Folyadékok belső súrlódásának mérése

Név: Tüzes Dániel

Mérési dátum: 2007.10.18.

Mérőpár: Papp László – Tüzes Dániel

Leadás ideje: 2007.10.25.

Mérés célja: a glicerin dinamikai viszkozitásának mérése Stokes-féle súrlódási törvény alapján és a Höppler-féle viszkoziméterrel

Mérési eszközök:

- Areométer a glicerin sűrűségének vizsgálatához
- Glicerinnel töltött mérőhenger a Stokes-féle méréshez
- Üveggolyók a Stokes-féle méréshez
- Fémvonalzó
- Csavarmikrométer
- Piknométer és táramérleg az üveggolyók sűrűségének vizsgálatához
- Előkészített Höppler-féle viszkoziméter

Mérés leírása:

1. Stokes-féle súrlódási törvény alapján végzett mérés

A Stokes-törvény alapján egy r sugarú, a folyadékhoz képest v sebességgel haladó, gömb formájú golyóra $F = 6\pi\eta rv$ közegellenállási erő hat, amennyiben a folyadékrétegek áramlása lamináris, vagyis örvények nem keletkeznek, a folyadékrétegek egymáshoz képest párhuzamosan mozognak. Ha a glicerin elég sűrű, a golyó elég kicsi, akkor felételezhetjük, hogy az áramlás valóban lamináris lesz, ennek igazolására szolgál a Höppler-féle viszkoziméter.

Gömb formájú üveggolyók sugarát meghatározva, azokat a glicerinbe nyomva mértem az állandósult esési sebességüket. Tekintve, hogy a folyadék nagy viszkozitású, ez a sebesség hamar beállt. A *v* sebességet úgy határoztam meg, hogy a felszíntől kb. 3*cm*-re lévő jelöléstől vizsgáltam az esési időt ezen jelöléstől 25,15*cm* távolságig.

Használva a Newton egyenleteket, viszkozitásra rendezve $\eta = \frac{2}{9} \frac{\left(\rho_g - \rho_f\right) r^2 g}{v}$, ahol

 $\rho_{\scriptscriptstyle g}\,$ az üveggolyó sűrűsége, $\rho_{\scriptscriptstyle f}\,$ a folyadék sűrűsége.

A golyók *r* sugarát úgy határoztam meg, hogy csavarmikrométerrel három irányból megmértem azok "átmérőjét", majd ezek számtani közepüket osztottam kettővel. A folyadék sűrűségét és hőmérsékletét areométerrel mértem meg.

A golyók sűrűségét piknométerrel és táramérleggel mértem ki. A piknométer μ_1 üres tömegét lemértem, majd golyókat szórva bele, új μ_2 tömegét is lemértem. Ezek után teli töltöttem tiszta vízzel, és megmértem μ_3 tömegét. Végezetül a golyókat kivettem és teletöltöttem tiszta vízzel hogy megmérjem μ_4 tömegét. Ezen adatokból

$$\rho_{g} = \rho_{v} \frac{\mu_{2} - \mu_{1}}{\mu_{4} - \mu_{1} - \mu_{3} + \mu_{2}}.$$

2. Höppler-féle viszkoziméterrel való mérés

A Höppler-féle viszkoziméterben egy átlátszó, üreges henger volt, a vizsgálandó folyadékkal feltöltve. Ezen folyadékban, a henger belső átmérőjével csaknem azonos átmérőjű fémgolyó volt található. Tapasztalati tény, hogy a folyadék viszkozitása

 $\eta = K(\rho_g - \rho_f)t$, ahol K a golyóállandó (értéke 0,13 $milliPacm^3/g$), ρ_g a golyó sűrűsége (értéke 8,1 g/cm^3), t pedig az az idő, amennyi idő alatt a golyó a felső jelöléstől az alsó jelölésig ér.

A $Re = \frac{\rho rv}{\eta}$ Reynolds szám megadásához a az egyenletben szereplő viszkozitás értéket ezen mérésből, a sebességet, sűrűséget és sugarat az előző, Stokes-féle mérésnél kaptam meg. Az áramlás lamináris, ha Re értéke kisebb, mint 0,1.

Mérés értékelése:

A viszkozitás megadása során használt $\eta = K \left(\rho_g - \rho_f \right) t$ összefüggés alapján értéke a glicerinre vonatkoztatva $0,107Pa\cdot s$. Ez a(z egyes szakirodalmak alapján) várt érték tizede. Sem a sűrűségmérés, sem az idő mérése nem hozhat ekkora hibát. A különbséget két dolog okozza: egyes szakirodalmakban található táblázatokban 20°C hőmérsékletre van megadva a viszkozitás, és csak a tiszta glicerinét adják meg. Márpedig tudható, hogy a glicerin erős vízmegkötő, és viszkozitása erősen függ a víztartalmától és ilyen hőmérséklet-tartományban a hőmérséklettől is. A http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_3.html oldalon részletes adatok találhatók. Ezek alapján egy 10tömeg%-os vízmegkötés mellett, 25°C-on mérési hibán belül van a mért eredmény.

A Reynolds szám értékére behelyettesítéssel kapjuk a nagy golyóknál, hogy

$$Re = \frac{\rho_f rv}{K(\rho_g - \rho_f)t} > \frac{1222kg/m^3 \cdot 2,305mm \cdot 25,15cm/2,72s}{0,13 \cdot 10^{-3} Pa \cdot cm^3 \left(8,1g/cm^3 - 1222kg/m^3\right) \cdot 119,33s} \approx 2,44 \text{ .Vagyis a}$$

nagy golyós mérésnél nem számolhatunk a Stokes-törvény alapján viszkozitást.

A kisebbik golyók esetében

$$Re = \frac{\rho_f rv}{K(\rho_g - \rho_f)t} < \frac{1224kg / m^3 \cdot 0,605mm \cdot 25,15cm / 28,43s}{0,13 \cdot 10^{-3} Pa \cdot cm^3 \left(8,1g / cm^3 - 1224kg / m^3 \right) \cdot 119,33s} \approx 0,0614 \text{ , vagyis csak a kis golyóknál számolhatunk a Stokes-féle törvénnyel.}$$

A golyók sűrűségének megállapítására használt módszer alapján $\rho_g = 2404kg/m^3$

 $Hibaszámítás: \eta$ hibája a Stokes-féle módszer szerint mértek alapján:

$$\Delta \eta = \frac{\delta \eta}{\eta} = 2 \cdot \frac{\delta r}{r} + \frac{\delta t}{t}$$
, ahol $\delta r = 3 \cdot \sqrt{\frac{\sum (r - \bar{r})^2}{n}}$. Mivel időt csak egyszer lehetett mérni,

hibájára az emberi pontatlanságot írom, indításnál és megállításánál 0,1s a hiba, így δt=0,2s. Hibák értékei az eredménytáblázatban találhatók.

Eredménytáblázat

	Stokes-féle mérés						Höppler	szakirodalom
	1	2	3	4	5	6		
η (<i>Pa s</i>)	0,177	0,176	0,175	0,137	0,135	0,125	0,107	0,0340,521
Δη	0,054	0,132	0,112	0,032	0,199	0,051		
Reynolds szám	2,441	2,494	2,573	0,043	0,048	0,061		

A szakirodalmi adat 5-15tömeg%-os víztartalom mellett, 20-30°C-ra van vonatkoztatva.