MODULE 06 SÉANCE SYSTÈME 06 TP D'INFORMATIQUE Durée 2h30

Chiffrement de la communication

BLOC DE COMPÉTENCES

U6 - VALORISATION DE LA DONNÉE ET CYBERSÉCURITÉ

COMPÉTENCE(S)

C08 - CODER

OBJECTIF PÉDAGOGIQUE

Dans cette partie, vous utiliserez une classe documentée pour créer un serveur UDP sur une Raspberry.

CONNAISSANCES ISSUES DU RÉFÉRENTIEL

• Programmation Orientée Objet

Niveau 3

CONNAISSANCES OPÉRATIONNALISÉES

• Utiliser une classe

Niveau 2

Créer une classe

Niveau 2

Le chiffrement de données

Présentation

Dans le cadre de la protection des données, nous souhaitons mettre en place un chiffrement des données qui circulent sur le réseau entre le « sniffer » (le client) et le serveur TCP RS sur la Raspberry.

Chiffrement symétrique

Expliquer ce qu'est un chiffrement symétrique.
Donner les contraintes de ce type de chiffrement : qui doit connaître la clé, comment la partager en toute sécurité

Le chiffrement dans le système Cirpark

Dans ce projet, nous utiliserons un chiffrement avec un ou exclusif et une clé de chiffrement sur 2 octets : 0xA3 et 0xC5. Supposons qu'on souhaite envoyer la trame suivante : 0x08 0x12 0x05 0x1F (capteur 0x0812, fonction 05 et bcc).

Donner la valeur des octets de la trame chiffrée :

```
1<sup>er</sup> octet =

2<sup>ème</sup> octet =

3<sup>ème</sup> octet =

4<sup>ème</sup> octet =
```

Rappeler le principe du déchiffrement et procéder au déchiffrement de la trame.

Le chiffrement en C++

Ecrire en C++ la déclaration de la clé de chiffrement sous forme de tableau de 2 octets non signés. Le tableau s'appellera « cle ».

Supposons que nous devions chiffrer le tableau d'octets « requete » suivant :

```
unsigned char requete[4] = \{0x08, 0x12, 0x05, 0x1F\};
```

dans le tableau « requete_chiffree » déclaré comme suit :

```
unsigned char requete_chiffree[4];
```

Ecrire les 4 instructions en C++ qui permettront de chiffrer les 4 octets avec la clé précédente (sans faire de boucle).

requete_chiffree[0] =

On souhaite optimiser ce code avec une boucle for. Proposer une solution :

Le déchiffrement

Que dire du déchiffrement ? Comment d'écrit-il en C++ ?

Mise en place du chiffrement dans les applications et test.

Sur le serveur :

Ajouter le déchiffrement des données reçues et le chiffrement des données envoyées.

Sur le sniffer :

Ajouter le chiffrement des données envoyées et le déchiffrement des données reçues.

Vérifier que les échanges se passent correctement. Avec Wireshark, justifier que vos données sont bien chiffrées.