MEASURES OF VARIABILITY

GRADING SYSTEM

30%

30%

40%

PRELIM

MIDTERM

ENDTERM

TERM GRADE

50%

LABORATORY

50%

EXAM

3

5_{max}

ABSENT

45-min LATE

15-min LATE

TOPIC OUTLINE

Range

Variance

Standard Deviation

Coefficient of Variation

RANGE

The difference between largest and the smallest value

Range =
$$x_{max} - x_{min}$$

Determine the **range** of the given pizza prices.

<u>Pizza Prices</u>					
Position	New	York City	Lo	s Angeles	
1	\$	1	\$	1	
2 3	\$	2	\$	2	
3	\$	3	\$	3	
4	\$	3	\$	4	
5	\$	5	\$	5	
6	\$	6	\$	6	
7	\$	7	\$	7	
8	\$	8	\$	8	
9	\$	9	\$	9	
10	\$	11	\$	10	
11	\$	66			

New York City

Range =
$$x_{max} - x_{min}$$

Range =
$$66 - 1$$

Range
$$= 65$$

ans

Los Angeles

Range =
$$x_{max} - x_{min}$$

Range =
$$10 - 1$$

$$Range = 9$$

VARIANCE

<u>Population Variance</u>

$$\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

Measures the **dispersion** of a set of data points around their mean

Sample Variance

$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Determine the **variance** of the given pizza prices.

Pizza Prices					
Position	New	York City	Lo	s Angeles	
1	\$	1	\$	1	
2	\$	2	\$	2	
3	\$	3	\$	3	
4	\$	3	\$	4	
5	\$	5	\$	5	
6	\$	6	\$	6	
7	\$	7	\$	7	
8	\$	8	\$	8	
9	\$	9	\$	9	
10	\$	11	\$	10	
11	\$	66			
Mean	\$	11	\$	5.5	

New York City

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$(x_i - \bar{x})^2$$

$$(1-11)^2 = 100$$

$$(7-11)^2 = 16$$

$$(2-11)^2 = 81$$

$$(8-11)^2 = 9$$

$$(3-11)^2=64$$

$$(9-11)^2=4$$

$$(3-11)^2=64$$

$$(11 - 11)^2 = 0$$

$$(5-11)^2=36$$

$$(66 - 11)^2 = 3025$$

$$(6-11)^2 = 25$$

3424

Determine the **variance** of the given pizza prices.

Pizza Prices					
Position	New	York City	Lo	s Angeles	
1	\$	1	\$	1	
2	\$	2	\$	2	
3	\$	3	\$	3	
4	\$	3	\$	4	
5	\$	5	\$	5	
6	\$	6	\$	6	
7	\$	7	\$	7	
8	\$	8	\$	8	
9	\$	9	\$	9	
10	\$	11	\$	10	
11	\$	66			
Mean	\$	11	\$	5.5	

New York City

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$s^2 = \frac{3424}{11 - 1}$$

$$s^2 = 342.4$$

Determine the **variance** of the given pizza prices.

Pizza Prices					
Position	New	York City	Lo	s Angeles	
1	\$	1	\$	1	
2	\$	2	\$	2	
3	\$	3	\$	3	
4	\$	3	\$	4	
5	\$	5	\$	5	
6	\$	6	\$	6	
7	\$	7	\$	7	
8	\$	8	\$	8	
9	\$	9	\$	9	
10	\$	11	\$	10	
11	\$	66			
Mean	\$	11	\$	5.5	

Los Angeles

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$(x_i - \bar{x})^2$$

$$(1-5.5)^2 = 20.25$$
 $(7-5.5)^2 = 2.25$

$$(7-5.5)^2 = 2.25$$

$$(2-5.5)^2 = 12.25$$
 $(8-5.5)^2 = 6.25$

$$(8-5.5)^2=6.25$$

$$(3-5.5)^2=6.25$$

$$(3-5.5)^2 = 6.25$$
 $(9-5.5)^2 = 12.25$

$$(4-5.5)^2 = 2.25$$

$$(10 - 5.5)^2 = 20.25$$

$$(5-5.5)^2=0.25$$

$$(6-5.5)^2=0.25$$

Determine the **variance** of the given pizza prices.

Pizza Prices					
Position	New	York City	Lo	s Angeles	
1	\$	1	\$	1	
2	\$	2	\$	2	
3	\$	3	\$	3	
4	\$	3	\$	4	
5	\$	5	\$	5	
6	\$	6	\$	6	
7	\$	7	\$	7	
8	\$	8	\$	8	
9	\$	9	\$	9	
10	\$	11	\$	10	
11	\$	66			
Mean	\$	11	\$	5.5	

Los Angeles

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$s^2 = \frac{82.5}{10-1}$$

$$s^2 = 9.17$$

STANDARD DEVIATION

STANDARD DEVIATION

Population Standard Deviation

$$\sigma = \sqrt{\sigma^2}$$

The positive **square root** of variance

Sample Standard Deviation

$$s = \sqrt{s^2}$$

Determine the **standard deviation** of the given pizza prices.

Pizza Prices					
Position	New	York City	Lo	s Angeles	
1	\$	1	\$	1	
2	\$	2	\$	2	
3	\$	3	\$	3	
4	\$	3	\$	4	
5	\$	5	\$	5	
6	\$	6	\$	6	
7	\$	7	\$	7	
8	\$	8	\$	8	
9	\$	9	\$	9	
10	\$	11	\$	10	
11	\$	66			
Variance	\$	342.4	\$	9.17	

New York City

$$s = \sqrt{s^2}$$

$$s = \sqrt{342.4}$$

$$s = 18.5$$

ans

Los Angeles

$$s = \sqrt{s^2}$$

$$s = \sqrt{9.17}$$

$$s = 3.03$$

COEFFICIENT OF VARIATION

COEFFICIENT OF VARIATION

Population Coefficient of Variation

$$c_v = \frac{\sigma}{\mu}$$

Standard deviation relative to the mean

Sample Coefficient of Variation

$$\widehat{c_v} = \frac{s}{\overline{x}}$$

Determine the **coefficient of variation** of the given pizza prices.

<u>Pizza Prices</u>					
Position		Los Angeles			
1	\$	1	₱	58.58	
2	\$	2	₱	117.16	
3	\$	3	₱	175.74	
4	\$	4	₱	234.32	
5	\$	5	₱	292.90	
6	\$	6	₱	351.48	
7	\$	7	₱	410.06	
8	\$	8	₱	468.64	
9	\$	9	₱	527.22	
10	\$	10	₱	585.80	
Mean	\$	5.5	\$	322.2	
SD	\$	3.03	\$	177.36	

<u>Dollar</u>

$$\widehat{c_v} = \frac{s}{\overline{x}}$$

$$\widehat{c_v} = \frac{3.03}{5.3}$$

$$\widehat{c_v} = 0.55$$

ans

Peso

$$\widehat{c_v} = \frac{s}{\overline{x}}$$

$$\widehat{c_v} = \frac{177.36}{322.2}$$

$$\widehat{c_v} = 0.55$$

LABORATORY

