Can single neurons solve MNIST?: The computational power of biological dendritic trees

PRESENTER llenna Jones, UPenn Kording Lab

BACKGROUND

A classic line of inquiry of neuroscience is "What are neurons computationally capable of?". Simplified models of neurons have been used to investigate this question, leaving out the potential for dendritic intricacies, nonlinearities, and synaptic repetitions to impact conclusions. This work uses a novel, computational-task-based method for determining the computational capability of a dendrite-complete neuron model by taking advantage of deep learning techniques.

METHODS & RESULTS

We modified a deep artificial neural network, to have dendritic sparsity constraints, creating a "1-tree", to see the impact of this biological property on computation:

We then repeated the inputs

to see the impact of repeated synaptic inputs on computation, comparing that to a fully connected neural

network:

Dendritic tree morphology constraints could

limit neuronal computational power,

but

repeated inputs to dendrites could

expand neuronal computational power

Parameter size matching k-tree and FCNN

Parameter #: 2k(n-1)

h(n+1)

Task-Based Modeling using Image Datasets

Dataset	Classes	Examples	1-D Input Size
MNIST	3, 5	3 5	32x32 = 1024
Fashion-MNIST (FMNIST)	0, 6		32x32 = 1024
EMNIST	14, 17	EH	32x32 = 1024
Kuzushiji-MNIST (KMNIST)	2, 6	き ま	32x32 = 1024
CIFAR-10	3, 5		3x32x32 = 307
Street View House Numbers (SVHN)	5, 6	526	3x32x32 = 307
USPS	3, 5	35	16x16 =256

Testing neuron model using multiple datasets

Full Author List

Jones, Ilenna Simone Kording, Konrad Paul

