Digital Signal Processing Filter Design Assignment

March 21, 2021

1 Assignment Details

Student Name: Rachna Pawar Mohammad Shahbaz Alam Filter Number: 46

2 Filter - I: Bandpass Filter Design(Butterworth)

2.1 Un-normalized Discrete Time Filter Specifications

Passband Tolerance = 0.15 (i.e 0.85-1.15) Stopband Tolerance = 0.15 (i.e 0-0.15) Analog Signal frequency range = 140 kHz Sampling Frequency(f_s) = 320 kHz Transition band on either side of Passband = 2 kHz Passband Nature : Monotonic Stopband Nature : Monotonic

Assigned Filter Number = 46 q(46) = 4, r(46) = 6 $B_L(46) = 5 + 1.4*4 + 4*6 = 34.6$ kHz $B_H(46) = 34.6 + 10 = 44.6$ kHz

2.2 Normalized Digital Filter Specifications

Sampling Frequency = 320 kHz

Therefore, normalized frequency can be calculated as,

$$\omega = \frac{\Omega * 2\pi}{\Omega_s} \tag{1}$$

Making calculations as per above equation, the modified specifications are,

Lower Passband Edge $(\omega_{p1}) = 0.216\pi$

Upper Passband Edge $(\omega_{p2}) = 0.278\pi$

Transition band on either side of Passband (ω_T) = 0.0125 π

Upper stopband Edge $(\omega_{s2}) = 0.290\pi$

Lower stopband Edge $(\omega_{s1}) = 0.203\pi$

Passband Nature : Monotonic Stopband Nature : Monotonic

Passband Tolerance = 0.15 (i.e 0.85-1.00)

Stopband Tolerance = 0.15 (i.e 0-0.15)

2.3 Equivalent Analog filter Specifications

The analog filter specifications(Ω) can be determined using bilinear transformation on normalized specifications(ω) as,

$$\Omega = \tan(\frac{\omega}{2}) \tag{2}$$

Lower Passband Edge $(\Omega_{p1}) = 0.352$

Upper Passband Edge $(\Omega_{p2}) = 0.466$

Upper stopband Edge $(\Omega_{s2}) = 0.489$

Lower stopband Edge $(\Omega_{s1}) = 0.330$

$$tan(\frac{0}{2}) = 0 (3)$$

$$tan(\frac{\pi}{2}) = \infty \tag{4}$$

2.4 Frequency Transformation for BPF to LPF conversion

The frequency transformation employed for Band pass filter to equivalent low pass filter conversion,

$$\Omega_L = \frac{\Omega^2 - \Omega_o^2}{B * \Omega} \tag{5}$$

where,

$$B = \Omega_{p2} - \Omega_{p1} = 0.114$$

$$\Omega_o^2 = \Omega_{p1} * \Omega_{p2} = 0.164$$

2.5 Frequency transformed LPF Specifications

$$\Omega_L = \frac{\Omega^2 - 0.164}{0.114 * \Omega} \tag{6}$$

Lower Passband Edge $(\Omega_{p1}) = -0.99$

Upper Passband Edge $(\Omega_{p2}) = 1.00$

Upper stopband Edge $(\Omega_{s2}) = 1.34$

Lower stopband Edge $(\Omega_{s1}) = -1.46$

Passband Edge $(\Omega_{pl}) = 1$

Stopband Edge $(\Omega_{sl}) = \min(1.46, 1.34) = 1.34$

Passband and Stopband Tolerance = 0.15

 ${\bf Passband\ Nature = Monotonic}$

Stopband Nature = Monotonic

2.6 Analog Lowpass Transfer Function

The magnitude squared response of the butterworth filter in frequency domain,

$$|H_{analog,LPF}(j\Omega)|^2 = \frac{K}{1 + (\frac{\Omega}{\Omega_c})^{2N}}$$
 (7)

where, K is the normalization constant.

Passband Tolerance(δ_1) = 0.15

Stopband Tolerance(δ_2) = 0.15 Defining,

$$D_1 = \frac{1}{(1 - \delta_1)^2} - 1 = 0.384 \tag{8}$$

$$D_2 = \frac{1}{\delta_2^2} - 1 = 43.44 \tag{9}$$

Taking minimum value of N,

$$N_{min} = \lceil \frac{log(D_2/D_1)}{2log(\Omega_s l/\Omega_p l)} \rceil = \lceil 8.07 \rceil = 8$$
 (10)

For Ω_c ,

$$\frac{\Omega_p}{D_1^{1/(2N_{min})}} <= \Omega_c <= \frac{\Omega_s}{D_2^{1/(2N_{min})}} \tag{11}$$

$$1.061 <= \Omega_c <= 1.063 \tag{12}$$

Taking $\Omega_c = 1.062$ Therefore, in s-domain,

$$|H_{analog,LPF}(s)|^2 = \frac{K}{1 + (\frac{s_l}{j1.062})^8}$$
 (13)

Solving for the poles of $|H_{analog,LPF}(s)|^2$, we get,

$$s_k = 1.062e^{j((\frac{2k+1}{8})\pi + \frac{\pi}{2})} \tag{14}$$

pole $1(s_{l1})$	-0.206 + j1.039
pole $2(s_{l2})$	-0.580 + j0.886
pole $3(s_{l3})$	-0.880 + j0.589
pole $4(s_{l4})$	-1.038 + j0.211
pole $5(s_{l5})$	-1.040 - j0.199
pole $6(s_{l6})$	-0.887 - j0.580
pole $7(s_{l7})$	-0.591 - j0.879
pole $8(s_{l8})$	-0.212 - j1.038

Table 1: Table for pole values

Stable filter implies all poles in left half plane, therefore required in $H_{analog,LPF}(s)$ are s_{l1} , s_{l2} , s_{l3} , s_{l4} , s_{l5} , s_{l6} , s_{l7} , s_{l8} ,.

$$H_{analog,LPF}(s_l) = \frac{(1.062)^8}{(s_l - s_{l1})(s_l - s_{l2})(s_l - s_{l3})(s_l - s_{l4})(s_l - s_{l5})(s_l - s_{l6})(s_l - s_{l7})(s_l - s_{l8})}$$
(15)

2.7 Analog Transfer Function of BPF Filter

In $H_{analog,LPF}(s_l)$, substituting,

$$s_l = \frac{s^2 + 0.164}{0.114s} \tag{16}$$

We get, $H_{analog}(s)$ with mentioned coefficients, Numerator,

$$\frac{s^8}{0.4616}$$

Table 2

Denominator,

s^{16}	s^{15}	s^{14}	s^{13}	s^{12}	s^{11}	s^{10}
1.000	0.6195	1.5041	0.7498	0.9476	0.3822	0.3282
s^9	s^8	s^7	s^6	s^5	s^4	s^3
0.1063	0.0685	0.0174	0.0088	0.0017	0.0007	0.001

Table 3

2.8 Discrete Time Filter Transfer Function

Analog to discrete time conversion is made using the bilinear transformation,

$$s = \frac{1 - z^{-1}}{1 + z^{-1}} \tag{17}$$

We get, $H_{discrete,BPF}(z)$ with mentioned coefficients,

Numerator,

z^0	z^{-2}	z^{-4}	z^{-6}	z^{-8}	z^{-10}	z^{-12}	z^{-14}	z^{-16}
0.0080	-0.0644	0.2254	-0.4507	0.5634	-0.4507	0.2254	-0.0644	0.0080

Table 4

${\bf Denominator},$

	z^0	z^{-1}	z^{-1} z^{-2}		z^{-4}	z^{-5}	z^{-6}	z^{-7}	z^{-8}
(0.0010 -0.0107 0.0573		-0.2006	0.5115 -1.0044		1.5679	-1.9815	2.0474	
	z^{-9}	z^{-10}	z^{-11}	z^{-12}	z^{-13}	z^{-14}	z^{-15}	z^{-16}	
	-1.734	9 1.2019	9 -0.674	2 0.3006	6 -0.103	2 0.0258	3 -0.004	2 0.0003	3

Table 5

2.9 Direct Form II Realization

Figure 1: Direct Form II Block Diagram for Hdiscrete; BSF (z)

2.10 FIR BPF Filter Design using Kaiser Window

Stopband and Passband Tolerance(δ) = 0.15

Therefore, Kaiser parameters,

$$\Delta\omega_T=\omega_{s2}$$
 - $\omega_{p2}=\omega_{p1}$ - $\omega_{s1}=0.03768$

 $A = -20log_{10} \delta = 16.4782$

$$N_{min} = \left\lceil \frac{A - 8}{2.285 * \Delta \omega_T} \right\rceil = \left\lceil \frac{16.4782 - 8}{2.285 * 0.03768} \right\rceil = 98.47 \tag{18}$$

As A < 21, therefore, shape parameter in Kaiser window, $\alpha = \beta = 0$ (Rectangular Window).

The Kaiser window has to operate on ideal BPF filter, which is approximated as a separate function using truncated time domain response of ideal LPF filter. This introduces **non-ideality** which results in **increased order** of Kaiser window than necessary.

Therefore, length of Kaiser Window (L) = $N_{min} + 1 + 16 = 115.47$.

The transfer function of resultant BPF filter is given by the coefficients mentioned, from zero to increasing time delay (in Z-domain).

 $fir_h =$

Columns 1	through 1	2										
0.0020	-0.0001	-0.0002	0.0012	0.0019	-0.0000	-0.0040	-0.0071	-0.0061	-0.0003	0.0076	0.0123	
Columns 13	through :	24										
0.0100	0.0008	-0.0099	-0.0156	-0.0123	-0.0015	0.0103	0.0159	0.0121	0.0018	-0.0084	-0.0123	
Columns 25	through :	36										
-0.0087	-0.0014	0.0041	0.0047	0.0019	-0.0001	0.0019	0.0064	0.0083	0.0029	-0.0090	-0.0201	
Columns 37	through 4	48										
-0.0209	-0.0069	0.0162	0.0347	0.0346	0.0120	-0.0226	-0.0485	-0.0479	-0.0175	0.0272	0.0598	
Columns 49	through (60										
0.0590	0.0227	-0.0295	-0.0670	-0.0666	-0.0269	0.0294	0.0694	0.0694	0.0294	-0.0269	-0.0666	
Columns 61	through	72										
-0.0670	-0.0295	0.0227	0.0590	0.0598	0.0272	-0.0175	-0.0479	-0.0485	-0.0226	0.0120	0.0346	
Columns 73	through a	84										
0.0347	0.0162	-0.0069	-0.0209	-0.0201	-0.0090	0.0029	0.0083	0.0064	0.0019	-0.0001	0.0019	
Columns 85	through 9	96										
0.0047	0.0041	-0.0014	-0.0087	-0.0123	-0.0084	0.0018	0.0121	0.0159	0.0103	-0.0015	-0.0123	
Columns 97	through :	108										
-0.0156	-0.0099	0.0008	0.0100	0.0123	0.0076	-0.0003	-0.0061	-0.0071	-0.0040	-0.0000	0.0019	
Columns 10	9 through	112										
0.0012	-0.0002	-0.0001	0.0020									

Figure 2: Coefficients of Transfer Function in Z-domain

3 Filter - II: Bandstop Filter Design(Chebyschev)

3.1 Un-normalized Discrete Time Filter Specifications

Passband Tolerance = 0.15 (i.e 0.85-1.15)

Stopband Tolerance = 0.15 (i.e 0-0.15)

Analog Signal frequency range = 140 kHz

Sampling Frequency $(f_s) = 250 \text{ kHz}$

Transition band on either side of stopband = 2 kHz

Passband Nature : Equiripple Stopband Nature : Monotonic

Assigned Filter Number = 46

$$q(46) = 4$$
, $r(46) = 46 - 10*4 = 6$

$$B_L(46) = 5 + 1.2*4 + 2.5*6 = 24.8 \text{ kHz}$$

$$B_H(46) = 24.8 + 6 = 30.8 \text{ kHz}$$

3.2 Normalized Digital Filter Specifications

Sampling Frequency = 250 kHz

Therefore, normalized frequency can be calculated as,

$$\omega = \frac{\Omega * 2\pi}{\Omega_s} \tag{19}$$

Making calculations as per above equation, the modified specifications are,

Lower stopband Edge $(\omega_{s1}) = 0.198\pi$

Upper stopband Edge $(\omega_{s2}) = 0.246\pi$

Transition band on either side of Passband (ω_T) = 0.016 π

Upper passband Edge $(\omega_{p2}) = 0.182\pi$

Lower passband Edge $(\omega_{p1}) = 0.262\pi$

Passband Nature : Equiripple

Stopband Nature: Monotonic

Passband Tolerance = 0.15 (i.e 0.85-1.00)

Stopband Tolerance = 0.15 (i.e 0-0.15)

3.3 Equivalent Analog filter Specifications

The analog filter specifications (Ω) can be determined using bilinear transformation on normalized specifications (ω) as,

$$\Omega = \tan(\frac{\omega}{2}) \tag{20}$$

Lower Passband Edge $(\Omega_{p1}) = 293$

Upper Passband Edge $(\Omega_{p2}) = 0.436$

Upper stopband Edge $(\Omega_{s2}) = 0.321$

Lower stopband Edge $(\Omega_{s1}) = 0.406$

$$tan(\frac{0}{2}) = 0 (21)$$

$$tan(\frac{\pi}{2}) = \infty \tag{22}$$

3.4 Frequency Transformation for BRF to LPF conversion

The frequency transformation employed for Band stop filter to equivalent low pass filter conversion,

$$\Omega_L = \frac{B * \Omega}{\Omega_o^2 - \Omega^2} \tag{23}$$

where,

$$B = \Omega_{p2} - \Omega_{p1} = 0.143$$

$$\Omega_o^2 = \Omega_{p1} * \Omega_{p2} = 0.127$$

3.5 Frequency transformed LPF Specifications

$$\Omega_L = \frac{\Omega^2 - 0.220}{0.154 * \Omega} \tag{24}$$

Upper Passband Edge $(\Omega_{p1}) = -0.98$

Lower Passband Edge $(\Omega_{p2}) = 1.01$

Lower stopband Edge $(\Omega_{s2}) = 0.651$

Upper stopband Edge $(\Omega_{s1}) = -0.52$

Passband Edge $(\Omega_{pl}) = 1.01$

Stopband Edge $(\Omega_{sl}) = \min(-0.52, 0.65) = 0.52$

Passband and Stopband Tolerance = 0.15

Passband Nature = Equiripple

Stopband Nature = Monotonic

3.6 Analog Lowpass Transfer Function

The magnitude squared response of the Chebyschev filter in frequency domain,

$$|H_{analog,LPF}(\Omega)|^2 = \frac{K}{1 + \epsilon^2 C_N^2(\frac{\Omega}{\Omega_{nl}})}$$
 (25)

where, K is the normalization constant.

Passband Tolerance(δ_1) = 0.15

Stopband Tolerance(δ_2) = 0.15

Defining,

$$D_1 = \frac{1}{(1 - \delta_1)^2} - 1 = 0.384 \tag{26}$$

$$D_2 = \frac{1}{\delta_2^2} - 1 = 43.444 \tag{27}$$

Taking minimum value of N,

$$N_{min} = \lceil \frac{\cosh^{-1}(\sqrt{D2/D1})}{\cosh^{-1}(\Omega_{sl}/\Omega_{nl})} \rceil = 4$$
 (28)

$$\epsilon = \sqrt{D_1} = 0.6197$$

Therefore, in s-domain,

$$|H_{analog,LPF}(s)|^2 = \frac{K}{1 + \epsilon^2 C_N^2(\frac{s}{j\Omega_{rd}})}$$
 (29)

Solving for the poles of $|H_{analog,LPF}(s)|^2$, we get,

$$s_k = \Omega_p lsin(A_k) sinh(B) + j\Omega cos(A_k) cosh(B)$$
(30)

pole $1(s_{l1})$	0.123 + j1.397
pole $2(s_{l2})$	0.297 + j0.578
pole $3(s_{l3})$	0.297 - j0.577
pole $4(s_{l4})$	0.123 - j1.396

Table 6: Table for pole values

Stable filter implies all poles in left half plane. But there no any poles in left half plane. Hence it is unstable.

3.7 Analog Transfer Function of BRF Filter

In $H_{analog,LPF}(s_l)$, substituting,

$$s_l = \frac{0.143s}{s^2 + 0.127} \tag{31}$$

We get, $H_{analog}(s)$ with mentioned coefficients, Numerator,

s^8	s^6	s^4	s^2	s^0	
1	0.5153	0.0996	0.0085	0.0003	

Table 7

Denominator,

	s^8	s^7	s^6	s^5	s^4	s^3	s^2	s^1	s^0
ĺ	1	0.3752	0.6308	0.1552	0.1311	0.0200	0.0105	0.0008	0.0003

Table 8

3.8 Discrete Time Filter Transfer Function

Analog to discrete time conversion is made using the bilinear transformation,

$$s = \frac{1 - z^{-1}}{1 + z^{-1}} \tag{32}$$

We get, $H_{discrete,BRF}(z)$ with mentioned coefficients,

Numerator,

z^0	z^{-1}	z^{-2}	z^{-3}	z^{-4}	z^{-5}	z^{-6}	z^{-7}	z^{-8}
0.6987	-4.3141	12.7834	-23.2207	28.1357	-23.2207	12.7834	-4.3141	0.6987

Table 9

Denominator,

	z^0	z^{-1}	z^{-2}	z^{-3}	z^{-4}	z^{-5}	z^{-6}	z^{-7}	z^{-8}
1	.0000	-5.5926	15.0457	-24.9315	27.7116	-21.1188	10.8170	-3.4267	0.5257

Table 10

3.9 Direct Form II Realization

Figure 3

3.10 FIR Filter Design using Kaiser Window

Stopband and Passband Tolerance(δ) = 0.15 Therefore, Kaiser parameters, $\Delta\omega_T = \omega_{n2} - \omega_{s2} = \omega_{s1} - \omega_{n1} = 0.20096$

$$\Delta \omega_T = \omega_{p2}$$
 - $\omega_{s2} = \omega_{s1}$ - $\omega_{p1} = 0.20096$
A = -20 log_{10} $\delta = 16.4782$

$$N_{min} = \left\lceil \frac{A - 8}{2.285 * \Delta \omega_T} \right\rceil = \left\lceil \frac{16.4782 - 8}{2.285 * 0.20096} \right\rceil = 19$$
 (33)

As A < 21, therefore, shape parameter in Kaiser window, $\alpha = \beta = 0$ (Rectangular Window).

The Kaiser window has to operate on ideal BRF filter, which is approximated as a separate function using truncated time domain response of ideal LPF and HPF filter. This introduces **non-ideality** which results in **increased order** of Kaiser window than necessary.

Therefore, length of Kaiser Window (L) = $N_{min} + 1 + 12 = 32$.

The transfer function of resultant BRF filter is given by the coefficients mentioned, from zero to increasing time delay (in Z-domain).

Columns 1 t	Columns 1 through 12											
-0.0064	-0.0120	-0.0116	-0.0059	0.0016	0.0071	0.0081	0.0052	0.0010	-0.0016	-0.0014	0.0005	
Columns 13	through 2	24										
0.0014	-0.0008	-0.0055	-0.0098	-0.0096	-0.0028	0.0086	0.0191	0.0219	0.0133	-0.0047	-0.0240	
Columns 25	through 3	36										
-0.0344	-0.0286	-0.0073	0.0209	0.0420	0.0445	0.0251	-0.0087	-0.0410	-0.0556	-0.0441	-0.0104	
Columns 37	through 4	18										
0.0299	0.0576	0.0586	0.0316	-0.0110	-0.0489	0.9360	-0.0489	-0.0110	0.0316	0.0586	0.0576	
Columns 49	through 6	50										
0.0299	-0.0104	-0.0441	-0.0556	-0.0410	-0.0087	0.0251	0.0445	0.0420	0.0209	-0.0073	-0.0286	
Columns 61	through 7	72										
-0.0344	-0.0240	-0.0047	0.0133	0.0219	0.0191	0.0086	-0.0028	-0.0096	-0.0098	-0.0055	-0.0008	
Columns 73	through 8	34										
0.0014	0.0005	-0.0014	-0.0016	0.0010	0.0052	0.0081	0.0071	0.0016	-0.0059	-0.0116	-0.0120	
Columns 85	through 8	36										
-0.0064	0.0027											

Figure 4: Coefficients of Transfer Function in Z-domain

4 Matlab Plot

4.1 Bandpass Filter (Monotonic)

4.1.1 IIR Design

Figure 5: Magnitude Response

Figure 6: Attenuation Phase Response

Figure 7: Pole/Zero Plot

The Magnitude plot justifies that the constraints on tolerances are met, the phase plot is non-linear as expected. The pole-zero plot shows all poles(CROSSES) are within the unit circle, hence the filter transfer function is stable.

4.1.2 FIR Design

Figure 8: Magnitude Response

Figure 9: Attenuation and Phase Response

The magnitude response plot shows that the constraints on tolerances are met with the phase plot being linear as expected for a FIR filter.

4.2 BandStop Filter (Chebyschev)

4.2.1 IIR Design

Figure 10: Magnitude Response

Figure 11: Attenuation and Phase Response

Figure 12: Pole/Zero Plot

The Magnitude plot justifies that the constraints on tolerances are met, the phase plot is non-linear as expected. The pole-zero plot shows all poles(CROSSES) are within the unit circle, hence the filter transfer function is stable.

4.2.2 FIR Design

Figure 13: Magnitude Response

Figure 14: Attenuation Response

The magnitude response plot shows that the constraints on tolerances are met, with the phase plot being linear as expected for a FIR filter.