2020-2021 学年第 2 学期线性代数(理工)期末考试参考答案

一、填空题(每小题3分,共18分)

1.
$$\underline{4}$$
; 2. $\underline{2}$; 3. $\underline{3}$; 4. $\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$; 5. $\underline{-1}$; 6. $\underline{1}$

二、 (10 分) 解: (1) $A = PBP^{-1}$ 即 AP = PB,也就是 $A [\alpha, A\alpha, A^2\alpha] = [\alpha, A\alpha, A^2\alpha] B$. 而 $A [\alpha, A\alpha, A^2\alpha] = [A\alpha, A^2\alpha, A^3\alpha] = [A\alpha, A^2\alpha, 5A\alpha - 4A^2\alpha]$

$$= [\alpha, A\alpha, A^{2}\alpha] \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 5 \\ 0 & 1 & -4 \end{bmatrix}$$

所以
$$B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 5 \\ 0 & 1 & -4 \end{bmatrix}$$

(2) 解法一: $A + E = P(B + E)P^{-1}$. 故:

$$|A + E| = |P(B + E)P^{-1}| = |P| |B + E| |P^{-1}| = |B + E| = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 5 \\ 0 & 1 & -3 \end{vmatrix} = -8$$

解法二:
$$|\lambda E - B| = \begin{vmatrix} \lambda & 0 & 0 \\ -1 & \lambda & -5 \\ 0 & -1 & \lambda + 4 \end{vmatrix} = \lambda(\lambda - 1)(\lambda + 5),$$

故 B 的所有特征值为 0, 1, -5.

又A与B相似,故A的所有特征值也是0,1,-5.

于是A + E的所有特征值为1, 2, -4.

所以 $|A + E| = 1 \times 2 \times (-4) = -8$

三、
$$(13 分)$$
解: (1)
$$\begin{bmatrix} 1 & 1 & 3 & 5 \\ 1 & 2 & 4 & 7 \\ 1 & a+3 & a^2+3 & 3a+10 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 & 1 & 3 & 5 \\ 1 & 2 & 4 & 7 \\ 1 & a+3 & a^2+3 & 3a+10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & (a-2)(a+1) & a+1 \end{bmatrix}$$

所以: 当 $a \neq 2$ 时, 方程组有解: 其中:

当 $a \neq 2$ 且 $a \neq -1$ 时,

$$\begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & (a-2)(a+1) & a+1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 - \frac{2}{a-2} \\ 0 & 1 & 0 & 2 - \frac{1}{a-2} \\ 0 & 0 & 1 & \frac{1}{a-2} \end{bmatrix}$$

方程组有唯一解
$$\left(3-\frac{2}{a-2},2-\frac{1}{a-2},\frac{1}{a-2}\right)^{\mathrm{T}} = \left(\frac{3a-8}{a-2},\frac{2a-5}{a-2},\frac{1}{a-2}\right)^{\mathrm{T}}$$

当 a = -1 时,

$$\begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & (a-2)(a+1) & a+1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

方程组的通解为
$$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} + k \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$
, k 为任意常数.

四、(13 分)解: $(1) \alpha_1, \alpha_2$ 对应分量不成比例,故线性无关.

所以子空间 V 的维数 $\dim(V) = 2$.

$$(2) \left[\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right] = \begin{bmatrix} 2 & 1 & 4 & 3 \\ 3 & 2 & 7 & 4 \\ 1 & -1 & -1 & 3 \\ 1 & 1 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

故 $\beta_1 = \alpha_1 + 2\alpha_2$, $\beta_2 = 2\alpha_1 - \alpha_2$. 所以 $\beta_1 \in V$, $\beta_2 \in V$.

(3) 由 β_1 , β_2 对应分量不成比例,故线性无关. 又 $\dim(V) = 2$, 知 β_1 , β_2 是子空间 V 的基.

由(2)得
$$[\beta_1, \beta_2] = [\alpha_1, \alpha_2] \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

于是基
$$\beta_1$$
, β_2 到基 α_1 , α_2 的过渡矩阵为 $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix}$

五、(13 分)解: (1) 设 A 的对应于特征值 $\lambda_3 = 2$ 的特征向量为 $\alpha_3 = [x_1, x_2, x_3]^T$, 则由 $\alpha_1 \cdot \alpha_3 = 0$, $\alpha_2 \cdot \alpha_3 = 0$ 得

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ -2x_1 - 3x_2 + 3x_3 = 0 \end{cases}$$

解得 $\alpha_3 = k[0, 1, 1]^T$, $k \neq 0$.

(2) 将
$$\alpha_1$$
, α_2 正交化得 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 - \frac{\alpha_2 \cdot \beta_1}{\beta_1 \cdot \beta_1}$ $\beta_1 = [-2, -3, 3]^T + \frac{8}{3}[1, 1, -1]^T = \frac{1}{3}[2, -1, 1]^T$.

将
$$\beta_1$$
, β_2 单位化得: $\eta_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix}$, $\eta_2 = \begin{bmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$. 将 α_3 单位化得: $\eta_3 = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

取正交矩阵
$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
, 对角形矩阵 $\Lambda = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{bmatrix}$, 有 $Q^{-1}AQ = \Lambda$.

六、
$$(13 \, \%)$$
解: $(1) [A - 2E, E] = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & -4 & 1 & 1 \end{bmatrix}$

于是
$$(A-2E)^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$$

(2) 由 XA + 2B = AB + 2X 得 $X(A - 2E) = (A - 2E)B, X = (A - 2E)B(A - 2E)^{-1}$. 于是

$$X^{2021} = (A - 2E)B^{2021}(A - 2E)^{-1}$$
$$= (A - 2E)B(A - 2E)^{-1}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 8 & -2 & -1 \end{bmatrix}$$

七、(10 分)(1) 证明:对任意不全为零的实数 $x_1, x_2, ..., x_n$,

$$f(x_1, x_2, ..., x_n) = (x_1 + a_1x_2)^2 + (x_2 + a_2x_3)^2 + ... + (x_{n-1} + a_{n-1}x_n)^2 + (x_n + a_nx_1)^2 \ge 0$$

故 $(x_1, x_2, ..., x_n)$ 是正定或半正定的.

(2) $f(x_1, x_2, ..., x_n)$ 正定,即对任意不全为零的实数 $x_1, x_2, ..., x_n, f(x_1, x_2, ..., x_n) > 0$. 这当且仅当 $x_1 + a_1x_2, x_2 + a_2x_3, ..., x_{n-1} + a_{n-1}x_n, x_n + a_nx_1$ 不全为零.

也即方程组 $x_1 + a_1x_2 = 0$, $x_2 + a_2x_3 = 0$, ..., $x_{n-1} + a_{n-1}x_n = 0$, $x_n + a_nx_1 = 0$ 没有非零解.

世即
$$\begin{vmatrix} 1 & a_1 & 0 & \dots & 0 \\ 0 & 1 & a_2 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_n & 0 & 0 & \dots & 1 \end{vmatrix} \neq 0.$$

接第 1 列展开得
$$\begin{vmatrix} 1 & a_1 & 0 & \dots & 0 \\ 0 & 1 & a_2 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_n & 0 & 0 & \dots & 1 \end{vmatrix} = 1 + (-1)^{n+1} a_1 a_2 \dots a_n.$$

于是得 $f(x_1, x_2, ..., x_n)$ 正定的充分必要条件为 $a_1a_2...a_n \neq (-1)^n$. (或写成 $(-1)^na_1a_2...a_n \neq 1$)

注: 通过要求 $y_1 = x_1 + a_1x_2, y_2 = x_2 + a_2x_3, ..., y_{n-1} = x_{n-1} + a_{n-1}x_n, y_n = x_n + a_nx_1$ 是可逆线性替换,也可找到条件 $a_1a_2...a_n \neq (-1)^n$. 但这种方法不易说明必要性.

八、(10分)证明题

(1) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 是齐次线性方程组 AX = 0 的基础解系,证明: $\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 9\alpha_2 + 16\alpha_3, \alpha_1 - 3\alpha_2 - 4\alpha_3$ 也是 AX = 0 的基础解系.

证明:由 $\alpha_1,\alpha_2,\alpha_3$ 是齐次线性方程组 AX=0 的基础解系,知 $\alpha_1,\alpha_2,\alpha_3$ 是 AX=0 的线性无关的解,而且 AX=0 的任意三个线性无关的解均是 AX=0 的基础解系.

由 $\alpha_1, \alpha_2, \alpha_3$ 是 AX = 0 的解, $\beta_1 = \alpha_1 + \alpha_2 + \alpha_3$, $\beta_2 = \alpha_1 + 9\alpha_2 + 16\alpha_3$, $\beta_3 = \alpha_1 - 3\alpha_2 - 4\alpha_3$ 均是 α_1, α_2 , α_3 的线性组合, 故也是 AX = 0 的解. 于是以下只需要证明 $\beta_1, \beta_2, \beta_3$ 线性无关.

证法 1:
$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 9 & -3 \\ 1 & 16 & -4 \end{bmatrix}$$
, 而 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 9 & -3 \\ 1 & 16 & -4 \end{vmatrix} = 20 \neq 0$, 故

 $Rank(\beta_1, \beta_2, \beta_3) = Rank(\alpha_1, \alpha_2, \alpha_3) = 3$, 于是 $\beta_1, \beta_2, \beta_3$ 线性无关.

证法 2: 设 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$, 即

$$k_1(\alpha_1 + \alpha_2 + \alpha_3) + k_2(\alpha_1 + 9\alpha_2 + 16\alpha_3) + k_3(\alpha_1 - 3\alpha_2 - 4\alpha_3) = 0$$

$$(k_1 + k_2 + k_3)\alpha_1 + (k_1 + 9k_2 - 3k_3)\alpha_2 + (k_1 + 16k_2 - 4k_3)\alpha_2 = 0$$

由 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,得

$$\begin{cases} k_1 + k_2 + k_3 = 0 \\ k_1 + 9k_2 - 3k_3 = 0 \\ k_1 + 16k_2 - 4k_3 = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 9 & -3 \\ 1 & 16 & -4 \end{bmatrix}$$
 = 20 ≠ 0, 故以上方程组只有零解, 于是 $k_1 = k_2 = k_3 = 0$.

所以 β_1 , β_2 , β_3 线性无关.

(2) 设 $A \in n$ 阶非零实矩阵(n > 2), $A^{T} = A^{*}$, 证明: A 是正交矩阵.

证明: $AA^{T} = AA^{*} = |A|E$. 由正交矩阵的定义, 只需证|A| = 1.

由 $A \neq 0$,知 A 有非零元. 不妨设 $a_{ij} \neq 0$. 则 AA^{T} 的第 i 行 i 列的元素为 $a_{i1}^2 + a_{i2}^2 + ... + a_{in}^2 > 0$.

注意到 $AA^{T} = |A|E$, 比较左右两边第 i 行 i 列的元素, 得 $|A| = a_{i1}^{2} + a_{i2}^{2} + ... + a_{in}^{2} > 0$.

对 $AA^{T}=|A|E$ 两边取行列式得 $|A|^{2}=|A|^{n}$,即 $|A|^{n-2}=1$.又|A|>0,n>2,得|A|=1.于是 $AA^{T}=|A|E=E$,即 A 是正交矩阵.