Datenstrukturen – Bäume

by

Dr. Günter Kolousek

Allgemeines

- verallgemeinerte Listenstruktur...
- Grundlage in Graphentheorie (Knoten, Kanten)
- Charakterisierung
 - genau ein Anfangsknoten (Wurzel)
 - Jeder Knoten (außer die Wurzel): genau einen Vorgänger (Vater, Elternknoten)
 - Jeder Knoten (außer Endknoten): mindestens ein Nachfolger (Kindknoten)
 - Bäume 'wachsen' in der Informatik von oben nach unten!
- Anwendungen
 - Darstellung logischer Beziehungen (Dateihierarchie, Syntaxbaum)
 - Suchen und Sortieren (z.B. Suchbaum)
 - Ableitungsbäume, Syntaxbäume, Codebäume
 - Entscheidungsbäume

Definitionen

- Wurzel: kein Vorgänger.
- ► Innerer Knoten: mindestens ein Nachfolger.
- ▶ Blatt oder Endknoten: kein Nachfolger.
- Anzahl der Kinder eines Knotens p: Rang von p.
- ► Höhe eines Knotens: längster Pfad vom Knoten zu erreichbaren Blatt (Anzahl der Kanten).
 - ▶ Höhe des Baumes t, der nur aus der Wurzel besteht ist 0.
 - ► Höhe eines beliebigen Baumes mit d Teilbäumen: $h(t) = max(h(t_1), h(t_2), ..., h(t_d)) + 1$
- ► Tiefe eines Knoten: Pfad vom Knoten zur Wurzel.
- Ordnung eines Baumes d: max. Anzahl von Kindern eines Knoten (von allen Knoten dieses Baumes).

Eigenschaften und Gliederungen

- Eigenschaften
 - Ein Baum mit *n* Knoten besitzt genau n-1 Kanten.
 - ► Höhe des Baumes h = Höhe der Wurzel = Tiefe des Baumes = Tiefe des äußersten Blattes
- Arten
 - Ungeordnete Bäume: Nachfolgeknoten unterliegen keiner Reihenfolge (z.B. Filesystem)
 - Geordnete Bäume: Reihenfolge ist relevant (z.B. Syntaxbaum)
- Unterscheidung bzgl. Anzahl der Nachfolger
 - **Binäre Bäume**: Ordnung d = 2 (z.B. binärer Suchbaum, AVL-Baum).
 - Mehrwegbäume: Ordnung d > 2 (z.B. B-Baum).

Binärer Suchbaum

- ▶ Ordnung d = 2
- Knoten
 - Dateninhalte
 - ► Schlüssel: key
 - Kriterium vergleichbar (z.B. nummerisch, alphabetisch)
 - kann nur einmal im Baum vorkommen
 - linker und rechter Nachfolger: left, right
 - ▶ linker TB: Schlüssel sind kleiner als aktueller Schlüssel
 - rechter TB: Schlüssel sind größer als aktueller Schlüssel

Bedingungen im BSB

- ► Max. Anzahl von Blättern: 2^h
- Max. Gesamtanzahl von Knoten: $2^{h+1} 1$
 - Summe aller Knoten aller Ebenen = $\sum 2^i$ für i=0...hErklärung: entspricht der größten darstellbaren Zahl bei h+1Bits d.h. $2^{h+1}-1=\sum 2^i$ für i=0...h
- ► Hat ein Baum *n* innere Knoten, dann:
 - hat dieser maximal n+1 Blätter
 - ► kann *h* maximal *n* sein
 - ▶ ist h minimal $\log_2(n+1)$

Traversieren

- Durchlaufen aller Knoten eines Baumes in einer bestimmten Reihenfolge.
- Anwendungen
 - die Ausgabe aller Knotenwerte
 - das Durchführen von Operationen auf allen Knotenwerten
- Arten
 - preorder (Prefix): Wurzel, linke Seite, rechte Seite
 - inorder (Infix): linke Seite, Wurzel, rechte Seite Anwendung: sortierte Ausgabe
 - postorder (Postfix): linke Seite, rechte Seite, Wurzel Anwendung: Speicherfreigabe beim Löschen

Traversieren mit Rekursion

```
def inorder(p):
    if p != None:
        inorder(p.left)
        write(p.key) # Operation auf Knoten
        inorder(p.right)
```

Traversieren ohne Rekursion

- Symmetrischer Nachfolger (symmetrical successor, NF): Knoten mit kleinstem Schlüssel des rechten Teilbaumes.
 - Fädelungszeiger: zeigt auf symm. NF (gefädelter Baum)
 - Nachfolgezeiger als Fädelungszeiger, aber: Markierung!

```
def symm_succ(p):
    if p.right != None:
        if p.right_is_threaded:
            return p.right
        else:
            q = p.right;
            while q.left != p:
                q = q.left
            return q
    else:
        return None # p hat keinen symm. NF
```

- ► Algorithmus
 - 1. Weitest links stehenden Knoten suchen
 - wiederholter Aufruf von symm_succ()

Suchen mit Rekursion

geg.: Wurzelknoten (Anker) und zu suchender Knoten (Schlüssel)

```
def search(p, key): # Suchen in Baum p nach key
    if (p == None):
        return None # Baum leer: nicht gefunden
    else:
        if key == p.key:
            return p # gefunden
        else:
            if key < p.key:</pre>
                # im linken TB weitersuchen
                return search(p.left, key)
            else:
                # im rechten TB weitersuchen
                return search(p.right, key)
```

- Nachteile
 - ▶ Bei jedem Knoten Überprüfung, ob Blatt ~> Stoppknoten
 - ▶ Rekursiv: mehr Ressourcen. ~ iterative Suche

Stoppknoten

- Hinzufügen eines zusätzlichen Knotens
- ► Alle NF von eigentlichen Blättern ~ Stoppknoten
- ► Beim Suchen
 - Key von Stoppknoten setzen
 - ► Abfrage auf == None kann entfallen
 - am Schluss: auf Stoppknoten abfragen
- Beim Einfügen
 - Referenz auf Stoppknoten hinzufügen
- Beim Löschen
 - Referenz auf Stoppknoten umhängen

Suchen ohne Rekursion

```
def search(p, key):
    while p != None:
        if key == p.key:
            return p
        elif key < p.key:
            p = p.left
        else:
            p = p.right
    return None</pre>
```

Einfügen mit Rekursion

```
def insert(p, key):
    if p == None: # Baum leer?
        return Node(key) # neuen Knoten anlegen
    else:
        if key < p.key:</pre>
            p.left = insert(p.left, key) # in den
        elif key > p.key:
            # in den rechten TB
            p.right = insert(p.right, key)
        return p # bestehender Knoten zurueck
root = None
root = insert(root, 10)
root = insert(root, 5)
root = insert(root, 15)
```

Einfügen ohne Rekursion

```
def insert(p, key): # p != None
    while True:
        if key == p.key:
            return False # schon vorhanden
        elif key < p.key: # im li TB weitersuchen</pre>
            if p.left == None: # linker TB leer!
                p.left = Node(key) # anlegen
                return True
            else: # li TB nicht leer
                p = p.left # weiter
        else:
            if p.right == None:
                p.right = Node(key)
                return True
            else p = p.right
```

Löschen

- 1. Zu löschenden Knoten suchen
- 2. Löschknoten = Blatt: löschen
- 3. Löschknoten = Knoten mit einem Teilbaum: kurzschließen
- 4. sonst: Löschknoten ersetzen durch (2 Möglichkeiten)
 - 4.1 den Knoten mit dem größten Wert aus dem linken Teilbaum (Knoten, der am weitesten rechts steht)
 - 4.2 den Knoten mit dem kleinsten Wert aus dem rechten Teilbaum (Knoten, der am weitesten links steht)

Löschen – 2

```
def remove(p, key): # mit call-per-reference!!!
    if p == None: pass # Key nicht im Baum
    else:
        if key < p.key: remove(p.left, key)</pre>
        elif key > p.key: remove(p.right, key)
        else: # p.kev == kev
            if p.left == None: p = p.right # kurzschliessen
            elif p.right == None: p = p.left # kurzschl.
            else: # p.left != None und p.right != None
                q = parentSymmSucc(p)
                if p == q: # re Kind von q ist symm. NF
                    p.key = q.right.key
                    q.right = q.right.right
                else: # li Kind von a ist symm. NF
                    p.key = q.left.key
                    q.left = q.left.right
```

Löschen – 3

Vater des symm NF

```
def parentSymmSucc(p):
    if p.right.left != None:
        p = p.right
        while p.left.left != None:
        p = p.left
    return p
```

- remove funktioniert nicht in Programmiersprachen, die ausschließlich "per-value" übergeben, daher:
 - ▶ remove(p.left, key) ~ p.left = remove(p.left, key)
 - detto mit rechts
 - return pam Ende von else hinzufügen
- Speicher von Knoten wird nicht explizit freigegeben

AVL Baum

- BSB kann degenerieren
 - ▶ beim Einfügen Umordnungen vornehmen ~ ausgeglichene Bäume
- Mathematiker Adelson-Velskii und Landis (1962)
- spezieller BSB
 - bei jedem Knoten unterscheidet sich die Tiefe des li TB von der des re TB um maximal 1.
 - Balance eines Knoten p
 - ightharpoonup bal(p) = h(p.right) h(p.left)
 - ightharpoonup d.h. drei zulässige Balancen: -1, 0, +1
- ► Vorteil: Geringerer Suchaufwand, da nicht degeneriert (Suchschritte: $O(\log_2(n))$ mit $n = \max$. Anzahl von Knoten)
- Nachteil: Höherer Aufwand bei Modifikationen

Einfügen in AVL

- 1. Leerer Baum: fertig
- 2. p ist Vater des Blattes, an dem die Suche endet:
 - ▶ bal(p) = +1

▶ bal(p) = -1

Einfügen in AVL – 2

ightharpoonup bal(p) = 0

upin(p) wird aufgerufen, wenn: $bal(p) \in \{+1, -1\}$

Funktion up in

Fall 1 [p ist **linkes** Kind seines Vaters φp]

▶ Fall 1.1 [bal(φp) = +1]

Fall 1.2 [bal $(\varphi p) = 0$]

Funktion upin - 2

► Fall 1.3 [bal(φp) = -1]

AVL bei φp verletzt!

► Fall 1.3.1 [bal(p) = -1]

Rotation \Rightarrow nach rechts

fertig!

Funktion upin - 3

► Fall 1.3.2 [bal(p) = +1]

fertig!

Mehrwegbäume

- ▶ Ordnung d > 2
- ► Implementierungsmöglichkeiten
 - ► Liste aller Kindknoten
 - Zeiger auf erstes Kind und Zeiger auf nächsten Bruderknoten
 - ► ~ B-Baum

B-Baum

- ausgeglichener (balancierter), geordneter Mehrwegbaum
- Motivation
 - Speicherbedarf des Baumes > verfügbarer Hauptspeicher
 - ▶ Baum soll modifiziert werden können (löschen, einfügen).
 - Baum z.B. auf Festplatte speichern
 - #Plattenzugriffe soll minimiert werden (z.B. für DBMS)
- Prinzip
 - Knoten soll in einer 'Seite' (engl. page) Platz haben
 - füllt diese jedoch im allgemeinen nicht vollständig,
 - also noch Platz weitere Datensätze einzutragen.
 - Knoten
 - abwechselnd Seitenadressen (SA) und Datensätze (DS)
 - beginnend und endend mit SA (Ausnahme: Blätter).

B-Baum – 2

- Kriterium für kontrolliertes Wachstum gesucht
 - wie bei AVI
- ▶ B-Baum der Ordnung k hat folgende Eigenschaften:
 - ► Alle Blätter haben die gleiche Tiefe.
 - ▶ Jeder Knoten hat höchstens k Kindknoten.
 - ▶ Jeder Knoten mit Ausnahme der Wurzel und der Blätter hat wenigstens ceil(k/2) Kindknoten.
 - ▶ Die Wurzel hat wenigstens 2 Kindknoten (im Trivialfall, dass die ganzen Daten in einen Knoten passen, ist sie ein Blatt).
 - ▶ Jeder Knoten mit *i* Kindknoten hat i 1 DS.

B-Baum – 3

- ▶ k ist so zu wählen, dass ein Knoten gerade noch auf einer Seite Platz hat.
- ▶ Wenn die DS sehr lange Informationsteile haben, kann man anstatt des DS nur den Schlüssel und eine Adresse speichern. Dadurch läßt sich k größer wählen und der B-Baum hat eine geringere Höhe.
- ▶ Die Ordnung eines üblichen B-Baumes liegt etwa bei 100 bis 200.
- lst k = 199, so haben B-Bäume mit bis zu 19999999 Schlüssel höchstens die Höhe 4.

B*-Baum

- Datensätze werden nur in den Blättern gespeichert.
- Zwischenknoten enthalten nur Schlüssel, die zur Steuerung des Suchvorganges dienen.
- Blätter enthalten nur Datensätze und sonst nichts.
- Vorteil: Innere Knoten können mehr Schlüssel enthalten. Der Baum wird breiter, hat aber weniger Ebenen (d.h. geringere Höhe).