C. Thilgen, OC II, 17.5.17

Organische Chemie II

Für Studierende der Biologie, der Pharmazeutischen Wissenschaften sowie der Gesundheitswissenschaften und Technologie

2. Semester, FS 2016

Prof. Dr. Carlo Thilgen

Diese Unterlagen sind nur für den ETH-internen Gebrauch durch die Studierenden der Vorlesung OC II gedacht. Sie dürfen ohne ausdrückliche schriftliche Genehmigung des Dozenten nicht an Aussenstehende weitergegeben werden.

© Carlo Thilgen, ETH Zürich.

Lernziele

- Wir lernen eine Methode zur direkten Knüpfung von C=C-Bindungen kennen: die Wittig-Reaktion. Ausgangsmaterialien sind Aldehyde/Ketone einerseits und sog. Phosphor-Ylide andererseits.
- Ylide sind eine weitere Klasse von C-Nukleophilen, die zur Verknüpfung von C-Atomen – und zwar über Doppelbindungen – herangezogen werden können.
- Ylid = Verbindung, für die sich eine Grenzstruktur formulieren lässt, bei der 2 benachbarte Atome mit vollem Oktett entgegengesetzte Ladungen aufweisen.
- ➤ Am geläufigsten sind **P-**, **S-** und **N-Ylide**. Wir interessieren uns im Folgenden speziell für **P-Ylide**: { $R_3P^{\oplus}-C^{\ominus}HR' \leftrightarrow R_3P=CHR'$ }.

Lernziele

- P-Ylide können in einer sog. Wittig-Olefinierungsreaktion mit Aldehyden/Ketonen zu Alkenen umgesetzt werden: R"-CH=O + R₃P=CHR' → R"-CH=CHR' + R₃P=O
- P-Ylide werden **aus 4° Phosphonium-Ionen** (p K_a -Wert ≈ 22-25) mit Hilfe einer **Base** erzeugt: R_3P^{\oplus} – $CH_2R'+B \rightarrow R_3P^{\oplus}$ – $C^{\ominus}HR'+BH^{\oplus}$
- \triangleright Befindet sich in β-Position zum P ein zusätzlicher π -**Akzeptor**, bilden sich sog. **stabilisierte Ylide** besonders leicht wg. zusätzl. Resonanzstabilisierung (cf. 1,3-Dicarbonylverbindungen) \rightarrow *Wittig-Horner*-Variante der Olefinierungsreaktion.

P-Ylide

- Ylid = Verbindung, für die sich eine Grenzstruktur schreiben lässt, bei der 2 benachbarte Atome mit vollem Oktett entgegengesetzte Ladungen aufweisen.
- Ylide sind relativ stabil, falls man das Oktett aufweiten und eine entsprechende Ylen-Form formulieren kann (also ab der 3. Periode, z.B. P- und S-Ylide, nicht aber N-Ylide!).

Phosphor-Ylide

nukleophiles Zentrum

$$\begin{cases}
R \oplus \ominus \\
R - CH_2
\end{cases}$$

$$R - P = CH_2$$

$$R = P = CH_2$$

$$R = P = CH_2$$

$$Y = R - P = CH_2$$

$$R = R - P = CH_2$$

$$R = R - P = CH_2$$

vergl. Phosphanoxide:

$$\begin{cases}
R \oplus \Theta & R \\
R \rightarrow P - O : \longrightarrow R \rightarrow P = O :
\end{cases}$$

C. Thilgen, OC II, 17.5.17

N-Ylide

Hingegen N-Ylide:

Stickstoff-Ylide

Keine Oktettaufweitung am N, keine Ylen-Form!

Erzeugung von P-Yliden

- Phosphor-Ylide können durch Deprotonierung der entsprechenden Phosphoniumsalze mit starken Basen hergestellt werden.
- Phosphoniumsalze erhält man z.B. durch Alkylierung von Phosphanen (R_3P) (S_N -Reaktion).

Thilgen, OC II,

Stabilisierte Ylide

- Ylide werden durch π -Akzeptor-Substituenten am nukleophilen Zentrum stabilisiert (verstärkte Delokalisierung der \ominus -Ladung).
- Meist werden Dialkoxyphosphorylacetate RO₂C-CH₂-P(O)(OR)₂
 eingesetzt [= Malonester, in dem eine Carbonsäureester-Funkt. -CO₂R
 durch eine Phosphonsäureester-Funktion -P(O)(OR)₂ ersetzt ist].

Wittig-Reaktion

- Georg Friedrich Karl Wittig, 16.6.1897 (Berlin) 26.8.1987.
- Professor in Braunschweig, Tübingen, Heidelberg.
- Wittig-Reaktion: G. Wittig, U. Schöllkopf, Chem. Ber. 1954, 87, 1318.

Wichtige **Triebkraft**: **Bildung von** energiearmem $Ph_3P=O$ (Oxophilie von P!) BASF macht weltweites **PPh₃-Recycling** aus Ph₃P=O. 8

C. Thilgen, OC II, 17.5.17

Chemie-Nobelpreis 1979

"For their development of the use of boron- and phosphoruscontaining compounds, respectively, into important reagents in organic synthesis".

Herbert C. Brown
Purdue University
West Lafayette, IN, USA

Georg Wittig
University of Heidelberg,
Federal Republic of Germany

Betain

aus Rübenzucker-Melasse (Zuckerrübe = *Beta vulgaris*)

Wittig-Reaktion: Synthese von Bombykol

Male flies upwind into the increasing concentration gradient of bombykol.

Industr. Synthese von Vitamin A (Pommer & Wittig)

C. Thilgen, OC II, 17.5.17

Industr. Synthese von Vitamin A (Pommer & Wittig)

β-Carotin (rotoranger Farbstoff in Karotten)

M. S. Andrä, C. C. Tzschucke, *Eur. J. Org. Chem.* **2014**, 7265–7272.

K. C. Nicolaou, M. W. Härter, J. L. Gunzner, A. Nadin, Liebigs Ann./Recueil 1997, 1283–130.

H. Pommer, P. C. Thieme, *Top. Curr. Chem.* **1983**, *109*, 165–188.

Wittig-Horner-Reaktion (Emmons-Wadsworth)

- Stabilisierte Ylide → schwächere Base (OH⁻, RO⁻) reicht aus zur Deprotonierung des malonesterartigen Dialkoxyphosphorylacetats (RO)₂P(O)–CH₂–CO₂R [α-phosphorylierter Essigsäureester].
- Umsetzungsprodukt = wasserlösliches Phosphat (statt Ph₃P=O)

tBuOH

→ leichte Abtrennung vom Produkt (im Gegensatz zu Ph₃P=O)!

• trans-Produkt überwiegt!

(EtO)₂P

CO₂Et

KOtBu

(EtO)₂P

CO₂Et

(EtO)₂P

CO₂Et

trans-Oxaphosphetan

C. Thilgen, OC II, 17.5.17

Coccinellin ist ein Abwehrstoff von Marienkäfern, der etwa 1.5% ihrer Trockensubstanz ausmacht. Wenn sie sich bedroht fühlen, wird eine Flüssigkeit aus ihren Gelenken abgesondert, die u.A. Coccinellin enthält. Die giftige Verbindung wirkt abstossend auf die rote Gartenameise *Myrmica rubra*, die Wachtel *Coturnix coturnix* und andere potentielle Jäger.

Wie würden Sie den Vorläufer **1** herstellen? <u>Tipp</u>: schauen Sie sich die *Robinson-Schöpf*-Synthese noch einmal an. <u>N.b.</u> Der letzte Schritt der Coccinellin-Synthese stellt eine Oxidation eines 3° Amins zum Amin-*N*-Oxid (= Ylid!) dar (cf. *Cope*-Eliminierung).

Anhang

Arbuzov-Reaktion

Dialkoxyphosphorylacetate können über die *Arbuzov*-Reaktion hergestellt werden:

$$\begin{array}{c|c}
EtO \\
EtO -P: \\
EtO
\end{array}$$

$$\begin{array}{c}
A \\
S_{N2}
\end{array}$$

$$\begin{array}{c}
EtO \\
P \\
EtO
\end{array}$$

$$\begin{array}{c}
CO_{2}Et
\end{array}$$

$$\begin{array}{c}
EtO \\
P \\
EtO
\end{array}$$

$$\begin{array}{c}
CO_{2}Et
\end{array}$$

$$\begin{array}{c}
EtO \\
P \\
EtO
\end{array}$$

$$\begin{array}{c}
CO_{2}Et
\end{array}$$