```
4/9/1
             **Image available**
014450010
WPI Acc No: 2002-270713/200232
XRPX Acc No: N02-210693
  Alarm device for compressed air controlled vehicle braking
  system compares pressure, flow values with stored demand
  characteristic(s), produces alarm signal if measurement values abnormal
Patent Assignee: SIEMENS AG (SIEI )
 Inventor: TALKE W; WIEMERS T
 Number of Countries: 026 Number of Patents: 004
 Patent Family:
                                                            Week
                                            Kind Date
             Kind Date
                             Applicat No
 Patent No
                                                 20010612 200232 B
              Al 20011219 EP 2001250208 A
 EP 1164067
                                                 20000614 200232
              A1 20020103 DE 10029125
                                             Α
DE-10029125
                                                  20000614
                                                           200456
               B4 20040826 DE 10029125
                                             Α
 DE 10029125
                                                 20010612 200471
               B1 20041027 EP 2001250208
                                             Α
 EP 1164067
 Priority Applications (No Type Date): DE 10029125 A 20000614
 Patent Details:
                                      Filing Notes
                         Main IPC
 Patent No Kind Lan Pg
              A1 G 10 B60T-017/22
 EP 1164067
    Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
    LI LT LU LV MC MK NL PT RO SE SI TR
                       B60T-017/22
 DE 10029125
             A1
                        B60T-017/22
 DE 10029125
               B4
                        B60T-017/22
               B1 G
 EP 1164067
    Designated States (Regional): AT CH FR IT LI
 Abstract (Basic): EP 1164067 Al
         NOVELTY - The device has a measurement device (27) that measures
     the pressure and/or compressed air flow in the system, a storage device
     (40) for operating mode-specific demand pressure and/or flow
     characteristics and a controller (10) that compares the measurement
     values (P(t),I(t)) with the stored demand characteristic(s)
     (P1(t),...;I1(t)) and produces the alarm signal in the event of abnormal
     pressure and/or air flow measurement values.
         DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the
     following: a method of generating an alarm signal indicating a fault in
     a compressed air controlled vehicle braking system.
         USE - For generating an alarm signal indicating a fault in a
     compressed air controlled vehicle braking system.
         ADVANTAGE - Enables reliable detection of a fault in a compressed
     air controlled vehicle braking system.
         DESCRIPTION OF DRAWING(S) - The drawing shows a schematic
     representation of an alarm device
         measurement device (27)
         storage device (40)
         controller (10)
          ,I(t)) measurement values (P(t)
          ,..;I1(t)) stored demand characteristics (P1(t)
         pp; 10 DwgNo 1/1
  Title Terms: ALARM; DEVICE; COMPRESS; AIR; CONTROL; VEHICLE; BRAKE; SYSTEM;
    COMPARE; PRESSURE; FLOW; VALUE; STORAGE; DEMAND; CHARACTERISTIC; PRODUCE;
    ALARM; SIGNAL; MEASURE; VALUE; ABNORMAL
  Derwent Class: Q18; W05; X22
  International Patent Class (Main): B60T-017/22
```

International Patent Class (Additional): B60T-008/88

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): W05-B03; W05-D07D; X22-C02

Derwent WPI (Dialog® File 351): (c) 2005 Thomson Derwent. All rights reserved.

(f) Int. Cl.⁷:

B 60 T 17/22

B 60 T 8/88

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND **MARKENAMT**

Siemens AG, 80333 München, DE

(7) Anmelder:

® Offenlegungsschrift

_® DE 100 29 125 A 1

(7) Aktenzeichen:

100 29 125.2

2 Anmeldetag:

14. 6. 2000

(3) Offenlegungstag:

3. 1. 2002

(72) Erfinder:

Talke, Wolfgang Dr.-Ing., 38889 Blankenburg, DE; Wiemers, Thomas Dr.-Ing., 81249 München, DE

(6) Entgegenhaltungen:

DE 42 00 302 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Alarmeinrichtung für eine druckluftgesteuerte Bremsanlage eines Fahrzeugs
- Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung anzugeben, mit der eine Fehlfunktion einer druckluftgesteuerten Bremsanlage zuverlässig erkannt werden

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Einrichtung zum Erzeugen eines Alarmsignals (a), das eine Fehlfunktion einer druckluftgesteuerten Bremsanlage (8) eines Fahrzeugs angibt, mit einer Messeinrichtung (27), die den Druck und/oder den Luftstrom der Druckluft in der Bremsanlage unter Bildung von Druck- und/oder Luftstrommesswerten (P(t), I(t)) misst, mit einer Speichereinrichtung (40) zum Abspeichern von betriebsartindividuellen Solidruck- und/oder Sollstromverläufen (P1(t), P2(t), P3(t), P4(t), I1(t), I2(t), I3(t), I4(t)) und mit einer mit der Messeinrichtung und der Speichereinrichtung verbundenen Steuereinrichtung (10), die die Messwerte (P(t), I(t)) der Messeinrichtung mit den Solldruck- und/oder Sollstromverläufen der Speichereinrichtung vergleicht und bei anormalen Druck- und/oder Luftstrommesswerten das Alarmsignal erzeugt.

Beschreibung

[0001] Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung anzugeben, mit der eine Fehlfunktion einer druckluftgesteuerten Bremsanlage zuverlässig erkannt werden kann.

[0002] Diese Aufgabe wird erfindungsgemäß gelöst durch eine Einrichtung zum Erzeugen eines Alarmsignals, das eine Fehlfunktion einer druckluftgesteuerten Bremsanlage eines Fahrzeugs angibt, mit einer Messeinrichtung, die den Druck und/oder den Luftstrom der Druckluft in der Bremsanlage unter Bildung von Druck- und/oder Luftstrommesswerten misst, mit einer Speichereinrichtung zum Abspeichern von betriebsartindividuellen Solldruck- und/oder Sollstromverläufen und mit einer mit der Messeinrichtung und der Speichereinrichtung verbundenen Steuereinrichtung, die die Messwerte der Messeinrichtung mit den Solldruck- und/oder Sollstromverläufen der Speichereinrichtung vergleicht und bei anormalen Druck- und/oder Luftstrommesswerten das Alarmsignal erzeugt. Unter dem Begriff "Fahrzeug" werden dabei sowohl Einzelfahrzeuge als auch aus mehreren Einzelfahrzeugen bestehende Wagenverbünde oder Züge, insbesondere Eisenbahnzüge verstanden.

[0003] Ein wesentlicher Vorteil der erfindungsgemäßen Einrichtung besteht darin, dass Fehlfunktionen der Bremsanlage sehr zuverlässig erkannt werden können, weil nämlich zum Erzeugen des Alarmsignals betriebsartindividuelle Solldruck- und/oder Sollstromverläufe herangezogen werden. Durch die Verwendung betriebsartindividueller Solldruckund/oder Sollstromverläufe ist es nämlich möglich, bereits sehr frühzeitig einen Fehler in der Bremsanlage festzustellen, und zwar noch lange, bevor ein Überschreiten von Maximal-Grenzwerten bzw. ein Totalausfall der Bremsanlage auftritt. Die betriebsartindividuelle Überwachung der Bremsanlage ermöglicht es nämlich - im Unterschied beispielsweise zu einer Überwachung, bei der lediglich das Einhalten von pauschal vorgegebenen Grenzwerten von Druck oder Luftstrom in der Bremsanlage kontrolliert wird - der jeweiligen Betriebsart der Bremsanlage (z. B. "Bremsen", Lösen der Bremse", "Füllen der Bremsanlage mit Druckluft", usw.) Rechnung zu tragen; so ist beispielsweise beim "Lösen der Bremse" ein völlig anderer Sollverlauf von Druck und Luftstrom in der Bremsanlage zu erwarten als beim "Bremsen", so dass unter Berücksichtigung der jeweiligen Betriebsart eine sehr viel genauere Überwachung der Bremsanlage möglich ist als bei einer betriebsartunabhängigen, quasi "pauschalen" Überwachung. Durch die betriebsartindividuelle Überwachung können damit bereits sehr geringe Abweichungen der Bremsanlage vom "Normalzustand" festgestellt werden, so dass eine sehr große Zuverlässigkeit beim Detektieren von Fehlfunktionen erreicht werden kann. Bei der erfindungsgemäßen Einrichtung ist es damit auch möglich, sich "anbahnende" Fehlfunktionen zu entdecken, also solche, die zwar noch innerhalb der Toleranzgrenzen für den Betrieb der Bremsanlage liegen, aber schon auf eine deutliche Abnutzung der Bremsanlage oder Teilen davon hindeuten.

[0004] Um Fehlfunktionen besonders zuverlässig erkennen zu können, wird erfindungsgemäß vorgeschlagen, dass die Steuereinrichtung derart ausgestaltet ist, dass sie aus dem zeitlichen Verlauf der Druck- und/oder Luftstrommesswerte und der betriebsartindividuellen Solldruck- und/oder Sollstromverläufe eine Korrelationsmessgröße bestimmt und das Alarmsignal erzeugt, wenn die Korrelationsmessgröße einen vorgegebenen Schwellenwert unterschreitet; denn mit Korrelationsmessgrößen lassen sich Abweichungen sehr genau feststellen.

[0005] Eine sehr einfache Bestimmung der Korrelationsmessgröße ist erfindungsgemäß möglich durch das Berechnen von Kreuzkorrelationsfunktionen; es wird daher als vorteilhaft angesehen, wenn die Steuereinrichtung derart ausgestaltet ist, dass sie aus dem zeitlichen Verlauf der Druck- und/oder Luftstrommesswerte und der betriebsartindividuellen Solldruck- und/oder Sollstromverläufe eine Kreuzkorrelationsfunktion bildet, einen Maximalwert dieser Kreuzkorrelationsfunktion bestimmt und den Maximalwert als Korrelationsmessgröße behandelt.

[0006] Noch genauer als mit betriebsartindividuellen Solldruck- und/oder Sollstromverläufen lässt sich erfindungsgemäß das Alarmsignal erzeugen, wenn fahrzeug- und betriebsartindividuelle Solldruck- und/oder Sollstromverläufe herangezogen werden; konkret wird also erfindungsgemäß vorgeschlagen, dass die Steuereinrichtung derart ausgestaltet ist, dass sie bei einer zuvor an dem Fahrzeug durchgeführten Bremsprobe von der Messeinrichtung gemessene Druck- und/ oder Luftstrommesswerte als fahrzeug- und betriebsartindividuelle Solldruck- und/oder Sollstromverläufe in der Speichereinrichtung abspeichert. Die fahrzeug- und betriebsartindividuellen Solldruck- und/oder Sollstromverläufe stellen also eine Art "Fingerabdruck" der Bremsanlage dar, weil nämlich die bei der Bremsprobe gemessenen fahrzeug- und betriebsartindividuellen Solldruck- und/oder Sollstromverläufe ganz charakteristisch sind für die Bremsanlage des Fahrzeugs. Jede Änderung dieses "Fingerabdrucks", beispielsweise durch einen Verschleiß von Bremseinrichtungen der Bremsanlage, führt zu einer Änderung dieses "Fingerabdrucks", die auf eine Fehlfunktion oder auf eine in Kürze zu erwartende Fehlfunktion hindeutet. Die Art der Änderung des Fingerabdrucks lässt dabei auch Rückschlüsse darauf zu, welche Teile der Bremsanlage defekt oder verschlissen sind. Speichert man nämlich die gemessenen "Fingerabdruck-Änderungen" nach der Fehlerbehebung in einer Datenbank ab, so kann durch Vergleich neu gemessener "Fingerabdruck-Änderungen" mit früher gemessenen, abgespeicherten "Fingerabdruck-Änderungen" bereits noch während des Betriebs der Bremsanlage eine Fehlerdiagnose durchgeführt werden. Dieses Ergebnis kann beispielsweise in der Speichereinrichtung abgespeichert werden und bei der nächsten Wartung der Bremsanlage von den Service-Technikern über ein Diagnosekabel abgefragt werden.

[0007] Besonders zuverlässig lässt sich das Alarmsignal bilden, wenn fahrzeug- und betriebsartindividuelle Solldruckund/oder Sollstromverläufe ermittelt und abspeichert für die Betriebsarten "Bremsen des Zuges", "Lösen der Bremsen" und "Füllen der Bremsanlage mit Druckluft"; es wird also erfindungsgemäß als vorteilhaft angesehen, wenn die Steuereinrichtung derart ausgestaltet ist, dass sie die fahrzeug- und betriebsartindividuellen Solldruck- und/oder Sollstromverläufe ermittelt und abspeichert für die Betriebsarten des Fahrzeugs:

- Betriebsart "Bremsen des Fahrzeugs ", in der das Fahrzeug gebremst wird,

65

- Betriebsart "Lösen der Bremsen", in der die Bremsen nach Abschluss eines Bremsvorganges wieder gelöst werden und
- Betriebsart "Füllen der Bremsanlage mit Druckluft", in der die Bremsanlage mit Druckluft gefüllt oder nachgefüllt wird, und

[0008] die Steuereinrichtung darüber hinaus derart ausgestaltet ist, dass sie zum Erzeugen des Alarmsignals ausschließlich diejenigen fahrzeug- und betriebsartindividuellen Solldruck und/oder Sollstromverläufe heranzieht, die der jeweiligen Betriebsart des Fahrzeugs entsprechen.

[0009] Der Erfindung liegt außerdem die Aufgabe zugrunde, ein Verfahren anzugeben, mit der eine Fehlfunktion einer druckluftgesteuerten Bremsanlage zuverlässig erkannt werden kann.

[0010] Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Erzeugen eines Alarmsignals, das eine Fehlfunktion einer druckluftgesteuerten Bremsanlage eines Fahrzeugs angibt, bei dem der Druck und/oder der Luftstrom in der Bremsanlage des Fahrzeugs unter Bildung von Druck- und/oder Luftstrommesswerten gemessen wird, die gemessenen Druck- und/oder Luftstrommesswerte mit betriebsartindividuellen Solldruck- und/oder Sollstromverläufen verglichen werden und bei anormalen Druck- und/oder Luftstrommesswerten das Alarmsignal erzeugt wird.

[0011] Die Vorteile des erfindungsgemäßen Verfahrens und der in den Unteransprüchen beschriebenen vorteilhaften Ausgestaltungen des erfindungsgemäßen Verfahrens entsprechen den Vorteilen, die im Zusammenhang mit der erfindungsgemäßen Einrichtung und deren vorteilhaften Ausgestaltungen erläutert worden sind.

[0012] Zur Erläuterung zeigt die Fig. 1 ein Ausführungsbeispiel für eine erfindungsgemäße Einrichtung, mit der auch das erfindungsgemäße Verfahren durchgeführt werden kann.

[0013] Die Fig. 1 zeigt eine Einrichtung 5 zum Erzeugen eines Alarmsignals A, das eine Fehlfunktion einer druckluftgesteuerten Bremsanlage 8 eines in der Fig. 1 nicht dargestellten, aus einer Antriebslokomotive und mehreren Waggons bestehenden Eisenbahnzuges angibt. Die Einrichtung 5 weist eine Steuereinrichtung 10 auf, der an einem Meßwerteingang M1 ein Drucksensor 15 und an einem weiteren Meßwerteingang M2 ein Luftstromsensor 20 vorgeordnet ist. Der Drucksensor 15 und der Luftstromsensor 20 sind an eine durch den Eisenbahnzug durchgeführte und alle Wagen des Eisenbahnzugs verbindende Bremshauptluftleitung 25 angeschlossen; die beiden Sensoren 15 und 20 bilden damit eine Messeinrichtung 27 zum Messen von Druck und Luftstrom in der Bremsanlage 8.

[0014] Die Fig. 1 zeigt außerdem Bremseinrichtungen 28, die über die Bremshauptluftleitung 25 mit Druckluft beaufschlagt und angesteuert werden und mit denen der Eisenbahnzug gebremst wird.

25

40

[0015] Die Steuereinrichtung 10 ist mit einem Steuereingang S1 außerdem mit einer Erfassungseinrichtung 30 verbunden. Diese Erfassungseinrichtung 30 steht mit einer Bedieneinrichtung 35 in Verbindung, mit der die Bremsanlage 8 von einer Bedienperson – also dem Zugführer – bedient werden kann. Dies ist in der Fig. 1 schematisch durch einen Pfeil 29 dargestellt. Bei der Bedieneinrichtung 35 kann es sich beispielsweise um ein Führerbremsventil im Führerstand des Eisenbahnzuges handeln. Die Erfassungseinrichtung 30 steht dabei mit der Bedieneinrichtung 35 derart in Verbindung, dass sie die jeweilige Schaltstellung der Bedieneinrichtung 35 – beispielsweise mittels elektrischer Kontakte – erfassen kann. Die Erfassungseinrichtung 30 gibt kontinuierlich ein die jeweilige Schaltstellung der Bedieneinrichtung 35 angebendes Steuersignal St an die Steuereinrichtung 10 ab.

[0016] Die Steuereinrichtung 10 ist darüber hinaus über einen Dateneingang D mit einer Speichereinrichtung 40 verbunden, in der fahrzeug- und betriebsartindividuelle Solldruck- und Sollstromwerte für die Bremsanlage 8 abspeicherbar sind.

[0017] Die Einrichtung 5 gemäß Fig. 1 kann beispielsweise wie folgt betrieben werden. Zunächst wird mit dem Zug eine Bremsprobe durchgeführt, indem die folgenden Handlungen vorgenommen werden:

1. Füllen der Bremsanlage 8 mit Druckluft

[0018] Das Füllen der Bremsanlage 8 geschieht konkret durch Einfüllen von Druckluft mittels eines Luftpressers; dabei wird die Bremshauptluftleitung 25 und ein in der Figur nicht dargestellter Hilfsluftbehälter der Bremsanlage 8 unter Druckluft gesetzt. Dies erfordert eine entsprechende Bedienhandlung. Diese Bedienhandlung wird mit der Erfassungseinrichtung 35 erfasst und durch ein entsprechendes Steuersignals St an die Steuereinrichtung 10 signalisiert. Während des Füllens der Bremsanlage 8 werden mit dem Drucksensor 15 und dem Luftstromsensor 20 der Luftdruck und der Luftstrom in der Bremshauptluftleitung 25 unter Bildung von Luftdruckmesswerten P(t) und Luftstrommesswerten I(t) gemessen. Die Luftdruckmesswerte und Luftstrommesswerte gelangen von dem Drucksensor 15 bzw. dem Luftstromsensor 20 zur Steuereinrichtung 10, die den zeitlichen Verlauf der Luftdruckmesswerte P(t) als ersten Solldruckverlauf P1(t) und den zeitlichen Verlauf der Luftstromwerlauf I1(t) in der Speichereinrichtung 40 abspeichert.

2. Bremsen des Zugs

[0019] Nachdem die Bremsanlage 8 mit Druckluft beaufschlagt ist, wird der Zug gebremst. Dies erfordert wiederum eine entsprechende Bedienhandlung, die mit der Erfassungseinrichtung 35 erfasst und durch ein entsprechendes Steuersignals St an die Steuereinrichtung 10 gemeldet wird. Sobald das entsprechende Steuersignal St für "Bremsen des Zugs" vorliegt, erfasst die Steuereinrichtung 10 die zeitlichen Verläufe von Druck und Luftstrom in der Bremshauptluftleitung 25 und speichert den zeitlichen Verlauf der gemessenen Luftdruckmesswerte P(t) als zweiten Solldruckverlauf P2(t) und den zeitlichen Verlauf Luftstrommesswerte I(t) als zweiten Sollstromverlauf I2(t) in der Speichereinrichtung 40 ab.

3. Lösen der Bremse

[0020] Beim Lösen der Bremsen der Bremsanlage 8 wird genauso vorgegangen wie oben beschrieben. Nachdem die Steuereinrichtung 10 mit der Erfassungseinrichtung 35 erfasst hat, dass die Betriebsart "Bremse lösen" durchgeführt wird, misst sie wiederum Druck und Luftstrom in der Bremshauptluftleitung 25 und speichert die zeitlichen Verläufe der gemessenen Luftdruckmesswerte P(t) und der Luftstrommesswerte I(t) in der Speichereinrichtung 40 ab, und zwar als dritten Solldruckverlauf P3(t) und als dritten Sollstromverlauf I3(t).

4. Nachfüllen mit Druckluft

[0021] Auch in der Betriebsart "Nachfüllen mit Druckluft" wird wie oben beschrieben vorgegangen. Nachdem die Steuereinrichtung mit der Erfassungseinrichtung 35 erfasst hat, dass die Betriebsart "Nachfüllen mit Druckluft" durchgeführt wird, misst sie wiederum Druck und Luftstrom in der Bremshauptluftleitung 25 und speichert die zeitlichen Verläufe der gemessenen Luftdruckmesswerte P(t) und Luftstrommesswerte I(t) als vierten Solldruckverlauf P4(t) und als vierten Sollstromverlauf I4(t) in der Speichereinrichtung 40 ab.

[0022] Wird bei der Bremsprobe festgestellt, dass die Bremsanlage 8 funktionstüchtig ist, so kann der Eisenbahnzug normal in Betrieb genommen werden. Die bei der Bremsprobe aufgenommenen Solldruck- und Sollstromverläufe werden dabei für den weiteren Betrieb des Zuges weiterverwendet, und zwar zur Kontrolle der Bremsanlage 8 und damit zur Kontrolle der einzelnen Bremseinrichtungen 28 der Bremsanlage 8; wie dies genau geschieht, soll nachfolgend im Detail erläutert werden. Zusammengefasst ist jedenfalls schon einmal festzuhalten, dass nach Abschluss der Bremsprobe Solldruckverläufe und Sollstromverläufe für die Betriebsarten "Füllen der Bremsanlage 8 mit Druckluft", "Bremsen des Zugs", "Lösen der Bremse" und "Nachfüllen mit Druckluft" in der Speichereinrichtung 40 vorliegen.

15 [0023] Nach Abschluss der Bremsprobe wird die Bremsanlage 8 in den "Normalbetrieb" geschaltet; dieser sieht wie folgt aus:

[0024] Die Steuereinrichtung 10 überwacht kontinuierlich das Steuersignal St auf eine Signaländerung. Wie die Steuereinrichtung 10 arbeitet, wenn es zu einer Signaländerung kommt, soll nun am Beispiel des Übergangs von "Bremse gelöst" zu "Bremsen des Zugs" beschrieben werden. Bei einem Wechsel des Steuersignals St prüft die Steuereinrichtung 10, ob für die neue Betriebsart ein Solldruckverlauf und ein Sollstromverlauf in der Speichereinrichtung 40 abgespeichert ist. Da – wie oben beschrieben – für die Betriebsart "Bremsen des Zugs" ein Solldruckverlauf und ein Sollstromverlauf abgespeichert wurde, nämlich der zweite Solldruckverlauf P2(t) und der zweite Sollstromverlauf I2(t), kann die Steuereinrichtung 10 Druck und Luftstrom in der Bremshauptluftleitung 25 mit der Messeinrichtung 27 messen und die Messwertverläufe mit den "Sollverläufen" vergleichen. Das Vergleichen wird dabei unter Bildung einer Korrelationsmessgröße für den Druck und einer Korrelationsmessgröße für den Luftstrom durchgeführt.

[0025] Hierzu werden zunächst Kreuzkorrelationsfunktionen Kp (τ) und Ki (τ) berechnet, die die Kreuzkorrelation zwischen dem Luftdruckmesswerte-Verlauf P(t) und dem Solldruckverlauf P(t) einerseits und die Korrelation zwischen dem Luftstrommesswerte-Verlauf I(t) und dem Sollstromverlauf I(t) andererseits angeben:

$$Kp(\tau) = \int_{0}^{\Delta t} P(t) \cdot P2(t-\tau)dt \text{ und}$$

$$\int_{0}^{\Delta t} Ki(\tau) = \int_{0}^{\Delta t} I(t) \cdot I2(t-\tau)dt$$

[0026] Anschließend wird der Maximalwert der Kreuzkorrelationsfunktionen Kp(τ) und Ki(τ)berechnet, und zwar für das Intervall 0 ≤ τ ≤ Δt. Δt gibt die Länge des Messfensters an, für das die Sollverläufe P2(t) und I2(t) abgespeichert und die Druck- und Luftstrommesswerte P(t) und I(t) gemessen worden sind. Der Zeitpunkt t = 0 soll dabei für alle Verläufe den Beginn des jeweiligen Messfensters bezeichnen:

$$\Delta t$$

$$Mp = \max(\int_{0}^{\Delta t} P(t) \cdot P2(t-\tau)dt) \text{ für } 0 \le \tau \le \Delta t$$

$$0$$

$$\Delta t$$

$$\sin Mi = \max(\int_{0}^{\Delta t} I(t) \cdot I2(t-\tau)dt) \text{ für } 0 \le \tau \le \Delta t$$

[0027] Mp gibt somit den Maximalwert der Kreuzkorrelationsfunktion Kp(τ) an; dieser Maximalwert soll nachfolgend als Korrelationsmessgröße Mp für den Druck bezeichnet werden. Mi gibt den Maximalwert der Kreuzkorrelationsfunktion Ki(τ) an; dieser Maximalwert soll als Korrelationsmessgröße Mi für den Luftstrom bezeichnet werden.

[0028] Unterschreitet die Korrelationsmessgröße Mp für den Druck einen vorgegebenen Druck-Schwellenwert Mp,min oder die Korrelationsmessgröße Mi für den Luftstrom einen vorgegebenen Strom-Schwellenwert Mi,min, so wird das Alarmsignal A an einem Alarmsignalausgang Sa der Steuereinrichtung 10 abgegeben.

[0029] Da die Berechnung der Korrelationsmessgrößen Mp und Mi wegen der Integration über das gesamte Messfenster mit der Länge Δt relativ lange dauert, können zum Erzeugen des Alarmsignals A statt der Korrelationsmessgrößen Mp und Mi auch Hilfskorrelationsmessgrößen Mp'(t) und Mi'(t) herangezogen werden:

$$Mp'(t) = |P(t) - P2(t)|$$

 $Mi'(t) = |I(t) - I2(t)|$

5 [0030] Falls die Hilfskorrelationsmessgröße Mp' zu einem beliebigen Zeitpunkt innerhalb des Messfensters einen vorgegebenen Druckabweichungswert ΔPmax überschreitet, so wird das Alarmsignal A erzeugt. Das gleiche gilt, wenn die Hilfskorrelationsmessgröße Mi' einen vorgegebenen Stromabweichungswert ΔImax überschreitet.

[0031] Der Vorteil des Auslösens unter Heranziehung der Hilfskorrelationsmessgrößen Mp'(t) und Mi'(t) besteht dabei

darin, dass das Alarmsignal A sofort erzeugt werden kann, wenn nur ein einziger Messwert eine zu große Abweichung vom zugeordneten Sollwert aufweist.

Patentansprüche

	5
1. Einrichtung zum Erzeugen eines Alarmsignals (A), das eine Fehlfunktion einer druckluftgesteuerten Bremsanlage (8) eines Fahrzeugs angibt,	
mit einer Messeinrichtung (27), die den Druck und/oder den Luftstrom der Druckluft in der Bremsanlage unter Bildung von Druck- und/oder Luftstrommesswerten (P(t), I(t)) misst,	
mit einer Speichereinrichtung (40) zum Abspeichern von betriebsartindividuellen Solldruck- und/oder Sollstromverläufen (P1(t), P2(t), P3(t), P4(t), I1(t), I2(t), I3(t), I4(t)) und	10
mit einer mit der Messeinrichtung und der Speichereinrichtung verbundenen Steuereinrichtung (10), die die Mess- werte (P(t), I(t)) der Messeinrichtung mit den Solldruck- und/oder Sollstromverläufen der Speichereinrichtung ver-	
gleicht und bei anormalen Druck- und/oder Luftstrommesswerten das Alarmsignal erzeugt. 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass	15
die Steuereinrichtung derart ausgestaltet ist, dass sie	
aus dem zeitlichen Verlauf der Druck- und/oder Luftstrommesswerte und der betriebsartindividuellen Solldruck- und/oder Sollstromverläufe eine Korrelationsmessgröße bestimmt und	
das Alarmsignal erzeugt, wenn die Korrelationsmessgröße einen vorgegebenen Schwellenwert unterschreitet. 3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass	20
die Steuereinrichtung derart ausgestaltet ist, dass sie	
aus dem zeitlichen Verlauf der Druck- und/oder Luftstrommesswerte und der betriebsartindividuellen Solldruck- und/oder Sollstromverläufe eine Kreuzkorrelationsfunktion bildet,	
einen Maximalwert dieser Kreuzkorrelationsfunktion bestimmt und	
den Maximalwert als Korrelationsmessgröße behandelt. 4. Einrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass	25
die Steuereinrichtung derart ausgestaltet ist, dass sie bei einer zuvor an dem Fahrzeug durchgeführten Bremsprobe	
von der Messeinrichtung gemessene Druck- und/oder Luftstrommesswerte als fahrzeug- und betriebsartindividuelle Solldruck- und/oder Sollstromverläufe in der Speichereinrichtung abspeichert.	
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass	30
die Steuereinrichtung derart ausgestaltet ist, dass sie	
die fahrzeug- und betriebsartindividuellen Solldruck- und/oder Sollstromverläufe ermittelt und abspeichert für die	
Betriebsarten des Fahrzeugs:	
Betriebsart "Bremsen des Fahrzeugs", in der das Fahrzeug gebremst wird,	
Betriebsart "Lösen der Bremsen", in der die Bremseinrichtungen der Bremsanlage nach Abschluss eines Bremsvorganges wieder gelöst werden und	35
Betriebsart "Füllen der Bremsanlage", in der die Bremsanlage mit Druckluft gefüllt oder nachgefüllt werden, und	
die Steuereinrichtung darüber hinaus derart ausgestaltet ist, dass sie zum Erzeugen des Alarmsignals ausschließlich diejenigen fahrzeug- und betriebsartindividuellen Solldruck und/oder Sollstromverläufe heranzieht, die der jeweili-	
gen Betriebsart des Fahrzeugs entsprechen.	40
6. Verfahren zum Erzeugen eines Alarmsignals (A), das eine Fehlfunktion einer druckluftgesteuerten Bremsanlage	40
(8) eines Fahrzeugs angibt, bei dem	
der Druck und/oder der Luftstrom in der Bremsanlage (8) des Fahrzeugs unter Bildung von Druck- und/oder Luft-	
strommesswerten (P(t), I(t)) gemessen wird,	
die gemessenen Druck- und/oder Luftstrommesswerte mit betriebsartindividuellen Solldruck- und/oder Sollstromverläufen (P1(t), P2(t), P3(t), P4(t), I1(t), I2(t), I3(t), I4(t)) verglichen werden und	45
bei anormalen Druck- und/oder Luftstrommesswerten das Alarmsignal erzeugt wird.	
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass	
aus dem zeitlichen Verlauf der Druck- und/oder Luftstrommesswerte und der betriebsartindividuellen Solldruck- und/oder Sollstromverläufe eine Korrelationsmessgröße bestimmt wird und	50
das Alarmsignal (A) erzeugt wird, wenn die Korrelationsmessgröße einen vorgegebenen Schwellenwert unterschreitet.	
8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass	
aus dem zeitlichen Verlauf der Druck- und/oder Luftstrommesswerte und der betriebsartindividuellen Solldruck-	
und/oder Sollstromverläufe eine Kreuzkorrelationsfunktion gebildet wird,	55
ein Maximalwert dieser Kreuzkorrelationsfunktion bestimmt wird und	-
der Maximalwert als Korrelationsmessgröße behandelt wird.	
9. Verfahren nach Anspruch 6, 7 oder 8, dadurch gekennzeichnet, dass	
die bei einer zuvor an dem Fahrzeug durchgeführten Bremsprobe gemessenen Druck- und/oder Luftstrommess-	
werte als fahrzeug- und betriebsartindividuelle Solldruck- und/oder Sollstromverläufe behandelt werden.	60
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass	
die fahrzeug- und betriebsartindividuellen Solldruck- und/oder Sollstromverläufe ermittelt und abspeichert werden für die Betriebsarten des Fahrzeugs:	
Betriebsart "Bremsen des Fahrzeugs", in der das Fahrzeug gebremst wird,	
Betriebsart "Lösen der Bremsen", in der die Bremseinrichtungen der Bremsanlage nach Abschluss eines Bremsvor-	65
ganges wieder gelöst werden und	-
Betriebsart "Füllen der Bremsanlage", in der die Bremsanlage mit Druckluft gefüllt oder nachgefüllt wird, und	
zum Erzeugen des Alarmsignals ausschließlich diejenigen fahrzeug- und betriebsartindividuellen Solldruck- und/	

oder Sollstromverläufe herangezogen werden, die der jeweiligen Betriebsart des Fahrzeugs entsprechen.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 100 29 125 A1 B 60 T 17/22 3. Januar 2002

