# Sistemas de computación 1

# Trabajo práctico n° 4

# Código de Hamming y código de Huffmann

- 1. Obtener la codificación de Hauffman, el árbol binario y el porcentaje de compresión de los siguientes strings:
  - a. hauffmanyhamming
  - b. hola mundo
  - c. dddrdddrdrr
  - d. anita lava la tina
  - e. ccbcbbbcbbb
  - f. FFCE FEEF EFED EFFF EDEF EEFE DEFE FFFF FDFF BFFC FDFF FEAE DCDE
  - g. (tu nombre y apellido) Ej: maria laura frette
  - h. CATCATCATCAT

  - j. **\*\*\*\*\*\*\*\*\***

a. hauffmanyhamming

Total: 15 caracteres x 7 bits = 105 bits

| Caracter     | Frecuencia |
|--------------|------------|
| a            | 3          |
| $\mathbf{m}$ | 2          |
| h            | 2          |
| n            | 2          |
| $\mathbf{f}$ | 2          |
| u            | 1          |
| У            | 1          |
| i            | 1          |
| g            | 1          |



Codificación resultante

| Caracter     | Frecuencia | Código | Uso de bits |
|--------------|------------|--------|-------------|
| a            | 3          | 00     | 6           |
| $\mathbf{m}$ | 3          | 110    | 9           |
| h            | 2          | 100    | 6           |
| n            | 2          | 011    | 6           |
| f            | 2          | 010    | 6           |
| u            | 1          | 1110   | 4           |
| У            | 1          | 1111   | 4           |
| i            | 1          | 1010   | 4           |
| g            | 1          | 1011   | 4           |

Tasa de compresión: 105 bits / 49 bits = 2.14

**b.** hola mundo

Total: 10 caracteres x 7 bits = 70 bits

Conteo de caracteres

| Caracter | Frecuencia |
|----------|------------|
| 0        | 2          |
| h        | 1          |
| 1        | 1          |
| a        | 1          |
| m        | 1          |
| u        | 1          |
| n        | 1          |
| d        | 1          |
|          | 1          |



Codificación resultante

| Caracter     | Frecuencia | Código | Uso de bits |
|--------------|------------|--------|-------------|
| 0            | 2          | 11     | 4           |
| h            | 1          | 000    | 3           |
| 1            | 1          | 001    | 3           |
| $\mathbf{a}$ | 1          | 0100   | 4           |
| m            | 1          | 0110   | 4           |
| u            | 1          | 0111   | 4           |
| n            | 1          | 100    | 4           |
| d            | 1          | 101    | 4           |
|              | 1          | 0101   | 4           |

Tasa de compresión: 70 bits / 34 bits = 2.05

c. dddrdddrdrr

Total: 11 caracteres x 7 bits = 77 bits

Conteo de caracteres

| Carácter     | Frecuencia |
|--------------|------------|
| d            | 7          |
| $\mathbf{r}$ | 4          |



Codificación resultante

| Caracter | Frecuencia | Código | Uso de bits |
|----------|------------|--------|-------------|
| d        | 7          | 0      | 7           |
| r        | 4          | 1      | 4           |

Tasa de compresión: 77 bits / 11 bits = 7

d. anita lava la tina

Total: 18 caracteres x 7 bits = 126 bits

Conteo de caracteres

| Carácter | Frecuencia |
|----------|------------|
| a        | 6          |
| 1        | 2          |
|          | 3          |
| n        | 2          |
| i        | 2          |
| t        | 2          |
| v        | 1          |



Codificación resultante

| Caracter     | Frecuencia | Código | Uso de bits |
|--------------|------------|--------|-------------|
| a            | 6          | 11     | 12          |
| 1            | 2          | 100    | 6           |
|              | 3          | 101    | 9           |
| $\mathbf{n}$ | 2          | 011    | 6           |
| i            | 2          | 010    | 6           |
| $\mathbf{t}$ | 2          | 001    | 6           |
| $\mathbf{v}$ | 1          | 000    | 3           |

Tasa de compresión: 126 bits / 48 bits = 2.62

#### e. ccbcbbbcbbb

Total: 11 caracteres x 7 bits = 77 bits

#### Conteo de caracteres

| Carácter     | Frecuencia |
|--------------|------------|
| b            | 7          |
| $\mathbf{c}$ | 4          |



#### Codificación resultante

| Caracter     | Frecuencia | Código | Uso de bits |
|--------------|------------|--------|-------------|
| b            | 7          | 0      | 7           |
| $\mathbf{c}$ | 4          | 1      | 4           |

Tasa de compresión: 77 bits / 11 bits = 7

## f. FFCE FEEF EFED EFFF EDEF EEFE DEFE FFFF FDFF BFFC FDFF FEAE DCDE

Total: 64 caracteres x 7 bits = 448 bits

| Carácter        | Frecuencia |
|-----------------|------------|
| F               | 24         |
| $\mathbf{E}$    | 16         |
|                 | 12         |
| D               | 7          |
| $^{\mathrm{C}}$ | 3          |
| В               | 1          |
| A               | 1          |
|                 |            |



Codificación resultante

| Caracter     | Frecuencia | Código | Uso de bits |
|--------------|------------|--------|-------------|
| F            | 24         | 11     | 48          |
| $\mathbf{E}$ | 16         | 10     | 32          |
|              | 12         | 01     | 24          |
| D            | 7          | 001    | 21          |
| $\mathbf{C}$ | 3          | 0001   | 12          |
| В            | 1          | 00001  | 5           |
| A            | 1          | 00000  | 5           |

Tasa de compresión: 448 bits / 147 bits = 3.04

g. jonatan imperi

Total: 14 caracteres x 7 bits = 98 bits

| Carácter | Frecuencia |
|----------|------------|
| n        | 2          |
| a        | 2          |
| i        | 2          |
| j        | 1          |
| О        | 1          |
| t        | 1          |
| m        | 1          |
| p        | 1          |
| e        | 1          |
| r        | 1          |
|          | 1          |
|          |            |



## Codificación resultante

| Caracter     | Frecuencia | Código | Uso de bits |
|--------------|------------|--------|-------------|
| n            | 2          | 11     | 4           |
| $\mathbf{a}$ | 2          | 101    | 6           |
| i            | 2          | 100    | 6           |
| j            | 1          | 0111   | 4           |
| O            | 1          | 0110   | 4           |
| $\mathbf{t}$ | 1          | 0101   | 4           |
| $\mathbf{m}$ | 1          | 0100   | 4           |
| p            | 1          | 0011   | 4           |
| e            | 1          | 0010   | 4           |
| $\mathbf{r}$ | 1          | 0001   | 4           |
|              | 1          | 0000   | 4           |

Tasa de compresión: 98 bits / 48 bits = 2.04

## h. CATCATCATCAT

Total: 12 caracteres x 7 bits = 84 bits

| Caracter | Frecuencia |
|----------|------------|
| С        | 4          |
| A        | 4          |
| ${ m T}$ | 4          |



Codificación resultante

| Caracter | Frecuencia | Código | Uso de bits |
|----------|------------|--------|-------------|
| -C       | 4          | 00     | 8           |
| A        | 4          | 01     | 8           |
| ${ m T}$ | 4          | 1      | 4           |

Tasa de compresión: 84 bits / 20 bits = 4.2



Total: 21 caracteres x 32 bits = 672 bits

Conteo de caracteres

| Caracter | Frecuencia |
|----------|------------|
| •        | 6          |
| ×        | 6          |
| <b>③</b> | 4          |
| <b>A</b> | 3          |



Codificación resultante

| Caracter | Frecuencia | Código | Uso de bits |
|----------|------------|--------|-------------|
| •        | 6          | 11     | 12          |
| X        | 6          | 10     | 12          |
| <b>③</b> | 4          | 01     | 8           |
| <b>A</b> | 3          | 00     | 6           |

Tasa de compresión: 672 bits / 38 bits = 17.68



Total: 17 caracteres x 32 bits = 544 bits

#### Conteo de caracteres

| Caracter | Frecuencia |
|----------|------------|
|          | 7          |
|          | 5          |
| *        | 3          |
| •        | 2          |



#### Codificación resultante

| Caracter  | Frecuencia | Código | Uso de bits |
|-----------|------------|--------|-------------|
| <b>**</b> | 7          | 1      | 7           |
|           | 5          | 01     | 10          |
| *         | 3          | 001    | 9           |
|           | 2          | 000    | 6           |

Tasa de compresión: 544 bits / 32 bits = 17

- 2. Halle los bits de paridad en base a los datos transmitidos utilizando el codigo de Hamming.
- a. 101010101
- b. 10111001
- c. 0101001
- d. 10101
- e. 10001

## **a.** 101010101

Determinar cuantos bits de paridad se necesitan, se prueba con  $4\,$ 

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^4 \geq 4 + 9 + 1 \quad \Rightarrow \quad 16 \geq 14$$

| Datos/bits    | p1  | <b>p2</b> | 1   | р3  | 0   | 1   | 0   | <b>p4</b> | 1    | 0    | 1    | 0    | 1    |
|---------------|-----|-----------|-----|-----|-----|-----|-----|-----------|------|------|------|------|------|
|               | 001 | 010       | 011 | 100 | 101 | 110 | 111 | 1000      | 1001 | 1010 | 1011 | 1100 | 1011 |
| p1            | 0   |           | 1   |     | 0   |     | 0   |           | 1    |      | 1    |      | 1    |
| $\mathbf{p2}$ |     | 1         | 1   |     |     | 1   | 0   |           |      | 0    | 1    |      |      |
| <b>p</b> 3    |     |           |     | 0   | 0   | 1   | 0   |           |      |      |      | 0    | 1    |
| <b>p</b> 4    |     |           |     |     |     |     |     | 1         | 1    | 0    | 1    | 0    | 1    |
| Resultado     | 0   | 1         | 1   | 0   | 0   | 1   | 0   | 1         | 1    | 0    | 1    | 0    | 1    |

## **b.** 10111001

Determinar cuantos bits de paridad se necesitan, se prueba con  $4\,$ 

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^4 \geq 4 + 8 + 1 \quad \Rightarrow \quad 16 \geq 13$$

| Datos/bits | <b>p1</b> | <b>p2</b> | 1   | р3  | 0   | 1   | 1   | <b>p4</b> | 1    | 0    | 0    | 1    |
|------------|-----------|-----------|-----|-----|-----|-----|-----|-----------|------|------|------|------|
|            | 001       | 010       | 011 | 100 | 101 | 110 | 111 | 1000      | 1001 | 1010 | 1011 | 1100 |
| p1         | 1         |           | 1   |     | 0   |     | 1   |           | 1    |      | 0    |      |
| <b>p2</b>  |           | 1         | 1   |     |     | 1   | 1   |           |      | 0    | 0    |      |
| р3         |           |           |     | 1   | 0   | 1   | 1   |           |      |      |      | 1    |
| p4         |           |           |     |     |     |     |     | 0         | 1    | 0    | 0    | 1    |
| Resultado  | 1         | 1         | 1   | 1   | 0   | 1   | 1   | 0         | 1    | 0    | 0    | 1    |

## **c.** 0101001

Determinar cuantos bits de paridad se necesitan, se prueba con 4

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^4 \geq 4 + 7 + 1 \quad \Rightarrow \quad 16 \geq 11$$

| Datos/bits | p1  | <b>p2</b> | 0   | <b>p3</b> | 1   | 0   | 1   | <b>p4</b> | 0    | 0    | 1    |
|------------|-----|-----------|-----|-----------|-----|-----|-----|-----------|------|------|------|
|            | 001 | 010       | 011 | 100       | 101 | 110 | 111 | 1000      | 1001 | 1010 | 1011 |
| p1         | 1   |           | 0   |           | 1   |     | 1   |           | 0    |      | 0    |
| <b>p2</b>  |     | 0         | 0   |           |     | 0   | 0   |           |      | 0    |      |
| p3         |     |           |     | 1         | 1   | 0   | 1   |           |      |      | 1    |
| p4         |     |           |     |           |     |     |     | 1         | 0    | 0    | 1    |
| Resultado  | 1   | 0         | 0   | 1         | 1   | 0   | 1   | 1         | 0    | 0    | 1    |

## **d.** 10101

Determinar cuantos bits de paridad se necesitan, se prueba con 4 $2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^4 \geq 4 + 5 + 1 \quad \Rightarrow \quad 16 \geq 10$ 

| Datos/bits | p1  | <b>p2</b> | 1   | р3  | 0   | 1   | 0   | <b>p</b> 4 | 1    |
|------------|-----|-----------|-----|-----|-----|-----|-----|------------|------|
|            | 001 | 010       | 011 | 100 | 101 | 110 | 111 | 1000       | 1001 |
| p1         | 0   |           | 1   |     | 0   |     | 0   |            | 1    |
| <b>p2</b>  |     | 0         | 1   |     |     | 1   | 0   |            |      |
| <b>p3</b>  |     |           |     | 1   | 0   | 1   | 0   |            |      |
| p4         |     |           |     |     |     |     |     | 1          | 1    |
| Resultado  | 0   | 0         | 1   | 1   | 0   | 1   | 0   | 1          | 1    |

## **e.** 10001

Determinar cuantos bits de paridad se necesitan, se prueba con 4 $2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^4 \geq 4 + 5 + 1 \quad \Rightarrow \quad 16 \geq 10$ 

| Datos/bits | <b>p1</b> | <b>p2</b> | 1   | <b>p3</b> | 0   | 0   | 0   | <b>p4</b> | 1    |
|------------|-----------|-----------|-----|-----------|-----|-----|-----|-----------|------|
|            | 001       | 010       | 011 | 100       | 101 | 110 | 111 | 1000      | 1001 |
| p1         | 0         |           | 1   |           | 0   |     | 0   |           | 1    |
| <b>p2</b>  |           | 1         | 1   |           |     | 0   | 0   |           |      |
| <b>p3</b>  |           |           |     | 0         | 0   | 0   | 0   |           |      |
| p4         |           |           |     |           |     |     |     | 1         | 1    |
| Resultado  | 0         | 1         | 1   | 0         | 0   | 0   | 0   | 1         | 1    |

3. Determina los bits de paridad y forma el mensaje codificado utilizando el codigo de Hamming.

a. Mensaje original: 1101

b. Mensaje original: 1010

c. Mensaje original: 0110

d. Mensaje original: 1110

e. Mensaje original: 0101

#### **a.** 1101

Determinar cuantos bits de paridad se necesitan, se prueba con 4

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^3 \geq 3 + 4 + 1 \quad \Rightarrow \quad 8 \geq 8$$

| Datos/bits | <b>p1</b> | <b>p2</b> | 1   | р3  | 1   | 0   | 1   |
|------------|-----------|-----------|-----|-----|-----|-----|-----|
|            | 001       | 010       | 011 | 100 | 101 | 110 | 111 |
| <b>p1</b>  | 1         |           | 1   |     | 1   |     | 1   |
| <b>p2</b>  |           | 0         | 1   |     | 0   | 1   |     |
| <b>p3</b>  |           |           |     | 0   | 1   | 0   | 1   |
| Resultado  | 1         | 0         | 1   | 0   | 1   | 0   | 1   |

#### **b.** 1010

Determinar cuantos bits de paridad se necesitan, se prueba con 4

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^3 \geq 3 + 4 + 1 \quad \Rightarrow \quad 8 \geq 8$$

| Datos/bits | <b>p1</b> | $\mathbf{p2}$ | 1   | $\mathbf{p3}$ | 0   | 1   | 0   |
|------------|-----------|---------------|-----|---------------|-----|-----|-----|
|            | 001       | 010           | 011 | 100           | 101 | 110 | 111 |
| p1         | 1         |               | 1   |               | 0   |     | 0   |
| p2         |           | 0             | 1   |               | 1   | 0   |     |
| <b>p3</b>  |           |               |     | 1             | 0   | 1   | 0   |
| Resultado  | 1         | 0             | 1   | 1             | 0   | 1   | 0   |

#### **c.** 0110

Determinar cuantos bits de paridad se necesitan, se prueba con 4

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^3 \geq 3 + 4 + 1 \quad \Rightarrow \quad 8 \geq 8$$

| Datos/bits | <b>p1</b> | <b>p2</b> | 1   | <b>p3</b> | 0   | 1   | 0   |
|------------|-----------|-----------|-----|-----------|-----|-----|-----|
|            | 001       | 010       | 011 | 100       | 101 | 110 | 111 |
| p1         | 1         |           | 0   |           | 1   |     | 0   |
| p2         |           | 1         | 0   |           | 1   | 0   |     |
| p3         |           |           |     | 0         | 1   | 1   | 0   |
| Resultado  | 1         | 1         | 0   | 0         | 1   | 1   | 0   |

#### **d.** 1110

Determinar cuantos bits de paridad se necesitan, se prueba con 4

$$2^p \ge p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^3 \ge 3 + 4 + 1 \quad \Rightarrow \quad 8 \ge 8$$

| Datos/bits    | <b>p1</b> | <b>p2</b> | 1   | р3  | 1   | 1   | 0   |
|---------------|-----------|-----------|-----|-----|-----|-----|-----|
|               | 001       | 010       | 011 | 100 | 101 | 110 | 111 |
| p1            | 0         |           | 1   |     | 1   |     | 0   |
| $\mathbf{p2}$ |           | 0         | 1   |     | 1   | 0   |     |
| <b>p3</b>     |           |           |     | 0   | 1   | 1   | 0   |
| Resultado     | 0         | 0         | 1   | 0   | 1   | 1   | 0   |

#### **e.** 0101

Determinar cuantos bits de paridad se necesitan, se prueba con 5

$$2^p \geq p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^5 \geq 3 + 4 + 1 \quad \Rightarrow \quad 8 \geq 8$$

| Datos/bits | <b>p1</b> | <b>p2</b> | 0   | р3  | 1   | 0   | 1   |
|------------|-----------|-----------|-----|-----|-----|-----|-----|
|            | 001       | 010       | 011 | 100 | 101 | 110 | 111 |
| p1         | 1         |           | 0   |     | 1   |     | 0   |
| <b>p2</b>  |           | 1         | 0   |     | 0   | 1   |     |
| <b>p3</b>  |           |           |     | 0   | 1   | 0   | 1   |
| Resultado  | 0         | 1         | 0   | 0   | 1   | 0   | 1   |

- $4.~{
  m El}$  dato recibido por un MODEM y protegido mediante código Hamming es el siguiente: 01110011010101010101 Se pide:
  - a. Calcular si el número recibido es correcto.
  - b. Si no es correcto, corregir el número.

#### dato recibido: 011100110101010110

Determinar cuantos bits de paridad se necesitan, se prueba con  $4\,$ 

$$2^p \ge p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^5 \ge 5 + 14 + 1 \quad \Rightarrow \quad 32 \ge 20$$

| Datos/bits | 0   | 1   | 1   | 1   | 0   | 0   | 1   | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | 1     | 1     | 0     |
|------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|-------|-------|-------|
|            | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | 10000 | 10001 | 10010 |
|            | p1  | p2  |     | р3  |     |     |     | p4   |      |      |      |      |      |      |      | p5    |       |       |
| <b>p1</b>  | 1   |     | 1   |     | 0   |     | 1   |      | 0    |      | 0    |      | 0    |      | 0    |       | 1     |       |
| <b>p2</b>  |     | 0   | 1   |     |     | 0   | 1   |      |      | 1    | 0    |      |      | 1    | 0    |       |       | 0     |
| р3         |     |     |     | 1   | 0   | 0   | 1   |      |      |      |      | 1    | 0    | 1    | 0    |       |       |       |
| p4         |     |     |     |     |     |     |     | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    |       |       |       |
| <b>p</b> 5 |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      | 1     | 1     | 0     |
| Resultado  |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |       |       |       |

Leyendo el resultado en orden inverso nos queda 0011 que equivale al número 3, ese es el bit recibido con error.

Dato recibido: 01 1 100110101010110 Dato corregido 10 0 100110101010110

#### dato recibido: 011100110101010110

Determinar cuantos bits de paridad se necesitan, se prueba con 4

$$2^p \ge p + \text{bits de datos} + 1 \quad \Rightarrow \quad 2^5 \ge 5 + 14 + 1 \quad \Rightarrow \quad 32 \ge 20$$

| Datos/bits | 0   | 1   | 1   | 1   | 0   | 0   | 1   | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | 1     | 1     | 0     |
|------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|-------|-------|-------|
|            | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | 10000 | 10001 | 10010 |
|            | p1  | p2  |     | p3  |     |     |     | p4   |      |      |      |      |      |      |      | p5    |       |       |
| <b>p1</b>  | 1   |     | 1   |     | 0   |     | 1   |      | 0    |      | 0    |      | 0    |      | 0    |       | 1     |       |
| <b>p2</b>  |     | O   | 1   |     |     | 0   | 1   |      |      | 1    | 0    |      |      | 1    | 0    |       |       | 0     |
| <b>p3</b>  |     |     |     | 1   | 0   | 0   | 1   |      |      |      |      | 1    | 0    | 1    | 0    |       |       |       |
| p4         |     |     |     |     |     |     |     | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    |       |       |       |
| <b>p</b> 5 |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      | 1     | 1     | 0     |
| Resultado  |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |       |       |       |

Leyendo el resultado en orden inverso nos queda 0011 que equivale al número 3, ese es el bit recibido con error.

Dato recibido: 01 1 100110101010110

Dato corregido 10 0 100110101010110

6. Dado el siguiente árbol binario, obtener el código de Hauffman una de las variantes posibles de string.



| Caracter        | Frecuencia | Código |
|-----------------|------------|--------|
| В               | 1          | 100    |
| D               | 3          | 101    |
| A               | 5          | 11     |
| $^{\mathrm{C}}$ | 6          | 0      |

Posible String: ABCDACDACDACACC

7. Construya el arbol de Hauffman con las siguientes frecuencias:

A | 15 B | 6 C | 7 D | 12 E | 25 F | 4 G | 6 H | 3 I | 15



N2:24 0 N1:9 1 0 1 H:3 G:6 I:15



8. Que debe hacer el receptor si recibe cada uno de estos codigos de Hamming?

a. 0 1 1 1 1 1 0

b. 1110000

 $c.\ 0\ 1\ 0\ 1\ 1\ 1\ 0$ 

d. 0 1 1 1 0 1 1

**a.** 0111110

Cálculo de control a bits de paridad

| Datos/bits | 0   | 1   | 1   | 1   | 1   | 1   | 0   |
|------------|-----|-----|-----|-----|-----|-----|-----|
|            | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|            | p1  | p2  |     | p3  |     |     |     |
| p1         | 0   |     | 1   |     | 1   |     | 0   |
| <b>p2</b>  |     | 0   | 1   |     | 1   | 0   |     |
| p3         |     |     |     | 0   | 1   | 1   | 0   |
| Resultado  | 0   | 0   | 1   | 0   | 1   | 1   | 0   |

Haciendo un Xor entre los bits de paridad dados, y los nuevos calculados

Se lee el resultado en orden inverso nos queda 011 que equivale al número 6, ese es el bit recibido con error.

Dato recibido: 01111 1 0

Dato corregido 01111 0 0

**b.** 1110000

Cálculo de control a bits de paridad

| Datos/bits | 1   | 1   | 1   | 0   | 0   | 0   | 0   |
|------------|-----|-----|-----|-----|-----|-----|-----|
|            | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|            | p1  | p2  |     | p3  |     |     |     |
| p1         | 1   |     | 1   |     | 0   |     | 0   |
| p2         |     | 1   | 1   |     | 0   | 0   |     |
| p3         |     |     |     | 0   | 0   | 0   | 0   |
| Resultado  | 1   | 1   | 1   | 0   | 0   | 0   | 0   |

El código recibido no contiene error

**c.** 0101110

Cálculo de control a bits de paridad

| Datos/bits | 0   | 1   | 0   | 1   | 1   | 1   | 0   |
|------------|-----|-----|-----|-----|-----|-----|-----|
|            | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|            | p1  | p2  |     | p3  |     |     |     |
| p1         | 1   |     | 0   |     | 1   |     | 0   |
| <b>p2</b>  |     | 1   | 0   |     | 1   | 0   |     |
| p3         |     |     |     | 0   | 1   | 1   | 0   |
| Resultado  | 1   | 1   | 0   | 0   | 1   | 1   | 0   |

Haciendo un Xor entre los bits de paridad dados, y los nuevos calculados

Se lee el resultado en orden inverso nos queda 101 que equivale al número 5, ese es el bit recibido con error.

Dato recibido: 0101 1 10

Dato corregido 0101 0 10

**d.** 0111011

Cálculo de control a bits de paridad

| Datos/bits | 0   | 1   | 1   | 1   | 0   | 1   | 1   |
|------------|-----|-----|-----|-----|-----|-----|-----|
|            | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|            | p1  | p2  |     | р3  |     |     |     |
| p1         | 0   |     | 1   |     | 0   |     | 1   |
| <b>p2</b>  |     | 1   | 1   |     | 1   | 1   |     |
| р3         |     |     |     | 0   | 0   | 1   | 1   |
| Resultado  | 0   | 1   | 1   | 0   | 0   | 1   | 1   |

Haciendo un Xor entre los bits de paridad dados, y los nuevos calculados

Se lee el resultado en orden inverso nos queda 100 que equivale al número 4, ese es el bit recibido con error.

Dato recibido: 011 1 011

Dato corregido 011 0 011