Devoir Surveillé 2, corrigé

Exercice 1. Racines d'un polynôme à coefficients complexes.

1) On a Q(1) = 0 donc 1 est une racine évidente de Q. On a alors pour $z \in \mathbb{C}$:

$$Q(z) = (z-1)(z^2 + az + b) = (z^3 + (a-1)z^2 + (b-a)z - b.$$

On trouve alors a = 1 - i et b = 2 - 2i.

2) On cherche Déterminer (sous forme algébrique) $\delta = x + iy$ avec $x, y \in \mathbb{R}$ tel que $\delta^2 = -8 + 6i$. En développant et en identifiant parties réelles et imaginaires, on obtient $x^2 - y^2 = -8$ et 2xy = 6 > 0.

En étudiant le module, on obtient $|\delta^2| = |-8+6i| \Leftrightarrow x^2+y^2 = \sqrt{64+36} = 10$. Par somme et différence, on trouve alors $x^2 = 1$ et $y^2 = 9$. Puisque xy > 0, on a x et y de même signe. On en déduit que les deux racines carrées de -8+6i sont :

$$1 + 3i$$
 et $-1 - 3i$.

3) On a $z^2 + az + b = z^2 + (1-i)z + 2 - 2i$. On calcule le discriminant :

$$\Delta = (1-i)^2 - 4(2-2i) = -8 + 6i = (1+3i)^2.$$

On en déduit que les racines de Q sont égales à $\frac{-1+i+(1+3i)}{2}=2i$ et $\frac{-1+i-(1+3i)}{2}=-1-i$.

4) On a pour $z \in \mathbb{C}$, $P(z) = Q(z^3)$. Puisque les racines de Q sont 1, 2i et -1-i, on a alors z racines de P si et seulement si $z^3 = 1$ ou $z^3 = 2i$ ou $z^3 = -1-i$. On résout ces équations à l'aide des racines 3ièmes de l'unité. On a alors :

$$z^3 = 1 \Leftrightarrow \exists k \in \llbracket 0, 2 \rrbracket \ / \ z = e^{\frac{2ik\pi}{3}}.$$

De plus, puisque $2i = 2e^{\frac{i\pi}{2}}$, on a :

$$z^3 = 2i \Leftrightarrow \exists k \in \llbracket 0, 2 \rrbracket \ / \ z = 2^{1/3} e^{\frac{i\pi}{6}} \times e^{\frac{2ik\pi}{3}}.$$

Enfin, puisque $-1 - i = \sqrt{2}e^{-\frac{3i\pi}{4}}$, on a :

$$z^3 = -1 - i \Leftrightarrow \exists k \in [0, 2] / z = 2^{1/6} e^{-\frac{i\pi}{4}} \times e^{\frac{2ik\pi}{3}}$$

On a donc trouvé les 9 racines de P.

Exercice 2. Calcul d'une somme.

1) a) Puisque $\theta \in]0, \pi[$, on a $e^{2i\theta} \neq 1$. Par somme géométrique (en utilisant la formule de Moivre), on a :

$$\sum_{p=0}^{d-1} e^{2ip\theta} = \sum_{p=0}^{d-1} \left(e^{2i\theta} \right)^p = \frac{1 - e^{2i\theta d}}{1 - e^{2i\theta}}.$$

En factorisant alors par l'arc moitié, on obtient :

$$\sum_{p=0}^{d-1} e^{2ip\theta} = \frac{e^{i\theta d}}{e^{i\theta}} \times \frac{-2i\sin(d\theta)}{-2i\sin(\theta)} = e^{i(d-1)\theta} \frac{\sin(d\theta)}{\sin(\theta)}.$$

On obtient donc exactement la première égalité en multipliant par $e^{-i(d-1)\theta}$. Pour la seconde, on peut soit faire le même calcul, soit remarquer qu'il s'agit exactement du conjugué de la première somme (puisqu'un produit/une somme de conjugués et le produit/la somme des conjugués). Puisque $\frac{\sin(d\theta)}{\sin(\theta)} \in \mathbb{R}$, il est égal à son propre conjugué et on a l'égalité voulue.

b) On multiplie les deux égalités précédentes ce qui donne, les indices étant indépendants :

$$\frac{\sin^2(d\theta)}{\sin^2(\theta)} = 1 \times \left(\sum_{p=0}^{d-1} e^{2ip\theta}\right) \times \left(\sum_{q=0}^{d-1} e^{-2iq\theta}\right) = \sum_{p=0}^{d-1} \sum_{q=0}^{d-1} e^{2ip\theta} \times e^{-2iq\theta} = \sum_{q=0}^{d-1} \sum_{p=0}^{d-1} e^{2i(p-q)\theta}.$$

c) On peut séparer la somme en trois parties : selon si p = q, p < q ou q < p. On a donc :

$$\frac{\sin^2(d\theta)}{\sin^2(\theta)} = \sum_{q=0}^{d-1} 1 + \sum_{0 \le q$$

La première somme vaut d et on peut changer d'indice dans la troisième somme en échangeant les rôles de p et q (ce sont des variables muettes). On a donc :

$$\frac{\sin^2(d\theta)}{\sin^2(\theta)} = d + \sum_{0 \le q
$$= d + \sum_{0 \le q
$$= d + \sum_{0 \le q
$$= d + 2 \sum_{0 \le q$$$$$$$$

- 2) La conclusion.
 - a) Pour $k \in [1, n-1]$, on peut utiliser la question précédente en $\theta = \frac{k\pi}{n} \in]0, \pi[$. On peut ensuite sommer les égalités pour k allant de 1 à n-1 ce qui donne :

$$\sum_{k=1}^{n-1} \frac{\sin^2\left(\frac{dk\pi}{n}\right)}{\sin^2\left(\frac{k\pi}{n}\right)} = \sum_{k=1}^{n-1} \left(d+2\sum_{0 \le q$$

Par linéarité de la somme, on peut découper les sommes en deux et $\sum_{k=1}^{n-1} d = (n-1)d$. On peut également intervertir les sommes (puisque les indices sont indépendants) ce qui donne :

$$\sum_{k=1}^{n-1} \frac{\sin^2\left(\frac{dk\pi}{n}\right)}{\sin^2\left(\frac{k\pi}{n}\right)} = (n-1)d + 2\sum_{0 \le q$$

b) On va calculer cette somme à l'aide d'une somme géométrique. On a q < p donc $0 et puisque <math>p \le d-1$ et $-q \le 0$, on a $p-q \le d-1$. Puisque $d \le n$, on en déduit que $p-q \in [1, n-1]$, ce qui permet d'affirmer que $e^{i\frac{2(p-q)\pi}{n}} \ne 1$ (car $\frac{2(p-q)\pi}{n} \ne 0$ [2 π]). On a alors :

$$\sum_{k=1}^{n-1} e^{i\frac{2(p-q)k\pi}{n}} = \sum_{k=0}^{n-1} e^{i\frac{2(p-q)k\pi}{n}} - 1$$

$$= \frac{1 - e^{i2(p-q)\pi}}{1 - e^{\frac{2i(p-q)\pi}{n}}} - 1$$

$$= 0 - 1$$

$$= -1$$

En effet, on a $2(p-q)\pi \equiv 0$ [2 π] et l'exponentielle complexe est alors égale à 1.

c) Puisque la partie réelle d'une somme est la somme des parties réelles, la question précédente permet d'affirmer que si $0 \le q , alors :$

$$-1 = \text{Re}(-1) = \sum_{k=1}^{n-1} \text{Re}\left(e^{i\frac{2(p-q)k\pi}{n}}\right) = \sum_{k=1}^{n-1} \cos\left(\frac{2(p-q)k\pi}{n}\right).$$

D'après la question 2.a) (on peut bien remplacer puisque dans la somme, on a $0 \le q) :$

$$\sum_{k=1}^{n-1} \frac{\sin^2\left(\frac{dk\pi}{n}\right)}{\sin^2\left(\frac{k\pi}{n}\right)} = (n-1)d - 2\sum_{0 \le q
$$= (n-1)d - 2\sum_{p=0}^{d-1} \sum_{q=0}^{p-1} 1$$

$$= (n-1)d - 2\sum_{p=0}^{d-1} p$$

$$= (n-1)d - 2\frac{d(d-1)}{2}$$

$$= nd - d^2$$

$$= d(n-d).$$$$

PROBLÈME

ÉTUDE D'UNE FONCTION ET D'UNE SUITE

- 1) Une première fonction.
 - a) g_n est définie sur $]-1, +\infty[$ (on doit avoir 1+x>0 pour que le logarithme soit bien défini). Elle y est dérivable comme somme (et composée) de fonctions dérivables.
 - b) On a pour $x \in \mathcal{D}$:

$$g'_n(x) = \frac{n}{1+x} + \frac{3}{1+x} - \frac{3x}{(1+x)^2}$$
$$= \frac{n}{1+x} + \frac{3+3x-3x}{(1+x)^2}$$
$$= \frac{n}{1+x} + \frac{3}{(1+x)^2}.$$

On a donc g'_n qui est strictement positive sur \mathcal{D} . La fonction g_n est donc strictement croissante sur \mathcal{D} .

c) On a $g_n(0) = 0$. Puisque g_n est strictement croissante sur \mathcal{D} , elle ne s'annule qu'en 0. On en déduit que $g_n(x) < 0 \Leftrightarrow x \in]-1, 0[$ et que $g_n(x) > 0 \Leftrightarrow x \in]0, +\infty[$.

2) Une nouvelle fonction.

a) $x \mapsto x^n$ est définie et dérivable sur \mathbb{R} . Puisque $x \mapsto x^3$ est strictement croissante sur \mathbb{R} et qu'elle vaut -1 en -1, on a $1+x^3>0 \Leftrightarrow x>-1$. On en déduit que f_n est définie sur $\mathcal{D}_2=]-1,+\infty[$. Elle est également dérivable sur \mathcal{D}_2 en tant que produit et composée de fonctions dérivables sur \mathcal{D}_2 (la fonction logarithme est dérivable sur \mathbb{R}_+^* et $\forall x>-1,1+x^3>0$). Pour $x\in\mathcal{D}_2$, on a :

$$f'_n(x) = nx^{n-1}\ln(1+x^3) + \frac{3x^{n+2}}{1+x^3}$$
$$= x^{n-1}\left(n\ln(1+x^3) + \frac{3x^3}{1+x^3}\right)$$
$$= x^{n-1}g_n(x^3).$$

b) On en déduit alors les tableaux de signes suivants, selon la parité de n:

• Quand n est pair :

x	-1		0		$+\infty$
x^{n-1}		_	0	+	
$g_n(x)$		_	0	+	
$f'_n(x)$		+	0	+	
f_n	-0	x	_0_		+∞

On trouve les limites de f_n par produits de limites (aucune forme indéterminée). Puisque n est pair (et strictement positif), on a $(-1)^n = 1$ et $\lim_{x \to +\infty} x^n = +\infty$.

• Si n est impair, on a alors $x^{n-1} \ge 0$ pour tout $x \in \mathcal{D}_2$ (ceci est aussi valable si n = 1). On a alors:

x	-1 0 $+\infty$
x^{n-1}	+ +
$h_n(x)$	- 0 +
$f'_n(x)$	- 0 +
f_n	$+\infty$ $+\infty$ 0

Les limites sont aussi déterminées par produits de limites de la même manière que dans le cas précédent.

4

Dans tous les cas, puisque pour tout x > 0, $f'_n(x) > 0$ (d'après la question 1) et que la seule valeur où f'_n s'annule est en 0, on en déduit que f_n strictement croissante sur \mathbb{R}_+ .

- c) On a $f_{n+1}(x) f_n(x) = (x-1)x^n \ln(1+x^3)$. On en déduit alors les tableaux de signes suivants :
- Si n est pair :

x	-1		0		1		$+\infty$
x^n		+	0	+		+	
x-1		_		_	0	+	
$\ln(1+x^3)$		_	0	+		+	
$f_{n+1}(x) - f_n(x)$		+	0	_	0	+	

On en déduit que pour n pair, $f_n(x) \leq f_{n+1}(x) \Leftrightarrow x \in]-1,0] \cup [1,+\infty[$.

• Si n est impair :

•							
x	-1		0		1		$+\infty$
x^n		_	0	+		+	
x-1		_		_	0	+	
$\ln(1+x^3)$		_	0	+		+	
$f_{n+1}(x) - f_n(x)$		_	0	_	0	+	

On en déduit que pour n impair, $f_n(x) \leq f_{n+1}(x) \Leftrightarrow (x=0)$ ou $(x \in [1, +\infty[)$.

d) On déduit des questions précédentes les graphes suivants (f_1 en traits fins, f_2 en trait moyen et f_3 en trait plus épais). Le point important est de bien respecter l'ordre des courbes les unes par rapport aux autres trouvé à la question précédente. On a également représenté sur le graphe les emplacement de α_1, α_2 et α_3 (de gauche à droite : α_3 , α_2 et α_1) qui correspondent aux valeurs pour lesquels les fonctions f_1, f_2 et f_3 valent 1 (sur \mathbb{R}_+).

3)

a) Nous avons montré à la question 2.a) que $f_n(0) = 0$ et que $\lim_{n \to +\infty} f_n(x) = +\infty$. Puisque f_n est continue, on en déduit, d'après le théorème des valeurs intermédiaires, qu'il existe $\alpha_n \in [0, +\infty[$ tel que $f_n(\alpha_n) = 1$.

Puisque f_n est strictement croissante sur \mathbb{R}_+ , on en déduit que cette valeur de α_n est unique. En effet, si on avait deux valeurs distinctes α_n et β_n telles que $f_n(\alpha_n) = f_n(\beta_n)$, alors, puisque $\alpha_n < \beta_n$ ou $\alpha_n > \beta_n$, on a donc, par stricte croissante de f_n , $f_n(\alpha_n) < f_n(\beta_n)$ ou $f_n(\alpha_n) > f_n(\beta_n)$, c'est à dire 1 < 1 ou 1 > 1, ce qui est absurde.

- b) Soit $n \in \mathbb{N}^*$. Supposons par l'absurde que $\alpha_n < 1$. Puisque f_n est strictement croissante sur \mathbb{R}_+^* , on a alors $f_n(\alpha_n) < f_n(1)$, c'est à dire $1 < \ln(2)$. Ceci est absurde puisque d'après l'énoncé, $\ln(2) \approx 0,69$. On en déduit que pour tout $n \in \mathbb{N}^*$, on a $\alpha_n \geq 1$.
- c) Soit $n \in \mathbb{N}^*$. D'après la question 2.c), on a pour tout $x \ge 1$, $f_n(x) \le f_{n+1}(x)$. Puisque $\alpha_n \ge 1$, on a alors $f_n(\alpha_n) \le f_{n+1}(\alpha_n)$. On en déduit que :

$$1 < f_{n+1}(\alpha_n).$$

Supposons par l'absurde que $\alpha_n < \alpha_{n+1}$. Alors, puisque f_{n+1} est strictement croissante sur \mathbb{R}_+ , on a alors $f_{n+1}(\alpha_n) < f_{n+1}(\alpha_{n+1})$, c'est à dire $f_{n+1}(\alpha_n) < 1$ ce qui est absurde!

On a donc montré que pour tout $n \in \mathbb{N}^*$, $\alpha_n \geq \alpha_{n+1}$. Ceci entraine que la suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est décroissante.

d) La suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est décroissante minorée (par 1). Elle converge donc vers une limite $l\geq 1$. Nous allons montrer que l=1. Supposons par l'absurde que l>1. En partant de la relation $1=f_n(\alpha_n)$ et en utilisant l'indication de l'énoncé, on obtient :

$$\forall n \in \mathbb{N}^*, \ 1 = e^{n \ln(\alpha_n)} \ln(1 + \alpha_n^3).$$

Puisque la fonction ln est croissante et que $\alpha_n \geq 1$, on a $\ln(1+\alpha_n^3) \geq \ln(2)$. On a donc :

$$1 \ge \ln(2)e^{n\ln(\alpha_n)}.$$

Puisque $\lim_{n\to+\infty} \alpha_n = l$, par continuité de ln (ou par composition de limites), on en déduit que $\lim_{n\to+\infty} \ln(\alpha_n) = \ln(l) > 0$. Par produit de limites, on a donc $\lim_{n\to+\infty} e^{n\ln(\alpha_n)}\ln(2) = +\infty$, ce qui est absurde car une suite majorée par 1 ne peut pas tendre vers $+\infty$!

La suite $(\alpha_n)_{n\in\mathbb{N}^*}$ converge donc vers 1.

PROBLÈME

UNE LIMITE CLASSIQUE.

- 1) Existence de la limite de $(u_n)_{n\in\mathbb{N}^*}$.
 - a) Pour $k \geq 2$:

$$\frac{1}{k-1} - \frac{1}{k} - \frac{1}{k^2} = \frac{k^2 - k(k-1) - (k-1)}{k^2(k-1)}$$
$$= \frac{1}{k^2(k-1)}$$
$$> 0.$$

On a donc bien l'inégalité voulue.

b) Par somme télescopique et sommes d'inégalités, on en déduit pour $n \in \mathbb{N}^*$:

$$u_n = 1 + \sum_{k=2}^{n} \frac{1}{k^2}$$

$$\leq 1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

$$\leq 1 + 1 - \frac{1}{n}$$

$$\leq 2 - \frac{1}{n}.$$

- c) Pour $n \in \mathbb{N}^*$, $u_{n+1} u_n = \frac{1}{(n+1)^2} > 0$. La suite $(u_n)_{n \in \mathbb{N}^*}$ est donc (strictement) croissante et majorée par 2 d'après la question précédente. Elle converge donc.
- 2) Convergence de $(v_n)_{n\in\mathbb{N}^*}$.

a) Soit $n \in \mathbb{N}^*$. On a $u_{2n} = \sum_{k=1}^{2n} \frac{1}{k^2}$. On peut alors séparer cette somme en les termes d'indices pairs et les termes d'indices impairs. Les termes d'indices impairs correspondent exactement à v_n . Pour les termes d'indices pairs, on peut effectuer le changement de variable k=2j (avec j variant entre 1 et n car k varie entre 1 et 2n et est pair). On a alors :

$$\sum_{k=1,k}^{2n} \frac{1}{n^{2}} = \sum_{j=1}^{n} \frac{1}{(2j)^{2}} = \frac{1}{4} u_{n}.$$

On a donc bien $u_{2n} = \frac{u_n}{4} + v_n$.

- b) Puisque pour $n \in \mathbb{N}^*$, $v_n = u_{2n} \frac{u_n}{4}$ et que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge, alors la suite $(u_{2n})_{n \in \mathbb{N}^*}$ converge également vers la même limite (par composition de limites). La suite $(v_n)_{n \in \mathbb{N}^*}$ converge donc comme somme de suites convergentes. On a alors $\lim_{n \to +\infty} v_n = L \frac{L}{4} = \frac{3L}{4}$.
- 3) Un peu de trigonométrie.
 - a) Soit $x \in \left]0, \frac{\pi}{2}\right[$. Remarquons que toutes les expressions considérées existent bien (pas de division par 0) puisque $\frac{x}{2}$ et $\frac{\pi x}{2}$ sont dans $]0, \pi[$ et le sinus ne s'annule pas. Ceci entraine que :

7

$$\frac{1}{4} \left(\frac{1}{\sin^2 \left(\frac{x}{2} \right)} + \frac{1}{\sin^2 \left(\frac{\pi - x}{2} \right)} \right) = \frac{1}{4} \left(\frac{1}{\sin^2 \left(\frac{x}{2} \right)} + \frac{1}{\cos^2 \left(\frac{x}{2} \right)} \right)$$

$$= \frac{1}{4} \left(\frac{1}{\sin^2 \left(\frac{x}{2} \right) \cos^2 \left(\frac{x}{2} \right)} \right) \quad (\operatorname{car} \cos^2 + \sin^2 = 1)$$

$$= \frac{1}{\sin^2 \left(2 \times \frac{x}{2} \right)}.$$

On a donc bien l'égalité voulue.

b)

i) Soit $k \in [0, 2^{n-1}-1]$. Remarquons que $0 < \frac{(2k+1)\pi}{2^{n+1}} \le \frac{(2^n-2+1)\pi}{2^{n+1}} = \frac{\pi}{2} - \frac{\pi}{2^{n+1}} < \frac{\pi}{2}$. On peut donc utiliser la question précédente en $x = \frac{(2k+1)\pi}{2^{n+1}}$ ce qui entraine :

$$w_{n,k} = \frac{1}{4} \left(w_{n+1,k} + \frac{1}{\sin^2 \left(\frac{\pi - \frac{(2k+1)\pi}{2^{n+1}}}{2} \right)} \right)$$

$$= \frac{1}{4} \left(w_{n+1,k} + \frac{1}{\sin^2 \left(\frac{2^{n+1}\pi - (2k+1)\pi}{2^{n+2}} \right)} \right)$$

$$= \frac{1}{4} \left(w_{n+1,k} + \frac{1}{\sin^2 \left(\frac{(2(2^n - k - 1) + 1)\pi}{2^{n+2}} \right)} \right)$$

$$= \frac{1}{4} \left(w_{n+1,k} + w_{n+1,2^n - k - 1} \right).$$

ii) On a donc d'après la question précédente (on a bien k entre 0 et $2^{n-1}-1$ dans la somme) que :

$$\sum_{k=0}^{2^{n-1}-1} w_{n,k} = \frac{1}{4} \sum_{k=0}^{2^{n-1}-1} (w_{n+1,k} + w_{n+1,2^n-k-1})$$
$$= \sum_{k=0}^{2^{n-1}-1} w_{n+1,k} + \sum_{k=0}^{2^{n-1}-1} + w_{n+1,2^n-k-1}.$$

On effectue alors le changement d'indice $j=2^n-k-1$ dans la seconde somme. Les bornes deviennent alors 2^n-1 (quand k=0) et $j=2^n-(2^{n-1}-1)-1=2^{n-1}$ (quand $k=2^{n-1}-1$). On a donc :

$$\sum_{k=0}^{2^{n-1}-1} w_{n,k} = \sum_{k=0}^{2^{n-1}-1} w_{n+1,k} + \sum_{j=2^{n-1}}^{2^{n}-1} w_{n+1,j} = \sum_{k=0}^{2^{n}-1} w_{n+1,k}.$$

c) On remarque que si on pose pour $n \in \mathbb{N}^*$, $a_n = \sum_{k=0}^{2^{n-1}-1} w_{n,k}$, alors on a montré à la question précédente que pour tout $n \in \mathbb{N}^*$, $a_{n+1} = 4a_n$. On a donc une suite géométrique de raison 4. On montre alors rapidement que $\forall n \in \mathbb{N}^*$, $a_n = \frac{4^n}{2}$.

Pour
$$n = 1$$
, on a $a_1 = \sum_{k=0}^{0} \frac{1}{\sin^2\left(\frac{(2k+1)\pi}{2^{n+1}}\right)} = \frac{1}{\sin^2\left(\frac{\pi}{4}\right)} = 2 = \frac{4}{2}$.

Soit $n \in \mathbb{N}^*$. On suppose $a_n = \frac{4^n}{2}$. On a alors:

$$a_{n+1} = 4a_n = \frac{4^{n+1}}{2}.$$

La propriété est donc vraie au rang n+1. On a donc montré la propriété voulue par récurrence.

d) Pour $x \in \left]0, \frac{\pi}{2}\right[$, on a :

$$\frac{1}{\tan^2(x)} = \frac{\cos^2(x)}{\sin^2(x)} = \frac{1}{\sin^2(x)} - 1.$$

On a donc d'après la question précédente, pour $n \in \mathbb{N}^*$, on a :

$$\sum_{k=0}^{2^{n-1}-1} \frac{1}{\tan^2\left(\frac{(2k+1)\pi}{2^{n+1}}\right)} = \frac{4^n}{2} - \sum_{k=0}^{2^{n-1}-1} 1$$
$$= \frac{4^n}{2} - 2^{n-1}$$
$$= \frac{4^n - 2^n}{2}.$$

4) La conclusion.

a) Posons $f: x \mapsto x - \sin(x)$. Cette fonction est bien définie et dérivable sur $\left]0, \frac{\pi}{2}\right[$. On a pour tout $x \in \left]0, \frac{\pi}{2}\right[$, $f'(x) = 1 - \cos(x) \ge 0$. On en déduit que f est croissante sur cet intervalle et puisque sa limite en 0 vaut 0, on en déduit que f est positive. De la même manière, si on étudie $g: x \mapsto \tan(x) - x \sin\left]0, \frac{\pi}{2}\right[$, elle est dérivable et on a $g'(x) = \tan^2(x) + 1 - 1 = \tan^2(x) \ge 0$. g est donc croissance et sa limite en 0 est également 0. Elle est donc positive sur $\left]0, \frac{\pi}{2}\right[$. On a donc bien l'encadrement $\sin(x) \le x \le \tan(x)$.

De plus toutes ces fonctions étant positives, on peut élever au carré (la fonction carré est croissante sur \mathbb{R}_+) et tout étant strictement positif, on peut prendre l'inverse (qui est décroissante sur \mathbb{R}_+^*). On a donc bien que $\frac{1}{\tan^2(x)} \le \frac{1}{x^2} \le \frac{1}{\sin^2(x)}$ pour $x \in \left]0, \frac{\pi}{2}\right[$.

b) On va sommer appliquer l'encadrement précédent en $x_k = \frac{(2k+1)\pi}{2^{n+1}}$ pour k entre 0 et $2^{n-1}-1$ et sommer les inégalités (on a déjà vérifié que tout était bien entre 0 et $\frac{\pi}{2}$ dans la question 2.b). Ceci entraine d'après les questions 2.c et 2.d que pour tout $n \in \mathbb{N}^*$:

$$\frac{4^{n} - 2^{n}}{2} \le \sum_{k=0}^{2^{n-1} - 1} \frac{1}{\left(\frac{(2k+1)\pi}{2^{n+1}}\right)^{2}} \le \frac{4^{n}}{2}$$

$$\Leftrightarrow \frac{4^{n} - 2^{n}}{2} \le \frac{4^{n+1}}{\pi^{2}} \sum_{k=0}^{2^{n-1} - 1} \frac{1}{(2k+1)^{2}} \le \frac{4^{n}}{2}$$

$$\Leftrightarrow \frac{1 - \frac{1}{2^{n}}}{8} \le \frac{1}{\pi^{2}} \sum_{j=1}^{2^{n-1}} \frac{1}{(2j-1)^{2}} \le \frac{1}{8}$$

$$\Leftrightarrow \frac{\pi^{2}}{8} \left(1 - \frac{1}{2^{n}}\right) \le v_{2^{n-1}} \le \frac{\pi^{2}}{8}.$$

c) On peut alors faire tendre n vers l'infini. D'après le théorème des gendarmes, puisque $2^{n-1}-1$ tend vers l'infini quand n tend vers l'infini et que $(v_n)_{n\in\mathbb{N}^*}$ converge, on en déduit que $\lim_{n\to+\infty}v_{2^{n-1}}=\lim_{n\to+\infty}v_n=\frac{\pi^2}{8}$.

D'après la question 2.b, on en déduit que $L = \frac{\pi^2}{6}$.