L2 Blois Info Mercredi 9 mars 2022

Contrôle continu de probabilités – Durée : 1h30 Sans documents ni matériels électroniques

Cours

Enoncer la formule de Bayes.

Exercice 1

Soit A l'ensemble des nombres comportant 7 chiffres ne comportant aucun 1 et ne commençant pas par 0.

Déterminer:

- 1) le nombre total d'éléments de A,
- 2) le nombre d'éléments de A composés de 7 chiffres différents,
- 3) le nombre d'éléments de A dont le produit des chiffres est divisible par 3 (on peut raisonner à partir de la négation de cette propriété),
- 4) le nombre d'éléments de A composés de chiffres formant une suite strictement croissante ou strictement décroissante.

Exercice 2

Dans un espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$, on considère deux événements A et B tels que :

$$P(A) = \frac{1}{4} \text{ et } P(A \cup B) = \frac{1}{3}.$$

Calculer P(B) dans les cas suivants :

- 1) A et B sont incompatibles,
- 2) A et B sont indépendants,
- 3) A implique B (si A est réalisé, alors B l'est aussi).

Exercice 3

Une personne remplit une urne vide avec trois boules dont la couleur est choisie de la façon suivante :

- elle lance trois fois une pièce de monnaie équilibrée (non truquée),
- pour chaque « Pile » obtenu la personne met une boule blanche dans l'urne, et pour chaque « Face » elle met une boule noire dans l'urne.
- 1) Calculer la probabilité des événements A_i : "l'urne contient i boules blanches ", pour i=0,1,2,3.

Une deuxième personne, qui ne connaît pas les couleurs des boules dans l'urne, tire avec remise n boules $(n \in \mathbb{N}^*)$. On note B_i l'événement : « la couleur de la ième boule tirée est blanche », pour $i \in \{1, 2, ..., n\}$.

- 2) Calculer $P_{A_i}(B_1)$, i = 0,1,2,3. Calculer $P(B_1)$.
- 3) Calculer $P(B_2)$.
- 4) Calculer $P(B_1 \cap B_2)$. Les événements B_i , $i \in \{1, 2 ..., n\}$ sont-ils deux à deux indépendants ?