Matching and Basis Rotation for the Intrinsic Unified Evolution Basis

Niccolò Laurenti

In this document we will explain how the matching and the basis rotation are performed in the Intrinsic Unified Evolution Basis.

1 Matching

Fist of all, we have to perform the matching between the basis vectors in the two different flavor schemes, i.e. the n_f and the $n_f + 1$ flavor schemes. The matching of the gluon, light quark and heavy quark PDFs are the followings:

$$\begin{split} g^{(n_f+1)} &= A_{gg}^S g^{(n_f)} + A_{gq}^S \Sigma_{(n_f)}^{(n_f)} + A_{gH}^S h^{(n_f)} \\ l^{(n_f+1)} &= A_{qq}^{n_S} l^{(n_f)} + \frac{1}{2n_f} A_{qg}^S g^{(n_f)} \quad \text{and the same for } \bar{l} \\ h^{(n_f+1)} &= \frac{1}{2} A_{Hg}^S g_{(n_f)}^{(n_f)} + \frac{1}{2} A_{Hq}^{p_S} \Sigma_{(n_f)}^{(n_f)} + A_{HH} h^{(n_f)} \quad \text{and the same for } \bar{h} \end{split}$$

From the second relation we get that

$$\begin{split} l_{+}^{(n_f+1)} &= A_{qq}^{ns} l_{+}^{(n_f)} + \frac{1}{n_f} A_{qg}^S g^{(n_f)} \\ l_{-}^{(n_f+1)} &= A_{qq}^{ns} l_{-}^{(n_f)} \\ \Sigma_{(n_f)}^{(n_f+1)} &= A_{qg}^S g^{(n_f)} + A_{qq}^{ns} \Sigma_{(n_f)}^{(n_f)} \\ V_{(n_f)}^{(n_f+1)} &= A_{qq}^{ns} V_{(n_f)}^{(n_f)} \end{split}$$

while from the third relation we get that

$$\begin{split} h_{+}^{(n_f+1)} &= A_{Hg}^S g_{(n_f)}^{(n_f)} + A_{Hq}^{ps} \Sigma_{(n_f)}^{(n_f)} + A_{HH} h_{+}^{(n_f)} \\ h_{-}^{(n_f+1)} &= A_{HH} h_{-}^{(n_f)} \end{split}$$

The matching of the components $\Sigma_{\Delta(n_f)}$, $V_{\Delta(n_f)}$, V_i are diagonal. For the Vs this is trivial since they are composed by l_- . For $\Sigma_{\Delta(n_f)}$ instead: being it defined as

$$\Sigma_{\Delta(n_f)}^{(n_f+1)} = \frac{n_d(n_f)}{n_u(n_f)} \sum_{i=1}^{n_u} u_{+i}^{(n_f+1)} - \sum_{i=1}^{n_d} d_{+i}^{(n_f+1)}$$

the gluon contribution cancels, giving the relation

$$\Sigma_{\Delta(n_f)}^{(n_f+1)} = A_{qq}^{ns} \Sigma_{\Delta(n_f)}^{(n_f+1)}$$

The same holds for the T_i components.

Observe that this holds up to NNLO, since that at N³LO we have to consider also the pure singlet components of the light quark matching (I think that we have to add $\frac{1}{2n_f}A_{qq}^{ps}\Sigma_{(nf)}^{nf}$ to the matching of $l^{(n_f+1)}$, but I'm not 100% sure. In this way the matching of l_- remains diagonal, as it should be, and the same hold for $\Sigma_{\Delta(n_f)}$ and T_i).

Up to second order the perturbative expansion of the matching terms is given by

$$\begin{split} A_{gg}^S &= 1 + a_s A_{gg}^{S(1)} + a_s^2 A_{gg}^{S(2)} \\ A_{gq}^S &= 1 + a_s^2 A_{gq}^{S(2)} \\ A_{gH}^S &= 1 + a_s A_{gH}^{S(1)} \\ A_{qg}^S &= 1 \\ A_{qq}^{ns} &= 1 + a_s^2 A_{qq}^{ns(1)} \\ A_{Hg}^S &= 1 + a_s A_{Hg}^{S(1)} + a_s^2 A_{Hg}^{S(2)} \\ A_{Hq}^{ps} &= 1 + a_s^2 A_{Hq}^{ps(2)} \\ A_{HH} &= 1 + a_s A_{HH}^{S(1)} \end{split}$$

2 Basis Rotation

After the matching we have to perform the basis rotation from the basis with $\Sigma_{(n_f)}^{(n_f+1)}$, $\Sigma_{\Delta(n_f)}^{(n_f+1)}$, $h_+^{(n_f+1)}$ to the basis with $\Sigma_{(n_f+1)}^{(n_f+1)}$, $\Sigma_{\Delta(n_f+1)}^{(n_f+1)}$, $T_i^{(n_f+1)}$ (all the considerations that we will do for this basis rotation apply identically to the components V, V_{Δ} , h_- , V_i). Being all the PDFs in the n_f+1 flavor scheme, from now on we will drop the superscript (n_f+1) .

2.1 Σ

For the Σ component the basis rotation is very simple, being

$$\Sigma_{(n_f+1)} = \Sigma_{(n_f)} + h_+$$

2.2 Σ_{Δ}

This component requires a bit more work: starting from

$$\begin{cases} \Sigma &= \Sigma_u + \Sigma_d \\ \Sigma_\Delta &= \frac{n_d}{n_u} \Sigma_u - \Sigma_d \end{cases}$$

we obtain that

$$\begin{cases} \Sigma_u &= \frac{n_u}{n_f} \Big(\Sigma + \Sigma_\Delta \Big) \\ \Sigma_d &= \frac{n_d}{n_f} \Sigma - \frac{n_u}{n_f} \Sigma_\Delta \end{cases}$$

Therefore, we find

$$\Sigma_{\Delta(n_f+1)} = \frac{n_u(n_f+1)}{n_d(n_f+1)} \Sigma_{u(n_f)} - \Sigma_{d(n_f)} + k(n_f)h_+$$

where

$$k(n_f) = \begin{cases} \frac{n_u(n_f+1)}{n_d(n_f+1)} & \text{if h=up-like} \\ -1 & \text{if h=down-like} \end{cases}$$

In the end we find that

$$\Sigma_{\Delta(n_f+1)} = \left(\frac{n_d(n_f+1)}{n_u(n_f+1)}n_u(n_f) - n_d(n_f)\right)\Sigma_{(n_f)} + \frac{n_f+1}{n_u(n_f+1)}\frac{n_u(n_f)}{n_f}\Sigma_{\Delta(n_f)} + k(n_f)h_+$$

$2.3 T_i$

In the end, we have to find the rotation for the T_i component: being

$$T_3^d = d^+ - s^+ = \Sigma_{d(n_f)} - h_+ \quad \text{for } n_f = 3$$

$$T_3^u = u^+ - c^+ = \Sigma_{u(n_f)} - h_+ \quad \text{for } n_f = 4$$

$$T_8^d = d^+ + s^+ - 2b^+ = \Sigma_{d(n_f)} - 2h_+ \quad \text{for } n_f = 5$$

$$T_8^u = u^+ + c^+ - 2t^+ = \Sigma_{u(n_f)} - 2h_+ \quad \text{for } n_f = 6$$

Using the expressions of Σ_u and Σ_d as a function of Σ and Σ_{Δ} , we can write that

$$T_i = f_1(n_f) \Sigma_{(n_f)} + f_2(n_f) \Sigma_{\Delta(n_f)} + f_3(n_f) h_+$$

with

$$f_1(n_f) = \begin{cases} \frac{n_u(n_f)}{n_f} & \text{if } h \text{ is up-like } (n_f = 3,5) \\ \frac{n_d(n_f)}{n_f} & \text{if } h \text{ is down-like } (n_f = 2,4) \end{cases}$$

$$f_2(n_f) = \begin{cases} \frac{n_u(n_f)}{n_f} & \text{if } h \text{ is up-like} \\ -\frac{n_u(n_f)}{n_f} & \text{if } h \text{ is down-like} \end{cases}$$

$$f_3(n_f) = \begin{cases} -1 & \text{if } h \text{ is } s, c \ (n_f = 2,3) \\ -2 & \text{if } h \text{ is } b, t \ (n_f = 4,5) \end{cases}$$