http://www.rgpvonline.com

[4]

- 8. a) Prove that a graph G with n vertices and (n-1) edges is a tree.
 - Prove that a tree with two or more vertices has at least two pendant vertices.

http://www.rgpvonline.com

Total No. of Questions: 8]

[Total No. of Printed Pages: 4

Roll No

MCTA-101

M.E./M.Tech. I Semester

Examination, December 2016

Mathematical Foundations of Computer Application

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions out of eight.

ii) All questions carry equal marks.

- 1. a) If A, B and C are three sets, then prove that
 - i) $A \cup (B \cup C) = (A \cup B) \cup C$ and
 - ii) $A \cap (B \cap C) = (A \cap B) \cap C$
 - Let R be a binary relation on the set of all positive integers such that

 $R = \{(a,b)/|a-b| \le 1, a,b \text{ are positive integers}\}$

Is R an equivalence relation.

- a) Define lattice. Prove that in a lattice (L, ≤), for any a, b ∈ L the following hold:
 - i) $a \le b \Leftrightarrow a \land b = a$ and
 - ii) $a \le b \Leftrightarrow a \lor b = b$
 - b) Let Q be the set of all rational numbers and $f: Q \rightarrow Q$ be a function defined by f(x) = 3x + 5, $x \in s$.

Then prove that f is bijective and also find its inverse.

http://www.rgpvonline.co

http://www.rgpvonline.com

http://www.rgpvonline.com

[2]

a) Obtain the following into conjunctive normal form:

$$\sim (p \vee q) \leftrightarrow (p \wedge q)$$

- b) Given a DFA, $m = \{\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\}\}\}$. The transition diagram for the DFA is given below. Check whether strings
 - i) aababa and
 - ii) bababa are accepted by DFA.

- 4. a) Show that $L = \{a^n b^n / n \ge 0\}$ is not regular.
 - b) Find disjunctive normal form of the following proposition.

$$(\sim p \lor \sim q) \to (p \leftrightarrow \lor q)$$

5. a) Solve the following recurrence relation:

$$a_r + 6a_{r-1} + 9a_{r-2} = 3$$

given that $a_0 = 0$ and $a_1 = 1$

b) Let $S = \{a, b, c\}$ and P(s) be the power set. Then show that $(P(s), \subseteq)$ is a partially ordered set. Draw the Hasse diagram also.

http://www.rgpvonline.com

http://www.rgpvonline.com

[3]

6. a) Determine the discrete numeric function corresponding to the following generating functions:

i)
$$A(z) = \frac{2}{1 - 4z^2}$$

ii)
$$A(z) = \frac{z^4}{1-2z}$$

b) Solve the recurrence relation:

$$a_r - 5a_{r-1} + 6a_{r-2} = 2^r + r, r \ge 2$$

with boundary conditions $a_0 = 1$ and $a_1 = 1$.

7. a) Using Dijkstra's algorithm find the shortest path from *p* to *u* in the following weighted graph:

b) A graph G has the following adjacency matrix check whether it is connected? Also, draw the graph

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

MCTA-101

Contd...

MCTA-101

PTO