#### Summer School in Quantitative Fisheries Stock Assessment

Day 3: An introduction to Virtual Population
Analysis (VPA)
&
Extended Survivors Analysis (XSA)

Cóilín Minto, Chato Osio, Alessandro Orio, Alessandro Ligas

July 19, 2017

## Outline

**Preliminaries** 

**VPA** 

Tuned VPA

**XSA** 

Summary

## Outline

### **Preliminaries**

**VPA** 

Tuned VPA

XSA

Summary

### Aristotle's ruminations

.., almost every serious intellectual advance has had to begin with an attack on some Aristotelian doctrine;

Bertrand Russell, History of Western Philosophy

## Aristotle $\sim$ 350 B.C.



Murex spp.

Both the murex and the ceryx are long lived. The murex lives for about six years, and the yearly increase is indicated by a distinct interval in the spiral convolution of the shell.

van Leeuwenhoek  $\sim 1800$ 



- Hoffbauer (1899)
- Thomson (1900-1903)
- Johnston (1904)

# Hjort 1914

Applied the methods of human *vital statistics* to herring

- Cohort progression from samples
- Variability in cohort strength
- Critical period & aberrant drift hypotheses



# Progression of a multiple cohorts



# Age structure

### Numbers at age matrix

## Cohort

### Cohort progression

## Cohort

### Cohort progression

# Cohort change

Fish live and die in continuous time. How can we describe the abundance of a cohort over time?

# Cohort change in time

First guess: Cohort declines at a constant rate

$$\frac{dN}{dt} = -Z$$

with initial cohort size N(0) the solution is

$$\int \frac{dN}{dt} dt = \int -Zdt$$
$$N(t) = N(0) - Zt$$



Time  $\rightarrow$ 

Can't be correct as abundance goes negative!

# Cohort change in time

Second guess: Cohort declines at a rate proportional to abundance

$$\frac{dN}{dt} = -ZN$$

$$\frac{dN}{N} = -Zdt$$

$$\int \frac{1}{N}dN = \int -Zdt$$

$$\ln N = C - Zt$$

$$N(t) = e^{C}e^{-Zt} = N(0)e^{-Zt}$$



Just an exponential decay but central to what follows!

# Fishing and natural mortality

Let the rate of decline depend on both fishing and natural mortality

$$Z = F + M$$

Say for a yearly time-step, t = 1, we have

$$N_{t+1} = N_t e^{-Z} = N_t e^{-(F+M)}$$

that is the number surviving.

For 
$$F = 0.3$$
,  $M = 0.1$  and  $N_t = 100$ 

$$N_{t+1} = 100e^{-(0.3+0.1)} = 67$$

How many died?



# Fishing and natural mortality

How many died?

$$33 = 100 \left( 1 - e^{-(0.3+0.1)} \right)$$
$$= N_t \left( 1 - e^{-(F+M)} \right)$$

How many died because of fishing (catch)?

$$25 = \frac{0.3}{0.3 + 0.1} \times 33$$

$$C_t = \frac{F}{F + M} \left( 1 - e^{-(F+M)} \right) N_t$$

which is the famous Baranov catch equation!

## Outline

**Preliminaries** 

**VPA** 

Tuned VPA

XSA

Summary

## Goal of VPA

Re-construct past cohort abundance based on past catches: but how?

### VPA derivation

$$N_{t+1} = N_t e^{-(F+M)}$$
 $\ln\left(rac{N_{t+1}}{N_t}
ight) + M = -F$ 
 $F = -\ln\left(rac{N_{t+1}}{N_t}
ight) - M$ 

The Baranov equation gives can be re-arranged

$$C_t = rac{F}{F+M} \left(1 - e^{-(F+M)}\right) N_t$$

$$= rac{F}{F+M} (N_t - N_{t+1})$$

## VPA derivation

Substitute in the expression for F

$$C_t = \frac{-\ln\left(\frac{N_{t+1}}{N_t}\right) - M}{-\ln\left(\frac{N_{t+1}}{N_t}\right) - M + M} (N_t - N_{t+1})$$

$$C_t = \frac{-\ln\left(\frac{N_{t+1}}{N_t}\right) - M}{-\ln\left(\frac{N_{t+1}}{N_t}\right)} (N_t - N_{t+1})$$

$$C_t = \left(1 - \frac{M}{\ln(N_t) - \ln(N_{t+1})}\right) (N_t - N_{t+1})$$

Use this VPA equation  $^1$  to solve for  $N_t$  given  $C_t$ , M and  $N_{t+1}$ 



<sup>&</sup>lt;sup>1</sup>See also Pope's method

### **VPA** notes

#### Note

- Virtual as the population is inferred, not observed
- Popualtion is re-constructed from assumptions on deaths

## Catch-at-age for 2008 cohort

| Age | Year | Catch |
|-----|------|-------|
| 0   | 2008 | 65121 |
| 1   | 2009 | 12360 |
| 2   | 2010 | 1452  |
| 3   | 2011 | 285   |
| 4   | 2012 | 54    |
| 5   | 2013 | 12    |
| 6   | 2014 | 20    |
|     |      |       |

Catch-at-age for 2008 cohort

| Age | Year | Catch |
|-----|------|-------|
| 0   | 2008 | 65121 |
| U   |      |       |
| 1   | 2009 | 12360 |
| 2   | 2010 | 1452  |
| 3   | 2011 | 285   |
| 4   | 2012 | 54    |
| 5   | 2013 | 12    |
| 6   | 2014 | 20    |
|     |      |       |

Need to guess  $N_t$  for the oldest age group via a guess on the terminal F

Assume M=0.3 and pick a terminal F=1 to first get terminal N

$$\begin{split} C_{6,2014} &= \frac{F_{6,2014}}{F_{6,2014} + M} \left(1 - e^{-(F_{6,2014} + M)}\right) N_{6,2014} \\ &20 = \frac{1}{1.3} \left(1 - e^{-(1.3)}\right) N_{6,2014} \\ N_{6,2014} &= 35.7 \end{split}$$

| Age | Year | Catch | F    | N    |
|-----|------|-------|------|------|
| 0   | 2008 | 65121 |      |      |
| 1   | 2009 | 12360 |      |      |
| 2   | 2010 | 1452  |      |      |
| 3   | 2011 | 285   |      |      |
| 4   | 2012 | 54    |      |      |
| 5   | 2013 | 12    |      |      |
| 6   | 2014 | 20    | 1.00 | 35.7 |

Now use VPA equation to solve for previous N values, given catches<sup>2</sup>

$$C_t = \left(1 - rac{\mathcal{M}}{\operatorname{In}(\mathcal{N}_t) - \operatorname{In}(\mathcal{N}_{t+1})}
ight)(\mathcal{N}_t - \mathcal{N}_{t+1})$$

| Age | Year | Catch | F    | N       |
|-----|------|-------|------|---------|
| 0   | 2008 | 65121 |      | 95648.9 |
| 1   | 2009 | 12360 |      | 16898.9 |
| 2   | 2010 | 1452  |      | 2332.3  |
| 3   | 2011 | 285   |      | 518.4   |
| 4   | 2012 | 54    |      | 145.4   |
| 5   | 2013 | 12    |      | 62.0    |
| 6   | 2014 | 20    | 1.00 | 35.7    |



<sup>&</sup>lt;sup>2</sup>Can use uniroot solver in R to do this

### Fill in the fishing mortalities

$$F = -\ln\left(\frac{N_{t+1}}{N_t}\right) - M$$

| Age | Year | Catch | F    | N       |
|-----|------|-------|------|---------|
| 0   | 2008 | 65121 | 1.43 | 95648.9 |
| 1   | 2009 | 12360 | 1.68 | 16898.9 |
| 2   | 2010 | 1452  | 1.20 | 2332.3  |
| 3   | 2011 | 285   | 0.97 | 518.4   |
| 4   | 2012 | 54    | 0.55 | 145.4   |
| 5   | 2013 | 12    | 0.25 | 62.0    |
| 6   | 2014 | 20    | 1.00 | 35.7    |
|     |      |       |      |         |

## For all cohorts

### Catch-at-age matrix

|      | Age   |       |      |     |     |    |    |  |  |
|------|-------|-------|------|-----|-----|----|----|--|--|
| Year | 0     | 1     | 2    | 3   | 4   | 5  | 6  |  |  |
| 2006 | 82424 | 14603 | 2299 | 299 | 103 | 29 | 0  |  |  |
| 2007 | 62020 | 13976 | 1314 | 209 | 55  | 12 | 3  |  |  |
| 2008 | 65121 | 12123 | 870  | 251 | 81  | 38 | 8  |  |  |
| 2009 | 91660 | 12360 | 812  | 172 | 86  | 25 | 9  |  |  |
| 2010 | 42494 | 12523 | 1452 | 225 | 68  | 37 | 12 |  |  |
| 2011 | 66748 | 12820 | 1204 | 285 | 101 | 38 | 8  |  |  |
| 2012 | 29969 | 10271 | 880  | 209 | 54  | 14 | 2  |  |  |
| 2013 | 26054 | 12899 | 744  | 134 | 53  | 12 | 4  |  |  |
| 2014 | 42564 | 10589 | 1331 | 187 | 40  | 24 | 20 |  |  |

## For all cohorts

### Catch-at-age matrix

|      | Age   |       |      |     |     |    |    |  |  |
|------|-------|-------|------|-----|-----|----|----|--|--|
| Year | 0     | 1     | 2    | 3   | 4   | 5  | 6  |  |  |
| 2006 | 82424 | 14603 | 2299 | 299 | 103 | 29 | 0  |  |  |
| 2007 | 62020 | 13976 | 1314 | 209 | 55  | 12 | 3  |  |  |
| 2008 | 65121 | 12123 | 870  | 251 | 81  | 38 | 8  |  |  |
| 2009 |       | 12360 | 812  | 172 | 86  | 25 | 9  |  |  |
| 2010 |       |       | 1452 | 225 | 68  | 37 | 12 |  |  |
| 2011 |       |       |      | 285 | 101 | 38 | 8  |  |  |
| 2012 |       |       |      |     | 54  | 14 | 2  |  |  |
| 2013 |       |       |      |     |     | 12 | 4  |  |  |
| 2014 |       |       |      |     |     |    | 20 |  |  |

# Terminal F assumption

|      |   | Age |   |   |   |   |   |  |  |  |
|------|---|-----|---|---|---|---|---|--|--|--|
| Year | 0 | 1   | 2 | 3 | 4 | 5 | 6 |  |  |  |
| 2006 |   |     |   |   |   |   | 1 |  |  |  |
| 2007 |   |     |   |   |   |   | 1 |  |  |  |
| 2008 |   |     |   |   |   |   | 1 |  |  |  |
| 2009 |   |     |   |   |   |   | 1 |  |  |  |
| 2010 |   |     |   |   |   |   | 1 |  |  |  |
| 2011 |   |     |   |   |   |   | 1 |  |  |  |
| 2012 |   |     |   |   |   |   | 1 |  |  |  |
| 2013 |   |     |   |   |   |   | 1 |  |  |  |
| 2014 |   |     |   |   |   |   | 1 |  |  |  |

### VPA N values

Apply VPA equation to each cohort back in time to get population numbers at age  $(\times 1,000)$ 

|      | Age    |       |      |     |     |    |    |  |
|------|--------|-------|------|-----|-----|----|----|--|
| Year | 0      | 1     | 2    | 3   | 4   | 5  | 6  |  |
| 2006 | 190441 | 22118 | 3454 | 570 | 164 | 40 | 0  |  |
| 2007 | 154442 | 19932 | 2416 | 495 | 154 | 34 | 5  |  |
| 2008 | 166070 | 17813 | 1658 | 558 | 175 | 65 | 14 |  |
| 2009 |        | 19813 | 1703 | 408 | 185 | 59 | 16 |  |
| 2010 |        |       | 2551 | 479 | 144 | 62 | 22 |  |
| 2011 |        |       |      | 548 | 150 | 47 | 14 |  |
| 2012 |        |       |      |     | 152 | 26 | 4  |  |
| 2013 |        |       |      |     |     | 65 | 7  |  |
| 2014 |        |       |      |     |     |    | 36 |  |

# Terminal F assumption

Need to also make an assumption for the F across all ages in the final year, e.g.

|      | Age |   |   |   |   |   |   |  |  |
|------|-----|---|---|---|---|---|---|--|--|
| Year | 0   | 1 | 2 | 3 | 4 | 5 | 6 |  |  |
| 2006 |     |   |   |   |   |   | 1 |  |  |
| 2007 |     |   |   |   |   |   | 1 |  |  |
| 2008 |     |   |   |   |   |   | 1 |  |  |
| 2009 |     |   |   |   |   |   | 1 |  |  |
| 2010 |     |   |   |   |   |   | 1 |  |  |
| 2011 |     |   |   |   |   |   | 1 |  |  |
| 2012 |     |   |   |   |   |   | 1 |  |  |
| 2013 |     |   |   |   |   |   | 1 |  |  |
| 2014 | 1   | 1 | 1 | 1 | 1 | 1 | 1 |  |  |

## VPA N values

Apply VPA equation to each cohort back in time to get population numbers at age  $(\times 1,000)$ 

|      | Age    |       |      |     |     |    |    |  |  |
|------|--------|-------|------|-----|-----|----|----|--|--|
| Year | 0      | 1     | 2    | 3   | 4   | 5  | 6  |  |  |
| 2006 | 190439 | 22116 | 3452 | 570 | 164 | 40 | 0  |  |  |
| 2007 | 154439 | 19931 | 2415 | 494 | 153 | 33 | 5  |  |  |
| 2008 | 166055 | 17812 | 1658 | 558 | 174 | 65 | 14 |  |  |
| 2009 | 202354 | 19808 | 1703 | 408 | 185 | 58 | 16 |  |  |
| 2010 | 125110 | 18912 | 2549 | 479 | 144 | 61 | 21 |  |  |
| 2011 | 151388 | 18061 | 2058 | 547 | 150 | 47 | 14 |  |  |
| 2012 | 114385 | 14953 | 1429 | 416 | 151 | 26 | 4  |  |  |
| 2013 | 110899 | 20344 | 1406 | 259 | 121 | 64 | 7  |  |  |
| 2014 | 104876 | 21066 | 2488 | 342 | 72  | 43 | 36 |  |  |

# Sensitivity to terminal F assumption



## Vanilla VPA in a nutshell

- Accounting procedure given  $N_{t+1}$ ,  $C_t$  and M solve the VPA equation for  $N_t$ , repeat
- How to get the terminal N? Assume a terminal F.
- Results sensitive to assumption on terminal F (often the cohorts we're most interested in!)
- Need a better solution

## Outline

**Preliminaries** 

**VPA** 

Tuned VPA

XSA

Summary

# Instead of assume, let's tune!

Tuned VPA use additional information (other than catches) to infer the terminal F values

Can use:

- Survey index
- Effort data

# Laurec-Shepherd tuning method

Ad-hoc tuning method to derive terminal F in the final year

Analysis of fleet disaggregated catchability at age

ullet Make assumption on terminal F, say F=1

- Make assumption on terminal F, say F = 1
- Run the VPA

- Make assumption on terminal F, say F = 1
- Run the VPA
- Calculate the proportion of the catch caught by the fleet (used to weight where there are multiple fleets)

- Make assumption on terminal F, say F=1
- Run the VPA
- Calculate the proportion of the catch caught by the fleet (used to weight where there are multiple fleets)
- Calculate the average catchability of the fleet over a reference period (not too long)

- Make assumption on terminal F, say F = 1
- Run the VPA
- Calculate the proportion of the catch caught by the fleet (used to weight where there are multiple fleets)
- Calculate the average catchability of the fleet over a reference period (not too long)
- Multiply catchability by the effort of the fleet in the terminal year to get the partial F for the fleet in the terminal year

- Make assumption on terminal F, say F = 1
- Run the VPA
- Calculate the proportion of the catch caught by the fleet (used to weight where there are multiple fleets)
- Calculate the average catchability of the fleet over a reference period (not too long)
- Multiply catchability by the effort of the fleet in the terminal year to get the partial F for the fleet in the terminal year
- Re-scale partial F of fleet to population using the average proportion of catch caught by the fleet

- Make assumption on terminal F, say F=1
- Run the VPA
- Calculate the proportion of the catch caught by the fleet (used to weight where there are multiple fleets)
- Calculate the average catchability of the fleet over a reference period (not too long)
- Multiply catchability by the effort of the fleet in the terminal year to get the partial F for the fleet in the terminal year
- Re-scale partial F of fleet to population using the average proportion of catch caught by the fleet
- Repeat with new terminal F values until they converge

#### Catchabilities



#### Outline

Preliminaries

**VPA** 

Tuned VPA

XSA

#### A closer look at the index



#### A closer look at the index



# Extended survivors analysis (XSA)

XSA will use the survey index to update the numbers from the VPA, how?

#### **XSA**

# Start with an initial VPA run to get number under terminal assumption



Yesterday we had (in numbers here)

$$C = qEN$$
  
 $C/E = CPUE = qN$ 

that is the CPUE is proportional to abundace - this typically does not hold

Yesterday we had (in numbers here)

$$C = qEN$$
  
 $C/E = CPUE = qN$ 

that is the CPUE is proportional to abundace - this typically does not hold



Better to use a non-linear relationship

$$CPUE = qN^{\beta}$$
 $\ln(N) = \frac{\ln(CPUE)}{\beta} - \ln\left(\frac{q}{\beta}\right)$ 

Can estimate  $\{q,\beta\}$  parameters in a regression



#### Correct the numbers

Predict from the regression (solid black lines are 'corrected')



#### Correct the numbers

- Summing down the cohort, the updated estimates of N are then used to calculate the number of survivors in the oldest age group
- Now repeat the VPA
- Re-correct the abundances
- Repeat until convergence (small change in the fishing mortalities between iterations for example)

#### Additional features

- Shrinkage (constrain differences between years in F or N; form of regularisation)
- Taper years to more relevant period to estimate catchability
- Much more in the tutorials!

#### Note

Diagnostics are again an essential first step, e.g., see catchability residuals from the linear regression

#### Outline

**Preliminaries** 

**VPA** 

Tuned VPA

XSA

• Age-based methods can allow us to track cohorts

- Age-based methods can allow us to track cohorts
- Catch equation can be derived from a linear rate of change in N

- Age-based methods can allow us to track cohorts
- Catch equation can be derived from a linear rate of change in N
- Methods developed for re-constructing population size based on deaths (catch and nat. mortality)

- Age-based methods can allow us to track cohorts
- Catch equation can be derived from a linear rate of change in N
- Methods developed for re-constructing population size based on deaths (catch and nat. mortality)
- VPA makes an assumption on terminal F

- Age-based methods can allow us to track cohorts
- Catch equation can be derived from a linear rate of change in N
- Methods developed for re-constructing population size based on deaths (catch and nat. mortality)
- VPA makes an assumption on terminal F
- Tuned-VPA makes use of index/CPUE data to get past terminal assumptions

- Age-based methods can allow us to track cohorts
- Catch equation can be derived from a linear rate of change in N
- Methods developed for re-constructing population size based on deaths (catch and nat. mortality)
- VPA makes an assumption on terminal F
- Tuned-VPA makes use of index/CPUE data to get past terminal assumptions
- XSA algorithm more sophisticated method

#### References

Darby, C. D., and Flatman, S. 1994. Virtual population analysis: Version 3.1 (Windows/DOS) User Guide. MAFF Directorate of Fisheries Research IT Report 1. 85 pp.

Hilborn, R., and Walters, C. J. (2013). Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Springer Science & Business Media. [Ch. 8]

Lassen, H.; Medley, P. Virtual population analysis. A practical manual for stock assessment. FAO Fisheries Technical Paper. No. 400. Rome, FAO. 2001. 129p.

Shepherd, J. G. 1999. Extended survivors analysis: An improved method for the analysis of catch-at-age data and abundance indices. ICES Journal of Marine Science, 56: 584591.