Communicating the value of Bayesian approaches in clinical trials: Is it just a prior issue?

Nicky Best

Head of Statistics and Data Science Innovation Hub, GSK

Acknowledgements: PSI Historical Data SIG, Matt Psioda (GSK), Dan Bratton (GSK) Views expressed are my own and do not necessarily reflect those of GSK

Communicating the value of Bayesian approaches in clinical trials

Katrina and Florian: Puzzle pieces

11 September 2025 2

Communicating the value of Bayesian approaches in clinical trials

Katrina and Florian: Puzzle pieces

11 September 2025

Example 1: Bayesian shrinkage estimation for subgroup effects

Example 1: Bayesian shrinkage estimation for subgroup effects

Chronic respiratory disease

Ph3 trial

Active v control (N = 150 per arm)

Primary endpoint: CFB in FVC (ml)

MCID = 100ml

SD = 260ml

Subgroups: Regions (4)

- Realistic belief: subgroups might differ slightly but generally similar in how they respond to the treatment
 - "Does knowing the effect in subgroup A tell you anything about what to expect in subgroup B?"
 - "Suppose I ask you to predict the treatment effect in subgroup B. If I tell you the effect in subgroup A, does this influence your prediction?"

- Realistic belief: subgroups might differ slightly but generally similar in how they respond to the treatment
 - "Does knowing the effect in subgroup A tell you anything about what to expect in subgroup B?"
 - "Suppose I ask you to predict the treatment effect in subgroup B. If I tell you the effect in subgroup A, does this influence your prediction?"

Exchangeability assumption

- Realistic belief: subgroups might differ slightly but generally similar in how they respond to the treatment
 - "Does knowing the effect in subgroup A tell you anything about what to expect in subgroup B?"
 - "Suppose I ask you to predict the treatment effect in subgroup B. If I tell you the effect in subgroup A, does this influence your prediction?"
- Assuming exchangeability often more reasonable than independence
 - Exchangeability ≠ identical effects
 - Non-exchangeability → structure that can be modeled

Exchangeability assumption

- Realistic belief: subgroups might differ slightly but generally similar in how they respond to the treatment
 - "Does knowing the effect in subgroup A tell you anything about what to expect in subgroup B?"
 - ➤ "Suppose I ask you to predict the treatment effect in subgroup B. If I tell you the effect in subgroup A, does this influence your prediction?"
- Assuming exchangeability often more reasonable than independence
 - Exchangeability ≠ identical effects
 - Non-exchangeability → structure that can be modeled
- Statistical rationale: shrinkage gives lower MSE than independent estimates

Exchangeability assumption

Shrinkage estimation for subgroup effects: Bayesian statistical model

$$\theta_j \sim N(\mu_j, \sigma_j^2)$$

$$\theta_{i}$$
 , σ_{i} = estimated mean & SE of treatment effect in subgroup j

$$\mu_j \sim N(\mu, \tau^2)$$

$$\mu_i$$
 = true treatment effect in subgroup j

$$\mu \sim p(\mu)$$

$$\mu$$
 = overall treatment effect

$$\tau \sim p(\tau)$$

T = between-subgroup standard deviation (heterogeneity)

Shrinkage estimation for subgroup effects: Bayesian statistical model

$$\theta_j \sim N(\mu_j, \sigma_j^2)$$

$$\theta_{i}$$
 , σ_{i} = estimated mean & SE of treatment effect in subgroup j

$$\mu_j \sim N(\mu, \tau^2)$$

$$\mu_i$$
 = true treatment effect in subgroup j

$$\mu \sim p(\mu)$$

$$\mu$$
 = overall treatment effect

$$\tau \sim p(\tau)$$

 τ = between-subgroup standard deviation (heterogeneity)

Prior on au - Start by considering fixed values

Prior on au - Start by considering fixed values

Distribution of absolute difference $|\mu_j - \mu_k|$ between treatment effects in 2 randomly selected subgroups for different fixed values of τ

Prior on au - Start by considering fixed values

Distribution of absolute difference $|\mu_j - \mu_k|$ between treatment effects in 2 randomly selected subgroups for different fixed values of τ

Half-Normal(ϕ) is often a reasonable choice of prior for the between-subgroup heterogeneity (Rover et al (2021), Wang et al (2024), Spiegelhalter et al (2004))

Half-Normal(ϕ) is often a reasonable choice of prior for the between-subgroup heterogeneity (Rover et al (2021), Wang et al (2024), Spiegelhalter et al (2004))

Choosing value of ϕ :

• $\tau \sim HN(\phi)$ has median 0.67 ϕ and 95% interval $(0.03\phi - 2.24\phi)$

Prior scale parameter,	Quantiles of between subgroup heterogeneity, $ au$			
φ	2.5% (0.03 \$\oldsymbol{\phi}\$)	50% (0.67 \$\oldsymbol{\phi}\$)	97.5% (2.24 φ)	
65	2	44	146	
130	4	87	291	
260	8	174	582	

Half-Normal(\phi) is often a reasonable choice of prior for the betweensubgroup heterogeneity (Rover et al (2021), Wang et al (2024), Spiegelhalter et al (2004))

Choosing value of ϕ :

- $\tau \sim HN(\phi)$ has median 0.67 ϕ and 95% interval (0.03 ϕ 2.24 ϕ)
- Look at **induced prior** on $|\mu_j \mu_k|$

Induced prior on difference in subgroup effects for different choices of scale parameter ϕ for Half Normal(ϕ) prior on τ

Prior on au

Half-Normal(\phi) is often a reasonable choice of prior for the between-subgroup heterogeneity (Rover et al (2021), Wang et al (2024), Spiegelhalter et al (2004))

Choosing value of ϕ :

- $\tau \sim HN(\phi)$ has median 0.67 ϕ and 95% interval (0.03 ϕ 2.24 ϕ)
- Look at **induced prior** on $|\mu_i \mu_k|$

Induced prior on difference in subgroup effects for different choices of scale parameter ϕ for Half Normal(ϕ) prior on τ

Prior on au

Half-Normal(\phi) is often a reasonable choice of prior for the between-subgroup heterogeneity (Rover et al (2021), Wang et al (2024), Spiegelhalter et al (2004))

Choosing value of ϕ :

- $\tau \sim HN(\phi)$ has median 0.67 ϕ and 95% interval (0.03 ϕ 2.24 ϕ)
- Look at **induced prior** on $|\mu_i \mu_k|$
- Elicit probability p s.t.

$$\Pr(|\mu_j - \mu_k| < \delta) = p$$
e.g. $\Pr(|\mu_j - \mu_k| < 100 \ ml) = 0.5$

$$\Rightarrow \phi = 194$$

Induced prior on difference in subgroup effects for different choices of scale parameter ϕ for Half Normal(ϕ) prior on τ

Primary analysis using $\tau \sim Half\ Normal(130)$ prior

prior - - - -

posterior median

Sensitivity analysis using $\tau \sim Half\ Normal(194)$ prior

prior - - - -

posterior median

region	N	shrinkage estimate	95% CI		
A	140	113	[42, 186]		
В	60	123	[35, 227]		
С	70	98	[1, 183]	-	
D	30	92	[-40, 195]	0	
Overall	300	109	[50, 168]		
Heteroge	neity	(tau): 40.2 [1.	8, 198.9]	-150 -100 -50 0 Difference	50 100 150 200 250 300 in mean CFB in FVC (ml)

Sensitivity analysis using $\tau \sim Half\ Normal(65)$ prior

shrinkage

N

region

95% CI

prior - - - -

posterior median

Reporting

Sensitivity analysis using $\tau \sim Half\ Normal(26)$ prior

prior - - - -

posterior median

Posterior predictive checks

 $\tau \sim HN(130)$ prior

Posterior predictive checks

Example 2: Bayesian Dynamic Borrowing in a Paediatric Lupus Trial

Context of Use: Clinical & Statistical Contexts

Context

- Rare disease with a drug already approved in adults
- Planned paediatric study: randomized controlled clinical trial
- External data available: two replicate Phase 3 studies in adults
- Motivation for using external data: supplement the planned pediatric sample size with adult data to improve efficiency and increase precision of evidence for decision-making

Context of Use: Clinical & Statistical Contexts

Context

- Rare disease with a drug already approved in adults
- Planned paediatric study: randomized controlled clinical trial
- External data available: two replicate Phase 3 studies in adults
- Motivation for using external data: supplement the planned pediatric sample size with adult data to improve efficiency and increase precision of evidence for decision-making

Clinical context

- Very low feasibility of recruiting pediatric patients
- High unmet medical need in the pediatric population
- Good biological and clinical rationale for transportability from adults to children

Context of Use: Clinical & Statistical Contexts

Context

- Rare disease with a drug already approved in adults
- Planned paediatric study: randomized controlled clinical trial
- External data available: two replicate Phase 3 studies in adults
- Motivation for using external data: supplement the planned pediatric sample size with adult data to improve efficiency and increase precision of evidence for decision-making

Clinical context

- Very low feasibility of recruiting pediatric patients
- High unmet medical need in the pediatric population
- Good biological and clinical rationale for transportability from adults to children

Statistical context

- High-quality data from adults
- Similar trial design, strata, endpoints etc
- Subjective assumption of transportability from adults to children

Paediatric Trial – Bayesian Dynamic Borrowing (BDB) Design

Primary endpoint: Disease activity responder index

Treatment contrast: Odds Ratio for active v placebo (assumed Normally distributed on log scale)

Success: Pr(OR > 1 | data, prior) > 97.5%

Paediatric Trial – Bayesian Dynamic Borrowing (BDB) Design

Primary endpoint: Disease activity responder index

Treatment contrast: Odds Ratio for active v placebo (assumed Normally distributed on log scale)

Success: Pr(OR > 1 | data, prior) > 97.5%

Prior mean	1.62
Prior median	1.62
Prior 95% Credible Interval for OR	(1.27, 2.05)
Prior Probability OR > 1	0.99996

Robust mixture prior for paediatric log OR:

weighted mixture of posterior distribution of treatment effect from adult study (weight w) and vague distribution (weight 1-w) centered on 0 with unit info variance

Elicitation of prior weight

- Multiple experts in relevant disease area with clinical experience of treating adults and/or children
- Review
 - available data from the adult studies, PK etc
 - comparability of study designs
 - similarities between adults and children based on experience and relevant literature

Elicitation of prior weight

- Multiple experts in relevant disease area with clinical experience of treating adults and/or children
- Review
 - available data from the adult studies, PK etc
 - comparability of study designs
 - similarities between adults and children based on experience and relevant literature
- How much confidence do you have in applying the adult clinical trial data to make decisions on treatment effect in children?

012345678910Ignore adult data as irrelevant to paediatric population

Elicitation of prior weight

- Multiple experts in relevant disease area with clinical experience of treating adults and/or children
- Review
 - available data from the adult studies, PK etc
 - comparability of study designs
 - similarities between adults and children based on experience and relevant literature
- How much confidence do you hav make decisions on treatment effec

1 2 3

Ignore adult data as irrelevant to paediatric population

0

Average score = 7

Prior weight on adult data = 0.7

ical trial data to

9 10

Fully trust adult data as applicable to paediatric population

Assessing (in)correctness of decisions

Metric		Comments	Paradigm
Pr(+ve Decision Truth = null)	Type 1 error	Hypothetical probabilities of making future decisions given fixed truths	Frequentist
Pr(+ve Decision Truth = MCID)	Power	Hypothetical probabilities of making future decisions given fixed truths	Frequentist

Assessing (in)correctness of decisions

Metric		Comments	Paradigm
Pr(+ve Decision Truth = null)	Type 1 error	Hypothetical probabilities of making future decisions given fixed truths	Frequentist
Pr(+ve Decision Truth = MCID)	Power	Hypothetical probabilities of making future decisions given fixed truths	Frequentist
Pr(+ve Decision)	Assurance	Predicted probability of making a positive decision	Hybrid – requires design (sampling) prior for true effect
Pr(+ve Decision AND Truth = null)*	Joint probability that null is true and that a positive decision is made	Predicted probability of making a false positive decision	Hybrid - requires design (sampling) prior for true effect

^{*}Best et al (2024) Beyond classical type I error: Bayesian metrics for Bayesian Designs using Informative Priors. *J Biopharm Stats*

Assessing (in)correctness of decisions

Metric		Comments	Paradigm
Pr(+ve Decision Truth = null)	Type 1 error	Hypothetical probabilities of making future decisions given fixed truths	Frequentist
Pr(+ve Decision Truth = MCID)	Power	Hypothetical probabilities of making future decisions given fixed truths	Frequentist
Pr(+ve Decision)	Assurance	Predicted probability of making a positive decision	Hybrid – requires design (sampling) prior for true effect
Pr(+ve Decision AND Truth = null)	Joint probability that null is true and that a positive decision is made	Predicted probability of making a false positive decision	Hybrid - requires design (sampling) prior for true effect
Pr(Truth = null +ve Decision)	Probability that a positive decision is incorrect (i.e. decision is a false positive)	Judgement of incorrectness of decision at time decision is made. Equals (1 – posterior prob of efficacy) if success rule is met	Bayesian

See Sections 1.3 and 9.3 of Frank Harrell's online course https://hbiostat.org/bayes/bet

 Borrowing (+ve) information on the treatment effect inflates type 1 error

- Borrowing (+ve) information on the treatment effect inflates type 1 error
- Kopp-Schneider et al (2024): calibrate (frequentist) test without borrowing to type 1 error of borrowing design
 - ➤ No power gains are possible
 - ➤ But still potential gains in other OC (next slide)

- Borrowing (+ve) information on the treatment effect inflates type 1 error
- Kopp-Schneider et al (2024): calibrate (frequentist) test without borrowing to type 1 error of borrowing design
 - ➤ No power gains are possible
 - ➤ But still potential gains in other OC (next slide)
 - Assumes all possible values of parameter space are equally important
 - ➤ Power gains from borrowing possible if we are willing to consider some regions of the parameter space as more important than others
 - restrict (or weight) operating characteristics to that region

Design (sampling) priors

2 types of prior

- Analysis prior (A): pre-specified analysis prior for treatment effect parameter
- Sampling prior (S): design (or simulation) prior
 - Mechanism for generating data scenarios to evaluate operating characteristics of trial designs
 - If $S \neq A \rightarrow$ can be used to judge accuracy of decisions under a prior which is different from the analysis (i.e. sponsor's) prior

Design (sampling) priors

2 types of prior

- Analysis prior (A): pre-specified analysis prior for treatment effect parameter
- Sampling prior (S): design (or simulation) prior
 - Mechanism for generating data scenarios to evaluate operating characteristics of trial designs
 - If $S \neq A \rightarrow$ can be used to judge accuracy of decisions under a prior which is different from the analysis (i.e. sponsor's) prior

Choosing S

- If solid agreement between sponsors and regulators about the prior, then may be sufficient to choose S = A
- In general, consider various S ≠ A to assess how easy it is for accuracy of conclusions to be below acceptable level

Design (sampling) priors

2 types of prior

- Analysis prior (A): pre-specified analysis prior for treatment effect parameter
- Sampling prior (S): design (or simulation) prior
 - Mechanism for generating data scenarios to evaluate operating characteristics of trial designs
 - If $S \neq A \rightarrow$ can be used to judge accuracy of decisions under a prior which is different from the analysis (i.e. sponsor's) prior

Choosing S

- If solid agreement between sponsors and regulators about the prior, then may be sufficient to choose S = A
- In general, consider various S ≠ A to assess how easy it is for accuracy of conclusions to be below acceptable level
- S often more sceptical than A can be based on:
 - Data, e.g. select least favourable previous trial, or shift mean downwards
 - Expert elicitation
 - "Reference sceptical prior" (Spiegelhalter at al 1994), e.g. mean 0, small prob of treatment effect > alternative
 - Note: S = point mass (at null or alternative) $\rightarrow standard type 1 error and power calculations$

0.6

Design priors for paediatric example

2.5

True paediatric OR

True paediatric OR

Design priors for paediatric example

scenarios are possible

Metric	Design prior		Analysis prior		
		RMP	Vague		
Type 1 error	Point mass at OR=1	33%	2.5%		
Power	Point mass at OR=1.6	77%	21%		
Prior probability of no treatment benefit:	Robust mixture	15%			
Pr(True OR ≤ 1)	Sceptical 2	30%			

Metric	Design prior	Analysis prior		
		RMP	Vague	
Type 1 error	Point mass at OR=1	33%	2.5%	
Power	Point mass at OR=1.6	77%	21%	
Prior probability of no treatment benefit:	Robust mixture	15%		
Pr(True OR ≤ 1)	Sceptical 2	30%		
Predicted probability of positive	Robust mixture	67%	27%	
results (assurance):				
Pr(success)	Sceptical 2	48%	7%	

Metric	Design prior	Analy	ysis prior	
		RMP	Vague	
Type 1 error	Point mass at OR=1	33%	2.5%	
Power	Point mass at OR=1.6	77%	21%	
Prior probability of no treatment	Robust mixture	15%		
benefit:				
Pr(True OR ≤ 1)	Sceptical 2	30%		
Predicted probability of positive results (assurance):	Robust mixture	67%	27%	
Pr(success)	Sceptical 2	48%	7%	
Predicted probability of	Robust mixture	5%	0.4%	
obtaining a false positive result:				
Pr(True OR ≤ 1 AND success)	Sceptical 2	10%	0.75%	

Metric	Design prior	Analysis prior		
		RMP	Vague	
Type 1 error	Point mass at OR=1	33% 2.5%		
Power	Point mass at OR=1.6	77%	21%	
Prior probability of no treatment benefit:	Robust mixture	15%		
Pr(True OR ≤ 1)	Sceptical 2	30%		
Predicted probability of positive results (assurance):	Robust mixture	67%	27%	
Pr(success)	Sceptical 2	48%	7%	
Predicted probability of obtaining a false positive result:	Robust mixture	5%	0.4%	
Pr(True OR ≤ 1 AND success)	Sceptical 2	10%	0.8%	
If positive result is observed, probability it is incorrect:	Robust mixture	0.6%	<0.1%	
Pr(True OR≤ 1 success)	Sceptical 2	29%	28%	

Design characteristics: Illustrative results under "what if" data scenarios

How likely are we to end up in different scenarios, and what would the impact be on decisions or inferences?

	"What if" value of		Prior predicted probability of value < observed under		Proposed BDB design (w =70%)		
	observed OR in paediatric study	different de RMP design prior	Sceptical 2 design prior	Posterior weight on evidence informed by adult data	Point estimate (posterior mean) of OR in paediatrics [95% Crl]	Point estimate of OR in paediatrics [95% CI]	Observed paediatric
Prior-data	0.60	0.13	0.06	0.51	0.96 [0.31, 1.81]	0.60 [0.27, 1.33]	
Minimum	1.00	0.24	0.37	0.89	1.48 [0.75, 1.96]	1.00 [0.48, 2.10]	Worse than in adult data
detectable ->	1.19	0.32	0.53	0.92	1.54 [1.00, 2.00]	1.19 [0.54, 2.64]	
effect	1.40	0.42	0.67	0.94	1.58 [1.18, 2.05]	1.40 [0.68, 2.87]	
Consistent with adult data	1.60	0.51	0.77	0.94	1.61 [1.23, 2.10]	1.60 [0.79, 3.25]	
31 31 31 31 31 31	1.80	0.59	0.84	0.94	1.64 [1.26, 2.17]	1.80 [0.89, 3.64]	Better than in adult data

How much observed "drift" is acceptable?

- OR_{obs} = observed OR in paediatric trial (N=100)
- OR_{BDB} = posterior mean OR from BDB analysis of paediatric trial (N=100 + robust mixture prior)

$$DIFF_{BDB} = |OR_{obs} - OR_{BDB}|$$

absolute difference between BDB result and observed result in paeds

How much observed "drift" is acceptable?

- OR_{obs} = observed OR in paediatric trial (N=100)
- OR_{BDB} = posterior mean OR from BDB analysis of paediatric trial (N=100 + robust mixture prior)

$$DIFF_{BDB} = |OR_{obs} - OR_{BDB}|$$

absolute difference between BDB result and observed result in paeds

• OR_{FULL} = observed OR in fully powered trial (N=500) with true OR = OR_{obs}

$$DIFF_{FIILL} = |OR_{obs} - OR_{FIILL}|$$

differences in OR we might observe due to **sampling variation** if we were to continue collecting data on sufficient children to have a fully powered trial, assuming true $OR = OR_{obs}$ (conservative)

How much observed "drift" is acceptable?

- OR_{obs} = observed OR in paediatric trial (N=100)
- OR_{BDB} = posterior mean OR from BDB analysis of paediatric trial (N=100 + robust mixture prior)

$$DIFF_{BDB} = |OR_{obs} - OR_{BDB}|$$

absolute difference between BDB result and observed result in paeds

• OR_{FULL} = observed OR in fully powered trial (N=500) with true OR = OR_{obs}

$$DIFF_{FIILL} = |OR_{obs} - OR_{FIILL}|$$

differences in OR we might observe due to **sampling variation** if we were to continue collecting data on sufficient children to have a fully powered trial, assuming true $OR = OR_{obs}$ (conservative)

- Calculate $\Pr(DIFF_{FULL} > DIFF_{BDB} | OR_{obs})$ for possible values of OR_{obs} in paediatric trial
 - High probabilities suggest observed drift
 (DIFF_{BDB}) may be reasonable

Acknowledgement: Matt Psioda

Reporting

Primary analysis: Posterior summary

Evidence source	Odds Ratio (95% Crl)		
Primary analysis - <i>posterior</i>	1.61	(1.21, 2.07)	
Paediatric study only	1.50	(0.68, 3.29)	
Adult <i>prior</i> only	1.62	(1.28, 2.05)	
Robust adult <i>prior</i> only	1.60	(0.02, 52.6)	

Sensitivity analysis: Tipping point analysis to varying prior weight

Pre-specified prior weight for primary analysis

Range of prior weights for which the study conclusion (met primary success rule) is robust

Prior predictive distribution for observed OR

Some recommendations

Always consider priors on interpretable scale

Prior or posterior predictions of observables are helpful

Visualise the prior (static or dynamic)

Design (sampling) priors are useful to:

- guide choice of scenarios of interest/concern
- assess impact of realistic prior-data conflict on

Priors can be based on data, expert elicitation, or archetypal positions (e.g. sceptical, optimistic)

Report sensitivity analyses to reasonable alternative priors

Final reflections

Need for self-standing evidence

Katrina and Florian presentation:

- It is common understanding that the standard basis for approval is self-standing evidence usually generated by two confirmatory RCTs with (strong) Type I error control
 - However, no guideline seems to specifically requiring this!

ChatGPT

Self-standing Evidence: This refers to evidence that, **on its own, is sufficient to establish a fact or prove a point**. In other words, even if you removed all other evidence, this piece would still carry enough weight to support the conclusion.

Final reflections

Need for self-standing evidence

Katrina and Florian presentation:

- It is common understanding that the standard basis for approval is self-standing evidence usually generated by two confirmatory RCTs with (strong) Type I error control
 - However, no guideline seems to specifically requiring this!

ChatGPT

Self-standing Evidence: This refers to evidence that, **on its own, is sufficient to establish a fact or prove a point**. In other words, even if you removed all other evidence, this piece would still carry enough weight to support the conclusion.

Compelling Evidence: This term emphasizes how persuasive or convincing the evidence is. It suggests that the evidence is so strong that it leaves little room for doubt or counter-argument. Compelling evidence may combine multiple pieces or exhibit such clarity and reliability that it forces a decision in favor of one conclusion over another.

Final reflections

Need for self-standing evidence

Katrina and Florian presentation:

- It is common understanding that the standard basis for approval is **self-standing evidence** usually generated by two confirmatory RCTs with (strong) Type I error control
 - However, no guideline seems to specifically requiring this!

ChatGPT

Self-standing Evidence: This refers to evidence that, on its own, is sufficient to establish a fact or prove a **point**. In other words, even if you removed all other evidence, this piece would still carry enough weight to support the conclusion.

Compelling Evidence: This term emphasizes how persuasive or convincing the evidence is. It suggests that the evidence is so strong that it leaves little room for doubt or counter-argument. Compelling evidence may combine multiple pieces or exhibit such clarity and reliability that it forces a decision in favor of one conclusion over another.

Is it time to shift the basis for approval to requiring compelling evidence?

References and Useful Resources

- Best, N., Ajimi, M., Neuenschwander, B., Saint-Hilary, G., & Wandel, S. (2024). Beyond the Classical Type I Error: Bayesian Metrics for Bayesian Designs Using Informative Priors. *Statistics in Biopharmaceutical Research*, *17*(2), 183–196. https://doi.org/10.1080/19466315.2024.2342817
- Röver C, Bender R, Dias S, et al. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. Res Syn Meth. 2021; 12: 448–474. https://doi.org/10.1002/jrsm.1475
- Spiegelhalter D, Myles J, Jones D, Abrams K. Bayesian methods in health technology assessment: a review. Health Technol Assess 2000;4 (38). https://doi.org/10.3310/hta4380
- Spiegelhalter, D.J., Freedman, L.S. and Parmar, M.K.B. (1994), Bayesian Approaches to Randomized Trials. Journal of the Royal Statistical Society: Series A (Statistics in Society), 157: 357-387. https://doi.org/10.2307/2983527
- Wang, Y., Tu, W., Koh, W., Travis, J., Abugov, R., Hamilton, K., Zheng, M., Crackel, R., Bonangelino, P. and Rothmann, M. (2024), Bayesian Hierarchical Models for Subgroup Analysis. Pharmaceutical Statistics, 23: 1065-1083. https://doi.org/10.1002/pst.2424
- Frank Harrell online course: Introduction to Bayes for Evaluating Treatments (https://hbiostat.org/bayes/bet)
- Prior Choice Recommendations · stan-dev/stan Wiki · GitHub (https://github.com/stan-dev/stan/wiki/)
- Applied Modelling in Drug Development (https://opensource.nibr.com/bamdd)