EXERCISE - V

- **1. (a)** Evaluate $\int_{0}^{\pi/2} \frac{\cos^{9} x}{\cos^{3} x + \sin^{3} x} dx$ [**REE 2001, 3+5**] **(b)** If $\int_{0}^{t^{2}} x f(x) dx = \frac{2}{5} t^{5}, t > 0, \text{ then } f\left(\frac{4}{25}\right) = \frac{1}{5} t^{5}$
- **(b)** Evaluate $\int_{0}^{\pi} \frac{x dx}{1 + \cos \alpha \sin x}$
- **2.** (a) Let $f(x) = \int \sqrt{2-t^2} dt$. Then the real roots of

the equation x^2 – f'(x)=0 are [JEE 2002(Scr.), 3+3+3]

- (A) ± 1 (B) $\pm \frac{1}{\sqrt{2}}$ (C) $\pm \frac{1}{2}$ (D) 0 and 1
- **(b)** Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all $x \in R$, f(x+T)=f(x).

If $I = \int_{0}^{1} f(x) dx$ then the value of $\int_{3}^{1} f(2x) dx$ is

- (A) $\frac{3}{2}$ I (B) 2 I (C) 3 I

- (D) 6 I
- (c) The integral $\int_{1}^{\frac{\pi}{2}} \left([x] + \ln \left(\frac{1+x}{1-x} \right) \right) dx$ equals

(where [*] denotes greatest integer function)

- (A) $-\frac{1}{2}$ (B) 0 (C) 1
- (D) $2 \ln \left(\frac{1}{2}\right)$
- 3. If f is an even function then prove that

$$\int_{0}^{\pi/2} f(\cos 2x) \cos x \, dx = \sqrt{2} \int_{0}^{\pi/4} f(\sin 2x) \cos x \, dx$$

[JEE 2003 (Mains), 2]

4. (a) $\int_{1}^{1} \sqrt{\frac{1-x}{1+x}} dx =$

[JEE 2001]

- (A) $\frac{\pi}{2} + 1$ (B) $\frac{\pi}{2} 1$ (C) π
- (D) 1

JEE PROBLEMS

[**JEE 2004, (Scr.)**] (C) -2/5 (D) 1

- (A) 2/5 (B) 5/2

- (c) If $y(x) = \int_{-2/16}^{x^2} \frac{\cos x \cdot \cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}} d\theta$ then find $\frac{dy}{dx}$ at $x = \pi$.
- (d) Evaluate $\int_{-\pi/3}^{\pi/3} \frac{\pi + 4x^3}{2 \cos\left(|x| + \frac{\pi}{3}\right)} dx$ [JEE 2004 (Mains), 4]
- **5.** (a) If $\int_{\sin x}^{1} t^2(f(t)) dt = (1 \sin x)$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is
- (A) 1/3
- (B) $1/\sqrt{3}$ (C) 3
- (D) $\sqrt{3}$
- **(b)** $\int_{-2}^{0} (x^3 + 3x^2 + 3x + 3 + (x + 1)\cos(x + 1)) dx$ is equal to [**JEE 2005 (Scr.)**]
 (A) -4 (B) 0 (C) 4 (D) 6

- (c) Evaluate: $\int_{0}^{\pi} e^{|\cos x|} \left(2\sin\left(\frac{1}{2}\cos x\right) + 3\cos\left(\frac{1}{2}\cos x\right) \right) \sin x \, dx.$
- **6.** Let y = f(x) be a twice differentiable, non-negative

function defined on [a, b]. The area $\int f(x)dx$, b > a

bounded by y = f(x), the x-axis and the ordinates at x = a and x = b can be approximated as

$$\int_{a}^{b} f(x) dx \cong \frac{(b-a)}{2} \{f(a) + f(b)\}.$$

Since $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$, $c \in (a, b)$, a better

approximation to $\int_{0}^{\infty} f(x) dx$ can be written as

$$\int\limits_{a}^{b} f(x) dx \cong \frac{(c-a)}{2} \left\{ f(a) + f(c) \right\} + \frac{(b-c)}{2} \left\{ f(c) + f(b) \right\} \equiv F(c).$$

If $c = \frac{a+b}{2}$, then this gives : [JEE 2006] $A = \frac{dx}{1+x^2}$

$$\int_{a}^{b} f(x) dx \cong \frac{b-a}{4} \{f(a) + 2f(c) + f(b)\}, \dots (1)$$

(a) The approximate value of $\int_{0}^{\pi/2} \sin x \, dx$ using rule (1) (C) $\int_{1-x^2}^{3} \frac{dx}{1-x^2}$ given above is

(A)
$$\frac{\pi}{8\sqrt{2}}(1+\sqrt{2})$$
 (B) $\frac{\pi}{4\sqrt{2}}(1+\sqrt{2})$

(B)
$$\frac{\pi}{4\sqrt{2}} (1 + \sqrt{2})$$

(C)
$$\frac{\pi}{8}(1+\sqrt{2})$$
 (D) $\frac{\pi}{4}(1+\sqrt{2})$

(D)
$$\frac{\pi}{4}(1+\sqrt{2})$$

(b) If
$$\lim_{t \to a} \left\{ \frac{\int_{0}^{t} f(x) dx - \frac{(t-a)}{2} (f(t) + f(a))}{(t-a)^3} \right\} = 0$$
, for each
$$\begin{cases} \mathbf{9}. \text{ Let } S_n = \sum_{k=1}^{t} \frac{1}{n^2 + kn + k^2} \text{ and } I_n = \sum_$$

fixed a, then f(x) is a polynomial of degree utmost (A) 4 (B) 3 (C) 2

(c) If f''(x) < 0, $x \in (a, b)$, then at the point C (c, f(c)) on y = f(x) for which F(c) is a maximum, f '(c) is given by

(A)
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 (B) $f'(c) = \frac{f(b) - f(a)}{a - b}$

(B) f'(c) =
$$\frac{f(b) - f(a)}{a - b}$$

(C) f'(c) =
$$\frac{2(f(b)-f(a))}{b-a}$$
 (D) f'(c) = 0

7. Find the value of $\frac{5050 \int_{0}^{1} (1-x^{50})^{100} dx}{\int_{0}^{1} (1-x^{50})^{101} dx}$ [JEE 2006, 6]

8. (a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\sec^{2}x} \int_{m=1}^{\sec^{2}x} \int_{m=1}^{2} \int_{m=1}^{10} I_{2m} = 0$$
 (b) $I_{n} = I_{n+1}$ (c) Let $f: R \to R$ be a continuous function which

(A)
$$\frac{8}{\pi}$$
 f(2) (B) $\frac{2}{\pi}$ f(2) (C) $\frac{2}{\pi}$ f $\left(\frac{1}{2}\right)$ (D) 4f(2)

(b) Match the integrals in Column I with the values in Column II.

Column I

Column II

$$(A) \int_{-1}^{1} \frac{dx}{1+x^2}$$

(P)
$$\frac{1}{2} \log \left(\frac{2}{3} \right)$$

(B)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$

(Q)
$$2 \log \left(\frac{2}{3}\right)$$

(C)
$$\int_{0}^{3} \frac{dx}{1-x^2}$$

(R)
$$\frac{\pi}{3}$$

(D)
$$\int_{1}^{2} \frac{dx}{x\sqrt{x^2-1}}$$

(S)
$$\frac{\pi}{2}$$

9. Let
$$S_n = \sum_{k=1}^n \frac{n}{n^2 + kn + k^2}$$
 and $T_n = \sum_{k=1}^{n-1} \frac{n}{n^2 + kn + k^2}$,

for
$$n = 1, 2, 3, \dots$$
 Then,

$$\pi$$

(C)
$$T_n < \frac{\pi}{3\sqrt{3}}$$
 (D) $T_n > \frac{\pi}{3\sqrt{3}}$

(D)
$$T_n > \frac{\pi}{3\sqrt{3}}$$

10. (a) Let f be a non-negative function defined on the interval [0,1]. If $\int_{0}^{x} \sqrt{1-(f'(t))^2} dt = \int_{0}^{x} f(t)dt$, $0 \le x \le 1$, and f(0) = 0, then [JEE 2009, 3 + 4 + 4]

(A)
$$f\left(\frac{1}{2}\right) < \frac{1}{2}$$
 and $f\left(\frac{1}{3}\right) > \frac{1}{3}$ (B) $f\left(\frac{1}{2}\right) > \frac{1}{2}$ and $f\left(\frac{1}{3}\right) > \frac{1}{3}$

(C)
$$f\left(\frac{1}{2}\right) < \frac{1}{2}$$
 and $f\left(\frac{1}{3}\right) < \frac{1}{3}$ (D) $f\left(\frac{1}{2}\right) > \frac{1}{2}$ and $f\left(\frac{1}{3}\right) < \frac{1}{3}$

(b) If
$$I_n = \int_{-\pi}^{\pi} \frac{\sin nx}{(1+\pi^X)\sin x} dx$$
, $n = 0, 1, 2, \dots$ then

(A)
$$I_n = I_{n+2}$$

(A)
$$I_n = I_{n+2}$$
 (B) $\sum_{m=1}^{10} I_{2m+1} = 10\pi$

(C)
$$\sum_{10}^{10} I_{2m} = 0$$

(D)
$$I_n = I_{n+1}$$

11. (a) The value of $\lim_{x\to 0} \frac{1}{x^3} \int_{0}^{x} \frac{t \ln (1+t)}{t^4+4} dt$ is

[JEE 2010, 3 + 3 + 5 + 3]

- (A) 0

- (B) $\frac{1}{12}$ (C) $\frac{1}{24}$ (D) $\frac{1}{64}$
- **(b)** The value(s) of $\int_{0}^{1} \frac{x^4(1-x)^4}{1+x^2} dx$ is (are)
- (A) $\frac{22}{7} \pi$ (B) $\frac{2}{105}$ (C) 0 (D) $\frac{71}{15} \frac{3\pi}{2}$
- (c) Let f be a real-valued function defined on the

interval (-1, 1) such that $e^{-x} f(x) = 2 + \int_{0}^{x} \sqrt{t^4 + 1} dt$, for all $x \in (-1, 1)$, and let f^{-1} be the inverse function of f. Then $(f^{-1})'$ (2) is equal to (A) 1 (B) 1/3 (C) 1/2 (D) 1/e

(d) For any real number x, let [x] denote the largest integer less than or equal to x. Let f be a real valued function defined on the interval [-10, 10] by

$$f(x) = \begin{cases} x - [x] & \text{if } [x] \text{ is odd} \\ 1 + [x] - x & \text{if } [x] \text{ is even} \end{cases}$$

Then the value of $\frac{\pi^2}{10}$ $\int_{10}^{10} f(x) \cos \pi x \, dx$ is

- **12.** The value of $\int_{\frac{\ln 3}{2}}^{\sqrt{\ln 3}} \frac{x \sin x^2}{\sin x^2 + \sin(\ln 6 x^2)} dx$ is
- (A) $\frac{1}{4} \ln \frac{3}{2}$ (B) $\frac{1}{2} \ln \frac{3}{2}$ (C) $\ln \frac{3}{2}$ (D) $\frac{1}{6} \ln \frac{3}{2}$ **13.** Let $f: [1, \infty) \to [2, \infty)$ be a differentiable fun

tion such that f(1) = 2. If $6 \int_{1}^{x} f(t) dt = 3x f(x) - x^3$

for all $x \ge 1$, then the value of f(2) is [JEE 2011, 4]

- **14.** The value of the integral $\int_{1/2}^{\pi/2} \left(x^2 + \ln \frac{\pi + x}{\pi x} \right) \cos x \, dx$ is
- (A) 0
- (B) $\frac{\pi^2}{2}$ 4 (C) $\frac{\pi^2}{2}$ + 4 (D) $\frac{\pi^2}{2}$