

- 19 BUNDESREPUBLIK **DEUTSCHLAND**
- [®] Off nlegungsschrift
- @ DE 43 19 944 A 1

DEUTSCHES

PATENTAMT

(21) Aktenzeichen:

Anmeldetag: (4) Offenlegungstag:

P 43 19 944.5

16. 6.93 8. 12. 94 (5) Int. Cl.5: H 01 L 23/12 H 05 K 1/02 H 05 K 3/02 C 04 B 41/90 // B23K 26/00

43 19 944

- (3) Innere Priorität: (2) (3) (3) 03.06.93 DE 43 18 484.7
- (7) Anmelder: Schulz-Harder, Jürgen, Dr.-Ing., 91207 Lauf, DE
- (74) Vertreter: Wasmeier, A., Dipl.-Ing.; Graf, H., Dipl.-Ing., Pat.-Anwälte, 93055 Regensburg

② Erfinder: gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Mehrfach-Substrat sowie Verfahren zu seiner Herstellung
- Die Erfindung bezieht sich auf ein Mehrfach-Substrat mit einer Keramikschicht, die wenigstens zwei aneinander anschließende und einstückig miteinander verbundene Nuten bildet, welche jeweils an wenigstens einer Oberflächenseite der Keramikschicht mit wenigstens einer Metallisierung oder Metallfläche versehen sind, sowie auf ein neuartiges Verfahren zu seiner Herstellung.

Beschreibung

Die Erfindung bezieht sich auf ein Mehrfach-Substrat gemäß Oberbegriff Patentanspruch 1 sowie auf ein Verfahren zum Herstellen eines solchen Mehrfach-Substrates.

Bekannt sind Keramik-Metall-Substrate und dabei insbesondere auch Keramik-Kupfer-Substrate. Diese Substrate werden zum Herstellen von elektrischen Schaltkreisen, insbesondere Leistungsschaltkreisen verwendet.

Im einfachsten Fall weisen derartige Substrate eine Keramikschicht auf, die an beiden Oberflächenseiten jeweils mit einer Metallisierung versehen ist, von denen z. B. die Metallisierung an der Oberseite der Keramikschicht beispielsweise unter Anwendung einer Ätztechnik derart strukturiert wird, daß diese Metallisierung dann die für den Schaltkreis erforderlichen Leiterbahnen, Kontaktflächen usw. bildet.

Für eine rationelle Fertigung von elektrischen Schaltkreisen ist es auch bekannt, die Herstellung solcher
Schaltkreise im Mehrfachnutzen vorzunehmen, d. h. insbesondere die Strukturierung von Metallflächen zur Erzielung der notwendigen Leiterbahnen, Kontaktflächen
usw., aber auch die Bestückung mit den elektrischen
usw., aber auch die Bestückung mit den elektrischen
Bauelementen erfolgen an einem Mehrfachnutzen, der
dann nach der Fertigstellung der Strukturierung, vorzugsweise aber nach der Bestückung in einzelnen
Schaltkreis-Substrate beziehungsweise in die einzelnen
Schaltkreise getrennt wird.

Soll diese Technik für eine rationelle Fertigung von Metall-Keramik-Substraten für elektrische Schaltkreise oder von unter Verwendung derartiger Substrate hergestellten elektrischen Schaltkreisen verwendet werden, so ist ein Mehrfachmetall-Keramik-Substrat erforderlich, welches an einer einzigen Keramikschicht mehrere Nutzen bildet. An diesen ist die Keramikschicht an wenigstens einer Oberflächenseite mit einer Metallisierung versehen, wobei die Metallisierungen an aneinander angrenzenden Nutzen selbstverständlich nicht miteinander verbunden, sondern zumindest am Übergang zwischen benachbarten Nutzen voneinander getrennt sind.

Da die Keramikschicht eines derartigen Mehrfach-Substrates relativ großflächig ist und an keiner Oberflächenseite dieser Keramikschicht eine durchgehende Metallisierung oder Metallschicht vorgesehen ist, kann ein unerwünschtes Brechen der Keramikschicht beispielsweise während der Strukturierung der Metallflächen zur Erzielung der notwendigen Leiterbahnen, 50 Kontaktflächen usw. oder bei anderen Behandlungsverfahren selbst bei einem sorgfältigen Handling nicht mit Sicherheit ausgeschlossen werden.

Aufgabe der Erfindung ist es, ein Mehrfach-Substrat aufzuzeigen, welches diese Nachteile vermeidet und bei 55 dem trotz einer Vielzahl von auf einer gemeinsamen Keramikschicht gebildeten Nutzen mit jeweils von Nutzen zu Nutzen getrennten Metallisierungen die Gefahr eines unerwünschten Brechens der Keramikschicht bzw. des Mehrfach-Substrates wirksam verhindert ist. 60

Zur Lösung dieser Aufgabe ist ein Mehrfach-Substrat entsprechend dem kennzeichnenden Teil des Patentanspruches 1 ausgebildet.

Ein bevorzugtes Verfahren zum Herstellen des Mehrfach-Substrates ist Gegenstand des kennzeichnenden 65 Teils des Patentanspruches 18.

Bei der Erfindung werden die zwischen den Nutzen verlaufenden Sollbruchlinien bzw. deren Verlängerungen durch die wenigstens eine zusätzliche Metallfläche überbrückt, so daß Biegekräfte, die zu einem unerwünschten Brechen des Mehrfachsubstrates während einer Behandlung führen könnten, zumindest teilweise von dieser zusätzlichen Metallfläche aufgenommen werden und dadurch ein Brechen des Mehrfach-Substrates wirksam verhindert ist. Selbst wenn es zu einem Bruch kommen sollte, wird durch die zusätzliche Metallfläche (duktile Metallschicht) das Mehrfach-Substratmaßhaltig zusammengehalten. Bevorzugt sind an beiden Oberflächenseiten der Keramikschicht an dem wenigstens einen Randbereich derartige zusätzliche Metallflächen vorgesehen.

Bei einer Vielzahl von Nutzen sind diese in mehreren, in einer ersten Achsrichtung gegeneinander versetzten Reihen an der Keramikschicht gebildet, wobei jede Reihe mehrere aneinanderanschließende Nutzen aufweist. In diesem Fall ist dann an wenigstens zwei rechtwinklig aneinanderanschließenden und außerhalb der Nutzen liegenden Randbereichen jeweils eine zusätzliche Metallfläche vorgesehen. Jeder Randbereich schließt über eine äußere Sollbruchlinie an benachbarte Nutzen an. Die zusätzliche Metallfläche an jedem Randbereich überbrückt die quer oder senkrecht zu diesem Randbereich verlaufenden Sollbruchlinien zwischen den Nutzen oder deren gedachte Verlängerungen und die an einem der Randbereiche vorgesehene Metallfläche zusätzlich auch diejenige äußere Sollbruchlinie bzw. deren Verlängerung, die zwischen dem anderen Randbereich und angrenzenden Nutzen vorgesehen ist. Die äußere Sollbruchlinie zwischen dem einen Randbereich und den angrenzenden Nutzen bzw. die gedachte Verlängerung dieser Sollbruchlinie ist dabei durch keine zusätzliche Metallfläche überbrückt. Durch diese Ausgestaltung ist ein gewünschtes Zerbrechen des Mehrfach-Substrates in Einzelsubstrate bzw. in Einzel-Schaltkreise nur in einer bestimmten Reihenfolge möglich, und zwar derart, daß zunächst der eine Randbereich an der parallel zu diesem Randbereich verlaufenden äußeren Sollbruchlinie abgebrochen und im Anschluß daran der andere Randbereich an der parallel zu diesem Randbereich verlaufenden äußeren Sollbruchlinie abgebrochen werden. Erst dann ist eine Trennung der einzelnen Nutzen durch Brechen möglich.

Das Mehrfach-Substrat läßt sich im Behandlungsverfahren ohne weiteres so handhaben, daß ein Brechen an der parallel zu dem einen Randbereich verlaufenden äußeren Sollbruchlinie nicht eintreten kann, womit dann auch ein unerwünschtes Brechen an anderen Sollbruchlinien ausgeschlossen ist.

Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.

Die Erfindung wird im Folgenden anhand der Figuren an einem Ausführungsbeispiel näher erläutert. Es zeigen:

Fig. 1 in vereinfachter Darstellung und in Draufsicht ein Mehrfach-Substrat gemäß der Erfindung;

Fig. 2 einen Schnitt entsprechend der Linie I—I der Fig. 1;

Fig. 3-5 in ähnlichen Darstellungen wie Fig. 1 weitere, mögliche Ausführungsformen des erfindungsgemäßen Mehrfach-Substrates.

Das in den Fig. 1 und 2 dargestellte Mehrfach-Substrat besteht im wesentlichen aus einer Keramikschicht 1, die beispielsweise eine Aluminiumnitrid-Keramik oder eine Aluminiumoxid-Keramik ist und bei der dargestellten Ausführungsform an beiden Oberflächenseiten mit einer Vielzahl von Metallisierungen in Form von

rechteckförmigen Metallflächen 2 versehen ist. Diese Metallflächen 2, die aus Kupfer bestehen und jeweils flächig mit der jeweiligen Oberflächenseite der Keramikschicht 1 verbunden sind, besitzen bei der dargestellten Ausführungsform jeweils gleiche Form und Größe und sind jeweils rechteckförmig ausgebildet. Jeder Metallfläche 2 an der einen Oberflächenseite der Keramikschicht 1 liegt eine Metallfläche 2 an der anderen Oberflächenseite dieser Keramikschicht unmittelbar gegenüber. Die Metallflächen 2 an einer Oberflächenseite sind strukturiert, wie dies der einfacheren Darstellung wegen in der Fig. 1 lediglich für eine der Metallflächen 2 angedeutet ist.

Es versteht sich, daß die Metallflächen auch eine von der Rechteckform abweichende Form aufweisen und/ oder die Metallflächen 2 an jeder Oberflächenseite der Keramikschicht 1 oder aber an den beiden Oberflächenseiten dieser Keramikschicht unterschiedlich geformt

sein können.

Die Metallflächen, 2 sind an den beiden Oberflächenseiten der Keramikschicht 1 in mehreren Reihen vorgesehen, und zwar bei der dargestellten Ausführungsform in insgesamt drei Reihen R1—R3, von den jede vier Metallflächen besitzt. Die in den Reihen R1—R3 aufeinanderfolgenden Metallflächen 2 sowie auch die Metallflächen der benachbarten Reihen sind an beiden Oberflächenseiten der Keramikschicht 1 jeweils voneinander beabstandet, und zwar derart, daß die Mittellinien parallel zu den Reihen R1—R3 sowie senkrecht zu diesen zwischen benachbarten Metallflächen 2 an der einen 30 Oberflächenseite der Keramikschicht 1 deckungsgleich mit den entsprechenden Mittellinien an der anderen Oberflächenseite dieser Keramikschicht liegen.

Entlang dieser Mittellinie ist die Keramikschicht an beiden Oberflächenseiten mit Sollbruchlinien 3 (parallel zu den Reihen R1-R3) sowie mit Sollbruchlinien 4 (senkrecht zu den Reihen R1-R3) versehen. Durch die Sollbruchlinien 3 und 4 und weitere Sollbruchlinien 3' und 4' ist die Keramikschicht 1 in eine Vielzahl von

Nutzen 1' unterteilt.

Am Rand der bei der dargestellten Ausführungsform rechteckförmigen Keramikschicht 1 weist diese an einer Oberflächenseite zusätzliche Metallisierungen in Form von streifenförmigen Metallflächen 5 und 6 auf, von denen die Metallflächen 6 jeweils entlang eines parallel 45 zu den Sollbruchlinien 4 und 4' verlaufenden Randbereiches 1" der Keramikschicht 1 und die Metallflächen 5 an dem parallel zu den Reihen R1 - R3 bzw. Sollbruchlinien 3 und 3' verlaufenden Randbereich 1" vorgesehen sind. Zwischen diesen zusätzlichen langgestreckten Me- 50 tallisierungen 5 und 6 und den benachbarten Metallflächen 2 bzw. Nutzen 1' sind an beiden Oberflächenseiten der Keramikschicht 1 die Sollbruchlinien 3' bzw. 4' vorgesehen. Es versteht sich, daß die Sollbruchlinien 3 und 4 bzw. 3' und 4' an den beiden Oberflächenseiten der Ke- 55 ramikschicht 1 derart vorgesehen sind, daß jeweils einer Sollbruchlinie 3 oder 4 bzw. 3' oder 4' an einer Oberflächenseite eine entsprechende Sollbruchlinie 3 oder 4 bzw. 3' oder 4' an der anderen Oberflächenseite unmittelbar gegenüber liegt.

Bei der dargestellten Ausführungsform sind die zusätzlichen Metallflächen so dimensioniert und angeordnet, daß die zwischen den Metallflächen 2 und den Metallflächen 5 vorgesehenen Sollbruchlinien 3' bis an den Rand der Keramikschicht 1 reichen, und zwar dadurch, 65 daß die Metallflächen 5 zwar jeweils mit ihren schmäleren Seiten bzw. Enden auf einer gemeinsamen, gedachten Linie mit der außenliegenden, d. h. den Metallflä-

chen 2 abgewandten Längsseite der Metallflächen 6 angeordnet sind, die Metallflächen 5 und 6 aber nicht unmittelbar aneinander anschließen, sondern voneinander beabstandet sind.

Die zwischen den Metallflächen 2 und den zusätzlichen Metallflächen 5 verlaufenden Sollbruchlinien 3' werden von sämtlichen Sollbruchlinien 4 und 4' geschnitten.

Mit Ausnahme der zwischen den Metallflächen 2 und den zusätzlichen Metallflächen 5 verlaufenden Sollbruchlinien 3' enden die Sollbruchlinien 3 an den zusätzlichen Metallflächen 6. In gleicher Weise enden sämtliche Sollbruchlinien 4 und 4' an den zusätzlichen Metallflächen 5.

Bei der bevorzugten Ausgestaltung dieser Ausführungsform enden die Sollbruchlinien 4 und 4' an den äußeren Sollbruchlinien 3' und die Sollbruchlinien 3 an den äußeren Sollbruchlinien 4'.

Grundsätzlich besteht die Möglichkeit, an beiden Oberflächenseiten der Keramikschicht 1 oder nur an einer Oberflächenseite die zusätzlichen Metallflächen 5 und 6 vorzusehen.

Die Metallflächen 2, 5 und 6 sind bevorzugt Flächen

aus Kupfer.

Das beschriebene Mehrfach-Substrat wird beispielsweise dadurch hergestellt, daß auf beiden Oberflächenseiten der Keramikschicht 1 einer diese Oberflächenseiten vollständig oder nahezu vollständig abdeckende
Metallschicht aufgebracht wird, und zwar in Form einer
Metallfolie oder dünnen Metallplatte, die flächig mit der
jeweiligen Oberflächenseite der Keramikschicht 1 verbunden wird, und zwar mittels des Direct-Bonding-Verfahrens, oder Aktiv-Lot-Verfahren, welche dem Fachmann aus der Literatur bekannt sind und welche bei
Verwendung von Folien oder dünnen Platten aus Kupfer auch als DCB-Verfahren (Direct-Copper-BondingVerfahren) oder als AMB (Active-Metal-Brazing-Verfahren) bezeichnet werden.

Durch eine anschließende Vorstrukturierung der durchgehenden Metallschichten auf den beiden Oberflächenseiten der Keramikschicht 1 werden dann die einzelnen Metallflächen 2,5 und 6 erzeugt. Diese Strukturierung kann mittels verschiedenster Verfahren erfolgen, beispielsweise durch Ätzen und/oder durch mechanische Verfahren. Nach der Strukturierung, d. h. nach der Bildung der Metallflächen 2, 5 und 6 erfolgt mit geeigneten Techniken das Einbringen der Sollbruchstellen bzw. Sollbruchlinien 3, 4, 3' und 4', beispielsweise durch Laser-Behandlung oder mechanische Verfahren, wie Ritzen usw.

Es ist auch möglich, die Sollbruchlinien 3, 4, 3' und/ oder 4' vor der Metallbeschichtung aufzubringen. Durch die nachfolgende Strukturierung vorzugsweise durch Maskieren und Ätzen werden die Sollbruchlinien dann während des Ätzens freigelegt.

Weiterhin ist es auch möglich, bereits strukturierte Metallflächen mit der Keramik durch das DCB-Verfahren oder durch das AMB-Verfahren zu verbinden, wo-

bei die Sollbruchlinien 3, 4, 3' und/oder 4' entweder vor 60 oder nach dem Verbinden der Metallflächen erzeugt

werden.

In der beschriebenen, vorstrukturierten Form wird das Mehrfach-Substrat vom Substrathersteller an den Verwender geliefert, der dann dieses Substrat als Mehrfachnutzen bei der Herstellung von elektrischen Schaltkreisen, insbesondere Leistungsschaltkreisen verarbeitet, beispielsweise maschinell mit den erforderlichen Bauteilen bestückt. Erst nach diesen Bestücken und ge-

gebenenfalls nach einer Prüfung der hergestellten Schaltkreise wird der Mehrfachnutzen in die einzelnen Schaltkreise zertrennt, und zwar durch Brechen der Keramikschicht 1 entlang der Sollbruchlinien 3, 4, 3' und 4'. Durch die zusätzlichen Metallflächen 5 und 6 ist ein unerwünschtes Brechen des Mehrfach-Substrates bzw. Mehrfachnutzens im Verfahren wirksam verhindert. Dadurch, daß die zwischen den Metallflächen 2 und den zusätzlichen Metallflächen 5 verlaufenden Sollbruchlinien 3' bis an den Rand der Keramikschicht 1 reichen ist 10 ein Trennen des Mehrfachnutzens in verschiedenen Einzelsubstrate bzw. Schaltkreise möglich, ohne daß ein Durchtrennen einer der zusätzlichen Metallflächen 5 und 6 notwendig ist, d. h. beim Trennen des Mehrfachnutzens in Einzelnutzen oder Einzelsubstrate bzw. in die 15 einzelnen Schaltkreise erfolgt das Brechen zunächst an den äußeren, den Metallflächen 5 benachbarten Sollbruchlinien 3' und anschließend an den äußeren, den Metallflächen 6 benachbarten Sollbruchlinien 4', womit dann der diese zusätzlichen Metallflächen 5 und 6 aufweisende Rand entfernt ist und der verbleibende Teil des Mehrfach-Substrates dann ohne Probleme an den Sollbruchlinien 3 und 4 durch Brechen getrennt werden kann.

Obwohl die Sollbruchlinien 3' bis an den Rand der 25 Keramikschicht 1 reichen, besteht nicht die Gefahr, daß das Mehrfach-Substrat in unerwünschter Weise während des Verfahrens entlang dieser äußeren Sollbruchlinien 3' bricht, da insbesondere dann, wenn das Mehrfach-Substrat im Verfahren beim Handling stets an zwei 30 gegenüberliegenden Seitenrändern erfaßt wird, keine Biegekräfte auftreten, die ein Brechen des Substrates an den außenliegenden Sollbruchlinien 3' bewirken könnten. Grundsätzlich ist es aber auch möglich, das Handling des Mehrfach-Substrates im Verfahren derart vor- 35 zusehen, daß dieses Substrat stets nur an den die Metallflächen 6 aufweisenden Randbereichen 1" gefaßt wird.

Die Metallflächen 5 und 6 können auch mit einer eine Kodierung bildende Strukturierung, beispielsweise mit eine Kodierung bildenden Ausnehmungen 7 versehen 40 sein. Diese Automaten lesbare Kodierung kann dann Informationen über die Art der herzustellenden Schaltkreise enthalten und damit zur Steuerung und/oder Überwachung des Fertigungsprozesses dienen, oder aber dazu verwendet werden, um eine vorgegebene 45 Orientierung des Mehrfach-Substrates in einer Verarbeitungseinrichtung sicher zu stellen.

Die Fig. 3 zeigt als weitere mögliche Ausführungsform der Erfindung ein Mehrfach-Substrat, welches wiederum aus der Keramikschicht, aus den in dieser 50 Figur nicht dargestellten, auf der Keramikschicht 1 vor-

gesehenen Metallflächen sowie aus den zusätzlichen Metallflächen 5 und 6 besteht. Die Keramikschicht 1 ist wiederum mit den rechtwinklig zueinander verlaufenden Sollbruchlinien 3, 4, 3' und 4' versehen. Weiterhin 55 1b, 1c Nutzen sind in die Keramikschicht 1 bei diesem Mehrfach-Substrat kurze geradlinige Sollbruchlinien 8 vorgesehen. von denen jede mit einem Ende an einer Sollbruchlinie 3 oder 3' und mit ihrem anderen Ende an einer Sollbruchlinie 4 bzw. 4' endet und mit diesen Sollbruchlinien einen 60 Winkel kleiner als 90° einschließt, der sich zu dem Schnittpunkt der zugehörigen Sollbruchlinien 3, 3', 4 oder 4' hin öffnet, derart, daß der jeweilige, von den Sollbruchlinien definierte Nutzen 1a die Form eines

Das Trennen des Mehrfach-Substrates der Fig. 3 in die Einzelnutzen 1a erfolgt in der gleichen Weise, wie

aufweist.

dies vorstehend für das Substrat nach Fig. 1 beschrieben wurde, lediglich mit dem Unterschied, daß am Schluß noch das Brechen entlang der Sollbruchlinien 8 erfolgt. Die dabei anfallenden Reste 9 werden weggeworfen.

Fig. 4 zeigt ein Mehrfach-Substrat, bei dem lediglich die Sollbruchlinien 3', 4 und 4' geradlinig verlaufen, anstelle der Sollbruchlinien 3 zick-zack-förmige Sollbruchlinien 3a vorgesehen sind, deren Wendepunkt jeweils auf einer Sollbruchlinie 4 liegt, so daß diese Sollbruchlinien 3a in Verbindung mit den Sollbruchlinien 4 parallelogrammförmige Nutzen 1b definieren. Ebenso wie das Substrat der Fig. 3 weist auch das Mehrfach-Substrat der Fig. 4 wiederum die zusätzlichen Metallflächen 5 und 6 auf. Das Zertrennen des Mehrfach-Substrates in die Einzelnutzen 1b erfolgt wiederum durch Brechen in der Weise, wie dies für das Mehrfach-Substrat der Fig. 1 beschrieben wurde, wobei allerdings nach dem Abtrennen der Randbereiche 1" und 1" zunächst ein Brechen an den Sollbruchlinien 4 erfolgt, so daß als Zwischenprodukt mehrere Streifen erhalten werden, die dann an den Sollbruchlinien 3a gebrochen werden können. Die zwischen den äußeren Sollbruchlinien 3' bzw. zwischen den Randbereichen 1" und benachbarten Nutzen 1b anfallenden dreieckförmigen Reste 10 sind Abfall und werden weggeworfen.

Die Fig. 5 zeigt als weitere mögliche Ausführungsform schließlich ein Mehrfach-Substrat, welches dem Mehrfachsubstrat der Fig. 3 sehr ähnlich ist, sich von diesem aber dadurch unterscheidet, daß anstelle der kurzen, geradlinigen Sollbruchlinien 8 kreisbogenförmige Sollbruchlinien 11 vorgesehen sind, und zwar zusätzlich zu den Sollbruchlinien 3, 4, 3' und 4' Bei der in der Fig. 5 dargestellten Ausführungsform ergänzen sich jeweils vier Sollbruchlinien 11 zu einem Kreis, der von den Sollbruchlinien 3' und 3 sowie von zwei Sollbruchlinien 4 oder den Sollbruchlinien 4' umschlossen ist. Jeder Einzelnutzen ist bei dieser Ausführungsform in etwa kreisscheibenförmig ausgebildet.

Die Erfindung wurde voranstehend an Ausführungsbeispielen beschrieben. Es versteht sich, daß zahlreiche Änderungen sowie Abwandlungen möglich sind, ohne daß dadurch der der Erfindung zugrundeliegende Erfindungsgedanke verlassen wird. So ist es beispielsweise möglich, die Sollbruchlinien 3, 3a, 4, 3' und/oder 4' nur an einer Oberflächenseite der Keramikschicht 1 vorzusehen. Weiterhin ist es auch möglich, die zusätzlichen Metallflächen 5 und 6 an beiden Oberflächenseiten der Keramikschicht 1 vorzusehen.

Bezugszeichenliste

1 Keramikschicht 1', 1a, Nutzen 1" 1" Randbereich 2 Metallfläche 3, 4 Sollbruchlinie 3', 4' Sollbruchlinie 5,6 zusätzliche Metallfläche 7 Ausnehmung 8 Sollbruchlinie 9. 10 Rest 11 Sollbruchlinie Quadrates oder Rechteckes mit abgeschrägten Ecken 65 R1-R3 Reihen

Patentansprüche

1. Mehrfach-Substrat mit einer Keramikschicht (1), die wenigstens zwei aneinander anschließende und einstückig miteinander verbundene Nutzen (1', 1a, 5 1b, 1c) bildet, welche jeweils an wenigstens einer Oberflächenseite der Keramikschicht (1) mit wenigstens einer Metallisierung oder Metallfläche (2) versehen sind, dadurch gekennzeichnet, daß die wenigstens zwei Nutzen (1', 1a, 1b, 1c) über wenig- 10 stens eine in der Keramikschicht (1) vorgesehenen Sollbruchlinie (3, 4) aneinander anschließen, daß an wenigstens einen Randbereich (1", 1"") der Keramikschicht außerhalb der Nutzen (1', 1a, 1b, 1c) an wenigstens einer Oberflächenseite dieser Keramik- 15 schicht eine zusätzliche Metalifläche (5, 6) vorgesehen ist, die zumindest die Sollbruchlinien (3, 3a, 4) zwischen den Nutzen (1', 1a, 1b, 1c) oder deren gedachte Verlängerungen überbrückt, und daß in der Keramikschicht (1) zwischen dieser wenigstens 20 einen zusätzlichen Metallfläche (5, 6) und dem übrigen Teil der Keramikschicht (1) oder benachbarten Nutzen (1', 1a, 1b, 1c) eine äußere, weitere und den Randbereich (1", 1") definierende Sollbruchlinie (3', 4') vorgesehen ist.

2. Mehrfach-Substrat nach Anspruch 1, dadurch gekennzeichnet, daß die wenigstens eine Sollbruchlinie (3, 3a, 4) zwischen den Nutzen (1', 1a, 1b, 1c) bis an die wenigstens eine äußere Sollbruchlinie (3', 4') reicht oder diese schneidet.

3. Mehrfach-Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich die Sollbruchlinie (3, 3a, 4) zwischen zwei Nutzen (1', 1a, 1b, 1c) in einer, in der Ebene der Keramikschicht (1) liegenden Achsrichtung (Y-Achse, X-Achse) erstreckt, 35 die mit einer ebenfalls in der Ebene der Keramikschicht (1) liegenden Achsrichtung (X-Achse, Y-Achse), in der diese Nutzen aneinander anschlie-

 Mehrfach-Substrat nach Anspruch 3, dadurch gekennzeichnet, daß die Achsrichtungen (X-Achse, Y-Achse) einen Winkel von 90° miteinander einschließen.

Ben, einen Winkel einschließt.

 Mehrfach-Substrat nach Anspruch 3, dadurch gekennzeichnet, daß die Achsrichtungen (X-Achse, 45 Y-Achse) einen Winkel kleiner als 90° miteinander einschließen.

6. Mehrfach-Substrat nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Nutzen (1', 1a, 1b, 1c) in wenigstens zwei einander benachbarten Reihen (R1-R3) auf der Keramikschicht (1) vorgesehen sind, daß jede Reihe jeweils wenigstens zwei in Richtung der Reihe aneinander anschließende Nutzen (1', 1a, 1b, 1c) aufweist, und daß sowohl zwischen den Nutzen (1', 1a, 1b, 1c) in den 55 Reihen (R1-R3), als auch zwischen den Nutzen (1', 1a, 1b, 1c) benachbarter Reihen (R1-R3) Sollbruchlinien (3, 4) vorgesehen sind, die bzw. deren Verlängerungen durch wenigstens jeweils eine zusätzliche Metallfläche (5, 6) überbrückt sind.

7. Mehrfach-Substrat nach einem der Ansprüche 3-4, dadurch gekennzeichnet, daß an wenigstens zwei einen Winkel miteinander einschließenden Randbereichen (1", 1"") jeweils wenigstens eine zusätzliche Metallfläche (5, 6) vorgesehen ist, von denen die Metallfläche (5) an einem ersten Randbereich (1") die sich in einer ersten Achsrichtung (X-Achse) erstreckenden Sollbruchlinien (4) zwi-

schen den Nutzen (1', 1a, 1b, 1c) oder deren gedachte Verlängerungen überbrückt und von denen die Metallfläche (6) am einem zweiten Randbereich (1''') die sich in einer zweiten Achsrichtung (Y-Achse) erstreckenden Sollbruchlinien (3, 3a) zwischen den Nutzen (1', 1a, 1b, 1c) oder deren Verlängerungen überbrückt, und daß jeder Randbereich (1'', 1''') durch eine äußere Sollbruchlinie (3', 4') definiert ist.

8. Mehrfach-Substrat nach Anspruch 7, dadurch gekennzeichnet, daß zumindest eine äußere Sollbruchlinie (3') oder deren gedachte Verlängerung von den zusätzlichen, äußeren Metallflächen (5, 6) nicht überbrückt ist.

 Mehrfach-Substrat nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die wenigstens zwei Randbereiche (1", 1"") rechtwinklig aneinander anschließen.

10. Mehrfach-Substrat nach einem der Ansprüche 7-9, dadurch gekennzeichnet, daß diejenige äußere Sollbruchlinie (3'), die den ersten Randbereich (1") definiert, bzw. die gedachte Verlängerung dieser äußeren Sollbruchlinie (3') durch die zusätzlichen Metallflächen (5', 6') nicht überbrückt ist, und daß die am dem ersten Randbereich (1") vorgesehene wenigstens eine zusätzliche Metallfläche (5) die den zweiten Randbereich (1") definierende äußere Sollbruchlinie (4') oder deren gedachte Verlängerung überbrückt.

11. Mehrfach-Substrat nach einem der Ansprüche 7-10, dadurch gekennzeichnet, daß die Keramikschicht (1) vier winklig aneinander anschließende Randbereiche (1", 1") bildet, und daß von diesen Randbereichen zwei einander gegenüberliegende Randbereiche jeweils erste Randbereiche (1") oder zweite Randbereiche (1") sind.

12. Mehrfach-Substrat nach einem der Ansprüche 1—11, dadurch gekennzeichnet, daß die Keramikschicht (1) zur Bildung der Sollbruchlinien (3, 4, 3', 4') an wenigstens einer Oberflächenseite geritzt oder mit nutenförmigen Vertiefungen versehen ist. 13. Mehrfach-Substrat nach einem der Ansprüche 13-12, dadurch gekennzeichnet, daß die Metallisierungen Metallflächen (2) sind, die mit ihren Randlinien parallel zu den Sollbruchlinien (3, 4, 3', 4') verlaufen, vorzugsweise rechteckförmige oder quadratische Metallflächen (2) sind.

14. Mehrfach-Substrat nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß an den Nutzen (1') an beiden Oberflächenseiten der Keramikschicht (1) jeweils wenigstens eine Metallisierung oder Metallfläche (2) vorgesehen ist.

15. Mehrfach-Substrat nach einem der Ansprüche 1-14, dadurch gekennzeichnet, daß an dem jeweiligen Randbereich (1", 1"') eine durchgehende, die senkrecht oder quer zu diesem Randbereich sich erstreckenden Sollbruchlinien (3, 3a, 4, 3', 4') oder deren gedachte Verlängerungen überbrückende Metallifläche (5, 6) vorgesehen ist.

16. Mehrfach-Substrat nach einem der Ansprüche 1-15, dadurch gekennzeichnet, daß an dem Randbereich (1", 1"") an beiden Oberflächenseiten der Keramikschicht (1) jeweils eine zusätzliche Metallfläche (5, 6) vorgesehen ist.

17. Mehrfach-Substrat nach einem der Ansprüche 1-16, dadurch gekennzeichnet, daß die die Metallisierungen bildenden Metallflächen (2) sowie die zusätzlichen Metallflächen (5, 6) durch das DirectBonding- oder Activ-Lot-Verfahren flächig mit der Keramikschicht (1) verbunden sind.

18. Verfahren zum Herstellen eines Mehrfach-Substrates nach einem der Ansprüche 1–13, dadurch gekennzeichnet, daß eine Keramikschicht (1) an wenigstens einer Oberflächenseite mit einer Metallschicht versehen wird, und daß dann durch einen Strukturierungsprozeß aus dieser Metallschicht die Metallisierungen bzw. Metallflächen (2) sowie die wenigstens eine, an mindestens einem Randbereich (1", 1"") vorgesehene zusätzliche Metallfläche (5, 6) gebildet werden.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß nach Abschluß der Strukturierung vorzugsweise durch eine mechanische Behandlung, 15 beispielsweise durch Ritzen, oder durch eine Laser-Behandlung die Sollbruchlinien (3, 3a, 4, 3', 4') erzeugt werden.

20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß vor der Strukturierung vorzugsweise 20 durch eine mechanische Behandlung, beispielsweise durch Ritzen, oder durch eine Laser-Behandlung die Sollbruchlinien (3, 3a, 4, 3', 4') erzeugt werden.
21. Verfahren nach einem der Ansprüche 18—20, dadurch gekennzeichnet, daß die Strukturierung 25 durch Ätztechnik und/oder durch mechanische Behandlung erfolgt.

22. Verfahren nach einem der Ansprüche 18-21, dadurch gekennzeichnet, daß das Aufbringen der Metallschicht auf die Keramikschicht (1) durch flächiges Verbinden einer Metallfolie oder dünnen Metallplatte mit der Keramikschicht mittels des Direct-Bondig- oder Activ-Lot-Verfahrens erfolgt.

23. Verfahren nach einem der Ansprüche 14-17, dadurch gekennzeichnet, daß vor der Strukturierung beide Oberflächenseiten der Keramikschicht (1) mit einer Metallschicht versehen werden.

Hierzu 4 Seite(n) Zeichnungen

40

45

50

55

60

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 43 19 944 A1 H 01 L 23/12 8. Dezember 1994

408 049/434

Nummer: Int. Cl.⁵: Offenlegungstag: DE 43 19 944 A1 H 01 L 23/12 8. Dezember 1994

FIG. 3

ZEICHNUNGEN SEITE 3

Nummer: Int. Cl.⁵; DE 43 19 944 A1 H 01 L 23/12 8. Dezember 1994

Int. Cl.⁵: Offenlegungstag:

FIG. 4

Nummer: Int. Cl.5:

Offenlegungstag:

DE 43 19 944 A1 H 01 L 23/12 8. Dezember 1994

DOCKET NO: 42000,0171

SERIAL NO: 09/932,878

APPLICANT: Acklin et al

LERNER AND GREENBERG P.A. P.O. BOX 2480

HOLLYWOOD, FLORIDA 33022 TEL. (954) 925-1100⁰⁸ 049/434