He =
$$\frac{1 + 100}{1 + 100}$$
 ; $x \in \{0, 1, 2\}$
Ha = $\frac{1 - 110}{1 + 20}$ KR>O

Has = $\frac{1}{x + 70}$ KR>O

KRoc = KRmax | 4 . $x = 0.2$ controlled process - Atable

 $x = 0.2$ =) Has | 50.2 + 40.

KRmax = $\frac{1}{x + 70}$ Has | 60. | 6

= 280 53 + 122.067252 + 16.39160 + 1.4479

 $det H_1 = 122.0672 > 0$ $det H_2 = 122.0672 \cdot 16.3916 - 280 \cdot 1.4479$ = 1595.464716 > 0 $det H_3 = (det H_2) \cdot 1.4479 = 0$ = 2310.0733 > 0

=) The controlled system is stable for the given x and KR