# GRAF: MASALAH LINTASAN TERPENDEK

KULIAH MATEMATIKA DISKRIT 2 KAMIS, 2 APRIL 2015

# PERSOALAN LINTASAN TERPENDEK

#### • Bermacam-macam masalah lintasan terpendek:

- Lintasan terpendek antara dua buah simpul tertentu (*a pair shortest path*).
- Lintasan terpendek antara semua pasangan simpul (all pairs shortest path).
- Lintasan terpendek dari simpul tertentu ke semua simpul yang lain (single-source shortest path).
- Lintasan terpendek antara dua buah simpul yang melalui beberapa simpul tertentu (intermediate shortest path).

## **ALGORITMA SHORTEST PATH**

- Single-Source Shortest Path
  - Diberikan graf berbobot G = (V, E).
  - Tentukan lintasan terpendek dari sebuah simpul asal a ke setiap simpul lainnya di G.
  - Algoritma: Dijkstra
- All Pairs Shortest Path
  - Diberikan graf berbobot G = (V, E).
  - Tentukan lintasan terpendek antara semua pasangan simpul di G.
  - Algoritma: Floyd dan Warshal

#### **ALGORITMA DIJKSTRA**

- Pada setiap langkah, ambil sisi yang berbobot minimum yang menghubungkan sebuah simpul yang sudah terpilih dengan sebuah simpul lain yang belum terpilih.
- Lintasan dari simpul asal ke simpul yang baru haruslah merupakan lintasan yang terpendek diantara semua lintasannya ke simpul-simpul yang belum terpilih.

# **CONTOH PENERAPAN**

• Tentukan jarak terpendek dari titik 1 ke tiap titik yang lainnya.





| Lelaran Simpul yang |   | Lintasan   |   |   |   | S |   |   | D |          |               |               |             |            |
|---------------------|---|------------|---|---|---|---|---|---|---|----------|---------------|---------------|-------------|------------|
| dipilih             |   | 1          | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3        | 4             | 5             | 6           |            |
| lnisial             | - | -          | 0 | 0 | 0 | 0 | 0 | 0 | ( |          | 10<br>(1,3)   | 40<br>(1,4)   | 45<br>(1,5) | ∞<br>(1,6) |
| 1                   | 1 | 1          | 1 | 0 | 0 | 0 | 0 | 0 | ۰ | 50 (1,2) | 10<br>(1,3)   | 40<br>(1,4)   | 45<br>(1,5) | ∞<br>(1,6) |
| 2                   | 3 | 1, 3       | 1 | 0 | 1 | 0 | 0 | 0 | ٥ | 50 (1,2) | 10<br>(1,3)   | 25<br>(1,3,4) |             | ∞<br>(1,6) |
| 3                   | 4 | 1, 3, 4    | 1 | 0 | 1 | 1 | 0 | 0 |   | 45       | 10<br>2)(1,3) | 25<br>(1,3,4) | 45<br>(1,5) | ∞<br>(1,6) |
| ı                   | 2 | 1, 3, 4, 2 | 1 | 1 | 1 | 1 | 0 | 0 |   | 45       | 10<br>2)(1,3) | 25<br>(1,3,4) |             | ∞<br>(1,6) |
| 5                   | 5 | 1,5        | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 45       | 10            | 25            | 45          | œ          |

 Berikut ini hasil lintasan terpendek dari titik 1 ke semua titik yang lain dg algoritma Dijkstra

| Simpul | Simpul | Lintasan terpendek                            | Jarak |
|--------|--------|-----------------------------------------------|-------|
| asal   | tujuan |                                               |       |
| 1      | 3      | $1 \rightarrow 3$                             | 10    |
| 1      | 4      | $1 \rightarrow 3 \rightarrow 4$               | 25    |
| 1      | 2      | $1 \rightarrow 3 \rightarrow 4 \rightarrow 2$ | 45    |
| 1      | 5      | $1 \rightarrow 5$                             | 45    |
| 1      | 6      | tidak ada                                     | _     |

#### **ALGORITMA WARSHAL**

- Digunakan untuk mencari semua hubungan antara setiap simpul dari setiap graph (transitif)
- Input : A, yaitu matrik tetangga dengan n simpul
- Output: R<sup>(n)</sup>, yaitu matriks keterhubungan antar simpul (transitif)

```
R<sup>(0)</sup> ← A
Untuk k dari 1 sampai n lakukan
Untuk i dari 1 sampai n lakukan
Untuk j dari 1 sampai n lakukan
R<sup>(k)</sup>[i,j] ←R<sup>(k-1)</sup>[i,j] or R<sup>(k-1)</sup>[i,k] and R<sup>(k-1)</sup>[k,j]
```

Cetak R<sup>(n)</sup>

## **CONTOH KASUS**

Tentukan apakah terdapat lintasan antara setiap pasangan simpul pada graf di bawah.



## **CONTOH KASUS**

#### **A = Matriks Tetangga**

|   | Α | В | С | D |
|---|---|---|---|---|
| A | 0 | 1 | 0 | 0 |
| В | 0 | 0 | 1 | 0 |
| С | 1 | 0 | 0 | 1 |
| D | 0 | 0 | 0 | 0 |

 $R^{(1)}$   $R^{(2)}$   $R^{(3)}$ 

|   | Α | В | С | D |   | Α | В | С | D |
|---|---|---|---|---|---|---|---|---|---|
| A | 0 | 1 | 0 | 0 | A | 0 | 1 | 1 | 0 |
| В | 0 | 0 | 1 | 0 | В | 0 | 0 | 1 | 0 |
| С | 1 | 1 | 0 | 1 | С | 1 | 1 | 1 | 1 |
| D | 0 | 0 | 0 | 0 | D | 0 | 0 | 0 | 0 |

|   | Α | В | С | D |
|---|---|---|---|---|
| A | 1 | 1 | 1 | 1 |
| В | 1 | 1 | 1 | 1 |
|   | 1 | 1 | 1 | 1 |
| D | 0 | 0 | 0 | 0 |

|   | Α | В | С | D |
|---|---|---|---|---|
| A | 1 | 1 | 1 | 1 |
| В | 1 | 1 | 1 | 1 |
| С | 1 | 1 | 1 | 1 |
|   | 0 | 0 | 0 | 0 |

#### Lintasan-lintasan selain yang langsung:



• Yang tidak ada lintasan: DA, DB, DC, DD

#### **ALGORITMA FLOYD**

- Untuk mencari jarak terpendek antara semua simpul dalam graf
- Input : Matriks jarak (W) dengan n simpul
- Output: Matriks yang menyatakan hubungan terpendek antar setiap simpul
- D←W
   Untuk k dari 1 sampai n lakukan
   Untuk i dari 1 sampai n lakukan
   Untuk j dari 1 sampai n lakukan
   D<sup>(k)</sup> [i,j] ← min { D<sup>(k-1)</sup> [i,j], D<sup>(k-1)</sup> [i,k]+D<sup>(k-1)</sup> [k,j]}
   Cetak nilai D

## **CONTOH KASUS**

Carilah jarak terpendek utk setiap pasangan simpul pd graf di bawah ini dengan algoritma floyd.



## Matriks jarak W

|   | Α        | В        | С        | D        |
|---|----------|----------|----------|----------|
| Α | 0        | $\infty$ | $\infty$ | 3        |
| В | 2        | 0        | $\infty$ | $\infty$ |
| С | 6        | $\infty$ | 0        | $\infty$ |
| D | $\infty$ | 7        | 1        | 0        |

#### $\mathbf{D}^{(1)}$

|   | Α        | В        | С        | D |
|---|----------|----------|----------|---|
| A | 0        | $\infty$ | $\infty$ | 3 |
| В | 2        | 0        | $\infty$ | 5 |
| С | 6        | $\infty$ | 0        | 9 |
| D | $\infty$ | 7        | 1        | 0 |

 $\mathbf{D}^{(2)}$ 

|   | Α | В        | С        | D |
|---|---|----------|----------|---|
| A | 0 | $\infty$ | $\infty$ | 3 |
| В | 2 | 0        | $\infty$ | 5 |
| С | 6 | $\infty$ | 0        | 9 |
| D | 9 | 7        | 1        | 0 |

 $D^{(3)}$ 

|   | Α | В        | С        | D |
|---|---|----------|----------|---|
| A | 0 | $\infty$ | $\infty$ | 3 |
| В | 2 | 0        | $\infty$ | 5 |
|   | 6 | $\infty$ | 0        | 9 |
| D | 7 | 7        | 1        | 0 |

 $D^{(4)}$ 

|   | Α | В  | С | D |
|---|---|----|---|---|
| A | 0 | 10 | 4 | 3 |
| В | 2 | 0  | 6 | 5 |
| С | 6 | 16 | 0 | 9 |
|   | 7 | 7  | 1 | 0 |

#### • Lintasan-lintasan selain yang langsung:

• AB : A - D - B = 10

• AC : A - D - C = 4

• BC : B - A - D - C = 6

• BD : B - A - D = 5

• CB : C - A - D - B = 16

• CD : C - A - D = 9

• DA : D - C - A = 7



## LATIHAN

- Tentukan jarak terpendek dari titik 1 ke tiap titik yang lainnya.
- Tentukan pula jarak terpendek dari setiap pasangan simpul yang ada.

