Math 101 Tutorial Worksheet 4

There is no associated quiz due on BrightSpace for this tutorial worksheet

1. Determine if given improper integrals converge or diverge.

(a)
$$\int_{2}^{\infty} \frac{x}{x^2 + \sin(x)} dx$$

(b)
$$\int_{-1}^{\infty} \frac{1}{\sqrt{x^4 + 1}} dx$$

(c)
$$\int_{1}^{\infty} \frac{1}{x + \cos^{2}(x)} dx$$

(d)
$$\int_0^\infty \frac{x \cos^2(x)}{e^x} dx$$

(e)
$$\int_0^1 \tan(2\pi x) dx$$

(f)
$$\int_{-\infty}^{+\infty} x e^{-x^2} dx$$

- 2. Consider a solid that lies between planes perpendicular to the x- axis at $x=-\frac{\pi}{3}$ and $x=\frac{\pi}{3}$. The cross-sections perpendicular to the x-axis are:
 - (a) circular disks with diameters running from the curve $y = \tan(x)$ to the curve $y = \sec(x)$
 - (b) squares whose bases run from the curve $y = \tan(x)$ to the curve $y = \sec(x)$.

Now, do the following, both for part(a) and part(b) separately:

- Sketch both functions $y = \tan(x)$ to the curve $y = \sec(x)$ on the same grid.
- Sketch the solid and its typical cross-section using information provided in the exercise.
- What is the thickness of the slice: Δx or Δy ? Explain your conclusion.
- Find a formula for the area of a typical cross section, A(x) or A(y), depending on your conclusion in bullet 3.
- What are the limits of integration? Justify.
- Complete the integration to find the volume of the solid.