2. Cost Functions

Cost minimization problem

$$\min_{k,l} wl + vk, \text{ s.t. } f(k,l) = q$$

Equal-cost lines,

$$c_1 = wl + vk$$

$$vk = c_1 - wl$$

$$k = \frac{c_1}{v} - \frac{w}{v}l$$

The intercept is $\frac{c_1}{v}$.

The slopt of equal-cost lines is $-\frac{w}{v}$, which is a input price ratio. When technology advances, physical capital becomes cheaper, the equal-cost lines become steeper.

Homothetic production function

As q increases, $\frac{k^*}{l^*}$ (capital-labor ratio) does not change.

As q increases, $\frac{k^*}{l^*}$ may increase. So economic growth may lead to less job.

When input price ratio $(\frac{w}{v})$ changes, capital-labor ratio $(\frac{k^*}{l^*})$ also changes. From A to B, capital becomes relatively cheaper, more capital is employed, and less labor is hired. Capital-labor ratio rises.

Example, Cost minimization for $f(k, l) = Ak^{\alpha}l^{\beta}$

$$\min_{k,l} wl + vk$$
, s.t. $Ak^{\alpha}l^{\beta} = q$

If the isoquant is "well-behaved" (decreasing and convex), we can use the tangency condition

$$RTS = \frac{f_l}{f_k} = \frac{A\beta k^{\alpha} l^{\beta - 1}}{A\alpha k^{\alpha - 1} l^{\beta}} = \frac{\beta k}{\alpha l} = \frac{w}{v}$$

Together with the constraint

$$Ak^{\alpha}l^{\beta}=q,$$

we can solve two unknowns k and l from two equations.

$$k = \frac{\alpha w}{\beta v} l$$

$$A(\frac{\alpha w}{\beta v} l)^{\alpha} l^{\beta} = q$$

$$l^{\alpha + \beta} A \frac{\alpha^{\alpha} w^{\alpha}}{\beta^{\alpha} v^{\alpha}} = q$$

$$l^{\alpha + \beta} = \frac{\beta^{\alpha} v^{\alpha}}{A \alpha^{\alpha} w^{\alpha}} q$$

$$l^* = l^c(v, w, q) = \left[\frac{\beta^{\alpha} v^{\alpha}}{A \alpha^{\alpha} w^{\alpha}} q \right]^{\frac{1}{\alpha + \beta}} = \frac{\beta^{\frac{\alpha}{\alpha + \beta}} v^{\frac{\alpha}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \alpha^{\frac{\alpha}{\alpha + \beta}} w^{\frac{\alpha}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

$$k^* = k^c(v, w, q) = \frac{\alpha w}{\beta v} l^* = \frac{\alpha w}{\beta v} \frac{\beta^{\frac{\alpha}{\alpha + \beta}} v^{\frac{\alpha}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \alpha^{\frac{\alpha}{\alpha + \beta}} w^{\frac{\alpha}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

$$= \frac{\beta^{\frac{\alpha}{\alpha + \beta} - 1} v^{\frac{\alpha}{\alpha + \beta} - 1}}{A^{\frac{1}{\alpha + \beta}} \alpha^{\frac{\alpha}{\alpha + \beta}} - 1 w^{\frac{\alpha}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

$$= \frac{\alpha^{\frac{\beta}{\alpha + \beta}} w^{\frac{\beta}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \beta^{\frac{\beta}{\alpha + \beta}} v^{\frac{\beta}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

$$= \frac{\alpha^{\frac{\beta}{\alpha + \beta}} w^{\frac{\beta}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \beta^{\frac{\beta}{\alpha + \beta}} v^{\frac{\beta}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

The solution to the cost minimization problem are **conditional/contingent** input demand function

$$\begin{cases} l^{c}(v, w, q) = \frac{\beta^{\frac{\alpha}{\alpha + \beta}} v^{\frac{\alpha}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \alpha^{\frac{\alpha}{\alpha + \beta}} w^{\frac{\alpha}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}} \\ k^{c}(v, w, q) = \frac{\alpha^{\frac{\beta}{\alpha + \beta}} v^{\frac{\beta}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \beta^{\frac{\beta}{\alpha + \beta}} v^{\frac{\beta}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}} \end{cases}$$

Here q is fixed.

Later, we have $l^*(v, w, p)$ and $k^*(v, w, p)$ as solution to profit-max problem when q is chosen (not fixed). They are called input demand functions.

Cost function

Cost function is the value function of cost minimization problem. (The objective function, wl + vk, has not been optimized).

If we evaluated the objective function at the solution, this is the cost function

$$C(v, w, q) = wl^* + vk^*$$

= $wl^c(v, w, q) + vk^c(v, w, q)$

For the Cobb-douglas example, the cost function is

$$\begin{split} C(v,w,q) &= w \frac{\beta^{\frac{\alpha}{\alpha+\beta}}v^{\frac{\alpha}{\alpha+\beta}}}{A^{\frac{1}{\alpha+\beta}}\alpha^{\frac{\alpha}{\alpha+\beta}}w^{\frac{\alpha}{\alpha+\beta}}} q^{\frac{1}{\alpha+\beta}} + v \frac{\alpha^{\frac{\beta}{\alpha+\beta}}w^{\frac{\beta}{\alpha+\beta}}}{A^{\frac{1}{\alpha+\beta}}\beta^{\frac{\beta}{\alpha+\beta}}v^{\frac{\beta}{\alpha+\beta}}} q^{\frac{1}{\alpha+\beta}} \\ &= \left\{ w \frac{\beta^{\frac{\alpha}{\alpha+\beta}}v^{\frac{\alpha}{\alpha+\beta}}}{A^{\frac{1}{\alpha+\beta}}\alpha^{\frac{\alpha}{\alpha+\beta}}w^{\frac{\alpha}{\alpha+\beta}}} + v \frac{\alpha^{\frac{\beta}{\alpha+\beta}}w^{\frac{\beta}{\alpha+\beta}}v^{\frac{\beta}{\alpha+\beta}}}{A^{\frac{1}{\alpha+\beta}}\beta^{\frac{\beta}{\alpha+\beta}}v^{\frac{\beta}{\alpha+\beta}}} \right\} q^{\frac{1}{\alpha+\beta}} \\ C(q) &= Bq^{\frac{1}{\alpha+\beta}} \end{split}$$

Average cost

$$AC(q) = \frac{C(q)}{q} = Bq^{\frac{1}{\alpha+\beta}-1} = Bq^{\frac{1-(\alpha+\beta)}{\alpha+\beta}}$$

Shape of cost function and average cost depend on parameter α and β .

If $\alpha + \beta = 1$, then C(q) = Bq (straight line), AC(q) = B, which is flat. This is the case of

constant returns to scale. If $\alpha + \beta > 1$, then $\frac{1 - (\alpha + \beta)}{\alpha + \beta} < 0$, AC(q) decreases in q, C(q) is concave. This is when the

$$C'(q) = B \frac{1}{\alpha + \beta} q^{\frac{1}{\alpha + \beta} - 1} > 0$$

$$C''(q) = B \frac{1}{\alpha + \beta} \underbrace{\left(\frac{1 - (\alpha + \beta)}{\alpha + \beta}\right)}_{>0 \text{ or } < 0} q^{\frac{1}{\alpha + \beta} - 2}$$

$$(\alpha + \beta > 1$$
, then $\frac{1 - (\alpha + \beta)}{\alpha + \beta} < 0$, then $C''(q) < 0$.)

 $(\alpha+\beta>1,$ then $\frac{1-(\alpha+\beta)}{\alpha+\beta}<0$, then C''(q)<0.) If $\alpha+\beta<1$, then $\frac{1-(\alpha+\beta)}{\alpha+\beta}>0$, AC(q) increases in q, C(q) is convex. This is when the production function exhibit decreasing returns to scale.

Lagrangian approach and evenlop theorem

We only consider equality constraint in our course, so we are only using a very simple version of Lagrangian method, which only requires first-order conditions (FOC).

In a more complicated problem, there may be several constraints with inequality. Some of the inequalities "binds" (holds in equality at the solution); some of the inequalities "slacks". In this case, we need Kuhn-Tucker conditions to find the solution.

$$\max_{x,y} f(x,y), \quad \text{s.t. } g(x,y) = b \Leftrightarrow g(x,y) - b = 0$$

$$\min_{x,y} f(x,y), \quad \text{s.t. } g(x,y) = b \Leftrightarrow g(x,y) - b = 0$$

$$\mathscr{L} = f(x,y) + \lambda(g(x,y) - b)$$

Or you can write

$$\mathcal{L} = f(x, y) + \lambda (b - g(x, y))$$

When there is inequality constraint, then the sign of λ matters. (λ is called Lagrangian multiplier.)

But if we only consider equality constraint, then we can ignore the sign of λ .

The solution is characterized by three FOCs

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = 0\\ \frac{\partial \mathcal{L}}{\partial y} = 0\\ \frac{\partial \mathcal{L}}{\partial \lambda} = 0 \end{cases}$$

For cost minimization problem

$$\min_{k,l} wl + vk, \text{ s.t. } f(k,l) - q = 0$$

$$\mathcal{L} = wl + vk + \lambda [f(k,l) - q]$$

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial l} = w + \lambda f_l = 0 & \Rightarrow \frac{w}{f_l} = -\lambda \\ \frac{\partial \mathcal{L}}{\partial k} = v + \lambda f_k = 0 & \Rightarrow \frac{v}{f_k} = -\lambda \\ \frac{\partial \mathcal{L}}{\partial \lambda} = f(k,l) - q = 0 \end{cases}$$

From the first two FOCs

$$\frac{w}{f_l} = -\lambda = \frac{v}{f_k}$$

$$\Rightarrow \frac{w}{f_l} = \frac{v}{f_k} \Rightarrow \frac{w}{v} = \frac{f_l}{f_k}$$

The solution is determined by

$$\begin{cases} \frac{w}{v} = \frac{f_l}{f_k} \\ f(k, l) = q \end{cases}$$

The solution is

$$l^c(v, w, q), k^c(v, w, q)$$

The value function is

$$V(v, w, q) = f(l^c(v, w, q), k^c(v, w, q))$$

Envelop theorem: the derivative of the value function w.r.t. an exogenous variable is equal to the derivative of the Lagrangian function w.r.t. that variable.

$$\frac{\partial V(v, w, q)}{\partial v} = \frac{\partial \mathcal{L}}{\partial v}$$

$$\mathcal{L} = wl + vk + \lambda [f(k, l) - q]$$

$$\frac{\partial \mathcal{L}}{\partial v} = k = k^{c}(v, w, q)$$

$$\frac{\partial \mathcal{L}}{\partial w} = l = l^{c}(v, w, q)$$

Example,

$$C(v, w, q) = \left\{ w \frac{\beta^{\frac{\alpha}{\alpha + \beta}} v^{\frac{\alpha}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \alpha^{\frac{\alpha}{\alpha + \beta}} w^{\frac{\alpha}{\alpha + \beta}}} + v \frac{\alpha^{\frac{\beta}{\alpha + \beta}} w^{\frac{\beta}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \beta^{\frac{\beta}{\alpha + \beta}} v^{\frac{\beta}{\alpha + \beta}}} \right\} q^{\frac{1}{\alpha + \beta}}$$

$$\frac{\partial C(v, w, q)}{\partial v} = k^{c}(v, w, q) = \frac{\alpha^{\frac{\beta}{\alpha + \beta}} w^{\frac{\beta}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} \beta^{\frac{\beta}{\alpha + \beta}} v^{\frac{\beta}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

$$\frac{\partial C(v, w, q)}{\partial w} = l^{c}(v, w, q) = \frac{\beta^{\frac{\alpha}{\alpha + \beta}} v^{\frac{\alpha}{\alpha + \beta}}}{A^{\frac{1}{\alpha + \beta}} v^{\frac{\alpha}{\alpha + \beta}}} q^{\frac{1}{\alpha + \beta}}$$

These two equations are called Shepard's Lemma.

 $\frac{\partial C(v,w,q)}{\partial v}$ and $\frac{\partial C(v,w,q)}{\partial w}$, are **comparative statics** properties. Comparative statics means comparing two static situations due to change of some exogenous variable.

For example, v_1 changes to v_2 , how will cost changes? We need to know $\frac{\partial C(v,w,q)}{\partial v}$.

Some examples

Cost minization of fixed proportion (Liontief) production function

$$\min_{k,l} wl + vk, \text{ s.t. } q = \min\{\alpha k, \beta l\}.$$

The isoquant of this production function is not differentiable, so we cannot use the tangency condition.

The solution is characterized by

$$\alpha k = \beta l = q$$

Capital labor ratio (after cost minization), it is fixed for any output level q.

$$\frac{k}{l} = \frac{\beta}{\alpha}$$

The contingent input demand function

$$\begin{cases} k^{c}(w, v, q) = \frac{q}{\alpha} \\ l^{c}(w, v, q) = \frac{q}{\beta} \end{cases}$$

The cost function

$$C(w, v, q) = wl^{c}(w, v, q) + vk^{c}(w, v, q)$$
$$= w\frac{q}{\beta} + v\frac{q}{\alpha} = (\frac{w}{\beta} + \frac{v}{\alpha})q$$

This function is linear in q, so it exhibit constant returns to scale. Verify Shepard's lemma, check whether the theorem holds

$$\frac{\partial C(v, w, q)}{\partial v} = \frac{q}{\alpha} = k^{c}(v, w, q)$$
$$\frac{\partial C(v, w, q)}{\partial w} = \frac{q}{\beta} = l^{c}(v, w, q)$$
$$C(w) = vk^{*} + l^{*}w$$

Short run cost

Example, $q = k_1^{\alpha} l^{\beta}$, in the short run, capital k is fixed at some level k_1 . The cost minimization problem becomes

$$\min_{l} v k_1 + w l$$
, s.t. $f(k_1, l) = q$

Because the constraint must be satisfied, so short-run labor demand can directly be solved

$$k_1^{\alpha} l^{\beta} = q$$

$$l^{\beta} = q k_1^{-\alpha}$$

$$\Rightarrow l^* = l^{SR}(v, w, q, k_1) = q^{\frac{1}{\beta}} k_1^{-\frac{\alpha}{\beta}}$$

Short run cost function

$$C^{SR}(v, w, q, k_1) = vk_1 + wl^{SR}(v, w, q, k_1)$$
$$= vk_1 + wk_1^{-\frac{\alpha}{\beta}} q^{\frac{1}{\beta}}$$
$$C(q) = F + VC(q)$$

For $\beta \in (0,1)$, this function is convex in q

$$\begin{split} \frac{\partial C^{SR}}{\partial q} &= w k_1^{-\frac{\alpha}{\beta}} \frac{1}{\beta} q^{\frac{1}{\beta} - 1} > 0 \\ \frac{\partial^2 C^{SR}}{\partial q^2} &= w k_1^{-\frac{\alpha}{\beta}} \frac{1}{\beta} \underbrace{(\frac{1}{\beta} - 1)}_{>0} q^{\frac{1}{\beta} - 2} > 0 \end{split}$$

Let the marginal cost be

$$\begin{split} MC^{SR}(q) &= \frac{\partial C^{SR}(q)}{\partial q} \\ \frac{\partial^2 C^{SR}}{\partial q^2} &= \frac{\partial}{\partial q} \left(\frac{\partial C^{SR}(q)}{\partial q} \right) = \frac{\partial}{\partial q} \left(MC^{SR}(q) \right) > 0 \end{split}$$

So marginal cost increases in q.

(Second order derivative of cost function w.r.t. q is the slope of marginal cost. Note that marginal cost is the slope of the cost function.)

Cost functions

Example $C(q) = q^3 - 4q^2 + 6q + 18$

$$F = 18$$
, $VC(q) = q^3 - 4q^2 + 6q$

$$MC(q) = \frac{\partial C}{\partial q} = 3q^2 - 8q + 6$$

$$AC(q) = \frac{C(q)}{q} = q^2 - 4q + 6 + \frac{18}{q}$$

$$AVC(q) = q^2 - 4q + 6$$

Find short-run shut-down point, long-run zero profit point, and cost function. Short-run shut-down point is the minimum of AVC(q)

$$AVC(q) = q^2 - 4q + 4 + 2 = (q-2)^2 + 2$$

$$q_1 = 2$$
, $AVC(q_1) = 2$

WE can also find the minimum by taking derivative or equating

$$MC(q) = AVC(q)$$

$$3q^2 - 8q + 6 = q^2 - 4q + 6$$
$$\Rightarrow 2q^2 = 4q$$

Both q = 0 and q = 2 are the solution.

In general, average cost has a **U-shape**.

$$AC(q) = \frac{F}{q} + \frac{VC(q)}{q}$$

When q is very small, then the average fixed cost $(\frac{F}{q})$ is very large.

For most industries (except for those with natural monopoly), the average cost will rise when q is large. There are two intrinsic reasons: First, input is scarce, so its price will rise when q becomes large. Second, when the firm becomes large, it will have multiple hierarchy. Every layer of hierarchy has principal-agent problem.

Find the minimum of

$$AC(q) = \frac{C(q)}{q} = q^2 - 4q + 6 + \frac{18}{q}$$

$$AC'(q) = 2q - 4 - \frac{18}{q^2} = 0$$

$$2q^3 - 4q^2 - 18 = 0$$

$$q^3 - 2q^2 - 9 = 0$$

The solution is $q_2 = 3$, the minimum of average cost is

$$AC(q_2) = 9 - 12 + 6 + 6 = 9.$$

The shut-down point is at $p_1 = 2$.

The zero-profit point is at $p_2 = 9$.

For a price-taking firm, price is fixed at p, the profit is

$$\pi(q) = p \times q - C(q)$$

$$\max_{q}\{p\times q - C(q)\}$$

The FOC is

$$p = C'(q^*) = MC(q^*) = g(q^*).$$

This determines the supply q^* .

Supply function is quantity as a function of p,

$$q^* = MC^{-1}(p) = g^{-1}(q^*).$$

(For example, if p = MC(q) = 2q, then $q = MC^{-1}(p) = S(p) = \frac{1}{2}p$.)

Note that, we need the price to be greater than the shut-down price, so the supply function (short-run) is

$$S(p) = \begin{cases} MC^{-1}(p) & \text{if } p \ge \min AVC(q) = p_1\\ 0 & \text{if } p < \min AVC(q) = p_1 \end{cases}$$

For this example,

$$MC(q) = 3q^{2} - 8q + 6 = p$$

$$3(q^{2} - \frac{8}{3}q + \frac{16}{9}) + \frac{2}{3} = p$$

$$3(q - \frac{4}{3})^{2} = p - \frac{2}{3}$$

$$(q - \frac{4}{3})^{2} = \frac{p}{3} - \frac{2}{9}$$

$$q - \frac{4}{3} = \sqrt{\frac{p}{3} - \frac{2}{9}}$$

$$q = \sqrt{\frac{p}{3} - \frac{2}{9}} + \frac{4}{3}$$

So the supply function is

$$S(p) = \begin{cases} \sqrt{\frac{p}{3} - \frac{2}{9}} + \frac{4}{3} & \text{if } p \ge 2\\ 0 & \text{if } p < 2 \end{cases}$$

Note: Homogeneous of degree 1, f(x,y), then for t > 0

$$f(tx, ty) = t^r f(x, y), \quad r = 1$$

(Constant return to scale means production function is Homogeneous of degree 1.) Homogeneous of degree r, f(x,y), then for t > 0

$$f(tx, ty) = t^r f(x, y)$$