

编译原理

好好学习!!!天天向上!!!

P164 4.6.1(1)

描述下列文法的所有可行前缀:

1) 练习4.2.2(1)的文法 $S \rightarrow 0$ S 1 | 0 1

1. 提取左公因子和消除左递归后的增广文法

- 0) S' -> S
- 1) S -> 0 A
- 2) A -> 0 A 1
- 3) A -> 1

可行前缀为 0+A?1?

P) P164 4.6.2

为练习4.2.1中的(增广)文法构造SLR项集。计算这些项集的GOTO函数。给出这个函数的语法分析表。这个文法是SLR文法吗?

提取左公因子和消除左递归后的增广文法

- 0) S' -> S
- 1) S -> a B
- 2) B -> a B A B
- 3) B \rightarrow ϵ
- 4) A -> +
- 5) A -> *

FOLLOW 函数如下:

FOLLOW(S) = [\$]

FOLLOW(A) = [a, \$]

FOLLOW(B) = [+, *,\$]

P164 4.6.2

状态	ACTION				GOTO		
	a	+	*	\$	S	Α	В
0	s2				s1		
1				acc			
2	s4	r3	r3	r3			s3
3				r1			
4	s4	r3	r3	r3			s5
5		s7	s8			s6	
6	s4	r3	r3	r3			s9
7	r4			r4			
8	r5			r5			
9		r2	r2	r2			

无冲突,这显然是一个 SLR 文法

P164 4.6.3

利用练习4.6.2得到的语法分析表,给出处理输入aa*a+时的各个动作。

	栈	符号	输入	动作
1)	0		aa*a+\$	移入
2)	02	а	a*a+\$	移入
3)	024	aa	*a+\$	根据 B -> ε 规约
4)	0245	aaB	*a+\$	移入
5)	02458	aaB*	a+\$	根据 A -> * 规约
6)	02456	aaBA	a+\$	移入
7)	024564	aaBAa	+\$	根据 B -> ε 规约
8)	0245645	aaBAaB	+\$	移入
9)	02456457	aaBAaB+	\$	根据 A -> + 规约

此处应为10) 编号依次递增

_ ▼			
9)	02456456	aaBAaBA	\$ 根据 B -> ε 规约
10)	024564569	aaBAaBAB	\$ 根据 B -> aBAB 规约
11)	024569	aaBAB	\$ 根据 B -> aBAB 规约
12)	023	аВ	\$ 根据 S -> aB 规约
13)	01	S	\$ 接受

P164 4.6.5

S->AaAb|BbBa 说明该文法是_{A->ε}

```
A->ε
B->ε
```

LL(1)的,但不是SLR(1)的。

```
1. 该文法是 LL(1) 的
```

见 4.4.3 节, p142 的判定标准

2. 该文法不是 SLR(1) 的

```
I_0
```

S' -> .S

S -> .AaAb

S -> .BbBa

A -> .

B -> .

由于 FOLLOW(A) = FOLLOW(B) = [a, b],所以当 I_0 后输入为 a 或 b 时,就会发生规约冲突。

P165 4.6.6

说明该文法 S->SA|A A->a 是SLR(1)的,但不是LL(1)的

1. 该文法不是 LL(1) 的

s -> sa 和 s -> a 均能推导出以 a 开头的串, 所以不是 LL(1) 的

2. 该文法是 SLR(1) 的

该文法生成的语法分析表是没有冲突的

给定文法 $G(S): S \rightarrow S S \mid (S) \mid \epsilon$

- (1) 试构造该文法的 SLR 分析表,并对分析表中的移进/归约和归约/归约冲突;选择正确的移进或归约动作,使得文法 G(S)的所有语句能被正确地分析(令嵌套的括号对的链接运算(SS)为左结合运算)
- (2) 试利用你的分析表写出语句 "()()" 的分析过程.(在上次作业所构造的LR(0)自动机基础上进行分析)

给定文法 $G(S): S \rightarrow S S \mid (S) \mid \epsilon$

(1) 试构造该文法的 SLR 分析表,并对分析表中的移进/归约和归约/归约冲突;选择正确的移进或归约动作,使得文法 G(S)的所有语句能被正确地分析(令嵌套的括号对的链接运算(SS)为左结合运算)

Follow(S) = {\$, (,)}.根据前面作业的分析 左结合的活前缀只能是 $S(^*S?)$?, 故 SLR 分析表如下所示:

		goto		
状态	()	\$	S
0	s1/r3	r3	r3	2
1	s1/r3	r3	r3	3
2	s1/r3	r3	acc/r3	4
3	s1/r3	s5/r3	r3	4
4	r1/s1/r3	r1/r3	r1/r3	4
5	r2	r2	r2	

给定文法 $G(S): S \rightarrow S S \mid (S) \mid \epsilon$

(1) 试利用你的分析表写出语句 "()()" 的分析过程.(在上次作业所构造的LR(0)自动机基础上进行分析)

语句 "()()" 的分析过程如下所示:

<u> </u>		
剩余串	分析栈	分析动作
()()\$	0	shift
)()\$	0(1	reduce $S \to \varepsilon$
)()\$	0(1 <i>S</i> 3	shift
()\$	0(1 <i>S</i> 3)5	reduce $S \to (S)$
()\$	0.52	shfit
)\$	0 <i>S</i> 2(1	reduce $S \to \varepsilon$
)\$	0S2(1S3	shift
\$	0 <i>S</i> 2(1 <i>S</i> 3)5	reduce $S \to (S)$
\$	0\$2\$4	reduce $S \to SS$
\$	0.52	accept

We live in this world when we love it.

——只有真正的热爱,才能感受到活着的真谛。