升级 不再提示

# Paxos - 简书

Ceph Monitor 作为 Ceph 服务中的元信息管理角色,肩负着提供高可用的集群配置的维护及提供责任。Ceph 选择了实现自己的 Multi-Paxos 版本来保证 Monitor集群对外提供一致性的服务。Ceph Multi-Paxos 将上层的元数据修改当成一次提交扩散到整个集群,Ceph 中简单的用 Paxos 来指代 Multi-Paxos,我们也沿用这一指代。本文将介绍 Ceph Paxos 的算法细节,讨论其一致性选择,最后简略的介绍代码实现。本文的大部分信息来源于 Ceph Monitor 相关源码,若有偏颇或谬误,敬请指正。

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主 (Leader Electi... 恢复 (Recovery) 成员变化 (Members... 日志截断 (Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

参考

# 算法介绍

#### 概览

Paxos 节点与 Monitor 节点绑定,每个 Monitor 启动一个 Paxos。当有大多数的 Paxos 节点存活时集群可以运行,正常提供服务的过程中,一个节点做为 Leader 角色,其余为 Peon 角色。只有 Leader 可以发起提案,所有 Peon 角色根据本地历史选择接受或拒绝 Leader 的提案,并向 Leader 回复结果。Leader 统计并提交超过半数 Paxos 节点接受的提案。

与人扫安却日 407+ Masitar 二/产户的//k

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户即刻拥有此功能。

升级 不再提示

LEGUEL 火炬流来火「EUII」女又派来的加

会写入本地 Log,被提交的 Log 会最终写入 DB,写入 DB 的提案才最终可见。实现中用同一个 DB 实例承载 Log 和最终数据的存储,并用命名空间进行区分。

除去上面提到的 Leader 及 Peon 外, Paxos 节点还有可能处于 Probing、 Synchronizing、Election 三种状态之一, 如 Figure 1 所示。其中,Election 用来选 举新的 Leader, Probing 用来发现并更新 集群节点信息,同时发现 Paxos 节点之间 的数据差异,并在 Synchronizing 状态中 进行数据的追齐。当 Membership 发生 变化,发生消息超时或 lease 超时后节点 会通过 boostrap 进入 Probing 状态,并 向其他节点广播 prob 消息,所有收到 prob 消息的非 prob 或 synchronizing 节 点会同样回到 Probing 状态。Probing 状 态收到过半数的对 Members 的认可后进 入 Election 状态。同时 Probing 中发现 数据差距过大的节点会进入 synchronizing 状态进行同步或部分同 步。更多的内容会在稍后的 Recovery, Membership 及 Log Compaction 中介

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members... 日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

绍。

#### 代码概述

升级 不再提示



Figure 1

Leader 会向所有 Peon 发送 Lease 消息,收到 Lease 的 Peon 在租约时间内可以直接以本地数据提供 Paxos 读服务,来分担 Leader 的只读请求压力。Lease 过期的 Peon 会退回 Probing 状态,之后通过新一轮的选举产生新的 Leader。

# Leader 会选择当前集群中最大且唯一的 Propose Num, 简称 Pn, 每次新 Leader 会首先将自己的 Pn 增加, 并用来标记自己作为 Leader 的阶段, 作为 Ceph Paxos算法中的逻辑时钟(Logical Clock)。同时,每个提案会被指派一个全局唯一且单调递增的 version,实现中作为 Log 的索引位置。Pn 及 Version 会随着 Paxos 之间的消息通信进行传递,供对方判断消息及发起消息的 Leader 的新旧。Paxos 节点会将当前自己提交的最大提案的version号同 Log 一起持久化供之后的恢复使用。

# 常规过程 (Normal Case)

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members...

日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户即刻拥有此功能。

升级 不再提示

#### QUUIUIII, LEAUEI 付写丨 与用水似判衣ル

- 一个新的提案发送给 Quorum 中的每个 节点,其过程如下,注意这里的 Quorum 固定:
- Leader 将提案追加在本地 Log,并向
   Quorum 中的所有节点发送 begin 消息,消息中携带提案值、Pn 及指向前一条提案 version 的 last\_commit;
- Peon 收到 begin 消息,如果 accept 过更高的 pn 则忽略,否则提案写入本 地 Log 并返回 accept 消息。同时 Peon 会将当前的 lease 过期掉,在下一次收到 lease 前不再提供服务;
- Leader 收到全部 Quorum 的 accept
   后进行 commit。将 Log 项在本地 DB
   执行,返回调用方并向所有 Quorum
   节点发送 commit 消息;
- Peon 收到 commit 消息同样在本地
   DB 执行,完成 commit;
- Leader 追加 lease 消息将整个集群带入到 active 状态。

#### 算法介绍

#### 概览

#### 常规过程(Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members... 日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

升级 不再提示



Figure 2

#### 选主 (Leader Election)

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主 (Leader Electi... 恢复 (Recovery) 成员变化 (Members... 日志截断 (Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

参考

Peon 的 Lease 超时或 Leader 任何消息 超时都会将整个集群带回到 Probing 状态,整个集群确定新的 Members 并最终 进入 Election 状态进行选主。每个节点会 在本地维护并在通信中交互选主轮次编号 election\_epoch, election\_epoch 单调递增,会在开始选主和选主结束时都加一, 因此可以根据其奇偶来判断是否在选主轮次,选主过程如下:

- 将 election\_epoch 加 1, 向 Monmap 中的所有其他节点发送 Propose 消息;
- 收到 Propose 消息的节点进入 election 状态并仅对更新的 election\_epoch 且 Rank 值大于自己的 消息答复 **Ack**。这里的 Rank 简单的 由 ip 大小决定。每个节点在每个 election\_epoch 仅做一次 Ack,这就

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户 即刻拥有此功能。

升级 不再提示

 发送 Propose 的节点统计收到的 Ack 数,超时时间内收到 Monmap 中大多 数的 ack 后可进入 victory 过程,这些 发送 ack 的节点形成 Quorum, election\_epoch 加 1,结束 Election 阶 段并向 Quorum 中所有节点发送
 Victory 消息,并告知自己的 epoch 及当前 Quorum,之后进入 Leader 状态;

算法介绍

概览

#### 常规过程 (Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members... 日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

代码概述

参考

收到 VICTORY 消息的节点完成
 Election, 进入 Peon 状态;



Figure 3

#### 恢复 (Recovery)

经过了上述的选主阶段,便确定了 Leader, Peon 角色以及 Quorum 成员。 但由于 Election 阶段的选主策略,新的 Leader 并不一定掌握完整的 commited

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户即刻拥有此功能。

升级 不再提示

#### 尼门走,CCPITTANUS IK市门走采门区处过

version 顺序,前一条提案被 commit 后才能发起后一条,也就是说 Recovery 的时候最多只能有一条 uncommitted 数据,这种做法虽然牺牲了性能,但却很大程度的简化了 Recovery 阶段及整个一致性算法的实现,而这种性能的牺牲可以由Ceph 层的聚合提交而弥补。

• Leader 生成新的更大的新的 Pn,并通过 **collect** 消息发送给所有的 Peon;

# Peon 收到 collect 消息,仅当 Pn 大于自己已经 accept 的最大 Pn 时才接受。Peon 通过 last 消息返回自己比Leader 多 commit 的日志信息,以及uncommitted 数据;

- Leader 收到 last 消息,更新自己的
   commit 数据,并将新的 commit 日志
   信息通过 commit 消息发送给所有需
  要更新的 Peon;
- 当接收到所有 Peon accept 的 last 消息后,如果发现集群有 uncommitted 数据,则先对该提案重新进行提交, 否则向 Peon 发送 lease 消息刷新其 Lease;

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主 (Leader Electi... 恢复 (Recovery) 成员变化 (Members... 日志截断 (Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

升级 不再提示



Figure 4

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members... 日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

参考

可以看出,当 Leader 和 Peon 之间的距离差距较大时,拉取并重放 Log 的时间会很长,因此在开始选主之前,Ceph Monitor 首先通过如 Figure 1 所示的Synchronizing 来将所有参与 Paxos 节点的日志信息差距缩小到足够小的区间,这个长度由 paxos\_max\_join\_drift 进行配置,默认为 10。Synchronizing 过程中Monitor 节点会根据 Prob 过程中发现的commit 位置之间的差异进行数据的请求和接收。

# 成员变化(Membership Chang

e)

Ceph Paxos 的成员信息记录在 Monmap中,Monmap可以从配置文件中初始化,也可以在后期加入或删除。Ceph Monitor中引入了 Probing 阶段来实现 Memebership 的变化,节点启动、新节点加入、Paxos 各个阶段发生超时、发现新的 prob 消息、Monmap 信息发生变化

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户即刻拥有此功能。

升级 不再提示

PION 旧心不不例列刀计让不工以开入土

Monmap 信息。而这个过程中整个 Paxos 集群是停止对外提供服务的。

# 日志截断 (Log compaction)

通过上面的描述已经知道,Ceph Paxos 的 Log 中记录了每个提案的内容,这些 内容本质是对节点状态机的一组原子操 作。随着集群的正常提供服务, Log 数据 会不断的增加,而过多的 Log 不仅会占 用存储资源,同时会增加日志回放的时 间。所以 Ceph 中引入了一套机制来删除 旧的 Log 数据。每次提案 commit 成功 后,Monitor都会检查当前的Log数据 量,超过某一配置值后便会进行截断 (trim) ,这个保留的长度由 paxos min 进行控制,默认是500。Monitor中用 first committed 来标识当前保留的最早的 Log 的 version 号, trim 过程简单地删除 一定量 Log 并修改 first committed 内 容,需要数据恢复时,如果需要小于 first committed 的内容,则会在如 Figure 1 所示的 Synchronizing 过程中进 行数据的全同步。

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主 (Leader Electi... 恢复 (Recovery) 成员变化 (Members... 日志截断 (Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

参考

# 一致性选择

#### 1, State Machine System

升级 不再提示

JYSICITI。 LOY TTI用ITYTTMXX FANOS

onitor tht又 Ctoto Nachino

节点之间的交互数据都是像 Put, Erase, Compacat 这样的幂等操作; 而在 commit 后才会真正写入到状态机。

#### 2,每次只能一条提案

Ceph Paxos 的提案发起严格有序,并且只有前一条 Log commit 后才会发起新的提案,这也就保证集群最多只能有一条uncommitted 的提案,这也就简化了Recovery 的实现逻辑。能这样做也是由于 Ceph Monitor 上层的聚合提交等减少对一致性协议执行的机制大大降低了Ceph Paxos 对性能的要求。

# 3, 固定的 (Designated) Quoru m

对 Paxos 算法来说,无论选主过程还是正常的访问过程,都需要保证有大多数节点 (Quorum)的成功,通常这个 Quorum 每次是不固定的,而 Ceph Paxos 选择在选主成功后就确定的生成一个 Quorum 集合,之后的所有操作,都只向这节点发出,并等待集合内所有节点的答复,任何的超时都会重新通过 bootstrap 过程退回到 Probing 状态。猜测这里更多的是针对实现复杂度的考虑。

# 4, 双向的 Recovery 方向

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members... 日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

カナ Cash Davaa 6524 子 5年mb /刀+日+兄士 上

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户即刻拥有此功能。

升级 不再提示

LCAUCI TJ PS RTIX T RAITISKIM,

因此在提供服务前 Leader 需要先在 Recovery 阶段恢复自己和集群的数据, Recovery 的数据方向包括从 Peon 到 Leader 和 Leader 到 Peon 两个方向。

#### 5, 使用 Lease 优化只读请求

Ceph Paxos 引入了 Lease 机制来支持Peon 分担 Leader 压力,在 Lease 有效的时间内,Peon 可以使用本地数据来处理只读请求;Peon 在接收到一个新的提案开始是会先取消本地的 Lease,提案commit 后或 Leader 的 Lease 超时后Leader 会刷新所有 Peon 的 Lease;

# 6, Leader Peon 同时检测发起新的 Election

Leader 和 Peon 之间的 Lease 消息同时 承担了存活检测的任务,这个检测是双向 的,Leader 长时间收不到某个 Peon 的 Lease Ack,或者 Peon Lease 超时后依然 没有收到来自 Leader 的刷新,都会触发 新一轮的 Election。

# 代码概述

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主 (Leader Electi... 恢复 (Recovery) 成员变化 (Members... 日志截断 (Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

升级 不再提示



Figure 5

Ceph Monitor 中 Paxos 相关的内容散布在不同的类型中,主要包括 Monitor, Election, Paxos 几个类:

Monitor 中维护了如 Figure 1 中的节点状态转换,并且在不同阶段调度 Election及 Paxos 中的相关功能。同时 Monitor也承担着为其他类提供全局数据的功能。Monitor 通过 boostrap 方法发起Probing 生成或修改 Monmap,并发现节点之间的数据差异,当差异较大时会调用 start sync 进入 Synchronizing 过程。

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主(Leader Electi... 恢复(Recovery) 成员变化(Members... 日志截断(Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述

#### 参考

Election 主要负责选主过程,Monitor 会在 Probing 及 Synchronizing 过程结束后通过 call\_election 开启选主逻辑。
Election 选主结束后分别调用 Monitor 的win\_election 和 lose\_election 将控制权交还给 Monitor。win\_election 和 lose\_election 和 lose\_election 中,Monitor 完成节点的状态变化,并分别调用 Paxos 的 leader\_init和 peon\_init 方法开始 Paxos 作为Leader 或者 Peon 的逻辑。Paxos 由Leader 发起 Recovery 过程,之后进入Active 状态准备提供服务。

LP的字型作人图: Pavaa 的

嗨,简悦内置了 **原生了 PDF 转换方式**,升级为高级账户 即刻拥有此功能。

升级 不再提示

TaxU3 云炯用 IVIUIIIIUI 月7

refresh\_from\_paxos 告知上层,同时,上层也可以向 Paxos 的不同阶段注册回调函数 finish\_context 来完成上层逻辑,如pending\_finishers 或committing finishers 回调队列。

# 参考

RADOS: A Scalable, Reliable Storage

算法介绍 Service for Petabyte-scale Storage

概览 <u>Clusters</u>

常规过程 (Normal ...

选主 (Leader Electi... <u>CEPH SOURCE CODE</u>

恢复 (Recovery)

成员变化 (Members... choices in consensus algorithm

日志截断 (Log com...

Vive La Diffe rence:Paxos vs.

一致性选择

Viewstamped Replication vs. Zab

1, State Machine S...

2,每次只能一条提案

Paxos made simple

3, 固定的 (Designa...

4, 双向的 Recovery... [Paxos made live]

5,使用 Lease 优化… ( <a href="https://static.googleusercontent.com/">https://static.googleusercontent.com/</a>

6, Leader Peon 同... <u>media/research.google.com/zh-</u>

代码概述 <u>CN//archive/</u>)

参考

全文完

本文由 简悦 SimpRead 优化,用以提升阅读体验

使用了全新的简悦词法分析引擎 beta, 点击查 看详细说明

60

#### 算法介绍

#### 概览

#### 常规过程 (Normal ...

选主 (Leader Electi...

恢复 (Recovery)

成员变化 (Members...

日志截断 (Log com...

#### 一致性选择

- 1, State Machine S...
- 2,每次只能一条提案
- 3, 固定的 (Designa...
- 4, 双向的 Recovery...
- 5, 使用 Lease 优化...
- 6, Leader Peon 同...

#### 代码概述