENDING;

BOOK_ID BRANCH CARD_NO DATE_OUT DUE_DATE

1	10	101	01-JAN-17	01-JUN-17
3	14	101	11-JAN-17	11-MAR-17
2	13	101	21-FEB-17	21-APR-17
4	11	101	15-MAR-17	15-JUL-17
1	11	104	12-APR-17	12-MAY-17

Queries:

1. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

SELECT B.BOOK_ID, B.TITLE, B.PUBLISHER_NAME, A.AUTHOR_NAME, C.NO_OF_COPIES, L.BRANCH_ID FROM BOOK B, BOOK_AUTHORS A, BOOK_COPIES C, LIBRARY_BRANCH L WHERE B.BOOK_ID=A.BOOK_ID AND B.BOOK_ID=C.BOOK_ID AND L.BRANCH ID=C.BRANCH ID;

OUTPUT:

BOOK_	ID TITLE	PUBLISHER_NAME	AUTHOR_NAME	NO_OF_COPIES BF	RANCH
1	DBMS	MCGRAW-HILL	NAVATHE	10	10
1	DBMS	MCGRAW-HILL	NAVATHE	5	11
2	ADBMS	MCGRAW-HILL	NAVATHE	2	12
2	ADBMS	MCGRAW-HILL	NAVATHE	5	13
3	CN	PEARSON	TANENBAUM	7	14
5	OS	PEARSON	GALVIN	1	10
4	CG	GRUPO PLANETA	EDWARD ANGEL	3	11

2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.

SELECT CARD_NO FROM BOOK_LENDING WHERE DATE_OUT BETWEEN '01-JAN-2017' AND '01-JUL-2017' GROUP BY CARD_NO HAVING COUNT (*)>3;

OUTPUT:

CARD_NO -----101

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.

Before Deleting:

SQL> SELECT * FROM BOOK;

BOOK_ID TITLE	PUBLISHER_NAME	PUB_YEAR
1 DBMS	MCGRAW-HILL	01-JAN-17

DBMS LABORATORY WITH MINI PROJECT

2	ADBMS	MCGRAW-HILL	10-JUN-16
3	CN	PEARSON	16-SEP-16
4	CG	GRUPO PLANETA	11-SEP-15
5	OS	PEARSON	23-MAY-16

SQL> SELECT * FROM BOOK_COPIES;

BOOK_ID BRANCH NO_OF_COPIES

1	10	10
1	11	5
2	12	2
2	13	5
3	14	7
5	10	1
4	11	3

DELETE FROM BOOK WHERE BOOK_ID='3';

SQL> SELECT * FROM BOOK;

BOOK_ID	TITLE	PUBLISHER_NAME	PUB_YEAR
1	DBMS	MCGRAW-HILL	01-JAN-17
2	ADBMS	MCGRAW-HILL	10-JUN-16
4	CG	GRUPO PLANETA	11-SEP-15
5	OS	PEARSON	23-MAY-16

SQL> SELECT * FROM BOOK_COPIES;

BOOK_ID BRANCH NO_OF_COPIES

1	10	10
1	11	5
2	12	2
2	13	5
5	10	1
4	11	3

4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.

CREATE TABLE BOOKPART
PARTITION BY RANGE (PUB_YEAR)
(PARTITION P1 VALUES LESS THAN(2016),
PARTITION P2 VALUES LESS THAN (MAXVALUE))
AS SELECT * FROM BOOK;

OUTPUT:

SQL> SELECT TABLE_NAME, PARTITION_NAME FROM USER_TAB_PARTITIONS;

TABLE_NAME	PARTITION_NAME
BOOKPART	P2
BOOKPART	P1

SOL> SELECT * FROM BOOKPART PARTITION (P1); PUBLISHER_NAME PUB_YEAR BOOK_ID TITLE PUBLISTIE.._ -----CG GRUPO PLANETA 2015 SQL> SELECT * FROM BOOKPART PARTITION (P2); BOOK_ID TITLE PUBLISHER_NAME

1 DBMS MCGRAW-HILL
2 ADBMS MCGRAW-HILL
5 OS PEARSON PUB_YEAR 2017 2016 5 PEARSON 2016

5. Create a view of all books and its number of copies that are currently available in the Library.

CREATE VIEW BC AS SELECT B.BOOK_ID,C.TITLE,B.BRANCH_ID, (B.NO_OF_COPIES-(SELECT COUNT(*) FROM BOOK_LENDING WHERE B.BOOK_ID=BOOK_ID AND B.BRANCH_ID=BRANCH_ID)) AS NO_COPY FROM BOOK_COPIES B,BOOK C WHERE B.BOOK_ID=C.BOOK_ID;

OUTPUT:

SQL> SELECT * FROM BC;

BOOK_ID	TITLE	BRANCH	NO_COPY
1	DBMS	10	9
1	DBMS	11	4
2	ADBMS	12	2
2	ADBMS	13	4
5	OS	10	1
4	CG	11	2

2. Consider the following schema for Order Database:

SALESMAN(Salesman_id, Name, City, Commission)
CUSTOMER(Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS(Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

CREATE TABLE SALESMAN(SALESMAN_ID VARCHAR(8),

NAME VARCHAR(20), CITY VARCHAR(20),

COMMISSION VARCHAR2(10),

CONSTRAINT PKS PRIMARY KEY(SALESMAN_ID));

CREATE TABLE CUSTOMER (CUSTOMER ID VARCHAR(8),

CUST_NAME VARCHAR2 (20),

CITY VARCHAR2 (20),

GRADE NUMBER (3),

SALESMAN_ID VARCHAR(8),

CONSTRAINT PKC PRIMARY KEY(CUSTOMER_ID),

CONSTRAINT FKC FOREIGN KEY(SALESMAN_ID) REFERENCES

SALESMAN(SALESMAN_ID) ON DELETE SET NULL);

CREATE TABLE ORDERS (ORD_NO VARCHAR(8),

PURCHASE_AMT NUMBER(10, 2),

ORD_DATE DATE,

CUSTOMER_ID VARCHAR(8),

SALESMAN ID VARCHAR(8),

CONSTRAINT PKO PRIMARY KEY (ORD NO),

CONSTRAINT FKOC FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER (CUSTOMER ID) ON DELETE CASCADE,

CONSTRAINT FKOS FOREIGN KEY (SALESMAN_ID) REFERENCES SALESMAN (SALESMAN ID) ON DELETE CASCADE);

INSERT INTO SALESMAN VALUES ('1000', 'JOHN', 'BANGALORE', '25%');

INSERT INTO SALESMAN VALUES ('2000', 'RAVI', 'BANGALORE', '20%');

INSERT INTO SALESMAN VALUES ('3000', 'KUMAR', 'MYSORE', '15%');

INSERT INTO SALESMAN VALUES ('4000', 'SMITH', 'DELHI', '30%');

INSERT INTO SALESMAN VALUES ('5000', 'HARSHA', 'HYDRABAD', '15%');

INSERT INTO CUSTOMER VALUES ('C1', 'PREETHI', 'BANGALORE', 100, '1000');

INSERT INTO CUSTOMER VALUES ('C2', 'VIVEK', 'MANGALORE', 300, '1000');

INSERT INTO CUSTOMER VALUES ('C3', 'BHASKAR', 'CHENNAI', 400, '2000');

INSERT INTO CUSTOMER VALUES ('C4', 'CHETHAN', 'BANGALORE', 200, '2000');

INSERT INTO CUSTOMER VALUES ('C5', 'MAMATHA', 'BANGALORE', 400, '3000');

INSERT INTO ORDERS VALUES ('01', 5000, '04-MAY-17', 'C1', '1000'); INSERT INTO ORDERS VALUES ('02', 6000, '04-MAY-17', 'C1', '1000'); INSERT INTO ORDERS VALUES ('03', 7000, '04-MAY-17', 'C2', '1000'); INSERT INTO ORDERS VALUES ('04', 450, '20-JAN-17', 'C1', '2000'); INSERT INTO ORDERS VALUES ('05', 1000, '24-FEB-17', 'C2', '2000'); INSERT INTO ORDERS VALUES ('06', 3500, '13-APR-17', 'C3', '3000'); INSERT INTO ORDERS VALUES ('07', 550, '09-MAR-17', 'C4', 2000); INSERT INTO ORDERS VALUES ('08', 6500, '04-MAY-17', 'C5', 1000); INSERT INTO ORDERS VALUES ('09', 7500, '09-MAR-17', 'C2', 2000);

SELECT * FROM SALESMAN;

SALESMAN	NAME	CITY	COMMISSION
1000	JOHN	BANGALORE	25%
2000	RAVI	BANGALORE	20%
3000	KUMAR	MYSORE	15%
4000	SMITH	DELHI	30%
5000	HARSHA	HYDRABAD	15%

SELECT * FROM CUSTOMER;

CUSTOMER	CUST_NAME	CITY	GRADE	SALESMAN
C1	PREETHI	BANGALORE	100	1000
C2	VIVEK	MANGALORE	300	1000
C3	BHASKAR	CHENNAI	400	2000
C4	CHETHAN	BANGALORE	200	2000
C5	MAMATHA	BANGALORE	400	3000

SELECT * FROM ORDERS;

ORD_NO	PURCHASE_AMT	ORD_DATE	CUSTOME	R SALESMAN
O1	5000	04-MAY-17	C1	1000
O2	6000	04-MAY-17	C1	1000
O3	7000	04-MAY-17	C2	1000
O4	450	20-JAN-17	C1	2000
O5	1000	24-FEB-17	C2	2000
O6	3500	13-APR-17	C3	3000
O7	550	09-MAR-17	C4	2000
O8	6500	04-MAY-17	C5	1000
O9	7500	09-MAR-17	C2	2000

Queries:

1. Count the customers with grades above Bangalore's average.

SELECT GRADE, COUNT (DISTINCT CUSTOMER_ID) AS NO_OF_CUSTOMER

FROM CUSTOMER GROUP BY GRADE

HAVING GRADE > (SELECT AVG(GRADE)

FROM CUSTOMER

WHERE CITY='BANGALORE');

OUTPUT:

GRADE	NO_OF_CUSTOMER
400	2
300	1

2. Find the name and numbers of all salesmen who had more than one customer.

SELECT SALESMAN_ID, NAME FROM SALESMAN S WHERE ((SELECT COUNT (*) FROM CUSTOMER WHERE SALESMAN_ID=S.SALESMAN_ID)>1);

OUTPUT:

SALESMAN NAME ------1000 JOHN 2000 RAVI

3.List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)

SELECT S.SALESMAN ID, S.CITY

FROM SALESMAN S

WHERE EXISTS (SELECT CITY FROM CUSTOMER WHERE S.CITY=CITY AND

S.SALESMAN_ID=SALESMAN_ID)

UNION

SELECT SALESMAN ID, 'NO MATCH OF CITIES'

FROM SALESMAN S

WHERE NOT EXISTS (SELECT CITY FROM CUSTOMER WHERE S.CITY=CITY AND

S.SALESMAN_ID=SALESMAN_ID);

OUTPUT:

SALESMAN	CITY
1000	BANGALORE
2000	BANGALORE
3000	NO MATCH OF CITIES
4000	NO MATCH OF CITIES
5000	NO MATCH OF CITIES

4. Create a view that finds the salesman who has the customer with the highest order of a day.

SELECT DISTINCT S.SALESMAN_ID,S.ORD_DATE FROM ORDERS S WHERE (SELECT SUM(PURCHASE_AMT) FROM ORDERS WHERE SALESMAN_ID=S.SALESMAN_ID AND ORD_DATE=S.ORD_DATE AND S.CUSTOMER_ID=CUSTOMER_ID) =(SELECT MAX(SUM(PURCHASE_AMT)) FROM ORDERS S1 WHERE S1.ORD_DATE=S.ORD_DATE GROUP BY S1.ORD_DATE,S1.SALESMAN_ID,S1.CUSTOMER_ID);

OUTPUT:

SALESMAN	ORD_DATE
1000	04-MAY-17
3000	13-APR-17
2000	20-JAN-17
2000	24-FEB-17
2000	09-MAR-17

5.Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

Use ON DELETE CASCADE at the end of foreign key definitions while creating child table orders and then execute the following:

Use ON DELETE SET NULL at the end of foreign key definitions while creating child table customers and then executes the following:

DELETE FROM SALESMAN WHERE SALESMAN_ID=1000;

SQL> SELECT * FROM SALESMAN;

SALESMAN	NAME	CITY	COMMISSION
2000	RAVI	BANGALORE	20%
3000	KUMAR	MYSORE	15%
4000	SMITH	DELHI	30%
5000	HARSHA	HYDRABAD	15%

SQL> SELECT * FROM CUSTOMER;

CUSTOMER	CUST_NAME	CITY	GRADE	SALESMAN
C1	PREETHI	BANGALORE	100	
C2	VIVEK	MANGALORE	300	
C3	BHASKAR	CHENNAI	400	2000
C4	CHETHAN	BANGALORE	200	2000
C5	MAMATHA	BANGALORE	400	3000

SQL> SELECT * FROM ORDERS;

```
ORD_NO PURCHASE_AMT ORD_DATE CUSTOMER SALESMAN
                         -----
                                     _____
O2
             450
                        20-JAN-17
                                      C1
                                                 2000
O3
            1000
                        24-FEB-17
                                      C2
                                                 2000
04
            3500
                        13-APR-17
                                      C3
                                                 3000
3. Consider the schema for Movie Database:
  ACTOR (Act_id, Act_Name, Act_Gender)
  DIRECTOR (Dir id, Dir Name, Dir Phone)
  MOVIES (Mov id, Mov Title, Mov Year, Mov Lang, Dir id)
  MOVIE CAST (Act id, Mov id, Role)
  RATING (Mov id, Rev Stars)
CREATE TABLE ACTOR (ACT_ID NUMBER (3),
ACT NAME VARCHAR (20),
ACT GENDER CHAR (1),
CONSTRAINT PKAC PRIMARY KEY(ACT ID));
CREATE TABLE DIRECTOR(
DIR_ID NUMBER (3),
DIR NAME VARCHAR (20),
DIR PHONE NUMBER (10),
CONSTRAINT PKDI PRIMARY KEY(DIR ID));
CREATE TABLE MOVIES (
MOV_ID NUMBER (4),
MOV_TITLE VARCHAR (25),
MOV YEAR NUMBER (4),
MOV LANG VARCHAR (12).
DIR_ID NUMBER (3),
CONSTRAINT PKMV PRIMARY KEY(MOV ID),
CONSTRAINT FKMV FOREIGN KEY(DIR_ID) REFERENCES DIRECTOR(DIR_ID));
CREATE TABLE MOVIE_CAST (
ACT ID NUMBER (3),
MOV ID NUMBER (4),
ROLE VARCHAR (10),
CONSTRAINT PKMC PRIMARY KEY(ACT_ID, MOV_ID),
CONSTRAINT FKMC FOREIGN KEY(ACT_ID) REFERENCES ACTOR(ACT_ID),
CONSTRAINT FKMCC FOREIGN KEY(MOV_ID) REFERENCES MOVIES(MOV_ID));
CREATE TABLE RATING (
MOV_ID NUMBER (4),
REV STARS INTEGER,
CONSTRAINT FKRA FOREIGN KEY(MOV_ID) REFERENCES MOVIES(MOV_ID));
INSERT INTO ACTOR VALUES (301, 'ANUSHKA', 'F');
INSERT INTO ACTOR VALUES (302, 'PRABHAS', 'M');
INSERT INTO ACTOR VALUES (303, 'ARAVIND', 'M');
INSERT INTO ACTOR VALUES (304, 'JERMY', 'M');
INSERT INTO ACTOR VALUES (305, 'KIM NEWMEN', 'M');
SQL> SELECT * FROM ACTOR;
                                  ACT_G
 ACT_ID
            ACT_NAME
```

```
301 ANUSHKA F
302 PRABHAS M
303 ARAVIND M
304 JERMY M
305 KIM NEWMEN M
```

INSERT INTO DIRECTOR VALUES (60, 'RAJAMOULI', 8751611001);

INSERT INTO DIRECTOR VALUES (61, 'HITCHCOCK', 7766138911);

INSERT INTO DIRECTOR VALUES (62, FARAN', 9986776531);

INSERT INTO DIRECTOR VALUES (63. STEVEN SPIELBERG', 8989776530):

INSERT INTO DIRECTOR VALUES (64, 'MAHESH', 8989776539);

SQL> SELECT * FROM DIRECTOR;

DIR_ID	DIR_NAME	DIR_PHONE
60	RAJAMOULI	8751611001
61	HITCHCOCK	7766138911
62	FARAN	9986776531
63	STEVEN SPIELBERG	8989776530
64	MAHESH	8989776539

INSERT INTO MOVIES VALUES (1001, 'BAHUBALI-2', 2017, 'TELAGU', 60); INSERT INTO MOVIES VALUES (1002, 'BAHUBALI-1', 2015, 'TELAGU', 60); INSERT INTO MOVIES VALUES (1003, 'PSYCHO', 2008, 'ENGLISH', 61); INSERT INTO MOVIES VALUES (1004, 'WAR HORSE', 2011, 'ENGLISH', 63); INSERT INTO MOVIES VALUES (1005, 'LAST BUS', 2016, 'KANNADA', 64); INSERT INTO MOVIES VALUES (1006, 'THE BIRDS', 2011, 'ENGLISH', 61); INSERT INTO MOVIES VALUES (1007, 'TITANIC', 2012, 'ENGLISH', 63);

SQL> SELECT * FROM MOVIES;

MOV_ID	MOV_TITLE	MOV_YEAR	MOV_LANG	DIR_ID
1001	BAHUBALI-2	2017	TELAGU	60
1002	BAHUBALI-1	2015	TELAGU	60
1003	PSYCHO	2008	ENGLISH	61
1004	WAR HORSE	2011	ENGLISH	63
1005	LAST BUS	2016	KANNADA	64
1006	THE BIRDS	2011	ENGLISH	61
1007	TITANIC	2012	ENGLISH	63

INSERT INTO MOVIE_CAST VALUES (301, 1002, 'HEROINE');

INSERT INTO MOVIE_CAST VALUES (301, 1001, 'HEROINE');

INSERT INTO MOVIE_CAST VALUES (303, 1005, 'HERO');

INSERT INTO MOVIE CAST VALUES (302, 1002, 'HERO');

INSERT INTO MOVIE_CAST VALUES (302, 1001, 'HERO');

INSERT INTO MOVIE_CAST VALUES (304, 1004, 'HERO');

INSERT INTO MOVIE_CAST VALUES (305, 1005, 'HERO');

INSERT INTO MOVIE CAST VALUES (305, 1007, 'HERO');

SQL> SELECT * FROM MOVIE_CAST;

ACT_ID MOV_ID ROLE

```
301
         1002
                 HEROINE
301
         1001
                 HEROINE
303
         1005
                 HERO
302
         1002
                 HERO
302
         1001
                 HERO
304
         1004
               HERO
305
         1005
               HERO
305
         1007
               HERO
```

```
INSERT INTO RATING VALUES (1001, 4);
INSERT INTO RATING VALUES (1002, 2);
INSERT INTO RATING VALUES (1003, 5);
INSERT INTO RATING VALUES (1004, 4);
INSERT INTO RATING VALUES (1005, 3);
INSERT INTO RATING VALUES (1006, 8);
INSERT INTO RATING VALUES (1007, 0);
INSERT INTO RATING VALUES (1001, 2);
```

INSERT INTO RATING VALUES (1002, 5);

SQL> SELECT * FROM RATING;

MOV_ID REV_STARS

1001	4
1001	2
1002	2
1002	5
1003	5
1004	4
1005	3
1006	8
1007	0

Queries:

1. List the titles of all movies directed by 'Hitchcock'.

SELECT M.MOV_TITLE
FROM MOVIES M,DIRECTOR D
WHERE M.DIR_ID=D.DIR_ID AND D.DIR_NAME = 'HITCHCOCK';

OUTPUT:

MOV_TITLE

PSYCHO

THE BIRDS

3. Find the movie names where one or more actors acted in two or more movies.

SELECT MOV_TITLE

FROM MOVIES M, MOVIE_CAST MV

WHERE M.MOV_ID=MV.MOV_ID AND ACT_ID IN (SELECT ACT_ID

FROM MOVIE_CAST GROUP BY ACT_ID

HAVING COUNT (ACT_ID)>=1)

GROUP BY MOV_TITLE

HAVING COUNT (*)>1;

OUTPUT:

MOV_TITLE

BAHUBALI-1

BAHUBALI-2

LAST BUS

4.List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).

SELECT A.ACT NAME

FROM ACTOR A

JOIN MOVIE CAST C

ON A.ACT_ID=C.ACT_ID

JOIN MOVIES M

ON C.MOV_ID=M.MOV_ID

WHERE M.MOV_YEAR NOT BETWEEN 2000 AND 2015;

OUTPUT:

ACT_NAME

ANUSHKA

PRABHAS

ARAVIND

KIM NEWMEN

4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.

SELECT MOV_TITLE, MAX(REV_STARS)

FROM MOVIES

INNER JOIN RATING USING (MOV ID)

GROUP BY MOV_TITLE

HAVING MAX (REV_STARS)>0

ORDER BY MOV_TITLE;

OUTPUT:

MOV_TITLE	MAX(REV_STARS)
BAHUBALI-1	5
BAHUBALI-2	4
LAST BUS	3
PSYCHO	5
THE BIRDS	8
WAR HORSE	4

5. Update rating of all movies directed by 'Steven Spielberg' to 5 KL

UPDATE RATING

SET REV_STARS=5

WHERE MOV_ID IN (SELECT M.MOV_ID FROM MOVIES M,DIRECTOR D WHERE M.DIR_ID=D.DIR_ID AND

D.DIR_NAME = 'STEVEN SPIELBERG');

BEFORE UPDATING

SQL> SELECT * FROM RATING;

MOV_ID	REV_STARS
1001	4
1002	2
1003	5
1004	4 <
1005	3
1006	8
1007	0 <
1001	2
1002	5

AFTER UPDATING

SQL> SELECT * FROM RATING; MOV_ID REV_STARS

MOV_ID	REV_STAR
1001	4
1002	2
1003	5
1004	5 <
1005	3
1006	8
1007	5 <
1001	2
1002	5

4. Consider the schema for College Database:

STUDENT (USN, SName, Address, Phone, Gender)
SEMSEC (SSID, Sem, Sec)
CLASS (USN, SSID)
SUBJECT (Subcode, Title, Sem, Credits)
IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

CREATE TABLE STUDENT (USN VARCHAR (10),

SNAME VARCHAR (20), ADDRESS VARCHAR (20), PHONE NUMBER (10), GENDER CHAR (1),

CONSTRAINT PKST PRIMARY KEY(USN));

CREATE TABLE SEMSEC (SSID VARCHAR (5), SEM NUMBER (2), SEC CHAR (1), CONSTRAINT PKSEM PRIMARY KEY(SSID));

CREATE TABLE CLASS (USN VARCHAR (10),
SSID VARCHAR (5),
CONSTRAINT PKCL PRIMARY KEY (USN, SSID),
CONSTRAINT FKUSN FOREIGN KEY (USN) REFERENCES STUDENT (USN),
CONSTRAINT FKSSID FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));

CREATE TABLE SUBJECT (SUBCODE VARCHAR (8),

TITLE VARCHAR (20), SEM NUMBER (2), CREDITS NUMBER (5),

CONSTRAINT PKSUB PRIMARY KEY (SUBCODE));

CREATE TABLE IAMARKS (USN VARCHAR (10),

SUBCODE VARCHAR (8), SSID VARCHAR (5), TEST1 NUMBER, TEST2 NUMBER, TEST3 NUMBER, FINALIA NUMBER,

CONSTRAINT PKIA PRIMARY KEY (USN, SUBCODE, SSID), CONSTRAINT FKUS FOREIGN KEY (USN) REFERENCES STUDENT (USN), CONSTRAINT FKSU FOREIGN KEY (SUBCODE) REFERENCES SUBJECT (SUBCODE), CONSTRAINT FKSSI FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));

INSERT INTO STUDENT VALUES ('1BI16CS001', 'ABHILASH', 'BELAGAVI', 8877881122, 'M'); INSERT INTO STUDENT VALUES ('1BI16CS011', 'AMOGH', 'BENGALURU', 7722829912, 'M');

INSERT INTO STUDENT VALUES ('1BI16CS113','ANANYA','BENGALURU',7712312312,'F'); INSERT INTO STUDENT VALUES ('1BI16CS049','HARSHA','MANGALURU',8877881122,'M'); INSERT INTO STUDENT VALUES ('1BI16CS065','KRUTHI','BENGALURU',9900211201,'F');

INSERT INTO STUDENT VALUES ('1BI16CS071','MEGHA','BENGALURU',9923211099,'F'); INSERT INTO STUDENT VALUES ('1BI16CS091','MANJU','BENGALURU', 7894737377,'M'); INSERT INTO STUDENT VALUES ('1BI16CS009','KIRAN','BENGALURU',7894737377,'M'); INSERT INTO STUDENT VALUES ('1BI16CS021','NAYANA','BENGALURU',7894737377,'F'); INSERT INTO STUDENT VALUES ('1BI16CS093','KUMAR','BENGALURU',7894737377,'M'); INSERT INTO STUDENT VALUES ('1BI16CS100','SWETHA','BENGALURU',7894737377,'F')

INSERT INTO STUDENT VALUES ('1BI15CS027','ANVITHA','TUMKUR', 9845091341,'F'); INSERT INTO STUDENT VALUES ('1BI15CS012','AJAY','DAVANGERE',7696772121,'M'); INSERT INTO STUDENT VALUES ('1BI15CS015','ANVITHA','BELLARY', 9944850121,F'); INSERT INTO STUDENT VALUES ('1BI15CS101','NEMISA SINHA','MANGALURU',8812332201,'M'); INSERT INTO STUDENT VALUES ('1BI15CS200','PAVAN','KALBURGI',9900232201,'M'); INSERT INTO STUDENT VALUES ('1BI15CS191','SIRI','SHIMOGA',9905542212,'F');

INSERT INTO STUDENT VALUES ('1BI14CS007','ADITYA','SHIMOGA',9905542212,'M'); INSERT INTO STUDENT VALUES ('1BI14CS018','AMOGH ','MYSORE',9905541112,'M'); INSERT INTO STUDENT VALUES ('1BI14CS020','AMULYA','SHIMOGA',8812332201,'F'); INSERT INTO STUDENT VALUES ('1BI14CS051','KEERTHI','SHIMOGA',9905542212,'M'); INSERT INTO STUDENT VALUES ('1BI14CS078','MANJULA','SHIMOGA',9905541234,'F'); INSERT INTO STUDENT VALUES ('1BI14CS112','POOJA','SHIMOGA',9985541112,'F'); INSERT INTO STUDENT VALUES ('1BI14CS114','PRADEEP','SHIMOGA',9901232212,'M');

INSERT INTO STUDENT VALUES ('1BI14CS066', 'PRAKASH', 'SHIMOGA', 9901232212, 'M'); INSERT INTO STUDENT VALUES ('1BI14CS132', 'PRIYA', 'MYSORE', 9901232212, 'F'); INSERT INTO STUDENT VALUES ('1BI14CS161', 'SIRI', 'TUMKUR', 9901232212, 'F');

SQL> SELECT * FROM STUDENT;

USN	SNAME	ADDRESS	PHONE	G
				-
1BI16CS001	ABHILASH	BELAGAVI	8877881122	M
1BI16CS011	AMOGH	BENGALURU	7722829912	M
1BI16CS113	ANANYA	BENGALURU	7712312312	F
1BI16CS049	HARSHA	MANGALURU	8877881122	M
1BI16CS065	KRUTHI	BENGALURU	9900211201	F
1BI16CS071	MEGHA	BENGALURU	9923211099	F
1BI16CS091	MANJU	BENGALURU	7894737377	M
1BI16CS009	KIRAN	BENGALURU	7894737377	M
1BI16CS021	NAYANA	BENGALURU	7894737377	F
1BI16CS093	KUMAR	BENGALURU	7894737377	M
1BI16CS100	SWETHA	BENGALURU	7894737377	F
1BI15CS027	ANVITHA	TUMKUR	9845091341	F
1BI15CS012	AJAY	DAVANGERE	7696772121	M
1BI15CS015	ANVITHA	BELLARY	9944850121	F
1BI15CS101	NEMISA SINHA	MANGALURU	8812332201	M

DBMS LABORATORY WITH MINI PROJECT

1BI15CS200	PAVAN	KALBURGI	9900232201	M
1BI15CS191	SIRI	SHIMOGA	9905542212	F
1BI14CS007	ADITYA	SHIMOGA	9905542212	M
1BI14CS018	AMOGH	MYSORE	9905541112	M
1BI14CS020	AMULYA	SHIMOGA	8812332201	F
1BI14CS051	KEERTHI	SHIMOGA	9905542212	M
1BI14CS078	MANJULA	SHIMOGA	9905541234	F
1BI14CS112	POOJA	SHIMOGA	9985541112	F
1BI14CS114	PRADEEP	SHIMOGA	9901232212	M
1BI14CS066	PRAKASH	SHIMOGA	9901232212	M
1BI14CS132	PRIYA	MYSORE	9901232212	F
1BI14CS161	SIRI	TUMKUR	9901232212	F

INSERT INTO SEMSEC VALUES ('CSE4A', 4,'A');

 $INSERT\ INTO\ SEMSEC\ VALUES\ ('CSE4B',\ 4,'B');$

INSERT INTO SEMSEC VALUES ('CSE4C', 4,'C');

INSERT INTO SEMSEC VALUES ('CSE6A', 6,'A');

INSERT INTO SEMSEC VALUES ('CSE6B', 6,'B');

INSERT INTO SEMSEC VALUES ('CSE8A', 8,'A');

INSERT INTO SEMSEC VALUES ('CSE8B', 8,'B');

INSERT INTO SEMSEC VALUES ('CSE8C', 8,'C');

SQL> SELECT * FROM SEMSEC;

SSID	SEM	S
CSE4A	4	A
CSE4B	4	В
CSE4C	4	C
CSE6A	6	A
CSE6B	6	В
CSE8A	8	A
CSE8B	8	В
CSE8C	8	C

INSERT INTO CLASS VALUES ('1BI16CS001', 'CSE4A');

INSERT INTO CLASS VALUES ('1BI16CS011','CSE4A');

INSERT INTO CLASS VALUES ('1BI16CS113','CSE4A');

INSERT INTO CLASS VALUES ('1BI16CS049', 'CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS065', 'CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS071', 'CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS091', 'CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS009', 'CSE4C'); INSERT INTO CLASS VALUES ('1BI16CS021', 'CSE4C');

INSERT INTO CLASS VALUES ('1BI16CS093', 'CSE4C');

INSERT INTO CLASS VALUES ('1BI16CS100', 'CSE4C');

INSERT INTO CLASS VALUES ('1BI15CS027', 'CSE6A');

DIGERT DITO CLASS VALUES (IDII 5000121 GGE (AL)

INSERT INTO CLASS VALUES ('1BI15CS012', 'CSE6A');

INSERT INTO CLASS VALUES ('1BI15CS015', 'CSE6A'); INSERT INTO CLASS VALUES ('1BI15CS101', 'CSE6B');

INSERT INTO CLASS VALUES ('1BI15CS200', 'CSE6B');

```
INSERT INTO CLASS VALUES ('1BI15CS191', 'CSE6B'):
INSERT INTO CLASS VALUES ('1BI14CS007', 'CSE8A');
INSERT INTO CLASS VALUES ('1BI14CS018', 'CSE8A');
INSERT INTO CLASS VALUES ('1BI14CS020', 'CSE8A');
INSERT INTO CLASS VALUES ('1BI14CS051','CSE8A');
INSERT INTO CLASS VALUES ('1BI14CS078', 'CSE8B');
INSERT INTO CLASS VALUES ('1BI14CS112', 'CSE8B');
INSERT INTO CLASS VALUES ('1BI14CS114', 'CSE8B');
INSERT INTO CLASS VALUES ('1BI14CS066', 'CSE8C');
INSERT INTO CLASS VALUES ('1BI14CS132', 'CSE8C');
INSERT INTO CLASS VALUES ('1BI14CS161', 'CSE8C');
SOL> SELECT * FROM CLASS:
USN
             SSID
             ____
             CSE8A
1BI14CS007
1BI14CS018
             CSE8A
1BI14CS020
             CSE8A
             CSE8A
1BI14CS051
1BI14CS066
             CSE8C
1BI14CS078
             CSE8B
1BI14CS112
             CSE8B
1BI14CS114
             CSE8B
1BI14CS132
             CSE8C
1BI14CS161
             CSE8C
1BI15CS012
             CSE6A
1BI15CS015
             CSE6A
             CSE6A
1BI15CS027
1BI15CS101
             CSE6B
1BI15CS191
             CSE6B
1BI15CS200
             CSE6B
1BI16CS001
             CSE4A
1BI16CS009
             CSE4C
1BI16CS011
             CSE4A
1BI16CS021
             CSE4C
             CSE4B
1BI16CS049
             CSE4B
1BI16CS065
1BI16CS071
             CSE4B
1BI16CS091
             CSE4B
1BI16CS093
             CSE4C
1BI16CS100
             CSE4C
1BI16CS113
             CSE4A
INSERT INTO SUBJECT VALUES ('10CS81','SA', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS82', 'SMAD', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS83','WNMC', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS84', 'WEB', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS61', 'ME', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS62', 'USP', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS63','SD', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS64', 'CNII', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS65', 'CG', 6, 3);
INSERT INTO SUBJECT VALUES ('15CS41','M4', 4, 4);
```

INSERT INTO SUBJECT VALUES ('15CS42', 'SE', 4, 4);

INSERT INTO SUBJECT VALUES ('15CS43', 'DAA', 4, 4);

INSERT INTO SUBJECT VALUES ('15CS44', 'MPMC', 4, 4):

INSERT INTO SUBJECT VALUES ('15CS45','OOC', 4, 3);

INSERT INTO SUBJECT VALUES ('15CS46','DC', 4, 3);

SQL> SELECT * FROM SUBJECT;

SUBCODE	TITLE	SEM	CREDITS
10CS81	SA	8	4
10CS82	SMAD	8	4
10CS83	WNMC	8	4
10CS84	WEB	8	4
10CS61	ME	6	4
10CS62	USP	6	4
10CS63	SD	6	4
10CS64	CNII	6	4
10CS65	CG	6	3
15CS41	M4	4	4
15CS42	SE	4	4
15CS43	DAA	4	4
15CS44	MPMC	4	4
15CS45	OOC	4	3
15CS46	DC	4	3

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS61','CSE6B', 20, 23, 20);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS62','CSE6B', 18, 19, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS63','CSE6B', 19, 20, 20);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS64','CSE6B', 20, 20, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS65','CSE6B', 18, 20, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS81','CSE8A', 15, 10, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS82','CSE8A', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS83','CSE8A', 5, 10, 5);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS84','CSE8A', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS81','CSE8B', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS82','CSE8B', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS83','CSE8B', 10, 8, 10);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS84','CSE8B', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS81','CSE8C', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS82','CSE8C', 12, 13, 14);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS83','CSE8C', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS84','CSE8C', 15, 20, 12);

SQL> SELECT * FROM IAMARKS;

USN	SUBCODE SS	ID TEST	1 TEST	TEST3	FINALIA
1DI1500101	100001 00	ECD 24		20	
1BI15CS101		E6B 20		20	
1BI15CS101	10CS62 CS	E6B 18	3 19	19	
1BI15CS101	10CS63 CS	E6B 19	9 20	20	
1BI15CS101	10CS64 CS	E6B 20	20	19	
1BI15CS101	10CS65 CS	E6B 18	3 20	19	
1BI14CS007	10CS81 CS	E8A 1:	5 10	12	
1BI14CS007	10CS82 CS	E8A 1:	5 20	12	
1BI14CS007	10CS83 CS	E8A	5 10	5	
1BI14CS007	10CS84 CS	E8A 1:	5 20	12	
1BI14CS078	10CS81 CS	E8B 1:	5 20	12	
1BI14CS078	10CS82 CS	E8B 1:	5 20	12	
1BI14CS078	10CS83 CS	E8B 10	8	10	
1BI14CS078	10CS84 CS	E8B 1:	5 20	12	
1BI14CS066	10CS81 CS	E8C 1:	5 20	12	
1BI14CS066	10CS82 CS	E8C 12	2 13	14	
1BI14CS066	10CS83 CS	E8C 1:	5 20	12	
1BI14CS066	10CS84 CS	E8C 1:	5 20	12	

Queries:

1.List all the student details studying in fourth semester 'C' section.

SELECT S.*, SS.SEM, SS.SEC

FROM STUDENT S, SEMSEC SS, CLASS C

WHERE S.USN = C.USN AND

SS.SSID = C.SSID AND

SS.SEM = 4 AND

SS.SEC='C';

OUTPUT:

USN	SNAME	ADDRESS	PHONE	G	SEM	S
1BI16CS009	KIRAN	BENGALURU	7894737377	M	4	C
1BI16CS021	NAYANA	BENGALURU	7894737377	F	4	C
1BI16CS093	KUMAR	BENGALURU	7894737377	M	4	C
1BI16CS100	SWETHA	BENGALURU	7894737377	F	4	\mathbf{C}

2. Compute the total number of male and female students in each semester and in each section.

SELECT SS.SEM, SS.SEC, S.GENDER, COUNT (S.GENDER) AS COUNT

FROM STUDENT S, SEMSEC SS, CLASS C

WHERE S.USN = C.USN AND

SS.SSID = C.SSID

GROUP BY SS.SEM, SS.SEC, S.GENDER

ORDER BY SEM;

OUTPUT:

SEM	S	G	COUNT
	-		
4	A	F	1
4	A	M	2
4	В	F	2 2 2 2
4	В	M	2
4	C	F	2
4	C	M	
6	A	F	2
6	A	M	1
6	В	F	1
6	В	M	2
8	A	F	1
8	A	M	3
8	В	F	2
8	В	M	1
8	C	F	2
8	C	M	1

3.Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.

CREATE VIEW STU_TEST1_MARKS_VIEW

AS

SELECT TEST1, SUBCODE

FROM IAMARKS

WHERE USN = '1BI15CS101';

OUTPUT:

SQL> SELECT * FROM STU_TEST1_MARKS_VIEW;

TEST1	SUBCODE
20	10CS61
12	10CS62
19	10CS63
20	10CS64
15	10CS65

4.Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.

UPDATE IAMARKS SET FINALIA=((TEST1+TEST2+TEST3)-LEAST(TEST1,TEST2,TEST3))/2;

OUTPUT:

SQL> SELECT * FROM IAMARKS;

USN	SUBCODE	SSID	TEST1	TEST2	TEST3	FINALIA
1BI15CS101	10CS61	CSE6B	20	23	20	21.5
1BI15CS101	10CS62	CSE6B	18	19	19	19
1BI15CS101	10CS63	CSE6B	19	20	20	20
1BI15CS101	10CS64	CSE6B	20	20	19	20
1BI15CS101	10CS65	CSE6B	18	20	19	19.5
1BI14CS007	10CS81	CSE8A	15	10	12	13.5
1BI14CS007	10CS82	CSE8A	15	20	12	17.5
1BI14CS007	10CS83	CSE8A	5	10	5	7.5
1BI14CS007	10CS84	CSE8A	15	20	12	17.5
1BI14CS078	10CS81	CSE8B	15	20	12	17.5
1BI14CS078	10CS82	CSE8B	15	20	12	17.5
1BI14CS078	10CS83	CSE8B	10	8	10	10
1BI14CS078	10CS84	CSE8B	15	20	12	17.5
1BI14CS066	10CS81	CSE8C	15	20	12	17.5
1BI14CS066	10CS82	CSE8C	12	13	14	13.5
1BI14CS066	10CS83	CSE8C	15	20	12	17.5
1BI14CS066	10CS84	CSE8C	15	20	12	17.5

5. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

 ${\tt SELECT~S.USN,S.SNAME,S.ADDRESS,S.PHONE,S.GENDER,IA.SUBCODE,\\ (CASE$

WHEN IA.FINALIA BETWEEN 17 AND 20 THEN 'OUTSTANDING'

WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE'

ELSE 'WEAK'

END) AS CAT

FROM STUDENT S, SEMSEC SS, IAMARKS IA, SUBJECT SUB

WHERE S.USN = IA.USN AND

SS.SSID = IA.SSID AND

SUB.SUBCODE = IA.SUBCODE AND

SUB.SEM = 8;

OUTPUT:

ociici.			
USN	SNAME	ADDRESS	PHONE G SUBCODE CAT
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS84 OUTSTANDING
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS83 WEAK
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS82 OUTSTANDING
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS81 AVERAGE
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS84 OUTSTANDING
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS83 WEAK
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS82 OUTSTANDING
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS81 OUTSTANDING

1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS84	OUTSTANDING
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS83	OUTSTANDING
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS82	AVERAGE
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS81	OUTSTANDING

5. Consider the schema for Company Database:

EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo) DEPARTMENT(DNo, DName, MgrSSN, MgrStartDate) DLOCATION(DNo,DLoc)

PROJECT(PNo, PName, PLocation, DNo)

WORKS_ON(SSN, PNo, Hours)

CREATE TABLE EMPLOYEE(SSN VARCHAR(8),

Name VARCHAR(10), Address VARCHAR(30), Sex CHAR(2).

Salary NUMBER(10), SuperSSN VARCHAR(8), DNo VARCHAR(6), CONSTRAINT PK_SSN PRIMARY KEY(SSN));

CREATE TABLE DEPARTMENT(DNo VARCHAR(6),

DName VARCHAR(10), MgrSSN VARCHAR(8), MgrStartDate DATE.

CONSTRAINT PK_DNo PRIMARY KEY(DNo),

CONSTRAINT FK_MgrSSN FOREIGN KEY(MgrSSN) REFERENCES EMPLOYEE(SSN));

CREATE TABLE DLOCATION(DNo VARCHAR(6),

DLoc VARCHAR(15).

CONSTRAINT PK_DNo_DLoc PRIMARY KEY(DNo,DLoc),

CONSTRAINT FK DNo FOREIGN KEY(DNo) REFERENCES DEPARTMENT(DNo));

CREATE TABLE PROJECT(PNo VARCHAR(5),

PName VARCHAR(10), PLocation VARCHAR(14), DNo VARCHAr(6),

CONSTRAINT PK PNo PRIMARY KEY(PNo),

CONSTRAINT FK_PDNo FOREIGN KEY(DNo) REFERENCES DEPARTMENT(DNo));

CREATE TABLE WORKS_ON(SSN VARCHAR(8),

PNo VARCHAR(5),

Hours NUMBER(5),

CONSTRAINT PK_PNo_SSN PRIMARY KEY(PNo,SSN),

CONSTRAINT FK_WSSN FOREIGN KEY(SSN) REFERENCES EMPLOYEE(SSN),

CONSTRAINT FK_PNo FOREIGN KEY(PNo) REFERENCES PROJECT(PNo));

ALTER TABLE EMPLOYEE ADD CONSTRAINT FK_SSN FOREIGN KEY(SuperSSN) REFERENCES EMPLOYEE(SSN);

ALTER TABLE EMPLOYEE ADD CONSTRAINT FK_EDNo FOREIGN KEY(DNo) REFERENCES DEPARTMENT(DNo);

```
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary)VALUES('100','John','VV
Puram, Bangalore', 'M', 660000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary)VALUES('200', 'Scott', 'MG
Road, Bangalore', 'M', 700500);
INSERT INTO EMPLOYEE(SSN, Name, Address. Sex.
Salary)VALUES('300', 'Smith', 'Jayanagar, Bangalore', 'M', 600000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex,
Salary)VALUES('400', 'Vani', 'Vijayanagar, Bangalore', 'F', 800000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary)VALUES('500', 'Gopal', 'PB
Nagar, Bangalore', 'M', 500000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(600, 'Ravi', 'Kormangala
Bangalore', 'M', 700000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(700, 'Raghu', 'RR Nagar
Bangalore', 'M', 680000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(800, 'Vinod', 'RT Nagar
Bangalore', 'M', 800000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(900, 'Shankar', 'CH pete
Bangalore', 'M', 606000):
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(1000, 'Sagar', 'VV Puram
Bangalore', 'M', 800000);
INSERT INTO DEPARTMENT VALUES('D1','Accounts','200','11-Feb-2015');
INSERT INTO DEPARTMENT VALUES('D2', 'Research', '200', '11-Mar-2016'):
INSERT INTO DEPARTMENT VALUES('D3', 'Finance', '400', '16-Jun-2015');
INSERT INTO DEPARTMENT VALUES('D4', 'Admin', '100', '30-Apr-2017');
INSERT INTO DEPARTMENT VALUES('D5', 'Testing', '400', '21-Mar-2016');
INSERT INTO DLOCATION VALUES('D1','Bangalore');
INSERT INTO DLOCATION VALUES('D2','Mysore');
INSERT INTO DLOCATION VALUES('D1','Mysore');
INSERT INTO DLOCATION VALUES('D3', 'Bangalore');
INSERT INTO DLOCATION VALUES('D4', 'Mangalore');
INSERT INTO PROJECT VALUES('P1', 'Billing', 'Bangalore', 'D1');
INSERT INTO PROJECT VALUES('P8','IoT','Mysore','D2');
INSERT INTO PROJECT VALUES('P3', 'Network', 'Davangere', 'D2');
INSERT INTO PROJECT VALUES('P4', 'Tax', 'Kolar', 'D1');
INSERT INTO PROJECT VALUES('P5', 'Salary', 'Bangalore', 'D3');
INSERT INTO PROJECT VALUES('P6', 'Placement', 'Mysore', 'D4');
INSERT INTO PROJECT VALUES('P7', 'Software', 'Bangalore', 'D5');
INSERT INTO WORKS ON VALUES('100', 'P1', 8):
INSERT INTO WORKS_ON VALUES('200','P3',10);
INSERT INTO WORKS ON VALUES('300', 'P8', 10);
INSERT INTO WORKS_ON VALUES('100','P8',10);
INSERT INTO WORKS ON VALUES('400', 'P4', 10);
INSERT INTO WORKS_ON VALUES('400','P6',12);
INSERT INTO WORKS ON VALUES('500','P7',10);
INSERT INTO WORKS_ON VALUES('600','P4',10);
INSERT INTO WORKS ON VALUES('700','P5',10);
INSERT INTO WORKS_ON VALUES('800','P1',10);
INSERT INTO WORKS ON VALUES('900', 'P4', 10);
INSERT INTO WORKS_ON VALUES('1000','P5',10);
```

Department of Computer Science & Engg. BIT

UPDATE EMPLOYEE SET SuperSSN='200' where SSN='100';

```
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='300';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='400';
UPDATE EMPLOYEE SET SuperSSN='300' where SSN='200';
UPDATE EMPLOYEE SET SuperSSN='300' where SSN='500';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='600';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='700';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='800';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='900';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='1000';
UPDATE EMPLOYEE SET DNo='D1' where SSN='100':
UPDATE EMPLOYEE SET DNo='D2' where SSN='200';
UPDATE EMPLOYEE SET DNo='D3' where SSN='300';
UPDATE EMPLOYEE SET DNo='D4' where SSN='400';
UPDATE EMPLOYEE SET DNo='D2' where SSN='500';
UPDATE EMPLOYEE SET DNo='D1' where SSN='600';
UPDATE EMPLOYEE SET DNo='D1' where SSN='700':
UPDATE EMPLOYEE SET DNo='D1' where SSN='800':
UPDATE EMPLOYEE SET DNo='D1' where SSN='900';
UPDATE EMPLOYEE SET DNo='D1' where SSN='1000';
SELECT * FROM EMPLOYEE:
SSN
       NAME ADDRESS
                                 SE
                                                  SUPERSSN
                                                              DNO
                                         SALARY
      -----
              -----
                                  -----
                                         - -----
                                                     -----
100
       John
               VV Puram, Bangalore
                                  M
                                         660000
                                                     200
                                                             D1
                                                             D2
200
       Scott
               MG Road, Bangalore
                                   M
                                         700500
                                                      300
300
       Smith
              Jayanagar, Bangalore
                                   M
                                         600000
                                                     200
                                                             D3
400
       Vani
               Vijayanagar, Bangalore
                                  F
                                         800000
                                                     200
                                                             D4
500
       Gopal
               PB Nagar, Bangalore
                                   M
                                         500000
                                                      300
                                                             D2
               Kormangala Bangalore
                                                             D1
600
       Ravi
                                   M
                                         700000
                                                     200
               RR Nagar Bangalore
700
       Raghu
                                   M
                                         680000
                                                     200
                                                             D1
800
       Vinod
               RT Nagar Bangalore
                                   M
                                         800000
                                                     200
                                                             D1
900
               CH pete Bangalore
                                                     200
                                                             D1
       Shankar
                                   M
                                         606000
1000
                                                             D1
               VV Puram Bangalore
                                   M
                                                     200
       Sagar
                                         800000
SELECT * FROM DEPARTMENT;
DNO DNAME
                     MGRSSN MGRSTARTD
D1
    Accounts
                    200
                                 11-FEB-15
D2
     Research
                    200
                                 11-MAR-16
D3
     Finance
                    400
                                 16-JUN-15
D4
     Admin
                    100
                                 30-APR-17
D5
                    400
                                 21-MAR-16
    Testing
SELECT * FROM DLOCATION;
DNO DLOC
D1
     Bangalore
D1
     Mysore
D2
     Mysore
D3
     Bangalore
D4
    Mangalore
```

Department of Computer Science & Engg. BIT

PLOCATION DNO

SELECT * FROM PROJECT;

PNO PNAME

```
P1
        Billing
                      Bangalore
                                     D1
P8
       IoT
                      Mysore
                                     D2
P3
       Network
                      Davangere
                                     D2
P4
                      Kolar
                                     D1
       Tax
P5
                      Bangalore
                                     D3
       Salary
                      Mysore
                                     D4
P6
       Placement
P7
       Software
                      Bangalore
                                     D5
SELECT * FROM WORKS ON:
                 HOURS
SSN
       PNO
100
       P1
                   8
300
       P3
                   10
       P8
                   10
300
       P8
100
                   10
400
       P4
                   10
400
       P6
                   12
500
       P7
                   10
       P8
400
                   10
600
       P4
                   10
700
       P5
                   10
800
       P1
                   10
       P4
900
                   10
```

10

Queries:

P5

1000

1.Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project.

```
SELECT DISTINCT PNo
  FROM PROJECT
  WHERE PNo IN(
         (SELECT P.PNo
          FROM PROJECT P, DEPARTMENT D, EMPLOYEE E
            WHERE P.DNo=D.DNo AND D.MgrSSN=E.SSN AND E.Name='Scott')
           UNION
           (SELECT W.PNo
          FROM WORKS ON W, EMPLOYEE E
            WHERE E.SSN=W.SSN AND E.Name='Scott'));
```

OUTPUT:

PNO ----P1 P3

P4

P8

2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise.

```
SELECT E.Name, 1.1* E.Salary AS Increased_salary
FROM EMPLOYEE E, WORKS ON W, PROJECT P
WHERE E.SSN=W.SSN AND W.PNo=P.PNo AND P.PName='IoT';
```

OUTPUT:

NAME INCREASED_SALARY

John 726000 Smith 660000 Vani 880000

3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department.

SELECT SUM (E. Salary) AS TOTAL_SALARY,MAX(E. Salary) AS MAX_SALARY,MIN(E. Salary) AS MIN_SALARY,AVG(E. Salary) AS AVG_SALARY FROM EMPLOYEE E, DEPARTMENT D

WHERE E. DNo= D. DNo AND D.DName='Accounts';

OUTPUT:

TOTAL_SALARY	MAX_SALARY	MIN_SALARY	AVG_SALARY
4246000	800000	606000	707666.667

4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator).

SELECT E.Name FROM EMPLOYEE E WHERE NOT EXISTS((SELECT PNo FROM PROJECT WHERE DNo='D5') MINUS (SELECT W.PNo FROM WORKS_ON W WHERE E.SSN=W.SSN));

OUTPUT:

NAME

Gopal

5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.

SELECT D.DNo,COUNT(*)

FROM EMPLOYEE E, DEPARTMENT D WHERE E.DNo= D.DNo AND E.Salary>600000 GROUP BY D.DNo

HAVING COUNT(*)>=5;

OUTPUT:

DNO COUNT(*)
----D1 6