Package 'ConvenienceFunctions3'

October 14, 2021	
Type Package	
Title Convenience	ee functions 3 for R for QBS181
Version 0.1.0	
Author Gibran E	rlangga
Description Fun	ctions to provide convenience in our lives.
License MIT	
Depends R ($>=3$	3.5.0)
Encoding UTF-8	3
LazyData true	
Imports stats, ggplot2	
RoxygenNote 7.	1.2
factorial gm_mea Modes	eFun
completeFun	Drop NAs by Columns
Description Remove NAs	s based on specified columns in the data
Usage	
	n(data, desiredCols)
compreteru	igata, acsileacois)
Arguments	
data	data frame object of variations

desiredCols list of columns from which incomplete cases should be dropped

gm_mean

Value

dataframe with removed observations

Examples

```
\label{lem:data-data} $$ data-data.frame(a=1:4,b=c("a","b","c","d"),c=c(NA,"keep",NA,"keep")) $$ completeFun(data,c("c")) $$
```

factorial

Factorial

Description

Function to calculate the factorial of a variable

Usage

```
factorial(x)
```

Arguments

Χ

numeric vector

Value

numeric value of factorial

Examples

factorial(5)

gm_mean

Geometric mean

Description

Function to calculate the geometric mean of a variable

Usage

```
gm_mean(x, na.rm = TRUE)
```

Arguments

Χ

numeric vector

Value

numeric value of geometric mean

Modes 3

Examples

```
x<-c(1,1,3,5,6,6)
gm_mean(x)
```

Modes

Mode

Description

Function to calculate the mode of a variable

Usage

Modes(x)

Arguments

Χ

numeric vector

Value

numeric vector of modes

Examples

```
x<-c(1,1,3,5,6,6)
Modes(x)
```

nonUnique

Non-unique

Description

Function that returns all non-unique values in a vector

Usage

nonUnique(x)

Arguments

Χ

numeric or character vector

Value

numeric or character vector of non-unique values

Examples

```
x<-c(1,1,3,5,6,6)
nonUnique(x)
```