

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA INGENIERO MECÁNICO. CURSO 2º Examen Ordinario. Febrero de 2016

NOMBRE:	

GRUPO:

DNI:

FIRMA:

Rellene la cabecera de esta hoja con su nombre, grupo y DNI. Esta hoja firmada deberá entregarse a la salida del examen. Resuelva cada problema por separado de forma que no mezcle dos problemas distintos en un mismo folio. Todos los problemas puntúan por igual.

PROBLEMA 1

En el circuito de la figura determine el valor de la resistencia que, conectada entre los terminales 1 y 2, consume máxima potencia. Calcule también el valor de dicha potencia máxima. Las fuentes de tensión en (V), las de intensidad en (A) y las resistencias en (Ω) .

PROBLEMA 2

Las lecturas de los instrumentos de medida del circuito de la figura son: A_1 =4A, A_2 =5A, W=640W y V=160V. Se pide:

- a) Valores de R, C, L_1 y L_2 .
- b) Diagrama vectorial de tensiones e intensidades.

PROBLEMA 3

Un circuito trifásico, equilibrado y de secuencia directa, está formado por tres cargas conectadas en paralelo alimentadas por una línea trifásica. Los datos de las cargas son: C_1 (10 kW y con fdp=0. 8 inductivo), C_2 (-2 kVAr y 3 kW) y C_3 (18 kVA con fdp=0.5 inductivo). También se sabe que el valor de la tensión de línea en bornas de la carga vale V_L = 380 V y que la impedancia por fase de la línea es Z_L = 0.1+ j Ω . Al principio de la línea, se disponen dos vatímetros W_1 y W_2 según el método de los dos vatímetros y un tercero conectado de forma que permita medir por si solo la potencia reactiva del sistema. Se pide:

- 1) Dibujar la disposición de los tres vatímetros con sus respectivas referencias de polaridad.
- 2) Lecturas de W_1 , W_2 y W_3 .
- 3) Valor de las impedancias complejas de las cargas C₁, C₂ y C₃.
- 4) Batería de condensadores necesaria para llevar todo el montaje a un fdp 0.95 inductivo.