

Computer Architecture

Spring 2020

Hamed Farbeh

farbeh@aut.ac.ir

Department of Computer Engineering

Amirkabir University of Technology

Copyright Notice

Lectures adopted from

- Computer Organization and Design: The Hardware/Software Interface, 5th edition, David A. Patterson, John L. Hennessy, MK pub., 2014
 - Chapter 5: Large and Fast: Exploiting Memory Hierarchy

Multilevel Caches

- Primary cache attached to CPU
 - Small, but fast
- Level-2 cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L2 cache misses
- Some high-end systems include L3 cache

Multilevel Cache Example

- Given
 - CPU base CPI = 1, clock rate = 4GHz
 - Miss rate/instruction = 2%
 - Main memory access time = 100ns
- With just primary cache
 - Miss penalty = 100 ns/0.25 ns = 400 cycles
 - Effective CPI = 1 + 0.02 × 400 = 9

Example (cont.)

- Now add L2 cache
 - Access time = 5ns
 - Global miss rate to main memory = 0.5%
- Primary miss with L2 hit
 - Penalty = 5ns/0.25ns = 20 cycles
- Primary miss with L2 miss
 - Extra penalty = 400 cycles
- CPI = $1 + 0.02 \times 20 + 0.005 \times 400 = 3.4$
- Performance ratio = 9/3.4 = 2.6

Multilevel Cache Considerations

- Primary cache
 - Focus on minimal hit time
- L2 cache
 - Focus on low miss rate to avoid main memory access
 - Hit time has less overall impact
- For multicores
 - Dedicated separate L1 Cache
 - Dedicated or shared unified L2 cache
 - Shared unified L3 cache

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Cache Design Trade-offs

Design change	Effect on miss rate	Negative performance effect
Increase cache size	Decrease capacity misses	May increase access time
Increase associativity	Decrease conflict misses	May increase access time
Increase block size	Decrease compulsory misses	Increases miss penalty. For very large block size, may increase miss rate due to pollution.

Cache Control

- Example cache characteristics
 - Direct-mapped, write-back, write allocate
 - Block size: 4 words (16 bytes)
 - Cache size: 16 KB (1024 blocks)
 - 32-bit byte addresses
 - Valid bit and dirty bit per block
 - Blocking cache (vs. non-blocking)
 - CPU waits until access is complete

Interface Signals

Finite State Machines

- Use an FSM to sequence control steps
- Set of states, transition on each clock edge
 - State values are binary encoded
 - Current state stored in a register
 - Next state = f_n (current state, current inputs)
- Control output signals $= f_o$ (current state)

Cache Controller FSM

