Tiffany Tang tt2405

Question 5

a.
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

- $T(N) = \Theta(h(N))$ if and only if T(N) = O(h(N)) and $T(N) = \Omega(h(N))$
- T(N) = O(h(N)) if there are positive constants c and n_0 such that $T(N) \le c^*h(N)$ when $n \ge n_0$ Let c = 10 and $n_0 = 1$ $5n^3 + 2n^2 + 3n \le 5n^3 + 5n^3$ $= 10n^3$

$$= c*(n^3)$$

$$5n^3 + 2n^2 + 3n = O(n^3)$$

 $T(N) = \Omega(h(N))$ if there are positive constants c and n_0 such that T(N) >= c*h(N) when $n >= n_0$ Let c = 1 and $n_0 = 1$

$$5n^3 + 2n^2 + 3n >= 1n^3$$

$$= c*(n^3)$$

$$5n^3 + 2n^2 + 3n = \Omega(n^3)$$

Since $5n^3 + 2n^2 + 3n = O(n^3)$ and $5n^3 + 2n^2 + 3n = O(n^3)$, then $5n^3 + 2n^2 + 3n = O(n^3)$

b.
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

- $T(N) = \Theta(h(N))$ if and only if T(N) = O(h(N)) and $T(N) = \Omega(h(N))$
- T(N) = O(h(N)) if there are positive constants c and n_0 such that $T(N) \le c^*h(N)$ when $N \ge n_0$

Let
$$c = 3$$
 and $n_0 = 1$

$$\sqrt{7n^2 + 2n - 8} \le \sqrt{9n^2}$$

$$\sqrt{7n^{2} + 2n - 8} = O(n)$$

 $T(N) = \Omega(h(N))$ if there are positive constants c and n_0 such that T(N) >= c*h(N) when $N >= n_0$ Let c = 1 and $n_0 = 1$

$$\sqrt{7n^2 + 2n - 8} > = \sqrt{1n^2}$$

$$= c*(n)$$

$$\sqrt{7n^2 + 2n - 8} = \Omega(n)$$

Since
$$\sqrt{7n^2 + 2n - 8} = O(n)$$
 and $\sqrt{7n^2 + 2n - 8} = \Omega(n)$, then $\sqrt{7n^2 + 2n - 8} = O(n)$