第二章: 拉伸、压缩与剪切

序号	名 称	公 式	备注	页码
1	正应力	$\sigma = \frac{F_N}{A}$	应用条件:外力合力作用线沿杆的轴线	P12
2	斜截面上的 正应力与切 应力	$\sigma_{\alpha} = \sigma \cos^{2} \alpha = \frac{\sigma}{2} (1 + \cos 2\alpha)$ $\tau_{\alpha} = \frac{\sigma}{2} \sin 2\alpha$	o o o o o o o o o o o o o o o o o o o	P16
	胡克定律	$\sigma = E \varepsilon$		P19
3	剪切胡克定 律	$\tau = G\gamma$	式中: γ 切应变; $\gamma = \frac{r\varphi}{l}$	P53
4	拉压杆轴向 变形	$_{\Delta}l = \pm \frac{F_{N}L}{EA} (\sigma \le \sigma_{p} \text{时})$	式中: EA抗拉(压) 刚度	P18
	泊松比(横向变形系数)	$v = \left \frac{\varepsilon'}{\varepsilon} \right = -\frac{\varepsilon'}{\varepsilon}$ $\varepsilon' = -v\varepsilon = -v\sigma/E$	式中: ε' 横向正应变 ε 轴向正应变	P19
5	<i>G、E、</i> μ 关系	$G = \frac{E}{2(1+\mu)} \leftarrow \begin{cases} \frac{\varepsilon_x = \varepsilon_y = 0}{\gamma_{xy} = \frac{\tau}{G}} \Rightarrow \varepsilon_{450} = -\frac{\gamma_{xy}}{2} = -\frac{\tau}{2G}(a) \\ \sigma_{1} = \tau \\ \sigma_{3} = -\tau \end{cases} \Rightarrow \varepsilon_{450} = \frac{1}{E}(\sigma_3 - \mu\sigma_1) = -\frac{(1+\mu)\tau}{G}(b)$	式中: G切变模量 E—弹性模量 μ泊松比	
	杆件轴向拉 压应变能	$V_{\varepsilon} = W = \frac{1}{2} F_{\Delta} l = \frac{F_N^2 l}{2EA}$	$\left(\because \Delta l = \frac{F_N L}{EA}\right)$	P23
6	应变能密度 (单位体积 应变能)	$v = \frac{1}{2}\sigma\varepsilon = \frac{1}{2}E\varepsilon^2 = \frac{\sigma^2}{2E}$	单位: J/m^3 ; 总应变能 $V_\varepsilon = \int_V v_\varepsilon dv$	P23
7	杆件温度变	$\Delta l_T = \alpha_l \cdot \Delta T \cdot l$	式中: α_l 为材料线胀系数	P188
'	形量	$\Delta l_T = \Delta l = \frac{F_{RB}l}{EA} \Rightarrow \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = E \cdot \alpha_l \cdot \Delta T \cdot l = \frac{F_{RB}l}{EA} \Rightarrow F_{RB} = \frac{F_{RB}l}{EA} \Rightarrow F_{RB}l $	$\Delta T \cdot A \Rightarrow \sigma_{T(\stackrel{R}{\boxtimes}D)} = \frac{F_{RB}}{A} = \alpha_l \cdot E \cdot \Delta T$	P188

附录 I: 截面的几何性质

1	静矩	$S_Z = \int_A y dA$			2	形心	<i>y_c</i> =	$\frac{\int_{A} y dA}{A} = \frac{A}{A}$	$\frac{S_z}{A}$	P322
3	组合截 面形心	$y_c = \sum_{i=1}^n A_i y_i /$	$\sum_{i=1}^{n} A_{i}$	惯性	矩	$y_x = \int_A x^2 dx$	lA	惯性积	$y_{xy} = \int_{A} xydA$	P323
			实心圆轴:	$I_p =$	$= \int_0^{\frac{d}{2}} \rho$	$\rho^2 2\pi\rho d\rho =$	$\frac{\pi d^4}{32}$			
4	极惯 性矩	$I_p = \int_A \rho^2 dA$	空心圆轴:	$I_p =$	$\frac{\pi}{32}$	$D^4 - d^4) =$	$\frac{\pi D^4}{32}$	$(1-\alpha^4)$		
			薄壁圆截面	$ec{\mathbb{I}}\colon\ I_{p}$	= 2i	$\pi R_0^3 \delta$				

5	惯性矩	$I_z = \int_A y^2 dA$	圆形截面: $I_z = I_y = \frac{1}{2}I_p = \frac{\pi d^4}{64}$ 矩形截面: $I_z = \frac{bh^3}{12}$	
			空心截面: $I_z = \frac{\pi D^4}{64} (1 - \alpha^4)$	
6	平行移 轴定理	$I_{y} = I_{y_o} + Ab^2$	$\to I_{y_o} = I_y - Ab^2$	P327
7	惯性矩和	惯性轴的转轴公司	t	

第三章: 扭转

1	功率	与扭力矩的 转换	${M_e}_{N\cdot M} = 9549 \frac{{P}_{KW}}{{n}_{r/min}} = 159.2 \frac{{P}_{KW}}{{n}_{r/s}}$	$M_e \times \omega_{(rad/s)} =$ $M_e \times 2\pi \times \frac{n}{60} = 1000P$	P55
2	薄壁	题筒扭转切 应力	$\tau = \frac{M_e}{2\pi R_0^2 \delta}$	式中: δ 壁厚 $R_0 = \frac{d+\delta}{2} = \frac{D-\delta}{2}$	
3	(横截	扭转切应力 t面上距圆心 的任意点τ)	$\tau_{\rho} = \frac{T\rho}{I_{P}}$	适用于线弹性材料圆截面	P59
4	圆轴	扭转强度条 件	$\tau_{\text{max}} = \frac{T_{\text{max}}R}{I_P} = \frac{T_{\text{max}}}{W_P} \le [\tau]$	式中: $W_p = \frac{I_P}{R}$ 抗扭截面系数	P60
·			$=\frac{\pi d^4}{32}; W_t = \frac{\pi d^3}{16}$ 空心圆轴: $I_p = \frac{\pi D^4}{32}$	$(1-\alpha^4); W_t = \frac{\pi D^3}{16} (1-\alpha^4)$	
5	圆轴扭	等截面圆轴	$\varphi = \frac{Tl}{GI_p}$	式中: $(1)GI_p$ 抗扭刚度; (2) 此式若长度单位用 mm ,则 G 单位用 MPa	LP86
	转角	等截面薄 壁圆管	$\varphi = \frac{Tl}{2G\pi R_0^3 \delta}$	$I_{p \ddot{\#}} = 2 \pi R_0^3 \mathcal{S} ightarrow au_{\ddot{\#} ar{\boxtimes} \dot{\oplus}} = rac{M_e}{2 \pi R_0^2 \mathcal{S}}$	
6		条件(单位 度扭转角)	$\varphi_{\text{max}}' = \frac{\varphi}{l} = \frac{T_{\text{max}}}{GI_p} \times \frac{180^0}{\pi} \le \left[\varphi'\right]$	单位: (°)/m	LP87
		体积剪切应 E能密度	$v_{\varepsilon} = \frac{1}{2}\tau r = \frac{\tau^2}{2G}$		
7	等直圆杆扭转时 的应变能		$V_{\varepsilon} = \frac{1}{2} \frac{T^2 l}{GI_p} = \frac{GI_p}{2l} \varphi^2 \rightarrow $ 弹簧变形量: $V_{\varepsilon} = \frac{1}{2} \frac{T^2 l}{GI_p} = \frac{(FR)^2}{2l}$	$\frac{{}^{^{2}}2\pi Rn}{GI_{_{p}}} = W = \frac{1}{2}F \cdot \Delta \Rightarrow \Delta = \dots = \frac{8\text{FD}^{^{3}}\text{n}}{\text{Gd}^{^{4}}}$	P71
8	最大	丝横截面上 剪应力(强 ξ条件)	$\tau_{\text{max}} = k \frac{8FD}{\pi d^3} = \left(\frac{4c - 1}{4c - 4} + \frac{0.615}{c}\right) \frac{8FD}{\pi d^3} \le \left[\tau\right]$	式中: k曲度系数; c弹簧指数 $\binom{c}{c} = \frac{D}{d}$	
8	弹	簧变形量	$\lambda = \frac{F}{C} = \frac{8FD^3n}{Gd^4} \le \lambda_{\text{max}} = l - nd$	式中: C—弹簧刚度,即弹簧抵 抗变形的能力; n弹簧有效 圈数; l弹簧自由长度	LP93

9	矩形截面轴扭转 切应力	$ \tau_{\text{max}} = \frac{T}{w_t} = \frac{T}{\alpha h b^2}; \qquad \tau_1 $	$= V \tau_{\text{max}}$	式中: τ_{max} 最大切应力,发生在截面长边 h 的中点处; τ_{1} 短边 b 中点处切应力; $\alpha \nu$ 与比值 h/b 有关的系数。	
	矩形截面轴扭转 切角	$\varphi = \frac{Tl}{GI_t} = \frac{Tl}{G\beta hb^3}$			P74
10	狭长矩形截面轴 (当 h/b≥10 时, α、β≈⅓)	$ \tau_{\text{max}} = \frac{3T}{h\delta^2}; \varphi = \frac{3Tl}{Gh\delta^3} $			P75
	开口薄壁杆 扭转切应力	$\tau_{\max} = \frac{3T\delta_{\max}}{\sum_{i=1}^{n} h_i \delta_i^3}$		式中: h_i 、 δ_i 狭长矩形长、厚度。	
11	开口薄壁杆 扭转角	$\varphi = \frac{3Tl}{G\sum_{i=1}^{n}h_{i}\delta_{i}^{3}}$			P77
	闭口薄壁杆 扭转切应力	$\tau_{\rm max} = \frac{T}{2A_0 \delta_{\rm min}}$			
12	闭口薄壁杆扭转 角、许用扭转角	$\varphi = \frac{Tl}{GI_{t}} \qquad [\theta] = \frac{T}{GI_{t}}$	式中: $I_{\iota} = \frac{4A_{0}^{2}}{\iint \frac{ds}{\delta}} \rightarrow (1)$ 其中: Ω 所围截面	等厚薄壁圆杆) = $\frac{4A_0^2}{\frac{s}{\delta}}$ = $\frac{4\Omega^2\delta}{S}$	P80

第四章: 弯曲应力

1	弯曲正应力	$\sigma = E \cdot \varepsilon = \frac{Ey}{\rho}$ $\sigma = \frac{My}{I_z}$ $\frac{1}{\rho} = \frac{\sigma}{Ey} = \frac{M}{EI_z}$;	$y = \frac{d}{2} \varphi = \frac{D}{2}$ $\varphi = \frac{D}{A} \varphi = \frac{D}{A} $	P116
2	最大弯曲正应力	$\sigma_{\text{max}} = \frac{My_{\text{max}}}{I_Z} = \frac{M}{W_Z}$ 其中: $W_Z = \frac{I_Z}{y_{\text{max}}} = \left\langle \frac{bh^2}{6}, \frac{\pi d^3}{32}, \frac{\pi D^3 (1 - \alpha^4)}{32} \right\rangle$	应用条件: a、各向同性线弹性 材料; b、小变形。	P117
3	弯曲切应力 $\tau = \frac{F_S S_Z^*}{I_Z b}$	短形: $ au_{(y)} = \frac{3F_S}{2bh}(1 - \frac{4y^2}{h^2})$; $ au_{max} = au_{(y=0)} = \frac{3F_S}{2bh}$ 圆形: $ au_{max} = \frac{4}{3}\overline{\tau}$ 薄壁圆环: $ au_{max} = 2\overline{\tau}$	$=\frac{3F_s}{2A}=\frac{3}{2}\overline{\tau}$	P129

第五章: 弯曲变形

第七章: 应力和应变分析、强度理论

		纵截面应力(周向): $\sigma_t = \frac{pD}{2\delta} = \sigma_1$	
1	薄壁圆筒	横截面应力(轴向): $\sigma_x = \frac{pD}{4\delta} = \sigma_2$	
		径向应力: $\sigma_{r} = -p \approx 0 = \sigma_{3}$	P215

		カインテムルに心		
	斜截面上的应	$\sigma_{\alpha} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha$	式中:代数值较大	
2	カ	$\tau_{\alpha} = \frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha$	的正应力为 σ_x , α 指斜截面法线与	D211
	最大/最小正应	2	σ_x 的夹角; 逆时针	1211
3	力	$\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \frac{\sigma_x + \sigma_y}{2} \pm R$	[*] 为正、顺时针为负。	P213
4	主应力方向角	$\tan 2\alpha_0 = -\frac{2\tau_x}{\sigma_x - \sigma_y} \tan \alpha_0 = -\frac{\tau_{xy}}{\sigma_x - \sigma_{\min}} = -\frac{\tau_{xy}}{\sigma_{\max} - \sigma_y}$	注意: 求解时,令代数 值 较 大 的 正 应 力 为 σ_x ,它所在平面的切 应力为 σ_x 。	P214
5	最大/最小切应	$\frac{\tau_{\text{max}}}{\tau_{\text{min}}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + {\tau_{xy}}^2} = \pm \frac{\sigma_1 - \sigma_3}{2} = \pm R$	最大切应力 $ au_{ m max}$ 所	
3	力	$\tau_{\min} = \pm \sqrt{\frac{2}{2}} + t_{xy} = \pm \frac{2}{2} = \pm K$	在平面与主应力	P220
6	应力圆方程	$\left(\sigma_{\alpha} - \frac{\sigma_{x} + \sigma_{y}}{2}\right)^{2} + \tau_{\alpha}^{2} = \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2} = R^{2}$	σ_2 平行,与 σ_1 σ_3	
			各成450	P211
	斜截面上的	$\varepsilon_{\alpha} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\alpha - \frac{\gamma_{x}}{2} \sin 2\alpha$		
7	应变	$\frac{\gamma_{\alpha}}{2} = \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \sin 2\alpha + \frac{\gamma_{x}}{2} \cos 2\alpha$		L P233
8	最大/最小应变、方向角	$\frac{\varepsilon_{\text{max}}}{\varepsilon_{\text{min}}} = \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} \; ; \tan 2\alpha_0 = -\frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$		L P234
		$\varepsilon_{x} = \frac{1}{E} \left(\sigma_{x} - \mu \sigma_{y} \right) \rightarrow \varepsilon_{\alpha} = \frac{1}{E} \left(\sigma_{\alpha} - \mu \sigma_{-(90^{0} - \alpha)} \right)$		
9	ε、 γ、 σ 间的关系	$\gamma_x = \frac{\tau_{xy}}{G} \to \tau_{xy} = G \cdot \gamma_{xy} = \frac{E}{2(1+\mu)} \cdot \gamma_{xy}$		
		$\sigma_{x} = \frac{E}{1 - \mu^{2}} \left(\varepsilon_{x} + \mu \varepsilon_{y} \right) \rightarrow \sigma_{1} = \frac{E}{1 - \mu^{2}} \left[\varepsilon_{1} + \mu \left(\varepsilon_{2} + \varepsilon_{3} \right) \right]$		P223
10	产 》和去 <i>产</i> 体	$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \mu \left(\sigma_{y} + \sigma_{z} \right) \right]$		
10	广义胡克定律	$\varepsilon_1 = \frac{1}{E} \left[\sigma_1 - (\mu \sigma_2 + \sigma_3) \right] \rightarrow \varepsilon_{\text{max}} = \varepsilon_1 \ge 0$		P223
		$\theta = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \frac{1 - 2\mu}{2} (\sigma_1 + \sigma_2 + \sigma_3) = \frac{\sigma_m}{k}$	l	
11	体应变(体积应变)	式中: $k = \frac{E}{3(1-2\mu)}$ 体积弹性模量; $\sigma_m = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)$)主应力平均值。	
		$v_{\varepsilon} = \frac{1}{2}\sigma_{1}\varepsilon_{1} + \frac{1}{2}\sigma_{2}\varepsilon_{2} + \frac{1}{2}\sigma_{3}\varepsilon_{3}$		
12	应变能密度(弹 性比能)	$= \frac{1}{2E} \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\mu (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1) \right]$		
		$= \frac{1}{2} \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_z \varepsilon_z + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{zx} \gamma_{zx} \right) = v_v + v_d$		
				

	体积 度	改变能密	$v_{v} = \frac{1 - 2v}{6E}$	$\left(\sigma_1 + \sigma_2 + \sigma_3\right)^2$			
	形状 度	改变能密	$v_d = \frac{1+\nu}{6E}$	$\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]$			P229
		第一强 (最大拉原		$\sigma_{rl} = \sigma_l \leq [\sigma]$	铸铁	等脆性	P230
			度理论 立变理论)	$\sigma_{r2} = \sigma_1 - \nu(\sigma_2 + \sigma_3) \leq [\sigma]$	校核		P231
	☆ 强	第三强	度理论	$\sigma_{r3} = \sigma_1 - \sigma_3 \le \left[\sigma\right]$	钢		P232
13	度理	(最大切应	図力理论)	件 等	σ_{r_3} 设计的	P268	
	论		711 ->	$\sigma_{r4} = \sqrt{\frac{1}{2} \left[\left(\sigma_1 - \sigma_3 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_2 - \sigma_1 \right)^2 \right]} \leq \left[\sigma \right]$	塑 性	轴径比	
		第四短 (畸变能等	度理论 密度理论)	V 2L	校	σ_{r4} 大	P232
		× 1,21101	1/2:210	圆杆适用: $\sigma_{r4} = \frac{1}{W} \sqrt{M^2 + 0.75T^2} = \sqrt{\sigma^2 + 3\tau^2} \le [\sigma]$	核		P268

第八章:组合变形及连接部分的计算

		$M = \sqrt{{M_{y_{\text{max}}}}^2 + {M_{y_{\text{max}}}}^2}$ 注意:此式仅适用于圆截面杆,是在各点叠加比较(如下)。	若不是则求应力时分别	
	组合变形叠加		F _N F _N	
14		② $\sigma_D = \sqrt{{\sigma_{D'}}^2 + 3{\tau_D}^2} \rightarrow (使用第四强度理论) ←$	Mx D X	
		$\sigma_{D'} = \frac{F_N}{A} + \frac{M_Z}{W_Z} = \frac{F_N}{bh} + \frac{6M_Z}{hb^2}; \tau_D = \tau_1 + \tau_2 = \frac{M_y}{\alpha hb^2} + \frac{3F_{sz}}{2bh}$	Z	L P278
*15	芦尔程度细込	$\sigma_{rm} = \sigma_1 - \frac{\left[\sigma_t\right]}{\left[\sigma_c\right]}\sigma_3 \le \left[\sigma_t\right]$	$\left[\sigma_{\iota} ight]$ 抗拉许用应力	
*13	莫尔强度理论	$[\sigma_c]^{\sigma_3 = [\sigma_t]}$	$\left[\sigma_{c} ight]$ 抗压许用应力	
*16	构件含裂纹时	$K_I = \sigma \sqrt{\pi a} \le K_{IC}$	K_I 应力强度因子	
*10	的断裂准则	$\sigma_{cr} = \sigma_{s}$	K_{IC} 断裂韧性	

第九章: 压杆稳定

2	临界压力	$F_{cr} = \sigma_{cr} \cdot A = \begin{cases} \frac{\pi^2 E}{\lambda^2} \cdot A = \frac{\pi^2 EI}{\left(\mu l\right)^2} & (大柔杆) \\ (a - b\lambda) \cdot A & (中柔杆) \\ \sigma_s \cdot A & (小柔杆) \end{cases} $ (小柔杆)	P306	
3	临界应力 (大柔杆) $\sigma_{cr} = \frac{F_{cr}}{A} = \frac{\pi^2 EI}{\left(\mu l\right)^2 \cdot A} \rightarrow \lambda = \frac{\mu l}{i} \rightarrow \sigma_{cr} = \frac{\pi^2 E}{\lambda^2} \leq \sigma_P$			
4	校核(安全	:系数法) $n = \frac{F_{cr}}{F} = \frac{\sigma_{cr}}{\sigma} \ge n_{st}$	P310	

第十章: 动载荷

1	动荷系数	$k_{d} = 1 + \frac{a}{g}$ $k_{d} = 1 + \sqrt{1 + \frac{2h}{\Delta st}}$ $k_{d} = \frac{v}{\sqrt{g \cdot \Delta st}} = \sqrt{\frac{v^{2}}{g \cdot \Delta st}}$	$\Delta_d = k_d \cdot \Delta_{st}$ $oldsymbol{\sigma}_d = k_d \cdot oldsymbol{\sigma}_{st}$	P136 P142 P148
2	惯性力	$F = ma_n^2 = mr\omega^2 = \frac{mv^2}{r}$ $\rightarrow (惯性増量)\Delta_F = \frac{mv^2}{r} = \frac{Wv^2}{gl}$		
3	速度位移	$s = \frac{1}{2}at^2 \qquad 2as = v^2$	w V	

第十一章:交变应力

1	循环特征	$r = \frac{\sigma_{\min}}{\sigma_{\max}} = [1, -1]$	P151
2	平均应力(交变应力的静应力部分)	$\sigma_m = \frac{1}{2}(\sigma_{\max} + \sigma_{\min})$	
3	应力辐(交变应力的动应力部分)	$\sigma_{\alpha} = \frac{1}{2}(\sigma_{\text{max}} - \sigma_{\text{min}})$	
4	构件在对称循环下的持久极限	$\sigma_{-1}^{k_{1}}(\sigma_{-1}^{0}) = \frac{\varepsilon_{\sigma}\beta}{k_{\sigma}}\sigma_{-1} \rightarrow \sigma_{\max} \leq \left[\sigma_{-1}\right] = \frac{\sigma_{-1}^{0}}{n} - \frac{\varepsilon_{\sigma}\beta}{nk_{\sigma}}\sigma_{-1}$	