Numericals: 1. Determine the input bias everent and important current IB 5 I:0 to an OPAmp is	
office concret Is 5 I'm to an opamp is	
- Office concret IBS I to be an opamp is	
1 4 4	
- the event ente moninvolting terminal is	
8.344 4 enverting terminal is 7.94A.	
7.944	
-	
8.3 MA.	
IB = IB1 + IB2 - 8.14A	
a	
Iio = IBI - IB2 = 8.34A-7.94A	
- O.4MA.	
The second of th	
2. A certain OP Amp has a differential volta	age
gain of 1,00,000 and common mode go	in
· of Ac = 0.25. Determine CMRR 4 exp	rus
it in dB.	
given Ad = 1,00,000.	
Ac = 0.25	
CMRR = Ad 1,00,000 4,00,000	
Ac 0.25	
inds, cmrr = 20 logio (4,00,000))
- 112-04 dB	
3. An OPAmp has a differential voltage gain	
of 2,500 and a (MRB of 30,000.	
i) Determine Common medigain Ac	
ii) Express CMRB in dB	
Scanned by ComSc	

arvin	Ad = 2500	o corre	Date = 30,000	PNB
i)	CMAR =	Ad	· ·	
		Ac		
	,1, Ac =	= Acl	3500	0.083
		CMER	30000	_
(i) c	MRR in de	= aulog	(30,000	ره)
1 '	19		54 dB	

4.	An Opamp hosa common mode input
	elynol of 3.2 v to bolk the input turning
	This rusults in an op signal of 26m v.
	Determine common mode gain Ac &
	CMRR in d3. given that the differential
	goin is 100.
	gener . V = 3.2V . V = 26mV
	$A_{c} = V_{0} - 26 \dot{m}V = 0 \cdot 8081$
	V _c 3.2 V = -
	CMRR = Ad = 100. = 12345.6
	Ac 0.0081 -
	-: cmrr = 20/04 (12345.6)
	= 81.83 dB
3	

	Date PNB
4.	
	Find the value of L is the frequency of
	oscillations is 40 kHz.
Solu.	Given: G = 100pF Cz = 260pF.
	L = 9. f = 40kHz.
	f= 1 cug= G(2 2π) L cug: G+ C2.
	211 VL Ciq. 9+ (2.
	Ciq = 100 x 10-12 x 260 x 10-12 = 37.5 pF.
	(= 37.5 pF.
	100×10-12
	To find L. Square both sides of f.
	f² =
	4112 Lag.
	1. L = 1 4112 f2 cm.
	= 1 4 m2 (40,x103)2 (37.5x10-12)
	: L = 0.422H

5.	In a colpette orillate, L= 5mH. Find G
	and Cz if the frequency of oscillations is
	f = 50 KHz. Assume a fewback facts of Bo10%
	Scanned by CamScanner
Sole	L = 5mH. f = 50KHz. B = 10.1 = 0.1
	f = Cug = GC2
	Squaring f,
	4112 L ciq.
	ag = 1 = 1
	4112 L f 2 4112 x 5 x 10-3 x
	(50 × 103)2
	Cuq = 2.02nF
	WKH Cuq. 9 C2 B = 0.1 = C2
	4+12
	·: C2 = 0.1 C1
	Cuq = GC2 _ GX0.14 _0.14
	C1+C2. 1.18 1.1
	=> Cup = 0.19
	2.02nF - 0.14
	1.1.
	·. 4 = 22.22nF
	4 C2 = 0.1 x 22.22n=
	= 2.22nF
1	The second secon

<u> </u>	An investing amplifion has R1= 1ke and R==20h
	calculate the gain A.
	$A = -\frac{R_1}{R_1} = -\frac{30kL}{1kL} = -\frac{20}{1}$
ع.	An OP- sup in involving configuration has
.چولر	velage is 3mV what is Vo?
	$\frac{V_{i}}{V_{i}} = \frac{3mV}{R_{i}}$ $\frac{V_{i}}{R_{i}} = -\frac{A}{V_{i}} \frac{V_{i}}{R_{i}} = -\frac{A}{V_{i}} \frac{V_{i}}{R_{i}}$
	Vo = -40 (3mv)
	$\frac{V_0 = -120 \mathrm{mV}}{-}$
3.	Design an inverting amplifier with a gain of -50 and a 2kr ruistance R. Dranothe evienit sig.
blee	yern Ry = 2kr. A = -50. To coleulate feedback rights R.
	with $A = -R_f$ for inverting amplifier.
	: -50 = - Rf gw [100tz]
	=> Rg = 100 kz

	In a non inverting of Ry = 200ks. ± 15V. calculate Vo ig	Supply voctages rece
	±15V. calculate Vo ig	the applied ip voltage
	ا بي	
Solu:	giren: R, =akr	Rp = 200hr.
	± Vec - Ve	g = ±15V.
		<u> </u>
	$V_0 = \left(1 + \frac{K_+}{Q_1}\right) V_1$	

	evhiri	elond	loop ga	in	ŧ.	Date PNB
		A =	1+ R1 R1.	Çjën	n	A=6.
-	ક	R4	= 59.			
		1 ler		er Ry	=	59×1102

	coher eloud loop gain
	$A = 1 + \frac{R_1}{R_1}$ efèren $A = 6$.
	60= 1+ Af
	or R4 = 59.
	Ry = 59 k2
	Inverting Summer.
7.	In the circuit figure of an inverting summer determine the OF voltage.
	2V Ika Ika Ika Ika Ivo
શ્રન	of voltage of an involting summer $V_0 = -\left(\frac{R_1}{R_1}V_1 + \frac{R_2}{R_2}V_2 + \frac{R_4}{R_3}V_3\right)$
	Since Rg = Rq = Ra = Ra = 1 kr.
	$V_o = -(2V + 1V + 4V)$
	= - <u>¬v</u>
	For the garre evenit if R=210, R=1k2
- 1	+ R3 = 4km, R4 = 20km, V0=?

Vo =
$$-\frac{2akr}{2akr}$$
 $\frac{aokr}{1kr}$ $\frac{aokr}{1kr}$

$$V_0 = -\frac{2eh}{2eh} + \frac{2oh}{1h} + \frac{2oh}{1h}$$

$$= -\left(20 + 20 + 20\right)$$

$$= -\frac{60}{2}$$

9. Design an in verting summer for $V_0 = 0.2V_1 + 1V_2 + 4V_3$ with $R_1 = 20 kr$

Selly: Cutput veltage (1) an involving summon 1)

$$V_0 = -\begin{pmatrix} R_1 & V_1 + \frac{R_2}{R_1} & V_2 + \frac{R_3}{R_3} \end{pmatrix} \qquad (1)$$

$$V_0 = -\begin{pmatrix} R_1 & V_1 + \frac{R_2}{R_2} & V_2 + \frac{R_3}{R_3} & V_3 \end{pmatrix} \qquad (1)$$

$$V_0 = -\begin{pmatrix} 0.2 & (-V_1) + 1 & (-V_2) + 4 & (-V_3) & -(2) \end{pmatrix} \qquad (1)$$

$$V_0 = -\begin{pmatrix} 0.2 & (-V_1) + 1 & (-V_2) + 4 & (-V_3) & -(2) \end{pmatrix} \qquad (1)$$

$$V_0 = -\begin{pmatrix} 0.2 & (-V_1) + 1 & (-V_2) + 4 & (-V_3) & -(2) \end{pmatrix} \qquad (1)$$

$$V_0 = -\begin{pmatrix} 0.2 & (-V_1) + 1 & (-V_2) + 4 & (-V_3) & -(2) \end{pmatrix} \qquad (1)$$

$$V_1 = 0.2 \qquad \Rightarrow 20 \text{ for } R_1 = 100 \text{ for } R_2 = 20 \text{ for } R_3 = 20 \text{ for } R_3$$

	Numericale on IC 555 times.
10.	For an Ic 555 timer to work in astelle
4	mode the components considered are R = 1 Kr
	By = 10kg with 9 = 0.014F what is the
	frequency of oscillations generated? Duty eyeu?
tole,	genn R=1kn, R==10kn G=0.014F.
	f= I T= TON+ TOPE.
	ToN = 0.693 (4+ Rg)C
	= 0.693 (1Km + 10km) 0.01HF
	= 0.693 (1Km+10km) 0.01HF = 0.693 (1Km) 0.014F
	What makes you happy?
	Scanned by CamScanner

 $= 0.693 (11 \times 10^{+3} \times 0.01 \times 10^{-6})$ $= 0.693 (11 \times 0.01 \times 10^{-3})$ Ton = 76.23 use $Tof = 0.693 R_2 C = 0.693 \times 10 \text{ km} \times 0.01 \text{ HF}$ $= 0.693 \times 10 \times 10^3 \times 0.01 \times 10^{-6}$ $= 0.0693 \times 10^{-3}$ $= 69.3 \times 10^{-6} \text{ see}$ $\therefore T = 145.53 \text{ use}$ $f = 6.871 \text{ KHz} \qquad (f = 1)$ Duty eyele = Ton = 76.23 use = 0.5238. 7. D = 52.38.

11.	A 555 timer Ic hos R=4kr, Ra=4kr,
	C=0.014F, f=? D=?
	Ans: f=12kH3 D=66.67.1.
12.	For an Ic timer band astable multivibrat
	given D=75-1-, f=1kHz Rz=3.6kr
	C=0.14F, calculate Ton and Ry.
جاول	given D= 0.75, f= 1 KHz R2 = 3.6 kz,
	를 보는 사람이 있는 경기를 가지 않는 것이 되었다면 있다. 이번 역사 이번 가격에 하는 사람이 가게 되었다면 있다. 그리고 가장하는 것이 없는 것이다면 하다고 있다고 있다.
	: T= 1 = 1mle
	+ =====================================

	7
Date PNB	
Derry eyel = TON	
	2236 2236
TON - DXT	
= 075×1×10-3	
= 750 M. Bie	
TON = 0.693 (RI + Rg) C.	
750×10-6 = 0.693 (R1 + 3.6 km) 0.1×10-6	5.7500
= 6.93x15° R1 + 2.4948 X10-4.	
1. 750×10-6- 249.48×10-6 = 6.93×10-8 R1.	
501×10-6 = 6.93×10-3R1	
:. R, = 72.29 × 100	
= 7.229 kz	
13. F& an IC 5TT timer, D= 60 1. += 2KHz	
R2 = 3 kg (= 0-1 y = . R1 = 7	-0
Solve the problem.	

PROBLEMS ON IC 555 TIMER:

For an IC 555 timer, T_{ON} = 3sec, T_{OFF} = 1sec and C = 10μF. Calculate the Value of R₁ and R₂.

Solution:

Given:
$$Ton = 3sec$$
, $Toff = 1sec$, $C = 10\mu F$

Solution:

$$T_{OFF} = 0.693 R_2 C$$

 $1 = 0.693 \times R_2 \times 10 \times 10^{-6}$
 $R_2 = 144 \text{ K}\Omega_1$

$$T_{ON} = 0.693(R_1 + R_2)C$$
Therefore R₁ = 288.6 K\O

2) For an IC 555 timer, given D = 75%, f= 1 KHz, R₂ = 3.6 kΩ, C = 0.1 μF. Calculate R₁. Solution:

Given:
$$D = 75\% \Rightarrow 0.75$$

 $f = 1 \text{ kHz}, R_2 = 3.6 \text{ k}\Omega, C = 0.1 \mu\text{F}$
 $D = \frac{T_{ON}}{T}$
 $T = \frac{1}{f} \Rightarrow 1 \text{ m sec}$
 $T_{ON} = D \times T$
 $T_{ON} = 0.75 \times 10^{-3} \text{sec} = 750 \text{ }\mu\text{sec}$
 $T_{OFF} = 0.693 R_2 C$
 $T_{OFF} = 249 \text{ }\mu\text{sec}$
Since $D > 50\%$. $T_{ON} > T_{OFF}$

$$T_{ON} = 0.693(R_1 + 3600)0.1 \times 10^{-6}$$

Therefore $R_1 = 7.215 \text{ k}\Omega$

Problems on RC oscillator:

1. In an RC phase shift oscillator, $R = 500\Omega$ and $C=0.1\mu F$. Calculate the frequency of oscillations.

Solution:

Given $R = 500\Omega$, $C=0.1\mu F$

Frequency of oscillations is given by

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

$$f = \frac{1}{2\pi \times 500 \times 0.1 \times 10^{-6} \times \sqrt{6}}$$

$$\therefore f = 1.299kHz$$

2. In an RC phase shift oscillator, $R = 1000\Omega$. If the frequency of oscillations is 5kHz, calculate the value of C.

Solution:

Given $R = 1000\Omega$, f = 5kHz.

Frequency of oscillations is given by

$$f = \frac{1}{2\pi RC\sqrt{6}} \text{ or } C = \frac{1}{2\pi Rf\sqrt{6}}$$

$$\therefore C = \frac{1}{2\pi \times 1000 \times 5000\sqrt{6}}$$

$$C = 0.0129 \mu F$$