데이터분석개요

■ 분석 모형 구축 절차 수립

- 데이터 모델링을 위한 첫 단계 : 분석 모형 구축 절차 수립
- 모델링을 위한 전체 과정을 몇 개의 단계로 나누고 각 단계 별 상세한 방법론, 도구나 기법, 산출물 등을 정의하는 작업
- 개개인의 역량과 경험에 의존하지 않고 누가 수행하던 "일정수준의 질과 양"이 보장될 수 있는 체계(시스템)

KDD (Knowledge Discovery in Database)

- 1996년 Fayyad가 프로파일링 기술을 기반으로 개발한 방법론
- 데이터로부터 통계적 패턴이나 지식을 찾기 위해 사용

CRISP-DM (Cross Industry Standard Process for Data Mining)

- 1996년 유럽 연합의 ESPRIT에 있던 프로젝트에서 시작
- 계층적 프로세스 모델

SEMMA (Sampling Explore Modify Model)

- SAS에서 개발한 데이터 마이닝 표준 가이드
- 비즈니스에서 활용할 수 있는 패턴을 찾기 위해 사용

■ 빅데이터 분석 방법론

■ 빅데이터 분석 방법론

분석 기획 Plaaning

데이터 준비 Preparing

데이터 분석 Analysis

시스템 구현 Developing

평가 및 전개 Deploying

- •비즈니스 이해 및 범위 설정
- •프로젝트 정의 및 계획 수립
- •프로젝트 위험계획 수립

- •필요 데이터 정의
- •데이터 스토어 설계
- •데이터 수집 및 점검

- •분석용 데이터 준비
- •탐색적 분석
- •모델링
- •모형 평가 및 검증
- •모델적용 및 운영 방안 수립

- •설계 및 구현
- •시스템 테스트 및 운영
- •모델 발전계획 수립
- •프로젝트 평가 및 보고

■ 빅데이터 분석 방법론

	KDD	CRISP-DM	SEMMA
분석 기획		업무 이해	
데이터 준비	데이터 선택 데이터 전처리 데이터 변환	데이터 이해 데이터 준비	표본 추출 데이터 탐색 데이터 수정
데이터 분석	데이터 마이닝 결과 평가	모델링 평가	모델링 평가
시스템 구현			
평가 및 전개		전개	

빅데이터 분석 방법론 데이터 준비 데이터 분석 시스템 구현 평가 및 전개 분석 기획 Preparing Analysis Developing Plaaning Deploying 모델링 모델 적용 및 데이터 분할 모델링 운영방안 모델 평가 및 검증 모델 평가 모델 검증

■ 목적에 따른 분류

기술 분석 (Descriptive analysis)

탐색적 분석 (Exploratory analysis)

추론 (Inferential analysis)

예측 (Predictive analysis)

분류 (classification analysis)

■ 방법론에 따른 분류

- 고전적인 통계분석(classical methodology)
- 컴퓨터의 알고리즘에 의해 분석을 하는 기계학습(machine learning) 방법
- 목적과 Data의 유형에 따라 다음의 분석 방법들을 고려

통계분석/ 기계학습 방법론 인벤토리

(Inventory for Statistical Analysis / Machine Learning Methodology)

■ 방법론에 따른 분류

분석 목적	반응변수 유형	설명변수 유형	분석 알고리즘	
분포가정		연속형, 이산형	• 적합도 검정 : 카이제곱 검정, 콜모고로프-스미노로프 검정, 우도비 검정	
연관관계 분석 (반응변수 없음)		연속형	• 변수 2개 : (피어슨)상관분석, 스피어만 순위분석, 켄달의 타우 분석 • 변수 2개 이상 : 부분상관분석, 주성분분석, 요인분석, 정준상관분석	
		이산형	 변수 2개 : 피셔의 적확 검정, 카이제곱 검정, 맥네머 검정, 연관성 척도(파이 계수, 크래머 브이, 람다계수 등) 변수 2개 이상 : 반응분석, 로그 선형분석 	
		연속형, 이산형	• 군집분석 : K평균군집분석, SOM, 계층적 군집분석, 모형기반 군집분석 등 • 연관분석 : Apriori 알고리즘 등	
인과관계 분석 (반응변수 있음)	연속형	연속형 (이산형 포함)	• 회귀분석 : 선형 회귀분석, 비선형 회귀분석, 회귀나무, 주성분 회귀분석, 부분 최소제 곱 회귀분석, 앙상블(Bagging, Boosting), Elastic net(LASSO, 릿지 회귀분석), Neural Network(Deep Learning 포함)• 시계열 분석 : 분해법, 평활법, ARIMA, GARCH, 누적 합 검정 등• 생존분석 : Cox 회귀분석 등• 이산형과 연속형 설명변수의 혼합 : 다변수 공분산 분석(MANCOVA)	
		이산형	이산형 설명변수 1개, 1-2수준 : t-검정, 만-휘트니 검정 이산형 설명변수 1개, 다수준 : 분산분석, 크루스칼-왈리스 검정 다수의 이산형 설명변수 : 다변량 분산분석 (MANOVA),	
	이산형	연속형 (이산형 포함)	• 분류분석 : 로지스틱 회귀분석, 선형 판별분석, 이차 판별분석, SVM, Neural Network(Deep Learning 포함), 분류 나무, 앙상블(Bagging, Boosting), Elastic net(LASSO, 릿지 회귀분석),	
		이산형	• 로그 선형분석	

• 일반적으로 독립 변수의 수가 매우 많거나, 다중 공선성의 여지가 보일 경우 변수를 선택하거나 조합을 실시함

• 독립 변수들 간의 관계를 살펴보는 연관분석을 실시함

• 독립 변수들 간의 거리를 고려한 군집을 형성하는 군집분석을 실시함

 반응 변수의 값이 연속일 경우 회귀 분석을 실시하고, 특히 시간에 영향을 많이 받는 경우 시계열 분석을 실시함

• 반응 변수의 값이 이산일 경우 분류 분석을 실시하고, 특히 시간도 고려해야 할 경우 생존분석을 실시함

빅데이터 분석 방법론 데이터 준비 데이터 분석 시스템 구현 평가 및 전개 분석 기획 Developing Preparing Analysis Plaaning Deploying 모델 발전계획 수립 모델 발전 계획 프로젝트 평가 및 보고 프로젝트 성과 평가 프로젝트 종료

End of Document