## Math 113: Functional Analysis

## Sair Shaikh

## April 10, 2025

Defn. Let  $\{U_{\alpha}\}_{{\alpha}\in A}$  be an open cover of  $(X,\rho)$ . We say that d>0 is a Lebesgue number for the cover if given any d-ball  $B_d(x_0)$  with  $x_0\in X$ , there exists  $a_0\in A$  such that  $B_d(x_0)\subseteq U_{a_0}$ .

Ex  $X = \mathbb{R}$ .  $U_1 = (-\infty, 1)$ ,  $U_2 = (0, 2)$ , and  $U_3 = (1, \infty)$ . Here d = 1/2 is a LN for  $\{U_1, U_2, U_3\}$ . This is clear if  $x_0 \in (1/2, 3/2)$ .

Ex. (Hwk.) Given  $x \in (0,1)$ ,  $\exists \delta_x > 0$  such that:

$$y \in B_{\delta_x}(x) = \{ y \in (0,1) : |y - x| \le \delta_x \}$$
$$\implies |1/x - 1/y| < 1$$

Then,

$$(0,1) = \bigcup_{x \in (0,1)} B_{\delta_x}(x)$$

has no Lebesgue number.

Lemma (Lebesgue Covering Lemma) Every open cover of a compact metric space has a Lebesgue number.

Proof. Pictures. Apr 9.

Thm. Suppose  $(X, \rho)$  is compact, and  $F: (X, \rho) \to (Y, \sigma)$  is continuous. Then F is uniformly continuous.

Defn. Let  $(X, \rho)$  be a metric space and C(X) the  $\mathbb{C}$ -vector space of continous functions on X. We say  $\mathcal{J} \subset C$  is equicontinous at  $x \in X$  if  $\forall \epsilon > 0, \exists \delta > 0$  such that:

$$\forall F \in \mathcal{J}, F(B_{\delta}(x)) \subseteq B_{\epsilon}(F(x))$$

We say  $\mathcal{J}$  is equicontinous on X if  $\forall x \in X$ ,  $\mathcal{J}$  is equicontinous at x.

Ex. Let  $X = [0, 1] \subset \mathbb{R}$ . Let  $F_n(x) = x^n \forall n \geq 1$ . Let:

$$\mathcal{J} = \{F_n : n \in \mathbb{N}\}$$

Let  $x_n = \frac{1}{2}^{1/n}$ . Then,  $x_n$  arrow up to 1. Then,

$$|F_n(x_n) - F_n(1)| = |1/2 - 1| = 1/2$$

Thus,  $\mathcal{J}$  is not equicontinous at 1.

Ex. (Hwk) Show that  $\mathcal{J}$  is equicontinous on [0,1).

Defn. Let  $(F_n)$  be a sequence of ( $\mathbb{C}$ -valued) functions on X. Then,  $(F_n)$  is uniformly bounded if  $\exists M > 0$  such that  $\forall n \geq 1, \forall x \in X$ :

$$|F_n(x)| < M$$

We say that  $(F_n)$  is pointwise bounded if  $\forall x \in X, \exists M_x > 0$  such that:

$$|F_n(x)| < M_x$$

Defn. A metric space (top. space) is seperable if there is a countable dense subset  $D \subset X$ .

Ex. Since  $\mathbb{Q}^n \subset \mathbb{R}^n$  is dense,  $(\mathbb{R}^n, ||\cdot||_p)$  is separable.

Lemma. (Arzelà-Ascoli) Let  $(X, \rho)$  is a seperable metric space and that  $(F_n)$  is pointwise bounded and equicontinous in C(X). Then, there is subsequence  $(F_{n_k})$  such that:

$$\lim_{x \to \infty} F_{n_k}(x)$$

exists  $\forall x \in X$ .

Yap. Given a sequence  $(x_n)$ , we get subsequence by finding  $n_k \in \mathbb{N}$  such that  $n_{k+1} > n_k$  and  $(x_{n_k})_{k=1}^{\infty} \to x$  is a sequence.

A subsubsequence is determined by finding  $n_{k_1} < n_{k_2} < \cdots$  and then we write:

$$(x_{n_{k_i}})_{j=1}^{\infty}$$

A subsequence is determined by an infinite subset  $S_1 = \{n_1 \leq n_2 \leq \cdots\} \subset \mathbb{N}$ . A subsubsequence is determined by an infinite subset  $S_2 \subset S_1$ ,

$$S_2 = \{ n_{k_1} < n_{k_2} < \cdots \} \subset S_1$$

Now, we write:

$$\lim_{n \in S_1} x_n = a \text{ instead of } \lim_{k \to \infty} x_{n_k}$$

Note that  $\lim_{n \in S_1} x_n = a$  if:

$$\forall \epsilon > 0 \,\exists N : n \geq N, n \in S' \implies |x_n - a| < \epsilon$$

Rmk. Suppose  $S_1 \subset \mathbb{N}$  determines a subsequence as above. Suppose  $S' \subset \mathbb{N}$  is infinite and:

$$\{n \in S' : n \notin S_1\}$$

is finite. The  $\lim_{n \in S_1} x_n = a$  then  $\lim_{n \in S'} x_n = a$  as well. Proof of the AA Lemma: Pictures. Apr 9 and 10.

- Rmk. If X is compact, then  $C(x) = C_b(X)$  is a complete metric space with respect to the uniform norm  $||\cdot||_{\infty}$ .
- Thm. (Arzelà-Ascoli) Let  $(X, \rho)$  be a compact metric space and  $(F_n) \subset C(X)$  be a sequence of functions that are point-wise bounded and equicontinous. Then  $(F_n)$  has a subsequence converging uniformly to some function  $F \in C(X)$ . Proof. Pictures.
- Lemma. Suppose X is compact and that  $\mathcal{J} \subset C(X)$  is equicontinuous on X. Then,  $\mathcal{J}$  is uniformly equicontinuous on X, in that for all  $\epsilon > 0 \exists \delta > 0$  such that for all  $x, y \in X$  and all  $F \in \mathcal{J}$ ,

$$\rho(x,y) < \delta \implies |F(x) - F(y)| < \epsilon$$

Rewriting,

$$F(B_{\delta}(x)) \subseteq B_{\epsilon}(F(x))$$

Proof left as homework.

- Corr. Let X be a compact metric space. Let  $\mathcal{J} \subset C(X)$  be a closed subset such that  $\mathcal{J}$  is equicontinous and pointwise bounded. Then  $\mathcal{J}$  is compact and uniformly bounded.
- Thm. Suppose X is a compact metric space. Then  $\mathcal{J} \subset C(X)$  is compact if and only if  $\mathcal{J}$  is closed, uniformly bounded, and equicontinous on X. Proof. Pictures.