Anmerkungen und Lösungen zu

Einführung in die Algebra Blatt 3

Jendrik Stelzner

Letzte Änderung: 11. November 2017

Aufgabe 1

(c)

Es gilt $S \subseteq N_G(S)$ nach Definition von $N_G(S)$, und nach Annahme gilt $H \subseteq N_G(S)$. Nach einem der Isomorphiesätze ist deshalb HS eine Untergruppe von $N_G(S)$, sowie $H \cap S$ eine normale Untergruppe von H mit $HS/S \cong H/(H \cap S)$. Inbesondere ist HS/S mit der Multiplikation $\overline{g_1g_2} = \overline{g_1g_2}$ eine wohldefinierte Gruppe. Es handelt sich um eine p-Gruppe da

$$|HS/S| = |H/(H\cap S)| = \frac{|H|}{|H\cap S|} \, \bigg| \, |H|$$

und |H| eine p-Gruppe ist.

(d)

Es gilt

$$|HS| = \frac{|HS|}{|S|} |S| = |HS/S| |S|.$$

Da HS/S und S beides p-Gruppen sind, ist deshalb auch HS eine p-Gruppe. Als p-Sylowuntergruppe ist S kardinalitäts- und damit auch inklusionsmaximal unter allen p-Untergruppen von G; zusammen mit $S \leq HS$ folgt damit, dass bereits S = HS gilt. Somit gelten HS/S = S/S = 1 und $H \leq HS = S$.

(e)

Für jede $p\text{-}\mathrm{Sylowuntergruppe}\ S'\in \mathrm{Syl}_p(G)$ gilt

$$S' \in \operatorname{Syl}_p(G)^S \iff \forall s \in S : s.S' = S' \iff \forall s \in S : sS's^{-1} = S'$$

$$\iff \forall s \in S : s \in N_G(S') \iff S \leq N_G(S')$$

$$\iff S < S' \iff S = S'.$$

Dabei nutzen wir für die vorletzte Äquivalenz Aufgabenteil (d). Für die letzte Äquivalenz nutzen wir, dass |S|=|S'| daS und S' zwei p-Sylowuntergruppen sind. Ingesamt zeigt dies, dass S der eindeutige Fixpunkt der gegebenen Wirkung ist.