1

Assignment 3

Suraj - CS20BTECH11050

Download all python codes from

https://github.com/Suraj11050/Assignments— AI1103/blob/main/Assignment%203/ Assignment3.py

Download Latex-tikz codes from

https://github.com/Suraj11050/Assignments— AI1103/blob/main/Assignment%203/ Assignment3.tex

1 GATE 2009 (MA) PROBLEM 16

Let F, G and H be pair wise independent events such that $\Pr(F) = \Pr(G) = \Pr(H) = \frac{1}{3}$ and $\Pr(F \cap G \cap H) = \frac{1}{4}$ Then the probability that at least one event among F, G and H occurs is

(A)
$$\frac{11}{12}$$
 (B) $\frac{7}{12}$ (C) $\frac{5}{12}$ (D) $\frac{3}{4}$

2 SOLUTION

If two Events X_1 and X_2 are independent then

$$Pr(X_1X_2) = Pr(X_1) \times Pr(X_2)$$
 (2.0.1)

Using equation (2.0.1) we get the following results

$$Pr(FG) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$
 (2.0.2)

$$\Pr(GH) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$
 (2.0.3)

$$Pr(HF) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$
 (2.0.4)

At least one event among F, G, H should occur is Pr(F + G + H) from Principal of inclusion and exclusion it is calculated using random variable as

$$Pr(F + G + H) = Pr(F) + Pr(G) + Pr(H)$$
$$-(Pr(FG) + Pr(GH) + Pr(HF)) + Pr(FGH)$$
$$(2.0.5)$$

Substituting above results from equation (2.0.2), (2.0.3), (2.0.4) in equation (2.0.5)

$$\Pr(F + G + H) = 3\left(\frac{1}{3}\right) - 3\left(\frac{1}{9}\right) + \frac{1}{4}$$

∴
$$\Pr(F + G + H) = \frac{11}{12}$$

Hence Probability that at least one event among F, G, H occurs is $Pr(F + G + H) = \frac{11}{12}$ and correct answer is **Option (A)**

But we know that

$$(FG) = (FGH) + (FGH')$$
 (2.0.6)

$$Pr(FG) = Pr(FGH) + Pr(FGH') \qquad (2.0.7)$$

$$\therefore \Pr(FG) \ge \Pr(FGH) \tag{2.0.8}$$

In the given question

$$\Pr(FGH) = \frac{1}{4}$$
 (2.0.9)

$$\Pr(FG) = \frac{1}{9} \tag{2.0.10}$$

$$\Pr(FG) < \Pr(FGH) \tag{2.0.11}$$

Which is not possible according to equation (2.0.8). Similar case with Pr(GH) and Pr(HF)

Some of the probabilities turnout to be negative like

$$\Pr(F'GH) = \frac{1}{9} - \frac{1}{4} = -\frac{5}{36}$$
 (2.0.12)

$$\Pr(FG'H) = \frac{1}{9} - \frac{1}{4} = -\frac{5}{36}$$
 (2.0.13)

$$\Pr(FGH') = \frac{1}{9} - \frac{1}{4} = -\frac{5}{36} \tag{2.0.14}$$

Probability $P \in [0, 1]$ but because of the data in the question some of the probabilities turn out to be negative. Therefore **Question is incorrect**