МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра РАПС

ОТЧЕТ

по лабораторной работе №12 по дисциплине «Информатика»

Тема: Графическое решение уравнений и систем уравнений

Студент гр. 3493		Вишняков А.Д.
Преподаватель		Пожидаев А.К.
	Сомит Поповомия	

Санкт-Петербург

Цель работы: ознакомиться с графическими методами решения уравнений и систем уравнений.

Основные теоретические положения. Кроме аналитического способа решения уравнений f(x) = 0 можно пользоваться и графическим способом. Графический способ наиболее эффективен для решения трансцендентных уравнений. При графическом способе для уравнения строится график y = f(x) и решением уравнения является точка пересечения графика с осью x при y = 0. Если разбить уравнение на две произвольные части, то можно для каждой части построить график. В этом случае решением уравнения будет абсцисса точки пересечения графиков для этих частей. Такой способ может использоваться и для решения систем двух линейных уравнений с двумя неизвестными.

Задание 1. Решить графически уравнение $y = \cos^2(\pi x)$ на интервале [0; 1]. Для выполнения этого задания, зайдём в Excel. Проведём табуляцию значений, следуя примеру из 11 работы. В столбец с значениями у вставим формулу «= $\cos(A3*C\$3)^2$ ». Получим таблицу:

	А	В	С	
1	График функции y=cos(Pi*x)^2			
2	Значение х	Значение у	Значение Рі	
3	0	1	3,1415	
4	0,1	0,904513943	3,1415	
5	0,2	0,654526121	3,1415	
6	0,3	0,345517939	3,1415	
7	0,4	0,095513288	3,1415	
8	0,5	2,14617E-09	3,1415	
9	0,6	0,095458829	3,1415	
10	0,7	0,345429821	3,1415	
11	0,8	0,654438	3,1415	
12	0,9	0,904459477	3,1415	
13	1	0,999999991	3,1415	

Далее выделим ячейки А2:С13 и построим график с маркерами.

Точка пересечения графика с ОХ является корнем нашего уравнения.

Ряд "Значение у" Точка "0,5" Значение: 2,14617E-09

Задание 2. Решить графически уравнение $x^3 - 4x^2 - 3x + 6 = 0$.

Создадим новый лист. Разобьём уравнение на две части. $y_1 = x^3$ и $y_2 = 4x^2 + 3x - 6$. Из уравнения видно, что у него 3 корня, поэтому на графике нужно искать 3 пересечения. Если точек пересечения меньше 3, мы просто увеличиваем интервал в ту сторону, где два графика стремятся к пересечению. Теперь по аналогии протабулируем значения для двух уравнений и построим график.

Изначально точки на x=4,4 не было видно и я увеличил интервал до 4,8, проделав аналогичные действия с табулированием. На графике мы можем видеть все наши решения.

Задание 3. Решить графически систему уравнений $\begin{cases} y = \sin x \\ y = \cos x \end{cases}$ в диапазоне

 $x \in [0; 3]$ с шагом $\Delta x = 0,2$.

Создадим новый лист. Так как это два разных уравнения, здесь мы можем действовать по аналогии с прошлым заданием, используя формулы «=SIN(A2)» и «COS(A2)». В результате получим такую таблицу:

4	Α	В	С
1	Аргумент Х	y=sin(x)	y=cos(x)
2	0	0	1
3	0,2	0,198669331	0,980066578
4	0,4	0,389418342	0,921060994
5	0,6	0,564642473	0,825335615
6	0,8	0,717356091	0,696706709
7	1	0,841470985	0,540302306
8	1,2	0,932039086	0,362357754
9	1,4	0,98544973	0,169967143
10	1,6	0,999573603	-0,029199522
11	1,8	0,973847631	-0,227202095
12	2	0,909297427	-0,416146837
13	2,2	0,808496404	-0,588501117
14	2,4	0,675463181	-0,737393716
15	2,6	0,515501372	-0,856888753
16	2,8	0,33498815	-0,942222341
17	3	0,141120008	-0,989992497

Далее построим график для этой системы.

Мы видим персечение в точке x=1,6, что является решением этой системы.

Задание 4. Графически решить систему уравнений в указанном диапазоне по индивидуальному варианту.

$$\begin{cases} y = 2/x \\ y = 2x \end{cases} \quad x \in [0,2;3] \quad \Delta x = 0,2$$

По аналогии с прошлым заданием составляем таблицу.

4	Α	В	С
1	x	y=2/x	y=2*x
2	0,2	10	0,4
3	0,4	5	0,8
4	0,6	3,333333333	1,2
5	0,8	2,5	1,6
6	1	2	2
7	1,2	1,666666667	2,4
8	1,4	1,428571429	2,8
9	1,6	1,25	3,2
10	1,8	1,111111111	3,6
11	2	1	4
12	2,2	0,909090909	4,4
13	2,4	0,833333333	4,8
14	2,6	0,769230769	5,2
15	2,8	0,714285714	5,6
16	3	0,666666667	6
		1	

Теперь построим для нее график и найдем решение системы.

Видно, что решением является y=2; x=1.

Выводы.

В ходе выполнения данной работы, я научился графически решать уравнения а также системы уравнений.