2016-2017 Bahar Dönemi ELEKTRONIK II

Ödev-5

Teslim tarihi: 02.06.2017

- 1. Şekil.1'deki devre için şu parametreler verilmiştir: $V_{CC} = V_{EE} = 10 \text{ V}$, $R_2 = R_3 = 47 \text{ k}\Omega$, $R_4 = 10 \text{ k}\Omega$, $R_5 = 100 \Omega$, $R_6 = 3.9 \text{ k}\Omega$, $\beta_F = 300$, $V_A = 50 \text{ V}$, $|V_{BE}| = 0.7 \text{ V}$, $|V_{CEsat}| = 0.3 \text{ V}$, $V_T = 26 \text{ mV}$. $T_1 T_2 \text{ ve } T_3 T_4 \text{ eştir}$.
- a) Giriş geriliminin kutuplaması sıfır olduğunda çıkış geriliminin de sıfır olabilmesi için R₁ direncinin değeri ne olmalıdır?
- **b**) Gerilim kazancı $\frac{v_o}{v_i}$, giriş direnci R_i ve çıkış direnci R_o 'nun değerini hesaplayınız.
- c) Girişe 1kHz frekansında, 10mV genlikli bir sinüs işareti uygulayarak giriş ve çıkış işaretini zamana bağlı olarak birlikte çizdiriniz. (kondansatör değerini 1µF olarak alabilirisiniz).
- **d**) Çıkış geriliminde herhangi bir kırpılma oluşturmadan girişe uygulanabilecek işaretin maksimum genliğini hesaplayınız.

Aktif devre parametreleri ve PSPICE/LTSPICE eşdeğerleri için aşağıdaki verileri kullanabilirsiniz:

BJT:

.model NPN_odev5 NPN

+IS = 2e - 15

+BF=300

+NF=1

- 2. Şekil 2a'daki devre için şu parametreler verilmiştir: V_{DD} =3 V, V_{tn} =0.7 V, V_{tp} = -0.8 V, $\mu_n C_{ox}$ =135 $\mu A/V^2$ μ_p = $\mu_n/3$, I_{SS} =0.2 mA, $(W/L)_n$ =30, $(W/L)_p$ =10. I_{SS} akım kaynağının iç direnci R_{SS} =100 k Ω olarak verilmektedir. Performansı arttırmak amacıyla devreye şekil 2b'de görüldüğü gibi, I_{D5} = I_{D6} =0.4* I_{SS} olacak şekilde M_5 ve M_6 tranzistorları eklenmiştir. V_B gerilimi M_5 ve M_6 'nın doymada çalışmasını sağlayacak şekilde seçilmiştir.
- a) Şekil 2a'daki devre için $v_{out}/(v_{in1}-v_{in2})$ gerilim kazancı ve CMRR'yi hesaplayınız.
- **b)** Şekil 2b'deki devre için a) yapılanları tekrarlayınız.
- c) a) ve b)'deki sonuçlardan yararlanarak şekil 2b'deki devrenin performansının ne şekilde arttığını belirtiniz.

Transistor Parametreleri: β_F =200, V_T =25mV, V_{BE1} = V_{BE2} ≈0.6V, V_{BE3} ≈0.7V, $1/r_{ce}$ ≈0

- a. Transistorların çalışma noktası akımlarını hesaplayınız.
- **b.** Devrenin v_o/v_i gerilim kazancını hesaplayınız.
- **c.** Devrenin r_i giriş direnci ve r_o çıkış direncini hesaplayınız.

Şekildeki B sınıfı çıkış katı MOS güç tranzistorları kullanılarak gerçekleştirilmiştir. T için $\beta_F = 100$, $I_s = 10^{-14}$ A, MN için $V_T = +2V$, $\beta_N = 1$ A/V² ve MP için $V_T = -2V$, $\beta_P = 1$ A/V² dir.

- a) v_g =0 iken T tranzistorunun sükunet akımının 10 mA olması için V_B kutuplama geriliminin değeri ne olmalıdır?
- b) Sükunet halinde MOS tranzistorların iletim eşiğinde olmaları ve R_y den bir akım akmaması için R_I ve R_2 dirençlerinin değeri ne olmalıdır?
- c) Girişe uygulanan v_g işaret gerilimi T yi doymaya sokacak kadar büyük bir değer aldığında yükün uçlarındaki gerilim değeri ne olur? (T nin doyma gerilimini sıfır kabul ederk hesap yapabilirsiniz)
- d) Giriş gerilimi T yi kesime sokacak bir değer aldığında yükün uçlarındaki gerilimin değeri ne olur?
- e) Yukarıdaki bilgilerden yararlanarak, sinüs biçimi bir giriş gerilimi için çıkıştan elde edilebilecek kırpılmasız maksimum çıkış gücünün değerini bulunuz.
- f) Bu çıkış gücü için MOS tranzistorların herbirinde harcanacak gücün değerini ve devrenin verimini hesaplayın.

e-posta ile gönderilen ödevler kabul edilmeyecektir. Soru çözümleri ayrıntılı bir şekilde verilmelidir. Kullanılan değişkenler ve birimler standart olmalıdır. Sadece sonuç içeren, çok kısa çözümler puanlandırılmayacaktır. Birimlere dikkat etmeyi unutmayınız.