Apprentissage non supervisé : Méthodes de Clustering

M.-J. Huguet

https://homepages.laas.fr/huguet 2018-2019

Plan

- 1. Contexte : l'Intelligence Artificielle
- 2. Contexte: l'apprentissage automatique
- 3. Problème de clustering
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils
- 7. Fouille de données
- 8. Réduction de dimensions (Analyse en Composantes principales)

Rappel: Types d'apprentissage

• Différents types d'apprentissage

- Apprentissage non supervisé
 - Le système ne dispose que d'exemples :
 - Données X sans étiquette
 - Nombre et nature des classes inconnu
- Rechercher une structure dans les données
 - Partitionner les exemples en clusters/classes
 - Clustering (segmentation, partitionnement)
 - Partitionner les exemples en clusters/classes

- Homogènes : les éléments d'un même cluster sont similaires
- Séparés : les éléments de différents clusters sont différents

2

Plan - section 3

3. Problème de clustering

- 1. Partition d'un ensemble
- 2. Position du problème de clustering
- 3. Distance
- 4. Type de méthodes de partitionnement
- 5. Evaluation d'une solution de partitionnement
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

Partition d'un ensemble

• Le problème :

- Décomposer un ensemble X en sous-ensembles non vides tel que chaque élément $x \in X$ se retrouve dans un et un seul sous ensemble
- ullet Soit P une famille d'ensembles : P est une partition de X ssi
 - L'ensemble vide n'est pas dans P: $\emptyset \notin P$
 - L'union des ensembles de P vaut X: $\bigcup_{A \in P} A = X$
 - Les ensembles de P sont deux à 2 disjoints : $\forall A, B \in P : A \neq B \Rightarrow A \cap P = \emptyset$

Exemple

- $X = \{a, b, c\}$. Il existe 5 partitions :
 - o $\{\{a\},\{b\},\{c\}\}; \{\{a,b\},\{c\}\}; \{\{a,c\},\{b\}\}; \{\{b,c\},\{a\}\}; \{\{a,b,c\}\}\}$
- Ne sont pas des partitions de X:
 - $0 \{ \{a,b\},\{a,b\},\{c\} \}; \{ \{a,b\},\{b,c\} \}; \{ \{a\},\{b\} \};$

Partitions et relations d'équivalence

Relations d'équivalence

- Regrouper des éléments d'un ensemble (à partir d'une relation binaire)
 - Sont considérés comme similaires par rapport à une propriété (ex : couleur)
- Propriétés : réflexive, symétrique et transitive
 - Ex : relation « est égal à »
- Classe d'équivalence
 - Avec une relation d'équivalence
 éléments regroupés dans un ensemble de classes d'équivalences
 - L'ensemble des classes d'équivalence est une partition
- Représentation graphe non orienté d'une relation d'équivalence
 - Classes d'équivalence : composantes connexe formées de cliques
- A toute partition on peut associer une relation d'équivalence

Dénombrer le nombre de partitions

ullet Nombre de partitions d'un ensemble en K sous-ensembles :

- Ex : pour un ensemble $X = \{a, b, c\}$ de taille 3 : il existe 5 partitions différentes
 - o $\{\{a\},\{b\},\{c\}\}; \{\{a,b\},\{c\}\}; \{\{a,c\},\{b\}\}; \{\{b,c\},\{a\}\}; \{\{a,b,c\}\}\}$
 - o k=3; k=2; k=2
- Nombre de Stirling : S(n, k)
 - Equations de récurrence :
 - $S(n,k) = S(n-1,k-1) + k \times S(n-1,k)$
 - S(0,0) = 1 et $\forall n > 0, S(n,0) = S(0,n) = 0$
 - Formulation explicite : $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} C_j^{\ k} j^n$
 - Où $\mathcal{C}_j^{\ k}$ est le nombre de combinaisons de j parmi k

• Nombre total de partitions

• Nombre de Bell : $B(n) = \sum_{k=1}^{n} S(n, k)$

Dénombrer le nombre de partitions

• Nombre de Stirling S(n,k) et nombre de Bell $B(n) = \sum_{k=1}^{n} S(n,k)$

						ŀ	ζ.					
		1	2	3	4	5	6	6	8	9	10	Nb Bell
n	1	1										1
	2	1	1									2
	3	1	3	1								5
	4	1	7	6	1							15
	5	1	15	25	10	1						52
	6	1	31	90	65	15	1					203
	7	1	63	301	350	140	21	1				877
	8	1	127	966	1701	1050	266	27	1			4139
	9	1	255	3025	7770	6951	2646	428	35	1		21112
					3410	4252	2282					11526
	10	1	511	9330	5	5	7	5214	708	44	1	6

_ `

Plan

3. Problème de clustering

- 1. Partition d'un ensemble
- 2. Position du problème de clustering
- 3. Distance
- 4. Type de méthodes de partitionnement
- 5. Evaluation d'une solution de partitionnement
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

9

Caractérisation du clustering

- Cluster = un regroupement de données
 - Regrouper des données proches
 - Eloigner des données différentes

Images N. Baskiotis, LIP6 - 2017

- Qu'est-ce qu'un bon clustering?
- Problème mal posé
- L'objectif dépend du problème considéré

Exemples de clustering

• Quelques applications

- Identifier des communautés dans des réseaux sociaux
- Identifier des clients avec un profil similaire
- Analyser des logs d'applications
- Analyser des textes, des emails
- Segmenter des images
- •

11

Position du problème (1)

Définition

- Un ensemble $X = \{x_i\}$ de n exemples / observations
- Une observation
 - ullet est composée de d attributs

$$x_i = \begin{pmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,d} \end{pmatrix}$$

- Déterminer K clusters tel que
 - Chaque cluster regroupe des observations similaires
- Définir la similarité
- Déterminer le nombre de clusters
- Evaluer un résultat de clustering

Position du problème (2)

Distance et similarité

- Distance entre points d(x, y): mesure de di-similarité
 - Minimiser distance intra-cluster
 - o Plus la distance est élevée moins les points sont similaires
 - o Ex: similarité: $sim(x,y) = \frac{1}{1+d(x,y)}$
 - o dépend de la nature des données

- Déterminer une **partition** $\pi: X \to \{C_1, ... C_K\}$ de **taille** K telle que :
 - $\bigcup_{i=1}^K C_i = X$, et $C_i \cap_{i \neq i} C_i = \emptyset$
 - pour chaque cluster/classe C_i , $\forall x, y \in C_i$ et $z \notin C_i$: on veut vérifier
 - sim(x,y) > sim(x,z) et sim(x,y) > sim(y,z)
 - Partition optimale π^* : $argmin_{\pi}f(\pi)$ où f dépend de la fonction de similarité

13

Position du problème (3)

• Difficulté algorithmique

- **Partition optimale** : π^* : $argmin_{\pi}f(\pi)$
- Nombre partitions possibles en fonction de X et de K \Rightarrow nombre de Bell
- Valeur de K
 - Fixée (méthodes paramétriques)
 - Non fixée (méthodes non paramétriques)
- Prendre en compte la distance entre clusters
 - Maximiser distance inter-cluster
 - Plus la distance est élevée plus les clusters sont séparés

Plan

Problème de clustering

- Partition d'un ensemble
- 2. Position du problème de clustering
- 3. Distance
- Type de méthodes de partitionnement
- Evaluation d'une solution de partitionnement
- Premières méthodes
- Méthodes basées voisinage (densité) et basées graphes
- Boite à outils

Distances (1)

- Distance : une fonction $d: \mathbb{R} \to \mathbb{R}^+$ vérifiant :
 - Symétrie : d(x, y) = d(y, x)
 - Séparation : $d(x, y) = 0 \iff x = y$
 - Inégalité triangulaire : $d(x,y) \le d(x,z) + d(z,y) = d(y,x)$
 - ullet Distance de Minkowski ou Norme $oldsymbol{L_q}$

•
$$d(x_1, x_2) = ||x_2 - x_1||_q = \sqrt[q]{\sum_{j=1}^d |x_{1,j} - x_{2,j}|^q}$$

• Si q = 2, distance euclidienne

o
$$d(x_1, x_2) = ||x_2 - x_1|| = \sqrt{\sum_{j=1}^{d} |x_{1,j} - x_{2,j}|^2}$$

• Si q = 1, distance de Manhattan

Image:Wikipedia

Distances (2)

• Distance de Hamming

- Mesurer différence entre deux séquences de symboles
 - Traitement du signal
- ullet Soit x_i et y_i deux observations de dimension d
- Hamming : $h(x_i, y_i) = Card(\{j : x_{ij} \neq y_{ij}\})$

$$x_i = \begin{pmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,d} \end{pmatrix}$$

- Exemple
 - Entre 1011101 et 1001001 \rightarrow distance de Hamming = 2
 - Entre 2143896 et 2233796 \rightarrow distance de Hamming = 3
 - Entre ramer et cases **→** distance de Hamming = 3

17

Distances (3)

Distance de Levenshtein (distance d'édition)

- Mesurer la différence entre deux chaines de caractères
 - Nombre d'opérations élémentaires (insérer/supprimer/remplacer) pour passer d'une chaine source à une chaine destination
 - o Passer de "a " vers "ab" : distance = 1 (insérer 'b')
- Autres : compter des n-grammes
 - Sous séquences de longueur *n* présentes dans une séquence
 - Comparer des séquences à partir des n-grammes communs

Plan

3. Problème de clustering

- 1. Partition d'un ensemble
- 2. Position du problème de clustering
- 3. Distance
- 4. Type de méthodes de partitionnement
- 5. Evaluation d'une solution de partitionnement
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

19

Méthodes de partitionnement (1)

Principe

- Initialisation : création d'une partition de K clusters
- Itérations : déplacer un objet entre clusters pour optimiser la fonction objectif

Méthodes exactes

• Enumération et évaluation de toutes les partitions possibles

Méthodes approchées ou heuristiques

- Très nombreuses dans la littérature
- Méthodes générales ou spécifiques pour un domaine d'application
- Exploitent une fonction objectif +/- complexe

Méthodes de partitionnement (2)

Idéalement

- Prendre en compte différents types de données
 - numériques, symboliques, ...
- Générer des formes quelconques de clusters
 - Pas seulement des formes convexes
- Facilité de paramétrages
- Insensibilité à l'ordre de traitement des données
- Robustesse / anomalies et aux bruits
- Passage à l'échelle (volume données et dimension des données)
- Résultats cohérents / utilisateurs
- Enrichissement par des contraintes / clusters

21

Plan

3. Problème de clustering

- 1. Partition d'un ensemble
- 2. Position du problème de clustering
- 3. Distance
- 4. Type de méthodes de partitionnement
- 5. Evaluation d'une solution de partitionnement
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

Evaluation d'un clustering

• Forme des clusters

- Évaluation de la qualité des clusters / distance
- Clusters resserrés sur eux-mêmes et éloignés entre eux

• Stabilité des clusters

- Insensibilité à l'ordre des traitement des données
- Les mêmes points sont-ils toujours dans le même cluster ?
- Aide pour fixer le nombre de clusters

• Cohérence / expertise

• Évaluation par expert humain ...

23

Qualité d'un clustering (1)

Indice de Davies Bouldin (DB)

- Combinaison mesures d'homogénéité et de séparation
- Cohésion / homogénéité = qualité intra-cluster (Diamètre moyen)
 - ullet pour un cluster k : moyenne des distances entre chaque point et le centre μ_k :

•
$$H_k = \frac{1}{n_k} \sum_{x \in C_k} d(x, \mu_k)$$

Centre d'un cluster :

 $\mu_k = \frac{1}{n_k} \sum_{x_i \in C_k} x_i$ $\text{avec } n_k = |C_k|$

o Un cluster k homogène a une valeur H_k faible

Qualité d'un clustering (2)

• Indice de Davies Bouldin (DB)

- Combinaison mesures d'homogénéité et de séparation
- **Séparation** = qualité inter-cluster
 - Pour 2 clusters k et l: distance entre leurs centres
 - $S_{k,l} = d(\mu_k, \mu_l)$

Indice DB

- $DB = \frac{1}{K} \sum_{k=1}^{K} DB_k$, avec $DB_k = \max_{l \neq k} (\frac{H_k + H_l}{S_{k,l}})$
- Valeur faible si les clusters sont homogènes (numérateur petit) et s'ils sont bien séparés (dénominateur grand)
- Minimiser DB → aide pour déterminer le nombre de clusters

25

Qualité d'un clustering (3)

Coefficient de silhouette

- Combinaison de deux mesures
- Cohésion (proximité) : appartenance au « bon » cluster
 - pour chaque point $x \in C_k$: est-il proche des points du cluster auquel il appartient?
 - o distance moyenne aux autres points du même cluster

$$o \ a(x) = \frac{1}{n_k - 1} \sum_{y \in C_k, y \neq x} d(x, y)$$

- Séparation : éloignement des autres clusters
 - pour chaque point $x \in C_k$: est-il loin des points des autres clusters C_l ?
 - o Distance moyenne $m{minimale}$ par rapport aux points des clusters \mathcal{C}_l c'est à dire au cluster le plus proche

$$o b(x) = \min_{l \neq k} \frac{1}{n_l} \sum_{y \in C_l} d(x, y)$$

Qualité d'un clustering (4)

Coefficient de silhouette

- Combinaison de deux mesures
- Cohésion : appartenance au « bon » cluster

o
$$a(x) = \frac{1}{n_k - 1} \sum_{y \in C_k, y \neq x} d(x, y)$$

• **Séparation** : éloignement des autres clusters

o
$$b(x) = \min_{l \neq k} \frac{1}{n_l} \sum_{y \in C_l} d(x, y)$$

- Silhouette : $s(x) = \frac{b(x) a(x)}{\max(a(x), b(x))}$; compris dans [-1, 1])
 - Si le point x est dans le bon cluster : a(x) < b(x) et $s(x) \rightarrow 1$
- Pour tous les points : $S = \frac{1}{n} \sum s(x)$
- Minimiser S → aide pour déterminer le nombre de clusters

27

Exemple (scikitlearn - silhouette)

• 2 clusters, silhouette (moyenne) = 0,705

The silhouette plot for the various clusters.

The visualization of the clustered data.

The visualization of the clustered data.

The visualization of the clustered data.

• 3 clusters, silhouette (moyenne) = 0,588

Silh
The silhouette plot

The visualization of the clustered data.

The visualization of the clustered data.

7.5

5.0

2.5

9.0

-7.5

-7.5

-7.5

-7.5

28

Exemple (scikitlearn - silhouette)

• 4 clusters, silhouette (moyenne) = 0,650

• 5 clusters, silhouette (moyenne) = 0,563

Stabilité d'un clustering

• Problème:

- Méthodes non déterministes : résultats différents si plusieurs exécutions
 - lancer la méthode plusieurs fois avec initialisation différente, avec des sous-ensembles différents,
 - Est-ce que les points sont regroupés de manière similaire ?
 - Ex : problème de stabilité pour K=2

• Stable pour K=3

- Indice de Rand : comparer 2 solution de clustering en ignorant les permutations
 - o Nombre de paires dans le même cluster / nb de paires dans des clusters différents

Evaluation d'un clustering

- Forme des clusters
- Stabilité des clusters
 - Différentes mesures ...
 - Dépend des données, des distances, ...
 - Avoir l'esprit critique sur les résultats et se documenter
- Cohérence / expertise
 - Évaluation par expert humain ...
 - Évaluation « manuelle »
 - Vérification sur un sous-ensemble de données

31

Plan

- 1. Contexte : l'Intelligence Artificielle
- 2. Contexte: l'apprentissage automatique
- 3. Problème de clustering
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils
- 7. Fouille de données
- 8. Réduction de dimensions (Analyse en Composantes principales)

Plan - section 4

- 3. Problème de clustering
- 4. Premières méthodes
 - 1. Méthode par partitionnement : k-means
 - 2. Méthodes hiérarchiques : ascendant et descendant
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

33

Méthode k-Means (1)

Principe

- Le nombre de clusters *K* est fixé
- Pour chaque cluster : son centre de gravité
- Placer toutes les données dans les clusters / centres de gravité courants
- Mettre à jour les centres au fur et à mesure de l'évolution des clusters
 - Méthode k-means ou méthodes des centres mobiles
- Méthode approchée
- Méthode très populaire

Méthode k-Means (2)

Algorithme

- Soit K le nombre de clusters
- Choisir K centres (aléatoirement, ++)
- Itérations
 - Affecter chaque donnée au centre le plus proche (similarité)
 - Recalculer les nouveaux centres
- Arrêt : stabilité
- Similarité : erreur quadratique / inertie / variance
 - minimiser la variance intra-cluster : $\sum_{k=1}^{K} \frac{1}{n_k} \sum_{i \in C_k} d^2(x_i, \mu_k)$

35

Méthode k-Means (3)

- Similarité :
 - $\sum_{k=1}^{K} \frac{1}{n_k} \sum_{i \in C_k} d^2(x_i, \mu_k)$ (min Squared Error)
- Algorithme:
 - Initialisation
 - Choisir k éléments (centres) : $\{\mu_1, \dots, \mu_k\}$
 - Les placer dans un cluster : $C_i \leftarrow \mu_i$
 - Répéter
 - Affecter chaque élément au centre le plus proche
 - o $C_l = C_l \cup \{x_i\}$ tel que $l = argmin_k(d^2(x_i, \mu_k))$
 - Re-évaluer le centre de gravité de chaque cluster
 - $0 \ \mu_k = \frac{1}{n_k} \sum_{i \in C_k} x_i$
 - Jusqu'à : // Conditions d'arrêt //

Méthode k-Means (3)

• Conditions d'arrêt :

- Nombre d'itérations
- Plus de changement sur les centres de gravité (ou changements limités)
- Pas de changement dans la composition des clusters

• Convergence :

- Diminution de la fonction objectif
- Complexité : O(KndI)
 - où : *I* le nombre d'itérations

37

Exemple (1) – Données initiales

- Données initiales
- Déterminer 3 clusters

Exemple (2) – Choix des centres et Allocation

- Choisir 3 centres
- Allocation des points au centre le plus proche

39

Exemple (3) – Re-calcul des centres

- Calcul des nouveaux centres pour les 3 clusters
- Nouvelle allocation des points aux centres

Exemple (4) – Dernière itération

 Solution obtenue après 10 itérations

Caractéristiques k-means (1)

• Stratégie gloutonne :

- Obtention d'un minimum local / min erreur
- Faible complexité
- Passage à l'échelle
- Compréhension simple de la méthode

• Choix des points initiaux

• Fort impact sur le résultat

• Forme des clusters

- Formes convexes
 - Chaque point d'un cluster est plus proche de son centre de gravité que des autres centres

Caractéristiques k-means (2)

Points d'attention

- Nécessite de fixer le nombre de clusters
- Nécessite l'existence d'une distance
- Reste bloqué dans un optimum local
- Sensibilité à l'initialisation :
- Sensibilité aux bruits et aux anomalies
 - Tous les points sont inclus dans un cluster
 - K-means
 - ullet Calcul de K clusters et détection de l anomalies
 - SIAM International Conference on Data Mining 2013
- Sensibilité à la densité des points, à la taille ou forme des clusters

Initialisation (1)

- Aléatoire
 - Faire plusieurs exécutions avec différentes initialisation et conserver la meilleure solution
- Identification
 - Utiliser une méthode de clustering hiérarchique pour déterminer des centres
- Sélection
 - Fixer un nombre supérieur de centres et sélectionner parmi ceux-ci les centres conduisant à des clusters les plus séparables
- Post-processing : Split & Merge
 - Découper un cluster quand sa variance est supérieure à un seuil
 - Regrouper deux clusters quand la distance entre leurs centres est inférieure à un seuil

Initialisation (2)

- **Initialisation** : K-means++
 - Choix des centres **avec une probabilité** liée à la distance au carré aux autres centres
 - Garanties / qualité du résultat par rapport à l'aléatoire (article 2007)

45

Nombres de clusters?

- Choix : problème difficile
 - Fixé : segmenter en K (contraintes du problème)
 - Itérer sur différentes valeurs de K
 - Evaluer la qualité de chaque clustering
 - Imposer des contraintes sur le volume ou la densité des clusters
- Stabilité des clusters
 - Répéter la méthode
 - Regrouper dans un même cluster final les éléments qui se retrouvent toujours dans les mêmes clusters intermédiaires

Variantes (1)

- Augmenter le nombre de clusters
 - Taille
 - -----

Densité

Δ7

Variantes (2)

- Augmenter le nombre de clusters
 - Forme

Variante

- Méthode applicable en séquentiel
 - Prise en compte de l'arrivée de nouveaux exemples
 - A chaque arrivée d'un exemple
 - Le placer dans le cluster le plus proche
 - Recalculer le centre de ce cluster
 - Les autres clusters restent inchangés

49

Plan

- 3. Problème de clustering
- 4. Premières méthodes
 - 1. Méthode par partitionnement : k-means
 - 2. Méthodes hiérarchiques : ascendant et descendant
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

Méthodes hiérarchiques : Principe général

• Deux types de méthodes hiérarchiques

- Clustering ascendant (agglomératif)
 - Initialement chaque observation (point) est un cluster
 - Fusionner les observations proches : mesure de similarité (ressemblance)
 - Itérer jusqu'à 1 seul cluster
- Clustering descendant (divisif)
 - Initialement toutes les observations sont dans le même cluster
 - Le diviser jusqu'à séparer toutes les observations

51

Dendrogramme (1)

- Représentation du résultat
 - Dendrogramme = arbre
 - Feuilles = échantillons
 - Nœuds = cluster
 - Hauteur des branches
 - Proportionnelle **distance** entre clusters

- Représentation partielle
 - Le « haut » de l'arbre

Dendrogramme (2)

- Représentation du résultat
 - Couper un dendrogramme
 - Un ensemble de clusters

53

Exemple

- Propriété : monotonie
 - Quand on fusionne deux clusters, la similarité avec un autre cluster n'augmente pas
 - Les fusions se font dans l'ordre croissant de similarité (distance)
 - Les barres horizontales (fusion/cluster) ne croisent pas les verticales

Clustering hiérarchique ascendant (CHA)

- Principe
 - Chaque point ou cluster est fusionné avec le cluster le plus proche
- Algorithme
 - Initialisation
 - Chaque point est placé dans son propre cluster
 - Calcul de la matrice *M* de « ressemblance »

Point clé : calcul de la similarité (ressemblance)

- Itérations
 - Sélection dans M des 2 clusters les plus proches : C_i et C_j
 - Fusion de C_i et C_j pour former un cluster C_k
 - Mise à jour de M en calculant « ressemblance » entre cluster C_k et autre clusters
- Arrêt : fusion des 2 derniers clusters
- Complexité : n^3 (n-1 recherche de minimum dans la matrice)
 - Variantes selon le calcul de similarité au moins n^2

_

Application (1)

Données

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
p3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
р6	0.45	0.30

• Distance Euclidienne : mesure de « ressemblance »

	p1	p2	р3	p4	р5	р6
p1	0					
p2	0,23	0				
р3	0,22	0,14	0			
p 4	0,37	0,19	0,16	0		
p5	0,34	0,14	0,28	0,28	0	
р6	0,24	0,24	0,10	0,22	0,39	0

Application (2)

• Saut minimal (single linkage)

	р1	p2	р3	p4	р5	р6
p1	0					
p2	0,23	0				
р3	0,22	0,14	0			
p 4	0,37	0,19	0,16	0		
р5	0,34	0,14	0,28	0,28	0	
р6	0,24	0,24	0,10	0,22	0,39	0

p2

0

0,14

0,19

0,14

(p3,p6)

0

0,16

0,28

0

0,28

р1

0

0,23

0,22

0,37

0,34

- Sélection Min **3** 0,10
- Cluster (p3, p6)
- Mise à jour de la matrice de ressemblance
 - o Distance minimale

57

р2

р5

(p3,p6) p4

Application (3)

• Saut minimal (single linkage)

			`	•	<i>,</i>
	p1	p2	(p3,p6)	p4	р5
p1	0				
p2	0,23	0			
(p3,p6)	0,22	0,14	0		
(p3,p6) p4	0,37	0,19	0,16	0	
p5	0,34	0,14	0,28	0,28	0

	р1	(p2,p5)	(p3,p6)	p4
p1	0			
(p2,p5)	0,23	0		
(p3,p6)	0,22	0,14	0	
p4	0,37	0,19	0,16	0

- Sélection Min → 0,14
- Cluster (p2, p5)
- Mise à jour de la matrice de ressemblance
 - o Distance minimale

Application (4)

• Saut minimal (single linkage)

	p1	(p2,p5)	(p3,p6)	p4
p1	0			
(p2,p5)	0,23	0		
(p3,p6)	0,22	0,14	0	
p4	0,37	0,19	0,16	0

	p1	(p2,p5,p3,p6)	p4
p1	0		
(p2,p5,p3,p6)	0,22	0	
n/1	0.37	0.16	0

- Sélection Min → 0,14
- Cluster (p2, p5, p3, p6)
- Mise à jour de la matrice de ressemblance
 - o Distance minimale

59

Application (4)

• Saut minimal (single linkage)

	p1	(p2,p5,p3,p6)	p4
p1	0		
(p2,p5,p3,p6)	0,22	0	
p4	0,37	0,16	0

	p1	(p2,p5,p3,p6,p4)
p1	0	
(p2,p5,p3,p6,p4)	0,22	0

- Sélection Min → 0,22
- Cluster (p2, p5, p3, p6, p4,p1)
- Arrêt

- Sélection Min → 0,16
- Cluster (p2, p5, p3, p6, p4)
- Mise à jour de la matrice de ressemblance
 - o Distance minimale

Calcul de similarité (1)

• Difficulté:

• Trouver une métrique entre les clusters

• Différentes possibilités

- Valeur minimale
 - Distance entre les 2 points les plus proches
 - $D_{min}(C_i, C_j) = \min(d(x_i, x_j), x_i \in C_i; x_j \in C_j)$
 - Classes assez « générales »
 - Sensibilité aux anomalies et aux données bruitées

- Distance entre les 2 points les plus éloignés
- $D_{max}(C_i, C_j) = \max(d(x_i, x_j), x_i \in C_i; x_j \in C_j)$
 - Classes plus spécifiques (points regroupés très proches)
 - Sensibilité aux anomalies et aux données bruitées

<u>۾</u>

Calcul de similarité (2)

• Valeur entre centres

- Distance entre les centres de chaque cluster
- $D_{cg}(C_i, C_j) = d(\mu_i, \mu_j)$
 - Moins sensible aux anomalies et données bruitées

• Valeur moyenne

- Distance moyenne entre toute paire de points
- $D_{moy}(C_i, C_j) = \frac{\sum_{x_i \in C_i} \sum_{x_j \in C_j} d(x_i, x_j)}{n_i \times n_j}$
 - Classes homogènes
 - Moins sensible aux anomalies et données bruitées

Autre approche

Clustering de Ward

- Méthode hiérarchique
- Maximiser l'homogénéité des clusters
 - Les méthodes précédentes visent à la séparation
- Deux clusters sont fusionnés :
 - l'augmentation de la variance intra-cluster est minimale
 - moyenne des distances au carré entre chaque point et le centre μ_k

$$I_k = \frac{1}{n_k} \sum_{x \in C_k} d^2(x, \mu_k)$$

63

Résultats différents (1)

Saut minimal (single linkage)

	р1	p2	р3	p4	р5	р6
p1	0					
p2	0,23	0				
р3	0,22	0,14	0			
p4	0,37	0,19	0,16	0		
р5	0,34	0,14	0,28	0,28	0	
р6	0,24	0,24	0,10	0,22	0,39	0

Résultats différents (2)

Saut maximal (complete linkage)

- Sélection Min
- Mise à jour de la matrice
 - o Distance maximale

Saut moyen (average linkage)

- Sélection Min
- Mise à jour de la matrice
 - o Distance moyenne

Synthèse clustering hiérarchique ascendant

Méthode flexible

- Nombre de clusters non fixé
 - A établir en fonction du dendrogramme
 - Evaluer les différentes partitions en utilisant les mesures de qualité d'un clustering

• Caractéristiques :

- Complexité : au moins n^2 (calcul de distance)
- Passage à l'échelle difficile
- Pas de remise en cause des classes fusionnées
- Sensible aux anomalies (outliers)

Plan

3. Problème de clustering

4. Premières méthodes

- 1. Méthode par partitionnement : k-means
- 2. Méthodes hiérarchiques : ascendant et descendant
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils

67

Clustering hiérarchique descendant

Principe

- Clustering descendant (divisif)
 - Initialement tous les points sont dans le même cluster
 - Le diviser jusqu'à séparer tous les points
 - Sélectionner les points les moins similaires
- Assez peu de méthodes?
 - Nombre de possibilités pour diviser en $2:2^{n-1}-1$
 - Approche ascendante : nombre de possibilités pour regrouper : $\frac{n(n-1)}{2}$
- Approches heuristiques
 - Ascendante : regrouper les observations les plus proches
 - Descendante : séparer les observations les plus éloignées
 - basées sur calculs de distance

Méthode basée sur un calcul d'arbre couvrant

- Calcul de l'arbre couvrant minimal
 - Minimal Spanning Tree (MST)
 - Distance « saut minimal » (single link)

69

Plan

- 1. Contexte: l'Intelligence Artificielle
- 2. Contexte: l'apprentissage automatique
- 3. Problème de clustering
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils
- 7. Fouille de données
- 8. Réduction de dimensions (Analyse en Composantes principales)

71

Plan - section 5

- 3. Problème de clustering
- 4. Premières méthodes
 - 1. Méthode par partitionnement : k-means
 - 2. Méthodes hiérarchiques : ascendant et descendant
- 5. Méthodes basées voisinage (densité) et basées graphes
 - 1. Clustering basé densité : DBSCAN
 - 2. Clustering basé graphe
- 6. Boite à outils

Méthode DBSCAN (1)

Objectif

- Obtenir des formes non convexes
- Principe
 - Pour associer les 2 points A et B
 - créer un chemin pour passer de l'un à l'autre en restant à l'intérieur du même cluster
 - Notion de voisinage
- DBSCAN: Density-Based Spatial Clustering of Applications with Noise
- Densité:
 - Nombre de points compris dans un rayon donné

73

Méthode DBSCAN (2)

Voisinage

- Pour une observation x_i , et une valeur ε
 - Epsilon voisinage : $N_{\varepsilon}(x_i) = \{x_j \in X \mid d(x_i, x_j) < \varepsilon\}$
- Point intérieur (core point) x_i : si $|N_{\varepsilon}(x_i)| \ge min_{pt}$

- Il existe une suite de points intérieurs y_1, y_2, \dots, y_m tels que
 - $y_1 \in N_{\varepsilon}(x_i), y_2 \in N_{\varepsilon}(y_1), \dots, x_i \in N_{\varepsilon}(y_m)$

Méthode DBSCAN (3)

• Exemple:

- Seuil min_{pt} =4
 - Points intérieurs : tous les points en rouge
 - o Même cluster que A
 - Points atteignables : tous les points en jaune
 - o Ne sont pas des points intérieurs
 - o Taille de voisinage trop faible
 - o Mais dans voisinage de points intérieurs
 - o Même cluster que A
 - Points atypiques : point en bleu
 - o Ne sont pas atteignables par les points intérieurs existant
 - o Ne sont pas eux-mêmes des points intérieurs

75

Méthode DBSCAN (4)

Principe

- Maintenir une liste de points visités
- Répéter
 - Sélectionner un point x non visité
 - Construire N le voisinage de x
 - Si $|N| < min_{pt}$ alors marquer $x \leftarrow$ bruit
 - Sinon // x est un point intérieur
 - o Initialiser un cluster $C \leftarrow \{x\}$
 - o Agrandir le cluster C par voisinage
 - o Ajouter C à la liste des clusters
 - o Marquer les points de C comme visités
- Arrêt : tous les points sont visités

Le point orange = cluster violet

Méthode DBSCAN (5)

Algorithme

DBSCAN(D, eps, MinPts)

k = 0

pour chaque point P non visité des données D

marquer P comme visité

PtsVoisins = epsilonVoisinage(D, P, eps)

si tailleDe(PtsVoisins) < MinPts

marquer P comme BRUIT

sinon

k ← k+1

etendreCluster(D, P, PtsVoisins, k, eps, MinPts)

etendreCluster(D, P, PtsVoisins, k, eps, MinPts) ajouter P au cluster k pour chaque point P' de PtsVoisins si P' n'a pas été visité marquer P' comme visité PtsVoisins' = epsilonVoisinage(D, P', eps) si tailleDe(PtsVoisins') >= MinPts PtsVoisins = PtsVoisins U PtsVoisins' si P' n'est membre d'aucun cluster

ajouter P' au cluster k

epsilonVoisinage(D, P, eps)
 retourner tous les points de D qui sont à une distance inférieure à epsilon de P

77

Méthode DBSCAN (6)

• Exemple

Original Points

Clusters

Caractéristiques (1)

Intérêts

- Pas besoin de fixer le nombre de cluster
- Peut déterminer des clusters non convexes
- Est robuste au bruit et anomalies

Difficulté

- Paramètres à déterminer
 - Fixer la taille du voisinage et le nombre de points à considérer
 - Lien valeur de k et MinPts
 - Déterminer le graphes des distances des k plus proches voisins de chaque point
 - Inflexion : guide pour la valeur epsilon

7a

Caractéristiques (2)

Limites

• Densité variable dans les données

Original Points

Grande dimension

Plan

3. Problème de clustering

4. Premières méthodes

- 1. Méthode par partitionnement : k-means
- 2. Méthodes hiérarchiques : ascendant et descendant

5. Méthodes basées voisinage (densité) et basées graphes

- 1. Clustering basé densité : DBSCAN
- 2. Clustering basé graphe
- 6. Boite à outils

81

Clustering basé graphe (1)

Graphe de proximité

- Un point : un sommet du graphe
- Chaque lien entre 2 sommets est valué par une pondération représentant la proximité
- Déterminer la matrice de similarité / proximité
- Graphe obtenu : graphe complet

Principe

- Filtrer des liens (sommets éloignés)
- Clusters : « composantes connexes » du graphe
- « Sparsification » du graphe

Clustering basé graphe (2)

• « Sparsification » du graphe

- Conserver un nombre réduit de voisins pour chaque sommet
 - Données proches : devraient être dans le même cluster
 - Réduire les effets du bruit et des anomalies

- Réduire la quantité d'information à manipuler
 - Diminuer le temps de calcul pour le clustering
 - Augmenter la taille des problèmes pouvant être considérés

83

Clustering basé graphe (3)

• Graphe de voisinage

- Un point : un sommet du graphe
- Chaque lien entre 2 sommets est valué par leur nombre de voisins en commun (si les 2 sommets sont connectés)
- Graphe SNN: Shared Nearest Neighbor

Clustering basé graphe (4)

Principe

- Partir du graphe de proximité (clairsemé)
- Établir le graphe SNN

Sparse Graph

Shared Near Neighbor Graph

• Méthodes de clustering sur le graphe SNN

85

Clustering basé graphe (5)

• Algorithme SNN-DBSCAN

- 1. Calculer la matrice de similarité point à point
- 2. Filtrer la matrice pour ne conserver que k voisins les plus similaires
- 3. Construire le graphe SNN
- 4. Appliquer le principe de DBSCAN
 - Paramètres : epsilon et MinPts
 - Calculer le epsilon-voisinage de chaque point $x \rightarrow$ densité SNN(x)
 - Déterminer les points intérieurs (voisinage au moins de taille MinPts) et construire les clusters associés
 - Retirer les points atypiques

Variantes (1)

- Autres méthodes utilisant le graphe SNN
 - Jarvis-Patrick, Chameleon, Rock,
 - Jarvis-Patrick
 - 1. Calculer la matrice de similarité point à point
 - 2. Filtrer la matrice pour ne conserver que k voisins les plus similaires
 - 3. Construire le graphe SNN
 - Appliquer un seuil de similarité sur la matrice
 - appliquer une recherche de composantes connexes pour obtenir les clusters

87

Variantes (2)

- Méthode Chameleon
 - Pré-processing :

- Deux phases
 - Déterminer des sous clusters initiaux (partition du graphe des k-ppv)
 - Approche hiérarchique ascendante :
 - Mesures spécifiques pour regrouper des clusters (inter-connectivité et proximité)

Méthode SNN-DBSCAN

Intérêt

- Densité variable des données
- Formes complexes

Original Points

SNN Clustering

Limites

- Tous les points ne sont pas placés dans un cluster
- Paramétrage (lié à DBSCAN)

89

Plan

- 1. Contexte: l'Intelligence Artificielle
- 2. Contexte: l'apprentissage automatique
- 3. Problème de clustering
- 4. Premières méthodes
- 5. Méthodes basées voisinage (densité) et basées graphes
- 6. Boite à outils
- 7. Fouille de données
- 8. Réduction de dimensions (Analyse en Composantes principales)

Scikitlearn (1)

Scikitlearn

- Librairie d'algorithmes d'apprentissage surpervisé et non suppervisé
- Interface en Python

- Basé sur (NumPy, SciPy, Matplotlib, Ipython, Sympy, Pandas)
- Pour le chargement, la manipulation et le résumé de données : NumPy, Pandas

Scikit-learn homepage

- http://scikit-learn.org
- Presentations et Tutorials
 - http://scikit-learn.org/stable/presentations.html

91

Scikitlearn (2)

Scikitlearn (3)

Clustering

- 9 méthodes proposées et comparées
 - http://scikit-learn.org/stable/modules/clustering.html

93

Conclusion

Clustering

- Problème complexe
 - mal défini
 - Taille de l'espace des solutions
- Très nombreuses méthodes
 - Focus sur quelques méthodes approchées
 - Définition de similarité / distance
 - Méthodes dépendant du contexte applicatif
 - Assez peu de méthodes exactes
 - Graphes, Programmation Linéaire en nombre entiers, Programmation par Contraintes
 - Algorithmes de Branch and Bound, Méthodes de filtrage, \dots

Conclusion

Variantes

- Clustering sous contraintes
 - Clusters

Contrainte de capacité:

 $\alpha \leq |C_i| \leq \beta$

Contrainte du diamètre

maximal

Contrainte de marge minimale

Contrainte de densité

. . .

Elements

T-B-H Dao, K-C Duong, C. Vrain - Constrained clustering by constraint programming. Artificial Intelligence Journal (244, pp. 70-94) - 2017

95