

## SEQUENCE LISTING

<110> Callen, Walter Richardson, Toby Frey, Gerhard Miller, Carl Kazaoka, Martin Short, Jay Mathur, Eric

<120> ENZYMES HAVING ALPHA AMYLASE ACTIVITY
AND METHODS OF USE THEREOF

<130> 09010-107001

<140> 10/081,739

<141> 2002-02-21

<150> 60/270,495

<151> 2001-02-21

<150> 60/270,496

<151> 2001-02-21

<150> 60/291,122

<151> 2001-05-14

<160> 69

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetically generated

<400> 1

| atggccaagt | actccgagct | ggaaaagggc | ggggtcataa | tgcaggcgtt | ctactgggac | 60  |
|------------|------------|------------|------------|------------|------------|-----|
|            |            | gtgggacaca |            |            |            | 120 |
|            |            | gattcccccg |            |            |            | 180 |
| atgggctacg | acccctacga | cttctttgac | ctcggtgagt | acgaccagaa | gggaacggta | 240 |
| gagacgcgct | ttggctccaa | gcaggagctc | gtgaacatga | taaacaccgc | ccacgcctat | 300 |
| ggcatgaagg | taatagccga | tatagtcatc | aaccaccgcg | ccggcggtga | cctggagtgg | 360 |
| aaccccttcg | tgaacgacta | tacctggacc | gacttctcaa | aggtcgcgtc | gggtaaatac | 420 |
| acggccaact | acctcgactt | ccacccgaac | gagctccatg | cgggcgattc | cggaacattt | 480 |
| ggaggctatc | ccgacatatg | ccacgacaag | agctgggacc | agtactggct | ctgggccagc | 540 |
| caggagagct | acgcggcata | tctcaggagc | atcggcatcg | atgcctggcg | cttcgactac | 600 |
| gtcaagggct | atgctccctg | ggtcgtcaag | gactggctga | actggtgggg | aggctgggcg | 660 |
| gttggagagt | actgggacac | caacgtcgac | gctgttctca | actgggcata | ctcgagcggt | 720 |
| gccaaggtct | ttgacttcgc | cctctactac | aagatggatg | aggcctttga | caacaaaaac | 780 |
| attccagcgc | tcgtctctgc | ccttcagaac | ggccagactg | ttgtctcccg | cgacccgttc | 840 |
| aaggccgtaa | cctttgtagc | aaaccacgac | accgatataa | tctqqaacaa | gtatccagcc | 900 |
| tacgcgttca | tcctcaccta | cgagggccag | ccgacaatat | tctaccgcga | ctacgaggag | 960 |

; ;

| tggctcaaca aggataagct caagaacctc atctggatac                          | atgagaacct cgccggagga |
|----------------------------------------------------------------------|-----------------------|
| agcaccgaca tagtctacta cgataacgat gaactcatct                          | tcgtcaggaa cggctacggg |
| gacaageegg ggettataae etacateaae etaggetega                          | gcaaggccgg aaggtgggtt |
| tatgtgccga agttcgcggg cgcgtgcatc cacgagtata                          | ctggtaacct cggaggctgg |
| gtagacaagt acgtctactc aagcggctgg gtctatctcg                          | aagctccagc ttacgaccct |
| gccaacgggc agtatggcta ctccgtgtgg agctactgcg                          | gggtgggctg a          |
|                                                                      |                       |
| <210> 2                                                              |                       |
| <211> 436                                                            |                       |
| <212> PRT                                                            |                       |
| <213> Artificial Sequence                                            |                       |
|                                                                      |                       |
| <220>                                                                |                       |
| <223> Synthetically engineered                                       |                       |
| 100 0                                                                |                       |
| <pre>&lt;400&gt; 2 Met Ala Lys Tyr Ser Glu Leu Glu Lys Gly Gly</pre> | Val Tle Met Cla Ala   |
| 1 5 10                                                               | 15                    |
| Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp                          |                       |
| 20 25                                                                | 30                    |
| Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile                          |                       |
| 35 40                                                                | 45                    |
| Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr                          |                       |
| 50 55                                                                | 60                    |
| Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp                          |                       |
| 65 70 75                                                             | 80                    |
| Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val                          |                       |
| 85 90                                                                | 95                    |
| Ala His Ala Tyr Gly Met Lys Val Ile Ala Asp                          | Ile Val Ile Asn His   |
| 100 105                                                              | 110                   |
| Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe                          | Val Asn Asp Tyr Thr   |
| 115 120                                                              | 125                   |
| Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys                          | Tyr Thr Ala Asn Tyr   |
| 130 135                                                              | 140                   |
| Leu Asp Phe His Pro Asn Glu Leu His Ala Gly                          | - · ·                 |
| 145 150 155                                                          |                       |
| Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser                          |                       |
| 165 170                                                              | 175                   |
| Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr                          | _                     |
| 180 185                                                              | 190                   |
| Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly                          |                       |
| 195 200                                                              | 205                   |
| Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp                          |                       |
| 210 215                                                              | 220                   |
| Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp 225 230 235              |                       |
| Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys                          |                       |
| 245 250                                                              | 255                   |
| Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala                          |                       |
| 260 265                                                              | 270                   |
| Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val                          |                       |
| 275 280                                                              | 285                   |
| His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro                          |                       |
| 290 295                                                              | 300                   |
| Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr                          |                       |
| 305 310 315                                                          |                       |
| Trn Leu Acn Lyc Acn Lyc Leu Lyc Acn Leu Ile                          | Trn Ile His Glu Non   |

Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Glu Asn

```
330
                325
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
                                 345
Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
                            360
        355
Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
                        375
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
385
                    390
                                         395
Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
                                     410
Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
            420
                                425
Cys Gly Val Gly
        435
<210> 3
<211> 1419
<212> DNA
<213> Unknown
< 220 >
<223> Obtained from an environmental sample
<400>3
atgtteetge tegegttttt geteactgee tegetgttet geceaacagg acagecegee
                                                                        60
aaggetgeeg cacegtttaa eggeaceatg atgeagtatt ttgaatggta ettgeeggat
                                                                        120
gatggcacgt tatggaccaa agtggccaat gaagccaaca acttatccag ccttggcatc
                                                                        180
accgctcttt ggctgccgcc cgcttacaaa ggaacaagcc gcagcgacgt agggtacgga
                                                                        240
gtatacgact tgtatgacct cggcgaattc aatcaaaaag ggaccgtccg cacaaaatac
                                                                        300
qqaacaaaag ctcaatatct tcaagccatt caagccgccc acgccgctgg aatgcaagtg
                                                                        360
tacgccgatg tcgtgttcga ccataaaggc ggcgctgacg gcacggaatg ggtggacgcc
                                                                        420
gtcgaagtca atccgtccga ccgcaaccaa gaaatctcgg gcacctatca aatccaagca
                                                                        480
tggacgaaat ttgattttcc cgggcggggc aacacctact ccagctttaa gtggcgctgg
                                                                        540
taccattttg acggcgttga ttgggacgaa agccgaaaat tgagccgcat ttacaaattc
                                                                        600
cqcqqcatcq qcaaaqcqtq qqattqqqaa qtaqacacqq aaaacqqaaa ctatqactac
                                                                        660
ttaatgtatg ccgaccttga tatggatcat cccgaagtcg tgaccgagct gaaaaactgg
                                                                        720
                                                                       780
gggaaatggt atgtcaacac aacgaacatt gatgggttcc ggcttgatgc cgtcaagcat
attaagttca gttttttcc tgattggttg tcgtatgtgc gttctcagac tggcaagccg
                                                                        840
ctatttaccg tcggggaata ttggagctat gacatcaaca agttgcacaa ttacattacg
                                                                       900
aaaacagacg gaacgatgtc tttgtttgat gccccgttac acaacaaatt ttataccgct
                                                                       960
tccaaatcag ggggcgcatt tgatatgcgc acgttaatga ccaatactct catgaaagat
                                                                       1020
caaccgacat tggccgtcac cttcgttgat aatcatgaca ccgaacccgg ccaagcgctg
                                                                       1080
cagtcatggg tcgacccatg gttcaaaccg ttggcttacg cctttattct aactcggcag
                                                                       1140
gaaggatacc cgtgcgtctt ttatggtgac tattatggca ttccacaata taacattcct
                                                                       1200
tegetgaaaa geaaaatega teegeteete ategegegea gggattatge ttaeggaaeg
                                                                       1260
caacatgatt atcttgatca ctccgacatc atcgggtgga caagggaagg ggtcactgaa
                                                                       1320
aaaccaggat ccgggctggc cgcactgatc accgatgggc cgggaggaag caaatggatg
                                                                       1380
tactgttggc aaacaacacg ctggaaaagt gttctatga
                                                                       1419
<210> 4
<211> 1539
<212> DNA
<213> Unknown
<220>
```

<223> Obtained from an environmental sample

•

| <400> 4     |              |             |             |            |            |              |
|-------------|--------------|-------------|-------------|------------|------------|--------------|
|             | aaaaacggct   | ttacqcccqa  | ttgctgacgc  | tattatttac | gctcatcttc | 60           |
|             |              |             | aatcttaatg  |            |            | 120          |
| gaatggtaca  | tacccaataa   | cggccaacat  | tggaagcgct  | tqcaaaacqa | ctcggcatat | 180          |
| ttggctgaac  | acqqtattac   | taccatctaa  | attcccccgg  | catataaqqq | aacgagccaa | 240          |
| acagatataa  | actacaatac   | ttacqacctt  | tatgatttag  | gggagtttca | tcaaaaaggg | 300          |
|             |              |             | gagctgcaat  |            |            | 360          |
|             |              |             | gtcatcaacc  |            |            | 420          |
| accgaagatg  | taaccgcggt   | tgaagtcgat  | cccgctgacc  | gcaaccgcgt | aatttcagga | 480          |
| gaacaccgaa  | ttaaagcctg   | gacacatttt  | cattttccgg  | gacacaacaa | cacatacage | 540          |
| gattttaaat  | ggcattggta   | ccattttgac  | ggaaccgatt  | gggacgagtc | ccqaaaqctq | 600          |
| aaccgcatct  | ataagtttca   | aggaaaggct  | tgggattggg  | aagtttccaa | tgaaaacggc | 660          |
|             |              |             | gattatgacc  |            |            | 720          |
|             |              |             | gaactgcaat  |            |            | 780          |
|             |              |             | cgggattggg  |            |            | 840          |
| acqqqqaaqq  | aaatqtttac   | qqtaqctqaa  | tattggcaga  | atgacttggg | cgcgctggaa | 900          |
|             |              |             | tcagtgtttg  |            |            | 960          |
|             |              |             | tatgatatga  |            |            | 1020         |
|             |              |             | acatttgtcg  |            |            | TORO         |
|             |              |             | tggtttaagc  |            |            | 1140         |
| ctcacaaggg  | aatctqqata   | ccctcaggtt  | ttctacgggg  | atatqtacqq | gacgaaagga | 1200         |
|             |              |             | cacaaaattg  |            |            | 1260         |
|             |              |             | tatttcgacc  |            |            | 1320         |
|             |              |             | tcaggtttgg  |            |            | 1380         |
|             |              |             | cggcaaaacg  |            |            | 1440         |
|             |              |             | atcaattcgg  |            |            | 1500         |
|             | ggtcggtttc   |             |             |            |            | 1539         |
|             |              |             |             |            |            |              |
| <210> 5     |              |             |             |            |            |              |
| <211> 1395  |              |             |             |            |            |              |
| <212> DNA   |              |             |             |            |            |              |
| <213> Unkno | own          |             |             |            |            |              |
|             |              |             |             |            |            |              |
| <220>       |              |             |             |            |            |              |
| <223> Obta: | ined from an | n environme | ntal sample |            |            |              |
|             |              |             |             |            |            |              |
| <400> 5     |              |             |             |            |            |              |
|             |              |             | ttagttttgt  |            |            | 60           |
|             |              |             | tactccgaac  |            |            | 120          |
|             |              |             | gggggaatct  |            |            | 180          |
|             |              |             | tcggcgatat  |            |            | 240          |
|             |              |             | gatccctacg  |            |            | 300          |
|             |              |             |             |            | ggtgaacatg | 360          |
| _           |              |             | gtgatagcgg  |            |            | 420          |
|             |              |             | gtaaacaact  |            |            | 480          |
|             |              |             | taccttgact  |            |            | 540          |
|             |              |             | ccggacatcg  |            |            | 600          |
|             |              |             | tacgccgcat  |            |            | 660          |
|             |              |             | tacggagcgt  |            |            | 720          |
|             |              |             | tactgggaca  |            |            | 780          |
|             |              |             | tttgacttcc  |            |            | 840          |
|             |              |             | ttggtttacg  |            |            | 900          |
|             |              |             | actttcgttg  |            |            | 960<br>1020  |
|             |              |             | atccttacct  |            |            | 1020         |
|             |              |             | aaggataagc  |            |            | 1080<br>1140 |
| cacgagcacc  | ctgccggagg   | aagtaccaag  | atcctctact  | acyacaacya | rgayotaata | 1140         |
|             |              |             |             |            |            |              |

```
1200
ttcatgaggg agggctacgg gagcaagccg ggcctcataa cctacataaa cctcggaaac
                                                                       1260
gactgggccg agcgctgggt gaacgtcggc tcaaagtttg ccggctacac aatccatgaa
tacacaggca atctcggtgg ctgggttgac aggtgggttc agtacgatgg atgggttaaa
                                                                       1320
                                                                       1380
ctgacggcac ctcctcatga tccagccaac ggatattacg gctactcagt ctggagctac
                                                                       1395
gcaggcgtcg gatga
<210> 6
<211> 1386
<212> DNA
<213> Unknown
<220>
<223> Obtained from an environmental sample
<400> 6
atgaagaagt ttgtcgccct gttcataacc atgtttttcg tagtgagcat ggcagtcgtt
                                                                        60
gcacagccag ctagcgccgc aaagtattcc gagctcgaag aaggcggcgt tataatgcag
                                                                       120
gccttctact gggacgtccc aggtggagga atctggtggg acaccatcag gagcaagata
                                                                       180
ccggagtggt acgaggcggg aatatccgcc atttggattc cgccagccag caaggggatg
                                                                       240
ageggeggtt actegatggg ctaegateee taegatttet ttgaeetegg egagtaeaae
                                                                       300
cagaagggaa ccatcgaaac gcgctttggc tctaaacagg agctcatcaa tatgataaac
                                                                       360
acggcccatg cctacggcat aaaggtcata gcggacatcg tcataaacca ccgcgcaggc
                                                                       420
ggagacctcg agtggaaccc gttcgttggg gactacacct ggacggactt ctcaaaggtg
                                                                       480
gcctcgggca aatatactgc caactacctc gacttccacc ccaacgaggt caagtgctgt
                                                                        540
gacgagggca catttggagg cttcccagac atagcccacg agaagagctg ggaccagcac
                                                                       600
tggctctggg cgagcgatga gagctacgcc gcctacctaa ggagcatcgg cgttgatgcc
                                                                       660
tggcgctttg actacgtgaa gggctacgga gcgtgggtcg tcaaggactg gctcaactgg
                                                                       720
tggggcggct gggccgttgg cgagtactgg gacaccaacg ttgatgcact cctcaactgg
                                                                       780
gectaetega geggegeeaa ggtettegae tteeegetet aetaeaagat ggatgaggee
                                                                       840
                                                                       900
tttgacaaca aaaacattcc agcgctcgtc tctgcccttc agaacggcca gactgttgtc
tecegegace egiteaagge egiaacetti giageaaace aegacacega tataateigg
                                                                       960
aacaagtacc ttgcttatgc tttcatcctc acctacgaag gccagcccgt catattctac
                                                                       1020
cgcgactacg aggagtggct caacaaggac aggttgaaca acctcatatg gatacacgac
                                                                       1080
cacctcgcag gtggaagcac gagcatagtc tactacgaca gcgacgagat gatcttcgtg
                                                                      1140
aggaacggct atggaagcaa gcctggcctt ataacttaca tcaacctcgg ctcgagcaag
                                                                       1200
gttggaaggt gggtttatgt gccgaagttc gcgggcgcgt gcatccacga gtatactggt
                                                                       1260
aacctcggag gctgggtaga caagtacgtc tactcaagcg gctgggtcta tctcgaagct
                                                                      1320
                                                                      1380
ccagcttacg accetgecaa egggeagtat ggetacteeg tgtggageta ttgeggtgtt
gggtga
                                                                       1386
<210> 7
<211> 472
<212> PRT
<213> Unknown
<220>
<223> Obtained from an environmental sample
<400> 7
Met Phe Leu Leu Ala Phe Leu Leu Thr Ala Ser Leu Phe Cys Pro Thr
                                    10
Gly Gln Pro Ala Lys Ala Ala Ala Pro Phe Asn Gly Thr Met Met Gln
Tyr Phe Glu Trp Tyr Leu Pro Asp Asp Gly Thr Leu Trp Thr Lys Val
                            40
Ala Asn Glu Ala Asn Asn Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp
```

Leu Pro Pro Ala Tyr Lys Gly Thr Ser Arg Ser Asp Val Gly Tyr Gly 7.0 Val Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val 90 Arg Thr Lys Tyr Gly Thr Lys Ala Gln Tyr Leu Gln Ala Ile Gln Ala 100 105 Ala His Ala Ala Gly Met Gln Val Tyr Ala Asp Val Val Phe Asp His 120 Lys Gly Gly Ala Asp Gly Thr Glu Trp Val Asp Ala Val Glu Val Asn 135 Pro Ser Asp Arg Asn Gln Glu Ile Ser Gly Thr Tyr Gln Ile Gln Ala 150 155 Trp Thr Lys Phe Asp Phe Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe 165 170 Lys Trp Arg Trp Tyr His Phe Asp Gly Val Asp Trp Asp Glu Ser Arg 185 Lys Leu Ser Arg Ile Tyr Lys Phe Arg Gly Ile Gly Lys Ala Trp Asp 200 Trp Glu Val Asp Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala 215 220 Asp Leu Asp Met Asp His Pro Glu Val Val Thr Glu Leu Lys Asn Trp 230 235 Gly Lys Trp Tyr Val Asn Thr Thr Asn Ile Asp Gly Phe Arg Leu Asp 250 Ala Val Lys His Ile Lys Phe Ser Phe Phe Pro Asp Trp Leu Ser Tyr 265 Val Arg Ser Gln Thr Gly Lys Pro Leu Phe Thr Val Gly Glu Tyr Trp 280 Ser Tyr Asp Ile Asn Lys Leu His Asn Tyr Ile Thr Lys Thr Asp Gly 295 300 Thr Met Ser Leu Phe Asp Ala Pro Leu His Asn Lys Phe Tyr Thr Ala 310 Ser Lys Ser Gly Gly Ala Phe Asp Met Arg Thr Leu Met Thr Asn Thr 325 330 Leu Met Lys Asp Gln Pro Thr Leu Ala Val Thr Phe Val Asp Asn His 345 Asp Thr Glu Pro Gly Gln Ala Leu Gln Ser Trp Val Asp Pro Trp Phe 360 Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro 375 380 Cys Val Phe Tyr Gly Asp Tyr Tyr Gly Ile Pro Gln Tyr Asn Ile Pro 390 395 Ser Leu Lys Ser Lys Ile Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr 410 Ala Tyr Gly Thr Gln His Asp Tyr Leu Asp His Ser Asp Ile Ile Gly 420 425 Trp Thr Arg Glu Gly Val Thr Glu Lys Pro Gly Ser Gly Leu Ala Ala 440 Leu Ile Thr Asp Gly Pro Gly Gly Ser Lys Trp Met Tyr Cys Trp Gln 455 Thr Thr Arg Trp Lys Ser Val Leu 465 470

<210> 8

<211> 512

<212> PRT

<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 8 Met Lys Gln Gln Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe Ala Leu Ile Phe Leu Leu Pro His Ser Ala Ala Ala Ala Ala Asn Leu Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Met Pro Asn Asp Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ser Ala Tyr Leu Ala Glu His Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Thr Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 90 His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Gly Glu Leu 105 Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn Val Tyr Gly 120 125 Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asp Val 135 Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val Ile Ser Gly 150 155 Glu His Arg Ile Lys Ala Trp Thr His Phe His Phe Pro Gly Arg Gly 170 Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Thr 180 185 190 Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys Phe Gln Gly 200 Lys Ala Trp Asp Trp Glu Val Ser Asn Glu Asn Gly Asn Tyr Asp Tyr 215 220 Leu Met Tyr Ala Asp Ile Asp Tyr Asp His Pro Asp Val Ala Ala Glu 230 235 Ile Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gln Leu Asp Gly 245 250 Phe Arg Leu Asp Ala Val Lys His Ile Lys Phe Ser Phe Leu Arg Asp 260 265 Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met Phe Thr Val 280 Ala Glu Tyr Trp Gln Asn Asp Leu Gly Ala Leu Glu Asn Tyr Leu Asn 295 Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu His Tyr Gln 310 315 Phe His Ala Ala Ser Thr Gln Gly Gly Gly Tyr Asp Met Arg Lys Leu 325 330 Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ala Val Thr Phe 345 Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser Thr Val 360 365 Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg Glu 375 Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr Lys Gly 395 390 Asp Ser Gln Arg Glu Tle Pro Ala Leu Lys His Lys Ile Glu Pro Ile 405 410

8 Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His Asp Tyr Phe 425 Asp His His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp Ser Ser Val 440 435 Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly Gly Ala 455 460 Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr Trp His Asp 470 475 Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser Glu Gly Trp 485 490 Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr Val Gln Arg <210> 9 <211> 464 <212> PRT <213> Unknown <220> <223> Obtained from an environmental sample <400> 9 Val Val His Met Lys Leu Lys Tyr Leu Ala Leu Val Leu Leu Ala Val 10 Ala Ser Ile Gly Leu Leu Ser Thr Pro Val Gly Ala Ala Lys Tyr Ser 25 Glu Leu Glu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Gly Gly Gly Ile Trp Trp Asp Thr Ile Arg Gln Lys Ile Pro Glu 55 Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe Phe 90 Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val Glu Thr Arg Phe Gly 105

Ser Lys Glu Glu Leu Val Asn Met Ile Asn Thr Ala His Ser Tyr Gly 120 Ile Lys Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly Asp 135 Leu Glu Trp Asn Pro Phe Val Asn Asn Tyr Thr Trp Thr Asp Phe Ser 150 155 Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro 170 Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe Gly Asp Phe Pro Asp 180 185 Ile Ala His Glu Lys Ser Trp Asp Gln Tyr Trp Leu Trp Ala Ser Asn 200 Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Ile Asp Ala Trp Arg 215 220 Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Asn Asp Trp Leu 230 235 Ser Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val 250 245 Asp Ala Leu Leu Asn Trp Ala Tyr Asp Ser Gly Ala Lys Val Phe Asp 265

Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Thr Asn Ile

```
Pro Ala Leu Val Tyr Ala Leu Gln Asn Gly Gly Thr Val Val Ser Arg
                        295
                                            300
Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile
                    310
                                       315
Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly
                325
                                   330
Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp
                                345
Lys Leu Asn Asn Leu Ile Trp Ile His Glu His Leu Ala Gly Gly Ser
                            360
Thr Lys Ile Leu Tyr Tyr Asp Asn Asp Glu Leu Ile Phe Met Arg Glu
                        375
                                            380
Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly Asn
                    390
                                        395
Asp Trp Ala Glu Arg Trp Val Asn Val Gly Ser Lys Phe Ala Gly Tyr
                                    410
Thr Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Arg Trp
                                425
Val Gln Tyr Asp Gly Trp Val Lys Leu Thr Ala Pro Pro His Asp Pro
       435
                            440
                                                445
Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr Ala Gly Val Gly
                        455
<210> 10
<211> 461
<212> PRT
<213> Unknown
<220>
<223> Obtained from an environmental sample
Met Lys Lys Phe Val Ala Leu Phe Ile Thr Met Phe Phe Val Val Ser
                                    10
Met Ala Val Val Ala Gln Pro Ala Ser Ala Ala Lys Tyr Ser Glu Leu
                                25
Glu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Gly
                            40
Gly Gly Ile Trp Trp Asp Thr Ile Arg Ser Lys Ile Pro Glu Trp Tyr
Glu Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met
                    7.0
Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe Phe Asp Leu
Gly Glu Tyr Asn Gln Lys Gly Thr Ile Glu Thr Arg Phe Gly Ser Lys
                                105
Gln Glu Leu Ile Asn Met Ile Asn Thr Ala His Ala Tyr Gly Ile Lys
                            120
Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly Asp Leu Glu
                        135
                                            140
Trp Asn Pro Phe Val Gly Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val
                    150
                                        155
Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu
                165
                                    170
Val Lys Cys Cys Asp Glu Gly Thr Phe Gly Gly Phe Pro Asp Ile Ala
```

185

```
His Glu Lys Ser Trp Asp Gln His Trp Leu Trp Ala Ser Asp Glu Ser
                            200
Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Val Asp Ala Trp Arg Phe Asp
                        215
Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Lys Asp Trp Leu Asn Trp
                   230
                                        235
Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala
                                    250
Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe Asp Phe Pro
                                265
Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Lys Asn Ile Pro Ala
                            280
Leu Val Ser Ala Leu Gln Asn Gly Gln Thr Val Val Ser Arg Asp Pro
                       295
                                            300
Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp
                   310
                                       315
Asn Lys Tyr Leu Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro
               325
                                    330
Val Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Arg Leu
                                345
           340
Asn Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Ser
                           360
Ile Val Tyr Tyr Asp Ser Asp Glu Met Ile Phe Val Arg Asn Gly Tyr
                        375
Gly Ser Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys
                    390
                                        395
Val Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ala Cys Ile His
                                    410
Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Tyr Val Tyr Ser
                               425
           420
Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala Tyr Asp Pro Ala Asn Gly
                           440
Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly
                        455
<210> 11
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
gaacactagt aggaggtaac ttatggcaaa gtattccgag ctcgaag
                                                                        47
<210> 12
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 12
gaacggtoto attocgocag ccagcaaggg gargagcgg
```

| <210> 13<br><211> 33<br><212> DNA<br><213> Artificial Sequence |     |
|----------------------------------------------------------------|-----|
| <220><br><223> Primer                                          |     |
| <400> 13 gaaccgtctc aaaacacggc ccatgcctac ggc                  | 33  |
| <210> 14<br><211> 38<br><212> DNA<br><213> Artificial Sequence |     |
| <220> <223> Primer                                             |     |
| <400> 14 gaacgtctca cctcgacttc caccccaacg aggtcaag             | 38  |
| <210> 15<br><211> 33<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 15<br>gaacgtctca ggcgctttga ctacgtgaag ggc               | 33  |
| <210> 16<br><211> 32<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 16 gaacggtctc aacaagatgg atgaggcctt tg                   | 32  |
| <210> 17<br><211> 38<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 17 gaaccgtctc acgatataat ctggaacaag taccttgc             | 3.8 |
| <2105 18 <2115 35                                              |     |

| <213>                                                                                                                                | DNA<br>Artificial Sequence                                                                                                                              |    |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <220><br><223>                                                                                                                       | Primer                                                                                                                                                  |    |
| <400><br>gaacc                                                                                                                       | 18<br>gtctc agaagcacga gcatagttta ctacg                                                                                                                 | 35 |
| <210><211>                                                                                                                           |                                                                                                                                                         |    |
| <212><br><213>                                                                                                                       | DNA<br>Artificial Sequence                                                                                                                              |    |
| <220><br><223>                                                                                                                       | Primer                                                                                                                                                  |    |
| <400><br>gaacc                                                                                                                       | 19<br>gtctc aaaggtgggt ttatgtgccg                                                                                                                       | 30 |
| <210><211>                                                                                                                           |                                                                                                                                                         |    |
| <212><br><213>                                                                                                                       | DNA<br>Artificial Sequence                                                                                                                              |    |
| <220><br><223>                                                                                                                       | Primer                                                                                                                                                  |    |
| <400>                                                                                                                                | 20<br>totoa ggaatocaaa tggoggatat tooogo                                                                                                                | 36 |
|                                                                                                                                      |                                                                                                                                                         |    |
| <210><br><211>                                                                                                                       | 21                                                                                                                                                      |    |
| <210><211><211>                                                                                                                      | 21<br>33                                                                                                                                                |    |
| <210><211><212><212><213>                                                                                                            | 21<br>33<br>DNA                                                                                                                                         |    |
| <210><211><211><212><213><223><400>                                                                                                  | 21 33 DNA Artificial Sequence Primer                                                                                                                    | 33 |
| <210> <211> <212> <213> <223> <400> gaacgg                                                                                           | 21 33 DNA Artificial Sequence  Primer 21 gtctc agtttatcat attgatgage tcc                                                                                |    |
| <210><211><211><212><213><223><400><223><4100><2210><221><211><212>                                                                  | 21 33 DNA Artificial Sequence  Primer 21 gtctc agtttatcat attgatgage tee  22 33 DNA                                                                     |    |
| <210><211><211><212><213><223><220><223><221><221><210><221><210><211><211><212><213><                                               | 21 33 DNA Artificial Sequence  Primer 21 gtctc agtttatcat attgatgage tee  22 33                                                                         |    |
| <210><211><211><212><213><223> 223 223 400 <a href="mailto:qaacgg">&lt;210&gt;&lt;211&gt;&lt;211&gt;&lt;212&gt;&lt;213&gt;</a> <220> | 21 33 DNA Artificial Sequence  Primer 21 gtctc agtttatcat attgatgage tee  22 33 DNA                                                                     |    |
| <210><211><211><212><213><223> 223 223 400 221 221 221 223 223 400                                                                   | 21 33 DNA Artificial Sequence  Primer 21 gtctc agtttatcat attgatgage tee 22 33 DNA Artificial Sequence  Primer                                          |    |
| <210> <211> <212> <213> <220> <223> <400> gaacgg <210> <211> <212> <213> <400 <211> <212> <213>                                      | 21 33 DNA Artificial Sequence  Primer 21 getect agettateat attgatgage tee 22 33 DNA Artificial Sequence  Primer 22 getect agaggtagtt ggeagtatat ttg 23  | 33 |
| <210> <211> <212> <213> <220> <223> <400> gaacgg <211> <212> <213> <400 gaacgg <210> <211> <212> <213>                               | 21 33 DNA Artificial Sequence  Primer 21 gtctc agtttatcat attgatgage tee 22 33 DNA Artificial Sequence  Primer 22 gtctc agaggtagtt ggcagtatat ttg 23 31 | 33 |

| <220><br><223> Primer                                          |     |
|----------------------------------------------------------------|-----|
| <400> 23<br>gaacgtctca cgccaggcat caacgccgat g                 | 3 1 |
| <210> 24<br><211> 30<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 24<br>gaacgtctca ttgtagtaga gcgggaagtc                   | 30  |
| <210> 25<br><211> 32<br><212> DNA<br><213> Artificial Sequence |     |
| <220> <223> Primer                                             |     |
| <400> 25<br>gaacggtctc aatcggtgtc gtggtttgct ac                | 32  |
| <210> 26<br><211> 31<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 26<br>gaaccgtctc acttccacct gcgaggtggt c                 | 31  |
| <210> 27<br><211> 31<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 27 gaaccgtctc accttccaac cttgctcgag c                    | 31  |
| <210> 28 <211> 33 <212> DNA <213> Artificial Sequence          |     |
| <220>                                                          |     |

| <223> Pr             | cimer                     |                       |     |
|----------------------|---------------------------|-----------------------|-----|
| <400> 28             | 3                         |                       |     |
|                      | ga ctctcaccca acaccgcaat  | agc                   | 3 3 |
|                      |                           |                       |     |
| <210> 29             |                           |                       |     |
| <211> 50 <212> DN    |                           |                       |     |
|                      | rtificial Sequence        |                       |     |
| \213\/ III           | cerrerar bequence         |                       |     |
| <220>                |                           |                       |     |
| <223> Pr             | rimer                     |                       |     |
|                      |                           |                       |     |
| <400> 29             |                           |                       | - ^ |
| gaacacta             | igt aggaggtaac ttatggccaa | gtacctggag ctcgaagagg | 50  |
| <210> 30             |                           |                       |     |
| <211> 31             |                           |                       |     |
| <212> DN             | JA                        |                       |     |
| <213> Ar             | tificial Sequence         |                       |     |
|                      |                           |                       |     |
| <220>                |                           |                       |     |
| <223> Pr             | rimer                     |                       |     |
| <400> 30             |                           |                       |     |
|                      | etc attcccccgg cgagcaaggg | c                     | 3 1 |
| 3 33                 | 33 3 3 333                |                       |     |
| <210> 31             |                           |                       |     |
| <211> 32             |                           |                       |     |
| <212> DN             |                           |                       |     |
| <213> Ar             | tificial Sequence         |                       |     |
| <220>                |                           |                       |     |
| <223> Pr             | rimer                     |                       |     |
|                      |                           |                       |     |
| <400> 31             |                           |                       |     |
| gaaccgtc             | tc aaaacaccgc ccacgcctac  | 99                    | 32  |
| 210 22               |                           |                       |     |
| <210> 32<br><211> 29 |                           |                       |     |
| <211> 23             |                           |                       |     |
|                      | tificial Sequence         |                       |     |
|                      |                           |                       |     |
| <220>                |                           |                       |     |
| <223> Pr             | rimer                     |                       |     |
|                      |                           |                       |     |
| <400> 32             |                           |                       | o   |
| gaacgtct             | ca cctcgacttc caccccaac   | •                     | 29  |
| <210> 33             | 3                         |                       |     |
| <211> 31             |                           |                       |     |
| <212> DN             |                           |                       |     |
| <213> Ar             | tificial Sequence         |                       |     |
| 202                  |                           |                       |     |
| <220>                | at manage                 |                       |     |

| <400> 33 gaacgtctca ggcgcttcga ctacgtcaag g                    | 31 |
|----------------------------------------------------------------|----|
| <210> 34<br><211> 34<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 34<br>gaacggtctc aacaagatgg acgcggcctt tgac              | 34 |
| <210> 35<br><211> 35<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 35<br>gaaccgtctc acgatataat ttggaacaag taccc             | 35 |
| <210> 36<br><211> 31<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 36 gaaccgtctc agaagcaccg acatagtcta c                    | 31 |
| <210> 37<br><211> 30<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 37 gaaccgtctc aaaggtgggt ctacgttccg                      | 30 |
| <210> 38 <211> 36 <212> DNA <213> Artificial Sequence          |    |
| <220><br><223> Primer                                          |    |
| <400> 38 gaacgtotca ggaatocata ttgcggagat tccggc               | 36 |

| <210> 39 <211> 32 <212> DNA <213> Artificial Sequence          |     |
|----------------------------------------------------------------|-----|
| <220><br><223> Primer                                          |     |
| <400> 39 gaacggtctc agtttatcat gttcacgagc tc                   | 32  |
| <210> 40<br><211> 33<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 40 gaaccgtctc agaggtagtt ggccgtgtac ttg                  | 33  |
| <210> 41<br><211> 30<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 41 gaacgtctca gccatgcgtc aacgccgatg                      | 30  |
| <210> 42<br><211> 31<br><212> DNA<br><213> Artificial Sequence |     |
| <220> <223> Primer                                             |     |
| <400> 42<br>gaacgtctca ttgtagtaga gcgggaagtc g                 | 31  |
| <210> 43<br><211> 33<br><212> DNA<br><213> Artificial Sequence |     |
| <220><br><223> Primer                                          |     |
| <400> 43 gaacggtctc aatcggtgtc gtggtttgca acg                  | 3 3 |
| <210> 44                                                       |     |

| <211> 34<br><212> DNA<br><213> Artificial Sequence              |     |
|-----------------------------------------------------------------|-----|
| <220><br><223> Primer                                           |     |
| <400> 44 gaaccgtctc acttccaccg gcgaggtggt cgtg                  | 34  |
| <210> 45 <211> 32 <212> DNA <213> Artificial Sequence           |     |
| <220><br><223> Primer                                           |     |
| <400> 45 gaaccgtctc accttccggc cttgctcgag cc                    | 32  |
| <210> 46 <211> 35 <212> DNA <213> Artificial Sequence           |     |
| <220><br><223> Primer                                           |     |
| <400> 46 tcgagactga ctctcagccc accccgcagt agctc                 | 35  |
| <210> 47<br><211> 50<br><212> DNA<br><213> Artificial Sequence  |     |
| <220><br><223> Primer                                           |     |
| <400> 47 gaacactagt aggaggtaac ttatggccaa gtactccgag ctggaagagg | 50  |
| <210> 48 <211> 30 <212> DNA <213> Artificial Sequence           |     |
| <220><br><223> Primer                                           |     |
| <400> 48 gaacggtctc attcctcccg cgagcaaggg                       | 3 0 |
| <210> 49 <211> 31 <212> DNA                                     |     |

| <213> Artificial Sequence                                      |    |
|----------------------------------------------------------------|----|
| <220><br><223> Primer                                          |    |
| <400> 49 gaaccgtctc aaaacaccgc ccacgcctat g                    | 31 |
| <210> 50 <211> 33 <212> DNA <213> Artificial Sequence          |    |
| <220><br><223> Primer                                          |    |
| <400> 50 gaacgtctca cctcgacttc cacccgaacg agc                  | 33 |
| <210> 51<br><211> 31<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 51<br>gaacgtctca ggcgcttcga ctacgtcaag g                 | 31 |
| <210> 52<br><211> 32<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 52<br>gaacggtctc aacaagatgg acgaggcctt cg                | 32 |
| <210> 53 <211> 30 <212> DNA <213> Artificial Sequence          |    |
| <220><br><223> Primer                                          |    |
| <400> 53 gaaccgtctc acgatataat ctggaacaag                      | 30 |
| <210> 54<br><211> 35<br><212> DNA<br><213> Artificial Sequence |    |

| <220> <223> Primer                                             |    |
|----------------------------------------------------------------|----|
| <400> 54 gaaccgtctc agaagcactg acatcgttta ctacg                | 35 |
| <210> 55<br><211> 30<br><212> DNA<br><213> Artificial Sequence |    |
| <220> <223> Primer                                             |    |
| <400> 55<br>gaaccgtctc aaaggtgggt ttacgttccg                   | 30 |
| <210> 56<br><211> 30<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 56 gaacgtctca ggaatccata tcgccgaaat                      | 30 |
| <210> 57<br><211> 30<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 57 gaacggtctc agtttatcat gtttatgagc                      | 30 |
| <210> 58 <211> 34 <212> DNA <213> Artificial Sequence          |    |
| <220><br><223> Primer                                          |    |
| <400> 58 gaaccgtctc agaggtagtt ggccgtgtat ttac                 | 34 |
| <210> 59<br><211> 30<br><212> DNA<br><213> Artificial Sequence |    |
| <220> <223> Primer                                             |    |

| <400> 59 gaacgtctca cgccaggcat cgatgccgat                      | 30 |
|----------------------------------------------------------------|----|
| <210> 60 <211> 34 <212> DNA <213> Artificial Sequence          |    |
| <220><br><223> Primer                                          |    |
| <400> 60<br>gaacgtctca ttgtagtaga gggcgaagtc aaag              | 34 |
| <210> 61<br><211> 36<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 61<br>gaacggtctc aatcggtatc gtggttggct acaaac            | 36 |
| <210> 62<br><211> 34<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 62<br>gaaccgtctc acttcctccg gcgaggttgt catg              | 34 |
| <210> 63<br><211> 32<br><212> DNA<br><213> Artificial Sequence |    |
| <220><br><223> Primer                                          |    |
| <400> 63 gaaccgtctc accttccggc tttgcttgag gc                   | 32 |
| <210> 64<br><211> 36<br><212> DNA<br><213> Artificial Sequence |    |
| <220> <223> Primer                                             |    |
| 1100- 61                                                       |    |

.

```
36
tcgagactga ctctcaccca acaccgcagt agctcc
<210> 65
<211> 38
<212> DNA
<213> Artificial Sequence
< 220 >
<223> Primer
<400> 65
                                                                        38
cacacagcag caaccaacct cgagactgac tctcascc
<210> 66
<211> 1299
<212> DNA
<213> Unknown
<220>
<223> Obtained from an environmental sample
<400> 66
atggctctgg aagaggggg gctcataatg caggccttct actgggacgt ccccatggga
                                                                        60
ggaatctggt gggacacgat agcccagaag atacccgact gggcaagcgc cgggatttcg
                                                                       120
gcgatatgga tccctcccgc gagcaagggt atgagcggcg gctattcgat gggctacgac
                                                                       180
ccctacgatt attttgacct cggtgagtac taccagaagg gaacggtgga aacgaggttc
                                                                       240
ggctcaaagc aggagctcat aaacatgata aacaccgccc acgcctatgg catgaaggta
                                                                       300
atageegata tagteateaa eeacegegee ggeggtgaee tggagtggaa eeeettegtg
                                                                       360
                                                                       420
aacgactata cctggaccga cttctcaaag gtcgcgtcgg gtaaatacac ggccaactac
ctcgacttcc acccgaacga gctccatgcg ggcgattccg gaacatttgg aggctatccc
                                                                       480
gacatatgcc acgacaagag ctgggaccag tactggctct gggccagcca ggagagctac
                                                                       540
geggeatate teaggageat eggeategat geetggeget tegaetaegt caagggetat
                                                                       600
gctccctggg tcgtcaagga ctggctgaac tggtggggag gctgggcggt tggagagtac
                                                                       660
tgggacacca acgtcgacgc tgttctcaac tgggcatact cgagcggtgc caaggtcttt
                                                                       720
gacttegeee tetactacaa gatggacgag geettegata acaacaacat teeegeeetg
                                                                       780
gtggacgccc tcagatacgg tcagacagtg gtcagccgcg acccgttcaa ggctgtgacg
                                                                       840
tttgtagcca accacgatac cgacataatc tggaacaagt atccagccta cgcgttcatc
                                                                       900
ctcacctacg agggccagcc gacaatattc taccgcgact acgaggagtg gctcaacaag
                                                                       960
gataagctca agaacctcat ctggatacat gacaacctcg ccggagggag cactgacatc
                                                                      1020
gtttactacg acaacgacga gctgatattc gtgagaaacg gctacggaag caagccggga
                                                                      1080
ctgataacat acatcaacct cgcctcaagc aaagccggaa ggtgggttta cgttccgaag
ttegeagget egtgeataea egagtaeaee ggeaateteg geggetgggt ggacaagtgg
                                                                      1200
gtggactcaa gcggctgggt ctacctcgag gctcctgccc acgacccggc caacggccag
                                                                      1260
                                                                      1299
tacggctact ccgtctggag ctactgcggt gttgggtga
<210> 67
<211> 432
<212> PRT
<213> Unknown
<220>
<223> Obtained from an environmental sample
<400> 67
Met Ala Leu Glu Glu Gly Gly Leu Ile Met Gln Ala Phe Tyr Trp Asp
                 5
                                    1.0
```

Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala Gln Lys Ile Pro

|   |           |           |           | 20         |           |           |           |           | 25         |           |           |           |           | 30         |           |           |
|---|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| I | Asp       | Trp       | Ala<br>35 | Ser        | Ala       | Gly       | Ile       | Ser<br>40 | Ala        | Ile       | Trp       | Ile       | Pro<br>45 | Pro        | Ala       | Ser       |
| I | Lys       | Gly<br>50 | Met       | Ser        | Gly       | Gly       | Tyr<br>55 | Ser       | Met        | Gly       | Tyr       | Asp<br>60 | Pro       | Tyr        | Asp       | Tyr       |
|   | Phe<br>55 | Asp       | Leu       | Gly        | Glu       | Tyr<br>70 | Tyr       | Gln       | Lys        | Gly       | Thr<br>75 | Val       | Glu       | Thr        | Arg       | Phe<br>80 |
| ( | Gly       | Ser       | Lys       | Gln        | Glu<br>85 | Leu       | Ile       | Asn       | Met        | Ile<br>90 | Asn       | Thr       | Ala       | His        | Ala<br>95 | Tyr       |
| ( | Gly       | Met       | Lys       | Val<br>100 | Ile       | Ala       | Asp       | Ile       | Val<br>105 | Ile       | Asn       | His       | Arg       | Ala<br>110 | Gly       | Gly       |
|   | -         |           | 115       | _          |           |           |           | 120       |            |           |           |           | 125       | Thr        |           |           |
|   |           | 130       |           |            |           |           | 135       |           |            |           |           | 140       |           | Asp        |           |           |
| : | 145       |           |           |            |           | 150       |           |           |            |           | 155       |           |           | Gly        |           | 160       |
|   | -         |           | •         |            | 165       |           |           |           |            | 170       |           |           |           | Trp        | 175       |           |
|   |           |           |           | 180        |           |           |           |           | 185        |           |           |           |           | Asp<br>190 |           |           |
|   |           |           | 195       |            |           |           |           | 200       |            |           |           |           | 205       | Lys        |           |           |
|   |           | 210       | _         |            |           |           | 215       |           |            |           |           | 220       |           | Asp        |           |           |
| 2 | 225       | -         |           |            |           | 230       | _         |           | _          |           | 235       |           |           | Lys        |           | 240       |
|   | _         |           |           |            | 245       |           |           |           |            | 250       |           |           |           | Asn        | 255       |           |
|   |           |           |           | 260        |           | _         |           |           | 265        |           |           |           |           | Val<br>270 |           |           |
|   |           | _         | 275       |            |           |           |           | 280       |            |           |           |           | 285       | Asp        |           |           |
|   |           | 290       | _         |            | •         | _         | 295       |           | _          |           |           | 300       |           | Thr        |           |           |
| 3 | 305       |           |           |            |           | 310       |           |           |            |           | 315       |           |           | Leu        |           | 320       |
| 1 | -         | -         |           | _          | 325       |           |           |           |            | 330       |           |           |           | Ala        | 335       |           |
|   |           |           |           | 340        |           |           |           |           | 345        |           |           |           |           | Phe<br>350 |           |           |
|   |           | _         | 355       |            |           |           |           | 360       |            |           |           |           | 365       | Asn        |           |           |
|   |           | 370       | _         |            |           |           | 375       |           |            |           |           | 380       |           | Ala        |           |           |
| : | 385       |           |           |            | _         | 390       | _         |           |            | -         | 395       |           |           | Asp        |           | 400       |
|   |           |           |           |            | 405       |           |           |           |            | 410       |           |           |           | His        | 415       |           |
| I | Ala       | Asn       | Gly       | Gln<br>420 | Tyr       | Gly       | Tyr       | Ser       | Val<br>425 | Trp       | Ser       | Tyr       | Cys       | Gly<br>430 | Val       | Gly       |
|   |           |           |           |            |           |           |           |           |            |           |           |           |           |            |           |           |

<sup>&</sup>lt;210> 68 <211> 1386

<sup>&</sup>lt;212> DNA

<sup>&</sup>lt;213> Unknown

120

180

240 300

360

420

480 540

600

660

720 780

840 900

960

1020 1080

1140

1200

1260

1320

1380 1386

<220> <223> Obtained from an environmental sample <400> 68 atgaageetg egaaacteet egtetttgtg etegtagtet etateetege ggggetetae qcccaqccq cqqqqqqqc caagtacctg gagctcgaag agggcggcgt cataatgcag gcgttctact gggacgtgcc ttcaggagga atatggtggg acacaatacg gcagaagata ccggagtggt acgatgccgg aatctccgca atatggattc ccccggcgag caagggcatg ggeggeget attegatggg ctacgacece tacgaettet ttgacetegg tgagtacgae caqaaqqqaa cggtagagac gcgctttggc tccaagcagg agctcgtgaa catgataaac accgcccacg cctacggcat caaggtcatc gcagacatag taatcaacca ccgcgccgga ggagacettg agtggaacec ettegteaat gactacacet ggaeggaett etegaaggte gcttccggca agtacacggc caactacctc gacttccacc ccaacgaggt caagtgctgc qacqaqqqca cctttggagg gttcccggac atagcccacg agaagagctg ggaccagtac tggctctggg cgagcaacga gagctacgcc gcctacctca ggagcatcgg cgttgacgca tggcgcttcg actacgtcaa gggctacgga gcgtgggtcg tcaaggactg gctggactgg tggggaggct gggccgtcgg ggagtactgg gacacaaacg ttgatgcact gctcaactgg gcctactcga gcgatgcaaa agtcttcgac ttcccgctct actacaagat ggacgcgcc tttgacaaca agaacattcc cgcactcgtc gaggccctca agaacggggg cacagtcgtc agccgcgacc cgtttaaggc cgtaaccttc gttgcaaacc acgacacgga cataatttgg aacaagtacc cggcctacgc cttcatcctc acctacgagg gccagccgac gatattctac cgcgactacg aggagtggct caacaaggac aggctcaaga acctcatctg gatacacgac cacctcgccg gtggaagcac cgacatagtc tactacgata acgatgaact catcttcgtc aggaacggct acggggacaa gccggggctt ataacctaca tcaacctagg ctcgagcaag gccgggaggt gggtctacgt tccgaagttc gcgggagcgt gcatccacga gtacaccggc aacctcggcg gctgggtgga caagtgggtg gactcaagcg ggtgggtgta cctcgaggcc cctgcccacg acceggccaa cggctattac ggctactccg tctggagcta ctgcggggtg ggctga <210> 69 <211> 461 <212> PRT <213> Unknown <220> <223> Obtained from an environmental sample <400> 69 Met Lys Pro Ala Lys Leu Leu Val Phe Val Leu Val Val Ser Ile Leu Ala Gly Leu Tyr Ala Gln Pro Ala Gly Ala Ala Lys Tyr Leu Glu Leu 25 Glu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg Gln Lys Ile Pro Glu Trp Tyr 55 60 Asp Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met 70 75 Gly Gly Ala Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe Phe Asp Leu 90 Gly Glu Tyr Asp Gln Lys Gly Thr Val Glu Thr Arg Phe Gly Ser Lys 100 105 110 Gln Glu Leu Val Asn Met Ile Asn Thr Ala His Ala Tyr Gly Ile Lys 120 125 115 Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly Asp Leu Glu

135

Trp Asn Pro Phe Val Asn Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val

|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 1.60       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 145        | 0          | <b>a</b> 1 | T          |            | 150        | 7 J        | 7 ~ ~      | m          | T 0        | 155        | Dho        | uia        | Dro        | Nan        | 160        |
|            |            | _          | _          | 165        |            | Ala        |            |            | 170        |            |            |            |            | 175        |            |
| Val        | Lys        | Cys        | Cys<br>180 | Asp        | Glu        | Gly        | Thr        | Phe<br>185 | Gly        | Gly        | Phe        | Pro        | Asp<br>190 | Ile        | Ala        |
| His        | Glu        | Lys<br>195 | Ser        | Trp        | Asp        | Gln        | Tyr<br>200 | Trp        | Leu        | Trp        | Ala        | Ser<br>205 | Asn        | Glu        | Ser        |
| Tyr        | Ala<br>210 | Ala        | Tyr        | Leu        | Arg        | Ser<br>215 | Ile        | Gly        | Val        | Asp        | Ala<br>220 | Trp        | Arg        | Phe        | Asp        |
| Tyr<br>225 | Val        | Lys        | Gly        | Tyr        | Gly<br>230 | Ala        | Trp        | Val        | Val        | Lys<br>235 | Asp        | Trp        | Leu        | Asp        | Trp<br>240 |
| Trp        | Gly        | Gly        | Trp        | Ala<br>245 | Val        | Gly        | Glu        | Tyr        | Trp<br>250 | Asp        | Thr        | Asn        | Val        | Asp<br>255 | Ala        |
| Leu        | Leu        | Asn        | Trp<br>260 | Ala        | Tyr        | Ser        | Ser        | Asp<br>265 | Ala        | Lys        | Val        | Phe        | Asp<br>270 | Phe        | Pro        |
| Leu        | Tyr        | Tyr<br>275 | Lys        | Met        | Asp        | Ala        | Ala<br>280 | Phe        | Asp        | Asn        | Lys        | Asn<br>285 | Ile        | Pro        | Ala        |
| Leu        | Val<br>290 | Glu        | Ala        | Leu        | Lys        | Asn<br>295 | Gly        | Gly        | Thr        | Val        | Val<br>300 | Ser        | Arg        | Asp        | Pro        |
| Phe<br>305 | Lys        | Ala        | Val        | Thr        | Phe<br>310 | Val        | Ala        | Asn        | His        | Asp<br>315 | Thr        | Asp        | Ile        | Ile        | Trp<br>320 |
| Asn        | Lys        | Tyr        | Pro        | Ala<br>325 | Tyr        | Ala        | Phe        | Ile        | Leu<br>330 | Thr        | Tyr        | Glu        | Gly        | Gln<br>335 | Pro        |
| Thr        | Ile        | Phe        | Tyr<br>340 | Arg        | Asp        | Tyr        | Glu        | Glu<br>345 | Trp        | Leu        | Asn        | Lys        | Asp<br>350 | Arg        | Leu        |
| Lys        | Asn        | Leu<br>355 | Ile        | Trp        | Ile        | His        | Asp<br>360 | His        | Leu        | Ala        | Gly        | Gly<br>365 | Ser        | Thr        | Asp        |
| Ile        | Val<br>370 | Tyr        | Tyr        | Asp        | Asn        | Asp<br>375 | Glu        | Leu        | Ile        | Phe        | Val<br>380 | Arg        | Asn        | Gly        | Tyr        |
| Gly<br>385 | Asp        | Lys        | Pro        | Gly        | Leu<br>390 | Ile        | Thr        | Tyr        | Ile        | Asn<br>395 | Leu        | Gly        | Ser        | Ser        | Lys<br>400 |
| Ala        | Gly        | Arg        | Trp        | Val<br>405 | Tyr        | Val        | Pro        | Lys        | Phe<br>410 | Ala        | Gly        | Ala        | Cys        | Ile<br>415 | His        |
| Glu        | Tyr        | Thr        | Gly<br>420 | Asn        | Leu        | Gly        | Gly        | Trp<br>425 | Val        | Asp        | Lys        | Trp        | Val<br>430 | Asp        | Ser        |
| Ser        | Gly        | Trp<br>435 | Val        | Tyr        | Leu        | Glu        | Ala<br>440 | Pro        | Ala        | His        | Asp        | Pro<br>445 | Ala        | Asn        | Gly        |
| Tyr        | Tyr<br>450 | Gly        | Tyr        | Ser        | Val        | Trp<br>455 | Ser        | Tyr        | Cys        | Gly        | Val<br>460 | Gly        |            |            |            |