

UJM 7(2) 2018

UNNES Journal of Mathematics

PENERAPAN ALGORITMA KRUSKAL DAN SOLLIN PADA PENDISTRIBUSIAN AIR PDAM TIRTA AJI CABANG WONOSOBO DAN PENGGUNAAN MICROSOFT VB 6.0 SEBAGAI PEMBANDINGNYA

Agustaf Prasetiyo[™], Mulyono, Mashuri

Jurusan Matematika, FMIPA, Universitas Negeri Semarang, Indonesia Gedung D7 Lt. 1, Kampus Sekaran Gunungpati, Semarang 50229

Info Artikel

Sejarah Artikel: Diterima Mei 2017 Disetujui April 2017 Dipublikasikan November 2018

Kevwords:

Kruskal, Sollin, Pohon Rentang, VB 6.0

Abstrak

Algoritma Kruskal dan Sollin adalah algoritma dalam teori graf yang digunakan untuk mencari pohon rentang minimal. Permasalahan dalam penelitian ini adalah bagaimana hasil pendistribusian air minimal PDAM Tirta Aji menggunakan algoritma Kruskal dan Sollin, serta bagaimana membangun program pencari pohon rentang minimal pipa pendistribusian air PDAM Tirta Aji menggunakan *Microsoft VB 6.0* dari algoritma Kruskal dan Sollin. Dari data sekunder yang diperoleh, dapat disusun gambar jaringan. Selanjutnya diperoleh pohon rentang minimal menggunakan algoritma Kruskal dan Sollin. Algoritma Kruskal dan Sollin diterapkan untuk membangun program pada *Microsoft VB 6.0*, kemudian digunakan untuk mencari pohon rentang minimal pipa pendistribusian air. Berdasarkan hasil penelitian dan pembahasan, disimpulkan bahwa hasil bobot pohon rentang minimal menggunakan algoritma Kruskal dan Sollin serta aplikasi yang dibangun menggunakan *Microsoft VB 6.0* sama, yaitu 36.715 m. Hal ini berarti dapat dilakukan penghematan pipa pendistribusian air PDAM Tirta Aji sepanjang 9.027 m dari panjang total pipa sebelumnya 45.742 m.

Abstract

Kruskal and Sollin algorithm are algorithms on graph theory which can be used to find minimum spanning tree. The problem in this research is how the result of minimum water distribution of Tirta Aji Municipal Waterworks using Kruskal algorithm and Sollin algorithm, and how to build an application to find minimum spanning tree from water pipes distribution of Tirta Aji Municipal Waterworks using Microsoft VB 6.0 from Kruskal and Sollin algorithm. Based on the obtained secondary data, it can be arranged a network. From this network it can be obtained the minimum spanning tree by using Kruskal and Sollin algorithm. Kruskal and Sollin algorithm were applied to build an application on Microsoft VB 6.0, then that application can be used to find the minimum spanning tree from the water pipes distribution. Based on the result of this research, it can be concluded that the weight of minimum spanning tree using Kruskal algorithm, Sollin algorithm and this application is same, that is 36.715 m. It means, the water pipes distribution of Tirta Aji Municipal Waterworks can be thrifted up to 9.027 m from the total pipes length before, that is 45.742 m.

How to Cite

Prasetiyo, A., Mulyono, & Mashuri. (2018). Penerapan Algoritma Kruskal dan Sollin pada Pendistribusian Air PDAM Tirta Aji Cabang Wonosobo dan Penggunaan Microsoft VB 6.0 Sebagai Pembandingnya. *UNNES Journal of Mathematics* 7(2): 155-164.

© 2018 Universitas Negeri Semarang

[⊠]Alamat korespondensi:

p – ISSN 2252-6943 e – ISSN 2460-5859

E-mail: <u>agustafprasetiyo@gmail.com</u>

PENDAHULUAN

Pesatnya perkembangan ilmu pengetahuan dan teknologi, mengakibatkan perusahaan-perusahaan di dunia juga mengalami perkembangan yang pesat, baik dalam ukuran ataupun kompleksitas organisasinya. Hal ini membawa perubahan dalam pembagian kerja dan segmentasi dari tanggung jawab manajemen dalam organisasi perusahaan yang mengarah pada spesialisasi.

Meningkatnya kompleksitas dan spesialisasi dalam suatu perusahaan seperti ini membawa dampak pada makin sulitnya melakukan alokasi sumber-sumber daya yang dimiliki pada berbagai kegiatan secara efektif dan efisien bagi perusahaan secara keseluruhan. Bagaimana cara memecahkan masalah alokasi sumber daya agar efektif, serta adanya kebutuhan untuk mencari cara yang lebih baik untuk memecahkan suatu masalah yang muncul dalam perusahaan telah mendorong timbulnya riset operasi (Agustini dan Rahmadi, 2004)

Air merupakan sumber daya alam yang tidak terbatas jumlahnya, akan tetapi dalam penggunaannya harus dibatasi agar tetap dan bisa dimanfaatkan secara terjaga berkelanjutan. Jumlah air yang terbatas dan semakin banyaknya mansia memanfaatkan air untuk kebutuhan sehari-hari menyebabkan terjadinya krisis air bersih. Selain itu, banyak sekali kegiatan manusia yang menyebabkan polusi air juga menjadi penyebab semakin berkurangnya ketersediaan air bersih. Seperti di lingkungan perkotaan yang banyak industri-industri sekali pabrik yang menghasilkan limbah-limbah pabrik yang mencemari air bersih apabila tidak dilakukan pengolahan yang benar. Bahkan limbah rumah tangga yang berasal dari zat kimia detergen juga dapat menjadi penyebab pencemaran air bersih . Untuk itu dibutuhkan pendistribusian air bersih dari sumber-sumber air bersih ke tempat-tempat yang memerlukan air bersih. Salah satu upaya yang bisa ditempuh yaitu melalui PDAM. Saat ini jumlah air relatif terbatas, sedangkan konsumen akan air bersih semakin meningkat. Untuk itu perlu adanya cara agar dapat mendistribusikan air kepada para konsumen dengan efisien, baik dalam hal biaya maupun waktu.

Permasalahan pada pendistribusian air ini adalah bagaimana jaringan pendistribusian air dapat sampai ke semua wilayah dengan panjang pipa paling efektif. Tujuan pencarian jaringan pendistribusian air ini adalah mencari jaringan pendistribusian air dengan bobot jarak terkecil sehingga dapat menghemat pipa air

PDAM yang digunakan untuk sarana pendistribusian.

Algoritma yang dapat digunakan dalam menentukan jaringan pendistribusian air adalah algoritma Kruskal dan algoritma Sollin. Jaringan rangkaian pipa yang dicari merupakan masalah *Minimum Spanning Tree (MST)*, sehingga algoritma Kruskal dan algoritma Sollin dapat digunakan untuk mencari jaringan pendistribusian air tersebut.

Algortima Kruskal dan algoritma Sollin merupakan algoritma yang digunakan untuk mencari Minimum Spanning Tree (MST), Algoritma Kruskal dengan mengurutkan sisisisi berdasarkan bobotnya dari yang terkecil sampai terbesar. Kemudian pilih sisi dengan bobot minimal dan tidak membentuk sikel. (Sutarno dkk, 2005) Sedangkan algoritma Sollin merupakan perpaduan antara algoritma Kruskal dan algoritma Prim dan cara kerja algoritma Sollin adalah dimulai dengan hutan, dan tumbuh pohon di subset dari titik-titik hutan tersebut sampai menjadi satu pohon yang memuat semua titik. Di setiap langkah, sisi yang berbobot minimum dipilih. (Yingyu dkk, 2000)

Prasetyo dkk (2013) telah mengkaji masalah optimalisasi pendistribusian air. Dalam penelitian tersebut digunakan algoritma untuk menyelesaikan masalah optimalisasi pendistribusian air. Dari penelitian tersebut dapat disimpulkan bahwa algoritma Prim dapat dijadikan bahan evaluasi untuk jaringan pipa yang telah terpasang. Penelitian lain dilakukan oleh Latifah dan Sugiharti (2015), dari hasil penelitian tersebut dapat disimpulkan bahwa algoritma Prim dan kruskal dapat diterapkan pada perangkat lunak Matlab. Pada penelitian Wattimena dan Lawalata (2013) mengenai aplikasi algoritma Kruskal dalam pengoptimalan panjang pipa. Dari hasil penelitian tersebut dapat disimpulkan bahwa algoritma Kruskal dapat dijadikan sebagai bahan evaluasi jaringan pipa yang sudah terpasang. Pada penelitian Rizki (2012) mengenai penerapan teori graf untuk menyelesaikan masalah minimum spanning tree (MST) menggunakan algoritma kruskal. Dari hasil penelitian tersebut dapat disimpulkan bahwa algoritma Kruskal dapat diterapkan dalam bahasa pemrograman C/C++ dan juga memungkinkan dikembangkan untuk menggunakan bahasa pemrograman lain.

Berdasarkan latar belakang, maka rumusan masalah yang diangkat dalam penelitian ini adalah (1) Bagaimana penyelesaian optimal pendistribusian air bersih PDAM Tirta Aji Cabang Wonosobo Kruskal?. menggunakan algoritma

Bagaimana penyelesaian optimal pendistribusian air bersih PDAM Tirta Aji Cabang Wonosobo menggunakan algoritma Sollin?, (3) Bagaimana hasil program aplikasi penerapan algoritma Kruskal dan algoritma Sollin untuk mencari penyelesaian optimal pendistribusian air bersih PDAM Tirta Aji Cabang Wonosobo dengan bahasa pemrograman Visual Basic?

METODE PENELITIAN

Metode yang digunakan dalam penelitian ini adalah metode dokumentasi, metode wawancara, dan studi pustaka. Metode dokumentasi dilakukan untuk mendapatkan informasi tentang PDAM Kabupaten Wonosobo, data pendistribusian air. Metode wawancara dilakukan dengan cara wawancara dengan bagian distribusi. Metode studi pustaka digunakan untuk mengumpulkan informasi yang diperlukan dalam penelitian yang pada

akhirnya dijadikan landasan teori untuk pemecahan masalah. Teknik penyelesaian masalah yang digunakan adalah menggunakan algoritma Kruskal dan algoritma Sollin serta menggunakan *Microsoft Visual Basic 6.0* untuk membangun program penerapan algoritma Kruskal dan algoritma Sollin. Program tersebut berisi perintah-perintah yang berfungsi untuk melakukan analisis terhadap masalah pohon rentang minimal.

HASIL DAN PEMBAHASAN

Data panjang pipa yang diperoleh dari PDAM Kabupaten Wonosobo disajikan dalam Tabel 1.

Tabel 1 Data Panjang Pipa Pendistribusian Air

Sisi	Titik	Panjang Pipa (m)
e1	V1 - V2	1262
e2	V2 - V3	305
e3	V4 - V5	3504
e4	V5 - V6	3062
e5	V2 - V7	3413
е6	V5 - V10	4694
e7	V7 - V9	815
e8	V7 - V8	1876
e9	V8 - V12	1374
e10	V12 - V13	456

e11	V9 - V13	316
e12	V9 - V10	659
e13	V10 - V11	1259
e14	V10 - V15	1740
e15	V13 - V14	677
e16	V14 - V15	164
e17	V15 - V16	86
e18	V16 - V17	177
e19	V14 - V17	81
e20	V17 - V18	212
e21	V18 - V19	862
e22	V18 - V20	391
e23	V18 - V21	168
e24	V21 - V22	174
e25	V17 - V22	175
e26	V22 - V23	204
e27	V16 - V23	191
e28	V23 - V24	172
e29	V24 - V25	362
e30	V24 - V26	320
e31	V26 - V27	193
e32	V27 - V28	116
e33	V23 - V28	431
e34	V28 - V29	125
e35	V29 - V30	147
e36	V22 - V30	309
e37	V30 - V31	172
e38	V29 - V33	168
e39	V21 - V31	330
e40	V31 - V33	147
e41	V31 - V32	173
e42	V32 - V34	536
e43	V33 - V34	118
e44	V34 - V35	160
e45	V29 - V35	120
e46	V35 - V36	217
e47	V36 - V37	143
e48	V28 - V37	304
e49	V27 - V48	509
e50	V26 - V38	187
e51	V38 - V39	931
e52	V38 - V51	662

Sisi	Titik	Panjang Pipa (m)
e53	V47 - V48	120
e54	V40 - V47	104
e55	V37 - V40	114
e56	V40 - V41	201
e57	V36 - V41	143
e58	V34 - V41	560
e59	V41 - V42	109
e60	V42 - V43	204
e61	V34 - V43	625
e62	V43 - V44	333
e63	V42 - V46	510
e64	V47 - V49	537
e65	V48 - V50	550
e66	V51 - V52	110
e67	V51 - V54	383
e68	V53 - V54	455
e69	V54 - V55	312
e70	V46 - V55	454
e71	V45 - V46	816
e72	V55 - V56	737
e73	V56 - V57	127
e74	V56 - V59	891
e75	V58 - V59	190
e76	V59 - V60	237
e77	V60 - V61	875
e78	V60 - V62	696
Jumlah		45742

Berdasarkan data yang diperoleh tersebut, gambar jaringan pipa pendistribusian air PDAM Tirta Aji Cabang Wonosobo dapat disajikan dalam Gambar 1.

Dalam pencarian pohon rentang minimal digunakan algoritma Kruskal dan algoritma Sollin. Langkah-langkah pada algoritma Kruskal adalah sebagai berikut.

Langkah 1. (mulai). Jika tidak ada sisi, G tidak terhubung, dan karena itu tidak memiliki pohon rentang minimal. Jika tidak demikian, ambil sebuah sisi dengan bobot terkecil (rangkaian dapat diputuskan secara sembarang). Tempatkan sisi itu di S dan titiknya di T.

Langkah 2. (pemeriksaan untuk penyelesaian). Jika S memuat *n-1* sisi, maka berhentilah. Sisi-sisi di S dan titik-titik di T

membentuk pohon rentang minimal. Jika tidak demikian, lanjutkan ke langkah 3.

Langkah 3. (ambil sisi berikutnya). Tentukan sisi-sisi berbobot terkecil yang tidak membentuk sikel dengan sembarang sisi yang ada di S. Jika tidak ada sisi seperti itu, G tidak terhubung dan tidak memiliki pohon rentang minimal. Jika tidak demikian, pilih satu sisi sejenis itu (rangkaian dapat diputus secara sembarang), dan tempatkan sisi itu di S dan titiknya di T. Kembalilah ke langkah 2. (Sutarno dkk, 2005)

Sedangkan langkah-langkah pada algoritma Sollin adalah sebagai berikut.

- a. Nearest-neighbor (N_k, i_k, j_k) . Operasi ini menggunakan titik-titik pohon rentang N_k dan menentukan sisi (i_k, j_k) dengan bobot minimum di antara sisi yang dipancarkan dari N_k [yaitu, $c_{i_k j_k} = \min \{c_{ij} : (i,j) \in A, i \in N_k$ and $j \notin N_k$]. Untuk melakukan operasi ini kita harus mengamati semua daftar sisi yang terkait dari titik-titik pada N_k , dan melihat sisi berbobot minimum di antara sisi-sisi tersebut yang memiliki satu titik akhir yang bukan termasuk dari N_k .
- b. $merge(i_k, j_k)$. Operasi ini menggunakan masukan dua titik i_k dan j_k , dan jika dua titik tersebut milik dua pohon yang berbeda, maka gabungkan dua pohon tersebut menjadi pohon tunggal. (ahuja dkk, 1993)

Dari data yang diperoleh dari PDAM Kabupaten Wonosobo di iterasikan menggunakan algoritma Kruskal dan algoritma Sollin. Hasil iterasi terakhir menggunakan algoritma Kruskal diperoleh.

```
\begin{split} S &= \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{13}, \\ &e_{15}, e_{16}, e_{17}, e_{19}, e_{21}, e_{22}, e_{23}, e_{24}, e_{25}, e_{27}, \\ &e_{28}, e_{29}, e_{31}, e_{32}, e_{34}, e_{35}, e_{36}, e_{40}, e_{41}, e_{43}e_{44}, \\ &e_{45}, e_{46}, e_{47}, e_{50}, e_{51}, e_{53}, e_{54}, e_{55}, e_{57}, e_{59}, e_{60}, \\ &e_{62}, e_{63}, e_{64}, e_{65}, e_{66}, e_{67}, e_{68}, e_{69}, e_{70}, e_{71}, \\ &e_{72}, e_{73}, e_{74}, e_{75}, e_{76}, e_{77}, e_{78}\}. \end{split}
```

Dari sisi-sisi yang terpilih pada iterasi terakhir menggunakan algoritma Kruskal diperoleh bobot dari pohon rentang minimal yaitu 36715 m.

Hasil iterasi terakhir dari algoritma Sollin adalah sebagai berikut.

```
\begin{split} S &= \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{13}, \\ &e_{15}, e_{16}, e_{17}, e_{19}, e_{21}, e_{22}, e_{23}, e_{24}, e_{25}, e_{27}, \\ &e_{28}, e_{29}, e_{31}, e_{32}, e_{34}, e_{35}, e_{36}, e_{40}, e_{41}, e_{43}e_{44} \\ &e_{45}, e_{46}, e_{47}, e_{50}, e_{51}, e_{53}, e_{54}, e_{55}, e_{57}, e_{59}, e_{60} \\ &e_{62}, e_{63}, e_{64}, e_{65}, e_{66}, e_{67}, e_{68}, e_{69}, e_{70}, e_{71}, \\ &e_{72}, e_{73}, e_{74}, e_{75}, e_{76}, e_{77}, e_{78} \}. \end{split}
```

Dari sisi-sisi yang terpilih pada iterasi terakhir menggunakan algoritma Sollin diperoleh bobot dari pohon rentang minimal yaitu 36715 m.

Gambar pohon rentang dari pendistribusian air PDAM Tirta Aji Cabang Wonosobo yang dicari menggunakan algoritma Kruskal dan algoritma Sollin disajikan dalam Gambar 2.

Berdasarkan langkah-langkah manual dari algoritma Kruskal dan algoritma Sollin dalam mencari pendistribusian air optimal yang telah dijalankan, langkah-langkah pada algoritma Sollin lebih efektif dibandingkan dengan langkah-langkah pada algoritma Kruskal. Pada algoritma Kruskal setiap langkah yang dilakukan harus memeriksa apakah mengandung sikel atau tidak, sedangkan dalam algoritma Sollin tidak mungkin membentuk sikel pada setiap langkahnya. Sehingga lebih efisien penggunaan algoritma Sollin pada pencarian pohon rentang minimal.

VB (Visual Basic) merupakan bahasa pemrograman komputer yang lengkap dan mudah digunakan untuk membuat suatu aplikasi dalam Microsoft Windows dengan menggunakan metode Grafical User Interface (GUI). Visual Basic memudahkan pemrograman untuk berinteraksi langsung dengan elemen-elemen di dalam setiap bentuk pemrograman. Microsoft Visual Basic berawal dari bahasa pemrograman BASIC (Beginners All Purpose Symbolic Instruction Code), yaitu sebuah bahasa pemrograman.Visual Basic digunakan sebagai alat bantu untuk membuat berbagai macam program komputer. Aplikasi dapat dihasilkan dengan bahasa pemrograman (Pandia, 2002).

Setelah melakukan pencarian dengan menggunakan cara maunual, dibangun program aplikasi penerapan algoritma Kruskal dan algoritma Sollin untuk mencari pohon rentang minimal dari pendistribusian air PDAM Tirta Aji Cabang Wonosobo Microsoft Visual menggunakan *Basic* 6.0. Tampilan awal program disajikan dalam Gambar 3.

Gambar 3 Tampilan Awal Program Pencari

Gambar 1 Jaringan Pipa PDAM Tirta Aji Cabang Wonosobo

Gambar 2 Pohon Rentang dari Pendistribusian Air

Untuk memilih algoritma yang akan digunakan klik pada menu algoritma, kemudian pilih algoritma yang akan digunakan. Pada pilihan menu tersebut terdapat pilihan Kruskal dan Sollin. Jika dipilih salah satu dan dijalankan akan muncul tampilan seperti pada Gambar 4 dan Gambar 5.

Gambar 4 Tampilan Hasil dari Jendela Algoritma Kruskal

Gambar 5 Tampilan Hasil dari Jendela Algoritma Sollin

Terlihat pada Gambar 4 dan Gambar 5 bahwa hasil dari program menggunakan algoritma Kruskal maupun algoritma Sollin sama. Bobot yang diperoleh yaitu 36715 m. Sisi-sisi pada pohon rentang yang diperoleh dapat dilihat pada *listbox* paling kanan pada program.

Sisi-sisi yang diperoleh dari program pencari pohon rentang minimal yaitu {(1,2); (2,3); (2,7); (4,5); (5,6); (5,10); (7,9); (8,12); (9,10); (9,13); (10,11); (12,13); (13,14); (14,15); (14,17); (15,16); (16,23); (17,22); (18,19); (18,20); (18,21); (21,22); (22,30); (23,24); (24,25); (26,27); (26,38); (27,28); (28,29); (29,30); (29,35); (31,32); (31,33); (33,34); (34,35); (35,36); (36,37); (36,41); (37,40); (38,39); (40,47); (41,42); (42,43); (42,46); (43,44); (45,46); (46,55); (47,48); (47,49); (48,50); (51,52); (51,54); (53,54); (54,55); (55,56); (56,57); (56,59); (58,59); (59,60); (60,61); (60,62)}.

Hasil sisi-sisi yang terpilih pada program aplikasi sama dengan sisi-sisi yang terpilih dengan mengunakan cara manual. Sisi-sisi yang terpilih pada program aplikasi jika diubah menjadi bentuk seperti hasil dari cara manual akan didapat hasil seperti berikut.

$$\begin{split} S &= \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{13}, \\ &e_{15}, e_{16}, e_{17}, e_{19}, e_{21}, e_{22}, e_{23}, e_{24}, e_{25}, e_{27}, \\ &e_{28}, e_{29}, e_{31}, e_{32}, e_{34}, e_{35}, e_{36}, e_{40}, e_{41}, e_{43}e_{44} \\ &e_{45}, e_{46}, e_{47}, e_{50}, e_{51}, e_{53}, e_{54}, e_{55}, e_{57}, e_{59}, e_{60} \\ &e_{62}, e_{63}, e_{64}, e_{65}, e_{66}, e_{67}, e_{68}, e_{69}, e_{70}, e_{71}, \\ &e_{72}, e_{73}, e_{74}, e_{75}, e_{76}, e_{77}, e_{78} \}. \end{split}$$

Pencarian pohon rentang menggunakan program aplikasi tersebut lebih efektif, karena dapat meminimalkan error dan dapat mempercepat pencarian dibandingkan dengan menggunakan cara manual.

SIMPULAN

Dari uraian di atas dapat disimpulkan bahwa hasil bobot pohon rentang minimal dari jaringan pipa pendistribusian air PDAM Tirta Aji Cabang Wonosobo menggunakan algoritma Kruskal dan algoritma Sollin adalah 36.715 m. Hasil bobot pohon rentang menggunakan program penerapan algoritma Kruskal dan algoritma Sollin pada *Microsoft Visual Basic 6.0* adalah 36.715 m.

Sisi-sisi yang terpilih pada pohon rentang yaitu sebagai berikut.

$$\begin{split} S &= \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{13}, \\ &e_{15}, e_{16}, e_{17}, e_{19}, e_{21}, e_{22}, e_{23}, e_{24}, e_{25}, e_{27}, \\ &e_{28}, e_{29}, e_{31}, e_{32}, e_{34}, e_{35}, e_{36}, e_{40}, e_{41}, e_{43}e_{44} \end{split}$$

```
\begin{aligned} &e_{45},e_{46},e_{47},e_{50},e_{51},e_{53},e_{54},e_{55},e_{57},e_{59},e_{60} \\ &e_{62},e_{63},e_{64},e_{65},e_{66},e_{67},e_{68},e_{69},e_{70},e_{71}, \\ &e_{72},e_{73},e_{74},e_{75},e_{76},e_{77},e_{78} \Big\}. \end{aligned}
```

Hasil dari perhitungan secara manual dan menggunakan program sama, berarti algoritma Kruskal dan Algoritma Sollin dapat diterapkan pada *Microsoft Visual Basic 6.0* dan program tersebut dapat digunakan sebagai alat bantu untuk mencari pohon rentang minimal. Sehingga dalam pencarian pohon rentang minimal lebih baik menggunakan aplikasi yang telah dibuat tersebut, karena untuk menghitung data yang sangat banyak diperlukan ketelitian yang baik, sehingga jika menggunakan program aplikasi dapat meningkatkan ketelitian dan mempercepat proses pencarian pohon rentang minimalnya dibandingkan dengan mencarinya secara manual.

Hasil bobot pohon rentang pada penelitian ini adalah 36.715 m, berarti jaringa pipa pendistribusian air bisa dihemat sebesar 9.027 m dari panjang pipa yang terpasang 45.742 m.

DAFTAR PUSTAKA

- Agustini, D. H. & Rahmadi Y. E. 2004. Riset Operasional Konsep-konsep Dasar. Jakarta:PT. Rineka Cipta.
- Ahuja, R. K., Magnanti, T. L & Orlin J. B.1993. *Network Flows: Theory, Agorithm and Application*. Prentice Hall, Engel wood Cliffs, N. J.
- Latifah, U. dan E. Sugiharti. 2015. Penerapan Algoritma Prim dan Kruskal pada Jaringan Distribusi Air PDAM Tirta Moedal Cabang Semarang Utara. *UNNES Journal of Mathematics*, 4(1): 47-57.
- Pandia, H. 2002. Visual Basic 6 Tingkat Lanjut. Yogyakarta: Andi.
- Prasetyo, V.Z., A. Suyitno, & Mashuri. 2013.
 Penerapan Algoritma Dijkstra dan
 Prim pada Pendistribusian Air di
 PDAM Kabupaten Demak. *UNNES*Journal of Mathematics, 2(1): 70-78.
- Rizki, S. 2012. Penerapan Teori Graf untuk Menyelesaikan Masalah Minimum Spanning Tree (MST) Menggunakan Algoritma Kruskal. *Universitas Muhammadiyah Metro*, Vol.1 No.2: 142-152.
- Sutarno, N. Priatna, & Nurjanah. 2005.

 Matematika Diskrit. Malang: UM
 PRESS.

- Wattimena, A. Z. Dan S. Lawalata. 2013. Aplikasi Algoritma Kruskal dalam Pengoptimalan Panjang Pipa. *Jurnal Barekeng*, Vol.7 No.2: 13-18.
- Yingyu, W., X. Yinlong, G. Xiaodong, & C. Gouliang. 2000. Efficient Minimum Spanning Tree Algorithms on the Reconfigurable Mesh. Journal Computation Science & Technology, Vol.15 No.2: 116-125.