Unit 11 Instruction-Level Parallelism (ILP)

- Pipelining: executing multiple instructions in parallel
- To increase ILP
- Deeper pipeline

 break down instruction into small er stages

 thus less work per stage, & shorter

 clock cycle
 - Less work per stage ⇒ shorter clock cycle
 - Multiple issue
 - Replicate pipeline stages => multiple pipelines = x ecute at the same time
 - Start multiple instructions per clock cycle
 - CPI < 1, so use Instructions Per Cycle (IPC)</p>
 - E.g., 4GHz 4-way multiple-issue
 - 16 BIPS, peak CPI = 0.25, peak IPC = 4)
 - But dependencies reduce this in practice

Multiple Issue

- Static multiple issue
 - Compiler groups instructions to be issued together

inst! Inst2 ine3

- Packages them into "issue slots"
- Compiler detects and avoids hazards
- Dynamic multiple issue
 - CPU examines instruction stream and chooses instructions to issue each cycle
 - CPU resolves hazards using advanced techniques at runtime

Speculation = "gness" in pipe line

- "Guess" what to do with an instruction
 - Start operation as soon as possible
 - Check whether guess was right
 - If so, complete the operation
 - If not, roll-back and do the right thing
- Common to static and dynamic multiple issue
- **Examples**
 - Speculate on branch outcome
 - Roll back if path taken is different
 - Speculate on load
 - Roll back if location is updated

Compiler/Hardware Speculation

- Compiler can reorder instructions
 - e.g., move load before branch buble /no op
 - Can include "fix-up" instructions to recover from incorrect guess
- Hardware can look ahead for instructions to execute this is the hardware
 - Buffer results until it determines they are actually needed
 - Flush buffers on incorrect speculation

execute

Speculation and Exceptions

- What if exception occurs on a speculatively executed instruction?
 - e.g., speculative load before null-pointer check
- Static speculation per ISA support to deference ption on unconfirm put?
 - Can add ISA support for deferring exceptions
- Dynamic speculation
 - Can buffer exceptions until instruction completion (which may not occur)

Static Multiple Issue

- Compiler groups instructions into "issue packets"
 - Group of instructions that can be issued on a single cycle
 - Determined by pipeline resources required
- Think of an issue packet as a very long instruction
 - Specifies multiple concurrent operations
 - > Very Long Instruction Word (VLIW)
 only In software Istatic multiple issue

Scheduling Static Multiple Issue

- Compiler must remove some/all hazards
 - Reorder instructions into issue packets
 - No dependencies with a packet
 - Possibly some dependencies between packets
 - Varies between ISAs; compiler must know!
 - Pad with nop if necessary

instruction scheduling for data hazard is handled by compiler

MIPS with Static Dual Issue

- Two-issue packets
- ALU/branch + I load/store
 38
 64 bits
- One ALU/branch instruction
- One load/store instruction
- 64-bit aligned
 - ALU/branch, then load/store
 - Pad an unused instruction with nop

(multiple issie 4.
Combine	Mulipolineline
	PIPCINIR.

Tristy (1812)
multiple 3
issue!
1 1 1420
Some time

Address	Instruction type	Pipeline Stages						
n	ALU/branch	IF	ID	EX	MEM	WB		
n + 4	Load/store	IF	ID	EX	MEM	WB		
n + 8	ALU/branch		IF	ID	EX	MEM	WB	
n + 12	Load/store		IF	ID	EX	MEM	WB	
n + 16	ALU/branch			IF	ID	EX	MEM	WB
n + 20	Load/store		,	IF	ID	EX	MEM	WB

but need to Watch out for data dependency (hazard,

MIPS with Static Dual Issue

Hazards in the Dual-Issue MIPS

- More instructions executing in parallel
- EX data hazard
 - Forwarding avoided stalls with single-issue
 - Now can't use ALU result in load/store in same packet
 - add \$t0, \$s0, \$s1
 load \$s2, 0(\$t0)
 - Split into two packets, effectively a stall
- More aggressive scheduling required

Same as reorder (in pipeline).
(speculation vs prediction (no related))

Scheduling Example

Schedule this for dual-issue MIPS

```
Loop: lw $t0, 0($s1) # $t0=array element addu $t0, $t0, $s2 # add scalar in $s2 sw $t0, 0($s1) # store result addi $s1, $s1, -4 # decrement pointer bne $s1, $zero, Loop # branch $s1!=0
```

^	
compiler	
decides.	ŀ
	L
how the	
schoduling	ŀ
is organized	
J	

		ALU/branch	Loa	ad/store	cycle
	Loop:	nop	٦w	\$t0 , 0(\$ s1)	1
)		addi \$s1 , \$s1 ,-4	no	0	2
		addu \$t0, \$t0, \$s2	no	p this inc depends on 1e so its scheduled to 3	3 mcle
J.		bne \$s1, \$zero, Lo	oop sw	\$t0, 4(\$s1)	4

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Loop Unrolling

traditional Loop.

- exec every statement in the loop

Unrolling. (Static Weey) (VIIWalso staticing)

the OS has an algorithm:

- how many times the loop fun. (Greenaph 3 time)

- expand. the unimportant instructions 3 times. (previous)

sample

A run the important instr 1 time. in last iteration.

Save instruction courts

- Pers instruction court

2 benefits

better CPI

Replicate loop body to expose more parallelism

- Reduces loop-control overhead
- Use different registers per replication
 - Called "register renaming"
 - Avoid loop-carried "anti-dependencies"
 - Store followed by a load of the same register
 - Aka "name dependence"
 - Reuse of a register name

to avoid dependency

Loop Unrolling Example

	ALU/branch	Load/store	cycle
Loop:	addi \$s1 , \$s1 ,-16	lw \$t0, 0(\$s1)	1
	nop	lw \$t1, 12(\$s1)	2
	addu \$t0, \$t0, \$s2	lw \$t2, 8(\$s1)	3
	addu \$t1, \$t1, \$s2	lw \$t3, 4(\$s1)	4
	addu \$t2, \$t2, \$s2	sw \$t0, 16(\$s1)	5
	addu \$t3, \$t4, \$s2	sw \$t1, 12(\$s1)	6
	nop	sw \$t2, 8(\$s1)	7
	bne \$s1, \$zero, Loop	sw \$t3, 4(\$s1)	8

- IPC = 14/8 = 1.75
 - Closer to 2, but at cost of registers and code size

Dynamic Multiple Issue

- "Superscalar" processors
- CPU decides whether to issue 0, 1, 2, ...
 each cycle
- Avoids the need for compiler scheduling
 - Though it may still help
 - Code semantics ensured by the CPU

Dynamic Pipeline Scheduling

- Allow the CPU to execute instructions out of order to avoid stalls
 - But commit result to registers in order
- Example

```
Tw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20
```

Can start sub while addu is waiting for lw

Dynamically Scheduled CPU

Register Renaming by resolve data hependency probable to resolve data dependency probable

- Reservation stations and reorder buffer effectively provide register renaming
- On instruction issue to reservation station
 - If operand is available in register file or reorder buffer no dependency
 - Copied to reservation station register freed up for
 - No longer required in the register; can be overwritten
 - If operand is not yet available to depends on some lands of red decomposition of the provision of the provision
 - function unit

Speculation multiple issue to heardle boards. Comd. - we speculate.

why speculate- not waste time

- Predict branch and continue issuing
 - Don't commit until branch outcome determined
- Load speculation
 - Avoid load data hazard
 - Load before completing outstanding store
 - Don't commit load until speculation cleared

Why Do Dynamic Scheduling?

- Why not just let the compiler schedule code?
 - Not all stalls are predicable
 - Can't always schedule around branches
 - Branch outcome is dynamically determined
 - Different implementations of an ISA have different latencies and hazards

Does Multiple Issue Work?

The BIG Picture

- Yes, but not as much as we'd like
- Instructions have dependencies will limit ILP
- Some dependencies are hard to eliminate
- Speculation can help if done well

Cortex A8 and Intel i7 This page.

Processor	ARM A8	Intel Core i7 920
Market	Personal Mobile Device	Server, cloud
Thermal design power	2 Watts	130 Watts
Clock rate	1 GHz	2.66 GHz
Cores/Chip	1	4
Floating point?	No	Yes
Multiple issue?	Dynamic	Dynamic
Peak instructions/clock cycle	2	4
Pipeline stages	14	14
Pipeline schedule	Static in-order	Dynamic out-of-order with speculation
Branch prediction	2-level	2-level
1st level caches/core	32 KiB I, 32 KiB D	32 KiB I, 32 KiB D
2 nd level caches/core	128-1024 KiB	256 KiB
3 rd level caches (shared)	-	2- 8 MB

ARM Cortex-A8 Pipeline

ARM Cortex-A8 Performance

92h

Core i7 Pipeline

Core i7 Performance

Matrix Multiply

Unrolled C code

```
1 #include <x86intrin.h>
2 #define UNROLL (4)
4 void dgemm (int n, double* A, double* B, double* C)
5 {
   for ( int i = 0; i < n; i+=UNROLL*4 )
  for (int j = 0; j < n; j++) {
8
    m256d c[4];
     for ( int x = 0; x < UNROLL; x++ )
      c[x] = mm256 load pd(C+i+x*4+j*n);
10
11
12
     for ( int k = 0; k < n; k++ )
13
14
     m256d b = mm256 broadcast sd(B+k+j*n);
      for (int x = 0; x < UNROLL; x++)
15
      c[x] = mm256 \text{ add } pd(c[x],
16
17
                           mm256 \text{ mul pd}(mm256 \text{ load pd}(A+n*k+x*4+i), b));
18
19
20
      for (int x = 0; x < UNROLL; x++)
21
       mm256 store pd(C+i+x*4+j*n, c[x]);
22
23 }
```


Matrix Multiply

Assembly code:

```
1 vmovapd (%r11), %ymm4
                                       # Load 4 elements of C into %ymm4
2 mov %rbx,%rax
                                       # register %rax = %rbx
3 xor %ecx, %ecx
                                       # register %ecx = 0
4 vmovapd 0x20(%r11), %ymm3
                                       # Load 4 elements of C into %ymm3
5 vmovapd 0x40(%r11), %ymm2
                                       # Load 4 elements of C into %ymm2
6 vmovapd 0x60(%r11), %ymm1
                                       # Load 4 elements of C into %ymm1
7 vbroadcastsd (%rcx, %r9, 1), %ymm0
                                       # Make 4 copies of B element
8 add $0x8, $rcx # register <math>$rcx = $rcx + 8$
9 vmulpd (%rax),%ymm0,%ymm5
                                       # Parallel mul %ymm1,4 A elements
10 vaddpd %ymm5,%ymm4,%ymm4
                                       # Parallel add %ymm5, %ymm4
11 vmulpd 0x20(%rax), %ymm0, %ymm5
                                       # Parallel mul %ymm1,4 A elements
12 vaddpd %ymm5,%ymm3,%ymm3
                                       # Parallel add %ymm5, %ymm3
13 vmulpd 0x40(%rax), %ymm0, %ymm5
                                       # Parallel mul %ymm1,4 A elements
14 vmulpd 0x60(%rax), %ymm0, %ymm0
                                       # Parallel mul %ymm1,4 A elements
15 add %r8,%rax
                                        # register %rax = %rax + %r8
16 cmp %r10,%rcx
                                       # compare %r8 to %rax
17 vaddpd %ymm5,%ymm2,%ymm2
                                       # Parallel add %ymm5, %ymm2
18 vaddpd %ymm0,%ymm1,%ymm1
                                       # Parallel add %ymm0, %ymm1
19 jne 68 <dgemm+0x68>
                                       # jump if not %r8 != %rax
20 add $0x1, %esi
                                       # register % esi = % esi + 1
21 vmovapd %ymm4, (%r11)
                                       # Store %ymm4 into 4 C elements
22 vmovapd %ymm3, 0x20 (%r11)
                                       # Store %ymm3 into 4 C elements
23 vmovapd %ymm2,0x40(%r11)
                                       # Store %ymm2 into 4 C elements
24 vmovapd %ymm1, 0x60 (%r11)
                                       # Store %ymm1 into 4 C elements
```

Performance Impact

Fallacies (Misconception)

- Pipelining is easy (Wrong)
 - The basic idea is easy
 - The devil is in the details < implementation is tough
 - e.g., detecting data hazards
- Pipelining is independent of technology (Wrong)
 - More transistors make more advanced techniques feasible
 - Pipeline-related ISA design needs to take account of technology trends

Pitfalls (Traps, Confusions)

- Poor ISA design can make pipelining harder (Yes)
 - e.g., complex instruction sets (VAX, IA-32)
 - Significant overhead to make pipelining work
 - IA-32 micro-op approach
 - e.g., complex addressing modes
 - Register update side effects, memory indirection
 - e.g., delayed branches
 - Advanced pipelines have long delay slots

Concluding Remarks

- ISA influences design of datapath and control
- Datapath and control influence design of ISA
- Pipelining improves instruction throughput using parallelism
 - More instructions completed per second
 - Latency for each instruction not reduced
- Hazards: structural, data, control
- Multiple issue and dynamic scheduling (ILP)
 - Instruction dependencies limit achievable parallelism
 - Instruction complexity leads to the power wall

