Протокол тайного голосования «Все против одного»

Основная идея состоит в том, что избиратели сначала составляют партию голосов, проставляя каждому кандидату случайное число (возможно отрицательное) голосов, затем, — такую партию, чтобы, при сложении с первой, получился только один голос за одного кандидата, которого они выбрали. Далее, каждую партию голосов разделяют еще на партии голосов, равную количеству избирателей, и подписывают уникальным кодом, отправляют одному из избирателей. Затем, каждый избиратель сдает чужие партии голосов счетчику.

Алгоритм

Условные обозначения:

V — регистратор (validator), C — счетчик (counter), P_i — избиратель, n — кол-во избирателей, k — кол-во кандидатов, IP_i — IP адрес избирателя

 $A_1...A_i...A_n$ – голоса избирателей, где A_i – вектор из k чисел, из которых только одна единица, все остальные нули (единица, которая стоит с порядковым номером N, означает, что избиратель проголосовал, за кандидата с порядковым номером N)

 $A_i = B_i + C_i$, где B_i - первая часть голоса, C_i – вторая часть голоса. B_i и C_i - тоже вектора из k чисел, каждое число может принимать значение от (-4*n) до (4*n)

$$\mathsf{B}_{ij}$$
 – j-ая часть первой части голоса избирателя $\mathsf{P}_{\mathsf{i}}.$ $B_i = \sum_{i=1}^n B_{ij}$. C_{i} - аналогично $C_i = \sum_{i=1}^n C_{ij}$

$$A_i = B_i + C_i = \sum_{i=1}^n B_{ij} + \sum_{i=1}^n C_{ij}$$
 Пример: Пусть в выборах участвует 4 кандидата и 2 избирателя и P_1

отдает свой голос за 3-его кандидата, тогда A_1 = (0,0,1,0), B_1 = (3,-3,2,0) (заполняется случайно), C_1 = (-3,3,-1,0), B_1 = (2, -1, 1, 0) + (1,-2,1,0), C_1 = (-2, 1, 0, 0) + (-1,2,-1,0)

Итого:
$$A_1 = (2, -1, 1, 0) + (1, -2, 1, 0) + (-2, 1, 0, 0) + (-1, 2, -1, 0) = (0, 0, 1, 0)$$

- 1. V составляет список избирателей и кандидатов. Генерирует закрытый и открытый ключ ($V_{private}$ и V_{public}) Публикует список кандидатов и V_{public} . Дожидается подключения всех P_i и C
- 2. P_i шифрует свои личные данные (name_i) ключом V_{public} и отправляет их V. Генерирует ($P_{iprivate}$ и $P_{ipublic}$), публикует $P_{ipublic}$
- 3. V расшифровывает (name_i)* ключом $V_{private}$, если (name_i) был в списке избирателей, сохраняет IP_i
- 4. С генерирует закрытый и открытый ключ (С_{private} и С_{public}) подключается к V

5. Когда к V подключатся все P_i и C, V шифрует все (IP_i) ключом C_{public} и передает C.

Генерирует n таких векторов D_i, что $\sum_{i=1}^n D_i = 0$, и подписывает их уникальным шифром

В систему вводятся D_i - голоса «мертвых душ», чтобы, если все (P_i, i ≠ I) сговорились против одного P_i, они не смогли узнать его голос

Каждому Р_і передает все (IP_i) и D_i, зашифрованные ключом Р_{іриblіс}

- 6. P_i получает и расшифровывает список из (IP_i)*, делает свой выбор A_i и составляет случайным образом B_i , а C_i рассчитывает ($C_i = A_i B_i$). B_i и C_i разбивает на части $B_{i1}+...+B_{ij}+...B_{in}$ и $C_{i1}+...+C_{ij}+...C_{in}$. Каждую часть B_{ij} и C_{ij} подписывает уникальным кодом, шифрует сначала ключом C_{public} , затем ключом $P_{jpublic}$ наборы: (УК+ P_{ij}), (УК+ P_{ij}) и передает зашифрованное каждому P_j , используя IP_j
- 7. Каждый P_j дожидается получения n пакетов из $((YK+B_{ij})^*)^*$, $((YK+C_{ij})^*)^*$, расшифровывает полученное ключом $P_{jprivate}$ и отправляет счетчику $((YK+B_{1j})^*+...+(YK+B_{nj})^*)+((YK+C_{1j})^*+...+(YK+C_{nj})^*)+D_j^*$
- 8. С получает n пакетов (УК+В_{ij})*, (УК+С_{ij})* и D_j*, проверяет, что они пришли от пользователя из IP_i, расшифровывает их ключом С_{private}, публикует (УК+В_{ij}), (УК+С_{ij}) и D_j, подсчитывает результат голосования $A = \sum_{i=1}^n B_{ij} + \sum_{i=1}^n C_{ij} + \sum_{i=1}^n D_i$ Если сумма чисел вектора A не равна n, то результат считается фальсифицированным. Публикует результат A

Критический анализ

1. V: IP_i <-> name_i

V знает связь, имя каждого избирателя и его адрес. Больше ему ничего не известно

2. P_i: IP_i <-> (B_{ii} и C_{ii})* или (C_{ii} и B_{ii})* или (B_{ii} и B_{ii})* или (C_{ii} и C_{ii})*

Каждый отдельный P_i знает, с какого адреса ему пришел пакет с кусочком голоса, но он не знает имени человека с известным адресом, и содержимое пакета тоже не известно, т.к. первоначально он зашифрован ключом C_{public} .

Чтобы V и C не могли перехватить пакет от одного избирателя к другому, он шифруется ключом $P_{ipublic}$ (получателя)

3. $P_2...P_n$: $IP_i <-> (B_{i2}...B_{in} \ u \ C_{i2}...C_{in})^*$

Если все избиратели, кроме одного (P_1) сговорятся против P_1 , то они смогут собрать все кусочки, кроме тех, которые P_1 отправляет счетчику сам.

Сговорившиеся избиратели смогли бы узнать голос P_1 , но все собранные кусочки зашифрованы

4. C: $IP_i \mid (B_i \ \mu \ C_i) = A_i$

С знает, с какого адреса ему пришел набор пакетов голосов, из которых 2 пакета принадлежат отправителю, но не знает какие именно.

С не может подменить голоса, так как каждый кусочек голоса подписан и его надо опубликовать