

Addressing Privacy and Fungibility Issues in Bitcoin: Confidential Transactions

Alessandro Miola

Supervisors: Daniele Marazzina,

Ferdinando M. Ametrano

20th December 2018

Introduction

- Privacy is fundamental in every financial and monetary system. Bitcoin should not make any exception.
- Bitcoin is neither confidential nor anonymous, but rather pseudonymous.
- Both Bitcoin's blockchain structure and security model seem not to be ideal for privacy.
- Lack of privacy even affects Bitcoin's capacity to serve as money ⇒ detrimental for fungibility: not all bitcoins are equal.

Outline

- 1 Transactions in Bitcoin
- 2 Privacy and Fungibility issues
- 3 Cryptographic primitives
- 4 Confidential Transactions
- **5** Conclusions

Bitcoin's transactions

- bitcoins exist as unspent transaction outputs (UTXO).
- Transaction outputs are indivisible chunks of currency recorded on the blockchain and associated to addresses:
 - they embed the amount and the mathematical puzzle (*locking script*) which determines the conditions for spending.
- List of inputs referencing and spending UTXO and generating new ones:
 - they holds a pointer to the consumed UTXO and the unlocking script satisfying the conditions for spending;
 - the unlocking script generally must hold a digital signature proving ownership of the referenced output.

Outline

- 1 Transactions in Bitcoin
- 2 Privacy and Fungibility issues
- 3 Cryptographic primitives
- 4 Confidential Transactions
- 6 Conclusions

Privacy

- Transactional graph privacy: who is paying who?
 - · Linkability of transactions;
 - bad users' practices (address reuse).
- Value privacy: how much is one paying or receiving?
 - Unencrypted transaction amounts.
- Identity privacy: who is behind the coins?
 - Leakage of personal information when accessing exchanges or on-line stores.
- Trade-off: blockchain's transparency
 ⇔ Bitcoin's privacy.

Fungibility

- Property of a unit of a good to be indistinguishable from any other unit of the same good.
- Fundamental property for moneys and currencies:
 - do not want to care of the possibility of possession of banknotes being revoked for their "bad" history;
 - possibility of blacklisting banknotes would destroy confidence in receiving them.
- Bitcoin is substantially immediate and final payment; this
 makes discussion intertwine with money in its cash-like forms.
- ullet Trade-off: blockchain's transparency \Leftrightarrow bitcoin's fungibility.

Outline

- 1 Transactions in Bitcoin
- 2 Privacy and Fungibility issues
- 3 Cryptographic primitives
 - Pedersen commitment
 - Zero-Knowledge proofs of knowledge
 - Ring signatures
- 4 Confidential Transactions
- 5 Conclusions

Pedersen commitment

 Commitment scheme: keep a piece of data secret, but commit to it to prevent tampering.

Definition.

Let (\mathbb{G}, \circ) be an elliptic curve group of prime order n. Let G, H be two NUMS generators of \mathbb{G} ; let r, $v \in \mathbb{Z}_n$ (r chosen at random). Define a Pedersen commitment C to v by the following scheme:

$$commit: \mathbb{Z}_n^2 o \mathbb{G}$$
 $(r, v) \mapsto rG + vH$ $open: \mathbb{Z}_n^2 \times \mathbb{G} o \{\mathit{True}, \mathit{False}\}$

such that $open(r, v, C) \mapsto True \ \forall (r, v)$ in the domain of *commit*.

Pedersen commitment: properties

 Perfectly hiding and computationally binding commitment scheme.

Definition.

A commitment scheme is said to be:

- perfectly (computationally) hiding if the distribution of commit(r, v) for uniformly random r is equal (computationally indistinguishable) for fixed values of v;
- perfectly binding if $\forall (r,v)$ in the domain of commit, $\nexists (r',v') \neq (r,v)$: open $(r',v',commit(r,v)) \mapsto True$; computationally binding if no PPT (probabilistic polynomial time) algorithm can produce such (r',v') with non-negligible probability.

Pedersen commitment: properties

- Perfectly hiding and computationally binding commitment scheme.
- Additively homomorphic commitment scheme.

Definition.

A commitment scheme is additively homomorphic if:

• commit(r, v) + commit(r', v') = commit(r + r', v + v').

Zero-Knowledge proof of knowledge

- Proof that yields nothing but its validity.
 - Alice tries to convince Bob of being in possession of some secret information.
 - Proof performed in Zero-Knowledge.

Figure 1: Graph 3-colorability problem

Ring signature

• OR proof: given a ring of r public keys $\{Q_0, \ldots, Q_{r-1}\}$, the ambiguous signer proves to know $\{q_0 \text{ OR } q_1 \text{ OR } \ldots \text{ OR } q_{r-1}\}$.

Figure 2: Ring signature scheme

• Tool for whistleblowing.

Ring signature

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

$$2 K_{i^*} \leftarrow k_{i^*} G;$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

4
$$e_{i^*} \leftarrow hash(K_{i^*-1}||m||i^*);$$

6
$$s_{i^*} \leftarrow k_{i^*} + e_{i^*} q_{i^*}$$
;

6 return
$$(e_0, s_0, \ldots, s_{r-1}) =: \sigma$$

Figure 3: AOS ring signature (1-of-4)

Adapted from: [5]

Ring signature

AOS_VERIFY(m, σ , Q_i : $0 \le i \le r - 1$):

- - **1** $K_i \leftarrow s_i G e_i Q_i$;
 - **2** $e_{i+1\%r} \leftarrow hash(K_i||m||i+1\%r);$
- ② if $e_0 = 0$ or $e_0 \ge n$: return False:
- 3 if $e_0 = \sigma[0]$: return True;

Figure 3: AOS ring signature verification (1-of-4)

Adapted from: [5]

Outline

- 1 Transactions in Bitcoin
- 2 Privacy and Fungibility issues
- 3 Cryptographic primitives
- 4 Confidential Transactions
 - Overview
 - Output amount encryption & consequences
 - Zero-Knowledge range proofs
 - Conclusion

Confidential Transactions

- Proposal for a transactional format with encrypted amounts, which requires the same cryptographic assumptions of Bitcoin (hardness of ECDLP).
- Built through homomorphic encryption without compromising the possibility for the nodes to verify the validity of each transaction.
- It provides value privacy.

Pedersen commitment in CT

- Substitute 8-byte output amounts in the clear with *perfectly hiding* 33-byte Pedersen commitments to the amounts.
- Interpretation of the parameters:
 - r: secret random blinding factor;
 - v: committed output amount.

$$v_{i1} = v_{o1} + v_{o2} + fee$$
 \Downarrow
 $(r_{i1}G + v_{i1}H) = (r_{o1}G + v_{o1}H) + (r_{o2}G + v_{o2}H) + fH$
 \Downarrow
 $r_{i1} = r_{o1} + r_{o2}$
 $v_{i1} = v_{o1} + v_{o2} + f$

Commitment to value 0

- Instrumental in verifying the validity of each transaction.
- A commitment C = rG gives the opportunity to produce a digital signature with the commitment as public key:
 - by definition, a signature with private key q can be verified with public key qG;
 - if $v \neq 0$, it is infeasible to find q such that qG = rG + vH.

A Pedersen commitment can be proven to be a commitment to v=0 by signing the transaction with ${\bf r}$ as private key, ${\bf C}$ as public key.

Zero-Knowledge range proof

Reason for:

- addition is modular and wraps around;
- possible to create money from nothing.

Example.

Consider a curve built on a finite field of prime order n = 13.

Inputs	Outputs
$C(r_{i1},2)$	$C(r_{o1}, 8)$
	$C(r_{o2},7)$

Inputs	Outputs
$C(r_{i1},2)$	$C(r_{o1}, 5)$
	$C(r_{o2}, -3)$

Table 1: Example of wrapping

Table 2: Negative amounts

Additional piece of data proving that each committed output is in a given range ensuring that no overflow is possible and the amount is non-negative.

Enforce Zero-Knowledgeness: Borromean ring signature

• Given r rings of public keys, the ambiguous signer proves to know one of $\{q_{0,0} \text{ OR } q_{0,1} \text{ OR } ...\}$ AND one of $\{q_{1,0} \text{ OR } q_{1,1} \text{ OR } ...\}$ AND ... AND one of $\{q_{r-1,0} \text{ OR } q_{r-1,1} \text{ OR } ...\}$.

Figure 4: Borromean ring signatures

Enforce Zero-Knowledgeness: Borromean ring signature

Given r rings of public keys, the ambiguous signer proves to know one of {q_{0,0} OR q_{0,1} OR ...} AND one of {q_{1,0} OR q_{1,1} OR ...}.
 OR ...} AND ... AND one of {q_{r-1,0} OR q_{r-1,1} OR ...}.

	Signature size
r AOS ring signatures	$r \cdot N + r$ (32-bytes numbers)
Borromean ring signature	$r \cdot N + 1$ (32-bytes numbers)
Δ	r - 1 (32-bytes numbers)

Table 3: Borromean ring signature: signature size

Use of Borromean ring signatures

Consider the output amount in its base-4 expansion:

$$v = v_0 \cdot 4^0 + v_1 \cdot 4^1 + v_2 \cdot 4^2 + \cdots + v_{15} \cdot 4^{15};$$

Ring-sign over each digit:

- $C_i = r_i G + v_i 4^i H$, i = 0, ..., 15;
- arrange a ring of signatures per digit with a verification public key per digit value v_i, i = 0,...,3;
- provide a Borromean ring signature over the rings:

$$\{r_iG + v_i4^iH, r_iG + v_i4^iH - 4^iH, r_iG + v_i4^iH - 2 \cdot 4^iH, r_iG + v_i4^iH - 3 \cdot 4^iH\}$$

•
$$RP_{v} = (C_{0}, \ldots, C_{15}, \underbrace{e_{0}, s_{0,0}, \ldots, s_{0,3}, \ldots, s_{15,0}, \ldots, s_{15,3}}_{signature}).$$

Outline

- 1 Transactions in Bitcoin
- 2 Privacy and Fungibility issues
- 3 Cryptographic primitives
- 4 Confidential Transactions
- **5** Conclusions

Conclusions

- Confidential transactions would provide consistent value privacy in the protocol.
- Not ready yet for integration in the Bitcoin protocol as they suffer from excessively burdening each transaction size.

However,

- a new and more efficient solution to range proof construction has been proposed, *Bulletproofs*:
 - aggregation of range proofs;
 - batched verification of multiple proofs.
- *Mimblewimble*: promising cryptosystem built on confidential transactions.

References i

- [1] M. Abe, M. Ohkubo, and K. Suzuki. **1-out-of-n signatures** from a variety of keys. https://www.iacr.org/archive/asiacrypt2002/25010414/25010414.ps, 2002.
- [2] A. Gibson. An investigation into confidential transactions. https: //github.com/AdamISZ/ConfidentialTransactionsDoc/
- [3] G. Maxwell. **Confidential transactions.** https://people.xiph.org/~greg/confidential_values.txt,
 - 2015.

blob/master/essayonCT.pdf.

References ii

- [4] G. Maxwell. Improve transaction privacy / fungibility in bitcoin core and the bitcoin system [meta tracking issues]. https://github.com/bitcoin/bitcoin/issues/6568, 2015.
- [5] G. Maxwell and A. Poelstra. Borromean ring signatures. https://github.com/ElementsProject/borromean-signatures-writeup.
- [6] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

References iii

[7] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.

```
https://link.springer.com/content/pdf/10.1007/3-540-46766-1_9.pdf, 1991.
```

[8] A. Poelstra. Mimblewimble.

```
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf, 2016.
```

- Proof that yields nothing but its validity.
 - Alice tries to convince Bob of being in possession of some secret information.
 - Proof performed in Zero-Knowledge.

Figure 4: Graph 3-colorability problem

- Proof that yields nothing but its validity.
 - Alice tries to convince Bob of being in possession of some secret information.
 - Proof performed in Zero-Knowledge.

Completeness.

Figure 4: Graph 3-colorability problem

- Proof that yields nothing but its validity.
 - Alice tries to convince Bob of being in possession of some secret information.
 - Proof performed in Zero-Knowledge.

Figure 4: Graph 3-colorability problem

Completeness.

- Proof that yields nothing but its validity.
 - Alice tries to convince Bob of being in possession of some secret information.
 - Proof performed in Zero-Knowledge.

Figure 4: Graph 3-colorability problem

• Soundness.

- Proof that yields nothing but its validity.
 - Alice tries to convince Bob of being in possession of some secret information.
 - Proof performed in Zero-Knowledge.

Zero-Knowledgeness.

Figure 4: Graph 3-colorability problem

AOS ring signature - details of the algorithms

AOS_SIGN(m, q_{i^*} , Q_i : $0 \le i \le r - 1$):

- **1** $k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$

AOS ring signature - details of the algorithms

AOS_SIGN(m, q_{i*} , Q_i : $0 \le i \le r - 1$):

- **1** $k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$
- $2 K_{i^*} \leftarrow k_{i^*} G;$
- **3** for $i \leftarrow i^* + 1, \dots, r 1, 0, \dots, i^* 1$
 - $\bullet e_i \leftarrow hash(K_{i-1}||m||i);$

Figure 5: AOS ring signature (1-of-4)

AOS ring signature - details of the algorithms

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

$$2 K_{i^*} \leftarrow k_{i^*} G;$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

$$\bullet e_i \leftarrow hash(K_{i-1}||m||i);$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

$$\bullet e_i \leftarrow hash(K_{i-1}||m||i);$$

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

$$\bullet e_i \leftarrow hash(K_{i-1}||m||i);$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

$$\bullet e_i \leftarrow hash(K_{i-1}||m||i);$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

$$\bullet e_i \leftarrow hash(K_{i-1}||m||i);$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

4
$$e_{i^*} \leftarrow hash(K_{i^*-1}||m||i^*);$$

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*}, Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

3 for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

3
$$K_i \leftarrow s_i G - e_i Q_i$$
;

4
$$e_{i^*} \leftarrow hash(K_{i^*-1}||m||i^*);$$

5
$$s_{i^*} \leftarrow k_{i^*} + e_{i^*} q_{i^*}$$
;

Figure 5: AOS ring signature (1-of-4)

AOS_SIGN(m, q_{i*} , Q_i : $0 \le i \le r - 1$):

1
$$k_{i^*} \stackrel{\$}{\leftarrow} \{1,\ldots,n-1\};$$

$$2 K_{i^*} \leftarrow k_{i^*} G;$$

§ for
$$i \leftarrow i^* + 1, \dots, r - 1, 0, \dots, i^* - 1$$

2
$$s_i \stackrel{\$}{\leftarrow} \{1, \ldots, n-1\};$$

4
$$e_{i^*} \leftarrow hash(K_{i^*-1}||m||i^*);$$

6
$$s_{i^*} \leftarrow k_{i^*} + e_{i^*} q_{i^*};$$

6 return
$$(e_0, s_0, \ldots, s_{r-1}) =: \sigma$$

Figure 5: AOS ring signature (1-of-4)

AOS_VERIFY(
$$m$$
, σ , Q_i : $0 \le i \le r - 1$):

- - $1 K_i \leftarrow s_i G e_i Q_i;$

$$(s_0, Q_0)$$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(
$$m$$
, σ , Q_i : $0 \le i \le r - 1$):

- - $1 K_i \leftarrow s_i G e_i Q_i;$
 - **2** $e_{i+1\%r} \leftarrow hash(K_i||m||i+1\%r);$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(m, σ , Q_i : $0 \le i \le r - 1$):

- - $1 K_i \leftarrow s_i G e_i Q_i;$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(
$$m$$
, σ , Q_i : $0 \le i \le r - 1$):

- - $1 K_i \leftarrow s_i G e_i Q_i;$
 - **2** $e_{i+1\%r} \leftarrow hash(K_i||m||i+1\%r);$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(m, σ , Q_i : $0 \le i \le r - 1$):

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(
$$m$$
, σ , Q_i : $0 \le i \le r - 1$):

- - **2** $e_{i+1\%r} \leftarrow hash(K_i||m||i+1\%r);$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(m, σ , Q_i : $0 \le i \le r - 1$):

- **1** $for <math>i \leftarrow 0, \ldots, r-1$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(m, σ , Q_i : $0 \le i \le r - 1$):

- - **2** $e_{i+1\%r} \leftarrow hash(K_i||m||i+1\%r);$

Figure 5: AOS ring signature verification (1-of-4)

AOS_VERIFY(m, σ , Q_i : $0 \le i \le r - 1$):

- - **1** $K_i \leftarrow s_i G e_i Q_i$;
 - **2** $e_{i+1\%r} \leftarrow hash(K_i||m||i+1\%r);$
- **2** if $e_0 = 0$ or $e_0 \ge n$: return False;
- **3** if $e_0 = \sigma[0]$: return True;

Figure 5: AOS ring signature verification (1-of-4)

ECDH Key Exchange protocol

- Key agreement scheme based on elliptic curve cryptography.
- Establish a shared secret between two parties over an insecure (yet authenticated) channel.

Figure 6: ECDH key exchange

 Channel authentication required to prevent man-in-the-middle attacks.

Sender-receiver interaction

• Encryption even prevents the receiver to know amount and blinding factor associated to each output.

Transmission of:

- · amounts;
- blinding factors;
- user-selected data.

⇒ The transfer can happen non-interactively by running an instance of ECDH and exploiting the shared key to deduce the quantities involved.