UM101: Short Notes

Naman Mishra

February 15, 2023

1 Set theory & the real number system

Definition 1.1. The set A along with a successor function S is called a Peano set if it obeys the Peano axioms.

- (P1) There is an element called 0 in A.
- (P2) For every $a \in A$, its successor S(a) is also in A.
- (P3) $\forall a \in A, S(a) \neq 0.$
- (P4) For any $m, n \in A$, S(m) = S(n) only if m = n.
- (P5) (principle of mathematical induction) For any set $B \subseteq A$, if $0 \in B$ and $a \in B \Rightarrow S(a) \in B$, then B = A.

1.1 The ZFC Axioms

Definition 1.2. A **set** is a well-defined collection of (mathematical) objects, called the *elements* of that set. To say that a is an element of set A, we write $a \in A$. Otherwise, we write $a \notin A$.

Given two sets A and B, we say that:

- $(A \subseteq B)$ A is a subset of B, i.e., every element of A is an element of B.
- $(A \not\subseteq B)$ A is not a subset of B, *i.e.*, there is some element in A which is not an element of B.
- $(A \subseteq B)$ A is a proper subset of B, i.e., $A \subseteq B$ but $\exists b \in B$ such that $b \notin A$.

Axiom 1.1 (the basic axiom). Every object is a set.

Axiom 1.2 (axiom of extension). Two sets A, B are equal if they have exactly the same elements. In other words, $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$

Axiom 1.3 (axiom of existence). There is a set with no elements called the empty set, denoted by the symbol \emptyset .

Axiom 1.4 (axiom of specification). Let A be a set. Let P(a) denote a property that applies to every element in A, i.e., for each $a \in A$, either P(a) is true or it is false. Then there exists a subset

$$B = \{a \in A : P(a) \text{ is true}\}\$$

Axiom 1.5 (axiom of pairing). Given two sets A, B, there exists a set which contains precisely A, B as its elements, which we denote by $\{A, B\}$.

Axiom 1.6 (axiom of unions). Given a set \mathscr{F} of sets, there exists a set called the union of the sets in \mathscr{F} , denoted by $\bigcup_{A \in \mathscr{F}} A$, whose elements are precisely the elements of the elements of \mathscr{F} .

$$a\in\bigcup_{A\in\mathscr{F}}A\Leftrightarrow a\in A\text{ for some }A\in\mathscr{F}$$

Axiom 1.7 (axiom of powers). Given a set A, there exists a set called power set of A denoted $\mathcal{P}(A)$, whose elements are precisely all the subsets of A.

Definition 1.3. A relation from set A to set B is a subset R of $A \times B$. For any $a \in A, b \in B$ we say a R b iff $(a, b) \in R$.

• The domain of R is the set

$$dom(R) = \{a \in A : (a, b) \in R \text{ for some } b \in B\}$$

• The range of R is the set

$$ran(R) = \{b \in B : (a, b) \in R \text{ for some } a \in A\}$$

- R is called a function from A to B, denoted as $R: A \to B$ iff
 - $-\operatorname{dom}(R) = A$
 - for each $a \in A$ there is (at most) one $b \in B$ such that $(a, b) \in R$.

Axiom 1.8 (axiom of regularity). Read up

Axiom 1.9 (axiom of replacement). Read up

Axiom 1.10 (axiom of choice). Read up

Definition 1.4. Given a set A, its *successor* is the set

$$A^+ = A \cup \{A\}.$$

A set A is said to be *inductive* if $\emptyset \in A$ and for every $a \in A$, we have $a^+ \in A$.

Axiom 1.11 (axiom of infinity). There exists an inductive set.

Lemma 1.5. Let \mathscr{F} be a nonempty set of inductive sets. (This exists by axiom of infinity and axiom of pairing). Then

$$\bigcap_{A \in \mathscr{R}} A$$
 is inductive.

Theorem 1.6. There exists a *unique*, *minimal* inductive set ω , *i.e.*, for any inductive set S,

$$\omega \subseteq S$$

and if ω' is any other inductive set satisfying this property,

$$\omega = \omega'$$

Theorem 1.7. The ω in theorem 1.6 is a Peano set with successor function $a \mapsto a^+$.

Theorem 1.8 (principle of recursion). Let A be a set, and $f: A \to A$ be a function. Let $a \in A$. Then, there exists a function $F: \omega \to A$ such that

- (a) $F(\emptyset) = a$
- (b) For some $b \in \omega$, we have $F(b^+) = f(F(b))$

1.2 Natural Numbers

Definition 1.9 (Peano addition). Given a fixed $m \in \mathbb{N}$, the principle of recursion gives a unique function

$$\operatorname{sum}_m:\mathbb{N}\to\mathbb{N}$$

- $(A1) \operatorname{sum}_m(0) = m$
- (A2) $sum_m(n^+) = (sum_m(n))^+$.

Define

$$m+n := \operatorname{sum}_m(n)$$

Proposition 1.10. 2 + 3 = 5

Definition 1.11 (Peano multiplication). Let $m \in \mathbb{N}$. By the recursion principle, \exists a unique function

$$\operatorname{prod}_m: \mathbb{N} \to \mathbb{N}$$

such that

- (a) $prod_m(0) = 0$
- (b) $\operatorname{prod}_m(n^+) = m + \operatorname{prod}_m(n)$.

Theorem 1.12. The following hold:

(a) (Commutativity)

$$m+n=n+m$$

$$m \cdot n = n \cdot m$$

for all natural numbers m and n.

(b) (Associativity)

$$m + (n+k) = (m+n) + k$$

$$m \cdot (n \cdot k) = (m \cdot n) \cdot k$$

for all natural numbers m, n, k.

(c) (Distributivity)

$$m \cdot (n+k) = (m \cdot n) + (m \cdot k)$$

for all natural numbers m, n, k.

- (d) $m + n = 0 \Leftrightarrow m = n = 0$ for any $m, n \in \mathbb{N}$
- (e) $m \cdot n = 0 \Leftrightarrow m = 0 \text{ or } n = 0 \text{ for any } m, n \in \mathbb{N}$
- (f) (Cancellation) $m+k=n+k \Leftrightarrow m=n$ for any $m,n,k\in\mathbb{N}$ and if $m\cdot k=n\cdot k$ and $k\neq 0$, then m=n.

1.2.1 Tao

Lemma 1.13. For any natural number n, n + 0 = n.

Lemma 1.14. For any natural numbers n and m, $n + m_{++} = (n + m)_{++}$

Corollary 1.15. $n_{++} = n + 1$.

Proposition 1.16. (Addition is commutative) For any natural numbers n and m, n + m = m + n

1.3 Fields, Ordered Sets and Ordered Fields

Definition 1.17. A field is a set F with 2 operations $+: F \times F \to F$ and $\cdot: F \times F \to F$ such that

- (F1) + & · are commutative on F.
- (F2) + & \cdot are associative on F.
- (F3) + & · satisfy distributivity on F, *i.e.*, $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a,b,c \in F$.
- (F4) There exist 2 distinct elements, called 0 (additive identity) and 1 (multiplicative identity) such that

$$x + 0 = x$$

$$x \cdot 1 = x$$

for all $x \in F$

(F5) For every $x \in F$, $\exists y \in F$ such that

$$x + y = 0$$

(F6) For every $x \in F \setminus \{0\}, \exists z \in F \text{ such that }$

$$x \cdot z = 1$$

Theorem 1.18. $(F, +, \cdot)$ is a field. Then for all x,

$$0 \cdot x = x \cdot 0 = 0$$

5

Definition 1.19. A set A with a relation < is called an *ordered set* if

(O1) (Trichotomy) For every $x, y \in A$, exactly one of the following holds.

$$x < y$$
, $x = y$, $y < x$

(O2) (Transitivity) If x < y and y < z, then x < z.

Notation: x < y is read as "x is less than y"

 $x \leq y$ means x < y or x = y, read as "x is less that or equal to y".

x > y is read as "x is greater that y" and equivalent to y < x.

Definition 1.20. An *ordered field* is a set that admits two operations + and \cdot and relation < so that $(F, +, \cdot)$ is a field and (F, <) is an ordered set and:

- (O3) For $x, y, z \in F$, if x < y then x + z < y + z.
- (O4) For $x, y \in F$, if 0 < x and 0 < y then $0 < x \cdot y$.

Lemma 1.21. Given a field $(F, +, \cdot)$: For any element a in a field F, there exists ony one b such that a + b = 0. We will denote this b as -a. Similarly for any a in $F \setminus \{0\}$ there exists only one $b \in F$ such that ab = 1. We will denote this b as $\frac{1}{a}$ or a^{-1} .

Lemma 1.22. $-(-a) = a = (a^{-1})^{-1}$

Lemma 1.23. For any field $(F, +, \cdot)$, (-a)b = -(ab) and (-a)(-b) = ab.

Theorem 1.24. For any field $(F, +, \cdot)$, 0 < 1.

1.4 Upper bounds & least upper bounds

Definition 1.25. A non-empty subset $S \subseteq F$ is said to be *bounded above* in F if there exists a $b \in F$ such that

$$a \leq b \ \forall \ a \in S$$

Here, b is called an upper bound of S. If $b \in S$, then b is a maximum of S.

Definition 1.26. Let $S \subseteq F$ be bounded above. An element $b \in F$ is said to be a *least upper bound* of S or a *supremum* of S if:

- (a) b is an upper bound of S.
- (b) If for $c \in F$, c < b, then c is not an upper bound of S. In other words, for any c < b, $\exists s_c \in S$ such that $c < s_c$. Contrapositive: If c is an upper bound of S, then c is not less than b, i.e., $b \le c$.

1.5 The Real Numbers

Theorem 1.27 (Archimedean property of \mathbb{R}). Let $x, y \in \mathbb{R}$ and x > 0, then $\exists n \in \mathbb{N}$ such that

$$n \cdot x > y$$
.

2 Sequences & Series

2.1 Sequences

Definition 2.1. A sequence in \mathbb{R} is a function $f : \mathbb{N} \to \mathbb{R}$. We denote this sequence by $\{a_n\}_{n\in\mathbb{N}}$, where

$$a_n = f(n) \quad \forall \ n \in \mathbb{N}$$

and a_n is called the n^{th} term of $\{a_n\}_{n\in\mathbb{N}}$.

Definition 2.2. We say that a sequence $\{a_n\} \subseteq \mathbb{R}$ is *convergent* (in \mathbb{R}) if $\exists L \in \mathbb{R}$ such that for each $\varepsilon > 0$, $\exists N_{\varepsilon,L} \in \mathbb{N}$ such that

$$|a_n - L| < \varepsilon \quad \forall \ n \ge N_{\varepsilon, L}$$

We will call L a limit of $\{a_n\}$ and we write:

$$a_n \to L \text{ as } n \to \infty$$

A sequence $\{a_n\}$ is said to be *divergent* if it is not convergent, *i.e.*, $\forall L \in \mathbb{R}$ and $N_L \in \mathbb{N}, \exists \varepsilon > 0$ and $N \geq N_L$ such that

$$|a_N - L| > \varepsilon$$

Theorem 2.3 (Uniqueness of limits). Suppose L_1 and L_2 are limits of a (convergent) sequence $\{a_n\} \in \mathbb{R}$. Then $L_1 = L_2$.

Definition 2.4. A sequence $\{a_n\}_{n\in\mathbb{N}}$ is said to be *bounded* if $\exists M > 0$ such that $|a_n| < M \ \forall n \in \mathbb{N}$.

Theorem 2.5. Every convergent sequence is bounded.

Definition 2.6. A sequence $\{a_n\} \subseteq \mathbb{R}$ is said to be monotonically increasing if $a_n \leq a_{n+1} \, \forall \, n \in \mathbb{N}$.

A sequence $\{a_n\}\subseteq\mathbb{R}$ is said to be monotonically decreasing if $a_n\geq a_{n+1}\ \forall\ n\in\mathbb{N}$

A sequence $\{a_n\} \subseteq \mathbb{R}$ is said to be *monotone* if it is either monotonically increasing or monotonically decreasing.

Theorem 2.7 (Monotone convergence theorem). A monotone sequence is convergent iff it is bounded.

Definition 2.8. We say that a sequence diverges to $+\infty$ if $\forall R \in \mathbb{R}, \exists N_R \in \mathbb{N}$ such that $a_n > R \ \forall n \geq N_R$.

We say that a sequence diverges to $-\infty$ if $\forall R \in \mathbb{R}, \exists N_R \in \mathbb{N}$ such that $a_n < R \ \forall n \ge N_R$.

We write $\lim_{n\to\infty} a_n = +\infty$ or $\lim_{n\to\infty} a_n = -\infty$, but this is purely notational and does not mean " $\{a_n\}$ has a limit".

Theorem 2.9 (Tao Theorem 6.1.19). Suppose $\{b_n\}$ converges to $b \neq 0$ (and $\exists M \in \mathbb{N}$ such that $b_n \neq 0 \ \forall \ n \geq M$.) Then $\left\{\frac{1}{b}\right\}_{n \geq M} \to \frac{1}{b}$ as $n \to \infty$.

2.2 Infinite series

Definition 2.10. An infinite series is a formal expression of the form

$$a_0 + a_1 + a_2 + \dots$$
, or, $\sum_{n=0}^{\infty} a_n$

Given $\sum_{n=0}^{\infty} a_n$, its sequence of partial sums (sops) is $\{s_n\}_{n=0}^{\infty}$ where

$$s_0 = a_0$$

$$s_1 = a_0 + a_1$$

$$\vdots$$

$$s_n = a_0 + a_1 + \dots + a_n$$

We say that $\sum a_n$ is *convergent* with sum s if $\lim_{n\to\infty} s_n = s$. Otherwise, we say that $\sum a_n$ is divergent.

Theorem 2.11. Suppose $\sum a_n$ is convergent. Then

$$\lim_{n \to \infty} a_n = 0$$

Theorem 2.12 (Comparison test). Suppose there exist constants $M \in \mathbb{N}$ and 0 < C such that

$$0 \le a_n \le Cb_n \quad \forall \ n \ge M$$

If $\sum b_n$ converges, then $\sum a_n$ converges. In other words, If $\sum a_n$ diverges, $\sum b_n$ diverges.

Theorem 2.13 (Ratio test). Let $\sum a_n$ be a series of positive terms. Suppose

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \in \mathbb{R}$$

Then,

- (a) If L < 1, the series converges.
- (b) If L > 1, the series diverges.
- (c) If L=1, the test is inconclusive.

Theorem 2.14. Suppose $\sum a_n$ and $\sum b_n$ converge with sums a and b respectively. Then, for constants l and m, $\sum la_n+mb_n$ converges to la+mb. Suppose $\sum |a_n|$ and $\sum |b_n|$ converge. Then, so does $\sum |la_n+mb_n|$ for any choice of l and m in \mathbb{R} .

Corollary 2.15. Suppose $\sum a_n$ converges and $\sum b_n$ diverges. Let $m \in \mathbb{R} \setminus \{0\}$. Then, $\sum (a_n + b_n)$ diverges, and $\sum mb_n$ diverges.

Definition 2.16. A series $\sum a_n$ of real numbers is said to *converge absolutely* if $\sum |a_n|$ converges. A series $\sum a_n$ of real numbers is said to *converge conditionally* if $\sum |a_n|$ diverges but $\sum a_n$ converges.

Theorem 2.17. If $\sum a_n$ converges absolutely, it must converge. Moreover, $|\sum a_n| \leq \sum |a_n|$.

Theorem 2.18 (Alternating series test). Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a decreasing sequence of positive numbers going to 0. Then, $\sum (-1)^n a_n$ converges. Denoting the sum by S, we have that

$$0 < (-1)^n (S - s_n) < a_{n+1}.$$

Also called the Leibniz test.

3 Limits & Continuity

3.1 Limit of a function

Definition 3.1 (Neighborhood). Given a real number p and an $\varepsilon > 0$, the ε -neighborhood of p is the open interval

$$N_{\varepsilon}(p) = (p - \varepsilon, p + \varepsilon) = \{x \in \mathbb{R} : |x - p| < \varepsilon\}.$$

Definition 3.2 (Limit of a function). Given a function f that is defined on some $I = (a, p) \cup (p, b)$ with a < b, we say that f has a *limit* L as it approaches p iff for every $\varepsilon > 0 \; \exists \; \delta > 0$ such that

(a)
$$0 < |x - p| < \delta \Rightarrow |f(x) - L| < \varepsilon \text{ OR}$$

(b)
$$x \in N_{\delta}(p) \setminus \{p\} \Rightarrow f(x) \in N_{\varepsilon}(L)$$
.

This is denoted as

$$\lim_{x \to p} f(x) = L.$$

Theorem 3.3 (Limit laws for functions). Suppose f and g are functions such that

$$\lim_{x \to p} f(x) = a, \qquad \lim_{x \to p} g(x) = b.$$

Then,

$$\lim_{x \to p} (f \pm g)(x) = a \pm b \tag{1}$$

$$\lim_{x \to p} (f \cdot g)(x) = a \cdot b \tag{2}$$

$$\lim_{x \to p} (f \cdot g)(x) = a \cdot b \tag{2}$$

$$\lim_{x \to p} (f/g)(x) = a/b \tag{3}$$

3.2 Continuity

Definition 3.4. Let $S \subseteq \mathbb{R}$ be a (nonempty) subset, $f: S \to \mathbb{R}$ and $p \in S$. We say that f is continuous at p iff:

for every $\varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ such that

$$|x-p| < \delta_{\varepsilon} \land x \in S \Rightarrow |f(x) - f(p)| < \varepsilon$$

We say that f is continuous on S iff f is continuous at each $p \in S$.

Theorem 3.5 (Algebraic laws for continuity). Suppose f and g are continuous at $p \in S$. Then so are $f \pm g$, fg and if $g(p) \neq 0$, f/g.

Theorem 3.6. Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ be continuous functions such that $f(A) := range(f) \subseteq B$. Then,

$$g \circ f : x \in A \mapsto q(f(x)) \in \mathbb{R}$$

is continuous.

Theorem 3.7 (intermediate value theorem). Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Suppose $y \in \mathbb{R}$ is a number between f(a) and f(b), i.e., $y \in [f(a), f(b)]$. Then $\exists c \in [a, b]$ such that

$$f(c) = y$$

Corollary 3.8 (Bolzano's theorem). Let $f:[a,b]\to\mathbb{R}$ be a continuous function such that f(a) and f(b) take opposite signs. Then $\exists c \in (a,b)$ such that f(c)=0. **Theorem 3.9** (the Borsuk-Ulam theorem). Let S^n be the unit n-sphere, i.e., $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$. Let $f: S^n \to \mathbb{R}^n$ be a continuous function. Then f maps some pair of antipodal points to the same point.

$$\exists x \text{ such that } f(x) = f(-x)$$

Lemma 3.10. Let a_n, b_n be convergent sequences such that $a_n \leq b_n$ for all n (large enough). Then

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

Definition 3.11. A function $f: S \to \mathbb{R}$ is said to be *bounded above* on S if $\exists U \in \mathbb{R}$ such that $f(x) \leq U \ \forall x \in S$.

f is said to be bounded if $\exists M > 0$ such that $|f(x)| < M \ \forall x \in S$.

Theorem 3.12 (Continuous functions on compact intervals are bounded). Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b]. Then f is a bounded function.

Definition 3.13. A function $f: S \to \mathbb{R}$ is said to have a *global maximum* on S at a point $p \in S$ if $f(x) \leq f(p) \ \forall \ x \in S$.

A function $f: S \to \mathbb{R}$ is said to have a *global minimum* on S at a point $p \in S$ if $f(x) \geq f(p) \ \forall \ x \in S$.

Theorem 3.14 (Extreme value theorem). Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then f attains both a global maximum and a global minimum in [a, b].

Corollary 3.15. Let $f:[a,b]\to\mathbb{R}$ be continuous. Then (using IVT),

$$f([a,b]) = [\min_{[a,b]} f, \max_{[a,b]} f].$$

4 Differentiation

Definition 4.1. Let $f:(a,b)\to\mathbb{R}$ be a function and $p\in(a,b)$. We say that f is differentiable in (a, b) if

$$\lim_{h \to 0} \frac{f(p+h) - f(p)}{h} = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}$$

exists, and the limit is called the derivative of f at p, denoted f'(p).

If f is differentiable on each p in (a, b), it is said to be differentiable on (a, b)and $f':(a,b)\to\mathbb{R}$ is called the derivative of f on (a,b).

We define two more functions:

(a) For any function $f:(a,b)\to\mathbb{R}$ and any $p\in(a,b)$, define

$$f_{\delta}^{p}: h \in (a-p,b-p) \setminus \{0\} \mapsto \frac{f(p+h)-f(p)}{h} \in \mathbb{R}.$$

(b) For any differentiable function $f:(a,b)\to\mathbb{R}$ and any $p\in(a,b)$, define

$$f_{\Delta}^{p}: h \in (a-p,b-p) \mapsto \begin{cases} \frac{f(p+h)-f(p)}{h} & h \neq 0 \\ f'(p) & h = 0 \end{cases} \in \mathbb{R}.$$

Theorem 4.2 (Differentiability \Rightarrow continuity). Let $f:(a,b)\to\mathbb{R}$ be differentiable at $p \in (a, b)$. Then f is continuous at p.

Theorem 4.3 (Algebra of derivatives). Let $f, g: (a, b) \to \mathbb{R}$ be differentiable at $p \in (a, b)$. Then

- (a) f + g is differentiable at p and (f + g)' = f' + g'.
- (b) f g is differentiable at p and (f g)' = f' g'. (c) $f \cdot g$ is differentiable at p and $(f \cdot g)' = f' \cdot g + f \cdot g'$.
- (d) f/g is differentiable at p if $g \neq 0$ and $(f/g)' = \frac{f' \cdot g f \cdot g'}{g^2}$.

Definition 4.4 (Inverse function). Let $f: A \to B$ be bijective. Then for any $y \in B$, there exists (unique) $x_y \in A$ such that $f(x_y) = y$. We define the inverse function $f^{-1}: B \to A$ as

$$f^{-1}(y) = x_y.$$

and say that f is invertible on A.

Note that $(f \circ f^{-1})$ and $(f^{-1} \circ f)$ are the identity functions on B and A respectively.

For example, the function $f(x) = x^2$ is invertible on \mathbb{R}^+ and its inverse is $f^{-1}(x) = \sqrt{x}$.

Theorem 4.5 (inverse function properties). Let $f : [a, b] \to \mathbb{R}$ be an invertible function on [a, b] with range J.

- (i) If f is (strictly) increasing, then so is f^{-1} .
- (ii) If f is continuous, then $f:[a,b]\to J$ is strictly monotone and $f^{-1}:J\to [a,b]$ is continuous.
- (iii) If f is differentiable at $p \in (a, b)$ with $f'(p) \neq 0$ and continuous in some neighborhood around p, then f^{-1} is differentiable at $f(p) = q \in J$ and $(f^{-1})'(q) = \frac{1}{f'(p)}$.

Theorem 4.6 (chain rule). Let $f:(a,b)\to\mathbb{R}$ and $g:(c,d)\to\mathbb{R}$ with $f((a,b))\subseteq(c,d)$ and f differentiable in (a,b). Let g be differentiable at f(p):=q. Then $g\circ f:(a,b)\to\mathbb{R}$ is differentiable at p and $(g\circ f)'=g'\circ f\cdot f'$ at p.

4.1 Local Extrema

Definition 4.7 (Local Extrema). Let $f:A\to\mathbb{R}$. We say that f attains a local maximum at $a\in A$ iff $\exists \ \delta>0$ such that

$$f(x) \le f(a) \ \forall \ x \in N_{\delta}(a) \cap A.$$

We say that f attains a local minimum at $a \in A$ iff $\exists \delta > 0$ such that

$$f(x) \ge f(a) \ \forall \ x \in N_{\delta}(a) \cap A.$$

Theorem 4.8 (Extremum \Rightarrow Stationary). Let $f:(a,b) \to \mathbb{R}$. Let $c \in (a,b)$ such that f is differentiable at c. If f attains a local extremum at c, then f'(c) = 0. Points at which the derivative vanishes are called 'stationary points' and sometimes 'critical points'.

Theorem 4.9 (Mean Value Theorem). Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there exists a $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Definition 4.10 (Taylor Polynomial). Let $f:(a,b)\to\mathbb{R}$ be k times differentiable at some $x_0\in(a,b)$. The k^{th} Taylor polynomial at x_0 is defined as

$$P_k^{x_0}(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k.$$

Theorem 4.11 (Taylor's Theorem). Let $f:(a,b)\to\mathbb{R}$ be an (n+1) times differentiable function on (a,b). Note that this implies $f,f',f'',\ldots f^{(n)}$ are continuous. Let $x_0\in(a,b)$. Then $\forall\ x\in(a,b)\ \exists\ c_x$ between x and x_0 such that

$$f(x) = P_n^{x_0}(x) + f^{(n+1)}(c_x) \frac{(x-x_0)^{n+1}}{(n+1)!}.$$

5 Integration

Definition 5.1 (Partition). A partition of [a, b] is a finite subset

$$P = \{x_0, x_1, \dots x_n\} \subseteq [a, b]$$

such that $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$. We write

$$P = \{x_0 < x_1 < \dots < x_n\}.$$

Definition 5.2 (Refinement). Given two partitions P and Q of [a,b], Q is said to be a *refinement* of P if $P \subseteq Q$.

Definition 5.3 (Common refinement). Given two partitions P and Q of [a, b], the common refinement of P and Q is the smallest refinement of both P and Q simultaneously. Thus,

$$R = P \cup Q$$

is the common refinement of P and Q.

Definition 5.4 (Step function). Given an interval [a, b], a function $S : [a, b] \rightarrow$ \mathbb{R} is called a step function is there is some partition $P = \{x_0 < x_1 < \cdots < x_n\}$ of [a, b] such that for each $j \in [1..n], \exists s_j \in \mathbb{R}$ such that

$$s(x) = s_j \quad \forall \ x \in (x_{j-1}, x_j).$$

Definition 5.5 (Step Integration). Given a step function $s:[a,b]\to\mathbb{R}$ corresponding to $P = \{x_0 < x_1 < \dots < x_n\}$, define

$$\int_{a}^{b} s(x) dx = \sum_{j=1}^{n} s_{j}(x_{j} - x_{j-1}).$$

We also define

$$\int_{b}^{a} s(x) dx = -\int_{a}^{b} s(x) dx.$$

Theorem 5.6 (Properties).

- (a) $\int_a^b (c_1 s(x) + c_2 t(x)) dx = c_1 \int_a^b s(x) dx + c_2 \int_a^b t(x) dx$. (b) If $s \le t$ on [a, b], then $\int_a^b s(x) dx \le \int_a^b t(x) dx$.
- (c) $\int_{ka}^{kb} s(x/k) dx = k \int_{a}^{b} s(x) dx$.

Definition 5.7. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Let

 $S_f = \{s : [a, b] \to \mathbb{R} : s \text{ is a step function and } s \leq f \text{ on } [a, b]\}$

and

 $T_f = \{t : [a, b] \to \mathbb{R} : t \text{ is a step function and } t \ge f \text{ on } [a, b]\}.$

Lemma 5.8. Let $f:[a,b]\to\mathbb{R}$ be bounded, i.e., $\exists M>0$ such that

$$-M \le f(x) \le M \ \forall \ x \in [a, b].$$

Then $\sup s_f$ and $\inf t_f$ exist and

$$-M(b-a) \le \sup s_f \le \inf t_f \le M(b-a)$$

where $s_f = \left\{ \int_a^b s(x) \, \mathrm{d}x : s \in S_f \right\}$ and $t_f = \left\{ \int_a^b t(x) \, \mathrm{d}x : t \in T_f \right\}$.

Definition 5.9. Given a bounded function $f:[a,b] \to \mathbb{R}$, its lower integral is

$$\underline{I}(f) = \sup \left\{ \int_a^b s(x) \, \mathrm{d}x : s \in S_f \right\}$$

and its upper integral is

$$\bar{I}(f) = \inf \left\{ \int_a^b s(x) \, \mathrm{d}x : s \in T_f \right\}.$$

A bounded function $f:[a,b]\to\mathbb{R}$ is said to be *Riemann integrable* (not really) if $\underline{I}(f)=\overline{I}(f)$ and we call this quantity the integral of f over [a,b], denoted by

$$\int_{a}^{b} f(x) \, \mathrm{d}x.$$

We also define

$$\int_b^a f(x) \, \mathrm{d}x = -\int_a^b f(x) \, \mathrm{d}x.$$

Theorem 5.10 (Monotone Integrable). Every bounded monotone function on [a, b] is Riemann integrable on [a, b].

Definition 5.11 (Uniform Continuity). A function $f: A \to \mathbb{R}$ is said to be uniformly continuous if for every $\varepsilon > 0$, there exists a $\delta_{\varepsilon} > 0$ such that whenever $x, y \in A$ and $|x - y| < \delta_{\varepsilon}$, then $|f(x) - f(y)| < \varepsilon$.

Theorem 5.12 (Closed continuous \Rightarrow uniformly continuous). Every continuous function on a closed, bounded interval is uniformly continuous on [a, b].

Theorem 5.13 (Continuity \Rightarrow Riemann Integrability). Let f be a continuous function on [a, b]. Then f is Riemann integrable on [a, b].

Theorem 5.14 (Mean Value – Integrals). Let f be a continuous function on [a, b]. Then there exists a number c in [a, b] such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

Theorem 5.15 (The First Fundamental Theorem of Calculus). Let $f:[a,b]\to \mathbb{R}$ be Riemann integrable. Let

$$F(x) = \int_{a}^{x} f(t) dt \quad \forall x \in [a, b].$$

Then F is continuous on [a, b]. Moreover, if f is continuous at some $p \in (a, b)$, then F is differentiable at p with F'(p) = f(p).

Theorem 5.16 (Integral Triangle Inequality). Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable. Then $|f|:[a,b]\to\mathbb{R}$ is Riemann integrable and

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

Definition 5.17 (Primitive). Given a function $f:(a,b)\to\mathbb{R}$, with a< b and $a,b\in\mathbb{R}\cup\{-\infty,+\infty\}$, a primitive or antiderivative of f on (a,b) is a differentiable function $F:(a,b)\to\mathbb{R}$ such that

$$F'(x) = f(x) \ \forall \ x \in (a, b).$$

Theorem 5.18 (The Second Fundamental Theorem of Calculus). Let $f:(c,d)\to\mathbb{R}$ be a function such that $f_{[a,b]}$ ($[a,b]\subset(c,d)$) is Riemann integrable. Let F be a primitive of f on (c,d). Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

5.1 Logarithms & Exponentiation

Definition 5.19 (Natural Logarithm). Let x > 0. The natural logarithm of x is the quantity

$$\ln(x) = \int_1^x \frac{1}{t} \, \mathrm{d}t.$$

Theorem 5.20. The function $\ln : \mathbb{R}^+ \to \mathbb{R}$ has the following properties:

- (a) ln(1) = 0.
- (b) $\ln(x) + \ln(y) = \ln(xy) \ \forall \ x, y \in \mathbb{R}^+$.
- (c) In is continuous and strictly increasing.
- (d) ln is differentiable and

$$\ln'(x) = \frac{1}{x}.$$

(e) (Leibniz)

$$\int \frac{1}{t} \, \mathrm{d}t = \ln|t| + C.$$

(f) (Leibniz)

$$\int \ln x \, \mathrm{d}x = x \ln x - x + C.$$

(g) ln is bijective.

Definition 5.21 (e & Exponentiation). Let e be the unique number that satisfies

$$ln(e) = 1.$$

Given any $x \in \mathbb{R}$, let $\exp(x)$ be the unique positive y such that

$$ln(y) = x.$$

That is, exp is the inverse function of ln.

Theorem 5.22. exp : $\mathbb{R} \to \mathbb{R}^+$ has the following properties:

- (a) $\exp(0) = 1$.
- (b) $\exp(x + y) = \exp(x) \exp(y)$.
- (c) exp is continuous and strictly increasing.
- (d) exp is differentiable and

$$\exp'(x) = \exp(x) \ \forall \ x \in \mathbb{R}.$$

(e)

$$\int \exp(x) \, \mathrm{d}x = \exp(x) + C.$$

- (f) exp is bijective.
- (g) $\exp(r) = e^r \ \forall \ r \in \mathbb{Q}$.

6 Vector Spaces

Definition 6.1. Let (F, \oplus, \odot) be a field. A vector space over F is a set V such that:

- (a) Given any two elements $v, w \in V$, there exists a unique element $v + w \in V$ called its sum. (This + may not be the same as \oplus).
- (b) Given an $a \in F$ and a $v \in V$, there is a unique element $av = a \cdot v \in V$ called the scalar product of a and v.

satisfying the following axioms:

- (V1) v + w = w + v for all $v, w \in V$.
- (V2) (v+w) + u = v + (w+u) for all $v, w, u \in V$.
- (V3) There is an element $0 \in V$ such that v + 0 = v for all $v \in V$.
- (V4) For all $v \in V$, there is a unique element $-v \in V$ called the additive inverse of v such that v + (-v) = 0.
- (V5) For all $a, b \in F$ and $v \in V$, we have

$$(a \odot b) \cdot v = a \cdot (b \cdot v)$$

Note that this implies $a \cdot (b \cdot v) = b \cdot (a \cdot v)$ by the commutativity of \odot .

(V6) Let 1_F be the multiplicative identity of F. Then,

$$1_F \cdot v = v$$
 for all $v \in V$

(V7) For all $a, b \in F$ and $v \in V$, we have

$$(a \oplus b) \cdot v = a \cdot v + b \cdot v$$

(V8) For all $a \in F$ and $v, w \in V$, we have

$$a \cdot (v + w) = a \cdot v + a \cdot w$$

We call the elements of F scalars and the elements of V vectors.

Proposition 6.2 (Vector properties). Let V be a vector space over F. Then the following hold:

- (a) V has a unique additive identity.
- (b) $0_F v = 0_V$ for all $v \in V$.
- (c) $a0_V = 0_V$ for all $a \in F$.
- (d) Each $v \in V$ has a unique additive inverse given by $(-1_F)v$.
- (e) If av = aw for some $a \in F \setminus \{0\}$ and $v, w \in V$, then v = w.

Definition 6.3 (Subspace). Let V be a vector space over some field F. A subset $S \subseteq V$ is a (linear) *subspace* of V if the following hold:

- (a) $0_V \in S$.
- (b) If $v, w \in S$, then $v + w \in S$.
- (c) If $a \in F$ and $v \in S$, then $av \in S$.

These properties together imply that S is also a vector space over F.

S is said to be a proper subspace of V if $S \neq V$ but also $S \neq \{0_V\}$.

Definition 6.4 (Span of finite sequences). Let $v_1, v_2, \ldots, v_m \in V$ be a finite sequence of vectors. A linear combination of v_1, v_2, \ldots, v_m is any vector of the form

$$v = a_1 v_1 + a_2 v_2 + \dots + a_m v_m,$$

where $a_1, a_2, \ldots, a_m \in F$. The *span* of the finite sequence v_1, v_2, \ldots, v_m is the set of all linear combinations of v_1, v_2, \ldots, v_m . That is,

$$\operatorname{span}(v_1, v_2, \dots, v_m) = \left\{ \sum_{j=1}^m a_j v_j : a_j \in F \right\}.$$

Definition 6.5 (Span of sets). Let $S \subseteq V$ be a nonempty set. The *span* of the S is the set

span
$$S = \{v \in V : \exists a_1, \dots, a_n \in F$$

and distinct $v_1, \dots, v_n \in S$
such that $v = a_1v_1 + \dots + a_nv_n\}.$

Or

$$\operatorname{span} S = \bigcup_{\emptyset \neq \Lambda \subseteq \text{finite} S} \operatorname{span} \Lambda.$$

span \emptyset is defined to be $\{0\}$.

Definition 6.6 (Basis). Given a vector space V over F, a basis is a subset $B \subseteq V$ such that

- (a) B is a spanning set, i.e., V = span(B).
- (b) B is linearly independent.

Corollary 6.7. Let V be a finite dimensional vector space over a field F. Let S be a finite spanning set of V. Then S contains as a subset a basis of V.

Corollary 6.8. Every finite dimensional vector space has a basis.

Proposition 6.9. Let $L \subseteq V$ be linearly independent. Then for some $v \in V$, $L \cup \{v\}$ is linearly independent iff $v \notin \operatorname{span}(L)$.

Corollary 6.10. Let V be a finite dimensional vector space. Let $L \subseteq V$ be a finite linearly independent set. Then there exist finitely many vectors $w_1, \ldots, w_m \in V$ such that $L \cup \{w_1, \ldots, w_m\}$ is a basis.

Theorem 6.11. Let V be a finite dimensional vector space. Let $S, L \subseteq V$ be such that S is a spanning set and L is linearly independent. Then

$$\#L \leq \#S$$
.

Corollary 6.12. Every (finite) basis of a finite dimensional vector space has the same size.

Corollary 6.13. Let S, L, V be as in the previous theorem. If #L = #S, then both are bases of V.

Corollary 6.14 (Finite Basis of FDVS). Every basis of a finite dimensional vector space is finite.

Definition 6.15 (Dimension). Let V be a finite dimensional vector space. We define the length of any of its bases to be the *dimension* of V.

Proposition 6.16. Let V be a finite dimensional vector space. Let W be a subspace of V. Then W is finite dimensional and $\dim(W) \leq \dim(V)$.

Proposition 6.17. Let $T \in \mathcal{L}(V, W)$. Then $N(T) = \{0\}$ iff T is an injective transformation.

Theorem 6.18 (Rank-Nullity Theorem). Let $T \in \mathcal{L}(V, W)$, where V is a finite-dimensional vector space. Then

$$\dim(N(T)) + \dim(R(T)) = \dim(V).$$

Corollary 6.19. If dim $W < \dim V$, then there is no injective linear transformation from V to W.

Corollary 6.20. Let $T \in \mathcal{L}(V, W)$ where dim $V = \dim W$. Then the following are equivalent:

- (a) T is surjective.
- (b) T is injective.
- (c) T is invertible as a linear transformation. That is, there exists $T^{-1} \in \mathcal{L}(W,V)$ such that $T^{-1}T = I_W$ and $TT^{-1} = I_V$.