

Exercises Naive Bayes

1 Naive Bayes

Given is the following data set with four features and one target (Class).

P/A-112.1) - 4	man (C/Y=1)=69= 28	357	;M			Y
$P(A=1 y=1)=\frac{7}{7}$	1 10 17 17 7	A	В	\mathbf{C}	D	Class
P(A=0 Y=1) = 3	Vude/y=1) = 10,476=62	0	0	10	1	1
_	7 P(C/Y=1)= 1 e 201	0	0	11	0	1
$P(A=1/y=0)=\frac{3}{5}$	mem (C/X=0) = 6,4 = M2	0	1	9	1	0
$P(A=O/Y=O)=\frac{2}{5}$	Var(c/y=0)= 5,3 = 52 -(x-12)	0	1	8	0	1
	Var(c/y=0)= 5,3 = 52 (xym) → P(C/y=0) = 12x6.1 e 20.2	0	1	4	0	0
$P(B=1 .y=1)=\frac{2}{7}$		1	0	5	1	1
	$P(0=1 y=1)=\frac{4}{7}$	1	0	12	1	1
P(B=0 Y=1) = 5	$\rho(D=0 y=1)=\frac{3}{7}$	1	0	15	0	1
	_	1	1	8	1	O
$P(8=1/y=0)=\frac{5}{5}=1$	$P(0=1/y=0)=\frac{3}{5}$	1	1	7	0	0
$P(B=0/\gamma=0)=\frac{6}{5}=0$	•	1	1	8	1	1
10 31130/2 500	P(0=0/Y=0)================================	1	1	4	1	0

$$\begin{array}{c} = 7 \\ = 5 \\ = 5 \\ P(y=1) = \frac{7}{12} \\ P(y=0) = \frac{5}{12} \end{array}$$

- 1. Compute the conditional probabilities $P(X \mid Class)$ where $X \in \{A, B, C, D\}$. Use a normal distribution for C.

2. Classify the instance using Naive Bayes
$$(1, 1, 5, 0) = X \rightarrow f(Y=0|X) = f(X|Y=0) \cdot f(Y=0) = 0$$
, 0.162

$$f(X|Y=0) = \frac{3}{5} \cdot 1 \cdot 0.162 \cdot \frac{2}{5} = 0.03888$$

$$f(X=1) = f(X=1) \cdot f(X=1) \cdot f(X=1) = 0.002039$$

$$f(X=1) = \int_{-1}^{2} \frac{1}{\sqrt{216^2}} \cdot e^{-\frac{(X-1)^2}{26^2}} dx \approx 0.162 \quad \text{mit } \mu_2 = 0.003496$$

$$f(X=1) = \int_{-1}^{2} \frac{1}{\sqrt{216^2}} \cdot e^{-\frac{(X-1)^2}{26^2}} dx \approx 0.003496$$

$$f(X=1) = \int_{-1}^{2} \frac{1}{\sqrt{216^2}} \cdot e^{-\frac{(X-1)^2}{26^2}} dx \approx 0.003496$$

$$f(X=1) = \int_{-1}^{2} \frac{1}{\sqrt{216^2}} \cdot e^{-\frac{(X-1)^2}{26^2}} dx \approx 0.004993 \quad \text{mit } \mu = 9.187 \text{ and } e^{\mu} = 0.19476$$

$$ef(5,\mu,6) = \int_{5}^{5+1} \frac{1}{\sqrt{2\pi}6^2} e^{-\frac{(x-\mu)^2}{26^2}} dx \approx 0,04997$$
 mit $\mu=9,857$ und $e^{\mu}=10,470$