

CLAIMS

What is claimed is:

1. A method of transmitting data, comprising:

2 initiating transfer of a large data file containing a plurality of segments over a
3 network by transmitting one or more segments of the plurality of segments utilizing a
4 first set of M concurrent data streams, wherein M is one or more, followed by
5 transmitting one or more segments of the plurality of segments utilizing a second set of
6 N concurrent data streams, wherein $N > M+1$;

7 during transmission utilizing the first set of M concurrent data streams,
8 determining individual transmission bandwidths for each concurrent data stream of the
9 first set of M concurrent data streams and a first aggregate transmission bandwidth for
10 the first set of M concurrent data streams;

11 during transmission utilizing the second set of N concurrent data streams,
12 determining individual transmission bandwidths for each concurrent data stream of the
13 second set of N concurrent data streams and a second aggregate transmission bandwidth
14 for the second set of N concurrent data streams;

15 comparing the first aggregate transmission bandwidth to the second aggregate
16 transmission bandwidth; and

17 responsive to a determination that the second aggregate transmission bandwidth
18 is greater than the first aggregate transmission bandwidth by a first predetermined
19 threshold, initiating a third set of Z concurrent data streams to transfer a portion of the
20 large data file, wherein $Z > N$.

BLD920000034US2

1 2. The method of claim 1, further comprising the step of:

2 responsive to a determination that the second aggregate transmission bandwidth
3 is greater than the first aggregate transmission bandwidth by less than a second
4 predetermined threshold, initiating the third set of Z concurrent data streams to transfer
5 a portion of the large data file, wherein $Z < N$.

1 3. The method of claim 1, wherein Z is selected from a predetermined schedule of
2 numbers that are separated by a relative ratio of greater than 120%.

4 4. The method of claim 1, wherein the step of determining individual transmission
 bandwidths for each concurrent data stream of the first and second set of concurrent data
 streams and the aggregate transmission bandwidths for the first and second set of
 concurrent data streams further comprises:

5 computing the individual transmission bandwidths from byte counts and clock
 times; and

6 computing the aggregate transmission bandwidth by summing the individual
 transmission bandwidths.

1 5. The method of claim 1, further comprising:

2 during continuous transfer of the large data file, periodically determining an
3 aggregate transmission bandwidth for a current set of concurrent data streams transferring
4 a portion of the large data file;

5 comparing a latest aggregate transmission bandwidth with a previous aggregate
 transmission bandwidth; and

7 responsive to a determination that the latest aggregate transmission bandwidth is
8 different from the previous aggregate transmission bandwidth by a third predetermined

BLD920000034US2

9 threshold, initiating a new set of concurrent data streams to transfer a portion of the large
10 data file.

1 6. The method of claim 5, wherein the aggregate transmission bandwidth is a
2 weighted average of all measurements of aggregate transmission bandwidth for the
3 current set of concurrent data streams, with more recent measurements being given
4 greater weight.

1 7. The method of claim 1, further comprising:

2 (a) determining whether the individual transmission bandwidths for an active set
3 of concurrent data streams are close to a backbone limit;

4 (b) determining whether an aggregate transmission bandwidth for the active set
5 of concurrent data streams is greater than an aggregate transmission bandwidth for a
6 previous set of concurrent data streams by the first predetermined threshold; and

7 (c) responsive to an affirmative determination in steps (a) and (b), initiating a new
set of concurrent data streams to transfer a portion of the large data file.

1 8. The method of claim 7, further comprising:

2 determining a specified maximum data stream count from either a system
3 originating the large data file or a system receiving the large data file; and

4 repeating steps (a) through (c) until either the aggregate transmission bandwidth
5 for the active set of concurrent data streams is not substantially greater than the aggregate
6 bandwidth for all of the prior number of active data streams or the maximum data stream
7 count is reached.

BLD920000034US2

1 9. The method of claim 8, wherein the maximum data stream count is reduced by
2 a system receiving the active set of concurrent data streams responsive to the aggregate
3 transmission bandwidth for the active set of concurrent data streams.

1 10. The method of claim 1, further comprising the step of:

2 responsive to a determination that the second aggregate transmission bandwidth
3 is approximately equal to the first aggregate transmission bandwidth within a threshold
4 band, initiating the third set of Z concurrent data streams to transfer a portion of the large
data file, wherein $Z=N$.

BLD920000034US2

1 11. A system for transmitting data, comprising:
2 an originating system;
3 a receiving system;
4 a TCP/IP network coupling the originating system and the receiving system;
5 a first set of M concurrent data streams between the originating system and the
6 receiving system on the network, each transmitting one or more segments of a plurality
7 of segments of a large data file, wherein M is one or more, followed by transmitting one
8 or more segments of the plurality of segments utilizing a second set of N concurrent data
9 streams, wherein $N > M+1$;

10 logic within either the originating system or the receiving system for, during
11 transmission utilizing the first set of M concurrent data streams, determining individual
12 transmission bandwidths for each concurrent data stream of the first set of M concurrent
13 data streams and a first aggregate transmission bandwidth for the first set of M
14 concurrent data streams;

15 logic within either the originating system or the receiving system for, during
16 transmission utilizing the second set of N concurrent data streams, determining
17 individual transmission bandwidths for each concurrent data stream of the second set of N
18 concurrent data streams and a second aggregate transmission bandwidth for the second
19 set of N concurrent data streams;

20 logic within either the originating system or the receiving system for comparing
21 the first aggregate transmission bandwidth to the second aggregate transmission
22 bandwidth; and

23 logic within either the originating system or the receiving system responsive to
24 a determination that the second aggregate transmission bandwidth is greater than the first
25 aggregate transmission bandwidth by a first predetermined threshold by initiating a third
26 set of Z concurrent data streams to transfer a portion of the large data file, wherein $Z > N$.

BLD920000034US2

1 12. The system of claim 11, wherein Z is selected from a predetermined schedule of
2 numbers that are separated by a relative ratio of greater than 120%.

1 13. The system of claim 11, further comprising:

2 logic within either the originating system or the receiving system for, during
3 continuous transfer of the large data file, periodically determining an aggregate
4 transmission bandwidth for a current set of concurrent data streams transferring a portion
5 of the large data file;

6 logic within either the originating system or the receiving system for comparing
7 a latest aggregate transmission bandwidth with a previous aggregate transmission
8 bandwidth; and

9 logic within either the originating system or the receiving system responsive to
10 a determination that the latest aggregate transmission bandwidth is different from the
11 previous aggregate transmission bandwidth by a third predetermined threshold by
12 initiating a new set of concurrent data streams to transfer a portion of the large data file.

1 14. The system of claim 13, wherein the aggregate transmission bandwidth is a
2 weighted average of all measurements of aggregate transmission bandwidth for the
3 current set of concurrent data streams, with more recent measurements being given
4 greater weight.

1 15. The system of claim 11, further comprising logic within either the originating
2 system or the receiving system for:

3 (a) determining whether the individual transmission bandwidths for an active set
4 of concurrent data streams are close to a backbone limit;

BLD920000034US2

- (b) determining whether an aggregate transmission bandwidth for the active set of concurrent data streams is greater than an aggregate transmission bandwidth for a previous set of concurrent data streams by the first predetermined threshold; and
- (c) responsive to an affirmative determination in steps (a) and (b), initiating a new set of concurrent data streams to transfer a portion of the large data file.

16. The system of claim 15, further comprising logic within either the originating system or the receiving system for:

determining a specified maximum data stream count from either a system originating the large data file or a system receiving the large data file; and

repeating steps (a) through (c) until either the aggregate transmission bandwidth for the active set of concurrent data streams is not substantially greater than the aggregate bandwidth for all of the prior number of active data streams or the maximum data stream count is reached.

17. The system of claim 16, wherein the maximum data stream count is reduced by a system receiving the active set of concurrent data streams responsive to the aggregate transmission bandwidth for the active set of concurrent data streams.

18. The system of claim 11, further comprising logic within either the originating system or the receiving system responsive to a determination that the second aggregate transmission bandwidth is approximately equal to the first aggregate transmission bandwidth within a threshold band, initiating the third set of Z concurrent data streams to transfer a portion of the large data file, wherein Z=N.

BLD920000034US2

1 19. An article of manufacture for use in transmitting data, the article of manufacture
2 comprising computer readable storage media including program logic embedded therein
3 that causes control circuitry to perform the steps of:

4 initiating transfer of a large data file containing a plurality of segments over a
5 network by transmitting one or more segments of the plurality of segments utilizing a
6 first set of M concurrent data streams, wherein M is one or more, followed by
7 transmitting one or more segments of the plurality of segments utilizing a second set of
8 N concurrent data streams, wherein N > M+1;

9 during transmission utilizing the first set of M concurrent data streams,
10 determining individual transmission bandwidths for each concurrent data stream of the
11 first set of M concurrent data streams and a first aggregate transmission bandwidth for
12 the first set of M concurrent data streams;

13 during transmission utilizing the second set of N concurrent data streams,
14 determining individual transmission bandwidths for each concurrent data stream of the
15 second set of N concurrent data streams and a second aggregate transmission bandwidth
16 for the second set of N concurrent data streams;

17 comparing the first aggregate transmission bandwidth to the second aggregate
18 transmission bandwidth; and

19 responsive to a determination that the second aggregate transmission bandwidth
20 is greater than the first aggregate transmission bandwidth by a first predetermined
21 threshold, initiating a third set of Z concurrent data streams to transfer a portion of the
22 large data file, wherein Z > N.

1 20. The article of manufacture according to Claim 19, further comprising the step of:

2 responsive to a determination that the second aggregate transmission bandwidth
3 is greater than the first aggregate transmission bandwidth by less than a second

BLD920000034US2

4 predetermined threshold, initiating the third set of Z concurrent data streams to transfer
5 a portion of the large data file, wherein $Z < N$.

1 21. The article of manufacture according to Claim 19, further comprising the step
2 of:

3 responsive to a determination that the second aggregate transmission bandwidth
4 is approximately equal to the first aggregate transmission bandwidth within a threshold
5 band, initiating the third set of Z concurrent data streams to transfer a portion of the large
6 data file, wherein $Z = N$.

22. The article of manufacture according to Claim 19, wherein Z is selected from a
predetermined schedule of numbers that are separated by a relative ratio of greater than
120%.

23. The article of manufacture according to Claim 19, wherein the step of
determining individual transmission bandwidths for each concurrent data stream of the
first and second set of concurrent data streams and the aggregate transmission
bandwidths for the first and second set of concurrent data streams further comprises:

computing the individual transmission bandwidths from byte counts and clock
times; and

computing the aggregate transmission bandwidth by summing the individual
transmission bandwidths.

24. The article of manufacture according to Claim 19, the steps further comprising:
during continuous transfer of the large data file, periodically determining an
aggregate transmission bandwidth for a current set of concurrent data streams transferring
a portion of the large data file;

BLD920000034US2

5 comparing a latest aggregate transmission bandwidth with a previous aggregate
6 transmission bandwidth; and

7 responsive to a determination that the latest aggregate transmission bandwidth
8 is different from the previous aggregate transmission bandwidth by a third
9 predetermined threshold, initiating a new set of concurrent data streams to transfer a
10 portion of the large data file.

1 25. The article of manufacture according to Claim 24, wherein the aggregate
2 transmission bandwidth is a weighted average of all measurements of aggregate
3 transmission bandwidth for the current set of concurrent data streams, with more recent
4 measurements being given greater weight.

5 26. The article of manufacture according to Claim 19, the steps further comprising:

6 (a) determining whether the individual transmission bandwidths for an active set
7 of concurrent data streams are close to a backbone limit;

8 (b) determining whether an aggregate transmission bandwidth for the active set
9 of concurrent data streams is greater than an aggregate transmission bandwidth for a
10 previous set of concurrent data streams by the first predetermined threshold; and

1 7 (c) responsive to an affirmative determination in steps (a) and (b), initiating a new
2 8 set of concurrent data streams to transfer a portion of the large data file.

3 27. The article of manufacture according to Claim 26, the steps further comprising:

4 determining a specified maximum data stream count from either a system
5 originating the large data file or a system receiving the large data file; and

6 repeating steps (a) through (c) until either the aggregate transmission bandwidth
7 5 for the active set of concurrent data streams is not substantially greater than the aggregate

BLD920000034US2

bandwidth for all of the prior number of active data streams or the maximum data stream count is reached.