Relatório sobre o ajuste dos offsets dos satélites irregulares

Altair Ramos

13 de Julho de 2015

Ajuste

O problema consiste em ajustar uma função dependente do tempo e da anomalia verdadeira aos offsets obtidos e publicados no artigo de posições dos satélites irregulares. Assim estimando correções às posições dos satélites para predição de ocultações estelares.

As equações utilizadas são as seguintes e dependem da situação:

$$F(t,f) = p[0] \times \frac{t - 2451544.5}{365.65} + p[1] \times \sin(f) + p[2] \times \cos(f) + p[3], \quad (1)$$

$$F(t,f) = p[0] \times \sin\left(\frac{2\pi}{p[1]} \times \frac{t - 2451544.5}{365.25} + p[2]\right) + p[3] \times \sin(f) + p[4] \times \cos(f) + p[5],$$
(2)

$$F(t,f) = p[0] \times \cos\left(\frac{2\pi}{p[1]} \times \frac{t - 2451544.5}{365.25} + p[2]\right) + p[3] \times \sin(f) + p[4] \times \cos(f) + p[5],$$
(3)

onde t é o tempo em data juliana, f é a anomalia verdadeira e p[i] são os parâmetros de ajuste onde i é o número do parâmetro.

A equação 1 é basicamente uma variação linear com o tempo mais variações senoidais dependentes da anomalia verdadeira. p[0] foi colocado de forma a ter a unidade de mas/ano. Apenas o ajuste para a declinação de Carme foi utilizada essa função.

As equações 2 e 3 correspondem a uma variação senoidal com o tempo (uma utilizando o seno e outra o cosseno) mais variações senoidais da anomalia verdadeira. Pra maioria dos casos as duas últimas dão o mesmo resultado. p[1] foi colocado de forma a ser o período da oscilação em anos.

Para cada satélite há quatro gráficos, dois para RA e dois para DEC. Dos pares, um é offset X tempo com os ajustes. O outro é offset X anomalia verdadeira. Além disso, temos tabelas com os valores e erros obtidos para os parâmetros através do método de mínimos quadrados não-linear.

Nos gráficos em função do tempo, as linhas verticais marcam os instantes de anomalia verdadeira igual a zero (periastro). A linha verde é o ajuste

utilizando $1/\sigma^2$ como peso onde σ é a dispersão da noite. A linha vermelha é o ajuste dos offsets onde todos os offsets tem o mesmo peso.

Nas tabelas temos os valores derivados para os parâmetros e seus erros a partir dos dois ajustes (com peso e sem peso). Além disso, também mostro o resíduo médio de cada ajuste calculado a partir da seguinte equação:

$$RM = \sqrt{\frac{\sum_{i=1}^{n} (x_i - F(t_i, f_i))^2 w_i}{\sum_{i=1}^{n} w_i}},$$
 (4)

onde x_i é o offset, F é a função ajustada para tempo t_i e anomalia verdadeira f_i e w_i é o peso do offset i, n é o númrro total de offsets.

Começo apresentando para os satélites de Júpiter. Primeiro os satélites que são únicos de seu grupo orbital e por fim para o grupo de Himalia. Notem que muitos desses ajustes obtêm como período na senoide do tempo um valor entre 10 e 13 anos. Lembrando que o período da órbita de Júpiter é 11.8 anos. Para Phoebe e Nereida, coloquei como chute inicial para o período 1 ano de forma a tentar obter uma variação de paralaxe da Terra, já que não temos observações suficientes para obter uma senoide cujo período seja da ordem da órbita dos planetas Saturno (29.4) e Netuno (164.8).

Ainda precisamos melhorar os ajustes, talvez limitando o peso para que noites com dispersão muito baixa não crie um erro no ajuste ou eliminando offsets com resíduo maior que 2σ do resíduo médio. Outra possibilidade é mudar as funções em relação à anomalia verdadeira e/ou ao tempo.

Abaixo os parâmetros orbitais dos satélites de Júpiter

Tabela 1: Resultados dos ajustes para Sinope - RA

				J	1	1				
Sat.	a	e	W	Μ	i	node	n	Р	P_w	P_{node}
	$\times 10^3 (\mathrm{km})$		(deg)	(deg)	(deg)	(deg)	(\deg/\deg)	(days)	(yr)	(yr)
Himalia	11.460	0.15	331	66	28	64	1.43	250.56	139.38	292.57
Elara	11.740	0.21	142	330	27	115	1.38	259.64	128.07	265.30
Lysithea	11.717	0.11	49	330	27	5	1.38	259.20	131.19	292.04
Pasiphae	23.629	0.40	169	279	151	314	0.48	743.61	81.20	81.17
Sinope	23.942	0.25	354	165	158	309	0.47	758.89	88.72	87.40
Carme	23.401	0.25	26	233	164	114	0.49	734.17	80.98	88.32
Ananke	21.254	0.23	95	253	148	15	0.57	629.80	144.92	110.12

a: Semi-major Axis (mean value)

e: Eccentricity (mean value)

w: Argument of periapsis (mean value)

M: Mean anomaly (mean value)

i: Inclination with respect to the reference plane: ecliptic, ICRF, or local Laplace (mean value)

node: Longitude of the ascending node (mean value) measured from the node of the reference plane on the ICRF equator

n: Longitude rate (mean value)

P: Sidereal period (mean value)

 P_w : Argument of periapsis precession period (mean value)

 P_{node} : Longitude of the ascending node precession period (mean value)

Sinope

Número total de noites: 36.

Ascensão Reta

Para Sinope (RA), o ajuste foi feito utilizando a função 2. Vemos pelo gráfico em função do tempo e a tabela que a variação em função da anomalia verdadeira influencia menos que o tempo.

Declinação

Para Declinação também foi utilizada a função 2. Nesse, o seno da anomalia verdadeira tem uma importância maior que para RA e que a amplitude do tempo é bem menor que para RA.

Figura 2: Offset x Anomalia Verdadeira - Sinope - Ascensão Reta

200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-200

-2

Tabela 2: Resultados dos ajustes para Sinope - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-284 ± 28	-316 ± 25	mas
p[1]	12 ± 1	11.7 ± 0.7	anos
p[2]	-30 ± 8	-22 ± 7	graus
p[3]	10 ± 48	44 ± 37	mas
p[4]	-15 ± 31	-18 ± 24	mas
p[5]	-26 ± 21	1 ± 21	mas
Residuo	91	88	mas

Tabela 3: Resultados dos ajustes para Sinope - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-69 ± 11	-38 ± 11	mas
p[1]	12.7 ± 0.7	15 ± 3	anos
p[2]	123 ± 8	129 ± 23	graus
p[3]	69 ± 11	79 ± 15	mas
p[4]	-18 ± 9	-19 ± 10	mas
p[5]	-54 ± 7	-43 ± 8	mas
Residuo	30	38	mas

Pasiphae

Número total de noites: 65.

Ascensão Reta

Tabela 4: Resultados dos ajustes para Pasiphae - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-157 ± 14	-136 ± 15	mas
p[1]	12.7 ± 0.4	11.3 ± 0.6	anos
p[2]	-39 ± 7	-57 ± 10	graus
p[3]	20 ± 16	15 ± 17	mas
p[4]	-39 ± 19	-16 ± 19	mas
p[5]	-17 ± 12	-24 ± 13	mas
Residuo	57	84	mas

Figura 6: Offset x Anomalia Verdadeira - Pasiphae - Ascensão Reta

Declinação

Tabela 5: Resultados dos ajustes para Pasiphae - DEC

	0		
Parâmetro	Com peso	Sem peso	Unidade
p[0]	35 ± 13	26 ± 10	mas
p[1]	9 ± 1	8 ± 2	anos
p[2]	-85 ± 29	-110 ± 45	graus
p[3]	-30 ± 14	-48 ± 11	mas
p[4]	44 ± 16	58 ± 13	mas
p[5]	-62 ± 10	-67 ± 9	mas
Residuo	59	60	mas

Ananke

Número total de noites: 30.

Ascensão Reta

Foi utilizada a equação 3. Na fig. 10 mostro o gráfico com os ajustes com o Cosseno (eq 3) e Seno (eq 2) juntos com peso. A tabela também mostra os valores para os dois ajustes. Devido ao pouco número de pontos e estarem pouco distribuídos ao longo da anomalia verdadeira os dois ajustes são razoáveis.

Utilizando o cosseno do tempo, ele obtém um período do tempo próximo ao da órbita de Júpiter e as amplitudes do seno e do cosseno da anomalia verdadeira são significativos. Utilizando o seno do tempo, o período do tempo encontrado é mais baixo, da ordem de um quarto da órbita de Júpiter, mas o valor da amplitude do cosseno da anomalia verdadeira é menor que seu erro mostrando que ele não é significativo.

10

Figura 10: Offset x tempo - Ananke - Ascensão Reta - Seno e Cosseno do tempo

Tabela 6: Resultados dos ajustes para Ananke - RA

-	Cosseno		Se	Unidade	
Parâmetro	Com peso	Sem peso	Com peso	Sem peso	Unidade
p[0]	246 ± 39	160 ± 43	255 ± 43	202 ± 51	mas
p[1]	10.8 ± 0.5	12.0 ± 0.9	2.94 ± 0.03	2.92 ± 0.04	anos
p[2]	5 ± 8	24 ± 10	-6 ± 8	-12 ± 12	graus
p[3]	60 ± 29	44 ± 39	-106 ± 27	-67 ± 39	mas
p[4]	152 ± 37	111 ± 32	53 ± 57	39 ± 56	mas
p[5]	-20 ± 37	5 ± 37	106 ± 18	103 ± 28	mas
Residuo	71	82	47	77	mas

Foi utilizada a equação 3. A equação com o seno dava um período negativo.

Tabela 7: Resultados dos ajustes para Ananke - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	105 ± 8	66 ± 12	mas
p[1]	7.6 ± 0.2	6.6 ± 0.4	anos
p[2]	45 ± 5	31 ± 18	graus
p[3]	9 ± 11	18 ± 18	mas
p[4]	260 ± 10	194 ± 19	mas
p[5]	-22 ± 13	-34 ± 16	mas
Residuo	23	46	mas

Figura 12: Offset x tempo - Ananke - Declinação

Com peso Sem peso Sem peso - Ananke - Declinação

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Carme

Número total de noites: 44.

Ascensão Reta

Foi utilizada a equação 3. A equação com o seno não conseguia ajustar bem o período do tempo com o peso. encontrava 33 ± 43 .

Tabela 8: Resultados dos ajustes para Carme - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	167 ± 14	112 ± 20	mas
p[1]	10.7 ± 0.2	9.9 ± 0.7	anos
p[2]	1 ± 8	-24 ± 16	graus
p[3]	104 ± 16	33 ± 22	mas
p[4]	-17 ± 20	0 ± 24	mas
p[5]	-4 ± 15	0 ± 17	mas
Residuo	45	83	mas

Figura 15: Offset x Anomalia Verdadeira - Carme - Ascensão Reta

Foi utilizada a equação 1. As equações com seno ou cosseno do tempo divergiam muito. A linear com o tempo foi a melhor.

Tabela 9: Resultados dos ajustes para Carme - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	12 ± 1	10 ± 2	mas/ano
p[1]	-44 ± 9	-4 ± 12	$_{ m mas}$
p[2]	155 ± 9	140 ± 12	$_{ m mas}$
p[3]	-55 ± 9	-57 ± 11	mas
Residuo	29	47	mas

Elara

Número total de noites: 65.

Ascensão Reta

Tabela 10: Resultados dos ajustes para Elara - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-42 ± 17	-63 ± 20	mas
p[1]	11 ± 2	8.5 ± 0.8	anos
p[2]	-41 ± 26	-82 ± 24	graus
p[3]	33 ± 13	27 ± 18	mas
p[4]	-49 ± 23	-57 ± 21	mas
p[5]	-7 ± 14	-23 ± 15	mas
Residuo	66	98	mas

Figura 19: Offset x Anomalia Verdadeira - Elara - Ascensão Reta

200

200

200

200

200

Anomalia Verdadeira - Elara - Ascensão Reta

Anomalia Verdadeira

Declinação

Tabela 11: Resultados dos ajustes para Elara - DEC

		<i>5</i>	
Parâmetro	Com peso	Sem peso	Unidade
p[0]	34 ± 8	39 ± 10	mas
p[1]	11.1 ± 1.2	9.8 ± 0.9	anos
p[2]	33 ± 27	23 ± 24	graus
p[3]	32 ± 8	26 ± 10	mas
p[4]	29 ± 8	42 ± 11	mas
p[5]	-37 ± 7	-31 ± 8	mas
Residuo	41	55	mas

Himalia

Número total de noites: 98.

Ascensão Reta

Foi utilizada a equação 2. Achei estranho a divergência para as observações mais recentes. Assim, a versão sem peso tem um período do tempo próximo ao de outros satélites.

Declinação

Figura 23: Offset x Anomalia Verdadeira - Himalia - Ascensão Reta

Tabela 12: Resultados dos ajustes para Himalia - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	71 ± 24	49 ± 19	mas
p[1]	18 ± 8	12 ± 2	anos
p[2]	5 ± 46	12 ± 41	graus
p[3]	0 ± 21	-17 ± 21	mas
p[4]	-55 ± 17	-36 ± 21	mas
p[5]	-49 ± 36	-32 ± 14	mas
Residuo	108	136	mas

Tabela 13: Resultados dos ajustes para Himalia - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	15 ± 5	26 ± 7	mas
p[1]	16 ± 3	12.2 ± 1.6	anos
p[2]	76 ± 23	3 ± 29	graus
p[3]	15 ± 6	19 ± 8	mas
p[4]	7 ± 5	3 ± 7	mas
p[5]	-7 ± 4	-10 ± 5	mas
Residuo	34	51	mas

Lysithea

Número total de noites: 29.

Ascensão Reta

Foi utilizada a equação 3. A equação com o seno diverge muito com período de mais de 400 anos no tempo para o ajuste com peso.

Tabela 14: Resultados dos ajustes para Lysithea - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	88 ± 37	117 ± 350	mas
p[1]	10.8 ± 0.9	24 ± 49	anos
p[2]	31 ± 21	132 ± 96	graus
p[3]	67 ± 27	12 ± 28	mas
p[4]	-38 ± 33	-24 ± 26	mas
p[5]	-16 ± 28	79 ± 370	mas
Residuo	54	73	mas

Offset (mas) -200 Anomalia Verdadeira

Figura 27: Offset x Anomalia Verdadeira - Lysithea - Ascensão Reta

Tabela 15: Resultados dos ajustes para Lysithea - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	64 ± 20	34 ± 24	mas
p[1]	11.3 ± 0.7	11.1 ± 1.9	anos
p[2]	-77 ± 16	-57 ± 29	graus
p[3]	85 ± 14	72 ± 17	mas
p[4]	-12 ± 15	11 ± 16	mas
p[5]	-8 ± 14	-19 ± 15	mas
Residuo	32	46	mas

Phoebe

Número total de noites: 133.

Ascensão Reta

Tabela 16: Resultados dos ajustes para Phoebe - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-17 ± 8	-17 ± 8	mas
p[1]	0.99 ± 0.01	1.01 ± 0.01	anos
p[2]	36 ± 49	112 ± 31	graus
p[3]	-8 ± 7	-26 ± 6	mas
p[4]	-12 ± 8	1 ± 5	mas
p[5]	2 ± 9	8 ± 8	mas
Residuo	49	43	mas

Offset (mas) -200 Anomalia Verdadeira

Figura 31: Offset x Anomalia Verdadeira - Phoebe - Ascensão Reta

Figura 33: Offset x Anomalia Verdadeira - Phoebe - Declinação

Tabela 17: Resultados dos ajustes para Phoebe - DEC

		<u>, </u>	
Parâmetro	Com peso	Sem peso	Unidade
p[0]	22 ± 14	20 ± 8	mas
p[1]	0.98 ± 0.01	0.95 ± 0.01	anos
p[2]	26 ± 43	-37 ± 27	graus
p[3]	17 ± 12	16 ± 7	mas
p[4]	2 ± 10	10 ± 6	mas
p[5]	-16 ± 8	-9 ± 5	mas
Residuo	70	51	mas

Nereida

Número total de noites: 79.

Não mostro nenhum ajuste pois não encontrei nenhuma função com ajuste razoável. Isso provavelmente se deve pelo fato de não haver observações na metade próxima ao periastro.

Ascensão Reta

Declinação

