Assignment 1

Rin Meng Student ID: 51940633

October 1, 2024

1. (a) The linear regression model can be written as,

$$P = \beta_0 + \beta_1 C + \epsilon$$

where,

- P is the prime interest rate
- ullet C is the core inflation rate
- β_0 is the intercept of the regression line
- β_1 is the slope of the regression line
- ϵ is the error term

Assumptions of the linear regression model are,

- i. Linearity: The relationship between P and C is linear
- ii. Independence: The error term ϵ is independent of C
- iii. Normality: The error term ϵ is normally distributed
- iv. Homoscedasticity: The error term ϵ has a constant variance across all levels of C
- 2. Remark: from ch2A.pdf slide 9 and 13,
 - $\bullet \ \hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$

 - $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$ $S_{xy} = \sum_{i=1}^n (x_i \bar{x})(y_i \bar{y})$
 - $S_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2$

Let e_i be the *i*th residual term. Then for each observation, we can see that the residual for each observation *i* is defined as:

$$e_i = y_i - \hat{y_i}$$

then we can say that the predicted value \hat{y}_i is equivalent to

$$\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$$

(a) $\sum_{i=1}^{n} e_i = 0$

Proof. LHS:

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y} + \hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i})$$

$$= \sum_{i=1}^{n} y_{i} - n\bar{y} + \hat{\beta}_{1}n\bar{x} - \hat{\beta}_{1}\sum_{i=1}^{n} x_{i}$$

$$= n\bar{y} - n\bar{y} + \hat{\beta}_{1}n\bar{x} - \hat{\beta}_{1}n\bar{x}$$

$$= 0$$

$$LHS = 0 = RHS$$

 \therefore It is true that the sum of residuals e_i is zero.

(b) $\sum_{i=1}^{n} x_i e_i = 0$

Proof. LHS:

$$\begin{split} \sum_{i=1}^{n} x_{i}e_{i} &= \sum_{i=1}^{n} x_{i}(y_{i} - \hat{y}_{i}) \\ &= \sum_{i=1}^{n} x_{i}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}) \\ &= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}(\bar{y} - \hat{\beta}_{1}\bar{x}) - \hat{\beta}_{1}x_{i}^{2}) \\ &= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}\bar{y} + x_{i}\hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i}^{2}) \\ &= \sum_{i=1}^{n} (x_{i}(y_{i} - \bar{y}) + \hat{\beta}_{1}(\bar{x}x_{i} - x_{i}^{2})) \\ &= \sum_{i=1}^{n} x_{i}y_{i} - \bar{y}\sum_{i=1}^{n} x_{i} - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - \bar{x}\sum_{i=1}^{n} x_{i}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}\bar{x} - n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\bar{x}\bar{y} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\bar{x}\bar{y} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - \bar{y}\sum_{i=1}^{n} x_{i} - \bar{x}\sum_{i=1}^{n} y_{i} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2\bar{x}\sum_{i=1}^{n} x_{i} + n\bar{x}^{2}\right) \\ &= \sum_{i=1}^{n} \left(x_{i}y_{i} - \bar{y}x_{i} - \bar{x}y_{i} + \bar{x}\bar{y}\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i}^{2} - 2\bar{x}x_{i} + \bar{x}^{2}\right) \\ &= \sum_{i=1}^{n} \left(x_{i}(y_{i} - \bar{y}) + \bar{x}(y_{i} - \bar{y})\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} \\ &= \sum_{i=1}^{n} \left(x_{i} + \bar{x}\right) \left(y_{i} - \bar{y}\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} \\ &= S_{xy} - \frac{S_{xy}}{S_{xx}} \\ &= S_{xy} - \frac{S_{xy}}{S_{xx}} \\ &= S_{xy} - S_{xy} \end{aligned}$$

$$LHS = 0 = RHS$$

 \therefore It is true that the independent variables x_i is completly uncorrelated to the residuals e_i .

(c) $\sum_{i=1}^{n} \hat{y}_i e_i = 0$

Proof. LHS:

$$\begin{split} \sum_{i=1}^{n} \hat{y}_{i}e_{i} &= \sum_{i=1}^{n} \hat{y}_{i}(y_{i} - \hat{y}_{i}) \\ &= \sum_{i=1}^{n} (y_{i}\hat{y}_{i} - \hat{y}_{i}^{2}) \\ &= \sum_{i=1}^{n} (y_{i}(\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}) - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})^{2}) \\ &= \sum_{i=1}^{n} (y_{i}(\bar{y} - \hat{\beta}_{1}\bar{x} + \hat{\beta}_{1}x_{i}) - (\bar{y} - \hat{\beta}_{1}\bar{x} + \hat{\beta}_{1}x_{i})^{2}) \\ &= \sum_{i=1}^{n} (y_{i}\bar{y} - y_{i}\hat{\beta}_{1}\bar{x} + y_{i}\hat{\beta}_{1}x_{i} \\ &- (\bar{y}^{2} - 2\hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}\bar{y}x_{i} - 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (\sum_{i=1}^{n} y_{i}\bar{y} - \sum_{i=1}^{n} y_{i}\hat{\beta}_{1}\bar{x} + \sum_{i=1}^{n} y_{i}\hat{\beta}_{1}x_{i} \\ &- \sum_{i=1}^{n} (\bar{y}^{2} - 2\hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}\bar{y}x_{i} - 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (n\bar{y}^{2} - \hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}\bar{y}\hat{\beta}_{1}x_{i} \\ &- (\sum_{i=1}^{n} \bar{y}^{2} - \sum_{i=1}^{n} 2\hat{\beta}_{1}\bar{y}\bar{x} + \sum_{i=1}^{n} \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}n\bar{y}x_{i} - \sum_{i=1}^{n} 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}\sum_{i=1}^{n} \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (n\bar{y}^{2} - (n\bar{y}^{2} - 2\hat{\beta}_{1}n\bar{y}\bar{x} + \hat{\beta}_{1}^{2}n\bar{x}^{2} + 2\hat{\beta}_{1}n\bar{y}\bar{x} - 2\hat{\beta}_{1}^{2}n\bar{x}\bar{x} + \hat{\beta}_{1}^{2}\sum_{i=1}^{n} x_{i}^{2})) \end{split}$$

proof continued.

$$\sum_{i=1}^{n} \hat{y}_{i} e_{i} = (n\bar{y}^{2} - (n\bar{y}^{2} - \hat{\beta}_{1}^{2} n\bar{x}^{2} + \hat{\beta}_{1}^{2} n\bar{x}^{2}))$$

$$= (n\bar{y}^{2} - n\bar{y}^{2})$$

$$= 0$$

LHS = 0 = RHS

 \therefore It is true that the predicted values $\hat{y_i}$ is completely orthogonal to the residuals e_i .

3. (a) It is given that:

•
$$\hat{\beta}_1 = \frac{S_{xx}}{S_{xy}}$$

•
$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$

•
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

•
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i$$

•
$$\bar{y} = \beta_0 + \beta_1 \bar{x}$$

We want to show that

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{S_{xx}})$$

Where β_1 is the mean of the distribution and $\frac{\sigma^2}{S_{xx}}$ is the variance.

Proof. LHS:

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{S_{xx}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(\hat{\beta}_{0} + \hat{\beta}_{1}x_{i} + \epsilon_{i} - \beta_{0} - \beta_{1}\bar{x})}{S_{xx}}$$

4. Given the model:

$$y_i = \beta_1 + \beta_2 i + \epsilon_i$$

(a) We want to derive the least-squares estimators for β_1 and β_2 .

$$S(\beta_{1}, \beta_{2}) = \sum (y_{i} - \beta_{1}x_{i} - \beta_{2}i)^{2}$$

$$\frac{\delta S}{\delta \beta_{1}} = -2 \sum (y_{i} - \beta_{1}x_{i} - \beta_{2}i)x_{i} = 0$$

$$= -2 \sum (y_{i}x_{i} - \beta_{1}x_{i}^{2} - \beta_{2}ix_{i}) = 0$$

$$\sum y_{i}x_{i} = \beta_{1} \sum x_{i}^{2} + \beta_{2} \sum x_{i}i$$

$$\frac{\delta S}{\delta \beta_{2}} = -2 \sum (y_{i} - \beta_{1}x_{i} - \beta_{2}i)i = 0$$

$$= -2 \sum (y_{i}i - \beta_{1}x_{i}i - \beta_{2}i^{2}) = 0$$

$$\sum y_{i}i = \beta_{1} \sum x_{i}i + \beta_{2} \sum i^{2}$$

Solving for β_2

$$\sum y_i x_i = \beta_1 \sum x_i^2 + \beta_2 \sum x_i i$$

$$\beta_1 \sum x_i^2 = \sum y_i x_i - \beta_2 \sum x_i i$$

$$\beta_1 = \frac{\sum y_i x_i - \beta_2 \sum x_i i}{\sum x_i^2}$$

$$\sum y_i i = \beta_1 \sum x_i i + \beta_2 \sum i^2$$

$$\beta_1 \sum x_i i = \sum y_i i - \beta_2 \sum i^2$$

$$\beta_1 = \frac{\sum y_i i - \beta_2 \sum i^2}{\sum x_i i}$$

Now set them equal to each other and solve for β_2

$$\frac{\sum y_{i}x_{i} - \beta_{2} \sum x_{i}i}{\sum x_{i}^{2}} = \frac{\sum y_{i}i - \beta_{2} \sum i^{2}}{\sum x_{i}i}$$

$$(\sum y_{i}x_{i} - \beta_{2} \sum x_{i}i)(\sum x_{i}i) = (\sum x_{i}^{2})(\sum y_{i}i - \beta_{2} \sum i^{2})$$

$$\sum y_{i}x_{i}(\sum x_{i}i) - \beta_{2}(\sum x_{i}i)^{2} = \sum y_{i}i(\sum x_{i}^{2}) - \beta_{2} \sum i^{2}(\sum x_{i}^{2})$$

$$\beta_{2} \sum i^{2} \sum x_{i}^{2} - \beta_{2}(\sum x_{i}i)^{2} = \sum y_{i}i \sum x_{i}^{2} - \sum y_{i}x_{i} \sum x_{i}i$$

$$\beta_{2}(\sum i^{2} \sum x_{i}^{2} - (\sum x_{i}i)^{2}) = \sum y_{i}i \sum x_{i}^{2} - \sum y_{i}x_{i} \sum x_{i}i$$

Finally, we have:

$$\beta_2 = \frac{\sum y_i i \sum x_i^2 - \sum y_i x_i \sum x_i i}{\sum i^2 \sum x_i^2 - (\sum x_i i)^2}$$

Solving for β_1 using same approach:

$$\sum y_i x_i = \beta_1 \sum x_i^2 + \beta_2 \sum x_i i$$

$$\beta_2 \sum x_i i = \sum y_i x_i - \beta_1 \sum x_i^2$$

$$\beta_2 = \frac{\sum y_i x_i - \beta_1 \sum x_i^2}{\sum x_i i}$$

$$\sum y_i i = \beta_1 \sum x_i i + \beta_2 \sum i^2$$

$$\beta_2 \sum i^2 = \sum y_i i - \beta_1 \sum x_i i$$

$$\beta_2 = \frac{\sum y_i i - \beta_1 \sum x_i i}{\sum i^2}$$

Now set them equal to each other and solve for β_1

$$\frac{\sum y_i x_i - \beta_1 \sum x_i^2}{\sum x_i i} = \frac{\sum y_i i - \beta_1 \sum x_i i}{\sum i^2}$$

$$(\sum y_i x_i - \beta_1 \sum x_i^2)(\sum i^2) = (\sum x_i i)(\sum y_i i - \beta_1 \sum x_i i)$$

$$\sum y_i x_i \sum i^2 - \beta_1 \sum x_i^2 \sum i^2 = \sum y_i i \sum x_i i - \beta_1 (\sum x_i i)^2$$

$$\beta_1(\sum x_i i)^2 - \beta_1 \sum x_i^2 \sum i^2 = \sum y_i i \sum x_i i - \sum y_i x_i \sum i^2$$

$$\beta_1((\sum x_i i)^2 - \sum x_i^2 \sum i^2) = \sum y_i i \sum x_i i - \sum y_i x_i \sum i^2$$

Finally, we have:

$$\beta_1 = \frac{\sum y_i i \sum x_i i - \sum y_i x_i \sum i^2}{(\sum x_i i)^2 - \sum x_i^2 \sum i^2}$$

To find the conditions where x_i makes the estimators not well-defined, we let $x_i = i$. so then we have our β_1 ,

$$\beta_{1} = \frac{\sum y_{i}i \sum x_{i}i - \sum y_{i}x_{i} \sum i^{2}}{(\sum x_{i})^{2} - \sum x_{i}^{2} \sum i^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{(\sum i^{2})^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{\sum i^{2} \sum i^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{0}{0}$$

and then our β_2 ,

$$\beta_{2} = \frac{\sum y_{i}i \sum x_{i}^{2} - \sum y_{i}x_{i} \sum x_{i}i}{\sum i^{2} \sum x_{i}^{2} - (\sum x_{i}i)^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{(\sum i^{2})^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{\sum i^{2} \sum i^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{0}{0}$$

- \therefore The estimator β_1 and β_2 is not well-defined at $x_i = i$.
- (b) For the case where the coefficient estimators are well-defined, the unbiased estimator for σ^2 is:

$$E[\sum \epsilon^{2}] = (n-2)\sigma^{2}$$
$$\sigma^{2} = \frac{\sum \epsilon^{2}}{n-2}$$

Derived from, Question 3b.