

ХРОНИКИ ПРОЕКТА МЕТАМАТ (МЕТАМАТН)

«Современные образовательные технологии в математических учебных программах в инженерном образовании России»: семинар на базе Технического Университета Тампере 26–27 июня 2014

Прошедший на базе Технического Университета Тампере семинар был посвящен обсуждению документа, в котором зафиксированы базовые компетенции по различным предметам курса математики европейских технических вузов. Документ называется «Framework for Mathematics Curricula in Engineering Education», подготовлен он под эгидой SEFI — Европейского общества технического образования.

Документ состоит из 87 страниц. Ниже представлено содержание основной части:

General Mathematical Competencies for Engineers

Competencies, Dimensions, and Clusters. Example. Profiles.

Content-related competencies, knowledge, and skills.

Core Zero. Core Level 1. Level 2. Level 3.

Teaching and learning environments.

Teaching and learning arrangements. Transition issues. Mathematics technology. Integrating the mathematics curriculum into the engineering study course. Attitudes.

Assessment.

Forms of assessment. Requirements for passing. Assessing competencies. Technology-supported assessment.

В этом документе представляет интерес попытка конструктивно определить конечные результаты обучения (Learning outcomes) в форме достаточно подробно сформулированных умений, которые и занимают большую часть этого документа. Результаты сформулированы на трёх уровнях: 0-уровень соответствует школьным знаниям, 1 и 2 уровни — обучению на младших курсах вуза, 3 уровень предполагает специализацию и реализуется на последних курсах обучения.

Вот, например, какие результаты ожидаются при изучении темы «Графа» курса дискретной математике на уровне 1:

Graphs. As a result of learning this material you should be able to

- recognise an Euler trail in a graph and / or an Euler graph (узнавать Эйлеровы пути в графе и/или Эйлеровы графы),
- recognise a Hamilton cycle (path) in a graph (узнавать Гамильтоновы графы),
- find components of connectivity in a graph (находить компоненты связности графа),
- find components of strong connectivity in a directed graph (и компоненты сильной связности).
- find a minimal spanning tree of a given connected graph (находить минимальное остовное дерево).

Этот документ используется и для создания так называемого руководства студента (students guide), с помощью которого студент сможет самостоятельно определять способ

изучения материала, например, разобраться с материалом самостоятельно, используя интернет-ресурсы.

На семинаре была представлена методика сравнения курсов в разных странах и на её основе произведено сравнение нескольких курсов российских вузом со стандартом SEFI. Предварительный вывод состоит в том, что на первых курсах российских технических вузов математика изучается с большей глубиной и в более широком диапазоне, покрывая все 3 уровня программы SEFI.