Al Course

Capstone Project Final Code

For students (instructor review required)

Group Members:

Muhammad Hussnain

Ghayur Abbas

Muhammad Shoaib

 $\hbox{@2023\,SAMSUNG.\,All\,rights\,reserved.}\\$

 $Samsung \ Electronics \ Corporate \ Citizenship \ Office \ holds \ the \ copyright \ of \ this \ document.$

 $This document is a {\it literary property protected by copyright law so reprint and reproduction without permission are prohibited.}$

To use this document other than the curriculum of Samsung Innovation Campus, you must receive written consent from copyright holder.

NO2 Gas is Detected by Google Earth Engine.

Code of NO2 Gas:

```
// Load Sentinel-5P Nitrogen Dioxide dataset and filter by valid date range
var no2 = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2')
            .filterDate('2019-01-01', '2019-12-31') \overline{//} Use a valid date range
            .select('tropospheric_NO2_column_number_density');
// Load the uploaded dataset as a FeatureCollection
var locations = ee.FeatureCollection('projects/ee-hussnain/assets/df_locations');
// Define a region of interest by creating a bounding box around the points
var region = locations.geometry().bounds(); // Get the bounding geometry of all
points
// Check if the filtered dataset has any images
if (no2.size().getInfo() > 0) {
 \ensuremath{//} Calculate the mean NO2 concentration over the time range
 var no2Layer = no2.mean();
  // Sample the NO2 data at the given locations
 var sampledPoints = no2Layer.sampleRegions({
    collection: locations, \ensuremath{//} Points or polygons to sample
    scale: 7000, // Match Sentinel-5P resolution (7x7 km)
    geometries: true // Include geometry in the output
  });
  // Print sampled NO2 values to the Console
 print('Sampled NO2 Data:', sampledPoints);
  \ensuremath{//} Optional: Visualize the NO2 concentration and locations on the map
 Map.centerObject(locations, 6); // Center map on the region
 Map.addLayer(no2Layer, {min: 0.00002, max: 0.0005, palette: ['blue', 'green',
'yellow', 'red']}, 'NO2 Concentration');
 Map.addLayer(locations, {color: 'black'}, 'Locations');
  // Export the sampled data as a CSV file to Google Drive
 Export.table.toDrive({
    collection: sampledPoints,
    description: 'NO2_Values',
    fileFormat: 'CSV'
 });
} else {
 print('No nitrogen dioxide data available for the specified region and time
range.');
```


SO2 Gas is Detected by Google Earth Engine.

CODE:

```
// Load Sentinel-5P Sulfur Dioxide dataset and filter by valid date range
var so2 = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3 SO2')
            .filterDate('2019-01-01', '2019-12-31') // Use a valid date range
            .select('SO2 column number density');
// Load the uploaded dataset as a FeatureCollection
var locations = ee.FeatureCollection('projects/ee-hussnain/assets/df locations');
// Define a region of interest by creating a bounding box around the points
var region = locations.geometry().bounds(); // Get the bounding geometry of all
points
// Check if the filtered dataset has any images
if (so2.size().getInfo() > 0) {
  // Calculate the mean SO2 concentration over the time range
 var so2Layer = so2.mean();
  // Sample the SO2 data at the given locations
 var sampledPoints = so2Layer.sampleRegions({
    collection: locations, // Points or polygons to sample
    scale: 7000, // Match Sentinel-5P resolution (7x7 km)
    geometries: true // Include geometry in the output
  });
  // Print sampled SO2 values to the Console
 print('Sampled SO2 Data:', sampledPoints);
  // Optional: Visualize the SO2 concentration and locations on the map
 Map.centerObject(locations, 6); // Center map on the region
 Map.addLayer(so2Layer, {min: 0.0, max: 0.02, palette: ['blue', 'green', 'yellow',
'red']}, 'SO2 Concentration');
 Map.addLayer(locations, {color: 'black'}, 'Locations');
  // Export the sampled data as a CSV file to Google Drive
 Export.table.toDrive({
    collection: sampledPoints,
    description: 'SO2_Values',
```



```
fileFormat: 'CSV'
});
} else {
  print('No sulfur dioxide data available for the specified region and time range.');
}
```

CO Gas is Detected by Google Earth Engine.

CODE:

```
// Load Sentinel-5P Carbon Monoxide dataset and filter by valid date
var carbonMonoxide = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3 CO')
                       .filterDate('2019-01-01', '2019-12-31') //
Use a valid date range
                       .select('CO column number density');
// Load the uploaded dataset as a FeatureCollection
var locations = ee.FeatureCollection('projects/ee-
ghayurabbas13/assets/df2');
// Define a region of interest by creating a bounding box around the
points
var region = locations.geometry().bounds(); // Get the bounding
geometry of all points
// Check if the filtered dataset has any images
if (carbonMonoxide.size().getInfo() > 0) {
  // Calculate the mean CO concentration over the time range
  var coLayer = carbonMonoxide.mean();
  // Sample the CO data at the given locations
  var sampledPoints = coLayer.sampleRegions({
    collection: locations, // Points or polygons to sample
    scale: 7000, // Match Sentinel-5P resolution (7x7 km)
    geometries: true // Include geometry in the output
  });
  // Print sampled CO values to the Console
  print('Sampled CO Data:', sampledPoints);
  // Optional: Visualize the CO concentration and locations on the
map
  Map.centerObject(locations, 6); // Center map on the region
  Map.addLayer(coLayer, {min: 0.03, max: 0.05, palette: ['blue',
'green', 'yellow', 'red']}, 'CO Concentration');
  Map.addLayer(locations, {color: 'black'}, 'Locations');
  // Export the sampled data as a CSV file to Google Drive
  Export.table.toDrive({
    collection: sampledPoints,
```



```
description: 'Sampled_CO_Values',
   fileFormat: 'CSV'
});
} else {
  print('No carbon monoxide data available for the specified region
and time range.');
}
```

CH4 Gas is Detected by Google Earth Engine.

CODE:

```
// Load Sentinel-5P Methane dataset and filter by valid date range
var methane = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3 CH4')
                .filterDate('2019-01-01', '2019-12-31') // Use a valid date range
                .select('CH4_column_volume_mixing_ratio_dry_air');
// Load the uploaded dataset as a FeatureCollection
var locations = ee.FeatureCollection('projects/ee-hussnain/assets/df_locations');
// Define a region of interest by creating a bounding box around the points
var region = locations.geometry().bounds(); // Get the bounding geometry of all
// Check if the filtered dataset has any images
if (methane.size().getInfo() > 0) {
 // Calculate the mean CH4 concentration over the time range
 var ch4Layer = methane.mean();
  // Sample the CH4 data at the given locations
 var sampledPoints = ch4Layer.sampleRegions({
    collection: locations, \// Points or polygons to sample
   scale: 7000, // Match Sentinel-5P resolution (7x7 km)
   geometries: true // Include geometry in the output
  });
  // Print sampled CH4 values to the Console
 print('Sampled CH4 Data:', sampledPoints);
  // Optional: Visualize the CH4 concentration and locations on the map
 Map.centerObject(locations, 6); // Center map on the region
 Map.addLayer(ch4Layer, {min: 1750, max: 1950, palette: ['blue', 'green',
'yellow', 'red']}, 'CH4 Concentration');
 Map.addLayer(locations, {color: 'black'}, 'Locations');
  // Export the sampled data as a CSV file to Google Drive
 Export.table.toDrive({
    collection: sampledPoints,
    description: 'CH4_Values',
   fileFormat: 'CSV'
  });
} else {
 print('No methane data available for the specified region and time range.');
```

