

Workbook:

Uniform-cost search: Dijkstra's algorithm

Albert Sanchis
Jorge Civera

Departament de Sistemes Informàtics i Computació

Learning objectives

- To describe uniform-cost search or Dijkstra's algorithm.
- ▶ To draw a uniform-cost search tree.
- To apply uniform-cost search to a well-known problem
- To analyze the quality of uniform-cost search.

Problem: Shortest path between two points

Shortest path from Arad to Bucarest [1]:

Actions(Arad) = {Move(Sibiu), Move(Timisoara), Move(Zerind)}.

Uniform-cost or Dijkstra's algorithm [1, 2, 3]

```
UCS(G, s') // Uniform-cost search; G weighted graph, s' start
  O = InitQueue(s', q_{s'} \triangleq 0)
                                              // Open: priority queue g
 C = \emptyset
                                             // Closed: explored nodes
  while not EmptyQueue(O):
                                          // best-first: s = \arg\min_{n \in O} g_n
                                           // ties solved in favor of goals
   s = Pop(O)
                                                         // solution found!
   if Goal(s) return s
   C = C \cup \{s\}
                                                              // s explored
   forall (s,n) \in Adjacents(G,s):
                                               // generation: n child of s
     x = g_s + w(s, n)
                                      // path cost from s' to n through s
                      n \notin C \cup O: Push(O, n, q_n \triangleq x)
     if
     else if n \in O and x < g_n: Update(O, n, g_n \triangleq x)
  return NULL
                                                      // no solution found
```

► Question 1: Write a trace of the UCS algorithm applied to the problem of finding the shortest path from Arad to Bucarest.

O	C	S
{Arad (c=0)}	{}	_
{Zerind (c=75), Timisoara (c=118), Sibiu	{Arad (c=0)}	Arad (c=0)
(c=140)		
{Timisoara (c=118), Sibiu (c=140),	{Arad (c=0), Zerind (c=75)}	Zerind (c=75)
Oradea (c=146)}		
{Sibiu (c=140), Oradea (c=146), Lugoj	{Arad (c=0), Zerind (c=75), Timisoara	Timisoara (c=118)
(c=229)}	(c=118)}	
{Oradea (c=146), Rimnicu (c=220), Lugoj	{Arad (c=0), Zerind (c=75), Timisoara	Sibiu (c=140)
(c=229), Fagaras (c=239)}	(c=118), Sibiu (c=140)}	
{Rimnicu (c=220), Lugoj (c=229), Fagaras	{Arad (c=0), Zerind (c=75), Timisoara	Oradea (c=146)
(c=239)}	(c=118), Sibiu (c=140), Oradea (c=146)}	
{Lugoj (c=229), Fagaras (c=239), Pitesti	{Arad (c=0), Zerind (c=75), Timisoara	Rimnicu (c=220)
(c=317), Craiova (c=366)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220)}	
{Fagaras (c=239), Mehadia (c=299),	{Arad (c=0), Zerind (c=75), Timisoara	Lugoj (c=229)
Pitesti (c=317), Craiova (c=366)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229)}	
{Mehadia (c=299), Pitesti (c=317),	{Arad (c=0), Zerind (c=75), Timisoara	Fagaras (c=239)
Craiova (c=366), Bucharest (c=450)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229),	
	Fagaras (c=239)}	

O	C	s
{Pitesti (c=317), Craiova (c=366), Dobreta	{Arad (c=0), Zerind (c=75), Timisoara	Mehadia (c=299)
(c=374), Bucharest (c=450)}	(c=118), Sibiu (c=140), Oradea (c=146),	·
	Rimnicu (c=220), Lugoj (c=229),	
	Fagaras (c=239), Mehadia (c=299)}	
{Craiova (c=366), Dobreta (c=374),	{Arad (c=0), Zerind (c=75), Timisoara	Pitesti (c=317)
Bucharest (c=418)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229),	
	Fagaras (c=239), Mehadia (c=299),	
	Pitesti (c=317)}	
{Dobreta (c=374), Bucharest (c=418)}	{Arad (c=0), Zerind (c=75), Timisoara	Craiova (c=366)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229),	
	Fagaras (c=239), Mehadia (c=299),	
	Pitesti (c=317), Craiova (c=366)}	
{Bucharest (c=418)}	{Arad (c=0), Zerind (c=75), Timisoara	Dobreta (c=374)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229),	
	Fagaras (c=239), Mehadia (c=299),	
	Pitesti (c=317), Craiova (c=366),	
	Dobreta (c=374)}	
{}	{Arad (c=0), Zerind (c=75), Timisoara	Bucharest (c=418)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229),	
	Fagaras (c=239), Mehadia (c=299),	
	Pitesti (c=317), Craiova (c=366),	
	Dobreta (c=374)}	

▶ Question 2: Draw the search tree as a result of applying the UCS algorithm to the problem of finding the shortest path from Arad to Bucarest.

- Question 3: Does the IDS algorithm find a solution? Yes
- ► Question 4: If the answer is "Yes":
 - ▶ What is the solution found? The solution path is: Arad, Sibiu, Rimnicu, Pitesti, Bucharest
 - ▶ What is the cost of this solution? 418
 - ▷ Is this the solution of minimum cost? Yes
 - What type of solution is found by the UCS algorithm? The optimal solution if the cost of actions are positive

References

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. *Numerische Mathematik*, 1959.
- [3] Bernhard Korte and Jens Vygen. *Combinatorial Optimization: Theory and Algorithms*. Springer, 2018.

