1. Jakie są funkcje poszczególnych bloków woltomierza napięcia zmiennego?

Układ wejściowy - Służy do zapewnienia odpowiednio dużej impedancji wejściowej woltomierza, w celu minimalizacji błędu metody, oraz umożliwia zmianę zakresu pomiarowego.

Przetwornik - zamieniający wejściowe napięcie zmienne na sygnał o niezerowej wartości średniej, proporcjonalnej do wartości średniej wyprostowanej, skutecznej lub szczytowej napięcia wejściowego, zależnie od konstrukcji przetwornika,

Wskaźnik - Odpowiedzialny za pomiar napięcia lub prądu wyjściowego oraz wizualizację wyniku. Jest to zwykle miliamperomierz lub woltomierz napięcia stałego.

2. Podaj definicję wartości średniej sygnału przemiennego.

Wartość średnia sygnału przemiennego to inaczej składowa stała tego sygnału. Wyraża ją wzór:

$$U0 = \frac{1}{T} * \int_{t0}^{t0+T} u(t)dt$$

/*Znalazłem gdzieś w necie, ale chyba też może być*/

Wartością średnią całookresową sygnału okresowego nazywamy średnią arytmetyczną tego sygnału obliczoną dla jednego okresu T.

3. Podaj definicję wartości skutecznej sygnału przemiennego.

$$U0 = \sqrt{\frac{1}{T} * \int_{t0}^{t0+T} [u(t)]^2 dt}$$

Wartość skuteczna napięcia zmiennego jest równa wartości napięcia stałego, przy której wydzieli się (w postaci ciepła) tyle samo energii, co dla danego napięcia zmiennego u(t) w tym samym czasie i na takiej samej rezystancji.

4. Jaka jest wartość średnia sygnału opisanego równaniem: $u(t) = -2 - 4 \sin(200\pi t)$?

U= -2 (V) - Ponieważ jest to składowa stała.

(Po podstawieniu do wzoru i wyliczeniu całki wychodzi to samo)

5. Jaka jest wartość skuteczna sygnału opisanego równaniem: $u(t) = -2 + \sin(10\pi t)$?

Gdy sygnał składa się ze składowej stałej U0 i jednej składowej sinusoidalnej o amplitudzie U, to wartość skuteczna wyrażona jest wzorem

$$U = \sqrt{(U_0^2 + \frac{1}{2}^*U^2)} = \sqrt{4.5}$$

6. Podaj definicję współczynnika kształtu oraz jego wartość dla sygnału sinusoidalnego.

Współczynnik kształtu jest stosunkiem wartości skutecznej do wartości średniej wyprostowanej i określa kształt sygnału. Dla sygnału sinusoidalnego wynosi on: $\pi/(2\sqrt{2}) \approx 1,11$

7. Narysuj charakterystykę prądowo-napięciową idealnej oraz rzeczywistej diody krzemowej. Zaznacz charakterystyczne punkty na charakterystyce.

8. Przy ustawionym współczynniku odchylenia toru Y oscyloskopu równym 1 V/dz na ekranie obserwowany jest sygnał jak na rysunku. Wyznacz wartość średnią sygnału.

/*Wydaje mi się, że można po prostu policzyć średnią arytmetyczną. */ (0+5+5+5+5)/5 = 4V

/*Ale całke też można jebnąć*/

$$U \pm r = \frac{1}{T} * \int_{t0}^{t0+T} u(t)dt = \frac{1}{5} (\int_{0}^{4} 5 dt + \int_{4}^{5} 0 dt) = \frac{20}{5} = 4V$$

9. Jaką wartość wskaże woltomierz napięcia stałego, jeśli do jego wejścia doprowadzono sygnał, którego oscylogram pokazano na rysunku?

$$U \pm r = \frac{1}{T} * \int_{t0}^{t0+T} u(t)dt = \frac{1}{6} \left[\int_{0}^{3} t \, dt + \int_{3}^{6} (-t+6) \, dt \right] = \frac{1}{6} \left(\frac{9}{2} - \frac{36}{2} + \frac{9}{2} + 36 - 18 \right) = \frac{9V}{6} = 1,5V$$

10. Narysuj przebieg napięcia na wejściu i wyjściu jednopołówkowego przetwornika diodowego zakładając, że dioda ma charakterystykę idealną, a sygnał wejściowy określony jest zależnością $u(t) = -2 + 3 \sin(\omega t)$.

Wejście:

Wyjście:

11. Zilustruj działanie układu jednopołówkowego przetwornika wartości średniej wyprostowanej poprzez naszkicowanie przebiegów czasowych prądu i napięcia w obwodzie. Przyjmij napięcie progowe diody UD = 0 V, oraz rezystancję diody w kierunku przewodzenia RP > 0 Ω .

Chodzi mniej więcej o coś takiego:

12. Do wyjścia prostownika dwupołówkowego dołączono miliamperomierz prądu stałego o niewielkiej rezystancji Ra. Do wejścia prostownika doprowadzono sygnał sinusoidalny o zerowej składowej stałej i amplitudzie UM = 5,000 V. Jaka będzie zależność między wskazaniami amperomierza, gdy zostaną zastosowane w prostowniku diody: a) idealna, b) rzeczywista krzemowa, c) rzeczywista germanowa? Załóż, że w przypadku diod rzeczywistych ich rezystancja w kierunku przewodzenia Rp jest identyczna.

Dioda idealna ma w kierunku przewodzenia opór = 0, a w kierunku zaporowym nieskończenie dużą oraz przewodzi, gdy wartość chwilowa napięcia jest większa od zera. W rzeczywistości jednak dioda posiada pewną niewielką rezystancję Rp w kierunku przewodzenia oraz bardzo dużą(ale skończoną) w kierunku zaporowym Rz. Ponadto dioda rzeczywista charakteryzuje się tzw. napięciem progowym Ud, które wynosi ok 0,6-0,7V dla diod krzemowych oraz 0,2-0,3V dla diod germanowych. Czyli wskazania amperomierza będą: la>lc>lb

13. Jakie będzie wskazanie miliamperomierza prądu stałego dołączonego do wyjścia prostownika jednopołówkowego w przypadku, gdy do wejścia prostownika doprowadzono sygnał sinusoidalny o zerowej składowej stałej i amplitudzie 10,000 V? Załóż, że wartość rezystancji miliamperomierza jest pomijalnie mała, dioda jest idealna, a rezystor dekadowy o wartości 200,0Ω jest połączony szeregowo z diodą.

$$I_0 = (1/\pi)^* (Un/Rd) = 1/\pi * 10/200 = 15.9 mA$$

14. Czy zmiana polaryzacji diod w układach przetwornika: a) jednopołówkowego, b) dwupołówkowego, będzie miała wpływ na kształt sygnału na wyjściu danego przetwornika w przypadku sygnału sinusoidalnego o zerowej składowej stałej? Odpowiedź uzasadnij.

- a) Odwrócenie polaryzacji spowoduje, że wykres obróci się względem osi X. Prąd w obwodzie zmieni kierunek przepływu.
- b)Prąd będzie przepływał w drugą stronę, więc wykres będzie miał postać -|u|.
- 15. Narysuj przebiegi czasowe prądów na wyjściu prostownika jednopołówkowego diodowego dla parametrów diody: a) Ud = 0 V, Rp > 0 Ω , b) Ud > 0 V, Rp > 0 Ω , gdy do jego wejścia doprowadzono sygnał sinusoidalny o amplitudzie Um większej od napięcia progowego diody. W obu przypadkach przyjmij identyczne Rp. Jaka jest podstawowa różnica w kształcie przebiegów wyjściowych względem wejściowego sygnału sinusoidalnego oraz przebiegów wyjściowych względem siebie? Ud jest napięciem progowym diody, a Rp rezystancją diody w kierunku przewodzenia.

/*Wykres się trochę omsknął. Dla wariantu a) nie powinno być wypłaszczenia w miejscu gdzie sygnał pierwotny przecina oś OX. Czyli te czerwone linie powinny robić się płaskie dopiero po przecięciu z niebieską, nie wcześniej. (Wynika to z faktu że napięcie progowe diody idealnej wynosi 0.)*/

Względem wejściowego przebiegu sinusoidalnego, przebiegi wyjściowe osiągają niższe wartości napięcia na rezystancji diody(a i b) oraz na diodzie odkłada się napięcie przewodzenia(b). Dioda a przewodzi w momencie zmiany na kierunek przewodzenia. Dioda b zaczyna przewodzić dopiero gdy wartość napięcia będzie wyższa niż napięcie progowe.

16. Wyprowadź wzór na wartość średnią prądu wyjściowego przetwornika jednopołówkowego o charakterystyce prądowo-napięciowej opisanej zależnością (7-15).

$$I_{0} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} \frac{|u(t)|}{R_{d}} dt = \frac{1}{T} \int_{0}^{T} \frac{|U_{M}\sin(\omega t)|}{R_{d}} dt = \frac{1}{2\pi} \frac{U_{M}}{R_{d}} \int_{0}^{2\pi} |\sin(x)| dx =$$

$$= \frac{1}{\pi} \frac{U_{M}}{R_{d}} \int_{0}^{\pi} \sin(x) dx = \frac{1}{\pi} \frac{U_{M}}{R_{d}} [\cos(x)]_{0}^{\pi} = \frac{1}{\pi} \frac{U_{M}}{R_{d}} = \frac{1}{\pi} I_{M} \approx 0.32 \cdot I_{M}$$

/*Podobno to jest nie do końca dobrze, ale nie wiem czemu*/

17. Co to znaczy, że woltomierz napięcia zmiennego, zbudowany w oparciu o projekt z ćwiczenia, jest wywzorcowany w wartościach skutecznych napięcia sinusoidalnego? Jak można to doświadczalnie sprawdzić?