

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, TamilNadu

ANSWER KEY
OFFLINE
SET A

Academic Year: 2021-2022 (EVEN)

Test: CLAT- 2 **Date:** 25-05-2022

Course Code & Title: 18ECE322T – OptoelectronicsDuration: 12:30 – 2.15 PMYear & Sem: 2nd Year / 4th SemMax. Marks: 50

Course Articulation Matrix with PI:

	18ECE322T- Optoelectronics				Program Outcomes (POs)											PSO													
COs	Course Outcomes	BL	1	PI	2	PI	3	PI	4	PI	5	PI	6	PI	7	PI	8	PΙ	9	PΙ	10	PI	11	PI	12	PI	1	2	3
	Define the basic concepts of optics and semiconductor optics.	1	3	1.4.1	-		-		-																				1
CO-2.	Demonstrate the working principle of various photonic sources and display devices.		3	1.2.1	3	2.1.2	-		2	4.1.1																			3
CO-3:	Analyze the principle and operation of various detectors and noise associated with it.	4	-		3	2.1.3	2	3.1.1	3	4.1.2																			3
CO-4:	Interpret the various optoelectronic modulators, switches, and interconnects.		3	1.3.1	2	2.2.1	3	3.2.1	-																				2
CO-5:	Apply the concepts of integrated optoelectronic components and its application in various fields.	3	3	1.4.1	-		3	3.2.2	3	4.2.1																			3

	P ()					
Ins	Part - A (10 x 1 = 10 Marks) structions: Answer ALL the Questions					
Ques	tion	Marks	BL	СО	PO	PI
very rapidly in less than s r: (d) 10 ⁻⁸	e excitation and emission of light radiation	1	1	2	1	1.2.1
elements the number of external wated matrix display method is r: (d) \sqrt{N}	1	2	2	2	2.1.2	
The band gap of red, blue, and green LEDs is E _r , E _b , and E _g , respectively. Which of the following is true? Answer: (c) Eb > Eg > Er				2	2	2.1.2
opulation Inversion r: (c) The number of electrons in higher	1	1	2	1	1.2.1	
tance between planes having the same r: (c) Pitch		1	1	2	1	1.2.1
ototransistor construction normally all junction space charge layer. r: (a) base–collector	1	1	3	3	3.1.1	
ponsivity of a given p-i-n diode is 0.5μ photocurrent when optical power of 0.5μ c. (a) 0.1μ A	1	4	3	2	2.1.3	
The basic building block of a charge-coupled device (CCD) is called Answer: (c) Metal-oxide semiconductor capacitor				3	3	3.1.1
Which of the following is an inherent property of an optical signal and cannot be eliminated even in principle? Answer: (b) Shot noise				3	3	3.1.1
	han one electron flow per absorbed photon,	1	1	3	3	3.1.1
	Part – B (4 x 10 = 40 Marks)					
	SECTION B1					
	astructions: Answer ANY 2 Questions		I			T
	escence. Calculate penetration depth of an S screen that produce cathodoluminescence.					
Phosphorescence is the absorption of energy by atoms nolecules followed by immediate sion of light or electromagnetic tion.	Fluorescence It is the absorption of energy by atoms or molecules followed by delayed emission of electromagnetic radiation.					
e emission of light suddenly stops on val of source of excitation.	The emission of radiation remains for some time even after the removal of source of excitation.					
is the ab nolecule sion of tion. e emiss	osorption of energy by atoms es followed by immediate f light or electromagnetic ion of light suddenly stops on	posorption of energy by atoms are solved by immediate followed by immediate followed by immediate of electromagnetic followed by delayed emission of electromagnetic radiation. The emission of radiation remains for some time even after the removal of	osorption of energy by atoms es followed by immediate f light or electromagnetic of electromagnetic radiation. The emission of radiation remains for some time even after the removal of	bion of light suddenly stops on of light suddenly stops on ource of excitation. It is the absorption of energy by atoms or molecules followed by delayed emission of electromagnetic radiation. The emission of radiation remains for some time even after the removal of	osorption of energy by atoms es followed by immediate f light or electromagnetic of electromagnetic radiation. The emission of radiation remains for some time even after the removal of	osorption of energy by atoms or molecules followed by delayed emission of electromagnetic radiation. It is the absorption of energy by atoms or molecules followed by delayed emission of electromagnetic radiation. The emission of radiation remains for some time even after the removal of

3. The excited atom has comparatively short lifetime before its transition to low energy state. The excited atom has comparatively long lifetime before its transition to low energy state.					
Any two points – 2 Marks	4	4	CO2	PO2	
The penetration depth of the electron, $R_c = kE_B^b$ - 1 Mark					2.1.2
= $(1.2 \times 10^{-4}) \times (1.602 \times 10^{-15})^{0.151} = (1.2 \times 10^{-4}) \times (5.833 \times 10^{-3})$ - 1 Mark					
$= 6.99979 \times 10^{-7} = 0.7 \mu m$					
(b) Explain the construction and working of Plasma Display and a.c. electroluminescent device.					
i. Principle: Glow is produced when an electric current is passed through a gas (neon). ii. Electrodes are placed external to the gas cavity. iii. Gas cavity is 10-4 m in width with transparent electrodes on the outside of the containing dielectric layers. iv. Gas gets ionized.					
v. Free electrons increases their kinetic energy and collide with atoms exciting them.					
vi. During recombination- Photons					
Time	6	2	CO2	PO1	1.2.1
Diagram 1 Mark + Explanation – 2 Marks		_	002	101	
Glass cover Transparent electrode (Usually SnO2) Phosphor particles namely ZnS: Cu are suspended in a nonconducting transparent insulating binding medium of high dielectric constant. ii. This medium is sandwiched in between two electrodes namely, highly transparent (SnO2) and a metal electrode. iii. As a result, there is no complete conduction path between the two electrodes and hence, the excitation cannot take place. iv. When an ac voltage is applied between the electrodes, a short burst of light is emitted for every half cycle for a period of 10 ⁻³ s. v. Due to the application of ac voltage, a high electric field is known to exist within the phosphor particle.					
(a) Explain the optical feedback and threshold condition for laser oscillation.					
The standing wave exists only for wavelengths for which the distance of the mirrors is an integral number of the half of the wavelength.					
$L = k \cdot \frac{\lambda}{2n}$ Resonance condition					
Based on the resonance condition the spectral width of the amplified signal can be determined to be	6	3	CO2	PO4	4.1.1
$\Delta \lambda = \frac{\lambda^2}{2nL}$ Spectral width					
Fractional loss = $R_1R_2 \exp(-2\alpha \cdot L)$					
$\overline{g_{th}} = \alpha + \frac{1}{2L} \cdot \ln\left(\frac{1}{R_1 R_2}\right)$ Threshold gain					

	(b) An injection laser has active cavity losses of 25 cm-1 and the reflectivity of each laser facet is 30%. Determine the laser gain coefficient for the cavity it has a length of 500μm.					
	Gain threshold for a laser diode is given by $g_{th} = \overline{\alpha} + \frac{1}{2L} ln \left(\frac{1}{R^2} \right)$ $\overline{\alpha} = 25 cm^{-1}, R = 30\% = 0.3, L = 500 \mu m$ $= 25 + \frac{1}{2 \left(500 \times 10^{-4} \right)} ln \left(\frac{1}{\left(0.3 \right)^2} \right) = 49.07 cm^{-1}$	4	4	CO2	PO2	2.1.2
13	(a) Consider a particular green LED based on InGaN MQW active region. The emission wavelength is 528 nm. At an LED current of 350 mA, the forward voltage is 3.4 V. The emitted luminous flux is 92 lm. Find the power conversion efficiency, external quantum efficiency, luminous efficacy, and the emitted optical power (radiant flux)? The luminous flux Φ_{ν} is defined by $\Phi_{\nu} = P_{o} \times (683 \text{ lm W}^{-1}) \times V(\lambda)$ Where P_{o} is the radiant flux (Watts) and $V(\lambda)$ is the relative luminous efficiency					
	i. Output optical power = $P_o = \Phi_v / [(683 \text{ lm W}^{-1}) V (528 \text{ nm})] $ [$V(528 \text{ nm}) = 0.90$] = $(92 \text{ lm}) / [(683 \text{ lm W}^{-1}) \times (0.90)] = (92 \text{ lm}) / (614.7 \text{ lm W}^{-1})$ = 0.15 W					
	Emitted Optical power = 0.15 W - 2 Marks					
	ii. Luminous efficacy (efficiency) = $\eta_{LE} = \frac{\Phi_{\nu}}{IV}$					
	$= (92 \text{ lm}) / [(0.35 \text{ A}) \times (3.4 \text{ V})] = 92 / 1.19 = 77.31 \text{ lm/W}$ Luminous efficacy (efficiency) = 77.31 lm / W - 2 Marks	8	4	CO2	PO2	2.1.2
	iii. Power conversion efficiency = $\eta_{PCE} = \frac{P_o}{IV} \times 100\% = (0.15 \text{ W}) / (0.35 \text{ A} \times 3.4 \text{ V}) = 0.126 = 12.6$					
	% Power conversion efficiency = 12.6 % - 2 Marks					
	iv. External quantum efficiency = $\eta_{\rm EQE} = \frac{P_o/h\upsilon}{I/e} \times 100\%$					
	hv = 1.24 / 0.528 = 2.35 eV					
	$\eta_{EQE} = \left(\frac{0.15W / (2.35eV \times 1.6 \times 10^{-19} JeV^{-1})}{0.35A / 1.602 \times 10^{-19} C}\right) \times 100\%$					
	$= \left(\frac{3.98936 \times 10^{17}}{2.1875 \times 10^{18}}\right) \times 100\% = 18.23\%$					
	External Quantum Efficiency = 18.23 % - 2 Marks					
	(b) Why silicon is not preferrable for the fabrication of optical sources. Justify your answer.					
	Ans: Silicon is an Indirect Bandgap Semiconductor material. Hence, we cannot use it for the fabrication of optical sources.	2	2	CO2	PO1	1.2.1
	SECTION B2 Instructions: Answer ANY 2 Questions					
	(a) Briefly explain the operation of a phototransistor.					
14	Transistor action $I_E \propto \exp(eV_{BE}/k_BT)$ Gain	4	2	CO3	PO3	3.1.1
	$I_{ph} pprox eta I_{pho}$ $\begin{array}{c} \stackrel{\bullet}{\underset{V_{BB}}{\text{scl.}}} \stackrel{\bullet}{\underset{V_{CB}}{\text{scl.}}} \stackrel{\bullet}{\underset{V_{CB}}{\text{scl.}}} \stackrel{\uparrow}{\underset{V_{Ph}}{\text{h}}} \end{array}$					

APD is biased to operate with a multiplication of 100. If the incident optical power is 10 nW what is the photocurrent?					
The unmultiplied responsivity is given by,					
$R = \eta_e \frac{e\lambda}{hc}$					
$= (0.70) \frac{(1.6 \times 10^{-19} \text{ C})(830 \times 10^{-9} \text{ m})}{(6.626 \times 10^{-34} \text{ J s})(3 \times 10^{8} \text{ m s}^{-1})}$					
R = 0.47 A/W - 2 Marks					
The unmultiplied primary photocurrent from the definition of R is	4	4	CO3	PO2	2
$I_{pho} = RP_o = (0.47 \text{ A/W}) \times (10 \times 10^{-9} \text{ W}) = 4.7 \text{ nA}$					
The multiplied photocurrent is					
$I_{ph} = MI_{pho} = (100) \times (4.67 \text{ nA}) = 470 \text{ nA or } 0.47 \mu\text{A}$					
- 2 Marks					
(c) Define noise equivalent power (NEP) and detectivity of a photodetector with relevant					
expression.					
NEP is defined as the required optical input power to achieve a SNR of 1 within a					
bandwidth of 1 Hz					
$NEP = \frac{Input power for SNR = 1}{\sqrt{Bandwidth}} = \frac{P_1}{B^{1/2}}$					
$\sqrt{\text{Bandwidth}} - \frac{1}{B^{1/2}}$					
- 1 Mark					
1	2	3	CO3	PO3	1
Detectivity = $\frac{1}{1}$					
Detectivity = $\frac{1}{NEP}$					
Detectivity = $\frac{1}{NEP}$					
- 1 Mark					
- 1 Mark					
- 1 Mark					
(a) Briefly discuss the construction and working of Avalanche photodiode (APD).					
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode SiO_2 F R					
- 1 Mark (a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode SiO ₂ F					
- 1 Mark (a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode No > E No > E					
- 1 Mark (a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode SiO ₂ F T T T T T T T T T T T T	5	3	CO3	PO3	3
- 1 Mark (a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode No > E No > E	5	3	CO3	PO3	3
- 1 Mark (a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode SiO ₂ F T T T T T T T T T T T T	5	3	CO3	PO3	33
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode Point Point	5	3	CO3	PO3	33
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode hv>E p n p p t t t t t t t t t t t	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode Point Point	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode hv>E p n p p t t t t t t t t t t t	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode hv>E p n p p t t t t t t t t t t t	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode Page Page	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode Part Part	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode No E	5	3	CO3	PO3	3
(a) Briefly discuss the construction and working of Avalanche photodiode (APD). Electrode hv > E g	5	3	CO3	PO3	3

$=\frac{\left(4\text{nA}\right)^{2}}{\left(0.0276\text{nA}\right)^{2}+\left(0.47546\text{nA}\right)^{2}}=\frac{1.6\times10^{-17}}{7.0756\times10^{-22}+2.2606\times10^{-19}}\\ =\frac{1.6\times10^{-17}}{2.2676\times10^{-19}}=70.56$ Generally SNR is quoted in decibels. We need 10log (SNR), or 10log (70.56) 18.485 dB (b) Explain in brief about metal-semiconductor-metal (Schottky) photodetector of the semiconductor of th	i.e.,	2	2	CO3	PO3	3.1.1
--	-------	---	---	-----	-----	-------