Design and implementation of a technique to track moving objects based on optical flow

Eric Guerrero

Carlos García

Optical flow concepts

http://www.jarnoralli.fi/joomla/images/images/what_is_oflow_wb.png

http://user.engineering.uiowa.edu/~dip/lecture/Motion2.html

VS Lucas Kanade method

- High density of flow vectors
 - Sensitive to noise

Conditions

- The objects are balls of the same size, no matter the color.
- The **number of trajectories** along the video are **not defined**.
- Crossing trajectories.

Settings

- Optical Flow
- Plotting
- Players
- Paths
- Video
- Initial frame

actual frame Optical Flow \downarrow **Feature Extraction Initial Settings** Sub Image Magnitude LOOP **Feature Detection Threshold TRAJECTORY** GENERATION Direction **Position**

Previous and

- -Distance threshold balance.
- -Multi-Trajectory generation according to the position and Direction in each frame

- -Distance threshold balance.
- -Multi-Trajectory generation according to the position and direction in each frame

Coding scheme Main Blocks

Conclusions

Comparison with Optical flow Methods				
		Frame average		
Name	Link	(s/frame)		Comment
Optical Flow(BBx)	MainCode.m	0,2742	Main code	
Optical Flow	comp_nobbox.m	0,3173	Without Bounding Box analysis	
Eco Code	comp_eco.m	0,1040	Whithout unnecesary presentations, resize, etc.	
Comparison of Optical flow				
		Frame average		
Name	Link	(s/frame)	% over best time	Comment
Optical Flow(BBx)	compOF.m	0,2046	0,00%	Without evaluating trajectories,
Optical Flow	compOF_nobbox.m	0,2278	11,34%	only locating centers
No Optical Flow	compOF noOF.m	0,2204	7,72%	only locating tenters

Better performance using optical flow instead of without it:

- Complex objects
- Further overview

Conclusions

- This method is better for objects that are moving by they own
- Powerful ability for track objects in a lot of different situations
- Easy adaptation to other kind of objects
- Cheap computational cost → Semi-Real Time

Further steps

- Integrate the multi trajectory generation in the loop
- Adapt the feature detector for any kind of object, with a more powerful function

Questions?

