# GeoX Young Academy: Machine Learning in Remote Sensing Best practice and recent developments

Part 4: Modern Approaches to ML

Ronny Hänsch & Andreas Ley

Dept. Computer Vision and Remote Sensing

TU Berlin - Germany





# Challenges in classification today?

- Increasing amount & openness of data, e.g.:
  - Pléiades: entire earth every day (< 1 m resolution)
  - USGS public domain aerial images
  - ⇒ Scalability: temporal/space complexity
- Intra-class variability:







Chicago

Vienna

Austin

- Interest in semantic classes (e.g., building, road, lane)
  - ⇒ Need for high-level contextual reasoning (shape, patterns,...)
  - ⇒ Generalization to different locations

### Outline

- 1. Challenges
- 2. Classification with CNNs
- 3. Enhancing outputs with RNNs
- 4. Yielding high-resolution outputs
- Conclusions

# Recap: Artificial neural networks Multilayer perceptron (MLP)



### Neuron



- $y = \sigma(\sum a_i x_i + b)$ ,  $\sigma$  nonlinear
- ullet Parameters  $(a_i, b \text{ of all neurons})$  define the function
- Trained from samples by stoch. gradient descent

# Recap: Convolutional neural networks (CNNs)

- Input: the image itself
- {Convolutional layers + pooling layers}\* + MLP

### Convolutional layer

Learned convolution filters  $\rightarrow$  feature maps



Special case of fully connected layer:

- Only local spatial connections
- Location invariance
- ⇒ Makes sense in image domain (or text, time series,...)

# Recap: Convolutional neural networks (CNNs)

### Pooling layers

### Subsample feature maps

- Increase receptive field ☺
- Downgrade resolution
  - Robustness to spatial variation ©
  - Not good for pixelwise labeling ②



Max pooling

### Overall categorization CNN



Source: deeplearning.net

# Remote sensing: dense labeling with CNNs?

### Pioneering works:

1. Predict and entire patch centered in input patch (Mnih, 2013)



Allows to learn "in-patch location" priors
 → Patch border artifacts



- 2. Predict the central pixel in the patch and shift one by one (e.g., Paisitkriangkrai et al., CVPR Earthvision 2015)
  - Too many redundant computations

# State of the art: fully convolutional network (FCN)

### Fully convolutional networks (FCNs)

[Long et al., CVPR 2015]

- Convolutions & subsampling
- "Deconvolutional" layer to upsample



Proposed FCN for remote sensing



Deconv. layer

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. "Fully convolutional neural networks for remote sensing image classification", IGARSS 2016.

# State of the art: fully convolutional network (FCN)



- Output size varies with input size (with fixed number of parameters)
- Location invariant (same logic used to compute every output)
- Avoid redundant computations
- Especially relevant in remote sensing (arbitrary tiling, azimuth)

### FCN: experiment

- Patch artifacts removed by construction
- More accurate
- 10x faster







Input

Patch-based

**FCN** 

Massachusetts dataset (Mnih, 2015)

### Once again...

Imposing sensible restrictions

- improves the learning process,
- reduces execution times.



### FCN: experiment

### Massachusetts dataset

[Dataset: Mnih, 2013]



• Classification of 22.5 km<sup>2</sup> (1 m resolution): 8.5 seconds

# Dealing with imperfect training data

Frequent misregistration/omission in large-scale data sources:





Pléiades image + OpenStreetMap (OSM) over Loire department

### Possible strategy

Two-step training process:

- 1. Pretrain on large amounts of imperfect data
  - → Learn dataset generalities
- 2. Fine-tune on a small piece of manually labeled reference

# Imperfect training data: experiment

- 1. Pretrain on 22.5 km<sup>2</sup> Pléiades + OpenStreetMap data
- 2. Fine-tune on a manually labeled tile (2.5km<sup>2</sup>, 3000×3000 px.)





Close-up

Fine-tuning tile

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. "Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification", TGRS 2017.

# Imperfect training data: experiment

### Test on a different manually labeled tile



Test tile

# Input Ref. FCN FCN+FT

| Method   | Accuracy | AUC*    | loU |  |
|----------|----------|---------|-----|--|
| FCN      | 99.13%   | 0.98154 | 47% |  |
| FCN + FT | 99.57%   | 0.99836 | 72% |  |

\*AUC: area under the ROC curve

Results

# Concluding remarks

- Fully convolutional networks for remote sensing classification
  - FCNs have now become the standard dense labeling architecture
  - Other FCN comparisons (Kampffmeyer et al., 2016; Sherrah, 2016)
- Combining OSM + manual data sources to improve predictions
  - Growing interest in crowd-sourced data
    - Correcting OSM roads (Mattyus et al., 2016)
    - Combining diverse data sources (Kaiser, 2016)
    - OSM as an additional input (Audebert et al., 2017)

# Concluding remarks

### Recognition/localization trade-off

### Subsampling:

- increases the receptive field (improving recognition)
- reduces resolution (hampering localization)
- ⇒ "Blobby" objects



Input



Ref.



CNN

### Solutions

- 1. Post-process the CNN's output (e.g., CRF)
- 2. Use innovative (e.g., multiscale) architectures

# Enhancing CNNs' outputs



### Recent approaches

- CNN + Fully connected CRF (Chen et al., ICML 2015)
- CNN + Fully connected CRF as RNN (Zheng et al., CVPR 2015)
- CNN + Domain transform (Chen et al., CVPR 2016)

### In remote sensing:

- CNN + CRF (Paisitkriangkrai et al., CVPR Worshops 2015)
- CNN + Fully connected CRF (Marmanis et al., ISPRS 2015; Sherrah 2016,...)

### Goal

Learn iterative enhancement process

- One strategy: progressively enhance the score maps by using partial differential equations
- Given heat maps  $u_k$ , image I:
  - Heat flow  $\frac{\partial u_k(x)}{(Smooths\ out\ u_k)} = \operatorname{div}(\nabla u_k(x))$
- Divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point

### Given heat maps $u_k$ , image I:

 Heat flow (Smooths out u<sub>k</sub>)

$$\frac{\partial u_k(x)}{\partial t} = \mathsf{div}(\nabla u_k(x))$$

• Perona-Malik Edge-stopping function  $g(\nabla I, x)$ 

$$\frac{\partial u_k(x)}{\partial t} = \operatorname{div}(g(\nabla I, x) \nabla u_k(x))$$

Anisotropic diffusion
 Diffusion tensor D(I, x)

$$\frac{\partial u_k(x)}{\partial t} = \operatorname{div}(D(\nabla I, x) \nabla u_k(x))$$

• Geodesic active contours Edge-stopping function  $g(\nabla I, x)$ 

$$\frac{\partial u_k(x)}{\partial t} = |\nabla u_k(x)| \operatorname{div}\left(g(\nabla I, x) \frac{\nabla u_k(x)}{|\nabla u_k(x)|}\right)$$

• ...

- Different PDE approaches can be devised to enhance classification maps
- Several choices must be made to select the appropriate PDE and tailor it to the considered problem
  - For example, edge-stopping function  $g(\nabla I, x)$  must be chosen

- Different PDE approaches can be devised to enhance classification maps
- Several choices must be made to select the appropriate PDE and tailor it to the considered problem
  - For example, edge-stopping function  $g(\nabla I, x)$  must be chosen
- Can we let a machine learning approach discover by itself a useful iterative process?

- Different PDE approaches can be devised to enhance classification maps
- Several choices must be made to select the appropriate PDE and tailor it to the considered problem
  - For example, edge-stopping function  $g(\nabla I, x)$  must be chosen
- Can we let a machine learning approach discover by itself a useful iterative process?
- PDEs are usually discretized in space by using finite differences
  - Derivatives as discrete convolution filters

- Differential operations  $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial^2}{\partial x \partial y}, \frac{\partial^2}{\partial x^2}, ...)$  applied on  $u_k$  and image I
- Implemented as convolutions:  $M_i * u_k$ ,  $N_j * I$   $\{M_1, M_2, ...\}$ ,  $\{N_1, N_2, ...\}$  conv. kernels (e.g., Sobel filters)



•  $\Phi(u_k, I) = \{M_i * u_k, N_j * I; \forall i, j\}$ , set of responses



- Overall update on  $u_k$  at x:  $\delta u_k(x) = f_k (\Phi(u_k, I)(x))$
- ullet Class-specific  $f_k$ , implemented as multilayer perceptron
- $M_i$  and  $N_j$  convey spatial reasoning (e.g., gradients),  $f_k$  their combination (e.g., products)



Discretized in time:

$$u_{k,t+1}(x) = u_{k,t}(x) + \delta u_{k,t}(x)$$
, overall update  $\delta$ 



# Iterative processes as recurrent neural networks (RNNs)

- "Unroll" iterations
- Enforce weight sharing along iterations
- Train by backpropagation as usual ("through time")
- Every iteration is meant to progressively refine the classification maps



- FCN trained on Pléiades + OSM data
- Manually labeled tiles for RNN training/testing
- Unroll 5 iterations
- 32 M<sub>i</sub> and 32 N<sub>i</sub>
- MLP: 1 hidden layer, 32 neurons



Building, Road, Background





### Comparison



|                    | Overall  | Mean  | Class-specific IoU |       |        |
|--------------------|----------|-------|--------------------|-------|--------|
| Method             | accuracy | IoU   | Build.             | Road  | Backg. |
| CNN                | 96.72    | 48.32 | 38.92              | 9.34  | 96.69  |
| CNN+CRF            | 96.96    | 44.15 | 29.05              | 6.62  | 96.78  |
| Class-agn. CNN+RNN | 97.78    | 65.30 | 59.12              | 39.03 | 97.74  |
| CNN+RNN            | 98.24    | 72.90 | 69.16              | 51.32 | 98.20  |

### More examples



# Concluding remarks

- A small set of accurately labeled data can be used to enhance classification maps
- We can *learn* the specifics of an iterative enhancement process
- Removing the recurrence constraint significantly deteriorates results

# Yielding high-resolution outputs

### Very recent works

Four families of architectures:

- Dilation (Chen et al., 2015; Dubrovina et al., 2016,...)
- Unpooling/deconv. (Noh et al., 2015; Volpi and Tuia, 2016,...)
- Skip networks (Long et al., 2015; Badrinarayanan et al., 2015,...)
- MLP network (Maggiori et al., 2017 ⇒ attend talk of E. Maggiori (July 28, 13:40, ballroomB))

**Ultimate goal:** CNN architecture that addresses recognition/localization trade-off

Analysis of SoA: E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. "High-Resolution Semantic Labeling with Convolutional Neural Networks", arXiv, Nov. 2016.

### Dilation networks

- Based on the shift-and-stitch approach:
  - Conduct predictions at different offsets to produce low-resolution outputs
  - Interleave these outputs to compose the final high-resolution result
- Such an interleaving can be implemented as convolutions on non-contiguous locations



- ⇒ Larger context without introducing more parameters
  - Not robust to spatial deformation (e.g., detect road located exactly 5px away)

# Unpooling/deconvolution networks

• The CNN is "mirrored" to learn the deconvolution:



Max (left) and average (right) unpooling



ullet The depth of deconv. networks is significantly larger ( $\sim$  twice FCN)

## Skip networks

- Extract intermediate features
- 2. Classify
- 3. Upsample/add (pairwise)

- Addresses trade-off
- Inflexible/arbitrary at combining resolutions



#### **Premise**

- CNNs do not need to "see" everywhere at the same resolution
- E.g., to classify central pixel:



Full resolution context



Full resolution only near center

⇒ Combine resolutions to address trade-off, in a flexible way



Base FCN



- Extract intermediate features
- Upsample to the highest res.
- Concatenate
- ⇒ Pool of features (e.g., edge detectors, object detectors)



- Multi-layer perceptron (MLP) learns how to combine those features
   ⇒ Output classif. map
- Pixel by pixel (series of 1×1 convolutional layers)
   ⇒ 128 hidden neurons, nonlinear activation
- Addresses trade-off in a flexible way

## **Experiments**

#### **Datasets**

ISPRS 2D semantic labeling contest:



Vaihingen (9 cm)



Potsdam (5 cm)

Color infra-red + Elevation model

### Results: Base FCN vs derived architectures

| Vaihingen | Imp. surf. | Building | Low veg. | Tree  | Car   | Mean F1 | Acc.  |
|-----------|------------|----------|----------|-------|-------|---------|-------|
| Base FCN  | 91.46      | 94.88    | 79.19    | 87.89 | 72.25 | 85.14   | 88.61 |
| Unpooling | 91.17      | 95.16    | 79.06    | 87.78 | 69.49 | 84.54   | 88.55 |
| Skip      | 91.66      | 95.02    | 79.13    | 88.11 | 77.96 | 86.38   | 88.80 |
| MLP       | 91.69      | 95.24    | 79.44    | 88.12 | 78.42 | 86.58   | 88.92 |

| Potsdam   | Imp. surf. | Building | Low veg. | Tree  | Car   | Clutter | Mean F1 | Acc.  |
|-----------|------------|----------|----------|-------|-------|---------|---------|-------|
| Base FCN  | 88.33      | 93.97    | 84.11    | 80.30 | 86.13 | 75.35   | 84.70   | 86.20 |
| Unpooling | 87.00      | 92.86    | 82.93    | 78.04 | 84.85 | 72.47   | 83.03   | 84.67 |
| Skip      | 89.27      | 94.21    | 84.73    | 81.23 | 93.47 | 75.18   | 86.35   | 86.89 |
| MLP       | 89.31      | 94.37    | 84.83    | 81.10 | 93.56 | 76.54   | 86.62   | 87.02 |



Classes: Impervious surface (white), Building (blue), Low veget. (cyan), Tree (green), Car (yellow), Clutter (red).

## Results: Comparison with other methods

| Vaihingen      | Imp. surf. | Build. | Low veg. | Tree  | Car   | F1    | Acc.  |
|----------------|------------|--------|----------|-------|-------|-------|-------|
| CNN+RF         | 88.58      | 94.23  | 76.58    | 86.29 | 67.58 | 82.65 | 86.52 |
| CNN+RF+CRF     | 89.10      | 94.30  | 77.36    | 86.25 | 71.91 | 83.78 | 86.89 |
| Deconvolution  |            |        |          |       |       | 83.58 | 87.83 |
| Dilation       | 90.19      | 94.49  | 77.69    | 87.24 | 76.77 | 85.28 | 87.70 |
| Dilation + CRF | 90.41      | 94.73  | 78.25    | 87.25 | 75.57 | 85.24 | 87.90 |
| MLP            | 91.69      | 95.24  | 79.44    | 88.12 | 78.42 | 86.58 | 88.92 |

#### Submission of the MLP-network results to ISPRS server

- Overall accuracy: 89.5%
- Second place (out of 29) at the time of submission
- Significantly simpler and faster than other methods

# New deep approaches are coming!

#### ⇒ https://project.inria.fr/aerialimagelabeling/:



#### Leaderboard

| Method       | Date       | Bellingham |       | Bloomington |       | Innsbruck |       | San Francisco |       | East Tyrol |       | Overall |       |
|--------------|------------|------------|-------|-------------|-------|-----------|-------|---------------|-------|------------|-------|---------|-------|
|              |            | IoU        | Acc.  | IoU         | Acc.  | IoU       | Acc.  | IoU           | Acc.  | loU        | Acc.  | loU     | Acc.  |
| Inria1 🔼 🔍   | 3-Jan-17   | 52.91      | 95.14 | 46.08       | 94.95 | 58.12     | 95.16 | 57.84         | 86.05 | 59.03      | 96.40 | 55.82   | 93.54 |
| Inria2 🔼 🔍   | 3-Jan-17   | 56.11      | 95.37 | 50.40       | 95.27 | 61.03     | 95.37 | 61.38         | 87.00 | 62.51      | 96.61 | 59.31   | 93.93 |
| TeraDeep 🔼 🔍 | 5-May-17   | 58.08      | 95.88 | 53.38       | 95.61 | 59.47     | 95.26 | 64.34         | 88.71 | 62.00      | 96.57 | 60.95   | 94.41 |
| RMIT 🔼 🔍     | 16-July-17 | 57.30      | 95.97 | 51.78       | 95.60 | 60.70     | 95.69 | 66.71         | 89.23 | 59.73      | 96.59 | 61.73   | 94.62 |

## New deep approaches are coming! - some results



Input



TeraDeep



Inria



**RMIT** 

# Concluding remarks

- Modern CNN architertures address well recognition/localization trade-off
- Good generalisation potential
- How to implement?
  - Some codes:
    - https://github.com/emaggiori/CaffeRemoteSensing
      - Extending Caffe framework for pixelwise labeling of aerial remote sensing imagery.

# Concluding remarks

#### Key to CNNs' success

Imposing *sensible* restrictions to neuronal connections reduces optimization search space w.l.o.g:

- ullet Better minima o better accuracy
- Computational efficiency
- ⇒ Win-win

### A recurrent pattern: simpler is better

- ullet FCNs o More accurate and 10x faster
- RNNs → Removing recurrence significantly degrades results
- ullet MLP net o More accurate than more complicated models

## Concluding remarks

### The "no free lunch" principle in machine learning (Wolper, 1996)

There is no such thing as a universally better classifier. A classifier is better under certain assumptions.

- CNNs exploit the properties of images particularly well
- Shifting efforts from feature engineering to network engineering
- Good payoff of the efforts,
   e.g., learning better features than handmade ones,
   convolutions → GPUs, borrowing pretrained network
- Still many remaining challenges to solve:
  - → Rounded corners, unstructured outputs, etc.

...

 $\rightarrow$  Classifying the Earth