L'anneau des polynômes

- Exercice 1 Résoudre les équations suivantes :
 - a) $Q^2 = XP^2$ d'inconnues $P, Q \in \mathbb{K}[X]$
 - b) $P \circ P = P$ d'inconnue $P \in \mathbb{K}[X]$.
- On définit une suite de polynôme (P_n) par $P_0=2, P_1=X$ et $\forall n\in\mathbb{N}, P_{n+2}=XP_{n+1}-P_n$. Exercice 2
 - a) Calculer P_2 et P_3 .

Déterminer degré et coefficient dominant de P_n .

- b) Montrer que, pour tout $n \in \mathbb{N}$ et pour tout $z \in \mathbb{C}^*$ on a $P_n(z+1/z) = z^n + 1/z^n$.
- c) En déduire une expression simple de $P_n(2\cos\theta)$ pour $\theta \in \mathbb{R}$.
- d) Déterminer les racines de P_n .

Dérivation

- Résoudre les équations suivantes : Exercice 3
 - a) $P'^2 = 4P$ d'inconnue $P \in \mathbb{K}[X]$
 - b) $(X^2+1)P''-6P=0$ d'inconnue $P \in \mathbb{K}[X]$.
- Exercice 4 Montrer que pour tout entier naturel n, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ tel que $P_n - P_n' = X^n$. Exprimer les coefficients de P_n à l'aide de nombres factoriels.
- Exercice 5 Déterminer dans $\mathbb{K}[X]$ tous les polynômes divisibles par leur polynôme dérivé.
- **Exercice 6** Soit $P \in \mathbb{K}[X]$. Montrer que $P(X+1) = \sum_{n=0}^{+\infty} \frac{1}{n!} P^{(n)}(X)$.

Arithmétique des polynômes

- Montrer les divisibilités suivantes et déterminer les quotients correspondant : Exercice 7

 - a) $X-1 \mid X^3-2X^2+3X-2$ b) $X-2 \mid X^3-3X^2+3X-2$
- c) $X+1 \mid X^3+3X^2-2$.

- **Exercice 8** Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$.
 - a) Montrer que P-X divise $P \circ P-P$.
 - b) En déduire que P-X divise $P \circ P X$.
- Soit $A, B \in \mathbb{K}[X]$ tels que $A^2 \mid B^2$. Montrer que $A \mid B$. Exercice 9
- *Exercice 10* Soit $A, B \in \mathbb{K}[X]$ non constants et premiers entre eux.

Montrer qu'il existe un unique couple $(U,V) \in \mathbb{K}[X]^2$ tel que AU + BV = 1 et $\begin{cases} \deg U < \deg B \\ \deg V < \deg A \end{cases}$

- *Exercice 11* Soit $(A, B) \in \mathbb{K}[X]^2$ non nuls. Montrer que les assertions suivantes sont équivalentes :
 - (i) A et B ne sont pas premiers entre eux.
 - (ii) $\exists (U,V) \in (\mathbb{K}[X]-\{0\})^2$ tel que AU+BV=0, $\deg U < \deg B$ et $\deg V < \deg A$.

- *Exercice 12* Soit $A, B \in \mathbb{K}[X]$ non nuls.
 - Montrer: A et B sont premiers entre eux ssi A+B et AB le sont.
- *Exercice 13* Soit $A, B, C \in \mathbb{K}[X]$ tels que A et B soient premiers entre eux. Montrer : pgcd(A, BC) = pgcd(A, C).

Division euclidienne

- **Exercice 14** En réalisant une division euclidienne, former une condition nécessaire et suffisante sur $(\lambda, \mu) \in \mathbb{K}^2$ pour que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.
- *Exercice 15* Soit $(a,b) \in \mathbb{K}^2$ tel que $a \neq b$ et $P \in \mathbb{K}[X]$. Exprimer le reste de la division euclidienne de P par (X-a)(X-b) en fonction de P(a) et P(b).
- *Exercice 16* Soit $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. Exprimer le reste de la division euclidienne de P par $(X-a)^2$ en fonction de P(a) et P'(a).
- Exercice 17 Soit $t \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

 Déterminer le reste de la division euclidienne dans $\mathbb{R}[X]$ de $(X \cos t + \sin t)^n$ par $X^2 + 1$.
- *Exercice 18* Soit $k, n \in \mathbb{N}^*$ et r le reste de la division euclidienne de k par n. Montrer que le reste de la division euclidienne de X^k par X^n-1 est X^r .
- **Exercice 19** Soit $n, m \in \mathbb{N}^*$.
 - a) De la division euclidienne de n par m, déduire celle de X^n-1 par X^m-1 .
 - b) Etablir que $\operatorname{pgcd}(X^n 1, X^m 1) = X^{\operatorname{pgcd}(n,m)} 1$

L'espace vectoriel des polynômes

- *Exercice 20* Soit $P_1 = X^2 + 1$, $P_2 = X^2 + X 1$ et $P_3 = X^2 + X$. Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{K}_2[X]$.
- $\begin{aligned} \textit{Exercice 21} \quad \text{Pour } k \in \left\{0,\dots,n\right\}, \text{ on pose } P_k = (X+1)^{k+1} X^{k+1}\,. \\ \quad \text{Montrer que la famille } (P_0,\dots,P_n) \ \text{ est une base de } \mathbb{K}_n\big[X\big]. \end{aligned}$
- **Exercice 22** Pour $k \in \{0,...,n\}$, on pose $P_k = X^k (1-X)^{n-k}$. Montrer que la famille $(P_0,...,P_n)$ est une base de $\mathbb{K}_n[X]$.
- $\textit{Exercice 23} \quad \text{On pose } P_{\scriptscriptstyle k} = \frac{X(X-1)\dots(X-k+1)}{k!} \ \text{pour } k \in \big\{0,\dots,n\big\}\,.$
 - a) Montrer que $(P_0, P_1, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.
 - b) Montrer que $\forall x \in \mathbb{Z}, \forall k \in \mathbb{Z}, P_k(x) \in \mathbb{Z}$.
 - c) Trouver tous les polynômes P tels que $\forall x \in \mathbb{Z}, P(x) \in \mathbb{Z}$.
- **Exercice 24** Soit E l'espace vectoriel des applications de $\mathbb R$ dans $\mathbb R$. On considère F la partie de E constituée des applications de la forme : $x \mapsto P(x) \sin x + Q(x) \cos x$ avec $P,Q \in \mathbb R_n[X]$.

- a) Montrer que F un sous-espace vectoriel de E.
- b) Montrer que F est de dimension finie et déterminer $\dim F$.
- *Exercice 25* Soit $n \in \mathbb{N}$ et $A \in \mathbb{K}_n[X]$ un polynôme non nul.

Montrer que $F = \{P \in \mathbb{K}_n[X]/A \mid P\}$ est un sous-espace vectoriel de $\mathbb{K}_n[X]$ et en déterminer la dimension et un supplémentaire.

Endomorphisme opérant sur les polynômes

- $\textit{Exercice 26} \quad \text{Soit } n \in \mathbb{N}^* \text{ et } \Delta : \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X] \text{ l'application définie par } : \Delta(P) = P(X+1) P(X) \, .$
 - a) Montrer que Δ est bien définie et que Δ est une application linéaire.
 - b) Déterminer le noyau de Δ .
 - c) En déduire que cette application est surjective.
- *Exercice* 27 Soit $\Delta: \mathbb{C}[X] \to \mathbb{C}[X]$ l'application définie par $\Delta(P) = P(X+1) P(X)$
 - a) Montrer que Δ est un endomorphisme et que pour tout polynôme P non constant $\deg \big(\Delta(P)\big) = \deg P 1$.
 - b) Déterminer $\ker \Delta$ et $\operatorname{Im} \Delta$.
 - c) Soit $P \in \mathbb{C}\big[X\big]$ et $n \in \mathbb{N}$. Montrer que $\Delta^n(P) = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} P(X+k)$.
 - d) En déduire que si $\deg P < n \ \text{alors on a} \ \sum_{k=0}^n \binom{n}{k} (-1)^k P(k) = 0 \, .$
- **Exercice 28** Soit $\varphi : \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X]$ définie par $\varphi(P) = (n+1)P XP'$.
 - a) Justifier que φ est bien définie et que c'est une application linéaire.
 - b) Déterminer le noyau de φ .
 - c) En déduire que φ est surjective.
- *Exercice* 29 a) Montrer que $\varphi: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $\varphi(P) = P(X) + P(X+1)$ est bijective.

On en déduit qu'il existe un unique $P_n \in \mathbb{R}_n[X]$ tel que : $P_n(X) + P_n(X+1) = 2X^n$.

Montrer que pour tout $n\in\mathbb{N}$, il existe $P_{\scriptscriptstyle n}\in\mathbb{R}_{\scriptscriptstyle n}\big[X\big]$ unique tel que : $P_{\scriptscriptstyle n}(X)+P_{\scriptscriptstyle n}(X+1)=2X^n$.

- b) Justifier qu'on peut exprimer $P_n(X+1)$ en fonction de $P_0, ..., P_n$.
- c) En calculant de deux façons $P_n(X+2)+P_n(X+1)$ déterminer une relation donnant P_n en fonction de P_0,\ldots,P_{n-1} .
- *Exercice 30* Soit A un polynôme non nul de $\mathbb{R}[X]$ et $r:\mathbb{R}[X] \to \mathbb{R}[X]$ l'application définie par :

 $\forall P \in \mathbb{R}[X]$, r(P) est le reste de la division euclidienne de P par A.

Montrer que r est un endomorphisme de $\mathbb{R}[X]$ tel que $r^2 = r \circ r = r$.

Déterminer le noyau et l'image de cet endomorphisme.

Racines d'un polynôme

Exercice 31 a) Soit $P=a_nX^n+a_{n-1}X^{n-1}+...+a_1X+a_0$ un polynôme à coefficients entiers tel que $a_n\neq 0$ et $a_0\neq 0$.

On suppose que $\,P\,$ admet une racine rationnelle $\,r=p/q\,$ exprimée sous forme irréductible.

Montrer que $p \mid a_0$ et $q \mid a_n$.

- b) Factoriser $P = 2X^3 X^2 13X + 5$.
- c) Le polynôme $P = X^3 + 3X 1$ est-il irréductible dans $\mathbb{Q}[X]$?
- *Exercice 32* Soit a,b,c trois éléments, non nuls et distincts, du corps \mathbb{K} .

$$\text{D\'emontrer que le polyn\^ome } P = \frac{X(X-b)(X-c)}{a(a-b)(a-c)} + \frac{X(X-c)(X-a)}{b(b-c)(b-a)} + \frac{X(X-a)(X-b)}{c(c-a)(c-b)} \text{ peut }$$

s'écrire sous la forme $P = \lambda(X-a)(X-b)(X-c)+1$ où λ est une constante que l'on déterminera.

- *Exercice 33* Soit $P \in \mathbb{C}[X]$ un polynôme non nul tel que $P(X^2) + P(X)P(X+1) = 0$.
 - a) Montrer que si a est racine de P alors a^2 l'est aussi
 - b) En déduire que a = 0 ou bien a est racine de l'unité.
- **Exercice 34** Soit P un polynôme de degré $n+1 \in \mathbb{N}^*$ à coefficients réels, possédant n+1 racines réelles distinctes.
 - a) Montrer que son polynôme dérivé P' possède exactement n racines réelles distinctes.
 - b) En déduire que les racines du polynôme P^2+1 sont toutes simples dans $\mathbb C$.
- Exercice 35 Soit a_0, a_1, \ldots, a_n des éléments deux à deux distincts de \mathbb{K} .

 Montrer que l'application $\varphi : \mathbb{K}_n \big[X \big] \to \mathbb{K}^{n+1}$ définie par $\varphi(P) = (P(a_0), P(a_1), \ldots, P(a_n))$ est un isomorphisme de \mathbb{K} -espace vectoriel.
- **Exercice 36** Soit $a_0, ..., a_n$ des réels distincts et $\varphi : \mathbb{R}_{2n+1}[X] \to \mathbb{R}^{2n+2}$ définie par $\varphi(P) = (P(a_0), P'(a_0), ..., P(a_n), P'(a_n))$. Montrer que φ est bijective.
- **Exercice 37** Soit $P \in \mathbb{R}[X]$ un polynôme scindé de degré supérieur à 2. Montrer que P' est scindé.

Racines et arithmétique

Exercice 38 Soit p et q deux entiers supérieurs à 2 et premiers entre eux.

Montrer que : $(X^p - 1)(X^q - 1) | (X - 1)(X^{pq} - 1)$.

- Exercice 39 Justifier les divisibilités suivantes :
 - a) $\forall n \in \mathbb{N}, X^2 | (X+1)^n nX 1$
 - b) $\forall n \in \mathbb{N}^*$, $(X-1)^3 \mid nX^{n+2} (n+2)X^{n+1} + (n+2)X n$
- *Exercice 40* Montrer qu'il existe un unique polynôme P de degré inférieur à 3 tel que : $(X-1)^2 \mid P-1$ et $(X+1)^2 \mid P+1$. Déterminer celui-ci.
- **Exercise 41** Justifier: $\forall (n, p, q) \in \mathbb{N}^3$, $1 + X + X^2 \mid X^{3n} + X^{3p+1} + X^{3q+2}$.
- *Exercice 42* Déterminer une condition nécessaire et suffisante sur $n \in \mathbb{N}$ pour que $X^2 + X + 1 \mid X^{2n} + X^n + 1$.

Factorisation de polynômes

- *Exercice 43* Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ les polynômes suivants :
 - a) $X^4 1$

b) $X^5 - 1$

c) $(X^2 - X + 1)^2 + 1$.

Exercice 44 Factoriser dans $\mathbb{R}[X]$ les polynômes suivants :

a)
$$X^4 + X^2 + 1$$

b)
$$X^4 + X^2 - 6$$

c) $X^8 + X^4 + 1$.

- **Exercice 45** Factoriser le polynôme $(X+i)^n (X-i)^n$ pour $n \in \mathbb{N}^*$.
- *Exercice* 46 Former la décomposition primaire dans $\mathbb{R}[X]$ de $P = X^{2n+1} 1$ (avec $n \in \mathbb{N}$).
- *Exercice* 47 Soit $a \in]0,\pi[$ et $n \in \mathbb{N}^*$. Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $X^{2n} - 2\cos aX^n + 1.$

Relations entre racines et coefficients

- *Exercice 48* Trouver les racines dans \mathbb{C} du polynôme $X^4 + 12X 5$ sachant qu'il possède deux racines dont la somme est 2.
- *Exercice* 49 Donner une condition nécessaire et suffisante sur $\lambda \in \mathbb{C}$ pour que $X^3 7X + \lambda$ admette une racine qui soit le double d'une autre. Résoudre alors l'équation.
- *Exercice 50* Résoudre $x^3 8x^2 + 23x 28 = 0$ sachant que la somme de deux des racines est égale à la
- **Exercice 51** On considère l'équation : $x^3 (2 + \sqrt{2})x^2 + 2(\sqrt{2} + 1)x 2\sqrt{2} = 0$ de racines x_1, x_2 et x_3 .
 - a) Former une équation dont x_1^2, x_2^2 et x_3^2 seraient racines.
 - b) En déduire les valeurs de x_1, x_2, x_3 .
- **Exercice 52** Déterminer les triplets : $(x, y, z) \in \mathbb{C}^3$ tel que

a)
$$\begin{cases} x + y + z = 1 \\ 1/x + 1/y + 1/z = 1 \\ xyz = -4 \end{cases}$$

b)
$$\begin{cases} x(y+z) = 1\\ y(z+x) = 1\\ z(x+y) = 1 \end{cases}$$

a)
$$\begin{cases} x+y+z=1\\ 1/x+1/y+1/z=1\\ xyz=-4 \end{cases}$$
 b)
$$\begin{cases} x(y+z)=1\\ y(z+x)=1\\ z(x+y)=1 \end{cases}$$
 c)
$$\begin{cases} x+y+z=2\\ x^2+y^2+z^2=14\\ x^3+y^3+z^3=20 \end{cases}$$

- **Exercice 53** Soit $x, y, z \in \mathbb{C}^*$ tel que x + y + z = 0. Montrer que $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^2$.
- **Exercice 54** Pour $n \in \mathbb{N}^*$ on pose $P_n = \sum_{k=0}^n X^k$.
 - a) Former la décomposition primaire de $P_{\scriptscriptstyle n}$ dans $\mathbb{C}[X]$.
 - b) En déduire la valeur de $\prod_{k=1}^{n} \sin \frac{k\pi}{n+1}$.
- **Exercice 55** Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation $(1+z)^n = \cos(2na) + i\sin(2na)$. En déduire la valeur de $\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$.
- *Exercice* 56 Soit $P \in \mathbb{C}[X]$ non nul et $n = \deg P$.

Montrer que les sommes des zéros de $P, P', ..., P^{(n-1)}$ sont en progression arithmétique.

Familles de polynômes classiques

Exercice 57 Polynômes de Tchebychev (1821-1894):

Soit $n \in \mathbb{N}$. On pose $f_n: [-1,1] \to \mathbb{R}$ Tapplication définie par $f_n(x) = \cos(n \arccos x)$.

- a) Calculer f_0, f_1, f_2 et f_3 .
- b) Exprimer $f_{n+1}(x) + f_{n-1}(x)$ en fonction de $f_n(x)$.
- c) Etablir qu'il existe un unique polynôme T_n de $\mathbb{R}[X]$ dont la fonction polynomiale associée coïncide avec f_n sur [-1,1].
- d) Donner le degré de T_n ainsi que son coefficient dominant.
- e) Observer que T_n possède exactement n racines distinctes, que l'on exprimera, toutes dans]-1,1[.

Exercice 58 Polynômes d'interpolation de Lagrange (1736-1813):

Soit $(a_0, a_1, ..., a_n)$ une famille déléments de \mathbb{K} deux à deux distincts.

$$\text{Pour tout } i \in \left\{0,1,\dots,n\right\} \text{ on pose } L_i = \frac{\displaystyle\prod_{0 \leq j \leq n, j \neq i} (X - a_j)}{\displaystyle\prod_{0 \leq j \leq n, j \neq i} (a_i - a_j)} \,.$$

- a) Observer que, pour tout $\ j \in \left\{0,1,...,n\right\}$, on a $\ L_i(a_j) = \delta_{i,j}$
- (où $\delta_{i,j}$ est le symbole de Kronecker (1823-1891) qui est égal à 1 lorsque i=j et 0 sinon).
- b) Montrer que $\ \forall P \in \mathbb{K}_n[X] \ \text{on a} \ P(X) = \sum_{i=0}^n P(a_i) L_i(X)$.

Exercice 59 Polynômes de Legendre (1752-1833):

Pour tout entier nature n on pose $L_n = \frac{n!}{(2n)!} \left((X^2 - 1)^n \right)^{(n)}$.

- a) Montrer que $\,L_{\!\scriptscriptstyle n}\,$ est un polynôme unitaire de degré $\,n\,$.
- b) Montrer que $\forall Q \in \mathbb{R}_{n-1}[X]$ on a $\int_{-1}^{1} L_n(t)Q(t)dt = 0$.
- c) En déduire que $L_{\scriptscriptstyle n}$ possède n racines simples toutes dans $\left]-1,1\right[$.

Exercice 60 Polynômes de Fibonacci (~1180~1250):

Soit $(P_n)_{n\geq 0}$ la suite de $\mathbb{K}[X]$ définie par : $P_0=0, P_1=1$ et $\forall n\in\mathbb{N}, P_{n+2}=XP_{n+1}-P_n$.

- a) Montrer que $\forall n \in \mathbb{N}, P_{n+1}^2 = 1 + P_n P_{n+2}$.
- b) En déduire : $\forall n \in \mathbb{N}, P_n$ et P_{n+1} sont premiers entre eux.
- c) Etablir pour que pour tout $m \in \mathbb{N}$ et pour tout $n \in \mathbb{N}^*$ on a : $P_{m+n} = P_n P_{m+1} P_{n-1} P_m$.
- d) Montrer que pour tout $m \in \mathbb{N}$ et pour tout $n \in \mathbb{N}^*$ on a : $\operatorname{pgcd}(P_{m+n}, P_n) = \operatorname{pgcd}(P_n, P_m)$.

En déduire que $\operatorname{pgcd}(P_m,P_n)=\operatorname{pgcd}(P_n,P_r)$ où r est le reste de la division euclidienne de m par n .

e) Conclure que $\operatorname{pgcd}(P_n, P_m) = P_{\operatorname{pgcd}(m,n)}$.

Exercice 61 Polynômes de Laguerre (1834-1886):

Pour $n\in\mathbb{N}$, on définit $L_n:\mathbb{R}\to\mathbb{R}$ par $L_n(x)=\mathrm{e}^x\frac{\mathrm{d}^n}{\mathrm{d}x^n}(\mathrm{e}^{-x}x^n)$. Observer que L_n est une fonction polynomiale dont on déterminera le degré et le coefficient dominant.

david Delaunay http://mpsiddl.free.fr