Cap. 7. Metode de aproximare numerică a funcțiilor

7. 1. Punerea problemei

Apare în multe situații din știință și tehnică în general și din domeniile automatică, informatică și calculatoare în particular. În aceste domenii apar aplicații în care *nu se cunoaște expresia analitică a funcției care trebuie aproximată, ci doar valorile ei într-un anumit număr de puncte* (obținute pe cale analitică sau experimentală).

Punerea problemei (cont'd 1)

Interesează obţinerea aproximativă a valorilor corespunzătoare altor puncte + Prezintă interes şi determinarea acelor puncte corespunzătoare unor valori date (de exemplu, zero) ale funcţiei.

În cazul general al problemei aproximării numerice a funcţiilor, se consideră o funcţie

f:
$$[a, b] \to R$$
. (1.1)

Se cere determinarea unei alte funcții

g:
$$[a, b] \to R$$
, (1.2)

Punerea problemei (cont'd 2)

având o expresie relativ simplă, care să aproximeze cât mai bine funcţia f în intervalul [a, b], adică g(x) să fie cât mai apropiat de y = f(x), $\forall x \in [a,b]$.

Problema apare în următoarele două situații posibile:

a) dacă expresia analitică a funcţiei f, y=f(x), este cunoscută,
 dar de formă relativ complicată, utilizarea sa în calcule ulterioare fiind incomodă;

Punerea problemei (cont'd 3)

b) dacă expresia analitică a funcţiei f, y=f(x), nu este cunoscută, ea fiind definită printr-un set de puncte determinate analitic sau experimental.

Pentru situaţia b), frecvent întâlnită în domeniile menţionate, se consideră că *sunt cunoscute* (n+1) *puncte distincte* definite de perechile de valori:

$$(x_i, y_i = f(x_i)), i = 0 ... n.$$
 (1.3)

Punerea problemei (cont'd 4)

În cazul cel mai general, cele (n+1) puncte distincte pot fi oarecari în intervalul [a, b]. Însă, în majoritatea aplicaţiilor ele sunt *echidistante*, cu pasul de discretizare h > 0, primul şi ultimul punct corespunzând limitelor intervalului, adică

$$x_0 = a, x_n = b, x_{i+1} - x_i = h = \frac{b-a}{n}, i = \overline{0, n-1}$$
 (1.4)

Punerea problemei (cont'd 5)

În situațiile practice nu este neapărat necesară obținerea explicită a funcției de aproximare g, fiind suficientă găsirea valorilor $g(x), \forall x \in [a,b]$. Dacă valorile lui x pentru care se aproximează funcția f aparțin intervalului [a, b], atunci se utilizează termenul de **interpolare** pentru problema enunțată. Dacă problema se extinde și în afara intervalului [a, b], atunci se utilizează termenul de **extrapolare**. În sens larg: *interpolare* pentru ambele situații ale problemei.

Punerea problemei (cont'd 6)

Pentru *obţinerea funcţiilor de aproximare* g se utilizează, de regulă, **combinaţii liniare** ale unor funcţii de formă simplă aparţinând unei clase de funcţii $\{g_i \mid i = \overline{0,n}\}$, de forma

$$g(x) = a_0 g_0(x) + a_1 g_1(x) + \dots + a_n g_n(x), \quad \forall x \in [a, b],$$
(1.5)

unde $a_i, i = 0, n$, sunt coeficienți reali.

Punerea problemei (cont'd 7)

Cele mai utilizate *clase de funcții de aproximare*:

a) monoame $\{x^i, i = \overline{0,n}\}$, care duc la polinoame de aproximare:

$$g(x) = P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n;$$
(1.6)

b) funcții *exponențiale* $\{e^{b_i x}, i = \overline{0, n}\}$, care duc la funcții de aproximare:

$$g(x) = a_0 e^{b_0 x} + a_1 e^{b_1 x} + a_2 e^{b_2 x} + \dots + a_n e^{b_n x};$$
(1.7)

c) funcții *trigonometrice* $\{\sin x^i, \cos x^i \mid i = 0 ... n\}$, care duc la:

$$g(x) = a_0 + a_1 \sin x + a_2 \sin x^2 + \dots + a_n \sin x^n + b_0 + b_1 \cos x + b_2 \cos x^2 + \dots + b_n \cos x^n$$
(1.8)

Punerea problemei (cont'd 8)

În relaţiile (1.6) ... (1.8) coeficienţii a_i , i=0...n, şi b_j , j=0...m, sunt reali.

În aplicaţii practice de interpolare, pentru alegerea funcţiei de aproximare este necesară cunoaşterea formei funcţiei care trebuie aproximată utilizând *informaţiile primare privind problema din care a fost construit modelul* matematic care include funcţia care trebuie aproximată.

Punerea problemei (cont'd 9)

Dacă nu există astfel de informaţii, atunci cel mai des utilizate sunt *polinoamele de interpolare* definite de (1.6), cu avantaje:

- valorile polinoamelor se pot calcula relativ uşor;
- sumele, diferențele, produsele de polinoame precum și derivarea și integrarea polinoamelor au ca rezultat polinoame;
- schimbările de scară şi translaţiile sunt relativ simple, având ca rezultat polinoamele $P_n(ax)$ şi respectiv $P_n(x+a)$, cu $a \neq 0$;
- teoria aproximării polinoamelor nu ridică probleme deosebite.

Punerea problemei (cont'd 10)

Remember – din teoria aproximării polinoamelor – *teorema de aproximare a lui Weierstrass*: Dacă funcția f este continuă pe [a, b], atunci $\forall \ \epsilon > 0$ există un polinom P_n de grad $n = n(\epsilon)$ astfel încât $|f(x)-P_n(x)| < \epsilon, \forall x \in [a,b]$.

Observații:

1. Teorema oferă justificarea teoretică a faptului că, în cazul utilizării polinoamelor de interpolare, eroarea de aproximare poate fi făcută oricât de mică.

Punerea problemei (cont'd 11)

- 2. Utilitatea practică a teoremei este relativ redusă datorită modalităților de generare a polinoamelor de aproximare şi, în plus, necunoașterii expresiei f(x).
- 3. Teorema oferă şi suportul teoretic de demonstrare a faptului că sistemele fuzzy şi reţelele neuronale artificiale sunt aproximatori universali.

Punerea problemei (cont'd 12)

Sunt tratate *funcțiile de aproximare polinomială* ! = metodele de determinare explicită sau implicită a coeficienților polinomului de aproximare P, notat și cu P_n sau P_m . Metodele pot fi extinse relativ simplu, cu modificările de rigoare, la alte clase de funcții.

În cazul aproximării **funcțiilor de mai multe variabile**, pot fi utilizate metode asemănătoare însă adaptate corespunzător.

Punerea problemei (cont'd 13)

În aplicaţii din domeniile automaticii, calculatoarelor şi informaticii apare uneori şi necesitatea **aproximării inverse**, adică a găsirii valorilor argumentului x corespunzătoare unei valori date f(x) (în particular, nule).

7.2. Aproximarea prin interpolare polinomială

Se consideră o funcție reală f: [a, b] \rightarrow R, pentru care sunt cunoscute valorile $y_i = f(x_i)$ în (n+1) puncte distincte x_i , $i = \overline{0,n}$, din intervalul [a, b], adică perechile de valori

$$(x_0, y_0); (x_1, y_1); (x_2, y_2); ...; (x_n, y_n)$$
 (2.1)

În general, punctele pot fi oarecari, dar, de regulă, ele sunt **echidistante**, cu pasul de discretizare h

$$x_0 = a, x_n = b, x_{i+1} - x_i = h = \frac{b-a}{n}, i = \overline{0, n-1}$$
 (2.2)

Aproximarea prin interpolare polinomială (cont'd 1)

Se cere să se determine polinomul P_n , grad $P_n = n$:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n, \ \forall x \in [a,b], \ a_i \in R, \ i = \overline{0,n},$$
 (2.3)

care să treacă prin punctele date, deci să verifice condițiile

$$P_n(x_i) = y_i, i = \overline{0, n}$$
 (2.4)

Scriind detaliat $(2.4) \rightarrow \text{sistemul liniar } (2.5) \text{ de } (n+1) \text{ ecuații cu}$ (n+1) necunoscute reprezentate de coeficienții a_0 , a_1 , a_2 , ..., a_n :

Aproximarea prin interpolare polinomială (cont'd 2)

$$\begin{cases} a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n}x_{0}^{n} = y_{0} \\ a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n}x_{1}^{n} = y_{1} \\ a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \dots + a_{n}x_{2}^{n} = y_{2} \\ \dots \\ a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n}x_{n}^{n} = y_{n} \end{cases}$$

$$(2.5)$$

Determinantul Δ al matricei sistemului (2.5) – de tip Vandermonde:

Aproximarea prin interpolare polinomială (cont'd 3)

$$\Delta = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = \prod_{\substack{i,j=\overline{0},n\\i>j}} (x_i - x_j)$$
(2.6)

Punctele x_i , i=0,n sunt distincte $\to \Delta \neq 0 \to \text{sistemul}$ (2.5) este compatibil determinat $\to \text{polinomul}$ de aproximare prin interpolare P_n este univoc definit.

Aproximarea prin interpolare polinomială (cont'd 4)

Metodele de interpolare se deosebesc între ele prin modul de determinare a acestui polinom unic sau a unor forme echivalente ale sale.

În cazul majorității polinoamelor de interpolare se operează cu calculul cu diferențe aplicate mulțimii de puncte (2.1). Tipuri de diferențe:

- diferențele finite directe ("la dreapta" sau "înainte");
- diferențele *inverse* ("la stânga" sau "înapoi");
- diferențele *simetrice* ("centrale").

Aproximarea prin interpolare polinomială (cont'd 4)

Primul tip! **Diferențele finite directe de ordinul 1**, calculate atât pentru x cât și pentru y, definite:

$$\Delta x_i = x_{i+1} - x_i, \quad i = \overline{0, n-1},$$
 (2.7)

$$\Delta y_i = y_{i+1} - y_i, \quad i = \overline{0, n-1}$$
 (2.8)

Observaţie: $\Delta x_i = h$, i = 0 ... n-1 pentru puncte echidistante.

Diferențele finite directe de ordinul 2:

$$\Delta y_i^2 = \Delta(\Delta y_i) = \Delta y_{i+1} - \Delta y_i, \quad i = \overline{0, n-2}$$
 (2.9)

Aproximarea prin interpolare polinomială (cont'd 5)

Din (2.8) şi (2.9) \rightarrow relaţia generală de definire a diferenţei directe de ordinul k, k = 1 ... n:

$$\Delta^{k} y_{i} = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_{i}, \quad i = \overline{0, n-k}$$
 (2.10)

În calculele practice sunt utilizate **tabele de diferențe**, exemplificate pentru cazul n = 3:

Aproximarea prin interpolare polinomială (cont'd 6)

X	$y = \Delta^0 y$	$\Delta y = \Delta^1 y$	$\Delta^2 y$	$\Delta^3 y$
X_0	\mathcal{Y}_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$
x_1	y_1	Δy_1	$\Delta^2 y_1$	
x_2	y_2	Δy_2		
X_3	y_3			

Diversele polinoame de interpolare se pot scrie mai simplu dacă se definește **puterea generalizată de ordinul k**, k = 0, 1, 2, 3, ..., a unei valori numerice x, notată cu $x^{[k]}$, sub forma produsului de k factori

$$x^{[k]} = x(x-h)(x-2h)(x-3h)...[x-(k-1)h] , (2.11)$$

cu h – constantă cunoscută.

Observații: 1. Pentru $k = 0 \Rightarrow x^{[0]} = 1$.

2. Pentru $k=1 \Rightarrow x^{[1]}=x$, adică puterea generalizată se reduce la cea clasică.

Aproximarea prin interpolare polinomială (cont'd 8)

Cel mai frecvent utilizate *polinoame de interpolare*:

- de tip Newton, de speţa 1 și 2;
- de tip Gauss, de speţa 1 și 2;
- de tip Stirling;
- de tip Bessel;
- de tip Lagrange.

Polinoamele de interpolare de tip Newton de speţa 1

Enunţul problemei de aproximare prin interpolare – prezentat anterior – relaţiile (2.1) ... (2.3). Polinomul de interpolare de tip Newton de speţa 1:

$$P_n = a_0 + a_1(x - x_0)^{[1]} + a_2(x - x_0)^{[2]} + \dots + a_n(x - x_0)^{[n]},$$
 (2.12)

este necesară determinarea coeficienților a_k , k=0,n. Rescrierea condițiilor (2.4) sub forma echivalentă

$$\Delta^{k} P_{n}(x_{0}) = \Delta^{k} y_{0}, k = \overline{0, n}$$
 (2.13)

Newton de speţa 1 (cont'd 1)

Utilizând (2.2) care exprimă echidistanţa, cu pasul de discretizare h, a punctelor x_i , $i = \overline{0,n} \Rightarrow$ puterile generalizate pot fi transformate sub forma

$$(x-x_0)^{[k]} = (x-x_0)(x-x_1)(x-x_2)...(x-x_{k-1}), k = \overline{1,n}.$$
 (2.14)

Aplicând condițiile (2.13) pentru $k = 0 \rightarrow$

$$\Delta^{0} P_{n}(x_{0}) = \Delta^{0} y_{0} \iff P_{n}(x_{0}) = y_{0} \iff a_{0} = y_{0}$$
(2.15)

→ a fost obţinut primul coeficient.

Newton de speţa 1 (cont'd 2)

Aplicând din nou (2.13) pentru $k = 1 \rightarrow$

$$\Delta P_n(x_0) = y_0 \Leftrightarrow P_n(x_1) - P_n(x_0) = \Delta y_0 \Leftrightarrow$$

$$\Leftrightarrow a_0 + a_1(x_1 - x_0) - a_0 = \Delta y_0 \Leftrightarrow a_1 h = \Delta y_0 ,$$
 (2.16)

$$(2.16) \Rightarrow a_1 = \frac{\Delta y_0}{1!h}. \tag{2.17}$$

Procedând similar pentru ceilalţi coeficienţi din $(2.12) \Rightarrow$ expresia generală

Newton de speţa 1 (cont'd 3)

$$a_k = \frac{\Delta^k y_0}{k! h^k}, \ k = \overline{0, n}$$
 (2.18)

$$k = 0 \text{ in (2.18)} \implies a_0 = y_0$$
.

⇒ polinomul de interpolare Newton de speţa 1 devine

$$P_n(x) = y_0 + \sum_{k=1}^n \frac{\Delta^k y_0}{k! h^k} (x - x_0)^{[k]}$$
 (2.19)

În cazul punctelor echidistante – este util de definit numărul q (nu neapărat întreg !) = **numărul de pași** necesari pentru a ajunge de la x_0 la x:

$$q = \frac{x - x_0}{h} \tag{2.20}$$

⇒ polinomul de interpolare Newton de speţa 1

$$P_{n}(q) = y_{0} + q\Delta y_{0} + \frac{q(q-1)}{2!}\Delta^{2}y_{0} + \dots + \frac{q(q-1)(q-2)\dots(q-n+1)}{n!}\Delta^{n}y_{0}.$$
(2.21)

Newton de speţa 1 (cont'd 5)

Observaţii:

1. Pentru n = 1, $(2.21) \Rightarrow$ formula de interpolare liniară

$$P_1(q) = y_0 + q\Delta y_0. {(2.22)}$$

2. Pentru n = 2, $(2.21) \Rightarrow$ formula de interpolare parabolică

$$P_2(q) = y_0 + qy_0 + \frac{q(q-1)}{2!} \Delta^2 y_0.$$
 (2.23)

Newton de speţa 1 (cont'd 6)

- 3. Dacă numărul de puncte cunoscute ale funcției f poate fi oricât de mare \rightarrow și gradul polinomului de interpolare poate fi oarecare. Acest *număr de puncte este ales practic astfel încât diferențele* $\Delta^n y_i$ *să fie aproximativ egale în limitele unei erori admise* ε , iar x_0 poate fi oricare dintre punctele date.
- 4. Dacă numărul de puncte ale funcţiei este finit → gradul polinomului de aproximare poate fi cel mult egal cu numărul de puncte diminuat cu 1, în aceleaşi condiţii ca la observaţia 3.

Newton de speţa 1 (cont'd 6)

5. Pentru situațiile de la observațiile 3 și 4, eroarea (restul) poate fi aproximat cu expresia

$$R_n(q) \approx \frac{q(q-1)(q-2)...(q-n)}{(n+1)!} \Delta^{n+1} y_0$$
 (2.24)

Exemplu: Se consideră o funcție reală de variabilă reală f: $[0, 3] \rightarrow R$, y=f(x), pentru care sunt cunoscute valorile în 4 puncte echidistante ale intervalului [0, 3], cu pasul de discretizare h = 1, conform tabelului

Newton de speţa 1 (cont'd 7)

i	0	1	2	3
X_i	0	1	2	3
$y_i = f(x_i)$	0.200	3.145	4.927	6.098

Se cere să se aproximeze funcţia f cu polinomul de interpolare Newton de speţa 1 pentru următoarele valori ale argumentului x: 0.1; 0.8; 2.3; 2.8.

Newton de speţa 1 (cont'd 8)

Soluţie: Particularizare pentru n = 3 în cazul cunoaşterii a n+1=4 puncte echidistante, cu pasul h = 1, în intervalul [a,b] = [0, 3].

Pentru început sunt determinate toate diferențele directe definite în (2.10), cu rezultatele organizate conform tabelului

Newton de speţa 1 (cont'd 9)

j	X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	0	0.200	2.945	-1.163	0.552
1	1	3.145	1.782	-0.611	_
2	2	4.927	1.171	_	_
3	3	6.098	_	_	_

Pe baza diferențelor directe din (2.21) și prima linie a tabelului

→ polinomul de interpolare Newton de speţa 1 de gradul 3, exprimat în q:

Newton de speţa 1 (cont'd 10)

$$P_3(q) = 0.2 + \frac{2.945}{1!}q - \frac{1.163}{2!}q^{[2]} + \frac{0.552}{3!}q^{[3]} = 0.2 + 2.945q - 0.581q^{[2]} + 0.092q^{[3]}.$$

Pentru x = 0.1, (2.20)
$$\Rightarrow$$
 $q = \frac{0.1 - 0}{1} = 0.1$ \Rightarrow valorile puterilor

$$q^{[2]} = q(q-1) = -0.09$$

generalizate:
$$q^{[3]} = q^{[2]}(q-2) = 0.171$$

Înlocuire în $P_3(q) \Rightarrow$ prima aproximaţie:

$$f(0.1) \approx 0.2 + 2.945 \cdot 0.1 - 0.581(-0.09) + 0.092 \cdot 0.171 = 0.562$$
. Exerciţiu:

calculul celorlalte trei aproximaţii ...

7.3. Aproximarea cu metoda celor mai mici pătrate

Punerea problemei: se consideră funcția reală f: [a, b] $\rightarrow R$, pentru care sunt cunoscute valorile $y_i = f(x_i)$ în (n+1) puncte distincte x_i , $i = \overline{0,n}$, din intervalul [a, b], adică perechile de valori: $(x_0, y_0); (x_1, y_1); (x_2, y_2); ...; (x_n, y_n)$. (3.1)

În cazul general, punctele pot fi oarecari, dar, de regulă, ele sunt **echidistante**, cu pasul de discretizare h:

$$x_0 = a, x_n = b, x_{i+1} - x_i = h = \frac{b-a}{n}, i = \overline{0, n-1}$$
 (3.2)

CMMP (cont'd 1)

Se cere să se determine **polinomul** P_m , $grad P_m = m << n$:

$$P_m(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m, \ \forall x \in [a, b]$$
(3.3)

care să aproximeze funcţia f astfel încât să fie minimizată suma pătratelor diferenţelor dintre valorile aproximate şi cele exacte în cele (n+1) puncte. Astfel spus, trebuie rezolvată **problema de optimizare**

$$\hat{a}_0....\hat{a}_m = \arg\min_{a_0....a_m} J, J = \sum_{i=0}^n [P_m(x_i) - y_i]^2$$
(3.4)

CMMP (cont'd 2)

Metoda de calcul rezultată se numește *metoda celor mai mici pătrate* (CMMP) și este utilizabilă atunci când fie perechile (3.1) nu sunt cunoscute cu exactitate fie n este foarte mare.

Remarcă: Aproximarea funcției f — cunoscută sub forma setului de valori (3.1) — printr-un polinom de forma (3.3) prin metoda CMMP este numită în general și **regresie polinomială**, cu particularizările larg utilizate **regresie liniară** (m=1) și **regresie parabolică** (m=2). Aproximarea prin metoda CMMP poate fi aplicată însă și altor funcții de aproximare g, diferite de cele polinomiale.

Aproximarea polinomială parabolică (m=2) **prin metoda CMMP**

Funcţia polinomială de aproximare parabolică, numită şi regresie parabolică:

$$P_2(x) = a_0 + a_1 x + a_2 x^2 \, . \tag{3.5}$$

Functia obiectiv J care trebuie minimizată, privită ca *funcție de* variabilele a_0 , a_1 și a_2 :

$$J = \sum_{i=0}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2$$
 (3.6)

Aproximarea polinomială parabolică prin CMMP (cont'd 1)

Pentru minimizarea functiei convexe J este suficient să fie anulate derivatele sale parţiale →

$$\frac{\partial J}{\partial a_0} = 2\sum_{i=0}^n (a_0 + a_1 x_i + a_2 x_i^2 - y_i) = 0$$
(3.7)

$$\frac{\partial J}{\partial a_1} = 2\sum_{i=0}^n (a_0 + a_1 x_i + a_2 x_i^2 - y_i) x_i = 0$$
(3.8)

$$\frac{\partial J}{\partial a_2} = 2\sum_{i=0}^n (a_0 + a_1 x_i + a_2 x_i^2 - y_i) x_i^2 = 0$$
(3.9)

Aproximarea polinomială parabolică prin CMMP (cont'd 2)

$$s_{1} = \sum_{i=0}^{n} x_{i}, \ s_{2} = \sum_{i=0}^{n} x_{i}^{2}, \ s_{3} = \sum_{i=0}^{n} x_{i}^{3}, \ s_{4} = \sum_{i=0}^{n} x_{i}^{4},$$
Notaţii:
$$t_{0} = \sum_{i=0}^{n} y_{i}, t_{1} = \sum_{i=0}^{n} y_{i}x_{i}, t_{2} = \sum_{i=0}^{n} y_{i}x_{i}^{2}.$$
(3.10)

 \Rightarrow sistemul (3.7) ... (3.9) este transformat în *sistemul liniar* în necunoscutele a_0 , a_1 și a_2 :

$$\begin{cases} (n+1)a_0 + s_1a_1 + s_2a_2 = t_0 \\ s_1a_0 + s_2a_1 + s_3a_2 = t_1 \\ s_2a_0 + s_3a_1 + s_4a_2 = t_2 \end{cases}$$
(3.11)

Aproximarea polinomială parabolică prin CMMP (cont'd 3)

Exemplu: Se consideră din nou funcția din exemplul anterior, $f: [0, 3] \rightarrow R$, y=f(x), pentru care se cunosc valorile în 4 puncte echidistante ale intervalului [0,3], cu pasul de discretizare h=1, conform tabelului prezentat. Se cere să se găsească un aproximant parabolic al funcției f cu metoda CMMP.

Soluţie: Pentru început vor fi calculaţi coeficienţii sistemului (3.11) aplicând formulele (3.10) în cazul n=3:

Aproximarea polinomială parabolică prin CMMP (cont'd 4)

$$s_{1} = x_{0} + x_{1} + x_{2} + x_{3} = 6; s_{2} = x_{0}^{2} + x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 14;$$

$$s_{3} = x_{0}^{3} + x_{1}^{3} + x_{2}^{3} + x_{3}^{3} = 36; s_{4} = x_{0}^{4} + x_{1}^{4} + x_{2}^{4} + x_{3}^{4} = 108;$$

$$t_{0} = y_{0} + y_{1} + y_{2} + y_{3} = 14,37; t_{1} = y_{0}x_{0} + y_{1}x_{1} + y_{2}x_{2} + y_{3}x_{3} = 31.293;$$

$$t_{2} = y_{0}x_{0}^{2} + y_{1}x_{1}^{2} + y_{2}x_{2}^{2} + y_{3}x_{3}^{2} = 77.735.$$

Efectuând înlocuirile în (3.11) → sistemul

$$\begin{cases} 4a_0+6a_1+14a_2=14.37\\ 6a_0+14a_1+36a_2=31.293\\ 14a_0+36a_1+108a_2=77.735 \end{cases}. \text{ Rezolvare } \Rightarrow \text{ soluţiile}$$

Aproximarea polinomială parabolică prin CMMP (cont'd 5)

$$a_0 = 0.544; a_1 = 2.328; a_2 = -0.127$$

 \Rightarrow polinomul de aproximare parabolică obţinut prin metoda CMMP: $\hat{P}_2(x) = 0.544 + 2.328x - 0.127x^2$.

Exerciţiu: compararea valorilor aproximate $P_2(x_i)$ cu cele exacte y_i în cele 4 puncte prin diferenţe şi calculul valorii minime a lui J

7.4. Aproximarea cu funcții spline

Enunţul problemei de aproximare: acelaşi ca în cazurile anterioare. Dar, de această dată valorile functiei f sunt aproximate cu *funcţii spline polinomiale* de **grad** m << n.

Se defineşte diviziunea Δ a intervalului [a, b]:

$$\Delta: a = x_0 < x_1 < x_2 < \dots x_n = b$$
 (4.1)

Aproximarea cu funcții spline (cont'd 1)

Funcția spline polinomială de ordinul n relativ la diviziunea Δ a intervalului [a, b] este definită ca o funcție g: [a, b] $\to R$, de clasă $C^{m-1}_{[a,b]}$, ale cărei restricții g_i pe fiecare subinterval $[x_{i-1}, x_i]$ al diviziunii Δ sunt polinoame de grad m << n:

$$g_i(x) = P_m^i(x), \quad \forall x \in [x_{i-1}, x_i], \quad i = \overline{1, n}; \quad grad P_m^i = m$$
 (4.2)

Functia spline g are, conform definiţiei, *primele* (*m*–1) *derivate continue pe intervalul* [a, b]:

$$g_i^{(j)}(x_i) = g_{i-1}^{(j)}(x_i); \ j = \overline{1, m-1}; \ i = \overline{1, n-1}.$$
 (4.3)

Aproximarea cu funcţii spline (cont'd 2)

Derivata de ordinul m este discontinuă în punctele x_i ale diviziunii Δ , este o funcție polinomială netedă pe porțiuni, curbura sa fiind determinată de valoarea lui m.

Funcția spline g este considerată *funcție spline de* aproximare prin interpolare a funcției f pe diviziunea Δ dacă în toate punctele diviziunii sunt îndeplinite condițiile

$$g(x_i) = y_i, i = \overline{0,n}$$
 (4.4)

Aproximarea cu funcții spline (cont'd 3)

Coeficienții funcțiilor polinomiale P_m^i sunt obținuți prin rezolvarea sistemului liniar format din ecuațiile (4.3) și (4.4) împreună cu cele (m-1) condiții la limitele interalului [a, b].

Caz particular: m = 2.

Funcțiile spline g de interpolare parabolică (m=2)

Restricţiile g_i au expresiile

$$g_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2, \forall x \in [x_{i-1}, x_i], i = \overline{1, n}$$
 (4.5)

cu coeficienții care trebuie determinați $a_i, b_i, c_i \in \mathbb{R}, i = 1, n$, în vederea definirii funcției g.

Sunt impuse condiţiile de interpolare (4.4) pentru punctele x_{i-1} :

$$g_i(x_{i-1}) = y_{i-1}, i = \overline{1,n}$$
 (4.6)

(4.5) și (4.6) \Rightarrow coeficienții a_i :

Funcțiile spline g de interpolare parabolică (cont'd 1)

$$a_i = y_{i-1}, \ i = \overline{1,n}$$
 (4.7)

Au rămas de determinat 2n coeficienți, $b_i, c_i, i = 1, n$. Se rescrie (4.5) sub forma

$$g_i(x) = y_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2, \forall x \in [x_{i-1}, x_i], i = \overline{1, n}$$
 (4.8)

Derivând (4.8) în raport cu $x \Rightarrow$

$$g_i'(x) = b_i + 2c_i(x - x_{i-1}), \forall x \in [x_{i-1}, x_i], i = \overline{1, n}$$
 (4.9)

Sunt impuse condiţiile (4.4) \Rightarrow

Funcţiile spline g de interpolare parabolică (cont'd 2)

$$y_i = y_{i-1} + b_i(x_i - x_{i-1}) + c_i(x_i - x_{i-1})^2, \forall x \in [x_{i-1}, x_i], i = \overline{1, n}$$
 (4.10)

Sunt impuse condiţiile $(4.3) \Rightarrow$

$$b_{i+1} = b_i + 2c_i(x_i - x_{i-1}), \quad i = \overline{1, n-1}$$
 (4.11)

 \Rightarrow mai este nevoie de o condiţie. De regulă, se consideră că $g_1^{'}(x_0)$ este cunoscută:

$$g_1'(x_0) = b_1 + 2c_i(x_0 - x_0) = b_1$$
 (4.12)

adică se alege b_1 pe baza experienței specialistului care aproximează pe f.

Funcțiile spline g de interpolare parabolică (cont'd 3)

Sistemul liniar (4.10) ... (4.12) de 2*n* ecuaţii cu 2*n* necunoscute. În cazul punctelor **echidistante** cu pasul de discretizare h, sistemul este transformat în

$$\begin{split} b_1 &= g_1{}'(x_0) \;, \\ h \; b_i \; + \; h^2 \; c_i \; = \; y_i - y_{i\text{-}1} \;, \; \; i \; = \; 1 \; ... \; n \;, \\ b_i \; + \; 2 \; h \; c_i - b_{i+1} \; = \; 0 \;, \; \; i \; = \; 1 \; ... \; n-1 \;. \end{split} \label{eq:b1}$$

După rezolvarea sistemului, pentru aproximarea unei valori f(x) se identifică subintervalul $x \in [x_{i-1}, x_i]$ și apoi se aplică (4.8).

Funcțiile spline g de interpolare parabolică (cont'd 4)

Dacă se *particularizează* sistemul (4.13) pentru $n=3 \rightarrow$ sistem liniar de 6 ecuații cu 6 necunoscute:

$$\begin{cases} b_{1} = g_{1}'(x_{0}) \\ hb_{1} + h^{2}c_{1} = y_{1} - y_{0} \\ b_{1} + 2hc_{1} - b_{2} = 0 \\ hb_{2} + h^{2}c_{2} = y_{2} - y_{1} \\ b_{2} + 2hc_{2} - b_{3} = 0 \\ hb_{3} + h^{2}c_{3} = y_{3} - y_{2} \end{cases}$$

$$(4.14)$$

Sistemul obţinut este inferior triunghiular \Rightarrow rezolvare simplă.