TD $n^{\circ}2$.

1 Arithmétique

Exercice 1. Soit n un entier supérieur ou égal à 1. Montrer que :

- a) un élément $Cl(m) \in \mathbb{Z}/n\mathbb{Z}$ est une unité ssi m et n sont premiers entre eux,
- b) l'anneau $\mathbb{Z}/n\mathbb{Z}$ est intègre si et seulement si n est premier,
- c) l'anneau $\mathbb{Z}/n\mathbb{Z}$ n'a pas d'élément nilpotent non nul ssi n n'a pas de facteur carré.
- d) Déterminer l'idéal $\sqrt{n\mathbb{Z}}$ (rappelons que $\sqrt{I} = \{a \mid \exists k \in \mathbb{N} \mid a^k \in I\}$).

Solution. a) Soit $m \in \mathbb{Z}$, dire que Cl(m) est inversible dans $\mathbb{Z}/n\mathbb{Z}$ signifie qu'il existe $m' \in \mathbb{Z}$ tel que Cl(m)Cl(m') = Cl(1) dans $\mathbb{Z}/n\mathbb{Z}$. Il existe donc $n' \in \mathbb{Z}$ tel que mm' = 1 + nn' ce qui signifie que m et n sont premiers entre eux.

Réciproquement si m et n sont premiers entre eux, il existe m' et n' dans \mathbb{Z} tels que l'on ait mm' + nn' = 1 ce qui donne dans $\mathbb{Z}/n\mathbb{Z}$ la relation Cl(m)Cl(m') = 1 donc Cl(m) est inversible.

b) Si n est premier, montrons que $\mathbb{Z}/n\mathbb{Z}$ est intègre. Soient a et b tels que Cl(a)Cl(b)=0 dans $\mathbb{Z}/n\mathbb{Z}$, alors il existe $n' \in \mathbb{Z}$ tel que ab=nn'. Ainsi n divise le produit ab et comme n est premier, soit n divise a (c'est-à-dire Cl(a)=0), soit n divise b (c'est-à-dire Cl(b)=0).

Réciproquement, supposons que n n'est pas premier, alors on peut écrire $n=n_1n_2$ avec n_1 et n_2 des entiers tels que $1 < n_1 < n$ et $1 < n_2 < n$. Alors on a $Cl(n_1) \neq 0$ et $Cl(n_2) \neq 0$ dans $\mathbb{Z}/n\mathbb{Z}$ alors que $Cl(n_1)Cl(n_2) = Cl(n_1n_2) = Cl(n) = 0$. Dans ce cas $\mathbb{Z}/n\mathbb{Z}$ n'est pas intègre.

c) Écrivons la décomposition de n en facteurs premiers :

$$n = \prod_{i=1}^{r} p_i^{\alpha_i}.$$

Supposons que pour tout i, on ait $\alpha_i = 1$ (c'est-à-dire n n'a pas de facteur carré). Soit alors $m \in \mathbb{Z}$ tel que Cl(m) est nilpotent dans $\mathbb{Z}/n\mathbb{Z}$, il existe alors $k \geq 1$ tel que $Cl(m)^k = 0$. Il existe donc $n' \in \mathbb{Z}$ tel que $m^k = nn'$. Pour tout i, on a alors p_i divise m^k et comme p_i est premier, alors p_i divise m. Ainsi $n = \prod_{i=1}^r p_i$ divise m et Cl(m) = 0.

Réciproquement, supposons que l'un des α_i est différent de 1 (disons $\alpha_1 > 1$). Considérons alors

$$m = p_1^{\alpha_1 - 1} \prod_{i=2}^r p_i^{\alpha_i}.$$

On a $Cl(m) \neq 0$ et

$$m^2 = p_1^{2\alpha_1 - 2} \prod_{i=2}^r p_i^{2\alpha_i}.$$

Mais $2\alpha_i \ge \alpha_i$ et $2a_1 - 2 \ge \alpha_1$ (car $a_1 \ge 2$), donc n divise m^2 , ainsi $Cl(m)^2 = 0$ donc m est nilpotent non nul dans $\mathbb{Z}/n\mathbb{Z}$.

d) Encore une fois on écrit la décomposition de n en facteurs premiers :

$$n = \prod_{i=1}^{r} p_i^{\alpha_i}.$$

Si $m \in \sqrt{n\mathbb{Z}}$, alors il existe $k \in \mathbb{N}$ tel que $m^k \in n\mathbb{Z}$ c'est-à-dire n divise m^k . Mais alors pour tout facteur premier p_i de n, on a p_i divise m^k et donc p_i divise m. Ainsi l'entier

$$n' = \prod_{i=1}^{r} p_i$$

divise m. On a donc montré que $\sqrt{n\mathbb{Z}} \subset n'\mathbb{Z}$.

Réciproquement, soit $m \in n'\mathbb{Z}$, on a donc m = an' avec $a \in \mathbb{Z}$. Soit alors $k = \max_{i \in [1,r]} (\alpha_i)$, on calcule m^k et on a

$$m^k = a \prod_{i=1}^r p_i^k.$$

Comme pour tout i, on a $k \geq \alpha_i$, alors n divise m^k et donc $m \in n\mathbb{Z}$ ou encore $m \in \sqrt{n\mathbb{Z}}$. On a donc $\sqrt{n\mathbb{Z}} = n'\mathbb{Z}$.

Exercice 2. Soit n un entier impair et x un entier premier avec n, on se propose de déterminer à quelle condition x est un carré dans $\mathbb{Z}/n\mathbb{Z}$.

a) Dans cette question on suppose que n=p un nombre premier. Montrer que x est un carré non nul dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si on a

$$x^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

Combien y'a-t-il de carrés dans $\mathbb{Z}/p\mathbb{Z}$?

En déduire que -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $p \equiv 1 \pmod{4}$.

- b) On décompose maintenant n en facteurs premiers : $n = \prod_{i=1}^{r} p_i^{\alpha_i}$. Montrer que x est est un carré dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si pour tout $i \in [1, r]$, x est un carré dans $\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$.
- c) Montrer que x est un carré dans $\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$ si et seulement x est un carré dans $\mathbb{Z}/p_i^{\alpha_i-1}\mathbb{Z}$.
- d) En déduire que x est un carré dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si c'est un carré dans $\mathbb{Z}/p_i\mathbb{Z}$ pour tout p_i facteur premier de n.

Solution. a) Considérons le morphisme

$$(\mathbb{Z}/p\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$$
$$z \mapsto z^{2}$$

dont l'image est l'ensemble des carrés non nuls et le noyau est $\{\pm 1\}$. On en déduit que le nombre de carrés non nuls est $\frac{p-1}{2}$. Considérons maintenant le morphisme de groupes multiplicatifs :

$$(\mathbb{Z}/p\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$$

$$z \mapsto z^{\frac{p-1}{2}}.$$

Comme pour tout élément x non nul de $\mathbb{Z}/p\mathbb{Z}$ on a $x^{p-1}=1$, on voit que l'ensemble des carrés est contenu dans le noyau. Cependant le noyau est formé des racines de l'équation

$$X^{\frac{p-1}{2}} - 1 = 0.$$

Il y en a au plus $\frac{p-1}{2}$. Le noyau est donc formé uniquement des carrés et on a le résultat.

On a vu que le nombre de carrés non nuls est $\frac{p-1}{2}$. Comme 0 est u carré il y a donc $\frac{p+1}{2}$ carrés.

b) Le lemme chinois nous permet de dire qu'il y a un isomorphisme d'anneaux

$$\mathbb{Z}/n\mathbb{Z} \to \prod_{i=1}^r \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$$

$$Cl(x) \mapsto (Cl_1(x), \cdots, Cl_r(x))$$

où Cl(x) est la classe de x dans $\mathbb{Z}/n\mathbb{Z}$ et $Cl_i(x)$ est la classe de x dans $\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$. Ainsi, si $Cl(x) = Cl(y)^2$ est un carré alors $(Cl_1(x), \dots, Cl_r(x)) = (Cl_1(y), \dots, Cl_r(y))^2$ est un carré c'est-à-dire pour tout i, $Cl_i(x) = Cl_i(y)^2$ est un carré. Réciproquement si pour tout i, on a $Cl_i(x) = Cl_i(y_i)^2$ est un carré, alors il existe y tel que $Cl(y) \mapsto (Cl_1(y_1), \dots, Cl_r(y_r))$ et donc $Cl(y)^2 = Cl(x)$ qui est donc un carré.

c) On écrit $p_i = p$. Si x est un carré dans $\mathbb{Z}/p^k\mathbb{Z}$, alors $x \equiv y^2 \pmod{p^k}$ donc $x \equiv y^2 \pmod{p^{k-1}}$ et x est un carré dans $\mathbb{Z}/p^{k-1}\mathbb{Z}$. Réciproquement, si $x \equiv y^2 \pmod{p^{k-1}}$, il existe alors $a \in \mathbb{Z}$ tel que $x = y^2 + ap^{k-1}$. Comme x est premier avec n, il est premier avec p. C'est aussi le cas de y donc y est inversible dans $\mathbb{Z}/p^k\mathbb{Z}$. On cherche z sous la forme $z = y + bp^{k-1}$ tel que $x \equiv z^2 \pmod{p^k}$. On a alors

$$z^2 \equiv y^2 + 2byp^{k-1} + b^2p^{2k-2} \pmod{p}.$$

Comme k > 1, on a $2k - 2 \ge k$, on a $b^2 p^{2k-2} \equiv 0 \pmod{p}$ et comme y et 2 (car n est impair donc les p_i sont disctincts de 2) sont inversibles dans $\mathbb{Z}/p^k\mathbb{Z}$, on peut poser

$$b \equiv \frac{a}{2y} \pmod{p}.$$

On a alors

$$z^2 \equiv y^2 + ap^{k-1} \equiv x \pmod{p}.$$

d) On voit par récurrence que x est un carré dans $\mathbb{Z}/p^{\alpha_i}\mathbb{Z}$ si et seulement si c'est un carré dans $\mathbb{Z}/p_i\mathbb{Z}$. Ainsi avec le b), on voit que x est un carré dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si x est un carré dans $\mathbb{Z}/p_i\mathbb{Z}$ pour tout facteur premier p_i de n. Grâce au (1), on a que x est un carré dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si pour tout facteur premier p_i de n, on a

$$x^{\frac{p_i-1}{2}} \equiv 1 \pmod{p_i}.$$

Exercise 3. Soit $A = \mathbb{Z}[i] = \{a + ib\}_{a,b \in \mathbb{Z}}$.

- a) Montrer que si $\alpha, \beta \neq 0 \in A$, il existe $r, q \in A$ tels que $\alpha = q\beta + r$ avec $|r| < |\beta|$ (donc A est un anneau euclidien).
- b) Montrer que si α divise $\beta\beta'$ dans A et α est irréductible, alors α divise β ou β' .
- c) Montrer qu'un nombre premier p impair est somme de deux carrés si et seulement si $p \equiv 1 \pmod{4}$.
- d) Montrer qu'un entier n>0 est somme de deux carrés si et seulement si $v_p(n)$ est pair pour tout $p\equiv 3\pmod 4$.

Exercice 4. a) Montrer que l'équation diophantienne (c'est-à-dire qu'on cherche des solutions qui sont des nombres entiers) $x^2 + y^2 = 3z^2$ n'a pas de solution non triviale (c'est-à-dire différente de (0,0,0)). On pourra raisonner par l'absurde en considérant une solution non triviale telle que x, y et z sont premiers entre eux et réduire modulo 3.

- b) Même question pour les équations $x^2 + y^2 = 7z^2$ et $x^2 + y^2 = 11z^2$.
- c) Montrer que les équations $x^2 + y^2 = 5z^2$ et $x^2 + y^2 = 13z^2$ ont des solutions non triviales.
- d) Essayer de généraliser à certaines équations $x^2 + y^2 = pz^2$ pour certains nombre premiers p (on pourra étudier à quelle condition -1 est un carré dans \mathbb{F}_p).

Solution. Les cas a) et b) découlerons de l'étude du cas d).

- c) On a la solution (2,1,1) à la première équation et la solution (3,2,1).
- d) Plus généralement, si il existe deux entiers x et y tels que $p = x^2 + y^2$ ce qui est équivalent (cf. cours) à ce que $p \equiv -1 \pmod{4}$ ou encore à ce que -1 soit un carré dans \mathbb{F}_p , alors on a (x, y, 1) est une solution non triviale de l'équation.

Réciproquement, supposons que $p \not\equiv -1 \pmod 4$. Considérons une solution (x,y,z) non triviale de l'équation, quitte à diviser x,y et z, on peut supposer que x,y et z sont premiers entre eux (dans leur ensemble). Réduisons modulo p, on a alors $x^2 + y^2 \equiv 0 \pmod p$. Si $x \equiv 0 \pmod p$, alors $y \equiv 0 \pmod p$. Sinon, la classe de x est inversible dans \mathbb{F}_p et on a $\frac{y}{x} \equiv -1 \pmod p$ ce qui est impossible car -1 n'est pas un carré dans \mathbb{F}_p . On doit donc avoir p qui divise x et y ce qui impose que p^2 divise pz^2 et donc p divise pz^2 . C'est absurde puisque pz^2 0 sont premiers entre eux.

Exercice 5. Montrer que dans un corps fini K (disons $\mathbb{Z}/p\mathbb{Z}$ avec p premier), tout élément est somme de eux carrés (on pourra compter le nombre de carrés et comparer si $a \in K$ est un élément fixé les ensembles $\{x^2 \mid x \in K\}$ et $\{a - y^2 \mid y \in K\}$).

Solution. C'est une application du principe des tiroirs. Fixons un élément a dans K quelconque. On sait cf. exercice 2 qu'il y a $\frac{q+1}{2}$ carrés dans K avec $q=\operatorname{Card}(K)$. Ainsi les deux ensembles de l'énoncé ont chacun $\frac{q+1}{2}$ éléments. S'il étaient disjoints, on aurait q+1 éléments dans K ce qui est impossible. Ils ont donc un élément commun z qui s'écrit $z=x^2$ mais aussi $z=a-y^2$ pour un certain x et un certain y dans K. On a donc $a=x^2+y^2$.

Exercice 6. Soit $d \in \mathbb{Z}$ sans facteur carré.

- a) Soit K l'ensemble $K = \mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} / (a, b) \in \mathbb{Q}\}$. Montrer que K est un sous-corps de \mathbb{C} .
- b) On note A l'ensemble des éléments de K qui sont entiers sur \mathbb{Z} , c'est-à-dire qui sont racines d'un polynôme unitaire de $\mathbb{Z}[X]$. Montrer que A est un sous-anneau de K.
- c) Montrer que pour tout couple $(a,b) \in \mathbb{Z}^2$, l'élément $a+b\sqrt{d}$ de K est dans A.

- d) Montrer que l'application $\sigma: K \to K$ définie par $\sigma(a+b\sqrt{d}) = a-b\sqrt{d}$ est un automorphisme de corps tels que $\sigma(x) = x$ si et seulement si $x \in \mathbb{Q}$. Montrer que si $x \in A$, alors $\sigma(x) \in A$ et que x et $\sigma(x)$ vérifient la même relation intégrale sur \mathbb{Z} .
- e) Montrer que $T(x) = x + \sigma(x)$ (trace de x) et $N(x) = x\sigma(x)$ (norme de x) sont dans \mathbb{Q} . En déduire que si $x \in A$, alors T(x) et N(x) sont dans \mathbb{Z} puis expliciter une relation intégrale de x sur \mathbb{Z} à l'aide de la trace et de la norme de x.
- f) Déduire de ce qui précède que l'élément $x=a+b\sqrt{d}$ de K est dans A si et seulement si $2a\in\mathbb{Z}$ et $a^2-db^2\in\mathbb{Z}$.
- g) On suppose maintenant les conditions $2a \in \mathbb{Z}$ et $a^2 db^2 \in \mathbb{Z}$ vérifiée. Montrer qu'alors $2b \in \mathbb{Z}$. On peut donc poser $a = \frac{u}{2}$ et $b = \frac{v}{2}$ avec u et v dans \mathbb{Z} . Les conditions précédentes se résument en $u^2 db^2 \in 4\mathbb{Z}$.
- h) Montrer que v et u ont la même parité et que s'ils sont impairs, alors $d \equiv 1 \pmod 4$.
- i) Conclure que si $d \equiv 1 \pmod{4}$, alors $A = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ et $A = \mathbb{Z}[\sqrt{d}]$ sinon.
- **Solution**. a) Il est clair que somme et produit d'éléments de K sont encore dans K. Par ailleurs, l'inverse de l'élément $a+b\sqrt{d}$ non nul est $\frac{a-b\sqrt{d}}{a^2-db^2}$ qui existe toujours car le dénominateur ne peut s'annuler. En effet, si b est nul alors a aussi ce qui contredit le fait que $a+b\sqrt{d}$ est non nul. Si b est non nul, on aurait $d=\frac{a^2}{b^2}$ serait un carré ce qui est impossible.
 - b) On sait que si x et y sont dans A, alors x + y, x y et xy sont encore dans K (car c'est un corps) et sont encore des entiers algébriques (cf. le cours). Ils sont donc encore dans A.
 - c) Comme les éléments de \mathbb{Z} sont des entiers algébriques et que l'ensembles des entiers algébriques est un anneau, il suffit de montrer que \sqrt{d} est un entier algébrique ce qui est clair puisqu'il est racine du polynôme $X^2 d$.
 - d) Il faut montrer que σ préserve l'addition et la multiplication. Prenons $x=a+b\sqrt{d}$ et $y=a'+b'\sqrt{d}$. On a alors $x+y=(a+a')+(b+b')\sqrt{d}$ et $xy=(aa'+dbb')+(ab'+a'b)\sqrt{d}$. On calcule $\sigma(x+y)=(a+a')-(b+b')\sqrt{d}=\sigma(x)+\sigma(y)$ et $\sigma(xy)=(aa'+dbb')-(ab'+a'b)\sqrt{d}=\sigma(x)\sigma(y)$. Supposons maintenant que $\sigma(x)=x$ c'est-à-dire que l'on a $a+b\sqrt{d}=a-b\sqrt{d}$ et donc $2b\sqrt{d}=0$ ce qui impose b=0 et $x\in\mathbb{Q}$. Réciproquement il est clair que si $x\in\mathbb{Q}$, alors $\sigma(x)=x$. Supposons que x soit dans A. Il est donc racine d'un polynôme unitaire à coefficients entiers $P=X^n+a_1X^{n-1}+\cdots+a_n$ (pour tout i, on a $a_i\in\mathbb{Z}$) c'est-à-dire qu'on a $x^n+a_1x^{n-1}+\cdots+a_n=0$. On applique σ à cette égalité et on obtient $\sigma(x)^n+\sigma(a_1)\sigma(x)^{n-1}+\cdots+\sigma(a_n)=0$ mais comme les a_i sont dans $\mathbb{Z}\subset\mathbb{Q}$, on a $\sigma(a_i)=a_i$ donc $\sigma(x)^n+a_1\sigma(x)^{n-1}+\cdots+a_n=0$ et x et $\sigma(x)$ vérifient la même relation.
 - e) Si $x = a + b\sqrt{d}$ alors $T(x) = 2a \in \mathbb{Q}$ et $N(x) = a^2 db^2 \in \mathbb{Q}$. Si x est dans A, alors $\sigma(x)$ l'est aussi (cf. question précédente) et T(x) et N(x) sont aussi dans A car c'est un anneau. Mais alors T(x) et N(x) sont dans \mathbb{Q} et entiers sur \mathbb{Z} . D'après l'exercice ??, ils doivent être dans \mathbb{Z} . Par ailleurs, il est bien clair que l'on a la relation

$$(X - x)(X - \sigma(x)) = X^2 - T(x)X + N(x)$$

qui est un polynôme à coefficients entiers dont les racines sont exactement x et $\sigma(x)$.

- f) On vient de voir que si x est dans A, alors T(x) et N(x) sont dans \mathbb{Z} c'est-à-dire $2a \in \mathbb{Z}$ et $a^2 db^2 \in \mathbb{Z}$. Réciproquement si T(x) et N(x) sont dans \mathbb{Z} , le polynôme ci-dessus donne une relation intégrale pour x et $x \in A$.
- g) On a $a^2 db^2 \in \mathbb{Z}$ donc en multipliant par 4, on a $(2a)^2 d(2b)^2 \in \mathbb{Z}$ ce qui impose puisque $2a \in \mathbb{Z}$ que $d(2b)^2 \in \mathbb{Z}$. Supposons que 2b n'est pas entier, il s'écrit $\frac{r}{s}$ avec r et s premiers entre eux et s > 0. Soit p un facteur premier de s, alors on a $d(2b)^2 = N \in \mathbb{Z}$ donc $dr^2 = s^2$ et en paticulier p^2 divise d car r et s sont premiers entre eux. C'est impossible car d est sans facteur carré. On a donc $2b \in \mathbb{Z}$.

On peut donc poser $a=\frac{u}{2}$ et $b=\frac{v}{2}$ avec u et v dans \mathbb{Z} . Les conditions précédentes se résument en $u^2-db^2\in 4\mathbb{Z}$.

- h) Supposons que u est pair, alors $u^2 \equiv 0 \pmod 4$ donc $dv^2 \equiv 0 \pmod 4$ et comme d n'a pas de facteur carré, on a $d \equiv \pm 1 \pmod 4$ ou $d \equiv 2 \pmod 4$. Ceci impose que $v^2 \equiv 2 \pmod 4$ donc 2 divise v^2 et donc v est pair.
 - Supposons maintenant u impair, on a alors nécessairement $u^2 \equiv 1 \pmod{4}$ donc $dv^2 \equiv 1 \pmod{4}$ et v ne peut être pair (sinon $v^2 \equiv 0 \pmod{4}$). Mais alors si v est impairs, on a $v^2 \equiv 1 \pmod{4}$ ce qui impose dans ce cas $d \equiv 1 \pmod{4}$.
- i) Réciproquement si u et v sont pair ou s'ils sont tous les deux impairs et que $d \equiv 1 \pmod{4}$, on a toujours $u^2 dv^2 \in 4\mathbb{Z}$. Ainsi l'élément

$$x = a + b\sqrt{d} = \frac{u}{2} + \frac{v}{2}\sqrt{d}$$

est dans A si et seulement si u et v sont tous les deux pair ou s'ils sont tous les deux impairs et que $d \equiv 1 \pmod{4}$.

Premier cas, si $d \not\equiv 1 \pmod 4$, alors les éléments de A sont de la forme $a + b\sqrt{d}$ avec a et b dans $\mathbb Z$ donc c'est exactement $\mathbb Z[\sqrt{d}]$.

Sinon, c'est-à-dire si $d \equiv 1 \pmod 4$, alors les éléments de A sont de la forme $a + b\sqrt{d} = \frac{u}{2} + \frac{v}{2}\sqrt{d}$ avec u et u dans \mathbb{Z} . On a donc $A = \frac{1}{2}\mathbb{Z} + \frac{\sqrt{d}}{2}\mathbb{Z}$. Il reste à montrer que $A = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Il est clair que $\frac{1+\sqrt{d}}{2} \in \frac{1}{2}\mathbb{Z} + \frac{\sqrt{d}}{2}\mathbb{Z} = A$ donc on a l'inclusion $\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \subset A$.

Réciproquement, commençons par remarquer que 1 et $\sqrt{d}=2\frac{1+\sqrt{d}}{2}-1$ sont dans $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ donc $\mathbb{Z}[\sqrt{d}]\subset\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Soit maintenant $x=\frac{u}{2}+\frac{v}{2}\sqrt{d}\in A$. Si u et v sont pairs, alors $x\in\mathbb{Z}[\sqrt{d}]\subset\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Sinon u et v sont impairs et $x+\frac{1+\sqrt{d}}{2}\in\mathbb{Z}[\sqrt{d}]\subset\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ et on a encore $x\in\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

2 Anneaux et idéaux

Exercice 7. Soient A un anneau et I, J et L des idéaux de A. Montrer les assertions suivantes :

- a) $I \cdot J \subset I \cap J$,
- b) $(I \cdot J) + (I \cdot L) = I \cdot (J + L)$,
- c) $(I \cap J) + (I \cap L) \subset I \cap (J + L)$,
- d) si A est principal, alors $(I \cap J) + (I \cap L) = I \cap (J + L)$,
- e) si J est contenu dans I, alors $J + (I \cap L) = I \cap (J + L)$,
- f) supposons que A = k[X,Y] avec k un corps et posons I = (X), J = (Y) et L = (X + Y). Calculer $(I \cap J) + (I \cap L)$ et $I \cap (J + L)$, puis les comparer.

Solution. a) Soit $x \in I \cdot J$, alors $x = \sum a_i b_i$ avec $a_i \in I$ et $b_i \in J$. Comme I et J sont des idéaux, on a $a_i b_i \in I$ et $a_i b_i \in J$ donc $x \in I \cap J$.

- b) On a $I \cdot J \subset I \cdot (J+L)$ et $I \cdot L \subset I \cdot (J+L)$ donc $(I \cdot J) + (I \cdot L) \subset I \cdot (J+L)$. Réciproquement, soit $x \in I \cdot (J+L)$. On a $x = \sum a_i(b_i+c_i)$ avec $a_i \in I$, $b_i \in J$ et $c_i \in L$. Mais alors $x = (\sum a_ib_i) + (\sum a_ic_i)$, on voit que $\sum a_ib_i \in I \cdot J$ et $\sum a_ic_i \in I \cdot L$. Ainsi $x \in (I \cdot J) + (I \cdot L)$.
- c) Soit x = y + z avec $y \in I \cap J$ et $z \in I \cap L$, alors $y + z \in I$ et $y + z \in J + L$ donc $x \in I \cdot (J + L)$.
- d) Il s'agit de montrer la réciproque de (111) en supposant A principal. Si x et y sont des éléments de A, on notera $x \wedge y$ le p.g.c.d de x et y et $x \vee y$ le p.p.c.m de x et y. Soient a, b et c dans A tels que I = (a), J = (b) et L = (c), on a

$$I \cap (J+L) = (a \vee (b \wedge c)) = ((a \vee b) \wedge (a \vee c)) = ((a \vee b)) + ((a \vee c)) = I \cap J + I \cap L.$$

- e) Par (iii) on sait que $J + (I \cap L) \subset I \cap (J + L)$. Soit $x \in I \cap (J + L)$, on a $x \in I$ et x = y + z avec $y \in J$ et $z \in L$. Comme $J \subset I$, on a $y \in I$, donc $z = x y \in I$. Ainsi $y \in J$ et $z \in I \cap L$, donc $x \in J + (I \cap L)$.
- f) On a $I \cap J = (XY)$ et $I \cap L = (X(X + Y))$. Ainsi

$$I \cap J + I \cap L = (XY) + (X(X + Y)) = (XY, X^2).$$

Par ailleurs, on a J + L = (Y) + (X + Y) = (X, Y), donc

$$I \cap (J + L) = (X) \cap (X, Y) = (X).$$

Ainsi on a bien l'inclusion $I \cap J + I \cap L \subset I \cap (J + L)$ mais pas égalité.

Exercice 8. Soient I et J deux idéaux d'un anneau A. On suppose que I + J = A (deux tels idéaux sont dits comaximaux).

- a) Montrer que $IJ = I \cap J$.
- b) Montrer que $A \to A/I \times A/J$ est surjectif de novau $I \cap J$.
- c) Généraliser au cas de n idéaux comaximaux deux à deux.

Exercice 9. Soient I et J deux idéaux d'un anneau A. On suppose que I + J = A (deux tels idéaux sont dits comaximaux), montrer que $I^n + J^n = A$.

Solution. Comme I + J = A, il existe $x \in I$ et $y \in J$ tels que x + y = 1. En élevant à la puissance 2n, on a alors

$$1 = \sum_{k=0}^{2n} {2n \choose k} x^k y^{2n-k}.$$

Cependant, si $k \in [0, n]$, alors $k \leq n$ donc $x^k \in I^n$ et si k > n, alors $2n - k \leq n$ donc $y^{2n-k} \in J^n$. Ainsi $1 \in I^n + J^n$ donc $I^n + J^n = A$.

Exercice 10. (1) Soit I et J deux idéaux comaximaux de A (c'est-à-dire I+J=A). Montrer que (I:J)=I. Soit L un idéal tel que $I\cdot "L\subset J$; montrer que $L\subset J$. "

(n) Soit $\mathfrak p$ et $\mathfrak q$ deux idéaux premiers dont aucun n'est contenu dans l'autre. Montrer que $(\mathfrak p:\mathfrak q)=\mathfrak p$ et $(\mathfrak q:\mathfrak p)=\mathfrak q$. Donner un exemple de deux idéaux premiers dans k[X,Y], où k est un corps, dont aucun n'est contenu dans l'autre et qui ne sont pas comaximaux.

(III) Soit a un élément non diviseur de 0 d'un anneau A. Montrer que si (a) est premier, la relation $(a) = I \cdot J$ pour deux idéaux I et J, entraine I = A où J = A.

Indice: Commencer par montrer que I=(a) ou J=(a).

Solution. (1) Soit $x \in I$ et soit $y \in J$, on a $xy \in I$ donc $I \subset (I:J)$. Réciproquement, soit $z \in (I:J)$. On sait que I et J sont comaximaux donc I+J=A et en particulier, il existe $x \in I$ et $y \in J$ tels que 1=x+y. Mais alors comme $z \in (I:J)$, on a $zy \in I$. On a donc z=zx+zy avec $zy \in I$ et $zx \in I$ car $x \in I$. Ainsi $z \in I$ et $(I:J) \subset I$, d'où l'égalité.

Soit L tel que $I \cdot L \subset J$. Soit $z \in L$, on réutilise les $x \in I$ et $y \in J$ tels que x + y = 1. On a alors z = xz + yz or $xz \in I \cdot L \subset J$ et $yz \in J$ car $y \in J$. Ainsi $z \in J$.

(11) Comme précedement, on a $\mathfrak{p} \subset (\mathfrak{p} : \mathfrak{q})$. Soit $x \in (\mathfrak{p} : \mathfrak{q})$, et soit $y \in \mathfrak{q}$ tel que $y \notin \mathfrak{p}$ (ce qui est possible par hypothèse). On a alors $xy \in \mathfrak{p}$ et comme \mathfrak{p} est premier, $x \in \mathfrak{p}$ ou $y \in \mathfrak{p}$. Comme $y \notin \mathfrak{p}$ c'est que $x \in \mathfrak{p}$ donc $(\mathfrak{p} : \mathfrak{q}) \subset \mathfrak{p}$, d'où l'égalité. De manière symétrique on a l'égalité $\mathfrak{q} = (\mathfrak{q} : \mathfrak{p})$.

Le premier exemple de l'exercice précédent convient : $\mathfrak{p}=(X)$ et $\mathfrak{q}=(Y)$. Alors \mathfrak{p} et \mathfrak{q} sont premiers, $\mathfrak{p}\cdot\mathfrak{q}=(XY)=\mathfrak{p}\cap\mathfrak{q}$ et $\mathfrak{p}+\mathfrak{q}=(X,Y)\varsubsetneq A$.

(m) Si $(a) = I \cdot J$, alors on peut écrire $a = \sum x_i y_i$ avec $x_i \in I$ et $y_i \in J$. Ainsi $a \in I$ et $a \in J$. Supposons que $I \not\subset (a)$ et $J \not\subset (a)$, soit alors $x \in I$ avec $x \not\in (a)$ et $y \in J$ avec $y \not\in (a)$. On a alors $xy \in I \cdot J = (a)$ ce qui est absurde car (a) est premier. Ainsi I = (a) ou J = (a). Disons par exemple que I = (a) (l'autre cas est symétrique).

Dans l'écriture $a = \sum x_i y_i$ on a alors $x_i \in I = (a)$ donc $x_i = ax_i'$. On a donc $a = \sum ax_i'y_i$ et comme A est intègre $1 = \sum x_i'y_i \in J$, donc J = A.

Exercice 11. Montrer à l'aide d'un contre-exemple, que si I et J sont des idéaux tels que $I \cap J = I \cdot J$, I et J ne sont pas nécessairement comaximaux.

Solution. Voici plusieurs contre exemples :

Soient k un corps et A = k[X, Y]. On pose I = (X) et J = (Y). Si $P \in I \cap J$, alors X et Y divisent P. Comme X et Y sont irréductibles, on a XY divise P et $I \cap J = (XY) = I \cdot J$. Cependant $I + J = (X, Y) \subsetneq A$.

Soient k un corps et $A = k[X, X^{\frac{1}{2}}, X^{\frac{1}{3}}, \dots, X^{\frac{1}{n}}, \dots]$ l'anneau des polynômes en des puissances fractionnaires de X. Tout élément de A s'écrit de manière unique comme somme finie

$$\sum_{r \in \mathbb{O}_+} a_r X^r.$$

L'ensemble des ""polynômes" tels que $a_0=0$ est un idéal I de A et on a $I^2=I$. En effet, tout élément

$$P = \sum_{r \in \mathbb{Q}_+^*} a_r X^r \in I$$

peut s'écrire sous la forme

$$P = X^{\alpha} \sum_{r \in \mathbb{O}_{+}^{*}} a_{r} X^{r-\alpha}$$

où α est un rationnel strictement positif et strictement plus petit que tous les $r \in \mathbb{Q}_+^*$ tels que $a_r \neq 0$ (il n'y en a qu'un nombre fini).

On a donc $I \cdot I = I = I \cap I$ et pourtant $I + I = I \subsetneq A$.

Soit $\mathcal C$ l'anneau des fonctions continues sur $\mathbb R$ et I l'idéal des fonctions qui s'annulent en 0. Si $f \in I$, on peut écrire

$$f(x) = \sqrt{|f(x)|} \cdot \sqrt{|f(x)|} \operatorname{signe}(f(x))$$

 $\text{avec } \sqrt{|f(x)|} \in I \text{ et } \sqrt{|f(x)|} \text{ signe}(f(x)) \in I. \text{ Ainsi } I \cdot I = I = I \cap I \text{ et pourtant } I + I = I \subsetneq A.$

Exercice 12. Montrer qu'un anneau intègre A possédant un nombre fini d'idéaux est un corps. Indice: prendre $x \in A$ et considérer les idéaux (x^n) .

Solution. Soit $x \in A$ un élément non nul. Il faut montrer que x est inversible. Considérons la suite d'idéaux $(x) \supset (x^2) \supset \cdots \supset (x^n) \cdots$, il y en a une infinité et comme A n'a qu'un nombre fini d'idéaux, deux d'entre eux (au moins) sont égaux, disons $(x^n) = (x^m)$ avec $m > n \ge 1$. Il existe donc $a \in A$ tel que $x^n = ax^m$. On a donc $x^n(1-ax^{m-n})=0$. Comme A est intègre et $x \ne 0$, on a $1-ax^{m-n}=0$. Mais alors on a $x \cdot ax^{m-n-1}=1$ donc x est inversible (remarquons que $m-n-1\ge 0$).

Exercice 13. Soit $A = A_1 \times \cdots \times A_n$ un produit d'anneaux et soit I un idéal de A.

- (1) Montrer que I est égal à un produit d'idéaux $I_1 \times \cdots \times I_n$.
- (11) Déterminer les idéaux premiers et maximaux de A.
- (III) Supposons que les A_i soient des corps, montrer que l'anneau A n'a qu'un nombre fini d'idéaux.

Solution. (1) Commençons par le cas n=2, nous montrerons le cas général par récurrence. Soit I un idéal de A et notons I_1 et I_2 les images de I par les projections de $A_1 \times A_2 \to A_1$ (resp. $A_1 \times A_2 \to A_1$).

Montrons que I_1 est un idéal de A_1 . Soient x_1 et y_1 dans I_1 et $a_1 \in A_1$, il existe x_2 et y_2 dans A_2 tels que $x = (x_1, x_2) \in I$ et $y = (y_1, y_2) \in I$. On a alors $x + y \in I$ donc $(x_1 + y_1, x_2 + y_2) \in I$ et donc $x_1 + y_1 \in I_1$. Par ailleurs, on a pour tout $a_2 \in A_2$, $(a_1, a_2) \cdot (x_1, x_2) \in I$ donc $(a_1x_1, a_2x_2) \in I$ et donc $a_1x_1 \in I_1$. Par conséquent, I_1 est un idéal et de même I_2 aussi.

Montrons maintenant que $I = I_1 \times I_2$. Soit $x = (x_1, x_2) \in I$, alors $x_1 \in I_1$ et $x_2 \in I_2$ donc $I \subset I_1 \times I_2$. Réciproquement, soit $(x_1, x_2) \in I_1 \times I_2$, il existe alors $x_1' \in A_1$ et $x_2' \in A_2$ tels que $(x_1, x_2') \in I$ et $(x_1', x_2) \in I$. Mais alors on a

$$(x_1, x_2) = (1, 0) \cdot (x_1, x_2') + (0, 1)(x_1', x_2) \in I.$$

Lorsque $n \geq 2$, on procède par récurrence sur n: les idéaux de $A_1 \times \cdots \times A_n$ sont de la forme $I_1 \times J$ où J est un idéal de $A_2 \times \cdots \times A_n$. Par récurrence, on a $J = I_2 \times \cdots \times I_n$.

(n) Soit $I=I_1\times\cdots\times I_n$ un idéal de A, il est premier si et seulement si $A/I=A_1/I_1\times\cdots\times A_n/I_n$ est intègre. Ce produit est intègre si et seulement s'il n'a qu'un terme (disons A_i/I_i) et que ce terme est intègre (c'est-à-dire I_i premier). Les idéaux premiers de A sont donc de la forme $A_1\times\cdots\times I_i\times\cdots A_n$ avec I_i idéal premier de A_i . De même $I=I_1\times\cdots\times I_n$ est maximal si et seulement si $A/I=A_1/I_1\times\cdots\times A_n/I_n$ est un corps. Il doit donc être premier et le quotient A_i/I_i doit être un corps donc I_i est maximal. Les idéaux maximaux sont de la forme $A_1\times\cdots\times I_i\times\cdots A_n$ avec I_i idéal maximal de A_i .

(m) Si A_i est un corps, ses seuls idéaux sont (0) et A_i . Un idéal de A étant de la forme $I = I_1 \times \cdots \times I_n$, pour chaque indice i, on a deux possibilités : $I_i = (0)$ ou $I_i = A_i$. On a donc 2^n idéaux dans A. Il y en a n premiers qui sont aussi maximaux.

Exercice 14. Soit A l'anneau des fonctions continues à valeur réelles sur un espace topologique compact K.

- a) Soit I un idéal strict de A. Montrer qu'il existe $x \in K$ tel que pour tout $f \in I$, on ait f(x) = 0.
- b) Déterminer les idéaux maximaux de A.

Solution. a) Supposons que pour tout $x \in K$, il existe $f \in I$ telle que $f(x) \neq 0$. On a alors

$$\bigcap_{f \in I} f^{-1}(0) = \emptyset.$$

Les complémentaires notés U_f des fermés $f^{-1}(0)$ sont ouverts et vérifient :

$$\bigcup_{f\in I} U_f = K.$$

Comme K est compact, on peut extraire un sous-recouvrement fini de ce recouvrement, il existe donc des éléments f_1, \dots, f_n de I tels que

$$\bigcup_{i=1}^{n} U_{f_i} = K.$$

Posons alors

$$f(x) = \sum_{i=1}^{n} f_i^2(x).$$

Pour tout $x \in K$, il existe i tel que $x \in U_{f_i}$ et donc $f_i(x) \neq 0$, ainsi pour tout $x \in K$, on a f(x) > 0. Mais alors f est inversible donc I = A, c'est absurde.

b) Soit $x \in K$, et considérons $I_x = \{f \in A \mid f(x) = 0\}$. Montrons que I_x est maximal. On a le morphisme $\varphi_x : A \to \mathbb{R}$ défini par $\varphi(f) = f(x)$. Ce morphisme est surjectif et son noyau est exactement I_x . Ainsi $A/I_x = \mathbb{R}$ qui est un corps donc I_x est maximal.

Réciproquement, soit I un idéal maximal. On a vu qu'il existe $x \in K$ tel que pour tout $f \in I$, on a f(x) = 0. Ainsi $I \subset I_x$. Mais comme I est maximal, on a nécessairement $I = I_x$.

Les idéaux maximaux sont donc les I_x pour $x \in K$. Enfin, remarquons que si $x \neq y$, alors $I_x \neq I_y$. En effet, il existe toujours $f \in A$ telle que $f(x) = 0 \neq f(y)$ (c'est le lemme de Tietze-Urysohn). Donc $K \simeq \operatorname{Specmax}(A)$. De plus la topologie de K correspond à la topologie de Zariski de Specmax(A).

Exercice 15. Montrer qu'il n'y a pas de morphisme d'anneaux :

- a) de \mathbb{C} dans \mathbb{R} ,
- b) de \mathbb{R} dans \mathbb{Q} .
- c) de \mathbb{Q} dans \mathbb{Z} ,
- d) de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{Z} , pour tout n > 0.

Solution. a) Soit φ un morphisme d'anneaux de \mathbb{C} dans \mathbb{R} , on a

$$\varphi(i)^2 = \varphi(i^2) = \varphi(-1) = -\varphi(1) = -1.$$

Ainsi $\varphi(i) \in \mathbb{R}$ et $\varphi(i)^2 = -1$. C'est impossible.

b) Soit φ un morphisme d'anneaux de \mathbb{R} dans \mathbb{Q} , on a

$$\varphi(\sqrt{2})^2 = \varphi(\sqrt{2}^2) = \varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = 1+1=2.$$

Ainsi $\varphi(\sqrt{2}) \in \mathbb{Q}$ et $\varphi(\sqrt{2})^2 = 2$. C'est impossible car $\sqrt{2}$ et $-\sqrt{2}$ ne sont pas rationnels.

c) Soit φ un morphisme d'anneaux de \mathbb{Q} dans \mathbb{Z} , on a

$$2 \cdot \varphi(\frac{1}{2}) = (1+1)\varphi(\frac{1}{2}) = (\varphi(1) + \varphi(1))\varphi(\frac{1}{2}) = \varphi(1+1)\varphi(\frac{1}{2}) = \varphi(2)\varphi(\frac{1}{2}) = \varphi(2)\cdot\frac{1}{2} = \varphi(1) = 1.$$

Ainsi $\varphi(\frac{1}{2}) \in \mathbb{Z}$ et $2\varphi(\frac{1}{2}) = 1$. C'est impossible.

d) Soit φ un morphisme d'anneaux de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{Z} et notons \overline{x} la classe dans $\mathbb{Z}/n\mathbb{Z}$ de $x \in \mathbb{Z}$. On a

$$0 = \varphi(0) = \varphi(\overline{n}) = \varphi(\overline{1} + \dots + \overline{1}) = \underbrace{\varphi(\overline{1}) + \dots + \varphi(\overline{1})}_{n \text{ fois}} = n \cdot \varphi(\overline{1}) = n.$$

On trouve que 0 = n > 0 dans \mathbb{Z} , c'est absurde.

Exercice 16. Montrer qu'il existe un morphisme d'anneaux de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$ si et seulement si m divise n. Montrer que dans ce cas il existe un unique morphisme d'anneau.

Solution. Soit φ un morphisme d'anneau de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$. Nous noterons \hat{x} et \overline{x} respectivement les classes de $x \in \mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$ et respectivement dans $\mathbb{Z}/m\mathbb{Z}$. Alors on a

$$0 = \varphi(0) = \varphi(\hat{n}) = \varphi(\hat{1} + \dots + \hat{1}) = \underbrace{\varphi(\hat{1}) + \dots + \varphi(\hat{1})}_{n \text{ fois}} = n \cdot \varphi(\hat{1}) = n \cdot \overline{1} = \overline{n}.$$

Ainsi pour que φ existe, il faut que $\overline{n} = \overline{0} \in \mathbb{Z}/m\mathbb{Z}$ c'est-à-dire m divise n.

Définir un morphisme de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$ est équivalent à définir un morphisme φ de \mathbb{Z} dans $\mathbb{Z}/m\mathbb{Z}$ tel que $\varphi(n) = \overline{0}$. Cependant on a nécessairement $\varphi(1) = \overline{1}$ donc $\varphi(n) = \overline{0} \Leftrightarrow \overline{n} = \overline{0}$ ce qui est équivalent au fait que m divise n. Par ailleurs le morphisme est unique car $\varphi(x) = \overline{x}$ pour tout $x \in \mathbb{Z}$.

Exercice 17. Soit A un anneau, montrer que l'ensemble R des éléments réguliers de A (c'est-à-dire non diviseurs de 0 dans A) est une partie multiplicative, c'est-à-dire : $1 \in R$ et si r et s sont des éléments de R alors $rs \in R$.

Solution. Supposons qu'il existe $x \in A$ tel que $1 \cdot x = 0$, alors x = 0 donc $1 \in R$.

Soient maintenant r et s deux éléments non diviseurs de 0. Supposons qu'il existe $x \in A$ tel que $x \cdot rs = 0$. On a alors $xr \cdot s = 0$ donc comme s n'est pas diviseur de 0, on a x = 0. Ainsi $rs \in R$.

Exercice 18. Dans un anneau fini, tous les éléments réguliers sont inversibles.

Solution. Soit $a \in A$ un élément régulier (c'est-à-dire non diviseur de 0). On considère alors le morphisme d'anneau : $\mu_a : A \to A$ défini par $\mu_a(x) = ax$. Comme a est régulier cette application est injective. Mais comme A est fini, l'application est aussi surjective et donc il existe $b \in A$ tel que $\mu_a(b) = 1$ c'est-à-dire ab = 1 donc a est inversible.

Exercice 19. Soit A un anneau, B = A[X] l'anneau des polynômes à coefficients dans A et $f = \sum_{i=0}^{n} a_i X^i$ un élément de B. Prouver les assertions suivantes :

- a) f est nilpotent si et seulement si a_0, \ldots, a_n sont nilpotents.
- b) f est une unité de B si et seulement si a_0 est une unité de A et a_1, \ldots, a_n sont nilpotents. Indice: si $f^{-1}=g=\sum_{i=0}^m b_j X^j$ montrer par récurrence sur i que $a_n^{i+1}b_{m-i}=0$.
- c) f est diviseur de zéro si et seulement si $\exists a \in A$ tel que $a \neq 0$ et af = 0. Indice: montrer que si $f \cdot g = 0$ avec $\deg(g)$ minimal alors $a_i \cdot g = 0 \ \forall i$.

Solution. a) Si f est nilpotent, alors il existe $k \in \mathbb{N}$ tel que $f^k = 0$. Mais alors le terme dominant de f^k est a_n^k donc $a_n^k = 0$ et a_n nilpotent. Alors $f - a_n X^n$ est nilpotent et par récurrence sur le degré, tous les a_i sont nilpotents.

Réciproquement, si tous les a_i sont nilpotents, alors pour tout i, on a $a_i X^i$ est nilpotent donc f est somme de nilpotents donc est nilpotent.

b) Si a_0 est une unité de A et a_1, \ldots, a_n sont nilpotents, alors f = u - n où u est une unité et n est nilpotent. Alors f est inversible. En effet, il existe $k \in \mathbb{N}$ tel que $n^k = 0$, alors on a

$$(u-n)(u^{k-1}+u^{k-2}n+\cdots+un^{k-2}+n^{k-1})=u^k-n^k=u^k$$

Ainsi on a $(u-n)(u^{k-1}+u^{k-2}n+\cdots+un^{k-2}+n^{k-1})(u^{-1})^k=1$ donc u-n est inversible. Réciproquement, si f est une unité, alors écrivons $f^{-1}=g=\sum_{j=0}^m b_j X^j$. On a

$$1 = fg = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j X^{i+j} = \sum_{k=0}^{m+n} \sum_{i+j=k} a_i b_j X^k.$$

Ainsi

$$\sum_{i+j=k} a_i b_j = 0 \text{ pour } k \neq 0 \text{ et } a_0 b_0 = 1,$$

ce qui prouve déjà que a_0 est inversible.

Si n=0, on a fini. Sinon, montrons par récurrence sur k que $a_n^{k+1}b_{m-k}=0$ pour $k\leq m$. Comme n>0, on a m+n>0 et $a_nb_m=0$ ce qui prouve le cas k=0.

Supposons que $a_n^{l+1}b_{m-l}=0$ pour l< k, on a $m+n-k\geq n>0$ donc $\sum_{i+j=m+n-k}a_ib_j=0$ et en multipliant par a_n^k on a

$$0 = \sum_{i+j=m+n-k} a_i a_n^k b_j = a_n^{k+1} b_{m-k} + \sum_{i < n} a_i a_n^{n-1-i} \underbrace{a_n^{k+i-n+1} b_{m+n-k-i}}_{\text{nul par hyp. de récurrence}} = a_n^{k+1} b_{m-k}.$$

Pour k=m, on a $a_n^m b_0=0$ mais $a_0 b_0=1$ donc on en déduit $a_n^m=0$ et a_n est nilpotent.

On a donc $f - a_n X^n$ encore inversible (car on l'a vu inversible + nilpotent = inversible) et par récurrence on en déduit que tous les a_i avec i > 0 sont nilpotents.

c) Si il existe $0 \neq a \in A$ tel que af = 0 alors f est évidement diviseur de 0.

Réciproquement, si f est diviseur de 0, alors il existe $0 \neq g \in A[X]$ tel que fg = 0. Prenons un tel g de degré minimal, on écrit $g = \sum_{j=0}^{m} b_j X^j$, si m = 0 c'est fini. Sinon, commençons par montrer que pour tout k, on a $a_k g = 0$.

L'assertion est vraie pour k > n. Supposons qu'elle est vraie pour tout l > k. Alors,

$$0 = fg = (a_0 + \dots + a_n X^n)g = (a_0 + \dots + a_k X^k)g$$

et le coefficient dominant est $a_k b_m$ donc $a_k b_m = 0$. Mais alors $a_k g = \sum_{j=0}^{m-1} a_k b_j X^j$ est de degré inférieur à m-1 et $f \cdot (a_k g) = 0$. Par minimalité du degré de g ceci impose que $a_k g = 0$.

Mais alors tous les produits $a_k b_l$ sont nuls. En particulier $b_l f = 0$ pour tout l et comme $g \neq 0$ l'un au moins de b_l est non nul ce qui prouve le résultat.

Exercice 20. Soit k un corps et A l'anneau quotient de k[X,Y] par l'idéal engendré par $X^2 + 5Y^2$. L'anneau A est-il :

- a) intègre?
- b) réduit?
- c) factoriel?

Donner éventuellement des conditions sur k.

Solution. a) L'anneau A est intègre si et seulement si l'idéal $(X^2 + 5Y^2)$ est premier. C'est le cas si et seulement si $X^2 + 5Y^2$ est irréductible. Ce polynômes est irréductible si et seulement si l'équation $x^2 = -5$ n'a pas de solution dans k (c'est par exemple le cas sur \mathbb{R} mais pas sur \mathbb{C}).

b) Remarquons tout d'abord que si A est intègre, alors il est réduit. Ainsi on peut se placer dans le cas A non intègre c'est-à-dire dans le cas où k contient $\sqrt{-5}$ et $-\sqrt{-5}$.

L'anneau A est réduit s'il n'existe pas d'élément $P \in k[X,Y]$ tel que $Cl(P) \in A$ est nilpotent (c'est-à-dire il exite $n \geq 2$ tel que $Cl(P)^n = 0$). Si c'était le cas alors on aurait $X^2 + 5Y^2$ divise P^n . Ceci signifie donc que $(X + \sqrt{-5}Y)(X - \sqrt{-5}Y)$ divise P^n donc comme $X + \sqrt{-5}Y$ et $X - \sqrt{-5}Y$ sont irréductibles, ils divisent P.

Si $X + \sqrt{-5}Y$ et $X - \sqrt{-5}Y$ sont distincts, alors les deux divisent P donc leur produit divise P donc $X^2 + 5Y^2$ divise P et Cl(P) = 0. Dans ce cas A est réduit.

Il reste le cas où $X+\sqrt{-5}Y=X-\sqrt{-5}Y$, c'est-à-dire $\sqrt{-5}=-\sqrt{-5}$ ou encore $2\sqrt{-5}=0$. Comme k est un corps, ceci n'arrive que si 2=0 ou $\sqrt{-5}=0$ donc 5=0. Ainsi si le corps k est de caractéristique 2 ou 5 (dans les deux cas $\sqrt{-5}$ existe), on a $X+\sqrt{-5}Y=X-\sqrt{-5}Y$ et $Cl(X+\sqrt{-5}Y)\neq 0$ alors que $Cl(X+\sqrt{-5}Y)^2=Cl(X^2+5Y^2)=0$. Dans ce cas A n'est pas réduit.

c) Un anneau factoriel étant intègre, on peut supposer que -5 n'est pas un carré dans k.

Il nous suffit montrer qu'il existe un élément irréductible u tel que A/(u) n'est pas intègre. Prenons u=y (la classe de Y dans A). On a alors $A/(y)=k[X,Y]/(X^2+5Y^2,Y)=k[X]/(X^2)$ qui n'est pas intègre. Il reste donc à montrer que y est irréductible.

Soient donc P_1 et P_2 dans k[X,Y] tels que leurs classes p_1 et p_2 vérifient $y=p_1p_2$. Il faut montrer que l'un des p_i est inversible. La division euclidienne par $X^2 + 5Y^2$ permet de supposer que P_1 et P_2 sont de la forme $P_i = A_i(X) + YB_i(X)$ avec A_i et B_i des polynômes en X. On a alors

$$P_1(x,y)P_2(x,y) - y = A_1(x)A_2(x) + (A_1(x)B_2(x) + A_2(x)B_1(x))y + B_1(x)B_2(x)y^2 - y$$
$$= (A_1(x)A_2(x) - \frac{1}{5}B_1(x)B_2(x)x^2) + (A_1(x)B_2(x) + A_2(x)B_1(x) - 1)y.$$

Ce terme doit être nul donc en relevant dans k[X, Y] il est encore nul car le degré en Y est au plus 1 et qu'il doit être multiple de $X^2 + 5Y^2$.

On a donc les équations

$$5A_1A_2 = B_1B_2X^2$$
, et $A_1B_2 + A_2B_1 = 1$.

On peut supposer qu'aucun de ces polynômes n'est nul : si par exemple A_1 est nul, alors l'un des B_i l'est aussi. Ce n'est pas B_1 d'après la seconde equation donc $B_2 = 0$. Mais alors on a $A_2B_1 = 1$ et $P_2 = A_2$ est inversible

Le polynômes X divise l'un des A_i . Si il divisait les deux alors il diviserait 1 ce qui est impossible. On peut donc supposer par exemple que X divise A_2 et pas A_1 . On a alors $A_2 = X^2 A_2'$ et les équations :

$$5A_1A_2' = B_1B_2$$
, et $A_1B_2 + X^2A_2'B_1 = 1$.

Soit P un polynômes irréductible divisant A_1 , alors P divise l'un des B_i . Ce n'est pas B_1 car sinon P diviserait 1 donc P divise B_2 . De même si P divise B_2 il divise nécessairement A_1 . Les polynômes A_1 et B_2 sont donc proportionnels. Il en va de même de A_2' et B_1 . Il existe donc a et b dans k tels que $B_1 = aA_2'$ et $B_2 = bA_1$.

Les équiations précédentes deviennent

$$5 = ab$$
, et $bA_1^2 + \frac{1}{a}X^2B_1^2 = 1$,

ce qui donne $5A_1^2 + X^2B_1^2 = a$. Mais alors on a la relation

$$5(A_1(x) + B_1(x)y)(A_1(x) - B_1(x)y) = 5A_1(x)^2 - 5y^2B_1(x)^2 = 5A_1^2 + X^2B_1^2 = a$$

qui prouve que p_1 est inversible.

Exercice 21. Soit $f: A \to B$ un morphisme d'anneaux.

- (1) Montrer que l'image réciproque d'un idéal premier est encore un idéal premier.
- (11) Est-ce encore vrai pour les idéaux maximaux? Et si f est surjectif?

Solution. Remarque préliminaire :

Soit \mathfrak{p} un idéal de B, alors comme $0 \in \mathfrak{p}$, alors $f^{-1}(\mathfrak{p}) \supset \ker f$. Ainsi le morphisme induit

$$\overline{f}: A/f^{-1}(\mathfrak{p}) \to B/\mathfrak{p}$$

est injectif : si $\overline{x} \in \ker \overline{f}$, alors $f(x) \in \mathfrak{p}$ donc $x \in f^{-1}(\mathfrak{p})$ donc $\overline{x} = 0$. Ainsi \overline{f} est toujours injectif.

- (1) Si \mathfrak{p} est premier, alors B/\mathfrak{p} est intègre, mais comme $\overline{f}: A/f^{-1}(\mathfrak{p}) \to B/\mathfrak{p}$ est injectif, $A/f^{-1}(\mathfrak{p})$ est aussi intègre donc $f^{-1}(\mathfrak{p})$ est premier.
- (11) Si f n'est pas surjectif, c'est faux. Par exemple considérons l'inclusion $\mathbb{Z} \to \mathbb{Q}$ et prenons $\mathfrak{p} = (0) \subset \mathbb{Q}$ qui est un idéal maximal de \mathbb{Q} . Alors $f^{-1}(\mathfrak{p})=(0)$ qui est un idéal premier de \mathbb{Z} (car $\mathbb{Z}/(0)$ est intègre) mais pas maximal (car $\mathbb{Z}/(0)$ n'est pas un corps).

Si par contre f est surjectif, alors \overline{f} est surjectif. Or on a vu qu'il est injectif donc il est bijectif. Si \mathfrak{p} est maximal, alors B/\mathfrak{p} est un corps et donc $A/f^{-1}(\mathfrak{p})$ aussi (car \overline{f} est bijective) et $f^{-1}(\mathfrak{p})$ est maximal.

Exercice 22. Soit A un anneau et I un idéal et soit $\pi: A \to A/I$. Montrer que :

- (1) les idéaux de A/I sont en bijection avec les idéaux de A contenant I,
- (11) cette bijection induit une bijection sur les idéaux premiers et les idéaux maximaux.

Solution. (1) Soit $\mathcal{C} = \{J \subset A, \text{ idéal } / I \subset J\}$ et $\mathcal{E} = \{L \subset A/I / J \text{ est un idéal}\}$. Considérons les applications suivantes $f: \mathcal{C} \to \mathcal{E}$, $f(J) = \pi(J)$ ($\pi(J)$ est bien un idéal de A/I car il est stable par addition et si $\pi(a) \in A/I$ et $\pi(j) \in \pi(J)$, alors $\pi(a)\pi(j) = \pi(aj) \in \pi(J)$ et $g: \mathcal{E} \to \mathcal{C}$, $g(L) = \pi^{-1}(L)$ ($\pi^{-1}(L)$ contient bien I car $0 \in L$ et $\pi^{-1}(0) = I$).

Nous montrons que f et q sont des bijections réciproques. On a $f(q(L)) = \pi(\pi^{-1}(L)) \subset L$. Soit maintenant $x \in L$, comme π est surjective, on peut écrire $x = \pi(a)$, mais alors $a \in \pi^{-1}(L)$ et donc $x \in \pi(\pi^{-1}(L))$. On a bien $f \circ g = \mathrm{Id}_{\mathcal{E}}$.

Par ailleurs, $g(f(J)) = \pi^{-1}(\pi(J)) = J + I = J$ car $I \subset J$. On a bien $g \circ f \operatorname{Id}_{\mathcal{C}}$.

(ii) Supposons maintenant que $J \in \mathcal{C}$ est premier, c'est-à-dire A/J est intègre. Son image dans \mathcal{E} est $\pi(J) = J/I$ et on a $(A/I)/(J/I) \simeq A/J$ est intègre donc $\pi(J)$ est premier.

Réciproquement, si $L \in \mathcal{E}$ est premier, c'est-à-dire (A/I)/L est intègre. Son image dans \mathcal{C} est $J = \pi^{-1}(L)$ et on a $A/L = (A/I)/(J/I) \simeq A/J$ est intègre donc J est premier.

De même en remplaçant premier par maximal et anneau intègre par corps, on a le résultat pour les idéaux maximaux.

Exercice 23. Déterminer tous les idéaux premiers de :

- (ii) $\mathbb{R}[X]/(X^2 + X + 1)$, (iii) $\mathbb{R}[X]/(X^3 6X^2 + 11X 6)$,
- (iv) $\mathbb{R}[X]/(X^4-1)$.
- (v) Déterminer tous les morphismes de \mathbb{R} -algèbre de ces anneaux dans \mathbb{R} et \mathbb{C} .

Solution. Rappelons les résultats suivants :

 \bullet si k est un corps, les idéaux premiers de k[X] sont les (P) avec P irréductible. En effet, soit (P) un idéal premier (rappelons que k[X] est euclidien donc principal ainsi tout idéal est de la forme (P)), si $P = P_1 P_2$, alors $\overline{P}_1\overline{P}_2=0$ dans k[X]/(P). Ceci impose comme (P) est premier que $\overline{P}_1=0$ ou $\overline{P}_2=0$ et donc P_1 ou P_2 est multiple de P, l'autre polynôme est donc constant. Ainsi P est irréductible.

Réciproquement, si P est irréductible et que P_1 et P_2 sont deux éléments de k[X] tels que $\overline{P}_1\overline{P}_2=0$ dans k[X]/(P), alors P divise le produit P_1P_2 et comme P est irréductible, il divise l'un ou l'autre c'est-à-dire $\overline{P_1}=0$ ou $\overline{P_2} = 0$ donc (P) est premier.

• Si A est un anneau et I un idéal et soit $\pi:A\to A/I$. Les idéaux premiers de A/I sont en bijection (définie par $J \mapsto \pi(J)$ et de bijection réciproque $\overline{J} \mapsto \pi^{-1}(\overline{J})$ avec les idéaux premiers de A contenant I (cf. exercice précédent).

Nous pouvons maintenant résoudre l'exercice.

(1) Les idéaux premiers de $\mathbb{C}[X]$ sont les (P) avec P irréductible. Or sur \mathbb{C} qui est algébriquement clos, les polynômes irréductibles sont les X-a avec $a\in\mathbb{C}$. Les idéaux premiers de $\mathbb{C}[X]$ sont donc les (X-a) avec $a \in \mathbb{C}$.

(n) Les idéaux premiers de $\mathbb{R}[X]/(X^2+X+1)$ sont en bijection avec les idéaux premiers de $\mathbb{R}[X]$ qui contiennent (X^2+X+1) . Les idéaux premiers de $\mathbb{R}[X]$ sont les (P) avec P irréductible. Si de plus on a $(X^2+X+1)\subset (P)$ alors P divise X^2+X+1 . Comme X^2+X+1 est irréductible, ceci impose que $P=a(X^2+X+1)$ avec $0\neq a\in\mathbb{R}$. Ainsi il y a un unique idéal premier contenant (X^2+X+1) c'est (X^2+X+1) lui-même. L'anneau $\mathbb{R}[X]/(X^2+X+1)$ a donc un unique idéal premier : (0).

(iii) Les idéaux premiers de $\mathbb{R}[X]/(X^3-6X^2+11X-6)$ sont en bijection avec les idéaux premiers de $\mathbb{R}[X]$ qui contiennent $(X^3-6X^2+11X-6)$. Les idéaux premiers de $\mathbb{R}[X]$ sont les (P) avec P irréductible. Si de plus on a $(X^3-6X^2+11X-6)\subset (P)$ alors P divise le polynôme $X^3-6X^2+11X-6$. On écrit la décomposition de $X^3-6X^2+11X-6$ dans $\mathbb{R}[X]$:

$$X^3 - 6X^2 + 11X - 6 = (X - 1)(X^2 - 5X + 6) = (X - 1)(X - 2)(X - 3).$$

Les polynômes irréductibles qui divisent $X^3-6X^2+11X-6$ sont donc X-1, X-2 et X-3. Il y a donc trois idéaux premiers dans $\mathbb{R}[X]/(X^3-6X^2+11X-6)$ qui sont $(X-1)/(X^3-6X^2+11X-6)$, $(X-2)/(X^3-6X^2+11X-6)$ et $(X-3)/(X^3-6X^2+11X-6)$.

(iv) Les idéaux premiers de $\mathbb{R}[X]/(X^4-1)$ sont en bijection avec les idéaux premiers de $\mathbb{R}[X]$ qui contiennent (X^4) . Les idéaux premiers de $\mathbb{R}[X]$ sont les (P) avec P irréductible. Si de plus on a $(X^4-1) \subset (P)$ alors P divise le polynôme X^4-1 . On écrit la décomposition de X^4-1 dans $\mathbb{R}[X]$:

$$X^4 - 1 = (X - 1)(X + 1)(X^2 + 1).$$

Les polynômes irréductibles qui divisent X^4-1 sont donc X-1, X+1 et X^2+1 . Il y a donc trois idéaux premiers dans $\mathbb{R}[X]/(X^4-1)$ qui sont $(X-1)/(X^4-1)$, $(X+1)/(X^4-1)$ et $(X^2+1)/(X^4-1)$. (v) Cas (1): soit $\varphi: \mathbb{C}[X] \to \mathbb{C}$ un morphisme de \mathbb{R} -algèbres, on a

$$\varphi(i)^2 = \varphi(i^2) = \varphi(-1) = -\varphi(1) = -1,$$

donc $\varphi(i) = \pm i$. Soit $\alpha \in \mathbb{C}$ l'image de X et soit $P \in \mathbb{C}[X]$ avec $P = \sum a_n X^n + i \sum b_n X^n$ où a_n et b_n sont dans \mathbb{R} , on a :

$$\varphi(P) = \sum a_n \alpha^n + \varphi(i) \sum b_n \alpha^n.$$

Ainsi si $\varphi(i)=i$, alors $\varphi(P)=P(\alpha)$ et si $\varphi(i)=-i$, alors $\varphi(P)=\overline{P}(\alpha)$. Aucun de ces morphismes n'a son image contenue dans \mathbb{R} .

Cas (n) : les morphismes φ de \mathbb{R} -algèbre de $\mathbb{R}[X]/(X^2+X+1)$ dans \mathbb{C} sont les morphismes φ de \mathbb{R} -algèbre de $\mathbb{R}[X]$ dans \mathbb{C} qui envoient X^2+X+1 sur 0. Le raisonnement précédent montre que $\varphi(P)=P(\alpha)$ pour un certain $\alpha=\varphi(X)$ (ici il n'y a pas le problème avec i). Par ailleurs, il faut que $0=\varphi(X^2+X+1)=\alpha^2+\alpha+1$. On a donc $\alpha=j$ ou $\alpha=j^2$. Il y a donc deux morphismes dans \mathbb{C} donnés par $\varphi(P)=P(j)$ et $\varphi(P)=P(j^2)$. Aucun de ces morphismes n'a son image contenue dans \mathbb{R} .

Cas (III) : le même raisonnement montre que les morphismes de \mathbb{R} -algèbre dans \mathbb{C} sont donnés par $\varphi(P) = P(1)$, $\varphi(P) = P(2)$ ou $\varphi(P) = P(3)$. Tous ces morphismes sont à valeurs dans \mathbb{R} .

Cas (iv) : cette fois-ci les morphismes de \mathbb{R} -algèbre dans \mathbb{C} sont donnés par $\varphi(P) = P(1)$, $\varphi(P) = P(-1)$, $\varphi(P) = P(i)$ ou $\varphi(P) = P(-i)$. Les deux premiers sont à valeurs dans \mathbb{R} et pas les deux derniers.

Exercice 24. Soit $\mathfrak p$ un idéal premier d'un anneau A, et soient $(I_i)_{1\leq i\leq n}$ des idéaux de A. Supposons que

$$\mathfrak{p}\supset\prod_{i=1}^nI_i,$$

montrer que \mathfrak{p} contient l'un des idéaux I_i .

Solution. Supposons que \mathfrak{p} ne contienne aucun des idéaux I_i , alors pour chaque i, il existe $x_i \in I_i$ tel que $x_i \notin \mathfrak{p}$. Comme \mathfrak{p} est premier, le produit de ces x_i n'est pas dans \mathfrak{p} . Cependant on a

$$\prod_{i=1}^{n} x_i \in \prod_{i=1}^{n} I_i \subset \mathfrak{p}$$

ce qui est une contradiction.

Exercice 25. Soient $(\mathfrak{p}_i)_{1\leq i\leq n}$ des idéaux premiers d'un anneau A, et soit I un idéal de A tel que

$$I \subset \cup_{i=1}^n \mathfrak{p}_i$$
.

Montrer que I est contenu dans l'un des \mathfrak{p}_i .

Solution. Quitte à remplacer les \mathfrak{p}_i par un sous-ensemble, on peut supposer qu'aucun des \mathfrak{p}_i n'est contenu dans un \mathfrak{p}_i (sinon on garde le plus grand, le plus petit ne sert à rien).

Remarquons que comme $\mathfrak{p}_j \not\subset \mathfrak{p}_1$ pour $j \geq 2$, on peut trouver $b_j \in \mathfrak{p}_j$ tel que $b_j \not\in \mathfrak{p}_1$ et on a $a_1 = b_2 \cdots b_n \in \mathfrak{p}_2 \cdots \mathfrak{p}_n$ mais $a_1 \not\in \mathfrak{p}_1$. De même on peut trouver des $a_j \not\in \mathfrak{p}_j$ tels que a_j appartienne à tous les autres \mathfrak{p}_i .

Supposons que I n'est contenu dans aucun \mathfrak{p}_i , alors pour tout i, il existe $x_i \in I$ tel que $x_i \notin \mathfrak{p}_i$.

Considérons l'élément $x = \sum a_i x_i$. Comme $x_i \in I$ pour tout i, on a $x \in I$.

Par ailleurs, comme $a_1 \notin \mathfrak{p}_1$, $x_1 \notin \mathfrak{p}_1$ et que \mathfrak{p}_1 est premier on a $a_1x_1 \notin \mathfrak{p}_1$. Mais on a $a_2x_2 + \cdots + a_nx_n \in \mathfrak{p}_1$ car tous les $a_i \in \mathfrak{p}_1$ pour $i \geq 2$, ainsi $x \notin \mathfrak{p}_1$. De même, $x \notin \mathfrak{p}_i$ pour tout i, donc

$$x \notin \bigcup_{i=1}^n \mathfrak{p}_i$$

ce qui est absurde.

Exercice 26. Soit A un anneau et nil(A) l'ensemble des éléments nilpotents de A.

- (1) Montrer que nil(A) est un idéal.
- (11) Montrer que si \mathfrak{p} est un idéal premier, alors $\operatorname{nil}(A) \subset \mathfrak{p}$.
- (III) Soit $s \notin \text{nil}(A)$ et $S = \{1, s, \dots, s^n, \dots\}$. Montrer que l'ensemble des idéaux de A disjoints de S contient un élément maximal \mathfrak{p} (utiliser le lemme de Zorn). Montrer que \mathfrak{p} est premier. En déduire que

$$\operatorname{nil}(A) = \bigcap_{\mathfrak{p} \text{ id\'eal premier}} \mathfrak{p}.$$

Solution. Soient $a \in A$ et $x \in \text{nil}(A)$, alors il existe $n \in \mathbb{N}$ tel que $x^n = 0$, mais alors $(ax)^n = a^n x^n = 0$ donc $ax \in \text{nil}(A)$.

Soient x et y des éléments de nil(A), alors il existe $n \in \mathbb{N}$ tel que $x^n = 0$ et $m \in \mathbb{N}$ tel que $y^m = 0$. On calcule alors

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} {n+m \choose k} x^k y^{n+m-k}.$$

Si $k \in [0, n]$, alors $n + m - k \ge m$ donc $y^{n+m-k} = 0$ et si $k \in [n, n+m]$, alors $x^k = 0$. Ainsi $(x+y)^{n+m} = 0$ et $x + y \in \text{nil}(A)$.

- (11) Soit \mathfrak{p} un idéal premier et $x \in \text{nil}(A)$, il existe alors $n \in \mathbb{N}$ tel que $x^n = 0 \in \mathfrak{p}$. Mais comme \mathfrak{p} est premier, ceci impose que $x \in \mathfrak{p}$.
- (III) Montrons que l'ensemble des idéaux de A disjoints de S vérifie les hypothèses du lemme de Zorn c'est-à-dire est inductif pour l'inclusion : pour toute suite croissante $(I_n)_{n\in\mathbb{N}}$ d'idéaux disjoints de S, alors la réunion I de ces idéaux est encore un idéal disjoint de S.

Il est clair que I est encore un idéal, en effet, si x et y sont dans I, alors il existe n et m tels que $x \in I_n$ et $y \in I_m$ et on a $x + y \in I_{\max(n,m)} \subset I$. De même si $a \in A$, alors $ax \in I_n \subset I$.

Il reste à voir que I ne rencontre pas S. Mais si I rencontrait S, alors il existerait $k \in \mathbb{N}$ tel que $s^k \in I$ ce qui signifie qu'alors il existerait un $n \in \mathbb{N}$ tel que $s^k \in I_n$, c'est-à-dire que I_n rencontrerait S, c'est absurde.

Ainsi par le lemme de Zorn, il existe un idéal maximal parmi les idéaux de A disjoints de S. Soit $\mathfrak p$ un tel idéal, montrons qu'il est premier. Soient donc x et y dans A tels que $xy \in \mathfrak p$. Il faut montrer que $x \in \mathfrak p$ ou $y \in \mathfrak p$. Si on a $x \notin \mathfrak p$ et $y \notin \mathfrak p$, alors les idéaux $\mathfrak p + (x)$ et $\mathfrak p + (y)$ rencontrent S. Il existent donc n et m des entiers tels que

$$s^n = p_1 + a_1 x$$
 et $s^m = p_2 + a_2 y$

avec $p_i \in \mathfrak{p}$ et $a_i \in A$. Alors on calcule le produit, on a

$$s^{n+m} = p_1 p_2 + p_1 a_2 y + p_2 a_1 x + a_1 a_2 x y \in \mathfrak{p}.$$

Ce qui est absurde car $\mathfrak p$ ne rencontre pas S. L'idéal $\mathfrak p$ est donc premier.

Montrons la dernière égalité. On a vu au (11) que pour tout idéal premier, on a $nil(A) \subset \mathfrak{p}$ donc

$$\operatorname{nil}(A) \subset \bigcap_{\mathfrak{p} \text{ premier}} \mathfrak{p}.$$

Réciproquement, soit $s \notin \operatorname{nil}(A)$, d'après ce qu'on vient de montrer, il existe un idéal premier $\mathfrak p$ tel que $\mathfrak p$ ne rencontre pas S, en particulier $s \notin \mathfrak p$ ce qui montre que $s \notin \bigcap \mathfrak p$.

Exercice 27. Montrer que dans un anneau principal A, les idéaux premiers sont maximaux.

Solution. Soit $\mathfrak p$ un idéal premier et soit $\mathfrak m$ un idéal le contenant. Comme l'anneau est principal, on peut écrire $\mathfrak p=(p)$ et $\mathfrak m=(m)$. Le fait que $\mathfrak p\subset\mathfrak m$ se traduit par : p=am avec $a\in A$. Mais alors comme $\mathfrak p$ est premier, on a $a\in\mathfrak p$ ou $m\in\mathfrak p$. Si $m\in\mathfrak p$, alors $\mathfrak p=\mathfrak m$ et on a fini. Sinon, alors $a\in\mathfrak p$ donc il existe $u\in A$ tel que a=up donc p=upm et comme A est intègre (car principal) on a 1=um donc m est inversible et $\mathfrak m=A$. L'idéal $\mathfrak p$ est donc maximal.

Exercice 28. Montrer que l'anneau $\frac{\mathbb{C}[X,Y]}{(Y-X^2)}$ est principal.

Solution. On montre que $\mathbb{C}[X,Y]/(Y-X^2)$ est isomorphe à $\mathbb{C}[X]$. En effet, introduisons le morhisme d'anneaux : $\varphi: \mathbb{C}[X,Y] \to \mathbb{C}[X]$ défini par $\varphi(P) = P(X,X^2)$. Il est clair que φ est surjectif. On a $\varphi(Y-X^2) = X^2 - X^2 = 0$ donc $Y - X^2 \in \ker \varphi$. Par ailleurs, si $P \in \ker \varphi$ on peut effectuer la division euclidienne de P par $Y - X^2$ car le coefficient dominant de $Y - X^2$ dans $\mathbb{C}[X][Y]$ est égal à 1 donc inversible. On a ainsi $P(X,Y) = (Y-X^2)Q(X,Y) + R(X,Y)$ où R(X,Y) est un polynôme de $\mathbb{C}[X][Y]$ de degré en Y strictement inférieur à celui de $Y - X^2$, c'est-à-dire de degré nul. Donc R(X,Y) est un polynôme en X uniquement. On a donc

$$0 = \varphi(P) = \varphi(Y - X^2)\varphi(Q) + \varphi(R) = \varphi(R).$$

Mais $\varphi(R) = R(X, X^2) = R(X)$ donc R = 0 et $P \in (Y - X^2)$. On a donc $\ker \varphi = (Y - X^2)$ ce qui nous donne un isomorphisme

$$\overline{\varphi}: \mathbb{C}[X,Y]/(Y-X^2) \to \mathbb{C}[X].$$

Comme $\mathbb{C}[X]$ est principal, $\mathbb{C}[X,Y]/(Y-X^2)$ l'est aussi.

Exercice 29. "Soit $A = \frac{\mathbb{C}[X,Y]}{(XY-1)}$; on pose " x = Cl(X).

- a) Montrer que x est inversible et que tout élément a non nul de A peut s'écrire de façon unique sous la forme $a = x^m P(x)$ où $m \in \mathbb{Z}$ et P est un polynôme de terme constant non nul. On note $e(a) = \deg(P)$.
- b) Soient $a, b \in A$ montrer qu'il existe $q, r \in A$ tels que a = bq + r et : r = 0 ou e(r) < e(b).
- c) En déduire que A est principal.

Solution. a) Si y = Cl(Y), on a xy = 1 donc x est inversible d'inverse y (en particulier $y = x^{-1}$. Soit $a \in A$, on peut écrire

$$a=\sum_{i,j}\alpha_{i,j}x^iy^j=\sum_{i,j}\alpha_{i,j}x^ix^{-j}=\sum_{i,j}\alpha_{i,j}x^{i-j}=\sum_k\beta_kx^k,$$

où $\beta_k = \sum_j \alpha_{j+k,j}$. Soit m le plus petit entier tel que $\beta_m \neq 0$ (il existe car il n'y a qu'un nombre fini de $\alpha_{i,j}$ non nuls) et soit $P(X) = \sum_{k \geq 0} \beta_{k+m} X^k$. On a bien $a = x^m P(x)$ et $P(0) = \beta_m \neq 0$. Il reste à voir que cette écriture est unique. Si on a deux telles écriture $x^m P(x) = a = x^n Q(x)$ avec disons $m \leq n$, alors on a $x^m (P(x) - x^{n-m} Q(x)) = 0$ et comme x est inversible on a $P(x) - x^{n-m} Q(x) = 0$. Ceci signifie que XY - 1 divise $P(X) - X^{n-m} Q(X)$ et comme ce dernier polynôme est de degré x = 0 et on a alors x = 0. On a donc x = 0 et x = 0 et on a alors x = 0 et on a donc x = 0 et on a alors x = 0 et on a alors x = 0 et on a alors x = 0 et on a lors x = 0 et on a lors x = 0 et on a alors x = 0 et on a lors x = 0 et

b) Si a=0, on choisit q=r=0. Sinon, écrivons $a=x^mA(x)$ et $b=x^nB(x)$ où A et B sont des polynômes tels que $A(0)\neq 0$ et $B(0)\neq 0$. Effectuons la division euclidienne de A par B: il existe Q et R deux polynômes tels que R=0 ou deg $R<\deg B$ tels que A=BQ+R. Mais alors on a

$$a = x^{m}A(x) = x^{m}B(x)Q(x) + x^{m}R(x) = x^{n}B(x)x^{n-m}Q(x) + x^{m}R(x).$$

On pose alors $q = x^{n-m}Q(x)$ et $r = x^mR(x)$ et on a a = bq + r. Si R = 0, on a r = 0 ce qui convient. Si $R(0) \neq 0$, alors $e(r) = \deg R < \deg B = e(b)$. Si enfin R(0) = 0, alors il existe k > 0 tel que $R(X) = X^kU(X)$ avec $U(0) \neq 0$. On a alors $r = x^{m+k}U(x)$ et

$$e(r) = \deg U = \deg R - k < \deg R < \deg B = e(b).$$

c) Soit I un idéal, si I = (0), alors I est principal, sinon soit $b \in I$ tel que e(b) soit minimal. Soit maintenant $a \in I$, on a a = bq + r avec r = 0 ou e(r) < e(b). Comme a et b sont dans I, on a $r \in I$. Comme e(b) est minimal, on a nécessairement r = 0 donc $a = bq \in (b)$ donc I = (b).

Exercice 30. Soit k un corps et $A = k[X,Y]/(X^2, XY, Y^2)$.

- (1) Déterminer les éléments inversibles de A.
- (11) Déterminer tous les idéaux principaux de A.
- (111) Déterminer tous les idéaux de A.

Solution. (1) Soient x et y les images de X et Y dans A. On a $x^2 = xy = y^2$, ainsi tou élément de A s'écrit sous la forme a + bx + cy avec a, b et c dans k. Cet élément est inversible si et seulement s'il existe a', b' et c' dans k tels que

$$(a + bx + cy)(a' + b'x + c'y) = 1$$

c'est-à-dire

$$aa' + (ab' + a'b)x + (ac' + a'c)y = 1.$$

Ceci impose que l'on ait aa'=1, ab'+a'b=0 et ac'+a'c=0. Ce système a une solution si et seulement si $a\neq 0$, la solution est alors $a'=\frac{1}{a}$, $b'=-\frac{b}{a^2}$ et $c'=-\frac{c}{a^2}$. Ainsi a+bx+cy est inversible si et seulement si $a\neq 0$. (11) Soit I un idéal principal de A. Si I=A, alors I est engendré par un élément inversible quelconque. Supposons $I\neq A$, alors I est engendré par un élément non inversible donc de la forme bx+cy. Il reste à déterminer à quelle condition deux éléments bx+cy et b'x+c'y définissent le même idéal c'est-à-dire à quelle condition ils diffèrent par multiplication par un inversible.

On cherche donc $\alpha + \beta x + \gamma y$ tel que $\alpha \neq 0$ et $(\alpha + \beta x + \gamma y)(bx + cy) = b'x + c'y$. Ceci nous donne $\alpha b = b'$ et $\alpha c = c'$, c'est-à-dire les couple (b, c) et (b', c') sont proportionnels. Ainsi, on voit que si $b \neq 0$, on peut supposer b = 1 et on a $c \in k$ quelconque. Si par contre b = 0 et $c \neq 0$, on peut supposer c = 1 et on a le couple (0, 1), enfin il y a le couple (0, 0). Les idéaux principaux de A sont donc A, (x + cy), (y) et (0).

(m) Soit I un idéal non principal de A. Alors I est engendré par deux éléments qui sont de la forme ax + by et cx + dy (ils ne peuvent être inversibles sinon I = A est principal) et non proportionnels. Ainsi les vecteurs (a, b) et (c, d) engendrent tout k^2 c'est-à-dire que ax + by et cx + dy engendrent tous les termes de la forme $\alpha x + \beta y$. L'idéal I contient donc l'idéal (x, y). Or $A/(x, y) \simeq k$ donc (x, y) est maximal. Comme $I \neq A$, on a I = (x, y) qui est le seul idéal non principal de A.

Exercice 31. Soit A un anneau intègre et $\mathfrak p$ un idéal premier principal non nul. Soit I un idéal principal de A contenant $\mathfrak p$. Montrer que $I=\mathfrak p$ ou I=A.

Solution. On écrit $\mathfrak{p}=(a)$ avec $a\neq 0$ et I=(b). Comme $I\supset \mathfrak{p}$, alors b divise a, c'est-à-dire a=ub. Comme \mathfrak{p} est premier ceci impose que $b\in (a)$ ou $u\in (a)$. Dans le premier cas on a $I=\mathfrak{p}$. Dans le second cas u=ax donc a=axb et comme $a\neq 0$ et A intègre on a 1=xb donc b est inversible et I=A. Cet exercice est une autre forme du premier exercice du paragraphe.

Exercice 32. Montrer qu'il n'existe pas d'homomorphisme d'anneaux de $\mathbb{Z}[\sqrt{2}]$ dans $\mathbb{Z}[\sqrt{3}]$.

Solution. Tout élément de $\mathbb{Z}[\sqrt{2}]$ s'écrit de manière unique sous la forme $a+b\sqrt{2}$ avec a et b dans \mathbb{Z} (l'unicité résulte du fait que $\sqrt{2} \notin \mathbb{Q}$).

De même tout élément de $\mathbb{Z}[\sqrt{3}]$ s'écrit de manière unique sous la forme $a+b\sqrt{3}$ avec a et b dans \mathbb{Z} (l'unicité résulte du fait que $\sqrt{3} \notin \mathbb{Q}$).

Soit maintenant $\varphi: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{3}]$ un morphisme d'anneaux, alors $\varphi'\sqrt{2}) = a + b\sqrt{3}$ avec a et b dans \mathbb{Z} . Mais alors on a

$$\varphi(2) = \varphi(\sqrt{2}^2) = \varphi(\sqrt{2})^2 = (a + b\sqrt{3})^2 = a^2 + 3b^2 + 2ab\sqrt{3}.$$

Par ailleurs, on a $\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = 1+1=2$. Ainsi on doit avoir l'égalité

$$a^2 + 3b^2 + 2ab\sqrt{3} = 2.$$

Ceci impose $a^2 + 3b^2 = 2$ et 2ab = 0. On a donc a = 0 ou b = 0. Si a = 0, alors $3b^2 = 2$ ce qui est impossible (on a pas b = 0 et si $b \ge 1$, alors $3b^2 > 2$). Si b = 0, alors $a^2 = 2$ qui n'a pas de solution dans \mathbb{Z} car $\sqrt{2} \notin \mathbb{Q}$.

Exercice 33. Soit $f: A \to B$ un homomorphisme d'anneaux. Pour tout idéal I de A on note $f_*(I)$ l'idéal de B engendré par f(I) et on l'appelle extension de I dans B. Pour tout idéal J de B on appelle contraction de J l'idéal $f^{-1}(J)$. Soit I un idéal de A et J un idéal de B. Montrer que :

- a) $I \subset f^{-1}(f_*(I))$ et $J \supset f_*(f^{-1}(J))$,
- b) $f^{-1}(J) = f^{-1} [f_*(f^{-1}(J))]$ et $f_*(I) = f_* [f^{-1}(f_*(I))]$.
- c) Soit $\mathcal C$ l'ensemble des idéaux de A qui sont des contractions d'idéaux de B et $\mathcal E$ l'ensemble des idéaux de B qui sont des extensions d'idéaux de A. Montrer que :
- d) $C = \{I : I = f^{-1}(f_*(I))\}\$ et $\mathcal{E} = \{J : J = f_*(f^{-1}(J))\},$
- e) f_* définit une bijection de $\mathcal C$ sur $\mathcal E$; quel est son inverse? Soient I_1 et I_2 deux idéaux de A et J_1 et J_2 deux idéaux de B. Montrer que :
- f) $f_*(I_1 + I_2) = f_*(I_1) + f_*(I_2)$ et $f^{-1}(J_1 + J_2) \supset f^{-1}(J_1) + f^{-1}(J_2)$,
- g) $f_*(I_1 \cap I_2) \subset f_*(I_1) \cap f_*(I_2)$ et $f^{-1}(J_1 \cap J_2) = f^{-1}(J_1) \cap f^{-1}(J_2)$,

- h) $f_*(I_1 \cdot I_2) = f_*(I_1) \cdot f_*(I_2)$ et $f^{-1}(J_1 \cdot J_2) \supset f^{-1}(J_1) \cdot f^{-1}(J_2)$,
- i) $f_*(I_1:I_2) \subset (f_*(I_1):f_*(I_2))$ et $f^{-1}(J_1:J_2) \subset (f^{-1}(J_1):f^{-1}(J_2))$,
- j) $f_*(\sqrt{I}) \subset \sqrt{f_*(I)}$ et $f^{-1}(\sqrt{J}) = \sqrt{f^{-1}(J)}$.

Solution. a) Soit $x \in I$, alors $f(x) \in f(I) \subset f_*(I)$ et donc $x \in f^{-1}(f_*(I))$. Soit maintenant $y \in f_*(f^{-1}(J))$, alors on peut écrire $y = \sum b_i y_i$ avec $b_i \in B$ et $y_i \in f(f^{-1}(J)) \subset J$. Mais alors $y \in J$.

- b) Si on applique (1) à $f^{-1}(J)$, on a $f^{-1}(J) \subset f^{-1}(f_*(f^{-1}(J)))$. Mais par (1), on a aussi $f_*(f^{-1}(J)) \subset J$ donc $f^{-1}(f_*(f^{-1}(J))) \subset f^{-1}(J)$.

 De même, on applique (1) à $f_*(I)$, on a $f_*(f^{-1}(f_*(I))) \subset f_*(I)$. Mais par (1), on a aussi $I \subset f^{-1}(f_*(I))$ donc $f_*(I) \subset f_*(f^{-1}(f_*I))$.
- c) Si $I \in \mathcal{C}$, alors $I = f^{-1}(J)$, ainsi par (n) on a bien $I = f^{-1}(f_*I)$. Réciproquement si $I = f^{-1}(f_*I)$, alors I est la contraction de f_*I idéal de B. Si $J \in \mathcal{E}$, alors $J = f_*I$ et par (n) on a bien $J = f_*(f^{-1}(J))$. Réciproquement, si on a $J = f_*(f^{-1}(J))$, alors J est l'extension de $f^{-1}(J)$ idéal de A.
- d) Considérons les applications $f_*: \mathcal{C} \to \mathcal{E}$ et $f^{-1}: \mathcal{E} \to \mathcal{C}$ définies par $I \mapsto f_*I$ et $J \mapsto f^{-1}(J)$. On a alors par (iii): si $I \in \mathcal{C}$, alors $f^{-1}(f_*I) = I$ et si $J \in \mathcal{E}$, alors $f_*(f^{-1}(J)) = J$. Ainsi f^{-1} est la bijection réciproque de f_* .
- e) Soit $y \in f_*(I_1 + I_2)$, alors $y = \sum_i b_i y_i$ avec $b_i \in B$ et $y_i \in f(I_1 + I_2)$. Ainsi, on a $y_i = f(x_{i,1} + x_{i,2})$ avec $x_{i,1} \in I_1$ et $x_{i,2} \in I_2$. Mais alors on a $y = \sum_i b_i f(x_{i,1}) + \sum_i b_i f(x_{i,2})$ et donc $y \in f_*(I_1) + f_*(I_2)$. Réciproquement, si $y \in f_*(I_1) + f_*(I_2)$, alors $y = \sum_i b_i f(x_{i,1}) + \sum_i b_i f(x_{i,2})$ avec $x_{i,1} \in I_1$ et $x_{i,2} \in I_2$. Mais alors on a $y = \sum_i b_i f(x_{i,1} + x_{i,2}) \in f_*(I_1 + I_2)$. Soit $x \in f^{-1}(J_1) + f^{-1}(J_2)$, alors $x = x_1 + x_2$ avec $f(x_1) \in J_1$ et $f(x_2) \in J_2$. On a donc $f(x) = f(x_1) + f(x_2) \in J_1 + J_2$ et donc $x \in f^{-1}(J_1 + J_2)$.
- f) Soit $y \in f_*(I_1 \cap I_2)$, alors $y = \sum b_i y_i$ avec $b_i \in B$ et $y_i \in f(I_1 \cap I_2)$. On a donc $y_i \in f(I_1)$ et donc $y \in f_*(I_1)$ et de même $y_i \in f(I_2)$ et donc $y \in f_*(I_2)$. Soit $x \in f^{-1}(J_1 \cap J_2)$, alors $f(x) \in J_1 \cap J_2$. On a donc $f(x) \in J_1$ c'est-à-dire $x \in f^{-1}(J_1)$ et de même $f(x) \in J_2$ c'est-à-dire $x \in f^{-1}(J_2)$. Réciproquement soit $x \in f^{-1}(J_1) \cap f^{-1}(J_2)$, alors on a $f(x) \in J_1$ et $f(x) \in J_2$. On a donc $f(x) \in J_1 \cap J_2$, ainsi $x \in f^{-1}(J_1 \cap J_2)$.
- g) Soit $y \in f_*(I_1 \cdot I_2)$, alors $y = \sum b_i y_i$ avec $b_i \in B$ et $y_i \in f(I_1 \cdot I_2)$ donc $y_i = f(\sum a_{i,j} c_{i,j})$ avec $a_{i,j} \in I_1$ et $c_{i,j} \in I_2$. On a donc $y = \sum_i \sum_j b_i f(a_{i,j}) f(c_{i,j})$. Mais $b_i f(a_{i,j}) \in f_* I_1$ et $f(c_{i,j}) \in f_* I_2$ donc $\sum_j b_i f(a_{i,j}) f(c_{i,j}) \in f_* I_1 \cdot f_* I_2$ et donc $y = \sum_i \sum_j b_i f(a_{i,j}) f(c_{i,j}) \in f_* I_1 \cdot f_* I_2$. Soit $x \in f^{-1}(J_1) \cdot f^{-1}(J_2)$, alors $x = \sum a_i b_i$ avec $a_i \in f^{-1}(J_1)$ et $c_i \in f^{-1}(J_2)$. On a donc $f(x) = \sum f(a_i) f(c_i) \in J_1 \cdot J_2$.
- h) Soit $y \in f_*(I_1:I_2)$, alors $y = \sum_i b_i f(x_i)$ avec $b_i \in B$ et $x_i \in (I_1:I_2)$ et soit $z \in f_*I_2$, on a $z = \sum_j c_j f(z_j)$ avec $c_j \in B$ et $z_j \in I_2$, on calcule alors $yz = \sum_i \sum_j b_i c_j f(x_i z_j)$ mais comme $x_i \in (I_1:I_2)$ et $z_j \in I_2$, on a $x_i z_j \in I_1$ et donc $yz \in f_*I_1$. On a donc $y \in (f_*I_1:f_*I_2)$. Soit $x \in f^{-1}(J_1:J_2)$, alors $f(x) \in (J_1:J_2)$. Soit maintenant $z \in f^{-1}(J_2)$ c'est-à-dire $f(z) \in J_2$, on calcule $f(yz) = f(y)f(z) \in J_1$ donc $yz \in f^{-1}(J_1)$ et ainsi $y \in (f^{-1}(J_1):f^{-1}(J_2))$.
- i) Soit $y \in f_*(\sqrt{I})$, alors $y = \sum b_i f(x_i)$ avec $x_i \in \sqrt{I}$ c'est-à-dire qu'il existe $n_i \in \mathbb{N}$ tel que $x_i^{n_i} \in I$.

Exercice 34. Considérons l'homomorphisme d'anneau $\varphi: k[U,V] \longrightarrow k[X]$ défini par $\varphi(U) = X^3$ et $\varphi(V) = -X^2$ et tel que $\varphi(a) = a$ pour tout $a \in k$?

- a) Quel est le noyau de φ ?
- b) Quelle est l'image de φ ?
- c) Montrer que A est intègre et que son corps des fractions est isomorphe à k(X).
- Solution. a) Remarquons que $\varphi(U^2+V^3)=(X^3)^2+(X^2)^3=X^6-X^6=0$ donc on a $U^2+V^3\in\ker\varphi$. Soit $P\in\ker\varphi$, on effectue la division euclidienne de P par U^2+V^3 ce qui est possible car le coefficient dominant en U de U^2+V^3 est 1 donc inversible. On a donc $P(U,V)=(U^2+V^3)Q(U,V)+R(U,V)$ avec R de degré 1 en U donc R(U,V)=A(V)U+B(V) où A et B sont des polynômes en une variable. On a $0=\varphi(P)=\varphi(R)$ donc $A(-X^2)+X^3B(-X^2)=0$ ce qui impose $2\deg A=2\deg B+3$. Ce n'est possible que si $\deg A=\deg B=-\infty$ et donc A=B=0. On a donc R=0 et $P\in(U^2+V^3)$. On a $\ker\varphi=(U^2+V^3)$.

b) Soit $k \geq 2$, montrons que $X^k \in \text{Im}\varphi$. Si k = 2p est par, on a

$$\varphi((-1)^p V^p) = (-1)^p (-X^2)^p = X^{2p}.$$

Si k = 2p + 3 est impair avec $p \ge 0$, on a

$$\varphi((-1)^p U V^p) = (-1)^p X^3 (-X^2)^p = X^{2p+3}.$$

Ainsi par combinaison lináire, tout polynôme $P(X)=a_0+\sum_{k=2}^n a_k X^k$ est dans $\mathrm{Im}\varphi$. Par ailleurs si $Q(U,V)\in k[U,V]$, on écrit $Q(U,V)=\sum_{i\geq 0, j\geq 0}\alpha_{i,j}U^iV^j$, on a alors

$$\varphi(Q) = \sum_{i>0, j>0} \alpha_{i,j} (-1)^j X^{3i+2j}.$$

On ne peut avoir 3i + 2j = 1 avec $i \ge 0$ et $j \ge 0$ donc

$$\operatorname{Im}\varphi = \left\{ P(X) = a_0 + \sum_{k=2}^n a_k X^k / a_i \in k \right\}.$$

C'est un sous-anneau de k[X] et est donc intègre.

c) Soit K le corps des fractions de A. Il est contenu dans k(X) le corps des fractions de k[X]. Comme k(X) est le plus petit corps contenant k[X], il suffit de montrer que $k[X] \subset K$ et donc que $X \in K$. Cependant

$$X = \frac{X^3}{X^2} = -\frac{\varphi(U)}{\varphi(V)} \in K.$$

Exercice 35. Montrer que l'algèbre quotient $\mathbb{R}[X]/(X^2+X+1)$ est isomorphe à \mathbb{C} et que l'algèbre $\mathbb{R}[X]/(X(X+1))$ est isomorphe à \mathbb{R}^2 .

Solution. Considérons le morphisme de \mathbb{R} -algèbre $f:\mathbb{R}[X] \to \mathbb{C}$ défini par f(1)=1 et f(X)=j ($\mathbb{R}[X]$ est une \mathbb{R} -algèbre libre engendrée par 1 et X). Comme \mathbb{C} est engendré comme \mathbb{R} espace vectoriel (et donc comme \mathbb{R} -algèbre) par 1 et j, le morphisme f est surjectif. Il reste à déterminer son noyau. On a $\ker f=\{P\in\mathbb{R}[X]\ /\ P(j)=0\}$. Remarquons que $1+j+j^2=0$ donc $(1+X+X^2)\subset\ker f$. Soit $P\in\ker f$, on effectue la division euclidienne de P par $1+X+X^2$. On a $P=(1+X+X^2)Q+R$ où R est un polynôme de degré 1. On écrit R(X)=aX+b avec a et b des réels. Comme P(j)=0, on a R(j)=0. On a donc $aj+b=\frac{a}{2}+b+\frac{a}{2}i=0$. Ceci impose que a=b=0 donc R=0. Ainsi si $\ker f\subset (1+X+X^2)$ et donc $\ker f=(1+X+X^2)$ d'où l'isomorphisme recherché.

Considérons le morphisme de \mathbb{R} -algèbre $f: \mathbb{R}[X] \to \mathbb{R}^2$ défini par f(1) = (1,1) et f(X) = (-1,0) ($\mathbb{R}[X]$ est une \mathbb{R} -algèbre libre engendrée par 1 et X). Comme \mathbb{R} est engendré comme \mathbb{R} espace vectoriel (et donc comme \mathbb{R} -algèbre) par (1,1) et (-1,0), le morphisme f est surjectif. Il reste à déterminer son noyau. On a $\ker f = \{P = \sum_i a_i X^i \in \mathbb{R}[X] / \sum_i a_i (-1,0)^i = 0\}$ (par convention $(a,b)^0 = (1,1)$. On commence par remarquer que $X(X+1) \in \ker f$. En effet, on a f(X(X+1)) = (-1,0)((-1,0)+(1,1)) = (-1,0)(0,1) = (0,0). Soit maintenant $P \in \ker f$, on effectue la division euclidienne de P par X(X+1). On a P = X(X+1)Q + R où R est un polynôme de degré 1. On écrit R(X) = aX + b avec a et b des réels. Comme P((-1,0)) = 0, on a R((-1,0)) = 0. On a donc a(-1,0) + b(1,1) = (b-a,b) = (0,0). Ceci impose que a = b = 0 donc R = 0. Ainsi si $\ker f \subset (X(X+1))$ et donc $\ker f = (X(X+1))$ d'où l'isomorphisme recherché.

Exercice 36. Soit k un corps de caractéristique p>0 et A une k-algèbre. Montrer que le morphisme

$$F:A\to A$$

$$x \mapsto x^p$$

appelé morphisme de Frobenius est un morphisme d'anneaux.

Solution. Il s'agit de montrer que pour tout $x \in A$ et $y \in A$, on a

$$F(x + y) = F(x) + F(y)$$
 et $F(xy) = F(x)F(y)$.

La seconde est évidente car $(xy)^p = x^p y^p$. Pour la première, on doit montrer que

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k} = x^p + y^p.$$

Comme la caractéristique est p > 0, il suffit de montrer que $\binom{p}{k}$ est divisible par p si 0 < k < p. On écrit

$$p! = k!(p-k)! \binom{p}{k},$$

de sorte que p divise le terme de droite. Cependant comme k < p et p - k < p et que p est premier, p ne divise pas k!(p-k)!. Il divise donc $\binom{p}{k}$.

Exercice 37. Soit k un corps et A une k-algèbre de dimension finie comme k-espace vectoriel.

- a) Montrer qu'une algèbre *intègre* de dimension finie sur un corps est un corps [Montrer que l'application de multiplication par a non nul est injective puis surjective].
- b) Soit $\mathfrak{p} \in \operatorname{Spec}(A) = \{\mathfrak{p} \mid \mathfrak{p} \text{ est un idéal premier}\}.$ Montrer que A/\mathfrak{p} est de dimension finie sur k.
- c) Montrer que \mathfrak{p} est un idéal maximal. Soient $\mathfrak{p}_i \in \operatorname{Spec}(A), i = 1, \dots, n$ des idéaux distincts.
- d) Montrer que la flèche

$$A \to \bigoplus_{i=1}^n A/\mathfrak{p}_i$$

est surjective. En déduire l'inégalité $n \leq \dim_k(A)$. On suppose dorénavant A réduite (c'est-à-dire nil(A) = 0).

e) Montrer que la flèche

$$A \to \bigoplus_{\mathfrak{p} \in \mathrm{Spec}(A)} A/\mathfrak{p}$$

est un isomorphisme d'anneaux.

- f) Considérons l'algèbre $A = \mathbb{R}[X]/((X^2 + a)X(X + 1))$ avec $a \in \mathbb{R}$. À quelle condition sur $a \in \mathbb{R}$, l'algèbre A est elle réduite?
- g) Dans le cas où A est réduite, expliciter l'isomorphisme précédent.

Solution. a) Soit $a \in A$ un élément non nul. Il faut montrer que a est inversible. Considérons alors l'application A-linéaire (et donc k-linéaire):

$$\mu_a: A \to A$$
 $x \mapsto ax.$

Son noyau est formé des $x \in A$ tels que ax = 0 mais comme A est intègre et $a \neq 0$, on a x = 0. Ainsi μ_a est injective et comme A est un k-espace vectoriel de dimension finie, elle est aussi surjective. Il existe donc $b \in A$ tel que $\mu_a(b) = 1_A$ c'est-à-dire $ab = 1_A$ et donc a est inversible d'inverse b.

- b) Soit $\mathfrak{p} \in \operatorname{Spec}(A) = \{\mathfrak{p} \mid \mathfrak{p} \text{ est un idéal premier}\}$. On a une application A-linéaire (et donc k-linéaire) surjective $A \to A/\mathfrak{p}$. Ainsi comme A est de dimension finie sur k, c'est aussi le cas de A/\mathfrak{p} .
- c) La k-algèbre A/\mathfrak{p} est de dimension finie et intègre (car \mathfrak{p} est un idéal premier). On peut donc appliquer le **1.** pour dire que A/\mathfrak{p} est un corps. Ainsi \mathfrak{p} est maximal. Soient $\mathfrak{p}_i \in \operatorname{Spec}(A), i = 1, \dots, n$ des idéaux distincts.
- d) On a vu au (n).b que les \mathfrak{p}_i sont maximaux, ainsi si $\mathfrak{p}_i \neq \mathfrak{p}_j$, alors $\mathfrak{p}_i + \mathfrak{p}_j$ est un idéal contenant strictement \mathfrak{p}_i et par maximalité, on a $\mathfrak{p}_i + \mathfrak{p}_j = A$. On peut donc appliquer le lemme chinois aux \mathfrak{p}_i . Et on a

$$A/(\mathfrak{p}_1\cdots\mathfrak{p}_n)\simeq\bigoplus_{i=1}^n A/\mathfrak{p}_i.$$

Ainsi l'application

$$A \to \bigoplus_{i=1}^n A/\mathfrak{p}_i$$

s'identifie à

$$A \to A/(\mathfrak{p}_1 \cdots \mathfrak{p}_n)$$

qui est évidement surjective.

Comme les \mathfrak{p}_i sont premiers, on a $A/\mathfrak{p}_i \neq 0$ donc $\dim_k(A/\mathfrak{p}_i) \geq 1$. On voit alors que

$$\dim_k(A) \ge \dim_k \left(\bigoplus_{i=1}^n A/\mathfrak{p}_i\right) \ge n.$$

e) D'après ce qui précède, on a nécessairement $\operatorname{card}(\operatorname{Spec}(A)) \leq \dim_k(A)$, c'est-à-dire qu'on a un nombre fini d'idéaux premiers. On peut donc reprendre le raisonnement précedent avec tous les idéaux premiers et on

$$A/(\prod_{\mathfrak{p}\in \operatorname{Spec}(A)}\mathfrak{p})\simeq \bigoplus_{\mathfrak{p}\in \operatorname{Spec}(A)}A/\mathfrak{p}.$$

Cependant, on a évidement que

$$\prod_{\mathfrak{p}\in \mathrm{Spec}(A)}\mathfrak{p}\subset \bigcap_{\mathfrak{p}\in \mathrm{Spec}(A)}\mathfrak{p}=\mathrm{Nil}(A)$$

et ce dernier idéal est nul car A est réduite. Ainsi, on a l'isomorphisme

$$A \simeq \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(A)} A/\mathfrak{p}.$$

- f) Considérons l'algèbre $A = \mathbb{R}[X]/((X^2 + a)X(X + 1))$ avec $a \in \mathbb{R}$.
 - On a ici un anneau factoriel $\mathbb{R}[X]$, ainsi le quotient $A = \mathbb{R}[X]/((X^2+a)X(X+1))$ est réduit si et seulement si l'élément $(X^2 + a)X(X + 1)$ n'a pas de facteur carré. Il y a alors quatre cas à distinguer :
 - 1. Si a > 0, alors $X^2 + a$ est irréductible sur \mathbb{R} , il n'y a pas de facteur carré et A est réduite.
 - 2. Si a=0, alors il y a un facteur carré (et même cube) : X^3 et A n'est pas réduite.

 - 3. Si a=-1, alors $X^2+a=(X-1)(X+1)$ et $(X+1)^2$ est un facteur carré, A n'est pas réduite. 4. Si a<0 et $a\neq -1$, alors $X^2+a=(X+\sqrt{-a})(X-\sqrt{-a})$ et il n'y a pas de facteur carré, A est réduite.
- g) Notons \overline{P} la classe d'un polynôme $P \in \mathbb{R}[X]$ dans A. L'isomorphisme précedent est alors donné dans le cas 4. par

$$A \simeq \mathbb{R}[X]/(X-a) \oplus \mathbb{R}[X]/(X+a) \oplus \mathbb{R}[X]/(X) \oplus \mathbb{R}[X]/(X+1) \simeq \mathbb{R}^4$$
$$\overline{P} \mapsto (P(a), P(-a), P(0), P(1)).$$

Dans le cas 1. il est donné par

$$A \simeq \mathbb{R}[X]/(X^2 + a) \oplus \mathbb{R}[X]/(X) \oplus \mathbb{R}[X]/(X + 1) \simeq \mathbb{C} \oplus \mathbb{R}^2$$

$$\overline{P} \mapsto (\alpha X + \beta, P(0), P(1)) \mapsto (P(\sqrt{-a}), P(0), P(1))$$

avec

$$\sqrt{-a} = i\sqrt{a}, \quad \alpha = \frac{P(\sqrt{-a}) - P(-\sqrt{-a})}{2\sqrt{-a}} \quad \text{et} \quad \beta = \frac{P(\sqrt{-a}) + P(-\sqrt{-a})}{2}.$$

Dans le cas 4, le morphisme se factorise par $\mathbb{R}[X]/(X^2+a) \oplus \mathbb{R}[X]/(X) \oplus \mathbb{R}[X]/(X+1)$ et la seconde formule est encore valable ce qui donne une formule valable dans tous les cas.

3 Anneaux locaux et localisation

Exercice 38. Un anneau est dit local s'il contient un unique idéal maximal.

- a) Montrer qu'un anneau A est local si et seulement si $A \setminus A^*$ est un idéal.
- b) À quelle condition sur n l'anneau $\mathbb{Z}/n\mathbb{Z}$ est il local?
- c) Soient A un anneau local, I, J deux idéaux de A et $a \in A$ un élément non diviseur de 0 tels que IJ = (a). Montrer qu'il existe $x \in I$ et $y \in J$ tels que a = xy. En déduire que I = (x) et J = (y).
- a) Si A est un anneau local d'idéal maximal \mathfrak{m} , alors $\mathfrak{m} \subset A \backslash A^*$. Si $x \in A \backslash A^*$, alors (x) est un idéal propre, et donc contenu dans un idéal maximal, nécessairement \mathfrak{m} . Donc $A \setminus A^*$ est bien un idéal. Réciproquement, si $A \setminus A^*$ est un idéal, comme tout idéal propre est inclus dans $A \setminus A^*$, $A \setminus A^*$ est l'unique idéal maximal de A.

- b) Les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$ correspondent aux nombre premiers divisant n. Donc $\mathbb{Z}/n\mathbb{Z}$ est local si et seulement si n est une puissance d'un nombre premier.
- c) Par hypothèse, pour tout $(x,y) \in IJ$, il existe $f_{x,y} \in A$ tel que $xy = f_{x,y}a$. Si $f_{x,y}$ est inversible, on obtient le résultat voulu en remplaçant x par $f_{x,y}^{-1}x$. On peut donc supposer par l'absurde que $f_{x,y} \in \mathfrak{m}$ pour tout (x,y). Mais alors $IJ \subset \mathfrak{m}(a)$. Or $\mathfrak{m}(a) \neq (a)$, car sinon, on aurait a = am avec $m \in \mathfrak{m}$, et donc a(1-m)=0 et donc a=0 puisque 1-m est inversible. Et donc $IJ \neq (a)$. Si $x' \in I$, $x'y \in IJ = (a)$ donc x'y = af = xyf avec $f \in A$. Donc y(x'-xf)=0. Or y n'est pas diviseur de 0 car sinon a le serait aussi. Donc $x' = xf \in (x)$. Donc I = (x). De même pour J.

Exercice 39. Soit A un anneau et S une partie multiplicative de A (c'est-à-dire $1 \in S$ et si $r, s \in S$ alors $rs \in S$.

- a) Montrer que $S^{-1}A = A \times S/\sim$, où $(a,r)\sim(b,s)$ si et seulement si il existe $t\in S$ tel que t(as-br)=0, est un anneau pour l'addition (a,r)+(b,s)=(as+br,rs) et la multiplication $(a,r)\cdot(b,s)=(ab,rs)$. On note a/s la classe de (a,s).
- b) Montrer que $f:A\to S^{-1}A$, défini par f(a)=a/1 est un morphisme d'anneau et que les éléments de f(S) sont inversibles. Montrer que $S^{-1}A$ et f sont caractérisés (à isomorphisme près) par la propriété universelle suivante : pour tout morphisme d'anneau $\varphi:A\to B$ tel que les éléments de $\varphi(S)$ sont inversibles, il existe un unique morphisme d'anneau $\bar{\varphi}:S^{-1}A\to B$ tel que $\varphi=\bar{\varphi}f$.
- c) Montrer que si S ne contient pas de diviseur de 0, alors $A \to S^{-1}A$ est injective.
- d) Montrer que si A est intègre et $S = A \setminus \{0\}$, $S^{-1}A$ est un corps (appelé corps des fractions de A).
- e) Montrer que $S^{-1}A$ est nul si et seulement si $0 \in S$. Montrer en particulier que $A[\frac{1}{f}]$ (c'est-à-dire $S^{-1}A$, avec $S = \{f^n, n \in \mathbb{N}\}$) est non nul si et seulement si f n'est pas nilpotent.
- f) Soit $\mathfrak p$ un idéal premier de A ne rencontrant pas S, montrer que $S^{-1}\mathfrak p$ est l'idéal de $S^{-1}A$ engendré par $\pi(\mathfrak p)$ et qu'il est premier. Montrer que $\mathfrak p=\pi^{-1}(S^{-1}\mathfrak p)$.
- g) Montrer que les idéaux premiers de $S^{-1}A$ s'identifient aux idéaux premiers de A ne rencontrant pas S.
- h) Montrer que tout idéal I de $S^{-1}A$ est de la forme $S^{-1}J$ pour J un idéal de A.
- i) Supposons $0 \notin S$. Montrer que si A est :
 - i) intègre,
 - ii) principal,
 - iii) factoriel,
 - iv) réduit,

alors $S^{-1}A$ l'est aussi.

Exercice 40. Soit A un anneau non nul et \mathfrak{p} un idéal premier.

- a) Montrer que $S = A \mathfrak{p}$ est une partie multiplicative.
- b) Montrer que $A_{\mathfrak{p}} := S^{-1}A$ est un anneau local.

Solution. a) Si $rs \in \mathfrak{p}, r$ ou $s \in \mathfrak{p}$. La contraposée donne la multiplicativité de $A - \mathfrak{p}$.

b) Soit $(a, r) \in A_{\mathfrak{p}}$ est inversible si et seulement si $a \notin \mathfrak{p}$ (l'inverse est alors (r, a)). Il suffit donc de vérifier que $\mathfrak{p}A_{\mathfrak{p}} = \{(a, r), a \in \mathfrak{p}\}$ est un idéal, ce qui est immédiat.

Exercice 41. Soit A un anneau. Montrer que $A \to \bigoplus_{\mathfrak{m} \in \operatorname{Specmax}(A)} A_{\mathfrak{m}}$ est injective.

Solution. Soit $f \neq 0 \in A$. Alors Ann(f) est un idéal propre de A, puisqu'il ne contient pas 1. Donc Ann(f) est contenu dans un idéal maximal \mathfrak{m} . Comme $rf \neq 0$ pour tout r dans $A - \mathfrak{m}$, l'image de f dans $A_{\mathfrak{m}}$ est non nulle.

Exercice 42. a) Soit n un entier, calculer les localisés $(\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$ où $\mathfrak{p}=p\mathbb{Z}$ est un idéal premier.

b) En déduire que l'application

$$\mathbb{Z}/n\mathbb{Z} \to \bigoplus_{\mathfrak{p}} (\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$$

est un isomorphisme de groupes.

Solution. a) Ecrivons $n=p^am$ avec m premier à p. Si $x\in p^a\mathbb{Z}$ alors $\bar{m}\bar{x}=0$ et $\bar{m}\notin\mathfrak{p}$, donc l'image de x dans $(\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$ est nulle : le morphisme $\mathbb{Z}/n\mathbb{Z}\to (\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$ se factorise à travers $\mathbb{Z}/p^a\mathbb{Z}$. Récirpoquement, si x est tel que $\bar{m}\bar{x}=0$ pour un \bar{m} premier à p, alors x est divisible par p^r . Cela prouve que $\mathbb{Z}/p^a\mathbb{Z}\to (\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$ est injectif. Si $\bar{r}/\bar{s}\in (\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$, comme s est premier à p^a , il existe $u,v\in\mathbb{Z}$ tels que $us+vp^a=1$. Alors $m(sur-r)=rn\equiv 0$ donc, comme $m\notin\mathfrak{p},\ \bar{r}/bars=\bar{(ur)}/1$, ce qui prouve la surjectivité de $\mathbb{Z}/p^a\mathbb{Z}\to (\mathbb{Z}/n\mathbb{Z})_{\mathfrak{p}}$.

4 Modules

Exercice 43. Soit M un A-module, montrer que la somme directe $M^{\mathbb{N}}$ est isomorphe au module des polynômes M[X].

Solution. Considérons le morphisme de A-modules

$$f: M^{\mathbb{N}} \to M[X]$$

$$(m_i)_{i\in\mathbb{N}}\mapsto\sum_{i=0}^{+\infty}m_iX^i.$$

La somme de droite est finie car le terme $(m_i)_{i\in\mathbb{N}}$ est dans une somme directe donc seul un nombre fini de termes est non nul. On montre que f est un isomorphisme. En effet, si $f((m_i)_{i\in\mathbb{N}})=0$, alors pour tout $i\in\mathbb{N}$, on a $m_i=0$, donc f est injective. Par ailleurs si $P=\sum_{i=0}^N n_i X^i$ avec $n_i\in M$, alors posons $m_i=n_i$ pour $1\leq i\leq N$ et $m_i=0$ pour i>N, on a $f((m_i)_{i\in\mathbb{N}})=P$ et f est surjective.

Exercice 44. Soit A et B deux anneaux et $f: A \longrightarrow B$ un homomorphisme d'anneaux.

- (1) Montrer que la loi a.b = f(a).b (où $a \in A$ et $b \in B$) munit B d'une structure de A-module. B muni de sa structure d'anneau et de cette structure de A-module est appelé une A-algèbre.
- (11) Montrer que si A est un corps k alors f est injectif (c'est-à-dire : une k-algèbre contient un corps isomorphe à k).
- (iii) Montrer que tout B-module N est muni naturellement d'une structure de A-module. Quel est l'annulateur $Ann(N) = (0_A : N)$ de ce module?

Solution. (1) On a les égalités

$$1 \cdot b = f(1)b = b$$

$$(a + a') \cdot b = f(a + a')b = (f(a) + f(a'))b = f(a)b + f(a')b = a \cdot b + a' \cdot b$$
$$(aa') \cdot b = f(aa')b = (f(a)f(a'))b = f(a)(a' \cdot b) = a \cdot (a' \cdot b)$$

qui prouvent que cette loi muni B d'une structure de A-module.

- (11) Le noyau de f est un idéal de A. Comme A est un corps, les seuls idéaux de A sont (0) ou A. Mais comme $f(1_A) = 1_B \neq 0$, on a $1_A \notin \ker f$ et donc $\ker f = (0)$.
- (iii) Soit N un B-module, la loi $a \cdot n = f(a)n$ munit N d'une structure de A-module(on garde la même addition). Soit maintenant $x \in (0_A:N) = \operatorname{Ann}_A(N)$. On a

$$x \in \operatorname{Ann}_{A}(N) \Leftrightarrow \forall n \in N, \ x \cdot n = 0$$

 $x \in \operatorname{Ann}_{A}(N) \Leftrightarrow \forall n \in N, \ f(x)n = 0$
 $x \in \operatorname{Ann}_{A}(N) \Leftrightarrow f(x) \in \operatorname{Ann}_{B}(N)$
 $x \in \operatorname{Ann}_{A}(N) \Leftrightarrow x \in f^{-1}(\operatorname{Ann}_{B}(N)).$

L'annulateur de N vu comme A-module est l'image réciproque par f de l'annulateur de N vu comme B-module : $\operatorname{Ann}_A(N) = f^{-1}(\operatorname{Ann}_B(N))$.

Exercice 45. Soit M un A-module, on définit $M^{\vee} = \hom_A(M, A)$. On dit que M est réflexif si le morphisme naturel $\theta: M \to M^{\vee\vee}$ défini par $m \mapsto \theta(m) = (\varphi \mapsto \varphi(m))$ avec $\varphi \in M^{\vee} = \hom_A(M, A)$ est un isomorphisme. Soit $f \in \operatorname{End}_A M$, on définit sa transposée ${}^t f \in \operatorname{End}_A M^{\vee}$ par ${}^t f(\varphi) = \varphi \circ f$ pour tout $\varphi \in M^{\vee} = \hom_A(M, A)$.

- a) Montrer que l'ensemble des polynômes P de A[X] tels que P(f) = 0 est un idéal que l'on notera I(f).
- b) Montrer que $I(f) \subset I({}^tf)$.
- c) Montrer que $t(tf) \circ \theta = \theta \circ f$.
- d) Montrer que si M est réflexif, on a $I(f) = I({}^tf)$.

Solution. (1) Considérons le morphisme de A-modules $\psi: A[X] \to \operatorname{End}_A M$ défini par $\psi(P) = P(f)$. On a $I(f) = \ker \psi$ donc c'est un idéal.

(11) Soit $P \in I(f)$ On a alors P(f) = 0. On calcule alors $P({}^tf)(\varphi)$ pour $\varphi \in M^{\vee}$. On a $P({}^tf)(\varphi) = \varphi \circ P(f) = 0$ car $P \in I(f)$. On a donc $P({}^tf) = 0$ donc $P \in I({}^tf)$. On a bien $I(f) \subset I({}^tf)$.

(111) On a

$$({}^{t}({}^{t}f)\circ\theta)(m)={}^{t}({}^{t}f)(\theta(m))=\theta(m)\circ{}^{t}f$$

et pour $\varphi \in M^{\vee}$, on a

$$\Big(\big({}^t ({}^t f) \circ \theta \big)(m) \Big)(\varphi) = (\theta(m) \circ {}^t f)(\varphi) = (\theta(m))(\varphi \circ f) = \varphi(f(m)).$$

Par ailleurs, on a

$$(\theta \circ f)(m) = \theta(f(m))$$

et pour $\varphi \in M^{\vee}$, on a

$$((\theta \circ f)(m))(\varphi) = (\theta(f(m)))(\varphi) = \varphi(f(m)),$$

ce qui prouve l'égalité $t(t) \circ \theta = \theta \circ f$.

(iv) Si M est réflexif on a donc ${}^t({}^tf) = \theta \circ f \circ \theta^{-1}$. Soit $P \in I({}^tf)$. On a alors $P \in I({}^t({}^tf))$, ainsi $P(\theta \circ f \circ \theta^{-1}) = P({}^t({}^tf)) = 0$ c'est-à-dire $\theta \circ P(f) \circ \theta^{-1} = 0$. Comme θ est inversible, ceci impose que P(f) = 0 donc $P \in I(f)$.

Exercice 46. Soit M un A-module

- (1) On suppose que M est monogène, montrer qu'il existe un idéal I de A tel que $M \simeq A/I$.
- (11) On suppose que $M \neq (0)$ est simple (c'est-à-dire que ses seuls sous-modules sont (0) et M). Montrer que M est monogène, engendré par tout élément non nul de M. Montrer que M est isomorphe à A/\mathfrak{m} où \mathfrak{m} est un idéal maximal de A.
- (111) Quels sont les Z-modules simples?

Solution. (1) Soit m un générateur de M et considérons le morphisme de A-modules $f:A\to M,\ a\mapsto am$. Il est surjectif (car m engendre M) et son noyau est un idéal I de A. Le morphisme $\overline{f}:A/I\to M$ est donc un isomorphisme.

(11) Soit $m \in M$ un élément non nul et soit N le sous-module de M engendré par m. Comme $0 \neq m \in N$, le sous-module N est non nul, c'est donc M tout entier. L'élément m engendre donc M.

D'après la question précédente, on sait qu'il existe un idéal \mathfrak{m} tel que $M \simeq A/\mathfrak{m}$. Il reste à vérifier que cet idéal est maximal. Soit donc I un idéal contenant strictement \mathfrak{m} , alors on a la suite exacte

$$0 \to I/\mathfrak{m} \to M \simeq A/\mathfrak{m} \to A/I \to 0.$$

Le module I/\mathfrak{m} est donc un sous-module strict de M, il doit être nul c'est-à-dire $I=\mathfrak{m}$ donc \mathfrak{m} est maximal. (II) D'après la question précédente, les modules simples de \mathbb{Z} sont de la forme \mathbb{Z}/\mathfrak{m} où \mathfrak{m} est un idéal maximal. Il reste à déterminer les idéaux maximaux de \mathbb{Z} . Comme \mathbb{Z} est principal, on a $\mathfrak{m}=(n)$ avec $n\in\mathbb{Z}$. L'idéal, (n) est maximal si et seulement si $\mathbb{Z}/(n)$ est un corps, c'est le cas si et seulement si n est premier. Les \mathbb{Z} modules simples sont les $\mathbb{Z}/(p)$ avec p un nombre premier.

Exercice 47. Soit A un anneau intègre et M un A-module. On dit que $x \in M$ est de torsion si $(0:x) \neq 0$. On note T(M) l'ensemble des éléments de torsion de M. Si T(M) = 0 on dit que M est sans torsion.

- a) Montrer que l'ensemble des éléments de torsion de M est un sous-module de M.
- b) Montrer que M/T(M) est sans torsion.
- c) Montrer que si $f: M \to N$ est un morphisme de A-modules alors $f(T(M)) \subset T(N)$.

Solution. (1) Il faut montrer que T(M) est non vide et stable par addition et multiplication par un scalaire. Il est clair que $0 \in T(M)$ car (0:0) = Ann(0) = M.

Soit maintenant m et m' dans TM), a et a' dans A et x et x' dans $M - \{0\}$ tels que xm = 0 et x'm' = 0. Alors on a (xx')(ax + a'm') = ax'(xm) + ax(x'm') = 0 et $xx' \neq 0$ car A est intègre. Ainsi T(M) est stable par addition et multiplication par un scalaire.

T(M) est donc un sous-module de M.

- (ii) Soient $Cl(m) \in M/T(M)$ et $a \in A \{0\}$ tels que $a \cdot Cl(m) = 0$. Ceci signifie que $am \in T(M)$. Il existe donc $x \in A \{0\}$ tel que x(am) = 0 et donc (xa)m = 0. Comme $a \in A \{0\}$ et $x \in A \{0\}$ on a $xa \in A \{0\}$ (A intègre) et donc $m \in T(M)$. On a donc Cl(m) = 0 ce qui signifie que le seul élément de torsion de M/T(M) est 0, le module M/T(M) est donc sans torsion.
- (iii) Soit $m \in T(M)$ et $x \in A \{0\}$ tels que xm = 0. On considère alors f(m) et on a af(m) = f(am) = f(0) = 0. L'élément f(m) est donc de torsion d'où l'inclusion $f(T(M)) \subset T(N)$.

Exercice 48. Soit M un A-moduleet $m \in M$ un élément dont l'annulateur Ann(m) est réduit à (0). Montrer que Am est facteur direct de M si et seulement si il existe $f \in M^{\vee} = \hom_A(M, A)$ tel que f(m) = 1. Montrer qu'alors on a $M = Am \oplus \ker f$.

Solution. Soit N un facteur direct de Am de sorte que $M = Am \oplus N$. Comme Ann(m) = (0), l'homomorphisme $A \to Am$, $a \mapsto am$ est un isomorphisme. On peut alors définir une forme linéaire f sur M par f(am, n) = a. On a bien f(m) = 1.

Réciproquement, s'il existe un tel f, le noyau de f est un sous-module N de M. De plus, si $am \in Am \cap N$, alors f(am) = a = 0 donc $Am \cap N = 0$. Enfin, si $m' \in M$, on écrit m' = f(m')m + (m' - f(m')m). On a $f(m')m \in Am$ et f(m'-f(m')m) = 0 donc $m'-f(m')m \in N$ ce qui prouve que $Am \oplus N = M$.

Exercice 49. Soient M_1, \ldots, M_r des A-modules et $I_1 = \mathrm{Ann}(M_1), \cdots, I_r = \mathrm{Ann}(M_r)$ leurs annulateurs. On suppose que les I_{α} sont deux à deux comaximaux (c'est-à-dire que l'on a $I_{\alpha} + I_{\beta} = A$ pour $\alpha \neq \beta$).

On pose : $M = \bigoplus_{\alpha=1}^r M_{\alpha}$, $I = \bigcap_{\alpha=1}^r I_{\alpha}$, $N_{\alpha} = \bigoplus_{\beta \neq \alpha} M_{\beta}$ et $J_{\alpha} = \bigcap_{\beta \neq \alpha} I_{\beta}$. Si J est un idéal de A on notera (0:J) le sous-A-module de M égal à $\{m\in M, J.m=0\}$. Montrer les formules suivantes :

- (1) Montrer que pour tout α , I_{α} et J_{α} sont comaximaux.
- (11) $J_{\alpha} = (0:N_{\alpha}),$
- (iii) $N_{\alpha} = (0: J_{\alpha}) = I_{\alpha} \cdot M$. (iv) $M_{\alpha} = (0: I_{\alpha}) = J_{\alpha} \cdot M = \bigcap_{\beta \neq \alpha} N_{\beta}$.

Solution. (1) Fixons α , si $\beta \neq \alpha$, les idéaux I_{α} et I_{β} sont comaximaux. On peut donc écrire $1 = x_{\beta} + y_{\beta}$ avec $x_b \in I_\alpha$ et $y_\beta \in I_\beta$. On a alors

$$1 = \prod_{\beta \neq \alpha} (x_{\beta} + y_{\beta}).$$

On voit alors que 1 est somme d'éléments de I_{α} (touts les termes multiples d'un x_{β}) et de $\prod_{\beta \neq \alpha} y_{\beta} \in \prod_{\beta \neq \alpha} I_{\beta} \subset$ J_{α} .

(n) Un élément $a \in A$ est dans $(0:N_{\alpha})$ si pour tout $n \in N_{\alpha}$ on a an=0 c'est-à-dire pour tout $\beta \neq \alpha$ et pour tout $m \in M_{\beta}$, on a am = 0. Ainsi $(0: N_{\alpha})$ est l'intersection des $Ann(M_{\beta})$ pour $\beta \neq \alpha$ et donc $J_{\alpha} = (0: N_{\alpha})$.

(iii) Un élément $\sum m_{\beta} \in M$ avec $m_{\beta} \in M_{\beta}$ est dans $(0:J_{\alpha})$ si et seulement si $J_{\alpha} \cdot (\sum m_{\beta}) = 0$ c'est-à-dire pour tout β , on a $J_{\alpha} \cdot m_{\beta} = 0$. Si $\alpha \neq \beta$, l'inclusion $J_{\alpha} \subset I_{\beta}$ montre que tout $m_{\beta} \in M_{\beta}$ convient. Pour $\beta = \alpha$, l'égalité $I_{\alpha} + J_{\alpha} = A$ implique $I_{\alpha}m_{\alpha} + 0 = Am_{\alpha}$ et comme I_{α} annule M_{α} ceci impose $Am_{\alpha} = 0$ donc $m_{\alpha} = 0$. Ainsi $(0:J_{\alpha})=\oplus_{\beta\neq\alpha}M_{\beta}=N_{\alpha}.$

Pour $\beta \neq \alpha$, on a $A = I_{\alpha} + I_{\beta}$ donc $M_{\beta} = (I_{\alpha} + I_{\beta})M_{\beta} = I_{\alpha}M_{\beta}$ et pour $\beta = \alpha$, on a $I_{\alpha}M_{\alpha} = 0$. Ainsi

$$I_{\alpha}M = \bigoplus_{\beta} I_{\alpha}M_{\beta} = \bigoplus_{\beta \neq \alpha} M_{\beta} = N_{\alpha}.$$

(iv) Un élément $\sum m_{\beta} \in M$ avec $m_{\beta} \in M_{\beta}$ est dans $(0:I_{\alpha})$ si et seulement si $I_{\alpha} \cdot (\sum m_{\beta}) = 0$ c'est-à-dire pour tout β , on a $I_{\alpha} \cdot m_{\beta} = 0$. Si $\alpha = \beta$, on a $I_{\alpha} = \text{Ann}(M_{\alpha})$ donc tout $m_{\alpha} \in M_{\alpha}$ convient. Pour $\beta \neq \alpha$, l'égalité $I_{\alpha} + I_{\beta} = A$ implique $0 + I_{\beta} m_{\beta} = A m_{\beta}$ et comme I_{β} annule M_{β} ceci impose $A m_{\beta} = 0$ donc $m_{\beta} = 0$. Ainsi $(0:I_{\alpha})=M_{\alpha}.$

On a $J_{\alpha}M = \bigoplus_{\beta} J_{\alpha}M_{\beta} = J_{\alpha}M_{\alpha}$ car $J_{\alpha} \subset I_{\beta}$ pour $\beta \neq \alpha$. On a par ailleurs $J_{\alpha} + I_{\alpha} = A$ donc $M_{\alpha} = A$ $J_{\alpha}M_{\alpha} + I_{\alpha}M_{\alpha} = J_{\alpha}M_{\alpha}$. On a donc $J_{\alpha}M = M_{\alpha} = \bigcap_{\beta \neq \alpha} N_{\beta}$.