

2018 Technical Appendix

epi.yale.edu

Suggested Citation:

Wendling, Z. A., Emerson, J. W., Esty, D. C., Levy, M. A., de Sherbinin, A., et al. (2018). 2018 Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy. https://epi.yale.edu/

2018 Environmental Performance Index

Technical Appendix

This technical appendix is a companion document to the 2018 Environmental Performance Index (EPI) Report. It contains additional details about the methods used in the 2018 EPI. Along with the files available online, the purpose of this technical appendix is to provide all information necessary for fully replicating the analysis. Throughout this appendix *TLA* is used to refer to the three letter abbreviations of the input data sources and resulting indicators.

Table of Contents

1. Indicator & Data Overview	2
2. Indicator Construction	4
3. Data Sources	41
4. Temporal Coverage	63
5. Transformations & Targets	65
6. Materiality Filters	66
7. Global Scorecard	68

1. Indicator & Data Overview

Table TA-1. Organization of the 2018 EPI, with three-letter abbreviations (TLAs), weights (Wt.) within each level of aggregation, and page numbers on which indicators are described.

2

Policy Objective	Issue Category	TLA	Wt.	Indicator	TLA	Wt.	Page
				Household Solid Fuels	HAD	40%	5
Environmental	Air Quality	AIR	65%	PM _{2.5} Exposure	PME	30%	6
Health				PM _{2.5} Exceedance	PMW	30%	7
HLT	Water &	H2O	30%	Drinking Water	UWD	50%	9
(40%)	Sanitation	1120	30 /0	Sanitation	USD	50%	10
	Heavy Metals	HMT	5%	Lead Exposure	PBD	100%	11
				Marine Protected Areas	MPA	20%	12
				Biome Protection (National)	TBN	20%	13
	Biodiversity &	BDH	25%	Biome Protection (Global)	TBG	20%	15
	Habitat	ווטט	2370	Species Protection Index	SPI	20%	17
				Representativeness Index	PAR	10%	18
				Species Habitat Index	SHI	10%	19
	Forests	FOR	10%	Tree Cover Loss	TCL	100%	20
	Fisheries	FSH	10%	Fish Stock Status	FSS	50%	21
Ecosystem Vitality ECO	risheries	1311	10 70	Regional Marine Trophic Index	MTR	50%	23
(60%)				CO ₂ Emissions – Total	DCT	50%	29
(2 2 . 2)				CO ₂ Emissions – Power	DPT	20%	30
	Climate & Energy	CCE	30%	Methane Emissions	DMT	20%	31
				N ₂ O Emissions	DNT	5%	32
				Black Carbon Emissions	DBT	5%	33
	Air Pollution	APE	10%	SO ₂ Emissions	DST	50%	34
	All Foliation	ALL	10 /6	NO _x Emissions	DXT	50%	35
	Water Resources	WRS	10%	Wastewater Treatment	WWT	100%	36
	Agriculture	AGR	5%	Sustainable Nitrogen Management	SNM	100%	38

Table TA-2. Abbreviations for data used in the construction of indicators with page numbers for data sources.

Indicator	TLA	Dataset	TLA	Page
Household Solid Fuels	HAD	DALY rate - Household Solid Fuels	HAD	50
PM _{2.5} Exposure	PME	Ambient $PM_{2.5}$ concentrations	PMC	55
PM _{2.5} Exceedance	PMW	Population distribution	PDS	55
Drinking Water	UWD	DALY rate – Unsafe Drinking Water	UWD	61
Sanitation	USD	DALY rate – Unsafe sanitation	USD	60
Lead Exposure	PBD	DALY rate - Lead exposure	PBD	54
Marine Protected Areas	MPA	Marine Protected Areas	AMP	42
Iviainie Protected Areas	IVIPA	Economic Exclusion Zones	EEZ	47
Biome Protection (Nat'l)	TBN	Terrestrial Ecoregions of the World	TEW	59
Biome Protection (Global)	TBG	Terrestrial Protected Areas	TPA	59
Species Protection Index	SPI	Species Protection Index	SPI	59
Representativeness Index	PAR	Protected Area Rep. Index	PAR	53
Species Habitat Index	SHI	Species Habitat Index	SHI	57
Tree Cover Loss	TCL	Forested land area	FOR	47
Tree Cover Loss	TCL	Annual loss of forested land	ATL	42
Fish Stock Status	FSS	Fish stock class	FSC	48
1 ISH Stock Status	1 33	Fish catch	CTH	47
Regional Marine	MTR	Regional Marine Trophic Index	RMT	57
Trophic Index	IVIIIX	Areas of EEZs	AEZ	42
CO ₂ Emissions – Total	DCT	CO ₂ emissions	CDT	44
CO ₂ Emissions – Power	DPT	CO ₂ emissions / kWh elect. & heat	CEH	45
Methane Emissions	DMT	CH ₄ emissions	CH4	46
N ₂ O Emissions	DNT	N ₂ O emissions	NOT	51
Black Carbon Emissions	DBT	Black Carbon emissions	BLC	43
SO ₂ Emissions	DST	SO ₂ emissions	SO2	58
NO _X Emissions	DXT	NO _x emissions	NOX	52
		Gross Domestic Product	GDP	49
		Population	POP	56
Wastewater Treatment	WWT	Wastewater treated	WST	62
vvastevvater Heatiment	V V V V I	Connection Rate	CXN	62
Custoinable Nitus see		Agricultural land	LND	50
Sustainable Nitrogen Management Index	SNM	Permanent cropland	PRM	56
- Indiagement mack		Sustainable Nitrogen Mgmt. Index	SNM	58

2. Indicator Construction

We undertake a number of steps to prepare the data for the EPI. This section describes how the data are used to construct the 24 metrics of the 2018 EPI. On the following pages, you will see each metric described according to the following template.

TLA: Indicator / Issue Category / Policy Objective

Short description of the indicator.

Units Units of the raw data

Countries Number of countries covered by the raw data

Years Years for which raw data are available

Source Organization

Transformation Whether the normalized data had to be transformed

Targets Basis for selection of targets

Performance	Nominal	Raw	Transformed
Best	Value or percentile	Value	Transformed value
Worst	Value or percentile	Value	Transformed value

Calculations

If any calculations were required, they are described here.

Imputations

If any imputation was required, it is described here.

Note

Any additional information that would be helpful for understanding indicator construction.

Due to the variety of data sources, not every field is applicable to every indicator. Each entry below provides the fullest account possible.

HAD: Household Solid Fuels / Air Quality / Environmental Health

Measures the actual outcomes from exposure to indoor air pollution from household use of solid fuels.

Units Age-standardized Disability-Adjusted Life Years lost per 100,000

persons, or the DALY rate

Countries 195

Years 2000, 2005, 2010, 2016

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Targets Based on observed data

Performance	Nominal	Raw	Transformed
Best	5 th -percentile	3.43	1.23
Worst	95 th -percentile	5,698.97	8.65

Calculations

PME: PM_{2.5} Exposure / Air Quality / Environmental Health

Measures the average annual concentration of $PM_{2.5}$ to which the typical citizen of each country is exposed.

Units µg/m³

Countries 228

Years 2008-2015

Transformation ln(x)

Targets World Health Organization guidelines

Performance	Nominal	Raw	Transformed
Best	10 μg/m³	10.00	2.30
Worst	99 th -percentile	44.44	3.79

Calculations

Component		Units	Source
PMC	Ambient PM _{2.5} concentrations	μg/m³	van Donkelaar <i>et al.,</i> 2016
PDS	Population distribution	persons	CIESIN, 2016

$PMC \cap PDS \rightarrow PME$

PDS (Gridded Population of the World) was resampled at the same 10 x 10 km spatial resolution as the PMC (Annual global surface $PM_{2.5}$ concentrations), and the fraction of country population in each grid cell was calculated. The fraction of country population is multiplied times the $PM_{2.5}$ concentrations in each grid cell, and the result is summed over the entire country to create a population-weighted ambient concentrations of $PM_{2.5}$.

PMW: PM_{2.5} Exceedance / Air Quality / Environmental Health

Measures the weighted percentage of a country's population exposed to annual concentrations of PM_{2.5} that exceed WHO guidelines at four different levels: 10, 15, 25, and 35 μ g/m³. Higher concentration levels are given higher weights in the averaging process.

Units % of population

Countries 228

Years 2008-2015

Transformation none

Targets World Health Organization guidelines

Performance	Nominal	Raw
Best	0	0.00
Worst	99 th -percentile	86.96

Calculations

Component		Units	Source
PMC	Ambient PM _{2.5} concentrations	μg/m³	van Donkelaar <i>et al.,</i> 2016
PDS	Population distribution	persons	CIESIN, 2016
PM1	% of population [PM $_{2.5}$] > 10 $\mu g/m^3$	%	
PM2	% of population [PM $_{2.5}$] > 15 μ g/m 3	%	
PM3	% of population [PM _{2.5}] > 25 μ g/m ³	%	
PM4	% of population [PM $_{2.5}$] > 35 $\mu g/m^3$	%	

$PMC \cap PDS \rightarrow \{PM1, PM2, PM3, PM4\}$

PDS (Gridded Population of the World) was intersected with spatial masks representing the four different concentration levels of PMC (annual global surface $PM_{2.5}$ concentrations), and the population within the areas above the respective thresholds was summed for each country. The population within the areas of exceedance was then divided by the country population to arrive at the percentage of population in areas exceeding each threshold.

The calculation of the percent of the population exposed to different levels of $PM_{2.5}$ is given by the following weighted average.

$$PMW = 0.1 \times PM1 + 0.2 \times PM2 + 0.3 \times PM3 + 0.4 \times PM4$$

UWD: Drinking Water / Water & Sanitation / Environmental Health

Measures the actual outcomes from lack of access or use of improved sources of drinking water.

Units Age-standardized Disability-Adjusted Life Years lost per 100,000

persons, or the DALY rate

Countries 195

Years 2000, 2005, 2010, 2016

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Targets Based on observed data

Performance	Nominal	Raw	Transformed
Best	5 th -percentile	3.41	1.23
Worst	95 th -percentile	4,749.82	8.47

Calculations

USD: Sanitation / Water & Sanitation / Environmental Health

Measures the actual outcomes from lack of access or use of improved sanitation facilities.

Units Age-standardized Disability-Adjusted Life Years lost per 100,000

persons, or the DALY rate

Countries 195

Years 2000, 2005, 2010, 2016

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Targets Based on observed data

Performance	Nominal	Raw	Transformed
Best	5 th -percentile	1.52	0.42
Worst	95 th -percentile	4,163.21	8.33

Calculations

PBD: Lead exposure / Heavy Metals / Environmental Health

Measures the actual outcomes from lead exposure.

Units Age-standardized Disability-Adjusted Life Years lost per 100,000

persons, or the DALY rate

Countries 195

Years 2000, 2005, 2010, 2016

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Targets Based on observed data

Performance	Nominal	Raw	Transformed
Best	1st-percentile	21.13	3.05
Worst	99 th -percentile	848.06	6.74

Calculations

MPA: Marine Protected Areas / Biodiversity & Habitat / Ecosystem Vitality

Measures the percent of a country's Economic Exclusion Zone (EEZ) set aside as a marine protected area (MPA).

Units % of EEZ

Countries 179

Years 2000–2017

Transformation $ln(x+\alpha)$, $\alpha = 1.22e-5$

Targets Based on Aichi Target 11

Performance	Nominal	Raw	Transformed
Best	10 %	10	2.30
Worst	0 %	0	-11.31

Calculations

Compo	onent	Units	Source
AMP	Area of MPAs	sq. km	World Database of Protected Areas
EEZ	Area of EEZs	sq. km	Flanders Marine Institute
i	An index of all MPAs in a country		
j	An index of all EEZs in a country		

These components are used to calculate the metric on *Marine Protected Areas*. Because each country may have multiple EEZs, the summed area of MPAs is divided by the summed EEZ.

$$MPA = \frac{\sum AMP_i}{\sum EEZ_j} \times 100$$

TBN: Terrestrial Protected Areas, national weights / Biodiversity & Habitat / Ecosystem Vitality

Measures the percent of a country's biomes in terrestrial protected areas (TPAs), weighted by the prevalence of different biome types within that country.

Units % of EEZ

Countries 233

Years 1990-2017

Transformation none

Targets Based on Aichi Target 11

Performance	Nominal	Raw
Best	17 %	17
Worst	0 %	0

Calculations

Compo	pnent	Units	Source
TEW	Area of biomes	sq. km	World Wide Fund for Nature
TPA	Area of TPAs	sq. km	World Database of Protected Areas
PCT	Raw % of biome within TPA		
ICT	Credited % of biome within TPA		
W	Weight of ICT in indicator construction		
i	An index of all TPAs in a country		
b	An index of biomes		
С	An index of countries		

First, the percent of each biome present in a country that lies within a protected area is given by,

$$PCT_{bc} = \frac{\sum_{i} TPA_{ibc}}{TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_{bc} = \begin{cases} PCT_{bc} & if PCT_{bc} \le 0.17 \\ 0.17 & if PCT_{bc} > 0.17 \end{cases}$$

Third, the national weight placed on each biome is calculated by the proportion of that biome for the entire country,

$$w_{bc} = \frac{TEW_{bc}}{\sum_b TEW_{bc}}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBN_c = \sum_{b} [w_{bc} \times ICT_{bc}] \times 100$$

TBG: Terrestrial Protected Areas, global weights / Biodiversity & Habitat / Ecosystem Vitality

Measures the percent of a country's biomes in terrestrial protected areas (TPAs) weighted by the prevalence of different biome types around the world.

Units % of EEZ

Countries 233

Years 1990-2017

Transformation none

Targets Based on Aichi Target 11

Performance	Nominal	Raw
Best	17 %	17
Worst	0 %	0

Calculations

Compo	onent	Units	Source
TEW	Area of biomes	sq. km	World Wide Fund for Nature
TPA	Area of TPAs	sq. km	World Database of Protected Areas
PCT	Raw % of biome within TPA		
ICT	Credited % of biome within TPA		
W	Weight of ICT in indicator construction		
i	An index of all TPAs in a country		
b	An index of biomes		
С	An index of countries		

First, the percent of each biome present in a country that lies within a protected area is given by,

$$PCT_{bc} = \frac{\sum_{i} TPA_{ibc}}{TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_{bc} = \begin{cases} PCT_{bc} & if PCT_{bc} \le 0.17 \\ 0.17 & if PCT_{bc} > 0.17 \end{cases}$$

Third, the global weight placed on each biome is calculated by the global rarity of the biome,

$$w_{bc} = \frac{\left[\frac{TEW_{bc}}{\sum_{c} TEW_{bc}}\right]}{\left[\sum_{b} \frac{TEW_{bc}}{\sum_{c} TEW_{bc}}\right]}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBG_c = \sum_{b} [w_{bc} \times ICT_{bc}]$$

SPI: Species Protection Index / Biodiversity & Habitat / Ecosystem Vitality

Measures protected areas in relation to species distributions. The proportion of a species range in a country under protection is calculated for each species as Area of species range in country protected / Area of species range in country and capped at a maximum of 0.17. This value is then averaged for all species occurring in a country, with all species weighted equally.

Units % of habitat

Countries 185

Years 1990-2014

Source Map of Life

Transformation none

Targets Based on Aichi Target 11

Performance	Nominal	Raw
Best	17 %	17
Worst	0%	0

Calculations

See p. 57 for further information about how this metric is calculated.

PAR: Protected Area Representativeness Index / Biodiversity & Habitat / Ecosystem Vitality

Measures the extent to which a country's protected areas are ecologically representative.

Units unitless

Countries 230

Years 1970, 1980, 1990, 2000, 2010, 2012, 2014, 2016

Source Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Transformation none

Targets Based on underlying data

Performance	Nominal	Raw
Best	95 th -percentile	0.22
Worst	5 th -percentile	0.03

Calculations

See pp. 51–52 for further information about how this metric is calculated.

SHI: Species Habitat Index / Biodiversity & Habitat / Ecosystem Vitality

Measures changes in the suitable habitats of species to provide aggregate estimates of potential population losses and extinction risk increases. Each species is assessed separately, and the index is calculated as a weighted average of the habitat changes for each species with weights determined by the proportion of global range found in the country,

Units % of habitat

Countries 185

Years 2001–2014

Source Map of Life

Transformation none

Targets Based on underlying data and Aichi Targets 5 and 12

Performance	Nominal	Raw
Best	100	100.00
Worst	1 st -percentile	93.40

Calculations

See p. 55 for further information about how this metric is calculated.

TCL: Tree Cover Loss / Forests / Ecosystem Vitality

Measures the five-year moving average of percent of forests lost. Forests are defined as land areas having \geq 30% canopy cover. Area of forested land (FOR) represents the forested land area at \geq 30% canopy cover in the year 2000.

Units % of forested land

Countries 210

Years 2001–2016

Transformation $ln(x+\alpha), \alpha = 1.94456970161889e-4$

Targets Based on underlying data

Performance	Nominal	Raw	Transformed
Best	5 th -percentile	0.004	-5.47
Worst	95 th -percentile	1.177	0.16

Calculations

Comp	onent	Units	Source	
FOR	Forested land	ha	Global Forest Watch	
ATL	Annual area lost	ha	Global Forest Watch	
t	An index of years			

The metric is calculated as a five-year moving average of tree cover loss.

$$TCL = \frac{1}{5} \sum_{i=0}^{4} \frac{ATL_{t-i}}{FOR}$$

FSS: Fish Stock Status / Fisheries / Ecosystem Vitality

Measures the percentage of a country's total catch that come from taxa that are classified as either over-exploited or collapsed.

Units % of catch

Countries 133

Years 1950-2014

Transformation none

Targets Based on underlying data

Performance	Nominal	Raw
Best	0	0.00
Worst	99 th -percentile	90.82

Calculations

Component		Units	Source	
FSC	Fish stock class	%	Sea Around Us	
CTH	Catch	tonnes	Sea Around Us	
е	An index of EEZs in a country			
k	An index of classes: $\{1 = \text{collapsed}, 2 = \text{over-exploited}, 3 = \text{exploited}, 4 = \text{developing}, \text{rebuilding}\}$			

The metric is calculated as an average percentage weighted by catch and summed across classes of concern.

$$FSS = \frac{\sum_{e} \left[FSC_{k=1,e} \times CTH_{e} \right] + \sum_{e} \left[FSC_{k=2,e} \times CTH_{e} \right]}{\sum_{e} CTH_{e}}$$

Note: EEZs where the catch was less than 1.5% of a country's total catch were excluded from the calculation.

Imputation

FSS is missing for 50 countries which do not qualify for the SEA materiality filter, 26 of which were included in the 2018 EPI. In order to impute missing values for these countries, we use regional averages. First, we run the regression,

$$FSS = \alpha + \delta R + \varepsilon,$$

on countries with non-missing values, where R is a vector of region dummies. This then allows us to calculate missing values for the remaining countries,

$$\widehat{FSS} = \hat{\alpha} + \hat{\delta} R$$
.

Countries in the 2018 EPI for which FSS was imputed

Albania	Djibouti	Montenegro
Bahrain	Dominica	Qatar
Belgium	Gambia	Republic of Congo
Belize	Georgia	Romania
Benin	Grenada	Saint Lucia
Brunei Darussalam	Israel	St Vincent & the
Bulgaria	Kuwait	Grenadines
Cameroon	Lebanon	Singapore
Côte d'Ivoire	Lithuania Togo	

MTR: Regional Marine Trophic Index / Fisheries / Ecosystem Vitality

Measures the trends in the Regional Marine Trophic Indices of a country, or mean trophic level of the fish catch in each region of the country's Economic Exclusion Zones (EEZs).

Units unitless

Countries 133

Years 1950-2014

Transformation none

Targets Based on underlying data

Performance	Nominal	Raw
Best	95 th -percentile	0.012
Worst	5 th -percentile	-0.009

Calculations

Component		Units	Source
RMT	Regional MTI	unitless	Sea Around Us
AEZ	Area of EEZ	sq. km	Sea Around Us
r	An index of regions in an	EEZ, {1 R}	
е	An index of EEZs in a cou	ntry	
t	An index of years		

The calculation of the metric relies on the ratio of the annual change in the fiveyear moving average to the ten-year moving average.

$$MTR_{ret} = \frac{\frac{1}{5}\sum_{i=0}^{4}RMT_{re,t-i} - \frac{1}{5}\sum_{i=1}^{5}RMT_{re,t-i}}{\frac{1}{10}\sum_{i=0}^{9}RMT_{re,t-i}}$$

The RMTI trend in each region of an EEZ is then averaged in each year.

$$MTR_{et} = \frac{1}{R} \sum_{r} MTR_{ret}$$

The average EEZ metrics are then averaged to the country-level, weighted by the surface area of the country's EEZs.

$$MTR_t = \sum_{e} \left[MTR_{et} \times \frac{AEZ_e}{\sum_{e} AEZ_e} \right]$$

Note: EEZs where the catch was less than 1.5% of a country's total catch were excluded from the calculation.

Generalized Emission Intensity Calculations

The calculation of the indicators of emissions for both Climate & Energy and Air Pollution is especially complex. This more complex approach is borne out of a recognition that countries are at very different levels of economic development, and therefore their performance in terms of current performance and past trends, should be blended in ways that reflect these differences. The logic of this approach is explained in the chapters, "Climate and Energy" and "Air Pollution," under the sections entitled, "Indicator Construction," along with illustrative examples.

This sub-section gives an initial, generic account of how this indicator is constructed from the following components. Specific details are then provided for each of these metrics in the subsequent entries.

Compo	nent	Units	Source(s)			
GDP	Gross Domestic Product (PPP)	2011US\$	World Bank, IMF			
POP	Population	persons	World Bank, IMF			
GPC	per capita GDP	\$/person				
E	Raw emissions	various	various			
X	Logged emission intensity					
Y	Current-year emission intensity score	(sub-indicator)			
Z	Ten-year trend in emission intensity s	core (sub-indic	ator)			
\overline{X}	Best target for current-year emission	intensity (95 th -	percentile)			
<u>X</u>	Worst target for current-year emission	on intensity (5 th	-percentile)			
$\overline{\epsilon}$	Best target for current-year emission	intensity (95 th -	percentile)			
<u> </u>	Worst target for current-year emission	on intensity (5 th	-percentile)			
\overline{eta}	Best target for current-year emission	Best target for current-year emission intensity (95 th -percentile)				
$\underline{\beta}$	Worst target for current-year emission	on intensity (5 th	-percentile)			
В	Blended score for emission intensity					
р	Weight on current-year score					
k	A parameter for the calculation of p					
b	A parameter for the calculation of p					
С	An index of countries					

First, we calculate GDP per capita.

$$GPC = \frac{GDP}{POP}$$

Second, we calculate logged emission intensity for every country with the following formula.

$$X = \ln\left(\frac{E}{GDP}\right)$$

Third, this current-year emission intensity is scored using the distance-to-target procedure, treating current-year emission intensity as if it were an indicator.

$$Y = \frac{X - \underline{X}}{\overline{X} - X} \times 100$$

Fourth, we regress the current-year emission intensity over time to create a 10-year trend, represented by the parameter β , for each country.

$$X = \alpha + \beta t + \varepsilon$$

Fifth, the 180 trends are then regressed over the logged GDP *per capita* in the final trend year.

$$\hat{\beta}_c = \gamma + \delta \ln(GPC_c) + \epsilon_c$$

The δ coefficient represents the effect of wealth on trends in emission intensity, and the residual ϵ measures the deviations of each country from its expected trend, given its level of wealth.

$$Z = \frac{\epsilon - \underline{\epsilon}}{\overline{\epsilon} - \epsilon} \times 100$$

For the indicator on CO₂ emissions from electricity and heat (DPT), however, we instead construct the deviation indicator from the β coefficients.

$$Z = \frac{\beta - \underline{\beta}}{\overline{\beta} - \beta} \times 100$$

The ultimate indicator of performance for each gas is a blend of the two sub-indicators. We take a weighted average of the current-year sub-indicator and the trend sub-indicator.

$$B = p \times Y + (1 - p) \times Z$$

The weighting factor p is itself a function of a country's wealth, measured by GDP per capita, and its current-year score, Y,

$$p = 1/(1 + exp[k \times (Y - b)])$$

where the parameters k and b are determined by the formulæ,

$$k = \begin{cases} -0.25 \ if \ GPC \ge 12,000 \\ \tan \left[\frac{GPC}{6500} \times 1.81927 + 1.3223 \right] \times -0.0078560837 - 0.0001202674 \ if \ else \\ 0.25 \ if \ GPC \ \le 1,000 \end{cases}$$

$$b = \begin{cases} 85 \ if \ GPC \ge 12,000 \\ \tan \left[\frac{GPC}{6500} \times 1.81927 + 1.3223 \right] \times 1.0998517224 + 50 \ if \ else \\ 15 \ if \ GPC \le 1,000 \end{cases}$$

The cutoff points for GDP *per capita* of \$1,000 and \$12,000 roughly correspond to the World Bank's classification of "Middle Income" countries.¹

Figure TA-1. The weight, p, given to the current-year score, Y, is a function of both Y and GDP $per\ capita$. The range shown here is only for Middle Income countries. Low-income countries all use the curve shown at the "front" of the figure, and high-income countries all use the curve shown at the "back" of the figure.

The goal of the weighting scheme is to place a higher weight on the current-year sub-indicator for wealthy countries that have a history of controlling emissions. These countries typically have low trend sub-indicator scores, as they have limited options for further reducing emission intensity.

¹ https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups Though the World Bank uses Gross National Income (GNI) *per capita*, this measurement is highly correlated with GDP *per capita*.

DCT: CO₂ Emission intensity - Total / Climate & Energy / Ecosystem Vitality

Measures the intensity of CO_2 emissions from the entire economy, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 191

Years 1997–2014

Transformation ln(x)

Targets Based on observed data

Calculations

Cor	Component			Source(s)	
Ε	CDT	CO ₂ emissions	Mt	WRI-CAIT, et alia	
X	CDI	CO ₂ Intensity			
β	TCI	CO ₂ Intensity Trend			
ϵ	DCI	CO ₂ Intensity Deviations			
В	DCT	CO ₂ Intensity Blended Score			

Performance		Nominal	Transformed
Best	\overline{X}	95th-percentile	-23.355
Worst	<u>X</u>	5th-percentile	-21.180
Best	$\overline{\epsilon}$	95th-percentile	-0.056
Worst	<u> </u>	5th-percentile	0.050

DPT: CO₂ Emission intensity – Power / Climate & Energy / Ecosystem Vitality

Measures the intensity of CO_2 emissions per kilowatt-hour of electricity and heat, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 191

Years 2005–2014

Transformation ln(E)

Targets Based on observed data

Calculations

Cor	mponen	t	Units	Source(s)
Ε	CEH	CO ₂ emissions per kWh	g CO ₂ /kWh	IEA
β	TPI	CO_2 per kWh Trend		_
В	DPT	CO ₂ per kWh Blended Score		

Performance		Nominal	Transformed
Best	\overline{X}	95th-percentile	6.682
Worst	<u>X</u>	5th-percentile	850.420
Best	\overline{eta}	95th-percentile	-0.119
Worst	<u>β</u>	5th-percentile	0.061

DMT: CH₄ Emission intensity / Climate & Energy / Ecosystem Vitality

Measures the intensity of methane emissions from the entire economy, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 191

Years 1997–2014

Transformation none

Targets Based on observed data

Calculations

Cor	Component			Source(s)
Е	CH4	CH₄ emissions	Mt	WRI-CAIT, et alia
X	CHI	CH ₄ Intensity		
β	TMI	CH₄ Intensity Trend		
В	DMT	CH₄ Intensity Blended Score		

Performance		Nominal	Transformed
Best	\overline{X}	95th-percentile	-24.802
Worst	<u>X</u>	5th-percentile	-20.717
Best	$\overline{oldsymbol{eta}}$	95th-percentile	-0.060
Worst	β	5th-percentile	0.030

DNT: N₂O Emission intensity / Climate & Energy / Ecosystem Vitality

Measures the intensity of N_2O emissions from the entire economy, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 191

Years 1997–2014

Transformation none

Targets Based on observed data

Calculations

Cor	Component			Source(s)
Ε	NOT	N ₂ O emissions	Mt	WRI-CAIT, et alia
X	NOI	N ₂ O Intensity		
β	TNI	N_2O Intensity Trend		
€	DNI	N ₂ O Carbon Intensity Deviations		
В	DNT	N ₂ O Intensity Blended Score		

Performance		Nominal	Transformed
Best	\overline{X}	95th-percentile	-26.229
Worst	<u>X</u>	5th-percentile	-21.493
Best	\overline{eta}	95th-percentile	-0.068
Worst	$\underline{\beta}$	5th-percentile	0.039

DBT : Black Carbon Emission intensity / Climate & Energy / Ecosystem Vitality

Measures the intensity of Black Carbon emissions from the entire economy, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 215

Years 1997–2010

Transformation none

Targets Based on observed data

Calculations

Component			Units	Source(s)
Ε	BLC	Black Carbon emissions	Mt	EDGAR
X	BCI	Black Carbon Intensity		
β	TBI	Black Carbon Intensity Trend		
ϵ	DBI	Black Carbon Intensity Deviations		
В	DBT	Black Carbon Intensity Blended Score		

Performance		Nominal	Transformed
Best	\overline{X}	95 th -percentile	-25.861
Worst	<u>X</u>	5 th -percentile	-21.103
Best	$\overline{\epsilon}$	95 th -percentile	-0.070
Worst	<u>€</u>	5 th -percentile	0.068

DST: SO₂ Emission intensity / Air Pollution / Ecosystem Vitality

Measures the intensity of SO_2 emissions from the entire economy, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 215

Years 1997–2010

Transformation none

Targets Based on observed data

Calculations

Component			Units	Source(s)
E	SO2	SO ₂ emissions	Mt	EDGAR
X	SDI	SO ₂ Intensity		
β	TSI	SO_2 Intensity Trend		
ϵ	DSI	SO ₂ Intensity Deviations		
В	DST	SO ₂ Intensity Blended Score		

Perforn	nance	Nominal	Transformed
Best	\overline{X}	95th-percentile	-22.835
Worst	<u>X</u>	5th-percentile	-19.255
Best	$\overline{\epsilon}$	95th-percentile	-0.085
Worst	<u> </u>	5th-percentile	0.087

DXT: NO_x Emission intensity / Air Pollution / Ecosystem Vitality

Measures the intensity of NO_X emissions from the entire economy, as a blend of current-year intensity and a 10-year trend.

Units unitless

Countries 215

Years 1997–2010

Transformation none

Targets Based on observed data

Calculations

Component			Units	Source(s)
E	NOX	NO _x emissions	Mt	EDGAR
X	NXI	NO _x Intensity		
β	TXI	NO_X Intensity Trend		
ϵ	DXI	NO _x Intensity Deviations		
В	DXT	NO _x Intensity Blended Score		

Perforn	nance	Nominal	Transformed
Best	\overline{X}	95th-percentile	-21.667
Worst	<u>X</u>	5th-percentile	-19.469
Best	$\overline{\epsilon}$	95th-percentile	-0.061
Worst	<u> </u>	5th-percentile	0.053

WWT: Wastewater Treatment / Water Resources / Ecosystem Vitality

Measures the percentage of wastewater treated, weighted by the connection rate of the population to the wastewater treatment system.

Units Weighted %

Countries 176

Years 2016

Transformation $ln(x+\alpha)$, $\alpha = 0.01$

Targets Absolute limits

Performance	Nominal	Raw	Transformed
Best	100	100	4.61
Worst	0	0	-4.61

Calculations

Compo	onent	Units	Source
WST	Wastewater treated	%	various
CXN	Connection rate	%	various

The WWT metric was calculated through the straightforward product,

$$WWT = WST \times CXN$$

Imputation

WWT is missing for 60 countries, 18 of which are in the 2018 EPI. In order to impute missing values for these countries, we use regional averages. First, we run the regression,

$$WWT = \alpha + \delta R + \varepsilon$$
,

on countries with non-missing values, where R is a vector of region dummies. This then allows us to calculate missing values for the remaining countries,

$$\widehat{WWT} = \hat{\alpha} + \widehat{\delta} R.$$

Countries in the 2018 EPI for which WWT was imputed

Antigua & Barbuda Grenada St Vincent & the

Bahamas Kiribati Grenadines

Barbados Lebanon Samoa

Brunei Darussalam Maldives São Tomé and Príncipe

Comoros Micronesia Seychelles

Gambia Saint Lucia Tonga

Vanuatu

SNM : Sustainable Nitrogen Management Index / Agriculture / Ecosystem Vitality

Measures the Euclidean distance from an ideal point with optimal nitrogen use efficiency (NUE) and crop yield. See Figure 14-1 in the 2018 EPI Report.

Units unitless

Countries 136

Years 2015

Transformation none

Targets Based on the observed data

Performance	Nominal	Raw		
Best	0	0.00		
Worst	99 th -percentile	1.16		

Calculations

Compo	onent	Units	Source
NUE	Nitrogen Use Efficiency	kg N / kg N	Zhang et al., unpublished
NSR	Nitrogen Surplus	kg N / sq. km	Zhang et al., unpublished
LND	Agricultural land	% of land area	World Bank
PRM	Permanent cropland	% of land area	World Bank
NRY	Raw Nitrogen Yield	kg N / ha	
NNY	Normalized Nitrogen Yield	kg N / ha	

First, a raw measure of Nitrogen yield can be calculated from the Nitrogen Surplus and Nitrogen Use Efficiency.

$$NRY = \frac{NSR/100}{\frac{1}{NUE} - 1}$$

Second, the raw Nitrogen yield is normalized by the reference yield of 90 kg N/ha.

$$NNY = \begin{cases} \frac{NRY}{90} & \text{if } \frac{NRY}{90} < 1\\ 1 & \text{if } \frac{NRY}{90} \ge 1 \end{cases}$$

Finally, the SNMI is the Euclidean distance of a point defined by a country's NNY and NUE from the ideal point defined as (NUE = 1, NNY = 1).

$$SNM = \sqrt{(1 - NNY)^2 + (1 - NUE)^2}$$

Imputation

SNM is missing for 100 countries, 46 of which were included in the 2018 EPI. In order to impute missing values for these countries, we use regional averages and other variables. First, we run the regression,

$$SNM = \alpha + \beta \times LND + \gamma \times PRM + \delta R + \varepsilon,$$

on countries with non-missing values, where R is a vector of region dummies. This then allows us to calculate missing values for the remaining countries,

$$\widehat{SNM} = \hat{\alpha} + \hat{\beta} \times LND + \hat{\gamma} \times PRM + \hat{\delta}R.$$

Countries in the 2018 EPI for which SNM was imputed

Afghanistan Dominica Papua New Guinea

Antigua & Barbuda Equatorial Guinea Saint Lucia

Bahamas Eritrea St Vincent & the

Barbados Fiji Grenadines

Belgium Grenada Samoa

Belize Guinea-Bissau São Tomé and Príncipe

Botswana Guyana Seychelles

Brunei Darussalam Haiti Sierra Leone

Burundi Kiribati Solomon Islands

Cabo Verde Laos Swaziland

Central African Lesotho Taiwan

Republic Liberia Timor-Leste

Chad Libya Tonga

Comoros Maldives Turkmenistan

Cuba Uzbekistan

Djibouti Micronesia Vanuatu

3. Data Sources

The 2018 EPI draws on data from a wide variety of sources. In the interest of transparency, this section of the Technical Appendix describes the sources of data used in the EPI, using the following template.

TLA	Three letter abbreviation for the name of the dataset.
Source	The organization that produces the dataset.
URL	Where the dataset may be found on the Internet. If the dataset is not publicly available online, the URL points to the Source institution.
Date received	The date on which the dataset used in the analysis came into the possession of the EPI team.
Instructions	Any special instructions for navigating the data source website or other means of retrieving the dataset.
Citation	Formal citation for the dataset, source organization, or other relevant published materials that are helpful in understanding the dataset.
Documentation	Additional documents that describe the dataset.
Note	Additional details for understanding how to retrieve or use the dataset.

Due to the variety of data sources, not every field is applicable to every dataset. Each entry below provides the fullest account possible.

AEZ Areas of EEZs

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2017-06-14

via Personal communication

AMP Marine Protected Areas

Source World Database on Protected Areas

URL http://www.protectedplanet.net

Date received 2017-03-03

Citation IUCN and UNEP-WCMC (2017), The World Database on Protected Areas

(WDPA) [On-line], March Release, Cambridge, UK: UNEP-WCMC.

ATL Annual loss of forested land

Source Global Forest Watch

URL http://www.globalforestwatch.org/

https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.4.html

Date received 2017-10-27

via Personal communication

Citation Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,

Tyukavina, A., ... Townshend, J. R. G. (2013). High-Resolution Global Maps

of 21st-Century Forest Cover Change. Science, 342(6160), 850-853.

https://doi.org/10.1126/science.1244693

BLC Black Carbon emissions

Source Emissions Database for Global Atmospheric Research

URL http://edgar.jrc.ec.europa.eu/overview.php?v=431

Date received 2017-09-29

Instructions Click on "Timeseries" under BC

Citation Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova,

K., Muntean, M., ... Granier, C. (2016). Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. *Atmospheric Chemistry and Physics*, *16*(6), 3825–3841.

https://doi.org/10.5194/acp-16-3825-2016

Documentation European Commission, Joint Research Centre (JRC)/Netherlands

Environmental Assessment Agency (PBL). Emission Database for Global

Atmospheric Research (EDGAR), release version 4.3.1, 2016.

CDT CO₂ emissions - Total

Source World Resources Institute - Climate Analysis Indicators Tool

URL http://www.wri.org/resources/data-sets/cait-historical-emissions-data-

countries-us-states-unfccc

Date received 2017-09-28

Instructions Click "Download Options"

Citation CAIT Climate Data Explorer. 2017. Washington, DC: World Resources

Institute. Available online at: http://cait.wri.org

Documentation CAIT Country GHG Emissions - Last updated: 2 October 2017 (CSV)

CDT CO₂ emissions

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

<u>development-indicators&Type=TABLE&preview=on</u>

Date received 2017-10-23

Instructions Database: World Development Indicators

Country: Timor-Leste Series: CO2 emissions (kt)

Time: various

Documentation Code: EN.ATM.CO2E.KT

These estimate supplemented incomplete CAIT data.

CDT CO₂ emissions

Source Taiwan EPA

URL https://www.epa.gov.tw/ct.asp?xltem=61773&ctNode=35637&mp=epae

<u>n</u>

http://unfccc.saveoursky.org.tw/2015nir/uploads/00 abstract en.pdf

Date received 2017-10-19

Instructions See Table ES2.1, page 6.

Citation Taiwan Environmental Protection Agency. (2016). 2015 Taiwan

Greenhouse Gas Inventory: Executive Summary.

Documentation These estimate supplemented incomplete CAIT data.

CEH CO₂ emissions per kWh of electricity and heat

Source International Energy Agency

URL http://www.oecd-ilibrary.org/energy/data/iea-co2-emissions-from-fuel-

combustion-statistics co2-data-en

Date received 2017-09-28

Instructions Select "Emissions per kWh of electricity and heat output"

Select designated variable: Product = Total

Flows = CO2 per kWh of electricity and heat

Export as Excel file

Documentation http://dx.doi.org/10.1787/co2-data-en

CH4 CH4 emissions

Source World Resources Institute - Climate Analysis Indicators Tool

URL http://www.wri.org/resources/data-sets/cait-historical-emissions-data-

countries-us-states-unfccc

Date received 2017-09-28

Instructions Click "Download Options"

Citation CAIT Climate Data Explorer. 2017. Washington, DC: World Resources

Institute. Available online at: http://cait.wri.org

Documentation CAIT Country GHG Emissions - Last updated: 2 October 2017 (CSV)

CH4 CH₄ emissions

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

<u>development-indicators&Type=TABLE&preview=on</u>

Date received 2017-10-23

Instructions Database: World Development Indicators

Country: Timor-Leste

Series: Methane emissions (kt of CO2 equivalent)

Time: various

Documentation Code: EN.ATM.METH.KT.CE

These estimate supplemented incomplete CAIT data.

CH4 CH₄ emissions

Source Taiwan EPA

URL https://www.epa.gov.tw/ct.asp?xltem=61773&ctNode=35637&mp=epaen

http://unfccc.saveoursky.org.tw/2015nir/uploads/00 abstract en.pdf

Date received 2017-10-19

Instructions See Table ES2.1, page 6.

Citation Taiwan Environmental Protection Agency. (2016). 2015 Taiwan

Greenhouse Gas Inventory: Executive Summary.

Documentation These estimate supplemented incomplete CAIT data.

CTH Fish catch

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2017-10-13

Instructions Sea Around Us API Wrapper: data available through R package

"library(seaaroundus)"

Citations http://www.seaaroundus.org/articles/

Documentation https://github.com/SeaAroundUs/sau-web-

mt/blob/master/sunfish/models/rmti.R

EEZ Economic Exclusion Zones

Source Flanders Marine Institute

Maritime Boundaries Geodatabase, World EEZ, version 9

URL http://www.marineregions.org/

Date received 2017-05-02

Citation Flanders Marine Institute (2016). Maritime Boundaries Geodatabase:

Maritime Boundaries and Exclusive Economic Zones (200NM), version 9.

http://dx.doi.org/10.14284/242

Documentation http://www.marineregions.org/eezmethodology.php

FOR Forested land area

Source Global Forest Watch

URL http://www.globalforestwatch.org/

https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.4.html

Date received 2017-10-27

via Personal communication

Citation Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,

Tyukavina, A., ... Townshend, J. R. G. (2013). High-Resolution Global Maps

of 21st-Century Forest Cover Change. *Science*, *342*(6160), 850–853.

https://doi.org/10.1126/science.1244693

FSC Fish stock class

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2017-10-13

Instructions Sea Around Us API Wrapper: data available through R package

"library(seaaroundus)"

Citations http://www.seaaroundus.org/articles/

Documentation https://github.com/SeaAroundUs/sau-web-

mt/blob/master/sunfish/models/rmti.R

GDP Gross Domestic Product (PPP)

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

<u>development-indicators&Type=TABLE&preview=on</u>

Date received 2017-06-29

Instructions Database: World Development Indicators

Country: various

Series: GDP, PPP (constant 2011 international \$)

Time: various

Documentation Code: NY.GDP.MKTP.PP.KD

GDP Gross Domestic Product (PPP)

Source International Monetary Fund

URL https://www.imf.org/external/pubs/ft/weo/2015/02/weodata/index.asp

X

Date received 2017-12-05

Instructions All countries

Select Countries: Eritrea, Libya, Maldives, Qatar, São Tomé & Príncipe,

Taiwan

Select Subjects: Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP Current international dollar

Select Date Range: Start Year = 1997, End Year = 2015

Report for Selected Countries and Subjects

Documentation Incomplete World Bank data were supplemented or replaced for the

following countries.

Eritrea: IMF used for entire time series Libya: IMF used for entire time series Maldives: IMF data used for 1997–2000 Qatar: IMF data used for 1997–1999

São Tomé & Príncipe: Imputed from WB data 1997-1999 based on

trajectory of IMF data

Taiwan: IMF data used for entire time series

Note Current international dollars converted into Constant 2011 international

dollars

HAD DALY rate for Household Solid Fuels

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2017-11-06

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: *various*

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes

Risk: Household air pollution from solid fuels

Citation Forouzanfar, M. H., Anderson, H. R., Burnett, R., & Dandona, L., et alia

(2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of

Disease Study 2015. The Lancet, 388(10053), 1659-1724.

https://doi.org/10.1016/S0140-6736(16)31679-8

LND Agricultural land

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

<u>development-indicators&Type=TABLE&preview=on</u>

Date received 2017-10-26

Instructions Database: World Development Indicators

Country: various

Series: Agricultural land (% of land area)

Time: various

Documentation Code: AG.LND.AGRI.ZS

NOT N₂O emissions

Source World Resources Institute - Climate Analysis Indicators Tool

URL http://www.wri.org/resources/data-sets/cait-historical-emissions-data-

countries-us-states-unfccc

Date received 2017-09-28

Instructions Click "Download Options"

Citation CAIT Climate Data Explorer. 2017. Washington, DC: World Resources

Institute. Available online at: http://cait.wri.org

Documentation CAIT Country GHG Emissions - Last updated: 2 October 2017 (CSV)

NOT N₂O emissions

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

<u>development-indicators&Type=TABLE&preview=on</u>

Date received 2017-10-23

Instructions Database: World Development Indicators

Country: Timor-Leste

Series: Nitrous oxide emissions (thousand metric tons of CO2 equivalent)

Time: various

Documentation Code: EN.ATM.NOXE.KT.CE

These estimate supplemented incomplete CAIT data.

NOT N₂O emissions

Source Taiwan EPA

URL https://www.epa.gov.tw/ct.asp?xltem=61773&ctNode=35637&mp=epae

n

http://unfccc.saveoursky.org.tw/2015nir/uploads/00 abstract en.pdf

Date received 2017-10-19

Instructions See Table ES2.1, page 6.

Citation Taiwan Environmental Protection Agency. (2016). 2015 Taiwan

Greenhouse Gas Inventory: Executive Summary.

Documentation These estimate supplemented incomplete CAIT data.

NOX NO_x emissions

Source Emissions Database for Global Atmospheric Research

URL http://edgar.jrc.ec.europa.eu/overview.php?v=431

Date received 2017-09-29

Instructions Click on "Timeseries" under NOx

Citation Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova,

K., Muntean, M., ... Granier, C. (2016). Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. *Atmospheric Chemistry and Physics*, *16*(6), 3825–3841.

https://doi.org/10.5194/acp-16-3825-2016

Documentation European Commission, Joint Research Centre (JRC)/Netherlands

Environmental Assessment Agency (PBL). Emission Database for Global

Atmospheric Research (EDGAR), release version 4.3.1, 2016.

PAR Protected Area Representativeness Index

Source Commonwealth Scientific and Industrial Research Organisation

URL https://data.csiro.au/

Date received 2017-10-04

via Personal communication

Citations Ferrier, S., Manion, G., Elith, J. and Richardson, K. (2007) Using generalised dissimilarity modelling to analyse and predict patterns of betadiversity in regional biodiversity assessment. Diversity and Distributions 13: 252-264.

> Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnutt, T.F., Cameron, S.E., Mantle, K., Burgess, N.D., Faith, D.P., Lamoreux, J.F., Kier, G., Hijmans, R.J., Funk, V.A., Cassis, G.A., Fisher, B.L., Flemons, P., Lees, D., Lovett, J.C., and van Rompaey, R.S.A.R (2004) Mapping more of terrestrial biodiversity for global conservation assessment. BioScience 54: 1101-1109.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2. Group on Earth Observations Biodiversity Observation Network Secretariat. Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI_Version1. 2 low.pdf

Williams, K.J., Harwood, T.D., Ferrier, S. (2016) Assessing the ecological representativeness of Australia's terrestrial National Reserve System: A community-level modelling approach. Publication Number EP163634. CSIRO Land and Water, Canberra, Australia. https://publications.csiro.au/rpr/pub?pid=csiro:EP163634

PBD DALY rate for Lead exposure

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2017-11-06

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: *various*

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes Risk: Lead exposure

Citation Forouzanfar, M. H., Anderson, H. R., Burnett, R., & Dandona, L., et alia

(2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of

Disease Study 2015. The Lancet, 388(10053), 1659-1724.

https://doi.org/10.1016/S0140-6736(16)31679-8

PDS Population distribution

Source Gridded Population of the World, version 4

URL http://sedac.ciesin.columbia.edu/data/collection

Date received 2017-05-01

Citation Center for International Earth Science Information Network (CIESIN),

Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Count. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4X63JVC.

PMC Ambient PM_{2.5} concentrations

Source Atmospheric Composition Analysis Group, Dalhousie University

URL http://fizz.phys.dal.ca/~atmos/martin/?page_id=140

Citation van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C.,

... Winker, D. M. (2016). Global Estimates of Fine Particulate Matter using a

Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. *Environmental Science & Technology*,

50(7), 3762-3772. https://doi.org/10.1021/acs.est.5b05833

POP Population

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

development-indicators&Type=TABLE&preview=on

Date received 2017-06-29

Instructions Database: World Development Indicators

Country: various

Series: Population, total

Time: various

Documentation Code: SP.POP.TOTL

POP Population

Source International Monetary Fund

URL https://www.imf.org/external/pubs/ft/weo/2015/02/weodata/index.asp

X

Date received 2017-12-05

Instructions All countries

Select Countries: Eritrea

Select Subjects: Population Person

Select Date Range: Start Year = 1997, End Year = 2015

Documentation Eritrea: IMF replaces incomplete World Bank data for entire time series

PRM Permanent cropland

Source World Bank

URL http://databank.worldbank.org/data/reports.aspx?source=world-

<u>development-indicators&Type=TABLE&preview=on</u>

Date received 2017-10-26

Instructions Database: World Development Indicators

Country: various

Series: Permanent cropland (% of land area)

Time: various

Documentation Code: AG.LND.CROP.ZS

RMT Regional Marine Trophic Index

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2017-09-08

via Personal communication

Citations Kleisner, K., Mansour, H., & Pauly, D. (2015). The MTI and RMTI as tools for

unmasking the fishing down phenomenon. Sea Around Us, University of

British Columbia.

SHI Species Habitat Index

Source Map of Life

URL https://mol.org/indicators/

Date received 2017-11-06

via Personal communication

Citations Jetz, W., D. S. Wilcove, and A. P. Dobson. 2007. Projected Impacts of

Climate and Land-Use Change on the Global Diversity of Birds. PLoS

Biology 5:1211-1219.

Rondinini, C., et al. 2011. Global habitat suitability models of terrestrial mammals. *Philosophical Transactions of the Royal Society B: Biological*

Sciences 366:2633-2641.

Jetz, W., J. M. McPherson, and R. P. Guralnick. 2012. Integrating biodiversity distribution knowledge: toward a global map of life.

Trends in Ecology and Evolution 27:151-159.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2.

Group on Earth Observations Biodiversity Observation Network

Secretariat. Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI Ve

rsion1.2 low.pdf

Documentation https://research.googleblog.com/2015/01/map-of-life-preview-of-how-

to-evaluate.html

SNM Sustainable Nitrogen Management Index

Source Zhang, Xin

Date received 2017-10-06

via Personal communication

Citation Zhang, X., & Davidson, E. (2016). Sustainable Nitrogen Management Index

(SNMI): methodology. University of Maryland Center for Environmental

Science.

Note This dataset was for 2015 and covered 136 countries.

SO2 SO₂ emissions

Source Emissions Database for Global Atmospheric Research

URL http://edgar.jrc.ec.europa.eu/overview.php?v=431

Date received 2017-09-29

Instructions Click on "Timeseries" under SO2

Citation Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova,

K., Muntean, M., ... Granier, C. (2016). Forty years of improvements in European air quality: regional policy-industry interactions with global

impacts. Atmospheric Chemistry and Physics, 16(6), 3825-3841.

https://doi.org/10.5194/acp-16-3825-2016

Documentation European Commission, Joint Research Centre (JRC)/Netherlands

Environmental Assessment Agency (PBL). Emission Database for Global

Atmospheric Research (EDGAR), release version 4.3.1, 2016.

SPI Species Protection Index

Source Map of Life

URL https://mol.org/indicators/

Date received 2017-10-13

via Personal communication

Citation Jetz, W., J. M. McPherson, and R. P. Guralnick. 2012. Integrating

biodiversity distribution knowledge: toward a global map of life.

*Trends in Ecology and Evolution 27:*151-159.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2. Group on Earth Observations Biodiversity Observation Network Secretariat.

Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI Version1.

2 low.pdf

Documentation https://research.googleblog.com/2015/01/map-of-life-preview-of-how-

to-evaluate.html

TEW Terrestrial Ecoregions of the World

Source World Wide Fund for Nature

URL https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-

the-world

Date received 2017-03-31

Citation Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G.

V. N., Underwood, E. C., ... Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. *BioScience*, *51*(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

TPA Terrestrial Protected Areas

Source World Database on Protected Areas

URL http://www.protectedplanet.net

Date received 2017-03-03

Citation IUCN and UNEP-WCMC (2017), The World Database on Protected Areas

(WDPA) [On-line], March Release, Cambridge, UK: UNEP-WCMC.

USD DALY rate for Unsafe sanitation

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2017-11-06

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: *various*

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes Risk: Unsafe sanitation

Citation Forouzanfar, M. H., Anderson, H. R., Burnett, R., & Dandona, L., et alia

(2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of

Disease Study 2015. The Lancet, 388(10053), 1659-1724.

https://doi.org/10.1016/S0140-6736(16)31679-8

UWD DALY rate for Unsafe Drinking Water

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2017-11-06

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: various

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes Risk: Unsafe water source

Citation Forouzanfar, M. H., Anderson, H. R., Burnett, R., & Dandona, L., et alia

(2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of

Disease Study 2015. *The Lancet, 388*(10053), 1659–1724.

https://doi.org/10.1016/S0140-6736(16)31679-8

WST Wastewater treated CXN Connection rate **Source 1** OECD Statistics URL http://stats.oecd.org/ **Source 2** Eurostat URL http://ec.europa.eu/eurostat/data/database **Source 3** United Nations Statistics Division URL http://unstats.un.org/unsd/ENVIRONMENT/Time%20series.htm#Inland WaterResources **Source 4** United Nations Statistics Division URL http://unstats.un.org/unsd/ENVIRONMENT/Time%20series.htm#Inland WaterResources **Source 5** Global Water Intelligence Water and Wastewater Indicators URL https://www.globalwaterintel.com/research/global-picture/globalpicture/datasets-2 **Source 6** Pinsent Masons Water Yearbooks **URL** http://wateryearbook.pinsentmasons.com/ Source 7 AQUASTAT Main Database URL http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en Citation Malik, O. A., Hsu, A., Johnson, L. A., & de Sherbinin, A. (2015). A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environmental Science & Policy, 48, 172-185. https://doi.org/10.1016/j.envsci.2015.01.005 **Documentation** See Appendix A. Supplementary data

4. Temporal Coverage

The data used in the 2018 EPI cover a variety of time periods. This section summarizes the temporal coverage of the different indicators and clarifies which years support the current and baseline scores.

Table TA-3. Temporal coverage for indicators used in the 2018 EPI.

Indicator	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
HAD																					!
PME				<u>.</u>																	!
PMW	:			<u> </u>																	
USD	:		: :				: :										: :				
UWD		· ·																			
PBD	:	: : :	: :				:						:								
MPA													:								
TBN				<u>.</u>									: : :								
TBG													: :								
SPI																					: :
PAR	:	: : :	<u>.</u>				:		:	:		:	: : :								: : •
SHI	: : :	: : ;	<u>:</u>	<u>:</u>									:								:
TCL	:	:											:								: !
FSS													:								: !
MTR				<u> </u>									:								!
CDI													:								: !
CEH	:	· ·	:		: :		:						: : :								: !
CHI													: :								: •
NOI													: :								
BCI													: :				: :				
SDI													:				: 				: : :
NXI																	: :				: -
WWT	: :	: : :	: 	: 	: ;	: 	! : :,	: 	: :	: : 			: r	: ;			: 				Y
SNM	l I	! ! !	! ! !	ļ	! !		! !						 				! ! !				! !

Note: Some datasets extend before 1997, but these data were not relevant to the calculations for the 2018 EPI.

Table TA-4. Designations of years supporting the current and baseline scores for each indicator.

Indicators	Current	Baseline
Air Quality		
Household Solid Fuels	2016	2005
PM _{2.5} Exposure	2015	2008
PM _{2.5} Exceedance	2015	2008
Water & Sanitation		
Drinking Water	2016	2005
Sanitation	2016	2005
Heavy Metals / Lead Exposure	2016	2005
Biodiversity & Habitat		
Marine Protected Areas	2017	2007
Terrestrial Biome Protection	2017	2007
Species Protection Index	2014	2004
Protected Area Representativeness Index	2016	2000
Species Habitat Index	2014	2004
Forests / Tree Cover Loss	2016	2006
Fisheries		
Fish Stock Status	2014	2004
Regional Marine Trophic Index	2014	2004
Climate & Energy		
CO ₂ Emission intensity – Total	2014	2006
CO ₂ Emission intensity – Power	2014	2004
Methane Emission intensity	2014	2006
N₂O Emission intensity	2014	2006
Black Carbon Emission intensity	2010	2006
Air Pollution		
SO ₂ Emission intensity	2010	2006
NO _x Emission intensity	2010	2006
Water Resources / Wastewater Treatment	2016	_
Agriculture / Sustainable Nitrogen Management	2015	2001

^{*} Global aggregates only.

5. Transformations & Targets

Table TA-5. Summary of which indicators were logarithmically transformed and the targets used in indicator construction.

			Nominal	Targets	Value	Targets
Indicator	Trans.	Shift (α)	Best	Worst	Best	Worst
BCI			5%	95%	-25.86	-21.10
CDI			5%	95%	-23.36	-21.18
CEH			5%	95%	6.68	850.42
CHI			5%	95%	-24.80	-20.72
DBI			5%	95%	-0.07	0.07
DCI			5%	95%	-0.06	0.05
DMI			5%	95%	-0.06	0.03
DNI			5%	95%	-0.07	0.04
DSI			5%	95%	-0.08	0.09
DXI			5%	95%	-0.06	0.05
FSS			0	99%	0.00	90.82
HAD	log		5%	95%	1.23	8.65
MPA	log	1.22E-05	10	0	2.30	-11.31
MTR			95%	5%	0.01	-0.01
NOI			5%	95%	-26.23	-21.49
NXI			5%	95%	-21.67	-19.47
PAR			95%	5%	0.22	0.03
PME	log		10	99%	2.30	3.79
PMW			0	99%	0.00	86.96
SDI			5%	95%	-22.83	-19.25
SHI			100	1%	100.00	93.40
SNM			0	99%	0.00	1.16
SPI			17	0	17.00	0.00
TBG			17	0	17.00	0.00
TBN			17	0	17.00	0.00
TCL	log	0.000194	0.004	95%	-5.47	0.16
TPI			5%	95%	-0.12	0.06
USD	log		5%	95%	0.42	8.33
UWD	log		5%	95%	1.23	8.47
WWT	log	0.01	100	0	4.61	-4.61

Note: % indicates percentile, not the units of the indicator.

For the indicators MPA, TCL, and WWT, there were values of zero in the dataset. Before these indicators could be logarithmically transformed, a small shift (α) was added to each value.

6. Materiality Filters

Table TA-6. Materiality Filters applied to the 2018 EPI. Countries meeting the listed criteria are not scored on the associated indicators and issue categories.

Materiality Filter	Criteria	lssue Category	Indicator	No. of Countries
Forest	Total forested (≥ 30% canopy cover) area < 200 km²	Forests	Tree Cover Loss	30
	Landlocked	Fisheries	Fish Stock Status	
Sea	<i>or</i> Coastline : Land area	risileries	Regional MTI	44
	ratio < 0.01		Marine Protected Areas	_

Countries in the 2018 EPI affected by the Forest Materiality Filter

Antigua and Barbuda	Jordan	Oman
Bahrain	Kiribati	Qatar
Barbados	Kuwait	Samoa
Burkina Faso	Lesotho	São Tomé and Príncipe
Cabo Verde	Libya	Saudi Arabia
Djibouti	Maldives	Seychelles
Eritrea	Malta	Singapore
Gambia	Mauritania	Tonga
Iceland	Namibia	Turkmenistan
Iraq	Nigeria	United Arab Emirates

Countries in the 2018 EPI affected by the Sea Materiality Filter

Afghanistan Ethiopia Niger

Armenia Hungary Paraguay

Austria Iraq Rwanda

Azerbaijan Jordan Serbia

Belarus Kazakhstan Slovakia

Bhutan Kyrgyzstan Slovenia

Bolivia Laos Swaziland

Bosnia & Herzegovina Lesotho Switzerland

Botswana Luxembourg Tajikistan

Burkina Faso Macedonia Turkmenistan

Burundi Malawi Uganda

Central African Rep. Mali Uzbekistan

Chad Moldova Zambia

Czech Republic Mongolia Zimbabwe

Dem. Rep. Congo Nepal

7. Global Scorecard

The country-level indicators can also be aggregated to produce global measures. Sometimes, global aggregates are available from the sources of raw data that went into the construction of indicators, and other times, the indicators had to be combined by various means. This section describes how the construction of the global scorecard values for the 2018 EPI. First, a global aggregate for each metric was either downloaded from a data partner or calculated from the raw, country-level data. Second, these global metric was then turned into a 0–100 score using the same targets and transformations summarized in Section 5.

In the descriptions to follow, the superscript g indicates a global aggregate metric, and the subscript c is an index of countries in the raw data.

HAD: Household Solid Fuels / Air Quality / Environmental Health

This indicator is available as a global aggregate from the data source.

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: Global

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes

Risk: Household air pollution from solid fuels

PME: PM_{2.5} Exposure / Air Quality / Environmental Health

The global aggregate of $PM_{2.5}$ Exposure is calculated as a population-weighted average of all country-level values.

$$PME^g = \sum_{c} \left[PME_c \times \frac{POP_c}{\sum_{c} POP_c} \right]$$

PMW: PM_{2.5} Exceedance / Air Quality / Environmental Health

The global aggregate of $PM_{2.5}$ Exceedance is based on the population-weighted average of all country-level values for percentage of the population exceeding WHO thresholds.

$$PMW^{g} = 0.1 \times PM1^{g} + 0.2 \times PM2^{g} + 0.3 \times PM3^{g} + 0.4 \times PM4^{g}$$

Where, for example,

$$PM1^g = \sum_{c} \left[PM1_c \times \frac{POP_c}{\sum_{c} POP_c} \right]$$

UWD: Unsafe Drinking Water / Water & Sanitation / Environmental Health

This indicator is available as a global aggregate from the data source.

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: Global

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes Risk: Unsafe water source

USD: Unsafe Sanitation / Water & Sanitation / Environmental Health

This indicator is available as a global aggregate from the data source.

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: Global

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes Risk: Unsafe sanitation

PBD: Lead exposure / Heavy Metals / Environmental Health

This indicator is available as a global aggregate from the data source.

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Instructions To retrieve these data, use the following settings.

Base: Single Context: Risk Measure: DALYs Location: Global

Age: Age-standardized

Sex: both Year: various Metric: Rate

Cause: Total All Causes Risk: Lead exposure

MPA: Marine Protected Areas / Biodiversity & Habitat / Ecosystem Vitality

The global aggregate of *Marine Protected Areas* is calculated as a simple aggregation of country-level data.

$$MPA^{g} = \frac{\sum_{c} \sum_{i} AMP_{ic}}{\sum_{c} \sum_{j} EEZ_{jc}} \times 100$$

TBG: Terrestrial Protected Areas, global weights / Biodiversity & Habitat / Ecosystem Vitality

Because national weights do not apply to global aggregates, there is no comparable metric for TBN. Instead, TBG serves as the global indicator of *Terrestrial Protected Areas* and is calculated as a simple aggregation of country-level data.

First, the percent of each biome in the world that lies within a protected area is given by,

$$PCT_b = \frac{\sum_{c} TPA_{bc}}{\sum_{c} TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_b = \begin{cases} PCT_b & if PCT_b \leq 0.17 \\ 0.17 & if PCT_b > 0.17 \end{cases}$$

Third, the global weight placed on each biome is calculated by the global rarity of the biome,

$$w_b = \frac{\sum_c TEW_{bc}}{\sum_b \sum_c TEW_{bc}}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBG^g = \sum_b [w_b \times ICT_b]$$

SPI: Species Protection Index / Biodiversity & Habitat / Ecosystem Vitality

The global aggregate of *Species Protection Index* is calculated as a land areaweighted average of all country-level values.

$$SPI^{g} = \sum_{c} \left[SPI_{c} \times \frac{LAN_{c}}{\sum_{c} LAN_{c}} \right]$$

PAR: Protected Area Representativeness Index / Biodiversity & Habitat / Ecosystem Vitality

This indicator is available as a global aggregate from the data source.

Source Commonwealth Scientific and Industrial Research Organisation

URL https://data.csiro.au/

Date received 2017-11-21

via Personal communication

SHI: Species Habitat Index / Biodiversity & Habitat / Ecosystem Vitality

The global aggregate of *Species Habitat Index* is calculated as a land areaweighted average of all country-level values.

$$SHI^g = \sum_c \left[SHI_c \times \frac{LAN_c}{\sum_c LAN_c} \right]$$

TCL: Tree Cover Loss / Forests / Ecosystem Vitality

The global aggregate of *tree cover loss* is calculated as a simple aggregation of country-level data.

$$TCL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} ATL_{c,t-i}}{\sum_{c} FOR_{c}}$$

FSS: Fish Stock Status / Fisheries / Ecosystem Vitality

The global aggregate of *Fish Stock Status* is calculated as a catch-weighted average of all country-level values.

$$FSS^{g} = \sum_{k=1}^{2} \frac{\sum_{c} \sum_{e} [FSC_{kec} \times CTH_{ec}]}{\sum_{c} \sum_{e} \sum_{k} [FSC_{kec} \times CTH_{ec}]}$$

Note: EEZs where the catch was less than 1.5% of a country's total catch were excluded from the calculation.

MTR: Regional Marine Trophic Index / Fisheries / Ecosystem Vitality

The global aggregate of *Fish Stock Status* is calculated as a EEZ area-weighted average of all country-level values.

$$MTR^g = \frac{\sum_c [MTR_c \times AEZ_c]}{\sum_c AEZ_c}$$

Note: EEZs where the catch was less than 1.5% of a country's total catch were excluded from the calculation.

Generalized Emission intensity Calculations

While country-level scores for the Emission Intensity are a blend of current-year and trend-based scores, the global aggregates are only based on current-year data on emissions. This is because there is no income-based standard against which a trend could be referenced at the global level. Therefore, the global scorecard for emission intensity scores should not be interpreted as an assessment of global trends.

For most global aggregates of emission intensity, the values are calculated from simple aggregations of country-level data.

DCT: CO₂ Emission intensity - Total / Climate & Energy / Ecosystem Vitality

$$DCT^g = \ln \left[\frac{\sum_c CDT_c}{\sum_c GDP_c} \right]$$

DPT: CO₂ Emission intensity - Power / Climate & Energy / Ecosystem Vitality

This indicator is available as a global aggregate from the data source.

Source International Energy Agency

URL http://www.oecd-ilibrary.org/energy/data/iea-co2-emissions-from-fuel-

combustion-statistics co2-data-en

Instructions Select "Emissions per kWh of electricity and heat output"

Select designated variable:

Product = Total

Flows = CO2 per kWh of electricity and heat

Export as Excel file

DMT: CH4 Emission intensity / Climate & Energy / Ecosystem Vitality

$$DMT^g = \ln \left[\frac{\sum_c CH4_c}{\sum_c GDP_c} \right]$$

DNT: N₂O Emission intensity / Climate & Energy / Ecosystem Vitality

$$DNT^g = \ln \left[\frac{\sum_c NOT_c}{\sum_c GDP_c} \right]$$

DBT: Black Carbon Emission intensity / Climate & Energy / Ecosystem Vitality

$$DBT^g = \ln \left[\frac{\sum_c BCT_c}{\sum_c GDP_c} \right]$$

DST: SO₂ Emission intensity / Air Pollution / Ecosystem Vitality

$$DST^g = \ln \left[\frac{\sum_c SO2_c}{\sum_c GDP_c} \right]$$

DXT: NO_x Emission intensity / Air Pollution / Ecosystem Vitality

$$DXT^g = \ln \left[\frac{\sum_c NOX_c}{\sum_c GDP_c} \right]$$

WWT: Wastewater Treatment / Water Resources / Ecosystem Vitality

The global aggregate of *Wastewater Treatment* is calculated as a population-weighted average of all country-level values.

$$WWT^g = \sum_{c} \left[WWT_c \times \frac{POP_c}{\sum_{c} POP_c} \right]$$

SNM: Sustainable Nitrogen Management Index / Agriculture / Ecosystem Vitality

This indicator is available as a global aggregate from the data source.

Source Zhang, Xin

Date received 2017-12-14

via Personal communication