Внешний курс. Блок 1: Безопасность в сети

Дисцеплина: Основы информационной безопасности

Неустроева Ирина Николаевна

Содержание

1 Цель работы															
2	Выполнение заданий блока "Основы Кибербезопасности"														
	2.1 Как работает интернет: базовые сетевые протоколы	6													
	2.2 Персонализация сети	10													
	2.3 Браузер TOR. Анонимизация	12													
	2.4 Беспроводные сети Wi-fi	14													
3	5 Выводы	18													

Список иллюстраций

2.1	Вопрос 2.1.1	•				•	•	•	•	•	•	•		•	•	•		•	•	•	6
2.2	Вопрос 2.1.2		 																		7
2.3	Вопрос 2.1.3		 																		7
2.4	Вопрос 2.1.4																				8
2.5	Вопрос 2.1.5																				8
2.6	Вопрос 2.1.6		 																		9
2.7	Вопрос 2.1.7																				9
2.8	Вопрос 2.1.8		 																		10
2.9	Вопрос 2.1.9		 																		10
2.10	Вопрос 2.2.1																				11
2.11	Вопрос 2.2.2																				11
2.12	Вопрос 2.2.3																				12
2.13	Вопрос 2.2.4																				12
2.14	Вопрос 2.3.1																				13
2.15	Вопрос 2.3.2																				13
2.16	Вопрос 2.3.3																				14
2.17	Вопрос 2.3.4																				14
2.18	Вопрос 2.4.1																				15
2.19	Вопрос 2.4.2																				15
2.20	Вопрос 2.4.3																				16
2.21	Вопрос 2.4.4																				16
2.22	Вопрос 2.4.5		 						_												17

Список таблиц

1 Цель работы

Выполненить контрольные задания первого блока "Безопасность в сети" внешнего курса "Основы кибербезопасности".

2 Выполнение заданий блока "Основы Кибербезопасности"

2.1 Как работает интернет: базовые сетевые протоколы

Протокол HTTP(S) протокол прикладного уровня, ответ на вопрос 1 - HTTPS (рис. 2.1).

Рис. 2.1: Вопрос 2.1.1

На транспортном уровне существует два примера протокола: первый - это TCP, в честь которого названа модель. (рис. 2.2).

Рис. 2.2: Вопрос 2.1.2

Т.к адрес состоит из большего набора чисел, а именно это 4 или 6 цифер от 0 до 255. В двух вариантах встречаются цифры больше 255, что неверно(рис. 2.3).

Рис. 2.3: Вопрос 2.1.3

Основная задача DNC это сопоставлять название (доменное имя, с корекстым IP-адресом) с тем, где лежит этот сервер, этот сайт. (рис. 2.4).

Рис. 2.4: Вопрос 2.1.4

Классификация протоколов в модели TCP/IP:

- Прикладной уровень: HTTP, RTSP, FTP, DNS.
- Транспортный уровень: TCP, UDP, SCTP, DCCP.
- Сетевой уровень: ІР.
- Уровень сетевого доступа (Канальный) (Link Layer): Ethernet, IEEE 802.11, WLAN, SLIP, Token Ring, ATM и MPLS(рис. 2.5).

Рис. 2.5: Вопрос 2.1.5

Протокол http передает не зашифрованные данные, а протокол https уже будет передавать зашифрованные данные (рис. 2.6).

https передает зашифрованные данные, поэтому одна из фаз это передача данных, другая должна быть рукопожатием

Рис. 2.6: Вопрос 2.1.6

TLS определяется и клиентом, и сервером, чтобы было возможно подключиться (рис. 2.7).

Рис. 2.7: Вопрос 2.1.7

TLS определяется клиентом и сервером, чтобы возможно было подключиться (рис. 2.8).

Рис. 2.8: Вопрос 2.1.8

Фаза рукопожатия вкючает в себя:

- выбор параметров, протоколов
- аутентификация (как минимум, сервера)
- формируется общий секретный ключ К

Следовательно вариант с шифрованием лишний (рис. 2.9).

Рис. 2.9: Вопрос 2.1.9

2.2 Персонализация сети

Куки хранят в себе список параметров и их значений. Этими параметрами могут быть id пользователя, id сессии, тип браузера и некоторые действия поль-

зователей(рис. 2.10).

Рис. 2.10: Вопрос 2.2.1

Куки не делают соединение надежным (рис. 2.11).

Рис. 2.11: Вопрос 2.2.2

Куки генерируются сервером(рис. 2.12).

Рис. 2.12: Вопрос 2.2.3

Куки бывают сессионные, удаляются при закрытии окна браузера (рис. 2.13).

Рис. 2.13: Вопрос 2.2.4

2.3 Браузер TOR. Анонимизация

В луковой модели маршрутизации у нас тоже есть узлы. Они разделяются на охранный узел, промежуточный и выходной. В браузере Tor всегда есть три роутера, их не больше и не меньше (рис. 2.14).

Рис. 2.14: Вопрос 2.3.1

IP-адрес не должен быть известен охранному и промежуточному узлам (рис. 2.15).

Рис. 2.15: Вопрос 2.3.2

В анонимных сетях, таких как Тог, общий секретный ключ для сквозного шифрования требует участия всех трех типов узлов: охранного, промежуточного и выходного. Охранный узел сам по себе не обеспечивает генерацию ключа. Каждый узел вносит свой вклад в криптографический протокол (например, Diffie-Hellman), обеспечивая анонимность и защиту от перехвата. (рис. 2.16).

Рис. 2.16: Вопрос 2.3.3

Для получения пакетов не нужно использовать TOR. TOR — это технология, которая позволяет с некоторым успехом скрыть личность человека в интернете.(рис. 2.17).

Рис. 2.17: Вопрос 2.3.4

2.4 Беспроводные сети Wi-fi

WiFi - это технология беспроводной локальной сети, она основана на стандарте IEEE 802.11 (рис. 2.18).

Рис. 2.18: Вопрос 2.4.1

WiFi работает на самом нижнем канальном уровне (рис. 2.19).

Рис. 2.19: Вопрос 2.4.2

WEP - устаревший и небезопасный метод шифрования WiFi из-за короткой длины ключа (40 бит), что делает его легко взламываемым. Использовать WEP категорически не рекомендуется. (рис. 2.20).

Рис. 2.20: Вопрос 2.4.3

Безопасность WiFi подразумевает защиту передачи данных между устройством (телефон, компьютер) и роутером (подключенным к интернету), осуществляемую с помощью шифрования и аутентификации.(рис. 2.21).

Рис. 2.21: Вопрос 2.4.4

WPA2 Personal предназначен для домашнего использования, а WPA2 Enterprise - для коммерческих организаций. (рис. 2.22).

Рис. 2.22: Вопрос 2.4.5

3 Выводы

В результате выполнения блока "Безопасность в сети" я узнала, как работают сетевые пратаколы, куки-файлы, сети вайфай и для чего нужен браузер Tor.