

WHAT IS CLAIMED IS:

1. A method for the verification of anti-jamming in a communications system comprising several sensors or adaptive antennas, comprising at least the following
 5 steps :

- estimating the mean power $\pi; \hat{y}$ of the output of the communications system,
- estimating the respective power values P_u or $P'u$, of a station u , the antenna noise P_a or $P'a$, the thermal noise P_T , or $P'T$,
- estimating at least one of the following ratios :

$$10 \quad J_{tot}/S_{tot} = \left(\sum_{p=1}^P P_p \right) / \left(\sum_{u=1}^U P_u \right)$$

(22)

with p = the jamming unit
 = sum of the power values of the residual jamming units/sum of the power
 15 values of the stations on the reception band B.

$$J_{tot}/S_u = \left(\sum_{p=1}^P P_p \right) / P_u \quad (23)$$

= sum of the power values of the residual jamming units/power of the station u
 in the reception band B.

20

$$J_u/S_u = \left(\sum_{p=1}^P P_{pu} \right) / P_u \quad (24)$$

With P_{pu} = power of the jamming unit p in the reception band B_u .

- comparing at least one of the three ratios with a threshold value.

2. A method for the verification of anti-jamming according to claim 1, comprising at least one step for estimating the mean power $\pi; \hat{\gamma}_y$, for an output from a number K of samples, $y(k)$, $1 \leq k \leq K$ of this output, given by

$$5 \quad \pi; \hat{\gamma}_y = \Delta^{-1} \sum_{k=1}^K |y(k)|^2$$

(25)

3. A method for the verification of anti-jamming according to claim 1, comprising a step of estimation $P; \hat{\gamma}_u$, $P; \hat{\gamma}'_u$ of the power P_u , P'_u in using, firstly, *a priori* knowledge of the parameters w and G_{num} for a digital application of the adaptive filters and $|\alpha|^2$, w and G for an analog application of the filters and secondly the estimation of the parameters π_u and S_u .
- 10
- 15 4. A method for the verification of anti-jamming according to claim 1 comprising an estimation $P; \hat{\gamma}_u$, $P; \hat{\gamma}'_u$ of the power P_u , P'_u in using, firstly, *a priori* knowledge of the parameters w and G_{num} for a digital application of the adaptive filters and $|\alpha|^2$, w and G for an analog application of the filters and secondly the estimation of the parameter η_a .
- 20
5. A method for the verification of anti-jamming according to claim 1 comprising a step of estimation $P; \hat{\gamma}_u$, $P; \hat{\gamma}'_u$ of the power P_u , P'_u in using *a priori* knowledge of the parameters w and G_{num} for a digital application of the adaptive filters and $|\alpha|^2$, w and G for an analog application of the filters and secondly the estimation of the parameter η_T .
- 25
6. A method for the verification of anti-jamming according to one of the claims 1, 2, 3, 4 and 5 comprising a step of estimation $J; \hat{\gamma}_{tot} / S; \hat{\gamma}_{tot}$, of the ratio J_{tot}/S_{tot} given by

$$J; \hat{S}_{tot} / S; \hat{S}_{tot} = (\pi; \hat{\gamma}_y - \sum_{u=1}^U P; \hat{P}_u - P; \hat{P}_a - P; \hat{P}_T) / (\sum_{u=1}^U P; \hat{P}_u) \quad (26)$$

- 5 7. A method for the verification of anti-jamming according to one of the claims 1, 2, 3, 4 and 5 comprising a step of estimation $J; \hat{S}_u$, of the ratio J_{tot}/S_u , given by

$$J; \hat{S}_{tot} / S; \hat{S}_u = (\pi; \hat{\gamma}_y - \sum_{u=1}^U P; \hat{P}_u - P; \hat{P}_a - P; \hat{P}_T) / P; \hat{P}_u \quad (27)$$

10

8. A method of verification of anti-jamming according to the claims 1, 2, 3, 4 and 5 comprising a step of estimation $J; \hat{S}_u$, of the ratio J/S_u in using the total power of residual jamming units in the B_u band of the working station u given by

15

$$J; \hat{S}_u = (\pi; \hat{\gamma}_{yu} - P; \hat{P}_u - \sum_{v \neq u} P; \hat{P}_{vu} - P; \hat{P}_{au} - P; \hat{P}_{Tu}) / P; \hat{P}_u \quad (28)$$

9. A method of verification of anti-jamming according to one of the claims 1 to 8 comprising a step of determination of the precision of estimation, and wherein this value is used to set the threshold.

20

10. A system for the verification of anti-jamming in a communications system comprising several sensors or adaptive antennas, a ground station and a piloting device, comprising at least the following elements: for a verification by channel, from the ground and for a reception band B, a computer integrated into the piloting device and an onboard computer, the two computers being programmed to execute the following steps :

Communications Channel Power Measurement : Onboard function parametrized from the ground by the *Onboard Param VAA* function,

VAA Gain : Ground function,

Communications channel power measurement : onboard function,

VAA Processing : Ground function.

- 5 11. A system for the verification of anti-jamming in a communications system comprising several sensors or adaptive antennas, a ground station and a piloting device, comprising at least the following elements :
for a verification by station, an onboard computer and a ground computer, the computers being programmed to execute the following functions :
- 10 10. *Communications Channel Power Measurement* : onboard function parametrized from the ground by the *Onboard Param VAA* function,
VAA Gain : ground function,
Acquisition of Communications Channel : onboard function parametrized from the ground by the *Onboard Param VAA* function,
- 15 11. *VAA Processing* : ground function.
12. A use of the method according to claim 1 or of the system according to one of the claims 10 and 11 to a space communications system.