

گزارش تمرین کامپیوتری 4 سیستم های مخابراتی

تهیهکننده: زهرا ملکی

تابستان 1403

Hear is the generated signal:

effective_bandwidth = 1 / Tb; Effective Bandwidth: 0.02 Hz

.2

power_noise = (norm(white_noise)^2) / (eta*Ts);
Power of Sampled White Noise: 0.39585

.4/3

For the previous binary sequence and a new one:

SNRe: -6.9745

.6

noise_sequence = randn(1, 500*Tb/Ts);

Using scatter: symb_I2 = bpsk_noise_sequence2 .* cos(10*pi*t_noise/Tb); symb_Q2 = bpsk_noise_sequence2 .* sin(10*pi*t_noise/Tb); scatter(symb_I2, symb_Q2);

constellation = comm.ConstellationDiagram('Title','BPSK','ShowTrajectory',false,'SamplesPerSymbol',1); and the result is two gifs like below:

.8

filteredSignal1 = conv(symb_I1 + 1j * symb_Q1, filterCoeff); filteredNoise1 = conv(bpsk_noise_sequence1 .* cos(10*pi*t_noise/Tb), filterCoeff); n=round(Tb / Ts); downsampledSignal1 = filteredSignal1(1:n:end); downsampledNoise1 = filteredNoise1(1:n:end);

Threshold Estimate 1: 0.8000 Threshold Estimate 2: 0.7000

> Estimated Bits1 🔬 🔏 🗐 🖱 🗨 🔾 🎧 9.0 Bit Value 200 250 300 350 100 150 400

.11

SNRe: -10 -6 -2 2 6 10

error_count = sum(abs(estimated_bits9 - binary_sequence));
BER(j) = error_count / 500;

error_count = sum(abs(estimated_bits9 - binary_sequence)); error_count_total = error_count_total + error_count;

 $BER(j) = error_count_total / (500 * 50);$

The theoretical BER for a BPSK (Binary Phase Shift Keying) modulation scheme in an AWGN (Additive White Gaussian Noise) channel can be calculated using the following formula:

 $BER = 0.5 * erfc(sqrt(10^{(SNR/10))})$

Which is compatible with the shown plot.

t frequency = 0.001 * 1/Ts:

offset_frequency = 0.001 * 1/Ts; t_noise_offset = t_noise + offset_frequency;

symb_I11 = bpsk_noise_sequence1 .* cos(10*pi*t_noise_offset/Tb); symb_Q11 = bpsk_noise_sequence1 .* sin(10*pi*t_noise_offset/Tb);

5 | Page

Therefore, to determine an appropriate threshold for symbol detection in your specific system, you would need to perform empirical testing and conduct a more detailed analysis.

.13

I suggest using a matched filter that is capable of handling frequency offset while maintaining stability. To achieve stability against frequency offset, you can employ a Finite Impulse Response (FIR) filter. FIR filter is one of the stable filters that uses a sequence of coefficients (usually constant coefficients) to perform the filtering operation.

One of the methods for designing a frequency-matched FIR filter is through windowing. In this approach, we first determine the desired frequency response and then calculate the filter coefficients using a windowing function to apply appropriate weighting. After applying these coefficients to the input signal, the output signal will be frequency-matched to the desired frequency.