# Sprawozdanie z ćwiczenia A3

Dawid Legutki Piotr Merynda Damian Paciuch Maciej Podsiadło Łukasz Radzio

Data ćwiczenia: 23.03.2015

### 1 Dane znamionowe

#### 1.1 Prądnica synchroniczna



#### 1.2 Silnik prądu stałego



#### 2 Charakterystyka biegu jałowego

|    | Zwięks | zanie If | Zmniejszanie If |      |        |
|----|--------|----------|-----------------|------|--------|
| lf |        | Us       | lf              |      | Us     |
|    | 0,07   | 30,68    |                 | 9,53 | 445,68 |
|    | 1,27   | 101,10   |                 | 8,49 | 432,60 |
|    | 2,32   | 176,57   |                 | 7,75 | 421,82 |
|    | 2,90   | 216,94   |                 | 6,67 | 403,02 |
|    | 3,87   | 275,33   |                 | 5,68 | 380,02 |
|    | 4,97   | 330,86   |                 | 4,59 | 342,34 |
|    | 5,97   | 367,94   |                 | 3,86 | 307,08 |
|    | 7,13   | 401,12   |                 | 2,87 | 249,14 |
|    | 7,85   | 416,22   |                 | 2,00 | 188,53 |
|    | 8,59   | 429,68   |                 | 1,01 | 111,37 |
|    | 9,53   | 445,68   |                 | 0,01 | 30,24  |

Charakterystykę biegu jałowego wykonywaliśmy przy rozwarty uzwojeniu twornika. Pomiary wykonywaliśmy najpierw zwiększając natężenie prądu wzbudnika od 0 do 10A, a następnie je zmniejszając.



Na wykresie wyraźnie widoczna jest pętla histerezy. Ma ona związek z magnesowaniem wirnika, przez co w drugim pomiarze wytwarzany strumień jest silniejszy, a więc i napięcie indukowane jest silniejsze. Dla dużych wartości natężenia napięcie wzrasta z prądem coraz wolniej. Jest to spowodowane nasyceniem magnetycznym rdzenia wzbudnika.

### 3 Charakterystyka zwarcia



W myśl reguły Lenza wytworzone pole magnetyczne przeciwdziała przyczynie która je wzbudziła. Zmiany pola indukujące prąd w tworniku są wprost proporcjonalne do natężenia prądu wzbudnika oraz prędkości obrotowej (dla maszyny synchronicznej const). Ze względu na zwarcie obwodu twornika nic nie ogranicza jego reakcji więc charakterystyka jest liniowa.

# 4 Charakterystyka zewnętrzna $\cos \phi = 1$

|       | Charakterystyka zewnętrzna cosφ=1 |        |                |      |        |                |
|-------|-----------------------------------|--------|----------------|------|--------|----------------|
| If=7A |                                   |        | If=6.3A        |      |        |                |
| I     |                                   | U      | opór           | Is   | Us     | opór           |
|       | 0,01                              | 394,15 | 0              | 0,01 | 380,64 | 0              |
|       | 1,54                              | 386,82 | R1             | 1,48 | 373,31 | R1             |
|       | 2,92                              | 368,14 | R1,R2          | 2,76 | 347,47 | R1,R2          |
|       | 3,90                              | 328,45 | R1,R2,R3       | 3,65 | 307,96 | R1,R2,R3       |
|       | 4,89                              | 265,22 | R1,R2,R3,R4    | 4,43 | 240,80 | R1,R2,R3,R4    |
|       | 5,22                              | 208,00 | R1,R2,R3,R4,R5 | 4,67 | 186,01 | R1,R2,R3,R4,R5 |



W wyniku zmniejszenia prądu wzbudnika charakterystyka przesuwa się w dół. Jest to wynikiem osłabiania strumienia. Kształt charakterystyki można wytłumaczyć tym, że prądnica synchroniczna posiada impedancję wewnętrzną. Impedancja ta ma charakter indukcyjny (będzie to miało znaczenie przy interpretacji charakterystyk zewnętrznych przy  $\cos \phi \neq 0$ ).

# 5 Charakterystyka zewnętrzna $\cos \phi \neq 1$

| Charakterystyka zewnętrzna cosφ != 1 |      |        |                   |  |  |  |
|--------------------------------------|------|--------|-------------------|--|--|--|
| nr                                   | Is   | Us     | obciążenie        |  |  |  |
| 1                                    | 0,01 | 246,27 | 0                 |  |  |  |
| 2                                    | 0,92 | 233,08 | R1                |  |  |  |
| 3                                    | 1,59 | 200,13 | R1,R2             |  |  |  |
| 4                                    | 1,96 | 164,87 | R1,R2,R3          |  |  |  |
| 5                                    | 0,01 | 231,47 | 0                 |  |  |  |
| 6                                    | 0,88 | 293,20 | C1                |  |  |  |
| 7                                    | 2,23 | 374,86 | C1,C2             |  |  |  |
| 8                                    | 3,98 | 445,96 | C1,C2,C3          |  |  |  |
| 9                                    | 0,01 | 248,80 | 0                 |  |  |  |
| 10                                   | 1,40 | 281,60 | R1,C1             |  |  |  |
| 11                                   | 2,80 | 281,74 | R1,C1,R2,C2       |  |  |  |
| 12                                   | 3,47 | 233,26 | R1,C1,R2,C2,R3,C3 |  |  |  |

#### Charakterystyka zewnętrzna





Rys. 7 Charakterystyki zewnętrzne prądnicy cylindrycznej nienasyconej

<sup>1</sup> Ze względu na to, że impedancja wewnętrzna ma charakter indukcyjny, to przy obciążeniu pojemnościowym reaktancja maleje. Przy reaktancji wewnętrznej równej reaktancji zewnętrznej otrzymujemy rezonans napięć. Jest

http://bezel.com.pl/index.php/maszyny-elektryczne/maszyny-synchroniczne

<sup>&</sup>lt;sup>1</sup>rysunek pochodzący z:

to powodem dla którego charakterystyki RC i R idą początkowo w górę. Wyniki naszych pomiarów przedstawiają początkowy fragment powyższego wykresu. Całe wytłumaczenie można przedstawić w postaci równania:

$$U = \frac{|E||Z|}{|Z_w + Z|} \approx \frac{|E||Z|}{|jX_L + Z|} \tag{1}$$

# 6 Charakterystyka regulacyjna

#### Charakterystyka regulacyjna?

chyba złe wielkości pomiarowe (I,U),powinno być (Is,If)

