

Data Freshness in Mixed-Memory Intermittently-Powered Systems

James Scott Broadhead

and

Przemysław Pawełczak

ISIT 2021

29,300,000,000

Networked devices by 2023*

Removing batteries to make a more sustainable loT

Intermittent Computing

Intermittently Operating Sensor

Often have mixed-memory structure

Checkpointing between memory types common to reduce impact of failure

Mixed-Memory System Model

How does **checkpointing** affect the **freshness** of data generated by the sensor?

We can use the apparatus of **Age of Information (AoI)**

Aol Evolution of the System

Average Peak Aol

$$\mathbb{E}[\Delta^{\text{Peak}}] = \mathbb{E}[Y] + \mathbb{E}[S]$$

Average Aol

$$\mathbb{E}[\Delta] = rac{\mathbb{E}[Y^2]}{2\,\mathbb{E}[Y]} + \mathbb{E}[S]$$

Aol Evolution of the System

- $K_{i,n}$ Inter-checkpointing time
- D Time to checkpoint
- $L_{i,j}$ Wasted processing time
- $R_{i,i}$ System down time
- V Restoration time
- S_{i-1}

Completion time

• I_i

Idle time

Aol Evolution of the System

Inter-completion time:

$$Y_{i} = I_{i} + \sum_{j=1}^{f} (L_{i,j} + R_{i,j} + V)$$
Idle time Events associated with failure
$$+ \sum_{n=1}^{h} K_{i,n} + Dh,$$

Completion time:

$$S_i = Y_i - I_i$$

Processing $\triangleq P_i$ Checkpointing

Problems Evaluated in the Paper

- 1) Optimise checkpointing strategies to improve the freshness of data produced by the system
- 2) Compare the data freshness produced by alternative memory arrangements to mixed-memory
- 3) Compare alternative time-dependent checkpointing strategies to improve system resilience to variable environmental conditions

Expectation of PeakAol

$$Y_i = I_i + \sum_{j=1}^{f} (L_{i,j} + R_{i,j} + V)$$

Idle time Events associated with failure

+
$$\sum_{n=1}^{h} K_{i,n}$$
 + Dh ,

Processing $\triangleq P_i$ Checkpointing

$$S_i = Y_i - I_i$$

Expectation of Peak Aol

$$\mathbb{E}[\Delta^{\mathrm{Peak}}] = \mathbb{E}[Y] + \mathbb{E}[S]$$

By applying Wald's identity

Expectation of inter-completion time

$$\mathbb{E}[Y] = \mathbb{E}[I] + \mathbb{E}[f] (\mathbb{E}[L] + \mathbb{E}[R] + V) + \mathbb{E}[h] \mathbb{E}[K] + D \mathbb{E}[h],$$

Expectation of completion time

$$\mathbb{E}[S] = \mathbb{E}[Y] - \mathbb{E}[I],$$

Expectation of PeakAol

Expectation of Peak Aol

$$\mathbb{E}[\Delta^{\text{Peak}}]_{\text{MM}} = 2 \mathbb{E}[f] \left(C_1 + \frac{\mathbb{E}[P]}{2 \mathbb{E}[h]} \right) + C_2 + \mathbb{E}[P] + 2D \mathbb{E}[h]$$

Minimising Peak Aol

$$\frac{d\mathbb{E}[\Delta^{\text{Peak}}]_{\text{MM}}}{d\mathbb{E}[h]} = 2D - \frac{\mathbb{E}[f]\mathbb{E}[P]}{\mathbb{E}[h]^2}$$

Optimum checkpointing

$$\mathbb{E}[h] = \sqrt{\frac{\mathbb{E}[f]\,\mathbb{E}[P]}{2D}}$$

Memory Structure and Data Freshness

Lemma 1. An entirely NVM IPD will have a lower or equal average PAoI than a checkpointing mixed-memory IPD

Lemma 2. Under certain environmental conditions a mixed-memory IPD will have a lower average PAoI than a single-memory VM IPD

Improving Resilience in Variable Environmental Conditions

System Power Failure

James Scott Broadhead

j.s.broadhead@tudelft.nl

Przemysław Pawełczak

p.pawelczak@tudelft.nl