2.2 - Esempi di Varietà Lisce

Ora che abbiamo formalmente definito le varietà lisce, diamo alcuni esempi di questi oggetti.

Esempi notevoli

@ Esempio 2.2.1 (Varietà di dimensione 0).

Una varietà topologica M con $\dim M = 0$ è discreta, in quanto localmente euclidea di dimensione 0 (quindi ogni punto $p \in M$ ha un intorno omeomorfo a un singoletto, e tale intorno deve essere necessariamente $\{p\}$), e numerabile per secondo-numerabilità.

Ogni punto $p \in M$ appartiene dunque a una unica carta $(\{p\}, \varphi_p)$, dove φ_p è l'unica funzione da $\{p\}$ in \mathbb{R}^0 .

La famiglia $\{(\{p\}, \varphi_p) \mid p \in M\}$ è un atlante per M, e anzi è l'insieme di tutte le carte costruibili su M; dunque, questa è una struttura differenziabile su M, ed è l'unica che si può definire su M.

@ Esempio 2.2.2 (Lo spazio euclideo \mathbb{R}^n).

Lo spazio \mathbb{R}^n con la metrica euclidea è di Hausdorff e a base numerabile, ed evidentemente è localmente euclideo di dimensione n; dunque, è una varietà topologica.

Il più semplice atlante liscio che possiamo definire su questo spazio è $\{(\mathbb{R}^n, id_{\mathbb{R}^n})\}$; grazie alla <u>Proposizione 2.1.4</u>, questa determina una struttura liscia su \mathbb{R}^n , che prende il nome di *struttura liscia canonica* o *standard*.

A meno ché non specifichiamo diversamente, supporremo che \mathbb{R}^n sia sempre dotato di questa struttura.

Le carte che fanno parte della struttura liscia canonica di \mathbb{R}^n sono esattamente quelle carte (U, φ) con φ diffeomorfismo (nel senso dell'analisi ordinaria) di U in un altro aperto $V \subseteq \mathbb{R}^n$.

@ Esempio 2.2.3 (Coordinate polari su \mathbb{R}^2).

Prendiamo \mathbb{R}^2 con la struttura liscia standard; dato l'aperto $U = \mathbb{R}^+ \times \mathbb{R}$, consideriamo il passaggio a coordinate polari

$$arphi:U o\mathbb{R}^2:(x,y)\mapsto ig(\sqrt{x^2+y^2},rctan(y/x)ig)$$

Questa mappa è un diffeomorfismo (nel senso dell'analisi ordinaria) da U a $\varphi(U) = \mathbb{R}^+ \times \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$, che è aperto in \mathbb{R}^2 ; ne segue che (U, φ) è una carta liscia di \mathbb{R}^2 .

\mathscr{Q} Esempio 2.2.4 (Un'altra struttura differenziabile su \mathbb{R}).

Sia $h: \mathbb{R} \to \mathbb{R}$ la funzione definita ponendo $h(t) = t^3$.

Questa funzione è di classe C^{∞} e un omeomorfismo, ma non è un diffeomorfismo in quanto $h^{-1}: t \mapsto t^{1/3}$ non è addirittura derivabile per t=0.

Con questa funzione possiamo definire una struttura differenziabile su \mathbb{R} , individuata dall'atlante $\{(\mathbb{R},h)\}$.

Osserviamo che questa struttura è distinta da quella canonica; infatti, non essendo h^{-1} di classe C^{∞} , le carte $(\mathbb{R}, \mathrm{id}_{\mathbb{R}})$ e (\mathbb{R}, h) non sono C^{∞} -compatibili, pertanto non possono appartenere alla stessa struttura differenziabile.

\oslash Esempio 2.2.5 (Spazi vettoriali di dimensione finita su $\mathbb R$).

Uno spazio vettoriale V su \mathbb{R} di dimensione finita n è isomorfo a \mathbb{R}^n ;

una volta scelta una base $\mathbf{e}_1, \dots, \mathbf{e}_n$, si considera la funzione $\Phi: V \to \mathbb{R}^n$ che identifica il vettore $v = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$ con la n-upla (x_1, \dots, x_n) in \mathbb{R}^n .

Ad esempio, lo spazio $\mathbb{R}^{m,n}$ delle matrici $m \times n$ si può identificare con \mathbb{R}^{mn} , in cui la matrice $A = [a_{i,j}]$ corrisponde alla mn-upla $(a_{1,1}, \ldots, a_{1,n}, \ldots, a_{m,1}, \ldots, a_{m,n})$.

Utilizzando queste identificazioni, possiamo definire una topologia naturale su V, omeomorfa a quella di \mathbb{R}^n ; fatto questo, ci viene naturale considerare allora la struttura differenziabile indotta dall'atlante $\{(V, \Phi)\}$.

@ Esempio 2.2.6 (Sottovarietà aperte, Gruppo generale lineare).

Sia M una varietà C^{∞} , e consideriamo un sottoinsieme $U \subseteq M$ aperto (che sappiamo essere una varietà topologica con la topologia indotta da M dall'Esempio 1.2.3).

Detta \mathcal{A} la struttura differenziabile di M, viene naturale definire su U la famiglia

$$\mathcal{A}|_U = \{(V, arphi) \in \mathcal{A} : V \subseteq U\}$$

Questa è un atlante liscio per U.

Infatti, per ogni $p \in U$, esiste $(V, \varphi) \in \mathcal{A}$ tale che $p \in V$;

la carta $(W, \varphi|_W)$ con $W = V \cap U$ è evidentemente compatibile con tutte le carte di \mathcal{A} , per cui fa parte della famiglia indicata, e possiede p.

Osserviamo che questo atlante è già massimale.

Per vederlo, prendiamo una carta (W, ψ) in U compatibile con tutte le carte di $\mathcal{A}|_{U}$; per ogni carta $(V, \varphi) \in \mathcal{A}$ abbiamo che:

• $(V \cap U, \varphi|_{V \cap U}) \in \mathcal{A}|_U$;

• $\psi \circ \varphi^{-1} = \psi \circ \varphi|_{V \cap U}^{-1}$ e $\varphi \circ \psi^{-1} = \varphi|_{V \cap U} \circ \psi^{-1}$, essendo $W \subseteq U$.

Da questi due fatti e dalla scelta di (W, ψ) segue che questa carta è compatibile con tutte le carte di \mathcal{A} , dunque appartiene ad \mathcal{A} stesso per massimalità;

essendo $W \subseteq U$, ne viene che $(W, \psi) \in \mathcal{A}|_{U}$.

con questo atlante come struttura liscia, U prende il nome di sottovarietà aperta di M (definiremo una classe più generale di sottovarietà più avanti).

A meno ché non specifichiamo diversamente, supporremo che i sottoinsiemi aperti di una varietà liscia siano sempre dotati di questa struttura.

Un esempio notevole di sottovarietà aperta è il gruppo generale lineare; esso è l'insieme $GL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n,n} \mid \det A \neq 0\} \subseteq \mathbb{R}^{n,n}$, delle matrici quadrate reali $n \times n$ non singolari.

Poiché il determinante è una funzione polinomiale delle entrate di A, essa è continua nella topologia in cui $\mathbb{R}^{n,n}$ si identifica con \mathbb{R}^{n^2} ; pertanto, $GL(n,\mathbb{R}) = \mathbb{R}^{n,n} \setminus \det^{-1}\{0\}$ è un insieme aperto.

Quindi, la struttura differenziabile introdotta prima rende $\mathrm{GL}(n,\mathbb{R})$ una sottovarietà aperta di $\mathbb{R}^{n,n}$.

@ Esempio 2.2.7 (Grafici di funzioni lisce).

Sia $U\subseteq\mathbb{R}^n$ aperto e prendiamo una funzione $f:U\to\mathbb{R}^m$ di classe C^∞ .

Consideriamone il grafico $\Gamma(f) = \{(x, f(x)) \mid x \in U\} \subseteq \mathbb{R}^{m+n}$; sappiamo che che questo insieme è una n-varietà topologica con la topologia indotta da \mathbb{R}^{m+n} (Esempio 1.2.4)

Inoltre, essendo f liscia, la proiezione π utilizzata nell'esempio indicato è un diffeomorfismo.

Allora, possiamo rendere $\Gamma(f)$ una varietà liscia con la struttura differenziabile indotta dall'atlante liscio $\{(\Gamma(f), \pi)\}$.

@ Esempio 2.2.8 (n-Sfera).

Nell'<u>Esempio 1.2.5</u> abbiamo visto che la n-sfera unitaria $\mathbf{S}^n = \{\mathbf{x} \in \mathbb{R}^{n+1} : ||\mathbf{x}|| = 1\}$ è una n-varietà topologica con la topologia indotta da \mathbb{R}^{n+1} .

Proviamo ora a dotare questo insieme di una struttura differenziabile.

Per fare questo, consideriamo gli aperti e gli omeomorfismi quelli del tipo menzionato nell'esempio indicato; al variare di $i \in \{1, \ldots, n+1\}$ abbiamo gli aperti $U_i^+ = \{\mathbf{x} \in \mathbf{S}^n : x^i > 0\}$ e $U_i^- = \{\mathbf{x} \in \mathbf{S}^n : x^i < 0\}$, e le proiezioni $\pi_i : \mathbb{R}^{n+1} \to \mathbb{R}^n : (x^1, \ldots, x^n) \mapsto (x^1, \ldots, x^{i-1}, x^{i+1}, \ldots, x^n)$, che sono lisce.

Vediamo se la famiglia $\{(U_i^{\pm}, \pi_i|_{U_i^{\pm}}) \mid i \in \{1, \dots, n\}\}$ è un atlante liscio per \mathbf{S}^n .

Che gli aperti della famiglia ricoprano S^n è evidente.

Per verificare la C^{∞} -compatibilità delle carte consideriamo ad esempio $\pi_1|_{U_1^+} \circ (\pi_2^-|_{U_2^-})^{-1}$ (gli altri casi sono analoghi); la sua legge è data da

$$(x^1,x^3,\dots,x^n) ertilded{\overset{(\pi_2^-|_{U_2^-})^{-1}}{\longrightarrow}} ig(x^1,\,-\sqrt{1-(x^1)^2-(x^3)^2-\dots-(x^n)^2}\,\,,x^3,\dots,x^nig) \ ertilded{\overset{\pi_1^+}{\longrightarrow}} ig(-\sqrt{1-(x^1)^2-(x^3)^2-\dots-(x^n)^2}\,\,,x^3,\dots,x^nig),$$

da cui si evince che questa funzione è C^{∞} .

@ Esempio 2.2.9 (Spazio proiettivo).

Nell'<u>Esempio 1.3.8</u> abbiamo visto che lo spazio proiettivo reale n-dimensionale \mathbb{RP}^n è una varietà topologica.

Vediamo se le carte (U_i, ϕ_i) , con le notazioni dell'esempio in questione, costituiscono un atlante liscio per \mathbb{RP}^n .

Evidentemente, gli U_i ricoprono tutto \mathbb{RP}^n .

Verifichiamo la compatibilità delle carte; fissati $i, j \in \{1, \dots, n+1\}$ e supponendo ad esempio i < j per convenienza, abbiamo

$$egin{aligned} \phi_i \circ \phi_j^{-1} : (x^1,\ldots,x^n) & \stackrel{\phi_j^{-1}}{\longmapsto} [x^1,\ldots,x^{j-1},1,x^j,\ldots x^n] \ & \stackrel{\phi_i}{\mapsto} \left(rac{x^1}{x^i},\ldots,rac{x^{i-1}}{x^i},rac{x^{i+1}}{x^i},\ldots,rac{x^{j-1}}{x^i},rac{1}{x^i},rac{x^{j+1}}{x^i},\ldots,rac{x^n}{x^i}
ight) \end{aligned}$$

che è una funzione C^{∞} da $\phi_i(U_i \cap U_j)$ a $\phi_j(U_i \cap U_j)$.

Lo stesso identico ragionamento possiamo farlo per lo spazio proiettivo complesso n-dimensionale \mathbb{CP}^n , visto nell'<u>Esercizio 1.3.10</u>.

Prodotto di varietà lisce

La <u>Proposizione 2.2.10</u> mostra che il prodotto di due varietà topologiche è ancora una varietà topologica, la cui dimensione è la somma delle dimensioni delle varietà date.

La seguente proposizione ci permette di costruire una struttura differenziabile sul prodotto di due varietà lisce.

Proposizione 2.2.10 (Atlante sul prodotto di varietà lisce).

Siano M e N varietà lisce di dimensioni m e n; siano dunque $\{(U_{\alpha}, \varphi_{\alpha})\}$ e $\{(V_{\beta}, \psi_{\beta})\}$ le strutture differenziabili di M e N, rispettivamente.

Le carte del tipo $(U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta})$ (dove si definisce $\varphi \times \psi$ ponendo $(\varphi \times \psi)(p,q) = (\varphi(p), \psi(q))$) costituiscono un atlante liscio per $M \times N$.

Osservazioni preliminari

Date $f, h: A \to B$ e $g, k: C \to D$ biunivoche, abbiamo i seguenti fatti:

- Vale $(f \times g) \circ (h \times k) = (f \circ h) \times (g \circ k)$;
- Dati $U \subseteq B$ e $V \subseteq D$, vale $(f \times g)^{-1}(U \times V) = f^{-1}(U) \times g^{-1}(V)$.

Dimostrazione

Intanto, gli insiemi $U \times V$ ricoprono $\mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$ in quanto gli U_{α} e i V_{β} ricoprono M e N rispettivamente, per ipotesi.

La generica funzione $\varphi_{\alpha} \times \psi_{\beta}$ è un omeomorfismo;

infatti, è composizione delle funzioni $(id_{U_{\alpha}} \times \psi_{\beta})$ e $(\varphi_{\alpha} \times id_{U_{\beta}})$, che sono omeomorfismi essendo ψ_{β} e φ_{α} omeomorfismi per ipotesi.

Resta da mostrare la compatibilità tra due generiche funzioni $(\varphi_{\alpha} \times \psi_{\beta})$ e $(\varphi_{\alpha'} \times \psi_{\beta'})$;

Per ogni $(x,y) \in (U_{\alpha} \times V_{\beta}) \cap (U_{\alpha'} \times V_{\beta'}) = (U_{\alpha} \cap U_{\alpha'}) \times (V_{\beta} \cap V_{\beta'})$, dalle osservazioni preliminari segue che

$$(arphi_lpha imes\psi_eta)\circ(arphi_{lpha'} imes\psi_{eta'})^{-1}:\quad (x,y)\mapsto \left(arphi_{lpha'}^{-1}(x),\psi_{eta'}^{-1}(y)
ight)\mapsto \left(arphi_lpha\,arphi_{lpha'}^{-1}(x),\psi_eta\,\psi_{eta'}^{-1}(y)
ight),$$

dunque, essa è pari alla funzione $(\varphi_{\alpha} \circ \varphi_{\alpha'}^{-1}) \times (\psi_{\beta} \circ \psi_{\beta'}^{-1})$, che è di classe C^{∞} in $(U_{\alpha} \cap U_{\alpha'}) \times (V_{\beta} \cap V_{\beta'})$ essendo prodotto di due funzioni che per ipotesi sono di classe C^{∞} , in $U_{\alpha} \cap U_{\alpha'}$ e $V_{\beta} \cap V_{\beta'}$ rispettivamente.

Date due varietà lisce M e N, si definisce allora il loro prodotto come lo spazio $M \times N$ dotato della topologia prodotto e della struttura differenziabile indotta dall'atlante della proposizione appena enunciata.

Questa struttura differenziabile può ad esempio essere applicata all'n-toro $\mathbf{T}^n = \mathbf{S}^1 \underbrace{\times \cdots \times}_{n \text{ volte}} \mathbf{S}^1$.

Problemi ed Esercizi

 \mathscr{Q} Esercizio 2.2.11 (Un altro atlante per S^n : le coordinate stereografiche).

Consideriamo di nuovo la n-sfera unitaria \mathbf{S}^n ; consideriamo su di esso i due punti antipodali $\mathbf{n} = (0, \dots, 0, 1)$ e $\mathbf{s} = (0, \dots, 0, -1)$.

Definiamo la proiezione stereografica $\sigma_{\mathbf{n}}: \mathbf{S}^n \setminus \{\mathbf{n}\} \to \mathbb{R}^n$ definita dimodoché, per ogni $\mathbf{x} \in \mathbf{S}^n \setminus \{\mathbf{n}\}$, il punto $(\sigma_{\mathbf{n}}(\mathbf{x}), 0)$ sia l'intersezione della retta per \mathbf{x} e \mathbf{n} con l'iperpiano di equazione $x^{n+1} = 0$;

analogamente, definiamo la proiezione stereografica $\sigma_{\mathbf{s}}: \mathbf{S}^n \setminus \{\mathbf{s}\} \to \mathbb{R}^{n+1}$ definita dimodoché, per ogni $\mathbf{x} \in \mathbf{S}^n \setminus \{\mathbf{s}\}$, il punto $(\sigma_{\mathbf{s}}(\mathbf{x}), 0)$ sia l'intersezione della retta per \mathbf{x} e \mathbf{s} con l'iperpiano di equazione $x^{n+1} = 0$.

Con un po' di analisi ordinaria troviamo che

$$\sigma_{\mathbf{n}}(x^1,\ldots,x^{n+1}) = rac{(x^1,\ldots,x^n)}{1-x^{n+1}}$$

e anche che $\sigma_{\mathbf{s}}(\mathbf{x}) = -\sigma_{\mathbf{n}}(-\mathbf{x})$.

Abbiamo anche che $\sigma_{\mathbf{n}}$ e $\sigma_{\mathbf{s}}$ sono biunivoche, con inverse di legge

$$\sigma_{f n}^{-1}(y^1,\ldots,y^n) = rac{(2y^1,\ldots,2y^n,\|{f y}\|^2-1)}{\|{f y}\|^2+1} \quad , \quad \sigma_{f s}^{-1}({f y}) = -\sigma_{f n}^{-1}(-{f y})$$

Le leggi che abbiamo ricavato sono continue, pertanto $\sigma_{\mathbf{n}}$ e $\sigma_{\mathbf{s}}$ sono omeomorfismi.

Nascono allora le carte $(\mathbf{S}^n \setminus \{\mathbf{n}\}, \sigma_{\mathbf{n}})$ e $(\mathbf{S}^n \setminus \{\mathbf{s}\}, \sigma_{\mathbf{s}})$ su \mathbf{S}^n ; vediamo se sono compatibili, cosicché possano costituire un atlante liscio per questa varietà topologica.

La mappa di transizione è data da

$$egin{aligned} \sigma_{\mathbf{s}} \circ \sigma_{\mathbf{n}}^{-1} : (x^1,\ldots,x^n) & \stackrel{\sigma_{\mathbf{n}}^{-1}}{\longmapsto} rac{(2x^1,\ldots,2x^n,\|\mathbf{x}\|^2-1)}{\|\mathbf{x}\|^2+1} \ & \stackrel{\sigma_{\mathbf{s}}}{\longmapsto} rac{(x^1,\ldots,x^n)}{\|\mathbf{x}\|^2} \end{aligned}$$

che è chiaramente di classe C^{∞} nel dominio $\sigma_{\mathbf{n}}(\mathbf{S}^n \setminus \{\mathbf{n}, \mathbf{s}\}) = \mathbb{R}^n \setminus \{\mathbf{0}\}.$

Nasce così una struttura liscia su S^n ; vediamo se è la stessa di quella definita nell'<u>Esempio 2.2.8</u>.

Per capire se la struttura è la stessa, basta verificare se le carte dei due atlanti sono tra loro compatibili.

Prendiamo ad esempio una carta $(U_i^{\pm}, \pi_i|_{U_i^{\pm}})$ e la carta $(\mathbf{S}^n \setminus \{\mathbf{n}\}, \sigma_{\mathbf{n}})$; abbiamo

$$egin{aligned} \sigma_{\mathbf{n}} \circ \pi_i|_{U_i^\pm}^{-1} : (x^1,\ldots,x^n) & \stackrel{\pi_i|_{U_i^\pm}^{-1}}{\longmapsto} (x^1,\ldots,x^{i-1},\sqrt{1-\|\mathbf{x}\|^2},x^i,\ldots,x^n) \ | \stackrel{\sigma_{\mathbf{n}}}{\longmapsto} rac{(x^1,\ldots,x^{i-1},\sqrt{1-\|\mathbf{x}\|^2},x^i,\ldots,x^{n-1})}{1-x^n} \end{aligned}$$

che è di classe C^∞ sul dominio $\pi_i(U_i^\pm\smallsetminus\{\mathbf{n}\})=B^n(\mathbf{0},\mathbf{1})$ oppure $B^n(\mathbf{0},\mathbf{1})\smallsetminus\{\mathbf{0}\}.$