Homework 16: Hermitian Matrices

Let \mathcal{H} be the vector space of $n \times n$ complex hermitian matrices.

The unitary group $\mathrm{U}(n)$ acts on $\mathcal H$ by conjugation: $A\cdot \xi = A\xi A^{-1}$, for $A\in \mathrm{U}(n)$, $\xi\in \mathcal H$.

For each $\lambda=(\lambda_1,\ldots,\lambda_n)\in\mathbb{R}^n$, let \mathcal{H}_{λ} be the set of all $n\times n$ complex hermitian matrices whose spectrum is λ .

1. Show that the orbits of the U(n)-action are the manifolds \mathcal{H}_{λ} . For a fixed $\lambda \in \mathbb{R}^n$, what is the stabilizer of a point in \mathcal{H}_{λ} ?

Hint: If $\lambda_1, \ldots, \lambda_n$ are all distinct, the stabilizer of the diagonal matrix is the torus \mathbb{T}^n of all diagonal unitary matrices.

2. Show that the symmetric bilinear form on \mathcal{H} , $(X,Y)\mapsto \mathrm{trace}\ (XY)$, is nondegenerate.

For $\xi\in\mathcal{H}$, define a skew-symmetric bilinear form ω_{ξ} on $\mathfrak{u}(n)=T_1\mathrm{U}(n)=i\mathcal{H}$ (space of skew-hermitian matrices) by

$$\omega_{\varepsilon}(X,Y) = i \, {\rm trace} \, \left([X,Y] \xi \right) \, , \qquad X,Y \in i \mathcal{H} \, \, .$$

Check that $\omega_{\xi}(X,Y)=i\,\mathrm{trace}\,\left(X(Y\xi-\xi Y)\right)$ and $Y\xi-\xi Y\in\mathcal{H}.$ Show that the kernel of ω_{ε} is $K_{\varepsilon}:=\{Y\in\mathfrak{u}(n)\,|\,[Y,\xi]=0\}.$

3. Show that K_{ε} is the Lie algebra of the stabilizer of $\xi.$

Hint: Differentiate the relation $A\xi A^{-1} = \xi$.

Show that the ω_{ε} 's induce nondegenerate 2-forms on the orbits \mathcal{H}_{λ} . Show that these 2-forms are closed.

Conclude that all the orbits \mathcal{H}_{λ} are compact symplectic manifolds.

4. Describe the manifolds \mathcal{H}_{λ} .

When all eigenvalues are equal, there is only one point in the orbit. Suppose that $\lambda_1 \neq \lambda_2 = \ldots = \lambda_n$. Then the eigenspace associated with λ_1 is a line, and the one associated with λ_2 is the orthogonal hyperplane. Show that there is a diffeomorphism $\mathcal{H}_{\lambda} \simeq \mathbb{CP}^{n-1}$. We have thus exhibited a lot of symplectic forms on \mathbb{CP}^{n-1} , on for each pair of distinct real numbers. What about the other cases?

Hint: When the eigenvalues $\lambda_1 < \ldots < \lambda_n$ are all distinct, any element in \mathcal{H}_{λ} defines a family of pairwise orthogonal lines in \mathbb{C}^n : its eigenspaces.

5. Show that, for any skew-hermitian matrix $X \in \mathfrak{u}(n)$, the vector field on \mathcal{H} generated by $X \in \mathfrak{u}(n)$ for the $\mathrm{U}(n)$ -action by conjugation is $X_{\varepsilon}^{\#} = [X, \xi]$.