Source Coding

Youlong Wu

ShanghaiTech University

wuyl1@shanghaitech.edu.cn

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit. 4. The space between letters is three units.
- 5. The space between words is seven units.

Layering of Source Coding

Figure: Split the source coding/decoding layer into three layers [Gallagar'Book]

- Discrete sources requires only the inner layer above
- Analog sequences use the inner two layers
- Waveform sources use all three layers

Discrete Memoryless Sources (DMS)

- The source output is an unending sequence X_1, X_2, \ldots of randomly selected letter from a finite set \mathcal{X} , called the source alphabet.
- ullet Each source output X_1, X_2, \ldots is selected from ${\mathcal X}$ using the same P_X
- Each source output X_k is statistically independent of any other outputs X_j , for all $j \neq k$.

 X_1, X_2, \ldots are i.i.d according to P_X

Discrete Source Coding

Definition: Given a RV $X \sim P(x)$, map each $x \in \mathcal{X}$ to a finite-length sequence of symbols from a D-ary alphabet. (Normally, D=2)

Let c(x) denote the codeword for x

Example: Alphabet
$$\mathcal{X}=\{a,b,c,d,e,f\},\,D=3$$

$$a\longrightarrow c(a)=000$$

$$b\longrightarrow c(b)=111$$

$$c\longrightarrow c(c)=222$$

$$e\longrightarrow c(e)=012$$

$$f\longrightarrow c(f)=210$$

Code Length for DMS

- Let l(x) be the length of the codeword c(x).
- Then L(x) is a RV where L(x) = l(x) for X = x. (Note: Capital letter for RV, and small letter for value)
- The probability corresponding to L(X) = l(x) is $p_X(x)$.
- The expected length of codeword (physical meaning: the number of encoder output bits per source symbol)

$$E(L) = \bar{L} = \sum_{x} p_X(x)l(x)$$

Discrete Source Coding

Simplest Approach: Map each source symbols into L-tuple of binary digits.

For an alphabet size of M, require $2^L \geq M$.

To avoid wasting bits, choose L as smallest integer satisfying $2^L \geq M$, i.e.,

$$L = \lceil \log_2 M \rceil \longrightarrow \log_2 M \le L < \log_2 M + 1$$

(hint: Given a binary sequence of length L, there are 2^L different combinations of vlaues)

Fixed length code

Example: Alphabet $\mathcal{X} = \{a, b, c, d, e, f\}$.

$$a \longrightarrow 000$$

$$b \longrightarrow 001$$

$$c \longrightarrow 010$$

$$e \longrightarrow 011$$

$$f \longrightarrow 100$$

- M = 6, $L = \lceil \log_2 M \rceil = 3$
- Uniquely decoded
- Examples: acii code/GBK/GB2312. Maps letters, numbers, etc. into binary 8 bytes

ASCII code

• Maps letters, numbers, etc. into binary 8 bytes

More General Fixed Length Codes

Definition:

Segment the sequence of source symbols into successive blocks of \boldsymbol{n} source symbols at a time.

- Each source n-tuple is encoded into $L = \lceil \log_2 M^n \rceil$ bits.
- For each source symbol, $\bar{L} = L/n$: $\log_2 M \leq \bar{L} < \log_2 M + 1/n$

Variable Length Codes

Motivation: Fix length codes takes no account of whether some symbols occurs more frequently than others.

A variable-length source code $\mathcal C$ encodes each symbol $x\in\mathcal X$ to a binary codeword $\mathcal C(x)$ of length l(x).

Example: Given $\mathcal{X} = \{a, b, c\}$

$$a \longrightarrow 0$$

$$b \longrightarrow 10$$

$$c \longrightarrow 11$$

Here,
$$l(a) = 1, l(b) = 2$$
 and $l(c) = 2$.

Problem:

- No commas, how to parse the received sequence: 01011... (A joke)
- Need bigger buffer

Variable Length Codes

Uniquely decodable:

Example: Given $\mathcal{X} = \{a, b, c\}$

$$a \longrightarrow 0$$

$$b \longrightarrow 10$$

$$c \longrightarrow 11$$

non-uniquely decodable:

Example: Given $\mathcal{X} = \{a, b, c\}$

$$a \longrightarrow 0$$

$$b \longrightarrow 1$$

$$c \longrightarrow 10$$

Received sequence 010110, how to decode?

Classes of Codes

X	Singular	Nonsingular, But Not Uniquely Decodable	Uniquely Decodable, But Not Instantaneous	Instantaneous
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

- Nonsingular: $x \neq x' \Rightarrow c(x) \neq c(x')$
- instantaneous code or prefix-free code

Classes of Codes (continue)

Prefix-free codes

- A code is prefix-free if no codeword is a prefix of any other codeword.
- A prefix-free code can be presented as binary code tree which grow from a root on the left to leaves on the right representing the codewords.

Figure: Binary code tree [Gallagar'Book]

- Every codeword is at a leaf, but not all leaves are codewords. Empty leaves can be shortened.
- A prefix-free code is **full** if no new codeword can be shorten.

Prefix-free codes

- Prefix-free codes are uniquely decodable.
- To decode, start at the left and parse whenever a leaf in the three is reached.

Received sequence is 110101, how to decode?

- Start at left: 1, this is not a leaf point
- keep going: 11, this is a leaf point for b
- keep going: 0, this is a leaf point for a

How to find a prefix-free code?

• The kraft inequality is a condition determining on the existence of prefix-free codes with a given set of codeword lengths $\{l(x), x \in \mathcal{X}\}$.

Theorem (Kraft): Every prefix-free code for an alphabet $\mathcal X$ with codeword lengths $\{l(x), x \in \mathcal X\}$ satisfies

$$\sum_{x \in \mathcal{X}} 2^{-l(x)} \le 1$$

- Conversely, if the inequality holds, then a prefix-free code with lengths $\{l(x)\}$ exists.
- A prefix-free code is full iff the equality above holds.
- Proof. (hint: binary-expansion)

A Small Example

Consider a alphabet $\{a, b, c, d\}$ with prefix-free codewords $\{0, 10, 110, 111\}$.

• If the symbol probabilities are $\{1/4,1/4,1/4,1/4\}$, then the expected length is

$$1/4 * 1 + 1/4 * 2 + 1/4 * 3 + 1/4 * 3 = 2.25$$

• If the symbol probabilities are $\{1/2,1/4,1/8,1/8\}$, then the expected length is

$$1/2 * 1 + 1/4 * 2 + 1/8 * 3 + 1/8 * 3 = 1.75$$

Motivation: Choose code which has shortest expected code length.

Prefix-free Codes for DMS(skip)

Objective: Choose $\{l(x)\}$ to minimize \bar{L}

- Recall that for prefix-free code: $\sum_{x \in \mathcal{X}} 2^{-l(x)} \leq 1$.
- Use Lagrange algorithm to find the optimal $\{l(x)\}$.

Solution: Assume $\mathcal{X} = \{a_1, a_2, \dots, a_M\}$ with pmf p_1, \dots, p_M , and denote the corresponding lengths by l_1, \dots, l_M .

$$\begin{split} \bar{L}_{\min} &= \min_{l_1,...,l_M} \sum_i p_i l_i \\ \text{subject to} &: \sum_i 2^{-l_i} \leq 1 \end{split}$$

- Let $\frac{\partial (\sum_i p_i l_i + \lambda 2^{-l_i})}{\partial l_i} = 0 \Longrightarrow p_i \lambda (\ln 2) 2^{-l_i} = 0$, $(l_i \text{ is a function of } \lambda)$.
- Choose λ such that $\sum_{i} 2^{-l_i} = 1 \Longrightarrow l_i = -\log_2 p_i$.
- $ar{L}_{\min} = \sum_i p_i l_i = -\sum_i p_i \log_2 p_i$ ($ar{L}_{\min}$ might not be integer)

Entropy bound on Prefix-free Codes for DMS

$$\bar{L}_{\min}(\mathsf{non\text{-}int.}) = \sum\nolimits_i p_i l_i = \sum\nolimits_i p_i \log_2 p_i = {\color{black} H(X)}$$

- ullet The proof using Lagrange algorithms doesn't consider the L as integer
- $\bar{L}_{\min} = H(X)$ iff each p_i is integer power of 2

Theorem: Given a DMS X, the minimum expected codeword length for all prefix-free code satisfies

$$H(X) \le \bar{L}_{\min} < H(X) + 1$$

Proof: see page 29 in Gallager's book.

Proof of $H(X) \geq \bar{L}_{\min}$

For any code with average code length \bar{L}

$$\begin{split} H(x) - \bar{L} &= \sum_{j=1}^{M} p_j \log \frac{1}{p_j} - \sum_{j=1}^{M} p_j l_j \\ &= \sum_{j=1}^{M} p_j \log \left(\frac{2^{-l_j}}{p_j} \right) \\ &\stackrel{(a)}{\leq} \log e \sum_{j=1}^{M} p_j \left(\frac{2^{-l_j}}{p_j} - 1 \right) \\ &= \log e \left(\sum_{j=1}^{M} 2^{-l_j} - \sum_{j=1}^{M} p_j \right) \leq 0 \end{split}$$

where (a) holds by $\log u \le (\log e)(u-1)$; the last equality holds by Kraft's inequality.

Huffman Coding

- Above theorem suggested that good codes have length $l_i \approx \log(1/p_i)$ (Note: Many researchers trying to find code using this way, but it turns out to work not well!!)
- To make \bar{L}_{\min} small, if $p_i>p_j$, then $l_i\leq l_j$. Huffman used this simple idea to construct the code:

Figure: Huffman code [Gallagar'Book]

Problem 1: Huffman Code

Problem: Given a DMS $X \in \{a_1, a_2, \dots, a_7\}$, with probability $\{0.35, 0.30, 0.20, 0.10, 0.04, 0.005, 0.005\}$.

- Design a Huffman code for this source
- Find \bar{L} , average codeword length
- Determine the efficiency of the code $\eta = \frac{H(X)}{\bar{L}}$

Solution:

Problem 1: Huffman Code

Problem: Given a DMS $X \in \{a_1, a_2, \dots, a_7\}$, with probability $\{0.35, 0.30, 0.20, 0.10, 0.04, 0.005, 0.005\}$.

- Design a Huffman code for this source
- Find \bar{L} , average codeword length
- Determine the efficiency of the code $\eta = \frac{H(X)}{\bar{L}}$

Solution:

Letter	Probability	Self-information	Code
x_1	0.35	1.5146	00
x_2	0.30	1.7370	01
x_3	0.20	2.3219	10
x_4	0.10	3.3219	110
x_5	0.04	4.6439	1110
x_6	0.005	7.6439	11110
x_7	0.005	7.6439	11111

$$H(X) = 2.11$$
 $\bar{R} = 2.21$

Game time

Optimality of A Source Code (skip)

Assume $\mathcal{X}=\{a_1,a_2,\dots,a_M\}$ with pmf $p_1,\dots,p_M.$ Any optimal source code should satisfy

- If $p_i > p_j$, then $l_i \leq l_j$
- Optimal prefix-free code has a full tree
- For the longest code-words, its sibling is another longest codeword

Optimality of Huffman Code (skip)

Huffman is optimal for symbol-to-symbol coding with a known input probability distribution.

Proof:

- Huffman algorithm chooses an optimal code tree by starting with two least likely symbols, specifically M and M-1.
- Let X' be the reduced RV from X (Combining the two smallest probability symbols)
- Let \bar{L}' be the expected length of X'. Then the optimal L satisfies

$$\bar{L} = \bar{L}' + p_{M-1} + p_M$$

(Extending the codeword $\mathcal{C}'(M-1)$ in to two sibling for M-1 and M)

- $\bar{L}_{\min} = \bar{L}'_{\min} + p_{M-1} + p_M$
- Using Huffman algorithm, an optimal code for X' yields an optimal code for X. Prove X'' to X' and so forth, down to a binary symbol.

Huffman Code for Encoding a Block

Encode blocks of n symbols a a time instead of symbol-by-symbol. The average number of bits per n-symbol

$$nH(X) \le \bar{L}_n < nH(X) + 1$$

Thus, $H(X) \leq \bar{L} < H(X) + \frac{1}{n}$, \bar{L} goes to H(X) as n goes into ∞ .

Proof:

- $H(X^n) = H(X_1, \dots, X_n) = nH(X)$, with X_i i.i.d $\sim P_x$
- Take $X^n \in \mathcal{X}^n$ as a big "source RV"
- ullet By $H(X) \leq \bar{L}_{\min} < H(X) + 1$, we have

$$nH(X) = H(X^n) \le \bar{L}(X^n)_{\min} < H(X^n) + 1 = nH(X) + 1$$

• $nH(X) \leq \bar{L}_n < nH(X) + 1$

Huffman Code for Encoding a Block

Example: A DMS $\{x_1, x_2, x_3\}$ has probability $\{0.45, 0.35, 0.20\}$.

Letter pair	Probability	Self-information	Code
x_1x_1	0.2025	2.312	10
x_1x_2	0.1575	2.676	001
x_2x_1	0.1575	2.676	010
x_2x_2	0.1225	3.039	011
x_1x_3	0.09	3.486	111
x_3x_1	0.09	3.486	0000
x_2x_3	0.07	3.850	0001
x_3x_2	0.07	3.850	1100
x_3x_3	0.04	4.660	1101

- Using symbol-to-symbol Huffman code: $\bar{L}=1.55,~\eta=97.6\%$
- Using Block Huffman code:
 - $\bar{L}_2 = 3.067$, $\bar{L} = \bar{L}_2/2 = 1.534 < 1.55$
 - $\eta = 98.6\% > 97.6\%$

Application of Huffman Code

• Discrete cosine transform (widely used in video and audio compression)

$$y = Cx$$

where x is the input image, C is an $n \times n$ transformation matrix

$$C = \sqrt{\frac{2}{n}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & \frac{1}{\sqrt{2}} \\ \cos \frac{\pi}{2n} & \cos \frac{3\pi}{2n} & \dots & \cos \frac{(2n-1)\pi}{2n} \\ \cos \frac{2\pi}{2n} & \cos \frac{6\pi}{2n} & \dots & \cos \frac{2(2n-1)\pi}{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \cos \frac{(n-1)\pi}{2n} & \cos \frac{(n-1)3\pi}{2n} & \dots & \cos \frac{(n-1)(2n-1)\pi}{2n} \end{bmatrix}$$

DCT: keep low frequency values and non-zero values gather in upper left

- Quantization: $z = \operatorname{round}(\frac{y}{q})$, inverse Quantization: $\bar{y} = qz$
- Huffman-based encode

Huffman Code for JPEG

- In each block, the DC part y_{00} uses a DPCM Huffman tree
- Encode the difference between blocks
- the rest 63 AC terms uses run length encoding (RLC) with another Huffman tree and integer tabel

Huffman Code for JPEG

AC sequence -5,0,0,0,2

- present by (0,3)-5(3,2)EOB, where (n,L) means after n number of 0, there is a nonzero value with size $L=\lfloor \log_2 |y|+1 \rfloor$
- (0,3) after 0 number of 0, there is a value of size 3, its value is -5
- (0,3) in Huffman tree is 100, -5 in the integer table is 010,
- EOB (end of block) in tree is 1010 item -5,0,0,0,2 is encoded as (100)(010)(11111011)(1010)

Lempel-Ziv Data Compression

- Don't require prior knowledge of the source statistics
- ullet Adapt to minimize average codelength $ar{L}$
- Effectively optimal
- Widely used in practice (gif format)

Lempel-Ziv Data Compression

Set window size w

- lacktriangle Encode the first w symbols in a fixed length code, without compression
- ② Set pointer P=w
- **③** Find the largest $n \ge 2$ such that $x_{P+1}^{P+n} = x_{P+1-u}^{P+n-u}$ for some $u \in [1, w]$. x_{P+1}^{P+n} is encoded by encoding n and u (p. 53)
 - ullet Encode n into a codeword from the unary-binary code
 - \bullet Encode $u \leq w$ using fixed-length code of length $\log w$
- **3** Set the pointer P to P+n and go to step (3). Iterate forever

Lempel-Ziv Data Compression

Unary-binary code (prefix-free)

n	prefix	base 2 expansion	$\operatorname{codeword}$
1		1	1
2	0	10	010
3	0	11	011
4	00	100	00100
5	00	101	00101
6	00	110	00110
7	00	111	00111
8	000	1000	0001000

Lossless Source Coding Theorem

Shannon's First Theorem: Let X denote a DMS with entropy H(X), there exists a lossless source code for this source at any rate R > H(X). There exists no lossless code for this source at rates less than H(X).

Achievability:

Recall prefix-free code: Given a DMS X, the minimum expected codeword length for all prefix-free code satisfies

$$H(X) \le \bar{L}_{\min} < H(X) + 1$$

Converse: If R < H(X), then the error probability approaches 1 for large n. See p. 44 [Gallager'44].

Understanding by AEP: "Typical" sequence → "Typical" set.

Summary: Discrete Source Coding(skip)

Lossless Source Coding (Shannon's First Theorem)

- Simple fix-length code (ignore the source distribution)
- $\bullet \ \ \, \text{Variable-length code (parse problem} \rightarrow \text{prefix-free code} \rightarrow \\ \text{Kraft-inequality} \rightarrow \text{Huffman-code})$
- Lemp-Ziv code
- Lossless Source Coding Theorem: R > H(X) is sufficient to decode X
- Source coding for Markov source (unimportant)

Lossy Source Coding (Shannon's **Third** Theorem)

- Rate Distortion Function (Definition and how to calculate)
- Lossy Source Coding: R > R(D) is sufficient to decode X