

Lesion-Specific Enzymes for Identifying Clustered Damages and their Substrates

Rnzyma	Principal	Lesions Recognized
	Lesion Class	
	Recognized	
E. coli formamidopyrimidine-DNA	Oxidized	FaPyAdenine, FaPyGuanine, C8-oxoGuanine, some abasic
glycosylase (Fpg Protein)	purines	sites, C8-oxoAdenine and to a lesser extent, other
		modified purines (FaPy = 2,6-diamino-4-hydroxy-5-N-
		methylformamido-pyrimidine). [1,2,3,4,5]
E. coli Nth protein (Endonuclease III)	Oxidized	Thymine residues damaged by ring saturation,
	pyrimidines	fragmentation, or ring contraction, including 5,6-
		dihydrothymine, thymine glycol, urea, 5-hydroxy-5-
		methyl hydantoin, DNA damaged at guanine sites, and
		some abasic sites. [4,5,6,7]
E. coli Nfo protein (Endonuclease IV)	Abasic sites	Several types of abasic sites, including oxidized
		abasic sites, abasic sites modified with alkoxyamines,
		and DNA containing urea residues. [8,9]

5-hydroxycytosine and 5-hydroxy-2'-deoxyuridine are substrates for Fpg protein and Nth protein, but neither is formed at significant levels during aerobic irradiation.

1. Boiteux, et al., J. Biol. Chem. 265:3916 (1990).

2. Boiteux, et al., Biochemistry 31:106 (1992).

3. Tchou, et al., Proc. Natl. Acad. Sci. USA 88:4690 (1991)

4. Hatahet, et al., J. Biol. Chem. 269:18814 (1994).

Jurado, et al., Biochemistry 37:7757 (1998). Asahara, et al., Biochemistry 28:4444 (1989) . .

Dizdaroglu, et al., Biochemistry 32:12105 (1993)

Haring, et al., Nucleic Acids Res. 22:2010 (1994) Xu, et al., J. Biol. Chem. 273:28837 (1998).

FIG. 3

