

Compact Cosmic Ray Detector for On-orbit Testing of Shielding Materials

Stephen Berkebile, James R. Gaier

NASA Glenn Research Center Cleveland, OH

A Special Thanks to:

- Scott Panko, Ed Sechkar for electronic and mechanical engineering support, John Wrbanek and Susan Wrbanek for helpful discussion
- NASA Postdoctoral Program (administered by Oak Ridge Associated Universities)
- NASA Materials International Space Station Experiment (MISSE-X)
- NASA ETDD Radiation Protection Project

Space Radiation Challenges

- Space Technology Area Roadmap (TA06, 2.5 Radiation)
 - "The radiation area is focused on developing knowledge and technologies ... (among other) ... to minimize exposures through the use of material shielding systems."
 - "The major technical challenge for future human exploration is determining the best way to protect humans from the high-charge and high-energy galactic cosmic radiation (GCR) permeating interplanetary space."

- Mars mission projections currently 3 5 times permissible exposure limit
- Goal: 20-30% reduction in GCR exposure through improvements in shielding

Space Radiation Challenges

One year behind 5 g/cm² Al (solar min.) Durante, Cucinotta, Rev. Mod. Phys., 83, p.1245, (2011).

- Dose mostly from HZE (high charge and energy ions)
 - Damage different than terrestrial radiation (x-rays, gamma)
 - Easily penetrates typical shielding (mass constraints)
- Solutions?
 - Hydrogen has highest specific stopping power, but not a structural material!
 - Multifunctional and dual-use materials
 - Novel composite materials
- TRL 6/7: Demonstration in a relevant/space environment

MISSE-X

- Materials International Space Station Experiment
 - Eight previous missions (one currently in space)
 - Test bed for materials, coatings, solar cells, sensors, electronics, etc. attached to outside of ISS
 - Effects of atomic oxygen, UV, sunlight, radiation and extremes of heat and cold
 - Experiment emphasis: passive → active (limited down mass)

Experimental Concept – MRSMAT

- Existing detectors/experiments
 - Cosmic ray environment
 - Dosimetry, tissue-equivalent dose inside and outside ISS
- Features
 - Side-by-side testing of seven candidate materials
 - Al, polyethylene standards
- Requirements: Discriminate between GCR shield effectiveness of 1 mGr/day
 - Minimum absorption length, identical exposure, S/N ratio >5
 - Discern whether GCR passed through which sample
 - Insensitive to <10 MeV/A, sensitive to 0.1 to 10 GeV/A
- Limitations
 - Low power (<25 W), low voltage, limited space
 - Temperature swings of -60°C to +60°C

Basic Design

- Scintillating fiber arrays, 3.5 mm polystyrene (PS)
 - MIP: ~300 detectible photons at fiber end
- CsI(TI)
 - Robust, sensitive to heavy ions
 - Pulse shape discrimination
- Light detection: SiPMs
 - Pros
 - √ compact
 - √ low voltage, large output signal
 - ✓ insensitive to B-field
 - √ high detection efficiency / dynamic range
 - Cons
 - ✓ temperature sensitive gain
 - √ dark counts

Angular resolution

- GCR environment
 - Isotropic in free space
 - LEO nadir protected by Earth

5 GeV cosmic rays, zenith west plane reproduced in Smart, Adv. Space Res., 36, p.2012, (2005).

Geometric considerations

Expected Relevance

- LEO vs. free space
 - Lower flux, but weighted towards greater HZE

Ion Flux, ion/cm ² -s	Н	He	Li - Ne	Na – Fe
Deep space	3.72	0.50	0.0261	0.00564
ISS 2010	0.53 (14%)	0.10 (20%)	0.00578 (22%)	0.00126 (22%)

- At 100 µs sampling time, 99.3% events will be single particle (excluding nuclear cascades)
- Energy sensitivity
 - Event must trigger all levels
 - H: >65 MeV, Fe: >16 GeV

Electronics

- FPGA from Microsemi
 - Rad tolerant, 270 or 620 I/Os, 350 MHz input (3 ns)
- SiPM directly connected to discriminator on fibers
- Temperature-dependent reverse bias voltage control
- Data rate: 7 to 70 kbs

Summary and Outlook

- MISSE-X
- Scintillation-based detector to determine shielding effectiveness of novel structural materials
 - Low power
 - Compact
 - Robust?
- Near future
 - Monte Carlo simulations
 - Test SiPMs
 - ✓ MIP sensitivity with 3.5 mm fibers
 - ✓ Saturation with CsI(TI)
 - ✓ Ability to deal with temperature dependence of SiPMs
 - Test candidate electronics for speed

