Module MA-INF 4113	Cognitive Robotics						
Workload	Credit points	Duration	Freque	ncy			
180 h	6 CP	1 semeste	r every y	ery year			
Module	Prof. Dr. Sven Behnke						
coordinator							
Lecturer(s)	Prof. Dr. Sven Behnke						
Classification	Programme Mode Semester						
	M. Sc. Computer Science Optional 1. or 2.				2.		
Technical skills	This lecture is one of two introductory lectures of the intelligent						
	systems track. The lecture covers cognitive capabilities of						
	robots, like self-localization, mapping, object perception, and						
	action-planning in complex environments.						
	This module complements MA-INF 4114 and can be taken						
	before or after that module.						
Soft skills	Communicative skills (oral and written presentation of solutions,						
	discussions in small teams), self competences (ability to accept						
	and formulate criticism, ability to analyze problems)						
Contents	Probabilistic approaches to state estimation (Bayes Filters,						
	Kalman Filter, Particle Filter), motion models, sensor models,						
	self-localization, mapping with known poses, simultaneous						
	mapping and localization (SLAM), iterated closest-point						
	matching, path planning, place- and person recognition, object						
	recognition.						
Prerequisites	Required: None of the following modules have been passed:						
	MA-INF 4101 – Theory of Sensorimotor Systems						
Format	Teaching forms	at G	roup size	h/week	Workload[h]	CP	
	Lecture		60	2	30 T / 45 S	2.5	
	Exercises		30	2	30 T / 75 S	3.5	
	T = face-to-face teaching; $S = independent study$						
Exam achievements	Written exam (graded)					aded)	
Study achievements	Successful exercise participation				(not graded)		
Forms of media					,	· · ·	
Literature	• S. Thrun, W. Burgard and D. Fox: Probabilistic Robotics.						
	MIT Press, 2005.						
	• B. Siciliano, O. Khatib (Eds.): Springer Handbook of						
	Robotics, 2008.						
	• R. Szeliski: Computer Vision: Algorithms and Applications,						
	Springer 2010.						