ДЗ-1. Задачи для самостоятельного решения.

Механика. Кинематика: законы движения, уравнения траекторий и кинематических связей

Задача 1.

Катер пересекает речку, двигаясь перпендикулярно течению со скоростью $v_{\rm K}$, постоянной относительно воды. Ширина реки a. Величина скорости течения реки u нарастает от берега к середине реки в соответствии с параболическим законом, изменяясь от 0 до $u_{\rm max}$. Записать уравнение траектории катера, время его движения τ и величину сноса катера d вниз по течению от места старта до места остановки на противоположенном берегу реки.

<u>Примечание:</u> выбрать декартову систему координат, жестко связанную с берегом реки и с точкой старта катера с берега (см. Рис). Катер считать материальной точкой, а берега реки параллельными.

Ответ:

Получив законы движения в координатной форме x(t) и y(t) и исключая из них время, находим уравнение траектории

$$x(y) = \frac{4u}{3v_{\nu}a^2} \left(-y^3 + \frac{3}{2}y^2a\right).$$

Время движения τ катера равно: $y(t=\tau)=a$, следовательно $\tau=\frac{a}{v_{\kappa}}$.

Для сноса катера имеем: $d = x(\tau) = \frac{2u}{3v_{\kappa}}a$.

Задача 2.

Рассматривается твёрдый стержень AB, концы которого могут свободно скользить по сторонам прямого угла AOB (см. Рис.). Записать уравнение траектории произвольной точки M стержня AB, которая делит его длину на части a и b.

Ответ:

Искомое уравнение траектории имеет вид:

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Это уравнение эллипса с полуосями, совпадающими по направлению с осями выбранной системы координат и равными a и b. В случае, когда a = b, эллипс, очевидно, вырождается в окружность.

Задача 3.

Пусть материальная точка в полярной системе координат движется в соответствии с уравнением траектории вида $r(\phi) = 2a(1 + \cos(\phi))$, причём полярный угол ϕ меняется со временем линейно, т.е. $\phi(t) = bt$. Константы a и b положительны. Выяснить, как зависят от времени модуль скорости и модуль ускорения материальной точки.

Ответ:

Искомые модули скорости и ускорения материальной точки равны:

$$v = \sqrt{v_r^2 + v_{\varphi}^2} = 2ab\sqrt{2 + 2\cos(bt)}, \quad a = \sqrt{a_r^2 + a_{\varphi}^2} = 2ab^2\sqrt{5 + 4\cos(bt)}.$$

<u>Замечание:</u> материальная точка в момент времени $t_k = \frac{\pi}{h}(2k+1), k = 0,1,2,...$

Находится в начале (полюсе) полярной системы координат, имеет нулевую скорость, а ускорение, по модулю равное $a(t_k) = 2ab^2$, направлено противоположно полярной оси.

*Залача 4.

Как известно, Марс движется вокруг Солнца по эллиптической орбите в соответствии с законом Кеплера: $p = r(1 - \varepsilon \cos(\varphi))$, где параметр эллипса p,

эксцентиситет ε и секторальная скорость $\sigma = \frac{1}{2}r^2\dot{\phi}$ считаются постоянными

(заданными) величинами. Вычислить проекции ускорения Марса в зависимости от полярных координат r и φ .

Примечание: Марс и Солнце считаются материальными точками. Солнце находится в одном из фокусов эллипса. Полярная система координат вводится в плоскости движения Марса и её полюс совпадает с Солнцем. Полярная ось направлена вдоль одной из осей эллипса (вдоль оси X).

<u>Ещё:</u> согласно второму закону Кеплера секторальная скорость σ планеты равна скорости изменения площади, описываемой радиус-вектором материальной точки, представляющей планету. Эта скорость считается величиной постоянной.

При решении данной задачи использовать материал задач, разобранных в классе в полярной системе координат.

Ответ:

$$a_r = \ddot{r} - r\dot{\varphi}^2 = -4\sigma^2 \frac{r-p}{r^3 p} - r\frac{4\sigma^2}{r^4} = -4\frac{\sigma^2}{r^2 p}.$$

Таким образом, ускорение планеты, движущейся по эллиптической траектории, направлено к Солнцу, не зависит от полярного угла ф и обратно пропорционально квадрату расстояния до Солнца. Ещё раз

$$a_r = -4 \frac{\sigma^2}{r^2 p}, \quad a_{\varphi} = 0.$$

*Задача 5.

Автомобиль движется со скоростью v_1 в горизонтальном направлении (вдоль оси X). Затем он начинает тормозить с ускорением a. Определить траекторию капель дождя на боковом стекле автомобиля, если известно, что капли дождя падают на землю вертикально вниз, скорость их относительно земли постоянна и равна v_2 .

Примечание: Рекомендуется выбрать систему координат XY, связанную с Землёй так, чтобы ось X была направлена горизонтально вдоль ускорения трамвая, а ось Y — вертикально вниз. Также необходимо выбрать вторую систему координат X'Y', связанную со стеклом трамвая так, чтобы её оси X' и Y'были сонаправлены с осями X и Y. Время в обеих системах отсчитывается от момента начала торможения трамвая.

Ответ:

Как обычно, уравнение траектории находится из закона движения капель в координатной форме путём исключения времени t:

$$x' = v_1 \frac{y'}{v_2} - a \frac{{y'}^2}{2v_2^2}.$$

Видно, что траектория в системе координат X'Y', связанной со стеклом трамвая, является параболой с вершиной в точке с координатами:

$$x' = \frac{v_1^2}{2a}, \quad y' = \frac{v_1 v_2}{a}.$$