27 APR 2005

BLIVLEUS/UJAJ

BUNDE REPUBLIK DEUTS HLAN

REC'D 3.0 DEC 2003

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 57 664.5

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Anmeldetag:

10. Dezember 2002

Osram Opto Semiconductors GmbH, Regensburg/DE

Bezeichnung:

Anmelder/Inhaber:

Verfahren zum Herstellen einer Leuchtdioden-Licht-

quelle mit Lumineszenz-Konversionselement

Priorität:

30.10.2002 DE 102 50 633.7

IPC:

H 01 L 33/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. November 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

02/00 EDV-L

Memor

Beschreibung

5

10

15

20

30

35

Verfahren zum Herstellen einer Leuchtdioden-Lichtquelle mit Lumineszenz-Konversionselement

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen einer Leuchtdioden-Lichtquelle, bei der zumindest ein Teil einer von einem Chip ausgesandten Primärstrahlung wellenlängenkonvertiert wird. Ein Lumineszenz-Konversionselement ist hierbei in Form einer dünnen Schicht direkt auf die Chipoberfläche aufgebracht.

Ein Bauelement mit Lumineszenz-Konversionselement ist beispielsweise aus der Offenlegungsschrift WO 97/50132 bekannt. Es umfasst einen Halbleiterchip, welcher im Betrieb eine Primärstrahlung aussendet, und ein Lumineszenz-Konversionselement, durch das ein Teil der Primärstrahlung in ein Licht von anderer Wellenlänge konvertiert wird. Die resultierende optisch wahrnehmbare Strahlung der Leuchtdioden-Lichtquelle ergibt sich durch eine Überlagerung der beiden Strahlungen, so dass sich dadurch insbesondere auch weißes Licht abstrahlende Lichtquellen erzeugen lassen.

Für gewöhnlich weist das Lumineszenz-Konversionselement einen Leuchtstoff auf, welcher in einer Matrixsubstanz eingebettet ist. Als Leuchtstoff eignen sich beispielsweise anorganische Leuchtstoffe, wie mit seltenen Erden (insbesondere Ce) dotierte Granate, oder organische Leuchtstoffe, wie Perylen-Leuchtstoffe. Weitere geeignete Leuchtstoffe sind beispielsweise in der WO 98/12757 aufgeführt, deren Inhalt insofern hiermit durch Rückbezug aufgenommen wird.

Um eine besonders gute Durchmischung der Strahlungen und somit eine farblich weitgehend homogene resultierende Strahlung
zu erhalten, ist es zweckmäßig, den Leuchtstoff direkt und
gleichmäßig auf der Chipoberfläche aufzubringen, so dass sich
möglichst kleine Weglängenunterschiede der Primärstrahlung

10

durch das Lumineszenz-Konversionselement ergeben. Es ist z. B. möglich, das Lumineszenz-Konversionsmaterial in Form einer dünnen homogenen Schicht von konstanter Dicke auf die Leucht-dioden-Chipoberfläche aufzubringen, noch bevor der Chip auf ein Leadframe montiert und elektrisch kontaktiert wird. Das Aufbringen dünner Schichten läßt sich auf unterschiedliche Arten realisieren und eignet sich insbesondere zur gleichzeitigen Herstellung mehrerer Leuchtdioden-Lichtquellen aus Leuchtdioden-Chips, die sich zusammen mit einer Vielzahl gleichartiger Chips in einem Waferverbund befinden. Zudem werden dadurch auch Farbortschwankungen der Leuchtdioden-Lichtquellen aufgrund von Sedimentation der Konversionsstoffe weitestgehend vermieden.

15 Ein einfaches Aufbringen einer dünnen Schicht ist jedoch nicht ohne weiteres möglich, wenn die verwendeten Leuchtdioden-Chips vorderseitig (d.h. auf der Seite, die zur Abstrahlrichtung hin gewandt ist) elektrische Kontaktschichten aufweisen, wie das z. B. bei GaN-basierten Dioden auf SiC-Substrat in der Regel der Fall ist. Beim Beschichten von Oberflächen solcher Leuchtdioden-Chips ist darauf zu achten, dass die elektrische Kontaktierbarkeit gewährleistet bleibt.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zu entwickeln, mit dem eine einfache und kostengünstige Beschichtung von Leuchtdioden-Chips mit vorderseitigem elektrischen Kontakt ermöglicht wird.

Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 ge-30 löst. Die Ansprüche 2 bis 14 beinhalten vorteilhafte Weiterbildungen der Erfindung.

Ein Verfahren nach Anspruch 1 ermöglicht insbesondere eine gleichzeitige Herstellung mehrerer Leuchtdioden-Lichtquellen 35 aus gleichen Leuchtdioden-Chips im Waferverbund. Zudem ist bei diesem Verfahren vorteilhafterweise eine einfache Kontrolle des Farbortes (CIE-Farbtafel) der Leuchtdioden-Lichtquelle und dadurch auch ein kontrolliertes Einstellen des Farbortes während des Herstellungsprozesses möglich.

5

10

15

20

Bei dem Verfahren wird ein Leuchtdioden-Chip bereitgestellt, der einen oberseitigen elektrischen Kontakt in Form einer elektrischen Kontaktfläche aufweist. Dieser elektrische Kontakt wird nachfolgend erhöht, indem er durch Aufbringen eines elektrisch leitenden Materials auf die elektrische Kontaktfläche verdickt wird. Die Höhe des Kontaktes sollte mindestens so groß sein wie die letztlich vorgesehene Dicke der Lumineszenz-Konversionsschicht. Bei einem weiteren Verfahrensschritt erfolgt ein Beschichten der Chipoberfläche mit einem Lumineszenz-Konversionsmaterial.

Mit dem erfindungsgemäßen Verfahren ist es möglich, die Beschichtung von vorderseitig elektrisch kontaktierbaren Chips ohne Rücksicht auf die vorderseitigen Kontakte durchzuführen. Dadurch wird der aufwendige Vorgang einer Beschichtung mit Freilassen elektrischer Kontakte bzw Kontaktflächen (z. B. mittels einer Maske) auf die einfache und kostengünstig zu realisierende Beschichtung einer durchgehenden Oberfläche reduziert.

Das Lumineszenz-Konversionsmaterial weist vorzugsweise ein strahlungsdurchlässiges Matrixmaterial auf, welches mit einem Leuchtstoff versetzt ist.

- Das Matrix-Material kann beispielsweise SiO2 und/oder Al2O3 aufweisen, wodurch eine Konsistenz (z.B. die Härte) des Lumineszenz-Konversionsmaterials erreicht werden kann, die sich auf vielfache Art problemlos und kontrolliert abdünnen lässt.
- In einer besonders bevorzugten Ausführung des Verfahrens weist das strahlungsdurchlässige Matrix-Material ein Oxid und/oder ein Nitrid auf, dessen Brechungsindex zwischen 1,5

15

20

30

und 3,4 liegt. Durch ein Lumineszenz-Konversionsmaterial, dessen Brechungsindex sich nicht stark von dem der Leuchtdioden-Chipoberfläche unterscheidet und zwischen dem Brechungsindex der Leuchtdioden-Chipoberfläche und dem der Umgebung liegt, können Verluste an Strahlungsintensität aufgrund von Reflexion an Grenzflächen vermieden werden.

Mit besonderem Vorteil werden bei dem Verfahren elektrische Anschlüsse, welche mit Lumineszenz-Konversionsmaterial bedeckt sind, nachfolgend durch ein Abdünnen des Lumineszenz-Konversionsmaterials freigelegt. Diese einfache Maßnahme ermöglicht die Verwendung vieler verschiedener Beschichtungsverfahren, wie z. B. Aufdampfen oder Aufsputtern, bei denen vorderseitige elektrische Anschlüsse bedeckt werden.

In einer bevorzugten Ausführung des Verfahrens wird die Schicht aus Lumineszenz-Konversionsmaterial nachfolgend durch Abdünnen geebnet. Beim Beschichten kann es z. B. aufgrund der vorderseitigen erhöhten elektrischen Kontakte zu Unebenheiten in der Schicht kommen. Durch ein Abdünnen von diesen erhält man geringere Schwankungen sowie eine bessere Reproduzierbarkeit des Farbortes (CIE Farbtafel) der Leuchtdioden-Lichtquellen.

Der Farbort der Leuchtdioden-Lichtquelle lässt sich wegen des oberseitigen elektrischen Kontakts nachfolgend mit besonderem Vorteil kontrollieren. Diese Kontrolle kann vorzugsweise im Verlauf des Abdünnens des aufgetragenen Lumineszenz-Konversionsmaterials durchgeführt werden und ist möglich, sobald der oberseitige elektrische Kontakt freigelegt ist.

Die Dicke der Schicht aus Lumineszenz-Konversionsmaterial lässt sich zweckmässig durch Dünnen einstellen.

Zudem kann durch die Kontrolle des Farbortes der Leuchtdioden-Lichtquelle die Korrelation zwischen Dicke der Lumineszenz-Konversionsschicht und dem Farbort ermittelt werden.

20

30

35

Dies kann mit besonderem Vorteil verwendet werden, um den Farbort gezielt durch Abdünnen des aufgetragenen Lumineszenz-Konversionsmaterials einzustellen.

Das Verfahren eignet sich besonders bevorzugt zur gleichzeitigen Herstellung mehrerer Leuchtdioden-Lichtquellen durch die Verwendung einer Vielzahl gleichartiger Leuchtdioden-Chips, welche sich vorzugsweise noch in einem ursprünglichen Waferverbund miteinander befinden. Dadurch ergibt sich eine deutlich effizientere und kostengünstigere Herstellung der Leuchtdioden-Lichtquellen.

Da ein Leuchtdioden-Chip Licht nicht nur vorderseitig, sondern auch seitlich abstrahlen kann, ist es bei derartigen Chips von besonderem Vorteil, auch die Flanken der Leuchtdioden-Chips zumindest teilweise mit Lumineszenz-Konversionsmaterial zu beschichten. Bei der Beschichtung einer Vielzahl von Leuchtdioden-Chips im Waferverbund ist es hier zweckmäßig, vor dem Beschichten entlang von Trennungslinien zwischen den einzelnen Chips Gräben herzustellen, die bei dem nachfolgenden Beschichten der Chips zumindest teilweise mit Lumineszenz-Konversionsmaterial gefüllt werden.

Eine weitere Möglichkeit ist es, den gesamten Waferverbund mit der Unterseite zunächst auf einem Träger fest aufzubringen und daraufhin die Chips aus dem Waferverbund derart zu vereinzeln, dass sie nach wie vor auf dem Träger zusammengehalten werden. Auch dadurch ist gewährleistet, dass die Flanken der Leuchtdioden-Chips bei der nachfolgenden Beschichtung zumindest teilweise mit Lumineszenz-Konversionsmaterial bedeckt werden.

Die Möglichkeit, den Farbort der Leuchtdioden-Lichtquelle im Verlauf des Abdünnens des Lumineszenz-Konversionsmaterials zu überprüfen, läßt sich auch bei der Anwendung des erfindungsgemäßen Verfahrens zur gleichzeitigen Herstellung mehrerer Leuchtdioden-Lichtquellen aus einer Vielzahl gleicher Chips

10

15

20

30

35

im Waferverbund vorteilhaft nutzen. Das Bestimmen und Erfassen von Farbort und Lage der Leuchtdioden-Lichtquellen im Waferverbund bieten die Möglichkeit, die Leuchtdioden-Lichtquellen nach ihrem Farbort zu sortieren, um somit Leuchtdioden-Lichtquellen von genauerer Farbortspezifikation zu erhalten.

Das erfindungsgemäße Verfahren lässt sich besonders vorteilhaft nutzen, um für die Leuchtdioden-Lichtquellen eines gesamten Waferverbundes einen bestimmten Farbort möglichst genau einzustellen. Da die Höhe von Leuchtdioden-Chips eines Waferverbundes nicht über den gesamten Wafer homogen ist und es zu Höhenschwankungen von beispielsweise 20 μ m kommen kann, führt ein gleichmäßiges Abdünnen des Lumineszenz-

Konversionsmaterials über den gesamten Wafer hinweg zu unterschiedlichen Dicken der Lumineszenz-Konversionsschicht. Dieses Problem kann mithilfe des erfindungsgemäßen Verfahrens gelöst werden, indem der Wafer in Bereiche mit Leuchtdioden-Lichtquellen von ähnlichem Farbort unterteilt wird, nachdem Farbort und Lage der Leuchtdioden-Lichtquellen des Wafers bestimmt und erfasst wurden. Das Einstellen eines bestimmten Farbortes für jeden dieser Bereiche läßt sich erreichen, indem die Lumineszenz-Konversionsschicht der einzelnen Bereiche bereichsselektiv abgedünnt wird und dabei immer wieder eine Kontrolle des Farbortes von einer der Leuchtdioden-Lichtquellen des jeweiligen Bereichs durchgeführt wird.

Weitere Vorteile und bevorzugte Ausführungsformen ergeben sich aus der nachfolgenden Beschreibung von drei Ausführungsbeispielen in Verbindung mit den Figuren 1a bis 2b. Es zeigen:

Figuren la bis lf: Schematische Schnittansichten eines Wafers bei verschiedenen Verfahrensstadien eines Ausführungsbeispiels, Figuren 2a und 2b: Schematische Schnittansichten eines Wafers bei verschiedenen Verfahrensstadien eines zweiten Ausführungsbeispiels und

Figuren 3a und 3b: Schematische Schnittansichten eines Wafers bei verschiedenen Verfahrensstadien eines dritten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.

Figur 1a zeigt einen Wafer 1, umfassend ein SiC-Substrat 11 und eine InGaN-basierte epitaktische Halbleiterschichtfolge 10 mit strahlungsemittierenden aktiven Zone (nicht gezeigt). Die aktive Zone weist beispielsweise einen strahlungserzeugenden pn-Übergang oder eine strahlungserzeugende Einfachoder Mehrfach-Quantenstruktur auf. Solche Strukturen sind dem Fachmann bekannt und werden von daher nicht näher erläutert. Eine Mehrfach-Quantenstruktur ist beispielsweise in der WO 01/39282 A2 beschrieben, deren Inhalt insofern durch Rückbezug aufgenommen wird. Auf dem Wafer 1 sind in einem Chipraster jeweils vorderseitig elektrische Kontaktflächen 2 aufgebracht.

20

15

10

Ein weiterer Verfahrensschritt ist in Figur 1b dargestellt, bei dem eine Erhöhung der elektrischen Kontakte erreicht wird, indem ein elektrisch leitfähiges Material 3 auf die elektrischen Kontaktflächen 2 gebracht wird. Das elektrisch leitfähige Material 3 ist hier näherungsweise ellipsoidförmig und kann beispielsweise aus Gold bestehen. Die Tatsache, dass das elektrisch leitfähige Material 3 lediglich eine Mindesthöhe, nicht aber jeweils eine gleiche Höhe haben muß, ist eine weiterer Vorteil des Verfahrens.

30

35

Nachfolgend wird, wie in Figur 1c gezeigt, die gesamte vorderseitige Oberfläche des Waferverbundes 1 mit einem Lumineszenzkonversionsmaterial 4 beschichtet, was z. B. durch Aufdampfen, Sputtern, Spin-Coating oder andere Methoden zur Oberflächenbeschichtung geschehen kann. Das Lumineszenzkonversionsmaterial kann aus einem Ce-dotiertem Granatmaterial bestehen, insbesondere YAG:Ce. Auch bei diesem Schritt kommt

es darauf an, dass die aufgebrachte Schicht aus Lumineszenzkonversionsmaterial 4 über dem gesamten Waferbereich eine gewisse Mindestdicke hat.

Eine gleichmäßige Dicke der aufgebrachten Schicht Lumineszenzkonversionsmaterial 4 ergibt sich aus dem nachfolgenden Abdünnen der gehärteten Lumineszenzkonversionsschicht, welches in Figur 1d dargestellt ist. Das Abdünnen geschieht abrasiv mittels einer Schleiffläche 5.

10

15

20

30

35

Sobald das elektrisch leitende Material 3 durch das Abdünnen freigelgt wird, ist eine gezielte elektrische Kontaktierung und Anlegen einer Spannung an Bereiche einzelner Chips möglich. Dies ermöglicht ein Ermitteln des Farbortes des ausgesandten Lichts 6 mittels eines Spektrometers 7, was in Figur 1e gezeigt ist. Es wird solange weiter abgedünnt bis die Leuchtdioden-Lichtquellen alle weißes Licht aussenden. Nachfolgend wird von allen Leuchtdioden-Lichtquellen der jeweilige Farbort und die jeweilige Position auf dem Wafer ermittelt erfasst, z. B. durch das Erstellen einer sogenannten Wafermap.

25

Figur 1f schließlich zeigt das Vereinzeln der Chips aus dem Waferverbund 1 entlang von Trennungslinien 8. Dies kann z. B. mittels Sägen geschehen. Die vereinzelten Chips lassen sich nun nach ihrem Farbort sortieren.

Bei dem in den Figuren 2a und 2b veranschaulichten zweiten Ausführungsbeispiel des erfindungsgemäßen Verfahrens werden, im Unterschied zum oben erläuterten Ausführungsbeispiel gemäß den Figuren 1a bis 1f, vor dem Beschichten mit Lumineszenz-Konversionsmaterial 4 im Chipraster auf dem Wafer 1 vorderseitig entlang von Trennungslinien 13 Gräben 12 erzeugt (Figur 2a). Im weiteren Verlauf des Verfahrens wird auf die Chipvorderseiten so viel Lumineszenz-Konversionmaterial 4 aufgetragen, dass die Schicht über den Gräben 12 mindestens über das auf die elektrischen Kontaktflächen 2 aufgetragene

15

20

30

elektrisch leitende Material 3 reicht (Figur 2b). Die Seiten 14 der Gräben 12 werden dadurch vollständig mit dem Lumineszenz-Konversionsmaterial 4 bedeckt. Das in den Gräben 12 aufgebrachte Lumineszenz-Konversionsmaterial 4 bewirkt, dass eine über die Chipflanken ausgekoppelte Strahlung ebenfalls konvertiert wird. Wie in Figur 2b gezeigt, werden die Chips nach dem Abdünnen des Lumineszenz-Konversionsmaterials 4 entlang der Trennungslinien 13 vereinzelt.

Bei dem in den Figuren 3a und 3b veranschaulichten dritten Ausführungsbeispiel wird, im Unterschied zum oben erläuterten Ausführungsbeispiel gemäß den Figuren 1a bis 1f, Lumineszenz-Konversionsmaterial 4 derart aufgebracht, dass das aufgetragene elektrisch leitende Material 3 vorderseitig nicht bedeckt wird. Dies kann z. B. durch Verwendung eines Lumineszenz-Konversionsmaterials 4 von sehr geringer Viskosität geschehen, welches auf mindestens einer Stelle zwischen den elektrischen Kontakten aufgebracht wird und sich daraufhin aufgrund der geringen Viskosität gleichmäßig auf der Oberfläche verteilt. Hierbei entfällt ein Abdünnen des Lumineszenz-Konversionsmaterials, das elektrisch leitende Material 3 bleibt zumindest teilweise frei. Nach dem Aushärten des Lumineszenz-Konversionsmaterials 4 können die Leuchtdioden-Lichquellen vereinzelt werden.

Die Beschreibung des Verfahrens anhand des Ausführungsbeispiels ist selbstverständlich nicht als Beschränkung der Erfindung auf diese anzusehen. Beispielsweise kann die Chipvorderseite die von der Halbleiterschichtfolge abgewandte Seite des Substrats sein, was etwa bei zur Flip-Chip-Montage vorgesehenen LED-Chips der Fall ist.

15

20

30

35

Patentansprüche

- 1. Verfahren zum Herstellen einer insbesondere mischfarbigen Leuchtdioden-Lichtquelle, bei der zumindest ein Teil einer von einem Chip ausgesandten Primärstrahlung mittels Lumineszenzkonversion umgewandelt wird, mit den Schritten:
 - Bereitstellen eines Chips, der einen vorderseitigen elektrischen Kontakt in Form einer elektrischen Kontaktfläche aufweist,
 - Verdicken des vorderseitigen elektrischen Kontaktes durch Aufbringen eines elektrisch leitenden Materials auf die elektrische Kontaktfläche,
 - Beschichten des Chips mit einem Lumineszenz-Konversionsmaterial.
- 2. Verfahren nach Anspruch 1, bei dem das Lumineszenz-Konversionsmaterial ein strahlungsdurchlässiges Matrixmaterial aufweist, welches mit einem Leuchtstoff versetzt ist.
- 3. Verfahren nach Anspruch 2, bei dem das strahlungsdurchlässige Matrixmaterial SiO_2 und/oder Al_2O_3 aufweist.
- 4. Verfahren nach Anspruch 2 oder 3, bei dem das strahlungsdurchlässige Matrixmaterial ein Oxid und/oder ein Nitrid aufweist, dessen Brechungsindex zwischen 1,5 und 3,4 liegt.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem elektrische Anschlüsse, welche mit Lumineszenz-Konversionsmaterial bedeckt sind, nachfolgend durch ein Abdünnen des Lumineszenz-Konversionsmaterials freigelegt werden.
- 6. Verfahren nach einem der Ansprüche 1 bis 5,

bei dem die Schicht aus Lumineszenzkonversionsmaterial durch Abdünnen geebnet wird.

- 7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem nachfolgend eine Kontrolle des Farbortes (CIE Farbtafel) der Leuchtdioden-Lichtquelle durchgeführt wird.
- Verfahren nach einem der Ansprüche 1 bis 7,
 bei dem durch Abdünnen der Schicht aus Lumineszenzkonver sionsmaterial deren Dicke eingestellt wird.
- 9. Verfahren nach Anspruch 8, bei dem im Verlauf des Abdünnens mittels der Kontrolle des Farbortes der Leuchtdioden-Lichtquelle deren Farbort über die 15 Dicke der Schicht Lumineszenz-Konversionsmaterials eingestellt wird.
 - 10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem
- sich der die Primärstrahlung aussendende Chip in einem Waferverbund mit einer Vielzahl weiterer gleichartiger Chips befindet,
 - die jeweiligen Verfahrensschritte für die Chips des gesamten Waferverbundes jeweils gleichzeitig erfolgen,
 - die Chips nachfolgend vereinzelt werden.
 - 11. Verfahren nach Anspruch 10,
 bei dem vor dem Beschichten der Chips mit LumineszenzKonversionsmaterial entlang von Trennungslinien zwischen den
 einzelnen Chips Gräben hergestellt werden, so dass diese Gräben bei dem nachfolgenden Beschichten der Chips mit Lumineszenz-Konversionsmaterial zumindest teilweise mit LumineszenzKonversionsmaterial gefüllt werden.
 - 12. Verfahren nach Anspruch 10,

35

10

20

30

35

bei dem vor dem Beschichten der Chips mit Lumineszenz-Konversionsmaterial

- der gesamte Waferverbund mit der Unterseite auf einen Träger aufgebracht wird,
- die Chips aus dem Waferverbund derart vereinzelt werden, dass sie nach wie vor auf dem Träger zusammengehalten werden,
- die Seitenflanken der vereinzelten Chips zumindest teilweise mit Lumineszenz-Konversionsmaterial bedeckt werden,
- die Chips nachfolgend aus ihrem Verbund durch den Träger und das Lumineszenz-Konversionsmaterial vereinzelt werden.
- 13. Verfahren nach einem der Ansprüche 10 bis 12, bei dem vor dem Vereinzeln der Chips folgende Verfahrensschritte durchgeführt werden:
 - Bestimmen und Erfassen von Farbort und Position der Leuchtdioden-Lichtquellen auf dem Wafer,
 - Vereinzeln der Leuchtdioden-Lichtquellen,
 - Sortieren der Leuchtdioden-Lichtquellen nach ihrem Farbort.
 - 14. Verfahren nach einem der Ansprüche 10 bis 12, bei dem vor dem Vereinzeln der Chips folgende Verfahrensschritte durchgeführt werden:
 - Bestimmen und Erfassen von Farbort und Lage der Leuchtdioden-Lichtquellen,
 - Unterteilen des Wafers in Bereiche mit Leuchtdioden-Lichtquellen von ähnlichem Farbort,
 - Einstellen von jeweils einem bestimmten Farbort für die Bereiche mit Leuchtdioden-Lichtquellen von ähnlichem Farbort durch ein bereichsselektives Abdünnen des Lumineszenz-Konversionsmaterials der einzelnen Bereiche und
 - eine Kontrolle des Farbortes von einer der Leuchtdioden-Lichtquellen des jeweiligen Bereiches.

10

15

20

Zusammenfassung

Verfahren zum Herstellen einer Leuchtdioden-Lichtquelle mit Lumineszenz-Konversionselement

Die Erfindung beschreibt ein Verfahren zum Herstellen einer insbesondere mischfarbigen Leuchtdioden-Lichtquelle, bei der mindestens ein Teil einer von einem Chip ausgesandten Primärstrahlung mittels Lumineszenzkonversion umgewandelt wird. Es handelt sich hierbei um einen Chip mit einem vorderseitigen (d.h. die Seite , die zur Abstrahlrichtung hingewandt ist) elektrischen Kontakt, auf dessen Oberfläche ein Lumineszenz-Konversionsmaterial in Form einer dünnen Schicht aufgetragen wird. Dazu wird der vorderseitige elektrische Kontakt vor dem Beschichten durch Aufbringen eines elektrisch leitenden Materials auf die elektrische Kontaktfläche erhöht. Das Verfahren erlaubt durch Kontrolle des Farbortes (IEC Farbtafel) und Abdünnen der Schicht aus Limineszenz-Konversionsmaterial ein gezieltes Einstellen eines bestimmten Farbortes. Zudem eignet sich das Verfahren insbesondere zur gleichzeitigen Herstellung mehrerer Leuchtdioden-Lichtquellen aus einer Vielzahl gleichartiger Chips in einem Waferverbund.

Fig. 1d

igur 10 12 2 a a a a 11, 23, 4, 10 11, 20, a a a a 11 2 3 4 10 11,234 10 Figur 2

-

•

Figur 3

