Mapa das escolas do RS por taxa de distorção de série

Willer Gomes Junior

```
In [18]:
          #!pip3 install folium
          # Importar bibliotecas
In [19]:
          import pandas as pd
          import folium
          # Configurando o matplotlib
          %matplotlib inline
          df = pd.read_csv('fee-2013-mun-taxa-de-distorcao-idade-serie-total-102524.cs
          v', sep=',', encoding = "cp1252", skiprows=1)
          df.head()
Out[19]:
              Município
                                 latitude longitude /Educação/Ens...de Série/Total 2013 (-)
                          ibge
                      4300034 -31.86076 -54.16706
                                                                           25,7
           0
                Aceguá
           1 Água Santa 4300059 -28.16720 -52.03100
                                                                           14,7
           2
                 Agudo 4300109 -29.64470 -53.25150
                                                                           26,4
           3
               Ajuricaba 4300208 -28.23420 -53.77570
                                                                           24,1
                Alecrim 4300307 -27.65790 -54.76490
                                                                           18,9
In [20]:
          # renomeando coluna
          df.rename(columns={'/Educação/Ens...de Série/Total 2013 (-)': 'tx_distorca
          o'}, inplace=True)
          df.head()
Out[20]:
                                 latitude longitude tx distorcao
              Município
                          ibge
                Aceguá 4300034 -31.86076 -54.16706
           0
                                                       25,7
           1 Água Santa 4300059 -28.16720 -52.03100
                                                        14,7
           2
                 Agudo
                      4300109
                              -29.64470 -53.25150
                                                       26,4
           3
               Ajuricaba 4300208 -28.23420 -53.77570
                                                       24,1
                Alecrim 4300307 -27.65790 -54.76490
                                                        18,9
In [21]:
          # verificar o dataframe
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 495 entries, 0 to 494
          Data columns (total 5 columns):
          Município
                            495 non-null object
          ibge
                            495 non-null int64
          latitude
                            495 non-null float64
                            495 non-null float64
          longitude
          tx_distorcao
                            495 non-null object
          dtypes: float64(2), int64(1), object(2)
```

memory usage: 15.5+ KB

```
In [22]: # corrigir a tx_distorção, converter para float
          # inicialmente trocar virgula por ponto
          df['tx_distorcao'] = df['tx_distorcao'].str.replace(',', '.')
In [23]:
         df.head()
Out[23]:
             Município
                         ibge
                               latitude longitude tx distorcao
          0
               Aceguá 4300034 -31.86076 -54.16706
                                                    25.7
          1 Água Santa 4300059 -28.16720 -52.03100
                                                     14.7
          2
                Agudo 4300109 -29.64470 -53.25150
                                                    26.4
          3
              Ajuricaba 4300208 -28.23420 -53.77570
                                                    24.1
          4
               Alecrim 4300307 -27.65790 -54.76490
                                                    18.9
          # verificar o dataframe
In [24]:
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 495 entries, 0 to 494
          Data columns (total 5 columns):
                          495 non-null object
         Município
                          495 non-null int64
          ibge
          latitude
                          495 non-null float64
                          495 non-null float64
          longitude
          tx_distorcao
                          495 non-null object
          dtypes: float64(2), int64(1), object(2)
          memory usage: 15.5+ KB
In [25]:
          # Transtormando o tipo para float
          df['tx distorcao'] = df['tx distorcao'].astype(float)
          # verificar o dataframe
In [26]:
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 495 entries, 0 to 494
          Data columns (total 5 columns):
                          495 non-null object
         Município
                          495 non-null int64
          ibge
          latitude
                          495 non-null float64
                          495 non-null float64
          longitude
          tx_distorcao
                          495 non-null float64
          dtypes: float64(3), int64(1), object(1)
```

memory usage: 17.5+ KB

In [27]: # 10 municipios com menores tx_distorcao
df.nsmallest(10, 'tx_distorcao')

Out[27]:

	Município	ibge	latitude	longitude	tx_distorcao
490	Vista Alegre do Prata	4323606	-28.8052	-51.7946	2.6
375	Santo Antônio do Palma	4317558	-28.4956	-52.0267	4.3
28	Áurea	4301552	-27.6936	-52.0505	5.8
268	Nicolau Vergueiro	4312674	-28.5298	-52.4676	7.0
128	Derrubadas	4306320	-27.2642	-53.8645	7.4
119	Cotiporã	4305959	-28.9891	-51.6971	7.5
68	Campestre da Serra	4303673	-28.7926	-51.0941	7.6
476	Vanini	4322558	-28.4758	-51.8447	7.8
236	Linha Nova	4311643	-29.4679	-51.2003	8.0
392	São José do Inhacorá	4318499	-27.7251	-54.1275	8.0

In [28]: # 10 municipios com maiores tx_distorcao
df.nlargest(10, 'tx_distorcao')

Out[28]:

	Município	ibge	latitude	longitude	tx_distorcao
307	Pedras Altas	4314175	-31.7217	-53.5838	56.0
316	Pinheiro Machado	4314506	-31.5794	-53.3798	53.9
17	Arambaré	4300851	-30.9093	-51.5046	52.8
140	Eldorado do Sul	4306767	-30.0847	-51.6187	51.9
35	Barra do Quaraí	4301875	-30.2029	-57.5497	51.5
393	São José do Norte	4318507	-32.0151	-52.0331	49.4
413	São Valério do Sul	4319737	-27.7906	-53.9368	49.2
193	Hulha Negra	4309654	-31.4067	-53.8667	49.0
106	Chuí	4305439	-33.6866	-53.4594	48.6
233	Lavras do Sul	4311502	-30.8071	-53.8931	47.7

```
In [29]: df['tx_distorcao'].plot.hist(bins=100)
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0xaa53da6c>


```
In [30]: # Quantos minicipios tem tx_distorcao <= 10
df[df['tx_distorcao'] <= 10].count()</pre>
```

Out[30]: Município 17
ibge 17
latitude 17
longitude 17
tx_distorcao 17
dtype: int64

In [31]: # Quantos minicipios tem tx_distorcao >= 10
df[df['tx_distorcao'] >= 45].count()

Out[31]: Município 17 ibge 17 latitude 17 longitude 17 tx_distorcao 17

dtype: int64

Out[32]:

Out[33]:


```
In [34]:
         # Percorrendo o dataframe com base nas melhores escolas[tx_distorcao <= 10]
         # desenhar o marcador para cada escola usando o for e iterrows
         for indice, municipio in df[df['tx_distorcao'] <= 10].iterrows():</pre>
             folium.Marker(
             location=[municipio['latitude'], municipio['longitude']],
                 popup=municipio['Município'],
                 icon=folium.map.Icon(color='green')
             ).add to(RioSul)
         # Percorrendo o dataframe com base nas piores escolas[tx_distorcao >= 45]
         # desenhar o marcador para cada escola usando o for e iterrows
         for indice, municipio in df[df['tx_distorcao'] >= 45].iterrows():
             folium.Marker(
             location=[municipio['latitude'], municipio['longitude']],
                 popup=municipio['Município'],
                 icon=folium.map.Icon(color='red')
             ).add to(RioSul)
         RioSul
```

Out[34]:

In []: