

BENTUK-BENTUK NORMALISASI

Pertemuan 6

Bigger Better Higher

BENTUK NORMAL

Suatu aturan yang dikenakan pada relasi-relasi dalam basis data dan harus dipenuhi oleh relasi tersebut pada level-level normalisasi. Suatu relasi dikatakan dalam bentuk normal tertentu jika memenuhi kondisi-kondisi tertentu.

BENTUK NORMALISASI

- 1. Bentuk Normal Pertama (1NF)
- 2. Bentuk Normal Ke Dua (2NF)
- 3. Bentuk Normal Ke Tiga (3NF)
- 4. Bentuk Normal Boyce-Codd (BCNF)
- 5. Bentuk Normal Ke Empat (4NF)
- 6. Bentuk Normal Ke Lima (5NF)

Perancangan melalui proses normalisasi mempunyai keuntungan sebagai berikut:

- 1. Meminimalkan ukuran penyimpanan yang diperlukan untuk menyimpan data
- 2. Meminimalkan resiko inkonsistensi data pada basisdata
- 3. Meminimalkan kemungkinan anomaly (kesalahan pada relasi)
- 4. Memaksimalkan stabilitas struktur data

1. Bentuk Normal Pertama(1NF)

Masih Memiliki Atribut yang berulang, Tercapai bila setiap nilai atribut adalah tunggal

Tabel unnormalize

NIP	Nama	Jabatan	Keahlian	Lama (tahun)
107	Daffa	Analis Senior	Access	6
			Oracle	1
109	Revan	Analis Yunior	Access	2
			Clipper	2
112	Dilla	Pogrammer	Access	1
			Clipper	1
			Visual Basic	1

Keahlian menyatakan atribut yang berulang (misal, fika punya tiga keahlian, dan Rian punya 2 keahlian).

NIP	Nama	Jabatan	Keahlian	Lama
107	Daffa	Analis Senior	Access	6
107	Daffa	Analis Senior	Oracle	1
109	Revan	Analis Yunior	Access	2
109	Revan	Analis Yunior	Clipper	2
112	Dilla	Pogrammer	Access	1
112	Dilla	Pogrammer	Clipper	1
112	Dilla	Pogrammer	Visual Basic	1

2. Bentuk Normal Kedua (2NF)

- 1. Memenuhi bentuk 1 NF (normal pertama)
- 2. Atribut bukan kunci haruslah bergantung secara fungsi pada kunci utama / primary key.

Sehingga untuk membentuk normal kedua tiap tabel / file haruslah ditentukan kunci-kunci atributnya. Kunci atribut haruslah unik dan dapat mewakili atribut lain yang menjadi anggotanya. Pada contoh tabel Mahasiswa yang memenuhi normal pertama (1 NF), terlihat bahwa NIM merupakan *Primery Key* (PK).

NIM → Nama, Dosen Wali. Artinya adalah bahwa atribut Nama dan Dosen Wali bergantung pada NIM.

Tetapi **NIM** → Kode_mk. Artinya adalah bahqa atribut Kode_mk tidak tergantung pada NIM.

2. Bentuk Normal Kedua (2NF)... Lanjutan

Belum memenuhi 1 NF

NIM	Nama	Dosen Wali	Kode_mk1	Kode_mk2	Kode_mk3
9820001	Nia Dela	Didik	1234	1435	
9810004	Andik P	Primadina	1234	1435	1245
9810006	Rini	Tukino	1324	1545	1245
9820008	Basuki	Djuwadi	1324	1545	

1 NF

NIM	Nama	Dosen Wali	Kode_mk
9820001	Nia Dela	Didik	1234
9820001	Nia Dela	Didik	1435
9810004	Andik P	Primadina	1234
9810004	Andik P	Primadina	1435
9810004	Andik P	Primadina	1245
9810006	Rini	Tukino	1324
9810006	Rini	Tukino	1545
9810006	Rini	Tukino	1245
9810006	Rini	Tukino	1324
9820008	Basuki	Djuwadi	1324
9820008	Basuki	Djuwadi	1545

Hasil 1NF ke 2 NF

NIM	Nama	Dosen Wali
9820001	Nia Dela	Didik
9810004	Andik P	Primadina
9810006	Rini	Tukino
9820008	Basuki	Djuwadi

Relasi mahasiswa memenuhi 2NF

NIM	Kode_mk
9820001	1234
9820001	1435
9810004	1234
9810004	1435
9810004	1245
9810006	1324
9810006	1545
9810006	1245
9810006	1324
9820008	1324
9820008	1545

Relasi ambil_kuliah memenuhi 2NF

3. Bentuk Normal Ketiga (3NF)

- 1. Memenuhi bentuk 2 NF (normal kedua)
- 2. Atribut bukan kunci tidak memiliki dependensi transitif terhadap kunci utama / primary key.

Definisi bentuk dependensi transitif adalah sebagai berikut:

- 1. Y memiliki Dependensi fungsional terhadap X
- 2. Z memiliki Dependensi Fungsional terhadap Y Sehingga : $X \rightarrow Y \rightarrow Z$

Contoh terjadinya dependensi transitif pada tabel relasi kuliah berikut ini :

Kuliah	Ruang	Tempat	Waktu
Jaringan Komputer	Merapi	Gedung Utara	Senin, 08.00 – 09.50
Basis Data	Rama	Gedung Selatan	Selasa, 07.00 – 08.45
Sistem Pakar	Sinta	Gedung Selatan	Rabu, 10.00 – 11.45
Sistem Operasi	Merapi	Gedung Utara	Selasa, 08.00 – 08.50

Pada tabel tersebut diatas menunjukkan bahwa :

Kuliah → {**Ruang**, **Waktu**}

Ruang → **Tempat**

Terlihat bahwa **Kuliah** →**Ruang** →**Tempat**

Dengan demikian **Tempat** mempunyai dependensi transitif terhadap **Kuliah**

Contoh Tabel / Relasi 2 NF yang belum 3 NF

RELASI / TABEL : PO

2 NF

No_PO	Tgl_PO	Kode_Supplier	Kode_Brg	Qty_PO
123	11/1/2016	S001	Br001	4
123	11/1/2016	S001	Br005	7
123	11/1/2016	S001	Br010	6
123	11/1/2016	S001	Br019	8

Terjadi:

No_PO → Tgl_PO, Kode_Supplier
Qty_PO Transitif terhadap No_PO
No_PO, Kode_Brg → Qty_PO

3 NF ??

RELASI / TABEL : PO

No_PO	Tgl_PO	Kode_Supplier
123	11/1/2016	S001

Primary Key (PK): No_PO

Foreign Key (FK): Kode_Supplier

RELASI / TABEL : DETAIL_PO

No_PO	Kode_Brg	Qty_PO
123	Br001	4
123	Br005	7
123	Br010	6
123	Br019	8

Primary Key (PK): No_PO, Kode_Brg Foreign Key (FK): No_PO, Kode_Brg

4. Bentuk Boyce-Codd (BCNF)

- 1. Memenuhi bentuk 3 NF (normal ketiga)
- 2. Semua penentu (determinan) adalah kunci kandidat (atribut yang bersifat unik). Setiap atribut harus bergantung fungsi pada atribut superkey.

BCNF merupakan bentuk normal sebagai perbaikan terhadap 3 NF. Suatu relasi yang memenuhi BCNF selalu memenuhi 3 NF, tetapi tidak untuk sebaliknya. Suatu relasi yang memenuhi 3 NF belum tentu memenuhi BCNF. Karena bentuk 3 NF masih memungkinkan terjadi anomali.

4. Bentuk Boyce-Codd (BCNF).. Lanjutan

Pada contoh berikut ini terdapat tabel SEMINAR, kunci primer adalah no_siswa + seminar, dengan pengertian bahwa:

.

- Siswa dapat mengambil satu atau dua seminar.
- Setiap seminar membutuhkan 2 instruktur.
- Setiap siswa dibimbing oleh salah satu dari 2 instruktur seminar.
- Setiap instruktur boleh hanya mengambil satu seminar saja.

4. Bentuk Boyce-Codd (BCNF).. Lanjutan

Pada contoh ini, no_siswa dan seminar menunjukkan seorang instruktur.

No_siswa	Seminar	Instruktur
2201001	2281	Budi
2201002	2281	Kardi
2201003	2291	Joni
2201002	2291	Rahmad
2201004	2291	Rahmad

4. Bentuk Boyce-Codd (BCNF).. Lanjutan

Bentuk tabel SEMINAR adalah memenuhi bentuk normal ketiga (3 NF), tetapi tidak BCNF karena nomor seminar masih bergantung fungsi pada instruktur, jika setiap instruktur dapat mengajar hanya pada satu seminar. Seminar bergantung fungsi pada satu atribute bukan superkey seperti yang disyaratkan oleh BCNF.

Maka relasi SEMINAR harus didekomposisi menjadi dua relasi, yaitu relasi pengajar dan seminar_instruktur, seperti berikut ini :

4. Bentuk Boyce-Codd (BCNF).. Lanjutan

Relasi Pengajar

Instruktur	Seminar
Budi .	2281
Kardi	2281
Joni	2291
Rahmad	2291

Relasi Seminar Instruktur

No_siswa	Instruktur
2201001	Budi
2201002	Kardi
2201003	Joni
2201002	Rahmad
2201004	Rahmad

4. Bentuk Boyce-Codd (BCNF).. Lanjutan

- 1. Memenuhi bentuk 3 NF (normal ketiga)
- 2. Semua penentu (determinan) adalah kunci kandidat (atribut yang bersifat unik). Setiap atribut harus bergantung fungsi pada atribut superkey.

BCNF merupakan bentuk normal sebagai perbaikan terhadap 3 NF. Suatu relasi yang memenuhi BCNF selalu memenuhi 3 NF, tetapi tidak untuk sebaliknya. Suatu relasi yang memenuhi 3 NF belum tentu memenuhi BCNF. Karena bentuk 3 NF masih memungkinkan terjadi anomali.

5. Bentuk Normal Keempat (4NF)

Ketentuan 4NF:

- 1.Bila dan hanya bila telah berada dalam bentuk BCNF dan tidak ada multivalued dependency nontrivial.
- 2.Multivalued dependency (MVD) dipakai dalam bentuk normal keempat (4 NF).
- 3.Dependensi ini dipakai untuk menyatakan hubungan satu ke bantak (*one to many*).

Contoh:

Matakuliah	Dosen	Isi
Pengenalan Komputer	Budi	Dasar Komputer
	Sanjaya	Pengenalan pengolahan
		kata
		Pengenalan lembaran kerja
Matematika	Sugeng Paijo	Differensial
		Integral

Relasi tersebut menggambarkan mengenai dosen yang mengajar matakuliah tertentu dengan isi matakuliah yang bersangkutan. Contoh dua dosen yang mengajar pengenalan komputer, yaitu Budi dan Sanjaya. Adapun isi matakuliah Pengenalan Komputer adalah Dasar Komputer, Pengenalan Pengolahan Kata dan Pengenalan Lembaran Kerja.

Contoh :.. Lanjutan

Relasi berikut ini memperlihatkan relasi yang telah dinormalisasikan berdasarkan relasi sebelumnya.

Matakuliah	Dosen	lsi
Pengenalan Komputer	Budi	Dasar Komputer
Pengenalan Komputer	Budi	Pengenalan pengolahan
		kata
Pengenalan Komputer	Budi	Pengenalan lembaran kerja
Pengenalan Komputer	Sanjaya	Dasar Komputer
Pengenalan Komputer	Sanjaya	Pengenalan pengolahan
		kata
Pengenalan Komputer	Sanjaya	Pengenalan lembaran kerja
Matematika	Sugeng Paijo	Differensial
Matematika	Sugeng Paijo	Integral

Contoh :.. Lanjutan

Relasi tersebut memenuhi bentuk BCNF karena *primary key* nya adalah gabungan dari matakuliah, dosen dan isi.

Masalah tersebut dapat dipecahkan melalui dekompoisi, hal ini disebabkan karena terdapat kenyataan bahwa antara Dosen dengan Isi tidak ada ketergantungan. Solusi masalah tersebut diajukan oleh R. Fagin melalui konsep dependensi nilai banyak.

Secara umum dependensi nilai banyak muncul pada relasi yang paling tidak memiliki tiga atribut dan dua diantaranya bernilai banyak, dan nilai – nilainya tergantung hanya pada atribut ketiga.

Contoh :.. Lanjutan

Pada suatu relasi R dengan atribut A, B, C, atribut B dikatakan bersifat multidependen terhadap A jika :

- Sekumpulan nilai B yang diberikan pada pasangan (A, C) hanya tergantung pada nilai A, dan, tidak tergantung pada nilai C.
- Hubungan diatas dinyatakan dengan :
 A →→, dibaca " A menentukan banyak nilai B" atau "B multidependen terhadap A"

Contoh :.. Lanjutan

Teorema Faqin yang berkaitan dengan multivalued dependency adalah :

- Bila R (A, B, C) merupakan suatu relasi, dengan A, B, C adalah atribut atribut relasi tersebut, maka proyeksi dari R berupa (A, B) dan (A, C) jika R memenuhi MVD A → → B | C
- Perlu diketahui bahwa bila terdapat : A → → B, A → → C, maka keduanya dapat ditulis menjadi : A → → B | C

Contoh :.. Lanjutan

Berdasarkan teorema Faqin diatas, maka relasi tersebut diatas dapat didekomposisi menjadi dua relasi sebagai berikut :

Matakuliah	Dosen
Pengenalan Komputer	Budi
Pengenalan Komputer	Sanjaya
Matematika	Sugeng Paijo

Matakuliah	Isi
Pengenalan Komputer	Dasar Komputer
Pengenalan Komputer	Pengenalan pengolahan kata
Pengenalan Komputer	Pengenalan lembaran kerja
Matematika	Differensial
Matematika	Integral

6. Bentuk Normal Kelima (5NF)

Dependensi gabungan mendasari bentuk normal kelima. Suatu relasi R (X,W,Z) memenuhi dependensi gabungan jika gabungan dari proyeksi A, B, C dengan A, B, C merupakan sub himpunan dari atribut – atribut R. Dependensi gabungan sesuai dengan definisi diatas dinyatakan dengan notasi :

- •* (A, B, C)
- •dengan A = XY, B = YZ, C = ZX

Sebagai contoh terdapat hubungan dealer yang mengageni suatu perusahaan distributor kendaraan. Dalam hal ini distributor memiliki sejumlah produk kendaraan.

Dealer	Distributor	Kendaraan
Sumber Jaya	Nissan	Truk Nissan
Sumber Jaya	Toyota	Toyota Kijang
Sumber Jaya	Toyota	Truk Dyna
Asterindo	Nissan	Sedan Nissan

Relasi tersebut memenuhi dependensi gabungan : *(Dealer Distributor, Distributor Kendaraan, Dealet Kendaraan)

Sehingga relasi tersebut dapat didekomposisi menjadi tiga buah relasi yaitu :

- Deal_Dist (Dealer_Distributor).
- Dist_Kend (Distributor_Kendaraan).
- Deal_Kend (Dealer_Kendaraan).

Gabungan ketiga relasi tersebut akan membentuk relasi DDK dan gabungan kedua proyeksi diatas bisa jadi menghasilkan relasi antara yang salah, namum ketiganya akan menghasilkan relasi sesuai aslinya.

Bentuk normal Kelima (5 NF) yang terkadang disebut PJ/NF (Projection Join / Normal Form), menggunakan acuan dependensi gabungan. Suatu relasi berada dalam 5 NF jika dan hanya jika setiap dependensi gabungan dalam R tersirat oleh kunci kandidat relasi R.

Dealer	Distributor
Sumber Jaya	Nissan
Sumber Jaya	Toyota
Asterindo	Nissan

	Distributor	Kendaraan
/	Nissan	Truk Nissan
	Nissan	Sedan Nissan
	Toyota	Toyota Kijang
\downarrow	Toyota	Truk Dyna

Dealer	Distributor	Kendaraan
Sumber Jaya	Nissan	Truk Nissan
Sumber Jaya	Nissan	Sedan Nissan
Sumber Jaya	Toyota	Toyota Kijang
Sumber Jaya	Toyota	Truk Dyna
Asterindo	Nissan	Truk Nissan
Asterindo	Nissan	Sedan Nissan

Dealer	Kendaraan
Sumber Jaya	Truk Nissan
Sumber Jaya	Sedan Nissan
Sumber Jaya	Toyota Kijang
Sumber Jaya	Truk Dyna
Asterindo	Sedan Nissan

LATIHAN Pertemuan 6

- 1. Jelaskan pengertian bentuk normalisasi, dan sebutkan bentuk bentuk normalisasi yang saudara ketahui ?.
- 2. Jelaskan dan berikan contoh bentuk normal pertama (1 NF)?.
- 3. Jelaskan dan berikan contoh bentuk normal kedua (2 NF)?.
- 4. Jelaskan dan berikan contoh bentuk normal ketiga (3 NF)?.
- 5. Jelaskan dan berikan contoh bentuk normal BNCF?.
- 6. Jelaskan dan berikan contoh bentuk normal keempat (4 NF) dan normal kelima (5 NF) ?.
- 7. Jelaskan dan berikan contoh pengertian dari ketergantungan fungsional dan ketergantungan transitif?.