#### Modeling and Understanding Mortality Disparities

Monica Alexander University of California, Berkeley

Presented at University of Washington, Seattle November 28, 2017

#### Outline

- 1 Aims, motivation and challenges
  - Monitoring neonatal mortality in countries worldwide (poor-quality data)
  - Racial disparities in the US opioid epidemic (noisy data)
- Methodological approach
- 3 Spatial patterns of racial disparities in the opioid epidemic
- Summary

Aims and motivation

#### Aims of research

To assess and interpret health and mortality disparities across populations and understand how underlying demographic processes affect these disparities and drive changes over time.

#### Motivation

- In order to understand disparities, need to able to monitor changes over time
- In many situations, trends may be unclear because of data issues
- Need to develop statistical methods in order to understand underlying processes

# Motivating example 1: What is the progress in decreasing neonatal mortality in countries worldwide?

- Deaths in the first month of life
- Important health and development indicator (SDG 3)
- How are countries tracking toward reaching this goal?
- Issue: many countries only have poor-quality data available





Figure: Data on neonatal mortality rates (deaths per 1,000 births)



Figure: Data and estimates of neonatal mortality rates (deaths per 1,000 births) (Alexander and Alkema, 2017).

Full results: childmortality.org



# Motivating example 2: What are the racial differences in the opioid epidemic?



Investigating spatial patterns in racial disparities in the opioid epidemic. Issues:

- Deaths are a relatively rare event
- Observed data suffer from high stochastic (random) variation
- Difficult to understand underlying processes from observed data

Why are rare events an issue? Consider a coin which has a probability of a head turning up equal to 1%.

- In 100 tosses, expect to get 1 head
- Small variations in number of heads result in large variations in the observed probability



Figure: Observed opioid mortality rate by age and race, North Carolina, 2004





Figure: Observed and estimated opioid mortality rate by age and race, North Carolina, 2004



#### Overview of research



#### Methodological approach

#### Methodological approach

#### Motivation:

- Differences in underlying age structures affect disparities
- Human populations display strong regularities in age patterns of death

Use this demographic knowledge and incorporate information:

- about geographic patterns in mortality
- about trends in mortality over time

## Methodological approach

Bayesian hierarchical framework to model mortality rates, with three components:

- Model of underlying age structure
- Spatial model
- 3 Temporal model

#### Modeling subnational mortality rates

$$D_{x,a,t} \sim Poisson(P_{x,a,t} \cdot m_{x,a,t})$$

#### where

- $D_{x,a,t}$  = deaths in age group x, area a, at time t.
- $P_{x,a,t}$  = population in age group x, area a, at time t.

We are trying to estimate mortality rate  $m_{x,a,t}$ .

#### 1. Model underlying structure

particular subgroups

Data may be noisy or sparse at the subnational level or for

- Model age patterns based on observed patterns at higher levels
- Creates underlying structure, which can be flexibly shifted based on available data

#### 1. Model underlying structure

Parametric model to express overall shape of mortality curve:

$$\log(m_{x,a,t}) = \beta_{1,a,t} \cdot Y_{1x} + \beta_{2,a,t} \cdot Y_{2x} + \beta_{3,a,t} \cdot Y_{3x}$$

 $Y_{1x}$ ,  $Y_{2x}$  and  $Y_{3x}$  are principal components of a standard set of log-mortality curves.

#### 1. Model underlying structure

Represent age-specific mortality curve as a combination of three components:



Figure: Principal components of (logged) US state mortality schedules, Males, 1980–2010 (Alexander et al. 2017).

#### 2. Spatial model

#### Motivation:

- Different regions/populations often have different amounts of available data
- Can share information about mortality across geographic space
- Patterns in areas with less information are partially informed by mortality patterns in similar data-rich areas

#### 2. Spatial model

 $\beta_{p,a,t}$  are assumed to be drawn from a common distribution for each state (or other group of areas).



#### 3. Temporal model

- Mortality changes gradually and in a relatively regular pattern over time
- Allow for autocorrelation: estimates today are related to what happened in the past
- Provide a mechanism for projecting trends into the future

# 3. Temporal model

$$\log(m_{x,a,t}) = \beta_{1,a,t} \cdot Y_{1x} + \beta_{2,a,t} \cdot Y_{2x} + \beta_{3,a,t} \cdot Y_{3x} \qquad \text{Age patterns}$$
 
$$\beta_{p,a,t} \sim N(\mu_{\beta_{p,t}}, \sigma^2_{\beta_{p,t}})$$
 
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$



What are the spatial patterns by race in the opioid epidemic?

### Opioid mortality by race, 1979-2015



Figure: Top: Opioid mortality rate for white and black populations. Bottom: Rate ratio (white / black) of opioid mortality rates. (Alexander et al. 2017).

#### The US opioid epidemic by race

- Opioid epidemic has shifted from prescription opioids to heroin/fentanyl
- Reversal of usual racial inequality observed in mortality
  - Low opioid prescription rates in black population (Frenck et al. 2015)
  - Lower access to healthcare; differing attitudes of patients and doctors (Pletcher et al. 2008; Singhal et al. 2016)
- However, epidemic is increasingly affecting the black population
  - Increased supply, affordability, potency of heroin

#### Three potential mechanisms:

- Substitution effect painkillers to heroin (concentration) (Alpert et al. 2017)
- New effects on existing users (concentration) (CDC 2015; Slavova et al. 2017)
- 3 New users (diffusion) (Cicero et al. 2017)

## Racial disparities by state

- How do racial patterns in opioid mortality vary by state?
- How have they evolved over time?
- Evidence for potential mechanisms of change?

#### Data

- NCHS multiple cause of death microdata from 1999–2015 (ICD-10)
- Restrict to non-hispanic white and black populations
- Opioid deaths defined as a combination of
  - underlying cause of X40-X44, X60-X64, X85 and Y10-Y14.
  - drug poisoning code of T40.0-4, T40.6
- Age-specific mortality for five-year age groups between ages 15–75
- Death rates standardized using 2000 US Census population

#### Modeling approach

- Model underlying age structure based on race-specific age-specific mortality curves at the national level
- Pool information by geographic space
- Smooth parameter trajectories over time



#### Results: opioid mortality rate ratio

Opioid mortality rate ratio (white/black), 2015





#### Region 1: white only



Figure: Opioid mortality rates by race and ratio ratio (white/black) for Massachusetts.

Region 1: white mortality only

- New England states
- Increasing white mortality
- Acceleration in 2010
- Substitution, concentration





## Region 2: both races rising



Figure: Opioid mortality rates by race and ratio ratio (white/black) for Ohio.

Region 2: mortality rising in both races

- mid-Atlantic, Appalachia states
- Higher for white but increasing for both
- New users, diffusion





### Region 3: higher black mortality



Figure: Opioid mortality rates by race and ratio ratio (white/black) for **Missouri**.

#### Region 3: higher black mortality

- Midwest states
- Higher relative black mortality
- Ratios closer to 1
- New effects on existing users



- Distinct spatial patterns in opioid mortality by race
- Evidence of both diffusion and concentration of epidemic
- Implications for how to think about effective policy:
  - Treatment/prevention: treatment in affected communities versus prevention across communities
  - Enforcement: curbing access to prescriptions versus a crackdown on heroin distribution networks
  - Education: drug use versus dangers of new drugs

# Summary

- Important to be able to assess and interpret health and mortality outcomes across populations
- In many cases, data to study such inequalities are limited
- Build on demographic knowledge about underlying population processes
- Flexible hierarchical modeling frameworks which incorporate patterns across space and time

#### Future directions

- How are health and mortality inequalities across socioeconomic status evolving?
- 2 How do subnational differences and migration in developing countries affect progress towards health goals?

#### Thanks!



monicaalexander.com monicaalexander@berkeley.edu



- Alexander, M., and Alkema, L., 'Global Estimation of Neonatal Mortality using a Bayesian Hierarchical Splines Regression Model', https://arxiv.org/abs/1612.03561 (forthcoming, Demographic Research).
- Alexander, M., Zagheni, E., and Barbieri, M., 'A Flexible Bayesian Model for Estimating Subnational Mortality', https://link.springer.com/article/10.1007/s13524-017-0618-7 (forthcoming. Demography).
- Alexander, M., Barbieri M., and Kiang, M.V., 'Opioid deaths by race in the United States, 2000–2015.'. https://osf.io/preprints/socarxiv/im38s.
- Alpert A. Powell D and Pacula RL (2017): 'Supply-Side Drug Policy in the Presence of Substitutes: Evidence from the Introduction of Abuse-Deterrent Opioids', RAND Working Paper, WR-1181, January 2017.
- Centers for Disease Control and Prevention. Increases in Fentanyl Drug Confiscations and Fentanyl-related Overdose Fatalities, CDC Health Alert Network: 2015.
- Cicero TJ, Ellis MS, Kasper ZA, 'Increased use of heroin as an initiating opioid of abuse.' Addict Behav. Elsevier; 2017;74:63-6.
- Frenk SM, Porter KS, Paulozzi LJ. 'Prescription opioid analgesic use among adults: United States, 1999-2012.' NCHS Data Brief 2015 Feb 1:(189):1-8.
- Pletcher MJ, Kertesz SG, Kohn MA, Gonzales R, 'Trends in opioid prescribing by race/ethnicity for patients seeking care in US emergency departments.' JAMA 2008 Jan 2;299(1):70-8.
- Singhal A, Tien Y-Y, Hsia RY, 'Racial-Ethnic Disparities in Opioid Prescriptions at Emergency Department Visits for Conditions Commonly Associated with Prescription Drug Abuse.' Public Library of Science: 2016 Jan 1;11(8):e0159224.
- Slavova S. Costich JF. Bunn TL. Luu H. Singleton M. Hargrove SL. et al. 'Heroin and fentanyl overdoses in Kentucky: Epidemiology and surveillance'. Int J Drug Policy. 2017;46:120-9.



Extra Slides - methods

### 1. Model underlying structure

Principal components obtained via Singular Value
Decomposition (SVD) of a set of 'reference' mortality curves



# Parameterizing disparities



#### Variation across French départements:



Extra Slides - opioids

## The US opioid epidemic



Figure: Drug-related mortality in the United States, 1999–2015 (Alexander et al. 2017)



## A changing epidemic



Figure: Opioid mortality rates by general type of opioid for white (top) and black (bottom) populations. Lines are joinpoint model fits (Alexander et al. 2017).

#### Estimation issues

- Death rates by race and state can be noisy
- Use modeling approach described above
- Model based on structural age patterns; pool across space and time



Figure: Opioid mortality ratio ratio (white/black), observed and fitted, North Carolina



#### Inputs to model

Figure: Principal components of race-specific opioid mortality, US, 1999–2015.



(a) PC1: Baseline mortality

(b) PC2: Contribution of each age group to change



## Region 4: higher white mortality



Figure: Opioid mortality rates by race and ratio ratio (white/black) for **Georgia**.

# Region 4: higher white mortality

- Southern states
- Higher relative white mortality

- Large rate ratios
- Some increase in black population, but mostly concentration



#### Region 5: no change in black mortality



Figure: Opioid mortality rates by race and ratio ratio (white/black) for **Nevada**.

Region 5: no change in black mortality

- Western states
- no change in black mortality
- no evidence of recent spike



# Region 6: low mortality



Figure: Opioid mortality rates by race and ratio ratio (white/black) for **Washington**.

#### Region 6: low mortality

- NW states
- relatively small black populations
- no evidence of recent spike



## Big differences in age structure

Opioid rate ratio (white/black) 15-39 years, 2015



Opioid rate ratio (white/black) 40+ years, 2015





