## Les effets thermoélectriques... ou comment convertir directement l'énergie thermique en énergie électrique

Les deux photos suivantes sont issues du catalogue d'un grand fabricant de montres. Elles présentent une innovation : une montre fonctionnant grâce à la différence de température existant entre le corps humain et l'air ambiant. L'objectif de ce TD est de comprendre le fonctionnement de cette montre.





- 1- Quels sont les systèmes couramment utilisés pour convertir l'énergie thermique en énergie électrique ? Quels sont les limites/inconvénients de ces méthodes ?
- 2- Dans le modèle de Drude, expliquer pourquoi on peut considérer que conductions thermique et électrique sont des phénomènes couplés.
- 3- On considère un matériau conducteur dans lequel la température n'est pas uniforme dans une direction.



Expliquer pourquoi un flux d'électrons s'établit de l'extrémité chaude vers l'extrémité froide. Ce flux atteint-il un régime stationnaire ?

- 4 On appelle E le champ ainsi créé ; à l'équilibre, les vitesses électroniques moyennes dues au gradient de température  $< v_O>$  et au champ électrique  $< v_E>$  s'annulent.
- Exprimer  $<\!\!v_Q\!\!>$  en fonction de  $v_x$   $(x-v_x\tau)$  et  $v_x$   $(x+v_x\tau)$ , puis en fonction de  $dv_x^2/dT$  et dT/dx; en déduire  $v_Q$  dans l'hypothèse d'une répartition identique de la vitesse dans les trois directions.

- Exprimer  $\langle v_E \rangle$ .
- En déduire que :

## $E = \alpha \operatorname{grad} T$

 $\alpha$  est le pouvoir thermoélectrique absolu du matériau

Donner l'expression de  $\alpha$ . Faire l'application numérique. Comparer aux valeurs expérimentales de  $\alpha$ . Qu'en pensez-vous ?

5 — En pratique, on ne mesure pas le champ électrique créé aux bornes d'un conducteur soumis à un gradient de température, mais la fem d'un circuit ouvert de 2 conducteurs, dont les jonctions sont à des températures différentes.

Exprimer la fem aux bornes du couple thermoélectrique A/B représenté ci-dessous, dont les jonctions se trouvent respectivement aux températures T et  $T+\Delta T$ .



L'apparition d'une fem dans un circuit ouvert, composé de deux conducteurs différents, lorsque les jonctions sont à des températures différentes, est appelée l'effet Seebeck. Les deux conducteurs constituent un thermocouple.

7- Le générateur de la montre est un module thermoélectrique. Ce module est constitué de thermocouples reliés en série électriquement et en parallèle thermiquement. Chaque thermocouple est constitué de deux semi-conducteurs de nature différente (type n et p), reliés entre eux par une plaque de cuivre. Le shéma d'un thermocouple est donné ci-dessous.



| $T_{\mathrm{H}}$     | Temp            | Température du corps                                   |         |   |  |  |
|----------------------|-----------------|--------------------------------------------------------|---------|---|--|--|
| $T_{C}$              | Temp            | Température de l'air ambiant                           |         |   |  |  |
| $R_{ m L}$           | Résis           | Résistance électrique de la charge utile               |         |   |  |  |
| Rn, Rp               | Résis           | Résistances électriques des éléments thermoélectriques |         |   |  |  |
| $\alpha_p, \alpha_n$ | Coeff           | Coefficients de Seebeck des éléments thermoélectriques |         |   |  |  |
| An, Ap               | Section         | Section des éléments thermoélectriques                 |         |   |  |  |
| Ln, Lp               | Long            | Longueur des éléments thermoélectriques                |         |   |  |  |
| Données N            | <i>lumériqu</i> | <u>es</u>                                              |         |   |  |  |
|                      |                 |                                                        |         | _ |  |  |
| Thermoélément        |                 | α (μV/Κ)                                               | ρ (μΩm) |   |  |  |
|                      |                 |                                                        | T       | - |  |  |

| Thermoélément | $\alpha (\mu V/K)$ | ρ (μΩm) |
|---------------|--------------------|---------|
| Type p        | 162                | 5.55    |
| Type n        | -240               | 10.1    |

An=Ap=80μm\*80μm Ln=Lp=600μm Puissance nécessaire au fonctionnement de la montre : 15 μW

Comment ce dispositif peut-il alimenter la montre?

Retrouver l'expression de la fem thermoélectrique du thermoélément.

8- Donner l'expression de la puissance électrique  $P_{el}$  délivrée dans la charge utile  $R_L$ . Quelle valeur de  $R_L$  maximise  $P_{el}$ ?

Comment choisir  $\alpha_p$ ,  $\alpha_n$  pour optimiser  $P_{el}$ max ? Quelle géomètrie paraît la plus indiquée pour obtenir la meilleure  $P_{el}$ max ? Pourquoi ne peut-on pas aller trop loin en ce sens ?

Calculer P<sub>el</sub>max pour un thermocouple du module de la montre. Combien de thermocouples faut-il associer pour assurer le fonctionnement de la montre avec une différence de température de 1K?