

MSYS

Microcontroller Systems

Lektion 4: AVR arkitektur

General Purpose Microprocessors vs. Microcontrollers

General Purpose Microprocessors

Microcontrollers

Common microcontrollers

- 8-bit microcontrollers
 - AVR
 - PIC
 - HCS12
 - -8051
- 32-bit microcontrollers
 - ARM
 - PIC32

AVR internal architecture

AVR different groups

- Classic AVR
 - e.g. AT90S2313, AT90S4433

GND [11

XTAL2 II 12

XTAL1 🗖 13

(RXD) PD0 [14

(INT0) PD2 4 16

(OC1A) PD5 1 19

(ICP) PD6 20

(TXD) PD1

(OC1B) PD4 [

AVCC

The AVR part numbers

AVR's CPU

- AVR's CPU
 - ALU
 - 32 General Purpose registers (R0 to R31)
 - PC register
 - Instruction decoder

AVR CPU og maskin - kode

Instruktioner er koder bestående af 0'er og 1'taller!

ALU foretager beregninger.

Status register ændres ved <u>nogle</u> beregninger.

AVR arbejds-registre

Addr.

\$00

\$01

\$0.2

\$0D

SOE

\$0F

General Purpose Working

Registers

1	0
R0	
R1	*
R2	**
444	
R13	*)
R14	*
R15	3
R16	*
R17	2
200	3
R26	9
R27	
R28	
R29	8
R30	8
R31	*

Kaldes også:
"General Purpose
Registre"

AVR: Data Spaces

Flash memory and PC register

```
R16, 0x25
     LDI
     LDI
          R17, $34
          R18, 0x31
     LDI
     ADD
          R16, R17
          R16, R18
     ADD
     LDI
          R17, 11
          R16, R17
     ADD
     STS
           SUM, R16
HERE: JMP HERE
```


Fetch and execute

Old Architectures

Pipelining

Pipelining

How to speed up the CPU

- Increase the clock frequency
 - More frequency → More power consumption & more heat
 - Limitations
- Change the architecture
 - Pipelining
 - RISC

Low er ikke (helt) 0 volt

Figure 32-23. I/O Pin Output Voltage vs. Sink Current (V_{CC} = 5V)

High er ikke (helt) 5 volt

Figure 32-25. I/O Pin Output Voltage vs. Source Current (V_{CC} = 5V)

Programmet fra LAB1

```
;******* MSYS, LAB1 *******
;****** Henning Hargaard ******
;****** 14.august 2015 ******
:******* INITIERING ********
                                              :****** DISPLAY R16 *******
  LDI R16, HIGH(RAMEND) ; Initialize Stack Pointer
                                              :****** AND DELAY ********
  OUT SPH,R16
                                              DISP AND DELAY:
  LDI
     R16, LOW(RAMEND)
                                                 MOV R17,R16
  OUT SPL,R16
                                                 OUT PORTB, R17
  SER R16
                     ;PORTB = Outputs
                                                 CLR R17
      DDRB,R16
  OUT
                                                 CLR R18
                                                 LDI R19,100
:****** PROGRAM-LOOP *******
                                              AGATN:
  CLR R16
                                                 DFC R17
LOOP:
            :R17 = 9
                                                 BRNE AGAIN
  LDI R17,9
  ADD R16,R17 ;R16 = R16 + R17
                                                 DEC R18
  CALL DISP_AND_DELAY ;Display R16
                                                 BRNE AGAIN
  JMP LOOP
                    ;Jump to "LOOP"
                                                 DEC R19
                                                 BRNE AGAIN
                                                 RFT
                                              . *****************
```


Slut på MSYS lektion 4

