Computer Graphics

Mathematical background

Konstantin Tretyakov kt@ut.ee

In the previous episodes

- Computer graphics is useful and fun
- Computer graphics is about generating images
- Modeling, Rendering, Animation
- Raster vs Vector, 2D vs 3D
- Ad-hoc projection vs Light physics
- "Standard graphics pipeline"
- Matrix notation

Mathematical background

• Vectors:

- Points, directions, vectors and matrices
- Linear combinations, convex combinations
- Norm, normalization
- Inner product, orthogonality, orthogonalization
- Box product, Cross product
- Orientation
- Representation of a straight line

Mathematical background

- Matrices:
 - Linear transformations
 - Invertibility, rank, determinant
 - Orthogonal transformations
 - Affine transformations
 - Homogeneous coordinates

Vectors

In general, vectors are elements of a space.

Vectors

In computer graphics, we primarily deal with vector spaces \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^4 .

Vectors

In computer graphics, we primarily deal with vector spaces \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^4 .

We use those vectors to denote and _____

• Linear combinations:

$$3 \cdot {1 \choose 2} - 2 \cdot {2 \choose 1} =$$

• Linear combinations:

$$3 \cdot {1 \choose 2} - 2 \cdot {2 \choose 1} =$$

A linear combination

$$\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \dots + \lambda_n \boldsymbol{v}_n$$

is called *convex* if _____

Norm

$$\|\boldsymbol{a}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

• Norm

$$\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$

• Norm

$$\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$

$$\|\binom{33}{44}\| =$$

• Normalization:

$$normalize(a) \coloneqq \frac{a}{\|a\|}$$

• Normalization:

normalize
$$\binom{0}{1}$$
 =

• Normalization:

normalize
$$\binom{44}{33} =$$

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$

$$\langle \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$

$$\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$

$$\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle + \langle \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$

- Inner product
 - $\langle a, \lambda b + c \rangle = \lambda \langle a, b \rangle + \langle a, c \rangle$

Linearity

- $\langle a, a \rangle = ||a||^2$
- $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \|\boldsymbol{a}\| \cdot \|\boldsymbol{b}\| \cdot \cos \alpha$

Relationship with the norm

 \bullet $\langle a, b \rangle = a^T b$

Relationship with the matrix product notation

Inner product

$$a^T(\lambda b + c) = \lambda a^T b + a^T c$$

Linearity

•
$$a^T a = ||a||^2$$

$$\bullet a^T b = ||a|| \cdot ||b|| \cdot \cos \alpha$$

Relationship with the norm

•
$$\langle a, b \rangle = a^T b$$

Relationship with the matrix product notation

Inner product

$$\mathbf{p}^T \mathbf{a} = \|\mathbf{p}\| \cdot \|\mathbf{a}\| \cdot \cos \alpha$$

• If
$$||p|| = 1$$
,

 $p^T a$ is the length of

Inner product

$$\mathbf{p}^T \mathbf{a} = \|\mathbf{p}\| \cdot \|\mathbf{a}\| \cdot \cos \alpha$$

• If ||p|| = 1,

 $p^T a$ is the length of the projection of a onto p.

Inner product

 $||\boldsymbol{p}|| = 1$

• Inner product

 $\|\boldsymbol{p}\| = 1$

Projector

• For any nonzero vector **p** the matrix

$$\left(\frac{\boldsymbol{p}}{\|\boldsymbol{p}\|}\right)\left(\frac{\boldsymbol{p}}{\|\boldsymbol{p}\|}\right)^{T} = \frac{\boldsymbol{p}\boldsymbol{p}^{T}}{\|\boldsymbol{p}\|^{2}} = \frac{\boldsymbol{p}\boldsymbol{p}^{T}}{\boldsymbol{p}^{T}\boldsymbol{p}}$$

is the *projector matrix* for \boldsymbol{p} .

$$\bullet a^T b = ||a|| \cdot ||b|| \cdot \cos \alpha$$

Inner product

$$\bullet a^T b = ||a|| \cdot ||b|| \cdot \cos \alpha$$

$$\bullet a^T b = 0 \iff \cos \alpha = 0$$

In this case we say that a and b are orthogonal.

Gram-Schmidt algorithm

$$a'=a$$

$$b' = b - \frac{a'a'^T}{a'^Ta'}b$$

$$c' = c - \frac{a'a'^T}{a'^Ta'}c - \frac{b'b'^T}{b'^Tb'}c$$

• • •

Orthonormality

• If vectors **a** and **b** are orthogonal and unitlength, we say they are *orthonormal*.

• A set of m orthonormal vectors in \mathbb{R}^m is an orthonormal basis of \mathbb{R}^m .

• Give an example of an orthonormal basis for \mathbb{R}^3 .

Box product

- Let $a, b \in \mathbb{R}^2$.
- The box product of \boldsymbol{a} and \boldsymbol{b} is:

$$|a \ b| = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - b_1 a_2$$

Box product

•
$$|a \ b| = ||a|| ||b|| \sin \alpha$$

$$\bullet |b \ a| = -|a \ b|$$

Box product

$$|\boldsymbol{a} \ \boldsymbol{b}| = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \alpha$$

• Box product in 3D:

$$|a \ b \ c| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

 Corresponds to the *signed volume* of a parallelepiped constructed on the three vectors

• Box product in 3D:

$$|a \ b \ c| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

- Corresponds to the *signed volume* of a parallelepiped constructed on the three vectors
- The sign determines the *orientation* of the vectors.

Orientation

• *m* vectors in an *m*-dimensional space have an *orientation*.

• Orientations in 2D and 3D have conventional names: *right-handed* and *left-handed*.

• You can also speak about *positive* and *negative* orientation *relative to the basis*.

Right-handed basis

• In mathematics the right-handed basis is most often used.

In this basis any *positively* oriented pair is also a right-handed pair.

Quiz

• How to determine whether a given point lies to the left or to the right of a given segment? 4

Cross product

$$egin{aligned} oldsymbol{a} imes oldsymbol{b} & oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{bmatrix}$$

$$= \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Cross product

- $a \times b$ is orthogonal to both a and b
- $(a, b, a \times b)$ is positively oriented

Orthogonalization in 3D

 Orthogonalization of a right-handed basis in 3D using cross product:

•
$$c' = a \times b$$

•
$$b' = c' \times a$$

$$\mathbf{a}' = \mathbf{a}'$$

Quiz

• A magical unicorn in your 3D world is flying in the direction given by vector \boldsymbol{v} .

• The user pushes the button "right", which should give an impulse to the unicorn towards the right (wrt its current flight direction). Compute the vector pointing to the right.

Mathematical background

• Vectors:

- Points, directions, vectors and matrices
- Linear combinations, convex combinations
- Norm, normalization
- Inner product, orthogonality, orthogonalization
- Box product, Cross product
- Orientation
- Representation of a straight line

Straight line

Parametric representation

•
$$\mathbf{x} = \lambda \mathbf{a} + (1 - \lambda) \mathbf{b}$$

$$x = a + t(b - a)$$

Implicit representation

$$\mathbf{n}^T(\mathbf{x} - \mathbf{p}) = 0$$

$$\mathbf{n}^T \mathbf{x} = \mathbf{n}^T \mathbf{p}$$

$$n_1x_1 + n_2x_2 - b = 0$$

Mathematical background

- Matrices:
 - Linear transformations
 - Invertibility, rank, determinant
 - Orthogonal transformations
 - Affine transformations
 - Homogeneous coordinates

Linear transformations

• A transformation $f: \mathcal{V}_1 \to \mathcal{V}_2$ is called *linear* (also *homomorphism*) if

$$f(\alpha x + y) = \alpha f(x) + f(y)$$

- Examples of linear transformations are:
 - Rotation around origin, scaling, shear,
 reflection, projection or combinations of those.

Quiz

- Which of those are linear transformations?
 - f(x) = x
 - f(x) = -4x
 - f(x) = 4x + 4
 - $f(x) = x^2$
 - f(x) = 3
 - f(x) = 0

Quiz

- Which of those are linear transformations?
 - f(x) = Ax
 - $f(x) = x^T x$
 - $f(x) = a^T x$
 - f(x) = |a b x|
 - $f(x) = a \times x$
 - $f(x) = a^T x + |a b x| + a \times x + Ax$

To be continued...

