

Chapitre XIV – Les matrices (Spécialité)

 ${\sf Bacomathiques-https://bacomathiqu.es}$

TABLE DES MATIÈRES		
I - Les matrices 1		
1.	Définition	1
2.	Types de matrices carrées	2
3.	Expression d'un système	2
II - Opérations 4		
1.	Somme	4
2.	Produit	4
3.	Puissance	5
4.	Inverse	6
5.	Priorités et opérations	7
III - Étude asymptotique d'une marche aléatoire		
1.	Suites de matrices colonnes	8
2.	Définitions	9
3.	Propriétés	10
4.	Étude d'une marche aléatoire	10

I - Les matrices

1. Définition

Soient m et n deux entiers non nuls. Une matrice A de taille (m; n) est un tableau de réels tel que :

A RETENIR \P $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$

Avec $a_{1,1}$, $a_{1,2}$, $a_{2,1}$, ..., $a_{m,n}$ coefficients réels de la matrice.

Selon leur taille, on peut avoir différents types de matrices :

- Une matrice (1; n) est une matrice ligne.
- Une matrice (m; 1) est une matrice colonne.
- Une matrice A de taille (n; n) est une matrice carrée d'ordre n.
- Une matrice (m; n) dont tous les termes sont nuls est une **matrice nulle** et est notée $0_{\mathcal{M}_{m,n}(\mathbb{R})}$ (ou plus simplement $0_{m,n}$).
- Une matrice (1;1) est un **réel**.

2. Types de matrices carrées

Il existe différentes matrices carrées remarquables outre celles données ci-dessus (on rappelle qu'une diagonale d'une matrice carrée d'ordre n représente l'ensemble des coordonnées (i;i) pour i variant de 0 à n) :

À RETENIR 💡

- Une matrice carrée dont tous les termes en dessous de la diagonale principale sont nuls est une **matrice triangulaire supérieure**.
- Une matrice carrée dont tous les termes au-dessus de la diagonale principale sont nuls est une **matrice triangulaire inférieure**.
- Si en plus les termes de la diagonale sont nuls, cette matrice est une **matrice** triangulaire inférieure stricte (ou matrice triangulaire supérieure stricte).
- Une matrice carrée dont tous les termes qui ne sont pas sur la diagonale sont nuls est une **matrice diagonale**.
- Une matrice carrée dont tous les termes qui ne sont pas sur la diagonale sont nuls et qui sont égaux à 1 sur la diagonale est une **matrice identité**.

3. Expression d'un système

Soient quatre réels a, b, c et d et deux autres réels α et β . Le système $\begin{cases} ax + by = \alpha \\ cx + dy = \beta \end{cases}$ d'inconnues x et y peut s'écrire matriciellement :

À RETENIR

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Avec les écritures données ci-dessus (A la première matrice, X la deuxième et B la dernière), on la relation suivante :

À RETENIR 💡

Si A est inversible (voir les paragraphes suivants) alors AX = B admet une unique solution $X = A^{-1}B$.

Cela peut sembler compliquer à appliquer, il n'en est rien!

Par exemple, transformons le système $\begin{cases} 2x + 3y = 1 \\ 5x + 2y = 4 \end{cases}$ en une égalité de matrices.

$$\begin{cases} 2x + y = 1 \\ 4x + 3y = 4 \end{cases} \iff \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
Or l'inverse de
$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \text{ est } \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix}.$$
D'où
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}.$$

D'où
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}.$$

Par égalité, on a $x = -\frac{1}{2}$ et y = 2.

II - Opérations

1. Somme

Soient A et B deux matrices de même taille. La somme de ces deux matrices (notée A+B) est une matrice telle que :

À RETENIR 💡

A+B est la matrice de même taille dont les coefficients représentent la somme des coefficients de A et des coefficients de B qui ont les mêmes coordonnées.

À LIRE 👀

Attention! Il n'est possible d'additionner que deux matrices de même taille.

2. Produit

Soient A une matrice et λ un réel. Le produit de A par λ (noté λA) est une matrice telle que :

À RETENIR 💡

 λA est la matrice de même taille que A dont les coefficients sont tous multipliés par λ .

À LIRE 00

Note : Pour soustraire deux matrices A et B, on multiplie B par -1 et on y ajoute A.

Soient $L = \begin{pmatrix} I_1 & \dots & I_n \end{pmatrix}$ une matrice ligne et $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ une matrice colonne. Le produit de ces deux matrices (noté LC) est le réel :

$$LC = I_1 \times c_1 + \dots + I_n \times c_n$$

Plus généralement, soient A de taille (m; n) et B de taille (n; p) deux matrices (dont le nombre de lignes de A est égal au nombre de colonnes de B). Le produit de ces deux matrices (notée AB) est une matrice telle que :

À RETENIR ¶

AB est la matrice de taille (m; p) dont le coefficient à la position (i; j) est égal au produit de la i-ième ligne de A par la j-ième colonne de B.

À LIRE 99

Attention! Le produit matriciel n'est pas commutatif! Donc bien souvent $AB \neq BA$.

Si A et B sont deux matrices diagonales, leur produit est une matrice de même taille dont le coefficient à la position (i,j) est égal au produit du coefficient à la position (i,j) de A par celui à la position (i,j) de B. De plus, on aura AB = BA.

3. Puissance

Soit A une matrice carrée d'ordre n et i un entier naturel :

À RETENIR 🖁

$$A^{i} = \underbrace{A \times \dots \times A}_{i \text{ fois}} = A^{i-1} \times A$$

De plus, si i = 0, on a :

À RETENIR 💡

$$A^i = A^0 = I_n$$

De plus pour j entier naturel, on a la relation suivante :

À RETENIR ╿

$$A^i \times A^j = A^{i+j}$$

Si A est une matrice diagonale, alors A^i représente simplement une matrice de même taille avec tous les termes mis à la puissance i (cela vaut aussi si i = -1).

4. Inverse

Soit A une matrice carrée d'ordre n. A est dite inversible s'il existe une A^{-1} telle que :

$$A \times A^{-1} = A^{-1} \times A = I_n$$

Si cette matrice existe, elle est unique et s'appelle **inverse** de A.

Exemple : Calculez le produit de
$$A = \begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$$
 par $B = \begin{pmatrix} 4 & -1 \\ -6 & 2 \end{pmatrix}$, en déduire que

A est inversible et donnez A^{-1} .

Le produit nous donnera une matrice carrée d'ordre 2 car on multiplie deux matrices carrées d'ordre 2 :

$$\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix} \times \begin{pmatrix} 4 & -1 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} 8 - 6 & -2 + 2 \\ 24 - 24 & -6 + 8 \end{pmatrix}$$

En multipliant A par B, on obtient $2I_2$. Donc A est inversible et $A^{-1} = \frac{1}{2}B$.

Plus généralement, l'inverse d'une matrice A carrée d'ordre 2, de coefficients a et b sur la ligne 1 et de coefficients c et d sur la ligne 2 est donné par la formule suivante :

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 A n'est donc pas inversible si $ad - bc = 0$.

5. Priorités et opérations

Soient trois matrices carrées A, B et C d'ordre n et un réel λ , les égalités suivantes sont disponibles :

A RETENIR \P -A(BC) = (AB)C (associativité) -A(B+C) = AB + AC (distributivité) $-AI_n = I_nA = A$ $-A0_n = 0_nA = 0_n$ $-\lambda(AB) = (\lambda A)B = A(\lambda B)$

À LIRE 👀

Attention!

Si on a une égalité du type $A \times B = 0$, cela n'implique pas forcément que A = 0 ou B = 0!

De plus, si on a AB = AC, on n'a pas forcément B = C.

Les priorités opératoires sont les mêmes que dans les "ensembles de nombres classiques" (la multiplication prime sur l'addition, etc...).

III - Étude asymptotique d'une marche aléatoire

1. Suites de matrices colonnes

Soit $(U_n)_{n\in\mathbb{N}}$ une suite de matrices colonnes de taille (m;1). On a la propriété suivante :

À RETENIR 💡

 $(U_n)_{n\in\mathbb{N}}$ converge vers une matrice U si chacune des suites formées par les coefficients de U_n (pour un rang n) convergent. Les limites de ces suites forment alors les coefficients de U.

Soient A une matrice carrée d'ordre m, B et U_0 deux matrices colonnes de taille (m;1). Il existe une unique suite $(U_n)_{n\in\mathbb{N}}$ de matrices colonnes de taille (m;1), définie par son premier terme U_0 et par la relation de récurrence :

À RETENIR 💡

$$U_{n+1} = AU_n + B$$

Si la suite U_n converge, alors elle converge vers une matrice colonne U de taille (m;1) telle que :

À RETENIR

$$U = AU + B$$

2. Définitions

Voici quelques définitions qu'il faut maîtriser pour la suite :

À RETENIR ¶

- Une **marche aléatoire** représente l'évolution d'un système qui, au cours du temps, peut-être dans un certain nombre fini d'état.
- Une **matrice de transition** est une matrice carrée dont le coefficient situé à la position (i;j) est la probabilité que le système soit, à un instant, dans l'état j sachant qu'il était dans l'état i à l'instant précédent.
- La matrice colonne des états de la marche aléatoire après n étapes est la matrice colonne dont les coefficients sont les probabilités que le système soit à l'état i à l'instant n.

À LIRE 00

Exemple : On souhaite étudier les passes que se font les trois attaquants A, B et C. Au départ, le ballon est dans les pieds de A et circule entre les trois attaquants :

- La probabilité que A passe à B est de $\frac{1}{3}$ et la probabilité qu'il passe à C est de $\frac{2}{3}$.
- La probabilité que B passe à A est de $\frac{1}{4}$ et la probabilité qu'il passe à C est de $\frac{3}{4}$.
- La probabilité que C passe à A est de $\frac{1}{2}$ et la probabilité qu'il passe à B est de $\frac{1}{2}$.

La **marche aléatoire** de ce système est "un attaquant reçoit le ballon depuis un autre attaquant".

La matrice de transition est la matrice $T = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{3} & 0 & \frac{1}{2} \\ \frac{2}{3} & \frac{3}{4} & 0 \end{pmatrix}$. On y trouve par exemple

en position (1;2) la probabilité le ballon arrive dans les pieds de A sachant qu'il se trouvait dans ceux de B.

La matrice colonne des états de la marche aléatoire après n étapes est la matrice

$$P_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} \text{ avec les suites définies par récurrence : } \begin{cases} a_{n+1} = \frac{1}{4}b_n + \frac{1}{2}c_n \\ b_{n+1} = \frac{1}{3}a_n + \frac{1}{2}c_n \\ c_{n+1} = \frac{2}{3}a_n + \frac{3}{4}b_n \end{cases}$$

On remarque que $P_{n+1} = TP_n$ (ceci peut être démontré grâce à la formule des probabilités totales appliquée au système à l'instant n).

3. Propriétés

Soient une marche aléatoire qui admet une matrice de transition T ainsi qu'une matrice colonne de ses états après n étapes P_n . On a alors la relation de récurrence suivante (voir exemple précédent pour plus d'explications) :

À RETENIR 💡

$$P_{n+1} = TP_n$$

De plus, le terme général d'une telle suite de matrices est :

À RETENIR 💡

$$P_n = T^n P_0$$

DÉMONSTRATION 🥮

Procédons par récurrence :

Soit H_n la propriété définie pour tout $n \in \mathbb{N}$ par $H_n : P_n = T^n P_0$

Initialisation: $P_0 = T^0 P_0$ ce qui est vrai car une matrice à la puissance 0 donne la matrice identité.

Hérédité : Montrons que H_{n+1} est vraie :

 $P_{n+1} = TP_n$ (d'après la première formule)

 $\iff P_{n+1} = T \times (T^n P_0)$ (d'après l'hypothèse de récurrence)

 $\iff P_{n+1} = (T \times T^n)P_0 = T^{n+1}P_0$

Conclusion : La propriété est initialisée et héréditaire. Ainsi, H_n est vraie pour tout $n \in \mathbb{N}$.

4. Étude d'une marche aléatoire

Une marche aléatoire qui admet une matrice de transition T ainsi qu'une matrice colonne de ses états après n étapes P_n converge si :

À RETENIR 💡

 P_n converge vers une matrice P. Si P existe, elle est appelée **état stable** de la marche aléatoire.

Si P_n converge vers P, alors l'équation suivante doit être vérifiée :

$$P = TP$$

Si la marche aléatoire n'a que deux états et que T ne comporte pas de 0, alors cette marche aléatoire converge vers un état stable unique $P=\begin{pmatrix} a & b \end{pmatrix}$ tel que :

$$P = TP$$
 avec $a + b = 1$.