Y36PSI Propojování sítí *Jiří Smítka, Jan Kubr*

Carier Multiple Sense Access CSMA

nenaléhající

Carier Multiple Sense Access CSMA 2

naléhající

Carier Multiple Sense Access CSMA 3

p-naléhající

Propustnost náhodných přístupových metod

Další CSMA metody

- CSMA/CD (Collision Detection)
 - Ethernet
- CSMA/CA (Collision Avoidance)
 - IEEE 802.11
- CSMA/DCR (Deterministic Collision Resolution)
 - Controller Area Network

Propojování sítí

- propojujeme sítě s různými topologiemi a operačními systémy
- tím vytváříme internety
- největším internetem je Internet
- k propojení sítí můžeme použít:
 - opakovač (repeater, hub)
 - most (bridge)
 - přepínač (switch)
 - směrovač (router)
 - přenosovou bránu (gateway)
- některé tyto prvky použijeme i pro zlepšení spojení v rámci LAN

Opakovač (repeater, hub)

- slouží pro překonání problému útlumu
- čím větší vzdálenost signál urazí, tím je slabší
- útlum je důsledek odporu a šumu
- opakovač vstupní signál vyčistí a zesílí
- tím se prodlouží možná vzdálenost mezi komunikujícími uzly

Opakovač II.

- pracuje na úrovni bitů
- nemá žádnou vyrovnávací paměť
- může propojovat libovolný počet segmentů sítě
- může propojovat pouze segmenty sítě se stejnou přenosovou rychlostí
- opakovač musí šířit kolize (!)
- v Ethernetu jich nemůže být libovolně mnoho kvůli době šíření kolize (CSMA/CD) - mezi každými 2 body maximálně 2 opakovače

Filtrování

- opakovače šíří do všech směrů i to, co by šířit nemusely
- požadujeme filtrování provozu
- což znamená rozumět alespoň adresám linkové vrstvy
- pokud se bude zařízení rozhodovat podle obsahu paketu, musí obsahovat vyrovnávací paměť
- tím pádem lze propojit segmenty s různými rychlostmi

Most (bridge)

- řídí provoz mezi sítěmi přepojováním paketů z jedné sítě do druhé
- nešíří tedy každý paket do všech připojených segmentů sítě
- zlepšuje spolehlivost, výkon a bezpečnost sítí

Most II.

- pracuje na linkové vrstvě
- nemusí propagovat kolize (má vyrovnávací paměť)
- propojuje právě dvě sítě
- varianta vzdálený most (remote bridge)
 - = dva půlmosty (half bridges)

Přepínač (switch)

- jedná se o víceportový most
- novější, rychlejší, jeden z nejpoužívanějších aktivních prvků počítačových sítí
- nepropaguje kolize (má paměť)
- všesměrově šíří pouze broadcasty
- často se používá jako náhrada opakovače
- přes jeden přepínač může probíhat více přenosů až do maximální kapacity přepínače

Přepínač II.

- aby mohl přepínač (most) filtrovat, musí znát topologii sítě (na jakém portu je která stanice)
- pokud neví, chová se podobně jako opakovač
- můžeme nastavit ručně (pracné, síť se může často měnit - notebooky atd.)
- automatické učení
 - nejdříve se chová jako opakovač a učí se
 - ukládá si do tabulky dvojice [port, adresa]
 - po určité době začne filtrovat provoz

Přepínač III.

- přepínač může buď celý rámec přijmout, analyzovat a potom odeslat
 - => store-and-forward
- nebo může přečíst pouze cílovou adresu a zbytek již rovnou přeposílat
 - => cut-through
- nebo může kombinovat obě metody (krátké rámce s&f, delší cut-through)

Učení přepínače I.

- přepínač dostane rámec, o kterém neví, do kterého portu ho má odeslat
- pošle jej tedy do všech portů kromě toho, z kterého přišel, a upraví tabulku

Učení přepínače II.

- přepínač dostane rámec, o kterém již ví, do kterého portu ho má poslat
- pošle jej tedy do portu uvedeného v tabulce pro danou adresu

Učení přepínače III.

- přepínač přijme rámec, který přichází ze směru, v kterém podle tabulky leží adresát
- přepínač tento rámec ignoruje

Učení přepínače IV.

- učení přestane fungovat, pokud topologie sítě nebude strom, ale bude obsahovat kružnici (smyčku)
- přepínače se však umí domluvit a kružnici přerušit
- kružnice může být v síti úmyslně (záloha spojení)
- STA: Spanning Tree Algorithm

Spanning Tree Algorithm I.

- algoritmus, pomocí kterého se najde kostra dané síťové topologie
- přeruší se případné kružnice zablokováním některých portů
- tím se zachová stromová struktura
- v případě výpadku se zablokované porty opět uvolní
- všechny moderní přepínače tento algoritmus podporují (IEEE 802.1d)

Spanning Tree Algorithm II.

- nejdříve se zvolí kořenový přepínač (root switch) - bude to ten s nejmenší MAC adresou
- každý přepínač tvrdí, že je root, pokud neví o jiném kořenovém přepínači
- rozesílají HELLO MESSAGE (Bridge Protocol Data Unit - BPDU)
- BPDU jsou přeposílána přepínači se zvýšenou hodnotou cost (cena cesty ke kořenovému přepínači)

Spanning Tree Algorithm III.

- na každém segmentu se zvolí vyhrazený přepínač (designated switch) - ten, který má nejlepší cestu ke kořenovému přepínači
- porty přepínačů, které nejsou na kostře grafu, se přepnou do blokujícího stavu
- stav portu
 - blocking neprocházejí rámce, záložní port
 - listening pouze příjem a vysílání BPDU
 - learning neprocházejí rámce, učí se MAC
 - forwarding procházejí rámce, cílový stav
 - disabled

Spanning Tree Algorithm IV.

- Výběr root portu:
 - každý přepínač přeposílá BPDU, které přijme
 - při každém přeposlání inkrementuje cost
 - přepínač eviduje pro každý port tuto cenu
 - root port je port s nejmenší cenou
 - root port je vždy ve stavu forwarding
- Designated switch = přepínač s nejmenší cenou cost na jednom segmentu
- příslušný port = designated port
- všechny ostatní porty ve stavu blocking

Spanning Tree Algorithm V.

Spanning Tree Algorithm VI.

Spanning Tree Algorithm VII.

Spanning Tree Algorithm VIII.

Stavy portů

pouze přijímá BPDU hledá root switch

pouze přijímá BPDU buduje kostru sítě

přijímá BPDU učí se MAC adresy, ale předává rámce

přijímá BPDU předává rámce, plná funkce

Spanning Tree Algorithm IX.

- konvergence STP při změně topologie tedy trvá implicitně 50 sekund (20+15+15)
- 802.1w = Rapid Spanning Tree (RSTP)
- Tento protokol slučuje stavy Disabled, Blocking a Listening do stavu Discarting
- díky aktivnímu potvrzování nemusí RSTP čekat na timeouty

Směrovač (router)

- pracuje na síťové vrstvě, propojuje sítě,
- pracuje se síťovými adresami,
- nešíří broadcasty z jedné sítě do druhé.

Směrovač II.

- přenáší data i mezi sítěmi, které používají naprosto odlišné linkové technologie,
- jsou tedy naprosto nezbytné pro Internet,
- kromě směrování může podporovat i další funkce (firewall, NAT, VPN),
- směrování je statické nebo dynamické (např. RIP, OSPF, ...).

Přepínače na vyšších vrstvách

- dnešní přepínače podporují QoS, VLAN, a další funkce
- podporují různé verze STA (s rychlejší konvergencí atd.)
- filtrování rámců na různých úrovních:
 - linková
 - síťová => Layer 3 Switch (filtrování IP adres, IP protokolu)
 - transportní => Layer 4 Switch (filtrování na úrovni portů TCP a UDP)
 - aplikační => Layer 7 Switch (rozložení zátěže mezi více serverů)

Přepínače na vyšších vrstvách II.

- Layer 3 Switch je vlastně HW optimalizovaný směrovač,
- Layer 4 Switch umožňuje rozlišovat provoz (např. load balancer),
- Layer 7 Switch se používá např. k rozložení zátěže (např. http požadavků) na několik serverů, které se navenek tváří jako jeden server.

Brána (gateway)

- Přenosová brána je obecný termín
- 3 typy:
 - směrovač
 - aplikační brána
 - brána pro překlad protokolů z jedné množiny protokolů do jiné
- příklady aplikační brány: software pro poštovní aplikace, proxy WWW server apod.