Power Amplifiers

Class B Class AB

Class B

The circuit

each transistor conducts for a half of every signal period

complementary pair push-pull arrangement

Operation

$$v_I \in (-0.7V; +0.7V)$$
 $T1 - (off)$, $T2 - (off)$ $v_O = 0V$

$$v_I \ge 0.7V \quad T1 - (on), T2 - (off)$$

$$v_O = v_I - v_{BE1} = v_I - 0.7V$$

$$i_0 > 0$$
 $i_{C1} = i_0$ $i_{C2} = 0$

$$v_{o \max} = V_{CC} - V_{CE \text{sat}} \approx V_{CC}$$

$$v_I \le -0.7V$$
 $T1 - (off), T2 - (on)$

$$v_O = v_I - v_{BE2} = v_I + 0.7V$$

$$i_O < 0$$
 $i_{C2} = -i_O$ $i_{C1} = 0$

$$v_{o \min} = -V_{CC} + V_{CE1sat} \approx -V_{CC}$$

Voltage transfer characteristic (VTC)

$$v_I \ge 0.7V$$
 $T1 - (on), T2 - (off)$
 $v_O = v_I - 0.7V$
 $v_{omax} = V_{CC} - V_{CEsat} \approx V_{CC}$

$$\begin{aligned} v_I &\leq -0.7 \text{V } T1 - (off), T2 - (on) \\ v_O &= v_I + 0.7 \text{V} \\ \hline v_{o\min} &= -V_{CC} + V_{CE1sat} \approx -V_{CC} \end{aligned}$$

Crossover distortions

Waveforms

Assume the signal magnitude sufficiently high to neglect the crossover distortions.

 $-V_{CC}$

Powers. Efficiency

$$\eta = \frac{P_O}{P_{POG}}$$

$$P_{PS}^{+} = \frac{1}{T} \int_{0}^{T} V_{CC} i_{C1}(t) dt = \frac{1}{T} \int_{0}^{T/2} V_{CC} \frac{\hat{V}_{o} \sin \omega t}{R_{L}} dt$$

$$P_{PS}^{+} = \frac{1}{T} \frac{V_{CC} \hat{V_o}}{R_L} \int_{0}^{T/2} \sin \frac{2\pi}{T} t dt$$

$$P_{PS}^{+} = \frac{1}{\pi} \frac{V_{CC} \hat{V_o}}{R_L}$$

$$P_{PS} = P_{PS}^{+} + P_{PS}^{-} = \frac{2}{\pi} \frac{V_{CC} V_{o}}{R_{L}}$$

For
$$\hat{V_o} = V_{CC}$$

$$P_{PS\max} = \frac{2}{\pi} \frac{V_{CC}^2}{R_L}$$

$$P_O = V_{Orms} I_{Orms} = \frac{\hat{V}_O^2}{2R_L}$$

For
$$\hat{V}_O = V_{CC}$$

$$P_{Omax} = \frac{V_{CC}^2}{2R_L}$$

Average efficiency: $\eta = \frac{P_O}{P_{PS}} = \frac{\hat{V}_O^2}{2R_L} \frac{\pi}{2} \frac{R_L}{V_{CC} \hat{V}_O} = \frac{\pi}{4} \frac{\hat{V}_O}{V_{CC}}$

Maximum average efficiency: for $\hat{V}_O = V_{CC}$ $\eta_{max} = \frac{\pi}{4} = 78.5\%$

The amplifying transistor

$$P_T = \frac{1}{2} \left(P_{PS} - P_O \right)$$

$$P_{T} = \frac{1}{2} (P_{PS} - P_{O})$$

$$P_{T} = \frac{1}{2} (P_{PS} - P_{O}) = \frac{1}{\pi} \frac{V_{CC} V_{o}}{R_{L}} - \frac{V_{o}^{2}}{4R_{L}}$$

$$\hat{V}_O = V_{CC}$$

Maximum efficiency:
$$\hat{V_O} = V_{CC}$$
 $P_T = \frac{1}{\pi} \frac{V_{CC}^2}{R_L} - \frac{\hat{V}_{CC}^2}{4R_L} = 0.068 \frac{\hat{V}_{CC}^2}{R_L}$

What is the maximum average power dissipated by a transistor depending on the output voltage magnitude?

$$\frac{dP_T}{d\hat{V}} = 0$$
 \Longrightarrow

$$\frac{dP_T}{d\hat{V}_o} = 0 \qquad \Longrightarrow \qquad \hat{V}_o = \frac{2}{\pi} V_{CC} = 0.64 V_{CC}$$

$$\hat{V}_{o} = 0.64 V_{CC}$$

Maximum average power:
$$\hat{V_o} = 0.64V_{CC}$$
 $P_{Tmax} = \frac{1}{\pi^2} \frac{V_{CC}^2}{R_L} \approx 0.1 \frac{V_{CC}^2}{R_L}$

Maximum instantaneous power:

$$\hat{V_o} = V_{CC}$$

$$\hat{V_o} = V_{CC}$$
 $p_{Tmax} = \frac{1}{4} \frac{V_{CC}^2}{R_I} = 0.25 \frac{V_{CC}^2}{R_I}$

$$i_{C \max} = \frac{V_{CC}}{R_I}$$
 $v_{CE \max} = 2V_{CC}$

Class AB

- Crossover distortion, specific to class B amplifier can be virtually eliminated

Class AB Amplifier. Basic Circuit

• biasing the complementary output transistors at a small output current

$$V_{Rigs} \approx 0.7 \mathrm{V}$$

$$I = I_S e^{\frac{V_{Bias}}{V_T}}$$

$$v_I$$
 - positive

$$v_O(t) = v_I(t) + V_{Bias} - V_{BEn} \approx v_I(t)$$

$$v_I$$
 - negative

$$v_O(t) = v_I(t) - V_{Bias} - V_{BEp} \approx v_I(t)$$

Voltage Transfer Characteristic (VTC)

$$v_O(t) = v_I(t)$$
$$v_O(t) = v_I'(t) + 0.7V$$

Solutions to generate V_{bias} ?

Biasing using Diodes

R should allow the currents in the diodes and in the bases of the transistors, even for maximum output current

$$V_{CC} = +15V$$
 $\hat{V}_{O} = 8V$ $\beta = 50$ $R_{L} = 100\Omega$, $I_{D1} = 1.5 \text{mA}$ $R = ?$, $I_{R} = ?$ (each R)

T is the driver transistor from previous amplifier stage

Biasing using $V_{\it BE}$ Multiplier

$$V_{BB} = \left(1 + \frac{R_1}{R_2}\right) V_{BE1}$$

Short-Circuit Protection

Protection against the effect of short-circuiting the output

Elements for short-circuit protection:

•
$$T_1$$
, R_{pn} – for $v_o > 0$ V

•
$$T_2$$
, R_{pp} – for $v_o \le 0$ V

When $v_0 > 0V$

If
$$R_{pn}i_O < 0.6V$$

 $T_1 - (off);$ $i_O = \frac{v_O}{R_L}$

 \triangleright If i_O increases,

when $R_{pn}i_O = 0.7V$

$$(V_{1} - (on); i_{omax} = \frac{V_{BE1,on}}{R_{pn}} = \frac{0.7V_{BP1,on}}{R_{pn}}$$

Short-Circuit Protection

- Effective in ensuring device safety
- Disadvantage: under normal operation up to 0.7V appears across each protection resistor. The voltage swing will be reduced by that much, in each direction
- Negative feedback, protection of the output transistor against thermal runaway

Illustration

$$_{Bias} = \frac{0.7 + 0.7 - 0.7}{0.1} = 7 \text{mA}$$

P - adjusts the biasing voltage between V_{BE} and $3.5V_{BE}$

C - in the bases of T_n and T_p :

same variable input voltage

$$i_{Omax} = 0.7A$$

Use of Compound Transistorswith Higher Current Gain

The Darlington *npn* configuration

• Necessary for high output currents

The compound *pnp* configuration preferred in IC

Problem

$$\pm V_{CC} = \pm 15 \text{N}$$

$$R_{L1} = 500 \Omega$$

$$R_{L2} = 50 \Omega$$

- a) What is the expression $v_O(v_i)$ for $v_i \in [-10V;10V]$? Plot the $v_O(v_i)$ VTC. What is the operating class of this amplifier? What is the maximum theoretical average efficiency?
- **b)** Plot $v_O(t)$ for: (1) $v_i(t) = 0.2\sin\omega t$ [V]; (2) $v_i(t) = 10\sin\omega t$ [V].
- c) For $v_i(t) = 10\sin\omega t$ [V], $v_O(t)$ can be well approximated by a sinewave (neglecting crossover distortions). Compute: the average output power, the average power consumption, and the average efficiency of the stage. Plot the collector-emitter voltage and collector current for T_1 and T_2 .
- d) Propose a solution to eliminate crossover distortion.