The Language of Technical Computing by Matlab

Class 4: 3D Graphics

Outline

- 1. 3D plot
- 2. contour(繪製等高線)
- 3. quiver (繪製向量圖)
- 4. 習題

3D plot

```
clear all
x=-5:0.1:5;
y=-5:0.1:5;
[xx,yy]=meshgrid(x,y); 1. 產生兩個矩陣:xx和yy
z=xx.^2+yy.^2;
mesh(xx,yy,z) 2. 繪圖
```

- meshgrid()產生網格矩陣
- mesh() 繪圖

3D plot

函數	說明
[xx,yy]=meshgrid(x,y)	將向量X、y轉換成三維繪圖用的矩陣X、Y。

>>	x=1:3	;		
>>	y=1:5	;		
>>	[xx,y	y]=mesl	hgrid(x	(,y)
хx	=			
	1	2	3	
	1	2	3	
	1	2	3	
	1	2	3	
	1	2	3	
уу	=			
	1	1	1	
	2	2	2	
	3	3	3	
	4	4	4	
	5	5	5	

>> xx.^2+yy.^2		
ans =		
2	5	10
5	8	13
10	13	18
17	20	25
26	29	34

Hint:

x,y=向量 xx,yy=矩陣 矩陣xx的每一列都由x向量構成 矩陣yy的每一行都由y向量構成

第一行(1st column)

3D plot:繪圖方法

函數	說明
mesh(xx,yy,zz)	繪出XX、yy、ZZ的三維圖形。
mesh(zz)	繪出zz的三圍圖形。(假設z維度為nxm,則x方向為1~n、y方向為1~m)
meshc(xx,yy,zz)	同mesh,但下方附帶等高線圖。
waterfall	以切片的方式繪製三維圖形
surf(xx,yy,zz)	繪出XX、yy、ZZ的三維圖形,並上色。
surfc(xx,yy,zz)	同surf,但下方附帶等高線圖。

3D plot: meshc

meshc: contour 等高線

```
clear all
x=-5:0.1:5;
y=-5:0.1:5;
[xx,yy]=meshgrid(x,y);
z=xx.^2+yy.^2;
meshc(xx,yy,z)
```


3D plot: waterfall

```
clear all
x=-5:0.1:5;
y=-5:0.1:5;
[xx,yy]=meshgrid(x,y);
z=xx.^2+yy.^2;
waterfall(xx,yy,z)
```


3D plot: surf, surfc 網格面上色

```
clear all
x=-5:0.1:5;
y=-5:0.1:5;
[xx,yy]=meshgrid(x,y);
z=xx.^2+yy.^2;
surf(xx,yy,z)
```


3D plot: ezmesh簡易三維繪圖

函數	說明
ezmesh('f',[xmin,xmax,ymin,ymax])	以 60×60 網格畫出 f 的圖形,如果沒設定範圍,則以 $-2\pi \sim 2\pi$ 為範圍。
ezmeshc('f',[xmin,xmax,ymin,ymax])	同ezmesh,但下方出現等高線。
ezsurf('f',[xmin,xmax,ymin,ymax])	同ezmesh,但網格面會上色。
ezsurfc('f',[xmin,xmax,ymin,ymax])	同ezsurf,但下方出現等高線。

3D plot: ezsurf

```
figure subplot(1,4,1); ezmesh('x*x+y*y',[-3,3,-3,3]); title('ezmesh') % 網狀圖 subplot(1,4,2); ezmeshc('x*x+y*y',[-3,3,-3,3]); title('ezmeshc') % 網狀圖+等高線 subplot(1,4,3); ezsurf('x*x+y*y',[-3,3,-3,3]); title('ezsurf') % 曲面圖 (網格圖上色) subplot(1,4,4); ezsurfc('x*x+y*y',[-3,3,-3,3]); title('ezsurfc') % 曲面圖+等高線
```


3D plot: 繪圖編修指令

函數	説明
hidden on/off	設定off除去隱藏線(預設on),只對mesh等函數網格圖形 有效。
axis on/off	設定off不顯示座標與刻度(預設on)。
box on/off	設定on在外圍顯示一外框(預設off)。
grid on/off	設定off關閉座標網格(預設on)。
view(azimuth , elevation angle)	設定觀看的方位角(azimuth)以及仰角(elevation angle)。 (單位維度)

3D plot: 繪圖編修指令

box on

>> ezmesh('x*x+y*y',[-5,5,-5,5])

函數	說明
contour(xx,yy,zz,n)	以矩陣XX、yy為座標,ZZ為高度,繪出n條等高線。 (n可省略,matlab會自行調整)
contour(zz,n)	同contour(xx,yy,zz,n),x、y範圍matlab會自行調整。
contour(xx,yy,zz,[z1,z2,])	繪出高度z1、z2、···的等高線。
contourf(xx,yy,zz,n)	同contour,但會以顏色填滿等高線圖。
contour3(xx,yy,zz,n)	所有皆與contour相同,只是其為三維等高線圖。

```
x=-1:0.1:1;
y=-1:0.1:1;
[xx,yy]=meshgrid(x,y);
zz=exp(-(xx.*xx+yy.*yy));
contour(xx,yy,zz,3)
```



```
x=-1:0.1:1;
y=-1:0.1:1;
[xx,yy]=meshgrid(x,y);
zz=xx.*xx+yy.*yy;
contourf(zz)
```



```
x=-1:0.1:1;
y=-1:0.1:1;
[xx,yy]=meshgrid(x,y);
zz=xx.*xx+yy.*yy;
contour3(zz)
```


函數	說明
[fx,fy]=gradient(zz)	計算矩陣ZZ的梯度,並回傳到fx、fy中。
[fx,fy]=gradient(zz,dx,dy)	計算矩陣ZZ的梯度,並回傳到fx、fy中,間距為dx、dy。
quiver(xx,yy,fx,fy)	在xx、yy二維座標上繪上fx、fy向量場圖。
quiver(fx,fy)	同上,但間距維1。

• Ex: 2D quiver

```
x=-2:0.2:2;
y=-2:0.2:2;
[xx,yy]=meshgrid(x,y);
zz=sqrt(xx.*xx+yy.*yy);
[fx,fy]=gradient(zz);
quiver(xx,yy,fx,fy)
```


函數	說明
[fx,fy,fz]=surfnorm(xx,yy,zz)	計算矩陣XX、yy、ZZ形成曲面的法向量。
quiver3(xx,yy,zz,fx,fy,fz,n)	同quiver(xx,yy,fx,fy)。
quiver3(zz,fx,fy,fz)	在ZZ矩陣位置上畫上向量。

```
x=-2:0.1:2;
y=-2:0.1:2;
[xx,yy]=meshgrid(x,y);
zz=sqrt(9-xx.*xx-yy.*yy);
[fx,fy,fz]=surfnorm(xx,yy,zz);
surf(xx,yy,zz)
hold on
quiver3(xx,yy,zz,fx,fy,fz)
```

習題

1. MATLAB的立體繪圖可以方便地將函數視覺化,請以立 體繪圖功能畫出以下方程式如下圖。

$$z=3(1-x)^2e^{-x^2-(y+1)^2}-10(rac{x}{5}-x^3-y^5)e^{-x^2-y^2}-rac{1}{3}e^{-(x+1)^2-y^2}$$

習題

Hint:

```
x = linspace(-3, 3, 30); % 在x軸上從 [-3,3] 取30點
y = linspace(-3, 3, 30);
zz = xx.*exp(-xx.^2-yy.^2); % zz大小也是30x30
meshc(xx, yy, zz);
colormap('default')
colorbar
```

- [xx,yy] = meshgrid(x, y); % 建立網格矩陣,xx和yy的大小都是30x30

Hint: hold on

