Белорусский государственный университет Факультет радиофизики и компьютерных технологий

Лабораторная работа №3 Спектр атома водорода

Подготовила студентка 3 курса 2+8 АРИСТ Ляховская Елизавета Игоревна

Преподаватель: Зезюля Павел Александрович

Цель работы: для атома водорода определить экспериментально длины волн первых трех спектральных линий $(H_{\alpha}, H_{\beta}, H_{\gamma})$ в серии Бальмера; вычислить значение постоянной Ридберга

Краткая теория:

Изучение атомных спектров послужило ключом к познанию строения атома. Прежде всего было замечено, что линии в спектрах атомов располагаются не беспорядочно, а группируется в так называемые серии. Отчетливее всего это обнаруживается в спектре атома водорода, изображенном на рис. 3.1.

Очевидно, что линии располагаются в определенном порядке в виде серий, а расстояние между линиями в каждой серии закономерно убывает по мере перехода от более длинных волн к более коротким. Швейцарский физик И. Бальмер обнаружил (1885 г.), что длины волн линий водорода могут быть точно представлены формулой

$$\frac{1}{\lambda} = R \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \tag{3.1}$$

или при переходе от длины волны к частоте

$$v = Rc \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right), \tag{3.2}$$

где $R = 109737 \text{ cm}^{-1}$ эмпирическая постоянная, называемая постоянной Ридберга; $c \$ скорость света в вакууме.

С помощью формул (3.1) и (3.2) можно получить λ или ν любой линии в любой серии. Так, если положить $n_2 = 1$, а величине n_1 придавать значения 2, 3, 4,... то получим длины волн (частоты) линий в серии Лаймана.

Аналогично, линии остальных серий получаются при следующих значениях n_2 и n_1 :

серия Лаймана: $n_2 = 1$, $n_1 = 2, 3, 4$... (ультрафиолетовая область).

серия Бальмера: $n_2 = 2$, $n_1 = 3, 4, 5$.. (видимая область)

серия Пашена: $n_2 = 3$, $n_1 = 4, 5, 6...$ (инфракрасная область)

серия Брэкета: $n_2 = 4$, $n_1 = 5, 6, 7...$ (инфракрасная область)

серия Пфунда: $n_2 = 5$, $n_1 = 6, 7, 8 ...$ (инфракрасная область)

Установка:

Схема установки представлена на рис. 1.

Свет от источника Π конденсором K собирается на входной щели 1 монохроматора УМ-2. Входная щель снабжена микрометрическим винтом 9, который позволяет открывать щель на нужную ширину. Обычная рабочая ширина щели равна 0,02 – 0,03 мм. Коллиматорный объектив 2 снабжен микрометрическим винтом 8. С помощью винта можно смещать объектив относительно щели при фокусировке спектральных линий различных цветов. Объективом 2 излучение источника направляется на сложную призму 3, установленную на поворотном столике 6. Первые две призмы P_1 и P_2 с преломляющими углами 30 изготовлены из тяжелого флинта, обладающего большой дисперсией. Промежуточная призма P_3 Лучи отражаются от ее гипотенузной грани и сделана из крона. поворачиваются на 90 $\stackrel{\text{\tiny th}}{=}$. Благодаря такому устройству дисперсии призм P_1 и P_{2} складываются. При помощи микрометрического винта с отсчетным барабаном 7 поворотный столик 6 вращается вокруг вертикальной оси. На барабан нанесена винтовая дорожка с градусными делениями. Вдоль дорожки скользит указатель поворота барабана. При вращении барабана призма поворачивается, и в центре поля зрения появляются различные участки спектра.

Практическая часть:

- 1. Первые три спектральные линии серии Бальмера ($n_2 = 2$), при $R = 1,09737 * 10^7 \,\mathrm{m}^{-1}$
- При n₁ = 3

$$\frac{1}{\lambda} = R \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) = R \left(\frac{1}{4} - \frac{1}{9} \right) = \lambda = \frac{36}{5R} = 656 \text{ HM}$$

• При $n_1 = 4$

$$\frac{1}{\lambda} = R \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) = R \left(\frac{1}{4} - \frac{1}{16} \right) = \lambda = \frac{16}{3R} = 486 \text{ HM}$$

• При n₁ = 5

$$\frac{1}{\lambda} = R \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) = R \left(\frac{1}{4} - \frac{1}{25} \right) = \lambda = \frac{16}{3R} = 433 \text{ HM}$$

2. Экспериментальное определение длины волны водородных линий H_{α} , H_{β} , H_{γ} в видимой области спектра

волна	цвет	угол	λ, À	λ , 10^7 M	λ , 10^7 м
		поворота		(практ)	(теор)
		барабана, 0			
H_{α}	красный	2732	6480	6,48	6,56
H_{β}	сине-зеленый	1732	4810	4,81	4,86
H_{γ}	фиолетовый	1598	4670	4,67	4,33

Таблица 1

3. Вычисления среднего значения Ридберга по значениям, полученным в ходе работы:

$$\frac{1}{R} = \lambda \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

$$R_1 = 1,111 * 10^7 \,\mathrm{m}^{-1}$$

$$R_2 = 1,109 * 10^7 \,\mathrm{m}^{-1}$$

$$R_3 = 1,019 * 10^7 \,\mathrm{m}^{-1}$$

$$< R > = 1.0799 * 10^7 \,\mathrm{m}^{-1}$$

Вывод:

В проведенной лабораторной работе мы экспериментально определили длины волн для атома водорода для первых трех спектральных линий Бальмера. Результаты получились следующие: для красного спектра 6,48 * 10^7 м, для сине-зеленого 4,81 * 10^7 м, для фиолетового 4,67 * 10^7 м. В связи с особенностями установки фиолетовая линия просматривалась плохо, отсюда сильное различие с теоретическими значениями, которые приведены в таблице 1 в 6 столбце. На основании полученных длин волн мы рассчитали постоянную Ридберга $R_{\rm пp} = 1,0799$ * 10^7 м $^{-1}$. Табличное значение постоянной Ридберга $R_{\rm r} = 1,09737$ * 10^7 м $^{-1}$. Порядки величин совпадают, следовательно можем сделать вывод, что в работе существенных ошибок допущено не было.