PYTHON WORKSHOP SESSION 3

- Session 3: Supervised ML workflow
 - Scikit-learn
 - Data preprocessing
 - Model assessment/selection
 - Linear regression model

PYTHON IN DATA SCIENCE WORKSHOP

Session 3: Understanding the General Supervised ML Workflow

Purpose: This workshop is intended to refresh/update Python skills, which will NOT be covered in class or during office hours.

Who: Students in CS 534, CS 334, CS 325. All 300-500 level students are welcome.

MSC E208

Tuesday, September 19 2023 7:00 - 8:30 PM

Bring your laptop!

No registration needed!

Recordings will be provided after each session

HOMEWORK #2

- Out 9/13, Due 9/29 @ 11:59 PM ET
- 3 questions
 - QI: Decision tree implementation
 - Q2: Model assessment
 - Q3: Model selection and robustness of k-nn and decision tree

DECISION TREE IMPLEMENTATION FAQ

- Tree implementation in Python
- Stopping criteria maximum depth
- Stopping criteria minimum leaf samples
- Entropy vs. information gain

DECISION TREE: TRAINING (C4.5 ALGORITHM)

Algorithm 1.1 C4.5(D)

Input: an attribute-valued dataset D

- 1: Tree = {}
- 2: if D is "pure" OR other stopping criteria met then
- 3: terminate
- 4: end if
- 5: for all attribute $a \in D$ do
- Compute information-theoretic criteria if we split on a
- 7: end for
- 8: abest = Best attribute according to above computed criteria
- 9: Tree = Create a decision node that tests abest in the root
- 10: $D_v = \text{Induced sub-datasets from } D \text{ based on } a_{best}$
- 11: for all D_v do
- 12: $\text{Tree}_{v} = \text{C4.5}(D_{v})$
- 13: Attach Tree_v to the corresponding branch of Tree
- 14: end for
- 15: return Tree

TREE IMPLEMENTATION IN PYTHON

```
class DecisionTree(object):
     # define some variable to hold the tree model
     def decision_tree(self, xFeat, y, depth):
          # Check stopping criteria (e.g. maximum depth), if it is met, return majority class of y
          # Find the split: enumerate all possible splits (for each feature and each split value), compute the score
          (entropy or gini) for each split, find the best split feature and split value
          # Partition data using the split feature and split value into two sets: xFeatL, xFeatR, yL, yR
          # Recursive call of decision tree()
```

MINIMUM LEAF SAMPLES: IMPLEMENTATION

Income <= t* Minimum leaf samples = 2

BIAS AND VARIANCE TRADEOFF (CONT.)

CS 334: Machine Learning

Review: Total Error = Bias² + Variance + Irreducible Error

GENERALIZATION & OVERFITTING

- Generalization model performance of a model on independent / future unseen data (data not used in training)
- Underfitting model is unable to capture the relationship between the input and output variables accurately; high error on both training and test data
- Overfitting model is specific to the training set and is learning the noise from the data instead of generalizable rule; low error on training but high error on test data

MODEL GENERALIZATION

Poor on Training Set Poor at Predicting

Generalizable

Very Good on Training Set Poor at Predicting

UNDERFITTING VS OVERFITTING

BIAS-VARIANCE TRADE-OFF

BIAS ANALYSIS: SOURCES

- Inability to represent certain decision boundaries
- Classifiers are "too global" (e.g., single linear separator)

High bias —> underfitting

How to reduce bias?

BIAS ANALYSIS: REDUCTION

- More complex models
- More features

VARIANCE ANALYSIS: SOURCES

- Noise in labels or features
- Training data too small
- "Too local" algorithms that easily fit data
- Randomness in learning algorithm (i.e., non-convex algorithms)

High variance —> overfitting

How to reduce variance?

VARIANCE ANALYSIS: REDUCTION

- Use more data (increase size of training data)
- Less complex models
- Fewer features (feature selection)

HOW TO USE BIAS-VARIANCE

GROUP ACTIVITY

EXERCISE: BIAS AND VARIANCE TRADEOFF

What happens to bias and variance when we

- I. Increase k for kNN classifier
- 2. Only consider a subset of features in kNN classifier
- 3. Increase maximum tree depth for learning decision tree
- 4. Increase minimum leaf samples for learning decision tree
- 5. Consider only a (random) subset of features at each node for learning decision tree
- 6. Increase alpha for post-pruning decision tree

$$C_{\alpha}(T) = \sum_{j=1}^{|T|} [1 - \hat{p}_{g_j}(R_j)] + \alpha |T|$$

LINEAR REGRESSION

CS 334: Machine Learning

REVIEW: PREDICTION TASKS

- Classification: Predicting qualitative targets (values in a finite set)
- Regression: Predicting
 quantitative responses
 (continuous valued, natural
 ordering)

REGRESSION: EXAMPLES

- Straight prediction questions:
 - How many games will the Atlanta United win?
 - Will you like Star Wars: The Last Jedi?
- Explanation & understanding:
 - What is the impact of an MBA on income?
 - Does Walmart pay women less in salary?

REVIEW: REGRESSION W/ KNN AND DECISION TREE

HOW TO PREDICT Y BASED ON X?

HOW TO PREDICT Y BASED ON X?

LINEAR REGRESSION: OVERVIEW

- Assumes there is approximately a linear relationship between the predictor variables and the outcome of interest
- Models the linear relationship in form of mathematical equation (parametric)
- Most widely used statistical tool ("workhorse") for understanding relationships amongst variables

SIMPLE LINEAR REGRESSION

 Use a linear function to model the relationship between a dependent (target) variable Y and predictor variable X

$$Y \approx \beta_0 + \beta_1 X$$

MULTIPLE LINEAR REGRESSION (MLR)

Use a linear function to model the relationship between a dependent (target) variable Y and a vector of multiple predictor variables x^T = (x₁, x₂, ..., x_p)

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^p x_i \beta_i$$

LINEAR REGRESSION

 $Y \approx \beta_0 + \beta_1 X$ estimates $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

GROUP ACTIVITY

LINEAR REGRESSION: TRAINING

Which one is better? How to choose the "best" coefficients?

LEARNING THE PARAMETERS

- Closed form (direct solution): set partial derivatives to zero and solve parameters
- Iterative algorithms: Gradient descent (GD) and Stochastic gradient descent (SGD) (later)

REVIEW: DERIVATIVE RULES

Function	Derivative
С	0
х	1
ax	a
x ²	2x
√x	(½)x ^{-½}
e ^X	e ^x
a ^x	ln(a) a ^x
ln(x)	1/x
log _a (x)	1 / (x ln(a))
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	sec ² (x)
sin ⁻¹ (x)	$1/\sqrt{(1-x^2)}$
cos ⁻¹ (x)	$-1/\sqrt{(1-x^2)}$
tan ⁻¹ (x)	$1/(1+x^2)$
	x ax x^{2} \sqrt{x} e^{x} a^{x} $ln(x)$ $log_{a}(x)$ $sin(x)$ $cos(x)$ $tan(x)$ $sin^{-1}(x)$ $cos^{-1}(x)$

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' – g'
Product Rule	fg	f g' + f' g
Quotient Rule	f/g	$(f'g - g'f)/g^2$
Reciprocal Rule	1/f	-f'/f ²
Chain Rule (as "Composition of Functions")	f º g	(f' º g) × g'
Chain Rule (using ')	f(g(x))	f'(g(x))g'(x)
Chain Rule (using $\frac{d}{dx}$)		dy du du dx

DIRECTION SOLUTION: SIMPLE LINEAR REGRESSION

• Find β_0 and β_1 that minimizes squared residual sum of residuals (SSR)

$$SSR = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$
$$= \sum_{i=1}^{n} (y_i^2 - 2y_i(\beta_0 + \beta_1 x_i) + \beta_0^2 + 2\beta_0 \beta_1 x_i + \beta_1^2 x_i^2)$$

• Solve β_0 by setting partial derivative with respect to β_0 to 0

$$\frac{\partial SSR}{\partial \beta_0} = \sum_{i=1}^n \left(-2y_i + 2\beta_0 + 2\beta_1 x_i \right)$$

$$0 = \sum_{i=1}^n \left(-y_i + \hat{\beta}_0 + \hat{\beta}_1 x_i \right)$$

$$0 = -n\bar{y} + n\hat{\beta}_0 + \hat{\beta}_1 n\bar{x}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

DIRECT SOLUTION: SIMPLE LINEAR REGRESSION

• Solve β_1 by setting partial derivative with respect to β_1 to 0

$$SSR = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$
$$= \sum_{i=1}^{n} (y_i^2 - 2y_i(\beta_0 + \beta_1 x_i) + \beta_0^2 + 2\beta_0 \beta_1 x_i + \beta_1^2 x_i^2)$$

$$\frac{\partial SSR}{\partial \beta_{1}} = \sum_{i=1}^{n} \left(-2x_{i}y_{i} + 2\beta_{0}x_{i} + 2\beta_{1}x_{i}^{2} \right)
0 = -\sum_{i=1}^{n} x_{i}y_{i} + \hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}
0 = -\sum_{i=1}^{n} x_{i}y_{i} + (\bar{y} - \hat{\beta}_{1}\bar{x}) \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}
\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y})}{\sum_{i=1}^{n} x_{i}(x_{i} - \bar{x})}$$

EXAMPLE

FIGURE 3.1. For the Advertising data, the least squares fit for the regression

FIGURE 3.2. Contour and three-dimensional plots of the RSS on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, given by (3.4).

DIRECT SOLUTION: SIMPLE LINEAR REGRESSION

• Elementwise representation can be cumbersome

$$SSR = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$
$$= \sum_{i=1}^{n} (y_i^2 - 2y_i(\beta_0 + \beta_1 x_i) + \beta_0^2 + 2\beta_0 \beta_1 x_i + \beta_1^2 x_i^2)$$

Many features/coefficients in practice

$$\frac{\partial SSR}{\partial \beta_{1}} = \sum_{i=1}^{n} \left(-2x_{i}y_{i} + 2\beta_{0}x_{i} + 2\beta_{1}x_{i}^{2} \right)
0 = -\sum_{i=1}^{n} x_{i}y_{i} + \hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}
0 = -\sum_{i=1}^{n} x_{i}y_{i} + (\bar{y} - \hat{\beta}_{1}\bar{x}) \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}
\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y})}{\sum_{i=1}^{n} x_{i}(x_{i} - \bar{x})}$$

(elementwise representation)

VECTORIZATION

- Rewrite the linear regression model and solution methods in matrices and vectors
- Simpler and more compact
- Utilize linear algebra libraries for faster computations

REVIEW: NOTATION

• Vector: $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{x} = X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• Matrix: $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

REVIEW: COMMON VECTOR NORMS

Norm	Formula
Euclidean	$ \mathbf{x} _2 = \sqrt{\sum_{i=1}^n x_i^2}$
Taxicab (Manhattan)	$ \mathbf{x} _1 = \sum_{i=1}^n x_i $
Maximum (infinity)	$ \mathbf{x} _{\infty} = \max_{x_i} x_i $
p-norm	$ \mathbf{x} _p = \left(\sum_{i=1}^n x_i ^p\right)^{1/p}$

REVIEW: RANK

- Column rank: size of largest subset of columns of A such that constitute a linearly independent set
- Row rank: largest number of rows of A that constitute a linearly independent set
- For any matrix in real space, column rank = row rank

REVIEW: MATRIX INVERSE

Unique matrix such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1}$$

- A is invertible and non-singular if inverse exists
- A is singular if not invertible
- A must be full rank to have an inverse

REVIEW: MATRIX/VECTOR MANIPULATION

Rule	Comments		
$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$	order is reversed, everything is transposed		
$(\mathbf{a}^T \mathbf{B} \mathbf{c})^T = \mathbf{c}^T \mathbf{B}^T \mathbf{a}$	as above		
$\mathbf{a}^T\mathbf{b} = \mathbf{b}^T\mathbf{a}$	(the result is a scalar, and the transpose of a scalar is itself)		
$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$	multiplication is distributive		
$(\mathbf{a} + \mathbf{b})^T \mathbf{C} = \mathbf{a}^T \mathbf{C} + \mathbf{b}^T \mathbf{C}$	as above, with vectors		
$\mathbf{AB} \neq \mathbf{BA}$	multiplication is not commutative		

REVIEW: GRADIENTS

- Generalize derivatives to several variables
- Gradient of function f:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

REVIEW: VECTOR DERIVATIVES

Scalar derivative		Vector derivative			
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{B}$	\rightarrow	В
bx	\rightarrow	\boldsymbol{b}	$\mathbf{x}^T\mathbf{b}$	\rightarrow	b
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{B}\mathbf{x}$

I INFAR REGRESSION: MATRIX REPRESENTATION

• Outcome variables
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• Predictor variables $n \times (p+1)$ $\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

Coefficients

$$\beta = \left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right]$$

I INFAR REGRESSION: MATRIX REPRESENTAT

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• Outcome variables
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
 • Prediction $\mathbf{x}\beta = \begin{bmatrix} \beta_0 + \beta_1 x_1 \\ \beta_0 + \beta_1 x_2 \\ \vdots \\ \beta_0 + \beta_1 x_n \end{bmatrix}$

• Predictor variables $n \times (p+1)$ $\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$ • Residual

$$\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

$$\mathbf{e}(\beta) = \mathbf{y} - \mathbf{x}\beta$$

Coefficients

$$\beta = \left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right]$$

MSE

$$MSE(\beta) = \frac{1}{n} \mathbf{e}^{T} \mathbf{e}$$
$$= \frac{1}{n} (\mathbf{y} - \mathbf{x}\beta)^{T} (\mathbf{y} - \mathbf{x}\beta)$$

DIRECT SOLUTION: MATRIX FORM

Goal: find coefficient vector β : that minimizes MSE

$$MSE(\beta) = \frac{1}{n} \mathbf{e}^{T} \mathbf{e}$$

$$= \frac{1}{n} (\mathbf{y} - \mathbf{x}\beta)^{T} (\mathbf{y} - \mathbf{x}\beta)$$

$$= \frac{1}{n} (\mathbf{y}^{T} - \beta^{T} \mathbf{x}^{T}) (\mathbf{y} - \mathbf{x}\beta)$$

$$= \frac{1}{n} (\mathbf{y}^{T} \mathbf{y} - \mathbf{y}^{T} \mathbf{x}\beta - \beta^{T} \mathbf{x}^{T} \mathbf{y} + \beta^{T} \mathbf{x}^{T} \mathbf{x}\beta)$$

Computer the gradient of the MSE with respect to β :

$$\nabla MSE(\beta) = \frac{1}{n} \left(\nabla \mathbf{y}^T \mathbf{y} - 2 \nabla \beta^T \mathbf{x}^T \mathbf{y} + \nabla \beta^T \mathbf{x}^T \mathbf{x} \beta \right)$$
$$= \frac{1}{n} \left(0 - 2 \mathbf{x}^T \mathbf{y} + 2 \mathbf{x}^T \mathbf{x} \beta \right)$$
$$= \frac{2}{n} \left(\mathbf{x}^T \mathbf{x} \beta - \mathbf{x}^T \mathbf{y} \right)$$

• Set the gradient to 0, solve β

$$\mathbf{x}^T \mathbf{x} \widehat{\boldsymbol{\beta}} - \mathbf{x}^T \mathbf{y} = 0$$

$$\widehat{\beta} = (\mathbf{x}^T \mathbf{x})^{-1} \mathbf{x}^T \mathbf{y}$$

LINEAR REGRESSION

• Training:

$$\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\widehat{\beta} = (\mathbf{x}^T \mathbf{x})^{-1} \mathbf{x}^T \mathbf{y}$$

• Prediction:

X

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$$

GEOMETRY OF LS SOLUTION

 Outcome vector is orthogonally projected onto hyperplane spanned by input features

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

• The "hat" matrix or projection matrix

$$\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$$

Figure 3.2 (Hastie et al.)

LINEAR ALGEBRA: PYTHON (HINT FOR HW3)

- Create an array of ones: numpy.ones
- Concatenation: numpy.concatenate
- Multiplication: numpy.matmul
- Transpose numpy.transpose
- Inverse: numpy.linalg.inv

ASSESSING THE ACCURACY OF THE MODEL

- Residual error
- R² statistic

MEASURE OF FIT: R²

• "Goodness" of fit measure
$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$$

- Interpretation: The proportion of variability in y explained by the model
- Always lies between 0 and 1

STANDARD LINEAR REGRESSION: RECAP

- Objective function: Minimize RSS
- Coefficients have a nice interpretation
- Closed-form solution $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

UNDERSTANDING MLR

- Extremely hard to find "causal" relationships between features and outcome
- Any correlation (association) could be caused by other variables in the background — correlation is NOT causation
- Multivariate regression allows us to control for all important variables by including them in the regression

CORRELATION DOES NOT IMPLY CAUSALITY

