Introduction to Machine Learning

Information Theory

Joint Entropy and Mutual Information II

Learning goals

- Know mutual information as the amount of information of an RV obtained by another
- Know properties of MI

MUTUAL INFORMATION - COROLLARIES

Non-negativity of mutual information: For any two random variables, X, Y, $I(X; Y) \ge 0$, with equality if and only if X and Y are independent.

Proof: $I(X; Y) = D_{KL}(p(x, y) || p(x)p(y)) \ge 0$, with equality if and only if p(x, y) = p(x)p(y) (i.e., X and Y are independent).

Conditioning reduces entropy (information can't hurt):

$$H(X|Y) \leq H(X)$$
,

with equality if and only if *X* and *Y* are independent.

Proof: $0 \le I(X; Y) = H(X) - H(X|Y)$

Intuitively, the theorem says that knowing another random variable Y can only reduce the uncertainty in X. Note that this is true only on average.

MUTUAL INFORMATION PROPERTIES

- MI is a measure of the amount of "dependence" between variables. It is zero if and only if the variables are independent.
- OTOH, if one RV is a deterministic function of the other, MI is maximal, i.e. entropy of the first RV.
- Unlike (Pearson) correlation, MI is not limited to real-valued RVs.
- Can use MI as a **feature filter**, sometimes called information gain.
- Can also be used in CART to select feature for split.
 Splitting on MI/IG = risk reduction with log-loss.
- MI invariant under injective and continuously differentiable reparametrizations.

MUTUAL INFORMATION VS. CORRELATION

- If two RVs are independent, their correlation is 0.
- But: two dependent RVs can have correlation 0 because correlation only measures linear dependence.

- Above: Many examples with strong dependence, nearly 0 correlation and much larger MI.
- MI can be seen as more general measure of dependence than correlation.

MUTUAL INFORMATION - EXAMPLE

Let X, Y be two correlated Gaussian random variables. $(X,Y) \sim \mathcal{N}(0,K)$ with correlation ρ and covariance matrix K:

$$K = \begin{pmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{pmatrix}$$

Then $h(X)=h(Y)=\frac{1}{2}\log\left((2\pi e)\sigma^2\right)$, and $h(X,Y)=\frac{1}{2}\log\left((2\pi e)^2|K|\right)=\frac{1}{2}\log\left((2\pi e)^2\sigma^4(1-\rho^2)\right)$, and thus

$$I(X; Y) = h(X) + h(Y) - h(X, Y) = -\frac{1}{2}\log(1-\rho^2).$$

For $\rho=0$, X and Y are independent and I(X;Y)=0. For $\rho=\pm 1$, X and Y are perfectly correlated and $I(X;Y)\to \infty$.

