Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Test 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2z_1 - z_2 = 2(3-3i) - (5-6i) =$	2p
	=6-6i-5+6i=1	3 p
2.	m+15+(m+1)+15=35	2 p
	$2m+31=35 \Rightarrow m=2$	3 p
3.	$3^{x}(2-3)+27=0 \Leftrightarrow 3^{x}=27$	3 p
	x = 3	2 p
4.	Sunt 900 de numere naturale de trei cifre, deci sunt 900 de cazuri posibile	2p
	Numerele naturale de trei cifre care sunt multipli de 25 sunt 25·4, 25·5,, 25·39, deci sunt 36 de cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{36}{900} = \frac{1}{25}$	1p
5.	$\overrightarrow{AC} = \overrightarrow{CB}$, deci punctul C este mijlocul segmentului AB	3 p
	a = 2, b = 5	2 p
6.	$\mathcal{A}_{\triangle ABC} = \frac{AB \cdot AC}{2} \Rightarrow 6 = \frac{4 \cdot AC}{2} \Rightarrow AC = 3$	3 p
	BC = 5	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} 2 & 2 & 1 \\ 2 & a+1 & a \\ a & 6 & 4 \end{vmatrix} = 8a+8+12+2a^2-a^2-a-12a-16 =$	3p
	$=a^2-5a+4=(a-1)(a-4)$, pentru orice număr real a	2p
b)	$A(4) - A(1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 3 \\ 3 & 0 & 0 \end{pmatrix}, (A(4) - A(1))A(a) = 3\begin{pmatrix} 0 & 0 & 0 \\ a+2 & a+7 & a+4 \\ 2 & 2 & 1 \end{pmatrix}, \text{ unde } a \text{ este număr real}$	3р
	$A(a)(A(4) - A(1)) = 3 \begin{pmatrix} 1 & 2 & 2 \\ a & a+1 & a+1 \\ 4 & 6 & 6 \end{pmatrix}, \text{ deci } A(a)(A(4) - A(1)) \neq (A(4) - A(1))A(a),$ pentru orice număr real a	2p
c)	Sistemul are soluția unică (x_0, y_0, z_0) , deci $a \in \mathbb{Z} \setminus \{1, 4\}$ și soluția sistemului de ecuații este $\left(\frac{a-3}{a-4}, \frac{a-6}{a-4}, -\frac{a-6}{a-4}\right)$	3p
	Cum x_0, y_0, z_0 și a sunt numere întregi, obținem $a = 3$ sau $a = 5$, care convin	2p

2.a)	$3*0 = \frac{100(3+0)}{3\cdot 0 + 100} =$	3p
	$=\frac{300}{100}=3$	2p
b)	$f(x*y) = \frac{10 - \frac{100(x+y)}{xy+100}}{10 + \frac{100(x+y)}{xy+100}} = \frac{10xy - 100x - 100y + 1000}{10xy + 100x + 100y + 1000} = \frac{xy - 10x - 10y + 100}{xy + 10x + 10y + 100} =$	3p
	$= \frac{(x-10)(y-10)}{(x+10)(y+10)} = \frac{10-x}{10+x} \cdot \frac{10-y}{10+y} = f(x)f(y), \text{ pentru orice } x, y \in M$	2 p
c)	$f\left(\underbrace{x*x**x}_{\text{de 11 ori }x}\right) = f(0), \text{ deci }\underbrace{f(x)f(x)f(x)}_{\text{de 11 ori }f(x)} = f(0) \Leftrightarrow (f(x))^{11} = 1$	3 p
	$f(x) = 1 \Leftrightarrow 10 - x = 10 + x$, deci $x = 0$, care convine	2p

SUBIECTUL al III-lea (30 de puncte)

(So the paint)		
1.a)	$f'(x) = e^x (x^2 - 4x + 1) + e^x (2x - 4) =$	3p
	$= e^{x} (x^{2} - 2x - 3) = e^{x} (x - 3)(x + 1), x \in \mathbb{R}$	2p
b)	Tangenta la graficul funcției f în $(x_0, f(x_0))$ este paralelă cu dreapta de ecuație $y = 2020 \Leftrightarrow f'(x_0) = 0$	2p
	$e^{x_0}(x_0-3)(x_0+1)=0 \Leftrightarrow x_0=-1 \text{ sau } x_0=3$	3p
c)	$\lim_{x \to -\infty} f(x) = 0, \ f(-1) = \frac{6}{e}, \ f(3) = -2e^3 \ \text{si} \ \lim_{x \to +\infty} f(x) = +\infty$	2p
	Cum f este continuă pe \mathbb{R} și f este strict monotonă pe $(-\infty,-1)$, pe $(-1,3)$ și pe $(3,+\infty)$, graficul funcției f intersectează dreapta de ecuație $y=a$ în exact trei puncte $\Leftrightarrow f(x)=a$ are exact trei soluții reale $\Leftrightarrow a \in \left(0,\frac{6}{e}\right) \cap \left(-2e^3,\frac{6}{e}\right) \cap \left(-2e^3,+\infty\right) = \left(0,\frac{6}{e}\right)$	3 p
2.a)	$F:(1,+\infty)\to\mathbb{R}$ este o primitivă a funcției $f\Rightarrow F'(x)=f(x)=\ln x+\frac{1}{\ln x},\ x\in(1,+\infty)$	2p
	$F'(x) > 0$, pentru orice $x \in (1, +\infty)$, deci F este strict crescătoare pe intervalul $(1, +\infty)$	3 p
b)	$\int_{e}^{e^{2}} \frac{1}{x} (f(x) - \ln x) dx = \int_{e}^{e^{2}} \frac{1}{x} \cdot \frac{1}{\ln x} dx = \ln(\ln x) \Big _{e}^{e^{2}} =$	3p
	$= \ln 2 - \ln 1 = \ln 2$	2p
c)	$\int_{e}^{a} \ln x dx = x \ln x \left \frac{a}{e} - \int_{e}^{a} x \cdot \frac{1}{x} dx = a \ln a - e - (a - e) = a \ln a - a$	3 p
	$a \ln a - a = 2a \Leftrightarrow a(\ln a - 3) = 0$ și, cum $a > e$, obținem $a = e^3$	2p