Ligand binding site prediction

College of Pharmacy, Seoul National University Juyong Lee

Ligand binding sites are critical in regulating protein functions

- Identifying exact ligand binding site (pocket) is critical for drug discovery
- Two types of mechanisms
 - Competitive / Non-competitive inhibition

Ligand binding pockets

- Ligand

 +

 Binding Site

 Protein with
 Binded Ligand
 - Shape complementarity
- Ligand binding sites (LBS) tend to form concave surfaces
- Shape complementarity is important
- Electrostatic & van der Waals interactions are important
 - H-bond, pi-pi stacking, pi-cation interaction

Ligand binding site prediction algorithms

- Structure-based algorithms
 - Geometry/Energy-based
 - Machine-learning-based

Similarity-based algorithms

Conventional binding site detection

- Geometry-based methods find concave sites by
 - Rolling a probe
 - Using 3D grid
 - Using triangles

Alpha shape and Delaunay triangulation in studies of protein-related interactions, *Briefings in Bioinformatics*, 2012

Traditional structure-based method

Table 1Published 3D structure-based LBS prediction methods.

Method	Type	Feature	Year
A computational procedure (with no specific name) [39]	Probe Energy-based	Contour surfaces at appropriate energy levels are calculated for each probe and displayed wi the protein structure	
POCKET [27]	Spatial Geometry Measurement	Place spheres between atoms and surfaces of pockets are modeled using marching cubes algorithm	1992
SURFNET [40]	Spatial Geometry Measurement	Place spheres at the gap between any two protein atoms	1995
LIGSITE [26]	Spatial Geometry Measurement	Set up some regular 3D meshes to cover the target protein	1997
CAST [41]	Spatial Geometry Measurement	Calculate by using alpha shape and discrete flow theory	1998
CASTp [42,43]	Spatial Geometry Measurement	Use alpha shape and the pocket algorithm [44] developed in computational geometry	2003
QSiteFinder [45]	Probe Energy-based	Use the interaction energy between the protein and a simple van der Waals probe	2005
LIGSITE ^{CSC} [46]	Spatial Geometry Measurement	An extension and implementation of the LIGSITE algorithm by using the Connolly surface	2006
VISCANA [47]	Probe Energy-based	A total energy of the molecule is evaluated by summation of fragment energies and interfragment interaction energies	2006
Fpocket [48]	Spatial Geometry Measurement	Voronoi tessellation and alpha spheres are used to detect pockets	2009
SITEHOUND [28,49]	Probe Energy-based	The carbon probe and phosphate probe used to detect interaction force between the probe and the protein	2009
MSPocket [50]	Spatial Geometry Measurement	Identify surface pocket regions according to the normal vector directions at the vertices on the surface	2010
FTSite [51]	Probe Energy-based	Use 16 different probes on these grids to detect free energy	2011
SiteComp [52]	Probe Energy-based	Discovery of subsites with different interaction properties and for fast calculations of residue contribution to binding sites	2012
LISE [53]	Spatial Geometry Measurement	Compute a score by counting geometric motifs extracted from substructures of interaction networks connecting protein and ligand atoms	2013
Patch-Surfer2. 0 [54]	Spatial Geometry Measurement	Represent and compare pockets at the level of small local surface patches that characterize physicochemical properties of the local regions	2014
CurPocket [55]	Spatial Geometry Measurement	Compute the curvature distribution of protein surface and identify the clusters of concave regions	2019

Computational and Structural Biotechnology Journal 18 (2020) 417–426

Search possible binding pockets by calculating energies with probes

Similarity-based method

 Table 2

 Published template similarity-based LBS prediction methods.

Method	Туре	Feature	Year
ConSurf [56]	Sequence Template-based	Phylogenetic relationships among the sequences and the similarity between the amino acids are taken into account	2003
A Sequence template-based approach with no specific name [57]	Sequence Template-based	An information-theoretic approach for estimating sequence conservation based on Jensen-Shannon divergence	2007
FINDSITE [58]	Structure Template-based	PROSPECTOR 3 threading algorithm and TMalign tool are used	2008
A two-stage template-based LBS prediction method [59]	Structure Template-based	Construct protein's 3D model and use structural clustering of ligand-containing templates on the predicted 3D model	2009
3DLigandSite [29]	Structure Template-based	MAMMOTH is used	2010
FunFOLD [60]	Structure Template-based	Use an automatic approach for cluster identification and residue selection	2011
COFACTOR [61]	Structure and Sequence Template-based	Use global-to-local sequence and structural comparison algorithm	2012
webPDBinder [62]	Structure Template-based	Search a protein structure against a library of known binding sites and a collection of control nonbinding pockets.	2013
S-SITE [31]	Sequence Template-based	Needleman-Wunsch algorithms are used	2013
TM-SITE [31]	Structure and Sequence Template-based	Mix Structure Template-based and Sequence Template-based method	2013

Finding structurally similar ligand binding pockets from the PDB database

Machine-learning based methods

Table 3Traditional machine learning-based LBS prediction and binding affinity research methods.

Method	Machine Learning Algorithm	Year
Knowledge-based QSAR approach [69]	Kernel-Partial Least Squares (K-PLS) [70]	2004
Multi-RELIEF [71]	RELIEF algorithm [72]	2007
SFCscore [73]	multiple linear regression	2008
	partial least squares analysis	
ATPint [74]	Support Vector Machine	2009
ConCavity [75]	K-Means algorithm	2009
MetaPocket [76]	hierarchical clustering	2009
	algorithm [77]	
RF-Score [4]	The Random Forest algorithm	2010
MetaDBSite [78]	Support Vector Machine	2011
NsitePred [79]	Support Vector Machine	2011
NNSCORE [80,81]	Artificial Neural Network	2011
	(shallow neural network [82])	
L1pred [30]	L1-Logreg Regression classifier	2012
TargetS [83]	Support Vector Machine	2013
eFindSite [84]	Support Vector Machine	2013
VitaPred [85]	Support Vector Machine	2013
COACH [31]	Support Vector Machine	2013
LigandRFs [86]	The Random Forest algorithm	2014
OSML [87]	Support Vector Machine	2015
LigandDSES [88]	The Random Forest algorithm	2015
PRANK [89]	The Random Forest algorithm	2015
A method for protein-ligand	Gradient Boosting Regressor	2018
binding affinity prediction [90]	[91]	
SAnDReS [92]	Regression Analysis	2016
P2Rank [93]	The Random Forest algorithm	2018
COACH-D [94]	Support Vector Machine	2018
Taba [95]	Regression Analysis	2019

Table 4Deep learning-based LBS prediction and binding affinity research methods.

Method	Main Goal	Network Type	Year	
A deep learning framework for modeling structural features of RNA-binding protein targets [118]	Binding references modeling of RNA- binding proteins	DBN	2015	
DeepBind [119]	Sequence specificities prediction of DNA- and RNA-binding proteins	CNN	2015	
DeepDTA [3]	Drug-target interaction identification	CNN	2018	
K _{DEEP} [120]	Protein-ligand binding affinity prediction	CNN	2018	
DEEPSite [36]	LBS Prediction	CNN	2017	
DeepCSeqSite [121]	LBS Prediction	CNN	2019	
DeepConv-DTI [122]	Drug-target interaction identification	CNN	2019	
DeepDrug3D [35]	Binding pockets characterization and classification	CNN	2019	
Onionnet [123]	Protein-ligand binding affinity prediction	CNN	2019	

Predicting the propensity of being ligand binding sites from I earning the structural patterns of the existing LBS

Practice

- P2Rank
 - Machine-learning-based algorithm
 - https://prankweb.cz/
- GalaxySite
 - Using an energy-based algorithm
 - https://galaxy.seoklab.org/cgibin/submit.cgi?type=SITE
- Probis-Fold
 - Similarity-based search algorithm using AlphaFold DB
 - http://probis-fold.insilab.org/

