9. Aufgabenblatt

(Besprechung in den Tutorien 02.01.2023–06.01.2023)

Aufgabe 1. Postsches Korrespondenzproblem

Besitzen die folgenden Instanzen des Postschen Korrespondenzproblems eine Lösung? Geben Sie ggf. eine Lösung an oder begründen Sie kurz, warum es keine Lösung gibt.

- 1. (11, 111), (00, 10), (011, 001), (101, 1), (111, 0111)
- 2. (1,1001), (100,10), (1110,011)
- 3. (00,01),(11,1),(10,01),(1001,1),(010,0)

–Lösungsskizze––––

- 1. Ja: 4,5,1 liefert 10111111
- 2. Ja: 2,3,2,1 liefert 10011101001
- 3. Nein: Aus Längengründen können nur das erste und das dritte Paar für eine Lösung in Frage kommen. Beide sind jedoch als Beginn einer Lösung untauglich.

Aufgabe 2. Reduzierbarkeit

Sei $A = \{a^n b^n \mid n \ge 0\}$. Welche der folgenden Beziehungen gilt?

- a) $A \leq PCP$
- b) PCP < A

——Lösungsskizze———

1. Die Reduktion $f: \{a, b\}^* \to \{0, 1\}^*$ ist wie folgt definiert:

$$f(w) := \begin{cases} \langle (1,1) \rangle, & w \in A \\ \langle (1,0) \rangle, & w \notin A \end{cases}.$$

Die Funktion f ist total und, da A entscheidbar ist, ist f berechenbar. Korrektheit ist offensichtlich.

2. Gilt nicht, da A entscheidbar ist, aber PCP unentscheidbar ist.

Aufgabe 3. 01-PCP

Zeigen Sie, dass die folgende Sprache unentscheidbar ist.

$$01-\text{PCP} := \left\{ \langle (x_1, y_1), (x_2, y_2), \dots, (x_k, y_k) \rangle \middle| \begin{array}{l} x_j, y_j \in \{0, 1\}^+ \text{ für alle } j \in \{1, 2, \dots, k\}, \\ \exists n \ge 1 \colon \exists i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\} \colon \\ x_{i_1} \cdot x_{i_2} \dots \cdot x_{i_n} = y_{i_1} \cdot y_{i_2} \dots \cdot y_{i_n} \end{array} \right\}$$

Wir zeigen, dass $PCP \leq 01$ -PCP.

Sei $\Sigma = \{a_1, a_2, \dots a_m\}$ ein endliches Alphabet. Wir definieren die totale, berechenbare Funktion $h: \Sigma \to \{0, 1\}^+$ mit $h(a_i) := 10^i$, für alle $i \in \{1, 2, \dots, m\}$. Nun definieren wir die totale, berechenbare Funktion $g: \Sigma^* \to \{0, 1\}^+$ mit $g(a_{i_1}a_{i_2} \dots a_{i_\ell}) := h(a_{i_1})h(a_{i_2}) \dots h(a_{i_\ell})$, wobei $\ell \in \mathbb{N}$ und $i_\ell \in \{1, 2, \dots, m\}$.

Die Reduktionsfunktion $f: \{0,1\}^* \to \{0,1\}^*$ ist nun wie folgt definiert: Für alle $x \in \{0,1\}^*$, die keine korrekte Kodierung einer PCP Instanz sind, setzen wir $f(x) := 0 \notin 0$ 1-PCP (keine korrekte Kodierung einer 01-PCP Instanz). Für korrekte Kodierungen $x = \langle (x_1, y_1), (x_2, y_2), \dots, (x_k, y_k) \rangle$ sei

$$f(x) := \langle (g(x_1), g(y_1)), (g(x_2), g(y_2)), \dots, (g(x_k), g(y_k)) \rangle.$$

Die Funktion f ist berechenbar und total.

Wir beweisen nun die Korrektheit. Sei $x = \langle (x_1, y_1), (x_2, y_2), \dots, (x_k, y_k) \rangle$ (für ungültige Wörter x ist die Korrektheit klar).

(⇒): Sei
$$x \in PCP$$
. Also gibt es $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$, sodass

$$x_{i_1} \cdot x_{i_2} \dots \cdot x_{i_n} = y_{i_1} \cdot y_{i_2} \dots \cdot y_{i_n}.$$

Also gilt

$$g(x_{i_1}) \cdot \ldots \cdot g(x_{i_n}) = g(x_{i_1} \cdot \ldots \cdot x_{i_n}) = g(y_{i_1} \cdot \ldots \cdot y_{i_n}) = g(y_{i_1}) \cdot \ldots \cdot g(y_{i_n})$$

und somit $f(x) \in 01$ -PCP.

$$(\Leftarrow)$$
: Sei nun $f(x) \in 01$ -PCP. Also gibt es $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$, sodass

$$g(x_{i_1})g(x_{i_2})\dots g(x_{i_n}) = g(y_{i_1})g(y_{i_2})\dots g(y_{i_n}).$$

Da g injektiv ist (aufgrund der Definition von h), existiert die Inverse g^{-1} und es gilt

$$x_{i_1} \cdot \ldots \cdot x_{i_n} = g^{-1}(g(x_{i_1} \cdot \ldots \cdot x_{i_n}))$$

$$= g^{-1}(g(x_{i_1}) \cdot \ldots \cdot g(x_{i_n}))$$

$$= g^{-1}(g(y_{i_1}) \cdot \ldots \cdot g(y_{i_n}))$$

$$= g^{-1}(g(y_{i_1} \cdot \ldots \cdot y_{i_n}))$$

$$= y_{i_1} \cdot \ldots \cdot y_{i_n}.$$

Also gilt $x \in PCP$.