(A bit of) Advanced R

Part 1 - towards better R-base programming

Julien Chiquet

http://github/jchiquet/CourseAdvancedR

Université Paris Dauphine, Juin 2018

Outline

- 1 Function, Functionals
- 2 Good and bad practices in R
- 3 Benchmark your code
- 4 Use all your cores when needed
- Tricks
- 6 Remember that R is object oriented
- Mind your vocabulary: R fast built in function
- 8 Interface with lower-level languages

References

- R Core Team (2017): A Language and Environment for Statistical Computing https://www.R-project.org/
- Wickham (2014): Advanced R, retrieved from http://adv-r.had.co.nz/
- Gillespie & Lovelace (2016): efficient R programming https://bookdown.org/csgillespie/efficientR/

Prerequisites

Data Structure in base R

- 1 Atomic vector (integer, double, logical, character)
- Recursive vector (list)
- § Factors
- Matrices and array
- 6 Data Frame
- → Creation, Basic Operation, Manipulation, Representation

Resources

- Advanced R, chapters I.2, I.3 (Wickham, 2014, http://adv-r.had.co.nz/)
- An introduction to R programming http://julien.cremeriefamily.info/teachings_L3BI_ISV51.html

Outline

- 1 Function, Functionals
- 2 Good and bad practices in F
- 3 Benchmark your code
- 4 Use all your cores when needed
- 5 Tricks
- 6 Remember that R is object oriented
- 7 Mind your vocabulary: R fast built in function

The [a-z]*pply family I

Example with factors (tapply)

```
data <- rnorm(100)
sexe <- factor( sample(c("H","F"), 100, replace = TRUE))
mean.1 <- tapply(data, sexe, mean) ## good
mean.2 <- c() ## complicated
for (1 in levels(sexe))
   mean.2 <- c(mean.2, mean(data[sexe == 1]))</pre>
```

Example with list or data.frame (sapply/lapply)

The [a-z]*pply family II

[1] TRUE [1] TRUE [1] TRUE [1] FALSE

The do.call function I

2 ridge 0.5965025 0.9245445 ## 3 bayes 0.9351831 144.8633823

constructs and executes a function call from a name or a function and a list of arguments to be passed to it

Suppose you have the outputs of 100 simulations at your disposable, stored in a list like that

The do.call function II

[1] 300

```
## [1] 100
How would you store them in a single data frame?
all.res <- do.call(rbind, res)
dim(all.res)</pre>
```

The Reduce function

'Reduce' uses a binary function to successively combine the elements of a given vector

 \leadsto can be use to post-process your list of simulations obtained via mclapply just like do.call

Say more... (map, Reduce)

A Reduce example: "jacknifing" a lasso solution path

A single Lasso fit of the diabete data set

```
library(glmnet)
library(lars) # the diabetes data set (part of the lars package)
data(diabetes)
y <- diabetes$y
x <- diabetes$x
n <- length(y)
lasso <- glmnet(x,y)
plot(lasso)</pre>
```

twidth-

A Reduce example: "jacknifing" a lasso solution path II I

Compute the regularization paths for all subsets, removing one individual at once

```
paths <- parallel::mclapply(1:n, function(i) {
    glmnet(x[-i, ], y[-i], lambda = lasso$lambda)$beta
}, mc.cores = 4)</pre>
```

Computing the envelop around the average regularization path with Reduce

mean.path <- Reduce("+", paths)/n

A Reduce example: "jacknifing" a lasso solution path II II

Outline

- ¶ Function, Functionals
- 2 Good and bad practices in R
- 3 Benchmark your code
- 4 Use all your cores when needed
- 5 Tricks
- 6 Remember that R is object oriented
- Mind your vocabulary: R fast built in function

Vectorize any algebraic operation I

```
Example: compute \exp(x) = \sum_{k=0}^n \frac{x^k}{k!} ## the good way \exp_{\text{vec}} < -\text{function}(\mathbf{x}, \mathbf{n}) { res < -\text{sum}(\mathbf{x}^{\circ}(0:\mathbf{n})/\mathbf{c}(1,\text{cumprod}(1:\mathbf{n}))) res } ## the sad/bad/less readable way \exp_{\text{loop}} < -\text{function}(\mathbf{x}, \mathbf{n}) { res < -1 for (k in 1:n) res < -\text{res} + 2^{\circ} \mathbf{k}/\text{factorial}(\mathbf{k}) res }
```

autoplot(microbenchmark(vec = exp vec(2, 100), loop = exp loop(2, 100)))

Vectorize any algebraic operation II

Vectorize, even for non-algebraic operation I

```
month_year_apply <- function(year) {
  sapply(month.name, function(month) paste(month, year, sep = "_"))
month year outer <- function(year) {
  outer(month.name, year, FUN = paste, sep = ' ')
head(month year outer(c(2010, 2013)), 3)
       [,1]
                       [,2]
  [1,] "January 2010" "January 2013"
  [2,] "February_2010" "February_2013"
## [3,] "March 2010" "March 2013"
autoplot(microbenchmark(
  sapply = month_year_apply(c(2011, 2013)),
  outer = month year outer(c(2011, 2013)),
  times = 100))
```

Vectorize, even for non-algebraic operation II

Compile your functions with base::compiler |

If you cannot avoid a loop, you will save some time

```
cumsum.R <- function(n) {</pre>
  x \leftarrow rnorm(n)
  cumsum(x)
cumsum.me <- function(n) {</pre>
  x \leftarrow rnorm(n)
  res <- 0
  for (i in 1:length(x))
    res <- res + x[i]
  res
cumsum.cmp <- compiler::cmpfun(cumsum.me)</pre>
autoplot(
  microbenchmark(
    cumsum.R(1000),
    cumsum.me(1000),
    cumsum.cmp(1000),
    times=1000)
```

Compile your functions with base::compiler II

→ Can be set automatically with compiler::enableJIT(3)

Preallocate whenever it is possible

```
grow <- function(n) {vec <- numeric(0); for (i in 1:n) vec <- c(vec,i)}
loop <- function(n) {vec <- numeric(n); for (i in 1:n) vec[i] <- i}
vect <- function(n) {1:n}</pre>
```


Do not stack objects I

Even if it is tempting when the final size is unknown.

```
simu.stack <- function(x) { ## x is a n x p matrix
  out <- data.frame(mean = numeric(0), sd = numeric(0))
  for (i in 1:n)
    out <- rbind(out, data.frame(mean = mean(x[i,]), sd = sd(x[i,])) )</pre>
  return(out)
simu.df <- function(x) {
  out <- data.frame(mean = numeric(n), sd = numeric(n))</pre>
  for (i in 1:n)
    out[i, ] \leftarrow c(mean = mean(x[i,]), sd = sd(x[i,]))
  return(out)
simu.list <- function(x) {
  my.list <- lapply(1:n, function(i) c(mean(x[i,]), sd(x[i,])))</pre>
  out <- data.frame(do.call(rbind, my.list))</pre>
  colnames(out) <- c("mean"."sd")</pre>
  return(out)
n \leftarrow 1000; p \leftarrow 10; x \leftarrow matrix(rnorm(n*p), n, p)
autoplot(microbenchmark(simu.stack(x), simu.df(x), simu.list(x), times=20))
```

Do not stack objects II

Outline

- ¶ Function, Functionals
- 2 Good and bad practices in R
- 3 Benchmark your code
- 4 Use all your cores when needed
- 5 Tricks
- 6 Remember that R is object oriented
- 7 Mind your vocabulary: R fast built in function

Quick (and dirty) benchmarking with system.time()

One usually relies on the command system.time(expr) to evaluate the timings:

```
func.one <- function(n) {return(rnorm(n,0,1))}
func.two <- function(n) {return(rpois(n,1))}

n <- 1000
system.time(replicate(100, func.one(n)))

## user system elapsed
## 0.012 0.000 0.011
system.time(replicate(100, func.two(n)))</pre>
## user system elapsed
```

0.000

##

0.008

0.010

Quick benchmarking with microbenchmark

```
func.one <- function(n) {return(rnorm(n,0,1))}
func.two <- function(n) {return(rpois(n,1))}

library(microbenchmark)

n <- 1000
res <- microbenchmark(func.one(n), func.two(n), times=1000)
ggplot2::autoplot(res)</pre>
```


Profile your code

Suppose you want to evaluate which part of the following function is hot:

```
## generate data, center/scale and perform ridge regression
my_func <- function(n,p) {</pre>
  require (MASS)
  ## draw data
  x <- matrix(rnorm(n*p),n,p)
  v <- rnorm(n)
  ## center/scale
  xs <- scale(x)
  vs \leftarrow v - mean(v)
  ## return ridge's coefficients
  ridge <- lm.ridge(ys~xs+0,lambda=1)
  return(ridge$coef)
```

Profile your code with base Rprof I

One can rely on the default Rprof function, with somewhat technical outputs

```
Rprof(file="profiling.out", interval=0.05)
res <- my_func(1000,500)
Rprof(NULL)
summarvRprof("profiling.out")$bv.self</pre>
```

summaryRprof("profiling.out")\$by.self

```
##
                     self.time self.pct total.time total.pct
## "La.svd"
                          1.20
                                 68.57
                                            1.20
                                                    68.57
## "aperm.default"
                          0.15 8.57
                                            0.15 8.57
                         0.15 8.57
  "is finite"
                                            0.15
                                                   8.57
  "na.omit.data.frame"
                         0.10 5.71
                                            0.10
                                                     5.71
## "lapply"
                         0.05 2.86
                                            1.75 100.00
## "arrav"
                         0.05
                                  2.86
                                            0.05
                                                     2.86
## "rnorm"
                          0.05
                                  2.86
                                            0.05
                                                     2.86
```

summaryRprof("profiling.out")\$by.total

Profile your code with base Rprof II

##		total.time	-		self.pct
##	"lapply"	1.75	100.00	0.05	2.86
##	"block_exec"	1.75	100.00	0.00	0.00
##	"call_block"	1.75	100.00	0.00	0.00
##	"evaluate"	1.75	100.00	0.00	0.00
##	"evaluate_call"	1.75	100.00	0.00	0.00
##	"evaluate::evaluate"	1.75	100.00	0.00	0.00
##	"FUN"	1.75	100.00	0.00	0.00
##	"in_dir"	1.75	100.00	0.00	0.00
##	"knit"	1.75	100.00	0.00	0.00
##	"knitr::knit"	1.75	100.00	0.00	0.00
##	"process_file"	1.75	100.00	0.00	0.00
##	"process_group"	1.75	100.00	0.00	0.00
##	"process_group.block"	1.75	100.00	0.00	0.00
##	"rmarkdown::render"	1.75	100.00	0.00	0.00
##	"withCallingHandlers"	1.75	100.00	0.00	0.00
##	"eval"	1.70	97.14	0.00	0.00
##	"handle"	1.70	97.14	0.00	0.00
##	"my_func"	1.70	97.14	0.00	0.00
##	"timing_fn"	1.70	97.14	0.00	0.00
##	"withVisible"	1.70	97.14	0.00	0.00
##	"lm.ridge"	1.45	82.86	0.00	0.00
##	"svd"	1.35	77.14	0.00	0.00
##	"La.svd"	1.20	68.57	1.20	68.57
##	"aperm"	0.20	11.43	0.00	0.00
##	"scale"	0.20	11.43	0.00	0.00
##	"scale.default"	0.20	11.43	0.00	0.00

Profile your code with base Rprof III

##	"aperm.default"	0.15	8.57	0.15	8.57
##	"is.finite"	0.15	8.57	0.15	8.57
##	"apply"	0.15	8.57	0.00	0.00
##	"na.omit.data.frame"	0.10	5.71	0.10	5.71
##	"eval.parent"	0.10	5.71	0.00	0.00
##	".External2"	0.10	5.71	0.00	0.00
##	"model.frame.default"	0.10	5.71	0.00	0.00
##	"na.omit"	0.10	5.71	0.00	0.00
##	"stats::model.frame"	0.10	5.71	0.00	0.00
##	"array"	0.05	2.86	0.05	2.86
##	"rnorm"	0.05	2.86	0.05	2.86
##	"handle_output"	0.05	2.86	0.00	0.00
##	"matrix"	0.05	2.86	0.00	0.00
##	"par"	0.05	2.86	0.00	0.00
##	"plot_snapshot"	0.05	2.86	0.00	0.00
##	"sweep"	0.05	2.86	0.00	0.00
##	"unlist"	0.05	2.86	0.00	0.00
##	"w\$get_new"	0.05	2.86	0.00	0.00

Profile your code with profr

The *profr* package is maybe a little easier to understand. . .

```
library(profr)
profiling <- profr({my_func(1000,500)}, interval = 0.01)
plot(profiling)</pre>
```


Profile your code within R Studiow with profvis

Profvis integrates the profiling to the Rstudio API

```
library(profvis)
profvis({my_func(1000,500)})
```


Outline

- ¶ Function, Functionals
- 2 Good and bad practices in R
- 3 Benchmark your code
- 4 Use all your cores when needed
- **5** Tricks
- 6 Remember that R is object oriented
- Mind your vocabulary: R fast built in function

Parallel computing

Usual Roadmap

- f 0 Start up and intialize M 'worker' processes
- Send data required for each task to the workers
- $oldsymbol{3}$ Split the task into M roughly equally-sized chunks and send them (including the R code needed) to the workers
- 4 Wait for all the workers to complete their tasks, and ask them for their results
- **5** Repeat steps (2–4) for any further tasks
- 6 Shut down the worker processes

Socketing vs Forking

Two approaches achieving the same goal

The socket approach

- launches a new version of R on each core
- connection is done via networking all happening on your own computer

The forking approach

- copies the entire current version of R and moves it to a new core
- several processes acheive the same task resulting in different outputs
- → Forking is only possible on Unix systems (Linux, Mac OS)

Parallel computing with parallel

Package parallel

- merge of packages multicore and snow
- included in base R and maintained by the R Core team

Check your computer

```
library(parallel) ## embedded with R since version 2.9 or something
cores <- detectCores() ## How many cores do I have?
print(cores)</pre>
```

```
## [1] 4
```

 \leadsto parallel features both socketing (parLapply) and forking (mclapply)

Forking approach with parallel::mclapply

Very easy: use parallel features as soon as you do simulations !

Example: estimates the test error from ridge regression

```
one.simu <- function(i) {
    ## draw data
    n <- 1000; p <- 500
    x <- matrix(rnorm(n*p),n,p); y <- rnorm(n)
    ## return ridge's coefficients
    train <- 1:floor(n/2)
    test <- setdiff(1:n,train)
    ridge <- MASS::lm.ridge(y^x+0,lambda=1,subset=train)
    err <- (y[test] - x[test, ] %*% ridge$coef )^2
    return(list(err = mean(err), sd = sd(err)))
}</pre>
```

head(do.call(rbind, mclapply(1:8, one.simu, mc.cores = cores)), n = 3)

```
## err sd
## [1,] 13.05205 18.83241
## [2,] 11.55134 16.13871
## [3,] 14.30768 18.50712
```

Forking approach with parallel::mclapply (cont'd)

Socket approach with parallel::parLapply

Windows users need a bit more code to make it work

A possible option: export from base workspace

```
cl <- makeCluster(4)
clusterExport(cl,"one.simu")
res <- parSapply(cl, 1:8, one.simu) # several parLapply call are possible
stopCluster(cl)
res</pre>
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## err 13.49596 8.664762 11.92576 16.50807 11.66757 11.9488 10.24255
## sd 17.35077 12.70468 17.35847 22.63689 15.63746 16.89484 15.01289
## [,8]
## err 10.59383
## sd 14.29349
```

Parallel computing with parallel: final remarks

- Parallelize pieces of code complex enough
- Do not choose stupidly the number of cores
- Screen outputs are lost in Rstudio: use pbmcapply (progress bar)

```
pbmcapply::pbmcmapply(1:8, FUN = one.simu, mc.cores = 2)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## err 13.30902 9.801744 10.50707 11.04491 10.75684 11.29892 15.66317
## sd 19.76283 14.13212 14.63621 15.87187 13.71803 15.57207 21.81625
## [,8]
## err 11.09748
## sd 14.70388
```

Outline

- 1 Function, Functionals
- 2 Good and bad practices in R
- 3 Benchmark your code
- 4 Use all your cores when needed
- Tricks
- 6 Remember that R is object oriented
- 7 Mind your vocabulary: R fast built in function

Internal function are faster

Function defined internally are sometimes incredibly faster (written in C), but cannot by called in packages submitted to CRAN.

Mind some algebra

Sweep is a general way to apply a statistic on a given dimension of an array.

```
center1 <- function(x) return(scale(x, colMeans(x), FALSE))
center2 <- function(x) return(sweep(x, 2, colMeans(x), "-", check.margin = FALSE))
center3 <- function(x) return(x - outer(rep(1, nrow(x)), colMeans(x)) )
seq.p <- 10^(1:5); n <- 100; times <- 20</pre>
```


Algebra does not always pay

Example for scaling a matrix

```
scale1 <- function(x) return(scale(x, FALSE, colSums(x^2)))
scale2 <- function(x) return(sweep(x, 2, colSums(x^2), "/", check.margin=FALSE))
scale3 <- function(x) return(x %*% diag(1/colSums(x^2)))
seq.p <- 10^(1:3); n <- 100; times <- 20</pre>
```


Outline

- 1 Function, Functionals
- 2 Good and bad practices in R
- 3 Benchmark your code
- 4 Use all your cores when needed
- **5** Tricks
- 6 Remember that R is object oriented
- Mind your vocabulary: R fast built in function

Factor conversion are slow (nlevels)

Do not convert large vector to factor if you need to perform just one operation on it.

```
n <- 1000; K <- 10
autoplot(microbenchmark(
  factor = nlevels(factor(sample(1:K, n, rep=TRUE))),
    numeric = length(unique(sample(1:K, n, rep=TRUE))), times=1000)
)</pre>
```


Operations on factors are fast (e.g. nlevels)

Use factor if you need repeated operations on the same vector.

Prefer tabulate to table whenever you can

table is a complex function that should not be use for simple operations like counting the occurrences of integers in a vector.

```
n <- 1000; K <- 10
autoplot(
  microbenchmark(
   table = table (sample(1:K, n, rep=TRUE)),
  tabulate = tabulate(sample(1:K, n, rep=TRUE)),
  times=1000)
)</pre>
```


R masks the numerical errors

by printing a *convenient* summary of objects

```
7/13
   [1] 0.5384615
print(7/13, digits=16)
  [1] 0.5384615384615384
```

R masks the numerical errors

by printing a convenient summary of objects

```
7/13
## [1] 0.5384615
print(7/13, digits=16)
## [1] 0.5384615384615384
So do not use binary operator to compare floats because
.1 == .3/3
## [1] FALSE
print(.3/3, digits=16)
  [1] 0.0999999999999999
```

R masks the numerical errors

[1] TRUE

by printing a *convenient* summary of objects

```
7/13
## [1] 0.5384615
print(7/13, digits=16)
## [1] 0.5384615384615384
So do not use binary operator to compare floats because
.1 == .3/3
## [1] FALSE
print(.3/3, digits=16)
   [1] 0.0999999999999999
Try
all.equal(.1, .3/3)
```

Variable type matters

Sorting a vector of integers is much faster than a vector of double, but R is so permissive that you might loss the gain if you do not take care:

Outline

- 1 Function, Functionals
- 2 Good and bad practices in F
- 3 Benchmark your code
- 4 Use all your cores when needed
- **5** Tricks
- 6 Remember that R is object oriented
- 7 Mind your vocabulary: R fast built in function

The row/colSums family I

col/rowSums, col/rowMeans and their extensions in the matrixStats package (rank,max,min, etc.) are very efficient.

```
colSums.default <- function(x) return(colSums)
colSums.algebra <- function(x) return(crossprod(rep(1,nrow(x)), x))
colSums.apply <- function(x) return(apply(x,2,sum))
colSums.loop <- function(x) {
  res <- rep(0,ncol(x))
  for (i in 1:ncol(x)) {
    res[i] <- sum(x[,i])
  }
  res
}</pre>
```

The row/colSums family II

The secret function rowsum I

rowsum (not to be confused with rowSums) computes sums in a vector split according a grouping variable (work for matrices).

```
vec <- runif(1000)
grp <- sample(1:5, 1000, TRUE)
print(c(rowsum(vec, grp)))</pre>
```

[1] 119.25299 92.34115 90.63687 115.88947 105.82181

There are many possibilities to perform the required task:

```
res <- microbenchmark(
rowsum = rowsum(vec, grp),
split = sapply(split(vec, grp), sum),
tapply = tapply(vec, grp, sum),
aggreg = aggregate(vec, list(grp), sum),
times = 1000)</pre>
```

The secret function rowsum II

Dedicated function: cross-product

Generally (a bit) fastest than % * % !

```
crossprod.prod <- function(x) return(t(x) %*% x)
crossprod.func1 <- function(x) return(crossprod(x,x))
crossprod.func2 <- function(x) return(crossprod(x))</pre>
```


Dedicated function: inverting a PD matrices I

Use a Cholesky factorization

```
use.chol <- function(n,p) {
  x <- matrix(rnorm(n*p),n,p)
 xtx <- crossprod(x)
  return(chol2inv(chol(xtx)))
use.solve <- function(n,p) {
  x <- matrix(rnorm(n*p),n,p)
  xtx <- crossprod(x)
  return(solve(xtx))
bench.p.fixed <- function(p, times) {
  res <- microbenchmark(solve = use.solve(2*p,p),
                        chol = use.chol (2*p,p), times=times)
  return(data.frame(method = res$expr,
                    timings = res$time.
                            = rep(as.character(p),times)))
                    size
```

Dedicated function: inverting a PD matrices II

The Matrix package I

Propose a collection of functions for of matrix algebra adapted to the type of matrix at hand (sparse, diagonal, triangular, block diagonal, etc.)

The Matrix package II

Outline

- ¶ Function, Functionals
- 2 Good and bad practices in R
- Benchmark your code
- 4 Use all your cores when needed
- **5** Tricks
- 6 Remember that R is object oriented
- 7 Mind your vocabulary: R fast built in function

Interfacing C++ with R is really easy I

For a vector $\mathbf{x} = (x_1, \dots, x_n)$, consider the simple task of computing

$$y_k = \sum_{i=1}^k \log(x_i), \quad k = 1, \dots, n.$$

One can easily integrate some C++ version of this code with Rcpp.

```
library(Rcpp)
rcpp <- cppFunction('NumericVector rcpp(NumericVector x) {
  using namespace Rcpp;

int n = x.size();
  NumericVector res(x);
  res(0) = log(x(0));
  for (int i=1; i<n; i++) {
    res(i) = res(i-1) + log(x(i));
  }
  return(wrap(res));
}')</pre>
```

Interfacing C++ with R is really easy II

```
library(RcppArmadillo)
Arma <- cppFunction(depends = "RcppArmadillo", 'NumericVector Arma(NumericVector x) {
    using namespace Rcpp;
    using namespace arma;
    return(wrap(cumsum(log(as<vec>(x)))));
}')

x <- runif(1e7, 1,2)
res <- microbenchmark(R = cumsum(log(x)), cpp = rcpp(x), arma = Arma(x), times = 40)
print(autoplot(res))</pre>
```

Interfacing C++ with R is really easy III

Interfacing C++ with R is really easy I

Example that couples C+++ algebraic tricks

Let ${f T}$ be an $n \times n$ lower triangular matrix with nonzero elements equal to one. We need fast computation of

$$\operatorname{vec}(\mathbf{T}\mathbf{B}\mathbf{T}^{\top}) = (\mathbf{T} \otimes \mathbf{T}) \times \operatorname{vec}(\mathbf{B}).$$

```
library(Matrix); library(inline); library(RcppArmadillo)

prod.rough <- function(B) {
    n <- ncol(B); T <- bandSparse(n,k=(-n+1):0)
    return(kronecker(T,T) %*% as.vector(B))}

prod.smart <- function(B) {
    return(as.vector(apply(apply(B,1,cumsum),1,cumsum)))}

prod.wise <- cxxfunction(signature(B="matrix"),'
    using namespace Rcpp;
    using namespace arma;
    return(wrap(vectorise(cumsum(cumsum(as<mat>(B),0),1)))) ;
    ' , plugin="RcppArmadillo")
```

Interfacing C++ with R is really easy II

References

- Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., . . . Chang, W. (2018). *Rmarkdown: Dynamic documents for r.* Retrieved from https://CRAN.R-project.org/package=rmarkdown
- Burns, P. (2012). *The r inferno*. Lulu. com. Retrieved from http://www.burns-stat.com/documents/books/the-r-inferno/
- Chang, W. (2012). R graphics cookbook: Practical recipes for visualizing data. "O'Reilly Media, Inc." Retrieved from http://www.cookbook-r.com/Graphs/
- Eddelbuettel, D. (2013). Seamless r and c++ integration with rcpp. Springer. Retrieved from http://dirk.eddelbuettel.com
- Gandrud, C. (2016). Reproducible research with r and r studio. Chapman; Hall/CRC. Retrieved from https://github.com/christophergandrud/Rep-Res-Book
- Gillespie, C., & Lovelace, R. (2016). *Efficient r programming*. "O'Reilly Media, Inc." Retrieved from https://bookdown.org/csgillespie/efficientR/
- R Core Team. (2017). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
- Wickham, H. (2014). Advanced r. CRC Press. Retrieved from