DreamFusion: Text-to-3D using 2D Diffusion

Докладчик: Казанцев Даниил

Рецензент: Бакланов Алексей

Хакер: Фролова Анна

Проблематика

Хотим создавать полноценные 3D-модели по различным текстовым запросам, но:

- Данных достаточно мало. Собрать датасет из 3D-моделей с текстовым описанием значительно труднее, чем сделать то же самое с 2D
- Существующие архитектуры плохо работают с 3D

Диффузионные модели

- Хорошо справляются с генерацией 2D-изображений по текстовому описанию
- Обучаются на парах изображение-текст, собрать датасет проще
- Уже есть обученные модели
- Обучаются предсказывать шум, добавленный на определенном шаге к исходному изображению
- Для генерации изображения расшумляют случайный шум с поправкой на текстовое описание

Neural Radiance Fields (NeRF)

- Полносвязная нейронная сеть
- Принимает на вход координаты точки в пространстве и углы положения камеры
- Возвращает цвет и прозрачность вокселя

$$(x,y,z,\theta,\phi) \to \bigcap_{\Theta} (RGB\sigma)$$

Neural Radiance Fields (NeRF)

- Один NeRF одна 3D-модель
- Для обучения необходимо множество изображений одного и того же объекта под разными углами

Neural Radiance Fields (NeRF)

 Для генерации новых изображений и процесса обучения используется трейсинг лучами с суммированием полученных вдоль луча цветов согласно их удаленности и прозрачности

Как все это использовать?

Основная идея: обучить случайно инициализированный NeRF, используя вместо 3D-моделей предобученную диффузионную модель

Алгоритм:

- Random camera and light sampling
- Rendering
- Diffusion loss with view-dependent conditioning
- Optimization

Random camera and light sampling

- Сэмплируем положение камеры в сферических координатах:
 - зенитный угол [-10°, 90°]
 - ∘ азимутальный угол [0°, 360°]
 - расстояние до центра [1, 1.5]
- Мультипликатор фокусного расстояния
- Источник света:
 - о положение вокруг камеры
 - интенсивность
 - о интенсивность окружающего света

Rendering

- Изменили NeRF на модифицированную версию. Теперь он предсказывает volumetric density и albedo
- Запускаем лучи из камеры в каждый пиксель изображения, каждый луч множество точек, в которых модель дает ответ
- На основе полученных от модели данных считается карта нормалей и добавляется освещение

$$\mathbf{c} = \boldsymbol{\rho} \circ (\boldsymbol{\ell}_{\rho} \circ \max(0, \boldsymbol{n} \cdot (\boldsymbol{\ell} - \boldsymbol{\mu}) / \|\boldsymbol{\ell} - \boldsymbol{\mu}\|) + \boldsymbol{\ell}_a)$$

• Получаем итоговое изображение

Rendering. Особенности

- Изображение 64х64
- При обучении случайно выбирается рендеринг из:
 - о обычный полноценный рендеринг
 - рендеринг без текстуры (замена albedo на белый цвет)
 - о рендеринг без теней
- Фон генерируется отдельной моделью

Diffusion loss with view-dependent conditioning

- Сэмплируем t и шум
- Добавляем шум к изображению из NeRF
- Подаем на вход диффузионной модели зашумленное изображение и t вместе с целевым текстовым запросом
- Считаем градиент по функции потерь, обновляем NeRF

Diffusion loss with view-dependent conditioning

Для того, чтобы диффузионная модель могла генерировать изображения под определенным углом к эмбеддингу текста добавляются взвешенные согласно углу камеры эмбеддинги ключевых слов: "front view", "side view", "back view" и т. п.

Функция потерь

Изначально хотели использовать функцию потерь диффузионок:

$$\mathcal{L}_{\text{Diff}}(\phi, \mathbf{x}) = \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[w(t) \| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon; t) - \epsilon \|_2^2 \right]$$

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, \mathbf{x} = g(\theta)) = \mathbb{E}_{t, \epsilon} \left[w(t) \underbrace{(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t)}{\mathbf{z}_{t}}}_{\text{U-Net Jacobian}} \underbrace{\frac{\partial \mathbf{x}}{\partial \theta}}_{\text{Generator Jacobian}} \right]$$

Но якобиан U-Net долго считается и плохо обусловлен при маленьких t, поэтому его выкинули из градиента. После долгих преобразований получилось:

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) = \nabla_{\theta} \mathbb{E}_t \left[\sigma_t / \alpha_t w(t) \text{KL}(q(\mathbf{z}_t | g(\theta); y, t) || p_{\phi}(\mathbf{z}_t; y, t)) \right]$$

Генерация модели

- Обучаем на текстовом запросе NeRF по предложенному алгоритму
- Генерируем необходимые точки обзора и получаем изображения с них от NeRF
- Собираем из полученных значений 3D модель

Эксперименты

	R-Precision ↑					
Method	CLIP	B/32	CLIP	B/16	CLIP	L/14
	Color	Geo	Color	Geo	Color	Geo
GT Images	77.1	_	79.1		_	_
Dream Fields	68.3	_	74.2	-		_
(reimpl.)	78.6	1.3	(99.9)	(0.8)	82.9	1.4
CLIP-Mesh	67.8	_	75.8		74.5^{\dagger}	-
DreamFusion	75.1	42.5	77.5	46.6	79.7	58.5

Bce!

