

TUGAS AKHIR - IF184802

IMPLEMENTASI REDUKSI POLYGON DALAM MENYELESAIKAN PERMASALAHAN RELATIVE CONVEX HULL DENGAN STUDI KASUS SPHERE ONLINE JUDGE 5637 LL AND ERBAO

MICHAEL JULIAN ALBERTUS NRP 05111640000097

Dosen Pembimbing 1 Rully Soelaiman, S.Kom., M.Kom.

Dosen Pembimbing 2 Yudhi Purwananto, S.Kom., M.Kom.

DEPARTEMEN INFORMATIKA Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember Surabaya, 2019

TUGAS AKHIR - IF184802

IMPLEMENTASI REDUKSI POLYGON DALAM MENYELESAIKAN PERMASALAHAN RELATIVE CONVEX HULL DENGAN STUDI KASUS SPHERE ONLINE JUDGE 5637 LL AND ERBAO

MICHAEL JULIAN ALBERTUS NRP 05111640000097

Dosen Pembimbing 1 Rully Soelaiman, S.Kom., M.Kom.

Dosen Pembimbing 2 Yudhi Purwananto, S.Kom., M.Kom.

DEPARTEMEN INFORMATIKA Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember Surabaya, 2019

UNDERGRADUATE THESES - IF184802

IMPLEMENTATION OF POLYGON REDUCTION FOR SOLVING RELATIVE CONVEX HULL PROBLEM WITH CASE STUDY SPHERE ONLINE JUDGE 5637 LL AND ERBAO

MICHAEL JULIAN ALBERTUS NRP 05111640000097

Supervisor 1 Rully Soelaiman, S.Kom., M.Kom.

Supervisor 2 Yudhi Purwananto, S.Kom., M.Kom.

INFORMATICS DEPARTMENT Faculty of Information Technology and Communication Institut Teknologi Sepuluh Nopember Surabaya, 2019

LEMBAR PENGESAHAN

IMPLEMENTASI REDUKSI POLYGON DALAM MENYELESAIKAN PERMASALAHAN RELATIVE CONVEX HULL DENGAN STUDI KASUS SPHERE ONLINE JUDGE 5637 LL AND ERBAO

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada

Bidang Studi Algoritma Pemrograman Program Studi S-1 Departemen Informatika Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember

Oleh:

Michael Julian Albertus NRP, 05111640000097

Digatujui olah Dogan Pambimbing Tugog Alchir

Disclujui oleh Dosen Temoliholing Tug	gas Akiiii.
Rully Soelaiman, S.Kom., M.Kom.	
NIP. 197002131994021001	(Pembimbing 1)
Yudhi Purwananto, S.Kom., M.Kom.	
NIP. 197007141997031002	(Pembimbing 2)

Surabaya 9 November 2019

ABSTRAK

IMPLEMENTASI REDUKSI POLYGON DALAM MENYE-LESAIKAN PERMASALAHAN RELATIVE CONVEX HU-LL DENGAN STUDI KASUS SPHERE ONLINE JUDGE 5637 LL AND ERBAO

Nama : Michael Julian Albertus

NRP : 05111640000097

Departemen : Departemen Informatika,

Fakultas Teknologi Informasi dan

Komunikasi, ITS

Pembimbing I : Rully Soelaiman, S.Kom., M.Kom. Pembimbing II : Yudhi Purwananto, S.Kom.,

M.Kom.

Abstrak

Computational geometry adalah cabang dari ilmu komputer yang dikhususkan untuk mempelajari algoritma yang dapat dinyatakan dalam suatu geometri. Salah satu algoritma yang sering dipakai pada computational geometry adalah algoritma convex hull. Convex hull adalah sebuah set polygon dari titik pada bidang euclidean atau ruang euclidean, atau dapat disebut himpunan cembung terkecil yang berisi titik. Convex hull dapat divisualisasikan sebagai bentuk yang tertutup oleh karet gelang yang membentang di sekitar titik - titik tersebut.

Relative convex hull merupakan penurunan dari convex hull. Relative convex hull merupakan convex hull yang mempunyai cavity (cekungan ke dalam) yang diakibatkan atau relatif terhadap sesuatu yang membatasi convex hull tersebut.

Topik Tugas Akhir ini mengulas algoritma reduksi poligon untuk menyelesaikan permasalahan relative convex hull. Melalui pengujian dan studi kasus didapatkan bahwa algoritma reduksi poligon dapat menyelesaikan permasalahan relative convex hull dengan efisien.

Kata Kunci: geometri; convex hull; melkman algorithm; relative poligon;

ABSTRACT

IMPLEMENTATION OF POLYGON REDUCTION FOR SO-LVING RELATIVE CONVEX HULL PROBLEM WITH CA-SE STUDY SPHERE ONLINE JUDGE 5637 LL AND ERBAO

Name : Michael Julian Albertus

Student ID : 05111640000097

Department : Informatics Department,

Faculty of Information Technology

and Communication, ITS

Supervisor I : Rully Soelaiman, S.Kom., M.Kom. Supervisor II : Yudhi Purwananto, S.Kom.,

M.Kom.

Abstract

computational geometry is one of the computer science branches that mainly focus in studying geometrical algorithm. One of the algorithm that mostly used is convex hull. Convex hull is a polygon from multiple point inside of euclidean plane. In short, minimum convex polygon that covers set of points. convex hull can be visualized by a rubber band that covers the set of points.

Relative convex hull derived from convex hull. Relative convex hull is convex hull that have one or more cavity that relative to some thing that limit the convex polygon.

In this Thesis will review polygon reduction algorithm to solve relative convex hull problem. According to sub-sequence testing and case study, it appears that polygon reduction algorithm can solve relative convex hull problem efficiently.

Keywords: geometry; convex hull; melkman algorithm; relative poligon;

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa. Atas rahmat dan kasih sayangNya, penulis dapat menyelesaikan tugas akhir dan laporan akhir dalam bentuk buku ini.

Pengerjaan buku ini penulis tujukan untuk mengeksplorasi lebih mendalam topik-topik yang tidak diwadahi oleh kampus, namun banyak menarik perhatian penulis. Selain itu besar harapan penulis bahwa pengerjaan tugas akhir sekaligus pengerjaan buku ini dapat menjadi batu loncatan penulis dalam menimba ilmu yang bermanfaat.

Penulis ingin menyampaikan rasa terima kasih kepada banyak pihak yang telah membimbing, menemani dan membantu penulis selama masa pengerjaan tugas akhir maupun masa studi.

- Ayah, Ibu, dan keluarga penulis yang selalu memberikan dukungan, perhatian, dan kasih sayang bagi penulis yang menjadi semangat selama perkuliahan maupun pengerjaan Tugas Akhir.
- 2. Bapak Rully Soelaiman S.Kom.,M.Kom., selaku pembimbing I penulis. Ucapan terima kasih juga penulis sampaikan atas segala perhatian, didikan, pengajaran, dan nasihat yang telah diberikan oleh beliau selama masa studi penulis.
- 3. Bapak Yudhi Purwananto, S.Kom., M.Kom., selaku dosen pembimbing II yang telah memberikan petunjuk dan saransaran yang berharga dalam penulisan Tugas Akhir ini.
- 4. Semua pihak Departemen Informatika Institut Teknologi Sepuluh Nopember yang telah mendukung penulisan Tugas Akhir ini.
- 5. Serta teman-teman lainnya yang tidak bisa saya sebutkan satu-persatu yang banyak membantu dalam penulisan Tugas Akhir ini hingga selesai.

xiv

Penulis menyadari bahwa buku ini jauh dari kata sempurna. Maka dari itu, penulis memohon maaf apabila terdapat salah kata maupun makna pada buku ini. Akhir kata, penulis mempersembahkan buku ini sebagai wujud nyata kontribusi penulis dalam ilmu pengetahuan.

Surabaya, 9 November 2019

Michael Julian Albertus

DAFTAR ISI

LEMBA	AR PENGESAHAN vii
ABSTR	AK ix
ABSTR	ACT xi
KATA P	PENGANTAR xiii
DAFTA	R ISI
DAFTA	R GAMBAR xix
	R TABEL
	R PSEUDOCODE xxiii
	R KODE SUMBER xxv
DAFTA	R NOTASI
BAB I	PENDAHULUAN 1
1.1	Latar Belakang
1.2	Rumusan Masalah
1.3	Batasan Masalah
1.4	Tujuan
1.5	Manfaat
1.6	Metodologi
1.7	Sistematika Penulisan
BAB II	DASAR TEORI
2.1	Deskripsi Permasalahan
2.2	Convex Polygon
2.3	Relative Convex Polygon 8
2.4	Strategi Penyelesaian Permasalahan 9
	2.4.1 Pemrosesan Titik Pembentuk Polygon
	yang Membentuk Convex 10

	2		Convex Hull dari Titik yang Berada di Da- lam Polygon	11
2	2.5		K Hull	11
2	_	2.5.1	Relative Convex Hull	12
				13
_	_	2.5.2	Algoritma Convex Hull	_
_	2.6		nside Polygon	18
BAB			IN	19
3	3.1		Umum Sistem	19
3	3.2	Desain	Fungsi Main	19
3	3.3	Desain	Class Point	19
3	3.4	Desain	Class Vec	21
3	3.5	Desain	Class Line	22
3	3.6	Desain	Class Segment	23
3	3.7	Desain	Class Polygon	24
3	3.8		BetweenD	27
3	3.9		EDist	28
3	3.10		Cross	29
3	3.11	Fungsi	Orientation	29
			OnSegment	30
3	3.13	Fungsi	ConvexHull	30
			InSimplePolygon	31
			GetBetween	33
			Solve	36
BAB			EMENTASI	39
4	1.1		ngan implementasi	39
4	1.2	•	nentasi Program Utama	39
		4.2.1	Header yang diperlukan	39
	4	4.2.2	Preprocessor	40
	4	4.2.3	Variabel Global	41

	4.2.4	Implementasi Fungsi Main	41
	4.2.5	Implementasi Class Point	42
	4.2.6	Implementasi Class Vec	43
	4.2.7	Implementasi Class Line	44
	4.2.8	Implementasi Class Segment	46
	4.2.9	Implementasi Class Polygon	46
	4.2.10	Implementasi Fungsi BetweenD	47
	4.2.11	Implementasi Fungsi EDist	48
	4.2.12	Implementasi Fungsi Cross	48
	4.2.13	Implementasi Fungsi Orientation	48
	4.2.14	Implementasi Fungsi OnSegment	49
	4.2.15	Implementasi Fungsi ConvexHull	49
	4.2.16	Implementasi Fungsi InSimplePolygon	50
	4.2.17	Implementasi Fungsi GetBetween	50
	4.2.18	Implementasi Fungsi Solve	52
BAB V	UJI C	COBA DAN EVALUASI	55
5.1	Lingkı	ungan Uji Coba	55
5.2	Skena	rio Uji Coba	56
5.3	Uji Co	ba Kebenaran	56
5.4	Uji Co	oba Kinerja Lokal	57
5.5	Evalua	asi Kebenaran Uji Coba Lokal	57
5.6	Uji Co	bba Kinerja Luar	65
BAB VI	KESI	MPULAN	67
6.1	Kesim	pulan	67
6.2	Saran		67
DAFTA	R PUST	'AKA	69
		DATA UJI	71
LAMPI		Hasil Uji Coba Reduksi Polygon pada Si-	
	tus SI	POJ Sebanyak 10 Kali	101

	٠	٠	٠
XV	1	1	1

BIODATA PENULIS																					103
210211111210	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

DAFTAR GAMBAR

Gambar 1.1	Ilustrasi Convex Hull
Gambar 1.2	Ilustrasi Relative Convex Hull 2
Gambar 2.1	Ilustrasi Contoh Kasus Tanpa Solusi
Gambar 2.2	Ilustrasi Contoh Kasus
Gambar 2.3	Ilustrasi Properti Convex Polygon 1 9
Gambar 2.4	Ilustrasi Properti Convex Polygon 2 9
Gambar 2.5	Ilustrasi Relative Convex Polygon 9
Gambar 2.6	Ilustrasi Convex Cull
Gambar 2.7	Ilustrasi Relative Convex Hull 12
Gambar 2.8	Ilustrasi Algoritma Melkman 14
Gambar 2.9	Ilustrasi Algoritma Monotone Chain 16
Gambar 2.10	Ilustrasi Algoritma Point Inside Polygon 18
Gambar 5.1	Hasil Uji Coba Kebenaran Situs Penilaian Sphere Online Judge
Gambar 5.2	Grafik Mean Running Time Kasus Uji 58
Gambar 5.3	Ilustrasi Kondisi Awal 58
Gambar 5.4	Ilustrasi Iterasi 1
Gambar 5.5	Ilustrasi Iterasi 2 60
Gambar 5.6	Ilustrasi Iterasi 3 61
Gambar 5.7	Ilustrasi Iterasi 4 62
Gambar 5.8	Ilustrasi Iterasi 5 62
Gambar 5.9	Ilustrasi Iterasi 6 63
Gambar 5.10	Ilustrasi Iterasi 7 64
Gambar 5.11	Ilustrasi Iterasi 8

Gambar 5.12	Grafik Waktu Uji Coba 10 Kali pada Situs SPOJ	65
Gambar 5.13	Grafik Memori Uji Coba 10 Kali pada Situs SPOJ	66
Gambar C.1	Hasil Pengumpulan Kode Program Utama Dengan Algoritma reduksi polygon	101

DAFTAR TABEL

Tabel 2.1	Tabel Perbandingan Algoritma Convex Hull	13
Tabel 3.1	Nama dan Fungsi Variabel dalam Class POINT .	21
Tabel 3.2	Nama dan Fungsi Variabel dalam Class VEC	21
Tabel 3.3	Nama dan Fungsi Variabel dalam class LINE	22
Tabel 3.4	Nama dan Fungsi Variabel dalam Class SEGMENT	23
Tabel 3.5	Nama dan Fungsi Variabel dalam Class POLYGON	24
Tabel 3.6	Masukan, Proses, dan Keluaran dari Fungsi NEXT Class POLYGON	25
Tabel 3.7	Masukan, Proses, dan Keluaran dari Fungsi PREV Class POLYGON	26
Tabel 3.8	Masukan, Proses, dan Keluaran dari Fungsi PERIMETER Class POLYGON	27
Tabel 3.9	Masukan, Proses, dan Keluaran dari Fungsi BETWEEND	28
Tabel 3.10	Masukan, Proses, dan Keluaran dari Fungsi EDIST	28
Tabel 3.11	Masukan, Proses, dan Keluaran dari Fungsi CROSS	29
Tabel 3.12	Masukan, Proses, dan Keluaran dari Fungsi ORIENTATION	30
Tabel 3.13	Masukan, Proses, dan Keluaran dari Fungsi ONSEGMENT	31
Tabel 3.14	Masukan, Proses, dan Keluaran dari Fungsi CONVEXHULL	33
Tabel 3.15	Masukan, Proses, dan Keluaran dari Fungsi	33

xxii

Tabel 3.16	Masukan, Proses, dan Keluaran dari Fungsi	
	GETBETWEEN	36
Tabel 3.17	Masukan, Proses, dan Keluaran dari Fungsi	
	Solve	38
Tabel 5.1	Tabel Data Uji Coba Kebenaran Lokal dengan	
	Sampel Data	59

DAFTAR PSEUDOCODE

Pseudocode 2.1	Melkman Convex Hull	15
Pseudocode 2.2	Monotone Chain Algorithm	17
Pseudocode 3.1	Fungsi MAIN	20
Pseudocode 3.2	Class Point	20
Pseudocode 3.3	Class VEC	22
Pseudocode 3.4	Class Line	23
Pseudocode 3.5	Class Segment	24
Pseudocode 3.6	Class POLYGON	25
Pseudocode 3.7	Fungsi NEXT pada class POLYGON	26
Pseudocode 3.8	Fungsi PREV pada class POLYGON	26
Pseudocode 3.9	Fungsi PERIMETER pada class POLYGON	27
Pseudocode 3.10	Fungsi BetweenD	27
Pseudocode 3.11	Fungsi EDIST	29
Pseudocode 3.12	Fungsi CROSS	29
Pseudocode 3.13	Fungsi ORIENTATION	30
Pseudocode 3.14	Fungsi ONSEGMENT	31
Pseudocode 3.15	Fungsi CONVEXHULL	32
Pseudocode 3.16	Fungsi InSimplePolygon	34
Pseudocode 3.17	Fungsi GETBETWEEN	35
Pseudocode 3.18	Fungsi SOLVE	37

DAFTAR KODE SUMBER

Kode Sumber 4.1	Header yang Diperlukan 40
Kode Sumber 4.2	Preprocessor yang Diperlukan 41
Kode Sumber 4.3	Variabel Global yang Didefinisikan Un-
	tuk Program 41
Kode Sumber 4.4	Fungsi Main
Kode Sumber 4.5	Struct Point
Kode Sumber 4.6	Struct Vec
Kode Sumber 4.7	Struct Line
Kode Sumber 4.8	Struct Segment
Kode Sumber 4.9	Struct Polygon 47
Kode Sumber 4.10	Fungsi BetweenD 47
Kode Sumber 4.11	Fungsi EDist 48
Kode Sumber 4.12	Fungsi Cross 48
Kode Sumber 4.13	Fungsi Orientation 48
Kode Sumber 4.14	Fungsi OnSegment 49
Kode Sumber 4.15	Fungsi ConvexHull 49
Kode Sumber 4.16	Fungsi InSimplePolygon 50
Kode Sumber 4.17	Fungsi GetBetween 51
	Fungsi Solve

DAFTAR NOTASI

- \sum Notasi yang digunakan untuk menjumlahkan sejumlah bilangan terurut dengan aturan tertentu.
- Notasi yang mewakili setiap element pada himpunan \forall
- \(\ldots \)\(\ldots \)\

BAB I PENDAHULUAN

Pada bab ini, akan dijelaskan mengenai latar belakang, rumusan masalah, batasan masalah, tujuan, metodologi pengerjaan, dan sistematika penulisan Tugas Akhir.

1.1 Latar Belakang

Computational geometry adalah cabang dari ilmu komputer yang dikhususkan untuk mempelajari algoritma yang dapat dinyatakan dalam suatu geometri. Salah satu algoritma yang sering dipakai pada computational geometry adalah algoritma convex hull. Convex hull adalah sebuah set polygon dari titik pada bidang euclidean atau ruang euclidean, atau dapat disebut himpunan cembung terkecil yang berisi titik. Sebagai contoh, ketika suatu kumpulan titik merupakan bagian yang dibatasi dalam sebuah bidang, convex hull dapat divisualisasikan sebagai bentuk yang tertutup oleh karet gelang yang membentang di sekitar titik - titik tersebut. Berikut merupakan contoh dari convex hull:

Gambar 1.1 Ilustrasi Convex Hull

Relative convex hull merupakan penurunan dari convex hull. Relative convex hull merupakan convex hull yang mempunyai

cavity (cekungan ke dalam) yang diakibatkan atau relatif terhadap sesuatu yang membatasi *convex hull* tersebut. Ilustrasi *relative convex hull* dapat dilihat pada gambar 2.7.

Gambar 1.2 Ilustrasi Relative Convex Hull

Pada topik Tugas Akhir ini akan dijelaskan algoritma penyelesaian untuk mencari *relative convex hull* dari sekumpulan titik yang berada di dalam sebuah polygon sederhana dengan menggunakan reduksi polygon pada studi kasus pada Sphere Online Judge 5637 LL and ErBao.

1.2 Rumusan Masalah

Rumusan masalah yang diangkat dalam Tugas Akhir ini adalah sebagai berikut :

- 1. Bagaimana mencari *relative convex hull* dari kumpulan titik di dalam sebuah polygon?
- 2. Bagaimana reduksi polygon menyelesaikan masalah *relative convex hull* dari kumpulan titik?

1.3 Batasan Masalah

Permasalahan yang dibahas pada Tugas Akhir ini memiliki beberapa batasan, yaitu sebagai berikut :

- 1. Implementasi reduksi polygon sebagai penyelesaian permasalahan *relative convex hull* pada soal ISUN1.
- 2. Algoritma *relative convex hull* terbatas pada analisis intuitif yang logis.

Berikut merupakan batasan pada situs Sphere Online Judge:

- 1. Implementasi dilakukan menggunakan bahasa pemrograman C++
- 2. Banyaknya sisi pada polygon pembatas (n) diantara 3 sampai 500.
- 3. Banyaknya pohon yang berada dalam taman (*m*) diantara 0 sampai 500.
- 4. Batas maksimum untuk tiap vertex memenuhi(x, y) dimana nilai $|x|, |y| \le 10000$.
- 5. Banyak soal tidak diketahui karena program berhenti sampai EOF.
- 6. Batas waktu yang diberikan adalah 0.142 detik.
- 7. Batas memori yang diberikan adalah 1.536 MB.
- 8. Batas kode sumber yang diberikan adalah $50.000~\mathrm{B}.$

1.4 Tujuan

Tujuan Tugas Akhir ini adalah sebagai berikut:

1. Mengevaluasi kinerja reduksi polygon untuk menyelesaikan permasalahan komputasi *relative convex hull* pada LL and Er-Bao.

1.5 Manfaat

Tugas Akhir ini mampu memberikan pemahaman algoritma yang tepat untuk menyelesaikan permasalahan komputasi *relative convex hull* dengan efisien.

1.6 Metodologi

Metodologi pengerjaan yang digunakan pada Tugas Akhir ini memiliki beberapa tahapan. Tahapan-tahapan tersebut yaitu :

1. Penyusunan proposal

Pada tahapan ini penulis memberikan penjelasan mengenai apa yang penulis akan lakukan dan mengapa Tugas Akhir ini dilakukan. Penjelasan tersebut dituliskan dalam bentuk proposal Tugas Akhir.

2. Studi literatur

Pada tahapan ini penulis mengumpulkan referensi yang diperlukan guna mendukung pengerjaan Tugas Akhir. Referensi yang digunakan dapat berupa hasil penelitian yang sudah pernah dilakukan, buku, artikel internet, atau sumber lain yang bisa dipertanggungjawabkan.

3. Implementasi algoritma

Pada tahapan ini penulis mulai mengembangkan algoritma yang digunakan untuk menyelesaikan permasalahan komputasi *relative convex hull*.

4. Pengujian dan evaluasi

Pada tahapan ini penulis menguji performa algoritma yang digunakan. Hasil pengujian kemudian dievaluasi untuk kemudian dipertimbangkan apakah algoritma masih bisa ditingkatkan lagi atau tidak.

5. Penyusunan buku

Pada tahapan ini penulis menyusun hasil pengerjaan Tugas Akhir mengikuti format penulisan Tugas Akhir.

1.7 Sistematika Penulisan

Sistematika laporan Tugas Akhir yang akan digunakan adalah sebagai berikut :

1. BAB I : PENDAHULUAN

Bab ini berisi latar belakang, rumusan masalah, batasan masalah, tujuan, manfaat, metodologi dan sistematika penulisan Tugas Akhir.

2. BAB II: DASAR TEORI

Bab ini berisi dasar teori mengenai permasalahan dan algoritma penyelesaian yang digunakan dalam Tugas Akhir

3. BAB III: DESAIN

Bab ini berisi desain algoritma dan struktur data yang digunakan dalam penyelesaian permasalahan.

4. BAB IV: IMPLEMENTASI

Bab ini berisi implementasi berdasarkan desain algoritma yang telah dilakukan pada tahap desain.

5. BAB V: UJI COBA DAN EVALUASI

Bab ini berisi uji coba dan evaluasi dari hasil implementasi yang telah dilakukan pada tahap implementasi.

6. BAB VI: PENUTUP

Bab ini berisi kesimpulan dan saran yang didapat dari hasil uji coba yang telah dilakukan.

BAB II DASAR TEORI

Pada bab ini, akan dijelaskan dasar teori yang digunakan sebagai landasan pengerjaan Tugas Akhir ini.

2.1 Deskripsi Permasalahan

Permasalahan yang dibahas pada Tugas Akhir ini adalah perhitungan untuk mencari nilai x yang didefinisikan oleh persamaan (2.1).

$$x = \sum_{i=0}^{n-1} RCH_i \tag{2.1}$$

Sisi polygon dari RCH yang merupakan *relative convex hull* yang didapatkan dari sekumpulan titik yang dibatasi di dalam polygon sederhana[1] dinyatakan dalam RCH_i pada persamaan (2.1). Permasalahan pada tugas akhir ini adalah mencari *relative convex hull* dari sekumpulan titik yang dibatasi oleh polygon sederhana. Gambar 2.1 dan 2.2 merupakan contoh dari permasalahan ISUN1.

Gambar 2.1 Ilustrasi Contoh Kasus Tanpa Solusi

Gambar 2.2 Ilustrasi Contoh Kasus

2.2 Convex Polygon

Convex polygon merupakan sebuah polygon sederhana yang memiliki sudut maksimal 180 derajat pada tiap edgenya. Convex polygon memiliki beberapa properti, yaitu:

- 1. Sebuah garis lurus yang di gambar melewati sebuah *convex polygon* akan berpotongan maksimal 2 kali. Ilustrasi dapat dilihat pada gambar 2.3.
- 2. Jika dua titik sembarang diambil dan ditarik garis antara keduanya, tidak ada bagian dari garis yang berada di luar polygon. Ilustrasi dapat dilihat pada gambar 2.4.

2.3 Relative Convex Polygon

Relative convex polygon merupakan penurunan dari convex polygon tetapi ada beberapa sisi dari polygon tersebut berbentuk convace atau cekung ke dalam dikarenakan adanya batasan dari luar seperti polygon atau segmen garis lainnya. Ilustrasi relative convex polygon dapat dilihat pada gambar 2.5.

Gambar 2.3 Ilustrasi Properti Convex Polygon 1

Gambar 2.4 Ilustrasi Properti Convex Polygon 2

Gambar 2.5 Ilustrasi Relative Convex Polygon

2.4 Strategi Penyelesaian Permasalahan

Pada subbab ini akan dipaparkan mengenai strategi penyelesaian masalah klasik pada daring SPOJ dengan kode ISUN1 meng-

gunakan algoritma reduksi polygon. Secara singkat, strategi penyelesaian masalah dari ISUN1 menggunakan algoritma reduksi polygon menjadi 2 bagian besar, yaitu:

- 1. Pemrosesan titik pembentuk polygon yang membentuk *Convex*.
- 2. Convex Hull dari titik yang berada di dalam polygon.

Sebagai contoh, pada subbab ini akan digunakan beberapa variabel seperti, P sebagai polygon luar yang mempunyai n vertex, dimana $P = \langle p_1, p_2, ..., p_n \rangle$ yang mempunyai titik sebanyak m ($S = \langle s_1, s_2, ..., s_m \rangle$), dan D(A) merupakan sebuah deque (doublyended queue) yang menampung vertex dari polygon P. Reduksi polygon didasari dari algoritma Melkman convex hull dengan sedikit modifikasi. Modifikasi yang dilakukan adalah ketika 3 buah titik pembentuk polygon yang konsekutif membuat convex maka titik tengah dari ketiga titik tersebut dibuang, dan jika concave maka titik tengahnya tetap disimpan. Pada saat sebuah titik dibuang, maka luas dari polygon akan tereduksi. Langkah-langkah reduksi dilakukan dengan mengulangi 2 langkah yang akan dijelaskan pada subbab 2.4.1 dan 2.4.2.

2.4.1 Pemrosesan Titik Pembentuk Polygon yang Membentuk Convex

Pemrosesan titik pembentuk polygon dapat dilakukan dengan cara melakukan traversing terhadap semua vertex pembentuk polygon. Untuk setiap vertex p_i yang di periksa, hitung orientasi(secara berlawanan arah jarum jam) titik p_i dengan p_{i-1} dan p_{i+1} . Jika orientasinya membentuk convex, maka titik p_i akan dibuang.

Sebelum membuang titik p_i , kita akan membuat sebuah segitiga ABC dimana $A=p_i$, $B=p_{i-1}$, dan $C=p_{i+1}$ karena triangulation of polygon (Teorema 1).

Teorema 1 (Triangulation of Polygon) Semua polygon dapat di

buat dari beberapa segitiga.

Kemudian cari T(ABC) dimana T(ABC) merupakan semua titik S yang berada di dalam segitiga ABC dengan menggunakan algoritma Point Inside Polygon (dapat dilihat pada subbab 2.6). Pencarian titik yang berada di dalam segitiga ABC berguna untuk mencari pengganti vertex p_i sebagai pembentuk polygon luarnya.

2.4.2 Convex Hull dari Titik yang Berada di Dalam Polygon

Melanjutkan dari subbab 2.4.1, ketika sudah mendapatkan T(ABC), lakukan pencarian $Convex\ Hull$ dari titik-titik tersebut menggunakan algoritma $monotone\ chain$ (dapat dilihat pada subbab 2.5.2.2). Kemudian sisipkan semua titik yang membentuk $Convex\ Hull$ di antara vertex p_{i-1}, p_{i+1} untuk me-rekonstruksi polygon luar yang sudah direduksi.

2.5 Convex Hull

Convex Hull dari sekumpulan titik S adalah sebuah set dari semua kombinasi convex dari titik-titik tersebut. Setiap titik s_i pada S diberikan sebuah koefisien a_i dimana a_i merupakan bilangan non negatif dan jika semua a_i dijumlahkan hasilnya satu. Dan koefisien ini digunakan untuk menghitung berat rata-rata untuk setiap titik. Untuk setiap koefisien yang dipilih akan dikombinasikan dan menghasilkan $convex\ hull$. Set $convex\ hull$ ini dapat diekspresikan dengan formula (2.2) dan ilustrasi $convex\ hull$ ada pada gambar 2.6.

$$Conv(S) = \left\{ \sum_{i=1}^{|S|} a_i s_i | (\forall i : a_i \ge 0 \land \sum_{i=1}^{|S|} a_i = 1) \right\}$$
 (2.2)

Gambar 2.6 Ilustrasi Convex Cull

2.5.1 Relative Convex Hull

Relative convex hull merupakan penurunan dari convex hull. Relative convex hull merupakan convex hull yang mempunyai cavity (cekungan ke dalam) yang diakibatkan atau relatif terhadap sesuatu yang membatasi convex hull tersebut. Ilustrasi relative convex hull dapat dilihat pada gambar 2.7.

Gambar 2.7 Ilustrasi Relative Convex Hull

Penentuan untuk mengetahui sebuah polygon merupakan convex atau concave dapat menggunakan orientasi. Apabila ori-

Algoritma	Implementasi	Kompleksitas	Kode	Jenis Input
Convex Hull			Sumber	
Jarvis's	Mudah	$\mathcal{O}(n^2)$	Singkat	Kumpulan
Algorithm				Titik
Graham's	Sedikit	$\mathcal{O}(n\log(n))$	Singkat	Kumpulan
Scan	Mudah			Titik
Quick Hull	Kompleks	$\mathcal{O}(n\log(n))$	Panjang	Kumpulan
				Titik
Monotone	Mudah	$\mathcal{O}(n\log(n))$	Singkat	Kumpulan
Chain				Titik
Melkman's	Mudah	$\mathcal{O}(n)$	Singkat	Polygon
Algorithm				Sederhana
				atau
				Polyline

Tabel 2.1 Tabel Perbandingan Algoritma Convex Hull

entasi dari tiga titik yang berurutan adalah positif berlawanan arah jarum jam maka tiga titik tersebut adalah *convex*. Sebaliknya apabila negatif maka tiga titik tersebut adalah *concave*. Untuk mencari orientasi antara tiga titik dapat digunakan persamaan 2.3.

$$\vec{u} = (B_x - A_x)x + (B_y - A_y)y$$

$$\vec{v} = (C_x - A_x)x + (C_y - A_y)y$$

$$Orientasi = u_x * v_y - u_y * v_x$$
(2.3)

2.5.2 Algoritma Convex Hull

Ada beberapa algoritma yang dapat digunakan untuk mencari sebuah *convex hull*, untuk melihat perbandingan dari beberapa algoritma dapat dilihat pada tabel 2.1. Berdasarkan tabel 2.1, penulis memilih 2 algoritma yang akan digunakan pada buku ini.

2.5.2.1 Algoritma Melkman Convex Hull

Algoritma $Melkman\ convex\ hull$ merupakan algoritma untuk menghitung rantai polygonal ataupun polygon sederhana dengan waktu linear $\mathcal{O}(n)[2]$. Asumsikan sebuah polygon sederhana P, dengan vertex p_i dan edge p_ip_{i+1} . Algoritma ini menggunakan deque, $D = \langle d_1, d_2, ..., d_n \rangle$, untuk merepresentasikan $convex\ hull$, $Q_i = CH(P_i)$, dimana $P_i = (p_0, p_1, ..., p_i)$. Deque mempunyai fungsi $push\ dan\ pop\ dari\ atas/depan\ dan\ insert\ dan\ remove\ dari\ bawah/belakang. Secara spesifiknya yang\ dilakukan\ <math>push\ v$ ke deque melakukan $(l \leftarrow l+1; d_t \leftarrow v)$, untuk $pop\ d_t\ dari\ deque\ melakukan\ (t \leftarrow t-1)$, untuk $pop\ d_t\ dari\ deque\ melakukan\ (t \leftarrow t-1)$, untuk $pop\ d_t\ dari\ deque\ melakukan\ (t \leftarrow t-1)$, dan $pop\ dari\ deque\ melakukan\ (t \leftarrow t-1)$, dan $pop\ dari\ deque\ melakukan\ (t \leftarrow t-1)$.

Algoritma ini menggunakan konvensi dimana vertexnya berurutan secara berlawanan arah jarum jam di sekitar *convex hull Q*.

Setiap d_t dan d_b mengacu kepada vertex yang sama pada rantai polygon C, dan vertex ini akan selalu menjadi vertex yang kita tambahkan terakhir pada $convex\ hull$. Pseudocode $Melkman\ convex\ hull$ dapat dilihat pada pseudocode 2.1.

Gambar 2.8 Ilustrasi Algoritma Melkman

Algoritma Melkman convex hull sendiri tidak dapat dapat digunakan untuk mencari relative convex hull, tetapi beberapa ide dari Melkman convex hull nantinya akan digunakan untuk mendapatkan solusi dalam mencari relative convex hull. Ide yang diambil penulis dari Melkman convex hull adalah cara algoritma tersebut dalam melakukan traversing polygon atau segmen garis dan cara algori-

tma tersebut menyimpan atau membuang suatu titik yang dianggap tidak berguna dalam pembentukan polygon yang diinginkan. Ide yang pertama adalah *traversing* pada vertex dapat dilakukan dengan queue ataupun deque. Ide yang kedua adalah untuk masing-masing vertex yang di *traverse* dapat dicari tahu apakah titik atau vertex tersebut dapat dibuang atau tidak dengan melihat orientasinya dengan titik sebelum dan sesudahnya.

Pseudocode 2.1 Melkman Convex Hull

```
Input: P
Output: Q
 1: Inisialisasi: D
 2: if LEFT(p_0, p_1, p_2) then
          D \leftarrow \langle p_2, p_0, p_1, p_2 \rangle
 3:
 4: else
          D \leftarrow \langle p_2, p_1, p_0, p_2 \rangle
 5:
 6: end if
 7: i = 3
 8: while i < n \text{ do}
          while LEFT(d_{t-1}, d_t, p_i) dan LEFT(d_b, d_{b+1}, p_i) do
 9:
               i \leftarrow i + 1
10:
11:
          end while
          while !LEFT(d_{t-1}, d_t, p_i) do
12:
13:
              pop d_t
          end while
14:
15:
          push p_i
          while !LEFT(p_i, d_b, d_{b+1}) do
16:
               remove d_b
17:
          end while
18:
19:
          insert p_i
          i \leftarrow i + 1
20:
21: end while
```

2.5.2.2 Algoritma Monotone Chain

Algoritma monotone chain merupakan proses pembentukan convex hull dari sekumpulan titik dengan kompleksitas $\mathcal{O}(n \log(n))$ [3]. Asumsikan sekumpulan titik S sejumlah n, $S = \langle s_1, s_2, ..., s_n \rangle$ algoritma ini menggunakan list untuk membentuk sebuah rantai (monotone chain), dimana list L(S) menampung semua titik yang ada di S yang terurut berdasarkan nilai koordinatnya terhadap sumbu x. Algoritma ini memeriksa setiap S vertex yang berurutan, jika S vertex tersebut membuat convex maka ketiga vertex tersebut disimpan, dan sebaliknya jika ketiga vertex tersebut membuat concave maka vertex ke S akan dibuang dari vertex penyusun convex hull. Lalu lakukan hal yang sama dengan membalikkan urutan pada S untuk mendapatkan lower hull. Pseudocode algoritma Monotone Chain dapat dilihat pada pseudocode S.

Gambar 2.9 Ilustrasi Algoritma Monotone Chain

Algoritma *monotone chain* ini nantinya akan digunakan pada saat pencarian titik pengganti ketika suatu titik pembentuk polygon akan dibuang.

Pseudocode 2.2 Monotone Chain Algorithm

```
Input: S
Output: CH(S)
 1: Inisialisasi: L
 2: Sort S
 3: L \leftarrow S
 4: Inisialisasi CH(S)
 5: for i = 0; i < 2; i + + do
       for j = 0; j < Size(L); j + + do
 6:
           while Size(CH) \geq 2 and right(CH[Size(CH) -
 7:
    1], CH[Size(CH) - 2], S[j]) do
               Delete CH last element
 8:
           end while
 9:
           push pt to CH
10:
       end for
11:
       reverse L
12:
13: end for
```

2.6 Point Inside Polygon

Point inside polygon merupakan algoritma untuk menentukan apakah suatu polygon berada di dalam sebuah polygon atau tidak [4]. Ide utama dari algoritma ini adalah dengan cara menarik garis sejajar dengan sumbu x dimana garis tersebut berujung pada titik yang ingin dicari lokasinya kemudian hitung ada berapa edge dari polygon yang berpotongan dengan garis tersebut. Jika jumlah edge polygon yang berpotongan adalah ganjil, maka titik tersebut berada dalam polygon, dan sebaliknya, jika jumlahnya genap maka titik tersebut berada di luar polygon.

Gambar 2.10 Ilustrasi Algoritma Point Inside Polygon

BAB III DESAIN

Pada bab ini akan dijelaskan desain algoritma yang akan digunakan untuk menyelesaikan permasalahan.

3.1 Desain Umum Sistem

Pada subbab ini akan dijelaskan mengenai gambaran secara umum dari algoritma yang dirancang. Sistem diawali dengan menerima masukan 2 buah bilangan bulat N yang merupakan banyaknya vertex pembentuk polygon luar dan M yang merupakan banyaknya titik yang ada di dalam polygon tersebut. N baris berikutnya berisikan 2 buah bilangan bulat x_i , y_i yang merupakan koordinat dari vertex pembentuk polygon luar terurut berlawanan arah jarum jam. M baris berikutnya berisikan dua buah bilangan bulat x_i , y_i yang merupakan koordinat dari titik yang ada di dalam polygon.

3.2 Desain Fungsi Main

Fungsi MAIN merupakan fungsi yang bertanggung jawab untuk menerima masukan yang sudah dijelaskan pada 3.1 untuk dilakukan proses selanjutnya. Pseudocode fungsi MAIN dapat dilihat pada pseudocode 3.1. Fungsi INPUT merupakan fungsi untuk menerima masukan, dan fungsi PRINT merupakan fungsi untuk menampilkan hasil.

3.3 Desain Class Point

Class POINT adalah class untuk menyimpan titik dalam diagram Kartesius. Pseudocode 3.2 merupakan pseudocode dari class POINT. Nantinya pada implementasi, class ini akan melakukan *override* terhadap operator perbandingan.

Pseudocode 3.1 Fungsi MAIN

```
1: while (N \leftarrow INPUT()) and N \neq EOF do
         M \leftarrow \text{INPUT()}
 2:
 3:
         perimeter \leftarrow Polygon
         trees \leftarrow Array Point
 4:
         for i \leftarrow 1, N do
 5:
             x_i, y_i \leftarrow \text{INPUT}()
 6:
             perimeter.P[i] \leftarrow Point(x_i, y_i, false)
 7:
         end for
 8:
         if M=1 or M=0 then
 9:
10:
             PRINT(0)
11:
             CONTINUE
12:
         end if
         for i \leftarrow 1, M do
13:
             x1_i, y1_i \leftarrow \text{INPUT}()
14:
             trees \leftarrow POINT(x1_i, y1_i, true)
15:
         end for
16:
         ans \leftarrow Solve(perimeter, trees)
17:
         PRINT (ans)
18:
19: end while
```

Pseudocode 3.2 Class Point

```
1: x, y \leftarrow \text{double}

2: fixed \leftarrow \text{boolean}

3: \text{constructor Point}()

4: \text{constructor Point}(\_x, \_y, \_fixed)
```

Nama Variabel	Fungsi Variabel	
x	Menyimpan ordinat dari titik tersebut	
y	Menyimpan absis dari titik tersebut	
fixed	Untuk membedakan antara titik pemben-	
	tuk polygon P dan titik yang ada di dalam	
	kumpulan titik S	

Tabel 3.1 Nama dan Fungsi Variabel dalam Class POINT

Class POINT tidak memiliki fungsi karena class ini memang hanya untuk menyimpan suatu titik yang akan digunakan nanti.

Fungsi *Constructor* dari class ini terdiri dari dua jenis. Fungsi *constructor* yang pertama adalah fungsi dengan tanpa parameter, pada *constructor* ini, semua variabel yang ada di dalam class POINT akan di inisialisasi dengan 0. Fungsi *constructor* kedua adalah fungsi dengan parameter x, y, fixed, menyatakan nilai x, y, fixed secara berurutan.

3.4 Desain Class Vec

Class VEC merupakan class yang menyimpan vector dari dua buah titik pada diagram kartesian. Pseudocode 3.3 merupakan pseudocode dari class VEC.

Tabel 3.2 Nama dan Fungsi Variabel dalam Class VEC

Nama Variabel	Fungsi Variabel	
x	Menyimpan arah vektor absis	
y	Menyimpan arah vektor ordinat	

Class VEC tidak memiliki fungsi karena class ini hanya untuk menyimpan vector dari dua titik yang akan digunakan nanti.

Fungsi Constructor dari class ini terdiri dari 3 jenis. Fungsi constructor yang pertama adalah fungsi dengan tanpa parame-

Pseudocode 3.3 Class VEC

- 1: $x, y \leftarrow$ double
- 2: constructor VEC()
- 3: **constructor** VEC(x, y)
- 4: **constructor** VEC(A, B)

ter, pada constructor ini, semua variabel yang ada di dalam class VEC akan di inisialisasi dengan 0. Fungsi constructor kedua adalah fungsi dengan parameter $_x,_y$, menyatakan nilai x,y secara berurutan. Fungsi constructor ketiga adalah fungsi dengan parameter A,B, menyatakan POINT dari titik A dan POINT dari titik B, dimana nantinya nilai x dan y akan didapatkan dari pengurangan koordinat dari POINT A dan POINT B.

3.5 Desain Class Line

Class Line merupakan class yang bertanggung jawab untuk melakukan operasi-operasi pada garis dalam diagram kartesian. Pseudocode 3.4 merupakan pseudocode dari Class Line.

Nama Variabel	Fungsi Variabel	
a	Menyimpan nilai a pada persamaan $ax+by+$	
	c = 0	
b	Menyimpan nilai b pada persamaan $ax+by+$	
	c = 0	
c	Menyimpan nilai c pada persamaan $ax+by+$	
	c = 0	

Class LINE tidak memiliki fungsi karena class ini hanya untuk menyimpan nilai dari fungsi ax+by+c=0 yang akan digunakan nanti.

Pseudocode 3.4 Class LINE

- 1: $a, b, c \leftarrow \mathbf{double}$
- 2: constructor LINE()
- 3: **constructor** LINE(a, b, c)
- 4: **constructor** LINE(A, B)

Fungsi *Constructor* dari class ini terdiri dari 3 jenis. Fungsi *constructor* yang pertama adalah fungsi dengan tanpa parameter, pada *constructor* ini, semua variabel yang ada di dalam class LINE akan di inisialisasi dengan 0. Fungsi *constructor* kedua adalah fungsi dengan parameter $_a, _b, _c$, menyatakan nilai a, b, c secara berurutan. Fungsi *constructor* ketiga adalah fungsi dengan parameter A, B, menyatakan POINT dari titik A dan POINT dari titik B, dimana nantinya nilai a, b dan c akan didapatkan dengan mencari fungsi garis yang melewati POINT A dan POINT B.

3.6 Desain Class Segment

Class SEGMENT merupakan class yang bertanggung jawab untuk menyimpan dan melakukan operasi-operasi pada segmen garis dalam diagram kartesian. Pseudocode 3.5 merupakan pseudocode dari class SEGMENT.

Tabel 3.4 Nama dan Fungsi Variabel dalam Class SEGMENT

Nama Variabel	Fungsi Variabel	
P	Menyimpan POINT yang merupakan ujung	
	awal dari sebuah segmen garis	
Q	Menyimpan POINT yang merupakan ujung	
	akhir dari sebuah segmen garis	
L	Menyimpan fungsi dari garis yang melalui	
	dua titik tersebut	

Class SEGMENT tidak memiliki fungsi karena class ini hanya

Pseudocode 3.5 Class SEGMENT

- 1: $P, Q \leftarrow POINT$
- 2: $L \leftarrow \text{Line}$
- 3: constructor SEGMENT()
- 4: constructor Segment(P, Q)

untuk menyimpan data dari sebuah segmen garis yang akan digunakan nanti.

Fungsi Constructor dari class ini terdiri dari 2 jenis. Fungsi constructor yang pertama adalah fungsi dengan tanpa parameter, pada constructor ini, semua variabel yang ada di dalam class SEGMENT akan di inisialisasi dengan 0. Fungsi constructor kedua adalah fungsi dengan parameter P, Q, menyatakan POINT dari titik P dan POINT dari titik Q, yang merupakan titik POINT A dan POINT B secara berturut, dan LINE B didapar dengan menggunakan B constructor LINE dengan parameter B dan B.

3.7 Desain Class Polygon

Class POLYGON merupakan class yang bertanggung jawab untuk menyimpan dan melakukan operasi-operasi pada polygon pada diagram kartesian. Pseudocode 3.6 merupakan pseudocode dari class POLYGON.

Tabel 3.5 Nama dan Fungsi Variabel dalam Class POLYGON

Nama Variabel	Fungsi Variabel	
P	Menyimpan array dari POINT yang memben-	
	tuk polygon tersebut	

Fungsi-fungsi yang terkandung dalam class ini adalah PREV, NEXT, PERIMETER. Tabel 3.5 menjelaskan variabel dan kegunaannya dalam class POLYGON.

Pseudocode 3.6 Class Polygon

- 1: $P \leftarrow Array POINT$
- 2: constructor POLYGON()
- 3: **constructor** POLYGON(_P)
- 4: **function** PREV(idx)
- 5: **function** NEXT(idx)
- 6: **function** PERIMETER()

Fungsi *Constructor* dari class ini terdiri dari 2 jenis. Fungsi *constructor* yang pertama adalah fungsi dengan tanpa parameter, pada *constructor* ini, variabel P yang ada di dalam class POLYGON akan di inisialisasi. Fungsi *constructor* kedua adalah fungsi dengan parameter P, menyatakan array POINT dari titik pembentuk polygon tersebut.

Fungsi *next* bertanggung jawab untuk mencari index selanjutnya dari titik yang membentuk polygon. Masukan, proses dan keluaran dari fungsi ini tercantum pada tabel 3.6. Pseudocode fungsi ini dapat dilihat pada pseudocode 3.7.

Tabel 3.6 Masukan, Proses, dan Keluaran dari Fungsi NEXT Class POLYGON

Masukan	Proses	Keluaran
Suatu bilangan	mencari index	Suatu bilangan
bulat idx yang	selanjutnya	bulat yang me-
menyatakan index		nyatakan index
saat ini		selanjutnya

Fungsi *prev* bertanggung jawab untuk mencari index sebelumnya dari titik yang membentuk polygon. Masukan, proses dan keluaran dari fungsi ini tercantum pada tabel 3.7. Pseudocode fungsi ini dapat dilihat pada pseudocode 3.8.

Fungsi perimeter bertanggung jawab untuk mencari keliling

Pseudocode 3.7 Fungsi NEXT pada class POLYGON

Input: idx

1: **if** idx = SIZE(P) - 1 **then**

2: return 0

3: else

4: return idx + 1

5: end if

Tabel 3.7 Masukan, Proses, dan Keluaran dari Fungsi PREV Class POLYGON

Masukan	Proses	Keluaran
Suatu bilangan	mencari index	Suatu bilangan
bulat idx yang	sebelumnya	bulat yang me-
menyatakan index		nyatakan index
saat ini		sebelumnya

dari sebuah polygon. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.8. Pseudocode fungsi ini dapat dilihat pada pseudocode 3.9.

Pseudocode 3.8 Fungsi PREV pada class POLYGON

Input: idx

1: if idx = 0 then

2: **return** SIZE(P)-1

3: else

4: return idx - 1

5: end if

Tabel 3.8 Masukan, Proses, dan Keluaran dari Fungsi PERIMETER Class POLYGON

Masukan	Proses	Keluaran
-	Mencari keliling	Suatu bilangan
	dengan mencari	berkoma yang
	jarak eulerian dari	menyatakan keli-
	semua titik pem- ling dari polygon	
	bentuk polygon	tersebut

Pseudocode 3.9 Fungsi PERIMETER pada class POLYGON

- 1: $ret \leftarrow 0$
- 2: for $i \leftarrow 0$ to SIZE(P)-1 do
- 3: $ret \leftarrow ret \, \text{EDIST}(P[i], P[\, \text{NEXT}(i)])$
- 4: end for
- 5: return ret

3.8 Fungsi BetweenD

Fungsi BetweenD bertanggung jawab untuk mencari tahu apakah suatu bilangan x berada diantara bilangan l dan bilanganr. Pseudocode dari fungsi BetweenD dapat dilihat pada pseudocode 3.10. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.9.

Pseudocode 3.10 Fungsi BETWEEND

Input: x, l, r

- 1: if $MIN(l,r) \le x + EPS$ and $x \le MAX(l,r) + EPS$ then
- 2: **return** TRUE
- 3: else
- 4: return FALSE
- 5: end if

Tabel 3.9 Masukan, Proses, dan Keluaran dari Fungsi BetweenD

Masukan	Proses	Keluaran
Tiga buah bilangan	Mencari tahu apa-	Sebuah boolean
x, l, r, dimana	kah bilangan x	yang menyatakan
bilangan x meru-	berada diantara	apakah x berada
pakan bilangan	bilangan l dan r	diantara l dan r
yang ingin diketa-		
hui apakah berada		
diantara titik l dan		
$\mid r \mid$		

3.9 Fungsi EDist

Fungsi EDIST bertanggung jawab untuk mencari jarak antara dua titik POINT A dan POINT B dengan menggunakan rumus Pythagoras. Rumus Pythagoras dapat di lihat pada persamaan 3.1. Pseudocode fungsi EDIST dapat dilihat pada pseudocode 3.11. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.10.

$$C = \sqrt{A^2 + B^2} \tag{3.1}$$

Tabel 3.10 Masukan, Proses, dan Keluaran dari Fungsi EDIST

Masukan	Proses	Keluaran
Dua buah POINT	Mencari jarak an-	Sebuah bilangan
A dan POINT B	tara POINT A dan	berkoma yang
yang akan dicari	POINT B	menyatakan ja-
jaraknya		rak POINT A dan
		Point B

Pseudocode 3.11 Fungsi EDIST

Input: A, B

1: **return** SQRT((A * A) + (B * B))

3.10 Fungsi Cross

Fungsi CROSS bertanggung jawab untuk mencari nilai perkalian *cross* dari dua buah vector. Rumus Pythagoras dapat di lihat pada persamaan 3.2. Pseudocode fungsi CROSS dapat dilihat pada pseudocode 3.12. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.11.

$$C = (u_x * v_y) - (u_y * v_x)$$
(3.2)

Tabel 3.11 Masukan, Proses, dan Keluaran dari Fungsi CROSS

Masukan	Proses	Keluaran
Dua buah VEC	Mencari nilai per-	Sebuah bilangan
U dan VEC V	kalian silang dari	yang menyatakan
yang akan dicari	$VEC\ U$ dan $VEC\ V$	hasil perkalian
hasil perkalian		silang VEC U dan
silangnya		VEC V

Pseudocode 3.12 Fungsi CROSS

Input: U, V

1: **return** (U.x * V.y) - (U.y * V.x)

3.11 Fungsi Orientation

Fungsi ORIENTATION bertanggung jawab untuk mencari orientasi dari tiga titik. Pseudocode fungsi ORIENTATION dapat dilihat

pada pseudocode 3.13. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.12.

Tabel 3.12 Masukan, Proses, dan Keluaran dari Fungsi ORIENTATION

Masukan	Proses	Keluaran
Tiga buah POINT	Mencari orienta-	Sebuah bilangan
O, POINT P dan	si antara POINT	yang menyatakan
POINT Q yang	O, POINT P dan	orientasi antara
akan dicari orienta-	POINT Q	POINT O , POINT P
sinya		dan POINT Q

Pseudocode 3.13 Fungsi ORIENTATION

Input: O, P, Q

1: $OP \leftarrow VEC(O, P)$ 2: $OQ \leftarrow VEC(O, Q)$

3: **return** CROSS(OP, OQ)

3.12 Fungsi OnSegment

Fungsi ONSEGMENT bertanggung jawab untuk mencari tahu apakah sebuah titik POINT P bersentuhan dengan sebuah segmen garis SEGMENT S atau tidak. Pseudocode fungsi ONSEGMENT dapat dilihat pada pseudocode 3.14. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.13.

3.13 Fungsi ConvexHull

Fungsi Convex Hull bertanggung jawab untuk mencari $convex\ hull$ dari sekumpulan titik pts. Algoritma yang digunakan oleh fungsi ini adalah algoritma $Monotone\ Chain$ yang dapat dilihat pada

Tabel 3.13 Masukan, Proses, dan Keluaran dari Fungsi
ONSEGMENT

Masukan	Proses	Keluaran
Dua buah POINT	Mencari tahu apa-	Sebuah boolean
P dan SEGMENT	kah POINT P ber-	yang menyatakan
S yang akan di-	ada di SEGMENT	apakah POINT P
cari tahu apakah	$\mid S \mid$	berada di dalam
POINT P berada di		SEGMENT S
SEGMENT S		

Pseudocode 3.14 Fungsi ONSEGMENT

Input: P, S

1: if ORIENTATION(S.P, S.Q, P) then

2: **return** FALSE

3: else

4: **return** (BETWEEND(P.x, S.P.x, S.Q.x) and BETWEEND(P.y, S.P.y, S.Q.y))

5: end if

bagian 2.5.2.2. Pseudocode dari fungsi CONVEXHULL yang digunakan dapat dilihat pada Pseudocode 3.15. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.14.

3.14 Fungsi InSimplePolygon

Fungsi INSIMPLEPOLYGON bertanggung jawab untuk mencari tahu apakah sebuah titik POINT P berada di dalam POLYGON A atau tidak. Algoritma yang digunakan pada fungsi ini adalah algoritma point inside polygon yang dapat dilihat pada bagian 2.6. Pada desain fungsi INSIMPLEPOLYGON ada 3 macam keluaran yaitu -1 untuk menandakan bahwa POINT P berada di dalam POLYGON A, 0 untuk menandakan bahwa POINT P berada di salah satu si-

Pseudocode 3.15 Fungsi CONVEXHULL

```
Input: pts
 1: SORT(pts)
 2: hull \leftarrow Array POINT
 3: for i \leftarrow 0 to 2 do
       start \leftarrow SIZE(hull)
       for pt in pts do
 5:
           while (SIZE(hull)> start + 2)
 6:
                                                            and
    (ORIENTATION(hull[SIZE(hull)-1], hull[SIZE(hull)-2],
    pt \le 0 do
              hull.Erase(hull[SIZE(hull)-1])
 7:
 8:
           end while
           hull.INSERT(pt)
 9:
       end for
10:
       hull.Erase(hull[SIZE(hull)-1])
11:
       REVERSE(pts)
12:
13: end for
14: return POLYGON(hull);
```

Masukan	Proses	Keluaran
Sebuah array	Mencari POLYGON	Sebuah POLYGON
POINT pts yang	dengan keliling	yang mengelilingi
merupakan sekum-	terkecil dari se-	kumpulan POINT
pulan titik	kumpulan titik	pts

Tabel 3.14 Masukan, Proses, dan Keluaran dari Fungsi CONVEXHULL

si POLYGON A, dan 1 untuk menandakan bahwa POINT P berada di luar POLYGON A. Pseudocode fungsi INSIMPLEPOLYGON dapat dilihat pada pseudocode 3.16. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.15.

Tabel 3.15 Masukan, Proses, dan Keluaran dari Fungsi INSIMPLEPOLYGON

Masukan	Proses	Keluaran
Sebuah POINT	Mencari tahu	Sebuah bilangan
A dan sebuah	apakah POINT A	yang apakah POINT
POLYGON P yang	berada di dalam	A berada di dalam
akan dicari tahu	POLYGON P	POLYGON P
apakah POINT A		
berada di dalam		
POLYGON P		

3.15 Fungsi GetBetween

Fungsi GETBETWEEN bertanggung jawab untuk mencari list POINT yang akan menggantikan POINT yang akan dibuang. Pseudocode fungsi GETBETWEEN dapat dilihat pada pseudocode 3.17. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.16.

Pseudocode 3.16 Fungsi INSIMPLEPOLYGON

```
Input: P, A
 1: ret \leftarrow Integer
 2: for i \leftarrow 0 to SIZE(A.P) do
        if P = A.P[i] then
 3:
 4:
            return 0
        end if
 5:
        j \leftarrow A.\text{NEXT}(i)
 6:
        if ONSEGMENT(P, SEGMENT(A.P[i], A.P[j])) then
 7:
            return 0
 8:
        end if
 9:
        below \leftarrow (A.P[i].y < P.y)
10:
        if below \neq (A.P[j].y < P.y) then
11:
            o \leftarrow \text{ORIENTATION}(P, A.P[i], A.P[j])
12:
            if o = 0 then
13:
14:
                return 0
            end if
15:
            if below = (o > 0) and below = TRUE then
16:
17:
                ret + = 1
18:
            else
                if below = (o > 0) and below = FALSE then
19:
                    ret - = 1
20:
                end if
21:
22:
            end if
23:
        end if
24: end for
25: if ret = 0 then
26:
        return 1
27: else
28:
        return -1
29: end if
```

Pseudocode 3.17 Fungsi GETBETWEEN

```
Input: triangle, q, trees
 1: points, pts \leftarrow Array POINT
 2: while q not EMPTY do
        if InSimplepolygon(q.front(), triangle) \neq 1 then
            points.Insert(q.Front())
 4:
 5:
        end if
        q.POP
 6:
 7: end while
 8: for pt in trees do
        if InSimplepolygon(pt, triangle) \neq 1 then
10:
            points.INSERT(pt)
        end if
11:
12: end for
13: P \leftarrow \text{CONVEXHULL}(points)
14: i \leftarrow 0
15: while TRUE do
        if P.P[i] = triangle.P[0] then
16:
            if P.P[P.NEXT(i)] = triangle.P[2] then
17:
                i \leftarrow P.PREV(i)
18:
                while P.P[i] \neq triangle.P[2] do
19:
                    pts.INSERT(P.P[i])
20:
                    i = P.PREV(i)
21:
22:
                end while
23:
            else
                i \leftarrow P.\text{NEXT}(i)
24:
                while P.P[i] \neq triangle.P[2] do
25:
                    pts.INSERT(P.P[i])
26:
                    i = P.NEXT(i)
27:
28:
                end while
            end if
29:
            BREAK
30:
        end if
31:
        i \leftarrow P.\text{NEXT}(i)
32:
33: end while
34: return pts
```

Tabel 3.16 Masukan, Proses, dan Keluaran dari Fungsi GETBETWEEN

Masukan	Proses	Keluaran
Sebuah POLYGON	Mencari POINT	Sebuah LIST
triangle yang me-	mana saja yang	POINT yang beri-
rupakan segitiga,	akan meng-	sikan daftar POINT
QUEUE POINT q	gantikan POINT	yang akan meng-
yang merupakan	triangle[1] yang	gantikan POINT
pembentuk po-	akan dibuang	triangle[1]
lygon luar, dan		
array POINT trees		
yang merupakan		
titik yang berada di		
dalam polygon luar		

3.16 Fungsi Solve

Fungsi SOLVE bertanggung jawab untuk mencari *relative convex polygon* yang mengelilingi semua titik yang ada di dalam polygon luar. Pseudocode fungsi SOLVE dapat dilihat pada pseudocode 3.18. Masukan, proses, dan keluaran dari fungsi ini tercantum pada tabel 3.17.

Pseudocode 3.18 Fungsi SOLVE

```
Input: perimeter, trees
 1: q \leftarrow QUEUE
 2: for pt in perimeter.P do
        q.PUSH pt
 4: end for
 5: bef \leftarrow perimeter.P[perimeter.SIZE() - 1]
 6: while TRUE do
 7:
        erased \leftarrow False
        count \leftarrow q.SIZE()
 8:
        while count-do
 9:
            cur \leftarrow q.FRONT() q.POP()
10:
            if cur. fixed = FALSE and (FINE(q, cur) \text{ or } cur = bef
11:
    or cur = q.FRONT()) then
                erased \leftarrow TRUE
12:
                triangle \leftarrow Polygon
13:
                triangle.P.Insert(bef, cur, q.Front())
14:
                points \leftarrow GETBETWEEN(triangle, q, trees)
15:
                for pt in points do
16:
                    q.PUSH(pt); bef \leftarrow pt
17:
                end for
18:
19:
            else
                q.PUSH(cur); bef \leftarrow cur
20:
            end if
21:
        end while
22:
        if erased = False then Break
23:
24:
        end if
25: end while
26: hull \leftarrow array of POINT
27: while q not empty do
        hull.INSERT(q.FRONT())
28:
29:
        q.POP()
30: end while
31: return POLYGON(hull)
```

Tabel 3.17 Masukan, Proses, dan Keluaran dari Fungsi Solve

Masukan	Proses	Keluaran
Sebuah POLYGON	Mencari relative	Sebuah POLYGON
perimeter yang	convex hull dari	yang merupakan
merupakan po-	semua titik $trees$	relative convex
lygon sederhana	di dalam POLYGON	hull dari semua
yang merupakan	perimeter	titik $trees$
polygon pembatas,		
dan array POINT		
trees yang meru-		
pakan titik yang		
berada di dalam		
polygon pembatas		

BAB IV IMPLEMENTASI

4.1 Lingkungan implementasi

Lingkungan implementasi dan pengembangan yang dilakukan adalah sebagai berikut.

1. Perangkat Keras

- (a) Processor Intel® Core™ i7-6500U CPU @ 2.50GHz (4 CPUs), 2.6GHz
- (b) Random Access Memory 8192MB

2. Perangkat Lunak

- (a) Sistem Operasi Windows 10 Home Single Language 64-bit
- (b) Visual Studio Code
- (c) Bahasa Pemrograman C++
- (d) Kompiler GCC 7.4.0 (Ubuntu 7.4.0-1ubuntu1 18.04.1) untuk Windows Subsystem Linux

4.2 Implementasi Program Utama

Subbab ini menjelaskan implementasi proses algoritma secara keseluruhan berdasarkan desain yang telah dijelaskan pada bab 3. Program ini merupakan program yang digunakan untuk menyelesaikan permasalahan LL and ErBao.

4.2.1 Header yang diperlukan

Implementasi algoritma ini membutuhkan enam buah *header* yaitu iostream, vector, cmath, map, queue, dan algorithm seperti yang terlihat pada kode sumber 4.1.

```
1 #pragma GCC optimize("03")
2 #pragma GCC target("avx")
3
4 #include <iostream>
5 #include<vector>
6 #include<cmath>
7 #include<map>
8 #include<queue>
9 #include<algorithm>
```

Kode Sumber 4.1 Header yang Diperlukan

Selain header, terdapat juga preprocessor *pragma*, digunakan untuk mengganti flag kompiler yang digunakan pada daring SPOJ. *Header* iostream berisi fungsi standar input output operasi yang digunakan oleh bahasa C++. *Header* vector berisi struktur data yang digunakan untuk menyimpan data array secara dinamis. *Header* cmath berisi fungsi-fungsi untuk operasi matematika seperti fungsi hypot. *Header* map berisi struktur data untuk menyimpan data *key value*. *Header* queue berisi struktur data yang digunakan untuk menyimpan antrian data. *Header* algorithm berisi modul yang memiliki fungsi-fungsi yang sangat berguna dalam membantu mengimplementasi algoritma yang telah dibangun, contohnya adalah fungsi *reverse* dan *sort*.

4.2.2 Preprocessor

Preprocessor seperti using digunakan untuk membuat alias dari tipe data sesungguhnya. Terdapat empat alias yang digunakan yaitu push_back(x) sebagai pb(x), pop_back(x) sebagai pob(x), getchar(x) sebagai gc(x), dan for (int i = 0; i < n; i++) sebagai FOR(i,n). Preprocessor dapat dilihat pada kode sumber 4.2.

```
1 #define pb(x) push_back(x)
2 #define pob(x) pop_back(x)
3 #define FOR(i, n) for (int i = 0; i < n; i++)
4 #define gc(x) getchar(x)
5 using namespace std;</pre>
```

Kode Sumber 4.2 Preprocessor yang Diperlukan

4.2.3 Variabel Global

Variabel global digunakan untuk memudahkan dalam mengakses data yang digunakan lintas fungsi/struct. kode sumber implementasi variabel global dapat dilihat pada kode sumber 4.3. Variabel tersebut didefinisikan secara global agar dapat digunakan pada setiap fungsi.

```
1 const double EPS = 0.0;
2 const double INF = 1E9;
3 map<point, int> pool;
```

Kode Sumber 4.3 Variabel Global yang Didefinisikan Untuk Program

4.2.4 Implementasi Fungsi Main

Fungsi main adalah implementasi algoritma yang dirancang pada pseudocode 3.1. Implementasi fungsi main dapat dilihat pada kode sumber 4.4.

```
1 int main(){
 2
     int kase = 1;
 3
     int n, m;
     while (cin >> n) {
       pool.clear();
       cin >> m;
       polygon perimeter;
       vector<point> trees;
 9
10
       for (int i = 0; i < n; i++) {</pre>
11
         double a = readint(), b = readint();
12
         pool[point(a, b, false)]++;
13
         perimeter.P.push back(point(a, b, false));
14
15
16
       if (m == 0 | | m == 1) {
17
         printf("Case #%d: %.31f\n", kase++, 0.0);
18
         continue;
19
20
21
       for (int i = 0; i < m; i++) {
22
         double a = readint(), b = readint();
23
         pool[point(a, b, true)]++;
24
         trees.push back(point(a, b, true));
25
       }
26
27
       polygon hasil = solve(perimeter, trees);
28
29
       printf("Case #%d: %.3lf\n", kase++,
           hasil.perimeter());
30
31 }
```

Kode Sumber 4.4 Fungsi Main

4.2.5 Implementasi Class Point

Pada subbab ini akan dijelaskan mengenai implementasi dari class Point pada subbab 3.3 dan pseudocode 3.2. Implementasi

dari class Point dapat dilihat pada kode sumber 4.5.

```
1 struct point{
 2
     double x, y;
     bool fixed;
    point(){
     x = y = 0.0;
       fixed = 0;
     point(double x, double y, bool fixed =
         false) {
       x = x;
10
       y = y;
11
       fixed = _fixed;
12
13
     bool operator<(point other) const{</pre>
14
       if (y < other.y + EPS)</pre>
         return true;
16
       if (y + EPS > other.y)
         return false;
       return x < other.x + EPS;</pre>
18
19
20
     bool operator==(point other) const{
       return same d(x, other.x) && same d(y,
           other.y);
22
     }
23 };
```

Kode Sumber 4.5 Struct Point

4.2.6 Implementasi Class Vec

Pada subbab ini akan dijelaskan mengenai implementasi dari class Vec pada subbab 3.4 dan pseudocode 3.3. Implementasi dari class Vec dapat dilihat pada kode sumber 4.6.

```
1 struct vec{
 2
    double x, y;
     vec(){
       x = y = 0.0;
     vec(double x, double y) {
       x = x;
       y = y;
 9
10
    vec(point A) {
11
      x = A.x;
12
       y = A.y;
13
14
    vec(point A, point B) {
      x = B.x - A.x;
15
16
      y = B.y - A.y;
17
18 };
```

Kode Sumber 4.6 Struct Vec

4.2.7 Implementasi Class Line

Pada subbab ini akan dijelaskan mengenai implementasi dari class Line pada subbab 3.5 dan pseudocode 3.4. Implementasi dari class Line dapat dilihat pada kode sumber 4.7.

```
1 struct line{
 2
     double a, b, c;
 3
     line(){
 4
       a = b = c = 0.0;
 5
 6
     line (double a, double b, double c) {
 7
       a = _a;
 8
       b = b;
 9
       c = _c;
10
11
     line(point P1, point P2) {
12
       if (P2 < P1) {
13
         point T;
14
         T = P1;
15
         P1 = P2;
16
         P2 = T;
17
18
       if (same d(P1.x, P2.x))
19
         a = 1.0, b = 0.0, c = -P1.x;
20
       else
21
         a = -(P1.y - P2.y) / (P1.x - P2.x), b =
             1.0, c = -(a * P1.x) - P1.y;
22
23
     line (point P, double slope) {
24
       if (same d(slope, INF))
25
         a = 1.0, b = 0.0, c = -P.x;
26
       else
27
         a = -slope, b = 1.0, c = -(a * P.x) - P.y;
28
29
     bool operator==(line other) const{
30
       return same d(a, other.a) && same d(b,
           other.b) && same d(c, other.c);
31
32 };
```

Kode Sumber 4.7 Struct Line

4.2.8 Implementasi Class Segment

Pada subbab ini akan dijelaskan mengenai implementasi dari class Segment pada subbab 3.6 dan pseudocode 3.5. Implementasi dari class Segment dapat dilihat pada kode sumber 4.8.

```
1 struct segment{
    point P, Q;
 3 line L;
  segment(){
     point T1;
     P = Q = T1;
     line T2;
     L = T2;
10
    segment(point P, point Q) {
     if (_Q < _P) {
11
12
        point T1 = P;
        _{P} = Q;
13
14
         _Q = T1;
15
16
     P = P;
17
      Q = Q;
      line T2(_P, _Q);
18
19
      L = T2;
20
21
    bool operator==(segment other) const{
22
       return P == other.P && Q == other.Q;
23
24 };
```

Kode Sumber 4.8 Struct Segment

4.2.9 Implementasi Class Polygon

Pada subbab ini akan dijelaskan mengenai implementasi dari class Polygon pada subbab 3.7 dan pseudocode 3.6. Implementasi dari class Polygon dapat dilihat pada kode sumber 4.9.

```
1 struct polygon{
 2
     vector<point> P;
 3
     polygon(){
       P.clear();
     polygon(vector<point> & P) {
 7
       P = P;
     int prev(int idx) {
10
       return (idx == 0 ? P.size() - 1 : idx - 1);
11
12
     int next(int idx) {
13
       return (idx == P.size() - 1 ? 0 : idx + 1);
14
15
     double perimeter() {
16
       double ret = 0;
       FOR(i, P.size()){
17
18
         ret += e dist(P[i], P[next(i)]);
19
20
       return ret;
21
22 };
```

Kode Sumber 4.9 Struct Polygon

4.2.10 Implementasi Fungsi BetweenD

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi BetweenD pada pseudocode 3.10. Implementasi dapat dilihat pada kode sumber 4.10.

```
1 double between_d(double x, double 1, double r) {
2  return (min(1, r) <= x + EPS && x <= max(1, r) + EPS);
3 }</pre>
```

Kode Sumber 4.10 Fungsi BetweenD

4.2.11 Implementasi Fungsi EDist

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi EDist pada pseudocode 3.11. Implementasi dapat dilihat pada kode sumber 4.11.

```
1 double e_dist(point P1, point P2) {
2   return hypot(P1.x - P2.x, P1.y - P2.y);
3 }
```

Kode Sumber 4.11 Fungsi EDist

4.2.12 Implementasi Fungsi Cross

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi Cross pada pseudocode 3.12. Implementasi dapat dilihat pada kode sumber 4.12.

```
1 double cross(vec u, vec v) {
2   return (u.x * v.y - u.y * v.x);
3 }
```

Kode Sumber 4.12 Fungsi Cross

4.2.13 Implementasi Fungsi Orientation

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi Orientation pada pseudocode 3.13. Implementasi dapat dilihat pada kode sumber 4.13.

```
1 double orientation(point O, point P, point Q){
2  vec OP(O, P), OQ(O, Q);
3  double c = cross(OP, OQ);
4  return c;
5 }
```

Kode Sumber 4.13 Fungsi Orientation

4.2.14 Implementasi Fungsi OnSegment

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi OnSegment pada pseudocode 3.14. Implementasi dapat dilihat pada kode sumber 4.14.

```
1 bool onSegment(point P, segment S) {
2   if (orientation(S.P, S.Q, P) != 0.0)
3    return false;
4   return between_d(P.x, S.P.x, S.Q.x) &&
       between_d(P.y, S.P.y, S.Q.y);
5 }
```

Kode Sumber 4.14 Fungsi OnSegment

4.2.15 Implementasi Fungsi ConvexHull

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi ConvexHull pada pseudocode 3.15. Implementasi dapat dilihat pada kode sumber 4.15.

```
1 polygon convexHull(vector<point> &pts) {
     sort(pts.begin(), pts.end());
     vector<point> hull;
     for (int i = 0; i < 2; i++) {
       int start = (int)hull.size();
       for (int i = 0; i < pts.size(); i++) {</pre>
         while ((int)hull.size() >= start + 2 &&
             orientation(hull[(int)hull.size() - 1],
             hull[(int)hull.size() - 2], pts[i]) <=
             0.0)
           hull.pob();
 8
 9
         hull.pb(pts[i]);
10
11
       hull.pop back();
12
       reverse(pts.begin(), pts.end());
13
     return polygon(hull);
14
15 }
```

Kode Sumber 4.15 Fungsi ConvexHull

4.2.16 Implementasi Fungsi InSimplePolygon

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi inSimplePolygon pada pseudocode 3.16. Implementasi dapat dilihat pada kode sumber 4.16.

```
1 int inSimplePolygon(point P, polygon &A) {
     int ret = 0;
     FOR(i, A.P.size()) {
       if (P == A.P[i])
         return 0;
      int j = A.next(i);
       if (onSegment(P, segment(A.P[i], A.P[j])))
         return 0;
       bool below = (A.P[i].y < P.y);</pre>
       if (below != (A.P[j].y < P.y)) {</pre>
         double o = orientation(P, A.P[i], A.P[j]);
12
         if (0 == 0.0)
13
           return 0;
14
         if (below == (0 > 0.0))
15
           ret += below ? 1 : -1;
16
       }
17
18
     return ret == 0 ? 1 : -1;
19 }
```

Kode Sumber 4.16 Fungsi InSimplePolygon

4.2.17 Implementasi Fungsi GetBetween

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi GetBetween pada pseudocode 3.17. Implementasi dapat dilihat pada kode sumber 4.17.

```
1 vector<point> getBetween(polygon &triangle,
       queue<point> q, vector<point> trees) {
 2
     vector<point> points,pts;
 3
     while (!q.empty()) {
       if (inSimplePolygon(q.front(), triangle) !=
           1) {
 5
         points.pb(q.front());
 6
       }
 7
       q.pop();
 8
 9
     for (int i = 0; i < trees.size(); i++) {</pre>
10
       if (inSimplePolygon(trees[i], triangle) != 1) {
11
         points.pb(trees[i]);
12
       }
13
14
     polygon P = convexHull(points);
     int i = 0;
15
16
     while (1) {
17
       if (P.P[i] == triangle.P[0]) {
18
         if (P.P[P.next(i)] == triangle.P[2]) {
19
           i = P.prev(i);
20
           while (!(P.P[i] == triangle.P[2])){
21
              pts.pb(P.P[i]);i = P.prev(i);
22
           }
23
         }
24
         else{
25
           i = P.next(i);
26
           while (!(P.P[i] == triangle.P[2])){
27
             pts.pb(P.P[i]);i = P.next(i);
28
            }
29
30
         break;
31
32
       i = P.next(i);
33
     }
34
     return pts;
35 }
```

Kode Sumber 4.17 Fungsi GetBetween

4.2.18 Implementasi Fungsi Solve

Pada subbab ini akan dijelaskan mengenai implementasi dari fungsi Solve pada pseudocode 3.18. Implementasi dapat dilihat pada kode sumber 4.18.

```
1 polygon solve(polygon &perimeter, vector<point>
       &trees) {
     queue<point> q;
     for (int i = 0; i < perimeter.P.size(); i++) {</pre>
       q.push(perimeter.P[i]);
 5
     point bef = perimeter.P[perimeter.P.size() - 1];
     while (1) {
       bool erased = 0;
10
       int count = q.size();
11
       while (count--) {
12
         point cur = q.front();
13
         q.pop();
14
         pool[cur]--;
15
         if (!cur.fixed && (!find(q, cur) || cur ==
             bef || cur == q.front()) &&
             orientation(cur, bef, q.front()) <=</pre>
             0.0){}
            erased = true;
16
17
           polygon triangle;
18
            triangle.P.pb(bef);
19
           triangle.P.pb(cur);
           triangle.P.pb(q.front());
20
           vector<point> points =
21
               getBetween(triangle, q, trees);
            for (int i = 0; i < points.size(); i++) {</pre>
22
23
              q.push(points[i]);
24
              pool(points[i])++;
25
             bef = points[i];
26
27
         else{
29
            q.push(cur);
30
            pool[cur]++;
```

```
bef = cur;
31
32
33
34
     if (!erased)
        break;
36
37
38
   vector<point> hull;
39
   while (!q.empty()) {
    hull.pb(q.front());
40
41
     q.pop();
42
     return polygon(hull);
44 }
```

Kode Sumber 4.18 Fungsi Solve

[Halaman ini sengaja dikosongkan]

BAB V UJI COBA DAN EVALUASI

Pada bab ini dijelaskan tentang uji coba dan evaluasi dari implementasi yang telah dilakukan pada tugas akhir ini.

5.1 Lingkungan Uji Coba

Lingkungan uji coba digunakan untuk uji coba kebenaran adalah salah satu sistem yang digunakan situs penilaian daring Sphere Online Judge, yaitu kluster *Cube* dengan spesifikasi sebagai berikut:

1. Perangkat Keras

- (a) Processor Intel Xeon E3-1220 v5 (5 CPUs)
- (b) Random Access Memory 1536MB

Perangkat Lunak

(a) Kompiler GCC 6.3.0

Lingkungan uji coba yang digunakan untuk melakukan uji coba kinerja menggunakan komputer pribadi penulis yang memiliki spesifikasi sebagai berikut

1. Perangkat Keras

- (a) Processor Intel® Core™ i7-6500U CPU @ 2.50GHz (4 CPUs), 2.6GHz
- (b) Random Access Memory 8192MB

2. Perangkat Lunak

- (a) Sistem Operasi Windows 10 Home Single Language 64-bit
- (b) Visual Studio Code
- (c) Bahasa Pemrograman C++

(d) Kompiler GCC 7.4.0 (Ubuntu 7.4.0-1ubuntu1 18.04.1) untuk Windows Subsystem Linux

5.2 Skenario Uji Coba

Subbab ini akan menjelaskan hasil pengujian program untuk menyelesaikan permasalahan LL and ErBao. Metode pengujian yang dilakukan adalah sebagai berikut.

- 1. Pengujian luar. Pengujian ini menggunakan Online Judge untuk menguji kebenaran dan kinerja program.
- Pengujian lokal. Pengujian ini menggunakan mesin yang digunakan dalam pengembangan untuk mengukur kinerja program.

Dalam pengujian lokal, dibuat beberapa kasus uji berdasarkan batasan yang ada pada soal.

Untuk pengujian luar, uji coba dilakukan dengan mengirimkan kode program dengan algoritma reduksi polygon ke situs penilaian daring Sphere Online Judge sebanyak 10 kali.

5.3 Uji Coba Kebenaran

Pada subbab ini akan dibahas mengenai uji coba kebenaran yang dilakukan dengan mengirim kode sumber terkait ke dalam situs penilaian daring Sphere Online Judge. Bukti hasil pengujian dapat dilihat pada gambar 5.1.

Gambar 5.1 Hasil Uji Coba Kebenaran Situs Penilaian Sphere Online Judge

5.4 Uji Coba Kinerja Lokal

Pada subbab ini akan ditampilkan hasil uji coba kinerja dari algoritma reduksi polygon untuk menyelesaikan permasalahan LL and ErBao. Pengujian dilakukan terhadap kelompok masukan yang telah dijelaskan pada subbab 5.2. Detil masukan dapat dilihat pada Lampiran A. Langkah pengujian kinerja dilakukan dengan langkah sebagai berikut:

- 1. Rekam waktu tepat sebelum komputasi penyelesaian masalah.
- 2. Melakukan komputasi penyelesaian masalah untuk masukan kasus uji yang sama sebanyak 10 kali secara berturut-turut.
- 3. Rekam waktu tepat setelah komputasi dengan mengurangi waktu selesai komputasi dengan waktu sebelum komputasi.
- 4. Ulangi untuk semua kasus uji.

Grafik 5.2 menampilkan rata-rata kinerja masing-masing metode. Pada grafik tersebut dapat dilihat bahwa rata-rata *running time* reduksi polygon dengan algoritma *Melkman convex hull* berbanding lurus dengan banyaknya titik di dalam polygon tersebut.

5.5 Evaluasi Kebenaran Uji Coba Lokal

Evaluasi dilakukan dengan memeriksa hasil keluaran program apakah sama dengan contoh keluaran pada Sphere Online Judge 5637 LL and ErBao. Tabel kebenaran dapat dilihat pada gambar 5.1

Gambar 5.3 menunjukan ilustrasi kondisi awal program sebelum iterasi dimulai.

Pada awal iterasi ke-1, memeriksa titik (0,0). Titik tersebut akan dibuang karena titik tersebut merupakan titik luar dan orientasi terhadap titik sebelumnya dan sesudahnya membentuk *convex*. Sebelum membuang titik tersebut, program membuat segitiga dengan titik sebelumnya, titik tersebut dan titik sesudahnya. Kemudian pro-

Gambar 5.2 Grafik Mean Running Time Kasus Uji

Contoh testcase 1

Queue: (0,0), (30,0), (30,20), (20,20), (20,10), (10,10), (10,20), (0,20)

Gambar 5.3 Ilustrasi Kondisi Awal

gram mencari semua titik yang berada di dalam segitiga tersebut. Selanjutnya program mencari *convex hull* dari semua titik yang didapatkan dan disisipkan ke queue polygon luar untuk menggantikan

Data Masukan	Hasil Keluaran
8 2	
0 0	
30 0	
30 20	
20 20	
20 10	Case #1: 48.284
10 10	
10 20	
0 20	
5 15	
25 15	

Tabel 5.1 Tabel Data Uji Coba Kebenaran Lokal dengan Sampel Data

titik yang dibuang. Kondisi setelah iterasi ke-1 dapat dilihat pada gambar 5.4.

Queue: (30,0), (30,20), (20,20), (20,10), (10,10), (10,20), (0,20), (10,10)

Gambar 5.4 Ilustrasi Iterasi 1

Pada awal iterasi ke-2, memeriksa titik (30,0). Titik tersebut akan dibuang karena titik tersebut merupakan titik luar dan orientasi terhadap titik sebelumnya dan sesudahnya membentuk *convex*. Sebelum membuang titik tersebut, program membuat segitiga dengan titik sebelumnya, titik tersebut dan titik sesudahnya. Kemudian program mencari semua titik yang berada di dalam segitiga tersebut. Selanjutnya program mencari *convex hull* dari semua titik yang didapatkan dan disisipkan ke queue polygon luar untuk menggantikan titik yang dibuang. Kondisi setelah iterasi ke-2 dapat dilihat pada gambar 5.5.

Cek titik(30,0)

Queue: (30,20), (20,20), (20,10), (10,10), (10,20), (0,20), (10,10), (20,10)

Gambar 5.5 Ilustrasi Iterasi 2

Pada awal iterasi ke-3, memeriksa titik (30, 20). Titik tersebut akan dibuang karena titik tersebut merupakan titik luar dan orientasi terhadap titik sebelumnya dan sesudahnya membentuk *convex*. Sebelum membuang titik tersebut, program membuat segitiga dengan titik sebelumnya, titik tersebut dan titik sesudahnya. Kemudian program mencari semua titik yang berada di dalam segitiga tersebut. Selanjutnya program mencari *convex hull* dari semua titik yang didapatkan dan disisipkan ke queue polygon luar untuk meng-

gantikan titik yang dibuang. Kondisi setelah iterasi ke-3 dapat dilihat pada gambar 5.6.

Queue: (20,20), (20,10), (10,10), (10,20), (0,20), (10,10), (20,10), (25,15)

Gambar 5.6 Ilustrasi Iterasi 3

Pada awal iterasi ke-4, memeriksa titik (20, 20). Titik tersebut akan dibuang karena titik tersebut merupakan titik luar dan orientasi terhadap titik sebelumnya dan sesudahnya membentuk *convex*. Sebelum membuang titik tersebut, program membuat segitiga dengan titik sebelumnya, titik tersebut dan titik sesudahnya. Kemudian program mencari semua titik yang berada di dalam segitiga tersebut. Selanjutnya program mencari *convex hull* dari semua titik yang didapatkan dan disisipkan ke queue polygon luar untuk menggantikan titik yang dibuang. Kondisi setelah iterasi ke-4 dapat dilihat pada gambar 5.7.

Pada awal iterasi ke-5, memeriksa titik (20, 10). Titik tersebut tidak akan dibuang karena titik tersebut merupakan titik luar tetapi orientasi terhadap titik sebelumnya dan sesudahnya membentuk *concave*. Kondisi setelah iterasi ke-5 dapat dilihat pada gambar 5.8.

Pada awal iterasi ke-6, memeriksa titik (10, 10). Titik ter-

Cek titik(20,20)

Queue: (20,10), (10,10), (10,20), (0,20), (10,10), (20,10), (25,15)

Gambar 5.7 Ilustrasi Iterasi 4

Cek titik(20,10)

Queue: (10,10), (10,20), (0,20), (10,10), (20,10), (25,15), (20,10)

Gambar 5.8 Ilustrasi Iterasi 5

sebut tidak akan dibuang karena titik tersebut merupakan titik luar tetapi orientasi terhadap titik sebelumnya dan sesudahnya membentuk *concave*. Kondisi setelah iterasi ke-6 dapat dilihat pada gambar 5.9.

Cek titik(10,10)

Queue: (10,20), (0,20), (10,10), (20,10), (25,15), (20,10), (10,10)

Gambar 5.9 Ilustrasi Iterasi 6

Pada awal iterasi ke-7, memeriksa titik (10,20). Titik tersebut akan dibuang karena titik tersebut merupakan titik luar dan orientasi terhadap titik sebelumnya dan sesudahnya membentuk *convex*. Sebelum membuang titik tersebut, program membuat segitiga dengan titik sebelumnya, titik tersebut dan titik sesudahnya. Kemudian program mencari semua titik yang berada di dalam segitiga tersebut. Selanjutnya program mencari *convex hull* dari semua titik yang didapatkan dan disisipkan ke queue polygon luar untuk menggantikan titik yang dibuang. Kondisi setelah iterasi ke-7 dapat dilihat pada gambar 5.10.

Pada awal iterasi ke-8, memeriksa titik (0,20). Titik tersebut akan dibuang karena titik tersebut merupakan titik luar dan orientasi terhadap titik sebelumnya dan sesudahnya membentuk convex. Sebelum membuang titik tersebut, program membuat segitiga dengan titik sebelumnya, titik tersebut dan titik sesudahnya. Kemudian program mencari semua titik yang berada di dalam segitiga tersebut. Selanjutnya program mencari $convex\ hull$ dari semua titik yang didapatkan dan disisipkan ke queue polygon luar untuk menggantikan

Cek titik(10,20)

Queue: (0,20), (10,10), (20,10), (25,15), (20,10), (10,10)

Gambar 5.10 Ilustrasi Iterasi 7

titik yang dibuang. Kondisi setelah iterasi ke-8 dapat dilihat pada gambar 5.11.

Cek titik(0,20)

Queue: (10,10), (20,10), (25,15), (20,10), (10,10), (5,15)

Gambar 5.11 Ilustrasi Iterasi 8

5.6 Uji Coba Kinerja Luar

Pada subbab ini akan ditampilkan hasil uji coba kinerja dari algoritma reduksi polygon. Pengujian dilakukan dengan cara mengirimkan kode program ke situs penilaian daring Sphere Online Judge. Detil mengenai hasil uji kinerja dapat dilihat pada Lampiran B. Rata-rata hasil pengumpulan kode berkas dengan algoritma *Melkman Convex Hull* adalah 0.08 detik dengan memori 4.6 MB. Hasil uji coba pada situs Sphere Online Judge dapat dilihat pada gambar 5.12 dan 5.13.

Gambar 5.12 Grafik Waktu Uji Coba 10 Kali pada Situs SPOJ

Gambar 5.13 Grafik Memori Uji Coba 10 Kali pada Situs SPOJ

BAB VI KESIMPULAN

Pada bab ini dijelaskan mengenai kesimpulan dari hasil uji coba yang telah dilakukan serta saran-saran tentang pengembangan yang dapat dilakukan terhadap Tugas Akhir ini di masa yang akan datang.

6.1 Kesimpulan

Berdasarkan penjabaran di bab-bab sebelumnya, dapat disimpulkan beberapa poin terkait penyelesaian permasalahan LL and Erbao.

- 1. Permasalahan LL and ErBao dapat diselesaikan dengan melakukan reduksi polygon luar terhadap titik di dalamnya.
- Permasalahan LL and Erbao dapat diselesaikan dengan batasan pada soal dapat diselesaikan dengan reduksi polygon dengan waktu minimum 0.08 detik, waktu maksimum 0.08 detik, dan memori minimum 4.4 MB, memori maksimum 4.7 MB.
- 3. Algoritma *Melkman convex hull* terbukti efektif untuk melakukan reduksi polygon untuk mencari *relative convex polygon*.

6.2 Saran

Pada Tugas Akhir kali ini tentunya terdapat kekurangan serta nilai-nilai yang dapat penulis ambil. Berikut adalah saran-saran yang dapat diambil melalui Tugas Akhir ini:

- 1. Untuk kedepannya, algoritma pada Tugas Akhir ini dapat menjadi bahan riset untuk mencari optimasi lebih lanjut.
- 2. Metode reduksi polygon dengan menggunakan algoritma

Melkman convex hull yang dimodifikasi dapat digunakan untuk mencari relative convex hull dengan polygon yang membatasi segmen garis ataupun polygon sederhana.

DAFTAR PUSTAKA

- [1] SPOJ. (2009). LL and ErBao, **url**: https://www.spoj.com/problems/ISUN1/.
- [2] A. A. Melkman, "On-line construction of the convex hull of a simple polyline", *Information Processing Letters 25*, pages 11–12, 1987.
- [3] A. Andrew., "Another Efficient Algorithm for Convex Hulls in Two Dimensions", *Information Processing Letters 9*, pages 216–219, 1979.
- [4] geeksforgeeks. (2019). How to check if a given point lies inside or outside a polygon, **url**: https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/.

[Halaman ini sengaja dikosongkan]

LAMPIRAN A: DATA UJI

	-9200 -10000	-8240 -10000	-7280 -10000	-6320 -10000	-5360 -10000	-4400 -10000	-3440 -10000	-2480 -10000	-1520 -10000	-560 -10000	400 -10000	1360 -10000	2320 -10000	3280 -10000	4240 -10000	5200 -10000	6160 -10000	7120 -10000	8080 -10000	9040 -10000	10000 -10000	10000 -9040	10000 -8080	10000 -7120
	-9360 -10000	-8400 -10000	-7440 -10000	-6480 -10000	-5520 -10000	-4560 -10000	-3600 -10000	-2640 -10000	-1680 -10000	-720 -10000	240 -10000	1200 -10000	2160 -10000	3120 -10000	4080 -10000	5040 -10000	6000 -10000	6960 -10000	7920 -10000	8880 -10000	9840 -10000	10000 -9200	10000 -8240	10000 -7280
asukan	-9520 -10000	-8560 -10000	-7600 -10000	-6640 -10000	-5680 -10000	-4720 -10000	-3760 -10000	-2800 -10000	-1840 -10000	-880 -10000	80 -10000	1040 -10000	2000 -10000	2960 -10000	3920 -10000	4880 -10000	5840 -10000	6800 -10000	7760 -10000	8720 -10000	9680 -10000	10000 -9360	10000 -8400	10000 -7440
Data Masukan	-9680 -10000	-8720 -10000	-7760 -10000	-6800 -10000	-5840 -10000	-4880 -10000	-3920 -10000	-2960 -10000	-2000 -10000	-1040 -10000	-80 -10000	880 -10000	1840 -10000	2800 -10000	3760 -10000	4720 -10000	5680 -10000	6640 -10000	7600 -10000	8560 -10000	9520 -10000	10000 -9520	10000 -8560	10000 -7600
	-9840 -10000	-8880 -10000	-7920 -10000	-6960 -10000	-6000 -10000	-5040 -10000	-4080 -10000	-3120 -10000	-2160 -10000	-1200 -10000	-240 -10000	720 -10000	1680 -10000	2640 -10000	3600 -10000	4560 -10000	5520 -10000	6480 -10000	7440 -10000	8400 -10000	9360 -10000	10000 -9680	10000 -8720	10000 -7760
	-10000 -10000	-9040 -10000	-8080 -10000	-7120 -10000	-6160 -10000	-5200 -10000	-4240 -10000	-3280 -10000	-2320 -10000	-1360 -10000	-400 -10000	560 -10000	1520 -10000	2480 -10000	3440 -10000	4400 -10000	5360 -10000	6320 -10000	7280 -10000	8240 -10000	9200 -10000	10000 -9840	10000 -8880	10000 -7920

		Data M	Data Masukan		
10000 -6960	10000 -6800	10000 -6640	10000 -6480	10000 -6320	10000 -6160
10000 -6000	10000 -5840	10000 - 5680	10000 -5520	10000 -5360	10000 -5200
10000 -5040	10000 -4880	10000 -4720	10000 -4560	10000 -4400	10000 -4240
10000 -4080	10000 -3920	10000 -3760	10000 -3600	10000 -3440	10000 -3280
10000 -3120	10000 -2960	10000 -2800	10000 -2640	10000 -2480	10000 -2320
10000 -2160	10000 -2000	10000 - 1840	10000 - 1680	10000 -1520	10000 -1360
10000 -1200	10000 -1040	10000 -880	10000 -720	10000 -560	10000 -400
10000 -240	10000 - 80	10000 80	10000 240	10000 400	10000 560
10000 720	10000 880	10000 1040	10000 1200	10000 1360	10000 1520
10000 1680	10000 1840	10000 2000	10000 2160	100002320	10000 2480
10000 2640	10000 2800	10000 2960	10000 3120	100003280	10000 3440
10000 3600	10000 3760	10000 3920	10000 4080	100004240	10000 4400
10000 4560	10000 4720	10000 4880	10000 5040	100005200	10000 5360
10000 5520	10000 5680	10000 5840	10000 6000	100006160	10000 6320
10000 6480	10000 6640	10000 6800	10000 6960	10000 7120	10000 7280
10000 7440	10000 7600	10000 7760	10000 7920	100008080	10000 8240
10000 8400	10000 8560	10000 8720	10000 8880	10000 9040	10000 9200
10000 9360	10000 9520	10000 9680	10000 9840	10000 10000	9840 10000
9680 10000	9520 10000	9360 10000	9200 10000	9040 10000	8880 10000
8720 10000	8560 10000	8400 10000	8240 10000	8080 10000	7920 10000
7760 10000	7600 10000	7440 10000	7280 10000	7120 10000	6960 10000
6800 10000	6640 10000	6480 10000	6320 10000	6160 10000	6000 10000
5840 10000	5680 10000	5520 10000	5360 10000	5200 10000	5040 10000
4880 10000	4720 10000	4560 10000	4400 10000	4240 10000	4080 10000

		Data M	Data Masukan		
3920 10000	3760 10000	3600 10000	3440 10000	3280 10000	3120 10000
2960 10000	2800 10000	2640 10000	2480 10000	2320 10000	2160 10000
2000 10000	1840 10000	1680 10000	1520 10000	1360 10000	1200 10000
1040 10000	880 10000	720 10000	560 10000	400 10000	240 10000
80 10000	-80 10000	-240 10000	-400 10000	-560 10000	-720 10000
-880 10000	-1040 10000	-1200 10000	-1360 10000	-1520 10000	-1680 10000
-1840 10000	-2000 10000	-2160 10000	-2320 10000	-2480 10000	-2640 10000
-2800 10000	-2960 10000	-3120 10000	-3280 10000	-3440 10000	-3600 10000
-3760 10000	-3920 10000	-4080 10000	-4240 10000	-4400 10000	-4560 10000
4720 10000	-4880 10000	-5040 10000	-5200 10000	-5360 10000	-5520 10000
5680 10000	-5840 10000	-6000 10000	-6160 10000	-6320 10000	-6480 10000
-6640 10000	-6800 10000	-6960 10000	-7120 10000	-7280 10000	-7440 10000
-7600 10000	-7760 10000	-7920 10000	-8080 10000	-8240 10000	-8400 10000
8560 10000	-8720 10000	-8880 10000	-9040 10000	-9200 10000	-9360 10000
-9520 10000	-9680 10000	-9840 10000	-10000 10000	-10000 9840	-10000 9680
-10000 9520	-10000 9360	-10000 9200	-10000 9040	-10000 8880	-10000 8720
-10000 8560	-10000 8400	-10000 8240	-10000 8080	-10000 7920	-10000 7760
-10000 7600	-10000 7440	-10000 7280	-10000 7120	-10000 6960	-10000 6800
-10000 6640	-10000 6480	-10000 6320	-10000 6160	-10000 6000	-10000 5840
-10000 5680	-10000 5520	-10000 5360	-10000 5200	-10000 5040	-10000 4880
-10000 4720	-10000 4560	-10000 4400	-10000 4240	-10000 4080	-10000 3920
-10000 3760	-10000 3600	-10000 3440	-10000 3280	-10000 3120	-10000 2960
-10000 2800	-10000 2640	-10000 2480	-10000 2320	-10000 2160	-10000 2000
-10000 1840	-10000 1680	-10000 1520	-10000 1360	-10000 1200	-10000 1040

		Data M	Data Masukan		
-10000 880	-10000 720	-10000 560	-10000 400	-10000 240	-10000 80
-10000 -80	-10000 -240	-10000 -400	-10000 -560	-10000 -720	-10000 -880
-10000 -1040	-10000 -1200	-10000 -1360	-10000 -1520	-10000 -1680	-10000 -1840
-10000 -2000	-10000 -2160	-10000 -2320	-10000 -2480	-10000 -2640	-10000 -2800
-10000 -2960	-10000 -3120	-10000 -3280	-10000 -3440	-10000 -3600	-10000 -3760
-10000 -3920	-10000 -4080	-10000 -4240	-10000 -4400	-10000 -4560	-10000 -4720
-10000 -4880	-10000 -5040	-10000 -5200	-10000 -5360	-10000 -5520	-10000 -5680
-10000 -5840	-10000 -6000	-10000 -6160	-10000 -6320	-10000 -6480	-10000 -6640
-10000 -6800	-10000 -6960	-10000 -7120	-10000 -7280	-10000 -7440	-10000 -7600
-10000 -7760	-10000 -7920	-10000 -8080	-10000 -8240	-10000 -8400	-10000 -8560
-10000 -8720	-10000 -8880	-10000 -9040	-10000 -9200	-10000 -9360	-10000 -9520
-10000 -9680	-10000 -9840	-10000 -9840	-10000 -9840	-10000 -9840	-10000 -9840

7297 -5179					
	-2569 -3179	4094 3274	719 -1563	-6680 348	
8612 8164	4715 6559	7379 -4515	-1673 -453	4384 1550	
-9492 2456	8566 -7924	-5067 8717	-348 -6272	-9614 7411	
-7094 2912	-1607 -8546	-8967 3377	7968 -6804	4502 2445	
-522 -5220	-9762 -2864	-9553 -7675	-2831 9356	-5142 -8928	מאת
322 -7910	3468 5862	-3159 -7017	-6292 2816	6666 0699-	FASS
-4586 2554	-8768 -5072	8616 1655	122 -6517	-5057366	
427 9209	-1959 -8021	-9683 2936	-2060 1045	-5261 -710	
1589 -3109	-9898 8125	-8467 -3993	-6508 -803	-9344 -8748	
848 -6711	2014 -7074	-8930 -5099	-2573 -7553	-5884 2478	
1077 -4209	811 -5936	-9315 -722	3288 -7436	2351 1858	
4669 -4219	-7102 -6866	443 -2655	-7890 6739	2139 549	
-315 7509	6470 -3119	3990 -5881	4775 6120	4932 4153	
8799 1869	-7971 -8298	-7431 -2162	-697 2220	-2369 9155	
-2883 -4402	6095 5840	-2951 1527	-1431 -9392	-9263 -4014	
9932 -5737	-2457 -2634	-1697 -2099	-6979 469	2322 7104	
1693 -2996	3774 -4563	-7785 189	-1638 1867	-8374 984	
827 4990	-5251 -4969	2591 424	-9503 -1857	-4563 -6567	
8170 9456	2023 202	-9101 -6438	8055 -6072	-1446 -1076	
5018 -2154	4180 277	760 -1460	-5826 -5307	-6511 3749	DAGG
2911 -7372	-457 -2377	-4228 -1306	2046 -6622	-4880 2668	CCAJ
7905 8624	1560 -3250	-1171 788	6027 5097	6690 -4013	
401 8884	4796 -9111	-8909 1862	-9652 -8018	-6061 -7140	
-3536 -9905	4246 -6408	-8870 -9661	-7387 6087	-4016 -446	

No			Data Masukan			Hasil Keluaran
	-2098 -6423	1529 -2662	30 -6882	-8762 2174	-501 -3128	
	7034 -8872	2440 2577	-2751 5852	-4997 6460	-732 3620	
	7767 4265	5297 7983	9957 -9000	-1483 -216	4227 5747	
	-2735 108	-9583 -858	-1652 -3927	2247 -8401	7781 -4928	
	-2738 -3969	-8693 -3753	8681 -2603	6641 -8823	-3088 2002	
	2107 27	-7224 -8594	-9569 4055	2127 -2718	-5719 -5646	
	-4176 7828	379 2415	1986 1640	-6303 -406	-5747 7322	
	-8900 880	-4022 7278	-9798 6859	-402 3972	6002 6053	
	-3992 -557	-1303 -3766	2123 -2164	3160 2640	-9627 -791	
	-9331 -4941	-4423 -4799	7853 486	-2199 -7720	-3773 9450	
	-5451 -8543	-4014 -5580	-9754 -35	9358 -7106	-254 2947	
	-9012 6712	6187 -5532	3256 -1255	5668 -9201	966 641	
	2529 -5807	-9526 -9908	-6042 -4144	7994 7122	-156 -9767	
	52 -7491	-3046 -1832	-3902 2969	-4144 -2977	9538 -542	
	212 938	-834 2748	-1497 2754	5854 219	6228 7622	
	9024 -5144	-8706 -6363	-6810 -3866	8325 -2414	-3665 3346	
	2240 5395	-7893 -8310	5995 -5672	5259 -9587	4328 9909	
	-6411 -948	-4386 -7736	-2049 855	7111 9371	-900 -6500	
	-7734 368	-8109 -5553	-156 -1640	-4401 -4471	-5813 -6682	
	-7426 725	2326 -2748	5491 1703	-3816 -5595	-8211 -2576	
	-2069 -6884	889 -7184	-6667 2091	-4258 6219	7110 -9315	
	-2064 608	2591 -4424	-1242 -2346	-7559 -2385	-2445 -5257	
	-1915 628	6830 9538	9264 3637	7956 3259	1352 -7738	
	-2192 7302	6150 -7683	-3013 7732	-1149 1532	2079 -9412	

No			Data Masukan			Hasil Keluaran
	-4078 -4147	-738 -6964	-243 -1353	-6795 -1068	3843 7899	
	2028 -2667	-2272 6383	2524 -4662	2014 -5435	-3447 722	
	6900 -4261	-2792 8004	2532 -8062	947 748	-3049 -9138	
	9382 -3485	7679 2457	-7268 -6755	958 738	-4466 -3547	
	1518 4821	-3104 -1690	5239 9458	810 3724	1829 5445	
	-553 4300	-9892 -4034	1100 -6850	-1876 -6980	-8757 4851	
	-381 7275	-8426 -541	-2624 -4528	-9833 1704	-7793 8098	
	-898 -5301	4688 9948	-52 -2853	2459 9488	-1457 -5978	מטאפ
	-8319 2430	6064 8866	3349 4965	-1110 8522	-3573 9753	FASS
	-6179 5040	7264 9046	4354 -2927	3419 -3661	-322 9092	
	3666 1563	-9604 7799	2767 -1127	-779 -4260	-4461 7154	
	1940 8736	-8868 7831	1146 2236	-7516 -4999	-9637 -2513	
	9739 -9023	-7215 -3988	8119 985	-9038 5617	-9896 -5845	
	-8774 -7591	-5873 -555	2609 3729	242 -5323	423 -5649	
	-5207 4159	9570 -5951	-5251 -4167	5404 -7707	-5228 -635	
	421 -7368	1971 1243	6513 -7472	110 1691	-1938 -498	
	276 960	3508 -5746	-7920 2778	-414 -7550	-5088 5079	
	1830 -4994	230 3232	-2113 -1869	3182 -9205	8286 -9182	
	2698 -2099	-6447 -5943	-7957 -8561	9347 -5052	-7440 -1979	
	-8099 7887	-7015 666	9491 -8244	-4291 -8080	-8006 -6864	
	-7644 2439	-611 -3602	1550 8125	8468 5598	-9612 1718	
	745 -3108	142 -1287	-7865 7247	-2276 -4601	-2864 1996	
	2786 -9379	-8919 3612	4334 -5408	-1891 -6820	7358 -4512	
	1153 1412	4229 -9008	-3918 -1014	-7380 -9155	2472 3048	

0 Z			Data Masukan			Hasil Keluaran
	3640 2240	9702 -3108	-4852 5398	-3569 5197	-8210 -1176	
	-1 -5835	-6034 -4369	-2375 1501	-605 1467	7037 6854	
	-935 -9647	-6501 2117	-4503 3446	-9136 1595	-8536 2728	
	-8285 -6471	-2014 -2123	-3652 -6137	3752 871	6288 -2644	
	-9665 -7729	8968 -4248	9979 9443	-1855 -4692	-9248 -5969	
	4697 9838	2607 -3247	-3976 -3800	-6569 -8111	-7601 -1705	
	79 7182	-6933 10	-5947 3869	-131 -5824	-7493 1613	
	-227 4075	9264 1167	-4397 -1032	-964 -9865	-5166 9969	
	-7872 8957	-7000 -5471	1725 -9465	5845 -3687	-6619 9802	
	-6889 2738	-7537 -3795	5167 5269	-9393 7121	4256 7320	
	-1115 -9939	-6703 9066	-7852 -1505	-1502 -8943	-9899 643	
	4627 6385	1708 -7143	6694 -6961	-9188 9750	2827 8151	
	-2312 -8012	-2378 6395	-6470 -1561	-3498 -8963	2583 -4103	
	-6015 -8593	2579 -2674	-9996 -8551	1136 -5785	-7493 -4101	
	-1652 -9874	-7189 -1709	5165 -1936	887 -7295	-5420 -9978	
	8669-9002-	-5191 -5894	3956 -7911	-7048 -3065	2024 -115	
	-1655 4608	-9044 9103	4718 371	1963 1569	-9008 2447	
	-2875 4192	-6517 1059	-1534 2626	2921 -6168	9798 -8481	
	3341 5827	-2139 -806	9649 8741	311 2229	-1229 -6414	
	6639 1418	-7927 -9877	7240 957	-737 -1593	5666 -5333	
	2298 7005	-9045 -9946	-3654 1992	-9374 3362	-919 -887	
	-9416 -174	-5297 -7823	-1737 -1746	1862 -1831	-472 -8424	
	4623 -9166	7345 -4321	3331 709	-452 7109	5772 9490	
	2461 -8675	1013 -4134	-4460 -7275	-6626 2020	-4049 444	

No			Data Masukan			Hasil Keluaran
	4579 -4104	-2828 -4106	-1964 1664	7919 -6141	2221 -6826	
	-6446 -8921	-8553 -8336	-3371 9748	-804 7092	2001 -1653	
	3871 -7782	9189 -4674	7851 -6065	9831 -1737	5539 -1982	
	5526 9787	1878 360	1323 -2575	-5266 -4092	946 1381	
V	8204 -8666	2809 -7027	-8688 -2097	-4761 -563	-2339 -8609	טאפר
C	-6643 -2182	-1217 -8728	-9053 -6341	-31 -4189	-8116 -9388	FASS
	4942 -7063	2524 -5661	-9966 6103	-3971 -6995	1083 -8423	
	-1045 -9512	9419 -2964	-5946 146	-9178 861	3243 -3466	
	-1297 -9041	-2981 -6217	1330 -6425	-7842 5879	-9021 256	
	9933 -2864	3753 -4193	-1624 256	5171 -6324	-9583 -2112	
	-267 -2980	-7721 5856	-2590 -9831	4997 -4018	2018 -3934	
	-1838 -7328	3956 8080	-3352 -2370	-8541 -6630	-5056 -3778	
	3435 -5672	4281 1774	-6207 -5906	-3131 -9575	7200 1979	
	-3528 8491	-3152 -6280	-263 -9331	6 726	-8066 -6092	
	-7917 781	-1191 -4766	3607 2132	-2676 36	-3401 242	
	-5756 7452	-7601 375	33 9506	1896 -9980	7420 -4629	
	9775 690	1254 -6868	-4324 -2032	-2038 411	-6341 -625	
	-3041 7319	-2904 9981	3162 -4153	-644 7662	8095 869	
	1223 -8226	-645 -1443	510 5436	8052 2290	-8584 -7582	
	-3232 8036	1842 544	-6187 -3506	-4195 -3996	7394 -9838	
	-6162 -5900	3324 -8647	-4901 -1095	-3046 9941	-6326 -4349	
	-5177 905	-9344 5802	-6259 -5908	-6367 1777	5174 6890	
	2617 -2737	-167 1355	-6380 -2257	-2610 -2186	-4906 2905	
	-8473 -3334	-9463 -2933	-3907 -6843	-1325 -6678	5990 -4810	

No			Data Masukan			Hasil Keluaran
	-9943 5823	-7411 -7687	-8537 -9190	6226-792-	4191 3164	
	-8081 5293	401 5653	-8402 1575	1883 -4472	-6629 -6737	
	4980 567	-538 -2790	309 3645	-3222 4034	-2185 2423	
	-5567 881	-6973 -7834	-7079 8028	-3452 -5127	-7807 -7411	
	8687-76	-9207 -9114	9968-9895-	-119 9955	-1104 -6894	
	-3808 -4065	-7397 3240	-1343 9626	728 -9295	-3894 -7784	
	-5480 -9013	8005 1793	-1304 546	-930 -120	-2628 -8657	
	826 -7034	867 1370	-1968 7226	5758 4586	-4332 -2646	
	9222 -2640	-8451 -28	-694 -2943	8865 -7136	-1893 -9365	
	2747 -9175	-7931 737	-9482 -290	4256 6297	-3699 7956	
	8776 7255	6890 -2369	5606 3175	206 -5745	6650 -8464	
	7068 9345	-2798 4842	2478 7310	-3972 -4280	-922 -5113	
	2044 249	-3989 -7613	1441 -715	-8012 8791	-6955 1232	
	-353 -7704	-7889 -1612	-7035 2621	-5799 -1426	-7086 -4200	
	-1531 -1335	-6256 4807	-7553 9401	-5341 8438	-5331 1048	
	5243 9671	-2351 -7498	-3386 9125	-6065 4459	1153 1621	
	-2450 3921	1277 9165	-9665 -7409	-3082 -3799	-6815 -8902	
	-1852 -2948	-4921 -7976	1947 8645	-7339 6021	-8502 7363	
	-8405 -39	-8120 1417	-6942 9257	1393 -7946	-6790 5006	
	-3766 -4578	-1006 5763	1358 -2451	9819 8626	-4542 -8724	
	-469 943	9292 -6844	-2836 8585	5700 -9596	9821 -4715	
	-1145 9118	-7880 -4171	-3178 -8265	-9324 -324	-1419 -8482	
	8040 -8348	7062 4829	-5427 -9011	-8551 -4243	-90112	
	7540 -9074	-9991 4537	2191 -1417	1589 63	-7661 -2965	

No			Data Masukan			Hasil Keluaran
	9870 -3794	9428 1822	-2140 -1491	-8028 -5371	-4788 1678	
	4637 -2157	-6011 -242	2849 -5996	-1555 -7593	-9422 4054	
	571 -6649	-448 -8425	4012 -3656	-4251 2201	40 -9641	
	4926 -8855	-9038 -9897	-8168 -5026	-8679 3295	6513 1863	
	-4719 131	-675 -57	2152 -6404	-6197 1821	-6030 7090	
	5411 2749	-5013 -2827	-6002 1167	-1996 -586	-4511 9294	
	-7453 -3821	7828 6765	-3165 6702	-7989 5413	-8081 3810	
	6276 -1400	-4283 -4075	-696 663	1691 -1263	126 -2473	
	2866 -3152	-1747 -3811	-6390 -1899	-4488 -1199	-6730 9827	
	2730 7763	4082 1832	8247 -3049	4049 4956	-4768 9079	
	-7685 -7864	-5195 9640	919 3591	9794 -8084	6183 -2927	
7	-8987 -5878	-3792 151	-6310 3165	-379 -2196	581 -6232	סטעם
0	7355 -925	-4856 -1295	6684 4192	-143 -688	4804 -7961	FASS
	-1255 4797	-3931 6841	-1616 -7504	-6833 1408	6454 -8785	
	-1104 -6776	-2621 -4479	88 113	-2188 -4701	-8576 6211	
	-1953 -9893	5578 -2240	4675 -9486	-3448 6689	-5785 -4866	
	4610 7002	-2526 -3012	-9100 1982	-6054 -7799	-6409 -7702	
	-790 -3865	1731 -1635	-1340 -6846	-6095 -8283	-1792 -2952	
	-8412 7041	171 8307	-661 -6109	-767 -4517	-7649 8243	
	2468 7690	2292 -934	-6622 -2623	-5776 -7362	-9221 -2535	
	-3371 2125	-507 2620	-8189 -2538	-2289 2132	-4095 -7107	
	-1562 5700	-390 -7730	501 -1930	-6651 -1584	-4530 437	
	-8628 1566	880 3933	-8315 -3437	-2847 1582	7618 451	
	-2242 6217	4496 -4143	1939 -6091	-9573 -1794	9741 -5983	

		_	-8088 -5101	1536 -7218	99 -4141	Hasıl Keluaran
-8464-2199 -1102-5140 -3631-7202 2353 2547 7175-7166 -7279 8638		-3631 -720 -7279 863	∞ 2	-9000 3529 -4550 -8388	-4537 -5775 -4206 -5157	
-9206 564		7395 -297	2	1849 8952	7065 -6655	
-146 5597		-1156 841	6	-4561 -7564	-6537 -9658	
6629 -2921		-1855 64	1 2	-2621 251	-2334 -9833	
3057 2645 -8069 2663 2899 -6652		2899 -66	52	-7542 3971	-302 2244	
-2939 -8423 1095 9528 -3953 1914	•	-3953 19	14	-2415 -7510	2483 -2551	
76 - 9678 - 6298 - 9971 - 7194 1525		-7194 15	25	434 7082	-6616 7888	
497 -8687 4287 -7626 5342 -4142		5342 -41	42	-3916 6581	-4437 827	
-7330 -1920 -1683 1276 -358 7368		-358 736	∞	4480 -9560	-7111 -8883	
8710 -8349 3453 1427 -3823 -4041	•	-3823 -40	41	-4291 -9448	-3839 -3221	
-2098 614 -6477 686 1251 6884		1251 688	4	-9005 3128	-8682 1393	
9488 -5423 -9565 -6444 -4488 -7309	•	-4488 -73	60	1233 -5875	-3453 464	
4990 -5103 1517 -4693 -8782 723		-8782 72	$\tilde{\omega}$	2113 -4138	-5680 -9082	
-198 -461 -295 -2332 -8340 -1543	•	-8340 -15	43	7113 -1017	2463 2111	
1184 -3681 -4258 -495 -5944 -7674	'	-5944 -76′	74	-1552 -7481	-7853 8591	
-5915 1335 -8956 9918 2356 -2101		2356 -210		9843 8219	7393 -4881	
-5436 -9161 -8216 -8836 3267 9971		3267 997	_	-2505 -6070	8129 -6827	
-3694 -8385 7881 -3616 9091 1828		9091 1828	00	2233 -6874	3286 -5420	
-2410 361 4501 -6098 -2019 2020		-2019 202	0	2545 -5080	7134 -4786	
-321 2763 -8251 -8930 -5401 5787	'	-5401 578	7	-6377 9227	-1130 -4138	
7016 -7595 -6627 -1987 6817 -1176		6817 -11	9/	-9996 -9351	930 3967	
-4034 -454 -2058 104 -8588 -1287	'	-8588 -12	287	9882 -6810	-3046 8553	

No			Data Masukan			Hasil Keluaran
	-131 -6403	6037 3594	849 8396	-4287 1049	-8644 -3245	
	-3649 -4748	8562 -9347	619 1136	5409 737	-3880 6708	
	9515 -4924	-6507 -6588	24 1722	9678 -8836	-1620 -3592	
	-8646 -9663	-9095 -1340	-6416 -3792	4687 5736	765 -1629	
	-5769 2131	-4842 -244	-9816 -1258	-7128 -3073	-9038 -7372	
	-4907 -9253	8185 6139	-2558 -3459	-3897 3147	-9653 -8420	
	-3647 2877	-8805 -8456	-3270 2247	-9512 -664	-4698 1244	
	-5500 -2945	82 2708	-3996 -1465	-1486 -2806	-1033 -6317	
	9149 -3382	1138 -2218	-6412 8238	-5971 -5587	-4889 -6081	
	-3436 -2044	4188 -4801	-668 -2503	-6104 -1551	-1288 -6790	
	6720 -8304	4607 -5708	5108 1916	-6607 -3283	-3367 3455	
	-4219 -9647	168 2603	-8806 -1203	-1178 2148	-354 3162	
	-5020 -8641	-5807 2555	9602-6089-	3262 9704	-2678 202	
	-5997 5099	-3357 -5366	3411 -375	-7196 -1802	-2681 -6298	
	-3164 4669	1430 -60	-4644 1022	1525 747	-8267 -1659	
	-2976 5741	-9694 6099	-4344 -8088	3884 5214	7889 -3506	
	-3541 -6247	-5163 -7291	-8007 692	7882 2186	-2197 -5625	
	-2900 -2374	-6597 -7860	372 -1134	-1119 1163	-3352 -9612	
	-8917 -1318	-2633 2989	-2547 -3452	-3899 -4236	-1232 -1719	
	2756 -8682	-2577 5894	-8221 -4751	1673 2967	-372 1756	
	-3501 2746	-2455 -7407	-2939 -5900	7238 -4093	2208 90	
	2109 4915	-2383 -5269	-9012 868	-3319 -39	2765 5352	
	-3205 -4815	-5185 -8956	-4670 -8806	5353 -1036	-1733 -2985	

617-3791 723 6919 1787-3944 1812-2258 1831 5422 -9569-9528 1952 7220 -2748 2514 2220 4289 1300-574 -9569-9528 1952 7220 -2748 2514 2220 4289 1300-574 -4833 2644 -8292 4209 -5942 510 -7160-9545 -9982 1371 5608 -6582 6135 -4065 8428 -6172 1961 -4166 -4598 7770 -3656 -2977 -8817 -1642 1757 -514 -9688 -3802 5272 4594 -6295 1204 425 5280 5803 -4018 -5950 1436 -4716 -4816 -3843 -880 8382 -5790 -8598 -2534 -176 -5989 3629 -4525 -4591 -234 -8695 -7392 6243 -589 1476 -5989 3629 -4525 -5735 5383 6919 -362 8480 -4978 1476 5405 -6783 7087 854 3609 8324 4866 -4137 -7590 6441 1659 -6783 7087 854 3609 8324 4866 -7175 570 4441 7961 -4445 2405 1933 2268 -8810 2167 -7427 -9192 1086 5272 -5732 8023	(Data Masukan			Hasil Keluaran
1952 7220 -2748 2514 2220 -4289 1300 -574 -8292 -4209 -5942 510 -7160 -9545 -9982 1371 6135 -4065 8428 -6172 1961 -4166 -4598 7770 -8817 -1642 1757 -514 -9688 -3802 5272 4594 -8817 -1642 1757 -514 -9688 -3802 5272 4594 -8817 -1642 1757 -514 -9688 -3802 5272 4594 -8817 -1642 1757 -514 -9688 -3802 5272 4594 -8817 -1642 1757 -514 -9688 -3802 5272 4594 -88382 -5790 -8598 -2534 -176 -5989 3629 -4525 -8695 -7392 6243 -538 244 1659 -6783 7087 8324 4866 -4137 -7590 6431 -6358 2645 5521 71 -8507 -9777 5670 -4741 7961 -4445 2405 -8810 2167 -7427 -9192 1086 5272 -5732 8023 -1908 7687 1203 -5476 8473 -1613 -5367 978 8434 9669 2240 2452 -9425 2607 -7062 -6815 -1374 -1699 -6791 3666 4603 -8363 -5203 -311 -4281 171 -6685 -844		617 -3791	723 6919	1787 -3944	1812 -2258	1831 5422	
-8292 - 4209-5942 510-7160 -9545-9982 13716135 - 40658428 - 61721961 - 4166-4598 7770-8817 - 16421757 - 514-9688 - 38025272 4594-825 2805803 - 4018-5950 1436-4716 - 48168382 - 5790-8598 - 2534-176 - 59893629 - 4525-8695 - 73926243 - 538244 1659-6783 70878324 4866-4137 - 75906431 - 63582645 552171 - 8507-9777 5670-4741 7961-4445 2405-1908 76871203 - 54768473 - 1613-5732 8023-1908 76871203 - 54768473 - 1613-5367 97888434 96692240 2452-9425 2607-7062 - 6815-4049 - 4052-9125 96506098 24593639 484-1374 - 1699-6791 36664603 - 8363-5203 - 311-4281 171-6685 - 844-436 - 9061-3613 - 35313323 - 320-1456 1256-9166 - 2797617 - 68936636 6442-6664 - 6973-928 - 74709705 7030-7650 - 2129-3290 - 5776725 - 43879444 9366-5147 3468-2193 22394273 - 6775-6009 - 3503-5900 - 6519-1580 9425-5243 - 5995-5570 - 1429		-9569 -9528	1952 7220	-2748 2514	2220 -4289	1300 -574	
6135 -40658428 -61721961 -4166-4598 7770-8817 -16421757 -514-9688 -38025272 4594-825 52805803 -4018-5950 1436-4716 -48168382 -5790-8598 -2534-176 -59893629 -4525-8095 -73928480 -49781872 -8224-2628 2262-8695 -73926243 -538244 1659-6783 70878324 4866-4137 -75906431 -63582645 552171 -8507-9777 5670-4741 7961-4445 2405-8810 2167-7427 -91921086 5272-5732 8023-1908 76871203 -54768473 -1613-5367 97888434 96692240 2452-9425 2607-7062 -6815-4049 -4052-9125 96506098 24593639 484-1374 -1699-6791 36664603 -8363-5203 -311-4281 171-6685 -844-436 -9061-3613 -32313323 -320-1456 1256-9166 -2797617 -68936636 6442-6664 -6973-928 -74709705 7030-7650 -2129-3290 -5776725 -43879444 9366-5147 3468-2193 22394273 -6775-6609 -3503-5900 -6519-1580 9425-5243 -5995-5570 -1429-5900 -6519-1580 9425-5243 -5995-5570 -1429		-4833 2644	-8292 -4209	-5942 510	-7160 -9545	-9982 1371	
-8817 - 16421757 - 514-9688 - 38025272 4594425 52805803 - 4018-5950 1436-4716 - 48168382 - 5790-8598 - 2534-176 - 59893629 - 4525-8695 - 73926243 - 538244 1659-6783 7087-8895 - 73926243 - 538244 1659-6783 70878324 4866-4137 - 75906431 - 63582645 552171 - 8507-9777 5670-4741 7961-4445 2405-8810 2167-7427 - 91921086 5272-5732 8023-1908 76871203 - 54768473 - 1613-5367 97888434 96692240 2452-9425 2607-7062 - 6815-4049 - 4052-9125 96506098 24593639 484-1374 - 1699-6791 36664603 - 8363-5203 - 311-4281 171-6685 - 844-436 - 9061-3613 - 32313323 - 320-1456 1256-9166 - 2797617 - 68936636 6442-6664 - 6973-928 - 74709705 7030-7650 - 2129-3290 - 5776725 - 43879444 9366-7531 - 3771-5286 45922199 1015-9540 6626-5147 3468-2193 22394273 - 6795-5609 - 3503-5900 - 6519-1580 9425-5243 - 5995-5570 - 1429		5608 -6582	6135 -4065	8428 -6172	1961 -4166	-4598 7770	
425 52805803 4018-5950 1436-4716 -48168382 -5790-8598 -2534-176 -59893629 -4525-86919 -362-8480 -49781872 -8224-2628 2262-8695 -73926243 -538244 1659-6783 70878324 4866-4137 -75906431 -63582645 552171 -8507-9777 5670-4741 7961-4445 24052234 -282861 -2637949 2735-8097 -9506-8810 2167-7427 -91921086 5272-5732 8023-1908 76871203 -54768473 -1613-5367 97888434 96692240 2452-9425 2607-7062 -6815-4049 -4052-9125 96506098 24593639 484-1374 -1699-6791 36664603 -8363-5203 -311-4281 171-6685 -844-436 -9061-3613 -32313323 -320-1456 1256-9166 -2797617 -68936636 6442-6664 -6973-928 -74709705 7030-7650 -2129-3290 -5776725 -43879444 9366-5147 3468-2193 22394273 -6775-6609 -3503-5900 -6519-1580 9425-5243 -5995-5570 -1429		-3656 -2977	-8817 -1642	1757 -514	-9688 -3802	5272 4594	טאפר
8382-5790 -8598-2534 -176-5989 6919-362 8480-4978 1872-8224 -8695-7392 6243-538 244 1659 8324 4866 -4137-7590 6431-6358 71-8507 -9777 5670 -4741 7961 2234-2828 61-2637 949 2735 -8810 2167 -7427-9192 1086 5272 -1908 7687 1203-5476 8473-1613 8434 9669 2240 2452 -9425 2607 -4049-4052 -9125 9650 6098 2459 -1374-1699 -6791 3666 4603-8363 -1374-1699 -6791 3666 4603-8363 -4281 171 -6685-844 -436-9061 3323-320 -1456 1256 -9166-2797 6636 6442 -6664-6973 -928-7470 -7650-2129 -3290 -577 6725-4387 -7531-3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273-6775 -5900-6519 -1580 9425 -5243 -5995		-6295 1204	425 5280	5803 -4018	-5950 1436	-4716 -4816	FASS
6919 -362 8480 -4978 1872 -8224 -8695 -7392 6243 -538 244 1659 8324 4866 -4137 -7590 6431 -6358 71 -8507 -9777 5670 -4741 7961 2234 -2828 61 -2637 949 2735 -8810 2167 -7427 -9192 1086 5272 -1908 7687 1203 -5476 8473 -1613 8434 9669 2240 2452 -9425 2607 -4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5147 3468 -2193 2239 4273 -6795 -5990 -6519 -1580 9425 -5243 -5995		-3843 -880	8382 -5790	-8598 -2534	-176 -5989	3629 -4525	
-8695 - 7392 6243 - 538 244 1659 8324 4866 -4137 - 7590 6431 - 6358 71 - 8507 -9777 5670 -4741 7961 2234 - 2828 61 - 2637 949 2735 -8810 2167 -7427 - 9192 1086 5272 -1908 7687 1203 - 5476 8473 - 1613 8434 9669 2240 2452 -9425 2607 -4049 - 4052 -9125 9650 6098 2459 -1374 - 1699 -6791 3666 4603 - 8363 -4281 171 -6685 - 844 -436 - 9061 3323 - 320 -1456 1256 -9166 - 2797 6636 6442 -6664 - 6973 -928 - 7470 -7650 - 2129 -3290 - 577 6725 - 4387 -7531 - 3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 - 6775 -5900 - 6519 -1580 9425 -5243 - 5995		-2735 5383	6919 -362	8480 -4978	1872 -8224	-2628 2262	
8324 4866 -4137 -7590 6431-6358 71 -8507 -9777 5670 -4741 7961 2234 -2828 61 -2637 949 2735 -8810 2167 -7427 -9192 1086 5272 -1908 7687 1203 -5476 8473 -1613 8434 9669 2240 2452 -9425 2607 -4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		4591 -234	-8695 -7392	6243 -538	244 1659	-6783 7087	
71 - 8507 -9777 5670 -4741 7961 2234 - 2828 61 - 2637 949 2735 -8810 2167 -7427 - 9192 1086 5272 -1908 7687 1203 - 5476 8473 - 1613 8434 9669 2240 2452 -9425 2607 -4049 - 4052 -9125 9650 6098 2459 -1374 - 1699 -6791 3666 4603 - 8363 -4281 171 -6685 - 844 -436 - 9061 3323 - 320 -1456 1256 -9166 - 2797 6636 6442 -6664 - 6973 -928 - 7470 -7650 - 2129 -3290 - 577 6725 - 4387 -7531 - 3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 - 6775 -5900 - 6519 -1580 9425 -5243 - 5995		854 3609	8324 4866	-4137 -7590	6431 -6358	2645 5521	
2234-2828 61-2637 949 2735 -8810 2167 -7427-9192 1086 5272 -1908 7687 1203 -5476 8473-1613 8434 9669 2240 2452 -9425 2607 -4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		-7753 -9846	71 -8507	-9777 5670	-4741 7961	-4445 2405	
-8810 2167 -7427 -9192 1086 5272 -1908 7687 1203 -5476 8473 -1613 8434 9669 2240 2452 -9425 2607 -4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		103 -1944	2234 -2828	61 -2637	949 2735	-8097 -9506	
-1908 7687 1203 -5476 8473 -1613 8434 9669 2240 2452 -9425 2607 -4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7550 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		1933 2268	-8810 2167	-7427 -9192	1086 5272	-5732 8023	
8434 9669 2240 2452 -9425 2607 -4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		-4828 -5361	-1908 7687	1203 -5476	8473 -1613	-5367 9788	
-4049 -4052 -9125 9650 6098 2459 -1374 -1699 -6791 3666 4603 -8363 -4281 171 -6685 -844 -436 -9061 3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		-5570 -9776	8434 9669	2240 2452	-9425 2607	-7062 -6815	
-1374 - 1699 -6791 3666 4603 - 8363 -4281 171 -6885 - 844 -436 - 9061 3323 - 320 -1456 1256 -9166 - 2797 6636 6442 -6664 - 6973 -928 - 7470 -7650 - 2129 -3290 - 577 6725 - 4387 -7531 - 3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 - 6775 -5900 - 6519 -1580 9425 -5243 - 5995		-8555 -37	-4049 -4052	-9125 9650	6098 2459	3639 484	
-4281 171 -688 - 844 -436 - 9061 3323 - 320 -1456 1256 -9166 - 2797 6636 6442 -6664 - 6973 -928 - 7470 -7650 - 2129 -3290 - 577 6725 - 4387 -7531 - 3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 - 6775 -5900 - 6519 -1580 9425 -5243 - 5995		-57 -4438	-1374 -1699	-6791 3666	4603 -8363	-5203 -311	
3323 -320 -1456 1256 -9166 -2797 6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		-5645 5473	-4281 171	-6685 -844	-436 -9061	-3613 -3231	
6636 6442 -6664 -6973 -928 -7470 -7650 -2129 -3290 -577 6725 -4387 -7531 -3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		-5497 9447	3323 -320	-1456 1256	-9166 -2797	617 -6893	
-7650-2129 -3290-577 6725-4387 -7531-3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273-6775 -5900-6519 -1580 9425 -5243 -5995		-1396 -5527	6636 6442	-6664 -6973	-928 -7470	9705 7030	
-7531-3771 -5286 4592 2199 1015 -5147 3468 -2193 2239 4273 -6775 -5900-6519 -1580 9425 -5243 -5995		4308 -531	-7650 -2129	-3290 -577	6725 -4387	9444 9366	
-5147 3468 -2193 2239 4273 -6775 -5900 -6519 -1580 9425 -5243 -5995		-2618 -2771	-7531 -3771	-5286 4592	2199 1015	-9540 6626	
-5900 -6519 -1580 9425 -5243 -5995		-1013 421	-5147 3468	-2193 2239	4273 -6775	-6609 -3503	
		-3036 -4666	-5900 -6519	-1580 9425	-5243 -5995	-5570 -1429	

		Data Masukan			Hasil Keluaran
5263 -5847	-3619 8190	-7973 6024	-7877 85	3084 -5022	
2728 -698	-1407 -1220	2280 -5867	-4931 1457	-656 -1579	
3306 -8905	-6604 -7310	-7816 -7292	-228 -6773	5580 -3983	
-2313 7363	-4843 -8579	848 -1031	5668 -2604	4775 5815	
-651 -175	-3688 1736	722 -5824	-960 -5363	312 -7703	
-7198 -5037	-2279 5165	8740 2269	-5916 -7705	-4513 1960	
-2271 -7426	-2921 -8242	-9055 -8549	-9879 -8758	-2987 2226	
1218 -2594	-7170 1930	-1001 5554	-6043 -6855	-2925 -5348	
812 -112	7371 -1849	-3323 854	-712 -2319	-990 4314	
-5178 -1043	-7410 -3132	3143 1331	6425 -5783	-754 -9898	
-3017 -5365	-7272 4753	109 -8170	-4018 264	-284 2766	
9354 -7414	-1406 -951	-651 -8195	-5256 -4672	2362 -427	
9852 -9470	-2795 -5627	-2856 2634	-1490 -9444	-8155 -8911	
9607 229	2099 5894	-2864 -6279	1450 -3010	-4606 7732	
-7753 -3802	-2901 -4416	-2337 3234	743 1465	-9609 -9874	
3537 -972	-2986 -3126	-4359 9016	-7093 -3081	-4234 -7986	
-564 -4100	-3 -6878	-5520 -3252	-6702 -1089	6333 1802	
-4907 -9253	8185 6139	-2558 -3459	-3897 3147	-9653 -8420	
-3647 2877	-8805 -8456	-3270 2247	-9512 -664	-4698 1244	
-5500 -2945	82 2708	-3996 -1465	-1486 -2806	-1033 -6317	
9149 -3382	1138 -2218	-6412 8238	-5971 -5587	-4889 -6081	
3436 -2044	4188 -4801	-668 -2503	-6104 -1551	-1288 -6790	
6720 -8304	4607 -5708	5108 1916	-6607 -3283	-3367 3455	

-3694 -8385 7881 -3616	7881 -3610	2	Data Masukan 9091 1828	2233 -6874	3286 -5420	Hasil Keluaran
4501 -6098	•	-2019	2020	2545 -5080	7134 -4786	
-8251 -8930		-5401	5401 5787	-6377 9227	-1130 -4138	
-6627 -1987		6817	6817 -1176	-9996 -9351	930 3967	
- 4034 - 454 - 2058 104 - 8588		-8588	-8588 -1287	9882 -6810	-3046 8553	
-131 -6403 6037 3594 849		849	849 8396	-4287 1049	-8644 -3245	
-3649 -4748 8562 -9347 619		615	619 1136	5409 737	-3880 6708	
9515 -4924 -6507 -6588 24		24	24 1722	9678 -8836	-1620 -3592	
8646 - 9663 - 9095 - 1340 - 641		-641	-6416 -3792	4687 5736	765 -1629	
-5769 2131 -4842 -244 -981		-981	-9816 -1258	-7128 -3073	-9038 -7372	
-4219 -9647 168 2603 -88C	•	-88(-8806 -1203	-1178 2148	-354 3162	
-5020 -8641 -5807 2555 -680)89-	9602-6089-	3262 9704	-2678 202	
-5997 5099 -3357 -5366 341		341	3411 -375	-7196 -1802	-2681 -6298	
-3164 4669 1430 -60 -464		-464	-4644 1022	1525 747	-8267 -1659	
-2976 5741 -9694 6099 -434		-434	-4344 -8088	3884 5214	7889 -3506	
-3541 -6247 -5163 -7291 -80		08-	-8007 692	7882 2186	-2197 -5625	
-2900 -2374 -6597 -7860 372		372	372 -1134	-1119 1163	-3352 -9612	
8917-1318 -2633 2989 -254		-254	-2547 -3452	-3899 -4236	-1232 -1719	
2756 -8682 -2577 5894 -822	•	-822	-8221 -4751	1673 2967	-372 1756	
-3501 2746 -2455 -7407 -293		-293	-2939 -5900	7238 -4093	2208 90	
2109 4915 -2383 -5269 -903		-90	-9012 868	-3319 -39	2765 5352	
3205 -4815 -5185 -8956 -467		-467	-4670 -8806	5353 -1036	-1733 -2985	
-9569 -9528 1952 7220 -27 ²	•	-27	.2748 2514	2220 -4289	1300 -574	
- 4833 2644 - 8292 - 4209 - 59		-59	-5942 510	-7160 -9545	-9982 1371	

No			Data Masukan			Hasil Keluaran
	2728 -698	-1407 -1220	2280 -5867	-4931 1457	-656 -1579	
	3306 -8905	-6604 -7310	-7816 -7292	-228 -6773	5580 -3983	
	-2313 7363	-4843 -8579	848 -1031	5668 - 2604	4775 5815	
	-651 -175	-3688 1736	722 -5824	-960 -5363	312 -7703	
	-7198 -5037	-2279 5165	8740 2269	-5916 -7705	-4513 1960	
	-2271 -7426	-2921 -8242	-9055 -8549	-9879 -8758	-2987 2226	
	1218 -2594	-7170 1930	-1001 5554	-6043 -6855	-2925 -5348	
	812 -112	7371 -1849	-3323 854	-712 -2319	-990 4314	
	-5178 -1043	-7410 -3132	3143 1331	6425 -5783	-754 -9898	
	-3017 -5365	-7272 4753	109 -8170	-4018 264	-284 2766	
	9354 -7414	-1406 -951	-651 -8195	-5256 -4672	2362 -427	
	9852 -9470	-2795 -5627	-2856 2634	-1490 -9444	-8155 -8911	
	9607 229	2099 5894	-2864 -6279	1450 -3010	-4606 7732	
	-7753 -3802	-2901 -4416	-2337 3234	743 1465	-9609 -9874	
	3537 -972	-2986 -3126	-4359 9016	-7093 -3081	-4234 -7986	
	-564 -4100	-3 -6878	-5520 -3252	-6702 -1089	6333 1802	
	-1058 2173	-3068 1612	2562 5059	5707 -6113	9899 1190	
	2154 -3731	2181 -302	1820 6203	-8394 -3956	-1939 -5450	
	-412 -9579	5112 -7826	-617 2000	9077 -446	1091 1960	
	6222 -6881	-3194 -4307	-6316 -1211	-5454 5630	-369 -8919	
	869 8459	3100 -3615	-6848 -9862	339 -8934	-1547 6506	
	5317 1965	-2622 -4171	-6000 2067	1373 -4164	907 8917	
	3120 2175	-3739 -3574	-7256 5515	783 9755	4584 -3818	
	-7212 -2647	-5950 5871	2962 883	-2135 4242	-7676 -6288	

No			Data Masukan			Hasil Keluaran
	8641 -8968	-7012 610	-9672 3194	-6788 2961	-1319 5323	
	-2181 -8951	-5922 -8566	-6422 -7569	-1018 1213	-3427 -4618	
	-5392 -9309	8330 536	604 -605	3153 7981	-1114 -4996	
	-980 3030	-5105 -1368	148 3664	5941 -5566	-9096 4573	
	-1274 3362	-2548 -4934	-3343 -250	3459 -3025	-3840 -207	
	3845 1933	4196 -5830	-8554 -8137	-9776 -7845	8673 -3465	
	5256 -9678	-7376 5630	8027 -5527	-7430 7045	2445 -3603	
	-2368 2514	-1318 -4634	-6887 -2650	-9032 -2105	-5171 2218	
	-9540 -5821	-3937 -5200	257 -2495	-561 541	-3099 -7723	
	5822 -1792	5012 -9849	-4494 6886	-3385 -9868	-7908 -2385	
	560 -8514	-6759 2019	-5166 1277	4695 6658	2091 -8233	
	-9768 3771	-3073 4818	-2212 -9474	-4563 7013	377 2355	
	-1854 341	1805 -9653	-2734 -7873	1592 -2346	1506 1392	
	4805 -2792	1289 253	-7063 -8329	-7690 273	1964 -4202	
	11111 -1440	3277 1672	401 2470	-415 -6148	-2605 4715	
	-7234 -1313	-6064 -347	-9350 6755	-5557 -7005	2476 8857	
	-1235 -7707	219 -4826	-2754 7891	-4874 -8811	401 5319	
	7041 -5972	-3744 -5430	-5391 -3976	9882 4456	-8391 -5099	
	5401 4507	2152 -3479	-4358 75	-4663 4910	2277 -325	
	-3212 9781	-9674 7902	199 -989	8822 -3001	-5814 2055	
	-1911 -2359	-5602 -1881	-9233 -963	8079 7000	-8702 -3649	
	-5332 -3153	-6266 -2307	2811 -9860	2626 -5805	7365 -2955	
	1514 -1807	-8103 9777	-1119 7071	-8272 -1801	-3045 -5182	
	-1233 -8651	1287 -7745	9162 -9772	-6037 8608	1806 -6868	

Hasil Keluaran																							טאפט	FASS
	7350 -543	-5856 -3033	-9825 -964	5986 919	-3583 -1666	-654 -6370	-4046 261	5030 -420	6351 -8474	6614 9328	-3672 -5946	-3023 -1929	9051 -6097	-4841 -3719	8422 -3292	-3382 -1852	-4360 4372	-3811 -6696	-8439 2029	9168 3716	-9587 -621	-8517 -6641	-4317 1933	2529 6033
	-2240 -7810	-7016 -3086	3278 26	-4932 -101	-9574 -5907	-9198 772	-8917 124	-8184 -7889	-7486 -497	6110 3604	-8694 -7059	1388 -2096	-7025 9071	-8257 -4697	-6503 -2088	-4849 -2081	-2832 -2496	-8022 -3346	-8256 -7662	-4590 -8775	-9851 8918	-3255 538	-1116 854	123 7089
Data Masukan	9989 7452	3908 -8969	-4398 5200	9949 5164	-6891 -1517	1058 -1856	9736 -8011	-4945 8069	-3035 8524	-3233 311	-1161 -4310	706 9983	4145 1778	-2380 3387	-893 1548	7150 125	-7287 -6731	8438 -1838	-4026 -5060	-9508 -5851	-4656 -7895	9031 -9339	5713 6371	-8210 -9695
	-5312 8245	-8254 -2485	-983 -9948	-3407 -4402	-8992 -3879	-6806 -7412	6190 1939	8760 -4267	113 -2493	-5109 -3652	9556 -1044	-3858 -6429	-4967 -2712	-6334 -1797	-6916 6151	-2847 7113	7765 -9284	3588 -2356	-9350 1242	-149 3998	-2032 -8291	-8039 6297	-7982 -7985	6459 8806
	274 -2476	-5580 -927	-4108 5997	2645 -1444	-9733 -2272	-8098 -2306	2578 9016	-6492 1871	-8410 492	-7682 6379	1874 -8829	-4434 -4594	-6895 2106	-9824 3725	-520 -925	5079 -2141	-1177 7376	8835 7313	-6660 -1680	-9002 8607	-2677 -4585	-6697 -2620	-1401 -3788	-7957 8773
No																							<u> </u>	ν

-3912 -2738 -8 -239 9536 1 -5849 -932 13 -8445 -5406 -36 1921 4137 46	-8416 1979	7081 2660	7620 037	70100	
		-4701 7000	2007 - 2224	-089 3193	
	17 2280	-1056 3304	-2944 -5845	3569 8813	
	1340 -9780	-8992 -7293	-7080 1090	-290 -8185	
	-3627 -6551	-2628 4166	-4135 -1264	-3597 1282	
	4003 9663	-3377 425	3964 2182	7538 5364	
	-1815 -5439	-2494 -4148	-7539 -7365	-8781 -598	
1258 -7411 98	9884 -7081	9965 -8519	-7732 -2431	-4030 6026	
1816 9422 -34	-3458 -5048	-4888 -3912	-4229 2384	-9995 411	
7553 5223 36	3664 4108	-3924 1382	-857 7021	-5397 -4550	
-2876 7614 35	3592 -8176	1622 -7275	-1690 -7671	-5388 -8429	
-9616 -171 8	8799 302	-2289 -2785	9223 -1070	-4772 711	
-1104 -7123 1:	152 -6963	2551 -2871	-9033 -9709	-1839 2485	
-2813 6374 -75	-7533 -9176	-9344 -7788	2488 -696	-1173 -4671	
1373 -3419 -9	-9654 6366	-465 -2230	3167 7034	-6134 -3435	
-2116 2706 19	1946 6344	2652 8176	421 -9638	-3344 -5967	
-5750 -7120 -57	.5765 -3770	-3990 7920	-2952 128	-4022 -6348	
-9565 -1818 -7	-785 -8738	-6089 -630	-3246 4780	-9550 -8356	
-8200 -4373 -8	-8256 1052	-5161 -2255	2809 -4395	-8449 -7867	
8227 9031 -68	-6822 -2687	8509 3141	-3791 -1187	-8580 -7135	
-8333 1410 -6	-6442 357	-1037 838	-2977 -9277	-3503 -8	
306 -8881 99	9946 -3461	-2829 1483	1041 1423	947 5892	
-5618 -6507 -3(-3052 -6308	6792 -4300	-8497 -3641	-1552 -2793	
5842 763 -58	5857 -5444	4588 -2016	1137 487	-4788 -7408	
22	2217 -1637	-618 -6485	-355 -4887	4559 -1939	

D: 7 -1253 -2415 4737 -7690	` `	Data Masuk 911 -9894 -398 6312	an (1947 -9103 -5813 8964	8986 -328 -4048 -9754	Hasil Keluaran
-5340 8057 -198 -2022 -730 2713 -3183 -9818 -2364 -305 -2843 764 2451 -5707 -233 -2216 111 -6095 -3355 -90	11 11 1	-73(-30 <i>£</i> -23:	.7302 -6424 3059 -9729 -2352 5213 -9064 1277	886 9029 1624 7880 -747 3470 -1294 8096	-4701 573 -1186 -4067 -3777 2327 -7838 -6192	
6135 5956 6135 5956 5 -7975 9087 -2063 -603		77-	77 -8379 -7610 -22 -3399 -7362	-1811 3978 -6292 -843 -3665 -4468	-5351 -5235 -9616 -4234 -5771 -6681	
3083 5448 -9554 1478 7 -2818 -9048		600 31 -25	5002 -1619 31 -2011 -2589 147	-5517 -6479 -4814 -5621 -1242 6763	-4125 6616 -1769 -9721 296 2609	
1997 -985 5020 -9732 -522 -1388 -111 -6845 -3199 -660 -2179 -3302 6193 -3151 -1413	·	-522 -660 -141;	-5221 9902 -660 -1516 -1415 -4328	6801 -2827 -5347 -4646 8599 962	-2592 -1935 861 3553 7038 -6572	
-6805 1778 -4829 -3287 -584 8829 -7189 875 -707 -6340		-584 -634(-584 -5940 6340 -8162 6298 -6159	7722 -9271 -9032 -1679 2919 1688	-6435 -9950 -1894 -7038 -876 8696	
) -6814-3048 - 2 -9776-9080	'	-7747 -399	7747 -5388 -399 3047	-3551 -1425 9293 -2539	-1891 -5660 -710 4457	
-2484 2866 1090 -6060 -288 4082 -2682 -304 5985 -1057	•	-288	-2881 1786 -1057 -1765	-6899 -9539 -2719 -6897	-8260 -3407 -4846 3129	

No			Data Masukan			Hasil Keluaran
	-5348 -9457	-7892 2674	5175 1586	1577 2031	2410 -3165	
	-5501 -5555	1910 -6354	-1560 -1734	2416 2975	-8712 -5435	
	7096 6363	-9597 8997	-4667 4713	-2861 -969	-7580 -8395	
	776 1104	-3358 -2730	-4473 -9293	-408 -4915	-1524 4443	
	3496 -4527	-892 -6755	9237 -9878	-4864 3440	-3274 1594	
	6532 -7285	-578 -9372	2048 8754	4822 -4635	-7295 3117	
	1051 7528	-1144 -6760	-335 -6151	3165 -7200	-4788 566	
	-4708 1164	1461 2416	3161 -7366	-4944 -7705	-4703 -4245	
	-1161 664	-7010 -2142	2411 -6401	-288 2152	-6965 -106	
	-3656 -2796	2950 -9026	-5242 -2390	-6579 8290	-12 -895	
	-5172 -1449	-4315 -6295	-2885 -1722	-2454 -1619	-7952 -9844	
	-5484 3670	-5607 -5632	1198 -431	-4248 -2602	-6420 16	
	5869 1476	-4642 -8202	4073 -4541	-4086 8368	-512 953	
	-8968 319	-4975 -3402	-1937 -5026	3139 1564	-6782 -8736	
	-4384 7970	-7934 -200	-6330 7545	3456 -4801	-7076 -3281	
	5029 9208	-6749 -6800	1970 -775	-1179 -916	8727 8182	
	8432 3924	-5398 917	1110 -2064	-7104 4297	5275 -7501	
	8100 -4171	-9175 752	2210 655	-319 -9808	-2590 388	
	-6575 -1049	2365 -387	2406 -6881	1932 -4349	2176 -8705	
	510 9726	-7732 -8822	2667 8545	-8723 -7999	-4277 2537	
	-8678 1294	-5462 3781	7985 -5790	-5129 -5038	-3103 -8228	
	-1027 520	-2677 -9876	7445 -4038	-146 -7336	-1127 -9221	
	701 -6689	667 -2884	-6249 -6148	-9546 -2947	1584 -210	
	2535 -6973	-4237 -1931	8118 -4922	1230 4064	-7658 -7152	

					דומסוד דיסומים
3198 -7290	-2762 -350	1924 -4368	-6385 5046	-9374 9345	
-5538 -2293	-3995 -2321	-8872 -4579	-2311 8817	-4072 -5325	
8361 -9922	-2437 66	-8625 19	-3185 1284	-6359 -9259	
-3415 -6732	-4433 -2986	5625 -6376	1413 1277	1527 6968	
8013 -1661	8519 6457	-7362 -3464	-7813 1316	2683 -5552	
-8204 -661	-3587 -3238	-2128 6793	-9742 -8628	-2176 -9114	
171 -1913	-4839 -446	-4079 -8106	5067 2451	151 -9253	
4661 2374	-906 -5371	-4391 3983	1491 -5628	-1330 957	
-9947 5091	1685 -6867	-3112 6090	6128 -8637	-5528 -7670	
3087 2068	-6820 9535	-6006 -8249	-5618 -8403	180 -9700	
1603 -8850	-5137 -306	-8029 3634	-483 6933	-9141 -6437	
9304 -657	-1250 9360	-1565 7840	-3363 9429	-9409 -9225	
-7368 -8171	-4541 9940	2436 -6365	-923 -186	-4275 6339	
-2434 -3431	4942 -9117	-3186 -1038	-4226 -2194	475 -3886	
4749 -5629	-2655 7552	-624 -8161	2403 -7829	-3912 3268	
-408 2573	-5623 309	-7452 -6226	-4887 4064	3702 -2357	
217 7839	-5263 6518	8450 1759	2490 -4771	654 -1662	
2396 -5203	737 -3356	7185 -8327	159 -1383	-672 -999	
4144 1982	-5710 -690	-2396 -3055	2878 2541	-2505 -7624	
5056 -3716	216 -3447	9491 -6602	7814 -4821	2236 9622	
7747 9625	-3289 4881	-656 -1882	-9489 -8892	6520 -8248	
2465 3663	-3957 6766	1446 -7614	6768 -3117	2483 9368	
8431 9720	7630 1793	-1966 1675	-2228 1860	-3870 432	
-774 -8956	-4463 3096	-1469 3492	5730 -3885	4614 4102	

No			Data Masukan			Hasil Keluaran
	9347 -3784	-3919 9879	9640 -3316	-4043 3967	9536 5678	PASS
	-4033 -6897	8752 -7113	9972 2233	-6583 -721	1813 -4928	
	5553 9845	5668 5125	1509 -6463	2546 1133	-2490 -6521	
	-1631 -8077	9471 -5518	-9038 -1081	-7815 -8083	9694 -1390	
	-7622 -8856	8735 2202	-2895 -4136	3217 -7416	9863 -7522	
	-9059 4133	-6213 -9042	-8941 -7257	-3151 -8569	-3589 -109	
	-4151 -471	2439 9183	-5426 -4539	-7223 464	-1551 -4393	
	-1557 -6836	-3242 4339	-8387 -7152	-4339 5947	-3991 -94	
	8805 -2216	-5554 -3517	5340 -5079	-9110 -921	2168 1465	
	5017 587	-3620 974	-4642 -8679	-3788 -9943	3487 -9095	
	7317 -4761	-8939 -9243	-6461 -9203	-349 346	3472 -6587	
	7688 -1361	1099 -5691	-4656 -5015	2043 9809	5712 -4242	
	-6718 -2593	-6927 -1577	-2554 -2591	-5683 -4659	1655 -6815	
	-615 3852	-9239 -2649	2337 -3574	9637 -9055	-3846 1501	
	7101 5475	530 -4423	-2332 -5525	4909 2299	478 -1076	
	-6517 -477	9911 -894	782 6276	-4464 -9109	1149 -3872	
	-1760 -5224	-2208 -50	4440 -3521	-6602 -6911	-6266 4053	
	3751 3556	-3202 -966	-4079 -4600	-4970 -8748	-6263 -8479	
	8146 2498	4039 5005	-6466 -5814	9367 -3178	1892 5937	
	2326 922	4437 -9164	-8483 -9718	5993 -1451	2784 -5679	
	-1585 -8367	7796 -6443	-739 7921	5422 673	8073 -9080	
	-4847 2788	58 4923	-2616 6421	4002 1884	-6157 -6824	
	-3034 -7076	1727 -3452	-6753 5153	-71 -1497	9508 -814	
	-796 -6719	3558 6813	7432 -5479	-4066 -9871	-2003 -6450	

8806 354 8806 354 2829 -1800 2318 -5929 -542 -4662 -2782 5831 -8401 8042 -3138 -6514 1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -989 -376 -1599 -343 318 -4171	Da Da		Data Ma	asukan	0001	0101 0000	Hasil Keluaran
2829 - 1800 2318 - 5929 -542 - 4662 -2782 5831 -8401 8042 -3138 - 6514 1852 1105 -1252 7421 -2555 - 9261 -1868 852 -6852 - 3893 5567 1869 2002 - 5094 -5476 - 2983 344 - 4523 -9259 - 4431 -6238 - 4036 -989 - 376 -2739 4713 2896 - 2308 -1599 - 343	6212 302 1802 -564 2145 286 -9750 -1743 -2335 -9772 639 488	- '	2145	286 188	-1832 -4127 8806 354	6760 -1852 3417 -1301	
2318 -5929 -542 -4662 -2782 5831 -8401 8042 -3138 -6514 1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	-3991 -4515 -5		-5356 -	2271	2829 -1800	-8052 -6653	
-542 -4662 -2782 5831 -8401 8042 -3138 -6514 1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	1723 1303 -2767 -7699 1819 -927		1819	-927	2318 -5929	-4322 -2179	
-2782 5831 -8401 8042 -3138 -6514 1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	7321 -3928 -4348 -1817 -9893		-9893	-9893 -5151	-542 -4662	2545 -5918	
-8401 8042 -3138 -6514 1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	-9370 -6303 -7913 -539 -1575		-1575	-1575 4331	-2782 5831	-4824 -2151	
-3138 -6514 1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-5587 2191 379 -3676 -5483		-5483	-5483 -5167	-8401 8042	4938 -246	
1852 1105 -1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	-3389 1839 -3204 3760 2602		2602	2602 -4954	-3138 -6514	-5715 -3948	
-1252 7421 -2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	-1269 -9943 -8758 593 -736		-736	-7360 7753	1852 1105	7959 -1356	
-2555 -9261 -1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343	-542 2693 1356 5437 -8678	•	3298-	-8678 -3874	-1252 7421	-5907 1424	
-1868 852 -6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-3653 9441 -7698 -4610 6365		6365	6365 2628	-2555 -9261	9714 -4706	
-6852 -3893 5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-6905 2701 -7239 -1922 -4052		-4052	-4052 -2016	-1868 852	-6437 -6086	
5567 1869 2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-1925 4242 -6619 3461 -1682	•	-1682	-1682 -5677	-6852 -3893	-3795 -8164	
2002 -5094 -5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-6724 -9732 -662 -7838 -8504	-	-8504	-8504 -1709	5567 1869	-6917 -9642	
-5476 -2983 344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	2428 828 -4261 478 100		100	100 2953	2002 -5094	3194 -8211	
344 -4523 -9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-3462 1518 9910 -8761 -602		-602	-6024 5151	-5476 -2983	5260 -8749	
-9259 -4431 -6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-8466 1461 1381 -1805 -6848		-6848	-6848 -7818	344 -4523	4012 2290	
-6238 -4036 -989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-2092 505 -312 334 -7761		-7761	-7761 -5840	-9259 -4431	-3386 -7038	
-989 -376 -2739 4713 2896 -2308 -1599 -343 318 -4171	-2792 4992 -5434 7795 -6897		2689-	-6897 1565	-6238 -4036	1181 315	
-2739 4713 2896 -2308 -1599 -343 318 -4171	2767 -5569 9448 4689 -833		-833	-8338 961	-989 -376	-8664 -8530	
2896 -2308 - 1599 -343 - 318 -4171	-3092 -292 1337 -3487 -6309	•	-6309	-6309 -4544	-2739 4713	4114 -5406	
318 -4171 ·	6321 -8572 474 7345 -7326		-7326	-7326 -3791	2896 -2308	-8180 -1628	
318 -4171	411 -995 -7344 -9129 -5278	'	-5278	5278 -4010	-1599 -343	-5413 -7397	
	-1795 6980 -473 -3984 -619	•	-619	-6191 2457	318 -4171	-4358 7154	

No		,	Data Masukan			Hasil Keluaran
	1412 -9697	1412 -9697 -1321 -3384 -4731 9897	-4731 9897	9467 881	128 -4597	
	-4516 -9186	9086 -727	-7917 3683	-2265 -2385	-3097 -6952	

[Halaman ini sengaja dikosongkan]

LAMPIRAN B: Hasil Uji Coba Reduksi Polygon pada Situs SPOJ Sebanyak 10 Kali

Berikut merupakan lampiran hasil uji coba kode program dengan algoritma reduksin polygon sebanyak 10 kali.

Gambar C.1 Hasil Pengumpulan Kode Program Utama Dengan Algoritma reduksi polygon

[Halaman ini sengaja dikosongkan]

BIODATA PENULIS

Penulis bernama Michael Julian Albertus, putra kedua dari tiga bersaudara yang lahir pada tanggal 2 Juli 1998 di Pekanbaru. Penulis telah mengenyam pendidikan di Sekolah Dasar Mardi Yuana Serang pada tahun 2004 hingga 2006, Sekolah Dasar Palm Kids pada tahun 2006 hingga 2009, Sekolah Dasar Negeri 005 Sukajadi Pekanbaru pada tahun 2009 hingga 2010, Sekolah Menengah Pertama Negeri 5 Pekanbaru pada tahun 2010 hingga 2013, dan Sekolah Menengah Atas Negeri 8 Pekanbaru pada tahun 2013 hingga

2015. Pada masa penulisan, penulis sedang menempuh masa studi S1 di Institut Teknologi Sepuluh Nopember, Surabaya di Departemen Informatika.

Selama masa studi, penulis memiliki ketertarikan yang dalam mengenai artificial intelligence, competitive programming, dan rancang bangun aplikasi sistem informasi. Keinginan penulis dalam mengajar juga mendorong penulis menjadi asisten dosen pada mata kuliah Dasar Pemrograman, Struktur Data, dan Sistem Operasi. Karya penulis semasa perkuliahan diantaranya adalah pembangunan SheNeedsLab dan LPencerdas untuk acara Hackathon. Selama menempuh perkuliahan penulis juga aktif mengikuti kompetisi pemrograman tingkat nasional dan menjadi finalis pada lomba pemrograman COMPFEST (2017, 2018, dan 2019), INC Bina Nusantara (2017, 2018, dan 2019), FINDIT 2019, Arkavidia (2017,2018, dan 2019) dan menjadi Juara 3 HOLOGY 2018.

Di luar kesibukan akademik, penulis juga berkontribusi dalam berbagai kepanitiaan, baik dalam skala kecil (yaitu dalam kampus) maupun skala nasional. Kepanitian yang penulis ikuti adalah Schematics (2017 dan 2018). Kegiatan terakhir penulis adalah membantu kegiatan pelatihan nasional bagi peserta Olimpiade Komputer Indonesia pada Februari dan Maret 2019 lalu. Penulis dapat dihubungi melalui surel di michaeljulian98@gmail.com.