Digital Image & Video Processing

Lecture 9
Image Segmentation

9. Image Segmentation

- 9.1. Problem Statement
- 9.2. Method
- 9.3. Applications

9.1. Problem Statement

Let us suppose that an image domain I must be segmented in Ndifferent regions $R_1, R_2, ..., R_N$.

It is necessary to determine a segmentation rule is a logical predicate of the form $\mathcal{P}(R)$ having the following properties:

$$I = \bigcup_{i=1}^{N} R_{i}$$

$$R_{i} \cap R_{j} = \emptyset, \quad i \neq j$$

$$P(R_{i}) = True, \quad i = 1, 2, ..., N$$

$$P(R_{i} \cup R_{j}) = False, \quad i \neq j$$

9.2.1. Region growing method

Principle

Geometrical proximity + homogeneity -> connected image regions.

9.2.1. Region growing method

Method

- Starting from some pixels (seeds) representing distinct iamge regions and to grow them, until they cover the entire image.
- In order to implement region growing, we need determine:
 - . Seeds
 - . A rule describing a growth mechanism.
- . A rule checking the homogeneity of the regions after each growth step..

9.2.1. Region growing method

Method

. Seeds

Based on the histogram, choose the seed points corresponding to the histogram peaks.

9.2.1. Region growing method Method

. A rule describing a growth mechanism Growing based on 8-neighborhood.

9.2.1. Region growing method

Method

. A rule checking the homogeneity of the regions after each growth step.

At each step k, for each region $R_i^{(k)}$, i = 1, 2, ..., N

We check if there are unclassified pixels in the 8neighbourhood of each pixel of the region border.

If $P(R_i^{(k)} \cup \{b_i^{(k)}(x,y)\}) = True$ assigning $b_i^{(k)}(x,y)$ to region $R_i^{(k)}$.

9.2.1. Region growing method

Method

. A rule checking the homogeneity of the regions after each growth step.

$$|f(x,y) - m(R_i^{(k)})| < T$$

$$m(R_i^{(k)}) = (1/N(R_i^{(k)})) \sum_{(k,l) \in R_i^{(k)}} f(k,l)$$

$$\sigma(R_i^{(k)}) = \left[(1/N(R_i^{(k)})) \sum_{(k,l) \in R_i^{(k)}} (f(k,l) - m(R_i^{(k)}))^2 \right]^{1/2}$$

cdio

9.2. Method

9.2.1. Region growing method

Method

. A rule checking the homogeneity of the regions after each growth step.

$$m(R_i^{(k+1)}) = (1/(N(R_i^{(k)}) + 1))[f(x, y) + N(R_i^{(k)})m(R_i^{(k)})]$$

$$\sigma(R_i^{(k+1)}) = \begin{bmatrix} (1/(N(R_i^{(k)}) + 1))[N(R_i^{(k)})\sigma^2(R_i^{(k)}) + \\ (N(R_i^{(k)})/(N(R_i^{(k)}) + 1))(f(x, y) - m(R_i^{(k)}))] \end{bmatrix}^{1/2}$$

cdio

9.2. Method

9.2.1. Region growing method Method

. A region merging rule.

$$|m(R_i^{(k+1)}) - m(R_i^{(k+1)})| < k\sigma(R_i^{(k+1)})$$

$$|m(R_i^{(k+1)}) - m(R_i^{(k+1)})| < k\sigma(R_i^{(k+1)})$$

9.2.2. K-means method Principle

Unsupervised Clustering homogeneity regions -> Image Regions.

9.2.2. K-means method

Method

- 1. Partition the data points into K clusters randomly. Find the centroids of each cluster.
- 2. For each data point:
 - Calculate the distance from the data point to each cluster.
 - Assign the data point to the closest cluster.
- 3. Recompute the centroid of each cluster.
- 4. Repeat steps 2 and 3 until there is no further change in the assignment of data points (or in the centroids).

**Cdio

9.2. Method

9.2.2. K-means method

RGB vector

K-means clustering minimizes

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

cdio

9.2. Method

9.2.2. K-means method

Example

K=5

K=11

9.2.2. K-means method

Algorithm

cdio

Function K – means()

Initialize k prototypes $(w_1,...,w_k)$ such that $w_j = i_l$, $j \in \{1,...,k\}$, $l \in \{1,...,n\}$

Each cluster C_i is associated with prototype w_i

Repeat

For each input vector i_l , where $l \in \{1,...,n\}$,

do

Assign i_l to cluster C_{i*} with nearest prototype w_{i*}

For each cluster C_i , where $i \in \{1,...,k\}$, do

Update the prototype w_i to the centroid of all samples

currently in
$$C_j$$
, so that $w_j = \sum_{i_l \in C_j} i_l / |C_j|$

Computer the error function:

$$E = \sum_{j=1}^{k} \sum_{i_l \in C_i} |i_l - w_j|^2$$

Until *E* does not change significantly or cluster membership no longer changes