

Statistics and Sensor Data Fusion

- Winter Term 2023/2024 -Worksheet 7 Prof. Dr.-Ing. Gernot Fabeck

Exercise 1. The time X necessary to complete a multi-level production order in minutes is assumed to be a normally distributed random variable, i.e. $X \sim \mathcal{N}(\mu, \sigma^2)$. A recorded random sample provides the following values:

158, 135, 128, 140, 162, 128, 132, 136, 148, 140.

- a) Without knowing both the mean μ and the variance σ^2 , determine estimates for these parameters based on the corresponding unbiased estimators.
- b) Now, for the true variance it should hold that $\sigma^2 = 9$. Use the corresponding estimate from a) to construct a symmetric confidence interval for the unknown mean μ at a confidence level of $1 \alpha = 0.95$.
- c) How many measurement values would be necessary to halve the length of the confidence interval from b) in the case that the confidence level remains unchanged?
- d) The variance σ^2 is now assumed to be unknown. Recompute the confidence interval from b) under this condition and compare the result with the result from b).
- e) The variance σ^2 is again considered to be unknown. Compute a one-sided (lower) confidence interval at a level of significance of $\alpha = 0.1$.

Exercise 2. Consider the observed realizations

$$m{x}_1 = \left(egin{array}{c} 2 \ 0 \ 2 \end{array}
ight), \quad m{x}_2 = \left(egin{array}{c} 2 \ 1 \ 1 \end{array}
ight), \quad m{x}_3 = \left(egin{array}{c} 1 \ 2 \ 4 \end{array}
ight), \quad m{x}_4 = \left(egin{array}{c} 1 \ -1 \ 3 \end{array}
ight)$$

of a three-dimensional random vector

$$\boldsymbol{X} = (X_1, X_2, X_3)^T$$

and determine unbiased estimates of the mean vector μ and the covariance matrix Σ of the underlying multivariate probability distribution.

Exercise 3. A parallel fusion network consists of four sensors S_1, S_2, S_3, S_4 which are characterized by the local error probabilities

$$p_{f_1} = 0.1$$
, $p_{f_2} = 0.2$, $p_{f_3} = 0.3$, $p_{f_4} = 0.4$

$$p_{m_1} = 0.3$$
, $p_{m_2} = 0.3$, $p_{m_3} = 0.2$, $p_{m_4} = 0.1$

According to the relative frequency of the presence of targets in the surveillance area, the prior probabilities of \mathcal{H}_0 and \mathcal{H}_1 are given by

$$\pi_0 = 0.8$$
 and $\pi_1 = 0.2$

During operation, the fusion center receives the local decisions

$$u_1 = 1$$
, $u_2 = 0$, $u_3 = 0$, $u_4 = 1$

What would be the result $u_0 \in \{0, 1\}$ of the optimal fusion rule?