Лабораторная работа №3.4.5 Петля гистерезиса (динамический метод)

Рожков А. В.

6 октября 2024 г.

Цель работы: изучение петель гистерезиса различных ферромагнитных материалов в переменных токах.

В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками (с сердечниками из феррита, пермаллоя и кремнистого железа).

1 Теоретическая справка

Магнитная индукция B и напряжённость поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между B и H типичного ферромагнетика иллюстрирует рисунок 1.

Рис. 1: Петля гистерезиса ферромагнетика

Если к ферромагнитному образцу прикладывать переменное внешнее магнитное поле, то его состояние на плоскости H-B будет изменяться по замкнутой кривой – nemne vucmepesuca. Размер петли определяется максимальным значением напряжённости H в цикле (например, петля AA', обозначенная пунктиром на рисунке 1). Если амплитуда напряжённости достаточно велика, то образец будет периодически достигать ucmepesuca, что на рисунке соответствует кривой CERC'E'F'C (upedenormal). Пересечение предельной петли с вертикальной осью соответствует остаточной индукции B_r , пересечение с горизонтальной осью – коэрцитивному полю H_c . Крайние точки петель, соответствующие амплитудным значениям H (например, точка A на рисунке 1), лежат на uvestar на uvestar uvestar

Измерение магнитной индукции. Магнитную индукцию B удобно определять с помощью ЭДС, возникающей при измерении магнитного потока Φ в катушке, намотанной на образец. Пусть катушка с N витками плотно охватывает образец сечением S, и индукция B в образце однородна. Тогда

$$|B| = \frac{1}{SN} \int \varepsilon dt.$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем в измерительной катушке, намотанной на образец.

Для интегрирования в работе используется интегрирующая RC-цепочка. Входное напряжение от источника $U_{\text{вк}}(t)$ подаётся на последовательно соединённые резистор $R_{\text{и}}$ и конденсатор $C_{\text{и}}$. Выходное напряжение $U_{\text{вых}}(t)$ снимается с конденсатора. Предположим, что (1) сопротивление источника мало по сравнению с $R_{\text{и}}$; (2) выходное сопротивление (сопротивление на входе осциллографа), напротив, велико: $R_{\text{вых}} \gg R_{\text{и}}$; и, наконец, (3) сопротивление $R_{\text{и}}$ достаточно велико, так что почти всё падение напряжения приходится на него, а $U_{\text{вых}} \ll U_{\text{вх}}$. В таком случае ток цепи равен $I = \frac{U_{\text{вх}} - U_{\text{вых}}}{R_{\text{и}}} \approx \frac{U_{\text{вх}}}{R_{\text{и}}}$, и входное и выходное сопротивление связаны соотношением

$$U_{\text{\tiny BMX}} \frac{q}{C_{\text{\tiny H}}} = \frac{1}{C_{\text{\tiny H}}} \int_0^t I \mathrm{d}t \approx \frac{1}{\tau_{\text{\tiny H}}} \int_0^t U_{\text{\tiny BX}} \mathrm{d}t,$$

где $au_{\tt w} = R_{\tt w} C_{\tt w}$ – постоянная времени RC-цепочки. Для индукции поля получаем

$$|B| = \frac{1}{SN} \int U_{\text{\tiny BX}} dt = \frac{\tau_{\text{\tiny M}}}{SN} U_{\text{\tiny BX}}.$$

2 Экспериментальная установка

Схема установки приведена на рисунке 2. Напряжение сети (220 Вт, 50 Γ ц) с помощью регулировочного автотрансформатора Ат через разделительный понижающий трансформатор Γ р подаётся на намагничивающую обмотку N_0 исследуемого образца.

Рис. 2: Схема установки для исследования намагничивания образцов

Действующее значение переменного тока в обмотке N_0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm u}$ на вход интегрирующей RC-цепочки подаётся напряжение $U_{\rm u}$ ($U_{\rm bx}$), пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm C}$ ($U_{\rm bix}$), пропорциональное величине B, и подаётся на вход Y осциллографа.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, вопервых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, – каким значениям B и H соответствуют эти напряжения (или токи).

Измерения напряжения с помощью осциллографа. Исследуемый сигнал подаётся на вход X: длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_X в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_X.$$

Напряжение, подаваемое на ось Y, измеряется аналогично.

Калибровку осей осциллографа (K_X и K_Y) можно использовать для построения кривой гистерезиса в координатах B и H: зная величину сопротивления R_0 , с которого снимается сигнал, можно определить чувствительность канала по току $K_{XI} = \frac{K_X}{R_0} \left[\frac{A}{\text{дел}} \right]$ и затем определить цену деления шкалы в $\frac{A}{M}$.

Зная чувствительность K_Y , можно рассчитать цену деления вертикальной шкалы Θ 0 в теслах.

Наличие в схеме амперметра и вольтметра позволяет провести *независимую калибровку* усилителей ЭО, т.е. проверить значения коэффициентов K_X и K_Y (ручки регулировки усиления ЭО могут быть сбиты).

Проверка калибровки горизонтальной оси 90 с помощью амперметра проводится при закороченной обмотке N_0 . Эта обмотка с помещённым в неё ферромагнитным образцом является нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

При закороченной обмотке N_0 амперметр A измеряет эффективное значение синусоидального тока $I_{\rm эф}$, текущего через известное сопротивление R_0 . Сигнал с этого сопротивления подаётся на вход X ЭО. Измерив 2x – длину горизонтальной прямой на экране, можно рассчитать m_X – чувствительность канала X:

$$m_X = \frac{2\sqrt{2}R_0I_{\mathrm{s}\Phi}}{2x} \quad \left[\frac{\mathrm{B}}{\mathrm{д}\mathrm{e}\mathrm{\pi}}\right].$$

Проверка калибровки вертикальной оси Θ 0 с помощью вольтметра. Сигнал с обмотки 12,6 В понижающего трансформатора (2) подаётся на делитель напряжения. Часть этого напряжения снимается с делителя с коэффициентом деления K_{π} ($\frac{1}{10}$ или $\frac{1}{100}$) и подаётся на вход Y Θ 0 (вместо напряжения U_C). Мультиметр V измеряет напряжение $U_{\ni \Phi}$ на этих же клеммах делителя. Измерив 2y – длину вертикальной прямой на экране, можно рассчитать чувствительность канала Y:

$$m_Y = \frac{2\sqrt{2}R_0U_{\Rightarrow \Phi}}{2x} \quad \left[\frac{\mathrm{B}}{\mathrm{дел}}\right].$$

При этом тороид должен быть отключен, так как несинусоидальный ток нагрузки в первичной обмотке тороида приводит к искажению формы кривой напряжения и на обмотке трансформатора, питающей делитель.

Постоянную времени RC-цепочки можно определить экспериментально. С обмотки 6,3 В на вход интегрирующей цепочки подаётся синусоидальное напряжения $U_{\rm вx}$. На вход Y осциллографа поочерёдно подаются сигналы со входа $(U_{\rm вx})$ и выхода $(U_{\rm выx})$ RC-цепочки. Измерив амплитуды этих сигналов с помощью осциллографа, можно рассчитать постоянную времени $\tau = RC$. Тогда

$$RC = \frac{U_{\text{bx}}}{\Omega U_{\text{bly}}}.$$

3 Ход работы

3.1 Проверка калибровки шкал осциллографа

Результат в таблице 1

$K_x, \frac{{}_{ m MB}}{{}_{ m Дел}}$		$K_y, \frac{MB}{AB}$		
Осцилл.	Калибр.	Осцилл.	Калибр.	
20	18.3	20	20.5	
100	94	10	0.08	

Таблица 1: Результаты калибровки шкал осциллографа

3.2 Измерение параметров RC-ячейки

$$\tau = \frac{U_{\text{вх}}}{U_{\text{вых}}\omega_0} = \frac{5.65 \text{ B}}{0.042 \text{ B} \cdot 2\pi 50 \text{ } \Gamma\text{ц}} = 0.43 \text{ c}$$

$$\tau = RC = 20 \text{ кОм} \cdot 20 \text{ мк}\Phi = 0.4 \text{ с}$$

Как видим, результаты почти совпали. Также выполняется условие $R >> \frac{1}{\omega C}$ (20000 >> 159).

3.3 Обработка результатов

Графики и таблица итоговых результатов представлены ниже.

Рис. 3: График зависимости B(H) для феррита

4 Вывод

Изучили петли гистерезиса различных ферромагнитных материалов в переменных токах.

Сравним полученные результаты с табличными значениями:

Значения индукции насыщения достаточно сильно отличаются от табличных. Это можно объяснить неточностью определения момента, в который петля становится предельной.

Проверки калибровки показала хороший результат.

Измеренные параметры RC-ячейки почти совпали с указанными на установке.

Рис. 4: График зависимости B(H) для пермаллоя

Рис. 5: График зависимости B(H) для кремнистого железа

Материал	Fe	Fe-Ni	Fe-Si
I_{max} , мА	160.00 ± 0.01	200.00 ± 0.01	800.00 ± 0.01
$K_x, \frac{\mathrm{B}}{\mathrm{дел}}$	0.02	0.02	0.02
$K_y, \frac{\mathrm{B}}{\mathrm{дел}}$	0.01	0.1	0.01
$H, \frac{A/M}{AEJ}$	10.7	9.7	26.7
$B, \frac{\mathrm{Tn}}{\mathrm{gen}}$	3.3	4.8	8.3
$H_{max}, A/M$	45 ± 1	49.58 ± 0.97	107 ± 3
B_s , Тл	13.7 ± 0.3	10.0 ± 0.5	18.3 ± 0.8
$H_c, A/M$	6 ± 1	5.83 ± 0.97	16 ± 3
$B_r,$ Тл	5.3 ± 0.3	7.7 ± 0.5	13.3 ± 0.8
$\mu_{ exttt{диф}_{ ext{нач}}}$	0.29 ± 0.08	0.04 ± 0.02	0.37 ± 0.02
$\mu_{ exttt{диф}_{ ext{makc}}}$	0.58 ± 0.01	0.68 ± 0.04	0.382 ± 0.004

Таблица 2: Результаты расчётов

	Ампл.	Fe-Ni	Fe-Si	Феррит
эксп	H_c , A/M	5.83 ± 0.97	16 ± 3	6 ± 1
табл		4	8	8
эксп	B_s , Тл	10.0 ± 0.5	18.3 ± 0.8	13.7 ± 0.3
табл	D_s , 1/1	1.1	2	0.2-0.4

Таблица 3: Результаты расчётов и табличные значения