Wolkite University Mathematics Department

Applied Mathematics III Worksheet 5

1. Simplify each of the following

(a)
$$\frac{1+2i}{3-4i} + \frac{2-i}{5i}$$

(b)
$$\frac{5i}{(3-i)(1-i)(2-i)}$$

2. Show that

(a)
$$\overline{(2-i)^2} = 3 - 4i$$

(b)
$$|(2\overline{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|$$

(c) z is real if and only if $\overline{z} = z$.

(d)
$$|e^{i\theta}| = 1$$

3. Write in the form x + iy

(a)
$$(1-i)^{10}$$

(b)
$$\frac{2}{2-i}$$

(c)
$$\frac{1-i}{(1+i)^2}$$

(d)
$$\sqrt[7]{-4-4i}$$

4. Represent the following in polar form

(a)
$$4i$$

(b)
$$-2 + 2i$$

(c)
$$\frac{\sqrt{20}}{4+2i}$$

5. Find the principal value of

(a)
$$i^i$$

(b)
$$(1-i)^{1+i}$$

(c)
$$\ln(-1)$$

(d)
$$\ln\left(\frac{1-i}{1+i}\right)$$

Worksheet 5 Page 2 of 2

6. Check for analyticity and find f(z) = u(x, y) + iv(x, y)

(a)
$$u = x^2 - 2xy - y^2$$

(b)
$$v = e^{-3x} \sin 3y$$

(c)
$$u = \cos 2x \cosh 2y$$

- 7. Are the following expressions harmonic? If so, find a harmonic conjugate.
 - (a) x^3y^3
 - (b) $x^2 + y^2$
 - (c) $e^{-\frac{x}{2}}\cos\left(\frac{1}{2}y\right)$
- 8. Find the values of
 - (a) $\cos(3 + 4\pi i)$
 - (b) $\tan(3 + 3\pi i)$
 - (c) $cosh(l + \pi i)$
- 9. Show that $f(z) = \begin{cases} |z|^2, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0. \end{cases}$ is continuous at z = 0 but not differentiable at z = 0.
- 10. Prove the parallelogram law

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 |z_2|^2).$$

11. Show that $f(z) = |z|^2$ is differentiable but not analytic at z = 0.