>) neue fische School and Pool for Digital Talent

Motivation

Intro Gradient descent

Learning rate

Summary

Part 1 Motivation

Orientation

Where is Gradient Descent used in the Data Science Lifecycle?

06 PREDICTIVE MODELING:

- select a ML algorithm
- train the ML model
- evaluate the performance
- make predictions

BUSINESS UNDERSTANDING Ask relevant questions and define objectives for the problem that needs to be tackled. DATA VISUALIZATION Communicate the findings with key stakeholders using plots and interactive

LIFECYCLE

DATA SCIENCE

PREDICTIVE MODELING

Train machine learning models, evaluate their performance, and use them to make predictions.

05

FEATURE ENGINEERING

Select important features and construct more meaningful ones using the raw data that you have.

03

02

DATA MINING

Gather and scrape the data necessary for the

project.

DATA CLEANING

Fix the inconsistencies within the data and handle the missing values.

DATA EXPLORATION

Form hypotheses about your defined problem by visually analyzing the data.

Recap of Optimization of Linear Regression with OLS

$$y = b_0 + b_1 \cdot x + e$$

$$e_i = y_i - \hat{y}_i$$

OLS:

minimize the sum of squared residuals

$$\sum_{i=1}^n e_i^2$$

results in Normal Equation:

$$b = \left(X^TX\right)^{-1}X^Ty$$

Part 2 Intro Gradient descent

Overview

Definition

Gradient Descent is an **iterative optimization algorithm** to find the minimum of a function.

→ e.g. of a cost function

Training = Finding the best fitting line for our data

We get to the best fitting line by minimizing the cost function:

$$J(b_0,b_1) \, = \, \sum e_i^2 \, = \, \sum \left(y_i \, - \, \hat{y}_i
ight)^2 \, = \, \sum \left(y_i \, - \, b_0 \, - \, b_1 x_i
ight)^2$$

Overview

When to use Gradient Descent?

- GD is a simple optimization procedure that can be used for many machine learning algorithms (eg. linear regression, logistic regression, SVM)
- used for "Backpropagation" in Neural Nets (variations of GD)
- can be used for online learning (needed when Data cannot be stored on only one computer)
- gives **faster results** for problems with many features (computationally simpler) (double nr. of features: Normal Equation will take 5-8 times longer)

How to use Gradient Descent?

First Step

Define Model

Example: least squares with one feature

$$\hat{y} = b_0 + b_1 \cdot x$$

Second Step

Define Cost Function

We get to the best fitting line by minimizing the cost function:

$$J(b_0,b_1) \, = \, \sum e_i^2 \, = \, \sum \left(y_i \, - \, \hat{y}_i
ight)^2 \, = \, \sum \left(y_i \, - \, b_0 \, - \, b_1 x_i
ight)^2$$

$$\min(J(b_0,b_1))$$

Third Step

Initialize Gradient Descent

Deliberately set some random starting values b

Fourth Step

Gradient Descent

Start descent:

 Take derivatives of the cost function with respect to your parameters b

slope = -5.7

Fourth Step

Gradient Descent

Start descent:

- Take derivatives with respect to your parameters b
- Set your learning rate (step-size)

$$lpha=0.1 \hspace{1.5cm} slope=-5.7$$

Fourth Step

Gradient Descent

Start descent:

- ullet Take derivatives with respect to your parameters b
- Set your learning rate (step-size)
- Adjust your parameters (step)

$$lpha=0.1$$
 $slope=-5.7$ $step=lpha\cdot derivative of cost function $b_0^{new}=b_0^{old}-step \ b_0^{new}=0.05-(0.1\cdot(-5.7)) \ b_0^{new}=0.62$$

Fifth Step

Gradient Descent

Start descent:

- ullet Take derivatives with respect to your parameters b
- Set your learning rate (step-size)
- Adjust your parameters (step)

$$egin{aligned} step &= lpha \cdot derivative \ of \ cost \ function \ b_0^{new} &= b_0^{old} - step \end{aligned}$$

Repeat till there is no further improvement

Part 3 Learning Rate

Gradient Descent - Hyperparameter

Learning Rate

It is important to find a good value for the learning rate!

Gradient Descent - Hyperparameter

Learning Rate

It is important to find a good value for the learning rate!

Problems

Two main challenges of Gradient Descent

The MSE cost function for linear regression is a convex function, it just has one global minimum.

This is not always the case. Problems are:

- local minima
- plateaus

Convex: If you pick two random points the line that is connecting them will never below the curve.

Part 4 Summary

Algorithm - Summary

Gradient Descent summed up

- 1. Define model
- 2. Define the cost function
- 3. Deliberately set some starting values
- 4. Start descent:
- Take derivatives with respect to parameters
- Set your learning rate (step-size)
- Adjust your parameters (step)
- 5. Repeat 4. till there is no further improvement

References

Gradient Descent Step by Step

