

Pose Estimation in 3D using stereo camera

MathWorks Japan
Application Engineering division

3-dimensional pose estimation is possible using two cameras

Required Toolbox

- Deep Learning Toolbox
- Image Processing Toolbox
- Computer Vision Toolbox
- Signal Processing Toolbox

Good Points

- with two ordinary cameras.
- velocity and acceleration analysis is possible
- a variety of applications are possible with trajectory analysis.
 - Sports
 - Entertainment
 - Robotics ... etc.

Processing Flow

Camera Position

(preprocess)

Undistortion

Correction

Synchronization

3D Pose estimation

Single Camera Calibrator App

R2013b

Fisheye Lens Support

R2018a

Computer Vision Toolbox

R2015a

Faster processing speed

Calibration with sub-pixel accuracy lens distortion, intrinsic, and extrinsic camera parameter calculation

Control points for camera position estimation

y p1 p4 p4 p4 p4 p4 p2 p3 p3 p3

Control Points

- used for transform from image to world
- corner or cross point are preferable.
- 4 points on co-plane in each scene
- identical world coordinate between scenes

camera 2