Learning the topology of graphs

Convex Group-HKUST 2018-08-17

Contents

1	Problem Statement	1
2	Usage of the package	1
3	Explanation of the algorithms 3.1 learnGraphTopology: Learning the topology of graph	4 5
R	eferences	5

1 Problem Statement

The problem of learning a K-component graph may be expressed mathematically as

$$\min \mathtt{minimize}_{\mathbf{w}, \mathbf{\Lambda}, \mathbf{U}} - \log \det(\mathbf{\Lambda}) + \operatorname{tr}(\mathbf{K} \mathcal{L} \mathbf{w}) + \frac{\beta}{2} ||\mathcal{L} \mathbf{w} - \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T||_F^2$$
 (1)

subject to
$$\mathbf{w} \ge 0, \mathbf{\Lambda} \in \mathcal{S}_{\mathbf{\Lambda}}, \mathbf{U}^T \mathbf{U} = \mathbf{I},$$
 (2)

in which \mathcal{S}_{Λ} is the space of eigenvalues of matrices Θ which are positive semi-definite, symmetric, and whose sum of the elements of any row or column is equal to zero.

We use a block coordinate descent to optimize each variable while helding the others fixed. Therefore, problem (??) can be divided in the following problems:

2 Usage of the package

We illustrate the usage of the package with simulated data, as follows:

```
library(spectralGraphTopology)
set.seed(123)

# Number of samples
T <- 10000
# Vector to generate the Laplacian matrix of the graph
w <- runif(10)
# Laplacian matrix
Theta <- L(w)
# Sample data from a Multivariate Gaussian
N <- ncol(Theta)
Y <- MASS::mvrnorm(T, rep(0, N), MASS::ginv(Theta))
# Number of components of the graph
K <- 1
# Learn the Laplacian matrix
res <- learnGraphTopology(Y, K, beta = 10)</pre>
```

Let's visually inspect the true Laplacian and the estimated one:

```
Theta
#>
                       [,2]
             [,1]
                                 [,3]
                                           [,4]
                                                     [,5]
#> [1,] 2.3678770 -0.2875775 -0.7883051 -0.4089769 -0.8830174
#> [3,] -0.7883051 -0.9404673 3.1726265 -0.8924190 -0.5514350
#> [4,] -0.4089769 -0.0455565 -0.8924190 1.8035672 -0.4566147
#> [5,] -0.8830174 -0.5281055 -0.5514350 -0.4566147 2.4191726
res$Theta
#>
             [,1]
                       [,2]
                                 [,3]
                                             [,4]
#> [1,] 2.3384299 -0.29372890 -0.7864202 -0.38899191 -0.8692889
#> [2,] -0.2937289 1.76412935 -0.9297244 -0.05376403 -0.4869120
#> [3,] -0.7864202 -0.92972444 3.0917157 -0.81448289 -0.5610881
#> [4,] -0.3889919 -0.05376403 -0.8144829 1.74104811 -0.4838093
#> [5,] -0.8692889 -0.48691199 -0.5610881 -0.48380928 2.4010983
```

We can evaluate the performance of the learning process in a more objective manner by computing the relative error between the true Laplacian matrix and the estimated one, which can be done as follows::

```
RE <- norm(Theta - res$Theta, type="F") / max(1., norm(Theta, type="F"))
RE
#> [1] 0.02965113
```

Let's also look at the trend of the objective function per iteration:

For K > 1, we can generate the Laplacian as a block diagonal matrix, as follows

```
library(spectralGraphTopology)
w1 <- runif(3)
w2 <- runif(3)
Theta1 <- L(w1)
Theta2 <- L(w2)
N1 <- ncol(Theta1)</pre>
```

```
Theta
            [,1]
                      [,2]
                               [,3]
                                        [,4]
                                                 [,5]
#> [1,] 0.96494812 -0.03715792 -0.9277902 0.0000000 0.0000000 0.0000000
#> [2,] -0.03715792  0.48514753 -0.4479896  0.0000000  0.0000000  0.0000000
#> [3,] -0.92779020 -0.44798960 1.3757798 0.0000000 0.0000000 0.0000000
#> [4,] 0.00000000 0.00000000 0.0000000 1.2716541 -0.9159023 -0.3557518
#> [5,] 0.00000000 0.00000000 0.0000000 -0.9159023 1.8312150 -0.9153127
#> [6,] 0.00000000 0.00000000 0.0000000 -0.3557518 -0.9153127 1.2710645
res$Theta
           [,1]
                    [,2]
                             [,3]
                                      [,4] [,5]
                                                   [,6]
#> [1,] 1.3891578 0.0000000 -0.3605830 -0.6061550 0 -0.4224198
#> [2,] 0.0000000 0.7412041 0.0000000 -0.3010095 0 -0.4401947
#> [4,] -0.6061550 -0.3010095 -0.5816278 1.6025191 0 -0.1137268
#> [6,] -0.4224198 -0.4401947 -0.7510592 -0.1137268 0 1.7274005
```

As we can observe, the matrices' structure do not quite match. I suspect they might be similar matrices. Let's check some properties:

```
eigen(Theta, only.values = TRUE)
#> $values
#> [1] 2.746823e+00 2.185018e+00 1.627111e+00 6.408571e-01 -3.252607e-18
#> [6] -1.948853e-17
#>
#> $vectors
#> NULL
eigen(res$Theta, only.values = TRUE)
#> $values
#> [1] 2.713545e+00 1.965910e+00 1.661742e+00 8.123542e-01 0.000000e+00
#> [6] -2.220446e-16
#>
#> $vectors
#> NULL
```

```
sum(diag(Theta))
#> [1] 7.199809
sum(diag(res$Theta))
#> [1] 7.153552
```

```
det(Theta)
#> [1] 0
det(res$Theta)
#> [1] 0
```

```
N \leftarrow N1 + N2
evd_true <- eigen(Theta)</pre>
vec_true <- evd_true$vectors[, N:1]</pre>
                                                      [,5]
#>
            [,1]
                      [,2]
                                [,3]
                                            [,4]
                                                                [,6]
#> [1,] 0.0000000 -0.5773503 0.5643095 0.0000000000
                                                 0.5901029
                                                           0.0000000
#> [2,] 0.0000000 -0.5773503 -0.7931989 0.0000000000 0.1936549
                                                           0.0000000
#> [3,] 0.0000000 -0.5773503 0.2288893 0.0000000000 -0.7837578
                                                           0.0000000
0.0000000
                                                           0.4085707
#> [5,] -0.5773503  0.0000000  0.0000000 -0.0003723246
                                                 0.0000000 -0.8164965
vals_true <- evd_true$values[N:1]</pre>
vals_true
#> [1] 8.881784e-16 1.332268e-15 6.408571e-01 1.627111e+00 2.185018e+00
#> [6] 2.746823e+00
res$lambda
#> [1] 0.000000 0.000000 1.010313 1.774452 2.062863 2.785350
objFunction(Theta, vec_true, vals_true, res$Km, beta, N, K)
#> [1] 2.185048
objFunction(res$Theta, vec_true, vals_true, res$Km, beta, N, K)
#> [1] 31.74898
```


3 Explanation of the algorithms

In this section we describe in detail the algorithms designed to solve the graph topology learning problem.

3.1 learnGraphTopology: Learning the topology of graph

The goal of learnGraphTopology() is to estimate the Laplacian matrix generated by the weight vector of a graph, w. The algorithm for the function learnGraphTopology is stated as follows:

Data: Y (data matrix), K (#{components}), β (regularization term), \mathbf{w}_0 , λ_0 , \mathbf{U}_0 (initial parameter

estimates), α_1 , α_2 (lower and upper bound on the eigenvalues of the Laplacian matrix), ρ (how much to increase beta per iteration) **Result:** Θ (Laplacian matrix) $N \leftarrow \mathtt{ncol}(\mathbf{Y})$ while objective function do not converged or max #{iterations} not reached do $k \leftarrow 0$ while parameters do not converged or max #{iterations} not reached do $\mathbf{w}^{(k+1)} \leftarrow \mathtt{w_update}(\mathbf{w}^{(k)}, \mathbf{U}^{(k)}, \boldsymbol{\lambda}^{(k)}, \beta, N, \mathbf{K})$ $\mathbf{U}^{(k+1)} \leftarrow \mathtt{U_update}(\mathbf{w}^{(k+1)}, N)$ $\boldsymbol{\lambda}^{(k+1)} \leftarrow \texttt{lambda_update}(\mathbf{w}^{(k+1)}, \mathbf{U}^{(k+1)}, \alpha_1, \alpha_2, \beta, N, K)$ end $\beta \leftarrow \beta(\rho+1)$ return $\mathcal{L}(\mathbf{w}^{(k+1)})$ Function w_update(w, U, λ , β , N, K): $abla_{\mathbf{w}} f \leftarrow \mathcal{L}^{\star} \left(\mathcal{L} \left(\mathbf{w} \right) - \mathbf{U} \mathbf{diag}(\boldsymbol{\lambda}) \mathbf{U}^T + \frac{\mathbf{K}}{\beta} \right)$ $\mathbf{return} \ \max \left(0, \mathbf{w} - \frac{\nabla_{\mathbf{w}} f}{2N} \right)$ Function $U_{update}(\mathbf{w}, N)$: return eigen($\mathcal{L}(\mathbf{w})$)\$vectors[, N:1] Function lambda_update(w, U, $\alpha_1, \alpha_2, \beta, N, K$): $\mathbf{d} \leftarrow \mathtt{diag}\left(\mathbf{U}^T \mathcal{L}(\mathbf{w}) \mathbf{U}\right)$ $oldsymbol{\lambda} \leftarrow rac{1}{2} \left(\mathbf{d} + \sqrt{\mathbf{d} \odot \mathbf{d} + rac{4}{eta}}
ight)$ if λ has its elements in increasing order then $\operatorname{return} \lambda$ else set to α_1 the elements of λ whose values are less than α_1 set to α_2 the elements of λ whose values are greater than α_2 end if λ has its elements in increasing order then return λ

raise Exception("eigenvalues are not in increasing order")

References

else

end