MAE 5834 - Estatística Avançada I

Prova 1 - 2º semestre de 2015 - Prof. Silvia L.P. Ferrari

A prova tem 8 itens, todos com a mesma pontuação. Escolha 7 entre os 8. Indique na primeira página de sua prova qual o item que você decidiu excluir. Boa prova!

1. Sejam X_1,\ldots,X_n observações independentes de X, que tem distribuição beta com parâmetros $\alpha>0$ e $\beta>0$, e função densidade de probabilidade

$$f_{\alpha,\beta}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \mathrm{I}_{(0,1)}(x).$$

Suponha que $\alpha=\beta^2$. Determine uma estatística suficiente minimal para β .

2. Sejam $X \sim b(m,\theta)$ e $Y \sim b(n,\theta^2)$ independentes; m e n são inteiros positivos fixados e $\theta \in (0,1)$ é um parâmetro desconhecido. Mostre que (X,Y) é uma estatística suficiente mas não é completa.

3. Sejam X_1,\ldots,X_n observações independentes de X, que tem função densidade de probabilidade

$$f_{\theta,\gamma}(x) = \frac{(\gamma+1)x^{\gamma}}{\theta^{\gamma+1}}, \ x \in [0,\theta],$$

em que $\theta > 0$ é desconhecido e $\gamma > 0$ é conhecido.

(a) Mostre que $X_{(n)} = \operatorname{maximo}(X_1, \dots, X_n)$ é uma estatística suficiente completa.

(b) Obtenha o estimador não viciado de variância uniformemente mínima de heta.

(c) Obtenha o estimador de máxima verossimilhança de θ .

(d) Mostre que a distribuição de X é uma família de escala. Obtenha o estimador equivariante por escala de risco mínimo para θ sob perda $[(d-\theta)/\theta]^2$. Veja nota ao final da prova.

(e) Suponha que n=1 e que γ seja desconhecido. Mostre que não existe estimador não viciado de γ .

4. Sejam X_1,\ldots,X_n variáveis aleatórias independentes com $X_i\sim N(m_i\mu,m_i\sigma^2)$, para $i=1,\ldots,n$, em que m_1,\ldots,m_n são inteiros positivos conhecidos, e $\mu\in\mathcal{R}$ e $\sigma^2>0$ são desconhecidos. Essa situação ocorre quando se observam os totais de n grupos, em que o i-ésimo grupo é formado de m_i observações independentes de $N(\mu,\sigma^2)$. Encontre os estimadores não viciados de variância uniformemente mínima de μ e σ^2 .

Nota: Seja $\mathbf{X} = (X_1, \dots, X_n)$ com função densidade de probabilidade conjunta

$$f_{\mathbf{X}}(\mathbf{x};\tau) = \frac{1}{\tau^n} f\left(\frac{x_1}{\tau}, \dots, \frac{x_n}{\tau}\right), \quad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n; \ \tau > 0,$$

em que f é conhecida e τ é um parâmetro de escala desconhecido. Considere o problema de estimar τ^r , $r \geq 1$, inteiro. Dizemos que um estimador $\delta(\mathbf{X})$ é equivariante por escala se $\delta(b\mathbf{X}) = b^r \delta(\mathbf{X})$, para todo b>0. Pode-se mostrar que o estimador de Pitman de τ^r , dado por $\delta^*(\mathbf{X})$ sendo

$$\delta^*(\mathbf{x}) = \frac{\int_0^\infty v^{n+r-1} f(vx_1, \dots, vx_n) dv}{\int_0^\infty v^{n+2r-1} f(vx_1, \dots, vx_n) dv},$$

é um estimador equivariante por escala de risco mínimo sob perda $[(d-\tau^r)/\tau^r]^2$.

MAE 5834 - Estatística Avançada I Prova 2 - 2º semestre de 2015 - Prof. Silvia L.P. Ferrari

A prova tem 7 itens, todos com a mesma pontuação. Escolha 6 entre os 7 e indique na primeira página qual o item excluído. Boa prova!

- 1. Suponha que, dado θ , X_1,\ldots,X_n $(n\geq 1)$ sejam variáveis aleatórias independentes e identicamente distribuídas com densidade $f(x|\theta)=\exp(\theta-x),\ x>\theta.$ Considere que a distribuíção a priori para θ é exponencial padrão. Encontre a densidade a posteriori de θ e o estimador de Bayes de θ sob perda quadrática.
- 2. Sejam X_1,\ldots,X_n uma amostra aleatória de uma distribuição de Poisson de média λ . Mostre que $\overline{X}=\sum_{i=1}^n X_i/n$ é estimador minimax de λ sob perda $L(\lambda,d)=(d-\lambda)^2/\lambda$. Sugestão: Considere uma distribuição a priori $\mathrm{Gama}(a,b)$ para λ , com a=1. Use resultados que relacionam estimador de Bayes e minimax, e faça $b\to\infty$.
- 3. Sejam X_1,\ldots,X_n observações independentes de X, que tem função densidade de probabilidade

$$f_{\theta,\gamma}(x) = \frac{(\gamma+1)x^{\gamma}}{\theta^{\gamma+1}}, \ x \in [0,\theta],$$

em que $\theta > 0$ é desconhecido e $\gamma > 0$ é conhecido. Aqui $X_{(n)} = \max_{(n)} (X_1, \dots, X_n)$ é uma estatística suficiente completa (questão da Prova 1).

- (a) Encontre uma quantidade pivotal que depende dos dados apenas através de $X_{(n)}$ e com esta obtenha um intervalo de confiança para θ com coeficiente de confiança $1-\alpha$.
- (b) Obtenha dois testes mais poderosos (distintos) de II : $\theta = \theta_0$ contra $K : \theta = \theta_1$ ($0 < \theta_0 < \theta_1$) de nível $\alpha \in (0,1)$. Obtenha o poder dos testes mais poderosos de H contra K. The mais poderosos
- (c) Admita γ é desconhecido e θ é conhecido. Encontre o teste uniformemente teste mais poderoso de $H: \gamma \leq \gamma_0$ contra $K: \gamma > \gamma_0$ de nível α . Q V in
- (d) Admita γ é desconhecido e θ é conhecido. Obtenha um limite superior de confiança uniformemente mais acurado para γ com coeficiente de confiança $1-\alpha$.
- 4. Faça um breve ensaio intitulado "Suficiência e Verossimilhança".

1

MAE 5834 - Estatística Avançada I Prova 1 - 2º semestre de 2014 - Prof. Silvia L.P. Ferrari

 $\sqrt{1}$. Sejam X_1,\ldots,X_n observações independentes de X_n que tem função densidade de probabilidade

$$f_{\theta}(x) = \frac{2x}{\theta^2}, x \in [0, \theta],$$

em que $\theta > 0$ é desconhecido.

- \checkmark (a) (1 ponto) Mostre que $X_{(n)} = \max_{i \in \mathcal{N}} (X_1, \dots, X_n)$ é uma estatistica suficiente completa.
- \checkmark (b) (1 ponto) Obtenha o estimador não viciado de variância uniformemente mínima (ENVVUM) de θ .
- √(c) (1 ponto) Obtenha o estimador de máxima verossimilhança de H.
- \checkmark (d) (1 ponto) Mostre que a distribuição de X é uma família de escala. Obtenha o estimador equivariante por escala de risco mínimo para θ sob perda $[(d-\theta)/\theta]^2$. Veja nota ao final da prova.
- ✓ 2. ✓(a) (1 ponto) Mostre que se δ é um estimador inadmissível de $g(\theta)$ sob perda quadrática, então $a\delta + b$ é um estimador inadmissível de $ag(\theta) + b$, $a, b \in \mathcal{R}, a \neq 0$.
 - (b) (1 ponto) Mostre que, se δ , ϵ estimador ENVVUM de $g_i(\theta)$, então $\sum_{i=1}^k c_i \delta_i$ ϵ estimador ENVVUM de $\sum_{i=1}^k c_i g_i(\theta)$, em que c_1, \ldots, c_n são constantes quaisquer.
- 3 (2 pontos) Sejam X₁,..., X_n observações independentes de X, que tem distribuição seminormal com função densidade de probabilidade

$$f(x;\xi) = \left(\frac{2}{\pi}\right)^{1/2} \exp\left\{-\frac{(x-\xi)^2}{2}\right\} I_{(\xi+\infty)}(x); \ \xi \in \mathbb{R}.$$

Obtenha uma estatística suficiente minimal para f.

4. (2 pontos) Escreva um breve ensaio sobre famílias exponenciais.

Nota Seja $X = (X_1, \dots, X_n)$ com função densidade de probabilidade conjunta

$$f_{\mathbf{X}}(\mathbf{x};\tau) = \frac{1}{\tau^n} f\left(\frac{x_1}{\tau}, \dots, \frac{x_n}{\tau}\right), \quad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n; \quad \tau > 0,$$

em que f é conhecida e τ é um parâmetro de escala desconhecido. Considere o problema de estimar τ^r , $r \geq 1$, inteiro. Dizemos que um estimador $\delta(\mathbf{X})$ é equivariante por escala se $\delta(b\mathbf{X}) = b^r \delta(\mathbf{X})$, para todo b > 0. Pode-se mostrar que o estimador de Pitman de τ^r , dado por $\delta^r(\mathbf{X})$ sendo

$$\delta^{*}(\mathbf{x}) = \frac{\int_{0}^{\infty} v^{n+r-1} f(vx_{1}, \dots, vx_{n}) dv}{\int_{0}^{\infty} v^{n+2r-1} f(vx_{1}, \dots, vx_{n}) dv},$$

é um estimador equivariante por escala de risco mínimo sob perda $[(d-\tau^r)/\tau^r]^2$.

MAE 5834 - Estatística Avançada I Prova 2 - 2º semestre de 2014 - Prof. Silvia L.P. Ferrari

A prova tem 7 itens, todos com a mesma pontuação. Boa proval

1. Suponha que, dado θ ($\theta > 0$), $X_1 = A_n$ sejam variáveis aleatórias independentes e identicamiente distribuição com distribuição $U(0,\theta)$, $\theta > 0$. Considere uma distribuição a priori Pareto (α, γ) para θ com densidade

 $p(\theta) = \frac{\alpha \gamma^{\alpha}}{\alpha + 1}, \quad 0 < \gamma < \theta, \quad \alpha > 0$

Encontre o estimador de Bayes de fi sob perda quadrática

- 2 Sejam X₁, ... X_n variáveis aleatónas independentes e identicamente distribuidas de acordo rum uma distribuição de Pareto (β, γ). A densidade de Pareto é dada na questão 1. Admita que γ é conhecido.
- \sqrt{a}) Mostre que $Q=2\sum B\log(X_{C/1})\sim \chi_{2m}^2$ e é, portanto, uma quantidade pivotal. Construa um intervalo de confiança para β com coeficiente de confiança 1-m baseado em Q.
- (b) Obtenha um limite superior de confiança uniformemente mais acurado para 5 com coeficiente de confiança 1 - α
- \checkmark (c) Obtenha o teste uniformemente mais poderoso de Π . $\beta \le \beta_0$ contra $(\beta > \beta_0 \mid \beta_0 > 0)$ de nivel $\alpha \in (0,1)$
- $\sqrt{3}$. Seja $\mathbf{X}=(X_1,\ldots,X_n)$ um vetor de variáveis aleatorias independentes é identicamente distribuidas com distribuição de Bernoullirja. Considere o problema de estimar p com perda quadrática. Mostre que $\overline{X}=\sum_{i=1}^n X_i/n$ não é estimador mininax de p comparando seu risco com o do estimador aleatorizado $T(\mathbf{X})$ que é igual a \overline{X} com probabilidade n/(n+1) e 1/2 com probabilidade 1/(n+1)
- 4. Faca um breve ensaio sobre métodos de estimação poritual.