

Общероссийский математический портал

А. Н. Паршин, Локальная теория полей классов, Tp. MUAH CCCP, 1984, том 165, 143–170

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 212.232.76.46

11 декабря 2015 г., 22:02:35

УДК 512.62

А. Н. ПАРШИН

ЛОКАЛЬНАЯ ТЕОРИЯ ПОЛЕЙ КЛАССОВ

Локальным полем обычно называется поле отношений полного дискретно нормированного кольца. Теория таких полей является важной частью классической коммутативной алгебры и имеет много применений как в арифметике, так и в геометрии. В работах [1, 2, 3] автор ввел понятие локального поля произвольной размерности n, по отношению к которому обычные локальные поля являются локальными полями размерности 1. Оказалось, что это понятие весьма удобно для изложения ряда задач многомерной алгебраической геометрии (см. введение в работе [2]). Кроме того, для локальных в этом смысле полей можно построить точный аналог теории полей классов, дающий полное описание абелевых расширений. Это описание дается в терминах высших K-функторов Милнора. Независимо этот аспект теории локальных полей был открыт К. Като и развит им в работах [4, 5, 6, 7].

Настоящая работа содержит подробное изложение части результатов локальной теории полей классов, аннонсированных в [3] и относящихся к локальным полям конечной характеристики. Мы старались дать замкнутое в себе изложение, приводя необходимые мотивировки вводимых понятий и конструкций и используя минимальное количество результатов из алгебраической К-теории. В частности, мы не используем общую теорию Квиллена.

Работа состоит из четырех разделов. Раздел 1 содержит общие сведения о локальных полях. В разделе 2 излагается очерк K-теории, определение групп $K_n^{\text{top}}(K)$ для локальных полей K и их вычисление. Раздел 3 посвящен построению в нашей ситуации двойственности Куммера и Артина—Шрейера—Витта (а также отображения переноса). Теория полей классов содержится в разделе 4. Ряд результатов, в частности вычисление группы Брауера локального поля, будет рассмотрен в отдельной статье.

Я глубоко признателен Х. Коху, П. Рокетту, Ж. П. Серру и И. Р. Шафаревичу за внимание к моей работе.

1. Локальные поля

Пусть K и k — поля. Введем на K структуру локального поля.

Определение 1. Структурой п-мерного локального поля на K (над полем k) называется такая последовательность полных колец дискретного нормирования O_i с полями отношений K_i , что поле K_{i+1} является полем вычетов кольца O_i , $i=0,1,\ldots,n-1$, u $K_0=K$, $K_n=k$.

Будем называть K_1 первым полем вычетов (и обозначать через \overline{K}), а k — последним. Обозначим через \mathfrak{p}_i ($\mathfrak{p}_0=\mathfrak{p}$) максимальные идеалы колец O_i . Кольцо O_0 (обозначаемое далее через O_K) определяет на K дискретное нормирование \mathfrak{v}_K . Системой параметров t_1,\ldots,t_n назовем набор таких элементов $t_i \in O_0$, что

$$t_i \mod \mathfrak{p}_0 \Subset O_1,$$
 $\dots \dots \dots$
 $t_i \mod \mathfrak{p}_0 \dots \mod \mathfrak{p}_{i-2} \Subset O_{i-1}$

и последний элемент является образующей идеала \mathfrak{p}_{i-1} . Система параметров определяет нормирование ранга n поля K, подробно изученное в [8, 9].

Примером локального поля служит поле $K = F_q((t_1)) \dots ((t_n))$ степенных рядов от n переменных над конечным полем F_q характеристики p. Здесь $O_i = F_q((t_1)) \dots ((t_{n-i-1}))$ $[[t_{n-i}]]$, $K_i = F_q((t_1)) \dots ((t_{n-i}))$ и t_1, \dots \dots , t_n — система параметров. Заметим, что в этом случае имеются также огласованные с локальной структурой вложения колец O_i и полей K_i в поле K. Для произвольных локальных полей это, вообще говоря, не так. Однако если char K = char k и k = F_q , то в силу структурной теоремы Коэна— Тейхмюллера ([10, гл. 2, § 4]) существует изоморфизм поля K с полем степенных рядов, сохраняющий локальную структуру.

Построение этого изоморфизма проводится индукцией по размерности поля K. Пусть $\overline{K}=F_q((\tilde{t}_1))\ldots((\tilde{t}_{n-1}))$, тогда, чтобы установить изоморфизм $K\cong \overline{K}((t_n))$, нужно построить вложение поля \overline{K} в O_K , согласованное с проекцией $O_K/\mathfrak{p} \hookrightarrow \overline{K}$. В силу указанной теоремы Коэна—Тейхмюллера требуемое вложение определяется однозначно, если выбрать (произвольным образом) подъемы в кольцо O_K элементов поля \overline{K} , образующих p-базу поля \overline{K} над \overline{K}^p . Поскольку переменные $\tilde{t}_1,\ldots,\tilde{t}_{n-1}$ являются p-базой, то их подъемы t_1,\ldots,t_{n-1} вместе с образующей t_n идеала $\mathfrak p$ определяют требуемый изоморфизм, $K\cong F_q((t_1))\ldots((t_n))$.

В дальнейшем мы будем рассматривать лишь локальные поля этого типа. Другие примеры см. в [3].

Если L/K — конечное расширение локального поля K, то, полагая O_0' равным целому замыканию кольца O_0 в L, O_1' равным целому замыканию кольца O_1 в поле вычетов $L_1 \supset K_1$ кольца O_1 и т. д., получаем структуру локального поля на L. Если имеются два конечных расширений M/L и L/K, то эта конструкция обладает естественным свойством транзитивности. Таким образом, вся башня конечных расширений поля K естественно наделяется структурами локального поля. Если L/K — расширение Галуа, то автоморфизмы поля L над K сохраняют локальную структуру.

 Π редложение 1. Пусть K_{sep} (p) и K_{sep} (не p) — максимальные сепарабельные расширения поля K, являющиеся соответственно p-расширениями и расширениями степени, простой с p. $Tor\partial a$

1. Поле K_{sep} является композитом линейно разделенных расширений $K_{\text{sep}}(p)$ и K_{sen} (не p).

- 2. Поле K_{sep} (не p) является композитом расширений $(F_q)_{\text{не }p}, E_1, \ldots, E_n,$ где $E_i = \bigcup_{(m, \ p)=1} K(\sqrt[m]{t_i}), \ i=1,\ldots,n.$
- 3. Поле K_{sep}^{ab} (не p) является композитом линейно разделенных расширений $(F_q)_{\text{не }p},\ L_1,\ \ldots,\ L_n,\$ где $L_i=K(\sqrt[q-1]{t_i}),\ i=1,\ldots,n.$

Д о к а з а т е л ь с т в о незамедлительно следует из стандартных свойств расширений локальных полей размерности 1 (см. например, [10]) и радикальных расширений. При этом свойство 3 следует из свойства 2, если учесть, что единственными корнями из единицы в поле K являются ненулевые элементы поля F_{σ} .

Следствие. Kаждое расширение Γ алуа локального поля K разрешимо. Для изучения чисто несепарабельных расширений поля K полезна

 Π е м м а 1. $\mathit{Ecлu}\ K$ — локальное поле размерности n, то

- 1. $[K^{1/p}: K] = p^n$.
- 2. Для любого расширения $K \subset L \subset K^{1/p}$ степени p в поле K найдется такая система параметров t_1, \ldots, t_n , что $L = K(t_i^{1/p})$ для некоторого i.
- Доказательство. Если $K = F_q((t_1)) \dots ((t_n))$, то $K^{1/p} = F_q((T_1)) \dots ((T_n))$, где $T_i^p = t_i$, $i = 1, \dots, n$. Второе утверждение проверим индукцией по n. Если dim K = 1, то оно, очевидно, вытекает из доказанного равенства $[K^{1/p}:K] = p$. Предполагая его справедливым для полей размерности n-1, рассмотрим чисто несепарабельное расширение L/K степени p. Имеются две возможности:
- 1. $\overline{L}=\overline{K}$ и $v_L=pv_K$. Пусть $L=\pmb{F}_q((T_1))\dots((T_n))$. Тогда $T_n^p \in K$ и $v_K(T_n^p)=1$. Полагая $t_1=T_1,\dots,t_{n-1}=T_{n-1},\ t_n=T_n^p$, получаем требуемое.
- 2. $[\overline{L}:\overline{K}]=p$ и $v_L=v_K$. В этом случае если $L=F_q((T_1))\ldots((T_n))$, то $T_n \subset K$ и является образующей идеала \mathfrak{p}_K . Пусть теперь $K=F_q((\widetilde{t}_1))\ldots((\widetilde{t}_{n-1}))$, и для некоторого i $\overline{L}=\overline{K}$ (T_i) и $T_i^p=\widetilde{t}_i,$ $i\leqslant n-1$. Поднимая \widetilde{T}_i в кольцо O_L до некоторого элемента T_i , видим, что L=K (T_i) и T_i^p входит в некоторую систему параметров поля K.

Лемма доказана.

Будем называть расширение L/K неразветеленным, если оно неразветвлено относительно нормирования v_K и расширение поля вычетов L_1/K_1 сепарабельно. Максимальное расширение с этими свойствами обозначим через $K_{\rm et}$. Имеем последовательности эпиморфизмов

Перейдем теперь к изучению топологий в поле K и его мультипликативной группе K^* . Мы определим их индукцией по размерности поля.

Определение 2. Пусть t_1,\ldots,t_n — система параметров поля K. Если U_m , $m \in \mathbf{Z}$,— система окрестностей нуля в поле $\overline{K} = \mathbf{F}_q((t_1))\ldots((t_{n-1})),\ U_{m+1} \subseteq U_m$ и $U_m = \overline{K}$ для больших m, то окрестностями нуля в K назовем подгруппы вида

$$U = \{ \sum_{m} x_m t_n^m, x_m \in U_m \}.$$

Если n=0, то окрестностями в F_q являются (0) и F_q . Представим K как $\bigcup_m K(m)$, где $x \in K(m)$, если $v_K(x) \geqslant m$. Тогда множества U являются фундаментальной системой окрестностей топологии, которая на $K(m) \cong \overline{K}^Z$ (как аддитивная группа) индуцирует топологию прямого произведения. Множество $V \subset K$ открыто в том и только в том случае, если все пересечения $V \cap K(m)$ открыты в K(m). Для поля размерности 1 это обычная локально-компактная топология. В произвольной размерности >1 эта топология уже не будет локально-компактной. При этом множества K(m) всегда замкнуты, но при dim K > 1 не открыты.

 Π редложение 2. Топология поля K не зависит от выбора системы параметров t_1, \ldots, t_n и обладает следующими свойствами:

- 1. Если $x_n \to 0$, то для некоторого т все $x_n \in K$ (т).
- 2. Аддитивная группа K_+ поля K является отделимой топологической группой. Любая фундаментальная последовательность в K_+ сходится.
 - 3. Отображение $x_n: K \to K \ (y \to yx)$ является гомеоморфизмом.
 - 4. Любой автоморфизм локального поля К является гомеоморфизмом.
 - 5. Echu $x_n \to x$ u $y_n \to y$, mo $x_n y_n \to xy$ npu $n \to \infty$.

Доказательство. Если s_1, \ldots, s_n — другая система параметров поля K, то

$$s_1^{b_1} \dots s_n^{b_n} = \sum_{a_n} \dots \sum_{a_1} a(a_1, \dots, a_n) t_1^{a_1} \dots t_n^{a_n},$$
 (1)

причем если $b_{k+1}=\ldots=b_n=0$ и $b_k\neq 0$, то $a_{k+1},\ldots,a_n\geqslant 0$, и если $a_{k+1}=\ldots=a_n=0$, то $a_k\geqslant b_k$. Кроме того, имеется ненулевой одночлен вида $at_1^{a_1}\ldots t_{k-1}^{a_{k-1}}t_k^{b_k}$.

Доказательство независимости топологии от выбора системы параметров проведем индукцией по размерности поля K. Полагая, что независимость справедлива для поля \overline{K} , рассмотрим замену s_1,\ldots,s_n системы t_1,\ldots,t_n . Достаточно рассмотреть последовательно n случаев: $s_1=t_1,\ldots,\ldots,s_{n-1}=t_{n-1};\;\forall i\neq k,\;s_i=t_i,\ldots;\;s_2=t_2,\ldots,s_n=t_n$. В первом из них поле \overline{K} вкладывается в K одинаковым образом как для s_1,\ldots,s_n , так и для t_1,\ldots,t_n . В последующих случаях имеем два подполя \overline{K}' и \overline{K}'' , отождествляемые как поля (с индуцированной топологией) с полем \overline{K} . Достаточно показать, что топологии, определяемые системами параметров s_1,\ldots,s_n и t_1,\ldots,t_n , совпадают в O_K . Поскольку $K=\overline{K}'$ ((s_n)) = \overline{K}'' ((t_n)), каждый элемент $x\in K$ имеет два разложения в степенные ряды, переход между которыми дается формулами (1). Непосредственное сравнение коэффициентов рядов дает требуемое.

Для проверки свойства 1 положим $\alpha_n = v_K(x_n)$ и предположим, что $\alpha_n \to -\infty$ и $\alpha_{n+1} < \alpha_n$. Тогда имеется окрестность нуля $U = (U_k)$, $U_k \subset \overline{K}$, для которой коэффициент $y_n \in \overline{K}$ при $t_n^{\alpha_n}$ в x_n не принадлежит U_{α_n} . Очевидно, что $\forall n \ x_n \equiv U$.

Свойство 2 вытекает из того, что для любой окрестности U из определения 2 U+U=U. Сходимость фундаментальных последовательностей получается индукцией по размерности с использованием 1.

Свойство 4 эквивалентно независимости топологии от системы параметров. Чтобы установить свойство 3, можно считать, что $v_K(x)=0$ (для $x=t_n^a$ оно очевидно). Тогда $\forall m\ xK(m)=K(m)$, и задача сводится к аналогичному утверждению для O_K . Предполагая, что Uy открытое множество для любой окрестности нуля $U \subset \overline{K}$ и $y \in \overline{K}$, получаем, что это

же верно и в O_K . Аналогичной редукцией к O_K (с помощью свойства 1) и затем к полю \overline{K} меньшей размерности получается 5.

Замечание 1. Умножение в поле K не является непрерывным в построенной топологии. Именно, если $\dim K > 1$, то для любых окрестностей нуля U и V имеем UV = K. Это не противоречит свойству 5 ввиду несчетности множества окрестностей нуля поля K.

Замечание 2. Для любого элемента $x \in K$ имеем однозначное представление

$$x = \sum_{a_n \geqslant A_n} \sum_{a_{n-1} \geqslant A_{n-1}(a_n)} \dots \sum_{a_i \geqslant A_1(a_2, \dots, a_n)} a(a_1, \dots, a_n) t_1^{a_1} \dots t_n^{a_n}, a \in \mathbf{F}_q$$
 (2)

в виде сходящихся рядов. Мы будем иногда опускать индексы у коэффициентов a.

 Π е м м а 2. Π усть $F(x) = x^p$, $x \in K$. Tогда каждый элемент поля $x \subset K$ однозначно представим по модулю подгруппы (F-1) K рядом (2), в котором одночлены из параметров t_1, \ldots, t_n удовлетворяют условиям:

- 1. Наибольший общий делитель всех ненулевых чисел a_1, \ldots, a_n прост c p.
 - 2. $a_n \leqslant 0$; $a_{n-1} \leqslant 0$, ecau $a_n = 0$; ...; $a_1 \leqslant 0$, ecau $a_2 = \ldots = a_n = 0$.
- 3. Коэффициенты а пробегают аддитивный базис поля ${m F}_q$ над ${m F}_p$, и если $a_1=\ldots=a_n=0$, то $Tr_{{m F}_q/{m F}_p}$ (a)=0.

Доказательство. Рассмотрим в разложении (2) все одночлены, у которых последняя ненулевая степень a_i переменной t_i положительна. Если их сумма равна y, то

$$y = y - y^p + (y^p - y^{ps}) + \dots$$

и поскольку $y^{p^n} \to 0$ при $n \to \infty$, получаем, что $y \in (F-1)$ K. Остальные одночлены либо удовлетворяют условиям леммы, либо являются p-ми степенями и сводятся к предыдущим с помощью элементов из (F-1) K.

Чтобы установить однозначность разложения, допустим, что

$$\sum_{a_1, \ldots, a_n} a(a_1, \ldots, a_n) t_1^{a_1} \ldots t_n^{a_n} = x^p - x, \qquad x = \sum b(b_1, \ldots, b_n) t_1^{b_1} \ldots t_n^{b_n},$$

где a_1, \ldots, a_n удовлетворяют условиям леммы.

Сравнивая коэффициенты при одинаковых степенях t_1, \ldots, t_n в обеих частях равенства, получаем

$$-b (b_1 p, \ldots, b_n p) + b (b_1, \ldots, b_n)^p = 0.$$

Итерируя это, находим, что при любом $s \geqslant 1$

$$b (b_1 p^s, \ldots, b_n p^s) = \pm b (b_1, \ldots, b_n)^{p^s}.$$

Индексы b_1, \ldots, b_n должны удовлетворять условию 2, и, следовательно, при больших s левая часть равна нулю, что дает требуемое.

 Π е м м а 3. Пусть L/K — конечное расширение локальных полей. Тогда поле K замкнуто в L и его топология совпадает с топологией, индуцированной из L.

В ([9, гл. 1, предложение 1.2]) содержится более сильное утверждение. Именно, для любого базиса e_1, \ldots, e_m поле L над K отображение $K^m \to L$ ($x_1, \ldots, x_m \to x_1e_1 + \ldots + x_me_m$) гомеоморфно.

Мультипликативная группа К* поля К имеет следующее представление:

$$K^* = \{t_1\} \times \ldots \times \{t_n\} F_q^* \mathcal{E}_K, \tag{3}$$

где $\{t_i\}\cong Z$ и $x\in \mathscr{E}_K$ в том и только том случае, если $x\in O_0$, $x\bmod \mathfrak{p}_0\in O_2,\ldots,x\bmod \mathfrak{p}_0\ldots$ — 1.

Опредение 3. Введем в группе K^* топологию как произведение дискретной топологии в $\{t_1\} \times \ldots \times \{t_n\} F_q^*$ и индуцированной из K топологии в \mathcal{E}_K .

В этой топологии K^* является топологической группой лишь при $\dim K \leqslant 2$ (см. замечание 1). Это обстоятельство впервые отметил К. Като [7].

 Π редложение 3. Топология группы K^* не зависит от выбора системы параметров t_1, \ldots, t_n и обладает следующими свойствами:

- 1. Отображение $x:K^* \to K^*$ $(y \to yx)$ является гомеоморфизмом.
- 2. Любой автоморфизм локального поля K является в K^* гомеоморфизмом.
- 3. Ecau $x_n \to x$ u $y_n \to y$, mo $x_n y_n \to xy$ npu $n \to \infty$. Ecau $x_n \to x$, mo $x_n^{-1} \to x^{-1}$.
 - 4. Echu $x_n \in \mathfrak{p}^n$, mo $\prod (1 + x_n)$ cxodumch $e K^*$.
- 5. Если $x_n \to 0$ в поле \overline{K} и t образующая идеала \mathfrak{p} , то $\prod (1 + x_n t^a)$ сходится в K^* .
- 6. Для любой последовательности $y_n \in \mathscr{E}_K$ последовательность $y_n^{p^n}$ сходится к 1.
- 7. Если $K \subset L$ конечное расширение локальных полей, то группа K^* замкнута в L^* и ее топология совпадает с топологией, индуцированной из L^* .

Доказательство. Свойства 1—3 соответствуют свойствам 3—5 предложения 2 (переход к x_n^{-1} см. ниже). Свойство 7 вытекает из леммы 3. Свойство 4 непосредственно следует из определения топологии.

Проверим утверждение 5. Раскрывая произведение $\prod_{n \leqslant m} (1 + x_n t^a)$ имеем

$$1+\left(\sum_{n\leqslant m}x_n\right)t^a+\sum_{n< k\leqslant m}x_nx_k\right)t^{2a}+\ldots,$$

и нужно показать сходимость рядов, стоящих при степенях t. Так как окрестности нуля в K суть подгруппы (определение 2), то последовательность $\sum_{n\leqslant m} x_n$ фундаментальна и, следовательно, сходится (предложение 2.2). Далее, имеем

$$\sum_{n < k \leqslant m+1} x_n x_k - \sum_{n < k \leqslant m} x_n x_k = \left(\sum_{n \leqslant m} x_n\right) x_{m+1} \rightarrow 0$$

в силу доказанного и предложения 2.5. Применяя предыдущее рассуждение, находим, что ряд $\Sigma x_n x_k$ сходится. Следующие ряды рассматриваются аналогично. Таким образом, получается сходимость x_n^{-1} в свойстве 3.

Осталось рассмотреть утверждение 6. Группа $\mathscr{E}_{K}^{\bullet}$ является произведением своих подгрупп $\mathscr{E}_{\overline{K}}$, $\overline{K}=F_{q}\left((t_{1})\right)$. . . $((t_{n-1}))$ и $1+\mathfrak{p}$. Следовательно, $y_{n}=u_{n}v_{n},\ u_{n}\in\mathscr{E}_{\overline{K}},\ v_{n}\in 1+\mathfrak{p}$. Топология, индуцируемая в $\mathscr{E}_{\overline{K}}$, совпадает с имеющейся там топологией группы \overline{K}^{*} , и по индукции можно считать, что $u_{n}^{p^{n}}\to 1$. Для $v_{n}^{p^{n}}$ это вытекает из свойства 4.

Замечание 3. Из 4 вытекает, что введенная нами топология слабее топологии в K^* , определяемой нормированием v_K . Последняя, конечно, согласована со структурой группы K^* , но совершенно не учитывает топологию поля вычетов \overline{K} . Переход к упомянутому в начале раздела нормированию ранга n не меняет положения.

 Π редложение 4. Пусть $x \in \mathscr{E}_{\mathbf{K}}$. Тогда x представляется в виде сходящихся произведений

$$x = \prod_{a_n \geqslant A_n} \prod_{a_{n-1} \geqslant A_{n-1}(a_n)} \dots \prod_{a_1 \geqslant A_{0}(a_2, \dots, a_n)} (1 + at_1^{a_1} \dots t_n^{a_n}), \tag{4}$$

где $A_n\geqslant 0;\ A_{n-1}\ (0)\geqslant 0,\$ если $\ A_n=0;\ \ldots;\ A_1\ (0,\ldots,0)\geqslant 0,\$ если $\ A_2\ (0,\ldots,0)=0,\$ и а пробегает аддитивный базис поля $\ F_q.$

Доказательство использует индукцию по размерности поля. Представим x в виде yz, $y \in \mathscr{E}_{\overline{K}}, z \in 1+\mathfrak{p}$. Разложение элемента y в поле \overline{K} дает часть разложения (4), отвечающую $A_n=0$. Если $z=1+\left(\sum_i z_i t_{n-1}^i\right)t_n+\ldots$, то \overline{I} в силу предложения 3.5

$$z = \prod_{i} (1 + z_i t_{n-1}^i t_n) (1 + z' t_n^2 + \ldots),$$

где $z_i \in F_q((t_1))$. . . $((t_{n-2}))$, $z' \in \overline{K}$. Применяя это рассуждение достаточное число раз к элементу $1+z_it_{n-1}^it_n$ и разложению (2) для z_i в поле $F_q((t_1))$. . . $((t_{n-2}))$, получим часть разложения (4), отвечающую $A_n=1$. Дальнейшие действия проходят аналогично.

Следствие. Пусть $x \in \mathcal{E}_K$. Тогда x (однозначно) представляется по модулю подгруппы \mathcal{E}_K^p в виде произведения (4) с индексами a_1, \ldots, a_n , наибольший общий делитель которых прост c p.

2. *K*-теория

Мы дадим здесь краткий очерк понятий и результатов алгебраической К-теории. Доказательства и мотивировки см. в [11, 12, 13].

Каждому кольцу A можно сопоставить абелевы группы K_i (A), i=0, $1,\ldots$ Соответствие $A\to K_i$ (A) является ковариантным функтором из категории колец в категорию абелевых групп.

Если A=K — поле, то $K_0\left(K\right)=Z$, $K_1\left(K\right)=K^*$ (мультипликативная группа) и группа $K_2\left(K\right)$ есть абелева группа, порожденная образующими

$$(x, y), x, y \in K^*,$$

удовлетворяющими соотношениям

$$(x_1 \ x_2, \ y) = (x_1, \ y)(x_2, \ y),$$
 $(x, \ y_1y_2) = (x, \ y_1)(x, \ y_2),$ $(x, \ 1-x) = 1, \ x \neq 0$ или 1.

Эти образующие называются символами. Нетрудно получить, что

$$(x, y) = (y, x)^{-1} (1)$$

И

$$(x, x) = (x, -1).$$
 (2)

Для любого локального поля K размерности 1 над \overline{K} определен граничный гомоморфизм!

$$\partial: K_i(K) \to K_{i-1}(\overline{K}).$$

Если i=2, то он совпадает с неразветвленным символом норменного вычета (см. (1) в разделе 3).

Пусть $\mathfrak{p} \subset O_K$ — максимальный идеал. Положим

$$K_2(O_K, \mathfrak{p}^n) = \operatorname{Ker} (K_2(O_K) \to K_2(O_K/\mathfrak{p}^n)).$$

Имеют место канонические точные последовательности

$$1 \to K_2(O_K) \to K_2(K) \xrightarrow{\partial} K_1(\overline{K}) \to 1, \tag{3}$$

$$1 \to K_2(O_K, \mathfrak{p}^n) \to K_2(O_K) \to K_2(O_K)/\mathfrak{p}^n) \to 1. \tag{4}$$

Если $t \in \mathfrak{p} - \mathfrak{p}^2$ и подгруппа \overline{K}'^* изоморфна mod \mathfrak{p} группе \overline{K}^* , то подгруппа, состоящая из символов (x, t), $x \in \overline{K}'^*$, расщепляет первую точную (последовательность, а подгруппа, состоящая из (x, y), $x, y \in \overline{K}'^*$,— вторую последовательность при n = 1.

Для любых і и ј определено умножение

$$K_i(A) \times K_i(A) \rightarrow K_{i+j}(A),$$

являющееся билинейным отображением. Как умножение, так и гомоморфизм ∂ в естественном смысле функториальны.

Помимо обычной функториальности для морфизмов колец $f: A \to B$ (состоящей в переходе к отображению $f_*: K_i (A) \to K_i (B)$), в некоторых случаях определен гомоморфизм переноса

$$N: K_i(B) \to K_i(A)$$
.

Его можно построить, если кольца A и B коммутативны и B — проективный A-модуль конечного типа. Если i=1, то он совпадает с обычной нормой.

Отображение N обладает свойством транзитивности для троек $A \to B \to C$. Если K — локальное поле размерности 1 над \overline{K} , L/K — его конечное расширение и L наделено естественной структурой локального поля с полем вычетов \overline{L} (раздел 1), то имеются коммутативные диаграммы

где j отвечает вложению $K \subset L$, а $e_{L/K}$ — индекс ветвления поля L над K [11, c. 373].

Перенос связан с умножением следующей формулой проекции. Если $x \in K_i(A), y \in K_j(B)$, то

$$N (f_* (x) \cdot y) = x \cdot N[(y)]$$

в группе $K_{i+i}(A)$.

Если $A \to B$ — гомоморфизм K-алгебр, для которого определен перенос, и $K \subset K'$, то естественная диаграмма

$$K_{i}(B) \longrightarrow K_{i}(B \otimes_{K} K')$$

$$N \downarrow \qquad \qquad N \downarrow$$

$$K_{i}(A) \longrightarrow K_{i}(A \otimes_{K} K')$$

$$(6)$$

коммутативна, т. е. перенос перестановочен с заменой базы.

 Π е м м а 1 (Басс?). Пусть K — поле, M /K — конечное, сепарабельное u нормальное расширение, $M \supset L \supset K$. Если $\sigma \in \operatorname{Hom}_K(L, M)$, то пусть $\sigma' \in \operatorname{Gal}(M/K)$ какое-нибудь продолжение σ на M. Тогда для любого $y \in K_i(L)$

$$\sum_{\sigma \in \operatorname{Hom}_{K}(L, M)} \beta(y)^{\sigma'} = \beta \circ \alpha(N(y)), \tag{7}$$

 $e\partial e$ а: K_i $(K) \to K_i$ (L), β : K_i $(L) \to K_i$ (M) — естественные морфизмы. Доказательство. Применим диаграмму (6) к A=K, B=L, K'=M и учтем, что $L\otimes M=\prod M$ (произведение по всем $\sigma \in \operatorname{Hom}_K(L,K)$).

M)), отображение $L \to L \otimes M$ есть \prod σ и отображение $M \to L \otimes M$ совпадает с диагональным вложением Δ поля M в $\prod M$. Наше утверждение сведется тогда к следующему факту. Пусть [L:K] = n и p_i : $\prod M \to M$ проекции. Тогда

$$\Delta^* = p_{1,*} + \ldots + p_{n,*}.$$

Обозначим через $s_i \colon M o \prod M$ — вложение i-го сомножителя. Имеем по определению

$$\Delta^* = s_1^* + \ldots + s_n^*$$

И

$$1 = s_{1,*} \circ p_{1,*} + \ldots + s_{n,*} \circ p_{n,*},$$

и достаточно показать, что $s_i^* \circ s_{j,\,*} = \delta_{ij}$. Пусть $e \in K_0(M)$ — класс модуля M. Из формулы проекции и разложимости $K_*(\prod M)$ в прямую сумму получаем $(i \neq j)$

$$s_i^* \circ s_{i,*}(x) = e \cdot s_i^*(s_{i,*}(x)) = s_i^*(s_{i,*}(e) s_{i,*}(x)) = 0,$$

а при i = j

$$s_i^* \circ s_{i,*}(x) = s_i^*(s_{i,*}(e) \cdot s_{i,*}(x)) = s_i^*(s_{i,*}(e)) \cdot x = x.$$

Лемма доказана.

Все эти факты справедливы для K-функтора K_i (A), построенного Квиллеком. Мы будем использовать в дальнейшем, однако, K-функтор Милнора K_n^M (K), $n \geqslant 0$, определенный для любого поля K [12].

Определение 1. Пусть K — поле. K_n^M (K) — абелева группа с образующими $(x_1, \ldots, x_n), x_i \in K^*, u$ соотношениями

$$(x_1, \ldots, x_i'x_i', \ldots, x_n) = (x_1, \ldots, x_i', \ldots, x_n) (x_1, \ldots, x_i', \ldots, x_n),$$

 $(x_1, \ldots, x_i, 1 - x_i, x_{i+2}, \ldots, x_n) = 1, i = 1, \ldots, n.$

Образующие (x_1, \ldots, x_n) называются символами. Из (1) немедленно получается, что для любой перестановки i_1, \ldots, i_n индексов $1, \ldots, n$ четности τ имеем

$$(x_{i_1}, \ldots, x_{i_n}) = (x_1, \ldots, x_n)^{\tau}.$$

Умножение определяет естественный морфизм $K_n^M(K) \to K_n(K)$, не являющийся при n > 2, вообще говоря, изоморфизмом. Так, для $K = \mathbf{F}_q$ все $K_n^M(K) = 0$, $n \geqslant 2$, а функторы Квиллена весьма нетривиальны (для нечетных n). Поэтому приведенные выше понятия и конструкции не могут быть непосредственно перенесены на случай групп K_n^M . Мы определим их для интересующих нас полей без использования общей теории Квиллена.

Имеется каноническое отображение $\Psi\colon K^*\times\ldots\times K^*\to K_n^M$ (K) и любая n-линейная функция $f\colon K^*\times\ldots\times K^*\to A$, переводящая тривиальные символы из определения 1 в нуль, однозначно представляется в виде $f=f_0\circ\Psi$, где $f_0\colon K_n^M(K)\to A$ — гомоморфизм. Применяя это к отображению δ $(x_1,\ldots,x_n)=x_1^{-1}dx_1\wedge\ldots\wedge x_n^{-1}dx_n\in\Omega^n_{K/Z}$, получаем отображение Тейта

$$\delta \colon K_n^M(K) \to \Omega_{K/\mathbf{Z}}^n. \tag{8}$$

В случае, когда мультипликативная группа K^* имеет топологию, естественно рассмотреть! символы, $\{$ удовлетворяющие условию непрерывности, и соответствующим образом изменить группы K_n^M (K).

Рассмотрим топологии τ на K_n^M (K), удовлетворяющие условиям:

- 1. Ψ непрерывно по каждому аргументу относительно τ и топологии на K^* .
- 2. Если $x_n \to x$ и $y_n \to y$ в топологии τ , то также $x_n y_n \to x y$ и $x_n^{-1} \to x^{-1}$. Множество таких топологий непусто (оно содержит слабейшую топологию). Покажем, что верхняя грань всех топологий из этого множества снова принадлежит ему. Для условий 1 это очевидно. Для проверки условия 2 достаточно применить следующее утверждение, легко получаемое из определений (см. [14, гл. 1, § 2]).

 Π е м м а 2. Пусть τ_{α} , $\alpha \in I$, — множества топологий в топологическом пространстве X и τ — верхняя грань всех топологий τ_{α} , $\alpha \in I$. Последовательность $x_n \in X$ сходится κ $x \in X$ в топологии τ в том и только том случае, когда она сходится κ х во всех топологиях τ_{α} , $\alpha \in I$.

Из условия 2 следует, что пересечение всех окрестностей единицы есть подгруппа.

Определение 2. Пусть группа K^* снабжена топологией. Тогда наделим $K_n^M\left(K\right)$ сильнейшей топологией, удовлетворяющей условиям 1 и 2, и положим

$$K_n^{\text{top}}(K) = K_n^M(K)/\Lambda$$

где Λ — пересечение всех окрестностей единицы.

Конечно, это определение содержательно, если исходная топология группы K^* удовлетворяет условию 2. В этом случае $K_1^{\text{top}}(K) = K^*$ (всегда $K_0^{\text{top}}(K) = \mathbf{Z}$). В силу предложения 3.3 раздела 1 это верно для любого локального поля K.

Если dim
$$K=0$$
, то Если dim $K=1$, то

$$K_m^{\text{top}}(K) = \begin{cases} \mathbf{Z}, & m = 0, \\ \mathbf{F}_q^*, & m = 1, \\ (1), & m > 1. \end{cases} \qquad K_m^{\text{top}}(K) = \begin{cases} \mathbf{Z}, & m = 0, \\ K^*, & m = 1, \\ \mathbf{F}_q^*, & m = 2, \\ 1), & m > 2. \end{cases}$$

Это известные факты алгебраической K-теории [13]. Мы получим полное описание групп K_m^{top} (K) для локальных полей.

Предложение 1. Пусть K — локальное поле размерности n и t_1, \ldots, t_n — система параметров и $x \in K_{m+}^{\text{top}}$ (K), $m \geqslant 0$. Тогда x является произведением симеолов вида

1)
$$(t_{i_1}, \ldots, t_{i_{m+1}}), i_1 < \ldots < i_{m+1};$$

2)
$$(a, t_{i_1}, ..., t_{i_m}), \dot{a} \in \mathbf{F}_q^*, i_1 < ... < i_m;$$

3)
$$\prod_{a_{n} \geqslant A_{n}} \dots \prod_{a_{i} \geqslant A_{1}(a_{2}, \dots, a_{n})} (1 + at_{1}^{a_{1}} \dots t_{n}^{a_{n}}, t_{i_{1}}, \dots, t_{i_{m}}),$$

$$i_{1} < \dots < i_{m},$$
(9)

где индексы удовлетворяют следующим условиям:

- 1) $A_n \geqslant 0$; $A_{n-1} \geqslant 0$, ecau $A_n = 0$; ...; $A_1(0, ..., 0) \geqslant 0$, ecau $A_2(0, ..., 0) = 0$;
- 2) ecau $k = k (a_1, \ldots, a_n)$ makoso, umo $a_k \mod p \neq 0$, $a_{k+1} = \ldots = a_n = 0 \mod p$, mo $k \equiv \{i_1, \ldots, i_m\}$;
 - 3) а пробегает а $\partial\partial$ итивный базис поля $oldsymbol{F}_{q}.$

Здесь и далее символы $(x_1, \ldots, x_m) \in K_m^M(K)$ отождествляются с их образами в $K_m^{\text{top}}(K)$.

Доказательство разобыем на несколько шагов.

Шаг 1. Если $a \in F^*$, $\epsilon \in \mathscr{E}_K$, $x_1, \ldots, x_{m-1} \in K^*$, то

$$(a, \varepsilon, x_1, \ldots, x_{m-1}) = 1.$$
 (10)

Действительно, если $a \in F_q$, то $\forall n \geqslant 1$ $a = a^{q^n}$ и $(a, \varepsilon, x_1, \ldots, x_{m-1}) = (a, \varepsilon^{q^n}, x_1, \ldots, x_{m-1}) \rightarrow 1$ в силу предложения 3.6 раздела 1.

Ш а г 2. В условии на индексы i_1, \ldots, i_m в разложении (9) можно опустить предположение $k \equiv \{i_1, \ldots, i_m\}$. Имеем тождество

$$1 = (1 + at_1^{a_1} \dots t_n^{a_n}, -at_1^{a_1} \dots t_n^{a_n}, x_1, \dots, x_{m-1}) = \prod_{i=1}^n (1 + at_1^{a_1} \dots t_n^{a_n}, t_i, x_1, \dots, x_{m-1})^{a_i}$$

(последнее равенство в силу (10)). Перепишем сомножитель с i=k как

$$((1+at_1^{a_1}\ldots t_n^{a_n})^{a_k},t_k,\ldots)=(1+a_k^{-1}at_1^{a_1}\ldots t_n^{a_n},t_k,\ldots)(1+z,t_k,\ldots),$$

где $v_K(z) > a_n$, если $a_n > 0$. Индукция по a_n дает тогда требуемое. Если $a_n = 0$, то нужно рассмотреть a_{n-1} и т. д.

Ш а г 3. Разложение (3) раздела 1 показывает, что достаточно рассмотреть элементы $x=(x_1,\ldots,x_m)$, где $x_i\in\mathscr{E}_K$ или $x_i\in F_q^*$, или же x_i — переменная t_j . Поскольку K_2 (F_q) = (1), каждый такой символ содержит не более одного $x_i\in F_q^*$. Из (2) видно, что индексы переменных t_i можно сделать различными. Предположим, что все доказано для m=2. Тогда любой символ вида $(x_1,x_2,\ldots), x_{1,2}\in\mathscr{E}_K$ можно представить как произведение (x_1',t_i,\ldots) на символ (a,t_j,\ldots) и (t_k,t_l,\ldots) . Действуя таким образом, видим, что достаточно рассмотреть случай m=2. При этом требуется рассмотреть лишь элементы $x\in K_2^{\text{top}}(K)$ вида $(x_1,x_2), x_{1,2}\in\mathscr{E}_K$.

Шаг 4. Основная лемма. Пусть $\epsilon_{1,2} \in \mathscr{E}_K$ и $\epsilon_2 \in \mathbb{1} + \mathfrak{p}^l$, l>0. Тогда

$$(\epsilon_1, \epsilon_2) = (\epsilon_1^{'}, \epsilon_2) \prod_{i=1}^{n} (\eta_i, t_i), \quad \epsilon_1^{'}, \eta_1 \ldots, \eta_n^{'} \in \mathscr{E}_K,$$

 $e\partial e \ \epsilon_1' \equiv 1 + \mathfrak{p}^{k+l}, \ \eta_i \equiv 1 + \mathfrak{p}^k, \ ecnu \ \epsilon_1 \equiv 1 + \mathfrak{p}^k.$

Доказательство. Рассмотрим сначала случай, когда $\varepsilon_1=1+t^a_1$... $t_n^{a_n}$. Полагая $\varepsilon_2=1+yt_n^l$, $y\in O_K$ и $at_1^{a_1}\dots t_n^{a_n}=xt_n^k$, имеем

$$(1 + xt_n^k, \, \epsilon_2) = ((1 + xt_n^k \epsilon_2) \, (1 + xt_n^k)^{-1}, \, \epsilon_2)^{-1} \, (1 + xt_n^k \epsilon_2, \, \epsilon_2) =$$

$$= ((1 + xt_n^k \epsilon_2) \, (1 + xt_n^k)^{-1}, \, \epsilon_2) \, (1 + xt_n^k \epsilon_2, \, -x)(1 + xt_n^k \epsilon_2, \, t_n)^k.$$

Это дает нужное разложение

$$(\varepsilon_{1}, \varepsilon_{2}) = (1 + xy (1 + xt_{n}^{k})^{-1}t_{n}^{k+l}, \varepsilon_{2}) \prod_{i=1}^{n-1} (1 + xt_{n}^{k} + xyt_{n}^{k+l}, t_{i}) \times \times ((1 + xt_{n} + xyt_{n}^{k+l})^{k}, t_{n}).$$

$$(11)$$

Пусть теперь $\varepsilon_1 \subset \mathcal{E}_K$. Чтобы получить лемму, представим ε_1 в виде произведения (4) раздела 1. Для каждого сомножителя лемма справедлива, и, перемножая выражения для $(1 + at_1^{a_1} \dots t_n^{a_n}, \varepsilon_2)$, получаем требуемое выражение для $(\varepsilon_1, \varepsilon_2)$, если входящие в него произведения сходятся. Чтобы не загромождать изложение, докажем сходимость для dim K=2. Пусть

$$K = \boldsymbol{F}_{q} ((t_1)) ((t_2))$$
 и

$$\varepsilon_1 = \prod_{k \geqslant A_2} \prod_{i \geqslant A_1(k)} (1 + at_1^i t_2^k), \quad A_2 \geqslant 0.$$

Соотношение (11) в этом случае имеет вид ($\varepsilon_2=1+yt_2{}^l,\,y\in O_K$)

$$(1 + at_1^i t_2^k, 1 + yt_2^l) = (1 + at_1^i (1 + at_1^i t_2^k)^{-1} yt_2^{k+l}, \epsilon_2) \times \times (1 + at_1^i t_2^k + at_1^i yt_2^{k+l}, t_1)^i (1 + at_1^i t_2^k + at_1^i yt_2^{k+l}, t_2)^k.$$

$$(12)$$

Первый аргумент каждого из трех символов записывается в виде

$$1 + \sum_{m} A_{im}(t_1) t_2^m, \quad v_{\overline{K}}(A_{im}) \geqslant C_{m} \cdot i,$$

где суммирование по m распространено в первом символе от k+l, а в остальных от k (нужно учесть, что при k=0 i обязательно > 0). Перемножая (12) по всем i (и при фиксированном k), видим, что произведение сходится ($\forall m \ A_{im} \to 0$ при $i \to \infty$), и предел разложения (12) удов летворяет условию леммы. В частности, он имеет вид

$$(1 + x_k t_2^{k+l}, \epsilon_2) (1 + y_k t_2^k, t_1) (1 + w_k t_2^k, t_2),$$

где x_k , y_k , $w_k \in O_K$. Перемножая по $k \geqslant A_2$, получаем сходящееся произведение, очевидно, удовлетворяющее условию леммы. Случай произвольной размерности разбирается точно так же.

Ш а г 5. В силу шага 3 нам нужно представить символы (ε_1 , ε_2) в виде произведения (η_1 , t_1) . . . (η_n , t_n), $\eta_i \in \mathscr{E}_K$. Если $\varepsilon_i \in \mathscr{E}_{\overline{K}}$, то можно предположить по индукции, что это верно. Пусть теперь $\varepsilon_2 \in 1 + \mathfrak{p}^l$, l > 0. Применим к паре (ε_1 , ε_2) основную лемму. Итерируя этот процесс, получаем требуемое представление (сходимость имеет место в силу предложения 3.4 раздела 1).

Предложение 1 доказано.

Замечание 1. Полученное в шаге 5 представление определено предыдущими конструкциями и единственностью разложения (4) раздела 1 однозначно (в разделе 3 мы покажем также, что оно и единственно). Пусть $(\varepsilon_1, \varepsilon_2) = \prod_i (\eta_i, t_i)$ — это представление, которое мы будем называть каноническим. Если ε_1 или ε_2 образуют последовательность $\varepsilon_{1, m}$ ($\varepsilon_{2, m}$), то имеется соответствующая последовательность $\eta_{i, m}$. Рассуждения, которыми мы проверяем сходимость в доказательстве основной леммы, показывают, что сходимость $\varepsilon_{1, m}$ ($\varepsilon_{2, m}$), $m \to \infty$, влечет сходимость $\eta_{i, m}$, $m \to \infty$, к некоторым $\eta_i \in \mathscr{E}_K$, и произведение $\prod_i (\eta_i, t_i)$ будет каноническим представлением для ($\lim \varepsilon_{1, m}$, ε_2) (или (ε_1 , $\lim \varepsilon_{2, m}$)).

С ледствие 1. Пусть K — локальное поле размерности n. Если m>n+1, то $K_m^{\mathrm{top}}(K)=$ (1). Если m=n+1, то $K_m^{\mathrm{top}}(K)=$ { $(a,t_1,\ldots,t_n),\ a\in F_q^*$ } $\simeq F_q^*$.

Доказательство. В первом случае в символах 1-3 у переменных t_{i1}, \ldots, t_{i_m} все индексы не могут быть разными. Во втором единственная возможность — это (a, t_1, \ldots, t_n) , $a \in \boldsymbol{F}_q^*$, так как для символов $(\varepsilon, t_1, \ldots, t_n)$ не может выполняться условие 2. Изоморфизм с \boldsymbol{F}_q^* вытекает из замечания 3 раздела 3.1.

С ледствие і 2. Пусть K — локальное поле размерности n. Тогда $x \in K_m^{\text{top}}(K)$ представляется по модулю подгруппы $(K_m^{\text{top}}(K))^p$ как про-

изведение символов 1 и 3 предложения 1 с дополнительным условием: наибольший общий делитель чисел a_1, \ldots, a_n прост c p.

Доказательство. Достаточно вспомнить следствие предложения 4 раздела 1 и учесть, что группа F_q^* р-делима.

Следствие 3. Пусть K — локальное поле размерности n и l — целое, (l,p)=1. Тогда $x \in K_m^{\mathrm{top}}(K)$ представляется по модулю подгруппы $(K_m^{\mathrm{top}}(K))^l$ как произведение символов 1 и 2 предложения 1.

Доказательство. В силу общих свойств полных колец дискретного нормирования группа \mathscr{E}_{K} l-делима.

В группах $K_m^{\text{top}}(K)$ имеется ряд замечательных подгрупп. В частности, можно определить аналоги подгрупп $K_m(O_K)$ и $K_m(O_K, \mathfrak{p}^k)$ (см. начало этого раздела). Мы сделаем это для случая, когда $m=n=\dim K$ и k=1.

Определение 3. Пусть $K_n^{\text{top}}(O_K, \mathfrak{p})$ — подгруппа в $K_n^{\text{top}}(K)$, порожденная символами $(\varepsilon, t_1, \ldots, t_k, \ldots, t_n)$, $\varepsilon \in 1 + \mathfrak{p}$, $u K_n^{\text{top}}(O_K)$ — подгруппа, порожденная $K_n^{\text{top}}(O_K, \mathfrak{p})$ и символами $(a, t_1, \ldots, t_{n-1})$, $a \in F_q^*$.

 Π редложение 2. Существует единственный непрерывный гомоморфизм

$$\partial: K_n^{\mathrm{top}}(K) \to K_{n-1}^{\mathrm{top}}(\overline{K}),$$

для которого:

- 1. $\partial (x_1, \ldots, x_{n-1}, t_n) = (x_1 \mod \mathfrak{p}, \ldots, x_{n-1} \mod \mathfrak{p}),$ $ec_{n}u \ v_K(x_1) = \ldots = v_K^{m}(x_{n-1}) = 0.$
 - 2. $\partial (x_1, \ldots, x_n) = 1$, ecau $v_K(x_1) = \ldots = v_K(x_n) = 0$.
 - 3. Последовательность

$$1 \to K_n^{\text{top}}(O_K) \to K_n^{\text{top}}(K) \xrightarrow{\partial} K_{n-1}^{\text{top}}(\overline{K}) \to 1$$
 (12)

точна.

Доказательство. Существование и единственность отображения ∂ со свойствами 1 и 2 в нашей ситуации получается буквальным повторением рассуждения Милнора в § 2 [12]. Заметим, что оно использует лишь структуру локального поля размерности 1 на K (с полем вычетов \overline{K}). Свойство 3 без труда получается из предложения 1.

Замечание 2. Имеет место также аналог последовательности (4)

$$\mathbf{1} \to K_n^{\text{top}}(O_K, \mathfrak{p}) \to K_n^{\text{top}}(O_K) \to K_n^{\text{top}}(\overline{K}) \to \mathbf{1}. \tag{13}$$

Это следует из следствия 1 предложения 1 и предложения 3 ниже. Можно определить и более тонкие фильтрации в группе K_n^{top} (K), используя идеалы кольца нормирования ранга n, связанного с системой параметров (см. [8, 9]).

Лемма 3. Пусть $U \subset K^{\text{top}}_{m+1}(K)$ — подгруппа, порожденная символами вида $(\varepsilon, t_{i_1}, \ldots, t_{i_m})$, $\varepsilon \in \mathscr{E}_K$. Тогда $\bigcup_{k \geq 0} U^{pk} = (1)$.

Доказательство. Достаточно применить предложение 3.6.

Снова предположим, что $m=n=\dim K$ и обозначим через U_K подгруппу $U\subset K_n^{\mathrm{top}}(K)$. Добавляя к U_K произведения символов $(a,\,t_1,\,\ldots,\,t_i,\,\ldots,\,t_i)$, получим подгруппу V_K .

Введем еще подгруппы $\mathscr{E}_{i,K} \subset \mathscr{E}_K$, состоящие из тех элементов x, в разложение (4) раздела 1 которых входят лишь степени a_1, \ldots, a_n переменных t_1, \ldots, t_n с условием k $(a_1, \ldots, a_n) = i$ (см. условие 2 предложения 1). Имеем отображение

$$\Phi_K : \prod_{i=1}^n \mathscr{E}_{i, K} \rightarrow U_K,$$

сопоставляющее набору $\varepsilon_1, \ldots, \varepsilon_n$ произведение $\prod_i (\varepsilon_i, t_1, \ldots, \hat{t}_i, \ldots, t_n)$.

Препложение 3. Писть K — локальное поле размерности n. Tогда фильтрация $U_K \subset V_K \subset K_n^{\mathrm{top}}$ (K) не зависит от выбора системы параметров t_1, \ldots, t_n и при этом:

- 1. $K_n^{\text{top}}(K) = \{(t_1, \ldots, t_n)\} V_K, K_n^{\text{top}}(K)/V_K \cong \mathbb{Z}.$ 2. $V_K = \{(a, t_1, \ldots, \hat{t}_i, \ldots, t_n), a \in \mathbb{F}_q^*, i = 1, \ldots, n\} U_K, V_K/U_K \cong \mathbb{Z}.$ $\cong (F_q^*)^n$.
- 3.~Oтображение Φ_{K} является изоморфизмом, переводящим топологию произведения на $\prod \mathscr{E}_{i,K}$ в топологию группы U_K .

Доказательство. Независимость V_K от выбора системы параметров и свойство 1 вытекают из свойств символа c_K (см. раздел 3.1, замечание 3).

Подгруппа U_K характеризуется тем, что $x^{pk} \to 1$ для $x \in U_K$ (лемма 3). Свойство 2 есть следствие двойственности Куммера (раздел 3.1, следствие 2 предложения 3).

Из предложения 1 вытекает, что гомоморфизм Φ_K сюръективен, а следствие предложения 5 раздела 3 показывает, что Φ_K взаимно однозначно. По определению топологии в U_K это отображение непрерывно. Рассмотрим теперь составное отображение

$$\Phi_{K}^{-1} \circ \Psi : \mathscr{E}_{K} \times \dots \times \mathscr{E}_{K} \to U_{K} \to \prod_{i} \mathscr{E}_{i, K}. \tag{14}$$

Из своиств каконических представлений, указанных в замечании 1, следует, что это отображение непрерывно по каждому аргументу.

Обозначим теперь через τ топологию в U_K , индуцированную топологией Γ руппы $K_n^{\text{top}}(K)$, и через τ' топологию, получаемую перенесением на U_K топологии произведения в $\Pi\mathscr{E}_i$ с помощью Φ_K . Имеем $\tau' \geqslant \tau$. Топологию т можно определить, используя те же условия 1 и 2, что и для топологии группы $K_n^{\text{top}}(K)$ (заменяя в условии 1 K^* на \mathscr{E}_K). Непрерывность отображения (14) означает, что условие 1 выполнено для т'. Условие 2 также выполняется. Следовательно, $\tau' = \tau$ и Φ_K — гомеоморфизм.

Предложение доказано.

C ледствие. Группа $K_n^{\text{top}}\left(K\right)$ не имеет р-кручения.

В самом деле, его нет в мультипликативной группе K^* .

3 амечание 3. Итак, мы получили явное описание группы $K_n^{\text{top}}(K)$. Используемые нами соображения, как обычно, в K-теории разбиваются на две части — оценку «сверху», произведенную в этом разделе, и оценку «снизу», состоящую в построении нетривиальных символов в группе K_n^{top} (K) (раздел 3). Конструкции, приведенные выше, не противоречат, например, равенству $K_n^{\text{top}}(K) = 1$.

3. Символы и двойственность

1. Двойственность Куммера. Если K — локальное поле размерности 1 с полем вычетов k, то можно определить слабо разветвленный (tame) символ норменного вычета $(\cdot, \cdot)_K$. Именно, если v_K — нормирование поля K и $f \bmod \mathfrak{p}$ — образ элемента f из кольца целых поля K в группе k^* , то

$$(f, g)_K = (-1)^{mn} f^n g^{-m} \bmod \mathfrak{p}, \tag{1}$$

где $v_K(f) = m$, $v_K(g) = n$. Это билинейная кососимметрическая форма, свойства которой хорошо известны [10, 13].

В этом разделе мы введем аналогичный символ от n+1-го аргумента для полей размерности n и покажем, что для него сохраняются (в надлежащем виде) обычные свойства символа $(\cdot, \cdot)_K$. Предположим на время, что последнее поле вычетов k локального поля K произвольно.

Опредение 1. Пусть K — локальное поле размерности n над k и $x_1, \ldots, x_{n+1} \in K^*$. Положим

$$(x_1, \ldots, x_{n+1})_{K/k} = \pm \prod_{i=1}^n x_i^{(-1)^{i+1} v_n(x_1, \ldots, \hat{x}_i, \ldots, x_{n+1})_{K/K}} -1 \mod \mathfrak{p}_0 \ldots \mod \mathfrak{p}_{n-1} \in k^*,$$

где символ от п аргументов, стоящий в показателе, относится к полю K, рассматриваемому как локальное поле размерности n-1 над предпоследним полем вычетов K_{n-1} , и \mathbf{v}_n : $K_{n-1}^* \to \mathbf{Z}$ — дискретное нормирование поля K_{n-1} .

Если dim K=1, то с точностью до знака — это символ (1). По поводу знака в общем случае см. ниже. Мы будем также сокращать индекс K/h до K, если это не вызывает недоразумений.

 Π редложение 1. Символ $(x_1,\ldots,x_{n+1})_K$ обладает следующими свойствами:

- 1. $(x_1, \ldots, x_i'x_i', \ldots, x_{n+1})_K = (x_1, \ldots, x_i', \ldots, x_{n+1})_K(x_1, \ldots, x_i', \ldots, x_{n+1})_K$
 - 2. $(x_1, \ldots, x_i, 1-x_i, \ldots, x_{n+1})_K = 1$ с точностью до знака.
 - 3. $(x_1,\ldots,x_{n+1})_K=1$ с точностью до знака, если $\exists i\ x_i\in\mathscr{E}_K.$

Доказательство. Свойства 1 и 3 очевидны. Чтобы получить 2, отметим сначала, что $(x_1, \ldots, x_{n+1})_K$ кососимметричен по каждой паре аргументов. Вычислим теперь целые числа, стоящие в показателе. Для этого выберем систему параметров t_1, \ldots, t_n поля K и сопоставим каждому $x \in K^*$ целые a_1, \ldots, a_n :

$$a_{n} = v_{K}(x),$$

$$a_{n-1} = v_{K_{1}}(xt_{n}^{-a_{n}} \bmod \mathfrak{p}_{0}),$$

$$\vdots$$

$$a_{1} = v_{K_{n-1}}(xt_{n}^{-a_{n}} \bmod \mathfrak{p}_{0}t_{n-1}^{-a_{n-1}} \bmod \mathfrak{p}_{1}...).$$

Это упомянутое в разделе 1 нормирование ранга n в поле K.

Теперь нетрудно показать, что v_n $(x_1, \ldots, \hat{x}_i, \ldots, x_n)$ равно определителю порядка n, составленному из целых a_1, \ldots, a_n для элементов $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}$.

Возвращаясь к свойству 2, заметим, что из приведенного вычисления непосредственно вытекает, что $(x_1,\ldots,x_i,-x_i,\ldots,x_{n+1})=\pm 1$ и $(x_1,\ldots,x_{n+1})=\pm 1$, если $x_i,x_{i+1}^*\in k^*$. Далее, имеем

$$(\ldots, x_i, 1 - x_i, \ldots) = (\ldots, x_i, -x_i, \ldots) (\ldots, x_i, 1 - x_i^{-1}, \ldots) = \pm (\ldots, x_i^{-1}, 1 - x_i^{-1}, \ldots)^{-1}.$$

Если a_1, \ldots, a_n — целые числа, сопоставляемые x_i , то в силу этого тождества можно считать, что $(a_1, \ldots, a_n) \geqslant (0, \ldots, 0)$ (лексикографически). Нотогда либо $x_i \in k^*$, либо $1 - x_i \in \mathscr{E}_K$, и требуемое свойство выполняется по доказанному выше.

3 амечание 1. Конечно, свойства 2 и 3 выглядят не очень естественно. Если $\dim K=2$, то определение 1 можно дополнить явным указанием

знака. Именно, положим

$$(x_1, x_2, x_3)_K = (-1)^{a_{2}a_{2}a_{31} + a_{12}a_{21}a_{32} + a_{12}a_{21}a_{31} + a_{11}a_{22}a_{32} + a_{11}a_{22}a_{31} + a_{11}a_{21}a_{31}} \times x_1^{a_{2}a_{3}a_{3}a_{2}a_{21}a_{21}a_{21}a_{21}a_{31}} x_3^{a_{12}a_{21}-a_{22}a_{11}} \mod \mathfrak{p}_1 \mod \mathfrak{p}_1.$$

$$(2)$$

Тогда выполняется свойство 2 в виде $(x_1, 1 - x_1, x_3) = 1$.

Чтобы получить свойство 2 в общем случае, необходимо использовать Π редложение 2. Пусть K — локальное поле размерности n_{\bullet} C точностью до знака

$$(x_1,\ldots,x_{n+1})_K^{\neg}=\partial_n\circ\ldots\circ\partial_1(x_1,\ldots,x_{n+1}).$$

Отображения $\partial = \partial_n$: $K_n^{\text{top}}(K) \to K_{n-1}^{\text{top}}(\overline{K})$ были введены в разделе 2. Доказательство этого предложения легко получается непосредственным вычислением на образующих (нужно использовать формулу (3) раздела 1, предложение 2 раздела 2 и предложение 1.3).

Мы будем считать, что знак в определении 1 выбран так, чтобы выполнялось свойство $2 \ c + 1$.

В о п р о с. Какова явная формула для знака в определении 1, обобщающая формулы (1) и (2)?

Замечание 2. Когда n=2, то символ, близкий к введенному нами был независимо определен И. Пурше (Y. Pourchet) в 1970 г. (неопубликовано). Как показал Ж. П. Серр, этот символ является трилинейной кососимметрической формой (a, b, c), определенной для элементов a, b, c произвольного локального поля K (размерности 1) с полем вычетов k и принимающей значения в группе $\operatorname{Br}(k)_n$ (элементы n-го порядка группы Брауера). Он однозначно определяется следующими свойствами:

- 1. (a, -a, c) = 0.
- 2. Если $v_K(a) = 1, b, c \in \mathscr{E}$ (группа единиц), то $(a, b, c) = (\bar{b}, \bar{c})_K^{r}(\bar{b}, \bar{c} oбразы в поле вычетов).$
 - 3. Если $a, b, c \in \mathcal{E}$, то (a, b, c) = 0.

Для конструкции этого символа нужно взять произведение элементов $a, b, c \in K^*$ в группе $K_3(K)$, применить $\partial \colon K_3(K) \to K_2(k)$ и затем символ $(\bar{b}, \bar{c})_k \colon K_2(k) \to \operatorname{Br}(k)_n$, введенный в [13, § 15]. Предложение 2 показывает связь нашего символа с символом Пурше. Последний возник в связи со следующими приложениями к теории квадратичных форм. Именно, пусть (1, -a) — форма вида $x_1^2 - ax_2^2$. Тогда если форма

$$(1, -a) \otimes (1, -b) \otimes (1, -c)$$

представляет нуль, то (a, b, c) = 0, n = 2. Обратное верно, если любая форма от пяти переменных над полем k представляет нуль (например, $k = Q_v$).

Пусть теперь снова K — локальное поле размерности n с конечным полем вычетов F_q . Обозначим через K' его предпоследнее поле вычетов (оно является локальным полем размерности 1 над F_q). В силу предложения 2 имеет смысл

Определение 2. Введем отображения

$$a_K: K_{n+1}^{\text{top}}(K) \to \boldsymbol{F}_q^*$$
 (3)

u

$$c_K: K_n^{\text{top}}(K) \to \mathbf{Z},$$
 (4)

полагая $a_K(x_1,\ldots,x_{n+1})=(x_1,\ldots,x_{n+1})_{K/F_q}$ и $c_K(x_1,\ldots,x_n)=v_{K'}(x_1,\ldots,x_n)_{K/K'}$.

Отметим, что для определения c_K вопрос о выборе знака несуществен. Замечание 3. Отображения (3) и (4) сюръективны, поскольку a_K $(a, t_1, \ldots, t_n) = a$ и c_K $(t_1, \ldots, t_n) = 1$.

Как известно, с помощью символа (1) строится двойственность Куммера для локальных полей размерности 1. Мы покажем, что это же верно в произвольной размерности.

Если l — целое, (l, p) = 1 и ζ — первообразный корень степени l, то $\zeta \in K$ в том и только том случае, когда $l \mid q-1$, и тогда $\zeta \in F_q^*$. Положим

$$\lambda(x) = x^{\frac{q-1}{l}}, \quad x \in \boldsymbol{F}_q^*.$$

Предложение 3. Пусть $m \ge 0$. Отображение $\lambda \circ a_K$: $K_{n+1}^{\text{top}}(K) \to \mathbf{Z}/l$ определяет непрерывное и невырожденное спаривание

$$K_m^{\text{top}}(K)/l \times K_{n+1-m}^{\text{top}}(K)/l \rightarrow \mathbb{Z}/l$$
.

Доказательство. Случай m=0 разобран выше (следствие 1 предложения 1 раздела 2 и замечание 3). В силу предложения 1 раздела 2 и l-делимости группы \mathcal{E}_K группа $K_m^{\mathrm{top}}(K)$ порождается элементами $(t_{ii}^{\,\mathfrak{e}},\ldots,t_{im})$ и $(\zeta,t_{ii},\ldots,t_{im-1}),$ $i_1<\ldots< i_m$. Покажем, что они линейно независимы. Если m=1, то это так (см. (4) раздела 1). Образующие группы $K_n^{\mathrm{top}}(K)/l$ можно сопоставить с образующими группы K^*/l . Именно

$$(t_1,\ldots,t_n)$$
 $(\zeta,t_1,\ldots,t_{n-1})$ \ldots (ζ,t_2,\ldots,t_n) . ζ t_n \ldots t_1

Применяя наше спаривание (см. замечание 3), получаем, что и образующие в $K_n^{\mathrm{top}}(K)$ независимы, а спаривание невырождено.

Рассмотрение дальнейших групп $K_m^{\mathrm{top}}(K)$ проходит индукцией вниз по m. Если утверждение доказано для m, то нужно обратиться к спариванию $K^* \times K_{m-1}^{\mathrm{top}}(K) \to K_m^{\mathrm{top}}(K)$. Это дает требуемое.

Следствие 1 (Двойственность Куммера). Пусть K — локальное поле размерности n. Отображение $\lambda \circ a_K \colon K_{n+1}^{\text{top}}(K)/l \cong \mathbb{Z}/l$ определяет непрерывное и невырожденное спаривание

$$(\cdot, \cdot)_K: K_n^{\text{top}}(K)/l \times K^*/l \to \mathbb{Z}/l.$$

Из доказательства предложения имеем также

Следствие 2. $\operatorname{rk} K_m^{\operatorname{top}}(K)/l = C_n^m + C_n^{m-1}$.

Оно использовалось в разделе 2 (предложение 3).

2. Двойственность Артина — Шрейера. Если снова обратиться к локальным полям размерности 1, то в случае $K=k\ ((t))$ имеется символ

$$(x, y]_K = \operatorname{res}_K (yx^{-1}dx) \subseteq k, \quad x \subseteq K^*, y \subseteq K,$$
 (5)

играющий существенную роль в описании p-расширений поля K ([10, гл. XIV] и [15, 16]). Дадим теперь соответствующие определения для про-извольных локальных полей.

Определение 3. Пусть K — локальное поле размерности n, $\omega \in \Omega^n_{K/\mathbf{F}_\sigma}$ и t_1,\ldots,t_n — система параметров. Положим

$$res_K(\omega) = a(-1, ..., -1),$$

если

$$\omega = \sum a (a_1, \ldots, a_n) t_1^{a_1} \ldots t_n^{a_n} dt_1 \wedge \ldots \wedge dt_n.$$

Это обычное разложение ((1) раздела 1). Как показано в [2, 9], вычет ${\rm res}_K$ (ω) не зависит от выбора системы параметров.

Определение 4. Пусть $[x_1,\ldots,\ x_n \in K^*,\ y \in K$. Положим $(x_1,\ldots,x_n\,|\,y]_K = \mathrm{Tr}_{F_O L F_p} \circ \mathrm{res}_K \, (y x_1^{-1} dx_1 \wedge \ldots \wedge x_n^{-1} dx_n).$

При рассмотрении одного поля мы будем иногда опускать индекс K. Предложение 4. Символ $(x_1, \ldots, x_n \mid y]_K$ обладает следующими свойствами:

- 1. $(x_1, \ldots, x_i x_i', \ldots, x_n \mid y]_K = (x_1, x_i x_n \mid y]_K + (x_1, \ldots, x_i', \ldots, x_n \mid y]_K$
- 2. $(x_1, \ldots, x_n \mid y_1 + y_2]_K = (x_1, \ldots, x_n \mid y_1]_K + (x_1, \ldots, x_n \mid y_2]_K$
- 3. $(x_1, \ldots, x_i, 1 x_i, \ldots, x_n \mid y]_K = 0.$
- 4. $(x_1, \ldots, x_n \mid y]_K = 0$, если $x_i \in (K^*)^p$ для некоторого i.
- 5. $(x_1, \ldots, x_n \mid y^p]_K = (x_1, \ldots, x_n \mid y]_K^p$
- 6. *Пусть*

$$x_{i} = \prod_{k=1}^{n} t_{k}^{m_{ik}} a_{i} \prod_{a_{1}, \dots, a_{n}} (1 + a (a_{1}, \dots, a_{n}) t_{1}^{a_{1}} \dots t_{n}^{a_{n}})$$

— разложение (1) и (4) раздела 1 и $y = \sum b \ (b_1, \ldots, b_n) \ t_1^{b_1} \ldots t_n^{b_n}$. Тогда при фиксированных числах m_{ik} символ $(x_1, \ldots, x_n \mid y]_K$ является многочленом от $a_1^{-1}, \ldots, a_n^{-1}$, а (a_1, \ldots, a_n) и $b \ (b_1, \ldots, b_n)$ с коэффициентами из \mathbb{Z}_{\bullet}

Доказательство. Свойства 1-4 очевидны. Свойство 5 для n=2 получено в ([2, предложение 1.7 § 1]). Общий случай рассматривается аналогично. Последнее свойство непосредственно вытекает из определения вычета. Оно дает

Спедствие. Символ $(x_1, \ldots, x_n | y]_K$ непрерывен по каждому аргументу в топологии группы K^* и поля K.

Предложение 5 (Двойственность Артина — Шрейера). Пусть K — локальное поле размерности n. Символ $(x_1, \ldots, x_n | y]_K$ определяет непрерывное и невырожденное спаривание

$$(\cdot \mid \cdot]_K: K_n^{\text{top}}(K)/p \times K/(F-1) K \rightarrow \mathbf{Z}/p,$$

 $e\partial e \ F(x) = x^p, x \in K.$

Доказательство. Ввиду сказанного выше нужно проверить лишь невырожденность формы $(\cdot \mid \cdot \mid_K)$. Найдем ее значения на образующих групп $K_n^{\text{top}}(K)/p$ и K/(F-1) K. Для этого предположим, что базисы поля \mathbf{F}_q над \mathbf{F}_p , фигурирующие в разложении (4) и лемме 2 раздела 1, двойственны друг другу относительно билинейной формы $\mathrm{Tr}_{\mathbf{F}_q/\mathbf{F}_p}(ab)$ на \mathbf{F}_q . Тогда «образующими» в $K_n^{\text{top}}(K)/p$ будут символы

$$(t_1, \ldots, t_n), e(a_1, \ldots, a_n) = (1 + at_1^{a_1}, \ldots, t_n^{a_n}, t_1, \ldots, t_k, \ldots, t_n),$$

где индексы a_1, \ldots, a_n удовлетворяют условиям предложения 1 раздела 2 и его следствия 2. В K/(F-1) K имеются элементы $b_0 \in F_q$, $\mathrm{Tr}_{F_q/F_p}(b_0) = 1$ и $bt_1^{b_1} \ldots t_n^{b_n}$ (лемма 2 раздела 1). Вычисления вычетов показывают, что

$$(t_1, \ldots, t_n \mid b_0]_K = 1,$$
 (6)

$$(t_1, \ldots, t_n \mid bt_1^{b_1} \ldots t_n^{b_n}]_K = 0,$$
 (7)

$$(e (a_1, \ldots, a_n) \mid b_0]_K = 0,$$
 (8)

$$(e(a_1,\ldots,a_n)|bt_1^{b_1}\ldots t_n^{b_n}]_K=0,$$
 если $(a_1,\ldots,a_n)\neq (-b_1,\ldots,-b_n).$ (9)

Если же $(a_1, \ldots, a_n) = (-b_1, \ldots, -b_n)$, то

$$\operatorname{Tr}_{\boldsymbol{F}_{p}/\boldsymbol{F}_{p}} \circ \operatorname{res}_{K} \left(bt_{1}^{-a_{1}} \dots t_{n}^{-a_{n}} \frac{d \left(at_{1}^{a_{1}} \dots t_{n}^{a_{n}} \right)}{1 + at_{1}^{a_{1}} \dots t_{n}^{a_{n}}} \wedge \frac{dt_{1}}{t_{1}} \wedge \dots \wedge \frac{dt_{k}}{t_{k}} \wedge \dots \wedge \frac{dt_{n}}{t_{n}} \right) =$$

$$= \operatorname{Tr}_{\boldsymbol{F}_{q}/\boldsymbol{F}_{p}} \circ \operatorname{res}_{K} \left(abt_{1}^{-a_{1}} \dots t_{n}^{-a_{n}} \left(\sum_{i=1}^{n} a_{i}t_{1}^{a_{1}} \dots t_{i}^{a_{i}} \dots t_{n}^{a_{n}} \frac{dt_{i}}{t_{i}} \right) \wedge \frac{dt_{1}}{t_{1}} \wedge \dots \wedge \frac{dt_{k}}{t_{k}} \wedge \dots \wedge \frac{dt_{n}}{t_{n}} \right) =$$

$$= \operatorname{Tr}_{\boldsymbol{F}_{q}/\boldsymbol{F}_{p}} (aba_{k}) = \delta_{ab} \cdot a_{k}. \tag{10}$$

Это равно нулю, если $a \neq b$, и отлично от нуля (по определению индекса k = k (a_1, \ldots, a_n) , см. предложение 1 раздела 2) при a = b. Поскольку каждый элемент групп $K_n^{\text{top}}(K)/p$, K/(F-1) K обладает разложением по рассмотренным нами образующим (и в K/(F-1) K оно единственно), получаем невырожденность спаривания $(\cdot \mid \cdot)_K$. Одновременно мы имеем

Следствие. Каждый элемент $x \in K_n^{\text{top}}(K)$ обладает лишь одним представлением в виде произведения 3 в (9), предложение 1 раздела 2.

Замечание 4. Можно обобщить двойственность Артина—Шрейера на группы K_m^{top} (K) для любого m. Именно, имеется спаривание

$$(\cdot | \cdot]_K : K_m^{\text{top}}(K)/p \times \Omega_K^{n-m}/(C-1) \Omega_K^{n-m} \to \mathbb{Z}/p,$$

где $C: \Omega_K^{n-m} \to \Omega_K^{n-m}$ — оператор Картье, и

$$(x_1,\ldots,x_m\,|\,\omega]_K=\mathrm{Tr}_{F_q/F_p}\circ\mathrm{res}_K\,(\omega\,\wedge\,x_1^{-1}dx_1\,\wedge\,\ldots\,\wedge\,x_m^{-1}dx_m).$$

Оно непрерывно и невырожденно.

3. Двойственность Витта. Для полей размерности 1 она развита Виттом в [16], ее применение к построению теории полей классов дано в [15]. Наша конструкция является непосредственным обобщением построений этих работ. Поскольку различие между общим случаем и случаем размерности 2 по существу отсутствует, мы ограничимся для простоты изложения этим последним.

Пусть A — произвольное поле характеристики 0 и $\widetilde{K}=A^{r}_{s}((t_{1}))\dots$... $((t_{n}))$. Рассмотрим кольцо векторов! Витта $W\left(\widetilde{K}\right)$ над \widetilde{K} . Каждый элемент кольца $W\left(\widetilde{K}\right)$ имеет вид $\mathbf{x}=(\mathbf{x}_{0},\mathbf{x}_{1},\dots),\mathbf{x}_{0},\mathbf{x}_{1},\dots,$ \subset \widetilde{K} .

Если в поле K имеется топология, то имеем естественную топологию в $W_m\left(K\right)$.

Введем вспомогательные координаты

$$\mathbf{x}(m) = \mathbf{x}_0^{p^m} + p\mathbf{x}_1^{p^{m-1}} + \ldots + p^m\mathbf{x}_m, \quad m = 0, 1, \ldots$$

Тогда имеем

$$\mathbf{x}_m = P_m(\mathbf{x}(0), \ \mathbf{x}(1), \dots, \mathbf{x}(m)), \quad m = 0, 1, \dots,$$
 (11)

где P_m — многочлены с коэффициентами из Z [p^{-1}]. Сложение и умножение в кольце W (K) задается универсальными многочленами от переменных $\mathbf{x}_0, \mathbf{x}_1, \ldots$ так, чтобы ($\mathbf{x} + \mathbf{y}$) (m) = \mathbf{x} (m) + \mathbf{y} (m) и ($\mathbf{x}\mathbf{y}$) (m) = \mathbf{x} (m) у (m). При этом m-я компонента суммы и произведения зависит лишь от компонент векторов \mathbf{x} и у с индексами $\leq m$. Более того,

$$W(\widetilde{K}) = \lim_{m \to \infty} W_m(\widetilde{K}),$$

где W_m (\widetilde{K}) — кольцо, состоящее из векторов длины m. Более подробно см. [10, 16].

Пусть теперь $x, y \in K^*, \mathbf{z} \in W(K)$. Положим (n=2)

$$\mathbf{w}_{m} = P_{m} \left(\operatorname{res}_{\widetilde{K}} \left(\mathbf{z} \left(0 \right) \frac{dx}{x} \wedge \frac{dy}{y} \right), \quad \operatorname{res}_{\widetilde{K}} \left(\mathbf{z} \left(1 \right) \frac{dx}{x} \wedge \frac{dy}{y} \right), \dots \right).$$

Тогда $\mathbf{w} = (\mathbf{w}_0, \mathbf{w}_1, \ldots) \in W(A)$.

Лемма 1. Если

$$x = t_{1}^{m} t_{1}^{p} (a_{0} + a_{1}t_{2} + \ldots), \quad a_{i} = a_{i0} + a_{i1}t_{1} + \ldots, \quad a_{00} \neq 0,$$

$$y = t_{2}^{k} t_{1}^{q} (b_{0} + b_{1}t_{2} + \ldots), \quad b_{j} = b_{j0} + b_{j1}t_{1} + \ldots, \quad b_{00} \neq 0,$$

$$\mathbf{z}_{m} = \sum_{i, j} c_{mij} t_{1}^{i} t_{2}^{j}$$

— разложения в поле K, то при фиксированных m, p, k, q компоненты \mathbf{w}_m вектора \mathbf{w} являются многочленами от a_{00}^{-1} , b_{00}^{-1} , a_{ik} , b_{jl} , c_{mij} с коэффициентами из \mathbf{Z} , не зависящими от поля A.

Доказательство. В силу конструкции вектор w зависит линейно от z и мультипликативно от x и y. Введем на векторах Витта две операции Ω_{t_1} и Ω_{t_2} . Именно, положим

$$egin{align} \mathbf{z}_m^{'} = \sum\limits_{j>0} c_{mij} t_1^i t_2^j, & \mathbf{z}_m^{''} = \sum\limits_{j<0} c_{mij} t_1^i t_2^j, \ \Omega_{t_2}(\mathbf{z}) = \mathbf{z} - \mathbf{z}' - \mathbf{z}'' \end{aligned}$$

и аналогично для Ω_{t_1} . Тогда если компоненты $\mathbf{z}_0, \ldots, \mathbf{z}_{m-1}$ не зависят от t_2 , то это же верно для компонент $(\Omega_{t_2}\mathbf{z})_0, \ldots, (\Omega_{t_2}\mathbf{z})_m$. Аналогично, если $\mathbf{z}_0, \ldots, \mathbf{z}_{m-1}$ не зависят от t_1 и t_2 , то $(\Omega_{t_1}\mathbf{z})_0, \ldots, (\Omega_{t_1}\mathbf{z})_m$ также не зависят от t_1 и t_2 .

Докажем теперь лемму для случая $x=t_1, y=t_2$. В этой ситуации если **z** содержит лишь положительные степени t_2 или лишь отрицательные, то по определению вычета $\mathbf{w}=0$. Это же верно по отношению к переменной t_1 . Обозначим **w** как (x, y, z). Тогда в силу сказанного

$$(t_1, t_2, \mathbf{z}) = (t_1, t_2, \mathbf{z}) - (t_1, t_2, \mathbf{z}') - (t_1, t_2, \mathbf{z}'') = (t_1, t_2, \Omega_{t_2} \mathbf{z}).$$

Итерируя этот процесс, получаем

$$(t_1, t_2, \mathbf{z}) = (t_1, t_2, \Omega_{t_2}^N \mathbf{z}),$$

где координаты $(\Omega_{t_2}^N \mathbf{z})_m$ не зависят от t_2 при m < N. Применяя затем Ω_{t_1} , находим, что

$$(t_1, t_2, \mathbf{z}) = (t_1, t_2, \Omega_{t_1}^M \Omega_{t_2}^N \mathbf{z}),$$

где координаты $(\Omega_{t_1}^M \Omega_{t_2}^N \mathbf{z})_m$ не зависят от t_1 и t_2 . Следовательно,

$$(t_1, t_2, \mathbf{z})_m = (\Omega_{t_1}^M \Omega_{t_2}^N \mathbf{z})_m \text{ при } m < N, m < M,$$

что дает утверждение леммы.

Так как вычет инвариантен относительно замен параметров t_1 и t_2 в поле K, то лемма верна также и для любой пары t_1' , t_2' параметров поля K. Но всегда можно записать x как $t_2^{m-1}t_1^pt_2'$, а y как $t_2^kt_1^{q-1}t_1'$ и, пользуясь мультипли кативностью, свести все к разобранному случаю (на этом пути встретятсь также выражения $(t_1, t_1', \mathbf{z}), (t_2, t_2', \mathbf{z})$, но они равны соответственно $(t_1, t_2t_2^{'-1}, \mathbf{z})$, $(t_2, t_1t_1^{'-1}, \mathbf{z})$.

Доказательство окончено. Вернемся теперь к полю $K = \mathbf{F}_q((t_1)) \dots \dots ((t_n))$ и обозначим через A поле отношений кольца $W(\mathbf{F}_q)$ и через $\widetilde{f} \rightleftharpoons \widetilde{f}$ любой элемент кольца $W(\mathbf{F}_q)((t_1)) \dots ((t_n))$, для которого $\widetilde{f} \mod p = f \rightleftharpoons K$.

Определение 5. Пусть x_0,\ldots,x_n \in K^* , y_0,\ldots,y_{m-1} \in K. Тогда $(x_1,\ldots,x_n\,|\,y_0,\ldots,y_{m-1}]_K=(\mathbf{w}_0,\mathbf{w}_1,\ldots,\mathbf{w}_{m-1})$ \in W_m (F_q) ,

г∂е

$$\mathbf{w}_{i} = P_{i}\left(\operatorname{res}_{\widetilde{K}}\left(\widetilde{\mathbf{y}}\left(0\right)x_{1}^{-1}dx_{1} \wedge \ldots \wedge x_{n}^{-1}dx_{n}\right), \ldots, \operatorname{res}_{\widetilde{K}}\left(\widetilde{\mathbf{y}}\left(m-1\right)x_{1}^{-1}dx_{1} \wedge \ldots \wedge x_{n}^{-1}dx_{n}\right)\right) \bmod p$$

 $u \operatorname{res}_{\widetilde{K}} - \varepsilon$ ычет в локальном поле $\widetilde{K} = A ((t_1)) \dots ((t_n)).$

Тот факт, что значения многочленов P_i принадлежат подкольцу W (\mathbf{F}_q) поля A, следует из леммы 1, так что переход к mod p имеет смысл.

Для краткости будем иногда обозначать аргументы x_1, \ldots, x_n через x_n а y_0, \ldots, y_{m-1} через y.

 Π редложение 6. Символ $(x_1,\ldots,x_n\mid \mathbf{y}_0,\ldots,\mathbf{y}_{m-1}]_K$ зависит только от структуры локального поля K и обладает следующими свойствами \mathbf{s}

- 1. $(x_1, \ldots, x_i'x_i', \ldots, x_n | \mathbf{y}]_K = (x_1, \ldots, x_i', \ldots, x_n | \mathbf{y}]_K + (x_1, \ldots, x_i', \ldots, x_n | \mathbf{y}]_{K\bullet}$
- 2. $(x | (y + z)_0, ..., (y + z)_{m-1}]_K = (x | y_0, ..., y_{m-1}]_K + (x | z_0, ..., z_{m-1}]_K$
- 3. $(x_1, \ldots x_i, 1-x_i, \ldots, x_n \mid y]_K = 0.$
- 4. $(x_1,\ldots,x_n\mid \mathbf{y}]_K=0$, если $x_i\in (K^*)^{pm}$ для некоторого i.
- 5. $(x \mid \mathbf{y}_0^p, ..., \mathbf{y}_{m-1}^p]_K = (\mathbf{w}_0^p, ..., \mathbf{w}_{m-1}^p)$, echu $(x \mid \mathbf{y}_0, ..., \mathbf{y}_{m-1}]_K = (\mathbf{w}_0, ..., \mathbf{w}_{m-1})$.
- 6. $(x \mid \mathbf{y}]_K$ непрерывен по каждому аргументу в топологии групп K^* и $W_m(K)$.
 - 7. $(x | 0, y_1, ..., y_{m-1}]_K = (0, (x | y_1, ..., y_{m-1}]_K).$
 - 8. $(x \mid y_0, ..., y_{m-2}]_K = (w_0, ..., w_{m-2}), ecau (x \mid y_0, ..., y_{m-1}]_K = (w_0, ..., w_{m-1}).$

Доказательство. Если $B=W(F_q)((t_1))\dots((t_n))$, то всякая замена параметров в K поднимается до замены параметров в B и обычное до-казательство инвариантности вычета дает независимость символа $(\cdot \mid \cdot \mid_K)$ от выбора t_1,\dots,t_n .

Свойства 1-3 очевидны.

Чтобы получить 4, заметим, что в поле \widetilde{K}

$$\operatorname{res}_{\widetilde{K}}\left(\widetilde{\mathbf{y}}(k)\frac{d\widetilde{x}_{1}^{p^{m}}}{\widetilde{x}_{1}^{p^{m}}} \wedge \frac{d\widetilde{x}_{2}}{\widetilde{x}_{2}} \wedge \ldots \wedge \frac{d\widetilde{x}_{n}}{\widetilde{x}_{n}}\right) = p^{m}\operatorname{res}_{\widetilde{K}}\left(\widetilde{\mathbf{y}}^{(k)}\frac{d\widetilde{x}_{1}}{\widetilde{x}_{1}} \wedge \ldots \wedge \frac{d\widetilde{x}_{n}}{\widetilde{x}_{n}}\right).$$

и, следовательно, при переходе от вспомогательных переменных $\mathbf{w}(m)$ к \mathbf{w}_m мы получим вектор $p^m\mathbf{w}$, равный 0 в W_m (K).

Свойства 7 и 8 получаются также из формул перехода (11). В частности, из 7 имеем

$$(x | 0, ..., 0, y_{m-1}] = (0, ..., 0, (x | y_{m-1}]),$$

и поскольку

$$(\mathbf{y}_0, \ldots, \mathbf{y}_{m-1}) = (\mathbf{y}_0, \ldots, \mathbf{y}_{m-2}, 0) + (0, \ldots, 0, \mathbf{y}_{m-1}),$$

из 8 и предложения 4.5 индукцией по т выводим 5.

Непрерывность (свойство 6) есть очевидное следствие леммы 1.

Предложение 7 (Двойственность Витта). Пусть K — локальное поле размерности n. Символ $(x_1, \ldots, x_n \mid \mathbf{y_0}, \ldots, \mathbf{y_{m-1}}]_K$ определяет непрерывное и невырожденное спаривание

$$(\cdot |\cdot|_K : K_n^{\text{top}}(K)/p^m \times W_m(K)/(F-1)W_m(K) \rightarrow \mathbb{Z}/p^m_{\mathfrak{a}}$$

$$e\partial e \ F \ (y_0, \ldots, y_{m-1}) = (y_0^p, \ldots, y_{m-1}^p).$$

Доказательство. Как и раньше, нужно проверить лишь невырожденность спаривания. Пусть

$$(x \mid \mathbf{y}_0, \ldots, \mathbf{y}_{m-1}]_K = 0$$

для любых $(y_0, \ldots, y_{m-1}) \in W_m$ (K). Из предложения 6 (свойства 4 и 8) получаем, что $x = g^p$. Тогда

$$0 = (g^p | \mathbf{y}_0, \ldots, \mathbf{y}_{m-1}] = p(g | \mathbf{y}_0, \ldots, \mathbf{y}_{m-1}] = (\mathbf{0}, \mathbf{w}_0^p, \ldots, \mathbf{w}_{m-2}^p),$$

если $(g \mid \mathbf{y_0}, \ldots, \mathbf{y_{m-1}}] = (\mathbf{w_0}, \ldots, \mathbf{w_{m-1}})$ (это известное соотношение p = VF в кольце векторов Витта [10, 16]). Таким образом, можно провести индукцию по m.

Невырожденность по второму аргументу доказывается также индукцией с использованием разложения (3) и предложения 6.8.

Предложение доказано, и мы видим, что построенные нами символы обладают в точности теми же свойствами, что и аналогичные символы в одномерном случае. Можно рассмотреть, следовательно, индуктивный предел $\mathfrak{M}(K)$ групп $W_m(K)/(F-1)W_m(K)$ относительно отображений, переводящих $(\mathbf{y}_0,\ldots,\mathbf{y}_{m-1})$ в $(0,\mathbf{y}_0,\ldots,\mathbf{y}_{m-1})$.

Стандартные рассуждения ([15, § 2, с. 373]) дают нам спаривание

$$K_n^{\text{top}}(K) \times \mathfrak{M}(K) \rightarrow \mathbf{Q}/\mathbf{Z},$$

невырожденное по второму аргументу. Его ядро по первому аргументу равно $\bigcap_{m\geqslant 1} K_n^{\mathrm{top}}(K)^{p^m}$.

Ясно, что отображение c_K (см. (4)) аннулирует это ядро, а если воспользоваться предложением 3 и леммой 3 раздела 2, то получаем, что единственными элементами группы $K_n^{\text{top}}(K)$, принадлежащими ядру, суть произведения символов $(a, t_1, \ldots, \hat{t}_i, \ldots, t_n)$, $a \in F_q^*$. Итак, ядро спаривания состоит из элементов кручения, простого с p. Поскольку в группе $K_n^{\text{top}}(K)$ нет p-кручения, получаем

Следствие. Символы $(\cdot \mid \cdot]_K$ определяют непрерывное спаривание $K_n^{\mathrm{top}}(K)/K_n^{\mathrm{top}}(K)_{\mathrm{tors}} imes \mathfrak{M}(K) o \mathbf{Q}/\mathbf{Z}.$

4. Перенос. Как мы видели в начале раздела 2, для любого конечного расширения полей L/K определено отображение переноса $N:K_2(L)\to K_2(K)$, удовлетворяющее, в частности, формуле проекции из раздела 2. На функтор Милнора $K_n^M(K)$ при n>2 это определение непосредственно не переносится. Кроме того, нам нужен перенос на группах $K_n^{\text{top}}(K)$, являющихся факторами групп $K_n^M(K)$ (определение 2 раздела 2). Чтобы преодолеть эти трудности, рассмотрим следующий обходной путь. Мы ограничимся расширением Галуа L/K.

 Π е м м а 2. Пусть L/K — циклическое расширение простой степени локального поля K размерности n. Тогда в L и K имеются системы параметров s_1, \ldots, s_n и t_1, \ldots, t_n , для которых все s_1, \ldots, s_n , кроме одного, равны переменным t_1, \ldots, t_n .

 \mathbb{Z} о к а з а т е л ь с т в о. В силу общих свойств локальных полей (размерности 1 над \overline{K}) ([10, гл. 1, § 7]) имеются три возможности: 1) расширение L/K вполне разветвлено, т. е. $\overline{L}=\overline{K}$, 2) расширение L/K неразветвлено, и, следовательно, имеется согласованное вложение полей вычетов $\overline{L} \supset \overline{K}$ в L/K, и параметр t_n поля K будет входить в систему параметров для L; 3) расширение L/K имеет индекс ветвления 1 и $\overline{L}/\overline{K}$ — чисто несепарабельно

степени p. В первых двух случаях требуемое свойство очевидно. В третьем нужно заметить, что параметр t_n сохраняется, как и в случае 2, и применить лемму 1 раздела 1.

Из предложения 1 раздела 2 и доказанной леммы вытекает, что в циклическом расширении L/K элементы группы $K_n^{\mathrm{top}}\left(L\right)$ являются произведениями элементов вида

$$(x, y, x_1, \ldots, x_{n-2}), (x, y) \subseteq K_n^{\text{top}}(L), x_1, \ldots, x_{n-2} \subseteq K^*.$$
 (12)

Определение 6. Пусть L/K — конечное расширение Галуа, $L=L_0 \supset L_1 \supset \ldots \supset L_m=K$ — башня циклических расширений простой степени. Если L/K — циклическое расширение и $x \in K_n^{\text{top}}$ (L) имеет вид (12), то положим

$$N(x) = (N(x, y), x_1, \ldots, x_{n-2}) \in K_n^{\text{top}}(K).$$

Для произвольного L/K определим $N:K_n^{\mathrm{top}}(L)\to K_n^{\mathrm{top}}(K)$ как композицию отображений переноса для циклических расширений в башне $L_0 \supset L_1 \supset \ldots \supset L_m$.

Отметим, что такая башня всегда существует (следствие предложения 1 раздела 1).

Предложение 8. Отображение переноса $N:K_n^{\text{top}}(L)\to K_n^{\text{top}}(K)$ определено корректно. Оно не зависит от выбора башни и представлений (12). Для любого конечного расширения Галуа L/K справедливы следующие соотношения:

- 1. $(N(x), y)_K = (x, y)_L, \quad x \in K_n^{\text{top}}(L), \quad y \in K^*.$
- 2. $(x, N(y))_K = (x, y)_L$, $x \in K_n^{\text{top}}(K)$, $y \in L^*$.
- 3. $(N(x) | \mathbf{y}]_K = (x | \mathbf{y}]_L$, $x \in K_n^{\text{top}}(L)$, $\mathbf{y} \in W_m(K)$.
- 4. $(x \mid \operatorname{Tr} (\mathbf{y})]_K = (x \mid \mathbf{y}]_L$, $x \in K_n^{\text{top}}(K)$, $\mathbf{y} \in W_m(L)$.

Здесь ${\rm Tr}: W_m (L) \to W_m (K)$ — обобщение следа, см. [15, § 2]. Соотношения 2 и 4, конечно, никак не связаны с переносом и будут разобраны по ходу доказательства.

Доказательство. Пусть B и A — абелевы группы, и мы хотим построить отображение $f: B \to A$. При этом имеются еще абелевы группы B' и A' и невырожденные спаривания

$$(\cdot, \cdot)_A: A \times A' \to \mathbf{Q}/\mathbf{Z}, \quad (\cdot, \cdot)_B: B \times B' \to \mathbf{Q}/\mathbf{Z}$$

и отображение $f': A' \to B'$. Требуется, чтобы отображение $f: B \to A$ удовлетворяло соотношению $(f(b), a')_A = (b, f'(a'))_B$, т. е. было бы сопряжено к f'. Ясно, что этим условиям удовлетворяет не более одного f. Кроме того, если $M \subset B$ — подмножество, порождающее группу B, и

$$\forall b \in M \quad \exists a \in A \quad \forall a' \in A' \quad (b, f'(a'))_B = (a, a')_A,$$

то отображение f существует.

Применим эти соображения в ситуации, когда $B=K_n^{\text{top}}(L)$, $A=K_n^{\text{top}}(K)$, L/K — циклическое расширение простой степени и f=N — перенос, который мы хотим построить. Возьмем в качестве M множество символов вида (12), а в качестве B' и A' — соответствующие группы теорий Куммера и Артина—Шрейера (в зависимости от степени [L:K]). Из следствия предложения 3 и предложения 5 находим, что достаточно доказать соотношения 1 и 3 для символов (12).

Соотношения 1 (а также 2) проверяются элементарным образом на образующих групп $K_n^{\text{top}}(L)/l$ и $K_n^{\text{top}}(K)/l$ для куммеровых расширений (смсимволы, указанные в доказательстве предложения 3). Перенос вычисляется при этом с помощью леммы 1 раздела 2. Можно рассуждать иначе и воспользоваться первой диаграммой (5) раздела 2 и предложением 2 раздела 3.

Формулы (3) и (4) получаются из случая m=1 индукцией по m с применением предложения 6 (свойства 7 и 8). Если m=1, то входящий в (3) перенос можно вычислить явно с помощью следующего результата:

 Π е м м а 3. Π усть L/K — конечное сепарабельное расширение поля K. Диаграмма

$$egin{array}{ll} K_2\left(L
ight) & \stackrel{\delta}{
ightarrow} \Omega^2_{L/K} \ N \downarrow & {
m Tr} \downarrow \;\;, \ K_2\left(K
ight) & \stackrel{\delta}{
ightarrow} \Omega^2_{K/h} \end{array}$$

где N — перенос, δ — отображение Tейта (см. (8) раздела 2) u Tr — след, коммутативна.

Требуемое утверждение вытекает тогда из того факта, что ${\rm Tr}\;(y\omega)=y\;{\rm Tr}\;(\omega),\;y\in K,\;\omega\in\Omega^n_{L/k}$ и следующего общего свойства вычета.

 Π е м м а $\ 4$. Π усть L/K — конечное сепарабельное расширение локального поля K размерности $n,\ l\ u\ k$ — последние поля вычетов полей $\ L\ u\ K$, $\omega \Subset \Omega^n_{L/l}$. Tогда

$$\operatorname{Tr}_{I/k} (\operatorname{res}_L (\omega)) = \operatorname{res}_K (\operatorname{Tr} \omega),$$

г ∂e $\operatorname{Tr}:\Omega^n_{L/l} o\Omega^n_{K/h}$ — сле $\partial.$

Этим завершается построение переноса для циклических расширений. Независимость от выбора башни также вытекает из двойственности.

Доказательство леммы 3. Используем лемму 1 раздела 2. Для любого $y \in K_2L$ имеем

$$\delta\left(\sum_{\sigma}\beta\left(y\right)^{\sigma'}\right) = \sum_{\sigma}\delta\circ\beta\left(y\right)^{\sigma'} = \sum_{\sigma}j\circ\delta\left(y\right)^{\sigma'} = j\circ i\left(\operatorname{Tr}\left(\delta\left(y\right)\right)\right),$$

где $i: \Omega_K^2 \to \Omega_L$ и $j: \Omega_L^2 \to \Omega_M^2$ — естественные вложения и $\delta \circ (\beta \circ \alpha \ (Ny)) = j \circ \delta \circ \alpha \ (Ny) = j \circ i \circ \delta \ (N \ (y))$. Это дает требуемое, ибо $j \circ i$ — вложение.

 \overline{L} о казательство леммы 4. Можно, как и выше, свести лемму к случаю циклического расширения простой степени L/K. Далее, надо разобрать встретившиеся в доказательстве леммы 2 три возможности. В первых двух существует вложение поля вычетов \overline{L} в L, согласованное с вложением \overline{K} в K, и можно рассуждать индукцией по dim K, используя лемму 5 из гл. 2 [17]. Последняя лемма является как раз нашей леммой для полей размерности 1. Последний случай, когда расширение $\overline{L}/\overline{K}$ — чисто несепарабельно, требует прямых вычислений. Мы проведем их для двумерного случая.

 ${
m B}$ силу теории Артина—Шрейера и леммы 2 раздела 1 L=K (x), где

$$x^p-x=\lambda=at_1^it_2^{-k}+\ldots \subseteq K, \quad k>0.$$

Так как L/K неразветвлено относительно нормирования v_K , t_2 — параметр и для поля L и если v_L (x)=-m, то k=mp. Полагая $y=t_2^mx$ и $\mu=t_2^k\lambda$, получаем L=K (y) и

$$y^p - t_2^{m(p-1)}y = \mu = bt_1^i + \dots$$
 (13)

Так как p/k, то по лемме 2 раздела 1 (i, p) = 1 и заменой параметров поля K можно добиться того, чтобы $\mu = bt_1^i$. Пусть теперь $K' = F_q((\mu))((t_2))$ и

L'/K' — расширение, задаваемое уравнением (13), т. е. L'=K'(y). Имеем диаграмму

в которой для расширений L/L' и K/K' лемма верна.

Отсюда выводим, что достаточно рассмотреть расширение L'/K', т. е. случай, когда в (13) $b=1,\ i=1.$

Заметим, что по построению $y \in O_L$ и $L = F_q$ ((y)) ((t_2)). Пусть $\omega = y^i t_2^j dt_1 \wedge dt_2$. Тогда

$$\operatorname{res}_{L}(\omega) = \operatorname{res}_{L}(-y^{i}t_{2}^{j+m(p-1)}dy \wedge dt_{2}) = \begin{cases} -1, & i = 1, j = -m(p-1)-1, \\ 0 & \text{в остальных случаях.} \end{cases}$$

С другой стороны,

$$\operatorname{res}_K (\operatorname{Tr} \omega) = \operatorname{res}_K (\operatorname{Tr} (y^i) t_2^j dt_1 \wedge dt_2).$$

Это равно 0 при $i \geqslant 0$ (ибо $\mathrm{Tr}\,(y^i) \in O_K$), равно -1 при i = -1, $j = -m\,(p-1)\,-1$ ($\mathrm{Tr}\,(y^{-1}) = -t_1^{-1}t_2^{m\,(p-1)}$) и 0 при i = -1 и $j \neq -m\,(p-1)\,-1$. Если же i < -1, то имеем из (13) рекуррентное соотношение

$${\rm Tr}\ (y^{-i}) \,=\, t_1^{-1} {\rm Tr}\ (y^{p-i}) \,-\, t_1^{-1} t_2^{m\ (p-1)}\ {\rm Tr}\ (y^{-i+1}).$$

Кроме того, $\operatorname{Tr}(y^k) = \ldots = \operatorname{Tr}(y^{p-2}) = 0$, $1 \leqslant k \leqslant p-2$ (в силу формул Ньютона, выражающих степенные суммы через элементарные симметрические функции). Отсюда индукцией по i легко получаем, что $\operatorname{Tr}(y^{-i}), i > 1$, равен

$$P_0(t_1) + P_1(t_1) t_2 + \ldots,$$

где ряды P_k (t_1) содержат лишь степени t_1^{-2} , t_1^{-3} , . . ., так что вычет формы $\operatorname{Tr}(\omega)$ равен нулю при i < -1.

Лемма доказана. (См. также [9]).

Пусть $x \in W_m$ (K) и (F-1) y=x, $y \in W_m$ (K^{ab}) . Тогда $\forall \sigma \in \operatorname{Gal}(K^{ab}/K)$ (F-1) $(\sigma(y)-y)=0$ и, следовательно, $\sigma(y)-y \in W_m(F_p)$. Это дает характер группы $\operatorname{Gal}(K^{ab}/K)$ со значениями в \mathbb{Z}/p^m . Переходя с помощью предложения 7 к двойственной группе, получаем для любого расширения Галуа степени p^m отображение $\varphi_K \colon W_m(K) \to \operatorname{Gal}(L/K)$.

 ${
m II}$ е м м а ${
m 5.}$ Для любого циклического расширения L/K степени p^m последовательность

$$K_n^{\text{top}}(L) \xrightarrow{N} K_n^{\text{top}}(K) \xrightarrow{\varphi_K} \text{Gal}(L/K) \to 1$$

точна.

Доказательство будет дано в отдельной работе.

4. Теория полей классов

Теперь у нас имеется все необходимое для доказательства основного результата этой работы.

T е о p е m а 1. Π усть K — локальное поле размерности n. C уществует такое каноническое отображение

$$\phi_K: K_n^{\text{top}}(K) \to \text{Gal}(K^{ab}/K),$$

что

1. Ker $\varphi_K =$ (1) $u \text{ Im } \varphi_K - n$ nomhas $no\partial epynna$ s $Gal(K^{ab}/K)$.

2. Для любого абелева расширения L/K последовательность

$$K_n^{\text{top}}(L) \xrightarrow{N} K_n^{\text{top}}(K) \xrightarrow{\varphi_K} \text{Gal}(L/K) \to \mathbf{1}$$

точна.

3. Для любого конечного сепарабельного расширения L/K естественные диаграммы

$$K_n^{\mathrm{top}}(L) \stackrel{\varphi_L}{\to} \mathrm{Gal}(L^{ab}/L) \qquad K_n^{\mathrm{top}}(L) \stackrel{\varphi_L}{\to} \mathrm{Gal}(L^{ab}/L)$$

$$\uparrow \qquad v \uparrow \qquad \qquad \downarrow \qquad \downarrow$$

$$K_n^{\mathrm{top}}(K) \stackrel{\varphi_K}{\to} \mathrm{Gal}(K^{ab}/K) \qquad K_n^{\mathrm{top}}(K) \stackrel{\varphi_K}{\to} \mathrm{Gal}(K^{ab}/K),$$

где V — теоретико-групповое отображение переноса, коммутативны.

4. Диаграмма

коммутативна.

Доказательство. В силу предложения 1 раздела 1 полеј K^{ab}/K содержит следующие подполя:

 $L_0 = K \overline{F}_q, \, \overline{F}_q$ — алгебраическое замыкание поля ${m F}_q,$

$$L_1 = K(\sqrt[q-1]{t_1}, \ldots, \sqrt[q-1]{t_n}),$$

 L_2 — максимальное абелево p-расширение, причем поле L_1 линейно разделено с L_0 и L_2 , а поля L_0 и L_2 пересекаются, очевидным образом. Пусть G_0 , G_1 , G_2 — соответствующие группы Галуа.

Группа $G_0 \cong \hat{Z}$ содержит каноническую образующую — автоморфизм Фробениуса Fr. Определим

$$\varphi_K: K_n^{\mathrm{top}}(K) \to G_0,$$

полагая $\varphi_K(x_1, \ldots, x_n) = (\mathrm{Fr})^{c_K(x_1, \ldots, x_n)}$, где c_K — символ (4) раздела 3.

Расширение L_1/K куммерово и в силу теории Куммера группа G_1 двойственна группе $K^*/q-1$. Пусть

$$\varphi_K: K_n^{\text{top}}(K) \to G_1.$$

— отображение, возникающее из двойственности Куммера (следствие 1 предложения 3 раздела 3).

К расширению L_2/K применима теория Артина—Шрейера—Витта. Поэтому группа G_2 двойственна дискретной группе $\mathfrak M$ (K) из раздела 3.3. Двойственность Витта (следствие предложения 7 раздела 3) дает отображение

$$\varphi_K: K_n^{\text{top}}(K) \to G_2.$$

Отображения в группы G_0 и G_2 согласованы друг с другом (это вытекает из явного вычисления их на образующей (t_1, \ldots, t_n) группы $K_n^{\text{tor}}(K)$ с помощью формул (6) — (10). В силу внутреннего характера двойственностей, построенных в разделе 3, отображения зависят только от структуры локального поля в K, и их можно склеить в единое отображение $\phi_K: K_n^{\text{top}}(K) \to Gal(K^{ab}/K)$. Невырожденность спариваний раздела 3 дает свойство 1 теоремы.

Проверку свойства 2 можно провесли отдельно в расширениях Куммера и Артина—Шрейера—Витта. В этих случаях точность последовательностей вытекает из предложения 8 раздела 3.4 и стандартных точных последовательностей. Именно, в куммеровом случае достаточно рассмотреть коммутативную диаграмму

Точность верхней строки дает точность в нижней, и, переходя к группам $K_n^{\text{top}}(K)$ и $K_n^{\text{top}}(L)$ (предложение 8 раздела 3.4), получаем требуемое (точность в свойстве 2 вытекает из предложения 3 (лемма 5 раздела 3)).

Расширения Артина—Шрейера рассматриваются аналогично. Эти же соображения дают свойство 3.

Чтобы доказать последнее свойство, нужно рассмотреть абелево неразветвленное расширение L/K и проверить коммутативность диаграммы

$$K_n^{\mathrm{top}}(K) \overset{\varphi_K}{\to} \mathrm{Gal}(L/K)$$
 $\emptyset \downarrow \qquad \qquad \downarrow \cong$
 $K_{n-1}^{\mathrm{top}}(\bar{K}) \overset{\varphi_{\overline{K}}}{\to} \mathrm{Gal}(\bar{L}/\overline{K})$

Это можно сделать, опять-таки обращаясь к расширениям двух типов, используя предложение 2 раздела 2. Считая \overline{K} подполем в K и согласованно выбирая систему параметров, видим, что куммеровы расширения L/K порождаются $\sqrt[n]{a}$, $a \in \overline{K}^*$, а расширения Артина—Шрейера — элементом x с $x^p-x=b \in \overline{K}$. Диаграмма легко вычисляется, если использовать явный вид двойственности для расширений L_a/K , у которых a или b является «образующей» соответственно группы \overline{K}^*/l или $\overline{K}/(F-1)$ \overline{K} (см. предложение 4 и лемму 2 раздела 1). Поскольку

$$\bigcap_{\alpha} \operatorname{Ker} \left[\operatorname{Gal} \left(L/K \right) \to \operatorname{Gal} \left(L_{\alpha}/K \right) \right] = (1),$$

если L — максимальное абелево расширение, то получаем требуемое свойство.

Теорема доказана.

Замечание 1. Так как предложение 3 раздела 2 полностью описывает группу $K_n^{\text{top}}(K)$, то теорема 1 не только содержит теорию полей классов для поля K, но и дает полное вычисление группы Галуа максимального абелева расширения. Она является проконечным пополнением дискретной группы $K_n^{\text{top}}(K)$. Таким образом, в компактной группе Gal (K^{ab}/K) выделяется подгруппа, зависящая лишь от структуры локального поля K. Если $\dim K = 0$, то $K_0^{\text{top}}(K) = \mathbf{Z} \subset \widehat{\mathbf{Z}} = \operatorname{Gal}(K^{\text{ab}}/K)$.

Замечание 2. В случае dim K=1 можно дополнить теорему 1 сведениями о поведении функции φ_K относительно фильтрации $\{1+\mathfrak{p}^k\}$ [10, гл. XV]. Аналогичный вопрос для dim K>1 остается открытым. Частичный ответ для dim K=2 получен в [8, 9].

Замечание 3. Расширения локального поля K, не имеющие высшего ветвления (относительно v_K), описываются с помощью группы $K_n^{\text{top}}(K) / K_n^{\text{top}}(O_K, \mathfrak{p})$ (см. формулу (13) и следствие 1 предложения 1 раздела 2).

ЛИТЕРАТУРА

- Паршин А. Н. Поля классов и алгебраическая К-теория. Успехи мат. наук, 1975, т. 30, вып. 1, с. 253—254.
- Паршин А. Н. К арифметике двумерных схем. І. Распределения и вычеты. Изв. АН СССР. Сер мат., 1976, т. 40, с. 736—773.
- 3. *Паршин А. Н.* Абелевы накрытия арифметических схем.— Докл. АН СССР, 1978, т. 243, № 4, с. 855—858.
- 4. Kato K. A generalization of local class field theory by using K-groups. I.— Proc. Jap. Acad., 1977, vol. 53, p. 140—143.
- Kato K. A generalization of local class field theory by using K-groups. II.— Proc. Jap. Acad., 1978, vol. 54, p. 250—255.
- 6. Kato K. A generalization of local class field theory by using K-groups. I.— J. Fac. Sci. Univ. Tokyo, 1979, vol. 26, p. 303—376.
- 7. Kato K. The Existence theorem for higher local class field theory: Prepr. Bures sur Yvette, 1980.
- Ломадзе В. Г. К теории ветвления двумерных локальных полей.— Мат. сб., 1979, т. 109, № 3, с. 378—394.
- 9. Ломадзе В. Г. Многомерные локальные поля и их применения: Дис.... канд. физ.-мат. наук, М.: МИАН, 1981.
- 10. Serre J. P. Corps locaux. P.: Hermann, 1968.
- 11. Algebraic K-theory. II. Lect. Notes Math., 1973, vol. 342.
- 12. *Милнор Дж.* Алгебраическая *К*-теория и квадратичные формы.— В кн.: Математи-ка: Сб. переводов, 1971, т. 15, № 4, с. 3—27.
- 13. Милнор Дж. Введение в алгебраическую К-теорию. М.: Мир, 1974.
- 14. Бурбаки Н. Общая топология. М.: Физматгиз, 1958.
- Kawada Y., Satake I. Class formations. II.— J. Fac. Sci. Univ. Tokyo, 1956, vol. 7, p. 353—389.
- Witt E. Zyklische Körper und Algebren der Charakteristik p vom Grad pn .— J. reine und angew. Math., 1936, Bd. 176, S. 126—140.
- 17. Серр Ж. П. Алгебраические группы и поля классов. М.: Мир, 1968.