EXERCICE 1

Les questions suivantes sont des questions de *cours*. Elles visent à tester votre apprentissage du cours et ne nécessitent pas de justification particulière.

- 1. Quel est le nombre qui, mis au carré, donne 2? Est-ce un nombre entier? Décimal? Rationnel?
- **2.** Le nombre 3⁻¹ est-il un nombre décimal?
- 3. Comment note t-on l'ensemble des nombres rationnels? À quoi correspond t-il?
- **4.** Le produit de deux nombres irrationnels est-il toujours un nombre irrationnel? Si oui, justifier pourquoi; si non, donner un contre-exemple.
- **5.** Déterminer sous forme d'intervalle l'ensemble des nombres réels x tels que $|x-4| \le 3$.

EXERCICE 2

Dans cet exercice, tout résultat non justifié par un calcul sera considéré comme faux.

1. Donner la valeur des expressions ci-dessous sous forme de fraction irréductible.

a.
$$\frac{6}{5} \times \frac{2}{-5} - \frac{3}{25}$$

b.
$$\frac{-6}{4} \div \frac{5}{7} - \frac{6}{4}$$

2. Effectuer les calculs suivants et donner le résultat sous la forme a^n où $a \in \mathbb{N}$ et $n \in \mathbb{Z}$ tel que a est le plus petit possible.

a.
$$\frac{2^6}{4} \times 2^{-1}$$

b.
$$\frac{7^2}{7^5 \times 7^2} \times 49$$

3. Écrire les nombres suivants sous la forme $a\sqrt{b}$ où b est le plus petit possible.

a.
$$\frac{\sqrt{36}}{\sqrt{3}}$$

b.
$$3\sqrt{6} + \sqrt{96}$$

EXERCICE 3

- 1. **a.** Résoudre l'inéquation $\frac{5-3x}{4} < -x + 1$. On note $\mathscr S$ l'ensemble solution.
 - **b.** Reproduire la droite graduée ci-dessous, et y représenter l'ensemble $\mathcal{S}.$

- **2.** a. Décrire avec vos mots ce qu'est l'intervalle $]-\infty;-1[$.
 - **b.** Décrire également ce qu'est $]-\infty;-1[\cup]1;+\infty[$.
 - **c.** Simplifier l'écriture $]-\infty;-1[\cap]1;+\infty[$.
- **3. Question bonus.** En utilisant le fait qu'un produit de nombres réels est positif si et seulement si les facteurs sont de même signe, résoudre l'inéquation

$$x^2 - 1 \ge 0$$

EXERCICE 4

On pose $a = 0,999\,999\,\dots$ (ie. l'écriture décimale de a est 0 avant la virgule, et une infinité de 9 après la virgule).

1. Que vaut 10*a*?

Indication. Vous pouvez commencer par calculer $10 \times 0,999$, puis $10 \times 0,999$ 999, puis $10 \times 0,999$ 999, etc.

- **2.** Montrer que 10a a est un nombre entier naturel.
- **3.** Vérifier que a est solution de l'équation 9x = 9.
- **4.** En résolvant l'équation précédente, quelle relation peut-on écrire entre *a* et 1?

Ce résultat porte un nom : c'est le **développement décimal périodique de l'unité**.

5. Donner le plus petit ensemble de nombres entre \mathbb{N} , \mathbb{Z} , \mathbb{D} , \mathbb{Q} et \mathbb{R} auquel appartient a.

Bon courage!

La calculatrice est autorisée.