

Estadística avanzada: Preprocesado de datos

A1 - Preproceso de datos

Autor: Eduardo Mora González

octubre 2022

- 1 Normalización de las variables cualitativas
 - 1.1 Athlete
 - 1.2 Female
 - o 1.3 Black
 - 1.4 White
- 2 Normalización de las variables cuantitativas
 - 2.1 Nota de acceso
 - o 2.2 Horas totales cursadas al semestre
 - o 2.3 Nota media del estudiante al final del primer semestre
 - o 2.4 Número total de estudiants en la cohorte de graduados del bachillerato
 - 2.5 Ranking relativo del estudiante
- 3 Valores atípicos
- 4 Imputación de valores
- 5 Creación de una nueva variable
- 6 Estudio descriptivo
 - o 6.1 Estudio descriptivo de las variables cualitativas
 - o 6.2 Estudio descriptivo de las variables cuantitativas
- 7 Archivo final
- 8 Informe ejecutivo
 - 8.1 Tabla resumen del preprocesamiento
 - 8.2 Resumen estadístico

library(readr)

fichero <- read_csv("C:/Users/eduar/Dropbox/ESTUDIOS/Estadística avanzada/PEC1/gpa_row.
csv")</pre>

Rows: 4137 Columns: 10

```
## -- Column specification -----
## Delimiter: ","
## chr (2): tothrs, hsize
## dbl (4): sat, hsrank, hsperc, colgpa
## lgl (4): athlete, female, white, black
```

```
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Una vez cargado el fichero, la salida nos da el numero de variables que hay de cada tipo (numéricas que hay 4, lógicas que hay 4 o texto que hay 2), pero ahora vamos a ver si los datos que tenemos están dentro de los parámetros correspondientes, según se especifica en el enunciado.

```
summary(fichero)
```

```
##
         sat
                      tothrs
                                         hsize
                                                             hsrank
## Min. : 470
                   Length:4137
                                      Length:4137
                                                         Min.
                                                                : 1.00
   1st Qu.: 940
                   Class :character
                                      Class :character
                                                         1st Qu.: 11.00
##
   Median :1030
                   Mode :character
                                      Mode :character
                                                         Median : 30.00
   Mean
         :1030
                                                         Mean
                                                                : 52.83
##
   3rd Qu.:1120
                                                         3rd Qu.: 70.00
   Max.
          :1540
                                                         Max.
                                                                :634.00
##
##
##
        hsperc
                                       athlete
                                                        female
                          colgpa
##
   Min.
          : 0.1667
                      Min.
                             :0.000
                                      Mode :logical
                                                      Mode :logical
   1st Qu.: 6.4328
                      1st Qu.:2.210
                                      FALSE:3943
                                                      FALSE: 2277
##
   Median :14.5963
                      Median :2.660
                                      TRUE :194
                                                      TRUE :1860
##
   Mean
         :19.2406
                      Mean
                             :2.655
##
   3rd Qu.:27.7108
                      3rd Qu.:3.120
                             :4.000
##
   Max. :92.0000
                      Max.
##
                      NA's
                             :41
##
     white
                      black
##
   Mode :logical
                    Mode :logical
##
   FALSE:308
                    FALSE: 3908
   TRUE :3829
                    TRUE :229
##
##
##
##
##
```

Tras ver las estadísticas básicas de las variables, nos damos cuenta de lo siguiente:

Variables numéricas -> son: sat, hsrank, hsperc, colgpa. Las variables tothrs y hsize también son de tipo numérica pero R las ha interpretado como Strings.

Variables lógicas -> son: athlete, female, white y black. Estas si han sido interpretadas de manera correcta.

1 Normalización de las variables cualitativas

1.1 Athlete

Presentamos el contenido de la variable

head(fichero\$athlete)

[1] TRUE FALSE TRUE FALSE FALSE

Comprobamos el tipo de variable que es

class(fichero\$athlete)

[1] "logical"

Quitamos los espcacios y lo ponemos en mayusculas todo

fichero\$athlete <- toupper(fichero\$athlete)
fichero\$athlete <- gsub(" ", "",fichero\$athlete)
class(fichero\$athlete)</pre>

[1] "character"

Cambiamos a variable factor y lo comprobamos

fichero\$athlete<- as.factor(fichero\$athlete)
head(fichero\$athlete)</pre>

[1] TRUE FALSE TRUE FALSE FALSE
Levels: FALSE TRUE

class(fichero\$athlete)

[1] "factor"

1.2 Female

Presentamos el contenido de la variable

head(fichero\$female)

[1] TRUE FALSE FALSE FALSE TRUE

Comprobamos el tipo de variable que es

class(fichero\$female)

```
## [1] "logical"
```

Quitamos los espacios y lo ponemos en mayusculas todo

```
fichero$female <- toupper(fichero$female)
fichero$female <- gsub(" ", "",fichero$female)
class(fichero$female)</pre>
```

```
## [1] "character"
```

Cambiamos a variable factor y lo comprobamos

```
fichero$female<- as.factor(fichero$female)
head(fichero$female)</pre>
```

```
## [1] TRUE FALSE FALSE FALSE TRUE
## Levels: FALSE TRUE
```

```
class(fichero$female)
```

```
## [1] "factor"
```

1.3 Black

Presentamos el contenido de la variable

```
head(fichero$black)
```

```
## [1] FALSE FALSE FALSE FALSE FALSE
```

Comprobamos el tipo de variable que es

```
class(fichero$black)
```

```
## [1] "logical"
```

Quitamos los espacios y lo ponemos en mayusculas todo

```
fichero$black <- toupper(fichero$black)
fichero$black <- gsub(" ", "",fichero$black)
class(fichero$black)</pre>
```

```
## [1] "character"
```

Cambiamos a variable factor y lo comprobamos

```
fichero$black<- as.factor(fichero$black)</pre>
 head(fichero$black)
 ## [1] FALSE FALSE FALSE FALSE FALSE
 ## Levels: FALSE TRUE
 class(fichero$black)
 ## [1] "factor"
1.4 White
Presentamos el contenido de la variable
 head(fichero$white)
 ## [1] FALSE TRUE TRUE TRUE TRUE TRUE
Comprobamos el tipo de variable que es
 class(fichero$white)
 ## [1] "logical"
Quitamos los espacios y lo ponemos en mayusculas todo
 fichero$black <- toupper(fichero$black)</pre>
 fichero$black <- gsub(" ", "",fichero$black)</pre>
 class(fichero$black)
 ## [1] "character"
Cambiamos a variable factor y lo comprobamos
 fichero$white<- as.factor(fichero$white)</pre>
 head(fichero$white)
 ## [1] FALSE TRUE TRUE TRUE TRUE TRUE
 ## Levels: FALSE TRUE
 class(fichero$white)
 ## [1] "factor"
```

2 Normalización de las variables cuantitativas

2.1 Nota de acceso

Presentamos el contenido de la variable

head(fichero\$sat)

```
## [1] 920 1170 810 940 1180 980
```

Comprobamos el tipo de variable que es

class(fichero\$sat)

```
## [1] "numeric"
```

La variable se adapta a la normalización deseada.

2.2 Horas totales cursadas al semestre

Presentamos el contenido de la variable

head(fichero\$tothrs)

```
## [1] "43h" "18h" "14h" "40h" "18h" "114h"
```

Comprobamos el tipo de variable que es

class(fichero\$tothrs)

```
## [1] "character"
```

Debemos quitar la "h" final y convertir la variable en numérica

library(stringr)

fichero\$tothrs <- str_replace (fichero\$tothrs, "h", "")
head(fichero\$tothrs)</pre>

```
## [1] "43" "18" "14" "40" "18" "114"
```

fichero\$tothrs <- as.numeric(fichero\$tothrs)</pre>

Comprobamos el tipo de variable que es

```
class(fichero$tothrs)
```

```
## [1] "numeric"
```

Ahora la variable se adapta a la normalización deseada.

2.3 Nota media del estudiante al final del primer semestre

Presentamos el contenido de la variable

head(fichero\$colgpa)

```
## [1] 2.04 4.00 1.78 2.42 2.61 3.03
```

Comprobamos el tipo de variable que es

class(fichero\$colgpa)

```
## [1] "numeric"
```

La variable se adapta a la normalización deseada.

2.4 Número total de estudiants en la cohorte de graduados del bachillerato

Presentamos el contenido de la variable

head(fichero\$hsize)

```
## [1] "0.1" "9.3999996" "1.1900001" "5.71" "2.1400001" "2.6800001"
```

Comprobamos el tipo de variable que es

class(fichero\$hsize)

```
## [1] "character"
```

Debemos convertir la variable en numérica

```
library(stringr)

fichero$hsize <- str_replace (fichero$hsize, ",", ".")
head(fichero$hsize)</pre>
```

```
## [1] "0.1" "9.3999996" "1.1900001" "5.71" "2.1400001" "2.6800001"
```

```
fichero$hsize <- as.numeric(fichero$hsize)</pre>
```

Comprobamos el tipo de variable que es

```
class(fichero$hsize)
```

```
## [1] "numeric"
```

Ahora la variable se adapta a la normalización deseada.

2.5 Ranking relativo del estudiante

Presentamos el contenido de la variable

head(fichero\$hsperc)

```
## [1] 40.00000 20.31915 35.29412 44.13310 40.18692 15.29851
```

Comprobamos el tipo de variable que es

```
class(fichero$hsperc)
```

```
## [1] "numeric"
```

Truncamos los decimales que tienen a solo 3:

```
fichero$hsperc <- signif(fichero$hsperc, digits =3)
head(fichero$hsperc)</pre>
```

```
## [1] 40.0 20.3 35.3 44.1 40.2 15.3
```

La variable se adapta a la normalización deseada.

3 Valores atípicos

Vemos una vez normalizadas las variables, en que rango se encuentran y si están dentro de lo deseado.

summary(fichero)

```
##
        sat
                      tothrs
                                       hsize
                                                     hsrank
   Min. : 470
                  Min. : 6.00
                                   Min.
                                          :0.03
                                                 Min. : 1.00
##
##
   1st Qu.: 940
                  1st Qu.: 17.00
                                   1st Qu.:1.65
                                                 1st Qu.: 11.00
   Median :1030
                  Median : 47.00
                                   Median :2.51
                                                 Median : 30.00
##
         :1030
                         : 52.83
                                         :2.80
                                                 Mean
##
   Mean
                  Mean
                                   Mean
                                                        : 52.83
                                                 3rd Qu.: 70.00
##
   3rd Qu.:1120
                  3rd Qu.: 80.00
                                   3rd Qu.:3.68
##
   Max.
          :1540
                  Max. :137.00
                                   Max.
                                          :9.40
                                                 Max.
                                                        :634.00
##
##
       hsperc
                        colgpa
                                    athlete
                                                  female
                                                               white
   Min.
         : 0.167
                    Min.
                           :0.000
                                    FALSE:3943
                                                FALSE: 2277
                                                             FALSE: 308
##
##
   1st Qu.: 6.430
                    1st Qu.:2.210
                                    TRUE : 194
                                                TRUE :1860
                                                             TRUE: 3829
##
   Median :14.600
                    Median :2.660
   Mean
         :19.241
                    Mean
                           :2.655
##
##
   3rd Qu.:27.700
                    3rd Qu.:3.120
   Max. :92.000
##
                    Max. :4.000
                    NA's
##
                           :41
##
      black
   Length:4137
##
   Class :character
##
   Mode :character
##
##
##
##
##
```

La variable **tothrs**` y **hsrank** está dentro de los parámetros normales.

La variable **colgpa** está en escala de 0 a 4 puntos, por lo que está de forma correcta. Además esta variable tiene 41 campos nulos.

Para la variable **hsperc** se va a comprobar si el cálculo se ha hecho de manera correcta, para ello se comprueba si son iguales los valores, si no se sustituye, y se cuenta los distintos. Finalmente se muestra el número de errores que ha tenido los datos.

```
distintos = 0

for(i in 1: length(fichero$hsperc)){
    calculo <- signif((fichero$hsrank[i] / fichero$hsize[i]), digits =3)
    iguales <- identical(calculo, fichero$hsperc[i])

    if(iguales==FALSE){
        fichero$hsperc[i]<-calculo
        distintos = distintos + 1
    }
}
distintos</pre>
```

```
## [1] 12
```

Para la variable **hsize** nos damos cuenta de que esta dentro de los rangos, pero tiene valores atípicos, como se puede comprobar en el boxplot siguiente:

```
boxplot(fichero$hsize)

# Points
stripchart(fichero$hsize,  # Data
    method = "jitter", # Random noise
    pch = 1,  # Pch symbols
    col = 4,  # Color of the symbol
    vertical = TRUE,  # Vertical mode
    add = TRUE)  # Add it over
```


La variable **SAT** está en escala de 400 a 1600 puntos, pero tiene valores atípicos, como se puede comprobar en el boxplot siguiente:

4 Imputación de valores

Lo primero que vamos a hacer es dividir los registros entre hombre y mujer

```
fichero_mujer <- fichero
fichero_mujer <- fichero_mujer [fichero_mujer$female == TRUE ,]
fichero_hombre <- fichero
fichero_hombre <- fichero_hombre[fichero_hombre$female == FALSE ,]
summary(fichero_hombre$colgpa)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 2.12 2.57 2.59 3.06 4.00 24
```

```
summary(fichero_mujer$colgpa)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.210 2.325 2.740 2.734 3.170 4.000 17
```

Comprobamos que para los hombres hay 24 nulos y para las mujeres 17.

Hacemos la imputación para las mujeres, lo mostramos y los añadimos a la lista de mujeres

```
library(VIM)
```

```
## Warning: package 'VIM' was built under R version 4.1.3
 ## Loading required package: colorspace
 ## Loading required package: grid
 ## VIM is ready to use.
 ## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/i
 ##
 ## Attaching package: 'VIM'
 ## The following object is masked from 'package:datasets':
 ##
 ##
        sleep
 imputacion_mujer <- kNN(fichero_mujer, k=11)</pre>
 imputacion_mujer$colgpa[imputacion_mujer$colgpa_imp=='TRUE']
    [1] 3.26 2.60 2.82 2.81 2.89 2.94 2.59 2.78 2.36 2.19 2.72 2.75 2.38 2.73 2.11
 ## [16] 2.41 2.46
 fichero_mujer$colgpa <- imputacion_mujer$colgpa</pre>
 summary(fichero_mujer$colgpa)
       Min. 1st Qu.
 ##
                      Median
                                Mean 3rd Qu.
                                                 Max.
      0.210
               2.330
                       2.740
                               2.733
                                        3.170
                                                4.000
 ##
Hacemos la imputación para los hombres, lo mostramos y los añadimos a la lista de hombres
 library(VIM)
 imputacion_hombre <- kNN(fichero_hombre, k=11)</pre>
 imputacion hombre$colgpa[imputacion hombre$colgpa imp=='TRUE']
```

[1] 2.47 2.65 2.37 2.18 2.15 2.26 2.72 2.26 2.43 2.81 2.69 3.46 2.70 2.20 2.50

[16] 2.68 2.35 3.00 2.42 2.26 3.23 2.25 3.41 1.68

##

```
fichero_hombre$colgpa <- imputacion_hombre$colgpa
summary(fichero_hombre$colgpa)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.120 2.570 2.589 3.060 4.000
```

Unimos las dos listas con los datos ya imputados.

```
fichero_2 <- rbind(fichero_hombre, fichero_mujer)
summary(fichero_2)</pre>
```

```
##
         sat
                        tothrs
                                          hsize
                                                          hsrank
    Min.
           : 470
                   Min.
                           : 6.00
                                     Min.
                                                     Min.
                                                             :
                                                                1.00
##
                                             :0.03
                   1st Qu.: 17.00
                                                     1st Qu.: 11.00
    1st Qu.: 940
                                     1st Qu.:1.65
##
    Median :1030
                   Median : 47.00
                                     Median :2.51
                                                     Median : 30.00
##
    Mean
           :1030
                   Mean
                           : 52.83
                                     Mean
                                             :2.80
                                                     Mean
                                                             : 52.83
                   3rd Qu.: 80.00
                                                     3rd Qu.: 70.00
##
    3rd Qu.:1120
                                     3rd Qu.:3.68
    Max.
           :1540
                   Max.
                           :137.00
                                     Max.
                                             :9.40
                                                     Max.
                                                             :634.00
##
##
        hsperc
                          colgpa
                                       athlete
                                                      female
                                                                    white
##
    Min.
           : 0.167
                     Min.
                             :0.000
                                      FALSE: 3943
                                                    FALSE: 2277
                                                                  FALSE: 308
    1st Qu.: 6.430
                      1st Qu.:2.210
                                      TRUE : 194
                                                    TRUE :1860
                                                                  TRUE: 3829
##
    Median :14.600
##
                     Median :2.660
##
    Mean
           :19.238
                     Mean
                             :2.654
##
    3rd Qu.:27.700
                      3rd Qu.:3.120
           :92.000
##
    Max.
                             :4.000
                     Max.
##
       black
##
    Length:4137
    Class :character
##
    Mode :character
##
##
##
##
```

5 Creación de una nueva variable

Con la calificación dada, se asigna el valor de la variable categórica. Se ha establecido los intervalos para cada letra según el enunciado.

```
fichero_2["gpaletter"] <- cut(fichero_2$colgpa, breaks = c(-0.01,1.49,2.49,3.49,4), labe
ls = c("D", "C", "B", "A"))
head(fichero_2)</pre>
```

```
## # A tibble: 6 x 11
       sat tothrs hsize hsrank hsperc colgpa athlete female white black gpaletter
##
                                 <dbl>
                                        <dbl> <fct>
                                                      <fct>
                                                             <fct> <chr> <fct>
##
     <dbl>
            <dbl> <dbl>
                         <dbl>
      1170
                  9.40
                           191
                                 20.3
                                                      FALSE
                                                            TRUE FALSE A
## 1
               18
                                              FALSE
## 2
       810
               14
                  1.19
                            42
                                 35.3
                                        1.78 TRUE
                                                      FALSE
                                                            TRUE
                                                                   FALSE C
                   5.71
## 3
       940
               40
                           252
                                 44.1
                                        2.42 FALSE
                                                      FALSE
                                                             TRUE
                                                                   FALSE C
               18 2.14
## 4
      1180
                            86
                                 40.2
                                        2.61 FALSE
                                                      FALSE TRUE FALSE B
## 5
       880
               78 3.11
                           161
                                 51.8
                                        1.84 FALSE
                                                      FALSE
                                                             FALSE FALSE C
               55 2.68
                           101
                                 37.7
## 6
       980
                                         3.05 FALSE
                                                      FALSE
                                                             TRUE FALSE B
```

```
tail(fichero_2)
```

```
## # A tibble: 6 x 11
       sat tothrs hsize hsrank hsperc colgpa athlete female white black gpaletter
##
                                        <dbl> <fct>
                                                              <fct> <chr> <fct>
     <db1>
            <dbl> <dbl> <dbl>
                                 <dbl>
                                                       <fct>
##
      1000
               18 1.41
                             25
                                  17.7
                                         2.33 FALSE
                                                       TRUE
                                                              TRUE
                                                                    FALSE C
      1020
                                  41
## 2
               75 1
                             41
                                         1.97 FALSE
                                                       TRUE
                                                              TRUE
                                                                    FALSE C
## 3
               47 2.3
      1180
                             20
                                   8.7
                                         3.36 FALSE
                                                       TRUE
                                                              TRUE FALSE B
       990
               49 2.33
## 4
                             89
                                  38.2
                                         2.24 FALSE
                                                       TRUE
                                                              TRUE
                                                                    FALSE C
## 5
       900
               50 0.1
                             2
                                  20
                                         2.46 FALSE
                                                       TRUE
                                                              TRUE
                                                                    FALSE C
## 6
       980
               12 0.350
                                  65.7
                                         2.83 FALSE
                                                       TRUE
                             23
                                                              TRUE FALSE B
```

6 Estudio descriptivo

6.1 Estudio descriptivo de las variables cualitativas

6.1.1 Athlete en porcentaje de atletas

```
tabla1 <- table(fichero_2$athlete)
tabla1 <- prop.table(tabla1)

xx <- barplot(tabla1, ylim=c(0,1.1), xlab='¿Athlete?', ylab='Frecuencia', las=1)
text(x=xx, y=tabla1, pos=3, cex=0.8, col="red", label=round(tabla1, 4))</pre>
```


Como se puede ver, hay un mayor número de personas que no practican deporte respecto a las que si las practican.

6.1.2 Athlete en porcentaje de atletas en función del sexo

nivel visual se puede ver, que los hombres hacen mas deporte que las mujeres.

6.2 Estudio descriptivo de las variables cuantitativas

6.2.1 Estudio descriptivo de las variables cuantitativas "sat", "tothrs", "hsize", "hsrank".

Se va a generar histogramas para verificar la distribución de las variables numéricas

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Distribuciones de las variables numéricas

6.2.2 Distribución de los valores de "sat"

boxplot(fichero_2\$sat)

Distribución de los valores de "sat" por sexo

```
ggplot(fichero_2, aes(x=sat, y=female, fill=sat)) +
  geom_boxplot()+
  labs(title="Plot of Sex per sat",x="sat", y = "¿FEMALE?")
```

Plot of Sex per sat

6.2.3 Tabla con diversas medidas de tendencia central y dispersión, robustas y no robustas.

```
Cabecera <- c("Estimadores", "sat", "tothrs", "hsize", "hsrank" )</pre>
sat <- c(mean(fichero_2$sat),median(fichero_2$sat),mean(fichero_2$sat,trim=0.05),sd(fich</pre>
ero_2$sat),IQR(fichero_2$sat), mad(fichero_2$sat) )
tothrs <- c(mean(fichero_2$tothrs), median(fichero_2$tothrs), mean(fichero_2$tothrs, trim=
0.05),sd(fichero_2$tothrs),IQR(fichero_2$tothrs), mad(fichero_2$tothrs) )
hsize<- c(mean(fichero_2$hsize), median(fichero_2$hsize), mean(fichero_2$hsize, trim=0.05),
sd(fichero_2$hsize),IQR(fichero_2$hsize), mad(fichero_2$hsize) )
hsrank<- c(mean(fichero_2$hsrank),median(fichero_2$hsrank),mean(fichero_2$hsrank,trim=0.
05),sd(fichero_2$hsrank),IQR(fichero_2$hsrank), mad(fichero_2$hsrank) )
Estimadores <- c("Media", "Mediana", "Media recortada", "Desviación estándar", "RIC", "DAM")
tabla_medidas <- data.frame(</pre>
  "Estimadores" = Estimadores,
  "sat" = sat,
  "tothrs" = tothrs,
  "hsize" = hsize,
  "hsrank" = hsrank
)
tabla_medidas
```

```
##
             Estimadores
                               sat
                                     tothrs
                                                hsize
                                                        hsrank
## 1
                   Media 1030.3312 52.83225 2.799727 52.83007
                 Mediana 1030.0000 47.00000 2.510000 30.00000
## 2
         Media recortada 1029.4792 51.27060 2.711791 43.99383
## 3
## 4 Desviación estándar 139.4014 35.32959 1.736579 64.68358
## 5
                     RIC
                         180.0000 63.00000 2.030000 59.00000
## 6
                     DAM 133.4340 45.96060 1.423296 35.58240
```

7 Archivo final

```
head(fichero_2)
```

```
## # A tibble: 6 x 11
##
       sat tothrs hsize hsrank hsperc colgpa athlete female white black gpaletter
            <dbl> <dbl>
                         <dbl>
                                <dbl>
                                       <dbl> <fct>
                                                     <fct>
                                                            <fct> <chr> <fct>
##
      1170
               18 9.40
                           191
                                 20.3
                                        4
                                             FALSE
                                                     FALSE TRUE FALSE A
## 1
## 2
       810
               14
                  1.19
                           42
                                 35.3
                                        1.78 TRUE
                                                     FALSE
                                                           TRUE
                                                                  FALSE C
## 3
       940
               40 5.71
                           252
                                 44.1
                                        2.42 FALSE
                                                     FALSE
                                                           TRUE
                                                                  FALSE C
## 4
      1180
               18 2.14
                           86
                                 40.2
                                        2.61 FALSE
                                                     FALSE
                                                            TRUE FALSE B
               78 3.11
## 5
       880
                           161
                                 51.8
                                        1.84 FALSE
                                                     FALSE
                                                            FALSE FALSE C
## 6
       980
               55 2.68
                           101
                                 37.7
                                        3.05 FALSE
                                                     FALSE
                                                            TRUE FALSE B
```

```
write.csv(fichero_2, file = "gpa_clean.csv")
```

8 Informe ejecutivo

8.1 Tabla resumen del preprocesamiento

Variable	Línea de Código	Observaciones
		n. filas = 4137; n. columnas = 10; n. var num.= 6; n. var. qualit = 4
Athelte	53, 59, 65-67, 74-76	Para la variable athelte se ha comprobado el tipo de variable que es, una vez comprobado se ha puesto en mayúsculas y se ha quitado los espacios, convirtiendo ahora la variable en "carácter". Finalmente se ha factorizado la variable.
Female	84, 90, 96-98, 104-106	Para la variable Female se ha comprobado el tipo de variable que es, una vez comprobado se ha puesto en mayúsculas y se ha quitado los espacios, convirtiendo ahora la variable en "carácter". Finalmente se ha factorizado la variable.

Variable	Línea de Código	Observaciones
Black	114,120,126-128,135-137	Para la variable Black se ha comprobado el tipo de variable que es, una vez comprobado se ha puesto en mayúsculas y se ha quitado los espacios, convirtiendo ahora la variable en "carácter". Finalmente se ha factorizado la variable.
White	145, 151, 157-159, 165-167	Para la variable White se ha comprobado el tipo de variable que es, una vez comprobado se ha puesto en mayúsculas y se ha quitado los espacios, convirtiendo ahora la variable en "carácter". Finalmente se ha factorizado la variable.
Sat	177, 183, 347-356	Vemos si la variable Sat se adapta a la normalización deseada. Finalmente se comprueba que, aunque está dentro de la normalización deseada, tiene valores atípicos
Tothrs	193, 199, 205-209, 215	Vemos el tipo de variable que es Tothrs, al ser de tipo String debemos quitarle el carácter 'h' que tiene al final y convertirlo a numérico
Colgpa	255, 231, 365-371, 380-387	Vemos si la variable Colgpa se adapta a la normalización deseada. Para los valores nulos se divide el fichero por la variable Female, y se imputan los valores nulos con KNN
Hsize	242, 248, 254-259, 266, 331-340	Para la variable hsize inicialmente es del tipo "Charater", por lo que se le remplaza la coma por el punto y se cambia a tipo numérico para obtener la normalización deseada. Finalmente se comprueba que, aunque está dentro de la normalización deseada, tiene valores atípicos
Hsperc	276, 282, 288-289, 309-323	Para la variable Hsperc se comprueba el tipo y se trunca los decimales a 3. Para los valores nulos, se hace el cálculo de la división con las otras dos variables implicadas, se comprueba dicho calculo y se inserta los valores que faltaban
Gpaletter	418-422	Se crea una variable nueva llamada Gpaletter según el valor de la variable colgpa, estableciendo el límite inferior en -0.01 para que coja el numero 0 dentro del conjunto

n. filas = 4137; n. columnas = 11; n. var num.= 6; n. var. qualit = 5

8.2 Resumen estadístico

A nivel general, y tras realizar un estudio sobre el conjunto de datos, podemos observar que muchas variables están relacionadas entre sí, ya que unas dependen de las otras, o simplemente son un calculo o división de conjuntos de la otra.

Inicialmente, podemos ver la variable **ColgPa** nos muestra que el mayor numero de los estudiantes están entre el 2 y el 3, habiendo a su vez una cantidad mayor de mejores calificaciones (superiores a 3) que peores calificaciones (inferior a 2). Para complementar la variable anterior, se ha creado la variable **gpaletter**, en la cual se obtiene a partir de las calificaciones obtenidas, y se dividen en varios intervalos.

Por otro lado, tenemos la variable **hsperc** muestra el ranking relativo de los estudiantes, el valor de esta variable depende de la variable ** hsrank** que es el ranking de los estudiantes, donde se puede observar que el grueso de estudiantes del dataset están entre los 100 primeros puntos del ranking. También la variable **hsperc** depende de la variable **hsize** la cual nos dice el porcentaje de graduados, en donde el mayor pico de estudiantes esta un ~2,5% (lo que seria 250 estudiantes). La variable **Sat** aunque siempre se ha encontrado dentro de los rangos, ha tenido datos atípicos, en el sentido de que existen datos muy cerca de los límites, y bastantes datos alejado de la media.

De la variable **tothrs** hay que comentar solo que el mayor grupo de estudiantes del dataset han realizado entre unas 25 horas y el siguiente mayor grupo unas 50 horas totales cursadas en el semestre.

Si cambiamos las tornas a las variables cualitativas, nos damos cuenta de que hay más hombres que mujeres tal y como se indica en la variable **Female**, que hay un numero bajo de deportistas en la universidad como indica la variable **Athlete** y que hay un número de personas que no son ni Blancas ni Negras, según la variables ** White** y ** black**, ya que la proporción de valores afirmativos y negativos no coinciden.

Además, comparando las variables como se ha hecho en el estudio descriptivo, nos damos cuenta de que la nota media **Sat** de los hombres es mas alta que la de las mujeres.