NIM : 23521013

1. Model ER dan Transformasi ke Model Relasional (Bobot : 40%)

Diketahui deskripsi sebuah persoalan sebagai berikut:

"Sebuah sistem perparkiran di sebuah perusahaan mengelola data orang-orang dan kendaraan yang boleh parkir di gedung perusahaan tersebut. Terdapat beberapa lokasi yang bisa dijadikan tempat parkir: setiap lokasi dikenali secara unik melalui kode lokasi dan disimpan pula data deskripsi lokasi tersebut serta luasnya. Setiap kendaraan harus dicatat nomor polisinya (unik untuk tiap kendaraan), warna mobil, merek, tanggal mulai didaftarkan, dan pemiliknya. Setiap kendaraan hanya boleh dimiliki oleh 1 orang, tetapi satu orang pemilik bisa punya lebih dari satu kendaraan. Untuk setiap pemilik kendaraan, disimpan nomor KTP (unik untuk setiap orang), nomor SIM, nama, alamat, nomor telepon, dan alamat email. Setiap kali sebuah kendaraan masuk ke suatu lokasi parkir tertentu, dicatat tanggal dan jam masuk serta tanggal dan jam keluar dari lokasi yang bersangkutan. Pada suatu tanggal dan jam masuk tertentu, suatu kendaraan tidak mungkin parkir di lebih dari 1 lokasi yang berbeda."

- a. Buatlah model *entity-relationship* (ER) dalam bentuk ER diagram untuk persoalan di atas. Gunakan nama-nama yang sesuai dengan deskripsi di atas.
- b. Transformasikan ER diagram yang Anda buat pada soal 1.a menjadi model relasional yang sesuai.

Jika ada asumsi, tuliskan asumsi Anda secara eksplisit.

Jawab

Asumsi:

- Sistem parkiran, mengelola data kendaraan yang boleh parkir.
- Terdapat beberapa lokasi, dikenali melalui **kode lokasi** dan disimpan **deskripsi** serta **luas**nya.
- Setiap kendaraan dicatat **nomor polisi** (unik), **warna**, **merek**, **tanggal mulai didaftarkan**, dan **pemilik**.
- Setiap kendaraan hanya dimiliki satu orang, tetapi satu orang boleh punya lebih dari satu kendaraan.
- Data pemilik kendaraan meliputi nomor KTP (unik), nomor SIM, nama, alamat, nomor telepon, dan alamat email.
- Setiap parkir dicatat tanggal dan jam masuk, dan tanggal dan jam keluar dari lokasi.
- Pada satu tanggal dan jam tertentu, satu kendaraan tidak mungkin parkir di lebih dari
 1 lokasi.

NIM : 23521013

Model Relasional

Pemilik = (<u>NomorKTP</u>, NomorSIM, Nama, Email, NomorTelepon, Alamat) Kendaraan = (<u>NomorPolisi</u>, Warna, Merek, TanggalMulaiDidaftarkan, Pemilik) LokasiParkir = (<u>KodeLokasi</u>, Deskripsi, Luas, NomorPolisi) Parkir = (<u>KodeLokasi</u>, <u>TanggalMasuk</u>, <u>JamMasuk</u>, <u>TanggalKeluar</u>, <u>JamKeluar</u>)

FK: Kendaraan(Pemilik) → Pemilik(Nama)
Parkir(KodeLokasi) → LokasiParkir(KodeLokasi)
LokasiParkir(NomorPolisi) → Kendaraan(NomorPolisi)

Penjelasan:

- Atribut relasi yang digarisbawahi merupakan primary key dari relasi.
- FK (foreign key reference) A(A1) → B (B1), artinya: atribut A1 dari relasi A merupakan foreign key reference ke atribut B1 dari relasi B.

NIM : 23521013

2. Model Relasional dan SQL (Bobot : 40%)

a. Sebuah model relasional digunakan untuk memodelkan basis data di sebuah toko online. Berikut adalah daftar relasi (dan atributnya) (nama-nama yang digunakan diasumsikan bisa dipahami dengan baik):

```
Barang = (IdBarang, Nama, Deskripsi, Merek, Ukuran)
Pelanggan = (IdPelanggan, Nama, NomorTelp, Email, Alamat, Kota)
Pembelian = (IdPembelian, Tanggal, IdPelanggan)
DetilPembelian = (IdPembelian, IdBarang, Jumlah, HargaPerUnit)
   FK : Pembelian (IdPelanggan) → Pelanggan (IdPelanggan)
   DetilPembelian (IdPembelian) → Pembelian (IdPembelian)
DetilPembelian (IdBarang) → Barang (IdBarang)
```

Penjelasan:

- Atribut relasi yang digaris bawah merupakan primary key dari relasi.
- FK (foreign key reference) A(A1) → B (B1), artinya: atribut A1 dari relasi A merupakan foreign key reference ke atribut B1 dari relasi B.

Berdasarkan skema di atas, tuliskan pernyataan SQL untuk beberapa query di bawah ini:

- i. Tampilkan nama, email, dan kota semua pelanggan yang namanya diakhiri dengan huruf p.
- ii. Tampilkan semua id, nama, deskripsi barang yang dibeli oleh pelanggan yang bernama "Marisa".
- iii. Tampilkan total jumlah untuk setiap barang dari semua pembelian yang terjadi pada tahun 2016 (tampilkan nama barang dan jumlahnya).
- iv. Hapus semua transaksi pembelian dengan jumlah barang < 0.

NIM : 23521013

Jawab

i. SELECT Pelanggan.Nama, Pelanggan.Email, Pelanggan.Kota FROM Pelanggan WHERE Pelanggan.Nama = "%p";

ii. SELECT Pelanggan.IdPelanggan, Pelanggan.Nama, Barang.Deskripsi
 FROM Pelanggan
 INNER JOIN Pembelian ON Pembelian.IdPelanggan = Pelanggan.IdPelanggan
 INNER JOIN DetailPembelian ON DetailPembelian.IdPembelian = Pembelian.IdPembelian
 INNER JOIN Barang ON Barang.IdBarang = DetailPembelian.IdBarang
 WHERE = "Marisa";

iii. SELECT Barang.Nama, COUNT(DetailPembelian.Jumlah)
 FROM Barang
 INNER JOIN DetailPembelian ON DetailPembelian.IdBarang = Barang.IdBarang
 INNER JOIN Pembelian ON Pembelian.IdPembelian = DetailPembelian.IdPembelian
 WHERE YEAR(Pembelian.Tanggal) = 2016
 GROUP BY Barang.Nama;

iv. DELETE * FROM Pembelian
 INNER JOIN DetailPembelian ON DetailPembelian.IdPembelian = Pembelian.IdPembelian
 WHERE DetailPembelian.Jumlah < 0;

NIM : 23521013

b. Diketahui sebuah skema model relasional yang merupakan bagian dari sebuah basis data akademik sebuah perguruan tinggi, berikut datanya (nama-nama yang digunakan diasumsikan bisa dipahami dengan baik):

Employee

<u>empid</u>	firstname	surname	gender	street	houseno	City	postalcode
987654	Mark	Smith	Male	256th Street	34	New York	1234UD
123456	Peter	Johnson	Male	Willow Drive	123	London	BS9872
654321	Mia	Arrows	Female	Winner Av.	57	New York	9877OP
555555	Suzie	Andrews	Female	Rose Street	89	London	KBD234

Department

deptid	name	headoffice
MKT	Marketing	Paris
FNC	Finance	Paris
ASF	Asia Pasific	Jakarta

Placement

empid	deptid	<u>startdate</u>	position
987654	MKT	12/12/2001	manager
654321	MKT	13/4/2001	manager
123456	FNC	15/5/2001	head
987654	ASF	11/3/2011	head
555555	FNC	15/5/2011	head
654321	ASF	3/6/2011	manager

Tuliskan **hasil** dari pernyataan-pernyataan query SQLsebagai berikut berdasarkan skema dan data di atas:

```
i. SELECT * FROM Department WHERE headoffice = 'Jakarta'
```

ii. SELECT E.firstname, E.surname, P.startdate, D.name,
 D.headoffice
 FROM (Employee as E INNER JOIN Placement as P ON E.empid
 = P.empid)
 INNER JOIN Department as D ON P.deptid = D.deptid
 WHERE P.position = 'head' AND P.deptid LIKE 'F%'

iii. SELECT firstname + ' ' + surname as name, city
 FROM Employee as E
 WHERE EXISTS (SELECT * FROM Placement as P
 WHERE YEAR(startdate) = 2011 AND P.empid = E.empid)

iv. SELECT deptid, position, count(*)
 FROM Placement
 GROUP BY deptid, position

NIM : 23521013

Jawab

SELECT * FROM Department WHERE headoffice = 'Jakarta';

deptid	name	headoffice
ASF	Asia Pasific	Jakarta

SELECT E.firstname, E.surname, P.startdate, D.name, D.headoffice FROM (Employee as E INNER JOIN Placement as P ON E.empid = P.empid) INNER JOIN Department as D ON P.deptid = D.deptid WHERE P.position = 'head' AND P.deptid LIKE 'F%'

firstname	surname	startdate	name	headoffice
Peter	Johnson	15/5/2001	Finance	Paris
Suzie	Andrews	15/5/2011	Finance	Paris

SELECT firstname + ' ' + surname as name, city FROM Employee as E WHERE EXISTS (SELECT * FROM Placement as P WHERE YEAR(startdate) = 2011 AND P.empid = E.empid)

name	city
Mark Smith	New York
Suzie Andrews	London
Mia Arrows	New York

SELECT deptid, position, count(*) FROM Placement GROUP BY deptid, position

deptid	position	count(*)
MKT	manager	2
FNC	head	2
ASF	head	1
ASF	manager	1

NIM : 23521013

3. Jawablah pertanyaan-pertanyaan di bawah ini secara singkat dan jelas (Bobot : 20%)

- a. Apa yang dimaksud dengan ACID (Atomicity, Consistency, Isolation, dan Durability?
- b. Apa yang disebut sebagai normalisasi basis data dan apa manfaatnya? Sebutkan bentuk normal yang Anda ketahui.
- c. Apa yang dimaksud dengan indexing dalam DBMS dan apa kegunaannya?

Jawab

a.	Atomicity: Data dalam atribut bersifat tunggal dan tidak dapat dibagi-bagi kembali Consistency: Tipe data dalam atribut bersifat tunggal Isolation: Data dalam atribut tidak saling bergantungan
b.	Normalisasi basis data merupakan suatu usaha untuk merestrukturisasi data agar menjadi rapi dan efisien. Manfaat dari normalisasi basis data adalah data menjadi terstruktur, efisien, dan ACID (<i>Atomicity, Consistency, Isolation, dan Durability</i>). Bentuk normal yang umum digunakan adalah 1NF, 2NF, dan 3NF.
C.	Indexing merupakan suatu pengurutan data, kegunaannya agar menjadikan data sebagai entitas yang unik dan tidak berulang.