Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 17: Controllo in retroazione dallo stato

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

In questa lezione

- ▶ Proprietà di sistemi lineari retroazionati dallo stato
- ightharpoonup Controllo in retroazione dallo stato: caso m=1
- ightharpoonup Controllo in retroazione dallo stato: caso m>1
- ▶ Stabilizzabilità

Retroazione dallo stato ed equivalenza algebrica

$$\Sigma^{(K)}: x(t+1) = (F + GK)x(t) + Gv(t)$$

Come si modificano le matrici del sistema per effetto di un cambio di base T?

$$F' = T^{-1}FT$$
, $G' = T^{-1}G$, $K' = KT$

Forma di Kalman del sistema retroazionato dallo stato

$$\Sigma^{(K)}: x(t+1) = (F + GK)x(t) + Gv(t)$$

$$F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}, \quad K_K \triangleq KT = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$$

$$T^{-1}x = \begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} + G_1K_1 & F_{12} + G_1K_2 \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} v(t)$$

Il sottosistema non raggiungibile non è influenzato dalla retroazione!

Controllo in retroazione per sistemi a singolo ingresso (m=1)

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$

$$\Sigma^{(K)}$$
: $x(t+1) = (F + gK)x(t) + gv(t)$

Quando è possibile assegnare a F + gK degli autovalori desiderati?

Teorema: Per ogni polinomio

$$p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0, \ p_i \in \mathbb{R},$$

esiste una matrice di retroazione $K \in \mathbb{R}^{1 \times n}$ tale che $\Delta_{F+gK}(\lambda) = p(\lambda)$ se e solo se il sistema Σ è raggiungibile.

Allocazione degli autovalori (m = 1): metodo diretto

$$\Sigma$$
: $x(t+1)=Fx(t)+gu(t), \quad g\in\mathbb{R}^{n imes 1}, \quad \Sigma$ raggiungibile $\Sigma^{(K)}$: $x(t+1)=(F+gK)x(t)+gv(t)$

Come fare ad assegnare a F + gK degli autovalori desiderati?

$$p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0 = \text{polinomio con autovalori desiderati}$$

Risolvere
$$\Delta_{F+gK}(\lambda)=\det(\lambda I-F-gK)=p(\lambda)$$
 con incognita K

Sistema di equazioni lineari con incognite k_1,\ldots,k_n , $K=\begin{bmatrix}k_1&\cdots&k_n\end{bmatrix}$!

Esempio

$$x(t+1) = egin{bmatrix} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix} u(t)$$

Retroazione K^* tale che il sistema retroazionato abbia autovalori $\lambda_1=0,\ \nu_1=3?$

$$\mathcal{K}^* = \begin{bmatrix} -rac{1}{2} & -rac{3}{2} & -rac{1}{2} \end{bmatrix}$$

Allocazione autovalori (m = 1): osservazioni

- 1. Il procedimento permette di allocare gli autovalori di F + gK a nostro piacimento! L'unico vincolo è la raggiungibilità di Σ e il fatto che se un autovalore è complesso deve esserci anche il suo complesso coniugato.
- 2. Se il sistema Σ non è raggiungibile allora possiamo cambiare tramite retroazione solo gli autovalori di F_{11} (matrice di stato del sottosistema raggiungibile).
- **3.** Se tutti gli autovalori vengono allocati in zero $(p(\lambda) = \lambda^n)$ tutti i modi del sistema retroazionato convergono a zero in tempo finito. Il controllore in questo caso viene detto controllore dead-beat!
- **4.** Il procedimento rimane invariato per sistemi a tempo continuo, ma in questo caso non si possono avere controllori dead-beat.

Allocazione autovalori (m > 1)

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$, $G \in \mathbb{R}^{n \times m}$, $m > 1$
 $\Sigma^{(K)}$: $x(t+1) = (F + GK)x(t) + Gv(t)$

Se Σ è raggiungibile, è possibile assegnare a F+GK degli autovalori desiderati?

$$F + GK = F + \begin{bmatrix} g_1 & \cdots & g_m \end{bmatrix} \begin{bmatrix} k_1 \\ \vdots \\ k_m \end{bmatrix} = F + g_1k_1 + \cdots + g_mk_m$$

Idea: Selezionare un singolo ingresso (una sola riga k_i non nulla) ed usare la procedura vista prima per il caso singolo ingresso (m = 1)!

Problema: Anche se il sistema Σ è raggiungibile, non è detto che lo sia usando un singolo ingresso !!

Esempio

$$x(t+1) = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} u(t)$$

Il sistema è raggiungibile? È raggiungibile da un ingresso?

Il sistema è raggiungibile, ma non è raggiungibile da un ingresso.

Allocazione autovalori (m > 1): Lemma di Heymann

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$, $G \in \mathbb{R}^{n \times m}$, $m > 1$
 $\Sigma^{(K)}$: $x(t+1) = (F + GK)x(t) + Gv(t)$

Se Σ è raggiungibile ma **non** da un ingresso, è possibile assegnare a F+GK degli autovalori desiderati?

Idea: Usare una retroazione preliminare che renda Σ raggiungibile da un ingresso!

Teorema: Se (F, G) è raggiungibile e se g_i è una colonna non nulla di G, esiste una matrice $M \in \mathbb{R}^{m \times n}$ tale che $(F + GM, g_i)$ è raggiungibile.

Esempio (cont.'d)

$$x(t+1) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$

Retroazione K^* tale che il sistema retroazionato abbia autovalori $\lambda_1=1/2,\ \nu_1=2?$

Prendendo $M = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ il sistema è raggiungibile dal primo ingresso g_1 .

$$K^* = M + \begin{bmatrix} 1 & -1/4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1/4 \\ 1 & 0 \end{bmatrix}.$$

G. Baggio

Allocazione autovalori (m > 1): osservazioni

- 1. Esistono algoritmi per trovare la matrice di retroazione preliminare M. Tuttavia, generando una matrice $M \in \mathbb{R}^{m \times n}$ "a caso" questa renderà Σ raggiungibile da un qualsiasi ingresso quasi certamente (con probabilità 1)!
- 2. Un approccio alternativo è usare il metodo diretto (cioè risolvere $\Delta_{F+GK}(\lambda) = p(\lambda)$ con incognite gli elementi di K) anche nel caso m > 1. In questo caso, però il sistema di equazioni da risolvere potrebbe essere non lineare!
- **3.** L'approccio tramite lemma di Heymann ci permette di allocare gli autovalori della matrice F + GK a nostro piacimento anche per m > 1, ma ha delle limitazioni. Ad esempio, usando un singolo ingresso non si possono ottenere controllori deadbeat che portano a zero lo stato in un numero di passi < n. Usando più ingressi invece è possibile costruire controllori dead-beat che portano a zero lo stato in un numero di passi < n! Tramite tecniche di controllo più avanzate che sfruttano tutti gli ingressi di controllo si possono ottenere quindi prestazioni di controllo migliori.

Stabilizzabilità a t.d.

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Gli autovalori "non raggiungibili" di F hanno modulo < 1.
- 3. La matrice PBH [zI F G] ha rango n, $\forall z$ con $|z| \ge 1$.

Stabilizzabilità a t.c.

$$\Sigma : \dot{x}(t) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Gli autovalori "non raggiungibili" di F hanno parte reale < 0.
- 3. La matrice PBH [zI F G] ha rango n, $\forall z$ con $\Re[z] \geq 0$.