Midterm 1 Solutions

Math 521 Section 001, UW-Madison, Spring 2024

February 28, 2024

- 1. (8 points) The statement is true. (\subset) If $x \in f^{-1}(A \cap B)$ then $f(x) \in A \cap B$, i.e. $f(x) \in A$ and $f(x) \in B$. Therefore $x \in f^{-1}(A) \cap f^{-1}(B)$.
 - (\supset) If $x \in f^{-1}(A) \cap f^{-1}(B)$, then $f(x) \in A$ and $f(x) \in B$. But then $f(x) \in A \cap B$, so $x \in f^{-1}(A \cap B)$.
- 2. (8 points) Let $y \in B$. We must show that there exists $x \in A$ such that g(x) = y. Let $z = f(y) \in C$. Since $f \circ g$ is surjective, there exists $x \in A$ such that f(g(x)) = z. But then f(g(x)) = f(y). Since f is injective, this implies g(x) = y, as desired.
- 3. (12 points) (a) (I) $\alpha \neq \emptyset$ and $\alpha \neq \mathbb{Q}$ (alternatively, α is bounded above).
 - (II) If $p \in \alpha$ and q < p, with $q \in \mathbb{Q}$, then $q \in \alpha$
 - (III) If $p \in \alpha$ then there exists $r \in \alpha$ with p < r.
 - (b) $\alpha < \beta$ iff $\alpha \subset \beta$ and $\alpha \neq \beta$.
 - (c) Let α and β be Dedekind cuts. We must show that exactly one of $\alpha < \beta$, $\alpha = \beta$, and $\beta < \alpha$ is true.

If $\alpha = \beta$ then we are done.

If $\alpha \neq \beta$, then either $\beta \setminus \alpha \neq \emptyset$ or $\alpha \setminus \beta \neq \emptyset$.

<u>Case 1.</u> $\beta \setminus \alpha \neq \emptyset$. We may pick $p \in \beta \setminus \alpha$. Let $q \in \alpha$ be arbitrary; we will show $q \in \beta$.

Suppose that q > p. Then since α is a Dedekind cut and $q \in \alpha$, by (II), we must have $p \in \alpha$. This contradicts the fact that $p \in \beta \setminus \alpha$. Therefore q < p. But since β is a Dedekind cut, by (II), we must have $q \in \beta$. We conclude that $\alpha \subset \beta$. Since $\beta \setminus \alpha \neq \emptyset$, we certainly have $\alpha \neq \beta$. Therefore $\alpha < \beta$, as desired.

<u>Case 2.</u> $\alpha \setminus \beta \neq \emptyset$. Reversing the roles of α and β , this is exactly the same as Case 1, and we conclude that $\beta < \alpha$.

Finally, note that Case 1 and Case 2 are mutually exclusive, because if $\alpha \subset \beta$ and $\beta \subset \alpha$ then $\alpha = \beta$.

- (d) $\sup E = \bigcup_{\alpha \in E} \alpha$.
- 4. (12 points) (a) E is bounded above by 2. For, since $n \in \mathbb{N}$, we have

$$n+1 \le n+n = 2n$$
.

Dividing by n^2 , we obtain

$$\frac{n+1}{n^2} \le \frac{2n}{n^2} = \frac{2}{n}.$$

Therefore

$$\frac{n+1}{n^2} \le \frac{2}{n} \tag{0.1}$$

for each $n \in \mathbb{N}$. In particular, $\frac{n+1}{n^2} \leq 2$, so 2 is an upper bound. Since

$$\frac{1+1}{1^2} = 2 \in E,$$

it is the least upper bound. (For any $\gamma < 2$, γ cannot be an upper bound because $2 \in E$).

(b) E is bounded below by 0, since $\frac{n+1}{n^2} > 0$. We claim that 0 is the greatest lower bound. Given $\gamma > 0$, choose n large enough that $2 < \gamma n$, by the Archimedean property. Then

$$\frac{2}{n} < \gamma$$
.

But by (0.1), this implies

$$\frac{n+1}{n^2} < \gamma.$$

Therefore γ is not a lower bound for E.

- (c) From class/book, one always has inf $E \in \bar{E}$. If E were closed then we would have $E = \bar{E}$. But by (b), $0 = \inf E \notin E$, so we must have $E \neq \bar{E}$. Therefore E is not closed.
- (d) E is certainly not open: it is nonempty, but no point of E is an interior point. Let $p \in E$. Then for any r > 0, the neighborhood $N_r(p) = (p r, p + r)$ contains infinitely many points of E^c . Indeed, if r < p, then $N_r(p)$ contains only finitely many points of E, whereas $N_r(p)$ itself is infinite. (This would already give full credit.) To show this, note that $N_r(p) = (p r, p + r)$, and p r > 0 if r < p. For $\frac{2}{n} \le p r$, we have

$$\frac{n+1}{n^2} \le \frac{2}{n} \le p-r,$$

and $\frac{n+1}{n^2} \notin N_r(p)$. Hence, all but finitely many points of E are not contained in $N_r(p)$.