Group Theory

J. S. Milne

January 9, 2022

Contents

1	Basi	ic Definitions and Results	1
	1.1	Definitions and examples	1
	1.2	Normal subgroups	3
	1.3	Theorems concerning homomorhisms	4
	1.4	Direct products	5
	1.5	Commutative groups	6
	1.6	The order of ab	9
	1.7	Exercises	10
2	Free Groups and Presentations; Coxeter Groups		
	2.1	Free monoids	10
	2.2	Free groups	10
	2.3	Generators and relations	12
	2.4	Finitely presented groups	12
	2.5	Coxeter groups	13
	2.6	Exercises	13
	2.0	Exercises	10

1 Basic Definitions and Results

1.1 Definitions and examples

The $\mathbf{order}\;|G|$ of a group is its cardinality. A finite group whose order is a power of a prime p is called a $p\text{-}\mathbf{group}$

 C_n denote any cyclic group of order n

Example 1.1. Let V be a finite-dimensional vector space over a field F. A bilinear form on V is a mapping $\phi:V\times V\to F$ that is linear in each variable. An **automorphism** of such a ϕ is an isomorphism $\alpha:V\to V$ s.t.

$$\phi(\alpha v, \alpha w) = \phi(v, w)$$
 for all $v, w \in V$

The automorphism of ϕ form a group ${\rm Aut}(\phi).$ Let $\{e_1,\dots,e_n\}$ be a basis for V , and let

$$P = (\phi(e_i, e_j))_{1 \le i, j \le n}$$

be the matrix of ϕ . The choice of the basis identifies $\operatorname{Aut}(\phi)$ with the group of invertible matrices A s.t.

$$A^T \cdot P \cdot A = P$$

When ϕ is symmetric, i.e.,

$$\phi(v, w) = \phi(w, v)$$
 all $v, w \in V$

and nondegenerate, $\operatorname{Aut}(\phi)$ is called the **orthogonal group** of ϕ

Theorem 1.1 (Cayley). *There is a canonical injective homomorhism*

$$\alpha: G \to \operatorname{Sym}(G)$$

Corollary 1.2. A finite group of order n can be realized as a subgroup of S_n

Proposition 1.3. Let H be a subgroup of a group G

- 1. An element $a \in G$ lies in a left coset C of H iff C = aH
- 2. Two left cosets are either disjoint or equal
- 3. $aH = bH \text{ iff } a^{-1}b \in H$
- 4. Any two left cosets have the same number of elements

The **index** (G:H) of H in G is defined to be the number of left cosets of H in G. For example, (G:1) is the order of G

Theorem 1.4 (Lagrange). *If G is finite, then*

$$(G:1) = (G:H)(H:1)$$

Proof. The left cosets of H in G form a partition of G, there are (G:H) of them

Corollary 1.5. The order of each element of a finite group divides the order of the group

Proof. Consider
$$H = \langle g \rangle$$

Proposition 1.6. For any subgroups $H \supset K$ of G

$$(G:K)=(G:H)(H:K) \\$$

Proof.
$$G = \coprod_{i \in I} g_i H$$
, and $H = \coprod_{j \in J} h_j K$

1.2 Normal subgroups

A subgroup N of G is **normal**, denoted $N \lhd G$, if $gNg^{-1} = N$ for all $g \in G$ it suffices to check that $gNg^{-1} \subset N$

Proposition 1.7. subgroup N of G is normal iff every left coset of N in G is also a right coset

Example 1.2. 1. Every subgroup of index two is normal. Indeed, let $g \in G \setminus H$, then $G = H \coprod gH = H \coprod Hg$

A group G is **simple** if it has no normal subgroups other than G and $\{e\}$.

Proposition 1.8. If H and N are subgroups of G and N is normal, then HN is a subgroup of G. If H is also normal, then HN is a normal subgroup of G

Intersection of normal subgroups of a group is again a normal subgroup. Therefore we can define the **normal subgroup generated by a subset** X of a group G to be the intersection of the normal subgroups containing X. We say that a subset X of a group G is **normal** if $gXg^{-1} \subset X$ for all $g \in G$

Lemma 1.9. *If* X *is normal, then the subgroup* $\langle X \rangle$ *generated by it is normal*

Lemma 1.10. For any subset X of G, the subset $\bigcup_{g \in G} gXg^{-1}$ is normal, and it is the smallest normal set containing X

Proposition 1.11. The normal subgroup generated by a subset X of G is $\langle \bigcup_{g \in G} gXg^{-1} \rangle$

Proposition 1.12. The map $a \mapsto aN : G \to G/N$ has the following universal property: for any homomorhism $\alpha : G \to G'$ of groups s.t. $\alpha(N) = \{e\}$, there exists a unique homomorhism $G/N \to G'$ making the diagram

commute

Proof. Define
$$\bar{\alpha}: G/N \to G'$$
, $\bar{\alpha}(gN) = \alpha(g)$

1.3 Theorems concerning homomorhisms

The kernel of the homomorhism $\det: \mathrm{GL}_n(F) \to F^{\times}$ is the group of $n \times n$ with determinant 1 - this group $\mathrm{SL}_n(F)$ is called the **special linear group** of degree n

Theorem 1.13 (HOMOMORPHISM THEOREM). For any homomorhism $\alpha: G \to G'$ of groups, $\ker \alpha \lhd G$, $\operatorname{im} \alpha \leq G'$, and α factors in a natural way into the composite of a surjection, an isomorphism, and an injection

$$\begin{array}{c} G \stackrel{\alpha}{\longrightarrow} G' \\ \downarrow^{g \mapsto g N} \quad \ \, \bigwedge^{\sim} \\ G/N \stackrel{\sim}{\underset{gN \mapsto \alpha(g)}{\longrightarrow}} I \end{array}$$

Theorem 1.14 (ISOMORPHISM THEOREM). $H \leq G$, $N \triangleleft G$. Then $HN \leq G$, $H \cap N \triangleleft G$

$$h(H \cap N) \mapsto hN : H/H \cap N \to HN/N$$

is an isomorphism

link

 \overline{G} is a quotient group of G

Theorem 1.15 (CORRESPONDENCE THEOREM). Let $\alpha: G \twoheadrightarrow \overline{G}$ be a surjective homomorhism, and let $N = \ker \alpha$. Then there is a one-to-one correspondence

$$\{subgroups\ of\ G\ containing\ N\} \leftrightarrow \{subgroups\ of\ \overline{G}\}$$

under which a subgroup H of G containing N corresponds to $\overline{H}=\alpha(H)$ and a subgroup \overline{H} of \overline{G} corresponds to $H=\alpha^{-1}(\overline{H})$. Moreover, if $H\leftrightarrow \overline{H}$ and $H'\leftrightarrow \overline{H}'$, then

1.
$$\overline{H} \subset \overline{H}' \Leftrightarrow H \subset H'$$
, in which case $(\overline{H}' : \overline{H}) = (H' : H)$

2. $\overline{H} \lhd \overline{G} \Leftrightarrow H \lhd G$, in which case α induces an isomorphism

$$G/H \xrightarrow{\simeq} \overline{G}/\overline{H}$$

Corollary 1.16. $N \lhd G$; then there is a one-to-one correspondence between the set of subgroups of G containing N and the set of subgroups of G/N, $H \leftrightarrow H/N$. Moreover $H \lhd G \Leftrightarrow H/N \lhd G/N$, in which case the homomorhism $g \mapsto gN : G \to G/N$ induces an isomorphism

$$G/H \cong (G/N)/(H/N)$$

1.4 Direct products

Let G be a group, and let H_1, \dots, H_k be subgroups of G. G is a **direct product** of the subgroups H_i if the map

$$(h_1,\dots,h_k)\mapsto h_1\dots h_k:H_1\times\dots\times H_k\to G$$

is an isomorphism of groups

note that if $g = h_1 \dots h_k$ and $g' = h'_1 \dots h'_k$, then

$$gg'=(h_1h_1')\dots(h_kh_k')$$

Proposition 1.17. A group G is a direct product of subgroups H_1, H_2 iff

- 1. $G = H_1 H_2$
- 2. $H_1 \cap H_2 = \{e\}$
- 3. every element of \mathcal{H}_1 commutes with every element of \mathcal{H}_2

Proof. 3 shows that $(h_1,h_2) \to h_1h_2$ is a homomorhism, 2 injective, 1 surjective

Proposition 1.18. A group G is a direct product of subgroups H_1, H_2 iff

- 1. $G = H_1 H_2$
- 2. $H_1 \cap H_2 = \{e\}$
- $3. \ H_1, H_2 \lhd G$

Proof. The elements h_1, h_2 of a group commute iff their commutator

$$[h_1, h_2] := (h_1 h_2)(h_2 h_1)^{-1}$$

is e. But

$$(h_1h_2)(h_2h_1)^{-1} = h_1h_2h_1^{-1}h_2^{-2} = \begin{cases} (h_1h_2h_1^{-1})\cdot h_2^{-1} \\ h_1\cdot (h_2h_1^{-1}h_2^{-1}) \end{cases}$$

which is in H_2 because H_2 is normal, and is in H_1 because H_1 is normal $\ \square$

Proposition 1.19. A group G is a direct product of subgroups H_1, \dots, H_k iff

- 1. $G = H_1 ... H_k$
- 2. for each $j, H_j \cap (H_1 \dots H_{j-1} H_{j+1} \dots H_k) = \{e\}$
- 3. $H_1, \ldots, H_k \triangleleft G$

1.5 Commutative groups

Let M be a commute group. The subgroup $\langle x_1,\ldots,x_k\rangle$ of M generated by the elements x_1,\ldots,x_k consists of the sums $\sum m_1x_i$, $m_i\in\mathbb{Z}$. A subset $\{x_1,\ldots,x_k\}$ of M is a **basis** of M if it generates M and

$$\sum m_i x_i = 0, m_i \in \mathbb{Z} \Longrightarrow m_i x_i = 0 \text{ for every } i$$

then

$$M = \langle x_1 \rangle \oplus \cdots \oplus \langle x_k \rangle$$

Lemma 1.20. Let x_1,\ldots,x_k generate M. For any $c_1,\ldots,c_k\in\mathbb{N}$ with $\gcd(c_1,\ldots,c_k)=1$, there exist generators y_1,\ldots,y_k for M s.t. $y_1=c_1x_1+\cdots+c_kx_k$

Proof. We argue by induction on $s=c_1+\cdots+c_k$. The lemma certainly holds if s=1, and so we assume s>1. Then, at least two c_i are nonzero, say, $c_1\geq c_2>0$. Now

- $\{x_1, x_2 + x_1, x_3, \dots, x_k\}$ generates M
- $\bullet \ \gcd(c_1-c_2,c_2,c_3,\dots,c_k)=1$
- $\bullet \ (c_1-c_2) + c_2 + \cdots + c_k < s$

and so, by induction, there exist generators y_1, \dots, y_k for M s.t.

$$\begin{aligned} y_1 &= (c_1 - c_2)x_1 + c_2(x_1 + x_2) + c_3x_3 + \dots + c_kx_k \\ &= c_1x_1 + \dots + c_kx_k \end{aligned}$$

Theorem 1.21. Every finitely generated commutative group M has a basis; hence it is a finite direct sum of cyclic groups

Proof. Induction on the generators of M.

Among the generating sets $\{x_1,\ldots,x_k\}$ for M with k elements there is one for which the order of x_1 is the smallest possible. We shall show that M is the direct sum of $\langle x_1 \rangle$ and $\langle x_2,\ldots,x_k \rangle$

If M is not the direct sum of $\langle x_1 \rangle$ and $\langle x_2, \dots, x_k \rangle$, then there exists a relation

$$m_1 x_1 + \dots + m_k x_k = 0$$

with $m_1x_1\neq 0$. After possibly changing the sign of some of the x_i , we may suppose that $m_1,\dots,m_k\in\mathbb{N}$ and $m_1<\operatorname{order}(x_1)$. Let $d=\gcd(m_1,\dots,m_k)>0$, and let $c_i=m_i/d$. According to the lemma, there exists a generating set y_1,\dots,y_k s.t. $y_1=c_1x_1+\dots+c_kx_k$. But

$$dy_1 = m_1 x_1 + \dots + m_k x_k = 0$$

and $d \leq m_1 < \operatorname{order}(x_1)$, and so this contradicts the choice of $\{x_1, \dots, x_k\}$

Corollary 1.22. A finite commutative group is cyclic if, for each n > 0, it contains at most n elements of order dividing n

Proof. After Theorem 1.21, we may assume that $G=C_{n_1}\times\cdots\times C_{n_r}$ with $n_i\in\mathbb{N}$. If n divides n_i and n_j with $i\neq j$, then G has more than n elements of order dividing n First consider n=p, then in C_p there are p-1 elements of order dividing p by Lagrange theorem.

Now consider $n=p_1p_2$. If $(k,p_1p_2)=1$, then order of k is p_1p_2 . Hence there are at least $p_1p_2-p_1-p_2-1$ elements. Check THIS! Therefore the hypothesis implies that the n_i are relatively prime. Let a_i generate the ith factor. Then (a_1,\ldots,a_r) has order $n_1\ldots n_r$, and so generates G

Example 1.3. Let F be a field. The elements of order dividing n in F^{\times} are the roots of the polynomial X^n-1 . Because unique factorization holds in F[X], there are at most n of these, and so corollary shows that every finite subgroup of F^{\times} is cyclic

Theorem 1.23. A nonzero finitely generated commutative group M can be expressed

$$M \approx C_{n_1} \times \cdots \times C_{n_n} \times C_{\infty}^r$$

for certain integers $n_1, \dots, n_s \ge 2$ and $r \ge 0$. Moreover

- 1. r is uniquely determined by M
- 2. the n_i can be chosen so that $n_1 \geq 2$ and $n_1 \mid n_2, \dots, n_{s-1} \mid n_s$, and then they are uniquely determined by M
- 3. the n_i can be chosen to be powers of prime numbers, and then they are uniquely determined by M

The number r is called the **rank** of M. By r being uniquely determined by M, we mean that two decompositions of M of the form , the number of copies of C_{∞} will be the same. The integers in (2) are called the **invariant factors** of M. Statement (3) says that M can be expressed

$$M \approx C_{p_1^{e_1}} \times \dots \times C_{p_t^{e_t}} \times C_{\infty}^r, \quad e_i \geq 1$$

for certain prime powers $p_i^{e_i}$, and that the integers $p_1^{e_1}, \dots, p_t^{e_t}$ are uniquely determined by M; they are called the **elementary divisors** of M

Proof. The first assertion is a restatement of Theorem 1.21

1. For a prime p not dividing any of the n_i

$$M/pM \approx (C_{\infty}/pC_{\infty})^r \cong (\mathbb{Z}/p\mathbb{Z})^r$$

and so r is the dimension of M/pM as an \mathbb{F}_p -vector space suppose $C_n=\langle a\rangle$ and $f:C_n\to pC_n:a\mapsto a^p.$ Since (p,n)=1, $|a^p|=n.$ Thus this is an isomorphism

2. 3. If $\gcd(m,n)=1$, then $C_m\times C_n$ contains an element of order mn , and so

$$C_m \times C_n \approx C_{mn}$$

In this way we can decomposite C_{n_i} into products of cyclic groups of prime power order. Then we can construct what we want

To prove the uniqueness of (2) and (3), we can replace M with its torsion subgroup (and so assume r=0).

uniqueness of elementary divisors is clear.

 n_s is the smallest integer >0 s.t. $n_sM=0$; n_{s-1} , is the smallest integer >0 s.t. $n_{s-1}M$ is cyclic; n_{s-2} is the smallest integer s.t. $n_{s-2}M$ can be expressed as a product of two cyclic groups, and so on

in the end, we will get a factoring like

$$\begin{array}{cccc} C_{p_1^{r_1}} & C_{p_1^{r_2}} & C_{p_1^{r_3}} & C_{p_1^{r_4}} \\ \\ C_{p_2^{s_1}} & C_{p_2^{s_2}} & \\ \\ C_{p_3^{t_1}} & C_{p_3^{t_2}} & C_{p_3^{t_3}} \end{array}$$

and get out invariant factors

1.6 The order of ab

Theorem 1.24. For any integers m, n, r > 1, there exists a finite group G with elements a and b s.t. a has order m, b has order n, and ab has order r

Proof. We shall show that, for a suitable prime power q, there exist elements a and b of $\mathrm{SL}_2(\mathbb{F}_q)$ s.t. a,b and ab have orders 2m,2n and 2r respectively. As -I is the unique element of order 2 in $\mathrm{SL}_2(\mathbb{F}_q)$, the image of a,b,ab in $\mathrm{SL}_2(\mathbb{F}_q)/\{\pm I\}$ will then have orders m,n and r as required.

Let p be the prime number not dividing 2mnr. Then p is a unit in the finite ring $\mathbb{Z}/2mnr\mathbb{Z}$, and so some power of it, q say, is 1 in the ring. This means that 2mnr divides q-1. As the group \mathbb{F}_q^{\times} has order q-1 and is cyclic (1.3), there exist element $u,v,w\in\mathbb{F}_q^{\times}$ having orders 2m,2n and 2r respectively. Let

$$a = \begin{pmatrix} u & 1 \\ 0 & u^{-1} \end{pmatrix} \in \operatorname{SL}_2(\mathbb{F}_q) \quad b = \begin{pmatrix} v & 0 \\ t & v^{-1} \end{pmatrix} \in \operatorname{SL}_2(\mathbb{F}_q)$$

where t has been chosen so that

$$uv + t + u^{-1}v^{-1} = w + w^{-1}$$

The characteristic polynomial of a is $(X-u)(X-u^{-1})$ $\hfill\Box$

1.7 Exercises

Exercise 1.7.1. Let $n=n_1+\cdots+n_r$ be a partition of the positive integer n. Use Lagrange's theorem to show that n! is divisible by $\prod_{i=1}^r n_i!$

Proof. n_1,\ldots,n_r is a partition of n elements, and S_{n_i} is the permutation group of each part.

Apparently each S_{n_i} is normal. Thus $S_{n_1}\dots S_{n_r}$ is a subgroup of S. Also $S_{n_i}\cap S_{n_j}=\{\mathrm{id}\}.$ Therefore $S_{n_1}\dots S_{n_r}\cong S_{n_1}\times\dots\times S_{n_r}$

Exercise 1.7.2. Let $N \triangleleft G$ of index n. Show that $g \in G \Rightarrow g^n \in N$

Proof. Because the group G/N has order n, $(gN)^n = 1$ for every $g \in G$. \square

2 Free Groups and Presentations; Coxeter Groups

2.1 Free monoids

Let $X = \{a, b, c, ...\}$. A **word** is a finite sequence of symbols from X. Empty sequence is denoted by 1. Write SX for the set of words together with the binary concatenation. Then SX is a monoid, called the **free monoid** on X

 $X \to SX$ has the following universal property: for any map of sets $\alpha: X \to S$ from X to a monoid S, there exists a unique homomorhism $SX \to S$ making the diagram

commute

2.2 Free groups

We want to construct a group FX contianing X and having the same universal property. Define

$$X' = \{a, a^{-1}, b, b^{-1}, \dots\}$$

Let W' be the set of words using symbols from X'. A word is **reduced** if it contains no pairs of the form aa^{-1} or $a^{-1}a$. Starting with a word w, we can perform a finite sequence of cancellations to arrive at a reduced word, which will be called the **reduced form** w_0 of w.

Proposition 2.1. There is only one reduced form of a word

Proof. Induction on the length of the word w. If w is reduced, there is nothing to prove. Otherwise a pair of the form $a_0a_0^{-1}$ or $a_0^{-1}a_0$ occurs - assume the first

Observe that any two reduced forms of w obtained by a sequence of cancellations in which $a_0a_0^{-1}$ is cancelled first are equal, because the induction hypothesis can be applied to the shorter word.

Next observed that any reduced forms of w obtained by a sequence of cancellations where $a_0a_0^{-1}$ is cancelled at some point are equal, because the result of such a sequence of cancellations will not be affected if $a_0a_0^{-1}$ is cancelled first

finally consider a reduced form w_0 obtained by a sequence where no cancellation cancels $a_0a_0^{-1}$ directly. Since $a_0a_0^{-1}$ doesn't remain in w_0 , at least one of a_0 or a_0^{-1} is cancelled. But the word obtained after this cancellation is the same as if our original pair were cancelled

w,w' are **equivalent**, denoted $w\sim w'$, if they have the same reduced form

Proposition 2.2. products of equivalent words are equivalent, i.e.,

$$w \sim w', v \sim v' \Rightarrow wv \sim w'v'$$

Let FX be the set of equivalence classes of words. Proposition 2.2 shows that the binary operation on W' defines a binary operation on FX, which obviously makes it into a monoid. It also has inverses. Thus FX is a group, called the **free group**

Proposition 2.3. For any map of sets $\alpha: X \to G$ from X to a group G, there exists a unique homomorhism $FX \to G$ making the following diagram commute

$$\begin{array}{ccc} X & \xrightarrow{a \mapsto a} & FX \\ & & \downarrow \\ & & \downarrow \\ & & G \end{array}$$

Proof. Consider a map $\alpha: X \to G$, and extend it to $X' \to G$ letting $\alpha(a^{-1}) = \alpha(a)^{-1}$. Because G is a monoid, α extends to a homomorhism of monoids $SX' \to G$. This map will send equivalent words to the same element of G, and so will factor through $FX = SX' / \sim$.

Corollary 2.4. Every group is a quotient of a free group

Proof. Choose a set X of generators for G (e.g. X=G), and let F be the free group generated by X. According to 2.3 the map $a\mapsto a:X\to G$ extends to a homomorhism $F\to G$, and the image, being a subgroup containing X, must equal G

Theorem 2.5 (Nielsen-Schreier). Subgroups of free groups are free

Two free groups FX and FY are isomorphic iff |X| = |Y|. Thus **rank** of a free group G to be the cardinality of any free generating set (subset X of G for which the homomorhism $FX \to G$ given by 2.3 is an isomorphism)

2.3 Generators and relations

Consider a set X and a set R of words made up of symbols in X'. Each element of R represents an element of the free group FX, and the quotient G of FX by the normal subgroup generated by these elements is said to have X as **generators** and R as **relations**. (X,R) is a **presentation** for G, and denotes G by $\langle X \mid R \rangle$

Proposition 2.6. $G = \langle X \mid R \rangle$, for any group H and map $\alpha : X \to H$ sending each element of R to 1, there exists a unique homomorhism $G \to H$ making the diagram commute

2.4 Finitely presented groups

A group is **finitely presented** if it admits a presentation (X,R) with both X and R finite

Example 2.1. Consider a finite group G. Let X = G, and let R be the set of words

$$\{abc^{-1}\mid ab=c\}$$

(X,R) is a presentation of G, and so G is finitely presented: let $G'=\langle X\mid R\rangle$. The extension of $a\mapsto a:X\to G$ to FX sends each element of R to 1, and therefore defines a homomorhism $G'\to G$, which is obviously surjective. But every element of G' is represented by an element of X, and so $|G'|\leq |G|$. Therefore the homomorhism is bijective

2.5 Coxeter groups

A **Coxeter system** is a pair (G,S) consisting of a group G and a set of generators S for G subject only to relations of the form $(st)^{m(s,t)}=1$

$$\begin{cases} m(s,s) = 1 \text{ for all } s \\ m(s,t) \ge 2 \\ m(s,t) = m(t,s) \end{cases} \tag{1}$$

When no relation occurs between s and t, we set $m(s,t)=\infty$. Thus a Coxeter system is defined by a set S and a mapping

$$m: S \times S \to \mathbb{N} \cup \{\infty\}$$

satisfying (1), and the group $G = \langle S \mid R \rangle$ where

$$R = \{(st)^{m(s,t)} \mid m(s,t) \neq \infty\}$$

The **Coxeter groups** are those that arise as part of a Coxeter system. The cardinality of *S* is called the **rank** of the Coxeter system

2.6 Exercises

Exercise 2.6.1. Let $D_n=\langle a,b\mid a^n,b^2,abab\rangle$ be the nth dihedral group. If n is odd, prove that $D_{2n}\approx\langle a^n\rangle\times\langle a^2,b\rangle$, and hence that $D_{2n}\approx C_2\times D_n$

Proof. first, $ab(b^{-1}a^{-1})=ab(b^{-1}a^{-1})(abab)=abab=e$, hence D_n is commutative for any n. Since n is odd, (n,2)=1 and so $D_{2n}\approx C_2\times C_n$

3 TODO skip and problems

1.6 2.5