Exercice: Séries de fonctions

CCP 2010 PC Math 2

PARTIE I

I.1. Soit $x \in \mathcal{D}$. Chaque $u_n(x)$, $n \in \mathbb{N}$, existe. De plus, $u_n(x) \underset{n \to +\infty}{\sim} \frac{1}{n^2} > 0$. Comme $\frac{1}{n^2}$ est le terme général d'une série de RIEMANN convergente, la série numérique de terme général $u_n(x)$ converge.

La série de fonctions de terme général u_n , $n \in \mathbb{N}^*$, converge simplement sur \mathcal{D} .

I.2. I.2.1. Soit $n \in \mathbb{N}^*$. La fonction u_n est de classe C^{∞} sur $\mathbb{R} \setminus \{-n\}$ en tant que fraction rationnelle définie sur $\mathbb{R} \setminus \{-n\}$ et pour $p \in \mathbb{N}^*$ et $x \in \mathbb{R} \setminus \{-n\}$,

$$u_n^{(p)}(x) = \frac{(-2) \times (-3) \times \ldots \times (-p-1)}{(n+x)^{p+2}} = \frac{(-1)^p (p+1)!}{(n+x)^{p+2}}.$$

I.2.2. Soient a et b deux réels tels que -1 < a < b. Soit $p \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$ et tout $x \in [a, b] \subset]-1, +\infty[$,

$$|u_n^{(p)}(x)| = \frac{(p+1)!}{(n+x)^{p+2}} \leqslant \frac{(p+1)!}{(n+\alpha)^{p+2}} \ (\operatorname{car} \ n+x \geqslant n+\alpha > 1-1 = 0).$$

Comme la série numérique de terme général $\frac{(p+1)!}{(n+a)^{p+2}}$, $n \in \mathbb{N}^*$, converge car $\frac{(p+1)!}{(n+a)^{p+2}}$ $\underbrace{\frac{(p+1)!}{n^{p+2}}}_{n \to +\infty}$ avec p+2 > 1, on a montré que la série de fonctions de terme général $u_n^{(p)}$, $n \in \mathbb{N}^*$, converge normalement sur [a,b].

 $\forall \mathfrak{p} \in \mathbb{N}^*, \text{ la série de fonctions de terme général } \mathfrak{u}_{\mathfrak{n}}^{(\mathfrak{p})}, \, \mathfrak{n} \in \mathbb{N}^*, \text{ converge normalement sur } [\mathfrak{a}, \mathfrak{b}].$

- **I.2.3.** En résumé, pour tout $[a,b] \subset]-1,+\infty[$,
- la série de fonctions de terme général u_n , $n \in \mathbb{N}^*$, converge simplement vers la fonction U sur [a,b],
- \bullet chaque fonction $u_n,\,n\in\mathbb{N}^*,$ est de classe C^∞ sur $[\mathfrak{a},\mathfrak{b}],$
- pour chaque $p \in \mathbb{N}^*$, la série de fonctions de terme général $u_n^{(p)}$ converge normalement sur [a,b].

D'après une généralisation du théorème de dérivation terme à terme, la fonction U est de classe C^{∞} sur [a,b] pour tout $[a,b] \subset]-1,+\infty[$ et ses dérivées successives s'obtiennent par dérivation terme à terme. Ceci étant vrai pour tout $[a,b] \subset]-1,+\infty[$, on a montré que

la fonction U est de classe
$$C^{\infty}$$
 sur] $-1, +\infty[$.

I.3. I.3.1. Soit $N \in \mathbb{N}^*$. Pour $x \in \mathcal{D}$,

$$\begin{split} U(x) &= \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2} = \sum_{n=1}^{N} \frac{1}{(n+x)^2} + \sum_{n=N+1}^{+\infty} \frac{1}{(n+x)^2} \\ &= U_N(x) + \sum_{n=1}^{+\infty} \frac{1}{(n+x+N)^2} = U_N(x) + U(x+N). \end{split}$$

I.3.2. Soit $N \in \mathbb{N}^*$. La fonction U_N est de classe C^{∞} sur]-(N+1), N[en tant que somme de fonctions de classe C^{∞} sur]-(N+1), N[. D'autre part, la fonction $x \mapsto x + N$ est de classe C^{∞} sur]-(N+1), N[à valeurs dans]-1, 0[et la fonction U est de classe C^{∞} sur]-1, 0[. Donc la fonction $x \mapsto U(x+N)$ est de classe C^{∞} sur]-(N+1), N[. Mais alors la fonction U est de classe C^{∞} sur]-(N+1), N[en tant que somme de deux fonctions de classe C^{∞} sur]-(N+1), N[.

De plus, les dérivées successives de U_N sur]-(N+1), N[s'obtiennent par dérivation terme à terme car la somme considérée est finie et les dérivées successives de U(x+N) s'obtiennent par dérivation terme à terme car $x+N\in]-1,0[$. Donc les dérivées successives de U sur] -(N+1), N[s'obtiennent par dérivation terme à terme. On a montré que

$$U \text{ est de classe } C^{\infty} \text{ sur } \mathcal{D} \text{ et } \forall p \in \mathbb{N}, \, \forall x \in \mathcal{D}, \, U^{(p)}(x) = (-1)^p (p+1)! \sum_{n=1}^{+\infty} \frac{1}{(n+x)^{p+2}}.$$

I.3.3. On en déduit encore

$$\forall p \ge 2, \, \forall x \in \mathcal{D}, \, \sum_{n=1}^{+\infty} \frac{1}{(n+x)^p} = (-1)^p \frac{U^{(p-2)}(x)}{(p-1)!}.$$

 $\textbf{I.4.} \ \ \text{Soit} \ \ N \in \mathbb{N}^*. \ \ U_N(x) = \sum_{n=1}^N \frac{1}{(n+x)^2} \underset{x \to -N}{=} \frac{1}{(x+N)^2} + O(1). \ \ D\text{'autre part, par continuit\'e de la fonction U en 0.}$ U(x+N) = O(1). Par suite,

$$U(x) = \frac{1}{(x+N)^2} + O(1),$$

et en particulier,

$$U(x) \underset{x \to -N}{\sim} \frac{1}{(x+N)^2}.$$

 $\textbf{I.5.1.} \ \ \text{Chaque fonction} \ u_n, \ n \in \mathbb{N}^*, \ \text{est strictement décroissante sur }]-1, +\infty [\ \text{et la série de fonctions de terme}]$ général $u_n, n \in \mathbb{N}^*$, converge simplement vers U sur] $-1, +\infty$ [. Donc

la fonction U est strictement décroissante sur] – 1,
$$+\infty$$
[.

décroissante sur $]0,+\infty[,$ on peut écrire

$$\int_{n+x}^{n+1+x} \frac{1}{t^2} dt \leqslant u_n(x) = \frac{1}{(n+x)^2} \leqslant \int_{n-1+x}^{n+x} \frac{1}{t^2} dt.$$

En sommant ces inégalités, on obtient

$$\int_{x+1}^{+\infty} \frac{1}{t^2} \ dt = \sum_{n=1}^{+\infty} \int_{n+x}^{n+1+x} \frac{1}{t^2} \ dt \leqslant U(x) = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2} \leqslant \sum_{n=1}^{+\infty} \int_{n-1+x}^{n+x} \frac{1}{t^2} \ dt = \int_{x-x}^{+\infty} \frac{1}{t^2} \ dt.$$

 $\text{Ainsi, pour } x>0, \ \frac{1\cdot}{x+1}=\int_{x+1}^{+\infty}\frac{1}{t^2}\ dt\leqslant U(x)\leqslant \int_{x}^{+\infty}\frac{1}{t^2}\ dt=\frac{1}{x} \ \text{ou encore } \frac{x}{x+1}\leqslant xU(x)\leqslant 1. \ \text{Comme} \ \lim_{x\to+\infty}\frac{x}{x+1}=1,$ le théorème des gendarmes permet d'affirmer que $\lim_{x \to +\infty} x U(x) = 1$ ou encore que

$$u(x) \underset{x \to +\infty}{\sim} \frac{1}{x}.$$

 $\textbf{I.6.} \quad \mathrm{Soit} \ x \in \mathbb{R}. \ \frac{x}{2} \in -\mathbb{N}^* \Leftrightarrow x \in -2\mathbb{N}^* \Rightarrow x \notin \mathcal{D} \ \mathrm{et} \ \frac{x-1}{2} \in -\mathbb{N}^* \Leftrightarrow x \in 1-2\mathbb{N}^* \Rightarrow x \notin \mathcal{D}. \ \mathrm{Par} \ \mathrm{contraposition}, \ \mathrm{si} \ x \in \mathcal{D},$ alors $\frac{x}{2} \in \mathcal{D}$ et $\frac{x-1}{2} \in \mathcal{D}$. Soit alors $x \in \mathcal{D}$.

$$\begin{split} U(x) &= \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2} = \sum_{p=1}^{+\infty} \frac{1}{(2p+x)^2} + \sum_{p=1}^{+\infty} \frac{1}{(2p-1+x)^2} \\ &= \frac{1}{4} \sum_{p=1}^{+\infty} \frac{1}{\left(p + \frac{x}{2}\right)^2} + \frac{1}{4} \sum_{p=1}^{+\infty} \frac{1}{\left((p + \frac{x-1}{2}\right)^2} = \frac{1}{4} \left[U\left(\frac{x}{2}\right) + U\left(\frac{x-1}{2}\right) \right]. \end{split}$$

$$\forall x \in \mathcal{D}, \ U(x) = \frac{1}{4} \left[U\left(\frac{x}{2}\right) + U\left(\frac{x-1}{2}\right) \right]. \end{split}$$

Problème: Matrices semblables

CCINP 2019 MP Math 2

Partie I - Étude de quelques exemples

1) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$, supposons qu'il existe $P \in GL_n(\mathbb{R})$ telle que $A = PBP^{-1}$, alors $\operatorname{tr}(A) = \operatorname{tr}(P^{-1}PB) = \operatorname{tr}(B) \operatorname{car} \operatorname{tr}(AB) = \operatorname{tr}(BA).$

Et $\det A = \det(P^{-1}PB) = \det(B)$ car $\det(AB) = \det(BA)$.

 $\chi_A = \det(XI_n - PBP^{-1}) = \det P \det(XI_n - B) \det(P^{-1}) = \det(XI_n - B) = \chi_B \cot(AB) = (AB) = (AB) + (AB) + (AB) = (AB) + (AB$

On sait qu'un automorphisme transforme un sous espace en un autre de même dimension, alors rg(A) = rg(B).

2) tr(A) = tr(B) = 5, et $det(A) = det(B) = 4 \neq 0$, donc rg(A) = rg(B) = 3 et enfin $\chi_A = \chi_B = 0$ $(X-1)(X-2)^2$.

Il est simple de vérifier que $E_2(A) = \text{vect}\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}$) donc diagonalisable et donc semblable

Et $E_2(B) = \text{vect}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$) donc non diagonalisable.

Supposons que A et B sont semblables, par transitivité, B et $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ seront semblables,

donc B est diagonalisable, ce qui est absurde.

Conséquence A et B ne sont pas semblables.

 $\pi_A = (X-1)(X-2)$, car A est diagonalisable.

 $\pi_B = (X-1)(X-2)^2$, car B est non diagonalisable.

 $\pi_A \neq \pi_B$.

3) Première méthode.

Cherchons une base $\mathcal{B}_1(v_1, v_2, v_3)$ de E telle que $\operatorname{matr}_{\mathcal{B}_1}(u) = B$. On a $\operatorname{matr}_{\mathcal{B}}(u) = A$

Alors
$$\begin{cases} u(v_1) &= v_2 + v_3 \\ u(v_2) &= v_1 + 2v_3 \\ u(v_3) &= v_2 \end{cases} \text{ et } \begin{cases} u(e_2) &= e_1 + e_3 \\ u(e_1) &= e_2 + 2e_3 \\ u(e_3) &= e_1 \end{cases}$$

Il est clair que $(v_1, v_2, v_3) = (e_2, e_1, e_3)$ convient et c'est une base de \mathbb{R}^3 , donc A et B sont semblables.

Deuxième méthode. Par un calcul simple $\chi_A = \chi_B = X^3 - 3X - 1$, qui est simplement

scindé dans \mathbb{R} , donc ces deux matrices sont diagonalisables et semblables tous à $\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$,

par transitivité A et B sont semblables.

4) Soit \mathcal{B} la base canonique de \mathbb{R}^n , on a rg(u) = 1 donc la dimension du noyau de u est $n-1 \geq 1$, soit $(v_1, v_2, ... v_{n-1})$ une base de ce noyau, et soit v_n un vecteur quelconque n'appartenant pas au noyau Ker(u), alors $\mathcal{B}_1(v_1, v_2, ..., v_n)$ est une base de E dans laquelle la matrice de u est de la forme demandée.

- 5) Par la question 11) $u(v_n) = \sum_{i=1}^n a_i v_i$, donc $u^2(v_n) = \sum_{i=1}^n a_i u(v_i) = a_n u(v_n)$, puisque $u^2 \neq 0$ et $\forall i \in [1, (n-1)]; \quad u^2(v_i) = 0$, alors $u^2(v_n) \neq 0$, donc $a_n \neq 0$. Or $\chi_U = X^{n-1}(X - a_n)$, donc $\operatorname{Sp}(U) = \{0, a_n\}$ et comme $\dim(E_0(u)) = \dim \operatorname{Ker} u = (n-1)$, alors u est diagonalisable, car l'autre valeur propre est simple.
- **6)** La matrice $A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ qui est symétrique de polynôme caractéristique $X^2 + 1$ qui n'est pa scindé dans \mathbb{R} , donc non diagonalisable.
- 7) Supposons que C_1, C_2, C_3, C_4 sont les colonnes de A; on a $C_1 = C_3$ et $C_2 = C_4$, le rang de A est inférieur ou égal à 2.

Supposons que (C_1, C_2) est liée, comme $C_2 \neq 0$, alors $\exists \lambda \in \mathbb{R}$, tels que $C_1 = \lambda C_2$, alors $\alpha = \lambda \beta$ donc $\beta = \lambda \alpha$, donc $\alpha(\lambda^2 - 1)$, comme $\alpha \neq 0$, donc $\lambda \in \{-1, 1\}$.

Si $\lambda = 1$, alors $\alpha = \beta$ ce qui est faux, et si $\lambda = -1$, alors $\alpha = -\beta$ ce qui est faux aussi, donc la famille (C_1, C_2) est libre. Alors $\operatorname{rg}(A) = 2$, donc dim $\operatorname{Ker}(A) = 2 \neq 0$, alors 0 est une valeur propre de A.

Il est simple de vérifier que :

$$\operatorname{Ker}(A - 2(\alpha + \beta)I_n) = \operatorname{vect}\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}), \operatorname{Ker}(A - 2(\alpha - \beta)I_n) = \operatorname{vect}\begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}) \text{ et } \operatorname{Ker}(A) = \operatorname{vect}\begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}; \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}).$$

La somme de ces espaces est évidement égal à \mathbb{C}^4 , car la somme de leurs dimensions est 4,

alors
$$\mathcal{B}(\begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix});\begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix});\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix});\begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix})$$
 est une base de \mathbb{C}^4 formée de vecteurs propres de A .

Remarque La matrice A est symétrique, mais on ne peut pas dire qu'elle est au départ diagonalisable sauf si α et β sont des réels.

Si α et β sont des réels, la base donnée ici est orthonormale pour le produit scalaire canonique de \mathbb{R}^4 .

8) Si a = b, alors A = B donc semblables.

Si $a \neq b$, soit u l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $\mathcal{B}(e_1, e_2)$ est A. Cherchons une base $\mathcal{B}_1(v_1, v_2)$ de \mathbb{R}^2 dont la quelle la matrice de u est B, on alors $\begin{cases} u(e_1) &= \lambda e_1 \\ u(e_2) &= ae_1 + \lambda e_2 \end{cases} \text{ et } \begin{cases} u(v_1) &= \lambda v_1 \\ u(v_2) &= bv_1 + \lambda v_2 \end{cases}$ On prend $v_1 = e_1$ et soit $v_2 = xe_1 + ye_2$, alors l'équation $u(v_2) = bv_1 + \lambda v_2$ s'écrit aussi $A \begin{pmatrix} x \\ z \end{pmatrix} = b \begin{pmatrix} 1 \\ z \end{pmatrix} + \lambda \begin{pmatrix} x \\ z \end{pmatrix}$, alors ay = b, comme $a \neq 0$, alors $y = \frac{b}{c}$ et x est quelconque, alors

 $A \begin{pmatrix} x \\ y \end{pmatrix} = b \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} x \\ y \end{pmatrix}$, alors ay = b, comme $a \neq 0$, alors $y = \frac{b}{a}$ et x est quelconque, alors $v_2 = \frac{b}{a}e_2$, on a bien (v_1, v_2) est une base car $b \neq 0$, donc A et B sont semblables.

Partie II - Démonstration d'un résultat

- 9) L'égalité $B = P^{-1}AP$ s'écrit aussi, PB = AP, alors (R+iS)B = A(R+iS), alors RB+iSB = AR+iAS, comme les matrices RB; SB; AR et AS sont réels, alors RB = AR et SB = AS.
- 10) Si on pose $R = (r_{i,j})_{1 \le i,j \le n}$ et $S = (s_{i,j})_{1 \le i,j \le n}$, alors : $\det(R + xS) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n (r_{i,j} + xs_{i,j})$, or les quantités $r_{i,j} + xs_{i,j}$ sont des fonctions polynômiales de degré 1, donc $\prod_{i=1}^n (r_{i,j} + xs_{i,j})$ sont des fonctions polynômiales de degré n, alors $\det(R+xS)$ est une fonction polynômiale de degré $\le n$, or $\det(R+iS) = \det(P) \ne 0$, donc

non nul, alors possède un nombre fini de racines réels, donc $\exists x_0 \in \mathbb{R}$ tel que $\det(R + x_0 S) \neq 0$, alors la matrice $(R + x_0 S)$ est inversible.

- 11) On a RB = AR et SB = AS alors $RB + x_0SB = AR + x_0AS$, donc $(R + x_0S)B = A(R + x_0S)$, or la matrice $(R + x_0S)$ est inversible et réel, donc les matrices A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.
- 12) $\chi_B = X \det \begin{pmatrix} X & -1 \\ 1 & X \end{pmatrix} = X(X^2 + 1) = X^3 + X = \chi_A$ qui est simplement scindé dans $\mathbb C$ de racines 0; i; -i, donc ces deux matrices sont diagonalisables dans $\mathcal M_3(\mathbb C)$ et tous semblables dans $\mathcal M_3(\mathbb C)$ à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}$, donc elles sont semblables dans $\mathcal M_3(\mathbb C)$ et comme elles sont des matrices réelles, par application des questions précédentes, les matrices A et B sont semblables dans $\mathcal M_3(\mathbb R)$.

Partie III

- 13) Si A est diagonalisable, comme $\pi_A = \pi_B$, alors π_B est scindé à racines simples, donc B aussi. $\chi_A = \chi_B$, donc A et B sont semblables à la même diagonale, par conséquent elles sont semblables.
 - Si A n'est pas diagonalisable, alors A possède une seule valeur propre notée α qui est aussi la seule valeur propre de B car $\chi_A = \chi_B$, alors $\pi_A = \pi_B = (X \alpha)^2$.

Ces deux matrices sont trigonalisables car leurs polynômes caractéristiques sont scindés = $(X - \alpha)^2$, donc A est semblables à une matrice de la forme $\begin{pmatrix} \alpha & a \\ 0 & \alpha \end{pmatrix}$, de même B est semblable

à une matrice de la forme $\begin{pmatrix} \alpha & b \\ 0 & \alpha \end{pmatrix}$.

Si a=0, alors A sera diagonalisable, absurde, de même $b\neq 0$, par la question Q15), A et B sont semblables.

14) On considère les matrices suivantes :

- $A \neq 0$; $B \neq 0$; calcul par blocs donne $A^2 = B^2 = 0$, donc $\pi_A = \pi_B = X^2$ et on $\chi_A = \chi_B = X^4$.
- Mais rg(A) = 1 et rg(B) = 2 d'après la question 8, ces deux matrices ne sont pas semblables.

