Relatório BOBINAS DE HELMHOLTZ

Dept. de Eletrónica, Telecomunicações e Informática

Mecânica e Campo Eletromagnético (MCE)

Universidade de Aveiro

Vitor Alves, Bruno Oliveira, Carlos Verenzuela

(104296) vitor.alves@ua.pt, (113663) brunogoliveira@ua.pt, (114597) carlos.verenzuela@ua.pt

7 de novembro de 2023

Resumo

Neste relatório, são respondidas às questões sobre a preparação do trabalho e análise e tratamento de dados. É feito o estudo das Bobinas de Helmholtz, cujos objetivos são calibrar uma sonda de efeito de Hall por meio de um solenoide padrão (Parte A), medir o campo magnético ao longo do eixo de duas bobinas estreitas, e verificar o princípio da sobreposição, usando configuração de Helmholtz. (Parte B).

Seguiu-se uma metodologia rígida, de forma organizada e bem estruturada, tiveram-se cuidados na extração dos dados, e com ajuda das equações e conhecimentos prévios, chegou-se às conclusões pretendidas.

Índice de Conteúdo

Capítulo 1	1
Introdução	1
Capítulo 2	2
Metodologia	2
Capítulo 3	8
Análise e Discussão	8
Capítulo 4	10
Conclusões	10
Anexos	11
Conteúdo do Excel da Parte A	11
Conteúdo do Excel da Parte B	12
Bibliografia	16

Introdução

Os principais objetivos deste trabalho consistem em calibrar uma sonda de efeito de Hall por meio de um solenoide padrão, medir o campo magnético ao longo do eixo de duas bobinas estreitas e verificar o princípio da sobreposição, usando configuração de Helmholtz.

Neste sentido, este documento apresenta os objetivos do Projeto, a metodologia aplicada, detalhes experimentais relevantes, e uma análise dos resultados experimentais.

Metodologia

Este capítulo contém informações relevantes acerca da metodologia utilizada para as experiências laboratoriais.

Portanto, começa-se por apresentar cada uma das experiências efetuadas e a sua finalidade:

- Parte A Calibração da sonda de Hall.
- Parte B Verificação do princípio da sobreposição para o campo magnético.

Para estas experiências, são usadas as equações mostradas abaixo:

$$B_{sol} = \mu_0 \frac{N}{l} I_S \tag{1}$$

Equação 1 - Expressão do campo magnético no interior de um solenoide de comprimento infinito, sendo N/l o número de espiras por unidade de comprimento do solenoide, ls, a corrente elétrica que o percorre e a constante μ_0 é a permeabilidade magnética do vácuo (μ_0 = $4\pi \times 10^{10}$ Tm/A).

$$\vec{B}(x) = \frac{\mu_0 I R^2}{2(R^2 + (x - x_0)^2)^{3/2}}$$
 (2)

Equação 2 - Expressão para o campo magnético criado pelas duas bobinas num ponto x genérico do seu eixo, a partir da expressão do campo magnético no eixo de um anel de corrente.

$$\vec{F}_{mag} = q\vec{v}_d \times \vec{B} = qvB\hat{z} \tag{3}$$

Equação 3 — Fórmula para a determinação da força magnética (Força de Lorentz) sendo q a carga de um portador de carga móvel e v_d a velocidade de arrastamento.

$$B = C_c V_H \tag{4}$$

Equação 4 - Fórmula para determinar a constante de proporcionalidade (ou constante de calibração), C_C para uma dada sonda entre V_H e B.

$$\vec{F}_E = -qE\hat{z} \tag{5}$$

Equação 5 - Fórmula para a força elétrica, onde q é a carga e $E\hat{z}$ é o campo elétrico na direção z.

$$qE = qv_dB \tag{6}$$

Equação 6 - Relação entre a força elétrica e magnética em um semicondutor sujeito a um campo magnético e elétrico.

$$qE = q\frac{V_H}{a} = qvB \rightarrow V_H = vaB \tag{7}$$

Equação 7 - Descreve a relação entre a tensão de Hall (V_H) , a velocidade (v), a largura do bloco (a), a carga (q), e o campo magnético (B).

$$I_H = nqv \rightarrow v = \frac{I_H}{nq} \tag{8}$$

Equação 8 - Relação entre a corrente de Hall (I_H) , a velocidade (v), a densidade de portadores (n), e a carga (q).

$$V_H \propto I_H B$$
 (9)

Equação 9 - Indica a proporcionalidade entre a tensão de Hall (V_H) , a corrente de Hall (I_H) , e o campo magnético (B).

Relativamente à Parte A (ver Figura 1), esta consiste na utilização do seguinte material:

- Sonda de Hall.
- Voltímetro.
- Fonte de alimentação simétrica.
- Reóstato.
- Amperímetro.
- Solenoide padrão.

Figura 1¹ - Esquema de Montagem da Parte A.

Relativamente à Parte B (ver Figura 2), esta partilha todo o material anteriormente referido, com exceção dos Solenoide padrão que agora é substituído pelas Bobinas de Helmholtz, duas bobinas em disposição geométrica de forma a ficarem separadas a uma distância, R, igual ao seu raio (configuração de Helmholtz).

Ao longo da experiência certificámo-nos de que as bobinas se mantinham sempre na mesma posição. Para tal evitávamos mexer nas mesmas e mediamos a distâncias entre elas antes de cada registo.

Figura 2² - Esquema de Montagem da Parte B.

¹ Figura retirada da página 4 do guião prático, fornecido aos alunos.

² Figura feita a partir das figuras das páginas 2 e 4 do guião prático, fornecido aos alunos, pelos Professores da UC.

Tendo determinado os materiais, e as montagens, das duas experiências laboratoriais, identificam-se agora em que consiste cada Parte.

Relativamente à Parte A, o objetivo é verificar como varia a tensão (V_H) em miliVolts, para diferentes valores de corrente elétrica (I_S) , em Amperes. Configurou-se o circuito, como descrito no guião, procurou-se um ponto do eixo do solenoide que minimizasse a aproximação utilizada de solenoide infinito, calibrou-se a sonda (para a mesma apresentar OmV) e foi-se variando a corrente, e registando a tensão de Hall para diferentes correntes no solenoide.

Is +- 0,1	(Vh)+-0,1
А	mV
0	0
5,00E-02	6,30E-03
9,80E-02	1,23E-02
1,45E-01	1,82E-02
1,99E-01	2,51E-02
2,42E-01	3,05E-02
2,96E-01	3,75E-02
3,57E-01	4,51E-02
3,88E-01	4,90E-02
4,34E-01	5,47E-02
5,07E-01	6,39E-02

Figura 3 - Calibração da sonda de Hall - Registo da tensão(V) para os diferentes valores de I_s no solenoide padrão

Relativamente à Parte B, as bobinas foram colocadas na disposição geométrica de Helmholtz (que se manteve inalterada ao longo desta parte) e montou-se o circuito. De seguida a intensidade da corrente foi ajustada para $I=0,499\pm0,001$ A, valor que é constante ao longo de toda a parte B do trabalho. Fazendo o uso da sonda de hall, foi medido o campo magnético ao longo do eixo de uma bobina, repetindo o processo para a outra bobina e ambas em série. E disso foi obtido o seguinte gráfico:

Figura 4 - [Parte B] Gráfico que mostra a variação do campo magnético.

Os dados coletados foram organizados em tabelas no Excel, que estão disponíveis no anexo da parte B deste documento.

Noutro sentido da metodologia aplicada, existem alguns cuidados aplicados durante toda a experiência. Garantir a integridade dos dados recolhidos é crucial, destacando a necessidade de uma montagem e preparação cuidadosa do equipamento.

Assim, é importante salientar que, na Parte A, foi dada uma atenção especial à calibração tanto da sonda de Hall quanto do voltímetro e amperímetro, além da seleção cuidadosa da posição para colocar a sonda, visando a deteção do campo como se estivesse em um solenoide infinito.

Quanto à Parte B, foi assegurado que as bobinas permanecessem fixas durante todo a experiência e que não houvesse alteração na corrente.

Análise e Discussão

Neste capítulo apresentam-se alguns aspetos relevantes para a análise dos resultados obtidos neste projeto, assim como os principais cálculos efetuados – seguindo-se uma lógica baseada em cada uma das Partes (A e B).

Recorrendo à fórmula (4):

B = CcVH

Obtemos:

$$CC = \frac{N}{1} \frac{\mu 0}{m}$$

Substituindo as constantes obtemos:

$$CC = 3467 \cdot \frac{0.00000125664}{0.126} = 0.0345775467$$

Estimação do número de espiras da bobina de Helmholtz (ver fórmula (2)):

$$\frac{BMax}{B(0)} = \frac{BMax}{\frac{\mu 0}{2} \cdot \frac{I \cdot R^2}{(R^2 + 0^2)^{\frac{3}{2}}}} = \frac{BMax}{\frac{\mu 0}{2} \cdot \frac{I}{R}}$$

$$= \frac{0.0139}{\frac{0.00000125664 \cdot 0.499}{2 \cdot 0.0250}} \approx 276 \pm 2 \, espiras$$

Assim, através do gráfico da figura 4 e da variação do campo magnético, verifica-se o Princípio da Sobreposição do campo magnético.

Erros experimentais:

Erro do declive $\Delta m = |m| \sqrt{\frac{\frac{1}{r^2} - 1}{N-2}} = 0$, uma vez que o r = 1.

$$\Delta Cc = \left| \frac{\partial cc}{\partial m} \right| \Delta m + \left| \frac{\partial cc}{\partial \frac{N}{l}} \right| \Delta \frac{N}{L} = \left(\frac{\mu 0}{m^2} \cdot \frac{N}{l} \right) \Delta m + \left(\frac{\mu 0}{m} \right) \Delta \frac{N}{l} = \left(\frac{4\pi \times 10^{-7}}{0.126^2} \cdot 3467 \right) \cdot 0 + \left(\frac{4\pi \times 10^{-7}}{0.126} \right) \cdot 60 = 0.000598$$

$$\Delta Bexp = |\frac{\partial Bexp}{\partial Cc} \Delta Cc| + |\frac{\partial Bexp}{\partial VH} \Delta VH| = |VH \cdot \Delta Cc| + |Cc \cdot \Delta VH| = |0.0639 \cdot 0.0006| + |0.0345775467 \cdot 0.0001| = 0.00004 \text{ T}$$

$$\Delta Bteo = |\frac{\partial Bteo}{\partial Cc} \Delta Cc| + |\frac{\partial Bexp}{\partial VH} \Delta VH| = |\frac{\mu_0}{2R} \cdot \Delta I| + |-1 \cdot \frac{\mu_0 \cdot I}{2 \cdot R^2} \cdot \Delta R| = |\frac{4\pi \times 10^{-7}}{2 \cdot 0.0250} \cdot 0.001| + |-1 \cdot \frac{4\pi \times 10^{-7} \cdot 0.499}{2 \cdot 0.0250^2} \cdot 0.0005| = 2.26 \times 10^{-8} \text{T}$$

$$\begin{split} \Delta \text{ n\'umero espiras } &= \mid \frac{\partial N}{\partial Bexp} \mid \Delta Bexp \mid + \mid \frac{\partial N}{\partial Bteo} \mid \Delta Bteo \mid \\ &= \mid \frac{1}{Bteo} \cdot \Delta Bexp \mid + \mid -1 \cdot \frac{Bexp}{(Bteo)^2} \cdot \Delta Bteo \mid \\ &= \mid \frac{1}{0.00000831} \cdot 0.00004 \mid + \mid -1 \cdot \frac{0.0139}{(1.2 \cdot 10^{-5})^2} \\ &\cdot 2.26 \times 10^{-8} \mid = 2 \text{ espiras} \end{split}$$

Precisão valor experimental:

Erro relativo Cc (%) =
$$\frac{\Delta Cc}{Cc} \times 100 = \frac{0.000598}{0.0345775467} \times 100 = 1.73 \%$$

Erro relativo número espiras (%) = Δ número espiras número espiras × 100 = $\frac{2}{276} \times$ 100 = 0.7 %

Uma vez que os cálculos dos erros relativos para os resultados foram inferiores a 10%, podemos considerar que os resultados foram precisos. A maior fonte de erro terão sido as medições e o próprio erro humano.

Conclusões

Com este trabalho concluíram-se várias ideias como:

Através desta experiência prática foram aprofundados e consolidados conhecimentos adquiridos durante as aulas de MCE.

A tensão de Hall, V_H , é diretamente proporcional à corrente de Hall, que percorre o material e ao campo magnético, |B|. Assim, para um valor de I_H constante (0,50A), V_H é proporcional a B. Podemos confirmar este facto através do gráfico $V_H = f(I_S)$ (Figura 3).

E fomos capazes então de verificar o Princípio da sobreposição através do estudo do campo magnético criado por bobinas na configuração de Helmholtz.

Anexos

Conteúdo do Excel da Parte A

I _S +- 0,1	(V _H)+-0,1
А	mV
0	0
5.00E-02	6.30E-03
9.80E-02	1.23E-02
1.45E-01	1.82E-02
1.99E-01	2.51E-02
2.42E-01	3.05E-02
2.96E-01	3.75E-02
3.57E-01	4.51E-02
3.88E-01	4.90E-02
4.34E-01	5.47E-02
5.07E-01	6.39E-02

Conteúdo do Excel da Parte B

DDP = Diferença De Potencial

Bobina 1

DDP	DDP	Distância
	0.000001	0.05
mV	V	cm
3.8	0.0038	0
4.9	0.0049	1
6.1	0.0061	2
7.6	0.0076	3
9.4	0.0094	4
11.3	0.0113	5
12.9	0.0129	6
13.9	0.0139	7
13.9	0.0139	8
13.2	0.0132	9
11.8	0.0118	10
10.1	0.0101	11
8.4	0.0084	12
6.7	0.0067	13
5.4	0.0054	14
4.3	0.0043	15
3.4	0.0034	16
2.7	0.0027	17
2.1	0.0021	18

Bobina 2

DDP	DDP	Distância
	0.000001	0.05
mV	V	cm
0.9	0.0009	0
1.1	0.0011	1
1.4	0.0014	2
1.8	0.0018	3
2.2	0.0022	4
2.7	0.0027	5
3.4	0.0034	6
4.2	0.0042	7
5.2	0.0052	8
6.6	0.0066	9
8.2	0.0082	10
10	0.01	11
11.7	0.0117	12
13.1	0.0131	13
13.7	0.0137	14
13.6	0.0136	15
12.6	0.0126	16
11.2	0.0112	17
9.5	0.0095	18

Soma das bobinas

DDP	DDP	Distância
	0.000001	0.05
mV	V	cm
2	0.002	0
3.5	0.0035	1
3.1	0.0031	2
3.8	0.0038	3
4.7	0.0047	4
5.8	0.0058	5
6.6	0.0066	6
7.6	0.0076	7
8.4	0.0084	8
9	0.009	9
9.6	0.0096	10
10.1	0.0101	11
10.6	0.0106	12
10.8	0.0108	13
10.8	0.0108	14
10.4	0.0104	15
9.5	0.0095	16
8.2	0.0082	17
6.9	0.0069	18

Inversas das Bobinas

DDP	DDP	Distância
	0.000001	0.05
mV	V	cm
2.7	0.0027	0
3.3	0.0033	1
4.3	0.0043	2
5.3	0.0053	3
6.5	0.0065	4
7.9	0.0079	5
8.7	0.0087	6
9	0.009	7
8.4	0.0084	8
6.6	0.0066	9
3.9	0.0039	10
0.6	0.0006	11
-2.7	-0.0027	12
-5.7	-0.0057	13
-7.7	-0.0077	14
-8.7	-0.0087	15
-8.7	-0.0087	16
-8	-0.008	17
-7	-0.007	18

Bibliografia

[1] Guião análise de dados, sebenta 2012-13 [2] Serway, R. A., Physics for Scientist and Engineers with modern Physics, 2000, Saunder College Publishing.(Serway & Jewett, 2004)