

CULIN TorontoRehabilitation Institute The Role of Robotic Exoskeletons in SCI Rehabilitation: A Narrative Synthesis of Published Data Regarding the Safety and Efficacy of the Technology

WATERLOO

Dong Hu^{1,2}, Kristin Musselman^{1,3}, Cathy Craven^{1,3}, Molly Verrier^{1,3}

¹University Health Network – Toronto Rehabilitation Institute; ²Department of Kinesiology, University of Waterloo; ³Faculty of Medicine, University of Toronto

Background

- Robotic exoskeletons (i.e., powered lower limb orthoses) are becoming prominent tools for spinal cord injury (SCI) rehabilitation
- Exoskeletons permit individuals with sensory & motor deficits to mobilize in an upright position
- Understanding the benefits & limitations of exoskeleton technology will direct future research & aid in developing effective interventions

Objective

- Perform a narrative synthesis of exoskeleton literature to
 - 1) identify themes regarding use
 - 2) identify knowledge gaps.

Methods

1. Two search strategies performed:

Medline, Embase, Pubmed, CINAHL databases

Clinical trial databases, Websites of SCI foundations & exoskeleton companies

2. Articles selected based on pre-defined inclusion/exclusion criteria

56 in total:

- 3 RCTs
- 35 cohort studies
- 13 case studies
- 5 reviews

3. Data extracted

(study characteristics & findings, reports of adverse events)

References

- 1. Forrest et al., 2012, Academy of Spinal Cord Injury Professionals.
- 2. Spungen et al., 2013, J Spinal Cord Med, 36 (5): 504-523.

Results

1. Four exoskeletons have been researched for safety & efficacy in current literature.

Name of System	Key Features	Requirements
ReWalk [™]	 Brace support suit containing actuating motors at the hip and knee joints Includes a rechargeable computerized control system carried by a built in backpack U.S. Food and Drug Administration approved for the use in a home and community setting 	 Most exoskeletons are designed for paraplegic individuals with the exception of the REXTM, where one's hand and shoulder function must be sufficient enough to utilize a walker or crutches in addition to the bionic suit C7-T12 Spinal Cord Injury
Ekso Bionics [™]	 Robotic suit controlled by a device operator detached from the user who manages the device through a hand-held controller OR by system on forearm crutches to allow bipedal ambulation 	 Adequate Hip, Knee, and Ankle Range of Motion Bone and joint health and density 160 - 190 cm < 100kg/220lbs
Indego®	 Exoskeleton system with no backpack mounted components or footplates Designed to be worn with a Ankle-Foot-Orthosis to stabilize the foot when taking subsequent steps First wearable exoskeleton to incorporate functional electric stimulation (FES) located at the hips and knee to aid in ambulation and neuromuscular activation 	
Rex Bionics [™]	 Does not require any external aid such as crutches to provide stability, thereby allowing the user, free use of arms and hands as device is self supporting 	

Table 1: Prominent Exoskeletons as listed by The National Spinal Cord Injury Association

Figure 1: Different exoskeleton designs.

2. Four emerging themes were identified concerning the use of exoskeletons in SCI rehabilitation.

a. Examining Safety & Efficacy

- Most studies focused on evaluating the feasibility of exoskeleton gait training for individuals with SCI
- No significant adverse events reported
- Potential adverse effects were noted, including pressure sores, bruising, falls & hypertension
- Multiple studies reported that high-dosage training could result in clinically significant gains in cardiovascular status, walking ability & speed, activities of daily living & psychological health

b. Developing & Validating Relevant **Clinical Measures**

- Lack of valid & reliable outcome measures to assess efficacy of exoskeletons
- Primary measures used: 10meterWT, 6MinWT and Timed Up & Go
- Measures of secondary outcomes (e.g., bowel function, spasticity, aerobic capacity) are needed

c. Investigation of Neurophysiological **Change with Training**

- Repetitive, task-oriented locomotor training can promote neural plasticity
- No studies systematically studied neurophysiological change with exoskeleton training
- One study reported increased muscle firing in lower leg muscles after 30 training sessions¹
- Research on this topic is needed

d. Implementation of Technology in Home or Community Settings

- Most users reported cost as a barrier to using the technology in their daily lives
- Some participants with paraplegia showed improved performance in home/communitybased skills after 45+20 sessions of supervised training with ReWalk^{TM 2}
- Practice of community mobility skills may be feasible with exoskeleton
- Future research warranted

Conclusions

- Literature confirms safety & efficacy of exoskeletons
- Research needed on secondary outcomes, neurophysiological change & home/community use

Work funded by:

