Matlab

Michel Doussot

17 septembre 2018

Table des matières

1 -	Scilab	2
	1.1	Vecteurs et matrices
	1.2	Opérateurs et Fonctions
	1.3	Calcul matriciel
	1.4	Polynômes et fonctions de transfert
	1.5	Structures de contrôle
	1.6	Fonctions
	1.7	Mesure du temps de calcul
	1.8	Fonctions d'affichage
	1.9	Lecture et enregistrement de fichiers CSV

1 - Scilab

1.1 Vecteurs et matrices

un; en fin de ligne évite l'affichage du résultat Le premier indice est toujours 1, l'indice est entre parenthèses

 $\begin{array}{lll} A = & [1\ 2\ 3\ ;\ 4\ 5\ 6] & : \ matrice\ 2\ lignes\ 3\ colonnes \\ A(1,3) & : \ contient\ ligne\ 1\ colonne\ 3 \\ A(1,:) & : \ contient\ la\ premiere\ ligne \\ A(:,2) & : \ contient\ la\ deuxieme\ colonne \\ A(1,end) & : \ dernier\ element\ de\ la\ ligne\ 1 \\ A(end,2) & : \ dernier\ element\ de\ la\ colonne\ 2 \\ \end{array}$

A(:) : transforme la matrice A en vecteur colonne A(A>0) : retourne un vecteur des valeurs de >0

 $A = [1 \ 2 \ 3 \ 4]$: vecteur ligne A = [1; 2; 3; 4] : vecteur colonne

A=1:2:10 : vecteur ligne de 1 a 10 par pas de 2

X=ones(l,c) : matrice contenant des 1 X=zeros(l,c) : matrice contenant des 0

[l,c] = size (vecteur ou matrice) taille d'une matrice

l=length(vecteur ou matrice) taille totale de la matrice (colonnes x lignes)

Exemples:

```
A=[1 2 3; 4 5 6]; // matrice 2 lignes 3 colonnes [1,c]=size(A) // donne l=2 c=3 l=length(A) // donne l=6
```

1.2 Opérateurs et Fonctions

 $\begin{array}{lll} A = [] & : initialise \ un \ vecteur \ vide \\ A(:,3) = [] & : supprime \ la \ colonne \ 3 \\ A(2,:) = [] & : supprime \ la \ ligne \ 2 \\ A([1\ 2],:) = A([2\ 1],:) & : permute \ les \ lignes \ 1 \ et \ 2 \\ A = A(end:-1\ :1) & : inverse \ l'ordre \ du \ vecteur \\ \end{array}$

*, +, -, / : effectue les opérations matricielles.

.* et ./ : effectue les opérations multiplication et division point par point.

calcule la transposée conjuguée (matrice adjointe) i=mod(n,m) : donne le reste de la division entière de n par m, i i=rem(n,m) : donne le quotient de la division entière de n par m, i

y=abs(x) : donne la valeur absolue d'un réel ou le module d'un complexe

r=real(c) : donne la partie réelle d'un nombre complexe i=imag(c) : donne la partie imaginaire d'un nombre complexe

 $\begin{array}{lll} y = \sin(x) & : \ donne \ le \ sinus \ (idem \ avec \ cos \ et \ tan) \\ y = asin(x) & : \ donne \ l'arcsinus \ (idem \ avec \ acos) \\ y = atan(x) & : \ donne \ l'arctangente \ entre \ -\frac{\pi}{2} \ et \ \frac{\pi}{2} \\ y = atan2(y,x) & : \ donne \ l'arctangente \ de \ y/x \ entre \ -\pi \ et \ \pi \end{array}$

y=sinc(x) : sinus cardinal

 $y=\exp(x)$: exponentielle (idem avec log pour le logarithme naturel)

```
\begin{array}{lll} y = floor(x) & : arrondi \ par \ d\'efaut \ (ceil \ pour \ l'arrondi \ par \ excès) \\ y = sqrt(x) & : racine \ carr\'ee \\ pi & : constante \ \pi \\ i & : constante \ complexe \ i \\ inf & : constante \ infini \end{array}
```

Remarque : les paramètres et résultats de ces fonctions peuvent être des scalaires, vecteurs ou matrices

Exemples:

```
A = [1 \ 2 \ 3];
B = [4 \ 5 \ 6];
C = A \cdot * B // donne /4
                                       18]
                               10
C = A * B // donne une erreur
C = A * B' // donne un scalaire
C = A' * B // donne
    4.
            5.
                     6.
    8.
            10.
                     12.
    12.
            15.
                    18.
```

1.3 Calcul matriciel

```
: inversion d'une matrice
y=inv(x)
y = rank(x)
                             : rang d'une matrice
y = eye(l,c)
                             : construit une matrice identité
y = det(x)
                             : déterminant d'une matrice
y = diag(x)
                             : construit une matrice diagonale ou extrait la diagonale
y = norm(x)
                             : calcule la norme d'une matrice
y = sum(x)
                             : somme des éléments d'une matrice
                             : produit des éléments d'une matrice
y = prod(x)
y = max(x)
                             : calcule le maximum d'une matrice
                             : calcule la movenne d'une matrice
y = mean(x)
y = min(x)
                             : calcule le minimum d'une matrice
y = sign(x)
                             : donne le signe des éléments d'une matrice
                             : égalité de matrices
y=isequal(x1,x2)
                             : matrice aléatoire
y=rand(l,c)
y = eig(x)
                             : calcule les valeurs et vecteurs propres
                             : calcule les valeurs singulières
y = svd(x)
y = triu(x)
                             : partie triangulaire supérieure d'une matrice
y = tril(x)
                             : partie triangulaire inférieure d'une matrice
                             : duplique la matrice x sur m ligne et n colonnes
y = repmat(x,m,n)
```

1.4 Polynômes et fonctions de transfert

1.4.1 Création d'un polynôme

```
 \begin{aligned} \mathbf{d} &= \mathbf{poly(vecteur)} \\ \text{vecteur} : \text{correspondant aux racines du polynôme} \\ \mathbf{d} &= \mathbf{poly}([-1 \ -1); \ // \ donne \ 1 + 2p + p^2| \ | \\ y &= \text{roots(p)} \end{aligned}  : racines d'un polynôme
```

1.5 Structures de contrôle

1.6 Fonctions

```
function [r1, r2]=nomfonction(parametres)

// corps de la fonction

end
```

[r1,r2] : deux matrices qui sont obligatoirement utilisées dans le corps de la fonction Chaque fonction est écrite dans un fichier nomfonction.m.

1.7 Mesure du temps de calcul

 $\begin{array}{lll} \text{cputime} & : \text{mesure du temps CPU} \\ \text{tic} & : \text{démarre un timer} \\ \text{toc} & : \text{lit le temps du timer} \\ \text{toc(t)} & : \text{lit le temps depuis } t{=}\text{tic} \\ \end{array}$

1.8 Fonctions d'affichage

 $\operatorname{disp}(M,'M=')$; : affichage du contenu de M $\operatorname{plot}(x)$: affichage graphique du vecteur x

plot(x,y,'chaine')

couleur : b : bleu, r : rouge, ...

style : . : point, o : cercle, * : étoile, ...

courbe : - : continue, pas de caractère : points sans courbe

subplot(m,n,p) : divise le graphique en sous-graphiques mxn

p est l'emplacement de la figure dans cette ensemble.

figure(n) : créer une nouvelle figure (n numéro de al figure)

1.9 Lecture et enregistrement de fichiers CSV

csvwrite('nom fichier',A) : enregistre le contenu de la matrice A dans le fichier csv dlmwrite('nom fichier',A,'delimiteur') : enregistre le contenu de la matrice A dans le fichier csv M=csvread('nom fichier') : lit le fichier csv et stocke le résultat dans un matrice M=dlmread('nom fichier','delimiteur') : lit le fichier csv et stocke le résultat dans un matrice