Predicting Earthquake Fatalities

Bradley Marx Brown University 12/06/2022

Predicting Earthquake Fatalities

Question:

"Given the <u>location</u>, <u>magnitude</u>, and <u>focal depth</u> of an earthquake, along with <u>local population density</u> and <u>infrastructural development</u>, can we predict the resulting death toll *magnitude* which will occur?"

Not considering deaths from tsunamis

➤ Purpose:

To inform earthquake preparedness efforts via sensitivity analysis of earthquake-vulnerable regions

> Problem Type:

Regression on an ordinal variable

Data Sources

- 1. Record of Historic Earthquakes and Resulting Death Toll: CSV File
 - a. > Magnitude 3
 - b. 1980 2020

- 2. 2015 Global Population Estimates: Raster File
 - a. 30 Km² resolution

- 3. 2015 Global HDI Estimates: Raster File
 - a. Subnational-level resolution

Target Variable Analysis

Death Toll

- Extremely long tail
- Even logged, values are highly concentrated at 0 with long tail
- 56% of earthquakes have 0 fatalities

Effect of Magnitude on Death Toll

Grouped by Death Toll Magnitude

Median earthquake magnitude increases along with Death Toll Magnitude

Zero-death earthquakes have much wider distribution

Preprocessing

- 39 Total Features after Preprocessing (20 before)
- 1,798 Total Data Points

One-Hot Encoding

Region Code

Standard Scaler

- Magnitude
- All socioeconomic indicators
- Geospatial mapping metadata (avg. distance between quake and population/HDI point, etc)

Cross Validation

Data Splitting

Stratified K-Fold Splitting

 Want to ensure all categories in each split

Cross Validation

ML Pipeline

Repeat for each Random State:

Cross Validation

Algorithms Tested

Supervised Algorithm	Linear / Non-Linear	Tuned Parameters and Values	
Gradient Boosting Regressor	Non-Linear	Learning Rate- np.logspace(-3, 0, 10) Max Depth- [3, 4, 5, 6] Num. Estimators- [100, 300, 1000]	
Random Forest Regressor	Non-Linear	Max Depth- [10, 20, 25, 30, 50, 100] Max Features - np.linspace(0.1, 1.0, 10)	
Support Vector Regression	Non-Linear	C- np.logspace(-1, 2, 20) Gamma- np.logspace(-4, 2, 20)	
K-Neighbors Regressor	Non-Linear	Num. Neighbors- [3, 5, 9, 10, 11, 20, 30, 40, 80, 100]	
ElasticNet Regression	Linear	Alpha- np.logspace(-4, 1, 15) L1 Ratio- np.linspace(0.011, 0.99, 11)	
Huber Regression	Linear	Alpha- np.logspace(-2, 2, 10) Epsilon- np.logspace(0.01, 1.8, 10)	

Test Scores

- Gradient Boosting
 Regressor
 performed best
 ○ 0.752 RMSE
- All models
- All models outperformed baseline

Prediction Behavior

- Predictions tended to be below actual value for categories above 0.
- Result of category imbalance?
 - Over half of of earthquakes have no death toll...

Feature Importance

- Large gap between top four most important features and rest
- Local population size and proximity have large impact on predictions!
- Earthquake magnitudes also have significant impact
- HDI much less significant

Local Importance
Example: Large Error

Outlook

Future Improvements

➤ Data

- Collect multiple years of gridded HDI and Population data instead of relying on one year (2015)
- Incorporate gridded soil density data as new feature(s)
- More robust distance calculation for geospatial mapping
 - Use Vincenty distance instead of Euclidean

Decompose Problem

- First: model binary classification problem predict if an earthquake will result in any fatality
- Second: Perform ordinal regression on data points predicted to have fatalities

Questions

Appendix

Test Scores

Rank	Model	Mean Test Score (RMSE)	Test Score Std Dev (RMSE)	Mean Baseline (RMSE)
1	Gradient Boosting Regressor	0.752121	0.028509	0.945257
2	Random Forest Regressor	0.758145	0.032391	0.945257
3	SVR	0.760472	0.025891	0.945257
4	K-Neighbors Regressor	0.811875	0.017423	0.945257
5	Huber Regressor	0.842605	0.018011	0.945257
6	ElasticNet	0.844238	0.018250	0.945257