Lecture 5 Successful Architectures

IMAGE PROCESSING AND COMPUTER VISION - PART 2 SAMUELE SALTI

Convolutional Neural Networks

N convolutional+pooling layers followed by M fully connected layers
This is also called the **feature extractor**(with max-pool, ReLU can be the last operation in a block)

The final fully connected layer is also called the classifier

Example: LeNet5

first expansion

k = 5 stride = 1 padding = 0 C_out = depth = number of channels = 6

Average pooling tends to have a smoothing effect on the feature maps. It averages out the values within the window, which can help in preserving general trends, capturing diverse aspects of the input, and reducing noise in the feature maps

- As depth increases, number of channels increase, and spatial dimension decreases
- Average pooling
- o 5x5 convolutional kernels, no padding 6 convs
- o Sigmoid or tanh non-linearities with carefully selected amplitudes
- Multiple fully connected layers + RBF classifier
- No residual connections
- No (batch) normalization

this is a good process because at the beginning we want to extract low level features, but the more we progress, we want to process higher level features and a higher number of features, combining the low level features

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. "Gradient-based learning applied to document recognition", Proceedings of the IEEE. 1998.

ILSVRC error rate evolution

*Results based on ensembles and, sometimes, heavy test-time augmentation

AlexNet

wrt LeNet does not change too much: it's deeper and ReLU is used instead most of the numbers are magic numbers: decided by trial and error model parallelism: upper convolutions are computed on a GPU and the lower ones on another GPU (this means that for ex. vertical edges feature computed on one GPU, horizontal on another one)

AlexNet

Won ILSVRC 2012.

Was trained on two GTX580 GPUs.

Used local response normalization (LRN) in some layers, not used in subsequent architectures.

Took between five and six days to train

"All our experiments suggest that our results can be improved simply by waiting for faster GPUs and bigger datasets to become available."

it's not all just about bigger datasets or more powerful GPUs

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0

Input elements =
$$W_{in} \times H_{in} \times C_{in}$$

=227*227*3
=154,587

AlexNet used mini-batch size 128, activations are usually floating point number, i.e. 4 bytes for each element.

Total memory in MB for a mini-batch is 128* 154,587 *4/1024/1024 = 75.5

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0		- 75,5	0,0
conv1	96	11	4	0							

First layer is a 96x3x11x11 convolutional layer, with stride 4.

We will see again this **stem layer** at the beginning of convnets, i.e. a **conv layer that performs a fast** reduction in the spatial size of the activations, mainly to reduce memory and computational cost, but also to rapidly increase the receptive field.

Activation H/W =
$$\left[\frac{(W_{in} - W_K + 2P)}{S}\right] + 1$$

= $(227-11+0)/4+1$
= $216/4+1=55$

Convolutional layers are used as stem layers because they are more informative and effective in the initial stages of a convolutional neural network compared to pooling layers.

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400				

params =
$$(W_K \times H_K \times C_{in} + 1) \times C_{out}$$

= $(11*11*3+1)*96$
= $34,944$

flops = #activations
$$\times$$
 ($W_K \times H_K \times C_{in}$) \times 2
=290,400 * (11*11*3)*2*128
=27 Gflops

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	<u>-</u>	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3		

Given activation size and #parameters, how much memory will we need at training time?

- We need to store all intermediate activations, in order to compute the gradient of the loss with respect to everyone of its entries, i.e. another tensor of the same size
- We will have as many activations (and gradients) as there are input images in our mini-batch
- For every parameter, we will need to store its value and the gradient of the loss with respect to it
- If we use advanced optimizers like momentum, we will have a velocity term for each parameter, if using Adam first and second order moments for each parameter, etc..

Hard to have a precise estimate of memory requirements, but we can get approximate values by considering twice the activation size and 3-4 times the #params. This is usually a lower bound on the actual requirements.

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3		

Total memory for activations for conv1 is then 2 * 128 * #activations * 4 / 1024/1024= 283.6 MB

Total memory for parameters for conv1 is then 3*#params * 4 / 1024/1024= 0.4 MB

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
nool1	1	3	2	Ο							

All pooling layers are "overlapping" pooling layers: they have size 3x3, but stride 2. Reduces the top-1 and top-5 errors in their experiments compared to 2x2 with stride 2.

Here, the pooling window is 3x3, and the stride is 2. Since the window is larger than the stride, there is overlap between adjacent pooling regions (the current one and the previous one)

output channels = # input channels = 96

Activation H/W =
$$\left[\frac{(W_{in} - W_K + 2P)}{S}\right] + 1$$

= $(55-3+0)/2+1$
= $52/2+1=27$

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984				

params = 0 -> size of params in memory = 0 MB

maxpooling: 0 params because it doesn't have to learn them

flops = #activations
$$\times$$
 ($W_K \times H_K$)
=69,984 * 3 * 3
= 629,856 = 0.6 Mflops

Size of activations for pool1 is then 2 * 128 * #activations * 4 / 1024/1024= 68.3 MB

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0
conv2	256	5	1	2	27	256	186624	615	114661,8	182,3	7,0
pool2	1	3	2	0	13	256	43264	0	49,8	42,3	0,0
conv3	384	3	1	1	13	384	64896	885	38277,2	63,4	10,1
conv4	384	3	1	1	13	384	64896	1327	57415,8	63,4	15,2
conv5	256	3	1	1	13	256	43264	885	38277,2	42,3	10,1
pool3	1	3	2	0	6	256	9216	0	10,6	9,0	0,0
flatten	0	0	0	0	1	9216	9216				

Flatten layer to throw away the spatial structure and prepare for FC layers. No computation, so no parameters. Not even memory consumption, it is just a view over the same area of memory which is interpreted as a $C_{out} \times 1$ vector, where $C_{out} = C_{in} \times W_{in} \times H_{in}$

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0
conv2	256	5	1	2	27	256	186624	615	114661,8	182,3	7,0
pool2	1	3	2	0	13	256	43264	0	49,8	42,3	0,0
conv3	384	3	1	1	13	384	64896	885	38277,2	63,4	10,1
conv4	384	3	1	1	13	384	64896	1327	57415,8	63,4	15,2
conv5	256	3	1	1	13	256	43264	885	38277,2	42,3	10,1
pool3	1	3	2	0	6	256	9216	0	10,6	9,0	0,0
flatten	0	0	0	0	1	9216	9216	0	0,0	0,0	0,0
fc6	4096	1	1	0							

output channels = # kernels = 4096, no spatial dimensions -> memory of actvs = $2*128*4096*4/1024^2$ = 4 MB

this is because in FC layers the kernel has the same dim of its previous layer

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0
conv2	256	5	1	2	27	256	186624	615	114661,8	182,3	7,0
pool2	1	3	2	0	13	256	43264	0	49,8	42,3	0,0
conv3	384	3	1	1	13	384	64896	885	38277,2	63,4	10,1
conv4	384	3	1	1	13	384	64896	1327	57415,8	63,4	15,2
conv5	256	3	1	1	13	256	43264	885	38277,2	42,3	10,1
pool3	1	3	2	0	6	256	9216	0	10,6	9,0	0,0
flatten	0	0	0	0	1	9216	9216	0	0,0	0,0	0,0
fc6	4096	1	1	0	1	4096	4096			4,0	

params = $C_{out} \times C_{in} + C_{out}$ = 37,752,832 -> memory for params = 3 * #params *4 / 1024² = 432,1 MB

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	-	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0
conv2	256	5	1	2	27	256	186624	615	114661,8	182,3	7,0
pool2	1	3	2	0	13	256	43264	0	49,8	42,3	0,0
conv3	384	3	1	1	13	384	64896	885	38277,2	63,4	10,1
conv4	384	3	1	1	13	384	64896	1327	57415,8	63,4	15,2
conv5	256	3	1	1	13	256	43264	885	38277,2	42,3	10,1
pool3	1	3	2	0	6	256	9216	0	10,6	9,0	0,0
flatten	0	0	0	0	1	9216	9216	0	0,0	0,0	0,0
fc6	4096	1	1	0	1	4096	4096	37758		4,0	432,0

flops = $\#minibatch \times 2 \times C_{in} \times \#activations = 128*2*9,126*4,096 = 9.569$ Gflops

Minibatch:

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	_	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0
conv2	256	5	1	2	27	256	186624	615	114661,8	182,3	7,0
pool2	1	3	2	0	13	256	43264	0	49,8	42,3	0,0
conv3	384	3	1	1	13	384	64896	885	38277,2	63,4	10,1
conv4	384	3	1	1	13	384	64896	1327	57415,8	63,4	15,2
conv5	256	3	1	1	13	256	43264	885	38277,2	42,3	10,1
pool3	1	3	2	0	6	256	9216	0	10,6	9,0	0,0
flatten	0	0	0	0	1	9216	9216	0	0,0	0,0	0,0
fc6	4096	1	1	0	1	4096	4096	37758	9663,7	4,0	432,0
fc7	4096	1	1	0	1	4096	4096	16781	4295,0	4,0	192,0
fc8	1000	1	1	0	1	1000	1000	4097	1048,6	1,0	46,9
					Minibatch:	128	Totals:	62378	290851	1.406	714

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels	#Activations	#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input					227	3	154587	0	_	75,5	0,0
conv1	96	11	4	0	55	96	290400	35	26986,3	283,6	0,4
pool1	1	3	2	0	27	96	69984	0	80,6	68,3	0,0
conv2	Trends	to note	j.					615	114661,8	182,3	7,0
pool2		,		_	inning of the	0	49,8	42,3	0,0		
conv3		•			are in the fu	885	38277,2	63,4	10,1		
conv4	_				sumption fro	1327	57415,8	63,4	15,2		
conv5			,		bigger images		. 1	885	38277,2	42,3	10,1
pool3	_				ps required	,	,	0	10,6	9,0	0,0
flatten		print at			meters have	e a Similal II	lerriory	0	0,0	0,0	0,0
fc6				_	parameters	learned mo	ore than	37758	9663,7	4,0	432,0
fc7					s a mini-bat			16781	4295,0	4,0	192,0
fc8	1000	ı	l l	U		1000	1000	4097	1048,6	1,0	46,9
					Minibatch:	128	Totals:	62378	290851	1.406	714

ZFNet / Clarifai: a better AlexNet

unlike AlexNet, which uses a big stem layer with a high stride, ZFNet uses more layers with less stride as stem layers

this is because of ablation studies

First author founded a company, Clarifai, which won ILSVRC 2013 with a modified version of this network.

Tries to reduce the "trail and error" approach to network design, by introducing powerful visualizations (via Deconvnets) for layers other than the first one.

Based on the visualizations and ablation studies, they found out that aggressive stride and large filter size in the first layer results in dead filters and missing frequencies in the first layer filters and aliasing artifacts in the second layer activations in the image a) which refers to AlexNet, we notice much more gray meaningless pixels, namely dead neurons

They propose to counteract these problems by using 7×7 convs with stride 2 in the first layer and stride 2 also in the second 5×5 conv layer.

wrt AlexNet differences lies in the first two layers: 7x7 conv and stride 2 instead of 11x11 with stride 4 in the first *

VGG: Deep but regular

Second place in ILSVRC 2014, 7.5% top-5 error

Commit to explore the effectiveness of simple design choices, by allowing only the combination of :

- o 3x3 convolutions, S=1, P=1 using this values we will never reduce the spatial dimension using convolutions
- o 2x2 max-pooling, S=2, P=0 halving each spatial dimension
- #channels doubles after each pool

the overall n° of FLOPS of convolutions stay constant (spatial dimension halves, but the # of channels doubles)

Dropped local response normalization (LRN)

Batch norm not invented yet! Pre-initialization of deeper networks with weights from shallower architectures crucial to let training progress (unless smart initialization strategies are used).

very useful to capture STYLE of images

we will see that it is because more smaller convs are used, which capture a lot of details, and also because it doesn't have a stem layer

Karen Simonyan and Andrew Zisserman, "Very Deep Convolutional Networks for Large-scale Image Recognition", ICLR 2015

UNIESS
same
structure of
AlexNet in
the final part,
the classifier

		ConvNet Co	onfiguration		
A	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224 × 22 conv3-64	24 RGB imag	e)	
conv3-64 3x3 conv	conv3-64	conv3-64	conv3-64	conv3-64	
64 output ch.	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
64 x 2 channels		conv3-128	conv3-128	conv3-128	conv3-128
		max			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
			conv3-256		
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096 4096		

Stages

since a lot of big convs can be emulated by smaller convs

this is good because stacking convs is more convenient: less parameters then less flops required the main drawback is that much more memory is required (double)

VGG introduces the idea of designing a network as repetitions of **stages**, i.e. a fixed combination of layers that process activations at the same spatial resolution.

In VGG, stages are either:

o conv-conv-pool

we pass in another stage when spatial resolution changes, and it does after the max pooling

o conv-conv-conv-pool

o conv-conv-conv-pool

One stage has same receptive field of larger convolutions but requires less params and computation and introduces more non-linearities. more ReLUs means more expressiveness

No free-lunch, though: memory for activations doubles

	Conv layer	Params	Flops	ReLUs	#Activations
	$C \times C \times 5 \times 5$, $S = 1, P = 2$	$25C^2 + C$	$50C^2W_{in}H_{in}$	1	$C \times W_{in} \times H_{in}$
*	2 stacked $C \times C \times 3 \times 3$, $S = 1$, $P = 1$	$18C^2 + 2C$	$36C^2W_{in}H_{in}$	2	$2 \times C \times W_{in} \times H_{in}$

D	Е
16 weight	19 weight
layers	layers
e)	
conv3-64	conv3-64
conv3-64	conv3-64
conv3-128	conv3-128
conv3-128	conv3-128
conv3-256	conv3-256
conv3-256	conv3-256
conv3-256	conv3-256
	conv3-256
conv3-512	conv3-512
conv3-512	conv3-512
conv3-512	conv3-512
	conv3-512
2.512	2.512
conv3-512	conv3-512
conv3-512	conv3-512
conv3-512	conv3-512
	conv3-512
maxpool	maxpool
FC-4096	FC-4096
FC-4096	FC-4096
FC-1000	FC-1000
soft-max	soft-max

by design it doesn't have a stem layer

VGG-16 summary

a lot of resources to process the first layers

Bigger network than AlexNet

138 M params (2.3x AlexNet) again, mostly in fc layers

~4 Tflops (~ 14x), 31 Gflops/img, mainly due to convolutions

~16. 5 GB of memory (~ 12x)

Memory mostly stores
activations (of first conv
layers, which are much larger
than in AlexNet for the
absence of stem layers)

Trained on 4 GPUs with data parallelism for 2-3 weeks

layer	Kernels	K_W/H	S	Р	Actv H/W	Actv Channels	#Activations	#parame (K)	flops (M)	Activations memory (MB)	Params memory (MB)
input	Kerrieis	I_VV/11	3	Г	224	3	150528	#pararris (K)	Tiops (IVI)	73.5	0,0
conv1	64	3	1	1	224	64	3211264	2	22196,3		0,0
conv2	64	3	1	1	224	64	3211264	37	473520,1	3136,0	
	1	2	2	0	112	64	802816	0	473320,1	784 N	
pool1 conv3	128	3	1	1	112	128	1605632	74	236760,1	1568,0	0,0
		3	1	1	112			148			
conv4	128		ا ص			128	1605632		473520,1	1568,0	
pool2))E6	2	2	0	56	128	401408	0	205,5		0,0
conv5	256	3	1	1	56	256	802816	295	236760,1	784,0 704.0	3,4
conv6	256	3	1	1	56	256	802816	590 500	473520,1	784,0 704.0	6,8
conv7	256	3	0	0	56	256	802816	590	473520,1	784,0	6,8
pool3	- I	2	2	0	28	256	200704	0	102,8		0,0
conv8	512	3			28	512	401408	1180	236760,1	392,0	13,5
conv9	512	3	1	1	28	512	401408	2360	473520,1	392,0	27,0
conv10	512	3	1	1	28	512	401408	2360	473520,1		27,0
pool4	1	2	2	0	14	512	100352	0	51,4	·	0,0
conv11	512	3	1	1	14	512	100352	2360	118380,0	98,0	27,0
conv12	512	3	1	1	14	512	100352	2360	118380,0	98,0	27,0
conv13	512	3	1	1	14	512	100352	2360	118380,0		27,0
pool5	1	2	2	0	7	512	25088	0	12,8		0,0
flatten	1	1	1	0	1	25088	25088	0	0,0	0,0	0,0
fc14	4096	1	1	0	1	4096	4096	102786	26306,7	4,0	1176,3
fc15	4096	1	1	0	1	4096	4096	16781	4295,0	4,0	192,0
fc16	1000	1	1	0	1	1000	1000	4100	1048.6	1.0	46.9
					Minibatch:	128	Totals:	138.382	3.961.171	14.733	1.584

Inception v1 (GoogLeNet)

INCREASING WIDTH -> more channels within each conv layer:

CONS: more computational cost -> more parameters, more FLOPs, more memory usage

PROS: more diverse and complex features, parallelization stabilizes learning process -> less prone to van/exp gradient

"The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant."

22 trainable "layers" from input to output About 100 trainable "layers" overall

Stack of "Inception" modules

no more 3 FC layers in the classifier too much parameters

everything from here on reasons on images of 28x28, after the reduction of stem layers

Christian Szegedy et al., "Going deeper with convolutions", CVPR 2015

INCREASING DEPTH -> more layers and larger receptive field:

Stem layers

CONS: more computational cost -> more parameters, more FLOPs, more GD iterations, more probability of vanishing/exploding GD, more memory usage

PROS: increasing the ability of the network to learn complex features and relationships between data, improving generalization, more powerfulness and expressiveness

	ir	nceptio	on 1x	1	ince	ption	3x3	Inception 5x5 Ma			Ма	ixpool	Activations					Acts	Params
					C_ou			C_ou								#params	flops	memory	memory
Layer	Ks	H/W	S	Р	t	1x1	H/W	t	1x1	H/W	1x1	H/W	H/W	Channels	#Activations	(K)	(M)	(MB)	(MB)
input													224	3	150528	0	-	73,5	0,0
conv1	64	7	2	3									112	64	802816	9	30211,6	784,0	0,1
pool1	1	3	2	1									56	64	200704	0	231,2	196,0	0,0
conv2	64	1	1	0									56	64	200704	4	3288,3	196,0	0,0
conv3	192	3	1	1									56	192	602112	111	88785,0	588,0	1,3
pool2	1	3	2	1									28	192	150528	0	173,4	147,0	0,0

Stem layers aggressively downsamples inputs: from 224 to 28 width/height in 5 layers, which require about 130 G glops, 124 K parameters, and 2 GB of memory layered stemming —

Yet, it brings it down a bit more gently than AlexNet, as per ZFNet lesson

o only uses strides of 2

huge spatial reduction, but within 5 steps: from 224x224 to 28x28

o largest conv is 7x7

Compare with VGG: to reach 28x28, it uses 10 layers, with more than half of the total flops (2.4 Tflops), more than 1.7 M parameters, and 13 GB of memory.

all of these branches are computed in parallel, unlike
the previous architectures...

Note: A second because it increase a lot the number of channels -> it becomes very slow

Naïve Inception module

wo main problems:

- Due to max-pool, #channels grows very fast when inception modules are stacked on top of each other
- 5x5 and 3x3 convs on many channels become prohibitively expensive if we stack a lot of them, e.g. here conv 5x5 = 2x28x28x32x192x5x5=240 Mflops, conv 3x3 = 2x28x28x128x192x3x3=350 Mflops

after each branch computes its

also regular convs can preserve spatial dims, but 1x1 always do that

1 x 1 convolutions

The 1x1 convolutional layer can be thought of as applying a fully connected layer independently at each spatial location of the input feature map, where the input channels behaves as input neurons for a FC, doing the classical linear combination

In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution kernels and a full connection table.

Inception module

in order to make it feasible to run inception modules onto machines, add 1x1 convolution before larger convs and after max pool

By adding 1x1 convolutions before larger convs and after max pool we can

- o Control the number of output channels by reducing the depth of the max pool output
- Control the time complexity of the larger convolutions by reducing the channel dimension, e.g. now flops are Conv $5x5 = 28x28x16x192x2 + 28x28x32x16x5x5x5x2 \cong 5M+10M=25M$ flops (was 240M) Conv $3x3=28x28x96x192x2 + 28x28x128x96x3x3x2 \cong 29M+173M=202M$ flops (was 350M)

Fully-connected classifier vs global average pooling

instead of having one huge flattened vector, we do a pooling along depth dimension Flatten

spatial dim

4x3x3 Last activation before classifier 1000 x 4

why avg pooling and not a conv? no explicit reason To reduce the number of parameters needed at the interface between convolutional features and fully connected layers, NiN proposed to get rid of spatial dimensions by averaging them out

Lin et al., "Network in network", ICLR 2014

GoogLeNet: Global Average Pooling

	i	nceptio	on 1x	1	ince	eption	3x3	Ince	eption	5x5	Max	pool		Activations				Acts	Params
															#Activation	#params		memory	memory
Layer	Ks	H/W	S	Р	C_out	1x1	H/W	C_out	1x1	H/W	1x1	H/W	H/W	Channels	S	(K)	flops (M)	(MB)	(MB)
incep8	384	1	1	0	384	192	3	128	48	5	128	3	7	1024	50176	1443	16689,7	49,0	16,5
avgpool	1	7	1	0									1	1024	1024	0	6,4	1,0	0,0
fc1	1000	1	1	0									1	1000	1000	1025	262,1	1,0	11,7

GoogLeNet uses global average pooling to remove spatial dimensions and one FC layer to produce class scores.

It results in 1 million parameters and negligible numbers of flops

VGG has 124 millions parameters in the final 3 fc layers, which requires 31 Gflops to compute.

o If the kernel size of pooling covering the full input activation is computed by the layer instead of being specified by the user, i.e. AdaptiveAvgPool2d layer instead of AvgPool2d in PyTorch, this makes the network able (at least as far as tensor dimensions are concerned) to work on any input image size.

CLASS torch.nn.AdaptiveAvgPool2d(output_size: Union[T, Tuple[T, ...]])

[SOURCE]

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

GoogLeNet summary

	inception 1x1				ince	eption	3x3	Ince	ption	5x5	Max	pool		Activations				Acts	Params
Lavian	1/-	1104	_	_	0 0 1	11	11/\A/	0 - 4	11	1104/	11	1104/	11/\A/	Obannala	#Activation	•		memory	memory
Layer	Ks	H/W	S	Р	C_out	1x1	H/VV	C_out	IXI	H/W	1x1	H/W	H/W	Channels	S	` '	flops (M)	(MB)	(MB)
input													224	3	150528	0		73,5	
conv1	64	7	2	3									112	64	802816	9	30211,6	784,0	0,1
pool1	1	3	2	1									56	64	200704	0	231,2	196,0	0,0
conv2	64	1	1	0									56	64	200704	4	3288,3	196,0	0,0
conv3	192	3	1	1									56	192	602112	111	88785,0	588,0	1,3
pool2	1	3	2	1									28	192	150528	0	173,4	147,0	
incep1	64	1	1	0	128	96	3	32	16	5	32	3	28	256	200704	163	31380,5	196,0	
incep2	128	1	1	0	192	128	3	96	32	5	64	3	28	480	376320	388	·	367,5	
pool3	1	3	2	1									14	480	94080	0	•		
incep3	192	1	1	0	208	96	3	48	16	5	64	3	14	512	100352	376	·		
incep4	160	1	1	0	224	112	3	64	24	5	64	3	14	512	100352	449	•	•	
incep5	128	1	1	0	256	128	3	64	24	5	64	3	14	512	100352	509	,		
incep5	112	1	1	0	288	144	3	64	32	5	64	3	14	528	103488	605	•	•	6,9
incep6	256	1	1	0	320	160	3	128	32	5	128	3	14	832	163072	867	•	•	
pool4	1	3	2	1	020	100	U	120	02	0	120	O	7	832	40768	0	•		
incep7	256	1	1	0	320	160	3	128	32	5	128	3	7	832	40768	1042	•		
•		1	1				3						7				•		
incep8	384	1	1	0	384	192	3	128	48	5	128	3	1	1024	50176	1443	,	49,0	
avgpool	1000			0										1024	1024	0	- ,	•	-
fc1	1000		1	0									1	1000	1000	1025		1,0	
												Minib	atch:	128	Totals:	6.992	389.996	3.251	80

Only 7 millions parameters, 390 Gflops (3 Gflops/img), and 3.3 GB of memory. 10.07% error rate on ILSVRC 14 validation set with one model and one test crop, 7.89 with one model and aggressive cropping (144 crops)

Inception v3

It leverages convolution factorizations to increase computational efficiency and to reduce the number of parameters. Less parameters should be more disentangled and therefore easier to train. Achieved 4.48% top-5 error on ILSVRC12 with 12 crops.

Factorization A, used for finescale activations (35x35)

Factorization B, used for midscale activations (17x17)

Factorization C, used for coarsescale activations (8x8)

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. "Rethinking the inception architecture for computer vision", CVPR 2016

Residual Networks

Adding identity layers demonstrates that the network's depth alone is not the problem, but rather the optimization process. If it were possible to train very deep networks effectively, adding these identity layers should not degrade performance

VGG lesson: growing depth improves performance. Yet, stacking more layers doesn't automatically improve performance. increasing depth means also more params and flops, more GD iters, higher prob of van/expl gradient

Too many parameters increase overfitting and hurts generalization? We also observe higher training errors, so overfitting it's not the only reason, there is also a training problem, even when using Batch Norm.

training error increases due to various factors, not just overfitting: also vanishing/exploding can be a possible reason

* Yet, a solution exists by construction: if a network with 20 layers achieves performance X, then we can stack 36 more identity layers and we should keep performance at X. An identity layer is one where the output is the same as the input, essentially y = x

SGD is not able to find this solution with the parameterization we use for layers: optimizing very deep networks is hard.

this is due to vanishing/exploding gradient

ResNet doesn't prove that depth isn't the problem and adding it always beneficial: it proves that deep architecture can be trained effectively with the right structure, the skip connections. They prove indeed that in the worst case the model learns the identity function, meaning that additional identity layer won't hurt performances.

Kaiming He et al., "Deep Residual learning for image recognition", CVPR 2016

the innovation was heavy use of BN and these skip connections

Residual block

- residual blocks allow the network to learn residual functions with reference to the layer inputs, instead of learning unreferenced functions.
- using skip connections helps preserve information and ensures that gradients can flow more easily during backpropagation
- instead of hoping that optimization algorithms like SGD can find the right parameterization, the network architecture itself ensures that learning deep representations is feasible.

The proposed solution is to change the network so that **learning identity functions is easy** by introducing **residual blocks**. Implemented by adding **skip connections** skipping two convolutional layers.

Adding identity layers (or residual connections) helps demonstrate that the architecture's depth isn't the problem; it's the optimization process. By incorporating identity mappings, ResNets ensure that even very deep networks can be trained effectively. This approach leverages the idea that if a shallower network performs well, a deeper network with identity layers can maintain that performance while potentially learning more complex features. This insight addresses both the challenge of overfitting and the difficulty of optimizing very deep networks.

Weights usually initialized to be very small (or 0 for biases). Network starts with the identity function and learns an "optimal" perturbation of it.

It makes heavy use of batch-norm

why relu outside? identity can be also negative, and with relu i obtain only positive values, so otherise i will keep increasing, having no flexibility

no maxpooling like in VGG

Residual Networks

same rules of VGG: — - halves the spatial dimension

- doubles n° of channels

3x3 conv layer

Inspired by VGG regular design. Network is a stack of stages with fixed design rules:

- Stages are a stack of residual blocks
- Each residual block is a stack of two 3x3 convolutions with batch-norm
- the first block of each stage halves the spatial resolution (with stride-2 convs) and doubles the number of channels

It uses stem layer and global average pooling as GoogleLeNet

Naming conventions follow VGG, as well: ResNet-X, where X is the number of layers with learnable parameters

Stem layer and global average pooling

just three

First layers are stem layers, as in GoogLeNet. However, it only uses one conv+pool layer, and reduces only to 56×56 , probably because residual blocks are lightweight compared to Inception modules.

they tend to be a good compromise: not too expensive, not to aggressive in the downsampling in the stem layer

Layer	Kernels	Kernel H/W	S	Р	Activations H/W	Activations Channels		#params (K)	flops (M)	Activations memory (MB)	Parameters memory (MB)
input		<u> </u>			224	3	150528	0	-	73,5	0,0
conv1	64	7	2	3	112	64	802816	9	30211,6	784,0	0,1
pool1	1	3	2	1	56	64	200704	0	231,2	196,0	0,0

• • •

conv.s4.b3.2	512	3	1	1	7	512	25088	2360	29595,0	24,5	27,0
avgpool	1	7	1	0	1	512	512	0	3,2	0,5	0,0
fc1	1000	1	1	0	1	1000	1000	513	131,1	1,0	5,9

It also uses the same average pooling + linear layer at the end.

Skip conn dimensions

The residual blocks described so far cannot be used as the first block of a new stage, because the number of channels and the spatial dimensions do not match along the residual connection (dashed arrow)

The authors tried two solutions:

o apply stride 2 to y and zero pad the missing channels (no extra parameters)

 1x1 conv with stride 2 and 2C output channels (solid arrow)

and verified the second one to perform slightly better

the first conv halves the spatial dim with stride = 2 and doubles n° of channels, 2C

MSRA @ ILSVRC & COCO 2015 Competitions

Residual blocks allow us to train deep networks. When properly trained, deep networks outperform shallower network as expected Won all 2015 competitions by a large margin, still the standard baseline/backbone for most tasks today.

in order to train deeper networks, a variance was proposed

Bottleneck residual block

bottleneck because we start with 4*C channels, go to C channels to perform 3x3 conv and then go back to 4C $_\chi$

this variance allow us to grow faster wrt number of channels without paying the price for it

- use 1x1 conv to reduce #channels and then FLOPs
- apply 3x3 conv
- apply 1x1 restoring #channels

Used with very deep resnets: more layers with approx same parameters and flops. It enables faster increases in depth without altering computational budget

$$F(x) + x$$

$$4C \times H \times W$$

Effects of residual learning

we know why resnet are so successful and well-working, unlike other architectures

LOSS LANDSCAPES

evey point on this chart is the value of the loss for some configuration of the parameters

this landscape approximates the leftmost one, creating a SMOOTHER landscape because it focuses just on what we care about, the minimum

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

When we interpret ResNets as having multiple paths, we mean that the output can be viewed as a combination of transformations of varying depths. This interpretation helps explain why gradients can flow more easily through the network.

the main reason why resnets allow to train deeper networks

Resnets as ensembles of relatively shallow networks

this mainly helps with backprop. where gradients can flow through skip connections without being diminished by the transformations within the block.

each residual block can be viewed as a mini-network (b) Unraveled view of (a)

at the beginning, as if I can decide going throug the skip connection or through the block Error when deleting layers ablation studies Number of layers deleted

the error gets higher when layers are deleted, but always in a not too much aggerssive way, just like ensemble models

avoiding or at least minimizing the problem of vanishing gradient!!

Since the skip connections enable the network to bypass certain layers when needed, the entire ResNet can be interpreted as a combination of different " paths" of varying lengths, where each path represents a shallower network.

there are hence multiple paths of varying length for data to flow into the network

resnet receives infleuecn from all the possible paths

The skip connections reduce the need for the network to depend on all layers for each piece of information. As a result, the gradients and signals can travel through shorter paths (with fewer layers), allowing the model to learn as if it were an ensemble of shallower networks, despite its actual depth.

Andreas Veit, Michael Wilber, Serge Belongie. "Residual Networks Behave Like Ensembles of Relatively Shallow Networks", NeurIPS 2016

Further model tweaks – "ResNet v2"

- ResNet-B: 1x1 convolution at the beginning of bottleneck residual blocks ignore ¾ of the input activation. If we move stride 2 into the 3x3, all input is used.
- ResNet-C: replace 7x7 stride 2 conv in stem layers with 3 3x3 convs, the first one with stride 2
- ResNet-D: the 1x1 stride 2 convused to match dimensions in the first block of each stage uses only 34 of the input activation.
 Performing 2x2 stride 2 AvgPool before it fixes the problem.

Common variants on ImageNet

44

Common variants on ImageNet

Inception-v4 and Inception-ResNet-v2

Inception-v4 is basically a larger Inception-v3 with a more complicated stem.

The authors also tried the residual connections idea around the Inception module.

Inception-resnet A, used for fine-scale activations (35x35)

Inception-resnet B, used for mid-scale activations (17x17)

Christian Szegedy et al., "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning", AAAI 2017

Transfer Learning

We normally want to run CNNs on new classification datasets, not on ImageNet.

One of the most important features, from a practical point of view, of learned representations is that they can be effectively **transferred** to new datasets. Transfer learning is the process of using and adapting a pre-trained NN to new datasets. Usually, we pre-train on large datasets, and then we use it as **frozen feature extractor** or **fine-tune** it on the new dataset.

Transfer learning

fine-tuning is just training the network again but using pre-learned weights as initialization

1. Trained on Imagenet (find parameters online)

ResNet-50

2b. **Fine-tuning**: train new head and feature extractor

When fine-tuning:

- Start with frozen feature extractor
- 2. Use smaller LR than the one used to train original architecture
- 3. Progressive LRs: use smaller learning rates when training extractor, and even freeze lower layers