Tutorial Logic: solutions

Solutions

- 1.
- a) It is not cold.
- b) It is cold and raining.
- c) It is cold or it is raining.
- d) It is raining or it is not cold.
- e) It is not cold and it is not raining.
- f) It is not true that it is not raining.
- 2.
- a) $p \wedge q$
- b) $p \wedge \neg q$
- c) $\neg(\neg p \lor q)$
- d) $\neg p \wedge \neg q$
- e) $p \lor (\neg p \land q)$
- f) $\neg(\neg p \lor \neg q)$
- 3.
- a)

p	q	$\neg p$	$\neg p \wedge q$	
Т	Т	F	F	
Т	F	F	F	
F	T	T	T	
F	F	Т	F	

b)

q	$p\vee q$	$\neg(p\vee q)$
Т	Т	F
F	T	F
T	T	F
F	F	T
	T	T T F T

c)

p	q	$\neg q$	$p \rightarrow \neg q$
T	T	F	F
T	F	Т	Т
F	T	F	Т
F	F	T	Т

4.

a)

p	q	r	$p \wedge q$	$(p \land q) \to r$
Т	Т	Т	Т	Т
T	T	F	T	F
T	F	T	F	Т
T	F	F	F	Т
F	T	T	F	Т
F	T	F	F	Т
F	F	T	F	Т
F	F	F	F	Т

b)

p	q	$\neg q$	$\neg q \wedge p$	$q \leftrightarrow (\neg q \land p)$
Т	Т	F	F	F
T	F	T	T	F
F	T	F	F	F
F	F	T	F	Т

c)

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \lor (q \to r)$
Т	Т	Т	Т	Т	Т
Т	T	F	F	F	F
Т	F	Т	Т	T	T
T	F	F	F	T	T
F	Т	T	Т	T	T
F	Τ	F	Т	F	Т
F	F	T	Т	Т	Т
F	F	F	Т	Т	Т

d) a) and c) are equivalent.

5.

a)

p	q	$p \lor q$	$\neg p \land \neg q$	$(p \vee q) \wedge (\neg p \wedge \neg q)$
Т	Т	Т	F	F
T	F	T	F	F
F	Т	T	F	F
F	F	F	Т	F

 $(p \lor q) \land (\neg p \land \neg q)$ is a contradiction.

b)

p	q	$p \wedge q$	$(p \land q) \to q$
Т	T	Т	Т
T	F	F	Т
F	T	F	Т
F	F	F	Т

 $(p \land q) \rightarrow q$ is a tautology.

c)

p	q	$p \wedge q$	$(p \land q) \leftrightarrow \neg p$
Т	T	T	F
Т	F	F	T
F	T	F	F
F	F	F	F

 $(p \land q) \leftrightarrow \neg p$ is neither a contradiction nor a tautology.

6.

- a) If he has courage then he will win. Let p denote "He has courage" and q denote "He will win". The conditional statement above can be symbolically written as $p \to q$. Its contrapositive is symbolically written as $\neg q \to \neg p$ which translates to "If he will not win, then he has no courage". Note that both the original conditional proposition and its contrapositive are logically equivalent.
- b) Only if he does not tire will he win. Let p denote "He will win" and q denote "He tires". The con-

ditional statement above can be symbolically written as $p \to \neg q$. Its contrapositive is symbolically written as $\neg \neg q \to \neg p$ which translates to "If he tires, then he will not win".

7.

a)

$$p \lor (p \land q) \equiv p$$
 (absorption law)

Another approach:

$$p \lor (p \land q) \equiv (p \land T) \lor (p \land q)$$
 (identity law)
$$\equiv p \land (T \lor q)$$
 (distributive law)
$$\equiv p \land T$$
 (identity law)
$$\equiv p$$
 (identity law)

b)

- 8. The simplest forms are:
- a) p
- b) $p \wedge q$
- c) $\neg p \wedge \neg q$
- 9.
- a)

p	q	$\neg p$	$\neg p \to q$	$\neg q$
Т	T	F	Т	F
T	F	F	т	Т
F	T	T	Т	F

\overline{p}	q	$\neg p$	$\neg p \rightarrow q$	$\neg q$
F	F	Т	F	Т

The argument above is not valid (i.e. fallacy) because whenever the truth values of $\neg p \rightarrow q$ and p are true, the truth value of $\neg q$ is not always true (as evident from the first row in the truth table above).

b)

p	q	r	$p \to q$	$r \to \neg q$	$r \to \neg p$
Т	Т	Т	Т	F	F
Τ	T	F	T	T	T
Τ	F	T	F	Т	F
Τ	F	F	F	Т	T
F	T	T	Т	F	T
F	T	F	Т	T	T
F	F	Т	T	T	T
F	F	F	Т	Т	Т

The argument above is valid because whenever $p \to q$ and $r \to \neg q$ are true, $r \to \neg p$ is always true.

- 10. Using contradiction:
- a) Set the conclusion to false, so q must be true. If q is true, then p can be true or false to make P_1 true. If p can be true, then P_2 can be true. There is no contradiction, therefore the argument does not hold.
- b) Set the conclusion to be false, $r \to \neg p$ must be false so r must be true and p must be true ($T \to F$). If p is true, then q must be true for P_1 to hold. If r is true and p is true, then P_2 is false ($T \to F$), so a contradiction is found and the argument holds.