Technische Grundlagen der Informatik – Kapitel 1

Prof. Dr. Andreas Koch Fachbereich Informatik TU Darmstadt

Lehr- und Anschauungsmaterial

Aus dem Lehrbuch

Digital Design and Computer Architecture

von David M. Harris & Sarah L. Harris

- Diese Folien nach englischen Originalvorlagen erstellt
 - Originale sind © 2007 Elsevier

- Buch wird an Studierende subventioniert abgegeben
 - Organisiert durch Fachschaft Informatik
- Mehr Hintergrundmaterial auf Web-Seite zu Buch

Kapitel 1: Von 0 nach 1

- Hintergrund
- Vorgehensweise
- Beherrschen von Komplexität
- Die digitale Abstraktion
- Zahlensysteme
- Logikgatter
- Darstellung als elektrische Spannungen
- CMOS Transistoren
- Elektrische Leistungsaufnahme

Hintergrund

- Mikroprozessoren haben die Welt verändert
 - Handys, Internet, Medizintechnik, Unterhaltung, ...
- Umsatzwachstum in der Halbleiterindustrie von \$21 Milliarden in 1985 auf \$213 Milliarden in 2004

Themen dieser Veranstaltung

- Interner Aufbau und Funktion eines Computers
- Entwurf digitaler Logikschaltungen
- Systematische Fehlersuche in digitalen Logikschaltungen
- Entwurf und Realisierung eines Mikroprozessors

Beherrschen von Komplexität

- Abstraktion
- Disziplin
- Wesentliche Techniken (die drei Y's)
 - Hierarchie (hierarchy)
 - Modularität (modularity)
 - Regularität (regularity)

Abstraktion

- Verstecken unnötiger Details
- "unnötig"
 - Für *diese* spezielle Aufgabe unnötig!
- Für alle Aufgaben hilfreich
 - Verstehen der anliegenden Abstraktionsebenen

Disziplin

- Wissentliche Beschränkung der Realisierungsmöglichkeiten
 - Erlaubt produktivere Arbeit auf höheren Entwurfsebenen
- Beispiel: Digitale Entwurfsdisziplin
 - Arbeite mit diskreten statt mit stetigen Spannungspegeln
 - Digitalschaltungen sind einfacher zu entwerfen als analoge
 - Erlaubt den Entwurf komplexerer Schaltungen
 - Digitale Systeme ersetzen zunehmend analoge
 - Digitalkamera, digitales Fernsehen, moderne Handys, CD, DVD, ...

Wesentliche Techniken (Die Drei-Y's)

- Hierarchie
 - Aufteilen eines Systems in Module und Untermodule
- Modularität
 - Wohldefinierte Schnittstellen und Funktionen
- Regularität
 - Bevorzuge einheitliche Lösungen für einfachere Wiederverwendbarkeit

Beispiel: Steinschlossgewehr

- Frühes Beispiel für Anwendungen der Drei-Y's
- Komplexer Gebrauchsgegenstand
- Entwicklung begann im 16. Jahrhundert
 - Aber noch sehr unzuverlässig
- Höhere Stückzahlen ab dem 17. Jahrhundert
 - Aber alles Einzelanfertigungen von Büchsenmachern
- Bis zum 19. Jahrhundert zunehmende Vereinheitlichung

Hierarchie: Zerlegung in Module

Hierarchie: Zerlegung in Untermodule

applications

Untermodule des Schlosses
 Feuerstein
 Batterie

Modularität: Schaft und Lauf

- Funktion des Schafts
 - Schloss und Lauf stabil zusammenfügen
- Funktion des Laufes
 - Projektil während Beschleunigung zu führen und mit Drall zu versetzen
- Im Idealfall sind Funktionen unabhängig und beeinflussen sich nicht
- Schnittstelle zwischen Schaft und Lauf
 - Gemeinsame Haltevorrichtung

Regularität: Austauschbare Teile

- Gleiche Schlösser in unterschiedlichen Schäften
 - Passender Ausschnitt in Schaft
- Unterschiedliche Läufe in gleichen Schäften
 - Passende Länge und Haltemechanismus
- Voraussetzung für industrielle Massenproduktion

Digitale Abstraktion

- Die meisten physikalischen Größen habe stetige Werte
 - Elektrische Spannung auf einem Leiter
 - Frequenz einer Schwingung
 - Position einer Masse
- Berücksichtigen alle Werte der Größe (unendlich viele)
- Digitale Abstraktion: Berücksichtigt nur endlich viele Werte
 - Untermenge aus einem stetigen Wertebereich

Analytische Maschine

- Analytical engine
- Entworfen durch Charles Babbage von 1834 1871
- Erster Digitalrechner
- Aufgebaut als mechanischer Rechner
 - Zahnstangen und –räder
 - Stellungen repräsentieren Ziffern 0-9
 - Genau 10 Stellungen je Zahnrad
- Babbage verstarb vor Fertigstellung
- Entwurf hätte aber funktioniert

Digitale Disziplin: Binärwerte

- Digitale Disziplin heute
 - In der Regel Beschränkung auf nur zwei unterschiedliche Werte
 - Binärsystem
 - Können unterschiedlich heißen
 - 1, WAHR, TRUE, HIGH, ...
 - 0, FALSCH, FALSE, LOW, ...
- Unterschiedlichste Darstellungen der beiden Werte möglich
 - Spannungspegel, Zahnradstellungen, Flüssigkeitsstände, Quantenzustände, ...
- Digitalschaltungen verwenden üblicherweise unterschiedliche Spannungspegel
- Bit (Binary digit): Maßeinheit für Information
 - 1 b = Eine Ja/Nein-Entscheidung

George Boole, 1815 - 1864

- In einfachen Verhältnissen geboren
- Brachte sich selbst Mathematik bei
- Später Professur am Queen's College in Irland
- Verfasste An Investigation of the Laws of Thought
 - **1854**
- Einführung binärer Variablen
- Einführung der drei grundlegenden Logikoperationen
 - UND (*AND*)
 - ODER (*OR*)
 - NICHT, (*NOT*)
- Verknüpfen binäre Werte mit binärem Ergebnis

nstitute of Physics

Zahlensysteme

Dezimalzahlen

Binärzahlen

Zahlensysteme

Dezimalzahlen

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binärzahlen

$$\frac{8^{\frac{1}{5}} \cdot 8^{\frac{1}{5}} \cdot 8^{\frac{1}{5}}$$

Zweierpotenzen

$$-2^{10} =$$

$$= 2^{15} =$$

Zweierpotenzen

$$-2^0 = 1$$

$$-2^1 = 2$$

$$-2^2 = 4$$

$$-2^3 = 8$$

$$-2^4 = 16$$

$$-2^5 = 32$$

$$-2^6 = 64$$

$$-2^7 = 128$$

$$-28 = 256$$

$$-29 = 512$$

$$-2^{10} = 1024$$

$$-2^{11} = 2048$$

$$2^{12} = 4096$$

$$-2^{13} = 8192$$

$$2^{14} = 16384$$

$$2^{15} = 32768$$

Sehr nützlich, wenigstens die ersten 10 im Kopf zu haben

Zahlenkonvertierung

- Binär nach dezimal umrechnen:
 - Wandele 10011₂ ins Dezimalsystem um

- Dezimal nach binär umrechnen
 - Wandele 47₁₀ ins Binärsystem um

Zahlenkonvertierung

- Binär nach dezimal umrechnen:
 - Wandele 10011₂ ins Dezimalsystem um
 - 16×1 + 8×0 + 4×0 + 2×1 + 1×1 = 19₁₀
- Dezimal nach binär umrechnen
 - Wandele 47₁₀ ins Binärsystem um
 - $32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 1011111_{2}$
 - Auf zwei Arten möglich
 - Jeweils nach größter noch passender Zweierpotenz suchen
 - Durch immer größer werdende Zweierpotenzen dividieren

Binärzahlen und Wertebereiche

- N-stellige Dezimalzahl
 - Wie viele verschiedene Werte? 10^N
 - Wertebereich? [0, 10^N 1]
 - Beispiel: 3-stellige Dezimalzahl:
 - 10³ = 1000 mögliche Werte
 - Wertebereich: [0, 999]
- N-bit Binärzahl
 - Wie viele verschiedene Werte? 2^N
 - Wertebereich : [0, 2^N 1]
 - Beispiel : 3-bit Binärzahl
 - 2³ = 8 mögliche Werte
 - Wertebereich : [0, 7] = [000₂ , 111₂]

Hexadezimale Zahlen

Hex-Ziffer	Entspricht Dezimal	Entspricht Binär
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
Α	10	
В	11	
С	12	
D	13	
E	14	
F	15	

Hexadezimale Zahlen

Hex-Ziffer	Entspricht Dezimal	Entspricht Binär
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadezimalzahlen

- Schreibweise zur Basis 16
- Kürzere Darstellung für lange Binärzahlen

Umwandeln von Hexadezimaldarstellung

- Umwandeln von hexadezimal nach binär:
 - Wandele 4AF₁₆ (auch geschrieben als 0x4AF) nach binär

- Umwandeln von hexadezimal nach dezimal:
 - Wandele 0x4AF nach dezimal

Umwandeln von Hexadezimaldarstellung

- Umwandeln von hexadezimal nach binär:
 - Wandele 4AF₁₆ (auch geschrieben als 0x4AF) nach binär
 - **•** 0100 1010 1111₂
- Umwandeln von hexadezimal nach dezimal:
 - Wandele 0x4AF nach dezimal
 - $16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

Bits, Bytes, Nibbles...

- Bits (Einheit b)
 - Höchstwertiges Bit (msb)
 - Niedrigstwertiges Bit (*Isb*)
- Bytes (Einheit B) & Nibbles

- Bytes
 - Höchstwertiges Byte (*MSB*)
 - Niedrigstwertiges Byte (*LSB*)

10010110 most least significant significant bit bit

10010110

most least significant significations

byte

least significant byte

Zweierpotenzen und Präfixe

$$■ 2^{10} = 1 \text{ Kilo}$$
 (K) $\approx 1000 (1024)$

$$■2^{20} = 1 \text{ Mega}$$
 (M) ≈ 1 Million (1,048,576)

$$■ 2^{30} = 1 \text{ Giga}$$
 (G) ≈ 1 Milliarde (1,073,741,824)

Beispiele

- 4 GB: Maximal adressierbare Speichergröße für 32b-Prozessoren
- 16M x 32b: erste GDDR5-Speicherchips für Grafikkarten

Vorsicht Falle:

- Deutsch 10⁹=1 Milliarde
- US English 109=1 billion

Zweierpotenzen schnell schätzen

■ Was ist der Wert von 2²⁴?

• Wie viele verschiedene Werte kann eine 32b Variable annehmen?

Zweierpotenzen schnell schätzen

■ Was ist der Wert von 2²⁴?

• Wie viele verschiedene Werte kann eine 32b Variable annehmen?

Addition

Dezimal

■ Binär

Beispiele für Addition von Binärzahlen

Addiere die 4-bit Binärzahlen

Addiere die 4-bit Binärzahlen

Beispiele für Addition von Binärzahlen

Addiere die 4-bit Binärzahlen

Addiere die 4-bit Binärzahlen

Überlauf

- Digitale Systeme arbeiten mit einer festen Zahl an Bits
 - In der Regel, es gibt aber durchaus Ausnahmen!
- Eine Addition läuft über wenn ihr Ergebnis nicht mehr in die verfügbare Zahl von Bits hineinpasst
- Beispiel: 11+6, gerechnet mit 4b Breite

Vorzeichenbehaftete Binärzahlen

- Darstellung als Vorzeichen und Betrag
- Zweierkomplement

Darstellung als Vorzeichen und Betrag

■ 1 Vorzeichenbit, N-1 Bits für Betrag

$$A: \{a_{N-1}, a_{N-2}, \cdots a_2, a_1, a_0\}$$

- Vorzeichenbit ist höchstwertiges Bit (msb)
 - Positive Zahl: Vorzeichenbit = 0
 - Negative Zahl: Vorzeichenbit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

Beispiel: 4-bit Vorzeichen/Betrag-Darstellung von ± 6:

Wertebereich einer Zahl in Vorzeichen/Betrag-Darstellung :

Darstellung als Vorzeichen und Betrag

■ 1 Vorzeichenbit, N-1 Bits für Betrag

$$A: \{a_{N-1}, a_{N-2}, \cdots a_2, a_1, a_0\}$$

- Vorzeichenbit ist höchstwertiges Bit (msb)
 - Positive Zahl: Vorzeichenbit = 0
 - Negative Zahl: Vorzeichenbit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

Beispiel: 4-bit Vorzeichen/Betrag-Darstellung von ± 6:

Wertebereich einer Zahl in Vorzeichen/Betrag-Darstellung :

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Darstellung als Vorzeichen/Betrag: Probleme

- Addition schlägt fehl
 - Beispiel: -6 + 6:

Zwei Darstellungen für Null (± 0):

Zahlendarstellung im Zweierkomplement

- Behebt Probleme der Vorzeichen/Betrag-Darstellung
 - Addition liefert wieder korrekte Ergebnisse
 - Nur eine Darstellung für Null

Zahlendarstellung im Zweierkomplement

- Wie vorzeichenlose Binärdarstellung, aber ...
 - msb hat nun einen Wert von -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Größte positive 4b Zahl
- Kleinste negative 4b Zahl:
- msb gibt immer noch das Vorzeichen an
 - 1=negativ, 0=positiv
- Wertebereich einer N-bit Zweierkomplementzahl:

Zahlendarstellung im Zweierkomplement

- Wie vorzeichenlose Binärdarstellung, aber ...
 - msb hat nun einen Wert von -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Größte positive 4b Zahl : 0111 = 2² + 2¹ + 2⁰ = 7
- Kleinste negative 4b Zahl: 1000 = -23 = -8
- msb gibt immer noch das Vorzeichen an
 - 1=negativ, 0=positiv
- Wertebereich einer N-bit Zweierkomplementzahl:

$$[-(2^{N-1}), 2^{N-1}-1]$$

Darstellung in Zweierkomplement

- Annahme: Umzuwandelnde Zahlen mit liegen im Wertebereich
 - *N* bit breites Zweierkomplement
 - Stelle Wert k im Zweierkomplement z dar
- Positive Zahlen k >= 0
 - Normale Binärdarstellung, restliche Bits bis einschließlich msb mit 0 auffüllen
 - Beispiel: N=5b, $k=3_{10} \implies z=00011$
- Negative Zahlen k < 0</p>
 - msb auf 1 setzen, Wert soweit ist nun -2^{N-1}
 - Nun muss aufaddiert werden, bis gewünschter Zielwert *k* erreicht
 - Differenz $d = 2^{N-1} + k$, diese binär in untere Bits eintragen (Beginn bei lsb)
 - Beispiel: N=5b, $k=-3_{10} \rightarrow d=2^4-3=16-3=13 \rightarrow z=11101$

Zweierkomplement arithmetisch bilden

- In beide Richtungen anwendbar
 - Vorzeichenwechsel: $k \rightarrow -k$
- Algorithmus
 - 1. Alle Bits invertieren $(0 \rightarrow 1, 1 \rightarrow 0)$
 - 2. Dann 1 addieren
- Beispiel: Vorzeichenwechsel von 3₁₀ = 00011₂
- Beispiel: Vorzeichenwechsel von -3₁₀ = 11101₂

Zweierkomplement arithmetisch bilden

- In beide Richtungen anwendbar
 - Vorzeichenwechsel: $k \rightarrow -k$
- Algorithmus
 - 1. Alle Bits invertieren $(0 \rightarrow 1, 1 \rightarrow 0)$
 - 2. Dann 1 addieren
- Beispiel: Vorzeichenwechsel von 3₁₀ = 00011₂
 1. 11100₂, 2. 11101₂ = -3₁₀
- Beispiel: Vorzeichenwechsel von -3₁₀ = 11101₂
 1. 00010₂, 2. 00011₂ = 3₁₀

Weitere Beispiele Zweierkomplement

Bestimme Zweierkomplement von 6₁₀ = 0110₂

Was ist der Dezimalwert der Zweierkomplementzahl 1001₂?

Weitere Beispiele Zweierkomplement

- Bestimme Zweierkomplement von 6₁₀ = 0110₂
 - 1. 1001
 - $2. \qquad \frac{+ 1}{1010_2} = -6_{10}$
- Was ist der Dezimalwert der Zweierkomplementzahl 1001₂?
 - 1. 0110
 - 2. $\frac{+ 1}{0111_2} = 7_{10}$, msb war vorher 1 also negativ: $1001_2 = -7_{10}$

Addition im Zweierkomplement

Addiere 6 + (-6)

Addiere -2 + 3

Addition im Zweierkomplement

Addiere 6 + (-6)

Addiere -2 + 3

Überlauf.

Ignorieren, wenn
Positive und negative
Zahlen gleicher
Bitbreite addiert
werden

Erweitern von Zahlen auf höhere Bitbreite

- Verknüpfen von Zahlen unterschiedlicher Bitbreite?
- Anzahl Bits N der schmaleren Zahl erhöhen auf Breite M der anderen Zahl
- Zwei Möglichkeiten
 - Auffüllen mit führenden Nullen (zero extension)
 - Auffüllen mit dem bisherigen Vorzeichen (sign extension)

Erweitern durch Auffüllen mit Vorzeichenbit

- Vorzeichenbit nach links kopieren bis gewünschte Breite erreicht
- Zahlenwert bleibt unverändert
 - Auch bei negativen Zahlen!

Beispiel 1:

- 4-bit Darstellung von 3 = 0011
- 8-bit aufgefüllt durch Vorzeichen: 00000011

Beispiel 2:

- 4-bit Darstellung von -5 = 1011
- 8-bit aufgefüllt durch Vorzeichen : 11111011

Erweitern durch Auffüllen mit Nullbits

- Nullen nach links anhängen bis gewünschte Breite erreicht
- Zerstört Wert von negativen Zahlen
 - Positive Zahlen bleiben unverändert

Beispiel 1:

- 4-bit Wert = $0011_2 = 3_{10}$
- 8-bit durch Auffüllen mit Nullbits: 00000011 = 3₁₀

Beispiel 2:

- 4-bit Wert = 1011 = -5₁₀
- 8-bit durch Auffüllen mit Nullbits : 00001011 = 11₁₀, falsch!

Vergleich der Zahlensysteme

Zahlensystem	Wertebereich
Vorzeichenlos	[0, 2 ^N -1]
Vorzeichen/Betrag	$[-(2^{N-1}-1), 2^{N-1}-1]$
Zweierkomplement	[-2 ^{N-1} , 2 ^{N-1} -1]

Beispiel 4-bit breite Darstellung:

Logische Gatter

- Berechnen logische Funktionen:
 - Inversion (NICHT), UND, ODER, ...
 - NOT, AND, OR, NAND, NOR, ...
- Ein Eingang:
 - NOT Gatter, Puffer (*buffer*)
- Zwei Eingänge:
 - AND, OR, XOR, NAND, NOR, XNOR
- Viele Eingänge

Logikgatter mit einem Eingang

$$Y = \overline{A}$$

BUF

$$Y = A$$

Logikgatter mit einem Eingang

$$Y = \overline{A}$$

BUF

$$Y = A$$

Α	Y
0	0
1	1

Alternative Schreibweisen

Logikgatter mit zwei Eingängen

$$Y = AB$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

OR

$$Y = A + B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

Logikgatter mit zwei Eingängen

AND

$$Y = AB$$

_ A	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Alternative Schreibweisen $Y = A \& B, Y = A * B, Y = A \cap B$

OR

$$Y = A + B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Alternative Schreibweisen

$$Y = A \mid B, Y = A \cup B$$

Weitere Logikgatter mit zwei Eingängen

XOR

$$Y = A \oplus B$$

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR

$$Y = \overline{A + B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

Weitere Logikgatter mit zwei Eingängen

XOR

$$Y = A \oplus B$$

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

XNOR

$$Y = \overline{A + B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Alternative Schreibweise Y= A ^ B

Logikgatter mit mehr als zwei Eingängen

NOR3

$$Y = \overline{A + B + C}$$

A	В	С	Υ
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND4

$$Y = ABCD$$

A	В	С	Υ
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Logikgatter mit mehr als zwei Eingängen

NOR3

$$Y = \overline{A + B + C}$$

_ A	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND4

$$Y = ABCD$$

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

XOR mit mehreren Eingängen

- Paritätsfunktion
 - Erkennt gerade oder ungerade Anzahl von Eingängen mit Wert 1
- XOR
 - Ungerade Paritätsfunktion
 - Liefert 1 am Ausgang, wenn ungerade Anzahl von Eingängen den Wert 1 haben

Darstellung von Binärwerten durch Spannungen

- Definiere Spannungspegel für die Werte 0 und 1
 - Logikpegel (logic levels)
- Beispiel:
 - 0 Volt (Erde, ground) entspricht Binärwert 0
 - 5 Volt (Versorgungsspannung, V_{DD}) entspricht Binärwert 1
- Probleme
 - Wofür steht 4,99 V? Den Wert 0 oder 1?
 - Wofür steht 3,2V?
- Reale Schaltungen haben keine ganz exakten Spannungspegel
 - Teils sogar Umgebungsabhängig (Temperatur, Einstreuen, ...)
 - Solche Spannungsschwankungen werden Rauschen genannt

Was ist Rauschen?

Jede Störung der Nutzsignale

- Unerwünschte Widerstände, Kapazitäten und Induktivitäten
- Instabile Betriebsspannung
- Übersprechen von benachbarten Leitungen
- **.**...

Beispiel

- Gatter gibt 5V aus (Treiber, driver)
- Lange Leitung hat hohen Widerstand (Spannungsabfall 0,5V)
- Am Empfänger (*receiver*) kommen nur 4,5V an

Darstellung von Binärwerten durch Spannungen

- Lösung
 - Statt einzelner Spannungspegel für 0 und 1 ...
 - ... verwende Bereiche von Spannungspegeln für 0 und 1
- Steigere Robustheit durch unterschiedliche Bereiche für
 - Eingänge
 - Ausgänge

Statische Entwurfsdisziplin

- Jedes Schaltungselement muss bei Eingabe gültiger Logikpegel auch am Ausgang einen gültigen Logikpegel liefern
- Verwende nur einen Satz Spannungsbereiche für Logikpegel in gesamter Schaltung
 - Wird manchmal bewusst missachtet
 - Optimierung von Platz, Geschwindigkeit, Energiebedarf, Kosten, ...
 - ... bedarf aber großer Vorsicht

Logikpegel

Störabstand (noise margin)

Gleichstrom-Transferkurve (DC transfer characteristics)

Idealer Buffer:

Gleichstrom-Transferkurve (DC transfer characteristics)

Idealer Buffer:

Realer Buffer:

Gleichstrom-Transferkurve

Absenken der Versorgungsspannung V_{DD}

- Versorgungsspannung in den 70er-80er Jahren: V_{DD} = 5 V
- Verbesserte Chip-Fertigungstechnologie erforderten Absenkung von V_{DD}
 - Hohe Spannungen würden nun sehr kleine Transistoren beschädigen
 - Energiebedarf reduzieren
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Vorsicht beim Verbinden von Chips mit unterschiedlichen Versorgungsspannungen!

Beispiele für Logikfamilien

Bausteine mit kompatiblen Spannungspegeln

Logikfamilie	V _{DD}	V _{IL}	V _{IH}	V _{OL}	V _{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Transistoren

- Logikgatter werden üblicherweise aus Transistoren aufgebaut
 - Heute überwiegend Feldeffekttransistoren (FET)
 - Weiteres bezieht sich implizit auf FETs, nicht Bipolartransistoren
- Transistoren sind spannungsgesteuerter Schalter
 - Zwei Anschlüsse werden abhängig von Spannung an einem dritten geschaltet
 - Verbunden oder getrennt
 - Beispiel: Verbindung zwischen d,s verbunden wenn g=1, getrennt wenn g=0

Robert Noyce, 1927 - 1990

- Spitzname "Bürgermeister von Silicon Valley"
- Mitgründer von Fairchild Semiconductor in 1957
- Mitgründer von Intel in 1968
- Miterfinder der integrierten Schaltung

Silizium

- Transistoren werden üblicherweise aus Silizium (Si, Gruppe IV) gefertigt
- Reines Silizium ist ein schlechter Leiter (keine freien Ladungsträger)
- Dotiertes Silizium ist ein guter Leiter (freie Ladungsträger)
 - n-type (freie *n*egative Ladungsträger, Elektronen, dotiert mit Arsen, Gruppe V)
 - p-type (freie positive Ladungsträger, Löcher, dotiert mit Bor, Gruppe III)

MOS Feldeffekttransistoren (MOSFETs)

- Metalloxid-Silizium (MOS) Transistoren
 - Polysilizium (früher Metallschicht) Gate
 - Oxid (Siliziumdioxid = Glas) als Isolator
 - Dotiertes Silizium

nMOS

Transistor: nMOS

Gate = 0, ausgeschaltet

- keine Verbindung zwischen Source und Drain

Gate = 1, eingeschaltet

- leitfähiger Kanal zwischen Source und Drain)

Transistor: pMOS

- Verhalten von pMOS Transistor ist genau umgekehrt
 - EIN wenn Gate = 0
 - AUS wenn Gate = 1

Übersicht über Funktion von Transistoren

nMOS

pMOS

Kombinieren von Transistoren

- nMOS Transistoren leiten 0'en gut zwischen S und D weiter
 - 1'en werden abgeschwächt → S an GND anschließen
- pMOS Transistoren leiten 1'en gut zwischen S und D weiter
 - 0'en werden abgeschwächt → S an V_{DD} anschließen

CMOS Gatter: NOT

NOT

$$Y = \overline{A}$$

Α	P1	N1	Y
0			
1			

CMOS Gatter: NOT

NOT

$$Y = \overline{A}$$

Α	P1	N1	Y
0	EIN	AUS	1
1	AUS	EIN	0

CMOS Gatter: NAND

NAND

$$Y = \overline{AB}$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	В	P1	P2	N1	N2	Υ
0	0					
0	1					
1	0					
1	1					

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

A	В	P1	P2	N1	N2	Y
0	0	EIN	EIN	AUS	AUS	1
0	1	EIN	AUS	AUS	EIN	1
1	0	AUS	EIN	EIN	OFF	1
1	1	AUS	AUS	EIN	EIN	0

Struktur eines CMOS Gatters

Aufbau eines NOR-Gatters mit drei Eingängen

Aufbau eines NOR-Gatters mit drei Eingängen

NOR Gatter mit drei Eingängen

Aufbau eines AND-Gatters mit zwei Eingängen

Aufbau eines AND-Gatters mit zwei Eingängen

AND Gatter mit zwei Eingängen

Transmissionsgatter (transmission gates)

- nMOS leiten 1'en schlecht weiter
- pMOS leiten 0'en schlecht weiter
- Transmissionsgatter ist ein besserer Schalter
 - Leitet 0 und 1 gut weiter
- Wenn EN = 1, Schalter ist EIN:
 - $\blacksquare \overline{EN} = 0$
 - A ist verbunden mit B
- Wenn EN = 0, Schalter ist AUS:
 - *EN* = 1
 - A ist nicht verbunden mit B

Tricks: Pseudo-nMOS Gatter

- Pseudo-nMOS Gatter ersetzen das Pull-Up Netz
- Durch schwachen immer eingeschalteten pMOS Transistor
 - Schwach heißt: Seine 1 kann durch das Pull-Down Netz neutralisiert werden.
- Nützlich um lange Reihen von Transistoren zu vermeiden: breite NORs

Beispiel für Pseudo-nMOS Gatter

Pseudo-nMOS NOR4

Verbraucht aber mehr Energie: Schwacher Dauerkurzschluss bei Y=0

Gordon Moore, 1929 -

- Gründete Intel in 1968
 zusammen mit Robert Noyce
- Moores Gesetz: Die Anzahl von Transistoren auf Chips verdoppelt sich
 - Jedes Jahr (1965)
 - Alle zwei Jahre (angepasst 1975)

Moores Gesetz

- "Wenn sich das Auto wie die Computer entwickelt hätte, würde ein Rolls-Royce heute \$100 kosten, 250 µl Benzin auf 100 km verbrauchen und einmal im Jahr explodieren …"
 - Robert X. Cringely (Infoworld)

Leistungsaufnahme

- Leistung = Energieverbrauch pro Zeiteinheit
- Zwei Arten der Leistungsaufnahme:
 - Dynamische Leistungsaufnahme
 - Statische Leistungsaufnahme

Dynamische Leistungsaufnahme

- Leistung um Gates der Transistoren umzuladen
 - Wirken als Kondensator
- Energie um einen Kondensator der Kapazität C auf V_{DD} zu laden:
 - $E = \frac{1}{2} Q V_{DD} = \frac{1}{2} (C V_{DD}) V_{DD} = \frac{1}{2} C V_{DD}^2$
 - Ebenso beim Entladen → Gesamtenergie: C V_{DD}²
- Schaltung wird mit Frequenz f betrieben
 - Transistoren schalten f-mal pro Sekunde
 - Aber nicht alle Transistoren schalten jeden Takt um 0-1-0 um
 - Annahme: Jeden Takt nur Laden oder Entladen
 - Halbe Energieaufnahme (realistischer wäre 0,1)
- Die dynamische Leistungsaufnahme ist also:

$$P_{dynamic} = \frac{1}{2} C V_{DD}^2 f$$

Statische Leistungsaufnahme

- Leistungsbedarf wenn kein Gatter schaltet
- Wird verursacht durch den Leckstrom I_{DD}
 - Immer kleinere Transistoren schalten nicht mehr vollständig ab
 - Pseudo-nMOS, ...
- Statische Leistungsaufnahme ist also

$$P_{static} = I_{DD} V_{DD}$$

Beispielrechnung Leistungsaufnahme

- Abschätzen der Leistungsaufnahme für modernen PDA
- Parameter
 - Versorgungsspannung V_{DD} = 1.2 V
 - Transistorkapazität *C* = 20 nF
 - Taktfrequenz *f* = 1 GHz
 - Leckstrom I_{DD} = 20 mA

Beispielrechnung Leistungsaufnahme

- Abschätzen der Leistungsaufnahme für ein Netbook
- Parameter
 - Versorgungsspannung V_{DD} = 1.2 V
 - Transistorkapazität C = 20 nF
 - Taktfrequenz *f* = 1 GHz
 - Leckstrom I_{DD} = 20 mA

$$P = \frac{1}{2} C V_{DD}^2 f + I_{DD} V_{DD}$$
= $\frac{1}{2} (20 \text{ nF}) (1.2 \text{ V})^2 (1 \text{ GHz}) + (20 \text{ mA})(1.2 \text{ V})$
= 14,4 W

