Lista de Exercícios sobre Representação de Posição e Orientação

- 1) Considere dois sistemas referenciais $\{A\}$ e $\{B\}$, tais que $\{B\}$, inicialmente coincidente com $\{A\}$, girou um ângulo $\theta = 15^{\circ}$ em torno do eixo x_A . Determine a Matriz de Rotação AR_B que define a orientação de $\{B\}$ relativa a $\{A\}$, em função do ângulo θ .
- 2) Considere a matriz **R** abaixo. Essa matriz pode representar uma matriz de rotação que defina a orientação de um dado referencial {B} em relação a um dado referencial {A}? Sim ou Não? Justifique a sua resposta?

$$\mathbf{R} = \begin{bmatrix} 0 & (3)^{1/2}/2 & -0.5 \\ 0 & 0.5 & 0.5 \\ -1 & 0 & 0 \end{bmatrix}$$

3) Considere a matriz de rotação ${\bf R}$ abaixo. Calcule os ângulos de Euler ZXZ, ZYZ e ZYX, além da representação ângulo-eixo equivalentes a esta matriz de rotação.

$$\mathbf{R} = \begin{bmatrix} (3)^{1/2}/2 & -(2)^{1/2}/4 & (2)^{1/2}/4 \\ 1/2 & (6)^{1/2}/4 & (6)^{1/2}/4 \\ 0 & (2)^{1/2}/2 & (2)^{1/2}/2 \end{bmatrix}$$

- 4) Considere os referenciais {A}, {B} e {C} mostrados na figura abaixo.
 - a) Expresse a orientação de $\{B\}$ em relação a $\{A\}$ e a orientação de $\{C\}$ em relação a $\{B\}$, na forma de matrizes de rotação AR_B e BR_C .
 - b) Expresse a orientação de {C} em relação a {A} na forma de matriz de rotação e ^AR_C.
 - c) Determine as posições relativas ${}^{A}P_{B}$ e ${}^{B}P_{C}$ que definem a posição de $\{B\}$ em relação a $\{A\}$ e a posição de $\{C\}$ em relação a $\{B\}$, respectivamente.
 - d) Determine a posição relativa ^AP_C que define a posição de {C} em relação a {A}.

5) Considere um AUV (*Autonomous Underwater Vehicle* – Veículo Subaquático Autônomo) realizando operações de monitoramento submarino de uma plataforma de petróleo. O sistema de navegação inercial mede a sua orientação fornecendo os ângulos de rolagem, arfagem e guinada (*roll, pitch, yaw*), com valores (φ,θ,ψ) = (30°, 45°, 60°), determine a sua orientação em relação ao referencial inercial, fixo no chão, na forma de uma matriz de rotação equivalente.

Considere o robô móvel mostrado na figura abaixo. Expresse a orientação do mesmo em relação ao referencial fixo na forma de uma matriz de rotação ${}^{A}R_{B}$.

- 7) Para o robô da questão anterior, suponha que a sua distância em relação à origem é 3 metros. Expresse a posição do robô em relação ao referencial fixo {A} na forma de um vetor de posição ^AP_B.
- 8) Considere o manipulador robótico mostrado na figura abaixo. Dados L=0.5 metros e $d_1=0.6$ metros, calcule:
 - A orientação da garra {G} em relação à base {B} na forma de uma matriz de rotação BR_G.
 - b) A orientação da garra {G} em relação à base {B} na sua represntação ângulo-eixo equivalente.
 c) A posição da garra em relação à base, ^BP_G.

