NMAM INSTITUTE OF TECHNOLOGY, NITTE

Off-Campus Centre of Nitte (Deemed to be University)

Second Semester B.Tech (CBCS) Degree Examinations

CY1003-1-MATERIALS CHEMISTRY FOR COMPUTER SYSTEMS

MULTIPLE CHOICE QUESTIONS: UNIT - I

Electrode & Energy Systems

1.	The device which converts chemical energy into electrical energy					
	A)	Galvanic Cell	B)	Anode		
	C)	Electrolytic Cell	C)	Cathode		
Ans	A)	Galvanic cell				
2.	The	The device which converts electrical energy into chemical energy				
	A)	Galvanic Cell	B)	Fuel cell		
	C)	Electrolytic Cell	D)	Solar cell		
Ans	C)	Electrolytic cell				
3.	A w	orking concentration cell is made of two				
	A)	Identical electrolytes and identical	B)	Identical electrolytes but different		
		concentrations		concentrations		
	C)	Different electrolytes and identical	D)	Different electrolytes and different		
_		concentrations		concentrations		
Ans	B)	Identical electrolytes but different conce		ions		
4.		omel electrode is an example for				
	A)	Reference electrode	B)	Ion selective electrode		
	C)	Inert electrode	D)	Gas electrode		
Ans	A)	Reference electrode				
5.		at is the chemical formula of calomel used				
	A)	HgCl	B)	Hg ₂ Cl ₂		
_	C)	KCI	D)	HgCl ₂		
Ans	B)	Hg ₂ Cl ₂				
6.		calomel electrode is represented as		A A O /->		
	A)	Hg Hg ₂ Cl ₂ (s) KCl (saturated or standard)	B)	Ag AgCl (s) KCl (saturated)		
	C)	Hg Hg ₂ Cl ₂ (s) KCl (saturated or	D)	Ag AgCl (s) HCl (0.1M) glass		
		standard) AgCl (s) Ag				
Ans	A)					
7.		ential of the calomel electrode depends o				
	A)	Hg	B)	Hg ₂ Cl ₂		
_	C)	KOH	D)	KCI		
Ans	D)	KCI				
	What is the electrode potential of the calomel electrode with saturated KCI solution at 298K?					
8.	A)	0.334 V	B)	0.281 V		
	C)	0.242 V	D)	0.0591 V		
Ans	C)	0.242 V				
9.	The	reference electrode that can be used to c	detern	nine potential of zinc electrode is		
	A)	Glass electrode	B)	Platinum electrode		
	C)	Copper electrode	D)	Calomel electrode		
Ans	D)	Calomel electrode				
10.	_			lowing electrode combination		
	A)	Glass-calomel electrode	B)	Glass-Zinc electrode		
	C)	Platinum-Calomel electrode	D)	Zinc- Calomel electrode		
Ans	A)	Glass-calomel electrode				

11.	Glas	Glass electrode is an example for				
	A)	Ion selective electrode	B)	Conductometric electrode		
	C)	Gas electrode	D)	Redox electrode		
Ans	A)	Ion selective electrode				
12.	Whi	hich of the following is an example for ion selective electrode?				
	A)	Platinum electrode	B)	Gas electrode		
	C)	Calomel electrode	D)	Glass electrode		
Ans	D)	Glass electrode				
13.	Whi	nich of the following is an example for working concentration cell?				
	A)	Fe FeSO ₄ (0.10M) CuSO ₄ (0.10M) Cu	B)	Mg Mg ²⁺ (aq) Cd ²⁺ (aq) Cd		
	C)	Ag AgNO ₃ (0.10M) AgNO ₃ (0.50M) Ag	D)	Fe Fe ²⁺ (0.015M) Ag+(0.13M) Ag		
Ans	C)	Ag AgNO ₃ (0.10M) AgNO ₃ (0.50M) Ag				
14.	Emf	f of the concentration cell Ag(s) Ag ⁺ (0.01M) Ag ⁺ (0.1M) Ag at 298 ^o K is				
	A)	0.0591V	B)	0.02955V		
	C)	-0.0591V	D)	-0.02955V		
Ans	A)) 0.0591V				
15.	Emf	Emf of the concentration cell Ag(s) Ag⁺(0.05M) Ag⁺(0.05M) Ag at 298 ºK is				
	A)	0.0591V	B)	0.02955V		
	C)	0V	D)	-0.0591V		
Ans	C)	0V				

16.	Which of the following is a characteristic of a primary battery?				
	A)	Rechargeable	B)	Requires external power for operation	
	C)	Disposable after use	D)	Suitable for repeated deep discharges	
Ans	B)	Disposable after use			
17.	Whi	ch of the following is not a feature of seco	ndary	y batteries?	
	A)	Rechargeable	B)	Long-lasting when charged	
	C)	Non-rechargeable	D)	Can be used after recharging	
Ans	C)	Non-rechargeable			
18.	Wha	at is the primary material used in the anode	e of n	nost commercial lithium-ion batteries?	
	A)	Lithium intercalated in Graphite layers	B)	Silicon	
	C)	Lithiated metal oxides	D)	Platinum	
Ans	A)	Lithium intercalated in Graphite layers			
19.	Whi	/hich electrolyte is commonly used in lithium-ion batteries?			
	A)	Lithium hexafluorophosphate (LiPF ₆)	B)	Sodium hydroxide (NaOH)	
	C)	Sulfuric acid (H ₂ SO ₄)	D)	Potassium chloride (KCI)	
Ans	A)	Lithium hexafluorophosphate (LiPF ₆)			
20.	Whi	Which of the following is NOT a component of battery?			
	A)	Cathode	B)	Salt-bridge	
	C)	Anode	D)	Electrolyte	
Ans	B) Salt-bridge				
	Special properties of 'Li' metal that make it advantageous as an electrode material inclu			geous as an electrode material include	
21.	A)	Light weight	B)	Low electrical conductivity	
	C)	High electrode potential	D)	Low cost	
Ans	A)	A) Light weight			
	Which of the following is the optimium Anode-Cathode-Electrolyte combination of a lithium-ion				
battery?					
22.	A)	Li- intercalated graphite-LiCoO ₂ -LiClO ₄ in	B)	Li- intercalated graphite-LiNiO ₂ – aqueous	
		ether		KOH	
	C)	Li-Cu- LiBF₄ in ether	D)	VH_2 -LiMn ₂ O ₄ – LiPF6 in ether	
Ans	A)	Li- intercalated graphite-LiCoO ₂ -LiClO ₄ in			
	An a	advantageous use of an acid electrolyte in	meth	anol-oxygen fuel cell is that	
23.	A)	Product CO ₂ can be removed easily	B)	Converts produced CO ₂ into carbonate	

	C)	Prevents diffusion of methanol into	D)	Reduces CO ₂ emission
		cathode		
Ans	A)	Product CO ₂ can be removed easily		
	In methanol-oxygen fuel cell, a membrane is inserted adjacent to the cathode on the inner side			
24.	to			
	A)	Minimize diffusion of methanol into	B)	Minimize diffusion of sulphuric acid into
		cathode		cathode
	C)	Minimize diffusion of methanol into anode	D)	Remove produced CO2
Ans	A) Minimize diffusion of methanol into cathode			
	Which of the following is suitable for powering portable devices such as smartphones and			
25.	laptops?			
	A)	Lead-acid battery	B)	Lithium-ion battery
	C)	Methanol-oxygen fuel cell	D)	Vanadium flow battery
Ans	B)	Lithium-ion battery		

Polymers & Analytical Techniques

26.		simple molecule having two or more bonding sites through which each can link to other to rm a polymer chain is called					
	A)	Polymer	B)	Monomer			
	C)	Functionality	D)	Initiator			
Ans	B)	Monomer	/	- Annotes			
27.	The	total number of functional groups or bond	ling s	ites present in a monomer molecule is			
		ed	J	•			
	A)	Functionality	B)	Degree of Polymerization			
	C)	Molecular Weight	D)	Polymer			
Ans	A)) Functionality					
28.		is defined as the number of repeating units in a polymer chain.					
	A)	Functionality	B)	Degree of Polymerization			
	C)	Molecular Weight	D)	Monomer			
Ans	B)	Degree of Polymerization					
29.		ecular mass of Polyethylene having degree					
	A)	1400	B)	2800			
	C)	2700	D)	2000			
Ans	B)	2800					
30.	Vin	nyl compounds are					
	A)	Bifunctional monomers	B)	Trifunctional monomers			
	C)	Polymers	D)	Not example for monomers			
Ans	A)						
31.		The chemical process by which the monomers are converted into polymers is called					
	A)	Initiation	B)	Propagation			
	C)	Polymerization	D)	Substitution			
Ans	C)						
32.		Which of the following is a monomer?					
	A)	Ethane	B)	Ethyl chloride			
	C)	Ethene	D)	Ethyl alcohol			
Ans	C)	Ethene					
33.		enol is monomer.	D)	a hitunational			
	A)	a monofunctional	B)	a bifunctional			
Ans	,	a trifunctional	D)	not a			
	C) a trifunctional						
34.	The number average molecular weight is given by expression						

	C)	<u> ∑ni</u> Mi	D)	$\Sigma n_i M_i^2$	
A	C)	Σni Σ ni <u>M</u> i		ΣnįMį	
Ans	C) $\frac{\sum n_i \underline{M}}{\sum n_i}$				
35.					
	A)	2	B)	4	
	C)	1	D)	3	
Ans	A)	2	•••		
36.	36. What material is typically used to bind carbon fibres together in a composite?				
	A)	Glass	B)	Rubber	
A 10.0	C)	Plastic polymer resin	D)	Metal alloy	
Ans 37.		Plastic polymer resin ch polymer is used as the precursor for pre	nari	ng carbon fibro?	
37.	A)	Polyethylene	ран В)	Polyacrylonitrile	
	C)	Polystyrene	D)	Polyvinyl chloride	
A	,		υ,	1 diyviriyi cilidide	
Ans 38.	B)	Polyacrylonitrile	1000	naveture is hydrogen expelled to form	
30.		ing the preparation of carbon fibre, at what matic rings?	tem	perature is hydrogen expelled to form	
	A)	200-300 °C	B)	600–700 °C	
	C)	1000-1500 °C	D)	2000-2500 °C	
Ans.	B)	600-700°C	υ)	2000 2000 0	
39.		does undoped polyacetylene behave as a	sem	iconductor or insulator?	
00.	A)	It has a high density of free electrons	B)	It is not crystalline	
	C)	It has a relatively large bandgap	D)	It lacks a bandgap	
Ans.	C)	It has a relatively large bandgap		1	
40.		ch of the following acts as a p-type dopant	for p	oolyacetylene?	
	A)	Sodium naphthalide	B)	Hydrogen peroxide	
	C)	Polyacrylonitrile (PAN)	D)	Iodine (I ₂)	
Ans.	D)	Iodine (I ₂)			
41.	Conductometry is an electrochemical method of analysis based on measuring the of				
		electrolytic solution.			
				dilution	
	C)	absorbance	D)	viscosity	
Ans	A)	resistance	4.0		
42.	-1		tionc	containing one-gram equivalent weight of an	
		Specific conductors	D)	Equivalent conductivity	
	A) C)	Specific conductance Molar conductance	B) D)	Equivalent conductivity Fluid conductance	
Ans	B)	Equivalent conductivity	D)	Fluid Colladicalice	
43.	is the conductance of a meter cube of the solution.				
70.	A)	Specific conductance	B)	Equivalent conductivity	
	C)	Molar conductance	D)	Ionic conductance	
Ans	A)	Specific conductance	_,		
44.		· ·	lution	containing one mole of an electrolyte.	
	A)	Specific conductance	B)	Equivalent conductivity	
	C)	Molar conductance	D)	Molar resistance	
Δns	C)	Molar conductance	-		

Σnj.Mj

Σni.

45.

B)

Resistance of the electrolyte
Temperature of the electrolyte

Conductance of an electrolyte is directly proportional to

Mobility and concentration of ions

Voltage applied across the electrolyte

		T			
Ans	A) Mobility and concentration of ions				
46.	Conductometry can be employed to determine equivalence point in				
	A)	Acid-base titrations	B)	Redox titrations	
	C)	Complexometric titrations	D)	Precipitation titrations	
Ans	A)	Acid-base titrations			
47.	In conductometric titrations, the equivalence point is determined graphically by plotting				
	A)	Conductance vs titre values	B)	Absorbance vs concentration	
	C)	Conductance vs concentration	D)	Conductance vs emf	
Ans	A) Conductance vs titre values				
48.	In conductometric titrations of strong acid and strong base, the conductance				
	A)	First decreases steeply then rises rapidly	B)	First rises rapidly then decreases steeply	
	C)	Remains same throughout titration	D)	Increases gradually	
Ans	A)	First decreases steeply then rises rapidly	•		
49.	In th	he conductometric titration of, the	con	ductance increases gradually till equivalence	
	point and then rises sharply.				
	A)	Strong acid vs strong base	B)	Strong acid vs weak base	
	C)	Weak acid vs strong base	D)	Weak acid vs weak base	
Ans	C)	C) Weak acid vs strong base			
50.	Con	Conductometric titrations can be used in determination of			
	A)	Only strong acids	B)	Only weak acids	
	C)	Neither strong nor weak acid	D)	Strong acid, weak acid, and mixture of acids	
Ans	D)	D) Strong acid, weak acid, and mixture of acids			
51.	Potentiometric titration involves measurement of				
	A)	The potential of the indicator electrode and	B)	The resistance of an electrolytic solution	
		reference electrode			
	C)	pH of the solution	D)	Absorbance of the solution	
Ans	A)	The potential of the indicator electrode as			
52.	Compared to chemical analysis, instrumental analysis				
	A)	Are much slower	B)	Are much faster	
	C)	Requires large amount of analyte	D)	Are less useful	
Ans	B)	Are much faster			
53.	Con	npared to chemical analysis, instrumental	analy	sis requires	
	A)	very large amount of analyte	B)	very small amount of analyte	
	C)	no analyte	D)	no calibration of instruments	
Ans	B)	very small amount of analyte			
