Otimização II

Prof. Dr. Paulo Roberto Maia

Paulo.maia@inatel.br

P108 - Otimização II

Sobre a disciplina (conteúdo)

Tópicos

- Otimização de Redes;
- Introdução a teoria das filas;
- ☐ Introdução à análise de decisão.

Aula 01 Otimização em Redes

Agenda

- ☐ Problema do fluxo máximo;
- ☐ Problema do caminho mínimo
- ☐ Problema custo mínimo

Conceitos

Redes

☐ Problemas de otimização em rede são problemas matemáticos que envolvem a alocação eficiente de recursos em sistemas de rede.

N: É o conjunto de nós (vértices) no grafo. No nosso caso, $N = \{1, 2, 3, 4\}$.

A: É o conjunto de **arestas** (**links**) no grafo. No nosso caso, $A = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)\}$

Redes

☐ Problema do fluxo máximo: O objetivo é obter o fluxo máximo de uma origem para um destino.

Exemplos

Rede de Distribuição de Gás

- Interrupções no Fornecimento: A rede de distribuição de gás pode não ser capaz de lidar com a demanda máxima de gás dos usuários;
- Má Alocação de Recursos: Alocações inadequadas de recursos, como dimensionamento insuficiente das tubulações ou válvulas de controle.

Exemplos

Rede de tratamento de esgoto

Entupimentos e Vazamentos: Quando a demanda excede a capacidade das tubulações, pode ocorrer o acúmulo de resíduos não tratados ou o vazamento de esgoto;

Tratamento Inadequado: Pode haver a **liberação** de **efluentes** não tratados ou parcialmente tratados no meio ambiente.

Exemplos

Pedágio

1.Filas e Atrasos: Filas e atrasossignificativos nas praças de pedágio;

2.Ineficiência Operacional: Dificulta a gestão do tráfego e a coleta eficaz de pedágios.

Exemplo 1

Exemplo 1

Passos para resolução do problema:

1. Definição das variáveis de decisão;

- 2. Definição da função objetivo;
- 3. Definição das restrições;
- 4. Resolução do problema.

Exemplo 1

Variáveis de **Decisão**

 X_{ij} = Quantidade do fluxo existente entre os nós i e j

 X_{12} X_{23}

 X_{13} X_{34}

X₂₅ X₄₅

Exemplo 1

Passos para resolução do problema:

- 1. Definição das variáveis de decisão;
- 2. Definição da função objetivo;

- 3. Definição das restrições;
- 4. Resolução do problema.

Exemplo 1

Função objetivo

$$Max Z = X_{25} + X_{45}$$

Exemplo 1

Passos para resolução do problema:

- 1. Definição das variáveis de decisão;
- 2. Definição da função objetivo;
- 3. Definição das restrições;

4. Resolução do problema.

Exemplo 1

Restrições de fluxo

Nó 2
$$X_{12} = X_{23} + X_{25}$$

Nó 3
$$X_{13} + X_{23} = X_{34}$$

$$N_{04}$$
 $X_{34} = X_{45}$

Restrições de capacidade

$$X_{12} \leq 4 \qquad X_{23} \leq 3$$

$$X_{13} \le 7$$
 $X_{34} \le 2$

$$X_{25} \le 5 \qquad X_{45} \le 3$$

Exemplo 1

Passos para resolução do problema:

- 1. Definição das variáveis de decisão;
- 2. Definição da função objetivo;
- 3. Definição das restrições;
- 4. Resolução do problema.

Exemplo 1

Variável de Decisão	Qtde de fluxo entre nós i e j
x12	4
x13	2
x23	0
x25	4
x34	2
x45	2

Função **objetivo**

$$Max Z = X_{25} + X_{45} = 4 + 2 = 6$$

Exemplo 2

Exemplo 2

Variável de Decisão	Qtde de fluxo entre nós i e j
x12	4
x13	4
x14	1
x25	4
x35	0
x36	3
x34	1
x46	2
x57	4
x67	5

Função **objetivo**

$$Max Z = X_{57} + X_{67} = 4 + 5 = 9$$

Exemplo 3

A Oleobrás dispõe de uma série de oleodutos que servem para transportar óleo do campo produtor para as refinarias. Considere o esquema abaixo onde são mostradas as possíveis ligações entre o campo s e a refinaria t, onde os círculos numerados são estações de bombeamento e as arestas numerados indicam o fluxo máximo de óleo que pode ser bombeado entre as duas estações. Qual o fluxo máximo de óleo que pode chegar à refinaria?

Exemplo 3

Variáveis de decisão:

 X_{ij} = Quantidade do fluxo existente entre os nós i e j

X_{sA}	X_{BC}	X_{Dt}
X_{sC}	X_{BE}	X_{Et}
X_{AB}	X_{BF}	X_{FE}
X_{AD}	X_{CF}	X_{Ft}

Exemplo 3

Função Objetivo:

$$Max Z = X_{Dt} + X_{Et} + X_{Ft}$$

Definição das restrições:

Nó A
$$X_{SA} = X_{AB} + X_{AD}$$
 $X_{SA} \le 8$ $X_{BF} \le 2$

Nó B
$$X_{AB} = X_{BC} + X_{BE} + X_{BF}$$
 $X_{SC} \le 5$ $X_{CF} \le 4$

Nó C
$$X_{sC} + X_{BC} = X_{CF}$$
 $X_{AB} \le 4$ $X_{Dt} \le 6$

Nó D
$$X_{AD} = X_{Dt}$$
 $X_{AD} \le 5$ $X_{Et} \le 4$

Nó E
$$X_{BE} + X_{FB} = X_{Et}$$
 $X_{BC} \le 3$ $X_{FE} \le 3$

Nó F
$$X_{BF} + X_{CF} = X_{FE} + X_{Et}$$
 $X_{BE} \le 2$ $X_{Ft} \le 6$

Exemplo 3

Função Objetivo:

$$Max Z = X_{Dt} + X_{Et} + X_{Ft} = 5 + 2 + 5 = 12$$

Variável de decisão	Quant. de fluxo entre os nós i e j
XsA	8
XsC	4
XAB	3
XAD	5
XBC	0
XBE	2
XBF	1
XCF	4
XDt	5
XEt	2
XFE	0
XFt	5

Considere um grafo (G) direcionado ponderado com os "pesos" das arestas representam as capacidades de fluxos.

O peso de cada aresta deve ser positivo, e representa a capacidade máxima que pode ser transmitida por uma aresta;

Os vértices da rede são classificados como:

 $s \in V$: Source (gerador de fluxo: não entra nada, apenas sai)

 $t \in V$: Terminal ou sink (absorve fluxo: não sai nada, apenas entra)

 $\forall v \in V - \{s, t\}$: Nós internos (intermediários)

Definição: Um fluxo s-t é uma função $f: A \to N^+$ (associa um inteiro a cada aresta) que satisfaz:

- i) $\forall a \in A, f(a) \le c(a)$ (restrição de capacidade)
- ii) $v(f) = \sum_{a \in O(s)} f(a) = \sum_{a \in I(t)} f(a)$ (fluxo gerado na fonte é igual ao fluxo consumido no terminal)
- iii) $\forall v \in V \{s, t\}$ (nó interno)

$$\sum_{a \in I(v)} f(a) = \sum_{a \in O(v)} f(a)$$
 (conservação do fluxo)

iv) Limite superior: para o valor de fluxo máximo que pode circular em G

$$v(f) \le \sum_{a \in O(s)} c(a)$$

Como exemplo, verifique que um fluxo válido para o grafo anterior é representado a seguir

i)
$$\forall a \in A, f(a) \le c(a)$$

ii)
$$v(f) = \sum_{a \in O(s)} f(a) = 1 + 2 + 3 = 6 = 2 + 4 = \sum_{a \in I(t)} f(a)$$

iii)
$$\sum_{a \in I(v)} f(a) = \sum_{a \in O(v)} f(a)$$
 , para {x, y, z} temos

$$\sum_{a \in I(X)} f(a) = 3 + 0 + 0 = 1 + 2 = \sum_{a \in O(X)} f(a)$$

$$\sum_{a \in I(y)} f(a) = 2 = 2 + 0 \sum_{a \in O(y)} f(a)$$

$$\sum_{a \in I(\mathbf{Z})} f(a) = 1 + 2 + 1 = 0 + 4 = \sum_{a \in O(\mathbf{Z})} f(a)$$

Dado G=(V, A, c) qual o máximo valor de v(f) que pode chegar em t?

- 1. Condição inicial: f(a) = 0, $\forall a \in A$
- 2. Iteração: encontrar um caminho s-t e transmitir fluxo
- 3. Condição de parada: Todo caminho s-t encontra-se saturado

Caso 1.
$$P = suvt$$
, $v(f) = 20$

Caso 2. P1 = sut,
$$v(f) = 10$$

P2 = svt, $v(f) = 10 + 10 = 20$
P3 = suvt, $v(f) = 20 + 10 = 30$

Variável de decisão	Quant. de fluxo entre os nós i e j
XsA	8
XsC	4
XAB	3
XAD	5
XBC	0
XBE	2
XBF	1
XCF	4
XDt	5
XEt	2
XFE	0
XFt	5

1) Considere o modelo de rede a seguir, números indicados em cada aresta significam a quantidade máxima em milhões de kW/hora possível de ser enviada de uma cidade para outra (indicadas pelos nós extremos das arestas), e que a cidade de Pouso Alegre precisa de toda a energia possível que possa ser enviada de São Paulo para suprir uma deficiência temporária de seu sistema de abastecimento. Formule e determine pelo algoritmo Ford-Fulkerson a quantidade máxima de energia que pode sair de São Paulo e chegar a Pouso Alegre, respeitando os limites de transmissão de cada eletrovia. ($\mathbf{Z} = 1.900$)

2) A empresa de logística Best Way S/A deseja saber a tonelada máxima de material que ela pode transportar do Porto A para o Porto F através de vias fluviais. O diagrama abaixo apresenta os portos intermediários e a tonelagem máxima que pode sair de um porto para outro. Modele o problema e resolva-o com auxílio do solver e pelo algoritmo Ford-Fulkerson. (**Z**= **120**)

3) A rede abaixo representa uma rede de transmissão de músicas em formato MP3 entre duas estações de rádio (nós A e P) pertencentes a uma mesma empresa. O envio das músicas da estação A para estação B pode se dar através de diversos pontos de transmissão, os quais estão representados pelos nós 1, 2, 3 e 4. Os valores sobre os arcos representam a taxa máxima de transmissão (em megabytes) de uma música de um nó para outro. Pede-se: descubra qual é o caminho de maior fluxo de transmissão que a empresa deve escolher para enviar uma música da estação A para estação P. Resolva através do Solver e pelo algoritmo Ford-Fulkerson. (**Z**= 9)

4) Uma firma industrial localizada na cidade 1 embarca seu produto através de via férrea para a cidade 5. Várias rotas diferentes estão disponíveis, como mostrado no diagrama de rede a seguir. Cada círculo na cadeia representa uma cidade com junção de via férrea. Cada seta é uma filial de via férrea entre duas cidades. O número sobre cada aresta é a capacidade da via férrea. A empresa quer transportar o máximo de toneladas de seu produto da cidade A para cidade P. Resolva através do solver e pelo algoritmo Ford-Fulkerson. (**Z**= **11.000**)

5) Dado o grafo G a seguir, responda: Essa rotulação é válida? O fluxo é máximo? Justifique sua resposta.

- Frederick S. Hillier, Gerald J. Lieberman; Introdução à Pesquisa Operacional; 9ª Edição, Editora Mc Graw Hill; 2013.
- Marcos Arenales, Vinícius Armentano, Reinaldo Morabito, Horacio Yanasse; Pesquisa Operacional; 6ª Edição, Editora Campus, 2007.
- Eduardo L. de Andrade, Introdução a Pesquisa Operacional; 4ª Edição; Editora LTC; 2009.
- Gerson Lachtermacher, Pesquisa Operacional, 4ª Edição, Editora Pearson, 2009.
- Wagner, H.M., Pesquisa Operacional, 2a edição. Prentice-Hall do Brasil, 1986.
- Taha, H. A., Pesquisa Operacional, 8a edição. Pearson (Prentice-Hall), 2008

Sobre a disciplina

Dúvidas?

Obrigado!