DIGITAL SIGNAL PROCESSING

REPORT06

- Name: Võ Phi Trường.

- ID: 1814582.

Ho Chi Minh, 25/11/2020.

1. Exercises: Investigate XCOS in Scilab for signal processing:

1.1 Draw the following LTI system in Scilab:

1.2 Generate an input signal x(n) randomly and observe the output y(n):

2. Additional Exercises:

2.1 Students implement the following function in SciLab for discrete-time signals without using convol() built-in function:

2.2 Calculate the convolution y(n) = x(n) * h(n) of two signals:

A) $x(n) = \{3, 1/2, -1/4 \uparrow, 1, 4\}, h(n) = \{2, -1, 1/2 \uparrow, -1/2\}$

	-()	· , -· - ,	: - ; -	, ·) ,(<i>)</i> (-,		
3	1/2	-1/4↑	1	4			
2	-1	1/2↑	-1/2				
6	-3	3/2	-3/2				
	1	-1/2	1/4	-1/4			
		-1/2	1/4	-1/8	1/8		
			2	-1	1/2	-1/2	
				8	-4	2	-2
6	-2	1/2	1	53/8↑	-27/8	3/2	-2

 $y(n) = \{6, -2, -1/2, 1, 53/8\uparrow, -27/8, 3/2, -2\}$

B) $x(n) = \{6, 5, 4, 3 \uparrow, 2, 1\}, h(n) = \{1, 1 \uparrow, 1, 1\}$

			<u>/ </u>	, , , ,				
6	5	4	3↑	2	1			
		1	1↑	1	1			
6	5	4	3	2	1			
	6	5	4	3	2	1		
		6	5	4	3	2	1	
			6	5	4	3	2	1
6	11	15	18	14↑	10	6	3	1

 $y(n) = \{6, 11, 15, 18, 14\uparrow, 10, 6, 3, 1\}$

C) $x(n) = \{-1, 3 \uparrow, -1, -2\}, h(n) = \{-2, 2 \uparrow, 0, -1, 1\}$

	\rightarrow		, , ,			, <i>, ,</i>	
-1	3↑	-1	-2				
-2	2↑	0	-1	1			
2	-6	2	4				
	-2	6	-2	-4			
		0	0	0	0		
			1	-3	1	2	
				-1	3	-1	2
2	-8	8↑	3	-8	4	1	2

 $y(n) = \{2, -8, 8\uparrow, 3, -8, 4, 1, 2\}$

