Applied Machine Learning for Business Analytics

Lecture 7: Interpretability Methods in Machine Learning

Lecturer: Zhao Rui

Agenda

- 1. Interpretability in Machine Learning
- 2. Interpretability vs Accuracy
- 3. Interpretability Methods
- 4. Feature Evaluation

1. Interpretability in Machine Learning

Why do we need model explainability

- Use Machine Learning to review resumes
 - Based on your capability or gender?
 - https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
- Use Machine Learning to detect fraud transactions?
 - Why does the model think this transaction is suspicious?

High-stakes decision

- The above examples all belong to high-stakes decisions. The decisions have a huge impact on human well-being.
- What are those non high-stakes decisions?
 - Recommendations in E-commerces websites
 - Auto-fill in emails
 - But interpretability in machine learning sys is still valuable

Black-box Model

- If the ML system is deployed in high-stakes decisions environment:
 - Is accuracy important?
 - Can we trust the machine learning model?
- In banking, insurance and other heavily regulated industries, model interpretability is a serious legal mandate
- In lots of critical areas such as healthcare, government, bioinformatics, etcs, rationale for models' decision is necessary for trust

Goals of Interpretability

- Model debugging
 - Why did my model make mistake?
- Feature Engineering
 - Our How can I improve my model?
- Detecting fairness issues
 - Does my model have biases?
- Human-Al cooperation
 - O How can I understand and trust model's decision?
- Regulatory Compliance
 - Does my model satisfy legal requirements?
- High-stake Decisions
 - Healthcare, Finance..

2. Interpretability vs Accuracy

Linear models first

 Prediction is the linear combinations of the features values, weighted by the model coefficients.

Students A's chance = 0.2 + 0.1* GPA - 0.005 * Hours on Tiktok

Capability of linear models is limited.

Decision tree

- It is "interpretable"
- More powerful compared to linear models.

Source:

Decision tree can be complex

It can be a huge and complex tree.

Decision tree too large to interpret

Asked 6 years, 6 months ago Modified 6 years, 6 months ago Viewed 3k times

It can be a forest

My goal is to extract some useful rules from the entire process to implement in a score card.

https://www.javatpoint.com/machine-learning-random-forest-algorithm

https://stats.stackexchange.com/questions/230 581/decision-tree-too-large-to-interpret

Complex models

For imagenet, they use 152 layers, which firstly achieved lower error rate compared to Humans in image recognition tasks.

Trade-off

3. Interpretability Methods

Categorization of interpretability

Self-Explaining

- Directly interpretable
- Generates the explanations at the same time as the prediction
- Rule-based System, Decision Trees, Logistic Regression, Hidden Markov Model, etc.

Post hoc:

- Additional operation is performed after the predictions are made
- Open-source packages: tf-keras-vis (gradient-based methods for deep learning), LIME, SHAP,
 etc

Categorization of interpretability

Global

- Explanation or justification by revealing how the model's predictive process works
- What do you think pokemon looks like?

Local:

- Provide information or justification for the model's prediction on a specific input
- Why do you think this image is pokemon?

Post-Hoc

Perform additional operations to explain the entire model's predictive reasoning

Explain a single prediction by performing additional operations (after the model has made the prediction)

Global

Local

Use the predictive model itself to explain the entire model's predictive reasoning (directly interpretable model) Explain a single prediction using the model itself (calculated from information made available from the model as part of making the prediction)

Example-driven

- Reasoning with examples
 - Explain the prediction of an input instance by identifying and presenting other instances
 - Eg. patient A has a tumor because he is similar to these k other data points with tumors
- Similar to nearest neighbor-based approaches

Feature importance

Derive explanation by investigating the importance scores of different features

used to output the final prediction

- It can be computed from
 - Attention Layer Approach
 - Gradient-based Saliency Approach

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Gradient-based method

- Explain the decision made by the model
 - Eg, Why do you think this image is pokemon not digimon?
- Motivation: we want to know the contribution of each <u>component/feature</u> in the input data for prediction

Pixel, Segment in Images

Word in text

This is BT5153

 Solution: Removing or modifying the partial parts of the components, observing the change of decision.

Saliency map

$$\{x_1,\dots,x_i,\dots,x_n\}$$
 $oldsymbol{y}_k$

$$egin{aligned} \{x_1,\ldots,x_i,\ldots,x_n\} & \{x_1,\ldots,x_i+\Delta x,\ldots,x_n\} \ & y_k+\Delta y \end{aligned}$$

$$\left| \frac{\Delta y}{\Delta x} \right| \qquad \left| \frac{\partial y}{\partial x} \right|$$

Andrea Vedaldi, Andrew Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR, 2014

Saliency map

Goldfish

Bear

Assault rifle

Pokemon vs Digimon

Input image

Pokemon vs Digimon

colors.

More examples

Imagine a team of physicians using a <u>neural network</u> to detect cancer in mammogram images. Even if this machine-learning model seems to be performing well, it might be focusing on image features that are accidentally correlated with tumors, like a watermark or timestamp, rather than actual signs of tumors.

Source: https://news.mit.edu/2022/test-machine-learning-models-work-0118

Do not celebrate when your model is over 99% accurate

Surrogate model

- Model predictions are explained by learning a second, usually more explainable model, as a proxy
- Model-agnostic (applicable for any machine learning models) prediction
- The learned surrogate models and the original models may have completely different mechanisms to make predictions

Surrogate model: local explanations

- Hard to explain a complex model in its entirety
 - How about explaining smaller regions?
 - Explain decisions of any model in a local region around a particular point
 - Learns sparse linear model

Linear model can not mimic neural networks..but it may mimic a local region

Surrogate model: local explanations

Interpretable model can be used to mimic the actions of an complex model

Local interpretable model-agnostic explanations

- Given a data point you want to explain
- Sample at the nearby
- Fit with linear model (or other interpretable models)
- Interpret the linear model

LIME on image

• Given a data point you want to explain

- Sample at the nearby
 - Each image is represented as a set of superpixels (segments)
 - Randomly delete some segments

Compute the probability of "frog" by black box

LIME on image

Fit with linear model

$$x_m^i = \left\{ egin{array}{ll} 0 & ext{if segment m in sample i is deleted} \ 1 & ext{if segment m in sample i exists} \end{array}
ight.$$

LIME on image

Interpret the linear model

$$y=w_1x_1+\cdots+w_mx_m+\cdots+w_Mx_M$$

$$x_m^i = \begin{cases} 0 & ext{if segment m in sample i is deleted} \\ 1 & ext{if segment m in sample i exists} \end{cases}$$

$$egin{aligned} w_m &pprox 0 \ w_m &< 0 \end{aligned}$$

Source: https://github.com/csinva/csinva.github.io/blob/master/ notes/cheat sheets/interp.pdf

Interpretable Machine Learning Toolkit: https://github.com/interpretml/interpret

```
ebm = ExplainableBoostingClassifier()
```

4. Feature Evaluation

Don't dump too many uncorrelated and unnecessary features.

Reduce the feature set to essentials.

Evaluation features' importance

How much the model performance deteriorates if a feature or a set of features containing that feature is removed from the model?

Don't toss too many uncorrelated and unnecessary features. Reduce, reduce, reduce down to the essentials!

XGBoost's feature importance

- XGBoost use boosting to combine weak learners to make accurate predictions.
- Feature importance for XGBoost could be checked in the following methods:
 - Build-in function
 - Permutation method
 - SHAP method

Boston dataset

Miscellaneous Details

- Origin
 - The origin of the boston housing data is Natural.
- Usage

This dataset may be used for Assessment.

- Number of Cases
 - The dataset contains a total of 506 cases.
- Order

The order of the cases is mysterious.

Variables

There are 14 attributes in each case of the dataset. They are:

- 1. CRIM per capita crime rate by town
- 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS proportion of non-retail business acres per town.
- 4. CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- 5. NOX nitric oxides concentration (parts per 10 million)
- 6. RM average number of rooms per dwelling
- 7. AGE proportion of owner-occupied units built prior to 1940
- 8. DIS weighted distances to five Boston employment centres
- 9. RAD index of accessibility to radial highways
- 10. TAX full-value property-tax rate per \$10,000
- 11. PTRATIO pupil-teacher ratio by town
- 12. B 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- 13. LSTAT % lower status of the population
- 14. MEDV Median value of owner-occupied homes in \$1000's

Housing price prediction

Source: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

XGBoost built-in function

XGBoost

get_score(fmap=", importance_type='weight')

Get feature importance of each feature. For tree model Importance type can be defined as:

- 'weight': the number of times a feature is used to split the data across all trees.
- 'gain': the average gain across all splits the feature is used in.
- 'cover': the average coverage across all splits the feature is used in.
- 'total_gain': the total gain across all splits the feature is used in.
- 'total_cover': the total coverage across all splits the feature is used in.

Xgboost feature importance

• gain:

Permutation based feature importance

- Randomly shuffle each feature and compare the model's performance change.
 The most important feature impact the performance the most
- Well-supported in sklearn
- A bit slow!

Permutation importance

SHAP: SHapley Additive exPlanations

- Similar to LIME, it is also model-agnostic and compute the shapley value based on game theory to measure the contribution from each feature
- Also slow

SHAP over entire model

Measuring the feature importance to the entire model

SHAP over a single prediction

• Measuring he feature importance to a single prediction

Next Class: Advanced NLP