		110011110 4114 114401041	COLISTAL	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	a			
for a standard and all the standards		neral 7,207,252,5602(11) v. 10=3		1 5 × 10=10
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	$\begin{array}{c} \alpha \\ \alpha^{-1} \end{array}$	$7.2973525693(11) \times 10^{-3}$		1.5×10^{-10}
inverse fine-structure constant		137.035 999 084(21)	T.T.	1.5×10^{-10}
Rydberg frequency $\alpha^2 m_{\rm e} c^2/2h = E_{\rm h}/2h$	cR_{∞}	$3.2898419602508(64) \times 10^{15}$	Hz	1.9×10^{-12}
energy equivalent	$hc R_{\infty}$	$2.1798723611035(42) \times 10^{-18}$	J	1.9×10^{-12}
D. II	D	13.605 693 122 994(26)	eV	1.9×10^{-12}
Rydberg constant	R_{∞}	10 973 731.568 160(21)	$[m^{-1}]^*$	1.9×10^{-12}
Bohr radius $\hbar/\alpha m_{\rm e}c = 4\pi\epsilon_0 \hbar^2/m_{\rm e}e^2$	a_0	$5.29177210903(80) \times 10^{-11}$	m	1.5×10^{-10}
Hartree energy $\alpha^2 m_{\rm e} c^2 = e^2/4\pi\epsilon_0 a_0 = 2hcR_{\infty}$	$E_{ m h}$	$4.3597447222071(85) \times 10^{-18}$	J	1.9×10^{-12}
	_+ /	27.211 386 245 988(53)	${ m eV} \ { m m}^2\ { m s}^{-1}$	1.9×10^{-12}
quantum of circulation	$\pi \hbar/m_{ m e}$	$3.6369475516(11)\times 10^{-4}$		3.0×10^{-10}
	$2\pi\hbar/m_{ m e}$	$7.2738951032(22)\times10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	3.0×10^{-10}
		roweak		_
Fermi coupling constant [†]	$G_{\mathrm{F}}/(\hbar c)^3$	$1.1663787(6) \times 10^{-5}$	${ m GeV^{-2}}$	5.1×10^{-7}
weak mixing angle θ_{W} (on-shell scheme)	9			
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.22290(30)		1.3×10^{-3}
	Electr	ron, e ⁻		
electron mass	$m_{ m e}$	$9.1093837015(28) \times 10^{-31}$	kg	3.0×10^{-10}
		$5.48579909065(16) \times 10^{-4}$	u	2.9×10^{-11}
energy equivalent	$m_{ m e}c^2$	$8.1871057769(25) \times 10^{-14}$	J	3.0×10^{-10}
		0.51099895000(15)	MeV	3.0×10^{-10}
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633169(11)\times10^{-3}$		2.2×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87585(19) \times 10^{-4}$		6.8×10^{-5}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.44617021487(33) \times 10^{-4}$		6.0×10^{-11}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.4386734424(26) \times 10^{-4}$		4.8×10^{-10}
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.724437107462(96) \times 10^{-4}$		3.5×10^{-11}
electron-triton mass ratio	$m_{ m e}/m_{ m t}$	$1.819200062251(90)\times10^{-4}$		5.0×10^{-11}
electron-helion mass ratio	$m_{ m e}/m_{ m h}$	$1.819543074573(79) \times 10^{-4}$		4.3×10^{-11}
electron to alpha particle mass ratio	$m_{ m e}/m_{ m lpha}$	$1.370933554787(45)\times10^{-4}$		3.3×10^{-11}
electron charge to mass quotient	$-e/m_{ m e}$	$-1.75882001076(53) \times 10^{11}$	$\mathrm{C}\mathrm{kg}^{-1}$	3.0×10^{-10}
electron molar mass $N_{ m A} m_{ m e}$	$M(\mathrm{e}), M_{\mathrm{e}}$	$5.4857990888(17) \times 10^{-7}$	$kg mol^{-1}$	3.0×10^{-10}
reduced Compton wavelength $\hbar/m_{\rm e}c=\alpha a_0$	$\lambda_{ m C}$	$3.8615926796(12) \times 10^{-13}$	m	3.0×10^{-10}
Compton wavelength	$\lambda_{ m C}$	$2.42631023867(73) \times 10^{-12}$	[m]*	3.0×10^{-10}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403262(13) \times 10^{-15}$	m	4.5×10^{-10}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$\sigma_{ m e}$	$6.6524587321(60) \times 10^{-29}$	m^2	9.1×10^{-10}
electron magnetic moment	$\mu_{ m e}$	$-9.2847647043(28) \times 10^{-24}$	$ m J~T^{-1}$	3.0×10^{-10}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.00115965218128(18)		1.7×10^{-13}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.28197188(11)		6.0×10^{-11}
electron magnetic moment				10
anomaly $ \mu_{ m e} /\mu_{ m B}-1$	a_{e}	$1.15965218128(18) \times 10^{-3}$		1.5×10^{-10}
electron g -factor $-2(1+a_{\rm e})$	$g_{ m e}$	-2.00231930436256(35)		1.7×10^{-13}
electron-muon magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.766 9883(46)		2.2×10^{-8}
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.21068789(20)		3.0×10^{-10}
electron to shielded proton magnetic		200 200 200 200 (200)		
moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275971(72)		1.1×10^{-8}
electron-neutron magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.92050(23)		2.4×10^{-7}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.9234915(56)		2.6×10^{-9}
electron to shielded helion magnetic				

i undamentai i nysicai c		Tronne and nuclear consti		Relative std.	
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$	
	//	064.050.957(10)		1.2×10^{-8}	
moment ratio (gas, sphere, 25 °C) electron gyromagnetic ratio $2 \mu_e /\hbar$	$\mu_{ m e}/\mu_{ m h}'$	$864.058 257(10) 1.760 859 630 23(53) \times 10^{11}$	$s^{-1} T^{-1}$	3.0×10^{-10}	
electron gyromagnetic ratio $2 \mu_{\rm e} /n$	$\gamma_{ m e}$		$^{\mathrm{S}}$ $^{\mathrm{I}}$ MHz $^{\mathrm{T}^{-1}}$	3.0×10 3.0×10^{-10}	
	M	28 024.951 4242(85)	MITIZ I	3.0×10^{-3}	
muon moss		on, μ^- 1.883 531 627(42) \times 10 ⁻²⁸	1	2.2×10^{-8}	
muon mass	$m_{ m \mu}$		kg		
	2	0.1134289259(25)	u T	2.2×10^{-8} 2.2×10^{-8}	
energy equivalent	$m_{\mu}c^2$	$1.692833804(38) \times 10^{-11}$	J		
muon alaatuan maas ustia	/	105.658 3755(23)	MeV	2.2×10^{-8}	
muon-electron mass ratio	$m_{\mu}/m_{\rm e}$	206.768 2830(46)		2.2×10^{-8}	
muon-tau mass ratio	$m_{\mu}/m_{ au}$	$5.94635(40) \times 10^{-2}$		6.8×10^{-5}	
muon-proton mass ratio	$m_{\mu}/m_{\rm p}$	0.112 609 5264(25)		2.2×10^{-8}	
muon-neutron mass ratio	$m_{\mu}/m_{\rm n}$	0.1124545170(25)	1 1-1	2.2×10^{-8}	
muon molar mass $N_{\rm A} m_{\mu}$	$M(\mu), M_{\mu}$	$1.134289259(25) \times 10^{-4}$	$kg mol^{-1}$	2.2×10^{-8}	
reduced muon Compton wavelength $\hbar/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$1.867594306(42) \times 10^{-15}$	m	2.2×10^{-8}	
muon Compton wavelength	$\lambda_{\mathrm{C},\mu}$	$1.173444110(26) \times 10^{-14}$	[m]*	2.2×10^{-8}	
muon magnetic moment	μ_{μ}	$-4.49044830(10) \times 10^{-26}$	$ m J T^{-1}$	2.2×10^{-8}	
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197047(11) \times 10^{-3}$		2.2×10^{-8}	
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059703(20)		2.2×10^{-8}	
muon magnetic moment anomaly		1 107 000 00 (00) 10 2		F 4 40 7	
$ \mu_{\mu} /(e\hbar/2m_{\mu})-1$	a_{μ}	$1.16592089(63) \times 10^{-3}$		5.4×10^{-7}	
muon g -factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318418(13)		6.3×10^{-10}	
muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345142(71)		2.2×10^{-8}	
c		1, τ	_		
tau mass§	$m_{ au}$	$3.16754(21) \times 10^{-27}$	kg	6.8×10^{-5}	
	0	1.90754(13)	u	6.8×10^{-5}	
energy equivalent	$m_{ au}c^2$	$2.84684(19)\times10^{-10}$	J	6.8×10^{-5}	
	,	1776.86(12)	MeV	6.8×10^{-5}	
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.23(23)		6.8×10^{-5}	
tau-muon mass ratio	$m_{ au}/m_{ extsf{\mu}}$	16.8170(11)		6.8×10^{-5}	
tau-proton mass ratio	$m_{ m au}/m_{ m p}$	1.89376(13)		6.8×10^{-5}	
tau-neutron mass ratio	$m_{ m au}/m_{ m n}$	1.89115(13)		6.8×10^{-5}	
tau molar mass $N_{ m A} m_{ au}$	$M(au), M_{ au}$	$1.90754(13)\times10^{-3}$	$kg mol^{-1}$	6.8×10^{-5}	
reduced tau Compton wavelength $\hbar/m_{ au}c$	$\lambda_{\mathrm{C}, au}$	$1.110538(75)\times10^{-16}$	m	6.8×10^{-5}	
tau Compton wavelength	$\lambda_{\mathrm{C},\tau}$	$6.97771(47) \times 10^{-16}$	[m]*	6.8×10^{-5}	
	Pro	ton, p			
proton mass	$m_{ m p}$	$1.67262192369(51) \times 10^{-27}$	kg	3.1×10^{-10}	
		1.007276466621(53)	u	5.3×10^{-11}	
energy equivalent	$m_{ m p}c^2$	$1.50327761598(46) \times 10^{-10}$	J	3.1×10^{-10}	
		938.27208816(29)	MeV	3.1×10^{-10}	
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267343(11)		6.0×10^{-11}	
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.88024337(20)		2.2×10^{-8}	
proton-tau mass ratio	$m_{ m p}/m_{ m au}$	0.528051(36)		6.8×10^{-5}	
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.99862347812(49)		4.9×10^{-10}	
proton charge to mass quotient	$e/m_{ m p}$	$9.5788331560(29)\times10^7$	${ m C~kg^{-1}}$	3.1×10^{-10}	
proton molar mass $N_{ m A} m_{ m p}$	$M(p), M_p$	$1.00727646627(31)\times10^{-3}$	$kg mol^{-1}$	3.1×10^{-10}	
reduced proton Compton wavelength $\hbar/m_{ m p}c$	$\lambda_{ m C,p}$	$2.10308910336(64)\times10^{-16}$	m	3.1×10^{-10}	
proton Compton wavelength	$\lambda_{ ext{C,p}}$	$1.32140985539(40) \times 10^{-15}$	[m]*	3.1×10^{-10}	
proton rms charge radius	$r_{ m p}$	$8.414(19) \times 10^{-16}$	m	2.2×10^{-3}	
	-				

r undamentar i nysicar		Attonne and nuclear	Compuni	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
proton magnetic moment	11	$1.41060679736(60)\times10^{-26}$	$ m JT^{-1}$	4.2×10^{-10}
to Bohr magneton ratio	$\mu_{ m p} \ \mu_{ m p}/\mu_{ m B}$	$1.52103220230(46)\times10^{-3}$	3 1	3.0×10^{-10}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m B} \ \mu_{ m p}/\mu_{ m N}$	2.79284734463(82)		2.9×10^{-10}
proton g -factor $2\mu_{\mathrm{p}}/\mu_{\mathrm{N}}$	-	5.585 694 6893(16)		2.9×10^{-10} 2.9×10^{-10}
proton-neutron magnetic moment ratio	g_{p}	-1.45989805(34)		2.4×10^{-7}
shielded proton magnetic moment	$\mu_{\mathrm{p}}/\mu_{\mathrm{n}}$	$1.410570560(15) \times 10^{-26}$	$ m J~T^{-1}$	1.1×10^{-8}
$(H_2O, \text{ sphere, } 25 ^{\circ}C)$	$\mu_{ m p}'$		J 1	
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993128(17)\times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}^{\hat{\prime}}/\mu_{ m N}$	2.792775599(30)		1.1×10^{-8}
proton magnetic shielding correction				
$1 - \mu_{\rm p}'/\mu_{\rm p}$ (H ₂ O, sphere, 25 °C)	$\sigma_{ m p}'$	$2.5689(11) \times 10^{-5}$		4.2×10^{-4}
proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\gamma_{ m p}$	$2.6752218744(11) \times 10^8$	$s^{-1} T^{-1}$	4.2×10^{-10}
•	•	42.577478518(18)	$ m MHz~T^{-1}$	4.2×10^{-10}
shielded proton gyromagnetic ratio				
$2\mu_{\rm p}'/\hbar~({\rm H_2O,sphere,25~^\circ C})$	$\gamma_{ m p}'$	$2.675153151(29) \times 10^{8}$ $42.57638474(46)$	$ m s^{-1} \ T^{-1} \ MHz \ T^{-1}$	1.1×10^{-8} 1.1×10^{-8}
	NT. A.	,	1,1112 1	1.1 // 10
	Neutro		1.	F 7 10-10
neutron mass	$m_{ m n}$	$1.67492749804(95) \times 10^{-27}$	kg	5.7×10^{-10}
	9	1.008 664 915 95(49)	u	4.8×10^{-10}
energy equivalent	$m_{ m n}c^2$	$1.50534976287(86) \times 10^{-10}$	J	5.7×10^{-10}
	1	939.565 420 52(54)	MeV	5.7×10^{-10}
neutron-electron mass ratio	$m_{ m n}/m_{ m e}$	1838.683 661 73(89)		4.8×10^{-10}
neutron-muon mass ratio	$m_{ m n}/m_{ m \mu}$	8.892 484 06(20)		2.2×10^{-8}
neutron-tau mass ratio	$m_{ m n}/m_{ m au}$	0.528779(36)		6.8×10^{-5}
neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.00137841931(49)		4.9×10^{-10}
neutron-proton mass difference	$m_{\rm n}-m_{\rm p}$	$2.30557435(82)\times10^{-30}$	kg	3.5×10^{-7}
		$1.38844933(49) \times 10^{-3}$	u	3.5×10^{-7}
energy equivalent	$(m_{\rm n}-m_{\rm p})c^2$	$2.07214689(74)\times10^{-13}$	J	3.5×10^{-7}
		1.29333236(46)	MeV	3.5×10^{-7}
neutron molar mass $N_{ m A} m_{ m n}$	$M(\mathrm{n}), M_{\mathrm{n}}$	$1.00866491560(57) \times 10^{-3}$	$kg mol^{-1}$	5.7×10^{-10}
reduced neutron Compton wavelength $\hbar/m_{ m n}c$	$\lambda_{ m C,n}$	$2.1001941552(12)\times10^{-16}$	m	5.7×10^{-10}
neutron Compton wavelength	$\lambda_{ m C,n}$	$1.31959090581(75) \times 10^{-15}$	[m]*	5.7×10^{-10}
neutron magnetic moment	$\mu_{ m n}$	$-9.6623651(23) \times 10^{-27}$	$ m J~T^{-1}$	2.4×10^{-7}
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304273(45)		2.4×10^{-7}
neutron g -factor $2\mu_{\rm n}/\mu_{\rm N}$	$g_{ m n}$	-3.82608545(90)		2.4×10^{-7}
neutron-electron magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times10^{-3}$		2.4×10^{-7}
neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}
neutron to shielded proton magnetic	•			
moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)		2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{ m n}$	$1.83247171(43)\times10^{8}$	${ m s}^{-1}~{ m T}^{-1}$	2.4×10^{-7}
. , ,		29.164 6931(69)	$ m MHz~T^{-1}$	2.4×10^{-7}
	Deuter			
deuteron mass	$m_{ m d}$	$3.3435837724(10) \times 10^{-27}$ 2.013553212745(40)	kg u	3.0×10^{-10} 2.0×10^{-11}
energy equivalent	$m_{ m d}c^2$	$3.00506323102(91) \times 10^{-10}$	u J	3.0×10^{-10}
energy equivalent	m _d c	1875.61294257(57)	J MeV	3.0×10^{-10} 3.0×10^{-10}
deuteron-electron mass ratio	m . /m	3670.482 967 88(13)	IVIC V	3.0×10^{-10} 3.5×10^{-11}
dedicton-election mass ratio	$m_{ m d}/m_{ m e}$	5010.402 901 00(15)		3.3 × 10

i dildamentai i nysicai v	Constants	Relative s		
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.999 007 501 39(11)		5.6×10^{-11}
deuteron molar mass $N_{ m A} m_{ m d}$	$M(\mathrm{d}), M_{\mathrm{d}}$	$2.01355321205(61) \times 10^{-3}$	$kg mol^{-1}$	3.0×10^{-10}
deuteron rms charge radius	$r_{\rm d}$	$2.12799(74) \times 10^{-15}$	m	3.5×10^{-4}
deuteron magnetic moment	$\mu_{ m d}$	$4.330735094(11) \times 10^{-27}$	$ m J~T^{-1}$	2.6×10^{-9}
to Bohr magneton ratio	$\mu_{ m d} / \mu_{ m B}$	$4.669754570(12) \times 10^{-4}$	<i>J</i> 1	2.6×10^{-9}
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m B}$ $\mu_{ m d}/\mu_{ m N}$	0.8574382338(22)		2.6×10^{-9}
deuteron g -factor $\mu_{\rm d}/\mu_{ m N}$		0.8574382338(22)		2.6×10^{-9} 2.6×10^{-9}
deuteron-electron magnetic moment ratio	$g_{ m d} \ \mu_{ m d}/\mu_{ m e}$	$-4.664345551(12) \times 10^{-4}$		2.6×10^{-9} 2.6×10^{-9}
deuteron-proton magnetic moment ratio		0.30701220939(79)		2.6×10^{-9} 2.6×10^{-9}
1 0	$\mu_{ m d}/\mu_{ m p}$			2.0×10^{-7} 2.4×10^{-7}
deuteron-neutron magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820653(11)		2.4×10^{-3}
	Trit	on, t		10
triton mass	$m_{ m t}$	$5.0073567446(15) \times 10^{-27}$	kg	3.0×10^{-10}
	_	3.01550071621(12)	u	4.0×10^{-11}
energy equivalent	$m_{ m t}c^2$	$4.5003878060(14) \times 10^{-10}$	J	3.0×10^{-10}
		2808.92113298(85)	MeV	3.0×10^{-10}
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.92153573(27)		5.0×10^{-11}
triton-proton mass ratio	$m_{ m t}/m_{ m p}$	2.99371703414(15)		5.0×10^{-11}
triton molar mass $N_{ m A} m_{ m t}$	$M(\mathrm{t}), M_{\mathrm{t}}$	$3.01550071517(92)\times10^{-3}$	$kg mol^{-1}$	3.0×10^{-10}
triton magnetic moment	$\mu_{ m t}$	$1.5046095202(30)\times10^{-26}$	$ m J~T^{-1}$	2.0×10^{-9}
to Bohr magneton ratio	$\mu_{ m t}/\mu_{ m B}$	$1.6223936651(32)\times10^{-3}$		2.0×10^{-9}
to nuclear magneton ratio	$\mu_{ m t}/\mu_{ m N}$	2.9789624656(59)		2.0×10^{-9}
triton g-factor $2\mu_{\rm t}/\mu_{\rm N}$	$g_{ m t}$	5.957 924 931(12)		2.0×10^{-9}
3 10,71		on, h		
helion mass	$m_{ m h}$	$5.0064127796(15) \times 10^{-27}$	kg	3.0×10^{-10}
		3.014 932 247 175(97)	u	3.2×10^{-11}
energy equivalent	$m_{ m h}c^2$	$4.4995394125(14) \times 10^{-10}$	J	3.0×10^{-10}
chergy equivalent	$m_{ m h}c$	2808.39160743(85)	MeV	3.0×10^{-10} 3.0×10^{-10}
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.885 280 07(24)	IVIC V	4.3×10^{-11}
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.993 152 671 67(13)		4.4×10^{-11}
helion molar mass $N_{\rm A}m_{ m h}$		$3.01493224613(91)\times10^{-3}$	${\rm kg\ mol^{-1}}$	3.0×10^{-10}
	$M(\mathrm{h}), M_{\mathrm{h}}$	$-1.074617532(13) \times 10^{-26}$	J T ⁻¹	3.0×10 1.2×10^{-8}
helion magnetic moment	$\mu_{ m h}$		JI	
to Bohr magneton ratio	$\mu_{ m h}/\mu_{ m B}$	$-1.158740958(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}/\mu_{ m N}$	-2.127625307(25)		1.2×10^{-8}
helion g -factor $2\mu_{ m h}/\mu_{ m N}$	$g_{ m h}$	-4.255250615(50)	r.m-1	1.2×10^{-8}
shielded helion magnetic moment (gas, sphere, 25 °C)	$\mu_{ m h}'$	$-1.074553090(13)\times10^{-26}$	$ m J~T^{-1}$	1.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}^{\prime}/\mu_{ m N}$	-2.127497719(25)		1.2×10^{-8} 1.2×10^{-8}
shielded helion to proton magnetic	$\mu_{ m h}/\mu_{ m N}$	-2.121 491 119(20)		1.2 × 10
moment ratio (gas, sphere, 25 °C)		-0.7617665618(89)		1.2×10^{-8}
	$\mu_{ m h}'/\mu_{ m p}$	-0.701 700 3016(69)		1.2 × 10
shielded helion to shielded proton magnetic		0.761.706.1919/99\		4.2 × 10=9
moment ratio (gas/H ₂ O, spheres, 25 °C)	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
shielded helion gyromagnetic ratio	,	0.097.004.500(04) 1.08	. –1 m–1	1.0 10-8
$2 \mu_{\rm h}' /\hbar$ (gas, sphere, 25 °C)	$\gamma_{ m h}'$	$2.037894569(24)\times10^{8}$	$s^{-1} T^{-1}$	1.2×10^{-8}
		32.43409942(38)	$ m MHz~T^{-1}$	1.2×10^{-8}
	Alpha p	article, α		
alpha particle mass	$m_{oldsymbol{lpha}}$	$6.6446573357(20) \times 10^{-27}$	kg	3.0×10^{-10}
		4.001506179127(63)	u	1.6×10^{-11}

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
energy equivalent	$m_{\alpha}c^2$	$5.9719201914(18) \times 10^{-10}$	J	3.0×10^{-10}
		3727.3794066(11)	MeV	3.0×10^{-10}
alpha particle to electron mass ratio	$m_{f lpha}/m_{ m e}$	7294.29954142(24)		3.3×10^{-11}
alpha particle to proton mass ratio	$m_{f lpha}/m_{f p}$	3.97259969009(22)		5.5×10^{-11}
alpha particle molar mass $N_{ m A} m_{ m lpha}$	$M(\alpha), M_{\alpha}$	$4.0015061777(12)\times 10^{-3}$	$kg mol^{-1}$	3.0×10^{-10}

 $^{^*}$ The full description of m^{-1} is cycles or periods per meter and that of m is meter per cycle (m/cycle). The scientific community is aware of the implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus cycles/s. No solution has been agreed upon.

[†] Value recommended by the Particle Data Group (Tanabashi, et al., 2018).

[‡] Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Tanabashi, *et al.*, 2018). The value for $\sin^2 \theta_{\rm W}$ they recommend, which is based on a variant of the modified minimal subtraction $(\overline{\rm MS})$ scheme, is $\sin^2 \hat{\theta}_{\rm W}(M_{\rm Z}) = 0.231\,22(4)$.

[§] This and other constants involving m_{τ} are based on $m_{\tau}c^2$ in MeV recommended by the Particle Data Group (Tanabashi, et al., 2018).