

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 01, 33, 41, 65, 09, 33, 41,40, 56, 72, 09,78, 73, 22, 04, 20, 11, 05, 13, 37, 45,36, 52, 38, 46, 70, 08 24, 40, 56, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 53, 69, 06, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40 48,72, 01, 72, 01, 76, 13, 37, 25, 33, 03, 11, 35, 43, 12, 28, 44, 60, 42, 58, 74 etc.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32J00029401 Page 45 of 75

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32J00029401 Page 46 of 75

Appendix J): AC Power Line Conducted Emission

		frequency range :150KH			
	2) T 5 p v f f	ne mains terminal disturbathe EUT was connected to Stabilization Network) which was bonded to the corthe unit being measure multiple power cables to a	o AC power source threight provides a 50Ω/50 units of the EUT were ground reference planed at Multiple socket of	ough a LISN 1 (Line $_{0}$ H + 5Ω linear important connected to a section the same way a putlet strip was use	e Impedance edance. The cond LISN 2, s the LISN 1 d to connect
	3)Th r h 4) T	exceeded. The tabletop EUT was place The tabletop EUT was place The term of the test was performed we The test was performed to the test was per	oor-standing arrangemee plane, vith a vertical ground r	ent, the EUT was peference plane. The	laced on the
	1 9 F	eference plane was bond was placed 0.8 m from ground reference plane blane. This distance was lall other units of the EUT LISN 2.	the boundary of the user the boundary of the user the closest posts and the closest posts are the closest posts and the closest posts are the closest post	unit under test and n top of the grour pints of the LISN 1 a	bonded to a nd reference and the EUT.
	c	order to find the maximu of the interface cables must conducted measurement.			
imit:					
			Limit (c	lBuV)	
	F	requency range (MHz)	Quasi-peak	Average	
	130	0.15-0.5	66 to 56*	56 to 46*	(3)
	(C)	0.5-5	56	46	(6,2)
		010 0			
		5-30	60	50	
	N	5-30 e limit decreases linearly MHz to 0.50 MHz. E: The lower limit is ann	21%	245	e range 0.15
	N	e limit decreases linearly	with the logarithm of	the frequency in the	e range 0.15
initial pre-scan asi-Peak and A	NOT :a was perform	e limit decreases linearly MHz to 0.50 MHz.	with the logarithm of licable at the transition lines with peak detector	the frequency in the frequency	
initial pre-scan asi-Peak and A	NOT :a was perform	e limit decreases linearly MHz to 0.50 MHz. E: The lower limit is app ed on the live and neutral	with the logarithm of licable at the transition lines with peak detector	the frequency in the frequency	
	NOT :a was perform	e limit decreases linearly MHz to 0.50 MHz. E: The lower limit is app ed on the live and neutral	with the logarithm of licable at the transition lines with peak detector	the frequency in the frequency	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

-20

Report No.: EED32J00029401

AVG

0.1	50			0.5			(MHz)		5					30.000
No.	Freq.		ling_L dBuV)	evel	Correct Factor	Me	easurer (dBuV)			nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	33.01		12.21	9.74	42.75		21.95	64.96	54.96	-22.21	-33.01	Р	
2	0.2620	28.07		8.41	9.75	37.82		18.16	61.36	51.36	-23.54	-33.20	P	
3	0.3460	27.59		8.27	9.77	37.36		18.04	59.06	49.06	-21.70	-31.02	Р	
4	0.4260	27.13		6.56	9.74	36.87		16.30	57.33	47.33	-20.46	-31.03	Р	
5	0.5100	26.00		8.75	9.71	35.71		18.46	56.00	46.00	-20.29	-27.54	Р	
6	0.6980	26.11		12.02	9.75	35.86		21.77	56.00	46.00	-20.14	-24.23	Р	

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	Me	easurer (dBuV		Lir (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	32.94		11.28	9.74	42.68		21.02	64.96	54.96	-22.28	-33.94	P	
2	0.2540	27.91		11.37	9.75	37.66		21.12	61.62	51.62	-23.96	-30.50	Р	i
3	0.3500	29.42		9.65	9.76	39.18		19.41	58.96	48.96	-19.78	-29.55	P	1
4	0.4420	28.84		6.80	9.73	38.57		16.53	57.02	47.02	-18.45	-30.49	P)
5	0.5100	29.10		10.02	9.71	38.81		19.73	56.00	46.00	-17.19	-26.27	P	1
6	0.5899	27.17		6.91	9.75	36.92		16.66	56.00	46.00	-19.08	-29.34	P	ij.

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32J00029401 Page 49 of 75

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	-	Albania 4011	Peak	1MHz	3MHz	Peak	1
	(6,5)	Above 1GHz	Peak	1MHz	10Hz	Average	ć
Test Procedure:	Belo	w 1GHz test proced	dure as below:				
	b. T v c. T	The EUT was placed at a 3 meter semi-and letermine the position The EUT was set 3 meters are mounted on the The antenna height is letermine the maximulations of the all	echoic camber. The nof the highest range of the highest range of a variable-to varied from one to walue of the fi	he table wa adiation. the interfer neight anter meter to fo eld strength	ence-receinna tower. bur meters n. Both hor	on the group of th	wh un
	d. F tl e. T E f. F	For each suspected of the antenna was tune able was turned from The test-receiver system and width with Maxim Place a marker at the requency to show contained. Save the special speci	emission, the EUT ed to heights from n 0 degrees to 36 tem was set to Pe mum Hold Mode. e end of the restric empliance. Also m ctrum analyzer plo	was arran I meter to O degrees to ak Detect cted band co easure any	ged to its v 4 meters a to find the in Function a closest to the demissions	worst case and and the rotatal maximum read and Specified he transmit in the restrict	ole ding
		or lowest and highes /e 1GHz test proce					
	Abov g. E te n h. b i. T	re 1GHz test proced Different between about 19 fully Anechoic Channeter (Above 18GHz b). Test the EUT in the radiation measurer ransmitting mode, a Repeat above proced	dure as below: ove is the test site mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax	e form table meter and , the Higher rmed in X, kis positioni	0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case	
Limit:	Abov g. E te n h. b i. T	ve 1GHz test proced Different between about fully Anechoic Chaneter (Above 18GHz b. Test the EUT in the The radiation measur Transmitting mode, a	dure as below: ove is the test site mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax	e form table meter and , the Higher rmed in X, kis positioni uencies me	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case	
Limit:	Abov g. E te n h. b i. T	ve 1GHz test proced Different between about fully Anechoic Chaneter (Above 18GHz). Test the EUT in the The radiation measure ransmitting mode, a Repeat above proced	dure as below: ove is the test site mber and change the distance is 1 e lowest channel rements are perfo nd found the X as dures until all freq	e form table meter and , the Higher rmed in X, kis positioni uencies me /m @3m)	table is 1.5 st channel Y, Z axis ping which is assured wa	to 1.5 meter). positioning for t is worse case as complete.	
Limit:	Abov g. E te n h. b i. T	Different between about of fully Anechoic Chaneter (Above 18GHz). Test the EUT in the radiation measurement and the radiation mode, a Repeat above procedure.	dure as below: ove is the test site mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax dures until all freq Limit (dBµV	e form table meter and , the Higher rmed in X, kis positioni uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	to 1.5 meter). positioning for t is worse case as complete.	
Limit:	Abov g. E te n h. b i. T	ve 1GHz test procedo Different between about fully Anechoic Chaneter (Above 18GHz D. Test the EUT in the The radiation measure Transmitting mode, and Repeat above procedo Frequency 30MHz-88MHz	dure as below: ove is the test site mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax dures until all freq Limit (dBµV 40.0	e form table meter and , the Highermed in X, kis positioni uencies me /m @3m)	table is 1.5 st channel Y, Z axis ping which i easured was Rei Quasi-pe	to 1.5 meter). positioning for t is worse case as complete. mark eak Value	
Limit:	Abov g. E te n h. b i. T	ve 1GHz test proced Different between about fully Anechoic Chaneter (Above 18GHz). Test the EUT in the radiation measure ransmitting mode, a Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	dure as below: ove is the test site mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax dures until all freq Limit (dBµV 40.0 43.6	e form table meter and the Higher med in X, kis positioni uencies med/m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis pring which i easured wared ware Quasi-pe Quasi-pe Quasi-pe	to 1.5 meter). positioning for t is worse case as complete. mark eak Value eak Value	

Report No. : EED32J00029401 Page 50 of 75

Test plot as follows:

Worse case mode:	GFSK(1-DH5)	(25)	(312)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Page	51	of	75
ı auc	J I	OI.	10

Worse case mode:	GFSK(1-DH5)		
Frequency: 2483.5MHz	Test channel:	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK(1-DH5)	GFSK(1-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak		

_		-	
Page	5つ	of.	75
raue	UZ	UI	10

Worse case mode:	π/4DQPSK(2-DH5)	200	200	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	π/4DQPSK(2-DH5)	(6)	(6,)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Page 53 of 7	Page !	53 c	f 7	5
--------------	--------	------	-----	---

Worse case mode:	π/4DQPSK(2-DH5)		200	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

_			
Page	54	Ωt	75

Worse case mode:	8DPSK(3-DH5)	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak		

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Report No.: EED32J00029401 Page 55 of 75

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field

Page 56 of 75

strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32J00029401 Page 57 of 75

Appendix L): Radiated Spurious Emissions

Receiver Setup:	(20)	(&	277)		(200
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
-)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(0)	A14011-	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	- /	- OS	30
	1.705MHz-30MHz	30	- (<u>(7)</u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	6	
Test mode:	Transmitting	Horizontal

Page 59 of 75

5 pp

483.910

601.427

18.00

18.82

3.09

3.51

17.06

12.94

38.15

35.27

46.00

-7.85 Vertical

46.00 -10.73 Vertical

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-DI	- 15)	Test char	nnel:	Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1353.804	30.57	2.51	34.81	47.93	46.20	74.00	-27.80	Pass) H
1978.230	31.67	2.85	34.31	45.75	45.96	74.00	-28.04	Pass	(FH)
2803.700	33.28	3.42	34.47	45.43	47.66	74.00	-26.34	Pass	Ĥ
4804.000	34.69	6.72	34.35	41.68	48.74	74.00	-25.26	Pass	Н
7206.000	36.42	8.35	34.90	38.20	48.07	74.00	-25.93	Pass	Н
9608.000	37.88	7.67	35.08	38.11	48.58	74.00	-25.42	Pass	Н
1343.505	30.55	2.50	34.82	47.79	46.02	74.00	-27.98	Pass	V
1786.719	31.37	2.76	34.45	45.65	45.33	74.00	-28.67	Pass	V
2796.573	33.27	3.41	34.47	43.33	45.54	74.00	-28.46	Pass	V
4804.000	34.69	6.72	34.35	43.73	50.79	74.00	-23.21	Pass	V
7206.000	36.42	8.35	34.90	33.60	43.47	74.00	-30.53	Pass	V
9608.000	37.88	7.67	35.08	32.42	42.89	74.00	-31.11	Pass	V

Worse case	orse case mode:		GFSK(1-DH5)		nnel:	Middle	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1364.182	30.60	2.52	34.80	47.57	45.89	74.00	-28.11	Pass	Н
1973.201	31.66	2.85	34.32	45.86	46.05	74.00	-27.95	Pass	H
3728.625	33.00	5.80	34.58	43.06	47.28	74.00	-26.72	Pass	≥ H
4882.000	34.85	6.74	34.33	42.91	50.17	74.00	-23.83	Pass	Н
7323.000	36.43	8.45	34.90	34.58	44.56	74.00	-29.44	Pass	Н
9764.000	38.05	7.53	35.05	34.34	44.87	74.00	-29.13	Pass	Н
1353.804	30.57	2.51	34.81	47.16	45.43	74.00	-28.57	Pass	V
2803.700	33.28	3.42	34.47	43.54	45.77	74.00	-28.23	Pass	V
3616.451	33.08	5.49	34.56	41.46	45.47	74.00	-28.53	Pass	V
4882.000	34.85	6.74	34.33	43.12	50.38	74.00	-23.62	Pass	V
7323.000	36.43	8.45	34.90	37.71	47.69	74.00	-26.31	Pass	V
9764.000	38.05	7.53	35.05	35.32	45.85	74.00	-28.15	Pass	V

Page 61 of 75

Worse case	Worse case mode:		GFSK(1-DH5)		nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1350.362	30.57	2.51	34.81	46.82	45.09	74.00	-28.91	Pass	Н
1988.327	31.68	2.85	34.31	46.02	46.24	74.00	-27.76	Pass	/° ;H,
2935.153	33.50	3.49	34.49	44.49	46.99	74.00	-27.01	Pass	(H)
4960.000	35.02	6.75	34.31	41.47	48.93	74.00	-25.07	Pass	H
7440.000	36.45	8.55	34.90	37.40	47.50	74.00	-26.50	Pass	Н
9920.000	38.22	7.41	35.02	36.46	47.07	74.00	-26.93	Pass	Н
1150.279	30.10	2.37	35.02	46.63	44.08	74.00	-29.92	Pass	V
1565.200	30.99	2.64	34.62	46.21	45.22	74.00	-28.78	Pass	V
2789.463	33.26	3.41	34.46	44.47	46.68	74.00	-27.32	Pass	V
4960.000	35.02	6.75	34.31	41.90	49.36	74.00	-24.64	Pass	V
7440.000	36.45	8.55	34.90	34.23	44.33	74.00	-29.67	Pass	V
9920.000	38.22	7.41	35.02	35.40	46.01	74.00	-27.99	Pass	V

Worse case	Norse case mode:		π/4DQPSK(2-DH5)		Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1357.254	30.58	2.51	34.80	49.05	47.34	74.00	-26.66	Pass	Н
2388.276	32.53	3.15	34.39	45.42	46.71	74.00	-27.29	Pass	Н
3498.735	33.17	5.14	34.55	43.95	47.71	74.00	-26.29	Pass	Н
4804.000	34.69	6.72	34.35	41.44	48.50	74.00	-25.50	Pass	₩ H
7206.000	36.42	8.35	34.90	36.92	46.79	74.00	-27.21	Pass	Н
9608.000	37.88	7.67	35.08	36.32	46.79	74.00	-27.21	Pass	Н
1350.362	30.57	2.51	34.81	47.01	45.28	74.00	-28.72	Pass	V
2018.928	31.74	2.88	34.30	45.68	46.00	74.00	-28.00	Pass	V
2942.635	33.51	3.50	34.49	45.03	47.55	74.00	-26.45	Pass	V
4804.000	34.69	6.72	34.35	39.81	46.87	74.00	-27.13	Pass	V
7206.000	36.42	8.35	34.90	35.35	45.22	74.00	-28.78	Pass	V
9608.000	37.88	7.67	35.08	36.56	47.03	74.00	-26.97	Pass	V

Page 62 of 75

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1340.089	30.54	2.50	34.82	46.57	44.79	74.00	-29.21	Pass	Н
1958.189	31.64	2.84	34.33	45.72	45.87	74.00	-28.13	Pass	/° H
2927.691	33.49	3.49	34.49	44.15	46.64	74.00	-27.36	Pass	(H)
4882.000	34.85	6.74	34.33	40.27	47.53	74.00	-26.47	Pass	H
7323.000	36.43	8.45	34.90	35.71	45.69	74.00	-28.31	Pass	Н
9764.000	38.05	7.53	35.05	35.51	46.04	74.00	-27.96	Pass	Н
1346.929	30.56	2.51	34.81	47.05	45.31	74.00	-28.69	Pass	V
1983.272	31.68	2.85	34.31	46.64	46.86	74.00	-27.14	Pass	V
2810.846	33.29	3.42	34.47	45.47	47.71	74.00	-26.29	Pass	V
4882.000	34.85	6.74	34.33	43.10	50.36	74.00	-23.64	Pass	V
7323.000	36.43	8.45	34.90	36.94	46.92	74.00	-27.08	Pass	V
9764.000	38.05	7.53	35.05	36.18	46.71	74.00	-27.29	Pass	V

Worse case	Vorse case mode:		π/4DQPSK(2-DH5)		Test channel:		Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1336.682	30.54	2.50	34.82	47.45	45.67	74.00	-28.33	Pass	Н
2003.569	31.71	2.86	34.30	45.50	45.77	74.00	-28.23	Pass	Н
2810.846	33.29	3.42	34.47	43.21	45.45	74.00	-28.55	Pass	Н
4960.000	35.02	6.75	34.31	39.33	46.79	74.00	-27.21	Pass	S H
7440.000	36.45	8.55	34.90	36.10	46.20	74.00	-27.80	Pass	Н
9920.000	38.22	7.41	35.02	37.62	48.23	74.00	-25.77	Pass	Н
1360.714	30.59	2.52	34.80	47.63	45.94	74.00	-28.06	Pass	V
1750.702	31.32	2.74	34.47	47.30	46.89	74.00	-27.11	Pass	V
3747.656	32.98	5.86	34.58	41.46	45.72	74.00	-28.28	Pass	V
4960.000	35.02	6.75	34.31	43.31	50.77	74.00	-23.23	Pass	V
7440.000	36.45	8.55	34.90	35.35	45.45	74.00	-28.55	Pass	V
9920.000	38.22	7.41	35.02	36.81	47.42	74.00	-26.58	Pass	V

Page	62	~f	76
Paue	กฉ	OI	70

Worse case	mode:	8DPSK(3-I	DH5)	Test chani	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1343.505	30.55	2.50	34.82	48.11	46.34	74.00	-27.66	Pass	Н
2376.148	32.51	3.14	34.39	47.05	48.31	74.00	-25.69	Pass	~°#
3225.037	33.40	4.29	34.53	44.17	47.33	74.00	-26.67	Pass	(H)
4804.000	34.69	6.72	34.35	41.26	48.32	74.00	-25.68	Pass	H
7206.000	36.42	8.35	34.90	35.63	45.50	74.00	-28.50	Pass	Н
9608.000	37.88	7.67	35.08	37.20	47.67	74.00	-26.33	Pass	Н
1346.929	30.56	2.51	34.81	47.56	45.82	74.00	-28.18	Pass	V
1968.184	31.65	2.85	34.32	46.96	47.14	74.00	-26.86	Pass	V
2950.135	33.52	3.50	34.49	45.16	47.69	74.00	-26.31	Pass	V
4804.000	34.69	6.72	34.35	40.69	47.75	74.00	-26.25	Pass	V
7206.000	36.42	8.35	34.90	35.44	45.31	74.00	-28.69	Pass	V
9608.000	37.88	7.67	35.08	36.15	46.62	74.00	-27.38	Pass	V

Worse case	Norse case mode:		8DPSK(3-DH5)		Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1336.682	30.54	2.50	34.82	48.15	46.37	74.00	-27.63	Pass	Н
1978.230	31.67	2.85	34.31	45.23	45.44	74.00	-28.56	Pass	Н
2950.135	33.52	3.50	34.49	44.99	47.52	74.00	-26.48	Pass	Н
4882.000	34.85	6.74	34.33	40.96	48.22	74.00	-25.78	Pass	₩ H
7323.000	36.43	8.45	34.90	36.87	46.85	74.00	-27.15	Pass	Н
9764.000	38.05	7.53	35.05	36.48	47.01	74.00	-26.99	Pass	Н
1541.476	30.95	2.63	34.64	46.44	45.38	74.00	-28.62	Pass	V
2190.267	32.13	3.01	34.34	45.53	46.33	74.00	-27.67	Pass	V
2796.573	33.27	3.41	34.47	45.51	47.72	74.00	-26.28	Pass	V
4882.000	34.85	6.74	34.33	42.83	50.09	74.00	-23.91	Pass	V
7323.000	36.43	8.45	34.90	37.38	47.36	74.00	-26.64	Pass	V
9764.000	38.05	7.53	35.05	35.58	46.11	74.00	-27.89	Pass	V

Page	64	of	75
raye	04	ΟI	10

Worse case	Vorse case mode:		8DPSK(3-DH5)		Test channel:		Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1340.089	30.54	2.50	34.82	46.66	44.88	74.00	-29.12	Pass	Н
1963.180	31.65	2.84	34.32	44.53	44.70	74.00	-29.30	Pass	/° #
3625.669	33.07	5.51	34.57	42.22	46.23	74.00	-27.77	Pass	(AH)
4960.000	35.02	6.75	34.31	40.64	48.10	74.00	-25.90	Pass	H
7440.000	36.45	8.55	34.90	36.76	46.86	74.00	-27.14	Pass	Н
9920.000	38.22	7.41	35.02	36.89	47.50	74.00	-26.50	Pass	Н
1346.929	30.56	2.51	34.81	47.77	46.03	74.00	-27.97	Pass	V
1786.719	31.37	2.76	34.45	48.14	47.82	74.00	-26.18	Pass	V
2942.635	33.51	3.50	34.49	44.20	46.72	74.00	-27.28	Pass	V
4960.000	35.02	6.75	34.31	42.98	50.44	74.00	-23.56	Pass	V
7440.000	36.45	8.55	34.90	36.27	46.37	74.00	-27.63	Pass	V
9920.000	38.22	7.41	35.02	38.04	48.65	74.00	-25.35	Pass	V

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSK modulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32J00029401 Page 65 of 75

PHOTOGRAPHS OF TEST SETUP

Test model No.: JOY-1407

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz - 1GHz)

Report No. : EED32J00029401 Page 66 of 75

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32J00029401 Page 67 of 75

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JOY-1407

View of Product-1

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

View of Product-10

View of Product-12

View of Product-13

View of Product-16

Report No.: EED32J00029401 Page 75 of 75

View of Product-17

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.