Théorème de Rolle et formules de Taylor

1 Extrémums des fonctions différentiables à valeurs réelles

1. Soient K un compact d'un espace vectoriel normé $(E, \|\cdot\|)$ et f une fonction définie sur K à valeurs dans \mathbb{R} .

Montrer que si f est continue alors f est bornée et atteint ses bornes. C'est-à-dire qu'il existe x_1 et x_2 dans K tels que :

$$f(x_1) = \inf_{x \in K} f(x), \quad f(x_2) = \sup_{x \in K} f(x).$$

2. On note $E = \mathcal{C}^0([a,b],\mathbb{R})$ l'espace vectoriel des applications continues sur l'intervalle [a,b] (a < b) et à valeurs dans \mathbb{R} et on munit cet espace de la norme :

$$f \mapsto \|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

Soient f une fonction appartenant à $E - \{0\}$ et $\mathcal{B}(0, 2 || f ||)$ la boule fermée de centre 0 et de rayon 2 || f ||.

- (a) Montrer que $\mathcal{B}_{n,f} = \mathbb{R}_n[x] \cap \mathcal{B}(0,2||f||)$ est compacte dans $\mathbb{R}_n[x]$.
- (b) Montrer qu'il existe un polynôme P dans $\mathcal{B}_{n,f}$ tel que :

$$||f - P||_{\infty} = \inf_{Q \in \mathcal{B}_{n,f}} ||f - Q||_{\infty}.$$

(c) Montrer que:

$$||f - P||_{\infty} = \inf_{Q \in \mathbb{R}_n[x]} ||f - Q||_{\infty}.$$

3. Soient \mathcal{O} un ouvert non vide d'un espace vectoriel normé $(E, \|\cdot\|)$, $f: \mathcal{O} \to \mathbb{R}$ une fonction différentiable en un point $a \in \mathcal{O}$. Montrer que si f admet un extremum local en a alors df(a) = 0 (considérer, pour tout vecteur $h \in E$, la fonction d'une variable réelle φ définie au voisinage de 0 par $\varphi(t) = f(a+th)$).

2 Le théorème de Rolle

- 1. Soient K un compact d'un espace vectoriel normé $(E, \|\cdot\|)$ d'intérieur non vide, f une fonction continue de K dans $\mathbb R$ différentiable sur l'intérieur de K et constante sur la frontière de K, $\operatorname{Fr}(K) = K \setminus \mathring{K}$. Montrer qu'il existe alors un élément $c \in \mathring{K}$ tel que df(c) = 0.
- 2. Montrer que si f est une fonction à valeurs réelles définie sur un intervalle fermé $[a, +\infty[$, continue sur cet intervalle et dérivable sur l'intervalle ouvert $]a, +\infty[$ avec $\lim_{x\to +\infty} f(x) = f(a)$, alors il existe un point $c\in]a, +\infty[$ tel que f'(c)=0.
- 3. Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est dérivable avec $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$, alors il existe c dans \mathbb{R} tel que f'(c) = 0.
- 4. Monter que si f est une fonction à valeurs réelles de classe C^m sur un intervalle réel I, où m est un entier naturel, qui s'annule en m+1 points de I distincts, alors il existe un point c dans I tel que $f^{(m)}(c) = 0$.

- 5. On peut donner une autre démonstration du théorème de Rolle pour les fonctions d'une variable réelle basée sur un principe de dichotomie. L'idée repose sur les trois résultats suivants, où f est une fonction à valeurs réelles définie sur un intervalle compact [a,b] non réduit à un point, continue sur cet intervalle et telle que f(a) = f(b).
 - (a) Montrer qu'il existe un intervalle $[\alpha, \beta] \subset [a, b]$ tel que $\beta \alpha = \frac{b-a}{2}$ et $f(\alpha) = f(\beta)$ (utiliser la fonction g définie sur $J = \left[a, a + \frac{b-a}{2}\right]$ par $g(x) = f\left(x + \frac{b-a}{2}\right) f(x)$).
 - (b) Montrer qu'il existe un intervalle $[\alpha, \beta] \subset]a, b[$ tel que $\beta \alpha \leq \frac{b-a}{2}$ et $f(\alpha) = f(\beta)$.
 - (c) Montrer qu'il existe une suite $([a_n, b_n])_{n\geq 1}$ d'intervalles strictement emboîtés (i. e. $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$) dans [a, b[telle que pour tout $n\geq 1$ on ait :

$$b_{n+1} - a_{n+1} \le \frac{b_n - a_n}{2}, \quad f(a_n) = f(b_n).$$

(d) En déduire le théorème de Rolle pour les fonctions d'une variable réelle (utiliser le théorème des segments emboîtés).

3 Le théorème des accroissements finis

- 1. Montrer que si f est une fonction à valeurs réelles définie sur un intervalle compact [a, b] non réduit à un point, continue sur cet intervalle et dérivable sur l'intervalle ouvert]a, b[, alors il existe un point $c \in]a, b[$ tel que f(b) f(a) = f'(c)(b a).
- 2. Soit f est une fonction à valeurs réelles définie et différentiable sur un ouvert \mathcal{O} de \mathbb{R}^n . Montrer que si a, b sont deux points distincts de \mathcal{O} tels que le segment [a, b] soit contenu dans \mathcal{O} , alors il existe un point $c \in [a, b]$ tel que :

$$f(b) - f(a) = df(c)(b - a) = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(c)(b_k - a_k).$$

- 3. Montrer que si f est une fonction à valeurs dans \mathbb{R}^n (ou plus généralement dans un espace préhilbertien) définie sur un intervalle compact [a,b] non réduit à un point, continue sur cet intervalle et dérivable sur l'intervalle ouvert]a,b[, alors il existe un point $c \in]a,b[$ tel que $||f(b)-f(a)|| \leq ||f'(c)|| (b-a)$ où $||\cdot||$ désigne la norme euclidienne usuelle sur \mathbb{R}^n (utiliser la fonction g définie sur [a,b] par $g(x) = \langle f(x) | f(b) f(a) \rangle$, où $\langle \cdot | \cdot \rangle$ désigne le produit scalaire euclidien usuel sur \mathbb{R}^n et l'inégalité de Cauchy-Schwarz).
- 4. Montrer que si f, g sont deux fonctions à valeurs réelles définies sur un intervalle compact [a, b] non réduit à un point, continues sur cet intervalle et dérivables sur l'intervalle ouvert]a, b[, alors il existe un point $c \in]a, b[$ tel que (f(b) f(a)) g'(c) = (g(b) g(a)) f'(c) (introduire $g(x) = \lambda g(x) \mu f(x)$ avec λ, μ bien choisis).
- 5. Soient f une fonction définie sur [a, b] à valeurs dans \mathbb{R}^p (ou plus généralement dans un espace vectoriel normé E) et g une fonction définie sur [a, b] à valeurs dans \mathbb{R} , continues sur [a, b] et dérivables sur [a, b].
 - (a) On suppose dans un premier temps que ||f'(x)|| < g'(x) pour tout $x \in]a, b[$. On se fixe un réel $\alpha \in]a, b[$ et on note :

$$E = \left\{ x \in \left[\alpha, b\right] \mid \left\| f\left(x\right) - f\left(\alpha\right) \right\| > g\left(x\right) - g\left(\alpha\right) \right\}.$$

i. Montrer que E est ouvert dans $[\alpha, b]$.

- ii. En supposant E non vide, on note γ sa borne inférieure. Montrer que $\gamma \in]\alpha, b[$, $\gamma \notin E$ et en déduire une contradiction.
- iii. Montrer que $||f(b) f(a)|| \le g(b) g(a)$..
- (b) Montrer que si $||f'(x)|| \le g'(x)$ pour tout $x \in]a,b[$ alors $||f(b) f(a)|| \le g(b) g(a)$ (remplacer g par la fonction $g_{\varepsilon}: x \mapsto g(x) + \varepsilon x$ avec $\varepsilon > 0$ quelconque).

4 La formule de Taylor-Lagrange

1. Montrer que si f est une fonction à valeurs réelles définie sur un intervalle compact [a, b] non réduit à un point, de classe \mathcal{C}^n sur cet intervalle et n+1 fois dérivable sur l'intervalle ouvert [a, b], alors il existe un point $c \in [a, b]$ tel que :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.$$

2. Montrer que si f est une fonction à valeurs dans \mathbb{R}^p (ou plus généralement dans un espace vectoriel normé E) définie sur un intervalle compact [a,b] non réduit à un point, de classe \mathcal{C}^n sur cet intervalle et n+1 fois dérivable sur l'intervalle ouvert]a,b[avec $f^{(n+1)}$ majoré sur]a,b[par une constante M, alors :

$$\left\| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right\| \le \frac{M}{(n+1)!} (b-a)^{n+1}$$

(utiliser les fonctions g, h définies sur [a, b] respectivement par $g(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b - x)^k$ et $h(x) = -\frac{M}{(n+1)!} (b-x)^{n+1}$).

5 Formule de Taylor avec reste intégral

1. Soit $n \in \mathbb{N}$. Montrer que si f est une fonction à valeurs réelles (ou dans un espace de Banach) définie et de classe \mathcal{C}^{n+1} sur un intervalle compact [a,b] non réduit à un point, alors :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{f^{(n+1)}(t)}{n!} (b-t)^{n} dt.$$

6 Théorème de Darboux

- 1. Montrer que si f est une fonction à valeurs réelles définie et dérivable sur un intervalle I, alors sa fonction dérivée f' vérifie la propriété des valeurs intermédiaires (si f'(a) < f'(b) et $\lambda \in]f'(a), f'(b)[$, considérer la fonction $\varphi(x) = f(x) \lambda x$).
- 2. Montrer qu'il existe des fonctions qui vérifient la propriété des valeurs intermédiaires sans être continue.
- 3. Montrer que si f est une fonction à valeurs réelles définie sur un intervalle I vérifiant la propriété des valeurs intermédiaires (i. e. pour tout intervalle J contenu dans I, f(J) est un intervalle) alors f est continue si et seulement si pour tout réel g, l'ensemble g est fermé dans g.

7 Applications du théorème de Rolle

- 1. Racines de polynômes. Monter que si P est un polynôme réel de degré $n \geq 2$ scindé sur \mathbb{R} alors il en est de même de son polynôme dérivé. Précisément si $\lambda_1 < \lambda_2 < \cdots < \lambda_p$ sont les racines réelles distinctes de P avec $p \geq 2$, la racine λ_j étant de multiplicité $m_j \geq 1$ $(\sum_{j=1}^p m_j = n)$, alors le polynôme dérivé P' admet les réels λ_j pour racines de multiplicités respectives $m_j 1$, pour $1 \leq j \leq p$ (une multiplicité nulle signifie que λ_j n'est pas racine de P') et des racines simples $\mu_j \in]\lambda_j, \lambda_{j+1}[$ pour $1 \leq j \leq p 1$.
- 2. Racines de polynômes. Soit $n \ge 2$, a, b réels et $P(x) = x^n + ax + b$. Montrer que si n est pair alors P a au plus 2 racines réelles et si n est impair alors P a au plus 3 racines réelles.
- 3. Montrer que pour tout entier n, on a :

$$\left(\frac{1}{1+x^2}\right)^{(n)} = \frac{P_n(x)}{(1+x^2)^{n+1}},$$

où P_n est un polynôme de degré n avec n racines réelles.

- 4. Racines des polynômes de Legendre. Pour tout $n \in \mathbb{N}$, on note $\pi_{2n}(x) = (x^2 1)^n$ et $L_n = \pi_{2n}^{(n)}$. Les polynômes L_n sont les polynômes de Legendre sur [-1, 1].
 - (a) Montrer que, pour $n \ge 1$ et $k \in \{0, \dots, n-1\}$, le polynôme $\pi_{2n}^{(k)}$ s'annule en -1, 1 et en k points distincts de]-1,1[.
 - (b) Monter que pour $n \ge 1$, le polynôme L_n admet n racines réelles simples dans l'intervalle]-1,1[.
- 5. Racines des polynômes de Laguerre. Soit $\alpha > -1$. Pour tout $n \in \mathbb{N}$, on définit le polynôme $L_{\alpha,n}$ par $(x^{n+\alpha}e^{-x})^{(n)} = L_{\alpha,n}(x) x^{\alpha}e^{-x}$. Les polynômes $L_{\alpha,n}$ sont les polynômes de Laguerre sur $]0, +\infty[$. Montrer que pour tout réel $\alpha > -1$ et tout entier $n \geq 1$, le polynôme $L_{\alpha,n}$ admet n racines réelles distinctes dans $]0, +\infty[$.
- 6. Racines des polynômes d'Hermite. Pour tout $n \in \mathbb{N}$, on définit le polynôme H_n par $\left(e^{-x^2}\right)^{(n)} = H_n(x)e^{-x^2}$. Les polynômes H_n sont les polynômes d'Hermite sur \mathbb{R} . Montrer que pour tout $n \geq 1$, le polynôme H_n admet n racines réelles distinctes.
- 7. Majoration de l'erreur dans l'interpolation de Lagrange. Soient I = [a, b] un intervalle réel fermé borné avec a < b, n un entier naturel non nul et $(x_i)_{0 \le i \le n}$ une suite de réels deux à deux distincts dans I. À toute fonction f définie sur I et à valeurs réels on associe le polynôme d'interpolation de Lagrange $L_n(f)$ défini par :

$$\begin{cases}
L_n(f) \in \mathbb{R}_n[x], \\
L_n(f)(x_i) = f(x_i) \quad (0 \le i \le n).
\end{cases}$$

Pour $n \geq 1$, on note π_{n+1} la fonction polynomiale définie par :

$$\pi_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$

Montrer que si f est une fonction de classe C^{n+1} sur l'intervalle I, alors pour tout x dans I il existe un point c_x appartenant à I tel que :

$$f(x) - L_n(f)(x) = \frac{1}{(n+1)!} \pi_{n+1}(x) f^{(n+1)}(c_x).$$

8. Un critère de convexité. Soit I un intervalle réel non réduit à un point. Montrer que si $f: I \longrightarrow \mathbb{R}$ est une fonction deux fois dérivable telle que f''(x) > 0 pour tout $x \in I$, alors f est convexe.

8 Applications du théorème des accroissements finis

- 1. Sens de variation d'une fonction.
 - (a) Montrer que si f est une fonction à valeurs réelles dérivable sur un intervalle réel I, alors f est croissante sur I si et seulement si $f'(x) \ge 0$ pour tout x dans I.
 - (b) Soient f, g deux fonctions dérivables sur un intervalle réel I.
 - i. Montrer que la fonction f est décroissante sur I si et seulement si $f'(x) \leq 0$ pour tout x dans I.
 - ii. Montrer que la fonction f est constante sur I si et seulement si f'(x) = 0 pour tout x dans I.
 - iii. Montrer que si f'(x) > 0 [resp. f'(x) < 0] pour tout x dans I, alors la fonction f est strictement croissante [resp. strictement décroissante] sur I.
 - iv. Montrer que si $f'(x) \leq g'(x)$ pour tout x dans I = [a, b], alors :

$$\forall x \in [a, b], \quad f(x) - f(a) \le g(x) - g(a).$$

v. Montrer que si $m \leq f'(x) \leq M$ pour tout x dans I = [a, b], alors :

$$\forall x \in [a, b], \quad m(x - a) \le f(x) - f(a) \le M(x - a).$$

2. Les résultats précédents peuvent aussi se démontrer en utilisant le principe de dichotomie sans utiliser le théorème des accroissements finis. Pour ce faire on introduit la notation suivante, où I est un intervalle réel d'intérieur non vide, f une fonction à valeurs réelles définie sur I et x, y deux points distincts de I:

$$\tau(x,y) = \frac{f(y) - f(x)}{y - x}.$$

- (a) Soient a < b dans I. Montrer que pour tout $c \in [a, b[$, $\tau(a, b)$ est entre $\tau(a, c)$ et $\tau(c, b)$.
- (b) En déduire, en utilisant le principe de dichotomie, que si f est dérivable sur I avec $f'(x) \ge 0$ pour tout x dans I, alors la fonction f est croissante.
- 3. Limites et dérivation.
 - (a) Soit f une fonction à valeurs réelles continue sur [a,b] et dérivable sur $]a,b[\setminus \{c\}$ où c est un point de]a,b[. Montrer que si la fonction dérivée f' a une limite ℓ en c, alors f est dérivable en c avec $f'(c) = \ell$.
 - (b) Montrer que la fonction f définie par f(0) = 0 et $f(x) = e^{-\frac{1}{x^2}}$ pour $x \neq 0$ est indéfiniment dérivable sur \mathbb{R} avec $f^{(n)}(0) = 0$ pour tout entier naturel n. On dispose ainsi d'une fonction de classe \mathcal{C}^{∞} qui n'est pas développable en série entière au voisinage de 0.
 - (c) Soient f, g deux fonctions à valeurs réelles continues sur un intervalle ouvert I, dérivables sur $I \setminus \{c\}$ avec $g'(x) \neq 0$ pour tout $x \in I \setminus \{c\}$ où $c \in I$. Montrer que si $\lim_{x \to c} \frac{f'(x)}{g'(x)} = \ell$ alors $\lim_{x \to c} \frac{f(x) f(c)}{g(x) g(c)} = \ell$.
 - (d) Montrer que la réciproque du résultat précédent est fausse.
 - (e) Soit f une fonction dérivable de $]0, +\infty[$ dans \mathbb{R} telle que $\lim_{x \to +\infty} f'(x) = \ell$. Montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = \ell$.
 - (f) Soit f une fonction dérivable de]0,1[dans $\mathbb R$ de dérivée bornée. Montrer que f se prolonge par continuité en 0 et 1.

- 4. Intégration et dérivation.
 - (a) En utilisant la fonction $f: x \mapsto \frac{x}{\ln(|x|)} \cos\left(\frac{1}{x}\right) \sin I = \left[-\frac{1}{2}, \frac{1}{2}\right]$ prolongée par continuité en 0 avec f(0) = 0, montrer que si f est une fonction dérivable sur [a, b] le résultat $\int_a^b f'(x) dx = f(b) f(a)$ n'est pas toujours assuré.
 - (b) Montrer que si f est une fonction dérivable sur [a,b] avec f' Riemann-intégrable sur [a,b] alors :

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a) \, .$$

(c) Montrer que si f, g sont deux fonctions dérivables sur [a, b] avec f', g' Riemann-intégrables sur [a, b] alors :

$$\int_{a}^{b} f(x) g'(x) dx = f(b) g(b) - f(a) g(a) - \int_{a}^{b} f'(x) g(x) dx.$$

5. Longueur d'un arc géométrique. Soit γ un arc géométrique compact paramétré par une application continue $\gamma:[a,b]\to\mathbb{R}^n$.

À toute subdivision de [a, b]:

$$\sigma = \{(t_0, t_1, ..., t_p) \in \mathbb{R}^{p+1} \mid a = t_0 < t_1 < ... < t_p = b\}$$

on associe la ligne polygonale γ_{σ} de sommets $M_i = \gamma (t_i)$ ($0 \le i \le p$). Une telle ligne polygonale peut être définie par la paramétrisation $\gamma_{\sigma} : [a, b] \to \mathbb{R}^n$, avec :

$$\forall i \in \{0, \dots, p-1\}, \quad \forall t \in [t_i, t_{i+1}], \quad \gamma_{\sigma}(t_i) = (1-t) M_i + t M_{i+1}.$$

La longueur de γ_{σ} est alors naturellement définie par :

$$L(\gamma_{\sigma}) = \sum_{i=0}^{p-1} \|M_i M_{i+1}\| = \sum_{i=0}^{p-1} \|\gamma(t_{i+1}) - \gamma(t_i)\|.$$

On dit que l'arc paramétré continu $\gamma:[a,b]\to\mathbb{R}^n$ est rectifiable si :

$$\sup \left\{ L\left(\gamma_{\sigma}\right) \mid ; \sigma \text{ subdivision de } \left[a,b\right] \right\}$$

est fini. Dans ce cas cette borne supérieure est la longueur de l'arc paramétré $(\gamma, [a, b])$ et on la note $L(\gamma, [a, b])$.

Si $f = \gamma \circ \varphi$ est une autre paramétrisation de γ sur l'intervalle $[\alpha, \beta]$, alors l'homéomorphisme φ permet de réaliser une bijection de l'ensemble des subdivisions de $[\alpha, \beta]$ sur l'ensemble des subdivisions de [a, b] (si φ est décroissante alors cette bijection inverse l'ordre des points des subdivisions) et on a $L(\gamma, [a, b]) = L(f, [\alpha, \beta])$. C'est-à-dire que la longueur d'un arc géométrique (quand elle est définie) ne dépend pas du choix d'une paramétrisation. De manière précise, on peut donner la définition suivante.

Soit γ un arc géométrique compact et continu. On dit qu'il est rectifiable si pour toute paramétrisation $\gamma:[a,b]\to\mathbb{R}^n,\,(\gamma,[a,b])$ est rectifiable. La longueur de γ est alors la longueur de $(\gamma,[a,b])$ et on la note $L(\gamma)$.

(a) Montrer que si γ est un arc géométrique compact de classe \mathcal{C}^1 paramétré par $\gamma:[a,b]\to\mathbb{R}^n$, alors il est rectifiable et sa longueur est donnée par :

$$L(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt.$$

(b) En utilisant l'arc géométrique paramétré par :

$$\gamma: [0,1] \rightarrow \mathbb{R}^2$$

$$t \longmapsto \gamma(t) = (t, y(t))$$

où:

$$y(t) = \begin{cases} t \sin\left(\frac{\pi}{t}\right) & \text{si } t \neq 0 \\ 0 & \text{si } t = 0 \end{cases}$$

montrer qu'une courbe continue non dérivable n'est pas nécessairement rectifiable

6. Points fixes attractifs et répulsifs. Pour cet exercice, I désigne un intervalle fermé de \mathbb{R} (non nécessairement borné) et f une fonction définie sur I à valeurs réelles telle que $f(I) \subset I$. On dit que l'intervalle I est stable par f.

On dit que $\alpha \in I$ est un point fixe de f si $f(\alpha) = \alpha$.

L'idée de la méthode des approximations successives pour obtenir une valeur approchée d'un point fixe de la fonction f est de construire la suite $(x_n)_{n\in\mathbb{N}}$ de points de I par la relation de récurrence :

$$\begin{cases} x_0 \in I, \\ \forall n \in \mathbb{N}, \quad x_{n+1} = f(x_n). \end{cases}$$

Si cette suite converge vers $\alpha \in I$ et si la fonction f est continue on a alors nécessairement $\alpha = f(\alpha)$, c'est-à-dire que α est un point fixe de f dans I.

Avec les notations qui précèdent on dit que la suite $(x_n)_{n\in\mathbb{N}}$ est une suite d'approximations successives du point fixe α de premier terme (ou de valeur initiale) x_0 .

On dit que la fonction f est strictement contractante s'il existe un réel $\lambda \in [0,1]$ tel que :

$$\forall (x, y) \in I \times I, \quad |f(x) - f(y)| \le \lambda |x - y|.$$

On dit que λ est une constante de contraction pour f.

(a) Soit $f: I \longrightarrow I$ strictement contractante de constante de contraction $\lambda \in [0, 1[$. Montrer que la fonction f admet alors un unique point fixe $\alpha \in I$. De plus pour tout $x_0 \in I$ la suite $(x_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \quad x_{n+1} = f(x_n)$$

converge vers α et une majoration de l'erreur est donnée par :

$$\forall n \in \mathbb{N}, \quad |x_n - \alpha| \le \frac{|x_1 - x_0|}{1 - \lambda} \lambda^n.$$

- (b) Montrer que si $f: I \longrightarrow I$ est dérivable sur $\overset{\circ}{I}$ avec $\sup_{x \in \overset{\circ}{I}} |f'(x)| = \lambda < 1$ alors f admet un unique point fixe $\alpha \in I$ et ce point fixe est limite de toute suite d'approximations successives de valeur initiale $x_0 \in I$.
- (c) Soit $f \in \mathcal{C}^1(I)$ admettant un unique point fixe $\alpha \in \mathring{I}$.
 - i. Montrer que si $|f'(\alpha)| < 1$ alors il existe un réel $\eta > 0$ tel que l'intervalle $[\alpha \eta, \alpha + \eta]$ soit stable par f et pour tout $x_0 \in [\alpha \eta, \alpha + \eta]$ la suite $(x_n)_{n \in \mathbb{N}}$ définie par $x_{n+1} = f(x_n)$ converge vers α (point fixe attractif).
 - ii. Montrer que si $|f'(\alpha)| > 1$ et $f(I) \subset I$ alors pour tout $x_0 \in I$ la suite $(x_n)_{n \in \mathbb{N}}$ définie par $x_{n+1} = f(x_n)$ est soit stationnaire (sur α) à partir d'un certain rang soit divergente (point fixe répulsif).
 - iii. Que peut-on dire dans le cas où $|f'(\alpha)| = 1$.

- 7. Majoration de l'erreur dans la méthode de Simpson.
 - (a) Soit g une fonction à valeurs réelles de classe C^4 sur [-1,1]. On désigne par φ la fonction définie sur [0,1] par :

$$\forall x \in [0, 1], \quad \varphi(x) = \int_{-x}^{x} g(t) dt - \frac{x}{3} (g(-x) + 4g(0) + g(x))$$

(erreur dans la méthode de Simpson sur [-x, x]).

i. Montrer que pour tout $x \in [0,1]$ on a $|\varphi'''(x)| \leq 2\frac{x^2}{3}L_4$, où :

$$L_4 = \sup_{x \in [-1,1]} |g^{(4)}(x)|.$$

- ii. En déduire que pour tout $x \in [0,1]$ on a $|\varphi(x)| \leq \frac{x^5}{90}L_4$.
- (b) Soit f une fonction à valeurs réelles de classe \mathcal{C}^4 sur un intervalle [a,b]. Montrer que :

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right) \right| \le \frac{M_4}{2880} (b-a)^5,$$

où
$$M_4 = \sup_{x \in [a,b]} |f^{(4)}(x)|$$
.

Cette méthode est encore valable pour la méthode du point milieu ou la méthode du trapèze, mais elle ne s'applique aux méthodes de Newton-Cotes plus générales.

- 8. Convergence uniforme de suites de fonctions.
 - (a) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de [a,b] dans \mathbb{R} , dérivables sur]a,b[, qui converge simplement vers une fonction f. Montrer que s'il existe une constante M>0 telle que $|f'_n(x)|\leq M$ pour tout n et tout x dans]a,b[, alors la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément et f est continue.
 - (b) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions dérivables de [a,b] dans \mathbb{R} telle que la suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b] vers une fonction g et qu'il existe $x_0 \in [a,b]$ tel que la suite $(f_n(x_0))_{n\in\mathbb{N}}$ soit convergente.
 - i. Montrer, en utilisant le critère de Cauchy uniforme, que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction f.
 - ii. Montrer que pour $x \neq y$ dans [a, b] et $n \in \mathbb{N}$ on a :

$$\left| \frac{f(x) - f(y)}{x - y} - g(x) \right| \le 2 \|g - f'_n\|_{\infty} + \left| \frac{f_n(x) - f_n(y)}{x - y} - f'_n(x) \right|.$$

- iii. En déduire que la fonction f est dérivable et que f' = g.
- 9. Existence de primitives.
 - (a) Montrer que toute fonction continue sur un intervalle compact est limite uniforme d'une suite de fonctions affines par morceaux et continues.
 - (b) En utilisant l'exercice qui précède (donc sans utiliser de théorie de l'intégration) montrer que toute fonction continue sur un intervalle compact admet des primitives.
- 10. Dérivées partielles.

- (a) Soient \mathcal{O} un ouvert de \mathbb{R}^n et f une fonction définie sur \mathcal{O} à valeurs réelles (ou dans un espace normé) admettant des dérivées partielles par rapport à toutes les variables en tout point de \mathcal{O} . Montrer que si ces dérivées partielles sont continues en un point a de \mathcal{O} alors f est différentiable en a.
- (b) Soient \mathcal{O} un ouvert de \mathbb{R}^2 et f une fonction définie sur \mathcal{O} à valeurs réelles admettant sur \mathcal{O} des dérivées partielles $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ continues en un point (a, b) de \mathcal{O} . Montrer que :

$$\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b).$$

- (c) En utilisant l'exemple de la fonction f définie sur \mathbb{R}^2 par f(0,0)=0 et $f(x,y)=\frac{xy\left(x^2-y^2\right)}{x^2+y^2}$ pour $(x,y)\neq(0,0)$ montrer que le résultat précédent est faux si on en enlève l'hypothèse de continuité des dérivées partielles d'ordre 2.
- 11. Théorème de Darboux. Donner une démonstration du théorème de Darboux qui utilise le théorème des accroissements finis.
- 12. Nombres de Liouville. On dit qu'un réel α est algébrique s'il existe un polynôme P non nul à coefficients entiers relatifs tel que $P(\alpha) = 0$. Parmi tous ces polynômes il en existe un de degré minimal et en le divisant par son coefficient dominant on dispose d'un polynôme P_{α} unitaire à coefficients rationnels de degré minimal qui annule α . Ce polynôme est unique, on dit que c'est le polynôme minimal de α et le degré de P_{α} est le degré du nombre algébrique α . On vérifie facilement que P_{α} est irréductible dans $\mathbb{Q}[X]$. Soit α un nombre algébrique de degré d > 1.
 - (a) Montrer que si d=1 alors α est rationnel et il existe une constante $C_{\alpha}>0$ telle que pour tout nombre rationnel $r=\frac{p}{q}$ $(p\in\mathbb{Z},\,q\in\mathbb{N}^*)$ distinct de α on a $\left|\alpha-\frac{p}{q}\right|\geq\frac{C_{\alpha}}{q}$.
 - (b) Montrer que si $d \geq 2$ alors α est irrationnel et il existe une constante $C_{\alpha} > 0$ telle que pour tout nombre rationnel $r = \frac{p}{q}$ on a $\left| \alpha \frac{p}{q} \right| \geq \frac{C_{\alpha}}{q^d}$.

9 Applications de la formule de Taylor-Lagrange

1. Majoration de l'erreur dans la méthode de Newton. Soit $f \in \mathcal{C}^2([a,b],\mathbb{R})$ telle que :

$$f(a) f(b) < 0; \ \forall x \in [a, b], \ f'(x) \neq 0, \ f''(x) \neq 0.$$

(a) Montrer que pour tout x_0 dans [a,b] tel que $f(x_0) f''(x_0) > 0$, on peut définir la suite $(x_n)_{n \in \mathbb{N}}$ de points de [a,b] par :

$$\forall n \ge 0, \quad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

et cette suite converge vers l'unique solution $\alpha \in]a,b[$ de $f\left(x\right) =0.$

(b) Montrer qu'une majoration de l'erreur est donnée par :

$$|x_n - \alpha| \le |x_0 - \alpha|^{2^n} \left(\frac{M_2}{2m_1}\right)^{2^n - 1}$$

où:

$$m_1 = \inf_{x \in [a,b]} |f'(x)|, \quad M_2 = \sup_{x \in [a,b]} |f''(x)|$$

- 2. Majorations de dérivées. Montrer que si f est une fonction de classe \mathcal{C}^{n+1} , avec $n \geq 1$, de \mathbb{R} dans \mathbb{R} telle que f et $f^{(n+1)}$ soient bornées sur \mathbb{R} , alors toutes les dérivées $f^{(k)}$, pour $k = 1, \dots, n$ sont également bornées sur \mathbb{R} .
- 3. Inégalités de Kolmogorov.
 - (a) Montrer que si f est une fonction de classe C^2 de \mathbb{R} dans \mathbb{R} telle que f et f'' soient bornées sur \mathbb{R} , alors f' est bornée sur \mathbb{R} et :

$$||f'||_{\infty} \le \sqrt{2 ||f||_{\infty} ||f''||_{\infty}}.$$

(b) Montrer que si f est une fonction de classe C^{n+1} , avec $n \geq 1$, de \mathbb{R} dans \mathbb{R} telle que f et $f^{(n+1)}$ soient bornées sur \mathbb{R} , alors toutes les dérivées $f^{(k)}$, pour $k = 1, \dots, n$, sont bornées sur \mathbb{R} avec :

$$||f^{(k)}||_{\infty} \le 2^{\frac{k(n+1-k)}{2}} ||f||_{\infty}^{1-\frac{k}{n+1}} ||f^{(n+1)}||_{\infty}^{\frac{k}{n+1}}.$$

- 4. Estimation de l'erreur dans la méthode des rectangles.
 - (a) À toute fonction $f \in \mathcal{C}^0\left(\left[0,1\right],\mathbb{R}\right)$ on associe la suite de ses sommes de Riemann définie par :

$$\forall n \ge 1, \quad S_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right).$$

Montrer que pour toute fonction $f \in \mathcal{C}^3([0,1],\mathbb{R})$ on a le développement asymptotique :

$$S_n(f) = \int_0^1 f(t) dt - \frac{1}{2n} (f(1) - f(0)) + \frac{1}{12n^2} (f'(1) - f'(0)) + O\left(\frac{1}{n^3}\right).$$

(b) Application à $f(t) = \frac{1}{1+t}$.

10 Applications de la formule de Taylor avec reste intégral

- 1. Un théorème de Bernstein.
 - (a) Soit f une fonction à valeurs réelles de classe \mathcal{C}^{∞} sur]-a,a[avec a>0. Montrer que si f est paire et $f^{(2k)}(x)\geq 0$ pour tout entier naturel k et tout $x\in]-a,a[$ alors f est développable en série entière sur]-a,a[.
 - (b) Soit f une fonction à valeurs réelles de classe C^{∞} sur]-a, a[avec a > 0. Montrer que si $f^{(2k)}(x) \geq 0$ pour tout entier naturel k et tout $x \in]-a, a[$ alors f est développable en série entière sur]-a, a[.

11 Applications du théorème de Darboux

- 1. Du théorème de Darboux, on déduit qu'il existe des fonctions définies sur un intervalle réel qui n'admettent pas de primitive. Vérifier directement qu'une fonction en escalier n'admet pas de primitives.
- 2. Soit f une fonction à valeurs réelles définie et dérivable sur un intervalle I.
 - (a) On suppose que f'(a) = f'(b) = 0 et on désigne par φ la fonction définie sur [a,b] par :

$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \in [a, b], \\ 0 & \text{si } x = a. \end{cases}$$

i. Montrer qu'il existe $c \in [a, b[$ tel que :

$$f(b) - f(a) = \frac{(b-a)^2}{c-a} \left(f'(c) - \frac{f(c) - f(a)}{c-a} \right).$$

- ii. En déduire qu'il existe $d \in]a, b[$ tel que $f'(d) = \frac{f(d) f(a)}{d a}$.
- (b) Montrer que s'il existe deux réels a < b dans I tels que f'(a) = f'(b), alors il existe $c \in]a,b[$ tel que $f'(c) = \frac{f(c) f(a)}{c a}.$
- 3. Soit f une fonction deux fois dérivable de \mathbb{R} dans \mathbb{R} telle que $\lim_{|x|\to+\infty}\frac{f(x)}{x}=0$. Montrer qu'il existe un réel c tel que f''(c)=0.
- 4. Soit f une fonction dérivable de \mathbb{R} dans \mathbb{R} , non identiquement nulle et telle que :

$$\forall x \in \mathbb{R}, \quad |f'(x)| = |f(x)|. \tag{1}$$

- (a) On suppose que f ne s'annule jamais sur \mathbb{R} . Montrer alors que f' garde un signe constant sur \mathbb{R} et conclure.
- (b) On se donne un réel a tel que $f(a) \neq 0$ et pour fixer les idées on suppose que f(a) > 0. On note :

$$E = \{x \in [a, +\infty[\mid f(x) = 0]\}$$

et on suppose cet ensemble non vide.

- i. Montrer qu'il existe b > a tel que f(x) > 0 pour tout $x \in [a, b]$ et f(b) = 0.
- ii. On suppose que f'(a) = f(a). Montrer alors que f'(x) = f(x) pour tout $x \in [a, b[$ et conclure.
- (c) Résoudre (1).