IN THE CLAIMS

Please amend the claims as follows:

Claims 1-3 (Canceled).

Claim 4 (Currently Amended): A method comprising deodorizing in the presence of a deodorant comprising <u>crystalline</u> aluminosilicate particles, wherein the aluminosilicate particles have a composition of:

s
$$M(1)_xO_v \cdot t M(2)_2O \cdot Al_2O_3 \cdot u SiO_2 \cdot v R_mQ_n \cdot w H_2O$$
,

wherein M(1) is one or more members selected from the group consisting of Ag, Cu, Zn and Fe, M(2) is one or more members selected from the group consisting of Na, K and H, R is one or more members selected from the group consisting of Na, K, Ca and Mg, Q is one or more members selected from the group consisting of CO₃, SO₄, NO₃, and Cl, s satisfies $0 < s \le 3$, and t satisfies $0 \le t \le 3$, with proviso that s + t is from 0.5 to 3, and u satisfies $0.5 \le u \le 6$, v satisfies $0 < v \le 2$, w satisfies $v \ge 0$, x satisfies

wherein the aluminosilicate particle has a specific surface area of 1 m^2/g or more and less than 70 m^2/g .

Claim 5 (Previously Presented): The method according to claim 4, wherein the aluminosilicate particle is obtained by subjecting a raw material aluminosilicate particle having the composition in an anhydride form of:

wherein M is Na and/or K, R is one or more members selected from the group consisting of Na, K, Ca and Mg, Q is one or more members selected from the group

Application No. 10/567,442

Reply to Office Action of January 9, 2009

consisting of CO₃, SO₄, NO₃, and Cl, **a** satisfies $0.5 \le \mathbf{a} \le 3$, **b** satisfies $0.5 \le \mathbf{b} \le 6$, **c** satisfies $0 < \mathbf{c} \le 2$, **m** satisfies $1 \le \mathbf{m} \le 2$, and **n** satisfies $1 \le \mathbf{n} \le 3$,

to an acid treatment with an acid in an amount of 0 to 300 meq per 100 g of the raw material aluminosilicate particle (0 to 300 meq/100 g), and ion-exchanging with one or more metal ions selected from the group consisting of Ag, Cu, Zn and Fe.

Claim 6 (Previously Presented): The method according to claim 4, wherein a 1% by weight aqueous dispersion of the aluminosilicate particle has a pH of 7 or more.

Claim 7 (Previously Presented): The method according to claim 5, wherein a 1% by weight aqueous dispersion of the aluminosilicate particle has a pH of 7 or more.

Claim 8 (Previously Presented): The method according to claim 4, wherein a sulfurcontaining odor is deodorized.

Claim 9 (Previously Presented): The method according to claim 4, wherein M(1) is Ag or Zn, M(2) is at least one of Na and H, Q is at least one of CO₃ and NO₃, $0 < s \le 2$, $0 \le t \le 1$, s + t is from 0.6 to 1.5, $0.5 \le u \le 4$, $0 < v \le 1$.

Claim 10 (Previously Presented): The method according to claim 4, wherein the aluminosilicate particle has a specific surface area of from 30 to 65 m^2/g .

Claim 11 (Previously Presented): The method according to claim 6, wherein said pH is 9 or more.

Claim 12 (Previously Presented): The method according to claim 7, wherein said pH is 9 or more.

Claim 13 (Previously Presented): The method according to claim 4, wherein the aluminosilicate particle has a color that satisfies an L* value of 95 or more.

Claim 14 (Previously Presented): The method according to claim 4, wherein the aluminosilicate particle has an average particle size of from 0.4 to 600 μm .

Claim 15 (Previously Presented): The method according to claim 4, wherein the aluminosilicate particle has a shape selected from the group consisting of spherical, acicular, platy, columnar and cancrinite.

Claim 16 (Previously Presented): The method according to claim 15, wherein the shape is cancrinite, having a sea urchin shape.

Claim 17 (Canceled).

Claim 18 (Previously Presented): The method according to claim 5, wherein said acid treatment is with an acid in an amount of 20 to 140 meq/100 g.

Claim 19 (Previously Presented): The method according to claim 4, wherein the deodorant is in the form of a powder, granules, or pellets.

Application No. 10/567,442

Reply to Office Action of January 9, 2009

Claim 20 (Currently Amended): The method according to claim 4, wherein the deodorant is in the form of a composition additionally comprising at least one of an inorganic binder, organic binder, adsorbant adsorbant, and a photocatalyst.

Claim 21 (Previously Presented): The method according to claim 4, wherein the deodorant is present in a composition and having a content of from 1 to 50% by weight in the composition.

Claim 22 (Previously Presented): The method according to claim 4, wherein the deodorizing is of a human body.

Claim 23 (Previously Presented): The method according to claim 22, wherein the deodorant is present in a composition and having a content of 0.3 to 10% by weight of the composition.