		Su	M,	Su	pre	mu	n	~	X	NFC.	mun	1	
	Sum				_								
	15 The	sum	mation	n in	clex	ts	a	dun	uny	indl	ex.		
		3	$\frac{j}{l_2} =$	1 +	2 +	$\frac{3}{I}$:	11201 = 4	insti	e m	eaning	7 ·		
	e.g.	72] 2 -	j k =	j +	$\frac{1}{2}$	R : 1 =	ρ. - <u>''</u> -	j					
		3 2 -	<u>i</u> =	$\frac{i}{k}$	j 比 +	$\frac{j}{k}$ =	Bi K						
2. 3	Suprem	um.l	To so	lve t	pen	inte	val	+581	ves).				
	is God	rl: m	oximu	m m	ust .	to t	be in	i B	he is	iteva	l.		
		maxi.								the n	axin	um	of a
	A	whe											
		e.g.	2 73										
			2 1	init -	the s	M.O.M.	num	of	ن ح	7, 2)	(29	£ (0,	ررد
	2) De	finiti	. /	Cot)									
		et i				c 6	· IR .						
		c is							(b	x6 F	۹, ۲	< C)
		c ts		, ,	_								
		4 A			1						_	, ,	
	iy	rper.	bouro	l of	A,	the	C	<i>(</i> 4)	•				
		If it				-							
		A ts			abo	ve i	nea	ns r	it A	ae C	at -	least	΄) σ
	_ '	per-	bound	L .									
	e.(, 1.									/. /
		set [0, 2]				¥	yiei	MUM.	me	an rul	m 1	UUUNA	<u>ect a</u>

2) I Theorem I Consequence of the LUB Principle Let f be a function defined on a climain $l \neq p$ Olf f is bounded above on l. Then f has a supremum on l.