

.h5ad object Reading: scanpy.read("filename.h5ad") scanpy.write("filename.h5ad")

adata.X: Count matrix

Genes

g1	g2	g3	g4
20	25	1	0
1	0	10	0
0	0	20	0

Cells

adata.var: gene level metadata

variables

mean	std	type	Highly variable
5.5	1.2	mt	True
10.2	0.01	rib	False
0	0	рс	False

Genes

adata.obs: cell level metadata

variables

donor	batch	cell_type	Total count
P1	1	B cell	2000
P1	2	T cell	1200
P2	2	NK cell	3400

Cells

adata.obsm: observation level objects

adata.obsm["X_pca"] = Principal components adata.obsm["X_umap"] = UMAP ...

<u>adata.obsp: observation level objects</u> <u>(observations by observations)</u>

adata.obsp["affinity"] = pairwise cell distances

. . .

adata.varm: Gene level objects

adata.obsm["PCs"] = PC loadings

adata.varp: Gene level objects (genes by genes)

adata.varp["interact"] = gene-gene interaction values

adata.uns: Unstructured objects

adata.uns["hires_image"] = high resolution image array adata.uns["lowres_image"] = low resolution image array Adata.uns["cell_type_colors"] = lists of color codes

Complete documentation
https://anndata.readthedocs.io/en/lat
est/index.html