PRACA DOMOWA 4

ASC - 31 maja 2014r.

$\mathbf{MARTA~SOMMER-BSMAD-237503}$

Analizujemy zbiór Deaths. Wczytajmy dane i zobaczmy, jak on wygląda:

##		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
##	1973	9007	8106	8928	9137	10017	10826	11317	10744	9713	9938	9161
##	1974	7750	6981	8038	8422	8714	9512	10120	9823	8743	9129	8710
##	1975	8162	7306	8124	7870	9387	9556	10093	9620	8285	8433	8160
##	1976	7717	7461	7776	7925	8634	8945	10078	9179	8037	8488	7874
##	1977	7792	6957	7726	8106	8890	9299	10625	9302	8314	8850	8265
##	1978	7836	6892	7791	8129	9115	9434	10484	9827	9110	9070	8633
##		Dec										
##	1973	8927										
##	1974	8680										
##	1975	8034										
##	1976	8647										
##	1977	8796										
##	1978	9240										

Wyestymujmy komponentę sezonową i trend za pomocą funkcji decompose(). Oto otrzymany wykres:

Decomposition of additive time series

Zajmijmy się teraz tylko komponentą sezonową. Oto jej wykres:

Oto jej gęstość spektralna:

A oto jej dystrybuanta spektralna

Series: sez

Na podstawie gęstości spektralnej wyliczyłam, że okres naszych danych wynosi 1 rok, czyli 12 miesięcy.

Predykcja (wraz z przedziałami ufności) dla kolejnych 36 elementów:

Holt-Winters filtering

Dopasujmy model SARIMA korzystając z kryterium AIC. Optymalny model wyszedł mi SARIMA $(1,1,1)(1,1,1)_{12}$. Przyjrzyjmy się predykcji na tym modelu:

Kod źródłowy

```
# praca domowa:

d <- read.table("C:\\Users\\Marta\\Desktop\\Marta\\studia\\rok4\\ASC\\DEATHS.DAT")

d <- ts(d, start = 1973, frequency = 12)

d

# a)

dec <- decompose(d)</pre>
```

```
plot(dec)
sez <- dec$seasonal
plot(sez)
sp.sez <- spectrum(sez)</pre>
cpgram(sez)
sp.sez$freq[order(-sp.sez$spec)[1]] # okres co 1 rok
m <- HoltWinters(d, seasonal = "additive")</pre>
p <- predict(m, n.ahead = 36, prediction.interval = TRUE)</pre>
plot(m, p)
# b)
tab \leftarrow array(0, dim = c(2, 2, 2, 2), dimnames = c("p", "q", "P", "Q"))
for (i in 0:1) {
    for (j in 0:1) {
        for (k in 0:1) {
            for (1 in 0:1) {
                 tab[i + 1, j + 1, k + 1, l + 1] \leftarrow AIC(arima(d, order = c(i, l))
                   1, j), seasonal = list(order = c(k, 1, 1), period = 12), optim.control = list(maxit = 10
            }
        }
    }
}
tab
tab == max(tab) # wybral 1,1,1,1
aic \leftarrow arima(d, order = c(1, 1, 1), seasonal = list(order = c(1, 1, 1), period = 12))
p <- predict(aic, n.ahead = 36)$pred</pre>
s <- predict(aic, n.ahead = 36)$se
ts.plot(p, p + 2 * s, p - 2 * s, col = c("red", "red", "red"), lty = c(1, 3, 1)
3), main = "AIC")
```