MATH H113: Honors Introduction to Abstract Algebra

2016-01-25

- Euclidean Algorithm
- Partitions and equivalence relations

Proof of existence of gcd's

Euclidean algorithm:

```
Let a, b \in \mathbb{Z} not both zero.
```

Step 1: If b = 0, then the answer is |a|.

Otherwise, let $r_0 = a$ and $r_1 = |b|$.

Then, for n = 1, 2, 3, ... write $r_{n-1} = q_n r_n + r_{n+1}$ with $q_n, r_{n+1} \in \mathbb{Z}$ and $0 \le r_{n+1} < r_n$.

When you reach $r_{n+1} = 0$, stop. The answer is r_n .

Example: compute gcd(2016, 98) where $r_0 = 2016, r_1 = 98$.

 $2016 = 20 \times 98 + 56$

 $98 = 1 \times 56 + 42$

 $56 = 1 \times 42 + 14$

 $42 = 3 \times 14 + 0$

Answer is 14.

Proof that the Euclidean algorithm actually gives you the gcd

Facts about the gcd:

- i. If a and b are not both zero, then gcd(a,b) = gcd(b,a). (From the definition, the common divisors are the same).
- ii. The gcd only depends on the set of common divisors.
- iii. If $a \neq 0$ then gcd(a, 0) = |a| because d is a common divisor iff $d \mid a \ (d \mid 0 \text{ always})$. So
 - i. d = |a| satisfies d is a common divisor (|a| | a)
 - ii. If d' is a common divisor then $d' \mid a : d' \mid |a| = d$
 - iii. |a| > 0
- iv. If a and b are not both zero, and if q is any integer, then $\gcd(a,b)=\gcd(a-qb,b)$
 - If d is a common divisor of a and b, say dx = a and dy = b; then d(x qy) = dx ady = a qb, so $d \mid (a qb)$ and $\therefore d$ is a common divisor of a qb and b.

Converse: $d \mid (a - qb)$ and $d \mid b \implies dz = a - qb$ and dy = b, d(z + qy) = dz + qdy = a - qb + qb = a, so $d \mid a$.

 \therefore d is a common divisor of a and b.

 \therefore the common divisors of a and b are the same as the common divisors of a-qb and b.

v.
$$gcd(a, b) = gcd(a, -b)$$

Back to the Euclidean algorithm:

If we end at Step 1 then the answer is correct by (iii).

Otherwise, $r_n = \gcd(r_n, 0) = \gcd(r_n, r_{n+1}) = \gcd(r_{n-1}, r_n) = \ldots = \gcd(r_1, r_0) = \gcd(|b|, a) = \gcd(|b|, a) = \gcd(a, b)$ by (iv) and (i). Because $n \mid b \iff n \mid (-b)$, so a and b have the same common divisors as a and -b.

Proposition:

If $d = \gcd(a, b)$ then there are integers x and y such that d = ax + by (d is a \mathbb{Z} -linear combination of a and b).

Proof:

If you end at Step 1, then $d=(\pm 1)a$. Otherwise, follow the steps in the Euclidean algorithm to get x and y.

Back to the previous example:

$$\begin{aligned} r_2 &= 56 = 1 \times 2016 - 20 \times 98 \\ r_3 &= 42 = 98 - 56 = 98 - (1 \times 2016 - 20 \times 98) = 21 \times 98 - 1 \times 2016 \\ r_4 &= 14 = 56 - 1 \times 42 = 1 \times 2016 - 20 \times 98 - 1(21 \times 98 - 1 \times 2016) = 2 \times 2016 - 41 \times 98 \end{aligned}$$

Remark:

You can also get gcds from the prime factorizations of |a| and |b|.

In our example:

$$2016 = 2^5 \times 3^2 \times 7$$

 $98 = 2^1 \times 3^0 \times 7^2$
 $\gcd(2016, 98) = 2^1 \times 3^0 \times 7^1 = 14$
(take the smallest exponent for each prime).

Equivalence Relations

Definition:

A relation on a set A is a subset of $A \times A$.

If the subset is R, we may write aRb to mean $(a,b) \in R$, more often we write $a \sim b$.

Example: \leq (when $A = \mathbb{R}$) In that case $R = \{(a, b) \in \mathbb{R}^2 : a \leq b\}$.

Definition:

A relation \sim on a set A is

• reflexive if $a \sim a$ for all $a \in A$

- symmetric if $a \sim b \implies b \sim a$ for all $a, b \in A$
- transitive if $(a \sim b \land b \sim c) \implies a \sim c$ for all $a, b, c \in A$

Definition:

An equivlance relation is a relation on a set that is reflexive, symmetric and transitive.

Example:

Let $f: A \to S$ be a function. Then the relation \sim defined by $a \sim b$ iff f(a) = f(b) is an equivalence relation on A.

Also = on any set is an equivalence relatation

 \leq on \mathbb{R} is *not* an equivalence relation.

Definition

A partition of a set A is a collection of $\{A_i: i \in I\}$ of nonempty subsets of A such that: i. $\bigcup_{i \in I} A_i = A$, and ii. $A_i \cap A_j = \emptyset$ for all $i, j \in I$ with $i \neq j$

Example:

```
\{\{1, 2, 3\}, \{4, 5\}, \{6\}\}\ is a partition of \{1, 2, 3, 4, 5, 6\}
If f: A \to B is surjective (onto), then \{f^{-1}(b): b \in B\} is a partition of A.
```

Equivalence relations and partitions are related by:

Definition:

Let \sim be an equivalence relation on a set A, and let $a \in A$. Then the equivalence class of a is the subset $\bar{a} = \{b \in A : b \sim a\}$ of A.

Proposition:

Equivalence relations on a set A and partition of A are related:

 $\{\text{equivalnce relations on } A\} \rightleftharpoons \{\text{partitions of } A\}$

bijective functions mutually inverse

$$\sim \mapsto \{\bar{a} : a \in A\}.$$

 $p = \{A_i : i \in I\} \mapsto a \sim b \text{ if } a \text{ and } b \text{ lie in the same } A_i$