1. (2 pts each) True/False

- (a) (T/F) If f is undefined at x = c, then the limit of f(x) as x approaches c does not exist.
- (b) (T/F) If the limit of f(x) as x approaches c is 0, then there must be a number k such that f(k)0.0001.
- (c) $(T/F) \lim_{x \to 0} \sin\left(\frac{|x|}{x}\right) = 0$
- (d) (T/F) If f is an even function and $\lim_{x\to 2^-} f(x) = 7$ then $\lim_{x\to -2^-} f(x) = 7$

Solution:

- (a) **FALSE**
- (b) TRUE
- (c) **FALSE**
- (d) **FALSE**
- 2. Evaluate the following limits, you may not use l'Hospital's Rule, justify your answers:

(a) (7 pts)
$$\lim_{x \to 1} \frac{\sin(2x)}{\sin(3x)}$$

(b) (7 pts)
$$\lim_{x \to 1^+} \frac{\sqrt{2x}(x-1)}{|x-1|}$$

(c) (7 pts)
$$\lim_{x\to 0} \sqrt{x} \sin\left(\frac{1}{x}\right)$$

(a)
$$(7 \text{ pts}) \lim_{x \to 1} \frac{\sin(2x)}{\sin(3x)}$$
 (b) $(7 \text{ pts}) \lim_{x \to 1^+} \frac{\sqrt{2x}(x-1)}{|x-1|}$ (c) $(7 \text{ pts}) \lim_{x \to 0} \sqrt{x} \sin\left(\frac{1}{x}\right)$ (d) $f(b^2+1) = ?$ given that $f(x) = \begin{cases} |x|+1, & \text{if } x < 1\\ -x+1, & \text{if } x \ge 1 \end{cases}$

Solution:

- (a) $\lim_{x \to 1} \frac{\sin(2x)}{\sin(3x)} = \frac{\sin(2)}{\sin(3)}$
- (b) $\lim_{x\to 1^+} \frac{\sqrt{2x(x-1)}}{|x-1|}$ is an indeterminate form $\frac{0}{0}$ but we can cancel because of the one-sided limit, that is, as $x \to 1^+$, |x-1| = (x-1) and so $\lim_{x \to 1^+} \frac{\sqrt{2x}(x-1)}{|x-1|} = \lim_{x \to 1^+} \frac{\sqrt{2x}(x-1)}{(x-1)} = \lim_{x \to 1^+} \sqrt{2x} = \sqrt{2}$.
- (c) The limit does not exist because the left hand limit does not exist
- (d) The quantity $b^2 + 1$ is always greater or equal to 1 so we simply have $f(b^2 + 1) = -(b^2 + 1) + 1 = -b^2$.
- 3. (18 pts) For what value(s) of k is the function $f(x) = \begin{cases} \sin(kx), & \text{if } x \leq 0 \\ 3x, & \text{if } x > 0 \end{cases}$ continuous at x = 0. A complete answer will include the definition of continuity.

Solution: We have f(0) = 0 and so to be continuous both one-sided limits must equal 0 as $x \to 0^{\pm}$. We compute $\lim_{x\to 0^-} \sin(kx) = \sin(0) = 0$ and similarly $\lim_{x\to 0^+} 3x = 0$ and so the function is continuous independent of k, i.e. $k \in \mathbb{R}$.

4. (20 pts) Show the equation $x + 2\cos(4x) = 0$ has at least one solution. Explain your work.

Solution: It must be noted that the function $f(x) = x + 2\cos(4x)$ is continuous. We can use the IVT to show existence of roots. Note that $f(-\pi/8) = -\pi/8 < 0$ and $f(\pi/8) = \pi/8 > 0$ and so there must exist a number $c \in (-\pi/8, -\pi/8)$ so that f(c) = 0.

- 5. Consider the function $f(x) = \frac{2}{3x+3}$.
 - (a) (14 pts) Find the rate of change of f(x) at x = a.
 - (b) (3 pts) Using part (a) find the rate of change of f(x) at x = -1.
 - (c) (3 pts) Using part (a) find the rate of change of f(x) at x = 0.
 - (d) (20 pts) Using the above information find the equation of two different tangent lines that are parallel to the line that goes through the points (-2,4) and (-5,6).

Solution:

(a) We have

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{\frac{2}{3x + 3} - \frac{2}{3a + 3}}{x - a}$$

$$= \lim_{x \to a} \frac{\frac{2}{3(x + 1)} - \frac{2}{3(a + 1)}}{x - a}$$

$$= \frac{2}{3} \lim_{x \to a} \frac{\frac{a + 1 - (x + 1)}{(x + 1)(a + 1)}}{x - a}$$

$$= \frac{2}{3} \lim_{x \to a} \frac{a - x}{(x + 1)(a + 1)(x - a)}$$

$$= \frac{2}{3} \lim_{x \to a} \frac{-1}{(x + 1)(a + 1)} = \frac{-2}{3(a + 1)^2}$$

- (b) The rate of change at x = -1 does not exist. The one-sided limits of the derivative both are $-\infty$ so that is an acceptable answer as well.
- (c) Plug in 0... we have f'(0) = -2/3.
- (d) The line that goes through the points (-2,4) and (-5,6) has slope $m = \frac{4-6}{-2-(-5)} = \frac{-2}{3}$. We need to set the derivative equal to $\frac{-2}{3}$ and solve for a,

$$\frac{-2}{3(a+1)^2} = -\frac{2}{3} \iff (a+1)^2 = 1 \iff a = 0 \text{ or } a = -2.$$

We have $f(0) = \frac{2}{3}$ and $f(-2) = -\frac{2}{3}$ and so out two tangent lines are

$$t_1: \left(y - \frac{2}{3}\right) = -\frac{2}{3}(x - 0)$$
, and
 $t_2: \left(y + \frac{2}{3}\right) = -\frac{2}{3}(x + 2)$

or

$$t_1: y = -\frac{2}{3}(x-1)$$
, and $t_2: y = -\frac{2}{3}(x+3)$

- 6. The function g(x) = x|x| is differntiable at x = 0. Show this by
 - (a) (x pts) Define g(x) as a piecewise function.
 - (b) (y pts) Using the definition of the derivative consider the left and right hand limits of the difference quotient at 0.

Solution:

(a)

$$g(x) = \begin{cases} -x^2, & \text{if } x \le 0\\ x^2, & \text{if } x \ge 0 \end{cases}$$

(b) Left hand limit:

$$\lim_{h \to 0^{-}} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0^{-}} \frac{-(h)^{2} - 0}{h} = \lim_{h \to 0^{-}} -h = 0$$

and the right hand limit:

$$\lim_{h \to 0^+} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0^-} \frac{(h)^2 - 0}{h} = \lim_{h \to 0^-} h = 0$$

and so the derivative exists.