O comportamento de um dado reactor químico é modelado pelas equações diferenciais:

$$\begin{split} \frac{dC}{dt} &= -e^{\left(\frac{-\mathbf{b}}{T+273}\right)} \times C \\ \frac{dT}{dt} &= \mathbf{a} \times e^{\left(\frac{-\mathbf{b}}{T+273}\right)} \times C - \mathbf{b} \times (T-20) \end{split}$$

Usando os seguintes valores

t	С	T	a	b
tempo	concentração	temperatura	parâmetro operatório	parâmetro operatório
0	2.50000	25.00000	30.00000	0.50000

a) Calcule duas iterações da integração do modelo usando o **método de Euler**

iteração	t	С	T
0	0	2,50000	25,00000
1	0,25000	1,87605	43,09357
2	0.5	1,40778	54,25499