Математический анализ, Коллоквиум 2

Балюк Игорь @lodthe, GitHub

2019 - 2020

Содержание

1	Воп	росы предварительной части коллоквиума
	1.1	Определение непрерывности функции в точке
	1.2	Точки разрыва, их классификация.
	1.3	Теорема о непрерывности сложной функции
	1.4	Формулировки первой и второй теорем Вейерштрасса.
	1.5	Понятие производной функции в точке
	1.6	Геометрический и физический смысл производной.
	1.7	Уравнение касательной к графику функции в точке
	1.8	Понятие дифференцируемости функции в точке.
	1.9	Правила дифференцирования (производная суммы, произведения, частного).
	1.10	Формула вычисления производной сложной функции.
	1.11	Таблица производных основных элементарных функций
	1.12	Понятие дифференциала (первого) функции в точке
	1.13	Геометрический смысл дифференциала
	1.14	Определение локального экстремума. Необходимое условие для внутреннего локального
		экстремума (теорема Ферма).
	1.15	Формулы Лагранжа и Коши.
	1.16	Многочлен Тейлора и формула Тейлора для функций одной переменной.
	1.17	Формулы Маклорена для основных элементарных функций.
	1.18	Правило Лопиталя
2		росы на знание доказательств
	2.1	Определения непрерывности функции в точке, их эквивалентность. Точки разрыва, их
	0.0	классификация.
	2.2	Непрерывность основных элементарных функций.
	2.3	Арифметические свойства непрерывных функций.
	2.4	Теорема о непрерывности сложной функции.
	2.5	Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).
	2.6	Теорема Коши о прохождении непрерывной функции через промежуточные значения
	2.7	Понятие производной функции в точке
	2.8	Геометрический и физический смысл производной.
	2.9	Уравнение касательной к графику функции в точке.
	2.10	Понятие дифференцируемости функции в точке.
	2.11	Необходимое условие дифференцируемости.
	2.12	Правила дифференцирования.
	2.13	Теорема о дифференцируемости и производной сложной функции.
	2.14	Теорема о дифференцируемости обратной функции.
	2.15	Таблица производных основных элементарных функций.
	2.16	Производные функций, графики которых заданы параметрически
	2.17	Понятие дифференциала (первого) функции в точке
	2.18	Геометрический смысл дифференциала.
	2.19	Инвариантность формы первого дифференциала.
	2.20	Производные и дифференциалы высших порядков функции одной переменной в точке.
	2 21	Понятие об экстремумах функции одной переменной

2.22	Локальный экстремум. Необходимое условие для внутреннего локального экстремума (тео-
	рема Ферма)
2.23	Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы
	Лагранжа и Коши)
2.24	Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным
	членом в форме Пеано и Лагранжа.
2.25	Формулы Маклорена для основных элементарных функций.
2.26	Правило Лопиталя
2.27	Достаточное условие строгого возрастания (убывания) функции на промежутке
2.28	Достаточные условия локального экстремума для функции одной переменной
2.29	Выпуклые (вогнутые) функции одной переменной.
2.30	Достаточные условия выпуклости (вогнутости)
2.31	Точки перегиба
2.32	
2.33	Асимптоты графика функции одной переменной.

1 Вопросы предварительной части коллоквиума

Список вопросов предварительной части коллоквиума, ответ на которые необходим для подготовки к основной части.

1. Определение непрерывности функции в точке.

Пусть f(x) — функция, определенная на промежутке I (I — это её область определения) и пусть c — произвольная точка из I. Предположим, что для любого $\varepsilon > 0$ существует $\delta > 0$:

$$\forall x \in I: |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

Тогда функция f(x) **непрерывна** в точке c.

Заметьте, если c — это левая граница I, то условие имеет вид (функция непрерывна в точке c справа, аналогично для непрерывности слева).

$$\forall x \in I : c < x < c + \delta \implies |f(x) - f(c)| < \varepsilon$$

Теорема. Также, функция f(x) непрерывна в точке a. Тогда найдётся такое $\delta > 0$, что функция f(x) ограничена окрестностью $U_{\delta}(a)$ точки a.

- 2. Точки разрыва, их классификация.
- 3. Теорема о непрерывности сложной функции.
- 4. Формулировки первой и второй теорем Вейерштрасса.
- 5. Понятие производной функции в точке.
- 6. Геометрический и физический смысл производной.
- 7. Уравнение касательной к графику функции в точке.
- 8. Понятие дифференцируемости функции в точке.
- 9. Правила дифференцирования (производная суммы, произведения, частного).
- 10. Формула вычисления производной сложной функции.
- 11. Таблица производных основных элементарных функций.
- 12. Понятие дифференциала (первого) функции в точке.
- 13. Геометрический смысл дифференциала.
- 14. Определение локального экстремума. Необходимое условие для внутреннего локального экстремума (теорема Ферма).
- 15. Формулы Лагранжа и Коши.
- 16. Многочлен Тейлора и формула Тейлора для функций одной переменной.
- 17. Формулы Маклорена для основных элементарных функций.
- 18. Правило Лопиталя.

2 Вопросы на знание доказательств

- 1. Определения непрерывности функции в точке, их эквивалентность. Точки разрыва, их классификация.
- 2. Непрерывность основных элементарных функций.
- 3. Арифметические свойства непрерывных функций.
- 4. Теорема о непрерывности сложной функции.
- 5. Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).

- 6. Теорема Коши о прохождении непрерывной функции через промежуточные значения.
- 7. Понятие производной функции в точке.
- 8. Геометрический и физический смысл производной.
- 9. Уравнение касательной к графику функции в точке.
- 10. Понятие дифференцируемости функции в точке.
- 11. Необходимое условие дифференцируемости.
- 12. Правила дифференцирования.
- 13. Теорема о дифференцируемости и производной сложной функции.
- 14. Теорема о дифференцируемости обратной функции.
- 15. Таблица производных основных элементарных функций.
- 16. Производные функций, графики которых заданы параметрически.
- 17. Понятие дифференциала (первого) функции в точке.
- 18. Геометрический смысл дифференциала.
- 19. Инвариантность формы первого дифференциала.
- 20. Производные и дифференциалы высших порядков функции одной переменной в точке.
- 21. Понятие об экстремумах функции одной переменной.
- 22. Локальный экстремум. Необходимое условие для внутреннего локального экстремума (теорема Ферма).
- 23. Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы Лагранжа и Коши).
- 24. Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным членом в форме Пеано и Лагранжа.
- 25. Формулы Маклорена для основных элементарных функций.
- 26. Правило Лопиталя.
- 27. Достаточное условие строгого возрастания (убывания) функции на промежутке.
- 28. Достаточные условия локального экстремума для функции одной переменной.
- 29. Выпуклые (вогнутые) функции одной переменной.
- 30. Достаточные условия выпуклости (вогнутости).
- 31. Точки перегиба.
- 32. Необходимые и достаточные условия для точки перегиба.
- 33. Асимптоты графика функции одной переменной.