- 1. In the given figure, AC \parallel DE \parallel BF. If AC = 24 cm, EG = 8 cm, GB = 16 cm, BF=30 cm.
 - (a) Prove \triangle GED $\sim \triangle$ GBF
 - (b) Find DE
 - (c) DB: AB

2. In the given figure $\angle BAP = \angle DCP = 70^{\circ}$, PC = 6 cm and CA = 4 cm, then PD : DB is

3. In the given figure PQ is parallel to TR, then by using condition of similarity: [1]

[2021semester-1]

4. In the given figure ABCD is a trapezium in which DC is parallel to AB. AB = 16 cm and DC = 8 cm. OD = 5 cm, OB = (y + 3) cm, OA = 11 cmand OC = (x - 1) cm. Using the given information answer the following [2021 Semester-I] questions.

- (i.) From the given figure name the pair of similar triangles:
- (a) \triangle OAB, \triangle OBC (b) \triangle COD, \triangle AOB (c) \triangle ADB, \triangle ACB (d) \triangle COD, \triangle COB
- (ii.) The corresponding proportional sides with respect to the pair of similar triangles obtained in (i):

(a)
$$\frac{\text{CD}}{\text{AB}} = \frac{\text{OC}}{\text{OA}} = \frac{\text{OD}}{\text{OB}}$$
 (b) $\frac{\text{AD}}{\text{BC}} = \frac{\text{OC}}{\text{OA}} = \frac{\text{OD}}{\text{OB}}$ (c) $\frac{\text{AD}}{\text{BC}} = \frac{\text{BD}}{\text{AC}} = \frac{\text{AB}}{\text{DC}}$ (d) $\frac{\text{OD}}{\text{OB}} = \frac{\text{CD}}{\text{CB}} = \frac{\text{OC}}{\text{OA}}$

- (iii.) The ratio of the sides of the pair of similar triangles is:
- (a) 1:3
- (b) 1:2
- (c) 2:3
- (d) 3:1
- (iv.) Using the ratio of sides of the pair of similar triangles values of x and y are respectively:

(a)
$$x = 4.6$$
, $y = 7$ (b) $x = 7$, $y = 7$ (c) $x = 6.5$, $y = 7$ (d) $x = 6.5$, $y = 2$

(b)
$$x = 7$$
, $y = 7$

(c)
$$x = 6.5$$
, $y = 7$

(d)
$$x = 6.5$$
, $y = 2$

5. In the given figure, AB = 24 cm, AC = 18 cm, DE = 12 cm, DF = 9 cm and \angle BAC = \angle EDF. Then \triangle ABC \sim \triangle DEF by the condition:

- (a) AAA
- (b) SAS
- (c) SSS
- (d) AAS [2021 Semester-1]
- 6. In the given figure, $\angle PQR = \angle PST = 90^{\circ}$, PQ = 5 cm and PS = 2 cm.

- (i) Prove that $\triangle PQR \sim APST$.
- (ii) Find Area of \triangle PQR: Area of quadrilateral SRQT. [2019]
- 7. In \triangle PQR, MN is parallel to QR and PMMQ = 23 [3]
 - (i) Find MN / QR
 - (ii) Prove that ΔOMN and ΔORQ are similar.
 - (iii) Find, Area of Δ OMN: Area of Δ ORQ [2018]

8. PQR is a triangle. S is a point on the side QR of \triangle PQR such that \angle PSR = \angle QPR. Given QP = 8 cm, PR = 6 cm and SR = 3 cm. [3]

- (i) Prove $\triangle PQR \sim \triangle SPR$
- (ii) Find the length of QR and PS
- (iii) area of $\triangle PQR$ / area of $\triangle SPR$ [2017]

9. In the given figure PQRS is a cyclic quadrilateral PQ and SR produced meet at T. [4]

- (i) Prove Δ TPS $\sim \Delta$ TRQ.
- (ii) Find SP if TP= 18cm, RQ= 4cm and TR= 6cm.
- (iii) Find area of quadrilateral PQRS if area of Δ PTS = 27 cm² [2016]
- 10. ABC is a right angled triangle with \angle ABC = 90°. D is any point on AB and DE is perpendicular to AC.

Prove that:

- (i) $\triangle ADE \sim \triangle ACB$.
- (ii) If AC = 13 cm, BC = 5 cm and AE 4 cm. Find DE and AD.
- (iii) Find, area of Δ ADE: area of quadrilateral BCED. [2015]
- 11. In $\triangle ABC$, $\angle ABC = \angle DAC$, AB = 8 cm, AC = 4 cm, AD = 5 cm.

- (i) Prove that $\triangle ACD$ is similar to $\triangle BCA$.
- (ii) Find BC and CD
- (iii) Find area of ΔACD : area of ΔABC . [2014]

In the given figure, AB and DE are perpendicular to BC.

- (i) Prove that $\triangle ABC \sim \triangle DEC$
- (ii) If AB = 6 cm, DE = 4 cm and AC = 15 cm. Calculate CD.
- (iii) Find the ratio of the area of \triangle ABC : area of \triangle DEC. [3]

13. In the given figure Δ ABC and Δ AMP are right angled at B and M respectively.

Given, AB = 10 cm, AP = 15 cm and PM = 12 cm

- (i) Prove that \triangle ABC \sim \triangle AMP
- (ii) Find AB and BC. [3]

[2012]

- 14. In the adjoining figure ABC is a right-angled triangle with \angle BAC = 90°,
 - (i) Prove \triangle ADB \sim \triangle CDA
 - (ii) If BD = 18 cm and CD = 8 cm, find AD.
 - (iii) Find the ratio of area of Δ ADB is to area of Δ CDA.

[2011]

15. In the figure ABC is a triangle with \angle EDB = \angle ACB.

Prove that \triangle ABC \sim \triangle EBD

If BE = 6 cm, EC = 4 cm BD = 5 cm and area of Δ BED = 9 cm²

Calculate the (i) length of AB

(ii) area of Δ ABC [2010]

ANSWERS

- 1. (b) 15 cm (c) 5:8
- 2. (c) 3:2
- 3. (b)
- 4. (i) (b) (ii) (a) (iii) (b) (iv) (c)
- 5. (b)
- 6. (ii) 25:21
- 7. (i) 2/5 (iii) 4:25
- 8. (ii) OR= 10cm PS= 4cm (iii) 4:1
- 9. (ii) 12 cm (iii) 24 cm²
- 10. (ii) DE = $1 \frac{2}{3}$ cm, AD = $4 \frac{1}{3}$ cm (iii) 1 : 8
- 11. (ii) BC = 6.4 cm, CD = 2.5 cm (iii) 25:64
- 12. CD = 10cm (iii) 9:4
- 13. (ii) AC = 162/3 cm BC = 131/3 cm
- 14. (ii) AD = 12 cm (iii) 9:4
- 15. (i) 12 cm (ii) 36 cm²