विद्युत रसायन

पाठ्यपुस्तक के अभ्यास प्रश्न

बहुचयनात्मक प्रश्न

प्रश्न 1. निम्न में से कौन चालक नहीं है?

- (a) Cu-धातु
- (b) NaCl (aq)
- **(c)** NaCl (पिघला)
- (d) NaCl(s).

प्रश्न 2. यदि किसी सेल में चालकत्व एवं चालकता तुल्य है तो सेल स्थिरांक होगा -

- **(a)** 1
- **(b)** 0
- **(c)** 10
- (d) 1000.

प्रश्न 3. सेल स्थिरांक की इकाई है -

- (a) ohm⁻¹ cm⁻¹
- **(b)** cm
- **(c)** ohm⁻¹cm
- **(d)** cm⁻¹

प्रश्न 4. चालकता (विशिष्ट चालकत्व) की इकाई है -

- (a) ohm⁻¹
- **(b)** ohm⁻¹ cm⁻¹
- (c) ohm⁻² cm² equvi⁻¹
- (d) $ohm^{-1} cm^2$.

प्रश्न 5. यदि सेल में रेडॉक्स अभिक्रिया सम्पन्न हो रही है तो सेल का विद्युत् वाहक बल (e.m.f) होगा

- (a) धनात्मक
- (b) ऋणात्मक
- (c) शून्य
- (d) एक।

प्रश्न 6. विद्युत् रासायनिक श्रेणी के आधार पर बताइये कि जिंक एवं कॉपर से निर्मित सेल के लिए निम्न में से कौन-सा कथन सत्य होगा?

- (a) जिंक कैथोड़ एवं कॉपर ऐनोड का कार्य करेंगे
- (b) जिंक ऐनोड एवं कॉपर कैथोड का कार्य करेंगे
- (c) इलेक्ट्रॉनों का प्रवाह कॉपर से जिंक की ओर रहता है।
- (d) कॉपर इलेक्ट्रोड घुलने लगता है और जिंक इलेक्ट्रोड पर जिंक निक्षेपित होता है।

प्रश्न 7. एक मोल H2O के O2 में ऑक्सीकृत होने के लिए कितने कूलॉम्ब आवेश की आवश्यकता होगी ?

- (a) 1.93×10^{5} C
- **(b)** 9.65×10^{4} C
- (c) 6.023×10^{23} C
- (d) 4.825×10^4 C.

प्रश्न 8. लोहे की सीट पर विद्युत् लेफ्न में किसकी परत चढ़ाई जाती है ?

- (a) C
- **(b)** Cu
- **(c)** Zn
- (d) Ni.

प्रश्न 9. जंग लगना निम्न में से किसका मिश्रण होता है ?

- (a) FeO एवं Fe(OH)₃
- **(b)** FeO एवं Fe(OH)2
- (c) Fe₂O₃ एवं Fe (OH)₃
- (d) Fe₃O₄ एवं Fe (OH)₃

प्रश्न 10. जब सीसा संचायक सेल निरावेशित (Discharge) होता है तो –

- (a) SO2 उत्पन्न होती है
- (b) PbSO₄ नष्ट होता है
- (c) लेड बनता है
- (d) H₂SO₄ नष्ट होता है।

उत्तर:

- **1.** (d)
- **2.** (a)
- **3.** (d)
- **4.** (b)
- **5.** (a)

- **6.** (b)
- **7.** (b)
- **8.** (c)
- **9.** (c)
- **10.**(d)

अति लघूतात्मक प्रश्न

प्रश्न 1. क्या आप एक जिंक के पात्र में कॉपर सल्फेट का विलयन रख सकते हैं ?

उत्तर:

$$E_{Zn^{2+}/Zn}^{0} = -0.76 \text{ V}$$

$$E_{Cu^{2+}/Cu}^{0} = 0.34 \text{ V}$$

यहाँ जिंक तथा CuSO4 में होने वाली अभिक्रिया निम्न प्रकार है –

 $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$

चूँिक Zn विद्युत् रासायनिक श्रेणी में ऊपर है अतः यह CuSO4 के विलयन से Cu को अलग कर देगा और स्वतः रासायनिक अभिक्रिया में भाग लेगा। अतः हम जिंक के पात्र में CuSO4 को नहीं रख सकते क्योंिक जिंक के पात्र में छेद हो जायेंगे।

प्रश्न 2. मानक इलेक्ट्रोड विभव की तालिका का निरीक्षण कर तीन ऐसे पदार्थ बताइए जो अनुकूल परिस्थितियों में फेरस आयनों को ऑक्सीकृत कर सकते हैं।

उत्तर: फेरस आयनों, को ऑक्सीकृत करने का अर्थ है -

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

केवल वे पदार्थ Fe²⁺ को ऑक्सीकृत कर सकते हैं जो प्रबल ऑक्सीकारक हों तथा जिनका अपचयन विभव Fe²⁺ के अपचयन विभव से अधिक हो, अतः

H₂O₂ MnO₄-, Cr₂O₇²⁻ इसे ऑक्सीकृत कर सकते हैं।

प्रश्न 3. किसी विलयन की चालकता तनुता के साथ क्यों घटती है?

उत्तर: विलयन की चालकता, विलयन के एकांक आयतन में उपस्थित आयनों की चालकता होती है। तनुकरण करने पर प्रति एकांक आयतन आयनों की संख्या घटती है; अत: चालकता भी घट जाती है।

प्रश्न 4. उन धातुओं की एक सूची बनाइए जिनका विद्युत् अपघटनी निष्कर्षण होता है।

उत्तर: Na, Ca, Mg तथा Al.

प्रश्न 5. हाइड्रोजन को छोड़कर ईंधन सेलों में प्रयुक्त किये जा सकने वाले दो अन्य पदार्थ सुझाइए।

उत्तर: (i) मेथेनॉल (CH₃OH) (ii) मेथेन (CH₄)

प्रश्न 6. निम्नलिखित धातुओं को उस क्रम में व्यवस्थित कीजिए जिसमें वे एक-दूसरे को उनके लवणों के विलयनों में से प्रतिस्थापित करती हैं- Al, Cu, Fe, Mg एवं Zn.

उत्तर: Mg, Al, Zn, Fe, Cu.

लघूत्तरात्मक प्रश्न

प्रश्न 1. निकाय Mg²⁺ | Mg का मानक इलेक्ट्रोड विभवे आप किस प्रकार ज्ञात करेंगे ?

उत्तर: निकाय Mg²⁺ | Mg का मानक इलेक्ट्रोड विभव ज्ञात करने के लिए एक सेल स्थापित करते हैं जिसमें एक इलेक्ट्रोड Mg | MgSO₄ (1 M), एक मैग्नीशियम के तार को 1 M MgSO₄ विलयन में डुबोकर व्यवस्थित करते हैं तथा मानक हाइड्रोजन इलेक्ट्रोड Pt, H₂ (1 atm) | H⁺ (1 M) को दूसरे इलेक्ट्रोड की भाँति व्यवस्थित करते हैं।

व्यवस्थित करने के बाद सेल का e.in.f. नापते हैं तथा दिशा को नोट करते हैं। यहाँ विक्षेप की दिशा से पता चलता है कि इलेक्ट्रॉन मैग्नीशियम इलेक्ट्रोड से हाइड्रोजन की तरफ जाते हैं तथा विद्युत् धारा इसके विपरीत बहती है। इन सभी क्रियाओं से ज्ञात होता है कि यहाँ पर मैग्नीशियम का ऑक्सीकरण तथा हाइड्रोजन का अपचयन हो रहा है। अतः सेल इस प्रकार होगा –

$$Mg \mid Mg^{2+} (1 M) \parallel H^{+} (1 M) \mid H_{2} (1 atm), Pt$$

तथा,
$$E_{\frac{1}{MR}}^{0} = E_{H^{+}/\frac{1}{2}H_{2}}^{0} - E_{Mg^{2+}/Mg}^{0}$$
$$= 0 \cdot 0 - E_{Mg^{2+}/Mg}^{0}$$

अत:
$$E_{Mg^{2+}/Mg}^{0} = -E_{Am}^{0}$$

इस प्रकार इम Mg²⁺/Mg का विभव ज्ञात कर सकते हैं।

प्रश्न 2. pH = 10 के विलयन के सम्पर्क वाले हाइड्रोजन इलेक्ट्रोड के विभव का परिकलन कीजिए। उत्तर:

हाइड्रोजन इलेक्ट्रोड के लिए,

$$H^+ + e^- \rightarrow \frac{1}{2}H_2$$

अतं:
$$E_{H^+/\frac{1}{2}H_2} = E_{H^+/\frac{1}{2}H_2}^0 + \frac{0.059}{n} log \frac{[H^+]}{(P_{H_2})^{1/2}}$$

$$= 0.0 + \frac{0.059}{1} \log \frac{10^{-10}}{(1)^{\frac{1}{2}}}$$

$$= 0.0 + \frac{0.059}{1} \log 10^{-10}$$

$$= 0.059 (-10 \log 10)$$

$$= 0.059 \times -10$$

$$= -0.59 \text{ V}$$

अत:E_(H*/½H2) = - 0·59 V है।

प्रश्न 3. एक सेल के e.m.f. का परिकलन कीजिए जिसमें नम्नलिखित अभिक्रिया होती है। दिया गया है।

E0 सेल = 1.05 V
$$Ni_{(s)}$$
 + $2Ag^{+}$ (0.002 M) \rightarrow Ni^{2+} (0.160 M) + $2Ag_{(s)}$

सेल के लिए नेर्नस्ट समीकरण,

$$E_{\overline{RR}} = E_{\overline{RR}}^0 + \frac{0.059}{n} \log \frac{[\text{Ni}][\text{Ag}^+]^2}{[\text{Ni}^{2+}][\text{Ag}]^2}$$

चूँकि [Ni] = [Ag] = 1 अत:

$$E_{\text{RM}} = E_{\text{RM}}^0 + \frac{0.059}{n} \log \frac{[Ag^+]^2}{[Ni^{2+}]}$$

$$= i \cdot 05 + \frac{0.059}{2} \log \frac{(0.002)^2}{0.160}$$

$$= i \cdot 05 + \frac{0.059}{2} \log \frac{0.002 \times 0.002}{0.160}$$

$$= 1 \cdot 05 + \frac{0.059}{2} \log \frac{4 \times 10^{-6}}{0.160}$$

$$= 1 \cdot 05 + \frac{0.059}{2} \log \frac{4 \times 10^{-6}}{16 \times 10^{-2}}$$

$$= 1 \cdot 05 + \frac{0.059}{2} \log \frac{10^{-4}}{4}$$

$$= i \cdot 05 - \frac{0.059}{2} \log 4 \times 10^{4}$$

$$= 1.05 - \frac{0.05}{2} \log 4 \times 1$$
$$= 1.05 - 0.14 = 0.91 \text{ V}$$

प्रश्न 4. एक सेल जिसमें निम्नलिखित अभिक्रिया होती है – $2{\rm Fe}^{3+}_{(aq)}+2{\rm I}^-_{(aq)}\to 2{\rm Fe}^{2+}_{(aq)}+{\rm I}_{2(s)}$

का 298K ताप पर E0सेल = 0.236 v है। सेल अभिक्रिया की मानक गिब्ज ऊर्जा एवं साम्य स्थिरांक का परिकलन कीजिए।

$$2Fe^{3+} + 2e^{-} \rightarrow 2Fe^{2+}$$
 $2I^{-} \rightarrow I_{2} + 2e^{-}$
अतः दो गई सेल अभिक्रिया के लिए, $n = 2$

$$\Delta_{r}G^{0} = -nFE^{0}_{(+)}$$
= $-2 \times 96500 \times 0.236 J$
= $-45.55 \text{ kJ mol}^{-1}$

$$\Delta_{r}G^{0} = -2.303 \text{ RT log K}_{c}$$
 $\log K_{c} = \frac{-\Delta_{r}G^{0}}{2.303 \text{ RT}}$

$$= -\left(\frac{-45.55 \text{ kJ mol}^{-1}}{2.303 \times 8.314 \times 10^{-3} \text{ kJK}^{-1} \text{mol}^{-1} \times 298 \text{ K}}\right)$$
= 7.983
 $K_{c} = \text{Antilog } (7.983)$
= 9.616×10^{7}

प्रश्न 5. जल की, Δ^{0}_{m} ज्ञात करने का एक तरीका बताइए।

उत्तर: अनन्त तनुता पर जल की सीमान्त मोलर चालकता (Δ^0 _m), अनन्त तनुता पर सोडियम हाइड्रॉक्साइड, हाइड्रोक्लोरिक अम्ल तथा सोडियम क्लोराइड (जिसमें सभी प्रबल विद्युत्अ पघट्य हैं) की मोलर चालकताएँ ज्ञात होने पर, प्राप्त की जा सकती है।

$$\Lambda_{m(\text{H}_2\text{O})}^0 = \Lambda_{m(\text{NaOH})}^0 + \Lambda_{m(\text{HCI})}^0 - \Lambda_{m(\text{NaCI})}^0$$

प्रश्न 6. 0.025 mol L⁻¹ मेथेनोइक अम्ल की चालकता 46.1 S cm² mol⁻1 है। इसकी वियोजन मात्रा एवं वियोजन स्थिरांक का परिकलन कीजिए। दिया गया है कि $\Delta^0_{(H+)}$ = 349:6 S cm mol⁻¹ एवं Δ (HCOO⁻)= 54.6 S cm mol⁻¹.

$$\Lambda_{m(HCOOH)}^{0} = \Lambda_{(H^{+})}^{0} + \Lambda_{(HCOO^{-})}^{0}$$

$$= 349 \cdot 6 + 54 \cdot 6$$

$$= 404 \cdot 2 \text{ S cm}^{2} \text{ mol}^{-1}$$
दिया है : $\Lambda_{m(HCOOH)}^{C} = 46 \cdot 1 \text{ S cm}^{2} \text{ mol}^{-1}$

$$\alpha = \frac{\Lambda_{m}^{C}}{\Lambda_{m}^{0}} = \frac{46 \cdot 1 \text{ S cm}^{2} \text{ mol}^{-1}}{404 \cdot 2 \text{ S cm}^{2} \text{ mol}^{-1}}$$

$$= 0.114$$

$$K = \frac{C\alpha^{2}}{1-\alpha} = \frac{0.025 \times (0.114)^{2}}{1-0.114}$$

$$= 3.67 \times 10^{-4}$$

वियोजन स्थिरांक का मान 3.67×10^{-4} है।

प्रश्न 7. उन धातुओं की एक सूची बनाइए जिनका विद्युत् अपघटनी निष्कर्षण होता है?

उत्तर: Na, Ca, Mg तथा Al.

प्रश्न 8. निम्नलिखित अभिक्रिया में Cr2O2-7 आयनों के एक मोल के अपचयन के लिए कूलॉम्ब में विद्युत् की कितनी मात्रा की आवश्यकता होती है ?

उत्तर: Cr_2O^{2-7} के एक मोल के अपचयन के लिए 6 मोल इलेक्ट्रॉनों की आवश्यकता होती है। अतः विद्युत् की मात्रा =6F = $6 \times 96500 C = 579000C$ Cr^{3+} में अपचयन के लिए 579000 C विद्युत् की आवश्यकता होगी।

प्रश्न 9. चार्जिंग के दौरान प्रयुक्त पदार्थों का विशेष उल्लेख करते हुए लैड-संचायक सेल की चार्जिग क्रिया-विधि का वर्णन रासायनिक अभिक्रियाओं की सहायता से कीजिए।

उत्तर: चार्जिग के दौरान हम किसी बाहरी स्रोत द्वारा सेल को विद्युत् ऊर्जा प्रदान करते हैं अर्थात् सेल एक विद्युत् अपघटनी सेल की। भाँति कार्य करता है। चार्जिंग के दौरान होने वाली अभिक्रियाएँ डिस्चार्ज के दौरान होने वाली अभिक्रियाओं से विपरीत होती हैं। चार्जिंग के दौरान निम्न अभिक्रियाएँ होती हैं –

$$PbSO_{4(s)} + 2e^{-} \rightarrow Pb_{(s)} + SO_{4}^{2-}{}_{(aq)}$$

$$PbSO_{4(s)} + 2H_{2}O \rightarrow PbO_{2}(s) + SO_{4}^{2-}{}_{(aq)}$$

$$+ 4H^{+}{}_{(aq)} + 2e^{-}$$

$$2PbSO_{4(s)} + 2H_{2}O \rightarrow Pb_{(s)} + PbO_{2(s)} + 4H^{+}{}_{(aq)}$$

$$+ 2SO_{4}^{2-}{}_{(aq)}$$

प्रश्न 10. नीचे दिए गए मानक इलेक्ट्रोड विभवों के आधार पर धातुओं को उनकी बढ़ती हुई अपचायक क्षमता के क्रम में व्यवस्थित कीजिए -

$$K^{+} \mid K = -2.93V, Ag^{+} \mid Ag = 0.80V,$$

 $Hg^{2+} \mid Hg = 0.79 V$
 $Mg^{2+} \mid Mg = -2.37V, Cr^{3+} \mid Cr = -0.74 V.$

उत्तर: ऑक्सीकरण विभव उच्च होने का तात्पर्य है कि वह धातु सरलता से ऑक्सीकृत हो जाएगी अर्थात् उसकी अपचायक क्षमता अधिक होगी। इस प्रकार धातुओं की अपचायक क्षमता का बढ़ता क्रम निम्रलिखित है –

Ag < Hg < Cr < Mg < K.

प्रश्न 11. निम्नलिखित अभिक्रियाओं वाले गैल्वेनी सेल का मानक सेल-विभव परिकलित कीजिए –

(i)
$$2Cr_{(s)} + 3Cd^{2+}_{(aq)} \rightarrow 2Cr^{3+}_{(aq)} + 3Cd_{(s)}$$

(ii) $Fe^{2+}_{(aq)} + Ag^{+}_{(aq)} \rightarrow Fe^{3+}_{(aq)} + Ag_{(s)}$

उपर्युक्त अभिक्रियाओं के लिए ΔG^0 तथा साम्य स्थिरांकों की गणना कीजिए।

(यदि
$$E^0_{(Ce^{3+}/Ce)} = -0.74V$$
, $E^0_{(Ce^{2+}/Ce)} = -0.40 V$, $E^0_{(Ag^+/Ag)} = 0.80V$, $E^0_{(Fe^{3+}/Fe^{2+})} = 0.77 V$)

उत्तर:

तिर:

$$(i) \ 2\text{Cr}_{(s)} + 3\text{Cd}^{2+}_{(aq)} \rightarrow 2\text{Cr}^{3+}_{(aq)} + 3\text{Cd}_{(s)}$$

$$E^{0}_{(RR)} = E^{0}_{(RR)} - E^{0}_{(RR)} = E^{0}_{(Cd^{2+}/Cd)} - E^{0}_{(Cr^{3+}/Ct)}$$

$$= -0.40 \text{ V} - (-0.74 \text{ V})$$

$$= -0.40 \text{ V} + 0.74 \text{ V}$$

$$= + 0.34 \text{ V}$$

$$\Delta G^{0} = -nFE^{0}_{RR}$$

$$= -6 \times 96500 \times 0.34$$

$$= -196860 \text{ J mol}^{-1}$$

$$= -196.860 \text{ kJ mol}^{-1}$$

$$\Delta G^{0} = -2.303 \text{ RT log K}_{c}$$

$$-196.860 \text{ kJ} = -2.303 \times 8.314 \times 298 \times \log K_{c}$$

$$= 196860$$

$$= 196860$$

$$= 196860$$

$$= 196860$$

$$= 196860$$

$$= 196860$$

$$= 196860$$

$$= 196860$$

या
$$\frac{196860}{2303 \times 8314 \times 298} = \log K_c$$

$$\log K_c = 34.5014$$
 $K_c = \text{Antilog } 34.5014$
 $= 3.173 \times 10^{34}$

अत: सेल की गिब्स ऊर्जा (ΔG^0) = $-196\cdot86$ kJ/mol सेल का साम्य स्थिरांक (K_c) = $3\cdot173\times10^{34}$

(ii)
$$Fe^{2+}_{(aq)} + Ag^+_{(aq)} \rightarrow Fe^{3+}_{(aq)} + Ag_{(s)}$$
 $E^0_{RR} = E^0_{RR} + Ag^+_{(aq)} - E^0_{RR} + E^0_{RR} = E^0_{(Ag^+/Ag)} - E^0_{(Fe^{3+}/Fe^{2+})} = + 0.80 \text{ V} - 0.77 \text{ V}$
 $= + 0.03 \text{ V}$

$$\Delta G^0 = -nFE^0_{RR} = -1 \times 96500 \times 0.03$$
 $= -2895 \text{ J/mol}$
 $= -2.895 \text{ kJ/mol}$

$$\Delta G^0 = -2.303 \text{ RT log } K_c$$
 $-2895 = -2.303 \times 8.314 \times 298 \times \log K_c$

$$2895$$
 $= 2.303 \times 8.314 \times 298$

$$= \log K_c$$

$$\log K_c = 0.5074$$

$$K_c = Antilog 0.5074$$

$$K_c = 3.22$$

$$RR = RR = RR = 3.22$$

$$RR = RR = RR = 3.22$$

निबन्धात्मक प्रश्न

प्रश्न 1. समझाइए कि कैसे लोहे पर जंग लगने का कारण एक विद्युत् रासायनिक सेल बनना माना जाता है ?

उत्तर: संक्षारण या लोहे पर जंग लगना एक विद्युत् रासायनिक प्रक्रम है। यहाँ, ऐनोड = आयरन पृष्ठ कैथोड = अशुद्ध आयरन पृष्ठ विद्युत् अपघट्य = जल की बूंद जिसमें CO2 तथा O2 विलेय हैं। **ऐनोड पर अभिक्रिया –** आयरन ऑक्सीकृत होकर Fe²⁺ आयन बनाता है तथा इलेक्ट्रॉन कैथोड पर चले जाते हैं।

$$Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + 2e^{-}$$

कैथोड पर अभिक्रिया – यहाँ ऐनोड से आये इलेक्ट्रॉनों को H⁺ ग्रहण कर लेता है और CO₂ के साथ H₂CO₃ बनाता है।

$$H_2O + CO_{2(g)} \rightleftharpoons H_2CO_3$$

 $H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$
 $2H^+ + 2e^- \rightarrow 2H^*$

ये H-परमाणु ऑक्सीजन से क्रिया करके जल बना लेते हैं।

$$2H + \frac{1}{2}O_2 \rightarrow H_2O$$

अत: कैथोड पर अभिक्रिया

$$2H^+ + \frac{1}{2} O_2 + 2e^- \rightleftharpoons H_2O$$

जंग लगने के दौरान लोहे की सतह पर बने विद्युत्- रासायनिक सेल में होने वाली पूर्ण या समग्र अभिक्रिया निम्न प्रकार है—

$$2Fe + 4H^+ + O_2 \rightarrow 2Fe^{2+} + 2H_2O$$

फेरस आयन पुन: वायुमण्डलीय ऑक्सीजन द्वारा फेरिक आयनों में ऑक्सीकृत हो जाते हैं जिसके कारण लोहे पर जंग लगती है।

$$2 Fe^{2+} + \frac{1}{2} O_2 + 2 H_2 O \rightarrow Fe_2 O_3 + 4 H^+$$
 $Fe_2 O_3 + x H_2 O \rightarrow Fe_2 O_3 .x H_2 O$
जंग (जलयोजित फेरिक)
ऑक्साइड)

प्रश्न 2. उस गैल्वैनी सेल को दर्शाइए जिसमें निम्नलिखित अभिक्रिया होती है – $Zn_{(S)}$ + $2Ag^+_{(aq)} \to Zn^{2+}_{(aq)}$ + $2Ag_{(s)}$, अब बताइए –

- (i) कौन-सा इलेक्ट्रोड ऋणात्मक आवेशित है ?
- (ii) सेल में विद्युत् धारा के वाहक कौन-से हैं ?
- (iii) प्रत्येक इलेक्ट्रोड पर होने वाली अभिक्रिया क्या है ?

दी गयी ससायनिक अभिक्रिया,

 $Zn_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2Ag_{(s)}$ को हम निम्नलिखित के अनुसार दर्शा सकते हैं—

 $Zn_{(s)} \mid Zn^{2+}_{(aq)} \parallel Ag^{+}_{(aq)} \mid Ag_{(s)}$

(i) चूँकि वह इलेक्ट्रोड जिस पर ऑक्सीकरण होता है, अर्थात् ऐनोड ऋणत्मक आवेशित होता है अत: **जिंक इलेक्ट्रोड** ऋणात्मक आवेशित है।

- (ii) सेल में विद्युत् धारा के वाहक इलेक्ट्रॉन होते हैं।
- (iii) इलेक्ट्रोडॉ पर होने वाली अभिक्रियाएँ निम्नलिखित हैं∸ '

ऐनोड पर, $Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$

कैथोड पर, $Ag^+_{(aq)} + e^- \rightarrow Ag_{(s)}$

सेल को हम चित्र द्वारा दर्शा सकते हैं-

अन्य महत्त्वपूर्ण प्रश्न

अति लघु ऊतरीय प्रश्न

प्रश्न 1. Na, Mg तथा AI को बढ़ते हुए विद्युत्- धनात्मक गुण के अनुसार व्यवस्थित कीजिए।

उत्तर: Al < Mg < Na.

प्रश्न 2. क्षार धातुएँ प्रबल अपचायक क्यों होती हैं ?

उत्तर: विद्युत् रासायनिक श्रेणी में क्षार धातुएँ सबसे ऊपर स्थित होती हैं, क्योंकि इनके इलेक्ट्रोड विभव के मान उच्च होते हैं। अतः इनकी धनायन बनाने की प्रवृत्ति अधिक होती है।

प्रश्न 3. दो ऐसी धातुओं के नाम कारण सहित लिखिए जो HCI से हाइड्रोजन विस्थापित नहीं करतीं।

उत्तर: Cu, Ag; यह दो धातुएँ विद्युत् रासायनिक श्रेणी में हाइड्रोजन से नीचे होती हैं अर्थात् इनके अपचयन विभव का मान हाइड्रोजन से ज्यादा होता है।

प्रश्न 4. क्या निम्न अभिक्रिया सम्भव है ? कारण लिखिए- $Sn^{4+} + 2Fe^{2+} \rightarrow Sn^{2+} + 2Fe^{3+}$

उत्तर: यह अभिक्रिया सम्भव नहीं है, क्योंकि Sn²⁺ की अपचायक क्षमता Fe²⁺ से अधिक है।

प्रश्न 5. निम्न अभिक्रिया सम्भव है या नहीं ? कारण लिखिए। $2Ag + H_2SO_4 \rightarrow Ag_2 SO_4 + H_2$.

उत्तर: अभिक्रिया सम्भव नहीं है, क्योंकि Ag की ऑक्सीकृत होने की प्रवृत्ति H2 से कम है।

प्रश्न 6. कौन-सी धातुएँ तनु H₂SO4 से H₂ विस्थापित नहीं करतीं ?

उत्तर: वे धातुएँ जो विद्युत् रासायनिक श्रेणी में H2 से नीचे हैं, तनु H2SO4 से H2 को विस्थापित नहीं करती हैं।

उदाहरण – Cu, Ag, Au, Pt आदि।

प्रश्न 7. कौन-सी धातुएँ जल वाष्प को अपघटित नहीं करतीं ?

उत्तर: वे धातुएँ जो विद्युत् रासायनिक श्रेणी में हाइड्रोजन से नीचे होती हैं, जलवाष्प को अपघटित नहीं करतीं।

उदाहरण - Ag, Au, Hg, Cu आदि।

प्रश्न 8. दो धातुएँ A तथा B के मानक इलेक्ट्रोड विभव का मान – 076 V और + 0.80 V है। इनमें से कौन-सी धातु तनु H₂SO4 से हाइड्रोजन विस्थापित करेगी और क्यों ?

उत्तर: धातु A हाइड्रोजन से प्रबल अपचायक है अतः धातु A तनु H₂SO₄ से हाइड्रोजन को विस्थापित करेगी।

प्रश्न 9. निम्न अभिक्रिया सम्भव है या नहीं, कारण लिखिए – Zn + H₂SO₄(तनु) → ZnSO₄ + H₂

उत्तर: अभिक्रिया सम्भव है क्योंकि Zn की ऑक्सीकृत होने की प्रवृत्ति हाइड्रोजन से अधिक है।

प्रश्न 10. लोहे पर निम्न में से किसकी परत चढ़ाई जा सकती है। और क्यों ? Mg, Cu, Ag उत्तर: Fe की ऑक्सीकृत होने की प्रवृत्ति Cu तथा Ag से अधिक प्रबल है। अत: Fe पर Cu तथा Ag की परत चढ़ा सकते हैं।

प्रश्न 11. निम्नलिखित अभिक्रिया को सेल आरेख में लिखिए -

(i)
$$2Fe_{(s)} + 3Cd^{2+}_{(aq)} \rightarrow 2Fe^{3+}_{(aq)} + 3Cd_{(s)}$$

(ii) $Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow 2Ag_{(s)} + Cu^{2+}_{(aq)}$

उत्तर:

$$\begin{array}{c} \text{(i) Fe}_{(s)} \| \operatorname{Fe}^{s+}_{(aq)} \| \operatorname{Cd}^{2+}_{(aq)} \| \operatorname{Cd}_{(s)} \\ \text{(ii) Cu}_{(s)} \| \operatorname{Cu}^{2+}_{(aq)} \| \operatorname{Ag}^*_{(aq)} \| \operatorname{Ag}_{(s)} \end{array}$$

प्रश्न 12. कुछ तत्वों के मानक इलेक्ट्रोड विभव + 0.40 V,- 0.78 V,0.00 V, + 2.69V तथा – 0:50 v हैं। इन्हें घटती हयी सक्रियता के क्रम में लिखिए।

उत्तर: 0-78 V > - 0.50 V > 0.00 V > + 0.40 V > + 2.69 V, उन धात्विक तत्वों की सक्रियता अधिक होगी जिनका मानक इलेक्ट्रोड विभव कम होता है।

प्रश्न 13. किसी एकल इलेक्ट्रोड के लिये इलेक्ट्रोड विभव प्राप्त करना असम्भव क्यों है ?

उत्तर: क्योंकि विद्युत् वाहक बल उस दशा में ही मापा जा सकता है। जब परिपथ पूर्ण हो अर्थात् इसका संयोजन दूसरे अर्द्ध-सेल के साथ किया गया हो। अतः किसी एकल इलेक्ट्रोड के इलेक्ट्रोड विभव को ज्ञात करना असम्भव है।

प्रश्न 14. जिंक इलेक्ट्रोड, जिसके लिए $E^0_{Zn}^{2+/zn}=0.76V$ के इलेक्ट्रोड विभव पर जिंक आयनों की सान्दता बढ़ाने का क्या प्रभाव पड़ता है ?

उत्तर: सान्द्रता बढ़ाने पर इलेक्ट्रोड विभव का मान बढ़ जाता है।

प्रश्न 15. लोहा तनु H₂SO₄ से क्रिया करता है परन्तु ताँबा नहीं, क्यों ?

उत्तर: क्योंकि लोहे का इलेक्ट्रोड विभव हाइड्रोजन के इलेक्ट्रोड विभव से कम है अतः Fe तनु H2SO4 से क्रिया करके H2 को पृथक करता है।

Fe + $H_2SO_4(\overline{\Pi}) \rightarrow FeSO_4 + H_2 \uparrow$

चूँकि ताँबे का इलेक्ट्रोड विभव हाइड्रोजन के इलेक्ट्रोड विभव से ज्यादा होता है अत: यह H2 पृथक् नहीं करता।

प्रश्न 16. गैल्वैनी सेल की कार्यप्रणाली में जिस इलेक्ट्रोड पर ऑक्सीकरण होता है उस इलेक्ट्रोड का क्या नाम है ?

उत्तर: गैल्वैनी सेल में जिस इलेक्ट्रोड पर ऑक्सीकरण होता है। उसका नाम ऐनोड है। इस इलेक्ट्रोड पर इलेक्ट्रॉन की कमी होती है तथा यह ऋणात्मक सिरा होता है। प्रश्न 17. कुछ अर्द्ध-अभिक्रियाओं के इलेक्ट्रोड विभव इस प्रकार हैं – $Fe^{3+}_{(aq)} + e^- \rightarrow Fe^{2+}_{(aq)}$; $E^0 = -0.76 \text{ V}$ $Ce^{4+}_{(aq)} + e^- \rightarrow Ce^{3+}_{(aq)}$; $E^0 = -1.60 \text{ V}$ क्या Fe^{3+} से Ce^{4+} ऑक्सीकृत होगा।

उत्तर: नहीं। क्योंकि Fe3+ का अपचयन विभव Ce4+ से अधिक है।

प्रश्न 18. निम्न धातुओं की अपचायक क्षमता का क्रम लिखिए – Fe, Li, Na, Cu, Zn, Cd, Cr.

उत्तर: अपचायक क्षमता का क्रम निम्न है – Li > Na > Zn > Cr > Fe > Cd > Cu.

प्रश्न 19. क्रोमियम धातु, FeSO₄ विलयन से Fe को विस्थापित कर सकती है जबकि Cu नहीं, क्यों ?

उत्तर: विद्युत् रासायनिक श्रेणी में Cr का स्थान Fe से ऊपर है। जबकि Cu का Fe से नीचे। अत: Cr, FeSO4 से Fe विस्थापित करती है परन्तु Cu नहीं।

प्रश्न 20. किस परिस्थिति में गैल्वैनी सेल बाह्य परिपथ में कोई धारा नहीं भेजता ?

उत्तर: यदि लवण सेतु का प्रयोग नहीं किया जाये तो गैल्वैनी सेल बाह्य परिपथ में धारा नहीं भेजेगा।

प्रश्न 21. मानक हाइड्रोजन इलेक्ट्रोड के लिए प्रतीकात्मक संकेत तथा इसका विभव लिखिए।

उत्तर:

$$H^+(1M)/H_{2(g)}(1atm), Pt; E_{\left(H^+/\frac{1}{2}H_2\right)} = 0.00V$$

प्रश्न 22. निम्न में से किस ऑक्साइड का अपचयन हाइड्रोजन द्वारा होगा ? Na₂O,CaO,Al₂O₃,CuO, ZnO.

उत्तर: वे ऑक्साइड जिनकी धातु विद्युत् रासायनिक श्रेणी में हाइड्रोजन से नीचे स्थित होती है केवल उनके ही ऑक्साइड हाइड्रोजन द्वारा अपचियत होते हैं। अतः केवल CuO ही हाइड्रोजन द्वारा अपचियत होगी।

प्रश्न 23. विलयन में क्या AI द्वारा Mg या Sn का विस्थापन होगा ?

उत्तर: यहाँ Mg का विस्थापन AI द्वारा नहीं होगा, क्योंकि Mg विद्युत् रासायनिक श्रेणी में AI से ऊपर होता है।

Sn का विस्थापन AI द्वारा हो जायेगा, क्योंकि Sn विद्युत् रासायनिक श्रेणी में AI से नीचे है।

प्रश्न 24. गैल्वैनी सेल में कैथोड पर कौन-सी अभिक्रिया होती

उत्तर: गैल्वैनी सेल में कैथोड पर अपचयन होता है।

प्रश्न 25. क्या अर्द्ध-सेल स्वतन्त्र रूप से कार्य कर सकता है ?

उत्तर: नहीं। अर्द्ध-सेल स्वतन्त्र रूप से कार्य नहीं करती है।

प्रश्न 26. निम्न सेल में इलेक्ट्रॉन के प्रवाह की दिशा क्या होगी ? Zn/Zn²⁺ || Ag⁺/Ag

उत्तर: यहाँ इलेक्ट्रॉन के प्रवाह की दिशा Zn से Ag की तरफ होगी।

प्रश्न 27. क्या 1 M FeSO4 विलयन को टिन के पात्र में रखा जा सकता है ?

उत्तर: हाँ, FeSO4 विलयन को टिन के पात्र में रखा जा सकता है।

प्रश्न 28. ताप में वृद्धि के साथ धातुओं की विद्युत् चालकता क्यों घटती है ?

उत्तर: ताप में वृद्धि होने पर धातुओं में उपस्थित धनात्मक आवेशित केरनेल (Kernel) की गतिज ऊर्जा बढ़ती है जिसके कारण ये अपने स्थान पर कम्पन करने लगते हैं और इलेक्ट्रॉन की गति को रोकना आरम्भ कर देते हैं। इस कारण ताप वृद्धि पर धातुओं को विद्युत् चालकता घट जाती है।

प्रश्न 29. क्या किसी सेल अभिक्रिया के लिये E_{cell}0 या △,G° का मान शून्य हो सकता है?

उत्तर: नहीं।

प्रश्न 30. किसी भी सेल की e.m.f. क्या होगी ? जब सेल अभिक्रिया साम्यावस्था प्राप्त करती है ?

उत्तर: साम्यावस्था पर सेल का वि. वा. बल (e. m. f.) शून्य होता है।

प्रश्न 31. दो धातुएँ A व B क्रमशः – 0:20 V व + 0.90 V के अपचयन विभव मान वाली हैं। इनमें से कौन सी धातु तनु H₂SO4 से हाइड्रोजन गैस निकालेगी ?

उत्तर: जिस धातु का अपचयन विभव 0.0V से कम होता है केवल वह धातु ही तनु H₂SO₄ से हाइड्रोजन गैस को विस्थापित करेगी। अत: धातु A तनु H₂SO₄ से हाइड्रोजन गैस विस्थापित करेगी।

प्रश्न 32. वि. वा. बल व विभवान्तर में एक अन्तर बतायें।

उत्तर: जब सेल से धारा प्रवाहित होती है उस दशा में इलेक्ट्रोड विभव में होने वाला अन्तर विभवान्तर होता है तथा जब सेल से कोई धारा प्रवाहित नहीं होती उस दशा में इलेक्ट्रोड विभव में होने वाला अन्तर विद्युत् वाहक बल कहलाता है।

प्रश्न 33. क्या कारण है कि ऐलुमीनियम लवण के जलीय विलयन के विद्युत् अपघटन पर कभी भी ऐलुमीनियम धातु प्राप्त नहीं होती है ?

उत्तर: ऐलुमीनियम बनने के बाद जल से क्रिया करके ऐलुमिनियम ऑक्साइड बना लेता है, इस कारण इसके लवण के जलीय विलयन से कभी भी ऐलुमीनियम धातु प्राप्त नहीं की जा सकती है।

प्रश्न 34. क्या हम CuSO₄ विलयन को लोहे के पात्र में भण्डारण कर सकते है? समझाये।

उत्तर: नहीं। क्योंकि Fe का इलेक्ट्रोड विभव Cu के इलेक्ट्रोड विभव से अधिक है। इस कारण Fe, CuSO4 से Cu को विस्थापित कर देता है।

Fe + CuSO₄ \rightarrow FeSO₄ + Cu

प्रश्न 35. मानक हाइड्रोजन इलेक्ट्रोड में प्लेटिनीकृत प्लेटिनम का क्या कार्य है ?

उत्तर: (i) प्लेटिनीकृत प्लेटिनम पृष्ठीय उत्प्रेरक का कार्य करता है। जिससे H₂ गैस सतह पर अधिशोषित हो जाती है।

(ii) यह धातु धात्विक सम्पर्क के लिये अक्रिय धातु के रूप में कार्य करती है।

प्रश्न 36. गैल्वैनी सेल के ल ण सेतु बनाने के लिये प्रयुक्त लवणों के नाम लिखिए।

उत्तर: अक्रिय विद्युत् अपघट्य लवण जैसे – KNO3, NH4CI, KCI आदि।

प्रश्न 37. किसी सेल आरेख में दो खड़ी समानान्तर रेखाएँ क्या प्रदर्शित करती हैं ?

उत्तर: दो खड़ी समानान्तर रेखाएँ लवण सेतु का निर्माण प्रदर्शित करती हैं।

प्रश्न 38. KBr के जलीय विलयन का विद्युत् अपघटन करने पर Br2 ऐनोड पर प्राप्त होती है जबकि KF के जलीय विलयन का विद्युत् अपघटन करने पर F2, प्राप्त नहीं होती है, क्यों ?

उत्तर: क्योंकि E⁰F2/F- का अपचयन विभव उच्चतम होता है। इस कारण F2 जल से क्रिया करके O2 निर्गमित करती है। अत:: F2 प्राप्त नहीं होती है।

प्रश्न 39. किस परिस्थिति में $E_{cell} = 0$ तथा $\Delta_r G = 0$ होता है?

उत्तर: $E^0_{cell} = 0$ तथा Δ_r G = 0 मान केवल अभिक्रिया के साम्यावस्था पर पहुँचने पर ही होता है।

प्रश्न 40. E⁰Zn2+/Zn = -0.76V मान में ऋणात्मक चिन्ह क्या इगिंत कर रहा है?

उत्तर: उपरोक्त मान में ऋणात्मक चिन्ह यह दर्शा रहा है कि Zn हाइड्रोजन से अधिक क्रियाशील है। जिंक इलेक्ट्रोड को जब SHE के साथ जोड़ दिया जाता है तो Zn आक्सीकृत जबकि H+ अपचियत हो जाता है।

प्रश्न 41. जलीय कॉपर सल्फेट विलयन एवं जलीय सिल्वर नाइट्रेट विलयन में से 1 ऐम्पियर की विद्युत् धारा को 10 मिनट तक अलग-अलग विद्युत् अपघटनी सेल में प्रवाहित किया गया। क्या निक्षेपित कॉपर तथा सिल्वर का द्रव्यमान समान होगा? यदि नहीं तो क्यों?

उत्तर: निक्षेपित कॉपर तथा सिल्वर का द्रव्यमान समान नहीं होगा, क्योंकि सिल्वर आयनों के एक मोल के अपचयन के लिये एक मोल इलेक्ट्रॉनों की जबिक कॉपर आयनों के एक मोल के अपचयन के लिये दो मोल इलेक्ट्रॉनों की आवश्यकता होती है। हम जानते हैं कि एक इलेक्ट्रॉन पर आवेश 1.6021 × 10⁻¹⁹ C के बराबर होता है। अत: एक मोल इलेक्ट्रॉन पर आवेश 96487 कूलॉम्ब मोल⁻¹ है। इस प्रकार सिल्वर को 96487 कूलॉम्ब मोल⁻¹ तथा कॉपर को 2 × 9 6487 कूलॉम्ब मोल⁻¹ की आवश्यकता होती है।

प्रश्न 42. ईंधन सेल का उदाहरण लिखिए।

उत्तर: H2-O2 ईंधन सेल।

प्रश्न 43. ईंधन सेल क्या कार्य करता है ?

उत्तर: ईंधन सेल, ईंधन की रासायनिक ऊर्जा को विद्युत् ऊर्जा में परिवर्तित कर देता है।

प्रश्न 44. लोहे को जंग से बचाने के लिए हम कैथोडी सुरक्षा प्रदान करते हैं। इस कैथोडी सुरक्षा में प्रयोग होने वाली धातुओं के नाम लिखिए।

उत्तर: लोहे से अधिक क्रियाशील धातुओं जैसे-Zn तथा Mg को लोहे को जंग से बचाने हेतु कैथोडी सुरक्षा के लिए प्रयोग किया जाता

प्रश्न 45. कैथोडी सुरक्षा किस प्रकार कार्य करती है ?

उत्तर: जब हम लोहे पर उससे अधिक क्रियाशील धातु का लेप करते हैं तो यह धातु ऐनोड की तरह कार्य करती है तथा लोहा कैथोड की तरह कार्य करता है। अत: कैथोड पर यदि Fe2+ आयन उत्पन्न होते हैं तो वे इलेक्ट्रॉन को दोबारा ग्रहण करके लोहा बना लेते हैं। इस प्रकार की सुरक्षा कैथोडी सुरक्षा कहलाती है।

प्रश्न 46. क्षारीय माध्यमं में लोहे पर जंग लगना किस प्रकार रुकता है ?

उत्तर: लोहे पर जंग H+ आयनों की उपस्थिति में लगता है। जब माध्यम क्षारीय होता है तो H+ आयन उदासीन हो जाते हैं जिससे जंग का लगना कम हो जाता है।

प्रश्न 47. अधिविभव (over-voltage) क्या है ?

उत्तर: कुछ विद्युत् रासायनिक प्रक्रम सम्भव होते हुए भी गतिकीय रूप से इतने धीमे होते हैं कि ये निम्न विभवे पर घटित होते प्रतीत नहीं होते तथा ऐसी परिस्थिति में अतिरिक्त विभव लगाना पड़ता है। इस अतिरिक्त विभव को अधिविभव कहते हैं।

प्रश्न 48. गैल्वैनी सेल के लिए मुक्त ऊर्जा का परिवर्तन क्या होता

उत्तर: गैल्वैनी सेल में मुक्त ऊर्जा घटती है, अर्थात् इसका मान ऋणात्मक होता है। △G < 0.

प्रश्न 49. विद्युत् अपघटनी सेल के लिए मुक्त ऊर्जा को परिवर्तन क्या होता है ?

उत्तर: विद्युत् अपघटनी सेल में मुक्त ऊर्जा के परिमाण में वृद्धि होती है, अर्थात् इसका मान धनात्मक होता है। $\Delta G > 0$.

प्रश्न 50. चालकता को प्रभावित करने वाले कारकों के नाम लिखिए।

उत्तरः (i) विद्युत् अपघट्यं की प्रवृत्ति

(ii) विलयन में आयनों की सान्द्रता

(iii) ताप।

प्रश्न 51. विद्युत् अपघटन क्या होता है ?

उत्तर: वह प्रक्रिया जिसमें यौगिक की जलीय अवस्था तथा गलित अवस्था में विद्युत् धारा को प्रवाहित करने पर यौगिक अपने सरलतम पदार्थों में खण्डित हो जाता है, विद्युत् अपघटन कहलाती है।

प्रश्न 52. फैराडे के 'विद्युत् अपघटन का प्रथम नियम लिखिए।

उत्तर: फैराडे के विद्युत् अपघटन का प्रथम नियम-इसके अनुसार, निक्षेपित पदार्थ का द्रव्यमान विद्युत् अपघट्य से होकर गुजरने वाले आवेश के अनुक्रमानुपाती होता है।" अर्थात्त

$$m \propto Q$$

$$m = Z \times Q$$

$$m = Z \times I \times t$$

यहाँ Q = 3 अवेश, I = 4 शरा (ऐम्पियर में), t = 4 सम्य (सेकण्ड में)

प्रश्न 53. फैराडे के विद्युत् अपघटन को द्वितीय नियम लिखिए।

उत्तर: फैराडे के विद्युत् अपघटन को द्वितीय नियम-इसके अनुसार, "यदि विभिन्न विद्युत्-अपघट्यों में समान आवेश प्रवाहित किया जाये तो निक्षेपित पदार्थों का द्रव्यमान उनके तुल्यांकी-भारों के समानुपाती होता है।"

अर्थात्,
$$\frac{W_i}{W_2} = \frac{E_i}{E_2}$$

यहाँ W_1 तथा E_1 प्रथम पदार्थ का भार तथा तुल्यांकी भार है तथा W_2 तथा E_2 द्वितीय पदार्थ का भार तथा तुल्यांकी भार हैं।

प्रश्न 54. गलित PbBr2 का विद्युत्-अपघटन कराने पर ऐनोड तथा कैथोड पर प्राप्त उत्पाद लिखिए। उत्तर:

प्रश्न 55. मोलर चालकता का सूत्र लिखिए।

उत्तर:

प्रश्न 56. दुर्बल विद्युत्-अपघट्य के लिए मोलर चालकता एवं सीमान्त मोलर चालकता में सम्बन्ध लिखिए।

उत्तर:

'
$$-\alpha = \frac{\wedge_m}{\wedge_m^0}$$
, \wedge_m जहाँ = मोलर चालकता $\wedge_m^0 =$ सीमान्त मोलर चालकता $\alpha =$ वियोजन स्थिरांक

प्रश्न 57. किसी विलयन की मोलर चालकता सान्द्रता बढाने पर किस प्रकार परिवर्तित होती है ?

उत्तर: मोलर चालकता सान्द्रता बढ़ाने पर घट जाती है।

प्रश्न 58. कोलराश का नियम व एक अनुप्रयोग लिखें। अथवा आयनों के स्वतन्त्र पलायन सम्बन्धी कोलराउश नियम लिखें। उत्तर: कोलराउश का नियम-इस नियम के अनुसार, "अनन्त तनुता पर किसी विद्युत् अपघट्य की मोलर चालकता उसके धनायनों तथा ऋणायनों के अलग-अलग योगदान के योग के बराबर होती है।"

$$\alpha = \frac{\wedge_m}{\wedge_m^0}$$

प्रश्न 59. विलयन के विद्युत्-अपघटन में 4 मोल हाइड्रोजन गैस मुक्त करने के लिए कितने कूलॉम्बे विद्युत् आवेश की आवश्यकता होती है ?

उत्तर: 2H⁺ + 2e⁻ → H₂ 1 मोल हाइड्रोजन गैस मुक्त करने के लिए आवश्यक विद्युत् = 2 F 4 मोल हाइड्रोजन गैस मुक्त करने के लिए आवश्यक विद्युत् = 2 × 4 = 8 F 1 फैराडे = 96500c 8 फैराडे = 8 × 96500 C = 772000 C

प्रश्न 60. मैग्नीशियम धातु को मैग्नीशियम लवण के जलीय विलयन से विद्युत्-अपघटन के द्वारा प्राप्त नहीं कर सकते हैं। क्यों ?

उत्तर: क्योंकि मैग्नीशियम जल के साथ अभिक्रिया करता है। इस कारण से मैग्नीशियम के लवण के जलीय विलयन का विद्युत्-अपघटन करके इसे प्राप्त नहीं किया जा सकता।

प्रश्न 61. फैराडे नियतांक क्या है ?

उत्तर: एक मोल इलेक्ट्रॉनों पर कुल आवेश एक फैराडे होता है तथा यह 96500 C के बराबर होता है।

प्रश्न 62. मानक हाइड्रोजन इलेक्ट्रोड का इलेक्ट्रोड विभव कितना होता है ?

उत्तर: मानक हाइड्रोजन इलेक्ट्रोड का इलेक्ट्रोड विभव 0.00 Vy होता है।

प्रश्न 63. मानक हाइड्रोजन इलेक्ट्रोड में प्लेटिनीकृत प्लेटिनम का क्या कार्य है ?

उत्तर: यह एक उत्प्रेरक है तथा इसकी सतह पर हाइड्रोजन अवशोषित होती है।

प्रश्न 64. तनु कॉपर सल्फेट विलयन का विद्युत्- अपघटन Pt इलेक्ट्रोड पर कराने पर क्या उत्पाद प्राप्त होता है।

$$CuSO_4 \rightarrow Cu^{2+} + SO_4^{2-}$$
 $H_2O \rightarrow H^+ + OH^-$
कैथोड पर, $Cu^{2+} + 2e^- \rightarrow Cu$
ऐनोड पर, $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$
कैथोड पर, कॉपर धातु
ऐनोड पर, ऑक्सीजन गैस।

प्रश्न 65. मानक हाइड्रोजन इलेक्ट्रोड में प्लेटिनम पत्र का क्या कार्य है ?

उत्तर: यह इलेक्ट्रॉनों के अन्त: तथा बाह्य प्रवाह के लिए प्रयुक्त होता है।

प्रश्न ६६. विद्युत्-रासायनिक तुल्यांक क्या है ?

उत्तर: विद्युत् अपघट्य विलयन में एक कूलॉम्ब आवेश प्रवाहित करने से इलेक्ट्रोड पर मुक्त अथवा विक्षेपित पदार्थ की मात्रा उसका विद्युत्-रासायनिक तुल्यांक कहलाती है। इसका मात्रक g/C है।

प्रश्न 67. ऐनोड पर ऋण आयनों के निरावेशित होने का क्रम क्या है ?

उत्तर: आयनों के निरावेशित होने का क्रम निम्नानुसार है: $SO_3^{2^-} < NO_3^- < OH^- < Cl^- < Br^- < I^-$

लघु उत्तरीय प्रश्न

प्रश्न 1. कुछ अर्द्ध-अभिक्रियाओं के E⁰ निम्न प्रकार हैं-

$$I_2 + 2e^- \rightarrow 2I^-,$$
 $E^0 = +0.54 \text{ V}$
 $CI_2 + 2e^- \rightarrow 2CI^-,$ $E^0 = +1.36 \text{ V}$
 $Fe^{3+} + e^- \rightarrow Fe^{2+},$ $E^0 = +0.76 \text{ V}$
 $Ce^{4+} + e^- \rightarrow Ce^{3+},$ $E^0 = +1.60 \text{ V}$
 $Sn^{4+} + 2e^- \rightarrow Sn^{2+},$ $E^0 = +0.15 \text{ V}$

उपर्युक्त विभवों के आधार पर निम्न प्रश्नों के उत्तर दीजिए -

(i) क्या Fe³⁺ द्वारा Ce³⁺ का ऑक्सीकरण हो सकता है ? कारण सहित बताइए।

उत्तर: नहीं। क्योंकि Fe³⁺ का इलेक्ट्रोड विभव कम है।

(ii) क्या I₂ क्लोरीन को KCI में से विस्थापित कर सकती है ? कारण सहित समझाइए।

उत्तर: नहीं। क्योंकि । का इलेक्ट्रोड विभव कम है।

(iii) SnCl₂ और FeCl₃ विलयनों को मिलाने पर क्या अभिक्रिया होगी ? 'समीकरण लिखिए।

उत्तर: $SnCl_2 + FeCl_3 \rightarrow SnCl_4 + FeCl_2$.

(iv) उपर्युक्त अर्द्ध-सेल अभिक्रियाओं में सबसे प्रबल ऑक्सीकारक और सबसे प्रबल अपचायक कौन-सा है ?

उत्तर: प्रबल ऑक्सीकारक = Ce⁴⁺ प्रबल अपचायक = Sn²⁺

(v) FeCl₃ विलयन डालने पर क्या KI विलयन से आयोडीन मुक्त होगी ?

उत्तर: हाँ, FeCl3 विलयन डालने पर KI विलयन से I2 मुक्त होगी।

प्रश्न 2. निम्नलिखित ऑक्साइडों में से कौन-कौन सा ऑक्साइड H, द्वारा अपचयित हो सकता है ? कारण सहित बताइए। Na₂ O, MgO, Al₂O₃ CuO,Ag₂O.

उत्तर: उपर्युक्त दिये गये ऑक्साइड में से CuO. तथा Ag2O हाइड्रोजन गैस द्वारा अपचियत होंगे, क्योंकि विद्युत् रासायनिक श्रेणी में Fe या उससे नीचे रखी धातुओं के ऑक्साइड H2 द्वारा अपचियत हो जाते हैं तथा अभिक्रियाएँ निम्न प्रकार होती हैं –

CuO +
$$H_2 \rightarrow Cu \downarrow + H_2O$$

Ag₂O + $H_2 \rightarrow 2Ag \downarrow + H_2O$

प्रश्न 3. विद्युत् रासायनिक श्रेणी के आधार पर समझाइये कि निम्नलिखित में से कौन-सी अभिक्रिया सम्भव है और क्यों ?

- (i) SnO + $H_2 \rightarrow Sn + H_2O$
- (ii) CaO + $H_2 \rightarrow Ca + H_2O$

उत्तर: उपर्युक्त अभिक्रियाओं में से अभिक्रिया (i) सम्भव है, क्योंकि टिन जल से हाइड्रोजन विस्थापित नहीं करता है। जबकि Ca जल से तीव्र गति के साथ अभिक्रिया करता है।

प्रश्न 4.

इलेक्ट्रोड अभिकिया $Z_n \rightleftharpoons Z_n^{2+} + 2e^-$ तथा $C_u \rightleftharpoons C_u^{2+} + 2e^-$ के मानक इलेक्ट्रोड विभव क्रमशः -0.76 V तथा +0.337V हैं। कारण सहित बताइए कि अभिक्रिया $Z_n + C_u^{2+} \rightarrow Z_n^{2+} + C_u$ का होना सम्भव है या नहीं।

अभिक्रिया $Zn+Cu^{2+}\to Zn^{2+}+Cu$ का होना सम्भव है, क्योंकि इस अभिक्रिया में $E_{\rm thet}$ का मान धनात्मक आता है।

यहाँ अभिक्रिया में Z_n का Z_n^{2+} में ऑक्सीकरण होता है तथा Cu^{2+} का Cu में अपचयन होता है अत:

$$\begin{split} E^{0}_{\overline{AR}} &= E^{0}_{\overline{A} \in \overline{AS}} - E^{0}_{\overline{Q} \overline{AS}} \\ &= E^{0}_{(Cu^{2+}/Cu)} - E^{0}_{(Zn^{2+}/Zn)} \\ &= + 0.337 - (-0.76) \\ &= + 0.337 + 0.76 \\ &= + 1.097 \text{ V} \end{split}$$

अतः अभिक्रिया सम्भव है।

प्रश्न 5. विद्युत् वाहक बल तथा विभवान्तर में अन्तर स्पष्ट कीजिए।

उत्तर: विद्युत् वाहक बल तथा विभवान्तर में अन्तर

विद्युत् वाहक बल	विभवान्तर
(1) जब किसी परिपथ में कोई विद्युत् धारा प्रवाहित नहीं होती है उस समय दोनों इलेक्ट्रोडों के बीच का विभवान्तर विद्युत् वाहक बल कहलाता है।	(1) यह दोनों इलेक्ट्रोडों के इलेक्ट्रोड विभव का अन्तर होता है जब यह धारा को परिपथ में से होकर प्रवाहित करता है।
 (2) यह सेल में स्थायी धारा के प्रवाह के लिए उत्तरदायी होता है। (3) इसे विभवमापी से मापते हैं जबिक परिपथ में विद्युत् धारा प्रवाहित नहीं होती। 	(2) यह सेल में स्थायी धारा के प्रवाह के लिए उत्तरदायी नहीं होता है। (3) इसे वोल्टमीटर से मापते हैं।
(4) यह एक गैल्वैनिक सेल द्वारा प्रदर्शित अधिकतम वोल्टता है।	(4) यह सदैव सेल के अधिकतम घोल्टेज से कम होता है।
(5) यह किसी गैल्वैनिक सेल से प्राप्य अधिकतम कार्य होता है।	(5) विभवान्तर से परिकलित कार्य सेल से प्राप्य अधिकतम कार्य से कम होता है।

प्रश्न 6. कुछ पदार्थों के अपचयन विभव निम्न हैं। इसमें सबसे प्रबल ऑक्सीकारक तथा सबसे प्रबल अपचायक पदार्थ बताइए –

$$Sn^{4+} + 2e^- \rightleftharpoons Sn^{2+}$$

$$E^0 = +0.15 \text{ V}$$

$$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$$

$$E^0 = +1.52 \text{ V}$$

$$I_2 + 2e^- \rightleftharpoons 2I^-$$

$$E^0 = +0.54 \text{ V}$$

उत्तर: जिस धातु या पदार्थ का अपचयन विभव जितना अधिक धनात्मक होता है या अपचयन विभव जितना कम ऋणात्मक होता है वह उतना ही प्रबल ऑक्सीकारक होता है एवं जिस धातु या पदार्थ का अपचयन विभव जितना अधिक ऋणात्मक होता है या जितना कम धनात्मक होता है वह उतना ही प्रबल अपचायक होता है।

अत:

- (i) Sn²⁺, Mn²⁺ तथा 1⁻ में *Sn²⁺ प्रबल अपचायक होता है।
- (ii) ${\rm Sn^{4+}}, {\rm MnO_4^-}, {\rm \pi 2 II} \; \; {\rm I_2^-} \; \; {\rm H} \; {\rm MnO_4^-} \; {\rm H} \; {$

प्रश्न 7. कॉपर सल्फेट के विलयन में जिंक डालने पर विलयन का नीला रंग गायब क्यों हो जाता है ? समीकरण लिखिए।

उत्तर: विद्युत् रासायनिक श्रेणी में ऊपर वाले तत्व नीचे स्थित तत्वों को उसके विलयन में विस्थापित कर सकते हैं अर्थात् जब कॉपर सल्फेट के विलयन में जिंक डालते हैं तो जिंक विद्युत् रासायनिक श्रेणी में ऊपर होने के कारण कॉपर सल्फेट के विलयन से कॉपर को विस्थापित कर देता है। परिणामस्वरूप विलयन का नीला रंग गायब हो जाता है।

अभिक्रिया के दौरान होने वाला समीकरण निम्न है -

$$C_{u}SO_{4} + Z_{n} \longrightarrow Z_{n}SO_{4} + Cu$$

नीला रंग रंगहीन

प्रश्न 8. क्या कारण है कि गर्म करने पर HgO अपघटित हो जाता है परन्तु MgO अपघटित नहीं होता ?

उत्तर: HgO गर्म करने पर इसलिए अपघटित हो जाता है क्योंकि Hg का स्थान विद्युत्-रासायनिक श्रेणी में हाइड्रोजन से नीचे होता है। जबिक MgO अपघटित नहीं होता है क्योंकि Mg का स्थान विद्युत्-रासायनिक श्रेणी में हाइड्रोजन से ऊपर होता है। अतः विद्युत् रासायनिक श्रेणी में नीचे रखी गयी धातुओं के ऑक्साइड गर्म करने पर अपघटित हो जाते हैं जबिक ऊपर वाले धातु ऑक्साइड अपघटित नहीं होते हैं।

$$2HgO \xrightarrow{\Delta} 2Hg + O_2$$
 $MgO \xrightarrow{\Delta}$ कोई प्रभाव नहीं।

प्रश्न 9.

साधारण ताप पर Na जल से अभिक्रिया करता है, जबिक Mg केवल उच्च ताप पर जल से अभिक्रिया करता है, क्यों?

उत्तर:

Na विद्युत् रासायनिक श्रेणी में Mg से ऊपर होता है। अत: विद्युत् रासायनिक श्रेणी के आधार पर ऊपर से नीचे आने पर तत्वों की क्रियाशीलता जल के साथ घटती जाती है अतः Na जल से साधारण ताप पर तथा Mg उच्च ताप पर अभिक्रिया करता है।

$$2Na + 2H_2O \xrightarrow{\text{साधारण ताप}} 2NaOH + H_2^{\uparrow}$$

$$Mg + 2H_2O$$
 _ 3 \rightleftharpoons 3 \rightleftharpoons 1 \bowtie 1

प्रश्न 10. लोहा, कॉपर सल्फेट विलयन से कॉपर विस्थापित करता है परन्तु Pt नहीं, क्यों ?

उत्तर: Fe का इलेक्ट्रोड विभव Cu के इलेक्ट्रोड विभव से अधिक है, इस कारण Fe, CuSO4 से Cu को विस्थापित कर देता है जबकि Pt का इलेक्ट्रोड विभव Cu से कम है, इस कारण Pt, CuSO4 से Cu का विस्थापन नहीं कर पाता है।

 $CuSO_4 + Fe \rightarrow FeSO_4 + Cu$

CuSO₄ + Pt → अभिक्रिया नहीं

प्रश्न 11. दिये गये चित्र की सहायता से प्रश्न (i) से प्रश्न (vi) तक के उत्तर दें।

- (i) सेल में इलेक्ट्रॉन का प्रवाह किस दिशा में होता है?
- (ii) सिल्वर प्लेट ऐनोड का काम करेगा या कैथोड का?
- (iii) क्या होगा जब लवण सेतु को हटा दिया जाये?
- (iv) सेल काम करना कब बन्द कर देगा?
- (v) यदि सेल काम करे तो Ag+ आयन तथा Zn²⁺ आयनों की सान्दता पर क्या प्रभाव पड़ेगा?
- (vi) सेल के खत्म (dead) हो जाने पर Zn²+ आयनों तथा Ag आयनों की सान्दता पर क्या प्रभाव पड़ेगा ?

उत्तर:

- (i) सेल में इलेक्ट्रॉन का प्रभाव Zn से Ag की तरफ होता है।
- (ii) सिल्वर प्लेट कैथोड का कार्य करेगा।
- (iii) लवण सेतु को हटा देने पर सेल काम करना बन्द कर देगा।
- (iv) E्_{सेल} = 0 होने पर् सेल काम करना बन्द कर देगा।
- (v) यदि सेल काम करे तो Ag+ आयनों की सान्द्रता कम होगी तथा Zn2+ आयनों की सान्द्रता बढ़ जायेगी।
- (vi) जब $E_{cell} = 0$ हो जाये तो अभिकिया साम्यावस्था पर पहुँच जायेगी अतः Zn^{2+} आयनों तथा Ag^+ आयनों की सान्द्रता परिवर्तित नहीं होगी।

प्रश्न 12. विशिष्ट चालकता एवं आण्विक चालकता पर तन्ता का क्या प्रभाव पड़ता है?

विशिष्ट चालकता पर तनुता का प्रभाव – तनुता बढ़ाने पर विशिष्ट चालकता घट जाती है, क्योंकि प्रति मिली आयनों की संख्या घट जाती है।

आण्विक चालकती पर तनुता का प्रभाव – तनुता बढ़ाने पर आण्विक चालकता बढ़ जाती है क्योंकि आयनों के मध्य स्थान बढ़ जाता है परिणामस्वरूप आयनों की परस्पर टक्कर कम हो जाती है एवं आण्विक चालकता बढ़ जाती

प्रश्न 13. तनु सल्फ्यूरिक अम्ल का विद्युत्-अपघटन कराने पर प्राप्त पदार्थों को लिखिए।

उत्तर:

 $H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$ $H_2O \rightarrow H^+ + OH^-$ कैथोड पर, $2H^+ + 2e^- \rightarrow H_2$ ऐनोड पर, $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ कैथोड पर H_2 गैस तथा ऐनोड पर H_2 गैस प्राप्त होगी।

प्रश्न 14. सोडियम सल्फेट विलयन का विद्युत्- अपघटन कराने पर प्राप्त पदार्थों के नाम लिखिए।

उत्तर: $Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2^-}$ $H_2O \rightarrow H^+ OH^-$ चूँकि H^+ का डिस्चार्ज विभवे कम है अतः कैथोड पर H^+ जायेगी। कैथोड पर, $2H^+ + 2e^- \rightarrow H_2$ चूँकि OH^- की इलेक्ट्रॉन त्यागने की क्षमता अधिक है अतः ऐनोड पर OH^- जायेगा। ऐनोड पर, $4OH^- \rightarrow 2H_2O + O_2 + 4e^-$ कैथोड पर हमें H_2 गैस तथा ऐनोड पर O_2 गैस प्राप्त होगी।

प्रश्न 15. गलित NaCl या ब्राइन का विद्युत्-अपघटन करने पर प्राप्त पदार्थों को लिखिए।

उत्तर:

NaCl
$$\rightarrow$$
 Na⁺ + Cl⁻
कैथोड पर, Na⁺ + $e^- \rightarrow$ Na

ऐनोड पर, $Cl^- \rightarrow \frac{1}{2} Cl_2 + e^-$
कैथोड पर हमें सोडियम धातु तथा ऐनोड पर क्लोरीन गैस प्राप्त होगी।

प्रश्न 16. धारा दक्षता (Current efficiency) से आप क्या समझते हैं ?

उत्तर:

धारा दक्षता (Current efficiency)-

धारा दक्षता ≖ वास्तविक उपज सैद्धान्तिक उपज

वास्तविक उपज = पदार्थ की इलेक्ट्रोड पर निक्षेपित हुई मात्रा सैद्धान्तिक उपज = पदार्थ की फैराडे नियम या आयन इलेक्ट्रॉन समीकरण से परिकलित मात्रा जो इलेक्ट्रोड पर निक्षेपित होना अपेक्षित थी।

प्रश्न 17. विद्युत् चालन के आधार पर अचालक एवं अर्द्धचालक को समझाये।

उत्तर:

अचालक – ऐसे पदार्थ जो विद्युत् का चालन नहीं करते हैं अर्थात विद्युत् धारा का स्थानान्तरण नहीं करते हैं, अचालक (Insulators) कहलाते हैं। जैसे- प्लास्टिक, चीनी मिट्टी आदि।

अर्द्धचालक – ऐसे पदार्थ जिनकी चालकता चालकों एवं अचालकों के मध्य की होती है, अर्द्धचालक कहलाते हैं। उदाहरण-सिलिकॉन, डोपित सिलिकॉन, गैलियम आर्सेनाइड आदि।

प्रश्न 18. साम्यावस्था पर डेनियल सेल के लिए नेस्ट समीकरण लिखिए एवं E⁰ (सेल) तथा साम्य स्थिरांक (Kc) में सम्बन्ध व्युत्पन्न कीजिए।

उत्तर: यदि डेनियल सेल में परिपथ को बन्द कर दिया जाये तो निम्न अभिक्रिया होती है –

$$Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cu_{(s)}$$

जैसे-जैसे समय गुजरता है Zn²⁺ आयनों की सान्द्रता बढ़ती जाती है। जबकि Cu²⁺ आयनों की सान्द्रता घटती जाती है। इसी समय सेल की वोल्टता, जिसे वोल्टमीटर से पढ़ा जा सकता है, घटती है तथा कुछ समय पश्चात् Cu²⁺ एवं Zn²⁺ आयनों की सान्द्रता स्थिर हो जाती है एवं वोल्टमीटर शून्य दर्शाता है अर्थात इस समय अभिक्रिया साम्य अवस्था में आ

जाती है। इस साम्यावस्था के लिये नेस्ट समीकरण निम्न प्रकार होगा –

$$E_{(4m)} = 0 = E_{(4m)}^{\Theta} + \frac{0.059}{n} \log \frac{\left[Cu^{2+}\right]}{\left[Zn^{2+}\right]}$$

$$E^{\Theta}_{(\Re n)} = -\frac{0.059}{n} \log \frac{\left[\operatorname{Cu}^{2+}\right]}{\left[\operatorname{Zn}^{2+}\right]}$$

या
$$E_{(n)}^{\Theta} = \frac{0.059}{n} \log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$$

परन्तु साम्यावस्था पर,

$$\begin{split} \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} &= K_c \\ E^0_{(\frac{2\pi}{n})} &= \frac{0.059}{n} \log K_c \\ E^0_{(\frac{2\pi}{n})} &= \frac{2.303 \text{ RT}}{nF} \log K_c \end{split}$$

यदि हमें सेल के मानक इलेक्ट्रोड विभव का मान ज्ञात है तो हम साम्य स्थिरांक Kc के मान को ज्ञात कर सकते हैं।

प्रश्न 19. एकल इलेक्ट्रोड विभव को निर्धारण आप कैसे करेंगे ?

उत्तर: प्रयोग द्वारा हम एकल इलेक्ट्रोड विभव ज्ञात नहीं कर सकते हैं। इलेक्ट्रोड विभव को हम उस दशा में ही ज्ञात कर सकते हैं जब दो इलेक्ट्रोडों को जोड़कर सेल बनायें तथा उनके मध्य उत्पन्न विभवान्तर को ज्ञात करें। यदि हमें किसी एक इलेक्ट्रोड का विभव ज्ञात हो तो हम, दूसरे को आसानी से ज्ञात कर सकते हैं। जिस इलेक्ट्रोड का विभव ज्ञात होता है उसे मानक इलेक्ट्रोड (Reference Electrode) कहते हैं। हाइड्रोजन इलेक्ट्रोड एक मानक इलेक्ट्रोड है। इसका विभव 0:00 V होता है। इसकी सहायता से हम किसी दूसरे इलेक्ट्रोड के विभव को ज्ञात कर सकते हैं।

प्रश्न 20. इंधन सेलों का महत्व लिखिए।

उत्तर: ईंधन सेलों का महत्व -

- 1. इसके द्वारा किसी प्रकार के हानिकारक सह-उत्पाद नहीं बनते हैं अत: इससे किसी भी प्रकार का प्रदूषण नहीं होता है।
- 2. इसमें साधारण बैटरी की भाँति इलेक्ट्रोड पदार्थ को बदला नहीं जाता है। अत: यह एक प्रकार से ईंधन की सतत् आपूर्ति करते हैं। इस कारण ईंधन सेल अन्तरिक्ष यानों में प्रयुक्त होते हैं।
- 3. इसकी दक्षता काफ़ी उच्च होती है। यह लगभग 60-70% दक्ष होते हैं।

प्रश्न 21. विद्युत्-रासायनिक सेल तथा विद्युत्- अपघटनी सेल में अन्तर लिखें।

उत्तरः विद्युत्-रासायनिक, सेल तथा विद्युत्-अपघटनी

सेल में अन्तर

करते हैं। करते हैं।	421.3 4444	
 ऊर्जा में परिवर्तित करता है। इसमें रेडॉक्स अभिक्रिया स्वतः होती है। इसमें ऐनोड ऋणात्मक तथा कैथोड धनात्मक तथा कैथोड धनात्मक होता है। इसमें लवण सेतु का प्रयोग करते हैं। इसमें इलेक्ट्रॉन बाह्य परिपथ में ऐनोड से कैथोड की ओर चलते हैं। इसमें इलेक्ट्रॉन बाह्य परिपथ में प्रेनोड से कैथोड की ओर चलते हैं। 	विद्युत् रासायनिक सेल	विद्युत् अपघटनी सेल
	कर्जा में परिवर्तित करता है। 2. इसमें रेडॉक्स अभिक्रिया स्वत: होती है। 3. इसमें ऐनोड ऋणात्मक तथा कैथोड धनात्मक होता है। 4. इसमें लवण सेतु का प्रयोग करते हैं। 5. इसमें इलेक्ट्रॉन बाह्य परिपथ में ऐनोड से कैथोड की ओर चलते	ऊर्जा में परिवर्तित करता है। 2. इसमें रेडॉक्स अभिक्रिया स्वतः नहीं होती है। 3. इसमें ऐनोड धनात्मक तथा कैथोड ऋणात्मक होता है। 4. इसमें लवण सेतु का प्रयोग नहीं करते हैं। 5. इसमें इलेक्ट्रॉन बाह्य बैटरी से प्राप्त होते हैं। ये कैथोड से प्रविष्ट होते हैं और ऐनोड से बाहर

प्रश्न 22. कॉपर सल्फेट विलयन का विद्युत्-अपघटन कराने पर प्राप्त पदार्थों को लिखिए।

उत्तर:

$$CuSO_4 \longrightarrow Cu^{2+} + SO_4^{2-}$$

$$H_2O \longrightarrow H^+ + OH^-$$

Cu²⁺ तथा H⁺ में Cu²⁺ का डिस्चार्ज विभव कम होता है अत: कैथोड पर सर्वप्रथम Cu²⁺ जाता है।

कैथोड पर, Cu²⁺ + 2e⁻ → Cu

SO₄2- तथा OH- में ऋणायन त्यागने की अधिक क्षमता OH- में है अत: ऐनोड पर OH- जायेगा।

ऐनोड पर, $40H^{-} \rightarrow O_{2} + 2H_{2}O + 4e^{-}$

हमें कैथोड पर Cu धातु तथा ऐनोड पर O2 गैस जाप्त होगी।

प्रश्न 23. CuSO₄ विलयन का विद्युत्-अपघटन कॉपर इलेक्ट्रोड की उपस्थिति में कराने पर प्राप्त पदार्थों के नाम लिखिए।

उत्तर: चूँिक इलेक्ट्रोड कॉपर के हैं अत: कॉपर धातु का ही ऑक्सीकरण होगा तथा इसका ही अपचयन होगा।

कैथोड पर, Cu²⁺ + 2e⁻ → Cu

ऐनोड पर, Cu \rightarrow Cu²⁺ + 2e⁻

कैथोड की छड़ पर Cu धातु जमा होती जायेगी अर्थात् कॉपर की छड़ मोटी हो जायेगी। ऐनोड की छड़ पर ऑक्सीकरण होगा अतः समय के साथ-साथ ऐनोड की छड़ घुल जायेगी।

विस्तृत उत्तरीय प्रश्न

प्रश्न 1. लोहे में संक्षारण प्रक्रिया को समझाते हुए स्पष्ट कीजिए कि जंग लगने से लोहा भारी क्यों हो जाता है ?

अथवा

लोहे के जंग लगने की सम्पूर्ण रासायनिक अभिक्रिया लिखें।

उत्तर: संक्षारण का विद्युत्-रासायनिक सिद्धान्त

लोहे पर जंग लगने के उदाहरण द्वारा संक्षारण के विद्युत्-रासायनिक सिद्धान्त को समझ सकते हैं। लौह धातु की सतह पर उपस्थित जल की बूंदों में वायुमण्डल से ऑक्सीजन और CO_2 गैस घुल जाती है। $CO_2 + H_2O \rightarrow H_2CO_3$

यहाँ अशुद्ध आयरन कैथोड को तथा शुद्ध आयरन ऐनोड का कार्य करता है एवं सतह पर उपस्थित जलीय विलयन जिसमें O2 तथा CO2 घुली हुई हैं, विद्युत्-अपघट्य का कार्य करता है। इस प्रकार लोहे की सतह पर एक विद्युत्-रासायनिक सेल का निर्माण हो जाता है। सेल में होने वाली अभिक्रियाएँ निम्न हैं —

ऐनोड पर – लोहे का ऑक्सीकरण होता है और Fe²⁺ आयन विलयन में चले जाते हैं।

Fe→ Fe²⁺ + 2e⁻ (ऑक्सीकरण)

कैथोड पर-H2O तथा CO2 मिलकर बने H2CO3 एवं H2O के आयन से प्राप्त H⁺ आयन इलेक्ट्रॉन को ग्रहण करते हैं।

> $H_2CO_3 \rightleftharpoons 2H^+ + CO_3^{2-}$ $H_2O \rightleftharpoons H^+ + OH^ 2H^+ + 2e^- \rightleftharpoons 2H$

यहाँ H-परमाणु जल में घुली ऑक्सीजन को अपचियत कर देता है।

$$2H + \frac{1}{2}O_2 \rightarrow H_2O$$

उपर्युक्त को हम निम्न प्रकार लिख सकते हैं---

$$2H^* + \frac{1}{2}O_2 + 2e^- \rightarrow H_2O$$

संक्षारण के विद्युत्-रासायनिक सेल में निम्न ाभिक्रिया होती है--

$$Fe_{(s)} + \frac{1}{2}O_2 + 2H^+ \rightarrow Fe^{2+} + H_2O$$

ये Fe²⁺ आयन लोहे की सतह पर वायुमण्डलीय ऑक्सीजन द्वारा ऑक्सीकृत होकर फेरिक ऑक्साइड बनाते हैं जिसे जंग कहते हैं।

$$4Fe^{2+} + O_2 + 4H_7O \rightarrow 2Fe_2O_3 + 8H^+$$

 $Fe_2O_3 + xH_2O \rightarrow Fe_2O_3 \cdot xH_2O$
(जंग)

जंग लगने से लोहा, आयरन ऑक्साइड में परिवर्तित हो जाता है जो कि भारी होता है। इस कारण जंग लगने से लोहा भारी हो जाता है।

प्रश्न 2. (अ) डेनियल सेल का नामांकित चित्र बनाइये।

- (ब) इलेक्ट्रोडों पर होने वाली ऑक्सीकरण एवं अपचयन की अर्द्ध अभिक्रियाएँ लिखिए।
- (स) इस सेल के लिये नेर्नुस्ट समीकरण का गणितीय रूप लिखिये।

उत्तर: (अ)
$$Zn \rightarrow Zn^{2+} + 2e^-$$
 (ऑक्सीकरण)

(我)
$$Z_{n} \to Z_{n}^{2+} + 2e^{-}$$
 (ऑक्सीकरण) $Cu^{2+} + 2e^{-} \to Cu$ (अपचयन) $Z_{n} + Cu^{2+} \to Z_{n}^{2+} + Cu$ (礼徳 अधिक्रिया)

नेर्न्स्ट समीकरण
$$E_{cell} = \left(E_{Cu^{2+}/Cu}^{\circ} - E_{Zn^{2+}/Zn}^{\circ}\right)$$

$$+\frac{0.059}{2}\log \frac{[Zn][Cu^{2+}]}{[Zn^{2+}][Cu]}$$