971MO5

HIMADRI MANDAL

December 7, 2021

§1 Solution

Solution. Firstly notice that rad(a) = rad(b), this is quite easy to prove.

Claim — $b^3|a$

Proof. Assume a < b, this leads to a clear contradiction. So $a \ge b$. For a = b we easily get a = b = 1. Now assume a > b,

$$a^{b^{2}} = b^{a} < a^{a} \implies a > b^{2}$$

$$a^{b^{2}} = b^{a} = (b^{2})^{\frac{a}{2}} < a^{\frac{a}{2}} \implies a > 2b^{2}$$

$$\frac{\nu_{p}(a)}{\nu_{p}(b)} = \frac{a}{b^{2}} > 2$$

Thus, $b^2|a$, but using this in the previous equation again we would have

$$\frac{\nu_p(a)}{\nu_p(b)} = \frac{a}{b^2} \ge 3$$

So, $b^3|a$.

Set $a = kb^3$. The original equation reduces to $k = b^{bk-3}$. To finish,

$$k = b^{bk-3} = b^{b^{bk-2}-3} = b^{b^{b^{bk-2}-2}-3}$$

If $bk-2 \ge 3$ then the size of the RHS increases unboundedly. Thus, $bk = \{1, 2, 3, 4\}$ Checking these we get $(a, b) \in (1, 1), (16, 2), (27, 3)$ are the only solutions.