#### **Phil 320**

# Chapter 5, §5.2: Every abacus-computable function is Turing-computable

**Method of proof:** show how the graph of any abacus-computable f can be transformed into the flow graph of a Turing machine that computes the same f.

## 1. Definition of an abacus-computable function

Suppose *A* is any abacus. Then *A* defines (computes) f as follows:

- (1) Start with  $x_1 = [1], ..., x_r = [r], and 0 = [r+1] = [r+2] = ...$
- (2) Specify a solution register n. If the computation halts with y = [n], then  $f(x_1, ..., x_r) = y$ . (**Note:** the other registers don't have to be empty when machine halts.)
- (3) If the computation never halts, then  $f(x_1,...,x_r)$  is undefined.

Given an abacus A, there are two parameters needed to determine a function: r (the number of arguments) and n(the index of the solution register). Write  $A_n^r$  for the function computed by A that has r arguments and solution in register n.

*Example*: Let *A* be the following definite version of the factorial machine.



 $A_3^1$  is the factorial function:  $A_3^1(x) = x!$ .  $A_4^1(x) = 0$  for all x, and similarly  $A_5^1(x) = 0...$   $A_3^2(x, y) = x!$ ,  $A_3^3(x, y, z) = x!$ , and so on.

#### 2. Outline of Solution

**Problem:** Given an abacus  $A_n$ , with solution register specified as  $R_n$ , find a Turing machine M such that for each r (# of arguments), M defines the same function of r arguments as  $A_n^r$ .

#### A) Register/Block Correspondence.

The registers, taken in order, correspond to blocks on the tape separated by a single blank, taken in order. For instance:

#### BB11B1B11111B1B1111BB

corresponds to

1 0 4 0 2 
$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$  (and 0 elsewhere);

- If  $n \neq 0$ , a register containing n is represented by a block of n+1 1's
- If n = 0, a register containing n is represented by a blank or by a single 1. The single 1 is mandatory if there are any 1's further to the right
- Two blanks in a row signify no further 1's on the tape.

## **B)** Three Procedures

1. Replace n+ nodes with the following TM graph (always starting in std. Config.):



N.B. The replacement is needed in case n is beyond any of the registers where initial non-zero information was stored.

### **Special cases:**

- there are no remaining blocks
- 0 arguments

Turing machine: Figs. 5-9, 5-10.

2. Replace n-/e nodes with the following TM graph



Turing machine: Fig. 5-11, 5-12

Result of steps 1 and 2: you get the right number of 1's in the n'th block if the machine halts. But there may also be lots of other blocks of 1's on the tape.

- 3. [After replacing all n+ and n- routines] Point all **loose arrows** to the initial node in a 'mop-up' graph that erases all but the n'th block of 1's.
- N.B. B,B&J ensure that the n-th block is also re-positioned so that the machine halts at the same square where it started. We won't bother with this, but it is possible to do it.

To do this:

If n=1, erase all but the first block and halt in std. position.

Move to end of first block.

Erase each subsequent block until there are two blanks in a row; then return to std. position.

#### If $n \neq 1$ :

Go to leftmost 1 of block n, erasing every 1 on the way Move to end of block n Erase subsequent blocks Return to std. position.

**Conclusion:** Every abacus-computable function is Turing-computable.