Universidad Peruana de Ciencias Aplicadas Escuela de Ingeniería de Sistemas y Computación Carrera de Ciencias de la Computación

CC53 Procesamiento de Imágenes

Resolución Espacial, Relación entre píxeles y distancia Prof. Peter Montalvo

Agenda

- Resolución espacial
- Distancia
- Relaciones entre píxeles

Nota

 Esta sesión está basada en el libro "Digital Image Processing" 3ra edición de Rafael C. González y Richard E. Woods. En especial el capítulo 2.

Pixels

- spelsspatial elements
- pixelspictures elements
- voxelsvolume elements

 La resolución espacial está asociada a la "densidad" de los píxeles de una imagen

Comenzamos con una imagen continua

 La resolución espacial está asociada a la "densidad" de los píxeles de una imagen

La resolución espacial, tiene que ver con la cantidad de píxeles por unidad de área

https://en.unitec-group.com/images/inglese/peppers.jpg

 La resolución espacial está asociada a la "densidad" de los píxeles de una imagen

...por ejemplo, aquí estamos aumentando la resolución

https://en.unitec-group.com/images/inglese/peppers.jpg

- Una medida de resolución son los dpi "dots per inch"
- En este ejemplo se compara el efecto de reducir una imagen y volver a ampliarla

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for clarity. They are not part of the data.

Digital Image Processing, 3rd ed.

www.ImageProcessingPlace.com

Chapter 2 Digital Image Fundamentals

¿Cómo puedo medir?

Ejercicio 1 - Parte I

Tengo una imagen satelital de tamaño **2000x2000 pixeles** representando una región de **4km x 4km**.

¿Cuál es el tamaño del pixel?

A) 2 x 2 metros

B) 20 x 20 centímetros

C) 20 x 20 metros

Ejercicio 1 - Parte I

Tengo una imagen satelital de tamaño **2000x2000 pixeles** representando una región de **4km x 4km**.

¿Cuál es el tamaño del pixel?

A) 2 x 2 metros

B) 20 x 20 centímetros

C) 20 x 20 metros

Ejercicio 1 - Parte II

Tengo una imagen satelital de tamaño **2000x2000 pixeles** representando una región de **4km x 4km**.

¿Cuál es la dimensión de un terreno de **300x300 pixeles**?

Ejercicio 1 - Parte II

Tengo una imagen satelital de tamaño **2000x2000 pixeles** representando una región de **4km x 4km**.

¿Cuál es la dimensión de un terreno de **300x300 pixeles**?

Distancia entre píxeles: horizontal

A) 1 pixel

B) 2 pixeles

Distancia entre píxeles: horizontal

) 1 pixel

B) 2 pixeles

Distancia entre píxeles: vertical

Distancia entre píxeles: vertical

A) 1 pixel

B) 2 pixeles

Distancia entre píxeles: Diagonal

A) 1 pixel

B) $-\sqrt{2}$ pixeles

C) 2 pixeles

Distancia entre píxeles: Diagonal

Distancia euclidiana

- La distancia que hemos visto hasta el momento se llama "euclidiana"
- Si tenemos dos píxeles p y q con coordenadas (x, y) e (s, t) entonces

$$\mathbf{D_{euc}}(\mathbf{p}, \mathbf{q}) = [(x-s)^2 + (y-t)^2]^{1/2}$$

Distancia City-Block / Manhattan / o D₄

¿El camino mínimo cityblock entre dos puntos es único?

https://en.wikipedia.org/wiki/Taxicab_geometry

Distancia City-Block / Manhattan / o D₄

¿El camino mínimo cityblock entre dos puntos es único?

https://en.wikipedia.org/wiki/Taxicab_geometry

Distancia City-Block / Manhattan / o D₄

Si tenemos dos píxeles p y q con coordenadas (x, y)
e (s, t) entonces

$$\mathbf{D}_{cityblock}(\mathbf{p}, \mathbf{q}) = |x-s| + |y-t|$$

Distancia cityblock entre píxeles: Diagonal

A) 1 pixel

B) $-\sqrt{2}$ pixeles

2 pixeles

Distancia cityblock entre píxeles: Diagonal

A) 1 pixel

B) $-\sqrt{2}$ pixeles

C) 2 pixeles

Relación entre píxeles: vecindad

El conjunto de los 4-vecinos de un pixel p con coordenadas (x, y) están dadas por (x+1,y), (x-1,y), (x,y+1), (x,y-1) y es denotado por N₄(p)

Relación entre píxeles: vecindad

 El conjunto de los vecinos diagonales de un pixel p con coordenadas (x, y) están dadas por (x-1,y-1), (x+1,y-1), (x-1,y+1), (x+1,y+1) y es denotado por N_D(p)

Relación entre píxeles: vecindad

El conjunto de los 8-vecinos de un pixel p con coordenadas (x, y) están dadas por N₄(p) U N_D(p)

	(x,y-1)			(x-1,y-1)		(x+1,y-1)		(x-1,y-1)	(x,y-1)	(x+1,y-1)
(x-1,y)	(x,y)	(x+1,y)	U		(x,y)		=	(x-1,y)	(x,y)	(x+1,y)
	(x,y+1)		•	(x-1,y+1)		(x+1,y+1)		(x-1,y+1)	(x,y+1)	(x+1,y+1)