EEE213 Power Electronics and Electromechanism

5. Controlled Rectifier - Three Phase

Classification

Outline

- Three-phase, controlled rectifiers
 - Half-wave
 - Firing angle (triggering angle) α ;
 - Resistive loading;
 - Inductive loading;
 - Full-wave (bridge)
 - Resistive loading;
 - Inductive loading.
- Comparison

1.1 Firing angle (triggering angle)

In the controlled rectifier, the controllability of the circuit is realized by triggering the thyristors at different phase, which is called the *firing angle*, or *triggering angle*. It is usually represented by " α ";

This trigger signal is a current (or voltage)
 pulse at the "gate" terminal of thyristors;

- For single phase circuit, $\alpha = 0$ means trigger signal is sent at $\omega t = 0$;
- For three-phase circuit, $\alpha = 0$ means trigger signal is sent at $\omega t = \pi/6$, which is the first *natural commutation (phase changing) point*.

- Three phase supply star connection
- Common-cathode connection
- Natural commutation (phase-changing) point
 - The earliest trigger angle for each phase
 - It is considered as the starting point for thyristor triggering angle α , i.e. $\alpha = 0^{\circ}$
 - Phase-shift range: $\alpha \le 120^{\circ}$

- When $\alpha = 0^{\circ}$ (Same as the uncontrolled circuit);
 - For example: at $\alpha = 0$ ($\omega t = \pi/6$), as soon as VT1 is forward biased (red line v_a becomes the largest one), a trigger signal is provided to VT1, so VT1 starts to conduct;
 - $2\pi/3$ after, when v_b becomes the largest one, another trigger signal is provided to VT2, so VT2 starts to conduct;
 - At $\omega t = 3\pi/2$, when v_c becomes the largest one, the trigger signal to VT3 is provided, so VT3 starts to conduct.

• When $\alpha = 30^{\circ}$

- From $\omega t = \pi/6$ to $\pi/3$, although VT1 is forward biased (red line v_a is the largest one), no trigger signal is provided to VT1, so VT1 cannot conduct;
- At $\alpha = 30^{\circ}$ ($\omega t = \pi/3$), a trigger signal is provided to VT1, so VT1 starts to conduct;
- At $\omega t = 5\pi/6$, when v_b becomes the largest one, since no trigger signal is provided to VT2, VT2 will not conduct until $\omega t = \pi$, when the trigger signal provided.

• When $\alpha = 60^{\circ}$

- From $\omega t = \pi/6$ to $\pi/2$, although VT1 is forward biased (red line v_a is the largest one), no trigger signal is provided to VT1, so VT1 cannot conduct;
- At $\alpha = 60^{\circ}$ ($\omega t = \pi/2$), a trigger signal is provided to VT1, so VT1 starts to conduct;
- From $\omega t = \pi$ to $7\pi/6$, v_a is no longer the largest one, VT1 stops; since no trigger signal is provided to VT2, VT2 will not conduct either;
- At $\omega t = 7\pi/6$, VT2 is forward biased and triggered, so it conducts.

Resistive load, quantitative analysis

• When $\alpha \leq 30^{\circ}$, load current i_{d} is continuous.

$$U_{\mathbf{d}} = \frac{3}{2\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha} \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{3\sqrt{6}}{2\pi} U_2 \cos \alpha = 1.17 U_2 \cos \alpha$$

• When $\alpha > 30^{\circ}$, load current $i_{\rm d}$ is discontinuous.

$$U_{\mathbf{d}} = \frac{3}{2\pi} \int_{\frac{\pi}{6} + \alpha}^{\pi} \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{3\sqrt{2}}{2\pi} U_2 \left[1 + \cos(\frac{\pi}{6} + \alpha) \right] = 0.675 \left[1 + \cos(\frac{\pi}{6} + \alpha) \right]$$

Average load current

$$I_{\rm d} = \frac{U_{\rm d}}{R}$$

• Thyristor voltages: reverse voltage = peak line voltage

$$U_{RM} = \sqrt{2} \times \sqrt{3}U_2 = \sqrt{6}U_2 = 2.45U_2$$

forward voltage = peak phase voltage

$$U_{FM} = \sqrt{2}U_2$$

• Inductive load (R-L)

- When L is large enough, the output current i_d is almost flat;
- When $\alpha \le 30^{\circ}$, the rectified voltage waveform is similar to resistive load;
- When $\alpha > 30^{\circ}$ (eg. $\alpha = 60^{\circ}$ as shown on right):
 - u₂ passes zero to negative, V_{T1} keeps conducting until the pulse for V_{T2} comes.
 - u_d has negative values.
- Phase-shift range: $\alpha \le 90^{\circ}$

Inductive load, quantitative analysis

• Load current i_d is always continuous, so

$$U_{\mathbf{d}} = \frac{3}{2\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha} \sqrt{2} U_{2} \sin \omega t d(\omega t) = \frac{3\sqrt{6}}{2\pi} U_{2} \cos \alpha = 1.17 U_{2} \cos \alpha$$

• Thyristor current:

$$I_2 = I_{\rm VT} = \frac{1}{\sqrt{3}}I_{\rm d} = 0.577I_{\rm d}$$

• Thyristor voltages:

forward voltage = reverse voltage = peak line voltage

$$U_{FM} = U_{RM} = \sqrt{2} \times \sqrt{3}U_2 = \sqrt{6}U_2 = 2.45U_2$$

2 Three-phase bridge fully-controlled rectifier

Numbering of the 6 thyristors indicates the trigger sequence:

$$V_{T1} \rightarrow V_{T2} \rightarrow V_{T3} \rightarrow V_{T4} \rightarrow V_{T5} \rightarrow V_{T6}$$

2.1 Resistive load

$$-\alpha = 0^{\circ}$$

$$- \alpha = 30^{\circ}$$

$$-\alpha = 60^{\circ}$$

$$-\alpha = 90^{\circ}$$

Summary

- Two thyristor from each group (top or bottom group) form the current loop;
- Trigger the two thyristor simultaneously;
- Trigger pulses should be:
 - According the sequence of $V_{T1} \rightarrow V_{T2} \rightarrow V_{T3} \rightarrow V_{T4} \rightarrow V_{T5} \rightarrow V_{T6}$
 - With 60° phase difference
- 6 pulses in one period;
- Voltage waveform across the thyristor is the same as three-phase half-wave circuit, so do the forward and inverse peak voltages.

2.2 Inductive load

• Inductive load (R-L load)

$$-\alpha = 0^{o}$$

Inductive load (R-L load)

$$-\alpha = 30^{\circ}$$

• Inductive load (R-L load)

$$-\alpha = 60^{\circ}$$

• Inductive load (R-L load)

$$-\alpha = 90^{\circ}$$

Inductive load
(R-L load)
- α = 120°

• Inductive load (R-L load) $- \alpha = 150^{\circ}$

Quantitative analysis

Average output voltage

$$U_{d0} = \frac{3}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} v_{ab} d(\omega t) = \frac{3}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \sqrt{6} U_2 \sin\left(\omega t + \frac{\pi}{6}\right) d(\omega t) = \frac{3\sqrt{6}U_2}{\pi} \cos\alpha = 2.34U_2 \cos\alpha$$

- For resistive load, When $a > 60^{\circ}$, load current id is discontinuous.

$$U_{d0} = \frac{3}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6}} \sqrt{6} U_2 \sin\left(\omega t + \frac{\pi}{6}\right) d(\omega t) = 2.34 U_2 \left[1 + \cos(\frac{\pi}{3} + \alpha)\right]$$

RMS output voltage

$$U_{dRMS} = \sqrt{\frac{3}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \left(\sqrt{6}U_2 \sin\left(\omega t + \frac{\pi}{6}\right) \right)^2 d(\omega t)} = \sqrt{3}U_2 \sqrt{1 + \frac{3\sqrt{3}}{2\pi} \cos 2\alpha}$$

Average output current (load current) for resistive load

$$I_d = \frac{U_d}{R}$$

- Thyristor voltage and current
 - Same as three-phase half-wave rectifier
- Transformer current

$$I_{2} = \sqrt{\frac{1}{2\pi} \left(I_{d}^{2} \times \frac{2\pi}{3} + \left(-I_{d}^{2} \right) \times \frac{2\pi}{3} \right)} = \sqrt{\frac{2\pi}{3}} I_{d} = 0.816 I_{d}$$

- EMF load, L is large enough
 - All the same as inductive load except the calculation of average output current $I_d = \frac{U_d E}{R}$

