Project Name

Face-Matching System for Identifying Individuals at Different Ages

Project Overview

This project consists of two main components:

- 1. Age Estimation
- 2. Face Matching

1. Age Estimation

Dataset Choice and Reason

UTKFace Dataset

The UTKFace dataset is a large-scale face dataset containing images annotated with age, gender, and ethnicity. It is widely used for computer vision tasks such as age estimation, face recognition, and demographic analysis.

Key Features of UTKFace Dataset:

- **Diverse Age Range:** Covers ages from **0 to 116 years**, making it useful for age progression and regression tasks.
- High Variability: Includes variations in pose, facial expression, and lighting conditions.
- Annotations: Each image is labeled with:
 - Age (numerical value)
 - Gender (0 for male, 1 for female)
 - Ethnicity (White, Black, Asian, Indian, and Others)
- Dataset Size: Over 20,000 images of different individuals.

Age Prediction Model Architecture

The **AgeEstimationModel** is a deep learning model designed for age prediction, supporting two backbone architectures: **ResNet-50** and **Vision Transformer (ViT)**.

(A) ResNet-50 Based Model

- Uses ResNet-50, a convolutional neural network (CNN) designed for feature extraction.
- The original **fully connected (fc) layer** is replaced with:
 - **Dropout layer (0.2 probability):** Helps prevent overfitting.

- \circ Linear layer (2048 \rightarrow 256 neurons): Reduces feature dimensions.
- Final Linear layer (256 → output_nodes): Maps extracted features to the predicted age.

Why Use ResNet-50?

- Strong feature extraction capabilities due to deep CNN layers.
- Pretrained models on large datasets (e.g., ImageNet) allow for effective transfer learning.
- Works well with **structured visual patterns** (e.g., facial features).

(B) Vision Transformer (ViT) Based Model

- Uses ViT-Small Patch 14 (DINOv2 model), a self-attention-based transformer for image processing.
- The final classification head is modified with:
 - Dropout layer (0.2 probability)
 - Linear layer $(384 \rightarrow 256 \text{ neurons})$
 - o ReLU activation
 - \circ Final Linear layer (256 \rightarrow output nodes) for age prediction

Why Use ViT?

- Captures **long-range dependencies** in images better than CNNs.
- Handles occlusions and complex textures more effectively.
- Self-attention mechanisms provide improved feature representation.

Loss Function Selection and Reason

The model uses L1 Loss (Mean Absolute Error - MAE), which is well-suited for age estimation as a regression problem.

Why L1 Loss?

- **Minimizes Absolute Differences**: Computes the absolute difference between predicted and actual age values.
- Robust to Outliers: Unlike Mean Squared Error (MSE), which squares errors, L1 Loss treats all errors equally.
- Stable Training: Provides smooth and stable gradients, helping prevent overfitting.

Performance Analysis and Evaluation Metrics

1. Mean Absolute Error (MAE)

- **Directly measures** the average absolute difference between predicted and actual ages.
- More robust to outliers than MSE.
- **Easy to interpret** (lower MAE = better accuracy).

2. Training and Validation Loss Tracking

- The model saves and plots loss values for both training and validation.
- **Best Model Selection:** The model saves the weights with the lowest validation loss.

2. Face Matching

Dataset Choice and Reason

Labeled Faces in the Wild (LFW) Dataset

The **LFW dataset** is one of the most widely used benchmark datasets for **face recognition and verification**. It contains **real-world images collected from the internet** with labeled pairs for evaluating face-matching algorithms.

Key Features of LFW Dataset:

- Number of Images: 13,233 images of 5,749 individuals.
- **Source:** Images collected from online sources, ensuring **natural variations** in lighting, background, and pose.
- Annotations: Labeled pairs for face verification tasks.
- Unconstrained Conditions: Unlike controlled datasets, LFW images exhibit:
 - o Pose variations
 - o Facial expressions
 - Illumination changes
 - o Background clutter
- Pairwise Evaluation: Designed for face verification, where models compare two images and determine if they belong to the same person.

Face Matching Model Architecture

The model is implemented in FaceMatch.py and consists of two main components:

(A) Backbone Network (Feature Extractor)

- A CNN-based feature extractor that processes face images into 128-dimensional embeddings.
- Uses six convolutional layers followed by fully connected layers.
- Outputs a 128-dimensional feature vector.
- Uses **ReLU** activation, max pooling, and dropout for regularization.

(B) Face Embedding Model (FaceEmb)

- Takes **three images** as input:
 - \circ Anchor (A) \rightarrow Face of the target person.
 - \circ **Positive (P)** \rightarrow Another image of the same person.
 - \circ **Negative (N)** \rightarrow An image of a different person.
- This structure is used for **triplet loss training** to improve face-matching accuracy.

Loss Function Selection and Reason

The model uses **Triplet Margin Loss**:

Why Triplet Margin Loss?

- Used in face verification models like FaceNet.
- Minimizes intra-class distance $(A \leftrightarrow P)$ while maximizing inter-class distance $(A \leftrightarrow N)$.
- Helps the model learn **discriminative features** for face-matching.

Performance Analysis and Evaluation Metrics

- 1. Training and Validation Monitoring
- The model logs **training loss** after every few batches.
- **Best Model Selection:** Saves the model with the lowest validation loss.
 - 2. Possible Additional Metrics for Future Improvement
- Rank-1 Accuracy: Measures how often the correct face appears as the top match.
- False Acceptance Rate (FAR) & False Rejection Rate (FRR): Measures the reliability of face matching.
- t-SNE Visualization: Helps in embedding space analysis to ensure distinct clustering of different identities.

This structured approach ensures a robust system for age estimation and face matching across different ages.