The group G is isomorphic to the group labelled by [16, 6] in the Small Groups library. Ordinary character table of $G \cong C8 : C2$:

	1a	8a	2a	4a	2b	8b	8c	4b	4c	8d
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	-1	1	-1	1	-1
χ_5	1	-E(4)	-1	-1	1	E(4)	E(4)	1	-1	-E(4)
χ_6	1	E(4)	-1	-1	1	-E(4)	-E(4)	1	-1	E(4)
χ_7	1	-E(4)	1	-1	1	-E(4)	E(4)	-1	-1	E(4)
χ_8	1	E(4)	1	-1	1	E(4)	-E(4)	-1	-1	-E(4)
χ_9	2	0	0	-2 * E(4)	-2	0	0	0	2 * E(4)	0
χ_{10}	2	0	0	2 * E(4)	-2	0	0	0	-2*E(4)	0

Trivial source character table of $G \cong C8$: C2 at p = 2:

 $P_2 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2$

 $P_1 = Group([()]) \cong 1$

Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}
p-subgroups of G up to conjugacy in G			P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
Representatives $n_j \in N_i$			1a							
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 2 \cdot \chi_9 + 2 \cdot \chi_{10}$	16	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	8	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	0	4	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	0	4	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	2	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	0	2	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	0	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1

```
P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong C2
P_4 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong C4
P_6 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,9,5,15)(2,12,8,16)(3,4,10,11)(6,7,13,14)]) \cong C4
P_8 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12)]) \cong C8
P_9 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,13,11,12,5,6,4,16)(2,15,14,10,8,9,7,3)]) \cong \mathbb{C} 8
P_{10} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12)]) \cong \mathbb{C}8:\mathbb{C}2
N_1 = Group([(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong \mathbb{C}8:\mathbb{C}2
N_4 = Group([(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong C8:C2
N_6 = Group([(1, 9, 5, 15)(2, 12, 8, 16)(3, 4, 10, 11)(6, 7, 13, 14), (1, 5)(2, 8)(3, 10)(4, 11)(6, 13)(7, 14)(9, 15)(12, 16), (1, 2, 4, 7, 5, 8, 11, 14)(3, 13, 9, 16, 10, 6, 15, 12)]) \cong \mathbb{C}8 : \mathbb{C}2
N_7 = Group([(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12)]) \cong \mathbb{C}8:\mathbb{C}2
N_8 = Group([(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong C8:C2
```

 $N_9 = Group([(1,13,11,12,5,6,4,16)(2,15,14,10,8,9,7,3),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12)]) \cong C8:C2$ $N_{10} = Group([(1,2,4,7,5,8,11,14)(3,13,9,16,10,6,15,12),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C8:C2$