First Principle 2017-Fall Homework 1 Solution

Kai-Hsin Wu (吳愷訢)*

Department of Physics and Center of Theoretical Sciences, National Taiwan University, Taipei 10607, Taiwan (Dated: September 29, 2017)

1. The hcp structure is shown as following:

FIG. 1. hcp structure

we can calculate the c/a ratio as:

$$x \equiv \frac{c}{2}$$

$$x = \sqrt{a^2 - (\frac{a}{\sqrt{3}})^2} = a \cdot \sqrt{\frac{2}{3}}$$

$$c/a = 2\sqrt{\frac{2}{3}}_{\#}$$

2. (a) for all $n_i \in$ even with primitive vectors $(2\hat{x}, 2\hat{y}, 2\hat{z})$, the lattice is a simple cubic lattice with side length 2 origin at $(0\hat{x}, 0\hat{y}, 0\hat{z})$

for all $n_i \in$ odd with primitive vectors $(2\hat{x}, 2\hat{y}, 2\hat{z})$, the lattice is also a simple cubic lattice with side length 2 include point $(0\hat{x}, 0\hat{y}, 0\hat{z})$

- (b) In the case where $\sum_i n_i$ is even, this is a simple cubic lattice with side length $\sqrt{3}$ (which can be thought as a $\sqrt{3}$ scaled + 45^o rotated version of sc.)
- 3. Let's defined the primitive reciprocal lattice is formed by $\langle G_1, G_2, G_3 \rangle$. Which defined as :

$$G_i \cdot b_j = 2\pi \delta_{ij} \tag{1}$$

^{*} r05222003@ntu.edu.tw

With the known relation:

$$b_i \equiv \frac{2\pi(a_j \times a_k)}{|a_1 \cdot (a_2 \times a_3)|}$$

$$a_i \cdot b_j = 2\pi\delta_{ij}$$
(2)

we can see:

$$G_i = a_{i\#} \tag{3}$$

- 4. The honeycomb lattice is formed by primitive vectors as the same as parallelogram, with basis contain 2-sites. In which the reciprocal vectors also forms parallelogram. Since the Brillouin zone is just the Wigner-Seitz cell in reciprocal space. The Wigner-Seitz cell formed from parallelogram is hexagonal structure.
- 5.
- 6. (a) *GaAs*

FIG. 2. GaAs zinc-blende structure

POSCAR:

GaAs		
5.653 1.000000000	0.000000000	0.000000000
0.000000000	1.000000000	0.000000000
0.000000000	0.000000000	1.000000000
Ga As		
4 4		
Direct		
0.000000000	0.000000000	0.000000000
0.000000000	0.500000000	0.500000000
0.500000000	0.500000000	0.000000000
0.500000000	0.000000000	0.500000000
0.750000000	0.250000000	0.750000000
0.250000000	0.250000000	0.250000000
0.250000000	0.750000000	0.750000000
0.750000000	0.750000000	0.250000000

(b) NaCl

FIG. 3. NaCl fcc structure

POSCAR:

0.000000000	0.000000000
1.000000000	0.000000000
0.000000000	1.000000000
0.000000000	0.000000000
0.500000000	0.500000000
0.000000000	0.500000000
0.500000000	0.000000000
0.500000000	0.500000000
0.000000000	0.000000000
0.500000000	0.000000000
0.000000000	0.500000000
	1.000000000 0.000000000 0.000000000 0.500000000

(c) SrTiO₃

FIG. 4. SrTiO3 sc structure

POSCAR:

SrTiO3		
3.98805		
1.000000000	0.000000000	0.000000000
0.000000000	1.000000000	0.000000000
0.000000000	0.000000000	1.000000000
Sr Ti O		
1 1 3		
Direct		
0.500000000	0.500000000	0.500000000
0.000000000	0.000000000	0.000000000
0.500000000	0.000000000	0.000000000
0.000000000	0.500000000	0.000000000
0.000000000	0.000000000	0.500000000

(d) $2HMoS_2$

FIG. 5. MoS2-2H

POSCAR:

2H-MoS2		
3.19		
1.000000000	0.000000000	0.000000000
-0.500000000	0.866025403	0.000000000
0.000000000	0.000000000	4.664263323
Mo S		
2 4		
Direct		
0.3333333333	0.666666667	0.250000000
0.666666666	0.333333333	0.750000000
0.3333333333	0.666666667	0.855174000
0.3333333333	0.666666667	0.644826000
0.666666666	0.333333333	0.355174000
0.666666666	0.333333333	0.144826000

7.

8. Considering the block wave function $\psi_{n,\vec{k}}(r)$ with band index n, and wave vector \vec{k} . The Wannier functions center at lattice position \vec{R} can be written in terms of inverse Fourier transform with constant κ :

$$\phi_n(\vec{r} - \vec{R}) = \kappa \sum_{\vec{k}} e^{-i\vec{k} \cdot \vec{R}} \psi_{n,\vec{k}}(\vec{r})$$
(4)

Thus:

$$\int \phi_{n}(\vec{r} - \vec{R})\phi_{n'}(\vec{r} - \vec{R}')d^{D}\vec{r}$$

$$= \kappa^{2} \sum_{\vec{k},\vec{h}} e^{i\vec{k}\cdot\vec{R}}e^{-i\vec{h}\cdot\vec{R}'} \int \psi_{n,\vec{k}}^{*}(\vec{r})\psi_{n',\vec{h}}(\vec{r})d^{D}\vec{r}$$

$$= \kappa^{2} \sum_{\vec{k},\vec{h}} e^{i\vec{k}\cdot\vec{R}}e^{-i\vec{h}\cdot\vec{R}'}\delta_{n,n'}\delta_{\vec{k},\vec{h}'}$$

$$= \kappa^{2} \delta_{n,n'} \sum_{\vec{k}} e^{i\vec{k}\cdot(\vec{R}-\vec{R}')}$$

$$= \kappa^{2} N \delta_{n,n'} \delta_{\vec{R},\vec{R}'}$$

$$\propto \delta_{n,n'} \delta_{\vec{R},\vec{R}',\#}$$
(5)

The constant κ can be derived by the normalization:

$$\begin{split} &\int \phi_n(\vec{r}-\vec{R})\phi_{n'}(\vec{r}-\vec{R}')d^D\vec{r} = \delta_{n,n'}\delta_{\vec{R},\vec{R}'}\\ &\kappa^2 N = 1\\ &\kappa = \frac{1}{\sqrt{N}}_{\#} \end{split}$$