# $11a_{205} (K11a_{205})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{45} - u^{44} + \dots - u - 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 45 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{45} - u^{44} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{17} + 8u^{15} - 25u^{13} + 36u^{11} - 19u^{9} - 4u^{7} + 2u^{5} + 4u^{3} - u \\ -u^{19} + 9u^{17} - 32u^{15} + 55u^{13} - 43u^{11} + 9u^{9} + 4u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ u^{10} - 4u^{8} + 5u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{21} + 10u^{19} + \cdots - 2u^{3} - u \\ u^{21} - 9u^{19} + 33u^{17} - 62u^{15} + 62u^{13} - 33u^{11} + 13u^{9} - 6u^{7} + u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{32} + 15u^{30} + \cdots + 2u^{2} + 1 \\ u^{32} - 14u^{30} + \cdots + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{32} + 15u^{30} + \cdots + 2u^{2} + 1 \\ u^{32} - 14u^{30} + \cdots + 2u^{6} - 2u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-4u^{42} + 76u^{40} + \cdots 4u 2$

### (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing         |
|--------------------|----------------------------------------|
| $c_1, c_6$         | $u^{45} + u^{44} + \dots + u - 1$      |
| $c_2, c_5, c_7$    | $u^{45} + 11u^{44} + \dots - u - 1$    |
| $c_3$              | $u^{45} + 3u^{44} + \dots + 7u + 3$    |
| $c_4, c_9, c_{10}$ | $u^{45} - u^{44} + \dots - u - 1$      |
| c <sub>8</sub>     | $u^{45} + u^{44} + \dots + 44u - 40$   |
| $c_{11}$           | $u^{45} - 9u^{44} + \dots + 729u - 89$ |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing          |
|-----------------------|---------------------------------------------|
| $c_1, c_6$            | $y^{45} + 11y^{44} + \dots - y - 1$         |
| $c_2, c_5, c_7$       | $y^{45} + 47y^{44} + \dots - 9y - 1$        |
| $c_3$                 | $y^{45} - 5y^{44} + \dots + 31y - 9$        |
| $c_4, c_9, c_{10}$    | $y^{45} - 41y^{44} + \dots - y - 1$         |
| <i>C</i> <sub>8</sub> | $y^{45} + 7y^{44} + \dots - 11024y - 1600$  |
| $c_{11}$              | $y^{45} + 19y^{44} + \dots - 92805y - 7921$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -1.081740 + 0.103222I | -0.55475 - 2.53820I                   | -1.85794 + 4.98062I |
| u = -1.081740 - 0.103222I | -0.55475 + 2.53820I                   | -1.85794 - 4.98062I |
| u = 1.17086               | 2.04246                               | 5.49400             |
| u = -1.177900 + 0.221582I | 5.59455 - 6.24371I                    | 4.08567 + 6.12076I  |
| u = -1.177900 - 0.221582I | 5.59455 + 6.24371I                    | 4.08567 - 6.12076I  |
| u = -0.327711 + 0.702255I | 5.55749 - 9.33109I                    | 3.17264 + 7.99089I  |
| u = -0.327711 - 0.702255I | 5.55749 + 9.33109I                    | 3.17264 - 7.99089I  |
| u = 0.336008 + 0.691887I  | 5.95973 + 3.04960I                    | 4.06449 - 3.14119I  |
| u = 0.336008 - 0.691887I  | 5.95973 - 3.04960I                    | 4.06449 + 3.14119I  |
| u = 1.213100 + 0.213850I  | 5.84619 + 0.30511I                    | 4.74215 + 0.I       |
| u = 1.213100 - 0.213850I  | 5.84619 - 0.30511I                    | 4.74215 + 0.I       |
| u = -0.591876 + 0.448289I | 6.60488 + 5.35917I                    | 5.58298 - 2.28264I  |
| u = -0.591876 - 0.448289I | 6.60488 - 5.35917I                    | 5.58298 + 2.28264I  |
| u = 0.568197 + 0.462450I  | 6.90053 + 0.89679I                    | 6.21998 - 2.86996I  |
| u = 0.568197 - 0.462450I  | 6.90053 - 0.89679I                    | 6.21998 + 2.86996I  |
| u = -0.269512 + 0.670457I | -1.92036 - 5.51147I                   | -2.23282 + 8.80193I |
| u = -0.269512 - 0.670457I | -1.92036 + 5.51147I                   | -2.23282 - 8.80193I |
| u = -0.019331 + 0.669875I | 2.10207 + 2.93926I                    | -0.68998 - 2.61803I |
| u = -0.019331 - 0.669875I | 2.10207 - 2.93926I                    | -0.68998 + 2.61803I |
| u = 0.283883 + 0.605501I  | 0.18779 + 2.08707I                    | 3.93114 - 4.06148I  |
| u = 0.283883 - 0.605501I  | 0.18779 - 2.08707I                    | 3.93114 + 4.06148I  |
| u = -0.174737 + 0.630370I | -3.06951 - 0.40423I                   | -6.40296 + 0.79013I |
| u = -0.174737 - 0.630370I | -3.06951 + 0.40423I                   | -6.40296 - 0.79013I |
| u = 1.370030 + 0.236669I  | 1.84057 + 3.53925I                    | 0                   |
| u = 1.370030 - 0.236669I  | 1.84057 - 3.53925I                    | 0                   |
| u = 1.389940 + 0.138970I  | 5.13702 - 0.60420I                    | 0                   |
| u = 1.389940 - 0.138970I  | 5.13702 + 0.60420I                    | 0                   |
| u = -0.535574 + 0.250743I | -0.56423 + 2.11330I                   | 1.09230 - 3.69401I  |
| u = -0.535574 - 0.250743I | -0.56423 - 2.11330I                   | 1.09230 + 3.69401I  |
| u = -1.40867 + 0.18655I   | 6.35213 - 3.35003I                    | 0                   |

| Solutions to $I_1^u$     | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|--------------------------|---------------------------------------|--------------------|
| u = -1.40867 - 0.18655I  | 6.35213 + 3.35003I                    | 0                  |
| u = -1.41039 + 0.23841I  | 5.60817 - 5.19685I                    | 0                  |
| u = -1.41039 - 0.23841I  | 5.60817 + 5.19685I                    | 0                  |
| u = 1.40670 + 0.26177I   | 3.43096 + 8.91009I                    | 0                  |
| u = 1.40670 - 0.26177I   | 3.43096 - 8.91009I                    | 0                  |
| u = 0.346105 + 0.427336I | 0.805234 + 0.974268I                  | 6.02798 - 5.00492I |
| u = 0.346105 - 0.427336I | 0.805234 - 0.974268I                  | 6.02798 + 5.00492I |
| u = 1.43383 + 0.27147I   | 11.2002 + 12.8798I                    | 0                  |
| u = 1.43383 - 0.27147I   | 11.2002 - 12.8798I                    | 0                  |
| u = -1.43584 + 0.26614I  | 11.63810 - 6.54354I                   | 0                  |
| u = -1.43584 - 0.26614I  | 11.63810 + 6.54354I                   | 0                  |
| u = 1.45671 + 0.13963I   | 13.09220 - 3.34284I                   | 0                  |
| u = 1.45671 - 0.13963I   | 13.09220 + 3.34284I                   | 0                  |
| u = -1.45665 + 0.14856I  | 13.32800 - 3.02786I                   | 0                  |
| u = -1.45665 - 0.14856I  | 13.32800 + 3.02786I                   | 0                  |

II. u-Polynomials

| Crossings          | u-Polynomials at each crossing         |
|--------------------|----------------------------------------|
| $c_1, c_6$         | $u^{45} + u^{44} + \dots + u - 1$      |
| $c_2, c_5, c_7$    | $u^{45} + 11u^{44} + \dots - u - 1$    |
| $c_3$              | $u^{45} + 3u^{44} + \dots + 7u + 3$    |
| $c_4, c_9, c_{10}$ | $u^{45} - u^{44} + \dots - u - 1$      |
| c <sub>8</sub>     | $u^{45} + u^{44} + \dots + 44u - 40$   |
| $c_{11}$           | $u^{45} - 9u^{44} + \dots + 729u - 89$ |

III. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing          |
|--------------------|---------------------------------------------|
| $c_1, c_6$         | $y^{45} + 11y^{44} + \dots - y - 1$         |
| $c_2, c_5, c_7$    | $y^{45} + 47y^{44} + \dots - 9y - 1$        |
| $c_3$              | $y^{45} - 5y^{44} + \dots + 31y - 9$        |
| $c_4, c_9, c_{10}$ | $y^{45} - 41y^{44} + \dots - y - 1$         |
| c <sub>8</sub>     | $y^{45} + 7y^{44} + \dots - 11024y - 1600$  |
| $c_{11}$           | $y^{45} + 19y^{44} + \dots - 92805y - 7921$ |