Lim sup and Lim Inf; Cauchy Sequence

Cliff Sun

April 26, 2024

Definition 0.1. Let (x_n) be a valid sequence:

- 1. $a_n = \sup\{x_n, x_{n+1}, \dots\}$
- 2. $b_n = \inf\{x_n, x_{n+1}, \dots\}$
- 3. $\limsup x_n = \lim a_n$
- 4. $\liminf x_n = \lim b_n$

An example would be $x_n = \frac{1}{n}$. Its $a_n = x_n$ because it is a monotone decreasing sequence and $b_n = 0$. So we have that:

$$\limsup x_n = 0
\tag{1}$$

$$\lim\inf x_n = 0 \tag{2}$$

General facts about lim sup and lim inf

Suppose that (x_n) is a bounded sequence.

- 1. (a_n) is decreasing, (b_n) is increasing, and both converge.
- 2. (x_n) converges to some number x, if and only if the $\limsup = \liminf = x$
- 3. There exists subsequences (x_{n_i}) and (x_{m_i}) that converge to the lim sup and lim inf respectively.
- 4. $\limsup x_n$ and $\liminf x_n$ are the largest and smallest limits of subsequences.

Proof. This a proof of statement (1). To prove that (a_n) is decreasing, recall that

$$a_n = \sup\{x_n, x_{n+1}, \cdots\} \tag{3}$$

In particular, a_n is an upper bound. Then consider a_{n+1} , thus we have that all possible candidates for a_{n+1} are also candidates for a_n . Thus, we have that $a_n \geq a_{n+1}$. Thus (a_n) is decreasing. Same argument for b_n . By monotone convergence theorem, if (a_n) is bounded below, and if (b_n) is bounded above, then both are convergent. But (x_n) is bounded, thus both converge.

Proof. This is a proof of (2)(\iff). Suppose that $\limsup x_n = \liminf x_n = x$. By definition that means that $\lim a_n = \lim b_n = x$. Since we have that

$$b_n \le x_n \le a_n \tag{4}$$

By the squeeze theorem, we have that $\lim x_n = x$.

Proof. Proof that $(3) \implies (2) (\implies)$. Suppose that (x_n) has subsequences converging to $\limsup x_n$ and $\liminf x_n$ and $\lim x_n = x$. But all the subsequences of (x_n) must also converge to x, thus in particular, $\limsup x_n = \liminf x_n = x$.

Proof. This is a proof of (3). We claim that there exists a subsequence that converges to $\limsup x_n = x$. To prove this, we find a sequence of indicies (n_i) such that

1. (n_i) is increasing

2.
$$(a_{n_i}) - \frac{1}{i} < x_{n_i} \le a_{n_i}$$

Using this, we can build a sequence recursively. We claim that $\lim x_{n_i} = \lim \sup x_n$.

Proof. We first note that $\lim a_{n_i} = \lim a_n = \lim \sup x_n$. Saying that the $\frac{1}{i}$ goes to 0, we have that

$$\lim a_{n_i} = \lim \sup x_n = x \tag{5}$$

Corollary 0.2. This is a corallary of (3). Every bounded sequence has a convergent subsequence.