10054373.01202

IN THE CLAIMS

What is claimed is:

1	1.	A method, comprising the steps of:
2		bending a substrate by applying a force with a movable chuck portion
3		to orient essentially all of a surface of the substrate at a predetermined angle
4		with respect to an input source.
1	2.	The method of claim 1, wherein:
2		the substrate comprises a silicon wafer having a diameter of at least
3		about eight inches.
1	3.	The method of claim 1, wherein:
2		the force comprises an electrostatic force generated by a potential
3		difference between the substrate and the movable chuck portion.
1	4.	The method of claim 1, wherein:
2		the movable portion comprises a split electrode electrostatic chuck.
,	-	
1	5.	The method of claim 1, wherein:
2		bending the substrate includes receiving the substrate in a recess
3		having a concave shape

1	6.	The method of claim 5, wherein:
2		bending the substrate includes introducing a curvature into the
3		substrate selected from the group consisting of spherical, conical and
4		cylindrical.
5		
1	7.	The method of claim 1, wherein:
2		applying the force with a movable chuck portion includes attracting
3		the substrate to the movable portion with an electrostatic force when the
4		substrate has an essentially unbent shape, and moving the movable chuck
5		portion with respect to a stationary substrate receiving portion.
1	8.	The method of claim 1, wherein:
2		applying the force with a movable chuck portion includes moving the
3		movable chuck portion with respect to a stationary substrate receiving portion
4		to bend the substrate.
.5		
1	9.	The method of claim 8, further including:
2		attracting the substrate receiving portion to a curved stationary
3		substrate receiving portion with an electrostatic force.
5		

1	10.	A method of processing a integrated circuit wafer, comprising the steps of:
2		placing a wafer over a concave chuck portion;
3		applying a force to the wafer to conform to the concave chuck
4		portion;
5		maintaining the wafer in the deformed shaped as the wafer is
6		processed with respect to an input source.
1	11.	The method of claim 10, wherein:
2		placing the wafer over the concave portion includes attracting the
3		wafer with an electrostatic force to the concave portion.
1	12.	The method of claim 12) wherein:
2		attracting the wafer includes applying a voltage to an electrostatic
3		chuck within the concave portion.
1	13.	The method of claim 10, wherein:
2		placing the wafer over the concave portion includes orienting the
3		wafer in a first direction; and
4		the force is applied with a movable chuck portion at an angle greater
5		than 45° with respect to the first direction.
1		

1	14.	The method of claim 13, wherein:
2		placing the wafer over the concave portion includes contacting a
3		stationary chuck portion with a first side of the wafer; and
4		the force is applied by a movable portion to a second side of the wafer
5		that is opposite to the first side.
1	15.	The method of claim 13, wherein:
2		placing the wafer over the concave portion includes contacting a
3		stationary chuck portion with a first side of the wafer; and
4		the force applied by the movable portion is an electrostatic force that
5		attracts the first side of the wafer to the movable portion.

UT
Ŧ
U
1
Ш
Ē
<u>=</u>
H

1	16.	A system, comprising:
2		an input source for processing the substrate according to a
3		predetermined manufacturing step;
4		a chuck system having
5		a substrate receiving surface that receives the substrate in an
6		essentially non-deformed shape, and
7		a force applying portion that applies an attractive force in
8		between the substrate and the chuck system that maintains the
9		substrate in a deformed shape.)
1	17.	The system of claim 16, wherein:
2		the input source comprises an ion implantation source.
1	18.	The system of claim 16, wherein:
2		the substrate receiving surface has a type of curve selected from the
3		group consisting of spherical, conical, and cylindrical.
1	19.	The system of claim 16, wherein:
2		the force applying portion includes a movable portion that moves with
3		respect to the substrate receiving surface to change the substrate from the non-
4		deformed shape to the deformed shape.

- 1 **20.** The system of claim 19, wherein:
- 2 the force applied by the movable portion is selected from the group
- 3 consisting of electrostatic force and mechanical force.

proc in