Cvičenia

Cvičenie 2.1. Ktoré elementy patria do množiny:

(a)
$$\{x; (x \in \mathbb{R}) \land (x^2 = 1)\}, \{-1,1\},$$

(b)
$$\{x; (x \in \mathbb{R}) \land (x^2 - 3x + 2 = 0)\}, \{1, 2\}$$

(c) $\{x; (x \in \mathbb{N}) \land (x < 12)\}$, (kde \mathbb{N} je množina nezáporných celých čísel), $\{0,1,2,3,4,5,6,7,8,9,10,11\}$

(d)
$$\{x; (x \in \mathbb{N}) \land (x^2 < 100)\}, \{0,1,2,3,4,5,6,7,8,9\}$$

(e)
$$\{x; (x \in \mathbb{N}) \land (x^2 = 2)\}, \varnothing$$

Cvičenie 2.2. Vyjadrite tieto množiny pomocou predikátu (pozri (2.1b)):

(a)
$$A = \{0,3,6,9,12\}$$
,
 $A = \{x \in \mathbb{N}; P(x)\}$, kde $P(x) = \exists k ((x = 3k) \land (x \le 12))$

(b)
$$A = \{-3, -2, -1, 0, 1, 2, 3\}$$
, $A = \{x \in \mathbb{Z}; P(x)\}$, kde $P(x) = (|x| \le 3)$, \mathbb{Z} je množina celých čísel.

(c)
$$A = \{m, n, o, p\}$$

 $A = \{x \in \mathcal{A}; P(x)\}, \text{ kde } P(x) = \exists (k \in \mathcal{A}) ((x = k) \land ((k = m) \lor (k = n) \lor (k = p))),$
 $\mathcal{A} = \{a, b, c, ..., x, y, z\}.$

Cvičenie 2.3. Zistite, či množiny z každej dvojice sú navzájom rovné:

(a)
$$A = \{1, 2, 2, 3, 3, 3, 4, 4, 4, 4\}$$
, $B = \{1, 2, 3, 4\}$, ak vynecháme v množine A elementy, ktoré sa opakujú, potom $A = B$.

(b)
$$A = \{\{1\}\}, B = \{1,\{1\}\},\$$

Množina A má jeden element, množina B má dva elementy, čiže $A \neq B$.

(c)
$$A = \emptyset$$
, $B = {\emptyset}$,

Množina A je prázdna, množina B má jeden element, čiže $A \neq B$.

Cvičenie 2.4. Nech $A = \{2,4,6\}$, $B = \{2,6\}$, $C = \{4,6\}$, $D = \{4,6,8\}$. Zistite, ktoré množiny sú podmnožiny ktorých množín. $B \subset A$, $C \subset A$, $C \subset D$.

Cvičenie 2.5. Pre každú množinu A určite, či platí $2 \in A$:

(a)
$$A = \{x \in \mathbb{R}; x < 2\};$$

 $2 \notin A$.

(b)
$$A = \left\{ x \in \mathbb{R}; \exists \left(n \in \mathbb{N} \right) \left(x = n^2 \right) \right\}$$

množina A obsahuje kvadráty celých čísel, pretože 2 nie je kvadrátom celého číslam potom $2 \notin A$.

(c)
$$A = \{2, \{2\}\}\$$
;

(d)
$$A = \{\{2\}, \{\{2\}\}\}\},$$

(e)
$$A = \{\{2\}, \{2, \{2\}\}\}\}$$

 $2 \notin A$

Cvičenie 2.6. Pre každý príklad z cvičenia 2.5 rozhodnite, či element {2} je elementom množiny *A*.

(a)
$$A = \{x \in \mathbb{R}; x < 2\};$$

 $\{2\} \notin A.$

(b)
$$A = \left\{ x \in \mathbb{R}; \exists \left(n \in \mathbb{N} \right) \left(x = n^2 \right) \right\}$$

množina A obsahuje kvadráty celých čísel, pretože 2 nie je kvadrátom celého číslam potom $\{2\} \notin A$.

(c)
$$A = \{2, \{2\}\}\$$
; $\{2\} \in A$

(d)
$$A = \{\{2\}, \{\{2\}\}\}\},$$

 $\{2\} \in A$

(e)
$$A = \{\{2\}, \{2, \{2\}\}\}$$

$$\{2\} \in A$$

Cvičenie 2.7. Rozhodnite, či výroky sú pravdivé alebo nepravdivé:

- (a) $0 \in \emptyset$, nepravdivý
- (b) $\emptyset \in \{0\}$, nepravdivý
- (c) $\{0\} \subset \emptyset$, nepravdivý
- (d) $\varnothing \subset \{0\}$, pravdivý
- (e) $\{0\} \in \{0\}$, nepravdivý
- (f) $\{0\} \subset \{0\}$, pravdivý (závisí od interpretácie symbolu \subset)
- (g) $\{0\} \subseteq \{0\}$, pravdivý.

Cvičenie 2.8. Rozhodnite, či výroky sú pravdivé alebo nepravdivé:

- (a) $\emptyset \in \{\emptyset\}$, pravdivý,
- (b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$, pravdivý,
- (c) $\{\emptyset\} \in \{\emptyset\}$, nepravdivý,
- (d) $\{\emptyset\} \in \{\{\emptyset\}\}\$, pravdivý,
- (e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}\$, pravdivý,
- (f) $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}\$, pravdivý.

Cvičenie 2.9. Nech $A \subseteq B$ a $B \subseteq C$, dokážte $A \subseteq C$.

Priamy dôsledok zákona hypotetického sylogizmu $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$,

$$(A \subseteq B) \land (B \subseteq C) \equiv (\forall x (x \in A \Rightarrow x \in B)) \land (\forall x (x \in B \Rightarrow x \in C))$$

$$\Rightarrow \forall x \big(\big(x \in A \Rightarrow x \in B \big) \land \big(x \in B \Rightarrow x \in C \big) \big) \Rightarrow \forall x \big(x \in A \Rightarrow x \in C \big) \equiv \big(A \subseteq C \big)$$

Cvičenie 2.10. Nájdite také dve množiny A a B, aby platilo $A \in B$ alebo $A \subseteq B$.

- (a) $B = \{A\}$, potom $A \in B$,
- (b) $A = \{a\}, B = \{a, b\}, \text{ potom } A \subseteq B$.

Cvičenie 2.11. Aká je mohutnosť týchto množín:

(a)
$$\{a\}, 1,$$

(b)
$$\{\{a\}\}, 1,$$

(c)
$$\{a,\{a\}\}, 2,$$

(d)
$$\{a,\{a\},\{a,\{a\}\}\}\}$$
, 3.

Cvičenie 2.12. Aká je mohutnosť týchto množín:

$$(a) \varnothing, 0$$

(b)
$$\{\emptyset\}$$
, 1

(c)
$$\{\emptyset, \{\emptyset\}\}, 2$$

$$(d) \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}, 3.$$

Cvičenie 2.13. Zostrojte potenčnú množinu $\mathcal{P}(A)$ pre

(a)
$$A = \{a\}, \mathcal{P}(A) = \{\emptyset, \{a\}\},\$$

(b)
$$A = \{a,b\}, \mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}, \{a,b\}\}$$

(c)
$$A = \{\emptyset, \{\emptyset\}\}, \mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$$

Cvičenie 2.14. Dokážte alebo vyvráť te implikáciu $(\mathcal{P}(A) = \mathcal{P}(B)) \Rightarrow (A = B)$. $(\mathcal{P}(A) = \mathcal{P}(B)) \Rightarrow \underbrace{(\mathcal{P}(A) \subseteq \mathcal{P}(B))}_{\equiv (A \subseteq B)} \land \underbrace{(\mathcal{P}(B) \subseteq \mathcal{P}(A))}_{\equiv (B \subseteq A)} \equiv (A \subseteq B) \land (B \subseteq A) \equiv (A = B)$

kde bola použitá formula (2.21a).

Cvičenie 2.15. Určite, ktorá z množín je potenčná množina

- (a) ∅, potenčná množina,
- (b) $\{\emptyset, \{a\}\}$, potenčná množina,
- (c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}\$, potenčná množina,

(d) $\{\emptyset, \{a\}, \{b\}, \{a,b\}\}$, potenčná množina.

Cvičenie 2.16. Nech $A = \{a,b,c\}$, $B = \{x,y\}$, zostrojte

(a) $A \times B$, $A \times B = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$

(b) $B \times A$. $B \times A = \{(x,a), (x,b), (x,c), (y,a), (y,b), (y,c)\}$

Cvičenie 2.17. Aký význam má karteziánsky súčin $A \times B$, kde A je množina prednášok, ktoré poskytuje Ústav aplikovanej informatiky a B je množina pedagógov Fakulty informatiky? Usporiadaná dvojica $(x,\xi) \in A \times B$ sa interpretuje ako priradenie, ktorý predmet ÚAI prednáša ktorý pedagóg FI.

Cvičenie 2.18. Aký je význam karteziánskeho súčinu $A \times B \times C$, kde A je množina všetkých leteckých spoločností, B a C sú množiny letísk na svete.

Usporiadaná trojica $(a, \alpha, \hat{\beta}) \in A \times B \times C$ sa interpretuje ako priradenie, že letecká spoločnosť a má letovú linku, ktorá štartuje v α a pristáva na $\hat{\beta}$.

Cvičenie 2.19. Nech A je množina študentov FIIT, ktorí sú z Bratislavy a *B* je množina študentov FIIT, ktorí jazdia na fakultu autom. Popíšte študentov, ktorí patria do množiny

- (a) $A \cap B$, obsahuje študentov z Bratislavy, ktorí jazdia na fakultu autom,
- (b) $A \cup B$, obsahuje študentov z Bratislavy alebo študentov, ktorí jazdia na fakultu autom,
- (c) A B, obsahuje študentov v Bratislavy, ktorý nejazdia na fakultu autom,
- (d) B A, obsahuje študentov, ktorí jazdia na fakultu autom a ktorí nie sú z Bratislavy.

Cvičenie 2.20. Nech A je množina prvákov na našej fakulte a B je množina študentov navštevujúcich diskrétnu matematiku. Vyjadrite pomocou množín A a B tvrdenia:

- (a) Množina prvákov, ktorí navštevujú prednášku z diskrétnej matematiky, $A \cap B$,
- (b) Množina prvákov, ktorí nenavštevujú prednášku z diskrétnej matematiky \overline{B} ,
- (c) Množina študentov, ktorý sú buď prváci alebo navštevujú prednášku z diskrétnej matematiky, $A \cup B$
- (d) Množina študentov, ktorí nie sú prváci alebo nenavštevujú prednášku z diskrétnej matematiky, $\overline{A} \cup \overline{B}$.

Cvičenie 2.21. Nech A a B sú množiny, dokážte

(a)
$$(A \cap B) \subseteq A$$
,

1.	$x \in A \cap B$	predpoklad
2.	$(x \in A) \land (x \in B)$	dôsledok predpokladu
3	$(x \in A)$	dôsledok 2

3.
$$(x \in A)$$
 dôsledok 2

3.
$$(x \in A)$$
 dôsledok 2
4. $(x \in A \cap B) \Rightarrow (x \in A)$ deaktivácia predpokladu

(b)
$$(A \cap B) \subseteq B$$
,

1.
$$x \in A \cap B$$
predpoklad2. $(x \in A) \land (x \in B)$ dôsledok predpokladu3. $(x \in B)$ dôsledok 24. $(x \in A \cap B) \Rightarrow (x \in B)$ deaktivácia predpokladu

(c)
$$A \subseteq (A \cup B)$$
,

1.
$$(x \in A)$$
predpoklad2. $(x \in A) \lor (x \in B)$ dôsledok 13. $(x \in A) \Rightarrow ((x \in A) \lor (x \in B))$ deaktivácia predpokladu

(d)
$$B \subseteq (A \cup B)$$
,

1.
$$(x \in B)$$
predpoklad2. $(x \in B) \lor (x \in A)$ dôsledok 13. $(x \in B) \Rightarrow ((x \in B) \lor (x \in A))$ deaktivácia predpokladu

(e)
$$A-B\subseteq A$$
,

1.	$x \in (A - B)$	predpoklad
2.	$(x \in A) \land (x \notin B)$	dôsledok 1
3.	$(x \in A)$	dôsledok 2
4.	$(x \in A) \land (x \notin B)$ $(x \in A)$ $(x \in (A - B)) \Rightarrow (x \in A)$	deaktivácia predpokladu

(f)
$$A \cap (B-A) = \emptyset$$
.

1.
$$x \in (A \cap (B-A))$$
 predpoklad
2. $(x \in A) \land (x \in (B-A))$ dôsledok 1
3. $x \in A$ dôsledok 2
4. $x \in (B-A)$ dôsledok 2
5. $x \in B$ dôsledok 4
6. $x \notin A$ dôsledok 4
7. $(x \in A) \land (x \notin A)$ dôsledok 3 a 6 (kontradikcia, potom $x \in \emptyset$)

Cvičenie 2.22. Nech A, B a C sú množiny, dokážte (A-B)-C=(A-C)-(B-C).

1.
$$x \in ((A-C)-(B-C))$$
 predpoklad
2. $(x \in (A-C)) \land (x \notin (B-C))$ dôsledok 1
3. $(x \in A \land x \notin C) \land \neg (x \in (B-C))$ dôsledok 2
4. $(x \in A \land x \notin C) \land \neg (x \in B \land x \notin C)$ dôsledok 3
5. $(x \in A \land x \notin C) \land (x \notin B \lor x \in C)$ dôsledok 4
6. $(x \in A \land x \notin C \land x \notin B) \lor (x \in A \land x \notin C \land x \in C)$ distribut. zákon na 5
7. $(x \in A \land x \notin C \land x \notin B)$ dôsledok 6
8. $x \in ((A-B)-C)$ dôsledok 7

Cvičenie 2.23. Čo môžeme povedať o množinách A a B, ak platí

(a)
$$A \cup B = A$$
, platí ak $B \subseteq A$

(b)
$$A \cap B = A$$
, platí ak $A \subseteq B$

(c)
$$A - B = A$$
, $A \cap B = \emptyset$

(d)
$$A \cap B = B \cap A$$
, platí pre každé množiny A a B

(e)
$$A - B = B - A$$
, platí ak $A = B$.

Cvičenie 2.24. Nech A, B a C sú množiny, zistite, či sú pravdivé implikácie:

(a)
$$(A \cup C = B \cup C) \Rightarrow (A = B)$$
, neplatí $A = \{1, 2\}, B = \{2, 3\}, C = \{1, 2, 3\}$, potom $A \cup C = B \cup C = \{1, 2, 3\}$, avšak $A \neq B$

(b)
$$(A \cap C = B \cap C) \Rightarrow (A = B)$$
, neplatí $A = \{1, 2\}, B = \{2, 3\}, C = \{2\}$, potom $A \cap C = B \cap C = \{2\}$, avšak $A \neq B$

Cvičenie 2.25. Nech A a B sú množiny, dokážte vlastnosť $(A \subseteq B) \Rightarrow (\overline{B} \subseteq \overline{A})$. $A \subseteq B =_{def} \forall x (x \in A \Rightarrow x \in B) \equiv \forall x (x \in \overline{B} \Rightarrow x \in \overline{A}) =_{def} \overline{B} \subseteq \overline{A}$

Cvičenie 2.26. Nech $A_i = \{1, 2, ..., i\}$, pre i=1, 2, ..., n. Nájdite

(a)
$$A_1 \cap A_2 \cap ... \cap A_n$$
, $A_1 \cap A_2 \cap ... \cap A_n = \{1\}$

(b)
$$A_1 \cup A_2 \cup ... \cup A_n$$
, $A_1 \cup A_2 \cup ... \cup A_n = \{1, 2, ..., n\}$

Cvičenie 2.27. Nech A_i je množina bitových reťazcov, ktorých dĺžka nie je väčšia ako i, pre i=1, 2, ..., n. Nájdite

(a)
$$A_1 \cap A_2 \cap ... \cap A_n$$
, $A_1 \cap A_2 \cap ... \cap A_n = A_1$

(b)
$$A_1 \cup A_2 \cup ... \cup A_n$$
, $A_1 \cup A_2 \cup ... \cup A_n = A_n$.