Superposición de ondas

Batidos. Ondas estacionarias. Interferencia

Superposición de ondas

- $\psi_1 = A_1 \cdot cos(k_1x_1 \omega_1t + \varphi_1) = A_1 \cdot cos(\alpha_1)$
- $\psi_2 = A_2 \cdot cos(k_2 x_2 \omega_2 t + \varphi_2) = A_2 \cdot cos(\alpha_2)$
- $\psi = \psi_1 + \psi_2$?
- Cambio de variables, donde $B=\frac{\alpha_1+\alpha_2}{2}$ y $C=\frac{\alpha_1-\alpha_2}{2}$. Entonces
- $\psi_1 = A_1 \cdot cos(B + C) = A_1 \cdot [cosB \cdot cosC senB \cdot senC]$
- $\psi_2 = A_2 \cdot cos(B C) = A_2 \cdot [cosB \cdot cosC + senB \cdot senC]$
- $\psi = \psi_1 + \psi_2 = (A_1 + A_2) \cdot cosB \cdot cosC + (A_2 A_1) \cdot senB \cdot senC$

Superposición de ondas

•
$$\psi = \psi_1 + \psi_2 = (A_1 + A_2) \cdot cosB \cdot cosC + (A_2 - A_1) \cdot senB \cdot senC$$

- Esta es una expresión muy general. Consideremos que $A_1=A_2=A$
- Obtenemos la siguiente expresión:
- $\psi = 2A \cdot cosB \cdot cosC$

$$\bullet \ \ \psi = 2A \cdot cos\left[\left(\frac{k_1x_1 + k_2x_2}{2}\right) - \left(\frac{\omega_1 + \omega_2}{2}\right)t + \left(\frac{\varphi_1 + \varphi_2}{2}\right)\right] \cdot cos\left[\left(\frac{k_1x_1 - k_2x_2}{2}\right) - \left(\frac{\omega_1 - \omega_2}{2}\right)t + \left(\frac{\varphi_1 - \varphi_2}{2}\right)\right]$$

$$\psi = 2A \cdot \cos \left[\left(\frac{k_1 x_1 + k_2 x_2}{2} \right) - \omega_p t + \varphi_p \right] \cdot \cos \left[\left(\frac{k_1 x_1 - k_2 x_2}{2} \right) - \frac{\Delta \omega}{2} t + \frac{\Delta \varphi}{2} \right]$$

$$\psi = 2A \cdot cos \left[\left(\frac{k_1 x_1 + k_2 x_2}{2} \right) - \omega_p t + \varphi_p \right] \cdot cos \left[\left(\frac{k_1 x_1 - k_2 x_2}{2} \right) - \frac{\Delta \omega}{2} t + \frac{\Delta \varphi}{2} \right]$$

- Batidos: $k_1 \cong k_2$; $\omega_1 \cong \omega_2$
- $\psi = 2A \cdot \cos[k_p x \omega_p t + \varphi_p] \cdot \cos\left[\frac{\Delta k}{2} x \frac{\Delta \omega}{2} t + \frac{\Delta \varphi}{2}\right]$
- Ondas estacionarias: $k_1=k_2=k$; $\omega_1=-\omega_2=\omega$
- $\psi = 2A \cdot \cos[kx + \varphi_p] \cdot \cos\left[-\omega t + \frac{\Delta\varphi}{2}\right]$
- Interferencia: $x_1 \neq x_2$; $k_1 = k_2 = k$; $\omega_1 = \omega_2 = \omega$
- $\psi = 2A \cdot \cos[kx_p \omega t + \varphi_p] \cdot \cos\left[k\left(\frac{\Delta x}{2}\right) + \frac{\Delta \varphi}{2}\right]$

Batidos $\psi = 2A \cdot cos[k_p x - \omega_p t + \varphi_p] \cdot cos\left[\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t + \frac{\Delta \varphi}{2}\right]$

A x fijo

•
$$T_{Bat} = \frac{T_{Env}}{2}$$
 \rightarrow $f_{Bat} = 2f_{Env} = f_1 - f_2$ \rightarrow $f_{Bat} = |f_1 - f_2|$

https://www.szynalski.com/tone-generator/

Ondas estacionarias
$$\psi = 2A \cdot cos[kx + \varphi_p] \cdot cos[-\omega t + \frac{\Delta \varphi}{2}]$$

- La amplitud máxima de cada punto de la soga es diferente.
- En sogas: Así se ve la soga en distintos tiempos

Soga con dos extremos fijos

2 nodos + 1 vientre Fundamental
$$\lambda = 2L$$
 $f = V/2L$
3 nodos + 2 vientres 1er armónico $\lambda = L$ $f = V/L$
4 nodos + 3 vientres 2do armónico $\lambda = 2L/3$ $f = 3V/2L$

$$\lambda_n = \frac{2L}{n}$$
 o bien $f_n = \frac{n \cdot V}{2L}$ con $n \ge 1$

Soga con un extremo fijo y otro libre

$$\lambda_n = \frac{4L}{(2n-1)} \text{ o bien } f_n = \frac{(2n-1)V}{4L} \text{ con } n \ge 1$$

http://www.sc.ehu.es/sbweb/fisica3/ondas/cuerda/cuerda.html

Ondas estacionarias
$$\psi = 2A \cdot cos[kx + \varphi_p] \cdot cos[-\omega t + \frac{\Delta \varphi}{2}]$$

- Se puede hacer una analogía entre la soga y aire en tubo:
 - Tubo abierto=extremo libre(desplazamiento)=extremo fijo(diferencia de presión)
 - Tubo cerrado=extremo fijo (desplazamiento)=extremo libre(diferencia de presión)

https://www.walter-fendt.de/html5/phes/standinglongitudinalwaves_es.htm

Nota: en teóricas suman seno, $\phi = \pi/2$. Entonces $\xi = 2A \cdot sen(kx) \cdot cos(\omega t)$ (EJ.4)

Interferencia
$$\psi = 2A \cdot cos[kx_p - \omega t + \varphi_p] \cdot cos[k(\frac{\Delta x}{2}) + \frac{\Delta \varphi}{2}]$$

• La amplitud resultante queda determinada por la diferencia de camino y de fase

https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference es.html