An Introduction to Machine Learning

With Python

Terry McCann @sqlshark

We **enable** our **clients** make **sense** of their **data**

DATA STRATEGY

DATA SCIENCE

DATA MANAGEMENT

DATA ANALYTICS

Questions?

Shout them out!!

Where to find the *slides* and *demos*

https://github.com/SQLShark bit.ly/2uHQS74

In this session we will look to understand what is *Machine Learning*?

We will explore *data science*, the process, the use cases and how to get started.

We will understand why *Python* is a great Language, and how to advance your skills in machine learning

Expert systems

A machine is said to learn from experience E with respect to some class of tasks T and performance measure P

Its performance at tasks in T, as measured by P, improves with experience E.

Types of machine learning

Clustering

Regression

Classification

Unsupervised

Supervised Learning

A visual introduction to machine learning

In machine learning, computers apply **statistical learning** techniques to automatically identify patterns in data. These techniques can be used to make highly accurate predictions.

Keep scrolling. Using a data set about homes, we will create a machine learning model to distinguish homes in New York from homes in San Francisco.

A visual introduction to

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Keep scrolling. Using a data set about homes, we will create a machine learning model to distinguish homes in New York from homes in San Francisco.

Python: Fundamentals

print("Hello, Manchester!")

Beautiful is better than ugly
Explicit is better than implicit
Simple is better than complex
Complex is better than complicated
Readability counts

Python is...

An interpreted language

Indents are important! Indents over curly brackets

Supports: variables, lists, dictionaries and tuples

Duck typed

Awesome!!

DS/ML Modules

Numpy – Numerical Python

SciPy – Scientific Python

Pandas - Data wrangling

MatPlotLib - Data Visualisation

Scikit-learn - Machine Learning (shallow)

. . . .

TensorFlow - Machine Learning (deep)

Keras - High level DL

NLTK - Natural Language processing

How to add modules? PIP

Python: Demos

The Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.

Python!

Python is amazing, so versatile.

If you are serious about Machine Learning then learn Python. Learn R too, but Python for production.

Start basic and build from there.

Thank you

@SQLShark tpm@adatis.co.uk www.adatis.co.uk @AdatisBI