

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WFM02_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Notes	Marks		
1	$2(\cos 0 + i \sin 0)$ or 2	$(z =) 2 \text{ or } (z =) 2(\cos 0 + i\sin 0)$ or $2\cos 0 + i\sin 0 \text{ or } 2 + 0i$ Allow $2(\cos 0\pi + i\sin 0\pi)$	B1		
	$2\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)$	This answer in this form. Do not allow e.g. $2e^{\frac{2\pi}{5}i}$ but allow $2\cos\frac{2\pi}{5} + 2i\sin\frac{2\pi}{5}$	B1		
	$2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right), (k=2,3,4)$	Attempts at least 2 more solutions whose arguments differ by $\frac{2\pi}{5}$. Allow this mark if the arguments are out of range. May be implied by their answers.	M1		
		olution form can score full marks if			
		ks below can be implied.			
	E.g. $z = 2\left(\cos\frac{2\kappa\pi}{5} + i\sin\frac{2\kappa\pi}{5}\right)$,	(k = 0, 1, 2, 3, 4) scores full marks			
	$2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ $2\left(6\pi + 6\pi\right)$	A1: One further correct answer, allow the brackets to be expanded.			
	$2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$	A1: All correct, allow the brackets to be expanded.	A1 A1		
Do no	ot allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$ or $2\left(\cos\left(\frac{4\pi}{5}\right)\right)$	$\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)$ for $2\left(\cos\frac{6\pi}{5} + i\sin\frac{\pi}{5}\right)$	$\left(\frac{6\pi}{5}\right)$		
Do no	Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$				
Fc	Ignore answers outside the range. For a fully correct solution that has extra solutions in range, deduct the final A mark.				
	Answers in degrees : Penalise once the first time it occurs. Answers in degrees are: 0, 72, 144, 216, 288				
		,,,,	(5)		
			Total 5		

Question Number	Scheme	Notes	Marks		
2.	$\frac{x-4}{(x+3)} \le$	$\leq \frac{5}{x(x+3)}$			
	$\frac{x-4}{(x+3)} - \frac{5}{x(x+3)} \left(\le 0 \right)$	Collects expressions to one side	M1		
	$\frac{x^2-4x-5}{x(x+3)} \left(\le 0 \right)$	M1: Attempt common denominator	M1A1		
	x(x+3)	A1: Correct single fraction	WIIAI		
	x = 0, -3	Correct critical values	B1		
	$x^2 - 4x - 5 \Longrightarrow (x - 5)(x + 1) = 0$	Attempt to solve their quadratic as far as $x =$ to obtain the other 2 critical	M1		
Way 1	$\Rightarrow x = \dots$ $x = -1.5$	values			
	x = -1, 5	Correct critical values	A1		
		M1: Attempts two inequalities using their 4 critical values in ascending order.			
	$-3 < x \le -1, \ 0 < x \le 5$	E.g. $a * x * b$, $c * x * d$ where * is			
	or e.g.	"<" or " \leq " and $a < b < c < d$ or	dM1A1A1		
	$(-3,-1] \cup (0,5]$	equivalent inequalities. Dependent on at			
	(5, 1) = (0, 5)	least one earlier M mark. A1: All 4 cv's in the inequalities correct	-		
		A1: Both intervals fully correct			
	Notes				

Notes

Intervals may be separated by commas, written separately, ∪ or "or" or "and" may be used but not

All marks are available for correct work if "=" is used instead of "≤" for the first 6 marks

			(9)
			Total 9
	Multiplies l	$\operatorname{py} x^2 (x+3)^2$	
	$x^{2}(x+3)(x-4) \le 5x(x+3)$	Multiplies both sides by $x^2(x+3)^2$. May multiply by more terms but must be a positive multiplier containing $x^2(x+3)^2$	M1
	$x^{3}(x+3) - 4x^{2}(x+3) - 5x(x+3) \le 0$	M1: Collects expressions to one side A1: Correct inequality (or equation)	M1A1
	x = 0, -3	Correct critical values	B1
Way 2	$x(x+3)(x-5)(x+1) = 0 \Rightarrow x = \dots$	Attempt to solve their quartic as far as $x =$ to obtain the other 2 critical values. Allow the x and $x + 3$ to be "cancelled" to obtain the other critical values so may end up solving a cubic or even a quadratic.	M1
	x = -1,5	Correct critical values	A1
	$-3 < x \le -1, \ 0 < x \le 5$ or e.g. $(-3,-1] \cup (0,5]$	M1: Attempts two inequalities using their 4 critical values in ascending order. E.g. $a * x * b$, $c * x * d$ where * is "<" or " \leq " and $a < b < c < d$ or equivalent inequalities. Dependent on at least one earlier M mark. A1: All 4 cv's in the inequalities correct A1: Both intervals fully correct	dM1A1A1
			(9)

	5 -6 -5 -4 -3 2 1 1 2 3 4 5 6	Draws a sketch of graphs $y = \frac{x-4}{x+3} \text{ and } y = \frac{5}{x(x+3)}$	
Way 3	x = 0, -3	Correct critical values (vertical asymptotes)	B1
·	$\frac{x-4}{(x+3)} = \frac{5}{x(x+3)}$	Eliminate y	M1
	x(x-4)=5	M1: Obtains quadratic equation A1: Correct quadratic equation	M1A1
	$x^2 - 4x - 5 = 0 \Rightarrow x = -1,5$	M1: Solves their quadratic equation as far as $x =$ A1: Correct critical values	M1A1
	$-3 < x \le -1, \ 0 < x \le 5$ or e.g. $(-3,-1] \cup (0,5]$	M1: Attempts two inequalities using their 4 critical values in ascending order. E.g. $a * x * b$, $c * x * d$ where * is "<" or " \leq " and $a < b < c < d$ or equivalent inequalities. Dependent on at least one earlier M mark. A1: All 4 cv's in the inequalities correct A1: Both intervals fully correct	M1A1A1

If the candidate takes the above approach and there is no sketch e.g. just cross multiplies to obtain the critical values -1 and 5 then no marks are available i.e. the cv's 0 and -3 must be stated somewhere to give access to subsequent marks in this case.

	Considers	s Regions:
Way 4	Considers $x < -3 \Rightarrow x(x+3) > 0$ $x(x-4) \le 5 \Rightarrow -1 \le x \le 5$ But $x < -3$ so no solution Considers $-3 < x < 0 \Rightarrow x(x+3) < 0$ $x(x-4) \ge 5 \Rightarrow x \ge 5$ or $x \le -1$ But $-3 < x < 0$ so $-3 < x \le -1$ Considers $x > 0 \Rightarrow x(x+3) > 0$ $x(x-4) \le 5 \Rightarrow -1 \le x \le 5$ But $x > 0$ so $0 < x \le 5$	Can be marked as: B1: Critical values 0 and -3 M1: Considers 3 regions M1: Obtains quadratic equation A1: Correct quadratic M1: Solves quadratic A1: cv's -1 and 5 Final 3 marks as already defined.

3.(a) $ r^{3} - (r-1)^{3} = r^{2} - (r^{2} - 3r^{2} + 3r - 1) $ or $ r^{2} - \left(r^{2} + \left(\frac{3}{1}\right)r^{2}(-1) + \left(\frac{3}{2}\right)r(-1)^{2} + (-1)^{3} \right) $ Shows a correct expansion of $(r-1)^{3}$ or $ r^{3} - (r-1)^{3} = (r^{2} + r(r-1) + (r-1)^{2}) $ and achieves the printed answer with no errors.	Question Number	Scheme	Notes	Marks
(b) $ \frac{n^3 - (n-1)^3}{(n-1)^3 - (n-2)^3} $ Uses the method of differences. Must include at least $r = 1, 2,, n$ or $r = 1,, (n-1), n$. But may implied by sight of $\sum r^3 - (r-1)^3 = n^3$ if insufficient terms shown. If method is clearly other than differences (see note below), then score M0. The final A mark can be witheld if differences not shown i.e. just writes down n^3 . $ n^3 = \sum_{r=1}^n (3r^2 - 3r + 1) = \sum_{r=1}^n 3r^2 - \sum_{r=1}^n 3r + \sum_{r=1}^n 1 $ M1 Sets $n^3 = \sum_{r=1}^n (3r^2 - 3r + 1)$ and attempts to expand RHS $ \sum_{r=1}^n 1 = n $ Rearranges to make $k \sum_{r=1}^n r^2$ the subject and substitutes for $\sum_{r=1}^n r$. Dependent on the first method mark. $ \sum_{r=1}^n r^2 = \frac{1}{6}n(n+1)(2n+1)^{**} $ Completely correct solution with no errors seen. Allow e.g. $\frac{2n^3 + 3n^2 + n}{6} = \frac{1}{6}n(n+1)(2n+1)$ (5) Note: May be seen in (b): $ \sum_{r=1}^n r^3 - (r-1)^3 = \frac{1}{4}n^2(n+1)^2 - \frac{1}{4}n^2(n-1)^2 = n^3 \text{ etc.} $ Scores a maximum MOM1BIdMOA0 (not using differences) Generally, there are no marks for proof by induction	3.(a)	or $r^3 - \left(r^3 + \binom{3}{1}r^2(-1) + \binom{3}{2}r(-1)^2 + (-1)^3\right)$ $\equiv 3r^2 - 3r + 1 *$ or $r^3 - (r-1)^3 \equiv (r^2 + r(r-1) + (r-1)^2)$	uses $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ and achieves the printed answer with	
Sets $n^3 = \sum_{r=1}^n (3r^2 - 3r + 1)$ and attempts to expand RHS $\sum_{r=1}^n 1 = n$ $\sum_{r=1}^n 1 = n \text{ seen or implied}$ B1 Rearranges to make $k \sum_{r=1}^n r^2$ the subject and substitutes for $\sum_{r=1}^n r$. Dependent on the first method mark. $\sum_{r=1}^n r^2 = \frac{1}{6} n(n+1)(2n+1) **$ Completely correct solution with no errors seen. Allow e.g. $\frac{2n^3 + 3n^2 + n}{6} = \frac{1}{6} n(n+1)(2n+1)$ Note: May be seen in (b): $\sum_{r=1}^n r^3 - (r-1)^3 = \frac{1}{4} n^2 (n+1)^2 - \frac{1}{4} n^2 (n-1)^2 = n^3 \text{ etc.}$ Scores a maximum MOM1B1dM0A0 (not using differences) Generally, there are no marks for proof by induction	(b)	$(n-1)^{3} - (n-2)^{3}$ $(n-2)^{3} - (n-3)^{3}$ $3^{3} - 2^{3}$ $2^{3} - 1^{3}$	include at least $r = 1, 2,, n$ or $r = 1,, (n-1)$, n . But may implied by sight of $\sum r^3 - (r-1)^3 = n^3$ if insufficient terms shown. If method is clearly other than differences (see note below), then score M0. The final A mark can be witheld if differences not	(1) —M1
Rearranges to make $k\sum_{r=1}^{n}r^2$ the subject and substitutes for $\sum_{r=1}^{n}r$. Dependent on the first method mark. $\sum_{r=1}^{n}r^2 = \frac{1}{6}n(n+1)(2n+1)**$ Completely correct solution with no errors seen. Allow e.g. $\frac{2n^3 + 3n^2 + n}{6} = \frac{1}{6}n(n+1)(2n+1)$ Note: May be seen in (b): $\sum_{r=1}^{n}r^3 - (r-1)^3 = \frac{1}{4}n^2(n+1)^2 - \frac{1}{4}n^2(n-1)^2 = n^3 \text{ etc.}$ Scores a maximum M0M1B1dM0A0 (not using differences) Generally, there are no marks for proof by induction		7 –1 n	7-1 7-1 7-1	M1
$3\sum_{r=1}^{n}r^{2} = n(n-1)(n+1) + \frac{3}{2}n(n+1)$ subject and substitutes for $\sum_{r=1}^{n}r$. $\sum_{r=1}^{n}r^{2} = \frac{1}{6}n(n+1)(2n+1)^{**}$ Completely correct solution with no errors seen. $A1^{*}$ Allow e.g. $\frac{2n^{3} + 3n^{2} + n}{6} = \frac{1}{6}n(n+1)(2n+1)$ $\sum_{r=1}^{n}r^{3} - (r-1)^{3} = \frac{1}{4}n^{2}(n+1)^{2} - \frac{1}{4}n^{2}(n-1)^{2} = n^{3} \text{ etc.}$ Scores a maximum M0M1B1dM0A0 (not using differences) Generally, there are no marks for proof by induction		$\sum_{r=1}^{n} 1 = n$	$\sum_{r=1}^{n} 1 = n \text{ seen or implied}$	B1
Allow e.g. $\frac{2n^3 + 3n^2 + n}{6} = \frac{1}{6}n(n+1)(2n+1)$ Allow e.g. $\frac{2n^3 + 3n^2 + n}{6} = \frac{1}{6}n(n+1)(2n+1)$ Note: May be seen in (b): $\sum_{r=1}^{n} r^3 - (r-1)^3 = \frac{1}{4}n^2(n+1)^2 - \frac{1}{4}n^2(n-1)^2 = n^3 \text{ etc.}$ Scores a maximum M0M1B1dM0A0 (not using differences) Generally, there are no marks for proof by induction		$3\sum_{r=1}^{n} r^2 = n(n-1)(n+1) + \frac{3}{2}n(n+1)$	subject and substitutes for $\sum_{r=1}^{n} r$. Dependent on the first method	dM1
Note: May be seen in (b): $\sum_{r=1}^{n} r^3 - (r-1)^3 = \frac{1}{4} n^2 (n+1)^2 - \frac{1}{4} n^2 (n-1)^2 = n^3 \text{ etc.}$ Scores a maximum M0M1B1dM0A0 (not using differences) Generally, there are no marks for proof by induction			errors seen.	A1*
$\sum_{r=1}^{n} r^3 - (r-1)^3 = \frac{1}{4} n^2 (n+1)^2 - \frac{1}{4} n^2 (n-1)^2 = n^3 \text{ etc.}$ Scores a maximum M0M1B1dM0A0 (not using differences) Generally, there are no marks for proof by induction		Allow e.g. $\frac{2n^3 + 3n^2 + n}{6}$	$\frac{1}{6} = \frac{1}{6} n(n+1)(2n+1)$	(5)
Generally, there are no marks for proof by induction		$\sum_{r=1}^{n} r^{3} - (r-1)^{3} = \frac{1}{4} n^{2} (n+1)^{3}$	$\left(n-1\right)^{2} - \frac{1}{4}n^{2}(n-1)^{2} = n^{3}$ etc.	
			· · · · · · · · · · · · · · · · · · ·	Total 6

Question Number	Scheme	Notes	Mark
4 (a)	$y = 3e^{-x}\cos 3x + Ae^{-x}\sin 3x$		
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -3\mathrm{e}^{-x}\cos 3x - 9\mathrm{e}^{-x}\sin 3x -$	$-Ae^{-x}\sin 3x + 3Ae^{-x}\cos 3x$	
	$(=(-3+3A)e^{-x}\cos 3x + (-9)$	$(9-A)e^{-x}\sin 3x$	-M1
	Attempts to differentiate the given expres	ŕ	
	$3e^{-x}\cos 3x$ to give $\alpha e^{-x}\cos 3x + \beta e^{-x}\sin 3x$	3x or by using the product rule on	
	$Ae^{-x} \sin 3x$ to give $\alpha Ae^{-x} c$	$\cos 3x + \beta A e^{-x} \sin 3x$	
	$\frac{d^2y}{dx^2} = (-24 - 6A)e^{-x}\cos 3x - 4A$	$+(18-8A)e^{-x}\sin 3x$	
	(Terms may be un	,	d M1
	Uses the product rule again on an expression o		
	give $\alpha e^{-x} \cos 3x + \beta e^{-x} \sin 3x$. Depend		
	$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 10y = (12 - 12A)e^{-x} c$		+M1
	Substitute their results into the differen	Compares coefficients of	
	$12-12A = 0$ or $36+4A = 40 \Rightarrow A =$	$e^{-x} \sin 3x$ or $e^{-x} \cos 3x$ and attempts to find A. Dependent on	d M1
		the previous method mark.	
	$\Rightarrow A=1$	cao	A1
(b)		M1: Forms and attempts to solve	
Marks	$m^2 - 2m + 10 = 0 \Longrightarrow m = 1 \pm 3i$	the Auxiliary Equation. See General Principles.	M1 A
for (b)		A1: Correct solution for the AE	
can score anywhere in their	$(y =) e^{x} (C \cos 3x + D \sin 3x)$ or $(y =) C e^{(1+3i)x} + D e^{(1-3i)x}$	Correct form for CF using their complex roots from the AE	M1
answer.	$y = e^{x} (C\cos 3x + D\sin 3x) + 3$	$\frac{1}{10^{-x}}\cos 2x + a^{-x}\sin 2x$	
	$y = C(C \cos 3x + D \sin 3x) + S$ GS = their CF + their PI (Allow Must start $y = \dots$ and depends on at least one been using a PI of the	ft on their CF and PI) the M's being scored and must have	A1ft
	-		
(c)	$x = 0, y = 3 \Rightarrow 3 = C + 3 (\Rightarrow C = 0)$	Attempts to substitute $x = 0$ and $y = 3$ into their answer to (b)	M1
	$\frac{dy}{dx} = (C+3D)e^{x} \cos 3x + (-3C+D)e^{x} \sin 3x - 10e^{-x} \sin 3x$		
	Attempt to differentiate their GS		
	3 = C + 3D	Attempt to substitute $x = 0$ and $\frac{dy}{dx} = 3$ into their $\frac{dy}{dx}$	M1
	$y = e^x \sin 3x + 3e^{-x} \cos 3x + e^{-x} \sin 3x$	Correct answer. Must start $y =$	Alcad
			Total

Question Number	Scheme	Notes	Marks
5	$y = e^{\cos^2 x}$		
(a)	M1: Differentiates using the chain ru $\alpha \sin x \cos x e^{cc}$ A1: Correct	$e^{\cos^2 x} = -\sin 2x e^{\cos^2 x}$ alle to obtain an expression of the form $e^{\cos^2 x}$ or $\beta \sin 2x e^{\cos^2 x}$ et derivative $\frac{1}{2}(1 + \cos 2x) \text{ instead of } \cos^2 x$	-M1A1
	$\frac{d^2y}{dx^2} = -\sin 2x(-2\sin x)$ Correct use of the Product	$\cos x e^{\cos^2 x}$) $-2\cos 2x e^{\cos^2 x}$ Rule on their first derivative first method mark.	- d M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^{\cos^2 x} (\sin^2 2x - 2\cos 2x)^*$	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A1*
	$y = e^{\cos^2 x} \Rightarrow \ln y = \cos^2 x \Rightarrow \frac{1}{y} \frac{dy}{dx} = -2\sin x \cos x$ $M1: \frac{1}{y} \frac{dy}{dx} = k \sin x \cos x \text{ or } k \sin 2x \text{ A1: } \frac{1}{y} \frac{dy}{dx} = -2\sin x \cos x$ $\frac{dy}{dx} = -y \sin 2x \Rightarrow \frac{d^2 y}{dx^2} = -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $M1: \text{ Correct use of product rule}$ $\frac{d^2 y}{dx^2} = e^{\cos^2 x} (\sin^2 2x - 2\cos 2x)^*$		
	A1: Achieves the printed answer with no errors.		(4)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2\mathrm{e}$	Both seen, can be implied by subsequent work.	B1
	$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots$ $= e^{\cos^2 0} - \sin 0e^{\cos^2 0}x + \frac{1}{2}e^{\cos^2 0}(\sin^2 0 - 2\cos 0)x^2 + \dots$ Applies the correct Maclaurin expansion, the "\frac{1}{2}" is required and there must be no x's in the derivatives. This can be implied by their expansion but if the expansion in incorrect for their values and the formula is not quoted, score M0. $(e^{\cos^2 x}) = e(1 - x^2 + 1)$ Or exact equivalent e.g. $e - ex^2$		M1
	$\left(e^{\cos^2 x}\right) = e(1-x^2+)$	(i.e. all trig. evaluated)	
			(3) Total 7

Question Number	Scheme	Notes	Marks
6.	$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin y$	$x = (\cos^2 x) \ln x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \frac{\sin x}{\cos x} = \cos x \ln x$	Attempt to divide through by cos x. If the intention is not clear, must see at least 2 terms divided by cos x.	M1
	$I = e^{\int \frac{\sin x}{\cos x} dx} = e^{-\ln \cos x}$	M1: $e^{\int \pm their P(x)(dx)}$. Dependent on the first method mark. A1: $e^{-ln\cos x}$ or $e^{ln\sec x}$	dM1A1
	$=\frac{1}{\cos x}$	$\frac{1}{\cos x}$ or $(\cos x)^{-1}$ or $\sec x$	A1
	$\frac{y}{\cos x} = \int \ln x dx$ or $\frac{d}{dx} \left(\frac{y}{\cos x} \right) = \ln x$	M1: $y \times \text{their } I = \int Q(x) \times \text{their } I dx \text{ or}$ $\frac{d}{dx} (y \times \text{their } I) = Q(x) \times \text{their } I$ A1: $\frac{y}{\cos x} = \int \ln x dx \text{ or}$ $\frac{d}{dx} \left(\frac{y}{\cos x} \right) = \ln x$	- M1A1
	$\frac{y}{\cos x} = x \ln x - x + C$	Attempts $\int \ln x dx$ by parts correctly (correct sign needed unless correct formula quoted and used).	M1
	$y = (x \ln x - x + C)\cos x$	Any equivalent with the constant correctly placed and " $y = \dots$ " must appear at some stage.	A1
	N/ DI		Total 8
		ne start would mean that only the 3 rd k is available.	

Question Number	Scheme	Notes	Marks
7	S R	P Initial line	
(a)	$y = r\sin\theta = 4\cos 2\theta \sin\theta$	Attempts to use $r \sin \theta$	M1
	$y = 4(1 - 2\sin^2\theta)\sin\theta = 4\sin\theta$	$2\theta \cos \theta - 8\sin 2\theta \sin \theta$ or $\theta - 8\sin^3 \theta \Rightarrow \frac{dy}{d\theta} = 4\cos \theta - 24\sin^2 \theta \cos \theta$ in for $\frac{dy}{d\theta}$ or any multiple of $\frac{dy}{d\theta}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 0 \Longrightarrow \theta = \dots$	Set their $\frac{dy}{d\theta} = 0$ and attempt to solve to obtain a value for θ	M1
	$r = \frac{8}{3}, \ \theta = 0.421, \ \theta = 2.72$	Any one of: $r = \frac{8}{3}$ (or awrt 2.7) or $\theta = 0.421$ or $\theta = 2.72$	A1
	$r = \frac{8}{3}$ $\theta = 0.421, \ 2.72$	Correct value for r and both angles correct. May be seen as $\left(\frac{8}{3}, 0.421\right)$, $\left(\frac{8}{3}, 2.72\right)$. Allow $\left(0.421, \frac{8}{3}\right)$, $\left(2.72, \frac{8}{3}\right)$ but coordinates do not have to be paired and accept awrt 0.421, 2.72 and allow awrt 2.7 for $\frac{8}{3}$. Ignore any other coordinates given once the correct values have been seen.	A1
		nave occii scoii.	(5)

(b)	$A = \dots \int (4\cos 2\theta)^2 \mathrm{d}\theta$	Indication that the integration of $(4\cos 2\theta)^2$ is required. Ignore any limits and ignore any constant factors at this stage.	M1
	$\cos^2 2\theta = \frac{1}{2}(1 + \cos 4\theta)$	A correct identity seen or implied.	A1
	$A = \dots \left[\alpha \theta + \beta \sin 4\theta \right]$	Integrates to obtain an expression of the form $\alpha\theta + \beta\sin 4\theta$. Ignore any limits and ignore any constant factors. Dependent on the first method mark.	d M1
	$=16\left[\theta+\frac{1}{4}\sin 4\theta\right]_0^{\frac{\pi}{4}}$	A fully correct method that if evaluated correctly would give the answer 4π . Note that the correct "constant factor" may only be applied at the very last stage of their working and this method mark would only be awarded at that point. Dependent on all previous method marks.	dd M1
	Examples that could score the	ne final M1 (following correct work):	
	$16\left[\theta + \frac{1}{4}\sin 4\theta\right]_0^{\frac{\pi}{4}}, 8\left[\theta + \frac{1}{4}\sin 4\theta\right]_0^{\frac{\pi}{4}}$	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}, 8\left[\theta + \frac{1}{4}\sin 4\theta\right]_{0}^{\frac{\pi}{2}}, 16\left[\theta + \frac{1}{4}\sin 4\theta\right]_{\frac{3\pi}{4}}^{\frac{\pi}{4}}$	
	$=4\pi$	cao	A1
			(5)

			(5)
	Required area $=\frac{128}{3\sqrt{6}}-4\pi$	M1: Their rectangle area – their answer to part (b) A1: Correct exact answer or equivalent exact form e.g. $\frac{64\sqrt{6}}{9}$ – 4π or allow awrt 4.8 or 4.9	M1A1
	Area $PQRS = \frac{16}{3\sqrt{6}} \times 8 \left(= \frac{64\sqrt{6}}{9} \right)$	Their $PQ \times SP$. Must be the complete rectangle here.	M1
	$SP = 8 \text{ or } \frac{SP}{2} = 4$	Correct value for SP or SP/2	B1
	$PQ = 2r\sin\theta = \frac{16}{3\sqrt{6}}$	E.g. $2\left(\frac{8}{3}\right)\frac{1}{\sqrt{6}}$, $2\left(\frac{8}{3}\right)\sin 0.421$, $2\left(\frac{8}{3}\right)\sin 2.72$, $\frac{8\sqrt{6}}{9}$ or half of these. May be implied by awrt 2.2 or awrt 1.1	B1
(c)		Correct expression or value for PQ or $PQ/2$.	

Question Number	Scheme	Notes	Marks
8(a)(i)	$\cos 5\theta + i\sin 5\theta = (c+is)^5 = c^5 + 5c^4is + 10c^3i^2s^2 + 10c^2i^3s^3 + 5ci^4s^4 + i^5s^5$		
	Attempts to expand $(c+is)^5$ including binomial coefficients (NB may only see real		
	terms here)		
	$\cos 5\theta = \text{Re}(c+is)^5 = c^5 + 10c^3i^2s^2 + 5ci^4s^4 = c^5 - 10c^3s^2 + 5cs^4$		M1
	Extracts real terms and uses $i^2 = -1$ to eliminate i.		
	$\cos 5\theta \equiv \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta^*$		A1*
	Achieves the printed result with no errors seen.		
	Alternative: $ (z = \cos \theta + i \sin \theta, \ z^{-1} = \cos \theta - i \sin \theta, \ z^{n} = \cos n\theta + i \sin n\theta) $		
	$\left(z + \frac{1}{z}\right)^5 = z^5 + 5z^4 \left(\frac{1}{z}\right) + 10z^3 \left(\frac{1}{z^2}\right) - \frac{1}{z^2}$	$+10z^2\left(\frac{1}{z^3}\right)+5z\left(\frac{1}{z^4}\right)+\frac{1}{z^5}$	
	$(2\cos\theta)^5 = 2\cos 5\theta + 10\cos 3\theta + 20\cos\theta$		
	M1: Expands $\left(z + \frac{1}{z}\right)^5$ including binomial coefficients and uses $z^n + \frac{1}{z^n} = 2\cos n\theta$		
	at least once to obtain an equation in $\cos \cos 5\theta = 16 \cos^5 \theta - 5 \cos 3\theta - 10 \cos \theta$		
	$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta \Rightarrow \cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 15\cos \theta - 10\cos \theta$		
	M1: Uses correct identity for $\cos 3\theta$ to obtain $\cos 5\theta$ in terms of single angles		
	$=\cos^5\theta + 15\cos\theta \left(1-\sin^2\theta\right)^2 - 20\cos^3\theta + 5\cos\theta$		
	$=\cos^5\theta - 10\cos\theta\sin^2\theta + 15\cos\theta\sin^4\theta$		
	$= \cos^5 \theta + 5 \cos \theta \sin^4 \theta + 10 \cos \theta \sin^2 \theta \left(\sin^2 \theta - 1\right)$		
	$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^3 \theta$	$\theta^2 \theta + 5\cos\theta \sin^4\theta^*$	
	A1: Achieves the printed result with no errors	· · ·	
(ii)	$\sin 5\theta \equiv 5\cos^4\theta \sin\theta - 10\cos\theta$ This correspond (or equivalent		B1
	This expression (or equivalen Note that some candidates may re-star	·	
		-	(4)
(b)	$\tan 5\theta = \frac{\sin 5\theta}{5\theta} = \frac{5\cos^4\theta\sin\theta - 1}{5\theta\cos^4\theta\sin\theta}$	$10\cos^2\theta\sin^3\theta+\sin^5\theta$	` '
	$\tan 5\theta = \frac{1}{\cos 5\theta} = \frac{10\cos^5\theta}{\cos^5\theta - 10\cos^3\theta}$	$\theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$	M1
	Uses $\tan 5\theta = \frac{\sin 5\theta}{\cos 5\theta}$ and substitute	es the results from part (a)	1111
	$= \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$	$t = \frac{t^3 - 10t^3 + 5t}{5t^4 + 10t^2 + 1}$ *	A1*
			AI
	Achieves the printed result with no errors seen. Note that a minimum could be:		
	$\tan 5\theta = \frac{5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta}{\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta} = \frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} *$		
	$\tan 5\theta = \frac{\tan 5\theta}{\cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta} = \frac{1}{5t^4 - 10t^2 + 1}$		
	Note that some candidates may work backwards which is acceptable:		
	E.g. $\frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} = \frac{\tan^5 \theta - 10\tan^3 \theta + 5\tan \theta}{5\tan^4 \theta - 10\tan^2 \theta + 1}$		
	$= \frac{5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta}{\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta} = \tan 5\theta$		
	$\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos^2\theta + \cos^2\theta + $	$\cos\theta\sin^4\theta$	
			(2)

		~	
(c)	$\tan 5\theta = 0 \text{ or } \frac{\tan^5 \theta - 10 \tan^3 \theta + 5 \tan \theta}{5 \tan^4 \theta - 10 \tan^2 \theta + 1} = 0$ $\text{or } \frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} = 0$	Considers $\tan 5\theta = 0$. This may be implied by $\tan^5 \theta - 10 \tan^3 \theta + 5 \tan \theta = 0$ or $t^5 - 10t^3 + 5t = 0$ or $\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$ or $t^4 - 10t^2 + 5 = 0$	M1
	$\tan^{5} \theta - 10 \tan^{3} \theta + 5 \tan \theta = 0$ or $t^{5} - 10t^{3} + 5t = 0$	Equate numerator to 0 This may be implied by $\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$ or $t^4 - 10t^2 + 5 = 0$	M1
	$\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$ or $t^4 - 10t^2 + 5 = 0$	Correct quartic	A1
	$x^2 - 10x + 5 = 0$	$x^2 - 10x + 5 = 0 \text{ or equivalent}$	A1
			(4)
(d)	Product of roots: $\tan^2 \frac{\pi}{5} \tan^2 \frac{2\pi}{5} = 5$ Or solves " $x^2 - 10x + 5 = 0$ " and attempts to multiply roots together e.g. $x = \frac{10 \pm \sqrt{100 - 20}}{2} = 5 \pm 2\sqrt{5} \text{ and}$ $\left(5 + 2\sqrt{5}\right)\left(5 - 2\sqrt{5}\right) = \dots$	Must clearly state product of roots or e.g. $\alpha\beta = 5$ or $x_1x_2 = 5$ and uses their constant in (c) or solves their quadratic and attempts product of roots.	M1
	$\tan^2 \frac{\pi}{5} \tan^2 \frac{2\pi}{5} = 5 \Rightarrow \tan \frac{\pi}{5} \tan \frac{2\pi}{5} = \sqrt{5} *$	Shows the given result with no errors.	A1
			(2)
			Total 12