> Summary:

1. The results were obtained by implementing the fem1d code. The natural frequencies of longitudinal vibration using four and eight linear elements, and comparisons with the exact solutions are listed as follows.

MESH	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8
4L	3.2048E3	10.110E3	18.365E3	26.558E3				
8L	3.1895E3	9.6917E3	16.566E3	24.055E3	32.325E3	41.225E3	49.733E3	55.380E3
EXACT	3.1843E3	9.5530E3	15.922E3	22.290E3	28.659E3	35.028E3	41.396E3	47.765E3

2. The results were obtained by implementing the fem1d code. The natural frequencies of transverse vibration using four and eight linear elements, and comparisons with the exact solutions are listed in the following tables.

MESH	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8
4L	17.396	70.397	161.03	311.10	497.59	784.69	1148.7	1499.5
8L	17.391	70.131	158.15	282.04	443.17	644.16	892.03	1231.8
EXACT	22.0691	88.2764	198.6220	353.1057	551.7277	794.4878	1081.3862	1412.4228

MESH	ω_9	ω_{10}	ω_{11}	ω_{12}	ω_{13}	ω_{14}	ω_{15}	ω_{16}
4L								
8L	1567.7	1988.8	2510.6	3141.0	3877.9	4630.7	5203.2	6354.0
EXACT	1787.5976	2206.9106	2670.3619	3177.9513	3729.6790	4325.5448	4965.5489	5649.6912

> The outputs of the code are listed below,

The output of problem 1 with 4 linear elements.							
*** ECHO O	F THE INPUT DATA STARTS ***						
1 0 3	MODEL, NTYPE, ITEM						
1 4	IELEM, NEM						
1 1	ICONT, NPRNT						
0 25 25 25	25 DX(I)						
30.0E6 0.0E6	AXO, AX1						
0.0 0.0	BXO, BX1						
0.0 0.0	CX0, CX1						
1	NSPV						
1 1 0.0	ISPV(1,1), ISPV(1,2), VSPV(1)						
0	NNBC						
0	NMPC						
0.00073	0.0	CTO, CT1					
**** ECHO OF	**** ECHO OF THE INPUT DATA ENDS ****						
OUTPUT from program FEM1D by J N REDDY							
*** ANALYSIS							
	TYPE=0: A problem described by MODEL EQ. 1						
MODEL=1,NT	TYPE=1: A circular DISK (PLANE STRESS)						
MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)							

```
MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
MODEL=4,NTYPE=0: A plane TRUSS problem
MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
  Element type (0, Hermite, >0, Lagrange)..= 1
  No. of deg. of freedom per node, NDF....= 1
  No. of elements in the mesh, NEM.....= 4
  No. of total DOF in the model, NEQ.....= 5
  Half bandwidth of matrix [GLK], NHBW ...= 2
  No. of specified primary DOF, NSPV.....= 1
  No. of specified secondary DOF, NSSV....= 0
  No. of specified Newton B. C.: NNBC..... 0
  No. of speci. multi-pt. cond.: NMPC..... 0
EIGENVALUE ANALYSIS
  Coefficient, CT0..... = 0.7300E-03
  Coefficient, CT1..... = 0.0000E+00
Boundary information on primary variables:
  1 1
Global coordinates of the nodes, {GLX}:
0.00000E+00 0.25000E+02 0.50000E+02 0.75000E+02 0.10000E+03
Coefficients of the differential equation:
  AX0 = 0.3000E+08 AX1 = 0.0000E+00
  BX0 = 0.0000E+00 BX1 = 0.0000E+00
  CX0 = 0.0000E+00 CX1 = 0.0000E+00
  FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = 0.0000E+00
Element coefficient matrix, [ELK]:
0.12000E+07 -0.12000E+07
-0.12000E+07 0.12000E+07
Element coefficient matrix, [ELM]:
0.60833E-02 0.30417E-02
0.30417E-02  0.60833E-02
Element coefficient matrix, [ELK]:
0.12000E+07 -0.12000E+07
-0.12000E+07 0.12000E+07
Element coefficient matrix, [ELM]:
0.60833E-02 0.30417E-02
0.30417E-02 0.60833E-02
Element coefficient matrix, [ELK]:
0.12000E+07 -0.12000E+07
Element coefficient matrix, [ELM]:
0.60833E-02 0.30417E-02
0.30417E-02  0.60833E-02
```

```
Element coefficient matrix, [ELK]:
 0.12000E+07 -0.12000E+07
 -0.12000E+07 0.12000E+07
 Element coefficient matrix, [ELM]:
 0.60833E-02 0.30417E-02
  0.30417E-02 0.60833E-02
  Number of rotations taken in JACOBI = 20
  EIGENVALUE(1) = 0.705321E+09 SQRT(EGNVAL) = 0.26558E+05
  EIGENVECTOR:
  0.33444E+01 -0.61797E+01 0.80742E+01 -0.87394E+01
  EIGENVALUE(2) = 0.337285E+09 SQRT(EGNVAL) = 0.18365E+05
  EIGENVECTOR:
  0.65862E+01 -0.50408E+01 -0.27281E+01 0.71288E+01
  EIGENVALUE(3) = 0.102214E+09 SQRT(EGNVAL) = 0.10110E+05
  EIGENVECTOR:
  0.54262E+01 0.41530E+01 -0.22476E+01 -0.58733E+01
  EIGENVALUE(4) = 0.102710E+08 SQRT(EGNVAL) = 0.32048E+04
  EIGENVECTOR:
  0.20290E+01 0.37490E+01 0.48984E+01 0.53019E+01
Stop - Program terminated.
```

```
The output of problem 1 with 8 linear elements.
  *** ECHO OF THE INPUT DATA STARTS ***
1 0 3
                    MODEL, NTYPE, ITEM
1 8
                    IELEM. NEM
1 1
                    ICONT, NPRNT
DX(I)
30.0E6 0.0E6
                         AXO, AX1
0.0 0.0
                     BXO, BX1
0.0 0.0
                     CX0, CX1
1
                   NSPV
1 1 0.0
                     ISPV(1,1), ISPV(1,2), VSPV(1)
0
                   NNBC
0
                   NMPC
0.00073
               0.0
                                                       CTO, CT1
   **** ECHO OF THE INPUT DATA ENDS ****
   OUTPUT from program FEM1D by J N REDDY
 *** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM ***
       (see the code below)
  MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
  MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
  MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
  MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
  MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
  MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
  MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
  MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
  MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
  MODEL=4,NTYPE=0: A plane TRUSS problem
  MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
  MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
   Element type (0, Hermite,>0, Lagrange)..= 1
   No. of deg. of freedom per node, NDF....= 1
```

```
No. of elements in the mesh, NEM...... 8
  No. of total DOF in the model, NEQ.....= 9
  Half bandwidth of matrix [GLK], NHBW ...= 2
  No. of specified primary DOF, NSPV.....= 1
  No. of specified secondary DOF, NSSV....= 0
  No. of specified Newton B. C.: NNBC.....= 0
  No. of speci. multi-pt. cond.: NMPC.....= 0
EIGENVALUE ANALYSIS
  Coefficient, CT0..... = 0.7300E-03
  Coefficient, CT1..... = 0.0000E+00
Boundary information on primary variables:
  1 1
Global coordinates of the nodes, {GLX}:
0.00000E+00 0.12500E+02 0.25000E+02 0.37500E+02 0.50000E+02
0.62500E+02 0.75000E+02 0.87500E+02 0.10000E+03
Coefficients of the differential equation:
  AX0 = 0.3000E+08 AX1 = 0.0000E+00
  BX0 = 0.0000E+00 BX1 = 0.0000E+00
  CX0 = 0.0000E+00 CX1 = 0.0000E+00
  FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = 0.0000E+00
Element coefficient matrix, [ELK]:
0.24000E+07 -0.24000E+07
Element coefficient matrix, [ELM]:
0.30417E-02 0.15208E-02
0.15208E-02 0.30417E-02
Element coefficient matrix, [ELK]:
0.24000E+07 -0.24000E+07
-0.24000E+07 0.24000E+07
Element coefficient matrix, [ELM]:
0.30417E-02 0.15208E-02
0.15208E-02 0.30417E-02
Element coefficient matrix, [ELK]:
0.24000E+07 -0.24000E+07
Element coefficient matrix, [ELM]:
0.30417E-02 0.15208E-02
0.15208E-02 0.30417E-02
Element coefficient matrix, [ELK]:
0.24000E+07 -0.24000E+07
-0.24000E+07 0.24000E+07
Element coefficient matrix, [ELM]:
0.30417E-02 0.15208E-02
0.15208E-02 0.30417E-02
Element coefficient matrix, [ELK]:
```

```
0.24000E+07 -0.24000E+07
 -0.24000E+07 0.24000E+07
 Element coefficient matrix, [ELM]:
 0.30417E-02 0.15208E-02
 0.15208E-02 0.30417E-02
  Number of rotations taken in JACOBI = 111
  EIGENVALUE(1) = 0.306691E+10 SQRT(EGNVAL) = 0.55380E+05
  EIGENVECTOR:
  0.17519E+01 -0.34365E+01 0.49891E+01 -0.63499E+01 0.74667E+01
 EIGENVALUE(2) = 0.247337E+10 SQRT(EGNVAL) = 0.49733E+05
  EIGENVECTOR:
 -0.46594E+01 0.77484E+01 -0.82256E+01 0.59303E+01 -0.16362E+01
 -0.32095E+01 0.69733E+01 -0.83868E+01
  EIGENVALUE(3) = 0.169951E+10 SQRT(EGNVAL) = 0.41225E+05
  0.62721E+01 -0.69692E+01 0.14716E+01 0.53340E+01 -0.73984E+01
  0.28867E+01 0.41909E+01 -0.75434E+01
  EIGENVALUE(4) = 0.104490E+10 SQRT(EGNVAL) = 0.32325E+05
  EIGENVECTOR:
 -0.66185E+01 0.25824E+01 0.56109E+01 -0.47717E+01 -0.37491E+01
  0.62345E+01 0.13165E+01 -0.67482E+01
  EIGENVALUE(5) = 0.578661E+09 SQRT(EGNVAL) = 0.24055E+05
  EIGENVECTOR:
  0.60015E+01 0.23417E+01 -0.50879E+01 -0.43269E+01 0.33996E+01
  0.56533E+01 -0.11938E+01 -0.61191E+01
  EIGENVALUE( 6) = 0.274438E+09 SQRT(EGNVAL) = 0.16566E+05
  EIGENVECTOR:
 -0.47154E+01 -0.52394E+01 -0.11064E+01 0.40101E+01 0.55622E+01
 0.21703E+01 -0.31507E+01 -0.56711E+01
  EIGENVALUE(7) = 0.939282E+08 SQRT(EGNVAL) = 0.96917E+04
  EIGENVECTOR:
 -0.29933E+01 -0.49776E+01 -0.52842E+01 -0.38097E+01 -0.10511E+01
  0.20618E+01 0.44798E+01 0.53878E+01
  EIGENVALUE(8) = 0.101726E+08 SQRT(EGNVAL) = 0.31895E+04
  EIGENVECTOR:
  0.10244E+01 0.20095E+01 0.29173E+01 0.37131E+01 0.43661E+01
 0.48514E+01 0.51502E+01 0.52511E+01
Stop - Program terminated.
```

The output of problem 2 with 4 linear elements. *** ECHO OF THE INPUT DATA STARTS *** 3 0 3 MODEL, NTYPE, ITEM 1 4 IELEM, NEM ICONT, NPRNT 1 1 0 25 25 25 25 DX(I) 0.0 0.0 AXO, AX1 0.365E6 0.0 BXO, BX1 0.0 0.0 CX0, CX1 **NSPV** 2 1 1 0.0 ISPV(1,1), ISPV(1,2), VSPV(1) 5 1 0.0 0 **NNBC NMPC** 0

```
0.00073
              8.8817E-6
                                            CTO, CT1
 **** ECHO OF THE INPUT DATA ENDS ****
  OUTPUT from program FEM1D by JN REDDY
*** ANALYSIS OF MODEL 3, AND TYPE 0 PROBLEM ***
     (see the code below)
MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
MODEL=4,NTYPE=0: A plane TRUSS problem
MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
  Element type (0, Hermite,>0, Lagrange)..= 0
  No. of deg. of freedom per node, NDF....= 2
  No. of elements in the mesh, NEM.....= 4
  No. of total DOF in the model, NEQ.....= 10
  Half bandwidth of matrix [GLK], NHBW ...= 4
  No. of specified primary DOF, NSPV.....= 2
  No. of specified secondary DOF, NSSV....= 0
  No. of specified Newton B. C.: NNBC..... 0
  No. of speci. multi-pt. cond.: NMPC.....= 0
EIGENVALUE ANALYSIS
  Coefficient, CT0..... = 0.7300E-03
  Coefficient, CT1..... = 0.8882E-05
Boundary information on primary variables:
  1 1
  5 1
Global coordinates of the nodes, {GLX}:
0.00000E+00 0.25000E+02 0.50000E+02 0.75000E+02 0.10000E+03
Coefficients of the differential equation:
  AX0 = 0.0000E+00 AX1 = 0.0000E+00
  BX0 = 0.3650E+06 BX1 = 0.0000E+00
  CX0 = 0.0000E+00 CX1 = 0.0000E+00
Element coefficient matrix, [ELK]:
0.28032E+03 -0.35040E+04 -0.28032E+03 -0.35040E+04
-0.28032E+03  0.35040E+04  0.28032E+03  0.35040E+04
-0.35040E+04 0.29200E+05 0.35040E+04 0.58400E+05
Element coefficient matrix, [ELM]:
0.72544E-02 -0.26212E-01 0.27033E-02 0.16105E-01
0.27033E-02 -0.16435E-01 0.83646E-02 0.28855E-01
0.16105E-01 -0.93864E-01 0.28855E-01 0.12928E+00
Element coefficient matrix, [ELK]:
0.28032E+03 -0.35040E+04 -0.28032E+03 -0.35040E+04
```

```
-0.35040E+04 0.58400E+05 0.35040E+04 0.29200E+05
-0.28032E+03  0.35040E+04  0.28032E+03  0.35040E+04
-0.35040E+04 0.29200E+05 0.35040E+04 0.58400E+05
Element coefficient matrix, [ELM]:
-0.33481E-01 0.15406E+00 -0.20730E-01 -0.11865E+00
0.34170E-02 -0.20730E-01 0.10426E-01 0.36124E-01
0.20400E-01 -0.11865E+00 0.36124E-01 0.16232E+00
Element coefficient matrix, [ELK]:
0.28032E+03 -0.35040E+04 -0.28032E+03 -0.35040E+04
-0.35040E+04 0.58400E+05 0.35040E+04 0.29200E+05
-0.35040E+04 0.29200E+05 0.35040E+04 0.58400E+05
Element coefficient matrix, [ELM]:
0.11378E-01 -0.40750E-01 0.41307E-02 0.24695E-01
-0.40750E-01 0.18711E+00 -0.25026E-01 -0.14343E+00
0.41307E-02 -0.25026E-01 0.12488E-01 0.43394E-01
0.24695E-01 -0.14343E+00 0.43394E-01 0.19537E+00
Element coefficient matrix, [ELK]:
0.28032E+03 -0.35040E+04 -0.28032E+03 -0.35040E+04
-0.35040E+04 0.58400E+05 0.35040E+04 0.29200E+05
-0.35040E+04 0.29200E+05 0.35040E+04 0.58400E+05
Element coefficient matrix, [ELM]:
0.13440E-01 -0.48019E-01 0.48444E-02 0.28991E-01
-0.48019E-01 0.22015E+00 -0.29321E-01 -0.16821E+00
0.48444E-02 -0.29321E-01 0.14550E-01 0.50663E-01
0.28991E-01 -0.16821E+00 0.50663E-01 0.22841E+00
 Number of rotations taken in JACOBI = 101
 EIGENVALUE(1) = 0.224859E+07 SQRT(EGNVAL) = 0.14995E+04
 EIGENVECTOR:
-0.29010E+01 -0.15036E+01 -0.23275E+01 -0.12414E+01 -0.14736E+01
-0.62510E+00 -0.91217E+00 -0.72212E+00
EIGENVALUE( 2) = 0.131940E+07 SQRT(EGNVAL) = 0.11487E+04
 EIGENVECTOR:
-0.16191E+01 -0.27372E+01 -0.62094E+00 -0.21449E+01 0.92102E+00
-0.76519E+00 0.17861E+01 0.19777E+01
EIGENVALUE(3) = 0.615739E+06 SQRT(EGNVAL) = 0.78469E+03
 EIGENVECTOR:
0.13902E+01 0.40552E+01 -0.37749E+00 -0.13117E+01 -0.12999E+01
-0.32291E+01 0.34636E+00 0.13977E+01
 EIGENVALUE(4) = 0.247594E+06 SQRT(EGNVAL) = 0.49759E+03
 EIGENVECTOR:
0.98258E+00 0.21295E+01 -0.84033E+00 -0.37577E+01 0.30194E+00
0.31363E+01 0.49724E+00 -0.93436E+00
 EIGENVALUE(5) = 0.967854E+05 SQRT(EGNVAL) = 0.31110E+03
 EIGENVECTOR:
-0.62444E+00 0.10708E+01 0.61899E+00 -0.12129E+01 -0.61973E+00
0.83061E+00 0.64366E+00 -0.66217E+00
 EIGENVALUE( 6) = 0.259312E+05 SQRT(EGNVAL) = 0.16103E+03
 EIGENVECTOR:
-0.41744E+00 0.38822E+01 0.24692E+00 -0.41935E+01 0.82485E-01
```

```
0.23390E+01 -0.31624E+00 0.39194E+00
EIGENVALUE(7) = 0.495570E+04 SQRT(EGNVAL) = 0.70397E+02
EIGENVECTOR:
-0.26659E+00 0.44925E+01 -0.23543E-01 0.75279E+00 0.26209E+00
-0.38562E+01 0.23798E-01 -0.25810E+00
EIGENVALUE(8) = 0.302612E+03 SQRT(EGNVAL) = 0.17396E+02
EIGENVECTOR:
-0.12720E+00 0.28789E+01 -0.91634E-01 0.41241E+01 -0.23292E-02
0.29537E+01 0.91590E-01 0.13195E+00
Stop - Program terminated.
```

```
The output of problem 2 with 8 linear elements.
  *** ECHO OF THE INPUT DATA STARTS ***
 3 0 3
                     MODEL, NTYPE, ITEM
 18
                     IELEM, NEM
                     ICONT, NPRNT
 1 1
 0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 DX(I)
 0.0 0.0
                      AXO, AX1
 0.365E6 0.0
                         BXO, BX1
 0.0 0.0
                      CX0, CX1
 2
                    NSPV
 1 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
 9 1 0.0
                    NNBC
 0
                    NMPC
 0
 0.00073
                8.8817F-6
                                       CTO, CT1
  **** ECHO OF THE INPUT DATA ENDS ****
   OUTPUT from program FEM1D by J N REDDY
 *** ANALYSIS OF MODEL 3, AND TYPE 0 PROBLEM ***
       (see the code below)
 MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
 MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
 MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
 MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
 MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
 MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
 MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
 MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
 MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
 MODEL=4,NTYPE=0: A plane TRUSS problem
 MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
 MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
   Element type (0, Hermite, >0, Lagrange)..= 0
   No. of deg. of freedom per node, NDF....= 2
   No. of elements in the mesh, NEM...... 8
   No. of total DOF in the model, NEQ.....= 18
   Half bandwidth of matrix [GLK], NHBW ...= 4
   No. of specified primary DOF, NSPV.....= 2
   No. of specified secondary DOF, NSSV....= 0
   No. of specified Newton B. C.: NNBC..... 0
   No. of speci. multi-pt. cond.: NMPC.....= 0
 EIGENVALUE ANALYSIS
   Coefficient, CT0..... = 0.7300E-03
   Coefficient, CT1..... = 0.8882E-05
```

```
Boundary information on primary variables:
  1 1
  9 1
Global coordinates of the nodes, {GLX}:
0.00000E+00 0.12500E+02 0.25000E+02 0.37500E+02 0.50000E+02
0.62500E+02 0.75000E+02 0.87500E+02 0.10000E+03
Coefficients of the differential equation:
  AX0 = 0.0000E+00 AX1 = 0.0000E+00
  BX0 = 0.3650E+06 BX1 = 0.0000E+00
  CX0 = 0.0000E+00 CX1 = 0.0000E+00
Element coefficient matrix, [ELK]:
0.22426E+04 -0.14016E+05 -0.22426E+04 -0.14016E+05
-0.22426E+04 0.14016E+05 0.22426E+04 0.14016E+05
-0.14016E+05 0.58400E+05 0.14016E+05 0.11680E+06
Element coefficient matrix, [ELM]:
0.35082E-02 -0.62638E-02 0.12624E-02 0.37783E-02
0.12624E-02 -0.38196E-02 0.37858E-02 0.65942E-02
0.37783E-02 -0.10959E-01 0.65942E-02 0.14870E-01
Element coefficient matrix, [ELK]:
0.22426E+04 -0.14016E+05 -0.22426E+04 -0.14016E+05
-0.14016E+05 0.11680E+06 0.14016E+05 0.58400E+05
-0.22426E+04 0.14016E+05 0.22426E+04 0.14016E+05
Element coefficient matrix, [ELM]:
0.40237E-02 -0.71725E-02 0.14409E-02 0.43153E-02
-0.71725E-02 0.16418E-01 -0.43566E-02 -0.12507E-01
0.43153E-02 -0.12507E-01 0.75029E-02 0.16935E-01
Element coefficient matrix, [ELK]:
0.22426E+04 -0.14016E+05 -0.22426E+04 -0.14016E+05
-0.22426E+04 0.14016E+05 0.22426E+04 0.14016E+05
-0.14016E+05 0.58400E+05 0.14016E+05 0.11680E+06
Element coefficient matrix, [ELM]:
0.45391E-02 -0.80811E-02 0.16193E-02 0.48522E-02
-0.80811E-02 0.18484E-01 -0.48935E-02 -0.14056E-01
0.16193E-02 -0.48935E-02 0.48167E-02 0.84116E-02
Element coefficient matrix, [ELK]:
0.22426E+04 -0.14016E+05 -0.22426E+04 -0.14016E+05
-0.14016E+05 0.11680E+06 0.14016E+05 0.58400E+05
-0.22426E+04 0.14016E+05 0.22426E+04 0.14016E+05
Element coefficient matrix, [ELM]:
0.50546E-02 -0.89898E-02 0.17977E-02 0.53891E-02
-0.89898E-02 0.20549E-01 -0.54304E-02 -0.15605E-01
0.17977E-02 -0.54304E-02 0.53322E-02 0.93202E-02
```

```
0.53891E-02 -0.15605E-01 0.93202E-02 0.21065E-01
Element coefficient matrix, [ELK]:
0.22426E+04 -0.14016E+05 -0.22426E+04 -0.14016E+05
-0.14016E+05 0.11680E+06 0.14016E+05 0.58400E+05
-0.22426E+04 0.14016E+05 0.22426E+04 0.14016E+05
Element coefficient matrix, [ELM]:
0.55701E-02 -0.98984E-02 0.19761E-02 0.59261E-02
0.19761E-02 -0.59674E-02 0.58476E-02 0.10229E-01
0.59261E-02 -0.17154E-01 0.10229E-01 0.23130E-01
Number of rotations taken in JACOBI = 480
 EIGENVALUE(1) = 0.403729E+08 SQRT(EGNVAL) = 0.63540E+04
EIGENVECTOR:
0.81042E+01 0.16595E+01 0.69296E+01 0.17842E+01 0.47894E+01
0.13399E+01 0.28969E+01 0.83981E+00 0.15956E+01 0.46639E+00
0.82361E+00 0.23206E+00 0.41393E+00 0.93729E-01 0.22390E+00
0.16896E+00
EIGENVALUE(2) = 0.270738E+08 SQRT(EGNVAL) = 0.52032E+04
EIGENVECTOR:
-0.34868E+01 -0.23196E+01 -0.19018E+01 -0.23795E+01 0.10622E+01
0.39946E+01 0.53963E+00 0.33962E+01 0.36852E+00 0.28341E+01
0.25961E+01
EIGENVALUE(3) = 0.214435E+08 SQRT(EGNVAL) = 0.46307E+04
EIGENVECTOR:
0.33199E+01 0.30852E+01 0.11524E+01 0.22275E+01-0.22890E+01
-0.29397E+00 -0.34576E+01 -0.19843E+01 -0.19729E+01 -0.21800E+01
0.62866E+00 -0.14576E+01 0.28498E+01 -0.57537E+00 0.40591E+01
0.43662E+01
EIGENVALUE(4) = 0.150384E+08 SQRT(EGNVAL) = 0.38779E+04
EIGENVECTOR:
0.32637E+01 0.41756E+01 0.11157E+00 0.71009E+00 -0.32245E+01
-0.32013E+01 -0.14381E+01 -0.23993E+01 0.22852E+01 0.91312E+00
-0.35136E+01
EIGENVALUE(5) = 0.986575E+07 SQRT(EGNVAL) = 0.31410E+04
EIGENVECTOR:
-0.28005E+01 -0.42831E+01 0.91260E+00 0.22507E+01 0.23708E+01
0.31023E+01 -0.17241E+01 -0.24078E+01 -0.21324E+01 -0.28375E+01
0.16444E+01 0.15988E+01 0.24435E+01 0.30429E+01 -0.78236E+00
-0.27990E+01
EIGENVALUE(6) = 0.630311E+07 SQRT(EGNVAL) = 0.25106E+04
FIGENVECTOR:
-0.23542E+01 -0.34980E+01 0.15315E+01 0.42570E+01 0.58699E+00
-0.10505E+01 -0.22369E+01 -0.30966E+01 0.14144E+01 0.31738E+01
0.22761E+01
EIGENVALUE(7) = 0.395513E+07 SQRT(EGNVAL) = 0.19888E+04
EIGENVECTOR:
0.19974E+01 0.20506E+01 -0.17655E+01 -0.37768E+01 0.96457E+00
0.18694E+01
```

EIGENVALUE(8) = 0.245775E+07 SQRT(EGNVAL) = 0.15677E+04

```
EIGENVECTOR:
0.19935E+01 -0.14020E+01 -0.29866E+01 0.97721E+00 0.35754E+01
-0.31508E+00 -0.33504E+01 -0.49451E+00 0.20899E+01 0.12155E+01
-0.15227E+01
EIGENVALUE(9) = 0.151722E+07 SQRT(EGNVAL) = 0.12318E+04
EIGENVECTOR:
-0.10767E+01 0.11718E+01 0.10542E+01 -0.18228E+01 -0.10194E+01
0.21384E+01 0.10238E+01 -0.21917E+01 -0.10785E+01 0.20105E+01
0.11777E+01 -0.15903E+01 -0.13004E+01 0.92178E+00 0.14095E+01
-0.14587E+01
EIGENVALUE(10) = 0.795709E+06 SQRT(EGNVAL) = 0.89203E+03
EIGENVECTOR:
0.10299E+01 -0.30643E+01 -0.83827E+00 0.45612E+01 0.40224E+00
-0.47386E+01 0.57022E-01 0.40636E+01 -0.42801E+00 -0.29970E+01
0.67592E+00 0.18604E+01 -0.81263E+00 -0.83027E+00 0.86865E+00
-0.88176E+00
EIGENVALUE(11) = 0.414941E+06 SQRT(EGNVAL) = 0.64416E+03
EIGENVECTOR:
0.84504E+00 -0.41152E+01 -0.46812E+00 0.43420E+01 -0.27735E+00
-0.15365E+01 0.76359E+00 -0.18726E+01 -0.73365E+00 0.38884E+01
0.30368E+00 -0.38528E+01 0.23832E+00 0.22305E+01 -0.63705E+00
0.77611E+00
EIGENVALUE(12) = 0.196401E+06 SQRT(EGNVAL) = 0.44317E+03
EIGENVECTOR:
-0.69090E+00 0.46877E+01 0.15739E+00 -0.20840E+01 0.59973E+00
-0.30241E+01 -0.49540E+00 0.39097E+01 -0.23791E+00 -0.16960E+00
0.65618E+00 -0.34563E+01 -0.32540E+00 0.32721E+01 -0.33061E+00
0.64326E+00
EIGENVALUE(13) = 0.795482E+05 SQRT(EGNVAL) = 0.28204E+03
EIGENVECTOR:
-0.54468E+00 0.46819E+01 -0.68283E-01 0.11485E+01 0.52790E+00
-0.41230E+01 0.14778E+00 -0.12919E+01 -0.50434E+00 0.38653E+01
-0.13819E+00 0.88197E+00 0.50404E+00 -0.37595E+01 0.58942E-01
-0.51099E+00
EIGENVALUE(14) = 0.250128E+05 SQRT(EGNVAL) = 0.15815E+03
EIGENVECTOR:
0.40335E+00 -0.41030E+01 0.18634E+00 -0.37600E+01 -0.23639E+00
0.65094E+00 -0.39195E+00 0.40183E+01 -0.84566E-01 0.23210E+01
0.32264E+00 -0.22133E+01  0.31013E+00 -0.36096E+01 -0.11661E+00
-0.38253E+00
EIGENVALUE(15) = 0.491838E+04 SQRT(EGNVAL) = 0.70131E+02
EIGENVECTOR:
-0.26464E+00 0.30178E+01 -0.19611E+00 0.44607E+01 -0.23545E-01
0.35425E+01 0.16373E+00 0.75254E+00 0.26014E+00 -0.23137E+01
0.20436E+00 -0.38242E+01 0.23827E-01 -0.28428E+01 -0.17198E+00
-0.25621E+00
 EIGENVALUE(16) = 0.302462E+03 SQRT(EGNVAL) = 0.17391E+02
EIGENVECTOR:
-0.12713E+00 0.15509E+01 -0.11799E+00 0.28775E+01 -0.91589E-01
0.47892E-01 0.29522E+01 0.91545E-01 0.16042E+01 0.12131E+00
0.13188E+00
```

Stop - Program terminated.