35th Conference on Neural Information Processing Systems (NeurIPS 2021)

 $Victor\ Garcia\ Satorras^{1*}$, $Emiel\ Hoogeboom^{1*}$, $Fabian\ B$. $Fuchs^2$, Ingmar Posner^2, $Max\ Welling^1$

UvA – Bosch Delta Lab, University of Amsterdam¹, Department of Engineering Science, University of Oxford²

Reporter: Fanmeng Wang May 12, 2022

Outline

- **▶** Introduction
- **Background**
- **E**(n) Equivariant Normalizing Flows
- **Experiments**
- **Conclusions**

- **▶** Introduction
- **Background**
- **E**(n) Equivariant Normalizing Flows
- **Experiments**
- **Conclusions**

Introduction

This paper focus on symmetries of the **n-dimensional Euclidean group**, referred to as E(n).

Propose a generative model equivariant to Euclidean symmetries:

E(n) Equivariant Normalizing Flows (E-NFs)

Motivation: To generate better drug candidate molecules to speed drug discovery

Figure 1: Overview of our method in the sampling direction. An equivariant invertible function g_{θ} has learned to map samples from a Gaussian distribution to molecules in 3D, described by x, h.

- **▶** Introduction
- **Background**
- **E**(n) Equivariant Normalizing Flows
- **Experiments**
- **Conclusions**

Background | E(n) Equivariant Normalizing Flows

- A complex distribution p_x
- A simple base distribution p_Z (such as a Gaussian distribution)
- A learnable invertible transformation *f* :

$$z = g(z) \qquad \longrightarrow \qquad p_{\chi}(x) = p_{Z}(z) |\det J_{f}(x)|$$

$$z = g^{-1}(x) = f(x) \qquad \log p_{\chi}(x) = \log p_{Z}(z) + \log |\det J_{f}(x)|$$

Background | E(n) Equivariant Normalizing Flows

Equivariance of a function *f*: Transforming its input results in an equivalent transformations of its output.

$$f(T[I]) = T[f(I)]$$

GNN is built to be equivalent to permutations: Although we permute the indexes of nodes, it still represent the same graph.

Background | E(n) Equivariant Normalizing Flows

E(n) Equivariant data such as molecules in 3D:

A molecular graph G = (V, E) with nodes $v_i \in V$ and edges e_{ij} .

Each node v_i is associated with a **position vector** x_i and **node features** h_i .

Features h have the property that they are invariant to E(n) transformations, while they do affect x.

In other words, rotations and translations of x do not influence h.

E(n) Equivariant Graph Neural Networks (EGNNs) (Satorras et al. ICML2021)

EGNNs is equivariant to Euclidean symmetries

(rotation, translation, reflection and displacement et al) .

However, this model is only able to discriminate features on nodes, and cannot generate new graphs.

- **▶** Introduction
- **Background**
- **E**(n) Equivariant Normalizing Flows
- **Experiments**
- **Conclusions**

A probabilistic model for data with Euclidean symmetry.

$$V = (x, h)$$

- position vector $x \in \mathbb{R}^{M*n}$ embedded in a n-dimensional space
- node features $h \in \mathbb{R}^{M*nf}$

 p_z : A simple invariant distribution (such as a Gaussian)

$$f_{\theta}(x,h) = z_x, z_h \quad g_{\theta}(z_x, z_h) = x, h$$

$$f_{\theta} = g_{\theta}^{-1}$$

$$p_V(\mathcal{V}) = p_V(\mathbf{x}, \mathbf{h}) = p_Z(f_\theta(\mathbf{x}, \mathbf{h})) |\det J_f| = p_Z(\mathbf{z}_x, \mathbf{z}_h) |\det J_f|, \tag{6}$$

$$p_V(\mathcal{V}) = p_V(\mathbf{x}, \mathbf{h}) = p_Z(f_\theta(\mathbf{x}, \mathbf{h})) |\det J_f| = p_Z(\mathbf{z}_x, \mathbf{z}_h) |\det J_f|, \tag{6}$$

- We require *f* to be invertible.
- We require *f* to be equivariant.

The solution to an ODE defined as:

$$\mathbf{z}_{x}, \mathbf{z}_{h} = f(\mathbf{x}, \mathbf{h}) = [\mathbf{x}(0), \mathbf{h}(0)] + \int_{0}^{1} \phi(\mathbf{x}(t), \mathbf{h}(t)) dt.$$
 (7)

Where
$$x(0) = x$$
, $h(0) = h$; $x(1) = z_x$, $h(1) = z_h$

The solution to an ODE defined as:

$$\mathbf{z}_{x}, \mathbf{z}_{h} = f(\mathbf{x}, \mathbf{h}) = [\mathbf{x}(0), \mathbf{h}(0)] + \int_{0}^{1} \underline{\phi(\mathbf{x}(t), \mathbf{h}(t))} dt.$$
 (7)

EGNN, but not original EGNN

• The original EGNN from (Satorras et al., ICML 2021) is unstable when utilized in an ODE because the coordinate update from Equation 5 would easily explode

$$\mathbf{m}_{ij} = \phi_e \left(\mathbf{h}_i^l, \mathbf{h}_j^l, \left\| \mathbf{x}_i^l - \mathbf{x}_j^l \right\|^2 \right) \quad \text{and} \quad \mathbf{m}_i = \sum_{j \neq i} e_{ij} \mathbf{m}_{ij}, \tag{4}$$

$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + \sum_{j \neq i} \left(\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l} \right) \phi_{x} \left(\mathbf{m}_{ij} \right) \quad \text{and} \quad \mathbf{h}_{i}^{l+1} = \phi_{h} \left(\mathbf{h}_{i}^{l}, \mathbf{m}_{i} \right). \tag{5}$$

• An extension of the original EGNN from:

$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + \sum_{j \neq i} \frac{(\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l})}{\|\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l}\| + C} \phi_{x}\left(\mathbf{m}_{ij}\right)$$

$$(9)$$

E(n) Equivariant Normalizing Flows | Training process

- Sample a point (x, h) from the dataset
- The discrete h is lifted to continuous h
- The variables x, h are transformed by an ODE to z_x , z_h
- Get the loglikelihood $\log p_z(z_x, z_h)$ on a simple invariant distribution (such as a Gaussian)

E(n) Equivariant Normalizing Flows | Generation

- Sample a point (z_x, z_h) from the simple distribution
- The variables z_x , z_h are transformed by an ODE to x, h
- Quantize

- **▶** Introduction
- **Background**
- **E**(n) Equivariant Normalizing Flows
- **Experiments**
- **Conclusions**

Experiments

- \triangleright We compare to the state-of-the art E(n) equivariant flows:
 - "Simple Dynamics"
 - "Kernel Dynamics" presented
- ➤ We also compare to non-equivariant variants of our method:
 - Graph Normalizing Flow (GNF)
 - GNF with attention (GNF-att)
 - GNF with attention and data augmentation (GNF-att-aug)

Experiments | DW4 && LJ13

DW4 and LJ13 have been synthetically generated by sampling from their respective energy functions using Markov Chain Monte Carlo (MCMC).

Table 1: Negative Log Likelihood comparison on the test partition over different methods on DW4 and LJ13 datasets for different amount of training samples averaged over 3 runs.

	DW4			LJ13				
# Samples	10^{2}	10^{3}	10^{4}	10^{5}	10	10^{2}	10^{3}	10^{4}
GNF	11.93	11.31	10.38	7.95	43.56	42.84	37.17	36.49
GNF-att	11.65	11.13	9.34	7.83	43.32	36.22	33.84	32.65
GNF-att-aug	8.81	8.31	7.90	7.61	41.09	31.50	30.74	30.93
Simple dynamics	9.58	9.51	9.53	9.47	33.67	33.10	32.79	32.99
Kernel dynamics	8.74	8.67	8.42	8.26	35.03	31.49	31.17	31.25
E-NF	8.31	8.15	7.69	7.48	33.12	30.99	30.56	30.41

Experiments | QM9

QM9 (Ramakrishnan et al., 2014) is a molecular dataset in machine learning as a chemical property prediction benchmark

Table 2: Neg. log-likelihood $-\log p_V(\mathbf{x}, \mathbf{h}, M)$, atom stability and mol stability for the QM9 dataset.

# Metrics	NLL	Atom stability	Mol stable
GNF-attention	-28.2	72%	0.3%
GNF-attention-augmentation	-29.3	75%	0.5%
E-NF (ours)	-59.7	85%	4.9%
Data	-	99%	95.2%

The top row contains random samples, the bottom row also contains samples but selected to be stable.

Experiments | QM9 Positional

We introduce **QM9 Positional** as a subset of QM9 that only considers positional information and does not encode node features

# Metrics	NLL	JS(rel. dist)
Simple dynamics	73.0	.086
Kernel dynamics	38.6	.029
GNF	-00.9	.011
GNF-att	-26.6	.007
GNF-att-aug	-33.5	.006
E-NF (ours)	-70.2	.006

- **▶** Introduction
- **Background**
- **E**(n) Equivariant Normalizing Flows
- **Experiments**
- **▶** Conclusions

Conclusion

- The ODE type of flow makes the training expensive and slow since the same forward operation has to be done multiple times.
- E(n) Equivariant Normalizing Flows (E-NFs) are continous-time normalizing flows that utilize an EGNN with improved stability as parametrization.
- This method may accelerate drug discovery by providing better drug candidate molecules.

Thanks!