ISARA-Lyon Première année

40^{ième} promotion

le 12/06/2008

durée : 2 heures

STATISTIQUE EXAMEN Pascale NEYRAN

Con	ditions	d'examen	,
CITT	ulli Oris	и ехитеп	

Documents

Autorisés

X Non autorisés

Calculatrice

Non autorisée

X Collège autorisée Tout type autorisée

Remarques particulières : Répondre directement sur la feuille du sujet.

Nom:	Prénom:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,
Note sur 20 :			

ISARA	1ère	année
-------	------	-------

Pascale	NEYRA	N
---------	--------------	---

Nom:	.Prénom:
------	----------

STATISTIQUE (durée 2 heures)

Une calculatrice collège est autorisée. Les tables statistiques distribuées au début de l'épreuve sont à rendre aux surveillant(e)s. Répondre sur la feuille du sujet.

Le devoir est noté sur 50 points (barème entre parenthèses).

Exercice I (4 points)

Sélectionner la réponse correcte :

Question			Réponse C	Choix
s(x) =	$\frac{\sum n_i x_i^2}{n} - \overline{x}^2$	$\frac{\text{SCE}}{\sqrt{\text{n}}}$	$\left(\sum f_i x_i^2 - \overline{x}^2\right)^{0.5}$	
La moyenne vérifie :	$\sum \operatorname{ni}(x\mathbf{i} - \overline{x}) = 0$	$\sum nixi - \overline{x} = 0$	$\sum fixi - n\overline{x} = 0$	
Le coefficient d'aplatissement de Fisher =	$\frac{\mu_4}{\mathrm{s(x)}^4}$	$\frac{\mu_3}{\mu_2^{1,5}} - 3$	$\frac{\mu_4}{\mu_2^2} - 3$	
Si Y = bX + a	$s^2(y) = bs^2(x) + a$	$s^2(y) = bs^2(x)$	s(y) = b s(x)	
$P(X \le 2) =$	$1 - P(X \ge 2)$	1 - P(X > 2)	P(X=1) + P(X=2)	
Si $L(X) = B(60; 0.02)$ $L(X) \approx$	N(60; 0,02)	N(1,2; $\sqrt{0,02}$)	P(1,2)	
Si L(X) = B(20; 0,45) L(X) \approx	N(9; √4,95)	N(9;4,95 ²)	N(20; √4,95)	
Si $L(X) = P(144)$ $L(X) \approx$	B(144; 12)	N(144; 12)	N(144; 144)	

Exercice II (16,5 points)

Partie A: (11 points)

On considère la série statistique consignée dans le tableau ci-dessous donnant la distribution des exploitations agricoles de la zone Alpha suivant l'eur SAU (Surface Agricole Utilisable) en 2007 :

Superficies (en ha SAU)	Nombre d'exploitations
[0;5[56
[5; 10[100
[10; 12[123
[12;14[150
[14; 18[200
[18;23[130
[23;30[250
[30;40[300
[40; 100[98
[100; 150]	26
[150;300]	12

On nous précise que :

$$\sum n_i x_i = 39993$$

$$\sum n_i x_i^2 = 2189053 \qquad Q_3 = 32,52$$

$$Q_3 = 32,52$$

1) Déterminer au centième, les paramètres suivants :

Classe modale	
Moyenne	
D ₍₄₎	
Qı	
Médiane	
SCE	
Coefficient de variation	

2) Calculer le coefficient de Yule de cette série. Que peut-on en déduire ?

3) Représenter les effectifs cumulés croissants et vérifier graphiquement la valeur de la médiane.

Partie B: (5,5 points)

Une étude similaire est réalisée dans la zone Béta comprenant 1430 exploitations. La Surface Agricole Utilisable moyenne dans cette zone est égale à 35 ha avec un écart type de 30 ha (on prendra 27,37 ha comme écart type dans la zone Alpha).

- 1) Comparer la dispersion des surfaces agricoles utilisables des 2 zones Alpha et Béta.
- 2) On définit la région Gama formée par les 2 zones Alpha et Béta.
- a) Déterminer au niveau de la région Gama:
 - > la moyenne
 - la variance intra
 - > la variance inter

b) Commenter les résultats obtenus dans la région Gama.

Exercice III (6 points)

On cherche à savoir si la fréquence d'une maladie est liée au groupe sanguin.

Sur 200 malades observés:

Groupe sanguin	О	Α	В	AB	total
Effectifs observés	104	76	18	2	200

Sur la population générale la répartition entre les groupes est :

➤ groupe O : 47 %

groupe A: 43 %groupe B: 7 %

> groupe AB: 3 %.

La répartition des groupes sanguins dans l'échantillon des 200 malades est-elle conforme à celle observée dans la population générale ? On prendra un niveau de confiance de 95 %.

Hypothèse nulle:

Critère statistique calculé:	
Nombre de degrés de liberté :	
Critère statistique théorique :	
Conclusion:	

Exercice IV (12 points)

Les parties A, B et C sont indépendantes.

Partie A: (6 points)

Le personnel d'un laboratoire pharmaceutique ayant suivi un stage de remise à niveau, doit passer un test d'évaluation.

On appelle X, la variable aléatoire mesurant le résultat à ce test. La loi suivie par X est une loi normale de moyenne m et d'écart type σ .

On sait que 16 % des salariés ont obtenu une note inférieure à 10 et que 63 % des salariés ont obtenu un score plus petit que 14.

1) Déterminer à 10^{-2} près, les paramètres m et σ .

Pour la suite de l'exercice on prendra une moyenne de 13 et un écart type de 3.

- 2) Au-dessus de quelle note, trouve t'on 75 % des salariés?
- 3) Déterminer un intervalle [a ; b] centré sur la moyenne ayant une probabilité de 95 % de contenir X.

Partie B: (2,5 points)

Le directeur des Ressources Humaines souhaite connaître l'avis des salariés sur la création éventuelle d'une cafétéria. Il réalise une enquête auprès de 20 personnes. Parmi elles, 90 % sont favorables à la création de la cafétéria.

On note Y la variable aléatoire qui, à tout ensemble de 20 employés choisis au hasard, associe le nombre de personnes ayant répondu négativement.

- 1) Quelle est la loi suivie par Y?
- 2) Calculer la moyenne et l'écart type de Y, à 10^{-2} près.

3) Calculer la probabilité pour que plus de 14 personnes soient favorables à cette proposition.

Partie C: (3,5 points)

La commission hygiène et sécurité de cette entreprise a recensé le nombre mensuel d'accidents du travail sur les 10 dernières années.

- 1) On appelle Z la variable aléatoire mesurant le nombre d'accidents du travail **pour un mois donné**. On sait que Z suit une loi de Poisson de paramètre 4.
- a) Quelle est la probabilité pour qu'il y ait plus de 2 accidents dans le prochain mois ?
- b) Calculer la probabilité pour que Z soit comprise entre 2 et 7 (bornes incluses).
- 2) On appelle U la variable aléatoire mesurant le nombre d'accidents du travail pour un semestre donné.
- a) Quelle est la loi suivie par U?
- b) Quelle est la probabilité pour que le nombre d'accidents dans les six prochains mois soit inférieur à 30 ?

Exercice V (5,5 points)

On veut étudier la relation linéaire simple qui pourrait exister entre 2 variables X et Y. On dispose des données suivantes, pour les 10 couples recensés :

$$\sum xi = 2260$$

$$\sum_{i}$$
 yi = 2800

$$\sum xiyi = 472000$$

$$\sum xi^2 = 624400$$

SCE
$$(yi) = 230800$$

Déterminer :

- les coordonnées du centre de gravité du nuage :
- la SPE de X et Y:
- la pente de la droite de régression de Y en X :
- le coefficient de corrélation :
- la variance résiduelle :

Exercice VI (6 points)

Une entreprise de distribution de matériel agricole a recensé le nombre de produits A vendus chaque jour, sur une période de 50 jours. Elle dispose des données suivantes :

хi	0	1	2	3	4	5	6	7
ni	3	7	11	11	8	5	3	2

avec:

≻xi = nombre de produits vendus, un jour donné

>ni = nombre de jours correspondant

Montrer que la répartition donnée peut-être ajustée par une loi de Poisson de paramètre 3.