08,03

Определение параметров эффекта Яна—Теллера в примесных центрах из ультразвуковых экспериментов: приложение к кристаллу ZnSe: Ni²⁺

© М.Н. Сарычев 1 , И.В. Жевстовских 1,2,¶ , Н.С. Аверкиев 3 , И.Б. Берсукер 4 , В.В. Гудков 1 , В.Т. Суриков 5

Екатеринбург, Россия

Екатеринбург, Россия

Санкт-Петербург, Россия

Austin, Texas USA

Екатеринбург, Россия

(Поступила в Редакцию 27 августа 2018 г.)

Разработанная ранее методология использования ультразвуковых исследований для определения параметров эффекта Яна—Теллера (ЭЯТ) в примесных центрах в кристаллах получила дальнейшее развитие в настоящей работе в применении к примесям $\mathrm{Ni^{2+}}$ в ZnSe: $\mathrm{Ni^{2+}}$. Для всех нормальных мод, распространяющихся вдоль оси [110], измерены температурные зависимости поглощения ультразвука в диапазоне частот 25—165 MHz. При температуре около 13 К для всех этих мод наблюдаются пики поглощения, свидетельствующие о наличии локальных искажений как тригонального, так и тетрагонального типов. Следуя ранее разработанной методике, показано, что эти аномалии поглощения обусловлены проявлением релаксационных переходов между эквивалентными локальными искажениями, индуцированными ЭЯТ в центрах $\mathrm{Ni^{2+}}$. В тетраэдрическом окружении селена этот ион находится в трехкратно вырожденном основном электронном состоянии 3T_1 , где могут реализоваться три типа ЭЯТ. Данные ультразвуковых экспериментов свидетельствуют о реализации $T \otimes (e+t_2)$ задачи, в которой поверхность потенциальной энергии имеет четыре эквивалентных минимума тригонального типа, слегка деформированных в сторону тетрагональных седлообразных точек. Оценены тригональные вибронные константы, энергии стабилизации тригональных минимумов и энергии активации барьеров между ними.

Работа выполнена в рамках государственного задания № АААА-A18-118020190098-5 и при поддержке РФФИ (грант № 18-32-00432).

DOI: 10.21883/FTT.2019.02.47132.243

1. Введение

Почти все примесные центры в кристаллах подвержены эффекту Яна-Теллера (ЭЯТ) в основном или возбужденном состоянии. Недавние исследования полупроводниковых кристаллов, содержащих 3*d*-примеси с ЭЯТ, показали эффективность ультразвуковых экспериментов в получении существенной информации о структуре и свойствах таких центров [1-5]. В зависимости от направления распространения деформационной волны ультразвука через центр с ЭЯТ, эквивалентные минимумы его адиабатической поверхности потенциальной энергии (ППЭ) становятся неэквивалентными, что непосредственно сказывается на измеряемых температурной и частотной зависимостях поглощения и скорости ультразвука и проявляется в виде характерных аномалий. Это позволяет определить из ультразвукового эксперимента характер искажений в центрах с ЭЯТ и другие параметры ППЭ примесного центра [2–5].

В настоящей работе методика ультразвукового исследования примесей с ЭЯТ получила дальнейшее развитие в применении к центрам Ni^{2+} в полупроводниковом монокристалле $ZnSe:Ni^{2+}$. Полупроводники, легированные магнитными примесями, обладают специфическими магнитными, магнито-транспортными и оптическими свойствами [6]. Широкозонные полупроводники, содержащие 3d-ионы, являются активной средой для лазеров среднего инфракрасного диапазона [7,8] и могут быть использованы в качестве фотоприемников видимого и микроволнового излучения. Несмотря на то что в последние десятилетия было выполнено много исследований таких систем, их потенциальная важность для использования в устройствах электроники и оптоэлектроники определяет дальнейший повышенный интерес к изучению их строения и свойств [9,10].

Двухвалентный ион Ni^{2+} ($3d^8$) в кристалле ZnSe является примесью замещения и окружен четырьмя ближайшими ионами селена в тетраэдрическом окружении.

¹ Уральский федеральный университет им. Б.Н. Ельцина,

² Институт физики металлов им. М.Н. Михеева УрО РАН,

³ Физико-технический институт им. А.Ф. Иоффе РАН,

⁴ Institute for Theoretical Chemistry, The University of Texas at Austin,

⁵ Институт химии твердого тела УрО РАН,

[¶] E-mail: zhevstovskikh@imp.uran.ru

Основное состояние 3F свободного иона Ni^{2+} расщепляется в тетраэдрическом поле T_d симметрии на два триплета и синглет с основным 3T_1 термом. В результате ЭЯТ [11] ППЭ локального комплекса с T_d -симметрией, включающего примесь Ni^{2+} и окружающие его атомы селена, существенно усложняется, приобретая несколько эквивалентных минимумов, в которых тетраэдр искажен в разных по симметрии эквивалентных направлениях. ЭЯТ в центрах Ni^{2+} был обнаружен ранее в кристалле ZnSe: Ni^{2+} в спектрах фотолюминесценции и оптического поглощения [12,13] и в структуре бесфононной линии в CdS : Ni^{2+} [14].

Развитый в работах [1-5] метод ультразвукового исследования ЯТ-центров применен в данной работе к кристаллу ZnSe: Ni²⁺. В отличие от многих предыдущих исследований ЭЯТ в примесных центрах, в рассматриваемом случае ЭЯТ создает как тригональные, так и тетрагональные искажения центра. Наблюдаемые особенности в температурных зависимостях поглощения ультразвука и их интерпретация привели к заключению, что в этом случае реализуется задача $T \otimes (e+t_2)$ ЭЯТ, в которой ППЭ имеет четыре эквивалентных тригональных минимума с тетрагональными седлообразными точками, что позволило определить вибронные константы и энергии активации.

2. Образцы

Монокристаллы ZnSe: Ni были выращены методом Бриджмена из расплава в условиях избыточного давления инертного газа. Содержание примесей переходных элементов определялось методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (спектрометр Optima 8000, PerkinElmer, USA). Концентрация никеля в исследованном образце была $n_{\rm Ni}=4.5\cdot 10^{19}~{\rm cm}^{-3}$, кроме того, наблюдалось небольшое количество примесей ванадия $n_{\rm V}=1.3\cdot 10^{18}~{\rm cm}^{-3}$ и железа $n_{\rm Fe}=5.7\cdot 10^{17}~{\rm cm}^{-3}$, концентрация других переходных элементов (титана, хрома, марганца, кобальта, меди) оказалась ниже, чем $5\cdot 10^{17}~{\rm cm}^{-3}$.

Образцы для ультразвуковых измерений имели форму параллелепипеда размером приблизительно $5 \times 7 \times 9 \,\mathrm{mm}^3$. Измерения поглощения ультразвука были выполнены с помощью фазочувствительной установки [15] в интервале частот 25–165 МНz, при температурах от 4 до 130 К. Ультразвуковые волны возбуждались и регистрировались с помощью пьезопреобразователей из LiNbO₃, которые прикреплялись к противоположным поверхностям образца. Направление распространения упругих волн было вдоль кристаллографической оси [110], что позволяло определить скорость продольной волны $v_l = \sqrt{C_l/\rho}$, связанной с упругим модулем $C_l = (C_{11} + C_{12} + 2C_{44})/2$, и скорости двух поперечных волн $v_{t1} = \sqrt{C_{44}/\rho}$ (когда вектор поляризации направлен вдоль оси [100]) и $v_{t2} = \sqrt{(C_{11} - C_{12})/2\rho}$ (вектор поляризации направлен вдоль оси $[1\bar{1}0]$); здесь ρ —

плотность кристалла, C_{11} , C_{12} и C_{44} — компоненты тензора упругого модуля кубического кристалла. Коэффициент поглощения ультразвуковой волны α определялся мнимой частью соответствующей компоненты тензора упругого модуля $\alpha=(\omega/2v_i)(\mathrm{Im}\{C_i\}/\mathrm{Re}\{C_i\})$, где ω — круговая частота ультразвука, обозначает тип упругой волны.

3. Результаты эксперимента

Температурные зависимости поглощения всех нормальных мод, распространяющихся в кубическом кристалле ZnSe: Ni на частоте около 50 MHz, представлены на рис. 1. Данные приведены для релаксационного поглощения $\alpha_{rel} = \alpha - \alpha_b$, которое получено вычитанием из общего поглощения α фонового α_b , аппроксимированного для каждой моды полиномом второй степени. Поперечные упругие волны, поляризованные вдоль [100] или [110] кристаллографических осей, создают искажения в кристалле различной симметрии, тригональные или тетрагональные, соответственно. Локальная колебательная мода тригонального типа проявляется в поглощении продольной и поперечной моды, связанной с упругим модулем C_{44} , а тетрагонального типа — в поглощении продольной моды и поперечной, определяемой упругим модулем $(C_{11} - C_{12})/2$. В кристалле ZnSe: Ni максимумы поглощения при температуре около 13 К наблюдаются для всех мод (рис. 1), что свидетельствует о проявлении в кристалле ZnSe: Ni как тригональных, так и тетрагональных искажений. Величина максимумов поглощения существенно различается для волн различной поляризации. Наибольшее значение наблюдается для модуля C_{44} , что приводит к заметному поглощению продольной моды, величина же пика для поперечной волны

Рис. 1. Температурные зависимости релаксационного поглощения ультразвуковых волн в кристалле ZnSe: Ni, распространяющихся вдоль кристаллографической оси [110]. Кривая (I) соответствует упругому модулю C_{44} (частота 54 MHz); (2) — $(C_{11}+C_{12}+2C_{44})/2$ (частота 48 MHz); (3) — $(C_{11}-C_{12})/2$ (частота 56 MHz). $\Delta \alpha_{rel}=\alpha_{rel}(T)-\alpha_{rel}(T_0)$, $T_0=4$ K.

Рис. 2. Температурные зависимости релаксационного поглощения поперечных ультразвуковых волн в кристалле ZnSe:Ni, распространяющихся вдоль кристаллографической оси [110] с поляризацией вдоль [100] (модуль C_{44}), измеренные на частотах 25 MHz (кривая I), 53 MHz (2), 164 MHz (3). $\Delta \alpha_{rel} = \alpha_{rel}(T) - \alpha_{rel}(T_0)$, $T_0 = 4$ K.

Рис. 3. Температурные зависимости релаксационного поглощения поперечных ультразвуковых волн в кристалле ZnSe:Ni, распространяющихся вдоль кристаллографической оси [110] с поляризацией вдоль [1 $\bar{1}$ 0] (модуль $(C_{11}-C_{12})/2$), измеренные на частотах 56 MHz (кривая I), 167 MHz (2). $\Delta\alpha_{rel}=\alpha_{rel}(T)-\alpha_{rel}(T_0)$, $T_0=4$ K.

с поляризацией вдоль $[1\bar{1}0]$ оси (модуль $(C_{11}-C_{12})/2$) почти на порядок меньше. Ранее, нами были обнаружены в кристалле ZnSe: Ni аномалии поглощения ультразвука для модулей $C_l=(C_{11}+C_{12}+2C_{44})/2$ и C_{44} , и был сделан вывод о наличии лишь тригональных искажений [16,17].

Релаксационная природа пиков поглощения подтверждается температурной зависимостью $\Delta \alpha_{rel}$, измеренной при различных фиксированных частотах (см. рис. 2, 3 и рис. 1 в работе [16] для продольных волн). С уве-

личением частоты ультразвука положение пика сдвигается в более высокие температуры. Такое поведение релаксационного поглощения обязано множителю $f(\omega \tau) = \omega^2 \tau / [1 + (\omega \tau)^2]$, входящему в $\Delta \alpha_{rel}(T)$ [10], где au — время релаксации, и au(T) определяется в основном переходами между искаженными конфигурациями ЯТ-центра (заметим, что в чистом кристалле ZnSe нет аномалий поглощения в температурной зависимости). Пик $\Delta \alpha_{rel}(T)$ наблюдается при условии $\omega \tau \approx 1$, при котором функция $f(\omega \tau)$ имеет максимум. При фиксированной частоте ультразвука ω изменение фактора ωau обусловлено температурной зависимостью времени релаксации. При больших значениях частоты ω условие $\omega \tau \approx 1$ реализуется в более высоких температурах, что и объясняет наблюдаемый сдвиг по температуре пика на зависимости $\Delta \alpha_{rel}(T)$.

Кроме пика поглощения вблизи 13 К для ультразвуковых волн различной поляризации, также был обнаружен небольшой максимум вблизи температуры 7 К для поперечной моды, связанной с упругим модулем $(C_{11}-C_{12})/2$ (рис. 1 и 3). В исследованном кристалле ZnSe: Ni²⁺ кроме примеси никеля содержалось небольшое количество примесей ванадия и железа, что может также приводить к релаксационному поглощению ультразвука, так как ионы V^{2+} и Fe^{2+} в тетраэдрической координации являются активными ЯТ-центрами [18,19]. Но аномалии поглощения в кристалле $ZnSe:V^{2+}$ наблюдались при температурах ниже 4К [18]. Что касается примеси железа, то пик поглощения в образце $ZnSe: Fe^{2+}$ для поперечной моды, связанной с упругим модулем $(C_{11}-C_{12})/2$, как раз наблюдался вблизи 7 K [19], поэтому проявление в образце ZnSe: Ni²⁺ таких же аномалий поглощения вблизи 7 К мы относим к наличию примеси железа. Высота этого пика в данном кристалле на порядок меньше, чем в ZnSe: Fe²⁺ [19], но и содержание примеси железа также значительно меньше, а его релаксационная природа подтверждается характерным сдвигом положения пика в более высокие температуры при повышении частоты (рис. 3).

4. Обсуждение

4.1. Время релаксации

Измеренная температурная зависимость поглощения ультразвука $\alpha(T)$ позволяет получить температурную зависимость времени релаксации $\tau(T)$, полагая, что пик на температурной зависимости поглощения обусловлен релаксацией в системе невзаимодействующих ян-теллеровских (ЯТ) ионов Ni^{2+} в кристалле ZnSe. Вклад от других механизмов был аппроксимирован монотонной функцией $\alpha_b(T)$ (в данном случае — полиномом второй степени). Тогда выражение для $\tau(T)$ можно представить

Рис. 4. Температурная зависимость времени релаксации, полученная из поглощения поперечной ультразвуковой волны, распространяющейся вдоль кристаллографической оси [110] с поляризацией вдоль [100] на частоте 54 MHz (кружки). Квадраты показывают значения τ , полученные из зависимостей $\Delta\alpha_{rel}(T)$, измеренные при различных частотах. Штриховая линия — функция $\tau(1/T)=\tau_1\exp(V_1/k_BT)$ с $\tau_1=1.7\times 10^{-9}\,\mathrm{s},\ V_1=25\,\mathrm{K}=17\,\mathrm{cm}^{-1};$ сплошная линия — функция $\tau(1/T)=\tau_2\exp(V_2/k_BT)$ с $\tau_2=1.7\times 10^{-12}\,\mathrm{s},\ V_2=80\,\mathrm{K}=56\,\mathrm{cm}^{-1}.$

в виде [1,17]

$$\tau(T) = \frac{1}{\omega} \left[\frac{\alpha_{rel}(T_1)T_1}{\alpha_{rel}(T)T} \pm \sqrt{\left(\frac{\alpha_{rel}(T_1)T_1}{\alpha_{rel}(T)T}\right)^2 - 1} \right], \quad (1)$$

где T_1 — температура, при которой выполняется условие $\omega \tau = 1$ и которая может быть определена из положения максимума функции $\phi(T) = \alpha_{rel}(T) \cdot T$. Функция $\tau(1/T)$, полученная с помощью (1) для поперечной ультразвуковой волны, связанной с упругим модулем C_{44} , приведена на рис. 4. Белыми квадратами на рис. 4 показаны значения τ , определенные из условия $\omega \tau = 1$ и измерений поглощения на разных частотах (рис. 2). Видно достаточно хорошее совпадение значений времени релаксации, определенных разными способами. Полученная зависимость $\tau(1/T)$ позволяет оценить энергию активации согласно уравнению Аррениуса $\tau(1/T) = \tau_0 \exp(V_0/k_B T)$, где au_0^{-1} — частотный фактор, V_0 — энергия активации, *k*_B — постоянная Больцмана. При температуре около 10 К происходит переход от низкотемпературного режима активации (с энергией $V_1 = 17 \, \mathrm{cm}^{-1}$ при $T < 10 \, \mathrm{K}$) к высокотемпературному (с энергией $V_2 = 56 \, \mathrm{cm}^{-1}$ при $T > 10 \,\mathrm{K}$).

Оптические исследования примесного центра Ni^{2+} в кристалле ZnSe выявили тонкую структуру оптических переходов с основного состояния $^3T_1(F)$ центра, связанную с проявлением ЭЯТ и возникновением переходов на возбужденные вибронные уровни терма 1T_2 [12,13]. Положение ближайших сателлитных линий, наблюдаемых

в спектре излучения в ZnSe: Ni²⁺ было соответственно 40 и $64\,\mathrm{cm}^{-1}$ [13]. Полагая, что релаксация в ультразвуковом эксперименте определяется однофононными процессами через возбужденные состояния, можно считать, что энергия активации определяет энергию возбужденного вибронного состояния примесного центра Ni²⁺. Низкотемпературная энергия активации $V_1 = 17 \, \mathrm{cm}^{-1}$ может быть связана с расщеплением основного состояния вследствие тригонального искажения центра в минимуме ППЭ. При повышении температуры мы переходим на следующий возбужденный уровень с энергией $V_2 = 56 \, {\rm cm}^{-1}$. Разность между этими энергетическими состояниями $V_2 - V_1 = 39 \, \mathrm{cm}^{-1}$ хорошо согласуется со значением $40\,\mathrm{cm}^{-1}$, определенным в [13], как положение ближайшей сателлитной линии в спектре излучения в ZnSe: Ni²⁺, связанной с расщеплением основного $^{3}T_{1}(F)$ -состояния.

4.2. Линейная вибронная константа связи и энергия стабилизации в ЭЯТ

Как уже упоминалось выше, основное электронное состояние иона Ni^{2+} в тетраэдрическом окружении в кубическом кристалле ZnSe 3T_1 трехкратно вырождено. Наш эксперимент выявил наличие как тригональных, так и тетрагональных локальных искажений кластера [NiSe4], что свидетельствует о проявлении $T\otimes (e+t_2)$ задачи ЭЯТ [11]. В этом случае ППЭ зависит от пяти координат, двух тетрагонального e-типа — Q_{ε} и Q_{θ} , и трех тригонального t_2 -типа — Q_{ε} , Q_{η} и Q_{ε} . В линейном приближении оператор потенциальной энергии \hat{U} вибронного Гамильтониана содержит только две вибронные константы связи: F_E для тетрагональных и F_T для тригональных смещений [11]

$$\hat{U} = \begin{vmatrix} F_E \left(\frac{1}{2} Q_\theta - \frac{\sqrt{3}}{2} Q_\varepsilon \right) & -F_T Q_\xi & -F_T Q_\eta \\ -F_T Q_\xi & F_E \left(\frac{1}{2} Q_\theta + \frac{\sqrt{3}}{2} Q_\varepsilon \right) & -F_T Q_\xi \\ -F_T Q_\eta & -F_T Q_\xi & -F_T Q_\xi \end{vmatrix}.$$
(2)

Корни секулярного уравнения $||\hat{U}_{\gamma\gamma'} - \varepsilon_k|| = 0$, $(\gamma, \gamma' = 1, 2, 3)$ дают электронные энергии $\varepsilon_k(Q)$ (k = 1, 2, 3), что в комбинации с упругой энергией описывает три ветви ППЭ в пятимерном пространстве координат Q следующим образом [20]:

$$E_k(Q) = \frac{1}{2} K_E(Q_{\varepsilon}^2 + Q_{\theta}^2) + \frac{1}{2} K_T(Q_{\xi}^2 + Q_{\eta}^2 + Q_{\xi}^2) + \varepsilon_k(Q),$$
(3)

где K_E и K_T — исходные силовые константы (силовые константы без учета вибронной связи). Исследование такой поверхности в общем виде затруднительно, но в зависимости от соотношения между линейными вибронными константами F_E и F_T адиабатический потенциал имеет либо тетрагональные, либо тригональные глобальные минимумы, а также орторомбические в

более высоких порядках [21], определяя соответствующие искажения тетраэдрического окружения ЯТ-иона. В наших экспериментах ЯТ искажения, определяемые модулем тригонального типа C_{44} , значительно (почти на порядок) превосходят искажения тетрагонального типа, связанные с модулем $(C_{11}-C_{12})/2$. Тригональный характер искажений в кристалле ZnSe:Ni²⁺ также был выявлен при исследовании тонкой структуры спектров оптического поглощения [12]. Так как тетрагональные искажения вносят значительно меньший вклад, ППЭ в этой $T \otimes (e+t_2)$ задаче имеет четыре эквивалентных минимума тригонального типа с тремя тетрагональными седлообразными точками [11]. Энергия стабилизации центра ЭЯТ в этом случае определяется формулой

$$E_{\rm JT} = \frac{2F_T^2}{3K_T}.\tag{4}$$

Линейную вибронную константу связи F_T можно оценить из данных ультразвукового эксперимента, используя метод, развитый в работах [2-5]. Для изотермического вклада ЯТ-центров в полный упругий модуль $C_{\rm JT}^{\rm T}$ можно записать следующее выражение [5]:

$$C_{\rm JT}^T = \left(\frac{\partial^2 A_{\rm JT}}{\partial \varepsilon^2}\right)_{\varepsilon=0} = -nk_B T \left(\frac{\partial^2 \ln Z}{\partial \varepsilon^2}\right)_{\varepsilon=0}, \quad (5)$$

где $A_{\rm JT}$ — свободная энергия Гельмгольца ЯТ-центров, n — концентрация ЯТ-центров, ε — деформация, производимая звуковой волной, Z — статистическая сумма состояний, которая для четырех минимумов тригонального типа в нашей задаче имеет вид

$$Z = \sum_{i=1}^{4} \exp(-E_i/k_B T), \tag{6}$$

где $E_i(\varepsilon)$ — энергия i-конфигурации в поле деформаций. Релаксационное поглощение ультразвуковой волны в предположении, что вклад ЯТ-центров в адиабатический модуль равен нулю, то есть $C_{\rm JT}^S=0$, определяется выражением [5]

$$\frac{\alpha_{rel}}{k_0} = -\frac{C_{\rm JT}^T}{2C_0} \frac{\omega \tau}{1 + (\omega \tau)^2},\tag{7}$$

где $k_0 = \omega/v_0$ — волновой вектор ультразвука, C_0 — упругий модуль C_{44} в чистом ZnSe. Так как максимум релаксационного поглощения наблюдается при условии $\omega \tau (T_1) = 1$, то (7) с учетом (5) принимает вид

$$\alpha_{rel}(T_1) = -\frac{k_0 C_{\rm JT}^T}{4C_0} = nk_B T \frac{k_0}{4C_0} \left(\frac{\partial^2 \ln Z}{\partial \varepsilon^2}\right)_{\varepsilon=0}.$$
 (8)

Для упругого модуля C_{44} в кубическом кристалле, когда направление волнового вектора ультразвука направлено вдоль кристаллографической оси [110], а вектор поляризации вдоль оси [100], отличны от нуля компоненты тензора деформаций ε_{ij} $\varepsilon_{yz} = \varepsilon_{xz} \equiv \varepsilon_4$, и для энергий четырех тригональных минимумов E_i в (6), получаем

$$E_1 = E_2 = 0$$
, $E_3 = d\varepsilon_4$, $E_4 = -d\varepsilon_4$, (9)

где d — константа деформационного потенциала. С этими данными (6) примет вид

$$Z = 2 + \exp\left(\frac{d\varepsilon_4}{k_B T}\right) + \left(-\frac{d\varepsilon_4}{k_B T}\right). \tag{10}$$

Значение второй производной $\ln Z$ по деформации ε_4 в пределе $\varepsilon_4 \to 0$ равно

$$\left(\frac{\partial^2 \ln Z}{\partial \varepsilon_4^2}\right)_{\varepsilon_4 \to 0} = \left(-\frac{1}{Z^2} \left(\frac{\partial Z}{\partial \varepsilon_4}\right)^2 + \frac{1}{Z} \left(\frac{\partial^2 Z}{\partial \varepsilon_4^2}\right)\right)_{\varepsilon_4 \to 0} \\
= \frac{d^2}{2k_R^2 T^2}.$$
(11)

Подставляя его в (8), получим выражение для α_{rel}

$$\alpha_{rel}(T_1) = \frac{k_0 n d^2}{8C_0 k_B T}.$$
 (12)

Для расчета линейной вибронной константы F_T полагаем, что $F_T=d/a_0$, где a_0 — расстояние между ионом никеля и ближайшим ионом селена. Тогда из (12) следует

$$F_T^2 = \frac{8C_0 k_B T_1 \alpha_{rel}(T_1)}{n k_0 a_0^2},\tag{13}$$

где $k_0=\omega/v_0$, где $v_0=(C_0/\rho)^{0.5}$. Расчет F_T был выполнен с использованием следующих значений параметров: $C_0=4.06\cdot 10^{11}\,\mathrm{dyn/cm^2}$ [22], $a_0=2.46\,\mathrm{Å}$, $\rho=5.42\,\mathrm{g/cm^3}$, значение $T_1\alpha_{rel}(T_1)$ взято из экспериментальной зависимости поглощения для модуля C_{44} на частоте 54 MHz. Для концентрации ЯТ-центров было взято значение $n=2.3\cdot 10^{19}\,\mathrm{cm^{-3}}$ немного меньшее, чем было определено методом атомно-эмиссионной спектроскопии, так как не все ионы никеля являются примесями замещения и оказываются в тетраэдрическом окружении. Таким образом, было получено $|F_T|=1.31\cdot 10^{-5}\,\mathrm{dyn}=7.1\,\mathrm{eV/Å}$.

Оценка первичной силовой константы K_T (силовой константы взаимодействия иона Ni²⁺ при его смещении в тригональном направлении в тетраэдрическом окружением селена без учета ЭЯТ) более сложна, потому что она отражается в экспериментальных данных только косвенно. Формально $K_T = \omega_{\tau}^2 \cdot M$, где ω_{τ} — частота соответствующего локального колебания, а М приведенная масса колеблющейся системы, но значение ω_{τ} неизвестно. Можно полагать, что наименьшая частота поперечных акустических фононов чистого кристалла ZnSe $\hbar\omega\sim 60\,{\rm cm}^{-1}$ [23,24] приблизительно отражает частоту соответствующего колебания иона ${\rm Zn^{2+}}$ в окружении селена, но для иона ${\rm Ni^{2+}}$ с меньшим ионным радиусом в том же окружении следует ожидать меньшую частоту. Более приемлемую оценку можно получить из оптических данных по этому кристаллу [12], из которых следует, что энергия стабилизации ${}^{1}T_{2}$ терма ЭЯТ равна $E_{\rm JT}^{T}=81\,{\rm cm}^{-1}$. Если пренебречь возможной небольшой разницей в этой величине для 3T_1 терма, мы получаем из уравнения (4),

что $K_T=0.53\cdot 10^4$ dyn/cm и $\hbar\omega=43\,\mathrm{cm}^{-1}$. Значение энергии стабилизации $E_{\mathrm{JT}}^T=81\,\mathrm{cm}^{-1}$ приблизительно согласуется с высотой барьера между минимумами, оцененного по энергии активации, полученной из ультразвукового эксперимента. Действительно, высокотемпературная (выше $10\,\mathrm{K}$) энергия активации равна $56\,\mathrm{cm}^{-1}$, и если к ней добавить энергию нулевых колебаний $\hbar\omega_T/2=22\,\mathrm{cm}^{-1}$, мы получаем $E_{\mathrm{TT}}^T=78\,\mathrm{cm}^{-1}$.

5. Заключение

Ультразвуковые методы исследования строения и свойств примесных центров в кристаллах, подверженных ЭЯТ, получили дальнейшее экспериментальное и теоретическое обоснование на примере кристалла $ZnSe: Ni^{2+}$. В отличие от многих предыдущих работ, аномалии в поглощении ультразвука и их зависимости от направления распространения волны в этом кристалле свидетельствуют о наличии в нем как тетрагональных, так и тригональных искажений, индуцированных ЭЯТ в пр<mark>имесных цен</mark>трах Ni²⁺. Это позволило сделать вывод о том, что в данном случае реализуется $T\otimes (e+t_2)$ задача ЭЯТ, в которой поверхность потенциальной энергии имеет четыре эквивалентных минимума тригонального типа, каждый из которых слегка деформирован тетрагонально в направлении тетрагональных седлообразных точек. В рамках линейного приближения теории ЭЯТ получены численные значения тригональной вибронной константы и значения энергии стабилизации тригональных минимумов. Реконструирована температурная зависимость времени релаксации между эквивалентными ян-теллеровскими искажениями тригонального типа, из которой были определены нижайшие колебательные уровни центра Ni²⁺ в предположении, что релаксация определяется однофононными процессами через возбужденные состояния.

Список литературы

- V.V. Gudkov. In: The Jahn-Teller effect / Ed. H. Koppel, D.R. Yarkony, H. Barentzen. Springer, Heidelberg (2009).
- [2] V.V. Gudkov, I.B. Bersuker, I.V. Zhevstovskikh, Yu.V. Korostelin, A.I. Landman. J. Phys.: Condens. Matter 23, 115401 (2011).
- [3] N.S. Averkiev, I.B. Bersuker, V.V. Gudkov, K.A. Baryshnikov, G.V. Colibaba, I.V. Zhevstovskikh, V.Yu. Mayakin, A.M. Monakhov, D.D. Nedeoglo, M.N. Sarychev, V.T. Surikov. Phys. Status Solidi B 251, 1590 (2014).
- [4] I.V. Zhevstovskikh, I.B. Bersuker, V.V. Gudkov, N.S. Averkiev, M.N. Sarychev, S. Zherlitsyn, S. Yasin, G.S. Shakurov, V.A. Ulanov, V.T. Surikov. J. Appl. Phys. 119, 225108 (2016).
- [5] N.S. Averkiev, I.B. Bersuker, V.V. Gudkov, I.V. Zhevstovskikh, M.N. Sarychev, S. Zherlitsyn, S. Yasin, G.S. Shakurov, V.A. Ulanov, V.T. Surikov. J. Phys. Soc. Jpn. 86, 114604 (2017).
- [6] K.A. Kikoin, V.N. Flerov. Transition Metal Impurities in Semiconductors: Electronic Structure and Physical Properties. World Scientific, Singapore. (1994).

- [7] V.V. Fedorov, S.B. Mirov, A. Gallian, D.V. Badikov, M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, A.I. Landman, Yu.P. Podmar'kov, V.A. Akimov, A.A. Voronov. IEEE J. Quant. Electron. 42, 9, 907 (2006).
- [8] I.T. Sorokina, E. Sorokin, S.B. Mirov, V.V. Fedorov, V. Badikov, V. Panyutin, K. Schaffers. Opt. Lett. 27, 1040 (2002).
- [9] Ю.А. Ницук, Ю.Ф. Ваксман, В.В. Яцун. ФТП **46**, *10*, 1288 (2012).
- [10] V. Sirkeli, I. Radevici, K. Sushkevich, H. Huhtinen, N. Nedeoglo, D. Nedeoglo, P. Paturi. Solid State Sci. 50, 74 (2015).
- [11] I.B. Bersuker. The Jahn-Teller Effect. Cambridge University Press, Cambridge. (2006).
- [12] J.M. Baranovski, J.M. Noras, J.W. Allen. J. Phys. C 7, 4529 (1974).
- [13] A. Karipidou, H. Nelkowski, G. Roussos. J. Crystal Growth **59**, 307 (1982).
- [14] Ю.П. Гнатенко, А.Х. Рожко. Письма в ЖЭТФ **24**, *3*, 125 (1976)
- [15] V.V. Gudkov, J.D. Gavenda. Magnetoacoustic polarization phenomena in solids. Springer-Verlag, N.Y. etc. (2000).
- [16] В.В. Гудков, А.Т. Лончаков, В.И. Соколов, И.В. Жевстовских, Н.Б. Груздев. ФТТ **47**, *8*, 1498 (2005).
- [17] V. Gudkov, A. Lonchakov, V. Sokolov, I. Zhevstovskikh, N. Gruzdev. Phys. Status Solidi B 242, 3, R30 (2005).
- [18] В.В. Гудков, А.Т. Лончаков, В.И. Соколов, И.В. Жевстовских, В.Т. Суриков. ФТТ **50**, *9*, 1703 (2008).
- [19] В.В. Гудков, А.Т. Лончаков, И.В. Жевстовских, В.И. Соколов, В.Т. Суриков. ФНТ 35, 1, 99 (2009).
- [20] U. Opik, M.H.L. Pryce. Proc. R. Soc. London A 238, 425 (1957).
- [21] И.Б. Берсукер, В.З. Полингер. ЖЭТФ, 66, 2078 (1974).
- [22] B.H. Lee. J. Appl. Phys. 41, 2984 (1970).
- [23] D.N. Talwar, M. Vandevyver, K. Kunc, M. Zigone. Phys. Rev. B 24, 741 (1981).
- [24] R.K. Kremer, M. Cardona, R. Lauck, G. Siegle, A.H. Romero. Phys. Rev. B 85, 035208 (2012).

Редактор Ю.Э. Китаев