Quiz, 10 questions

~	Congra	atulations! You passed!	Next Item
	~	1 / 1 points	
		notation would you use to denote the 3rd layer's activa out is the 7th example from the 8th minibatch?	tions when
		$a^{[8]\{3\}(7)}$	
		$a^{[8]\{7\}(3)}$	
	0	$a^{[3]\{8\}(7)}$	
Correct			
		$a^{[3]\{7\}(8)}$	
	~	1 / 1 points	
	2. Which agree	of these statements about mini-batch gradient descentwith?	: do you
	0	One iteration of mini-batch gradient descent (comput single mini-batch) is faster than one iteration of batch descent.	_
	_		
	Corr	ест	
	\bigcirc	You should implement mini-batch gradient descent we explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same times	ne

(vectorization).

Optimization algorint battles gradient descent is faster than training one epoch using batch gradient descent.

Quiz, 10 questions

10/10 points (100%)

~	1 / 1 points				
3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?					
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.				
Correct					
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.				
Un-selected is correct					
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.				
Un-se	elected is correct				
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.				
Corre	ect				
~	1 / 1 points				

4.

Optimization algorithms

Quiz, 10 questions

10/10 points (100%)

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

1/1 points

Optimization algorithms

Quiz, 10 questions

Jan 1st:
$$\theta_1 = 10^{o} C$$

10/10 points (100%)

Jan 2nd: $\theta_2 10^{\circ} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0 = 0$, $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

1/1 points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

Correct

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \; \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

Optimization algorithms

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$ The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

1/1 points

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

1/1 points

Suppose batch gradient descent in a deep network is taking excessively

tachniques could halp find parameter values that attain a small value for	long to find a value of the parameters that achieves a small value for the					
techniques could help find parameter values that attain a small value for	Optimizatio	$m{p}$ and $m{p}$ which of the following $m{p}$	10/10 points (100%)			
Quiz, 10 questions _ ' ' '	Quiz, 10 questions	techniques could help find parameter values that attain a small value for				

 ${\cal J}$? (Check all that apply)

Corr	Try tuning the learning rate $lpha$
COIT	
Corr	Try better random initialization for the weights
	Try using Adam
Corr	ect
	Try mini-batch gradient descent
Соми	net.
Corr	ect
	Try initializing all the weights to zero
Un-s	selected is correct
OII 3	Ciccica is correct
✓	1 / 1 points
10.	
Which	of the following statements about Adam is False?
	<u> </u>
	Adam combines the advantages of RMSProp and momentum
	The learning rate hyperparameter $\boldsymbol{\alpha}$ in Adam usually needs to be tuned.
0	Adam should be used with batch gradient computations, not with mini-batches.

Correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\, \varepsilon=10^{-8}$)