TABDDPM: MODELLING TABULAR DATA WITH DIFFUSION MODELS

Akim Kotelnikov HSE, Yandex

Dmitry Baranchuk Yandex Ivan Rubachev HSE, Yandex

Artem Babenko Yandex

Problem statement. Evaluation

Why?

- In addition to real data (like augmentations)
- Privacy-oriented tasks

Evaluation:

- Computer Vision: IS, FID, human eval, diversity metrics
- Tabular Data: no benchmarks, many different datasets, almost no human eval

TabDDPM scheme

- Gaussian diffusion for numerical features (simple MSE loss)
- Multinomial diffusion for categorical features (VLB)
- Conditional model for classification problems, joint for regression
- A simple MLP model approximates the reverse process

Multinomial diffusion

Multinomial diffusion models (Hoogeboom et al., 2021) are designed to generate categorical data where $x_t \in \{0,1\}^K$ is a one-hot encoded categorical variable with K values. The multinomial forward diffusion process defines $q(x_t|x_{t-1})$ as a categorical distribution that corrupts the data by uniform noise over K classes:

$$q(x_t|x_{t-1}) := Cat(x_t; (1 - \beta_t) x_{t-1} + \beta_t/K)$$

$$q(x_T) := Cat(x_T; 1/K)$$

$$q(x_t|x_0) = Cat(x_t; \bar{\alpha}_t x_0 + (1 - \bar{\alpha}_t)/K)$$

From the equations above, the posterior $q(x_{t-1}|x_t,x_0)$ can be derived:

$$q(x_{t-1}|x_t, x_0) = Cat\left(x_{t-1}; \pi / \sum_{k=1}^{K} \pi_k\right)$$

where $\pi = [\alpha_t x_t + (1 - \alpha_t)/K] \odot [\bar{\alpha}_{t-1} x_0 + (1 - \bar{\alpha}_{t-1})/K].$

The reverse distribution $p_{\theta}(x_{t-1}|x_t)$ is parameterized as $q(x_{t-1}|x_t, \hat{x}_0(x_t, t))$, where \hat{x}_0 is predicted by a neural network. Then, the model is trained to maximize the variational lower bound (1).

Note on tuning

- Using the Optuna library, we tune hyperparameters of TabDDPM
- We use 50 tuning iterations and validation set to calculate ML utility

Hyperparameter	Search space
Learning rate Batch size Diffusion timesteps Training iterations # MLP layers MLP width of layers Proportion of samples	$\begin{array}{c} \operatorname{LogUniform}[0.00001, 0.003] \\ \operatorname{Cat}\{256, 4096\} \\ \operatorname{Cat}\{100, 1000\} \\ \operatorname{Cat}\{5000, 10000, 20000\} \\ \operatorname{Int}\{2, 4, 6, 8\} \\ \operatorname{Int}\{128, 256, 512, 1024\} \\ \operatorname{Float}\{0.25, 0.5, 1, 2, 4, 8\} \end{array}$
Dropout Scheduler Gaussian diffusion loss Number of tuning trials	

Prior methods. Visualization of features

TVAE [1], CTABGAN [2], CTABGAN+ [3]

ML utility with CatBoost models

	AB (R2)	AD (F1)	BU (F1)	CA (R2)	CAR (F1)	CH (F1)	DE (F1)	DI (F1)
TVAE	$0.433 {\pm}.008$	$0.781 {\scriptstyle \pm .002}$	$0.864 {\pm}.005$	$0.752 {\scriptstyle \pm .001}$	$0.717 {\pm}.001$	$0.732 {\pm}.006$	$0.656 {\pm}.007$	$0.714 \pm .039$
CTABGAN	_	$0.783 {\scriptstyle \pm .002}$	$0.855 {\pm}.005$	_	$0.717 {\pm}.001$	$0.688 {\pm}.006$	$0.644 {\pm}.011$	$0.731 {\scriptstyle \pm .022}$
CTABGAN+	$0.467 {\pm}.004$	$0.772 {\pm}.003$	$0.884 {\pm}.005$	$0.525 {\pm}.004$	$0.733 {\pm}.001$	$0.702 {\scriptstyle\pm .012}$	$0.686 {\pm} .004$	$0.734 {\scriptstyle \pm .020}$
SMOTE	$0.549 {\pm}.005$	$0.791 {\scriptstyle\pm .002}$	$0.891 {\pm}.003$	$0.840 {\pm}.001$	$0.732 {\scriptstyle\pm .001}$	$0.743 {\scriptstyle \pm .005}$	$0.693 {\pm}.003$	$0.683 {\pm}.037$
TabDDPM	$0.550 {\pm}.010$	$0.795 {\scriptstyle \pm .001}$	$0.906 {\pm}.003$	$0.836 {\pm}.002$	$0.737 {\scriptstyle \pm .001}$	$0.755 {\pm}.006$	$0.691 {\pm}.004$	$0.740 {\pm}.020$
Real	$0.556 {\pm}.004$	$0.815 {\pm}.002$	$0.906 {\pm}.002$	$0.857 {\pm}.001$	$0.738 {\scriptstyle \pm .001}$	$0.740 {\scriptstyle \pm .009}$	$0.688 \pm .003$	$0.785 {\scriptstyle \pm .013}$
	FB (R2)	$ ext{GE}(F1)$	$\mathrm{HI}\ (F1)$	HO(R2)	IN (R2)	KI (R2)	MI(F1)	WI(F1)
TVAE	$0.685 {\pm}.003$	$0.434 {\pm}.006$	$0.638 {\pm}.003$	$0.493 \pm .006$	$0.784 {\pm}.010$	$0.824 {\pm}.003$	$0.912 {\scriptstyle \pm .001}$	$0.501 {\scriptstyle \pm .012}$
CTABGAN	_	$0.392 {\pm}.006$	$0.575 {\pm}.004$	_	_	_	$0.889 {\scriptstyle \pm .002}$	$0.906 {\pm .019}$
CTABGAN+	$0.509 {\pm}.011$	$0.406 {\pm}.009$	$0.664 {\pm}.002$	$0.504 {\pm}.005$	$0.797 {\pm}.005$	$0.444 {\pm}.014$	$0.892 {\pm}.002$	$0.798 {\scriptstyle\pm.021}$
SMOTE	$0.803 {\pm}.002$	$\boldsymbol{0.658} {\pm .007}$	$0.722 {\pm}.001$	$0.662 {\pm} .004$	$0.812 {\scriptstyle \pm .002}$	$0.842 {\scriptstyle \pm .004}$	$0.932 {\pm}.001$	$0.913 {\pm}.007$
TabDDPM	$0.713 {\scriptstyle \pm .002}$	$0.597 {\pm}.006$	$0.722 {\pm}.001$	$\boldsymbol{0.677} {\pm}.010$	$0.809 {\pm}.002$	$0.833 {\scriptstyle \pm .014}$	$0.936 {\pm}.001$	$0.904 {\pm}.009$
Real	$0.837 \pm .001$	$0.636 {\pm}.007$	$0.724 {\scriptstyle\pm .001}$	$0.662 {\pm}.003$	$0.814 \pm .001$	$0.907 {\pm}.002$	$0.934 \pm .000$	$0.898 \pm .006$

ML utility with Simple models

	AB (R2)	AD (F1)	BU (F1)	CA (R2)	CAR (F1)	CH (F1)	DE (F1)	DI (F1)	
TVAE	$0.238 {\scriptstyle \pm .012}$	$0.742 {\scriptstyle \pm .001}$	$0.779 {\scriptstyle \pm .004}$	-13.0 ± 1.51	$0.693 {\scriptstyle \pm .002}$	$0.684 {\pm}.003$	$0.643 {\pm}.003$	$0.712 {\scriptstyle \pm .010}$	
CTABGAN	_	$0.737 {\pm}.007$	$0.786 {\pm}.008$	_	$0.684 {\pm}.003$	$0.636 {\pm}.010$	$0.614 {\pm}.007$	$0.655 {\pm}.015$	
CTABGAN+	$0.316 {\pm} .024$	$0.730 {\pm}.007$	$0.837 {\pm}.006$	$-7.59 {\scriptstyle\pm .645}$	$0.708 {\pm}.002$	$0.650 {\pm}.008$	$0.648 {\pm}.008$	$0.727 {\pm}.023$	
SMOTE	$0.400 {\pm}.009$	$0.750 {\pm}.004$	$0.842 {\pm}.003$	$0.667 {\pm}.006$	$0.693 {\pm}.001$	$0.690 {\pm}.003$	$0.649 {\pm}.003$	$0.677 {\pm}.013$	
TabDDPM	$0.392 \pm .009 \ 0.758 \pm .005 \ 0.851 \pm .005$		$0.851 {\pm}.003$	$0.695 {\pm}.002$	$0.696 {\pm}.001$	$0.693 {\pm}.003$	$0.659 {\pm}.003$	$0.675 {\pm}.011$	
Real	$0.423 \pm .009 0.7$		$0.845 {\pm}.004$	$0.663 {\pm}.002$	$0.683 {\pm}.002$	$0.679 {\pm}.003$	$0.648 {\pm}.003$	$0.699 {\scriptstyle \pm .012}$	
	FB (R2)	$ ext{GE}(F1)$	$\mathrm{HI}\ (F1)$	HO(R2)	IN(R2)	KI (R2)	MI(F1)	WI(F1)	
TVAE	≪ 0	$0.372 {\pm}.006$	$0.590 \pm .004$	$0.174 {\scriptstyle\pm.012}$	$0.470 {\scriptstyle \pm .024}$	$0.666 \pm .006$	$0.880 {\pm}.002$	$0.497 {\scriptstyle \pm .001}$	
CTABGAN	_	$0.339 {\pm}.009$	$0.539 {\pm}.006$	_	_	_	$0.856 {\pm}.003$	$0.656 {\pm}.011$	
CTABGAN+	$\ll 0$	$0.373 {\pm}.009$	$0.598 {\pm}.004$	$0.222 {\pm} .042$	$0.669 {\pm}.018$	$0.197 {\pm}.051$	$0.867 {\pm}.002$	$0.653 {\pm}.027$	
SMOTE	$0.651 {\pm}.002$	$0.478 {\pm .005}$	$0.664 {\pm}.003$	$0.394 {\pm}.006$	$0.709 {\pm}.008$	$0.751 {\pm}.005$	$0.860 {\pm}.001$	$0.793 {\pm}.004$	
TabDDPM	$0.527 {\pm}.005$	$0.462 {\pm}.005$	$0.670 {\scriptstyle \pm .002}$	$0.426 {\scriptstyle \pm .007}$	$0.734 {\scriptstyle \pm .007}$	$0.611 {\pm}.013$	$0.850 {\pm}.004$	$0.792 {\scriptstyle \pm .004}$	

Privacy. Distance to closest record

- For each synthetic sample, we find the minimum distance to real datapoints and take the median of these distances
- Low DCR values indicate that all synthetic samples are essentially copies of some real datapoints
- Larger DCR values indicate that the generative model can produce something "new" rather than just copies of real data

TabDDPM vs SMOTE

	AB		AB AD		BU		C	CA		CAR		СН		DE		OI
	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR
SMOTE TabDDPM			9 3/19 5	0.024 0.104												

	FB G		GE		ΙΙ	НО		IN		KI		MI		WI		
V-	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR	score	DCR
SMOTE TabDDPM				0.023 0.059		0.0-0							0.00	0.0-0		

References

- [1] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan
 Veeramachaneni. Modeling tabular data using conditional gan. 2019
- [2] Ctab-gan: Effective table data synthesizing, PMLR 2021
- [3] Ctab-gan+: Enhancing tabular data synthesis. arXiv preprint 2022