

Métodos Cuantitativos

Otoño 2024

Profesor: Jorge Rivera **Ayudante** : José Tomás Feliú

Ayudantía 6

Ecuaciones en diferencia

En t = 0, 1, 2, ..., las poblaciones de dos colonias de bacterias son x_t e y_t , respectivamente. Dadas constantes positivas α, β, δ , estas poblaciones se vinculan de la siguiente manera:

$$x_{t+1} = \alpha x_t + y_t \tag{1}$$

$$y_{t+1} = \beta y_t + \delta x_t \tag{2}$$

(a) Suponiendo que x_0 es conocido y que $\delta = \alpha \beta$, encuentre la expresión de x_t en términos de los parámetros del problema. Con esta, obtenga la expresión de y_t .

Respuesta:

De (1) tenemos que (i) : $y_t = x_{t+1} - \alpha x_t$, y así (ii) : $y_{t+1} = x_{t+2} - \alpha x_{t+1}$. Usando esto en (2) se tiene que

$$x_{t+2} - \alpha x_{t+1} = \beta \left(x_{t+1} - \alpha x_t \right) + \delta x_t \quad \Longleftrightarrow \quad x_{t+2} - (\alpha + \beta) x_{t+1} + (\alpha \beta - \delta) x_t = 0$$

Como $\delta = \alpha \beta$, lo anterior equivale a

$$x_{t+2} - (\alpha + \beta)x_{t+1} = 0.$$

Como las soluciones de $\lambda^2 - (\alpha + \beta)\lambda = 0$ son $\lambda_1 = \alpha + \beta$ y $\lambda_2 = 0$, la solución del problema es

$$x_t = c_1 \cdot 0 + c_2(\alpha + \beta)^t = c_2(\alpha + \beta)^t.$$

Al imponer la condición inicial tenemos $c_2 = x_0$, por lo que la solución del problema es $x_t = x_0(\alpha + \beta)^t$. Usando esto en (i) anterior se obtiene

$$y_t = x_{t+1} - \alpha x_t = x_0(\alpha + \beta)^{t+1} - \alpha x_0(\alpha + \beta)^t = \beta x_0(\alpha + \beta)^t.$$

(b) Explique por qué si $0 < \alpha + \beta < 1$ y $\delta = \alpha\beta$, entonces ambas colonias desaparecen en el largo plazo.

Respuesta:

Para esto, debemos ver qué pasa con el límite cuando $t \to \infty$. Así, tomando el límite a x_t :

$$\lim_{t \to \infty} x_t = \lim_{t \to \infty} x_0(\alpha + \beta)^t = x_0 \lim_{t \to \infty} (\alpha + \beta)^t$$

Como $0 < \alpha + \beta < 1$, entonces $(\alpha + \beta)^t \to 0$. Del mismo modo tenemos que:

$$\lim_{t \to \infty} y_t = \lim_{t \to \infty} x_0 \beta (\alpha + \beta)^t = x_0 \beta \lim_{t \to \infty} (\alpha + \beta)^t$$

Bajo el mismo argumento de x_t , la colonia y_t también desaparece.

Ecuaciones diferenciales I

Considere la ecuación diferencial y'(t) + p(t)y(t) = q(t), donde p(t) y q(t) son funciones conocidas, de modo que los coeficientes no necesariamente son constantes.

(a) Siendo $\mathbf{P}(t)$ una **primitiva** de p(t), ignorando las constantes muestre que la siguiente es una solución particular de la ecuación diferencial ya indicada:

$$y(t) = e^{-\mathbf{P}(t)} * (\int q(t)e^{\mathbf{P}(t)}dt)$$

Respuesta:

Derivando tenemos:

$$y'(t) = \left(e^{-\mathbf{P}(t)}\right)' \left(\int q(t)e^{\mathbf{P}(t)}dt\right) + e^{-\mathbf{P}(t)} \cdot \left(q(t)e^{\mathbf{P}(t)}\right)$$
$$= -(\mathbf{P}(t))'e^{-\mathbf{P}(t)} \cdot \left(\int q(t)e^{\mathbf{P}(t)}dt\right) + q(t)$$
$$= -p(t)y(t) + q(t).$$

Para m > 1 una constante y p(t), q(t) funciones dadas, la ecuación de Bernuolli es (en lo que sigue, $[y(t)]^m$ es la función y(t) a la potencia m)

$$y'(t) + p(t)y(t) = q(t)[y(t)]^m$$
 (1)

(b) Definiendo $z(t) = [y(t)]^{1-m}$, muestre que la ecuación (1) se puede reescribir como

$$z'(t) + (1 - m)p(t)z(t) = (1 - m)q(t).$$

Respuesta:

Del hecho que $z(t) = [y(t)]^{1-m}$, tenemos que, (i) $z'(t) = (1-m)y'(t)[y(t)]^{-m}$, y que (ii) $y(t) = [z(t)]^{\frac{1}{1-m}}$. Luego, usando ambas, tenemos que

$$y'(t) = \frac{1}{(1-m)}z'(t)[z(t)]^{\frac{m}{1-m}}$$

Reemplazando todo lo anterior en la ecuación de Bernoulli, tenemos que

$$\frac{1}{(1-m)}z'(t)[z(t)]^{\frac{m}{1-m}} + p(t)[z(t)]^{\frac{1}{1-m}} = q(t)[z(t)]^{\frac{m}{1-m}}.$$

Multiplicando la identidad anterior por $(1-m)[z(t)]^{\frac{-m}{1-m}}$ se obtiene lo indicado.

(c) Con todo lo anterior, encuentre una solución particular de la siguiente ecuación diferencial:

$$y'(t) + \frac{1}{t}y(t) + t[y(t)]^2 = 0$$

Respuesta:

Resp. Esta es una ecuación de Bernoulli con m=2:

$$y'(t) + \frac{1}{t}y(t) + t[y(t)]^2 = 0 \quad \Leftrightarrow \quad y'(t) + \frac{1}{t}y(t) = -t[y(t)]^2,$$

donde p(t)=1/t y q(t)=-t. Luego, haciendo la transformación $z(t)=[y(t)]^{1-m}=[y(t)]^{-1}$ se obtiene que (aquí, 1-m=-1)

$$z'(t) - \frac{1}{t}z(t) = t$$

Esta última ecuación se resuelve usando la parte (a). Luego, denotando $p(t)=-\frac{1}{t}$ y q(t)=t, se tiene que $\mathbf{P}(t)=\int -\frac{1}{t}dt=-\ln(t)$, y que

$$\int q(t)e^{\mathbf{P}(t)}dt = \int te^{-\ln(t)}dt = \int t\frac{1}{t}dt = \int dt = t$$

Por lo tanto,

$$z(t) = e^{-\mathbf{P}(T)}t = e^{\ln(t)} = t^2$$

$$\Longrightarrow y(t) = \frac{1}{z(t)} = \frac{1}{t^2}$$

Así, reemplazando y(t) en la ecuación diferencial, y teniendo en cuenta que $y'(t) = -2t^{-3}$:

$$-2t^{-3} + \frac{1}{t}t^{-2} + t(t^{-2})^2 = 0$$
$$-2t^{-3} + t^{-3} + t^{-3} = 0$$
$$0 - 0$$

Por lo que, la solución encontrada si resuelve la ecuación diferencial.

Ecuaciones diferenciales II

(i) (Principio de Superposición) Muestre que si $y_1(t)$ es solución de $ay''(t) + by'(t) + cy(t) = g_1(t)$ e $y_2(t)$ es solución de $ay''(t) + by'(t) + cy(t) = g_2(t)$, entonces $y_1(t) + y_2(t)$ es solución de

$$ay''(t) + by'(t) + cy(t) = g_1(t) + g_2(t)$$

Respuesta:

Si reemplazamos $y_1(t)$ e $y_2(t)$ y sumamos ambas expresiones tenemos que:

$$a\frac{\partial^2 y_1(t)}{\partial t^2} + b\frac{\partial y_1(t)}{\partial t} + cy_1(t) + a\frac{\partial^2 y_2(t)}{\partial t^2} + b\frac{\partial y_2(t)}{\partial t} + cy_2(t) = g_1(t) + g_2(t)$$

Reordenando:

$$a\frac{\partial^2 y_1(t) + y_2(t)}{\partial t^2} + b\frac{\partial y_1(t) + y_2(t)}{\partial t} + c(y_1(t) + y_2(t)) = g_1(t) + g_2(t)$$

$$ay_1''(t) + by_1'(t) + cy_1(t) + ay_2''(t) + by_2'(t) + cy_2(t) = g_1(t) + g_2(t)$$

Por lo que es directo ver que los primeros 3 términos de la izquierda son $g_1(t)$ y los 3 siguientes son $g_2(t)$. Así, se cumple que $y_1(t) + y_2(t)$ es solución de $g_1(t) + g_2(t)$.

(ii) Usando lo anterior, encuentre la solución general de

$$y''(t) - y'(t) - 2y = 6t + 4e^{-t}$$

Respuesta:

Definimos $y_1(t)$ como la solución de y''(t) - y'(t) - 2y = 6t e $y_2(t)$ como la solución de $y''(t) - y'(t) - 2y = e^{-t}$.

Resolviendo para $y_1(t)$ tenemos:

i) Homogénea:

$$y_1^h(t) = c_1 e^{2t} + c_2 e^{-t}$$

ii) Mientras que la particular es

$$y_1^p(t) = b_1 t + b_2$$

iii) Reemplazando la particular en la ecuación diferencial en cuestión tenemos:

$$0 - b_1 - 2(b_1t + b_2) = 6t$$

Por lo que: $b_1 = -3$ y $b_2 = \frac{3}{2}$. Luego, la solución de la primera ecuación diferencial es:

$$y_1(t) = c_1 e^{2t} + c_2 e^{-t} - 3t + \frac{3}{2}$$

Luego, para la solución de la segunda ecuación diferencial, tenemos que su homogénea es $y_2^h(t) = c_3 e^{2t} + c_4 e^{-t}$. Para su particular tenemos que no puede ser $y_2^p(t) = b_3 e^{-t}$, ya que la homogénea tiene un e^{-t} , por lo que probamos con $y_2^p(t) = b_3 t e^{-t}$ y reemplazamos:

$$-2b_3e^{-t} + b_3e^{-t}t - b_3e^{-t} + be^{-t}t - 2be^{-t}t = 4e^{-t}$$

. Por lo que $b_3 = \frac{-4}{3}$. Así:

$$y_2(t) = c_3 e^{2t} + c_4 e^{-t} - \frac{4}{3} e^{-t}t$$

Por lo tanto, juntando $y_1(t) + y_2(t)$ tenemos que la solución es:

$$y(t) = c_1 e^{2t} + c_2 e^{-t} - 3t + \frac{3}{2} + c_3 e^{2t} + c_4 e^{-t} - \frac{4}{3} e^{-t}$$

Como c_1 , c_2 , c_3 y c_4 son constrantes arbitrarias, renombramos $c_1 + c_2 = k_1$ y $c_3 + c_4 = k_2$. Por lo tanto, la solución es:

$$y(t) = k_1 e^{2t} + k_2 e^{-t} - 3t + \frac{3}{2} - \frac{4}{3}e^{-t}t$$

Sistema de ecuaciones diferenciales

Dado el sistema de ecuaciones diferenciales

$$x_1' = x_1 + x_2$$
 (1)

$$x_2' = 4x_1 - 2x_2 \quad (2)$$

Encuentre la ecuación particular que satisfaga $x_1(0) = 1$ y $x_2(0) = 0$.

Respuesta:

Primero, usanto (1) vemos que $x_2 = x_1' - x_1$. Por lo tanto, $x_2' = x_1'' - x_1'$. Reemplazando en (2) tenemos que:

$$x_1'' - x_1' = 4x_1 - 2(x_1' - x_1)$$

Reordenando:

$$x_1'' + x_1' - 6x_1 = 0$$

Por lo que su polinomio característico es $p(\lambda) = \lambda^2 + \lambda - 6$. Igualando a 0, tenemos que $\lambda_1 = -3$ y $\lambda_2 = 2$. Por lo tanto, la solución viene dada por:

$$x_1 = c_1 e^{-3t} + c_2 e^{2t}$$

Luego, como $x_2 = x'_1 - x_1$, debemos entontrar x'_1 :

$$x_1' = -3c_1e^{-3t} + 2c_2e^{2t}$$

Reemplazando tenemos:

$$x_2 = -3c_1e^{-3t} + 2c_2e^{2t} - c_1e^{-3t} - c_2e^{2t}$$

$$x_2 = -4c_1e^{-3t} + c_2e^{2t}$$

Usando $x_1(0) = 1$ y $x_2(1) = 0$ tenemos:

$$x_1(0) = c_1 e^{-3*0} + c_2 e^{2*0} = c_1 + c_2 = 1$$

$$x_2(0) = -4c_1e^{-3*0} + c_2e^{2*0} = -4c_1 + c_2$$

Es decir, $c_2 = 4c_1$. Por lo tanto, $c_1 = \frac{1}{5}$ y $c_2 = \frac{4}{5}$. Así:

$$x_1(t) = \frac{1}{5}e^{-3t} + \frac{4}{5}e^{2t}$$

$$x_2(t) = -\frac{4}{5}e^{-3t} + \frac{4}{5}e^{2t}$$

Control Óptimo

Considere el siguiente problema de control óptimo:

$$\max_{u(t)} \int_0^1 (x(t) + u(t)) dt$$

sujeto a

$$x'(t) = 1 - u(t)^{2},$$

 $x(0) = 1.$

(i) Determine las variables de estado y de control, y plantee el Hamiltoniano del problema.

Respuesta:

La variable de estado es x(t) y la de control es u(t). El hamiltoniano viene dado por:

$$\mathcal{H} = (x(t) + u(t)) + \lambda(t)(1 - u(t)^2)$$

(ii) Escriba las condiciones de primer orden del ejercicio.

Respuesta:

Como sabemos, las condiciones de primer orden de un problema de control óptimo vienen dadas por:

$$\frac{\partial \mathcal{H}}{\partial u(t)} = 0 = 1 - 2\lambda(t)u(t)$$
 (1)

$$\frac{\partial \mathcal{H}}{\partial x(t)} = -\lambda'(t) = 1$$
 (2)

$$\frac{\partial \mathcal{H}}{\partial \lambda(t)} = 1 - u(t)^2 = x'(t)$$
 (3)

(iii) Determine $\lambda(t)$, u(t) y x(t) en función de t.

Respuesta:

Luego, tomando (2) e integrando desde 0 a t tenemos:

$$\int_0^t \lambda'(\tau)d\tau = -\int_0^t 1d\tau$$

Así tenemos:

$$\lambda(t) - \lambda(0) = -t$$

$$\lambda(t) = \lambda(0) - t$$

Luego, como sabemos cual es el tiempo final("1"), pero no el valor final de x(t), sabemos que $\lambda(1) = 0$. Por lo que, reemplazando en t = 1 tenemos que $\lambda(0) = 0 + 1 = 1$. Así:

$$\lambda(t) = 1 - t$$

Reemplazando en (1):

$$1 - 2(1 - t)u(t) = 0$$

$$u(t) = \frac{1}{2(1-t)}$$

Luego, reemplazando en (3) tenemos que $x'(t) = 1 - \frac{1}{4(1-t)^2}$. Por lo que integrando (y haciendo cambio de variable u = 1 - t, tenemos que:

$$x(t) - x(0) = t - 0 - \frac{1}{4(1-t)} + \frac{1}{4}$$

Como x(0) = 1:

$$x(t) = t - \frac{1}{4(1-t)} + \frac{5}{4}$$

Por lo que se tiene lo pedido.