wind: wORKFLOW FOR PiRNAs AnD BEYONd

Computational workflow for the preprocessing of selected samples from of TCGA regarding Breast Cancer

Constantinos Yeles (Konstantinos Geles)

Fri Oct 16 2020

Contents

The Data set
i. Downloading the samples
ii. BAM to FASTQ
iii. Preprocessing of the samples
Alignment and Quantification
i. Transcript abundances with Salmon
ii. Alignment and quantification of sequenced reads with STAR and Feature counts $\ \ldots \ 3$
iii. Alignment with STAR
iv. R docker
v. FeatureCounts
R Session Info
We work on:

The Data set

We will work with a dataset from TCGA which is a subset of 18 samples from TCGA-BRCA. In detail, we used 9 Primary Solid Tumors versus 9 Solid Tissue Normal matched samples. ## Data acquisition and preprocessing

i. Downloading the samples

To obtain the data from TCGA we used a manifest with the selected samples and followed the instructions on GDC website

ii. BAM to FASTQ

The acquired files were in BAM format but in order to do the whole workflow we transformed them to fastq format.

```
docker run --rm -ti -v $(pwd):/home/my_data congelos/sncrna_workflow

mkdir my_data/fastq_files
for file in my_data/bam_files/*.bam;
do regex="${file%.bam}"; samp=`basename ${regex}`;
echo "Processing sample ${samp}";
samtools bam2fq -0 6 $file > my_data/fastq_files/${samp}.fastq
echo "pigz sample ${samp}";
pigz --best "my_data/fastq_files/${samp}.fastq"
done
```

iii. Preprocessing of the samples

We perform quality control(QC) on the fastq files to get basic information about the samples. We work with the **Fastqc** tool to perform QC.

```
mkdir -p my_data/Breast_Cancer_TCGA/qc_first

'fastqc' --threads 6 --outdir=my_data/Breast_Cancer_TCGA/qc_first/ my_data/myscratch/fastq_files/*.fastq.gz;

for file in my_data/myscratch/fastq_files/*.fastq.gz;

do ./spar_prepare/smrna_adapter_cut.sh $file 6;

done

mkdir my_data/Breast_Cancer_TCGA/qc_after

'fastqc' --threads 6 --outdir=my_data/Breast_Cancer_TCGA/qc_after/ my_data/myscratch/fastq_files/*.trimeexit
```

Alignment and Quantification

i. Transcript abundances with Salmon

We will use a public docker image to run salmon

```
# run the docker
docker run --rm -it -v $(pwd):/home/my_data combinelab/salmon

# create the index
salmon index -t ncRNA_transcripts_100bp_RNA_Central_piRNAbank_hg38.fa -i genome_transc_human/ncRNA_Cent
mkdir my_data/smallRNA-breast-cancer/GSE129076/quants/

# run the samples

#!/bin/bash

for fn in my_data/smallRNA-breast-cancer/Breast_Cancer_TCGA/fastq_files/*trimmed.fastq.gz;
do samp=`basename ${fn}`;
echo "Processing sample ${samp}";
salmon quant -i my_data/genome_
```

```
transc_human/ncRNA_Central_piRNAB_hg38_index -1 A -r ${fn} --seqBias --gcBias --numBootstraps 100 -p 6
done

#save as bam files
for file in my_data/smallRNA-breast-cancer/Breast_Cancer_TCGA/quants/*.sam;
do
regex="${file%%.sam}";
echo "Processing sample ${regex}";
echo samtools view -0 bam -o ${regex}.bam -@ 6 ${file};
done
exit
```

ii. Alignment and quantification of sequenced reads with STAR and Featurecounts

We use the **STAR** aligner and then perform quantification with featureCounts from **Rsubread** package. With the docker image that contains STAR and **Samtools** we get sorted BAM files and use them for quantification / annotation for smallRNAs.

iii. Alignment with STAR

```
# run docker
docker run --rm -ti -v "$PWD":/home/my_data congelos/sncrna_workflow

# index generation
STAR --runMode genomeGenerate --genomeDir my_data/human_data/GRCh38 --genomeFastaFiles my_data/human_da
mkdir my_data/smallRNA-breast-cancer/Breast_Cancer_TCGA/star_results

# alignment
for file in my_data/smallRNA-breast-cancer/Breast_Cancer_TCGA/fastq_files/*.trimmed.fastq.gz;
do samp=`basename ${file}`;
regex="${samp\%.trimmed.fastq.gz}";
echo "Processing sample ${samp} start: $(date)";
STAR --genomeDir my_data/genome_transc_human/human_data/GRCh38_2_7_4a --genomeLoad LoadAndKeep --readFidone
exit
```

Next, we run a docker image which includes varius R packages that will be used futhermore in the downstream analysis following featurecounts for the exploratory data analysis of piRNA data

iv. R docker

```
docker run --rm -v $(pwd):/home/0 -p 8787:8787 -e PASSWORD=12345 -e USER=$UID congelos/rocker_tidyverse
```

From here on we work in R using a browser. we input http://localhost:8787/ on browser, 0 for username and 12345 for password.

v. FeatureCounts

```
library(Rsubread)
library(tidyverse)
list.BAM <- list.files(path = "Breast_Cancer_TCGA/star_results",</pre>
                       pattern = ".bam$",
                       recursive = TRUE,
                        full.names = T)
path_gtf <- "../genome_transc_human/ncRNA_transcripts_100bp_RNA_Central_piRNAbank_hg38.gtf"
todate <- format(Sys.time(), "%d_%b_%Y")</pre>
fc <- featureCounts(files = list.BAM,</pre>
                    annot.ext = path_gtf,
                    isGTFAnnotationFile = TRUE,
                    GTF.featureType = "exon",
                    GTF.attrType.extra = c("gene_type", "sRNA_id", "seq_RNA"),
                    nthreads = 8,
                    useMetaFeatures = TRUE,
                    allowMultiOverlap = TRUE,
                    minOverlap = 10,
                    largestOverlap = TRUE,
                    fraction = TRUE,
                    strandSpecific = 0,
                    verbose = TRUE,
                    reportReads = "BAM",
                    reportReadsPath = "Breast_Cancer_TCGA/star_results/")
fc %>% write_rds(str_glue("Breast_Cancer_TCGA/feature_counts_BRCA_TCGA_{todate}.rds"))
```

Next we will follow the workflow of data exploration salmon fc.RMD

R Session Info

```
sessionInfo()
R Under development (unstable) (2019-12-06 r77536)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 10 (buster)
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so
locale:
 [1] LC_CTYPE=en_US.UTF-8
                               LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8
                               LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8
                               LC_MESSAGES=C
 [7] LC_PAPER=en_US.UTF-8
                               LC NAME=C
 [9] LC_ADDRESS=C
                               LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats
          graphics grDevices utils
                                         datasets methods
                                                               base
```

```
other attached packages:
 [1] forcats_0.5.0
                                             dplyr_0.8.4
                                                                 purrr_0.3.3
                         stringr_1.4.0
 [5] readr 1.3.1
                        tidyr_1.0.2
                                             tibble_2.1.3
                                                                 ggplot2_3.2.1
 [9] tidyverse 1.3.0
                        Rsubread 2.1.2
                                             BiocManager 1.30.10
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.3
                     cellranger_1.1.0 pillar_1.4.3
                                                        compiler_4.0.0
 [5] dbplyr 1.4.2
                     tools 4.0.0
                                       lubridate 1.7.4 jsonlite 1.6.1
[9] lifecycle_0.1.0 nlme_3.1-144
                                       gtable_0.3.0
                                                        lattice_0.20-40
[13] pkgconfig_2.0.3 rlang_0.4.5
                                       reprex_0.3.0
                                                        Matrix_1.2-18
[17] cli_2.0.2
                     DBI_1.1.0
                                       rstudioapi_0.11
                                                       xfun_0.12
[21] haven_2.2.0
                     knitr_1.28
                                       withr_2.1.2
                                                        xml2_1.2.2
[25] httr_1.4.1
                                       generics_0.0.2
                                                        vctrs_0.2.3
                     fs_1.3.1
[29] hms_0.5.3
                     grid_4.0.0
                                       tidyselect_1.0.0 glue_1.3.1
[33] R6_2.4.1
                     fansi_0.4.1
                                       readxl_1.3.1
                                                        modelr_0.1.6
[37] magrittr_1.5
                     backports_1.1.5 scales_1.1.0
                                                        rvest_0.3.5
[41] assertthat_0.2.1 colorspace_1.4-1 stringi_1.4.6
                                                        lazyeval_0.2.2
[45] munsell_0.5.0
                     broom_0.5.5
                                       crayon_1.3.4
```

We work on:

```
[root@localhost GSE124507_brain_project]# cat /etc/*-release
CentOS Linux release 7.8.2003 (Core)
NAME="CentOS Linux"
VERSION="7 (Core)"
ID="centos"
ID_LIKE="rhel fedora"
VERSION_ID="7"
PRETTY_NAME="CentOS Linux 7 (Core)"
ANSI_COLOR="0;31"
CPE NAME="cpe:/o:centos:centos:7"
[root@localhost GSE124507_brain_project]# docker version
Client: Docker Engine - Community
Version:
                    19.03.8
 API version:
                    1.40
Go version:
                    go1.12.17
 Git commit:
                    afacb8b
                    Wed Mar 11 01:27:04 2020
 Built:
 OS/Arch:
                    linux/amd64
 Experimental:
                    false
Server: Docker Engine - Community
 Engine:
  Version:
                    19.03.8
  API version:
                    1.40 (minimum version 1.12)
                    go1.12.17
  Go version:
  Git commit:
                    afacb8b
                    Wed Mar 11 01:25:42 2020
  Built:
```

OS/Arch: linux/amd64

Experimental: false

containerd:

Version: 1.2.13
GitCommit: 7ad184331fa3e55e52b890ea95e65ba581ae3429

runc:

Version:

1.0.0-rc10 dc9208a3303feef5b3839f4323d9beb36df0a9dd GitCommit:

docker-init:

0.18.0 Version: GitCommit: fec3683

[root@localhost GSE124507_brain_project]# git version git version 1.8.3.1

[root@localhost GSE124507_brain_project]# pigz --version pigz 2.3.4