Department of Computer Science and Engineering BRAC University CSE 260: Digital Logic Design

Experiment # 3

Parity Generator and Checker

Objective:

To design and implement an Even parity Generator and Even parity checker using XOR gates) (IC-7486).

Required Components and Equipments

- 1. AT-700 Portable Analog/Digital Laboratory
- 2. 7400×3

Diagram of Circuit:

Even Parity generator

Even Parity Checker

Procedure:

- Construct the Circuit of Figure 1, on the breadboard of AT-700.
- Remember each IC's pin 14 connected to "+5V" position of DC Power Supply of AT-700, and pin 7 connected to "GND" position.
- Connect the inputs to Data switches and outputs to any position of LED Display.
- Determine the parity generator's output for each of the following sets of input data, $D_3D_2D_1D_0$; (a) 0111; (b) 1001; (c) 0000; (d) 0100
- Determine the parity checker's output for each of the following sets of data from the

P	D_3	$\mathbf{D_2}$	$\mathbf{D_1}$	$\mathbf{D_0}$	Error (E)
0	1	0	1	0	CHA
1	1	1	1	0	
1	1	1	1	1	
1	0	0	0	0	1

Report:

The report should cover the followings

- Name of the Experiment
- 2. Objective
- 3. Required Components and Equipments
- 4. Experimental Setup (You must draw the diagrams)
- Results in Tabulated form.
- 6. Discussions (Explanation of the results)

Name of the Experiment:

Parity Generator and Checker

Objective:

· To design and implement an Even parity Greverator and Even parity especher using XOR gates (IC-7486).

Required Components and Equipments!

- 1. AT- 700 Portable Analog/Digital laboratory
- 2. 7400 X3

Experimental Setup:

Fren parity Grenerator

Results in Tabulated form;

Even parity Go Generator's output:

1		1	1					
D ₃	3	P_2	P,	Do	Output = f	A	B	R
0		1	1	1		1	0	1
	-	0	0	1	b	1	1	0
0	-	0	0	0	6	0	0	
0		1	0	0		1		
							0	1

I can panity Checken's output

	D	D ₂ _	D ₁	Do	A	В	R	Ther(F)
P	\mathcal{D}_3	0	1	0			0	O
		1	1	0	0			0
	1		8		0	0	0	1
1	1						^	
	0	D	9	0	0		U	

Discussions:

for the Even parity Generator, D3, P2 D the inputs are D3, D2, P, and D0. The output is R. If the inputs are an odd number of 1, the output (R) comes out to be I in order to make it even. Otherwise, O is produced as the output (R)

The XOR gate in the even parity checken takes two inputs:

R and the a-different input R and an external input, P.

It compares the two inputs and checke if R and P are equivalent; equivalent and produced the same, O (no error) is produced as the output, otherwise, I (error) is produced the ordput.

This is similar to how we check if a senden's output is equivalent to a receiver's input a senden's need data is equivalent to the data that is a received by a receiver.