

Introdução à Metodologia Científica

Eduardo Ogasawara eduardo.ogasawara@cefet-rj.br https://eic.cefet-rj.br/~eogasawara

O que é ciência?

- A ciência é um sistema de conhecimento baseado em:
 - Observação
 - Experimentação
 - Validação
- Objetivo: Compreender a realidade e desenvolver explicações gerais para fenômenos naturais e artificiais
- Exemplos:
 - Física: A teoria da gravitação de Newton foi formulada a partir de observações e testada por séculos
 - Biologia: A descoberta do DNA foi feita com base em experimentos e evidências empíricas
 - Computação: Algoritmos são projetados, analisados matematicamente e validados por meio de experimentos computacionais
- A ciência utiliza o método científico para produzir conhecimento confiável

O que é conhecimento científico?

- O conhecimento científico é um conjunto de explicações obtidas e testadas por métodos sistemáticos
- Ele se diferencia de outros tipos de conhecimento por ser:
 - Baseado em evidências: fundado em observações, experimentos e dados confiáveis
 - Revisável e dinâmico: sempre aberto a mudanças conforme novas evidências surgem
 - Sistemático: segue métodos rigorosos para minimizar erros e vieses
 - Falível: embora o conhecimento científico possa conter erros, ele possui mecanismos de revisão que permitem correções e aprimoramentos constantes
- Exemplo: A teoria da gravitação de Newton foi aceita por séculos, até que novas evidências levaram à formulação da Teoria da Relatividade de Einstein, que aprimorou a explicação dos fenômenos gravitacionais
- Conclusão: A ciência não busca verdades absolutas, mas explicações cada vez mais precisas sobre o mundo

Método científico

- O método científico é a lógica geral, tácita ou explicita, para desenvolver pesquisas confiáveis
- 1 Observação: Coleta de dados sobre fenômenos
- 2 Formulação de Hipótese: Explicação inicial baseada nas observações
- 3 Experimentação: Teste controlado da hipótese
- Análise de Resultados: Interpretação dos dados coletados
- 5 Conclusão: Validação ou refutação da hipótese
- O Publicação e Revisão por Pares: Comunicação dos resultados à comunidade científica

Importância do método científico

- Por que seguir um método rigoroso?
 - Garante que conclusões são baseadas em evidências e não em suposições
 - Permite a reprodutibilidade dos resultados
 - Reduz o viés subjetivo
 - A ciência avança quando os resultados são replicáveis, permitindo que outros pesquisadores confirmem ou refutem hipóteses anteriores
- Exemplo: Avaliação de um software educacional
 - 1) Grupo A utilizou o software; Grupo B não utilizou
 - 2) Grupo A teve média superior em desempenho
 - 3) Mas... essa diferença é estatisticamente significativa?
 - 4) Uso de testes estatísticos para validar se a diferença ocorreu por acaso ou é real
 - Ponto importante: Diferenças observadas precisam ser comprovadas com testes estatísticos apropriados

Princípios de construção do conhecimento

Indução

- Generaliza um padrão a partir de múltiplas observações
 - A indução não garante a verdade absoluta, mas permite formular hipóteses plausíveis com base em padrões observados
- Na computação, é aplicada na indução matemática e estrutural
- Exemplo: Algoritmos de aprendizado de máquina generalizam padrões a partir de dados observados

Refutação

- Toda teoria deve estar aberta a ser refutada por novas evidências
 - Refutar uma teoria não significa invalidá-la completamente, mas sim aprimorá-la com novos dados
- Exemplo: A teoria de que "um algoritmo é sempre mais rápido que outro" pode ser invalidada por novos testes que demonstrem o contrário

Conceitos, Leis e Teorias

Conceitos

- Construções lógicas dentro de um sistema de referência
- São instrumentos de trabalho do cientista
- Exemplo: Em computação, o conceito de complexidade algorítmica ajuda a classificar o desempenho de algoritmos

Leis Científicas

- Regularidades observadas que permitem previsões sobre fenômenos
- Exemplo: Lei de Amdahl na computação, que estabelece limites (parte sequencial) para a aceleração de programas em sistemas paralelos

Teorias Científicas

- Conjunto de conceitos inter-relacionados que explicam fenômenos e fazem previsões
- Não representam uma verdade absoluta, mas refletem o estado da arte do conhecimento em determinado momento
- Exemplos:
 - Teoria da Complexidade Computacional, que categoriza problemas computacionais de acordo com sua dificuldade
 - No caso da Lei de Moore, destaca-se que ela não é uma lei científica, mas sim uma observação empírica que pode mudar com o tempo

Classificações das Ciências e seus critérios

- As ciências podem ser classificadas de diversas formas:
 - Pela natureza do objeto de estudo
 - Ciências formais (matemática, lógica)
 - Ciências empíricas (física, biologia, sociologia)
 - Pelo objetivo da pesquisa
 - Ciências puras (buscam conhecimento fundamental)
 - Ciências aplicadas (buscam aplicações práticas)
 - Pelo grau de precisão dos resultados
 - Ciências exatas (matemática, física)
 - Ciências inexatas (biologia*, psicologia)
 - Pelo rigor metodológico
 - Ciências hard (ciências naturais, matemática)
 - Ciências soft (ciências sociais, humanas)

Classificação fundamental: Ciências formais

- As ciências formais estudam estruturas abstratas, sem aplicação direta à realidade física
- Não dependem de experimentação ou observação da natureza
- Exemplos na Computação:
 - Teoria de Algoritmos: Prova matemática de que um algoritmo é correto e eficiente
 - Linguagens Formais: Modelagem de gramáticas para linguagens de programação, como o uso de autômatos finitos para expressões regulares
 - Álgebra Relacional: Base matemática dos bancos de dados relacionais

Classificação fundamental: Ciências empíricas

- As ciências empíricas estudam fenômenos do mundo real e dependem de observação e experimentação.
- Dividem-se em:
 - Ciências Naturais: investigam fenômenos da natureza (física, química, biologia)
 - Ciências Sociais: estudam as interações humanas (sociologia, economia, psicologia)
- Exemplos na Computação:
 - Ciências Naturais: estudo de hardware, eficiência energética em processadores
 - Ciências Sociais: interação humano-computador, impacto da IA na sociedade

Classificação fundamental Computação científica

- Computação Científica é um terceiro modo da ciência, complementando teoria e experimentação
 - Surgiu devido à necessidade de simular fenômenos complexos que não podem ser reproduzidos fisicamente ou testados apenas por métodos analíticos
- Características
 - Construção de modelos matemáticos
 - Simulação em computadores para resolver problemas complexos
 - Análise computacional de fenômenos físicos, biológicos e sociais
- Exemplos
 - Modelagem climática por meio de equações diferenciais resolvidas numericamente
 - Simulação de proteínas na biomedicina
 - Treinamento de redes neurais para reconhecimento de padrões

Classificação quanto à ênfase no objetivo da pesquisa

- Ciências puras (ou fundamentais)
 - Estudam conceitos básicos sem preocupação com aplicação imediata
 - Exemplo: Cosmologia, Lógica
- Ciências aplicadas
 - Descobertas voltadas para aplicações práticas
 - Exemplo: Engenharia, desenvolvimento de novos algoritmos de IA
- Conexão entre pesquisa pura e aplicada
 - Muitas pesquisas começam como ciência pura e, posteriormente, encontram aplicações práticas
 - Exemplo: O estudo inicial da teoria dos grafos hoje é essencial para redes sociais e algoritmos de busca

Classificação quanto ao grau de precisão dos resultados

- Ciências Exatas (Determinísticas)
 - Resultados previsíveis e quantitativos
 - Baseiam-se em modelos matemáticos rigorosos
 - Exemplos: Matemática, Física, Ciência da Computação (formal)
 - Análise de complexidade de algoritmos, que tem previsibilidade matemática
- Ciências Inexatas (Estocásticas)
 - Podem prever padrões gerais, mas os resultados não são sempre precisos
 - Exemplos: Economia, Psicologia, Redes Neurais na Computação
 - Sistemas de recomendação, que lidam com incerteza e comportamento humano imprevisível

Classificação quanto à metodologia e rigor científico

- Ciências Hard (duras)
 - Rigor metodológico elevado
 - Uso de estatística e matemática para validação
 - Exemplo: Pesquisa médica, Física, Algoritmos na Computação
- Ciências Soft (moles)
 - Aceitam evidências baseadas em estudos de caso
 - Dificuldade em controlar variáveis experimentais
 - As ciências soft lidam com maior complexidade nas variáveis, usando validação alternativa, como estudos longitudinais e triangulação de dados
 - Exemplo: Sociologia, Psicologia, Engenharia de Software

Critérios fundamentais para validação científica

Empirismo

- O conhecimento deve ser baseado em observações e testes controlados
- Teorias devem ser testáveis e prever fenômenos de maneira confiável
- Exemplo na computação: Validação experimental de algoritmos

Objetividade

- Resultados científicos devem ser reproduzíveis por outros pesquisadores
- A interpretação dos dados deve ser independente de opiniões pessoais
- Diferente de outras áreas, a ciência da computação evita argumentos baseados em autoridades
 - Na Computação a objetividade vem da execução repetida de experimentos computacionais

Exemplo:

 Teste de desempenho de um novo algoritmo deve ser comparado com benchmarks reconhecidos e não apenas com resultados de um único pesquisador

A Navalha de Occam e a Escolha de Modelos Científicos

- Entre duas explicações para um fenômeno, a mais simples tende a ser a correta
- Exemplo na computação:
 - Um modelo de machine learning muito complexo pode ter melhor desempenho, mas pode sofrer de sobreajustamento
 - Soluções simples são preferíveis, mas simplificação excessiva pode comprometer a precisão, como em modelos de IA que ignoram variáveis importantes
 - A escolha do modelo deve equilibrar simplicidade e precisão
 - Dica: Prefira sempre a solução mais simples que resolva o problema

Métodos e Técnicas na Pesquisa Científica

- O que é Método?
 - ✓ Definição: Conjunto ordenado de procedimentos sistemáticos usados para investigar um fenômeno
 - ✓ Objetivo: Garantir rigor e confiabilidade na produção do conhecimento
 - ✓ Exemplo: O método científico é um processo estruturado para formular hipóteses, testá-las e chegar a conclusões confiáveis
- O que são as Técnicas?
 - ✓ Definição: A aplicação prática de um método, ou seja, as ferramentas específicas usadas para executá-lo
 - ✓ Objetivo: Implementar o método de forma eficiente e mensurável
 - ✓ Exemplo: No método científico, podemos usar técnicas como experimentação controlada, simulações computacionais, análise estatística, surveys, entre outras
- Diferença essencial: O método fornece a estrutura geral da pesquisa, enquanto a técnica define como essa estrutura será executada na prática
- Exemplo na Computação
 - Método: Revisão sistemática da literatura para avaliar tendências na computação
 - Técnicas: Análise estatística de citações, mineração de dados em artigos científicos

Referências

[1] D. G. Perovano, Manual de metodologia da pesquisa científica. Editora Intersaberes, 2016.
[2] A. L. Cervo, P. A. Bervian, e R. da Silva, Metodologia Científica. Pearson Universidades, 2006.
[3] R. Wazlawick, 2017, Metodologia de Pesquisa para Ciência da Computação. Elsevier Brasil.
[4] J. Zobel, 2015, Writing for Computer Science. Springer.

