The categories of NPC vehicles' motions contain: drive forward, change to the left, change to the right, cross, turn left, turn right, stop/park. W_0 represents the initial waypoint and W_f represents the ending waypoint of the NPC vehicle or pedestrian. POS is the position and DIR is the direction. The starting position and destination of ego vehicle are marked as S and D respectively. i is the ID of the lane of ego vehicle's starting position. L_i represents the lane with ID i, LD_i represents the direction of L_i , and $DR(W_0, W_f)$ represents the direction from the initial waypoint to the ending waypoint. LE_i represents the length of L_i , LT_S represents the lane distance of position S.

Table 1: The modeling for "drive forward"

POS	Trajectory rules
far left	$W_0, W_f \in L_m, L_m \in A(S, lv), sin(LD_i, LD_m) = 1, LT_{w_0} < LT_{w_f} < LE_m$
far right	$W_0, W_f \in L_m, L_m \in A(S, rv), sin(LD_i, LD_m) = -1, LT_{w_0} < LT_{w_f} < LE_m$
other side	$W_0, W_f \in L_m, L_m \in A(S, o), cos(LD_i, LD_m) = 1, LT_{w_0} < LT_{w_f} < LE_m$
front	$W_0, W_f \in L_i, LT_S < LT_{W_0} < LT_{W_f}$
left front	$W_0, W_f \in L_m, L_m \in A(S, lf), LD_i = LD_m, LT_{w_0} < LT_{w_f} < LE_m$
right front	$W_0, W_f \in L_m, L_m \in A(S, rf), LD_i = LD_m, LT_{w_0} < LT_{w_f} < LE_m$

Table 2: The modeling for "change to the left"

POS	Trajectory rules
far	$W_0 \in L_m, W_f \in L_n, L_m, L_n \in A(S, lv), m \neq n, LT_{W_0} < LT_{W_f}$
left	$\sin(LD_i, LD_m) = \sin(LD_i, LD_n) = 1, \sin(LD_i, DR(W_0, W_f)) > 0$
far	$W_0 \in L_m, W_f \in L_n, L_m, L_n \in A(S, rv), m \neq n, LT_{W_0} < LT_{W_f}$
right	$sin(LD_i, LD_m) = sin(LD_i, LD_n) = 1, sin(LD_i, DR(W_0, W_f)) > 0$
other	$W_0 \in L_m, W_f \in L_n, L_m, L_n \in A(S, o), m \neq n, LT_{W_0} < LT_{W_f}$
side	$\sin(LD_i, LD_m) = \sin(LD_i, LD_n) = 1, \sin(LD_i, DR(W_0, W_f)) > 0$
front	$W_0 \in L_i, W_f \in L_n, L_n \in A(S, f), m \neq i$
	$LT_{W_0} < LT_{W_f}, sin(LD_i, DR(W_0, W_f)) > 0$
left	$W_0 \in L_i, W_f \in L_n, L_n \in A(S, lf), m \neq i$
front	$LT_{W_0} < LT_{W_f}, sin(LD_i, DR(W_0, W_f)) > 0$
right	$W_0 \in L_i, W_f \in L_n, L_n \in A(S, rf), m \neq i$
front	$LT_{W_0} < LT_{W_f}, sin(LD_i, DR(W_0, W_f)) > 0$

Table 3: The modeling for "change to the right"

POS	Trajectory rules
far	$W_0 \in L_m, W_f \in L_n, L_m, L_n \in A(S, lv), m \neq n, LT_{W_0} < LT_{W_f}$
left	$\sin(LD_i, LD_m) = \sin(LD_i, LD_n) = 1, \sin(LD_i, DR(W_0, W_f)) < 0$
far	$W_0 \in L_m, W_f \in L_n, L_m, L_n \in A(S, rv), m \neq n, LT_{W_0} < LT_{W_f}$
right	$sin(LD_i, LD_m) = sin(LD_i, LD_n) = 1, sin(LD_i, DR(W_0, W_f)) < 0$
other	$W_0 \in L_m, W_f \in L_n, L_m, L_n \in A(S, o), m \neq n, LT_{W_0} < LT_{W_f}$
side	$\sin(LD_i, LD_m) = \sin(LD_i, LD_n) = 1, \sin(LD_i, DR(W_0, W_f)) < 0$
front	$W_0 \in L_i, W_f \in L_n, L_n \in A(S, f), m \neq i$
Iront	$LT_{W_0} < LT_{W_f}, sin(LD_i, DR(W_0, W_f)) < 0$
left	$W_0 \in L_i, W_f \in L_n, L_n \in A(S, lf), m \neq i$
front	$LT_{W_0} < LT_{W_f}, sin(LD_i, DR(W_0, W_f)) < 0$
right	$W_0 \in L_i, W_f \in L_n, L_n \in A(S, rf), m \neq i$
front	$LT_{W_0} < LT_{W_f}, sin(LD_i, DR(W_0, W_f)) < 0$

The categories of pedestrians' motions contain: walk/run along, walk/run across, wait/stand/look. A[e] represents the edge lane of A.

Table 4: The modeling for "cross"

POS	Trajectory rules
far	$W_0 \in L_m, L_m \in A(S, lv), \sin(LD_i, LD_m) = -1$
left	$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = -1$
far	$W_0 \in L_m, L_m \in A(S, rv), sin(LD_i, LD_m) = 1$
right	$W_f \in L_n, L_n \in A(S, lv), sin(LD_i, LD_n) = 1$
opposite	$W_0 \in L_m, L_m \in A(S, o), cos(LD_i, LD_m) = -1$
side	$W_f \in L_n, L_n \in A(S, lf), cos(LD_i, LD_n) = -1$
front	$W_0 \in L_i, LT_{W_0} > LT_S$
iront	$W_f \in L_n, L_n \in A(S, o), sin(LD_i, LD_n) = 0$
left	$W_0 \in L_m, L_m \in A(S, lf), LD_m = LD_i, LT_{W_0} > LT_S$
front	$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = 0$
right	$W_0 \in L_m, L_m \in A(S, rf), LT_{W_0} > LT_S$
front	$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = 0$

Table 5: The modeling for "turn left"

POS	DIR	Trajectory rules
far	left	$W_0 \in L_m, L_m \in A(S, lv), sin(LD_i, LD_m) = 1$
left	ieit	$W_f \in L_n, L_n \in A(S, o), LD_n = LD_i$
far	1.4	$W_0 \in L_m, L_m \in A(S, rv), sin(LD_i, LD_m) = -1$
right	left	$W_f \in L_n, L_n \in A(S, lf), cos(LD_i, LD_n) = -1$
other	left	$W_0 \in L_m, L_m \in A(S, o), cos(LD_i, LD_m) = -1$
side	ieit	$W_f \in L_n, L_n \in A(S, lv), sin(LD_i, LD_n) = -1$
front	left	$W_0 \in L_i, LT_{W_0} > LT_S$
поп		$W_f \in L_n, L_n \in A(S, lv), sin(LD_i, LD_n) = -1$
left	left	$W_0 \in L_m, L_m \in A(S, lf), LD_m = LD_i, LT_{W_0} > LT_S$
front	leit	$W_f \in L_n, L_n \in A(S, lv), sin(LD_i, LD_n) = -1$
right	left	$W_0 \in L_m, L_m \in A(S, rf), LT_{W_0} > LT_S$
front		$W_f \in L_n, L_n \in A(S, lv), sin(LD_i, LD_n) = -1$

Table 6: The modeling for "turn right"

POS	DIR	Trajectory rules
far	ه ما س نید	$W_0 \in L_m, L_m \in A(S, lv), sin(LD_i, LD_m) = 1$
left	right	$W_f \in L_n, L_n \in A(S, lf), cos(LD_i, LD_n) = -1$
far	. 1.	$W_0 \in L_m, L_m \in A(S, rv), sin(LD_i, LD_m) = -1$
right	right	$W_f \in L_n, L_n \in A(S, o), LD_n = LD_i$
other	عماده نبد	$W_0 \in L_m, L_m \in A(S, o), cos(LD_i, LD_m) = -1$
side	right	$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = 1$
front	right	$W_0 \in L_i, LT_{W_0} > LT_S$
iront		$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = 1$
left	wia ht	$W_0 \in L_m, L_m \in A(S, lf), LD_m = LD_i, LT_{W_0} > LT_S$
front	right	$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = 1$
right	ه ما سانس	$W_0 \in L_m, L_m \in A(S, rf), LT_{W_0} > LT_S$
front	right	$W_f \in L_n, L_n \in A(S, rv), sin(LD_i, LD_n) = 1$

Table 8: The modeling for "walk/run along"

POS	Trajectory rules
far	$W_0 \in L_m, L_m \in A(S, lv)[e], sin(L_m, L_n) = -1, cos(L_n, L_i) = -1$
left	$W_f \in L_n, L_n \in L_m \cup A(S, o)[e]$
far	$W_0 \in L_m, L_m \in A(S, rv)[e], cos(L_m, L_n) = 0$
right	$W_f \in L_n, L_n \in L_m \cup A(S, o)[e] \cup A(S, rf)[e]$
other	$W_0 \in L_m, L_m \in A(S, o)[e], sin(L_n, L_m) = 1 \cup 0$
side	$W_f \in L_n, L_n \in A(S, rv)[e] \cup L_m$
left	$W_0 \in L_m, L_m \in A(S, lf)[e], W_f \in L_n, L_n \in A(S, lf)[e]$
front	$LT_{W_f} > LT_{W_0} > LT_S$
right	$W_0 \in L_m, L_m \in A(S, rf)[e], W_f \in L_n, L_n \in A(S, rf)[e]$
front	$LT_{W_f} > LT_{W_0} > LT_S$

Table 9: The modeling for "walk/run across"

POS	DIR	Trajectory rules
far	right	$W_0 \in L_m, L_m \in A(S, lv)[e], W_f \in L_n, L_n \in A(S, rv)[e]$
left		$cos(L_m, L_n) = 1, LT_{W_f} - LT_{W_0} < LE_m/2$
1010	other side	$W_0 \in L_m, L_m \in A(S, lv)[e], W_f \in L_n, L_n \in A(S, lv)[e]$
	other side	$cos(L_m, L_n) = -1, LT_{W_f} + LT_{W_0} = LE_m$
far right	left	$W_0 \in L_m, L_m \in A(S, rv)[e], W_f \in L_n, L_n \in A(S, lv)[e]$
Tai Tigiti	leit	$cos(L_m, L_n) = 1, LT_{W_f} - LT_{W_0} < LE_m/2$
	other side	$W_0 \in L_m, L_m \in A(S, rv)[e], W_f \in L_n, L_n \in A(S, rv)[e]$
	other side	$cos(L_m, L_n) = -1, LT_{W_f} + LT_{W_0} = LE_m$
other side		$W_0 \in L_m, L_m \in A(S, o)[e], W_f \in L_n, cos(L_m, L_n) = 1$
other side		$L_n \in A(S, lf) \cup A(S, rf)[e], LT_{W_f} - LT_{W_0} < LE_m/2$
left front		$W_0 \in L_m, L_m \in A(S, lf)[e], W_f \in L_n, L_n \in A(S, rf)[e]$
		$LT_{W_f} > LT_S, LT_{W_f} + LT_{W_0} = LE_m$
right front		$W_0 \in L_m, L_m \in A(S, rf)[e], W_f \in L_n, L_n \in A(S, lf)[e]$
rigin Hom		$LT_{W_0} > LT_S, LT_{W_f} + LT_{W_0} = LE_m$

Table 10: The modeling for "wait/look/stand"

POS	Trajectory rules		
far left	$W_0 \in L_m, L_m \in A(S, lv)[e], sin(L_m, L_i) = -1 \Rightarrow LT_{W_0} < 10$		
	$L_n = L_m$, $sin(L_m, L_i) = 1 \setminus Rightarrow LE_m - LT_{W_0} < 10$ \$		
far right	$W_0 \in L_m, L_m \in A(S, rv)[e], sin(L_m, L_i) = 1 \Rightarrow LT_{W_0} < 10$		
	$L_n = L_m, sin(L_m, L_i) = -1 \setminus Rightarrow LE_m - LT_{W_0} < 10$		
other side	$W_0 \in L_m, L_m \in A(S, o)[e], cos(L_m, L_i) = 1, LT_{W_0} < 10, L_n = L_m$		
left front	$W_0 \in L_m, L_m \in A(S, lf)[e], cos(L_m, L_i) = -1, LT_{W_0} < 10, L_n = L_m$		
right front	$W_0 \in L_m, L_m \in A(S, lf)[e], cos(L_m, L_i) = 1, LE_i - LT_{W_0} < 10, L_n = L_m$		