11/13

Friday, November 10, 2023 09:29

1. Define $\mathbb{C}=\{a+bi\mid a,b\in\mathbb{R},\ i^2=-1\}$. Recall that if $z=a+bi\in\mathbb{C}$. Re(z), the real part, is a whereas Im(z), the imaginary part, is b. The conjugate of z, denoted by \overline{z} , is given by a-bi. Modulus of z, denoted by |z|, is given by $\sqrt{a^2+b^2}$, which gives the "length" of z.

Determine the real and imaginary parts of $\frac{i-4}{2i-3}$ and its modulus.

- 2. If a complex number is of unit length, we can represent it as $\cos \theta + i \sin \theta$.
 - a. Draw a sketch and interpret what θ means for a complex number on the complex plane. θ is usu. called the argument of this complex number.
 - b. We can use trig identities to show that for two complex number $\cos \theta_1 + i \sin \theta_1$ and $\cos \theta_2 + i \sin \theta_2$, their product is given by $\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)$. With a sketch, interpret this result.
 - c. It can be shown that $e^{i\theta} = \cos\theta + i\sin\theta$. Use this to justify part b.
 - d. With the identity $e^{i\theta} = \cos \theta + i \sin \theta$, show that

$$\left(\cos heta+isi\,n\, heta
ight)^n=\left(\cos n heta+isi\,n\,n heta
ight)$$

This is called DeMoivre's formula. Interpret this result geometrically. What happens when we multiply a complex number with a complex number of modulus 1?

- e. With the help of DeMoivre's, explain 1,-1,i,-i are roots to $z^4=1$ on $\mathbb C$. How many roots do you suspect $z^3=1$ has? What are they? Can you draw a sketch on the complex plane to help explain this?
- 3. For $z=a+bi\in\mathbb{C}$, we can write z as $z=re^{i\theta}$, where $e^{i\theta}=\cos\theta+i\sin\theta$. This is called the polar form of a complex number. Here r=|z| and $\theta=\arctan\frac{b}{a}$. Note that as a complex number $e^{i\theta}$ is of modulus 1, aka, unit length.
 - a. Write 1+i in its polar form. With the help its polar form, determine $(1+i)^6$. What are its real part and imaginiary part? What are its modulus and argument?
 - b. Determine the polar form of 8, 6i, and

$$\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)^7$$

- Explain what happens when we multiply two complex numbers together in terms of the product's modulus and argument.
- d. Show that if $z=re^{i\theta}$, then the n-th root of z is given by

$$r^{rac{1}{n}}\left(co\,sigg(rac{ heta+2k\pi}{n}igg)+isi\,nigg(rac{ heta+2k\pi}{n}igg)\,
ight),\;k=0,1,\ldots,\;n-1$$
d all cubic roots of s

Find all cubic roots of -8.

- 4. Consider the map $T:\mathbb{C}\to\mathbb{C}$, defined as $z\mapsto (1+\sqrt{3}i)\,z$. Interpret this map geometrically. How do we represent this map as a matrix -vector multiplication if this is a linear transformation from $\mathbb{R}^2\to\mathbb{R}^2$.
- 5. On the complex plane, draw a sketch that relates the following complex numbers

$$z, \ \overline{z}, \ iz, -z$$

6. Consider vector space \mathbb{C}^2 . Determine the null space of $\begin{pmatrix} 1-2i & 5 \\ 1 & 1+2i \end{pmatrix}$.

This is a quick overview for essentials of con class. This will be useful for later material.

Please draw ample sketches to help them un

 $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ as matrix representation of a

If you have time left, you can also start talk

11/13/23, 11:07 AM OneNote