ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51694530

An introduction to forensic gunshot acoustics

Article ii	The Journal of	the Acoustical Society of America · Octobe	er 2011	
DOI: 10.1121	/1.3655043 · Source: Pu	bMed		
CITATION			READS	
1			432	
3 author	s, including:			
0	Steven D Beck SPEC			Hirotaka Nakasone Federal Bureau of Investigation
	20 PUBLICATIONS	217 CITATIONS		13 PUBLICATIONS 111 CITATIONS
	SEE PROFILE			SEE PROFILE

All content following this page was uploaded by Steven D Beck on 20 November 2014.

An Introduction to Forensic Gunshot Acoustics

November 3, 2011

Steven D. Beck steve.beck@baesystems.com

BAE Systems 6500 Tracor Ln. MS 27-16 Austin, TX 78725 Hirotaka Nakasone

Hirotaka.Nakasone@ic.fbi.gov

Kenneth W. Marr Kenneth.Marr@ic.fbi.gov

FBI ERF-E Bldg 27958A Quantico, VA 22135

The work is sponsored by the Federal Bureau of Investigation under U.S. Department of Justice Contract. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Acknowledgement

We would like to acknowledge the U. S. DOJ contract number 94182 for funding this work.

The primary reference is our JASA paper:

S. Beck, H. Nakasone, and K. Marr, "Variations in recorded acoustic gunshot waveforms generated by small firearms," J. Acoust. Soc. Am. **129**, 1748-1759 (2011)

The Forensic Gunshot Problem

- Gunshot sounds are made up of one or more discrete acoustic events
- The waveform characteristics of any event depend on many different variables
 - >source, channel, and receiver
- Most gunshots recorded in forensic conditions do not match standard theoretical models

MB Only

.357 Magnum Revolver, S&W Model13, Bullet Wt=125 grain

Experimental Data Collection

Firearm Variables Under Investigation Include:

- Different firearm types, makes and models
- Different barrel lengths
- Different ammunition types and weights

Index	Firearm Caliber	Firearm Make ¹	Barrel	Bullet Type ²	Bullet Wt	Bullet Speed	SPL ³
	and Type	and Model	(in / cm)		(grains /	(m/s at 2 m)	(dB re 20
					gram)		μPa)
1	.357 Magnum Revolver	S&W Model 13	3.0 / 7.7	Win. STHP	145 / 9.4	362.4	155.4
2	.357 Magnum Revolver	S&W Model 13	3.0 / 7.7	Rem. JHP	125 / 8.1	427.0	158.5
3	.38 Revolver	S&W Model 10	2.5 / 6.4	Win. STHP	110 / 7.1	269.7	153.0
4	.38 Revolver	S&W Model 10	4.0 / 10.3	Win. STHP	110 / 7.1	287.1	151.4
5	.38 Revolver	S&W Model 60	2.5 / 6.4	Win. STHP	110 / 7.1	250.2	155.4
6	9 mm Pistol	Sig Sauer P-226	4.5 / 11.5	Win. FMJ	115 / 7.5	333.8	153.7
7	9 mm Pistol	Colt Model 2000	4.5 / 11.5	Win. FMJ	115 / 7.5	345.0	153.7
8	9 mm Pistol	Sig Sauer P-226	4.5 / 11.5	Win. STHP	115 / 7.5	344.7	152.5
9	9 mm Pistol	Colt Model 2000	4.5 / 11.5	Win. STHP	115 / 7.5	357.5	153.1
10	9 mm Pistol	Sig Sauer P-226	4.5 / 11.5	Win. FMJ	147 / 9.6	280.7	152.4
11	9mm Pistol	Colt Model 2000	4.5 / 11.5	Win. FMJ	147 / 9.5	288.3	151.9
12	.30-06 Rifle	Winchester 70	22.0 / 56.4	Win. Soft Pt.	125 / 8.1	889.1	160.8
13	.30-06 Rifle	Winchester70	22.0 / 56.4	Win. Soft Pt.	165 / 10.7	827.5	160.1
14	.223 Rifle	Colt M16A1	21.0/ 53.8	Win. Hollow Pt.	64 / 4.1	803.8	156.0

¹ S&W=Smith&Wesson

² Win.=Winchester, Rem.=Remington, STHP = Silver Tip Hollow Pt; FMJ = Full Metal Jacket; JHP = Jacketed Hollow Pt

³Estimated values at 1 m and at an angle of 90°

Experimental Data Collection

- High quality recording equipment
- Cross firing angle recordings at multiple distances
- Cross range recordings at multiple firing angles
- Ground truth measurements:
 - ➤ Barrel length, SPL, temperature, reflections, distance, azimuth angle

Muzzle Blast Theory

Friedlander Model

Let T_0 =0.5 ms and b=1, $Ps = 200 \, Pa$. $SPL = 140 dB re 20 \mu Pa$.

Spectrum

$$p(t) = P_0 + P_s \left(1 - \frac{t}{T_0} \right) e^{\frac{-bt}{T_0}} \qquad ||F(w)|| = \frac{P_s}{T_0} \frac{\sqrt{(b-1)^2 + T_0^2 w^2}}{(b/T_0)^2 + w^2}$$

$$w_{peak} = \frac{1}{T_0} \sqrt{-b^2 + 4b - 2}$$

Let T_0 =0.5 ms and b=1. $f_{peak} = 2000/(2\pi) = 318 \text{ Hz}.$

Muzzle Blast Waveform and Spectrum

Time (ms)

Ballistic Shockwave Theory

N-Wave Model

$$f(t) = P_N \left(1 - \frac{2(t - \tau)}{T_N} \right) \quad \tau \le t \le \tau + T_N$$
$$\sin \alpha = \frac{v}{u}$$

Magnitude
$$P_N = P_P - P_0 = \frac{0.53 P_0 d \left(M_a^2 - 1\right)^{\frac{1}{8}}}{v^{\frac{3}{4}l^{\frac{1}{4}}}}$$

 Dominant factors are Mach speed, bullet diameter, and miss distance

Duration
$$T_N = \frac{1.82M_a d}{v_0 (M_a^2 - 1)^{\frac{3}{8}}} (\frac{y}{l})^{\frac{1}{4}}$$

 Dominant factors are Mach speed and bullet diameter

Spectrum

$$F(w) = \frac{2P_N}{w} \left| \cos \left(\frac{wT_N}{2} \right) - \frac{2}{wT_N} \sin \left(\frac{wT_N}{2} \right) \right|$$

Ballistic Shockwave and Spectrum

Source Variations

Different Revolver Models

Barrel Len=4.0 in, 110 Gr

Different Barrel Lengths

.38 Revolver, S&W Model 10, 110 Gr

Different Bullets

.357 Magnum Revolver, S&W Model 13

Revolver, Semi-Auto, Rifle

Channel (Azimuth) Variations

Recordings at Multiple Angles

- The muzzle blast is highly directional
- Waveforms at 3, 90, 180 deg are significantly different

"...the difference in level and waveform details between on-axis and off-axis recordings of the same firearm are often significantly greater than the difference between two firearm types at the same azimuth."

R.C. Maher and S.R. Shaw, "Directional aspects of forensic gunshot recordings," Proc. Audio Engineering Society 39th Conference, Audio Forensics—Practices and Challenges, Hillerød, Denmark, June 2010.

Recordings of a .38 caliber revolver Smith&Wesson Model 10 with 2.5 in. barrel Ammunition: Winchester STHP 110 grain

Channel (Distance) Variations

Recordings at Multiple Distances

- High frequency loss at longer range
- Ground reflections "walk-in" at increasing distances
- At long distance, ground reflections can interfere with the main blast

Recordings of a .38 caliber revolver Smith&Wesson Model 10 with 2.5 in. barrel Ammunition: Winchester STHP 110 grain

Channel and Receiver Variations

200

- High pass filtering significantly alters the Muzzle Blast waveform
- Low pass filtering significantly alters the Ballistic Shockwave waveform
- Audio waveforms recorded under forensic conditions are usually filtered and have reverberation.

Muzzle Blast Low Pass Filtered High Pass Filtered 100 50 -100 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Time (ms)

Electronically Filtered Muzzle Blast

Recorded and Modeled Muzzle Blast

Low Pass Filtered Ballistic Shockwave

Correlation Analysis of Forensic Recordings

	Firearm Cal	Firearm	BLen	Ammunition
		Model	(in)	Desc
R1	.38 Revolver	S&W Model	2.5	Win. 110 gr.,
		10		STHP
R2	.38 Revolver	S&W Model	4.0	Win. 110 gr.,
		10		STHP
R3	.357 Mag Rev	S&W Model	3.0	Win. 145 gr.,
		13		STHP
R4	.357 MagRev	S&W Model	3.0	Rem. 125 gr.,
		13		JHP
R5	.38 Revolver	S&W Model	2.5	Win. 110 gr.,
		60		STHP
R6	.44 MagRev	Ruger Black	7.5	Win. 210 gr.,
		Hawk		STHP
P1	9 mm Pistol	Sig Sauer P-	4.5	Win. 115 gr.,
		226		FMJ
P2	9 mm Pistol	Sig Sauer P-	4.5	Win. 147 gr.,
		226		FMJ
P3	9 mm Pistol	Colt Model	4.5	Win. 115 gr.,
		2000		FMJ
P4	9mm Pistol	Colt Model	4.5	Win. 147 gr.,
		2000		FMJ
P5	.380 Pistol	Walther	3.5	. 95 gr., FMJ
		PPKS		
H1	.30-06 Rifle	Winchester7	22.0	Win. 125 gr.,
		0		SP
S1	12 Shotgun	Remington	20.0	Win. #8
		870		Birdshot

- Only very similar firearms have relatively high correlation
- Cross range and Cross firing angle result in lower correlations

Forensic Gunshot Analysis Example

Typical Forensic Gunshot Recording

- · Multiple firearm shots are recorded
- Firing orientation is unknown and possibly changes
- · Significant interference due to voices
- · Significant reverberation in unknown environment
- The recording system appears to have a HPF

Forensic Gunshot Analysis Example

Correlation Analysis

- Every likely shot was extracted and used as a template
- Each template was correlated against the entire file
- The peak correlation values for each shot are shown
- At least two firearms, each firing multiple successive shots
- The first 4 shots do not correlate well too many variations

Conclusions

- There are numerous acoustic source variations that can assist or limit discrimination among recorded gunshots
- Uncontrollable variations can significantly alter the waveform
 - Angle (turn and fire)
 - Propagation distance and reverberation
 - Recording system filters and/or saturation
- Shot-to-Shot Correlation is one of the few tools available to the analyst
 - but it breaks down if the firing conditions change
- Forensic Need:
 - Better forensic analysis tools
 - Better forensic models
 - Additional "real world" forensic testing
 - Can reverberation be modeled and accounted for?
 - O How do new and different microphones affect gunshot signals?
 - How does compression affect gunshot signals?