Biophysics Assignment 1

Question 1: Matrix Calculations

b)

c)

Graphs:

Limit of $A^{2N} = 0.200$

Limit of $A^{2N+1} = 0.200$

Matrices:

Limit of A^{2N}

0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000

		٠.	٥f		2N	+	1
ı	ım	าเร	\cap t	Δ	ZIN	т	•

alls = luxiu									
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000
0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000	0
0	0.2000	0	0.2000	0	0.2000	0	0.2000	0	0.2000

d) The values in the matrices represent the probabilities in a Markov chain.

We see the following pattern:

- n = (7, 11, 13, 17, 19, ...) follow a 1/n trend
- n = (8, 10, 14, 16, 20, ...) follow a 2/n trend
- n = (9, 15, 21, 27, 33, ...) follow a 3/n trend
- n = (12, 18, 24, 30, 36, ...) follow a 6/n trend

Question 2: Estimating pi

Question 3: Counting Photons

a) k = 0.1

b) $\lambda = 0.5$

