Цифровой широкополосный стетоскоп

Выполнил: Александр Родионов 4к 6гр

Руководитель: Я.А. Туровский

• 5/10 причин смерти в мире связаны с заболеваниями сердца или легких (ВОЗ, 2015)

- 5/10 причин смерти в мире связаны с заболеваниями сердца или легких (ВОЗ, 2015)
- Основной инструмент медицинской диагностики врачей первичного звена **стетоскоп**

- 5/10 причин смерти в мире связаны с заболеваниями сердца или легких (ВОЗ, 2015)
- Основной инструмент медицинской диагностики врачей первичного звена стетоскоп

- 5/10 причин смерти в мире связаны с заболеваниями сердца или легких (ВОЗ, 2015)
- Основной инструмент медицинской диагностики врачей первичного звена **стетоскоп**
- Информация, на основе которой врач назначает дальнейшее лечение субъективна

- 5/10 причин смерти в мире связаны с заболеваниями сердца или легких (ВОЗ, 2015)
- Основной инструмент медицинской диагностики врачей первичного звена **стетоскоп**
- Информация, на основе которой врач назначает дальнейшее лечение субъективна
- Есть потребность в стетоскопах, которые дают возможность работать с более объективной информацией

Цель работы

Разработка цифрового широкополосного стетоскопа, работающего в слышимом и нижнем ультразвуковом диапазоне (до 40кГц) и ПО к нему.

Аналоги на рынке

CMS-VESD 5800 руб

Littmann 3200 22000 руб

Eko Core 16900 руб

Thinklabs One 26800 руб

1. Выбор микрофона

- 1. Выбор микрофона
- 2. Разработка усилителя для микрофона

- 1. Выбор микрофона
- 2. Разработка усилителя для микрофона
- 3. Выбор АЦП

- 1. Выбор микрофона
- 2. Разработка усилителя для микрофона
- 3. Выбор АЦП
- 4. Разработка ПО для обработки и визуализации данных

- 1. Выбор микрофона
- 2. Разработка усилителя для микрофона
- 3. Выбор АЦП
- 4. Разработка ПО для обработки и визуализации данных
- 5. Разработка ПО для высокопроизводительной обработки сигнала на удаленном сервере

Микрофон: Sven MK-200 Сервер Отетоскоп Микрофон Усилитель АЦП Компьютер Врач

Наилучшая чувствительность

50Hz 16kHz

Усилитель Сервер — Микрофон Усилитель АЦП Компьютер Врач

Усилитель Сервер Стетоскоп Микрофон ΑЦΠ Пациент Усилитель Компьютер Врач C2 47uF à 100uF C3 47pF a 100pF C4 2,2uF à 10uF R5 56K à 100K R1 3K3 C2 100u 100u U1:A NE5532 Electret **८**1 2u2 **R2** 5K6 **R5** 100K

УСИЛИТЕЛЬ Сервер Микрофон Усилитель АЦП Компьютер Врач

MSP 6022:

FIGURE 2-18: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-18: Open-Loop Gain, Phase vs. Frequency.

ЛА-н10-12

Arduino Due

Размер буффера

Частота
дискр.

		2^19	2^18	2^17	2^16	2^15	2^14	2^13	2^12	2^11	2^10
		0.034	0.034	0.033	0.032	0.031	0.029	0.025	0.025	0.010	0.010
	8*10^6	0.188	0.188	0.185	0.186	0.178	0.170	0.170	0.128	0.125	0.060
	8*10^5	0.770	0.768	0.762	0.765	0.757	0.756	0.729	0.640	0.640	0.427

Отношение полезного времени к полному

Размер буффера

Частота
дискр.

		2^19	2^18	2^17	2^16	2^15	2^14	2^13	2^12	2^11	2^10
	8*10^7	0.034	0.034	0.033	0.032	0.031	0.029	0.025	0.025	0.010	0.010
	8*10^6	0.188	0.188	0.185	0.186	0.178	0.170	0.170	0.128	0.125	0.060
		0.770									

Отношение полезного времени к полному

Возможности ПО

Возможности ПО

1. Принимает сигнал с устройства

Возможности ПО

- 1. Принимает сигнал с устройства
- 2. График сигнала в реальном времени

Возможности ПО

- 1. Принимает сигнал с устройства
- 2. График сигнала в реальном времени
- 3. Запись сигнала на диск для дальнейшей обработки

Возможности ПО

- 1. Принимает сигнал с устройства
- 2. График сигнала в реальном времени
- 3. Запись сигнала на диск для дальнейшей обработки
- 4. Обработка сигнала на удаленном сервере (cloud computing)

Time, 0.148 seconds

CUDA Server Стетоскоп Микрофон Усилитель АЦП Компьютер Врач

2.6 MBps

gzip: 24% (от исходного)

• Создан рабочий прототип

- Создан рабочий прототип
- Прием сигнала высокого качества

40kHz

- Создан рабочий прототип
- Прием сигнала высокого качества
- Визуализация сигнала в реальном времени

- Создан рабочий прототип
- Прием сигнала высокого качества
- Визуализация сигнала в реальном времени
- Вычисление FFT

- Создан рабочий прототип
- Прием сигнала высокого качества
- Визуализация сигнала в реальном времени
- Вычисление FFT
- Высокопроизводительные вычисления на удаленном сервере

- Создан рабочий прототип
- Прием сигнала высокого качества
- Визуализация сигнала в реальном времени
- Вычисление FFT
- Высокопроизводительные вычисления на удаленном сервере
- Сфера применения не ограничена медициной

Спасибо за внимание

Ссылки

- 1. Аналого цифровой преобразователь ЛА-н10-12 http://www.rudshel.ru/show.php?dev=14
- 2. Драи́веры и програмное обеспечение для устрои́ств ЗАО "Руднев-Шиляев" http://rudshel.ru/software.html
- 3. Документация по программированию устройств ЗАО "Руднев-Шиляев" http://www.rudshel.ru/soft/SDK2/Doc/CPP_USER_RU/html/index.html
- 4. Руководство пользователя ЛА-н10-12USB http://www.rudshel.ru/pdf/LA-n10-12USB(y).rar
- 5. Аналого цифровой преобразователь E14-140-M http://www.lcard.ru/products/external/e-140m
- 6. Руководство пользователя и технические характеристики операционного усилителя MCP6022 https://lib.chipdip.ru/291/DOC000291231.pdf
- 7. Исходный код, документация и этапы создания проекта ультразвукового стетоскопа https://github.com/tandav/ultrasonic-stethoscope

Спасибо за внимание

Ссылки

- 1. Аналого цифровой преобразователь ЛА-н10-12 http://www.rudshel.ru/show.php?dev=14
- 2. Драи́веры и програмное обеспечение для устрои́ств ЗАО "Руднев-Шиляев" http://rudshel.ru/software.html
- 3. Документация по программированию устройств ЗАО "Руднев-Шиляев" http://www.rudshel.ru/soft/SDK2/Doc/CPP_USER_RU/html/index.html
- 4. Руководство пользователя ЛА-н10-12USB http://www.rudshel.ru/pdf/LA-n10-12USB(y).rar
- 5. Аналого цифровой преобразователь E14-140-M http://www.lcard.ru/products/external/e-140m
- 6. Руководство пользователя и технические характеристики операционного усилителя MCP6022 https://lib.chipdip.ru/291/D0C000291231.pdf
- 7. Исходный код, документация и этапы создания проекта ультразвукового стетосі опа https://github.com/tandav/ultrasonic-stethoscope

Спасибо за внимание

- Создан рабочий прототип
- Анализ сигнала в реальном времени
- Вычисления на удаленном сервере
- Сфера применения не ограничена медициной

