Exercice 1 - (Isométrie)

Soit F un sev d'un espace vectoriel euclidien E, et $f \in O(E)$ telle que $f(F) \subset F$.

Montrer que f(F) = F et $f(F^{\perp}) = F^{\perp}$

Exercice 2 - (Petits résultats)

Chaque question est indépendante.

- 1. Soit A symétrique réelle inversible et semblable à son inverse. Montrer que $tr(A^2) \ge n$.
- 2. Soit E espace euclidien et $x, y \in E$. Montrer que x et y sont orthogonaux ssi $\forall \lambda \in \mathbb{R}, ||x + \lambda y|| \ge ||x||$.
- 3. Soit A matrice carrée de taille n. Montrer que $rg(A^TA) = rg(A)$

Exercice 3- (Matrice orthogonale)

Soit A une matrice réelle orthogonale.

Montrer que
$$\left| \sum_{i,j=1}^{n} a_{i,j} \right| \le n.$$

Exercice 4 - (Matrices colones)

Soit A une matrice carrée de taille n vérifiant : $\forall X \in \mathbb{R}^n, ||AX|| \leq ||X||$

- 1. montrer que $\forall X \in \mathbb{R}^n, ||A^TX|| \leq ||X||$
- 2. Montrer que si AX = X alors $A^TX = X$
- 3. Montrer que $\mathcal{M}_{n,1}(\mathbb{R}) = Ker(A I_n) \oplus Im(A I_n)$

Exercice 5 – (Condition d'inversibilité)

Soit A une matrice réelle vérifiant

$$\forall i \in [1; n], a_{i,i} \ge 1, \sum_{i=1}^{n} \sum_{j=1, j \ne i}^{n} a_{i,j}^{2} < 1$$

- 1. Montrer que $\forall X \in \mathbb{R}^n \setminus \{0\}, X^T A X > 0$
- 2. En déduire que A est inversible.

Exercice 6 – (Fermés et ouverts)

Question préliminaire : Soient (\mathcal{X}, d) , (\mathcal{Y}, d') deux espaces métriques, et $f : \mathcal{X} \mapsto \mathcal{Y}$ une application continue. Montrer que l'image d'un ouvert (de \mathcal{Y}) par f^{-1} est un ouvert (de \mathcal{X}).

Soit $E = \mathcal{C}([0,1], \mathbb{R})$ On pose $A = \left\{ f \in E; \ f(0) = 0 \text{ et } \int_0^1 f(t)dt \ge 1 \right\}$ et $O = \{ f \in E: \ f(1) > 0 \}.$

- 1. Démontrer que A est un fermé de $(E, ||.||_{\infty})$.
- 2. Démontrer O est un ouvert de $(E, \|.\|_{\infty})$, mais pas de $(E, \|.\|_{1})$.
- 3. $\mathbb{O}_n(\mathbb{R})$ et $GL_n(\mathbb{R})$ sont-ils des ouverts? fermés?
- 4. Montrer de plus que $\mathbb{O}_n(\mathbb{R})$ est borné. Que peut-on alors dire sur $\mathbb{O}_n(\mathbb{R})$.

Exercice 7 - (Rayon spectral)

Soit $A \in \mathbb{S}_n(\mathbb{R})$. On note $\rho(A) = \max\{|\lambda|, \lambda \in Sp(A)\}$ le rayon spectral.

On définit aussi $|||A||| = \sup \left\{ \frac{||AX||_2}{||X||_2}, X \in \mathbb{M}_{n,1}(\mathbb{R}), X \neq 0 \right\} = \sup \{||AX||_2, X \in \mathbb{M}_{n,1}(\mathbb{R}), ||X||_2 = 1\}$

- 1. Montrer que |||A||| existe.
- 2. Montrer que $|||A||| = \rho(A)$

Exercice 8 – (Polynômes orthogonaux)

Soit $E = \mathbb{R}_n[X]$ muni de $\langle P, Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t}dt$

- 1. Justifier que $\langle .,. \rangle$ est bien défini et que c'est un produit scalaire
- 2. Soit $F = \{P \in E, P(0) = 0\}$ et $(P_0, ..., P_n)$ l'orthonormalisé de Schmidt de $(1, ..., X^n)$. Calculer $P_k(0)^2$.
- 3. Déterminer une base de F^{\perp} en l'exprimant à l'aide de $(P_0,...,P_n)$.
- 4. En déduire $d(1, F^{\perp})$ et d(1, F).

Questions de cours

- Les boules de E sont des convexes de E.
- Les boules fermées sont des fermés.
- Si A symétique réelle et $(X_1,...,X_n)$ une base orthonormée de vecteurs propres de A associée à $(\lambda_1,...,\lambda_n)$, alors $A=\sum_{i=1}^n \lambda_i X_i X_i^T$