Práctico 3 - Repaso Matemática Discreta I – Año 2021/1 FAMAF

(1) Sea p primo positivo. Probar que (p, (p-1)!) = 1.

Rta: Supongamos que (p, (p-1)!) > 1, como el único divisor de p además del 1 es p, esto quiere decir que (p, (p-1)!) = p y por lo tanto p|(p-1)!.

Ahora bien, recodemos que si p primo, entonces

$$p|a_1 \cdot a_2 \cdot \cdots \cdot a_k \Rightarrow p|a_i$$
 para algún i tal que $1 \le i \le k$.

Luego,

$$p|(p-1)! = 1 \cdot 2 \cdots (p-1)$$
 \Rightarrow $p|i$ para algún i tal que $1 \le i \le p-1$.

Es decir, p|i con i < p, absurdo.

(2) Demostrar que $\forall n \in \mathbb{Z}$, n > 2, existe p primo tal que n . (Ayuda: pensar qué primos dividen a <math>n! - 1.)

Rta: Si n!-1 es primo, el ejercicio está demostrado. Si n!-1 no es primo, entonces existe un primo p tal que p|n!-1. Ahora bien, $p \nmid i$ para $1 \le i \le n$, pues si $p|i \Rightarrow p|n! \Rightarrow p|(n!-1)-n=-1$, absurdo.

Por lo tanto, p primo, $p \neq 1, 2, ..., n$ y p|n! - 1, esto implica que p primo, p > n y p < n!, lo cual prueba el resultado.

(3) Dado un entero a>0 fijo, caracterizar aquellos números que al dividirlos por a tienen cociente iqual al resto.

Rta: Sea b que cumpla con lo que pide el enunciado del ejercicio, es decir $b = a \cdot r + r$ y $0 \le r < b$. por lo tanto b = (a+1)r con $0 \le r < b$. Como a > 0, es claro que si b = (a+1)r, entonces c < b.

Concluyendo: los números que al dividirlos por a tienen cociente igual al resto son de la forma (a + 1)r, con $0 \le r$.

(4) Probar que si (a, 4) = 2 y (b, 4) = 2 entonces (a + b, 4) = 4.

Rta: Dividamos a y b por 4, y enemos a=4k+r, b=4t+s con $0 \le r, s < 4$. Ahora bien como (a,4)=2 y (b,4)=2, 4 no divide ni a, ni a b, por lo tanto 0 < r, s. Por otro lado, como 2 divide a a y b, entonces $r, s \ne 1, 3$. Todo esto implica que r=s=2. Es decir, a=4k+2, b=4t+2. Luego

$$a + b = (4k + 2) + (4t + 2) = 4(k + t) + 4 = 4(k + t + 1).$$

1

Esta ecuación nos dice que 4|a+b, luego (a+b,4)=4.

(5) Probar que si a, b son coprimos entonces (a + b, a - b) = 1 ó 2.

Rta: Si a + b y a - b no tienen un primo en común que los divida, entonces (a + b, a - b) = 1 y el ejercicio está resuelto.

En caso contrario, sea p primo tal que p|a+b y p|a-b, luego

$$p|(a+b) + (a-b) = 2a \qquad \stackrel{p \text{ es primo}}{\Longrightarrow} \qquad p|2 \lor p|a$$

$$p|(a+b) - (a-b) = 2b \qquad \stackrel{p \text{ es primo}}{\Longrightarrow} \qquad p|2 \lor p|b.$$

Como a y b son coprimos, no tienen un primo en común que los divida, es decir no puede ocurrir que p|b y p|b. Por lo tanto p|2 (por lo de arriba), es decir p=2. Esto nos dice que a+b y a-b son divisibles por 2. Tomenos n=(a+b)/2 y m=(a-b)/2 (son números enteros porque a+b y a-b son divisibles por 2). Sea q primo tal que q|n y q|m. Entonces,

$$q|n + m = \frac{a+b}{2} + \frac{a-b}{2} = a$$

 $q|n - m = \frac{a+b}{2} - \frac{a-b}{2} = b.$

Es decir, q primo y q|a y q|b, pero esto no puede ocurrir pues a y b coprimos.

Luego

$$\left(\frac{a+b}{2}, \frac{a-b}{2}\right) = 1 \qquad \Rightarrow \qquad (a+b, a-b) = 2.$$

- (6) Sean a, b enteros no nulos. Completar y demostrar:
 - a) [a, a] = ?
 - b) [a, b] = b si y solo si ...
 - c) (a, b) = [a, b] si y solo si ...

Rta:

a)
$$[a, a] = |a|$$

Demostración. Supongamos que a > 0. Si m es el mcm de a y a, entonces m es el menor múltiplo positivo de a, es decir m = a. Si a < 0, entonces -a > 0 y aplicando el razonamiento anterior [-a, -a] = -a = |a|. Como [a, a] = [-a, -a] obtenemos que [a, a] = |a|.

b)
$$[a, b] = b$$
 si y solo si $b > 0$ y $a|b$.

Demostración. (\Rightarrow) Como b es un mcm, por definición de mcm b > 0. Por otro lado, de nuevo por definición de mcm, a|b.

- (\Leftarrow) b > 0 y a|b, b|b, luego b es un múltiplo positivo de a y b y como todo múltiplo de b es mayor o igual a b, b es el mcm.
 - c) (a, b) = [a, b] si y solo si $a = \pm b$.

Demostración. Supongamos que ambos son positivos (en caso contrario usamos que $(a,b)=(\pm a,\pm b)$ y $[a,b]=[\pm a,\pm b]$).

 (\Rightarrow) Sea k=(a,b)=[a,b]. Como k=(a,b), $k\geq a,b$. Como k=[a,b], $k\leq a,b$: En consecuencia $a\leq k\leq a$ y $b\leq k\leq b$ $\Rightarrow a=k=b$.

 (\Leftarrow) Si a=b, entonces (a,b)=(a,a)=a y [a,b]=[a,a]=a, por lo tanto a=(a,b)=[a,b].

(7) Probar que si d es un divisor común de a y b, entonces $\frac{[a,b]}{d} = \left[\frac{a}{d},\frac{b}{d}\right]$. *Rta:*

$$\frac{[a,b]}{d} = \frac{ab/(a,b)}{d} = \frac{ab}{d(a,b)}.$$

Por otro lado,

$$\left[\frac{a}{d}, \frac{b}{d}\right] = \frac{(a/d)(b/d)}{(a/d, b/d)} = \frac{ab/d^2}{(a, b)/d} = \frac{ab/d}{(a, b)} = \frac{ab}{d(a, b)}.$$

En la última fórmula usamos la propiedad

$$\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right).$$

(8) Probar que (a + b, [a, b]) = (a, b).

Rta: Primero hagamos el caso (a, b) = 1. En este caso [a, b] = ab/(a, b) = ab, Por lo tanto debemos probar que si (a, b) = 1, entonces (a + b, ab) = 1.

Supongamos que exista p primo tal que p|a+b y p|ab. Como p|ab, entonces p|a o p|b, consideremos que p|a (el otro caso es simétrico), como p|a+b, entonces p|a+b-a=b. Es deir, concluimos que p|a y p|b, lo cual es absurdo pues (a,b)=1. El absurdo vino de suponer que existía p primo tal que p|a+b y p|ab. Por lo tanto (a+b,ab)=1.

Ahora hagamos el caso en que (a, b) = d > 1.

Ahora bien

$$\frac{1}{d}(a+b,[a,b]) = \left(\frac{a}{d} + \frac{b}{d}, \frac{[a,b]}{d}\right) \stackrel{E_{j(7)}}{=} \left(\frac{a}{d} + \frac{b}{d}, \left[\frac{a}{d}, \frac{b}{d}\right]\right) = 1$$

Está última igualdad se deduce del caso anterior (hemos visto anteriormente que (a/d,b/d)=1). Por lo tanto,

$$\frac{1}{d}(a+b,[a,b]) = 1 \implies (a+b,[a,b]) = d = (a,b).$$

(9) Probar que si (a, b) = 1 y n + 2 es un número primo, entonces $(a + b, a^2 + b^2 - nab) = 1$ ó n + 2.

Rta: Si $(a + b, a^2 + b^2 - nab) = 1$, listo. En caso contrario existe p primo tal que p|a + b y $p|a^2 + b^2 - nab$.

Como
$$p|a + b \Rightarrow p|(a + b)^2 = a^2 + 2ab + b^2$$
.

Como
$$p|(a+b)^2 = a^2 + 2ab + b^2$$
 y $p|a^2 + b^2 - nab$, entonces
$$p|(a^2 + 2ab + b^2) - (a^2 + b^2 - nab) = (n+2)ab.$$

Com p es primo y $p|(n+2)ab \Rightarrow p|n+2$ o p|a o p|b.

Si p|a, como $p|a+b \Rightarrow p|(a+b)-a=b$, luego (a,b)>1, absurdo. También se llega, en forma análoga, a un absurdo si p|b.

Luego, p|n+2 y por lo tanto el mcd de a+b y a^2+b^2-nab es divisible por p. Como n+2 es primo, los únicos divisores que tiene son 1 y el mismo, por lo tanto p = n + 2. Cualquier primo que divide a a + b y $a^2 + b^2 - nab$ divide a $(a + b, a^2 + b^2 - nab)$ y viceversa. Por lo tanto, hemos probado que $d = p^k$.

Ahora bien, razonando como antes podemos ver que $p^k | (n+2)ab$, pero como $p \mid a \mid p \mid b \Rightarrow p^k \mid (n+2) = p \Rightarrow k = 1$; y por lo tanto d = n + 2.

- (10) Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que a y b son cuadrados.
- (11) Probar que $\sqrt{6}$ es irracional.
- (12) Hallar el menor múltiplo de 168 que es un cuadrado.
- (13) Probar que el producto de dos enteros consecutivos no nulos no es un cuadrado. (Ayuda: usar el Teorema Fundamental de la Aritmética).
- (14) ¿Existen enteros m y n tales que:

a)
$$m^4 = 2/?$$

b)
$$m^2 = 12n^2$$

a)
$$m^4 = 27$$
? b) $m^2 = 12n^2$? c) $m^3 = 47n^3$?

- (15) Sean *a* y *b* enteros coprimos. Probar que
 - a) $(a \cdot c, b) = (b, c)$, para todo entero c.
 - b) $a^m \setminus b^n$ son coprimos, para todo $m, n \in \mathbb{N}$.
 - c) $a + b + a \cdot b$ son coprimos.
- (16) ¿Cuál es la mayor potencia de 3 que divide a 100!? ¿En cuántos ceros termina el desarrollo decimal de 100!?
- (17) Determinar todos los $p \in \mathbb{N}$ tales que

$$p, p + 2, p + 6, p + 8, p + 12, p + 14$$

sean todos primos.

- (18) Sea $\{f_n\}_{n\in\mathbb{N}}$ la sucesión de Fibonacci, definida recursivamente por: $f_1=1$, $f_2=1$ 1, $f_{n+1} = f_n + f_{n-1}$, $n \ge 2$. Probar que:
 - a) f_{3n} es par $\forall n \in \mathbb{N}$.

- b) f_{3n+1} y f_{3n+2} son impares $\forall n \in \mathbb{N}$.
- c) $f_{n+m} = f_m f_{n+1} + f_{m-1} f_n \ \forall n, m \in \mathbb{N}, m \ge 2.$
- *d*) $f_n \mid f_{nk} \ \forall k \in \mathbb{N}$.
- e) $f_{n+1}f_{n-1} f_n^2 = (-1)^n \ \forall n \ge 2$.
- $f(f_{n+1}, f_n) = 1 \ \forall n \in \mathbb{N}.$

Rta:

a) Demostraremos el resultado por inducción.

Caso base n = 1. En este caso $f_3 = f_2 + f_1 = 2$, es par.

Paso inductivo. Sea n > 1. Supongamos que $f_{3(n-1)}$ es par (HI) y probemos que f_{3n} es par:

$$f_{3n} = f_{3n-1} + f_{3n-2}$$

= $f_{3n-2} + f_{3n-3} + f_{3n-2}$
= $2f_{3n-2} + f_{3(n-1)}$.

Por (HI), $f_{3(n-1)}$ es par y claramente $2f_{3n-2}$ es par, luego f_{3n} es par.

 b) También demostraremos este caso por inducción. Lo que debemos demostrar es

$$P(n)$$
: " f_{3n+1} y f_{3n+2} son impares $\forall n \in \mathbb{N}$ "

Caso base n = 1. En este caso f_{3n+1} y f_{3n+2} son f_4 y f_5 y $f_4 = f_3 + f_2 = 2 + 1 = 3$, $f_5 = f_4 + f_3 = 3 + 2 = 5$, ambos impares.

Paso inductivo. Sea n > 1. Supongamos que $f_{3(n-1)+1} = f_{3n-2}$ y $f_{3(n-1)+2} = f_{3n-1}$ son impares (HI), probemos que f_{3n+1} y f_{3n+2} son impares. Ahora bien,

$$f_{3n+1} = f_{3n+1-1} + f_{3n+1-2} = f_{3n} + f_{3n-1}$$
.

Por el inciso anterior f_{3n} es par y por (HI) f_{3n-1} es impar. Como la suma de un par y un impar es impar, resulta que f_{3n+1} es impar. Con un razonamiento análogo probamos que f_{3n+2} es impar:

$$f_{3n+2} = f_{3n+2-1} + f_{3n+2-2} = f_{3n+1} + f_{3n}$$

Por lo tanto, f_{3n+2} es la suma de un impar y un par, y en consecuencia es impar.

c) También lo hacemos por inducción. El paso inductivo es:

$$f_{n+m} = f_{n+m-1} + f_{n+m-2}$$
 (Definición recursiva de f)
$$= f_{m-1}f_{n+1} + f_{m-2}f_n + f_{m-2}f_{n+1} + f_{m-3}f_n$$
 ((HI) dos veces)
$$= (f_{m-1}f_{n+1} + f_{m-2}f_{n+1}) + (f_{m-2}f_n + f_{m-3}f_n)$$

$$= (f_{m-1} + f_{m-2})f_{n+1} + (f_{m-2} + f_{m-3})f_n$$

$$= f_m f_{n+1} + f_{m-1}f_n.$$
 (Definición recursiva de f)

d) También lo hacemos por inducción. El paso inductivo es: por el inciso anterior

$$f_{nk} = f_{n(k-1)+n} = f_n f_{n(k-1)+1} + f_{n-1} f_{n(k-1)},$$

Por (HI),
$$f_{n(k-1)} = hf_n$$
, luego

$$f_{nk} = f_n f_{n(k-1)+1} + h f_{n-1} f_n = f_n (f_{n(k-1)+1} + h f_{n-1}),$$

y por consiguiente $f_n|f_{nk}$.

e) También lo hacemos por inducción. El paso inductivo es:

$$f_{n+1}f_{n-1} - f_n^2 = (f_n + f_{n-1})f_{n-1} - f_n^2$$
$$= f_n f_{n-1} + f_{n-1}^2 - f_n^2$$

Por (HI),
$$f_n f_{n-2} - f_{n-1}^2 = (-1)^{n-1}$$
, luego
$$f_{n-1}^2 = f_n f_{n-2} - (-1)^{n-1} = f_n f_{n-2} + (-1)^n.$$

Por lo tanto,

$$f_{n+1}f_{n-1} - f_n^2 = f_n f_{n-1} + f_{n-1}^2 - f_n^2$$

$$= f_n f_{n-1} + f_n f_{n-2} + (-1)^n - f_n^2$$

$$= f_n (f_{n-1} + f_{n-2}) + (-1)^n - f_n^2$$

$$= f_n f_n + (-1)^n - f_n^2$$

$$= (-1)^n$$
(Def. rec. de f)

f) Lo hacemos por inducción sobre n.

Caso base n = 1. En este caso $(f_2, f_1) = (1, 1) = 1$.

Paso inductivo. Supongamos que el para n > 1 se cumple

$$(f_n, f_{n-1}) = 1$$
 (HI).

Probaremos que $(f_{n+1}, f_n) = 1$.

Sea d entero positivo tal que $d|f_{n+1}$ y $d|f_n$. Como $d|f_{n+1}$ y $f_{n+1} = f_n + f_{n-1}$, $d|f_n + f_{n-1} \Rightarrow$ (pues $d|f_n$), $d|f_n + f_{n-1} - f_n = f_{n-1}$.

Por lo tanto, $d|f_n$. y $d|f_{n-1}$. Por (HI) $\Rightarrow d=1$. Probamos que todo divisor de f_{n+1} y f_n es 1, por lo tanto $(f_{n+1}, f_n) = 1$.