

OBJECTIVES: To Study the Energy Band Gap & Diffusion Potential of P - N Junction.

### PN JUNCTION SET-UP

The set-up consists of following:

- 1. PN junction set up.
- 2. Oven with thermometer. (Display on Panel)
- 3. A Samples of junction transistor with connecting leads
- 4. Diode 1N5402 to measure junction capacitance.
- 5. Connecting lead to connect oscilloscope for measure junction capacitance.
- 6. Power Cord



Fig. 1: Different Components of P - N Junction Set-up



Determination of the reverse saturation current  $I_0$  & material constant  $\eta$ .

The current 
$$I$$
 in the p-n junction is given by,  $I = I_O(e^{\frac{q^V}{\eta kT}} - 1)$  .....(1)

where, 
$$q = \text{electronic charge } = 1.602 \times 10^{-19} \text{ Coulomb}$$

$$\eta$$
 = material constant = 1 for Ge

 $k = \text{Boltzman's constant} = 1.38 \times 10^{-23} \text{ J/K}$ 

T = Temperature in Kelvin

V = Junction voltage in Volt.

The reverse saturation current is usually too small to measure directly. An indirect graphical

method may be obtained by taking logarithm of equation (1) for  $e^{\frac{qV}{\eta kT}} \gg 1$  as,  $\ln I = \ln I_0 + \frac{qV}{\eta kT}$ 

$$\ln I = \ln I_0 + \frac{qV}{\eta kT}$$

If V &  $\ln I$  are plotted on graph paper a straight line is obtained. This line intersects the current ( $\ln I$ ) axis at  $\ln I_0$  & its slope may be solved to compute  $\eta$ ,

$$\eta = \frac{q \Delta V}{k T \Delta \ln I} \tag{3}$$

Note the junction voltage by varying the current source. The values of junction voltage & current are displayed on the panel display provided on the setup.

#### PROCEDURE:

- Connect the PN junction set up to the ac mains. Ensure that the oven switch is off.
- Connect the junction transistor lead to the 'Junction Terminals' provided on the setup as polarity indicated on it.
- Keep the Left Hand Side Digital Display in "Junction Mode."
- Keep the Right Hand Side Digital Display in "Current Mode"
- Switch on the PN junction set up.
- Vary the Junction Voltage Knob and obtain current as a function of junction voltage.
- Determine the material constant η.



Fig. 2: Study of I-V Characteristics of Sample BC 109 in Forward Bias

| SAMPLE | DATA: BC 109 | × |
|--------|--------------|---|
|        |              |   |

| S.No | Voltage, V (Volt) |                 |        |
|------|-------------------|-----------------|--------|
|      | 24, (1011)        | Current, I (mA) | ln I   |
| 1    | 0.312             |                 |        |
| 2    | 0.500             | 0.03            | -3.507 |
| 3    | 0.576             | 0.10            | -2.303 |
| 4    | 0.624             | 0.20            | -1.609 |
| 5    | 0.650             | 0.30            | -1.204 |
| 6    | 0.664             | 0.50            | -0.693 |
| 7    | 0.678             | 0.69            | -0.371 |
| 8    | 0.687             | 0.97            | -0.030 |
| 9    | 0.694             | 1.20            | 0.182  |
| 10   | 0.703             | 1.44            | 0.365  |
| 11   | 0.711             | 1.81            | 0.593  |
| 12   | 0.727             | 2.24            | 0.806  |
| 13   | 0.736             | 3.50            | 1.253  |
| 14   | 0.752             | 4.54            | 1.513  |
| 15   | 0.764             | 7.09            | 1.959  |
| 16   | 0.772             | 9.78            | 2.280  |
| 17   | 0.775             | 12.40           | 2.518  |
|      | 2013              | 13.61           | 2.611  |



## **ANALYSIS**



Fig. 3: Graphical Representation of Variation of V as a Function of ln I of Sample BC 109

Slope = 
$$\frac{\Delta V}{\Delta \ln I}$$
 = 0.0475

Therefore, 
$$\eta = \frac{q\Delta V}{kT\Delta \ln I}$$
 = 1.81 at  $T$  = 303 K



# EXP-2: Forward Bias Characteristics of Junction Diode (IN5402)

# PROCEDURE:

- Connect the PN junction set up to the ac mains. Ensure that the oven switch is off.
- Connect the junction diode to the 'Junction Terminals' provided on the setup in forward bias as polarity indicated on it.
- Keep the Left Hand Side Digital Display in "Junction Mode."
- Keep the Right Hand Side Digital Display in "Current Mode"
- Switch on the PN junction set up.
- Vary the Junction Voltage Knob and obtain diode current (I) as a function of junction Plot I as a function of V.



Fig. 4: Study of Forward Bias Characteristics of Sample IN5402



| CAM  | PIF  | DAT | A . 1 | N5402  |
|------|------|-----|-------|--------|
| SAIN | IPLE | DAI | M. 1  | 142405 |

|        | Voltage, V (Volt) | Current, I (mA) |  |
|--------|-------------------|-----------------|--|
| S. No. |                   | 0.00            |  |
| 1      | 0.000             | 0.4             |  |
| 2      | 0.493             | 1.00            |  |
| 3      | 0.532             | 2.00            |  |
| 4      | 0.564             | 3.00            |  |
| 5      | 0.582             | 4.00            |  |
| 6      | 0.595             | 4.87            |  |
| 7      | 0.604             | 5.00            |  |
| 8      | 0.606             | 6.00            |  |
| 9      | 0.614             | 7.00            |  |
| 10     | 0.621             | 8.00            |  |
| 11     | 0.627             | 9.00            |  |
| 12     | 0.632             | 10.00           |  |
| 13     | 0.637             | 11.00           |  |
| 14     | 0.642             |                 |  |
| 15     | 0.645             | 12.00           |  |
| 16     | 0.649             | 13.00           |  |
| 17     | 0.651             | 13.61           |  |



Fig. 5: Forward Bias Characteristics of Sample IN5402

Knee Voltage = 0.58 Volt