Neutron Calibration with Machine Learning

DUNE Collaboration Meeting: CERN (01/25/2023)

Presented by *Nicholas Carrara* on behalf of the **PNS group** at **UC Davis** and **South Dakota School of Mines**:

Michael Mulhearn, Emilija Pantic, Robert Svoboda, Jingbo Wang

Yashwanth Bezawada, Junying Huang, Walker Johnson

Neutron Calibration

Benefits of low-energy neutrons for calibration:

Standard Candle - Neutron captures on Ar-40 emit a
 6.1 MeV gamma cascade.

$$egin{aligned} \mathrm{n} + {}^{40}\mathrm{Ar} &= {}^{41}\mathrm{Ar} + \{\gamma_j\} \ \sum_j E(\gamma_j) &pprox 6.1 \mathrm{MeV} \end{aligned}$$

- Scattering Length Some percentage of neutrons above 57 keV will fall into the resonance well.
 - Average fractional energy loss is ~4.8%.
 - The effective scattering length is ~30 m.
 - The resonance well has been measured by the ARTIE¹ experiment at LANL, with a <u>higher</u> <u>precision follow-up</u> planned for this year.

How Can We Isolate Captures?

A **pulsed neutron source**, such as a deuterium-deuterium generator (DDG), can create a *mono-energetic* spray of low-energy neutrons.

 A DDG was used in ProtoDUNE-I, from which the neutrons could be seen in the detector reconstruction.

So far, we have not had the ability to isolate individual neutron

captures.

BLIP: (Blips and Low-energy Interaction PointNet)

We introduce *BLIP*², a collection of ML algorithms for classifying low energy interactions in LArTPCs.

- Input variables 3D point clouds (tdc, channel, adc) from detector readout (normalized with respect to all events).
- Labels Currently trains to classify individual point clouds, but will eventually work semantically on entire detector readout.

Benefits of this approach:

- Operates on detector readout only (no reconstruction needed!)
- Generates a model for each view rather than on reconstructed space points.

2 BLIP: Blips and Low-energy Interaction PointNet, DUNE PNS Group (UC Davis), 2023, (https://github.com/Neutron-Calibration-in-DUNE/Blip).

Arrakis LArSoft Module

physics Ducid Machine Learning

A collection of machine learning projects from students/faculty at UC Davis (physics department).

Outlied States of America Concarrara.physics@gmail.com

The *Arrakis*³ LArSoft module is responsible for collecting MC truth/detector output information and generating point clouds for training.

Current Labeling Schemes:

- Radiologicals Ar39, Ar42, Kr85, Rn222, ...
- Neutron captures:
 - Gammas: [4.75 MeV, 1.18, ...]
 - Captures: [6.1 MeV]

Planned Labeling to be added:

- Tracks:
 - MIPS, protons, muons, etc.,
- Showers:
- Deltas/Michels
- etc?

Point Cloud Classification

BLIP will consist of at least two main models:

Semantic Clustering - The first
 network will take in an entire detector
 readout for an event and learn to
 generate clusters (e.g. PointNet++⁵).

Cluster Segmentation/Classification

- The second network will learn to classify these clusters into different types (e.g. PointNet⁴, EdgeConv⁶).

Models are built using the *PyTorch Geometric* API

(https://pytorch-geometric.readt hedocs.io/en/latest/)

⁴ PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, C. Qi et. al., CVPR 2017, (https://arxiv.org/abs/1612.00593).

⁵ PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, C. Qi et. al., (https://arxiv.org/abs/1706.02413)

⁶ Dynamic Graph CNN for Learning on Point Clouds, Y. Wang et. al., 2018, (https://arxiv.org/abs/1801.07829)

Unsupervised Learning

Our point cloud model works by combining an unsupervised and supervised approach together.

Unsupervised EdgeConv:

- Each point cloud is passed through an augmentation filter which applies random:
 - Jittering a small amount of noise is applied to each coordinate.
 - Shearing a small amount of stretching is applied.
 - **Rotation** a rotation about the *adc* axis is applied.
- The point clouds are then embedded into a large feature space, which is then pooled and fed into an MLP.
- The model then learns to cluster "like" point clouds and push away all others using the Normalized Temperature-scaled Cross Entropy Loss (NTXent).

$$extstyle extstyle \mathcal{U}_{ ext{NTX}}(x_i, x_j) = -\log \left[rac{\exp\left[rac{x_i \cdot x_j}{ au_{|x_i||x_j|}}
ight]}{\sum_{k=1}^{2N} 1_{k
eq i} \exp\left[rac{x_i \cdot x_k}{ au_{|x_i||x_k|}}
ight]}
ight]$$

mlp (64,128,1024)

shared

max

nx1024

1024

global feature

mlp

(512,256,k)

output scores

mlp (64,64)

feature

transform

nx64

Supervised Learning

Our point cloud model works by combining an unsupervised and supervised approach together.

Supervised MLP:

 In addition we send the output of the unsupervised EdgeConv network to another MLP which learns to classify the point clouds according to an appropriate labeling scheme (e.g. [ar39, gamma, neutron]).

Preliminary Results

We trained a BLIP model on 116K point clouds with a 70/30 train/test split and the following classes:

- Argon-39: 61,912 events (~53%)
- Capture Gammas: 46,793 events (~40%)
- Neutron Captures: 7,987 events (~7%)

After only a few training cycles, the network learns to distinguish the point clouds with some success, although it seems to *overtrain on classification* quickly.

Preliminary Results Cont.

Summed ADC

Applying cuts to the classification output, we can isolate neutron captures with only a small background leakage (~.05%).

The resulting distribution of detector output ADC values can be used for calibrating energy!

Inference SADC for class neutron

Summed ADC Test

To test wether the approach is insensitive to certain detector simulation parameters (e.g. gain), we trained two models with a **factor of 2** different in detector ADC output.

2 x gain

Summed ADC Test

To test wether the approach is insensitive to certain detector simulation parameters (e.g. gain), we trained two models with a **factor of 2** different in detector ADC output.

Next Steps

- Construct a hierarchical model for semantic segmentation on the entire detector readout.
- Build a scheme for combining inference on the different detector views (induction vs. collection planes).
- Add truth labeling and point clouds for other particle types.
 - cosmics,
 - electron showers,
 - delta-rays,
 - Michel electrons,
 - pions,
 - etc.,
- Apply the model to ProtoDUNE-I data
 - ☐ Prepare for use in ProtoDUNE-II ...

