Quantum Chemistry on Quantum Computers

#2 Quantum Algorithms

Kenji Sugisaki^{1,2,3}

¹Department of Chemistry, Graduate School of Science, Osaka City University, Japan

²JST PRESTO, Japan

³CQuERE, TCG-CREST, India

Quantum Computations

Quantum operations

	0	0	0			
	0	0	1			
	0	1	0			
	0	1	1			
	1	0	0			
	1	0	1			
	1	1	0			
	1	1	1			
Initialization						

0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	1
0	1	0	0	1	0	0	1	0
0	1	1	0	1	1	0	1	1
1	0	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0	1
1	1	0	1	1	0	1	1	0
1	1	1	1	1	1	1	1	1

Quantum operations

0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Measurements

Summation of two 1-bit integers

1 + 0 = 01

1 + 1 = 10

Quantum algorithms

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@microsoft.com. (Alternatively, you may submit a pull request to the repository on github.) Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring Speedup: Superpolynomial

Description: Given an *n*-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in $\widetilde{O}(n^3)$ time [82,125]. The fastest known classical algorithm for integer factorization is the general number field sieve, which is believed to run in time $2^{\tilde{O}(n^{1/3})}$. The best rigorously proven upper bound on the classical complexity of factoring is $O(2^{n/4+o(1)})$ via the Pollard-Strassen algorithm [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's for the special case of factoring "semiprimes", which are widely used in cryptography, is given in [271]. If small factors exist, Shor's algorithm can be beaten by a quantum algorithm using Grover search to speed up the elliptic curve factorization method [366]. Additional optimized versions of Shor's algorithm are given in [384, 386]. There are proposed classical public-key cryptosystems not believed to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is order finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number of other problems are known to reduce to integer factorization including the membership problem for matrix groups over fields of odd order [253], and certain diophantine problems relevant to the synthesis of quantum circuits [254].

Algorithm: Discrete-log Speedup: Superpolynomial

Description: We are given three n-bit numbers a, b, and b, with the promise that $b = a^s \mod N$ for some b. The task is to find b. As shown by Shor [82], this can be achieved on a quantum computer in b0 poly(b0) time. The fastest known classical algorithm requires time superpolynomial in b1. By similar techniques to those in [82], quantum computers can solve the discrete logarithm problem on elliptic curves, thereby breaking elliptic curve cryptography [109, 14]. A further optimization to Shor's algorithm is given in [385]. The superpolynomial quantum speedup has also been extended to the discrete logarithm problem on semigroups [203, 204]. See also Abelian hidden subgroup.

Algorithm: Pell's Equation

Navigation

Algebraic & Number Theoretic

Oracular

Approximation and Simulation

Optimization, Numerics, & Machine Learning

<u>Acknowledgments</u>

References

Translations

This page has been translated into:

<u>Japanese</u>

Chinese

Other Surveys

For overviews of quantum algorithms I recommend:

Nielsen and Chuang

Childs

Preskill

Mosca

Childs and van Dam

van Dam and Sasaki

Bacon and van Dam

Montanaro

<u>Hidary</u>

Terminology

If there exists a positive constant lpha such that the runtime C(n) of the best known classical algorithm

No cloning theorem

Unknown quantum state cannot be cloned by unitary operations.

[Proof] Let us imagine that there is a unitary operator *U* that can clone the quantum state.

$$U|\varphi\rangle \otimes |0\rangle = |\varphi\rangle \otimes |\varphi\rangle$$
$$U|\psi\rangle \otimes |0\rangle = |\psi\rangle \otimes |\psi\rangle$$

Consider the quantum superposition state $|\alpha\rangle = c_{\varphi}|\varphi\rangle + c_{\psi}|\psi\rangle$

$$U|\alpha\rangle \otimes |0\rangle = U(c_{\varphi}|\varphi\rangle \otimes |0\rangle + c_{\psi}|\psi\rangle \otimes |0\rangle)$$

$$= c_{\varphi}U|\varphi\rangle \otimes |0\rangle + c_{\psi}U|\psi\rangle \otimes |0\rangle$$

$$= c_{\varphi}|\varphi\rangle \otimes |\varphi\rangle + c_{\psi}|\psi\rangle \otimes |\psi\rangle \qquad \text{eq (1)}$$

From the definition of U, we can also derive the following equation:

$$U|\alpha\rangle \otimes |0\rangle = |\alpha\rangle \otimes |\alpha\rangle$$

$$= c_{\varphi}^{2}|\varphi\rangle \otimes |\varphi\rangle + c_{\varphi}c_{\psi}|\varphi\rangle \otimes |\psi\rangle + c_{\psi}c_{\varphi}|\psi\rangle \otimes |\varphi\rangle + c_{\psi}^{2}|\psi\rangle \otimes |\psi\rangle \quad \text{eq (2)}$$

Eq (1) and eq (2) contradicts.

Quantum Teleportation

Unknown quantum state cannot be cloned, but it can be teleported.

Alice

Bob

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Bob

Alice

 $|\varphi\rangle$

$$(c_0|0\rangle + c_1|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(c_0|000\rangle + c_0|011\rangle + c_1|100\rangle + c_1|111\rangle)$$

$$\xrightarrow{\text{CNOT[0,1]}} \frac{1}{\sqrt{2}} (c_0|000\rangle + c_0|011\rangle + c_1|110\rangle + c_1|101\rangle)$$

$$\xrightarrow{H \otimes I \otimes I} \frac{1}{2} (c_0|000\rangle + c_0|100\rangle + c_0|011\rangle + c_0|111\rangle + c_1|010\rangle - c_1|110\rangle + c_1|001\rangle - c_1|101\rangle)$$

$$= \frac{1}{2}(|00\rangle \otimes \{c_0|0\rangle + c_1|1\rangle\} + |01\rangle \otimes \{c_0|1\rangle + c_1|0\rangle\} + |10\rangle \otimes \{c_0|0\rangle - c_1|1\rangle\} + |11\rangle \otimes \{c_0|1\rangle - c_1|0\rangle\})$$

$$|\varphi\rangle = c_0|0\rangle + c_1|1\rangle$$

Quantum Teleportation

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice

 $|\varphi\rangle$

Bob

Measurement outcome	Quantum state of Bob's qubit
00	$c_0 0\rangle + c_1 1\rangle$
01	$c_0 1\rangle + c_1 0\rangle$
10	$c_0 0\rangle - c_1 1\rangle$
11	$c_0 1\rangle - c_1 0\rangle$

Measurement outcome was

- (i) 00
- (ii) 01
- (iii) 10
- (iv) 11

OK, I will apply

- nothing
- (ii) X gate
- (iii) Z gate
- (iv) X and Z gates

to recover the original state.

Bob

Deutsch-Jozsa algorithm

- There are n balls in the box.
- The balls are either all red or all blue (pure), or half red and half blue (mixed).
- How many trials do you need to identify either pure or mixed?

In the worst case we need 5 trials to identify.

Black box

- Assume *n* = 8 in the previous slide.
- Red = 0, Blue = 1.
- The system can be [00101101], for example.

3-bit binary as the input E.g., x = 011

Return x-th value

Allow quantum superposition as the input

Three qubits in the top are for input, one qubit in the bottom is for output.

$$| \frac{0110}{} \rangle \xrightarrow{\text{Black box}} | 0110 \rangle$$
, $| \frac{0100}{} \rangle \xrightarrow{\text{Black box}} | 0101 \rangle$, etc.

Deutsch-Jozsa algorithm

[00101101]

$$|0000\rangle \xrightarrow{H \otimes H \otimes H \otimes I} \frac{1}{2\sqrt{2}} (|0000\rangle + |0010\rangle + |0100\rangle + |0110\rangle + |1000\rangle + |1010\rangle + |1110\rangle) + |1110\rangle)$$

$$\xrightarrow{\text{Black box}} \frac{1}{2\sqrt{2}} (|0000\rangle + |0010\rangle + |0101\rangle + |0110\rangle + |1001\rangle + |1011\rangle + |1110\rangle) + |1111\rangle)$$

$$\xrightarrow{I \otimes I \otimes I \otimes Z} \frac{1}{2\sqrt{2}} (|0000\rangle + |0010\rangle - |0101\rangle + |0110\rangle - |1001\rangle - |1011\rangle + |1101\rangle - |1110\rangle)$$

$$\xrightarrow{\text{Black box}} \frac{1}{2\sqrt{2}} (|0000\rangle + |0010\rangle - |0101\rangle + |0110\rangle - |1001\rangle - |1011\rangle + |1101\rangle - |1110\rangle)$$

$$\xrightarrow{H \otimes H \otimes H \otimes I} \frac{1}{2} (|0010\rangle + |0110\rangle - |1000\rangle + |1100\rangle)$$

$$\xrightarrow{I \otimes I \otimes I \otimes I} \frac{1}{2} (|0010\rangle + |0110\rangle - |1000\rangle + |1100\rangle)$$

$$\xrightarrow{I \otimes I \otimes I \otimes I} \frac{1}{2} (|0010\rangle + |0110\rangle - |1000\rangle + |1100\rangle)$$

$$\xrightarrow{I \otimes I \otimes I \otimes I} \frac{1}{2} (|0010\rangle + |0110\rangle - |1000\rangle + |1100\rangle)$$

$$\xrightarrow{I \otimes I \otimes I \otimes I} \frac{1}{2} (|0010\rangle + |0110\rangle - |1000\rangle + |1100\rangle)$$

$$\xrightarrow{I \otimes I \otimes I \otimes I} \frac{1}{2} (|0010\rangle + |0110\rangle - |1000\rangle + |1100\rangle)$$

Deutsch-Jozsa algorithm

Assume $n = 2^N$.

On the *classical* computer, we need $(2^{N-1} + 1)$ operations in the worst case. On the *quantum* computer, we need 2N + 3 operatios.

N	n = 2 ^N	Classical computer	Quantum computer	
3	8	5	9	
4	16	9	11	
5	32	17	13	
10	1024	513	23	
100	1.267×10^{30}	6.338×10^{29}	203	

SWAP test

VOLUME 87, NUMBER 16

PHYSICAL REVIEW LETTERS

15 October 2001

Quantum Fingerprinting

Harry Buhrman,^{1,*} Richard Cleve,^{2,†} John Watrous,^{2,‡} and Ronald de Wolf^{1,§}

¹CWI, P.O. Box 94709, Amsterdam, The Netherlands
and University of Amsterdam, Amsterdam, The Netherlands

²Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
(Received 19 April 2001; published 26 September 2001)

Classical fingerprinting: The fingerprint cannot be made exponentially smaller than the original strings, unless the parties preparing the fingerprints have access to correlated random sources.

Quantum fingerprinting: The fingerprint can be <u>exponentially smaller</u> than the original strings, without any correlations or entanglements between two parties.

Calculate the overlap between two quantum states $|\phi\rangle$ and $|\psi\rangle$

SWAP test

$$|0\rangle \otimes |\varphi\rangle \otimes |\psi\rangle \xrightarrow{H \otimes I \otimes I} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |\varphi\psi\rangle$$

$$\xrightarrow{c-SWAP[0,1,2]} \frac{1}{\sqrt{2}} (|0\rangle \otimes |\varphi\psi\rangle + |1\rangle \otimes |\psi\varphi\rangle)$$

$$\xrightarrow{H \otimes I \otimes I} \frac{1}{2} (|0\rangle \otimes |\varphi\psi\rangle + |1\rangle \otimes |\varphi\psi\rangle + |0\rangle \otimes |\psi\varphi\rangle - |1\rangle \otimes |\psi\varphi\rangle)$$

$$= \frac{1}{2} |0\rangle (|\varphi\psi\rangle + |\psi\varphi\rangle) + \frac{1}{2} |1\rangle (|\varphi\psi\rangle - |\psi\varphi\rangle)$$

Probability to obtain 0 in the measurement

$$P(0) = \frac{1}{4} \left(\langle \varphi \psi | \varphi \psi \rangle + \underline{\langle \varphi \psi | \psi \varphi \rangle} + \langle \psi \varphi | \varphi \psi \rangle + \langle \psi \varphi | \psi \varphi \rangle \right) = \frac{1}{2} (1 + |\langle \varphi | \psi \rangle|^2)$$

$$\langle \varphi \psi | \psi \varphi \rangle = \langle \varphi | \psi \rangle \langle \psi | \varphi \rangle = |\langle \varphi | \psi \rangle|^2$$

0.2

0.0

 $\pi/4$

 $\pi/2$

 θ /radian

 $3\pi/4$

SWAP test on IBM-Q

Apply the SWAP test with $|\varphi\rangle = R_y(\theta)|0\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle$ and $|\psi\rangle = |0\rangle$

P(0) = 1 if $\theta = 0$

P(0) = 0.5 if $\theta = \pi$

SWAP test on IBM-Q

Transpiled circuit

Original circuit: 3 one-qubit gates and 1 CSWAP (Fredkin) gate

Transpiled one: 22 one-qubit gates and 15 CNOT gates

Implementation of CSWAP (Fredkin) gate requires many quantum gates

Square overlap estimation using Hong-Ou-Mandel effect

$$|\varphi\rangle = c_{0\varphi}|0\rangle + c_{1\varphi}|1\rangle$$

$$|\psi\rangle = c_{0\psi}|0\rangle + c_{1\psi}|1\rangle$$

$$|\langle \varphi | \psi \rangle|^2 = \left(c_{0\varphi}c_{0\psi} + c_{1\varphi}c_{1\psi}\right)^2$$

$$= c_{00}^2 + 2c_{00}c_{11} + c_{11}^2$$

$$\begin{split} |\varphi \otimes \psi\rangle &= c_{0\varphi}c_{0\psi}|00\rangle + c_{0\varphi}c_{1\psi}|01\rangle + c_{1\varphi}c_{0\psi}|10\rangle + c_{1\varphi}c_{1\psi}|11\rangle \\ &= c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle \\ &\xrightarrow{\text{CNOT[0,1]}} c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|11\rangle + c_{11}|10\rangle \\ &\xrightarrow{H \otimes I} \frac{c_{00}}{\sqrt{2}} (|00\rangle + |10\rangle) + \frac{c_{01}}{\sqrt{2}} (|01\rangle + |11\rangle) \\ &+ \frac{c_{10}}{\sqrt{2}} (|01\rangle - |11\rangle) + \frac{c_{11}}{\sqrt{2}} (|00\rangle - |10\rangle) \\ &= \frac{c_{00} + c_{11}}{\sqrt{2}} |00\rangle + \frac{c_{01} + c_{10}}{\sqrt{2}} |01\rangle + \frac{c_{00} - c_{11}}{\sqrt{2}} |10\rangle + \frac{c_{01} - c_{10}}{\sqrt{2}} |11\rangle \end{split}$$

J. C. Garcia-Escartin, P. Chamorro-Posada, Phys. Rev. A 2013, 87, 052330.

Square overlap estimation using Hong-Ou-Mandel effect

$$|\varphi\rangle = c_{0\varphi}|0\rangle + c_{1\varphi}|1\rangle$$

$$|\psi\rangle = c_{0\psi}|0\rangle + c_{1\psi}|1\rangle$$

$$|\langle \varphi | \psi \rangle|^2 = \left(c_{0\varphi}c_{0\psi} + c_{1\varphi}c_{1\psi}\right)^2$$

$$= c_{00}^2 + 2c_{00}c_{11} + c_{11}^2$$

$$|\varphi\rangle$$
 H_d $|\psi\rangle$

$$|\varphi \otimes \psi\rangle \rightarrow \frac{c_{00} + c_{11}}{\sqrt{2}}|00\rangle + \frac{c_{01} + c_{10}}{\sqrt{2}}|01\rangle + \frac{c_{00} - c_{11}}{\sqrt{2}}|10\rangle + \frac{c_{01} - c_{10}}{\sqrt{2}}|11\rangle$$

$$P(00) = \frac{c_{00}^2 + 2c_{00}c_{11} + c_{11}^2}{2}$$

$$P(01) = \frac{c_{01}^2 + 2c_{01}c_{10} + c_{10}^2}{2}$$

$$P(10) = \frac{c_{00}^2 - 2c_{00}c_{11} + c_{11}^2}{2}$$

$$P(11) = \frac{c_{01}^2 - 2c_{01}c_{10} + c_{10}^2}{2}$$

$$- |\langle \varphi | \psi \rangle|^2 = [P(00) + P(01) + P(10) - P(11)]$$

Square overlap estimation using Hong-Ou-Mandel effect

37 quantum gates after transpilation

8 quantum gates after transpilation

Fourier transformation

Discrete Fourier transformation: $y_k \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$

Dipolar interactions between unpaired electrons \rightarrow Spin-spin distance measurement

Quantum Fourier transformation

Discrete Fourier transformation:
$$y_k \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$$

Quantum Fourier transformation:
$$U|j\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n}} e^{2\pi i jk/2^n} |k\rangle$$

We write the state $|j\rangle$ using the binary representation: $j=2^{n-1}j_1+2^{n-2}j_2+\cdots+2^0j_n$ Also, we use the binary fraction: $0.j_lj_{l+1}\cdots j_m=j_l/2^1+j_{l+1}/2^2+\cdots+j_m/2^{m-l+1}$

$$\begin{split} U|j\rangle &= \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i j k/2^n} |k\rangle \\ &= \frac{1}{\sqrt{2^n}} \left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle \right) \cdots \left(|0\rangle + e^{2\pi i 0.j_1 j_2 \cdots j_n} |1\rangle \right) \end{split}$$

Quantum Fourier transformation

$$n = 1$$

$$U|j\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{2\pi i 0.j_1} |1\rangle)$$

$$j_1 = 0 \longrightarrow e^{2\pi i \times 0} = e^0 = 1 \longrightarrow U|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$j_1 = 1 \longrightarrow e^{2\pi i \times 1/2} = e^{\pi i} = -1 \longrightarrow U|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Schedule of this lecture series

$$R_k \equiv \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix} \qquad \begin{vmatrix} j_1 \rangle & H_d & R_2 \\ & & & \\ & & \\ & &$$

Quantum Fourier transformation

$$U|j\rangle = \frac{1}{\sqrt{2^3}} (|0\rangle + e^{2\pi i 0.j_3} |1\rangle) (|0\rangle + e^{2\pi i 0.j_2 j_3} |1\rangle) (|0\rangle + e^{2\pi i 0.j_1 j_2 j_3} |1\rangle)$$

$ j\rangle$	000⟩	001 ⟩	 010 ⟩	 011 ⟩	100 ⟩	 101 ⟩	 110 ⟩	111⟩	Rotational angle
000	\rightarrow	$2\pi \times 0/8$							
001	\rightarrow	7	\uparrow	_	←	∠	\downarrow	7	$2\pi \times 1/8$
010	\rightarrow	\uparrow	←	\downarrow	\rightarrow	\uparrow	←	\downarrow	$2\pi \times 2/8$
011	\rightarrow	_	\downarrow	7	←	7	\uparrow	∠	$2\pi \times 3/8$
100	\rightarrow	←	\rightarrow	←	\rightarrow	←	\rightarrow	←	$2\pi \times 4/8$
101	\rightarrow	∠	\uparrow	7	←	7	\downarrow	_	$2\pi \times 5/8$
110	\rightarrow	\downarrow	←	\uparrow	\rightarrow	\downarrow	←	\uparrow	$2\pi \times 6/8$
111	\rightarrow	7	\downarrow	∠	←	Γ,	\uparrow	7	$2\pi \times 7/8$

Quantum Fourier transformation

$$U|j\rangle = \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i 0.j_n} |1\rangle) (|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle) \cdots (|0\rangle + e^{2\pi i 0.j_1 j_2 \cdots j_n} |1\rangle)$$

For general *n*

Applications of QFT

- Shor's algorithm for prime factorization
- Quantum phase estimation for the eigenproblems of unitary operators
- Hidden subgroup problems
- Linear systems of equations by Harrow, Hassidim, and Lloyd (HHL algorithm)