Funções E Portas lógicas

EQUIPE:

Ana Alicy Dávylla Maria

Rodrigo Santos

Sabrina Malviera Samuel Denis

Nesta apresentação trataremos de

Portas Lógicas:

- AND
- OR
- NOT
- NAND
- NOR
- XOR
- XNOR

Após, veremos a correspondência entre expressões, circuitos e tabelas verdade

Álgebra Booleana

Na álgebra de Boole, há somente dois estados permitidos

- Estado 0
- Estado 1

Portanto, em qualquer bloco (porta ou função) lógico somente esses dois estados (0 ou 1) são permitidos em suas entradas e saídas

Uma variável booleana também só assume um dos dois estados permitidos

Função E (AND)

Função de multiplicação (conjunção) booleana de duas ou mais variáveis binárias

Por exemplo, assuma a convenção no circuito Chave aberta = 0; Chave fechada = 1; Lâmpada apagada = 0; Lâmpada acesa = 1;

Função E (AND)

Situações possíveis:

Tabela Verdade

A tabela verdade é um mapa onde são colocadas todas as possíveis interpretações (situações), com seus respectivos resultados para uma expressão booleana qualquer.

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Como visto no exemplo anterior, para 2 variáveis booleanas (A e B), há 4 interpretações possíveis

Tabela Verdade da Função E

Para representar a expressão S = A e B Adotaremos a representação S = A.B, onde se lê S = A e B

Porém, existem notações alternativas

- S = A & B
- S = A, B
- S = A ∧ B

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Portas Lógicas

As portas lógicas são blocos fundamentais da eletrônica digital. Nesta apresentação, veremos as principais funções desses blocos e como eles podem ser combinados para construir circuitos digitais.

Porta AND

- A porta E (AND)é um circuito que executa a função E
- A porta E (AND)executa a tabela verdade da função E

Portanto, a saída será 1 somente se ambas as entradas forem iguais a 1; nos demais casos, a saída será 0 Representação

Porta AND

Porta AND

O circuito integrado mais utilizados é o IC 7408, que possui 4 portas AND em suas conexões

Função OU

Executa a soma (disjunção) booleana de duas ou mais variáveis binárias

Por exemplo, assuma a convenção no circuito

Chave aberta = 0; Chave fechada = 1;

Lâmpada apagada = <mark>0</mark>;

Lâmpada acesa = 1;

Função OU

Tabela Verdade da Função OU

Para representar a expressão
S = A ou B

Adotaremos a representação S = A+B, onde se lê S = A ou B

Porém, existem notações alternativas

- S = A | B
- S = A; B
- S = A V B

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Porta OU(OR)

- A porta OU é um circuito que executa a função OU
- A porta OU executa a tabela verdade da função OU

Portanto, a saída será 0 somente se ambas as entradas forem iguais a 0; nos demais casos, a saída será 1

Representação

Porta OU(NOT)

Porta OU(OR)

O circuito integrado mais utilizados é o IC 7432, que possui 4 portas OR em suas conexões

Função NÃO(NOT)

- Executa o complemento (negação) de uma variável binária
- Essa função também é chamada de inversora

Usando as mesmas convenções dos circuitos anteriores, tem-se que:

- Quando a chave A está aberta (A=0), passará corrente pela lâmpada e ela acenderá (S=1)
 - Quando a chave A está fechada (A=1), a lâmpada estará em curto-circuito e não passará corrente por ela, ficando apagada (S=0)

Tabela Verdade da Função NÃO(NOT)

Para representar a expressão S = não A

Adotaremos a representação S = Ā, onde se lê S = não A

Notações alternativas

- S = A'
- S = ¬ A
- $S = \tilde{A}$

Α	Ā
0	1
1	0

Porta NOT

- A porta lógica NÃO, ou inversor, é o circuito que executa a função NÃO
- O inversor executa a tabela verdade da função NÃO

Se a entrada for 0, a saída será 1;

se a entrada for 1, a saída será 0

Representação

Alternativamente,

Após um bloco lógico

Antes de um bloco lógico

Porta NOT

O circuito integrado mais utilizados é o IC 7404, que possui 6 portas NOT em suas conexões

Função NAND

Composição da função E com a função NÃO, ou seja, a saída da função E é invertida.

Tabela Verdade da Função NAND

Composição da função E com a função NÃO, ou seja, a saída da função E é invertida

c	Α	В	S=A.B
	0	0	1
	0	1	1
	1	0	1
	1	1	0

Porta NAND

Representação

Porta Lógica NAND (Não E) é uma porta lógica que possui no mínimo duas entradas, e cujo valor lógico em sua saída será igual a 0 (zero) somente quando todas as suas entradas tiverem nível lógico igual a 1.

Porta NAND

O circuito integrado mais utilizados é o IC 7400, que possui 4 portas NAND em suas conexões

Função Não Ou (NOR)

Composição da função OU com a função NÃO, ou seja, a saída da função OU é invertida.

Tabela Verdade da Função Não Ou NOR

Composição da função OU com a função NÃO, ou seja, a saída da função OU é invertida

•
$$S = (A+B) = A+B$$

= $(A+B)'$
= $\neg(A+B)$

Α	В	S= A+B
0	0	1
0	1	0
1	0	0
1	1	0

Porta NOR

A porta NÃO OU (NOR) é o bloco lógico que executa a função NÃO OU, ou seja, sua tabela verdade

Representação

Porta NOR

O circuito integrado mais utilizados é o IC 7402, que possui 4 portas NOR em suas conexões

Função Ou Exclusivo (XOR)

 A função OU Exclusivo fornece 1 na saída quando as entradas forem diferentes entre si e 0 caso contrário

Tabela verdade função XOR

A função OU Exclusivo fornece

- 1 na saída quando as entradas forem diferentes entre si e;
 - 0 caso contrário
 - S = A ⊕ B= Ā.B + A.

Α	В	S=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Porta XOR como bloco básico

Porta XOR como Circuito Combinacional

Porta XOR

O circuito integrado mais utilizados é o IC 7486, que possui 4 portas XOR em suas conexões

Porta XNOR

conhecido como a operação inversa do XOR (OR exclusivo). Sua saída será um nível lógico alto se e somente as entradas forem iguais. Caso o contrário, irá resultar em uma saída de sinal lógico baixo.

Representação

Símbolos para a porta XNOR

Porta XNOR

O circuito integrado mais utilizados é o IC 74266, que possui 4 portas XNOR em suas conexões

Resumo dos Blocos Lógicos Básicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=AB 0 0 0 0 1 0 1 0 0 1 1 1 1
OU (OR)	A B S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A S=Ā	S=Ā S=A' S=	A S=Ā 0 1 1 0
NE (NAND)	A ← S=Ā.B	S= A.B S=(A.B)' S= ¬(A.B)	A B S=AB 0 0 1 0 1 1 1 0 1 1 1 0
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S=A+B S=(A+B)' S= ¬(A+B)	A B S=Ā+B 0 0 1 0 1 0 1 0 1 0 1 1 0
XOR	$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} \\ \\ \end{array} S = A \oplus B \end{array}$	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0

Universalização da porta NAND

Qualquer circuito combinacional pode ser construído a partir de portas lógicas NAND, e isso só é possível pela sua universalidade.

Lista de Referência

- ELETROGATE. Introdução às Portas Lógicas. Disponível em: https://blog.eletrogate.com/introducao-as-portas-logicas/.
- LIMA, T. Portas Lógicas: XNOR. Disponível em: https://embarcados.com.br/xnor/>.
- O que são portas lógicas? Tipos e características! Disponível em: https://www.manualdaeletronica.com.br/o-que-sao-portas-logicas-tipos-caracteristicas/>.
- Universalidade das portas NAND e NOR Aula 6.3 ED Mundo Projetado.
 Disponível em: https://mundoprojetado.com.br/universalidade-das-portas-nand-e-nor-aula-6-3-ed/
 >.