Econ 616: Problem Set 1

Ed Herbst

Problem 1

Let $\phi(z) \equiv 1 - \phi_1 z - \phi_2 z^2$. What we need to show is the solution of the equation $\phi(z) = 0$ lies outside of unit circle. Let z_1 and z_2 be the solutions of $\phi(z) = 0$.

- Case 1: Suppose $\phi_1^2 + 4\phi_2 \leq 0$. Then we have either $z_1 = z_2$ or that z_1 and z_2 are complex numbers and conjugate of each other. In any case the norm of the solution is given by $\sqrt{\left|\frac{1}{\phi_2}\right|}$. Hence the condition is $|\phi_2| < 1$.
- Case 2: Suppose $\phi_1^2 + 4\phi_2 > 0$. Now both solutions are real number. Suppose $\phi_2 = 0$. This is AR(1) model and the condition is $|\phi_1| < 1$. Suppose $\phi_2 \neq 0$. It would be easier to analyze the equation $\psi(z) = 0$ where $\psi(z) \equiv z^2 + \frac{\phi_1}{\phi_2}z \frac{1}{\phi_2}$ which has the same solutions as $\phi(z) = 0$. If $\phi_2 < 0$, then the conditions are $\psi(1) > 0$ and $\psi(-1) > 0$ which means that $\phi_2 + \phi_1 < 1$ and $\phi_2 \phi_1 < 1$. If $\phi_2 > 0$, then the conditions are $\psi(1) < 0$ and $\psi(-1) < 0$ which means that $\phi_2 + \phi_1 < 1$ and $\phi_2 \phi_1 < 1$.

Combining all, we have

$$\phi_1 + \phi_2 < 1$$
, $\phi_2 - \phi_1 < 1$ and $\phi_2 > -1$.

Problem 2

Multiplying both sides of the equation by y_{t-j} , we have

$$y_t y_{t-j} = \sum_{i=1}^{p} \phi_i y_{t-i} y_{t-j} + \epsilon_t y_{t-j}.$$

Taking the expectation, we have

$$E(y_t y_{t-j}) = \sum_{i=1}^{p} \phi_i E(y_{t-i} y_{t-j}) + E(\epsilon_t y_{t-j}).$$

Or we can rewrite the above as

$$\gamma_{yy,j} = \sum_{i=1}^{p} \phi_i \gamma_{yy,|i-j|} + E(\epsilon_t y_{t-j}).$$

For j=0, $E(\epsilon_t y_{t-j})=E(\epsilon_t y_t)=E(\epsilon_t^2)=\sigma_\epsilon^2$ which gives the first equation. For $j=1,\ldots,p$, $E(\epsilon_t y_{t-j})=0$ which gives the rest.

For the AR(3) process in Problem 2, we have

$$1 = \gamma_{yy,0} - (1.3\gamma_{yy,1} - 0.9\gamma_{yy,2} + 0.3\gamma_{yy,3})$$

$$0 = 1.3\gamma_{yy,0} - \gamma_{yy,1} + (-0.9\gamma_{yy,1} + 0.3\gamma_{yy,2})$$

$$0 = -0.9\gamma_{yy,0} - \gamma_{yy,2} + (1.3\gamma_{yy,1} + 0.3\gamma_{yy,1})$$

$$0 = 0.3\gamma_{yy,0} - \gamma_{yy,3} + (1.3\gamma_{yy,2} - 0.9\gamma_{yy,1})$$

Solutions to this system of equations are

$$\gamma_{yy,0} = 3.38 \quad \gamma_{yy,1} = 2.45 \qquad \gamma_{yy,2} = 0.88 \qquad \gamma_{yy,3} = -0.48$$

Problem 3

See jupyter notebook

Problem 4

• The least squares estimates can be written as:

$$\hat{\rho}_{LS} = \rho + \left(\sum_{t=2}^{T} y_{t-1}^2\right)^{-1} \sum_{t=2}^{T} \epsilon_t y_{t-1} \tag{1}$$

Consider an alternative representation of y_t .

t even:
$$y_t = y_t^e = \rho^2 y_t^e + \sigma \epsilon_t + \rho \alpha \sigma \epsilon_{t-1}$$
$$t \text{ odd:} \qquad y_t = y_t^o = \rho^2 y_t^o + \alpha \sigma \epsilon_t + \rho \sigma \epsilon_{t-1}. \tag{2}$$

Consider,

$$\frac{1}{T} \sum_{t=2}^{T} y_{t-1}^{2} \approx \frac{1}{2} \frac{1}{T/2} \sum_{t=2}^{T/2} (y_{2(t-1)+1}^{o})^{2} + \frac{1}{2} \frac{1}{T/2} \sum_{t=2}^{T/2} (y_{2t}^{e})^{2}$$

$$\rightarrow \frac{1}{2} \frac{\alpha^{2} + \rho^{2}}{1 - \rho^{4}} \sigma^{2} + \frac{1}{2} \frac{1 + \alpha^{2} \rho^{2}}{1 - \rho^{4}} \sigma^{2}.$$

$$= \frac{1}{2} \frac{(1 + \alpha^{2})(1 + \rho^{2})}{(1 - \rho^{2})(1 + \rho^{2})} \sigma^{2}.$$

$$= \frac{1 + \alpha^{2}}{2} \frac{\sigma^{2}}{1 - \rho^{2}}.$$
(3)

Moreover, The sequence $\{\epsilon_t y_{t-1}\}$ is a Martingale difference sequence (MDS). If $|\rho| < 1$, $\frac{1}{T} \sum_{i=1}^{T} \epsilon_t y_{t-1} \to 0$ as $T \to \infty$. Thus, the least squares estimator is consistent.

• Using arguments along the lines of (3) and the central limit theorem for MDS yields the asymptotic distribution for $\hat{\rho}_{LS}$. In particular, The least squares estimator $\hat{\rho}_{LS} = \left(\sum_{t=2}^{T} y_{t-1}^2\right)^{-1} \sum_{t=2}^{T} y_t y_{t-1}$ in large samples behaves such that

$$\sqrt{T}(\hat{\rho}_{LS} - \rho) \sim N(0, \mathbb{V}_{\hat{\rho}}). \tag{4}$$

This variance take the form:

$$\mathbb{V}_{\hat{\rho}} = \frac{\mathbb{E}[\epsilon_t^2 y_{t-1}^2]}{\mathbb{E}[y_{t-1}^2]^2} \tag{5}$$

Tedious algebra yields:

$$E[y_{t-1}^2] = \frac{1+\alpha^2}{2} \frac{\sigma^2}{1-\rho^2} \tag{6}$$

$$E[\epsilon_t^2 y_{t-1}^2] = \frac{\alpha^2 (1 + \alpha^2 \rho^2) + (\alpha^2 + \rho^2)}{2} \frac{\sigma^4}{1 - \rho^4}$$
 (7)

Thus:

$$\mathbb{V}_{\hat{\rho}} = 2\left(\frac{\rho^2 + 2\alpha^2 + \alpha^4 \rho^2}{1 + 2\alpha^2 + \alpha^4}\right) \left(\frac{1 - \rho^2}{1 + \rho^2}\right) \tag{8}$$

• It is easy to see that this quantity converges in probability to

$$\mathbb{V}_{\hat{\rho}}^* = \frac{\mathbb{E}[\epsilon_t^2]}{\mathbb{E}[y_{t-1}^2]} = 1 - \rho^2 \tag{9}$$

• Tedious algebra shows that:

$$\mathbb{V}_{\hat{\rho}} \leq \mathbb{V}_{\hat{\rho}}^*$$
.

Thus, the typical estimator for standard errors is inconsistent and in particular it overstates the variance of $\hat{\rho}_{LS}$.

Problem 5

Recall from the lecture notes that the HP filter can be written as:

$$f^{HP}(\omega) = \left[\frac{16\sin^4(\omega/2)}{1/1600 + 16\sin^4(\omega/2)} \right]^2. \tag{10}$$

The spectrum for the AR1 can be written as:

$$f^{AR}(\omega) = \left[1 - 2\phi\cos\omega + \phi^2(\cos\omega^2 + \sin^2\omega)\right]^{-1}.$$
 (11)

From the lecture notes, we know that:

$$f^{Y}(\omega) = f^{HP}(\omega)f^{AR}(\omega) \tag{12}$$

The spectrum for $\phi = 0.95$ and $\phi = 0.70$ is plotted in Figure 3. The spectrum peaks at about $\pi/8$, which is associated with a cycle lasting about 16 quarters = $(2\pi/(\pi/8))$. As ϕ increases, this peak sharpens. So here the HP filter is introducing as spurious periodicity in our data.

<ipython-input-14-04db9a7f9b5a>:6: RuntimeWarning: divide by zero encountered in divide
return ((sigma**2/(2*omega)) /

<ipython-input-14-04db9a7f9b5a>:9: RuntimeWarning: invalid value encountered in multiply
 f = lambda omega, **kwds: f_HP(omega)*f_AR1(omega, **kwds)

<matplotlib.legend.Legend at 0x7f5cd9dfb8b0>

Another way to see this is look at the autocovariance function of the implied process, which we can recover by the inverse fourier transform as discussed in class:

$$\gamma_k = \int_{-\pi}^{\pi} f^Y(\omega) e^{i\omega k}.$$
 (13)

The HP filter induces complex dynamics into the process!

Figure 1: Spectrum Associated with HP filtering an $\mathrm{AR}(1)$

Figure 2: ACF of AR(1) vs. ACF of HP filtered Component