電子電路實驗 7: Power Amplifiers

實驗結報

B02901178 江誠敏

May 18, 2015

1 實驗結果

1.1 改變 V_{DC} ,量測 V_{O}

V_{DC}	V_O
5 V	13.448 V
10 V	13.486 V
15 V	13.527 V

1.2 改變 R_1 , 量測 V_O

R_1	V_O
$1\mathrm{k}\Omega$	8.586 V
$2.5\mathrm{k}\Omega$	13.315 V
$10\mathrm{k}\Omega$	13.484 V

1.3 改變 R_L ,量測 V_O

R_L	V_O
$50\mathrm{k}\Omega$	$13.474 m{V}$
$100\mathrm{k}\Omega$	13.484 V

2 結報問題

1. When designing the linear regulator, what is the relation between the transistor Q_1 and output power? Describe the answer by words or mathematical expressions.

答: 由講義的推導我們有 $V_o \approx (1+R_1/R_2)V_r$,最多差一個 $V_{BE} \approx 0.7\,\mathrm{V}$ 的誤差。並且 V_{BE} 不管 BJT 的異同都會差不多是 $0.7\,\mathrm{V}$,而輸出的 Power 爲

$$P_o = V_o \frac{R_L}{R_L + 200 \,\Omega} \frac{V_o}{R_L + 200 \,\Omega}$$

和 BJT 一點關係都沒有,所以這題我想破頭都還是覺得 Q_1 跟 Output Power 一點關係都沒有...

2. What region should the transistor Q_1 be operated? In active region or saturation region? Please try to analyze the question with the theory or measured data.

答: The trainsistor Q_1 should be operated in active region. 因爲如果 BJT 是在 saturation,則由 $V_{CE}\approx 0.4$ 可知此時 $V_o\approx V_{DC}-0.4\,\mathrm{V}$,但這不是我們想要的,因爲 V_{DC} 不見得是穩定的電壓源,我們想要的是希望 V_o "follow" 由 Zener Diode 的 V_r 所產 生的穩定電壓 V_B ,因此我們應該讓 BJT 在 active mode 下運作。此時 $V_o\approx V_B-0.7\,\mathrm{V}$ 。

3. 請問 PNP 與 NPN BJT 的 β 值, 即 β_n 與 β_n 誰比較大? 原因是?

答: 我去查了一下 NPN 和規格上與其互補的 PNP 的 β 値 (如 2N2222, 2N2907) ,發現好像差不多。不過應該是 NPN 的 β 比較大,因爲電子的 mobility 比較大,因此 PNP 的 I_B 會比較大(電子較易流到 C 端),而 $\beta=I_C/I_B$,所以 β 較小。

4. 請說明穩壓電路的好處, 並列舉三種常用的穩壓 IC 及其規格。

答:穩壓電路的電壓比較穩定,電子元件較不會因爲突然的電壓不穩定或是雜訊而失效。 常見的有

- (a) LM317: 可條控的 Linear voltage regulator, 電壓範圍可從 1.25 V 到 40 V。
- (b) LM78 系列: 各種固定的 Linear voltage regulator, 電壓範圍有最低 5V 到最高 24V。
- (c) LM79 系列: 與 LM78 類似,不過輸出電壓是負的。
- 5. 請描述功率晶體或高速元件的散熱機制,並列舉三種常用的散熱材料、外觀樣貌及 其規格。

答: 基本上都是將高耗能的 IC 與散熱裝制相連, 使散熱裝制將熱傳導出去。常見的有

(a) 散熱片: 片狀的導熱材料, 通常用金屬 (如鋁、銅) 或是陶瓷等等材料做成。

Figure 1: 一些散熱片

(b) 散熱膏: 材料通常是用矽油,用來填充在組件間不完全平坦所造成的細縫。其導熱速率比空氣好,因此可幫助散熱。

Figure 2: 塗在 CPU 上的散熱膏

(c) 其他外在散熱裝置: 如風扇、水冷裝置等等...

(a) 風扇冷卻裝置

(b) 水冷卻裝置

6. 請描述何謂負回授?

答: 負回授即將輸出接回輸入,並且所造成的影響和原來的變動相反。如此可以穩定系統必免太劇烈的變化。

如這個實驗將 βV_o 接回原本的負輸出,使最後的輸出電壓變爲

$$V_o = \frac{A}{1 + \beta A} V_i \approx \frac{1}{\beta} V_i$$

與原先 $V_o = AV_i$ 相比可以穩定許多。

3 心得

今天是本學期最後一次做實驗! 結果最後一次的實驗好像相對比較簡單,可惜考試大概是不會考這一題了! 希望下一次考實驗時儀器不要突然壞掉就好! 想到這裡我還是趕快拿點乖乖去廟裡拜拜比較實際!