Example No.	Structure	ESI-MS	Retention Time (min)
2513	HN PF HN N H N N N N N N N N N N N N N N N N	641.4 (M+H)	4.13
2514	HNN N N N N N N N N N N N N N N N N N N	595.4 (M+H)	3.89
2515	2CF ₃ CO ₂ H	623.4 (M+H)	4.20
2516	2CF ₃ CO ₂ H	629.2 (M+H)	4.15
2517	2CF ₃ CO ₂ H	613.2 (M+H)	4.02
2518	CF ₃ CO ₂ H	528.2 (M + H)	4.03

Example No.	Structure	ESI-MS	Retention Time (min)
2519	O N N N N N N N N N N N S CI S CI CI	570.2 (M+H)	3.96
2520	O	611.0 (M+H)	3.69
2521	HN N H O CI N S CI CI CF ₃ CO ₂ H	514.2 (M+H)	3.94
2522	2CF ₃ CO ₂ H	625.4 (M+H)	3.94
2523	CF ₃ CO ₂ H	558.2 (M+H)	3.96
2524	HN N H O CI H O CI CI CI CF3CO2H	544.2 (M+H)	3.67

Example No.	Structure	ESI-MS	Retention Time (min)
2525	2CF ₃ CO ₂ H	613.2 (M+H)	3.31
2526	HN H O H O CI S CI	596.2 (M+H)	4.69
2527	HN N H O O CI CI S	673.4 (M+H)	3.57
2528	CF ₃ CO ₂ H	634.4 (M+H)	4.41
2529	CF ₃ CO ₂ H	622.2 (M+H)	4.45
2530	CF ₃ CO ₂ H	576 (M+H)	4.25

Example No.	Structure	ESI-MS	Retention Time (min)
2531	HN N H SO CI CF ₃ CO ₂ H	604.4 (M+H)	4.52
2532	CF ₃ CO ₂ H	610.2 (M+H)	4.40
2533	HN N H N N H N N CI CI CI CI CI CF3CO₂H	606.4 (M+H)	4.29
2534	HN F N N H O CI S CI	594.2 (M+H)	4.27
2535	2CF ₃ CO ₂ H	571.8 (M + H)	4.99
2536	CF ₃ CO ₂ H	609.8 (M + H)	4.43

Example No.	Structure	ESI-MS	Retention Time (min)
2537	CF ₃ CO ₂ H	536.4 (M + H)	4.86
2538	CF ₃ CO ₂ H	564.6 (M+H)	5.13
2539	CF ₃ CO ₂ H	530.6 (M + H)	4.65
2540	2CF ₃ CO ₂ H	605.6 (M + H)	5.21
2541	CF3CO2H	571.6 (M + H)	4.45
2542	HN N H O CI 2CF ₃ CO ₂ H	568.8 (M + H)	4.09

Example No.	Structure	ESI-MS	Retention Time (min)
2543	CF ₃ CO ₂ H	570.6 (M + H)	5.11
2544	2CF ₃ CO ₂ H	629.6 (M + H)	4.37
2545	2CF ₃ CO ₂ H	655.6 (M + H)	5.35
2546	O N N N N N N N N N N N N N N N N N N N	621.8 (M + H)	4.63
2547	HNN N H O F F F CF3CO2H	606.8 (M + H)	5.45
2548	CF ₃ CO ₂ H	644.6 (M + H)	5.21

Example No.	Structure	ESI-MS	Retention Time (min)
2549	CF ₃ CO ₂ H	632.6 (M + H)	5.25
2550	2CF ₃ CO ₂ H	618.6 (M + H)	4.29
2551	CF ₃ CO ₂ H	616.6 (M + H)	5.14
2552	CF ₃ CO ₂ H	604.6 (M + H)	5.13
2553	CF ₃ CO ₂ H	544.6 (M + H)	5.03
2554	2CF ₃ CO ₂ H	585.6 (M + H)	5.13

Example No.	Structure	ESI-MS	Retention Time (min)
2555	2CF ₃ CO ₂ H	623.6 (M+H)	4.25
2556	CF ₃ CO ₂ H	574.6 (M+H)	4.73
2557	2CF ₃ CO ₂ H	649.0 (M + H)	5.25
2558	CF ₃ CO ₂ H	615.0 (M+H)	4.51
2559	HN N H O BF 2CF ₃ CO ₂ H	617.4 (M + H)	4.15
2560	CF ₃ CO ₂ H	600.6 (M + H)	5.37

Example No.	Structure	ESI-MS	Retention Time (min)
2561	2CF ₃ CO ₂ H	677.0 (M+H)	4.45
2562	CF ₃ CO ₂ H	638.6 (M+H)	5.18
2563	2CF ₃ CO ₂ H	612.6 (M + H)	4.16
2564	CF ₃ CO ₂ H	580.0 (M + H)	5.01
2565	HNNN HO Br	608.0 (M + H)	5.26
2566	2CF ₃ CO ₂ H	613.6 (M + H)	4.44

Example No.	Structure	ESI-MS	Retention Time (min)
2567	2CF ₃ CO ₂ H	639.6 (M + H)	5.48
2568	CF ₃ CO ₂ H	552.6 (M + H)	4.92
2569	2CF ₃ CO ₂ H	607.8 (M + H)	4.33
2570	2CF ₃ CO ₂ H	667.4 (M + H)	4.67
2571	CF ₃ CO ₂ H	628.6 (M + H)	5.29
2572	2CF ₃ CO ₂ H	602.6 (M + H)	4.35

Example No.	Structure	ESI-MS	Retention Time (min)
2573	CF ₃ CO ₂ H	570.6 (M + H)	5.23
2574	CF ₃ CO ₂ H	805.4 (M + H)	4.91
2575	2CF ₃ CO ₂ H	730.8 (M + H)	4,47
2576	CF ₃ CO ₂ H	771.6 (M + H)	4.93
2577	CF ₃ CO ₂ H	745.6 (M + H)	5.01
2578	CF_3CO_2H	580.8 (M + H)	5.18

Example No.	Structure	ESI-MS	Retention Time (min)
2579	2CF ₃ CO ₂ H	621.8 (M + H)	5.27
2580	CF ₃ CO ₂ H	587.6 (M + H)	4.51
2581	2CF ₃ CO ₂ H	584.6 (M + H)	4.21
2582	CF ₃ CO ₂ H	582.8 (M + H)	5.03
2583	CF ₃ CO ₂ H	653.8 (M + H)	4.90
2584	CF ₃ CO ₂ H	604.6 (M + H)	5.33

Example No.	Structure	ESI-MS	Retention Time (min)
2585	2CF ₃ CO ₂ H	645.6 (M + H)	5.41
2586	CF ₃ CO ₂ H	458.6 (M + H)	4.39
2587	HN N H O O F	458.6 (M + H)	4.40
2588	CF ₃ CO ₂ H	474.6 (M + H)	4.39
2589	CF ₃ CO ₂ H	474.6 (M + H)	4.58
2590	CF ₃ CO ₂ H	542.6 (M + H)	4.79

Example No.	Structure	ESI-MS	Retention Time (min)
2591	CF ₃ CO ₂ H	518.6 (M + H)	4.51
2592	CF ₃ CO ₂ H	500.8 (M + H)	4.33
2593	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	524.6 (M + H)	4.61
2594	HN N H N N F F F CF3CO ₂ H	508.6 (M + H)	4.57
2595	CF ₃ CO ₂ H	496.8 (M + H)	4.87
2596	HN N H O S S S S CF3CO₂H	446.8 (M + H)	4.29

Example No.	Structure	ESI-MS	Retention Time (min)
2597	CF ₃ CO ₂ H	472.8 (M + H)	4.47
2598	CF ₃ CO ₂ H	472.8 (M + H)	4.53
2599	CF ₃ CO ₂ H	488.6 (M + H)	4.55
2600	CF ₃ CO ₂ H	487.6 (M + H)	4.65
2601	CF ₃ CO ₂ H	556.6 (M + H)	4.91
2602	CF ₃ CO ₂ H	532.4 (M + H)	4.61

Example No.	Structure	ESI-MS	Retention Time (min)
2603	CF ₃ CO ₂ H	514.8 (M + H)	4.43
2604	N N N N N N N N N N N N N N N N N N N	538.6 (M+H)	4.80
2605	CF ₃ CO ₂ H	510.6 (M + H)	5.00
2606	CF ₃ CO ₂ H	460.6 (M + H)	4.40
2607	CF ₃ CO ₂ H	486.6 (M + H)	4.60
2608	CF ₃ CO ₂ H	484.6 (M + H)	4.64

Example No.	Structure	ESI-MS	Retention Time (min)
2609	CF ₃ CO ₂ H	503.6 (M + H)	4.74
2610	CF ₃ CO ₂ H	502.6 (M + H)	4.86
2611	CF ₃ CO ₂ H	570.8 (M + H)	5.00
2612	N N H N N B N N N N N N N N N N N N N N	546.0 (M + H)	4.80
2613	CF ₃ CO ₂ H	528.8 (M + H)	4.63
2614	CF ₃ CO ₂ H	552.8 (M + H)	4.90

Example No.	Structure	ESI-MS	Retention Time (min)
2615	CF ₃ CO ₂ H	536.6 (M + H)	4.82
2616	CF ₃ CO ₂ H	524.8 (M + H)	5.07
2617	CF ₃ CO ₂ H	474.6 (M + H)	4.55
2618	CF ₃ CO ₂ H	468.4 (M + H)	4.59
2619	CF ₃ CO ₂ H	502.6 (M + H)	4.81
2620	CF ₃ CO ₂ H	552.8 (M + H)	4.94

Example No.	s. Structure	ESI-MS	Retention Time (min)
2621	CF ₃ CO ₂ H	482.6 (M + H)	4.73
2622	CF ₃ CO ₂ H	546.6 (M + H)	4.85
2623	CF ₃ CO ₂ H	536.4 (M + H)	5.08
2624	CF ₃ CO ₂ H	630.4 (M + H)	5.11
2625	CF ₃ CO ₂ H	604.6 (M + H)	5.16
2626	CF ₃ CO ₂ H	518.6 (M + H)	4.75

Example No.	Structure	ESI-MS	Retention Time (min)
2627	CF ₃ CO ₂ H	518.6 (M+H)	4.91
2628	2CF ₃ CO ₂ H	561.6 (M+H)	4.61
2629	CF ₃ CO ₂ H	500.8 (M + H)	4.75
2630	CF ₃ CO ₂ H	500.2 (M+H)	4.85
2631	CF_3CO_2H	516.6 (M + H)	4.81
2632	CF ₃ CO ₂ H	516.6 (M + H)	4.95

Example No.	Structure	ESI-MS	Retention Time (min)
2633	CF ₃ CO ₂ H	584.6 (M + H)	5.18
2634	CF ₃ CO ₂ H	560.6 (M + H)	4.87
2635	CF ₃ CO ₂ H	542.8 (M + H)	4.80
2636	CF ₃ CO ₂ H	566.6 (M + H)	5.01
2637	CF ₃ CO ₂ H	550.8 (M + H)	4.95
2638	CF ₃ CO ₂ H	538.6 (M + H)	5.20

Example No.	Structure	ESI-MS	Retention Time (min)
2639	CF ₃ CO ₂ H	488.6 (M + H)	4.65
2640	CF ₃ CO ₂ H	482.6 (M + H)	4.73
2641	CF ₃ CO ₂ H	516.8 (M + H)	4.97
2642	CF ₃ CO ₂ H	566.6 (M + H)	5.12
2643	CF ₃ CO ₂ H	496.8 (M + H)	4.89
2644	CF ₃ CO ₂ H	560.0 (M + H)	4.98

Example No.	Structure	ESI-MS	Retention Time (min)
2645	CF ₃ CO ₂ H	550.6 (M + H)	5.21
2646	CF ₃ CO ₂ H	532.6 (M + H)	4.99
2647	CF ₃ CO ₂ H	532.6 (M + H)	5.03
2648	2CF ₃ CO ₂ H	575.8 (M + H)	4.80
2649	CF ₃ CO ₂ H	486.6 (M + H)	4.64
2650	CF ₃ CO ₂ H	486.6 (M + H)	4.66

Example No.	Structure	ESI-MS	Retention Time (min)
2651	HN N N H N O CI N N N N N N N N N N N N N N N N N N N	502.6 (M+H)	4.72 <u>.</u>
2652	HN N N N N N N N N N N N N N N N N N N	502.6 (M+H)	4.87
2653	HN N N N N N N N N N N N N N N N N N N	570.6 (M + H)	5.03
2654	CF ₃ CO ₂ H	546.6 (M + H)	4.77
2655	CF ₃ CO ₂ H	528.8 (M + H)	4.68
2656	HN N N H N N N N N N N N N N N N N N N	552.8 (M + H)	4.89

Example No.	Structure	ESI-MS	Retention Time (min)
2657	CF ₃ CO ₂ H	536.6 (M + H)	4.85
2658	HN N H O O O O O O O O O O O O O O O O O	524.8 (M+H)	5.15
2659	HN H O S S S CF ₃ CO ₂ H	474.8 (M + H)	4.63
2660	CF ₃ CO ₂ H	468.4 (M + H)	4.61
2661	CF ₃ CO ₂ H	502.6 (M+H)	4.86
2662	HN N N N N N N N N N N N N N N N N N N	546.6 (M + H)	4.64

Example No.	Structure	ESI-MS	Retention Time (min)
2663	HIN N H O CI	536.4 (M + H)	4.81
2664	CF ₃ CO ₂ H	630.4 (M + H)	4.85
2665	CF ₃ CO ₂ H	604.6 (M + H)	4.87
2666	CF ₃ CO ₂ H	518.6 (M + H)	4.67
2667	CF ₃ CO ₂ H	518.6 (M + H)	4.90
2668	HN H H O H O O O O O O O O O O O O O O O	561.6 (M + H)	4.64

Example No.	Structure	ESI-MS	Retention Time (min)
2669	HN N N N N N N N N N N N N N N N N N N	500.8 (M + H)	4.73
2670	HN N N N N N N N N N N N N N N N N N N	500.8 (M + H)	4.74
2671	CF ₃ CO ₂ H	516.6 (M + H)	4.89
2672	HN N H O CI	516.6 (M + H)	4.93
2673	CF ₃ CO ₂ H	560.0 (M + H)	4.89
2674	CF ₃ CO ₂ H	542.8 (M + H)	4.76

Example No.	Structure	ESI-MS	Retention Time (min)
2675	HN N N H O O F F O O F F O O O F F O O O F F O O O F F O O O O F F O	566.6 (M + H)	5.03
2676	HN H OFF F CF3CO2H	550.8 (M + H)	4.96
2677	HN N N N N N N N N N N N N N N N N N N	538.8 (M + H)	5.25
2678	HN N H N N N N N N N N N N N N N N N N	488.6 (M + H)	4.67
2679	HN N N N N N N N N N N N N N N N N N N	482.4 (M + H)	4.71
2680	CF ₃ CO ₂ H	516.6 (M + H)	4.95

Example No.	Structure	ESI-MS	Retention Time (min)
2681	HNN N H H O O F F CF ₃ CO ₂ H	566.8 (M + H)	5.07
2682	CF ₃ CO ₂ H	496.8 (M + H)	4.83
2683	HNN N H O Br	560.6 (M + H)	5.01
2684	HN N N H N N N N N N N N N N N N N N N	550.6 (M + H)	5.07
2685	CF ₃ CO ₂ H	644.6 (M + H)	5.29
2686	HN N H O F F F F F F F F F F F F F F F F F F	618.6 (M + H)	5.25

Example No.	Structure	ESI-MS	Retention Time (min)
2687	HN N H O O O O O O O O O O O O O O O O O	532.6 (M+H)	5.01
2688	CF ₃ CO ₂ H	532.6 (M + H)	5.04
2689	HN N N N N N N N N N N N N N N N N N N	575.8 (M + H)	4.75
2690	HN N N N N N N N N N N N N N N N N N N	484.6 (M + H)	4.51
2691	HN N H O CI	500.8 (M + H)	4.59
2692	CF ₃ CO ₂ H	500.8 (M + H)	4.71

Example No.	Structure	ESI-MS	Retention Time (min)
2693	HN N N H O Br O O O O O O O O O O O O O O O O O	544.6 (M + H)	4.63
2694	CF ₃ CO ₂ H	526.8 (M + H)	4.55
2695	HN N N H N O O F F F O O F F CF3CO ₂ H	550.6 (M+H)	4.79
2696	CF ₃ CO ₂ H	534.6 (M + H)	4.69
2697	CF ₃ CO ₂ H	522.4 (M + H)	5.03
2698	CF ₃ CO ₂ H	472.8 (M + H)	4.43

Example No.	Structure	ESI-MS	Retention Time (min)
2699	CF ₃ CO ₂ H	466.6 (M + H)	4.50
2700	HN N H O F F F CF3CO2H	550.6 (M + H)	4.87
2701	CF ₃ CO ₂ H	480.6 (M + H)	4.65
2702	CF ₃ CO ₂ H	544.6 (M + H)	4.75
2703	CF ₃ CO ₂ H	534.6 (M + H)	4.90
2704	CF ₃ CO ₂ H	628.6 (M + H)	5.08

Example No.	Structure	ESI-MS	Retention Time (min)
2705	HN N N N N N N N N N N N N N N N N N N	602.6 (M+H)	5.10
2706	CF ₃ CO ₂ H	516.8 (M+H)	4.71
2707	CF ₃ CO ₂ H	516.8 (M + H)	4.81
2708	2CF ₃ CO ₂ H	559.6 (M + H)	4.50
2709	CF ₃ CO ₂ H	498.8 (M + H)	4.64
2710	CF ₃ CO ₂ H	498.8 (M + H)	4.73

Example No.	Structure	ESI-MS	Retention Time (min)
2711	HN H O CI O	514.8 (M+H)	4.87
2712	CF ₃ CO ₂ H	564.6 (M + H)	4.93
2713	CF ₃ CO ₂ H	548.6 (M + H)	4.87
2714	CF ₃ CO ₂ H	536.6 (M + H)	5.19
2715	CF ₃ CO ₂ H	603.8 (M + H)	4.76
2716	CF ₃ CO ₂ H	603.4 (M + H)	4.87

Example No.	Structure	ESI-MS	Retention Time (min)
2717	CF ₃ CO ₂ H	671.6 (M+H)	5.05
2718	CF ₃ CO ₂ H	647.6 (M + H)	4.79
2719	CF ₃ CO ₂ H	629.8 (M + H)	4.67
2720	CF ₃ CO ₂ H	653.8 (M + H)	4.91
2721	CF ₃ CO ₂ H	637.8 (M + H)	4.85
2722	CF ₃ CO ₂ H	625.8 (M + H)	5.14

Example No.	Structure	ESI-MS	Retention Time (min)
2723	CF ₃ CO ₂ H	575.6 (M + H)	4.63
2724	CF ₃ CO ₂ H	569.8 (M + H)	4.66
2725	CF ₃ CO ₂ H	603.8 (M + H)	4.88
2726	CF ₃ CO ₂ H	653.8 (M + H)	5.01
2727	CF3CO ⁵ H	583.8 (M + H)	4.77
2728	CF ₃ CO ₂ H	647 (M + H)	4.92

Example No.	Structure	ESI-MS	Retention Time (min)
2729	CF ₃ CO ₂ H	637.8 (M + H)	5.13
2730	CF ₃ CO ₂ H	731.6 (M + H)	5.19
2731	CF ₃ CO ₂ H	705.8 (M + H)	5.22
2732	CF ₃ CO ₂ H	619.8 (M + H)	4.91
2733	CF ₃ CO ₂ H	619.8 (M + H)	4.93
2734	2CF ₃ CO ₂ H	663.0 (M + H)	4.67

Example No.	Structure	ESI-MS	Retention Time (min)
2735	CF ₃ CO ₂ H	631.8 (M+H)	5.01
2736	$\begin{array}{c} \text{O} \\ \text{NH} \\ $	699.0 (M + H)	5.19
2737	CF_3CO_2H	675.8 (M + H)	4.95
2738	CF ₃ CO ₂ H	657.8 (M + H)	4.81
2739	O NH NH F ₃ C CF ₃ CO ₂ H	665.8 (M + H)	4.97
2740	O_{NH} O	653.8 (M + H)	5.27

Example No.	Structure	ESI-MS	Retention Time (min)
2741	O NH NH N S S O 2 CF3CO2H	603.4 (M + H)	4.77
2742	O NH NH N N N N N N N N N N N N N N N N	597.8 (M+H)	4.79
2743	CF ₃ CO ₂ H	631.8 (M + H)	5.02
2744	O NH NH NH NH NH NH NH NH	681.8 (M + H)	5.14
2745	CF ₃ CO ₂ H	611.8 (M + H)	4.93
2746	O NH NH NH NH NH NH NH NH	675.0 (M + H)	5.05

Example No.	Structure	ESI-MS	Retention Time (min)
2747	CF ₃ CO ₂ H	665.8 (M + H)	5.29
2748	CF ₃ CO ₂ H	759.6 (M+H)	5.31
2749	CF_3CO_2H	733.8 (M + H)	5.36
2750	O NH NH N N N N N N N N N N N N N N N N	647.8 (M + H)	5.05
2751	CF3CO2H	647.8 (M + H)	5.08
2752	O NH NH N N N N N N N N N N N N N N N N	691.0 (M + H)	4.89

Example No.	Structure	ESI-MS	Retention Time (min)
2753	CF ₃ CO ₂ H	559.6 (M+H)	4.51
2754	CF ₃ CO ₂ H	575.6 (M + H)	4.57
2755	CF_3CO_2H	575.6 (M + H)	4.69
2756	CF ₃ CO ₂ H	619.6 (M + H)	4.63
2757	CF ₃ CO ₂ H	625.8 (M + H)	4.72
2758	+0 $+0$ $+0$ $+0$ $+0$ $+0$ $+0$ $+0$	609.8 (M + H)	4.67

Example No.	Structure	ESI-MS	Retention Time (min)
2759	CF ₃ CO ₂ H	541.8 (M + H)	4.45
2760	CF ₃ CO ₂ H	625.8 (M + H)	4.38
2761	CF ₃ CO ₂ H	555.8 (M + H)	4.57
2762	CF ₃ CO ₂ H	609.8 (M + H)	4.94
2763	CF_3CO_2H	677.8 (M + H)	5.05
2764	CF ₃ CO ₂ H	591.6 (M + H)	4.73

Example No.	Structure	ESI-MS	Retention Time (min)
2765	CF ₃ CO ₂ H	591.6 (M + H)	4.75
2766	2CF ₃ CO ₂ H	635.0 (M + H)	4.47
2767	H_2N NH NH NH NH NH NH NH N	503.6 (M + H)	3.83
2768	H_2N NH NH NH NH NH NH NH N	503.6 (M + H)	3.99
2769	H ₂ N NH CF ₃ NH O ₂ CI 2CF ₃ CO ₂ H	571.6 (M + H)	4.16
2770	H_2N NH NH NH NH NH NH NH N	547.6 (M + H)	3.85

Example No.	Structure	ESI-MS	Retention Time (min)
2771	H_2N NH NH NH NH NH NH NH N	529.6 (M + H)	3.75
2772	H_2N NH F_3CO H_2 NH H_2N H_2N H_3 H_3 H_4 H_5 H	553.8 (M + H)	3.99
2773	H_2N NH F_3C H S_0	537.6 (M + H)	3.93
2774	H ₂ N NH	525.8 (M + H)	4.22
2775	H ₂ N NH S O ₂ 2CF ₃ CO ₂ H	475.6 (M + H)	3.64
2776	H ₂ N NH	469.6 (M+H)	3.71

Example No.	Structure	ESI-MS	Retention Time (min)
2777	H ₂ N NH CI SO ₂ CI 2CF ₃ CO ₂ H	503.6 (M+H)	3.97
2778	H ₂ N OCF ₃ 2CF ₃ CO ₂ H	553.8 (M+H)	4.17
2779	H ₂ N NH N N N N N N N N N N O ₂	483.4 (M + H)	3.87
2780	H_2N NH O_2 O_2 O_2 O_2	547.6 (M + H)	4.04
2781	H_2N NH NH S_0	537.4 (M+H)	4.23
2782	HN NH ₂ N N N NH ₂ O S O O O O O O O O O O O O O O O O O	631.6 (M + H)	4.23

Example No.	Structure	ESI-MS	Retention Time (min)
2783	H ₂ N CF ₃ NH S ₀ CF ₃ 2CF ₃ CO ₂ H	605.8 (M + H)	4.41
2784	H ₂ N NH NH S ₀ 2 2CF ₃ CO ₂ H	519.6 (M + H)	4.01
2785	H ₂ N NH NH N N N N N N N N N N N N N N N N	519.6 (M + H)	4.07
2786	H ₂ N, NH H ₂ N, NH H ₂ N, NH H ₃ N, NH	562.6 (M + H)	3.77
2787	H ₂ N CI	531.6 (M+H)	3.90
2788	H₂N	531.6 (M + H)	4.04

Example No.	Structure	ESI-MS	Retention Time (min)
2789	2CF ₃ CO ₂ H	599.6 (M + H)	4.24
2790	H_2N NH S_2 B_T S_2 B_T	575.0 (M+H)	3.95
2791	H_2N NH NH S_0	557.6 (M + H)	3.86
2792	H ₂ N	565.6 (M + H)	4.03
2793	H ₂ N NH N N N N N N N N N N N N N N N N N	554 (M + H)	4.29
2794	H_2N NH NH NH NH NH NH NH N	503.6 (M+H)	3.78

Example No.	Structure	ESI-MS	Retention Time (min)
2795	H ₂ N NH NH NH NH NH NH NH NH NH NH NH NH NH	497.6 (M + H)	3.83
2796	H ₂ N NH N N N N N N N N N N N N N N O ₂	531.6 (M+H)	4.05
2797	H_2N NH NH NH NH NH NH NH N	582.0 (M + H)	4.23
2798	P ₂ N NH NH NH NH NH NH NH NH NH NH NH NH NH	511 (M+H)	3.95
2799	H ₂ N	575.6 (M + H)	4.10
2800	H ₂ N Cl Cl Cl 2CF ₃ CO ₂ H	565.0 (M + H)	4.32

Example No.	Structure	ESI-MS	Retention Time (min)
2801	H ₂ N	659.6 (M + H)	4.35
2802	H ₂ N CF ₃ NH CF ₃ C _{F₃} C _{F₃} 2CF ₃ CO ₂ H	634.0 (M+H)	4.43
2803	NH NH NH NH NH NH NH NH NH NH NH NH NH N	547.6 (M + H)	4.09
2804	H ₂ N NH N N N N N N N N N N N N N N N N N	547.6 (M + H)	4.15
2805	NH NH NH NH NH NH NH NH NH NH NH NH NH N	590.6 (M + H)	3.93
2806	H_2N_{NH} H_2N_{NH} H_3	459.6 (M + H)	4.07

Example No.	Structure	ESI-MS	Retention Time (min)
2807	H ₂ N _N H N _N N _S O ₂ 2CF ₃ CO ₂ H	477.6 (M + H)	4.07
2808	H_2N NH CI O_2 O_2	475.6 (M + H)	4.07
2809	H_2N_{NH} N	475.6 (M+H)	4.23
2810	H_2N_NH N	501.8 (M + H)	4.15
2811	H ₂ N, NH F ₃ C	509.4 (M + H)	4.27
2812	H_2N_{NH} N_1 N_2 N_3 N_4 N_4 N_5 N	525.6 (M + H)	4.37

Example Ño.	Structure	ESI-MS	Retention Time (min)
2813	H_2N_{NH} N N N N N N N	519.6 (M + H)	4.25
2814	H_2N_NH N N N N N N N	509.4 (M + H)	4.49
2815	H_2N NH H_3CO H S_0 CF_3CO_2H	603.0 (M + H)	4.60
2816	H_2N_{NH} CF_3 CF_3 CF_3 CF_3 CF_3	577.6 (M + H)	4.72
2817	H ₂ N _N H N N SO ₂ 2CF ₃ CO ₂ H	491 (M + H)	4.31
2818	H_2N_{NH} N	491.6 (M + H)	4.33

Example No.	Structure	ESI-MS	Retention Time (min)
2819	3CF ₃ CO ₂ H	534.6 (M + H)	4.01
2820	H ₂ N H H N O ₂	325.4 (M+H)	3.91
2821	H _Z N NH H O CI CI 2HCI	359.4 (M + H)	4.24
2822	H ₂ N H O F F	409.4 (M + H)	4.51
2823	NH H₂N H O O	339.6 (M + H)	4.09
2824	NH H ₂ N H O O O Br	403.4 (M + H)	4.28

Example No.	Structure	ESI-MS	Retention Time (min)
2825	H ₂ N H O CI O'CI 2HCI	393.0 (M + H)	4.57
2826	NH H₂N H SO FF F F 2HCI	521.6 (M + H)	4.69
2827	H ₂ N H HN SO FF FF F 2HCI	461.6 (M + H)	4.77
2828	H ₂ N H H SO	375.4 (M + H)	4.33
2829	H₂N H SO O O O O O O O O O O O O O O O O O	375.4 (M + H)	4.39
2830	H₂N H O S O O O O O O O O O O O O O O O O O	418.8 (M + H)	4.33

Example No.	Structure	ESI-MS	Retention Time (min)
2831	H₂N H O F O F O S O S O S O S O S O S O S O S	343.4 (M + H)	3.96
2832	H₂N H O O O O O O O O O O O O O O O O O O	343.4 (M + H)	4.03
2833	H ₂ N H O CI	359.4 (M + H)	4.05
2834	H ₂ N H O CI	359.4 (M + H)	4.24
2835	H ₂ N H O Br	403.4 (M + H)	4.07
2836	H₂N H O O O O O O O O O O O O O O O O O O	385.4 (M + H)	4.00

Example No.	Structure	ESI-MS	Retention Time (min)
2837	H ₂ N H F F F F F F F F F F F F F F F F F F	409.4 (M + H)	4.32
2838	NH H₂N H SO F F F	393.6 (M + H)	4.23
2839	NH H ₂ N N N N N N N S O	381.6 (M + H)	4.62
2840	NH H₂N N N S S S S	330.8 (M + H)	3.83
2841	H ₂ N H S O F O F O F O F O F O F O F O F O F O	361.4 (M + H)	4.05
2842	H ₂ N H SO F F CI 2HCI	427.4 (M+H)	4.51

Example No.	Structure	ESI-MS	Retention Time (min)
2843	2CF ₃ CO ₂ H	458.4 (M + H)	3.22
2844	2CF ₃ CO ₂ H	415.4 (M + H)	3.01
2845	2CF ₃ CO ₂ H	432.6 (M + H)	3.26
2846	2CF ₃ CO ₂ H	396.2 (M + H)	2.81
2847	2CF ₃ CO ₂ H	450.0 (M + H)	3.09
2848	2CF ₃ CO ₂ H	408.4 (M + H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
2849	N N N N N N N N N N	434.4 (M + H)	2.89
2850	N N N N N N N N N N	440.0 (M + H)	3.20
2851	2CF ₃ CO ₂ H	482.4 (M + H)	3.43
2852	2CF ₃ CO ₂ H	466.4 (M + H)	2.71
2853	2CF ₃ CO ₂ H	380.2 (M + H)	2.72
2854	2CF ₃ CO ₂ H	426.2 (M + H)	2.91

Example No.	Structure	ESI-MS	Retention Time (min)
2855	2CF ₃ CO ₂ H	450.0 (M + H)	2.82
2856	2CF ₃ CO ₂ H	434.4 (M + H)	2.69
2857	N N N N OH	440.0 (M + H)	2.85
2858	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	550.6 (M + H)	3.80
2859	3CF ₃ CO ₂ H	441.4 (M + H)	3.03
2860	2CF ₃ CO ₂ H	446.6 (M + H)	3.41

Example No.	Structure	ESI-MS	Retention Time (min)
2861	2CF ₃ CO ₂ H	448.4 (M + H)	2.91
2862	2CF ₃ CO ₂ H	424.2 (M + H)	3.05
2863	3CF ₃ CO ₂ H	441.4 (M + H)	2.68
2864	3CF ₃ CO ₂ H	463.4 (M + H)	2.76
2865	2CF ₃ CO ₂ H	408.4 (M + H)	2.91
2866	2CF ₃ CO ₂ H	492.2 (M + H)	3.30

Example No.	Structure	ESI-MS	Retention Time (min)
2867	2CF ₃ CO ₂ H	464.2 (M + H)	2.93
2868	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	474.4 (M + H)	3.27
2869	2CF ₃ CO ₂ H	390.6 (M + H)	2.88
2870	2CF ₃ CO ₂ H	482.2 (M + H)	3.43
2871	2CF ₃ CO ₂ H	408.4 (M + H)	2.91
2872	2CF ₃ CO ₂ H	420.4 (M + H)	2.91

Example No.	Structure	ESI-MS	Retention Time (min)
2873	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	468.2 (M + H)	3.09
2874	2CF ₃ CO ₂ H	406.4 (M + H)	2.80
2875	2CF ₃ CO ₂ H	464.2 (M + H)	2.97
2876	N N N N N N N N N N N N N N N N N N N	524.6 (M + H)	3.12
2877	$2CF_3CO_2H$	442.4 (M + H)	3.10
2878	N N N N N N N N N N	426.2 (M + H)	2.90

Example No.	Structure	ESI-MS	Retention Time (min)
2879	2CF ₃ CO ₂ H	480.2 (M + H)	2.89
2880	2CF ₃ CO ₂ H	468.2 (M + H)	3.07
2881	N N N N N N N N N N	422.4 (M + H)	2.61
2882	2CF3CO2H	450.0 (M + H)	2.93
2883	2CF ₃ CO ₂ H	404.6 (M + H)	3.01
2884	$2CF_3CO_2H$	436.4 (M + H)	3.08

Example No.	Structure	ESI-MS	Retention Time (min)
2885	2CF ₃ CO ₂ H	440.0 (M + H)	3.18
2886	2CF ₃ CO ₂ H	470.4 (M + H)	3.25
2887	2CF ₃ CO ₂ H	450.0 (M + H)	3.01
2888	2CF ₃ CO ₂ H	466.4 (M + H)	3.40
2889	2CF ₃ CO ₂ H	415.4 (M+H)	2.83
2890	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	458.4 (M + H)	3.25

Example No.	Structure	ESI-MS	Retention Time (min)
2891	2CF ₃ CO ₂ H	468.2 (M + H)	3.00
2892	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	406.4 (M + H)	2.66
2893	N N N N N N N N N N N N N N N N N N N	420.4 (M + H)	2.92
2894	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	379.4 (M + H)	2.71
2895	N N N N N N N N N N	434.4 (M + H)	2.87
2896	2CF ₃ CO ₂ H	480.2 (M + H)\	3.17

Example No.	Structure	ESI-MS	Retention Time (min)
2897	2CF ₃ CO ₂ H	426.2 (M + H)	2.98
2898	2CF ₃ CO ₂ H	480.2 (M + H)	2.99
2899	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	528.4 (M + H)	3.15
2900	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	458.4 (M + H)	3.19
2901	2CF ₃ CO ₂ H	480.2 (M + H)	2.92
2902	2CF ₃ CO ₂ H	470.4 (M + H)	3.27

Example No.	Structure	ESI-MS	Retention Time (min)
2903	2CF ₃ CO ₂ H	404.6 (M + H)	2.87
2904	2CF ₃ CO ₂ H	460.4 (M + H)	3.48
2905	2CF ₃ CO ₂ H	410.4 (M + H)	2.96
2906	2CF ₃ CO ₂ H	450.0 (M+H)	3.03
2907	$2CF_3CO_2H$	434.4 (M + H)	3.08
2908	2CF ₃ CO ₂ H	452.2 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
2909	N N N S	396.2 (M + H)	2.81
2910	3CF ₃ CO₂H	459.4 (M + H)	3.21
2911	N N N CI CI CI 2CF ₃ CO ₂ H	458.2 (M + H)	3.08
2912	N N N N N N N N N N	410.4 (M + H)	2.88
2913	2CF ₃ CO ₂ H	426.2 (M + H)	3.01
2914	3CF ₃ CO ₂ H	429.4 (M + H)	2.97

Example No.	Structure	ESI-MS	Retention Time (min)
2915	3CF3CO2H	507.2 (M + H)	3.53
2916	2CF ₃ CO ₂ H	522.4 (M + H)	3.56
2917	N N N N N N N N N N	483.2 (M + H)	2.80
2918	N N N N N N N N N N N N N N N N N N N	507.2 (M + H)	3.27
2919	N N N N N N N N N N	474.2 (M + H)	3.10
2920	2CF ₃ CO ₂ H	450.0 (M + H)	3.00

Example No.	Structure	ESI-MS	Retention Time (min)
2921	2CF ₃ CO ₂ H	498.4 (M + H)	3.15
2922	3CF ₃ CO ₂ H	459.4 (M + H)	2.99
2923	2CF ₃ CO ₂ H	476.0 (M + H)	3.10
2924	OH N	.518.2 (M + H)	3.10
2925	2CF ₃ CO ₂ H	476.2 (M + H)	3.12
2926	2CF ₃ CO ₂ H	490.4 (M + H)	3.35

Example No.	Structure	ESI-MS	Retention Time (min)
2927	N N N N N N N N N N N N N N N N N N N	434.4 (M + H)	3.11
2928	2CF3CO2H	478.4 (M + H)	3.29
2929	2CF ₃ CO ₂ H	438.2 (M + H)	3.01
2930	3CF ₃ CO ₂ H	433.4 (M + H)	2.59
2931	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	438.2 (M + H)	2.90
2932	2CF ₃ CO ₂ H	456.2 (M + H)	3.10

Example No.	Structure	ESI-MS	Retention Time (min)
2933	2CF ₃ CO ₂ H	492.2 (M + H)	3.25
2934	$\begin{array}{c} N \\ N \\ N \\ N \\ N \end{array}$	476.2 (M + H)	3.11
2935	2CF ₃ CO ₂ H	490.4 (M + H)	3.20
2936	$2CF_3CO_2H$	448.4 (M + H)	3.17
2937	2CF ₃ CO ₂ H	489.6 (M + H)	3.31
2938	2CF ₃ CO ₂ H	528.2 (M + H)	3.03

Example No.	Structure	ESI-MS	Retention Time (min)
2939	2CF ₃ CO ₂ H	476.2 (M + H)	2.99
2940	2CF ₃ CO ₂ H	447.4 (M + H)	2.66
2941	2CF ₃ CO ₂ H	532.4 (M+H)	3.66
2942	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	514.4 (M + H)	3.08
2943	N N N N N N N N N N	393.4 (M + H)	2.79
2944	2CF ₃ CO ₂ H	474.4 (M + H)	3.24

Example No.	Structure	ESI-MS	Retention Time (min)
2945	N N N N N N N N N N	526.6 (M + H)	3.44
2946	N N N N N N N N N N	526.6 (M+H)	3,42
2947	P P P P P P P P P P	490.4 (M + H)	3.35
2948	2CF ₃ CO ₂ H	462.2 (M + H)	3.43
2949	2CF ₃ CO ₂ H	418.6 (M + H)	3.13
2950	2CF ₃ CO ₂ H	458.4 (M + H)	3.10

Example No.	Structure	ESI-MS	Retention Time (min)
2951	2CF ₃ CO ₂ H	476.4 (M + H)	3.19
2952	2CF ₃ CO ₂ H	438.2 (M + H)	2.95
2953	N N N N N N N N N N	422.4 (M + H)	2.61
2954	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	458.2 (M + H)	3.07
2955	2CF ₃ CO ₂ H	470.4 (M + H)	3.45
2956	2CF ₃ CO ₂ H	471.6 (M + H)	2.88

Example No.	Structure	ESI-MS	Retention Time (min)
2957	2CF ₃ CO ₂ H	472.4 (M + H)	3.36
2958	2CF ₃ CO ₂ H	450 (M+H)	2.75
2959	2CF3CO2H	448.4 (M + H)	3.20
2960	$2CF_3CO_2H$	508.4 (M+H)	3.00
2961	2CF ₃ CO ₂ H	420.4 (M + H)	2.80
2962	2CF ₃ CO ₂ H	474.4 (M + H)	3.20

Example No.	Structure	ESI-MS	Retention Time (min)
2963	N N N N N N N N N N N N N N N N N N N	404.4 (M + H)	2.87
2964	2CF ₃ CO ₂ H	458.2 (M + H)	3.00
2965	N N N N N N N N N N	394.4 (M + H)	2.30
2966	2CF ₃ CO ₂ H	505.4 (M + H)	2.60
2967	$\begin{array}{c c} N & N & N & N & CI \\ N & N & N & N & N & CI \end{array}$ $2CF_3CO_2H$	424.2 (M + H)	3.00
2968	2CF ₃ CO ₂ H	436.4 (M + H)	2.71

Example No.	Structure	ESI-MS	Retention Time (min)
2969	2CF ₃ CO ₂ H	432.4 (M + H)	3.30
2970	2CF ₃ CO ₂ H	424.2 (M + H)	2.95
2971	2CF ₃ CO ₂ H	415.4 (M + H)	2.79
2972	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	480.2 (M + H)	3.00
2973	2CF ₃ CO ₂ H	496.2 (M + H)	3.46
2974	2CF ₃ CO ₂ H	562.2 (M + H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
2975	2CF ₃ CO ₂ H	492.4 (M + H)	3.64
2976	2CF ₃ CO ₂ H	492.2 (M + H)	3.25
2977	$\frac{1}{N}$ $\frac{1}$	448.4 (M + H)	3.22
2978	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	456.2 (M + H)	3.09
2979	2CF ₃ CO ₂ H	434.4 (M + H)	2.89
2980	2CF ₃ CO ₂ H	436.4 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
2981	2CF ₃ CO ₂ H	438.2 (M + H)	2.91
2982	3CF ₃ CO ₂ H	441.4 (M + H)	2.55
2983	2CF ₃ CO ₂ H	446.4 (M + H)	3.13
2984	3CF ₃ CO ₂ H	461.4 (M + H)	2.46
2985	2CF ₃ CO ₂ H	422.2 (M + H)	3.01
2986	$2CF_3CO_2H$	510.2 (M+H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
2987	2CF3CO2H	414.4 (M + H)	2.86
2988	2CF ₃ CO ₂ H	534.2 (M+H)	3.13
2989	$\frac{1}{N} \frac{N}{H} \frac{1}{N} \frac{1}$	424.2 (M + H)	3.08
2990	N N N N N N N N N N	510.4 (M+H)	3.32
2991	N N N N N N N N N N	510.4 (M + H)	3.17
2992	2CF ₃ CO ₂ H	476.4 (M + H)	3.17

Example No.	Structure	ESI-MS	Retention Time (min)
2993	N N N N N N N N N N	476.2 (M + H)	3.21
2994	2CF ₃ CO ₂ H	454.2 (M + H)	2.77
2995	2CF ₃ CO ₂ H	468.4 (M + H)	2.89
2996	2CF ₃ CO ₂ H	418.6 (M + H)	3.12
2997	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	496.4 (M + H)	3.29
2998	3CF ₃ CO ₂ H	472.6 (M + H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
2999	2CF ₃ CO ₂ H	466.4 (M + H)	3.37
3000	2CF ₃ CO ₂ H	574.2 (M + H)	3.64
3001	2CF ₃ CO ₂ H	430.4 (M + H)	3.05
3002	2CF ₃ CO ₂ H	532.4 (M + H)	4.05
3003	2CF ₃ CO ₂ H	552.0 (M + H)	3.37
3004	CF ₃ CO ₂ H	448.4 (M + H)	3.51

Example No.	Structure	ESI-MS	Retention Time (min)
3005	CF ₃ CO ₂ H	454.2 (M + H)	3.91
3006	CF ₃ CO ₂ H	472.4 (M + H)	4.02
3007	CF ₃ CO ₂ H	494.4 (M + H)	4.01
3008	CF_3CO_2H	537.4 (M + H)	3.77
3009	CF ₃ CO ₂ H	418.6 (M + H)	3.63
3010	CF ₃ CO ₂ H	418.6 (M + H)	3.51

Example No.	Structure	ESI-MS	Retention Time (min)
3011	CF ₃ CO ₂ H	396.2 (M + H)	3.47
3012	CF ₃ CO ₂ H	434.4 (M + H)	3.52
3013	N N N N N N N N N N	395.4 (M + H)	3.15
3014	CF ₃ CO ₂ H	460.2 (M + H)	4.03
3015	CF ₃ CO ₂ H	418.6 (M + H)	3.65
3016	CF ₃ CO ₂ H	462.2 (M + H)	4.09

Example No.	Structure	ESI-MS	Retention Time (min)
3017	CF ₃ CO ₂ H	484.2 (M + H)	3.79
3018	CF ₃ CO ₂ H	498.6 (M + H)	3.88
3019	N N N N N N N N N N	483.2 (M + H)	3.80
3020	CF ₃ CO ₂ H	478.2 (M + H)	3.49
3021	CF ₃ CO ₂ H	450.0 (M + H)	3.61
3022	CF ₃ CO ₂ H	448.2 (M + H)	3.70

Example No.	Structure	ESI-MS	Retention Time (min)
3023	CF ₃ CO ₂ H	554.4 (M + H)	4.41
3024	CF ₃ CO ₂ H	598.2 (M + H)	4.03
3025	CF_3CO_2H	499.2 (M + H)	3.59
3026	CF ₃ CO ₂ H	524.6 (M + H)	3.84
3027	2CF ₃ CO ₂ H	497.4 (M + H)	3.80
3028	CF ₃ CO ₂ H	410.2 (M + H)	3.43

Example No.	Structure	ESI-MS	Retention Time (min)
3029	CF ₃ CO ₂ H	468.2 (M + H)	3.77
3030	CF_3CO_2H	463.2 (M + H)	3.73
3031	CF_3CO_2H	490.4 (M + H)	3.91
3032	CF ₃ CO ₂ H	490.4 (M + H)	3.94
3033	CF_3CO_2H	490.4 (M + H)	3.85
3034	CF_3CO_2H	490.4 (M + H)	3.87

Example No.	Structure	ESI-MS	Retention Time (min)
3035	CF_3CO_2H	490.4 (M + H)	3.63
3036	CF_3CO_2H	490.2 (M + H)	3.54
3037	N N N N N N N N N N	540.4 (M + H)	3.95
3038	CF ₃ CO ₂ H	440.4 (M + H)	3.58
3039	CF ₃ CO ₂ H	458.4 (M+H)	3.56
3040	CF_3CO_2H	476.4 (M + H)	3.83

Example No.	Structure	ESI-MS	Retention Time (min)
3041	CF_3CO_2H	490.4 (M + H)	3.82
3042	CF ₃ CO ₂ H	508.0 (M + H)	3.85
3043	CF_3CO_2H	438.2 (M + H)	3.71
3044	CF_3CO_2H	464.2 (M + H)	3.65
3045	CF ₃ CO ₂ H	448.4 (M + H)	3.47
3046	CF ₃ CO ₂ H	440.4 (M + H)	3.59

Example No.	Structure	ESI-MS	Retention Time (min)
3047	CF ₃ CO ₂ H	464.2 (M + H)	3.36
3048	CF_3CO_2H	464.4 (M + H)	3.39
3049	CF ₃ CO ₂ H	432.4 (M + H)	3.81
3050	CF ₃ CO ₂ H	448.4 (M + H)	3.69
3051	CF ₃ CO ₂ H	438.2 (M + H)	3.69
3052	CF3CO2H	472.4 (M + H)	4.03

Example No	Structure	ESI-MS	Refention Time (min)
3053	CF ₃ CO ₂ H	429.2 (M + H)	3.47
3054	CF ₃ CO ₂ H	488.4 (M + H)	4.60
3055	CF₃CO₂H	424.2 (M + H)	3.41
3056	CF ₃ CO ₂ H	530.2 (M + H)	3.83
3057	CF ₃ CO ₂ H	446.4 (M + H)	4.02
3058	CF ₃ CO ₂ H	438.2 (M + H)	3.70

Example No.	Structure	ESI-MS	Retention Time (min)
3059	CF ₃ CO ₂ H	472.4 (M + H)	3.55
3060	CF ₃ CO ₂ H	506.4 (M + H)	3.71
3061	CF ₃ CO ₂ H	530.2 (M + H)	3.61
3062	CF ₃ CO ₂ H	474.4 (M + H)	4.41
3063	CF ₃ CO ₂ H	476.4 (M + H)	4.14
3064	CF ₃ CO ₂ H	502.4 (M + H)	4.83

Example No.	Structure	ESI-MS	Retention Time (min)
3065	CF ₃ CO ₂ H	480.4 (M + H)	4.09
3066	CF ₃ CO ₂ H	486.4 (M + H)	3.84
3067	CF ₃ CO ₂ H	440.4 (M + H)	3.46
3068	CF_3CO_2H	494.4 (M + H)	3.79
3069	CF ₃ CO ₂ H	472.4 (M + H)	3.55
3070	CF ₃ CO ₂ H	464.4 (M + H)	3.63

Example No.	Structure	ESI-MS	Retention Time (min)
3071	CF ₃ CO ₂ H	458.2 (M+H)	3.69
3072	CF ₃ CO ₂ H	440.4 (M + H)	3.69
3073	CF ₃ CO ₂ H	440.4 (M + H)	3.66
3074	CF ₃ CO ₂ H	422.4 (M + H)	3.55
3075	CF ₃ CO ₂ H	460.4 (M + H)	4.24
3076	CF_3CO_2H	429.2 (M + H)	3.42

Example No.	Structure	ESI-MS	Retention Time (min)
3077	CF ₃ CO ₂ H	434.4 (M + H)	3.61
3078	CF_3CO_2H	488.4 (M+H)	3.86
3079	CF ₃ CO ₂ H	518.6 (M+H)	4.74
3080	CF ₃ CO ₂ H	458.2 (M + H)	3.68
3081	CF_3CO_2H	410.4 (M+H)	3.58
3082	CF_3CO_2H	540.4 (M+H)	4.19

Example No.	Structure	ESI-MS	Retention Time (min)
3083	CF ₃ CO ₂ H	422.2 (M + H)	3.50
3084	CF ₃ CO ₂ H	494.4 (M + H)	3.39
3085	CF ₃ CO ₂ H	440.0 (M + H)	3.55
3086	CF ₃ CO ₂ H	438.2 (M + H)	3.48
3087	CF ₃ CO ₂ H	454.2 (M + H)	3.75
3088	CF_3CO_2H	472.4 (M + H)	3.83

Example No.	Structure	ESI-MS	Retention Time (min)
3089	CF ₃ CO ₂ H	422.2 (M + H)	3.51
3090	CF ₃ CO ₂ H	472.4 (M + H)	3.87
3091	CF ₃ CO ₂ H	500.4 (M + H)	3.03
3092	2CF ₃ CO ₂ H	447.4 (M + H)	2.59
3093	CF ₃ CO ₂ H	486.4 (M + H)	3.25
3094	CF ₃ CO ₂ H	488.4 (M + H)	2.81

Example No.	Structure	ESI-MS	Retention Time (min)
3095	CF ₃ CO ₂ H	452.4 (M + H)	2.98
3096	CF ₃ CO ₂ H	496.4 (M + H)	3.29
3097	CF ₃ CO ₂ H	448.4 (M + H)	2.77
3098	CF ₃ CO ₂ H	458.4 (M + H)	3.06
3099	CF ₃ CO ₂ H	484.4 (M + H)	3.40
3100	CF ₃ CO ₂ H	418.6 (M + H)	2.69

Example No.	Structure	ESI-MS	Retention Time (min)
3101	2CF ₃ CO ₂ H	496.4 (M + H)	3.01
3102	CF_3CO_2H	483.4 (M + H)	2.79
3103	CF ₃ CO ₂ H	420.4 (M + H)	2.76
3104	CF ₃ CO ₂ H	516.2 (M + H)	3.03
3105	CF3CO2H	480.4 (M + H)	2.41
3106	CF_3CO_2H	483.2 (M + H)	2.84

Example No.	Structure	ESI-MS	Retention Time (min)
3107	2CF ₃ CO ₂ H	455 (M + H)	2.45
3108	2CF ₃ CO ₂ H	455.2 (M + H)	3.19
3109	CF ₃ CO ₂ H	461.4 (M + H)	2.60
3110	2CF ₃ CO ₂ H	470.4 (M + H)	2.74
. 3111	CF ₃ CO ₂ H	446.6 (M + H)	2.61
3112	CF ₃ CO ₂ H	464.4 (M + H)	2.35

Example No.	Structure	ESI-MS	Retention Time (min)
3113	CF ₃ CO ₂ H	468.4 (M + H)	·
3114	$\frac{1}{N} \sum_{N=1}^{N} \sum_{N=2}^{N} \sum_{N=2}^$	456.2 (M + H)	2.44
3115	2CF ₃ CO ₂ H	455.2 (M + H)	2.11
3116	CF ₃ CO ₂ H	454.2 (M + H)	3.21
3117	2CF ₃ CO ₂ H	433.6 (M + H)	2.34
3118	2CF ₃ CO ₂ H	444.6 (M+)	2.93

Example No.	Structure	ESI-MS	Retention Time (min)
3119	2CF ₃ CO ₂ H	421.4 (M + H)	2.23
3120	CF ₃ CO ₂ H	506.4 (M+H)	3.31
3121	2CF ₃ CO ₂ H	511.6 (M + H)	3.21
3122	N N N N N N N N N N	479.4 (M + H)	3.60
3123	CF ₃ CO ₂ H	434.4 (M + H)	2.37
3124	CF_3CO_2H	516.4 (M + H)	3.02

Example No.	Structure	ESI-MS	Retention Time (min)
3125	CF ₃ CO ₂ H	394.4 (M + H)	2.45
3126	CF ₃ CO ₂ H	450.2 (M + H)	2.41
3127	2CF ₃ CO ₂ H	477.0 (M + H)	2.88
3128	2CF ₃ CO ₂ H	405.6 (M+H)	2.61
3129	CF ₃ CO ₂ H	472.6 (M + H)	3.17
3130	N O CI	464.4 (M + H)	2.59

Example No.	Structure	ESI-MS	Retention Time (min)
3131	CF ₃ CO ₂ H	484.2 (M + H)	
3132	2CF ₃ CO ₂ H	453.0 (M + H)	2.45
3133	CF ₃ CO ₂ H	488.4 (M + H)	3.59
3134	CF_3CO_2H	454.2 (M + H)	2.81
3135	2CF ₃ CO ₂ H	421.4 (M + H)	2.89
3136	CF ₃ CO ₂ H	468.4 (M + H)	2.53

Example No.	Structure	ESI-MS	Retention Time (min)
3137	2CF ₃ CO ₂ H	483.2 (M + H)	2.83
3138	CF ₃ CO ₂ H	487.4 (M+2H+)	3.40
3139	CF ₃ CO ₂ H	445.6 (M+H)	2.36
3140	$\frac{1}{N} \sum_{N=1}^{N} \prod_{j=1}^{N} \prod_{k=1}^{N} NH_{2}$ $2CF_{3}CO_{2}H$	453.2 (M + H)	2.46
3141	CF ₃ CO ₂ H	478.4 (M + H)	2.77
3142	CF ₃ CO ₂ H	672.2 (M + H)	3.92

Example No.	Structure	ESI-MS	Retention Time (min)
3143	CF_3CO_2H	576.2 (M + H)	3.71
3144	N N N N N N N N N N	421.2 (M + H)	2.01
3145	$ \begin{array}{c c} & N & O & O & O \\ & N & N & O & O & O \\ & N & N & O & O & O & O \\ & N & N & O & O & O & O & O \\ & N & N & O & O & O & O & O & O \\ & CF_3CO_2H & O & O & O & O & O & O \\ \end{array} $	494.4 (M + H)	2.77
3146	2CF ₃ CO ₂ H	405.6 (M + H)	1.99
3147	CF ₃ CO ₂ H	488.4 (M + H)	3.13
3148	CF ₃ CO ₂ H	430.4 (M + H)	2.91

Example No.	Structure	ESI-MS	Retention Time (min)
3149	O N N N N N N N N N N N N N N N N N N N	459.4 (M + H)	2.47
3150	CF ₃ CO ₂ H	486.6 (M + H)	2.93
3151	CF ₃ CO ₂ H	474.4 (M + H)	3.03
3152	CF_3CO_2H	465.2 (M + H)	3.13
3153	2CF ₃ CO ₂ H	483.4 (M + H)	2.67
3154	CF_3CO_2H	556.4 (M + H)	2.84

Example No.	Structure	ESI-MS	Retention Time (min)
3155	2CF ₃ CO ₂ H	443.4 (M + H)	2.94
3156	CF ₃ CO ₂ H	508.2 (M + H)	3.20
3157	CF ₃ CO ₂ H	440.0 (M + H)	2.72
3158	CF ₃ CO ₂ H	532.4 (M + H)	3.58
3159	CF ₃ CO ₂ H	535.4 (M + H)	3.51
3160	CF ₃ CO ₂ H	504.4 (M + H)	3.49

Example No.	Structure	ESI-MS	Retention Time (min)
3161	CF ₃ CO ₂ H	572.4 (M + H)	3.71
3162	CF ₃ CO ₂ H	460.2 (M + H)	3.80
3163	CF ₃ CO ₂ H	589.2 (M + H)	4.00
3164	CF ₃ CO ₂ H	492.2 (M + H)	3.90
3165	CF ₃ CO ₂ H	478.2 (M + H)	3.80
3166	CF ₃ CO ₂ H	607.6 (M + H)	4.00

Example No.	Structure	ESI-MS	Retention Time (min)
3167	CF ₃ CO ₂ H	504.2 (M + H)	3.40
3168	CF ₃ CO ₂ H	506.2 (M + H)	3.90
3169	CF ₃ CO ₂ H	480.2 (M + H)	3.80
3170	CF ₃ CO ₂ H	466.2 (M + H)	3.70
3171	CF ₃ CO ₂ H	515.2 (M + H)	3.90
3172	CF ₃ CO ₂ H	644.2 (M + H)	4.10

Example No.	Structure	ESI-MS	Retention Time (min)
3173	CF ₃ CO ₂ H	488.2 (M + H)	3.90
3174	CF ₃ CO ₂ H	474.4 (M + H)	3.80
3175	NH N N NH O NH O NH O NH O NH O NH O NH	525.4 (M + H)	3.70
3176	CF ₃ CO ₂ H	654.2 (M + H)	3.90
3177	CF ₃ CO ₂ H	428.2 (M + H)	3.10
3178	CF3CO2H	414.4 (M + H)	2.90

Example No.	Structure	ESI-MS	Retention Time (min)
3179	2CF ₃ CO ₂ H	506.4 (M + H)	3.04
3180	2CF ₃ CO ₂ H	578.8 (M+H)	3.50
3181	2CF ₃ CO ₂ H	520.6 (M + H)	3.19
3182	2CF ₃ CO ₂ H	448.4 (M + H)	2.80
3183	2CF ₃ CO ₂ H	494.6 (M + H)	2.66
3184	2CF ₃ CO ₂ H	478.4 (M + H)	2.66

Example No.	Structure	ESI-MS	Retention Time (min)
3185	2CF ₃ CO ₂ H	492.6 (M + H)	2.94
3186	2CF ₃ CO ₂ H	464.4 (M + H)	2.65
3187	2CF ₃ CO ₂ H	464.4 (M + H)	2.68
3188	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	566.4 (M + H)	3.03
3189	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	512.6 (M + H)	2.85
3190	2CF ₃ CO ₂ H	474.4 (M + H)	3.09

Example No.	Structure	ESI-MS	Retention Time (min)
3191	3CF ₃ CO ₂ H	477.4 (M + H)	2.51
3192	2CF ₃ CO ₂ H	464.4 (M + H)	2.67
3193	2CF ₃ CO ₂ H	494.6 (M + H)	2.78
3194	$2CF_3CO_2H$	494.6 (M + H)	2.60
3195	2CF ₃ CO ₂ H	434.6 (M + H)	2.67
3196	2CF ₃ CO ₂ H	546.4 (M + H)	4.30

Example No.	Structure	ESI-MS	Retention Time (min)
3197	2CF ₃ CO ₂ H	606.6 (M + H)	3.95
3198	2CF ₃ CO ₂ H	536.6 (M + H)	3.83
3199	2CF ₃ CO ₂ H	492.4 (M + H)	2.97
3200	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	478.4 (M + H)	2.79
3201	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	542.0 (M + H)	2.85
3202	2CF ₃ CO ₂ H	492.6 (M + H)	2.81

Example No.	Structure	ESI-MS	Retention Time (min)
3203	2CF ₃ CO ₂ H	590.4 (M + H)	3.02
3204	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ N & & & \\ & &$	502.2 (M + H)	2.91
3205	N N N N N N N N N N	480.4 (M + H)	2.51
3206	2CF ₃ CO ₂ H	536.4 (M + H)	3.21
3207	3CF ₃ CO ₂ H	443.6 (M + H)	2.66
3208	$2CF_3CO_2H$	536.4 (M + H)	3.08

Example No.	Structure	ESI-MS	Retention Time (min)
3209	$\begin{array}{c c} & & & \\ & & & \\ N & & \\ N & & & \\ N & & & \\ N &$	520.0 (M + H)	3.51
3210	2CF ₃ CO ₂ H	480.4 (M + H)	2.58
3211	N N N N N N N N N N N N N N F F F F F S 2CF ₃ CO ₂ H	552.0 (M + H)	3.11
3212	2CF ₃ CO ₂ H	464.4 (M + H)	3.22
3213	2CF ₃ CO ₂ H	450.4 (M + H)	2.70
3214	2CF ₃ CO ₂ H	450.4 (M + H)	2.58

Example No.	Structure	ESI-MS	Retention Time (min)
3215	2CF ₃ CO ₂ H	480.4 (M + H)	2.73
3216	3CF ₃ CO ₂ H	429.4 (M + H)	3.29
3217	2CF ₃ CO ₂ H	480.2 (M + H)	2.78
3218	$2CF_3CO_2H$	522.4 (M + H)	3.77
3219	2CF ₃ CO ₂ H	450.2 (M + H)	2.57
3220	2CF ₃ CO ₂ H	498.0 (M + H)	2.97

Example No.	Structure	ESI-MS	Retention Time (min)
3221	2CF ₃ CO ₂ H	478.4 (M + H)	3.17
3222	2CF ₃ CO ₂ H	480.0 (M + H)	3.08
3223	N N N N N N N N N N	590.2 (M + H)	4.20
3224	N N N N N N N N N N	576.4 (M + H)	3.95
3225	2CF ₃ CO ₂ H	512.4 (M+H)	3.86
3226	CF ₃ CO ₂ H	472.4 (M + H)	3.07

Example No.	Structure	ESI-MS	Retention Time (min)
3227	CF ₃ CO ₂ H	540.6 (M + H)	3.75
3228	CF ₃ CO ₂ H	464.4 (M + H)	3.07
3229	2CF ₃ CO ₂ H	478.4 (M + H)	3.40
3230	N N N N N N N N N N	552.6 (M+H)	3.50
3231	$\begin{array}{c c} & & & \\ & & & \\ N & & & \\ N &$	590.2 (M + H)	3.60
3232	2CF ₃ CO ₂ H	418.6 (M + H)	3.25

Example No.	Structure	ESI-MS	Retention Time (min)
3233	2CF ₃ CO ₂ H	382.2 (M + H)	2.67
3234	2CF ₃ CO ₂ H	436.4 (M + H)	3.05
3235	2CF ₃ CO ₂ H	394.4 (M + H)	2.75
3236	2CF ₃ CO ₂ H	420.4 (M + H)	2.82
3237	2CF ₃ CO ₂ H	426.4 (M + H)	3.17
3238	2CF ₃ CO ₂ H	468.4 (M + H)	3.44

Example No.	Structure	ESI-MS	Retention Time (min)
3239	2CF ₃ CO ₂ H	452.2 (M + H)	2.69
3240	$2CF_3CO_2H$	436.4 (M + H)	2.80
3241	$CI \longrightarrow OH$ $N \longrightarrow N$ $N \longrightarrow N$ $2CF_3CO_2H$	426.2 (M + H)	2.79
3242	2CF ₃ CO ₂ H	536.4 (M + H)	3.75
3243	3CF ₃ CO ₂ H	427.2 (M + H)	2.95
3244	2CF ₃ CO ₂ H	432.4 (M + H)	3.41

Example No.	Structure	ESI-MS	Retention Time (min)
3245	2CF ₃ CO ₂ H	434.2 (M + H)	2.84
3246	2CF ₃ CO ₂ H	410.2 (M + H)	3.02
3247	N H H N N N SCF ₃ CO ₂ H	427.4 (M + H)	2.61
3248	$2CF_3CO_2H$	450.4 (M + H)	2.91
3249	FFF F 2CF ₃ CO ₂ H	460.4 (M + H)	3.19
3250	2CF ₃ CO ₂ H	468.4 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
3251	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	394.4 (M + H)	2.83
3252	N N N N N N N N N N	454.2 (M + H)	3.08
3253	N N N N N N N N N N	392.4 (M + H)	2.73
3254	2CF ₃ CO ₂ H	450.4 (M + H)	2.92
3255	3CF ₃ CO ₂ H	510.4 (M + H)	3.17
3256	$\begin{array}{c} CI \\ N \\ N \\ N \end{array}$	428.2 (M + H)	3.08

Example No.	Structure	ESI-MS	Retention Time (min)
3257	OH 2CF ₃ CO ₂ H	392.4 (M + H)	2.63
3258	NNN H F F	412.2 (M + H)	2.83
3259	2CF ₃ CO ₂ H	466.4 (M+H)	2.89
3260	Pr N N H 2CF ₃ CO ₂ H	454.0 (M + H)	3.05
3261	N N N N N N N N N N	40 8.2 (M + H)	2.53
3262	2CF ₃ CO ₂ H	390.4 (M + H)	2.92

Example No.	Structure	ESI-MS	Retention Time (min)
3263	2CF ₃ CO ₂ H	422.2 (M + H)	3.05
3264	2CF ₃ CO ₂ H	456.4 (M + H)	3.25
3265	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	452.2 (M + H)	3.37
3266	N H N N N N N N N N N N N N N N N N N N	401.2 (M + H)	2.76
3267	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ $	444.4 (M + H)	3.17
3268	2CF ₃ CO ₂ H	392.4 (M + H)	2.61

Example No.	Structure	ESI-MS	Retention Time (min)
3269	2CF ₃ CO ₂ H	406.4 (M + H)	2.86
3270	3CF ₃ CO ₂ H	365.4 (M+H)	2.61
3271	2CF ₃ CO ₂ H	420.4 (M + H)	2.83
3272	$2CF_3CO_2H$	466.4 (M + H)	3.10
3273	2CF ₃ CO ₂ H	514.4 (M + H)	3.13
3274	FFF FHF 2CF ₃ CO ₂ H	444.4 (M + H)	3.17

Example No.	Structure	ESI-MS	Retention Time (min)
3275	2CF ₃ CO ₂ H	466.4 (M + H)	2.86
3276	2CF ₃ CO ₂ H	456.2 (M + H)	3.22
3277	2CF ₃ CO ₂ H	446.6 (M + H)	3.45
3278	NNNN HOO	436.4 (M + H)	2.95
3279	$2CF_3CO_2H$	420.2 (M + H)	3.03
3280	2CF ₃ CO ₂ H	382.4 (M + H)	2.72

Example No.	Structure	ESI-MS	Retention Time (min)
3281	$\begin{array}{c c} N & H & CI \\ N & N & CI \\ 2CF_3CO_2H \end{array}$	444.4 (M + H)	3.07
3282	2CF ₃ CO ₂ H	396.2 (M + H)	2.79
3283	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	412.4 (M + H)	2.95
3284	32CF ₃ CO ₂ H	493.4 (M + H)	3.57
3285	CI S S 2CF ₃ CO ₂ H	508.2 (M + H)	3.52
3286	$2CF_3CO_2H$	469.6 (M + H)	2.76

Example No.	Structure	ESI-MS	Retention Time (min)
3287	3CF ₃ CO ₂ H	493.2 (M + H)	3.17
3288	2CF ₃ CO ₂ H	460.2 (M + H)	2.95
3289	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	484.2 (M + H)	3.14
3290	FFF F NNNH P 2CF₃CO₂H	462.2 (M + H)	3.11
3291	$ \begin{array}{c c} & & \\ & $	462.2 (M + H)	3.11
3292	$ \begin{array}{c} & \downarrow \\ $	476.4 (M + H)	3.39

Example No.	Structure	ESI-MS	Retention Time (min)
3293	2CF ₃ CO ₂ H	420.4 (M + H)	3.05
3294	2CF ₃ CO ₂ H	464.2 (M + H)	3.21
3295	2CF ₃ CO ₂ H	424.2 (M + H)	2.94
3296	3CF ₃ CO ₂ H	419.4 (M + H)	2.51
3297	3CF ₃ CO ₂ H	366.4 (M + H)	2.26
3298	$2CF_3CO_2H$	424.2 (M + H)	2.93

Example No.	Structure	ESI-MS	Retention Time (min)
3299	P F F O T O T O T O T O T O T O T O T O T	442.4 (M + H)	2.97
3300	PFF PCI 2CF ₃ CO ₂ H	478.2 (M + H)	3.19
3301	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	462.2 (M + H)	3.05
3302	P F O OH 2CF3CO2H	476.4 (M + H)	3.20
3303	2CF ₃ CO ₂ H	366.4 (M + H)	2.64
3304	2CF ₃ CO ₂ H	412.4 (M + H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
3305	2CF ₃ CO ₂ H	420.4 (M + H)	2.67
3306	3CF ₃ CO ₂ H	449.4 (M + H)	2.74
3307	2CF ₃ CO ₂ H	394.4 (M + H)	2.86
3308	$\begin{array}{c c} & & & & & & & & & & & \\ & & & & & & & $	478.2 (M + H)	.3.38
3309	2CF ₃ CO ₂ H	444.4 (M + H)	3.09
3310	2CF ₃ CO ₂ H	376.4 (M + H)	2.82

Example No.	Structure	ESI-MS	Retention Time (min)
3311	NNNN HOO	406.4 (M + H)	2.87
3312	2CF ₃ CO ₂ H	436.4 (M + H)	2.91
3313	2CF ₃ CO ₂ H	426.2 (M + H)	3.13
3314	2CF ₃ CO ₂ H	436.4 (M + H)	2.99
3315	2CF ₃ CO ₂ H	454.0 (M + H)	2.97
3316	2CF ₃ CO ₂ H	412.4 (M + H)	2.92

Example No.	Structure	ESI-MS	Retention Time (min)
3317	2CF ₃ CO ₂ H	466.4 (M + H)	2.95
3318	2CF ₃ CO ₂ H	390.4 (M + H)	2.95
3319	2CF ₃ CO ₂ H	396.2 (M + H)	2.89
3320	2CF ₃ CO ₂ H	438.2 (M+H)	2.76
3321	3CF ₃ CO ₂ H	445.4 (M + H)	3.16
3322	N H NH NH 3CF ₃ CO ₂ H	415.4 (M+H)	2.96

Example No.	Structure	ESI-MS	Retention Time (min)
3323	3CF ₃ CO ₂ H	445.4 (M + H)	2.96
3324	PHO HO CI N N N CI 2CF ₃ CO ₂ H	504.2 (M + H)	3.11
3325	2CF ₃ CO ₂ H	434.4 (M + H)	3.17
3326	FFF N N N N N N N N N N N N N N N N N N	476.2 (M + H)	3.27 ·
3327	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	514.4 (M + H)	3.07
3328	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	462.2 (M+H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
3329	2CF ₃ CO ₂ H	433.2 (M + H)	2.63
3330	CI S N N N N H 2CF ₃ CO ₂ H	518.4 (M+H)	3.63
3331	NN HO Br 2CF ₃ CO ₂ H	500.4 (M + H)	3.09
3332	N H N N N N N N N N N N N N N N N N N N	379.4 (M+H)	2.77
3333	FFO FFO NNNN 2CF3CO2H	460.2 (M + H)	3.31
3334	FFF FF 2CF ₃ CO ₂ H	512.4 (M+H)	3.51

Example No.	Structure	ESI-MS	Retention Time (min)
3335	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	512.6 (M+H)	3.51
3336	FFS FS P 2CF ₃ CO ₂ H	476.2 (M+H)	3.39
3337	2CF ₃ CO ₂ H	448.4 (M + H)	3.42
3338	2CF ₃ CO ₂ H	404.4 (M+H)	3.17
3339	$\begin{array}{c c} N & H & F \\ N & H & F \\ 2CF_3CO_2H \end{array}$	444.4 (M + H)	3.13
3340	PFF FF NNNN NH 2CF ₃ CO ₂ H	462.2 (M + H)	3.21

Example No.	Structure	ESI-MS	Retention Time (min)
3341	NNNN FOR PROPERTY OF THE PROPE	424.2 (M + H)	2.97
3342	2CF ₃ CO ₂ H	444.6 (M + H)	3.16
3343	N H N N N N N N N N N N N N N N N N N N	469.4 (M + H)	3.47
3344	2CF ₃ CO ₂ H	456.4 (M + H)	3.47
3345	2CF ₃ CO ₂ H	457.4 (M + H)	3.09
3346	NN H S 2CF ₃ CO ₂ H	458.2 (M + H)	3.37

Example No.	Structure	ESI-MS	Retention Time (min)
3347	2CF ₃ CO ₂ H	436.4 (M + H)	2.83
3348	2CF ₃ CO ₂ H	434.4 (M + H)	3.30
3349	2CF ₃ CO ₂ H	494.4 (M + H)	2.98
3350	2CF ₃ CO ₂ H	406.4 (M + H)	2.80
3351	FFF O N N N N N N N N N N N N N N N N N	460.4 (M + H)	3.20
3352	2CF ₃ CO ₂ H	390.4 (M + H)	2.97

Example No.	Structure	ESI-MS	Retention Time (min)
3353	2CF ₃ CO ₂ H	444.2 (M + H)	3.01
3354	N N N N N N N N N N N N N N N N N N N	380.2 (M + H)	2.27
3355	2CF ₃ CO ₂ H	491.4 (M + H)	2.55
3356	2CF ₃ CO ₂ H	410.4 (M + H)	3.05
3357	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	422.2 (M + H)	2.69
3358	2CF ₃ CO ₂ H	418.6 (M + H)	3.36

Example No.	Structure	ESI-MS	Retention Time (min)
3359	2CF ₃ CO ₂ H	410.4 (M + H)	2.97
3360	2CF ₃ CO ₂ H	401.2 (M + H)	2.81
3361	P F F F F F F F F F F F F F F F F F F F	466.2 (M + H)	3.01
3362	2CF ₃ CO ₂ H	482.4 (M + H)	3.43
3363	OH NNNN 2CF3CO2H	548.4 (M + H)	3.03
3364	3CF ₃ CO ₂ H	543.6 (M + H)	3.95

Example No.	Structure	ESI-MS	Retention Time (min)
3365	2CF ₃ CO ₂ H	478.4 (M + H)	3.64
3366	PFF FF CI NN NN NN NN NN NN NN NN NN NN NN 2CF ₃ CO ₂ H	478.4 (M + H)	3.29
3367	$2CF_3CO_2H$	434.4 (M + H)	3.20
3368	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	442.4 (M + H)	3.09
3369	2CF ₃ CO ₂ H	420.4 (M + H)	2.87
3370	2CF ₃ CO ₂ H	422.2 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
3371	2CF ₃ CO ₂ H	424.2 (M + H)	2.96
3372	3CF ₃ CO ₂ H	427.2 (M+H)	2.53
3373	2CF ₃ CO ₂ H	432.4 (M + H)	3.12
3374	3CF ₃ CO ₂ H	447.4 (M + H)	2.45
3375	2CF ₃ CO ₂ H	408.2 (M + H)	3.02
3376	2CF ₃ CO ₂ H	496.4 (M + H)	2.81

Example No.	Structure	ESI-MS	Rétention Time (min)
3377	2CF ₃ CO ₂ H	400.2 (M + H)	2.81
3378	NNNN F	520.2 (M + H)	3.14
3379	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	410.4 (M + H)	3.12
3380	N H F F F F P 2CF ₃ CO ₂ H	496.4 (M + H)	3.40
3381	2CF ₃ CO ₂ H	496.4 (M + H)	3.17
3382	2CF ₃ CO ₂ H	462.2 (M + H)	3.19

Example No.	Structure	ESI-MS	Retention Time (min)
3383	2CF ₃ CO ₂ H	462.2 (M + H)	3.28
3384	2CF ₃ CO ₂ H	440.4 (M + H)	2.74
3385	2CF ₃ CO ₂ H	454.2 (M + H)	2.89
3386	2CF ₃ CO ₂ H	404.4 (M + H)	3.09
3387	2CF ₃ CO ₂ H	482.2 (M + H)	3.29
3388	3CF ₃ CO ₂ H	458.4 (M + H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
3389	2CF ₃ CO ₂ H	452.2 (M + H)	3.40
3390	2CF ₃ CO ₂ H	560.2 (M + H)	3.73
3391	2CF ₃ CO ₂ H	416.4 (M + H)	2.99
3392	2CF ₃ CO ₂ H	518.6 (M+H)	4.08
3393	$2CF_3CO_2H$	436.4 (M + H)	2.95
3394	CF ₃ CO ₂ H	434.4 (M + H)	3.30

Example No.	Structure	ESI-MS	Retention Time (min)
3395	CF ₃ CO ₂ H	440.4 (M + H)	4.26
3396	CF ₃ CO ₂ H	458.2 (M + H)	4.39
3397	CF ₃ CO ₂ H	480.4 (M + H)	4.37
3398	CF ₃ CO ₂ H	523.6 (M + H)	4.15
3399	N N N N N N N N N N	404.4 (M + H)	3.46
3400	CF ₃ CO ₂ H	404.4 (M + H)	3.75

Example No.	Structure	ESI-MS	Retention Time (min)
3401	CF ₃ CO ₂ H	382.4 (M + H)	· 3.65
3402	CF ₃ CO ₂ H	420.4 (M + H)	3.81
3403	CF ₃ CO ₂ H	381.2 (M+H)	3.33
3404	CF ₃ CO ₂ H	404.4 (M + H)	3.93
3405	O ⁻ N=O N H CF₃CO₂H	435.2 (M + H)	3.40
3406	CF ₃ CO ₂ H	484.4 (M + H)	4.15

Example No.	Structure	ESI-MS	Retention Time (min)
3407	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ N & & \\ N & & & \\ N & &$	469.4 (M + H)	4.20
3408	CF ₃ CO ₂ H	436.2 (M + H)	3.88
3409	CF ₃ CO ₂ H	434.4 (M + H)	3.91
3410	CI N N N N N N N N N N N N N N N N N N N	558.4 (M + H)	4.92
3411	2CF ₃ CO ₂ H	483.4 (M + H)	4.08
3412	CF ₃ CO ₂ H	396.2 (M + H)	3.68

Example No.	Structure	ESI-MS	Retention Time (min)
3413	CF ₃ CO ₂ H	454.2 (M + H)	3.70
3414	CF ₃ CO ₂ H	449.4 (M + H)	4.09
3415	CF ₃ CO ₂ H	476.2 (M + H)	4.33
3416	CF ₃ CO ₂ H	476.4 (M + H)	3.60
3417	CF ₃ CO ₂ H	476.4 (M + H)	4.23
3418	CF ₃ CO ₂ H	476.4 (M + H)	4.38

Example No.	Structure	ESI-MS	Retention Time (min)
3419	CF ₃ CO ₂ H	426.2 (M + H)	3.87
3420	CF ₃ CO ₂ H	444.4 (M + H)	3.86
3421	CF_3CO_2H	462.2 (M + H)	4.15
3422	CF_3CO_2H	424.2 (M + H)	4.06
3423	CF_3CO_2H	450.4 (M + H)	4.03
3424	CF_3CO_2H	434.2 (M + H)	3.75

Example No.	Structure	ESI-MS	Refention Time (min)
3425	CF ₃ CO ₂ H	426.2 (M + H)	3.88
3426	CF_3CO_2H	450.4 (M + H)	3.64
3427	CF ₃ CO ₂ H	450.4 (M + H)	3.55
3428	CF ₃ CO ₂ H	418.6 (M + H)	4.17
3429	CF_3CO_2H	434.4 (M + H)	4.03
3430	CF ₃ CO ₂ H	458.2 (M + H)	4.45

Example No.	Structure	ESI-MS	Retention Time (min)
3431	CF_3CO_2H	415.4 (M + H)	3.76
3432	CF ₃ CO ₂ H	474.4 (M + H)	5.06
3433	CF_3CO_2H	410.2 (M+H)	3.64
3434	CF ₃ CO ₂ H	516.2 (M + H)	4.24
3435	CF ₃ CO ₂ H	424.2 (M + H)	4.09
3436	CF ₃ CO ₂ H	458.2 (M + H)	3.89

Example No.	Structure	ESI-MS	Retention Time (min)
3437	CF ₃ CO ₂ H	516.2 (M + H)	3.88
3438	CF ₃ CO ₂ H	460.4 (M + H)	4.86
3439	CF ₃ CO ₂ H	488.4 (M + H)	4.70
3440	CI CI CI CI CI CI CI CI	472.4 (M + H)	4.29
3441	CF_3CO_2H	426.2 (M + H)	3.69
3442	CF_3CO_2H	480.2 (M + H)	4.16

Example No.	Structure	ESI-MS	Retention Time (min)
3443	CF ₃ CO ₂ H	458.2 (M+H)	3.91
3444	CF ₃ CO ₂ H	450.4 (M + H)	3.95
3445	CF_3CO_2H	444.4 (M + H)	4.01
3446	N N N N N N N N N N N N N N N N N N N	426.2 (M + H)	4.00
3447	CF ₃ CO ₂ H	408.4 (M + H)	3.75
3448	CF ₃ CO ₂ H	446.6 (M + H)	4.65

Example No.	Structure	ESI-MS	Retention Time (min)
3449	CF ₃ CO ₂ H	415.2 (M + H)	3.75
3450	CF ₃ CO ₂ H	420.4 (M + H)	3.91
3451	CF ₃ CO ₂ H	490.4 (M + H)	4.99
3452	CF ₃ CO ₂ H	504.4 (M + H)	5.16
3453	CF_3CO_2H	444.4 (M + H)	4.00
3454	CF ₃ CO ₂ H	396.2 (M + H)	3.85

Example No.	Structure	ESI-MS	Retention Time (min)
3455	CF ₃ CO ₂ H	526.6 (M + H)	4.69
3456	CF ₃ CO ₂ H	408.4 (M + H)	3.30
3457	CF ₃ CO ₂ H	480.4 (M + H)	3.76
3458	CF_3CO_2H	426.2 (M + H)	3.86
3459	CF ₃ CO ₂ H	424.2 (M + H)	3.76
3460	CF ₃ CO ₂ H	440.4 (M + H)	4.05

Example No.	Structure	ESI-MS	Retention Time (min)
3461	FFF NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	458.4 (M + H)	4.25
3462	CF ₃ CO ₂ H	408.2 (M + H)	3.84
3463	CF_3CO_2H	458.2 (M + H)	4.25
3464	CF ₃ CO ₂ H	446.6 (M + H)	4.44
3465	CF ₃ CO ₂ H	470.2 (M + H)	4.13
3466	CF ₃ CO ₂ H	476.2 (M + H)	4.25

Example No.	Structure	ESI-MS	Retention Time (min)
3467	N N N N N N N N N N	476.2 (M + H)	3.92
3468	CF_3CO_2H	526.4 (M + H)	4.31
3469	CF_3CO_2H	476.2 (M + H)	4.15
3470	CF ₃ CO ₂ H	462.2 (M + H)	4.48
3471	CF ₃ CO ₂ H	466.4 (M + H)	4.45
3472	CF ₃ CO ₂ H	474.4 (M + H)	4.29

Example No.	Structure	ESI-MS	Retention Time (min)
3473	CF ₃ CO ₂ H	486.2 (M + H)	4.32
3474	CF ₃ CO ₂ H	438.4 (M + H)	4.31
3475	2CF ₃ CO ₂ H	441.4 (M + H)	3.75
3476	CF_3CO_2H	434.4 (M + H)	4.10
3477	CF_3CO_2H	469.4 (M + H)	4.19
3478	CF ₃ CO ₂ H	444.4 (M + H)	4.36

Example No.	Structure	ESI-MS	Retention Time (min)
3479	3CF ₃ CO ₂ H	482.4 (M + H)	4.35
3480	CF ₃ CO ₂ H	482.4 (M + H)	4.64
3481	CF ₃ CO ₂ H	502.2 (M + H)	4.37
3482	CF ₃ CO ₂ H	458.2 (M + H)	4.08
3483	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	465.4 (M + H)	3.66
3484	CF ₃ CO ₂ H	404.4 (M + H)	4.03

Example No.	Structure	ESI-MS	Retention Time (min)
3485	$ \begin{array}{c c} & H & CI \\ & N & H & O \\ & N & N & O \\ & N & N & O \\ & CF_3CO_2H \end{array} $	469.4 (M + H)	4.23
3486	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	447.4 (M + H)	3.94
3487	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	456.2 (M + H)	4.07
3488	CF_3CO_2H	432.4 (M + H)	3.99
3489	N H N N N N N N N N N N N N N N N N N N	441.3 (M+H)	1.70
3490	CF_3CO_2H	440.2 (M+H)	4.57

Example No.	Structure	ESI-MS	Retention Time (min)
3491	2CF ₃ CO ₂ H	393.4 (M + H)	4.01
3492	2CF ₃ CO ₂ H	497.4 (M + H)	4.45
3493	CF ₃ CO ₂ H	470.2 (M + H)	2.40
3494	$\begin{array}{c c} & & & \\ & & &$	439.4 (M + H)	1.92
3495	$\begin{array}{c c} & & & \\ & & & &$	407.4 (M + H)	2.30
3496	$\begin{array}{c c} & & & & CI \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ $	469.5 (M + H)	2.27

Example No.	Structure	ESI-MS	Retention Time (min)
3497	$\begin{array}{c c} N & H & NH_2 \\ N & N & O & CI & NH_2 \end{array}$ $2CF_3CO_2H$	439.4 (M + H)	1.93
3498	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	407.4 (M + H)	1.62
3499	$ \begin{array}{c c} & H \\ & N \\$	416.3 (M + H)	2.34
3500	CF ₃ CO ₂ H	460.4 (M + H)	2.46
3501	CF ₃ CO ₂ H	465.4 (M + H)	4.13
3502	N H2N H N N N O O O O O O O O O O O O O O O O O	419.4 (M + H)	3.87

Example No.	Structure	ESI-MS	Retention Time (min)
3503	CF ₃ CO ₂ H	450.4 (M + H)	3.97
3504	CF ₃ CO ₂ H	406.2 (M + H)	2.18
3505	CF ₃ CO ₂ H	470.4 (M + H)	4.74
3506	CF ₃ CO ₂ H	466.4 (M + H)	3.83
3507	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	441.2 (M + H)	4.38
3508	$2CF_3CO_2H$	441.2 (M + H)	3.62

Example No.	Structure	ESI-MS	Retention Time (min)
3509	CF ₃ CO ₂ H	454.5 (M+H)	2.44
3510	N H O O O O O O O O O O O O O O O O O O	384.4 (M+H)	3.67
3511	CF_3CO_2H	502.2 (M + H)	4.37
3512	CF ₃ CO ₂ H	480.5 (M+H)	2.18
3513	$ \begin{array}{c c} & H & O \\ & N & H & O \\ & N & H & O \\ & CF_3CO_2H \end{array} $	380.2 (M + H)	3.81
3514	N N N N N N N N N N N N N N N N N N N	463.2 (M + H)	4.23

Example No.	Structure	ESI-MS	Retention Time (min)
3515	$2CF_3CO_2H$	443.4 (M + H)	2.12
3516	N H HN S N H CF ₃ CO ₂ H	431.1 (M+H)	1.90
3517	N N N N N N N N N N	474.4 (M + H)	5.05
3518	CF_3CO_2H	440.5 (M + H)	2.33
3519	CF ₃ CO ₂ H	464.5 (M + H)	2.20
3520	N H N N N N N N N N N N N N N N N N N N	391.1 (M+H)	1.59

Example No.	Structure	ESI-MS	Retention Time (min)
3521	CF_3CO_2H	474.4 (M + H)	4.53
3522	CF ₃ CO ₂ H	542.2 (M + H)	2.26
3523	2CF ₃ CO ₂ H	429.3 (M + H)	2.41
3524	CF ₃ CO ₂ H	494.6 (M + H)	2.59
3525	CF ₃ CO ₂ H	518.5 (M + H)	2.96
3526	CF ₃ CO ₂ H	420.4 (M + H)	2.19

Example No.	Structure	ESI-MS	Retention Time (min)
3527	CF ₃ CO ₂ H	420.4 (M + H)	2.19
3528	$ \begin{array}{c} \downarrow_{NH} \\ \downarrow_{N} \\ \downarrow_{N} \\ \downarrow_{N} \\ \downarrow_{N} \\ \downarrow_{N} \\ \downarrow_{N} \\ \downarrow_{F} \\ \downarrow_{F}$	552.0 (M + H)	2.45
3529	NH NN NN NN NN NN NN NN NN NN NN NN NN N	564.2 (M + H)	· 2.48
3530	NH NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	606.0 (M + H)	2.86
3531	NH NN NN NN NN NN NN NN NN NN NN NN NN N	586.2 (M + H)	3.20
3532	NH NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	614.4 (M+H)	2.76

Example No.	Structure	ESI-MS	Retention Time (min)
3533	CI NH NH NH NH PF FF 2CF ₃ CO ₂ H	620.0 (M + H)	2.68
3534	NH N N N N N N N N N N N N N N N N N N	616.0 (M + H)	2.56
3535	FFF NNNN H 2CF ₃ CO ₂ H	566.0 (M + H)	2.54
3536	N N N N N N N N N N	532.2 (M + H)	3.35
3537	2CF ₃ CO ₂ H	541.4 (M + H)	3.11
3538	CF ₃ CO ₂ H	505.2 (M + H)	2.98

Example No.	Structure	ESI-MS	Retention Time (min)
3539	CF ₃ CO ₂ H	556 (M + H)	3.37
3540	CF ₃ CO ₂ H	516.4 (M + H)	3.39
3541	CF ₃ CO ₂ H	504.4 (M + H)	3.61
3542	CF ₃ CO ₂ H	574.4 (M + H)	4.27
3543	CF ₃ CO ₂ H	508.2 (M + H)	3.17
3544	CF ₃ CO ₂ H	644.2 (M + H)	3.63

Example No.	Structure	ESI-MS	Retention Time (min)
3545	CF ₃ CO ₂ H	520.4 (M + H)	3.56
3546	$\begin{array}{c c} & & & \\ & & & &$	504.2 (M + H)	3.25
3547	2CF ₃ CO ₂ H	513.4 (M + H)	2.86
3548	CF ₃ CO ₂ H	616.2 (M + H)	3.73
3549	$\frac{1}{2} \sum_{N=1}^{N} \frac{1}{N} \int_{-N}^{N} \frac{N} \int_{-N}^{N} \frac{1}{N} \int_{-N}^{N} \frac{1}{N} \int_{-N}^{N} \frac{1}{N} \int_{-N$	450.4 (M + H)	2.79
3550	CF ₃ CO ₂ H	466.2 (M + H)	3.35

Example No.	Structure	ESI-MS	Retention Time (min)
3551	2CF ₃ CO ₂ H	465.2 (M + H)	3.34
3552	CF ₃ CO ₂ H	451.2 (M + H)	3.83
3553	CF ₃ CO ₂ H	451.2 (M + H)	4.10
3554	CF ₃ CO ₂ H	563.2 (M + H)	4.33
3555	2CF ₃ CO ₂ H	468.4 (M + H)	3.66
3556	2CF ₃ CO ₂ H	467.4 (M + H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
3557	CF ₃ CO ₂ H	515.4 (M + H)	3.52
3558	CF_3CO_2H	485.2 (M + H)	3.40
3559	2CF ₃ CO ₂ H	467.4 (M + H)	3.90
3560	CF ₃ CO ₂ H	473.4 (M + H)	4.17
3561	CF ₃ CO ₂ H	467.4 (M + H)	3.57
3562	CF ₃ CO ₂ H	490.2 (M + H)	4.00

Example No.	Structure	ESI-MS	Retention Time (min)
3563	CF ₃ CO ₂ H	490.2 (M+H)	3.99
3564	2CF ₃ CO ₂ H	476.2 (M + H)	3.76
3565	CF ₃ CO ₂ H	467.2 (M+H)	4.07
3566	CF ₃ CO ₂ H	528.2 (M + H)	4.53
3567	CF ₃ CO ₂ H	464.2 (M + H)	4.11
3568	CI CI CI CI CI CI CI CI	494.0 (M + H)	3.43

Example No.	Structure	ESI-MS	Retention Time (min)
3569	CF ₃ CO ₂ H	444.0 (M + H)	3.03
3570	CF ₃ CO ₂ H	552.0 (M+H)	3.30
3571	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$	510.0 (M + H)	3.37
3572	N N N N N N N N N N	562.0 (M + H)	3.66
3573	CF ₃ CO ₂ H	622.0 (M + H)	3.61
3574	CF ₃ CO ₂ H	588.0 (M + H)	3.59

Example No.	Structure	ESI-MS	Retention Time (min)
3575	CF ₃ CO ₂ H	510.0 (M + H)	3.31
3576	CF ₃ CO ₂ H	562.0 (M + H)	3.61
3577	CF ₃ CO ₂ H	510.0 (M+H)	3.35
3578	CF ₃ CO ₂ H	597.0 (M + H)	3.55
3579	CF ₃ CO ₂ H	665.0 (M + H)	4.02

Assay Procedures

Compounds identified and disclosed throughout this patent document were assayed according to the protocols found in co-pending patent application having U.S. Serial Number 09/826,509, which is incorporated herein by reference.

Example 3580

Preparation of Endogenous MCH Receptor.

The endogenous human MCH receptor was obtained by PCR using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence:

5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ.ID.NO.:1)

and the 3' primer contained an EcoRI site with the sequence:

5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ.ID.NO.:2).

The 1.3 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of CMVp expression vector. Later the cloning work by Lakaye et al showed that there is an intron the coding rgion of the gene. Thus the 5' end of the cDNA was obtained by 5' RACE PCR using Clontech's marathon-ready hypothalamus cDNA as template and the manufacturer's recommended protocol for cycling condition. The 5' RACE PCR for the first and second round PCR were as follows:

5'-CATGAGCTGGTGGATCATGAAGGG-3' (SEQ.ID.NO.:3) and

5'-ATGAAGGCCATGCCCAGGAGAAAG-3' (SEQ.ID.NO.:4).

Nucleic acid and amino acid sequences were thereafter determined and verified with the published sequences found on GenBank having Accession Number U71092.

Example 3581

Preparation of Non-Endogenous, Constitutively Active MCH Receptor.

Preparation of a non-endogenous version of the human MCH receptor was accomplished by creating a MCH-IC3-SST2 mutation (see; SEQ.ID.NO.:7 for nucleic acid sequence, and SEQ.ID.NO.:8 for amino acid sequence). Blast result showed that MCH receptor had the highest sequence homology to known SST2 receptor. Thus the third intracellular loop ("IC3") of MCH receptor was replaced with that of the IC3 of SST2

receptor to see if the chimera would show constitutive activity.

The BamHI-BstEII fragment containing IC3 of MCH receptor was replaced with synthetic oligonucleotides that contained the IC3 of SST2. The PCR sense mutagenesis primer used had the following sequence:

5'-GATCCTGCAGAAGGTGAAGTCCTCTGGAATCCGAGTGGGCTCCTCTAAGAG GAAGAAGTCTGAGAAGAAG-3' (SEQ.ID.NO.:9)

and the antisense primer had the following sequence:

5'-GTGACCTTCTCAGACTTCTTCCTCTTAGAGGAGCCCACTCGGATTCCAG AGGACTTCACCTTCTGCAG-3' (SEQ.ID.NO.:10).

The endogenous MCH receptor cDNA was used as a template.

Example 3582

GPCR Fusion Protein Preparation.

MCH Receptor-Giα Fusion Protein construct was made as follows: primers were designed for endogenous MCH receptor was as follows:

5'-GTGAAGCTTGCCCGGGCAGGATGGACCTGG-3' (SEQ.ID.NO.:11; sense)

5'-ATCTAGAGGTGCCTTTGCTTTCTG-3' (SEQ.ID.NO.:12; anitsense).

The sense and anti-sense primers included the restriction sites for KB4 and XbaI, respectively.

PCR was utilized to secure the respective receptor sequences for fusion within the Giα universal vector disclosed above, using the following protocol for each: 100ng cDNA for MCH receptor was added to separate tubes containing 2ul of each primer (sense and anti-sense), 3uL of 10mM dNTPs, 10uL of 10XTaqPlusTM Precision buffer, 1uL of TaqPlusTM Precision polymerase (Stratagene: #600211), and 80uL of water. Reaction temperatures and cycle times for MCH receptor were as follows: the initial denaturing step was done it 94°C for five minutes, and a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two minutes. A final extension time was done at 72°C for ten minutes. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with KB4 and XbaI (New England Biolabs) and the desired inserts will be isolated, purified and ligated into the Gi universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished

following the protocol set forth *infra*. Each positive clone for MCH receptor: Gi-Fusion Protein was sequenced and made available for the direct identification of candidate compounds. (*See*, SEQ.ID.NO.:13 for nucleic acid sequence and SEQ.ID.NO.:14 for amino acid sequence).

Endogenous version of MCH receptor was fused upstream from the G protein Gi and is located at nucleotide 1 through 1,059 (see, SEE.ID.NO.:13) and amino acid residue 1 through 353 (see, SEQ.ID.NO.:14). With respect to the MCH receptor, 2 amino acid residues (an equivalent of 6 nucleotides) were placed in between the endogenous (or non-endogenous) GPCR and the start codon for the G protein Gia. Therefore, the Gi protein is located at nucleotide 1,066 through 2,133 (see, SEQ.ID.NO.:13) and at amino acid residue 356 through 711 (see, SEQ.ID.NO.:14). Those skilled in the art are credited with the ability to select techniques for constructing a GPCR Fusion Protein where the G protein is fused to the 3' end of the GPCR of interest.

Example 3583

ASSAY FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

A. Intracellular IP₃ Accumulation Assay

On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually 1x10⁵ cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing 0.25ug DNA in 50 ul serum free DMEM/well and 2 ul lipofectamine in 50 μl serum-free DMEM/well. The solutions are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and 400 μl of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media is removed and replaced with 1ml/well of regular growth media. On day 3 the cells are labeled with ³H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25 μCi of ³H-myo-inositol/ well and the cells are incubated for 16-18 hrs o/n at 37°C/5%CO₂. On Day 4 the cells are washed with 0.5 ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10μM pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50 ul of 10x

ketanserin (ket) to final concentration of 10μM. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBS and 200 ul of fresh/ice cold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 μl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8TM anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with H₂O and stored at 4°C in water.

Reference is made to Figure 1. Figure 1 provides an illustration of IP₃ production from several non-endogenous, constitutively activated version of MCH receptor as compared with the endogenous version of this receptor. When compared to the endogenous version of MCH receptor ("MCH-R wt"), MCH-IC3-SST2 evidenced about a 27% increase in IP₃ accumulation.

Example 3584

Determination of Compound Using [35S]GTPyS ASSAY

Direct identification of candidate compounds was initially screened using [³⁵S]GTPγS Assay (see, Example 6 of co-pending patent application 09/826,509). Preferably, an MCH receptor: Gi Fusion Protein was utilized, according to Example 6(2) of co-pending patent application 09/826,509. Several lead hits were identified utilizing [³⁵S]GTPγS Assay.

Example 3585

High Throughput Functional Screening: FLIPR™

Subsequently, a functional based assay was used to confirm the lead hits, referred to as FLIPR™ (the Fluorometric Imaging Plate Reader) and FDSS6000™ (Functional

Drug Screening System). This assay utilized a non-endogenous version of the MCH receptor, which was created by swapping the third intracellular loop of the MCH receptor with that of the SST2 receptor (see Example 2(B)(2) of patent application serial number 09/826,509).

The FLIPR and FDSS assays are able to detect intracellular Ca²⁺ concentration in cells, which can be utilized to assess receptor activation and determine whether a candidate compound is an, for example, antagonist, inverse agonist or agonist to a Gq-coupled receptor. The concentration of free Ca²⁺ in the cytosol of any cell is extremely low, whereas its concentration in the extracellular fluid and endoplasmic reticulum (ER) is very high. Thus, there is a large gradient tending to drive Ca²⁺ into the cytosol across both the plasma membrane and ER. The FLIPRTM and FDSS6000TM systems (Molecular Devices Corporation, HAMAMATSU Photonics K.K.) are designed to perform functional cell-based assays, such as the measurement of intracellular calcium for high-throughput screening. The measurement of fluorescent is associated with calcium release upon activation of the Gq-coupled receptors. Gi or Go coupled receptors are not as easily monitored through the FLIPRTM and FDSS6000TM systems because these G proteins do not couple with calcium signal pathways.

To confirm the lead hits identified using the [35S]GTPγS assay, Fluorometric Imaging Plate Reader system was used to allow for rapid, kinetic measurements of intracellular fluorescence in 96 well microplates (or 384 well microplates). Simultaneous measurements of fluorescence in all wells can be made by FLIPR or FDSS6000TM every second with high sensitivity and precision. These systems are ideal for measuring cell-based functional assays such as monitoring the intracellular calcium fluxes that occur within seconds after activation of the Gq coupled receptor.

Briefly, the cells are seeded into 96 well at 5.5x10⁴ cells/well with complete culture media (Dulbecco's Modified Eagle Medium with 10 % fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.5 mg/ml G418, pH 7.4) for the assay next day. On the day of assay, the media is removed and the cells are incubated with 100 μl of loading buffer (4 μM Fluo4-AM in complete culture media containing 2.5 mM Probenicid, 0.5 mg/ml and 0.2% bovine serum albumin) in 5% CO₂ incubator at 37°C for 1 hr. The loading buffer is removed, and the cells are washed with wash buffer (Hank's Balanced Salt Solution containing 2.5 mM Probenicid, 20 mM HEPES, 0.5 mg/ml and 0.2% bovine

serum albumin, pH 7.4)). One hundred fifty µl of wash buffer containing various concentrations of test compound are added to the cells, and the cells are incubated in 5% CO₂ incubator at 37°C for 30 min. Fifty µl of wash buffer containing various concentration of MCH are added to each well, and transient changes in [Ca²⁺]i evoked by MCH are monitored using the FLIPR or FDSS in 96 well plates at Ex. 488 nm and Em. 530 nm for 290 second. When antagonist activity of compound is tested, 50 nM of MCH is used.

Use of FLIPR $^{\text{TM}}$ and FDSS6000 $^{\text{TM}}$ can be accomplished by following manufacturer's instruction (Molecular Device Corporation and HAMAMATSU Photonics K.K.).

The results were shown below.

Compound No.	IC ₅₀ value (nM)
Example 41	6
Example 42	19

It is intended that each of the patents, applications, printed publications, and other published documents mentioned or referred to in this specification be herein incorporated by reference in their entirety.

Those skilled in the art will appreciate that numerous changes and modifications may be made to the preferred embodiments of the invention and that such changes and modifications may be made without departing from the spirit of the invention. It is therefore intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.

What is claimed is:

1. A compound of Formula I:

$$Q V R_1$$

wherein Q is

R₁ represents

(i) C₁-C₁₆ alkyl,

C₁-C₁₆ alkyl substituted by substituent(s) independently selected from

- •halogen,
- •hydroxy,
- •oxo,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by substituent(s) independently selected from
- ••carbocyclic aryl,
- ••heterocyclyl,
- ••heterocyclyl substituted by C₁-C₃ alkyl,
- •C₁-C₃ alkylcarbonyloxy,
- ·carbocyclyloxy,
- •carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ··carbocyclic aryl,
- ••carbocyclic aryl substituted by C₁-C₃ alkoxy,

- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by substituent(s) independently selected from
- •••OXO,
- •••mono- or di-C₁-C₃ alkylamino,
- •••mono- or di-C₁-C₃ alkylamino substituted by carbocyclic aryl,
- •••mono- or di-C₁-C₃ alkylamino substituted by halogenated carbocyclic aryl,
- •••carbocyclic arylcarbonylamino,
- •••halogenated carbocyclic arylcarbonylamino,
- heterocyclyloxy,
- •heterocyclyloxy substituted by C₁-C₃ alkyl,
- •substituted heterocyclyl-ethylideneaminooxy,
- •C₁-C₃ alkoxycarbonyl,
- •C₁-C₃ alkoxycarbonyl substituted by carbocyclic aryl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl,
- •mono- or di-C₁-C₃ alkylamino,
- •mono- or di-C₁-C₃ alkylamino substituted by substituent(s) independently selected from
- ••cyano,
- ••carbocyclic aryl,
- ••heterocyclyl,
- •mono- or di-carbocyclic arylamino,
- •mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected from
- ••hydroxy,
- ••C₁-C₃ alkyl,
- •C₁-C₃ alkylcalbonylamino,
- •C₁-C₃ alkylcalbonylamino substituted by substituent(s) independently selected from
- ••C₁-C₃ alkylcalbonylamino,
- ··carbocyclic arylcalbonylamino,
- ··heterocyclyl,
- •C₁-C₄ alkoxycalbonylamino,
- ·heterocyclyl calbonylamino,
- ·carbocyclic arylsulfonylamino,

•carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from

- ••nitro,
- ••C₁-C₃ alkyl,
- ••mono- or di-C₁-C₃ alkylamino,
- •C₁-C₃ alkylthio,
- •C₁-C₃ alkylthio substituted by substituent(s) independently selected from
- ••mono- or di-carbocyclic arylaminocarbonyl,
- ••halogenated mono- or di-carbocyclic arylaminocarbonyl,
- ••mono- or di-carbocyclic arylamino,
- ••halogenated mono- or di-carbocyclic arylamino,
- ••carbocyclic aryl,
- ••carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- •••C₁-C₃ alkoxy,
- •carbocyclic arylthio,
- •carbocyclic arylthio substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ·carbocyclic arylsulfonyl,
- •halogenated carbocyclic arylsulfonyl,
- ·heterocyclylthio,
- •heterocyclylthio substituted by substituent(s) independently selected from
- ••nitro,
- ••C₁-C₃ alkyl,
- •C₃-C₆ cycloalkyl,
- •C₃-C₆ cycloalkyl substituted by C₁-C₃ alkyl,
- •C₃-C₆ cycloalkenyl,
- ·carbocyclyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,

```
••C<sub>2</sub>-C<sub>3</sub> alkenyl,
••C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,
••C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl substituted C<sub>1</sub>-C<sub>3</sub> alkylsulfinyl,
•carbocyclic aryl,
•carbocyclic aryl substituted by substituent(s) independently selected from
••halogen,
••hydroxy,
..nitro.
••C<sub>1</sub>-C<sub>4</sub> alkyl,
••C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
•••halogen,
•••hydroxy,
•••oxo,
•••carbocyclic aryl,
· · · heterocyclyl,
•••mono- or di-carbocyclic arylamino,
•••mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected
from
••••halogen,
••••nitro,
••••C<sub>1</sub>-C<sub>3</sub> alkyl,
••••C_1-C_3 alkoxy,
••••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,
••C<sub>1</sub>-C<sub>4</sub> alkoxy,
••C<sub>1</sub>-C<sub>4</sub> alkoxy substituted by substituent(s) independently selected from
•••halogen,
•••carbocyclic aryl,
••carbocyclic aryloxy,
••C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,
••C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
••mono- or di-carbocyclic arylamino,
```

- halogenated mono- or di-carbocyclic arylamino,
- mono- or di-carbocyclic arylaminocarbonyl,
- mono- or di-carbocyclic arylaminocarbonyl substituted by substituent(s) independently selected from
- •••halogen,
- •••nitro,
- •••C₁-C₃ alkyl,
- •••C₁-C₃ alkoxy,
- •••halogenated C1-C3 alkoxy,
- ••mercapto,
- ••C₁-C₃ alkylthio,
- ••halogenated C₁-C₃ alkylthio,
- ••C₁-C₃ alkylsulfonyl,
- ••C₃-C₆ cycloalkyl,
- ••carbocyclic aryl,
- ••heterocyclyl,
- •heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkyl substituted by carbocyclic aryl,
- ••C₁-C₃ alkoxy,
- ••C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- (ii) C₂-C₈ alkenyl,
- C2-C3 alkenyl substituted by substituent(s) independently selected from
- •halogen,
- •oxo,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryl,

```
•carbocyclic aryl substituted by substituent(s) independently selected from
```

- ··halogen,
- ••hydroxy,
- ..nitro,
- ••C₁-C₃ alkyl,
- ••halogenated C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- ••halogenated C₁-C₃ alkoxy,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••nitro,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,
- (iii) C2-C4 alkynyl,
- C2-C4 alkynyl substituted by carbocyclic aryl,
- (iv) C₃-C₆ cycloalkyl,
- C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from
- •C₁-C₃ alkyl,
- •C₁-C₃ alkyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••oxo,
- ··carbocyclic aryl,
- •mono- or di-C₁-C₃ alkylamino,
- •mono- or di-C₁-C₃ alkylamino substituted by carbocyclic aryl,
- •carbocyclic arylcarbonylamino,
- ·carbocyclic aryl,
- (v) C₃-C₆ cycloalkeyl,
- C₃-C₆ cycloalkeyl substituted by C₁-C₃ alkyl,
- (vi) carbocyclyl,
- carbocyclyl substituted by substituent(s) independently selected from
- hydroxy,

```
•nitro,
(vii) carbocyclic aryl,
carbocyclic aryl substituted by substituent(s) independently selected from
·halogen,
•hydroxy,
·cyano,
•nitro,
•C<sub>1</sub>-C<sub>9</sub> alkyl,
•C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from
••halogen,
••hydroxy,
••oxo,
••C<sub>1</sub>-C<sub>3</sub> alkoxy,
••carbocyclic aryloxy,
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino-N-oxy,
••mono- or di-C1-C3 alkylamino,
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,
••mono- or di-carbocyclic arylamino,
••carbocyclylimino,
••carbocyclylimino substituted by carbocyclic aryl,
••mono- or di-carbocyclic arylamino,
••mono- or di-carbocyclic arylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
••mono- or di-carbocyclic arylaminocarbonyl,
••mono- or di-carbocyclic arylaminocarbonyl substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
••carbocyclic aryl,
••carbocyclic aryl substituted by substituent(s) independently selected from
•••halogen,
•••C<sub>1</sub>-C<sub>3</sub> alkyl,
•••halogenated C1-C3 alkyl,
••heterocyclyl,
••heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
•C2-C3 alkenyl,
```

- •C₂-C₃ alkenyl substituted by carbocyclic aryl,
- •C₁-C₉ alkoxy,
- •C₁-C₉ alkoxy substituted by substituent(s) independently selected from
- ••hydroxy,
- ••halogen,
- ··carboxy,
- ••mono- or di-C₁-C₃ alkylamino,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- ••heterocyclyl,
- ••heterocyclyl substituted by substituent(s) independently selected from
- •••halogen,
- •••heterocyclyl,
- •••heterocyclyl substituted by substituent(s) independently selected from
- ••••halogen,
- •••• C_1 - C_3 alkyl,
- ••••halogenated C₁-C₃ alkyl,
- •C₂-C₃ alkenyloxy,
- •C₁-C₃ alkylcarbonyloxy,
- carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₄ alkyl,
- ••halogenated C1-C4 alkyl,
- ••C₁-C₃ alkoxy,
- ·heterocyclyloxy,
- •heterocyclyloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••halogenated C₁-C₃ alkyl,
- •(carbocyclic aryl)S(O)₂O,

```
carboxy,
```

- •C₁-C₃ alkoxycarbonyl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl substituted by carbocyclic aryl,
- •mono- or di-carbocyclic arylaminocarbonyl,
- •mono- or di-carbocyclic arylaminocarbonyl substituted by C₁-C₃ alkyl,
- ·amino,
- •mono- or di-C₁-C₄ alkylamino,
- •mono- or di-C₁-C₄ alkylamino substituted by cyano,
- •mono- or di-carbocyclic arylamino,
- •C₁-C₃ alkynylcarbonylamino,
- •C₁-C₃ alkynylcarbonylamino substituted by carbocyclic aryl,
- ·carbocyclic arylsulfonylamino,
- •carbocyclic arylsulfonylamino substituted by C₁-C₃ alkyl,
- •(carbocyclic aryl)NHC(O)NH,
- •(carbocyclic aryl)NHC(O)NH substituted by C₁-C₃ alkoxy,
- •(carbocyclic aryl)NHC(O)NH substituted by haloganated C₁-C₃ alkoxy,
- ·carbocyclic aryl diazo,
- •carbocyclic aryl diazo substituted by mono- or di- C₁-C₃ alkylamino,
- •C₁-C₃ alkylthio,
- •halogenated C₁-C₃ alkylthio,
- ·carbocyclic arylthio,
- •carbocyclic arylthio substituted by substituent(s) independently selected from
- ••halogen,
- ••cyano,
- ••C₁-C₃ alkyl,
- ·heterocyclylthio,
- •C₁-C₃ alkylsulfonyl,
- •mono- or di-C₁-C₃ alkylaminosulfonyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••C₁-C₇ alkyl,

```
••halogenated C1-C7 alkyl,
```

- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- (viii) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- •hydroxy,
- ·cyano,
- •nitro,
- •C₁-C₄ alkyl,
- •C₁-C₄ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••oxo,
- ••C₁-C₃ alkylcarbonyloxy,
- ··carbocyclic arylcarbonylamino,
- ••halogenated carbocyclic arylcarbonylamino,
- ••C₁-C₃ alkoxycarbonyl,
- ••C₁-C₃ alkylthio,
- ••C₁-C₃ alkylthio substituted by carbocyclic aryl,
- ••C₁-C₃ alkylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ••carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- •••nitro,
- ••heterocyclyl,
- ••heterocyclyl substituted by substituent(s) independently selected from
- · · · halogen,
- •••C₁-C₃ alkyl,

- •••halogenated C₁-C₃ alkyl,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ··halogen,
- ••C₁-C₃ alkyl,
- •mono- or di-C₁-C₃ alkylamino,
- •C₁-C₄ alkylcarbonylamino,
- •C₁-C₃ alkylthio,
- •C₁-C₃ alkenylthio,
- ·carbocyclic arylthio,
- ·halogenated carbocyclic arylthio,
- •carbocyclic arylthio substituted by C₁-C₃ alkoxycarbonyl,
- ·heterocyclylthio,
- •heterocyclylthio substituted by C₁-C₃ alkyl,
- •C₁-C₃ alkylsulfonyl,
- ·carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl,
- •carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- •C₁-C₃ alkoxycarbonyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₃ alkyl,
- ••halogenated C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- ••halogenated C₁-C₃ alkoxy,
- •heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••halogen,

- ••C₁-C₃ alkyl,
- ••halogenated C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,
- ••C₁-C₃ alkoxycarbonyl;

 R_2 is -NHNH₂, -NHNHBoc, -N(R_{2a})(R_{2b}), morpholino, 4-acetyl-piperazyl, or 4-phenyl-piperazyl;

wherein R_{2a} is H or C₁-C₃ alkyl;

R_{2b} is C₁-C₄ alkyl, C₁-C₄ alkyl substituted by substituent(s) independently selected from •hydroxy,

- •C₁-C₃ alkoxy,
- ·amino,
- •-NHBoc,
- •C₃-C₆ cycloalkyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,
- ••-SO₂NH₂,
- •heterocyclyl,

C₃-C₆ cycloalkyl, carbocyclic aryl, carbocyclic aryl substituted by substituent(s) independently selected from

- ·halogen,
- •C₁-C₃ alkyl,
- •C₁-C₃ alkoxy,

or a group of Formula IV;

wherein Boc is carbamic acid tert-butyl ester and R₃ is C₁-C₃ alkyl or C₁-C₃ alkyl

substituted by substituent(s) independently selected from

- •carbocyclic aryl,
- •halogenated carbocyclic aryl,
- •carbocyclic aryl substituted by C₁-C₃ alkoxy;

L is selected from Formula V - XIX;

wherein R₄ is H or C₁-C₃ alkyl;

 R_5 is H, C_1 - C_3 alkyl, or C_1 - C_3 alkyl substituted by a substituted carbocyclic aryl; Y is -S(O)₂-, -C(O)-, or -(CH₂)_m;

m is 0 or 1;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, biphenyl, or phenanthryl; carbocyclyl is 10,11-dihydro-5-oxo-dibenzo[a,d]cycloheptyl, 1-oxo-indanyl, 7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptyl, 9*H*-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, *C*-fluoren-9-ylidene, indanyl, indenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3,4-thiadiazolyl, 1,3-dioxo-isoindolyl, 1,3-dioxolanyl, 1*H*-indolyl, 1*H*-pyrrolo[2,3-c]pyridyl, 1*H*-pyrrolyl, 1-oxo-3*H*-isobenzofuranyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2*H*-benzo[1,4]oxazinyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4*H*-benzo[1,3]dioxinyl, 4*H*-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9*H*-carbazolyl, 9*H*-xanthenyl, azetidinyl, benzimidazolyl, benzofuryl, benzothiazolyl, cinnolyl, furyl, imidazo[2,1-b]thiazolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxazolyl, oxolanyl, piperazyl, piperidyl, piridyl, pyrazolo[5,1-b]thiazolyl, thienyl, thiolanyl, 2,3-

dihydro-benzofuryl, tetrahydro-thienyl, or benzofuranyl; halogen is fluoro, chloro, bromo, or iodo; or a salt thereof. 2. A compound according to claim 1, wherein Q is Fomura II; R₁ represents (i) C_1 - C_{10} alkyl, C₁-C₁₀ alkyl substituted by substituent(s) independently selected from ·halogen, •oxo, •C₁-C₃ alkoxy, •C₁-C₃ alkoxy substituted by carbocyclic aryl, •C₁-C₃ alkylcarbonyloxy, ·carbocyclyloxy, ·carbocyclic aryloxy, •carbocyclic aryloxy substituted by substituent(s) independently selected from ••halogen, ..nitro, ••C₁-C₄ alkyl, ••C₁-C₄ alkyl substituted by substituent(s) independently selected from •••oxo, ···carbocyclic arylcarbonylamino, •••halogenated carbocyclic arylcarbonylamino, ·heterocyclyloxy, •heterocyclyloxy substituted by C₁-C₃ alkyl, •substituted heterocyclyl-ethylideneaminooxy, •C₁-C₃ alkoxycarbonyl, •C₁-C₃ alkoxycarbonyl substituted by carbocyclic aryl, •mono- or di-C₁-C₃ alkylaminocarbonyl,

mono- or di-carbocyclic arylamino substituted by hydroxy,
C₁-C₃ alkylcalbonylamino,

•mono- or di-carbocyclic arylamino,

•C₁-C₃ alkylcalbonylamino substituted by substituent(s) independently selected from

- ••C₁-C₃ alkylcalbonylamino,
- ••carbocyclic arylcalbonylamino,
- ••heterocyclyl,
- •C₁-C₄ alkoxycalbonylamino,
- ·heterocyclyl calbonylamino,
- ·carbocyclic arylsulfonylamino,
- •carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from
- ..nitro,
- ••C₁-C₃ alkyl,
- ••mono- or di-C₁-C₃ alkylamino,
- •C₁-C₃ alkylthio,
- •C₁-C₃ alkylthio substituted by substituent(s) independently selected from
- ••mono- or di-carbocyclic arylaminocarbonyl,
- ••halogenated mono- or di-carbocyclic arylaminocarbonyl,
- ••carbocyclic aryl,
- ••carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- •••C₁-C₃ alkoxy,
- ·carbocyclic arylthio,
- •carbocyclic arylthio substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- •carbocyclic arylsulfonyl,
- •halogenated carbocyclic arylsulfonyl,
- ·heterocyclylthio,
- •heterocyclylthio substituted by substituent(s) independently selected from
- ••nitro,
- ••C₁-C₃ alkyl,
- •C₃-C₆ cycloalkyl,
- •C₃-C₆ cycloalkyl substituted by C₁-C₃ alkyl,
- •C₃-C₆ cycloalkenyl,

- carbocyclyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,
- ••C₂-C₃ alkenyl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl,
- ••C₂-C₃ alkenyl substituted by carbocyclic aryl substituted C₁-C₃ alkylsulfinyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••nitro,
- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by substituent(s) independently selected from
- •••oxo,
- •••carbocyclic aryl,
- •••heterocyclyl,
- ••C₁-C₄ alkoxy,
- ••C₁-C₄ alkoxy substituted by substituent(s) independently selected from
- •••halogen,
- •••carbocyclic aryl,
- · carbocyclic aryloxy,
- ••C₁-C₃ alkylcarbonyloxy,
- ••mono- or di-carbocyclic arylamino,
- ••halogenated mono- or di-carbocyclic arylamino,
- ••mono- or di-carbocyclic arylaminocarbonyl,
- ••mono- or di-carbocyclic arylaminocarbonyl substituted by substituent(s) independently selected from
- •••halogen,
- •••nitro,
- ••• C_1 - C_3 alkyl,

- •••C₁-C₃ alkoxy,
- •••halogenated C₁-C₃ alkoxy,
- ••mercapto,
- ••C₁-C₃ alkylthio,
- ••halogenated C1-C3 alkylthio,
- ••C₁-C₃ alkylsulfonyl,
- ••C₃-C₆ cycloalkyl,
- ••carbocyclic aryl,
- ••heterocyclyl,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkyl substituted by carbocyclic aryl,
- ••C₁-C₃ alkoxy,
- ••C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- (ii) C2-C6 alkenyl,
- C2-C6 alkenyl substituted by substituent(s) independently selected from
- •oxo,
- •carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₃ alkyl,
- ••halogenated C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- ••halogenated C1-C3 alkoxy,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- •• hydroxy,

```
••C<sub>1</sub>-C<sub>3</sub> alkyl,
```

- ••C₁-C₃ alkoxy,
- (iii) C₃-C₆ cycloalkyl,

C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from

- •C₁-C₃ alkyl,
- •C₁-C₃ alkyl substituted by substituent(s) independently selected from
- ••oxo,
- ··carbocyclic aryl,
- •carbocyclic arylcarbonylamino,
- ·carbocyclic aryl,
- (iv) carbocyclyl,

carbocyclyl substituted by nitro,

(v) carbocyclic aryl,

carbocyclic aryl substituted by substituent(s) independently selected from

- ·halogen,
- •hydroxy,
- •cyano,
- •nitro,
- •C₁-C₉ alkyl,
- •C₁-C₉ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••oxo,
- ··carbocyclic aryloxy,
- ••carbocyclylimino,
- ••carbocyclylimino substituted by carbocyclic aryl,
- ••mono- or di-carbocyclic arylaminocarbonyl,
- ••mono- or di-carbocyclic arylaminocarbonyl substituted by C₁-C₃ alkoxy,
- ••carbocyclic aryl,
- ••carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- ••• C_1 - C_3 alkyl,
- •••halogenated C₁-C₃ alkyl,

- ••heterocyclyl,
- ••heterocyclyl substituted by C₁-C₃ alkyl,
- •C₁-C₇ alkoxy,
- •C₁-C₇ alkoxy substituted by substituent(s) independently selected from
- ••halogen,
- ··carbocyclic aryl,
- •C₁-C₃ alkylcarbonyloxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by C1-C3 alkoxy,
- •C₁-C₃ alkoxycarbonyl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl substituted by carbocyclic aryl,
- •mono- or di-carbocyclic arylaminocarbonyl,
- •mono- or di-carbocyclic arylaminocarbonyl substituted by C₁-C₃ alkyl,
- ·amino,
- •mono- or di-C₁-C₃ alkylamino,
- •C1-C3 alkynylcarbonylamino,
- •C₁-C₃ alkynylcarbonylamino substituted by carbocyclic aryl,
- ·carbocyclic arylsulfonylamino,
- •carbocyclic arylsulfonylamino substituted by C1-C3 alkyl,
- •(carbocyclic aryl)NHC(O)NH,
- •(carbocyclic aryl)NHC(O)NH substituted by C₁-C₃ alkoxy,
- •(carbocyclic aryl)NHC(O)NH substituted by haloganated C₁-C₃ alkoxy,
- •C₁-C₃ alkylthio,
- •halogenated C1-C3 alkylthio,
- •carbocyclic arylthio,
- •carbocyclic arylthio substituted by cyano,
- •C₁-C₃ alkylsulfonyl,
- •mono- or di-C₁-C₃ alkylaminosulfonyl,
- •carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••C₁-C₇ alkyl,

- ••halogenated C₁-C₇ alkyl,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- (vi) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- •nitro,
- •C₁-C₄ alkyl,
- •C₁-C₄ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••oxo,
- ••C₁-C₃ alkylthio,
- ••C₁-C₃ alkylthio substituted by carbocyclic aryl,
- ••C₁-C₃ alkylthio substituted by halogenated carbocyclic aryl,
- ••carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- ••heterocyclyl,
- •C₁-C₃ alkoxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- •C₁-C₃ alkylthio,
- •C₁-C₃ alkenylthio,
- ·carbocyclic arylthio,
- •C₁-C₃ alkylsulfonyl,
- •carbocyclic arylsulfonyl,
- •halogenated carbocyclic arylsulfonyl,
- •carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,

```
•carbocyclic aryl,
```

- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,
- •heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ••halogenated C₁-C₃ alkyl;

Y is -C(O)-;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl; carbocyclyl is 10,11-dihydro-5-oxo-dibenzo[a,d]cycloheptyl, 1-oxo-indanyl, 9*H*-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, *C*-fluoren-9-ylidene, indanyl, indenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-dioxo-isoindolyl, 1*H*-indolyl, 1*H*-pyrrolyl, 1-oxo-3*H*-isobenzofuranyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,3-dihydro-benzofuryl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9*H*-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, cinnolyl, furyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxazolyl, oxolanyl, piperidyl, piridyl, pyridyl, pyridyl, pyrimidyl, pyrrolidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

3. A compound according to claim 2, wherein

R₁ represents

(i) C1-C10 alkyl,

C₁-C₁₀ alkyl substituted by substituent(s) independently selected from

- •oxo,
- •di-propylaminocarbonyl,
- •methoxy substituted by carbocyclic aryl,
- methylcarbonyloxy,
- ·carbocyclic aryloxy,
- •halogenated carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by nitro,
- •heterocyclyloxy substituted by methyl,
- •substituted heterocyclyl-ethylideneaminooxy,
- •tert-butoxycarbonylamino,
- •carbocyclic arylcarbonylamino,
- •C₁-C₂ alkylthio,
- •C1-C2 alkylthio substituted by substituent(s) independently selected from
- ••halogenated carbocyclic aryl,
- ••carbocyclic aryl substituted by methoxy,
- ·carbocyclic arylthio,
- •hetrocyclylthio substituted by nitro,
- •hetrocyclylthio substituted by methyl,
- •C₅-C₆ cycloalkyl,
- •C5-C6 cycloalkenyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••methyl,
- ••methoxy,
- ••ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••nitro,
- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by substituent(s) independently selected from

- •••oxo,
- •••carbocyclic aryl,
- •••heterocyclyl,
- ••C₁-C₄ alkoxy,
- ••halogenated C₁-C₄ alkoxy,
- ••C₁-C₄ alkoxy substituted by carbocyclic aryl,
- ••carbocyclic aryloxy,
- ••halogenated mono-carbocyclic arylaminocarbonyl,
- ··carbocyclic aryl,
- ••heterocyclyl,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₂ alkyl,
- •• C₁-C₂ substituted by carbocyclic aryl,
- ••methoxy,
- ••methoxy substituted by carbocyclic aryl,
- ••carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- (ii) C2-C3 alkenyl substituted by substituent(s) independently selected from
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- •carbocyclic aryl substituted by nitro,
- (iii) C₃-C₆ cycloalkyl,
- C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from
- •methyl substituted by oxo,
- •methyl substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- (iv) carbocyclyl,
- (v) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- •hydroxy,

```
·cyano,
•nitro,
•C<sub>1</sub>-C<sub>9</sub> alkyl,
•C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from
••halogen,
••oxo,
··carbocyclic aryl,
••carbocyclic aryl substituted by methyl,
••carbocyclic aryloxy,
•C<sub>1</sub>-C<sub>7</sub> alkoxy,
•halogenated C<sub>1</sub>-C<sub>7</sub> alkoxy,
•C<sub>1</sub>-C<sub>7</sub> alkoxy substituted by carbocyclic aryl,
·methylcarbonyloxy,
·carbocyclic aryloxy,
•carbocyclic aryloxy substituted by methoxy,
•amino,
•di-methylamino,
•propargynylcarbonylamino substituted by carbocyclic aryl.
•carbocyclic arylsulfonylamino substituted by methyl,
•(carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
·halogenated methylthio,
•carbocyclic arylthio substituted by cyano,
•di-propylamino sulfonyl,
•mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,
·carbocyclic aryl,
•heterocyclyl substituted by methyl,
•heterocyclyl substituted by halogenated carbocyclic aryl,
(vi) heterocyclyl,
or heterocyclyl substituted by substituent(s) independently selected from
•halogen,
```

nitro,

•C₁-C₄ alkyl,

•C₁-C₄ alkyl substituted by substituent(s) independently selected from

```
••halogen,
```

- methylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- ••heterocyclyl,
- ·methoxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by methyl,
- •C₁-C₃ alkylthio,
- •propenylthio,
- ·carbocyclic arylthio,
- •C₁-C₃ alkylsulfonyl,
- •carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- ·carbocyclic aryl substituted by methyl,
- •carbocyclic aryl substituted by nitro,
- •heterocyclyl;

R₂ is methylamino or dimethylamino;

L is selected from Formula Va, VIIIa, or IXa;

wherein R₄ and R₅ are independently selected from H or C₁-C₃ alkyl;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

carbocyclyl is 1-oxo-indanyl, 9-oxo-fluorenyl, indenyl, anthraquinonyl, *C*-fluoren-9-ylidene, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2,2,1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-dioxo-isoindolyl, 1*H*-indolyl, 1*H*-pyrrolyl, 1-oxo-3*H*-isobenzofuranyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 2-oxo-benzopyranyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9*H*-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl,

morpholino, morpholinyl, oxolanyl, piperidyl, piridyl, pyrazolyl, pyridyl, quinolyl,

quinoxalyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2-oxo-pyrrolidinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, cinnolyl, pyrrolidyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

- 4. A compound according to claim 3, wherein
- R₁ represents
- (i) C₁-C₁₀ alkyl substituted by substituent(s) independently selected from
- •oxo,
- •di-propylaminocarbonyl,
- •methoxy substituted by carbocyclic aryl,
- ·methylcarbonyloxy,
- ·carbocyclic aryloxy,
- halogenated carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by nitro,
- •heterocyclyloxy substituted by methyl,
- •substituted heterocyclyl-ethylideneaminooxy,
- •tert-butoxycarbonylamino,
- •carbocyclic arylcarbonylamino,
- •C₁-C₂ alkylthio,
- •C₁-C₂ alkylthio substituted by substituent(s) independently selected from
- ••halogenated carbocyclic aryl,
- ••carbocyclic aryl substituted by methoxy,
- ·carbocyclic arylthio,
- •hetrocyclylthio substituted by nitro,
- •hetrocyclylthio substituted by methyl,
- •C₅-C₆ cycloalkenyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••methyl,
- ••methoxy,

- ••ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••nitro,
- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by substituent(s) independently selected from
- •••oxo,
- •••carbocyclic aryl,
- · · · heterocyclyl,
- ••C₁-C₄ alkoxy,
- ••halogenated C₁-C₄ alkoxy,
- ••C₁-C₄ alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryloxy,
- halogenated mono-carbocyclic arylaminocarbonyl,
- ··carbocyclic aryl,
- ··heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₂ alkyl,
- •• C₁-C₂ substituted by carbocyclic aryl,
- ••methoxy,
- ••methoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- (ii) C₂-C₃ alkenyl substituted by substituent(s) independently selected from
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- •carbocyclic aryl substituted by nitro,
- (iii) C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from
- ·methyl substituted by oxo,
- •methyl substituted by carbocyclic aryl,
- ·carbocyclic aryl,

- (iv) carbocyclyl,
- (v) carbocyclic aryl substituted by substituent(s) independently selected from
- •halogen,
- •hydroxy,
- •cyano,
- •nitro,
- •C₁-C₉ alkyl,
- •C₁-C₉ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••oxo,
- ··carbocyclic aryl,
- ··carbocyclic aryl substituted by methyl,
- ••carbocyclic aryloxy,
- •C₁-C₇ alkoxy,
- •halogenated C1-C7 alkoxy,
- •C₁-C₇ alkoxy substituted by carbocyclic aryl,
- ·methylcarbonyloxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by methoxy.
- ·amino,
- •di-methylamino,
- •propargynylcarbonylamino substituted by carbocyclic aryl,
- •carbocyclic arylsulfonylamino substituted by methyl,
- •(carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
- ·halogenated methylthio,
- •carbocyclic arylthio substituted by cyano,
- •di-propylamino sulfonyl,
- •mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- •heterocyclyl substituted by methyl,
- •heterocyclyl substituted by halogenated carbocyclic aryl,
- (vi) or heterocyclyl substituted by substituent(s) independently selected from

- ·halogen,
- ·nitro,
- •C₁-C₄ alkyl,
- •C1-C4 alkyl substituted by substituent(s) independently selected from
- ··halogen,
- •methylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- ••heterocyclyl,
- ·methoxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by methyl,
- •C₁-C₃ alkylthio,
- propenylthio,
- ·carbocyclic arylthio,
- •C₁-C₃ alkylsulfonyl,
- •carbocyclic arylsulfonyl,
- •carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- •carbocyclic aryl substituted by methyl,
- ·carbocyclic aryl substituted by nitro,
- •heterocyclyl;

L is selected from Formula XX - XXII;

wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl; carbocyclyl is 1-oxo-indanyl, 9-oxo-fluorenyl, indenyl, anthraquinonyl, C-fluoren-

9-ylidene, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1*H*-indolyl, 1*H*-pyrrolyl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 4-oxo-benzopyranyl, azetidinyl, benzo[b]thienyl, furyl, isoxazolyl, morpholinyl, piperidyl, piridyl, pyrazolyl, pyridyl, quinolyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 9*H*-xanthenyl, cinnolyl, imidazolyl, morpholino, pyrimidyl, pyrrolidyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

- 5. A compound according to claim 4, wherein
- R₁ represents
- (i) C1-C5 alkyl substituted by substituent(s) independently selected from
- •oxo,
- ·di-propylaminocarbonyl,
- •methoxy substituted by carbocyclic aryl,
- methylcarbonyloxy,
- ·carbocyclic aryloxy,
- halogenated carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by nitro,
- •heterocyclyloxy substituted by methyl.
- •substituted heterocyclyl-ethylideneaminooxy,
- •tert-butoxycarbonylamino,
- •carbocyclic arylcarbonylamino,
- •C₁-C₂ alkylthio,
- •C1-C2 alkylthio substituted by substituent(s) independently selected from
- ••halogenated carbocyclic aryl,
- ••carbocyclic aryl substituted by methoxy.
- ·carbocyclic arylthio,
- •hetrocyclylthio substituted by nitro,
- •hetrocyclylthio substituted by methyl,

- •cyclohexenyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••methyl,
- ••methoxy,
- ••ethenyl substituted by carbocyclic aryl substituted methylsulfinyl.
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••nitro,
- · · C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by substituent(s) independently selected from
- •••oxo,
- · · · carbocyclic aryl,
- •••heterocyclyl,
- ••C₁-C₂ alkoxy,
- ••halogenated C1-C2 alkoxy,
- ••C₁-C₂ alkoxy substituted by carbocyclic aryl,
- ••carbocyclic aryloxy,
- ••halogenated mono-carbocyclic arylaminocarbonyl,
- ··carbocyclic aryl,
- ··heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₂ alkyl,
- •• C₁-C₂ substituted by carbocyclic aryl,
- ••methoxy,
- ••methoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl.
- (ii) C2-C3 alkenyl substituted by substituent(s) independently selected from
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,

- •carbocyclic aryl substituted by nitro,
- (iii) C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from
- •methyl substituted by oxo,
- •methyl substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- (iv) carbocyclyl,
- (v) carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- •hydroxy,
- ·cyano,
- ·nitro,
- •C₁-C₄ alkyl,
- •C₁-C₂ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••oxo,
- ··carbocyclic aryl,
- ••carbocyclic aryl substituted by methyl.
- ··carbocyclic aryloxy,
- •C₁-C₂ alkoxy,
- •halogenated C1-C2 alkoxy,
- •C₁-C₂ alkoxy substituted by carbocyclic aryl,
- ·methylcarbonyloxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by methoxy,
- ·amino,
- ·di-methylamino,
- •propargynylcarbonylamino substituted by carbocyclic aryl,
- •carbocyclic arylsulfonylamino substituted by methyl,
- •(carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
- ·halogenated methylthio,
- •carbocyclic arylthio substituted by cyano,
- ·di-propylamino sulfonyl,

```
mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,
carbocyclic aryl,
heterocyclyl substituted by methyl,
```

- •heterocyclyl substituted by halogenated carbocyclic aryl,
- (vi) or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- •nitro,
- •C₁-C₄ alkyl,
- •C1-C4 alkyl substituted by substituent(s) independently selected from
- ••halogen.
- methylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- ··heterocyclyl,
- ·methoxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by methyl,
- •C₁-C₃ alkylthio,
- •propenylthio,
- ·carbocyclic arylthio,
- •C₁-C₃ alkylsulfonyl,
- •carbocyclic arylsulfonyl,
- ·carbocyclic arylsulfonyl substituted by methyl,
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- •carbocyclic aryl substituted by methyl,
- ·carbocyclic aryl substituted by nitro,
- •heterocyclyl;

wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;

carbocyclyl is 1-oxo-indanyl, indenyl, 9-oxo-fluorenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1H-indolyl, 2,4-dihydro-3-oxo-pyrazolyl, furyl, pyrazolyl, pyridyl,

thienyl, 1,2,3-triazolyl, 1*H*-pyrrolyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2*H*-benzopyranyl, 2-oxo-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, pyrazolyl, pyrimidyl, quinolyl, thiazolyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

6. A compound according to claim 5 of Formua I selected from the group consisting of

N N N P F F N CI

; or, in case of, a salt thereof.

7. A compound according to claim 3, wherein R_1 represents

- (i) C_1 - C_{10} alkyl,
- C₁-C₁₀ alkyl substituted by substituent(s) independently selected from
- •C₅-C₆ cycloalkyl,
- ·carbocyclic aryl,
- •heterocyclyl,
- (ii) C3-C6 cycloalkyl,
- (iii) carbocyclic aryl,
- (iv) or heterocyclyl;

L is selected from Formula XX - XXII;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

heterocyclyl is 1,3-dioxo-isoindolyl, 1*H*-indolyl, 1-oxo-3*H*-isobenzofuranyl, 2,3-dihydro-benzo[1,4]dioxinyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4-oxo-3,4-dihydro-phthalazinyl, 9,10,10-trioxo-thioxanthenyl, 9*H*-xanthenyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, morpholino, oxolanyl, piperidyl, pyridyl, quinoxalyl, thienyl, quinolyl, or benzothiazolyl; or a salt thereof.

- 8. A compound according to claim 7, wherein
- R₁ represents
- (i) C₁-C₄ alkyl,
- C₁-C₄ alkyl substituted by substituent(s) independently selected from
- •cyclopentyl,
- •carbocyclic aryl,
- ·heterocyclyl,
- (ii) carbocyclic aryl,
- (iii) or heterocyclyl;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl; heterocyclyl is 9*H*-xanthenyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, thienyl, 1*H*-indolyl, quinoxalyl, quinolyl, or benzothiazolyl;

or a salt thereof.

9. A compound according to claim 8 of Formua I thereof selected from the group consisting of

; or, in case of, a salt thereof.

10. A compound according to claim 1, wherein Q is Fomura II; R_1 represents

- (i) C₁-C₁₀ alkyl,
- C₁-C₁₀ alkyl substituted by substituent(s) independently selected from
- •halogen,
- ·hydroxy,
- oxo,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by substituent(s) independently selected from
- ••carbocyclic aryl,
- ··heterocyclyl,
- ••heterocyclyl substituted by C₁-C₃ alkyl,
- •carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ··carbocyclic aryl,
- ••carbocyclic aryl substituted by C1-C3 alkoxy,
- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by substituent(s) independently selected from
- •••mono- or di-C1-C3 alkylamino,
- •••mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,
- •••mono- or di-C₁-C₃ alkylamino substituted by halogenated carbocyclic aryl,
- •mono- or di-C1-C3 alkylamino,
- •mono- or di-C₁-C₃ alkylamino substituted by substituent(s) independently selected from
- ••cyano,
- ••carbocyclic aryl,
- ••heterocyclyl,
- •mono- or di-carbocyclic arylamino,
- •mono- or di-carbocyclic arylamino substituted by C1-C3 alkyl,
- •C₁-C₃ alkylcalbonylamino,
- •C₁-C₄ alkoxycalbonylamino,

- •carbocyclic arylsulfonylamino,
- •carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from
- ••nitro,
- ••C₁-C₃ alkyl,
- ••mono- or di-C₁-C₃ alkylamino,
- •C₁-C₃ alkylthio,
- •C₁-C₃ alkylthio substituted by substituent(s) independently selected from
- ••mono- or di-carbocyclic arylamino,
- ••halogenated mono- or di-carbocyclic arylamino,
- ••carbocyclic aryl,
- ••carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- •••C₁-C₃ alkoxy,
- •carbocyclic arylthio,
- •carbocyclic arylthio substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- •carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl,
- ·heterocyclylthio,
- •C₃-C₆ cycloalkyl,
- •C₃-C₆ cycloalkyl substituted by C₁-C₃ alkyl,
- ·carbocyclyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••C₂-C₃ alkenyl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl substituted C1-C3 alkylsulfinyl,
- carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,

```
••hydroxy,
••nitro,
••C<sub>1</sub>-C<sub>4</sub> alkyl,
••C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
•••halogen,
•••hydroxy,
•••carbocyclic aryl,
•••mono- or di-carbocyclic arylamino,
•••mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected
from
••••halogen,
••••nitro,
••••C<sub>1</sub>-C<sub>3</sub> alkyl,
••••C<sub>1</sub>-C<sub>3</sub> alkoxy,
••••halogenated C1-C3 alkoxy,
••C<sub>1</sub>-C<sub>3</sub> alkoxy,
••C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by substituent(s) independently selected from
•••halogen,
•••carbocyclic aryl,
••carbocyclic aryloxy,
••C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,
••mono- or di-C1-C3 alkylamino,
••C<sub>1</sub>-C<sub>3</sub> alkylthio,
••halogenated C1-C3 alkylthio,
••C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
••C<sub>3</sub>-C<sub>6</sub> cycloalkyl,
••carbocyclic aryl,
••heterocyclyl,
•heterocyclyl,
•heterocyclyl substituted by substituent(s) independently selected from
••C<sub>1</sub>-C<sub>3</sub> alkyl,
••C<sub>1</sub>-C<sub>3</sub> alkoxy,
```

- ••C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- (ii) C2-C8 alkenyl,
- C2-C8 alkenyl substituted by substituent(s) independently selected from
- ·halogen,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••C₁-C₃ alkoxy,
- ••halogenated C₁-C₃ alkoxy,
- ·heterocyclyl,
- •heterocyclyl substituted by nitro,
- (iii) C2-C4 alkynyl,
- C₂-C₄ alkynyl substituted by carbocyclic aryl,
- (iv) C₃-C₆ cycloalkyl,
- C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from
- •C₁-C₃ alkyl,
- •C₁-C₃ alkyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••oxo,
- ••carbocyclic aryl,
- •mono- or di-C₁-C₃ alkylamino,
- •mono- or di-C₁-C₃ alkylamino substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- (v) C3-C6 cycloalkeyl,
- C₃-C₆ cycloalkeyl substituted by C₁-C₃ alkyl,
- (vi) carbocyclyl,
- carbocyclyl substituted by substituent(s) independently selected from

```
·hydroxy,
•nitro,
(vii) carbocyclic aryl,
carbocyclic aryl substituted by substituent(s) independently selected from
·halogen,
hydroxy,
•cyano,
•nitro,
•C<sub>1</sub>-C<sub>9</sub> alkyl,
•C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from
••halogen,
••hydroxy,
••oxo,
••C<sub>1</sub>-C<sub>3</sub> alkoxy,
••carbocyclic aryloxy,
••mono- or di-C1-C3 alkylamino-N-oxy,
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,
••mono- or di-carbocyclic arylamino,
••mono- or di-carbocyclic arylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
··carbocyclic aryl,
••halogenated carbocyclic aryl,
••heterocyclyl,
••heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
•C<sub>2</sub>-C<sub>3</sub> alkenyl,
•C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,
•C<sub>1</sub>-C<sub>9</sub> alkoxy,
•C1-C9 alkoxy substituted by substituent(s) independently selected from
••hydroxy,
••halogen,
..carboxy,
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
```

- ··carbocyclic aryl,
- ••halogenated carbocyclic aryl,
- ··heterocyclyl,
- ••heterocyclyl substituted by substituent(s) independently selected from
- •••heterocyclyl,
- •••heterocyclyl substituted by substituent(s) independently selected from
- ••••halogen,
- ····C₁-C₃ alkyl,
- ••••halogenated C1-C3 alkyl,
- •C₂-C₃ alkenyloxy,
- •C₁-C₃ alkylcarbonyloxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₄ alkyl,
- ••halogenated C₁-C₄ alkyl,
- ••C₁-C₃ alkoxy,
- ·heterocyclyloxy,
- •heterocyclyloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••halogenated C₁-C₃ alkyl,
- •(carbocyclic aryl)S(O)2O,
- ·carboxy,
- •C₁-C₃ alkoxycarbonyl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl,
- •mono- or di-C₁-C₃ alkylaminocarbonyl substituted by carbocyclic aryl,
- •amino,
- •mono- or di-C₁-C₄ alkylamino,
- •mono- or di-C₁-C₄ alkylamino substituted by cyano,
- •mono- or di-carbocyclic arylamino,
- •C₁-C₃ alkylcarbonylamino,

```
•carbocyclic arylsulfonylamino,
```

- •carbocyclic arylsulfonylamino substituted by C₁-C₃ alkyl,
- •(carbocyclic aryl)NHC(O)NH,
- •(carbocyclic aryl)NHC(O)NH substituted by C₁-C₃ alkoxy,
- •(carbocyclic aryl)NHC(O)NH substituted by haloganated C₁-C₃ alkoxy,
- •C₁-C₃ alkylthio,
- •halogenated C₁-C₃ alkylthio,
- ·carbocyclic arylthio,
- ·halogenated carbocyclic arylthio,
- •carbocyclic arylthio substituted by C₁-C₃ alkyl,
- ·heterocyclylthio,
- •C₁-C₃ alkylsulfonyl,
- •mono- or di-C₁-C₃ alkylaminosulfonyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••C₁-C₇ alkyl,
- ••halogenated C₁-C₇ alkyl,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ••carbocyclic aryl,
- ·· halogenated carbocyclic aryl,
- (viii) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- hydroxy,
- •cyano,
- •nitro,
- •C₁-C₄ alkyl,
- •C₁-C₄ alkyl substituted by substituent(s) independently selected from
- ··halogen,
- ••hydroxy,

```
••oxo,
```

- ••C₁-C₃ alkylcarbonyloxy,
- ••C₁-C₃ alkoxycarbonyl,
- ••C₁-C₃ alkylthio,
- ••C₁-C₃ alkylthio substituted by carbocyclic aryl,
- ••C₁-C₃ alkylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ••carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- •••nitro,
- ··heterocyclyl,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by C₁-C₃ alkyl,
- •mono- or di-C₁-C₃ alkylamino,
- •C₁-C₄ alkylcarbonylamino,
- •C₁-C₃ alkylthio,
- ·carbocyclic arylthio,
- ·halogenated carbocyclic arylthio,
- •carbocyclic arylthio substituted by C₁-C₃ alkoxycarbonyl,
- ·heterocyclylthio,
- •heterocyclylthio substituted by C₁-C₃ alkyl,
- •C₁-C₃ alkylsulfonyl,
- •carbocyclic arylsulfonyl,
- •carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- •C₁-C₃ alkoxycarbonyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₃ alkyl,

```
••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
```

- ••C₁-C₃ alkoxy,
- ••halogenated C₁-C₃ alkoxy,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ••halogenated C₁-C₃ alkyl,
- ••C₁-C₃ alkoxy,
- ••C₁-C₃ alkoxycarbonyl;

Y is $-(CH_2)_m$, m is 0 or 1;

wherein carbocyclic aryl is phenyl, naphthyl, biphenyl, or phenanthryl; carbocyclyl is 9*H*-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, indanyl, or indenyl;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3,4-thiadiazolyl, 1,3-dioxo-isoindolyl, 1,3-dioxolanyl, 1*H*-indolyl, 1*H*-pyrrolo[2,3-c]pyridyl, 1*H*-pyrrolyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,3-dihydro-benzofuryl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2*H*-benzo[1,4]oxazinyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4*H*-benzo[1,3]dioxinyl, 4*H*-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-benzopyranyl, 9*H*-carbazolyl, 9*H*-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[b]thienyl, benzofuryl, benzothiazolyl, furyl, imidazo[2,1-b]thiazolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxolanyl, piperazyl, piperidyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrrolidyl, quinoxalyl, thiazolidyl, thiazolyl, thienyl, or thiolanyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

11. A compound according to claim 10, wherein

R₁ represents

- (i) C₁-C₁₀ alkyl substituted by substituent(s) independently selected from •methoxy,
- •methoxy substituted by carbocyclic aryl,

- ·carbocyclic aryloxy,
- ·halogenated carbocyclic aryloxy,
- •mono-C₁-C₂ alkylamino substituted by cyano,
- •mono- or di-C₁-C₂ alkylamino substituted by carbocyclic aryl,
- •mono-carbocyclic arylamino,
- •mono-carbocyclic arylamino substituted by methyl,
- •carbocyclic arylsulfonylamino substituted by methyl,
- carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen.
- ••nitro,
- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by carbocyclic aryl,
- ••C₁-C₄ alkyl substituted by hydroxy,
- $\bullet \cdot C_1 C_2$ alkoxy,
- ••halogenated C₁-C₂ alkoxy,
- •heterocyclyl substituted by carbocyclic aryl,
- (ii) C2-C8 alkenyl substituted by substituent(s) independently selected from
- •methoxy substituted by carbocyclic aryl,
- •carbocyclic aryl,
- •carbocyclic aryl substituted by methoxy,
- (iii) C2-C4 alkynyl substituted by carbocyclic aryl,
- (iv) cyclohexyl substituted by carbocyclic arylmethyl,
- (v) carbocyclyl,
- (vi) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- •hydroxy,
- •cyano,
- •amino,
- •C₁-C₉ alkyl,
- •halogenated C₁-C₉ alkyl,

```
•C<sub>1</sub>-C<sub>9</sub> alkoxy,
•C<sub>1</sub>-C<sub>9</sub> alkoxy substituted by substituent(s) independently selected from
··halogen,
••halogenated carbocyclic aryl,
•propenyloxy,
·methylamino,
•di-C<sub>1</sub>-C<sub>2</sub> alkylamino,
•di-C<sub>1</sub>-C<sub>2</sub> alkylamino substituted by cyano,
·methylthio,
·halogenated methylthio,
(vii) heterocyclyl,
or heterocyclyl substituted by substituent(s) independently selected from
·halogen,
•C<sub>1</sub>-C<sub>4</sub> alkyl,
•C<sub>1</sub>-C<sub>4</sub> alkyl substituted by hydroxy,
•C<sub>1</sub>-C<sub>4</sub> alkyl substituted by carbocyclic aryl,
·methoxy,
•C<sub>1</sub>-C<sub>2</sub> alkoxycarbonyl,
•carbocyclic arylthio substituted by methoxycarbonyl,
·carbocyclic aryl,
•carbocyclic aryl substituted by substituent(s) independently selected from
••halogen,
··halogenated methyl,
heterocyclyl;
        R<sub>2</sub> is methylamino or dimethylamino;
        L is selected from Formula Va, VIIIa, or IXa;
        wherein carbocyclic aryl is phenyl, naphthyl, biphenyl, or phenanthryl;
        carbocyclyl is 9H-fluorenyl, acenaphthyl, or anthraquinonyl;
        heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-
dioxolanyl, 1H-indolyl, 1H-pyrrolyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-
dihydro-benzo[1,4]dioxinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, 4-oxo-benzopyranyl, 9H-
```

carbazolyl, 9H-xanthenyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[b]thienyl, benzofuryl,

benzothiazolyl, furyl, imidazolyl, isoxazolyl, oxolanyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thienyl, 2*H*-benzopyranyl, 4*H*-benzo[1,3]dioxinyl, azetidinyl, imidazo[2,1-b]thiazolyl, morpholinyl, or 2,3-dihydrobenzofuryl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

- 12. A compound according to claim 11, wherein
- R₁ represents
- (i) C₁-C₇ alkyl substituted by substituent(s) independently selected from
- ·methoxy,
- •methoxy substituted by carbocyclic aryl,
- ·carbocyclic aryloxy,
- ·halogenated carbocyclic aryloxy,
- •mono-ethylamino substituted by cyano,
- •di-methylamino substituted by carbocyclic aryl,
- •mono-carbocyclic arylamino,
- •mono-carbocyclic arylamino substituted by methyl,
- •carbocyclic arylsulfonylamino substituted by methyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₄ alkyl,
- ••C₁-C₄ alkyl substituted by carbocyclic aryl,
- ••C₁-C₄ alkyl substituted by hydroxy,
- ••metoxy,
- ••halogenated methoxy,
- •heterocyclyl substituted by carbocyclic aryl,
- (ii) C₂-C₇ alkenyl substituted by substituent(s) independently selected from
- •methoxy substituted by carbocyclic aryl,
- ·carbocyclic aryl,

```
•carbocyclic aryl substituted by methoxy,
```

- (iii) butynyl substituted by carbocyclic aryl,
- (iv) cyclohexyl substituted by carbocyclic arylmethyl,
- (v) carbocyclyl,
- (vi) carbocyclic aryl,

carbocyclic aryl substituted by substituent(s) independently selected from

- •halogen,
- •hydroxy,
- •cyano,
- •amino,
- •C₁-C₂ alkyl,
- ·halogenated methyl,
- •C₁-C₃ alkoxy,
- •C₁-C₃ alkoxy substituted by substituent(s) independently selected from
- ••halogen,
- ••halogenated carbocyclic aryl,
- •propenyloxy,
- •di-C₁-C₂ alkylamino,
- •di-C₁-C₂ alkylamino substituted by cyano,
- ·methylthio,
- ·halogenated methylthio,
- (vii) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- •C₁-C₃ alkyl,
- •C₁-C₃ alkyl substituted by hydroxy,
- •C₁-C₃ alkyl substituted by carbocyclic aryl,
- ·methoxy,
- ·ethoxycarbonyl,
- •carbocyclic arylthio substituted by methoxycarbonyl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from

- ••halogen,
- ··halogenated methyl,
- •heterocyclyl;

L is selected from Formula XX - XXII;

wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;

carbocyclyl is acenaphthyl;

heterocyclyl is 1H-indolyl, 1H-pyrrolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 9H-carbazolyl, benzo[1,3]dioxolyl, furyl, pyrazolyl, thienyl, 4-oxo-benzopyranyl, azetidinyl, imidazo[2,1-b]thiazolyl, pyridyl, imidazolyl, 2,3-dihydro-benzofuryl, or benzo[b]thienyl;

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

13. A compound according to claim 12 of Formua I selected from the group consisting of

; or, in case of, a salt thereof.

14. A compound according to claim 1, wherein Q is Fomura II; R_1 represents

- (i) C₁-C₁₆ alkyl,
- C₁-C₁₆ alkyl substituted by substituent(s) independently selected from
- ·halogen,
- ·carbocyclyl,
- •carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C₁-C₃ alkyl,
- ••halogenated C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- ••halogenated C1-C3 alkoxy,
- (ii) C2-C3 alkenyl,
- C2-C3 alkenyl substituted by carbocyclic aryl,
- (iii) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- •cyano,
- •nitro,
- •C₁-C₅ alkyl,
- •C₁-C₅ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••oxo,
- •C₂-C₃ alkenyl,
- •C₁-C₄ alkoxy,
- •C₁-C₄ alkoxy substituted by substituent(s) independently selected from
- ••halogen,
- ··heterocyclyl,
- ••halogenated heterocyclyl,
- ·carbocyclic aryloxy,

•carbocyclic aryloxy substituted by substituent(s) independently selected from

- ••halogen,
- ••nitro,
- ·heterocyclyloxy,
- •heterocyclyloxy substituted by substituent(s) independently selected from
- ··halogen,
- ••C₁-C₃ alkyl,
- ••halogenated C₁-C₃ alkyl,
- •C₁-C₃ alkoxycarbonyl,
- •mono- or di-C₁-C₄ alkylamino,
- •C₁-C₃ alkylcarbonylamino,
- ·carbocyclic aryl diazo,
- •carbocyclic aryl diazo substituted by mono- or di- C₁-C₃ alkylamino,
- •C₁-C₃ alkylsulfonyl,
- ·carbocyclic aryl,
- (iv) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- •halogen,
- •C₁-C₃ alkyl,
- •C₁-C₃ alkyl substituted by substituent(s) independently selected from
- ••halogen,
- ••oxo,
- ••carbocyclic arylcarbonylamino,
- ••halogenated carbocyclic arylcarbonylamino,
- ··heterocyclyl,
- ••heterocyclyl substituted by substituent(s) independently selected from
- ···halogen,
- •••C₁-C₃ alkyl,
- •••halogenated C1-C3 alkyl,
- •C₁-C₃ alkoxy,
- •C1-C3 alkylcarbonylamino,
- ·carbocyclic arylsulfonyl,

```
•C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,
·carbocyclic aryl,
•halogenated carbocyclic aryl,
•heterocyclyl,
•heterocyclyl substituted by substituent(s) independently selected from
••halogen,
••C<sub>1</sub>-C<sub>3</sub> alkyl,
••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl;
        Y is -S(O)_2-;
        wherein carbocyclic aryl is phenyl, biphenyl, or naphthyl;
        carbocyclyl is 7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptyl;
       heterocyclyl is 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3-thiadiazolyl, 1H-pyrrolyl,
benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl,
quinolyl, thiazolyl, or thienyl;
        halogen is fluoro, chloro, bromo, or iodo;
        or a salt thereof.
```

 $15.\ A$ compound according to claim 14 of Formua I selected from the group consisting of

; or, in case of, a salt thereof.

16. A compound according to claim 1, wherein Q is Fomura II;

R₁ is selected from H, -CO₂'Bu, or -CO₂Bn (Bn is a benzyl group);

R₂ is methylamino or dimethylamino;

L is selected from Formula XX - XXII;

Y is a single bond;

or a salt thereof.

- 17. A method for modulating the G-protein receptor, SLC-1, comprising the step of contacting said SLC-1 with a MCH receptor antagonist.
- 18. A method for modulating the G-protein receptor, SLC-1, comprising the step of contacting said SLC-1 with a compound of claims 1-16.
- 19. The method of prophylaxis or treatment of obesity, obesity related disorders, anxiety, or depression in mammals in need of such treatment comprising administering to the mammal a therapeutically effective amount of a compound having the composition of any of claims 1-16.
- 20. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound having the composition of any of claims 1-16.

Fig. 1

IP3 Assay 293 Cells

SEQUENCE LISTING

<110> Arena Pharmaceuticals, Inc. <120> MCH Receptor Antagonists <130> AREN-0238 <160> 12 <170> PatentIn version 3.0 <210> 1 <211> 30 <212> DNA <213> Artificial <220> <223> Novel Sequence gtgaagettg cetetggtge etgeaggagg <210> 2 <211> 31 <212> DNA <213> Artificial <220>

<223> Novel Sequence

<400> 2

30

gcagaa	ttcc cggtggcgtg	ttgtggtgc	c c	·		31
<210>	3					
<211>	24					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Novel Sequence					
<400>	3					
catgage	ctgg tggatcatga	aggg				24
<210>	4					
<211>	24			,		
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Novel Sequence					
<400> atgaage	4 ygca tgcccaggag	aaaq				24
		J				2.4
<210>	5					
<211>	1349					
<213>	Artificial					
<220>						
	Novel Sequence					
<400> atggacc	5 tgg aagcctcgct	gctgcccact	ggtcccaatg	ccagcaacac	ctctgatggc	60
	acc tcacttcggc					120

atcatcatgo	cttcggtgtt	cggcaccatc	tgcctcctgg	gcatcatcgg	gaactccacg	180
gtcatcttcg	cggtcgtgaa	gaagtccaag	ctgcactggt	gcaacaacgt	ccccgacatc	240
ttcatcatca	acctctcggt	agtagatctc	ctctttctcc	tgggcatgcc	cttcatgatc	300
caccagctca	tgggcaatgg	ggtgtggcac	tttggggaga	ccatgtgcac	cctcatcacg	360
gccatggatg	ccaatagtca	gttcaccagc	acctacatcc	tgaccgccat	ggccattgac	420
cgctacctgg	ccactgtcca	ccccatctct	tccacgaagt	tecggaagee	ctctgtggcc	480
accctggtga	tctgcctcct	gtgggccctc	teetteatea	gcatcacccc	tgtgtggctg	540
tatgccagac	tcatcccctt	cccaggaggt	gcagtgggct	gcggcatacg	cctgcccaac	600
ccagacactg	acctctactg	gttcaccctg	taccagtttt	tcctggcctt	tgccctgcct	660
tttgtggtca	tcacagccgc	atacgtgagg	atcctgcaga	aggtgaagtc	ctctggaatc	720
cgagtgggct	cctctaagag	gaagaagtct	gagaagaagg	tcacccgcac	agccatcgcc	780
atctgtctgg	tcttctttgt	gtgctgggca	ccctactatg	tgctacagct	gacccagttg	840
tccatcagcc	gcccgaccct	cacctttgtc	tacttataca	atgcggccat	cagcttgggc	900
tatgccaaca	gctgcctcaa	cccctttgtg	tacatcgtgc	tctgtgagac	gttccgcaaa	960
cgcttggtcc	tgtcggtgaa	gcctgcagcc	caggggcagc	ttcgcgctgt	cagcaacgct	1020
cagacggctg	acgaggagag	gacagaaagc	aaaggcacct	gatacttccc	ctgccaccct	1080
gcacacetec	aagtcagggc	accacaacac	gccaccggga	gagatgctga	gaaaaaccca	1140
agaccgctcg	ggaaatgcag	gaaggccggg	ttgtgagggg	ttgttgcaat	gaaataaata	1200
cattccatgg	gctcacacgt	tgctggggag	gcctggagtc	aggtttgggg	ttttcagata	1260
tcagaaatcc	cttgggggag	caggatgaga	cctttggata	gaacagaagc	tgagcaagag	1320
aacatgttgg	tttggataac	cggttgcac				1349
<210> 6						

<211> 446

<212> PRT

<213> Homo Sapien

<220>

<223> Novel Sequence

<400)> 6														
Met 1	Asp	Leu	Glu	Ala 5	Ser	Leu	Leu	Pro	Thr 10	Gly	Pro	Asn	Ala	Ser 15	Asn
Thr	Ser	Asp	Gly 20	Pro	Asp	Asn	Leu	Thr 25	Ser	Ala	Gly	Ser	Pro 30	Pro	Arg
Thr	Gly	Ser 35	Ile	Ser	Tyr	Ile	Asn 40	Ile	Ile	Met	Pro	Ser 45	Val	Phe	Gly
Thr	Ile 50	Cys	Leu	Leu	Gly	Ile 55	Ile	Gly	Asn	Ser	Thr 60	Val	Ile	Phe	Ala
Val 65	Val	Lys	Lys	Ser	Lys 70	Leu	His	Trp	Cys	Asn 75	Asn	Val	Pro	Asp	Ile 80
Phe	Ile	Ile	Asn	Leu 85	Ser	Val	Val	Asp	Leu 90	Leu	Phe	Leu	Leu	Gly 95	Met
Pro	Phe	Met	11e 100	His	Gln	Leu	Met	Gly 105	Asn	Gly	Val	Trp	His 110	Phe	Gly
Glu	Thr	Met 115	Cys	Thr	Leu	Ile	Thr 120	Ala	Met	Asp	Ala	Asn 125	Ser	Gln	Phe
Thr	Ser 130	Thr	Tyr	Ile	Leu	Thr 135	Ala	Met	Ala	Ile	Asp 140	Arg	Tyr	Leu	Ala
Thr 145	Val	His	Pro	Ile	Ser 150	Ser	Thr	Lys	Phe	Arg 155	Lys	Pro	Ser	Val	Ala 160
Thr	Leu	Val	Ile	Суз 165	Leu	Leu	Trp	Ala	Leu 170	Ser	Phe	Ile	Ser	Ile 175	Thr
Pro	Val	Trp	Leu 180	Tyr	Ala	Arg	Leu	Ile 185	Pro	Phe	Pro	Gly	Gly 190	Ala	Val \
Gly	Суз	Gly 195	Ile	Arg	Leu	Pro	Asn 200	Pro	Asp	Thr	Asp	Leu 205	Tyr	Trp	Phe
Thr	Leu 210	Tyr	Gln	Phe	Phe	Leu 215	Ala	Phe	Ala	Leu	Pro 220	Phe	Val	Val	Ile
Thr 225	Ala	Ala	Tyr	Val	Arg 230	Ile	Leu	Gln	Lys	Val 235	Lys	Ser	Ser	Gly	Ile 240
Arg	Val	Gly	Ser	Ser 245	Lys	Arg	Lys	Lys	Ser 250	Glu	Lys	Lys	Val	Thr 255	Arg
Thr	Ala	Ile	Ala 260	Ile	Cys	Leu	Val	Phe 265	Phe	Val	Cys	Trp	Ala 270	Pro	Tyr
Tyr	Val	Leu 275	Gln	Leu	Thr	Gln	Leu 280	Ser	Ile	Ser	Arg	Pro 285	Thr	Leu	Thr
Phe	۷al	Tyr	Leu	Tyr	Asn	Ala	Ala	Ile	Ser	Leu	Gly	Tyr	Ala	Asn	Ser

	290					295					300					
Cys 305	Leu	neA	Pro	Phe	Val 310	Tyr	Ile	Val	Leu	Cys 315	Glu	Thr	Phe	Arg	Lys 320	
Arg	Leu	Val	Leu	Ser 325	Val	Lys	Pro	Ala	Ala 330	Gln	Gly	Gln	Leu	Arg 335	Ala	
Val	Ser	Asn	Ala 340	Gln	Thr	Ala	Asp	Glu 345	Glu	Arg	Thr	Glu	Ser 350	Lys	Gly	
Thr	Tyr	Phe 355	Pro	Суѕ	His	Pro	Ala 360	His	Leu	Gln	Val	Arg 365	Ala	Pro	Gln	
His	Ala 370	Thr	Gly	Arg	Asp	Ala 375	Glu	Lys	Asn	Pro	Arg 380	Pro	Leu	Gly	Lys	
Cys 385	Arg	Lys	Ala	Gly	Leu 390	Gly	Val	Val	Ala	Met 395	Lys	Ile	His	Ser	Met 400	
Gly	Ser	His	Val	Ala 405	Gly	Glu	Ala	Trp	Ser 410	Gln	Val	Trp	Gly	Phe 415	Gln	•
Ile	Ser	Glu	Ile 420	Pro	Trp	Gly	Ser	Arg 425	Met	Arg	Pro	Leu	Asp 430	Arg	Thr	
Glu	Ala	Glu 435	Gln	Glu	Asn	Met	Leu 440	Val	Trp	Ile	Thr	Gly 445	Суз			
<210 <211		7 70														
<212	!> [ANC														
<213	3> P	Artif	icia	al												
<220)>															
<223	s> <i>v</i>	lovel	Sec	quend	ce											
<400 gate			aggt	gaaq	gt co	etctg	gaat	ccg	gagtç	iggc	tcct	ctaa	ıga ç	ıgaag	gaagtc	60
tgag	aaga	ag														70
<210)> 8	3														
<211	.> 7	1														
<212	:> [NA						-								
<213	S> 72	Artif	icia	ıl												

<220>		
<223>	Novel Sequence	
<400> gtgacct	8 ttct tetcagaett etteetetta gaggageeca eteggattee agaggaette	60
accttct	tgca g	71
<210>	9	
<211>	30	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Novel Sequence	
<400> gtgaage	9 cttg cccgggcagg atggacctgg	30
<210>	10	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Novel Sequence	
<400> atctaga	10 aggt geetttgett tetg	24
<210> 3 <211> 3 <212> 1 <213> 1	2133	
<400> 3	11 ctgg aagecteget getgeceact ggteceaatg ceageaacae etetgatgge 60	D .
cccgata	aacc tcacttcggc aggatcacct cctcgcacgg ggagcatctc ctacatcaac 12	20

atcatcatgc cttcggtgtt cggcaccatc tgcctcctgg gcatcatcgg gaactccacg 180 gtcatcttcg cggtcgtgaa gaagtccaag ctgcactggt gcaacaacgt ccccgacatc 240 ttcatcatca accteteggt agtagatete etetttetee tgggcatgee etteatgate 300 caccagetea tgggcaatgg ggtgtggeae tttggggaga ceatgtgeae ecteateaeg 360 gccatggatg ccaatagtca gttcaccage acctacatec tgaccgccat ggccattgac 420 egetacetgg ceaetgteea ecceatetet tecaegaagt teeggaagee etetgtggee 480 accetggtga tetgeeteet gtgggeeete teetteatea geateaceee tgtgtggetg 540 tatgccagac teateceett eecaggaggt geagtggget geggeataeg eetgeeeaac 600 ccagacactg acctctactg gttcaccctg taccagtttt tcctggcctt tgccctgcct 660 tttgtggtca tcacagccgc atacgtgagg atcctgcagc gcatgacgtc ctcagtggcc 720 cocgcetece agegeageat ceggetgegg acaaagaggg tgaccegeac agecategee 780 atctgtctgg tcttctttgt gtgctgggca ccctactatg tgctacagct gacccagttg 840 tecateagee georgaeeet cacettigte taettataca atgeggeeat cagettggge 900 tatgccaaca gctgcctcaa cccctttgtg tacatcgtgc tctgtgagac gttccgcaaa 960 cgcttggtcc tgtcggtgaa gcctgcagcc caggggcagc ttcgcgctgt cagcaacgct 1020 cagacggctg acgaggagag gacagaaagc aaaggcacct ctagaatqqq ctqcacactq 1080 agegetgagg acaaggegge egtggagege ageaagatga tegacegeaa eeteegggag 1140 gacggagaga aggcagcgcg cgaggtcaag ctgctgctgc tgggtgctgg tgaatccggg 1200 aagagcacaa ttgtgaagca gatgaaaatt atccacqagg ctggctactc agaggaagag 1260 tgtaagcagt acaaagcagt ggtctacagc aacaccatcc agtccatcat tgccatcatt 1320 agagccatgg ggagattgaa aatcgacttt ggagacgctg ctcgtgcgga tgatgctcgc 1380 caactetteg tgettgetgg ggetgeagag gaaggettta tgaeegegga getegeegge 1440 gtcataaaga gactgtggaa ggacagcggt gtgcaagcct gcttcaacag atcccgggag 1500 taccagetga acgattegge ggegtactae etgaatgaet tggacagaat ageacaacca 1560 aattacatcc caacccagca ggatgttctc agaactagag tgaaaacgac gggaattgtg 1620 gaaacccact ttactttcaa agatcttcat tttaaaatgt ttgacgtggg aggccagaga 1680 tcagagcgga agaagtggat tcactgcttt gaaggcgtga ctgccatcat cttctgtgtg 1740 gecetgagtg actatgaeet ggttettget gaggatgaag aaatgaaceg gatgeatgaa 1800 agcatgaagc tgttcgatag catatgtaac aacaagtggt ttacggacac atccatcatc 1860

cttttcctga acaagaagga cctcttcgaa gagaagatca aaaagagtcc cctcacgata 1920
tgctatccag aatatgcagg ctcaaacaca tatgaagagg cggctgcgta tatccagtgt 1980
cagtttgaag acctcaataa aaggaaggac acaaaggaaa tttacaccca cttcacttgc 2040
gccacggata cgaagaatgt gcagtttgtg ttcgatgctg taacggacgt catcataaag 2100
aataacctaa aagactgtgg tctcttctaa tct 2133

<210> 12

<211> 709

<212> PRT

<213> Homo Sapien

<400> 12

Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn 1 5 10

Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg
20 25 30

Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly
35 40 45

Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala 50 60

Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile 65 70 75 80

Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met 85 90 95

Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly 100 105 110

Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe 115 120 125

Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala 130 135 140

Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala 145 150 155 160

Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr 165 170 175

Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val 180 185 190

Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe 195 200 205

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 215 Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala 235 Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr 265 Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 280 Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys 310 315 Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly Thr Ser Arg Met Gly Cys Thr Leu Ser Ala Glu Asp Lys Ala Ala Val 360 Glu Arg Ser Lys Met Ile Asp Arg Asn Leu Arg Glu Asp Gly Glu Lys Ala Ala Arg Glu Val Lys Leu Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr Ile Val Lys Gln Met Lys Ile Ile His Glu Ala Gly Tyr 405 Ser Glu Glu Glu Cys Lys Gln Tyr Lys Ala Val Val Tyr Ser Asn Thr Ile Gln Ser Ile Ile Ala Ile Ile Arg Ala Met Gly Arg Leu Lys Ile Asp Phe Gly Asp Ala Ala Arg Ala Asp Asp Ala Arg Gln Leu Phe Val Leu Ala Gly Ala Ala Glu Glu Gly Phe Met Thr Ala Glu Leu Ala Gly 470 Val Ile Lys Arg Leu Trp Lys Asp Ser Gly Val Gln Ala Cys Phe Asn 490 Arg Ser Arg Glu Tyr Gln Leu Asn Asp Ser Ala Ala Tyr Tyr Leu Asn

Asp Leu Asp Arg Ile Ala Gln Pro Asn Tyr Ile Pro Thr Gln Gln Asp 515 520 525

- Val Leu Arg Thr Arg Val Lys Thr Thr Gly Ile Val Glu Thr His Phe 530 540
- Thr Phe Lys Asp Leu His Phe Lys Met Phe Asp Val Gly Gly Gln Arg 545 550 555 560
- Ser Glu Arg Lys Lys Trp Ile His Cys Phe Glu Gly Val Thr Ala Ile 565 570 575
- Ile Phe Cys Val Ala Leu Ser Asp Tyr Asp Leu Val Leu Ala Glu Asp 580 585 590
- Glu Glu Met Asn Arg Met His Glu Ser Met Lys Leu Phe Asp Ser Ile 595 600 605
- Cys Asn Asn Lys Trp Phe Thr Asp Thr Ser Ile Ile Leu Phe Leu Asn 610 615 620
- Lys Lys Asp Leu Phe Glu Glu Lys Ile Lys Lys Ser Pro Leu Thr Ile 625 630 635 640
- Cys Tyr Pro Glu Tyr Ala Gly Ser Asn Thr Tyr Glu Glu Ala Ala Ala 645 650 655
- Tyr Ile Gln Cys Gln Phe Glu Asp Leu Asn Lys Arg Lys Asp Thr Lys 660 665 670
- Glu Ile Tyr Thr His Phe Thr Cys Ala Thr Asp Thr Lys Asn Val Gln 675 680 685
- Phe Val Phe Asp Ala Val Thr Asp Val Ile Ile Lys Asn Asn Leu Lys 690 695 700

Asp Cys Gly Leu Phe 705