# Floorplanning for Partially-Reconfigurable FPGA Systems via Mixed-Integer Linear Programming

P<sup>2</sup>C WEEK, Milano August 29, 2014

Marco Rabozzi: marco.rabozzi@mail.polimi.it

Marco D. Santambrogio: marco.santambrogio@polimi.it







### Rationale and Innovation

#### Problem statement

 Given a partially-reconfigurable FPGA, find on-chip area constraints to meet the design requirements

#### Innovative contribution:

- Consider arbitrary distribution of heterogeneous resources
- Possibility to customize the objective function
- Control on the quality of the desired solution





### Aims

- Considering the area assignment problem tailored for partially-reconfigurable FPGAs, provide:
  - A Mixed-Integer Linear Programming (MILP) model to improve the quality of heuristic solutions
  - An effective MILP model to find the optimal solution





### Outline

- Introduction
- Problem definition and state-of-the-art
- The Proposed Approach
- Overall system evaluation
- Conclusions and Future Work
- Demo





# **INTRODUCTION**







# FPGA (Field-Programmable Gate Array)

- FPGA characteristics
  - Heterogeneous resources
  - Reconfigurable device
  - Reconfiguration constraints
- Different resource distribution:
  - Uniform
  - Non-Uniform
- Different reconfiguration
  - Total
  - Partial (static)
  - Partial (dynamic)



Tiles: minimal reconfigurable units





### FPGA: resource distribution

- Uniform distribution
  - Xilinx Spartan3
  - Xilinx Virtex-II







### FPGA: resource distribution

- Uniform distribution
  - Xilinx Spartan3
  - Xilinx Virtex-II



- Non-Uniform distribution
  - Xilinx Virtex-4
  - Xilinx Virtex-5







# FPGA: total reconfiguration







# FPGA: partial (static) reconfiguration









# FPGA: partial (dynamic) reconfiguration









# Partial dynamic design flow









# PROBLEM DEFINITION AND STATE-OF-THE-ART







# Floorplanning problem

- Given:
  - An FPGA
  - A set N of reconfigurable regions (RRs)
  - The resource requirements  $\forall n \in N$
- Aim:
  - Find a rectangular area for each region, such that:
    - No two regions overlap
    - Complete tiles are covered
    - All the resource requirements are met
    - A given objective function is optimized







### Related work - I

- [\*] Is a 3 steps floorplacer based on simulated annealing
  - Considers both partitioning and floorplanning
  - Optimizes external wirelength and area
- Limits
  - Considers only uniform resource distribution
  - No guarantee on the solution quality
  - Objective function not customizable



[\*] Montone, A., Santambrogio, M. D., and Sciuto, D.: Wirelength driven floorplacement for FPGA-based partial reconfigurable systems. In <u>IPDPS Workshops</u>, pages 1-8, 2010.







### Related work - II

- [\*] Is an adaption of Parquet [\*\*] for Floorplanning on heterogeneous FPGAs
  - Considers arbitrary resource distribution
  - Optimizes internal and external wirelength

#### Limits

- Suboptimal search space
- Objective function only based on wirelength



Sequence pair:  $(\langle A, B \rangle, \langle A, B \rangle)$ 

Height vector:  $\{h_A = 1, h_B = 2\}$ 

[\*] Bolchini, C., Miele, A., and Sandionigi, C.: Automated Resource-Aware Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA Systems. In <u>FPL</u>, pages 532-538, 2011.

[\*\*] Adya, S. N. and Markov, I. L.: Fixed-outline floorplanning: enabling hierarchical design. IEEE Trans. VLSI Syst., 11(6):1120-1135, 2003.







### Related work - III

- [\*] Introduces Columnar Kernel Tesselation
  - Takes into account complex device architecture
  - Optimizes area and internal wirelength
- Limits
  - Unexplored potentially promising solutions (fixed placement order of regions)
  - Objective function biased towards area optimization



[\*] Vipin, K. and Fahmy, S. A.: Architecture-aware reconfiguration-centric floorplanning for partial reconfiguration. In <u>ARC</u>, pages 13-25, 2012.







### THE PROPOSED APPROACH







# Optimal Floorplanner (OF)









# Heuristic-Optimal Floorplanner (HOF)







### MILP: Problem linearization - I







### MILP: Problem linearization - II



N = set of reconfigurable regions $R = \text{set of FPGA rows (i.e.: } \{1, 2, ..., 8\})$ 

#### Variables:

 $\forall r \in R, n \in N$ :

$$\begin{array}{c|c} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} & \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} & \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} & \mathbf{y} \\ \mathbf{y} \\$$







## MILP: Problem linearization - III



N = set of reconfigurable regions $R = \text{set of FPGA rows (i.e.: } \{1, 2, ..., 8\})$ 

#### **Semantic constraints:**

$$\forall n \in N:$$
 
$$x_n + w_n \le maxW$$
 
$$h_n = \sum_{r \in R} a_{n,r}$$
 
$$yh_n - yl_n + 1 = h_n$$

$$\forall n \in N, r \in R:$$

$$yl_n \leq |R| - a_{n,r} \cdot (|R| - r)$$

$$yh_n \geq a_{n,r} \cdot r$$

$$\forall n \in N, r1, r2, r3 \in R | r3 > r2 > r1:$$
  
$$a_{n,r2} \ge a_{n,r1} + a_{n,r3} - 1$$







# Non overlapping (OF) - I









# Non overlapping (OF) - II









# Non overlapping (OF) - III



Non overlapping constraint:

$$x_{n1} \ge x_{n2} + w_{n2} - (3 - g_{n1,n2} - a_{n1,r} - a_{n2,r}) \cdot maxW$$

$$g_{n1,n2} = 1$$

binary variable forced to 1 if region **n1** is not to the left of region **n2**:







# Non overlapping (OF) - IV



### **Violation!**

$$g_{n1,n2} = 1$$

binary variable forced to 1 if region **n1** is not to the left of region **n2**:







# Non overlapping (HOF)







RR1 above RR2 RR1 above RR3 RR2 at the left of RR3



 $yl_{n1} \ge yl_{n2} + h_{n2}$   $yl_{n1} \ge yl_{n3} + h_{n3}$  $x_{n1} + w_{n1} \le x_{n2}$ 

Geometrical constraints
Added to the MILP model







### Covered resources - I



#### FPGA partitioning

- Reduce model complexity
- P: set of portion describing the device
- T: set of resource types

#### Parameters

 $x1_p$  leftmost pos. of portion **p** 

 $x2_p$  rightmost pos. of portion **p** 

$$rp_{p,r}$$
 = 1 if portion **p** lies on row **r** = 0 otherwise





### Covered resources - II

Tiles within portion  $\emph{p}$  having  $\emph{d}_{\emph{p},\emph{t}}$  resources of type  $\emph{t}$ 



 $l_{n,p,r}=3$  (intersection between region n on portion p and row r measured in tiles)

 $l_{n,p,r} \cdot d_{p,t} = \text{resources of type } t \text{ covered by region } n \text{ on portion } p \text{ and row } r$ 







### Covered resources - III

Tiles within portion p having  $d_{p,t}$  resources of type t



#### **Resource requirement constraint:**

$$\forall t \in T: \sum_{p \in P, r \in R \mid rp_{p,r} = 1} l_{n,p,r} \cdot d_{p,t} \ge \underline{c_{n,t}}$$

 $c_{n,t}$  resources of type t required by RR n

 $l_{n,p,r}=3$  (intersection between region n on portion p and row r measured in tiles)

 $l_{n,p,r} \cdot d_{p,t} = \text{resources of type } t \text{ covered by region } n \text{ on portion } p \text{ and row } r$ 





### Covered resources - IV



$$k_{n,p} \in \{0,1\}$$

Binary variable forced to 0 if region n is on the left or on the right of portion p

$$x_n + w_n - 1 \ge x 1_p \cdot k_{n,p}$$
  
$$x_n \le x 2_p + (1 - k_{n,p}) \cdot maxW$$





## Covered resources - V



$$l_{n,p,r} \in \mathbb{R}^+$$

intersection between region  $\mathbf{n}$  on portion  $\mathbf{p}$  and row  $\mathbf{r}$  measured in tiles

$$\forall n \in N, p \in P, r \in R | rp_{p,r} = 1:$$

$$l_{n,p,r} \le a_{n,r} \cdot (x2_p - x1_p + 1)$$

$$l_{n,p,r} \le k1_{n,p} \cdot (x2_p - x1_p + 1)$$

$$l_{n,p,r} \le w_n$$

$$l_{n,p,r} \le x_n + w_n - k_{n,p} \cdot x1_p$$

$$l_{n,p,r} \le x2_p - x_n + 1 + (1 - k_{n,p}) \cdot maxW$$

 $\forall n \in N, r \in R$ :

$$\sum_{p \in P \mid rp_{p,r}=1} l_{n,p,r} \ge w_n - \left(1 - a_{n,r}\right) \cdot maxW$$





# Objective function

- Cost function can be defined starting from the variables and parameters of the MILP model
- Implemented metrics:
  - Global wirelength measured using HPWL ( $WL_{cost}$ )
  - Regions perimeter ( $P_{cost}$ )
  - Wasted resources ( $R_{cost}$ )

$$\bullet \quad \min \left\{ q_1 \cdot \frac{WL_{cost}}{WL_{max}} + q_2 \cdot \frac{P_{cost}}{P_{max}} + q_3 \cdot \frac{R_{cost}}{R_{max}} \right\}$$





# Objective function – Example I

- Internal Wirelength
  - Measured with HPWL (half-perimeter wirelength)
  - $b_{n1,n2}$ : number of interconnections between regions n1 and n2



$$cx_n = tileW \cdot (x_n + w_n/2)$$
  
 $cy_n = tileH \cdot (yl_n + h_n/2)$ 

$$dcx_{n1,n2} \ge cx_{n1} - cx_{n2} dcx_{n1,n2} \ge cx_{n2} - cx_{n1}$$

$$dcy_{n1,n2} \ge cy_{n1} - cy_{n2} dcy_{n1,n2} \ge cy_{n2} - cy_{n1}$$

Geometrical constraints

$$\begin{split} dcx_{n1,n2} \geq cx_{n2} - cx_{n1} & WL_{cost} = b_{n1,n2} \cdot \left( dcx_{n1,n2} + dcy_{n1,n2} \right) \\ & + \cdots \end{split}$$

Cost to be minimized







# Objective function – Example II

#### Wasted resources

- Measures the number of resources occupied by not needed
- $rc_t$ : cost of wasting a resource of type t









### Formulation refinement

 Additional constraints to better describe the solution space of the LP (Linear Programming) relaxation



#### For a given region n:

$$leastArea := \max_{\mathbf{t} \in \mathbf{T}} \left[ \frac{c_{n,t}}{maxD_t} \right]$$
 $w_n \cdot h_n \ge leastArea$ 

 $maxD_t = Maximum number of t$ resources within a tile





### Implementation









#### **OVERALL SYSTEM EVALUATION**







### Pseudo-random benchmark

- 20 designs with different number of regions and different device occupancy rate to test effectiveness
  - At least 1 or 2 regions requiring DSPs
  - From 3 to 7 regions requiring BRAMs
  - Random interconnections between regions and to the IO
  - Target device: Virtex-5 XC5VLX110T
- Global wirelength objective function to compare to Bolchini et al. [\*]
  - 10 random executions of [\*], best outcome considered
  - HOF re-optimization on [\*] good solutions (within 10% of the best one)
  - OF warm started using HOF solution and execution time limited to 1800 sec.

[\*] Bolchini, C., Miele, A., and Sandionigi, C.: Automated Resource-Aware Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA Systems. In FPL, pages 532-538, 2011.







### benchmark results - I

| # Regions | Average wirelength improvement w.r.t. [*] |        | Average execution time (sec) |       |        |
|-----------|-------------------------------------------|--------|------------------------------|-------|--------|
|           | HOF                                       | OF     | [ * ]                        | HOF   | OF     |
| 5         | 6.99%                                     | 7.48%  | 10.9                         | 12.9  | 56.0   |
| 10        | 7.59%                                     | 11.65% | 23.8                         | 45.3  | 1845.3 |
| 15        | 8.88%                                     | 20.06% | 40.6                         | 69.6  | 1869.7 |
| 20        | 5.47%                                     | 19.13% | 64.9                         | 83.3  | 1883.4 |
| 25        | 5.67%                                     | 21.97% | 93.2                         | 121.0 | 1921.0 |

[\*] Bolchini, C., Miele, A., and Sandionigi, C.: Automated Resource-Aware Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA Systems. In <u>FPL</u>, pages 532-538, 2011.







### benchmark results - II

| Occupancy | Average wirelength improvement w.r.t. [*] |        | Average execution time (sec) |      |        |
|-----------|-------------------------------------------|--------|------------------------------|------|--------|
|           | HOF                                       | OF     | [ * ]                        | HOF  | OF     |
| 70%       | 8.51%                                     | 19.19% | 47.0                         | 89.2 | 1544.1 |
| 75%       | 5.49%                                     | 21.50% | 46.8                         | 62.7 | 1509.3 |
| 80%       | 6.20%                                     | 13.80% | 46.7                         | 59.2 | 1506.9 |
| 85%       | 7.48%                                     | 9.75%  | 46.3                         | 54.6 | 1500.0 |

[\*] Bolchini, C., Miele, A., and Sandionigi, C.: Automated Resource-Aware Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA Systems. In <u>FPL</u>, pages 532-538, 2011.







# Floorplanners features comparison

| Authors        | Resource<br>distribution<br>aware | Compliant<br>with PR | Customizable objective function | Reaches the optimum |
|----------------|-----------------------------------|----------------------|---------------------------------|---------------------|
| Montone et al. | No                                | Yes                  | No                              | No                  |
| Bolchini al.   | Yes                               | Yes                  | No                              | No                  |
| Vipin et al.   | Yes                               | Yes                  | Limited, biased towards area    | No                  |
| HOF            | Yes                               | Yes                  | Yes                             | No                  |
| OF             | Yes                               | Yes                  | Yes                             | Yes                 |







### The case study

- SDR (Software Defined Radio) taken from [\*]
  - 5 reconfigurable regions
  - Heterogeneous resource requirements
  - Multiple modules assigned for each region
  - Sequential connections among regions with equal bandwidth
  - Target device: Virtex-5 FX70T
- Objective:
  - 1. Wasted frames
  - 2. Wirelength

[\*] Vipin, K. and Fahmy, S. A.: Architecture-aware reconfiguration-centric floorplanning for partial reconfiguration. In <u>ARC</u>, pages 13-25, 2012.







### SDR resource requirements

| Region           | CLB tiles | BRAM tiles | DSP tiles | # Frames |
|------------------|-----------|------------|-----------|----------|
| Matched Filter   | 25        | 0          | 5         | 1040     |
| Carrier Recovery | 7         | 0          | 1         | 280      |
| Demodulator      | 5         | 2          | 0         | 240      |
| Decoder          | 12        | 1          | 0         | 462      |
| Video Decoder    | 55        | 2          | 5         | 2180     |
| Total            | 104       | 5          | 11        | 4202     |

[\*] Vipin, K. and Fahmy, S. A.: Architecture-aware reconfiguration-centric floorplanning for partial reconfiguration. In <u>ARC</u>, pages 13-25, 2012.







## The proposed solution

- Optimization via OF
  - Small number of regions (5)
  - We assume heuristic solution not available
- Objective parameters (same optimization)

$$-q_1 = 1$$
;  $q_2 = 0$ ;  $q_3 = R_{max}$ 

$$- \min \left\{ q_1 \cdot \frac{WL_{cost}}{WL_{max}} + q_2 \cdot \frac{P_{cost}}{P_{max}} + q_3 \cdot \frac{R_{cost}}{R_{max}} \right\}$$

Additional constraint to prevent intersection with the hard processor on the FPGA

$$- \forall n \in N, r \in R: l_{n,p_1,r} = 0$$



**PowerPC** 





### Solution comparison



Floorplan produced by [\*].



Floorplan produced by OF.

- Optimal solution in 29 seconds
- 34% wasted frames reduction
  - No DSP and CLB wasted by the Video Decoder RR
  - No BRAM wasted by the Signal Decoder RR
  - Approximately same wirelength

[\*] Vipin, K. and Fahmy, S. A.: Architecture-aware reconfiguration-centric floorplanning for partial reconfiguration. In <u>ARC</u>, pages 13-25, 2012.





### Conclusion

Two approaches for the identification of area constraints on partially-reconfigurable FPGA have been introduced

### Novelties:

- Consider arbitrary distribution of heterogeneous resources
- Possibility to customize the objective function
- Control on the quality of the desired solution
- Results published at FCCM 2014:
  - Rabozzi, M., Lillis, J., and Santambrogio, M. D.: Floorplanning for Partially-Reconfigurable FPGA Systems via Mixed-Integer Linear Programming. In FCCM, 2014.





### Future work

- Enhance the description of the MILP model
- Consider alternative approaches between OF and HOF
  - Sequential K-placement (fix the position of k regions at a time)
  - Hierarchical floorplanning
- Consider other metrics
  - power consumption
  - provide support for bitstream relocation





#### **DEMO**







#### THANK YOU!

Available at: http://floorplacer.necst.it





