

Rysunek 1: Czego byśmy chcieli.

 $\varepsilon=\min\left\{|t_0-a|,|t_0-b|,\frac{1}{L},\frac{r_2}{M}\right\}$]
 $t_0-\varepsilon,t_0+\varepsilon[//\text{Chcielibyśmy, żeby }\varepsilon$ nie zależał od punktu w którym zaczniemy. Rys. 1

$$\begin{split} \|A(t)x(t)+b(t)\| &\leqslant L(\|x_0\|+r_2)+c\\ \frac{r_2}{M} &\geqslant \frac{r_2}{L(\|x_0\|+r_2)+c} =\\ \text{Połóżmy } r_2 &= \|x_0\|+c\\ &= \frac{\|x_0\|+c}{L(\|x_0\|+\|x_0\|+c)+c} =\\ \frac{\|x_0\|+c}{L(2\|x_0\|+c)+c} &\geqslant \frac{\|x_0\|+c}{L(2\|x_0\|+c+c)+c+\|x_0\|} =\\ \frac{1}{2L+1}, \text{ zatem} \\ \varepsilon &= \min\left\{|t_0-a|, |t_0-b|, \frac{1}{L}, \frac{1}{2L+1}\right\}. \end{split}$$

Rysunek 2: Mała zmiana może dać rozwiązanie w podobnym miejscu ale nie musi

Rysunek 3: Jak pośpimy minutę dłużej to nic się nie stanie (świat jest ciągły)

 $(r_1$ - pomijamy, bo A(t) - ciągła na [a,b].) Oznacza to, że wartość ε nie zależy od x, zatem rozwiązanie początkowo określone na $]t_0 - \varepsilon, t_0 + \varepsilon[\times K(x_0, r_2)$ możemy przedłużyć do określonego na całym $[a,b]\times X$!

Definicja 1. Rezolwenta

Rozwiązaniem problemu

$$\frac{dx}{dt} = A(t)x(t) + b(t)$$
$$x(t_0) = x_0.$$

jest funkcja $x(t, t_0, x_0)$

Pytanie 1. Czy istnieje

$$R(t,t_0): \mathbb{R}^n \to \mathbb{R}^n$$
.

 $Takie, \dot{z}e$

$$x(t) = R(t, t_0)x_0$$
?.

 $(Je\dot{z}eli\ x_0, x(t) \in \mathbb{R}^n)$

Pytanie 2. Jakie własności $R(t,t_0)$ powinno posiadać?

- $R(t,t_0): \mathbb{R}^n \to \mathbb{R}^n, R$ liniowy Bo jeżeli $x_1(t), x_1(t_0) = x_0^1$ i $x_2(t), x_2(t_0) = x_0^2$ są rozwiązaniem, to chcielibyśmy, by $x_1(t) + x_2(t)$ też było rozwiązaniem z wartością początkową $x_0^1 + x_0^2$. Rys 3
- $\bullet\,$ funkcja $R(t,t_0)$
- $R(t,t_0) = R(t,s)R(s,t_0)$ \forall $t,t_0,s \in \mathcal{O} \subset \mathbb{R}$

•
$$R(t_0,t_0)=\mathbb{I}$$
, bo $x(t)=R(t,t_0)x_0$
 $\forall t_0\in\mathcal{O}$
Ad 3. Wstawiając t_0 do trzeciej kropki otrzymujemy $R(t_0,t_0)=R(t_0,s)R(s,t_0)\to \bigvee_{t,s\in\mathcal{O}}R(s,t)=R(t,s)^{-1}$

$$\frac{dR(t,to)}{dt} = A(t)R(t,t_0),$$

$$R(t_0,t_0) = \mathbb{I}.$$

bo wtedy $x(t) = R(t, t_0)x_0$ jest rozwiązaniem problemu

$$\frac{dx}{dt} = A(t)x(t)$$
$$x(t_0) = x_0.$$

bo
$$\frac{dx}{dt} = \frac{d}{dt}(R(t,t_0)x_0) = A(t)R(t,t_0)x_0 = A(t)x(t)$$
 i $x(t_0) = R(t_0,t_0)x_0 = \mathbb{I}x_0 = x_0$

Zatem na mocy twierdzenia o jednoznaczności rozwiązań wiemy, że założenie $x(t) = R(t, t_0)x_0$ da nam jednoznaczne rozwiązanie.

Pytanie 3. A co z b(t)? (ten wektorek co by to był, ale go nie ma)

Chcemy rozwiązać problem

$$\frac{dx}{dt} = A(t)x(t) + b(t)$$
$$x(t_0) = x_0.$$

Załóżmy, że rozwiązanie tego problemu możemy przedstawić jako

$$x(t) = R(t, t_0)C(t), C(t) : \mathbb{R} \to \mathbb{R}^n.$$

Ale

$$\frac{d}{dt}x(t) = \frac{d}{dt}\left(R(t,t_0)c(t)\right) = \frac{dR(t,t_0)}{dt}c(t) + R(t,t_0)\frac{dc}{dt} = A(t)R(t,t_0)c(t_1 + R(t,t_0)\frac{dc}{dt}$$

Zatem mogę napisać, że

$$A(t)R(t,to)c(t) + R(t,t_0)\frac{dc}{dt} = A(t)R(t,t_0)c(t) + b(t).$$

(cudowne skrócenie)

$$R(t,t_0)\frac{dc}{dt} = b(t) /R(t,t_0)^{-1}.$$

$$\frac{dc}{dt} = R(t,t_0)^{-1}b(t).$$

$$\frac{dc}{dt} = R(t,t_0)b(t).$$

$$c(t) - \alpha = \int_{t_0}^t R(t_0,s)b(s)ds, \alpha \in \mathbb{R}.$$

Ale
$$c(t_0) = x_0$$
, wiec $\alpha = x_0$.

$$c(t) = x_0 + \int_{t_0}^{t} R(t_0, s)b(s)ds.$$

Zatem

$$x(t) = R(t, t_0)c(t) = R(t, t_0) \left(x_0 + \int_{t_0}^t R(t_0, s)b(s)ds \right) = .$$

$$R(t, t_0)x_0 + R(t, t_0) \int_{t_0}^t R(t_0, s)b(s)ds = .$$

$$R(t, t_0)x_0 + \int_{t_0}^t R(t, t_0)R(t_0, s)b(s)ds.$$

$$R(t, t_0)x_0 + \int_{t_0}^t R(t, t_0)R(t_0, s)b(s)ds.$$

Zatem rozwiązanie problemu wygląda tak:

$$x(t) = R(t, t_0)x_0 + \int_{t_0}^{t} R(t, s)b(s)ds.$$

dygresja:

dają nam rozkład gęstości masy $\rho(x')$. Jak wygląda potencjał?

$$\varphi(x) = \int \frac{\rho(x')dv'}{\|x - x'\|}.$$

W tym przypadku rezolwenta to $\frac{1}{||x-x'||}$

Pytanie 4. Czy rezolwenta istnieje?

Funkcja $R(t,t_0)=e^{\int_{t_0}^t A(s)ds}$ spełnia warunki 1 – 5 dla rezolwenty

- $R(t,t_0): \mathbb{R}^n \to \mathbb{R}^n$
- $R(t,t_0)$ jest ciągła względem t i t_0
- $R(t,\alpha)R(\alpha,t_0)=R(t,t_0)$, bo $e^{\int_{t_0}^t A(s)ds}=e^{\int_{t_0}^\alpha A(s)ds+\int_{\alpha}^t A(s)ds}$ $R(t,t_0)=R(t,\alpha)R(\alpha,t_0)$
- $R(t_0, t_0) = e^{\int_{t_0}^{t_0} A(s)ds} = \mathbb{I}$
- $\frac{dR}{dt} = A(t)R(t, t_0)$ Dowód:

$$\frac{R(t+h,t_0) - R(t,t_0)}{h} = \frac{1}{h} \left(e^{\int_{t_0}^{t+h} A(s)ds} - e^{\int_{t_0}^{t} A(s)ds} \right) = .$$

$$= \frac{1}{h} \left[e^{\int_{t_0}^{t+h} A(s)ds} e^{\int_{t_0}^{t} A(s)ds} - e^{\int_{t_0}^{t} A(s)ds} \right] = .$$

$$\frac{1}{h} \left[e^{\int_{t}^{t+h} A(s)ds} - \mathbb{I} \right] e^{\int_{t_0}^{t} A(s)ds} - \frac{1}{h} \left[e^{hA(\beta) - \mathbb{I}} \right] R(t,t_0) = .$$

$$\frac{1}{h} \left[\mathbb{I} + \frac{hA(\beta)}{1} + \frac{(hA(\beta))^2}{2!} + \dots = \mathbb{I} \right] R(t,t_0) = .$$

$$A(\beta)R(t,t_0) + h[\dots] \to A(t)R(t,t_0).$$

$$(((((\int_t^{t+h} A(s)ds = (t+h-t)A(\beta)))))$$

Przykład 1.

$$\begin{split} \frac{d}{dt} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix} &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix}, \begin{bmatrix} x(0) \\ p(0) \end{bmatrix} &= \begin{bmatrix} x_0 \\ p_0 \end{bmatrix}. \\ \begin{bmatrix} x(t) \\ p(t) \end{bmatrix} e^{\int_0^t \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} ds} \begin{bmatrix} x_0 \\ p_0 \end{bmatrix} &= e^{t \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}} \begin{bmatrix} x_0 \\ p_0 \end{bmatrix}. \end{split}$$