

MACHINE LEARNING COMP8220

02 – Workflow for ML Project

Lecture Outline

- Workflow of Machine Learning Project
 - Data Pre-processing and Feature Engineering
 - Model Training and Evaluation

- Linear Regression Introduction
 - Linear Regression Model
 - Overfitting and Model Selection

Lecture Outline

- Workflow of Machine Learning Project
 - Data Pre-processing and Feature Engineering
 - Model Training and Evaluation

Workflow of ML Project

- Problem framing
- Data collection
- Exploratory analysis and visualization
- Data Pre-processing
- Feature extraction and selection
- ML model training
- Model fine-tuning
- ML model deployment and maintenance

Framing Problem

- What is the business objective?
 - Building a model might not be the end goal
 - E.g., an ML pipeline for real estate investment

Framing Problem

- Requirement analysis
 - Similar to that in Software Engineering
 - Based on data and business requirement
- Typical examples of analysis questions
 - Is it a supervised or unsupervised learning task?
 - o Are data labelled or not?
 - Will domain experts be involved in any stage?
 - Is it a online learning or batch learning?
 - Data streaming? Large datasets?
 - What is the performance measures?
 - Sequential or parallel implementation?
 - What are the interfaces to other components?

Data Collection

- Manually collect datasets (usually small)
- Automated tools to collect datasets
 - E.g., Web crawlers to collect data from web pages
- Public datasets
 - Data repositories, e.g.,
 - UC Irvine Machine Learning Repository
 - Kaggle datasets
 - Amazon's AWS datasets
 - Data Portals (meta portals listing repositories)
 - Web APIs for data queries, e.g.,
 - Twitter data APIs
 - Domain property data APIs

- Quick glance to get a general understanding
 - Metadata, e.g., data size, data types, etc.
 - Assist in problem framing and modelling
 - Less complex than machine learning models
 - Light-weight experiments (feature combination)

Visualization

- Human brains are very good at spotting patterns in pictures
- Applicable to low (2 or 3) dimensional data
- Dimension reduction might be necessary for visualization
 - o PCA
 - Just randomly select 2 or 3 features for visualization (there are many possible combinations)

- Typical types of exploratory analysis
 - Statistics
 - Correlations

- Typical statistics
 - Count
 - Mean, median, mode
 - Std
 - Max, min
 - Quantile
 - • •

- Histogram
 - To visualize the statistics
 - E.g.,

- Correlations
 - Mainly refer to linear correlation (simple for exploration)
 - Between a feature and the target, or between two features
- Examples ('1' for strong positive correlation)

Data Pre-processing

- Missing values
 - Blanks, NaNs, or other placeholders
- Standardization
 - Attributes with varying scales
- Normalization
- Imbalanced data
 - Sampling
- Data duplication
- Outliers (noise)

Handling Missing Values

- Discarding the data instances with missing values
 - If the number of missing values is small
- Discarding the attributes with missing values
 - If the number of missing values is big
- Imputation
 - Manually: tedious + infeasible?
 - Automatically
 - A global constant
 - Mean, median, mode, or other statistics
 - Based on advanced techniques such as regression, nearest neighbors, matrix factorization, etc.

Missing Value Imputation

Examples

Raw data:

$$X = \begin{bmatrix} -1 & 1 \\ 6 & 2 \\ 3 & 3 \\ 3 & 4 \\ 1 & 4 \\ 9 & 2 \end{bmatrix}$$

• Mean: 2.8 $\left(\frac{1+2+3+4+4}{5} = 2.8\right)$

Median: 3 (3 is in the middle)

Mode: 4 (4 is the most frequent)

Regression: How? (result: 3.38)

Standardization

Z-score (centered and scaled)

$$x' = \frac{x - \mu}{\sigma}$$

- * Fixed range, e.g., [0, 1] or [-1, 1]
 - For [0, 1]: $x' = \frac{x x_{min}}{x_{max} x_{min}}$
 - For [-1, 1]: ?
- Non-linear transformation (still order-preserving)
 - E.g., Box-Cox transform
- All transformation should be applied to both training and testing data

Standardization (Cont'd)

Examples

Raw data:

$$X = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

Z-score:

$$X' = \begin{bmatrix} 1.0 & -1.22 & 1.33 \\ 1.22 & 0.0 & -0.26 \\ -1.22 & 1.22 & -1.06 \end{bmatrix}$$

• Fixed range [0, 1]:

$$X' = \begin{bmatrix} 0.5 & 0.0 & 1.0 \\ 1.0 & 0.5 & 0.33 \\ 0.0 & 1.0 & 0.0 \end{bmatrix}$$

Normalization

- Scaling individual data instances to have unit norm
 - Metrics: L_1 norm: Manhattan; L_2 norm: Euclidean
 - i.e., the "length" of a feature vector is 1
 - The angle information is still preserved

Examples

• Raw data :
$$X = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

■
$$L_2$$
 normalized: $X' = \begin{bmatrix} 0.40 & -0.40 & 0.81 \\ 1.00 & 0.0 & 0.0 \\ 0.0 & 0.70 & -0.70 \end{bmatrix}$

• E.g., first row:
$$\sqrt{0.40^2 + (-0.40)^2 + 0.81^2} \approx 1.0$$

Handling Imbalanced Data

- Sampling: obtaining data instances to represent the whole original data set
- Undersampling vs oversampling
 - The sample size is less than the original size
 - The sample size is greater than the original size
- With vs without replacement
 - Whether an instance is removed from the data set or not
- Simple random sampling (SRS) vs other sampling
 - SRS: each instance has an equal probability of being selected
 - Others: the probability might not be equal, e.g., stratified sampling (grouping data first; then sampling from groups)

Other Pre-processing

Data duplication

Depending on specific ML models, some are sensitive

Outlier (noise)

- Caused by data entry problem, faulty instruments, ...
- The consequence also depends on specific ML models
- E.g., ordinary linear regression is sensitive while tree models are often robust
- Outlier detection itself can be the main ML task, particularly in the cyber security domain

Feature Engineering

- Feature generation
 - Manual feature engineering by domain experts
 - Domain experts can identify more informative features
 - Feature interaction and polynomials
- Feature selection
 - Some features might be redundant or irrelevant
 - Select a subset of (informative) features
- Feature extraction
 - Transform to another feature space (lower-dimensional)
- Deep learning
 - Automatic feature representation and extraction

Feature Interaction & Polynomial

- To enrich feature representation
 - Particularly for linear models (to capture non-linearity)
 - E.g., we used higher orders of polynomial terms in the linear regression running example (still remember?)
- Feature interaction example

$$\langle X_1, X_2 \rangle \to \langle 1, X_1, X_2, X_1^2, X_1 X_2, X_2^2 \rangle$$

Index	X1	X2	
0	0	1	
1	2	3	

Index	1	X1	X2	X1X1	X1X2	X2X2
0	1	0	1	0	0	1
1	1	2	3	4	6	9

Feature Selection

- Filter approaches: univariate statistics
 - Test if an individual feature has statistically significant relationship with the target
 - E.g., analysis of variance (ANOVA), correlation coefficient
- Wrapper approaches: feature subset selection
 - Brute-force: try all possible subsets (NOT scalable)
 - Recursive feature elimination
 - o Build a model; discard least important feature; repeat
- Embedded approaches: model-based selection
 - Use ML models to judge feature importance
 - E.g., decision tree models, Lasso regression coefficients

Feature Extraction

- Transformative
 - Linear or non-linear projection to another space
 - Dimensionality can usually be reduced
- Commonly-used techniques
 - E.g., Principal Component Analysis (PCA)

Deep Feature Representation

- Deep learning can automatically perform feature selection and extraction
 - Interpretability might be lost, e.g., feature importance
- Typical examples
 - Convolutional Neural Network (CNN)
 - Convolution can capture/activate features in images
 - For images/videos
 - Recurrent Neural Network (RNN)
 - Capture temporal/sequential information
 - Long Short-Term Memory networks (LSTM)
 - A special kind of RNN
 - o For sequences, audio, time series, and text

Model Training

- Determine a machine learning model
 - Supervised vs unsupervised
 - Categorical vs numerical
 - Batch vs online
 - • •
- Split data into training and testing data
 - Training data for building the model
 - Testing data for validating the learning model
 - Randomly partition the data
 - Can be 80% vs 20%, or 75% vs 25%
 - K-folder cross validation

Cross Validation

- * k-fold cross validation
 - Usually, k is 5 or 10
 - Extreme case k = n, leave one out cross validation

Model Fine-tuning

- Model tuning is a non-trivial job!
 - Model selection
 - Confusing terms
 - Model parameters
 - Model hyperparameters
 - Learning algorithm parameters
 - Tuning is performed w.r.t. model hyperparameters
- Typical tuning methods
 - Manual tuning based on human experts
 - Automated grid search for optimal model hyperparameters
 - Automated random search
 - Often work together with cross validation

Model Deployment

- Deploy the trained model in a production environment
 - Need to save the trained model
 - E.g., using 'joblib' in Scikit-learn library
 - Integrated with other parts of a system
 - E.g., wrap the model within a dedicated web service that your web application can query through a REST API

Other example is Google Cloud AI Platform

Lecture Outline

- Workflow of Machine Learning Project
 - Data Pre-processing and Feature Engineering
 - Model Training and Evaluation

- Linear Regression Introduction
 - Linear Regression Model
 - Overfitting and Model Selection

Regression

Suppose we have 10 observations

$$\bullet \mathcal{D} = \{\langle x_1, t_1 \rangle, \cdots, \langle x_{10}, t_{10} \rangle\}$$

- Ground truth: $t = \sin(2\pi x)$
- Noise added to t_i

* **Regression** task: estimate t = y(x) from D

Linear Models

A function is linear if

$$f(\alpha x_1 + \beta x_2) = \alpha f(x_1) + \beta f(x_2)$$

- α , β are scalars
- Additivity and homogeneity

Linear regression model

$$y(\mathbf{x}, \boldsymbol{\omega}) = \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_D x_D$$

- Note: D is the # of features, not the # of instances
- The linearity of $y(\cdot, \omega)$ is with respect to ω
- Note: we are learning ω

The Simplest From

 \bullet Dimensionality M=1

$$y(x, \boldsymbol{\omega}) = \omega_0 + \omega_1 x$$

- Can only model a "line"
- How to handle non-linearity?

Feature Extraction

\star Transform x

$$\mathbf{x} \Rightarrow \mathbf{\Phi}(\mathbf{x}) = (\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \cdots, \phi_M \quad (\mathbf{x}))^T$$

- $\phi_j(x)$, $j \ge 0$ form a family of basic functions
- Transformation/feature function is often non-linear

Linear basis function models

$$y(\mathbf{x}, \boldsymbol{\omega}) = \sum_{j=0}^{M} \omega_j \phi_j(\mathbf{x}) = \boldsymbol{\omega}^T \mathbf{\Phi}(\mathbf{x})$$

$$m{\omega} = (\omega_0, \cdots, \omega_M)^T$$
, $m{\Phi} = (\phi_0, \cdots, \phi_M)^T$

Special Cases

* For
$$0 < j \le D$$
, $\phi_j(x) = x_j$; $\phi_0(x) = 1$

$$y(\mathbf{x}, \boldsymbol{\omega}) = \sum_{j=0}^{D} \omega_j x_j$$

The original form

Power series expansions

Loss Function for Regression

- * How to learn/choose the parameter vector ω ?
 - First, define a loss function L(y(x), t)
 - Then, find out y(x) to minimize the loss (expectation)

$$y^*(\mathbf{x}) = \arg\min_{y(\mathbf{x})} \mathbb{E}[L] = \int \int L(y(\mathbf{x}), t) p(\mathbf{x}, t) d\mathbf{x} dt$$

• E.g., general squared loss function:

$$L(y(\mathbf{x}), t) = \frac{1}{2}||y(\mathbf{x}) - t||^2$$

 In practice, we often use the loss function defined on training data

Least Squares

Sum of squared error:

$$E(\omega) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \omega) - t_n\}^2$$

Then, the specific learning problem

$$\omega^* = \arg\min_{\omega} E(\omega)$$

Optimization Problem

❖ Learning problem → optimization problem

$$\omega^* = \arg\min_{\omega} E(\omega),$$

$$E(\omega) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \omega) - t_n\}^2$$

How to solve?

$$\frac{\partial E(\omega)}{\partial \omega} = 0$$

- Close-form solution can be obtained
- For the basis function model

$$\boldsymbol{\omega}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

Different Degrees of Polynomials

Observations

- * M = 0 or M = 1
 - Only passing a couple of points
 - Models are too simple
- ★ M = 9
 - Passing every points but oscillating wildly
 - Overfitting problem: Lack of generalisation capability
- ★ M = 3
 - Much better solution
 - Good trade-o has been made

Training/Test Error

* Training/empirical error of the trained model \hat{f} on a training dataset with size N, e.g.,

$$E_{emp}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

- Learning process usually tries to minimize this error
- \bullet Test error on a test data set with size N', e.g.,

$$E_{test}(\hat{f}) = \frac{1}{N'} \sum_{i=1}^{N'} L(y_i, \hat{f}(x_i))$$

 Test error indicates the generalisation capability of a learned model

Overfitting Issue

- ❖ Test errors with respect to M
 - Test data containing 100 points
 - Root-Mean-Square (RMS) error

$$E_{RMS} = \sqrt{2E(\omega^*)/N}$$

Model Selection

❖ Observations on M

- Different models generated by varying M
- M controls the learning capability of the model
- Unlike model parameter ω , M can NOT be learned from data (hyperparameter)

Model selection

- Models generated by different learning algorithms
- Models generated by different algorithm parameter (model hyperparameter) configurations
- Model selection is a non-trial job!

Regularization

- Another way to the overfitting issue
 - Penalizing large coefficients in error function
 - E.g., quadratic regularizer

$$\tilde{E}(\omega) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \omega) - t_n\}^2 + \frac{\lambda}{2} ||\omega||^2,$$

$$||\boldsymbol{\omega}||^2 = \boldsymbol{\omega}^T \boldsymbol{\omega} = \omega_0^2 + \omega_1^2 + \dots + \omega_M^2$$

- λ governs the trade-offs between the two terms
- A.k.a. ridge regression
- Close-form solution can be obtained
- Lasso regression: the regularizer is $||\omega||_{L_1}$

Effects of λ

• Performance of different λ when M=9

Scikit-learn (sklearn)

- Data preparation
- Training/test data split
 - x_train, y_train, x_test, y_test

- Train the model
 - Build a model: model = xxxModel.xxxModel()
 - Train a model: model.fit(x_train, y_train)
 - Validate: cross_validate(xxxmodel, x_train, y_train, k, scoring)
- Test the learning model
 - Test the model: y_pred = xxxModel.predict(x_test)
 - Can use y_pred and y_test to calculate the error, e.g., mean_squared_error(y_test, y_pred)