Lecture 22 - Analog to Digital Conversion

Wednesday, April 22, 2020 2:37 PM

1550ES W/SAMPLING

- (D QUANTIZATION
- (SAMPLING RATE
- 3 JITSER
- A ALIASING

$$V_{1N_1} > V_{1N_2}$$
 $V_{007} = +V_{SS}$
 $V_{1N_2} > V_{1N_1}$ $V_{007} = -V_{SS}$
 $PAMPS$
 $Z_{1N} = \infty$
 $Z_{007} = 0$
 $A_V = \infty$

O R
$$= 7 \frac{V_R}{8}$$
 $= 8 \frac{V_R}{8}$ $= 8 \frac{V_$

3bit Flash ADC

DIRECT CONVERSION OR "FLASH" AD C

Fig 1.2 Block Diagram of Flash ADC [17]

SUCCESSIVE APPROXIMOTION

(D COUNTING. REGISTER COUNTS FROM ZEES

UNTIL OP AMP COMPARATOR

OUTPUT GOES FROM HIGH TO LOW

** VARIABLE CONVERSION TIME

OBIT-WISE- START WITH ASB AND WOCK TOWARDS LSB CONSTANT CONVERSION TIME.

REAL-LIFE SIGNALS CHANGE WITH TIME
WE NEED TO KEEP VIN DURING THE CONVERSION PROCESS
WE MAKE A COPY OF THE SIGNAL

WE MAKE A COPY OF THE SIGNAL

ADC Conceptual Configuration

