Inovace předmětu Složitost

(FRVŠ 166/2013/G1)

Řešitel: Ondřej Lengál

Spoluřešitelé: Mgr. Adam Rogalewicz, Ph.D.

Ing. Lukáš Charvát

Fakulta informačních technologií Vysoké učení technické v Brně

25. února 2014

Motivace

Výuka teorie výpočetní složitosti:

- snaha o pochopení
 - inherentní složitosti problémů
 - ▶ např. řazení prvků na základě porovnání nelze provést rychleji než v $\mathcal{O}(n \cdot \log n)$,
 - a jejich vzájemné souvislosti
 - např. problém testování splnitelnosti formule výrokové logiky je stejně obtížný jako problém testování 3-obarvitelnosti grafu,
- chytré algoritmy a řešení problémů
 - např. důkazy Immerman-Szelepcsényiho věty nebo Cookovy věty,
- přesah do jiných oblastí:
 - kryptografie,
 - fyzika (kvantová složitost),
 - ...

Cíle

- Rozšíření látky vyučované v předmětu Složitost na FIT VUT:
 - a) souvislost teorie složitosti a kryptografie,
 - b) čítací třídy (counting classes),
- 2 aktualizace 5 stávajících prezentací:
 - a) Úvod to teorie výpočetní složitosti,
 - b) RAM a RASP stroje,
 - c) Vztahy mezi složitostními třídami,
 - d) NP-úplné problémy,
 - e) Paralelní výpočty.

Cíle a jejich řešení

Průběh řešení:

- 1 nákup a studium literatury,
- 2 cesta řešitele na konference ETAPS'13 (březen 2013, Řím, Itálie),
- g příprava prezentací.

Cíle a jejich řešení (1/7)

Dílčí cíl:

- 1 Rozšíření látky vyučované v předmětu Složitost na FIT VUT:
 - a) souvislost teorie složitosti a kryptografie

- Vytvořena prezentace v systému LATEX (17 slajdů)
 - úvod do kryptografie z pohledu teorie výpočetní složitosti, popis kryptografie s veřejným klíčem, kryptografického systému RSA, třídy UP a některých protokolů založených na kryptografii.

Cíle a jejich řešení (2/7)

Dílčí cíl:

- 1 Rozšíření látky vyučované v předmětu Složitost na FIT VUT:
 - b) čítací třídy (counting classes)

- Vytvořena prezentace v systému LAT_EX (20 slajdů)
 - definice čítacích problémů, příklady čítacích problémů počtu
 perfektních párování v bipartitním grafu a spolehlivosti grafu,
 zavedení složitostní třídy #P a pojmu redukce pro čítací složitostní
 třídy, důkazy #P-úplnosti problémů #SAT a PERMANENT,
 zavedení třídy ⊕P a důkaz její uzavřenosti vzhledem k doplňku,
 - prezentováno v LS 2013.

Cíle a jejich řešení (3/7)

Dílčí cíle:

- Aktualizace 5 stávajících prezentací:
 - a) Úvod do teorie výpočetní složitosti

- Vytvořena prezentace v systému LATEX (21 slajdů)
 - oproti původní prezentaci přidány příklady a rozepsány typy problémů, přidána zmínka o Kolmogorově složitosti, některé výpočetní modely, Cobhamova teze a přesnější definice konstruovatelných funkcí.

Cíle a jejich řešení (4/7)

Dílčí cíle:

- Aktualizace 5 stávajících prezentací:
 - b) RAM a RASP stroje

- Vytvořena prezentace v systému LATEX (22 slajdů)
 - oproti původní prezentaci přidány přesnější definice RAM a RASP strojů, logaritmické časové složitosti a důkaz ekvivalence RAM strojů a Turingových strojů.

Cíle a jejich řešení (5/7)

Dílčí cíle:

- 2 Aktualizace 5 stávajících prezentací:
 - c) Vztahy mezi složitostními třídami

- Vytvořena prezentace v systému LATEX (27 slajdů)
 - oproti původní prezentaci přidány důkazy platnosti inkluzí mezi některými třídami a podány důkazy Savitchovy věty a Immerman-Szelepcsényiho věty.

Cíle a jejich řešení (6/7)

Dílčí cíle:

- 2 Aktualizace 5 stávajících prezentací:
 - d) NP-úplné problémy

- Vytvořena prezentace v systému LATEX (19 slajdů)
 - oproti původní prezentaci přidány důkazy NP-úplnosti problémů CNF, k-CNF, CLIQUE, INDEPENDENT SET, VERTEX COVER, GRAPH COLOURING, SUBSET SUM, PARTITION, KNAPSACK.

Cíle a jejich řešení (7/7)

Dílčí cíle:

- Aktualizace 5 stávajících prezentací:
 - e) Paralelní výpočty

- Vytvořena prezentace v systému LATEX (28 slajdů)
 - oproti původní prezentaci přidány popisy složitosti Booleovských obvodů včetně důkazu simulace mezi Booleovskými modely a paralelními RAM stroji, přidán důkaz P-úplnosti problému CVP a důkaz P-úplnosti problému MAXFLOW pomocí redukce z problému MCVP2.

Čerpání finančních prostředků

Běžné náklady

Položka	Částka [Kč]
Stipendia	40.000,00
L. Charvát, O. Lengál	
Cestovné zahraniční	24.000,00
cesta O. Lengála na konference ETAPS'13	
Ostatní náklady	11.000,00
nákup 7 knih	
Celkem	75.000,00

Výsledky a výstupy

- Hlavní výstupy—7 prezentací
 - úvod to teorie výpočetní složitosti,
 - RAM a RASP stroje,
 - vztahy mezi složitostními třídami,
 - NP-úplné problémy,
 - paralelní výpočty,
 - kryptografie z pohledu výpočetní složitosti,
 - čítací třídy.
- Vedlejší výstupy:
 - pořízení 7 knih k tématu teorie výpočetní složitosti.

ETAPS'13

- A. Bouajjani, E. Derevenetc, R. Meyer. Checking Robustness against TSO. ESOP'13.
 - Trace robustness under TSO is PSPACE-complete.
- A. Bohy, V. Bruyère, E. Filiot, J.-F. Raskin. Synthesis from LTL Specifications with Mean-Payoff Objectives. TACAS'13.
 - LTL_{MP} realizability is 2EXPTIME-complete.
- P. Godefroid, M. Yannakakis. Analysis of Boolean Programs. TACAS'13.
 - Complexity results about Boolean programs.
- ...