

Spectral Thompson Sampling

Tomáš Kocák Michal Valko Rémi Munos Shipra Agrawal Inria Lille - Nord Europe, France Inria Lille - Nord Europe, France Inria Lille - Nord Europe & Microsoft Research NE Microsoft Research India

SequeL – INRIA Lille

AAAI 2014

Movie recommendation: (in each time step)

- Recommend movies to a single user.
- ▶ Good prediction after a few steps $(T \ll N)$.

Goal:

Maximize overall reward (sum of ratings).

Assumptions:

- ▶ Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies ⇒ similar preferences.
- ► Similar preferences ⇒ neighboring movies.

Smooth graph function

- ▶ Graph G with vertex set $V(G) = \{1, ..., N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.
- $w_{i,j}$: Weight of the edge connecting nodes i and j.
- Smoothness of the function:

$$S_G(f) = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$$

- ▶ Smaller value of $S_G(f)$, smoother the function f is.
- Examples:
 - ▶ Complete graph: Only constant function has smoothness 0.
 - **Edgeless graph:** Every function has smoothness 0.
 - ► **Constant function:** Smoothness 0 for every graph.

Graph Laplacian

- \triangleright \mathcal{W} : $N \times N$ matrix of the edge weights $w_{i,j}$.
- ▶ \mathcal{D} : Diagonal matrix with the entries $d_i = \sum_i w_{i,j}$.
- $\mathcal{L} = \mathcal{D} \mathcal{W}$: Graph Laplacian.
 - ▶ Positive semidefinite matrix.
 - Diagonally dominant matrix.

Example:

$$\mathcal{L} = \left(\begin{array}{ccccc} 4 & -1 & 0 & -1 & -2 \\ -1 & 8 & -3 & -4 & 0 \\ 0 & -3 & 5 & -2 & 0 \\ -1 & -4 & -2 & 12 & -5 \\ -2 & 0 & 0 & -5 & 7 \end{array} \right)$$

Smoothness of the function and Laplacian

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
 - Columns of Q are eigenvectors of L.
 - Columns of Q form a basis.
- ▶ μ : Unique vector such that $\mathbf{Q}\mu = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \mu$

$$S_G(f) = \mathbf{f}^{\mathsf{T}} \mathcal{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\mu}^{\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\mu} = \| \boldsymbol{\mu} \|_{\mathbf{\Lambda}} = \sum_{i=1}^{N} \lambda_i (\mu_i)^2$$

Smoothness and regularization: Small value of

- (a) $S_G(f)$ (b) Λ norm of μ (c) μ_i for large λ_i

Problem structure

▶ Underlying graph structure encoded in the graph laplacian \mathcal{L} .

Setting

- **E**igendecomposition of graph laplacian $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ where \mathbf{Q} is the matrix with eigenvectors in columns.
- ▶ the *i*-th row \mathbf{b}_i of the matrix \mathbf{Q} corresponds to the arm *i*.

Learning setting

- ▶ In each time step choose a node a(t).
- ▶ Obtain noisy reward $r_t = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t$. Note: $\mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} = f_{a(t)}$
 - ε_t is R-sub-Gaussian noise. $\forall \xi \in \mathbb{R}, \mathbb{E}[e^{\xi \varepsilon_t}] \leq \exp(\xi^2 R^2/2)$
- Minimize cumulative regret

$$R_T = T \max_{a} \left(\mathbf{b}_{a}^{\mathsf{T}} \boldsymbol{\mu} \right) - \sum_{t=1}^{T} \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu}.$$

► Linear bandit algorithms

(Existing solutions)
(Li et al., 2010)

- ▶ LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
- ► LinearTS (Agrawal and Goyal, 2013)
 - ► Regret bound $\approx D\sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of \mathbf{b}_i .

▶ Regret bound
$$\approx D\sqrt{T \ln T}$$

▶ Regret bound
$$\approx D\sqrt{T \ln N}$$

Note: D is ambient dimension, in our case N, length of \mathbf{b}_i .

Spectral bandit algorithms

► SpectralUCB

• Regret bound $\approx d\sqrt{T \ln T}$

(Existing solutions)

(Li et al., 2010)

(Agrawal and Goyal, 2013)

(Our solutions)

(Valko et al., 2014)

Note: d is effective dimension, usually much smaller than D.

Linear bandit algorithms

• Regret bound
$$\approx D\sqrt{T \ln T}$$

• Regret bound
$$\approx D\sqrt{T \ln N}$$

Note: D is ambient dimension, in our case N, length of \mathbf{b}_i .

Spectral bandit algorithms

► SpectralUCB

• Regret bound $\approx d\sqrt{T \ln T}$

► Operations per step: D²N

(Existing solutions)

(Li et al., 2010)

(Agrawal and Goyal, 2013)

(Our solutions)

(Valko et al., 2014)

Note: *d* is effective dimension, usually much smaller than *D*.

(Existing solutions)

LinearTS

(Li et al., 2010)

• Regret bound
$$\approx D\sqrt{T \ln T}$$

(Agrawal and Goyal, 2013)

► Regret bound
$$\approx D\sqrt{T \ln N}$$

Note: D is ambient dimension, in our case N, length of \mathbf{b}_i .

Spectral bandit algorithms

(Our solutions)

► SpectralUCB

(Valko et al., 2014)

• Regret bound $\approx d\sqrt{T \ln T}$

► Operations per step: D²N

SpectralTS

– New! –

- ▶ Regret bound $\approx d\sqrt{T \ln N}$
- Operations per step: $D^2 + DN$

Note: d is effective dimension, usually much smaller than D.

Effective dimension

Effective dimension: Largest d such that

$$(d-1)\lambda_d \leq \frac{T}{\log(1+T/\lambda)}.$$

- Function of time horizon and graph properties
- \triangleright λ_i : *i*-th smallest eigenvalue of **Λ**.
- \triangleright λ : Regularization parameter of the algorithm.

Properties:

- \triangleright d is small when the coefficients λ_i grow rapidly above time.
- d is related to the number of "non-negligible" dimensions.
- ▶ Usually *d* is much smaller than D in real world graphs.
- Can be computed beforehand.

 $d \ll D$

Note: In our setting T < N = D.


```
Input:
             N: number of arms, T: number of pulls
  3:
             \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}: spectral basis of graph Laplacian \mathcal{L}
          \lambda, \delta: regularization and confidence parameters
  5:
         R, C: upper bounds on noise and \|\mu\|_{\Lambda}
  6: Initialization:
         v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C
          \hat{\boldsymbol{\mu}} = 0_N, \boldsymbol{f} = 0_N, \boldsymbol{B} = \boldsymbol{\Lambda}_C + \lambda \boldsymbol{I}_N
  9: Run:
       for t = 1 to T do
        Sample \tilde{\boldsymbol{\mu}} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, v^2 \mathbf{B}^{-1})
11:
12: a(t) \leftarrow \arg\max_{a} \mathbf{b}_{a}^{\mathsf{T}} \tilde{\mu}
13: Observe a noisy reward r(t) = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t
14: \mathbf{f} \leftarrow \mathbf{f} + \mathbf{b}_{a(t)} r(t)
         Update \mathbf{B} \leftarrow \mathbf{B} + \mathbf{b}_{a(t)} \mathbf{b}_{a(t)}^{\mathsf{T}}
15:
             Update \hat{\boldsymbol{u}} \leftarrow \mathbf{B}^{-1} \boldsymbol{f}
16:
```



```
Input:
             N: number of arms, T: number of pulls
  3:
             \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}: spectral basis of graph Laplacian \mathcal{L}
           \lambda, \delta: regularization and confidence parameters
  5:
            R, C: upper bounds on noise and \|\mu\|_{\Lambda}
  6: Initialization:
         v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C
          \hat{\boldsymbol{\mu}} = 0_N, \boldsymbol{f} = 0_N, \boldsymbol{B} = \boldsymbol{\Lambda}_C + \lambda \boldsymbol{I}_N
  9: Run:
       for t = 1 to T do
        Sample \tilde{\boldsymbol{\mu}} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, v^2 \mathbf{B}^{-1})
11:
12: a(t) \leftarrow \arg\max_{a} \mathbf{b}_{a}^{\mathsf{T}} \tilde{\mu}
13: Observe a noisy reward r(t) = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t
14: \mathbf{f} \leftarrow \mathbf{f} + \mathbf{b}_{a(t)} r(t)
         Update \mathbf{B} \leftarrow \mathbf{B} + \mathbf{b}_{a(t)} \mathbf{b}_{a(t)}^{\mathsf{T}}
15:
             Update \hat{\boldsymbol{u}} \leftarrow \mathbf{B}^{-1} \boldsymbol{f}
16:
```



```
Input:
             N: number of arms, T: number of pulls
  3:
             \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}: spectral basis of graph Laplacian \mathcal{L}
           \lambda, \delta: regularization and confidence parameters
  5:
            R, C: upper bounds on noise and \|\mu\|_{\Lambda}
  6: Initialization:
         v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C
          \hat{\boldsymbol{\mu}} = 0_N, \boldsymbol{f} = 0_N, \boldsymbol{B} = \boldsymbol{\Lambda}_C + \lambda \boldsymbol{I}_N
  9: Run:
10: for t = 1 to T do
        Sample \tilde{\boldsymbol{\mu}} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, \mathbf{v}^2 \mathbf{B}^{-1})
11:
12: a(t) \leftarrow \arg\max_{a} \mathbf{b}_{a}^{\mathsf{T}} \tilde{\mu}
13: Observe a noisy reward r(t) = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t
14: \mathbf{f} \leftarrow \mathbf{f} + \mathbf{b}_{a(t)} r(t)
         Update \mathbf{B} \leftarrow \mathbf{B} + \mathbf{b}_{a(t)} \mathbf{b}_{a(t)}^{\mathsf{T}}
15:
             Update \hat{\boldsymbol{u}} \leftarrow \mathbf{B}^{-1} \boldsymbol{f}
16:
```



```
Input:
             N: number of arms, T: number of pulls
  3:
             \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}: spectral basis of graph Laplacian \mathcal{L}
             \lambda, \delta: regularization and confidence parameters
  5:
             R, C: upper bounds on noise and \|\mu\|_{\Lambda}
  6: Initialization:
         v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C
          \hat{\boldsymbol{\mu}} = 0_N, \boldsymbol{f} = 0_N, \boldsymbol{B} = \boldsymbol{\Lambda}_C + \lambda \boldsymbol{I}_N
  9: Run:
      for t = 1 to T do
        Sample \tilde{\boldsymbol{\mu}} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, \mathbf{v}^2 \mathbf{B}^{-1})
11:
12: a(t) \leftarrow \arg\max_{a} \mathbf{b}_{a}^{\mathsf{T}} \tilde{\mu}
13: Observe a noisy reward r(t) = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t
14: \mathbf{f} \leftarrow \mathbf{f} + \mathbf{b}_{a(t)} r(t)
         Update \mathbf{B} \leftarrow \mathbf{B} + \mathbf{b}_{a(t)} \mathbf{b}_{a(t)}^{\mathsf{T}}
15:
             Update \hat{\boldsymbol{u}} \leftarrow \mathbf{B}^{-1} \boldsymbol{f}
16:
```



```
Input:
             N: number of arms, T: number of pulls
  3:
             \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}: spectral basis of graph Laplacian \mathcal{L}
            \lambda, \delta: regularization and confidence parameters
  5:
             R, C: upper bounds on noise and \|\mu\|_{\Lambda}
  6: Initialization:
         v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C
          \hat{\boldsymbol{\mu}} = 0_N, \boldsymbol{f} = 0_N, \boldsymbol{B} = \boldsymbol{\Lambda}_C + \lambda \boldsymbol{I}_N
  9: Run:
       for t = 1 to T do
        Sample \tilde{\boldsymbol{\mu}} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, v^2 \mathbf{B}^{-1})
11:
12: a(t) \leftarrow \arg\max_{a} \mathbf{b}_{a}^{\mathsf{T}} \tilde{\mu}
13: Observe a noisy reward r(t) = \mathbf{b}_{a(t)}^{\mathsf{T}} \boldsymbol{\mu} + \varepsilon_t
14: \mathbf{f} \leftarrow \mathbf{f} + \mathbf{b}_{a(t)} r(t)
15: Update \mathbf{B} \leftarrow \mathbf{B} + \mathbf{b}_{a(t)} \mathbf{b}_{a(t)}^{\mathsf{T}}
           Update \hat{\boldsymbol{u}} \leftarrow \mathbf{B}^{-1} \boldsymbol{f}
16:
```


SpectralTS regret bound

- d: Effective dimension.
- λ : Minimal eigenvalue of $\Lambda = \Lambda_{\mathcal{L}} + \lambda \mathbf{I}$.
- C: Smoothness upper bound, $\|\mu\|_{\Lambda} \leq C$.
- ▶ $\mathbf{b}_{i}^{\mathsf{T}}\boldsymbol{\mu} \in [-1,1]$ for all i.

The **cumulative regret** R_T of **SpectralTS** is with probability $1 - \delta$ bounded as

$$\mathcal{R}_{\mathcal{T}} \leq \frac{11g}{p} \sqrt{\frac{4+4\lambda}{\lambda}} dT \log \frac{\lambda+T}{\lambda} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \log \frac{2}{\delta}},$$

where $p = 1/(4e\sqrt{\pi})$ and

$$g = \sqrt{4\log TN} \left(R \sqrt{6d\log \left(\frac{\lambda + T}{\delta \lambda}\right)} + C \right) + R \sqrt{2d\log \left(\frac{(\lambda + T)T^2}{\delta \lambda}\right)} + C.$$

$$R_T \approx d\sqrt{T \log N}$$

Divide arms into two groups

arm i is unsaturated

arm *i* is **saturated**

Divide arms into two groups

- $lackbox{\Delta}_i = lackbox{b}_*^{\scriptscriptstyle\mathsf{T}} \mu lackbox{b}_i^{\scriptscriptstyle\mathsf{T}} \mu \leq g \|lackbox{b}_i\|_{lackbox{B}_*^{-1}}$ arm i is **unsaturated**
- $lackbox{\Delta}_i = lackbox{b}_*^{\scriptscriptstyle\mathsf{T}} \mu lackbox{b}_i^{\scriptscriptstyle\mathsf{T}} \mu > g \|lackbox{b}_i\|_{lackbox{B}_i^{-1}}$ arm i is saturated

Saturated arm

- ▶ Small standard deviation → accurate regret estimate.
- ► High regret on playing the arm → Low probability of picking

Divide arms into two groups

- $lackbox{\Delta}_i = lackbox{b}_*^{\scriptscriptstyle\mathsf{T}} \mu lackbox{b}_i^{\scriptscriptstyle\mathsf{T}} \mu \leq g \|lackbox{b}_i\|_{lackbox{B}_*^{-1}}$ arm i is **unsaturated**
- $lackbox{\Delta}_i = lackbox{b}_*^{\scriptscriptstyle\mathsf{T}} \mu lackbox{b}_i^{\scriptscriptstyle\mathsf{T}} \mu > g \|lackbox{b}_i\|_{lackbox{B}_*^{-1}}$ arm i is saturated

Saturated arm

- ▶ Small standard deviation → accurate regret estimate.
- ▶ High regret on playing the arm → Low probability of picking

Unsaturated arm

- ▶ Low regret bounded by a factor of standard deviation
- ► High probability of picking

- Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}} \hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu}| \leq \left(R \sqrt{2 \log \left(\frac{|\mathbf{B}_T|^{1/2} T^2}{|\mathbf{\Lambda}|^{1/2} \delta} \right)} + C \right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

- Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^\mathsf{T} \hat{\boldsymbol{\mu}} - \mathbf{b}_i^\mathsf{T} \boldsymbol{\mu}| \leq \left(R \sqrt{2 \log \left(\frac{|\mathbf{B}_T|^{1/2} T^2}{|\mathbf{\Lambda}|^{1/2} \delta} \right)} + C \right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

Our key result coming from spectral properties of \mathbf{B}_t .

$$\log \frac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + \frac{T}{\lambda}\right)$$

- Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}} \hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu}| \leq \left(R \sqrt{2 \, d \log \left(\frac{(\lambda + \mathcal{T}) \mathcal{T}^2}{\delta \lambda}\right)} + C\right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} = \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

Our key result coming from spectral properties of \mathbf{B}_t .

$$\log \frac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + \frac{T}{\lambda}\right)$$

- Confidence ellipsoid for estimate $\hat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{b}_i^{\mathsf{T}} \hat{\boldsymbol{\mu}} - \mathbf{b}_i^{\mathsf{T}} \boldsymbol{\mu}| \leq \left(R \sqrt{2 \, d \log \left(\frac{(\lambda + \mathcal{T}) \mathcal{T}^2}{\delta \lambda} \right)} + C \right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} = \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}$$

Our key result coming from spectral properties of \mathbf{B}_t .

$$\log \frac{|\mathbf{B}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + \frac{T}{\lambda}\right)$$

- Concentration of sample $\tilde{\mu}$ around mean $\hat{\mu}$ (with probability $1-1/T^2$)
 - Using concentration inequality for Gaussian random variable.

$$|\mathbf{b}_i^\mathsf{T} \tilde{\boldsymbol{\mu}} - \mathbf{b}_i^\mathsf{T} \hat{\boldsymbol{\mu}}| \leq \left(R \sqrt{6d \log \left(\frac{\lambda + T}{\delta \lambda} \right)} + C \right) \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} \sqrt{4 \log(TN)} = v \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}} \sqrt{4 \log(TN)}$$

$$\begin{split} \textbf{Define} \ \operatorname{regret}'(t) &= \operatorname{regret}(t) \cdot \mathbb{1}\{|\mathbf{b}_i^{\scriptscriptstyle \mathsf{T}} \hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\scriptscriptstyle \mathsf{T}} \boldsymbol{\mu}| \leq \ell \|\mathbf{b}_i\|_{\mathbf{B}_t^{-1}}\} \\ &\operatorname{regret}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_t^{-1}} + \frac{1}{\mathcal{T}^2} \end{split}$$

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \leq \ell \|\mathbf{b}_i\|_{\mathbf{B}_{\bullet}^{-1}}\}$

$$\mathsf{regret}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{\mathsf{a}(t)}\|_{\mathsf{B}_t^{-1}} + \frac{1}{T^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1}|\mathcal{F}_{t-1}] \leq 0$)

$$\begin{aligned} X_t &= \mathsf{regret}'(t) - \frac{11g}{p} \|\mathbf{b}_{\mathsf{a}(t)}\|_{\mathsf{B}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{aligned}$$

 $(Y_t; t = 0, ..., T)$ is a **super-martingale** process w.r.t. history \mathcal{F}_t .

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \leq \ell \|\mathbf{b}_i\|_{\mathbf{B}^{-1}}\}$

$$\operatorname{\mathsf{regret}}'(t) \leq rac{11g}{p} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_t^{-1}} + rac{1}{\mathcal{T}^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1} | \mathcal{F}_{t-1}] \leq 0$)

$$\begin{split} X_t &= \mathsf{regret}'(t) - \frac{11g}{p} \|\mathbf{b}_{\mathsf{a}(t)}\|_{\mathsf{B}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{split}$$

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. history \mathcal{F}_t .

Azuma-Hoeffding inequality for super-martingale, w. p. $1 - \delta/2$:

$$\sum_{t=1}^{T} \mathsf{regret'}(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}$$

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{b}_i^{\mathsf{T}}\hat{\boldsymbol{\mu}}(t) - \mathbf{b}_i^{\mathsf{T}}\boldsymbol{\mu}| \leq \ell \|\mathbf{b}_i\|_{\mathbf{B}^{-1}}\}$

$$\operatorname{\mathsf{regret}}'(t) \leq \frac{11g}{p} \|\mathbf{b}_{\mathsf{a}(t)}\|_{\mathbf{B}_t^{-1}} + \frac{1}{\mathcal{T}^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1}|\mathcal{F}_{t-1}] \leq 0$)

$$\begin{split} X_t &= \mathsf{regret}'(t) - \frac{11g}{p} \|\mathbf{b}_{\mathsf{a}(t)}\|_{\mathsf{B}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{split}$$

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. history \mathcal{F}_t .

Azuma-Hoeffding inequality for super-martingale, w. p. $1 - \delta/2$:

$$\sum_{t=1}^{T} \mathsf{regret'}(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{b}_{a(t)}\|_{\mathbf{B}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}$$

Real world experiment

MovieLens dataset of 6k users who rated one million movies.

Conclusion

- New algorithm for spectral bandit setting.
- SpectralTS
 - Regret bound $\approx d\sqrt{T \log N}$
 - ▶ Bound scales with **effective dimension** $d \ll D$.
 - Comparable to SpectralUCB
 - ▶ Computational complexity $\approx D^2 + DN$
 - ▶ Better than SpectralUCB $\approx D^2 N$

Thank you!

Tomáš Kocák tomas.kocak@inria.fr sequel.lille.inria.fr

SequeL - INRIA Lille

AAAI 2014