Assignment 5

Chapter 4

- 1. Construct a binary Huffman code for the distribution {0.25, 0.05, 0.1, 0.13, 0.2, 0.12, 0.08, 0.07}.
- 2. Construct a ternary Huffman code for the source distribution in Problem 1.
- 3. Show that a Huffman code is an optimal uniquely decodable code for a given source distribution.
- 4. Construct an optimal binary prefix code for the source distribution in Problem 1 such that all the codewords have even lengths.
- 6. Prove that if $p_1 > 0.4$, then the shortest codeword of a binary Huffman code has length equal to 1. Then prove that the redundancy of such a Huffman code is lower bounded by $1 h_b(p_1)$. (Johnsen [192].)
- 10. Let X be a source random variable. Suppose a certain probability mass p_k in the distribution of X is given. Let

$$l_j = \begin{cases} \lceil -\log p_j \rceil & \text{if } j = k \\ \lceil -\log(p_j + x_j) \rceil & \text{if } j \neq k, \end{cases}$$

where

$$x_j = p_j \left(\frac{p_k - 2^{-\lceil -\log p_k \rceil}}{1 - p_k} \right)$$

for all $j \neq k$.

- (a) Show that $1 \le l_j \le \lceil -\log p_j \rceil$ for all j.
- (b) Show that $\{l_j\}$ satisfies the Kraft inequality.
- (c) Obtain an upper bound on L_{Huff} in terms of H(X) and p_k which is tighter than H(X) + 1. This shows that when partial knowledge about the source distribution in addition to the source entropy is available, tighter upper bounds on L_{Huff} can be obtained.

(Ye and Yeung [396].)

Chapter 5

- 1. Show that for any $\epsilon > 0$, $W_{[X]\epsilon}^n$ is nonempty for sufficiently large n.
- 2. The source coding theorem with a general block code In proving the converse of the source coding theorem, we assume that each codeword in \mathcal{I} corresponds to a unique sequence in \mathcal{X}^n . More generally, a block code with block length n is defined by an encoding function $f: \mathcal{X}^n \to \mathcal{I}$ and a decoding function $g: \mathcal{I} \to \mathcal{X}^n$. Prove that $P_e \to 1$ as $n \to \infty$ even if we are allowed to use a general block code.
- 5. Alternative definition of weak typicality Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ be an i.i.d. sequence whose generic random variable X is distributed with p(x). Let $q_{\mathbf{x}}$ be the empirical distribution of the sequence \mathbf{x} , i.e., $q_{\mathbf{x}}(x) = n^{-1}N(x; \mathbf{x})$ for all $x \in \mathcal{X}$, where $N(x; \mathbf{x})$ is the number of occurrence of x in \mathbf{x} .
 - (a) Show that for any $\mathbf{x} \in \mathcal{X}^n$,

$$-\frac{1}{n}\log p(\mathbf{x}) = D(q_{\mathbf{x}}||p) + H(q_{\mathbf{x}}).$$

(b) Show that for any $\epsilon > 0$, the weakly typical set $W_{[X]\epsilon}^n$ with respect to p(x) is the set of sequences $\mathbf{x} \in \mathcal{X}^n$ such that

$$|D(q_{\mathbf{x}}||p) + H(q_{\mathbf{x}}) - H(p)| \le \epsilon.$$

(c) Show that for sufficiently large n,

$$\Pr\{|D(q_{\mathbf{x}}||p) + H(q_{\mathbf{x}}) - H(p)| \le \epsilon\} > 1 - \epsilon.$$

(Ho and Yeung [167].)

9. Universal source coding Let $\mathcal{F} = \{\{X_k^{(s)}, k \geq 1\} : s \in \mathcal{S}\}$ be a family of i.i.d. information sources indexed by a finite set \mathcal{S} with a common alphabet \mathcal{X} . Define

$$\bar{H} = \max_{s \in \mathcal{S}} H(X^{(s)})$$

where $X^{(s)}$ is the generic random variable for $\{X_k^{(s)}, k \geq 1\}$, and

$$A_{\epsilon}^{n}(\mathcal{S}) = \bigcup_{s \in \mathcal{S}} W_{[X^{(s)}]\epsilon}^{n},$$

where $\epsilon > 0$.

(a) Prove that for all $s \in \mathcal{S}$,

$$\Pr{\mathbf{X}^{(s)} \in A_{\epsilon}^{n}(\mathcal{S})} \to 1$$

as
$$n \to \infty$$
, where $\mathbf{X}^{(s)} = (X_1^{(s)}, X_2^{(s)}, \dots, X_n^{(s)})$.

(b) Prove that for any $\epsilon' > \epsilon$,

$$|A_{\epsilon}^n(\mathcal{S})| \le 2^{n(\bar{H}+\epsilon')}$$

for sufficiently large n.

(c) Suppose we know that an information source is in the family \mathcal{F} but we do not know which one it is. Devise a compression scheme for the information source such that it is asymptotically optimal for every possible source in \mathcal{F} .