

CO2

L3

JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CIA-1 (AY 2024-25: Odd Semester)

Course : B. Tech Date : Oct 2024 Semester : III Subject Code : BEC-303

Subject: Network Analysis and Synthesis Max. Marks: 20

Time : 1 hrs=60 min

COURSE OUTCOMES				
C203.1	Understand basics of electrical circuits with nodal and mesh analysis.			
C203.2	Apply electrical network theorems.			
C203.3	Apply Laplace transform for analysis steady state and transient behaviour of network circuit			
C203.4	Determine different network functions of Two Port network			
C203.5	Analyse the frequency response of various filters.			

C203	.5	Analyse the frequency response of various filters.			
		SECTION-A			
Attempt all the questions of this section (1 X5=5					5=5)
	Q. No. Question		Marks	СО	BL/ KC*
	a	How can an ideal voltage sources be converted into ideal current sources and vice-versa?	1	CO1	L2
	b	Define the concept of Super-Mesh.	1	CO1	L1
	c	List different types of dependent sources with its symbolic diagram.	1	CO1	L1
	d	Define Reciprocity theorem.	1	CO2	L1
1.		1A (1) \$2Ω 2Ω 1V \$2Ω 2Ω 2Ω	1	CO2	L2
		Section-B			
Attempt all the questions of this Section				(3X3=9))
2.		For the circuit shown in Fig., determine the voltage "v" using nodal analysis. $\begin{array}{c c} & & & & & & & & & & & & \\ \hline & & & & & &$	3	CO1	L2

Find the Thevenien's equivalent circuit across the terminals a-b:

3.

JSS MAHAVIDYAPEETHA

JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

JSS MAHAVIDYAPEETHA JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Dr. Deependra Sharma (Facuty-EC1)

Dr. Shiva Ji Sinha (Facuty-EC2)

Dr. Chandra Shankar

(Facuty-EC3)

Dr. Deependra Sharma (Module Coordinator)

Dr. Chaya Grover (NBA Coordinator)

Dr. Arun Kumar G

(HOD-ECE)