

CZ3005
Artificial Intelligence

Knowledege Representation and Reasoning

Asst/P Mahardhika Pratama

Email: mpratama@ntu.edu.sg

Office: N4-02a-08

Knowledge Representation

- ☐ Knowledge representation (KR)
 - KB: set of sentences -> need to
 - Express knowledge in a (computer-) tractable form
- ☐ Knowledge representation language
 - Syntax implementation level
 - Possible configurations that constitute sentences
 - Semantics knowledge level
 - Facts of the world the sentences refer to
 - e.g. language of arithmetics: x, y numbers
 sentence: "x ≥ y", semantics: "greater or equal"

□ Logic

- Representation + Inference = Logic
 - Where representation = syntax + semantics

□ Reasoning

Construction of new sentences from existing ones

☐ Entailment as logical inference

Entailment

Entailment and Inference

□ Entailment

- Generate sentences that are necessarily true, given that the existing sentences are true
- Notation: KB \mid = α
 - e.g. Wumpus world:

$$\{ \text{"} \neg S(1,1)\text{"}, \text{"} \neg B(1,1)\text{"} \} \mid = \text{"} OK(2,1)\text{"}$$

Arithmetics:

$$\{ \text{"} x \ge y \text{"}, \text{"} y \ge z \text{"} \} \mid = \text{"} x \ge z \text{"}$$

□ Inference

- **Tell**, given KB: $(KB = \alpha)$!
- **Ask**, given KB and α : (KB |= α) ?

■ Can be described by the sentences it derives, KB $\models \alpha_I$

□ Soundness

- Generate only entailed sentences
- Proof: sequence of operations of a sound inference
 - Record of operations that generate a specific entailed sentence
 e.g. "Smoke ⇒ Fire" and "Smoke" |= "Fire"
 "Fire ⇒ Call_911" and "Fire" |= "Call_911"

□ Completeness

A proof can be found for any entailed sentence

□ Proof theory

Specify the reasoning operations that are sound

□ Definition

- Inference (reasoning) is the process by which conclusions are reached
- Logical inference (deduction) is the process that implements entailment between sentences

☐ Useful properties

- Valid sentence (tautology)
 - iff TRUE under all possible interpretations in all possible worlds.
 - e.g. "S or ¬ S" is valid, "S(2,1) or ¬ S(2,1)", etc.
- Satisfiable sentence
 - iff there is some interpretation in some world for which it is TRUE
 - e.g. "S and ¬ S" is unsatisfiable

Quiz

Kahoot.it

An Example of Sound Inference

☐ Sentence: x

Semantics: an expression; can be a single symbol or number,

the concatenation of 2 expressions, etc.

☐ Sentence: x y

Semantics: an expression which refers to a quantity that is the

product of the quantities referred to by each of the

expressions

 \Box Sentence: x = y

Semantics: the 2 expressions on each side of "=" refer to the

same quantity

 \Box A sound inference: from $E = mc^2$

$$T_1 \ge T_2 = E T_1 \ge mc^2 T_2$$

□Interpretation (meaning)

- Correspondence between sentences and facts
- Arbitrary meaning, fixed by the writer of the sentence
- Systematic relationship: compositional languages
 - The meaning of a sentence is a function of the meaning of its parts.

one

uno vi

ichi

Truth value

- A sentence make a claim about the world —> TRUE or FALSE
- Depends on the interpretation and the state of the world
 - e.g. Wumpus world: S(1,2) true if means "Stench at [1,2]" and the world has a wumpus at either [1,3] or [2,2].

□ Formal logic

- Syntax
 - A set of rules for writing sentences
- Semantics
 - A set of rules (constraints) for relating sentences to facts
- Proof theory / inference procedure
 - A set of rules for deducing entailments of sentences

□ Propositional logic

- Symbols, representing propositions (facts)
- Boolean <u>connectives</u>, combining symbols
 - e.g. "Hot" or "Hot and Humid"

☐ First-order logic

- Objects and <u>predicates</u>, representing properties of and relations between objects
- Variables, Boolean connectives and quantifiers
 - e.g. "Hot(x)", "Hot(Air)" or "Hot(Air) and Humid(Air)"

☐ Temporal logic

World ordered by a set of <u>time</u> points (intervals)

☐ Probabilistic and fuzzy logic

- Degrees of <u>belief</u> and <u>truth</u> in sentences
 - e.g. "Washington is a state" with belief degree 0.4, "a city" 0.6, "Washington is a large city" with truth degree 0.6

Commitments of Logics

Formal (KR) Language	Ontological commit- ment (what exists in the world)	Epistemological com- mitment (what an agent believes about facts)
Propositional logic	facts	true / false / unknown
First-order logic	facts, objects, relations	true / false / unknown
Temporal logic	facts, objects, rel., times	true / false / unknown
Probability logic	facts	degree of belief 01
Fuzzy logic	degrees of truth 01	degree of belief 01

Propositional Logic

- ☐P is "It rains on Tuesday"
- □Q is "John likes chocolate"

P and Q are either TRUE or FALSE.

First order Logic

- \Box If x is a man, then x is a mortal
 - $man(x) \Rightarrow mortal(x)$
 - \neg man(x) \vee mortal(x)
- ☐ If n is a natural number, then n is either even or odd.
 - Natural(n) \Rightarrow even(n) \vee odd(n)

Sets with fuzzy boundaries

A = Set of tall people

