Q learning - aproximácia funkcie ohodnotení neurónovou sieťou

Michal CHOVANEC Fakulta riadenia a informatiky

Jún 2015

Úvod

Cieľom je nájsť optimálnu stratégiu - maximalizácia odmeny (účelovej funckie)

- Vopred nie je známa hodnota odmeny vykonanej akcie
- Vopred nie je známi ani stav do ktorého sa systém dostane
- Je možné určiť v akom stave sa systém nachádza
- Je presne daná množina akcií v každom stave
- Aspoň pre cieľový stav je daná výška odmeny

Úvod

Aplikácie zo sveta robotických sytémov

- Učenie sa pohybu, s ohľadom na techické prostriedky a terén
- Multirobotické plánovanie hľadanie optimálneho rozhodnutia pre celú skupinu
 - Mapovanie
 - Hl'adanie ciel'a
 - Robotický futbal
 - Capture the flag
- Optimalizácia v automatických dopravných systémov
 - Dať prednosť, alebo predbehnúť
 - Kedy ísť zobrať náklad, predikcia
- Všetky problémy kde : ako niečo urobiť je zložité popísať
 - Systém si učením sám nájde postup ako niečo robiť
 - Vyžaduje sa adativita a samostatnosť

Q learning

- Q(s, a) funkcia ohodnotení
- s stav
- a akcia v stave s
- R(s, a) funkcia okamžitých odmien, za vykonanie a v stave s

$$s \in \mathbb{S}$$
 $a_s \in \mathbb{A}_s$

Q learning - prechod stavovým priestorom

Markovov rozhodovací proces

Q learning - ohodnotenie Q(s, a)

Z Bellmanového princípu optimality

$$Q_{n+1}(s,a) = R_{n+1}(s,a) + \gamma \max_{a'} Q_n(s'_{n+1},a')$$
 (1)

Kde

 $R_{n+1}(s, a)$ je získaná odmena (reward) za vykonanie akcie a v stave s v čase n+1

 $\max_{a'} Q_n(s'_{n+1},a')$ je výber akcie v stave s_{n+1} ktorá má najväčšia odmenu

 γ je podiel z maximálnej odmeny v stave s'_{n+1} pri vykonaní najlepšej možnej akcie v tomto stave

Q learning - ohodnotenie Q(s, a)

Varianty algoritmu Filtrovanie v stochastickom prostredí

$$Q_{n+1}(s,a) = \alpha Q_n(s,a) + (1-\alpha)(R_{n+1}(s,a) + \gamma \max_{a'} Q_n(s'_{n+1},a'))$$

SARSA algoritmus

$$Q_{n+1}(s,a) = \alpha Q_n(s,a) + (1-\alpha)(R_{n+1}(s,a) + \gamma Q_n(s'_{n+1},a'))$$

kde
$$\alpha \in \langle 0, 1 \rangle$$

Q learning - výber akcie

Boltzmanové rozdelanie

$$P(s|a_i) = \frac{k^{Q(s,a_i)}}{\sum_{j \in \mathbb{A}} k^{Q(s,a_j)}}$$

Kde $k\in\langle 0,\infty)$ a určuje správanie sa agenta, pre $Q(s,a)\in\langle -1,1\rangle$ možno pozorovať tieto druhy správania

- k = 1 prieskumník
- $k = \langle 2, 10 \rangle$ zlatý stred
- k >> 10 pažravý (greedy) agent

Q learning - problémy

- ullet Rosiahly stavový priestor, Q(s,a) je možné nájsť len približne
 - Interpolácia
 - Transformácia pomocou features a ich lineárna kombinácia
 - · Aproximácia neurónovou sieťou
- Výber akcie
 - Tak aby neboli prehľadávané akcie ktoré nemajú cenu
- Zdieľanie a syntéza Q(s,a) medzi viacerími agentami

Experiment

Cieľom je overiť aproximáciu Q(s,a) dvoma rôznymi neurónovými sieťami pri rôznych veľkostiach k v malom stavovom priestore - Q(s,a) vieme spočítať presne.

Experiment

Boli porovnávané dva modely neurónov s optimálnym riešením

$$y(n) = \varphi(\sum_{i=0}^{N-1} x_i(n)w_i(n))$$
 (2)

$$y(n) = \sum_{j=1}^{\infty} \sum_{i=0}^{N-1} x_i^j(n) w_{ji}(n) + \sum_{j=0}^{N-1} \sum_{i=j+1}^{N-1} x_i(n) x_j(n) v_{ji}(n)$$
 (3)

Prečo by 3 mal byt lepší? Kolmogorov teorém 3 skryté vrstvy!

Experiment

Hypotéza:

Problém aproximácie q=Q(s,a) je pridelenie každému s, a práve jedno q. To vedie na formuláciu :

AK je systém v stave s A bola vykonaná akcia a, POTOM výstup je q.

Pre jeden stav a dve akcie (ohodnotené ako a_0 , a_1) možno napísať

$$q = va_0 + (1 - v)a_1 (4)$$

Kde v je výber akcie a platí $v \in \langle 0, 1 \rangle$. Pozn. všetky veličiny sú premenné. To je ale potom v súlade s 3.

Experiment - parametre

```
iterations = 10000000
agent :
state_density = 1/8.0
alpha = 0.98
gamma = 0.7
neural network :
hidden layers = 2
neurons in hidden layers = 10
weight range = 4.0
neuron order = 7
init weight range = 0.1
eta = 0.001
```

O learning - aproximácia funkcie ohodnotení neurónovou siet

Experiment, k = 1.1, optimálne riešenie

Experiment, k = 1.1, mcculloch pitts neurón

Experiment, k = 1.1, testovaný neurón

Experiment, k = 2.0, optimálne riešenie

Experiment, k = 2.0, mcculloch pitts neurón

Experiment, k = 2.0, testovaný neurón

Experiment, k = 10.0, optimálne riešenie

Experiment, k = 10.0, mcculloch pitts neurón

Experiment, k = 10.0, testovaný neurón

Experiment - zhrnutie

Nevyriešené otázky

- ... ktorými sa momentálne zaoberám
 - 1 Zrýchliť učenie neurónovej siete
 - 2 Urobiť experiment vo veľkom stavovom priestore
 - 3 Implementácia do vyvíjaného multirobotického frameworku

Ďakujem za pozornosť

michal.chovanec@yandex.com