Unwrapping Customer Delight

Milestone #4 Meeting: The Analysis Phase

The Estée Lauder Companies

Why We Care About the Average Treatment Effect (ATE)

- In experiments (A/B tests, clinical trials, campaigns), we want to know: "Did the treatment cause a measurable change?"
- The Average Treatment Effect (ATE) captures the causal impact of a treatment across all participants
- Defined as: ATE = E[Y(1)] E[Y(0)]where Y(1) = outcome if treated, Y(0) = outcome if not treated
- Because we can't observe both outcomes for the same unit, we estimate this using control vs. treatment groups
- Relevance to our project:
 - Treatment = sending customers a "gift"
 - Outcome = their post-intervention revenue (\$)
 - ATE = average change in revenue attributable to the gift

- Thanks to randomization, treatment assignment is independent of other customer characteristics.
- This lets us estimate:

$$ATE = Y_{treatment} - Y_{control}$$

the difference in average outcomes between treatment and control.

- Two equivalent ways to compute this:
 - Two-sample t-test: compares group means directly
 - Simple regression: $y_i = \beta_0 + \beta_1 T_i + \epsilon_i$
 - Τ; treatment indicator (1 = treated, 0 = control)
 β₁: estimate of the ATE
- Both approaches produce the same estimate when data are randomized they differ only in *implementation*, not in math.

- Even though the regression and t-test yield the same ATE now, regression offers **important advantages**:
 - Extensibility we can later add control variables (covariates) or interaction terms
 - Robustness we can use heteroskedasticity-robust standard errors (like "HCO") when group variances differ
 - Consistency of workflow it's easier to build on this structure when moving to more advanced estimators (like MLRATE).
- Conceptually, think of the regression as a generalized t-test framework:
 - One model type, many extensions
 - You'll use the same pattern for the variance-reduced estimator in Milestone #6

Computing the Unadjusted ATE and Confidence Interval

```
import statsmodels.api as sm

# Suppose you have variables 'revenue' (outcome) and
# 'assignment' (with 0=control, 1=treatment) in memory

# 1. Define model: revenue = b0 + b1 * assignment + error

X = sm.add_constant(assignment)
y = revenue

# 2. Fit OLS regression
model = sm.OLS(y, X).fit(cov_type="HCO")
print(model.summary(xname=["const", "T"]))

# 3. Extract results
ate = model.params[1] # index 1 corresponds to 'assignment'
ci_lower, ci_upper = model.conf_int()[1]

print(f"ATE: {ate:.4f}")
print(f"95% CI: [{ci_lower:.4f}, {ci_upper:.4f}]")
```

• The **95% CI** gives a range of plausible values for the *true* ATE, based on the sample data

• Frequentist interpretation:

- If we were to repeat this experiment many times, 95% of those CIs would contain the true ATE
- It does **not** mean there's a "95% chance" that *this* interval contains the true value
- The truth is fixed; the CI is random across repeated samples

Practical intuition:

- A narrow CI → precise estimate (low variance)
- A wide CI → noisy estimate (uncertain effect)
- If the CI excludes 0 → effect is statistically significant

Computing the Unadjusted ATE

See the below OLS results from two analyses of the same dataset, one with a larger sample size. The true effect is 20\$.

- Note: this OLS summary is for illustrative purposes only, using a separate dataset not related to your project.
- P-value: The probability that in reality there is no treatment effect (i.e. the null hypothesis is true) and that the observed difference in means is purely by random chance.

or the second						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:		у		squared:	0.232	
		(DLS Ad	j. R-square	0.230	
		Least Squa		statistic:	90.12	
		Tue, 10 Sep 2024		ob (F—stati	5.89e-51	
		14:30	:25 Lo	g-Likelihoo	-3330.3	
			398 AI			6669.
		894		C:		6688.
Df Model:	- 58		3			
Covariance 1	ype:	nonrobi	ust 			
	coef	std err		t P> t	[0.02	5 0.975]
const	11.1637	23.366	0.47	8 0 . 63	3 –34 . 69!	5 57.022
x	1.0777	0.301	3.57	5 0.00	0 0.48	6 1.669
treated	10.4790	36.389	0.28	8 0.77	3 -60.93	9 81.897
x:treated	-0.0642	0.453	-0.14	2 0.88	7 –0.95	4 0.825
 Omnibus:		0.884 Dui		 rbin-Watson	:	1.928
Prob(Omnibus):		0.643		rque-Bera (0.965	
Skew:		-0.066		ob(JB):		0.617
Kurtosis:		2.909		nd. No.	1.09e+04	

Treatment effect IS NOT statistically significant

- p = 0.773
- There is a ~77% chance that the null hypothesis is actually true (i.e. no treatment effect) and that we observed a \$10.48 effect in this sample by pure chance.
- Notice the smaller sample size and R-squared, and how the resulting decrease in power masks the true (existing) effect.

OLS Regression Results											
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		y OLS Least Squares Tue, 10 Sep 2024 14:50:25 13861 13857 3 nonrobust		<pre>Prob (F-statistic):</pre>		:	0.864 0.864 2.943e+04 0.00 -51492. 1.030e+05 1.030e+05				
=======	coef	std err		t	P> t	[0.025	0.975]				
const x treated x:treated	10.2356 1.0946 21.2567 -0.2034	0.340 0.007 1.597 0.017	161. 13.	.062 .271 .310 .894	0.000 0.000 0.000 0.000	9.568 1.081 18.126 -0.237	10.903 1.108 24.387 -0.170				
Omnibus: Prob(Omnibu: Skew: Kurtosis:	s):	0. -0.	104 949 000 985				2.002 0.123 0.940 1.27e+03				

Treatment effect IS statistically significant

- p = 0
- There is a **0% chance** that the null hypothesis is true (i.e. no treatment effect) and that we observed a **\$21.26 effect** in this sample **by pure chance**.
- With a sufficient size, this sample has enough power to successfully detect the true (existing) effect.

- The **ATE** quantifies the *causal lift* from treatment in randomized experiments
- In a simple randomized design with only a treatment indicator and an intercept, the **regression** coefficient on treatment is *algebraically identical* to the difference in group means
- Regression is preferred in practice because it's flexible, robust, and easy to extend
- The **confidence interval** expresses the *precision* of our estimate not the confidence in our model
- Looking ahead to Milestone #6:
 - We'll introduce the MLRATE estimator, which enhances precision by incorporating information from pre-treatment covariates that help explain variation in outcomes
 - The idea as always: use machine learning to explain outcome variance and thereby reduce noise in the ATE estimate

Estimating Standard ATE

- Load data: use experiment_results_*.parquet
 - Use assignment as treatment indicator and revenue as post-experiment outcome
- Fit OLS model (as specified in slides 3 and 5)
 - Estimate the unadjusted treatment effect using statsmodels.OLS with robust SEs (cov_type=HCO)
 - Generate a results summary printout (similar to those on slide 6) and extract:
 - Coefficient on assignment → your ATE
 - Its 95% confidence interval, and compute the CI width
- Reflect on findings:
 - What does the estimated ATE suggest about the campaign's impact?
 - Is the CI too wide or narrow? Does it include 0? What are the implications of this for business decision-making?
 - What is the p-value for the treatment coefficient? Does it provide strong evidence to reject the null?
 - How might sample size or variance have influenced your results?
- Meeting will also cover:
 - MLRATE approach for ATE estimation

Project milestones and timeline

These are the milestones for your Challenge Project. They include the <u>CRISP-DM</u> process steps you learned about in your ML Foundations course. In addition, there is an educational component in the front-end.

- EDA on pre-experiment data
- Present EDA findings and data preprocessing

MILESTONE 2

- You will have received the experiment data
- Perform EDA on experimental data
- Present EDA findings and data preprocessing
- Second, estimate ATE with MLRATE
- Compare to standard ATE from OLS

MILESTONE 4

MILESTONE 6

MILESTONE 1

- Review material from "Helpful resources" slide
- Q&A with challenge advisors

MILESTONE 3

- Power analysis
 - Determine the variance-reduced sample size for the upcoming RCT
 - Compare to standard t-test sample size

MILESTONE 5

- Estimate ATE using two approaches:
 - First by using the standard method to estimating the appropriate OLS regression coefficient

MILESTONE 7

- Deliver final project presentation: RCT, MLRATE, key findings
- Present quantified gift impact and campaign recommendations
- Final Q&A and project recap