Econ 106

Lecture 18 slides derived from:

https://r4ds.had.co.nz/graphics-for-communication.html

Reminders

- Lab 5 is due Sunday, 11:59pm (best 4 of 5 labs count)
- Final Project is due Sunday, 11:59pm

Extra Credit Opportunity

- Please fill out a teaching evaluation: https://ieval.ucr.edu/ieval/login
- Extra credit will be based on the class response rate:
 - 25% response rate → add .25% to your overall grade
 - 50% response rate → add .50% to your overall grade
 - 75% response rate → add .75% to your overall grade
 - 100% response rate \rightarrow add 1% to your overall grade
- Deadline: Friday 11:59pm

#tidytuesday

Inspired by the Economist article here:

Miscellaneous Student Examples

Histogram with color mapping

Bar Plot with Color Mapping

Title should describe the findings in the chart, otherwise great use of color and labeling (I like the caption with the data source)

Source: Big Data Set from RateMyProfessor.com for Professors' Teaching Evaluation - Mendeley Data

Bar Plot with Color Mapping

Interesting use of color (color is a gradient based on the difficulty rating)

Source: Big Data Set from RateMyProfessor.com for Professors' Teaching Evaluation - Mendeley Data

- More education often leads to higher income
- Education can also show people ways of moving up in social class
- Higher education is expensive

Thoughtful interpretation of the findings (upper class has higher levels of educational attainment)

Good use of color gradient (viridis)

Providing Context

Student provides additional context for the findings in the chart (uses knowledge of sneaker related events)

04 Visualization 1: Nike & Adidas Sales Over Time

Stockx Data

Off White

Has some spikes late 2018, but its highest is right after JAN 2019

Virgil joined Louis Vuitton

Yeezy

Sales overpower Off white, almost double, biggest spike, late 2018

Kanye dropped 2 albums : Kids See Ghost and Ye

Line Graph (Trends over Time)

It's not that impressive to see a single line graph- should try to group by an additional variable

Don't do this

The plot showing the average mass of measured glaciers over time, based on the dataset you provided. The plot illustrates the trend in the mean cumulative mass balance of glaciers from 1945 onwards.

One of the most direct effects of melting glaciers is the rise in sea levels. Glaciers store a large amount of the Earth's freshwater, and when they melt, this water flows into the oceans. This contributes to the overall increase in sea levels, which can lead to the flooding of coastal areas, affecting millions of people worldwide.

Glaciers are important habitats for unique ecosystems. As they retreat, these ecosystems can be lost.

Outline

- Visualization Best Practices
- Customizing your plots

Bar Plot Customizations

 What can we do to improve this bar plot?

```
ggplot(data=acs,
mapping= aes(x=edu))+
geom_bar() +
```


Class Exercise

- improve on this bar plot by adjusting:
 - labels
 - scales
 - theme

Bar Plot Customizations: add color

- We use the fill argument to add color to the bar chart
- ggplot will choose the default color palette

```
ggplot(data=acs,
mapping= aes(x=edu))+
geom_bar ( aes(fill=edu))
```


Bar Plot Customizations: fill vs color

- Remember to use fill instead of color for 2d shapes
- otherwise only the outline gets colored

```
ggplot(data=acs,
mapping= aes(x=edu))+
geom_bar ( aes(color=edu))
```


Bar Plot Customizations: fill vs color

- can we use fill and color?
- Sure!
- I added a black border in this example

```
ggplot(data=acs,
mapping= aes(x=edu))+
geom_bar ( aes(fill=edu), color = "black" )
```


Bar Plot Customizations: Remove legend

- We can remove the legend because it doesn't provide any additional information
 - legend.position controls where the legend is drawn:
 - right (the default)
 - left
 - top
 - bottom
 - none (suppress legend)

```
ggplot(data=acs,
  mapping= aes(x=edu))+
  geom_bar ( aes(fill=edu)) +
theme(legend.position = 'none')
```


Color Scales for Categorical Variables

- To adjust color on a 1-d shape (point), we can use:
 - scale_color_manual(): manually create color scale
 - scale_color_brewer(): use a ColorBrewer palette
- To adjust color on a 2-d shape (bar), we can use:
 - scale_fill_manual(): manually create color scale
 - scale_fill_brewer(): use a ColorBrewer palette

Manually Select Color Scale

 Note: the color for NA can't be adjusted manually

```
ggplot(data=acs,
  mapping= aes(x=edu))+
  geom_bar(aes(fill=edu))+
theme(legend.position = 'none') +
scale_fill_manual(values= c("red", "orange", "yellow",
"green", "blue"))
```


ColorBrewer Sequential Color Scales

- ColorBrewer provides sets of colors (palettes)
- Sequential palettes are good for ordinal categorical variables
- Educational levels:
 - high school
 - college
 - graduate school

ColorBrewer Diverging Color Scales

Diverging palettes are good for ordinal categorical variables

- Use this when your values are ordered in two directions relative to a center.
- political affiliation:
 - liberal
 - centrist
 - conservative

ColorBrewer Qualitative Color Scales

- Qualitative (nominal) palettes are good for categorical Variables whose values have no ordering.
- Major:
 - Economics
 - Business
 - Statistics

Change the Palette

 Education is ordinal, so I will select a sequential color scale

```
ggplot(data=acs,
  mapping= aes(x=edu))+
  geom_bar(aes(fill=edu), color = "black" )+
scale_fill_brewer(palette= "Purples")
```


What happened?

 I changed the palette for 1d objects (lines and points), not 2d objects

```
ggplot(data=acs,
  mapping= aes(x=edu))+
  geom_bar(aes(fill=edu), color = "black" )+
scale_color_brewer(palette= "Purples")
```


Class Exercise

- Make a bar plot of race
- use the Set1 color palette

Adding text labels

 Adding the values of the counts provides more detail to our bar plots

Step 1: Make a Frequency Table

 This gives us the values to add to the bar plot

*	edu [‡]	n [‡]
1	Less than High School	10311
2	High School	5763
3	Some College	5728
4	Bachelors	2920
5	Advanced Degree	1565
6	NA	1123

Step 2: Make a Bar Plot with geom_col()

- We use geom_col() instead of geom_bar()
- This means we use the frequency table as our data
- geom_text() adds a label at the y-values

•	edu [‡]	n [‡]
1	Less than High School	10311
2	High School	5763
3	Some College	5728
4	Bachelors	2920
5	Advanced Degree	1565
6	NA	1123

```
ggplot(data=degree_frequency,
   mapping= aes(x=edu, y=n))+
   geom_col(aes(fill=edu), color = "black" )+
   geom_text(aes(label=n )+
scale_color_brewer(palette= "Purples" )+
theme(legend.position = 'none') +
```


Adjust the position of the text

 We can adjust the position of the text using vjust and hjust

```
ggplot(data=degree_frequency,
   mapping= aes(x=edu, y=n))+
   geom_col(aes(fill=edu), color = "black" )+
   geom_text(aes(label=n, vjust=-.3 )+
   scale_color_brewer(palette= "Purples" )+
   theme(legend.position = 'none') +
```


Class Exercise

- Make a bar plot of race
- use the Set1 color palette
- add the counts to the top of each bar

Means by group

We can take a similar approach to plotting mean income by education:

- First, create a table of mean income by education
- Next, use geom_col()
- Add labels using geom_text()

Mean Income by Education

```
income_by_edu<-acs %>%
filter(!is.na(edu)) %>%
group_by(edu) %>%
summarize(mean_income = mean(income, na.rm = TRUE))
```

^	edu [‡]	mean_income $^{\hat{-}}$
1	Less than High School	11829.41
2	High School	21777.43
3	Some College	28372.29
4	Bachelors	45811.77
5	Advanced Degree	67875.52

Bar Plot of Mean Income by Education

```
ggplot(data=income_by_edu,
   mapping= aes(x=edu, y=mean_income))+
   geom_col(aes(fill=edu))+
scale_color_brewer(palette= "Purples" )+
theme(legend.position = 'none') +
```

^	edu [‡]	mean_income [‡]
1	Less than High School	11829.41
2	High School	21777.43
3	Some College	28372.29
4	Bachelors	45811.77
5	Advanced Degree	67875.52

Add text (mean income values)

```
ggplot(data=income_by_edu,
   mapping= aes(x=edu, y=mean_income))+
   geom_col(aes(fill=edu))+
   geom_text(aes(label=mean_income))+
scale_color_brewer(palette="Purples")+
theme(legend.position = 'none') +
```

^	edu [‡]	mean_income [‡]
1	Less than High School	11829.41
2	High School	21777.43
3	Some College	28372.29
4	Bachelors	45811.77
5	Advanced Degree	67875.52

Add text (rounded mean income values)

```
ggplot(data=income_by_edu,
   mapping= aes(x=edu, y=mean_income))+
   geom_col(aes(fill=edu))+
   geom_text(aes(label=round(mean_income)))+
scale_color_brewer(palette= "Purples" )+
theme(legend.position = 'none') +
```

^	edu [‡]	mean_income [‡]
1	Less than High School	11829.41
2	High School	21777.43
3	Some College	28372.29
4	Bachelors	45811.77
5	Advanced Degree	67875.52

Add text (adjust position)

```
ggplot(data=income_by_edu,
   mapping= aes(x=edu, y=mean_income))+
   geom_col(aes(fill=edu))+
   geom_text(aes(label=round(mean_income), vjust=-.3)+
scale_color_brewer(palette= "Purples")+
theme(legend.position = 'none') +
```

•	edu [‡]	mean_income [‡]
1	Less than High School	11829.41
2	High School	21777.43
3	Some College	28372.29
4	Bachelors	45811.77
5	Advanced Degree	67875.52

Visual Decluttering

- We reviewed this earlier, but I'll repeat it again
- Less is more, don't over clutter your graphs

Visual Decluttering

- Things I don't like:
- NA needs to be removed
- too many lines on a graph

```
ggplot(data=acs,
mapping= aes(x=age))+
geom_density(aes(color=maritalStatus))
```


Try fill instead of color

 We can adjust the transparency as well (alpha)

```
ggplot(data=acs_marital,
  mapping= aes(x=age))+
geom_density(aes(fill=maritalStatus), alpha=.5)
```


Try Faceting

 Breaks up the graph into separate parts

```
ggplot(data=acs_marital,
  mapping= aes(x=age))+
  geom_density(aes(fill=maritalStatus), alpha=.5) +
facet_wrap(. ~ maritalStatus)
```


Class Exercise

- Select individuals with an advanced degree earning 200,000 or less
- create a density plot of income faceted by race

 Breaks up the graph into separate parts, but with a slight overlap

```
ggplot(data=acs_marital,
  mapping= aes(x=age))+
  geom_density_ridges(aes(fill=maritalStatus), alpha=.5)
```


https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html

 You can make the overlap larger with the scale argument (bigger number gives a greater overlap)

```
ggplot(data=acs_marital,
mapping= aes(x=age))+
geom_density_ridges(aes(fill=maritalStatus), alpha=.5, scale=3)
```


- Use color to represent values on the xaxis (age)
- Very fancy.

```
ggplot(data=acs_marital,
mapping= aes(x=age))+
geom_density_ridges(aes(fill=stat(x)), scale=3)
```


- Use a viridis color palette (plasma)
- Extra fancy.


```
ggplot(data=acs_marital,
  mapping= aes(x=age))+
  geom_density_ridges(aes(fill=stat(x)), scale=3)
scale_fill_viridis_c(name= "Age", fill= "plasma" )+
```


https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html