Business Case: Target SQL

This business case has data of 100k orders from 2016 to 2018 made at Target, Brazil. It is Americas leading retailer business chain.

Data is available in 8 tables, which gives information about orders from different dimensions like status of order, payment details, location and time of the order, customer who made the purchase, items in the order, product details, seller information of the products, order reviews etc.

Analysis

1. Initial exploration of dataset

1.1 Show all the tables and all the columns present in each table along with its data type.

Query:

```
SELECT
  table_schema,
  table_name,
  column_name,
  data_type
FROM
  `target`.INFORMATION_SCHEMA.COLUMNS;
```

Result:

Quer	y results			≛ SAVE
JOB IN	FORMATION RESULTS	JSON EXECUTION DE	TAILS EXECUTION GRAPH	PREVIEW
Row	table_schema ▼	table_name ▼	column_name ▼	data_type ▼
1	target	order_items	order_id	STRING
2	target	order_items	order_item_id	INT64
3	target	order_items	product_id	STRING
4	target	order_items	seller_id	STRING
5	target	order_items	shipping_limit_date	TIMESTAMP
6	target	order_items	price	FLOAT64
7	target	order_items	freight_value	FLOAT64
8	target	sellers	seller_id	STRING
9	target	sellers	seller_zip_code_prefix	INT64
10	target	sellers	seller_city	STRING

1.2 For which time period the data is given.

Query:

```
SELECT
  MIN(DATE(order_purchase_timestamp)) AS first_date,
  MAX(DATE(order_purchase_timestamp)) AS last_date
FROM
  `target.orders`;
```

Result:

1.3 From which Cities and States, orders were placed during the given period.

Query:

```
SELECT
  DISTINCT c.customer_state , c.customer_city
FROM
  `target.customers` c
RIGHT JOIN
  `target.orders` o
USING
  (customer_id)
ORDER BY
  c.customer_state , c.customer_city;
```

Result:

Row	customer_state ▼	customer_city ▼
1	AC	brasileia
2	AC	cruzeiro do sul
3	AC	epitaciolandia
4	AC	manoel urbano
5	AC	porto acre
6	AC	rio branco
7	AC	senador guiomard
8	AC	xapuri
9	AL	agua branca
10	AL	anadia

1.4 What is distribution of total orders as per their status?

Query:

```
SELECT
  order_status,
  COUNT(*) AS orders_count
FROM
  `target.orders`
GROUP BY
  order_status
ORDER BY
  orders_count DESC;
```

Result:

Query results

JOB IN	FORMATION	RESULTS	JSON	EXI
Row	order_status ▼	11	orders_count	▼ /1
1	delivered		96	478
2	shipped		1	107
3	canceled			625
4	unavailable			609
5	invoiced			314
6	processing			301
7	created			5
8	approved			2

1.5 How is the order value of each order is calculated in payment table, Is it addition of price and freight for each item in the order.

(Used order items and payment table)

```
SELECT
  order_id, total_price, total_freight,
  total_price + total_freight AS total_order_value
FROM ( SELECT
    order_id,
    SUM(price) AS total_price,
    SUM(freight_value) AS total_freight,
    COUNT(*) AS total_items
FROM
    `target.order_items`
```

```
WHERE
    order_id = "95d6357ffe41aa6d2998852a710c70a0"
GROUP BY
    order_id) t1;
Result:
```


2. In-depth exploration of dataset

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario?

```
SELECT
time_period,
order_count,
```

```
ROUND((((order_count - LAG(order_count) OVER(ORDER BY t1.YEAR, t1.month)) / LAG(order_count)
OVER(ORDER BY t1.YEAR, t1.month))* 100), 2) AS growth_percent
FROM (
  SELECT
    EXTRACT (YEAR
      order_purchase_timestamp) AS year,
    EXTRACT (MONTH
      order_purchase_timestamp) AS month,
    FORMAT_DATE('%b %Y', DATE(ORDER_PURCHASE_TIMESTAMP)) AS time_period,
    COUNT(order_id) AS order_count
    `target.orders`
  WHERE
    order_status = "delivered"
  GROUP BY
   month, year, time_period) t1
ORDER BY
 year, month;
```

Result:

Query results

8

9

10

May 2017

Jun 2017

Jul 2017

JOB IN	IFORMATION	RESULTS	JSON	EXI	ECUTION DETAILS	
Row	time_period ▼	h	order_count	▼ /1	growth_percent ▼	
1	Sep 2016			1	null	
2	Oct 2016			265	26400.0	
3	Dec 2016			1	-99.62	
4	Jan 2017			750	74900.0	
5	Feb 2017			1653	120.4	
6	Mar 2017			2546	54.02	
7	Apr 2017			2303	-9.54	

Can we see some seasonality with peaks at specific months?

No, as for some months data is showing orders of only 1 or 2 records and also there is huge spike in orders is seen in different months so we can/t comment on seasonality.

Overall business is in uptrend and sharp spike in orders in seen MoM basis.

3546

3135

3872

53.97

-11.59

23.51

2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query:

```
SELECT
 temp.purchase_time,
 COUNT(*) AS total_orders
FROM (
 SELECT
    order_id,
   CASE
     WHEN TIME(order_purchase_timestamp) BETWEEN "00:00:00" AND "07:00:00" THEN "Dawn"
     WHEN TIME(order purchase timestamp) BETWEEN "07:00:01" AND "12:00:00" THEN "Morning"
     WHEN TIME(order_purchase_timestamp) BETWEEN "12:00:01" AND "18:00:00" THEN "Afternoon"
     WHEN TIME(order_purchase_timestamp) BETWEEN "18:00:01" AND "23:59:59" THEN "Night"
    END
   AS purchase time
  FROM
    `target.orders`) TEMP
GROUP BY
 temp.purchase_time
ORDER BY
 total_orders DESC;
```

Result:

Query results							
JOB IN	IFORMATION	RESULTS		JSON	EXE		
Row	purchase_time	-	11	total_orders	• /		
1	Afternoon			38	3365		
2	Night			34	1096		
3	Morning			2	1738		
4	Dawn			į	5242		

Brazilian customers usually tend to buy in afternoon and night.

3. Evolution of E-commerce orders in the Brazil region:

3.1 Get month on month orders by states

```
SELECT
  state , time_period , total_orders,
  LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month ) AS prev_month_orders_count,
  ROUND(((total_orders - LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month )) /
LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month))* 100,2) AS MoM_percent_growth
FROM (
 SELECT
    state,
   time_period,
   year,
   month,
   COUNT(*) AS total orders
  FROM (
   SELECT
     o.order_id, o.order_purchase_timestamp,
     EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
      EXTRACT(Month FROM order purchase timestamp) AS month,
     FORMAT_DATE('%b %Y', DATE(ORDER_PURCHASE_TIMESTAMP)) AS time_period,
     c.customer state AS state
    FROM
      `target.orders` o
    JOIN
      `target.customers` c
   USING
      (customer_id)
   ORDER BY
      year, month) t1
 GROUP BY
   state, time_period,year, month) t2;
```

Quer	y results						
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE	TAILS EXECUT	TION GRAPH PREVIEW	7
Row	state ▼	le	time_period ▼		total_orders ▼	prev_month_orders_c	MoM_percent_growtl
1	AL		Oct 2016		2	null	null
2	AL		Jan 2017		2	2	0.0
3	AL		Feb 2017		12	2	500.0
4	AL		Mar 2017		10	12	-16.67
5	AL		Apr 2017		23	10	130.0
6	AL		May 2017		27	23	17.39
7	AL		Jun 2017		10	27	-62.96
8	AL		Jul 2017		17	10	70.0
9	AL		Aug 2017		18	17	5.88
10	AL		Sep 2017		20	18	11.11

3.2 Distribution of customers across the states in Brazil

Query:

```
SELECT
   customer_state AS state,
   COUNT(*) AS total_customers
FROM
   `target.customers`
GROUP BY
   customer_state
ORDER BY
   total_customers DESC;
```

Result:

Query results

JOB II	NFORMATION	RESULTS	JSON E	XI
Row	state ▼	6	total_customers •	1
1	SP		41746	
2	RJ		12852	
3	MG		11635	
4	RS		5466	
5	PR		5045	
6	SC		3637	
7	BA		3380	
8	DF		2140	
9	ES		2033	
10	GO		2020	

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 4.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

```
SELECT
    *,
    COALESCE((ROUND(((total_orders_value - LAG(total_orders_value) OVER(ORDER BY
year))/LAG(total_orders_value) OVER(ORDER BY year))* 100, 2)), 0) AS percent_increase_YOY
FROM (
```

```
SELECT
    year,
    ROUND(SUM(payment_value), 2) AS total_orders_value
    SELECT
     o.order_id,
      o.order_purchase_timestamp,
      EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
      EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
      p.payment_value
    FROM
      `target.orders` o
    JOIN
      `target.payments` p
    USING
      (order_id)
   WHERE
      o.order_status = "delivered")t1
  WHERE
    month BETWEEN 1
    AND 8
  GROUP BY
    year) t1
ORDER BY
  Year;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	year ▼	total_orders	s_value 🔻 //	percent_increase_YOY ▼
1	201	7	3473862.76	0.0
2	201	8	8452975.2	143.33

Comparison on Monthly total order value:

```
SELECT
   t2.Month_n_Year,
   t2.total_orders_value,
   ROUND(((t2.total_orders_value - LAG(total_orders_value) OVER(PARTITION BY month ORDER BY
year))/LAG(total_orders_value) OVER(PARTITION BY month ORDER BY year))*100, 2) AS
percent_increase
FROM (
SELECT
   month,
   year,
```

```
Month_n_Year,
    ROUND(SUM(payment_value)) AS total_orders_value
  FROM (
    SELECT
     o.order_id,
      o.order_purchase_timestamp,
      EXTRACT(month FROM o.order_purchase_timestamp ) AS month,
      EXTRACT(year FROM o.order_purchase_timestamp ) AS year,
      FORMAT_DATE('%b %Y', DATE(ORDER_PURCHASE_TIMESTAMP)) AS Month_n_Year,
      p.payment_value
    FROM
      `target.orders` o
    JOIN
      `target.payments` p
    USING
      (order_id)) t1
  WHERE
    month BETWEEN 1
    AND 8
  GROUP BY
    month, year, Month_n_Year
  ORDER BY
    month, year) t2
ORDER BY
  month;
```

JOB INFORMATION		RESULTS	ULTS JSON		EXECUTION DETAILS	
Row	Month_n_Year ▼	/ to	otal_orders_value 🔻		percent_increase ▼	
1	Jan 2017		138488	8.0	nuli	
2	Jan 2018		1115004	4.0	705.13	
3	Feb 2017		291908	8.0	nuli	
4	Feb 2018		992463	3.0	239.99	
5	Mar 2017		449864	4.0	nuli	
6	Mar 2018		1159652	2.0	157.78	
7	Apr 2017		417788	8.0	nuli	
8	Apr 2018		116078	5.0	177.84	
9	May 2017		592919	9.0	nuli	
10	May 2018		1153982	2.0	94.63	

4.2 Mean & Sum of price and freight value by customer state

Query:

```
SELECT
  c.customer_state,
  ROUND(SUM(oi.price)) total_price,
  ROUND(AVG(oi.price)) avg_price,
  ROUND(SUM(oi.freight_value)) total_freight,
  ROUND(AVG(oi.freight_value)) avg_freight
FROM
  `target.order_items` oi
JOIN
  `target.orders` o
USING
  (order_id)
JOIN
  `target.customers` c
  c.customer_id = o.customer_id
GROUP BY
  c.customer_state;
```

JOB IN	IFORMATION RESU	LTS JSON	EXECUTION DETA	AILS EXECUTI	ON GRAPH PREVIEW
Row	customer_state ▼	total_price ▼	avg_price ▼	total_freight ▼	avg_freight ▼
1	MT	156454.0	148.0	29715.0	28.0
2	MA	119648.0	145.0	31524.0	38.0
3	AL	80315.0	181.0	15915.0	36.0
4	SP	5202955.0	110.0	718723.0	15.0
5	MG	1585308.0	121.0	270853.0	21.0
6	PE	262788.0	146.0	59450.0	33.0
7	RJ	1824093.0	125.0	305589.0	21.0
8	DF	302604.0	126.0	50625.0	21.0
9	RS	750304.0	120.0	135523.0	22.0
10	SE	58921.0	153.0	14111.0	37.0

5. Analysis on sales, freight and delivery time

5.1 Calculate days between purchasing, delivering and estimated delivery

Query:

```
SELECT
  order_id,
  TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
actual_delivery_time_in_days ,
  TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) AS
estimated_delivery_time_in_days
FROM
  `target.orders`
WHERE
  order_status = "delivered";
```

Query results

JOB IN	FORMATION	RESULTS	JSON EXECUTION DET	TAILS EXECUTION GRAPH PREVIEW
Row	order_id ▼	h	actual_delivery_time_in_days ▼	estimated_delivery_time_in_days 🕶
1	635c894d068ac3	37e6e03dc54e	30	32
2	3b97562c3aee8b	odedcb5c2e45	32	33
3	68f47f50f04c4cb	6774570cfde	29	31
4	276e9ec344d3bf	029ff83a161c	43	39
5	54e1a3c2b97fb0	809da548a59	40	36
6	fd04fa4105ee804	45f6a0139ca5	37	35
7	302bb8109d097a	a9fc6e9cefc5	33	28
8	66057d37308e78	37052a32828	38	32
9	19135c945c554e	eebfd7576c73	36	33
10	4493e45e7ca108	34efcd38ddeb	34	33

5.2 Find time_to_delivery & diff_estimated_delivery. Formula for the same given below: time_to_delivery = order_delivered_customer_date-order_purchase_timestamp diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
time_to_delivery,
   TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS
diff_estimated_delivery
FROM
   `target.orders`
WHERE
   order_status = "delivered";
```

JOB INFORMATION		RESU	JLTS	JSON	EXECUT
Row	time_to_delivery	· /	diff_es	timated_delive	ery 🔻
1		30			1
2		32			0
3		29			1
4		43			-4
5		40			-4
6		37			-1
7		33			-5
8		38			-6
9		36			-2
10		34			0

5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT
```

```
c.customer_state,
ROUND(AVG(oi.freight_value),2) AS avg_freight_value,
ROUND(AVG(o.time_to_delivery),2) AS avg_time_to_delivery,
ROUND(AVG(o.diff_estimated_delivery),2) AS avg_diff_estimated_delivery
FROM
   `target.order_items` oi JOIN
( SELECT
     order_id,     customer_id,
     TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
time_to_delivery,
     TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS
diff_estimated_delivery
     FROM
     `target.orders`
```

```
WHERE
    order_status = "delivered") o
USING
    (order_id)

JOIN
    `target.customers` c
USING
    (customer_id)
GROUP BY
    customer_state;
    Query results
```

JOB IN	FORMATION	RESULTS	JSON EXECUT	TION DETAILS EXECUT	TON GRAPH PREVIEW
Row	customer_state	▼	avg_freight_value ▼	avg_time_to_delivery ▼	avg_diff_estimated_delivery
1	SP		15.12	8.26	10.26
2	RJ		20.91	14.69	11.14
3	PR		20.47	11.48	12.53
4	SC		21.51	14.52	10.66
5	DF		21.07	12.5	11.27
6	MG		20.63	11.51	12.4
7	PA		35.63	23.3	13.37
8	BA		26.49	18.77	10.12
9	GO		22.56	14.95	11.37
10	RS		21.61	14.71	13.2

5.4 Sort the data to get the following: Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

States with Highest Avg freight value

```
SELECT
  customer_state
FROM (
  SELECT
    customer_state,
    ROUND(AVG(freight_value),2) AS avg_freight
FROM
    `target.order_items` oi
  JOIN
    `target.orders` o
  USING
    (order_id)
  JOIN
    `target.customers` c
  USING
    (customer_id)
  GROUP BY
```

```
customer_state
ORDER BY
   avg_freight DESC) t1
LIMIT 5;
```

JOB IN	IFORMATION	RESULTS	
Row	customer_state	~	4
1	RR		
2	PB		
3	RO		
4	AC		
5	PI		

States with lowest Avg freight value

```
SELECT
  {\tt customer\_state}
FROM (
 SELECT
    customer_state,
    ROUND(AVG(freight_value),2) AS avg_freight
    `target.order_items` oi
    `target.orders` o
  USING
    (order_id)
  JOIN
    `target.customers` c
    (customer_id)
  GROUP BY
   customer_state
 ORDER BY
    avg_freight ) t1
LIMIT 5;
```


5.5 Top 5 states with highest/lowest average time to delivery

States with highest average time to delivery

```
SELECT
  customer_state
FROM (
  SELECT
    customer_state,
    ROUND(AVG(time_to_delivery),2) AS avg_delivery_time
  FROM (
    SELECT
      customer state,
      TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
time_to_delivery,
    FROM
      `target.orders` o
    JOIN
      `target.customers` c
    USING
      (customer_id)
    WHERE
      order_status = "delivered") t1
  GROUP BY
    customer_state
  ORDER BY
    avg_delivery_time DESC) t2
LIMIT 5;
```


States with lowest average time to delivery

```
SELECT
  customer_state
FROM (
  SELECT
    customer_state,
    ROUND(AVG(time_to_delivery),2) AS avg_delivery_time
  FROM (
    SELECT
      customer_state,
      TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
time_to_delivery,
    FROM
      `target.orders` o
      `target.customers` c
    USING
      (customer_id)
   WHERE
      order_status = "delivered") t1
  GROUP BY
    customer_state
  ORDER BY
    avg_delivery_time ) t2
LIMIT 5;
```


5.6 Top 5 states with really fast delivery compared to estimated date

```
SELECT
  customer_state,
  ROUND(AVG(estimated_delivery_time - actual_delivery_time), 2) AS delivery_time_difference
FROM (
  SELECT
    o.order id,
    c.customer_state,
    TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
actual_delivery_time,
    TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) AS
estimated_delivery_time
  FROM
    `target.orders` o
  JOIN
    `target.customers` c
  USING
    (customer id)
  WHERE
    order_status = "delivered") t1
GROUP BY
  customer_state
ORDER BY
  delivery_time_difference DESC
LIMIT 5;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION
Row	customer_state	▼	delivery_time	_difference 🔻
1	AC			20.09
2	RO			19.47
3	AP			19.13
4	AM			18.94
5	RR			16.66

states with not so fast delivery compared to estimated date

```
SELECT
 customer_state,
 ROUND(AVG(estimated_delivery_time - actual_delivery_time), 2) AS delivery_time_difference
FROM (
 SELECT
   o.order_id,
   c.customer_state,
   TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
actual_delivery_time,
   TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) AS
estimated_delivery_time
    `target.orders` o
    `target.customers` c
 USING
    (customer_id)
 WHERE
    order_status = "delivered") t1
GROUP BY
 customer_state
ORDER BY
 delivery_time_difference
LIMIT 5;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION D
Row	customer_state	▼	delivery_time	_difference 🔻 /
1	AL			8.17
2	MA			8.97
3	SE			9.45
4	ES			9.89
5	CE			10.19

6. Payment type analysis:

6.1 Month over Month count of orders for different payment types

```
SELECT
  time_period,
  payment_type,
  COUNT(*) AS total_orders
FROM (
  SELECT
    p.order_id,
    p.payment_type,
    EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
    EXTRACT(Month FROM order_purchase_timestamp) AS month,
    FORMAT_DATE('%b %Y', DATE(ORDER_PURCHASE_TIMESTAMP)) AS time_period
  FROM
    `target.payments` p
  JOIN
    `target.orders` o
  USING
    (order_id)) t1
GROUP BY
  time_period, payment_type, t1.YEAR, t1.month
  t1.YEAR, t1.month;
```

JOB IN	IFORMATION F	ESULT	S JSON	E	ECUTION DETAILS
Row	time_period ▼	/, F	oayment_type 🔻	1.	total_orders ▼
1	Sep 2016	c	credit_card		3
2	Oct 2016	c	credit_card		254
3	Oct 2016	٧	oucher		23
4	Oct 2016	c	debit_card		2
5	Oct 2016	ι	JPI		63
6	Dec 2016	c	credit_card		1
7	Jan 2017	٧	oucher		61
8	Jan 2017	ι	JPI		197
9	Jan 2017	c	credit_card		583
10	Jan 2017	C	debit_card		9

6.2 Count of orders based on the no. of payment installments

```
SELECT
  payment_installments,
  COUNT(*) AS total_orders
FROM
  `target.payments`
GROUP BY
  payment_installments;
```

JOB IN	FORMATION	RESULT	S JSON
Row	payment_installment	s v	total_orders ▼
1		0	2
2		1	52546
3		2	12413
4		3	10461
5		4	7098
6		5	5239
7		6	3920
8		7	1626
9		8	4268
10		9	644

7. Actionable Insights

 Total 609 orders were unavailable and 625 orders were cancelled during the given time period, which makes it to be around 1.2 % of total orders.
 We can reduce this number by studying the reasons behind order cancellation and items unavailability.

Query results						
JOB IN	IFORMATION	RESULTS	JSON EX	ECUTION DETAILS	EXECU	
Row	order_status ▼	le	orders_count ▼	percent_of_total_ord	ers ▼	
1	delivered		96478		97.02	
2	shipped		1107		1.11	
3	canceled		625		0.63	
4	unavailable		609		0.61	
5	invoiced		314		0.32	
6	processing		301		0.3	
7	created		5		0.01	
8	approved		2		0.0	

• We can see how the orders trajectory is showing very abrupt increase in orders volume with in very short time. Looking at overall trend, it is seen that business is picking up very fast in brazil so company has to be ready with extra workforce. To avoid high risk, it can consider hiring contractual employees.

Query results							
JOB IN	IFORMATION	RESULTS	JSON EX	ECUTION DETAILS			
Row	time_period ▼	le	order_count ▼	growth_percent ▼			
1	Sep 2016		1	null			
2	Oct 2016		265	26400.0			
3	Dec 2016		1	-99.62			
4	Jan 2017		750	74900.0			
5	Feb 2017		1653	120.4			
6	Mar 2017		2546	54.02			
7	Apr 2017		2303	-9.54			
8	May 2017		3546	53.97			
9	Jun 2017		3135	-11.59			
10	Jul 2017		3872	23.51			

• Company received low rating for maximum orders in highlighted states; need to study further about the reasons for customer dissatisfaction to such great extent in these states.

This is the query for counting the number of rating in each state.

JOB IN	NFORMATION	RESULTS JS0	ON EX	ECUTION DETAILS	EXECUTION GR	APH PREVIEW	
Row	customer_state ▼	_1 _1 ▼	10	_2 ▼	_3 ▼	_4 ▼	_5 ▼
1	RS		560	172	449	1098	3204
2	RJ		2183	464	1050	2137	6931
3	PR		473	156	381	1009	3019
4	SC		413	119	321	712	2058
5	SP		4054	1211	3299	7991	25135
6	BA		504	130	337	744	1642
7	GO		233	67	191	423	1110
8	MG		1207	339	969	2259	6851
9	PE		221	53	131	322	919
10	RO		24	15	27	44	142
11	RN		54	14	39	95	280
12	SE		63	13	29	67	177
13	MA		131	31	74	157	353
14	PA		155	35	96	197	485
15	CE		210	54	131	263	671
16	ES		243	57	182	425	1109

8. Recommendations

- As Brazilian customers usually tend to buy in afternoon and night, we can increase staff
 in during this time frame in order to manage the customers' requests, and services
 better during this time by reducing workforce of morning and dawn.
- We can see, only 3 state contribute for maximum volume, and rest of the state need to be focused for improving the business.

JOB IN	FORMATION RESULTS		JSON	EXEC
Row	customer_state ▼	11	orders_count •	
1	SP		417	
2	RJ		128	52
3	MG		116	35
4	RS		54	66
5	PR		50	45
6	SC		36	37
7	BA		33	80
8	DF		21-	40
9	ES		20	33
10	GO		20	20
11	PE		16	52
12	CE		13	36
13	PA		9	75
1.4	KAT		0	0.7

Avg delivery time is quite high for most of those states from where company is receiving
quite less volume of orders, detailed study is needed further for checking the other
reasons behind such low volume of orders from majority of states. Huge delivery time
can be the one of the reason and need to work on it.
 States with highest average delivery time -

JOB IN	IFORMATION	RESULTS	JSON EXE
Row	customer_state -	•	avg_delivery_time
1	RR	***	28.98
2	AP		26.73
3	AM		25.99
4	AL		24.04
5	PA		23.32
6	MA		21.12
7	SE		21.03
8	CE		20.82
9	AC		20.64
10	PB		19.95
11	PI		18.99
12	RO		18.91
13	BA		18.87
14	RN		18.82
15	PE		17.97
16	MT		17.59
17	TO		17.23