

# Locally Weighted Linear Regression (LWLR) - Complete Breakdown

# 1. In-Depth and Specific Intuitive Understanding

Locally Weighted Linear Regression (LWLR) is an extension of standard linear regression that does not assume a **global** linear relationship. Instead, it fits a new linear regression model for **each query point** by giving more importance (higher weights) to nearby training points.

### Key Idea

- In standard linear regression, all training points contribute equally to the model.
- In LWLR, closer points contribute more, and distant points contribute less, using a weighting function.

Thus, instead of finding a single global best-fit line, LWLR finds many local best-fit lines, making it highly flexible for non-linear data.

#### 2. When LWLR is Used and When It Should Be Avoided

#### When to Use It

- When the relationship between variables is **non-linear**, but locally linear.
- When we need high flexibility in predictions.
- When we have small or medium datasets, since LWLR requires per-query computation.

#### When to Avoid It

- If the dataset is large, LWLR is slow since it must solve a separate regression problem for each query.
- If data is sparse, LWLR may not have enough local points for meaningful regression.
- If we need a global interpretable model, LWLR does not provide a single equation like standard linear regression.

# 3. When It Fails to Converge and How to Avoid That

#### When LWLR Fails

- Choice of bandwidth parameter  $\tau$ :
  - If τ is too large, LWLR behaves like standard linear regression (all points have similar weights).
  - If  $\tau$  is **too small**, LWLR overfits and becomes unstable.
- Multicollinearity in local points: Just like in standard regression, if features are highly correlated, the local model can be unstable.
- Singular matrix issue: If a local region does not have enough variation in the features, the matrix inversion fails.

#### **How to Avoid Convergence Issues**

- $\overline{f V}$  Tune au carefully to balance local vs. global structure.
- Use regularization (Ridge Regression) if matrix inversion fails.
- Ensure enough local data points exist for each prediction.

# When LWLR Always Converges

- If the dataset is well-behaved (no extreme outliers, sufficient local samples).
- If  $X^TX$  is invertible for the local points.
- If a reasonable au value is chosen.

# 4. Advantages and Disadvantages

#### **Advantages**

- 🔽 Handles **non-linearity** well by adapting locally.
- Requires **no feature transformation** (like polynomial features in standard regression).
- ▼ More robust to irrelevant global patterns since it focuses only on local trends.

#### **Disadvantages**

- **X** Computationally expensive, requiring a separate regression for each query point.
- X Not interpretable since it does not provide a single equation.
- **X** Sensitive to bandwidth  $(\tau)$ , requiring tuning.

# 5. Intuitive Algorithm / Pseudo Code

- 1. For each query point  $x_{query}$ :
  - Compute weights for all training points using:

$$w_i = \exp\left(-rac{(x_i - x_{query})^2}{2 au^2}
ight)$$

- Construct a **diagonal weight matrix** W.
- Solve the weighted normal equation:

$$w = (X^T W X)^{-1} X^T W y$$

· Predict:

$$\hat{y}_{query} = x_{query}w$$

2. Repeat for every query point.

# 6. Mathematical and Logical Breakdown

#### **Weighted Loss Function**

Instead of minimizing Mean Squared Error (MSE):

$$J(w)=\sum_{i=1}^m (y_i-\hat{y}_i)^2$$

LWLR minimizes a weighted loss function:

$$J(w) = \sum_{i=1}^m w_i (y_i - \hat{y}_i)^2$$

where  $w_i$  is a weight function that determines importance of each training point.

# Weight Function (Gaussian Kernel)

$$w_i = \exp\left(-rac{(x_i - x_{query})^2}{2 au^2}
ight)$$

where:

- $x_i$  is a training sample.
- $x_{query}$  is the query point.
- $\tau$  (bandwidth) controls **locality** (smaller  $\tau \rightarrow$  more local).

#### **Normal Equation for LWLR**

Once we compute the weight matrix W, the optimal parameters are obtained using:

$$w = (X^T W X)^{-1} X^T W y$$

#### where:

- X is the feature matrix.
- W is the diagonal matrix of weights.
- y is the output vector.

#### **Prediction for a New Query Point**

Once w is computed, prediction is:

$$\hat{y}_{query} = x_{query}w$$

# 7. Manual Implementation in Python \

```
class LocallyWeightedLinearRegression:
         def init (self, tau=1.0):
             self.tau = tau # Bandwidth parameter
         def compute weights(self, X, guery point):
             """Compute weights for training points based on guery point."""
             m = X.shape[0]
             W = np.zeros((m.m))
             for i in range(m):
                 W[i, i] = np.exp(-np.sum((X[i] - query point) ** 2) / (2 * self.tau ** 2))
             return W
         def predict(self, X train, y train, X query):
             """Predict values for each query point."""
             m. n = X train.shape
             X_query = np.hstack([np.ones((X_query.shape[0], 1)), X_query]) # Add bias term
             X train = np.hstack([np.ones((m, 1)), X train]) # Add bias term
             y pred = np.zeros(X query.shape[0])
             for i in range(X guery.shape[0]):
                 W = self._compute_weights(X_train, X_query[i])
                 theta = np.linalg.pinv(X_train.T @ W @ X_train) @ (X_train.T @ W @ y_train)
                 y_pred[i] = X_query[i] @ theta
             return y pred
31
```

import numpy as np

# 8. Implementation Using Scikit-Learn Approximation

Scikit-Learn does **not** have LWLR directly, but **KNN Regression with distance weighting** provides a similar effect.

```
ரி Copy
                                                                            ⁺⊘ Edit
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model selection import train test split
from sklearn.datasets import make regression
# Generate dataset
X, v = make regression(n samples=100, n features=1, noise=10, random state=42)
# Split dataset
X train, X test, y train, y test = train test split(X, y, test size=0.2, random sta
# KNN Regression as LWLR Approximation (weights='distance' mimics LWLR)
model = KNeighborsRegressor(n neighbors=10, weights='distance')
model.fit(X train, y train)
# Predict
y_pred = model.predict(X_test)
# Print first few predictions
print("Predictions:", y_pred[:5])
```

# **Final Summary**

- LWLR is a non-parametric regression method that gives more importance to nearby points.
- It adapts to non-linearity without needing polynomial features.
- It does not produce a global equation, making it computationally expensive.
- It is best for small datasets where local trends are important.
- It should be avoided for large datasets due to high computational cost.

# **Comparison to Standard Linear Regression**

| Feature                  | Standard Linear Regression  | LWLR                                    |
|--------------------------|-----------------------------|-----------------------------------------|
| Global vs. Local         | Global model (one equation) | Local models (different for each query) |
| Computational Complexity | Low                         | High                                    |
| Handles Non-Linearity?   | <b>X</b> No                 | ▼ Yes                                   |
| Interpretability         | √ Yes                       | <b>X</b> No                             |
| Speed on Large Datasets  | <b>▼</b> Fast               | <b>X</b> Slow                           |