

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

A1

(51) Classification internationale des brevets 5:

C07K 13/00, A61K 39/095

**

(11) Numéro de publication internationale:

WO 93/07172

(43) Date de publication internationale:

15 avril 1993 (15.04.93)

PCT/FR92/00904 (21) Numéro de la demande internationale:

(22) Date de dépôt international: 29 septembre 1992 (29.09.92)

(30) Données relatives à la priorité: FR 91/12176 3 octobre 1991 (03.10.91)

(71) Déposant (pour tous les Etats désignés sauf US): PASTEUR MERIEUX SERUMS ET VACCINS S.A. [FR/FR]; 58, avenue Leclerc, F-69007 Lyon (FR).

(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): QUENTIN-MIL-LET, Marie-José [FR/FR]; 70, cours Emile-Zola, F-69100 Villeurbanne (FR). LISSOLO, Ling [FR/FR]; 691, rue du Vallon, F-69280 Marcy-l'Etoile (FR).

(74) Mandataires: LEMOINE, Michel etc.; Cabinet Lemoine et Bernasconi, 13, boulevard des Batignolles, F-75008 Paris (FR).

(81) Etats désignés: AU, CA, FI, HU, JP, NO, US, brevet euro-péen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(54) Title: SUBUNIT VACCINE FOR NEISSERIA MENINGITIDIS INFECTIONS AND CORRESPONDING PURIFIED **SUBUNITS**

(54) Titre: VACCIN DE SOUS-UNITE CONTRE LES INFECTIONS A NEISSERIAMENINGITIDIS ET SOUS-UNITES CORRESPONDANTES A L'ETAT PURIFIE

(57) Abstract

A purified lower molecular weight subunit of the human transferrin receptor of an N. meningitidis strain, and a pharmaceutical vaccine composition containing said purified subunit for preventing or controlling the effects of an N. meningitidis infection.

(57) Abrégé

La présente invention a pour objet la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis, sous forme purifiée ainsi qu'une composition pharmaceutique vaccinale destinée à la prévention ou à l'atténuation des effets d'une infection à N. meningitidis qui contient ladite sous-unité sous forme purifiée.

BNSDOCID: <WO _ .9307172A1 | >

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanic
AU	Australic	GA	Gabon	MW	Malawi
BB	Barbade	GB	Royaumu-Uni	NL	Pays-Bas
BE '	Belgique	GN	Guinee	NO	Norvège
BF	Burkina Faso	GR	Grèce	NZ	Nouvelle-Zélande
BG	Bulgarie	HU	Hongrie	PL	Pologne
BJ	Bénin	ΙE	Irlande	PT	Portugal
BR.	Brésil	iT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF .	République Centraficaine	KP	République populaire démocratique	SD	Soudan
CG	• •	•••	de Corée	SE	Suêde
CH	Congo Suisse	KR	République de Corée	SK	République slovaque
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Sénégal
		LK	Sri Lanka	SU	Union soviétique
CM	Cameroun	LU	Luxembourg	TD	Tchad
cs	Tchccoslovaquic	MC	Munaco	TG	'Fogo
CZ	République tehèque	MG	Madagascar	UA	Ukraine
DE	Allemagne	ML	Mali	US	Etats-Unis d'Amérique
DK	Danemark	MN	Mongolic	VN	Viet Nam
ES	Espagne	MIN	Mongone	,	
278	Finlands.				

Vaccin de sous-unité contre les infections à Neisseria meningitidis et sous-unités correspondantes à l'état purifié

La présente invention a pour objet une composition pharmaceutique vaccinale destinée à la prévention des méningites causées par Neisseria meningitidis.

D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : N. meningitidis et Haemophilus influenzae, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

On dénombre en France, environ 600 à 800 cas par an de méningites à N. meningitidis. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

L'espèce N. meningitidis est sub-divisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à *N. meningitidis* sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

Par contre, le polysaccharide de N. meningitidis groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparait hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par N. meningitidis notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

5

5

15

10

20

25

35

A cette fin, différentes protéines de la membrane externe de N. meningitidis ont déjà été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

*

•

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment *N. meningitidis* qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir des protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligable chez l'homme (de l'ordre de : 10⁻¹⁸ M), en tout cas insuffisante pour permettre la croissance bactérienne.

Ainsi, N. meningitidis possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

Le récepteur de la transferrine de la souche N. meningitidis B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparaît essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, tels que révélés après électrophorèse sur gel de polyacrylamide en présence de SDS.

Le produit de la purification notamment mise en oeuvre par Schryvers est appelé, par définition arbitraire et pour les besoins de la présente demande de brevet, récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Tbp1 et Tbp2.

De manière surprenante, on a maintenant trouvé que la sous-unité de haut poids moléculaire ne pourrait pas induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur serait capable de remplir cette fonction.

5

10

15

20

25

30

Ť

En conséquence, l'invention propose :

- i) La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis, un fragment ou un analogue de ladite sous-unité, sous forme purifiée ; c'est-à-dire dissociée et isolée de la sous-unité de haut poids moléculaire dudit récepteur ; et
- Une composition pharmaceutique vaccinale qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'au moins une souche de N. meningitidis, un fragment ou un analogue de ladite sous-unité; en l'absence de la sous-unité de haut poids moléculaire dudit récepteur;
- L'usage thérapeutique de la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'au moins une souche de N. meningitidis, un fragment ou un analogue de ladite sous-unité; en l'absence de la sous-unité de haut poids moléculaire dudit récepteur; et
- Une méthode de vaccination à l'encontre des infections à N. meningitidis, qui comprend l'acte d'administrer une quantité efficace d'un point de vue thérapeutique de la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'au moins une souche de N. meningitidis, un fragment ou un analogue de ladite sousunité, en l'absence de la sous-unité de haut poids moléculaire dudit récepteur, à un sujet ayant besoin d'un tel traitement.

D'une manière générale, la sous-unité de moindre poids moléculaire peut être obtenue sous forme purifiée (c'est-à-dire dissociée et isolée de la sous-unité de haut poids moléculaire) notamment à partir d'un récepteur de la transferrine. Ce dernier peut être isolé à partir d'une souche de N. meningitidis préalablement cultivée dans un milieu carencé en fer sous forme libre notamment selon la méthode de Schryvers et al, WO 90/12591, décrite de manière similaire dans Schryvers et al, Infect. Immun. (1988) 56 (5): 1144. Puis le récepteur purifié est soumis à l'action d'un agent fortement dénaturant tel que l'urée 8M ou la guanidine HCl 6M. Les sous-unités dissociées sont finalement séparées par des méthodes chromatographiques classiques telles

30

qu'une chromatographie d'échange d'ions, une chromatographie hydrophobe ou de gel de filtration.

De manière alternative, la sous-unité de moindre poids moléculaire peut être produite en mettant en oeuvre les techniques du génie génétique. Le fragment d'ADN codant pour cette sous-unité peut être exprimé dans un système d'expression hétérologue (e.g. bactérie, levure, cellule de mammifère). La sous-unité est dans ce cas-là recueillie à partir d'une culture et purifiée. Ces méthodes sont en outre parfaitement adaptées à la production des fragments ou des analogues de la sous-unité.

Par "fragment de la sous-unité de moindre poids moléculaire", on signifie un peptide ayant une séquence d'acides aminés qui est incluse dans la séquence de la sous-unité. Par "analogue de la sous-unité de moindre poids moléculaire", on signifie une protéine ayant une séquence d'acides aminés qui présente un degré d'homologie d'au moins 80 %, de préférence d'au moins 90 %, de manière tout à fait préférée d'au moins 95 % avec la séquence de la sous-unité. Aux fins de la présente invention, il est bien entendu qu'un tel fragment ou un tel analogue doit conserver les propriétés immunogènes de la sous-unité.

20

25

5

10

15

Par rapport à la sous-unité Tbp2, les souches de N. meningitidis peuvent se répartir en 2 grands groupes :

- celles dont la sous-unité Tbp2 a un poids moléculaire de 65 à 74 kD environ (souches dites de type 2394); et
 - celles dont la sous-unité Tbp2 a un poids moléculaire de 75 à 90 kD environ (souches dites de type 2169).

D'une manière générale, la sous-unité de moindre poids moléculaire utile aux fins de la présente invention peut avoir pour origine une souche de N. meningitidis de n'importe quel sérogroupe. De manière avantageuse, elle a pour origine une souche de N. meningitidis sérogroupe B. Selon un aspect de l'invention tout à fait préféré, elle a pour origine la souche de N. meningitidis B16B6, aussi appelée 2394 (B:2a:P1.2:L2.3) ou M982 aussi appelée 2169 (B:9:P1.9:L3.7) qui sont publiquement disponibles auprès de la Collection de

10

15

20

25

30

35

l'Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs CIP 7908 et CIP 7917.

A titre d'exemple, la sous-unité Tbp2 des souches 2394 et 2169 est décrite par référence à sa séquence d'acides aminés telle que montrée dans les identificateurs de séquences n°1 et 2 (SEQ ID N°1 et 2). Les poids moléculaires apparents de ces sous-unités sont respectivement 68-70 et 87 kD environ, tels que révelés après electrophorèse sur gel de polyacrylamide en présence de SDS.

Une composition pharmaceutique selon l'invention est notamment utile pour prévenir ou atténuer les effets d'une infection à N. meningitidis.

Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier on associe l'agent thérapeutique selon l'invention avec un diluant ou un support acceptable d'un point de vue pharmaceutique. Une composition selon l'invention peut être administrée par n'importe quelle voie conventionnelle en usage dans le domaine des vaccins, en particulier par voie sous-cutanée, par voie intra-musculaire ou par voie intra-veineuse, par exemple sous forme de suspension injectable. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain délai d'intervalle. Le dosage approprié varie en fonction de divers paramètres, par exemple, de l'individu traité ou du mode d'administration.

Enfin une composition selon l'invention peut contenir une ou plusieurs sous-unités de moindre poids moléculaire selon qu'elles proviennent de différentes souches de N. meningitidis. Ainsi, selon un aspect particulier de l'invention, une composition pharmaceutique avantageuse comprend la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de type 2394 (poids moléculaire de 65 à 74 kD) et la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de type 2169 (poids moléculaire de 75 à 90 kD).

De manière préférée, une composition selon l'invention comprend la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de la souche 2394 (poids moléculaire : 68-70 kD) et la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de la souche 2169 (poids moléculaire : 87 kD).

10

15

20

25

30

35

L'invention est décrite en détails dans les exemples ci-après.

EXEMPLE 1: Purification de la sous-unité de moindre poids moléculaire du récepteur de la transferrine à partir de la souche 2394, par chromatographie d'échanges d'ions.

1A - Culture

Un lyophilisat de la souche N. meningitidis 2394 est repris dans environ 1 ml de bouillon Mueller-Hinton (BMH, Difco). La suspension bactérienne est ensuite étalée sur le milieu solide Mueller-Hinton contenant du sang cuit (5 %).

Après 24 h d'incubation à 37°C dans une atmosphère contenant 10 % de CO₂, la nappe bactérienne est recueillie pour ensemencer 150 ml de BMH pH 7,2, répartis en 3 erlens de 250 ml. L'incubation est poursuivie pendant 3 h à 37°C sous agitation. Chacune des 3 cultures ainsi réalisées permet d'ensemencer 400 ml de BMH pH 7,2 supplémentés avec 30 µm d'ethylenediamine-di (o-hydroxyphenylacetic acid) (EDDA, Sigma), qui est un agent chélatant du fer sous forme libre.

Après 16 h de culture à 37°C sous agitation, les cultures sont contrôlées pour leur pureté par observation au microscope après une coloration de Gram. La suspension est centrifugée, le culot contenant les germes est pesé et conservé à -20°C.

1B - Purification

La méthode de purification est essentiellement telle que décrite par Schryvers et al (supra).

Le culot bactérien obtenu en 1A est décongelé, puis remis en suspension dans 200 ml de tampon Tris HCl 50 mM, pH 8,0 (tampon A). La suspension est centrifugée pendant 20 min à 15 000 xg à 4°C. Le culot est récupéré, puis remis en suspension dans du tampon A à la concentration finale de 150 g/l. Des fractions de 150 ml sont traitées pendant 8 min à 800 bars dans un lyseur de cellules travaillant sous haute pression (Rannie, modèle 8.30H). Le lysat

10

15

20

25

30

35

cellulaire ainsi obtenu est centrifugé pendant 15 min à 4°C à 15 000 xg. Le surnageant est récupéré, puis centrifugé pendant 75 min à 4°C à 200 000 xg.

Après élimination du surnageant, le culot est repris dans du tampon A et après dosage de protéines selon Lowry, la concentration de la suspension est ajustée à 5 mg/ml.

A 1,4 ml de la suspension de membranes on ajoute 1,75 mg de transferrine humaine biotinylée selon le procédé décrit par Schryvers. La concentration finale de la fraction membranaire est de 4 mg/ml. Le mélange est incubé 1 heure à 37°C puis centrifugé à 100 000 xg pendant 75 min à 4°C. Le culot de membranes est repris par le tampon A contenant du NaCl 0,1M et incubé pendant 60 min à température ambiante.

Après solubilisation, on ajoute à cette suspension un certain volume de Sarkosyl (N-Lauroylsarcosine, Sigma) à 30 % (p/v) et d'EDTA 500 mM de façon que les concentrations finales en Sarkosyl et EDTA soient de 0,5 % et 5 mM respectivement. Après une incubation de 15 min à 37°C sous agitation, on ajoute 1 ml de résine streptavidine-agarose (Pierce) préalablement lavée en tampon A. La suspension est incubée 15 min à température ambiante puis centrifugée à 1 000 xg pendant 10 min. La résine est ensuite conditionnée dans une colonne et l'éluat direct est éliminé.

La résine est lavée par 3 volumes de colonne de tampon Tris-HCl 50 mM pH 8,0 contenant NaCl 1M, EDTA 10 mM Sarkosyl 0,5 % (tampon B) puis par un volume de colonne de tampon B contenant de la guanidine HCl 750 mM. Le récepteur de la transferrine est ensuite élué par le tampon Tris-HCl 50mM pH 8,0 contenant NaCl 1M, EDTA 10 mM Sarkosyl 0,05 % et de la guanidine HCl 2M. L'éluat est collecté en fraction dont le volume correspond à 1 Vol., dans des tubes contenant 1 Vol. de Tris HCl 50 mM pH 8,0, NaCl 1M. La densité optique à 280 nm de l'éluat est mesurée en sortie de colonne à l'aide d'un détecteur UV.

Les fractions correspondant au pic d'élution sont recueillies, dialysées contre du tampon phosphate 10 mM, pH 8,0 contenant de l'urée 0,5 M, puis concentrées sur une cellule de concentration de type Amicon équipée de

10

15

20

25

35

membrane dont le seuil de coupure est de 10 000 Daltons à la concentration finale d'environ 3 mg de protéine/ml.

Une certaine quantité d'urée est ajoutée à la solution concentrée de façon que la concentration finale en urée soit de 8M, la concentration finale de la solution protéique restant comprise entre 2 à 3 mg/ml. La solution est incubée pendant 6 jours à 4°C.

Le mélange est ensuite chromatographié sur une résine échangeuse d'anions (Q-Sépharose Pharmacia) préalablement équilibrée dans le tampon Tris-HCl 50 mM pH 8,0 contenant de l'urée 5M.

Dans ces conditions, la sous-unité de haut-poids moléculaire (Tbp1) est directement recueillie dans l'éluat direct tandis que la sous-unité de poids moléculaire moindre (Tbp2) est éluée par un gradient linéaire de 0 - 1 M NaCl dans le tampon A contenant du Sarkosyl 0,5 % et l'urée 5M. La densité optique à 280 nm est mesurée en sortie de colonne à l'aide d'un détecteur UV.

Les fractions correpondant au pic d'élution sont recueillies, dialysées contre du tampon phosphate 10 mM, pH 8,0 contenant du Sarkosyl 0,05 % et lyophilisées. Le lyophilisat est repris dans de l'eau à une concentration 10 fois supérieure. La solution est dialysée une seconde fois contre du tampon phosphate 50 mM pH 8,0 contenant du Sarkosyl 0,05 % (tampon C) puis la solution est filtrée sur une membrane de porosité 0,22 μ m.

Le contenu en protéines est déterminé et ajusté à 1 mg/ml par addition de tampon C, sous conditions aseptiques. Cette préparation est conservée à -70°C.

Purification de la sous-unité de moindre poids moléculaire du récepteur de la transferrine, à partir de la souche 2169.

La culture de la souche 2169 et la purification de la sous-unité de moindre poids moléculaire du récepteur de la transferrine sont effectuées dans des conditions identiques à celles décrites dans l'Exemple 1.

10

15

EXEMPLE 3: Purification de la sous-unité de moindre poids moléculaire du récepteur de la transferrine à partir de la souche N. meningitidis 2394 par chromatographie hydrophobe.

La culture de la souche N. meningitidis 2394, ainsi que les étapes de purification allant jusqu'à la préparation de la suspension membranaire sont effectuées dans des conditions identiques à celles décrites dans l'exemple 1.

A un volume de la suspension de membranes, on ajoute un volume identique de Tris-HCl 50mM pH 8,0 contenant NaCl 2M, EDTA 20 mM, Sarkosyl 1% (p/v). Le mélange est incubé 15 min à 37°C sous agitation douce. Puis un volume de cette suspension est mis en contact avec un volume identique de résine Sépharose 4B couplée à la transferrine humaine. Cette résine d'affinité a été couplée en greffant de la transferrine humaine (Sigma, St Louis USA) à du Sépharose 4B-CNBr (Pharmacia) selon les recommandations du fabricant. La densité du ligand et de 5 mg transferrine/ml de résine. Le contact se fait en bain pendant 1 h à température ambiante sous agitation rotative douce. La résine est ensuite conditionnée dans une colonne, l'éluat direct est éliminé.

20

25

La résine est lavée par 3 volumes de colonnes de tampon Tris-HCl 50 mM pH 8,0 contenant NaCl 1M, EDTA 10 mM Sarkosyl 0,5 % (tampon B) puis par un volume de colonne de tampon B contenant de la guanidine HCl 750 mM. Le récepteur de la transferrine est ensuite élué par le tampon Tris-HCl 50 mM pH 8,0 NaCl 1M EDTA 10mM Sarkosyl 0,05 % et guanidine HCl 2M. La densité optique à 280 nm de l'éluat est mesurée en sortie de colonne à l'aide d'un détecteur UV. Les fractions correspondant au pic d'élution sont réunies et la protéine est précipitée par addition de trois volumes d'éthanol refroidi.

30

35

Après une nuit d'incubation à + 4°C, la protéine est recueillie par centrifugation pendant une heure à 10.000 x g. Le précipité est repris par un certain volume de tampon phosphate 10 mM pH 7,0 contenant NaCl 0,5 M, guanidine-HCl 5 M (tampon D) de façon à ce que la concentration finale en protéine soit d'environ 1mg/ml. La solution est mise en contact avec la résine de phényl-Sépharose (Pharmacia) préalablement équilibrée avec le même

10

15

20

30

tampon. L'incubation se fait en bain sous agitation rotative pendant 2 heures à température ambiante. Le gel est ensuite conditionné dans une colonne.

Dans ces conditions, la sous-unité de haut poids moléculaire (Tbp1) est recueillie dans l'éluat direct, tandis que la sous-unité de moindre poids moléculaire (Tbp2) est fixée sur la résine. La colonne est rincée par trois volumes de tampon D puis par 5 volumes de tampon phosphate 10 mM pH 7,0. Tbp2 est éluée par le tampon phosphate 10mM pH 7,0 contenant 0,5 % de Sarkosyl. L'excès de Sarkosyl contenu dans le tampon d'élution de Tbp2 est éliminé par précipitation à l'éthanol, la protéine est ensuite reprise dans le tampon phosphate 50 mM pH 8,0 contenant du Sarkosyl 0,05 % (tampon C).

La solution est ensuite filtrée sur une membrane de porosité 0,22 μ m. Le contenu en protéine est déterminé et ajusté à 1 mg/ml par addition de tampon C, sous conditions aseptiques. Cette préparation est conservée à -70°C.

EXEMPLE 4: Purification de la sous-unité de moindre poids moléculaire à partir de la souche *N. meningitidis* 2169 par chromatographie hydrophobe.

La culture de la souche N. meningitidis 2169 et la purification de la sousunité de moindre poids moléculaire du récepteur de la transferrine (Tbp2) sont effectuées dans des conditions identiques à celles décrites dans l'exemple 3.

25 <u>EXEMPLE 5</u>: Mise en évidence de l'importance de la sous-unité de moindre poids moléculaire à titre d'agent vaccinal.

On évalue l'activité bactéricide de sérums spécifiquement dirigés contre la sous-unité de moindre poids moléculaire (Tbp2) du récepteur de la transferrine des souches N. meningitidis 2394 et 2169.

Pour ce faire, les sous-unités Tbp2 ont été préparées par chromatographie hydrophobe, tel que décrit dans les exemples 3 et 4.

Des lapins néo-zélandais albinos reçoivent par voie sous-cutanée et intramusculaire 50µg de Tbp2 isolée de la souche 2394 ou 2169, en présence d'adjuvant complet de Freund (Difco). 21 et 42 jours après la première

injection, les lapins reçoivent à nouveau 50 μ g de sous-unité Tbp2 purifiée, mais ces fois-ci en présence d'adjuvant incomplet de Freund. 15 jours après la dernière injection, le sérum des animaux est prélevé, puis décomplementé et filtré sur une membrane de porosité 0,45 μ m.

5

Une gamme de dilution de chacun des antisérums anti-Tbp2 2394 et anti-Tbp2 2169 est préparée en milieu M199 (Gibco). 200 μ l de chaque dilution sont déposés dans les puits d'une macroplaque de titrage (8x12in.). Un essai témoin est réalisé avec 200 μ l de milieu M199. Dans chacun des puits on ajoute (i) 100 μ l d'une culture en phase de croissance exponentielle d'une souche de N. meningitidis, en milieu Mueller-Hinton contenant à 30 μ M EDDA et (ii) 100 μ l de complément (sérum de jeune lapin dilué).

15

10

Après 30 min d'incubation à 37°C sous agitation douce, on ajoute dans chaque puits, 1ml de milieu Mueller-Hinton contenant 1ml d'agar noble en surfusion. Après solidification du milieu, l'incubation est poursuivie 18-24 hrs à 37°C; puis le nombre d'unités formant des colonies dans chaque puits est évalué. L'inverse de la dernière dilution d'antisérum en présence de laquelle on observe 50 % de lyse par rapport au témoin, correspond au titre bactéricide.

20

Les résultats sont présentés dans le tableau ci-dessous :

Activité bactéricide des antisérums anti-Tbp2 2394 et anti-Tbp2 2169

Z	Neisseria meningitidis		Activité bactéricide	actéricide	·
Souche	sérogroupe/type/sous type	Sérum anti-Tbp2 2394	Tbp2 2394	Sérum anti-Tbp2 2169	Tbp2 2169
		préimmunisation	préimmunisation postimmunisation	préimmunisation	postimmunisation
2394	B, 2a, P1.2	∞ ∨	512	'	ı
2169	B, 9, P1.9	1	•	& V	128

L'antisérum est bactéricide vis-à-vis de la souche à partir de laquelle Tbp2 a été purifiée démontrant que les anticorps anti-Tbp2 induits sont fonctionnels et ont la capacité de lyser la bactérie en présence de complément.

5

EXEMPLE 6: Composition pharmaceutique vaccinale destinée à prévenir des infections à N. meningitidis.

La solution stérile obtenue dans l'Exemple 3 ou 4 est décongelée. Afin de préparer un litre de vaccin renfermant 200 μg/ml d'un principe actif, on mélange stérilement les solutions suivantes :

15	-	Solution contenant la sous-unité Tbp2 du récepteur 2394 (ou 2169) à 1 mg/ml dans du tampon C	200 ml
	-	Eau physiologique tamponnée (PBS) à pH 6,0	300 ml
20	-	Hydroxyde d'aluminium à 10 mg Al ⁺⁺⁺ /ml	50 ml
	-	Merthiolate à 1 % (p/v) dans du PBS	10 ml
25	-	PBS qsp	1000 ml

30

EXEMPLE 7: Composition pharmaceutique vaccinale destinée à prévenir des infections à N. meningitidis.

Les solutions stériles obtenues dans les Exemples 3 et 4 sont décongelées. Afin de préparer un litre de vaccin renfermant $100~\mu g/ml$ de chacun des principes actifs, on mélange stérilement les solutions suivantes :

35

 Solution contenant la sous-unité Tbp2 du récepteur 2394 à 1mg/ml dans du tampon C

100 ml

FEUILLE DE REMPLACEMENT

	-	Solution contenant la sous-unité Tbp2 du récepteur 2169 à 1mg/ml dans du tampon C	100 ml
5	-	Eau physiologique tamponnée (PBS) à pH 6,0	300 ml
	-	Hydroxyde d'aluminium à 10 mg Al ⁺⁺⁺ /ml	50 ml
10	-	Merthiolate à 1 % (p/v) dans du PBS	10 ml
	_	PBS asp	1000 ml

SEQ ID NO: 1

Objet: Séquence d'acides aminés de la sous-unité Tbp2 N. meningitidis 2394.

Cys	Leu	Gly	Gly	Gly 5	Gly	Ser	Phe	Asp	Leu 10	Asp	Ser	Val	Glu	Thr 15
Val	Gln	Asp	Met	His 20	Ser	Lys	Pro	Lys	Tyr 25	Glu	Asp	Glu	Lys	Ser 30
Gln	Pro	Glu	Ser	Gln 35	Gln	Asp	Val	Ser	Glu 40	Asn	Ser	Gly	Ala	Ala 45
Tyr	Gly	Phe	Ala	Val 50	Lys	Leu	Pro	Arg	Arg 55	Asn	Ala	His	Phe	Asn 60
Pro	Lys	Tyr	Lys	Glu 65	Lys	His	Lys	Pro	Leu 70	Gly	Ser	Met	Asp	Trp 75
Lys	Lys	Leu	Gln	Arg 80	Gly	Glu	Pro	Asn	Ser 85	Phe	Ser	Glu	Arg	Asp 90
Glu	Leu	Glu	Lys	Lys 95	Arg	Gly	Ser	Ser	Glu 100	Leu	Ile	Glu	Ser	Lys 105
Trp	Glu	Asp	Gly	Gln 110	Ser	Arg	Val	Val.	Gly 115	Tyr	Thr	Asn	Phe	Thr 120
Tyr	Val	Arg	Ser	Gly 125	Tyr	Val	Tyr	Leu	Asn 130	Lys	Asn	Asn	Ile	Asp 135
Ile	Lys	Asn	Asn	Ile 140	Val	Leu	Phe	Gly	Pro 145	Asp	Gly	Tyr	Leu	Tyr 150
Tyr	Lys	Gly	Lys	Glu 155	Pro	Ser	Lys	Glu	Leu 160	Pro	Ser	Glu	Lys	Ile 165
Thr	Tyr	Lys	Gly	Thr 170	Trp	Asp	Tyr	Val	Thr 175	Asp	Ala	Met	Glu	Lys 180
Gln	Arg	Phe	Glu	Gly 185	Leu	Gly	Ser	Ala	Ala 190	Gly	Gly	Asp	Lys	Ser 195
Gly	Ala	Leu	Ser	Ala 200	Leu	Glu	Glu	Gly	Val 205	Leu	Arg	Asn	Gln	Ala 210
Glu	Ala	Ser	Ser	Gly 215	His	Thr	Asp	Phe	Gly 220	Met	Thr	Ser	Glu	Phe 225
Glu	Val	Asp	Phe	ser 230	Asp	Lys	Thr	Ile	Lys 235	Gly	Thr	Leu	Tyr	Arg 240
Asn	Asn	Arg	Ile	Thr 245	Gln	Asn	Asn	Ser	Glu 250	Asn	Lys	Gln	Ile	Lys 255

Thr	Thr	Arg	Tyr	Thr 260	Ile	Gln	Ala	THr	Leu 265	His	Gly	Asn	Arg	Phe 270
ГЛЗ	Gly	Lys	Ala	Leu 275	Ala	Ala	Asp	Lys	Gly 280	Ala	Thr	Asn	Gly	Ser 285
His	Pro	Phe	Ile	Ser 290	Asp	Ser	Asp	Ser	Leu 295	Glu	Gly	Gly	Phe	Tyr 300
Gly	Pro	Lys	Gly	Glu 305	Glu	Leu	Ala	Gly	Lys 310	Phe	Leu	Ser	Asn	Asp 315
Asn	Lys	Val	Ala	Ala 320	Val	Phe	Gly	Ala	Lys 325	Gln	Lys	Asp	Lys	Tys
Asp	Gly	Glu	Asn	Ala 335	Ala	Gly	Pro	Ala	Thr 340	Glu	Thr	Val	Ile	Asp 345
Ala	Tyr	Arg	Ile	Thr 350	Gly	Glu	Glu	Phe	Lys 355	Lys	Glu	Gln	Ile	Asp 360
Ser	Phe	Gly	Asp	Val 365	Lys	Lys	Leu	Leu	Val 370	Asp	Gly	Val	Glu	Leu 375
Ser	Leu	Leu	Pro	Ser 380	Glu	Gly	Asn	Lys	Ala 385	Ala	Phe	Gln	His	Glu 390
Ile	Glu	Gln	Asn	Gly 395	Val	Lys	Ala	Thr	Val 400	Cys	Cys	Ser	Asn	Leu 405
Asp	Tyr	Met	Ser	Phe 410	Gly	Lys	Leu	Ser	Lys 415	Gku	Asn	Lys	Asp	Asp 420
Met	Phe	Leu	Gln	Gly 425	Val	Arg	Thr	Pro	Val 430	Ser	Asp	Val	Ala	Ala 435
Arg	Thr	Glu	Ala	Lys 440	Tyr	Arg	GJĀ	Thr	Gly 445	Thr	Trp	Tyr	Gly	Tyr 450
Ile	Ala	Asn	Gly	Thr 455	Ser	Trp	Ser	Gly	Glu 460	Ala	Ser	Asn	Gln	Glu 465
Gly	Gly	Asn	Arg	Ala 470	Glu	Phe	Asp	Val	Asp 475	Phe	Ser	Thr	Lys	Lys 480
Ile	Ser	Gly	Thr	Leu 485	Thr	Ala	Lys	Asp	Arg 490	Thr	Ser	Pro	Ala	Phe 495
Thr	Ile	Thr	Ala	Met 500	Ile	Lys	Asp	Asn	Gly 505	Phe	Ser	Gly	Val	Ala 510
ГÅа	Thr	Gly	Glu	Asn 515	Gly	Phe	Ala	Leu	Asp 520	Pro	Gln	Asn	Thr	Gly 525
Asn	Ser	His	Tyr	Thr 530	His	Ile	Glu	Ala	Thr 535	Val	Ser	Gly	Gly	Phe 540
Tyr	Gly	Lys	Asn	Ala 545	Ile	Glu	Met	Gly	Gly 550	Ser	Phe	Ser	Phe	Pro 555
Gly	Asn	Ala	. Pro	Glu 560	Gly	Lys	Gln	Glu	Lys 565	Ala	Ser	Val	Val	Phe 570
Gly	· Ala	. Lys	Arg	Gln 575	Gln	Leu	Val	Gln						

SEO ID NO: 2

Objet: Séquence d'acides aminés de la sous-unité Tbp2 de N. meningitidis 2169.

					Cys 1	Leu	Gly	Gly	Gly 5	Gly	Ser	Phe	Asp	Leu 10
Asp	Ser	Val	Asp	Thr	Glu 15	Ala	Pro	Arg	Pro 20	Ala	Pro	Lys	Tyr	Gln 25
Asp	Val	Ser	Ser	Glu	Lys 30	Pro	Gln	Ala	Gln 35	Lys	Asp	Gln	Gly	Gly 40
Tyr	Gly	Phe	Ala	Met	Arg 45	Leu	Lys	Arg	Arg 50	Asn	Trp	Tyr	Pro	Gly 55
Ala	Glu	Glu	Ser	Glu	Val 60	Lys	Leu	Asn	Glu 65	Ser	Asp	Trp	Glu	Ala 70
Thr	Gly	Leu	Pro	Thr	Lys 75	Pro	Lys	Glu	Leu 80	Pro	Lys	Arg	Gln	Lys 85
Ser	Val	Ile	Glu	Lys	Val 90	Glu	Thr	Asp	Gly 95	Asp	Ser	Asp	Ile	Tyr 100
Ser	Ser	Pro	Tyr	Leu	Thr 105	Pro	Ser	Asn	His 110	Gln	Asn	Gly	Ser	Ala 115
Gly	Asn	Gly	Val	Asn	Gln 120	Pro	Lys	Asn	Gln 125	Ala	Thr	Gly	His	Glu 130
Asn	Phe	Gln	Tyr	Val	Tyr 135	Ser	Gly	Trp	Phe 140	Tyr	Lys	His	Ala	Ala 145
Ser	Glu.	Lys	Asp	Phe	Ser 150	Asn	Lys	Ļys	Ile 155	Lys	Ser	Gly	Asp	Asp 160
Gly	Tyr	Ile	Phe	Tyr	His 165	Gly	Glu	Lys	Pro 170	Ser	Arg	Gln	Leu	Pro 175
Ala	Ser	Gly	Lys	Val	Ile 180	Tyr	Lys	Gly	Val 185	Trp	His	Phe	Val	Thr 190
Asp	Thr	Lys	Lys	Gly	Gln 195	Asp	Phe	Arg	Glu 200	Ile	Ile	Gln	Pro	Ser 205
Lys	Lys	Gln	Gly	Asp	Arg 210	Tyr	Ser	Gly	Phe 215	Ser	Gly	Asp	Gly	Ser 220
Glu	Glu	Tyr	Ser	Asn	Lys 225	Asn	Glu	Ser	Thr 230	Leu	Lys	Asp	Asp	His 235
Glu	Gly	Tyr	Gly	Phe	Thr 240	Ser	Asn	Leu	Glu 245	Val	Asp	Phe	Gly	Asn 250
Lys	Lys	Leu	Thr	Gly	Lys 255	Leu	Ile	Arg	Asn 260	Asn	Ala	Ser	Leu	Asn 265

Asn	Asn	Thr	Asn	Asn	Asp 270	Lys	His	Thr	Thr 275	Gln	Tyr	Tyr	ser	Leu 280
Asp	Ala	Gln	Ile	Thr	Gly 285	Asn	Arg	Phe	Asn 290	Gly	Thr	Ala	Thr	Ala 295
Thr	Asp	Lys	Lys	Glu	Asn 300	Glu	Thr	Lys	Leu 305	His	Pro	Phe	Val	Ser 310
Asp	Ser	Ser	ser	Leu	Ser 315	Gly	Gly	Phe	Phe 320	Gly	Pro	Gln	Gly	Glu 325
			Phe		330									
			Ala		242									
			Ser		200									
			Glu		313									
Glu	Leu	Thr	Leu	Asn	Asp 390	Lys	Lys	Ile	Lys 395	Asn	Leu	Asp	Asn	Phe 400
Ser	Asn	Ala	Ala	Gln	Leu 405	Val	Val	Asp	Gly 410	Ile	Met	Ile	Pro	Leu 415
			Asp		420									
ГĀа	Asn	Gly	Gly	Thr	Glu 435	Phe	Thr	Arg	Lys 440	Phe	Glu	His	Thr	Pro 445
			Lys		450									
			Ala		403									
			Glu		400									
					470				_					Gln 505
					310	,								Val 520
Glu	Glr	ı Ser	. Met	: Phe	Leu 525	Gln	Gly	Glu	Arg 530	The	Asp	Glu	Lys	Glu 535
					544	,								Gly 550
					334	,								Lys 565
Glı	ı Gly	y Gl	y Ası	n Arç	, Ala 570	Glu	ı Phe	e Thr	val 575	Asr	n Phe	e Ala	a Asp	580

Lys	Ile	Thr	Gly	Lys	Leu 585	Thr	Ala	Glu	Asn 590	Arg	Gln	Ala	Gin	Thr 595
Phe	Thr	Ile	Glu	Gly	Met 600	Ile	Gln	Gly	Asn 605	Gly	Phe	Glu	Gly	Thr 610
Ala	Lys	Thr	Ala	Glu	Ser 615	Gly	Phe	Asp	Leu 620	Asp	Gln	Lys	Asn	Thr 625
Thr	Arg	Thr	Pro	Lys	Ala 630	Tyr	Ile	Thr	Asp 635	Ala	Lys	Val	Lys	Gly 640
Gly	Phe	Tyr	Gly	Pro	Lys 645	Ala	Glu	Glu	Leu 650	Gly	Gly	Trp	Phe	Ala 655
Tyr	Pro	Gly	Asp	Lys	Gln 660	Thr	Glu	Lys	Ala 665	Thr	Ala	Thr	Ser	Ser 670
Asp	Gly	Asn	Ser	Ala	Ser 675	Ser	Ala	Thr	Val 680	Val	Phe	Gly	Ala	Lys 685
Arg	Gln	Gln	Pro	Val	Gln 690									

Revendications

- 1. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis, un fragment ou un analogue de ladite sous-unité, sous forme purifiée.
- 2. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis, sous forme purifiée.
- 3. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis sérogroupe B, sous forme purifiée.
- 4. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de *N. meningitidis*, sous forme purifiée; ladite sous-unité ayant un poids moléculaire de 65 à 74 kD environ.
- 5. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de la souche de N. meningitidis 2394, sous forme purifiée.
- 6. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis, sous forme purifiée; ladite sous-unité ayant un poids moléculaire de 75 à 90 kD environ.
- 7. La sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis 2169, sous forme purifiée.
- 8. Une composition pharmaceutique vaccinale qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'au moins une souche de N. meningitidis, un

fragment ou un analogue de ladite sous-unité; en l'absence de la sousunité de haut poids moléculaire dudit récepteur.

- 9. Une composition pharmaceutique vaccinale selon la revendication 8, qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'au moins une souche de N. meningitidis.
- 10. Une composition pharmaceutique selon la revendication 9, qui comprend la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'au moins une souche de N. meningitidis sérogroupe B.
- 11. Une composition pharmaceutique selon la revendication 9, qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis; ladite sous-unité ayant un poids moléculaire de 65 à 74 kD environ.
- 12. Une composition pharmaceutique selon la revendication 11, qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de *N. meningitidis* 2394.
- 13. Une composition pharmaceutique selon la revendication 9, qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une souche de N. meningitidis; ladite sous-unité ayant un poids moléculaire de 75 à 90 kD environ.
- 14. Une composition pharmaceutique selon la revendication 13, qui comprend à titre d'agent thérapeutique la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de *N. meningitidis* 2169.
- 15. Une composition pharmaceutique selon la revendication 9, qui comprend à titre d'agent thérapeutique :
 - i) une première sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une première souche de N.

meningitidis ; ladite première sous-unité ayant un poids moléculaire de 65 à 74 kD environ ; et

ii) une seconde sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine d'une seconde souche de N. meningitidis; ladite seconde sous-unité ayant un poids moléculaire de 75 à 90 kD environ;

en l'absence de la sous-unité de haut poids moléculaire dudit récepteur desdites première et deuxième souches de N. meningitidis.

- 16. Une composition pharmaceutique selon la revendication 15, qui comprend à titre d'agent thérapeutique:
 - i) la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de N. meningitidis 2394; et
 - ii) la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de N. meningitidis 2169;

en l'absence de la sous-unité de haut poids moléculaire dudit récepteur des souches de N. meningitidis 2394 et 2169.

	SSIFICATION OF SUBJECT MATTER		
Int.Cl	.: ⁵		
According to	o Internati nai Patent Classificati n (IPC) or to both	national classification and IPC	
	DS SEARCHED		
Minimum do	ocumentation searched (classification system followed by	classification symbols)	
Int.Cl			. C. U
Documentati	on searched other than minimum documentation to the ex	rtent that such documents are included in the	ne fields searched
Electronic da	ata base consulted during the international search (name o	of data base and, where practicable, search	terms used)
c. docu	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
Х	WO,A,9 012 591 (UNIVERSITY TECHN 1 November 1990 cited in the application	NOLOGIES INTERNATIONAL)	1-6,8-13
	see the whole document		
Х,Р	WO,A,9 203 467 (THE UNIVERSITY (CHAPEL HILL) 5 March 1992 see page 8, line 10 - page 10, l see page 21, line 5 - page 23, l	line 35	1-3,6,8-10,13
	see page 37, line 1 - line 26		
Х	INFECTION AND IMMUNITY Vol. 58, No. 9, September 1990,	WASHINGTON US	1-4,6
	pages 2875 - 2881 NIRUPAMA BANERJEE-BHATNAGAR ET /	AL/	
	er documents are listed in the continuation of Box C.	See patent family annex.	
		"T" later document published after the inte	ernational filing date or priority
"A" docume	categories of cited documents: ent defining the general state of the art which is not considered particular relevance	date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand
"E" earlier o	document but published on or after the international filing date ant which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consistep when the document is taken alo	dered to involve an inventive
special "O" docume	o establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; in considered to involve an inventive combined with one or more other such	step when the document is documents, such combination
	ent published prior to the international filing date but later than crity date claimed	being obvious to a person skilled in	the art
Date f the	actual completion of the international search	Date of mailing of the international sea	arch report
	January 1993 (15.01.93)	08 February 1993 (0	Ŗ.02 .9 3)
Name and n	nailing address of the ISA/	Authorized officer	
EURO	PEAN PATENT OFFICE		
Facsimile N	lo.	Teleph ne No.	

enternational application No. PCT/FR92/00904

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
	"Expression of neisseria meningitidis Iron-regulated outer membrane proteins, including a 70-kilodalton transferrin receptor, and their potential use as vaccines" see the whole document	
X	INFECTION AND IMMUNITY Vol. 56, No. 5 May 1988, WASHINGTON US pages 1144 - 1149 SCHRYVERS A. ET AL "Identification and characterization of the human lactoferrin-binding protein from neisseria meningitidis" see the whole document	1-6
x	CHEMICAL ABSTRACTS, Vol. 111, No. 17, 23 October 1989, Columbus, Ohio, US; abstract No. 150244, SCHRYVERS A. ET AL "identification and characterization of the transferrin receptor from neisseria meningitidis" page 389; column 2; see abstract & Mol.Microbiol. 1988 2(2),281-288	1-6
	·	
·		

9200904 FR 66294 SA

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15/01/93

Patent document cited in search report	Publication date	Paten men	t family uber(s)	Publication date
WO-A-9012591	01-11-90	AU-A- US-A-	5526190 5141743	16-11-90 25-08-92
WO-A-9203467	05-03-92	AU-A-	8747791	17-03-92
			-	

For more details about this annex : see Official Journal of the European Patent ffice, No. 12/82

Demande International

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB A61K39/095 CIB 5 CO7K13/00; II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultées Symboles de classification Système de classification **A61K** C07K; CIB 5 Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a port $oldsymbol{e}$ III. DOCUMENTS CONSIDERES COMME PERTINENTS 10 No. des revendications Identification des documents cités, avec indication, si nécessaire,12 visées 14 Catégorie ° des passages pertinents 13 1-6,8-13 WO, A, 9 012 591 (UNIVERSITY TECHNOLOGIES X INTERNATIONAL) 1 Novembre 1990 cité dans la demande voir le document en entier 1-3,6, WO,A,9 203 467 (THE UNIVERSITY OF NORTH X,P 8-10,13 CAROLINA AT CHAPEL HILL) 5 Mars 1992 voir page 8, ligne 10 - page 10, ligne 35 voir page 21, ligne 5 - page 23, ligne 13 voir page 37, ligne 1 - ligne 26 "T" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention ° Catégories spéciales de documents cités:11 "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "X" document particulièrement pertinent; l'invention revendi-quée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive "E" document antérieur, mais publié à la date de dépôt interna-tional ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'invention reven-diquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combi-naison étant évidente pour une personne du métier. "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets IV. CERTIFICATION Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée U 8. 02. : **15 JANVIER 1993** Signature du fonctionnaire autorisé Administration chargée de la recherche internationale FERNANDEZ Y BRA F. OFFICE EUROPEEN DES BREVETS

Formulaire PCT/ISA/210 (describes fastile) (Jenvier 1985)

Demande Internationale

	Demande Internationale No (SUITE DES RENSEIGNEMENTS INDIQUES SUR LA					
III DOCIMET	DEUXIPME PEULIA	No. des revendications visées ¹⁸				
	Identification des documents cités, is avec indication, si nécessaire des passages pertinents 17					
Catágorie °	INFECTION AND IMMUNITY vol. 58, n . 9, Septembre 1990, WASHINGTON US pages 2875 - 2881 NIRUPAMA BANERJEE-BHATNAGAR ET AL 'Expression of neisseria meningitidis Iron-regulated outer membrane proteins, including a 70-kilodalton transferrin receptor, and their potential use as vaccines' voir le document en entier	1-4,6				
X	INFECTION AND IMMUNITY vol. 56, no. 5, Mai 1988, WASHINGTON US pages 1144 - 1149 SCHRYVERS A. ET AL 'Identification and characterization of the human lactoferrin-binding protein from neisseria meningitidis' voir le document en entier	1-6				
X	CHEMICAL ABSTRACTS, vol. 111, no. 17, 23 Octobre 1989, Columbus, Ohio, US; abstract no. 150244, SCHRYVERS A. ET AL Identification and characterization of the transferrin receptor from Neisseria meningitidis' page 389; colonne 2; voir abrégé & Mol.Microbiol. 1988 2(2),281-288	1-6				

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

9200904 FR 66294 SA

La présente annexe intique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

15/01/93

Document brevet cité	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
au rapport de recherche WO-A-9012591	01-11-90	AU-A- US-A-	5526190 5141743	16-11-90 25-08-92
WO-A-9203467	05-03-92	AU-A-	8747791	17-03-92

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

EPO FORM POOT