

UNIVERSIDADE FEDERAL DO TOCANTINS

TRABALHO AVALIATIVO DE COMPUTAÇÃO GRÁFICA

DISCENTE: Fábio Manuel Martins Tronção

DOCENTE: Eduardo Ferreira Ribeiro E-mail:fabio.troncao@mail.uft.edu.br

1	-	Ο	pont	0 (8500); ;	300;	-100;	1000) em	coorde	nadas	homog	jêneas	corr	espo	nde	em
CC	oor	de	nada	s (r	าão-ho	omo	ogên	eas ist	to é na	a form	a norma	l) 3D a	ao ponto	o (· ;	.;). E	sse
tir	00	de	coor	der	nadas	éί	útil pa	ara					.e					

R: O ponto (8500; 300; -100; 1000) em coordenadas homogêneas corresponde em coordenadas (não-homogêneas isto é na forma normal) 3D ao ponto (8,5; 0,3; -0,1). Esse tipo de coordenadas é útil para representar translações por matrizes em computação gráfica e representar valores muito grandes ou pequenos.

2- Se um ponto do espaço 3D é representado como um vetor coluna, e faz parte de um objeto definido na origem, escreva a matriz que multiplicada por ele o translada de 2 unidades em x, 3 unidades em y e 1 unidade na direção z. R:

3- Quando o centro de vista ou o centro de projeção pode ser considerado no infinito, os
raios projetores podem ser consideradoseste tipo de
projeção é chamadae pode ser
classificada em dois tipos, de acordo com o ângulo que os raios projetores formam em
relação ao plano de projeção. Em um destes tipos, chamado de projeção paralela
os raios projetores devem formar
com o plano de projeção. Enquanto que no outro, a projeção paralela
este ângulo é

R: Quando o centro de vista ou o centro de projeção pode ser considerado no infinito, os raios projetores podem ser considerados paralelos este tipo de projeção é chamada Projeção Paralela e pode ser classificada em dois tipos, de acordo com o ângulo que os raios projetores formam em relação ao plano de projeção. Em um destes tipos, chamado de projeção paralela axonométrica, os raios projetores devem formar noventa graus com o plano de projeção. Enquanto que no outro, a projeção paralela oblíqua este ângulo é qualquer.

4 – Dada a pirâmide a seguir e utilizando coordenadas homogêneas, escreva a matriz que multiplicada por ela a translada de 2 unidades em x, 3 unidades em y e 1 unidade na direção z. Faça a translação e desenhe a pirâmide em 3d e depois de projetá-la no plano y=0.

O modificado agora com y=0

5 – Dada a reta abaixo em 3D, escreva a matriz que multiplicada por ele o rotaciona em 60 graus no eixo y e o translada em 3 unidades no eixo x. Faça a rotação e desenhe a reta depois de projetá-la no plano z=0 (Valor: 6 pontos). (Use coordenadas homogêneas, cosseno de 60 = 0.5, seno de 60 = 0.87).

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(60^{\circ}) & \sin(60^{\circ}) & 0 \\ 0 & -\sin(60^{\circ}) & \cos(60^{\circ}) & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -0.87 & 0.5 & 1 \\ 5 & 0.63 & 3.10 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\equiv \qquad \equiv \qquad \equiv \qquad \equiv$$

com z=0 fica assim na visão dos eixos X e Y.

