- 1. Suppose $S=\{g\in G: \varphi(g)=g\}$
 - (a) $\varphi(e) = e \in S$
 - (b) Suppose that $x, y \in S$

then
$$\varphi(x) = x$$
 and $\varphi(y) = y$

so,
$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = x \cdot y \in S$$

(c)
$$\varphi(x^{-1}) = (\varphi(x))^{-1} = (x)^{-1} = x^{-1} \in S$$

2. Suppose that |G|=91 and that $\operatorname{ord}(a) \neq \operatorname{ord}(b)$, and that $a,b \neq e_G$ so by Langrange's thm $\Rightarrow |a|,|b| \in \{7,13,91\}$ all but 1 because they can not be the identity. so if any of |a| or |b|=91, then we are done because $\langle a,b\rangle=G$ more interestingly, if |a|=7 and |b|=13 (the other way around works too!) let $H=\langle a,b\rangle$ so if $a\in H$ and |a|=7 then 7 divides |H| and similarly, 13 divides |H| and since |H| must divide |G|=91 then the only possibility is |H|=91 $\Rightarrow G=H$

3. Define $\Phi:$ left cosets $gH\mapsto$ vertices of cube

$$\Phi(gH) = g(v)$$

Now suppose that gH = g'H, then g' = gh for some $h \in H$

so,
$$h$$
 fixes v , and $g'(v) = gh(v) = g(v)$

so $\Phi(gH) = \Phi(g'H)$, so it is well defined.

so if
$$\Phi(gH) = \Phi(g'H)$$
, then $g(v) = g'(v)$

so,
$$(g^{-1}g')(v) = v$$

so, $g^{-1}g' \in H \Rightarrow \Phi$ is injective.

Next, let ω be any vertex, then by the symmetry of the cube pick a $g \in G$ such that $g(v) = \omega$

then
$$\Phi(gH) = \omega$$

so Φ mnust be surjective

so it is a bijection between the set of left cosets and the set of vertices

so,
$$(G:H)=\#\{\text{left cosets}\}=\#\{\text{vertices}\}=8$$

4. Order $3 : \langle r \rangle = \{e, r, r^2\}$

Order 2 :
$$\langle s \rangle = \{e,s\}, \langle rs \rangle = \{e,rs\}, \langle r^2,s \rangle = \{e,r^2s\}$$

The identity is normal

 $\langle r \rangle \text{ is any index 2, so any index 2 subgroup is normal, } srs = r^{-1} \in \langle r \rangle \text{ and } r \langle r \rangle r^{-1} = \langle r \rangle$

so,
$$rsr^{-1} = rsr^2$$
, using $sr = r^{-1}s$, we get that $rs = sr^{-1} = sr^2$

so,
$$rsr^2 = (sr^2)r^2 = sr \neq s$$

so,
$$r\langle s\rangle r^{-1} = \langle rs\rangle \neq \langle s\rangle$$

so $\langle s \rangle$ is not normal, and similarly for the rest of the two order subgroups.

Next, the only nontrivial proper normal subgroup is $\langle r \rangle$. There is no normal subgroup of order 2.

So any decomposition of $D_3=H_1\times H_2$ with non trivial factors would need $|H_1|=3$ and $|H_2|=2$

but there is no group such that $|H_2|=2$

so there is no such product inside \mathcal{D}_3

5.
$$\phi(7+50\mathbb{Z}) = 6+15\mathbb{Z}$$

let
$$u = \phi(1 + 50\mathbb{Z}) \in \mathbb{Z}/15\mathbb{Z}$$

then
$$7u = \phi(7 \cdot (1 + 50\mathbb{Z})) = \phi(7 + 50\mathbb{Z}) = 6 + 15\mathbb{Z}$$

so,
$$7u \equiv 6 \pmod{15}$$

$$u \equiv 13 \cdot 6 = 78 \equiv 78 - 75 = 3 \pmod{15}$$

so
$$u = 3 + 15\mathbb{Z}$$

so,
$$\phi(x+50\mathbb{Z})=3x+15\mathbb{Z}$$
, for all $x\in\mathbb{Z}$

Next,
$$\ker \phi = \{x + 50\mathbb{Z} : \phi(x + 50\mathbb{Z}) = 0 + 15\mathbb{Z}\}\$$

so, want
$$x \equiv 1 \pmod{5}$$

so
$$\ker \phi = \{0, 5, 10, 15, 20, 25, 30, 35, 40, 45\} + 50\mathbb{Z}$$

we need
$$3x \equiv 3 \pmod{15}$$

so,
$$3(x-1) \equiv 0 \pmod{15}$$

so
$$5|(x-1)$$

so,
$$x \equiv 1 \pmod{5}$$

so there are ten classes: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46(mod 50)

and each satisfies
$$\phi(x+50\mathbb{Z})=3+15\mathbb{Z}$$