

Data Mining 資料探勘

Evaluation

RETRIEVAL/PREDICTION EVALUATION

Introduction

- Type of evaluation
 - Functional analysis phase, and Error analysis phase
 - Performance evaluation

- Performance evaluation
 - Response time/space required
- Retrieval performance evaluation
 - The evaluation of how precise is the answer set
 - Or so-call Answer? Result? Ground truth?

Recall and Precision (for retrieval)

- Recall:
 - The fraction of the relevant documents (R) which has been retrieved
- Precision:
 - The fraction of the retrieved documents (A) which is relevant

Data Mining

Precision versus recall curve

 \square $R_q = \{d3, d5, d9, d25, d39, d44, d56, d71, d89, d123\}$

Ranking for query q:

1.d ₁₂₃ *	6.d ₉ *	11.d 38
2. d 84	7.d 511	12.d48
3. d 56*	8.d 129	13.d250
4. d 6	9.d 187	14.d11
5.d8	10.d ₂₅ *	15.d3*

- P=100% at R=10%
- P= 66% at R=20%
- P= 50% at R=30%

Usually based on 11 standard recall levels: 0%, 10%, ..., 100%

Precision versus recall curve

□ For a single query

Top-k precision / Precision at k (P@k)

- Precision evaluation in a ranking list
- □ The precision value of the top-k results
- □ Top-1, 2, 5, 10, ... / P@1, P@2, P@5, P@10, ...
- Frequently used in search engine evaluation

1.d ₁₂₃ *	6.d 9*	11. d 38	P@1= 100%
2.d ₈₄	7.d 511	12.d48	P@2= 50%
3.d ₅₆ *	8.d 129	13.d250	P@3= 66%
4. d 6	9.d 187	14.d11	P@5= 40%
5.d8	10.d ₂₅ *	15.d3*	P@10=40%

Average Over Multiple Queries

$$\overline{P}(r) = \frac{1}{N_q} \sum_{i=1}^{N_q} P_i(r)$$

- \square P(r)=average precision at the recall level r
- \square N_q = Number of queries used
- \square $P_i(r)$ =The precision at recall level r for the i-th query

Interpolated precision

 \square R_q={d₃,d₅₆,d₁₂₉}

```
1.d1236.d911.d382.d847.d51112.d483.d56*8.d129*13.d2504.d69.d18714.d115.d810.d2515.d3*
```

- P=33% at R=33%
- P= 25% at R=66%
- P= 20% at R=100%
- $P(r_i)=\max r_i \leq r \leq r_{i+1}P(r)$

Interpolated precision

□ Let r_i , $j \in \{0, 1, 2, ..., 10\}$, be a reference to the j-th standard recall level

Single Value Summaries

- Average precision versus recall:
 - Compare retrieval algorithms over a <u>set of example queries</u>
- Sometimes we need to compare individual query's performance
 - Average precision可能會隱藏演算法中不正常的部分
 - □ 可能需要知道, 兩個演算法中,對某特定query的 performance為何
- Need a single value summary
 - The single value should be interpreted as a <u>summary of the</u> <u>corresponding precision versus recall curve</u>

MAP: mean average precision

- Average of the precision value obtained for the top
 k documents, each time a relevant doc is retrieved
- Avoids interpolation, use of fixed recall levels
- MAP for query collection is arithmetic ave.
 - Macro-averaging: each query counts equally

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} P(R_{jk})$$

Single Value Summaries

- Average Precision at Seen Relevant Documents
 - Averaging the precision figures obtained after each new relevant document is observed.
 - **Example:** (1+0.66+0.5+0.4+0.3)/5=0.57
 - 此方法對於很快找到相關文件的系統是相當有利的 (相關文件被排在越前面, precision值越高)
- R-Precision (break-even point)
 - The precision at the R-th position in the ranking
 - $lue{ }$ R: the total number of relevant documents of the current q (total number in R_q)
 - E.g., RP=0.33 in the previous example

R-Precision vs. MAP

- MAP practice
 - System1 RNRNN NNNRR
 - System2 NRNNR RRNNN
 - What is the MAP of each system?
 - And their RP?

MRR: Mean Reciprocal Rank

the <u>multiplicative inverse</u> of the rank of the first correct answer

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\operatorname{rank}_i}.$$

Query	Results	Rank	MRR
1	XXO	3	1/3
2	$X \cap X$	2	1/2
3	OXX	1	1

Precision-Recall Averages

-- for multiple categories

Microaveraging

$$P^{\mu} = \frac{\sum_{c=1}^{k} TP_c}{\sum_{c=1}^{k} (TP_c + FP_c)}$$

$$R^{\mu} = \frac{\sum_{c=1}^{k} TP_c}{\sum_{c=1}^{k} (TP_c + FN_c)}$$

Macroaveraging

$$P^M = \frac{1}{K} \sum_{c=1}^K P_c$$

$$P^{M} = \frac{1}{K} \sum_{c=1}^{K} P_{c}$$

$$R^{M} = \frac{1}{K} \sum_{c=1}^{K} R_{c}$$
重視種類

Precision Histograms

- Use R-precision measures to compare the retrieval history of two algorithms through visual inspection
- $\square RP_{A/B}(i) = RP_A(i) RP_B(i)$

Summary Table Statistics

- □ 將所有query相關的single value summary 放在table 中
 - the number of queries,
 - total number of documents retrieved by all queries,
 - total number of relevant documents were effectively retrieved when all queries are considered
 - total number of relevant documents retrieved by all queries...

Search Result Comparison (polling)

	I ANGCINIOD IID TSU					
Rank			LAMIS-LN-CB-HR-TW			HITS
	\Box	Ans	URL		Ans	URL
1	554	•	/wp-dyn/articles/A4931-2002Apr17.html	65	\circ	/wp-dyn/sports/leaguesandsports/nhl/
2	131	\circ	/wp-srv/front.htm	66	•	/wp-dyn/articles/A5164-2002Apr17.html
3	1	\circ	/	397	•	/wp-dyn/articles/A5101-2002Apr17.html
4	484	\circ	/wp-dyn/print/sports/inside/	398	•	/wp-dyn/articles/A5731-2002Apr18.html
5	9	\circ	/wp-dyn/sports/	399	•	/wp-dyn/articles/A4954-2002Apr17.html
6	420	\circ	/wp-dyn/sports/leaguesandsports/nba/	405	\circ	/wp-dyn/sports/leaguesandsports/mlb/
7	405	\circ	/wp-dyn/sports/leaguesandsports/mlb/	420	\circ	/wp-dyn/sports/leaguesandsports/nba/
8	319	\circ	/wp-dyn/print/metro/	67	•	/wp-dyn/articles/A4919-2002Apr17.html
9	286	0	/wp-dyn/world/latestap/	396	•	/wp-dyn/articles/A4942-2002Apr17.html
10	7	0	/wp-dyn/world/	394	•	/wp-dyn/articles/A4713-2002Apr17.html
11	160	•	/wp-dyn/metro/traffic/	467	•	/wp-dyn/articles/A4887-2002Apr17.html
12	314	•	/traffic	478	•	/wp-dyn/articles/A4712-2002Apr17.html
13	4	•	/wp-dyn/metro/traffic/index.html	480	•	/wp-dyn/articles/A4823-2002Apr17.html
14	184	•	/ac2/wp-dyn/metro/traffic	481	•	/wp-dyn/articles/A5475-2002Apr17.html
15	23	\circ	/wp-dyn/digest/	390		/wp-dyn/sports/leaguesandsports/nba/19992000/
16	8	\circ	/wp-dyn/metro/	400	•	/wp-dyn/articles/A4955-2002Apr17.html
17	10	\circ	/wp-dyn/business/	391	\circ	/wp-dyn/sports/leaguesandsports/nfl/20002001/
18	543	\circ	/wp-dyn/business/latestap/	388	\circ	/wp-dyn/sports/leaguesandsports/mlb/2000/
19	6	0	/wp-dyn/nation/	389	\circ	/wp-dyn/sports/leaguesandsports/mls/2000/
20	229	\circ	/wp-dyn/nation/specials/attacked/	393	\circ	/wp-dyn/sports/leaguesandsports/wnba/2000/
(): a	O: a TOC page					

right answer

wrong answer

Precision and Recall 的適用性

- □ Maximum recall值的產生,需要知道所有文件相關的背景知識
- □ Recall and precision是相對的測量方式,兩者要合併使用比較適合
 - Application dependent
- Recall + Precision = Constant ?
 - Average of Recall and Precision

Alternative Measures

$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

The Harmonic Mean, F-measure (Rijsbergen, 1979)
$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

$$F_{\beta} = \frac{1 + \beta^2}{\frac{\beta^2}{\text{Recall}} + \frac{1}{\text{Precision}}} = (1 + \beta^2) (\text{Precision*Recall}) / (\beta^2 * \text{Precision} + \text{Recall})$$

- 加入喜好比重 (effectiveness measure)
- The E Measure-

$$E(j) = 1 - \frac{1 + b^2}{\frac{b^2}{r(j)} + \frac{1}{P(j)}}$$

- \Box b=1, E(i)=F(i)
- b>1, more interested in precision
- b<1, more interested in recall

F-measure examples

Method	Precision	Recall	average	F-1
1	0.5	0.6	0.55	0.545
2	0.4	0.7	0.55	0.509

Method	Precision	Recall	average	F-1
1	0.4	0.7	0.55	0.509
2	0.5	0.7	0.60	0.583
3	0.4	0.8	0.60	0.533
4	0.45	0.7	0.575	0.547

F_1 and other averages

User-Oriented Measure

- □ 假設:Query與使用者有相關,不同使用者有不同的 relevant docs
 - Coverage=|Rk|/|U|
 - Novelty= $|R_{\upsilon}|/(|R_{\upsilon}|+|R_{k}|)$
- ◆Coverage越高,系統 找到使用者期望的文 件越多
- ◆Noverlty越高,系統 找到許多使用者之前 不知道相關的文件越 多

Alternative Measures / confusion matrix (contingency matrix?)

FP: type I error, alpha error

FN: type II error, beta error

|*R*a|=TP TN

Relevant Docs

Recall (sensitivity) = |Ra| / |R| = TP / (TP + FN)

Precision = |Ra| / |A| = TP / (TP + FP)

Accuracy = (TN + TP) / |N| (For balanced domains)

classification error, E = 1 - A

Specificity = TN / (TN + FP) (negative recall)

(not useful for Web search, TN is always so large)

Document

An example (10000 sick + 10000 healthy)

		HIV Infected			
		+	-		
		9990	10		
ELISA	+	(TP)	(FP)		
ELISA		10	9990		
	-	(FN)	(TN)		
		10,000	10,000		
		TP+FN	FP+TN		
		Sensitivity =	Specificity=		
		TP/(TP+FN)	TN/(FP+TN)		
		9990/(9990+10)	9990/(9990+10)		
		=.999 or 99.9%	=.999 or 99.9%		

2% :Sick 20/ Healthy 980

	+	-
+	8	10
-	12	970

Sensitivity: 8 / (8 + 12)

Specificity: 970 / (970+10)

A sensitivity of 100% means that the test recognizes all sick people as such A specificity of **100%** means that the test recognizes all healthy people as healthy

Limitation of Accuracy

- □ Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- □ If a model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS				
	C(i j)	Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)		
	Class=No	C(Yes No)	C(No No)		

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
	•	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
	•	60	250

Accuracy = 80%

Cost = 3910

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	250	45
	-	5	200

Accuracy = 90%

Cost = 4255

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

Count	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	а	b	
	Class=No	С	d	

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

ROC curve

- □ receiver operating characteristic (ROC,接收器運作指標曲線)
- □ 起源研究軍事雷達的敵我偵 測能力,1954年情報理論研討 會
- is a graphical plot of the sensitivity vs. (1 specificity) for a binary classifier system as its discrimination threshold is varied
 - TPR (TP/(TP + FN)) vs. FPR (FP/(FP + TN))

(predict)	Relevant	
Answer	1	+
-	TN	FN
+	FP	TP
Data Milli		ta iviii iii i

ROC curve

- equivalently by plotting the fraction of true positives vs. the fraction of false positives.
- the area under the ROC curve, or "AUC".
- What's the meaning of the dotted line?
- If we don't know all negative data / positive data?

Wikipedia: http://en.wikipedia.org/wiki/ Receiver_operating_characteristic

ROC curve: example

(ROC Graphs: Notes and Practical Considerations for Researchers, Tom Fawcett 2004)

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	\mathbf{p}	.8	12	\mathbf{n}	.39
3	\mathbf{n}	.7	13	\mathbf{p}	.38
4	\mathbf{p}	.6	14	\mathbf{n}	.37
5	\mathbf{p}	.55	1 5	\mathbf{n}	.36
6	\mathbf{p}	.54	1 6	\mathbf{n}	.35
7	\mathbf{n}	.53	17	\mathbf{p}	.34
8	\mathbf{n}	.52	18	\mathbf{n}	.33
9	\mathbf{p}	.51	19	\mathbf{p}	.30
10	\mathbf{n}	.505	20	\mathbf{n}	.1

0.9 0.8 0.7 0.6 0.5 40.4 0.3 0.18 Infinity 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 False positive rate

ROC curve -- issue 1

- An attractive property: ROC curves are insensitive to changes in class distribution (Pattern Recognition letters 2006)
- TPR and FPR are all strict columnar ratio

ROC curve -- issue 2

 ROC measures the ability of a classifier to produce good relative scores.

A good classifier need only produce relative accurate scores that serve to discriminate positive and negative

instances

Inst	Class		Score
no.	True	Нур	_
1	P	Y	0.99999
2	P	Y	0.99999
3	P	Y	0.99993
4	p	Y	0.99986
5	P	Y	0.99964
6	p	Y	0.99955
7	n	Y	0.68139
8	n	Y	0.50961
9	n	N	0.48880
10	n	N	0.44951

Questions

Q:What is the relationship between the value of F1 and the break-even point?

- Q: Prove that the F1 is equal to the Dice coefficient of the retrieved and relevant document sets.
 - \square Dice(X, Y)=2|X \cap Y|/|X|+|Y|

Questions

- Q:What is the relationship between the value of F1 and the break-even point?
- \square A: at break-even point F1=P=R.
- Q: Prove that the F1 is equal to the Dice coefficient of the retrieved and relevant document sets.
 - □ Dice(X, Y)= $2|X\cap Y|/|X|+|Y|$
- □ A:
 - □ F1=2PR/(P+R), P=tp/(tp+fp), R=tp/(tp+fn) \rightarrow F1=2tp/(2tp+fp+fn)
 - |x| = tp + fp, |y| = tp + fn Dice(x, y)=tp/(2tp+fp+fn)

TAP-K: Threshold Average Precision

(bioinformatics, 2010 May)

- a measure of retrieval designed for bioinformatics
- ROC_n curve
 - Pooled negative data
- □ E-value added

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out (LOOCV): k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Test of Significance

- □ Given two models:
 - \square Model M1: accuracy = 85%, tested on 30 instances
 - \square Model M2: accuracy = 75%, tested on 5000 instances
- □ Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Need statistically evaluation to compare different models under different tests

How to evaluate a ranked list?

- The ground truth is ranked / partially preferred
- DCG: Discounted cumulative gain
 - Kalervo Jarvelin, ACM TOIS 2002
 - measures the usefulness, or gain, of a document based on its position in the result list
- Correlation coefficient measurement
 - Person's Correlation coefficient
 - Kendall-tau correlation coefficient (1938)
 - Cohen's Karpa correlation coefficient (1960)

DCG: Discounted cumulative gain

- measures the usefulness, or gain, of a document based on its position in the result list.
- □ The gain is accumulated cumulatively
 - from the top of the result list to the bottom
 - discounted at lower ranks
- □ CG (cumulative gain) at a particular rank position p is defined as $CG_p = \sum rel_i$
 - \blacksquare rel_i is the graded relevance of the result at position i
 - □ Independent with the result order

Discounted CG at a position p is defined as $DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

Dependent with the result order

- DCG without score
 - Use ranks as default scores
 - For example
 - Ground truth ranking: abcde
 - Result ranking: adecb \rightarrow 52134

$$DCG_k = \sum_{i=1}^k \frac{2^{rel_i} - 1}{\log_2(i+1)}$$

Another discounted, score functions

DCG example

- □ D1, D2, D3, D4, D5 with relevance score 2, 1, 0, 2, 0 (2: highly relevance, 1: relevance, 0: non-relevance)
- DCG₅ of this list = $2 + (1/1 + 0/\log_2 3 + 2/\log_2 4 + 0/\log_2 5)$ = 2 + 1 + 1 = 4
- □ Ideal order (2,2,1,0,0 perfect) IDCG₅= $2 + 2 + 1/\log_2 3 = 4.63$
- □ NDCG=Normalized DCG₅= DCG₅ / IDCG₅ = 4/4.63 = 0.86
- □ What are NDCGs of lists (1, 2, 2, 0, 0) and (2, 1, 0, 2, 0)?

Kendall-tau

- measure the association between two measured quantities
- \square (#concordant #discordant) / (n(n+1)/2)
- □ E.g.,
 - □ Ground truth: 12345, Result list: 21534
 - #concordant = 7, #discordant = 3, Kendall-tau = (7-3)/10 = 0.4
 - Try another list 21345

Discordant pairs:{1,2}, {3,5}, {4,5}

- Sensitive to few bad ranked results
- □ Compare: Rand Index

$$R=rac{a+b}{a+b+c+d}=rac{a+b}{inom{n}{2}}$$

Cohen's Kappa correlation coefficient

measures the agreement between two raters who each classify N items into C mutually exclusive categories

 $K = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)}$

- Pr(a): relative observed agreement among raters
- Pr(e): the hypothetical probability of chance agreement (random agreement)
- k=1 complete agreement
- \square Pr(e) up, then k down
- Change C to fit your application

Cohen's Kappa correlation coefficient

- □ Agreement Pr(a) = (10+15)/30=0.83
- Pr(e)
 - \square P(A=Y)=10/30=0.33
 - \square P(B=Y)=15/30=0.5
 - \square P(A=Y, B=Y) = 0.33*0.5 = 0.17
 - \square P(A=N,B=N) = 0.66*0.5 = 0.33
 - Arr Arr Pr(e) = 0.17 + 0.33 = 0.5
- \square K = (0.83–0.5) / (1-0.5) = 0.66

			В		
		Y	N		
Α	Y	10	0		
	N	5	15		

Poor agreement = Less than 0.20
Fair agreement = 0.20 to 0.40
Moderate agreement = 0.40 to 0.60
Good agreement = 0.60 to 0.80
Very good agreement = 0.80 to 1.00

Cohen's Kappa correlation coefficient

Inconsistent example

1	Y	N
Υ	45	15
Ν	25	15

2	Y	N
Υ	25	35
Ν	5	35

- \square Pr(a) = 0.6 in two cases
- \square Pr₁(e) = 0.54, Pr₂(e) = 0.46
- $\mathbf{k}_1 = 0.13, \mathbf{k}_2 = 0.26$

Applicability

Applicability

- For each following evaluation criteria, please briefly describe ONE prediction system in which the criterion is important.
- NDCG
- Recall
- □ Top-1 precision
- □ F1
- Novelty

REFERENCE COLLECTION

KDD CUP (http://www.kdd.org/kddcup/)

- KDD Cup is the annual Data Mining and Knowledge Discovery competition organized by ACM SIGKDD from 1997.
- □ Topics: data mining, machine learning, information retrieval / extraction
 - 2019:Transportation recommendation, temporal relational prediction, RL for Malaria
 - 2018: Fresh Air: forecast air quality indices (AQIs) of the future 48 hours
 - 2017: Highway tollgate traffic flow prediction
 - 2016: Given a research field, predict the most influential institutes
 - 2015: Predicting dropouts in MOOCs (1st place \$10,000)
 - 2014: Predicting Excitement at DonorsChoose.org (NLP data inside)
 - 2013: author classification / prediction from citation (NLP data inside)
 - 2012: following prediction / CTR prediction for Ads (largest data)
 - 2011: Music rating prediction
 - 2010: Student performance evaluation
 - 2009: Customer relationship prediction
 - 2008: Breast cancer
 -
 - 2002: BioMed document; plus gene role classification

KDDCUP 2011 Music Rating Prediction Dataset

- Contains large number of users/items/time data
 - 260 million ratings
 - 1 million users
 - □ 0.5 million items
 - 8 years
- □ 4 types of item
 - Genres, Artist, Album, Track

Dataset

- Goal
 - Predict user's ratings in the last four times
 - Predict a item will be rated or not

NTU

model	# used	best	average	worst	contribution
MF	81	22.90	23.92	26.94	0.3645
pPCA	2	24.46	24.61	24.75	0.0014
pLSA	7	24.83	25.53	26.09	0.0042
R-Boltz. machine	8	22.80	24.75	26.08	0.0314
k-NN	18	22.79	25.06	42.94	0.0298
regression	10	24.13	28.01	35.14	0.0261

Val.-Set Blending 95

KDDCup 2012

- □ 50 days data of 2 M active users from 4.25 億微博用戶
- □ 6 千被推荐用户、3 億條推薦紀錄及其 3 M follow actions
- 70 M training records, 30 M testing records

Kaggle (www.kaggle.com)

- The Home of DataScience
- Prediction problem / competition platform

Completed • \$2,000 • 472 teams

KDD Cup 2014 - Predicting Excitement at DonorsChoose.org

Thu 15 May 2014 - Tue 15 Jul 2014 (3 months ago)

Dashboard **▼**

Private Leaderboard - KDD Cup 2014 - Predicting Excitement at DonorsChoose.org

This competition has completed. This leaderboard reflects the final standings.

See someone using multiple accounts?

#	Δ1w	Team Name * in the money	Score 2	Entries	Last Submission UTC (Best – Last Submission)
1	†1	'STRAYA 4 *	0.67814	213	Tue, 15 Jul 2014 00:21:34 (-0.2h)
2	11	DataRobot 4 *	0.67320	220	Tue, 15 Jul 2014 23:32:50 (-2d)
3	†30	ChaoticExperiments (KIRAN R) *	0.67297	69	Tue, 15 Jul 2014 19:35:05 (-2d)
4	Į1	dkay & bmax & James King 🎩	0.66473	239	Tue, 15 Jul 2014 23:26:11 (-2.1d)
5	11	Triskelion,Yan, KazAnova & Shize 🎩	0.65949	225	Tue, 15 Jul 2014 23:29:42 (-0.4h)
6	↑35	Giulio, orchid, Luca & Ben 🏴	0.65919	264	Tue, 15 Jul 2014 18:51:21 (-0.4h)
7	↑2	:-)	0.65372	123	Tue, 15 Jul 2014 22:41:25 (-4d)

UCI Data Repository

- UC Irvine Machine Learning Repository
 - http://archive.ics.uci.edu/ml/
 - https://www.kaggle.com/uciml
- □ 351 datasets
- □ Famous datasets
 - □ Iris: 1105860 hits
 - Adult: 766735 hits
 - □ Wine: 584298 hits

