

non-collinear DFPT and magnetoelectric response: Status and perspectives in Abinit

Eric Bousquet

Abidev 2024, Le Baluchon, Canada (2024)

Status of DFPT + nspden = 4 + SOC

- Only implemented in Norm-conserving and LDA
- Only atom and E-field perturbations
 - Phonons
 - Permitivity tensor
 - Born effective charges
- Some works were done for PAW-LDA but not finalized (w. Marc)

Implementation Perspectives

Medium to long term (Xavier + Marc + ?):

- Add strain perturbation (NC LDA)
- ▶ Implementation of $\alpha^{elec} = \frac{\partial^2 E}{\partial \mathcal{E} \partial \mathcal{B}}$ (non-variational expression)
- ▶ do the d2dkdk (w. Max, Lucas)
- Terminate works initialized for PAW-LDA+U (w. Marc):
 - atom perturbation (phonons)
 - E-field perturbation
 - strain (long term?)
- GGA ? (long term)

Dynamical magnetic effective charge:

BEC

DMC

$$Z_{\kappa,ij}^{*e} = \Omega \frac{\partial \textit{P}_{\textit{i}}}{\partial \tau_{\kappa \textit{j}}} = \frac{\partial^{2}\textit{E}}{\partial \textit{E}_{\textit{i}} \partial \tau_{\kappa \textit{j}}} \quad \leftrightarrow \quad Z_{\kappa,ij}^{*m} = \Omega \frac{\partial \textit{M}_{\textit{i}}}{\partial \tau_{\kappa,\textit{j}}} = \frac{\partial^{2}\textit{E}}{\partial \textit{B}_{\textit{i}} \partial \tau_{\kappa \textit{j}}},$$

DMC can already be extracted (to be done, easy):

$$Z_{\kappa,ij}^{*m} = \Omega \frac{\partial M_i}{\partial \tau_{\kappa,i}} \Leftrightarrow \text{ from } m^{(1)} \text{ coming from phonon DFPT calculations!}$$

Magnetoelectric response (electronic contribution:)

$$\alpha^{elec} = \frac{\partial^2 E}{\partial \mathcal{E} \partial \mathcal{B}}$$
 (DFPT) or from $m^{(1)}$ coming from E-field DFPT calculations!

Magnetoelectric response (linear):

$$lpha_{ij}^{ ext{latt}} = rac{\mu_0}{\Omega} \sum_{n=1}^{N_{ ext{IR}}} rac{S_{n,ij}}{\omega_n^2}$$

Magnetoelectric oscillator strength:

$$\mathcal{S}_{\textit{n},\textit{ij}} = \left(\sum_{\kappa,\textit{i'}} Z_{\kappa,\textit{ii'}}^{*\mathsf{m}} u_{\textit{n},\kappa,\textit{i'}} \right) imes \left(\sum_{\kappa,\textit{j'}} Z_{\kappa,\textit{j'}\textit{j}}^{*\mathsf{e}} u_{\textit{n},\kappa,\textit{j'}} \right),$$

Mode magnetization:

$$ar{Z}_{n,i}^{*m} = \sum_{\kappa,j} Z_{\kappa,ij}^{*m} \tilde{u}_{n,\kappa,j}.$$

5

Only spin contribution, what about the orbital contribution (cf Max)?

Tested first with finite differences (waiting for DFPT;-)):

M. Braun, B. Guster, A. Urru, H. Kabbour & E. Bousquet ArXiv:2406.06298v1

TABLE IV. Linear spin (\vec{S}) and orbital (\vec{L}) dynamical magnetic effective charges $(10^{-2}\mu_{\rm B}/\text{Å})$ for each inequivalent Wyckoff sites of BiCoO₃ as calculated with VASP and ABINIT (ABINIT values are in brackets and in italic). \mathcal{H}_i refers to the magnetic field in direction i and τ_i to the atom displacement along the direction j.

Atom	Wyckoff	$ec{S}$							$ec{L}$						
		$\partial/\partial\mathcal{H}_x$		$\partial \mathcal{H}_x$	$\partial/\partial \mathcal{H}_y$		$\partial/\partial \mathcal{H}_z$			$\partial/\partial\mathcal{H}_x$		$\partial/\partial \mathcal{H}_y$		$\partial/\partial\mathcal{H}_z$	
		$\partial/\partial \tau_x$	6.93	(6.93)	0		0		$\partial/\partial au_x$	9.83	(8.32)	0		0	
$_{ m Bi}$	1a	$\partial/\partial au_y$	0		-6.93	(-6.93)	0		$\partial/\partial au_y$	0		-9.83	(-8.32)	0	
		$\partial/\partial \tau_z$	0		0		0		$\partial/\partial au_z$	0		0		0	
		$\partial/\partial au_x$	7.25	(8.49)	0		0		$\partial/\partial au_x$	24.63	(22.57)	0		0	
Со		$\partial/\partial au_y$	0		7.25	(8.49)	0		$\partial/\partial au_y$	0		24.63	(22.57)	0	
		$\partial/\partial \tau_z$	0		0		-0.91	(-0.67)	$\partial/\partial au_z$	0		0		-15.01	(-15.34)
$O_{ m api}$		$\partial/\partial au_x$	2.80	(1.74)	0		0		$\partial/\partial au_x$	-6.12	(-5.52)	0		0	
		$\partial/\partial au_y$	0		2.80	(1.74)	0		$\partial/\partial au_y$	0		-6.12	(-5.52)	0	
		$\partial/\partial \tau_z$	0		0		0.11	(0.10)	$\partial/\partial au_z$	0		0		-0.57	(-1.83)

Tested first with finite differences (waiting for DFPT;-)):

M. Braun, B. Guster, A. Urru, H. Kabbour & E. Bousquet ArXiv:2406.06298v1

Visualisation of DMCs:

