

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCIS15110085903

# FCC REPORT (WIFI)

Applicant: Shenzhen Richpad Communication Technology Co.,Ltd

Address of Applicant:

Room 315, HKUST SZ IER Building,No.9 Yuexing 1st RD, South Area,Hi-Tech Park, NanShan, ShenZhen P.R.C

**Equipment Under Test (EUT)** 

Product Name: 3G Smart Phone

Model No.: E301

Trade mark: PCD

FCC ID: 2AGLU-E301

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 04 Nov., 2015

**Date of Test:** 04 Nov., to 04 Dec., 2015

Date of report issued: 04 Dec., 2015

Test Result: PASS\*

#### Authorized Signature:



#### Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





# **Version**

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 04 Dec., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Viki zhul
TestEngineer
Carey Chen Tested by: Date: 04 Dec., 2015

Reviewed by: Date: 04 Dec., 2015

Project Engineer





# 3 Contents

|   |       |                                 | Page |
|---|-------|---------------------------------|------|
| 1 | CO    | VER PAGE                        | 1    |
| 2 | VER   | RSION                           | 2    |
| 3 |       | NTENTS                          |      |
|   |       |                                 |      |
| 4 | TES   | ST SUMMARY                      | 4    |
| 5 | GEN   | NERAL INFORMATION               | 5    |
|   | 5.1   | CLIENT INFORMATION              | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T    |      |
|   | 5.3   | TEST ENVIRONMENT AND MODE       |      |
|   | 5.4   | LABORATORY FACILITY             | 8    |
|   | 5.5   | LABORATORY LOCATION             | 8    |
|   | 5.6   | TEST INSTRUMENTS LIST           | 9    |
| 6 | TES   | ST RESULTS AND MEASUREMENT DATA | 10   |
|   | 6.1   | ANTENNA REQUIREMENT:            | 10   |
|   | 6.2   | CONDUCTED EMISSION              | 11   |
|   | 6.3   | CONDUCTED OUTPUT POWER          | 14   |
|   | 6.4   | OCCUPY BANDWIDTH                | 18   |
|   | 6.5   | POWER SPECTRAL DENSITY          |      |
|   | 6.6   | BAND EDGE                       |      |
|   | 6.6.  |                                 |      |
|   | 6.6.2 |                                 |      |
|   | 6.7   | Spurious Emission               |      |
|   | 6.7.  |                                 |      |
|   | 6.7.2 | 2 Radiated Emission Method      | 52   |
| 7 | TES   | ST SETUP PHOTO                  | 59   |
| 8 | EUT   | CONSTRUCTIONAL DETAILS          | 60   |





# 4 Test Summary

| Test Item                                     | Section in CFR 47 | Result |
|-----------------------------------------------|-------------------|--------|
| Antenna requirement                           | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission              | 15.207            | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)     | Pass   |
| Power Spectral Density                        | 15.247 (e)        | Pass   |
| Band Edge                                     | 15.247(d)         | Pass   |
| Spurious Emission                             | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.



# 5 General Information

# **5.1 Client Information**

| Applicant:               | Shenzhen Richpad Communication Technology Co.,Ltd                                                         |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Address of Applicant:    | Room 315, HKUST SZ IER Building,No.9 Yuexing 1st RD, South Area,                                          |  |
|                          | Hi-Tech Park, NanShan, ShenZhen P.R.C                                                                     |  |
| Manufacturer:            | Shenzhen Richpad Communication Technology Co.,Ltd                                                         |  |
| Address of Manufacturer: | Room 315, HKUST SZ IER Building, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, P.R.C |  |

# 5.2 General Description of E.U.T.

| Product Name:                                    | 3G Smart Phone                                                                      |
|--------------------------------------------------|-------------------------------------------------------------------------------------|
| Model No.:                                       | E301                                                                                |
| Operation Frequency:                             | 2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))                                      |
| Channel numbers:                                 | 11 for 802.11b/802.11g/802.11(H20)                                                  |
| Channel separation:                              | 5MHz                                                                                |
| Modulation technology:<br>(IEEE 802.11b)         | Direct Sequence Spread Spectrum (DSSS)                                              |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                                    |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                       |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps                         |
| Data speed (IEEE 802.11n):                       | Up to 150Mbps                                                                       |
| Antenna Type:                                    | Internal Antenna                                                                    |
| Antenna gain:                                    | 2.9dBi                                                                              |
| AC adapter:                                      | Model No.:DCS02-0501000<br>Input:100-240V AC,50/60Hz 0.15A<br>Output:5V DC MAX 0.5A |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.7V-1200mAh                                          |

Page 5 of 60





| Operation Frequency each of channel For 802.11b/g/n(H20) |           |         |           |         |           |         |           |
|----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                  | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                                        | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                                        | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                                        | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

#### 802.11b/802.11g/802.11n (H20)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2412MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2462MHz   |



Report No: CCIS15110085903

### 5.3 Test environment andmode

| Operating Environment: |                                                         |  |  |  |
|------------------------|---------------------------------------------------------|--|--|--|
| Temperature:           | 24.0 °C                                                 |  |  |  |
| Humidity:              | 54 % RH                                                 |  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                               |  |  |  |
| Test mode:             |                                                         |  |  |  |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |  |  |  |

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

#### Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode         | Data rate |
|--------------|-----------|
| 802.11b      | 1Mbps     |
| 802.11g      | 6Mbps     |
| 802.11n(H20) | 6.5Mbps   |

#### **Final Test Mode:**

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup"1Mbps for 802.11b,6Mbps for 802.11p, 6.5Mbps for 802.11n(H20).Duty cycle setting during the transmission is100% with maximum power setting for all modulations.



Report No: CCIS15110085903

# 5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

### 5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366



### 5.6 Test Instruments list

| Radia | Radiated Emission:                   |                                   |                             |                  |                         |                             |
|-------|--------------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|
| Item  | Test Equipment                       | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 1     | 3m Semi- Anechoic<br>Chamber         | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |
| 2     | BiConiLog Antenna                    | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005         | 03-28-2015              | 03-28-2016                  |
| 3     | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006         | 03-28-2015              | 03-28-2016                  |
| 4     | EMI Test Software                    | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |
| 5     | Amplifier<br>(10kHz-1.3GHz)          | HP                                | 8447D                       | CCIS0003         | 04-01-2015              | 03-31-2016                  |
| 6     | Amplifier<br>(1GHz-18GHz)            | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 04-01-2015              | 03-31-2016                  |
| 7     | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2015              | 03-31-2016                  |
| 8     | Horn Antenna                         | ETS-LINDGREN                      | 3160                        | GTS217           | 04-01-2015              | 03-31-2016                  |
| 9     | Printer                              | HP                                | HP LaserJet P1007           | N/A              | N/A                     | N/A                         |
| 10    | Positioning Controller               | UC                                | UC3000                      | CCIS0015         | N/A                     | N/A                         |
| 11    | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                   | FSP                         | CCIS0023         | 03-28-2015              | 03-28-2016                  |
| 12    | EMI Test Receiver                    | Rohde & Schwarz                   | ESRP7                       | CCIS0167         | 03-28-2015              | 03-28-2016                  |
| 13    | Loop antenna                         | Laplace instrument                | RF300                       | EMC0701          | 04-01-2015              | 03-31-2016                  |
| 14    | Universal radio communication tester | Rhode&Schwarz                     | CMU200                      | CCIS0069         | 03-28-2015              | 03-28-2016                  |
| 15    | Signal Analyzer                      | Rohde & Schwarz                   | FSIQ3                       | CCIS0088         | 04-08-2015              | 04-08-2016                  |

| Cond | Conducted Emission: |                    |                       |                  |                         |                             |  |
|------|---------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2013              | 11-09-2016                  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | 03-28-2015              | 03-28-2016                  |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | 04-01-2015              | 03-31-2016                  |  |
| 5    | EMI Test Software   | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |



# 6 Test results and Measurement Data

### **6.1 Antenna requirement:**

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The WiFiantenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is2.9dBi.







# 6.2 Conducted Emission

| Test Requirement:   | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| Test Method:        | ANSI C63.4: 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| TestFrequencyRange: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Class / Severity:   | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Receiver setup:     | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Limit:              | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |  |  |  |
|                     | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average       |  |  |  |
|                     | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56 to 46*     |  |  |  |
|                     | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46            |  |  |  |
|                     | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50            |  |  |  |
| Test procedure      | <ol> <li>Decreases with the logarithm of the frequency.</li> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 500hm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Test setup:         | LISN 40cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de de la companya de | er — AC power |  |  |  |
| Test Uncertainty:   | ±3.28 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Test Instruments:   | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Test mode:          | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |
| Test results:       | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |

#### **Measurement Data**





#### Neutral:



Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 3G Smart Phone : E301 Condition

EUT

Model Test Mode : WIFI mode Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark:

| MIDMON                               | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss |       | Limit<br>Line | Over<br>Limit | Remark     |
|--------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|------------|
|                                      | MHz   | ₫₿u₹          | ₫B             | ₫B            | dBuV  | dBuV          | dB            | ********** |
| 1                                    | 0.178 | 32.87         | 0.25           | 10.77         | 43.89 | 64.59         | -20.70        | QP         |
| 2                                    | 0.234 | 16.44         | 0.25           | 10.75         | 27.44 | 52.30         | -24.86        | Average    |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.327 | 36.05         | 0.26           | 10.73         | 47.04 | 59.53         | -12.49        | QP         |
| 4                                    | 0.327 | 23.13         | 0.26           | 10.73         | 34.12 | 49.53         | -15.41        | Average    |
| 5                                    | 0.518 | 31.67         | 0.28           | 10.76         | 42.71 | 56.00         | -13.29        | QP         |
| 6                                    | 0.518 | 21.20         | 0.28           | 10.76         | 32.24 | 46.00         | -13.76        | Average    |
| 7                                    | 0.641 | 17.93         | 0.21           | 10.77         | 28.91 | 46.00         | -17.09        | Average    |
| 8                                    | 0.909 | 17.73         | 0.21           | 10.84         | 28.78 | 46.00         | -17.22        | Average    |
| 9                                    | 0.979 | 31.42         | 0.22           | 10.86         | 42.50 | 56.00         | -13.50        | QP         |
| 10                                   | 1.359 | 27.80         | 0.25           | 10.91         | 38.96 | 56.00         | -17.04        | QP         |
| 11                                   | 1.716 | 14.03         | 0.27           | 10.94         | 25.24 | 46.00         | -20.76        | Average    |
| 12                                   | 2.461 | 27.07         | 0.29           | 10.94         | 38.30 |               | -17.70        |            |





#### Line:



Trace: 17 Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 3G Smart Phone Condition

EUT

: E301 Model Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Viki

|       | D J                                                                                                               | LTCH                                                                                                                                                                                                | C-11-                                                                                                                                                                                                               |                               | 12-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq  |                                                                                                                   |                                                                                                                                                                                                     | Loss                                                                                                                                                                                                                | Level                         | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MHz   | dBu∜                                                                                                              | −−−dB                                                                                                                                                                                               | ₫B                                                                                                                                                                                                                  | dBu∀                          | dBu∀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>d</u> B                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.162 | 31.79                                                                                                             | 0.27                                                                                                                                                                                                | 10.77                                                                                                                                                                                                               | 42.83                         | 65.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -22.51                      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.170 | 15.47                                                                                                             | 0.27                                                                                                                                                                                                | 10.77                                                                                                                                                                                                               | 26.51                         | 54.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -28.43                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.315 | 19.94                                                                                                             | 0.26                                                                                                                                                                                                | 10.74                                                                                                                                                                                                               | 30.94                         | 49.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -18.90                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.317 | 32.17                                                                                                             | 0.26                                                                                                                                                                                                | 10.74                                                                                                                                                                                                               | 43.17                         | 59.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -16.63                      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.558 | 31.78                                                                                                             | 0.27                                                                                                                                                                                                | 10.77                                                                                                                                                                                                               | 42.82                         | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13.18                      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.637 | 16.59                                                                                                             | 0.24                                                                                                                                                                                                | 10.77                                                                                                                                                                                                               | 27.60                         | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -18.40                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.880 | 16.77                                                                                                             | 0.24                                                                                                                                                                                                | 10.83                                                                                                                                                                                                               | 27.84                         | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -18.16                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.899 | 32.24                                                                                                             | 0.24                                                                                                                                                                                                | 10.84                                                                                                                                                                                                               | 43.32                         | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -12.68                      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.027 | 14.28                                                                                                             | 0.25                                                                                                                                                                                                | 10.87                                                                                                                                                                                                               | 25.40                         | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -20.60                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.367 | 27.51                                                                                                             | 0.25                                                                                                                                                                                                | 10.91                                                                                                                                                                                                               | 38.67                         | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -17.33                      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.753 | 12.86                                                                                                             | 0.26                                                                                                                                                                                                | 10.94                                                                                                                                                                                                               | 24.06                         | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -21.94                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.133 | 26.15                                                                                                             | 0.26                                                                                                                                                                                                | 10.95                                                                                                                                                                                                               | 37.36                         | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -18.64                      | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | MHz<br>0. 162<br>0. 170<br>0. 315<br>0. 317<br>0. 558<br>0. 637<br>0. 880<br>0. 899<br>1. 027<br>1. 367<br>1. 753 | Read<br>Freq Level<br>MHz dBuV<br>0.162 31.79<br>0.170 15.47<br>0.315 19.94<br>0.317 32.17<br>0.558 31.78<br>0.637 16.59<br>0.880 16.77<br>0.899 32.24<br>1.027 14.28<br>1.367 27.51<br>1.753 12.86 | Read LISN Freq Level Factor  MHz dBuV dB  0.162 31.79 0.27 0.170 15.47 0.27 0.315 19.94 0.26 0.317 32.17 0.26 0.558 31.78 0.27 0.637 16.59 0.24 0.899 32.24 0.24 1.027 14.28 0.25 1.367 27.51 0.25 1.753 12.86 0.26 | Read LISN Cable   Loss   Loss | Read         LISN Level           MHz         dBuV         dB         dB         dBuV           0.162         31.79         0.27         10.77         42.83           0.170         15.47         0.27         10.77         26.51           0.315         19.94         0.26         10.74         30.94           0.317         32.17         0.26         10.74         43.17           0.558         31.78         0.27         10.77         42.82           0.637         16.59         0.24         10.77         27.60           0.880         16.77         0.24         10.83         27.84           0.899         32.24         0.24         10.84         43.32           1.027         14.28         0.25         10.87         25.40           1.367         27.51         0.25         10.91         38.67           1.753         12.86         0.26         10.94         24.06 | Read   LISN   Cable   Limit | Read         LISN         Cable         Limit         Over           Freq         Level         Factor         Loss         Level         Limit         Over           MHz         dBuV         dB         dB         dBuV         dBuV         dB           0.162         31.79         0.27         10.77         42.83         65.34         -22.51           0.170         15.47         0.27         10.77         26.51         54.94         -28.43           0.315         19.94         0.26         10.74         30.94         49.84         -18.90           0.317         32.17         0.26         10.74         43.17         59.80         -16.63           0.558         31.78         0.27         10.77         42.82         56.00         -13.18           0.637         16.59         0.24         10.77         27.60         46.00         -18.16           0.899         32.24         0.24         10.83         27.84         46.00         -18.16           0.899         32.24         0.24         10.84         43.32         56.00         -12.68           1.027         14.28         0.25         10.87         25.40 |

#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                    |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2                    |  |  |  |  |  |
| Limit:            | 30dBm                                                                 |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

#### Measurement Data

| T (011  | Maximu  |         | 5            |            |        |
|---------|---------|---------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g | 802.11n(H20) | Limit(dBm) | Result |
| Lowest  | 14.38   | 11.20   | 8.16         |            |        |
| Middle  | 13.88   | 10.40   | 7.37         | 30.00      | Pass   |
| Highest | 13.00   | 9.73    | 6.62         |            |        |

Test plot as follows:





#### Lowest channel



#### Middle channel



Highest channel





#### Lowest channel



#### Middle channel



Highest channel

8.16 dBm



Bandwidth



20 MHz

#### Lowest channel

Power



#### Middle channel



Highest channel





# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 8.1                      |  |  |  |  |  |
| Limit:            | >500kHz                                                               |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

#### Measurement Data

|         | 6dE     |            |        |      |      |  |  |  |  |
|---------|---------|------------|--------|------|------|--|--|--|--|
| Test CH | 802.11b | Limit(kHz) | Result |      |      |  |  |  |  |
| Lowest  | 10.24   | 15.84      | 17.28  |      |      |  |  |  |  |
| Middle  | 10.24   | 15.92      | 17.20  | >500 | Pass |  |  |  |  |
| Highest | 9.76    | 15.92      | 17.20  |      |      |  |  |  |  |

|         | 99%     |            |        |     |     |  |
|---------|---------|------------|--------|-----|-----|--|
| Test CH | 802.11b | Limit(kHz) | Result |     |     |  |
| Lowest  | 12.48   | 16.40      | 17.60  |     |     |  |
| Middle  | 12.40   | 16.32      | 17.60  | N/A | N/A |  |
| Highest | 12.40   | 16.32      | 17.60  |     |     |  |

Test plot as follows:



#### 6dB EBW

#### Test mode: 802.11b



Date: 22.NOV.2015 00:21:33

#### Lowest channel



Date: 22.NOV.2015 00:15:56

#### Middle channel



Date: 22.NOV.2015 00:22:31

Highest channel



#### Test mode: 802.11g



Date: 22.NOV.2015 00:20:31

#### Lowest channel



Date: 22.NOV.2015 00:17:15

#### Middle channel



Date: 22.NOV.2015 00:13:50



#### Test mode: 802.11n(H20)



Date: 22.NOV.2015 00:19:26

#### Lowest channel



Date: 22.NOV.2015 00:18:12

#### Middle channel



Date: 22.NOV.2015 00:12:19



#### 99% OBW

#### Test mode: 802.11b



Date: 22.NOV.2015 00:05:30

#### Lowest channel



Date: 22.NOV.2015 00:09:10

#### Middle channel



Date: 22.NOV.2015 00:09:39







Date: 22.NOV.2015 00:06:45

#### Lowest channel



Date: 22.NOV.2015 00:08:36

#### Middle channel



Date: 22.NOV.2015 00:10:22

Highest channel



### Test mode: 802.11n(H20)



Date: 22.NOV.2015 00:07:19

#### Lowest channel



Date: 22.NOV.2015 00:07:53

#### Middle channel



Date: 22.NOV.2015 00:10:53





# 6.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 10.2                     |  |  |  |  |  |
| Limit:            | 8dBm                                                                  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

Measurement Data

| noded of the Bala |                              |                        |            |        |      |  |  |  |
|-------------------|------------------------------|------------------------|------------|--------|------|--|--|--|
|                   | Pow                          | ver Spectral Density ( |            | 5      |      |  |  |  |
| Test CH           | 802.11b 802.11g 802.11n(H20) |                        | Limit(dBm) | Result |      |  |  |  |
| Lowest            | 4.72                         | -1.19                  | -4.33      |        |      |  |  |  |
| Middle            | 4.12                         | -1.89                  | -5.07      | 8.00   | Pass |  |  |  |
| Highest           | 3.45                         | -2.68                  | -5.75      |        |      |  |  |  |

Test plot as follows:



#### Test mode: 802.11b



Date: 21.NOV.2015 22:15:35

#### Lowest channel



Date: 21.NOV.2015 22:14:46

#### Middle channel



Date: 21.NOV.2015 22:14:16

Highest channel







Date: 21.NOV.2015 22:12:31

#### Lowest channel



Date: 21.NOV.2015 22:12:57

#### Middle channel



Date: 21.NOV.2015 22:13:35

Highest channel



#### Test mode: 802.11n(H20)



Date: 21.NOV.2015 22:12:01

#### Lowest channel



Date: 21.NOV.2015 22:11:21

#### Middle channel



Date: 21.NOV.2015 22:10:14

Highest channel





# 6.6 Band Edge

#### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 13                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |

Test plot as follows:









Date: 21.NOV.2015 23:54:20

Lowest channel

Highest channel

## 802.11g

Date: 22.NOV.2015 00:04:37

Date: 22.NOV.2015 00:03:51





Date: 21.NOV.2015 23:55:18

Lowest channel





#### 802.11n(H20)





Date: 21.NOV.2015 23:56:12

Lowest channel

Date: 22.NOV.2015 00:02:57





### 6.6.2 Radiated Emission Method

| <br>. Natiated Lillission Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |              |      |                                  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|------|----------------------------------|--|--|--|
| Test Requirement:                | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              |      |                                  |  |  |  |
| Test Method:                     | ANSI C63.10: 2009and KDB 558074v03r03 section 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |      |                                  |  |  |  |
| TestFrequencyRange:              | 2.3GHz to 2.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |      |                                  |  |  |  |
| Test site:                       | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | istance: 3m      |              |      |                                  |  |  |  |
| Receiver setup:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | _            |      |                                  |  |  |  |
|                                  | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector         | RBW          | VBW  | Remark                           |  |  |  |
|                                  | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak             | 1MHz         | 3MHz | Peak Value                       |  |  |  |
|                                  | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average<br>Value | 1MHz         | 10Hz | Average Value                    |  |  |  |
| Limit:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | <u> </u>     |      |                                  |  |  |  |
|                                  | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ency             | Limit (dBuV/ |      | Remark                           |  |  |  |
|                                  | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHz              | 54.0         |      | Average Value                    |  |  |  |
| Test Procedure:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 74.0         |      | Peak Value<br>e 0.8 meters above |  |  |  |
| Test setup:                      | <ol> <li>todetermine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet.</li> </ol> |                  |              |      |                                  |  |  |  |
|                                  | Andenna Tower  Ground Seference Plane  Test Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |              |      |                                  |  |  |  |
| Test Instruments:                | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |      |                                  |  |  |  |
| Test mode:                       | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |      |                                  |  |  |  |
| Test results:                    | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              |      |                                  |  |  |  |
|                                  | I dooru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |      |                                  |  |  |  |





#### 802.11b

Test channel:Lowest

Horizontal:



: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 3G SmartPhone : E301 EUT

Model

Test mode : B-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Viki REMARK :

| Сиппо |                      | Read | Antenna | Cable | Preamp |                | Limit  | Over |  |
|-------|----------------------|------|---------|-------|--------|----------------|--------|------|--|
|       | Freq                 |      | Factor  |       |        |                |        |      |  |
|       | MHz                  | dBu∜ | dB/m    | d₿    | dB     | dBuV/m         | dBuV/m | dB   |  |
| 1 2   | 2390.000<br>2390.000 |      |         |       |        | 58.00<br>45.44 |        |      |  |

#### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### Vertical:



: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: 3G SmartPhone FIIT

Model : E301 : B-L Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

REMARK

| :                      |       |        |                                         |        |                  |        |       |                 |
|------------------------|-------|--------|-----------------------------------------|--------|------------------|--------|-------|-----------------|
|                        |       |        |                                         | Preamp |                  |        |       |                 |
| Freq                   | Level | Factor | Loss                                    | Factor | Level            | Line   | Limit | Kemark          |
| MHz                    | dBu∀  | dB/m   | ₫B                                      | ₫₿     | dBuV/m           | dBuV/m | ₫₿    | ***********     |
| 2390, 000<br>2390, 000 |       |        | 100000000000000000000000000000000000000 |        | 56, 10<br>45, 44 |        |       | Peak<br>Average |

#### Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### Test channel: Highest

#### Horizontal:



: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 3G SmartPhone

EUT Model : E301 Test mode : B-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

REMARK

| 4.44 |          | Read  | Antenna           | Cable | Preamn |        | Limit  | Over   |         |
|------|----------|-------|-------------------|-------|--------|--------|--------|--------|---------|
|      | Freq     | Level | Factor            | Loss  | Factor | Level  | Line   | Limit  | Remark  |
|      | MHz      | dBu∀  | $\overline{dB/m}$ | dB    | ₫B     | dBuV/m | dBuV/m | dB     |         |
|      | 2483.500 | 23.77 | 27.52             | 6.85  | 0.00   | 58.14  | 74.00  | -15.86 | Peak    |
|      | 2483.500 | 11.12 | 27.52             | 6.85  | 0.00   | 45.49  | 54.00  | -8.51  | Average |

#### Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





#### Vertical:



: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SmartPhone Condition

EUT

: E301
Test mode : B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Humi:55%
Test Engineer: Viki
REMARK :

| w | CV :                 |             |        |      |        |        |        |           |        |
|---|----------------------|-------------|--------|------|--------|--------|--------|-----------|--------|
|   |                      | ReadAntenna |        |      |        |        |        | 0ver      |        |
|   | Freq                 | Level       | Factor | Loss | Factor | Level  | Line   | Limit     | Remark |
|   | MHz                  | dBuV        | dB/m   | ₫B   | dB     | dBuV/m | dBu∀/m | <u>dB</u> |        |
|   | 2483,500<br>2483,500 |             |        |      |        |        |        |           |        |

#### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





# 802.11g

Test channel:Lowest

### Horizontal:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SmartPhone Condition

EUT

: E301 Model Test mode : G-L Mode Power Rating : AC 120V/60Hz

: Temp: 25.5°C Huni: 55% Environment

Test Engineer: Viki REMARK

| лал | v :      |       |         |      |           |        |        |           |         |  |
|-----|----------|-------|---------|------|-----------|--------|--------|-----------|---------|--|
|     |          |       | Antenna |      |           |        |        |           |         |  |
|     | Freq     | Level | Factor  | Loss | Factor    | Level  | Line   | Limit     | Remark  |  |
|     | MHz      | dBuV  | dB/m    | dB   | <u>dB</u> | dBu√/m | dBuV/m | <u>dB</u> |         |  |
| 1   | 2390.000 |       |         |      | 0.00      |        |        |           |         |  |
| 4   | 2390.000 | 11.23 | 21.58   | 0.03 | 0.00      | 45.44  | 54.00  | -8.55     | Average |  |

# Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT

: 3G SmartPhone : E301 Model Test mode : G-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

REMARK

| JINE AL Y |                        | Read  | Antenna | Cable | Preamp |        | Limit  | Over  |        |
|-----------|------------------------|-------|---------|-------|--------|--------|--------|-------|--------|
|           | Freq                   | Level | Factor  | Loss  | Factor | Level  | Line   | Limit | Remark |
|           | MHz                    | dBu∛  | dB/m    | dB    | ₫B     | dBuV/m | dBuV/m | dB    |        |
| 1 2       | 2390, 000<br>2390, 000 |       |         |       |        |        |        |       |        |

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





### Test channel: Highest

## Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 3G SmartPhone EUT

: E301 Model Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

REMARK

| RK :                 | Read | Antenna        | Cable | Preamn    |                | Limit  | Over |                 |
|----------------------|------|----------------|-------|-----------|----------------|--------|------|-----------------|
| Freq                 |      | Factor         |       |           |                |        |      |                 |
| MHz                  | dBu∜ | dB/m           | dB    | <u>dB</u> | dBuV/m         | dBuV/m | dB   |                 |
| 2483.500<br>2483.500 |      | 27.52<br>27.52 |       |           | 57.40<br>45.62 |        |      | Peak<br>Average |

### Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SmartPhone Condition

EUT

: E301 Model Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

| Al | KK :                 |      |                   |             |    |                |               |               |                 |
|----|----------------------|------|-------------------|-------------|----|----------------|---------------|---------------|-----------------|
|    | Freq                 |      | Antenna<br>Factor |             |    |                | Limit<br>Line | Over<br>Limit |                 |
|    | MHz                  | dBu∀ | dB/m              | dB          | dB | dBuV/m         | dBuV/m        | ₫₿            |                 |
|    | 2483.500<br>2483.500 |      |                   | 75.75.55.55 |    | 57.02<br>45.77 |               |               | Peak<br>Average |

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





## 802.11n (H20)

Test channel:Lowest

### Horizontal:



Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: 3G SmartPhone EUT

: E301 Model Test mode : N20-L Mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK

| SHUU! |          | Read | Antenna | Cable | Preamn |        | Limit  | Over |        |
|-------|----------|------|---------|-------|--------|--------|--------|------|--------|
|       | Freq     |      |         |       |        |        |        |      | Remark |
|       | MHz      | dBuV | dB/m    | ₫B    | dB     | dBuV/m | dBuV/m | ₫B   |        |
| 1 2   | 2390,000 |      |         |       |        |        |        |      |        |

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 3G SmartPhone EUT

: E301 Model

Test mode : N20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

REMARK

| K :                    |       |                |       |        |        |                |       |                 |
|------------------------|-------|----------------|-------|--------|--------|----------------|-------|-----------------|
|                        | Read  | Antenna        | Cable | Preamp |        | Limit          | Over  |                 |
| Freq                   | Level | Factor         | Loss  | Factor | Level  | Line           | Limit | Remark          |
| MHz                    | dBu∜  | dB/m           | d₿    | ₫B     | dBuV/m | dBuV/m         | dB    |                 |
| 2390, 000<br>2390, 000 |       | 27.58<br>27.58 | 6.63  |        |        | 74.00<br>54.00 |       | Peak<br>Average |

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





## Test channel:Highest

## Horizontal:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SmartPhone Condition

EUT

: E301 Model : N20-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

REMAR

| u | KK :                 | Read | Ant enna | Cable | Preamp |        | Limit  | Over  |        |
|---|----------------------|------|----------|-------|--------|--------|--------|-------|--------|
|   | Freq                 |      | Factor   |       |        |        | Line   | Limit | Remark |
|   | MHz                  | dBu₹ | dB/m     | ₫B    | ₫B     | dBuV/m | dBuV/m | dB    |        |
|   | 2483,500<br>2483,500 |      |          |       |        |        |        |       |        |

# Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SmartPhone Condition

EUT

Model : E301

: N20-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

| a | · ·                  | 220 00 | 0.00     | 12.2510 | 12     |        | 1775 2770 | - 20  |        |
|---|----------------------|--------|----------|---------|--------|--------|-----------|-------|--------|
|   |                      | Read   | Ant enna | Cable   | Preamp |        | Limit     | Over  |        |
|   | Freq                 | Level  | Factor   | Loss    | Factor | Level  | Line      | Limit | Remark |
|   | MHz                  | dBu∀   | dB/m     | ₫B      | ₫B     | dBuV/m | dBuV/m    | ₫B    |        |
|   | 2483.500<br>2483.500 |        |          |         |        |        |           |       | Peak   |

### Remark:

2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074 section 11                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |

Test plot as follows:







Date: 22.NOV.2015 00:29:13

30MHz~25GHz

# Middle channel



Date: 22.NOV.2015 00:32:01



# Highest channel



Date: 22.NOV.2015 00:32:30







Date: 22.NOV.2015 00:29:52

30MHz~25GHz

# Middle channel



Date: 22.NOV.2015 00:31:35



# Highest channel



Date: 22.NOV.2015 00:33:06



# Test mode: 802.11n(H20) Lowest channel



Date: 22.NOV.2015 00:30:24

### 30MHz~25GHz

### Middle channel



Date: 22.NOV.2015 00:31:04



# Highest channel



Date: 22.NOV.2015 00:33:38



# 6.7.2 Radiated Emission Method

| Test Requirement:   | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |      |                  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------|------------------|--|--|--|
| Test Method:        | ANSI C63.10:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 009              |             |      |                  |  |  |  |
| TestFrequencyRange: | 9KHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |             |      |                  |  |  |  |
| Test site:          | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Distance: 3m     |             |      |                  |  |  |  |
| Receiver setup:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             |      |                  |  |  |  |
|                     | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detector         | RBW         | VBW  | Remark           |  |  |  |
|                     | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             |      |                  |  |  |  |
|                     | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak             | 1MHz        | 3MHz | Peak Value       |  |  |  |
|                     | Above 10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average Value    | 1MHz        | 10Hz | Average Value    |  |  |  |
| Limit:              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |      |                  |  |  |  |
|                     | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Limit (dBuV |      | Remark           |  |  |  |
|                     | 30MHz-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 40.0        |      | Quasi-peak Value |  |  |  |
|                     | 88MHz-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 43.5        |      | Quasi-peak Value |  |  |  |
|                     | 216MHz-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 46.0        |      | Quasi-peak Value |  |  |  |
|                     | 960MHz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·1GHz            |             |      | Quasi-peak Value |  |  |  |
|                     | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GHz              |             |      |                  |  |  |  |
|                     | 1 The CUT v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | roo placed on th |             |      |                  |  |  |  |
| Test Procedure:     | Above 1GHz  Average Value  Peak Value  1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation.  2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.  3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.  4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.  5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.  6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi- |                  |             |      |                  |  |  |  |











### **Below 1GHz**

Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 3G Smart Phone Condition

EUT

: E301 Model Test mode : WIFI Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki REMARK:

| MARK                  | :<br>Freq |       | Antenna<br>Factor |      |          |        | Limit  | Over   | Remark |
|-----------------------|-----------|-------|-------------------|------|----------|--------|--------|--------|--------|
|                       | 1104      | LOVOI | ractor            | 1000 | 1 40 (01 | LOVOI  | 21110  | TIME C | HOMOLE |
| -                     | MHz       | dBu∀  | dB/m              | ₫₿   | ₫B       | dBuV/m | dBuV/m | ₫B     |        |
| 1                     | 162.041   | 35.10 | 8,72              | 1.34 | 29.12    | 16.04  | 43.50  | -27.46 | QP     |
| 1<br>2<br>3<br>4<br>5 | 230.907   | 41.61 | 11.67             | 1.53 | 28.64    | 26.17  | 46.00  | -19.83 | QP     |
| 3                     | 319.937   | 42.29 | 13.33             | 1.84 | 28.50    | 28.96  | 46.00  | -17.04 | QP     |
| 4                     | 360.448   | 35.19 | 14.43             | 1.98 | 28.61    | 22.99  | 46.00  | -23.01 | QP     |
| 5                     | 440.196   | 32.56 | 15.56             | 2.23 | 28.85    | 21.50  | 46.00  | -24.50 | QP     |
| 6                     | 768.748   | 34.01 | 19.68             | 3.09 |          | 28.41  | 46.00  | -17.59 | QP     |







Site

Condition

EUT

Model Test mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK

| Freq    |                                                                |                                                                                              |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz     | dBu∛                                                           | −dB/m                                                                                        | ₫B                                                                                                                                  | dB                                                                                                                                                                   | dBu√/m                                                                                                                                                                                                                                                                          | dBuV/m                                                                                                                                                                                                                           | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 85.898  | 36.58                                                          | 10.60                                                                                        | 0.89                                                                                                                                | 29.59                                                                                                                                                                | 18.48                                                                                                                                                                                                                                                                           | 40.00                                                                                                                                                                                                                            | -21.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 123.699 | 41.10                                                          | 9.90                                                                                         | 1.15                                                                                                                                | 29.37                                                                                                                                                                | 22.78                                                                                                                                                                                                                                                                           | 43.50                                                                                                                                                                                                                            | -20.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 215.268 | 37.52                                                          | 11.03                                                                                        | 1.46                                                                                                                                | 28.73                                                                                                                                                                | 21.28                                                                                                                                                                                                                                                                           | 43.50                                                                                                                                                                                                                            | -22.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 261.975 | 41.68                                                          | 12.13                                                                                        | 1.66                                                                                                                                | 28.52                                                                                                                                                                | 26.95                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                            | -19.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 440.196 | 33.90                                                          | 15.56                                                                                        | 2.23                                                                                                                                | 28.85                                                                                                                                                                | 22.84                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                            | -23.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 768.748 | 31.07                                                          | 19.68                                                                                        | 3.09                                                                                                                                | 28.37                                                                                                                                                                | 25.47                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                            | -20.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | MHz<br>85, 898<br>123, 699<br>215, 268<br>261, 975<br>440, 196 | MHz dBuV<br>85.898 36.58<br>123.699 41.10<br>215.268 37.52<br>261.975 41.68<br>440.196 33.90 | Freq Level Factor  MHz dBuV dB/m  85.898 36.58 10.60 123.699 41.10 9.90 215.268 37.52 11.03 261.975 41.68 12.13 440.196 33.90 15.56 | Freq Level Factor Loss  MHz dBuV dB/m dB  85.898 36.58 10.60 0.89 123.699 41.10 9.90 1.15 215.268 37.52 11.03 1.46 261.975 41.68 12.13 1.66 440.196 33.90 15.56 2.23 | ### Revel Factor Loss Factor   MHz   dBuV   dB/m   dB   dB     85.898   36.58   10.60   0.89   29.59     123.699   41.10   9.90   1.15   29.37     215.268   37.52   11.03   1.46   28.73     261.975   41.68   12.13   1.66   28.52     440.196   33.90   15.56   2.23   28.85 | MHz dBuV dB/m dB dB dBuV/m<br>85.898 36.58 10.60 0.89 29.59 18.48<br>123.699 41.10 9.90 1.15 29.37 22.78<br>215.268 37.52 11.03 1.46 28.73 21.28<br>261.975 41.68 12.13 1.66 28.52 26.95<br>440.196 33.90 15.56 2.23 28.85 22.84 | MHz         dBuV         dB/m         dB         dB         dBuV/m         dBuV/m <t< td=""><td>MHz         dBuV         dB/m         dB         dB dBuV/m         dBuV/m         dBuV/m         dB           85.898         36.58         10.60         0.89         29.59         18.48         40.00         -21.52           123.699         41.10         9.90         1.15         29.37         22.78         43.50         -20.72           215.268         37.52         11.03         1.46         28.73         21.28         43.50         -22.22           261.975         41.68         12.13         1.66         28.52         26.95         46.00         -19.05           440.196         33.90         15.56         2.23         28.85         22.84         46.00         -23.16</td></t<> | MHz         dBuV         dB/m         dB         dB dBuV/m         dBuV/m         dBuV/m         dB           85.898         36.58         10.60         0.89         29.59         18.48         40.00         -21.52           123.699         41.10         9.90         1.15         29.37         22.78         43.50         -20.72           215.268         37.52         11.03         1.46         28.73         21.28         43.50         -22.22           261.975         41.68         12.13         1.66         28.52         26.95         46.00         -19.05           440.196         33.90         15.56         2.23         28.85         22.84         46.00         -23.16 |



## **Above 1GHz**

| Test mode: 80      | Test mode: 802.11b      |                             |                       | Test channel: Lowest     |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency          | Read<br>Level           | Antenna<br>Factor           | Cable<br>Loss         | Preamp<br>Factor         | Level             | Limit Line             | Over<br>Limit         | Polar.     |  |
| (MHz)              | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     | (dBuV/m)          | (dBuV/m)               | (dB)                  |            |  |
| 4824.00            | 52.26                   | 31.54                       | 10.58                 | 40.22                    | 54.16             | 74.00                  | -19.84                | Vertical   |  |
| 4824.00            | 54.18                   | 31.54                       | 10.58                 | 40.22                    | 56.08             | 74.00                  | -17.92                | Horizontal |  |
| Test mode: 80      | 02.11b                  |                             | Test channel: Lowest  |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 48.60                   | 31.54                       | 10.58                 | 40.22                    | 50.50             | 54.00                  | -3.50                 | Vertical   |  |
| 4824.00            | 50.60                   | 31.54                       | 10.58                 | 40.22                    | 52.50             | 54.00                  | -1.50                 | Horizontal |  |

| Test mode: 80      | Test mode: 802.11b      |                             |                       | Test channel: Middle     |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 53.15                   | 31.57                       | 10.64                 | 40.15                    | 55.21             | 74.00                  | -18.79                | Vertical   |  |
| 4874.00            | 53.56                   | 31.57                       | 10.64                 | 40.15                    | 55.62             | 74.00                  | -18.38                | Horizontal |  |
| Test mode: 80      | 02.11b                  |                             | Test channel: Middle  |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 51.43                   | 31.57                       | 10.64                 | 40.15                    | 53.49             | 54.00                  | -0.51                 | Vertical   |  |
| 4874.00            | 50.76                   | 31.57                       | 10.64                 | 40.15                    | 52.82             | 54.00                  | -1.18                 | Horizontal |  |

| Test mode: 80      | Test mode: 802.11b      |                             | Test channel: Highest |                          |                   | Remark: Peak           |                       |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00            | 52.03                   | 31.61                       | 10.70                 | 40.08                    | 54.26             | 74.00                  | -19.74                | Vertical   |  |
| 4924.00            | 51.00                   | 31.61                       | 10.70                 | 40.08                    | 53.23             | 74.00                  | -20.77                | Horizontal |  |
| Test mode: 80      | 02.11b                  |                             | Test channel: Highest |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00            | 47.88                   | 31.61                       | 10.70                 | 40.08                    | 50.11             | 54.00                  | -3.89                 | Vertical   |  |
| 4924.00            | 46.06                   | 31.61                       | 10.70                 | 40.08                    | 48.29             | 54.00                  | -5.71                 | Horizontal |  |

## Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





| Test mode: 80      | Test mode: 802.11g      |                             |                       | Test channel: Lowest     |                  |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 48.09                   | 31.54                       | 10.58                 | 40.22                    | 49.99            | 74.00                  | -24.01                | Vertical   |  |
| 4824.00            | 48.14                   | 31.54                       | 10.58                 | 40.22                    | 50.04            | 74.00                  | -23.96                | Horizontal |  |
| Test mode: 80      | )2.11g                  |                             | Test channel: Lowest  |                          |                  | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 42.61                   | 31.54                       | 10.58                 | 40.22                    | 44.51            | 54.00                  | -9.49                 | Vertical   |  |
| 4824.00            | 42.95                   | 31.54                       | 10.58                 | 40.22                    | 44.85            | 54.00                  | -9.15                 | Horizontal |  |

| Test mode: 80      | Test mode: 802.11g      |                             |                       | Test channel: Middle     |                  |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 47.46                   | 31.57                       | 10.64                 | 40.15                    | 49.52            | 74.00                  | -24.48                | Vertical   |  |
| 4874.00            | 47.68                   | 31.57                       | 10.64                 | 40.15                    | 49.74            | 74.00                  | -24.26                | Horizontal |  |
| Test mode: 80      | 02.11g                  |                             | Test channel: Middle  |                          |                  | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 42.60                   | 31.57                       | 10.64                 | 40.15                    | 44.66            | 54.00                  | -9.34                 | Vertical   |  |
| 4874.00            | 42.53                   | 31.57                       | 10.64                 | 40.15                    | 44.59            | 54.00                  | -9.41                 | Horizontal |  |

| Test mode: 8       | 02.11g                  |                             | Test char             | nnel: Highest            |                       | Remark: Peak           |                       |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-----------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m<br>) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00            | 48.90                   | 31.61                       | 10.70                 | 40.08                    | 51.13                 | 74.00                  | -22.87                | Vertical   |  |
| 4924.00            | 48.77                   | 31.61                       | 10.70                 | 40.08                    | 51.00                 | 74.00                  | -23.00                | Horizontal |  |
| Test mode: 8       | 02.11g                  |                             | Test channel: Highest |                          |                       | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m<br>) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00            | 42.13                   | 31.61                       | 10.70                 | 40.08                    | 44.36                 | 54.00                  | -9.64                 | Vertical   |  |
| 4924.00            | 41.53                   | 31.61                       | 10.70                 | 40.08                    | 43.76                 | 54.00                  | -10.24                | Horizontal |  |

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





| Test mode: 80      | Test mode: 802.11n(H20) |                             |                       | Test channel: Lowest     |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | LimitLine<br>(dBuV/m)  | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 47.44                   | 31.54                       | 10.58                 | 40.22                    | 49.34             | 74.00                  | -24.66                | Vertical   |  |
| 4824.00            | 47.90                   | 31.54                       | 10.58                 | 40.22                    | 49.80             | 74.00                  | -24.20                | Horizontal |  |
| Test mode: 80      | 02.11n(H20)             |                             | Test channel: Lowest  |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 43.21                   | 31.54                       | 10.58                 | 40.22                    | 45.11             | 54.00                  | -8.89                 | Vertical   |  |
| 4824.00            | 42.35                   | 31.54                       | 10.58                 | 40.22                    | 44.25             | 54.00                  | -9.75                 | Horizontal |  |

| Test mode: 80      | Test mode: 802.11n(H20) |                             |                       | Test channel: Middle     |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 46.67                   | 31.57                       | 10.64                 | 40.15                    | 48.73             | 74.00                  | -25.27                | Vertical   |  |
| 4874.00            | 47.79                   | 31.57                       | 10.64                 | 40.15                    | 49.85             | 74.00                  | -24.15                | Horizontal |  |
| Test mode: 80      | 02.11n(H20)             |                             | Test channel: Middle  |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 43.63                   | 31.57                       | 10.64                 | 40.15                    | 45.69             | 54.00                  | -8.31                 | Vertical   |  |
| 4874.00            | 43.35                   | 31.57                       | 10.64                 | 40.15                    | 45.41             | 54.00                  | -8.59                 | Horizontal |  |

| Test mode: 80      | Test mode: 802.11n(H20) |                             |                       | Test channel: Highest    |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00            | 47.20                   | 31.61                       | 10.70                 | 40.08                    | 49.43             | 74.00                  | -24.57                | Vertical   |  |
| 4924.00            | 47.12                   | 31.61                       | 10.70                 | 40.08                    | 49.35             | 74.00                  | -24.65                | Horizontal |  |
| Test mode: 80      | 02.11n(H20)             |                             | Test channel: Highest |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00            | 42.86                   | 31.61                       | 10.70                 | 40.08                    | 45.09             | 54.00                  | -8.91                 | Vertical   |  |
| 4924.00            | 43.52                   | 31.61                       | 10.70                 | 40.08                    | 45.75             | 54.00                  | -8.25                 | Horizontal |  |

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.