Zadanie: DLU Długie podróże

XXVI OI, etap III, dzień drugi. Plik źródłowy dlu.* Dostępna pamięć: 128 MB.

11.04.2019

Bajtazar przez 25 lat trwania Olimpiady Informatycznej poznał mnóstwo ludzi i dużo podróżował. Wskutek tego wielu jego znajomych jest rozsianych po całej Bajtocji i odwiedzenie ich wszystkich jest dość problematyczne. Bajtocja, jak wszyscy wiemy, składa się z n miast połączonych m dwukierunkowymi połączeniami lotniczymi. Sieć połączeń jest tak skonstruowana, że z każdego miasta da się dolecieć (zwykle z przesiadkami) do każdego innego.

Zgodnie z nową ustawą infrastrukturalną każdy bilet lotniczy w Bajtocji kosztuje dokładnie jednego bajtalara za pojedynczy lot. Bajtazar ma do Ciebie p pytań: "ile muszę zapłacić, aby dolecieć od znajomego mieszkającego w mieście s_i do znajomego mieszkającego w mieście t_i ", a Ty bardzo chciałbyś mu pomóc wyznaczyć najtańsze możliwe trasy.

Zauważyłeś, że znajomi, o których pyta Bajtazar, mieszkają naprawdę daleko od siebie – dokładniej, najkrótsza trasa między nimi jest nie krótsza niż $\frac{n}{10}$ lotów. Odpowiedz na zapytania Bajtazara, a być może zdąży odwiedzić wszystkich znajomych przed następną edycją Olimpiady!

Wejście

Pierwszy wiersz standardowego wejścia zawiera trzy liczby całkowite n, m i p ($2 \le n \le 100\,000, n-1 \le n$ $m \leq 200\,000,\,1 \leq p \leq 200\,000)$ pooddzielane pojedynczymi odstępami, oznaczające odpowiednio liczbę miast i liczbę połączeń lotniczych w Bajtocji oraz liczbę zapytań. Miasta są ponumerowane liczbami od 1 do n.

W kolejnych m wierszach znajdują się opisy połączeń; i-ty z tych wierszy zawiera dwie liczby całkowite $a_i, b_i \ (1 \le a_i, b_i \le n, a_i \ne b_i)$ oddzielone pojedynczym odstępem, oznaczające, że istnieje dwukierunkowe połączenie z miasta a_i do miasta b_i . Każde połączenie jest opisane w co najwyżej jednym wierszu.

W kolejnych p wierszach znajdują się zapytania; i-ty z tych wierszy zawiera dwie liczby całkowite s_i , t_i $(1 \le s_i, t_i \le n, s_i \ne t_i)$ oddzielone pojedynczym odstępem, oznaczające zapytanie o cenę przelotu (czyli liczbę lotów na najkrótszej trasie) z miasta s_i do miasta t_i . Wiadomo, że każda z tych cen wynosi co najmniej $\frac{n}{10}$ bajtalarów.

Wyjście

Twój program powinien wypisać na standardowe wyjście p wierszy; w i-tym z nich powinna znaleźć się jedna liczba całkowita oznaczająca odpowiedź na i-te zapytanie z wejścia.

Przykład

3 1

Dla danych wejściowych: poprawnym wynikiem jest:

6 7 2 2

3 1 2 2 4

3 4 4 5 4 6 6 5

2 5 1 6

Testy "ocen":

locen: n = 10, m = 30, p = 45;

2ocen: n = 100, połączenia tworzą okrąg;

3ocen: $n = 100\,000$, połączenia tworzą dwa stykające się okręgi.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Limity czasowe obowiązujące w poszczególnych podzadaniach są opublikowane w SIO.

Podzadanie	Warunki	Liczba punktów
1	p=1	7
2	m=n-1, każde miasto jest obsługiwane przez najwyżej 2 połączenia	8
	lotnicze	
3	m=n-1	9
4	m=n	16
5	miasto o numerze a , dla $a \in \{1, \ldots, n\}$, może mieć połączenia tylko	19
	do miast o numerach $a-5$, $a-1$, $a+1$ i $a+5$	
6	$p \le 50000$	20
7	brak dodatkowych ograniczeń	21