Übungsaufgaben 3: Verbrennungsrechnung und Brennwertnutzung

- Berechnen Sie den stöchiometrischen Luftbedarf, Abgasmenge und Tautemperatur des Abgases für Holz mit den Eigenschaften aus VOA_2/1.
 (Massenzusammensetzung: C': H': O'= 50:6:44; C: H: O: W = 30:3,6:26,4:40)
 Welcher Luftüberschuss liegt vor, wenn die eingesetzte Luftmasse bei der Verbrennung M_L= 4,6 kg/kg beträgt?
- 2. In einer Hackschnitzelheizung wird Brennstoff mit einem Wassergehalt W= 40 % mit einer Luftzahl $\lambda = 1,3$ verbrannt. Für den trockenen Brennstoff sind der Heizwert $H_{i(t)} = 18,3$ MJ/kg und der minimale Luftbedarf $M_{\text{Lmin}(t)} = 5,89$ bekannt.
 - a) Berechnen Sie H_i und H_s des feuchten Brennstoffes sowie die tatsächlichen brennstoffbezogenen Luft- und Abgasmassenströme M_L , M_G , M_{tG} , M_W .

Das entstehende Abgas hat eine absolute Feuchte von $X_G = 149$ g/kg und eine mittlere Molare Masse des trockenen Gases $\overline{M}_{iG} = 30,7$ g/kg. (Daten analog zu Aufgabe 1)

- b) Bestimmen Sie die Tautemperatur des Abgases. ($t_{tau} = 60,6$ °C) Das Gas wird in einem Brennwert-Kessel auf $t_G = 40$ °C abgekühlt.
 - c) Welche Verbesserung des Wirkungsgrades ergibt sich durch den Brennwertkessel gegenüber dem konventionellen Kessel? (ÜA2/2: $t_{G,konv} = 223$ °C, $\eta_K = 0.85$) Vereinfachend können der Brennstoff als aschefrei, die spezifische Wärmekapazität des feuchten Rauchgases mit $c_{pm} = 1.2$ kJ/(kg K) und die Kondensationsenthalpie des Wassers mit $\Delta^{VL} h = 2440$ kJ/kg = const. angenommen werden.

Tautemperatur des Rauchgases in Abhängigkeit von der absoluten Feuchte Teillösung durch Ablesen (nach BWN): $t = t_{\text{tau}} = 40$ °C entspricht $X_G = 46$ g/kg oder: $p_{\text{sat}(40^{\circ}\text{C})} = 7,375$ kPa