

All-around Depth from Small Motion with A Spherical Panoramic Camera

Sunghoon Im, Hyowon Ha, Francois Rameau, Hae-Gon Jeon, Gyeongmin Choe, In So Kweon Korea Advanced Institute of Science and Technology (KAIST)

Introduction

✓ Motivation

- For user-created VR contents, hand-held 360 VR cameras are released, but it cannot provide stereoscopic image (needs depth) which is essential for realistic VR contents.

✓ Objective

- Generate an all-around depth for 360 VR camera from 1-second small motion video.

✓ Contribution

- Unified bundle adjustment with frontal and rear camera whose residual computed on the unit sphere domain, instead of image domain.
- Sphere sweeping method on the basis of the unit sphere

Depth map result

360 VR Cameras Stereoscopic panorama

Small motion Bundle adjustment for SPC (360 VR Camera)

✓ Unified bundle adjustment for both frontal and rear camera

Estimate approximately metric depth because of the pre-calibrated camera extrinsic.

✓ Cost function is designed on the unit sphere domain, instead of image domain.

- Omnidirectional cameras have two-projection model which increases the complexity of the cost function (hardly converges with a high-order model.
- The re-projection error is uniformly mapped on the sphere which is not the case in the image domain because of the no-linear resolution induced by fisheye lenses.

✓ Bundle adjustment formulation

- Find rotation (r), translation (t) and inverse depth (W^F, W^R) ,

Lens structure

point on the unit sphere Projection on the unit sphere

 $\|\cdot\|_{H}$: Huber loss function

 $\mathcal{P}_i^F = [R(r_i)|t_i],$ $\mathcal{P}_i^R = m{P}igg[m{\mathcal{P}}_i^F \ migg]igg[m{P}_migg]^{-1}$, $m = [0\ 0\ 0\ 1]$

✓ Omnidirectional camera model

Sphere sweeping for dense matching

✓ Warp images via the successive virtual spheres

- Covers all-around 3D points only with positive depth representation
- Find a label that has the highest color consistency
- Use both frontal and rear images for matching

✓ Illustration on the sphere sweeping

✓ Warped image and visibility

(c) Mask of (a)

(d) Mask of (b)

✓ Comparison on dense matching method

Input reference image

Depth from plane sweeping

Quantitative evaluation & Qualitative result

The average reconstructed scale value

Checkerb oard size	10cm	5cm	2cm
1 st trial	13.9cm	5.1cm	3.3cm
2 nd trial	10.9cm	7.7cm	1.9cm
3 rd trial	9.5cm	6.1cm	2.5cm

✓ Re-projection error percentage w.r.t the number of iteration

# or iteration	Initial	1	2	3	4
Proposed	100%	48.7 %	7.9 %	4.4 %	3.8 %
Standard	100%	74.3 %	67.8 %	64.4 %	61.6 %

Proposed: Residuals are computed on the unit sphere Standard: Residuals are computed on the image domain

✓ Analysis on the magnitude of baseline and the number of images

The number of images (b = -1.5)

—R3 —R5 —R7 —R10

Error map ✓ Qualitative result

Our depth map

Application

✓ Stereoscopic images for VR head-mounted display & anaglyph

Discussion

✓ The reconstruction is up to scale when:

- Only pure translation or only z-axis rotation
- Zero baseline between frontal and rear camera

✓ General rotation matrix can be adapted to bundle adjustment for spherical sensor

- Only small angle approximated rotation matrix is working for pin-hole camera [1-3].
- The proposed bundle adjustment may have the potential to be generalized to any type of motion.

References

[1] F. Yu and D. Gallup. 3d reconstruction from accidental motion. CVPR 2014

[2] S. Im, H. Ha, G. Choe, H.-G. Jeon, K. Joo, and I. S. Kweon. High quality structure from small motion for rolling shutter cameras. ICCV 2015

[3] H. Ha, S. Im, J. Park, H.-G. Jeon, I. S. Kweon. High-quality depth from uncalibrated small motion clip. CVPR 2016

[4] N. Joshi and C. L. Zitnick. Micro-baseline stereo. Technical Report MSR-TR-2014-73, Microsoft Research, 2014