Chapter 11 Threaded Fasteners

TOPICS

- Introduction
- Thread terminology
- Thread drawing and dimensioning
- Threaded fastener

Introduction

FASTENING TYPE

1. Permanent

Riveting

FASTENING TYPE

2. Temporary

2.1 Threaded fastener

- bolts
- studs
- screws

2.2 Non-threaded fastener

- keys
- pin

THREAD APPLICATION

- 1. To hold parts together.
- To move part(s) relative to others.

THREAD APPLICATION

- 1. To hold parts together.
- 2. To move part(s) relative to others.

Wood working vise

Palm fruit pressing machine

Thread Terminology

External (male) thread

A thread cut on the *outside* of a cylindrical body.

Internal (female) thread A thread cut on the *inside* of a cylindrical body.

External thread-

Right-hand thread

Thread that will **assemble** when turned **clockwise**.

Left-hand thread

Thread that will **assemble** when turned **counter-clockwise**.

Turnbuckle use RH and LH thread at each end to double displacement.

Crest

The **peak edge** of a thread.

Root

The **bottom** of the thread cut into a cylindrical body.

Thread angle

The angle between threads faces.

External Thread

Major diameter

The *largest diameter* on an internal or external thread.

Minor diameter

The *smallest diameter* on an internal or external thread.

External Thread

Pitch

The distance between crests of threads.

Lead

The distance a screw will advance when turned 360°.

External Thread

Thread Form

G. BUTTRESS

Form is the profile shape of the thread.

H. KNUCKLE

Example: "knuckle threa

EXTERNAL THREAD CUTTING

Operation

INTERNAL THREAD CUTTING

COMPARISON OF THREAD CUTTING

Thread Drawing

THREAD REPRESENTATION

- 1. **Detailed** representation
- 2. **Schematic** representation
- 3. **Simplified** representation

DETAILED REPRESENTATION

- Use *slanting lines* to represent crest and root.
- Roots and crest are drawn in **sharp** Vs.

External thread

SCHEMATIC REPRESENTATION

Use alternate *long* and *short* lines for representing *crests* and *roots* of the thread, respectively.

External thread

SIMPLIFIED REPRESENTATION

Use *thick continuous lines* for representing *crest* and *thin continuous lines* for representing *root* of the thread, respectively.

External thread

SIMPLIFIED REPRESENTATION

Use thick continuous lines for representing crest and thin continuous lines for representing root of the thread, respectively.

External thread

Internal thread

Sectional view

ISO (METRIC) THREAD

Center of thread assembly

Thread assemble occurs if and only if both (internal & external) thread have an equal *nominal size* (or diameter) and *pitch*.

METRIC COARSE THREAD

[Table 9.1]

Nominal	Major	Pitch	Minor	Tap drill size			
size	diameter		diameter				
M6	6.00	1.00	4.92	5.00			
M8	8.00	1.25	6.65	6.75			
M10	10.00	1.50	8.38	8.50			
M12	12.00	1.75	10.11	10.00			
Metric thread							

Minor diameter ≈ Tap drill size

In thread *drawing*, the following relationship is used.

Minor diameter = *Major* diameter – Pitch

METRIC FINE THREAD

[Table 9.2]

Nominal size	Major diameter	Pitch	Minor diameter	Tap drill size
M8	8.00	0.75	7.188	7.25
		1.00	6.917	7.00
M10	10.00	0.75	9.188	9.25
		1.00	8.917	9.00
		1.25	8.647	8.75

Minor diameter ≈ Tap drill size

In thread *drawing*, the following relationship is used.

Minor diameter = *Major* diameter – Pitch

DRAWING STEPS OF EXTERNAL THREAD

DRAWING STEPS OF THREADED HOLE

1. Through threaded hole

represents a root.

into the crest of a thread.

DRAWING STEPS OF THREADED HOLE

2. Blinded threaded hole

DRAWING STEPS OF THREADED HOLE

2. Blinded threaded hole

Sectional view

DIMENSIONING EXTERNAL THREAD

- Use *local note* to specify:- *thread form*, *nominal size*, *pitch* (if it is a fine thread)
- Use *typical method* to specify :- *thread length*.

DIMENSIONING THREADED HOLE

Use *local note* to specify

- 1. Tap drill size
- 2. Drill depth
- 3. Thread form
- 4. Nominal size
- 5. Pitch
- 6. Thread depth

Threaded Fastener

BOLT: Terminology

Bolt is a threaded cylinder with a head.

Hexagonal head bolt and nut

Dimensions of bolt's head are listed in table 9.4.

BOLT: Drawing steps

NUT: Drawing steps

Dimensions of the nut are given in Table 9.14.

Dash lines represent a threaded hole are omitted for clarity.

BOLT: Application

- (A) Nothing have to be changed.
- (B) Use shorter bolt with the same thread length.
- (C) Reduce the thread length.
- (D) Add washer or nut.

- (A) Nothing have to be changed.
- (B) Use a bolt of this length but has a longer thread length.
- (C) Use a longer bolt with the same thread length.
- (D) Add washer.

- (A) Nothing have to be changed.
- (B) Use a bolt of this length but has a shorter thread length.
- (C) Use a longer bolt with the same thread length.
- (D) Add washer.

- (A) Use a bolt of this length but has a shorter thread length.
- (B) Use a longer bolt with the same thread length.
- (C) Use a longer bolt by increasing a thread length
- (D) Remove washer.

- (A) Increase the bolt diameter.
- (B) Use washer with larger outside diameter.
- (C) Reduce the hole diameter.
- (D) Add washer at bolt head.

What do you think about the following suggestions for design improvement?

- (A) Nothing have to be changed.
- (B) Use a bolt with shorter thread length.
- (C) Add washer.
- (D) Increase drill and thread depths.

Correct

Inappropriate

Wrong

What do you think about the following suggestions for design improvement?

- (A) Nothing have to be changed.
- (B) Use a bolt with slightly longer thread length.

Correct

Inappropriate

Wrong

STUD: Terminology

Stud is a *headless* bolt, threaded at both ends.

Drawing representation

STUD: Drawing steps

STUD: Application

- 1. Drill a hole.
- 2. Tap a hole.
- 3. Screw a stud.
- 4. Place the part to be fastened.
- 5. Insert washer and fastened a nut.

What is the mistake in the following use of stud?

What is the mistake in the following use of stud?

CAP SCREW: Terminology

Cap screw is similar to bolt, but has a longer thread than a bolt.

CAP SCREW: Counterbore hole

CAP SCREW: Countersink hole

SET SCREW: Terminology

Set screw is a threaded cylinder used to prevent rotation or movement between parts.

SET SCREW: Application

