IBM Model 1 and the EM Algorithm

Philipp Koehn

9 February 2016

Lexical Translation

• How to translate a word \rightarrow look up in dictionary

Haus — house, building, home, household, shell.

- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell
- Note: In all lectures, we translate from a foreign language into English

Collect Statistics

Look at a parallel corpus (German text along with English translation)

Translation of <i>Haus</i>	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Estimate Translation Probabilities

Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \text{house}, \\ 0.16 & \text{if } e = \text{building}, \\ 0.02 & \text{if } e = \text{home}, \\ 0.015 & \text{if } e = \text{household}, \\ 0.005 & \text{if } e = \text{shell}. \end{cases}$$

Alignment

• In a parallel text (or when we translate), we align words in one language with the words in the other

• Word positions are numbered 1–4

Alignment Function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$

• Example

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4\}$$

Reordering

Words may be reordered during translation

$$a: \{1 \to 3, 2 \to 4, 3 \to 2, 4 \to 1\}$$

One-to-Many Translation

A source word may translate into multiple target words

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4, 5 \to 4\}$$

Dropping Words

Words may be dropped when translated (German article das is dropped)

$$a: \{1 \to 2, 2 \to 3, 3 \to 4\}$$

Inserting Words

- Words may be added during translation
 - The English just does not have an equivalent in German
 - We still need to map it to something: special NULL token

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 0, 5 \to 4\}$$

IBM Model 1

- Generative model: break up translation process into smaller steps
 - IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a:j\to i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- parameter ϵ is a normalization constant

Example

das

e	t(e f)
the	0.7
that	0.15
which	0.075
who	0.05
this	0.025

Haus

e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

ist

e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

klein

e	t(e f)
small	0.4
little	0.4
short	0.1
minor	0.06
petty	0.04

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028 \epsilon \end{split}$$

finding translations

Centauri-Arcturan Parallel Text

1a. ok-voon ororok sprok .1b. at-voon bichat dat .	7a. lalok farok ororok lalok sprok izok enemo 7b. wat jjat bichat wat dat vat eneat .		
2a. ok-drubel ok-voon anok plok sprok . 2b. at-drubel at-voon pippat rrat dat .	8a. lalok brok anok plok nok . 8b. iat lat pippat rrat nnat .		
3a. erok sprok izok hihok ghirok . 3b. totat dat arrat vat hilat .	9a. wiwok nok izok kantok ok-yurp . 9b. totat nnat quat oloat at-yurp .		
4a. ok-voon anok drok brok jok . 4b. at-voon krat pippat sat lat .	10a. lalok mok nok yorok ghirok clok . 10b. wat nnat gat mat bat hilat .		
5a. wiwok farok izok stok . 5b. totat jjat quat cat .	11a. lalok nok crrrok hihok yorok zanzanok . 11b. wat nnat arrat mat zanzanat .		
6a. lalok sprok izok jok stok . 6b. wat dat krat quat cat .	12a. lalok rarok nok izok hihok mok . 12b. wat nnat forat arrat vat gat .		

Translation challenge: farok crrrok hihok yorok clok kantok ok-yurp

(from Knight (1997): Automating Knowledge Acquisition for Machine Translation)

em algorithm

Learning Lexical Translation Models

- ullet We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the *alignments*,
 - → we could estimate the *parameters* of our generative model
 - if we had the *parameters*,
 - \rightarrow we could estimate the *alignments*

- Incomplete data
 - if we had *complete data*, would could estimate *model*
 - if we had *model*, we could fill in the *gaps* in the data
- Expectation Maximization (EM) in a nutshell
 - 1. initialize model parameters (e.g. uniform)
 - 2. assign probabilities to the missing data
 - 3. estimate model parameters from completed data
 - 4. iterate steps 2–3 until convergence

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

... la maison ... la maison blue ... la fleur ...

.. the house ... the blue house ... the flower ...

- After one iteration
- Alignments, e.g., between la and the are more likely

... la maison ... la maison bleu ... la fleur ...

the house ... the blue house ... the flower ...

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

- Convergence
- Inherent hidden structure revealed by EM

... la maison ... la maison bleu ... la fleur ... the house ... the blue house ... the flower ... p(la|the) = 0.453p(le|the) = 0.334p(maison|house) = 0.876p(bleu|blue) = 0.563

• Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

IBM Model 1 and EM

Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$ $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

la •• the maisor house maisor house maisor house maisor house maisor house
$$p(\mathbf{e}, a|\mathbf{f}) = 0.56$$
 $p(\mathbf{e}, a|\mathbf{f}) = 0.035$ $p(\mathbf{e}, a|\mathbf{f}) = 0.08$ $p(\mathbf{e}, a|\mathbf{f}) = 0.005$ $p(a|\mathbf{e}, \mathbf{f}) = 0.0824$ $p(a|\mathbf{e}, \mathbf{f}) = 0.052$ $p(a|\mathbf{e}, \mathbf{f}) = 0.118$ $p(a|\mathbf{e}, \mathbf{f}) = 0.007$

• Counts

$$c({\rm the}|{\rm la}) = 0.824 + 0.052$$
 $c({\rm house}|{\rm la}) = 0.052 + 0.007$ $c({\rm the}|{\rm maison}) = 0.118 + 0.007$ $c({\rm house}|{\rm maison}) = 0.824 + 0.118$

- We need to compute $p(a|\mathbf{e}, \mathbf{f})$
- Applying the chain rule:

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

• We already have the formula for $p(\mathbf{e}, \mathbf{a}|\mathbf{f})$ (definition of Model 1)

• We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

- Note the trick in the last line
 - removes the need for an exponential number of products
 - → this makes IBM Model 1 estimation tractable

The Trick

(case $l_e = l_f = 2$)

$$\begin{split} \sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} &= \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) = \\ &= t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) = \\ &= t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{1}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ &= (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) \end{split}$$

• Combine what we have:

$$\begin{split} p(\mathbf{a}|\mathbf{e},\mathbf{f}) &= p(\mathbf{e},\mathbf{a}|\mathbf{f})/p(\mathbf{e}|\mathbf{f}) \\ &= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)} \\ &= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)} \end{split}$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair **e**,**f** that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{e} \sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}$$

IBM Model 1 and EM: Pseudocode


```
Input: set of sentence pairs (e, f)
                                                            // collect counts
                                                   14:
Output: translation prob. t(e|f)
                                                            for all words e in e do
                                                   15:
                                                               for all words f in f do
 1: initialize t(e|f) uniformly
                                                   16:
                                                                 count(e|f) += \frac{t(e|f)}{s-total(e)}
 2: while not converged do
                                                   17:
      // initialize
 3:
                                                                 total(f) += \frac{t(e|f)}{s-total(e)}
                                                   18:
      count(e|f) = 0 for all e, f
 4:
                                                               end for
                                                   19:
       total(f) = 0 for all f
 5:
                                                            end for
                                                   20:
       for all sentence pairs (e,f) do
 6:
                                                         end for
                                                   21:
          // compute normalization
 7:
                                                         // estimate probabilities
         for all words e in e do
 8:
                                                         for all foreign words f do
                                                   23:
            s-total(e) = 0
 9:
                                                            for all English words e do
                                                   24:
            for all words f in f do
10:
                                                              t(e|f) = \frac{\operatorname{count}(e|f)}{\operatorname{total}(f)}
                                                   25:
               s-total(e) += t(e|f)
11:
                                                            end for
                                                   26:
            end for
12:
                                                         end for
                                                   27:
          end for
13:
                                                   28: end while
```

Convergence

e	f	initial	1st it.	2nd it.	3rd it.	•••	final
the	das	0.25	0.5	0.6364	0.7479	•••	1
book	das	0.25	0.25	0.1818	0.1208	•••	0
house	das	0.25	0.25	0.1818	0.1313	•••	0
the	buch	0.25	0.25	0.1818	0.1208	•••	0
book	buch	0.25	0.5	0.6364	0.7479	•••	1
a	buch	0.25	0.25	0.1818	0.1313	•••	0
book	ein	0.25	0.5	0.4286	0.3466	•••	0
a	ein	0.25	0.5	0.5714	0.6534	•••	1
the	haus	0.25	0.5	0.4286	0.3466	•••	0
house	haus	0.25	0.5	0.5714	0.6534	•••	1

Perplexity

- How well does the model fit the data?
- Perplexity: derived from probability of the training data according to the model

$$\log_2 PP = -\sum_s \log_2 p(\mathbf{e}_s|\mathbf{f}_s)$$

• Example (ϵ =1)

	initial	1st it.	2nd it.	3rd it.	•••	final
p(the haus das haus)	0.0625	0.1875	0.1905	0.1913	•••	0.1875
p(the book das buch)	0.0625	0.1406	0.1790	0.2075	•••	0.25
p(a book ein buch)	0.0625	0.1875	0.1907	0.1913	•••	0.1875
perplexity	4095	202.3	153.6	131.6	•••	113.8

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
 - training of a higher IBM model builds on previous model
- Computationally biggest change in Model 3
 - trick to simplify estimation does not work anymore
 - → exhaustive count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead