gym-traffic

Controlling traffic lights with Reinforcement Learning

Dominik Woiwode

24.03.2021

The Environment

- Street network as directed graph
 - The world consists of multiple intersections.
 - Intersections are connected with streets.
 - Intersections have traffic lights for each incoming street.
 - ► Traffic lights can either be **red or green**.
 - ► For each intersection there cannot be more than one green light.
 - ▶ **Vehicles** can spawn at some intersections with a predefined route.
 - Vehicles drive on streets and stop at red traffic lights.
 - ▶ Vehicles do not crash into each other.
- An Agent has to control the traffic lights.

"Traffic flow" should be maximized

gym-traffic 24.03.2021

Observationspace

- For each intersection *t*:
 - ► For each incoming street *s*:

$$\begin{cases} -1 & \text{if } |v(s)| = 0 \\ \sum_{v \in v(s)} \frac{v.pos}{|v(s)|} & \text{else} \end{cases}$$

 \rightarrow observation $\in \mathcal{R}^{n \times 1}$ with one entry for each (relevant) street

Observationspace

- For each intersection *t*:
 - ► For each incoming street *s*:

$$\begin{cases} -1 & \text{if } |v(s)| = 0 \\ \sum_{v \in v(s)} \frac{v.pos}{|v(s)|} & \text{else} \end{cases}$$

ightharpoonup observation $\in \mathcal{R}^{n \times 1}$ with one entry for each (relevant) street

Actionspace

- For each intersection *t*:
 - Index of green street
- → Multidiscrete Actionspace

Observationspace

- For each intersection *t*:
 - ► For each incoming street *s*:

$$\begin{cases} -1 & \text{if } |v(s)| = 0 \\ \sum_{v \in v(s)} \frac{v.pos}{|v(s)|} & \text{else} \end{cases}$$

 \rightarrow observation $\in \mathcal{R}^{n \times 1}$ with one entry for each (relevant) street

Actionspace

- For each intersection *t*:
 - ▶ Index of green street
- → Multidiscrete Actionspace

Reward

- r_1 Mean Velocity \forall vehicles
- r_2 Mean Acceleration \forall vehicles

$$r' = \frac{1}{|n_v|} \sum_{v \in world} v.velocity$$

$$r_1 = \frac{r' - 5}{5}$$

$$r_2 = \frac{r_{1,2} - r_{1,1}}{\Delta t}$$

Observationspace

- For each intersection *t*:
 - ► For each incoming street *s*:

$$\begin{cases} -1 & \text{if } |v(s)| = 0 \\ \sum_{v \in v(s)} \frac{v.pos}{|v(s)|} & \text{else} \end{cases}$$

 \rightarrow observation $\in \mathcal{R}^{n \times 1}$ with one entry for each (relevant) street

But:

- Requires knowledge about the street network
- Agent only works for a specific street network

Actionspace

- For each intersection *t*:
 - Index of green street
- → Multidiscrete Actionspace

Reward

- r_1 Mean Velocity \forall vehicles
- r_2 Mean Acceleration \forall vehicles

$$r' = \frac{1}{|n_v|} \sum_{v \in world} v.velocity$$

$$r_1 = \frac{r' - 5}{5}$$

$$r_2 = \frac{r_{1,2} - r_{1,1}}{\Delta t}$$

More generalized approach

Idea:

- Add empty fake-streets so that each intersection has k incoming streets. (in practice: append -1's)
- In each time step:
 - ► Only provide observation for one intersection and ask to control only this traffic light.
- Reward: Stays the same as before.
- → Generalized observation and action space

Pro:

- Can transfer knowledge to other street networks
- Training is more efficient
 - ▶ No need to learn correlation of streets far away from intersection
 - Effect of good/bad action is more predictable

Drawback:

• Intersections cannot "communicate" between each other

Results

- stable-baselines3: PPO with MIpPolicy (network architecture: (64,64))
 - Supports Multi-Discrete Actionspace and Multi-Processing
- Horizon: 1000, World: 3x3circle
- At least 5 episodes to evaluate an algorithm.

Conventional approach

Algorithm	$\overline{velocity}$	$\sum reward$	Training duration
random	4.200	2.626	-
PPO-acceleration	6.120	4.672	1.5M steps $(\sim 10h)$

Results

- stable-baselines3: PPO with MlpPolicy (network architecture: (64,64))
 - Supports Multi-Discrete Actionspace and Multi-Processing
- Horizon: 1000, World: 3x3circle
- At least 5 episodes to evaluate an algorithm.

Conventional approach

Algorithm	$\overline{velocity}$	$\sum reward$	Training duration
random	4.200	2.626	-
PPO-acceleration	6.120	4.672	1.5M steps $(\sim 10h)$

Generalized approach

Concranación approach					
Algorithm	$\overline{velocity}$	$\sum reward$	Training duration		
random	5.525	5.645	-		
argmax	8.115	8.023	-		
PPO-velocity	6.383	5.815	1.5M steps $(\sim 9h)$		
PPO-velocity-shuffled	7.736	8.548	$1.25 extsf{M}$ steps $(\sim 7.5 h)$		
PPO-acceleration-shuffled-1	7.991	7.522	1.25M steps ($\sim 7.5h$)		
PPO-acceleration-shuffled-2	7.987	5.775	1.25M steps ($\sim 7.5h$)		

Discussion/Future Extensions

- Does Markov assumption holds true?
 - Yes, especially in generalized approach.

Possible Extensions:

- Communication between intersection
 - ▶ For each incoming street: add observation of preceding intersection
 - Use RNN to generate a fixed sized representation of all intersection states
- Automatic world generation for different training models
- More complex traffic-light rules
 - In reality 2 lanes are allowed to drive in parallel if they do not cross each other
 - ▶ In reality left turner wait until opposing lanes drive
- Multiple lanes per street