Procesos estocásticos I

Tarea: Procesos a tiempo continuo

José Alberto Márquez Luján, 187917

Verano 2022

16. Sea $X(t) = \{X(t), t \geq 0\}$ un PE que tiene incrementos independientes y función media $m(t) := \mathbb{E}[X(t)]$ finita para todo $t \geq 0$. Demuestre que si $0 \leq t_1 < \cdots t_n < t_{n+1}$, entonces

$$\mathbb{E}[X(t_{n+1}) \mid X(t_1), \dots, X(t_n)] = X(t_n) + m(t_{n+1}) - m(t_n).$$

Solución.

$$\mathbb{E}[X(t_{n+1}) \mid X(t_1), \dots, X(t_n)] = \mathbb{E}[X(t_{n+1}) + X(t_n) - X(t_n) \mid X(t_1), \dots, X(t_n)]$$

$$= \mathbb{E}[X(t_{n+1}) - X(t_n) \mid X(t_1), \dots, X(t_n)]$$

$$+ \mathbb{E}[X(t_n) \mid X(t_1), \dots, X(t_n)]$$

$$= \mathbb{E}[X(t_{n+1}) - X(t_n)] + X(t_n)$$

$$= \mathbb{E}[X(t_{n+1})] - \mathbb{E}[X(t_n)] + X(t_n)$$

$$= X(t_n) + m(t_{n+1}) - m(t_n).$$

Nota. En lo sejercicios siguientes, $W(\cdot)$ es un proceso de Wiener con parámetro $\sigma^2 > 0$.

17. Demuestre que $\mathbb{E}[(W(s)-W(a))(W(t)-W(a))]=\sigma^2\min(s-a,t-a)$ para todo $s,t\geq a\geq 0.$

Solución.

$$\mathbb{E}[(W(s) - W(a))(W(t) - W(a))] = \mathbb{E}[W(s)W(t) - W(s)W(a) - W(t)W(a) + W^{2}(a)]$$

$$= \mathbb{E}[W(s)W(t)] - \mathbb{E}[W(s)W(a)] - \mathbb{E}[W(t)W(a)]$$

$$+ \mathbb{E}[W^{2}(a)].$$

Recordemos que $K_W(s,t) = \text{Cov}(W(s),W(t)) = \mathbb{E}[W(s)W(t)] - \mathbb{E}[W(s)]\mathbb{E}[W(t)]$, por lo que

$$\mathbb{E}[W(s)W(t)] = K_W(s,t) + \mathbb{E}[W(s)]\mathbb{E}[W(t)]$$

$$= \sigma^2 \min(s,t) + \mathbb{E}[W(s)]\mathbb{E}[W(t)]$$

$$= \sigma^2 \min(s,t),$$

pues en clase vimos que $K_W(s,t) = \lambda \min(s,t)$. Análogamente,

$$\mathbb{E}[W(s)W(a)] = \sigma^2 \min(s, a) \quad \text{y} \quad \mathbb{E}[W(t)W(a)] = \sigma^2 \min(t, a).$$

También sabemos que

$$\mathbb{E}[W^{2}(a)] = \operatorname{Var}(W(a)) + \mathbb{E}^{2}[W(a)]$$
$$= \sigma^{2}a$$

Así pues,

$$\begin{split} \mathbb{E}[(W(s)-W(a))(W(t)-W(a))] &= \sigma^2 \min(s,t) - \sigma^2 \min(s,a) - \sigma^2 \min(a,t) + \sigma^2 a \\ &= \sigma^2 \min(s,t) - \sigma^2 a - \sigma^2 a + \sigma^2 a \\ &= \sigma^2 \min(s,t) - \sigma^2 a \\ &= \sigma^2 [\min(s,t) - a] \\ &= \sigma^2 \min(s-a,t-a). \end{split}$$

18. Demuestre que $W(1) + \cdots + W(n)$ tiene distribución $N(0, s_n)$, en donde

$$s_n := \sigma^2 \frac{n(n+1)(2n+1)}{6}.$$

Sugerencia: use la independencia de los incrementos de $W(\cdot)$ y la fórmula

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$