MA553: Spring 2016 Homework

Carlos Salinas

April 6, 2016

1 Course notes

Taken from Hungerford's Algebra. This first section will cover the relevant group theory part.

1.1 Group Theory

Semigroups, Monoids and Groups

If *G* is a nonempty subset, a *binary operation* on *G* is a function $G \times G \to G$. There are several commonly noted notations for the image of (a,b) under the binary operation: ab (multiplicative notation), $a \cdot b$, a * b, etc. For convenience we shall generally use multiplicative notation throughout this chapter and refer to ab as the *product* of a and b. A set may have several binary operations defined on it (for example, addition and multiplication on \mathbb{Z} given by $(a,b) \mapsto a + b$ or $(a,b) \mapsto ab$ respectively).

Definition 1. A *semigroup* is a nonempty set *G* together with a binary operation on *G* which is

- (a) associative: a(bc) = (ab)c for all $a, b, c \in G$;
 - a monoid is a semigroup G which contains a
- (b) two-sided identity element $e \in G$ such that ae = ea = a for all $a \in G$.

A *group* is a monoid *G* such that

(c) for every $a \in G$ there exists a (two-sided) inverse element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

A semigroup *G* is said to be *Abelian* or *commutative* if its binary operation is

(d) commutative: ab = ba for all $a, b \in G$.

Our principal interests are groups, however semigroups and monoids are convenient for stating certain certain theorems in the most generality. Examples are given below. The *order* of a group G is the cardinality of the set G. G is said to be finite if |G| is finite (otherwise, it is said to be infinite).

Theorem 1 (1.2). If G is a monoid, then the identity element e is unique. If G is a group, then

- (a) $a \in G$ and $aa = a \implies a = e$;
- (b) for all $a, b, c \in G$, $ab = ac \implies b = c$ and $ba = ca \implies b = c$ (left and right cancellation);
- (c) for each $a \in G$, the inverse element a^{-1} is unique;
- (d) for each $a \in G$, $(a^{-1})^{-1} = a$;
- (e) for $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$:
- (f) for $a, b \in G$ the equation ax = b and ya = b have unique solutions in $G: x = a^{-1}b$ and $y = ba^{-1}$.

Proposition 2 (1.3). Let G be a semigroup. Then G is a group if and only if the following conditions hold:

(i) there exists an identity element $e \in G$ such that ea = a for all $a \in G$ (left identity element);

(ii) for each $a \in G$, there exists an element $a^{-1} \in G$ such that $a^{-1}a = e$ (left inverse).

Sketch of the proof. The direction \implies is trivial. \iff : By Theorem 1.2(i) is true under the hypotheses. $G \neq \emptyset$ since $e \in G$. If $a \in G$, then (ii) $(aa^{-1})(aa^{-1}) = a(a^{-1}a)a^{-1} = aea^{-1} = aa^{-1}$ and hence $aa^{-1} = e$ by Theorem 1.2(i). Thus a^{-1} is a two-sided inverse of a. Since $ae = a(a^{-1}a) = (aa^{-1})a = ea = a$ for every $a \in G$, e is a two-sided identity. Therefore, G is a group by Definition 1.1.

Proposition 3 (1.4). Let G be a semigroup. Then G is a group if and only if for all $a,b \in G$ the equations ax = b, ya = b have solutions in G.

1.2 Ring Theory

1.3 Field Theory

Problem 2.1. Let G be a group, $a \in G$ an element of finite order m, and n a positive integer. Prove that

$$|a^n|=\frac{m}{\gcd(m,n)}.$$

Proof.

Problem 2.2. Let *G* be a group, and let *a*, *b* be elements of finite order *m*, *n* respectively. Show that if ba = ab and $\langle a \rangle \cap \langle b \rangle = \{e\}$, then |ab| = lcm(m, n).

Proof. ■

Problem 2.3. Let *G* be a group and *H*, *K* normal subgroups with $H \cap K = \{e\}$. Show that

- (a) hk = kh for every $h \in H$, $k \in K$.
- (b) HK is a subgroup of G with $HK \cong H \times K$.

Proof.

Problem 2.4. Show that A_4 has no subgroup of order 6 (although 6 | $12 = |A_4|$).

Problem 3.1. Let <i>G</i> be the group of order $2^3 \cdot 3$, $n \ge 2$. Show that <i>G</i> has a normal 2-subgroup $\ne \{e\}$.
Proof.
Problem 3.2. Let G be a group of order p^2q , p and q primes. Show that the Sylow p -Sylow subgroup or the q -Sylow subgroup of G is normal in G .
Proof.
Problem 3.3. Let G be a subgroup of order pqr , $p < q < r$ primes. Show that the r -Sylow subgroup of G is normal in G .
Proof.
Problem 3.4. Let <i>G</i> be a group of order <i>n</i> and let $\varphi : G \to S_n$ be given by the action of <i>G</i> on <i>G</i> via translation
(a) For $a \in G$ determine the number and the lengths of the disjoint cycles of the permutation $\phi(a)$.
(b) Show that $\varphi(G) \not\subset A_n$ if and only if n is even and G has a cyclic 2-Sylow subgroup.
(c) If $n = 2m$, m odd, show that G has a subgroup of index 2.
Proof.
Problem 3.5. Show that the only simple groups $\neq \{e\}$ of order < 60 are the groups of prime order.
Proof.

Show that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof.

Problem 4.2. Let G be a group of order 231 and let H be an 11-Sylow subgroup of G. Show that $H \in Z(G)$.

Proof.

Problem 4.3. Let $G = \{e, a_1, a_2, a_3\}$ be a non-cyclic group of order 4 and define $\varphi \colon S_3 \to \operatorname{Aut}(G)$ by $\varphi(\sigma)(e) = e$ and $\varphi(\sigma)(a_1) = a_{\sigma(i)}$. Show that φ is well-defined and an isomorphism of groups.

Proof.

Problem 4.1. Let *G* be a finite group, *p* a prime number, *N* the intersection of all *p*-Sylow subgroups of *G*.

Problem 4.4. Determine all groups of order 18.

Problem 5.1. Let p be a prime and let G be a nonAbelian group of order p^3 . Show that $G' = Z(G)$.
Proof.
Problem 5.2. Let p be an odd prime and let G be a nonAbelian group of order p^3 having an element of order p^2 . Show that there exists an element $b \notin \langle a \rangle$ of order p .
Proof.
Problem 5.3. Let p be an odd prime. Determine all groups of order p^3 .
Proof.
Problem 5.4. Show that $(S_n)' = A_n$.
Proof.
Problem 5.5. Show that every group of order < 60 is solvable.
Proof.
Problem 5.6. Show that every group of order 60 that is simple (or not solvable) is isomorphic to A_5 .
Proof.

Problem 6.1. Find all composition series and the composition factors of D_6 .

Proof. ■

Problem 6.2. Let T be the subgroup of $GL(n, \mathbf{R})$ consisting of all upper triangular invertible matrices. Show that T is solvable.

Proof.

Problem 6.3. Let $p \in \mathbb{Z}$ be a prime number. Show:

- (a) $(p-1)! \equiv -1 \mod p$.
- (b) If $p \equiv 1 \mod 4$ then $x^2 \equiv -1 \mod p$ for some $x \in \mathbb{Z}$.

Proof.

Problem 6.4. (a) Show that the following are equivalent for an odd prime number $p \in \mathbb{Z}$:

- (i) $p \equiv 1 \mod 4$.
- (ii) $p = a^2 + b^2$ for some *a*, *b* in **Z**.
- (iii) p is not prime in $\mathbb{Z}[i]$.
- (b) Determine all prime ideals of Z[i].

Problem 7.1. Let R be a domain. Show that R is a UFD if and only if every nonzero nonunit in R is a product of irreducible elemnets and the intersection of any two principal ideals is again principal.

Proof. ■

Problem 7.2. Let R be a PID and p a prime ideal of R[x]. Show that p is principal or p = (a, f) for some $a \in R$ and some monic $f \in R[x]$.

Proof.

Problem 7.3. Let *k* be a field and $n \ge 1$. Show that $z^n + y^3 + x^2 \in k(x, y)[z]$ is irreducible.

Proof.

Problem 7.4. Let k be a field of characteristic zero and $n \ge 1$, $m \ge 2$. Show that $x_1^n + \dots + x_m^n - 1 \in k[x_1, \dots, x_m]$ is irreducible.

Proof.

Problem 7.5. Show that $x^{3^n} + 2 \in Q(i)[x]$ is irreducible.

Problem 8.1. Let $k \in K$ and $k \in L$ be finite field extensions contained in some field. Show that:

- (a) $[KL : L] \le [K : k]$.
- (b) $[KL:k] \leq [K:k][L:k]$.
- (c) $K \cap L = k$ if equality holds in (b).

Proof.

Problem 8.2. Let k be a field of characteristic $\neq 2$ and a, b elements of k so that a, b, ab are not squares in k. Show that $\left[k(\sqrt{a}, \sqrt{b}) : k\right] = 4$.

Proof. ■

Problem 8.3. Let *R* be a UFD, but not a field, and write K = Quot(R). Show that $[\bar{K} : k] = \infty$.

Proof.

Problem 8.4. Let $k \in K$ be an algebraic field extension. Show that every k-homomorphism $\delta \colon K \to K$ is an isomorphism.

Proof.

Problem 8.5. Let *K* be the splitting field of $x^6 - 4$ over **Q**. Determine *K* and [K : Q].

Problem 9.1. Let k be a field, $f \in k[x]$ a polynomial of degree $n \ge 1$, and K the splitting field of f over k. Show that $[K:k] \mid n!$.

Proof. ■

Problem 9.2. Let k be a field and $n \ge 0$. Define a map $\Delta_n : k[x] \to k[x]$ by $\Delta_n(\sum a_i x^i) := \sum a_i \binom{i}{n} x^{i-n}$. Show that

- (a) Δ_n is k-linear, and for $f, g \in k[x]$, $\Delta_n(fg) = \sum_{j=0}^n \Delta_j(f) \Delta_{n-j}(g)$.
- (b) $f^{(n)} = n! \Delta_n(f)$.
- (c) $f(x+a) = \sum \Delta_n(f)(a)x^n$.
- (d) $a \in k$ is a root of f of multiplicity n if and only if $\Delta_i(f)(a) = 0$ for $0 \le i \le n 1$ and $\Delta_n(f)(a) \ne 0$.

Proof.

Problem 9.3. Let $k \in K$ be a finite field extension. Show that k is perfect if and only if K is perfect.

Proof. ■

Problem 9.4. Let *K* be the splitting field of $x^p - x - 1$ over $k = \mathbb{Z}/p\mathbb{Z}$. Show that $k \in K$ is normal, separable, of degree p.

Proof.

Problem 9.5. Let k be a field of characteristic p > 0, and k(x, y) the field of rational functions in two variables.

- (a) Show that $[\boxtimes k(x, y) : k(x^p, y^p)] \boxtimes = p^2$.
- (b) Show that the extension $k(x^p, y^p) \in k(x, y)$ is not simple.
- (c) Find infinitely many distinct fields L with $k(x^p, y^p) \in L \in k(x, y)$.

Problem 10.1. Let $k \in K$ be a finite extension of fields of characteristic p > 0. Show that if $p \nmid [K : k]$, then $k \in K$ is separable.

Proof.

Problem 10.2. Let $k \in K$ be an algebraic extension of fields of characteristic p > 0, let L be an algebraically closed field containing K, and let $\delta \colon k \to L$ be an embedding. Show that $k \in K$ is purely inseparable if and only if there exists exactly one embedding $\tau \colon K \to L$ extending δ .

Proof. ■

Problem 10.3. Let $k \in K = k(\alpha, \beta)$ be an algebraic extension of fields of characteristic p > 0, where α is separable over k and β is purely inseparable over k. Show that $K = k(\alpha + \beta)$.

Proof.

Problem 10.4. Let $f(x) \in \mathbb{F}_q[x]$ be irreducible. Show that $f(x) \mid x^{q^n} - x$ if and only if deg $f(x) \mid n$.

Proof.

Problem 10.5. Show that $\operatorname{Aut}_{\mathbb{F}_q}(\bar{\mathbb{F}}_q)$ is an infinite Abelian group which is torsionfree (i.e., $\delta^n = \operatorname{id} \operatorname{implies} \delta = \operatorname{id} \operatorname{or} n = 0$).

Proof.

Problem 10.6. Show that in a finite field, every element can be written as a sum of two perfect squares.