Optimization Algorithms: HW1

Lo Chun, Chou R13922136

April 27, 2025

1

First, consider a function $g(z) = \log(1 + e^{-z})$, taking its first and second derivatives:

$$g'(z) = \frac{d}{dz}\log(1+e^{-z}) = \frac{-e^{-z}}{1+e^{-z}}$$
$$g''(z) = \frac{d}{dz}\left(\frac{-e^{-z}}{1+e^{-z}}\right) = \frac{e^{-z}}{(1+e^{-z})^2}$$

We can see that it g''(z) is nonnegative at all points, thus g(z) is convex. Now, consider $z = y_i \langle x_i, w \rangle$, and let $h(w) = \log(1 + e^{-y_i \langle x_i, w \rangle})$:

$$h: \mathbb{R}^d \to \mathbb{R}$$

 $h(w) = g(y_i \langle x_i, w \rangle)$

Since g(z) is convex, h(w) is convex. ¹ Also, since sum and scaling of convex functions are convex, the function f(w) we're given is also convex. ²

Next, we compute the gradient and Hessian of f(w):

 $^{^1{\}rm S.}$ Boyd and L. Vandenberghe, Convex~Optimization, 1st ed., Cambridge University Press, 2004, p. 79.

 $^{^2\}rm Y.$ Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 1st ed., Springer, New York, NY, 2004, p. 82.

$$\nabla f(w) = \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x_i, w \rangle} \right) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \log \left(1 + e^{-y_i \langle x_i, w \rangle} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{-y_i x_i e^{-y_i \langle x_i, w \rangle}}{1 + e^{-y_i \langle x_i, w \rangle}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{-y_i x_i}{1 + e^{y_i \langle x_i, w \rangle}}$$

$$\begin{split} \nabla^2 f(w) &= \nabla \left(\frac{1}{n} \sum_{i=1}^n \frac{-y_i x_i}{1 + e^{y_i \langle x_i, w \rangle}} \right) \\ &= \frac{1}{n} \sum_{i=1}^n \nabla \left(\frac{-y_i x_i}{1 + e^{y_i \langle x_i, w \rangle}} \right) \\ &= \frac{1}{n} \sum_{i=1}^n \frac{\left(\frac{\partial}{\partial w} \left(-y_i x_i \right) \right) \left(1 + e^{y_i \langle x_i, w \rangle} \right) - \left(-y_i x_i \right) \frac{\partial}{\partial w} \left(1 + e^{y_i \langle x_i, w \rangle} \right)}{\left(1 + e^{y_i \langle x_i, w \rangle} \right)^2} \\ &= \frac{1}{n} \sum_{i=1}^n \frac{\left(y_i x_i \right) \frac{\partial}{\partial w} \left(1 + e^{y_i \langle x_i, w \rangle} \right)}{\left(1 + e^{y_i \langle x_i, w \rangle} \right)^2} \\ &= \frac{1}{n} \sum_{i=1}^n \frac{\left(y_i x_i \right) \left(y_i e^{y_i \langle x_i, w \rangle} x_i \right)}{\left(1 + e^{y_i \langle x_i, w \rangle} \right)^2} \\ &= \frac{1}{n} \sum_{i=1}^n \frac{e^{y_i \langle x_i, w \rangle} x_i x_i^T}{\left(1 + e^{y_i \langle x_i, w \rangle} \right)^2} \end{split}$$

Since every $x_i x_i^T$ is positive semidefinite, and is multiplied by a positive value $\frac{e^{y_i\langle x_i, w\rangle}}{(1+e^{y_i\langle x_i, w\rangle})^2}$, the average of them, which is the Hessian $\nabla^2 f(w)$, is positive semidefinite.

By the following theorem ³, we can derive the Lipschitz constant L of $\nabla f(w)$:

Theorem 2.1.6

Two times continuously differentiable function f belongs to $\mathsf{F}^{2,1}_L(\mathbb{R}^n)$

$$\Leftrightarrow 0 \leq \nabla^2 f(x) \leq LI_n \quad \forall x \in \mathbb{R}^n$$

³Y. Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course*, 1st ed., Springer, New York, NY, 2004, p. 58.

This means that the eigenvalues of the Hessian should be in the range of [0, L], and we could find L by finding the maximum eigenvalue of the Hessian.

Observe the structure of the Hessian, the scalar of $x_i x_i^T$ is:

$$\frac{e^{y_i\langle x_i,w\rangle}}{\left(1+e^{y_i\langle x_i,w\rangle}\right)^2}\in(0,\frac{1}{4}]$$

Where $\frac{1}{4}$ happens when $y_i\langle x_i, w\rangle = 0$.

Thus,
$$L = \frac{1}{4n} \lambda_{max} (\sum_{i=1}^{n} x_i x_i^T)$$

Then we could use the following scheme 4 to solve this optimization problem, since this scheme (2.2.6) is optimal for unconstrained minimization of the functions from $\mathsf{S}^{1,1}_{\mu,L}(\mathbb{R}^n),\ \mu\geq 0^{5}$

In our case, we set $\mu=0$ since we cannot guarantee strongly convexity, and L as the Lipschitz constant we just derived.

By Theorem 2.2.2 6 , we have:

⁴Y. Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course*, 1st ed., Springer, New York, NY, 2004, p. 76.

⁵Y. Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course*, 1st ed., Springer, New York, NY, 2004, p. 77.

⁶Y. Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course*, 1st ed., Springer, New York, NY, 2004, p. 77.

$$f(x_k) - f^* \le L \min \left\{ \left(1 - \sqrt{\frac{\mu}{L}} \right)^k, \frac{4}{(k+2)^2} \right\} \|x_0 - x^*\|^2$$

Since we have $\mu=0$, we can write the above optimization error guarantee of our problem as:

$$f(w_k) - f^* \le \frac{4L||w_0 - w^*||^2}{(k+2)^2}$$

_

Given a twice differentiable function $\varphi: \mathbb{R}^d \to [-\infty, \infty]$, assume that it is logarithmically homogeneous, then by the definition, the following holds:

$$\varphi(\gamma x) = \varphi(x) - \log \gamma, \quad \forall x \in \mathbb{R}^d, \gamma > 0$$
 (1)

Claim: $\langle \nabla \varphi(x), x \rangle = -1$

To derive the first equation, we first define the following:

$$F(\gamma) = \varphi(\gamma x)$$

Then the original equation (1) would become:

$$F(\gamma) = \varphi(x) - \log \gamma$$

Taking the derivative w.r.t. γ on both sides, we get:

$$\frac{dF}{d\gamma} = \frac{d}{d\gamma}\varphi(\gamma x) = \nabla\varphi(\gamma x) \cdot x = \langle \nabla\varphi(\gamma x), x \rangle \tag{2}$$

$$\frac{dF}{d\gamma} = \frac{d}{d\gamma}(\varphi(x) - \log \gamma) = -\frac{1}{\gamma}$$
 (3)

Thus by (2) and (3), we have:

$$\langle \nabla \varphi(\gamma x), x \rangle = -\frac{1}{\gamma}$$

Then by plugging in $\gamma = 1$, we have:

$$\langle \nabla \varphi(x), x \rangle = -1$$

Claim: $\nabla \varphi(x) = -\nabla^2 \varphi(x)x$

From the previous part, we have:

$$\nabla \varphi(x)^T x = -1$$

Compute the gradient of both sides, for the left hand side, we have:

$$\nabla(\nabla \varphi(x)^T x) = \nabla(\nabla \varphi(x))^T x + \nabla \varphi(x)^T \nabla x$$
$$= \nabla^2 \varphi(x) x + \nabla \varphi(x)^T \nabla x$$

For the right hand side, we have:

$$\nabla(-1) = 0$$

Thus we have:

$$\nabla^{2}\varphi(x)x + \nabla\varphi(x)^{T}\nabla x = 0$$

$$\Rightarrow \nabla\varphi(x)^{T}\nabla x = -\nabla^{2}\varphi(x)x$$

$$\Rightarrow \nabla\varphi(x)^{T}I_{d} = -\nabla^{2}\varphi(x)x$$

$$\Rightarrow \nabla\varphi(x) = -\nabla^{2}\varphi(x)x \quad \Box$$

Claim: $\langle x, \nabla^2 \varphi(x) x \rangle = 1$

From the previous part, we have:

$$\nabla \varphi(x) = -\nabla^2 \varphi(x) x$$

Multiply both sides by x^T , we have:

$$x^T \nabla \varphi(x) = -x^T \nabla^2 \varphi(x) x$$

Which is equivalent to the following by using $\langle \nabla \varphi(x), x \rangle = -1$:

$$\langle x, \nabla^2 \varphi(x) x \rangle = -\langle x, \nabla \varphi(x) \rangle = (-1) \times (-1) = 1$$

(2)

Suppose that $\varphi: \mathbb{R}^d \to [-\infty, \infty]$ is a twice differentiable function, and is strictly convex and logarithmically homogeneous, then the following holds by the definition:

$$\nabla^2 \varphi(x) > 0 \quad \forall x \in \mathbb{R}^d$$

$$\varphi(\gamma x) = \varphi(x) - \log \gamma, \quad \forall x \in \mathbb{R}^d, \gamma > 0.$$

Also, we have the following properties from the previous subsection:

$$\langle \nabla \varphi(x), x \rangle = -1 \tag{1}$$

$$\nabla \varphi(x) = -\nabla^2 \varphi(x) x \tag{2}$$

$$\langle x, \nabla^2 \varphi(x) x \rangle = 1 \tag{3}$$

Claim: $\nabla^2 \varphi(x) \ge \nabla \varphi(x) (\nabla \varphi(x))^T$, $\forall x \in \text{dom } \varphi$

The claim is equivalent to proving that:

$$\nabla^{2}\varphi(x) - \nabla\varphi(x) \left(\nabla\varphi(x)\right)^{T} \succeq 0$$

where $\succeq 0$ denotes positive semidefinite. Let z be any vector in \mathbb{R}^d , then we have:

$$z^{T} \left(\nabla^{2} \varphi(x) - \nabla \varphi(x) \left(\nabla \varphi(x) \right)^{T} \right) z = z^{T} \nabla^{2} \varphi(x) z - z^{T} \nabla \varphi(x) \left(\nabla \varphi(x) \right)^{T} z$$
$$= z^{T} \nabla^{2} \varphi(x) z - \left(\nabla \varphi(x)^{T} z \right)^{2} \tag{*}$$

Case 1: x = z

If x = z, then (*) becomes the following using (1) and (2):

$$\begin{split} z^T \left(\nabla^2 \varphi(x) - \nabla \varphi(x) \left(\nabla \varphi(x) \right)^T \right) z &= z^T \nabla^2 \varphi(x) x - \left(\left\langle \nabla \varphi(x), x \right\rangle \right)^2 \\ &= x^T (-\nabla \varphi(x)) - (-1)^2 \\ &= x^T (-\nabla \varphi(x)) - 1 \\ &= -\left\langle \nabla \varphi(x), x \right\rangle - 1 \\ &= -(-1) - 1 \\ &= 0 > 0 \end{split}$$

Case 2: $x \neq z$

Using (2) to replace $\nabla \varphi(x)$ with $-\nabla^2 \varphi(x)x$ in (*), and using the fact that $(\nabla^2 \varphi(x))^T = \nabla^2 \varphi(x)$ (the Hessian is symmetric):

$$\begin{split} z^T \left(\nabla^2 \varphi(x) - \nabla \varphi(x) \left(\nabla \varphi(x) \right)^T \right) z &= z^T \nabla^2 \varphi(x) z - \left(\nabla \varphi(x)^T z \right)^2 \\ &= z^T \nabla^2 \varphi(x) z - \left((-\nabla^2 \varphi(x) x)^T z \right)^2 \\ &= z^T \nabla^2 \varphi(x) z - \left(-\underbrace{x^T}_{A^T} \underbrace{(\nabla^2 \varphi(x))^T z}_{B} \right)^2 \\ &= z^T \nabla^2 \varphi(x) z - \underbrace{\left[(\nabla^2 \varphi(x))^T z \right]^T x x^T \left[(\nabla^2 \varphi(x))^T z \right]}_{B^T A A^T B} \\ &= z^T \nabla^2 \varphi(x) z - \underbrace{\left[x^T (\nabla^2 \varphi(x))^T z \right]^T \left[x^T (\nabla^2 \varphi(x))^T z \right]}_{z^T A^T B} \\ &= z^T \nabla^2 \varphi(x) z - \left| |x^T (\nabla^2 \varphi(x))^T z \right|^2 \\ &= z^T \nabla^2 \varphi(x) z - \left| |x^T (\nabla^2 \varphi(x)) z \right|^2 \end{split}$$

Let $H = \nabla^2 \varphi(x)$, then the above expression is equivalent to:

$$z^T H z - (x^T H z)^2$$

Let's first check that we can define the function

$$h: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, \quad h(u, v) = u^T H v$$

as the inner product on \mathbb{R}^d . ⁷

Using the fact that we assumed that $\nabla^2 \varphi(x) > 0$, so H is positive definite, thus by theorem ⁸, there exists a one and only one positive definite matrix $H^{1/2}$ (also symmetric) such that $H = H^{1/2}H^{1/2}$.

• Symmetry: For any $u, v \in \mathbb{R}^d$, we have:

$$\begin{split} h(u,v) &= u^T H v \\ &= u^T H^{1/2} H^{1/2} v \\ &= (H^{1/2} u)^T (H^{1/2} v) \\ &= (H^{1/2} v)^T (H^{1/2} u) \\ &= v^T H^{1/2} H^{1/2} u \\ &= v^T H u \\ &= h(v,u) \end{split}$$

⁷H. Amann and J. Escher, *Analysis I*, 1st ed., Birkhäuser Basel, 2005, p. 153.

 $^{^{8}\}mbox{``Square root of a matrix''}, Wikipedia, https://en.wikipedia.org/wiki/Square_root_of_a_matrix$

• Linearity: For any $\lambda, \mu \in \mathbb{R}$ and $t, u, v \in \mathbb{R}^d$, we have:

$$h(t, \lambda u + \mu v) = t^T H(\lambda u + \mu v)$$

$$= t^T H(\lambda u + \mu v)$$

$$= t^T H(\lambda u) + t^T H(\mu v)$$

$$= \lambda t^T H u + \mu t^T H v$$

$$= \lambda h(t, u) + \mu h(t, v)$$

• Positive definiteness: For any $u \in \mathbb{R}^d$, we have:

$$h(u, u) = u^T H u > 0$$
 since H is positive definite

9

Therefore, we have:

$$z^T H z - (x^T H z)^2 = \langle z, z \rangle_H - \langle x, z \rangle_H^2$$

Using the Cauchy-Schwarz inequality ¹⁰:

Cauchy-Schwarz inequality

Let $(E, (\cdot | \cdot))$ be an inner product space. Then

$$|(x \mid y)|^2 \le (x \mid x)(y \mid y), \qquad x, y \in E$$

We can derive the later equation using the fact that:

$$\langle x, x \rangle_H = x^T H x = x^T \nabla^2 \varphi(x) x = 1$$

(this is because property (3))

So we have:

$$\begin{aligned} \langle x, z \rangle_H^2 &\leq \langle x, x \rangle_H \langle z, z \rangle_H \\ &= 1 \times \langle z, z \rangle_H \\ &= \langle z, z \rangle_H \end{aligned}$$

Thus we have:

$$z^T H z - (x^T H z)^2 \ge 0 \qquad \Box$$

⁹I later found that we have "A function $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is an inner product on \mathbb{R}^n if and only if there exists a symmetric positive-definite matrix \mathbf{M} such that $\langle x,y \rangle = x^\top \mathbf{M} y$ for all $x,y \in \mathbb{R}^n$." on "Inner product space", Wikipedia, https://en.wikipedia.org/wiki/Inner_product_space

 $^{^{10}\}mathrm{H.}$ Amann and J. Escher, Analysis I, 1st ed., Birkhäuser Basel, 2005, p. 154.

(3)

We need to prove the following equivalence:

(1)
$$e^{-\varphi(x)}$$
 is concave

$$\iff$$
 (2) $\varphi(y) \ge \varphi(x) - \log(1 - \langle \nabla \varphi(x), y - x \rangle), \quad \forall x, y \in \text{dom}(\varphi)$

$$\iff$$
 (3) $\nabla^2 \varphi(x) \succeq \nabla \varphi(x) \nabla \varphi(x)^{\top}, \quad \forall x \in \text{dom}(\varphi)$

$$(1) \implies (2)$$

Let $f: \mathbb{R}^d \to \mathbb{R}$ be defined as $f(x) = e^{-\varphi(x)}$.

Suppose that $f(x) = e^{-\varphi(x)}$ is concave, then by the definition of concavity ¹¹:

Convex

A continuously differentiable function f(x) is called convex on \mathbb{R}^n if for any $x, y \in \mathbb{R}^n$, we have:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

If -f(x) is convex, then f(x) is concave.

this means that our assumption is equivalent to saying that $-e^{-\varphi(x)}$ is convex. Let $g(x) = -f(x) = -e^{-\varphi(x)}$ a convex function, using the fact that:

$$\nabla g(x) = \frac{d}{dx}(-e^{-\varphi(x)}) = e^{-\varphi(x)}\nabla\varphi(x)$$

we have the following:

For any $x, y \in \mathbb{R}^d$:

$$\begin{split} g(y) &\geq g(x) + \langle \nabla g(x), y - x \rangle \\ \Rightarrow &- e^{-\varphi(y)} \geq -e^{-\varphi(x)} + \langle e^{-\varphi(x)} \nabla \varphi(x), y - x \rangle \\ \Rightarrow &e^{-\varphi(y)} \leq e^{-\varphi(x)} - e^{-\varphi(x)} \langle \nabla \varphi(x), y - x \rangle \\ \Rightarrow &e^{-\varphi(y)} \leq e^{-\varphi(x)} (1 - \langle \nabla \varphi(x), y - x \rangle) \\ \Rightarrow &- \varphi(y) \leq -\varphi(x) + \log(1 - \langle \nabla \varphi(x), y - x \rangle) \\ \Rightarrow &\varphi(y) \geq \varphi(x) - \log(1 - \langle \nabla \varphi(x), y - x \rangle) \end{split}$$

$$(2) \implies (3)$$

¹¹Y. Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course*, 1st ed., Springer, New York, NY, 2004, p. 52.

Suppose (2) holds, so we have:

$$\varphi(y) \ge \varphi(x) - \log(1 - \langle \nabla \varphi(x), y - x \rangle), \quad \forall x, y \in \text{dom}(\varphi)$$

By plugging in y = x + h (h = y - x), with $||h|| \to 0$, we have:

$$\varphi(x+h) \ge \varphi(x) - \log(1 - \langle \nabla \varphi(x), h \rangle)$$
 (1)

Then by using the second-order approximation 12 :

Second-order approximation

Let f be twice differentiable at \bar{x} . Then

$$f(y) = f(\bar{x}) + \langle \nabla f(\bar{x}), y - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(y - \bar{x}), y - \bar{x} \rangle + o(||y - \bar{x}||^2)$$

Since φ is twice differentiable on its domain, we have:

$$\varphi(x+h) = \varphi(x) + \langle \nabla \varphi(x), h \rangle + \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2)$$
 (2)

Combining (1) and (2), we have:

$$\frac{\varphi(x)}{\varphi(x)} + \langle \nabla \varphi(x), h \rangle + \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge \frac{\varphi(x)}{\varphi(x)} - \log(1 - \langle \nabla \varphi(x), h \rangle)$$

$$\Rightarrow \langle \nabla \varphi(x), h \rangle + \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge -\log(1 - \langle \nabla \varphi(x), h \rangle)$$

$$\Rightarrow \langle \nabla \varphi(x), h \rangle + \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge -(-\sum_{n=1}^{\infty} \frac{\langle \nabla \varphi(x), h \rangle^n}{n})$$

$$\Rightarrow \langle \nabla \varphi(x), h \rangle + \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge \langle \nabla \varphi(x), h \rangle + \sum_{n=2}^{\infty} \frac{\langle \nabla \varphi(x), h \rangle^n}{n}$$

$$\Rightarrow \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge \sum_{n=2}^{\infty} \frac{\langle \nabla \varphi(x), h \rangle^n}{n}$$

$$\Rightarrow \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge \frac{\langle \nabla \varphi(x), h \rangle^n}{n}$$

$$\Rightarrow \frac{1}{2} \langle \nabla^2 \varphi(x)h, h \rangle + o(||h||^2) \ge \frac{\langle \nabla \varphi(x), h \rangle^n}{n}$$

$$(*)$$

Examine the terms on the right hand side by Cauchy-Schwarz inequality:

¹²Y. Nesterov, *Introductory Lectures on Convex Optimization: A Basic Course*, 1st ed., Springer, New York, NY, 2004, p. 19.

$$\frac{(\langle \nabla \varphi(x), h \rangle)^3}{3} \leq \frac{(||\nabla \varphi(x)|| \cdot ||h||)^3}{3}$$

Since $||h|| \to 0$ by our assumption, we can write:

$$\frac{\langle \nabla \varphi(x), h \rangle^2}{2} + \frac{\langle \nabla \varphi(x), h \rangle^3}{3} + \dots = o(||h||^2)$$

Substituting this bound back into (*), we have:

$$\begin{split} &\frac{1}{2}\langle \nabla^2 \varphi(x)h,h\rangle + o(||h||^2) \geq \frac{\langle \nabla \varphi(x),h\rangle^2}{2} + o(||h||^2) \\ \Rightarrow &\frac{1}{2}\langle \nabla^2 \varphi(x)h,h\rangle \geq \frac{\langle \nabla \varphi(x),h\rangle^2}{2} \\ \Rightarrow &\langle \nabla^2 \varphi(x)h,h\rangle \geq \langle \nabla \varphi(x),h\rangle^2 \\ \Rightarrow &(\nabla^2 \varphi(x)h)^T h \geq (\nabla \varphi(x)^T h)^T (\nabla \varphi(x)^T h) \\ \Rightarrow &h^T (\nabla^2 \varphi(x))^T h \geq h^T \nabla \varphi(x) (\nabla \varphi(x))^T h \\ \Rightarrow &h^T ((\nabla^2 \varphi(x))^T - \nabla \varphi(x) (\nabla \varphi(x))^T) h \geq 0 \\ \Rightarrow &\nabla^2 \varphi(x) - \nabla \varphi(x) (\nabla \varphi(x))^T \geq 0 \qquad \text{(since the Hessian is symmetric)} \end{split}$$

Thus, we have proved that:

$$\nabla^2 \varphi(x) \ge \nabla \varphi(x) (\nabla \varphi(x))^T, \quad \forall x, y \in \text{dom } \varphi$$

$$(3) \implies (1)$$

Suppose (3) holds, so we have:

$$\nabla^2 \varphi(x) \ge \nabla \varphi(x) (\nabla \varphi(x))^T, \quad \forall x, y \in \text{dom } \varphi$$

Since we need to show that $e^{-\varphi(x)}$ is concave, similar to the previous proof, we can define $g(x)=-f(x)=-e^{-\varphi(x)}$ (where $f(x)=e^{-\varphi(x)}$), and show that g(x) is convex.

By theorem 13 , we have:

 $^{^{13}{\}rm Y.}$ Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 1st ed., Springer, New York, NY, 2004, p. 55.

Theorem 2.1.4

Two times continuously differentiable function $f \in \mathcal{F}^2(\mathbb{R}^n)$ iff for any $x \in \mathbb{R}^n$, we have:

$$f''(x) \succeq 0$$

Therefore, we need to show that $\nabla^2 g(x) \succeq 0$. We derive the following using the Scalar-by-vector identity ¹⁴:

If u = u(x) and v = v(x) are vector functions of x, then:

$$\nabla(u \cdot v) = (\nabla u)v^T + u^T(\nabla v)$$

Hence, we have:

$$\begin{split} \nabla^2 g(x) &= \nabla (e^{-\varphi(x)} \nabla \varphi(x)) \\ &= \left[\frac{d}{dx} (e^{-\varphi(x)}) \right] (\nabla \varphi(x))^T + e^{-\varphi(x)} \nabla^2 \varphi(x) \\ &= -e^{-\varphi(x)} (\nabla \varphi(x)) (\nabla \varphi(x))^T + e^{-\varphi(x)} \nabla^2 \varphi(x) \\ &= e^{-\varphi(x)} \left[\nabla^2 \varphi(x) - (\nabla \varphi(x)) (\nabla \varphi(x))^T \right] \end{split}$$

By our assumption, we knew that $\nabla^2 \varphi(x) - \nabla \varphi(x) (\nabla \varphi(x))^T \succeq 0$, and multiplying by $e^{-\varphi(x)} > 0$ would not change the sign, therefore we have:

$$\nabla^2 g(x) \succeq 0$$

And the equivalence of the three statements is proved. \Box

(3)

We're given:

The ratio of the d stocks on the t-th day:

$$x_t \in \Delta = \left\{ x = (x[1], \dots, x[d]) \in \mathbb{R}_+^d : \sum_{i=1}^d x[i] = 1 \right\},$$

The price relative on the t-th day:

$$a_t = (a_t[1], \dots, a_t[d]) = \left(\frac{p_t^c[1]}{p_t^c[1]}, \dots, \frac{p_t^c[d]}{p_t^c[d]}\right) \in \mathbb{R}_+^d$$

 $^{^{14} ``}Matrix\ calculus",\ Wikipedia,\ \texttt{https://en.wikipedia.org/wiki/Matrix_calculus}$

where:

 $p_t^c[i]$: the closing price of the *i*-th stock on the *t*-th day $p_t^c[i]$: the opening price of the *i*-th stock on the *t*-th day

Suppose a_1, \ldots, a_T are i.i.d. random vectors, following known common probability distribution P.

Strategy:

$$x_t \in \underset{x \in \Delta}{\operatorname{argmin}} f(x); \quad f(x) := \mathsf{E} \left[-\log \langle a_t, x \rangle \right], \quad \forall t \in \mathbb{N}$$

Assume f strictly convex.

Since Alice has one unit of wealth before the first day, let $W_0 = 1$. And let W_{t-1} be the wealth of Alice before the t-th day.

So after the end of the t-th day, Alice would have her wealth W_t :

$$W_t = W_{t-1} \cdot x_t[1] \cdot a_t[1] + W_{t-1} \cdot x_t[2] \cdot a_t[2] + \dots + W_{t-1} \cdot x_t[d] \cdot a_t[d]$$

= $W_{t-1} \cdot \langle a_t, x_t \rangle$

For example, if $a_t[1] = 2$, then the price of the first stock on day t is twice as high as the price on day t-1, we can then calculate how much Alice invests in the first stock on day t, which is $W_{t-1} \cdot x_t[1]$, and multiply this price relative to get the wealth on day t.

Using this formula, we knew that:

$$\begin{aligned} W_1 &= W_0 \cdot \langle a_1, x_1 \rangle \\ W_2 &= W_1 \cdot \langle a_2, x_2 \rangle = W_0 \cdot \langle a_1, x_1 \rangle \cdot \langle a_2, x_2 \rangle \\ W_3 &= W_2 \cdot \langle a_3, x_3 \rangle = W_0 \cdot \langle a_1, x_1 \rangle \cdot \langle a_2, x_2 \rangle \cdot \langle a_3, x_3 \rangle \\ &\vdots \\ W_T &= W_0 \cdot \langle a_1, x_1 \rangle \cdot \langle a_2, x_2 \rangle \cdot \dots \cdot \langle a_T, x_T \rangle \end{aligned}$$

Which is the same as required since $W_0 = 1$, and we have:

$$W_T = \langle a_1, x_1 \rangle \cdot \langle a_2, x_2 \rangle \cdot \cdot \cdot \cdot \langle a_T, x_T \rangle$$

Our aim is to show that:

$$\lim_{T \to \infty} \mathsf{E}\left[\frac{W_T(x)}{W_T^*}\right] \le 1, \quad \forall x \in \Delta \tag{*}$$

where $W_T(x)$ (given by the problem statement) and W_T^* (by the previous subproblem) are defined as:

$$W_T(x) := \langle a_1, x \rangle \cdots \langle a_T, x \rangle = \prod_{t=1}^T \langle a_t, x \rangle$$
$$W_T^* := \langle a_1, x_1 \rangle \cdots \langle a_T, x_T \rangle = \prod_{t=1}^T \langle a_t, x_t \rangle$$

From Alice's strategy, we have:

$$x_t \in \underset{x \in \Lambda}{\operatorname{argmin}} f(x); \quad f(x) := \mathsf{E} \left[-\log \langle a_t, x \rangle \right], \quad \forall t \in \mathbb{N}$$

This means that Alice decides the ratio of the t-th day by finding the x that minimizes the function f, which is the expected loss of using x as the ratio.

By the fact that f is strictly convex and $x_t \in \underset{x \in \Delta}{\operatorname{argmin}} f(x)$, we have:

$$f(x_t) < f(x) \quad \forall x \in \Delta \setminus \{x_t\}$$

Replace by the definition of f, and using the fact that expectation is linear:

$$\begin{split} & \operatorname{E}\left[-\log\langle a_t, x_t\rangle\right] < \operatorname{E}\left[-\log\langle a_t, x\rangle\right] & \forall x \in \Delta \setminus \{x_t\} \\ \Rightarrow & -\operatorname{E}\left[\log\langle a_t, x_t\rangle\right] < -\operatorname{E}\left[\log\langle a_t, x\rangle\right] & \forall x \in \Delta \setminus \{x_t\} \\ \Rightarrow & \operatorname{E}\left[\log\langle a_t, x\rangle\right] - \operatorname{E}\left[\log\langle a_t, x_t\rangle\right] < 0 & \forall x \in \Delta \setminus \{x_t\} \\ \Rightarrow & \operatorname{E}\left[\log\langle a_t, x\rangle - \log\langle a_t, x_t\rangle\right] < 0 & \forall x \in \Delta \setminus \{x_t\} \\ \Rightarrow & \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \operatorname{E}\left[\log\langle a_t, x\rangle - \log\langle a_t, x_t\rangle\right] < 0 & \forall x \in \Delta \setminus \{x_t\} \\ \Rightarrow & \lim_{T \to \infty} \frac{1}{T} \operatorname{E}\left[\sum_{t=1}^T \left(\log\langle a_t, x\rangle - \log\langle a_t, x_t\rangle\right)\right] < 0, & \forall x \in \Delta \setminus \{x_t\} \end{split}$$

The above inequality would be equality only when $x_t = x$, so if we modify the set to not exclude x_t , we would have the following:

$$\lim_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\sum_{t=1}^T \left(\log \langle a_t, x \rangle - \log \langle a_t, x_t \rangle \right) \right] \leq 0, \quad \forall x \in \Delta$$

And this implies:

$$\begin{split} &\lim_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\sum_{t=1}^T \left(\log \langle a_t, x \rangle - \log \langle a_t, x_t \rangle \right) \right] \leq 0, \quad \forall x \in \Delta \\ \Rightarrow &\lim_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\sum_{t=1}^T \log \langle a_t, x \rangle - \sum_{t=1}^T \log \langle a_t, x_t \rangle \right] \leq 0, \quad \forall x \in \Delta \\ \Rightarrow &\lim_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\log \prod_{t=1}^T \langle a_t, x \rangle - \log \prod_{t=1}^T \langle a_t, x_t \rangle \right] \leq 0, \quad \forall x \in \Delta \\ \Rightarrow &\lim_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\log \left(\frac{\prod_{t=1}^T \langle a_t, x \rangle}{\prod_{t=1}^T \langle a_t, x_t \rangle} \right) \right] \leq 0, \quad \forall x \in \Delta \\ \Rightarrow &\lim_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\log \left(\frac{W_T(x)}{W_T^*} \right) \right] \leq 0, \quad \forall x \in \Delta \\ \Rightarrow &\mathsf{E} \left[\log \left(\frac{W_T(x)}{W_T^*} \right) \right] \leq 0, \quad \forall x \in \Delta \end{split}$$

By Jensen's inequality ¹⁵:

Jensen's inequality

If x is a random variable such that $x \in \text{dom } f$ with probability one, and f is convex, then we have:

$$f(\mathsf{E}[x]) \le \mathsf{E}[f(x)]$$

(3)

(4)

We're given:

¹⁵Boyd, S. P., and L. Vandenberghe, Convex Optimization, 1st ed., Cambridge University Press, Cambridge, UK, 2004, p. 77-78.

$$\begin{split} f: \mathbb{R}^d &\to \mathbb{R} & \text{ differentiable, may be non-convex} \\ \nabla f: & L\text{-Lipschitz}, \ L>0 \quad i.e. \\ & \|\nabla f(y) - \nabla f(x)\|_* \leq L\|y-x\|, \quad \forall x,y \in \mathbb{R}^d \\ & \text{ where } \|u\|_* := \max_{x \in \mathbb{R}^d, \|x\| \leq 1} \langle u,x \rangle \end{split}$$

And the definition of a point x being ϵ -stationary for some $\epsilon > 0$ if:

$$\|\nabla f(x)\|_* \le \varepsilon$$

(1)

Need to show:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \quad \forall x, y \in \mathbb{R}^d$$

The thought is to use the proof process of Lemma 1.2.3 16 :

Lemma 1.2.3

Let $f \in C_L^{1,1}(\mathbb{R}^n)$. Then for any $x, y \in \mathbb{R}^n$, we have:

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{L}{2} ||y - x||^2$$

Let $g(\tau) = x + \tau(y - x)$, where $\tau \in [0, 1]$, which means that g(0) = x and g(1) = y. Then we have:

$$\frac{d}{d\tau}g(\tau) = y - x$$
$$\nabla f(g(\tau)) = \nabla f(x + \tau(y - x))$$

Then, for all $x, y \in \mathbb{R}^d$, we have:

$$f(y) - f(x) = \int_{x}^{y} \nabla f(g(\tau)) \cdot dg(\tau)$$
$$= \int_{0}^{1} \nabla f(x + \tau(y - x)) \cdot (y - x) d\tau$$
$$= \int_{0}^{1} \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau$$

 $^{^{16}\}mathrm{Y}.$ Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 1st ed., Springer, New York, NY, 2004, p. 22-23.

Which is the same as the following, using the fact that the integral is linear, and f(x), y - x are not functions of τ :

$$f(y) = f(x) + \int_0^1 \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau$$

$$\Rightarrow f(y) = f(x) + \int_0^1 \langle \nabla f(x + \tau(y - x)) + \nabla f(x) - \nabla f(x), y - x \rangle d\tau$$

$$\Rightarrow f(y) = f(x) + \int_0^1 \langle \nabla f(x), y - x \rangle d\tau + \int_0^1 \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$\Rightarrow f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$
(*)

And we're given for any $x, y \in \mathbb{R}^d$:

$$\|\underbrace{\nabla f(y) - \nabla f(x)}_{\mathbf{u}}\|_* \le L\|y - x\|$$

$$\Rightarrow \max_{z \in \mathbb{R}^d, \|z\| \le 1} \langle \nabla f(y) - \nabla f(x), z \rangle \le L\|y - x\|$$

Let $y = x + \tau(y - x)$, then we have:

$$\|\nabla f(y) - \nabla f(x)\|_* = \|\nabla f(x + \tau(y - x)) - \nabla f(x)\|_* \le L\|x + \tau(y - x) - x\| = L\tau\|y - x\|$$

$$\Rightarrow \|\nabla f(x + \tau(y - x)) - \nabla f(x)\|_* \le L\tau\|y - x\| \tag{1}$$

Going back to the definition $||u||_* := \max_{x \in \mathbb{R}^d, ||x|| \le 1} \langle u, x \rangle$, this means that for any $z \in \mathbb{R}^d, ||z|| \le 1$:

$$\langle u, z \rangle \le ||u||_*$$

If we want to expand the definition to arbitrary $v \in \mathbb{R}^d$ (not necessarily $||v|| \le 1$), we can let $z = \frac{v}{||v||}$, then we have:

$$\langle u, z \rangle = \langle u, \frac{v}{\|v\|} \rangle = \frac{\langle u, v \rangle}{\|v\|} \le \|u\|_*$$

$$\Rightarrow \langle u, v \rangle \le \|u\|_* \|v\| \qquad \forall u, v \in \mathbb{R}^d$$

Let $u = \nabla f(x + \tau(y - x)) - \nabla f(x)$, v = y - x, then we have:

$$\langle \nabla f(x + \tau(y - x)) - \nabla f(x), \mathbf{y} - \mathbf{x} \rangle \le \|\nabla f(x + \tau(y - x)) - \nabla f(x)\|_* \|\mathbf{y} - \mathbf{x}\|_*$$
(2)

Multiply the result of (1) by ||y - x||, we have:

$$\|\nabla f(x + \tau(y - x)) - \nabla f(x)\|_{*} \le L\tau \|y - x\|$$

$$\Rightarrow \|\nabla f(x + \tau(y - x)) - \nabla f(x)\|_{*} \|y - x\| \le L\tau \|y - x\|^{2}$$
(3)

Combining (2) and (3), we have:

$$\langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle \le L\tau ||y - x||^2$$

Substituting this back into (*), we have:

$$\begin{split} f(y) & \leq f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 L\tau \|y - x\|^2 d\tau \\ \Rightarrow f(y) & \leq f(x) + \langle \nabla f(x), y - x \rangle + L \|y - x\|^2 \int_0^1 \tau d\tau \\ \Rightarrow f(y) & \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2 \end{split} \quad \Box$$

(2)

We're given the algorithm (generalization of gradient descent):

$$x_1 \in \mathbb{R}^d$$
 for every $t \in \mathbb{N}$
$$x_{t+1} \in \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \langle \nabla f(x_t), x - x_t \rangle + \frac{L}{2} \|x - x_t\|^2$$

Need to show:

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_*^2, \quad \forall t \in \mathbb{N}$$

Let the function to minimize in the update rule be g:

$$g: \mathbb{R}^d \to \mathbb{R}$$
$$g(x) = \langle \nabla f(x_t), x - x_t \rangle + \frac{L}{2} ||x - x_t||^2$$

Let $z = x - x_t$, then we have:

$$g(x) = \langle \nabla f(x_t), z \rangle + \frac{L}{2} ||z||^2$$

So:

$$\arg\min_{x} g(x) = x_t + \arg\min_{z} \{ \langle \nabla f(x_t), z \rangle + \frac{L}{2} ||z||^2 \}$$

Let $h(z) = \langle \nabla f(x_t), z \rangle + \frac{L}{2} ||z||^2$, we can rearrange the equation as:

$$h(z) - \frac{L}{2} ||z||^2 = \langle \nabla f(x_t), z \rangle$$

Using the following proposition ¹⁷:

Proposition: Equivalent conditions of strong convexity

A differentiable function f is strongly convex with constant $\mu > 0$

$$\Leftrightarrow g(x) = f(x) - \frac{\mu}{2} ||x||^2 \text{ is convex}, \forall x$$

Since $\langle \nabla f(x_t), z \rangle$ is affine, $h(z) - \frac{L}{2} ||z||^2$ is convex, so h(z) is strongly convex with convexity parameter L.

Then, taking the gradient of h(z) with respect to z, we have:

$$\partial h(z) = \frac{d}{dz} \left(\langle \nabla f(x_t), z \rangle + \frac{L}{2} ||z||^2 \right)$$
$$= \nabla f(x_t) + \partial \left(\frac{L}{2} ||z||^2 \right)$$

Here we can be sure that the derivative of $\langle \nabla f(x_t), z \rangle$ is $\nabla f(x_t)$, since this term is linear in z, and a lienar map is differentiable, however, we need to take the subdifferential for $\frac{L}{2}||z||^2$, since the norm is uncertain. ¹⁸

Using the following theorem ¹⁹:

¹⁷Strong Convexity, available at: https://xingyuzhou.org/blog/notes/strong-convexity, accessed: Apr. 21, 2025.

¹⁸The definition of subdifferential is from Nesterov, Y. N., Introductory Lectures on Convex Optimization: A Basic Course, 1st ed., Springer, New York, NY, 2004, p. 126.

¹⁹Nesterov, Y. N., Introductory Lectures on Convex Optimization: A Basic Course, 1st ed., Springer, New York, NY, 2004, p. 129.

Theorem 3.1.15

We have $f(x^*) = \min_{x \in \text{dom } f} f(x)$ iff.

$$0 \in \partial f(x^*)$$

Since we knew that h(z) is strongly convex, this means that the above equation is equivalent to saying there exists an unique minimizer z^* for h(z) such that:

$$0 \in \partial h(z^*)$$

so there exists $u \in \partial(\frac{1}{2}||z||^2)$ such that:

$$\nabla f(x_t) + Lu = 0$$

$$\Rightarrow u = -\frac{1}{L} \nabla f(x_t)$$

Thus, the optimal update rule is:

$$x_{t+1} = x_t - \frac{1}{L}\nabla f(x_t)$$

A clearer presentation of the above process is as the image below:

$$x_{t+1} = x_t - \frac{1}{L} \nabla f(x_t)$$
presentation of the above process is as the image below:

$$f_{t+1} = x_t - \frac{1}{L} \nabla f(x_t)$$

Define:

$$\phi: \mathbb{R}^d \to \mathbb{R}$$

$$\phi(z) = \frac{L}{2} ||z||^2$$

Then the conjugate 20 of ϕ is defined as:

 $^{^{20}\}mathrm{S}.$ Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004, p. 91. Available online at https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf.

$$\phi^*(v) = \sup_{z \in \mathbb{R}^d} (\langle v, z \rangle - \phi(z))$$
$$= \sup_{z \in \mathbb{R}^d} \left(\langle v, z \rangle - \frac{L}{2} ||z||^2 \right)$$

Let $z = \alpha z'$, where |||z'|| = 1, then:

$$\phi^*(v) = \sup_{z \in \mathbb{R}^d} \left(\alpha \langle v, z' \rangle - \frac{L}{2} \langle \alpha z', \alpha z' \rangle \right)$$
$$= \sup_{\alpha \in \mathbb{R}} \left(\alpha \langle v, z' \rangle - \frac{L\alpha^2}{2} \right)$$

And by the definition of dual norm, we can derive the inequality (generalization of Cauchy-Schwarz inequality) ²¹:

$$\alpha \langle v, z' \rangle \le \alpha \|v\|_* \|z'\| = \alpha \|v\|_*$$

And the original conjugate can be rewritten as:

$$\phi^*(v) = \sup_{\alpha \in \mathbb{R}} \left(\alpha \|v\|_* - \frac{L}{2} \alpha^2 \right)$$

Taking the derivative:

$$\frac{d}{d\alpha}\left(\alpha \|v\|_* - \frac{L}{2}\alpha^2\right) = \|v\|_* - L\alpha \implies \alpha = \frac{\|v\|_*}{L}$$

Plugging back in:

$$\phi^*(v) = \frac{\|v\|_*}{L} \cdot \|v\|_* - \frac{L}{2} \cdot \frac{\|v\|_*^2}{L^2}$$
$$= \frac{\|v\|_*^2}{L} - \frac{\|v\|_*^2}{2L}$$
$$= \frac{\|v\|_*^2}{2L}$$

By Fenchel's inequality 22 , which is stated as follows:

²¹S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, 2004,

p. 637. $$^{22}{\rm S.}$ Boyd and L. Vandenberghe, Convex~Optimization, Cambridge University Press, 2004, p. 94.

Fenchel's inequality

For all x, y:

$$f(x) + f^*(y) \ge \langle x, y \rangle$$

Therefore, we have for all $z, v \in \mathbb{R}^d$:

$$\phi(z) + \phi^*(v) \ge \langle z, v \rangle$$

$$\Rightarrow \frac{L}{2} ||z||^2 + \frac{||v||_*^2}{2L} \ge \langle z, v \rangle$$

Let $v = \nabla f(x_t)$, and since $z = x - x_t$, which means that choosing the optimal z is equivalent to choosing the optimal x, which is x_{t+1} , so $z = x_{t+1} - x_t$, and we have:

$$\frac{L}{2} \|x_{t+1} - x_t\|^2 + \frac{1}{2L} \|\nabla f(x_t)\|_*^2 \ge \langle x_{t+1} - x_t, \nabla f(x_t) \rangle$$

By the result of subproblem (1), and plugging in $y = x_{t+1}$ and $x = x_t$, we have:

$$f(x_{t+1}) \leq f(x_t) + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{L}{2} \|x_{t+1} - x_t\|^2$$

$$\Rightarrow f(x_{t+1}) - f(x_t) \leq \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{L}{2} \|x_{t+1} - x_t\|^2$$

$$\Rightarrow f(x_{t+1}) - f(x_t) \leq \frac{1}{2L} \|\nabla f(x_t)\|_*^2 + \frac{L}{2} \|x_{t+1} - x_t\|^2 + \frac{L}{2} \|x_{t+1} - x_t\|^2$$

(3)

Claim:

$$\min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \frac{2L \left[f(x_{1}) - f(x_{t+1}) \right]}{t}, \quad \forall t \in \mathbb{N}$$

By the result of the second subproblem, we have:

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_*^2 \qquad \forall t \in \mathbb{N}$$

And since this holds for all $t \in \mathbb{N}$, let $t = 1, \dots, t$:

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_*^2 \qquad (t = t)$$

$$f(x_t) - f(x_{t-1}) \le -\frac{1}{2L} \|\nabla f(x_{t-1})\|_*^2 \qquad (t = t - 1)$$

$$\vdots$$

$$f(x_3) - f(x_2) \le -\frac{1}{2L} \|\nabla f(x_2)\|_*^2 \qquad (t = 2)$$

$$f(x_2) - f(x_1) \le -\frac{1}{2L} \|\nabla f(x_1)\|_*^2 \qquad (t = 1)$$

Summing up these inequalities, the terms $f(x_t)$ to $f(x_2)$ on the left hand side will cancel out, and we have:

$$f(x_{t+1}) - f(x_1) \le -\frac{1}{2L} \sum_{i=1}^{t} \|\nabla f(x_i)\|_*^2$$

$$\Rightarrow f(x_1) - f(x_{t+1}) \ge \frac{1}{2L} \sum_{i=1}^{t} \|\nabla f(x_i)\|_*^2$$

$$\Rightarrow \frac{2L [f(x_1) - f(x_{t+1})]}{t} \ge \frac{1}{t} \sum_{i=1}^{t} \|\nabla f(x_i)\|_*^2 \quad \forall t \in \mathbb{N}$$
(1)

Since:

$$\min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \|\nabla f(x_{1})\|_{*}^{2}$$

$$\min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \|\nabla f(x_{2})\|_{*}^{2}$$

$$\vdots$$

$$\min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \|\nabla f(x_{t})\|_{*}^{2}$$

Summing up these inequalities, we have:

$$t \min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \sum_{i=1}^{t} \|\nabla f(x_{i})\|_{*}^{2}$$

$$\Rightarrow \min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \frac{1}{t} \sum_{i=1}^{t} \|\nabla f(x_{i})\|_{*}^{2}$$

Plugging this back into (1), we have:

$$\min_{1 \le \tau \le t} \|\nabla f(x_{\tau})\|_{*}^{2} \le \frac{2L\left[f(x_{1}) - f(x_{t+1})\right]}{t}, \quad \forall t \in \mathbb{N} \qquad \Box$$

(4)

We're given the algorithm:

$$x_1 \in \mathbb{R}^d$$

For every $t \in \mathbb{N}$, $x_{t+1} = x_t - \frac{\|\nabla f(x_t)\|_1}{L} \operatorname{sign}(\nabla f(x_t))$

where:

$$\operatorname{sign}(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases} \text{ for any } x \in \mathbb{R}$$

$$\operatorname{sign}(v) = \begin{bmatrix} \operatorname{sign}(v[1]) \\ \vdots \\ \operatorname{sign}(v[d]) \end{bmatrix} \text{ for any } v = \begin{bmatrix} v[1] \\ \vdots \\ v[d] \end{bmatrix} \in \mathbb{R}^d$$

Denote:

$$\nabla f(x_t) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x_t) \\ \vdots \\ \frac{\partial f}{\partial x_d}(x_t) \end{bmatrix} \in \mathbb{R}^d$$

Then:

$$\operatorname{sign}(\nabla f(x_t)) = \begin{bmatrix} \operatorname{sign}(\frac{\partial f}{\partial x_1}(x_t)) \\ \vdots \\ \operatorname{sign}(\frac{\partial f}{\partial x_t}(x_t)) \end{bmatrix} , \text{ and } \|\nabla f(x_t)\|_1 = \sum_{i=1}^d \left| \frac{\partial f}{\partial x_i}(x_t) \right|$$

Note that l_1 -norm is nondifferentiable, so to find the subgradient, we consider l_1 -norm in the following form 23

$$||x||_1 = {\max s^T x \mid s_i \in {-1, 1}}$$

²³S. Boyd and L. Vandenberghe, *Subgradients*, Notes for EE364b, Stanford University, Winter 2006-07, Apr. 13, 2008. Available at: https://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf, p. 5.

And we could find the unique s by choosing $s_i = +1$ if $x_i \geq 0$, and $s_i = -1$ if $x_i < 0$, this is equivalent to saying that for the case $x = \nabla f(x_t)$, if $\frac{\partial f}{\partial x_i}(x_t) \geq 0$, then $s_i = 1$, otherwise $s_i = -1$, and we could see that s is actually $\mathrm{sign}(\nabla f(x_t))$.

Thus, the update rule of this algorithm can be rewritten as:

$$x_{t+1} = x_t - \frac{s^T \nabla f(x_t)}{L} s$$

In the second subproblem, we've shown that the optimal update rule is:

$$x_{t+1} = x_t - \frac{1}{L}\nabla f(x_t)$$