

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería electrónica industrial y automática

TRABAJO FIN DE GRADO

Control de conexión a red de parques eólicos

Autor: Emilio Liaño de la Fuente

Índice

1	Introducción	3
	1.1 Objetivos	3
2	Parques eólicos y conexión a red	5
	2.1 Elementos del parque	5
	2.2 Elementos de la conexión a red	7
	2.3 Parámetros de la red trifásica	8
	2.4 Códigos de red	11
3	Control de plantas eléctricas	15
	3.1 Introducción al control de plantas eléctricas	16
	3.2 Estrategias de control utilizadas	16
	3.3 Control clásico	16
	3.4 Control modérno	16
4	Herramientas de diseño	17
	4.1 Desarrollo en Simulink de un modelo matemático del párque	17
	4.1.1 Librería Simscape Power Systems	18
	4.1.2 Tratamiento de señal por buses	19
	4.1.3 Diseño encapsulado mediante modelos referenciados	20
5	Modelado y simulación del control	21
	5.1 Desarrollo de un modelo de parque y red de conexión	21
	5.2 Modelado del parque y la conexión a red en Simulink	21
	5.3 Diseño del control de la conexión a red	21
	5.4 Casos de estudio	21
6	Análisis de resultados	23
7	Conclusiones y estudios futuros	25

ÍNDICE

Introducción

1.1 Objetivos

Parques eólicos y conexión a red

Un parque eólico es una agrupación de aerogeneradores que transforman la energía eólica en energía eléctrica. En este capítulo se hará una introducción a los elementos de un parque eólico prestando especial atención a los elementos eléctricos y de control. Primero se expondran los elementos en general de un párque eólico y de la conexión a la red, despues se hablara de los parametros eléctricos del circuito de conexión y de su comportamiento, y por último se hablara de los códigos de red y de las limitaciones que estos inponen sobre el funcionamiento de los parques eólicos.

2.1 Elementos del parque

Los parques eólicos necesitan para su funcionamiento los aerogeneradores para transformar la energía eólica en energía eléctrica, un sistema de control central y una red interna para la conexión eléctrica. A su vez estos están compuestos por diferentes elementos.

Aerogenerador Los aerogeneradores funcionan convirtiendo la energía cinética del viento en energía mecánica rotatoria y esta, en energía eléctrica en una máquina trifásica. Hay dos tipos según la disposición de sus aspas, los de eje horizontal y los de eje vertical. A nivel industrial la impuesta es el eje horizontal por su rendimiento, fiabilidad y la capacidad de adaptarse a diferentes potencias. Este tipo de aerogenerador consta de un rotor, una multiplicadora, un generador trifásico, la conexión a la red y un sistema de control.

El rotor tiene las aspas que normalmente son tres, se puede variar la orientación de las palas en función de la velocidad del viento o de la potencia deseada. La multiplicadora transforma la baja velocidad y alto par del eje del rotor en alta velocidad y un par bajo en el eje del generador eléctrico, no todos los modelos lo incluyen necesariamente pero su uso está muy extendido. El generador trifásico puede ser síncrono o asíncrono, esto depende de la topología de conexión que se utilice.

La conexión a red se puede hacer de forma directa, para lo que se utiliza un generador asíncrono de jaula de ardilla. Este tipo de conexión se conoce también como conexión de velocidad fija porque la velocidad del rotor depende directamente de la frecuencia de la red, que normalmente es fija. En este sistema, a pesar de robusto por su sencillez se necesitan resistencias rotóricas para aumentar el rango de velocidades del viento con las que se puede trabajar, adicionalmente hay que incluir un banco de condensadores para compensar la potencia reactiva, ocasionando posibles resonancias en la red [1].

Otro tipo de conexión es la doblemente alimentada, para esta configuración también se usan máquinas asíncronas. En esta topología el estator se encuentra conectado de forma directa a la red como encontrábamos antes, pero el rotor está conectado también a la red por medio de un circuito de electrónica de potencia, consistente de un convertidor AC-DC-AC 'back to back' [2]. Este tipo de topología aumenta el rango de velocidades para generar potencia activa, la velocidad máxima estará limitada a la potencia del convertidor, además permite tener un control sobre el factor de potencia de la máquina, requisito necesario para poder conectarse a la red eléctrica.

Por último, la tercera topología de conexión normalmente utilizada es la 'Full Converter'. Con este tipo de conexión a la red se suelen utilizar máquinas síncronas. En esta conexión el estator está conectado a la red a través de un convertidor 'back to back', sin ninguna conexión adicional. En cuanto al rango de velocidades y el control de reactiva ofrece características parecidas al doblemente alimentado, pero existen diferencias en coste. El doblemente alimentado es más barato que el 'Full Converter' inicialmente pero necesita un mantenimiento más caro y ofrece menos potencia de salida anual [3]. Ambos dos requieren un controlador de los transistores IGBT para su funcionamiento que los hace más sofisticados.

Además del control de la salida eléctrica hay un controlador en cada torre para asegurar la seguridad y eficiencia del aerogenerador a nivel mecánico y aerodinámico. Por medio de módulos para el control de equipos de potencia, el controlador de la turbina recibe la información de los parámetros monitorizados y manipula los interruptores, bombas hidráulicas, válvulas y motores para controlar dichos parámetros. Estos controladores a su vez se comunican con un controlador central de todo el parque [4].

Controlador El sistema de control de la planta incluye el propio controlador, la comunicación interna del parque y el SCADA, Supervisory Control And Data Acquisition en español Supervisión, Control y Adquisición de Datos, para operar el sistema. Debido al aumento de los parques eólicos con una gran potencia y su penetración en la red, es necesario que estos se comporten como componentes activos controlables de la red apoyando su estabilidad. Para eso es necesario instalar un sistema de control central del parque. Este control es responsable de que el parque funcione de forma segura, óptima y cumpliendo los reglamentos impuestos por la red eléctrica a la que este alimentando.

Uno de los principales requerimientos que se especifican en la normativa del parque está referido a los huecos de tensión en la red. El objetivo es evitar la pérdida significativa de producción de los aerogeneradores a lo largo de la duración de la falta. Los requerimientos de control se refieren a diferentes aspectos de la potencia del sistema y la estabilidad.

Dependiendo del estado de la red, el operador del sistema realiza demandas específicas al control central del parque, el cual prepara las señales de consigna a cada aerogenerador en concreto. El controlador central se encarga de cumplir los requerimientos del operador de red mandando las referencias de potencia activa y reactiva que se necesita de cada aerogenerador. Estas consignas se calculan con las medidas obtenidas en el PCC, *Point of common coupling* en español punto de acoplamiento común, y con la potencia disponible que ofrece cada rotor [5].

La red de comunicación del parque está formada por los controladores de los aerogeneradores, que están instalados en la torre de cada turbina, que se comunican con el controlador central. A su vez los controladores de cada torre recogen toda la información necesaria de los modulos, que están conectados con los instrumentos de medida a través de un sistema de sensores. Así la red está estructurada de forma jerárquica análoga a los diferntes niveles de control como se ve en la figura ??. Los controladores de los aerogeneradores mandan toda la información al controlador central y asignan

las consignas que manda este dentro del aerogenerador [4].

Además de los modulos instalados en cada turbina, la red de control cuenta con diferentes modulos de control conectados a al controlador central. Entre otros el modulo de la línea, el del trasformador, los de los buses de comunicación y los conectados a las redes de alimentación de los aerogeneradores. Estos modulos monitorizan las condiciones de operación como los desequilibrios de tensión, el sobrecalentamiento, fases inversas, sincronización pobre y los límites de tensión y frecuencia[4].

La red típica de un sistema de comunicaciones consiste de una conexión principal de amplio ancho de banda y redes de bajo ancho de banda conectadas individualmente a la principal. La fibra óptica y las microondas de radio suelen ser las tecnologías usadas para la comunicación principal. En las redes secundarias se suele utilizar cable de par trenzado de cobre, aunque se pueden usar también sistemas inalámbricos. Generalmente en el caso de los parques eólicos se suelen utilizar PLCs, Power Line Communications en español comunicación por línea de potencia. Las tecnologías de PLCs disponibles permiten una gran velocidad transmisión llegando a los 200 Mb/s. La principal ventaja de este tipo de comunicación es que las señales viajan a través de los mismos cables de la línea eléctrica. Por otro lado estos cables suelen estar desprotegidos contra interferencias electromagnéticas y los módulos que utilizan son más caros que los de la comunicación inalámbrica [6].

2.2 Elementos de la conexión a red

La red del parque está formada por línea de media tensión que conecta con todos los aerogeneradores, la línea de alta tensión que sería la red eléctrica general a la que se le aporta la potencia y una subestación que contiene varios elementos. El PCC está a un lado del transformador, dependiendo de si las medidas se toman del lado de baja o de alta tensión es el criterio utilizado para dictaminar donde está el PCC.

Líneas de transmisión Las líneas de media tensión generalmente en los parques conectan todos los aerogeneradores con el transformador con diferentes topologías. Las formas de conectar las líneas de alimentación de los aerogeneradores son numerosas pero generalmente se utiliza la radial, la radial bifurcada, la de alimentación-subalimentación y en bucle.

La conexión radial consiste de un solo cable de alimentación que se conecta secuencialmente a todos los aerogeneradores del parque, es la más simple y por tanto la más barata, es la que mejor se adapta para parques con los aerogeneradores en línea. La radial bifurcada es parecida a la radial pero la línea se divide para poder alimentar a dos series de aerogeneradores en paralelo, es la más barata pero un fallo en la línea supone una pérdida de todos los aerogeneradores. La alimentación-subalimentación junta varios cables de alimentación en radial en uno principal manteniendo los elementos de seguridad de cada cable de alimentación secundario, generalmente se usan para parques de gran tamaño que están distribuidos en una gran área. La topología en bucle conecta todos los cables secundarios de alimentación secundarios para evitar que un fallo en una de las líneas la deje inoperante, es la más segura de todas las topologías [7].

Subestación El cable de alimentación general llega a la subestación donde se transforma la media tensión en alta con un transformador. Dentro de la subestación, además de los componentes de los lados de media y alta tensión, podemos encontrar los sistemas de medida y control, sistemas de protección contra incendios u otras incidencias y un sistema para ajustar la potencia reactiva. Tradicionalmente este sistema consistia de un sistema mecanico de bajo coste que conectaba un banco

de condensadores. A pesar de que estos dispositivos ayudan a mejorar el factor de potencia y la regulación de tensión en estado estacionario, no se puede resolver satisfactoriamente problemas como las fluctuaciones de potencia o tensión y la eliminación de harmónicos.

La integración de los aprque eólicos a la red requiere una compensación de la potencia reactiva dinámica para apoyar a la estabilidad, sobre todo durante perturbaciones en la red. Para conseguir un alto rendimiento en el control de la tensión tanto en transitorio como estacionario en el PCC se utilizan FACTS, flexible ac transmission system en español sistema flexible de transmisión en corriente continua. Los dos más comunes usados en parques eólicos son el SVC, static var compensator, y el STATCOM, static synchronous compensator [8].

El STATCOM suele ser la opción considerada para esta solución por las ventajas que presenta frente al SVC. Entre estas ventajas se encuentra un tiempo de respuesta más rápido y una capacidad de aporte de tensión auxilair mayor por su naturaleza de fuente de tensión [9].

En el lado de media tensión se suele encontrar el barraje que conecta la red al cuadro elélectrico, el seccionador para abrir el circuito cuando no hay corriente y un interruptor automático para abrir el circuito ante corientes eléctricas elevadas. En el lado de alta tensión suele haber reactancia a tierra en los transformadores, una toma a tierra general, descargadores de sobretensión, otro seccionador y otro disyuntor.

2.3 Parámetros de la red trifásica

Todas las líneas eléctricas descritas en la sección anterior son trifásicas por las ventajas que este tipo de redes presentan frente a las monofásicas. En esta sección se cubrirán todos los parámetros que hay que controlar de una red trifásica, su sentido físico y las operaciones que los relacionan.

El circuito que se va a analizar se puede reducir a una fuente de intensidad que sería al conjunto de aerogeneradores, una línea que une esta fuente con el primario del transformador y otra línea que une el secundario con la red, que estaría representada por una fuente de tensión. En los parques eólicos reales las medidas de los parámetros de la red solo se realizan a un lado del transformador, pero para analizar el circuito en esta sección colocare medidores a ambos lados. Los parámetros de la red que se observan y controlan en un parque eólico son la tensión, la intensidad, la potencia, tanto activa, reactiva y aparente y la frecuencia.

Para la medición de estos valores se considera que los circuitos de la red de conexión son equilibrados, por lo que las tensiones de cada fase y las intensidades tendrán el mismo valor eficaz y un desfase de 120° entre sí. Para expresar esta diferencia de fase se suele utilizar la notación fasorial, pero por la simplicidad a la hora de hacer ciertos cálculos como la suma o la resta se usan números complejos para definir los vectores también. Para poner una referencia a la fase se le da a un valor de tensión o corriente el valor 0 o 90 de fase. En este caso, para tomar el mismo critério que los resultados de Simulink, se dará fase 0 a la intensidad de la primera fase, I_a .

Las fuentes de intensidad generan tres ondas sinusoidales de igual amplitud y desfasadas entre ellas 120°. Conectada a una carga se pueden observar tambien tres ondas sinusoidales de voltage que también son equilibradas. Entre las ondas de tensión e intensidad existe una relación dada por la impedancia de la carga representada en la ley de Ohm.

$$\overline{I} = \overline{V}/\overline{Z} \tag{2.1}$$

Si los parámetros de la ecuación son introducidos como fasores y teniendo en cuenta que la fase de la intensidad se considera 0, podemos concluir que el desfase entre la intensidad y la tensión viene dado por la fase de la carga y la relación entre los módulos es el módulo de la impedancia. Si la impedancia es puramente resistiva el desfase es nulo entre ambas, si es de carácter capacitivo la intensidad va adelantada y si es de carácter inductivo la intensidad va retrasada respecto a la tensión.

Para observar este efecto de la carga sobre la relación entre tensión e intensidad se simula el circuito de la figura 2.1 y cambiando los valores de la impedancia se obtienen las gráficas de la figura 2.2, en las que se puede ver en el transitorio como la intensidad de la primera fase, I_a , se adelanta o se retrasa respecto a la tensión, V_a , dependiendo del tipo de carga.

Figure 2.1: Modelo de una carga alimentada por una fuente de intensidad trifásica en Simulink

Figure 2.2: Respuesta del circuito ante carga resistiva a), capacitiva b) e inductiva c).

Cuando la carga es puramente capacitiva o inductiva se produce un desfase entre la intensidad y la tensión de 90°. Si la carga es capacitiva, al estar la intensidad adelantada respecto a la tensión el angulo visto desde la tensión sera positivo y si la carga es inductiva el angulo sera negativo visto desde la tensión como se puede ver en la figura 2.3. Para todos los calculos de potencias el angulo se ve desde la tensión a la intesidad, por eso se utiliza ese criterio de signos.

Figure 2.3: Fasores de una carga puramente capacitiva a) e inductiva b).

En el análisis de la conexión a red es importante la potencia, esta debe cumplir con los requisitos que marcan el operario de red y el código de red. Para el cálculo de la potencia de una red trifásica se utiliza la siguiente fórmula:

$$\overline{S} = \sqrt{3}\overline{V}_L \overline{I}_L^* \tag{2.2}$$

Podemos observar que la potencia consumida o sumisnistrada por un elemento del circuito tiene una componenente real y una componenente imaginaria que se llaman potencia activa, P y reactiva, Q respectivamente. Desarrollando la formula anterior usando complejos llegamos a lo siguiente:

$$\overline{S} = \sqrt{3}V_L I_L \cos \varphi + j\sqrt{3}V_L I_L \sin \varphi = P + jQ$$
(2.3)

Donde $\varphi = \alpha_V - \alpha_I$. Por lo tanto basandose en el criterio de signos anteriormente mencionado para los ángulos trataremos la Q negativa como capacitiva y con signo positiva como inductiva.

Ánalizando la diferencia de tensión entre dos puntos de un circuito que esta descrita por la ecuación (2.1), donde la tensión antes de la carga es E y la tensión despues de la carga es V tenemos que:

$$\Delta V = E - V = ZI \tag{2.4}$$

Introduciendo la ecuación (2.3) en la ecuación (2.4) obtenemos el siguiente desarrollo:

$$\Delta V = (R+jX)\frac{P-jQ}{E} = \frac{RP+XQ}{E} + j\frac{XP-RQ}{E}$$
 (2.5)

2.4. CÓDIGOS DE RED

Cuando hablamos de una linea de transmisión, como son las que conectan el parque con al subestación y esta con la red, consideramos que $X \gg R$ [10]. Considerando entonces despreciable el valor de R en la formula (2.5) queda lo siguiente:

$$\Delta V = Q \frac{X}{E} + jP \frac{X}{E} \tag{2.6}$$

Esto significa que los cambios en la magnitud de de la tensión son controlados por la potencia reactiva y la diferencia de fase entre emisor y receptor viene dada por la potencia activa [10]. Por eso se utiliza el control de la potencia activa y reactiva para controlar frecuencia de la red y la tensión respectivamente.

Normalmente la fercuencia es más estable que la tensión en la red eléctrica por lo que los párques eólicos tratan de producir la potencia eléctrica máxima que permita la instalación y la demanda de la red, y así obtener los mayores beneficios posibles. Es por eso la reactiva la que suele variar más para mejorar la claidad de la potencia entregada.

2.4 Códigos de red

Un código de red es un conjunto de especificaciones técnicas que definen los parámetros que debe cumplir una instalción para asegurar la seguridad y estabilidad de la red pública a la que está conectada [11]. Dichas instalaciones pueden ser plantas eléctricas generadoras, consumidores u otra red. En este apartado se prestara especial atención a los códigos de red referidos a plantas eléctricas y al código de red de España en concreto.

Los códigos de red varían según la red para la que se han diseñado. Es por eso cada país tiene un código de red propio, pero no solo varía de un país a otro si no que incluso dentro de España las condiciones que se imponen en la red peninsular o no peninsulares son distintas por las diferencias en las redes y las condiciones en las que operan. A pesar de las diferentes restricciones, los casos que se abordan en los codigos de red suelen ser comunes para la mayoría de ellos.

En el caso de la conexión y operación de plantas generadoras los requerimientos más importantes para el control son los rangos de frecuencia y tensión, el control de la potencia activa y el control de la reactiva en operación normal. Tambien se cubren los casos de perturbaciones en la red como los huecos de tensión o la inyección de corriente reactiva. Normalmente estos requerimientos pueden ser descritos como las siguientes zonas de operación para frecuencia y voltaje. Operación continua en un rango limitado alrededor del punto nominal, operación por tiempo limitado con una posible reducción de la salida en unos margenes extendidos y por último la desconexión inmediata [12].

Tensión Respecto al control de tensión, en la sección anterior se ha visto que la magnitud de la tensión esta controlada por la potencia reactiva. Por lo tanto el control de la tensión se expone en los códigos de red como un control de la potencia reactiva en función de la tensión de red [10].

En los PO, procedimientos de operación que forman el código de red de España, el control de la potencia reactiva esta definido por la potencia activa neta instalada del parque. En el PO 7.4 [13] se establece que todos los generadores deben funcionar dentro de el margen de generación/absorción que aparecen en la figura 2.4.

Para comprobar que se cumplen los requisitos de tensión y potencia reactiva se hacen controles de estos valores cada cinco minutos por parte del operador del sistema. Se establece una banda admisible de $\pm 2.5kV$ entorno al valor de consigna. Se considera un servicio adecuado cuando se cumple al

Figure 2.4: Límites de potencia reactiva en función de la tensión de la linea

menos un 75% de los valores muestreados cada hora. Para cumplir con los valores la tensión se debe mantener dentro de los margenes admisibles de variación o la central debe haber alcanzado el limite de potencia reactiva obligatorio [13].

Frecuencia Como consecuencia de un desajuste entre la potencia activa aportada y la demanda se produce un cambio en la energía almacenada en la masa rotativa del generador que provoca un desvio de la frecuencia del sistema. Un aumento en la potencia entregada se convertiría en un aumento de la velocidad angular del generador y por tanto un aumento de frecuencia, pasando lo contrario al entregar potencia por debajo de la demanda [10], [14].

Normalmente el control de la frecuencia esta compuesto por tres funciones distintas. El control primario de frecuencia, usado ante los desequilibrios repentinos en la red. Actua a nivel local en la turbina en un rango de 15 a 30 segundos. El control secundario o de carga permite reestablecer la frecuencia y la potencia a los valores programados. Se realiza en las unidades de control central del párque y actua en un rango de 15 minutos. Este es el tipo de función que se implementara en este trabajo. Finalmente esta el control terciario que consiste en la gestión de la potencia generada por cada aerogenerador para ayudar al control secundario [10].

En el PO 1.5 se trata el establecimiento de la reserva para la regulacion de frecuencia y potencia. Respecto al control primario, se especifica que debe cumpletar un reestablecimiento total antes de 15 segundos desde el instante de desequilibrio si el valor de esre es menor o igual a 1500 MW. En caso de que el desequilibrio sea superior a 1500 MW el 50% la reserva de regulación primaria debe actuar antes de 15 segundos y se be alzanzar el 100% de actuación antes de 30 segundos. La regulación primaria debe actuar durante un tiempo de 15 minutos hasta que la regulación secundaria recupere las consignas iniciales y reestablezca la reserva primaria utilizada [15].

La actuación de la reserva secundaria no debe retarserse más de 30 segundos y debe mantenerse durante un tiempo de 15 minutos hasta que su uso neto sea sustituido por la regulación terciaria. Se deben garantizar unos valores minimos de reserva de 500 MW a subir y 400 MW a bajar. Sobre la

13

reserva terciaria se dice que se ha de mantener unos margenes de subida y bajada de potencia para prevenir las diferencias de demanda real con respecto a la esperada y de la producción de las centrales eólicas respecto a la esperada [15].

Control de plantas eléctricas

La teoría de control es un campo de la ingeniería y las matemáticas que trata el comportamiento de los sistemas dinámicos. El problema de control consiste en, dada una entrada o referencia a un actuador en un sistema físico o planta, obtener la respuesta deseada de dicha planta.

Esto se puede conseguir en lazo abierto en lazo cerrado. La solución en lazo abierto es, conociendo las condiciones de la planta y su función de transferencia, introducir una referencia con la que se obtenga la salida deseada. En lazo cerrado se realimenta comparandola con la entrada para medir el error del sistema, este error generalmente entra a un controlador que da finalmente la entrada a la planta con la que se obtiene la salida deseada. Este esquema de realimentación se muestra en la figura 3.1 y es en los que se basan normalmente los controladores usados en la industria.

Figure 3.1: Esquema de control en lazo cerrado.

Por la complejidad del sistema de conexión a red de una planta electrica y la posibilidad de variaciones en sus parametros a lo largo del tiempo en este capítulo se hablara de la solución de lazo cerrado. Primero se hablara del control en general de plantas eléctricas y se definira el concepto de los niveles de control, en la siguietne sección se establecerá el estado del arte en el control de parques eólicos y a contiunación se hablara de las técnicas de control clásicas y modernas existentes.

- 3.1 Introducción al control de plantas eléctricas
- 3.2 Estrategias de control utilizadas
- 3.3 Control clásico
- 3.4 Control modérno

Herramientas de diseño

4.1 Desarrollo en Simulink de un modelo matemático del párque

Para el desarrollo del modelo su simulación se utilizará la herramienta de programación Simulink. Simulink es un entorno de programación de diagramas de bloques para el diseño basado en modelos. Es parte del entorno de programación de Matlab pero a un nivel de abstracción más alto que el lenguaje interpretado usado en los scripts.

Simulink permite diseñar y simular modelos de sistemas físicos y sistemas de control por medio de diagramas de bloques. El comportamiento de dichos sistemas se define mediante operaciones matemáticas, señales predefinidas y funciones de Matlab. Además de las multiples herramientas de desarrollo Simulink cuenta con una serie de utilidades para la visualización, ánalisis y guardado de los resultados de cada simulación. Con estas características Simulink es una herramienta ampliamente usada en modelado de sistemas eléctricos y electrónicos, tanto como para ingeniería de control.

El modelo de Simulink se compondra de tres partes. El modelo electrico de la red, que se montara usado la libería Simscape Power Systems de Simulink como se explicara más adelante. El lazo de ralimentación y control que se compondria de todas las herramientas matematicas para manejar los datos leidos de la red y controlarla. Por último, esta la parte de visualización y análisis de los datos con la que se estudiara el modelo y el control que se diseñen.

Control Con el control se trata de que el modelo alcance unos valores de potencia activa y reactiva establecidos como consignas, P^* y Q^* . Con estas dos consignas se calcula la consigna de potencia aparente, S^* , como número complejo que servira de consigna única. Para eso se realimentaran las medidas de tensión e intensidad de las tres fases, V_{abc} e I_{abc} .

Con las medidas tomadas de V_{abc} e I_{abc} en el lado de alta tensión se calcula la potencia activa y reactiva del circuito en ese punto. Las medidas de tensión e intensidad se pueden tomar tanto en el lado de alta como de media tensión del transformador, la situación del medidor depende del parque en concreto. En este caso elegí medir en el lado de alta porque estas medidas son las que realmente estan afectando a la estabilidad de la red.

Las medidas de potencia activa y reactiva en el lado de alta tensión se utilizan para calcular la potencia aparente en forma de complejo. Esta potencia aparente se resta a la consigna cerrando el lazo de realimentación. Esta diferencia es el error en potencia aparente del sistema que entra en el

bloque de control, en el caso del control clásico un PID. A la salida del control se opera la señal de potencia aparente para que vuelva a dar una intensidad que se introduce a las fuentes de intensidad del modelo eléctrico.

Observación Para poder analizar el comportamiento del modelo eléctrico Simulink tiene herramientas de observación y seguimiento de las variables. Dentro de la libreria básica de Simulink podemos encontrar en el apartado de *Sinks* algunas de estas herramientas. Existe tanto la opción de guardar los valores de la simulación como la visualización de las gráficas.

Usando el bloque *To Workspace* podemos guardar la evolución de una variable a lo largo de una simulación como vector o como estructura con tiempo.

4.1.1 Librería Simscape Power Systems

La libería Simscape Power Systems contiene elementos y herramientas de ánalisis para el modelado y simulación de sistemas eléctricos. Entre otros incluye elementos de redes trifásicas y sistemas de energías renovables. Todo el modelo del circuito eléctrico esta realizado con elementos de esta librería. La propia librería tiene tambien las herramientas para simular y calcular el modelo ofreciendo diferentes opciones al usuario según que tipo de resultados necesite.

Simulación El blóque *Powergui* permite elegir entre tres métodos de resolver el modelo del circuito. Estos son continua, discreto y fasorial. Además este bloque te permite establecer ciertos parámetros globales para la simulación como el tiempo de muestreo o la frecuencia.

La simulación por el metodo de continua resuelve el modelo con el tiempo discreto más pequeño que le permitan los recursos del ordenador. Al no tener un tiempo de muestreo fijo los resultados pueden cambiar de una simulación a otra. Con este método de resolución se puede observar el valor instantaneo de las medidas. Además tambien calcula los transitorios de elementos como bobinas o condensadores que tienen una inercia.

El modo discreto fija un tiempo de muestre que el usuario elige. Las propiedades son las mismas que en el modo continuo pero los resultados son siempre los mismos independientemente de lo que se tarde en hacer los cálculos. Ambos métodos se utilizan para simulaciones de periodos de tiempo cortos en las que es necesario analizar la forma de onda o en aquellos modelos que sea necesario estudiar sus etapas trasnitorias.

El método fasorial calcula todos los valores de tensión e intensidad como vectores, ya sean fasores o complejos.

Fuentes eléctricas

Medidores

Líneas de transmisión Las líneas de transmisión son elementos pasivos del circuito que presentan una impedancia. Para definir una línea de media distancia, que son las que se utilizan en un parque eólico, hay dos típos de parámetros. Existen los parámetros transversales, la conductancia y la capacidad, y están los parámetros longitudinales, resistencia e inductancia. Existen dos formas de agrupar estos parámetros, el circuito equivalente en T y el circuito equivalente en π [16]. En este trabajo voy a centrarme en el modelo π que es el que usare en el modelo de Simulink.

El circuito equivalente en π mantiene unidos los parámetros longitudinales y divide los parámetros transversales. En el tramo central se sitúan la resistencia y la reactancia mientras que la conductancia y capacitancia quedan divididas en los extremos con sus valores a la mitad, G/2 y B/2. El circuito está representado en la figura 4.1.

Figure 4.1: Circuito equivalente de circuito π [16].

En el modelo de Simulink para definir la línea con el circuito equivalente π se deben introducir los valores con los que simulink calcula las resistencias, inductancias y capacitancias formando el circuito equivalente que se muestra en la figura 4.2.

Figure 4.2: Circuito equivalente de circuito π utilizado por Simulink.

Transformador

4.1.2 Tratamiento de señal por buses

Simulink trabaja usando señales para comunicar los bloques. El tratamiento de estas señales es importante por ser precisamente estas a las que se las hara el seguimiento en las simulaciones. Para

el tratamiento de multiples señales existe la herramienta de los buses. Los buses son estructuras formadas por varias señales o incluso otros buses.

Los buses se manejan dentro del modelo con

4.1.3 Diseño encapsulado mediante modelos referenciados

Modelado y simulación del control

- 5.1 Desarrollo de un modelo de parque y red de conexión
- 5.2 Modelado del parque y la conexión a red en Simulink
- 5.3 Diseño del control de la conexión a red
- 5.4 Casos de estudio

Análisis de resultados

Conclusiones y estudios futuros

Referencias

- [1] J. Á. Álvarez Echarri, "Estudio de diferentes topologías de generación eólica," 2011.
- [2] A. C. Garciá, "Simulación del funcionamiento de una turbina eólica con generador de inducción doblemente alimentado," 2015.
- [3] TheSwitch, "Pmg vs dfig the big generator technology debate," PennEnergy, 2014.
- [4] M. Wei and Z. Chen, "Intelligent control on wind farm," in *Innovative Smart Grid Technologies Conference Europe* (ISGT Europe), 2010 IEEE PES, pp. 1–6, IEEE, 2010.
- [5] A. D. Hansen, P. Sørensen, F. Iov, and F. Blaabjerg, "Centralised power control of wind farm with doubly fed induction generators," *Renewable Energy*, vol. 31, no. 7, pp. 935–951, 2006.
- [6] F. R. Yu, P. Zhang, W. Xiao, and P. Choudhury, "Communication systems for grid integration of renewable energy resources," *IEEE network*, vol. 25, no. 5, 2011.
- [7] M. Reichard, D. Finney, and J. Garrity, "Windfarm system protection using peer-to-peer communications," in *Protective Relay Engineers*, 2007. 60th Annual Conference for, pp. 511–521, IEEE, 2007.
- [8] W. Qiao, G. K. Venayagamoorthy, and R. G. Harley, "Real-time implementation of a statcom on a wind farm equipped with doubly fed induction generators," *IEEE transactions on industry applications*, vol. 45, no. 1, pp. 98–107, 2009.
- [9] C. Han, A. Q. Huang, M. E. Baran, S. Bhattacharya, W. Litzenberger, L. Anderson, A. L. Johnson, and A.-A. Edris, "Statcom impact study on the integration of a large wind farm into a weak loop power system," *IEEE Transactions on energy conversion*, vol. 23, no. 1, pp. 226–233, 2008.
- [10] I. M. de Alegría, J. Andreu, J. L. Martín, P. Ibanez, J. L. Villate, and H. Camblong, "Connection requirements for wind farms: A survey on technical requierements and regulation," *Renewable* and Sustainable Energy Reviews, vol. 11, no. 8, pp. 1858–1872, 2007.
- [11] "Grid Code | National Grid UK." https://www.nationalgrid.com/uk/electricity/codes/grid-code. Accessed: 2018-01-10.
- [12] M. Altin, Ö. Göksu, R. Teodorescu, P. Rodriguez, B.-B. Jensen, and L. Helle, "Overview of recent grid codes for wind power integration," in *Optimization of Electrical and Electronic Equipment* (OPTIM), 2010 12th International Conference on, pp. 1152–1160, IEEE, 2010.

28 REFERENCIAS

[13] Red Eléctrica, Resolución-P.O.7.4 - Servicio complementario de control de tensión de la red de transporte, Marzo 2000.

- [14] Y. G. Rebours, D. S. Kirschen, M. Trotignon, and S. Rossignol, "A survey of frequency and voltage control ancillary services—part i: Technical features," *IEEE Transactions on power systems*, vol. 22, no. 1, pp. 350–357, 2007.
- [15] Red Eléctrica, Resolución-P.O.1.5 Establecimiento de la reserva para la regulación frecuenciapotencia, Julio 2006.
- [16] R. M. M. Rosas, Cálculo de líneas y redes eléctricas, vol. 75. Univ. Politèc. de Catalunya, 2002.