EAIiIB	Michał Kilian		Rok II	Grupa 5a	
	Temat:		Nu	mer ćwiczenia:	
W	Ahadło proste			0	
Data wykonania 10.10.2018r.	Data oddania 12.10.2018r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła pro stego

Wahadło matematyczne to punktowa masa m zawieszona na nieważkiej i nierozciągliwej lince poruszająca w jednorodnym polu grawitacyjnym. W doświadczeniu wykorzystamy bardzo dobre przybliżenie takiego układu jakim jest ciężka metalowa kulka zawieszona na nitce.

Aby znacząco uprościć obliczenia przyjmiemy $\sin\theta\approx\theta$ co jest prawdą dla małych wartości kąta θ zgodnie z twierdzeniem Taylora. Dzięki temu ograniczamy wpływ oporu powietza na wyniki, a z uproszczonego równania ruchu wahadła uzyskujemy następujacą zależność

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

gdzie T - okres drgań, l - długość nici, g - przyspieszenie grawitacyjne. Po przekształceniu otrzymujemy wzór roboczy pozwalający na wyznaczenie wartości przyspieszenia grawitacyjnego dla Ziemi

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

2 Wykonanie ćwiczenia

- 1. Zapoznać się z budową mikroskopu
- 2. Na obu powierzchniach płytki zrobić kreski, jedna nad drugą cienkim pisakiem (ewentualnie wykorzystać istniejące kreski)
- 3. Zmierzyć śrubą mikrometryczną grubość płytki d w pobliżu kresek.
- 4. Ustaw badaną płytkę na stoliku mikroskopu w uchwycie i dobierz ostrość tak by uzyskać kontrastowy obraz. Regulując położenie stolika pokrętłem 7a zaobserwuj górny i dolny ślad zaznaczony na płytce.
- 5. Pokrętłem 7b przesuń stolik mikroskopu do momentu uzyskania ostrego obrazu śladu na górnej powierzchni płytki.
- 6. Odczytaj położenie a_q wskazówki czujnika mikrometrycznego.
- 7. Przesuń stolik mikroskopu do położenia, w którym widoczny jest ślad na dolnej powierzchni płytki (pokrętłem 7b).
- 8. Ponownie odczytaj położenie a_d wskazówki czujnika.
- 9. Odczyty zanotuj w tabeli 1, 2 lub 3.

3 Wyniki pomiarów

Obliczenie grubości rzeczywistej dla płytki szklanej \bar{d} ze wzoru $\bar{x} = \frac{1}{n} \sum x_i$ $\bar{d} = \frac{4.76 + 4.74 + 4.73 + 4.71 + 4.75 + 4.74 + 4.72 + 4.72}{10} = 4,74$ ze wzoru $u(x) \equiv s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}}$ niepewność pomiaru grubości $u(\bar{d}) = \sqrt{\frac{(4.76 - 4.74)^2 + (4.74 - 4.74)^2 + \dots + (4.72 - 4.74)^2 +}{9*10}} = 0,005[mm]$ Niepewność typu B jest równa najmniejszej podziałce użytego przyrządu $u(d_b) = 0,01mm$ Niepewność złożona $\frac{u(d)}{d} = \sqrt{(\frac{u(\bar{d})}{d})^2 + (\frac{u(d_b)}{d})^2} = \sqrt{(\frac{0.005}{4.74})^2 + (\frac{0.01}{4.74})^2} = 0,24\%$ Niepewność bezwględna u(d) = 4,74mm*0,24% = 0,011mm

Tablica 1: Pomiary grubości rzeczywistej płytki

Materiał	Szklo
Lp.	Grubość [mm]
1	4,76
2	4,74
3	4,74
4	4,73
5	4,71
6	4,75
7	4,74
8	4,74
9	4,72
10	4,72

Tablica 2:

materiał: szkło				
grubość rzeczywista d $=4,74[\mathrm{mm}]$				
niepewność $u(d) = 0,011[mm]$				
lp.	Wskazanie czujnika		grubość	
			pozorna	
	$a_d[\mathrm{mm}]$	$a_g[\mathrm{mm}]$	$h = a_d - a_g[\text{mm}]$	
1	4,19	1,13	3,06	
2	4,23	1,02	3,21	
3	4,22	1,14	3,08	
4	4,21	1,15	3,06	
5	4,17	1,17	3,00	
6	4,16	1,19	2,97	
7	4,16	$1{,}17$	2,99	
8	4,21	1,15	3,06	
9	4,19	1,17	3,02	
10	4,19	1,19	3,00	

średnia grubość pozorna
$$h=\frac{3,06+3,21+3,08+3,06+3+2,97+2,99+3,06+3,02+3}{10}=3,04[mm]$$
niepewność $u(h)=\sqrt{\frac{\sum(x_i-\bar{x})^2}{n(n-1)}}=\sqrt{\frac{(3,06-3,04)^2+(3,21-3,04)^2+...+(3-3,04)^2+}{9*10}}=0,022[mm]$

Współczynnik załamania dla płytki szklanej $n=\frac{d}{h}=\frac{4,74}{3,04}=1,559.$ Niepewność złożona współczynnika załamania z prawa przenoszenia niepewności

$$u(n) = \sqrt{\left[\frac{1}{d}u(d)\right]^2 + \left[\frac{-d}{h^2}u(h)\right]^2} = \sqrt{\left[\frac{1}{4,74}0,011\right]^2 + \left[\frac{-4,74}{(3,04)^2}0,022\right]^2} = 0,02304$$

Niepewność rozszerzona $U(n) = k \cdot u(g)$ dla $k = 2 \cdot U(n) = 2 \cdot 0,01152 = 0,01244.$

Obliczenie grubości rzeczywistej dla płytki pleksiglasowej
$$\bar{d}$$
 ze wzoru $\bar{x}=\frac{1}{n}\sum x_i$ $\bar{d}=\frac{3.82+3.81+3.81+3.82+3.8+3.8+3.81+3.79+3.8+3.8}{10}=3,81$ ze wzoru $u(x)\equiv s_x=\sqrt{\frac{\sum (x_i-\bar{x})^2}{n(n-1)}}$ niepewność pomiaru grubości $u(\bar{d})=\sqrt{\frac{(3.82-3.81)^2+(3.81-3.81)^2+...+(3.8-3.81)^2+}{9*10}}=0,003[mm]$ Niepewność typu B jest równa najmniejszej podziałce użytego przyrządu $u(d_b)=0,01mm$ Niepewność złożona $\frac{u(d)}{d}=\sqrt{(\frac{u(\bar{d})}{d})^2+(\frac{u(d_b)}{d})^2}=\sqrt{(\frac{0.003}{3.81})^2+(\frac{0.01}{3.81})^2}=0,27\%$ Niepewność bezwględna $u(d)=3,81mm*0,27\%=0,01mm$

Tablica 3: Pomiary grubości rzeczywistej płytki

Materiał	Pleksiglas
Lp.	Grubość [mm]
1	3,82
2	3,81
3	3,81
4	3,82
5	3,8
6	3,8
7	3,81
8	3,79
9	3,8
10	3,8

Tablica 4:

	materiał:	pleksiglas		
grubość rzeczywista d = 3,81[mm]				
	niepewność $u(d) = 0,01[\text{mm}]$			
lp.	Wskazan	ie czujnika	grubość pozorna	
_	$a_d[\mathrm{mm}]$	$a_g[\mathrm{mm}]$	$h = a_d - a_g[\text{mm}]$	
1	4,39	1,74	2,65	
2	4,38	1,80	2,58	
3	4,36	1,74	2,62	
4	4,35	1,79	2,56	
5	4,35	1,76	2,59	
6	4,42	1,82	2,60	
7	4,39	1,76	2,63	
8	4,38	1,79	2,59	
9	4,41	1,78	2,63	
10	4,33	1,78	2,55	

średnia grubość pozorna
$$h=\frac{2,65+2,58+2,62+2,56+2,59+2,63+2,59+2,63+2,55}{10}=2,60[mm]$$
niepewność $u(h)=\sqrt{\frac{\sum(x_i-\bar{x})^2}{n(n-1)}}=\sqrt{\frac{(2,65-2,60)^2+(2,62-2,60)^2+...+(2,55-2,6)^2+}{9*10}}=0,01[mm]$

Współczynnik załamania dla płytki pleksiglasowej $n=\frac{d}{h}=\frac{3,81}{2,60}=1,465$. Niepewność złożona współczynnika załamania z prawa przenoszenia niepewności

$$u(n) = \sqrt{\left[\frac{1}{d}u(d)\right]^2 + \left[\frac{-d}{h^2}u(h)\right]^2} = \sqrt{\left[\frac{1}{3,81}0,01\right]^2 + \left[\frac{-3,81}{(2,60)^2}0,01\right]^2} = 0,00622$$

Niepewność rozszerzona U(n) = ku(g) dla $k = 2U(n) = 2 \cdot 0,00622 = 0,01244.$

4 Opracowanie wyników pomiarów

- 1. Oblicz wartość współczynnika załamania dla n dla każdej badanej płytki.
- 2. oszacuj niepewność typu B wyznaczenia grubości rzeczywistej u(d) oraz niepewność typu A dla grubości pozornej h (wyniki zapisz w odpowiedniej tabeli).
- 3. Oblicz niepewność złożoną współczynnika załamania z prawa przenoszenia niepewności

$$u(n) = \sqrt{\left[\frac{1}{d}u(d)\right]^2 + \left[\frac{-d}{h^2}u(h)\right]^2}$$

4. Zapisz otrzymane wartości współczynnika załamania wraz z niepewnościami i porównaj je z wartościami tabelarycznymi.

Zestawienie wyników

rodzaj materiału	n zmierzone	n tablicowe
Pleksiglas	$1,465(\pm0,01244)$	1,489
Szkło	$1,559(\pm0,02304)$	1,50-1,54

5 Wnioski

Mierząc grubość pozorną oraz rzeczywistą płytek możemy wyznaczyć współczynnik załamania światła. Otrzymana wartość współczynnika załamania światła dla szklanej płytki jest zgodna z tablicową wartością w granicach niepewności. Wartość współczynnika załamania światła dla pleksiglasowej płytki nie jest zgodna z tablicową wartością w granicach niepewności. Błędy pomiarów mogą być spowodowane małą dokładnością metody pomiarów, ponieważ określenie czy obraz jest idealnie wyostrzony było subiektywną opinią.