Procesarea semnalelor Transformata Fourier.

Paul Irofti

Universitatea din București Facultatea de Matematică și Informatică Departmentul de Informatică Email: paul.irofti@fmi.unibuc.ro

Discretizare și eșantionare

Continuu:

$$x(t) = \sin(2\pi f_0 t) \tag{1}$$

Discret:

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$$
 (2)

unde

- ▶ f₀ frecvenţa (Hz) măsoară numărul de oscilaţii într-o secundă
- \triangleright n eşantionul, indexul în şirul de timpi $0, 1, 2 \dots$
- t_s perioada de eșantionare; constantă (ex. la fiecare secundă)
- nt_s orizontul de timp (s)
- ► f₀nt_s numărul de oscilații măsurat
- \triangleright $2\pi f_0 nt$ unghiul măsurat în radiani (vezi note de curs)
- ► f_s frecvența de eșantionare (Hz)
- $ightharpoonup f_0 + kf_s$ frecvenţa de aliere, $\forall k \in \mathbb{N}$

Cum trecem în frecvență și înapoi în timp?

Transformata Fourier și Transformata Fourier Inversă ne ajută să trecem din domeniul timpului în domeniul frecvenței și vice-versa.

Transformata Fourier Continuă (TF)

Definitie

Transformata Fourier a unui semnal continuu:

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}$$
 (3)

transformă semnalul continuu din domeniul timpului x(t) în semnalul continuu X(f) din domeniul frecvenței.

Aici e este numărul lui Euler, baza logaritmului natural, și j reprezintă numărul complex $j=\sqrt{-1}$.

Relația lui Euler

Definiție

Relația lui Euler

$$e^{j\alpha} = \cos \alpha + j \sin \alpha \tag{4}$$

pune în legătură numerele complexe, funcțiile trigonometrice și funcțiile exponențiale.

Pentru un număr complex $z \in \mathbb{C}$:

$$z = a + jb = |z|(\cos\varphi + j\sin\varphi) = re^{j\varphi}$$
 (5)

unde $r=\sqrt{a^2+b^2}$ este magnitudinea și $\varphi=\arctan \frac{b}{a}$

Pentru Transformata Fourier Continuă:

$$e^{-j\alpha} = \cos(-\alpha) + j\sin(-\alpha) = \cos\alpha - j\sin\alpha$$
 (6)

Radiani

Definitie

Radianii descriu unghiul unui arc de cerc drept raportul dintre lungimea arcului împărțită la rază.

Exemplu

 $1 \text{ rad} = 180^{\circ}/\pi$

 $2\pi \ rad = 360^{\circ}$

Frecvența unghiulară și frecvența de eșantionare

Definitie

Frecvența unghiulară este frecvența exprimată în radiani pe secundă:

$$\Omega = \frac{\omega}{T} = \frac{[rad]}{[s]} = \omega f \tag{7}$$

Definitie

Frecvența de eșantionare în frecvență este:

$$\Omega_s = \frac{2\pi}{T} = 2\pi f_s \tag{8}$$

Discretizare

Dacă un semnal este periodic, iar eșantioanele x[n] se repetă o dată la fiecare N măsurători atunci discretizarea timp-frecvență devine:

- ightharpoonup discretizarea timpului $t o nt_s$ și
- frecvența $f o rac{1}{N}$
- lacktriangle frecvența unghiulară $\Omega
 ightarrow rac{\omega}{N}$
- lacktriangle frecvența unghiulară de eșantionare $\Omega
 ightarrow rac{2\pi}{N}$
- $ightharpoonup e^{-j\Omega t}=e^{-j2\pi ft}
 ightarrow e^{-j2\pi f_s nt_s}=e^{-jrac{2\pi}{N}nt_s}$

Transformata Fourier Discretizată în Timp (DTFT)

Definitie

Transformata Fourier Continuă a unui semnal discretizat în timp:

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft} =$$
 (9)

$$=\sum_{n=-\infty}^{+\infty}x(nt_s)e^{-j2\pi fnt_s}=\sum_{n=-\infty}^{+\infty}x(nt_s)e^{-j\Omega nt_s}$$
 (10)

$$=\sum_{n=-\infty}^{+\infty}x[n]e^{-j2\pi fnt_s}=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\Omega nt_s}$$
 (11)

numită în literatură Discrete-Time Fourier Transform (DTFT).

Transformata Fourier Discretizată în Timp (DFS)

Fie un sir x[n] cu perioadă N a.î. x[n] = x[n + kN], $\forall n, k \in \mathbb{N}$.

Definitie

Transformata Fourier a semnalului x[n] cu perioadă N este:

$$X(m) = \sum_{n} x(n)e^{-j2\pi mn/N}$$
 (12)

$$X(m) = \sum_{n} x(n)e^{-j2\pi mn/N}$$

$$x(n) = \frac{1}{N} \sum_{m} X(m)e^{j2\pi mn/N}$$
(12)

numită în literatură Discrete Fourier Sequence (DFS).

Remarcă

Dacă semnalul este periodic, observăm că informatia se repetă o dată la N eșantioane a.î. putem limita capetele sumei la intervalul 0...N-1.

Transformata Fourier Discretă (DFT)

Definiție

Transformata Fourier a unui semnal discret (aperiodic):

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N)\right]$$
(14)

- \blacktriangleright X(m) componenta m DFT (ex. X(0), X(1), X(2), ...)
- ▶ m indicele componentei DFT în domeniul frecvenței (m = 0, 1, ..., N 1)
- \rightarrow x(n) eșantioanele în timp (ex. x(0), x(1), x(2), ...)
- ▶ n indicele eşantioanelor în domeniul timpului (n = 0, 1, ..., N 1)
- N numărul eșantioanelor în timp la intrare și numărul componentelor în frecventă la iesire

Exemplu DFT N = 4

Pentru N=4 eșantioane, vom avea $n, m=\{0,1,2,3\}$:

$$X(m) = \sum_{n=0}^{3} x(n) \left[\cos(2\pi mn/4) - j \sin(2\pi mn/4) \right]$$
 (15)

Pentru m = 0:

$$X(0) = x(0) \left[\cos(2\pi \underbrace{0 \cdot 0}_{m \cdot n} / 4) - j \sin(2\pi \underbrace{0 \cdot 0}_{m \cdot n} / 4) \right]$$

$$+ x(1) \left[\cos(2\pi 0 \cdot 1 / 4) - j \sin(2\pi 0 \cdot 1 / 4) \right]$$

$$+ x(2) \left[\cos(2\pi 0 \cdot 2 / 4) - j \sin(2\pi 0 \cdot 2 / 4) \right]$$

$$+ x(3) \left[\cos(2\pi 0 \cdot 3 / 4) - j \sin(2\pi 0 \cdot 3 / 4) \right]$$

Exemplu DFT N = 4

$$X(1) = x(0)[\cos(2\pi \frac{1 \cdot 0}{4}) - j\sin(2\pi \frac{1 \cdot 0}{4})]$$

$$+ x(1)[\cos(2\pi \frac{1 \cdot 1}{4}) - j\sin(2\pi \frac{1 \cdot 1}{4})]$$

$$+ x(2)[\cos(2\pi \frac{1 \cdot 2}{4}) - j\sin(2\pi \frac{1 \cdot 2}{4})]$$

$$+ x(3)[\cos(2\pi \frac{1 \cdot 3}{4}) - j\sin(2\pi \frac{1 \cdot 3}{4})]$$

$$X(2) = x(0)[\cos(2\pi \frac{2 \cdot 0}{4}) - j\sin(2\pi \frac{2 \cdot 0}{4})]$$

$$+ x(1)[\cos(2\pi \frac{2 \cdot 1}{4}) - j\sin(2\pi \frac{2 \cdot 1}{4})]$$

$$+ x(2)[\cos(2\pi \frac{2 \cdot 1}{4}) - j\sin(2\pi \frac{2 \cdot 2}{4})]$$

$$+ x(3)[\cos(2\pi \frac{2 \cdot 3}{4}) - j\sin(2\pi \frac{2 \cdot 3}{4})]$$

$$X(3) = x(0)[\cos(2\pi \frac{3 \cdot 0}{4}) - j\sin(2\pi \frac{3 \cdot 0}{4})]$$

$$+ x(1)[\cos(2\pi \frac{3 \cdot 1}{4}) - j\sin(2\pi \frac{3 \cdot 1}{4})]$$

$$+ x(2)[\cos(2\pi \frac{3 \cdot 2}{4}) - j\sin(2\pi \frac{3 \cdot 2}{4})]$$

$$+ x(3)[\cos(2\pi \frac{3 \cdot 3}{4}) - j\sin(2\pi \frac{3 \cdot 3}{4})]$$

Transformata Fourier inversă

Transformata Fourier a unui semnal discret:

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N) \right]$$

Definitie

Transformata Fourier inversă a unui semnal discret (IDFT):

$$x(n) = \frac{1}{N} \sum_{m=0}^{N-1} X(m) e^{j2\pi mn/N}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} X(m) \left[\cos(2\pi mn/N) + j \sin(2\pi mn/N) \right]$$
(16)

Recapitulare: Semnale trece-jos (lowpass)

Definiție

Un semnal trece-jos este un semnal limitat în bandă și centrat în jurul frecvenței zero.

Remarcă

Din considerente didactice, aici am analizat spectrul continuu obținut din Transformata Fourier Continuă. În practică folosim Transformata Fourier Discretă.

Extinderea unui semnal discret

Dacă avem de a face cu un semnal discret aperiodic, îl putem extinde la un semnal periodic pentru a aplica DFT.

Exemplu eșantionare a transformatei Fourier cu N=12:

Sursă: (Oppenheim and Schafer 2014)

Extinderea unui semnal discret

Atenție la fenomenul de aliere când extindem (exemplu N = 7).

Sursă: (Oppenheim and Schafer 2014)

Remarcă

Problema alierii este aceiași în frecvență ca și în timp. Metoda de discretizare și eșantionare fiind aceiași. Doar domeniul se schimbă.

Exemplu: treaptă

Atenție la efectele secundare extinderii unui semnal aperiodic.

Frecvențe importante

Frecvența fundamentală este

$$f = \frac{t_s}{N} \tag{17}$$

Frecventele analizate sunt:

$$f_a(m) = \frac{mf_s}{N} \tag{18}$$

Componenta m=0 este numită componenta curent continuu (Direct Current (DC))

$$X(0) = \sum_{n=0}^{N-1} x(n) [\cos(0) - j\sin(0)] = \sum_{n=0}^{N-1} x(n)$$
 (19)

Magnitudine și puterea componentelor (power spectrum (PS)):

$$X(m) = X_{\text{real}}(m) + jX_{\text{imag}}(m)$$
 (20)

$$X_{\text{mag}} = |X(m)|$$
 $X_{\text{PS}}(m) = X_{\text{mag}}(m)^2$ (21)

Exemplu: Frecvențe importante

Pentru un semnal continuu eșantionat cu 500 eșantioane pe secundă asupra căruia se aplică DFT în 16 puncte avem:

$$f = \frac{f_s}{N} = \frac{500}{16} = 31,25Hz$$

Frecvențele analizate sunt:

$$X(0)=0\cdot 31.25=0$$
 (prima componentă în frecvență) $X(1)=1\cdot 31.25=31,25$ (a doua componentă în frecvență) $X(2)=2\cdot 31.25=62,5$ (a treia componentă în frecvență) $X(3)=3\cdot 31.25=93,75$ (a patra componentă în frecvență) $X(15)=15\cdot 31.25=468,75$ (componenta 16 în frecvență)

Vom calcula 8 componente DFT pentru semnalul alcătuit din două componente de 1kHz și 2kHz:

$$x(t) = \sin(2\pi \cdot 1000 \cdot t) + \frac{1}{2}\sin(2\pi \cdot 2000 \cdot t + \frac{3\pi}{4})$$

pentru asta avem nevoie de N=8 eșantioane în timp pentru care alegem frecvența de eșantionare $f_s=8000$.

$$f_a(m) = \frac{mf_s}{N} =$$

Vom calcula 8 componente DFT pentru semnalul alcătuit din două componente de 1kHz și 2kHz:

$$x(t) = \sin(2\pi \cdot 1000 \cdot t) + \frac{1}{2}\sin(2\pi \cdot 2000 \cdot t + \frac{3\pi}{4})$$

pentru asta avem nevoie de N=8 eșantioane în timp pentru care alegem frecvența de eșantionare $f_s=8000$.

$$f_a(m) = \frac{mf_s}{N} = \{0kHz, 1kHz, 2kHz, \dots, 7kHz\}$$

Vom calcula 8 componente DFT pentru semnalul alcătuit din două componente de 1kHz și 2kHz:

$$x(t) = \sin(2\pi \cdot 1000 \cdot t) + \frac{1}{2}\sin(2\pi \cdot 2000 \cdot t + \frac{3\pi}{4})$$

pentru asta avem nevoie de N=8 eșantioane în timp pentru care alegem frecvența de eșantionare $f_s=8000$.

$$f_a(m) = \frac{mf_s}{N} = \{0kHz, 1kHz, 2kHz, \dots, 7kHz\}$$

Transformata Fourier devine:

$$X(m) = \sum_{n=0}^{7} x(n) \left[\cos(2\pi mn/8) + j \sin(2\pi mn/8) \right]$$
$$X(1) = \sum_{n=0}^{7} x(n) \left[\cos(2\pi n/8) + j \sin(2\pi n/8) \right]$$

:

Fie cele 8 eșantioane în timp:

$$x[0] = 0,3535,$$
 $x[1] = 0,3535$
 $x[2] = 0,6464,$ $x[3] = 1,0607$
 $x[4] = 0,3535,$ $x[5] = -1,0607$
 $x[6] = -1,3535,$ $x[7] = -0,3535$

$$X(1) = \sum_{n=0}^{7} x(n) \left[\cos(2\pi n/8) + j \sin(2\pi n/8) \right] =$$

$$= x(0) \cos(0) - jx(0) \sin(0) +$$

$$+ x(1) \cos(\pi/4) - jx(1) \sin(\pi/4) +$$

$$+ x(2) \cos(\pi/2) - jx(2) \sin(\pi/2) +$$

$$+ x(3) \cos(3\pi/4) - jx(3) \sin(3\pi/4) +$$

$$+ x(4) \cos(\pi) - jx(4) \sin(\pi) +$$

$$+ x(5) \cos(5\pi/4) - jx(5) \sin(5\pi/4) +$$

$$+ x(6) \cos(3\pi/2) - jx(6) \sin(3\pi/2) +$$

$$+ x(7) \cos(7\pi/4) - jx(7) \sin(7\pi/4) =$$

$$= \cdots = 0, 0 - j4, 0$$

Aplicăm formula pentru calculul celorlalte componente:

$$X(1) = 0, 0 - j4, 0$$

$$X(2) = 1,414 + j1,414$$

$$X(3) = 0, 0 + j0, 0$$

$$X(4) = 0, 0 + j0, 0$$

$$X(5) = 0, 0 + j0, 0$$

$$X(6) = 1,414 - j1,414$$

$$X(7) = 0, 0 + j4, 0$$

Cât este X(0) ?

Exemplu: Componentele DFT

Cum arată componentele cos și sin în funcție de m?

Exemplu: Componentele DFT

Exemplu: Rezultate DFT

Simetrie și anti-simetrie în componentele spectrale:

wave having an initial phase of -90°.

Sursă: (Lyons 2004)