UFRJ / Escola Politécnica / DEL – Primeiro Período de 2014 CPE-723 – Otimização Natural (Parte I - Simulated Annealing)

Prova Parcial – 10 de Abril de 2014

Todos os itens da prova têm o mesmo valor: 1.0 ponto cada (total de 10 pontos). Tempo de prova: 2 horas.

- 1. Método de Monte Carlo:
 - a) Efetue as três primeiras iterações do cálculo de $\int_0^1 x^2 dx$, usando os três números aleatórios a seguir, que foram sorteados de uma distribuição uniforme no intervalo [0,1]:

$$0.8147, 0.9058, 0.1270, \dots$$

b) Efetue as três primeiras iterações do cálculo de $\int_0^1 x^2 e^{-x} dx$, usando os três números aleatórios a seguir, que foram sorteados de uma distribuição exponencial $f_X(x) = e^{-x}$.

$$0.1942, 0.3641, 1.1485, 0.0511, \dots$$

- 2. (Algoritmo de Metropolis) Considere três variáveis aleatórias binárias $(X_1, X_2 \in X_3)$ e uma função custo $J(x) = -2x_1x_2 + 3x_1x_2 + 4x_1x_3$. Considere T = 1.
 - a) Calcule os fatores de Boltzmann $\exp(-J(x)/T)$, para os oito estados possíveis.
 - b) Proponha um algoritmo para gerar uma distribuição de Boltzmann/Gibbs para a variável aleatória X, segundo os custos J(x).
 - c) Execute as três primeiras iterações do algoritmo que você propôs no item (b).
- 3. (Algoritmo de Metropolis) Considere uma variável aleatória $X \in \{0, 1, 2, 3, 4, 5, 6, 7\}$ e uma função custo $J(x) = 2x_1 + 4x_2 + 8x_3 x_1x_2 + x_1x_3 + 2x_2x_3$, onde x_1, x_2 e x_3 são os três bits obtidos quando o valor x é representado em notação binária comum (x_3 corresponde ao bit menos significativo).
 - a) A aplicação do algoritmo de Metropolis ao valor x, considerando somente perturbações de valor ± 1 , define um processo de Markov com matriz de transição \mathbf{M} . Calcule esta matriz de transição. Considere que T=10, que a perturbação +1 aplicada ao estado 7 leva ao estado 0, e que a perturbação -1 aplicada ao estado 0 leva ao estado 7.
 - b) Calcule, para temperatura T=10, a distribuição de Boltzmann/Gibbs prevista para o estado x. Mostre que este vetor de probabilidades é um vetor invariante de \mathbf{M} .
- 4. (Simulated Annealing) Descreva de forma breve o algoritmo S.A. básico aplicado à minimização da função custo a seguir:

$$J(\mathbf{x}) = -\sum_{i=1}^{N} b_i x_i - \sum_{i=1}^{N} \sum_{j=i+1}^{N} w_{ij} x_i x_j,$$

onde \mathbf{x} é um vetor binário com N componentes. Na sua descrição, leve em consideração os seguintes parâmetros: temperatura inicial T_0 , temperatura mínima T_{min} , e o número K de iterações a serem executadas em temperatura fixa. Para as perturbações de \mathbf{x} , escolha qualquer esquema de sua preferência.

- 5. (Deterministic Annealing) Seja \mathbf{X} um conjunto de dados contendo quatro vetores equiprováveis: $\mathbf{x}_1 = [1;1]$, $\mathbf{x}_2 = [1;-1]$, $\mathbf{x}_3 = [-1;-1]$, e $\mathbf{x}_4 = [-1;1]$. Considere um conjunto de centróides, \mathbf{Y} , com quatro elementos. Estes quatro centróides assumem valores iniciais $\mathbf{y}_1 = [0;1]$, $\mathbf{y}_2 = [1;0]$, $\mathbf{y}_3 = [0;-1]$ e $\mathbf{y}_4 = [-1;0]$. A medida de distorção entre dois vetores é $d(\mathbf{x},\mathbf{y}) = ||\mathbf{x}-\mathbf{y}||^2$.
 - a) Considerando a execução do D.A. básico, calcule as probabilidades $p(\mathbf{y}|\mathbf{x})$ de associação de cada vetor \mathbf{x}_j a cada centróide \mathbf{y}_i . Para a temperatura, utilize T=5.
 - b) Usando a matriz $p(\mathbf{y}|\mathbf{x})$ do item (a), calcule valores atualizados para os centróides $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ e \mathbf{y}_4 .
 - c) (Opcional) Qual é a distância do centróide atualizado y₁ à origem, em função de T?