Time Series

Peter Lukianchenko

25 February 2023

Definition of GARCH

- What if p in ARCH(p) is 'too big'?
- Take more parsimonious version Generalized ARCH
- Most popular specification is GARCH(1,1)

GARCH(1,1). Bollerslev (1986)

Let the error process be such that

Fror process be such that
$$\varepsilon_{t} = \sigma_{t} \nu_{t}, \quad \nu_{t} \sim \text{i.i.d.} N(0,1)$$

$$\varepsilon_{t} = \alpha_{0} + \alpha \varepsilon_{t-1}^{2} + \beta \sigma_{t-1}^{2} + \beta \sigma_{t-1}^{2} + \beta \sigma_{t-2}^{2} \qquad (5)$$

$$\text{CCH}(1,1) \text{ can be rewritten as } \text{ARCH}(\infty):$$

• GARCH(1,1) can be rewritten as ARCH(∞):

$$\sigma_t^2 = \alpha_0(1 + \beta + \beta^2 + ...) + \alpha(1 + \beta L + \beta^2 L^2 + ...)\varepsilon_{t-1}^2$$

Forecasting

- Note $E_t(\sigma_{t+1}^2) = \sigma_{t+1}^2$
- Thus, 1-step-ahead forecast of variance of r_t is given directly by the model!
- Long-run variance $\sigma^2 = \frac{\alpha_0}{1-\alpha-\beta} \Rightarrow \alpha_0 = \sigma^2(1-\alpha-\beta)$
- Substitute α_0 to (5) and rewrite:

$$\sigma_{t+1}^2 = \sigma^2 + \alpha(\varepsilon_t^2 - \sigma^2) + \beta(\sigma_t^2 - \sigma^2)$$

- If $\mu_t=0$ then $r_t=\varepsilon_t$ and tomorrow's variance is a weighted average of the long-run variance, today's squared return and today's variance
- k-step ahead forecast

$$E_t[\sigma_{t+k}^2] - \sigma^2 = (\alpha + \beta)^{k-1}(\sigma_{t+1}^2 - \sigma^2)$$

 $E_t[\sigma_{t+k}^2] \stackrel{k\to\infty}{\longrightarrow} \sigma^2$ (mean reversion of volatility)

Etn N/0:93)

GARCH(p,q)

Extended model:

$$\varepsilon_t = \sigma_t \nu_t, \quad \nu_t \sim \text{i.i.d.} N(0, 1)$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2$$

- $\sigma_t^2 = E_{t-1}(\varepsilon_t^2)$ (model for conditional variance)
- Can be expressed as ARMA(max(p, q), q) (use $\eta_t = \varepsilon_t^2 \sigma_t^2$)
- Covariance stationary ⇔ roots of ARMA characteristic equation lie inside unit circle (for inverse equation - outside)
- If covariance-stationary $\operatorname{Var} \varepsilon_t = \alpha_0/(1-\sum_{i=1}^p \alpha_i \sum_{j=1}^q \beta_j)$

GARCH(1,1) vs ARMA

- Take $\eta_t = \varepsilon_t^2 \sigma_t^2 \Rightarrow \sigma_t^2 = \varepsilon_t^2 \eta_t$
- η_t is WN(0)
- Then (1) can be rewritten in the form:

$$\varepsilon_t^2 - \eta_t = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 (\varepsilon_{t-1}^2 - \eta_{t-1})$$

Rearranging we get:

$$\varepsilon_t^2 = \alpha_0 + (\alpha_1 + \beta_1)\varepsilon_{t-1}^2 + \eta_t - \beta_1\eta_{t-1}$$

- Thus GARCH(1,1) is ARMA(1,1) for ε_t^2
- When is ARMA(1,1) covariance-stationary (= weakly stationary)?

Limitations of GARCH

ARMA (...; ...)

+ Gorch C...

Among others GARCH has the following limitations:

- Doesn't account for leverage effects
- Doesn't allow for direct feedback between conditional variance and conditional mean
- Non-negativity constraint may be violated by the estimated model

Series and Stochastic From Series and Series and Stochastic From Series and Series an

6

IGARCH model

Ex NO 10 16 Conditional volatility is persistent: if estimating GARCH(1,1) for a long time series of stock returns $lpha_1 + eta_1 pprox 1$

(1990) IGARCH. Nelson (1990)

Constraining $\alpha_1 + \beta_1 = 1$ in (1) yields

$$\sigma_t^2 = \alpha_0 + (1 - \beta_1)\varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$
 (2)

- More parsimonious representation
- Conditional variance seems to act like a process with unit root (IGARCH = Integrated GARCH)3 2 = do + (1-p.) Et + B. 6+
- Forecast of the conditional variance:

$$egin{aligned} E_t[\sigma^2_{t+2}] &= lpha_0 + \sigma^2_{t+1} \ E_t[\sigma^2_{t+j}] &= (j-1)lpha_0 + \sigma^2_{t+1} \end{aligned}$$

IGARCH vs ARMA

- The analogy between IGARCH and ARIMA with unit root is not perfect
- Equation (2) can be rewritten in the form

$$\sigma_t^2 = \frac{\alpha_0}{1 - \beta_1} + (1 - \beta_1) \sum_{i=0}^{\infty} \beta_1^i \varepsilon_{t-1-i}^2$$

- ullet Conditional variance is geometrically decaying function of $\{ arepsilon_t^2 \}$
- Thus, IGARCH is not truly non-stationary and can be estimated like GARCH

IGARCH captures

- Volatility clustering
- Long memory in volatility

ARCH-M

- Risk-averse agents are compensated for holding a risky asset
- Risk premium is an increasing function of the conditional variance of returns: the greater the conditional variance, the greater the compensation for holding the asset

ARCH-M. Engle, Lilien, Robins (1987)

Excess return from holding a risky asset (wrt to a one-period T-bill)

$$r_t = c + \delta \sigma_t^2 + \varepsilon_t, \tag{3}$$

$$\varepsilon_t = \sigma_t \nu_t, \tag{4}$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 \tag{5}$$

• In (3) instead of σ_t^2 we can use σ_t or $\log(\sigma_t)$

Empirics

Source: AP (2015) Model: AR(1)-GARCH-M(1,1)

$$r_{t+1} = a_0 + a_1 r_t + \delta \sigma_{t+1} + \varepsilon_{t+1},$$

$$\varepsilon_{t+1} = \sigma_{t+1} \nu_{t+1},$$

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 \varepsilon_t^2 + \beta_1 \sigma_t^2$$

Table Parameter estimates (* -5% significance)

	<i>a</i> ₀	a_1	δ	$\alpha_0 \cdot 10^3$	α_1	β_1
Euro/USD ex rate	e 0.084	-0.003 -	-0.13	1.151	0.03*	0.968*
S&P 500 index	-0.043	0.016	0.08*	11.869*	0.073*	0.919*
US 3-m T-bill	-0.001	-0.063*	0.02*	0.002*	0.159*	0.841*

Leverage

- Black (1976): "bad" news have more pronounced effect on volatility of stocks than "good" news
- Negative correlation between stock returns and changes in volatility
- This is leverage effect
- Possible explanation: stock price ↓ ⇒ Debt/Equity ↑ ⇒ volatility ↑ (shareholders perceive their future cashflow stream as being more risky)

TGARCH

- "New information" is measured by the size of shock ε_t
- "Bad" news $\Leftrightarrow \varepsilon_t < 0$, "Good" news $\Leftrightarrow \varepsilon_t > 0$

TGARCH. Glosten, Jaganathan, Runkle (1994)

Shocks greater than a threshold have different effects than shocks below the threshold:

$$r_{t} = \mu_{t} + \varepsilon_{t},$$

$$\varepsilon_{t} = \sigma_{t} \nu_{t},$$

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} \varepsilon_{t-1}^{2} + \lambda_{1} I(\varepsilon_{t-1} < 0) \cdot \varepsilon_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}$$
(6)

• In (6)
$$I(\varepsilon_{t-1} < 0) = \begin{cases} 1, & \text{if } \varepsilon_{t-1} < 0 \\ 0, & \text{if } \varepsilon_{t-1} \ge 0 \end{cases}$$

TGARCH = Threshold GARCH (or GJR-GARCH)

TGARCH

Source: AP (2015) Model: TARCH(1,1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \lambda_1 I(\varepsilon_{t-1} < 0) \cdot \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

TableParameter estimates (* – 5% significance)

	$\alpha_0 \cdot 10^3$	$lpha_1$	eta_1	λ_1	λ_1 t-stat
Euro/USD ex rate					1.375
S&P 500 index	15.963*	0.020*	0.917^{*}	0.097^{*}	3.593
US 3-m T-bill	0.002*	0.120*	0.839*	-0.083*	-2.306

• $\lambda_1>0$ for stock returns, $\lambda_1<0$ for interest rates, $\lambda_1\approx0$ for exchange rates

Pagan and Schwert

• Graph of σ_t^2 as a function of ε_{t-1} , everything else fixed

EGARCH

Another model accounting for asymmetric effect is EGARCH
 Exponential GARCH

EGARCH. Nelson (1991)

The equation for the conditional variance is in log-linear form:

$$\ln(\sigma_t^2) = \alpha_0 + \beta \ln(\sigma_{t-1}^2) + \alpha \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + \gamma \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$$
 (7)

- Doesn't require non-negativity constraints
- In (7) parameter γ is "in charge" of asymmetry
- Standardized shocks $\left(\frac{\varepsilon_{t-1}}{\sigma_{t-1}}\right)$ are used unit-free measure
- BUT: difficult to forecast conditional variance

Vart floct Stock

Empirics

Source: AP (2015) **Model:** EGARCH(1,1)

$$\ln(\sigma_t^2) = \alpha_0 + \beta \ln(\sigma_{t-1}^2) + \alpha \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + \gamma \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$$

Table Parameter estimates (* -5% significance)

	$lpha_0 \cdot 10^3$	α	β	γ	γ t-stat
Euro/USD ex rate S&P 500 index US 3-m T-bill		0.128*	0.984*	-0.080^*	-4.706

- $\gamma <$ 0 for stock returns, $\gamma >$ 0 for interest rates, $\gamma \approx$ 0 for exchange rates
- $oldsymbol{\circ} \gamma <$ 0 implies higher future volatility following negative shock

Testing

- Estimate TARCH (or EGARCH) model and perform t-test for $\lambda_1 = 0$ ($\gamma = 0$)
- Or perform diagnostic test for leverage effects in residuals:
 - Estimate (G)ARCH model
 - ② Form standardized residuals $s_t = \frac{\hat{\varepsilon}_t}{\hat{\sigma}_t}$, form $d_t = I(\hat{\varepsilon}_t < 0)$
 - Stimate a regression:
 - $s_t^2 = a_0 + a_1 s_{t-1} + a_2 s_{t-2} + ...$ no leverage effects \Leftrightarrow not reject H_0 : $a_1 = a_2 = ... = 0$
 - or Sign Bias regression:
 s_t² = a₀ + a₁d_{t-1} + u_t
 No sign helpfulness in predicting σ_t ⇔ not reject H₀: a₁ = 0
 - or Generalized regression: $s_t^2 = a_0 + a_1 d_{t-1} + a_2 d_{t-1} \cdot s_{t-1} + a_3 (1 d_{t-1}) \cdot s_{t-1} + u_t$ no leverage effects \Leftrightarrow not reject H_0 : $a_1 = a_2 = a_3 = 0$

More

PARCH (Ding, Granger and Engle, 1993):

$$\sigma_t^{\gamma} = \alpha_0 + \alpha \varepsilon_{t-1}^{\gamma} + \beta \sigma_{t-1}^{\gamma}$$

APARCH (Ding, Granger and Engle, 1993):

$$\sigma_t^{\gamma} = \alpha_0 + \alpha (\varepsilon_{t-1} - \delta |\varepsilon_{t-1}|)^{\gamma} + \beta \sigma_{t-1}^{\gamma}$$

SQR-GARCH (Taylor, 1986 and Schwert, 1989):

$$\sigma_t = \alpha_0 + \alpha |\varepsilon_{t-1}| + \beta \sigma_{t-1}$$

QARCH (Sentana, 1991):

$$\sigma_t^2 = \alpha_0 + \alpha \varepsilon_{t-1}^2 + \delta \varepsilon_{t-1} + \beta \sigma_{t-1}^2$$

NARCH (Higgins and Berra, 1992)

$$\sigma_t^2 = (\phi_0 \alpha_0^{\delta} + \phi_1 \varepsilon_{t-1}^{2\delta} + \phi_2 \varepsilon_{t-2}^{2\delta} + \dots + \phi_p \varepsilon_{t-p}^{2\delta})^{1/\delta}$$

All-in-the-family GARCH (Hentschel, 1995)

$$\frac{\sigma_t^{\gamma} - 1}{\gamma} = \alpha_0 + \alpha \sigma_{t-1}^{\gamma} \left[|\nu_{t-1} - \delta| - \lambda (\nu_{t-1} - \delta) \right] + \beta \frac{\sigma_{t-1} - 1}{\gamma}$$

To be continued...

Anything better than GARCH(1,1)

Paper by Hansen and Lunde (2005):

330 different ARCH-type models considered for Deutsche mark - US dollar exchange rate and for IBM equity returns.

Conclusions:

- For exchange rates: no evidence against GARCH(1,1)
- For equity returns: APARCH(2,2)

$$\sigma_t^{\gamma} = \alpha_0 + \sum_{i=1}^2 \alpha_i (|\varepsilon_{t-1}| - \delta_i \varepsilon_{t-1})^{\gamma} + \sum_{i=1}^2 \beta_i \sigma_{t-1}^{\gamma}$$

- Allows for leverage effect (when $\delta_i \neq 0$)
- Allows for stronger serial correlation in absolute values of returns in power $\gamma < 2$ than in squared returns

Likelyhood function

- Suppose $\{\varepsilon_t\}$ ~ i.i.d. $N(0, \sigma^2)$,
- Likelihood of observation ε_t is

$$I_t(\sigma^2) := f(\varepsilon_t | \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{\varepsilon_t^2}{2\sigma^2})$$

• $\{\varepsilon_t\}$ are independent \Rightarrow likelihood of joint realizations is:

$$\mathcal{L}(\sigma^2|\varepsilon_1,...,\varepsilon_T) = \prod_{t=1}^T \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{\varepsilon_t^2}{2\sigma^2})$$

- We want to find the most likely parameters given actual data
- So $\mathcal{L}(\sigma^2|\varepsilon_1,...,\varepsilon_T) o \mathsf{max}$

Likelyhood function

Better take natural log:

$$\ln \mathcal{L} = -\frac{T}{2} \ln(2\pi) - \frac{T}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{T} (\varepsilon_t)^2 \to \max$$

Example

if
$$y_t = bx_t + \varepsilon_t \ (\Leftrightarrow \varepsilon_t = y_t - bx_t)$$

$$\ln \mathcal{L} = -\frac{T}{2}\ln(2\pi) - \frac{T}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{t=1}^{T}(y_t - bx_t)^2 \rightarrow \max_{b,\sigma^2}$$

• FOC:
$$\frac{\partial \ln \mathcal{L}}{\partial b} = 0, \frac{\partial \ln \mathcal{L}}{\partial \sigma^2} = 0$$

MLE

Solutions for FOC:

$$\hat{\beta} = \frac{\sum_{t=1}^{T} x_t y_t}{\sum_{t=1}^{T} x_t^2}$$

$$\hat{\sigma^2} = \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t^2$$

- MLEs are
 - Consistent
 - Asymptotically normal
 - Asymptotically efficient
- Food for thought: what's the connection to OLS?

Example (AR(1) - GARCH(1,1))

$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t,$$
 $\varepsilon_t = \sigma_t \nu_t, \quad \nu_t \sim \text{i.i.d. } N(0,1)$ $\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$

- Denote $\theta = (a_0, a_1, \alpha_0, \alpha_1, \beta_1)$
- Then joined pdf

$$\mathcal{L}(\boldsymbol{\theta}|y_1,...,y_T) = f(y_1,...,y_T|\boldsymbol{\theta}) = f_{y_1}(y_1) \cdot f_{y_2|y_1}(y_2|y_1) \cdot ... \cdot f_{y_T|y_{T-1},...,y_1}(y_T|y_{T-1},...,y_1)$$
(3)

GARCH case

- In (3) we don't know the unconditional distribution of y_1
- So take conditional likelihood

$$f(y_2,...,y_T|y_1,\theta) = f_{y_2|y_1}(y_2|y_1) \cdot ... \cdot f_{y_T|y_{T-1},...,y_1}(y_T|y_{T-1},...,y_1) = \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp(-\frac{\varepsilon_t^2}{2\sigma_t^2})$$

Take log:

$$\ln \mathcal{L}(\boldsymbol{\theta}) = -\frac{T-1}{2} \ln(2\pi) - \frac{1}{2} \sum_{t=2}^{T} \ln(\sigma_t^2) - \frac{1}{2} \sum_{t=2}^{T} (\frac{\varepsilon_t^2}{\sigma_t^2}) \quad (4)$$

• Note that now $\sigma_t^2 \neq const$

- In (3) we don't know the unconditional distribution of y_1
- So take conditional likelihood

$$f(y_2,...,y_T|y_1,\theta) = f_{y_2|y_1}(y_2|y_1) \cdot ... \cdot f_{y_T|y_{T-1},...,y_1}(y_T|y_{T-1},...,y_1) = \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp(-\frac{\varepsilon_t^2}{2\sigma_t^2})$$

Take log:

$$\ln \mathcal{L}(\boldsymbol{\theta}) = -\frac{T-1}{2} \ln(2\pi) - \frac{1}{2} \sum_{t=2}^{T} \ln(\sigma_t^2) - \frac{1}{2} \sum_{t=2}^{T} (\frac{\varepsilon_t^2}{\sigma_t^2}) \quad (4)$$

• Note that now $\sigma_t^2 \neq const$

• in (4)
$$\varepsilon_t = y_t - a_0 - a_1 y_{t-1}$$
 and $\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$

So

$$\ln \mathcal{L}(oldsymbol{ heta})
ightarrow \max_{oldsymbol{ heta} = (oldsymbol{a}_0, oldsymbol{a}_1, lpha_0, lpha_1, eta_1)}$$

Issues:

- ① What are initial values ε_1 and σ_1^2 ? (often $\varepsilon_1 := 0, \sigma_1^2 := \frac{\alpha_0}{(1-\alpha_1-\beta_1)}$)
- ② No simple analytical solutions for $\hat{\theta} \Rightarrow use numerical methods$ (in R, Matlab, EVIews,...)
- Different algorithms can find different local maxima (BHHH/Marquardt algorithms - see Press et.al, 1992)

Food for thought: Why OLS can't be used?

If two models are nested then \Rightarrow statistical tests for spare parameters can be used.

Example (Nested models)

TGARCH 'nests' GARCH

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \lambda_1 I(\varepsilon_{t-1} < 0) \cdot \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

Thus,

$$H_0: \lambda_1 = 0,$$

$$H_1$$
: $\lambda_1 \neq 0$

• t-tests, F-tests for simple restrictions

Likelihood ratio (LR) test involves estimation of two models

- **1** Restricted model (when H_0 is true) \Rightarrow likelihood \mathcal{L}_r
- ② Unrestricted model (when H_1 is true) \Rightarrow likelihood \mathcal{L}_u

If H_0 is true

$$LR := -2 \ln \left(\frac{\mathcal{L}_r}{\mathcal{L}_u} \right) \longrightarrow \chi^2(m),$$

where m – number of restrictions

LR-test

- Is more flexible for non-linear models
- Can be used for non-linear restrictions

If number of parameters in the model $\uparrow \Rightarrow$ estimation error also \uparrow Information criteria (T is # of observations, k is # of parameters):

$$AIC := -\frac{2}{T} \ln \mathcal{L} + \frac{2k}{T}$$

$$BIC := -\frac{2}{T} \ln \mathcal{L} + \frac{2k}{T} \ln(\sqrt{T})$$

$$HQIC := -\frac{2}{T} \ln \mathcal{L} + \frac{2k}{T} \ln(\ln T)$$

- First term represents the goodness-of-fit
- Second terms represent penalty for extra parameters
- We want to choose model with the smallest info criterion

Let f_t be the forecast of the realized value y_t

Example

Let
$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$
, then $f_t := \hat{y}_t = \hat{a}_0 + \hat{a}_1 y_{t-1}$

$$MSE := \frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} = \frac{1}{T} \sum_{t=1}^{T} (y_{t} - \hat{y}_{t})^{2}$$

- We want model with the lowest MSE (\Leftrightarrow highest R^2)
- Here loss function $L(y_t, \hat{y}_t) = (y_t \hat{y}_t)^2$
- OLS estimation chooses parameter values to minimize MSE

Denote variance forecast by h_t

Example

For GARCH(1,1) model
$$h_t := \sigma_t^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 \varepsilon_{t-1}^2 + \widehat{\beta}_1 \sigma_{t-1}^2$$

• Conditional variance is not observable ex post \Rightarrow instead of unknown realized value we use proxy $\tilde{\sigma}_t$

Loss functions:

- **1** Squared error: $L(\tilde{\sigma}_t^2, h_t) = (\tilde{\sigma}_t^2 h_t)$
- **QLIKE**: $L(\tilde{\sigma}_t^2, h_t) = \frac{\tilde{\sigma}_t^2}{h_t} \ln \frac{\tilde{\sigma}_t^2}{h_t} 1$

To choose volatility model rank them according to the average loss

$$\bar{L}_i := \frac{1}{T} \sum_{t=1}^T L(\tilde{\sigma}_t^2, h_t^i)$$
 for model i

