Data Mining

Know your Data

Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = { black, blond, brown, grey, red, white}{0,1,2...}
 - marital status, occupation, ID numbers (numbers but math operations can't be done on them), zip codes
 - No mean and median but mode can be used

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

 Quantitative (integer or real-valued). Can do math on them i.e. mean, median and mode, etc.

Interval Scaled

- Measured on a scale of equal-sized units
- Values have order
 - E.g., temperature in C°or F°, calendar dates
- No true zero-point. 0 ° C is not showing "no temp"

Ratio Scaled

- Inherent zero-point
 - e.g., length, counts, monetary quantities, years of experience, word counts, weight, height etc.

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Attributes Hair_Color, Smoker, Med Test, Drink_Size each have a finite number of values, thus are discrete.
- Discrete attributes may have numeric values 0 and 1 for binary attributes
- Age have values from 0 to 110
- Customer_ID is countably infinite
- Zip codes

Discrete vs. Continuous Attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population): $\overline{x} = \frac{1}{N} \sum_{i=1}^{n} x_i$ Note: n is sample size and N is population size.
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values

$$\overline{x} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i}$$

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal
 - Empirical formula: $mean mode \approx 3 \times (mean median)$
 - Mode for unimodal frequencies can be approximated if mean and median values are known

Symmetric vs. Skewed Da

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - **Quartiles**: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - **Five number summary**: min, Q_1 , median, Q_3 , max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value lower/higher
 - than $o = (1.5 \times IQR)$ of (Q1-o)/(Q3+o)

Boxplot Analysis

6.4

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Exercise 1

- Given the following data
- 7, 8, 7, 10, 7, 2, 8, 2, 7, 30
- Median =
- Q1 (index= $2.5 \sim 3$) =
- Q3 (index= $7.5 \sim 8$) =
- IQR = Q3 Q1
- 5 number summary =
- Outliers based on IQR =

Exercise 1 - Solution

- Given the following data
- **7**, 8, 7, 10, 7, 2, 8, 2, 7, 30
- Sort the data 2,2,7,7,7,7,8,8,10,30
- \blacksquare Median = 7
- Q1 (index= $10*.25=2.5\sim3$) = 7
- Q3 (index= $10*.75=7.5\sim8$) = 8
- IQR = Q3 Q1 = 8 7 = 1
- Five number summary: min, Q_1 , median, Q_3 , max
- 5 number summary = 2, 7, 7, 8, 30
- Outliers based on IQR =
 - IQR * 1.5 = 1* 1.5 = 1.5 = x
 - Values which are less than (Q1 x) Or greater than (Q3 + x)
 - Q1 1.5 = 7 1.5 = 5.5
 - Q3 + 1.5 = 8 + 1.5 = 9.5
 - Outliers = 2, 10, 30

Exercise 2

- Find the outliers in the following using IQR
 - **2**,2,3,4,7,7,8,9,10,30
- Find the outliers based on IQR
- Q1 = 3
- Q3 = 9
- IQR = Q3 Q1 = 9 3 = 6
- x = 1.5 * IQR = 9
- Outliers < Q1 x = 3 9 = -6
- Outliers > Q3 + x = 9 + 9 = 18
- Outliers = 30

Boxplot Analysis

Lab Task 1

- Import data sales_data.csv
- See the metadata view to check the attribute type, statistics (mean, mode, etc.), range and no of missing values.
- Create Boxplot for suitable fields

Python Hint

- #Import Basic Libraries
- import numpy as np # linear algebra
- import pandas as pd # data processing, CSV fileI/O (e.g. pd.read_csv)
- import matplotlib.pyplot as plt #data visualization
- import seaborn as sns #data visualization

Variance and Standard Deviation

- Variance and standard deviation
- Variance: (algebraic, scalable computation)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \bar{x}^2,$$

- **Standard deviation** s (or σ) is the square root of variance s^2 (or σ^2)
- Variance and standard deviation are measures of data dispersion.
- Low SD means observations are close to the mean
- High SD means the data are spread out over a large range of values

Exercise 3: Find Variance and SD

- **5**, 10, 15
- N = 3
- Mean = (5+10+15)/3 = 10
- $Var = ((5-10)^2 + (10-10)^2 + (15-10)^2) / N$
- $= (-5^2 + 0^2 + 5^2) / 3$
- = (25 + 0 + 25) / 3 = 50/3 = 16.7
- StDev = sqrt(Var) = sqrt(16.7) ~ 4

Visualization of Data Dispersion: 3-D Boxplots

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ –3 σ to μ +3 σ : contains about 99.7% of it

Lab Task2

 Find normal distribution curve of usable attributes from your sales dataset

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Bar chart represents categorical data while histogram represents quantitative data
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Exercise 4

- Given the ages of the children:
 - 9,7,12,10,5,4,8,2,4,3,1,2,8,14
- Convert the data into ranges
- Count the frequency for each range
- Create a histogram

Exercise 4

- Given the ages of the children:
 - 9,7,12,10,5,4,8,2,4,3,1,2,8,14
- Convert the data into ranges
 - **1-5,6-10,11-15**
- Count the frequency for each range
 - 1-5: 7, 6-10: 3, 11-15: 2 Freq
- Create a barchart

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Lab work

- Create a histogram of amount
- Create a histogram of single_price
- Create a bar chart of product_category and single_price

Scatter plot

- Provides a first look at bivariate data (involving two attributes) to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane
- Helps in finding if there is a correlation between two attributes

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Exercise 6

Create a scatter plot for the following data

Age	Car Accidents
17	6
21	4
18	5
25	2
20	4
24	3

Exercise 6

Create a scatter plot for the following data

Age	Car Accidents
17	6
21	4
18	5
25	2
20	4
24	3

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization

- Measuring Data Similarity and Dissimilarity
- Summary

Data Visualization

- Why data visualization?
 - Gain insight into an information space by mapping data onto graphical primitives
 - Provide qualitative overview of large data sets
 - Search for patterns, trends, structure, irregularities, relationships among data
 - Help find interesting regions and suitable parameters for further quantitative analysis
- Categorization of visualization methods:
 - Pixel-oriented visualization techniques
 - Icon-based visualization techniques
 - Hierarchical visualization techniques
 - Visualizing complex data and relations

Pixel-Oriented Visualization Techniques

- For a data set of m dimensions, create m windows on the screen, one for each dimension
- The m dimension values of a record are mapped to m pixels at the corresponding positions in the windows
- The colors of the pixels reflect the corresponding values

(b) Credit Limit (c) transaction volume

(d) age

Icon-Based Visualization Techniques

- Visualization of the data values as features of icons
- Typical visualization methods
 - Chernoff Faces
 - Stick Figures
- General techniques
 - Shape coding: Use shape to represent certain information encoding

Chernoff Faces

- A way to display variables on a two-dimensional surface, e.g., let x be eyebrow slant, y be eye size, z be nose length, etc.
- The figure shows faces produced using 10 characteristics--head eccentricity, eye size, eye spacing, eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, mouth size, and mouth opening): Each assigned one of 10 possible values, generated using <u>Mathematica</u> (S. Dickson)
- REFERENCE: Gonick, L. and Smith, W. <u>The</u>
 <u>Cartoon Guide to Statistics</u>. New York: Harper Perennial, p. 212, 1993
- Weisstein, Eric W. "Chernoff Face." From *MathWorld*--A Wolfram Web Resource. <u>mathworld.wolfram.com/ChernoffFace.html</u>

Stick Figure

A census data figure showing age, income, gender, education, etc.

A 5-piece stick figure (1 body and 4 limbs w. different angle/length)

Hierarchical Visualization Techniques

- Visualization of the data using a hierarchical partitioning into subspaces
- Methods
 - Tree-Map

Tree-Map

 Screen-filling method which uses a hierarchical partitioning of the screen into regions depending on the attribute values

Schneiderman@UMD: Tree-Map of a File System

Schneiderman@UMD: Tree-Map to support large data sets of a million items

Visualizing Complex Data and Relations

- Visualizing non-numerical data: text and social networks
- Tag cloud: visualizing user-generated tags
 - The importance of tag is represented by font size/color
- Besides text data, there are also methods to visualize relationships, such as visualizing social networks

Newsmap: Google News Stories in 2005

Assignment 1

- Find appropriate datasets from kaggle for the following visualization techniques and apply them
 - Pixel-oriented visualization
 - Chernoff faces
 - Stick figures
 - Tree map

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Dissimilarity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states. E.g. to encode nominal attr 'color', a binary attr can be created for each of the colors listed. Yellow will have 1, others 0

- Find the distance based on the attributes "Favorite Color" and "Favorite Food" between
 - Ali and Bilal
 - Ali and Faris

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Salary Age (1000s)	Grad e
Ali	Blue	Cake	Yes	Yes	20	34C
Bilal	Yellow	Cake	Yes	Yes	25	25 B
Ehsan	Yellow	Pasta	Yes	No	20	25 C
Faris	Yellow	Burger	No	No	20	25A

Exercise 7
$$d(i,j) = \frac{p-m}{p}$$

- Find the distance based on the attributes "Favorite Color" and "Favorite Food" between
 - Ali and Bilal
 - (2-1)/2 = 0.5
 - Ali and Faris
 - (2-0)/2 = 1

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Sa Age (1	lary Grad 000s) e
Ali	Blue	Cake	Yes	Yes	20	34C
Bilal	Yellow	Cake	Yes	Yes	25	25 B
Ehsan	Yellow	Pasta	Yes	No	20	25 C
Faris	Yellow	Burger	No	No	20	25 A

Proximity Measure for Binary Attributes

- A contingency table for binary data
- Dissimilarity measure for symmetric binary variables:
- Dissimilarity measure for asymmetric binary variables:
- Jaccard coefficient (similarity)
 measure for asymmetric binary
 variables):

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Dissimilarity between Binary Variables

Example

	1	0	sum
1	q	r	q + r
0	s	t	s+t
sum	q + s	r+t	p

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	P	N	N	N
Mary	Y	N	P	N	P	N
Jim	Y	P	N	N	N	N

$$d(i,j) = \frac{r+s}{q+r+s}$$

- d(jim,mary)
- Let the values Y and P be 1, and the value N 0

Dissimilarity between Binary Variables

Example

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	P	N	N	N
Mary	Y	N	P	N	P	N
Jim	Y	P	N	N	N	N

Let the values Y and P be 1, and the value N 0

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

			11	/lary	
		1		0	\sum_{row}
Jack	1	2		0	2
Jack	0	1		3	4
	\sum_{col}	3		3	6

		Jin	1	
		1	0	Σ_{row}
	1	1	1	2
Jack	0	1	3	4
	\sum_{col}	2	4	6

		M	ary	
		1	0	\sum_{row}
	1	1	1	2
im	0	2	2	4
	_	2	2	6

- Find the distance based on the "symmetric" attributes "Plays Chess" and "Plays Football" between
 - Ali and Bilal
 - Ali and Faris

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)	Grade
Ali	Blue	Cake	Yes	Yes	20	34	С
Bilal	Yellow	Cake	Yes	Yes	25	25	В
Ehsan	Yellow	Pasta	Yes	No	20	25	С
Faris	Yellow	Burger	No	No	20	25	Α

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- Find the distance based on the "symmetric" attributes "Plays Chess" and "Plays Football" between
 - Ali and Bilal
 - dist(Ali,Bilal) = 0/2 = 0
 - Ali and Faris
 - dist(Ali,Faris) = 2/2 = 1

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)	Grade
Ali	Blue	Cake	Yes	Yes	20	34	С
Bilal	Yellow	Cake	Yes	Yes	25	25	В
Ehsan	Yellow	Pasta	Yes	No	20	25	С
Faris	Yellow	Burger	No	No	20	25	Α

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and h is the order (the distance so is also called L-h norm)

Special Cases of Minkowski Distance

• h = 1: Manhattan (L₁ norm) distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \rightarrow \infty$ "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

Dissimilarity Matrices

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

<u></u>		<u> </u>			
1	_				
			X ₂	X ₄	
4					
2		X ₁			

x₃

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x2 x3	
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

- Find the distance based on the attributes "Age" and "Salary" between
 - Ali and Bilal (Euclidean)
 - Ali and Bilal (Supremum)

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)		Grad e
Ali	Blue	Cake	Yes	Yes	20		34	С
Bilal	Yellow	Cake	Yes	Yes	25		25	В
Ehsan	Yellow	Pasta	Yes	No	20		25	С
Faris	Yellow	Burger	No	No	20		25	Α

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^p |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_f^p |x_{if} - x_{jf}|$$

- Find the distance based on the attributes "Age" and "Salary" between
 - Ali and Bilal (Euclidean)

• dist(Ali,Bilal) =
$$\sqrt{5^2 + 9^2} = \sqrt{106}$$

- Ali and Bilal (Supremum)
 - dist(Ali,Bilal) = max(5,9) = 9

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)	Grad e
Ali	Blue	Cake	Yes	Yes	20	34	łC
Bilal	Yellow	Cake	Yes	Yes	25	25	В
Ehsan	Yellow	Pasta	Yes	No	20	25	C
Faris	Yellow	Burger	No	No	20	25	iA

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1,...,M_f\}$
 - map the range of each variable onto [0, 1] by replacing
 i-th object in the f-th attribute by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for intervalscaled variables.

- Find the distance based on the attributes "Age", "Salary", and "Grade" between
 - Ali and Bilal (Euclidean)
 - Ali and Bilal (Supremum)
 - Set A=1, B=2, C=3

	Favorite Color	Favorite Food	Plays Chess	Plays Football		Salary (1000s)	Grad e
Ali	Blue	Cake	Yes	Yes	20	34	łC .
Bilal	Yellow	Cake	Yes	Yes	25	25	В
Ehsan	Yellow	Pasta	Yes	No	20	25	C
Faris	Yellow	Burger	No	No	20	25	A

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

- Find the distance based on the attributes "Age", "Salary", and "Grade" between $z_{if} = \frac{r_{if} - 1}{M_{c} - 1}$
 - Ali and Bilal (Manhattan)
 - dist(Ali,Bilal) = |20-25|+|34-25|+|1-0.5|=14.5
 - Ali and Bilal (Supremum)
 - dist(Ali,Bilal) = max(|20-25|,|34-25|,|1-0.5|)=9

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)	Grade	Grade (N)
Ali	Blue	Cake	Yes	Yes	20	34	С	1
Bilal	Yellow	Cake	Yes	Yes	25	25	В	0.5
Ehsan	Yellow	Pasta	Yes	No	20	25	С	1
Faris	Yellow	Burger	No	No	20	25	Α	0

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

f is binary or nominal: $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise

- f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and $z_{if} = \frac{r_{if} 1}{M_{i-1}}$
- Treat \mathbf{z}_{if} as interval-scaled $\boldsymbol{\delta}_{ii}^{(f)} = \mathbf{0}$
- - if x_{if} or x_{if} is misssing
 - or $x_{if} = x_{if} = 0$ for binary asymmetric attributes

- Find the distance based on all the attributes (mixed type)
 - Ali and Bilal
 - Ali and Faris

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)	Grade
Ali	Blue	Cake	Yes	Yes	20	34	С
Bilal	Yellow	Cake	Yes		25	25	В
Ehsan	Yellow	Pasta	Yes	No	20	25	С
Faris	Yellow	Burger	No	No	20	25	Α

- f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise
- *f* is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and
 - Treat z_{if} as interval-scaled

 $d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$

- if x_{if} or x_{if} is misssing
- or $x_{if} = x_{jf} = 0$ for binary asymmetric attributes
- Find the distance based on all the attributes (mixed type). For numeric attributes, use Manhattan distance.
 - Ali and Bilal
 - dist(Ali,Bilal) = (1*1+1*0+1*0+0*1+1*5+1*9+1*0.5)/(1+1+1+0+1+1+1)=15.5/6=2.58
 - Ali and Faris
 - dist(Ali,Faris) = (1*1+1*1+1*1+1*1+1*0+1*9+1*1)/(1+1+1+1+1+1+1+1)=14/7=2

	Favorite Color	Favorite Food	Plays Chess	Plays Football	Age	Salary (1000s)	Grade
Ali	Blue	Cake	Yes	Yes	20	34	1
Bilal	Yellow	Cake	Yes		25	25	0.5
Ehsan	Yellow	Pasta	Yes	No	20	25	1
Faris	Yellow	Burger	No	No	20	25	0

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then $cos(d_1,d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$

where • indicates vector dot product, ||d||: Euclidean norm of vector d.

Example: Calculating Cosine Similarity

Calculating Cosine Similarity: $cos(d_1, d_2) = \frac{d_1 \cdot d_2}{\|d_1\| \times \|d_2\|}$

where • indicates vector dot product, ||d||: Euclidean norm of vector d.

Ex: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

• Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

• Calculate cosine similarity: $\cos(d_1, d_2) = 25/(6.481 \text{ X } 4.12) = 0.94$

Example

- D1: A red apple
- D2: I like red apple
- D3: Apple computers are good
- D4: Red apple red apple red apple

Term by Document Matrix

	This	Red	Apple	I	Like	Comp	Good
D1	0	1	1	0	0	0	0
D2	0	1	1	1	1	0	0
D3	0	0	1	0	0	1	1
D4	0	4	4	0	0	0	0

$$Cosine(d1,d4) =$$

$$(0*0+1*4+1*4+0*0+0*0+0*0+0*0)/(sqrt(2)*sqrt(32)) = 8/8 = 1$$

- Create a term by document matrix for the following documents (only consider green terms)
 - D1: I like to eat red apples
 - D2: Red apples are sweet
 - D3: Apple computers are easy to use computers
- Find the distance cosine similarity between
 - D1 and D2
 - D1 and D3

- Create a term by document matrix for the following documents
 - D1: I like to eat red apples
 - D2: Red apples are sweet
 - D3: Apple computers are easy to use computers

	Like				
D1					
D2					
D3					

- Find the distance cosine similarity between
 - D1 and D2

D1 and D3

- Create a term by document matrix for the following documents
 - D1: I like to eat red apples
 - D2: Red apples are sweet
 - D3: Apple computers are easy to use computers

	like	eat	red	apples	sweet	computers	easy	use
D1	1	1	1	1	0	0	0	0
D2	0	0	1	1	1	0	0	0
D3	0	0	0	1	0	2	1	1

Find the distance cosine similarity between

$$||d1|| = \operatorname{sqrt}(1^2 + 1^2 + 1^2 + 1^2) = \operatorname{sqrt}(4)$$

 $||d2|| = \operatorname{sqrt}(1^2 + 1^2 + 1^2) = \operatorname{sqrt}(3)$
 $||d3|| = \operatorname{sqrt}(1^2 + 2^2 + 1^2 + 1^2) = \operatorname{sqrt}(7)$

- D1 and D2
 - sim(d1,d2) = (1+1)/(sqrt(4)*sqrt(3)) = 2/sqrt(12)
- D1 and D3
 - sim(d1,d3) = 1/(sqrt(4)*sqrt(7)) = 1/sqrt(28)

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratioscaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- Above steps are the beginning of data preprocessing.
- Many methods have been developed but still an active area of research.

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009