TAPAS: Weakly Supervised Table Parsing via Pre-training

Seminar "Domain-specific Question Answering", Summer 2022

Angelina Basova

Heidelberg University
Institute of Computer Science
Student MSc. Data and Computer Science
angelina.basova@stud.uni-heidelberg.de

June 19, 2022

Outline

- Introduction
- 2 TAPAS Model
- 3 Pre-Training
- 4 Fine-tuning
- 6 Results

Outline

Introduction

•000

- Introduction
- 2 TAPAS Model
- 3 Pre-Training
- Fine-tuning
- 6 Results

Motivation

Introduction

0000

Table					Example questions						
Rank	Name	No. of reigns	Combined days		#	Question	Answer	Example Type			
					1	Which wrestler had the most number of reigns?	Ric Flair	Cell selection			
1	Lou Thesz	3	3,749	П	2	Average time as champion for top 2 wrestlers?	AVG(3749,3103)=3426	Scalar answer			
2	Ric Flair	8	3,103	П	3	How many world champions are there with only one reign?	COUNT(Dory Funk Jr., Gene Kiniski)=2	Ambiguous answer			
3	Harley Race	7	1,799	Ш							
_			.,	Ш	4	What is the number of reigns for Harley Race?	7	Ambiguous answer			
4	Dory Funk Jr.	1	1,563	Ш				0 11 11 11			
5	Dan Severn	2	1,559	П	5	Which of the following wrestlers were ranked in the bottom 3?	{Dory Funk Jr., Dan Severn, Gene Kiniski}	Cell selection			
6	Gene Kiniski	1	1,131	П		Out of these, who had more than one reign?	Dan Severn	Cell selection			

Figure: A table (left) with corresponding example questions (right) [Herzig2020]

- answer questions with data from tables
- answer questions by aggregating data from tables
- answer questions based on a previous question

5 / 34

BERT Encoders

Introduction

0000

Figure: BERT architecture for question answering [Devlin2019]

Weak supervision

Introduction

0000

- form of supervised learning
- heuristically generating training data with external knowledge bases, patterns/rules, or other classifiers
- programmatically generating training data—or, programming training data
 [AlexRatner2019]

Results

Outline

- Introduction
- 2 TAPAS Model
- 3 Pre-Training
- 4 Fine-tuning
- 5 Results

Extension of BERT to TAPAS

(a) BERT architecture for question answering [Devlin2019]

(b) TAPAS architecture for table question answering [Muller2020]

Architecture

Figure: TAPAS architecture and tasks [Muller2020]

Input Embeddings

Pre-Training

Figure: Encoding of the questions average $_{-}$ and a simple table using the special embeddings of TAPAS [Herzig2020]

Tasks

- aggregation operator prediction
 - supported aggregation operations (op): SUM, COUNT, AVERAGE, NONE
 - operator selected by linear layer followed by softmax on top of the final hidden vector of the first token
 - linear layer denoted as $p_a(op)$
- cell selection
 - cells modelled as independent Bernoulli variables
- inference
 - predict most likely aggregation operator together with subset of cells
 - select table cells with probability > 0.5

•00

Outline

- 3 Pre-Training

Pre-Training Data

pretrain on 6.2M tables from Wikipedia.

- 3.3M of class Infobox
- 2.9M of class WikiTable
- consider tables with max. 500 cells
- horizontal tables with a header row with column names
- as proxy for questions extract data about the table (table caption, article title, article description, segment title, text of segment the table occurs)
- pre-training examples format: (extracted text, table)

Pre-Training

objective: (Whole Word) Masked language model

- restrict word piece sequence length to 128
- word piece sequence length = length of tokenized text and table cells
- use whole word masking for the text
- use whole cell masking to the tables

Outline

- Introduction
- 2 TAPAS Model
- 3 Pre-Training
- 4 Fine-tuning
- 5 Results

Introduction

Training set

A training set for table parsing in a weakly supervised setup is a set of N examples:

$$\left\{\left(x_{i},\,T_{i},\,y_{i}\right)\right\}_{i=1}^{N}$$

where x_i is utterance, T_i table and y_i set of denotations

Goal: learn a model that maps a new utterance x to a program z, such that when z is executed against the corresponding table T, it yields the correct denotation y.

$$z(T) = v$$

- program z comprises a subset of the table cells and an optional aggregation operator.
- table T maps a table cell to its value

• for each example: translate set of denotations v to a tuple (C. s).

 $y \rightarrow (C, s)$ where C are cell coordinates and s is a scalar

- scalar s is only populated when y is a single scalar
- guide training according to (C, s)

Cell selection

- $(C,s) = (C,\emptyset)$
- train the model to select the cells in C

Scalar answer

- $(C,s) = (\emptyset,s)$
- train model to predict an aggregation over the table cells that amounts to s

Introduction

• for each example: translate set of denotations y to a tuple (C,s),

 $y \rightarrow (C, s)$ where C are cell coordinates and s is a scalar

- scalar s is only populated when y is a single scalar
- guide training according to (C, s)

Cell selection

- $(C,s)=(C,\emptyset)$
- train the model to select the cells in C

Scalar answer

- $(C,s) = (\emptyset,s)$
- train model to predict an aggregation over the table cells that amounts to s

Introduction

goal: train model to select relevant cells

- \bullet $(C,s)=(C,\emptyset)$
- search done in set of cell coordinates (C)
- scalar s not populated
- v is mapped to a subset of the table cell coordinates C

Procedure

Pre-Training

use hierarchical model

- (1) select a single column
- (2) select cells from within that column

Procedure

use hierarchical model

- (1) select a single column
 - select column with highest number of cells in C
 - **if** *C* is empty **then**
 - select the additional empty column corresponding to empty cell selection
- (2) select cells from within that column
 - select cells $C \cap col$

Introduction

loss components:

average binary cross-entropy loss over column selections

$$\mathcal{J}_{ ext{columns}} = rac{1}{| ext{Columns}|} \sum_{ ext{co} \in ext{Columns}} ext{CE}(p_{ ext{col}}^{(ext{co})}, \mathbb{1}_{ ext{co} = ext{col}})$$

where the set of columns Columns includes the additional empty column, $CE(\cdot)$ is the cross entropy loss

2 average binary cross-entropy loss over column cell selections

$$\mathcal{J}_{ ext{cells}} = rac{1}{| ext{Cells}(ext{col})|} \sum_{c \in ext{Cells}(ext{col})} ext{CE}(p_{ ext{s}}^{(c)}, \mathbb{1}_{c \in C})$$

where Cells(col) is the set of cells in the chosen column

aggregation loss

$$\mathcal{J}_{ ext{aggr}} = -\log p_{ ext{a}}(op_0)$$

total loss:

$$\mathcal{J}_{CS} = \mathcal{J}_{columns} + \mathcal{J}_{cells} + \alpha \mathcal{J}_{aggr}$$

where α is scaling hyperparameter

Introduction

• for each example: translate set of denotations y to a tuple (C, s),

$$y \rightarrow (C, s)$$

where C are cell coordinates and s is a scalar

- scalar s is only populated when y is a single scalar
- guide training according to (C, s)

Cell selection

- $(C,s) = (C,\emptyset)$
- train the model to select the cells in C

Scalar answer

- $(C,s) = (\emptyset,s)$
- train model to predict an aggregation over the table cells that amounts to s

Fine-tuning

Introduction

goal: train the model to select aggregation function over cells

- set of cell coordinates is empty ($C \in \emptyset$)
- scalar s is populated

Training set

A training set for table parsing in a weakly supervised setup is a set of N examples:

$$\left\{\left(x_{i},\,T_{i},\,y_{i}\right)\right\}_{i=1}^{N}$$

y is scalar s that does not appear in the Table

Introduction

compute(op, p_s, T): estimation for an operator, given the token selection probabilities (\mathbf{p}_s) and the table values (\mathbf{T})

ор	$compute(op, p_s, T)$				
COUNT	$\sum_{c \in T} p_s^{(c)}$				
SUM	$\sum_{c\in T} p_s^{(c)} * T[c]$				
AVERAGE	$\frac{compute(SUM,p_s,T)}{compute(COUNT,p_s,T)}$				

Table: Aggregation operators soft implementation. Note that probabilities p_s outside of the column selected by the model are set to 0.

Introduction

compute expected results

$$s_{pred} = \sum_{i=1} p_a(op_i) * compute(op_i, p_s, T)$$

where $p_a(op_i) = \frac{p_a(op_i)}{\sum_{i=1}^{n} p_a(op_i)}$ is a probability distribution normalized over aggregation operators excluding NONE.

Introduction

scalar answer loss

$$\mathcal{J}_{ ext{scalar}} = egin{cases} 0.5 \cdot a^2 & a \leq \delta \ \delta \cdot a - 0.5 \cdot \delta^2 & ext{otherwise} \end{cases}$$

where $a = |s_{pred} - s|$, and δ is a hyperparameter

answer loss

$$\mathcal{J}_{ ext{aggr}} = -\log(\sum_{i=1}p_{ ext{a}}(op_i))$$

Introduction

total loss

$$\mathcal{J}_{SA} = \mathcal{J}_{aggr} + \beta \mathcal{J}_{scalar}$$

where β is scaling hyperparameter,

Ambiguous answer

Introduction

An ambiguous answer is a scalar answer s that also appears in the Table and in some cases the question implies aggregation and in other cases a table cell should be predicted

Let model dynamically choose supervision(cell selection or scalar answer):

Select cell selection:

$$p_a(op_0) \geq S$$

where 0 < S < 1 is a threshold hyperparameter

Select scalar answer:

$$p_a(op_0) < S$$

Outline

- Introduction
- 2 TAPAS Mode
- 3 Pre-Training
- 4 Fine-tuning
- 6 Results

Results

Evaluation datasets: WIKITQ, SQA, WIKISQL

	SQA (SEQ)		WikiSQL		WikiTQ	
all	39.0		84.7		29.0	
-pos	36.7	-2.3	82.9	-1.8	25.3	-3.7
-ranks	34.4	-4.6	84.1	-0.6	30.7	+1.8
-{cols,rows}	19.6	-19.4	74.1	-10.6	17.3	-11.6
-table pre-training	26.5	-12.5	80.8	-3.9	17.9	-11.1
-aggregation	-		82.6	-2.1	23.1	-5.9

Figure: Table 6: Dev accuracy with different embeddings removed from the full model: positional (pos), numeric ranks (ranks), column (cols) and row (rows) [Herzig2020]

- pre-training on masked language model task and using column/row embeddings significantly improve accuracy
- 2 removing the scalar answer and aggregation losses (i.e., setting JSA=0) results into accuracy drops for both datasets

Limitations

Error phenomena:

- 16% of the cases the gold denotation has a textual value that does not appear in the table
- 13% of the cases TAPAS selected no cells, which suggests introducing penalties for this behaviour
- 10% of the cases require complex temporal comparisons which could also not be parsed with a rich formalism such as SQL "what country had the most cities founded in the 1830's?"

Major limitations:

- Fail to capture large tables or databases
- multiple aggregations not possible
 "number of actors with an average rating higher than 4"

Results

Pre-Training

Results

TAPAS Model

References I

Introduction

June 19, 2022 Angelina Basova TAPAS: Weakly Supervised Table Parsing via Pre-training 34 / 34