第2章 对偶线性规划

一般来说,对于一个线性规划问题,一定存在与此互为对偶关系的另一个线性规划问题。

2.1 对偶问题的引出及定义

2.1.1 引例

例 2.1 乐山厂计划出产甲、乙两种产品,该厂使用 d_1 、 d_2 和 d_3 三种生产因素的数量限制、每产品所需各种因素及出厂后可获利润如下表 2-1 所示,求该厂所能得到的最大利润。

表 2-1

产品	d_{I}	d_2	d_3	单位利润
甲	1	2	1	5
Z	3	1	1	4
最多可动用生产因素	90	80	45	

 \mathbf{m} :设 \mathbf{x}_1 为甲产品的生产数量, \mathbf{x}_2 为乙产品的生产数量,据已知条件得出线形规划

$$\max Z = 5x_1 + 4x_2$$

$$\begin{bmatrix} x_1 + 3x_2 \le 90 \\ 2x_1 + x_2 \le 80 \\ x_1 + x_2 \le 45 \\ x_1 + x_2 \ge 0 \end{bmatrix}$$
(1)

如果我们反面来考虑该问题:最低应付出多少代价,放能使乐山厂放弃生产 x_1 和 x_2 的活动而出让 d_1 , d_2 和 d_3 生产因素。

分析:要使乐山厂放弃生产 C 和 x_2 出让 d_1 , d_2 和 d_3 生产因素、也就等于说要乐山厂放弃由生产 x_1 和 x_2 所获得的最大利益 , 因此 , 我们最少应付出相等或大于这个最大收益的数值 , 才能从乐山厂获得 d_1 , d_2 和 d_3 生产因素。

假设生产因素 d_1 , d_2 和 d_3 的单位机会成本分别为 W_1 , W_2 和 W_3 。那么,这三种因素的最低价值应该是 $\min G = 90W1 + 80W2 + 45W3$

并且有: $\max Z \leq \min G$

另一方面 ,生产单位 x_1 或 x_2 所需用的生产因素 d_1 d_2 和 d_3 的机会价格不能低于 x_1 或 x_3 的单位收益。否则的话,乐山厂宁愿自己生产而不会出让生产因素,因此我们得到反

面问题的约束:

$$s \cdot t \begin{cases} w_1 + 2w_2 + w_3 \ge 5 \\ 3w_1 + w_2 + w_3 \ge 4 \\ w_1, w_2, w_3 \ge 0 \end{cases}$$

归纳起来,得到反面问题的线形规划:

$$\min G = 90W1 + 80W2 + 45W3$$

$$\begin{bmatrix}
w_1 + 2w_2 + w_3 \ge 5 \\
3w_1 + w_2 + w_3 \ge 4 \\
w_1, w_2, w_3 \ge 0
\end{bmatrix}$$
(2)

我们称规划(2)是规划(1)的对偶规划。

2.1.2 定义

称线形规划

$$(L \cdot P) \begin{bmatrix} \max Z = CX \\ s \cdot t \begin{cases} AX \le b \\ X \ge 0 \end{bmatrix}$$

与线形规划

$$\left(D \cdot P\right) \begin{bmatrix} \min G = b^T W \\ \\ s \cdot t \begin{cases} A^T w \ge C^T \\ W \ge 0 \end{cases}$$

为互为对偶规划。

2.2 对偶问题的性质

2.2.1 对偶关系表

利用以上两规划的形式我们可以得出一个对偶关系表,如表 2-2 所示。

表 2-2

	x_1	x_2	 \mathcal{X}_m	 \mathcal{X}_n	
	c_1	c_2	 C_m	 C_n	$\max Z \min G$
W_1	a_{11}	a_{12}	 a_{1m}	 a_{1n}	b_1
W_2	a_{21}	a_{22}	 a_{2m}	 a_{2n}	b_2
W_m	a_{m1}	a_{m2}	 a_{mm}	 a_{mn}	b_m

- (1)从行看是原问题(),从列看是对偶问题(),两个问题的变量系数矩阵互为转置矩阵。
- (2)原问题()的常数项是对偶问题()的目标系数,反之,原问题()的目标系数是对偶问题()的常数项。
- (3)原问题()有 n 个决策变量,对偶问题()有 n 个约束方程:原问题有 m 个约束方程,对偶问题就有 m 个决策变量。
 - (4)原问题的约束是""型,对偶问题的约束是""型。
 - (5)原问题的目标函数是求极大,对偶问题的目标是求极小。

例 2.2 在例 2.1 中引出的两规则:

$$\max Z = 5x_1 + 4x_2
\begin{cases} x_1 + 3x_2 \le 90 \\ 2x_1 + x_2 \le 80 \\ x_1 + x_2 \le 45 \\ x_1, x_2 \ge 0 \end{cases}$$

$$- \min G = 90w_1 + 80w_2 + 45w_3
\begin{cases} w_1 + 2w_2 + w_3 \ge 5 \\ 3w_1 + w_2 + w_3 \ge 4 \\ w_1, w_2, w_3 \ge 0 \end{cases}$$

的对偶关系表如表 2-3。

从以上对偶表的关系知,只要我们得到定义中的原线性规划就可得到对偶规划,这样不要再像例1那样通过分析建模,但对于一个普通线性规划的对偶规划的寻找方法还需要进一步探讨。

2.1.2 对偶问题的性质

对偶问题的性质比较多 ,在这里我们仅介

表 2-3

绍几个较常用的性质,至于别的性质,请同学参阅其他的有关运筹学的书籍。

定理 1 如果线性规划 () 中的第 k 个约束条件是等式,则它的对偶规划 () 中的第 k 个变量 W_k 无非负限制 (W_k 为自由变量)。

反之,若原线性规划()中的第k个变量无非负性要求,则对偶规划()中的第k个约束为等式。

证:设线性规划()的第k个约束条件为等式,即

将
$$a_{k1}x_1+a_{k2}x_2+\cdots+a_{kn}x_n=b_k$$
 写为两个等价的不等式:
$$\begin{cases} a_{k1}x_1+a_{k2}x_2+\cdots+a_{kn}x_n\geq b_k\\ a_{k1}x_1+a_{k2}x_2+\cdots+a_{kn}x_n\leq b_k \end{cases}$$
 或
$$\begin{cases} a_{k1}x_1+a_{k2}x_2+\cdots+a_{kn}x_n\leq b_k\\ -a_{k1}x_1-a_{k2}x_2+\cdots-a_{kn}x_n\leq -b_k \end{cases}$$

代入()式得出线性规划

$$\max Z = C_1 x_1 + C_2 x_2 + \dots + C_n x_n$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ \dots \\ a_{k1} x_1 + a_{k2} x_2 + \dots + a_{kn} x_n \leq b_k \end{cases}$$

$$-a_{k1} x_1 - a_{k2} x_2 - \dots - a_{kn} x_n \leq -b_k$$

$$\vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m$$

$$x_1, x_2, \dots, x_n \geq 0$$

得对偶关系表如表 2-4

表 2-4

	x_1	x_2		\mathcal{X}_m	 \mathcal{X}_n	
	c_1	<i>C</i> 2		C_m	 C_n	$\max Z$ $\min G$
W_1	a_{11}	a_{12}		a_{1m}	 a_{1n}	b_1
W_2	a_{21}	a_{22}		a_{2m}	 a_{2n}	b_2
W_k	a_{k1}	a_{k2}	•••	a_{km}	 a_{kn}	b_k
W_k "	$-a_{k1}$	$-a_{k2}$		$-a_{km}$	 $-a_{kn}$	$-b_k$
W_m	a_{m1}	a_{m2}		a_{mm}	 a_{mn}	b_m

由对偶关系表得出()的对偶规划

$$\min G = b_1 W_1 + b_2 W_2 + \dots + b_k W_k' - b_k W_k'' + \dots + b_m W_m$$

$$\begin{bmatrix} a_{11} W_1 + a_{21} W_2 + \dots + a_{k1} W_k' - a_{k1} W''' + \dots + a_{m1} W_m \ge C_1 \\ a_{12} W_1 + a_{22} W_2 + \dots + a_{k2} W_k' - a_{k2} W''' + \dots + a_{m2} W_m \ge C_2 \\ \dots & \dots & \dots \\ a_{1n} W_1 + a_{2n} W_2 + \dots + a_{kn} W_k' - a_{kn} W''' + \dots + a_{mn} W_m \ge C_n \\ W_1, W_2, \dots, W_k', W_k'', \dots, W_m \ge 0 \end{bmatrix}$$

则上式变为

同样可证定理的反面(情形2)。

有了定义和定理 1 后,任一个线性规划得对偶规划都可以写出,其写法为:

- ()将目标函数转化为求最大
- () 将约束条件转化为 " " 型或 " = " 型
- () 写出对偶关系表
- ()据对偶表的规定写出对偶规划。

例 2.3 写出线性规划

的对偶规划

解: 将规划的""型约束变为""型约束,得到

$$\begin{bmatrix} \max z = 2x_1 + x_2 + x_3 + x_4 \\ x_1 + x_2 + x_3 + x_4 \le 5 \\ 2x_1 - x_2 + 3x_3 = -4 \\ -x_1 + 3x_3 - x_4 \le -1 \\ x_1, x_3 \ge 0, \quad x_2, x_4$$
无非负性限制

写出对偶关系表如表 2-5。

表 2-5

	x_1	x_2	x_3	x_4	
	2	1	1	1	$\max Z $ $\min G$
W_1	1	1	1	1	5
W_2	2	-1	3	0	= -4
W_m	-1	0	3	-1	-1

据表 2-5 得对偶规划

定理 2 若 X,W分别为互为对偶规划()与()的可行解,则 $\min G \ge \max z$ 证:因为 $G = b^T W \ge (AX)^T W = X^T A^T W = X^T (A^T W) \ge X^T C^T = (CX)^T = CX = z$ 所以, $\min G \ge \max z$ 。

定理 3 若 X^*, W^* 分别为互为对偶规划()与()的可行解 ,并且 $CX^* = b^T W^*$,则 \overline{X}^* 与 W^* 分别为()与()的最优解。

因为,由定理 2 知,对()与()的任一可行解 X,W 都有 $G \ge Z(CX \le b^TW)$,所以,特别的对可行解 X^* 也有 $b^TW \ge CX^*$ 成立。

又因为, $CX^* = b^T W^*$,故对任何可行解W,都有 $b^T W \ge CX^* = b^T W^*$ 从而由极小值的最优解的定义知, W^* 是()的最优解。同理可证, X^* 是规划()的最优解。

定理 4 对偶问题的对偶是问题

证:设原问题是 $\max f(X) = CX$; $AX \le b$; $X \ge 0$ 根据对偶问题的标准形式可找到它的对偶问题 $\min G = b^TW$; $A^TW \ge C^T$, $W \ge 0$ 对上式的目标函数两边取负号 $-\min G = -b^TW$ 又 因 为 $-\min G = \max(-G)$, 所以 $\max(-G) = -b^TW$, 给约束条件两边取负号,得 $-AW \le -C^T$, $W \ge 0$ 合起来有线性规划

$$\begin{bmatrix} \max(-G) = -b^T W \\ s \cdot t \\ W \ge 0 \end{bmatrix}$$

根据标准形式的对偶关系,上式的对偶问题是

$$\min(-C') = -CX; \quad -AX \ge -b; \quad X \ge 0$$

又因为 min(-G') = -max W'

所以, $-\max W' = -CX$; $-AX \ge -b$; $X \ge 0$

即 $\max f(X) = CX$; $AX \le b$; $X \ge 0$ 即是原问题。

定理 5 设 X^* 为线性规划 (L,p) 的基本最优解,对应基阵为 B,并且其检验数全部非正,则 $W^* = C_R B^{-1}$ 是对偶规划 (D,p) 的最优解。

证明:由线性代数的知识知(L.P)对应于 X^* 的典型式为

$$X_B = X_B^* - B^{-1}NX_N = B^{-1}b - BNX_N$$
 $f = f^0 - (C_BB^{-1}N - CN)X_N = f^0 - \lambda X_N$

又因为 $\lambda=(\lambda_1,\lambda_2,\cdots,\lambda_m)=C-C_BB^{-1}A$ 由 $\lambda\leq 0$ 知, $C-C_BB^{-1}A\leq 0$,从而 $W^*A\geq C$ 。

即 W^* 是(D,P)的可行解。

又因为, $W^*b = C_B B^{-1}b = C_B X_B^* = CX^*$ 由定理 3 知 W^* 是对偶规划的最优解。

2.3 对偶单纯形法

2.3.1 问题引出

例 2.4 求解线性规划

$$\max f = -x_1 - 3x_2$$

$$\begin{cases}
2x_1 + x_2 \ge 3 \\
3x_1 + 2x_2 \ge 4 \\
x_1 + 2x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

解: 先把问题标准化:

$$\max f = -x_1 - 3x_2$$

$$\begin{bmatrix}
2x_1 + x_2 - x_3 = 3 \\
3x_1 + 2x_2 - x_4 = 4 \\
x_1 + 2x_2 - x_5 = 1 \\
x_1 \ge 0 \quad (j = 1, 2, \dots, 5)
\end{bmatrix}$$

若取 x_3, x_4, x_5 为基变量,所得基本解 $X^0 = (0,0,0,-3,-4,-1)^T$ 不是可行解,故它不能作单纯形法的初始解,为了得到初始可行解,按前章办法引入人工变量 x_6, x_7, x_8 ,然后采用两阶段或大 M 法求解,这样一来,增加了变量的数目。

显然麻烦,眼看一个负的单位阵,但不能作基阵使用,实在遗憾。在这种情况下, 能否找到比两阶段法更为简便的方法呢?

也许有的同学们会想到先求其对偶问题。

$$\begin{bmatrix} \min g = 3W_1 + 4W_2 + W_3 \\ s \cdot t \begin{cases} 2W_1 + 3W_2 + W_3 \le -1 \\ W_1 + 2W_2 + 2W_3 \le -3 \\ W_1, W_2, W_3 \ge 0 \end{cases}$$

此对偶问题可用单纯性法求解。

但是我们还嫌太麻烦,我们还是希望利用原问题进行迭代求解,这当然不是单纯形 迭代而必须是一种新的迭代方法,这就是对偶单纯形法。

2.2.2 方法的基本思想

在本例中, $X^0 = (0.0.0.-3.-4.-1)^T$ 虽然不是原问题的可行解, 但却是基本解, 且对

应的检验数(-1,-3,0,0,0)全部非正,容易验证对应的 C_BB^{-1} 是对偶问题的可行解(此时称 X^0 具有对偶可行性),一般地,如果 X^0 是(L,p)的基本解且对应检验数全部非正,则对应的 C_BB^{-1} 必为对偶问题(D,p)的可行解。如果在迭代过程中,保持基本解的对偶可行性,而使其对原问题的非可行性逐步消失,一旦基本解达到可行,则此解必是原问题的最优解。这就是对偶单纯形法的基本思想,为表达方便起见,先引进下面概念。

定义:对于(L,p),其检验数全部非正的基本解称为(L,p)的正则解,对应的基称为正则基。

从而可知,如果 X^0 既是 (L,p)的正则解,又是它的可行解,则 X^0 也是 (L,p)的最优解。所谓对偶单纯形法就是以这一事实为依据。即从 (L,p)的正则解开始迭代,在迭代过程中保持正则性,而使其不可行逐步消失,最后达到可行解,从而得到最优解。

2.3.3 对偶单纯形方法步骤

第一步:建立线性规划的单纯形表

第二步:判别,若单纯形表中的 $b_i \geq 0$ $(i=1,2,\cdots,m)$,且 $\lambda_j \leq 0$,则 X 是最优解。若某负常数项,对应行中的变量系数无负数,则该规划无最优解,否则进行第三步。

第三步:确定出基变量,选常数列中最小负数对应的行中的基变量出基,即 $\min \left\{ b_i \middle| b_i < 0 \right\} = b_l$ 所对应行的基变量出基。

第四步:确定入基变量 $heta_s = \left\{ \frac{\lambda_j}{a_{i\ j}^*} \middle| \lambda_j < 0, a_{i\ j}^* < 0 \right\}$ 对应的变量入基。

第五步:确定主元,将主元变1,主元所在列上的其他元素变为零。

2.3.4 方法应用举例

例 2.5 利用对偶单纯形法求解线性规划

$$\max Z = -x_1 - 3x_2$$

$$s \cdot t \begin{cases} -2x_1 - x_2 + x_3 = -3\\ 3x_1 + 2x_2 \ge 4\\ x_1 + 2x_2 \ge 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解:求解过程如表 2-6 所示。 由对偶单纯形表 2-6 可知

$$x^* = \left(\frac{3}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}\right)^T$$
, max $Z = -\frac{3}{2}$ °

							रह 2-0
C	j	-1	-3	0	0	0	
c_B	χ_B	x_1	x_2	<i>x</i> ₃	x_4	<i>X</i> ₅	b_i
0	x_3	-2	-1	1	0	0	-3
0	x_4	-3	-2	0	1	0	-4
0	χ_5	-1	-2	0	0	1	-1
<i>z</i> ,	j	0	0	0	0	0	0
c_{j} -	Z_j	-1	-3	0	0	0	
0	x_3	0	$\frac{1}{3}$	1	$\frac{2}{3}$	0	$-\frac{1}{3}$
-1	x_1	1	$\frac{1}{3}$ $\frac{2}{3}$	0	$-\frac{1}{3}$	0	$ \begin{array}{r} -\frac{1}{3} \\ \frac{4}{3} \\ \frac{1}{3} \\ -\frac{4}{3} \end{array} $
0	<i>x</i> ₅	0	$-\frac{4}{3}$	0	$-\frac{1}{3}$	1	$\frac{1}{3}$
	ij	-1	$-\frac{2}{3}$	0	$\frac{1}{3}$	0	$-\frac{4}{3}$
	C _j - Z _j	0	$-\frac{7}{3}$	0	$-\frac{1}{3}$	0	
0	χ_4	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	0	$\frac{1}{2}$
1	x_1	1	$ \frac{1}{2} $ $ -\frac{3}{2} $	$-\frac{1}{2}$	0	0	$\frac{3}{2}$
-1	x_2	0	$-\frac{3}{2}$	$-\frac{1}{2}$	0	1	$ \begin{array}{c} \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ -\frac{3}{2} \end{array} $
	j	-1	$ \begin{array}{r} -\frac{1}{2} \\ -\frac{5}{2} \end{array} $	$\frac{1}{2}$	0	0	$-\frac{3}{2}$
j=	C _j - Z _j	0	$-\frac{5}{2}$	$-\frac{1}{2}$	0	0	

2.4 灵敏度分析

灵敏度分析所研究的问题是,当某一规划的最优解已知的情况下,某数据发生变化后对最优解产生的影响。原数据发生变化的主要原因可能有原始数据不可靠或准确度不高,实际问题的条件模糊不清或被忽略,优解执行一段时间后环境条件发生变化等。例如,市场条件一变,显然价值系数 c_j 就随之改变,资源限量根据供应和发展也很可能改变,因此影响 b_i 的取值;约束条件系数 a_{ij} 也会随生产条件及技术的改进而发生变化。因此我们有必要研究当某些系数变化,或增减变量及约束条件时,问题的最优解改变多少,或者最优解不改变时,这些数据的允许变化范围又有多大。当然。以上数据条件改变后,

也可建立一个新规划,从头求解,但这样做显得太费时,对一些问题也是无必要的。其次也不利于计算机的使用。

2.4.1 目标函数系数的灵敏度分析

设线性规划 $\max Z = Cx$

$$s \cdot t \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

的最优解表示为:

$$\begin{cases} x_i = \overline{b}_i - \sum_{j=m+1}^n \overline{a}_{ij} x_{ij} \\ z = z_0 + \sum_{j=m+1}^n \lambda_j x_j \end{cases}$$

其中,
$$\lambda_j = c_j - z_j, z_0 = \sum_{i=1}^m c_i \bar{b}_i, Z_j = c_i \bar{a}_{ij}$$

由上式显见,当目标系数 c_j 有改变量 Δc_j 时,对解 x_j 无直接影响,但对目标函数 Z 值及检验数 λ_j 有影响,如果 λ_j 变化比较大,将使得原判断优解的结论改变,导致继续 迭代,使优解变动。现在我们仅考虑在最优解不变的情况下, c_j 允许有最大变化范围。

因为 c_i 变到 $c_i + \Delta c_i$ ($j = 1, 2, \dots, m, m + 1, \dots, n$) 时目标函数变为:

$$z + \Delta z = \sum_{i=1}^{m} (c_i + \Delta c_i) \overline{b}_i + \sum_{j=m+1}^{n} [c_j + \Delta c_j - \sum_{i=1}^{m} (c_i + \Delta c_i) \overline{a}_{ij}] x_j$$
$$= \sum_{i=1}^{m} c_i \overline{b}_i + \sum_{i=1}^{m} \Delta c_i \overline{b}_i + \sum_{i=m+1}^{n} [\lambda_j + (\Delta c_j - \sum_{i=1}^{m} \Delta c_i \overline{a}_{ij})] x_j$$

与原式比较, Z_0 得到改变量 $\sum_{i=1}^m \Delta c_i \bar{b}_i$; 而检验数据得到改变量 $(\Delta c_j - \sum_{i=1}^m \Delta c_i \bar{a}_{ij})$ 。

另外可知, c_j 的改变在最后单纯形表中仅影响检验数行,约束条件系数的各行不受影响。假若 c_j 改变后,检验数改变,但仍满足最优判别条件,这时仅需对优值进行调解。

例 2.7 某厂生产甲、乙两种产品,这两种产品都需要在A、B、C 三种不同的设备上加工,每种产品在不同设备上加工所需要的时

加工时数	A	В	С	利润(元/件)
甲	3	5	9	70
Z	9	5	3	30
有效工时	540	450	720	

表 2-7

间,这些产品销售后所能获得的利润值,以及这三种加工设备因各种条件限制所能使用的有效加工总时数如2-7所示,试进行灵敏度分析。

解:设 x_1, x_2 分别为甲、乙两种产品的生产数量,得线性规划数模:

$$\max z = 70x_1 + 30x_2$$

$$s \cdot t \begin{cases} 3x_1 + 9x_2 \le 540 \\ 5x_1 + 5x_2 \le 450 \\ 9x_1 + 3x_2 \le 720 \\ x_1, x_2 \ge 0 \end{cases}$$

利用单纯形法,求得最优解对应的单纯形表如表 2-8 所示。

							表 2-8
	c_j	70	30	0	0	0	
C_B	x_B	x_1	x_2	x_3	χ_4	x_5	\overline{b}
0	<i>x</i> ₃	0	0	1	$-\frac{12}{5}$	1	180
30	x_2	0	1	0	$\frac{3}{10}$	$-\frac{1}{6}$	15
70	x_1	1	0	0	$-\frac{1}{10}$	$\frac{1}{6}$	75
	j	0	0	0	-2	$-\frac{20}{3}$	5700

设甲产品的利润 $c_1 = 70$ 有改变量 Δc_1 ,将 $70 + \Delta c_1$ 代入上表 2-8,得出表 2-9。

表	2-9
-	_ /

(c_j	70+Δc ₁	30	0	0	0	
C_B	x_B	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	b
0	<i>x</i> ₃	0	0	1	$-\frac{12}{5}$	1	180
30	x_2	0	1	0	$\frac{3}{10}$	$-\frac{1}{6}$	15
$70+\Delta c_1$	x_1	1	0	0	$-\frac{1}{10}$	$\frac{1}{6}$	75
	j	0	0	0	$-2 + \frac{1}{10}\Delta c_1$	$-\frac{20}{3} - \frac{1}{6}\Delta c_1$	$5700 + 70\Delta c_1$

由表 2-9 看出,当 c_1 改变时,如果仍要保持表 2-8 中得出的最优解,则据最优判别条件知,检验数应满足:

$$\lambda_{4} = -2 + \frac{1}{10} \Delta c_{1} \le 0;$$

$$\Delta c_{1} \le 20$$

$$\lambda_{5} = -\frac{20}{3} - \frac{1}{6} \Delta c_{1} \le 0;$$

$$\Delta c_{1} \ge -40$$

由此可知 c_1 的变化范围为:

$$30 \le c_1 \le 90$$

目标函数值:

$$Z_0 = 5700 + 75\Delta c_1$$

同理可得,当 c_2 有改变量 Δc_2 时,对应的单纯形表如表 2-10 所示。

表 2-10 $30 + \Delta c_2$ 70 0 0 0 c_j b C_B χ_B x_1 0 0 0 1 1 180 $\frac{3}{10}$ $30 + \Delta c_2$ 1 0 0 15 x_2 70 0 75 1 x_1 $-2 - \frac{1}{10} \Delta c_2 - \frac{20}{3} + \frac{1}{6} \Delta c_1$ $5700 + 30\Delta c_2$ 0 0

由表知,要使 c_2 有改变量 Δc_2 后优解仍不变,则需有:

$$\lambda_4 = -2 - \frac{3}{10} \Delta c_2 \le 0; \Delta c_2 \ge -\frac{20}{3}$$
$$\lambda_5 = -\frac{20}{3} + \frac{1}{6} \Delta c_2 \le 0; \Delta c_2 \le 40$$

所以,当 $\frac{70}{3} \le c_2 \le 70$ 时,原来的优解仍不改变

这种类型的灵敏度分析,在实际中可以供生产单位分析,当价格变动时,是否影响产品生产的最优安排,从而决定照原生产计划生产,还是进行调整。

2.4.2 约束条件的常数项的灵敏度分析

在现实问题中,约束条件的右端常数项,往往代表资源的限制量。一般来说,资源的限制量不是一成不变的,而是随生产条件、市场供应情况进行变动。所以人们常常想知道,对于一个确定的优方案,当资源增加或减少多少时,对方案的影响将有多大。这种类型的灵敏度分析就是处理该类问题的方法。

现假定问题的第l种资源限制 b_i 有改变量 Δb_i 。由于常数项的改变,对最优判别准则

的检验数 $\lambda = C - C_B B^{-1} A \le 0$ 无关。即是说,最优基对应的单纯变量表中的最后行不发生变化。而表中的基变量 $x_B = B^{-1} \bar{b}$ 是否可行还需讨论。

设 b_l 变到 $b_l + \Delta b_l$ 时,得到新的基本解

$$x_{B}^{*} = B^{-1} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{l} + \Delta b_{l} \\ b_{m} \end{bmatrix} = B^{-1}b + B^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \Delta b_{l} \\ \vdots \\ 0 \end{bmatrix}$$

$$= x_B + \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1l} & \cdots & \beta_{1m} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2l} & \cdots & \beta_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{m1} & \beta_{m2} & \cdots & \beta_{ml} & \cdots & \beta_{mm} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \Delta b_l \\ \vdots \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} \overline{b}_1 \\ \overline{b}_2 \\ \vdots \\ \overline{b}_m \end{bmatrix} + \begin{bmatrix} \beta_{1l} \\ \beta_{2l} \\ \vdots \\ \beta_{ml} \end{bmatrix} \Delta b_l = \begin{bmatrix} \overline{b}_1 + \beta_{1l} \Delta b_l \\ \overline{b}_2 + \beta_{2l} \Delta b_l \\ \vdots \\ \overline{b}_m + \beta_{ml} \Delta b_l \end{bmatrix}$$

为了保证 x_B^* 可行,即要求 $x_B^* \ge 0$,

$$\begin{cases} \overline{b}_{1} + \beta_{1l} \Delta b_{l} \geq 0 \\ \overline{b}_{2} + \beta_{2l} \Delta b_{l} \geq 0 \\ \vdots \\ \overline{b}_{m} + \beta_{ml} \Delta b_{l} \geq 0 \end{cases}$$

因此,对 $x_i^* \ge 0$ $(i = 1, 2, \dots, m)$ 应满足的条件为:

当
$$eta_{il} < 0$$
时, $\Delta b_l \leq \min_i \left\{ \frac{-\overline{b}_i}{eta_{il}} \right\}$;

当
$$eta_{il} > 0$$
时, $\Delta b_l \geq \max_i \left\{ rac{-ar{b}_i}{eta_{il}}
ight\}$ 。

故,右端常数项在最优基不变的条件下,能够改变的范围为:

$$\max_{i} \left\{ \frac{-b_{i}}{\beta_{il}} \middle| \beta_{il} > 0 \right\} \leq \Delta b_{l} \leq \min_{i} \left\{ \frac{-\overline{b}_{i}}{\beta_{il}} \middle| \beta_{il} < 0 \right\}$$

例 2.8 对例 2.7 的线性规划问题,讨论右端常数项的灵敏度分析。

解:从最优单纯形表 2-8 得出:

$$x_{B} = (180,15,75)^{T}$$

$$b = (540,450,720)^{T}$$

$$\bar{b} = (180,15,75)^{T}$$

$$B^{-1} = \begin{cases} 1 & -\frac{12}{5} & 1\\ 0 & \frac{3}{10} & -\frac{1}{6}\\ 0 & -\frac{1}{10} & \frac{1}{6} \end{cases}$$

所以, 当 b_2 有改变量 Δb_2 时, 要求

$$\left\{ \frac{-15}{\frac{3}{10}} \right\} \le \Delta b_2 \le \min \left\{ \frac{-180}{-\frac{12}{5}}, \frac{-75}{-\frac{1}{10}} \right\}$$

故得, $-50 \le \Delta b_2 \le 75$ 。

当 b_3 有改变量 Δb_3 时,据公式要求

$$\max \left\{ \frac{-180}{1}, \frac{-75}{\frac{1}{6}} \right\} \le \Delta b_3 \le \left\{ \frac{-15}{-\frac{1}{6}} \right\}$$

即 $-180 \le \Delta b_3 \le 90$ 。对应单纯形表如表 2-11 所示。

表 2-11

(c_j	70	30	0	0	0	
C_B	χ_B	x_1	x_2	x_3	x_4	x_5	b
0	<i>X</i> ₃	0	0	1	$-\frac{12}{5}$	1	$180 + \Delta b_3$
30	x_2	0	1	0	$\frac{3}{10}$	$-\frac{1}{6}$	$15 - \frac{1}{6}\Delta b_3$
70	x_1	1	0	0	$-\frac{1}{10}$	$\frac{1}{6}$	$75 + \frac{1}{6}\Delta b_3$
	j	0	0	0	-2	$-\frac{20}{3}$	$-5700 - \frac{20}{3} \Delta b_3$

由表 2-11 知,当 $\Delta b_3 = 90$ 时,最优解为:

$$x^* = (90,0,270,0,0)^T$$
,最优值 $Z_0 = 6300$ 元。

2.4.3 系数矩阵的灵敏度分析

约束系数矩阵的变化不仅影响检验数和最优解值,而且也会改变最优解基逆阵的基向量。因为,变化的系数如果是主元,则整个单纯形表的元素都受到该元素的变化的影响。

一般的,发生变化的系数大多是非基变量的系数。它的改变不会影响到现行最优解的可行性,如果要有影响的话,那将是对现行解是否还是保持最优的问题。以下两种情形进行讨论。

1. 非基列向量的变化

假定非基列向量 p_j 变到 p_j' ,则经迭代后,最优解表中仍为非基列,可用逆矩阵表 $\frac{-r}{\pi}$ 示为: $P_j = B^{-1}p_j'$,此列对应的检验数为:

$$\overline{\lambda} = C_i - C_B B^{-1} p_i' \circ$$

其中单纯形算子不收非基列系数变化的影响。如果次检验数 $\lambda \leq 0$,则原最优解表仍为最优,否则要继续迭代运算,把此非基变量 x_i 引进解基,变换第 j 列。

2. 某一元素的变化

当非基列 p_j 中某元素 a_{ij} 变化到 a'_{ij} ,即有改变量: $\Delta a_{ij} = a'_{ij} - a_{ij}$ 而其他元素不变。 当 p_i 迭代后仍为非基列 , B^{-1} 中的 j 列为 β_i ,则改变量 Δa_{ij} 用以下方法来确定。

因为要求
$$\overline{\lambda_i'} = \lambda_i - c_B \beta_i \Delta b_{li} \leq 0$$
,

$$\overline{\lambda_j'} = \lambda_j - c_B \beta_j \Delta b_{lj} \leq 0$$
 ,

所以,若
$$b_Beta_j>0$$
, $\Delta b_{lj}\geq rac{\lambda_j}{C_BB_j}$;

若
$$c_B eta_j < 0$$
时, $\Delta b_{ij} \leq rac{\lambda_j}{C_B eta_i}$ 。

例 2.8 讨论线性规划

$$\max z = 2x_1 + x_2 + x_3$$

$$s \cdot t \begin{cases} x_1 + x_2 + x_3 \le 6 \\ -x_1 + 2x_2 \le 4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

的系数列向量 $p_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 变到 $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ 的情况以及 $a_{13} = 1$ 的变化范围。

解:首先利用单纯形法得出初始单纯形表及最优单纯形表如表 2-12。

							12 2-11
(c_j	2	-1	-1	0	0	
C_B	χ_B	x_1	x_2	x_3	x_4	<i>x</i> ₅	b
0	x_4	1	1	1	1	0	6
0	<i>X</i> ₅	-1	2	0	0	1	4
	j	2	-1	-1	0	0	
2	x_1	1	1	1	1	0	6
0	χ_5	0	3	1	1	1	10
	j	0	-3	-1	-2	0	

表 2-11

由于
$$p_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 变到 $p_2' \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ 。 所以,由表 2-12 及前公式知。

$$\overline{P_2'} = B^{-1} p_2' = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$\overline{C}_B B^{-1} = (20) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = (2,0)$$

$$\overline{\lambda_2'} = C_2 - C_B B^{-1} \overline{P_2'} = -1 - (20) \begin{pmatrix} 2 \\ 7 \end{pmatrix} = -5$$

因此,当前解仍为最优解,变化的地方仅需将最优单纯形表中的第二列换为 $(2,5)^T$ 。以下求元素 a_{13} 的变化范围:

因为,
$$B^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, $c_B = (2,0)$, $c_B \beta_1 = (2 & 0) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2$,系数 a_{13} 不是基变量的系数,

而且 x_3 的检验数 $\lambda_3=-1$ 。 所以 $\Delta a_{13}\geq \frac{\lambda_3}{2}=\frac{-1}{2}$,即 a_{13} 的变化无上界。

当变化系数是属于基变量的系数列时,建议按具体的最优化单纯形表进行分析,这里不给出变动范围。

2.4.4 决策变量的灵敏度分析

在讨论一个规划问题时,从资源的充分利用角度考虑,有时认为多安排一些生产项目是有利的,这反映在线性规划模型上是增添决策变量的问题。另一方面当规划执行一段时间后,资源的供应不能满足要求时,有时也要考虑少安排一些生产项目是有利的,这反映在数模上就是减少决策变量的问题。所以,决策变量个数的变化有两种情况,一是增多,一是减少。现分别在下面讨论。

1. 减少决策变量的情形。

- (1) 若减少的决策变量不在最优解的基变量之中,对这种情况可以认为决策变量本来就是多余的。减少这个变量不影响优解、优值。
- (2) 若减少的决策变量是基变量,要考虑去掉这个变量的影响,可用单纯形法或对偶单纯形法重新求解。
 - 2. 增加变量的情形

设已知增加的新变量 x_k 的目标系数为 c_k ,相应的约束系数为 a_{ik} ,这时由公式

 $z=z_0+\sum_{j=m+1}^n\overline{\lambda}_kx_j$ 知,若新加变量对应的检验数 $\overline{\lambda}_k>0$,则目标函数还有增大的希望,

即对我们增加的项目是有利的,否则增加的变量无实际意义。

例 2.10 对例 2.7 的 规划问题进行讨论。现假设 还有丙、丁两种产品可以用

A, B, C 三种设备加工 ,它们所用的定额及利润如表 2-13 所

示。

 加工时
 设备
 A
 B
 C
 利润(元/件)

 产品
 1
 2
 3
 20

 丁
 3
 1
 $\frac{3}{4}$ 12

表 2-13

问是否能使丙或丁产品

投产,最优解及新 Z 值是多少?

解:分析,如果安排丙产品记为 x_3 ,不安排丁产品,则有 x_3 对应的检验数

$$\overline{\lambda}_3 = c_3 + \sum_{i=1}^3 a_{13} \cdot \lambda_i = 20 + 1 \times 0 + 2 \times (-2) + 3 \times (-\frac{20}{3}) = -4$$

由此可知,安排丙产品,对企业不利,因为每生产一件丙产品,可下降利润 4 元。如果安排丁产品,记为 x_3 ,不安排丙产品。则有 x_3 对应的检验数

$$\overline{\lambda}_3 = c_3 + \sum_{i=1}^3 a_{13} \cdot \lambda_i = 12 + 3 \times 0 + 1 \times (-2) + \frac{3}{4} \times (-\frac{20}{3}) = 5$$

由此可知,安排丁产品的生产,对企业有利,利润可增大。进一步计算增加 x_3 后在最优单纯形表中的变化及它的系数。因为,

$$B^{-1} = \begin{bmatrix} 1 & -\frac{12}{5} & 1 \\ 0 & \frac{3}{10} & -\frac{1}{6} \\ 0 & -\frac{1}{10} & \frac{1}{6} \end{bmatrix}, 由此得出 x_3 对应的系数$$

$$B^{-1} \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{12}{5} & 1 \\ 0 & \frac{3}{10} & -\frac{1}{6} \\ 0 & -\frac{1}{10} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ \frac{3}{4} \end{bmatrix} = \begin{bmatrix} \frac{27}{20} \\ \frac{7}{40} \\ \frac{1}{40} \end{bmatrix}$$

在原最优解表 2-8 的基础上 将松弛变量改为 x_4, x_5, x_6 增加丁产品 x_3 列 得表 2-14。 因 $\overline{\lambda}_3 > 0$,故继续迭代,迭代结果告诉我们,将丁产品(x_3)安排生产 $\frac{600}{7}$ 件,而产品 乙不安排对企业有利。

रर	<u>z-</u>	ı	ı
)			

							12 2-	1 1
c_j		70	30	12	0	0	0	
c_B	χ_B	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	χ_6	b
0	<i>x</i> ₄	0	0	$\frac{27}{20}$	1	$-\frac{12}{5}$	1	180
30	x_2	0	1	$\frac{7}{40}$	0	$\frac{3}{10}$	$-\frac{1}{6}$	15
70	x_1	1	0	$\frac{1}{40}$	0	$-\frac{1}{10}$	$\frac{1}{6}$	75
j		0	0	5	0	-2	$-\frac{20}{3}$	5700
0	<i>X</i> ₄	0	$-\frac{54}{7}$	0	1	$-\frac{33}{7}$	$\frac{16}{7}$	$\frac{450}{7}$
12	<i>x</i> ₃	0	$\frac{40}{7}$	1	0	$\frac{12}{7}$	$-\frac{20}{21}$	$\frac{600}{7}$
70	x_1	1	$-\frac{1}{7}$	0	0	$-\frac{1}{7}$	$\frac{4}{21}$	$\frac{510}{7}$
j		0	$-\frac{200}{7}$	0	0	$-\frac{74}{7}$	$-\frac{80}{7}$	6129

2.4.5 增加约束条件的灵敏度分析

在新增加约束条件下,如原问题的基变量仍未改变,则因增加约束条件不会扩大可 行域只会减少或保持原可行域,这时只要 x_{R} 可行,就必须是最优,若不然,说明新约束 条件把原问题的最优排除,这时需将新约束条件列入单纯形表,用对偶单纯形法求解。

例 2.10 设例 2.7 中甲、乙产品还必须经过设备 D 的加工厂成为最终产品。已知 D 加工单位甲需 3 小时,单位乙需 8 小时,最大使用工时为 720 小时,则新增的约束条件 为 $8x_1 + 3x_2 \le 720$

将原问题所得的最优解 $x = (75.15)^T$ 代入上约束条件仍能满足,故新增条件最优解无 影响。

若将设备 D 的最大使用工时限制为 600 小时,这时所得约束条件: $8x_1 + 3x_2 \le 600$,这时最优解不再满足约束了,为了得到增加约束后的最优解,在原最优解表的基础上,通过行变换将上述新约束条件加入,得新表 2-15。

表 2-15

基变量	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	b
<i>x</i> ₃	0	0	1	$-\frac{12}{5}$	1	0	180
x_2	0	1	0	$\frac{3}{10}$	$-\frac{1}{6}$	0	15
x_1	1	0	0	$-\frac{1}{10}$	$\frac{1}{6}$	0	75
<i>x</i> ₆	0	0	0	$-\frac{1}{10}$	$-\frac{5}{6}$	1	-45
j	0	0	0	-2	$-\frac{20}{3}$	0	5700

显然,该表对应的基本解不可行,采用对偶单纯形法,得表 2-16。

表 2-15

基变量	x_1	x_2	x_3	χ_4	<i>x</i> ₅	x_6	b
x_3	0	0	1	$-\frac{63}{25}$	0	$\frac{6}{5}$	126
x_2	0	1	0	$\frac{8}{25}$	0	$-\frac{1}{5}$	24
x_1	1	0	0	$-\frac{3}{25}$	0	$\frac{1}{5}$	66
x_5	0	0	0	$\frac{3}{25}$	1	$-\frac{6}{5}$	54
j	0	0	0	$-\frac{6}{5}$	0	-8	5340

由上表及对偶单纯形法知,最优解 $x^* = (66,24,126,0,54,0)^T$,最优值为 5340 元,即加一道工序后,约束所起作用仅降低 360 元利润。

以上述的几种灵敏度分析,仅限于某数值、变量、约束条件的变化对解的影响,这是一些基本的分析方法。若要考虑某区间上一个或几个参数作连续变化的灵敏度分析,请同学们参阅线性规划方面的资料或书籍。