Site percolation	For each vertex x of a graph G , we draw an independent Bernoulli random variable $w(x)$ with probability p . We say x is an $open$ site if $w(x) = 1$. An edge is $open$ if both of its sites are open.
definition percolation percolation-site-def	
Basic results about the existence of an infinite cluster	 Every site has the same probability of being in an infinite cluster. Proof: Translation invariance. P_p(infinite cluster) > 0 ⇔ P_p(0 ↔ ∞) > 0. Proof: Translation invariance + countability of Z^d. Probability is monotone in p. Proof: Coupling. Equivalent to the existence of an infinite open path. Proof: Build the path inductively.
infinite-cluster	
The probability of an infinite cluster is either 0 or 1.	Existence of an infinite cluster is a tail event, so done by Kolmogorov's 0-1 law.
infinite-cluster percolation percolation-infinite-cluster-zero-one	
Prove $0 < p_c$ in \mathbb{Z}^d .	If $p < \frac{1}{2d}$, then, for all n , $P_p(0 \leftrightarrow \infty) \le P_p(\exists \text{ path of length } n \text{ starting at } 0)$ $\le (2d)^n p^{n+1}$ $\to 0$
<pre>infinite-cluster percolation:zd</pre> <pre>percolation-zd-critical-probability-pos</pre>	

Prove $p_c < 1$ in $\mathbb{Z}^d, d \geq 2.$ infinite-cluster percolation::zd percolation-zd-critical-probability-lt-one	It's enough to show it for $d=2$. If $p>\frac{7}{8}$, then $P_p(\text{no infinite cluster})$ $=P_p(\exists \text{ closed loop around } [-n,n]^2)$ $\leq \sum_m P_p(\exists \text{ closed loop around } [-n,n]^2 \text{ through } (m,0))$ $\leq \sum_{m\geq n} P_p(\exists \text{ closed path of length } m)$ $\leq \sum_{m\geq n} 8^m (1-p)^{m+1}$ $\to 0$
Translation-invariant percolation events have probability 0 or 1 .	Any percolation event can be approximated by a cylindrical event (by Dynkin). Hence if A is a translation-invariant event, find B a cylindrical event such that $P_p(A \triangle B) \leq \varepsilon$. Shift the event B enough so that the resulting evilondrical

Shift the event B enough so that the resulting cylindrical event B' is independent from B. Then

$$|P_p(A) - P_p(B)^2| = |P_p(A) - P_p(B \cap B')|$$

$$\leq P_p(A \triangle (B \cap B'))$$

$$\leq P_p(A \triangle B) + P_p(A \triangle B')$$

$$\leq 2\varepsilon$$

Taking $\varepsilon \to 0$, we get $P_p(A)^2 = P_p(A)$, as wanted.

The number of infinite clusters is ae constant for supercritical percolation in \mathbb{Z}^d .

percolation-translation-invariant

percolation::zd

For each k, N = k is a translation-invariant event, hence has probability 0 or 1.

infinite-cluster supercritical-percolation percolation-zd-supercritical-clusters-ae-constant

If $N = k \in]1, \infty[$, there's a nonzero probability to connect two clusters, hence P(N = k) < 1. So P(N = k) = 0.

The number of infinite clusters is 1 or ∞ for supercritical percolation in \mathbb{Z}^d .

infinite-cluster supercritical percolation::zd percolation-zd-supercritical-clusters-one-or-infty

The number of infinite clusters is not ∞ for supercritical percolation in \mathbb{Z}^d .	 Assume P(N = ∞) = 1. For all k, there exists n such that the probability of k disjoint clusters intersecting [-n, n]^d is strictly positive. Proof: Union over n of these events is N ≥ k. Find a box intersecting three disjoint clusters that are far enough apart. Resample that box. The probability of a point being a trifurcation is translation invariant and strictly positive. Cm^d = E[# trifurcations in [1, m]^d] ≤ #∂[1, m]^d = O(m^{d-1}). Contradiction.
<pre>infinite-cluster supercritical-percolation percolation::zd</pre>	
Pivotals	For an increasing event A , a site z is A -pivotal for a configuration v if $v^{z,0} \notin A$ but $v^{z,1} \in A$.

pivotal percolation::zd

percolation-pivotal-def

Russo's formula

Definitions and setup for exponential decay

percolation-russo-formula

• \mathcal{S} the set of finite connected sets in \mathbb{Z}^d containing the origin and whose complement is connected.

• If $S \in \mathcal{S}$, O(S) is the set of neighbors of S and $\tilde{S} =$ $O(S) \cup S$.

• For $S \in \mathcal{S}$, C_S is the connected component of 0 for percolation inside S.

• $u_n(p) = P_p(0 \leftrightarrow \lambda_n)$.

 $= \varepsilon \mathbb{E}_p[\# \text{ pivotals of } A]$

• $\varphi_p(S) = \mathbb{E}[|O(S) \cap O(C_S)|]$ is the expected number of sites of S^c that are neighbors of C_S .

If A is an increasing cylindrical event, then

tone. Hence, for $\varepsilon > 0$ (treat $\varepsilon < 0$ similarly),

 $\frac{dP_p(A)}{dp} = \mathbb{E}_p[\# \text{ pivotals of } A]$

Proof. Write S the finite set of states that A depends on. Couple percolations by $w_p(x) := 1_{X(x) \leq p}$ where $X(x) \sim$ Unif [0,1] are independent. This shows $p \mapsto P_p(A)$ is mono-

$$\begin{split} &P_{p+\varepsilon}(A) - P_p(A) = P(w_{p+\varepsilon} \in A, w_p \notin A) \\ &= \sum_{x \in S} P(X(x) \in [p, p+\varepsilon[, x \text{ pivotal for } w_p) + O(\varepsilon^2) \end{split}$$

as $X(x) \in [p, p+\varepsilon[$ for several $x \in S$ with probability $O(\varepsilon^2)$.

percolation::zd

pivotal percolation::zd

percolation-exponential-decay-setup

If $\varphi_p(S) < 1$ for some $S \in \mathcal{C}$ tially.	$S, P_p(0 \leftrightarrow \lambda_n)$ decays exponen-
infinite-cluster subcritical percolation::zd	percolation-exponential-decay-subcritical

Find n_0 such that $S \subseteq \Lambda_{n_0}$. If $0 \leftrightarrow \lambda_n$, then there is a site $x \in C_S$ adjacent to a site $y \in O(S)$ such that $y \leftrightarrow \lambda_n$ outside of \tilde{C}_S . Therefore, if $0 \in D \subseteq S$,

$$\begin{split} &P_p(C_S = D, 0 \leftrightarrow \lambda_n) \\ &\leq \sum_{y \in O(S) \cap O(D)} P_p(C_S = D, y \leftrightarrow \lambda_n \text{ outside of } \tilde{D}) \\ &= P_p(C_S = D) \sum_{y \in O(S) \cap O(D)} P_p(y \leftrightarrow \lambda_n \text{ outside of } \tilde{D}) \\ &\leq P_p(C_S = D) \left| O(S) \cap O(D) \right| u_{n-n_0} \end{split}$$

Summing over D, we get $u_n \leq \varphi_p(S)u_{n-n_0}$, namely exponential decay.

If $p > p_c$, then $\inf_{S \in \mathcal{S}} \varphi_p(S) > 0$.

For all $S \in \mathcal{S}$,

$$\varphi_p(S) \ge P_p(0 \leftrightarrow \infty) > 0$$

infinite-cluster percolation::zd

If $\inf_{S \in \mathcal{S}} \varphi_{p_0}(S) > 0$, then $p_0 \ge p_c$.

percolation-exponential-decay-supercritical

Percolate in Λ_n . Call U the set of points connected to λ_n . The expected number of closed $0 \leftrightarrow \lambda_n$ -pivotals is $(1-p)\frac{du_n(p)}{dp}$ by Russo. A pivotal y is closed iff there is an open path from 0 to a neighbor of y in S(U) (the component of 0 in \tilde{U}^c), and in particular $y \in O(S(U))$. Hence, if $p > p_0$,

$$\frac{du_n(p)}{dp} = \frac{1}{1-p} \sum_{V \not\ni 0} \mathbb{E} \left[1_{U=V} \varphi_p(S(V)) \right]$$
$$\geq \frac{\alpha}{1-p} P_p(0 \not\in U) \geq \alpha$$

Integrating,

$$P_p(0 \leftrightarrow \infty) \lim_{n \to \infty} u_n(p) \ge (p - p_0)\alpha > 0$$

percolation::zd percolation-exponential-decay-not-subcritical

The probability of a left-right crossing in a rhombus is $\frac{1}{2}$.

Look at the set of sites connected to the top boundary. Either it reaches the bottom (and we have a top-bottom open crossing) or it doesn't (and the "lower boundary" of the set is a left-right closed crossing). Hence the probabilities of a top-bottom open crossing and of a left-right closed crossing add up to 1. But they are equal by symmetry, hence they must be $\frac{1}{2}$.

crossing percolation::triangular

infinite-cluster

percolation-triangular-top-bottom-left-right

For triangular percolation, $p_c \leq \frac{1}{2}$.	At $p = \frac{1}{2}$, the probability of a left-right crossing is $\frac{1}{2}$. In particular, the probability of a point belonging to a cluster of diameter at least N is at least $\frac{1}{2(N+1)}$. Hence we do not have exponential decay and $p_c \leq \frac{1}{2}$.
infinite-cluster critical percolation::triangular percolation-triangular-critical-le-half	
Glauber dynamic	Update the configuration one state at a time. Forget a random state and pick between the two possible configurations c and d with probabilities $\frac{P(c)}{P(c)+P(d)}, \frac{P(d)}{P(c)+P(d)}$ The state needn't be chosen with the same probability, but they must each have positive probability of being chosen.
general-models glauber-dynamic-def	
The Glauber dynamic gives rise to a unique stationary measure because	 the Markov chain is aperiodic irreducible reversible Indeed it is a random walk on the space of configurations (which is connected and finite).
general-models glauber-dynamic-unique-measure	
Harris inequality	If A, B , are two increasing cylindrical events, then $P_{\beta}(A \cap B) \geq P_{\beta}(A)P_{\beta}(B)$ Proof. Construct two Markov chains X_n and Y_n coupled through a Glauber dynamic such that $X_n \leq Y_n$ and Y_n is constrained to B (possible because B increasing and cylindrical). So $X_n \in A \implies Y_n \in A$ (A is increasing). This proves $P_{\beta}(A \mid B) \geq P_{\beta}(A)$.
general-models harris-inequality	

Triangular percolation has no infinite cluster at $p=\frac{1}{2}.$	Assume there is an infinite cluster with probability 1. Consider the $(2N+1)\times (2N+1)$ rhombus R_N centered at the origin and its sides L_1, E_2, L_3, L_4 . Define E_i the event that $L_i\leftrightarrow\infty$. By Harris, these events are positively correlated, so $P(E_1^c)^4=\prod_i P(E_i^c)\leq P(E_1^c,\ldots,E_4^c)\leq P(R_N\not\leftrightarrow\infty)\to 0$ Hence $P(E_i)\to 1$ for each i and the following happens with strictly positive probability: There are infinite open paths from L_1 and L_3 and infinite closed paths from L_2 and L_4 . But in that case it is impossible to have a single infinite cluster. Contradiction.
Tags percolation::triangular Label	
Ising distribution	$P_{\beta}(\sigma) = \frac{1}{Z_{\beta}} \exp\left(-\beta \sum_{x \sim y} 1_{\sigma_x \neq \sigma_y}\right)$ $= \frac{1}{Z_{\beta}'} \exp\left(-\frac{\beta}{2} \sum_{x \sim y} \sigma_x \sigma_y\right)$
definition ising-model ising-distrib-def	
How to extend the Ising measure to an infinite graph?	Consider a cobounded sequence of sets of states S_n , define P_n^+ the Ising model conditioned on the spins being +1 outside S_n . For every increasing cylindrical event A , $P_n^+(A)$ decreases, so it has a limit $P^+(A)$. This defines P^+ for increasing cylindrical events. Now extend by Carathéodory. Define P^- similarly.
How to couple the σ_n^+ together?	Pick a measure μ on \mathbb{Z}^d such that $\mu\{x\} > 0$ for all x . Create a Markov chain on $\{(\sigma_0^+, \sigma_1^+, \dots) \mid \sigma_0^+ \leq \sigma_1^+ \leq \dots\}$, by starting at 1 everywhere and each time resampling x with probability $\mu\{x\}$. Each truncated Markov chain $(\sigma_0^+, \dots, \sigma_n^+)$ is irreducible, aperiodic, reversible and has a finite state space, so converges to a unique stable measure. Piece these measures together by Kolmogorov extension.

ising-coupling-sigma-n

ising-model