

SAT Solving with distributed local search

Guangping Li - uzdif@student.kit.edu

Institute of Theoretical informatics, Algorithmics II

Outline

propositional satisfiability problem (SAT)

- Notations
- Local Search in SAT Problem

Solving SAT by swpSolver

- Basic scheme
- Data structure
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Two failures
- Initialization with a guide of formula partitioning

Conclusion

Outline

propositional satisfiability problem (SAT)

- Notations
- Local Search in SAT Problem

Solving SAT by swpSolver

- Basic scheme
- Data structure
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Two failures
- Initialization with a guide of formula partitioning

Conclusion

The vertex coloring problem

vertex coloring

The goal is to color the vertices of an undirected graph such that no two adjacent vertices share the same color.

The vertex coloring problem

k-vertex coloring problem

■ A k-vertex coloring of a graph is a function $c: V \rightarrow \{1...k\}$.

Figure: a legal 4-coloring

The vertex coloring problem

Vertex coloring problem

- The VCP is to determine the smallest k, such that the graph can be colored using k colors without conflicts.
- This lower bound k is called the *chromatic number* of G, denoted by $\chi(G)$.

Outline

The vertex coloring problem

- k-VCP
- VCP

The Tabucol algorithm

Solving VCP by Tabucol

- Basic scheme
- Data structure
- Our improvements

Our Parallel GCP-solver

- Parameter combinations
- Our approaches

Conclusion

The Tabucol algorithm solving k-VCP

- Introduced in 1987 by Hertz and de Werra
- The local search will start from an initial k-coloring c.
- Changing the color of one vertex to color, is called one-step move.
- the best move with most reduction of conflicts will be reached.
- To avoid short-term cycling, recently performed moves are marked as forbidden moves for a given duration.

The Tabucol algorithm

The pseudo code of *Tabucol*:

Algorithmus 1 : Algorithm Tabucol

input : A Graph $G = \{V, E\}$, an integer k > 0

parameter : L, α , Timeout output : Coloring c

- 1 Build a random k-coloring c':
- 2 C = C';
- i = 0;
- 4 while $(f(c) \neq 0 \land Timeout does not occur)$ do
- Evaluate all permitted one-step-moves of c with function Γ ;
- 6 Choose the move [v,i] with maximum $\Gamma(c, v, i)$;
- Mark the corresponding one-step move [v,i] as a forbidden move with duration $f_i = f(x)$
 - with duration $L + \alpha \times f(c)$;
 - Change c(v) = i;

Outline

The vertex coloring problem

- k-VCP
- VCP

The Tabucol algorithm

Solving VCP by Tabucol

- Basic scheme
- Data structure
- Our improvements

Our Parallel VCP-solver

- Parameter combinations
- Our approaches

Conclusion

Basic scheme

- Step 1: Initialize Coloring
- Step 2: Solve k-VCP
- Step 3: Reduce a color

Data structure

Tabu Map and Tabu Queue

- To avoid using the forbidden candidates, a hash map should provide whether a candidate is a tabu or not.
- A one-step move [v, i] is represented by an ordered pair (v, i).
- to update the forbidden moves stored in the *Tabu Map*.
- The size of the *Tabu Queue* is $L + f(n) \times \alpha$.
- When the color of a vertex v is changed, (v, c(v)) is recorded in the *Tabu Map* and also enqueued in the *Tabu Queue*.
- When the Tabu Queue is full, extra forbidden moves will be popped and will be deleted in the Tabu Map.

Data structure

Solution matrix

- To reuse the calculated results, a matrix *M* is used to record the information about the neighborhood.
- The matrix M evaluates the candidate moves of the current k-coloring c.
- If $c(v_j) = i$, M_{ij} is the number of conflicting edges incident to v_j in the current solution.
- If c(v_j) ≠ i, M_{ij} is the number of conflicts involving v_j in a neighbor coloring c' of c with c'(v_i) = i.

$$c'(v_q) = i$$
.
 $c'(v_q) = c(v_q), q \neq i, q \in \{1..n\}.$

Data structure

Solution matrix

- $\Gamma(j, i) = M_{c(v_i)j} M_{ij}$ evaluates the improvement of the move [j, i]in constant time.
- This matrix is filled at the beginning based on the initial solution and constantly changed.
- If the chosen one-step move is [i, j], which means changing the color of v_i from current color $c(v_i)$ to i, some entities in matrix Mmust be updated.

Evaluation

- The 68 graphs used in our experiments are from the DIMACS benchmark collection.
- The single-threaded experiments were run on computers that had four AMD(R) Opteron(R) processors 6168 (1.9 Ghz with 12 cores) and 256GB RAM. The computers ran the 64-bit version of Ubuntu 12.04.
- The multi-threaded experiments were run on fat nodes InstitutsClusterII. IC2 is a distributed memory parallel computer with 480 16-way so-called thin compute nodes and 5 32-way so-called fat compute nodes. The thin nodes are equipped with 16 cores, 64 GB main memory, whereas the fat nodes are equipped with 32 cores, 512 GB main memory.

Evaluation

An advantage plot shows the advantage of an algorithms to another algorithm. The y-axis gives the ordered percentage differences.

Our improvements

Basic scheme

- Step 1: Initialize Coloring (How to initialize coloring?)
- Step 2: Solve k-VCP (How to improve Tabucol?)
- Step 3: Reduce a color (How to reconstruct coloring?)

Step 1:How to initialize coloring?

Our Node-index initialization vs Random initialization

- **Node-index initialization** is to use c: $v_i \rightarrow i$ as the initial solution.
- Random initialization is to build a coloring randomly.

Step 2: How to improve Tabucol?

Our column-traverse vs row-traverse of solution matrix

- To find next move, the maximum element in the solution matrix must be found.
- If more than one candidate exists, the first found one is chosen as the next step.
- This matrix can be traversed row by row or column by column.

Step 2: How to improve Tabucol?

Statistic matrix

- The Tabucol algorithm uses a tabu list to avoid short-term cycling.
- To recognize long-term cycling, a statistic matrix S is added.
- The S_{ii} represents how many times a one-step move [i, j] was chosen as the next step.
- The candidate with the smallest statistic value will be chosen in the next step.

Step 3: How to reconstruct new coloring?

An observation

It seems that the solution loses its potential in the process of reducing colors iteratively. So it should be helpful to use a new and perhaps more potential coloring.

Replace by a randomly generated solution

We replace the current illegal solution occasionally by a new randomly generated coloring of the same size.

Outline

The vertex coloring problem

- k-VCP
- VCP

The Tabucol algorithm Solving VCP by Tabucol

- Basic scheme
- Data structure
- Our improvements

Our Parallel GCP-solver

- Parameter combinations
- Our approaches

Conclusion

Parameter combinations

- Most graphs get better results with the our suggestions.
- Some graphs get better results with the original GCP-solver.
- The agents run with different combinations of the suggestions (L, α , the search directions and whether a statistic matrix is introduced).

Parameter combinations

Index	L	α	Initialization	Replace	Traverse	Statistic
1	9	0.38	Node-Index	true	Column	true
2	1	0.77	Node-Index	true	Column	true
3	11	0.90	Node-Index	true	Column	true
4	17	0.59	Random	true	Column	true
5	18	0.42	Node-Index	false	Column	false
6	4	0.92	Node-Index	true	Column	true
7	16	0.76	Node-Index	false	Row	false
8	17	0.47	Node-Index	false	Column	false
9	2	0.60	Node-Index	true	Column	false
10	2	0.54	Node-Index	false	Column	true
11	5	0.46	Random	true	Column	true
12	11	0.63	Random	true	Column	true
13	7	0.83	Node-Index	true	Column	true
14	8	0.98	Node-Index	false	Row	true
15	18	0.58	Node-Index	true	Column	false
16	13	0.90	Node-Index	false	Column	true

Parameter combinations

Index	L	α	Initialization	Replace	Traverse	Statistic
17	20	0.56	Node-Index	true	Column	false
18	10	0.95	Node-Index	true	Column	true
19	15	0.55	Node-Index	true	Row	true
20	17	0.39	Node-Index	true	Column	true
21	18	0.52	Node-Index	false	Column	true
22	11	0.32	Node-Index	true	Column	true
23	15	0.62	Node-Index	false	Column	true
24	6	0.94	Random	true	Column	true
25	9	0.94	Node-Index	false	Column	false
26	12	0.96	Node-Index	true	Column	true
27	16	0.58	Node-Index	false	Column	true
28	9	0.45	Node-Index	false	Column	true
29	19	0.95	Node-Index	true	Column	true
30	18	0.31	Node-Index	true	Column	false
31	6	0.50	Node-Index	false	Column	false
32	15	0.93	Node-Index	false	Column	false

1st Approach: The pure portfolio approach

- The agents run the GCP solver with different parameter combinations.
- After collecting the solutions found by each agent, the search takes the coloring of the minimum size as the result.

2nd Approach: Forced color reducing

- This approach is based on the pure portfolio approach.
- The agents share the minimum size.
- One agent has already found a k-coloring and broadcasts it.
- With this notification, all agents search for a legal k-1 coloring.

3rd Approach: Tabu sharing

- A tabu list records the search path to avoid short-term cycling.
- The agents share the "traps" of local search loops.

4th Approach: Statistic sharing

- To recognize long-term cycling, a *statistic matrix S* is added.
- The S_{ij} represents how many times a one-step move $[v_i, j]$ was chosen as the next step.
- The candidate with the smallest statistic value will be chosen in the next step.
- The agents use one common statistic matrix.

Outline

The vertex coloring problem

- k-VCP
- VCP

The Tabucol algorithm Solving VCP by Tabucol

- Basic scheme
- Data structure
- Our improvements

Our Parallel GCP-solver

- Parameter combinations
- Our approaches

Conclusion

Conclusion

Our improvement:

- An algorithm solves the VCP with parallel Tabucol searches.
- The statistic matrix recognizes long-term cycling and brings improvement to our algorithm.
- Certain information exchange (minimum size, statistic matrix) can improve the performance of the parallel search.

Comparison of our GCP-solver with DSATUR, PASS, TRICK:

- 50 of 68 (73%) benchmark graphs get best results with our solver.
- 20 of 68 (29%) benchmark graphs get unique best results with our solver

Further work

- Using different search strategies
- Using different cooperation strategies
- Using different algorithms in agents

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?