

Matrix Analysis

through Octave

G V V Sharma*

CONTENTS

1	Least Squares		2
	1.1	Problem	2
	1.2	Solution using Octave	2
2	Matrix Analysis		8
	2.1	Eigenvalues and Eigenvectors	8
	2.2	Symmetric Matrices	8
	2.3	Orthogonality	g
	2.4	Singular Value Decomposition	g
	2.5	Quadratic Forms	10
3	3 Application in Research		13
Refe	References		

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

1 Least Squares

1.1 Problem

Problem 1.1. *Sketch the vectors*

$$\mathbf{a}_1 = (1, 1, 1)^T, \mathbf{a}_2 = (0, 1, 2)^T, \mathbf{b} = (6, 0, 0)^T$$
 (1.1)

in the 3-D plane.

Problem 1.2. Find x_1, x_2 such that

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 = \mathbf{b} \tag{1.2}$$

geometrically.

Problem 1.3. Solve the matrix equation

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1.3}$$

where $A = [a_1 a_2]$ using row reduction. Comment.

1.2 Solution using Octave

Problem 1.4. Type the following program in octave and comment on the output for different values of x

%Code written by GVV Sharma March 30, 2016

%Released under GNU GPL. Free to use for anything.

%This program compares the norm defined for the least-squares solution %for the correct solution vs other data points.

%You will find that the metric is the smallest for the correct value.

clear;

close;

 $A = [1 \ 0; \ 1 \ 1; \ 1 \ 2]; %The input matrix$

b = [6;0;0]; %The output vector

P = inv(A'*A)*A';%pseudoinverse

x_ls = P*b; %The least squares solution

x = [5;-5]; %Any random input

exact_ls_metric = $norm(b-A*x_ls)^2$ %The metric for actual soltuion random_ls_metric = $norm(b-A*x)^2$ %metric for a random value of x

Problem 1.5. Type the following code in Octave and observe the output.

%Code written by GVV Sharma March 31, 2016

%Released under GNU GPL. Free to use for anything.

%This program plots the least squares metric for a range of %vectors x in the mesh with vertices (-10,-10),(-10,10),(10,-10) %%and (10,10)

%The result is a 3-D mesh. The theoretical minimum is (5,-3) %Values obtained through the following program are close to the %theoretic1 solution

```
clear;
close;
A = [1 \ 0; \ 1 \ 1; \ 1 \ 2]; %The input matrix
b = [6;0;0]; %The output vector
x1 = linspace(-10,10,50); %generating points in x-axis
x2 = linspace(-10, 10, 50); %generating points in y-axis
[xx, yy] = meshgrid(x1,x2);
ffun = @(x,y) norm(b-A*[x;y])^2;
f = arrayfun(ffun,xx,yy);
mesh(xx,yy,f)
[M I] = min(f(:)); %vectorize the 50 x 50 matrix f, find min
%M = min value , I is the index of the f_min
[I_r I_c] = ind2sub(size(f),I); %Get the row, col index of f_min
```

```
%The least square solution
xx(I_r,I_c)
yy(I_r,I_c)
%The minimum value of metric
M
Problem 1.6. Compare the results obtained by typing the following code with the results in the previous
problem.
%Code written by GVV Sharma March 31, 2016
%Released under GNU GPL. Free to use for anything.
%This program finds the theoretical least squares solution using
%SVD
clear;
close;
```

[U S V] = svd(A); % Computing the SVD of A

 $A = [1 \ 0; \ 1 \ 1; \ 1 \ 2]; %The input matrix$

b = [6;0;0]; %The output vector

temp_S = 1./diag(S); %inverting the diagonal values of S

Splus = [diag(temp_S) zeros(2,1)]; %inverse transpose of S

Aplus = V*Splus*U'; %The Moore-Penrose pseudo-inverse

Aplus*b %least squares solution.

Problem 1.7. Type the following code in Octave and run. Comment.

%Code written by GVV Sharma March 31, 2016 %Released under GNU GPL. Free to use for anything.

%This program finds the SVD for the matrix A
%Involves eigenvalue decomposition as well as
%QR factorization (Gram-Schmidt Orthogonalization)

%Note that the columns of U and V are interchanged %when compared with the U and V matrices obtained %using the builtin SVD command.

clear;

close;

 $A = [1 \ 0; \ 1 \ 1; \ 1 \ 2]; \ \%The input matrix$

b = [6;0;0]; %The output vector

[Pv,Dv] = eig(A'*A);%Eigenvalue decomposition of A'*A

[Pu,Du] = eig(A*A');%Eigenvalue decomposition of A*A'

Stemp = sqrt(Dv); %singular values of A

[V,Rv] = qr(Pv); %V

[U,Ru] = qr(Pu); %U

Let

$$g(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2 \tag{1.4}$$

Problem 1.8. Using calculus, minimize $g(\mathbf{x})$.

Problem 1.9. *Find* $(A^{T}A)^{-1}A^{T}b$

2 Matrix Analysis

Verify your results through Octave, wherever possible.

2.1 Eigenvalues and Eigenvectors

For any square matrix G, if

$$\mathbf{G}\mathbf{x} = \lambda \mathbf{x},\tag{2.1}$$

 λ is known as the *eigenvalue* and **x** is the corresponding *eigenvector*.

Let

$$\mathbf{G} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \tag{2.2}$$

Problem 2.1. Show that the eigenvalues of **G** are obtained by solving the equation

$$f(\lambda) = |\lambda \mathbf{I} - G| = 0 \tag{2.3}$$

Note that (2.3) is known as the *characteristic equation*. $f(\lambda)$ is known as the characteristic polynomial.

Problem 2.2. Obtain the eigenvalues and eigenvectors of **G**.

Problem 2.3. Find f(G). This is known as the Cayley-Hamilton Theorem.

Problem 2.4. Stack the eigenvalues of G in a diagonal matrix Λ and the corresponding eigenvectors in a matrix F. Find $F\Lambda F^{-1}$. This is known as Eigenvalue Decomposition

2.2 Symmetric Matrices

Let

$$\mathbf{C} = \begin{pmatrix} 37 & 9 \\ 9 & 13 \end{pmatrix} \tag{2.4}$$

Note that $C = C^T$. Such matrices are known as symmetric matrices.

Problem 2.5. Find **P** such that $C = PDP^{-1}$, where **D** is a diagonal matrix.

Problem 2.6. Find \mathbf{PP}^T and $\mathbf{P}^T\mathbf{P}$. \mathbf{P} is known as an orthogonal matrix.

Let

$$\mathbf{B} = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix} \tag{2.5}$$

Problem 2.7. Find $\mathbf{B}^T\mathbf{B}$ and $\mathbf{B}\mathbf{B}^T$

Note that $\mathbf{C} = \frac{1}{9} (\mathbf{B} \mathbf{B}^T)$.

Problem 2.8. Obtain the eigenvalues and eigenvectors of $\mathbf{B}^T \mathbf{B}$

Problem 2.9. Verify eigenvalue decomposition and Cayley-Hamilton theorem for $\mathbf{B}^T \mathbf{B}$.

2.3 Orthogonality

Let $\mathbf{v}_1, \mathbf{v}_2$ be the columns of \mathbf{C} .

Problem 2.10. Obtain $\mathbf{u}_1, \mathbf{u}_2$ from $\mathbf{v}_1, \mathbf{v}_2$ through the following equations.

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} \tag{2.6}$$

$$\hat{\mathbf{u}}_2 = \mathbf{v}_2 - (\mathbf{v}_2, \mathbf{u}_1) \,\mathbf{u}_1 \tag{2.7}$$

$$\mathbf{u}_2 = \frac{\hat{\mathbf{u}}_2}{\|\hat{\mathbf{u}}_2\|} \tag{2.8}$$

This procedure is known as Gram-Schmidt orthogonalization.

Problem 2.11. Stack the vectors $\mathbf{u}_1, \mathbf{u}_2$ in columns to obtain the matrix \mathbf{Q} . Show that \mathbf{Q} is orthogonal.

Problem 2.12. From the Gram=Schmidt process, show that $\mathbf{C} = \mathbf{Q}\mathbf{R}$, where \mathbf{R} is an upper triangular matrix. This is known as the $\mathbf{Q} - \mathbf{R}$ decomposition.

2.4 Singular Value Decomposition

Problem 2.13. Find an orthonormal basis for $\mathbf{B}^T\mathbf{B}$ comprising of the eigenvectors. Stack these orthonormal eigenvectors in a matrix \mathbf{V} . This is known as Orthogonal Diagonalization.

Problem 2.14. Find the singular values of $\mathbf{B}^T\mathbf{B}$. The singular values are obtained by taking the square roots of its eigenvalues.

Problem 2.15. Stack the singular values of $\mathbf{B}^T\mathbf{B}$ diagonally to obtain a matrix Σ .

Problem 2.16. Obtain the matrix **BV**. Verify if the columns of this matrix are orthogonal.

Problem 2.17. Extend the columns of BV if necessary, to obtain an orthogonal matrix U.

Problem 2.18. Find $U\Sigma V^T$. Comment.

2.5 Quadratic Forms

Problem 2.19. Type the following in Octave and interpret the output. $\theta = \mathbf{x}^T \mathbf{C} \mathbf{x}$ is known as the Quadratic Form for \mathbf{C} . θ is defined for a Symmetric Matrix.

%Code written by GVV Sharma April 10, 2016

%Released under GNU GPL. Free to use for anything.

%This program plots the quadratic form for a range of %vectors x in the mesh with vertices (-10,-10),(-10,10),(10,-10) %%and (10,10)

%The result is a 3-D mesh.

%The quadratic form in terms of the eigenvalues of the %symmetric matrix is explored through this program.

clear;

close;

```
C = [37 \ 9; \ 9 \ 13];
[P lambda] = eig(C);
x1 = linspace(-10,10,50); %generating points in x-axis
x2 = linspace(-10, 10, 50); %generating points in y-axis
[xx, yy] = meshgrid(x1,x2);
ffun = @(x,y) [x y]*C*[x;y];
f = arrayfun(ffun,xx,yy);
mesh(xx,yy,f)
[M I] = min(f(:)); %vectorize the 50 x 50 matrix f, find min
%M = min value , I is the index of the f_min
[I_r I_c] = ind2sub(size(f),I); %Get the row, col index of f_min
%The minimum value of the quadratic form
M
%Verifying the eigenvalue relation
x_hat = [xx(I_r,I_c); yy(I_r,I_c)]
x hat'*C*x hat
```

Problem 2.20. A matrix for which the quadratic form is always positive is known as a positive definite matrix. Is C is positive definite?

Problem 2.21. Find out the relation between positive definiteness and the eigenvalues of a symmetric matrix.

Problem 2.22. Find the minimum and maximum values of $\theta = \mathbf{x}^T \mathbf{C} \mathbf{x}$, if $||\mathbf{x}|| = 1$.

3 Application in Research

Problem 3.1. Let

$$r = \sum_{j=1}^{2} h_j c_j (3.1)$$

Express the above as a matrix equation. Note that r is a scalar.

Problem 3.2. Let

$$r_i = \sum_{j=1}^{2} h_{ij} c_j, \quad i = 1, 2.$$
 (3.2)

Express the above as the matrix equation

$$\mathbf{r} = \mathbf{Hc} \tag{3.3}$$

List the entries of each matrix/vector in (3.3).

Problem 3.3. If

$$r_i = \sum_{j=1}^{N} h_{ij} c_j, \quad i = 1, 2 \dots M,$$
 (3.4)

what is the dimension of the matrix **H** in the matrix equation?

Problem 3.4. Let

$$\mathbf{r}^t = \mathbf{h}^t \mathbf{C} \tag{3.5}$$

where \mathbf{r} is $L \times 1$ vector and C is an $N \times L$ matrix. Find the least squares estimate for \mathbf{h} . What is the size of \mathbf{h} ?

Problem 3.5. Now consider the matrix equation

$$\mathbf{R} = \mathbf{HC} \tag{3.6}$$

where **R** is $M \times L$, **H** is $M \times N$ and **C** is $N \times L$. Find the least squares estimate of **H**.

Problem 3.6. Let

$$D = x_1^2 - x_2^2 (3.7)$$

D can be expressed in quadratic form as $D = \mathbf{x}^t Q \mathbf{x}$, where $\mathbf{x} = (x_1, x_2)^t$. Find Q.

Problem 3.7. Find the determinant and eigenvalues of

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \tag{3.8}$$

Problem 3.8. Find the determinant and eigenvalues of $A \otimes I$, where I is the 2×2 identity matrix. Comment.

Problem 3.9. Find the eigenvalues of I - kA, without explicitly calculating them. k is a constant.

Consider the matrix

$$\mathbf{S} = \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix} \tag{3.9}$$

where * represents the conjugate of a scalar and conjugate transpose of a vector.

Problem 3.10. Find SS*. Comment.

Problem 3.11. Express

$$r_1 = h_1 s_1 + h_2 s_2$$

$$r_2 = -h_1 s_2^* + h_2 s_1^*$$
(3.10)

as a matrix equation.

Problem 3.12. Solve for s_1 and s_2 in (3.10) using matrices.

The problems in this chapter were framed using [1] and [2]. The primary reference for this manual is [3].

REFERENCES

- [1] P. Garg, R. K. Mallik, and H. M. Gupta, "Performance Analysis of Space-Time Coding with Imperfect Channel Estimation," *IEEE Trans. Wireless Commun.*, vol. 4, no. 1, pp. 257–265, January 2005.
- [2] S. M. Alamouti, "A Simple Transmitter Diversity Scheme for Wireless Communications," *IEEE J. Sel. Areas Commun.*, vol. 16, p. 14511458, October 1998.
- [3] D. C. Lay, Linear Algebra and its Applications. Addison-Wesley, 1993.