Optimization-Based Fluid-Structure Interaction Decoupling Approach

Paul Kuberry ¹ Hyesuk Lee ²

The Finite Element Circus October 25, 2014

¹Clemson University, supported by NSF grants DMS-1016182, DMS-1418960, and Sandia National Laboratories
²Clemson University, supported by NSF grants DMS-1016182, DMS-1418960

FSI Domain

Figure: Fluid-Structure Interaction Domain

FSI Equations

Fluid: Navier-Stokes, Structure: Linear Elastic

$$\begin{split} \rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - 2\nu_f \, \nabla \cdot D(\mathbf{u}) + \nabla p &= \mathbf{f}_f & \text{in } \Omega_t^f \,, \\ \nabla \cdot \mathbf{u} &= 0 & \text{in } \Omega_t^f \,, \\ \rho_s \frac{\partial^2 \boldsymbol{\eta}}{\partial t^2} - 2\nu_s \, \nabla \cdot D(\boldsymbol{\eta}) - \lambda \nabla (\nabla \cdot \boldsymbol{\eta}) &= \mathbf{f}_s & \text{in } \Omega^s \,, \end{split}$$

where \mathbf{u} denotes the velocity vector of fluid, p the pressure of fluid, ρ_f the density of the fluid, ν_f the fluid viscosity, $\boldsymbol{\eta}$ the displacement of the structure, ρ_s the structure density; $D(\mathbf{v}) := (\nabla \mathbf{v} + \nabla \mathbf{v}^T)/2$

Initial Conditions and Boundary Conditions

$$\begin{aligned} 2\nu_f D(\mathbf{u}) \mathbf{n}_f - p \mathbf{n}_f &= \mathbf{u}_N & \text{on } \Gamma_N^f, \\ \mathbf{u} &= \mathbf{0} & \text{on } \Gamma_D^f, \\ 2\nu_s D(\boldsymbol{\eta}) \mathbf{n}_s + \lambda (\nabla \cdot \boldsymbol{\eta}) \mathbf{n}_s &= \boldsymbol{\eta}_N & \text{on } \Gamma_N^s, \\ \boldsymbol{\eta} &= \mathbf{0} & \text{on } \Gamma_D^s, \\ \mathbf{u}|_{t=0} &= \mathbf{u}^0 & \text{in } \Omega_0^f, \\ \boldsymbol{\eta}|_{t=0} &= \boldsymbol{\eta}^0 & \text{in } \Omega^s, \\ \boldsymbol{\eta}_t|_{t=0} &= \dot{\boldsymbol{\eta}}^0 & \text{in } \Omega^s, \end{aligned}$$

where $\dot{\eta}^0|_{\Gamma_{I_{t_n}}}=\mathsf{u}_0|_{\Gamma_{I_{t_n}}}$

Interface Conditions

The moving boundary Γ_{I_t} is determined by the displacement η at time t. The interface conditions between the fluid and the structure are obtained by enforcing continuity of the velocity and the stress force:

Continuity of Velocity

$$\frac{\partial \boldsymbol{\eta}}{\partial t} = \mathbf{u} \quad \text{on } \Gamma_{I_t},$$

Continuity of Stress

$$2\nu_f D(\mathbf{u})\mathbf{n}_f - p\mathbf{n}_f \ = \ -(2\nu_s D(\boldsymbol{\eta})\mathbf{n}_s + \lambda(\nabla\cdot\boldsymbol{\eta})\mathbf{n}_s) \quad \text{on } \Gamma_{l_t} \,.$$

Variational formulation of the fluid governing equations

Using the Reynold's Transport theorem, $\frac{d}{dt}\int_{\Omega_t}\phi \mathbf{v}\ d\Omega = \int_{\Omega_t}\left(\frac{\partial \phi}{\partial t}\mid_{\mathbf{y}} + \phi\nabla_{\mathbf{x}}\cdot\mathbf{z}\right)\mathbf{v}\ d\Omega, \text{ with } \phi = \mathbf{u},$ the chain rule, and integration by parts, the variational formulation of the flow equations becomes:

$$\rho_{f} \frac{d}{dt} (\mathbf{u}, \mathbf{v})_{\Omega_{t}^{f}} + \rho_{f} ((\mathbf{u} - \mathbf{z}) \cdot \nabla \mathbf{u}, \mathbf{v})_{\Omega_{t}^{f}} - \rho_{f} (\mathbf{u}(\nabla \cdot \mathbf{z}), \mathbf{v})_{\Omega_{t}^{f}} + 2\nu_{f} (D(\mathbf{u}), D(\mathbf{v}))_{\Omega_{t}^{f}}
- (\rho, \nabla \cdot \mathbf{v})_{\Omega_{t}^{f}} - (2\nu_{f}D(\mathbf{u}) \cdot \mathbf{n}_{f} - \rho\mathbf{n}_{f}, \mathbf{v})_{\Gamma_{l_{t}}}
= (\mathbf{f}_{f}, \mathbf{v})_{\Omega_{t}^{f}} + (\mathbf{u}_{N}, \mathbf{v})_{\Gamma_{N}^{f}} \, \forall \mathbf{v} \in \mathbf{H}_{D}^{1}(\Omega_{t}^{f}),
(q, \nabla \cdot \mathbf{u})_{\Omega_{t}^{f}} = 0 \quad \forall q \in L^{2}(\Omega_{t}^{f}).$$

Time discretization of the flow equations

Time discretization by implicit Euler yields

$$\begin{split} \rho_f \left[\left(\mathbf{u}^n, \mathbf{v} \right)_{\Omega_{t_n}^f} &- \left(\mathbf{u}^{n-1}, \mathcal{V}(\mathbf{v}) \right)_{\Omega_{t_{n-1}}^f} \right] + \Delta t \, \rho_f \left[\left(\left(\mathbf{u}^n - \mathbf{z}^n \right) \cdot \nabla \mathbf{u}^n, \mathbf{v} \right)_{\Omega_{t_n}^f} - \left(\mathbf{u}^n (\nabla \cdot \mathbf{z}^n), \mathbf{v} \right)_{\Omega_{t_n}^f} \right] \\ &+ \Delta t \left[2 \nu_f (D(\mathbf{u}^n), D(\mathbf{v}))_{\Omega_{t_n}^f} - \left(\rho^n, \nabla \cdot \mathbf{v} \right)_{\Omega_{t_n}^f} \right] \\ &- \Delta t \left(2 \nu_f D(\mathbf{u}^n) \cdot \mathbf{n}_f - \rho^n \mathbf{n}_f, \mathbf{v} \right)_{\Gamma_{l_t}} \\ &= \Delta t \left[\left(\mathbf{f}_f^n, \mathbf{v} \right)_{\Omega_{t_n}^f} + \left(\mathbf{u}_N^n, \mathbf{v} \right)_{\Gamma_N^f} \right] \, \, \forall \mathbf{v} \in \boldsymbol{H}_D^1(\Omega_{t_n}^f) \,, \\ &(q, \nabla \cdot \mathbf{u}^n)_{\Omega_{t_n}^f} = 0 \quad \forall q \in L^2(\Omega_{t_n}^f) \,. \end{split}$$

- It is expected that the overall order of the time discretization (fluid & structure) will be only first order.
- Results given later are easily extended to Crank-Nicolson time discretization for the flow.
- Second order time scheme of the structure will be used for analysis because of extra accuracy needed.

Second order time discretization of the structure

 $\ensuremath{\mathsf{A}}$ second order time discretization of the structure problem is given by

$$\begin{split} &\rho_{s}\left(\dot{\boldsymbol{\eta}}^{n}\right. - \dot{\boldsymbol{\eta}}^{n-1}, \boldsymbol{\xi}\right)_{\Omega^{s}} \\ &+ \Delta t \, \left[2 \, \nu_{s} \left(\frac{D(\boldsymbol{\eta}^{n}) + D(\boldsymbol{\eta}^{n-1})}{2}, D(\boldsymbol{\xi})\right)_{\Omega^{s}} + \lambda \left(\nabla \cdot \left(\frac{\boldsymbol{\eta}^{n} + \boldsymbol{\eta}^{n-1}}{2}\right), \nabla \cdot \boldsymbol{\xi}\right)_{\Omega^{s}}\right] \\ &- \Delta t \, \left(2 \, \nu_{s} \left(\frac{(D(\boldsymbol{\eta}^{n}) + D(\boldsymbol{\eta}^{n-1})) \cdot \mathbf{n}_{s}}{2}\right) + \lambda \left(\nabla \cdot \left(\frac{\boldsymbol{\eta}^{n} + \boldsymbol{\eta}^{n-1}}{2}\right)\right) \mathbf{n}_{s}, \boldsymbol{\xi}\right)_{\Gamma_{l_{0}}} \\ &= \Delta t \, \left[\left(\frac{\mathbf{f}_{s}^{n} + \mathbf{f}_{s}^{n-1}}{2}, \boldsymbol{\xi}\right)_{\Omega^{s}} + \left(\frac{\boldsymbol{\eta}_{N}^{n} + \boldsymbol{\eta}_{N}^{n-1}}{2}, \boldsymbol{\xi}\right)_{\Gamma_{N}^{s}}\right] \, \forall \boldsymbol{\xi} \in \boldsymbol{H}_{D}^{1}(\Omega^{s})\,, \\ \Delta t \, \left(\begin{array}{c} \dot{\boldsymbol{\eta}}^{n} + \dot{\boldsymbol{\eta}}^{n-1}}{2}, \boldsymbol{\gamma}\right)_{\Omega^{s}} - \left(\boldsymbol{\eta}^{n} - \boldsymbol{\eta}^{n-1}, \boldsymbol{\gamma}\right)_{\Omega^{s}} = 0 \, \forall \boldsymbol{\gamma} \in \mathbf{H}^{1}(\Omega^{s})\,. \end{split}$$

Optimization Constraints

- ▶ Set $\mathbf{g}^n := \left(2\nu_f D(\mathbf{u}^n) \cdot \mathbf{n}_f p\mathbf{n}_f \frac{1}{2}((\mathbf{u}^n \mathbf{z}^n) \cdot \mathbf{n}_f)\mathbf{u}^n\right)|_{\Gamma_{I_{t_n}}}$ as our control
- ▶ $\frac{1}{2}((\mathbf{u}^n \mathbf{z}) \cdot \mathbf{n}_f)\mathbf{u}^n$ will be approximately zero since at an optimal solution $-\mathbf{g}^n$ can be used as the stress for the structure
- $\qquad \qquad -(\mathbf{g}^n \circ \Psi_n^{-1}) J_{t_n} \text{ representing } (2\nu_s D(\boldsymbol{\eta}^n) \cdot \mathbf{n}_s + \lambda (\nabla \cdot \boldsymbol{\eta}^n) \mathbf{n}_s) \mid_{l_{t_0}}$

Making this substitution and introducing

$$c(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \frac{1}{2}((\mathbf{u} \nabla \mathbf{v}, \mathbf{w})_{\Omega_{t_n}^f} - (\mathbf{u} \nabla \mathbf{w}, \mathbf{v})_{\Omega_{t_n}^f}),$$

the flow constraints become

$$\begin{split} \rho^f[(\mathbf{u}^n,\mathbf{v})_{\Omega^f_{t_n}} - (\mathbf{u}^{n-1},\mathcal{V}(\mathbf{v}))_{\Omega^f_{t_{n-1}}}] + \Delta t \; \rho^f[c(\mathbf{u}^n,\mathbf{u}^n,\mathbf{v})_{\Omega^f_{t_n}} + \frac{1}{2}((\mathbf{u}^n\cdot\mathbf{n}_f)\mathbf{u}^n,\mathbf{v})_{\Gamma^f_N} \\ - \frac{1}{2}((\nabla\cdot\mathbf{z}^n)\mathbf{u}^n,\mathbf{v})_{\Omega^f_{t_n}} - c(\mathbf{z}^n,\mathbf{u}^n,\mathbf{v})_{\Omega^f_{t_n}}] \\ + \Delta t \; 2\nu_f(D(\mathbf{u}^n),D(\mathbf{v}))_{\Omega^f_{t_n}} + \Delta t \; (p^n,\nabla\cdot\mathbf{v})_{\Omega^f_{t_n}} \\ = \Delta t \; (\mathbf{f}^n_f,\mathbf{v})_{\Omega^f_{t_n}} + \Delta t \; (\mathbf{u}^n_N,\mathbf{v})_{\Gamma^f_N} + \Delta t \; (\mathbf{g}^n,\mathbf{v})_{\Gamma_{l_{t_n}}} \quad \forall \mathbf{v} \in \boldsymbol{H}^1_D(\Omega^f_{t_n}), \\ (q,\nabla\cdot\mathbf{u}^n)_{\Omega^f_{t_n}} = 0 \quad q \in L^2(\Omega^f_{t_n}). \end{split}$$

Optimization Constraints

Also, the structure equations constraint can be rewritten as

$$\begin{split} &\rho_{s}\left(\dot{\boldsymbol{\eta}}^{n} - \dot{\boldsymbol{\eta}}^{n-1}, \boldsymbol{\xi}\right)_{\Omega^{s}} \\ &+ \Delta t \left[2 \, \nu_{s} \left(\frac{D(\boldsymbol{\eta}^{n}) + D(\boldsymbol{\eta}^{n-1})}{2}, D(\boldsymbol{\xi})\right)_{\Omega^{s}} + \lambda \left(\nabla \cdot \left(\frac{\boldsymbol{\eta}^{n} + \boldsymbol{\eta}^{n-1}}{2}\right), \nabla \cdot \boldsymbol{\xi}\right)_{\Omega^{s}}\right] \\ &= \Delta t \left[\left(\frac{\mathbf{f}_{s}^{n} + \mathbf{f}_{s}^{n-1}}{2}, \boldsymbol{\xi}\right)_{\Omega^{s}} + \left(\frac{\boldsymbol{\eta}_{N}^{n} + \boldsymbol{\eta}_{N}^{n-1}}{2}, \boldsymbol{\xi}\right)_{\Gamma_{N}^{s}}\right] \\ &- \frac{\Delta t}{2} \left(\mathcal{V}(\mathbf{g}^{n}) J_{t_{n}} + \mathcal{V}(\mathbf{g}^{n-1}) J_{t_{n-1}}, \boldsymbol{\xi}\right)_{\Gamma_{t_{0}}} \quad \forall \boldsymbol{\xi} \in \boldsymbol{H}_{D}^{1}(\Omega^{s}), \\ \Delta t \left(\frac{\dot{\boldsymbol{\eta}}^{n} + \dot{\boldsymbol{\eta}}^{n-1}}{2}, \boldsymbol{\gamma}\right)_{\Omega^{s}} - \left(\boldsymbol{\eta}^{n} - \boldsymbol{\eta}^{n-1}, \boldsymbol{\gamma}\right)_{\Omega^{s}} = 0 \, \forall \boldsymbol{\gamma} \in \mathbf{H}^{1}(\Omega^{s}). \end{split}$$

Description of the optimization problem

An arbitrary g^n will not satisfy the semi-discrete weak formulation with matching boundary conditions (i.e. the monolithic problem).

Therefore, we will use the 'stress' function g^n as a control in each time step to attempt to enforce the continuity of velocity and continuity of stress, i.e., we wish to minimize the functional

$$\mathcal{J}_{n}^{\delta}(\mathbf{u}^{n}, p^{n}, \boldsymbol{\eta}^{n}, \dot{\boldsymbol{\eta}}^{n}, \mathbf{g}^{n}) = \frac{1}{2} \int_{\Gamma_{l_{t_{n}}}} |\mathbf{u}^{n} - \mathcal{V}(\dot{\boldsymbol{\eta}}^{n})|^{2} d\Gamma_{l_{t_{n}}} + \frac{\delta}{2} \int_{\Gamma_{l_{t_{n}}}} |\mathbf{g}^{n}|^{2} d\Gamma_{l_{t_{n}}},$$

subject to the flow and structure constraint equations, where δ is a positive constant penalty parameter.

A new functional

Expected difficulties:

- ▶ Not possible to get a stability estimate for $\dot{\eta}^n$ in $\mathbf{H}^1(\Omega^s)$
- An optimal $\hat{\hat{\eta}}^n$ can be shown only in $\mathsf{L}^2(\Omega^s)$
- The previous functionals are not well-defined (trace of optimal $\dot{\eta}^n$ is not well-defined)

We introduce a first order finite difference approximation of $\dot{\eta}^n$, and define the new optimization problem as

$$\begin{split} \mathcal{J}_n^{\delta}(\mathbf{u}^n, \boldsymbol{\rho}^n, \boldsymbol{\eta}^n, \dot{\boldsymbol{\eta}}^n, \ddot{\boldsymbol{\eta}}^n, \mathbf{g}^n) &= \frac{1}{2} \int_{\Gamma_{I_{t_n}}} \left| \mathbf{u}^n - \frac{\mathcal{V}(\boldsymbol{\eta}^n) - \mathcal{V}(\boldsymbol{\eta}^{n-1})}{\Delta t} \right|^2 \ d\Gamma_{I_{t_n}} \\ &+ \frac{\delta}{2} \int_{\Gamma_{I_{t_n}}} |\mathbf{g}^n|^2 \ d\Gamma_{I_{t_n}} \,, \end{split}$$

subject to the flow and structure constraints.

Recent Analytical Results

P. K., H. Lee, Analysis of a fluid-structure interaction problem recast in an optimal control setting, submitted 2014.

- Existence of an optimal solution
- Existence of Lagrange multipliers
- Derivation of the optimality system
 - State Equations
 - Adjoint Equations
 - ► Necessary Condition

- P. K., H. Lee, Convergence of a fluid-structure interaction problem decoupled by a Neumann control over a single time-step, submitted 2014
- Error estimates over a single time step
 - Standard Stokes and Linear Elasticity error rates
- Convergence of the gradient method from any initial guess, using a sufficiently small timestep

Numerical Experiment

Notable features:

- Manufactured problem, known solution
- Domain does not move
- All computations made using deal.II [1] with
 - ▶ Q², Q¹ for fluid velocity, pressure
 - ▶ Q², Q² for structure displacement, velocity

On
$$\Omega_t^f = \Omega^f = [0,1] \times [0,1]$$
 and $\Omega^s = [0,1] \times [1,1.25]$, $\mathbf{u}_1 = \cos(x+t)\sin(y+t) + \sin(x+t)\cos(y+t)$, $\mathbf{u}_2 = -\sin(x+t)\cos(y+t) - \cos(x+t)\sin(y+t)$, $p = 2\nu_f(\sin(x+t)\sin(y+t) - \cos(x+t)\cos(y+t)) + 2\nu_s\cos(x+t)\sin(y+t)$, $\eta_1 = \sin(x+t)\sin(y+t)$, $\eta_2 = \cos(x+t)\cos(y+t)$.

Convergence over a single time step

	h		$\ \mathbf{u}^n$	$-\operatorname{u}^{\mathit{true}}\ _{L^{2}}$	Rate	∥u ⁿ -	$- \mathbf{u}^{true} \ _{\mathbf{H^1}}$	Rate	$\ p^{n-}$	$\frac{1}{2} - p^{true} \Big\ _{L^2}$	Rat	te
	1/9)	1.1	L474e-05	-	1.0	856e-03	-	1.	4352e-01	-	
	1/1	4	3.0	0366e-06	3.01	4.4	687e-04	2.01	2.	4530e-02	4.0	0
	1/2	1	8.9	9572e-07	3.01	1.9	800e-04	2.01	4.	8644e-03	3.9	9
	1/3	1	2.7	7770e-07	3.01	9.0	689e-05	2.00	1.	0397e-03	3.9	6
	1/4	6	8.4	1869e-08	3.00	4.1	143e-05	2.00	2.	2699e-04	3.8	6
	1/6	9	2.5	5150e-08	3.00	1.8	283e-05	2.00	5.	4895e-05	3.5	0
F	1_{X}	ŀ	η_y	$\ \boldsymbol{\eta}^n - \boldsymbol{\eta}^{tru}\ $	e _{L2}	Rate	$\ \boldsymbol{\eta}^n - \boldsymbol{\eta}^{tru}\ $	e _{H1}	Rate	$\ \dot{\boldsymbol{\eta}}^n - \dot{\boldsymbol{\eta}}^{true}\ $	L2 F	Rate
1	/9	1/	/36	1.7471e-	06	-	1.6544e-	-04	-	4.8645e-06		-
1/	14	1/	/56	4.5645e-	07	3.04	6.7128e-	-05	2.04	1.2725e-06	3	3.04
1/	21	1/	/84	1.3370e-	07	3.03	2.9516e-	-05	2.03	3.7381e-07	3	3.02
1/	/31 1	1/	124	4.1234e-	80	3.02	1.3453e-	-05	2.02	1.1561e-07	3	3.01
1/	46 1	1/	184	1.2548e-	80	3.01	6.0823e-	-06	2.01	3.5289e-08	3	3.01
1/	69 1	1/	276	3.7029e-	09	3.01	2.6949e-	-06	2.01	1.0464e-08	3	3.00

- ▶ Computation over a single timestep, t=0.8 s, Δt =1e-6
- ▶ Using steepest descent as optimization method, ϵ_{tol} =1e-10
- ► Finite difference in objective

Convergence over all time steps

	h	Δt	$\Big \ \mathbf{u}^n - \mathbf{u}^{true}\ _{L^{\infty}(L^2)}$	Rate	$\ \mathbf{u}^n - \mathbf{u}^{true}\ _{L^2(H^1)}$	Rate	$\left\ p^{n-\frac{1}{2}}-p^{true}\right\ _{L}$	Rate	е
	1/6	1/15	1.1955e-02	-	1.0426e-01	-	8.9887e-03	-	
	1/9	1/27	2.6513e-03	3.71	3.9199e-02	2.41	3.5714e-03	2.28	3
	1/14	1/53	5.0970e-04	4.07	1.2511e-02	2.82	1.5589e-03	2.04	ļ
	1/21	1/97	8.6752e-05	4.01	3.5995e-03	2.82	6.4282e-04	2.00)
	1/31	1/173	2.3133e-05	3.26	1.2054e-03	2.70	2.8616e-04	2.00)
	1/46	1/312	6.5748e-06	3.23	4.3259e-04	2.63	1.3150e-04	2.00)
h_{\times}	h_y	Δ	$t \mid \parallel oldsymbol{\eta}^n - oldsymbol{\eta}^{ ext{true}} \parallel_{L^{oldsymbol{2}(oldsymbol{1})}}$	2) Ra	te $\ oldsymbol{\eta}^n - oldsymbol{\eta}^{ ext{true}}\ _{L^2(oldsymbol{I}}$	11) Rat	te $\ \dot{oldsymbol{\eta}}^n - \dot{oldsymbol{\eta}}^{ ext{true}}\ _{L^c}$	∞(L ²)	Rate
1/4	1/1	6 1/1	1.0642e-04	-	1.3550e-03	-	2.5272e-0	3	-
1/6	1/2	4 1/2	28 2.0519e-05	4.0	3.5795e-04	3.2	8 6.4563e-0	4	3.37
1/9	1/3	6 1/5	54 3.7975e-06	4.1	.6 1.1056e-04	2.9	0 1.6216e-0	4	3.41
1/1	4 1/5	4 1/1	06 7.5280e-07	3.6	3.8761e-05	2.3	8 4.8158e-0	5	2.76
1/2	1 1/8	$1 \ 1/1$	94 1.9953e-07	3.2	27 1.6277e-05	2.1	4 1.6575e-0	5	2.63
1/3	$1 \frac{1}{1}$	22 1/3	46 5.9897e-08	3.0	7.2861e-06	2.0	6 5.8173e-0	6	2.68

- ► Computation over timesteps from t=0.5 to t=1.0 s
- ▶ Using Gauss-Newton as outer optimization routine, ϵ_{tol} =1e-10
- ▶ Using CG as interior optimization routine, ϵ_{tol} =1e-13
- ▶ NO finite difference in objective

Significance of these results

- No deterioration in convergence in time or space over many timesteps
- Very few outer optimization iterations are performed per timestep (2-4 generally)
- The assembled matrix does not change between inner optimization iterations
 - We can reuse the matrix factorization over all CG based optimization iterations!
- We can solve the coupled FSI problem in a constant multiple of the computational effort needed to solve the forward problems, had the correct boundary condition been known
- ► We use partitioned solvers, so the forward solves are cheap in comparison to a monolithic approach

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T. D. Young, The deal. II Library, Version 8.1, 2013.

http://archiv.org/abs/1312.2266v4.

- D. Boffi, L. Gastaldi, Stability and geometric conservation laws for ALE formulations, Computer Methods in Applied Mechanics and Engineering, 193(42) (2004) 4717-4739.
- F. Brezzi, J. Rappaz, P. Raviart, Finite-dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math., 36 (1980) pp. 1-25.
- P. K., H. Lee, A decoupling algorithm for fluid-structure interaction problems based on optimization, Comput. Methods Appl. Mech. Engrg., 267 (2013), pp. 594-605.

P. K., H. Lee, Analysis of a time-dependent fluid-structure interaction

- problem in an optimal control framework over a single time-step, Technical Report, 2014.
 - http://www.clemson.edu/ces/math/technical reports/kuberry.TR2014.pdf>.