ECE 212 - Digital Circuits II

Lab10 – MIPS Multicycle Processor (Part2)

Otieno Maurice (Scribe)

Alex Villalba

https://github.com/otienomaurice1/ece212 alex maurice.git

Introduction:

In this lab we designed the data path for the multicycle processor. The code for major components was designed earlier and the only task we had was connecting this component together. The major components of the multicycle processor include the memory file, register file, the alu, the pc register, the instr register, the data register, the alu register and the alu source registers. Most of the register files were created as instances of either the flopr or flopenr modules while most of the multiplexers were instances of mux2, mux3 and mux4 multiplexers.

The pc register reads from the jump path, the alu register and the alu via a mux3. The memory file receives the address to read from either the alu register via the instruction or data mux2. The memory file reads into the instruction and memory registers. The instruction register's output is the instruction, whose value runs the Datapath. The data register reads into the register file via a mux2. The register file reads into the alu source registers and the alu source registers read into the alu via the source multiplexers. This multi-cycle processor has the ability to compute lw, sw, j, beq, sub, and, add, slt, addi, and or. The signals that control the registers and the multiplexers in the Datapath are inputs from the control unit that was designed in lab 9 earlier.

The top-level diagram for the multicycle diagram is shown in.

Also shown is the table detailing the expected signals as the program runs.

Figure 1

Cycle	Reset	PC	Instr	(FSM) state	SrcA	SrcB	ALU Result	Zero	PCWrite	MemWrite	IRWrite	Branch
1	i	00	0	FETCH	00 .	04	04	0	1	0	1	0
2	0	04	addi 20020005	DECODE	04	×	×	×	0	0	0	0
3	0	04	addi 20020005	ADDIEX	00	05	05	0	0	0	0	0
4	0	04	addi 20020005	ADDIWB	x	×	×	0	0	0	0	0
5	0	04	addi 20020005	FETCH	04	04	08	0	1	0	1	0
6	0	08	addi 2003000c	DECODE	08_	х -	x	x	0	0	0	0
7	0	08	addi 2003000c	ADDIEX	00	0c_	0c	0	.0	0	0	0
8	0	08	addi 2003000c	ADDIWB	× .	х	х	×	0	0	0	0
9	0	08	addi 20 030000	FETCH	0.8	04	00	0	1	0	1	0
10	0	OC	addi 2067fff7	DECODE	00	X	×	7	0	0	0	0
11	0	oc	addi 2067fff7	ADDIEX	00	-09	03	0	0	0	0	0
12	0	OC	addi 2067fff 7	ADD I WB	X	X	X	X	0	0	0	0
13	0	OC	or 2067fff7	FETCH	00	04	10	0	1	0	0	0
14	0	10	or 00e22025	DECODE	10	×	×	×	0	0	0	0
15	0	10	or 00e22025	RTYPEEX	03	05	07 -	0	0	0	0	0
16	0	10	or 00e22025	RTYPEWB	x	×	×	×	0	0	0	0
17	0	10	or 00e22025	FETCH	10	04	14	0	1	0	1	0
18	0	14	and 00642824	DECODE	14	×	×	x	0	0	0	0
19	0	14	and 00642824	RTYPEEX	0c	07	04	0	0	0	0	0
20	0	14	and 00642824	RTYPEWB	×	x	×	×	0	0	0	0
21	0	14	and 00642824	FETCH	14	04	18	0	1	0	1	0
22	0	18	add 00a42820	DECODE	18	×	×	×	0	0	0	0
23	0	18	add 00a42820	RTYPEEX	04	07	0Ъ	0	0	0	0	0
24	0	18	add 00a42820	RTYPEWB	×	x	x	×	0	0	0	0

25	0	18	add	00a42820	FETCH	18	04	1c	0	1	0	1	0
26	0	10	bea	10070000	DECODE	16	28	44	7	Ø	0	0	0
27	0	110	boa	10970000	BE9 EX	OB	030	08	0	0	0	O	1
. 8	0	10	bea	10970000	FETCH	10	04	20	0	1	0	1	0
29	0	20	sit	00642620	DE CODE	10	X	X	X	0	0	0	0
30	0	20	412	00642020		OC	óì	10	Ó	0	0	0	0
31	0	-	SIt	0 0642020		V	X	X	X	0	0	0	0
32	0	20	1000	00642020		20	04	24	0	1	0	1	0
33	0	24	hea		DECODE		04	28	X	0	0	0	0
34	0	24	600	10800001		0	0	0	1	Ö	0	1	1
35	0	28	1		FETCH	28	04	ac	0	1	0	0	0
36	0	770	SIt	00022020	DECOE	20	X	×	X	0	0	0	0
37	0	20	cl+	00021029	RTYPEEX	03	-	01	0	0	0	0	0
38	0	ac	qf	00022029			X	×	X	0	0	0	0
39	0	20	14	00022020	FETCH	ac	Où	30	0	1	0	1	0
40	0	30	add	00853820	DECODE	30	х	×	×	0	0	0	0
41	0	30	add	00853820	RTYPEEX	01	0b	0c	0	0	0	0	0
42	0	30	add	00853820	RTYPEWB	×	х	×	×	0	0	0	0
43	0	30	add	00853820	FETCH	30	04	34	0	1	0	1	0
44	0	34	sub	00e23822	DECODE	34	х	x	×	0	0	0	0
45	0	34	sub	00e23822	RTYPEEX	0c	05	07	0	0	0	0	0
46	0	34	sub	00e23822	RTYPEWB	×	×	×	x	0	0	0	0
47	0	34	sub	00e23822	FETCH	34	04	38	0	1	0	1	0
48	0	38	sw	ac670044	DECODE	38	x	x	x	0	0	0	0

49	0	38	SW	ac670044	MEMADR	0c	44	50	0	0	6	0	0
50	0	38	sw	ac670044	MEMWR	x	x	x	x	0	1	0	0
51	0	38	sw	ac670044	FETCH	38	04	3c	0	1	0	1	0
52	0	3с	lw	8c020050	DECODE	3c	х	х	x	0	0	0	0
53	0	3с	lw	8c020050	MEMADR	00	50	50	0	0	0	0	0
54	0	3с	lw	8c020050	MEMRD	x	х	x	x	0	0	0	0
55	0.	3с	lw	8c020050	MEMWB	х	х	x	×	0	0	0	0
56	0	3с	lw	8c020050	FETCH	3с	04	40	0	1	0	1	0
57	0	40	j	11000080	DECODE	40	04	44	×	0	0	0	0
58	0	MA	Ú.	11000080	TEX	X	X	X	0	Ö	0	0	0
59	0	44		080000111	FETCH	ΨU	04	48	0	1	0	1	. 0
60	0		sw	a C 0200 54			X	X	X	.0	0	0	0
61	0	48		96020054			84	54	0	0	0	0	0
62	0		Sw	96020054			X	×	×	0	1	0	U

Table 1. Expected Instruction Trace

Results

Figure 2screenshot 1 showing beginning of the program

Figure 3 screenshot 2 showing end of program

Figure 4 tcl console screenshot showing success of the mips multicycle processor

Conclusion:

The mips multicycle Datapath was much more challenging to design. We ran into several problems dealing with bit widths when doing port declarations and connections. This made the debugging process a little painful. The process was however, simplified by the fact that most of the individual designs were pre-coded.

Time spent on lab

6 hrs.