Билеты к экзамену

Предмет: Математическая логика

Содержание

1	Логические операции над высказываниями	4
2	Формулы и истинностные значения формул	6
3	Тавтологии. Методы доказательства тавтологий	8
4	Логическая равносильность формул. Равносильные преобразования формул	9
5	Нормальные формы для формул алгебры высказываний	11
6	Логическое следование формул. Методы доказательства логического следования формул	14
7	Метод резолюций в логике высказываний	14
8	Понятие предиката и его множества истинности. Перенесение на предикаты логических операций	14
9	Кванторы общности и существования, их действие на предикат. Свободные и связанные переменные	14
10	Формулы алгебры предикатов	14
11	Интерпретация формул алгебры предикатов	14
12	Логическое равенство формул алгебры предикатов. Свойства логических операций над предикатами	14
13	Логическое следование формул алгебры предикатов	14
14	Предваренная нормальная форма (ПНФ) формул алгебры предикатов	14
15	Скулемовская стандартная форма (ССФ) формул алгебры предикатов	14
16	Сведение проблемы общезначимости формул к проблеме противоречивости систем дизъюнктов	14
17	Унификация формул	14

18	Метод резолюций в логике предикатов	14
19	Аксиомы и правила вывода исчисления высказываний. Доказуемость формул	14
20	Теорема Геделя о полноте исчисления высказываний	14
21	Непротиворечивость и разрешимость исчисления высказываний	14
22	Аксиомы и правила вывода исчисления предикатов. Тож- дественная истинность выводимых формул	14
23	Полнота, непротиворечивость и неразрешимость исчисления предикатов	14
24	Понятие алгоритма и основные математические модели алгоритма	14
25	Разрешимые и полуразрешимые языки. Теорема Поста	14
26	Машины Тьюринга и вычисляемые ими функции	14
27	Распознаваемость языков машинами Тьюринга	14
2 8	Разрешимые, неразрешимые и распознавательные проблемы	14
29	Временная и ленточная сложность машины Тьюринга	14
30	Классы языков Р и NP	14
31	Полиномиальные сведения проблем	14
32	NP-трудные и NP-полные языки	14
33	Основные NP-полные проблемы	14

1 Логические операции над высказываниями

Логика высказываний

Определение 1. *Высказыванием* называется повествовательное предложение, о котором можно судить, истинное оно или ложное.

Обозначаются высказывания: А, В, С...

Определение 2. *Истичностное значение* высказывания A обозначается символом $\lambda(A)$ и определяется по формуле:

 $\lambda(A) = 1$, если высказывание A истинно

 $\lambda(A) = 0$, если высказывание A ложно

Алгебра высказываний

Из высказываний путем соединения их с помощью связок «не», «и», «или», «следует», «равносильно» можно составлять новые, более сложные высказывания.

При этом главное внимание уделяется функциональным зависимостям истинностных значений высказываний, в которых истинность или ложность новых высказываний определяется истинностью или ложностью составляющих их высказываний.

Определение 3. Отрицанием высказывания A называется высказывание $\neg A$ (читается «не »), которое истинно в том и только том случае, если высказывание A ложно.

Таблица истинностных значений операции отрицания:

A	$\neg A$
1	0
0	1

Определение 4. Контюнкцией высказываний A, B называется высказывание $A \wedge B$ (читается «A и B»), которое истинно в том и только том случае, если оба высказывания A, B истинны.

Определение 5. Дизтюнкцией высказываний A, B называется высказывание $A \lor B$ (читается «A или B»), которое ложно в том и только том случае, если оба высказывания A, B ложны.

Определение 6. Импликацией высказываний A, B называется высказывание $A \Rightarrow B$ (читается «A влечет B»), которое ложно в том и только том случае, если высказывание A истинно, а высказывание B ложно.

Определение 7. Эквивалентностью высказываний A, B называется высказывание $A \Leftrightarrow B$ (читается «A равносильно B»), которое истинно в том и только том случае, если высказывания A и B имеют одинаковое истинностное значение.

Таблица истинностных значений логических операций:

A	B	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Определение 8. *Алгеброй высказываний* называется множество всех высказываний \mathscr{P} с логическими операциями \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow .

2 Формулы и истинностные значения формул

Формулы алгебры высказываний

Определение 9. Свойства алгебры всказываний \mathscr{P} описываются с помощью формул, которые строятся из переменных символов с помощью знаков логических операций. Такие формулы принято называть также *пропозициональными формулами*.

Определение 10. Символы логических операций \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow , которые называются *пропозициональными связками*.

Определение 11. Переменные символы X, Y, Z, \ldots , которые используются для обозначения высказываний, называются *пропозициональными переменными*.

Определение 12. *Формулы* алгебры высказываний индуктивно определяются по правилам:

- 1. Каждая пропозициональная переменная является формулой
- 2. Если Φ , Ψ формулы, то формулами являются также выражения $(\neg \Phi)$, $(\Phi \land \Psi)$, $(\Phi \lor \Psi)$, $(\Phi \Rightarrow \Psi)$, $(\Phi \Leftrightarrow \Psi)$

Множество всех формул алгебры высказываний обозначим \mathcal{F}_{AB}

Для упрощения записи формул скобки в них по возможности опускаются с учетом следующего **приоритета выполнения операций:** \neg , \wedge , \vee и остальные.

Так, формула $((((\neg X) \land (\neg Y)) \lor (\neg (\neg Z))) \Rightarrow (X \lor (\neg Y)))$ сокращенно записывается в виде $\neg X \land Y \lor \neg \neg Z \Rightarrow X \lor \neg Y$.

Если в формулу Φ входят переменные X_1, \ldots, X_n , то записывают $\Phi = \Phi(X_1, \ldots, X_n)$.

Из индуктивного опеределения формул следует, что если в формулу Φ вместо переменных X_1, \ldots, X_n подставить произвольные конкретные высказывания A_1, \ldots, A_n , то получится некоторое сложное высказывание $\Phi(A_1, \ldots, A_n)$.

Истинностное значение высказывания $\lambda(\Phi(A_1,\ldots,A_n))$ определяется истинностными значениями исходных высказываний $\lambda(A_1),\ldots,\lambda(A_n)$ согласно таблицам истинностных значений логических операций $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$.

Формула Ф определяет функцию n переменных F_{Φ} , которая каждому упорядоченному набору $(\lambda(X_1), \ldots, \lambda(X_n))$ n элементов множества 0,1 ставит в соответствие элемент $\lambda(\Phi(X_1,\ldots,X_n))$ этого же множества.

Определение 13. Функция F_{Φ} называется *истинностной функцией* формулы Φ и графически представляется *истинностной таблицей*.

Такая таблица содержит 2^n строк и имеет ожно из возможных 2^{2^n} возможных распределений 0 и 1 в последнем столбце.

Пример. Составим таблицу истинности для формулы $(P\Rightarrow Q)\Leftrightarrow (\neg Q\Rightarrow \neg P)$

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$	$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	0	0	0	1	1

Таблица показывает, что какого бы истинностного значения высказывания ни подставлялось в данную формулу вместо пропозициональных переменных P и Q, формула всегда превращается в истинностное высказывание.

Определение 14. Формула Ф называется:

- *Тавтологией* (или *тождественно истинной формулой*) и обозначается ⊨ Ф, если ее истинностная функция тождественно равна 1
- Противоречием (или тождественно ложной формулой), если ее истинностная функция тождественно равна 0
- Выполнимой, если ее истинностная функция не равна тождественно 0
- *Опровержимой*, если ее истинностная функция не равна тождественно 1

3 Тавтологии. Методы доказательства тавтологий

Тавтологии

Определение 15. Формула Φ называется *тавтологией* (или *тожедественно истинной формулой*) и обозначается $\models \Phi$, если ее истинностная функция тождественно равна 1.

Тавтологии являются общими схемами построения истинных высказываний и в этом смысле выражают некоторые *логические законы*.

Примерами таких законов являются:

 $\models X \lor \neg X$ — закон исключенного третьего

 $\vDash \neg \neg X \Leftrightarrow X -$ закон двойного отрицания

 $\models \neg (X \land \neg X)$ — закон противоречия

 $\vDash (X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X)$ — закон контрапозиции

Методы доказательства тавтологий

Новые тавтологии можно получить с помощью следующего правила:

Теорема 1 (Правило подстановки). $Ecnu \models \Phi(X_1, ..., X_n)$, то для любых формул $\Phi_1, ..., \Phi_n$ тавтологией является формула $\Phi(\Phi_1, ..., \Phi_n)$.

!Дописать алгоритм проверки тождественной истинности формулы Ф.

4 Логическая равносильность формул. Равносильные преобразования формул

Логическая равносильность формул

Определение 16. Формулы Φ , Ψ называются *логически равносильными* (или просто *равносильными*), если они принимают одинаковые логические значения при любых истинностных значениях их переменных.

Это равносильно условию $\models \Phi \Leftrightarrow \Psi$.

Определение 17. Для обозначения логически эквивалентных формул используется символическая запись $\Phi = \Psi$, или $\Phi \cong \Psi$.

Такие выражения называют *логическими равенствами* или просто *равенствами* формул.

Лемма (1). Справедливы следующие равенства формул:

1. Свойства ассоциативности дизъюнкции и конъюнкции:

$$X \lor (Y \lor Z) = (X \lor Y) \lor Z$$
$$X \land (Y \land Z) = (X \land Y) \land Z$$

2. Свойства коммутативности дизгюнкции и контюнкции:

$$X \lor Y = Y \lor X$$
$$X \land Y = Y \land X$$

3. Свойства идемпотентности дизгюнкции и конгюнкции:

$$X \lor X = X$$
$$X \land X = X$$

4. Законы дистрибутивности контюнкции относительно дизтюнкции и дизтюнкции относительно контюнкции:

$$X \wedge (Y \vee Z) = (X \wedge Y) \vee (X \wedge Z)$$
$$X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z)$$

5. Законы де Моргана:

$$\neg(X \land Y) = \neg X \lor \neg Y$$
$$\neg(X \lor Y) = \neg X \land \neg Y$$

6. Законы поглощения:

$$(X \land Y) \lor X = X$$
$$(X \lor Y) \land X = X$$

7. Закон двойного отрицания:

$$\neg \neg X = X$$

8. Взаимосвязь импликации с дизтюнкцией и контюнкцией:

$$X \Rightarrow Y = \neg X \lor Y$$
$$X \Rightarrow Y = \neg (X \land \neg Y)$$

9. Взаимосвязь эквивалентности с импликацией, дизоюнкцией и коноюнкцией:

$$X \Leftrightarrow Y = (X \Rightarrow Y) \land (Y \Rightarrow X)$$
$$X \Leftrightarrow Y = (\neg X \lor Y) \land (X \lor \neg Y)$$

Равносильные преобразования формул

Лемма (Правило замены). Если формулы Φ , Φ' равносильны, то для любой формулы $\Psi(X)$, содержащей переменную X, выполняется равенство: $\Psi(\Phi) = \Psi(\Phi')$.

Это правило означает, что при замене в любой формуле $\Psi = \Psi(\Phi)$ некоторой ее подформулы Φ на равносильную ей формулу Φ' получается формула $\Psi = \Psi(\Phi')$, равносильная исходной формуле Ψ .

Такие переходы называются *равносильными преобразованиями формул*.

Пример. Формула $\Phi = (X \Rightarrow Y) \Rightarrow Z$ с помощью равенств 5, 7, 8 из леммы 1 равносильно преобразовывается следующим образом:

$$\Phi = (X \Rightarrow Y) \Rightarrow Z = \neg(X \Rightarrow Y) \lor Z = \neg(\neg(X \land \neg Y)) \lor Z = (X \land \neg Y) \lor Z.$$

5 Нормальные формы для формул алгебры высказываний

По определению формулы Φ , Ψ равносильны, значит их истинностные функции F_{Φ} , F_{Ψ} совпадают.

Следовательно, отношение равносильности формул \cong является отношением эквивалентности на множестве всех формул \mathcal{F}_{AB} , которое разбивает это множество на классы эквивалентности $[\Phi] = \{ \Psi \in \mathcal{F}_{AB} : \Phi \cong \Psi \}$, определяемые формулами $\Phi \in \mathcal{F}_{AB}$.

Из основных равенств следует, что для каждой формулы $\Phi \in \mathcal{F}_{AB}$ можно указать равносильные ей формулы специального вида, содержащие только символы логических оераций \neg, \land, \lor .

Определение 18. Литерой называется пропозициональная переменная X или ее отрицание $\neg X$. Обозначение: X^{α} , где $\alpha \in \{0,1\}$.

$$X^{\alpha}$$
 $\begin{cases} X^1 = X, & \text{если } \alpha = 1 \\ X^0 = \neg X, & \text{если } \alpha = 0 \end{cases}$ (1)

Определение 19. *Конъюнктом* (соответственно, *дизъюнктом*) называется литера или конъюнкция (соответственно, дизъюнкция) литер.

Конъюнкт (дизъюнкт) называется *совершенным*, если он содержит все пропозициональные переменные рассматриваемой формулы.

Определение 20. Контонктивной нормальной формой $(KH\Phi)$ называется дизъюнкт или конъюнкция дизъюнктов.

 \mathcal{A} изъюнктивной нормальной формой (\mathcal{A} Н Φ) называется конъюнкт или дизъюнкция конъюнктов.

При этом КНФ (соответственно, ДНФ) называется совершенной, если все ее дизъюнкты (соответственно, конъюнкты) содержат все пропозициональные переменные расматриваемой формулы.

Теорема 2. Любая формула равносильна некоторой ДНФ и некоторой $KH\Phi$.

Алгоритм приведения формулы Ф к ДНФ (соответсвенно, КНФ):

1. Выражаем все входящие в формулу Ф импликации и эквивалентности через конъюнкцию, дизъюнкцию и отрицание

- 2. Согласно законам де Моргана все отрицания, стоящие перед скобками, вносим в эти скобки и сокращаем все двойные отрицания
- 3. Согласно законам дистрибутивности преобразуем формулу так, чтобы все конъюнкции выполнялись раньше дизъюнкций (соответственно, чтобы все дизъюнкции выполнялись раньше конъюнкций)

Теорема 3. Любая выполнимая формула $\Phi = \Phi(X_1, \dots, X_n)$ равносильна формуле вида

$$\bigvee_{(a_1,\ldots,a_n)} (X_1^{\alpha_1} \wedge \ldots \wedge X_n^{\alpha_n}),$$

где дизъюнкция берется по всем упорядоченным наборам $(a_1,\ldots,a_n)\in\{0,1\}^n,$ удовлетворяющим условию $\mathcal{F}_{\Phi}(\alpha_1,\ldots,\alpha_n)=1.$

Такая формула определяется однозначно (с точностью до порядка членов конъюнкций и дизъюнкций) и называется совершенной дизъюнктивной нормальной формой $(C\mathcal{I}H\Phi)$ формулы Φ .

Теорема 4. Любая опровержимая формула $\Phi = \Phi(X_1, ..., X_n)$ равносильна формуле вида

$$\bigwedge_{(a_1,\ldots,a_n)} (X_1^{1-\alpha_1} \wedge \ldots \wedge X_n^{1-\alpha_n}),$$

где контюнкция берется по всем упорядоченным наборам $(a_1,\ldots,a_n)\in\{0,1\}^n,$ удовлетворяющим условию $\mathcal{F}_{\Phi}(\alpha_1,\ldots,\alpha_n)=0.$

Такая формула определяется однозначно (с точностью до порядка членов конъюнкций и дизъюнкций) и называется совершенной конъюнктивной нормальной формой $(CKH\Phi)$ формулы Φ .

Алгоритм нахождения СДНФ и СКНФ формулы $\Phi = \Phi(X_1, ..., X_n)$:

- 1. Составить истинностную таблицу формулы Ф и добавить два столбца «Совершенные конъюнкты» и «Совершенные дизъюнкты»
- 2. Если при значениях

- 6 Логическое следование формул. Методы доказательства логического следования формул
- 7 Метод резолюций в логике высказываний
- 8 Понятие предиката и его множества истинности. Перенесение на предикаты логических операций
- 9 Кванторы общности и существования, их действие на предикат. Свободные и связанные переменные
- 10 Формулы алгебры предикатов
- 11 Интерпретация формул алгебры предикатов
- 12 Логическое равенство формул алгебры предикатов. Свойства логических операций над предикатами
- 13 Логическое следование формул алгебры предикатов
- 14 Предваренная нормальная форма (ПНФ) формул алгебры предикатов
- 15 Скулемовская стандартная форма (ССФ) формул алгебры предикатов
- 16 Сведение проблемы общезначимости формул к проблеме противоречивости систем дизъюнктов
- 17 Унификация формул