Exercises

Computational Intelligence Lab

SS 2018

**Machine Learning Institute** 

Dept. of Computer Science, ETH Zürich

Prof. Dr. Thomas Hofmann

Web http://cil.inf.ethz.ch/

### Series 09 Solutions

## (Dictionary Learning and Compressed Sensing)

#### Problem 1 (Sparse coding with overcomplete dictionary):

Given a signal  $\mathbf{x}=(3,1,-2)\in\mathbb{R}^3$  and an overcomplete dictionary  $\mathbf{U}=[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4]\in\mathbb{R}^{3\times 4}$ ,

$$\mathbf{U} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix},$$

find the sparse representation z of the signal x with  $||z||_0 \le 2$ .

**a.** Find the atom  $\mathbf{u}^{(1)}$  that minimize the reconstruction error  $\|\mathbf{x} - \hat{\mathbf{x}}^{(0)}\|_2^2$  where  $\hat{\mathbf{x}}^{(0)} = z^{(1)}\mathbf{u}^{(1)}$ , and compute the residual  $\mathbf{r}^{(1)} = \mathbf{x} - \hat{\mathbf{x}}^{(0)}$ .

**Solution:** The atom  $\mathbf{u}^{(1)}$  that minimizes the reconstruction error  $\|\mathbf{x} - z^{(1)}\mathbf{u}^{(1)}\|$  is the atom that is best correlated  $\mathbf{x}$ . The correlation between the signal and the atoms in the dictionary are as following,

$$\langle \mathbf{x}, \mathbf{u}_1 \rangle = \frac{2}{\sqrt{3}}$$
$$\langle \mathbf{x}, \mathbf{u}_2 \rangle = -\frac{4}{\sqrt{3}}$$
$$\langle \mathbf{x}, \mathbf{u}_3 \rangle = 0$$
$$\langle \mathbf{x}, \mathbf{u}_4 \rangle = 2\sqrt{3}.$$

Since the absolute correlation coefficient between the atom  $\mathbf{u}_4$  and the signal  $\mathbf{x}$  has the largest value,  $\hat{\mathbf{x}}^{(0)} = \langle \mathbf{x}, \mathbf{u}_4 \rangle \cdot \mathbf{u}_4 = 2\sqrt{3} \cdot \mathbf{u}_4$  minimizes  $\|\mathbf{x} - \hat{\mathbf{x}}^{(0)}\|_2^2$ . And the residual  $\mathbf{r}^{(1)} = \mathbf{x} - \hat{\mathbf{x}}^{(0)} = (1, -1, 0)$ 

**b.** Find the atom  $\mathbf{u}^{(2)}$  that minimize the reconstruction error  $\|\mathbf{r}^{(1)} - \hat{\mathbf{x}}^{(1)}\|_2^2$  where  $\hat{\mathbf{x}}^{(1)} = z^{(2)}\mathbf{u}^{(2)}$ . **Solution:** Similarly, we want to find the atom best correlated with  $\mathbf{r}^{(1)}$  among the remaining atoms  $\mathbf{u}_1$ ,  $\mathbf{u}_2$  and  $\mathbf{u}_3$ . The correlation coefficients between the atoms and the residual are

$$\langle \mathbf{r}^{(1)}, \mathbf{u}_1 \rangle = 0$$
$$\langle \mathbf{r}^{(1)}, \mathbf{u}_2 \rangle = -\frac{2}{\sqrt{3}}$$
$$\langle \mathbf{r}^{(1)}, \mathbf{u}_3 \rangle = \frac{2}{\sqrt{3}}.$$

Because the aboslute correlation coefficient values of  $\mathbf{u}_2$  and  $\mathbf{u}_3$  are the same, either  $\hat{\mathbf{x}}^{(1)} = -\frac{2}{\sqrt{3}}\mathbf{u}_2$  or  $\hat{\mathbf{x}}^{(1)} = \frac{2}{\sqrt{3}}\mathbf{u}_3$  can minimize  $\|\mathbf{r}^{(1)} - \hat{\mathbf{x}}^{(1)}\|_2^2$ .

**c.** Write down the sparse representation z of signal x.

**Solution:** The sparse representations  $\mathbf{z}$  that satisfies  $\|\mathbf{z}\|_0 \le 2$  are  $(0,0,0,2\sqrt{3})$ ,  $(0,0,\frac{2}{\sqrt{3}},2\sqrt{3})$  and  $(0,-\frac{2}{\sqrt{3}},0,2\sqrt{3})$ .

#### **Problem 2 (Compressed Sensing):**

**a.** Map each of the three equations  $\|\mathbf{x}\|_2 = 1$ ,  $\|\mathbf{x}\|_1 = 1$ , and  $\|\mathbf{x}\|_0 = 1$  to a plot among a., b., or c. on the following figure. Note that  $\mathbf{x}$  is s 2D vector with coordinates  $x_1$  and  $x_2$  (i.e.  $\mathbf{x} = \begin{bmatrix} x_1, x_2 \end{bmatrix}$ ).



b. Show the solution of each optimization problem on plots a., b., and c. of the following figure.

 $\min \|\mathbf{x}\|_2$  Subject to  $\frac{1}{2}x_1 + x_2 = 1$ 

 $\min \|\mathbf{x}\|_1$  Subject to  $\frac{1}{2}x_1 + x_2 = 1$ 

 $\min \|\mathbf{x}\|_0$ Subject to  $\frac{1}{2}x_1 + x_2 = 1$ 

c.



# 

#### Solution:

a. The answer will be the closest point on the line to the origin, i.e.

$$\frac{1}{2}\mathbf{x}_1 + \mathbf{x}_2 = 1 \leftrightarrow \mathbf{x}_1 = 2 - 2\mathbf{x}_2 \tag{1}$$

$$\min\{\mathbf{x}_1^2 + \mathbf{x}_2^2\} = \min\{(2 - 2\mathbf{x}_2)^2 + \mathbf{x}_2^2\}$$
 (2)

$$\frac{d}{d\mathbf{x}_2} \left[ (2 - 2\mathbf{x}_2)^2 + \mathbf{x}_2^2 \right] \stackrel{!}{=} 0 \leftrightarrow \mathbf{x}_2 = 0.8, \mathbf{x}_1 = 0.4$$
(3)

- b.  $\mathbf{x}_1=0,\mathbf{x}_2=1$  c. two solutions  $[\mathbf{x}_1=0,\mathbf{x}_2=1],[\mathbf{x}_1=2,\mathbf{x}_2=0]$
- c. We can formulate the above three optimization problem as

$$\min \|\mathbf{x}\|_p$$
 subject to  $\frac{1}{2}x_1+x_2=1,$ 

where  $p \in \{0, 1, 2\}$ . Mark the right sentence using your previous answers.

- $[\hspace{1em}]$  Solutions of the constrained problems have intersection for p=1 and p=0.
- $[\hspace{1em}]$  Solutions of the constrained problems have intersection for p=2 and p=0.

#### Solution:

Solutions of the constrained problems have intersection for p=1 and p=0.