DSA using Python

Chapter	Modules	Topics
1	Introduction to Data Structures	1. Overview of DSA
	and Algorithms	2. Importance of DSA in real-world
		applications
		3. Basic Python concepts review
		4. Introduction to Big-O notation
		5. Time and space complexity analysis
2	Arrays, Lists and Tuples	1. Introduction to arrays, lists and
		tuples
		2. Implementation in Python
		3. Operations (indexing, slicing,
		insertion, deletion)
		4. Time and space complexity analysis
		5. Applications (cache implementation,
		dynamic programming)
3	Stacks and Queues	1. Introduction to stacks and queues
		2. Implementation in Python (lists,
		collections. Deque)
		3. Operations (push, pop, peek,
		enqueue, dequeue)
		4. Applications (parser implementation,
		job scheduling)
		5. Time and space complexity analysis
4	Linked Lists	1. Introduction to linked lists
		2. Implementation in Python (singly,
		doubly, circular)
		3. Operations (insertion, deletion,
		traversal)
		4. Time and space complexity analysis
		5. Applications (database query
		optimization, browser history)
5	Trees	1. Introduction to trees (binary, AVL,
		BST)
		2. Implementation in Python
		3. Operations (insertion, deletion,
		traversal)
		4. Time and space complexity analysis
		5. Applications (file systems, database
		indexing)

6	Graphs	 Introduction to graphs (directed, undirected, weighted) Implementation in Python (adjacency matrix, adjacency list) Operations (traversal, shortest path) Time and space complexity analysis Applications (social network analysis, traffic optimization)
7	Sorting Algorithms	 Introduction to sorting algorithms Bubble sort, selection sort, insertion sort Merge sort, quick sort, heap sort Time and space complexity analysis Applications (data analysis, database query optimization)
8	Searching Algorithms	 Introduction to searching algorithms Linear search, binary search Depth-first search (DFS), breadth-first search (BFS) Time and space complexity analysis Applications (database query optimization, web search)
9	Dynamic Programming	 Introduction to dynamic programming Memorization, tabulation Applications (Fibonacci series, longest common subsequence) Time and space complexity analysis Real-world applications (resource allocation, scheduling)