MA 668-Numerical Analysis I Nonlinear Equations in One Variable

Jaman Mohebujjaman

Department of Mathematics University of Alabama at Birmingham (UAB)

February 5, 2024

Finding Roots

We will focus on finding solutions to scalar, nonlinear equation

$$f(x) = 0, \quad x \in [a, b],$$

under the assumption $f \in C[a, b]$. We will denote a solution by x^* .

Example: f(x) = x - 1, on the interval [a, b] = [0, 2], has the only one solution $x^* = 1$.

Finding Roots

Examples:

- $f(x) = \sin(x)$, the solutions are $x^* = n\pi$, $n \in \mathbb{Z}$. It has five roots in the interval $[a, b] = [0, 4\pi]$.
- ② $f(x) = x^3 30x^2 + 2552$, $0 \le x \le 20$, has one root in the given interval.
- **3** $f(x) = 10 \cosh(\frac{x}{4}) x$, $x \in [-10, 10]$. No roots.

Python code

```
import numpy as np
import matplotlib.pyplot as plt
def my_pol(x):
  return x**3-30*x**2+2552
def my_cosh(x):
  return 10*np.cosh(x/4.0)-x
t1=np.linspace(0,4*np.pi,1000)
t2=np.linspace(0,20,1000)
t3=np.linspace(-10,10,1000)
```


Python code

```
fig, axs = plt.subplots(3) 

axs[0].plot(t1,np.sin(t1),t1,0*t1,'r-',linewidth=5) 

axs[1].plot(t2,my_pol(t2),t2,0*t2,'r-',linewidth=5) 

axs[2].plot(t3,my_cosh(t3),t3,0*t3,'r-',linewidth=5) 

axs[0].set_title('f(x)=\sin(x)') 

axs[1].set_title('f(x)=x^3-30x^2+2552') 

axs[2].set_title('f(x)=10\cos(x/4)-x') 

plt.tight_layout() 

plt.show()
```


Iterative Methods for Finding Roots

- Initial guess x_0 :
 - Plot f(x).
 - Look for locations where f(x) changes sign: If $f(a) \cdot f(b) < 0$ then f(x) has a root in [a, b].
- Generates a sequence of iterates $\{x_1, x_2, \dots, x_k, \dots\}$
- Stopping criteria: $|x_n x_{n-1}| < atol$, and/or $\frac{|x_n x_{n-1}|}{|x_n|} < rtol$, and/or $|f(x_n)| < ftol$, where atol, rtol, and ftol are user-specified constants.
 - Often the relative criterion is more robust than the absolute one.
 - a favorite combination uses $\frac{|x_n x_{n-1}|}{1 + |x_n|} < tol$
- Desirable properties of root finding algorithms:
 - Efficient- requires a small number of function evaluations.
 - Robust-fails rarely, if fails it announce.
 - Require a minimal amount of additional data such as the function's derivative.
 - Requires f to satisfy only minimal smoothness properties.
 - Scalable.

Bisection Method (BSM)

Algorithm 1: Bisection Method

```
Given f(x) \in C[a, b], with f(a) \cdot f(b) < 0.
```

Step 1: Evaluate f(p) where $p = \frac{a+b}{2}$. If $|x^* - p| \le atol$ then $x^* \approx p$, STOP.

Step 2: If
$$f(a) \cdot f(p) < 0$$
:
 $b \leftarrow p$. Go to Step 1.
else if $f(a) \cdot f(p) > 0$:
 $a \leftarrow p$. Go to Step 1.
else $x^* = p$ is the root, STOP.

Pros

- Most simple method
- Requires minimal assumptions on f(x)

Cons

- Slow in convergence
- Difficult to generalize to higher dimensions.

Nonlinear Equations in One Variable

Bisection Method

After a total of n iterations the algorithm is guaranteed to converge if

$$|x^*-x_n|\leq \frac{b-a}{2}2^{-n}\leq atol,$$

which gives

$$n = \left\lceil \log_2 \left(\frac{b - a}{2 \text{ atol}} \right) \right\rceil.$$

Bisection Method

Examples:

Apply the bisection routine, to find the root of the function

$$f(x) = \sqrt{x} - 1.1$$

starting from the interval [0,2] with atol = 0.1.

- ② Write a Python code of the Bisection algorithm and find the root of $f(x) = \sqrt{x} 1.1$ with [a, b] = [0, 2] and atol = 1.e 8. Show the results in a table with columns as: Iteration number, p value, and |f(p)| value.
- Write a Python code of the Bisection algorithm using the "while" loop and test it in Problem 2.
- Write a Python code of the Bisection algorithm using the "Recursive function" and test it in Problem 2.

Fixed Point Iteration Method (FPIM)

- Unlike the Bisection method, the Fixed Point Iteration method is scalable.
- Let f(x) = 0 be rewritten as x = g(x), e.g.,

$$x(x-1)=0 \Leftrightarrow x=x^2.$$

• Starting from an initial guess x_0 , generate a sequence

$$\{x_1, x_2, \cdots, x_k, \cdots\}$$
 as

$$x_{k+1}=g(x_k)$$

so that a **fixed point** x^* can be found such that

$$x^* = g(x^*).$$

• The convergence of the above sequence depends on the choice of g(x) (not all choices are good).

Some choice of g(x) can be

- g(x) = x f(x),
- g(x) = x + 10f(x),
- $g(x) = x \frac{f(x)}{f'(x)}$, assuming f'(x) exists and $f'(x) \neq 0$.

Algorithm 2: Fixed Point Iteration Method

Given
$$f(x) \in C[a, b]$$
, $?g(x) \ni f(x) = 0 \Leftrightarrow x = g(x)$.

Step 1: Initial guess x_0 .

Step 2: For $k = 0, 1, 2, \cdots$

$$x_{k+1} = g(x_k)$$

continue until the termination criterion is satisfied.

Existence and uniqueness: Let $g(x) \in C[a, b]$

- Is there a fixed point $x^* \in [a, b]$?
- If yes, is it unique?

Theorem (Fixed Point)

If $g \in C[a, b]$, and $g(x) \in [a, b] \ \forall x \in [a, b]$, then there exists a fixed point $x^* \in [a, b]$.

If, in addition, g' exists and $\exists \underbrace{\rho}_{\in \mathbb{R}^+} < 1 \ni |g'(x)| \le \rho \quad \forall x \in (a,b), \ then$

the fixed point x^* is unique in the interval.

Convergence:

• Does the sequence $\{x_1, x_2, \dots, x_k, \dots\}$ with $x_{k+1} = g(x_k)$ converges to a fixed point x^* ?

Convergence:

• Does the sequence $\{x_1, x_2, \dots, x_k, \dots\}$ with $x_{k+1} = g(x_k)$ converges to a fixed point x^* ?

Proof.

Under the above-stated assumption, we have

$$|x_{k+1} - x^*| = |g(x_k) - g(x^*)| \stackrel{\mathsf{MVT}}{=} |g'(\xi)(x_k - x^*)| \le \underbrace{\rho}_{\le 1} |x_k - x^*|,$$

which is a *contraction* by the factor ρ . Thus,

$$|x_{k+1} - x^*| \le \rho |x_k - x^*| \le \rho^2 |x_{k-1} - x^*| \le \dots \le \rho^{k+1} |x_0 - x^*|.$$

Now

$$\lim_{k\to\infty}|x_{k+1}-x^*|\leq \lim_{k\to\infty}\rho^{k+1}|x_0-x^*|\implies \lim_{k\to\infty}x_{k+1}=x^*.$$

Example: For the function $g(x) = e^{-x}$ on [0.2, 1.2], find a fixed point x^* satisfying $x^* = e^{-x^*}$ with an initial guess $x_0 = 1$.

Figure: Graphs of the functions y = x, and $g(x) = e^{-x}$.

Example: For the function $g(x) = e^{-x}$ on [0.2, 1.2], find a fixed point x^* satisfying $x^* = e^{-x^*}$ with an initial guess $x_0 = 1$.

Solution: $g \in C[0.2, 1.2]$, monotonically decreasing, $g(0.2) \approx 0.82$, and $g(1.2) \approx 0.30$, thus $g(x) \in [0.2, 1.2] \implies \exists$ a fixed point $x^* \in [0.2, 1.2]$.

$$x_1 = g(x_0) = g(1) = e^{-1} \approx 0.37$$

 $x_2 = g(x_1) = g(0.37) = e^{-0.37} \approx 0.69$
 $x_3 = g(x_2) = g(0.69) = e^{-0.69} \approx 0.50$
 $x_4 = g(x_3) = g(0.50) = e^{-0.50} \approx 0.61$
 $x_5 = g(x_4) = g(0.61) = e^{-0.61} \approx 0.54$
 $x_6 = g(x_5) = g(0.54) = e^{-0.54} \approx 0.58$
 $x_7 = g(x_6) = g(0.58) = e^{-0.58} \approx 0.56$
 $x_8 = g(x_7) = g(0.56) = e^{-0.56} \approx 0.57$
 $x_9 = g(x_8) = g(0.57) = e^{-0.57} \approx 0.57$

Consider $f(x) = 2\cosh(\frac{x}{4}) - x$, which has two roots at x_1^* , and x_2^* , and we can bracket them as $2 \le x_1^* \le 4$, $8 \le x_2^* \le 10$.

Figure: Roots of $f(x) = 2 \cosh(\frac{x}{4}) - x$.

Bisection Method: The speed of convergence with $\rho = \frac{1}{2}$. Here a = 2, b = 4, and atol = 1e - 8.

```
Iter= 1
          p= 3.000000000
                            |f(p)| = 0.4106334306
                            |f(p)| = 0.0964926140
Iter= 2 p= 2.5000000000
Iter= 3 p= 2.2500000000
                            |f(p)| = 0.0748374817
Iter=
         p= 2.3750000000
                            |f(p)| = 0.0119814777
Iter= 23
         p= 2.3575508595
                            |f(p)| = 0.0000001338
                            |f(p)| = 0.0000000517
Iter= 24 p= 2.3575509787
Iter= 25 p= 2.3575510383
                            |f(p)| = 0.000000107
                            |f(p)| = 0.0000000098
Iter=
      26 p= 2.3575510681
```

We found $x_1^* = 2.35755106061697$

Iter=

27

Jaman

p= 2.3575510532

|f(p)| = 0.0000000005

Bisection Method: The speed of convergence with $\rho = \frac{1}{2}$. Here a = 8, b = 10, and atol = 1e - 8.

```
Iter= 1
           p= 9.000000000
                            |f(p)| = 0.5931350609
                            |f(p)| = 0.0076695436
Iter= 2
         p= 8.5000000000
Iter= 3 p= 8.7500000000
                            |f(p)| = 0.2750998717
Iter=
         p= 8.6250000000
                            |f(p)| = 0.1294401872
Iter= 23
            p= 8.5071995258
                             |f(p)| = 0.0000000479
                             |f(p)| = 0.0000000793
Iter= 24
            p= 8.5071996450
Tter= 25
            p= 8.5071995854
                             |f(p)| = 0.0000000157
```

We found $x_2^* = 8.507199577987194$

p= 8.5071995556

p= 8.5071995705

|f(p)| = 0.0000000161

|f(p)| = 0.0000000002

27

Iter= 26

Tter=

Fixed Point Iteration Method: $g(x) = 2 \cosh\left(\frac{x}{4}\right)$, $g'(x) = \frac{1}{2} \sinh\left(\frac{x}{4}\right)$ near x_1^* , |g'(x)| < 0.4, and near x_2^* , |g'(x)| > 1.

Figure: Roots of $f(x) = 2 \cosh \frac{x}{4} - x$ (a) $2 \le x_1^* \le 4$, and (b) $8 \le x_2^* \le 10$.

Fixed Point Iteration Method: Initial guess $x_0 = 2$, atol = 1e - 8

```
n=1
       p= 2.2552519304
                          g(p) = 2.3263957274
                                                |f(p)| = 0.0711437969
n=2
       p= 2.3263957274
                          g(p) = 2.3479003113
                                                |f(p)| = 0.0215045840
n=3
       p= 2.3479003113
                          g(p) = 2.3545463562
                                                |f(p)| = 0.0066460449
n=9
                          g(p) = 2.3575482822
                                                |f(p)| = 0.0000061103
       p= 2.3575421720
n=10
       p= 2.3575482822
                          g(p) = 2.3575501890
                                                |f(p)| = 0.0000019067
       p= 2.3575501890
                          g(p) = 2.3575507840
                                                |f(p)| = 0.0000005950
n=11
                          g(p) = 2.3575509697
n=12
       p= 2.3575507840
                                                |f(p)| = 0.0000001857
       p= 2.3575509697
                          g(p) = 2.3575510276
                                                |f(p)| = 0.0000000579
n = 13
       p= 2.3575510276
                          g(p) = 2.3575510457
                                                |f(p)| = 0.000000181
n=14
n = 15
       p= 2.3575510457
                          g(p) = 2.3575510513
                                                |f(p)| = 0.0000000056
       p= 2.3575510513
                          g(p) = 2.3575510531
                                                |f(p)| = 0.000000018
n = 16
```


Fixed Point Iteration Method: Initial guess $x_0 = 4$, atol = 1e - 8

```
g(p) = 2.6253959730
n=1
       p= 3.0861612696
                                                 |f(p)| = 0.4607652967
n=2
       p= 2.6253959730
                           g(p) = 2.4464830853
                                                 |f(p)| = 0.1789128877
       p= 2.4464830853
                          g(p) = 2.3858876707
                                                 |f(p)| = 0.0605954146
n=3
. . .
                           g(p) = 2.3575592988
                                                 |f(p)| = 0.0000181763
n = 10
       p= 2.3575774751
       p= 2.3575592988
                           g(p) = 2.3575536267
                                                 |f(p)| = 0.0000056720
n=11
                                                 |f(p)| = 0.0000017700
n = 12
       p= 2.3575536267
                           g(p) = 2.3575518568
n=13
       p= 2.3575518568
                           g(p) = 2.3575513044
                                                 |f(p)| = 0.0000005523
                           g(p) = 2.3575511321
                                                 |f(p)| = 0.0000001724
n = 14
       p= 2.3575513044
                                                 |f(p)| = 0.0000000538
n = 15
       p= 2.3575511321
                           g(p) = 2.3575510783
                                                 |f(p)| = 0.000000168
n = 16
       p= 2.3575510783
                           g(p) = 2.3575510615
       p= 2.3575510615
                           g(p) = 2.3575510563
                                                 |f(p)| = 0.0000000052
n = 17
n = 18
       p= 2.3575510563
                          g(p) = 2.3575510546
                                                 |f(p)| = 0.000000016
```


Fixed Point Iteration Method: Initial guess $x_0 = 9$ *atol* = 1e - 8

OverflowError

Traceback (most recent call last)

Fixed Point Iteration Method: Initial guess $x_0 = 8$ *atol* = 1e - 8

```
n=1
       p= 7.52439138
                         g(p) = 6.71312623
                                            |f(p)| = 0.81126516
n=2
       p= 6.71312623
                        g(p) = 5.54303801
                                            |f(p)| = 1.17008822
                        g(p) = 4.24799489
                                            |f(p)| = 1.29504312
n=3
       p = 5.54303801
n=17
       p= 2.35755208
                         g(p) = 2.35755137
                                            |f(p)| = 0.00000071
       p= 2.35755137
                        g(p) = 2.35755115
                                            |f(p)| = 0.00000022
n = 18
       p= 2.35755115
                        g(p) = 2.35755109
                                            |f(p)| = 0.00000007
n = 19
n=20
       p= 2.35755109
                        g(p) = 2.35755106
                                            |f(p)| = 0.00000002
                                            |f(p)| = 0.0000001
       p= 2.35755106
                        g(p) = 2.35755106
n=21
n = 22
       p= 2.35755106
                        g(p) = 2.35755105
                                            |f(p)| = 0.00000000
```


Rate of Convergence

In a fixed point iteration:

- Assume x^* is a given root and $\rho = |g'(x^*)|$ with $0 < \rho < 1$.
- x_0 is an initial guess, sufficiently close to x^* .

$$|x_k - x^*| = |g'(\xi)||x_{k-1} - x^*| \approx \rho |x_{k-1} - x^*| \approx \dots \approx \rho^k |x_0 - x^*|$$

$$\rho^{-k} \approx \frac{|x_0 - x^*|}{|x_k - x^*|}$$
$$-k \log_{10} \rho \approx \log_{10} \left(\left| \frac{x_0 - x^*}{x_k - x^*} \right| \right)$$

The rate of convergence is defined by

$$Rate = -\log_{10} \rho$$

Then, the number of iteration takes

$$k \approx \frac{\log_{10}\left(\left|\frac{x_0 - x^*}{x_k - x^*}\right|\right)}{Rate}$$

Rate of Convergence

Bisection Method: (though it is not an iterative method) $\rho = \frac{1}{2}$.

$$Rate = -\log_{10}
ho = -\log_{10} \left(\frac{1}{2} \right) pprox 0.301$$

If we want $\left|\frac{x_0-x^*}{x_k-x^*}\right|\approx 10$, then k=4. After k=4, iteration, the error reduction in bisection method is a factor of 16>10. For Fixed Point Iteration Method:

- For $f(x) = 2 \cosh(\frac{x}{4}) x$, $g(x) = 2 \cosh(x/4)$, and $g'(x) = 0.5 \sinh(x/4)$, at $x_1^* = 2.3575510513$, $\rho = g'(x_1^*) \approx 0.312$
- $Rate = -\log_{10}(0.312) \approx 0.506$
- k = 2.

If $\rho > 1 \implies$ Negative rate! No convergence.

If $\rho=0$ \Longrightarrow Infinite rate \Longrightarrow Error reduction is faster than a constant factor.

Newton's Method (NM)

- Given $f \in C^2[a, b]$
- Taylor series: For ξ between x, and x_k

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(\xi)(x - x_k)^2$$

$$0 = f(x_k) + f'(x_k)(x^* - x_k) + \underbrace{f''(\xi)}_{=0, \text{ if } f \text{ linear}} \frac{1}{2}(x^* - x_k)^2$$

$$x^* = x_k - \frac{f(x_k)}{f'(x_k)}$$

• If f is non-linear, and x_k is close to x^* , then

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \cdots$$

Newton's Method (NM)

Algorithm 3: Newton's Method

Given $f(x) \in C^2[a, b]$.

Step 1: Start from an initial guess x_0 .

Step 2: For $k = 0, 1, 2, \dots$, set

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

until x_{k+1} satisfies termination criteria.

Newton's Method

Example: For $f(x) = 2\cosh(\frac{x}{4}) - x$, the Newton iteration is

$$x_{k+1} = x_k - \frac{2 \cosh\left(\frac{x_k}{4}\right) - x_k}{0.5 \sinh\left(\frac{x_k}{4}\right) - 1}$$

```
Iter= 0
         p= 8.000000000000000
                                |f(p)| = 0.475608617832737
         p= 8.584695055013547
                                |f(p)| = 0.084309114681618
Tter= 1
                                |f(p)| = 0.001556683216439
Iter= 2
         p= 8.508657714758835
Iter= 3
         p= 8.507200100111358
                                |f(p)| = 0.000000564969103
         p= 8.507199570713095
                                |f(p)| = 0.00000000000073
Tter= 4
Iter= 5
                                p= 8.507199570713027
```


Comparison

- atol = 1e 8
- $x_1^* = 2.35755105$
- $x_2^* = 8.50719957$

		Number of Iterations			
<i>x</i> ₀	Root	NM	FPIM	BSM	
2	<i>x</i> ₁ *	4	16	27	
4	<i>x</i> ₁ *	5	18		
8	<i>x</i> ₂ *	5	DNC	27	
10	<i>x</i> ₂ *	5	DNC		

Newton's Method

Example:

Apply the Newton's Method, to find the root of the function

$$f(x) = \sqrt{x} - 1.1$$

starting from an initial guess $x_0 = 2$ with atol = 0.001.

Assume the method converges and

$$\lim_{k\to\infty} x_k = x^*$$

then

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^q} = \rho$$

- Linear convergence: $0 < \rho < 1$, and q = 1
- Quadratic convergence: $0 < \rho < \infty$, and q = 2
- Cubic convergence: $0 < \rho < \infty$, and q = 3
- Superlinear convergence: $\rho = 0$, and q = 1

Quadratic and cubic convergence are both superlinear convergence.

Relation between Newton's Method and general FPIM

Note: x^* is a root of f(x).

- ① If the assumptions of the Fixed Point Theorem holds, also $g'(x^*) \neq 0$, then the method converges **linearly**.
- ② In this case, the size of $|g'(x^*)|$ quantifies the rate of convergence.
- **1** If $g'(x^*) = 0$, then the method may converge faster than linearly:
 - which is the case of the Newton's method with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

•
$$g'(x) =$$

•
$$g'(x^*) =$$

Disadvantages of Newton's Method

For $k = 0, 1, 2, \dots$, set

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

until x_{k+1} satisfies termination criteria.

- The derivative f' need to exist, and need to evaluate it at each iteration.
- The local nature of the method's convergence.

Secant Method

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Algorithm 4: Secant Method

Given a scalar differential function f(x):

- Start from two initial guess x_0 , and x_1 .
- ② For $k = 1, 2, \dots$, set

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

until x_{k+1} satisfies termination criteria.

Secant Method

$$f(x) = 2\cosh(\frac{x}{4}) - x$$

- atol = 1e 8
- $x_1^* = 2.35755105$
- $x_2^* = 8.50719957$
- $x_0 = 10$, $x_1 = 8$

Comparison

•
$$f(x) = 2\cosh(\frac{x}{4}) - x$$

- atol = 1e 8
- $x_1^* = 2.35755105$
- $x_2^* = 8.50719957$
- $x_0 = 10$, $x_1 = 8$

			Number of Iterations			
<i>x</i> ₀	Root	NM	FPIM	BSM	Secant	
2	<i>x</i> ₁ *	4	16	27	6	
4	<i>x</i> ₁ *	5	18			
8	<i>x</i> ₂ *	5	DNC	27	7	
10	<i>x</i> ₂ *	5	DNC			

Theorem

Convergence of the Newton and Secant Methods If $f \in C^2[a,b]$ and $\exists x^* \in [a,b] \ni f(x^*) = 0 \land f'(x^*) \neq 0$, then $\exists \delta \ni$ starting from with x_0 (also x_1 in the case of Secant Method) from anywhere in the neighborhood $[x^* - \delta, x^* + \delta]$, Newton's Method converges quadratically and Secant Method converges superlinearly.

Multiple Root

 $f(x^*) = 0 \land f'(x^*) \neq 0$ are the assumptions of Newton's Method and Secant Method.

- What if $f'(x^*) = 0$? This is the case of a **multiple root**.
- If $f(x) = (x x^*)^m q(x)$ with $q(x^*) \neq 0$, then x^* is a root of multiplicity m.
- If m > 1, then $f'(x^*) = 0$.

Example:
$$f(x) = x^m$$
, $m > 1$. $x^* = 0$. $f'(x) = \frac{f(x)}{f'(x)} =$ Newton's method: $x_{k+1} = x_k -$

$$|x_{k+1} - x^*| = \underbrace{\frac{m-1}{m}}_{\rho} |x_k - x^*|$$
:Linearly convergent

Rate=
$$-\log_{10}\left(\frac{m-1}{m}\right)$$
, as $m \to \infty$, Rate $\to 0$ For $f(x)=x^2$, $m=2$, then $\rho=\frac{1}{2}$.

- Globalizing Newton's method
- Convergence and roundoff errors

