Musomupole

-topologise
$$M_{K} \ni a = ([A_{n}]_{3} \{x_{1}, ..., x_{1}\})$$

by picking open good. ball $B_{2}(x_{1})_{3}$
 $k_{2} := B - \bigcup_{i} B_{i} C_{x_{i}}$ is cpt.
- $U_{2} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{1}, ..., x_{1}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{1}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{2}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{3}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{3}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni 2 : P_{a} \mid_{K} \xrightarrow{c} P_{a} \mid_{K} \{x_{3}, ..., x_{2}\}$
 $A_{i} := \{a' \in M_{K} \mid 1\} \ni A_{i} := \{a' \in M_{K} \mid_{K} \{x_{3}, ..., x_{4}\} \mid_{K} \{x_{4}, ..., x$

-
$$H_{\lambda}(M_{\kappa}, M_{\kappa} - 223, M)$$

 $[M_{\kappa}]_{M_{\kappa}}$ [1]

$$-0 \le m \le 6z^{-1}$$
 $(4n)$
 $(4n)$
 $(4n)$
 $(4n)$

$$\overline{\mathcal{M}}, -\mathcal{M} = B$$

- it can be shown that I a collar

- By
$$CP^2 = \partial(M, \setminus cones)$$

 $sm. 5-dm$ mfd w bdy
- $above - 3$ $(w) = 2 - 7 - 3$ $(gnature of int. form$
- $above - 3$ $(gnature of int. form$

$$-3(CP^{2}) = 1 - 0 = 1, (1^{2}(CP^{2}, \pi)) = \pi(CP^{2})$$

$$-opposite orient, 3(CP^{2}) = -1, w_{CP^{2}} = (-1)$$

$$-3(B) = \pm 6\pi$$

$$= \frac{2}{\pm 6z^{-} + \sum_{j=1}^{2} (\pm 1) = 0}$$

$$C_{\overline{B}}$$
 = (1) \oplus · - \oplus (1)