MTH 102A - Linear Algebra - 2015-16-II Semester

Arbind Kumar Lal *

P. Eigenvalues and eigenvectors

- Matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ behaves like the scalar 3 when multiplied with $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. That is, $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- Physically: The LT f(x) = Ax magnifies the nonzero vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{C}^2$ three (3) times.
- Similarly, $A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. So, behaves by changing the direction of the vector $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$
- Take $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$. Do I have a nonzero $\boldsymbol{x} \in \mathbb{C}^2$ which gets magnified by A?
- So I am looking for $\mathbf{x} \neq 0$ and α s.t. $A\mathbf{x} = \alpha \mathbf{x}$. Using $\mathbf{x} \neq 0$, we have $A\mathbf{x} = \alpha \mathbf{x}$ if and only if $[\alpha I A]\mathbf{x} = \mathbf{0}$ if and only if $[\alpha I A] = 0$.
- DET $\left[\alpha I A\right] = \text{DET} \begin{bmatrix} \alpha 1 & -2 \\ -1 & \alpha 3 \end{bmatrix} = \alpha^2 4\alpha + 1$. So $\alpha = 2 \pm \sqrt{3}$.
- Take $\alpha = 2 + \sqrt{3}$. To find \boldsymbol{x} , solve $\begin{bmatrix} 1 + \sqrt{3} & -2 \\ -1 & \sqrt{3} 1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$: using GJE, for instance.

We get $\boldsymbol{x} = \begin{bmatrix} \sqrt{3} - 1 \\ 1 \end{bmatrix}$. Moreover

$$A\boldsymbol{x} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \sqrt{3} - 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \sqrt{3} + 1 \\ 2 + \sqrt{3} \end{bmatrix} = (2 + \sqrt{3}) \begin{bmatrix} \sqrt{3} - 1 \\ 1 \end{bmatrix}.$$

- We call $\lambda \in \mathbb{C}$ an eigenvalue of $A_{n \times n}$ if there exists $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq 0$ s.t. $A\mathbf{x} = \lambda \mathbf{x}$. We call \mathbf{x} an eigenvector of A for the eigenvalue λ . We call (λ, \mathbf{x}) an eigenpair.
- If $(\lambda, \boldsymbol{x})$ is an eigenpair of A, then so is $(\lambda, c\boldsymbol{x})$, for each $c \neq 0, c \in \mathbb{C}$.

Th. The number λ is an eigenvalue of $A_{n\times n}$ if and only if $\text{DET}(\lambda I - A) = 0$.

Pr. Follows from: there exists a nontrivial solution of $[\lambda I - A]x = 0$ if and only if $DET[\lambda I - A] = 0$.

- Find eigenpairs of $A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$.
- To find the eigenvalues, solve Det $(\lambda I A) = 0$. So $\lambda = 3 \pm \sqrt{2}i$.
- To find an eigenvector $\begin{bmatrix} x \\ y \end{bmatrix}$ for the eigenvalue $3 + \sqrt{2}i$:

$$\begin{bmatrix} 2+\sqrt{2}i & -3 & 0 \\ 2 & \sqrt{2}i-2 & 0 \end{bmatrix} \underbrace{E_{21}(\frac{2}{2+\sqrt{2}i})}_{2} \begin{bmatrix} 2+\sqrt{2}i & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{0}. \text{ So } \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{3}{2+\sqrt{2}i} \\ 1 \end{bmatrix}.$$

^{*}Indian Institute of Technology Kanpur

$$\left(3+\sqrt{2}i, \begin{bmatrix} \frac{3}{2+\sqrt{2}i} \\ 1 \end{bmatrix}\right).$$

- Let D be a diagonal matrix. Then eigenpairs of D are (d_{ii}, e_i) .
- Q. Should $A_{n\times n}$ have n eigenvalues (including multiplicities)?. Yes.
- While discussing eigenvalues etc, we consider square matrices only.
- Q. What are the eigenvalues of an upper triangular matrix? Diagonal entries.
- The multiset of eigenvalues of A is called the spectrum of A. Notation: $\sigma(A)$.
- Q. Let $\lambda \in \sigma(A)$. Must we have at least one eigenvector for λ ? Yes, by GJE.
- The multiplicity of λ in $\sigma(A)$ is called the algebraic multiplicity of A.
- Q. Suppose that algebraic multiplicity of λ in $\sigma(A)$ is 2. Must we have 2 lin.ind eigenvectors for λ ? No. For example, take $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $\sigma(A) = \{0, 0\}$ and \boldsymbol{e}_1 is an eigenvector. That is, $A\boldsymbol{e}_1 = \boldsymbol{0}$. If \boldsymbol{x} is another eigenvector, then $A\boldsymbol{x} = \boldsymbol{0}$. That is, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. So $x_2 = 0$ and $\boldsymbol{x} = x_1 \boldsymbol{e}_1$.

[If $(\lambda_1, \boldsymbol{x}_1), \dots, (\lambda_k, \boldsymbol{x}_k)$ are eigenpairs, then $\boldsymbol{x}_1, \dots, \boldsymbol{x}_k$ may not be linearly independent unless λ_i 's are distinct!!]

- If $\lambda \in \sigma(A)$, then the maximum number of linearly independent eigenvectors for λ is the geometric multiplicity of λ . [Geometry: maximum k such that the LT magnifies a k-dimensional subspace by λ . Take LT: $\mathbf{e}_1 \to \mathbf{e}_1$, $\mathbf{e}_2 \to \mathbf{e}_2$, $\mathbf{e}_3 \to \mathbf{e}_1 + \mathbf{e}_3$.
- Th. Let $(\lambda_i, \mathbf{v}_i)$ be some eigenpairs of $A_{n \times n}$, λ_i 's are distinct. Then $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent. [Contrast it with the earlier comment.]
- Pr. Suppose that $\mathbf{v}_1, \dots, \mathbf{v}_k$ are lin.dep. Then there exists ℓ smallest, and $\boldsymbol{\beta}$ s.t. $\mathbf{v}_{\ell+1} = \beta_1 \mathbf{v}_1 + \dots + \beta_\ell \mathbf{v}_\ell$. Note that $\boldsymbol{\beta} \neq 0$. So

$$A\mathbf{v}_{\ell+1} = A[\beta_1\mathbf{v}_1 + \dots + \beta_{\ell}\mathbf{v}_{\ell}] = \lambda_1\beta_1\mathbf{v}_1 + \dots + \lambda_{\ell}\beta_{\ell}\mathbf{v}_{\ell}$$

$$\frac{\lambda_{\ell+1}\mathbf{v}_{\ell+1}}{0} = \lambda_{\ell+1}\beta_1\mathbf{v}_1 + \dots + \lambda_{\ell+1}\beta_{\ell}\mathbf{v}_{\ell}$$

$$= [\lambda_{\ell+1} - \lambda_1]\beta_1\mathbf{v}_1 + \dots + [\lambda_{\ell+1} - \lambda_{\ell}]\beta_{\ell}\mathbf{v}_{\ell}.$$
So $\mathbf{v}_{\ell} \in LS(\mathbf{v}_1, \dots, \mathbf{v}_{\ell-1})$, a contradiction.

- \bullet The converse of the above is not true. Think of I.
- $0 \in \sigma(A)$ if and only if NULL $A \neq \{0\}$ if and only if A is singular.
- Let A be invertible. Then $\lambda \in \sigma(A)$ if and only if $\lambda^{-1} \in \sigma(A^{-1})$.
- Polynomial $p_{A}(x) = \text{DET}[xI A]$ is called the characteristic polynomial of A.

The equation $p_{A}(x) = 0$ is called the characteristic equation of A. So eigenvalues are roots of the characteristic equation.

- Let $\lambda \in \sigma(A)$. The eigenspace for λ is the span of all eigenvectors for λ . [The dimension of the eigenspace is the geometric multiplicity.]
- Q. Is $\sigma(A) = \sigma(A^t)$? Yes, same characteristic polynomial: $p_{\!\!A}(x) = p_{\!\!A^t}(x)$.

• Let $A \in \mathcal{M}_n(\mathbb{R})$. Then $p_A(\lambda) = 0$ if and only if $p_A(\overline{\lambda}) = 0$. So $\lambda \in \sigma(A)$ if and only if $\overline{\lambda} \in \sigma(A)$.

[This is not true for complex matrices.]

Similar: A and B are said to be matrices if there exists an invertible matrix S s.t. $A = SBS^{-1}$.

Th. Similar matrices have the same characteristic polynomial.

- Pr. Let A be similar to B. So there exists S s.t $B = S^{-1}AS$. So $\text{DET}[xI B] = \text{DET}[xI S^{-1}AS] = \text{DET}[S^{-1}(xI A)S] = \text{DET}[xI A]$.
- Let B be invertible. Then AB is similar to BA, as $BA = B(AB)B^{-1}$. So $p_{AB}(x) = p_{BA}(x)$ and $\sigma(AB) = \sigma(BA)$.
- Let $B = S^{-1}AS$, $\lambda \in \sigma(A)$ and $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$ be lin.ind eigenvectors of A for λ . Are $S^{-1}\boldsymbol{v}_1, \ldots, S^{-1}\boldsymbol{v}_k$ lin.ind? Yes, as S is invertible. Is $S^{-1}\boldsymbol{v}_i$ an eigenvector of B? Yes, $B(S^{-1}v_i) = S^{-1}ASS^{-1}v_i = S^{-1}Av_i = \lambda(S^{-1}v_i)$. So the geometric multiplicity of λ in A and B are the same. [Geometry: if A has eigenvector v and $T\boldsymbol{x} = A\boldsymbol{x}$, then [T] has eigenvector [v].]

P. Geometric and algebraic multiplicity

Th. Let $\lambda \in \sigma(A)$. Then geom. multipli of $\lambda \leq$ algeb multipli of λ .

Pr. Let geometric multiplicity of λ be k and v_1, \ldots, v_k be lin.ind eigenvectors for λ . Apply GS: let w_1, \ldots, w_k be the orthonormal eigenvectors for λ . Extend it to an orthonormal basis:

$$\{\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{k},\boldsymbol{w}_{k+1},\ldots,\boldsymbol{w}_{n}\}. \text{ Put } P(:,i)=\boldsymbol{w}_{i}.$$

$$\text{Then } P^{*}AP=P^{*}[A\boldsymbol{w}_{1} \cdots A\boldsymbol{w}_{k} A\boldsymbol{w}_{k+1} \cdots A\boldsymbol{w}_{n}]=\begin{bmatrix} \boldsymbol{w}_{1}^{*} \\ \vdots \\ \boldsymbol{w}_{k}^{*} \\ \boldsymbol{w}_{k+1}^{*} \\ \vdots \\ \boldsymbol{w}_{n}^{*} \end{bmatrix}[\lambda \boldsymbol{w}_{1} \cdots \lambda \boldsymbol{w}_{k} * \cdots *]=\begin{bmatrix} \lambda & \cdots & 0 & * & \cdots & * \\ 0 & \ddots & 0 & * & \cdots & * \\ 0 & \cdots & \lambda & * & \cdots & * \\ 0 & \cdots & \lambda & * & \cdots & * \\ \vdots & & \boldsymbol{D} \\ 0 & \cdots & 0 & * & \cdots & * \end{bmatrix}.$$

$$\text{Now } p_{A}(x)=p_{p^{*}AP}(x)=\text{DET}(xI-P^{*}AP)=(x-\lambda)^{k} \text{DET}(xI-D).$$

P. Schur unitary triangularization

So algeb. multipli of λ in A = algeb. multipli of λ in $P^*AP \ge k$.

Th. Let $A \in \mathcal{M}_n(\mathbb{C})$. Then there exists U unitary, s.t. $T = U^*AU$ is upper triangular. Further, if A and $\sigma(A)$ are real, then U can be real orthogonal.

Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let $(\lambda_1, \boldsymbol{w}_1)$ be an eigenpair

of A, $\|\boldsymbol{w}_1\| = 1$. Take an orthonormal basis $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\}$ and form $W = [\boldsymbol{w}_1 \quad \cdots \quad \boldsymbol{w}_n]$. Then, $W^*AW = \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix}$, $A' \in \mathcal{M}_{n-1}$.

 $W^*AW = \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix}$, $A' \in \mathcal{M}_{n-1}$. By induction hypothesis, there exists U' unitary, s.t. $T' = U'^*A'U'$ is upper triangular.

Put $U = W \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$. Note: U is unitary. Now

$$U^*AU = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix} = \begin{bmatrix} \lambda_1 & * \\ 0 & U'^*A'U' \end{bmatrix} = \begin{bmatrix} \lambda_1 & * \\ 0 & T' \end{bmatrix}.$$

Further: 'if A, λ are real then there exists $x \neq 0$ real, s.t. $Ax = \lambda x$ '.

P. Applications: Schur unitary triangularization (SUT)

Remark. In SUT, as $U^*AU = T$, we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the λ_i 's in the diagonal of T in any prescribed order.

Cor. Let $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$. Then DET $A = \prod \lambda_i$ and TR $A = \sum \lambda_i$.

Pr. By SUT, there exists U unitary, s.t. $U^*AU = T$ is upper triangular. So $\sigma(T) = \sigma(A)$. So $\sum \lambda_i = \sum t_{ii} = \text{TR}(T) = \text{TR}(U^*AU) = \text{TR}(AUU^*) = \text{TR}(A)$.

And
$$\prod \lambda_i = \prod t_{ii} = \text{DET} T = \text{DET} U^* A U = \text{DET} A$$
.

• By SUT, $U^*AU = T$ and

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

• By DIAG A we denote the diagonal $\{a_{11}, \ldots, a_{nn}\}$ of A. By DIAG \boldsymbol{v} we denote the diagonal matrix A with $a_{11} = \boldsymbol{v}_1, \ldots, a_{nn} = \boldsymbol{v}_n$.

Th[spectral Theorem]. Let A be normal $(AA^* = A^*A)$. Then there exists U unitary, s.t. $U^*AU = D$ is diagonal. Further, DIAG $D = \sigma(A)$.

Pr. By SUT, there exists U unitary, s.t $U^*AU = T$ is upper triangular. As $A^*A = AA^*$, we get $T^*T = TT^*$. Note: $\sum |t_{1i}|^2 = (TT^*)_{11} = (T^*T)_{11} = |t_{11}|^2$. So $t_{12} = \cdots = t_{1n} = 0$. Repeating the process, T is diagonal.

P. Applications: Schur unitary triangularization

Cor. Let A be Hermitian. Then there exists U unitary, s.t. $U^*AU = D$ is <u>real</u> diagonal. Further, if A is real, then U can be chosen as real orthogonal.

Pr. By SUT, we can find U unitary, s.t. $U^*AU = T$ is upper triangular. As $A^* = A$, we get $T^* = T$. So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$. By SUT, there exists U unitary, s.t. $U^*AU = T$ is upper triangular; $t_{ii} = \lambda_i$ for each i. Let p(x) be the characteristic polynomial of A. So $p(x) = \prod (x - \lambda_i)$. So $p(A) = \prod (A - \lambda_i I) = \prod (UTU^* - \lambda_i UIU^*) = U\Big[(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I)\Big]U^* = U\mathbf{0}U^* = \mathbf{0}$.

P. Diagonalizability

• We say 'A is diagonalizable' if there exists S invertible, s.t. $S^{-1}AS = D$ is diagonal. Obviously, $\lambda_i = d_{ii}$ are the eigenvalues of A.

Th. $A_{n\times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors.

Pr. \Rightarrow : Let A be diagonalizable. So there exists S invertible, s.t. $S^{-1}AS = D$ is diagonal. Put $\mathbf{s}_i = S(:,i)$ and $\lambda_i = d_{ii}$. Then

$$[As_1 \cdots As_n] = A[s_1 \cdots s_n] = AS = SD = [s_1 \cdots s_n]D = [\lambda_1 s_1 \cdots \lambda_n s_n].$$

That is, $As_i = \lambda_i s_i$. So s_1, \dots, s_n are n linearly independent eigenvectors.

 \Leftarrow : let s_1, \ldots, s_n be *n* linearly independent eigenvectors, $As_i = \lambda_i s_i$.

Put $S = [s_1 \cdots s_n]$ and $D = DIAG(\lambda_1, \dots, \lambda_n)$. Then

$$AS = [As_1 \cdots As_n] = [\lambda_1 s_1 \cdots \lambda_n s_n] = SD$$
. So $S^{-1}AS = D$.

Cor. Let $A_{n\times n}$ have n distinct eigenvalues. Then A is diagonalizable.

Pr. Follows as the corresponding eigenvectors are linearly independent.

P. Non-diagonalizability-Example

Q. Is $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ diagonalizable? No. Assume it is. Then there exists S invertible, s.t. $S^{-1}AS = D$ is diagonal. As $\sigma(A) = \sigma(S^{-1}AS) = \sigma(D)$, we must have $D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. But

then $A = SDS^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, a contradiction.