CSE 548: Analysis of Algorithms

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2017

Iterative Matrix Multiplication

$$\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}$$

```
\begin{vmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} & \cdots & \mathbf{y}_{1n} \\ \mathbf{y}_{21} & \mathbf{y}_{22} & \cdots & \mathbf{y}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{y}_{n1} & \mathbf{y}_{n2} & \cdots & \mathbf{y}_{nn} \end{vmatrix}
```

```
Iter-MM ( Z, X, Y ) { X, Y, Z are n \times n matrices, where n is a positive integer }

1. for i \leftarrow 1 to n do

2. for j \leftarrow 1 to n do
```

3.
$$Z[i][j] \leftarrow 0$$

4. for
$$k \leftarrow 1$$
 to n do

5.
$$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$$

Recursive (Divide & Conquer) Matrix Multiplication

Recursive (Divide & Conquer) Matrix Multiplication

Rec-MM (X, Y) { X and Y are $n \times n$ matrices, where $n = 2^k$ for integer $k \ge 0$ }

- 1. Let Z be a new $n \times n$ matrix
- 2. if n = 1 then
- 3. $Z \leftarrow X \cdot Y$
- 4. else
- 5. $Z_{11} \leftarrow Rec\text{-}MM (X_{11}, Y_{11}) + Rec\text{-}MM (X_{12}, Y_{21})$
- 6. $Z_{12} \leftarrow Rec\text{-}MM (X_{11}, Y_{12}) + Rec\text{-}MM (X_{12}, Y_{22})$
- 7. $Z_{21} \leftarrow Rec\text{-}MM (X_{21}, Y_{11}) + Rec\text{-}MM (X_{22}, Y_{21})$
- 8. $Z_{22} \leftarrow Rec\text{-}MM (X_{21}, Y_{12}) + Rec\text{-}MM (X_{22}, Y_{22})$
- 9. endif
- 10. return Z

recursive matrix products: 8 # matrix sums: 4

$$T(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 8T\left(\frac{n}{2}\right) + \Theta(n^2), & otherwise. \end{cases}$$
$$= \Theta(n^3)$$

Strassen's Algorithms for Matrix Multiplication (MM)

In 1968 Volker Strassen came up with a recursive MM algorithm that runs asymptotically faster than the classical $\Theta(n^3)$ algorithm. In each level of recursion the algorithm uses:

7 recursive matrix multiplications (instead to 8), and 18 matrix additions (instead of 4).

Strassen's MM: 10 Matrix Additions/Subtractions

Strassen's MM: 7 Matrix Products

X-cell • Y-col

 $P_{11} = X_{11} \cdot Y_{c2}$

 $P_{22} = X_{22} \cdot Y_{c1}$

X-row • Y-cell

 $P_{r1} = X_{r1} \cdot Y_{22}$

 $P_{r2} = X_{r2} \cdot Y_{11}$

X-col • Y-row

 $P_{c1} = X_{c1} \cdot Y_{r1}$

 $P_{c2} = X_{c2} \cdot Y_{r2}$

X-diag • Y-diag

 $P_{d1} = X_{d1} \cdot Y_{d1}$

Strassen's MM: 8 More Matrix Additions/Subtractions

•	Y ₁₁	Y ₁₂
•	Y ₂₁	Y ₂₂

$X_{11} Y_{11} + X_{12} Y_{21}$	$X_{11} Y_{12} + X_{12} Y_{22}$
$X_{21} Y_{11} + X_{22} Y_{21}$	$X_{21} Y_{12} + X_{22} Y_{22}$

<u>Sums</u>:

$$egin{array}{lll} X_{r1} &= X_{11} + X_{12} & Y_{r1} &= Y_{11} + Y_{12} \ X_{r2} &= X_{21} + X_{22} & Y_{r2} &= Y_{21} + Y_{22} \ X_{c1} &= X_{11} - X_{21} & Y_{c1} &= Y_{11} - Y_{21} \ X_{c2} &= X_{12} - X_{22} & Y_{c2} &= Y_{12} - Y_{22} \ X_{d1} &= X_{11} + X_{22} & Y_{d1} &= Y_{11} + Y_{22} \ \end{array}$$

Products:

$$P_{11} = X_{11} \cdot Y_{c2}$$
 $P_{c1} = X_{c1} \cdot Y_{r1}$
 $P_{22} = X_{22} \cdot Y_{c1}$ $P_{c2} = X_{c2} \cdot Y_{r2}$
 $P_{r1} = X_{r1} \cdot Y_{22}$ $P_{d1} = X_{d1} \cdot Y_{d1}$
 $P_{r2} = X_{r2} \cdot Y_{11}$

$$T(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 7T\left(\frac{n}{2}\right) + \Theta(n^2), & otherwise. \end{cases}$$
$$= \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Running Time:

Deriving Strassen's Algorithm

Use the Feynman Algorithm:

Step 1: write down the problem

Step 2: think real hard

Step 3: write down the solution

Deriving Strassen's Algorithm

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \implies \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} \begin{bmatrix} e \\ g \\ f \\ h \end{bmatrix} = \begin{bmatrix} p \\ r \\ q \\ s \end{bmatrix}$$

We will try to minimize the number of multiplications needed to evaluate Z using special matrix products that are easy to compute.

<u>Type</u>	<u>Product</u>	#Mults
(·)	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae + bg \\ ce + dg \end{bmatrix}$	4
(A)	$\begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e+g) \\ a(e+g) \end{bmatrix}$	1
(<i>B</i>)	$\begin{bmatrix} a & a \\ -a & -a \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e+g) \\ -a(e+g) \end{bmatrix}$	1
(<i>C</i>)	$\begin{bmatrix} a & 0 \\ a - b & b \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae \\ ae + b(g - e) \end{bmatrix}$	2
(D)	$\begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e-g)+bf \\ bf \end{bmatrix}$	2

Deriving Strassen's Algorithm

$$\Delta_{3} = \underbrace{\begin{bmatrix} a-b & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ (a-b)-(a-c) & 0 & a-c & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{Tama\,C\,(2\,Mult)} + \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & d-b & 0 & (d-c)-(d-b) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d-c \end{bmatrix}}_{Tama\,D\,(2\,Mult)}$$

<u>Algorithms for Multiplying Two n×n Matrices</u>

A recursive algorithm based on multiplying two $m \times m$ matrices using k multiplications will yield an $O(n^{\log_m k})$ algorithm.

To beat Strassen's algorithm: $\log_m k < \log_2 7 \Rightarrow k < m^{\log_2 7}$.

So, for a 3×3 matrix, we must have: $k < 3^{\log_2 7} < 22$.

But the best known algorithm uses 23 multiplications!

Inventor	Year	Complexity
Classical	_	$\Theta(n^3)$
Volker Strassen	1968	$\Theta(n^{2.807})$
Victor Pan (multiply two 70 × 70 matrices using 143,640 multiplications)	1978	$\Theta(n^{2.795})$
Don Coppersmith & Shmuel Winograd (arithmetic progressions)	1990	$\Theta(n^{2.3737})$
Andrew Stothers	2010	$\Theta(n^{2.3736})$
Virginia Williams	2011	$\Theta(n^{2.3727})$

Lower bound: $\Omega(n^2)$ (why?)