Feature-based Magnitude Estimates for Small, Nearby Earthquakes in the Yellowstone Volcanic Region

Alysha Armstrong, Ben Baker, Keith Koper

INTRO

- Conventional magnitude methods can fail or be prohibitively time consuming during periods of high seismicity rates, such as the many earthquake swarms in Yellowstone.
- We introduce a machine learning method that uses features derived from short-duration waveform segments of individual phase arrivals and event source parameters to predict local magnitude (M_i) .

KEY POINTS

Our approach:

- accurately estimates M_i , for $\sim 0-3.5$
- works for events with small temporal separation
- does not require 3C broadband stations for M_{ij}
- is easily interrogated, updated, and modified
- maintains consistency with the UUSS catalog
- requires the event source location
 can take advantage of the abundant phase arrivals, particularly S, available in deep-learning enhanced

DATA

catalogs

- Model targets: High-quality M_L values
- **Model inputs**: Features derived from 0.95–1.40 s of pre-arrival noise and 2.55–3.60 s of post-arrival signal.
- Separate feature datasets for P and S arrivals
 Start with 38 frequency-domain A time-domain
- Start with 38 frequency-domain, 4 time-domain, and 3 location-based candidate features:

Name	Abbreviation	Equation or explanation	Transform	Type
Amplitude Ratio	ratio [freq.]	The ratio of the average signal and average noise at the specified corner frequency (freq.) between 1–18 Hz	log ₁₀	Time/Freq
Average Amplitude	amp. [freq.]	The average signal at the specified corner frequency between 1–18 Hz	log ₁₀	Time/Freq
Signal Dominant Frequency	sig. dom. freq.	The dominant frequency in Hz of the phase arrival	log ₁₀	Freq.
Signal Dominant Amplitude	sig. dom. amp.	The maximum amplitude of the signal dominant frequency	log ₁₀	Freq.
Signal Maximum Amplitude	sig. max. amp.	The difference of the maximum signal amplitude and the minimum signal amplitude	log ₁₀	Time
Noise Maximum Amplitude	noise max. amp.	The difference of the maximum amplitude and the minimum amplitude in the noise window	log ₁₀	Time
Signal Variance	sig. var.	The variance of the signal time series from zero	\log_{10}	Time
Noise Variance	noise var.	The variance of the noise time series from zero	\log_{10}	Time
Source- receiver Distance	distance	The distance from the event epicenter to the receiver in km	log ₁₀	Event
Source- receiver Back Azimuth	back az.	The distance from the receiver to the event epicenter in degrees. If using a linear model, the sine is used	sine (if linear model)	Event
Source	1 41.	The depth of the event in km		E4

Using the earthquake location & 4 waveform features we can accurately compute event magnitude during periods of elevated seismicity.

Overview:

1. We extract time and frequency candidate features from short-duration waveform segments around individual P and S arrivals.

We use our generalizable approach to **reduce the number of features** from 45 to 7:

distance, depth, __ back-azimuth

amplitude/SNR proxies: 3 signal & 1 noise

3

We train a machine learning model for each stations to predict local magnitude using the 7 selected features.

We average all model predictions to create network magnitudes, which are generally within ~0.13 mu of the actual magnitudes.

METHODS

Training and Testing Datasets

- Use an 80:20 split of all events in the *P* & S-feature catalogs occurring before 1/1/23 for the training set and **testing set A**.
- Use features computed from events during 1/1/23–1/1/24 as **testing set B**.
- 35 stations in the *P* dataset & 18 in the *S* dataset
- *P* stations have ≥ 300 & *S* stations have ≥ 150 training examples

Recursive Feature Elimination Algorithm (RFEA)

- While our candidate features are designed to be related to magnitude, many of them are redundant (i.e., highly correlated) or may be uninformative.
- We use a RFEA that both simplifies and improves the predictive performance of the machine-learning models and limits feature selection bias.
- Our RFEA is a two-step process, in which we first identify the most important features at each station and then select a common feature set for all stations.
- Selected waveform features:
- -√-P: amplitude at 1 & 2 Hz, signal & noise variance
- $\sqrt{-S}$: amplitude at 1, 2 & 4 Hz, noise variance

Support Vector Machines (SVM)

- We use an SVM with radial basis function kernel to learn a mapping from the features to M_i
- We train one model per station-phase pair
 - P: 35 models, S: 18 models
- SVMs are used in our RFEA

RESULTS

