# 典

#### UNIVERSIDADE FEDERAL DE ALAGOAS/UFAL

# Instituto de Computação - IC



Campus A. C. Simões - Av. Lourival de Melo Mota, BL 12

Tabuleiro do Martins, Maceió/AL - CEP: 57.072-970 Telefone: (082) 3214-1401

## INTELIGÊNCIA COMPUTACIONAL

Prof.: Aydano Pamponet Machado

#### 1. Problema dos missionários e canibais

Três missionários e três canibais estão em um lado do rio, juntamente com um barco que pode conter uma ou duas pessoas. Descubra um meio de fazer todos atravessarem o rio, sem deixar que um grupo de missionários de um lado fique em número menor que o número de canibais nesse lado do rio. Esse problema é famoso em IA, porque foi assunto do primeiro artigo que abordou a formulação de problemas a partir de um ponto de vista analítico (Amarel, 1968).

Implemente e resolva o problema de forma ótima, utilizando um algoritmo de busca apropriado. É boa idéia verificar a existência de estados repetidos?

Amarel, S. (1968). On representations of problems of reasoning about actions, Machine Intelligence, (3), 131—171

#### 2. Problema do metrô de Paris

Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o **trajeto mais rápido** entre a estação onde ele se encontra e a estação de destino. O usuário tem um painel com o mapa, podendo selecionar a sua estação de destino. O sistema então acende as luzes sobre o mapa mostrando o melhor trajeto a seguir (em termos de quais estações ele vai atravessar., e quais as conexões mais rápidas a fazer – se for o caso).

#### Considere que:

- a distância em linha reta entre duas estações quaisquer é dada em uma tabela. Para facilitar a vida, considere apenas 4 linhas do metrô.
- a velocidade média de um trem é de 30km/h;
- tempo gasto para trocar de linha dentro de mesma estação (fazer baldeação) é de 4

## minutos.

**Formule** e **implemente** este problema em termos de estado inicial, estado final, operadores e função de avaliação para **Busca** heurística com A\*.



Tabela de distâncias do Metrô de Paris.

|            | E<br>1 | E<br>2 | E<br>3 | E<br>4 | E<br>5 | E 6 | E<br>7 | E<br>8 |    |    |    | 4  |    |    |
|------------|--------|--------|--------|--------|--------|-----|--------|--------|----|----|----|----|----|----|
| E1         | -      | 11     | 20     | 27     | 40     | 43  | 39     | 28     | 18 | 10 | 18 | 30 | 30 | 32 |
| E2         | 11     | ı      | 9      | 16     | 29     | 32  | 28     | 19     | 11 | 4  | 17 | 23 | 21 | 24 |
| <b>E</b> 3 | 20     | 9      | ı      | 7      | 20     | 22  | 19     | 15     | 10 | 11 | 21 | 21 | 13 | 18 |
| <b>E4</b>  | 27     | 16     | 7      | ı      | 13     | 16  | 12     | 13     | 13 | 18 | 26 | 21 | 11 | 17 |
| <b>E</b> 5 | 40     | 29     | 20     | 13     | -      | 3   | 2      | 21     | 25 | 31 | 38 | 27 | 16 | 20 |

| <b>E</b> 6 | 43 | 32 | 22 | 16 | 3  | ı  | 4  | 23 | 28 | 33 | 41 | 30 | 17 | 20 |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| <b>E7</b>  | 39 | 28 | 19 | 12 | 2  | 4  | 1  | 22 | 25 | 29 | 38 | 28 | 13 | 17 |
| E8         | 28 | 19 | 15 | 13 | 21 | 23 | 22 | ı  | 9  | 22 | 18 | 7  | 25 | 30 |
| E9         | 18 | 11 | 10 | 13 | 25 | 28 | 25 | 9  | 1  | 13 | 12 | 12 | 23 | 28 |
| E1<br>0    | 10 | 4  | 11 | 18 | 31 | 33 | 29 | 22 | 13 | 1  | 20 | 27 | 20 | 23 |
| E1<br>1    | 18 | 17 | 21 | 26 | 38 | 41 | 38 | 18 | 12 | 20 | ı  | 15 | 35 | 39 |
| E1<br>2    | 30 | 23 | 21 | 21 | 27 | 30 | 28 | 7  | 12 | 27 | 15 | -  | 31 | 37 |
| E1         | 30 | 21 | 13 | 11 | 16 | 17 | 13 | 25 | 23 | 20 | 35 | 31 | -  | 5  |
| E1<br>4    | 32 | 24 | 18 | 17 | 20 | 20 | 17 | 30 | 28 | 23 | 39 | 37 | 5  | -  |

### 3. O problema do caixeiro viajante

Um caixeiro viajante precisa visitar 10 cidades do interior de Pernambuco. Ele pede a um agente de busca que determine uma rota para sua visita tal que cada cidade só seja visitada *uma única vez*, e ele percorra o *menor espaço possível* (em Km). O agente de busca tem um mapa do estado, e portanto sabe as distâncias entre as cidades.

Formule e implemente este problema em termos de estado inicial, estado final, operadores e função de avaliação para Busca por melhoras iterativas com Hill Climbing.

O operador considerado para gerar os filhos do estado corrente é permutar as cidades da rota atual duas a duas, e verificar em seguida se o caminho está conectado (segundo a tabela abaixo, que representa o mapa da questão). A cidade inicial deve ser mantida, uma vez que o caixeiro mora lá A rota é fechada (ele volta à cidade de origem no final).

| C C C 1 2 3 | C C 4 5 | C C 7 | <b>C</b> 8 | C C 1 0 |
|-------------|---------|-------|------------|---------|
|-------------|---------|-------|------------|---------|

| C<br>1     | 0  | 30 | 84      | 56      | -         | -  | -       | 75      | -       | 80 |
|------------|----|----|---------|---------|-----------|----|---------|---------|---------|----|
| C<br>2     | 30 | 0  | 65      | -       | -         | -  | 70      | 1       | -       | 40 |
| C<br>3     | 84 | 65 | 0       | 74      | 52        | 55 | -       | 60      | 14<br>3 | 48 |
| C<br>4     | 56 | 1  | 74      | 0       | 13<br>5 - |    | ı       | 20      | 1       | 1  |
| C<br>5     | 1  | 1  | 52      | 13<br>5 | 0         | 70 | ı       | 12<br>2 | 98      | 80 |
| C 6        | 70 | -  | 55      | -       | 70        | 0  | 63      | 1       | 82      | 35 |
| <b>C</b> 7 | -  | 70 | -       | -       | -         | 63 | 0       | 1       | 12<br>0 | 57 |
| <b>C</b>   | 75 | -  | 13<br>5 | 20      | 12<br>2   | -  | -       | 0       | -       | -  |
| C<br>9     | -  | -  | 14<br>3 | -       | 98        | 82 | 12<br>0 | -       | 0       | -  |
| C<br>10    | 80 | 40 | 48      | -       | 80        | 35 | 57      | -       | -       | 0  |

# 4. Jogo para dois jogadores

Escolha um jogo para dois jogadores (ex.: jogo da velha, othelo, damas, xadrez, etc.) e implemente-o utilizando o minimax.