

Search web pages...

#### Home

#### Use R

R for Social Network Analysis

- -> 'Import' Data From UCInet
- -> Create Network Object
- -> Create Basic Visualization
- -> Create Multiplex

# Visualization

- -> Affiliation Data
- -> More Soon

**GUI SNA Applications** 

Network Visualizations

Other Cool Stuff

# **Create Multiplex Visualizations**

\*UNDER CONSTRUCTION\*

This page is designed to help users visualize multiplex network data. Multiplex data usually consists of nodes that have more than one type of relationship to each other.

# Visualize each set of relationships on the same layout

We'll use Krackhardt's data again, looking at both the ADVICE and REPORTS\_TO networks.

```
advadj = read.delim("Krack-High-Tec-ADVICE.tab", row.names = 1)
colnames(advadj) = 1:21
rptadj = read.delim("Krack-High-Tec-REPORTS_TO.tab", row.names = 1)
colnames(rptadj) = 1:21
```

In igraph, you need one graph object per set of relationships.

```
advnet = graph.adjacency(advadj)
rptnet = graph.adjacency(rptadj)
```

Now check the length of each edgelist.

```
length(E(advnet))
length(E(rptnet))
```

Now, let's create a single layout that we will use to show both sets of relationships. The ADVICE network (advnet object) has 189 edges and the REPORTS\_TO network (rptnet object) only has 19. So, we should probably apply the layout optimization algorithm to the ADVICE network because it is usually much easier to read - sparse network visualizations are easier to read without layout optimization.

```
la = layout.fruchterman.reingold( advnet )
plot.igraph( advnet, layout = la )
```

Ok, our network looks good so far. A little cluttered though. So let's transform the ADVICE graph so that multiple edges become an edge-attribute ( E(g)\$weight ):

```
E(advnet)$weight <- count.multiple(advnet)
advnet <- simplify(advnet)
la = layout.fruchterman.reingold( advnet, weights = E( advnet )$weight )
plot.igraph( advnet, layout = la )</pre>
```

But we also want to

#### Works Cited:

Krackhardt, David (1992). "The Strength of Strong Ties: The Importance of Philos in Organizations." In chapter 8 of Networks and Organizations: Structure, Form, and Action. Eds. Nitin Nohria and Robert Eccles. Boston: Harvard Business School Press.

Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002). Ucinet 6 for windows: Software for social network analysis.

Fruchterman, T.M.J. and Reingold, E.M. (1991). Graph Drawing by Force-directed Placement. Software - Practice and Experience, 21(11):1129-1164.

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.sf.net

#### RELEVANT ONLINE RESOURCES

## R project website

get R and relevant sna packages here, plus many other resources

## R - getting started

list of online books, short guides, and reference cards to get started using R

# Intro to Social Network Methods

an excellent and free online book on social network analysis

#### statnet website

a series of R packages for network analysis, ideal for network/regression models

# igraph website

an excellent package for working with network data and network visualization

Stanford University | Contact Information | Link 1 | Link 2 | Link 3

© Stanford University. 450 Serra Mall, Stanford, California 94305. (650) 723-2300. Terms of Use | Copyright Complaints