L'HOPITALOVI IZREKI

G. L'Hôpital 1661-1704

Cauchyju imr

Lema (poplosem lagrangew int). Naj bosta fing wrini

funkciji ma [a,b], odvidljin ma (a,b) in maj relja $g'(x)\neq 0 \ \forall x\in (a,b)$. Tedaj obstaja stenilo ce(a,b)davelja $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$

Upomba. Zug(x)=x dobino Lagranger int.

Johns. Ker je $g'(x)\neq 0$ $\forall x\in (a,b)$ it lagrangeauga imma dobimo $g(b)-g(a)\neq 0$.

Naj vo $k:=\frac{f(b)-f(a)}{g(b)-g(a)}$

Definizajuro funtajo Fs predpisous

F(x) = (f(x) - f(a)) - k(g(x) - g(a))

Fx werna ma [a,b] in odvedegiva ma (a,b). F(a) = 0 in F(b) = 0.

Po Pollorein i vretu obstaja ce (a,b), da je F(c)=0.

 $0 = F'(c) = f'(c) - kg'(c), \dagger, \quad k = \frac{f'(c)}{g'(c)}$

mr 1 (l'Hopitaloro pravilo). Naj bosta sing odvidljin funziji ma (a, b) in deunio, da (i) $g(x) \neq 0$, $g'(x) \neq 0$ $\forall x \in (a,b)$, (ii) lui f(x)=0, luig(x)=0 a obstaja lunta B=lun f(x), potem obstaja. A = ling(x) in velja A = B. Posdru primer: a sta da pria advada va definirana in wound in g'(a) \$0 => A = f'(a). Opombe. 1) Sterilo b ni pomembro: lahro je poljulno blizu a. 2) Analogen resultat velja za len in abojestranske limite. Dobur. Définirans fla)=gla)=0. Petereno xe (a, b). Fundaji fing sta iveni na [a,x] in odnodljin na (a,x). To levi obstaja Cx E(a,x), daje 1 d. 270. 3570 xe (a, a+5): $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(cx)}{g'(cx)}$ 13/(x) - B] < E. aje x ∈ (a, a+d) =) cx ∈ (a, a+d) Ko gre x Ja, gn Cx Ja, odtod ient sledi. 1816. Priner: 1) lui $\frac{8\pi x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \frac{\cos 0}{1} = 1$ 2) lim $\left(\frac{1}{x^2} - \frac{\cos 2x}{x^2}\right) = \lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$ = lun Zxin2x = 2.

LHZ

Naj vosta jing odvedljiri ma (a,b), g'(x) +0

+xe(a,b)in lung(x)=0 (ali-0). (i obstaja 3= lim f(x), potem obstaja Indi A = lim f(x) in relja A = B. Douve de de lui fil obstaja. Ilbereuro E>O. Po depririji limite obstaja iterilo b', a<b<b , da relja $B-E < \frac{1(c)}{g'(c)} < B+E \quad \forall c \in (a,b').$ Provino Xe(a,b). To lemi relya $\frac{f(x)-f(b')}{g(x)-g(b')} = \frac{f'(c)}{g'(c)}$ 2a met c, x < c < b'. Odtodie prijenje ocene sledi: $3-2 < \frac{f(x)-f(b')}{g(x)-g(b')} < 3+2$ in NSE $x \in (a,b')$. Ker je luin $g(x)=\infty$, obstaja $b''\in(a,b')$, da za vsak $x\in(a,b'')$ velja: g(x)70, g(x)-g(b')>0. Necnarost (x) poumorium $z = \frac{g(x) - g(b')}{g(x)} > 0$: $(B-E)(1-\frac{g(b')}{g(x)})<\frac{f(x)-f(b')}{g(x)}<(B+E)(1-\frac{g(b')}{g(x)})$ $\frac{f(x)}{g(x)} - \frac{f(b')}{g(x)} =) (B-\epsilon)(1 - \frac{g(b')}{g(x)}) + \frac{f(b')}{g(x)} < \frac{f(x)}{g(x)} < \frac{f(x)}{g(x)$ $Ko \times \lambda \alpha, g(x) \rightarrow \omega$, eato $\frac{g(b')}{g(x)} \rightarrow 0$, $\frac{f(b')}{g(x)} \rightarrow 0$ in dobuio: $\frac{g(x)}{g(x)} \in (B-H)$ $(B-E) \le \lim_{x \to a} \frac{f(x)}{g(x)} \le \lim_{x \to a} \frac{f(x)}{g(x)} \le B + E$. Kerje to us za VE>0, lim f(x) obstuja in je enaku B.

Innieri. 1)
$$\lim_{x \to 0} \frac{\log x}{\lg(x-\frac{\pi}{2})} = \lim_{x \to 0} \frac{1}{\log^2(x-\frac{\pi}{2})} = \lim_{x \to 0} \frac{\cos^2(x-\frac{\pi}{2})}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x} = 0$$

2) $\lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{e^{-\frac{1}{x}} \cdot \frac{1}{x}}{1} = 0$
 $\lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{1}{e^{\frac{1}{x}}} = \lim_{x \to 0} \frac{1}{e^{\frac{1}{x}}(-\frac{1}{x})} = 0$

Podobno: $\lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{1}{e^{\frac{1}{x}}(-\frac{1}{x})} = 0$

Rodobno: $\lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{1}{e^{\frac{1}{x}}(-\frac{1}{x})} = 0$
 $\lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{1}{e^{\frac{1}{x}}(-\frac{1}{x})} = 0$

Rodobno: $\lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{1}{e^{\frac{1}{x}}(-\frac{1}{x})} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{1}{x} = 0$

Rodobno: $\lim_{x \to 0} \frac{1}{x} = 0$

0.00: problitujemo v ulaner: $\lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1} = \lim_{x \to 0} \frac{1}{1} = \lim_{x \to 0} (-x) = 0.$

12322015

Posledica. Naj bosta jing odvedljini frukciji ma (A, w), $g(x)\neq 0$ in $g'(x)\neq 0$ in l_{x} in g(x)=0. Co obstaja l_{x} in g'(x), potem obstaja l_{x} obstaja l_{x} in $l_$ Dobar. Predpotamis labro, daje A>O. Naj bo F(t) = g(1/t) in G(t) = g(1/t) in $t \in (0, 1/A)$. Tedaj sta Fir G odvedljiri ma (0, 1/A). $\frac{T'(t)}{G'(t)} = \frac{f'(1/t)}{g'(1/t)}$ in $\frac{T(t)}{G(t)} = \frac{f(1/t)}{g(1/t)}$. Kort-00 1/6-700, podedica sadi ir iunka 1. todobus velja la ient 2.

frin logx x + 100

ALOVOO V GEONETRIJI UPORABA

PODAJANJE KRIVULJ

V kartenianh boordinatah: 1) Eksplicitus: Knimlja K je dana kot graf funkcije

f:[a,b] -> IR, toris

 $K = \Gamma_{J} = \{(x, f(x)); x \in [a, b]\}$.

2/ huplicitus: Knimlja K je dana kot množica revitu enache g(x,y)=0, bjer k $g: \mathbb{R}^2 \to \mathbb{R}$ dana funkcija. $K=\{(x,y)\in\mathbb{R}: g(x,y)=0\}$. 3) <u>Parametricuo</u>: Kninlja k je dana bot minorica tock

(x,y), hi so dolocene z x=d(t), y=B(t), bjer sta

 $\alpha, \beta: [t_0, t_1] \rightarrow \mathbb{R}$ dani funtaji.

 $K = \{(\alpha(x), \beta(x)); t \in [t_0, t_1]\}$.

t -> (x(t), B(t))=:F(t) je netonka fundaja.

huplicitai macin je bolj splošen od etoplicitanga (podarno lahko vec bring), parametricini je bolj splosen od unplicitnega (N. Nsakem čaru t, podamo lego točke na knimlji (x(x), y(d) Princer 1) y²= x³: implicativo podama knimlja mi graf mad alsciano osojo (je pa graf mad ordinativo orojo). parametricio: x=t² y=t³

Priner 2). knounce o orediscen v (0,0) in polmerou 1. simplicites: $x^2 + y^2 = a^2$ (mi graf, lato je me morano podati etroplicitus). x=acost y=asint , $t \in [0, 2\pi]$ parametricuo;

3) clipsa: \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1: \quad \text{x}_0 = a \cos t, \quad \text{y}_0 = \text{ksint}, \text{telo, Ca}.

4) hipervola: 2 - 4=1:

5) cibloida: valj botaluno po rami podlagi. K je unimlja, ki jo opise točta na plasču valja.

6) Navin knimljo, ki je podana $| = t^{2} - 1$ $| = t^{3} - t' | t \in \mathbb{R}$ = t(t-1)(t+1) = t(t-1)(t+1) $x(t)=t^{z}-1$ $y(t)=t^3-t^{-1}$ $t \in \mathbb{R}$

V plannih koordinatah Knimlja K je dana kot mnovila toch s polamina boordinatama (r, e), kjer je r=h(e) za neko funkcijo h:Lto, GJ->R: $K = \{(h(t)\cos t, h(t)\sin t); t \in [t_0, t_1]\}$. Primer. 0 = 1, 0 P= 4 Arhinedora spirala © 120 © (G) ECO Junaja. Pot v ramuni je produzava F= (A,B): I-> R2, kjer je I interval v R, «inßpa wern frukciji ma I. Tir (sled) pot je mnorica C=F(I)= {F(t); t \in I3. Fi parametrizacija knimbje C 18to brimljo labbo ddoano z rarliciumi parametrizacijami. (Po isti poti se pramitamo z raslicus hitrostys). Ministra Prestitava F je zverna €) d, Bsta zverni. Defincija. Pot F. I -> R2 je odvedljiva, ce sta komponenti 0,13 odvedljin ma I. Pot Fje navreda C' (werns odvedljin, verus diferencialilna), à sta d'in B wesus odvedyinina I. V tan primem: $F(t) := F'(t) = (\alpha'(t), \beta'(t)) = \lim_{t \to \infty} f(F(t+b) - F(t))$ F(t) F(t) se memije tangentni virtor poti F v točni F(t), tudi lutrostin virtor.

Int Naj bo F: I - R2 worns odvedljiva pet, to E I in F(t.) \$0. Dennis, da je & (t.) \$0. Pokem obstaja tar \$50, da lahko kriviljo K= { F(t); It-tol<03 Zapiseuro kot graf nere odvedljin funkcije y=f(x) mad ukwalom V otrog toche xo = X(to): $C = \{(x, f(x)); x \in U \}.$ Velja: f'(\a(t)) = \frac{3(t)}{\alpha(t)} za kt-to/\delta \frac{t}{to} \to whar Jenno, da je & (to)>0. l'otem je & v neti o'zolici to strogo marascapia, lato Za net δ 70 prestera internal $(t_0-\delta, t_0+\delta)$ bijektimo na internal $U = (\alpha(t_0-\delta), \alpha(t_0+\delta)) = (a,b)CIR$ Obstaja innerna prestitara t=b(x), x ∈ U, da je $\alpha(t) = \alpha(\delta(x)) = x, x \in U$ Definitarno $f(x) = \beta(\delta(x))$, $x \in U$. Tedaj vilja: $(x, f(x)) = (\alpha(t), \beta(t))$ za $t = \delta(x)$. Ker je $\zeta = \chi^{-1}$ odvedljiva, je f odvedljiva. Ker je $f(\alpha(t)) = \beta(t)$, je $f'(\alpha(t)) = \chi'(t) = \beta'(t)$. Opomba a je $\beta(t) \neq 0$ potem je χ obtatnograf nad χ obje. $= (1, \frac{1}{2})$ Tosledics. Naj bosta din B drabrat adridijin ma (to, ti) in demmio, da je $\dot{\alpha}(t) \neq 0$ en $t \in (t_0, t_1)$. Potem je funccija f 12

imha dvalnut odvodljiva ur velja; $f''(\alpha(t)) = \frac{\dot{\alpha}(t)\dot{\beta}(t) - \dot{\alpha}(t)\dot{\beta}(t)}{(\dot{\alpha}(t))^3}$ Déran. Verus: $\int (\alpha(x)) = \frac{\dot{\beta}(x)}{\dot{\alpha}(x)} \forall x$. Odvajumo: $f''(\alpha(k))\dot{\alpha}(k) = \frac{\beta(k)\dot{\alpha}(k) - \dot{\beta}(k)\dot{\alpha}(k)}{\dot{\alpha}(k)^2}$

Jefnicija. Naj bo F: I -> IR advedljiva pot. a je F(t)=0, je te I unitiona tocha presiran F. aje F(t) +0 jt&I regulama tocka prestikan F. le so vx tocke te I regulame toche, je F regulama parametrizacija lir migulame parametrianse je gladin kningz Enacha tangentema til poti F: El je t regularna tocka, je F(t) smeni vektor tangenke skori F(t), menal enacea: reletons $S \mapsto F(t) + S F(t)$ parametriara enada tangente: $X = \alpha(k) + \alpha \alpha(k)$ SER. $y = \beta(x) + \beta(x)$ elininizamo s in dobrnis implicito obliro encibe tangente $(x-\alpha(x))\beta(t)=(y-\beta(x))\alpha(t)$, orinours signished adstroined $\frac{x-\alpha(t)}{\dot{\alpha}(t)} = \frac{y-\beta(t)}{\dot{\beta}(t)}$ Eracha Momale smenni vertor: (-B(t), &(t)); dobuis $\frac{x - \chi(t)}{-\beta(t)} = \frac{y - \beta(t)}{\dot{\chi}(t)}$ ouroma $((x-\alpha(k))\dot{\alpha}(k) + (y-\beta(k))\dot{\beta}(k) = 0)$ T F(k) Fitt x=acost, y=asmt Primen: 1) knowica: x=-a suit, y=a cost Enach tangent: x-acost = y-a sunt a cost (x-acost)acost = (y-asont) (-asont) x cost + y smt = a

0405

Tangenta je odnima samo od tira poti in mi odnima od istin regulame parametrizacije: po mhu: $\alpha p \in \mathcal{F}: I \to \mathbb{R}^e$ w. odv. pot in $\mathcal{F} = (\alpha, \beta)$, à(to) +0: Potem obernja 570, da je K = (F(t); It-toKJ3={(x,f(x)); xeU3, bjer je Vorslien tocke Xo = X(to). langutu na KN tolli (Xolto), B(to)) unix

smeni solter (1, J'(x)), in mi odiven od ichin parametiracje.

Opombor. V kritiansk todah mi migno, da bi mela odvidljim pot Aangento:

1)
$$\alpha(t) = \begin{cases} 0, & t \leq 0 \\ k^2, & t \geq 0 \end{cases}$$

 $\beta(t) = \begin{cases} t^2, & t \leq 0 \\ 0, & t \geq 0 \end{cases}$

(x, p) je w. odv. pot.
Tir pohi

2)
$$\alpha(t)=t^3$$
 $\beta(t)=t^2$
 $y=\sqrt{x^2}$

3) $(k)=t^3$ B(t)=13 7