

μ PD8039HL/49H, μ PD8749H HIGH-SPEED, 8-BIT, SINGLE-CHIP HMOS MICROCOMPUTERS

Description

The NEC μ PD8039HL, μ PD8049H and the μ PD8749H are high performance, single component, 8-bit parallel microcomputers using n-channel silicon gate MOS technology. The processors differ only in their internal program memory options: the μ PD8049H has 2K×8 bytes of mask ROM, the μ PD8749H has 2K×8 of UV erasable EPROM and the μ PD8039HL has external program memory.

The μ PD8049H family functions efficiently in control as well as arithmetic applications. The powerful instruction set eases bit handling applications and provides facilities for binary and BCD arithmetic. Standard logic functions implementation is facilitated by the large variety of branch and table look-up instructions. The instruction set is comprised of 1 and 2 byte instructions, most of which are single-byte. The instruction set requires only 1 or 2 cycles per instruction with over 50 percent of the instructions single-cycle.

The µPD8049H family of microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories. The µPD8039HL is intended for applications using external program memory only. It contains all the features of the µPD8049H except for the internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products. The µPD8049H contains the following functions usually found in external peripheral devices: 2048 x 8 bits of mask ROM program memory; 128 x 8 bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; and oscillator and clock circuitry. The µPD8749H differs from the µPD8049H in its 2048 x 8-bit UV erasable EPROM program memory instead of the mask ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask ROM.

Features

High performance 11 MHz operation
Fully compatible with industry standard
8039/8049/8749
Pin compatible with the μPD8048/8748
1.36 µs cycle time. All instructions 1 or 2 bytes
Programmable interval timer/event counter
2K × 8 bytes of ROM, 128 × 8 bytes of RAM

External and internal interrupts
96 instructions: 70 percent single byte

27 I/O lines

□ Internal clock generator

☐ Expandable with 8080A/8085A peripherals

☐ HMOS silicon gate technology

□ Single +5 V ± 10 percent power supply

Ordering Information

Part Number	Package Type	Max Frequency of Operation	
μPD8039HLC	40-pin plastic DIP	11 MHz	
μPD8049HC	40-pin plastic DIP	11 MHz	
μPD8749HC	40-pin plastic DIP	11 MHz	
μPD8749HD	40-pin cerdip (Note 1)	11 MHz	

Note:

(1) With quartz window.

Pin Configuration

Pin Identification

No.	Symbol	Function
1	ТО	Test 0 input /output
2	XTAL1	Crystal 1 input
3	XTAL2	Crystal 2 input
4	RESET	Reset input
5	SS	Single step input
6	ĪNŤ	Interrupt input
7	EA	External access input
8	RD	Read output
9	PSEN	Program store enable output
10	WR	Write output
11	ALE	Address latch enable output
12-19	DB ₀ -DB ₇	Bidirectional data bus
20	V _{SS}	Ground
21-24	P2 ₀ -P2 ₇	Quasi-bidirectional Port 2
25, 35-38	PROG	Program output
26	V _{DD}	RAM power supply
27-34	P1 ₀ -P1 ₇	Quasi-bidirectional Port 1
39	T1	Test 1 input
40	V _{CC}	Primary power supply

Pin Functions

XTAL 1 (Crystal 1)

XTAL1 is one side of the crystal, LC, or external frequency source (non-TTL-compatible $V_{\mbox{\scriptsize IH}}$).

XTAL 2 (Crystal 2)

XTAL2 is the other side of the crystal or frequency source. For external sources, XTAL2 must be driven with the logical complement of the XTAL1 input.

T0 (Test 0)

T0 is the testable input using conditional transfer functions JT0 and JNT0. The internal state clock (CLK) is available to T0 using the ENT0 CLK instruction. T0 can also be used during programming as a testable flag.

T1 (Test 1)

T1 is the testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.

RESET (Reset)

An active low on $\overline{\text{RESET}}$ initializes the processor. $\overline{\text{RE-SET}}$ is also used for PROM programming verification and power-down (non-TTL compatible V_{IH}).

SS (Single Step)

An active low on \overline{SS} , together with ALE, causes the processor to execute the program one step at a time.

INT (Interrupt)

An active low on INT starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur.

EA (External Access)

An active high on EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging.

RD (Read)

RD will pulse low when the processor performs a bus read. An active low on RD enables data onto the processor bus from a peripheral device and functions as a read strobe for external data memory.

WR (Write)

WR will pulse low when the processor performs a bus write. WR can also function as a write strobe for external data memory.

PSEN (Program Store Enable)

PSEN becomes active only during an external memory fetch. (Active low).

ALE (Address Latch Enable)

ALE occurs at each cycle. ALE can also be used as a clock output. The falling edge of ALE addresses external data memory or external program memory.

DB₀-DB₇ (Data Bus)

 DB_0-DB_7 is a bidirectional port. Synchronous reads and writes can be performed on this port using \overline{RD} and \overline{WR} strobes. The contents of the DB_0-DB_7 bus can be latched in a static mode.

During an external memory fetch, DB₀-DB₇ output the low order eight bits of the memory address. \overrightarrow{PSEN} fetches the instruction. DB₀-DB₇ also output the address of an external data memory fetch. The addressed data is controlled by ALE, \overrightarrow{RD} , and \overrightarrow{WR} .

P10-P17 (Port 1)

P10-P17 is an 8-bit quasi-bidirectional port.

P20-P27 (Port 2)

P20-P27 is an 8-bit quasi-bidirectional port. P20-P23 output the high order four bits of the address during an external program memory fetch. P20-P23 also function as a 4-bit I/O bus for the µPD82C43 I/O port expander.

PROG (Program Pulse)

PROG is used as an output pulse during a fetch when interfacing with the uPD82C43 I/O port expander. When the µPD8049H is used in a stand-alone mode, PROG can be allowed to float.

Vcc (Primary Power Supply)

V_{CC} is the primary power supply. V_{CC} is +5 V during normal operation.

VDD (RAM Power Supply)

V_{DD} provides +5 V to the 128 × 8-bit RAM section. During normal operation, VCC must also be +5 V to provide power to the other functions in the device. During standby operation, VDD must remain at +5 V while VCC is at ground potential.

Vss (Ground)

Vss is ground potential.

Block Diagram

Logic Symbol

Absolute Maximum Ratings

T _A = 25°C	
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Voltage on any pin	-0.5 V to +7.0 V (Note 1)
Power dissipation, P _D	1.5 W

Note:

(1) With respect to ground.

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = V_{DD} = +5 V \pm 10$ %, $V_{SS} = 0 V$

		Limits	<u> </u>		Test Conditions
Symbol M	bol Min	Тур	Max	Unit	
V _{IL}	-0.5		0.8	V	
V _{IH}	2.0		V _{CC}	V	
V _{IH1}	3.8		V _{CC}	٧	
V _{OL}		·	0.45	٧	$I_{OL} = 2.0 \text{ mA}$
V _{OL1}			0.45	٧	$l_{OL} = 2.0 \text{ mA}$
V _{OL2}			0.45	٧	$l_{OL} = 2.0 \text{mA}$
	VIH VIH1 VOL	V _{IL} -0.5 V _{IH} 2.0 V _{IH1} 3.8 V _{OL}	Symbol Min Typ V _{IL} -0.5 V _{IH} 2.0 V _{IH1} 3.8 V _{OL}	V _{IL} -0.5 0.8 V _{IH} 2.0 V _{CC} V _{IH1} 3.8 V _{CC} V _{OL} 0.45 V _{OL1} 0.45	Symbol Min Typ Max Unit V _{IL} -0.5 0.8 V V _{IH} 2.0 V _{CC} V V _{IH} 3.8 V _{CC} V V _{OL} 0.45 V

			Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Output high voltage (•••)	V _{OH}	2.4			٧	$I_{OH} = -400 \mu\text{A}$	
Output high voltage (RD, WR, PSEN, ALE)	V _{OH1}	2.4			٧	$I_{0H} = -400 \mu\text{A}$	
Output high voltage (all other outputs)	V _{OH2}	2.4	·		٧	$I_{OH} = -40 \mu\text{A}$	
Input leakage current (T1, EA, INT)	l _{IL}			±10	μΑ	V _{SS} ≤ V _{IN} ≤ V _{CC}	
Input leakage current (P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , EA, SS)	I _{IL1}			-500	μΑ	V _{SS} + 0.45 V ≤ V _{IN} ≤ V _{CC}	
Output leakage current (BUS, T0, high impedance state)	I _{LO}			±10	μА	V _{CC} ≥ V _{IN} ≥ V _{SS} + 0.45 V	
Power down	IDD		5	10	mA	T _A = 25°C	
supply current			2	5		8749H only	
Total supply	DD+		80	110	mA	T _A = 25°C	
current	cc		85	110		8749H only	

DC Programming Characteristics

 $T_A = 25$ °C ± 5 °C, $V_{CC} = +5V \pm 5$ %, $V_{DD} = +21V \pm 0.5V$

			Limits			Test
Parameter	Symbol	Min Typ		Max	Unit	Conditions
V _{DD} program voltage high level	V _{DDH}	20.5		21.5	V	
V _{DD} program voltage low level	V _{DDL}	4.75		5.25	٧	
PROG program voltage high level	V _{PH}	17.5		18.5	V	
PROG voltage low level	V _{PL}	4.0		v _{cc}	٧	
EA program / verify voltage high level	V _{EAH}	17.5		18.5	٧	
V _{DD} high voltage supply current	IDD			20.0	mA	
PROG high voltage supply current	PROG			1.0	mA	
EA high voltage supply current	l _{EA}			1.0	mA	

AC Characteristics

 $T_A = 0$ °C to +70°C, $V_{CC} = V_{DD} = +5 V \pm 10\%$, $V_{SS} = 0 V$

		Limits				Test
Parameter \$	ymbol	Min	Тур	Max	Unit	Conditions
ALE pulse width	t _{LL}	150			ns	
Address setup to ALE	t _{AL}	70			ns	
Address hold from ALE	t _{LA}	50			ns	
Control pulse width (RD, WR)	t _{CC1}	480			ns	
Control pulse width (PSEN)	t _{CC2}	350			ns	
Data setup before WR	t _{DW}	390			ns	
Data hold after WR	t _{WD}	40			ns	(Note 2)
Data hold (RD, PSEN)	t _{DR}	0		110	ns	
RD to data in	t _{RD1}			350	ns	
PSEN to data in	t _{RD2}			210	ns	
Address setup to WR	t _{AW}	300			ns	
Address setup to data (RD)	[†] AD1			750	ns	
Address setup to data (PSEN)	t _{AD2}			480	ns	
Address float to RD, WR	t _{AFC1}	140			ns	
Address float to PSEN	t _{AFC2}	10			ns	
ALE to control (RD, WR)	t _{LAFC1}	200			ns	
ALE to control (PSEN)	t _{LAFC2}	60			ns	
Control to ALE (RD, WR, PROG)	t _{CA1}	50			ns	
Control to ALE (PSEN)	t _{CA2}	320			ns	
Port control setup to PROG	t _{CP}	100			ns	
Port control hold to PROG	t _{PC}	160			ns	
PROG to P2 input valid	tpR			650	ns	
Input data hold from PROG	tpF	0		140	ns	
Output data setup	t _{DP}	400			ns	
Output data hold PROG pulse	t _{PD}	700			ns	

		Limits			Test Conditions
Symbol	Min	Тур	Max	Unit	
t _{PL}	160			ns	
t _{LP}	40	··		ns	
t _{PV}			510	ns	
t _{CY}	1.36		15	μS	
toprr	270			ns	
	t _{PL} t _{LP} t _{PV}	t _{PL} 160 t _{LP} 40 t _{PV} t _{CY} 1.36	Symbol Min Typ tpL 160 tLP 40 tpV 1.36	t _{PL} 160 t _{LP} 40 t _{PV} 510 t _{CY} 1.36 15	Symbol Min Typ Max Unit t_{PL} 160 ns t_{LP} 40 ns t_{PV} 510 ns t_{CY} 1.36 15 μ s

Note:

- (1) Control outputs: $C_L = 60 \, pF$, bus outputs: $C_L = 150 \, pF$
- (2) Bus high impedance, load = 20 pF
- (3) Calculated values will be equal to or better than published 8049 values.

AC Programming Characteristics

 $T_A = 25$ °C ± 5 °C, $V_{CC} = +5$ V ± 5 %, $V_{DD} = +21$ V ± 0.5 V

	-		Limits			Test Conditions
Parameter	Symbol	Min	Тур	Max	Unit	
Address setup time to RESET †	t _{AW}	4 t _{CY}				
Address hold time after RESET†	t _{WA}	4 t _{CY}				
Data in setup time to PROG†	t _{DW}	4 t _{CY}		•		
Data in hold time after PROG↓	t _{WD}	4 t _{CY}				
RESET hold time to verify	t _{PH}	4 t _{CY}				
V _{DD}	t _{VDDW}	0		1.0	ms	
V _{DD} hold time after PROG↓	tvddh	0		1.0	ms	
PROG pulse width	tpw	50		60	ms	
TEST0 setup time for program mode	t _{TW}	4 t _{CY}				
TESTO hold time after program mode	twr	4 t _{CY}				
TEST0 to data out delay(1)	t _{DO}			4 t _{CY}	·	
RESET pulse width to latch address	t _{WW}	4 t _{CY}				
V _{DD} and PROG rise and fall times	t _r , t _f	0.5		100	μS	

AC Programming Characteristics (cont)

 $T_A = 25$ °C ± 5 °C, $V_{CC} = +5V \pm 5$ %, $V_{DD} = +21V \pm 0.5V$

			Limits		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CPU operation cycle time	tcy	4.0		15	μS	
RESET setup time before EA†	t _{RE}	4 t _{CY}				

Note:

- (1) Control outputs: $C_L = 60 \, pF$, bus outputs: $C_L = 150 \, pF$
- (2) Bus high impedance, load = 20 pF
- (3) Calculated values will be equal to or better than published 8049 values.

Bus Timing Requirements

tal (2/15) t _{CY} -110 Min ns tLA (1/15) t _{CY} -200 Min ns tCC1 (1/2) t _{CY} -200 Min ns tCC2 (2/5) t _{CY} -200 Min ns tDW (13/30) t _{CY} -200 Min ns tWD (1/15) t _{CY} -50 Min ns tWD (1/10) t _{CY} -30 Max ns tDR (1/10) t _{CY} -30 Max ns tRD1 (2/5) t _{CY} -200 Max ns tRD2 (3/10) t _{CY} -200 Max ns tAD2 (3/15) t _{CY} -250 Max ns tAD2 (8/15) t _{CY} -250 Max ns tAFC1 (2/15) t _{CY} -250 Max ns tAFC2 (1/30) t _{CY} -250 Max ns tAFC2 (1/30) t _{CY} -250 Min ns tLAFC1 (1/5) t _{CY} -75 Min ns tLAFC2 (1/10) t _{CY} -75 Min ns tCA2 (4/15) t _{CY} -40 Min	Symbol	Timing Formula	Min/Max	Unit
tLA (1/15) t _{CY} -40 Min ns t _{CC1} (1/2) t _{CY} -200 Min ns t _{CC2} (2/5) t _{CY} -200 Min ns t _{DW} (13/30) t _{CY} -200 Min ns t _{WD} (1/15) t _{CY} -50 Min ns t _{DR} (1/10) t _{CY} -30 Max ns t _{DR} (1/10) t _{CY} -200 Max ns t _{RD1} (2/5) t _{CY} -200 Max ns t _{RD2} (3/10) t _{CY} -200 Max ns t _{ABD2} (3/10) t _{CY} -150 Min ns t _{ABD2} (8/15) t _{CY} -250 Max ns t _{ABC2} (1/30) t _{CY} -40 Min ns t _{ABC2} (1/10) t _{CY} -75 Min ns t _{CA1} <td< td=""><td>tLL</td><td>(7 / 30) t_{CY} – 170</td><td>Min</td><td>ns</td></td<>	tLL	(7 / 30) t _{CY} – 170	Min	ns
tcc1 (1/2) tcy-200 Min ns tcc2 (2/5) tcy-200 Min ns tDW (13/30) tcy-200 Min ns tWD (1/15) tcy-50 Min ns tRDD (1/10) tcy-30 Max ns tRD1 (2/5) tcy-200 Max ns tRD2 (3/10) tcy-200 Max ns tAD2 (3/10) tcy-250 Max ns tAD2 (8/15) tcy-250 Max ns tAD2 (8/15) tcy-250 Max ns tAFC1 (2/15) tcy-40 Min ns tAFC2 (1/30) tcy-40 Min ns tLAFC2 (1/30) tcy-75 Min ns tLAFC2 (1/10) tcy-75 Min ns tCA1 (1/15) tcy-40 Min ns tCA2 (4/15) tcy-40 Min ns tCA2 (4/15) tcy-40 Min ns tCA2 (4/15) tcy-40 Min ns tCA3 (1/10) tcy-75 Min ns tCA4 (1/15) tcy-40 Min ns tCA5 (4/15) tcy-40 Min ns tCA6 (4/15) tcy-40 Min ns tCA7 (1/10) tcy-75 Min ns tCA8 (4/15) tcy-40 Min ns tCA9 (2/15) tcy-80 Min ns tCA9 (2/15) tcy-80 Min ns tCA9 (2/15) tcy-120 Max ns tCA9 (1/10) tcy-50 Min ns	t _{AL}	(2 / 15) t _{CY} - 110	Min	ns
t _{CC2} (2/5) t _{CY} - 200 Min ns t _{DW} (13/30) t _{CY} - 200 Min ns t _{WD} (1/15) t _{CY} - 50 Min ns t _{DR} (1/10) t _{CY} - 30 Max ns t _{RD1} (2/5) t _{CY} - 200 Max ns t _{RD2} (3/10) t _{CY} - 200 Max ns t _{AW} (1/3) t _{CY} - 250 Max ns t _{AD1} (11/15) t _{CY} - 250 Max ns t _{AD2} (8/15) t _{CY} - 250 Max ns t _{AD2} (8/15) t _{CY} - 250 Max ns t _{AFC1} (2/15) t _{CY} - 250 Max ns t _{AFC2} (1/30) t _{CY} - 40 Min ns t _{LAFC2} (1/30) t _{CY} - 75 Min ns t _{LAFC2} (1/10) t _{CY} - 75 Min ns t _{CA1} (1/15) t _{CY} - 40 Min ns t _{CA2} (4/15) t _{CY} - 40 Min ns t _P (1/30) t _{CY} - 120 Max ns	t _{l.A}	(1/15) t _{CY} - 40	Min	ns
tow (13/30) t _{CY} - 200 Min ns two (1/15) t _{CY} - 50 Min ns tDR (1/10) t _{CY} - 30 Max ns tRD1 (2/5) t _{CY} - 200 Max ns tRD2 (3/10) t _{CY} - 200 Max ns tAD2 (3/10) t _{CY} - 250 Max ns tAD1 (11/15) t _{CY} - 250 Max ns tAD2 (8/15) t _{CY} - 250 Max ns tAD2 (8/15) t _{CY} - 250 Max ns tAFC1 (2/15) t _{CY} - 250 Max ns tAFC2 (1/30) t _{CY} - 40 Min ns tLAFC1 (1/5) t _{CY} - 75 Min ns tLAFC2 (1/10) t _{CY} - 75 Min ns tCA1 (1/15) t _{CY} - 40 Min ns tCA2 (4/15) t _{CY} - 40 Min ns tPC (4/15) t _{CY} - 200 Min ns tPF (1/10) t _{CY} - 120 Max ns tPD (1	t _{CC1}	$(1/2) t_{CY} - 200$	Min	ns
two (1/15) t _{CY} -50 Min ns tDR (1/10) t _{CY} -30 Max ns tRD1 (2/5) t _{CY} -200 Max ns tRD2 (3/10) t _{CY} -200 Max ns tAD2 (3/10) t _{CY} -150 Min ns tAD1 (11/15) t _{CY} -250 Max ns tAD2 (8/15) t _{CY} -250 Max ns tAFC1 (2/15) t _{CY} -250 Min ns tLAFC2 (1/30) t _{CY} -75 Min ns tLAFC2 (1/10) t _{CY} -75 Min ns tCA1 (1/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tPC (2/15) t _{CY} -80 Min ns tPC (4/15) t _{CY} -120 M	t _{CC2}	$(2/5) t_{CY} - 200$	Min	ns
tDR (1/10) t _{CY} − 30 Max ns tRD1 (2/5) t _{CY} − 200 Max ns tRD2 (3/10) t _{CY} − 200 Max ns tAW (1/3) t _{CY} − 150 Min ns tAD1 (11/15) t _{CY} − 250 Max ns tAD2 (8/15) t _{CY} − 250 Max ns tAD2 (8/15) t _{CY} − 250 Max ns tAFC1 (2/15) t _{CY} − 40 Min ns tAFC2 (1/30) t _{CY} − 40 Min ns tLAFC2 (1/30) t _{CY} − 40 Min ns tLAFC2 (1/10) t _{CY} − 75 Min ns tLAFC2 (1/10) t _{CY} − 75 Min ns tCA1 (1/15) t _{CY} − 40 Min ns tCA2 (4/15) t _{CY} − 40 Min ns tCP (2/15) t _{CY} − 40 Min ns tCP (2/15) t _{CY} − 80 Min ns tPP (1/10) t _{CY} − 80 Min ns tPP (1/10) t _{CY} − 120 Max ns tPP (1/10) t _{CY} − 150 Min ns tPP (2/5) t _{CY} − 150 Min ns tPP (7/10) t _{CY} − 50 Min ns tPP (7/10) t _{CY} − 50 Min ns tPP (7/10) t _{CY} − 250 Min ns tPP (7/10) t _{CY} − 250 Min ns tPP (7/10) t _{CY} − 250 Min ns tPP (1/10) t _{CY} − 200 Min ns tPP (1/10) t _{CY} − 200 Min ns tPP (7/10) t _{CY} − 250 Min ns tPP (7/10) t _{CY} − 250 Min ns tPP (1/10) t _{CY} − 200 Min ns	t _{DW}	(13 / 30) t _{CY} - 200	Min	ns
tRD1 (2/5) t _{CY} - 200 Max ns tRD2 (3/10) t _{CY} - 200 Max ns tAW (1/3) t _{CY} - 150 Min ns tAD1 (11/15) t _{CY} - 250 Max ns tAD2 (8/15) t _{CY} - 250 Min ns tAD2 (8/15) t _{CY} - 40 Min ns tLAFC1 (1/5) t _{CY} - 75 Min ns tLAFC2 (1/10) t _{CY} - 40 Min ns tCA1 (1/15) t _{CY} - 40 Min ns tCA2 (4/15) t _{CY} - 40 Min ns tCA2 (4/15) t _{CY} - 80 Min ns tPC (4/15) t _{CY} - 200 Min ns tPR (17/30) t _{CY} - 120 Max ns tPP (1	t _{WD}	(1/15) t _{CY} - 50	Min	ns
tRD2 (3/10) t _{CY} -200 Max ns tAW (1/3) t _{CY} -150 Min ns tAD1 (11/15) t _{CY} -250 Max ns tAD2 (8/15) t _{CY} -250 Min ns tAD2 (8/15) t _{CY} -40 Min ns tLAFC1 (1/5) t _{CY} -75 Min ns tLAFC2 (1/10) t _{CY} -75 Min ns tCA1 (1/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tPC (2/15) t _{CY} -80 Min ns tPR (1/7/30) t _{CY} -120 Max ns tPF (1/10) t _{CY} -150 Min ns tPD (1/10) t _{CY} -50 Min	t _{DR}	(1/10) t _{CY} - 30	Max	ns
taw (1/3) t _{CY} -150 Min ns taD1 (11/15) t _{CY} -250 Max ns taD2 (8/15) t _{CY} -250 Max ns taFC1 (2/15) t _{CY} -40 Min ns taFC2 (1/30) t _{CY} -40 Min ns tLAFC1 (1/5) t _{CY} -75 Min ns tLAFC2 (1/10) t _{CY} -75 Min ns tCA1 (1/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tCP (2/15) t _{CY} -40 Min ns tPC (4/15) t _{CY} -80 Min ns tPC (4/15) t _{CY} -200 Min ns tPF (1/10) t _{CY} -120 Max ns tPP (1/10) t _{CY} -150 Min ns tPD (1/10) t _{CY} -50 Min ns tPP (7/10) t _{CY} -250 Min ns tPL (4/15) t _{CY} -100 Min ns tPV (3/10) t _{CY} -100 Max	t _{RD1}	(2/5) t _{CY} - 200	Max	ns
tAD1 (11/15) t _{CY} - 250 Max ns tAD2 (8/15) t _{CY} - 250 Max ns tAD2 (8/15) t _{CY} - 250 Max ns tAFC1 (2/15) t _{CY} - 40 Min ns tAFC2 (1/30) t _{CY} - 40 Min ns tLAFC1 (1/15) t _{CY} - 75 Min ns tCAFC2 (1/10) t _{CY} - 75 Min ns tCA1 (1/15) t _{CY} - 40 Min ns tCA2 (4/15) t _{CY} - 40 Min ns tCP (2/15) t _{CY} - 80 Min ns tPC (4/15) t _{CY} - 200 Min ns tPR (17/30) t _{CY} - 120 Max ns tPP (1/10) t _{CY} - 150 Min ns tPD (1/10) t _{CY} - 50 Min ns tPP (7/10) t _{CY} - 250 Min ns tPL (4/15) t _{CY} - 100 Min ns tPV (3/10) t _{CY} - 100 Max ns tOPRR (3	t _{RD2}	(3 / 10) t _{CY} - 200	Max	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{AW}	(1/3) t _{CY} - 150	Min	ns
tafc1 (2/15) t _{CY} -40 Min ns tafc2 (1/30) t _{CY} -40 Min ns tLAFC1 (1/5) t _{CY} -75 Min ns tLAFC2 (1/10) t _{CY} -75 Min ns tCA1 (1/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tCP (2/15) t _{CY} -80 Min ns tPC (4/15) t _{CY} -200 Min ns tPR (17/30) t _{CY} -120 Max ns tPF (1/10) t _{CY} Max ns tPD (2/5) t _{CY} -150 Min ns tPD (1/10) t _{CY} -50 Min ns tPP (7/10) t _{CY} -250 Min ns tPL (4/15) t _{CY} -200 Min ns tPV (3/10) t _{CY} -100 Max ns tOPRR (3/15) t _{CY} Min ns	t _{AD1}	(11/15) t _{CY} - 250	Max	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{AD2}	(8 / 15) t _{CY} - 250	Max	пѕ
tLAFC1 (1/5) t _{CY} -75 Min ns tLAFC2 (1/10) t _{CY} -75 Min ns tCA1 (1/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tCP (2/15) t _{CY} -80 Min ns tPC (4/15) t _{CY} -200 Min ns tPR (17/30) t _{CY} -120 Max ns tPF (1/10) t _{CY} Max ns tDP (2/5) t _{CY} -150 Min ns tPD (1/10) t _{CY} -50 Min ns tPP (7/10) t _{CY} -250 Min ns tPL (4/15) t _{CY} -200 Min ns tPL (1/10) t _{CY} -100 Min ns tPV (3/10) t _{CY} -100 Max ns tOPRR (3/15) t _{CY} Min ns	t _{AFC1}	(2/15) t _{CY} -40	Min	ns
tLAFC2 (1/10) t _{CY} -75 Min ns tCA1 (1/15) t _{CY} -40 Min ns tCA2 (4/15) t _{CY} -40 Min ns tCP (2/15) t _{CY} -80 Min ns tPC (4/15) t _{CY} -200 Min ns tPR (17/30) t _{CY} -120 Max ns tPF (1/10) t _{CY} Max ns tPD (1/10) t _{CY} -150 Min ns tPD (1/10) t _{CY} -50 Min ns tPP (7/10) t _{CY} -250 Min ns tPL (4/15) t _{CY} -200 Min ns tPV (3/10) t _{CY} -100 Max ns tOPRR (3/15) t _{CY} Min ns	t _{AFC2}	(1/30) t _{CY} - 40	Min	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{LAFC1}	(1/5) t _{CY} -75	Min	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1/10) t _{CY} -75	Min	ns
tcp (2/15) tcy-80 Min ns tpc (4/15) tcy-200 Min ns tpp (17/30) tcy-120 Max ns tpp (1/10) tcy Max ns tpp (2/5) tcy-150 Min ns tpp (1/10) tcy-50 Min ns tpp (7/10) tcy-250 Min ns tpp (7/10) tcy-250 Min ns tpp (4/15) tcy-200 Min ns tpl (4/15) tcy-200 Min ns tpl (4/15) tcy-100 Min ns tpy (3/10) tcy-100 Max ns	t _{CA1}	(1/15) t _{CY} -40	Min	ns
tpc (4/15) tcy-200 Min ns tpg (17/30) tcy-120 Max ns tpf (1/10) tcy Max ns tpp (2/5) tcy-150 Min ns tpp (1/10) tcy-50 Min ns tpp (7/10) tcy-250 Min ns tpp (7/10) tcy-250 Min ns tpl (4/15) tcy-200 Min ns tpl (4/15) tcy-100 Min ns tpy (3/10) tcy-100 Min ns tpy (3/10) tcy-100 Max ns	t _{CA2}	(4 / 15) t _{CY} - 40	Min	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{CP}	(2/15) t _{CY} - 80	Min	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{PC}	(4 / 15) t _{CY} - 200	Min	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{PR}	(17 / 30) t _{CY} - 120	Max	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tpF	(1/10) t _{CY}	Max	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{DP}	(2/5) t _{CY} - 150	Min	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{PD}	(1/10) t _{CY} - 50	Min	ns
t _{LP} (1/10) t _{CY} -100 Min ns t _{PV} (3/10) t _{CY} -100 Max ns t _{OPRR} (3/15) t _{CY} Min ns	tpp	(7 / 10) t _{CY} - 250	Min	ns
t _{PV} (3/10) t _{CY} - 100 Max ns t _{OPRR} (3/15) t _{CY} Min ns	tpL	(4 / 15) t _{CY} - 200	Min	ns
t _{OPRR} (3/15) t _{CY} Min ns		(1/10) t _{CY} -100	Min	ns
	tpv	(3 / 10) t _{CY} - 100	Max	ns
t _{CY} 11 MHz µs	toper	(3 / 15) t _{CY}	Min	ns
<u> </u>	t _{CY}	11 MHz		μS

Timing Waveforms

Instruction Fetch from External Memory

Read from External Data Memory

Write to External Memory

Timing Waveforms (cont)

Port 2 Timing

Waveforms for Programming the µPD8749H

Program/Verify Timing (ROM/EPROM)

Instruction Set	on Set				å	Operation Code	Code						Flags	
Mnemonic	Function	Description	D,	Pe	o	D4 C	D ₃ D ₂	2 D	å	Cycles	Bytes	ပ	AC F0	E
Accumulator														
ADD A, # data	(A) ← (A) + data	Add immediate the specified data to the accumulator.	0 d7	0 9	0 &	0 \$	0 d ₃ d ₂	2 4	- 용	- 5	2	•		
ADD A, Rr	(A) \leftarrow (A) + (Rr) r = 0-7	Add contents of designated register to the accumulator.	0	-	-	0	_		_	-	-	•		
ADD A, @ Rr	(A) ← (A) + ((Rr)) r = 0-1	Add indirect the contents of the data memory location to the accumulator.	0	-	-	0	0 0	0 (_	-	-	•		
ADDC A, # data	(A) ← (A) + (C) + data	Add immediate with carry the specified data to the accumulator.	0 4	0 8	0 d ₅	† d4 (0 0 d ₃ d ₂) 1 2 d _t	- 6	2	2	•		
ADDC A, Rr	(A) \leftarrow (A) + (C) + (Rr) r = 0-7	Add with carry the contents of the designated register to the accumulator.	0	-	-	-	1	r r	_	-	-	•		
ADDC A, @ Rr	(A) \leftarrow (A) + (C) + ((Rr)) r = 0-1	Add indirect with carry the contents of data memory location to the accumulator.	0	-	-	-	0	0 0	_	-	-	•		
ANL A, # data	(A) (A) AND data	Logical AND specified immediate data with accumulator.	0 4	- ₉	0 ද	1 d4 (0 d ₃	0 1 d ₂ dղ	1 1 do	2	2			
ANL A, Rr	(A) (A) AND (Rr) r = 0-7	Logical AND contents of designated register with accumulator.	0	-	0	-	-		-	-	-			
ANL A, @ Rr	(A) \leftarrow (A) AND ((Rr)) r = 0-1	Logical AND indirect the contents of data memory with accumulator.	0	-	0	-	0	0 0		-	-			
CPL A	(A) ← NOT (A)	Complement the contents of the accumulator.	0	0	-	_	. 0	-		-	-			
CLRA	(A) ← 0	Clear the contents of the accumulator.	0	0	-	0	0	_		-	-			
DA A		Decimal adjust the contents of the accumulator.	0	-	0	-	0	_	_	-	-	•		
DEC A	(A) ← (A) – 1	Decrement by 1 the accumulator's contents.	0	0	0	0	0	_		-	-			
INC A	(A) ← (A) +1	Increment by 1 the accumulator's contents.	0	0	0	-	0	-	_	-	-			
ORL A, # data	(A) ← (A) 0R data	Logical OR specified immediate data with accumulator.	0 d ₇	- %	0 d ₅	0 d4	0 d3 c	0 1 d ₂ d ₁	- -	2	5			
ORL A, Rr	(A) ← (A) OR (Rr) r = 0-7	Logical OR contents of designated register with accumulator.	0	-	0	0	-	_		-	-			
ORL A, @ Rr	(A) ← (A) OR ((Rr)) r = 0-1	Logical OR indirect the contents of data memory location with accumulator.	0	-	0	0	0		. 0	-	-			
RLA	$(AN + 1) \leftarrow (AN); N = 0-6$ $(A_0) \leftarrow (A_7)$	Rotate accumulator left by 1 bit without carry.	-	-	-	0	0	_	_	-	-			
RLC A	$(AN + 1) \leftarrow (AN)$; $N = 0-6$ $(A_0) \leftarrow (C)$ $(C) \leftarrow (A_7)$	Rotate accumulator left by 1 bit through carry.	-	-	-	-	0	· -	_	-	-	•		
RR A	$(AN) \leftarrow (AN + 1); N = 0-6$	Rotate accumulator right by 1 bit without carry.	0	-	-	-	0	_		-	-			

by Templation Description Description Processor (A) → (A) → (A) + (A						ô	Operation Code	Code						=	Flags	
(A) + (A) + (B) (A) + (A) + (A) + (A) + (A) (A) + (A)	Mnemonic	Function	Description	7	og O	1 1	\ I		D ₂	o o	o Cycles	s Bytes	٥	AC	윤	E
(AN) ← (AN + 1); N = 0−6 (Rotale accumulator right by 1 bit through carry. 0 1 1 0 0 1 (A) ← (A) ← (A) ← (B) ← (B	Accumulator (con	4)		-											İ	
(A ₁ → (A ₂ → A ₂) = Swap the 2 4-bit nibbles in the accumulator. (A ₁ → (A ₂ → A ₂) = C(A ₂ → A ₃) = Swap the 2 4-bit nibbles in the accumulator. (A ₁ → (A ₁ → (A ₁ XOR (Rr)) = Logical XOR specified immediate data memory location with 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0	RRC A	AN) \leftarrow (AN + 1); N A ₇) \leftarrow (C) C) \leftarrow (A ₀)	Rotate accumulator right by 1 bit through carry.	0	-	-	0	0	_	-	-	-	•			
# data	SWAP A	$(A_4-A_7) \leftarrow (A_0-A_3)$	Swap the 2 4-bit nibbles in the accumulator.	0	-	0	0		-	+	-	-			İ	
Rr (A) + − (A) XOR (Rr) Logical XOR contents of designated register with accumulator. 1 0 1 0 r = 0−7 Logical XOR contents of data memory location with 1 1 0 1 0 r = 0−1 Logical XOR indirect the contents of data memory location with 1 1 1 1 0 1 0 r = 0−1 Logical XOR indirect the contents of the part of th	XRL A, # data	(A) (A) XOR data	Logical XOR specified immediate data with accumulator.	1 d7	1 d ₆	0 &	- \$		0 6	- 6	1 2 50	2				ļ
(RD → (R) XOR ((RT))	XRL A, Rr	(A) ← (A) XOR (Rr) r = 0-7	Logical XOR contents of designated register with accumulator.	-	-	0	-	_	_	י	-	-				1
f. addr (Rf) — (Rf) — 1: r = 0-7 Decrement the specified register and test contents. 1 1 1 1 1 0 1 1	(9)	(A) \leftarrow (A) XOR ((Rr)) r = 0-1	Logical XOR indirect the contents of data memory location with accumulator.	-	-	0	-		0	0	-	-				ł
$(Rh) \leftarrow (Rh) - 1; r = 0 - 7$ Decrement the specified register and test contents. 1 1 1 1 0 1 1 $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \neq 0$; $(Rh) \Rightarrow 0$; $(Rh) $	Branch										į				ļ	1
$ (PC_0-PC_7) \leftarrow addr \ if \ B_b = 1 $ Jump to specified address if accumulator bit is set. $ \frac{PC}{a7} = \frac{PC}{a7} + \frac{Addr}{a7} = \frac{P}{a5} = \frac{A}{a5} = $	DJNZ Rr, addr	H	Decrement the specified register and test contents.	1 a7	1 a ₆	a ₅	94		r a ₂	- A	r 2 a ₀	2		ļ		
$(PC_0 - PC_7) \leftarrow \text{addr if C} = 1 \text{Jump to specified address if carry flag is set.} \qquad 1 1 1 1 1 0 1 1 0 1 1$	JBb addr	# B	Jump to specified address if accumulator bit is set.	b ₂ a ₇	ъ. 98	وع 5	- a4		0 a ₂	- 4-	0 2 a ₀	2		ļ		
$(PC_0 - PC_7) \leftarrow \text{addr if } F0 = 1$ Jump to specified address if flag F0 is set. 10 (PC) ← (PC) + 2 if F0 = 0 (PC) ← (PC) + 2 if F0 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC) + 2 if F1 = 0 (PC) ← (PC	JC addr	$(PC_0-PC_7) \leftarrow addr \ if \ C = 1$ $(PC) \leftarrow (PC) + 2 \ if \ C = 0$	Jump to specified address if carry flag is set.	1 a7	1 a ₆	± 3°	g 1		a ₂	- F	0 2 30 2	2				
(PC ₀ − PC ₇) ← addr if F1 = 1 Jump to specified address if flag F1 is set. (PC ₀ + PC ₁) ← addr if F1 = 0 (PC ₀ − PC ₁) ← (addr ₀ − addr ₁) (PC ₀ − PC ₁) ← (addr ₀ − addr ₁) (PC ₁ − PC ₁) ← (addr ₀ − addr ₁) (PC ₁ − PC ₂) ← (addr ₀ − addr ₁) (PC ₁ − PC ₂) ← (addr ₀ − addr ₁) (PC ₁ − PC ₂) ← (addr ₀ − addr ₁) (PC ₁ − PC ₂) ← (addr ₀ − addr ₁) (PC ₁ − PC ₂) ← addr ₁ ∈ 1 (PC ₀ − PC ₂) ← addr ₁ ∈ 1 (PC ₀ − PC ₂) ← addr ₁ ∈ 1 (PC ₀ − PC ₂) ← addr ₁ ∈ 2 (PC ₀ − PC ₂) ← addr ₁ ∈ 2 (PC ₀ − PC ₂) ← addr ₁ ∈ 2 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 3 (PC ₀ − PC ₂) ← addr ₁ ∈ 4 (PC ₀ − PC ₂)	JFO addr	$(PC_0-PC_7) \leftarrow addr \text{ if } F0 = 1$ $(PC) \leftarrow (PC) + 2 \text{ if } F0 = 0$	Jump to specified address if flag F0 is set.	1 a7	0 %	1 a ₅	1 48		4 ₂	a ₁ -	0 2 a ₀	2		İ		
$(PC_0-PC_{11}) \leftarrow (addr_0-addr_{10})$ Direct jump to specified address within the 2K address block. a_{10} a_{20} a_{3} a_{4} a_{3} a_{4} a_{3} a_{5} a_{4} a_{3} a_{5}	JF1 addr	$(PC_0-PC_7) \leftarrow addr \text{ if } F1 = 1$ $(PC) \leftarrow (PC) + 2 \text{ if } F1 = 0$	Jump to specified address if flag F1 is set.	0 a ₇	- 9e	1 a ₅	44		1 a ₂	- 4- 6	0 2 a ₀	2		1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JMP addr	$\begin{array}{l} (PC_8-PC_{10}) \leftarrow (addr_8-addr_{10}) \\ (PC_0-PC_7) \leftarrow (addr_0-addr_7) \\ (PC_{11}) \leftarrow DBF \end{array}$	Direct jump to specified address within the 2K address block.	a ₁₀	ag ae	a ₅	94 94		a ₂	9.0	a ₀ 2	2				
$(PC_0-PC_7) \leftarrow addrif C = 0 Jump to specified address if carry flag is low. \qquad 1 \qquad 1 \qquad 1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$	JMPP @ A	$(PC_0-PC_7) \leftarrow ((A))$	Jump indirect to specified address with address page.	1	0	-	-	0	0	_	1 2	-				
$(PC_0 - PC_7) \leftarrow addriff = 0 $ Jump to specified address if interrupt is low.	JNC addr	if C = 1	Jump to specified address if carry flag is low.	1 a ₇	1 a ₆	45	94	300	a ₂	- 42	0 S	2]
PC ₀ -PC ₇ \leftarrow addr if T0 = 0 Jump to specified address if test 0 is low. 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JNI addr	=======================================	Jump to specified address if interrupt is low.	1 a ₇	0 a ₆	0 a ₅	94 94	a3 0	- a	- a	0 2 a ₀	2				1
r (PC ₀ -PC ₇) ← addr if T1 = 0 Jump to specified address if test 1 is low. 0 1 0 0 0 0 0 (PC) ← (PC) + 2 if T1 = 1 a 3 a 4 a 3 a 3 a 4 a 4	JNT0 addr	if T0	Jump to specified address if test 0 is low.	0 a ₇	၀ မွ	ags	94 0	0 a ₃	a ₂	- F	0 2 a ₀					
$(PC_0-PC_7) \leftarrow$ addr if $A \neq 0$ Jump to specified address if accumulator is non-zero. 1 0 0 1 0 (PC) \leftarrow (PC) \leftarrow (PC) + 2 if $A = 1$ 37 36 35 34 33 (PC) \leftarrow (PC) + 2 if $A = 1$ 1 Imm to specified address if timer flag is set to 1 0 0 0 1 0	JNT1 addr	f∏ = Π = 1	Jump to specified address if test 1 is low.	0 a ₇	- %	၁ နိ	a 0	၀ န	42 42	- 4-		ł				
(PC-PC) + addr if TF = 1 Imp to specified address if timer flag is set to 1 0 0 0 1	JNZ addr	$(PC_0 - PC_7) \leftarrow addr \text{ if } A \neq 0$ $(PC) \leftarrow (PC) + 2 \text{ if } A = 1$	Jump to specified address if accumulator is non-zero.	- a	င မွ		- a	3.0	1 a ₂	- 45	0 2 a ₀		ĺ]
(PC) → (PC) + 2 if F = 0 and PC	JTF addr	$(PC_0-PC_7) \leftarrow addr \text{ if TF} = 1$ $(PC) \leftarrow (PC) + 2 \text{ if TF} = 0$	Jump to specified address if timer flag is set to 1.	0 9	0 %	o %	- 4g	90	4 ₂	بة ∟ ب	0 30 2	2				

					ö	Operation Code	ခို လ						Flags		- 1
Mnemonic	Function	Description	5	۵	Dş	7	03 03	ŏ	o O	Cycles	Bytes	اد	Ş	2	
Branch (cont)							Ì								
JT0 addr	(PC ₀ -PC ₇) addr if T0 = 1	Jump to specified address if test 0 is a 1.	0 8	٥ ٪	- 4	- 3	0 %	- 4	0 %	2	2				
	(PC) + (PC) + 2 II 10 = 0		'n	۶ .	ç						c				
JT1 addr	$(PC_0-PC_7) \leftarrow addr \text{ if } T1 = 1$ $(PC) \leftarrow (PC) + 2 \text{ if } T1 = 0$	Jump to specified address if test 1 is a 1.	0 a ₇	- ₉ e	⊃ ક્રિ	- 5	ს მვ მ2	, 12 a ₁	- S	7	7				
JZ addr	$(PC_0 - PC_7) \leftarrow addr \text{ if } A = 0$ $(PC) \leftarrow (PC) + 2 \text{ if } A = 1$	Jump to specified address if accumulator is 0.	1 a7	- g	0 %	0 Pg	0 1 33 a2	- 2	0 g	2	2				
Control															1 1
ENI		Enable the external interrupt input.	0	0	0	0	1 0	0	-	-	-				
DISI		Disable the external interrupt input.	0	0	0	_	0	0	-	-	1				
ENTO CLK		Enable the clock output pin TO.	0	-	-	_	0	0	-	-	1				
SEL MB0	(0BF) ← 0	Select bank 0 (locations 0-2047) of program memory.	-	-	-	0	0	0	-	-	1				- 1
SEL MB1	(DBF) ← 1	Select bank 1 (locations 2048-4095) of program memory.	-	-		-		1 0	-	-	-				
SEL RB0	(88) ← 0	Select bank 0 (locations 0-7) of data memory.	-	-	0	0	0	0 _	-		-				
SEL RB1	(BS) ← 1	Select bank 1 (locations 24-31) of data memory.	-	-	0	-	0	1	_	-	-				
Data Moves															
MOV A, # data	(A) data	Move immediate the specified data into the accumulator.	0 42	၀ မှ	- 유	0 4	0 d3	0 d ₂ գի	- do	2	2				
MOV A, Rr	(A) \leftarrow (Rr); $r = 0-7$	Move the contents of the designated registers into the accumulator.	-	-	-	-	-	_	_	·	1				
MOV A, @ Rr	(A) \leftarrow ((Rr)); $r = 0-1$	Move indirect the contents of data memory location into the accumulator.	-	-	-	-	0	0	٥ ــــــــــــــــــــــــــــــــــــ	+					1
MOV A, PSW	(A) ← (PSW)	Move contents of the program status word into the accumulator.	-	-	0	0	0	_	-	1	-				
MOV Rr, # data	(Rr) ← data; r = 0-7	Move immediate the specified data into the designated register.	1 d ₇	0 de	- ફ	1 d4	1 d ₃ 0	r r d ₂ dղ	- 0	2	2				
MOV Rr. A	$(Rr) \leftarrow (A); r = 0-7$	Move accumulator contents into the designated register.	-	0	-	0	-	L	r r	-	-				1
MOV @ Rr, A	$((Rr)) \leftarrow (A); r = 0-1$	Move indirect accumulator contents into data memory location.	-	0	-	0	0	0	. O	1	-				
MOV @ Rr, # data	$((Rr)) \leftarrow data; r = 0-1$	Move immediate the specified data into data memory.	1 d ₇	ဝမ္	- \$	1 d4	0 03	0 q ₂	0 1 d ₁ d ₀	2	2				
MOV PSW, A	$(PSW) \leftarrow (A)$	Move contents of accumulator into the program status word.	-	-	0	-	0	_		-	-				
MOVP A, @ A	$(PC_0-PC_7) \leftarrow (A)$ $(A) \leftarrow (PC))$	Move data in the current page into the accumulator.	-	0	-	0	0	0	_	2	-				
MOVP3 A, @ A	$(PC_0-PC_7) \leftarrow (A)$ $(PC_8-PC_{10}) \leftarrow 011$ $(A) \leftarrow ((PC))$	Move program data in page 3 into the accumulator.	-	-	-	0	0	0	_	2	-				
			İ												

Instruction Set (cont)

NEC

					ö	Operation Code	Code						Flags	36	
Mnemonic	Function	Description	0,	o O	õ	D 4	õ	D ₂	6	D ₀ Cycles	es Bytes	د	¥	요	E
Data Moves (cont)	1														
MOVX A, @ R	(A) \leftarrow ((Rr)); $r = 0-1$	Move indirect the contents of external data memory into the accumulator.	-	0	0	0	0	0	0	r 2	-	ļ			
MOVX @ R, A	$((Rr)) \leftarrow (A); r = 0-1$	Move indirect the contents of the accumulator into external data memory.	-	0	0	-	0	0	0	r 2	-				
XCH A, Rr	(A) \leftrightarrow (Rr); $r = 0-7$	Exchange the accumulator and designated register's contents.	0	0	-	0	-	_	_	١ 1	+				
XCH A, @ Rr	(A) \leftrightarrow ((Rr)); $r = 0-1$	Exchange indirect contents of accumulator and location in data memory.	0	0	-	0	0	0	0	r	-				
XCHD A, @ Rr	$(A_0-A_3) \leftarrow ((Rr))_0-((Rr))_3$: r = 0-1	Exchange indirect 4-bit contents of accumulator and data memory.	0	0	-	-	0	0	0		-				j
Flags															ļ
CPLC	(C) ← NOT (C)	Complement contents of carry bit.	-	0	-	0	0	-	-	1	-	•			
CPL F0	(F0) ← NOT (F0)	Complement contents of flag FO.	-	0	0	+	0	-	0	1	1			•	
CPL F1	(F1) ← NOT (F1)	Complement contents of flag F1.	-	0	-	1	0	-	0	1	-				•
CLRC	(C) - (D)	Clear contents of carry bit to 0.		0	0	1	0	-	1	1	-	•			
CLR F0	(F0) ← 0	Clear contents of flag 0 to 0.	-	0	0	0	0	-	0	1	+			•	
CLRFI	(F1) ← 0	Clear contents of flag 1 to 0.	-	0	-	0	0	-	0	-	-			}	•
Input / Output															
ANL BUS, # data	(bus) - (bus) AND data	Logical AND immediate specified data with contents of bus.	1 d7	0 9	o &	- 45	- 윤	o 2	0 2	0 0 0	2				Ì
ANL Pp. # data	(Pp) \leftarrow (Pp) AND data p = 1-2	Logical AND immediate specified data with designated port (1 or 2).	1 4	၀ ဗိ	o 2 5	- \$	ტ	о ф	σ£ ,	ი მ	7	;			
ANLD Pp. A	(Pp) \leftarrow (Pp) AND (A ₀ -A ₃); p = 4-7	Logical AND contents of accumulator with designated port (4-7).	-	0	0	-	-	-	a	p 2	-				
IN A, Pp	(A) \leftarrow (Pp); p = 1-2	Input data from designated port (1-2) into accumulator.	0	0	0	0	-	0	р	p 2	-				
INS A, BUS	(A) ← (bus)	Input strobed bus data into accumulator.	0	0	0	0	-	0	0	0 2	-				
MOVD A, Pp	$(A_0-A_3) \leftarrow (Pp); p = 4-7$ $(A_4-A_7) \leftarrow 0$	Move contents of designated port $(4-7)$ into accumulator.	0	0	0	0	-	-	a.	p 2	-				ł
MOVD Pp, A	(Pp) \leftarrow (A ₀ -A ₃); p = 4-7	Move contents of accumulator to designated port (4-7).	0	0	-	-	-	-	d	p 1	-				
ORL BUS, # data	(bus) ← (bus) OR data	Logical OR immediate specified data with contents of bus.	+ ¢	0 %	ი გ	0 4	ა გ	0 \$	o 5	, o ₀ o	2 2				
ORLD Pp, A	$(Pp) \leftarrow (Pp) OR (A_0 - A_3);$ p = 4 - 7	Logical OR contents of accumulator with designated port (4-7).	-	0	0	0	-	1	ď		-				
ORL Pp, # data	(Pp) \leftarrow (Pp) OR data p = 1-2	Logical OR immediate specified data with designated port (1-2).	1 4	၀ မွ	o &	0 p	- გ	0 q2	d P	о. О.	2 2				
OUTL BUS, A	(bus) ← (A)	Output contents of accumulator onto bus.	0	0	0	0	0	0	-	. 0	+				
OUTL Pp, A	$(Pp) \leftarrow (A); p = 1-2$	Output contents of accumulator to designated port (1-2).	0	0	-	-	-	0	۵	d	1				ļ
											i				

~
2
0
0
_
ب
•
(J)
Ę
0
ቖ
Ü
3
Ξ
•
69
2

					ľ	Operation Code	Sod							Flags	.	l
Mnemonic	Function	Description	0	۵	ũ	4	5	D2	2	ရိ	Do Cycles Bytes	Bytes	ပ	Ş	6	E
Registers	-															-
DEC Rr (Rr)	(Rr) \leftarrow (Rr) - 1; r = 0-7	Decrement by 1 contents of designated register.	-	-	0	0	1	_	_	٦	1	-				
INC Rr	(Rr) ← (Rr) + 1; r = 0-7	Increment by 1 contents of designated register.	0	0	0	-		_	_	L	-	-				
INC @ Rr	$((Rr)) \leftarrow ((Rr)) + 1;$ r = 0-1	Increment indirect by 1 the contents of data memory location.	0	0	0	-	0	0	0	<u>.</u>	-	-				
Subroutine																
CALL addr	$ \begin{aligned} & ((SP)) \leftarrow (PC), \\ & (PSW_4 - PSW_7), \\ & (SP) \leftarrow (SP) + 1 \\ & (PC_8 - PC_{10}) \leftarrow (addr_8 - addr_{10}) \\ & (PC_0 - PC_7) \leftarrow (addr_0 - addr_7) \\ & (PC_{11}) \leftarrow DBF \end{aligned} $	Call designated subroutine.	a ₁₀	a6 a6	a ₅	- 4g	93 0	- a ₂	g-	90 90	2	2				
RET	$(SP) \leftarrow (SP) = 1$ $(PC) \leftarrow ((SP))$	Return from subroutine without restoring program status word.	-	0	0	0	0	0	-	-	2	-				
RETR	(SP) \leftarrow (SP) = 1 (PC) \leftarrow ((SP)) (PSW ₄ -PSW ₇) \leftarrow ((SP))	Return from subroutine restoring program status word.	-	0	0	-	0	0	-	-	2	-				!
Timer / Counter	_															١
EN TCNT!		Enable internal interrupt flag for timer / counter output.	0	0	-	0	0	-	0		-	-				
DIS TCNT!		Disable internal interrupt flag for timer / counter output.	0	0	-	-	0	-	0	-	-	1				
MOV A, T	(A) — (T)	Move contents of timer / counter into accumulator.	0	-	0	0	0	0	-	0		-				
MOV T, A	(T) — (A)	Move contents of accumulator into timer / counter.	0	-	-	0	0	0	-	0	1	-				
STOP TCNT		Stop count for event counter.	0	-	-	0	0	1	0	-	-	1				
STRT CNT		Start count for event counter.	0	-	0	0	0	-	0	-	-					

Note:

dON

Miscellaneous

STRT T

(1) Operation code designations rand p form the binary representation of the registers and ports involved.

No operation performed.

Start count for timer.

0

0

0

0

0

0

0

(2) The dot under the appropriate flag bit indicates that its contents are subject to change by the instruction it appears in.

(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.

(4) Numerical subscripts appearing in the function column reference the specific bits affected.

(5) When the bus is written to with an OUTL instruction, the bus remains an output port until either the device is reset or a MOVX instruction is executed.

Instruction Set Symbol Definitions

Symbol	Description
A	Accumulator
AC	Auxiliary carry flag
addr	Program memory address (12 bits)
B _b	Bit designator (b = 0-7)
BS	Bank switch
BUS	Bus port
С	Carry flag
CLK	Clock signal
CNT	Event counter
D	Nibble designator (4 bits)
data	Number of expression (8 bits)
DBF	Memory bank flip-flop
F0, F1	Flags 0, 1
I	Interrupt
Р	"In-page" operation designator
Pp	Port designator (p = 1, 2 or 4-7)
PSW	Program status word
Rr	Register designator (r = 0, 1 or 0-7)
SP	Stack pointer
Т	Timer
TF	Timer flag
T0, T1	Testable flags 0, 1
x	External RAM
#	Prefix for immediate data
@	Prefix for indirect address
\$	Program counter's current value
(x)	Contents of external RAM location
((x))	Contents of memory location addressed by the contents of external RAM location
←	Replaced by
AND	Logical product (logical AND)
OR	Logical sum (logical OR)
EXOR	Exclusive-OR

Operating Characteristics

Bus Output High Voltage vs. Source Current

Port P1 & P2 Output High Voltage vs. Source Current

Bus Output Low Voltage vs. Sink Current

