ΘΕΜΑ 2

2.1.

2.1.Α.Σωστή απάντηση η (γ)

Μονάδες 4

2.1.B.

Θεωρούμε μια κατάσταση ισορροπίας των n_1 molestou αερίου (1), με θερμοκρασία T, όγκο V_1 και πίεση P_1 . Θεωρούμε επίσης μια κατάσταση ισορροπίας των n_2 molestou αερίου (2), με θερμοκρασία T, ίσου όγκου $V_2=V_1$ με τον όγκο του αερίου (1) και πίεσης P_2 . Οι δύο αυτές καταστάσεις ισορροπίας των αερίων (1) και (2), απεικονίζονται στο δεδομένο διάγραμμα από τα σημεία Δ και Γ αντίστοιχα.

Με τη βοήθεια του διαγράμματος διαπιστώνουμε ότι για τις πιέσεις των δύο αυτών καταστάσεων ισορροπίας των δύο αερίων ισχύει η σχέση: $P_2 > P_1$ (1)

Εφαρμόζοντας την καταστατική εξίσωση των ιδανικών αερίων για τις δύο αυτές καταστάσεις των αερίων προκύπτουν:

$$P_1=rac{n_1\cdot R\cdot T}{V_1}$$
 , $P_2=rac{n_2\cdot R\cdot T}{V_2}$ και έχουμε θεωρήσει $V_1=V_2$

Έτσι με τη βοήθεια της σχέσης (1) προκύπτει ότι ισχύει: $n_2>n_1$

Μονάδες 8

2.2.

2.2.Α.Σωστή απάντηση η (β)

Μονάδες 4

2.2.B.

Για τα ευθύγραμμα τμήματα (ΑΓ) και (ΑΒ), ισχύουν οι σχέσεις:

$$(A\Gamma) = 4 \cdot (B\Gamma) \text{ kal } (AB) = (A\Gamma) - (B\Gamma) = 3 \cdot (B\Gamma)$$

Για το μέτρο της έντασης του ομογενούς ηλεκτρικού πεδίου ισχύουν:

$$E = \frac{V_A - V_\Gamma}{(A\Gamma)} = \frac{V_A - V_B}{(AB)}$$
 , έτσι προκύπτει $\frac{V_A - V_\Gamma}{V_A - V_B} = \frac{(A\Gamma)}{(AB)} = \frac{4 \cdot (B\Gamma)}{3 \cdot (B\Gamma)} = \frac{4}{3}$

ή
$$3\cdot V_A-3\cdot V_\Gamma=4\cdot V_A-4\cdot V_B$$
 , οπότε: $V_B=rac{V_A+3\cdot V_\Gamma}{4}=8$ V

Μονάδες 9