COMPUTER VISION AND CONTROL

Submitted By:

Rakshitha 4nm20is113 Shriraj 4nm20is147 Subrahmanya 4nm20is159

METHODOLOGY

Defining the task

Consists of defining the task to performed with computer vision and control. This involves identifying objects, tracking movement, recognizing faces, or any other number of tasks.

Gathering data:

Collecting data that will be used to train computer vision model. This can include images, videos, or other types of data.

Preprocessing data:

Before training the model, preprocessing the data to ensure that it is consistent and ready for analysis. This might involve resizing images, adjusting color balance, noice reduction or other techniques.

Training the model:

Use OpenCV to train the computer vision model on the preprocessed data. This might involve using machine learning techniques like deep learning or image processing algorithms.

Evaluating the model:

Once model is trained, evaluate its performance on a separate set of data. This will help in determining how accurate the model is and whether any adjustments need to be made.

Implementing the model:

Once your model is trained and evaluated, implement it in the control system. This might involve using OpenCV to detect objects, track movement, or recognize faces in real-time.

Testing and optimization:

Finally, testing system in a real-world environment and optimize it for performance. This might involve tweaking parameters or adjusting your model based on feedback from users.

THANK YOU