

EECS 151/251A
Spring 2024
Digital Design and Integrated Circuits

Instructor:
John Wawrzynek

Lecture 12: Timing part 2

Modeling Gate Delay

Inverter Transient Response

The Switch – Dynamic Model (Simplified)

Transistor Sizing

What happens if we make a MOSFET W times larger (wider)?

Switch Parasitic Model

The pull-down switch (NMOS)

Minimum-size switch

Sizing the transistor (factor *W*)

We assume transistors of minimal length (or at least constant length).

pFET Switch Parasitic Model

For traditional CMOS processes, pFETs are ~twice as resistive as nFETS. (Mobility of holes is 1/2 that of electrons).

The pull-up switch (PMOS)

Minimum-size pFET

Sized for symmetry

General sizing

"Balanced" Inverter Parasitic Model

independent of size

Inverter with Load Capacitance

f = electrical fanout = ratio of load capacitance (C_L) to and input capacitance (C_{in})

Inverter Delay Model

Delay linearly proportional to fanout, f. For f=0, delay is intrinsic inverter delay $t_{inv}=t_{p0}$

$$t_{p} = t_{p0}(1 + f/\gamma)$$

Question: how does transistor sizing (W) impact delay?

Gate Delay Summary

The y-intercepts (intrinsic delay) for NAND and NOR are both twice that of the inverter. The NAND line has a gradient 4/3 that of the inverter (steeper); for NOR it is 5/3 (steepest).

$$t_{p0}\left(2+rac{4f}{3\gamma}
ight)$$
 $t_{p0}\left(2+rac{5f}{3\gamma}
ight)$ 2-input NAND 2-input NOR

What about gates with more than 2-inputs?

4-input NAND:

$$t_p = t_{p0} \left(4 + \frac{2f}{\gamma} \right)$$
intercept

Adding Wires to gate delay

Wires have finite resistance, so have distributed R and C:

with r = res/length, c = cap/length, $\Delta t \propto rcL^2 \approx rc + 2rc + 3rc + ...$

Wire propagation delay is around half of what it would be if R and C were "lumped": $t_p = 0.38(rL * cL) = 0.38rcL^2$

Gate Driving long wire and other gates

$$t_p = 0.69R_{dr}C_{int} + 0.69R_{dr}C_w + 0.38R_wC_w + 0.69R_{dr}C_{fan} + 0.69R_wC_{fan}$$
$$= 0.69R_{dr}(C_{int} + C_{fan}) + 0.69(R_{dr}C_w + r_wC_{fan})L + 0.38r_wC_wL^2$$

Driving Large Loads

- □ Large fanout nets: clocks, resets, memory bit lines, off-chip
- □ Relatively small driver results in long rise time (and thus large gate delay) □ □ □
- □ Strategy:

- How to design for optimal performance (least delay)?
- □ Should be obvious that total delay is minimized with equal delay at each stage.

Driving Large Loads

 $\begin{array}{c|c}
In & Out \\
\hline
 & C_L \\
\hline
 & C_L
\end{array}$

- \Box For some given C_I :
 - How many stages are needed to minimize delay?
 - How to size the inverters?
 - □ Get smallest delay if build one **very** big inverter

- □ Not an interesting solution. Why?
 - Something has to drive this inverter (a big inverter has a large input capacitance!) ...

Delay Optimization

- □ First assume given:
 - A fixed number of inverters
 - The size* of the first inverter
 - The size of the load that needs to be driven
- □ What is the minimal delay of the inverter chain?

* note: When we talk about inverter (or gate) "size", we refer to the wide of the transistors making up the circuit.

□ Delay for the *j-th* inverter stage:

$$t_{p,j} = t_{p0} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) = t_{p0} (1 + f_j/\gamma)$$

□ Total delay of the chain:

$$t_p = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{j=1}^{N} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right), \qquad C_{g,N+1} = C_L$$

Optimum Delay

- □ Each inverter should be sized up by the same factor *f* with respect to the preceding inverter
- □ Therefore each stage has equal delay
- \Box Given $C_{g,I}$ and C_L

$$f = \sqrt[N]{C_L/C_{g,1}} = \sqrt[N]{F}$$

- □ Where *F* represents the overall fan-out of the circuit
- □ Therefore the minimal delay through the chain is:

$$t_p = N \cdot t_{p0} (1 + \sqrt[N]{F}/\gamma)$$

Example

 C_L/C_1 has to be evenly distributed across N=3 stages:

$$f = \sqrt[N]{C_L/C_{g,1}} = \sqrt[N]{F} = \sqrt[3]{8} = 2$$

Delay Optimization

- □ Now assume given:
 - The size of the first inverter
 - The size of the load that needs to be driven
- Minimize delay by finding optimal number and sizes of inverters
- □ So, need to find N that minimizes:

$$t_p = N \cdot t_{p0} (1 + \sqrt[N]{F}/\gamma), \quad F = C_L/C_{g,1}$$

Finding optimal fanout per stage

$$t_p = N \cdot t_{p0} (1 + \sqrt[N]{F}/\gamma), \quad F = C_L/C_{g,1}$$

□ Differentiate w.r.t. N and set = 0:

$$\gamma + \sqrt[N]{F} - \frac{\sqrt[N]{F} \ln F}{N} = 0$$

$$\Rightarrow \qquad f = e^{(1+\gamma/f)} \qquad f = \sqrt[N]{F}$$

□ Closed form only if : $\gamma = 0 \implies N = ln(F), f = e$

Optimum Effective Fanout f

 \Box Optimum f for given process depends on γ

In Practice: Plot of Total Delay

- □ Why the shape?
- \Box Curves very flat for f > 2
 - Simplest/most common choice: *f* = 4

Transistor Sizing in Logic Circuits

- Similar optimization challenges exist within all combinational logic blocks. How do we size transistors to minimize a given circuit?
- ASIC standard cell libraries include cells with various output drive strength (transistor sizes)
- □ Tools will automatically choose the proper size and/or add buffers to minimize critical path logic delay
- □ Hand methods exist for minimizing logic path delay:

End of lecture 12