Weekly Homework 41

Math Gecs

December 17, 2024

Exercise 1

Real numbers x and y are chosen independently and uniformly at random from the interval (0,1). What is the probability that $\lfloor \log_2 x \rfloor = \lfloor \log_2 y \rfloor$?

 $(\mathbf{A})^{\frac{1}{8}}$

(B) $\frac{1}{6}$ (C) $\frac{1}{4}$ (D) $\frac{1}{3}$ (E) $\frac{1}{2}$

Source: 2017 AMC 12B Problem 20

Answer. $\left| (D) \frac{1}{3} \right|$

Solution. First let us take the case that $|\log_2 x| = |\log_2 y| = -1$. In this case, both x and y lie in the interval $[\frac{1}{2}, 1)$. The probability of this is $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$. Similarly, in the case that $\lfloor \log_2 x \rfloor = \lfloor \log_2 y \rfloor = -2$, x and y lie in the interval $[\frac{1}{4}, \frac{1}{2})$, and the probability is $\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$. Recall that the probability that A or B is the case, where case A and case B are mutually exclusive, is the sum of each individual probability. Symbolically that's P(A or B or C...) =P(A) + P(B) + P(C).... Thus, the probability we are looking for is the sum of the probability for each of the cases $\lfloor \log_2 x \rfloor = \lfloor \log_2 y \rfloor = -1, -2, -3...$ It is easy to see that the probabilities for $\lfloor \log_2 x \rfloor = \lfloor \log_2 y \rfloor = n$ for $-\infty < n < 0$ are the infinite geometric series that starts at $\frac{1}{4}$ and with common ratio $\frac{1}{4}$. Using the formula for the sum of an infinite geometric series, we

get that the probability is $\frac{\frac{1}{4}}{1-\frac{1}{4}} = \left| (\mathbf{D})\frac{1}{3} \right|$.