COMP 546

Lecture 11

Shape from X: perspective, texture, shading

Thurs. Feb. 15, 2018

Level of Analysis in Perception

high

- behavior: what is the task? what problem is being solved?

- brain areas and pathways

- neural coding

- neural mechanisms

Level of Analysis in Perception

high

The last lecture and next few are more at this level.

- behavior: what is the task? what problem is being solved?

- brain areas and pathways

- neural coding

- neural mechanisms

3D Surface and Space Perception

Depth (of a point) -- talked a lot about this

• Layout (of a scene)

Shape (of an object)

Perspective & vanishing points

(where parallel lines meet)

Parallel lines that define a vanishing point can be in more than one 3D plane.

Man-made environments typically have three vanishing points

They will intersect at a finite point.

Q: What is the task?
What problem is being solved?

A

Q: What is the task?
What problem is being solved?

A: To *group* local edges & lines that are are consistent with a vanishing point.

These edges & lines can be perceived as parallel in the 3D scene.

COMP 546

Lecture 11

Shape from X: perspective, texture, shading

Thurs. Feb. 15, 2018

Classically....

"texture" refers to the material (includes pigment & roughness)

"shading" refers to lighting (includes shadows)

Texture

Depth gradients from regular texture

More than just vanishing points!

Depth gradients from random texture

Fronto-parallel plane

Slanted ground plane

Q: What is the task?
What problem is being solved?

A: Judge the depth gradient from the image.

What is the depth gradient?

What is the depth gradient?

Depth map of a scene plane

$$Z = Z_0 + AX + BY$$

(X,Y,Z) is position of point on plane.

Depth gradient on a scene plane

$$Z = Z_0 + AX + BY$$

$$\nabla Z = \left(\frac{\partial Z}{\partial X}, \frac{\partial Z}{\partial Y}\right) = (A, B)$$

'Slant' (σ)

Slant σ is defined to be the angle between $Z=Z_0$ plane and the oblique plane.

$$Z = Z_0 + AX + BY$$

$$\left| \nabla Z \right| = \sqrt{A^2 + B^2}$$

$$\equiv \tan(\sigma)$$

$$Z = Z_0 + AX + BY$$

 $Z=Z_0$

'Tilt'
$$(\tau)$$

 τ is the *direction* of depth gradient.

Thumbtack on plane

$$\nabla Z = |\nabla Z| (\cos \tau, \sin \tau)$$

$$= \tan(\sigma) (\cos \tau, \sin \tau)$$

Examples

slant ~ 45 deg tilt ~ 90 deg

slant ~ 0 deg tilt undefined

slant ~ 45 deg tilt ~ 30 deg

Slant and Tilt

Texture cues for slant & tilt

size gradient

density gradient

foreshortening gradient

One can derive mathematical relationships for these quantities. Details omitted. $_{\it 27}$

e.g. size and density gradient only (no foreshortening)

Slant and Tilt on a Curved Surface (foreshortening, density?, size?)

Texture elements are compressed in the tilt direction, by an amount that depends on slant.

Slant and Tilt on a Curved Surface

Cylinder

Sphere

all tilts and all slants

all slants

Surface Curvature

[Koenderink and van Doorn 1992]

Classical formal mathematical definitions of curvature are based on 2nd derivatives. Details omitted.

Curvature of a face

Local shape

Curvedness

"Shape" from texture

Q: What is the task?
What problem is being solved?

A: Judge the slant, tilt, curvature across the surface.

It is unknown how these scene shape properties are represented in the brain.

Shape from shading

Drawings of Leonardo da Vinci

Shape from shading (random shape)

Surface normal

3D vector perpendicular to local tangent plane at general surface point.

Recall plane passing through Z axis:

$$Z = Z_0 + AX + BY$$

$$\nabla Z = \left(\frac{\partial Z}{\partial X}, \frac{\partial Z}{\partial Y}\right) = (A, B)$$

Surface normal

3D vector perpendicular to local tangent plane (X_p, Y_p, Z_p)

$$Z(X_p + \Delta X, Y_p + \Delta Y) = Z_p + \frac{\partial Z}{\partial X} \Delta X + \frac{\partial Z}{\partial Y} \Delta Y + H.O.T.$$

Surface normal

$$(X_p + \Delta X, Y_p + \Delta Y, Z_p + \Delta Z)$$

$$(X_p, Y_p, Z_p)$$

3D vector perpendicular to local tangent plane (X_p, Y_p, Z_p)

$$Z(X_p + \Delta X, Y_p + \Delta Y) = Z_p + \frac{\partial Z}{\partial X} \Delta X + \frac{\partial Z}{\partial Y} \Delta Y + H.O.T.$$

$$\Delta Z \approx \frac{\partial Z}{\partial X} \Delta X + \frac{\partial Z}{\partial Y} \Delta Y$$

$$\left(\frac{\partial Z}{\partial X}, \frac{\partial Z}{\partial Y}, -1\right) \cdot \left(\Delta X, \Delta Y, \Delta Z\right) \approx 0$$
This vector is perpendicular to local tangent plane.

$$\cdot \ (\Delta X, \Delta Y, \Delta Z) \approx 0$$

Unit Surface Normal

$$N \equiv \frac{1}{\sqrt{\left(\frac{\partial Z}{\partial X}\right)^2 + \left(\frac{\partial Z}{\partial Y}\right)^2 + 1}} \left(\frac{\partial Z}{\partial X}, \frac{\partial Z}{\partial Y}, -1\right)$$

Shading on a sunny day

Lambert's (cosine) Law:

$$I(x) = N(x) \cdot L$$

Shape from shading

Q: What is the task?
What problem is being solved?

A:

Shape from shading

Q: What is the task?What problem is being solved?(Why is it difficult to solve?)

A: Judge:

- lighting direction (?),
- surface slant, tilt (?)
- curvature (?)
- surface normal (?)