முழுப் பதிப்புரிமை உடையது / All Rights Reserved]

MORA E-TAMILS 2023 | Tamil Stude Good of Interesting of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2023 | Tamil Students, Faculty of Engineering, University of Moratuwa |

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2023 General Certificate of Education (Adv.Level) Pilot Examination - 2023

இணைந்த கணிதம் I Combined Mathematics I 10 T I

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவு செய்வதந்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதந்கும் மேலதிக வாசிப்பு நேரத்தை பயன்படுத்துக.

சுட்டெண்:-

அறிவுறுத்தல்கள்:

- lacktriangle இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- ❖ பகுதி A:
- ❖ எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- 💠 பகுதி B:
 - ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- lacktriangle ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது பகுதி B யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- ❖ வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10)) இணைந்த கணி	ிதம் I
பகுதி	வினா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	_

LОIT		

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீப	ட்சகர்:	
பரிசீலித்தவர்:	1.	
	2.	
மேற்பார்வை செய்	தவர்:	

பகுதி А

1.	கணிதத் தொகுத்தறிவுக் கோட்பாட்டைப் பயன்படுத்தி எல்லா $n\in\mathbb{Z}^+$ இற்கும் $\sum_{r=1}^n 5ig(3^{r-1}ig)=rac{5}{2}ig(3^n-1ig)$ என
	r=1 2 நிறுவுக.
2.	ஒரே வரிப்படத்தில் $y = \frac{1}{2}x - x-1 $, $y = 4x-3 $ ஆகியவற்றின் வரைபுகளைப் பரும்படியாக வரைக.
	$\frac{1}{2}$
	-
	x-2 x-2
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	இதிலிருந்து அல்லது வேறுவிதமாக சமனிலி $\frac{x-2 x-2 }{ 2x-3 } \ge 4$ ஐத் திருப்தியாக்கும் x இன் எல்லா

3.	ஓர் ஆகண் வரிப்படத்தில் $-\pi < Arg\left(\frac{-\left(\sqrt{3}i+1\right)}{2z}\right) < -\frac{\pi}{3}, \left z\right \leq 2$ என்னும் நிபந்தனைகளைத் திருப்தியாக்கும்
	சிக்கலெண்கள் z ஐ வகைகுறிக்கும் பிரதேசம் R ஐ நிழற்றுக. பிரதேசம் R இல் $\frac{3\sqrt{3}}{2} - \frac{3}{2}i$ ஆனது
	இருப்பதில்லை எனக்காட்டுக.
4.	$\left(3x^3+\frac{6}{x^2}\right)^5, \left(x^2+\frac{9a}{x^2}\right)^4$ எனும் ஈருறுப்பு விரிவுகளில் x ஐச் சாராத உறுப்புக்கள் முறையே p,q ஆகும்.
	$20 imes 3^{5}$, p,q ஆகியன ஒரு கூட்டல் விருத்தியின் அடுத்துள்ள மூன்று உறுப்புக்கள் ஆகவும் $a>0$ ஆகவும்
	இருப்பின் $a=\sqrt{70}$ எனக் காட்டுக.

5.	$\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{\sin^2 2x + x^2} = 0$ எனக் காட்டுக.
	2
6	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U.	$y = \frac{1}{\sqrt{1 + \frac{1}{2}}}, x = 1, x = d, y = 0$ ஆகிய வளையிகளினால் உள்ளடக்கப
U.	$y = \frac{3}{\sqrt{4x-3}}$, $x = 1$, $x = a$, $y = 0$ ஆகிய வளையிகளினால் உள்ளடக்கப் படும் பிரகேசக்கின் பாப்பளவ அருகிலுள்ள உருவில் நிழந்நிக்
υ.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழற்றிக் $y = \frac{3}{\sqrt{1 + (1 + 1)^2}}$
0.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்றிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்றிய பிரதேசம் x – அச்சைப்பந்றி 2π
0.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
0.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
0.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்நப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் 9π
0.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்
U.	படும் பிரதேசத்தின் பரப்பளவு அருகிலுள்ள உருவில் நிழந்நிக் காட்டப்பட்டுள்ளது. இதன் பரப்பளவு 3 சதுர அலகுகள் எனின் a இன் பெறுமானத்தைக் கண்டு, நிழந்நிய பிரதேசம் x – அச்சைப்பந்நி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும்

(x + y) (x – அத்துடன் <i>P</i>	വിക് ച		படட 🛭	പ്രവരവര	யலி	$\lambda + \angle y$	1 – 0	எனிற	രമാഥ	ት応@	சுமாந்த	ய	010011001	(
					π								0.00	
இன் பெறுமா	னத்தைக்	காண்க.	இங்கு	0 < 6	$\theta < \frac{\pi}{2}$	ஆகும்.								
						• • • • • • • • • • • • • • • • • • • •								
						• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •						
						• • • • • • • • • • • • • • • • • • • •								
								• • • • • • • • • • • • • • • • • • • •						
						• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •						
			• • • • • • • • • • • • • • • • • • • •											
						• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •						
								• • • • • • • • • • • • • • • • • • • •						••
			• • • • • • • • • • • • • • • • • • • •									••••		••
			• • • • • • • • • • • • • • • • • • • •									••••		••
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •						• •
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	• • • • • • •	•••••	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • •		• • • • •		••
ax + 2by + 3a						 இ ரு			 இடை					
ax + 2by + 3a	b = 0, bx	-2ay-	3a = 0) ส	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	Ъ
<i>ax</i> + 2 <i>by</i> + 3 <i>i</i> <i>x</i> – அச்சிற்கு	b = 0, bx சமாந்தர	– 2 <i>ay</i> – ரமாகவும்	3a = 0) ส	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3a	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	Ъ
ax + 2by + 3ம x – அச்சிந்கு காண்க. இங்கு	b=0,bx சமாந்தர த $a,b eq$	– 2 <i>ay</i> – ரமாகவும் 0.	3a=0 செல்) எ	னும்	9 U	நேர்சே	ளடுக ள்	இடை	_வெட்(நம்	புள்ள	ിധിത്വ	·G

9.	முதலாம் கால்வட்டத்தில் அமையும் r ஆரையுடைய வட்டம் S ஆனது நேர் x – அச்சை தொடுகின்றது.
	உந்பத்தியிலிருந்து வட்டம் S இந்கு வரையப்படும் தொடலியின் நீளம் 3 அலகு ஆகும். $A\equiv (5,3)$ எனும்
	புள்ளியானது வட்டம் S இந்கு வெளியே இருப்பின் $r<rac{13}{6}$ எனக்காட்டுக. உற்பத்தியிலிருந்து S இன்
	மையத்திற்கான தூரம் $\dfrac{3\sqrt{5}}{2}$ எனின் S இன் சமன்பாட்டைக் காண்க.
10.	$k\in\mathbb{R},\ 0\leq\theta\leqrac{\pi}{6}$ ஆக $x=(2\cos\theta+1)(2\cos\theta-1),\ y=\cos ec heta$ எனக்கொள்க. $x=ky$ எனின்
	$0 \le k \le 1$ எனக்காட்டி $k = \frac{1}{2}$ ஆக $\theta = \frac{\pi}{18}$ எனக் காட்டுக.

முழுப் பதிப்புரிமை உடையது / All Rights Reserved]

MORA E-TAMILS 2023 | நாழ் நாழ்க்கு நாழ்கள் நாழ்கள் கூடிய நாழ்கள் கூடிய

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2023 General Certificate of Education (Adv.Level) Pilot Examination - 2023

இணைந்த கணிதம் I
Combined Mathematics I

10 T I

பகுதி B

- ₩ ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11. (a) |k| > 1 இந்கு, α , β ($<\alpha$) ஐ மூலங்களாகவுடைய சமன்பாடு $f(x) = kx^2 + 2k(k-2)x + 1 = 0$ எனவும், γ , δ ($<\gamma$) ஐ மூலங்களாகவுடைய சமன்பாடு $g(x) = x^2 + 2kx + k = 0$ எனவும் கொள்வோம். α , β இரண்டும் நேர் எனத் தரப்பட்டுள்ளது. k இன் பெறுமான வீச்சைக் காண்க. மேலும் γ , δ இரண்டும் மெய்யானவை எனவும் மறையானவை எனவும் காட்டுக.

அத்துடன் $\gamma-\delta=2\sqrt{k\left(k-1\right)}$ எனவும் காட்டுக.

 $p=lpha\gamma-eta\delta$ எனவும் $q=eta\gamma-lpha\delta$ எனவும் கொள்க. $pq,\ p+q$ ஆகியவற்றை k இன் சார்பில் காண்க. அத்துடன் $eta\gamma>lpha\delta$ எனவும் $lpha\gamma>eta\delta$ எனவும் காட்டுக.

இதிலிருந்து, $\left|\alpha\gamma-\beta\delta\right|,\left|\beta\gamma-\alpha\delta\right|$ இனை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $x^2-4(2-k)\sqrt{k(k-1)}\,x-4k(k-1)(k-3)=0$ எனக் காட்டுக.

 $(b\)\ f(x) = 4ax^3 + 10bx^2 + cx + 15$ எனவும் $g(x) = ax^2 - 5x + b$ எனவும் கொள்வோம். இங்கு $a,c \in \mathbb{Z}^+$ உம் $b \in \mathbb{Z}^-$ ஆகும். g(x) என்பது f(x) இன் காரணி எனவும் g'(x) இனை (x-1) இனால் வகுக்க வரும் மீதி (-1) எனவும் தரப்படின் a,b,c இன் பெறுமானங்களைக் காண்க. a,b,c இன் இப் பெறுமானங்களிற்கு f'(x) + g'(x) + 4x இனை முற்றாகக் காரணிப்படுத்துக.

(இங்கு f'(x), g'(x) ஆனது x குறித்து முறையே f(x), g(x) இன் பெறுதிகளாகும்.)

- 12. (*a*) ஒவ்வொருவருக்கும் குறைந்தபட்சம் ஒரு பேனையேனும் கிடைக்கத்தக்கதாக நான்கு நீலநிறப் பேனைகளும், ஆறு கறுப்புநிறப் பேனைகளும், மூன்று சிவப்புநிறப் பேனைகளும் ஆறு மாணவர்களிடையேயும் நான்கு ஆசிரியர்களிடையேயும் பகிர்ந்துகொள்ள வேண்டியுள்ளது.
 - (i) ஏழு பேருக்கு ஒரு பேனை வீதமும் எஞ்சிய மூவரில் ஒருவருக்கு இரு நீலநிறப் பேனைகளும் மற்றொருவருக்கு இரு கறுப்புநிறப் பேனைகளும் எஞ்சியவருக்கு இரு சிவப்புநிற பேனைகளும்
 - (ii) ஒரு ஆசிரியருக்கு மூன்று சிவப்புநிறப் பேனைகளும் ஒரு மாணவருக்கு ஏதாவது இரு பேனைகளும், எஞ்சிய எட்டுப் பேருக்கு ஒவ்வொரு பேனை வீதமும்
 - (iii) ஒரு ஆசிரியருக்கு ஒரே நிற இரு பேனைகளும், குறித்த ஆசிரியர் பெற்ற நிறப் பேனை மாணவர்கள் பெறாதவண்ணம், மாணவர் ஒருவருக்கு இரு பேனைகள் வீதம் இரு மாணவர்களுக்கு ஒரே நிற நான்கு பேனைகளும், எஞ்சிய ஏழு பேருக்கு ஒவ்வொரு பேனை வீதமும்

கிடைக்கும் வெவ்வேறு விதங்களின் எண்ணிக்கையைக் காண்க.

$$(b)$$
 $r\in\mathbb{Z}^+$ இந்கு $U_r=rac{3r^2-r-3}{3(r+1)!}$ எனக் கொள்வோம்

$$r \in \mathbb{Z}^+$$
 இற்கு $U_r = \frac{A}{(r+1)!} + \frac{B}{r!} + \frac{C}{(r-1)!}$ ஆக இருக்கத்தக்கதாக A,B,C ஆகிய

மெய்ம்மாநிலிகளின் பெறுமானங்களைத் துணிக. **இதிலிருந்து,** $r\in\mathbb{Z}^+$ இந்கு $\frac{1}{3^{r-1}}\,U_r=f(r)-f(r-1)$

ஆக இருக்கத்தக்கதாக
$$f(r)$$
 ஐக் கண்டு, $n\in\mathbb{Z}^+$ இந்கு $\sum_{r=1}^n \ \frac{1}{3^{r-1}}\ U_r = -\,\frac{n}{3^n(n+1)!}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^{\infty} rac{1}{3^{r-1}} \, U_r$ ஒருங்குகின்றதென உய்த்தறிந்து, அதன் கூட்டுத்தொகையைக் காண்க.

$$V_r = \left(rac{1}{3^r} \;\; U_{r+1}
ight) + k \left(rac{1}{3^{r-2}} \;\; U_{r-1}
ight)$$
 எனக் கொள்க.

 $\sum_{r=1}^{\infty} \ V_r = rac{1}{12}$ ஆக இருக்கத்தக்க மெய்ம் மாநிலி k இன் பெறுமானத்தைக் காண்க.

13. (a) $\mathbf{A} = \begin{pmatrix} a-1 \\ 1 & 0 \end{pmatrix}$ எனக்கொள்வோம்; எல்லா $a \in \mathbb{R}$ இந்கும் A^{-1} இருக்கின்றதெனக் காட்டுக.

$$P = \begin{pmatrix} 4 & 7 & 4 \\ 0 & -1 & 3 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -1 & 0 \end{pmatrix}, \ R = \begin{pmatrix} -2 & 0 \\ 4 & 1 \end{pmatrix}$$
 ஆகிய தாயங்கள் $A^2R = A - PQ^T$ ஆக

இருக்கத்தக்கதாக உள்ளன. a=2 எனக் காட்டுக.

a இன் இப்பெறுமானத்திற்கு A^{-1} ஐ எழுதி, **இதிலிருந்து** $2A^2 - AX + 4I = 0$ ஆக இருக்கத்தக்கதாக தாயம் X ஐக் காண்க.

(b) $x,y\in\mathbb{R}$ ஆயிருக்க z=x+iy என்பது ஓர் சிக்கலெண்ணை வகைகுநிப்பின் z இன் மட்டு $\left|z\right|$ ஐயும் z இன் உடன்புணரிச்சிக்கலெண் \overline{z} ஐயும் எழுதுக.

 $\left|z\right|^2=z\overline{z}$ எனவும், $z-\overline{z}=2i\,\mathrm{Im}(z)$ எனவும் காட்டி, **இதிலிருந்து,**

$$\left|z-2i\right|^2=\left|z\right|^2-4\operatorname{Im}(z)+4$$
 எனவும், $\left|1+2iz\right|^2=4\left|z\right|^2-4\operatorname{Im}(z)+1$ எனவும் காட்டி, $\left|1+4iz\right|^2$ இந்கு இயல்பொத்த கோவையைப் பெற்று, $\left|z-2i\right|<\left|1+2iz\right|$ இனையும், $2\left|z-2i\right|^2\geq\left|1+4iz\right|^2$ இனையும் ஒருங்கே திருப்தி செய்யும் பிரதேசத்தில் $\frac{3}{4}+\frac{3\sqrt{3}}{4}i$ எனும் சிக்கலெண் இருக்கும் எனக் காட்டுக.

(c) $z=\cot heta$ $(\cot heta+2i)$ எனவும் $n\in\mathbb{Z}^+$ எனவும் $k\in\mathbb{R}$ இற்கு $heta
eq k\pi$ எனவும் கொள்வோம்.

தமோய்வரின் தேற்றத்தைப் பயன்படுத்தி $(z-1)^n=\cos ec^{2n}\theta\,(\cos 2n\theta+i\sin 2n\theta)$ எனக் காட்டுக. **இதிலிருந்து** $(\overline{z}-1)^n$ இற்கு ஓர் இயல்பொத்த கோவையைப் பெற்று $(z-1)^n+(\overline{z}-1)^n=2\cos ec^{2n}\theta\,\cos 2n\theta$ எனக் காட்டுக.

 $(z-1)^{2023} + (\overline{z}-1)^{2023} = 0$ இனைத் தீர்க்க.

14. (*a*) $x \neq 2$ இற்கு $f(x) = \frac{x(x+4)}{(x-2)^2}$ எனக்கொள்வோம்.

f(x) இன் பெறுதி f'(x) ஆனது $x \neq 2$ இந்கு $f'(x) = \frac{-8(x+1)}{(x-2)^3}$ இனால் தரப்படுகின்றதெனக்

காட்டுக. **இதிலிருந்து,** f(x) அதிகரிக்கும் ஆயிடையையும் f(x) குறையும் ஆயிடைகளையும் காண்க.

காட்டுக.

அத்துடன், f(x) இன் திரும்பற் புள்ளியின் ஆள்கூறுகளையும் காண்க. $x \neq 2$ இற்கு $f''(x) = \frac{8(2x+5)}{(x-2)^4}$ எனத் தரப்பட்டுள்ளது. y = f(x) இன் வரைபின் விபத்திப் புள்ளியின் ஆள்கூறுகளைக் காண்க. அணுகுகோடுகள், திரும்பற்புள்ளி, விபத்திப் புள்ளி, ஆகியவற்றைக் காட்டி, y = f(x) இன் வரைபைப் பரும்படியாக வரைக.

 $(-\infty,k$] மீது f(2x) ஒன்றுக்கொன்றாக இருக்கும் k இன் மிகப்பெரிய பெறுமானத்தை எடுத்துரைக்க.

 $(b\)$ படத்திற் காட்டப்பட்ட செவ்வகத்தின் சுற்றளவு 48m ஆகும். நிழற்றிய பிரதேசமானது நீளம் 4ym ஐயும் அகலம் 3xm ஐயும் உடைய ஒரு செவ்வகத்திலிருந்து அயல்பக்கங்கள் xm,ym ஐ உடைய ஒரு செங்கோண முக்கோணியை 4ym அகற்றுவதால் பெறப்பட்டுள்ளது. நிழற்றிய பிரதேசத்தின் பரப்பளவு Am^2 ஆனது $0\!<\!x\!<\!8$ இற்கு $A\!=\!69x\!-\!\frac{69}{8}x^2$ இனால் தரப்படும் எனக்

A உயர்ந்தபட்சமாக இருக்கத்தக்கதாக அகற்றிய செங்கோண முக்கோணியின் சுற்றளவைக் காண்க.

- 15. (a) எல்லா $x \in \mathbb{R}$ இந்கும் $x(2x^2+3) \equiv A(2x^2+2x+1)(1-x) + (Bx+C)(1-x) + D(2x^2+2x+1)$ ஆக இருக்கத்தக்கதாக A,B,C,D ஆகிய மாநிலிகளின் பெறுமானங்களைக் காண்க. **இதிலிருந்து** $\frac{x(2x^2+3)}{(1-x)\;(2x^2+2x+1)}$ ஐப் பகுதிப்பின்னங்களாக எழுதி $\int \frac{x(2x^2+3)}{(1-x)\;(2x^2+2x+1)} \, dx$ ஐக் காண்க.
 - (b) $t = \sec x + \sqrt{\tan^2 x + 2}$ என்க. $\frac{(t-1)(t+1)}{t} = 2\sec x$ எனக்காட்டி

இதிலிருந்து,
$$\int\limits_{0}^{\pi/2} \left[\frac{\left(\sec x + \sqrt{\tan^2 x + 2} \right)}{\left(\sec x + \sqrt{\tan^2 x + 2} \right)^2 - 1} \right]^5 dx = \frac{1}{60}$$
 எனக் காட்டுக.

- (c) பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int\limits_{1}^{e}x(\ln x)^{2}\ dx=rac{1}{4}(e^{2}-1)$ எனக் காட்டுக.
- 16. $P\equiv(x_0,\ y_0)$ எனவும் l_1 ஆனது $ax+by+c_1=0$ இனால் தரப்படும் நேர்கோடு எனவும் கொள்வோம். P இலிருந்து l_1 இற்குள்ள செங்குத்துத்தூரம் $\dfrac{\left|ax_0+by_0+c_1\right|}{\sqrt{a^2+b^2}}$ எனக்காட்டுக. l_2 ஆனது $ax+by+c_2=0$ இனாலும் தரப்படும் நேர்கோடு எனக் கொள்வோம். மேலுள்ள முடிவைப் பயன்படுத்தி $l_1,\ l_2$ இற்கிடைப்பட்ட செங்குத்துத்தூரம் $\dfrac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}$ எனக் காட்டுக.

ABCD என்பது பக்கம் AB இன் சமன்பாடு x+2y+3=0 ஆகவும் CD இன் சமன்பாடு x+2y-2=0 ஆகவும் உள்ள ஒரு சதுரமாகும். BC, AD ஆகிய கோடுகள் y அச்சை முறையே $(0,\alpha)$, $(0,\beta)$ இல் இடைவெட்டுகின்றது. உச்சிகள் B, D இன் ஆள்கூறுகளை α , β இல் காண்க. இங்கு $\alpha < \beta$ ஆகும். **இதிலிருந்து** உச்சி D ஆனது x அச்சில் இருப்பின் α , β இனைக் காண்க.

 $B,\,D$ இனை மையங்களாகவும் சமனான ஆரைகளையும் உடைய வட்டங்கள் $S_1,\,S_2$ என்பன $A,\,C$ யினூடாகச் சென்றால் அவ்வட்டங்களின் சமன்பாடுகளைக் காண்க. அத்துடன் இவ்வட்டங்களின் பொதுநாணின் சமன்பாட்டைக் காண்க.

இப்பொதுநாணின் மீதுள்ள யாதும் ஒரு புள்ளியானது $(7+3t,\,t)$ எனும் பரமான முறையில் எழுதலாம் எனக் காட்டுக. இங்கு t பரமானம்.

இதிலிருந்து இப்பொதுநாண் மீது மையத்தையும் $S_1,\,S_2$ இன் பரிதியை இருசமகூறிடுவதுமான வட்டச் சமன்பாடு $x^2+y^2-2(7+3t)\,\,x-2ty\,+12t\,+19=0\,\,$ இனால் தரப்படும் எனக் காட்டுக.

மேற்குறித்த வட்டங்களிடையே வட்டம் $x^2 + y^2 - 2x - 4y - 3 = 0$ ஐ நிமிர்கோண முறையாக இடைவெட்டும் வட்டத்தின் சமன்பாட்டைக் காண்க.

17. (a) $\sin 2\alpha$, $\cos 2\alpha$ ஆகியவற்றை $\tan \alpha$ இல் எழுதுக.

இதிலிருந்து, an 2lpha இனை an lpha இல் காண்க.

lpha இந்கு தகுந்த பிரதியீட்டை வழங்குவதன் மூலம் $\cot 2 heta = rac{2\,p}{p^2-1}$ ஆகுமாறு p இனை heta இன் சார்பில் காண்க.

இதிலிருந்து $\cot 2\beta = \frac{2q}{q^2-1}$ ஆகுமாறு q இனை β இன் சார்பில் எழுதுக.

 $pq = \cot^2 x$ எனத்தரப்படின் $\cot^2 x = \frac{a+b}{a-b}$ எனக் காட்டுக.

இங்கு
$$\frac{(1+\tan\theta)\ (1+\tan\beta)}{(1-\tan\beta)} = \frac{a+b}{a-b}$$
 ஆகும்.

மேலும் $\cos 2x = \frac{b}{a}$ எனக் காட்டுக.

- (b) (i) $\sin(A+B)$ இந்கான விரிவைப் பயன்படுத்தி $\sin 75^\circ$ இன் பெறுமானத்தைக் காண்க.

 $\hat{BCE} = 90^{\circ}$, $\hat{ABD} = \theta$, $\hat{DAE} = \alpha$ ஆகும். AC = AD எனத்தரப்படின் பொருத்தமான மூன்று முக்கோணிகளுக்கு சைன்நெறியைப் பயன்படுத்துவதன் மூலம்

 $\cos ec\alpha \sin 75^\circ = \sqrt{6}\sin(\theta + 30^\circ)$ எனக் காட்டுக.

(c) $2\cot^{-1}(\ln x^2) = \cos^{-1}(2\ln e^{7/18})$ இனைத் தீர்க்க.

முழுப்பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2023 | நாய் Stude - நெரும்கள் நாய்கள் கொடிய பில்கு நிரும்கள் நாய்கள் நிரும்கள் நி

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2023 General Certificate of Education (Adv.Level) Pilot Examination - 2023

இணைந்த கணிதம் II Combined Mathematics II 10 T II

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவு செய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தை பயன்படுத்துக.

சுட்டெண்:

அறிவுறுத்தல்கள்:

- ullet இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- ❖ பகுதி A:

எடல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

- ❖ பகுதி B:
 - **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ullet ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதந்கு அனுமதிக்கப்படும்.

(10)	(10) இணை ந்த கணிதம் II				
பகுதி	ഖിனா எண்	புள்ளிகள்			
	1				
	2				
	3				
	4				
	5				
A	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
В	14				
	15				
	16				
	17				
	மொத்தம்				
	சதவீத ம்				

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
புள்ளிகளை பரீட்சத்தவர் ¹ .	
2.	
மேற்பார்வை செய்தவர்	

பகுதி 🗚

	திணிவு m ஜ உடைய ஒரு துணிக்கை B ஆனது ஒப்பமான கிடைத்தளத்தில் நிலைக்குத்து சுவரில் இருந்து a தூரத்தில் ஒய்வில் உள்ளது. அதே திணிவுடைய A எனும் துணிக்கை படத்தில் காட்டியவாறு u கதியுடன் B உடன் நேரடியாக மோதுகின்றது. துணிக்கைகளிற்கு
	இடையில் உள்ள மீளமைவுக் குணகம் $\frac{1}{2}$ எனின் மோதுகைக்கு சற்று பின் A,B இன்
	வேகங்கள் முறையே $\frac{1}{4}u, \frac{3}{4}u$ எனக் காட்டுக.
	$A(m) \ B(m)$ a B ஆனது சுவரை மோதும் கணத்தில் A ஆனது சுவரில் இருந்து எவ்வளவு தூரத்தில் இருக்கும் எனக் காண்க.
2.	கிடைத்தரையில் உள்ள புள்ளி O வில் இருந்து P,Q
	\sqrt{ag} , u கதிகளுடன் கிடையுடன் முறையே $lpha, 90-lpha$
	கோணத்தில் ஒரே நிலைக்குத்து தளத்தில் இயங்குமாறு <u>α 90-α a</u> புவியீர்ப்பின் கீழ் எறியப்படுகின்றன.
	1601111111111601 (511) 61118111111116561601118601
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.
	இத்துணிக்கைகள் அவை இயங்கும் நிலைக்குத்து தளத்திற்கு செங்குத்தாக O வில் இருந்து a தூரத்தில் உள்ள நிலைக்குத்து சுவரை ஒரே நேரத்தில் A,B எனும் புள்ளிகளில் அடிக்கின்றன.

3. முறையே m, M எனும் திணிவுகளை உடைய P,Q எனும் துணிக்கைகள் ஒரு இலேசான நீட்டமுடியாத இழையின் நுனிகளுடன் இணைக்கப்பட்டுள்ளன. துணிக்கை P ஆனது ஒரு ஒப்பமான கிடைமேசை மீது வைக்கப்பட்டிருக்கும் அதேவேளை துணிக்கை Q ஆனது கிடையுடன் 30 ⁰ இல் உள்ள கரடான சாய்தளத்தில் வைக்கப்பட்டுள்ளது. படத்தில் காட்டியவாறு இழையானது ஆகியவற்றில் நிலைப்படுத்தப்பட்ட சிறிய ஒப்பமாக கப்பிகளினூடு செல்கிறது. AC கிடையாகவும், இழை இறுக்கமாகவும் இருக்க தொகுதி ஒய்வில் இருந்து	இழையில் பகுதி விடப்படுகிறது. Q
வின் இயக்கத்தில் $\dfrac{1}{3}mg$ பருமனுடைய ஒரு மாறா உராய்விசை தாக்கு	கின்றது. Q இன்
ஆர்முடுகலைக் கண்டு $3M > 2m$ என்பதை உய்த்தநிக.	
	•••••
	•••••
4. திணிவு Μ ஜ உடைய கார் ஒன்று கிடைக்கு α சாய்வுடைய வீதியிலே மேல்	. —
மாறாக்கதியுடன் செல்கிறது. அக்கார் முன்னர் தொழிற்பட்ட அதே வலுவும் எனும் மாறாக்கதியுடன் வருகிறது. முழு இயக்கத்திற்கும் ஒரு தடை விசை	
அவ்விசை 3Mg Sinα எனக் காட்டுக.	oronico dicerrounty,
	• • • • • • • • • • • • • • • • • • • •
	•••••

11/2025/10/111	
5. நீளம் l ஐ உடைய ஒர் இலேசான நீட்டமுடியாத இழையின் ஒரு நுனி ஒரு நிலைத்தபுள்ளியுடனும் (O) மற்றய நுனி திணிவு m ஐ உடைய துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளது. படத்தில் காட்டியவாறு இழை இறுக்கமாகவும் கீழ்முக நிலைக்குத்துடன் 30^{0} கோணம் அமைக்கவும் இருக்க துணிக்கை P ஒப்பமான கிடை தளத்துடன் தொடுகை கொள்ள மாறாக் கோணவேகம் ω உடன் கிடைவட்டத்தில் இயங்குகின்றது. மறுதாக்கம் R ஐ ω , m , l , g இல் கணித்து, $\omega^{2} < \frac{2g}{\sqrt{3}l}$ என்பதை உய்த்தறிக.	O
$\omega^2 = rac{2g}{\sqrt{3}l}$ எனின் யாது கூறுவீர்?	
6. O உற்பத்தியாகவிருக்க OACB எனும் இணைகரத்தில் A,B	
$ar{a}, ar{b}$ ஆகும். BC இல் E எனும் புள்ளி $BE: EC =$	1:3 ஆகுமாறுள்ளது. AB, OE
ஆகியவற்றை a, b ஆகியவற்றில் காண்க. $AB \perp OE$ எ	னின் $3(a.b) = 4 b ^2 - a ^2$ எனக்

6.	O 2_	_B பத்தியாக	கவிருகக	OACB	எனும	இணைக	ரத்தில் ப	A,B இன	தானககாவிகள	முறையே
	$\underline{a},\underline{b}$	ஆகும்.	BC &	இல் E	எனும்	புள்ளி	BE:E	CC = 1:3	ஆகுமாறுள்ளது.	\overrightarrow{AB} , \overrightarrow{OE}
	ஆகிய	ഖற്ത്യ	\underline{a} , \underline{b} ஆ	கியவற்றில்	ல் கா6	ண்க. A	$B \perp OE$	எனின்	$3(\underline{a}\underline{b}) = 4 b ^2 -$	$- a ^2$ எனக்
	காட்டு	в. $ a =2$	2 b எனி a	ன் OACB	ஒரு ெ	சவ்வகம்	ิ สิ สิ สิ ลิ	பத்தறிக.		
						•••••				
						•••••				
	•••••									
						•••••				
	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••				
	•••••				•••••					
										[பக் 5 ஐப்

ஒரு முனை A ஆனது கோணசாய்வில் உள்ள க இல் கட்டப்பட்ட இலேசான வைத்திருக்கப்படுகிறது. மே சாய்வில் இருக்க, இழை ே இல் நிலைப்படுத்தப்பட்ட ஒ	சாய்தளத்தில் பொறுத்திருக்க B நீளா இழை மூலம் சமநிலையில் கோல் கிடையுடன் α கோணம் கோலிற்கு செங்குத்தாக சென்று C நப்பமான சிறு கப்பியினூடு சென்று நயுடைய துணிக்கை P ஜக்	C P(w)
		α
•••••		A
		•••••
		•••••
		•••••
		············· <u>///////</u> ·
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு	ாத இழையின் ஒரு முனை கரடான கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம்	B T
நிலைத்த நிலைக்குத்துக் திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென்	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F	\mathbf{B}
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள்	B T
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q
நிலைத்த நிலைக்குத்துக் க திணிவுடைய சிறிய மல இழையானது உருவில் கப்பியின் மேலாகச் சென் எனும் துணிக்கையை காவு நிலைக்குத்துடன் 45 ⁰ சமநிலையில் உள்ளன.	கம்பி ஒன்றில் கோர்க்கப்பட்டுள்ள m னியு P உடன் இணைக்கப்பட்டு, காட்டியவாறு நிலைத்த ஒப்பமான ாறு மறுமுனை M திணிவுடைய Q F கிறது. இழையின் AB எனும் பாகம் இல் இருக்க துணிக்கைகள் உராய்வுக் குணகம் $\frac{1}{2}$ எனின்	T Q

A,B என்பன	மாதர்ரவைள்	ஒன்றில்	<u>உ</u> ள்ள	இ ரு	நிகழ்ச்சிகள்	என்க
$P(A \cup B) = \frac{5}{6}$	$(S, P(A \cap B') = 1/6$	$rac{1}{5}$ எனின் $P(1)$	B) ஜக் கால	ண்க.		
	' <mark>ர்பன</mark> சாரா நிகழ்ச்ச				காண்க.	
•••••					•••••	
					• • • • • • • • • • • • • • • • • • • •	•••••
						•••••
						•••••
பெற்ற Z புள்ள	ல் உள்ள ஒரு ரியைவிட இரசாயல் எனிகளைப் பெற்ற	തഖിധல്, பெ	ளதிகவியல் ப	பாடங்களில்	முறையே 0.5,0).3 ஆ
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில்	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1 த பாட
பெற்ற Z புள்ளி குறைவான Z பு ஆக காணப்படில் பரீட்சையின் இல	ியைவிட இரசாயவ ள்ளிகளைப் பெற்று ன் பாடங்களிற்கான டை, நியமவிலகல்	னவியல், பெ என். அவனது ் தனித்தனி	ளதிகவியல் ப மூன்று பாடத் Z புள்ளிகை	பாடங்களில் ந்துக்குமான எக் காண்	முறையே 0.5,0 விளைவான Z பு க. இணைந்தகணி).3 ஆ ள்ளி 1

முழுப்பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2023 இயிரு நெள்ள நடியுள்ள நடியுள்ள நடியிய இதிய நடியிய இரு Tamil Stude நெள்ள நடியுள்ள நடியிய இரு பாண்டிய நடிய நடியிய இரு நடியியிய இரு நடியிய இரி நடியிய இரியிய இரி நடியிய இரி நடியிய இரி நடியிய இரி நடியிய இரி நடியிய இரியிய இரியிய இரி நடியிய இரி நடியிய இரி நடியிய இரி நடியிய இரியிய இரிய

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2023 General Certificate of Education (Adv.Level) Pilot Examination - 2023

இணைந்த கணிதம் II Combined Mathematics II 10 T II

பகுதி B

*ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. a)

மலைப்பிரதேசத்தில் உள்ள கரடான கிடையுடன் 30^{0} இல் சாய்ந்த வீதியொன்றில் A,B எனும் நேர்கோடு ஒன்றில் உள்ள புள்ளிகள் AB = dm ஆகுமாறுள்ளன. m திணிவுள்ள கல்லொன்று A இல் இருந்து AB வழியே மேல்நோக்கி $30ms^{-1}$ உடன் வீசப்படுகிறது. அது வீதியில் AB வழியே $\frac{mg}{4}$ N எனும் உராய்வு தடைவிசைகெதிராக இயங்கி புள்ளி C இல் கணநிலை ஓய்விற்கு t=Ts இல் வருகிறது. t=0 இல் B இல் ஓய்வில் இருந்து புறப்படும் ஒரு வண்டி 2s இற்கு சீரான ஆர்முடுகலுடன் BA வழியே கீழ் நோக்கி இயங்கி $30ms^{-1}$ எனும் வேகத்தை அடைந்ததும் t_0 s இற்கு மாறா வேகத்துடன் சென்று இறுதியில் சீரான அமர்முடுகலுடன் சென்று C இல் கல் ஒய்விற்கு வரும் அதேநேரத்தில் C இல் ஒய்விற்கு வருகிறது. $g=10ms^{-2}$ எனக் கொண்டு கல்லின் அமர்முடுகல் $\frac{15}{2}ms^{-2}$ எனக் காட்டி இரண்டினதும் C வரையான இயக்கத்திற்கான வேக — நேர வரைபுகளை ஒரே வரிப்படத்தில் வரைக. **இதிலிருந்து**.

- i) T = 4 எனக் காட்டுக.
- ii) $d = 15t_0 + 120$ எனக்காட்டி 120 < d < 150 என உய்த்தறிக.
- d = 135 எனின் வண்டியின் அமர்முடுகலைக் காண்க.

b) P எனும் கப்பல் வடக்கு நோக்கி புவி தொடர்பாக $40ms^{-1}$ உடன் செல்லும் அதே வேறொரு கப்பல் ${f Q}$ ஆனது கிழக்கு நோக்கி புவி தொடர்பாக ${\it ums}^{-1}$ கதியுடன் செல்கிறது. ஒரு மூன்றாவது கப்பல் R ஆனது P இலிருந்து அவதானிக்கப்படும் போது கிழக்கிற்கு வடக்க அதேவேளை தோற்றுகின்ற திசையில் செல்வதாக கப்பல் R ஆனது இருந்து அவதானிக்கப்படும் போது வடக்கு நோக்கி $70ms^{-1}$ உடன் செல்வதாக தோற்றுகின்றது. и இன் பெறுமானத்தை கண்டு, கப்பல் R இன் வேகம் $20\sqrt{13}ms^{-1}$ உடன் கிழக்கிற்கு tanவடக்கு திசையில் செல்கிறது எனக் காட்டுக.

ஆரம்பத்தில் கப்பல் P ஆனது கப்பல் R இல் இருந்து வடக்கே $15\,km$ தூரத்திலும், Q இல் இருந்து மேற்கே $\frac{5\sqrt{3}}{4}\,km$ தூரத்திலும் இருக்கிறது எனத்தரப்படின் P உம் R உம் மிகக்குறுகிய இடைத்தூரத்தில் இருக்கும் போது P இற்கும் Q இற்கும் இடையில் உள்ளதூரம் $10\sqrt{3}km$ எனக் காட்டுக.

சீரான குற்றியின் புவியீர்ப்பு மையத்தினூடாக <u>த</u>ிணிவுடைய ஒர் ஒப்பமான நிலைக்குத்துக் குறுக்குவெட்டு ABCDE ஜ உரு காட்டுகிறது. AB கொண்ட முகம் ஒப்பமான கிடைநிலத்தில் வைக்கப்பட்டுள்ளது. AE உம் BC உம் அவற்றைக் கொண்டுள்ள முகங்களின் அதியுயர் சரிவுக்கோடுகளாகும். AE இற்கு சமாந்தரமாக D இல் ஒடுக்கமான ஒப்பமான துவாரம் துளைக்கப்பட்டுள்ளது. அத்துடன் AE = ED = 2a, HD = a, P(2m), Q(m) திணிவுகளை உடைய துணிக்கைகள் முறையே AE,ED என்பவற்றின் நடுப்புள்ளிகளிலும், R(m) திணிவுடைய துணிக்கை துவாரத்தில் H இலும் S(m) திணிவுடைய துணிக்கை BC இல் C இல் வைக்கப்பட்டுள்ளன. P,Qஆகிய துணிக்கைகள் E இல் குற்றியில் நிலைப்படுத்தப்பட்டுள்ள ஒப்பமான இலேசான சிறிய கப்பிக்கு மேலாகச் செல்லும் ஒரு இலேசான நீட்டமுடியாத இழையின் நுனிகளுடனும் Q,R ஆகிய துணிக்கைகள் குற்றியில் D இல் நிலைப்படுத்தப்பட்ட ஒப்பமான இலேசான சிறிய கப்பிக்கு மேலாகச் செல்லும் வேநூர் இலேசான நீட்டமுடியாத இழையின் நுனிகளுடனும் இணைக்கப்பட்டுள்ளன. உருவில் காட்டப்பட்டுள்ளவாறு இழைகள் இறுக்கமாக இருக்கும் அதே வேளை இந்த அமைவில் தொகுதி ஒய்வில் இருந்து விடுவிக்கப்படுகிறது. துணிக்கை R ஆனது Dஜ அடைய எடுக்கும் நேரத்தை துணிவதற்கு போதிய சமன்பாடுகளைப் பெறுக. (துணிக்கை ${f R}$ ஆனது \mathbf{D} ஜ அடையும் போது துணிக்கை \mathbf{S} குற்றியை விட்டு வெளியேறவில்லை எனக் கொள்க)

b)

மையம் O ஜயும் ஆரை a ஜயும் உடைய ஒப்பமான கால் வட்டக்குழாய் நிலைக்குத்து தளமொன்றில் அதன் எல்லை ஆரைகள் OA,OB என்பன முறையே கிடை நிலைக்குத்தாக இருக்குமாறு நிலைப்படுத்தப்பட்டுள்ளது. குழாயினூடும் C இல் நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பியினூடும் செல்லும் இலேசான நீட்டமுடியாத இழையின் ஒரு முனையில் m திணிவுடைய p எனும் துணிக்கையும், மற்றய முனையில் p திணிவுடைய p எனும் துணிக்கையும் இணைக்கப்பட்டுள்ளது. உருவில் காட்டியவாறு ஆரம்பத்தில் துணிக்கை p குழாயினுள்ளே p இலும் துணிக்கை p ஆனது கப்பி p இற்கு அருகிலும் இருக்குமாறு இழை இறுக்கமாகவும் p இன் மட்டத்தில் p தூரத்தில் கப்பி p இருக்கவும்) இருக்க ஒய்வில் இருந்து விடப்படுகின்றன. p ஆனது கிடையுடன் p கோணத்தை p இன் கதி p இன் கதி p இன் கதி p

ஆனது

 $v^2 = rac{2}{3} ag \left(2 heta - \sin heta
ight)$ ஆல் தரப்படும் எனக் காட்டி, இழையில் உள்ள இழுவிசையைக் காண்க. துணிக்கை P ஆனது B ஐ அடையும் போது P இன் கதியைக் காண்க.

 $heta=rac{\pi}{2}$ ஆக இருக்கும் போது இழை வெட்டப்படுகிறது. தொடரும் P இன் புவியீர்ப்பின் கீழ்

இயக்கத்தில் அது புள்ளி D இனூடு செல்லின் $b=2\sqrt{\frac{\pi-1}{3}}a$ எனக் காட்டுக.

13. இயற்கை நீளம் 2a ஜயும் மீள் தன்மை மட்டு 2mg ஜயும் உடைய ஒர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி ஒப்பமான சீலிங்கில் உள்ள புள்ளி O இந்கு இணைக்கப்பட்டிருக்கும் அதேவேளை மற்றய நுனியில் m திணிவுடைய துணிக்கை P இணைக்கப்பட்டுள்ளது. துணிக்கை P ஆரம்பத்தில் O இந்கு நிலைக்குத்தாக கீழே உள்ள புள்ளி A இல் பிடிக்கப்பட்டு ஒய்வில் இருந்து விடப்படுகிறது. இங்கு OA = 3a + b; b > a ஆகுமாறுள்ளது. அத்துடன் B,C ஆகிய புள்ளிகள் OB = 2a, BC = a ஆகுமாறு உள்ளன.

P இன் இயக்கச்சமன்பாடு $\ddot{x}=-\omega^2 x$ எனக்காட்டுக. இங்கு $\omega=\sqrt{\frac{g}{a}}$ உம் CP=x உம் ஆகும். c வீச்சமாக இருக்கும் சூத்திரம் $\dot{x}^2=\omega^2(c^2-x^2)$ ஐப் பயன்படுத்தி P இன் மேல்நோக்கிய இயக்கத்தில் B இல் கதியைக் கண்டு $b>\sqrt{5}a$ எனின் துணிக்கை P சீலிங்கை அடிக்கும் எனக் காட்டுக. b=3a எனின் துணிக்கை P சீலிங்கை அடிக்கும் கதியைக் காண்க. பின் துணிக்கை P இன் கீழ் நோக்கிய இயக்கத்தில் புள்ளி C ஐ கீழ்நோக்கி $2\sqrt{(e^2+1)ag}$ எனும் கதியுடன் கடக்கும் எனக் காட்டுக.

இங்கு e ஆனது P இந்கும் சீலிங்கிற்கும் இடையில் உள்ள மீள்தன்மைக்குணகமாகும்.

 $e \leq \frac{\sqrt{5}}{4}$ எனின் துணிக்கை P இன் கீழ் நோக்கிய எளிமையிசை இயக்க்த்தில் புள்ளி D இல் அல்லது அதற்கு மேல் முதல் முதலில் கணநிலை ஓய்விற்கு வரும் எனக்காட்டுக. இங்கு $CD = \frac{5}{2}a$ ஆகும்.

 $e=rac{\sqrt{5}}{4}$ எனின் துணிக்கை P இன் A இல் இருந்தான இயக்கத்தில் இருந்து முதல் முதல் கணநிலை ஓய்விற்கு வரும் இயக்கம் வரையுள்ள **எளிமையிசை இயக்க** மொத்த நேரம் $\sqrt{rac{a}{g}}\left\{2\pi-\cos^{-1}\left(rac{1}{3}
ight)-\cos^{-1}\left(rac{2}{5}
ight)
ight\}$ எனக்காட்டுக.

14. a) உற்பத்தி O குறித்து A,B என்பவற்றின் தானக்காவிகள் முறையே $\underline{a},\underline{b}$ ஆகும். இங்கு $\underline{a},\underline{b}$ என்பன பூச்சியமல்லாத, சமாந்தரமற்ற காவிகளாகும். புள்ளி C ஆனது $\overset{\rightarrow}{BC}=\lambda\underline{a}$ ஆகுமாறு தெரியப்படுகிறது. இங்கு $\lambda>0$ ஆகும் OC இனதும் AB இனதும் வெட்டுப்புள்ளி D ஆக இருக்கும் அதேவேளை $\overset{\rightarrow}{OD}=\mu\overset{\rightarrow}{OC},\overset{\rightarrow}{AD}=\gamma\overset{\rightarrow}{AB}$ ஆகுமாறும் உள்ளன. இங்கு $\mu,\gamma\in R$. ΔOAD இற்கு முக்கோண காவிக்கூட்டலை உபயோகித்து, அதன் மூலம் λ,μ,γ இற்கிடையில் தொடர்புகளைப் பெறுக.

மேலும் $\underline{a}=2\underline{i},\,\underline{b}=-3\underline{i}+4\underline{i}$ எனவும் $\stackrel{\wedge}{AOC}=\theta$ எனவும் தரப்படுகிறது. இங்கு $\theta=\cos^{-1}\left(\frac{3}{5}\right)$ ஆகும். $\lambda=3$ எனக் காட்டி μ,γ இன் பெறுமானங்களைக் காண்க.

b) $\underline{i} + 2\underline{j}, 3\underline{i} + 4\underline{j}, -2\underline{i} + 2\underline{j}, -2\underline{j}$ என்பவற்றை தானக்காவிகளாக உடைய முறையே A,B,C,D எனும் புள்ளிகளில் முறையே $3\underline{i} + 2\underline{j}, -\underline{i} - 6\underline{j}, -2\underline{i} + 8\underline{j}, 4\underline{i}$ எனும் விசைகள் தாக்குகின்றன. உரிய பிரயோகப்புள்ளிகளை தெளிவாககாட்டி இவ்விசைகளை கூறுவடிவத்தில் x-y தளத்தில் குறித்து காட்டுக. இந் நான்கு விசைகளின் விளையுளின் பருமன் $R = 4\sqrt{2}$ எனக்காட்டி, அதன் திசையை காண்க.

இதன் தாக்கக்கோடு x — அச்சை வெட்டும் புள்ளி E ஜக் கண்டு, அதன் தாக்கக் கோட்டின் சமன்பாட்டைக் காண்க.

இப்போது $\alpha i, \alpha \underline{i} + \alpha \underline{j}$ என்பவற்றை தானக்காவிகளாக உடைய புள்ளிகள் முறையே F,G இல் முறையே $-P\underline{i} - 2P\underline{j}, P\underline{j}$ எனும் மேலதிக இரு விசைகள் சேர்க்கப்படுகின்றன. இவ்விரு விசைகளின் விளையுள் R இற்கு சமாந்தரமாகும் எனக் காட்டுக.

இப்போது தொகுதி $32\mathrm{Nm}$ பருமனுள்ள இடஞ்சுழி போக்கில் உள்ள இணையிற்கு சமவலுவானதெனின், P,lpha இன் பெறுமானங்களைக் காண்க.

15. (a) ஒவ்வொன்றும் நீளம் 2a ஜயும் நிறை w \mathbf{g} щ $\dot{\mathbf{b}}$ AB,BC,CD,DE,EF ஆகிய சீரான உடைய ஆறு கோல்கள் A,B,C,D,E,F ஆகிய அவற்றின் முனைகளில் AB,BC ஒப்பமான மு்டப்பட்டுள்ளன. ஆகியவற்றின் நடுப்புள்ளிகள் நீளம் $\sqrt{3}a$ உடைய ஒர் இலேசான நீட்டமுடியாத இழையினால் தொடுக்கப்பட்டுள்ளன. இவ்வாறே EF,DE ஆகியவற்றின் நடுப்புள்ளிகளும் நீளம் $\sqrt{3}a$ உடைய ஒர் இலேசான நீட்டமுடியாத இழையினால் தொடுக்கப்பட்டுள்ளன. தொகுதி கோல் AF இன் நடுப்புள்ளியில் இருந்து நிலைக்குத்து ஒரு தளத்தில் தொங்கவிடப்பட்டு, உருவிற் நாப்பத்தில் காட்டப்பட்டுள்ளவாறு இருக்கிறது. இழைகளில் உள்ள இழுவை 3w எனக் காட்டி, கோல் AB இனால் கோல் AF மீது A இந் பிரயோகிக்கப்படும் மறுதாக்கத்தையும் காண்க.

(b) அருகே உருவில் காட்டப்பட்டுள்ள சட்டப்படல் முனைகளில் ஒப்பமாக இணைக்கப்பட்ட AB,BC,CD,AD,BD என்னும் இலேசான ஜந்து கோல்களைக் கொண்டது. இங்கு AB = BC = BDAD = CD, $\angle ADB = 30^{\circ}$ $200\sqrt{3} \text{ N}$ மூட்டு D இல் ஆகும். தொங்கவிடப்பட்டும், மூட்டு C இல் 300N, P ஆகிய முறையே கிடை, நிலைக்குத்து விசைகள் பிரயோகிக்கப்படும் சட்டப்படல் A இல் நிலைத்த புள்ளியுடன் ஒப்பமாக பிணைக்கப்பட்டு. நிலைக்குத்தாகவும், AD கிடையாகவும் இருக்குமாறு நிலைக்குத்து தளத்தில் ஒரு நாப்பத்தில் உள்ளது.

- (i) P இன் பெறுமானம் யாது?
- (ii) போலின் குறியீடைப்பயன்படுத்தி B,C,D ஆகிய மூட்டுகளிற்கு ஒரு தகைப்பு வரிப்படத்தை வரைந்து, **இதிலிருந்து** கோல்களில் உள்ள தகைப்புகளை அவை இழுவைகளா, உதைப்புகளாக எனக் குறிப்பிட்டு காண்க.
- (iii) கோல் AD ஜ தொகுதியில் இருந்து அகற்றின் யாது நிகழும் என காரணத்துடன் கூறுக.

16. மையத்தில் 2α கோணத்தை எதிரமைக்கும் r ஆரையுடைய சீரான ஆரைச்சிறையின் திணிவுமையம் மையத்தில் இருந்து சமச்சீர் ஆரை வழியே $\dfrac{2}{3}\dfrac{rSin\, lpha}{lpha}$ தூரத்தில் உள்ளது என தொகையிடல் மூலம் காட்டுக.

உருவில் காட்டப்பட்டுள்ளவாறு 2a ஆரையுடைய சீரான C அரைவட்டத்தில் இருந்து மையம் இல் 2α ECF, a கோணத்தை எதிரமைக்கும் ஆரைசிறை பக்கநீளம் கொண்ட சதுரம் ABCD ஆகியவற்றை நீக்கி பெருப்பட்ட மெல்லிய தகட்டு உலோகம்(R) பெறப்பட்டுள்ளது. இவ்வட்டத்தின் திணிவுமையம் OE இல் இருந்து x தூரத்திலும் OE இற்கு செங்குத்தாக O வினூடான கோட்டில் இருந்து y தூரத்திலும் உள்ளது. $\overline{x} = \lambda a$ எனவும் $\overline{y} = \frac{21}{2(4\pi - 3)}a$ எனவும் காட்டுக.

இங்கு
$$\lambda = \frac{16\pi - (8\sqrt{3} + 9)}{2(4\pi - 3)}$$
 ஆகும்.

இப்போது தகடு R ஆனது உருவில் காட்டியவாறு அதன் தளம், நிலைக்குத்தாக இருக்குமாறு கிடைத்தளத்தில் மீது OC பொறுத்திருக்க வைக்கப்பட்டுள்ளது. R இன் நிறை w எனக் கொண்டு, F இல் w_0 நிறையுடைய துணிக்கை இணைக்கப்பட C பற்றி கவிழும் நிலையில் இருப்பின் $w_0 = (2 - \lambda)w$ எனக் காட்டுக.

- 17. (a) சர்வசமனான B₁, B₂, B₃ எனும் மூன்று பெட்டிகளில் சர்வசமனான சிவப்பு பேனாக்கள் அல்லது பச்சைப் பேனாக்கள் உள்ளன. பெட்டி B_k இல் (2k +1) எண்ணிக்கையான சிவப்பு பேனாக்களும் (k-1) எண்ணிக்கையான பச்சைப்பேனாக்களும் உள்ளன. இங்கு k=1,2,3 ஆகும். மூன்று பெட்டிகளில் ஒரு பெட்டி எழுமாறாக எடுக்கப்பட்டு அதிலிருந்து 2 பேனாக்கள் ஒன்றன் பின் ஒன்றாக **பிரதிவைப்பு இல்லாமல்** எடுக்கப்படுகின்றது. இவ் எத்தனிப்புகளிற்கான மரவரிப்படத்தை வரைந்து,
 - (i) வெளியே எடுக்கப்பட்ட இரண்டாவது பேனா பச்சையாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - (ii) வெளியே எடுக்கப்பட்ட இரண்டாவது பேனா பச்சையாக இருப்பின் முதலாவது பேனா சிவப்பாக இருப்பதற்கான நிகழ்தகவைக் காண்க.

(b) $\left\{ x_1, x_2, \ldots, x_n \right\}$, $\left\{ y_1, y_2, \ldots, y_m \right\}$ எனும் தரவுத் தொடைகளிற்கு ஒரே நியமவிலகல் σ இருக்கும் அதேவேளை அவற்றின் இடைகள் முறையே x, y ஆகும். இவை இரண்டும் சேர்ந்த தரவுத்தொடை $\left\{ x_1, \ldots, x_n, y_1, \ldots, y_m \right\}$ இன் மாற்றறிறன் $\left\{ \sigma^2 + \frac{mn(x-y)^2}{(m+n)^2} \right\}$ இனால் தரப்படுகிறது எனக் காட்டுக.

ஒரு பாடசாலை (A) இல் குறித்த வகுப்பிற்கு நடைபெற்ற கணிப்பீட்டு பரீட்சையில் பெற்ற புள்ளிகள் பற்றிய விபரம் கீழே அட்டவணையில் தரப்பட்டுள்ளன.

புள்ளிகள்	மாணவர்களின்
	எண்ணிக்கை
0-5	20
5-10	30
10-15	40
15-20	10

இப்பரம்பலின் இடையைக் காண்க. இதன் மாறற்றிறன் 21 எனத்தரப்பட்முள்ள இக்கணிப்பீட்டு பரீட்சை அயற்பாடசாலை (B) இல் அதே வகுப்பில் உள்ள 100 மாணவர்களிற்கு வைக்கப்பட்ட போது அவர்கள் பெற்ற புள்ளிகளின் இடையம் மாறற்றிறனும் முறையே 8.5, 21 ஆக அமைந்தது. பரீட்சைக்கு தோற்றிய இவ்விரு பாடசாலைகளினதும் மொத்த மாணவர்கள் பெற்ற இணைந்த மாற்றறிறனைக் காண்க.

AL/2023/10/T-II	- 10 -