Laboratory 7

Measurement of magnetic susceptibility and Barkhausen Effect

https://vlab.amrita.edu/?sub=1&brch=192&sim=854&cnt=1 https://vlab.amrita.edu/?sub=1&brch=192&sim=347&cnt=1

Ajay Nath

Quincke's Method

Aim: - To determine the volume magnetic susceptibility of Manganese sulphate solution at different concentrations.

- Used to determine the magnetic susceptibility of a paramagnetic substance in the form of liquids, aqueous solutions and liquified gases.
- This method is based on the force experienced by a magnetized material in a non-uniform magnetic field.
- The solution under investigation is placed in a vertical U tube which is then placed between electromagnets.
- When current is switched ON, strong field is experienced by upper surface of the column and weak field is experienced by lower surface.

The magnetic susceptibility χ_m is a proportionality constant which is dimensionless and indicates the degree of magnetization of a material in response to an applied magnetic field.

The susceptibility of the paramagnetic solution can be given by:

$$\chi_{sol} = \frac{2gh(\rho - \sigma)}{\mu_0 H_m^2}$$

Setup 1

Step 1: Insert the probe.

Setup 2

Step 1: Adjust the focus and microscope position.

Step 2: Set the molarity and vary the current.

Step 3: Note the magnetic susceptibility of the solution.

4. Now Select Quincke's setup

Further steps to follow: -

ng the current change Plote a graph betwee Mag natiar nty and Magn etic Susce ptibili ty of the soluti

Observation Tables

Setup 1

Current I (A)	Magnetic Field B (Gauss)

**Plot a graph between current and magnetic field

Setup 2

Current = A

Magnetic Susceptibility $(\chi_{sol}) \times 10^{-6}$

**Plot a graph between molarity and susceptibility.

Barkhausen Effect: https://en.wikipedia.org/wiki/Barkhausen_effect

Series of sudden changes in the size and orientation of ferromagnetic domains, or microscopic clusters of aligned atomic magnets, that occurs during a continuous process of magnetization or demagnetization.

Domains in ferromagnetic material

- 1. We can firstly remove the rod and look at the output graph by moving the magnet.
- 2. Then we can insert the rod of ferromagnetic material and look at output graph of EMF produced with time.
- 3. We can change the no. of coils and see how produced EMF changes.

Practical use: -

The amount of Barkhausen noise for a given material is linked with the amount of impurities, crystal dislocations, etc. and can be a good indication of mechanical properties of such a material.

Thank You