

The Lattice-based Post-quantum Cryptography The case study of CRYSTAL-Kyber

11/9/2023 PHAM-LAB

Outline

- 1 Post-quantum Cryptography Competition
- 2 Lattice and it's hard-problems
- 3 The case study of CRYSTAL-Kyber
- 4 Accelerating by Number Theoretic Transform
- Discussion

>>> Post-quantum cryptography (PQC) process timeline by NIST*

*NIST: National Institute of Standards and Technology

>>> NIST Post-quantum cryptography algorithm performance [1]

[1] Joseph, David, et al. "Transitioning organizations to post-quantum cryptography." Nature 605.7909 (2022): 237-243.

>>> The initial PQC algorithms to be standardized

The NIST round 3 was concluded on July 5, 2022

Public-Key Encryption/KEMs					
Finalists	Finalists Alternates				
CRYSTAL-Kyber ⁽¹⁾	BIKE ⁽²⁾				
	Classic McEliece ⁽²⁾				
	HQC ⁽²⁾				
	SIKE ⁽⁴⁾				

Digital Signatures						
Finalists	Alternates					
CRYSTAL-Dilithium(1)						
FALCON(1)						
SPHINCS ⁺⁽³⁾						

(1) Lattice-based

(2) Code-based

(3) Hash-based

(4) Isogeny-based

>>> The initial PQC algorithms to be standardized

The NIST round 3 was concluded on July 5, 2022

Public-Key Encryption/KEMs					
Finalists	nalists Alternates				
CRYSTAL-Kyber ⁽¹⁾	BIKE ⁽²⁾				
	Classic McEliece ⁽²⁾				
	HQC ⁽²⁾				
	SIKE ⁽⁴⁾				

Digital Signatures							
Finalists Alternates							
CRYSTAL-Dilithium(1)							
FALCON(1)							
SPHINCS ⁺⁽³⁾							

(1) Lattice-based

(2) Code-based

(3) Hash-based

(4) Isogeny-based

>>> What is a lattice?

- ☐ Lattices are basically a regular-spaced grid of a set of points that are infinite in number.
- ☐ The "basis" vectors are used to present any point in the lattice grid that forms a lattice.

$$B = \{b_o, b_1\} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \in \mathbb{Z}^2$$

$$L = \{a_0b_0 + a_1b_1\}$$

Example:
$$3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

"Good" & "Bad" basis

- ☐ A Good basis
 - The basis consists of short length of vectors
 - The vectors are being orthogonal to each other.
- ☐ A Bad basis
 - The basis consists of long length of vectors
 - The vectors are being non-orthogonal to each other.

>>> What hard-problem is?

Closest Vector Problem (CVP):

Given a lattice and a randomly chosen point P, the CVP asks to find the closest lattice point to challenge P.

Assume
$$P = \binom{29}{12}$$
; $L_{bad} = \{a_0 \binom{51}{48} + a_1 \binom{142}{133}\}$; $L_{good} = \{a_0 \binom{3}{0} + a_1 \binom{0}{3}\}$

☐ Good basis case

$$\begin{cases} 3a_0 + 0a_1 = 29 \\ 0a_0 + 3a_1 = 12 \end{cases} \rightarrow \begin{cases} a_0 = 9.6 \\ a_1 = 4 \end{cases} \rightarrow (a_0, a_1) = (10.4)$$

Calculates P=
$$10 {3 \choose 0} + 4 {0 \choose 3} = {30 \choose 12} \rightarrow \text{near} {29 \choose 12}!$$

■ Bad basis case:

$$\begin{cases} 51a_0 + 142a_1 = 29 \\ 48a_0 + 133a_1 = 12 \end{cases} \Rightarrow \begin{cases} a_0 = -65.24 \\ a_1 = 23.64 \end{cases} \Rightarrow (a_0, a_1) = (-65, 24)$$

Calculates P=
$$-65 \binom{51}{48} + 24 \binom{142}{133} = \binom{93}{72}$$
 incorrect!

>>> The basic idea behind lattice-based cryptosystem

- ☐ An asymmetric key encryption with a public key for encryption and a private key for decryption
 - Keys

- Public keys:
$$B_{bad} = \left\{ \begin{pmatrix} 51\\48 \end{pmatrix}, \begin{pmatrix} 142\\133 \end{pmatrix} \right\}$$
; Private keys: $B_{good} = \left\{ \begin{pmatrix} 3\\0 \end{pmatrix}, \begin{pmatrix} 0\\3 \end{pmatrix} \right\}$

Encryption

- Message: "HI" (H=43, I = -15)
$$\rightarrow$$
 Step 1: $43 \binom{51}{48} - 15 \binom{142}{133} = \binom{63}{69}$

Step 2:
$$\binom{63}{69} + \binom{-0.4}{0.2} = \binom{62.6}{69.2}$$

Decryption

Step 1:
$$a_0 {3 \choose 0} + a_1 {0 \choose 3} = {62.4 \choose 69.2} \rightarrow (a_0, a_1) = (20.8, 23.07) \approx (21, 23)$$

Step 2:
$$21 \binom{3}{0} + 23 \binom{0}{3} = \binom{63}{69}$$

Step 3:
$$a_0 \binom{51}{48} + a_1 \binom{142}{133} = \binom{63}{69} \rightarrow (a_0, a_1) = (43, -15)$$
 "HI"

>>> Learning with errors (LWE)

- \square Given uniform matrix $A \in \mathbb{Z}_q^{k \times l}$
- ☐ Given "noise distribution" *X*
- \square Given samples $A \times s + e$, with vector $e \leftarrow X$
- ☐ Require find *s*

$$k = \begin{bmatrix} A \\ A \end{bmatrix} \times \begin{bmatrix} S \\ \end{bmatrix} = \begin{bmatrix} t \\ \end{bmatrix}$$
Quite easy!

>>> LWE Encryption

Random matrix A, small noises (s, e)

Public key \leftarrow (A, t)

Secret key $\leftarrow s$

Encryption

$$+$$
 e_1 $=$ u

$$+ e_2 + m = V$$

>>> LWE Encryption

Decryption

$$\mathbf{v} - \mathbf{u} = \mathbf{m} + \mathbf{s}$$

>>> LWE and its variants

$$\begin{pmatrix} a_{00} & \cdots & a_{0n} \\ \vdots & \ddots & \vdots \\ a_{n0} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} s_0 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_0 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} t_0 \\ \vdots \\ t_n \end{pmatrix}$$

$$\begin{pmatrix} a_0 & a_n & \dots & a_1 \\ a_1 & a_0 & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & \dots & a_0 \end{pmatrix} \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} t_0 \\ t_1 \\ \vdots \\ t_n \end{pmatrix}$$

$$\begin{pmatrix} A_{00}(X) & \cdots & A_{0k}(X) \\ \vdots & \ddots & \vdots \\ A_{k0}(X) & \cdots & A_{kk}(X) \end{pmatrix} \begin{pmatrix} s_0(X) \\ \vdots \\ s_k(X) \end{pmatrix} + \begin{pmatrix} e_0(X) \\ \vdots \\ e_k(X) \end{pmatrix} = \begin{pmatrix} t_0(X) \\ \vdots \\ t_k(X) \end{pmatrix}$$

☐ Learning with error

- Storage: $O(n^2)$

- Computation: $O(n^2)$

☐ Ring-Learning with error

- Storage: O(n)

- Computation: O(nlogn)

☐ Module-Learning with error

- Storage: $O(k^2n)$ - Computation: $O(k^2nlogn)$

>>> CRYSTAL-Kyber

☐ Built on the difficulty of the M-LWE problem.

Step 1: Chose a random matrix $\mathbf{A} \in \mathbb{R}_q^{n \times k}$, a random small vector $\mathbf{s} \in \mathbb{R}_q^k$, and a random small error $\mathbf{e} \in \mathbb{R}_q^n$

Step 2: Define $b = A \times s + e$

 \square All operation over the ring $R_q = \mathbb{Z}_q[X]/(X^n+1)$, where X^n+1 is the n-th cyclotomic polynomial.

Parameters for Round 3 – Kyber submission.

	Sec. Level	n	k	q	(η_1,η_2)	(d_u, d_v)	<i>pk</i> (B)	<i>sk</i> (B)	ct (B)
Kyber512	1	256	2	3329	(3,2)	(10,4)	800	1632	768
Kyber786	3	256	3	3329	(2,2)	(10,4)	1184	2400	1088
Kyber1024	5	256	4	3329	(2,2)	(11,5)	1568	3168	1568

[2] CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation (version 3.02)

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

>>> CRYSTAL-Kyber

Algorithm 1. Kyber CPA Key Generation

- 1: **Input:** Random $d \in \{0, 1\}^{256}$
- 2: $(\rho, \sigma) \leftarrow SHA3-512(d)$
- 3: $\hat{A} \in R_q^{k \times k} \leftarrow \text{RejectionSampler}(\rho)$
- 4: $\mathbf{s} \in R_q^k \leftarrow \text{CBDSampler}_{\eta_1}(\sigma, 0)$
- 5: $e \in R_q^{\bar{k}} \leftarrow \text{CBDSampler}_{\eta_1}(\sigma, k)$
- 6: $\hat{\boldsymbol{s}} \leftarrow \text{NTT}(\boldsymbol{s})$
- 7: $\hat{e} \leftarrow NTT(e)$
- 8: $\hat{t} \leftarrow \hat{A} \circ \hat{s} + \hat{e}$
- 9: **return** $(pk=(\rho, \text{Encode}_{12}(\hat{t})), sk=\text{Encode}_{12}(\hat{s}))$

Algorithm 2. Kyber CPA Encryption

- 1: **Input:** $pk = (\rho, t_{enc})$, message $m \in \{0, 1\}^{256}$, random $r \in \{0, 1\}^{256}$
- 2: $\hat{t} \leftarrow \text{Decode}_{12}(t_{enc})$
- 3: $\hat{A} \in R_q^{k \times k} \leftarrow \text{RejectionSampler}(\rho)$
- 4: $\mathbf{r} \in R_q^{k^2} \leftarrow \text{CBDSampler}_{\eta_1}(r, 0)$
- 5: $e_1 \in \hat{R}_a^k \leftarrow \text{CBDSampler}_{\eta_2}(r,k)$
- 6: $e_2 \in R_q \leftarrow \text{CBDSampler}_{\eta_2}(r, 2k)$
- 7: $\hat{r} \leftarrow NTT(r)$
- 8: $\boldsymbol{u} \leftarrow \operatorname{NTT}^{-1}(\boldsymbol{\hat{A}}^T \circ \boldsymbol{\hat{r}}) + \boldsymbol{e_1}$
- 9: $v \leftarrow \text{NTT}^{-1}(\hat{\boldsymbol{t}}^T \circ \hat{\boldsymbol{r}}) + e_2 + \text{Decompress}_q(\text{Decode}_1(m), 1)$
- 10: **return** $c = (\text{Encode}_{d_u}(\text{Compress}_q(u, d_u)), \text{Encode}_{d_v}(\text{Compress}_q(v, d_v))$

Algorithm 3. Kyber CPA Decryption

- 1: Input: $sk = (\hat{s})$, ciphertext $c = (c_1, c_2)$
- 2: $\boldsymbol{u} \leftarrow \text{Decompress}_q(\text{Decode}_{d_u}(c_1), d_u)$
- 3: $v \leftarrow \text{Decompress}_q(\text{Decode}_{d_v}(c_2), d_v)$
- 4: $\hat{\boldsymbol{s}} \leftarrow \text{Decode}_{12}(sk)$
- 5: $m \in \{0,1\}^{256} \leftarrow \text{Encode}_1(\text{Compress}_q(v-\text{NTT}^{-1}(\hat{\boldsymbol{s}}^T \circ \text{NTT}(\boldsymbol{u})),1))$
- 6: return m

$$v - s^{T} \times u$$

$$= (t^{T} \times r + e_{2} + m') - (s^{T} \times (A^{T} \times r + e_{1}))$$

$$= ((A \times s + e)^{T} \times r + e_{2} + m') - (s^{T} \times (A^{T} \times r + e_{1}))$$

$$= (A \times s)^{T} \times r + e^{T} \times r + e_{2} + m' - s^{T} \times A^{T} \times r - s^{T} \times e_{1}$$

$$= m' + (e^{T} \times r - s^{T} \times e_{1} + e_{2})$$

"Small" Kyber

 \square Assuming $R_{q=17} = \mathbb{Z}_{17}[X]/(X^4 + 1)$.

Keys

$$s = (-x^3 - x^2 + x, -x^3 - x), \qquad e = (x^2, x^2 - x)$$

$$A_{2\times2} = \begin{pmatrix} 6x^3 + 16x^2 + 16x + 11 & 9x^3 + 4x^2 + 6x + 3 \\ 5x^3 + 3x^2 + 10x + 1 & 6x^3 + 1x^2 + 9x + 15 \end{pmatrix}$$

$$t = As + e = (16x^3 + 15x^2 + 7) \qquad 10x^3 + 12x^2 + 11x + 16$$

- Private key: s
- Public key: (A,t)

"Small" Kyber

 \square Assuming $R_{q=17} = \mathbb{Z}_{17}[X]/(X^4 + 1)$.

Encryption

$$r = (-x^3 + x^2 + x$$
 $x^3 + x^2 - 1), e_1 = (x^2 + x$ $x^2), e_2 = -x^3 - x^2$

Message:
$$m_b = (1011)_2 = x^3 + x + 1$$

$$Up - scale: m = \left[\frac{q}{2}\right] m_b = 9x^3 + 9x + 9$$

$$\begin{cases} \mathbf{u} = A^T r + e_1 = (11x^3 + 11x^2 + 10x + 3) & 4x^3 + 4x^2 + 13x + 11 \\ \mathbf{v} = t^T r + e_2 + m = 7x^3 + 6x^2 + 8x + 5 \end{cases}$$

>>> "Small" Kyber

 \square Assuming $R_{q=17} = \mathbb{Z}_{17}[X]/(X^4 + 1)$.

Decryption

$$r = (-x^3 + x^2 + x, x^3 + x^2 - 1), e_1 = (x^2 + x, x^2), e_2 = -x^3 - x^2$$

Calculate:
$$m' = v - s^T \times u = m + (e^T \times r - s^T \times e_1 + e_2)$$

= $7x^3 + 14x^2 + 7x + 5$
 $\approx 9x^3 + 0x^2 + 9x + 9$

Down-scale: $m = \frac{1}{9}m' = x^3 + 0x^2 + x + 1 = (1011)_2$

>>> Hardware implementation

Algorithm 1. Kyber CPA Key Generation

```
1: Input: Random d \in \{0, 1\}^{256}

2: (\rho, \sigma) \leftarrow \text{SHA3-512}(d)

3: \hat{A} \in R_q^{k \times k} \leftarrow \text{RejectionSampler}(\rho)

4: s \in R_q^k \leftarrow \text{CBDSampler}_{\eta_1}(\sigma, 0)

5: e \in R_q^k \leftarrow \text{CBDSampler}_{\eta_1}(\sigma, k)

6: \hat{s} \leftarrow \text{NTT}(s)

7: \hat{e} \leftarrow \text{NTT}(e)
```

9: **return** $(pk=(\rho, \text{Encode}_{12}(\hat{t})), sk=\text{Encode}_{12}(\hat{s}))$

Algorithm 2. Kyber CPA Encryption

8: $\hat{t} \leftarrow \hat{A} \circ \hat{s} + \hat{e}$

```
1: Input: pk = (\rho, t_{enc}), message m \in \{0, 1\}^{256}, random r \in \{0, 1\}^{256}

2: \hat{\boldsymbol{t}} \leftarrow \text{Decode}_{12}(t_{enc})

3: \hat{\boldsymbol{A}} \in R_q^{k \times k} \leftarrow \text{RejectionSampler}(\rho)

4: \boldsymbol{r} \in R_q^k \leftarrow \text{CBDSampler}_{\eta_1}(r, 0)

5: \boldsymbol{e_1} \in R_q^k \leftarrow \text{CBDSampler}_{\eta_2}(r, k)

6: \boldsymbol{e_2} \in R_q \leftarrow \text{CBDSampler}_{\eta_2}(r, 2k)

7: \hat{\boldsymbol{r}} \leftarrow \text{NTT}(\boldsymbol{r})

8: \boldsymbol{u} \leftarrow \text{NTT}^{-1}(\hat{\boldsymbol{A}}^T \circ \hat{\boldsymbol{r}}) + \boldsymbol{e_1}

9: \boldsymbol{v} \leftarrow \text{NTT}^{-1}(\hat{\boldsymbol{t}}^T \circ \hat{\boldsymbol{r}}) + \boldsymbol{e_2} + \text{Decompress}_q(\text{Decode}_1(m), 1)

10: \boldsymbol{return} \ \boldsymbol{c} = (\text{Encode}_{d_u}(\text{Compress}_q(u, d_u)), \ \text{Encode}_{d_u}(\text{Compress}_q(v, d_v))
```

Algorithm 3. Kyber CPA Decryption

```
1: Input: sk = (\hat{s}), ciphertext c = (c_1, c_2)

2: u \leftarrow \text{Decompress}_q(\text{Decode}_{d_u}(c_1), d_u)

3: v \leftarrow \text{Decompress}_q(\text{Decode}_{d_v}(c_2), d_v)

4: \hat{s} \leftarrow \text{Decode}_{12}(sk)

5: m \in \{0, 1\}^{256} \leftarrow \text{Encode}_1(\text{Compress}_q(v - \text{NTT}^{-1}(\hat{s}^T \circ \text{NTT}(u)), 1))

6: return m
```

- ☐ Randomness generation (Kekkak-SHA-3)
- **□** Polynomial operations: multiplication

>>> NTT-based polynomial multiplication

Number Theoretic Transform (NTT)

$$h = f \cdot g = NTT^{-1}(NTT(f) \circ NTT(g))$$

❖ Fast NTT algorithms

>>> All operands are modular arithmetic

☐ Start point

Multiplication modulus q expression

$$a \times b = c \equiv x \mod q$$
 $(0 \le a, b, x < q; 0 \le c < q^2)$

Methods	Configuration	Notes
Barret reduction	Soft-hardware	Requires more multiplications
Montgomery reduction	Soft-hardware	Montgomery domain, requires more multiplications
K-Red reduction	Full hardware	Fast & low hardware resources, limited in NTT operations
The special form of $q = 2^{12} - 2^9 - 2^8 + 1$ $\Rightarrow 2^{12} \equiv 2^9 - 2^8 + 1 \pmod{q}$	Full hardware	Combinational logics, complex design

>>> NTT transformations

(a) $NTT_{No \to Bo}^{CT}$ (b) $INTT_{Bo \to No}^{GS}$

>>> Iterative NTT accelerator

Fig. Unified butterfly Configuration (CT+GS)

- ☐ Avoid zero padding in NTT processes, [3]
- ☐ Merging pre- & post-processing [4],[5]

- [3] Lyubashevsky, et. al. "A Modest Proposal for FFT Hashing". In Proceedings of the Fast Software Encryption (FSE), Switzerland, 10–13 February 2008; pp. 54–72.
- [4] Roy, S.S. et al. "Compact Ring-LWE Cryptoprocessor". (CHES), Busan, South Korea, 23–26 September 2014; pp. 371–39
- [5] Pöppelmann, T et. al. "High-Performance Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers." In Proceedings of the Progress in Cryptology (LATINCRYPT), Guadalajara, Mexico, 23–26 August 2015; pp. 346–365

>>> Iterative NTT accelerator

- ☐ Lightweight: single butterfly core [6]
- ☐ Balance: 2x1, 2x2 butterfly cores [7][8]
- ☐ **High-performance**: 16, 32 butterfly core [9] []

The drawback

- ☐ Requires temporary memory.
- ☐ Complex memory access patten.

Fig. Ping-pong memory scheme [6]

[11] N. Gupta, et. al. "Lightweight hardware accelerator for post-quantum digital signature crystals-dilithium," IEEE TCAS I: Regular Papers, 2023.

>>> Iterative NTT accelerator

- [6] Y. Xing et. al., "A compact hardware implementation of cca-secure key exchange mechanism crystals-kyber on fpga," IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 328–356, 2021.
- [7] M. Bisheh-Niasar, et. al., "Instruction-set accelerated implementation of crystals-kyber," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 11,pp. 4648–4659, 2021.
- [8] V. B. Dang, et al., "High-speed hardware architectures and fpga benchmarking of crystals-kyber, ntru, and saber," IEEE Transactions on Computers, vol. 72, no. 2, pp. 306–320, 2022.
- [9] F. Yaman, et al., "A hardware accelerator for polynomial multiplication operation of crystals-kyber pqc scheme," in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 1020–1025.
- [10] Y. Geng, et al., "Rethinking Parallel Memory Access Pattern in Number Theoretic Transform Design," in *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 70, no. 5, pp. 1689-1693, May 2023, doi: 10.1109/TCSII.2023.3260811.

>>> Pipelined NTT accelerator

- ☐ The straight forward control pattern
- ☐ High-performance
- ☐ Free temporary memory

The drawback

- \square Requires $\log n$ butterfly cores for n-degree polynomial
- ☐ Double the number of re-order unit.

Pipelined NTT Architectures

The radix-2 Multipath Delay Commutator NTT/INTT pipelined architecture for CRYSTAL-Kyber, [7]

[12] Z. Ni, et. al., "HPKA: A High-Performance CRYSTALS-Kyber Accelerator Exploring Efficient Pipelining," in *IEEE Transactions on Computers 2023*, doi: 10.1109/TC.2023.3296899.

5. Discussion

- >>> Introduction about lattice-based cryptography
- >>> Lattice hard problems
- >>> CRYSTAL-Kyber case study
- >>> NTT-based Polynomial Multiplication Hardware implementations

Thank you for your listening

NGUYEN TRONG HUNG^{D1} (グエン チョン フン)

11/9/2023 PHAM-LAB