

Métodos de Ordenação

Prof. Alneu de Andrade Lopes Prof. Thiago A. S. Pardo

Ordenação por Seleção

- Idéia básica: os elementos são selecionados e dispostos em suas posições corretas
 - Seleção direta (ou simples), ou classificação de deslocamento descendente
 - Heap-sort, ou método do monte

Método

- Selecionar o elemento que apresenta o menor valor
- Trocar o elemento de lugar com o primeiro elemento da seqüência, x[0]
- Repetir as operações 1 e 2, envolvendo agora apenas os n-1 elementos restantes, depois os n-2 elementos, etc., até restar somente um elemento, o maior deles

- x = 44,55,12,42,94,18,06,67
 - (vetor original)
 - passo 1 (06)
 - passo 2 (12)
 - passo 3 (18)
 - passo 4 (42)
 - passo 5 (44)
 - passo 6 (55)
 - passo 7 (67)

- 44 55 12 42 94 18 06 67
- 06 55 12 42 94 18 44 67
- 06 12 55 42 94 18 44 67
- 06 12 18 42 94 55 44 67
- 06 12 18 42 94 55 44 67
- 06 12 18 42 44 55 94 67
- 06 12 18 42 44 55 94 67
- 06 12 18 42 44 55 67 94

No i-ésimo passo, o elemento com o menor valor entre x[i], ..., x[n] é selecionado e trocado com x[i]

 Como resultado, após i passos, os elementos x[1], ..., x[i] estão ordenados

- Exercício em grupos de 4 alunos (valendo nota)
 - Implementar a Seleção Direta
 - Calcular a complexidade

```
void selecao(int x[], int n) {
int i, j, menor, index;
for (i = 0; i < n-1; i++) {
     menor = x[i];
     index = i;
     for (j = i+1; j < n-1; j++) {
             if (x[ j ] < menor) {
                      menor = x[j];
                      index = j;
     x[index] = x[i];
     x[i] = menor;
```

- No primeiro passo ocorrem n 1 comparações, no segundo passo n - 2, e assim por diante
 - Logo, no total, tem-se (n 1) + (n -2) + ... + 1 = n * (n -1)/2 comparações: O(n²)
- Não existe melhora se a entrada está completamente ordenada ou desordenada
- Exige pouco espaço
- É melhor que o Bubble-sort
- É útil apenas quando n é pequeno

- Utiliza uma estrutura de dados um heap para ordenar os elementos
 - Atenção: a palavra heap é utilizada atualmente em algumas linguagens de programação para se referir ao "espaço de armazenamento de lixo coletado"

 Um heap é um vetor que implementa (representa) uma árvore binária <u>quase completa</u>

- Uma árvore binária de profundidade/nível d é uma árvore binária quase completa se:
 - Cada folha estiver no nível d ou d 1
 - Para cada nó v da árvore com descendente direito no nível d, todos os descendentes esquerdos de v que forem folhas estiverem também no nível d

Exemplos de árvores binárias quase completas

- Exemplos de árvores binárias que não são quase completas
 - Por quê?

- Um heap observa conceitos de ordem e de forma
 - Ordem: o item de qualquer nó deve satisfazer uma relação de ordem com os itens dos nós filhos
 - Heap máximo (ou descendente): pai >= filhos, sendo que a raiz é o maior elemento
 - Propriedade de heap máximo
 - Heap mínimo (ou heap ascendente): pai <= filhos, sendo que a raiz é o menor elemento
 - Propriedade de heap mínimo
 - Forma: a árvore binária tem seus nós-folha, no máximo em dois níveis, sendo que as folhas devem estar o mais à esquerda possível

É um heap máximo

Não é um heap máximo₁₅

Como acessar os elementos (pai e filhos de cada nó) no heap?

0	1	2	3	4	5	6	7	8	9
16	14	10	8	7	9	3	2	4	1

Filhos do nó k:

- filho esquerdo = 2k + 1
- filho direito = 2k + 2

Pai do nó k: (k-1)/2

Folhas de n/2 em diante

- Assume-se que:
 - A raiz está sempre na posição 0 do vetor
 - comprimento(vetor) indica o número de elementos do vetor
 - tamanho_do_heap(vetor) indica o número de elementos no heap armazenado dentro do vetor
 - Ou seja, embora A[1..comprimento(A)] contenha números válidos, nenhum elemento além de A[tamanho_do_heap(A)] é um elemento do heap, sendo que tamanho_do_heap(A)<=comprimento(A)

- A idéia para ordenar usando um heap é:
 - Construir um heap máximo
 - Trocar a raiz o maior elemento com o elemento da última posição do vetor
 - Diminuir o tamanho do heap em 1
 - Rearranjar o heap máximo, se necessário
 - Repetir o processo n-1 vezes

Heap-sort: exemplo

1) Monta-se o heap com base no vetor desordenado

x[7]

25

3) Troca-se a raiz com o último elemento (x[6]) e rearranja-se o heap

2) Troca-se a raiz (maior elemento) com o último elemento (x[7]) e rearranja-se o heap

- O processo continua até todos os elementos terem sido incluídos no vetor de forma ordenada
- É necessário:
 - Saber construir um heap a partir de um vetor qualquer
 - Procedimento build_max_heap
 - Saber como rearranjar o heap, i.e., manter a propriedade de heap máximo
 - Procedimento max_heapify

- Procedimento max_heapify: manutenação da propriedade de heap máximo
 - Recebe como entrada um vetor A e um índice i
 - Assume que as árvores binárias com raízes nos filhos esquerdo e direito de i são heap máximos, mas que A[i] pode ser menor que seus filhos, violando a propriedade de heap máximo
 - A função do procedimento max_heapify é deixar A[i] "escorregar" para a posição correta, de tal forma que a subárvore com raiz em i torne-se um heap máximo

Exemplo

 Chamando a função max_heapify para um heap hipotético

max_heapify(A,1)

4

Heap-sort

Na realidade, trabalhando-se com o vetor A

0	1	2	3	4	5	6	7	8	9
16	4	10	14	7	9	3	2	8	1

Execução de max_heapify(A,1)

0									
16	14	10	4	7	9	3	2	8	1

Execução recursiva de max_heapify(A,3)

0	1	2	3	4	5	6	7	8	9
16	14	10	8	7	9	3	2	4	1

 Implementação e análise da sub-rotina max_heapify

- Lembrete: as folhas do heap começam na posição n/2+1
- Procedimento build_max_heap
 - Percorre de forma ascendente os primeiros n/2 nós (que não são folhas) e executa o procedimento max_heapify
 - A cada chamada do max_heapify para um nó, as duas árvores com raiz neste nó tornam-se heaps máximos
 - Ao chamar o max_heapify para a raiz, o heap máximo completo é obtido

 Implementação e análise da sub-rotina build_max_heap

Retomando...

- Procedimento heap-sort
 - Construir um heap máximo (via build_max_heap)
 - 2. Trocar a raiz o maior elemento com o elemento da última posição do vetor
 - Diminuir o tamanho do heap em 1
 - 4. Rearranjar o heap máximo, se necessário (via **max_heapify**)
 - 5. Repetir o processo n-1 vezes

Dado o vetor:

0	1	2	3	4	5	6	7	8	9
4	1	3	2	16	9	10	14	8	7

Chamar bulid_max_heap e obter:

■ Executar os passos de 2 a 4 n − 1 vezes

4

Heap-sort

0	1	2	3	4	5	6	7	8	9
1	2	3	4	7	8	9	10	14	16

Vetor ordenado!

 Implementação e análise da sub-rotina heap-sort

- O método é O(n log(n)), sendo eficiente mesmo quando o vetor já está ordenado
 - n-1 chamadas a max_heapify, de O(log(n))
 - build_max_heap é O(n)