Started on	Saturday, 18 November 2023, 4:30 PM
State	Finished
Completed on	Saturday, 18 November 2023, 5:08 PM
Time taken	37 mins 55 secs
Grade	9.00 out of 10.00 (90%)
Question 1	

Incorrect

Mark 0.00 out of 1.00

Remove flag

The probability of symbol error for 64-QAM with $\frac{E_g}{N_0} = 21$ is given as

Select one:

- $\bigcirc \frac{7}{2}Q(1)$
- \bigcirc $\frac{7}{2}Q(2)$ \times
- $Q = \frac{7}{2}Q\left(\sqrt{\frac{1}{3}}\right)$
- \bigcirc 3Q(2)

Your answer is incorrect.

The correct answer is: $\frac{7}{2}Q(1)$

Question $\bf 2$

Correct

Mark 1.00 out of 1.00

▼ Flag question

Let the decision regions for $\mathcal{H}_1, \mathcal{H}_0$ be R_1, R_0 , respectively, and corresponding prior probabilities of the hypotheses be π_1, π_0 . The probability of error is given as

Select one:

- $@ \quad \pi_1 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_0 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}} \quad \checkmark$
- $\bigcirc \ \pi_1 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_0 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$
- $\bigcirc \quad \pi_1 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}} + \pi_0 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}}$
- $\bigcirc \ \pi_0 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_1 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$

Your answer is correct.

The correct answer is: $\pi_1 \int_{R_0} p(\bar{\mathbf{y}}|\mathcal{H}_1) d\bar{\mathbf{y}} + \pi_0 \int_{R_1} p(\bar{\mathbf{y}}|\mathcal{H}_0) d\bar{\mathbf{y}}$

Question **3**

Correct

Mark 1.00 out of 1.00

The min P_e detector chooses \mathcal{H}_0 when

Select one:

 $\Pr(\mathcal{H}_1|\bar{\mathbf{y}}) \ge \Pr(\mathcal{H}_0|\bar{\mathbf{y}})$

 $\quad \quad \Pr(\bar{\mathbf{y}}|\mathcal{H}_0) \geq \Pr(\bar{\mathbf{y}}|\mathcal{H}_1)$

 $\Pr(\bar{\mathbf{y}}|\mathcal{H}_1) \ge \Pr(\bar{\mathbf{y}}|\mathcal{H}_0)$

 $\bigcirc \operatorname{Pr}(\mathcal{H}_0|\bar{\mathbf{y}}) \geq \operatorname{Pr}(\mathcal{H}_1|\bar{\mathbf{y}}) \checkmark$

Your answer is correct.

The correct answer is: $\Pr(\mathcal{H}_0|\bar{\mathbf{y}}) \ge \Pr(\mathcal{H}_1|\bar{\mathbf{y}})$

Question **4**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

Consider
$$\bar{\mathbf{s}} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$
, $\sigma^2 = \frac{1}{2}$ and $\pi_0 = \frac{1}{1+\epsilon}$. For the binary signal detection problem

described in class, the threshold for the MAP decision rule is given as

Select one:

 \bigcirc $\frac{3}{2}$

0 2

0 1

Your answer is correct.

The correct answer is: $\frac{3}{2}$

Question **5**

Correct

Mark 1.00 out of 1.00

▼ Flag question

For the binary signal detection problem described in class, the minimum P_e achieved using the MAP rule is given as

Select one:

$$\qquad \pi_0 Q \left(\frac{\|\vec{\mathfrak{s}}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathfrak{s}}\|} \right) + \, \pi_1 Q \left(\frac{\|\vec{\mathfrak{s}}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathfrak{s}}\|} \right)$$

$$\qquad \pi_0 Q \left(\frac{\|\vec{\mathbf{s}}\| - 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\vec{\mathbf{s}}\|^2} \right) + \pi_1 Q \left(\frac{\|\vec{\mathbf{s}}\| + 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\vec{\mathbf{s}}\|^2} \right)$$

$$\qquad \pi_0 Q \left(\frac{\|\vec{\mathbf{s}}\| + 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\vec{\mathbf{s}}\|^2} \right) + \pi_1 Q \left(\frac{\|\vec{\mathbf{s}}\| - 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\vec{\mathbf{s}}\|^2} \right)$$

$$@ \pi_0 Q \left(\frac{\|\vec{\mathfrak{s}}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathfrak{s}}\|} \right) + \pi_1 Q \left(\frac{\|\vec{\mathfrak{s}}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathfrak{s}}\|} \right) \checkmark$$

Your answer is correct.

The correct answer is:
$$\pi_0 Q \left(\frac{\|\vec{s}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{s}\|} \right) + \pi_1 Q \left(\frac{\|\vec{s}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{s}\|} \right)$$

Question **6**

Correct

Mark 1.00 out of 1.00

The LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, \mathbf{R})$, $\mathcal{N}(\overline{\mu}_1, \mathbf{R})$ reduces to choose \mathcal{H}_0 if

Select one:

$$(\overline{\mu}_0 - \overline{\mu}_1)^T R \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \ge 0$$

$$(\overline{\mu}_0 - \overline{\mu}_1)^T R^{-1} \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \ge 0 \quad \checkmark$$

$$(\overline{\mu}_0 - \overline{\mu}_1)^T \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \ge 0$$

$$\bigcirc \quad (\overline{\mu}_0 + \overline{\mu}_1)^T R^{-1} \left(\bar{x} - \frac{1}{2} (\overline{\mu}_0 - \overline{\mu}_1) \right) \ge 0$$

Your answer is correct.

The correct answer is:
$$(\overline{\mu}_0 - \overline{\mu}_1)^T R^{-1} \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \ge 0$$

Question **7**

Correct

Mark 1.00 out of 1.00

Flag question

The LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, \mathbf{R})$, $\mathcal{N}(\overline{\mu}_1, \mathbf{R})$ for $\mathbf{R} = \sigma^2 \mathbf{I}$ reduces to

Select one:

- The plane parallel to $\overline{\mu}_0$, $\overline{\mu}_1$
- The perpendicular bisector of $\overline{\mu}_0$, $\overline{\mu}_1$
- Circle with diameter $\overline{\mu}_0$, $\overline{\mu}_1$
- $\ \bigcirc$ Ellipsoid with semi major axis $\overline{\mu}_0,\overline{\mu}_1$

Your answer is correct.

The correct answer is: The perpendicular bisector of $\overline{\mu}_0,\overline{\mu}_1$

Question 8

Correct

Mark 1.00 out of 1.00

♥ Flag question

Consider the classifier for the **Gaussian classification** problem with the two classes \mathcal{C}_0 , \mathcal{C}_1 distributed as

$$\mathcal{C}_0 \sim N\left(\begin{bmatrix} 4 \\ 2 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}\right), \mathcal{C}_1 \sim N\left(\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}\right)$$

The probability of error is given as

Select one:

- $Q(\sqrt{12})$
- $Q(2\sqrt{6})$
- $Q\left(\frac{1}{2}\sqrt{6}\right)$
- \bigcirc . $Q(\sqrt{6})$ \checkmark

Your answer is correct.

The correct answer is: $Q(\sqrt{6})$

Question **9**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

Consider the LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, \mathbf{R})$, $\mathcal{N}(\overline{\mu}_1, \mathbf{R})$. The optimal signal $\overline{\mathbf{s}} = \overline{\mu}_0 - \overline{\mu}_1$ that minimizes the probability of error is given as

Select one:

- The eigenvector corresponding to the maximum eigenvalue of R
- Any eigenvector of R
- \odot The eigenvector corresponding to the minimum eigenvalue of R \checkmark
- Any unit-norm vector that does not lie in the null space of R

Your answer is correct.

The correct answer is: The eigenvector corresponding to the minimum eigenvalue of R

Question 10

Correct

Mark 1.00 out of 1.00

▼ Flag question

For a given $SNR = \rho$, the average BER for detection of BPSK symbols over a fading wireless channel is given as

Select one:

$$\bigcirc \quad \frac{1}{2} \left(1 - \sqrt{\frac{2+\rho}{\rho}} \right)$$

$$\bigcirc \left(1 - \sqrt{\frac{\rho}{2+\rho}}\right)$$

$$\bigcirc \quad \frac{1}{2} \Big(1 - \sqrt{\frac{\rho}{2}} \Big)$$

Your answer is correct.

The correct answer is: $\frac{1}{2} \left(1 - \sqrt{\frac{\rho}{2+\rho}} \right)$

