Санкт-Петербургский Национальный Исследовательский Университет Информационных Технологий, Механики и Оптики

Кафедра Систем Управления и Информатики

Лабораторная работа №3 *Измерение мощности*

Выполнили: Группа Р3136

Антипов В.А. Труфанова А.А Чергинец Д. Кобзарь Г. Асадуллин И. Быстрамович М.

Проверили: Махин И.Е

Задание 1: Измерение мощности постоянного тока косвенным методом при помощи вольтметра и амперметра.

Формулы для расчетов:

- 1. Измеренное значение мощности $P_u = U_{v1} * I_a$
- 2. Мощность, потребляемая амперметром $P_a = U_{v2} * I_a$
- 3. Мощность, рассеиваемую в нагрузке, определяют с учетом поправки ${}^{\smallsmile}P_a: Pn = {}_u P_a$
- 4. Относительная погрешность измерения мощности определяют по формуле

$$\delta_p = \sqrt{\delta_{v1}^2 + \delta_A^2} = \sqrt{(\frac{I_{nom} * k_A}{I_A})^2 + (\frac{U_{nom} * k_{v1}}{U_{v1}})^2}$$

Характеристики приборов:

$$I_{nom} = 0.05$$

 $U_{nom} = 150$
 $ka = 0.5$
 $kv_1 = 0.5$

Расчеты:

1.
$$P_{u1} = 20 * 0.044 = 0.88W$$

$$P_{u2} = 20 * 0.019 = 0.38W$$

$$P_{u3} = 20 * 0.013 = 0.26W$$

$$P_{u4} = 20 * 0.009 = 0.18W$$
2.
$$P_{1} = 0.774 * 0.44 = 0.034W$$

$$P_{2} = 0.399 * 0.019 = 0.008W$$

$$P_{3} = 0.279 * 0.013 = 0.004W$$

$$P_{4} = 0.201 * 0.009 = 0.002W$$
3.
$$P_{n1} = 0.88 - 0.34 = 0.846W$$

$$P_{n2} = 0.38 - 0.008 = 0.372W$$

$$P_{n3} = 0.26 - 0.004 = 0.256W$$

Результаты расчетов:

 $P_{n4} = 0.18 - 0.002 = 0.178W$

$$\delta_1 = 3.79$$
 $\delta_2 = 3.97$
 $\delta_3 = 4.21$
 $\delta_4 = 4.1$

Напряжение U_{v1} , В	20	20	20	20
Сопротивление нагрузки R_n , Ом	500	1000	1500	2000
Ток нагрузки I_A , А	0.44	0.019	0.013	0.009
Напряжение U_{v2} , В	0.774	0.399	0.279	0.201
Поправка - P_A , W	0.034	0.008	0.004	0.002
Мощность нагрузки P_H , W	0.846	0.372	0.256	0.178
Относительная погрешность δ , %	3.79	3.97	4.21	4.1

Задание 2

В данном задании использовались: ваттметр типа Д535, блок питания БП типа Б5-9, вольтметр V типа В7-16A, магазин сопротивлений типа МСР.

При измерении мощности устанавливают на нагрузке напряжение U=40 В, которое измеряют вольтметром V. После этого измерения сопротивление нагрузки R и регистрирует показания ваттметра W. Результат измерения заносят в ф.2:

Напряжение U_H , (В)	40	40	40	40
Сопротиаление R_H , (Ом)	500	1000	1500	2000
Показания ваттметра P_w , (Вт)	3.55	1.7	1.2	0.9
Поправка - Δ_P , (Вт)	0.1	0.1	0.1	0.1
Мощность нагрузки P_H , (Вт)	3.45	1.6	1.1	0.8
Погрешность δ_p , (%)	52.82	110.3	156.25	208.33

Сопротивление нагрузки: R_H =100 кОм. Мощность P, потребляемую нагрузкой, вычисляют по формуле = P_w - δ P. Относительную погрешность измерения мощности рассчитывают по формуле: $\delta_p = (U_H * I_H * k_w / P_w) * 100\%$

Задание 4: Измерение частотной погрешности ваттметра

При измерении мощности переменного тока определяют частотную и фазовую погрешности ваттметра Д535. Для определения частотной погрешности собирают схему изображенную на рисунке.

В качестве источника сигала используют генератор типа Γ 3-109, а в качестве нагрузки - магазин сопротивлений типа МСР (RH = 500 Om). Ваттметр W типа Д535 устанавливают на предел измерения по току 50 мА и по напряжению - 75 В Изменяя выходное напряжение генератора, устанавливают напряжение на нагрузке, равное 30 В. Частоту генератора изменяют в пределах от 20 Γ ц до 10 к Γ ц, поддерживая постоянным напряжение на нагрузке, и регистрируют показания ваттметра.

Результаты представлены в Форме 4:

Напряжение U_H , (B)	30	30	30	30	30	30	30	30	30
Частота f , (Γ ц)	20	50	100	200	500	1000	2000	5000	10000
Мощность P_w , (Вт)	2	2	2	2	2.05	2.05	2.1	2.1	1.95
Погрешность δ_f , (%)	0	0	0	0	25	25	50	50	25

Частотную погрешность ваттметра рассчитывают по формуле:

$$\delta_f = |(P_w - P_{f0})/P_{f0}|$$

где P_w – показания ваттметра,

 P_{f0} – показания ваттметра на частоте f $0=100~\Gamma$ ц.

Задание 6: Измерение импульсной мощности с помощью осциллографа

Для измерения импульсной мощности была собрана следующая схема:

Импульсные сигналы создаются при помощи выпрямления синусоидального напряжения генератора Γ 3-109 посредством диода \mathcal{A} . В качестве нагрузки используется параллельное соединение магазинов сопротивления R_n типа P4830 и емкости C_n типа P5025. Для регистрации формы тока в нагрузке последовательно с ней включен датчик тока R_w , напряжение на котором пропорционально току нагрузки. Напряжение с датчика тока и напряжение нагрузки подводится к двухканальному электронному осциллографу типа C1-83.

На выходе генератора $\Gamma 3$ -109 устанавливается напряжение 10 V и частота 400 Hz. Сопротивление нагрузки устанавливается равным $R_n = 500~O$ м, а емкость нагрузки $_n = 0.5~$ мк Φ .

Графики тока и напряжения с осциллографа:

 Φ орма 3 (Результаты измерения напряжения, силы тока и подсчета мгновенной и импульсной мощности):

Номер ординаты <i>k</i> :	0	1	2	3	4	5	6	7	8
Напряжение U_k , (V) :	4.5	4	5	6	7	8.5	9	10	9.5
Ток I_k , (A) :	0.015	0.04	0.075	0.1	0.11	0.105	0.09	0.05	0.01
Мощность P_k , (W) :	-	-0.29	-	0.15	0.32	0.4425	0.36	0.05	-0.355
	0.3825		0.075						
Мощность P_u , (W) :	0.5284	0.5284	0.5284	0.5284	0.5284	0.5284	0.5284	0.5284	0.5284

Импульсную мощность выделяют путем графического интегрирования по формуле Симпсона (для n=8):

$$P_u = \frac{1}{3n} (P_{k0} + 4(P_{k1} + P_{k3} + P_{k5} + P_{k1}) + 2(P_{k2} + P_{k4} + P_{k6}) + P_{k8}).$$

