

Análise e Síntese de Algoritmos

Procura em largura primeiro (BFS). Caminhos mais curtos. Dijkstra.

CLRS Cap. 22 e 24

Instituto Superior Técnico 2022/2023

Procura em Largura Primeiro (BFS)

Funcionamento do Algoritmo

Dado um grafo G = (V, E) e um vértice fonte s, o algoritmo BFS explora sistematicamente os vértices de G para descobrir todos os vértices atingíveis a partir de s

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos
 - Fluxos máximos
 - Árvores abrangentes
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Análise e Síntese de Algoritmos - 2022/2023

1/42

Procura em Largura Primeiro (BFS)

Funcionamento do Algoritmo

Dado um grafo G = (V, E) e um vértice fonte s, o algoritmo BFS explora sistematicamente os vértices de G para descobrir todos os vértices atingíveis a partir de s

Intuição

Fronteira entre vértices descobertos e não descobertos é expandida uniformemente

• Vértices à distância k descobertos antes de qualquer vértice à distância k+1

Procura em Largura Primeiro (BFS)

Resultado

BFS(G, s)

 $color[u] \leftarrow black$

end while

- Identificação de árvore Breadth-First (BF): caminho mais curto de s para cada vértice atingível v
- $\delta(u, v)$: distância do caminho mais curto (menor número de arcos) de u para v

Análise e Síntese de Algoritmos - 2022/2023

3/42

Implementação

- color[v]: cor do vértice v
 <u>branco</u>: não visitado
 <u>cinzento</u>: já visitado, mas:
 - . algum dos adjacentes não visitado
 - . ou procura em algum dos adjacentes não terminada preto: já visitado e procura nos adjacentes já terminada
- $\pi[v]$: predecessor de v na árvore BF
- d[v]: tempo de descoberta do vértice v

Análise e Síntese de Algoritmos - 2022/2023

1/11

Procura em Largura Primeiro (BFS)


```
for each u \in G.V \setminus \{s\} do color[u] \leftarrow white; \ d[u] \leftarrow \infty; \ \pi[u] \leftarrow NIL end for color[s] \leftarrow gray; \ d[s] \leftarrow 0; \ \pi[s] \leftarrow NIL Q \leftarrow \{s\} while Q \neq \emptyset do u \leftarrow \text{Dequeue}(Q) for each v \in G.Adj[u] do if color[v] == white then color[v] \leftarrow gray; \ d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u Enqueue(Q, v) end if end for
```

Procura em Largura Primeiro (BFS)

Complexidade

Tempo de execução: O(V + E)

- Inicialização: O(V)
- Para cada vértice
 - Colocado na fila apenas 1 vez: O(V)- Lista de adjacências visitada 1 vez: O(E)

Procura em Largura Primeiro (BFS)

Análise e Síntese de Algoritmos - 2022/2023

7/4

Exemplo

Q W r

Análise e Síntese de Algoritmos - 2022/2023

8/42

Procura em Largura Primeiro (BFS)

Procura em Largura Primeiro (BFS)

Exemplo

Exemplo

t x v

Procura em Largura Primeiro (BFS)

Análise e Síntese de Algoritmos - 2022/2023

11/42

Exemplo

Análise e Síntese de Algoritmos - 2022/2023

12/42

Procura em Largura Primeiro (BFS)

Procura em Largura Primeiro (BFS)

Exemplo

Exemplo

Análise e Síntese de Algoritmos - 2022/2023

13/42

Análise e Síntese de Algoritmos - 2022/2023

Procura em Largura Primeiro (BFS)

Exemplo

Análise e Síntese de Algoritmos - 2022/2023

15/4

Resultados

Para qualquer arco (u, v):

- Se *u* atingível, então *v* atingível
 - caminho mais curto para v não pode ser superior ao caminho mais curto para u mais o arco (u, v)
 - $-\delta(s,v)\leq\delta(s,u)+1$
- Se u não atingível, então resultado é válido (independentemente de v ser atingível)

No final da BFS: $d[u] = \delta(s, u)$, para todo o vértice $u \in V$

Análise e Síntese de Algoritmos - 2022/2023

16/10

Procura em Largura Primeiro (BFS)

Árvore Breadth-First

- $G_{\pi}=(V_{\pi},E_{\pi})$
- $V_{\pi} = \{v \in V : \pi[v] \neq \mathit{NIL}\} \cup \{s\}$
- $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \setminus \{s\} \}$

Características

- Árvore BF é sub-grafo de G
- Vértices atingíveis a partir de s
- Arcos que definem a relação predecessor da BFS

Procura em Largura Primeiro (BFS)

Problema 1

Exercício

Análise e Síntese de Algoritmos - 2022/2023

19/42

Grafo Semi-Ligado

Um grafo dirigido G diz-se semi-ligado se para qualquer par de vértices (u, v), u é atingível a partir de v ou v é atingível a partir de u

Análise e Síntese de Algoritmos - 2022/2023

20/40

Problema 1

Problema 2

Grafo Semi-Ligado

Um grafo dirigido G diz-se semi-ligado se para qualquer par de vértices (u, v), u é atingível a partir de v ou v é atingível a partir de u

Problema

Indique um algoritmo eficiente para determinar se um grafo G=(V,E) é semi-ligado

Pontos de Articulação

Indique um algoritmo eficiente para determinar se um grafo G = (V, E) não dirigido e ligado tem pontos de articulação

- Um grafo não dirigido diz-se ligado se para qualquer par de vértices $u, v \in V$, existe pelo menos um caminho entre u e v.
- Um vértice $u \in V$ diz-se um ponto de articulação de um grafo se a remoção do vértice u implicar que o grafo deixa de ser ligado.

Caminhos Mais Curtos

Tipos de problemas

- Caminhos Mais Curtos com Fonte Única (SSSPs)
 - Identificar o caminho mais curto de um vértice fonte $s \in V$ para qualquer outro vértice $v \in V$
- Caminhos Mais Curtos com Destino Único
 - Identificar o caminho mais curto de qualquer vértice $v \in V$ para um vértice destino $t \in V$
- Caminho Mais Curto entre Par Único
 - Identificar caminho mais curto entre dois vértices u e v
- Caminhos Mais Curtos entre Todos os Pares (APSPs)
 - Identificar um caminho mais curto entre cada par de vértices de V

Análise e Síntese de Algoritmos - 2022/2023

22/4:

Propriedades dos Caminhos Mais Curtos

Sub-estrutura Ótima

Sub-caminhos de caminhos mais curtos são caminhos mais curtos

- Seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto entre v_1 e v_k , e seja $p_{ij} = \langle v_i, v_{i+1}, \dots, v_i \rangle$ um sub-caminho de p entre v_i e v_j
- Então p_{ij} é um caminho mais curto entre v_i e v_j
 - Porquê? Se existisse caminho mais curto entre v_i e v_j então seria possível construir caminho entre v_1 e v_k mais curto do que p
 - Contradição, dado que p é um caminho mais curto entre v_1 e v_k

Definicões

Dado um grafo G = (V, E), dirigido, com uma função de pesos w : E → IR, define-se o peso de um caminho p, onde p = ⟨v₀, v₁,..., v_k⟩, como a soma dos pesos dos arcos que compõem p:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• O peso do caminho mais curto de u para v é definido por:

$$\delta(u,v) = \begin{cases} \min \{w(p) : u \to_p v\} & \text{se existe caminho de } u \text{ para } v \\ \infty & \text{caso contrário} \end{cases}$$

• Um caminho mais curto de u para v é qualquer caminho p tal que $w(p) = \delta(u, v)$

Análise e Síntese de Algoritmos - 2022/2023

23/42

Propriedades de Caminhos Mais Curtos

Peso de um Caminho Mais Curto

Seja $p = \langle s, ..., v \rangle$ um caminho mais curto entre s e v, que pode ser decomposto em $p_{su} = \langle s, ..., u \rangle$ e (u, v).

Então o peso do caminho mais curto será $\delta(s, v) = \delta(s, u) + w(u, v)$

- p_{su} é caminho mais curto entre s e u
- $\delta(s, v) = w(p) = w(p_{su}) + w(u, v) = \delta(s, u) + w(u, v)$

Caminhos Mais Curtos

Ciclos Negativos

- Arcos podem ter pesos com valor negativo
- É possível a existência de ciclos com peso total negativo
 - Se ciclo negativo não atingível a partir da fonte s, então $\delta(s,v)$ bem definido
 - Se ciclo negativo atingível a partir da fonte s, então os pesos dos caminhos mais curtos não são bem definidos
 - Neste caso, é sempre possível encontrar um caminho mais curto de s para qualquer vértice incluído no ciclo e define-se $\delta(s,v)=-\infty$

$$w(\langle s, x, y, z \rangle) = 3$$

$$w(\langle s, x, y, x, y, z \rangle) = 1$$

$$w(\langle s, x, y, x, y, x, y, z \rangle) = -1$$

Análise e Síntese de Algoritmos - 2022/2023

26/43

Análise e Síntese de Algoritmos - 2022/2023

Caminhos Mais Curtos

Representação de Caminhos Mais Curtos

Uma árvore de caminhos mais curtos é um sub-grafo dirigido $G'=(V',E'),\ V'\subseteq V$ e $E'\subseteq E$, tal que:

- V' é o conjunto de vértices atingíveis a partir de s em G
- G' forma uma árvore com raiz s
- Para todo o $v \in V'$, o único caminho de s para v em G' é um caminho mais curto de s para v em G

Observações

- Após identificação dos caminhos mais curtos de G a partir de fonte s, G' é dado por $G_{\pi} = (V_{\pi}, E_{\pi})$
- Dados os mesmos grafo G e vértice fonte s, G' não é necessariamente único

Propriedades dos Caminhos Mais Curtos

Representação de Caminhos Mais Curtos

• Sub-grafo de predecessores $G_{\pi} = (V_{\pi}, E_{\pi})$:

• Para cada vértice $v \in V$ associar predecessor $\pi[v]$

• Após identificação dos caminhos mais curtos, $\pi[v]$ indica qual o

 $V_{\pi} = \{ v \in V : \pi[v] \neq \mathsf{NIL} \} \cup \{ s \}$

 $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} - \{s\} \}$

vértice anterior a v num caminho mais curto de s para v

Relação caminho mais curto com arcos do grafo

Para todos os arcos $(u, v) \in E$ verifica-se $\delta(s, v) \leq \delta(s, u) + w(u, v)$

- Caminho mais curto de s para v não pode ter mais peso do que qualquer outro caminho de s para v
- Assim, peso do caminho mais curto de s para v não superior ao peso do caminho mais curto de s para u seguido do arco (u,v) (i.e. exemplo de um dos caminhos de s para v)

Propriedades de Caminhos Mais Curtos

Operação de Relaxação

Resumo

Sub-estrutura óptima: Sub-caminhos de caminhos mais curtos são caminhos mais curtos

- Seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto entre v_1 e v_k , e seja $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ um sub-caminho de p entre v_i e v_j .
- Então p_{ij} é um caminho mais curto entre v_i e v_j
- Seja $p=\langle s,\ldots,v\rangle$ um caminho mais curto entre s e v, que pode ser decomposto em $p_{su}=\langle s,\ldots,u\rangle$ e (u,v). Então $\delta(s,v)=\delta(s,u)+w(u,v)$

Relação caminho mais curto com arcos do grafo: para todos os arcos $(u, v) \in E$ verifica-se $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Análise e Síntese de Algoritmos - 2022/2023

30/42

Conceitos

- Operação básica dos algoritmos para cálculo dos caminhos mais curtos com fonte única
- d[v]: denota a estimativa do caminho mais curto de s para v limite superior no valor do peso do caminho mais curto;
- Algoritmos aplicam sequência de relaxações dos arcos de G após inicialização para actualizar a estimativa do caminho mais curto

Relax
$$(u, v, w)$$

if $d[v] > d[u] + w(u, v)$ then
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$
end if

Análise e Síntese de Algoritmos - 2022/2023

31 ///3

Propriedades da Relaxação

Propriedades da Relaxação

Após relaxar arco (u, v), temos que $d[v] \le d[u] + w(u, v)$

- Se d[v] > d[u] + w(u, v) antes da relaxação, então d[v] = d[u] + w(u, v) após relaxação
- Se $d[v] \le d[u] + w(u, v)$ antes da relaxação, então $d[v] \le d[u] + w(u, v)$ após relaxação
- Em qualquer caso, $d[v] \le d[u] + w(u, v)$ após relaxação

Propriedades da Relaxação

Triangle inequality

Para qualquer arco $(u, v) \in E$, temos $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Upper-bound property

Para qualquer vértice $v \in V$, temos $d[v] \ge \delta(s, v)$ e uma vez que d[v] atinja o valor $\delta(s, v)$, já não se altera mais.

No-path property

Se não existir um caminho de s para v, então $d[v] = \delta(s, v) = \infty$

Convergence property

Se $s \rightsquigarrow u \rightarrow v$ é um caminho mais curto em G para algum $u, v \in V$ e se $d[u] = \delta(s, u)$ antes de relaxar o arco (u, v), então $d[v] = \delta(s, v)$ depois de relaxar (u, v)

Propriedades da Relaxação

Algoritmo de Dijkstra

Path-relaxation property

Se $p = \langle v_0, v_1, \dots, v_k \rangle$ é um caminho mais curto de $s = v_0$ até v_k , e relaxarmos os arcos de p por ordem $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, então $d[v_k] = \delta(s, v_k)$

Predecessor-subgraph property

Se $d[v] = \delta(s, v)$ para todo o $v \in V$, então o grafo de predecessores é uma árvore dos caminhos mais curtos com raíz s.

Análise e Síntese de Algoritmos - 2022/2023

34/42

Intuição

- Algoritmo Greedy generalização da BFS (pesos não unitários)
- Todos os arcos com pesos não negativos
- Mantém conjunto de vértices *S* com pesos dos caminhos mais curtos já calculados
- A cada passo seleciona vértice u em V-S com menor estimativa do peso do caminho mais curto
 - vértice u é inserido em S
 - arcos que saem de u são relaxados
- No final, $d[u] = \delta(s, u)$ para cada $u \in V$

Análise e Síntese de Algoritmos - 2022/2023

35/43

Algoritmo de Dijkstra

Dijkstra(G, w, s)Initialize-Single-Source(G, s) $S \leftarrow \emptyset$ $Q \leftarrow G.V$ while $Q \neq \emptyset$ do $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ do Relax(u, v, w)end for end while

Initialize-Single-Source(G, s)for each vertex $v \in G.V$ do $d[v] \leftarrow \infty$ $\pi[v] \leftarrow NIL$ end for d[s] = 0Relax(u, v, w)if d[v] > d[u] + w(u, v) then $d[v] \leftarrow d[u] + w(u, v)$ $\pi[v] \leftarrow u$ end if

Invariantes

- $Q \leftarrow V S$
- $d[u] \leftarrow \delta(s, u)$ quando u é adicionado a S

Algoritmo de Dijkstra: Exemplo

Algoritmo de Dijkstra: Exemplo

Algoritmo de Dijkstra: Exemplo

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

37/42

37.

Algoritmo de Dijkstra: Exemplo

Algoritmo de Dijkstra: Exemplo

Análise e Síntese de Algoritmos - 2022/2023

37/42

Análise e Síntese de Algoritmos - 2022/2023

37/42

Algoritmo de Dijkstra: Exemplo

Análise e Síntese de Algoritmos - 2022/2023

37/42

Algoritmo de Dijkstra

Pesos Negativos

Os pesos dos arcos têm que ser todos <u>não negativos</u>, para garantir a correção do algoritmo

- Analisar $x \operatorname{com} d[x] = 3$
- Analisar v com d[v] = 4
- Analisar $u \operatorname{com} d[u] = 6$
- No final temos $d[x] = 3 \neq \delta(s, x) = 2$

Análise e Síntese de Algoritmos - 2022/2023

20 / 40

Algoritmo de Dijkstra

Complexidade

- Fila de prioridade baseada em amontoados (heap)
- Quando um vértice é extraído da fila Q, implica atualização de Q
 - Cada vértice é extraído apenas 1 vez: |V| vértices
 - Actualização de Q: O(lgV)
 - Então, $O(V \lg V)$
- Cada operação de relaxação pode implicar uma atualização de Q
 - Cada arco é relaxado apenas 1 vez: |E| arcos
 - Atualização de Q: O(lg V)
 - Então, $O(E \lg V)$
- Complexidade algoritmo Dijkstra: $O((V + E) \lg V)$

Algoritmo de Dijkstra

Correção do Algoritmo

Provar invariante do algoritmo: $d[u] = \delta(s, u)$ quando u é adicionado ao conjunto S, e que a igualdade é posteriormente mantida

Prova por Contradição

- Assume-se que existe um primeiro vértice u tal que $d[u] \neq \delta(s, u)$ quando u é adicionado a S
- Necessariamente temos que:
 - $-u \neq s$ porque $d[s] = \delta(s,s) = 0$
 - $-S \neq \emptyset$ porque $s \in S$ quando u é adicionado a S
 - Tem que existir caminho mais curto de s para u, dado que caso contrário teriamos $d[u] = \delta(s, u) = \infty$ (no-path property)

Algoritmo de Dijkstra

Correcção do Algoritmo (cont.)

Pressuposto: u é o primeiro vértice tal que $d[u] \neq \delta(s,u)$ quando u é adicionado a S

- Seja $p = \langle s, \dots, x, y, \dots, u \rangle$ o caminho mais curto de s para u
- Tem que existir pelo menos um vértice do caminho p que ainda não esteja em S, caso contrário, $d[u] = \delta(s, u)$ devido à relaxação dos arcos que compõem o caminho p

Análise e Síntese de Algoritmos - 2022/2023

41/42

Algoritmo de Dijkstra

Correcção do Algoritmo (cont.)

- ..
- Seja (x, y) um arco de p tal que $x \in S$ e $y \notin S$
 - Temos que $d[x] = \delta(s,x)$ porque $x \in S$ e u é o primeiro vértice em que isso não ocorre
 - Temos também que $d[y] = \delta(s, y)$ porque o arco (x, y) foi relaxado quando x foi adicionado a S (convergence property)
 - Como y é predecessor de u no caminho mais curto até u, então $\delta(s,y) \leq \delta(s,u)$, porque os pesos dos arcos são não-negativos
 - Mas se u é adicionado a S antes de y, temos que $d[u] \leq d[y]$. Logo, $d[u] \leq \delta(s,y) \leq \delta(s,u)$. O que contradiz o pressuposto de $d[u] \neq \delta(s,u)$.

Análise e Síntese de Algoritmos - 2022/2023

42/4