Lecture 12: Divisibility

Math 345

Tuesday, October 12, 2010

Jim Fowler

Textbook

This lecture discusses section 4 of the textbook.

Homework

The homework is due Thursday, October 14, 2010. From Section 4 of the textbook, do exercises 13, 14, and 15.

divisibility

d and x integers. d divides x means that there exists an integer k so that x = kd.

what about zero?

examples

a divides a.

If a divides b and a divides c, then a divides b + c.

If a divides b and a divides c, then a divides b-c.

If a divides b or a divides c, then a divides bc.

congruences

a, b, m integers. $a \equiv b \pmod{m}$ means m divides a - b. prove it is an equivalence relation.

some amusing calculations

 $2^n \equiv 2 \pmod{n}$ for which values of n?

	$2^{37} \equiv 2 \pmod{37}$	$2^{72} \equiv 64 \pmod{72}$
$2^3 \equiv 2 \pmod{3}$	$2^{38} \equiv 4 \pmod{38}$	$2^{73} \equiv 2 \pmod{73}$
$2^4 \equiv 0 \pmod{4}$	$2^{39} \equiv 8 \pmod{39}$	$2^{74} \equiv 4 \pmod{74}$
$2^5 \equiv 2 \pmod{5}$	$2^{40} \equiv 16 \pmod{40}$	$2^{75} \equiv 68 \pmod{75}$
$2^6 \equiv 4 \pmod{6}$	$2^{41} \equiv 2 \pmod{41}$	$2^{76} \equiv 16 \pmod{76}$
$2^7 \equiv 2 \pmod{7}$	$2^{42} \equiv 22 \pmod{42}$	$2^{77} \equiv 18 \pmod{77}$
$2^8 \equiv 0 \pmod{8}$	$2^{43} \equiv 2 \pmod{43}$	$2^{78} \equiv 64 \pmod{78}$
$2^9 \equiv 8 \pmod{9}$	$2^{44} \equiv 16 \pmod{44}$	$2^{79} \equiv 2 \pmod{79}$
$2^{10} \equiv 4 \pmod{10}$	$2^{45} \equiv 17 \pmod{45}$	$2^{80} \equiv 16 \pmod{80}$
$2^{11} \equiv 2 \pmod{11}$	$2^{46} \equiv 4 \pmod{46}$	$2^{81} \equiv 80 \pmod{81}$
$2^{12} \equiv 4 \pmod{12}$	$2^{47} \equiv 2 \pmod{47}$	$2^{82} \equiv 4 \pmod{82}$
$2^{13} \equiv 2 \pmod{13}$	$2^{48} \equiv 16 \pmod{48}$	$2^{83} \equiv 2 \pmod{83}$
$2^{14} \equiv 4 \pmod{14}$	$2^{49} \equiv 30 \pmod{49}$	$2^{84} \equiv 64 \pmod{84}$
$2^{15} \equiv 8 \pmod{15}$	$2^{50} \equiv 24 \pmod{50}$	$2^{85} \equiv 32 \pmod{85}$
$2^{16} \equiv 0 \pmod{16}$	$2^{51} \equiv 8 \pmod{51}$	$2^{86} \equiv 4 \pmod{86}$
$2^{17} \equiv 2 \pmod{17}$	$2^{52} \equiv 16 \pmod{52}$	$2^{87} \equiv 8 \pmod{87}$
$2^{18} \equiv 10 \pmod{18}$	$2^{53} \equiv 2 \pmod{53}$	$2^{88} \equiv 80 \pmod{88}$
$2^{19} \equiv 2 \pmod{19}$	$2^{54} \equiv 28 \pmod{54}$	$2^{89} \equiv 2 \pmod{89}$
$2^{20} \equiv 16 \pmod{20}$	$2^{55} \equiv 43 \pmod{55}$	$2^{90} \equiv 64 \pmod{90}$
$2^{21} \equiv 8 \pmod{21}$	$2^{56} \equiv 32 \pmod{56}$	$2^{91} \equiv 37 \pmod{91}$
$2^{22} \equiv 4 \pmod{22}$	$2^{57} \equiv 8 \pmod{57}$	$2^{92} \equiv 16 \pmod{92}$
$2^{23} \equiv 2 \pmod{23}$	$2^{58} \equiv 4 \pmod{58}$	$2^{93} \equiv 8 \pmod{93}$
$2^{24} \equiv 16 \pmod{24}$	$2^{59} \equiv 2 \pmod{59}$	$2^{94} \equiv 4 \pmod{94}$
$2^{25} \equiv 7 \pmod{25}$	$2^{60} \equiv 16 \pmod{60}$	$2^{95} \equiv 13 \pmod{95}$
$2^{26} \equiv 4 \pmod{26}$	$2^{61} \equiv 2 \pmod{61}$	$2^{96} \equiv 64 \pmod{96}$
$2^{27} \equiv 26 \pmod{27}$	$2^{62} \equiv 4 \pmod{62}$	$2^{97} \equiv 2 \pmod{97}$
$2^{28} \equiv 16 \pmod{28}$	$2^{63} \equiv 8 \pmod{63}$	
$2^{29} \equiv 2 \pmod{29}$		$2^{99} \equiv 17 \pmod{99}$
($2^{65} \equiv 32 \pmod{65}$	
,	$2^{66} \equiv 64 \pmod{66}$	
($2^{67} \equiv 2 \pmod{67}$	
($2^{68} \equiv 16 \pmod{68}$	· · · · · · · · · · · · · · · · · · ·
$2^{34} \equiv 4 \pmod{34}$	$2^{69} \equiv 8 \pmod{69}$	$2^{104} \equiv 48 \pmod{104}$
($2^{70} \equiv 44 \pmod{70}$	
$2^{36} \equiv 28 \pmod{36}$	$2^{71} \equiv 2 \pmod{71}$	

pseudoprimes

 $2^{341} = 447948948435560842111488456113688855624329099446929906979997820192758374236032189070$ which is congruent to 2 modulo 341. But 341 is not prime, being 11 times 31. what is going on?

```
2^{341} \equiv 2
              \pmod{341}
 2^{561} \equiv 2 \pmod{561}
 2^{645} \equiv 2
              \pmod{645}
2^{1105} \equiv 2
              \pmod{1105}
2^{1387} \equiv 2
               \pmod{1387}
2^{1729} \equiv 2
               \pmod{1729}
2^{1905} \equiv 2
               (\text{mod } 1905)
2^{2047} \equiv 2
               \pmod{2047}
2^{2465} \equiv 2
               \pmod{2465}
2^{2701} \equiv 2
               (\text{mod } 2701)
2^{2821} \equiv 2
               (\text{mod } 2821)
2^{3277} \equiv 2
              \pmod{3277}
2^{4033} \equiv 2
              \pmod{4033}
2^{4369} \equiv 2
              \pmod{4369}
2^{4371} \equiv 2
             \pmod{4371}
2^{4681} \equiv 2 \pmod{4681}
```

necklace proof

```
Theorem: If p is prime, then 2^p \equiv 2 \pmod{p}.
proof: want to show 2^p - 2 is divisible by p.
2^p - 2 = number of strings of two symbols, where both symbols appear.
cyclic shifts split the remaining necklaces into groups of p (because p is prime).
```