PHYS2350: Motion in 2D

Dr. Wolf

Fall 2024

Suppose you are traveling along the indicated path from point A to point B at a constant speed of $3 \, \frac{m}{s}$. Which direction is the velocity at point C? How do you know?

2/8

Suppose you are traveling along the indicated path from point A to point B at a constant speed of $3 \, \frac{m}{s}$. Which direction is the velocity at point C? How do you know?

Suppose you are traveling along the indicated path from point A to point B at a constant speed of $3 \, \frac{m}{s}$. Which direction is the velocity at point C? How do you know?

Suppose you are traveling along the indicated path from point A to point B at a constant speed of $3 \, \frac{m}{s}$. Which direction is the velocity at point C? How do you know?

Step #1 Draw \vec{r}_A and \vec{r}_B , the position vectors for the object when it is at point A and B *relative to the origin* O.

Step #1 Draw $\vec{r_A}$ and $\vec{r_B}$, the position vectors for the object when it is at point A and B *relative to the origin* O.

Step #2 Draw the vector that represents the *displacement* of the object from A to B.

Step #2 Draw the vector that represents the *displacement* of the object from A to B.

$$\Delta \vec{r}_{AB} = \vec{r}_B - \vec{r}_A$$

Describe how to get the average velocity

Dr. Wolf

Step #2 Draw the vector that represents the *displacement* of the object from A to B.

$$\Delta \vec{r}_{AB} = \vec{r}_B - \vec{r}_A$$

Describe how to get the average velocity

Dr. Wolf

Step #2 Draw the vector that represents the *displacement* of the object from A to B.

$$\Delta \vec{r}_{AB} = \vec{r}_B - \vec{r}_A$$

Describe how to get the average velocity

$$\langle \vec{v}_{AB}
angle = rac{\Delta \vec{r}_{AB}}{\Delta t_{AB}}$$

Step #2 Draw the vector that represents the *displacement* of the object from A to B.

$$\Delta \vec{r}_{AB} = \vec{r}_B - \vec{r}_A$$

Describe how to get the average velocity

$$\langle \vec{v}_{AB} \rangle = \frac{\Delta \vec{r}_{AB}}{\Delta t_{AB}}$$

From average to instantaneous

What do we need to do as we transition from considering the average velocity:

$$\langle \vec{v}_{AB} \rangle = \frac{\Delta \vec{r}_{AB}}{\Delta t_{AB}}$$

to the instantaneous velocity?

From average to instantaneous

What do we need to do as we transition from considering the average velocity:

$$\langle \vec{v}_{AB}
angle = rac{\Delta \vec{r}_{AB}}{\Delta t_{AB}}$$

to the instantaneous velocity?

Take the limit!

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_{AB}}{\Delta t_{AB}}$$

From average to instantaneous

What do we need to do as we transition from considering the average velocity:

$$\langle \vec{v}_{AB} \rangle = \frac{\Delta \vec{r}_{AB}}{\Delta t_{AB}}$$

to the instantaneous velocity?

Take the limit!

$$ec{v} = \lim_{\Delta t o 0} rac{\Delta ec{r}_{AB}}{\Delta t_{AB}}$$

Plan

Re-do everything we just did, but for a point B' that is closer to A.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Step #3 Choose a point on the oval between points A and B and label that point B'. Does the direction of the average velocity vector change?

Step #3 Choose a point on the oval between points A and B and label that point B'. Does the direction of the average velocity vector change?

Step #3 Choose a point on the oval between points A and B and label that point B'. Does the direction of the average velocity vector change? YES!

Step #3 Choose a point on the oval between points A and B and label that point B'.

What happens if we get even closer?

Step #3 Choose a point on the oval between points A and B and label that point B'.

What happens if we get even closer?

Direction of velocity vector is...

How would you characterize the direction of the (instantaneous) velocity at *any* point?

Tangent to the curve

Acceleration for motion with constant speed

One way of subtracting vectors, tail-to-tail

Questions to consider in II.B

- How are the angles α, β , and θ related?
- How are the magnitudes of \vec{v}_A and \vec{v}_B related?
- As point B moves closer to point A, what happens to the angles and magnitudes mentioned above?

Velocity and Acceleration for constant speed

For constant speed:

