# Unsupervised Part-Based of Object Shape and Appearance

CVPR2019 Oral

2019.08.09

발표자 박성현





# 1

## Introduction

#### **Disentangling Shape and Appearance**





[FUNIT]

Content(Shape 정보)와 Style(Appearance 정보)로 Disentangle하는 연구가 다양하게 진행되고 있음.







## Introduction

#### **Disentangling Shape and Appearance**



Unlabeled Images

Our Unsupervised Approach

Disentangled Representation

Part-based Shape Part-based Appearance















## Introduction

**Disentangling Shape and Appearance** 

Label이 필요 X



Unlabeled Images

Our

Unsupervised Approach

Disentangled Representation

Part-based Shape Part-based Appearance













#### **Model Overview**

$$\phi_i(x) = [\alpha_i(x), \sigma_i(x)] \stackrel{!}{=} [\alpha_i(x \circ s), \sigma_i(a(x))]$$









Appearance Stream





## 2

## Model

### **Model Overview**







## 2

## Model

#### **Model Overview**







transformation

## Model

#### **Appearance & Spatial Transformation**

#### - Appearance Transformation (a)

Changes in brightness, contrast, and hue









#### - Spatial Transformation (s)

Thin plate spline(TPS) Transformation (Image의 Shape을 변화하는 데 사용) Randomly sample another frame from the same video sequence which acts as  $x \circ s$ 











#### Part Shape & Equivariance Loss



#### Part Shape Encoder

Hourglass Network를 사용

Equivariance Loss

Part Shape  $\sigma_i(x)$ 는 Deformation을 해도 같아야 함.

Pixel level의 Loss를 minimize하는 방법은 실제로는 unstable했다고 함.

$$\sum_{i} \sum_{u \in \Lambda} \left\| \sigma_i(x \circ s)[u] - \sigma_i(x)[s(u)] \right\|$$

그래서 Equivariance Loss를 사용 (mean과 variance를 이용)

$$\mathcal{L}_{\text{equiv}} = \sum_{i} \lambda_{\mu} \|\mu[\sigma_{i}(x \circ s)] - \mu[\sigma_{i}(a(x)) \circ s]\|_{2}$$
$$+ \lambda_{\Sigma} \|\Sigma[\sigma_{i}(x \circ s)] - \Sigma[\sigma_{i}(a(x)) \circ s]\|_{1},$$







**Appendix - Hourglass Network (ECCV 2016)** 



- Human Pose Estimation 분야에서 한 때 State of the Art 성능을 보였던 Model
- 얼굴이나 손과 같은 Feature들을 식별하는 것에는 Local evidence가 중요한 반면, 최종적인 Pose를 추정하기 위해서는 Full Body에 대한 정보가 필요하다. 이를 위해서는 **여러 Scale에 걸쳐 필요한 정보를 포착**해낼 수 있어야 한다.
- 해당 모델에서는 Skip Layer를 이용하여 Spatial Information을 유지하는 방식을 사용하였다.







**Appendix - Hourglass Network (ECCV 2016)** 



- Downsampling을 위해 Conv layer와 Maxpooling layer를 사용
- 매 Maxpooling 단계에서 Input을 별도의 branch로 내보내고, 이에 Conv 연산을 적용한다. 이를 통해 scale마다 feature가 추출됨
- Upsampling으로는 Nearest Neighbor Upsampling, feature와의 조합에는 Elementwise addition 연산을 이용
- 네트워크의 출력은 각 관절에 대한 Heatmap들이다.







# 2 Model Part Appearance



#### Local Features Encoder

Hourglass Network를 사용 Normalized Part Activations와 Image를 Concat해서 Input으로 사용

Normalized Part Activations :  $\sigma_i(x \circ s) / \sum_{u \in \Lambda} \sigma_i(x \circ s)[u]$ 

Part Appearance
 Average Pool these local features at all locations
 where part i has positive activation

$$\alpha_i(x \circ s) = \frac{\sum_{u \in \Lambda} f_{x \circ s}[u] \sigma_i(x \circ s)[u]}{\sum_{u \in \Lambda} \sigma_i(x \circ s)[u]}$$





## 2 Model Reconstr

## Reconstructing the Original Image

#### - Approximate

Extra information present in part activations is neglected, forcing the shape encoder  $E_{\sigma}$  to concentrate on an unambiguous part localization. (or else reconstruction loss would increase)

$$\tilde{\sigma}_i(a(x))[u] = \frac{1}{1 + (u - \mu_i)^T \Sigma_i^{-1} (u - \mu_i)}$$

#### Project

The corresponding part activations  $\tilde{\sigma}_i(a(x))$  designate the regions of parts i in image x to project the part appearances  $\alpha_i(x \circ s)$  onto a localized appearance encoding  $f_x$ 

$$f_x[u] = \sum_i \frac{\alpha_i(x \circ s) \cdot \tilde{\sigma}_i(a(x))[u]}{1 + \sum_j \tilde{\sigma}_j(a(x))[u]}$$







## 2 Model Reconstr

## Reconstructing the Original Image

#### - Approximate

Extra information present in part activations is neglected, forcing the shape encoder  $E_{\sigma}$  to concentrate on an unambiguous part localization. (or else reconstruction loss would increase)

$$\tilde{\sigma}_i(a(x))[u] = \frac{1}{1 + (u - \mu_i)^T \Sigma_i^{-1} (u - \mu_i)}$$

#### Mahalanobis Distance

#### - Project

The corresponding part activations  $\tilde{\sigma}_i(a(x))$  designate the regions of parts i in image x to project the part appearances  $\alpha_i(x \circ s)$  onto a localized appearance encoding  $f_x$ 

$$f_x[u] = \sum_i \frac{\alpha_i(x \circ s) \cdot \tilde{\sigma}_i(a(x))[u]}{1 + \sum_j \tilde{\sigma}_j(a(x))[u]}$$





Appearance Stream

#### Decoder 학습에 Adversarial loss를 추가로 사용







#### Learned shape representation



Figure 3: Learned shape representation on Penn Action. For visualization, 12 of 16 part activation maps are plotted in one image. (a) Different instances, showing intra-class consistency and (b) video sequence, showing consistency and smoothness under motion, although each frame is processed individually.





#### **Unsupervised Landmark Prediction**



Table 2: Error of unsupervised methods for landmark prediction on the Cat Head, MAFL (subset of CelebA), and CUB-200-2011 testing sets. The error is in % of inter-ocular distance for Cat Head and MAFL and in % of edge length of the image for CUB-200-2011.

| Dataset      | Cat Head |       | MAFL | CUB  |
|--------------|----------|-------|------|------|
| # Landmarks  | 10       | 20    | 10   | 10   |
| Thewlis [47] | 26.76    | 26.94 | 6.32 | -    |
| Jakab [22]   | -        | -     | 3.19 | -    |
| Zhang [60]   | 15.35    | 14.84 | 3.46 | 5.36 |
| Ours         | 9.88     | 9.30  | 3.24 | 3.91 |







#### **Unsupervised Landmark Prediction**

Table 3: Performance of landmark prediction on BBC Pose test set. As upper bound, we also report the performance of supervised methods. The metric is % of points within 6 pixels of groundtruth location.

| BBC Pose     |                        | Accuracy      |
|--------------|------------------------|---------------|
| supervised   | supervised Charles [5] |               |
|              | Pfister [37]           | 88.0%         |
| unsupervised | Jakab [22]             | 68.4%         |
|              | Ours                   | <b>74.5</b> % |

Table 4: Comparing against supervised, semi-supervised and unsupervised methods for landmark prediction on the Human3.6M test set. The error is in % of the edge length of the image. All methods predict 16 landmarks.

| Human3.6M       |              | Error w.r.t. image size |
|-----------------|--------------|-------------------------|
| supervised      | Newell [33]  | 2.16                    |
| semi-supervised | Zhang [60]   | 4.14                    |
| unsupervised    | Thewlis [47] | 7.51                    |
|                 | Zhang [60]   | 4.91                    |
|                 | Ours         | 2.79                    |





### Disentangling Shape and Appearance (Conditional Image Generation)



Table 5: Mean average precision (mAP) and rank-n accuracy for person re-identification on synthesized images after performing shape/appearance swap. Input images from Deep Fashion test set. Note [13] is supervised w.r.t. shape.

|             | mAP   | rank-1 | rank-5 | rank-10 |
|-------------|-------|--------|--------|---------|
| VU-Net [13] | 88.7% | 87.5%  | 98.7%  | 99.5%   |
| Ours        | 90.3% | 89.4%  | 98.2%  | 99.2%   |

Table 6: Percentage of Correct Keypoints (PCK) for pose estimation on shape/appearance swapped generations.  $\alpha$  is pixel distance divided by image diagonal. Note that [13] serves as upper bound, as it uses the groundtruth shape estimates.

| $\alpha$    | 2.5%  | 5%    | 7.5%  | 10%   |
|-------------|-------|-------|-------|-------|
| VU-Net [13] | 95.2% | 98.4% | 98.9% | 99.1% |
| Ours        | 85.6% | 94.2% | 96.5% | 97.4% |





### Disentangling Shape and Appearance (Part Appearance Transfer)







Disentangling Shape and Appearance (Video-to-Video Translation)

https://compvis.github.io/unsupervised-disentangling/





