Elliptic Curves Cryptography

HSBC TechTalk

Paweł Bogdan

HSBC

April 13th, 2021

Agenda

- 1. Projective plane: definition and properties
- 2. Elliptic curves: definition
- 3. Elliptic curves: adding points
- 4. Elliptic curve cryptography
- 5. Conclusion

Affine space

Definition

Let \mathbb{K} be a field. The affine space of dimension n over \mathbb{K} is a set:

$$A^n := \{(a_1, ..., a_n) : a_i \in \mathbb{K}\}$$

Examples

Remark If n=3 and $\mathbb{K}=\mathbb{R}$ then A^n is ordinary 3-dimensional Euclid space

Projective space

Definition

Let \mathbb{K} be a field. Let $\sim \subset \mathbb{K}^{n+1} \times \mathbb{K}^{n+1}$ be an equivalence relation defined in following way:

$$(x_0, x_1, ..., x_n) \sim (y_0, y_1, ..., y_n)$$

$$\Leftrightarrow \exists \lambda \in \mathbb{K} : \lambda \neq 0 \land$$

$$(x_0, x_1, ..., x_n) = (\lambda y_0, \lambda y_1, ..., \lambda y_n)$$

Definition

Let \mathbb{K} be a field. Projective space of dimension n is the following quotient:

$$\mathsf{P}^n := \left(\mathbb{A}^{n+1} \setminus (0,0,...,0)\right)/\sim$$

Elliptic curve

Definition

Cubic curve is an algebraic curve defined by a homogeneous polynomial of degree 3 in projective plane.

Definition

Elliptic curve is a smooth cubic curve with one chosen point (infinity point)

Weierstrass equation

$$y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3$$

Weierstrass equation - simplification

$$y^2z = x^3 + Axz^2 + Bz^3$$

where

$$\Delta = -16(4A^3 + 27B^2) \neq 0$$

Figure: $y^2z + yz^2 = x^3 + x^2z - 2xz^2$

More examples

Figure: Source: [2]

Figure: $y^2 + y = x^3 + x^2 - 2x$, P = (-1, 1)

Figure:
$$y^2 + y = x^3 + x^2 - 2x$$
, $P = (-1, 1)$, $Q = (0, -1)$

Figure:
$$y^2 + y = x^3 + x^2 - 2x$$
, $P = (-1, 1)$, $Q = (0, -1)$

Figure: $y^2 + y = x^3 + x^2 - 2x$, P = (-1, 1), Q = (0, -1), R = (4, -9)

Figure: $y^2 + y = x^3 + x^2 - 2x$, P = (-1, 1), Q = (0, -1), R = (4, -9)

Figure: $y^2 + y = x^3 + x^2 - 2x$, P = (-1, 1), Q = (0, -1), R = (4, -9)

Figure:
$$y^2 + y = x^3 + x^2 - 2x$$
, $P = (-1, 1)$, $Q = (0, -1)$, $R = (4, -9)$, $-R = (4, 8)$

Elliptic curves Diffie-Hellman algorithm

- Alice and Bob want to establish secret key for AES algorithm
- They publicly agree to use some elliptic curve E over finite field K
- They publicly agree to use point P of curve E

Elliptic curves Diffie-Hellman algorithm

Alice

- 1. Chooses private key a
- 2. Calculates public key $K_A = a \cdot P$
- 3. Sends the public key to Bob
- 4. Receives the public key from Bob K_B
- 5. Calculates the final key:

$$K = a \cdot K_B = a \cdot b \cdot P$$

Bob

- 1. Chooses private key b
- 2. Calculates public key $K_B = b \cdot P$
- 3. Sends the public key to Alice
- 4. Receives the public key from Alice K_A
- 5. Calculates the final key:

$$K = b \cdot K_A = a \cdot b \cdot P$$

TLS

Conclusion

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521
Table 1: NIST Recommended Key Sizes		

Conclusion

Security Level (bits)	Ratio of DH Cost : EC Cost	
80	3:1	
112	6:1	
128	10:1	
192	32:1	
256	64:1	
Table 2: Relative Computation Costs of Diffie-Hellman and Elliptic Curves ¹		

References

- [1] Diffie-Hellman key exchange Wikipedia
- [2] Elliptic curve Wikipedia
- [3] NSA about elliptic curves cryptography