Verificação Experimental do Modelo da Radiação do Corpo Negro

Emanuel Ricardo - nº 65677, Hugo Proença - nº 65683, João Martins - nº 65695, João Penedo - nº 65697 Laboratório de Complementos de Electromagnetismo e Termodinâmica, MEFT - IST 2009/10 (Dated: April 28, 2010)

Este trabalho laboratorial tem como objectivo o estudo do modo como é emitida radiação electromagnética por parte de um dado corpo, em virtude da temperatura a que este se encontra. Para tal, recorre-se ao modelo do **corpo negro** (modelo idealizado de um corpo que absorve toda a radiação que nele incida), sendo possível demonstrar diversas relações existentes entre as grandezas em estudo. Serão empiricamente verificadas as leis do **deslocamento de Wien**, de **Stefan-Boltzmann** e de **Planck**. Comparam-se, adicionalmente, as emissividades de superfícies correspondentes a diferentes materiais/revestimentos no cubo de Leslie.

Após análise de resultados, chegou-se a um valor de $(3.71 \pm 0.12) \times 10^{-3} \, m \cdot K$ para a constante de deslocamento de Wien e a um valor de 4.50 ± 0.12 para o coeficiente da relação logarítmica correspondente à Lei de Stefan.

I. INTRODUÇÃO

Bastante conhecido pelo seu estudo ter impulsionado a formulação da Mecânica Quântica, o Corpo Negro é um objecto ideal que absorve toda a radiação electromagnética que nele incida. Apesar de não transmitir nem reflectir radiação, este radia em função da sua temperatura, sendo que a energia emitida se distribui ao longo do espectro (radiação do Corpo Negro). O modo mais simples de abordar este problema consiste na visualização de um Corpo Negro como uma caixa com um pequeno orifício. O orifício deverá ser suficientemente pequeno para que toda a radiação que o penetre seja completamente absorvida pela caixa através de sucessivas reflexões e absorções nas suas paredes. Repare que toda a radiação electromagnética presente no interior da cavidade é descrita por meio de ondas estacionárias em equilíbrio com os osciladores característicos ao material que compõe as paredes da caixa. Para uma dada frequência, a potência radiada pelo Corpo Negro será proporcional ao número de osciladores com essa frequência. O espectro de frequências das diferentes harmónicas poderá ser considerado contínuo, assumindo que a cavidade tem uma dimensão bastante superior aos comprimentos de onda. Sendo ν a frequência, tem-se:

$$n(\nu)d\nu \sim \nu^2 d\nu \tag{1}$$

De modo a que o modelo teórico em construção seja congruente com os resultados experimentais, deve-se nesta fase considerar a proposta de Max Planck, segundo a qual a energia dos osciladores é proporcional à frequência, variando através de pequenos saltos denominados quanta ($\Delta \varepsilon = h\nu, h = 6.63 \times 10^{-34} \, Js$). Ligando a energia à frequência, Planck tornou mais improvável a existência de osciladores excitados de frequência elevada (note que a probabilidade de um oscilador ocupar um dado nível de energia é proporcional à fórmula de Boltzmann, $P \sim \exp\left(-\varepsilon/kT\right)$.

Da proporcionalidade entre a distribuição dos osciladores por frequência e o factor de Boltzman, em conjunto com as considerações de Planck e a expressão (1), resulta a fórmula de Planck para a radiação de um Corpo Negro[1]:

$$W(\nu)d\nu = \frac{8\pi}{c^3} \frac{h\nu}{\exp\left(\frac{h\nu}{kT}\right) - 1} \nu^2 d\nu \tag{2}$$

A imposição da condição de máximo à expressão (2), permite obter a lei do deslocamento de Wien[2]:

$$\lambda_{\text{máx}} = B \frac{1}{T}, \quad \text{com } B \approx 2.9 \times 10^{-3} \, m \cdot K$$
 (3)

Segundo esta relação, o comprimento de onda correspondente ao máximo de potência radiada é proporcional ao inverso da temperatura a que se encontra o objecto radiante. Outro resultado importante retirado a partir da fórmula de Planck é conhecido como a lei de Stefan, sendo representado pela seguinte relação matemática:

$$W(T) = \sigma T^4$$
, com $\sigma \approx 5.67 \times 10^{-8} W m^{-2} K^{-4}$ (4)

Esta relação resulta simplesmente de uma integração da expressão (2), ou seja, através da soma das contribuições de todas as frequências para a potência total radiada por unidade de volume. Duas grandezas habitualmente utilizadas no estudo do corpo negro são o poder de absorção (Q) e o poder emissivo (I), os quais são definidos como sendo o quociente entre energia absorvida e energia incidente e a quantidade de energia emitida por unidade de tempo e por unidade de área[2]. É fácil verificar que, para um Corpo Negro, Q=1. Sendo complementares, a sua relação é descrita pelo teorema de Kirchoff, o qual estabelece que o quociente entre Q e I só depende da temperatura do corpo quando o mesmo está em equilíbrio, ou seja:

$$\frac{I}{Q} = f(T) \tag{5}$$

O último resultado demonstra que, para uma dada temperatura, o Corpo Negro é o melhor emissor possível. O seu elevado poder emissivo fez com que durante muitos anos fosse o recurso mais desejado para utilização em processos de iluminação (actualmente, o recurso de iluminação mais eficaz é o LED). Para finalizar, deve-se referir que a expressão (5) oferece uma via alternativa para o cálculo da fórmula de Planck e das leis de Wien e Stefan.

II. EXPERIÊNCIA REALIZADA

Figura 1: Montagem da experiência realizada

O sistema em estudo (Figura 1) é composto por um prisma dispersivo montado num goniómetro (nónio para leitura fina) onde incide um feixe luminoso proveniente de uma lâmpada (corpo negro em estudo), sendo a radiação desviada selectivamente (dispersão espectral), obtendo-se a projecção da parte visível do espectro electromagnético. Ao braço¹ móvel do goniómetro encontra-se acoplada uma termopilha² que permite a detecção e medida de intensidades luminosas (proporcionais a tensões). A lâmpada é alimentada por um gerador, sendo que é possível medir a tensão aos seus terminais e a corrente que por ela passa com o auxílio de multímetros. Dado que a resistividade (logo resistência) do filamento depende da temperatura, estas medidas permitem-nos determinar T(R) (interpolando linearmente valores tabelados).

Adicionalmente, são utilizados um cubo de Leslie e um termómetro digital como indicado (parte terminal), sendo ainda requeridas coberturas específicas.

Devido à sensibilidade do detector, é necessário limitar o seu tempo de acção, efectuando um reset antes de qualquer medição. Numa fase inicial, são medidos o ângulo de incidência (ângulo entre o feixe incidente e a normal) e um ângulo de referência, seguindo as instruções dadas no procedimento. Procura-se um espectro vasto mas bem definido, iniciando as leituras na região do verde (onde a intensidade é ≈ 0). Consideram-se tensões na lâmpada (correspondentes a temperaturas, como foi visto) de 6 V, 9 V e 12 V, sendo que para cada uma destes cenários se consideram ângulos alternadamente espaçados ora em 20' ora em 40' (minutos). Pela equação (6) torna-se possível traduzir ângulos em índices de refracção.

$$n = \left(\sin(\theta)^2 + \left[\sin(\delta - \theta + \alpha) + \cos(\alpha)\sin(\theta)\right]^2 / \sin(\alpha)^2\right)^{1/2}$$
 (6)

Recorrendo a tabelas de conversão para o prisma considerado, extraem-se λ . Esta relação, conhecidos 6 coeficientes específicos do material, poderia ser conhecida em qualquer valor de n tomando a equação empírica de Sellmeier[3]. Dado estar-se a considerar pequenos intervalos de índices de refracção, a relação $\lambda(n)$ pode ser, no entanto, satisfatoriamente obtida linearizando entre pontos consecutivos da tabela. Nesta etapa pretende realizar-se um ajuste normalizado à **lei de Planck**, (2), determinando os comprimentos de onda que maximizam a intensidade, verificando a **lei de Wien**.

Retirando agora o prisma e mantendo a distância entre lâmpada/fonte e detector, faz-se variar a tensão na fonte de alimentação da lâmpada dos $5\,V$ aos $12\,V$, em intervalos unitários. Pretende-se assim verificar a **Lei de Stefan**, (4), realizando um ajuste linear entre logaritmos $\ln W$ e $\ln T$, sendo que o declive desta recta deve, teoricamente, corresponder a 4 (expoente de T na lei considerada).

O designado **cubo de Leslie** constitui o objecto de estudo da última parte do trabalho experimental e consiste num cubo mantido a temperatura constante e relativamente elevada, estando as faces verticais distintamente revestidas (variação do parâmetro emissividade). Tendo a experiência original sido desenvolvida em 1804 por John Leslie (1766-1832), físico e matemático escocês, é pretendida a detecção, usando a termopilha, das diferenças na emissão de radiação por cada face, comparando assim, emissividades, e. Estas determinações correspondem a dois valores de intensidade da lâmpada interior ao cubo, um máximo e outro correspondente a 75% deste.

III. RESULTADOS

Tem-se à partida $\alpha=60^{\circ}=1.047$ rad, medindo-se $\theta=0.733$ rad como a diferenca de dois ângulos e estabelecendo-se um ângulo adi-

cional de referência para os valores de δ , de valor 3.872 rad. Tem-se ainda $e_{\rm \hat{a}ngulos}=30''=1.45\times 10^{-4}\,{\rm rad}^3$ e $e_V=3\times 10^{-6}\,V^4$.

Primeiramente, fornecendo-se $6.04\pm0.01\,V$ à lâmpada, tem-se uma leitura de intensidade de $1.18\pm0.01\,A$, implicando um valor de resistência $R=5.12\pm0.05\,\Omega$. Tendo $R_{\rm ref}=0.4911\,\Omega$ durante todo o trabalho experimental (correspondente a $292.35\,K$), chega-se a uma razão $R(T)/R_{\rm ref}=10.42$ que se traduz num filamento a $1878.8\,K$. Nestas condições os dados registados correspondem à Tabela I.

Tabela I: Conjunto de dados para $\sim 6\,V$ aplicados ao filamento

δ (rad)	n	$\lambda \left(nm ight) $	$V_{ m detectado}\left(V\right) \propto I$
0.85259	1.59521	1289.8	1.10×10^{-5}
0.84678	1.59280	1513.1	2.04×10^{-5}
0.83514	1.58788	2213.9	2.96×10^{-5}
0.82932	1.58537	2807.0	2.71×10^{-5}
0.81769	1.58026	4889.9	1.61×10^{-5}

Imediatamente a seguir, fornecendo-se $9.00 \pm 0.01\,V$ à lâmpada, tem-se uma leitura de intensidade de $1.44 \pm 0.01\,A$, implicando um valor de resistência $R=6.25 \pm 0.05\,\Omega$. Chega-se a uma razão $R(T)/R_{\rm ref}=12.73$ que se traduz num filamento a 2185.3 K. Nestas condições os dados registados correspondem à Tabela II.

Tabela II: Conjunto de dados para $\sim 9V$ aplicados ao filamento

δ (rad)	n	$\lambda (nm)$	$V_{ m detectado}\left(V\right) \propto I$
0.88168	1.61003	686.5	3.2×10^{-6}
0.87005	1.60538	795.1	7.1×10^{-6}
0.86423	1.60301	869.2	1.63×10^{-5}
0.85259	1.59817	1088.9	3.50×10^{-5}
0.84678	1.59570	1253.8	5.06×10^{-5}
0.83514	1.59067	1767.4	6.75×10^{-5}
0.82932	1.58811	2169.8	5.14×10^{-5}
0.81769	1.58289	3613.7	3.07×10^{-5}
0.81187	1.58024	4911.3	2.01×10^{-5}

Por fim, fornecendo-se $12.00 \pm 0.01\,V$ à lâmpada, tem-se uma leitura de intensidade de $1.68 \pm 0.01\,A$, implicando um valor de resistência $R=7.14 \pm 0.05\,\Omega$. Chega-se a uma razão $R(T)/R_{\rm ref}=14.54$ que se traduz num filamento a 2411.8 K. Nestas condições os dados registados correspondem à Tabela III.

Tabela III: Conjunto de dados para $\sim 12 V$ aplicados ao filamento

δ (rad)	n	$\lambda (nm)$	$V_{ m detectado}\left(V ight) \propto I$
0.89332	1.61121	665.4	3.9×10^{-6}
0.88750	1.60902	707.3	6.2×10^{-6}
0.87586	1.60455	819.3	1.48×10^{-5}
0.87005	1.60226	896.6	2.24×10^{-5}
0.85841	1.59760	1124.4	4.90×10^{-5}
0.85259	1.59521	1289.8	6.80×10^{-5}
0.84096	1.59035	1810.9	1.030×10^{-4}
0.83514	1.58788	2218.4	1.020×10^{-4}
0.82350	1.58283	3631.7	6.43×10^{-5}
0.81769	1.58026	4897.5	4.67×10^{-5}

Os dados correspondentes à segunda parte do trabalho experimental (verificação da Lei de Stefan) apresentam-se na Tabela IV e, por sua vez, os correspondentes ao cubo de Leslie na Tabela V.

¹ Ambos os braços incluem lentes convergentes de distância focal 18.2 cm, que permitem colimar o feixe da lâmpada e focar o transmitido junto ao detector.

 $^{^2}$ Conjunto de termopares associados, tirando partido do efeito de Seebeck. Apresenta uma resposta uniforme entre $\sim 500\,nm$ e $\sim 25000\,nm$ (a região experimentalmente considerada está sempre contida neste intervalo).

³ Como referido no procedimento.

⁴ Correspondente ao valor abaixo do qual as medições de intensidade são tidas como nulas.

Tabela IV: Lei de Stefan: dados obtidos para comparação de temperaturas e intensidades

$V_{\mathrm{fil}}\left(V ight)$	$I_{\mathrm{fil}}\left(A ight)$	$R\left(\Omega\right)$	$R(T)/R_{\rm ref}$	T(K)	$V_{ m detectado}\left(V\right) \propto I$
5.03	1.06	4.74	9.66	1771	2.53×10^{-3}
6.05	1.18	5.13	10.44	1881	3.43×10^{-3}
7.01	1.27	5.52	11.24	1990	4.21×10^{-3}
8.09	1.35	5.99	12.20	2117	5.40×10^{-3}
9.02	1.43	6.30	12.84	2200	6.45×10^{-3}
10.09	1.52	6.64	13.52	2285	7.60×10^{-3}
11.05	1.60	6.90	14.06	2352	8.89×10^{-3}
12.03	1.67	7.21	14.67	2424	1.020×10^{-2}

Tabela V: Medições, com a termopilha, da radiação emitida por cada face

$T(^{\mathrm{o}}C)$	$V_{\text{negra}}(V)$	$V_{\mathrm{espelhada}}\left(V ight)$	$V_{\mathrm{branca}\ 1}\left(V\right)$	$V_{\text{branca 2}}\left(V\right)$
152	2.03×10^{-2}	1.24×10^{-3}	6.20×10^{-3}	2.01×10^{-2}
128	1.69×10^{-2}	1.12×10^{-3}	4.56×10^{-3}	1.62×10^{-2}

IV. ANÁLISE DE RESULTADOS

A. Verificação da Lei de Planck

Para cada uma das tensões de lâmpada mencionadas foi feito um ajuste, aos dados normalizados, da lei de Planck (2), (a **preto** nas Figuras 2, 3 e 4), sendo igualmente feita a representação da curva teórica (para as temperaturas de filamento calculadas) normalizada (a **vermelho**). Por fim, foi determinada, por manipulação em *Mathematica* de parâmetros, uma hipotética curva (a **cinza**) correspondente ao corpo negro para o mesmo conjunto de pontos experimentais, garantindo que esta não se encontra abaixo destes.

Figura 2: Ajuste e representações da Lei de Planck para 6V.

Figura 3: Ajuste e representações da Lei de Planck para 9 V.

Considerando, para cada tensão de lâmpada, os valores máximos de λ de entre os valores experimentais e os valores determinados para

Figura 4: Ajuste e representações da Lei de Planck para 12V.

as temperaturas de filamento a partir de quocientes de resistências, é possível realizar o ajuste à lei de deslocamento de Wien (3), como indicado na Figura 5. Tem-se do ajuste um valor para a constante de Wien de $(3.71\pm0.12)\times10^{-3}~m\cdot K$, que corresponde a um desvio de 27.9% à exactidão.

Figura 5: Ajuste de $\lambda_{\text{máx}}(1/T)$ a partir dos dados experimentai

B. Verificação da Lei de Stefan

Considerando a equação (4), verifica-se que a intensidade da radiação, logo a tensão dada pela termopilha, é proporcional a T^4 , pelo que o logaritmo de $V_{\rm detectado}$ é linear com o de T, sendo que o declive da recta corresponde teoricamente ao expoente 4. É de notar que esta previsão é independente do valor da emissividade do corpo (constante). O declive da recta de ajuste obtida (Figura 6) é, assim, 4.50 ± 0.12 , tendo-se um desvio à precisão de 2.7% que não cobre o desvio teórico de 11.1%. Este desvio pode ser desde já ser parcialmente explicado por erros de natureza experimental, encontrando justificação na sensibilidade do detector.

C. Cubo de Leslie

Nesta última fase da experiência comparam-se⁵ as emissividades de diferentes corpos à luz da lei de Stefan-Boltzmann, em que agora se mantém a temperatura constante e se varia a característica emissiva do material, *i.e.* como todas as faces se encontram aproximadamente à mesma temperatura, é possível a comparação de intensidades/tensões lidas pela termopilha de forma a relacionar emissividades. Foi criada uma escala relativa de emissividades, apresentada na Tabela VI, na qual se toma a face preta como referência (emissividade relativa unitária).

 $^{^5}$ Encostando o sensor à parede (referência), obteve-se uma leitura de -0.06×10^{-3} , o que confirma a calibração adequada ao contexto.

Figura 6: Gráfico obtido da aplicação de logaritmos à tabela IV^a.

^a As unidades são as aí indicadas, sendo que se aumentam os valores de intensidade por um factor de 10³ sem prejuízo para o ajuste pretendido, de forma a obter representação em primeiro quadrante.

Tabela VI: Valores de emissividades das faces do cubo de Leslie, tomando como referência a face negra

$T(^{\circ}C)$	$e_{ m r\ negra}$	$e_{ m r\ espelhada}$	$e_{ m r\ branca\ 1}$	$e_{ m r\ branca\ 2}$
152	1.000	0.061	0.305	0.990
128	1.000	0.066	0.270	0.959

V. CONCLUSÕES E CRÍTICA

A verificação da lei de Planck para o espectro de radiância do corpo analisado induziu a ideia de que o corpo em estudo não corresponde a um corpo negro, mas antes a um dito corpo cinzento, com emissividade e < 1. Tal conclusão baseia-se na análise dos diferentes gráficos dispostos na seccão **IV.A**.

Analisando os diferentes ajustes (a preto) efectuados aos pontos experimentais, pode-se observar que existe sempre pelo menos um ponto cuja ordenada é consideravelmente superior à do ponto da curva de ajuste com a igual abcissa. Tal situação não tem qualquer sentido físico se se considerar que o objecto analisado absorve toda a radiação que sobre ele incide. Uma vez que os dados estão ajustados a uma relação de Planck, a existência dos pontos referidos não é contemplada pelo modelo actual de um corpo negro, o qual considera que este último é o corpo que mais energia radia. Assim, determinou-se uma nova curva (curva a cinza) que englobasse os pontos acima do gráfico a preto, e concluiu-se que o máximo de radiância desta era sempre superior ao dos ajustes a preto, ou seja, se o corpo em análise fosse de facto um corpo negro, este teria de emitir mais radiação que a medida. Os pontos que "fogem" do ajuste aos dados experimentais podem dever-se a uma zona de frequências na qual a lâmpada se comporte como um corpo negro, o que leva a crer que a emissividade da mesma não é independente da frequência de radiação emitida como inicialmente se supôs (grey $body \ assumption[4]).$

Comparando as curvas vermelhas e pretas das Figuras 2, 3 e 4, constata-se que as diferentes curvas vermelhas possuem sempre o pico mais desviado para a esquerda (o que, dada a lei de

Planck, sugere uma maior temperatura, estando a comparar corpos negros). Relembrando que as curvas a vermelho correspondem a representações da curva de Planck teórica enquanto as curvas pretas resultam de um ajuste aos diferentes dados medidos, pode-se ver facilmente que, tomando como razoáveis as medições de temperatura, o corpo não é, de facto, negro. Deste modo, quanto muito, o ajuste feito permite averiguar a que temperatura teria de estar um corpo negro para ter uma distribuição de intensidades semelhante à dos pontos experimentais.

De facto, recorrendo ao conceito de emissividade e ao modo como ela se relaciona entre a radiância de um corpo negro (I) e de um não negro (I'), I'=eI, chega-se à seguinte expressão que fornece a temperatura a que um corpo negro tem que estar para possuir o mesmo I que um dado corpo não negro (a temperatura T):

$$T_b = \left(\frac{k}{h\nu}\ln\left(1 + \frac{\exp(h\nu/kT) - 1}{e}\right)\right)^{-1}$$
 [5]. Dado que $e \in [0, 1]$

para corpos não negros, esta expressão indica que, para espectros de radiância semelhantes, temperaturas e comprimentos de onda suficientemente elevados, T_b é sempre inferior à do corpo real.

O facto de a lâmpada não ser um corpo negro explica o desvio à exactidão registado na determinação da constante de Wien, o qual foi de 27.9%. Note-se que a lei de Wien apenas é aplicável a um corpo negro, pelo que existe um desacordo entre situação analisada e modelo utilizado.

Relativamente à segunda parte da experiência, deve-se referir que os resultados foram bem mais satisfatórios, tendo sido obtido um desvio à exactidão de 11.1%. A universalidade de aplicação da lei de Stefan faz com que o facto de o corpo ser cinzento não afecte este ponto experimental. A diferença entre valor teórico e valor experimental deve-se essencialmente a uma deficiente cobertura do sensor que fez com que o mesmo recebesse luz proveniente de outras fontes que não a lâmpada, influenciando assim os valores medidos no multímetro.

A parte final desta actividade, o cubo de Leslie, permitiu a obtenção de resultados tanto satisfatórios como expectáveis. Tal como previsto teoricamente, a face negra foi aquela que apresentou maior emissividade, o que revela que esta se comporta como uma excelente absorvedora em comparação com os restantes materiais/revestimentos. A cor negra deve-se a uma absorção significativa na região do visível, sendo que o máximo de intensidade emitida se localiza na região dos infravermelhos. Tendo ocorrido um problema de estabilização de temperaturas no primeiro ensaio, é feita a análise de emissividades relativas para o segundo. Observa-se que, como esperado, a face espelhada corresponde ao menor valor relativo, $e_r = 0.066$, devido a uma menor capacidade de absorção (a maior parte da radiação incidente é reflectida). Tal valor é próximo do de um espelho, o que traduz a pertinência desta escala relativa. Para a primeira face branca foi obtido um $e_{relativo} = 0.270$, o que comprova comportamento já antecipado. Observa-se, no entanto, que à segunda face branca corresponde um $e_{relativo} = 0.959$, sugerindo comportamento análogo ao da face preta para outra região do espectro, i.e. poder de absorção semelhante, agora na região infravermelha. Conclui-se que a segunda face branca reflecte radiação na zona do visível, não absorvendo muita radiação infravermelha. Recorde-se que, para a temperatura de realização da experiência, os corpos reemitem a radiação maioritariamente na forma de IV.

J. D. de Deus et. al, in *Introdução à Física* (McGraw-Hill, 2000) Chap.
 7.1.1, pp. 501–509, 2nd ed.

^[2] J. Figueirinhas, Apontamentos das aulas teóricas (3-5 Mar.).

^{[3] &}quot;http://en.wikipedia.org/wiki/Sellmeier_equation," Sellmeier Equation: Wikipedia article.

^{4] &}quot;http://en.wikipedia.org/wiki/Emissivity," Emissivity: Wikipedia article.

^{[5] &}quot;http://en.wikipedia.org/wiki/Brightness_temperature," Brightness Temperature: Wikipedia article.