Задачи к лабораторной работе по теме: «Построение класса»

Предварительные замечания:

- 1. В данной лабораторной работе требуется создать два класса: класс «Вектор» и вспомогательный класс «Формирователь-ФайлаДанных»;
- 2. Описание возможностей класса «Вектор» сделано в вариантах заданий.
- 3. Иллюстрация работы класса «Вектор» осуществляется выводом на консоль содержимого объекта(-ов) этого класса для каждого из методов в порядке их описания в условии задачи.
- 4. Вспомогательный класс «Формирователь Файла Данных» может состоять из одного конструктора с параметром.
- 5. Назначение этого класса формирование при всяком новом запуске программы содержимого файла *Inlet.in* согласно спецификации ввода задачи указанного варианта.
- 6. Через параметр конструктора следует организовать формирование различных ситуаций в соответствующей задаче (имеет/не имеет решение, предельный случай, недопустимые данные и т.п.).

Вариант 0

Конструктор:

- 1. инициализация значениями по умолчанию (произвольной мощности);
- 2. инициализация значениями по умолчанию (заданной мощности);
- 3. инициализация набором вещественных значений;
- 4. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

NC

Значения элементов массива А по одному в строке

- 5. (преобразование) уменьшить элементы объекта в C раз;
- 6. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого это элементы данного объекта, индексы которых степени числа С;
- 7. (*pacчета*) найти предельно возможный для копирования индекс данного объекта, элемент которого должен быть последним в векторе-результата п. 6;

- 8. (*поиска*) поиска массива индексов данного объекта подлежащих копированию;
- 9. построить индексатор класса.

Конструктор:

- 1. инициализация значениями по умолчанию (фиксированной мощности);
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

N k

Значения элементов массива А по одному в строке

- 3. инициализация случайными вещественными значениями из [0, 1) с указанием мощности множества данных;
- 4. инициализация указанным вещественным значением и с указанием мощности множества данных.

Методы:

- 5. (преобразование) изменить элементы объекта в k раз;
- 6. (*выделения/построения*) построить новый объект типа «Вектор», на основе данного, элементы которого только положительные элементы данного объекта;
- 7. (*расчета*) найти количество положительных элементов данного объекта;
- 8. (поиска) поиска максимального элемента объекта;
- 9. построить индексатор класса.

Вариант 2

Конструктор:

- 1. инициализация случайными числами не меньшими 1, целая часть которых нечетные числа.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

NiiA

Значения элементов массива по одному в строке

- 3. (преобразование) смены местами і и ј элементов объекта;
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого не превосходят числа А;
- 5. (расчета) найти количество нулевых элементов данного объекта;
- 6. (поиска) поиска минимального элемента объекта.

Конструктор:

- 1. инициализация случайными числами целая часть которых степень числа 2.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

NabR

Значения элементов массива А по одному в строке

Методы:

- 3. (преобразование) смены местами і-го и максимального элементов объекта;
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого имеют целую часть, лежащую в диапазоне [a, b].
- 5. (*pacчета*) найти сумму элементов данного объекта, больших числа R:
- 6. (поиска) поиска максимального по модулю элемента объекта.

Вариант 4

Конструктор:

- 1. инициализация числами членами арифметической прогрессии по двум вводимым параметрам: членом прогрессии (a) и ее разностью (d).
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

NS

Значения элементов массива А по одному в строке

- 3. (*преобразование*) смены местами i-го и минимального элементов объекта:
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого, начиная с первого, в сумме не превосходят значения вводимого параметра S;
- 5. (*расчета*) найти сумму элементов данного объекта, целая часть которых нечетное число;
- 6. (поиска) поиска минимального по модулю элемента объекта.

Конструктор:

- 1. инициализация числами членами геометрической прогрессии по двум вводимым параметрам: членом прогрессии (b) и ее знаменателем (q).
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

NiF

Значения элементов массива А по одному в строке

Методы:

- 3. (преобразование) смены местами *i-го* и *максимального по абсо- лютной величине* элементов объекта;
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, дробная часть элементов которого не превосходит **0.5**.
- 5. (pacчета) найти сумму элементов данного объекта, целая часть которых делитель числа P;
- 6. (*noucka*) определения разности максимального и минимального элементов объекта.

Вариант 6.

Конструктор:

- 1. инициализация случайными числами целая часть которых члены последовательности Фибоначчи $F_1 = 1$, $F_2 = 1$, $F_k = F_{k-2} + F_{k-1}$, k = 3, 4, ... по двум входным параметрам: двум произвольным последовательным членам последовательности Фибоначчи.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

NiMAB

Значения элементов массива по одному в строке

- 3. (преобразование) смены местами *i-го* и **минимального по абсолют- ной величине** элементов объекта;
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого по модулю не превосходят заданной величины M.
- 5. (pacчета) найти произведение тех элементов данного объекта, дробная часть которых, рассматриваемая как целое число кратна либо числу \boldsymbol{A} либо числу \boldsymbol{B} ;
- 6. (поиска) поиска индекса максимального элемента объекта.

Конструктор:

- 1. инициализация случайными числами, образующими убывающую последовательность, по двум параметрам: верхней границе значений и мощности объекта.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n

Значения элементов массива А по одному в строке

Методы:

3. (преобразование) поменять местами элементы левой и правой половин элементов данных объекта $(A_0,\,A_1,\,A_2,\,\dots\,,\,A_{n/2}\,,\,A_{n/2+1}\,,\,\dots\,,\,A_{n-1}$ $\rightarrow A_{n/2+1}\,,\,\dots\,,\,A_{n-1},\,A_0,\,A_1,\,A_2,\,\dots\,,\,A_{n/2}).$

3амечание: количество элементов n может быть и нечетным, в этом случае «серединный» элемент останется на месте.

- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого имеют нечетные индексы.
- 5. (*pacчета*) найти сумму элементов объекта, стоящих на нечетных местах (*с четными индексами для С#*);
- 6. (поиска) поиска индекса минимального элемента объекта.

Вариант 8

Конструктор:

- 1. инициализация случайными числами, образующими возрастающую последовательность, по двум параметрам: нижней границе значений и мошности объекта.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

N

Значения элементов массива А по одному в строке

- 3. (*преобразование*) поменять местами первый элемент со вторым, третий с четвертыми и т.д.
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого имеют четные индексы.
- 5. (*pacчета*) найти количество элементов объекта, отличных от последнего;
- 6. (*поиска*) поиска индекса максимального по модулю элемента объекта.

Конструктор:

- 1. инициализация случайными числами, образующими неубывающую последовательность (в обязательном порядке обеспечить возможность повторяемости значений), по двум параметрам: верхней границе значений и мощности объекта.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n Cab

Значения элементов массива А по одному в строке

Методы:

- 3. (*преобразование*) поменять местами элементы левой и правойполовин элементов данных объекта следующим образом: $A_0 \leftrightarrow A_{n-1}$, $A_1 \leftrightarrow A_{n-2}$, $A_2 \leftrightarrow A_{n-3}$..., т.е. равноудаленные от концов массива элементы;
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого являются степенями заданного числа \boldsymbol{C} .
- 5. (*расчета*) найти количество элементов данного объекта, значения которых принадлежать промежутку [*a*, *b*];
- 6. (*поиска*) поиска индекса минимального по модулю элемента объекта.

Вариант 10

Конструктор:

- 1. инициализация случайными числами, образующими невозрастающую последовательность (в обязательном порядке обеспечить возможность повторяемости значений), по двум параметрам: нижней границе значений и мощности объекта.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n k Hudina

Значения элементов массива А по одному в строке

- 3. (*преобразование*) переставить местами первые k элементов данных с последними k элементами. Считать, что k < n/2.
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого идут по отношению к данному объекту в обратном порядке.

- 5. (*pacчета*) найти количество элементов данного объекта, целая часть которых оканчивается на указанную *Цифру*;
- 6. (поиска) поиска количества максимальных элементов объекта.

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A*, следующим образом: $A_{n-1}, A_{n-2}, ..., A_2, A_1, A_0$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввола данной задачи:

Спецификация ввода (файл Inlet.in)

nij

Значения элементов массива А по одному в строке

Методы:

- 3. (*преобразование*) переставить в обратном порядке элементы данных объекта от i-го до j-ого, где i < j, остальные элементы остаются на своих местах.
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого будут расположены по отношению к данным в обратном порядке;
- 5. (*расчета*) найти количество пар соседних элементов данного объекта, целая часть которых четные числа;
- 6. (поиска) поиска количества минимальных элементов объекта.

Вариант 12

Конструктор:

- 1. инициализация значениями массивого параметра *params double[]* A, следующим образом: A_{n-1} , A_{n-3} , A_{n-5} ,... A_1 или A_0 в зависимости от мощности массива A
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n

Значения элементов массива А по одному в строке

- 3. (*преобразование*) переставить в обратном порядке элементы данных объекта между первым минимальным и первым максимальным, включая минимум и максимум, которые местами друг с другом, остальные элементы остаются на своих местах;
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого не будут содержать повторяю-

- щихся (в данном объекте) элементов, т.е. в создаваемом объекте все элементы данных уникальны;
- 5. (*расчета*) найти количество пар соседних элементов данного объекта, целая часть которых числа разной четности;
- 6. (*поиска*) поиска количества максимальных по модулю элементов объекта, стоящих в нем на нечетных местах.

Конструктор:

- 1. инициализация значениями массивого параметра *params double[]* A, следующим образом: $A_{n-1} + A_{n-2}$, $A_{n-2} + A_{n-3}$,..., $A_2 + A_1$, $A_1 + A_0$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n F

Значения элементов массива А по одному в строке

Методы:

- 3. (преобразование) удалить максимальный элемент данных объекта¹
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого содержат только те элементы данного объекта (по одному), которые в данном объекте не уникальны;
- 5. (pacчета) найти количество пар соседних элементов данного объекта, сумма целых частей которых делится на число P;
- 6. (*поиска*) поиска количества минимальных по модулю элементов объекта, стоящих в нем на нечетных местах.

Вариант 14

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A*, следующим образом: A_0 , $A_0 + A_1$, $A_0 + A_1 + A_2$, ..., $A_0 + A_1 + A_2 + ... + A_{n-1}$
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

nD

Значения элементов массива А по одному в строке

¹ Под удалением элемента массива следует понимать: 1) исключение этого элемента из массива путем смещения всех следующих за ним элементов влево на 1 позицию; 2) присваивание последнему элементу массива значения 0.

Методы:

- 3. (преобразование) удалить минимальный элемент данных объекта (см. сноску 1 к задача 13);
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементами которого являются элементы данного объекта разделенные на его первый элемент. Если этого сделать нельзя (Почему?), то новые объект должен повторить все данные текущего объекта;
- 5. (pacчета) найти количество пар соседних элементов данного объекта, целые части которых отличаются друг от друга не более чем на D;
- 6. (*поиска*) поиска количества максимальных по модулю элементов объекта, стоящих в нем на четных местах.

Вариант 15

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A*, следующим образом: A_0^2 , $A_0 * A_1$, $A_0 * A_2$, ..., $A_0 * A_{n-1}$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n

Значения элементов массива А по одному в строке

Методы:

- 3. (*преобразование*) удалить из массива первый отрицательный элемент (если отрицательные элементы в массиве есть) (см. сноску 1 к задаче 13);
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого это удвоенные значения одно-именных элементов текущего объекта;
- 5. (pacчета) найти количество пар соседних элементов данного объекта, которые отличаются друг от друга не более, чем на r;
- 6. (*noucka*) поиска максимальных по модулю элементов объекта, стоящих в нем на нечетных местах.

Вариант 16

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A*, следующим образом: $|A_0|$, $|A_0+A_1|$, $|A_0+A_1+A_2|$, ..., $|A_0+A_1+A_2+\ldots+A_{n-1}|$
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n d

Значения элементов массива А по одному в строке

Методы:

- 3. (преобразование)) удалить из массива последний положительный элемент (если отрицательные элементы в массиве есть) (см. сноску 1);
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого это одноименные элементы данного объекта, которым случайным образом приписывается знак «-» (минус);
- 5. (pacчema) найти сумму тех элементов данного объекта, которые отличаются от данного числа не более, чем на d;
- 6. (*поиска*) поиска минимальных по модулю элементов объекта, стояших в нем на четных местах.

Вариант 17

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A*, следующим образом: A_0 , $-A_0*A_1$, $A_0*A_1*A_2$, $-A_0*A_1*A_2*A_3$..., $(-1)^{(n-1)}*A_0*A_1*A_2*...*A_{n-1}$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

n d

Значения элементов массива А по одному в строке

- 3. (*преобразование*) удалить из массива, в котором все элементы различны, максимальный и минимальный элементы (см. сноску 1 к задаче 13);
- 4. (выделения/построения)) построить новый объект типа «Вектор», на основе данного, элементы которого это одноименные элементы данного объекта, знаки которых инвертируются, т.е. «+» \rightarrow «-», а «-» \rightarrow «+»;
- 5. (расчета) найти количество элементов данного объекта, которые отличаются от одноименных элементов объекта «Вектор», указанного в качестве параметра этого метода не более, чем на d^3 ;

 $^{^{2}}$ «Одноименными» считать те элементы двух объектов типа «Вектор», которые имеют одинаковые индексы.

³ Обратите внимание на корректное разрешение коллизии, когда объекты имеют данные разной мощности

6. (*поиска*) поиска количества элементов объекта больших значения минимума элементов данного объекта.

Вариант 18

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A*, следующим образом: $-A_0, A_1, -A_2, \dots, (-1)^{(n-1)*}A_{n-1}$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

nRkD

Значения элементов массива А по одному в строке

Методы:

- 3. (преобразование) удалить из массива все отрицательные элементы (см. сноску 1 к задаче 13);
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого по абсолютной величине меньшие числа \mathbf{R} , увеличиваются в \mathbf{k} раз, а большие этого числа уменьшаются в \mathbf{k} раз;
- 5. (расчета) найти количество элементов данного объекта, которые в сумме с одноименными (см. ссылку 2 к задаче 17) элементами объекта «Вектор», указанного в качестве параметра этого метода, дают значение не большее D (см. ссылку 3 к задаче 17);
- 6. (*noucka*) поиска количества элементов объекта меньших значения максимума элементов данного объекта.

Вариант 19

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] A* (мощность A равна k*n, где k и n тоже входные параметры конструктора), следующим образом: $A_0 + A_1 + \ldots + A_k$, $A_{k+1} + A_{k+2} + \ldots + A_{2k}$, ..., $A_{k(n-1)+1} + A_{k(n-1)+2} + \ldots + A_{kn}$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

nkADR

Значения элементов массива по одному в строке

- 3. (*преобразование*) удалить из массива все элементы, большие данного числа A (см. сноску 1 к задаче 13);
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого уменьшаются на D, если соот-

- ветствующий элемент данного объекта больше R, и увеличиваются на столько же, в противном случае;
- 5. (расчета) найти количество элементов данного объекта, разность которых с одноименными (см. ссылку 2 к задаче 17) элементами объекта «Вектор», указанного в качестве параметра этого метода, по модулю дают значение не большее D (см. ссылку 3 к задаче 17);
- 6. (*поиска*) поиска количества локальных минимумов⁴ элементов данного объекта.

Конструктор:

- 1. инициализация значениями массивого параметра *params double[] А* (мощность A равна k*n, где k и n тоже входные параметры конструктора), следующим образом: $\max(A_0, A_1, \ldots, A_k)$, $\max(A_{k+1}, A_{k+2}, \ldots, A_{2k})$, ..., $\max(A_{k(n-1)+1}, A_{k(n-1)+2}, \ldots, A_{kn})$.
- 2. инициализация значениями файла *Inlet.in* согласно спецификации ввода данной задачи:

Спецификация ввода (файл Inlet.in)

 $n k n_1 n_2$

Значения элементов массива А по одному в строке

- 3. (преобразование) удалить из массива все элементы начиная с n_1 -го по n_2 -й ($n_1 <= n_2$) (см. сноску 1 к задаче 13);
- 4. (выделения/построения) построить новый объект типа «Вектор», на основе данного, элементы которого делятся на минимальный элемент данного объекта;
- 5. (расчета) найти количество элементов данного объекта, частное от деления которых на одноименные (см. ссылку 2 к задаче 17) элементы объекта «Вектор», указанного в качестве параметра этого метода, дают значение не большее I^5 (см. ссылку 3 к задаче 17);
- 6. (*поиска*) поиска количества локальных максимумов⁶ элементов данного объекта.

⁴ Элемент массива называется *покальным минимумом*, если он меньше своих левого и правого соседа. Из определения следует, что локальный минимум отыскивается среди элементов массива, начиная со второго и завершая предпоследним.

⁵ Если частное построить «нельзя» (В каком случае ?) соответствующая пара пропускается.

⁶ Элемент массива называется *покальным максимумом*, если он больше своих левого и правого соседа. Из определения следует, что локальный максимум отыскивается среди элементов массива, начиная со второго и завершая предпоследним.