2.3 Derivadas parciais

2.3.1 Derivadas parciais de 1^a ordem

Seja I um intervalo aberto de \mathbb{R} . A função $f:I\to\mathbb{R}$ é diferenciável no ponto $a\in I$ quando existe

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Ao número real f'(a) chamamos derivada de f em a.

Esta definição não se generaliza para funções f reais de n > 1 variáveis pois não faz sentido dividir um número real f(x) - f(a) por um vector x - a.

Definimos derivadas parciais de uma função f de n variáveis fixando todas as variáveis excepto uma.

Definição 2.32. Sejam $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ uma função e (a,b) um ponto interior de D.

1. Diz-se que f tem **derivada parcial em ordem a** x **no ponto** (a,b) quando existe

$$f_x(a,b) = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}.$$

O número real $f_x(a,b)$ chama-se derivada parcial de f em ordem a x no ponto (a,b).

2. Diz-se que f tem derivada parcial em ordem a y no ponto (a, b) quando existe

$$f_y(a,b) = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b}.$$

O número real $f_y(a,b)$ chama-se derivada parcial de f em ordem a y no ponto (a,b).

As derivadas parciais de f em ordem a x e a y no ponto $(a,b), f_x(a,b)$ e $f_y(a,b)$, também se denotam, respectivamente, por $\frac{\partial f}{\partial x}(a,b)$ e $\frac{\partial f}{\partial y}(a,b)$.

Observação 2.33. Sejam $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ uma função e (a,b) um ponto interior de D.

1. Define-se a função

$$\varphi: \{x \in \mathbb{R}: (x,b) \in D\} \to \mathbb{R}$$

$$x \to f(x,b) .$$

A função f tem derivada parcial em ordem a x no ponto (a,b) quando e só quando φ é diferenciável em a. Se $f_x(a,b)$ existe, então $f_x(a,b) = \varphi'(a)$.

2. Define-se a função

$$\psi: \{y \in \mathbb{R} : (a,y) \in D\} \longrightarrow \mathbb{R}$$
$$y \longrightarrow f(a,y) .$$

A função f tem derivada parcial em ordem a y no ponto (a,b) quando e só quando ψ é diferenciável em b. Se $f_y(a,b)$ existe então $f_y(a,b)=\psi'(b)$.

Exemplos 2.34. 1. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = xy + e^x y^2$. Determinemos $f_x(0,1)$, $f_x(\pi,1)$, $f_y(1,2)$ e $f_y(1,\pi)$.

Define-se $\varphi(x) = f(x,1) = x + e^x$. Então $\varphi'(x) = 1 + e^x$, logo

$$f_x(0,1) = \varphi'(0) = 1 + 1 = 2,$$
 $f_x(\pi,1) = \varphi'(\pi) = 1 + e^{\pi}.$

Define-se também $\psi(y)=f(1,y)=y+ey^2$. Então $\psi'(y)=1+2ey$, donde

$$f_y(1,2) = \psi'(2) = 1 + 4e,$$
 $f_y(1,\pi) = \psi'(\pi) = 1 + 2e\pi.$

2. Seja $g(x,y) = \begin{cases} xy, & \text{se } y \neq 1 \\ y - \cos x, & \text{se } y = 1 \end{cases}$. Determinemos $g_x(\pi,1)$ e $g_y(\pi,1)$.

Define-se $\varphi(x) = g(x,1) = 1 - \cos x$. Temos $g_x(x,1) = \varphi'(x) = \sin x$, logo $g_x(\pi,1) = \varphi'(\pi) = 0$.

Define-se

$$\psi(y) = g(\pi, y) = \left\{ \begin{array}{ll} \pi y, & \text{se } y \neq 1 \\ 2, & \text{se } y = 1 \end{array} \right..$$

Ora,

$$\lim_{y \to 1} \psi(y) = \lim_{y \to 1} \pi y = \pi \neq 2 = \psi(1).$$

Como ψ não é contínua em $y=1, \psi$ também não é diferenciável em y=1. Conclui-se que não existe $g_y(\pi,1)$.

Observação 2.35. Uma função pode ter derivadas parciais num ponto e não ser contínua nesse ponto. Por exemplo, a função

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^6 + y^3}, & \text{se } y \neq -x^2 \\ xy, & \text{se } x = -y^2 \end{cases}$$

tem derivadas parciais $f_x(0,0) = 0$ e $f_y(0,0) = 0$, mas não é contínua em (0,0).

Definição 2.36. Sejam $f:D\subseteq\mathbb{R}^3\to\mathbb{R}$ uma função e (a,b,c) um ponto interior de D.

1. Diz-se que f tem **derivada parcial em ordem a** x **no ponto** (a, b, c) quando existe

$$f_x(a, b, c) = \lim_{x \to a} \frac{f(x, b, c) - f(a, b, c)}{x - a}.$$

O número real $f_x(a, b, c)$ chama-se derivada parcial de f em ordem a x no ponto (a, b, c).

2. Diz-se que f tem derivada parcial em ordem a g no ponto (a,b,c) quando existe

$$f_y(a, b, c) = \lim_{y \to b} \frac{f(a, y, c) - f(a, b, c)}{y - b}.$$

O número real $f_y(a, b, c)$ chama-se derivada parcial de f em ordem a y no ponto (a, b, c).

3. Diz-se que f tem derivada parcial em ordem a z no ponto (a, b, c) quando existe

$$f_z(a, b, c) = \lim_{z \to c} \frac{f(a, b, z) - f(a, b, c)}{z - c}.$$

O número real $f_z(a, b, c)$ chama-se derivada parcial de f em ordem a z no ponto (a, b, c).

As derivadas parciais de f em ordem a x, a y e a z no ponto (a,b,c), $f_x(a,b,c)$, $f_y(a,b,c)$ e $f_z(a,b,c)$, também se denotam, respectivamente, por

$$\frac{\partial f}{\partial x}(a,b,c), \quad \frac{\partial f}{\partial y}(a,b,c), \quad \frac{\partial f}{\partial z}(a,b,c).$$

Observação 2.37. Sejam $f:D\subseteq\mathbb{R}^3\to\mathbb{R}$ uma função e (a,b,c) um ponto interior de D.

1. Define-se a função

$$\varphi: \{x \in \mathbb{R}: (x, b, c) \in D\} \longrightarrow \mathbb{R}$$

$$x \to f(x, b, c).$$

Se φ for diferenciável em a então $\varphi'(a)$ é a derivada parcial de f em ordem a x em $(a,b,c), f_x(a,b,c)$.

2. Define-se a função

$$\psi: \{y \in \mathbb{R} : (a, y, c) \in D\} \rightarrow \mathbb{R}$$

$$y \rightarrow f(a, y, c)$$

Se ψ for diferenciável em b então $\psi'(b)$ é a derivada parcial de f em ordem a y em (a, b, c), $f_u(a, b, c)$.

3. Definimos a função

$$\eta: \{z \in \mathbb{R}: (a,b,z) \in D\} \longrightarrow \mathbb{R}$$

$$z \longrightarrow f(a,b,z).$$

Se η for diferenciável em c então $\eta'(c)$ é a derivada parcial de f em ordem a z em (a, b, c), $f_z(a, b, c)$.

2.3.2 Plano tangente

Sejam $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função e (a, b) um ponto interior de D.

1. Seja C_1 a curva que resulta da intersecção da superfície de equação z=f(x,y) e do plano y=b.

Se $f_x(a,b)$ existe, então $f_x(a,b)$ é o declive da recta t_1 contida no plano y=b que é tangente à curva C_1 no ponto (a,b,f(a,b)). A recta t_1 é definida pelas equações

$$y = b,$$
 $z - f(a, b) = f_x(a, b)(x - a).$

Diz-se que $f_x(a,b)$ é o **declive** da superfície z=f(x,y) na direcção 0X, no ponto (a,b,f(a,b)).

2. Seja C_2 a curva que resulta da intersecção da superfície de equação z=f(x,y) e do plano x=a.

Se $f_y(a,b)$ existe, então $f_y(a,b)$ é o declive da recta t_2 contida no plano x=a que é tangente à curva C_2 no ponto (a,b,f(a,b)). A recta t_2 é definida pelas equações

$$x = a,$$
 $z - f(a, b) = f_y(a, b)(y - b).$

Diz-se que $f_y(a,b)$ é o **declive** da superfície z=f(x,y) na direcção 0Y, no ponto (a,b,f(a,b)).

Exemplos 2.38. Seja $f(x, y) = x^2y + 5y^3$.

- 1. O declive da superfície $z=x^2y+5y^3$ segundo o eixo 0X no ponto (1,-2,-42) é $f_x(1,-2)=-4$.
- 2. As equações cartesianas da recta tangente à superfície $z=x^2y+5y^3$ no ponto (1,-2,-42) e contida no plano y=-2:

$$z + 42 = -4(x - 1), \quad y = -2.$$

- 3. O declive da superfície $z=x^2y+5y^3$ segundo o eixo 0Y no ponto (1,-2,-42) é $f_y(1,-2)=61$.
- 4. As equações cartesianas da recta tangente à superfície $z=x^2y+5y^3$ no ponto (1,-2,-42) e contida no plano x=1:

$$z + 42 = 61(y + 2), \quad x = 1.$$

Seja Π o plano que contém as rectas t_1 e t_2 definidas atrás

$$t_1: y = b, z - f(a,b) = f_x(a,b)(x-a)$$

$$t_2: \quad x = a, \quad z - f(a, b) = f_y(a, b)(y - b)$$

O plano Π contém o ponto (a, b, f(a, b)) e é perpendicular ao vector $(f_x(a, b), f_y(a, b), -1)$. Assim, Π tem uma equação cartesiana

$$((x, y, z) - (a, b, f(a, b))) \cdot (f_x(a, b), f_y(a, b), -1) = 0$$
, ou seja,
 $f_x(a, b)(x - a) + f_y(a, b)(y - b) - (z - f(a, b)) = 0$.

Definição 2.39. Se f é **diferenciável** em (a,b) (definição à frente), então o plano Π de equação cartesiana

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0.$$

diz-se **plano tangente** à superfície z = f(x, y) no ponto (a, b, f(a, b)). A recta que contém (a, b, f(a, b)) e é perpendicular ao plano Π tem equação vectorial

$$(x, y, z) = (a, b, f(a, b)) + \lambda(f_x(a, b), f_y(a, b), -1), \quad \lambda \in \mathbb{R}$$

e diz-se **recta normal** à superfície z = f(x, y) no ponto (a, b, f(a, b)).

2.3.3 Função derivada parcial de ordem $m \ge 2$

Definição 2.40. Um conjunto $S \subseteq \mathbb{R}^n$ não vazio diz-se **aberto** se todos os seus pontos são pontos interiores de S.

Exemplos 2.41. 1. O conjunto $S = \{x, y\} \in \mathbb{R}^2 : x = 1\}$ não é aberto.

- 2. O conjunto $T=\{(x,y)\in\mathbb{R}^2: x>0,\ x+y\leq 2\}$ não é aberto .
- 3. O conjunto $M = \{(x, y) \in \mathbb{R}^2 : x > 0, y < 2\}$ é aberto.

Definição 2.42. Suponha-se $D \subseteq \mathbb{R}^2$ é um aberto e que a função $f: D \to \mathbb{R}$ tem derivadas parciais relativamente à variável x em todos os pontos (x,y) de D. Então $f_x(x,y)$ é uma função definida em D, dita função derivada parcial de primeira ordem relativamente à variável x. A função f_x é uma função de duas variáveis reais e é possível definir as suas derivadas parciais num ponto (a,b), caso existam. A derivada parcial de f_x no ponto (a,b) relativamente a x denota-se por

$$f_{x^2}(a,b)$$
 ou $\frac{\partial^2 f}{\partial x^2}(a,b)$.

A derivada parcial de f_x no ponto (a, b) relativamente a y denota-se por

$$f_{xy}(a,b)$$
 ou $\frac{\partial^2 f}{\partial u \partial x}(a,b)$.

No caso da derivada $f_{x^2}(x,y)$ existir em todos os pontos (x,y) de D, então $f_{x^2}(x,y)$ é uma função definida em D, dita **função derivada parcial de segunda ordem** relativamente à variável x. A função f_{x^2} é uma função de duas variáveis reais e é possível definir as suas derivadas parciais num ponto (a,b), caso existam.

No caso da derivada $f_{xy}(x,y)$ existir em todos os pontos (x,y) de D, então $f_{xy}(x,y)$ é uma função definida em D, dita **função derivada parcial de segunda ordem** relativamente às variáveis x e y. A função f_{xy} é uma função de duas variáveis reais e é possível definir as suas derivadas parciais num ponto (a,b), caso existam.

Definição 2.43. Sejam $D \subseteq \mathbb{R}^3$ um aberto e $f: D \to \mathbb{R}$ uma função.

As funções derivadas parciais de primeira ordem de f, caso existam, denotam-se por

$$f_x(P), f_y(P), e f_z(P).$$

As funções derivadas parciais de segunda ordem de f, caso existam, denotam-se por

$$f_{x^2}(P), f_{xy}(P), f_{xz}(P), f_{yx}(P), f_{yz}(P), f_{yz}(P), f_{zx}(P), f_{zy}(P), f_{z^2}(P).$$

Algumas funções derivadas parciais de terceira ordem de f, caso existam, denotam-se por

$$f_{x^3}(P), f_{x^2y}(P), f_{x^2z}(P), f_{xyx}(P), f_{xy^2}(P),$$

$$f_{xyz}(P), f_{zx^2}(P), f_{zy^2}(P), f_{zyz}(P),$$

$$f_{xzx}(P), f_{xzy}(P), f_{xz^2}(P), f_{yx^2}(P),$$

$$f_{yxy}(P), f_{yz^2}(P), f_{zxy}(P), f_{zyx}(P), f_{z^3}(P).$$

Exemplo 2.44. Quando dois resistores de resistências R_1 ohms e R_2 ohms são ligados em paralelo, a sua resistência combinada R em ohms é

$$R = \frac{R_1 R_2}{R_1 + R_2}.$$

Então

$$\frac{\partial^2 R}{\partial R_1^2} \frac{\partial^2 R}{\partial R_2^2} = \frac{4R^2}{(R_1 + R_2)^2}.$$

Teorema 2.45 (Teorema de Clairaut-Schwarz). Seja $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função e seja (a,b) um ponto interior de D. Se as derivadas parciais f_{xy} e f_{yx} são contínuas numa bola aberta contendo (a,b) então $f_{xy}(a,b) = f_{yx}(a,b)$.

O resultado anterior estende-se a funções com mais que duas variáveis e a derivadas de ordens superiores a 2.

Proposição 2.46. Seja $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função definida num conjunto aberto D. Se f tem todas as derivadas parciais de ordem $k \geq 2$ e estas são contínuas no conjunto D, então no cálculo de qualquer derivada parcial de f de ordem $i \in \{2, \ldots, k\}$, a ordem pela qual se efectuam as derivações é arbitrária.

Exemplo 2.47 (A equação da onda). Considere uma corda vibrante de comprimento L, presa nos seus extremos x=0 e x=L, que na sua posição de equilíbrio coincide com o eixo 0X. Observe-se que cada ponto da corda tem movimento paralelo ao eixo 0Y. A posição (isto é, a ordenada) de cada ponto da corda depende da sua abcissa x e do instante t considerado e, portanto, é dada por uma função u(x,t) que depende de x e de t.

No instante $t=t_0$ fixo, a função $u(x,t_0)$ descreve a forma da corda, a derivada parcial $u_x(x,t_0)$ é o declive da corda no ponto de abcissa x, e $u_{x^2}(x,t_0)$ indica se a corda tem concavidade para cima ou para baixo no ponto x.

Para um dado x_0 , a função $u(x_0,t)$ depende apenas de t e $u(x_0,t)$ indica a posição do ponto x_0 em cada instante t. A derivada parcial $u_t(x_0,t)$ é a função velocidade do ponto x_0 e $u_{t^2}(x_0,t)$ dá-nos a aceleração do ponto x_0 .

Mostra-se que, nas condições apropriadas, a função u(x,t) satisfaz a equação diferencial, dita equação da onda,

$$u_{t^2}(x,t) = c^2 u_{x^2}(x,t),$$

onde c é uma constante positiva que depende das características físicas da corda.

Mostre que $u(x,t) = \sin(x-ct)$ é solução da equação da onda.