

Course Project

please take it seriously!

- 1.Constructing a knowledge graph for a specific domain
 - Domain: Military (军事)
 - Source data: crawling data from Web (wiki and news) 从百度百科/维基百科爬取半结构化数据 从新闻网站爬取非结构化数据
 - Two group collaboration 允许两个组协作完成,分别负责半结构化数据和非结构化数据 在报告中明确每个成员的贡献

- 1.Constructing a knowledge graph for a specific domain
 - Ontology: knowledge representation, concepts, properties, ... 人工+半自动构建本体,确定概念、属性、公理
 - Knowledge graph:
 - knowledge extraction (entity, relations)

本结构化数据: 可以用规则进行抽取

非结构化数据:利用深度学习模型抽取主要类型的实体和关系

• knowledge fusion/integration 融合2个组构建的知识,解决本体层异构和实例层异构

- 1.Constructing a knowledge graph for a specific domain
 - Knowledge graph:
 - knowledge storage
 利用图数据库如neo4j等存储知识图谱,非结构化数据用MongoDB存储
 - knowledge embedding (optional)
 - Knowledge graph sizes:
 - >100,000 entities
 - >1,000,000 triples

- 2. Intelligent applications based on the knowledge graph
 - Semantic search
 - Question answer
 - Visualization (optional)
 - Mining and analyzing knowledge graph (optional)
 - Any other exciting applications (use your imagination)

- 1. Problem direction, context, outline of algorithm and evaluation
- Foundation of knowledge graph(知识图谱基础学习)
 - online open course: https://github.com/npubird/KnowledgeGraphCourse
 - book: 《知识图谱:方法、实践与应用》,电子工业出版社,2019
- make clear knowledge graph domains and applications
 - domains: data sources (明确知识图谱领域和数据源)
 - applications: techniques (明确基于知识图谱的应用和涉及的技术)
- Preliminary design(概要设计)
 - System architecture(系统架构)
 - key modules and their functions(模块及其功能)
 - key techniques and challenges (关键技术及挑战)

- 2. Formulation, algorithm, data, preliminary results
- Collecting data (数据采集)
 - Crawling data from Web: wikipedia, baike, news sites, social networks, online forum, ...
 - data type: databased, text, image, video, ...
 - Reference:
 https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5知识抽取-数据获取.pdf
- Ontology building (本体构建)
 - Reference:

Noy N F, McGuinness D L. <u>Ontology Development 101: A Guide to Creating Your First Ontology</u>. <u>another version</u>

- 2. Formulation, algorithm, data, preliminary results
- Knowledge extraction (知识抽取)
 - named entity recognition
 - relation extraction
 - Reference:

Dong X, Gabrilovich E, Heitz G, et al. <u>Knowledge vault: A web-scale approach to probabilistic knowledge fusion</u>. KDD2014: 601-610.

Auer S, Bizer C, Kobilarov G, et al. <u>Dbpedia: A nucleus for a web of open data</u>. ISWC2007: 722-735.

Suchanek F M, Kasneci G, Weikum G. <u>Yago: a core of semantic knowledge</u>. WWW2007: 697-706.

- 2. Formulation, algorithm, data, preliminary results
- Knowledge fusion (知识融合)
 - ontology matching
 - instance matching
 - Reference: 第五章 知识融合, in《知识图谱:方法、实践与应用》,电子工业出版社,2019
- Knowledge storage (知识存储)
 - graph database
 - Reference:

https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11知识存储.pdf

- 3. Additional theory/methods and results, applications
- Intelligence applications (智能应用)
 - applications: search, QA, visualization, mining, reasoning
 - theories/methods/algorithms
 - Reference:

《聊天机器人技术原理与应用》,中国工信出版集团,2019

Presentation and Report

- Final presentation
 - 15 mins presentation + 5 mins demo and questions
- Final report
 - Detailed writeup (latex, <30 pages)
 - Github site: source code & data set

Timeline

Tasks	Important Date
checkpoint1	December 9
checkpoint2	December 16
checkpoint3	December 23
Final Presentation	December 30
Final Report	December 30