

Modélisation Mathématique de la sélection naturelle

Achille BAUCHER, Younes BELKADA, Laurent DANG-VU, Ibtissam LACHHAB, Igor ROUZINE (Encadrant du LCQB)

Janvier 2019

Introduction

mité. Nous complexifierons notre modèle au fur et à me-Notre objectif est d'étudier les dynamiques d'évolutior de populations en compétition dans un environement lisure. Pour commencer, considérons deux populations n_0 , saine, et n_1 , mutée

Cas simple sans mutations

- S : avantage compétitif de reproduction de la population $ec{n}_1$ par rapport à la population n_0 : $k_1=(1+S)k_0$
- N: **population totale**, constante, donc n_0 et n_1 en compétition.
- Coefficients de morts **identiques** : $d_0 = d_1$
- Premières équations représentant l'évolution des

$$\frac{dn_0}{dt} = k_0 n_0 - d_0 n_0$$

 $\frac{dn_1}{dt} = k_1 n_1 - d_1 n_1$

On obtient l'équation différentielle non linéaire suivante où $f = \frac{n}{n}$: avec t le temps en générations.

$$rac{df}{dt} = Sf(1-f)$$

 Conditions initiales: n₁ très faible par rapport à $n_0:f(0)=\frac{1}{100}$

 $\overline{\mathrm{FIGURE}}$ 1: Evolution temporelle de la fréquence de n_1 pour plusieurs valeurs de S, sans mutations : $\mu=0$

cer totalement l'autre, avec une vitesse proportionnelle à **Interprétation :** La population avantagée tend à rempla-'avantage dont elle dispose.

Cas de mutations régulières

- On introduit un **coefficient de mutation** μ , probabilité qu'a le gène de muter par unité de temps.
 - **Initialement**, pas d'individus de $n_1: f(0) = 0$

La mutation vient complexifier l'équation différentielle :

$$\frac{df}{dt} = \frac{Sf(1-f)}{Selection} + \frac{(1-2f)\mu}{Mutation}$$

Les S_{ij} correspondent à l'avantage de reproduction dont dispose une population n_{ij} .

Epistasies

Chaque gène muté apporte un avantage S, mais les deux combinées forment un

coefficient d'épistasie E : Les différents cas d'épistasie

avantage qui dépend du $S_{11} - S_{00} = 2S(1+E)$

• $\frac{dn_{00}}{dt}$ $\frac{dn_{01}}{dt}$ et $\frac{dn_{01}}{dt}$ s'écrivent sous une forme analogue. • Les S_{ij} correspondent à l'avantage de reproductior

FIGURE 2: Evolution temporelle de la fréquence pour plusieurs S=0valeurs de μ et un facteur de sélection S négligeable :

 $S_{10} \approx S_0$

 S_{00}

 $ext{FIGURE}$ 3: Evolution temporelle de la fréquence de n_1 pour un facteur de sélection prépondérant : $S>>\mu$

Interprétation :

- Fréquence linéaire au début : n₁ reçoit des mutations de la population majoritaire n_0 .
- précédemment dès que les individus de n1 sont assez Exponentielle ensuite : Elle se comporte comme nombreux pour se reproduire.
- **Dominante finalement :** Il reste cependant toujours une faible quantité d'individus de n_0 , qui reçoivent les mutés de n_1 .

Cas de deux gènes mutants

Il y a à présent deux gènes différents, et donc 4 types d'individus :

Probabilites de mutation

Cela regroupe les cas de synergie positive (E>0), d'addition (E=0) et de légère régression (E<0).

Gène non muté

n₁₁ dispose d'un avantage compétitif S₁₁ supérieur aux

autres, elle est donc dominante.

Epistasie positive : E >

Mutations entrantes

-2S(1+E)

- $\it n_{11}$ et $\it n_{00}$ sont plus compétitifs et dominent.
- Cela regroupe les cas de négativité simple (E>-1) et de signe réciproque (E<-1).

 $S_{11} > S_{10} > S_{00}$

Synergie positive Additive faible

possibles

Etats stationnaires selon l'épistasie

- On distingue trois régimes d'états stables
- population en raison de faibles différences de compétitivité. ; pas de domination écrasante d'une • Au centre : $E = \frac{1}{2}$
- Plus E augmente, plus sa domination est importante. • **A droite** : $E > \frac{1}{2} : f_{11}$ domine.
 - Plus E diminue, plus leur domination est importante. : f_{01} et f_{10} dominent. A gauche: $E < \frac{1}{2}$
- Remarque: La fréquence d'une population dominée ne dé-pend que de sa différence de compétitivité avec la ou les populations dominantes.