```
In [7]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import plotly.express as px
   from sklearn.datasets import load_iris
   import warnings
   warnings.filterwarnings("ignore")
In [8]: data = load_iris()
In [9]: data
```

```
Out[9]: {'data': array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                 [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                 [4.6, 3.4, 1.4, 0.3],
                 [5., 3.4, 1.5, 0.2],
                 [4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
                 [4.8, 3.4, 1.6, 0.2],
                 [4.8, 3., 1.4, 0.1],
                 [4.3, 3., 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
                 [5.7, 4.4, 1.5, 0.4],
                 [5.4, 3.9, 1.3, 0.4],
                 [5.1, 3.5, 1.4, 0.3],
                 [5.7, 3.8, 1.7, 0.3],
                 [5.1, 3.8, 1.5, 0.3],
                 [5.4, 3.4, 1.7, 0.2],
                 [5.1, 3.7, 1.5, 0.4],
                 [4.6, 3.6, 1., 0.2],
                 [5.1, 3.3, 1.7, 0.5],
                 [4.8, 3.4, 1.9, 0.2],
                 [5., 3., 1.6, 0.2],
                 [5., 3.4, 1.6, 0.4],
                 [5.2, 3.5, 1.5, 0.2],
                 [5.2, 3.4, 1.4, 0.2],
                 [4.7, 3.2, 1.6, 0.2],
                 [4.8, 3.1, 1.6, 0.2],
                 [5.4, 3.4, 1.5, 0.4],
                 [5.2, 4.1, 1.5, 0.1],
                 [5.5, 4.2, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.2],
                 [5., 3.2, 1.2, 0.2],
                 [5.5, 3.5, 1.3, 0.2],
                 [4.9, 3.6, 1.4, 0.1],
                 [4.4, 3., 1.3, 0.2],
                 [5.1, 3.4, 1.5, 0.2],
                 [5., 3.5, 1.3, 0.3],
                 [4.5, 2.3, 1.3, 0.3],
                 [4.4, 3.2, 1.3, 0.2],
                 [5., 3.5, 1.6, 0.6],
                 [5.1, 3.8, 1.9, 0.4],
                 [4.8, 3., 1.4, 0.3],
                 [5.1, 3.8, 1.6, 0.2],
                 [4.6, 3.2, 1.4, 0.2],
                 [5.3, 3.7, 1.5, 0.2],
                 [5., 3.3, 1.4, 0.2],
                 [7., 3.2, 4.7, 1.4],
                 [6.4, 3.2, 4.5, 1.5],
                 [6.9, 3.1, 4.9, 1.5],
                 [5.5, 2.3, 4., 1.3],
                 [6.5, 2.8, 4.6, 1.5],
                 [5.7, 2.8, 4.5, 1.3],
                 [6.3, 3.3, 4.7, 1.6],
                 [4.9, 2.4, 3.3, 1.],
                 [6.6, 2.9, 4.6, 1.3],
                 [5.2, 2.7, 3.9, 1.4],
```

```
[5., 2., 3.5, 1.],
[5.9, 3., 4.2, 1.5],
[6., 2.2, 4., 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4., 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6., 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3., 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6., 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3., 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
```

[6., 2.2, 5., 1.5],

```
[6.9, 3.2, 5.7, 2.3],
      [5.6, 2.8, 4.9, 2.],
      [7.7, 2.8, 6.7, 2.],
      [6.3, 2.7, 4.9, 1.8],
      [6.7, 3.3, 5.7, 2.1],
      [7.2, 3.2, 6., 1.8],
      [6.2, 2.8, 4.8, 1.8],
      [6.1, 3., 4.9, 1.8],
      [6.4, 2.8, 5.6, 2.1],
      [7.2, 3., 5.8, 1.6],
      [7.4, 2.8, 6.1, 1.9],
      [7.9, 3.8, 6.4, 2.],
      [6.4, 2.8, 5.6, 2.2],
      [6.3, 2.8, 5.1, 1.5],
      [6.1, 2.6, 5.6, 1.4],
      [7.7, 3., 6.1, 2.3],
      [6.3, 3.4, 5.6, 2.4],
      [6.4, 3.1, 5.5, 1.8],
      [6., 3., 4.8, 1.8],
      [6.9, 3.1, 5.4, 2.1],
      [6.7, 3.1, 5.6, 2.4],
      [6.9, 3.1, 5.1, 2.3],
      [5.8, 2.7, 5.1, 1.9],
      [6.8, 3.2, 5.9, 2.3],
      [6.7, 3.3, 5.7, 2.5],
      [6.7, 3., 5.2, 2.3],
      [6.3, 2.5, 5., 1.9],
      [6.5, 3., 5.2, 2.],
      [6.2, 3.4, 5.4, 2.3],
      [5.9, 3., 5.1, 1.8]]),
0, 0,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
      'frame': None,
'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
'DESCR': '.. iris dataset:\n\nIris plants dataset\n-----\n\n**
Data Set Characteristics:**\n\n :Number of Instances: 150 (50 in each of thr
             :Number of Attributes: 4 numeric, predictive attributes and th
ee classes)\n
e class\n
         :Attribute Information:\n

    sepal length in cm\n

epal width in cm\n

    petal length in cm\n

                                           petal width in cm\n
- class:\n
                    - Iris-Setosa\n
                                            - Iris-Versicolour\n
- Iris-Virginica\n
                          \n
                              :Summary Statistics:\n\n
                                                    ========
SD Class Correlation\n
                         4.3 7.9 5.84 0.83
=======\n
                sepal length:
                                                 0.7826\n
                 3.05 0.43
al width:
                            -0.4194\n petal length: 1.0 6.9
          2.0 4.4
    1.76 0.9490 (high!)\n petal width: 0.1 2.5 1.20 0.76
              0.9565 (high!)\n
                                 :Class Distribution: 33.3% for ea
      :Missing Attribute Values: None\n
=\n\n
               :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARS
ch of 3 classes.\n
HALL%PLU@io.arc.nasa.gov)\n :Date: July, 1988\n\nThe famous Iris database, f
irst used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note
that it\'s the same as in R, but not as in the UCI\nMachine Learning Repositor
y, which has two wrong data points.\n\nThis is perhaps the best known database
to be found in the\npattern recognition literature. Fisher\'s paper is a class
```

ic in the field and\nis referenced frequently to this day. (See Duda & Hart, f or example.) The \ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from th e other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topi c:: References\n\n - Fisher, R.A. "The use of multiple measurements in taxono Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contr mic problems"\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda, ibutions to\n R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n 7.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and C lassification Rule for Recognition in Partially Exposed\n Environments". I EEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". 2, No. 1, 67-71.\n on Information Theory, May 1972, 431-433.\n - See als IEEE Transactions\n o: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n conceptua 1 clustering system finds 3 classes in the data.\n - Many, many more ...', 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'filename': 'iris.csv', 'data_module': 'sklearn.datasets.data'}

In [10]: df = pd.DataFrame()
 df[data['feature_names']] = data['data']
 df['label'] = data['target']

In [11]: df.head()

Out[11]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) label 0 5.1 3.5 1.4 0.2 0 1 0.2 0 4.9 3.0 1.4 2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0

3.6

1.4

0

0.2

In [12]: df.shape

4

Out[12]: (150, 5)

In [13]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

5.0

Column Non-Null Count Dtype -------- -----0 sepal length (cm) 150 non-null float64 sepal width (cm) 150 non-null float64 float64 2 petal length (cm) 150 non-null 3 petal width (cm) 150 non-null float64 label 150 non-null int32

dtypes: float64(4), int32(1)

memory usage: 5.4 KB

In [14]: df.describe()

Out[14]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

In [16]: sns.heatmap(df.corr(), annot=True)
 plt.show()

In [17]: sns.histplot(df["sepal length (cm)"], kde=True)
 plt.show()

In [18]: sns.histplot(df["sepal width (cm)"], kde=True)
plt.show()

In [19]: sns.histplot(df["petal length (cm)"], kde=True)
 plt.show()

In [20]: sns.histplot(df["petal width (cm)"], kde=True)
 plt.show()


```
In [21]: sns.boxplot(x=df['label'], y=df["sepal length (cm)"])
plt.show()
```


In [22]: sns.boxplot(x=df['label'] ,y=df["sepal width (cm)"])
 plt.show()

In [24]: sns.boxplot(x=df["label"] ,y=df["petal length (cm)"])
 plt.show()


```
In [25]: sns.boxplot(x=df['label'] ,y=df["petal width (cm)"])
    plt.show()
```


Name:-Swayambhu Bhapkar

Roll no:- 13121