Homework #8

An equivalence relation (usually represented as ≡ or =) on a set S must have the 3 properties of reflexitivity, transitivity, and symmetry.
A partial order (usually represented as ≤) must have the properties of reflexitivity, transitivity, and according to Knuth also anti-symmetry, defined by

$$x \le y$$
 and $y \le x$ imply that $x = y$.

Consider the usual ordering on the positive rationals:

$$\frac{a}{b} \le \frac{p}{q}$$
 iff $a \cdot q \le p \cdot b$.

Does

$$\frac{a}{b} \le \frac{p}{q}$$
 and $\frac{p}{q} \le \frac{a}{b}$ imply $\frac{a}{b} = \frac{p}{q}$?

The standard method to enforce anti-symmetry uses **equivalence** classes. Define $x \equiv y$ (corresponding to \leq) iff $x \leq y$ and $y \leq x$. Now apply \leq to the equivalence classes defined by this \equiv . Let [x] mean the equivalence class which contains x.

(a) Show that \leq is **well-defined**, that is,

$$x \le y$$
 iff $[x] \le [y]$.

(There is actually something to show here. Is the claim **TRUE** in the extreme case when the set S is null?)

- (b) Show that \leq on equivalence classes is reflexive and transitive.
- (c) Show that \leq on equivalence classes is anti-symmetric even if \leq on elements is not.
- (d) If the positive rational numbers obey a partial order (in the above sense), is it reasonable to say that a rational number is an ordered pair of positive integers?

(e) An ordering is sometimes called a *total order* if it is a partial order and obeys the TRICHOTOMY law:

For every pair of elements x and y exactly one of the following is true

$$x \le y$$
 or $y \le x$ or $x = y$.

Fix this definition so that it makes sense with our definition of \leq as a partial order

- (f) Show that the rationals obey your definition of total order.
- (g) Give an example of a partial order which is **NOT** a total order. (What about \mathcal{NP} using \leq_{Karp} ?
- 2. Use examples to distinguish between each of the following orderings:

" is a *subproblem* of "

" is a *subset* of "

" is a no harder than ".

Do any of these relations imply any of the others?

E.G., if $A \leq_1 B$ for one of these orderings \leq_1 , does this imply that $A \leq_2 B$ for one of the other orderings \leq_2 ?

3. Discuss: Do either of the following relationships hold?

$$A \leq B \implies \overline{A} \leq \overline{B}$$

$$A < \overline{B} \implies \overline{A} < B$$
.

4. Define log-space reduction by

$$A \leq_{\log} B$$

iff there is a log-space computable function f, so that for all x,

$$x \in A$$
 iff $f(x) \in B$.

- (a) Show that \leq_{\log} is transitive.
- (b) Give an example of two sets A and B, so that

$$A \leq_{\log} B$$
.

5. Define *linear-space* reduction by

$$A \leq_{LIN} B$$

iff there is a linear-space computable function f, so that for all x,

$$x \in A$$
 iff $f(x) \in B$.

- (a) Is \leq_{LIN} transitive?
- (b) Give an example of two sets A and B, so that $A \leq_{LIN} B$.
- (c) Give a third set C, so that $B \leq_{LIN} C$. Is $A \leq_{LIN} C$?

6.

 $SHALT = \{ (M, x, (1)^t) | M \text{ halts and uses at most } t \text{ tape squares when given } x \}$

- $(1)^t$ means a string consisting of t 1's. Show that SHALT is \mathcal{PSPACE} -complete.
- 7. Assume that the behavior of a probabilistic algorithm can be modeled using a natural number n, so that the algorithm terminates when n reaches 0. Further, assume that with probability β the algorithm transitions from n to n+1, and with probability $1-\beta$ the algorithm transitions from n to n-1.

Let p_n be the probability that the algorithm terminates when started at n. The following difference equation gives a relation among the p_n 's

$$p_n = \beta p_{n+1} + (1 - \beta) p_{n-1}.$$

- (a) Show that if $\beta > 1/2$ then $p_n = \left(\frac{1-\beta}{\beta}\right)^n$ is a solution of the difference equation.
- (b) Does the above assure that the algorithm always terminates?
- (c) If $\beta < 1/2$ what happens to the above solution, and how does the algorithm behave?

- 8. Show that $\{a^n b^{n^2}\}.$
 - (a) What is the simplest type of grammar which can generate this language?
 - (b) Show that no simpler type of grammar can generate this language.

9. CSL-Member

INPUT: G a context-sensitive grammar, and x a string.

QUESTION: Can G generate x?

It is known that **CSL-Member** is a \mathcal{N} -LinearSpace complete set.

- (a) What is deterministic complexity class is **CSL-Member** in?
- (b) Use the above to explain why programming languages are described using context-free grammars rather than context-sensitive grammars.
- 10. Let $M^{\mathbb{R}}$ be the deterministic finite state machine which recognizes the reverse of the language recognized by the deterministic finite state machine M.

Let M be the Towers of Hanoi machine from the "Moore Reducibility" paper.

- (a) Construct $M^{\mathbf{R}}$.
- (b) Compare the number of states of $M^{\mathbb{R}}$ and M.
- (c) Find the level in the Moore hierarchy for the language recognized by $M^{\rm R}.$