

Let me introduce myself...

JUAN BENAVENTE

- Smarter Cities Technical Presales (IBM)
- Internet of Things Consultant and Team Lead (IBM)
- Industry 4.0 & Blockchain Solutions Architect (CEPSA)
- Sectors: Energy, Industrial, Public

- 1st Runner Up Non-supervisory IT Employee of the year Mubadala's IT Award
- WPC O&G Spanish Youth Award Impact of Blockchain in O&G
- Outstanding Technical Achievement Award: Treasure Wild Ducks

Where are we?

Why ML?

- Problem type: inference or prediction/estimation
- Resolution process: complex or unkown formulas and/or rules -> solution based on previous experience (data)

Other characteristics:

- Complexity -> many variables
- Large amounts of data
- Repetitive problem

Is this useful?

If you don't dress every day the same, why don't you move around differently?

- You have just joined Wheelz startup as the DS Team Leader
- As a Young company, ML has not been implemented so far, but will be the focus during the next 3-5 years
- You organize a Design Thinking with your teammates in order to better understand which data is available at the company and identify possible initiatives to overcome with your team

- You will be working in teams:
 - TEAM 1 (Juan):
 - Daniel Rey
 - Laura Martín
 - Samuel Carballo
 - Mauricio Asperti
 - Marcelo Araujo
 - Isabel Hita
 - TEAM 2 (Mónica):
 - Marcos García
 - Ignacio Cifuentes
 - María Dolores Carmena
 - Fernando Rodríguez
 - Ayose Sosa Guerra

- TEAM 3 (Miguel):
 - Vittoria Reale
 - Rubén Farias
 - José Pascual
 - Ángel Moya
 - Kay Kozaronek
 - Miguel García

facilitator -> timing, everybody speaks, go,go,go!

presenter -> summarizes results

You will be using Miro app

https://miro.com/

6 min

Discuss which sources of data are present in the company

- 2': individual creation
- 4': put together, discuss, enrich, and cluster

6 min

Discuss which initiatives we could work at

- 2': individual creation
- 4': put together, discuss, enrich, and cluster

Tiempo de batería restante	Capacidad futura / zona	Mantenimiento predictivo	Tiempo de vida restante (i.e. batería)
Demanda	Detección	Segmentación	
futura / zona	fraude	Clientes	
Capacidad	Ruptura	Predicción	
trabajo	stock	tráfico	
Predicción precio eléctricidad			

Some basic definitions

ML is the science and art of programming computers so that they can **learn** from data.

- Aurélien Géron

ML is the field of study that gives computers the ability to **learn without being explicitly programmed**.

- Arthur Samuel, 1959

A computer program is said to learn from experience E with respect to some task T and some **performance measure P**, it its performance on T, as measured by P, improves with experience E.

- Tom Mitchell, 1997

Module 3 Summary

SESSION	TITLE	TEACHER
1	ML Foundations	Juan
2	Regression Introduction and Practice	Juan
3	Classification Introduction and Practice	Carlos
4	Feature Engineering and Selection for ML	Carlos
5	Advanced Supervised Models 1	Carlos
6	Advanced Supervised Models 2	Carlos
7	Hands-on Practice	Carlos

Supervised ML

Module 3.1

X > input variables – predictors, independent variables, features $X = (X_1, X_2, ..., X_p)$

Y > output variable – response, dependent variable

Observations > $\{(x_{0,}y_{0}), (x_{1,}y_{1}), ..., (x_{n,}y_{n})\}$

$$Y = f(X) + \epsilon$$

f(X) > fixed but unknown function that relates X and Y.

E > error term, noise, independent of X and mean 0 (a priori)

$$Y = f(X) + \epsilon$$

f(X) > fixed but unknown function that relates X and Y.

E > error term, noise independent of X and mean 0 (a priori)

$$\hat{Y} = \hat{f}(X)$$

f(X) > estimate for f

 $\hat{\mathbf{Y}}$ > resulting prediction for Y

"Essentially, all models are wrong, but some are useful."

- GeorgeBox, 1987.

$$\hat{Y} = \hat{f}(X)$$

f(X) > estimate for f

 $\hat{\mathbf{Y}}$ > resulting prediction for Y

reducible error > prediction function does not suit perfectly to real function

irreducible error > unmeasured
variables and unmeasurable variation

Let's model vertical movement (

https://giphy.com/gifs/deadpool-dad-peter-1APafwnHNjbwU5A48H

Let's model vertical movement

$$E\left[\left(Y-\hat{Y}\right)^{2}\right] = E\left[\left(f(X) + \epsilon - \hat{f}(X)\right)^{2}\right] = \left(f(X) - \hat{f}(X)\right)^{2} + Var(\epsilon)$$

Reducible:

- dependent on input variables
- higher while higher is the differente between the real function and our estimation
- we can improve our model to reduce this term

Irreducible:

- not dependent in input variables
- upper bound for our model's accuracy

Different dimensionality....

Different nature....

To explain or to predict?

https://www.linkedin.com/pulse/white-box-black-choosing-machine-learning-model-your-vidyadhar-ranade

To explain or to predict?

Is interpretability important? Why?

Interpretability

IMPORTANCE

- Debugging
- Informing feature engineering
- Directing future data collection
- Informing human decisionmaking
- Building Trust

"The problem is that a single metric, such as classification accuracy, is an incomplete description of most real-world tasks."

- Doshi-Velez and Kim, 2017

Assessing Model Accuracy

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

One model to rule them all...

https://www.looper.com/189208/saurons-entire-backstory-explained/

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- Evaluate the quality of fit, model performance, model skill
- Small for well fitted model
- Training MSE vs Test MSE

Mean Squared Error

Overfitting

Memorizing is not learning!

Overfitting

https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42

Overfitting

Low Training Error High Training Error Low Testing Error High Testing Error

 $https:\!/\!/hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42$

Overfitting

	Low Training Error	High Training Error
Low Testing Error	The model is learning!	Probably some error in your code. Or you've created a psychic Al.
High Testing Error	OVERFITTING	The model is not learning.

 $https:\!/\!/hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42$

$$E\left[\left(Y-\hat{Y}\right)^{2}\right] = E\left[\left(f(X) + \epsilon - \hat{f}(X)\right)^{2}\right] = \left(f(X) - \hat{f}(X)\right)^{2} + Var(\epsilon)$$

$$E\left[\left(Y-\hat{Y}\right)^{2}\right] = \left(E\left[\hat{f}(X)\right] - f(X)\right)^{2} + E\left[\left(\hat{f}(X) - E\left[\hat{f}(X)\right]\right)^{2}\right] + Var(\epsilon)$$

$$= \left(Bias\left(\hat{f}(X)\right)\right)^{2} + Var\left(\hat{f}(X)\right) + Var(\epsilon)$$

$$E\left[\left(y_0 - \hat{f}(x_0)\right)^2\right] = \left(Bias\left(\hat{f}(x_0)\right)\right)^2 + Var\left(\hat{f}(x_0)\right) + Var(\epsilon)$$

VARIANCE:

- Overcomplex model assumptions
- Amount by which f would change if we estimated it using a different training data set

BIAS:

- Oversimplifying model assumptions
- Difference between the average prediction of our model and the correct value which we are trying to predict

[2]

What is sampling?

Sampling

 WHAT: Process of selecting subsets of examples from a population with the objective of estimating properties of the population

WHY: manageability, time, computational cost

HOW:

- Information redundancy has no business value
- Removing Data vs. Removing Information
- Consider:
 - Population
 - Sample goal and size
 - Selection criteria

Sampling techniques

 SIMPLE RANDOM SAMPLING: select a subset of a population in which each member of the subset has an equal probability of being chosen. With or without replacement

62 13 6 4 3 2

 STRATIFIED SAMPLING: objects are drawn from each group even though the groups are of different sizes. Either same amount form each group or proportional amounts

Resampling methods

WHAT:

- Repeatedly drawing samples from a training set and refitting a model of interest on each sample
- Might be computationally expensive

WHY:

- Extract as much information as possible from a finite size dataset, information that could not be available from fitting the model only once
- Estimate the skill of a machine learning model on unseen data
- Model selection vs. model assessment

HOW:

- Cross-validation
- Bootstrap

Validation set

- Split observations randomly into two sets:
 - Training set
 - Test/Validation/hold-out set

- Repeat the process several times (if necessary)
- Drawbacks:
 - Validation estimate of the test error can be highly variable depending on which observations are included
 - Only a subset of observations used to fit model -> overestimate error

Validation set

Leave-one-out cross validation (LOOCV)

Split observations into two sets:

- Training set: n-1 observations > $\{(x_2, y_2), ..., (x_n, y_n)\}$
- Test/Validation/hold-out set: 1 observation $> (x_1, y_1)$

$$MSE_1 = (y_1 - \hat{y}_1)^2$$

Repeat the process n times:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Leave-one-out cross validation (LOOCV)

ADVANTAGES:

- Less bias >
 - we use almost every data we have in every fit
 - test error less overestimated
- No randomness > executing it multiple times, leads to same results
- General method > can be used with any kind of predictive modeling

DRAWBACKS:

Expensive to implement, since the model has to be fit n times. This can be very time consuming if n is large, and if each individual model is slow to fit

K-Fold Cross Validation

Split observations into k sets (folds):

- Observations are randomly allocated to each fold
- Each fold is of the same size (or similar)
- First fold is used for validation and the rest for training

Repeat the process n times using different folds for validation:

$$CV_{(n)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

K-Fold Cross Validation

k=5 or k=10

ADVANTAGES:

- Computationally cheaper than LOOCV
- Some variability > much lower than validation set approach
- Often gives better results than LOOCV due to bias-variance trade-off

BIAS-VARIACE TRADE-OFF (k<n)

BIAS:

- LOOCV is almost unbiased as it takes into account n-1 observations
- K-Fold CV has intermediate level of bias as it considers less observations

VARIANCE:

- LOOCV has the highest variance as model is fitted on almost identical sets of observations highly correlated with each other > higher variance
- K-Fold CV models are less correlated > lower variance

K-Fold Cross Validation

Let's try it ourselves...

References

[1] G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2017.

[2] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical: Data Mining, Inference and Prediction. Springer, 2009.

[3] https://towardsdatascience.com/

