Real Exchange Rate and Net Trade Dynamics: Financial and Trade Shocks

Marcos Mac Mullen Soo Kyung Woo

University of Rochester

March 1, 2023

- $RER = NER \cdot P^*/P$
 - Value of a basket of goods abroad in terms of home goods

- $RER = NER \cdot P^*/P$
 - Value of a basket of goods abroad in terms of home goods
- Among the most watched, analyzed, and policy-related economic measures

- $RER = NER \cdot P^*/P$
 - Value of a basket of goods abroad in terms of home goods
- Among the most watched, analyzed, and policy-related economic measures
 - Differences in welfare, competitiveness in international markets
 - Key variable for trade and capital flows

- $RER = NER \cdot P^*/P$
 - Value of a basket of goods abroad in terms of home goods
- Among the most watched, analyzed, and policy-related economic measures
 - Differences in welfare, competitiveness in international markets
 - Key variable for trade and capital flows
- Which shocks account for the dynamics of the RER?

- $RER = NER \cdot P^*/P$
 - Value of a basket of goods abroad in terms of home goods
- Among the most watched, analyzed, and policy-related economic measures
 - Differences in welfare, competitiveness in international markets
 - Key variable for trade and capital flows
- Which shocks account for the dynamics of the RER?
- Literature emphasizes the role of financial shocks (Itskhoki and Mukhin 2021)
 - To explain disconnect to output, consumption, and interest rate Puzzles

- $RER = NER \cdot P^*/P$
 - Value of a basket of goods abroad in terms of home goods
- Among the most watched, analyzed, and policy-related economic measures
 - Differences in welfare, competitiveness in international markets
 - Key variable for trade and capital flows
- Which shocks account for the dynamics of the RER?
- Literature emphasizes the role of financial shocks (Itskhoki and Mukhin 2021)
- Missing: Three additional features of the RER

80% of variations at frequencies lower than business cycles (>32 quarters)

80% of variations at frequencies lower than business cycles (>32 quarters)

80% of variations at frequencies lower than business cycles (>32 quarters)

Large long-run comovement with net trade (J-curve) 80% of variations at frequencies lower than business cycles (>32 quarters)

Smaller short-run correlation with net trade Large long-run comovement with net trade (J-curve) 80% of variations at frequencies lower than business cycles (>32 quarters)

- (1) Smaller short-run correlation with net trade
- (2) Large long-run comovement with net trade (J-curve)
- (3) 80% of variations at frequencies lower than business cycles (>32 quarters)

- (1) Smaller short-run correlation with net trade
- (2) Large long-run comovement with net trade (J-curve)
- (3) 80% of variations at frequencies lower than business cycles (>32 quarters)

- (1) Smaller short-run correlation with net trade
- (2) Large long-run comovement with net trade (J-curve)
- (3) 80% of variations at frequencies lower than business cycles (>32 quarters)

• Propose unified treatment of dynamics of the RER at all frequencies

- Propose unified treatment of dynamics of the RER at all frequencies
- Exploit the comovement with net trade to discipline the model

- Propose unified treatment of dynamics of the RER at all frequencies
- Exploit the comovement with net trade to discipline the model
- Introduce a 2-country macro model with
 - Dynamic trade: heterogeneous firms with dynamic exporting decision
 - Shocks in financial market: noise traders, expectational errors, risk premia, ...
 - Shocks to trade barriers: trade policy, logistics cost

- Propose unified treatment of dynamics of the RER at all frequencies
- Exploit the comovement with net trade to discipline the model
- Introduce a 2-country macro model with
 - Dynamic trade: heterogeneous firms with dynamic exporting decision
 - Shocks in financial market: noise traders, expectational errors, risk premia, ...
 - Shocks to trade barriers: trade policy, logistics cost
- Show that model is consistent with RER dynamics at full spectrum of frequencies

- Propose unified treatment of dynamics of the RER at all frequencies
- Exploit the comovement with net trade to discipline the model
- Introduce a 2-country macro model with
 - Dynamic trade: heterogeneous firms with dynamic exporting decision
 - Shocks in financial market: noise traders, expectational errors, risk premia, ...
 - Shocks to trade barriers: trade policy, logistics cost
- Show that model is consistent with RER dynamics at full spectrum of frequencies
- Evaluate the role of financial and trade shocks

• Shocks in financial market

Shocks to trade barriers

• Dynamic trade

- Shocks in financial market
 - \rightarrow (0) induce disconnect to output, consumption, and interest rates
- Shocks to trade barriers

Dynamic trade

- Shocks in financial market
 - \rightarrow (0) induce disconnect to output, consumption, and interest rates
- Shocks to trade barriers
 - ightarrow (1) reduce SR correlation with net trade
- Dynamic trade

- Shocks in financial market
 - \rightarrow (0) induce disconnect to output, consumption, and interest rates
- Shocks to trade barriers
 - \rightarrow (1) reduce SR correlation with net trade
- Dynamic trade
 - ightarrow (2) generate LR comovement larger than SR

- Shocks in financial market
 - \rightarrow (0) induce disconnect to output, consumption, and interest rates
- Shocks to trade barriers
 - \rightarrow (1) reduce SR correlation with net trade
- Dynamic trade
 - \rightarrow (2) generate LR comovement larger than SR
 - \rightarrow (3) assign 80% of variation at low frequency

- Shocks in financial market
 - ightarrow (0) induce disconnect to output, consumption, and interest rates
- Shocks to trade barriers
 - \rightarrow (1) reduce SR correlation with net trade
- Dynamic trade
 - \rightarrow (2) generate LR comovement larger than SR
 - \rightarrow (3) assign 80% of variation at low frequency

Trade shocks explain 70% of low frequency variations in the RER

Literature Review

International macro models

- Backus, Kehoe and Kydland (1994)
- Rabanal and Rubio-Ramirez (2015), Gornemann, Guerrón-Quintana and Saffie (2020)

Contribution: Discipline dynamic trade with microfoundations on exporters

RER and capital flows in International Finance & International Trade

- Devereux and Engel (2002), Gabaix and Maggiori (2015), Farhi and Gabaix (2016), Itskhoki and Mukhin (2021)
- Obstfeld and Rogoff (2000), Eaton, Kortum and Neiman (2016), Reyes-Heroles (2016), Alessandria and Choi (2021), Sposi (2021), Alessandria, Bai and Woo (2022)

Contribution: Build the bridge between two strands of literature

Measurement of trade costs

- Levchenko, Lewis and Tesar (2010), Fitzgerald (2012)
- Head and Mayer (2014)

Contribution: Explore generalized specification of trade costs

Outline

Benchmark Model

Calibration and Identification

(1) High Frequency Comovement with Net Trade

Untargeted: RER at All Frequencies

- (2) Low Frequency Comovement with Net Trade
- (3) High/Low Frequency Decomposition
- (0) High Frequency Disconnect to Other Variables

Application: Role of Financial and Trade Shocks

Conclusion

Outline

Benchmark Model

Calibration and Identification

(1) High Frequency Comovement with Net Trade

Untargeted: RER at All Frequencies

- (2) Low Frequency Comovement with Net Trade
- (3) High/Low Frequency Decomposition
- (0) High Frequency Disconnect to Other Variables

Application: Role of Financial and Trade Shocks

Conclusion

• Two-country international macro model (ROW & US)

- Two-country international macro model (ROW & US)
- International bond (Dollar denominated) & ROW-only bond

- Two-country international macro model (ROW & US)
- International bond (Dollar denominated) & ROW-only bond
- Heterogeneous intermediate producers with dynamic exporting decision
 - Sunk cost of exporting

- Two-country international macro model (ROW & US)
- International bond (Dollar denominated) & ROW-only bond
- Heterogeneous intermediate producers with dynamic exporting decision
 - Sunk cost of exporting
- Non-traded final goods are CES aggregates of tradable intermediates

Model Overview

- Two-country international macro model (ROW & US)
- International bond (Dollar denominated) & ROW-only bond
- Heterogeneous intermediate producers with dynamic exporting decision
 - Sunk cost of exporting
- Non-traded final goods are CES aggregates of tradable intermediates
- Common productivity shocks a_{ct} , differential productivity shocks a_{dt} , financial shocks ψ_t , and trade shocks ξ_t

Lifetime utility

$$\mathbb{E}\left[\sum_t \beta^t \frac{\left(C_t^{\eta} (1-L_t)^{1-\eta}\right)^{1-\sigma}}{1-\sigma}\right]$$

$$C_t + I_t = W_t L_t + R_t^k K_t + \Pi_t$$

Lifetime utility

$$\mathbb{E}\left[\sum_{t}\beta^{t}\frac{\left(C_{t}^{\eta}(1-L_{t})^{1-\eta}\right)^{1-\sigma}}{1-\sigma}\right]$$

Budget constraints

$$C_t + I_t + B_{t+1}$$
 = $W_t L_t + R_t^k K_t + \Pi_t + B_t (1 + i_t)$

• B Domestic bond (only in ROW)

Lifetime utility

$$\mathbb{E}\left[\sum_{t} \beta^{t} \frac{\left(C_{t}^{\eta} (1 - L_{t})^{1 - \eta}\right)^{1 - \sigma}}{1 - \sigma}\right]$$

$$C_t + I_t + B_{t+1} + \frac{Q_t}{B_{t+1}^*} B_{t+1}^* = W_t L_t + R_t^k K_t + \Pi_t + B_t (1 + i_t) + Q_t B_t^* (1 + i_t^*)$$

- *B* Domestic bond (only in ROW)
- B* International bond
- Q_t Real exchange rate

Lifetime utility

$$\mathbb{E}\left[\sum_{t}\beta^{t}\frac{\left(C_{t}^{\eta}(1-L_{t})^{1-\eta}\right)^{1-\sigma}}{1-\sigma}\right]$$

$$C_t + I_t + B_{t+1} + rac{Q_t}{\psi_t} B_{t+1}^* = W_t L_t + R_t^k K_t + \Pi_t + B_t (1 + i_t) + Q_t B_t^* (1 + i_t^*)$$

- *B* Domestic bond (only in ROW)
- ullet B* International bond: financial shock ψ_t
- Q_t Real exchange rate

Lifetime utility

$$\mathbb{E}\left[\sum_{t} \beta^{t} \frac{\left(C_{t}^{\eta} (1 - L_{t})^{1 - \eta}\right)^{1 - \sigma}}{1 - \sigma}\right]$$

$$C_t + I_t + B_{t+1} + \frac{Q_t}{\psi_t} B_{t+1}^* + \frac{\chi_b}{2} Q_t (B_{t+1}^* - \bar{B})^2 = W_t L_t + R_t^k K_t + \Pi_t + B_t (1 + i_t) + Q_t B_t^* (1 + i_t^*)$$

- *B* Domestic bond (only in ROW)
- B^* International bond: financial shock ψ_t , portfolio adjustment cost χ_b (only in ROW)
- Q_t Real exchange rate

Lifetime utility

$$\mathbb{E}\left[\sum_{t} \beta^{t} \frac{\left(C_{t}^{\eta} (1 - L_{t})^{1 - \eta}\right)^{1 - \sigma}}{1 - \sigma}\right]$$

$$C_t + I_t + B_{t+1} + \frac{Q_t}{\psi_t} B_{t+1}^* + \frac{\chi_b}{2} Q_t (B_{t+1}^* - \bar{B})^2 = W_t L_t + R_t^k K_t + \Pi_t + B_t (1 + i_t) + Q_t B_t^* (1 + i_t^*)$$

- B Domestic bond (only in ROW)
- B^* International bond: financial shock ψ_t , portfolio adjustment cost χ_b (only in ROW)
- Q_t Real exchange rate
- Capital adjustment cost

$$\mathcal{K}_{t+1} = (1-\delta)\mathcal{K}_t + \left[I_t - \frac{\kappa}{2} \frac{(\Delta \mathcal{K}_{t+1})^2}{\mathcal{K}_t}\right]$$

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t} = 1 - L_t$$

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_t \lambda_t \left[R_t^k + 1 - \delta + \kappa \frac{\Delta K_{t+2}}{K_{t+1}} + \frac{\kappa}{2} \left(\frac{\Delta K_{t+2}}{K_{t+1}} \right)^2 \right] = \mathbb{E}_t \lambda_{t+1} \left[1 + \kappa \frac{\Delta K_{t+1}}{K_t} \right]$$

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t} = 1 - L_t$$

Investment

$$\mathbb{E}_t \lambda_t \left[R_t^k + 1 - \delta + \kappa \frac{\Delta K_{t+2}}{K_{t+1}} + \frac{\kappa}{2} \left(\frac{\Delta K_{t+2}}{K_{t+1}} \right)^2 \right] = \mathbb{E}_t \lambda_{t+1} \left[1 + \kappa \frac{\Delta K_{t+1}}{K_t} \right]$$

$$\underbrace{i_t - i_t^*} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}$$

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_t \lambda_t \left[R_t^k + 1 - \delta + \kappa \frac{\Delta K_{t+2}}{K_{t+1}} + \frac{\kappa}{2} \left(\frac{\Delta K_{t+2}}{K_{t+1}} \right)^2 \right] = \mathbb{E}_t \lambda_{t+1} \left[1 + \kappa \frac{\Delta K_{t+1}}{K_t} \right]$$

$$\underbrace{i_t - i_t^*}_{\text{interest differentials}} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}_{\text{interest differentials}}$$

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_{t}\lambda_{t}\left[R_{t}^{k}+1-\delta+\kappa\frac{\Delta K_{t+2}}{K_{t+1}}+\frac{\kappa}{2}\left(\frac{\Delta K_{t+2}}{K_{t+1}}\right)^{2}\right]=\mathbb{E}_{t}\lambda_{t+1}\left[1+\kappa\frac{\Delta K_{t+1}}{K_{t}}\right]$$

$$\underbrace{i_t - i_t^*}_{ ext{interest differentials}} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}_{ ext{changes in RER}}$$

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_{t}\lambda_{t}\left[R_{t}^{k}+1-\delta+\kappa\frac{\Delta K_{t+2}}{K_{t+1}}+\frac{\kappa}{2}\left(\frac{\Delta K_{t+2}}{K_{t+1}}\right)^{2}\right]=\mathbb{E}_{t}\lambda_{t+1}\left[1+\kappa\frac{\Delta K_{t+1}}{K_{t}}\right]$$

Domestic & International Bonds

$$\underbrace{i_t - i_t^*}_{\text{interest differentials}} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}_{\text{changes in RER}} \neq 0$$

• Deviations to the Uncovered Interest Parity

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_{t}\lambda_{t}\left[R_{t}^{k}+1-\delta+\kappa\frac{\Delta K_{t+2}}{K_{t+1}}+\frac{\kappa}{2}\left(\frac{\Delta K_{t+2}}{K_{t+1}}\right)^{2}\right]=\mathbb{E}_{t}\lambda_{t+1}\left[1+\kappa\frac{\Delta K_{t+1}}{K_{t}}\right]$$

Domestic & International Bonds

$$\underbrace{i_t - i_t^*}_{\text{interest differentials}} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}_{\text{changes in RER}} = \psi_t - \chi_b \cdot \left(\mathcal{B}_{t+1}^* - \bar{\mathcal{B}} \right)$$

• Deviations to the Uncovered Interest Parity

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_{t}\lambda_{t}\left[R_{t}^{k}+1-\delta+\kappa\frac{\Delta K_{t+2}}{K_{t+1}}+\frac{\kappa}{2}\left(\frac{\Delta K_{t+2}}{K_{t+1}}\right)^{2}\right]=\mathbb{E}_{t}\lambda_{t+1}\left[1+\kappa\frac{\Delta K_{t+1}}{K_{t}}\right]$$

Domestic & International Bonds

$$\underbrace{i_t - i_t^*}_{\text{interest differentials}} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}_{\text{changes in RER}} = \psi_t - \chi_b \cdot \left(\mathcal{B}_{t+1}^* - \bar{\mathcal{B}} \right)$$

• Deviations to the Uncovered Interest Parity

Consumption and Labor

$$\frac{1-\eta}{\eta}\frac{C_t}{W_t}=1-L_t$$

Investment

$$\mathbb{E}_t \lambda_t \left[R_t^k + 1 - \delta + \kappa \frac{\Delta \mathcal{K}_{t+2}}{\mathcal{K}_{t+1}} + \frac{\kappa}{2} \left(\frac{\Delta \mathcal{K}_{t+2}}{\mathcal{K}_{t+1}} \right)^2 \right] = \mathbb{E}_t \lambda_{t+1} \left[1 + \kappa \frac{\Delta \mathcal{K}_{t+1}}{\mathcal{K}_t} \right]$$

$$\underbrace{i_t - i_t^*}_{\text{interest differentials}} - \underbrace{\mathbb{E}_t \left[\Delta q_{t+1} \right]}_{\text{changes in RER}} = \psi_t - \chi_b \cdot \left(B_{t+1}^* - \bar{B} \right)$$

- Deviations to the Uncovered Interest Parity
- Alternative microfoundations of the deviations result in an equivalent condition (Schmitt-Grohé and Uribe 2003, Itskhoki and Mukhin 2017, Yakhin 2021)

• ROW & US composite goods

$$Y_{Rt}$$
 Y_{Ut}

• ROW & US composite goods aggregated into final goods

$$D_t = \left[Y_{Rt}^{\frac{\rho-1}{\rho}} + \gamma^{\frac{1}{\rho}} Y_{Ut}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

- γ Home bias
- ullet ho Armington elasticity

• ROW & US composite goods aggregated into final goods

$$D_t = \left[Y_{Rt}^{rac{
ho-1}{
ho}} + \gamma^{rac{1}{
ho}} Y_{Ut}^{rac{
ho-1}{
ho}}
ight]^{rac{
ho}{
ho-1}}$$

- γ Home bias
- ρ Armington elasticity
- Varieties of each country aggregated into composite goods

$$Y_{Rt} = \left(\int_0^1 y_{R,jt}^{\frac{\theta-1}{\theta}} dj\right)^{\frac{\theta}{\theta-1}} \qquad Y_{Ut} = \left(\int_{j \in \mathcal{E}_t^*} y_{U,jt}^{\frac{\hat{\theta}_t - 1}{\hat{\theta}_t}} dj\right)^{\frac{\theta_t}{\hat{\theta}_t - 1}}$$

• ROW & US composite goods aggregated into final goods

$$D_t = \left[Y_{Rt}^{\frac{\rho-1}{\rho}} + \gamma^{\frac{1}{\rho}} Y_{Ut}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

- γ Home bias
- ρ Armington elasticity
- Varieties of each country aggregated into composite goods

$$Y_{Rt} = \left(\int_0^1 y_{R,jt}^{\frac{\theta-1}{\theta}} dj\right)^{\frac{\theta}{\theta-1}} \qquad Y_{Ut} = \left(\int_{j \in \mathcal{E}_t^*} y_{U,jt}^{\frac{\hat{\theta}_t - 1}{\hat{\theta}_t}} dj\right)^{\frac{\theta_t}{\hat{\theta}_t - 1}}$$

• $\hat{\theta}_t = \theta Q_t^{\zeta}$: time-varying elasticity of substitution across imported varieties

ROW & US composite goods aggregated into final goods

$$D_t = \left[Y_{Rt}^{rac{
ho-1}{
ho}} + \gamma^{rac{1}{
ho}} Y_{Ut}^{rac{
ho-1}{
ho}}
ight]^{rac{
ho}{
ho-1}}$$

- γ Home bias
- ρ Armington elasticity
- Varieties of each country aggregated into composite goods

$$Y_{Rt} = \left(\int_0^1 y_{R,jt}^{rac{ heta-1}{ heta}} dj
ight)^{rac{ heta}{ heta-1}} \qquad Y_{Ut} = \left(\int_{j\in\mathcal{E}_t^*} y_{U,jt}^{rac{\hat{ heta}_t-1}{\hat{ heta}_t}} dj
ight)^{rac{\hat{ heta}_t}{\hat{ heta}_t-1}}$$

- $\hat{\theta}_t = \theta Q_t^{\zeta}$: time-varying elasticity of substitution across imported varieties
 - Pricing to market (Alessandria 2009)

• ROW & US composite goods aggregated into final goods

$$D_t = \left[Y_{Rt}^{rac{
ho-1}{
ho}} + \gamma^{rac{1}{
ho}} Y_{Ut}^{rac{
ho-1}{
ho}}
ight]^{rac{
ho}{
ho-1}}$$

- γ Home bias
- ρ Armington elasticity
- Varieties of each country aggregated into composite goods

$$Y_{Rt} = \left(\int_0^1 y_{R,jt}^{rac{ heta-1}{ heta}} dj
ight)^{rac{ heta}{ heta-1}} \qquad Y_{Ut} = \left(\int_{j\in\mathcal{E}_t^*} y_{U,jt}^{rac{\hat{ heta}_t-1}{\hat{ heta}_t}} dj
ight)^{rac{\hat{ heta}_t}{\hat{ heta}_t-1}}$$

- $\hat{\theta}_t = \theta Q_t^{\zeta}$: time-varying elasticity of substitution across imported varieties
 - Pricing to market (Alessandria 2009)
 - Variable markup & incomplete RER passthrough

- Continuum of firms $j \in [0,1]$
- Heterogeneous in idiosyncratic productivity

$$y_{jt} = e^{a_t + \mu_{jt}} I_{jt}^{\alpha} k_{jt}^{1-\alpha}, \qquad a_t \sim AR(1) \quad \mu_{jt} \stackrel{iid}{\sim} N(0, \sigma_{\mu})$$

- Continuum of firms $j \in [0,1]$
- Heterogeneous in idiosyncratic productivity

$$y_{jt} = e^{a_t + \mu_{jt}} \int_{jt}^{\alpha} k_{jt}^{1-\alpha}, \qquad a_t \sim AR(1) \quad \mu_{jt} \stackrel{iid}{\sim} N(0, \sigma_{\mu})$$

• Export participation $m_{jt} \in \{0,1\}$

- Continuum of firms $j \in [0,1]$
- Heterogeneous in idiosyncratic productivity

$$y_{jt} = e^{a_t + \mu_{jt}} I_{jt}^{\alpha} k_{jt}^{1-\alpha}, \qquad a_t \sim AR(1) \quad \mu_{jt} \stackrel{iid}{\sim} N(0, \sigma_{\mu})$$

- Export participation $m_{jt} \in \{0,1\}$
- Fixed cost of exporting $f_{m_{j,t-1}}$

- Continuum of firms $j \in [0,1]$
- Heterogeneous in idiosyncratic productivity

$$y_{jt} = e^{a_t + \mu_{jt}} I_{jt}^{\alpha} k_{jt}^{1-\alpha}, \qquad a_t \sim AR(1) \quad \mu_{jt} \stackrel{iid}{\sim} N(0, \sigma_{\mu})$$

- Export participation $m_{jt} \in \{0,1\}$
- Fixed cost of exporting $f_{m_{i,t-1}}$
 - Fixed cost for starters $f_0 >$ continuing exporters f_1
 - Dixit (1989), Baldwin and Krugman (1989), Das et al. (2007), Alessandria and Choi (2007, 2021)

• The dynamic problem of a firm

$$V_t(\mu_t, m_{t-1}, S_t) = \max_{m_t, p_{Rt}, p_{Rt}^*, l_t, k_t} p_{Rt} y_{Rt} + m_t Q_t p_{Rt}^* y_{Rt}^* - W_t l_t - R_t^k k_t$$

• μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} l_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}}$$

• μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} l_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}} + \mathbb{E}_{t} \Omega_{t} V_{t+1}(\mu_{t+1}, m_{t}, S_{t+1})$$

• μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} l_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}} + \mathbb{E}_{t} \Omega_{t} V_{t+1}(\mu_{t+1}, m_{t}, S_{t+1})$$

- μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor
- Threshold technology to change status

$$W_t f_m - \pi(\mu_{mt}) = \Omega_t \mathbb{E}_t[V_{t+1}(\mu_{t+1}, 1, S_{t+1}) - V_{t+1}(\mu_{t+1}, 0, S_{t+1})], \quad m \in \{0, 1\}$$

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} l_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}} + \mathbb{E}_{t} \Omega_{t} V_{t+1}(\mu_{t+1}, m_{t}, S_{t+1})$$

- μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor
- Threshold technology to change status

$$W_t f_m - \pi(\mu_{mt}) = \Omega_t \mathbb{E}_t[V_{t+1}(\mu_{t+1}, 1, S_{t+1}) - V_{t+1}(\mu_{t+1}, 0, S_{t+1})], \quad m \in \{0, 1\}$$

• $\mu_{0t} > \mu_{1t}$

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} l_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}} + \mathbb{E}_{t} \Omega_{t} V_{t+1} (\mu_{t+1}, m_{t}, S_{t+1})$$

- μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor
- Threshold technology to change status

$$W_t f_m - \pi(\mu_{mt}) = \Omega_t \mathbb{E}_t [V_{t+1}(\mu_{t+1}, 1, S_{t+1}) - V_{t+1}(\mu_{t+1}, 0, S_{t+1})], \quad m \in \{0, 1\}$$

- $\mu_{0t} > \mu_{1t}$
- Export participation is history dependent and forward looking

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} I_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}} + \mathbb{E}_{t} \Omega_{t} V_{t+1}(\mu_{t+1}, m_{t}, S_{t+1})$$

- μ Idiosyncratic productivity, $m \in \{0,1\}$ Export status, S Aggregate state, Ω Stochastic discount factor
- Threshold technology to change status

$$W_t f_m - \pi(\mu_{mt}) = \Omega_t \mathbb{E}_t [V_{t+1}(\mu_{t+1}, 1, S_{t+1}) - V_{t+1}(\mu_{t+1}, 0, S_{t+1})], \quad m \in \{0, 1\}$$

- $\mu_{0t} > \mu_{1t}$
- Export participation is history dependent and forward looking
- Mass of exporters evolves as

$$N_t = N_{t-1} \Pr[\mu \ge \mu_{1t}] + (1 - N_{t-1}) \Pr[\mu \ge \mu_{0t}]$$

• The dynamic problem of a firm

$$V_{t}(\mu_{t}, m_{t-1}, S_{t}) = \max_{m_{t}, p_{Rt}, p_{Rt}^{*}, l_{t}, k_{t}} p_{Rt} y_{Rt} + m_{t} Q_{t} p_{Rt}^{*} y_{Rt}^{*} - W_{t} l_{t} - R_{t}^{k} k_{t} - m_{t} W_{t} f_{m_{t-1}} + \mathbb{E}_{t} \Omega_{t} V_{t+1} (\mu_{t+1}, m_{t}, S_{t+1})$$

- μ Idiosyncratic productivity, $m \in \{0, 1\}$ Export status, S Aggregate state, Ω Stochastic discount factor
- Threshold technology to change status

$$W_t f_m - \pi(\mu_{mt}) = \Omega_t \mathbb{E}_t [V_{t+1}(\mu_{t+1}, 1, S_{t+1}) - V_{t+1}(\mu_{t+1}, 0, S_{t+1})], \quad m \in \{0, 1\}$$

- $\mu_{0t} > \mu_{1t}$
- Export participation is history dependent and forward looking
- Mass of exporters evolves as

$$N_t = N_{t-1} \Pr[\mu \ge \mu_{1t}] + (1 - N_{t-1}) \Pr[\mu \ge \mu_{0t}]$$

• Slow evolving firm distribution \rightarrow Gradual response of aggregate trade

Shocks to Trade Cost

• Resource constraint of producer *j*

$$y_{jt} = y_{j,Rt} + m_{jt}y_{j,Rt}^*$$

Shocks to Trade Cost

• Resource constraint of producer *j*

$$y_{jt} = y_{j,Rt}e^{\xi_{Rt}} + m_{jt}y_{j,Rt}^*e^{\xi_{Rt}^*}$$

$$y_{jt} = y_{j,Rt}e^{\xi_{Rt}} + m_{jt}y_{j,Rt}^*e^{\xi_{Rt}^*}$$

- International trade cost
 - ROW \rightarrow US: ξ_{Rt}^*
 - US \rightarrow ROW: ξ_{Ut}

$$y_{jt} = y_{j,Rt}e^{\xi_{Rt}} + m_{jt}y_{j,Rt}^*e^{\xi_{Rt}^*}$$

- International trade cost
 - ROW \rightarrow US: $\xi_{Rt}^* = \xi_t/2$
 - US \rightarrow ROW: $\xi_{Ut} = -\xi_t/2$
 - $(\xi_t = \xi_{Rt}^* \xi_{Ut}$: Only the differential cost affects the RER and net trade)

$$y_{jt} = y_{j,Rt}e^{\xi_{Rt}} + m_{jt}y_{j,Rt}^*e^{\xi_{Rt}^*}$$

- International trade cost
 - ROW \rightarrow US: $\xi_{Rt}^* = \xi_t/2$
 - US \rightarrow ROW: $\xi_{Ut} = -\xi_t/2$
 - $(\xi_t = \xi_{Rt}^* \xi_{Ut}$: Only the differential cost affects the RER and net trade)
- Domestic trade cost
 - ROW \rightarrow ROW: $\xi_{Rt} \stackrel{?}{=} 0$
 - US \rightarrow US: $\xi_{Ut}^* = 0$

$$y_{jt} = y_{j,Rt}e^{\xi_{Rt}} + m_{jt}y_{j,Rt}^*e^{\xi_{Rt}^*}$$

- International trade cost
 - ROW \rightarrow US: $\xi_{Rt}^* = \xi_t/2$
 - US \rightarrow ROW: $\xi_{Ut} = -\xi_t/2$
 - $(\xi_t = \xi_{Rt}^* \xi_{Ut}$: Only the differential cost affects the RER and net trade)
- Domestic trade cost
 - ROW \rightarrow ROW: $\xi_{Rt} = \tau \xi_t/2, \ \tau \in \mathbb{R}$
 - US \rightarrow US: $\xi_{Ut}^* = 0$
 - (Capture changes in trade barrier among ROW countries)

$$\xi_{Rt} = \tau \xi_t / 2 \qquad \xi_{Rt}^* = \xi_t / 2$$

$$\xi_{Rt} = \tau \xi_t / 2 \qquad \xi_{Rt}^* = \xi_t / 2$$

- Discipline with data on cross-country correlation of expenditure
 - If elastic, home and foreign consumers subject to similar shocks
 - Expenditures become more synchronized

$$\xi_{Rt} = \tau \xi_t / 2 \qquad \xi_{Rt}^* = \xi_t / 2$$

- Discipline with data on cross-country correlation of expenditure
 - If elastic, home and foreign consumers subject to similar shocks
 - Expenditures become more synchronized

ullet $au \in \mathbb{R}$ determines the elasticity of domestic cost to international cost

$$\xi_{Rt} = \tau \xi_t / 2 \qquad \xi_{Rt}^* = \xi_t / 2$$

- Discipline with data on cross-country correlation of expenditure
 - If elastic, home and foreign consumers subject to similar shocks
 - Expenditures become more synchronized

• $\rho(\Delta RER, \Delta c - \Delta c^*) < 0$ in data (Backus-Smith Puzzle)

$$\xi_{Rt} = \tau \xi_t / 2 \qquad \xi_{Rt}^* = \xi_t / 2$$

- Discipline with data on cross-country correlation of expenditure
 - · If elastic, home and foreign consumers subject to similar shocks
 - Expenditures become more synchronized

- $\rho(\Delta RER, \Delta c \Delta c^*) < 0$ in data (Backus-Smith Puzzle)
 - Financial shocks generate negative correlation
 - Trade shocks do not offset

Shock Processes

- Trade shocks $\xi_t = \rho_{\xi} \xi_{t-1} + \varepsilon_{\xi t}, \quad \varepsilon_{\xi t} \sim N(0, \sigma_{\xi}^2)$
- Financial shock $\psi_t = \rho_\psi \psi_{t-1} + \epsilon_{\psi t}, \quad \varepsilon_{\psi t} \sim \textit{N}(0, \sigma_\psi^2)$
- Idiosyncratic productivity shocks $\mu_{jt} \stackrel{iid}{\sim} N(0, \sigma_{\mu}^2)$
- Aggregate productivity shocks

$$\begin{bmatrix} a_t \\ a_t^* \end{bmatrix} = \begin{bmatrix} a_{ct} + a_{dt}/2 \\ a_{ct} - a_{dt}/2 \end{bmatrix}$$

$$a_{ct} = \rho_{ac}a_{ct-1} + \varepsilon_{ac,t} \qquad \varepsilon_{ac,t} \sim N(0, \sigma_{ac}^2)$$

$$a_{dt} = \rho_{ad}a_{dt-1} + \varepsilon_{ad,t} \qquad \varepsilon_{ad,t} \sim N(0, \sigma_{ad}^2)$$

Outline

Benchmark Model

Calibration and Identification

(1) High Frequency Comovement with Net Trade

Untargeted: RER at All Frequencies

- (2) Low Frequency Comovement with Net Trade
- (3) High/Low Frequency Decomposition
- (0) High Frequency Disconnect to Other Variables

Application: Role of Financial and Trade Shocks

Conclusion

Data

- Period: 1980Q1 2019Q4
- US and ROW (10 Countries)
- Real exchange rate: Effective exchange rate indices, Narrow (BIS)
- Y, C, I, X, M: National account volume estimates (OECD)
- US real interest rate: Effective federal funds rate (IMF), CPI (OECD)
- ROW real interest rate: Money market rates (IMF, OECD, BOJ), CPI (OECD)
- US exporter characteristics (Bernard and Jensen 1999, Alessandria and Choi 2014)

Preview of Calibration

- Standard parameters: Exogenouly set
- Export market parameters: Set to match exporter microdata
- Shocks and adjustment costs: Jointly estimate to match targeted moments

Exogenously Set Parameters

Parameter		Value	Target Moment
Discount Factor	β	0.99	Annual interest rate of 4%
Risk Aversion	σ	2	Intertemporal elasticity of substitution of 0.5
Weight on Consumption	η	0.36	Hours worked
Capital Share	α	0.36	Capital share of income
Elasticity of Substitution across Varieties	θ	3.5	Producer markup of 40%
Elasticity of Substitution between H and F	ρ	1.5	Itskhoki and Mukhin (2021)
Home Bias	γ	0.097	Trade-to-GDP ratio of 14%
Persistence Common Productivity	ρ_{a_c}	0.98	GDP persistence
Persistence Differential Productivity	ρ_{a_d}	0.98	GDP persistence
Depreciation Rate	δ	0.02	Itskhoki and Mukhin (2021)

Exporter Parameters

Parameter		Value	Target
Fixed cost of new exporters	f_0	0.07	Export participation of 25%
Fixed cost of incumbent exporters	f_1	0.04	Exit rate of 3.5%
Volatility of idiosyncratic productivity	σ_{μ}	0.08	Exporter premium of 75%
Pricing to market parameter	ζ	1.00	Exchange rate pass-through of 60%

Estimated Parameters

Parameter		Value	Identification
Financial shock, volatility	$\sigma_{\psi}/\sigma_{a_{c}}$	0.57	$ ho\left(\Delta c - \Delta c^*, \Delta q\right)$
Financial shock, persistence	$ ho_{\psi}$	0.99	$ ho\left(i-i^* ight)$
Trade shock, volatility	$\sigma_{\xi}/\sigma_{a_c}$	17.01	$\sigma(xm)/\sigma(q)$
Trade shock, persistence	$ ho_{\xi}$	0.98	$\rho\left(\Delta x m, \Delta q\right)$
Trade shock, within-country share	au	0.17	$ ho(\Delta d, \Delta d^*)$
Productivity differentials, volatility	$\sigma_{\sf a_d}/\sigma_{\sf a_c}$	1.24	$ ho(\Delta y, \Delta y^*)$
Adjustment cost of portfolio	ξ_{b}	0.06	$\rho(xm)$
Adjustment cost of capital	κ	1.59	$\sigma(\Delta inv)/\sigma(\Delta y)$

Targeted Moments

Moments	Data	Baseline	
$\rho \left(\Delta c - \Delta c^*, \Delta q \right)$	-0.10	-0.11	
$\rho\left(\Delta x m, \Delta q\right)$	0.30	0.29	
$\sigma(xm)/\sigma(q)$	1.12	1.12	
$\rho(xm)$	0.98	0.93	
$ ho(\Delta y, \Delta y^*)$	0.40	0.39	
$ ho(\Delta d, \Delta d^*)$	0.34	0.34	
$\sigma(\Delta inv^*)/\sigma(\Delta y^*)$	2.59	2.60	
$\rho(i-i^*)$	0.90	0.88	

Targeted Moments

Moments	Data	Baseline	
$\rho\left(\Delta c - \Delta c^*, \Delta q\right)$	-0.10	-0.11	
$\rho\left(\Delta x m, \Delta q\right)$	0.30	0.29	
$\sigma(xm)/\sigma(q)$	1.12	1.12	
$\rho(xm)$	0.98	0.93	
$ ho(\Delta y, \Delta y^*)$	0.40	0.39	
$ ho(\Delta d, \Delta d^*)$	0.34	0.34	
$\sigma(\Delta inv^*)/\sigma(\Delta y^*)$	2.59	2.60	
$\rho(i-i^*)$	0.90	0.88	

• (1) Small comovement between RER and net trade at higher frequency

Targeted Moments

Moments	Data	Baseline	No trade shock
$\rho \left(\Delta c - \Delta c^*, \Delta q \right)$	-0.10	-0.11	-0.09
$ ho\left(\Delta x m, \Delta q\right)$	0.30	0.29	0.85
$\sigma(xm)/\sigma(q)$	1.12	1.12	2.50
ho(xm)	0.98	0.93	0.99
$ ho(\Delta y, \Delta y^*)$	0.40	0.39	0.41
$ ho(\Delta d, \Delta d^*)$	0.34	0.34	0.34
$\sigma(\Delta \mathit{inv}^*)/\sigma(\Delta y^*)$	2.59	2.60	2.62
$\rho(i-i^*)$	0.90	0.88	0.80

- (1) Small comovement between RER and net trade at higher frequency
- Without trade shocks, counterfactual high frequency moments

Outline

Benchmark Model

Calibration and Identification

(1) High Frequency Comovement with Net Trade

Untargeted: RER at All Frequencies

- (2) Low Frequency Comovement with Net Trade
- (3) High/Low Frequency Decomposition
- (0) High Frequency Disconnect to Other Variables

Application: Role of Financial and Trade Shocks

Conclusion

• Elasticity of trade measured by

$$xm_t = \rho \left(tot_t + q_t\right) + \left(d_t^* - d_t\right)$$

- Common to multi-good trade models
- xm_t Net trade, tot_t Terms of trade, d_t Domestic absorption

• Elasticity of trade measured by

$$xm_t = \rho \left(tot_t + q_t\right) + \left(d_t^* - d_t\right) + \epsilon_t$$

- Common to multi-good trade models
- xm_t Net trade, tot_t Terms of trade, d_t Domestic absorption
- Additional term ϵ_t (Baseline: trade shocks, firm distribution lacktriangle)

• Elasticity of trade measured by

$$xm_t = \rho \left(tot_t + q_t\right) + \left(d_t^* - d_t\right) + \epsilon_t$$

- Common to multi-good trade models
- xm_t Net trade, tot_t Terms of trade, d_t Domestic absorption
- Additional term ϵ_t (Baseline: trade shocks, firm distribution \bigcirc)
- Error correction model (Hooper et al. 2000, Marquez 2002, Alessandria and Choi 2021)

$$\Delta x m_{t} = \beta + \rho_{SR} \Delta (tot_{t} + q_{t}) + \Delta (d_{t}^{*} - d_{t}) \\ - \alpha \left\{ x m_{t-1} - \rho_{LR} \left(tot_{t-1} + q_{t-1} \right) - (d_{t-1}^{*} - d_{t-1}) \right\} + \varepsilon_{t}$$

• Elasticity of trade measured by

$$xm_t = \rho \left(tot_t + q_t\right) + \left(d_t^* - d_t\right) + \epsilon_t$$

- Common to multi-good trade models
- xm_t Net trade, tot_t Terms of trade, d_t Domestic absorption
- Additional term ϵ_t (Baseline: trade shocks, firm distribution \bigcirc)
- Error correction model (Hooper et al. 2000, Marquez 2002, Alessandria and Choi 2021)

$$\Delta x m_{t} = \beta + \rho_{SR} \Delta (tot_{t} + q_{t}) + \Delta (d_{t}^{*} - d_{t})$$

$$- \alpha \left\{ x m_{t-1} - \rho_{LR} \left(tot_{t-1} + q_{t-1} \right) - \left(d_{t-1}^{*} - d_{t-1} \right) \right\} + \varepsilon_{t}$$

Simulate models for 10,000 periods and use the latter half to regress the ECM

(2) LR Elasticity Larger than SR

Table: Trade Elasticity

	Data	Baseline	
Short run	0.20 (0.05)	0.35 (0.02)	
Long run	1.16 (0.25)	0.80 (0.09)	

(2) LR Elasticity Larger than SR

Table: Trade Elasticity

	Data	Baseline	No Dynamics
Short run	0.20	0.35	0.59
	(0.05)	(0.02)	(0.02)
Long run	1.16	0.80	0.55
	(0.25)	(0.09)	(0.07)

ullet Without Dynamic Trade, SR elasticity pprox LR elasticity

(3) Successfully Captures the Shape of the RER Spectrum

Table: Frequency Decomposition

Frequency	Data	Baseline	
High	0.02	0.03	
Business Cycle	0.15	0.10	
Low	0.83	0.87	

(3) Successfully Captures the Shape of the RER Spectrum

Table: Frequency Decomposition

Frequency	Data	Baseline	No Dynamics
High	0.02	0.03	0.02
Business Cycle	0.15	0.10	0.04
Low	0.83	0.87	0.94

- Without dynamics, assigns too much variance to low frequency
 - "Excess persistence puzzle" (Rabanal and Rubio-Ramirez 2015)
 - With dynamics, quantities more inelastic & RER moves more on impact

(0) Disconnect to Other Variables

- Output (Meese-Rogoff Puzzle)
- Interest rate (Forward Premium Puzzle)

• Consumption (Backus-Smith Puzzle) - Targeted

- Theory: RER is strongly connected to macro quantities
- Data: RER follows near random walk process, 3-6 more volatile than Y

• Theory: RER is strongly connected to macro quantities

• Data: RER follows near random walk process, 3-6 more volatile than Y

	Data	Baseline
$\sigma(\Delta q)/\sigma(\Delta y)$	4.24	4.12
$ ho(\Delta q)$	≈0	-0.02
ho(q)	0.97	0.96

• Theory: RER is strongly connected to macro quantities

• Data: RER follows near random walk process, 3-6 more volatile than Y

	Data	Baseline	No Trade Shock	No Financial Shock
$\sigma(\Delta q)/\sigma(\Delta y)$	4.24	4.12	3.03	2.89
$ ho(\Delta q)$	≈0	-0.02	-0.05	0.01
ho(q)	0.97	0.96	0.93	0.98

• Theory: RER is strongly connected to macro quantities

• Data: RER follows near random walk process, 3-6 more volatile than Y

	Data	Baseline	No Trade Shock	No Financial Shock
$\sigma(\Delta q)/\sigma(\Delta y)$	4.24	4.12	3.03	2.89
$ ho(\Delta q)$	≈0	-0.02	-0.05	0.01
ho(q)	0.97	0.96	0.93	0.98

• Financial shocks are relatively important for higher frequency movements

• Theory: RER is strongly connected to macro quantities

• Data: RER follows near random walk process, 3-6 more volatile than Y

	Data	Baseline	No Trade Shock	No Financial Shock
$\sigma(\Delta q)/\sigma(\Delta y)$	4.24	4.12	3.03	2.89
$ ho(\Delta q)$	≈0	-0.02	-0.05	0.01
ho(q)	0.97	0.96	0.93	0.98

- Financial shocks are relatively important for higher frequency movements
- Trade shocks generate large persistence

Disconnect: Interest Rate (Forward Premium Puzzle)

$$\mathbb{E}_{t}[\Delta q_{t+1}] = \alpha + \beta_{\textit{Fama}} \left(i_{t} - i_{t}^{*} \right) + u_{t}$$

Disconnect: Interest Rate (Forward Premium Puzzle)

$$\mathbb{E}_{t}[\Delta q_{t+1}] = \alpha + \beta_{\textit{Fama}} \left(i_{t} - i_{t}^{*} \right) + u_{t}$$

- Theory: $\beta_{Fama} \approx 1$
 - High interest rates predict currency depreciation (no arbitrage)

$$\mathbb{E}_{t}[\Delta q_{t+1}] = \alpha + \beta_{\textit{Fama}} \left(i_{t} - i_{t}^{*} \right) + u_{t}$$

- Theory: $\beta_{Fama} \approx 1$
 - High interest rates predict currency depreciation (no arbitrage)
- Data: $\hat{\beta}_{Fama} < 0, R^2 \approx 0$
 - Interest rates have low explanatory power

$$\mathbb{E}_{t}[\Delta q_{t+1}] = \alpha + \beta_{\textit{Fama}} \left(\textit{i}_{t} - \textit{i}_{t}^{*} \right) + \textit{u}_{t}$$

- Theory: $\beta_{Fama} \approx 1$
 - High interest rates predict currency depreciation (no arbitrage)
- Data: $\hat{\beta}_{Fama} < 0, R^2 \approx 0$
 - Interest rates have low explanatory power

	Data	Baseline	
$eta_{\it Fama}$	-1.34 (0.52)	0.35	
R^2	0.02	0.004	

$$\mathbb{E}_{t}[\Delta q_{t+1}] = \alpha + \beta_{\textit{Fama}} \left(\textit{i}_{t} - \textit{i}_{t}^{*} \right) + \textit{u}_{t}$$

- Theory: $\beta_{Fama} \approx 1$
 - High interest rates predict currency depreciation (no arbitrage)
- Data: $\hat{\beta}_{Fama} < 0, R^2 \approx 0$
 - Interest rates have low explanatory power

	Data	Baseline	No Trade Shock	No Financial Shock
$eta_{ extit{Fama}}$	-1.34 (0.52)	0.35	-0.22	1.20
R^2	0.02	0.004	0.001	0.14

$$\mathbb{E}_{t}[\Delta q_{t+1}] = \alpha + \beta_{\textit{Fama}} \left(\textit{i}_{t} - \textit{i}_{t}^{*} \right) + \textit{u}_{t}$$

- Theory: $\beta_{Fama} \approx 1$
 - High interest rates predict currency depreciation (no arbitrage)
- Data: $\hat{\beta}_{Fama} < 0, R^2 \approx 0$
 - Interest rates have low explanatory power

	Data	Baseline	No Trade Shock	No Financial Shock
$eta_{ extsf{Fama}}$	-1.34 (0.52)	0.35	-0.22	1.20
R^2	0.02	0.004	0.001	0.14

• Financial shocks give negative β_{Fama} by directly generating UIP Deviations

- Theory: Consumption is high when price is low (perfect risk sharing)
- Data: RERs are negatively correlated with relative consumption

- Theory: Consumption is high when price is low (perfect risk sharing)
- Data: RERs are negatively correlated with relative consumption

	Data	Baseline	
$ ho\left(\Delta c - \Delta c^*, \Delta q ight)$	-0.10	-0.11	

- Theory: Consumption is high when price is low (perfect risk sharing)
- Data: RERs are negatively correlated with relative consumption

	Data	Baseline	No Trade Shock	No Financial Shock
$ ho\left(\Delta c - \Delta c^*, \Delta q ight)$	-0.10	-0.11	-0.16	0.24

- Theory: Consumption is high when price is low (perfect risk sharing)
- Data: RERs are negatively correlated with relative consumption

	Data	Baseline	No Trade Shock	No Financial Shock
$ ho\left(\Delta c - \Delta c^*, \Delta q ight)$	-0.10	-0.11	-0.16	0.24

• Financial shocks are important for negative correlation

Outline

Benchmark Model

Calibration and Identification

(1) High Frequency Comovement with Net Trade

Untargeted: RER at All Frequencies

- (2) Low Frequency Comovement with Net Trade
- (3) High/Low Frequency Decomposition
- (0) High Frequency Disconnect to Other Variables

Application: Role of Financial and Trade Shocks

Conclusion

	Data	Baseline
High	0.02	0.03
Business cycle	0.15	0.10
Low	0.83	0.87

	Data	Baseline	No Trade Shock	
High	0.02	0.03	0.06	
Business cycle	0.15	0.10	0.16	
Low	0.83	0.87	0.78	

	Data	Baseline	No Trade Shock	No Financial Shock
High	0.02	0.03	0.06	0.01
Business cycle	0.15	0.10	0.16	0.06
Low	0.83	0.87	0.78	0.93

	Data	Baseline	No Trade Shock	No Financial Shock
High	0.02	0.03	0.06	0.01
Business cycle	0.15	0.10	0.16	0.06
Low	0.83	0.87	0.78	0.93

- Trade shocks important for lower frequency variations
- Financial shocks matter more for higher frequencies

Table: Contribution to h-Quarter ahead FEV of the RER (%)

	h= 1
Trade Shock	47.78
Financial Shock	49.51
Productivity Shock	2.71

Table: Contribution to h-Quarter ahead FEV of the RER (%)

	h= 1	8
Trade Shock	47.78	64.73
Financial Shock	49.51	30.43
Productivity Shock	2.71	4.84

Table: Contribution to h-Quarter ahead FEV of the RER (%)

	h= 1	8	32	80
Trade Shock	47.78	64.73	71.55	66.37
Financial Shock	49.51	30.43	18.44	19.32
Productivity Shock	2.71	4.84	10.01	14.30

Table: Contribution to h-Quarter ahead FEV of the RER (%)

	h= 1	8	32	80
Trade Shock	47.78	64.73	71.55	66.37
Financial Shock	49.51	30.43	18.44	19.32
Productivity Shock	2.71	4.84	10.01	14.30

- Financial shocks matters primarily in the short run
- Trade shocks account for 70% of variance in the long run

Robustness

- 1. Specification of dynamic trade (Input adjustment cost)
- 2. SR/LR trade elasticity (Armington elasticity and fixed exporting costs)
- 3. Estimation methods (Bayesian)
- 4. Pricing to market (Kimball aggregator)
- 5. Within-ROW trade costs
- 6. Empirical approach for trade costs •

Outline

Benchmark Mode

Calibration and Identification

(1) High Frequency Comovement with Net Trade

Untargeted: RER at All Frequencies

- (2) Low Frequency Comovement with Net Trade
- (3) High/Low Frequency Decomposition
- (0) High Frequency Disconnect to Other Variables

Application: Role of Financial and Trade Shocks

Conclusion

Conclusion

Model extended with trade shocks and dynamic trade can reproduce

- Full spectrum of the RER
- Comovement of net trade and the RER at all frequencies

without compromising

• High frequency disconnect with output, consumption and interest rate

Financial shocks matter for high frequency

Trade shocks crucial for low frequency – major source of RER variations

 Cross-sectional changes in capital flows and the contribution of average financial/trade frictions

• Cross-sectional changes in capital flows and the contribution of average financial/trade frictions

• **Cross-sectional** changes in capital flows and the contribution of average financial/trade **frictions**

 Cross-sectional changes in capital flows and the contribution of average financial/trade frictions

- Cross-sectional changes in capital flows and the contribution of average financial/trade frictions
- Salient features in data over the last few decades
 - Net trade flows have become dispersed across countries
 - Gross trade flows have risen significantly

- Cross-sectional changes in capital flows and the contribution of average financial/trade frictions
- Salient features in data over the last few decades
 - Net trade flows have become dispersed across countries
 - Gross trade flows have risen significantly
- This paper
 - Evaluate the role of financial and trade integrations
 - N-country GE model quantified with cross-sectional data of 50 countries

Trade Balance Has Become Dispersed over Time

Trade Balance Y

Trade Balance Has Become Dispersed over Time

$$\frac{\textit{Trade Balance}}{\textit{Y}} = \frac{\textit{Trade Balance}}{\textit{Gross Trade}} \times \frac{\textit{Gross Trade}}{\textit{Y}}$$

Gross Trade Flows Have Risen over Time

$$\frac{\textit{Trade Balance}}{\textit{Y}} = \frac{\textit{Trade Balance}}{\textit{Gross Trade}} \times \frac{\textit{Gross Trade}}{\textit{Y}}$$

Net & Gross Trade Flows Have Risen over Time

$$\frac{\textit{Trade Balance}}{\textit{Y}} = \frac{\textit{Trade Balance}}{\textit{Gross Trade}} \times \frac{\textit{Gross Trade}}{\textit{Y}}$$

Net Flows "Stable" when Controlling for Trade Growth

$$\frac{\textit{Trade Balance}}{\textit{Y}} = \frac{\textit{Trade Balance}}{\textit{Gross Trade}} \times \frac{\textit{Gross Trade}}{\textit{Y}}$$

Net Flows "Stable" when Controlling for Trade Growth

$$\frac{\textit{Trade Balance}}{\textit{Y}} = \frac{\textit{Trade Balance}}{\textit{Gross Trade}} \times \frac{\textit{Gross Trade}}{\textit{Y}}$$

Growing dispersion from scale effect

Varying Financial Frictions

- Not enough increase in gross trade
- Excess dispersion in net trade

Varying Trade Frictions

- Increase in the scale of gross trade
- Dispersion in net trade from the increase in gross trade

Varying Trade Frictions

- Increase in the scale of gross trade
- Dispersion in net trade from the increase in gross trade

Rises in net&gross international trade – consequence of trade integration

Moving Forward

• Interplay of financial and trade barriers in business cycle transmission

• Implications for capital flows and prices

 Eventually, uncovering the nature of financial and trade shocks/frictions that remain to be a black box ${\sf Appendix}$

Puzzles in the RER

- Meese-Rogoff Puzzle
 - Theory: RER is strongly connected to macro quantities
 - Data: RER follows near random walk process, 3-6 more volatile than Y or C
- Backus-Smith Puzzle
 - Theory: Perfect risk sharing consumption is high when price is low
 - Data: RERs are negatively correlated with relative consumption
- (Real) Forward Premium Puzzle
 - Theory: High interest rates predict currency depreciation
 - Data: High interest rates predict currency appreciations, with small R^2 (arbitrage)

Demand Shock (Pavlova and Rigobon 2007)

$$D_t = \left[\left(e^{-\gamma \xi_t} \right)^{\frac{1}{\rho}} Y_{Rt}^{\frac{\rho-1}{\rho}} + \gamma^{\frac{1}{\rho}} \left(e^{\xi_t} \right)^{\frac{1}{\rho}} Y_{Ut}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

∢ Back

Mechanism of Trade Shock

ullet Size of au matters for the amplification of trade shocks

Inspecting the Mechanism

• How does the contribution of shocks to the $\rho(i-i^*,q)$ differ across models?

Table: ρ	(i -	i^* ,	q)
----------	------	---------	----

Model	All Shocks	No Trade Shock	No Financial Shock
Dynamic Trade	-0.06	-0.05	-0.50
Static Trade	0.25	0.66	0.01

XM Ratio in Baseline Model

$$x = (\log \gamma + (1 - \theta^*)\xi_R^* + (1 - \rho)p_R^* + D^* + q) - \left(q + p_R^* + \frac{1}{1 - \theta^*}N\right)$$

$$m = (\log \gamma + (1 - \theta)\xi_U + (1 - \rho)p_U + D) - \left(p_U + \frac{1}{1 - \theta}N^*\right)$$

$$xm = \rho (tot + q) + (D^* - D)$$
 $+ \underbrace{((1 - \theta^*)\xi_R^* - (1 - \theta)\xi_U) + (1 - \rho)\left(\frac{1}{1 - \theta}N^* - \frac{1}{1 - \theta^*}N\right)}_{}$

Error Correction Estimation: Data

(1)	(2)
Constrained	Unconstrained
0.208***	0.203***
(0.0499)	(0.0502)
1.320***	1.161***
(0.38)	(0.245)
1	0.621**
	(0.24)
1	0.490*
	(0.245)
0.0529**	0.0735***
(0.0197)	(0.0207)
0.406***	0.442***
(0.098)	(0.1)
158	158
	Constrained 0.208*** (0.0499) 1.320*** (0.38) 1 1 0.0529** (0.0197) 0.406*** (0.098)

Robust standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Portfolio Adjustment Costs

Figure: IRF of UIP Deviations

IRFs

Financial Shocks generate negative interest rate differentials under Dynamic Trade Trade Shocks induce larger negative effects under Dynamic Trade

Estimation of τ

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		Dependent variable: ξ^R						
$(\xi_R^* - \xi_U)$	0.199**		0.546*		0.493***		0.443	
	(0.0581)		(0.223)		(0.100)		(0.304)	
ξ_R^*		0.328***		0.843***		0.583***		0.972**
		(0.0798)		(0.166)		(0.0627)		(0.293)
Country FE			Υ	Υ			Υ	Υ
Spending Constraints					Υ	Υ	Υ	Y
Observations	25	25	25	25	25	25	25	25
R-squared	0.338	0.423	0.207	0.530	0.513	0.790	0.0847	0.324

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

• Using the CES Demand function

$$\log Y_{Rt}^* = \rho \log (P_{Rt}^* / P_t^*) + \log D_t^* + \xi_{Rt}^*$$

- Y_{Rt}^* Exports to US
- D_t^* Domestic expenditure in US
- P_{Rt}^* Price of ROW goods in US
- P_t Aggregate price index in US

• Using the CES Demand function

$$\begin{split} \log Y_{Rt}^* &= \rho \log (P_{Rt}^*/P_t^*) + \log D_t^* + \xi_{Rt}^* \\ \log Y_{Ut} &= \rho \log (P_{Ut}/P_t) + \log D_t + \xi_{Ut} \\ \log Y_{Rt} &= \rho \log (P_{Rt}/P_t) + \log D_t + \xi_{Rt} \end{split}$$

- Y_{Rt}^* Exports to US, Y_{Ut} Imports from US, Y_{Rt} Domestic consumption in ROW
- D_t^* Domestic expenditure in US, D_t in ROW
- P_{Rt}^* Price of ROW goods in US, P_{Rt} in ROW
- Pt Aggregate price index in US, P in ROW

• Using the CES Demand function

$$\begin{aligned} \log Y_{Rt}^* &= \rho \log (P_{Rt}^*/P_t^*) + \log D_t^* + \xi_{Rt}^* \\ \log Y_{Ut} &= \rho \log (P_{Ut}/P_t) + \log D_t + \xi_{Ut} \\ \log Y_{Rt} &= \rho \log (P_{Rt}/P_t) + \log D_t + \xi_{Rt} \end{aligned}$$

- Y_{Rt}^* Exports to US, Y_{Ut} Imports from US, Y_{Rt} Domestic consumption in ROW
- D_t^* Domestic expenditure in US, D_t in ROW
- P_{Rt}^* Price of ROW goods in US, P_{Rt} in ROW
- P_t Aggregate price index in US, P in ROW
- Recover the residuals $\xi_{Rt}^*, \xi_{Ut}, \xi_{Rt}$

Using the CES Demand function

$$\begin{aligned} \log Y_{Rt}^* &= \rho \log (P_{Rt}^*/P_t^*) + \log D_t^* + \xi_{Rt}^* \\ \log Y_{Ut} &= \rho \log (P_{Ut}/P_t) + \log D_t + \xi_{Ut} \\ \log Y_{Rt} &= \rho \log (P_{Rt}/P_t) + \log D_t + \xi_{Rt} \end{aligned}$$

- Y_{Rt}^* Exports to US, Y_{Ut} Imports from US, Y_{Rt} Domestic consumption in ROW
- D_t * Domestic expenditure in US, D_t in ROW
- P_{Rt}^* Price of ROW goods in US, P_{Rt} in ROW
- Pt Aggregate price index in US, P in ROW
- Recover the residuals $\xi_{Rt}^*, \xi_{Ut}, \xi_{Rt}$
- Data: Annual, 1994-2019
 - Exports, imports (UN Comtrade)
 - Output, domestic expenditure (Penn World Table)
 - Price levels (Penn World Table)

Model Specification of Trade Costs

• Recall
$$\xi_{Rt} = \frac{\tau}{\xi_t}/2$$
 $\xi_{Rt}^* = \xi_t/2$ $\xi_{Ut} = -\xi_t/2$

• Estimated $\tau > 0$, suggesting

$$\rho(\xi_{Rt}, \ \xi_{Rt}^*) > 0 \qquad \rho(\xi_{Rt}, \ \xi_{Rt}^* - \xi_{Ut}) > 0$$

International cost for ROW correlated with domestic cost

Consistent with data?

Correlation of Domestic and International Costs

- Domestic cost positively correlated with international cost
- Robust to country fixed effects and constraints on expenditure coefficient Table

Domestic Trade Cost

ullet $au\in\mathbb{R}$ determines the elasticity of domestic cost to international cost

$$\xi_{Rt} = \tau \xi_t / 2$$
 $\xi_{Rt}^* = \xi_t / 2$ $\xi_{Ut} = -\xi_t / 2$

- Discipline with data on cross-country correlation of expenditure
 - If elastic, domestic costs move like international costs
 - Home and foreign consumers subject to similar shocks
 - Expenditures become more synchronized

ullet Similar mechanism as demand shocks with positive but small au

Conditional Variance Decomposition

Table: 1. Contribution to h-Quarter ahead FEV of the RER (%)

h=1	8	32	80
65.33	74.50	86.66	90.81
32.31	22.08	8.23	5.08
2.35	3.43	5.11	4.11
	65.33	65.33 74.50 32.31 22.08	65.33 74.50 86.66 32.31 22.08 8.23

Business Cycle Moments

	Data	Baseline	No Trade Shock	No Fin Shock	No Prod Shock
$\sigma(\Delta c^*)/\sigma(\Delta y^*)$	0.83	0.65	0.68	0.62	1.74
$ ho(\Delta y^*, \Delta c^*)$	0.65	0.83	0.90	0.93	0.62
$ ho(\Delta y^*, \Delta z^*)$	0.68	0.86	0.98	0.88	0.60
$ ho(\Delta c, \Delta c^*)$	0.31	0.36	0.37	0.53	0.64
$ ho(\Delta \mathit{inv}, \Delta \mathit{inv}^*)$	0.31	0.39	0.46	0.42	0.07
$ ho(\Delta tot, \Delta q)$	0.49	0.98	1.00	1.00	0.97
$\sigma(\Delta tot)/\sigma(\Delta q)$	0.46	0.20	0.26	0.18	0.11

Short- and Long-Run Trade Elasticity

Elasticity	Data	Baseline	No Trade Shock	No Fin Shock
Short run	0.20 (0.05)	0.35 (0.02)	1.29	-0.72
Long run	1.16 (0.25)	0.80 (0.09)	1.78	0.32

Robustness: Calibrated Parameters

Parameters	Baseline	Input Adj	Trade Elasticity	PTM	Kimball	au=0
Financial shock, volatility $\sigma_{\psi}/\sigma_{a_c}$	0.57	0.86	0.65	0.30	0.62	1.50
Financial shock, persistence $ ho_{\psi}$	0.99	0.82	0.98	0.94	0.87	0.77
Trade shock, volatility $\sigma_{\xi}/\sigma_{a_c}$	17.01	3.34	3.58	38.35	14.10	10.84
Trade shock, persistence $ ho_{\xi}$	0.98	0.99	0.97	0.98	0.97	0.97
Trade shock, within-country share $ au$	0.17	0.17	0.56	0.07	0.12	\mathbf{O}^{\ddagger}
Productivity differentials, volatility $\sigma_{a_d}/\sigma_{a_c}$	1.24	1.29	1.22	1.26	0.08	1.19
Adjustment cost of portfolios χ	0.06	7e-04	0.53	0.02	0.01	0.001
Adjustment cost of capital κ	1.59	14.47	3.75	11.97	10.28	14.01
Import adjustment cost ι	O [‡]	9.67	O [‡]	0 [‡]	O ‡	O [‡]
Armington elasticity ρ	1.5^{\ddagger}	1.5^{\ddagger}	2.57	1.50^{\ddagger}	1.50^{\ddagger}	1.5^{\ddagger}
Fixed cost of new exporters f_0	0.07	O [‡]	0.05	0 [‡]	O [‡]	0.07
Fixed cost of incumbent exporters f_1	0.04	O^{\ddagger}	0.03	\mathbf{O}^{\ddagger}	\mathbf{O}^{\ddagger}	0.04
Volatility of idiosyncratic productivity σ_{μ}	0.08	\mathbf{O}^{\ddagger}	0.02	0^{\ddagger}	\mathbf{O}^{\ddagger}	0.08
Pricing to market parameter ζ	1.00	1.00	1.00	1.00	0^{\ddagger}	1.00
Kimball elasticity $ u$	-	-	-	-	0.40	-

Notes: Superscript ‡ denotes that the parameter is exogeneously set.

Robustness: Moments

Moments	Data	Baseline	Input Adj	Trade Elasticity	PTM	Kimball	$\tau = 0$
$\rho\left(\Delta c - \Delta c^*, \Delta q\right)$	-0.10	-0.11	-0.10	-0.03	-0.06	-0.14	0.14
$\rho(i-i^*)$	0.87	0.88	0.86	0.87	0.90	0.96	0.81
$ ho(\Delta y, \Delta y^*)$	0.40	0.39	0.40	0.36	0.35	0.39	0.43
$ ho(\Delta d, \Delta d^*)$	0.34	0.34	0.28	0.38	0.39	0.40	0.00^{\dagger}
$\rho(xm)$	0.98	0.93	0.96	0.93	0.94	0.98	0.93
$\sigma(\Delta inv^*)/\sigma(\Delta y^*)$	2.59	2.60	2.59	2.60	2.60	2.64	2.62
$\rho\left(\Delta x m, \Delta q\right)$	0.30	0.29	0.30	0.31	0.32	0.27	0.49
$\sigma(xm)/\sigma(q)$	1.12	1.12	1.12	1.14	1.13	1.12	1.14
PSR	0.20	0.35^{\dagger}	0.17	0.19	0.59^{\dagger}	0.34^{\dagger}	0.89^{\dagger}
$ ho_{LR}$	1.16	0.80^{\dagger}	1.14^{\dagger}	1.13	0.55^{\dagger}	0.59^{\dagger}	1.36^{\dagger}
High frequency share	0.02	0.03^{\dagger}	0.06^{\dagger}	0.07^{\dagger}	0.02^{\dagger}	0.02^{\dagger}	0.04^{\dagger}
BC frequency share	0.15	0.10^{\dagger}	0.12^{\dagger}	0.16^{\dagger}	0.04^{\dagger}	0.01^{\dagger}	0.06^{\dagger}
Low frequency share	0.83	0.87^{\dagger}	0.82^{\dagger}	0.77^{\dagger}	0.94^{\dagger}	0.97^{\dagger}	0.90^{\dagger}

Notes: Superscript † denotes that the moment is not targeted during the calibration procedure.

Dynamic Trade Specification

- Adjustment costs in the use of imported inputs in the final good aggregator
 - Erceg et al. (2006), Rabanal and Rubio-Ramirez (2015), Gornemann et al. (2020)
- The CES aggregator of the ROW retail sector is now given by

$$D_{t} = \left[Y_{Rt}^{\frac{\rho-1}{\rho}} + \gamma^{\frac{1}{\rho}} \left(\varphi_{t} Y_{Ut}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}$$

where φ_t captures the cost of adjusting the the use of imported inputs in the production of the final good. Its functional form is given by

$$\varphi_t = \left[1 - \frac{\iota}{2} \left(\frac{Y_{Ut}/Y_{Rt}}{Y_{Ut-1}/Y_{Rt-1}} - 1\right)^2\right].$$

 ι determines the size of the adjustment cost

Table: Frequency Decomposition – Dynamic Trade Specifications

	Data	Baseline	Reduced-Form Dynamic Trade				
			All Shocks	No Trade Shock	No Fin Shock	No Prod Shock	
Low frequency	0.83	0.87	0.82	0.68	0.97	0.80	
BC frequency	0.15	0.10	0.12	0.21	0.02	0.13	
High frequency	0.02	0.03	0.06	0.11	0.01	0.07	

Trade Elasticity (Targeted)

Data	Baseline	Trade Elasticity
-0.1	-0.11	-0.03
0.87	0.88	0.87
0.4	0.39	0.36
0.34	0.34	0.38
0.98	0.93	0.93
2.59	2.60	2.6
0.3	0.29	0.31
1.12	1.12	1.14
0.2	0.35^{\dagger}	0.19
1.16	0.80^{\dagger}	1.13
0.02	0.03^{\dagger}	0.07^{\dagger}
0.15	0.10^{\dagger}	0.16^{\dagger}
0.83	0.87^{\dagger}	0.77 [†]
	-0.1 0.87 0.4 0.34 0.98 2.59 0.3 1.12 0.2 1.16 0.02 0.15	-0.1 -0.11 0.87 0.88 0.4 0.39 0.34 0.34 0.98 0.93 2.59 2.60 0.3 0.29 1.12 1.12 0.2 0.35† 1.16 0.80† 0.02 0.03† 0.15 0.10†

Bayesian Estimation

Table: 1. Contribution to h-Quarter ahead FEV of the RER (%)

	h= 1	8	32	80
ξ : Trade Shock	65.33	74.50	86.66	90.81
ψ : Financial Shock	32.31	22.08	8.23	5.08
a: Productivity Shock	2.35	3.43	5.11	4.11

Counterfactual

Back
 Back
 Back
 Back
 Back
 Back

Trade shocks

Figure: RER Dynamics Under Different Shocks

Pricing-to-Market

• The Kimball aggregator for the final good production is given by

$$\int_0^1 \left[g\left(\frac{Y_{Rt}}{D_t}\right) + \gamma g\left(\frac{Y_{Rt}}{D_t}\right) \right] di = 1$$
 where $g'>0, g''<0, g''(1)=0, 1, g(1)=g'(1)=1$

• Demand function of ROW for the ROW and US composite goods are given by

$$Y_{Rt} = h\left(\frac{P_{Rt}}{P_t}\right)D_t$$
 $Y_{Ut} = \gamma h\left(\frac{P_{Ut}}{P_t}\right)D_t$.

where $h(\cdot) = g'^{-1}(\cdot)$ and satisfies h(1) = 1, h' < 0.

• Klenow and Willis (2016) demand schedule

$$h(x) = (1 - \epsilon \log(x))^{\upsilon/\epsilon}$$

v=0.4 and $\epsilon=0.33$ implies the ER passthrough of 60%, as in our baseline case.

Moments	Data	Static PTM	Static Kimball
$\rho \left(\Delta c - \Delta c^*, \Delta q \right)$	-0.1	-0.06	-0.14
$\rho\left(i-i^*\right)$	0.87	0.9	0.96
$\rho(\Delta y, \Delta y^*)$	0.4	0.35	0.39
$ ho(\Delta d, \Delta d^*)$	0.34	0.39	0.40
$\rho(xm)$	0.98	0.94	0.98
$\sigma(\Delta \mathit{inv}^*)/\sigma(\Delta y^*)$	2.59	2.6	2.64
$\rho\left(\Delta x m, \Delta q\right)$	0.3	0.32	0.27
$\sigma(xm)/\sigma(q)$	1.12	1.13	1.12
PSR	0.2	0.59^{\dagger}	0.34^{\dagger}
$ ho_{LR}$	1.16	0.55^{\dagger}	0.59^{\dagger}
High freq share	0.02	0.02 [†]	0.02^{\dagger}
BC freq share	0.15	0.04^{\dagger}	0.01^{\dagger}
Low freq share	0.83	0.94^{\dagger}	0.97^{\dagger}

Robustness: Within-ROW Trade Cost

Moments	Data	Baseline	au=0
$ ho\left(\Delta c - \Delta c^*, \Delta q\right)$	-0.10	-0.11	0.14
$\rho\left(\Delta x m, \Delta q\right)$	0.30	0.29	0.14
$\sigma(xm)/\sigma(q)$	1.12	1.12	1.14
ho(xm)	0.98	0.93	0.93
$ ho(\Delta y, \Delta y^*)$	0.40	0.39	0.43
$ ho(\Delta d, \Delta d^*)$	0.34	0.34	0.00^{*}
$\sigma(\Delta inv^*)/\sigma(\Delta y^*)$	2.59	2.60	0.62
$\rho(i-i^*)$	0.90	0.88	0.81

▼ T shock

Variance Decomposition with $\tau=0$

	Data	Baseline	au=0		
			All Shocks	No Trade Shock	No Financial Shock
Low frequency	0.83	0.87	0.90	0.61	0.97
BC frequency	0.15	0.10	0.06	0.24	0.02
High frequency	0.02	0.03	0.04	0.15	0.01

◀ T shock ◀