TABLAS DE CONTRASTES DE HIPÓTESIS MÁS USUALES II: DOS MUESTRAS.

En este documento recogemos los contrastes de hipótesis paramétricos más usuales para dos muestras que se pueden llevar a cabo "a mano." Para cada contraste damos: las condiciones, el estadístico de contraste, la región crítica, el intervalo de confianza y el p-valor.

En la definición de los el estadísticos hemos usado las notaciones siguientes:

- Z: Distribución normal estándard N(0,1).
- t_n : Distribución t de Student con n grados de libertad.
- χ_n^2 : Distribución khi-cuadrado con n grados de libertad.
- F_{n_1,n_2} : Distribución F de Fisher con n_1 y n_2 grados de libertad.
- X_{α} : Indica el α -cuantil de la variable aleatoria X, es decir (si X es continua, que es siempre el caso en este documento), el valor donde la función de distribución de X vale α : $P(X \leq X_{\alpha}) = \alpha$.

Recordemos las propiedades de simetría de Z, t y F:

- Simetría de la normal: $z_{\alpha} = -z_{1-\alpha}$.
- Simetría de la t de Student: $t_{n,\alpha} = -t_{n,1-\alpha}$.
- Permutación de los grados de libertad de la F de Fisher: $F_{n_1,n_2,\alpha} = \frac{1}{F_{n_2,n_1,1-\alpha}}$.

Tipo de contraste y condiciones								
Hip. nula	condiciones	${ m Muestra}$	Hip. alt.	Caso				
$H_0: \mu_1 = \mu_2$ Caso independiente	σ_1 y σ_2 conocidas. Poblaciones normales o n_1 y n_2 grandes.	$egin{aligned} ext{Dos m.a.s.} \ ext{independientes de} \ ext{tama\~nos} \ n_1 \ ext{y} \ n_2 \end{aligned}$	$H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 > \mu_2$	I III				
	σ_1 y σ_2 desconocidas y $\sigma_1 = \sigma_2$. Poblaciones normales o n_1 y n_2 grandes	Dos m.a.s. independientes de tamaños n_1 y n_2	$H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 > \mu_2$	IV V VI				
	σ_1 y σ_2 desconocidas y $\sigma_1 \neq \sigma_2$. Poblaciones normales o n_1 y n_2 grandes.	Dos m.a.s. independientes de tamaños n_1 y n_2	$H_1: \mu \neq \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 > \mu_2$	VII VIII IX				
$H_0: \mu_1 = \mu_2$ Caso dependiente	Dos Poblaciones normales dependientes o n grande. σ_d conocida. (1)	Dos m.a.s. dependientes de tamaño n	$H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 > \mu_2$	X XI XII				
	Dos Poblaciones normales dependientes. σ_d desconocida. (1)	Dos m.a.s. dependientes de tamaño n	$H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 > \mu_2$	XIII XIV XV				
	Dos Poblaciones dependientes, n grande. σ_d desconocida. σ_d	Dos m.a.s. dependientes de tamaño n	$H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 > \mu_2$	XVI XVII XVIII				
$H_0: p_1 = p_2$ Caso independiente	Poblaciones Bernoulli, n_1 y n_2 grandes, muchos éxitos y fracasos.	Dos m.a.s. independientes de tamaños n_1 y n_2	$H_1: p_1 \neq p_2$ $H_1: p_1 < p_2$ $H_1: p_1 > p_2$	XIX XX XXI				
$H_0: p_a = p_d$ Casodependiente	Poblaciones Bernoulli, $n_1 ext{ y } n_2 ext{ grandes, muchos}$ casos discordants.	$ \begin{array}{c} \text{Dos m.a.s.} \\ \text{dependientes de} \\ \text{tamaño } n \end{array} \qquad \begin{array}{c} H_1: p_a \neq p_b \\ \\ H_1: p_a < p_b \\ \\ H_1: p_a > p_b \end{array} $		XXII XXIII XXIV				
$H_0: \sigma_1^2 = \sigma_2^2$ Caso independiente	Poblaciones normales.	Dos m.a.s. independientes de tamaños n_1 y n_2	$H_1: \sigma_1^2 \neq \sigma_2^2$ $H_1: \sigma_1^2 < \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	XXV XXVI XXVII				

⁽¹⁾ σ_d es la desviación típica de la variable $D=X_1-X_2.$

Detalles del test								
Caso	Estadístico	Región crítica	Intervalo confianza	p-valor				
I	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\widetilde{c}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left]\overline{X}_{1}-\overline{X}_{2}-z_{1-\frac{\alpha}{2}}\widetilde{S},\overline{X}_{1}-\overline{X}_{2}+z_{1-\frac{\alpha}{2}}\widetilde{S}\right[$	$2P(Z \ge z)$				
II	es $N(0, 1)$	$\{Z{\le}z_{lpha}\}$	$\left]-\infty, \overline{X}_1 - \overline{X}_2 - z_\alpha \widetilde{S}\right[$	$P(Z \leq z)$				
III	(vegeu (a))	$\{Z \ge z_{1-\alpha}\}$	$]\overline{X}_1 - \overline{X}_2 - z_{1-\alpha}\widetilde{S}, +\infty[$	$P(Z \ge z)$				
IV	$T = \frac{\overline{X}_1 - \overline{X}_2}{\widetilde{S}_{1,2}}$	$\{T{\leq}{-}t_{m,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{m,1-\frac{\alpha}{2}}\}$	$\left[\overline{X}_1 - \overline{X}_2 - t_{m,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2}, \overline{X}_1 - \overline{X}_2 + t_{m,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2} \right[$	$2P(t_m> T)$				
V	es t_m	$\{T \leq t_{m,\alpha}\}$	$\left]-\infty, \overline{X}_1 - \overline{X}_2 - t_{m,\alpha} \widetilde{S}_{1,2} \right[$	$P(t_m \leq T)$				
VI	(vegeu (b,c))	$ (\text{vegeu (b,c)}) \qquad \qquad \{T \geq t_{m,1-\alpha}\} \qquad \qquad]\overline{X}_1 - \overline{X}_2 - t_{m,1-\alpha}\widetilde{S}_{1,2}, +\infty[$		$P(t_m \ge T)$				
VII	$T = \frac{\overline{X}_1 - \overline{X}_2}{\widetilde{S}_{1,2}}$	$\{T{\leq}{-}t_{f,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{f,1-\frac{\alpha}{2}}\}$	$\left] \left] \overline{X}_1 - \overline{X}_2 - t_{f,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2}, \overline{X}_1 - \overline{X}_2 + t_{f,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2} \right[\right.$	$2P(t_f > T)$				
VIII	es t_f	$\{T{\le}t_{f,\alpha}\}$	$\left]-\infty, \overline{X}_1 - \overline{X}_2 - t_{f,\alpha} \widetilde{S}_{1,2} \right[$	$P(t_f \leq T)$				
IX	(vegeu (d,e))	$\{T \ge t_{f,1-\alpha}\}$	$]\overline{X}_{1}-\overline{X}_{2}-t_{f,1-\alpha}\widetilde{S}_{1,2},+\infty[$	$P(t_f \ge T)$				
X	$Z = \frac{\overline{D}}{\underline{\sigma_D}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left] \overline{D} - z_{1 - \frac{\alpha}{2}} \frac{\sigma_D}{\sqrt{n}}, \overline{D} + z_{1 - \frac{\alpha}{2}} \frac{\sigma_D}{\sqrt{n}} \right[$	$2P(Z \ge z)$				
XI	es $N(0,1)$	$\{Z \leq z_{\alpha}\}$	$\left]-\infty,\overline{D}-z_{lpha}rac{\sigma_{D}}{\sqrt{n}} ight[$	$P(Z \leq z)$				
XII	(vegeu (f))	$\{Z \ge z_{1-\alpha}\}$	$]\overline{D}-z_{1-\alpha}\frac{\sigma_D}{\sqrt{n}},+\infty[$	$P(Z \ge z)$				
XIII	$T = \frac{\overline{D}}{\frac{\widetilde{S}_D}{\sqrt{\overline{\alpha}}}}$	$\{T{\le}{-}t_{n-1,1-\frac{\alpha}{2}}\}{\cup}\{T{\ge}t_{n-1,1-\frac{\alpha}{2}}\}$	$\boxed{\overline{D} - t_{n-1,1-\frac{\alpha}{2}} \frac{\widetilde{S}_D}{\sqrt{n}}, \overline{D} + t_{n-1,1-\frac{\alpha}{2}} \frac{\widetilde{S}_D}{\sqrt{n}}} $	$2P(t_{n-1}> T)$				
XIV	es t_{n-1}	$\{T \leq t_{n-1,\alpha}\}$	$\left]-\infty, \overline{D}-t_{n-1,\alpha}\frac{\widetilde{s}_D}{\sqrt{n}}\right[$	$P(t_{n-1} \leq T)$				
XV	(vegeu (f))	$\{T \ge t_{n-1,1-\alpha}\}$	$\overline{D} - t_{n-1,1-\alpha} \frac{\sigma_D}{\sqrt{n}}, +\infty$	$P(t_{n-1} \ge T)$				
XVI	$Z = \frac{\overline{D}}{\tilde{S}_D}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\boxed{\overline{D} - z_{1-\frac{\alpha}{2}} \frac{\widetilde{S}_{\underline{D}}}{\sqrt{n}}, \overline{D} + z_{1-\frac{\alpha}{2}} \frac{\widetilde{S}_{\underline{D}}}{\sqrt{n}}}$	$2P(Z \ge z)$				
XVII	es $N(0,1)$	$\{Z \leq z_{\alpha}\}$	$-\infty, \overline{D} - z_{\alpha} \frac{\widetilde{S}_{D}}{\sqrt{n}}$	$p(Z \leq z)$				
XVIII	(vegeu (f))	$\{Z \ge z_{1-\alpha}\}$	$\overline{D} - z_{1-\alpha} \frac{\sigma_D}{\sqrt{n}}, +\infty$	$P(Z \ge z)$				
XIX	$Z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$		$2P(Z{\ge} z)$				
XX	$\operatorname{es} N(0,1) \ (\operatorname{vegeu} (g,h))$	$\{Z{\le}z_{lpha}\}$	$\left] -\infty, \widehat{p}_1 - \widehat{p}_2 - z_\alpha \sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \right]$	$P(Z \leq z)$				
XXI	(vegeu (g,n))	$\{Z \ge z_{1-\alpha}\}$	$\widehat{p}_1 - \widehat{p}_2 - z_{1-\alpha} \sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, +\infty$	$P(Z \ge z)$				
XXII	$Z = \frac{\widehat{p}_{1 \bullet} - \widehat{p}_{\bullet 1}}{\sqrt{\frac{b+d}{n^2}}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\begin{split} \Big] \widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}}, \\ \widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}} \Big[\end{split}$	$2P(Z{\ge} z)$				
XXIII	es $N(0,1)$ (vegeu (i))	$\{Z{\le}z_{lpha}\}$	$\left]-\infty,\widehat{p}_{1\bullet}-\widehat{p}_{\bullet 1}-z_{\alpha}\sqrt{\frac{b+d}{n^{2}}}\right[$	$P(Z \leq z)$				
XXIV	/ (vegeu (i))	$\{Z \ge z_{1-\alpha}\}$	$\widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} - z_{1-\alpha} \sqrt{\frac{b+d}{n^2}}, +\infty$	$P(Z \ge z)$				
XXV	~2	$\{F{\le}F_{n_1-1,n_2-1,\frac{\alpha}{2}}\}{\cup}$	$\left] \begin{array}{c} \tilde{S}_{1}^{2} \\ \tilde{S}_{2}^{2} \end{array} F_{n_{1}-1,n_{2}-1,\frac{\alpha}{2}} , \right.$	$2\min\{P(F_{n_1-1,n_2-1}{\le}F),$				
AAV	$F = \frac{\widetilde{S}_1^2}{\widetilde{S}_2^2}$	$\{F\!\!\geq\!\! F_{n_1-1,n_2-1,1-\frac{\alpha}{2}}\}$	$\frac{\tilde{S}_{1}^{2}}{\tilde{S}_{2}^{2}}F_{n_{1}-1,n_{2}-1,1-\frac{\alpha}{2}}\bigg[$	$P(F_{n_1-1,n_2-1} \ge F)$ }				
XXVI	es F_{n_1-1,n_2-1}	$\{F \leq F_{n_1-1,n_2-1,\alpha}\}$	$\left]0, \frac{\widetilde{S}_{1}^{2}}{\widetilde{S}_{2}^{2}} F_{n_{1}-1, n_{2}-1, 1-\alpha}\right[$	$P(F_{n_1-1,n_2-1} \leq F)$				
XXVII		$\{F \ge F_{n_1-1,n_2-1,1-\alpha}\}$	$\begin{bmatrix} \tilde{S}_1^2 \\ \tilde{S}_2^2 F_{n_1-1,n_2-1,\alpha}, +\infty \end{bmatrix}$	$P(F_{n_1-1,n_2-1} \ge F)$				

(a)
$$\widetilde{S} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(b)
$$\widetilde{S}_{1,2} = \sqrt{\frac{(n_1 - 1)\widetilde{S}_1^2 + (n_2 - 1)\widetilde{S}_2^2}{n_1 + n_2 - 2} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

(c)
$$m = n_1 + n_2 - 2$$

(d)
$$\widetilde{S}_{1,2} = \sqrt{\frac{\widetilde{S}_1^2}{n_1} + \frac{\widetilde{S}_2^2}{n_2}}$$

(e)
$$f = \left[\frac{\left(\frac{\tilde{S}_1^2}{n_1} + \frac{\tilde{S}_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{\tilde{S}_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{\tilde{S}_2^2}{n_2}\right)^2} \right] - 2$$

(f) \overline{D} y \widetilde{S}_D son la media y la desviación típica muestrales de $D=X_1-X_2$

(g)
$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

(h)
$$\hat{q} = 1 - \hat{p}$$

(i) Para hacer el contraste, hemos de construir la tabla siguiente:

		Muestra después			
		éxito	Fracaso	Frecuencia	Proporción
Muestra antes	éxito	a	b	a+b	$\widehat{p}_{1\bullet} = \frac{a+b}{n}$
	Fracaso	d	c	c+d	$\widehat{p}_{2\bullet} = \frac{c+d}{n}$
	Frecuencia	a+d	b+c	n	
	Proporción	$\widehat{p}_{\bullet 1} = \frac{a+d}{n}$	$\widehat{p}_{\bullet 2} = \frac{b+c}{n}$		1

Entonces, el estadístico de contraste se puede escribir como:

$$Z = \frac{\frac{b}{n} - \frac{d}{n}}{\sqrt{\frac{b+d}{n^2}}}$$