CS 251 ARM Instruction Summary

ARM Assembly Instructions

Instruction	Format	Example	Meaning	Fields
add	R-format	ADD X1,X2,X3	X1 = X2 + X3	Rn=X2, Rm=X3, Rd=X1
subtract	R-format	SUB X1,X2,X3	X1 = X2 - X3	Rn=X2, Rm=X3, Rd=X1
addi	I-format	ADDI X1,X2,#C	X1 = X2 + C	Rn=X2, Rd=X1
subi	I-format	SUBI X1,X2,#C	X1 = X2 - C	Rn=X2, Rd=X1
load word	D-format	LDUR X1,[X2,#Imm]	X1 = Memory[X2+Imm]	Rn=X2, Rt=X1
store word	D-format	STUR X1,[X2,#Imm]	Memory[X2+Imm] = X1	Rn=X2, Rt=X1
branch	B-format	B #Imm	$PC = PC + 4 \times Imm$	
branch on	CB-format	CBZ X1,#Imm	if (X1==0)	Rt=X1
zero			$PC = PC + 4 \times Imm$	
			else $PC = PC + 4$	
branch on	CB-format	CBNZ X1,#Imm	if (X1!=0)	Rt=X1
non-zero			$PC = PC + 4 \times Imm$	
			else $PC = PC + 4$	

 $\#\mathrm{Imm}$ means signed constants, and $\#\mathrm{C}$ means unsigned constants

ARM Instruction Type and Format

ARM Instruction Opcodes

Instruction	Opcode	Format	
В	0001 01	B-format	
ADD	1000 1011 000	R-format	
ADDI	1001 0001 00	I-format	
CBZ	1011 0100	CB-format	
CBNZ	1011 0101	CB-format	
SUB	1100 1011 000	R-format	
SUBI	1101 0001 00	I-format	
STUR	1111 1000 000	D-format	
LDUR	1111 1000 010	D-format	

CS251 Laws of Boolean Algebra

Rule_	Dual Rule	
$\overline{ar{X}}=X$		
X + 0 = X	$X \cdot 1 = X$	(identity)
X + 1 = 1	$X \cdot 0 = 0$	(zero/one)
X + X = X	XX = X	(absorption)
$X + \overline{X} = 1$	$X\overline{X} = 0$	(inverse)
X + Y = Y + X	XY = YX	(commutative)
X + (Y + Z) = (X + Y) + Z	X(YZ) = (XY)Z	(associative)
X(Y+Z) = XY + XZ	X + YZ = (X + Y)(X + Z)	(distributive)
$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	$\overline{XY} = \overline{X} + \overline{Y}$	(DeMorgan)

Powers of 2

$$\begin{array}{cccc} 2^0 & 1 \\ 2^1 & 2 \\ 2^2 & 4 \\ 2^3 & 8 \\ 2^4 & 16 \\ \hline 2^5 & 32 \\ 2^6 & 64 \\ 2^7 & 128 \\ 2^8 & 256 \\ 2^9 & 512 \\ 2^{10} & 1024 \\ \end{array}$$

IEEE 754 Single Precision Floating Point Number Representation

31 3	30 23	22 0
S	exponent	fraction
1 bit	8 bits	23 bits