Rechnernetze und Telekommunikation

LANs

Übersicht

- LAN-Topologien
- LAN-Medien
- IEEE 802.3 Ethernet
 - Protokoll
 - Adressen
- ARP
- LAN-Struktur
- Switching
- VLANs
- LAN-Geräte

Topologien (1)

Bus

- + einfach
- + 'wenig' Kabel
- speziell (nur für 10M-Ether)
- aufwendige Fehlersuche
- für große Entfernungen?

Topologien (2)

Ring

- + einfach
- + implizite Redundanz
- lange Kabelwege (länger als Bus)
- Signal läuft durch alle Komponenten

Topologien (3)

Stern

- + Standard
- + flexibel
- + gutes 'soft fail'
- + gute Datensicherheit
- + gute Problemeingrenzung
- aufwendig
- ,viel' Kabel im Zentrum

Medien (1)

Kupferkabel

- Twisted Pair (,TP')
 - Shielded (STP)
 - Unshielded (UTP)
- Selten heute Koaxialkabel
- I.d.R heute CAT5
 - Spezifiziert bis 100 Mhz
 - Verwendung
 - Telefon
 - Fast Ethernet/ GigabitEthernet ("CAT5e")
- CAT-6A/CAT-7
 - Spezifiziert 600-1000 MHz
 - Verwendung
 - 10 GBEthernet

STP

Medien (2)

- Glasfaser (,LWL', ,F')
 - Geeignet für Stern und Ring Topologie
- Potentialtrennung
- keine elektromagnetische Beeinflussung
- hohe Bandbreite bei großen Längen
- + geringe Dämpfung
- + zukunftssicher
- passive,
 insbesondere aktive Komponenten teuer

IEEE 802 Standards

- Standards für LANs (Local Area Networks)
- **♦** z.B.
 - 802.3 Ethernet
 - 802.4 Tokenbus
 - 802.5 Tokenring
 - 802.11 WLAN
 - 802.15 Bluetooth
- Definiert OSI-Schicht 1 u. 2

Ethernet und IEEE 802.3

- Entwickelt Mitte der 70 Jahre am Xerox Palo Alto Research Center (Bob Metcalfe)
- Später überarbeitet von DEC, Intel and Xerox (DIX standard)
- Wurde 1985 zu IEEE 802.3
- Ethernet und IEEE 802.3 haben unterschiedliches Frame-Format

IEEE 802.3 Spezifikationen

Verschiedene Standards für IEEE802.3

- 10Base5 -- thickwire coaxial
- 10Base2 -- thinwire coaxial or cheapernet
- 10BaseT -- twisted pair
- 10BaseF -- fiber optics

Fast Ethernet

- 100BaseT
- 10000BaseT (Gigabit Ethernet)

LANs Martin Gergeleit

10BaseT

- Zentraler Hub als Repeater
 - Stern-Topologie (obwohl im Prinzip Bus)

Media Access Control

- Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
 - Erst Hören, dann Senden
- Manchester Codierung: ein Übergang pro Bit
 - 0 : high-to-low
 - 1 : low-to-high

LANs Martin Gergeleit

Kollision

- Mehr als eine Station sendet ein Frame zu einem Zeitpunkt
- Stationen überprüfen den Kanal bzgl. Kollisionen während sie senden
- Wenn der der durchschnittliche Spannungspegel einen Schwellwert überschreitet, wird eine Kollision erkannt
- Sendende Stationen senden ein Jamming-Signal, wenn eine Kollision erkannt wird

LANs Martin Gergeleit

Frame transmission

LANs Martin Gergeleit

Frame reception

LANs Martin Gergeleit

Binary Exponential Backoff

LANs Martin Gergeleit

Ethernet Frame Format

	7 1		6	6	2	46-1500		4	
	PA	SFD	DA	SA	LEN	LLC PDU	Pad	CRC	IEEE 802.3
calculation of the FCS 64-1518 bytes									
	8		6	6	2	46-1500		4	_
	PA		DA	SA	Type	Data	Pad	CRC	Ethernet

PA: Preamble - 10101010s for synchronization

SFD: Start of Frame delimiter -- 10101011 to start frame

DA: Destination Address -- MAC address

SA: Source Address -- MAC address LEN: Length -- Number of data bytes Type: identify the higher -level protocol

LLC PDU+pad -- minimum 46 bytes, maximum 1500

CRC: CRC-32

LANs Martin Gergeleit

MAC Adressen

I/G U/L 46-bit address

- ♦ I/G
 - =0 Individual address
 - =1 Group address
- ♦ U/L
 - =0 Global administered address
 - =1 Local administered address
- Unicast : Ein Empfänger
- Broadcast : FFFFFFF Jede Station
- Multicast: Mehrere Empfänger in einer definierten Gruppe

LANs Martin Gergeleit

ARP/RARP

- Address Resolution Protocol (ARP) bzw. Reverse Address Resolution Protocol (RARP):
- Verbindung der logischen Netz(IP)adresse mit der von LAN- bzw.
 WAN-Infrastruktur abhängigen Hardwareadresse (MAC-Adresse)
- Address Resolution Protocol (ARP), RFC 826: Übersetzung der IP-Adresse in die entsprechende Hardwareadresse
 - Wird für die normale Kommunikation benötigt
- Reverse Address Resolution Protocol (RARP), RFC 903:
 Übersetzung der Hardwareadresse in die zugehörige IP-Adresse
 - Wird i.d.R. nur für spezielle Boot-Prozesse benötigt
- ARP bzw. RARP arbeiten vollständig automatisch (dyn. ARP-Cache)

LANs Martin Gergeleit

ARP Request / Reply

- ARP Request
 - MAC-Broadcast an alle Endsysteme des LANs
 - Gesuchte Adresszuordnung : IP-Adresse B => MAC-Adresse B
- ARP-Reply
 - MAC-Unicast des Endsystems B mit Adresszuordnung

LANs Martin Gergeleit

Adressierung mit dem Protokoll ARP

LANs Martin Gergeleit

ARP-Spoofing

- Angriffs-Methode: Man-in-the-Middle-Attack
- Vorgehen:
 - Um den Datenverkehr zwischen A und B abzuhören, sendet der Angreifer an A eine manipulierte ARP-Nachricht.
 - A wird erzählt, dass die IP-Adresse von B zur MAC-Adresse des Angreifers gehört
 - A sendet alle Nachrichten statt an B an den Angreifer, der leitet ggf. dann erst an B weiter
- In LANs mit Switches klappt das auch
 - Der Switch wird mit ARP-Nachrichten so überlastet, dass er aufgibt und alles weiter leitet
- Tools:
 - Cain & Abel ARP-Spoofing unter Windows
 - Ettercap Sniffer für Switched LANs

Minimale Frame-Größe

- Ein Signal braucht 2t um zum Empfänger und zurück zu kommen
 - Solange dauert es, bis ein Sender erfährt, ob ein Frame durch eine Kollision zerstört wurde
 - Hört er vorher auf zu senden, glaubt er alles sei okay gewesen!
- Zeit ≤ 51,2 μs = 512 Bit = 64 Byte (minimale Länge ohne Preambel)
- Mindestens 46 Byte Daten

A und B liegen am äußersten Ende des Kabels

Erfahrungen mit Ethernet

- Ethernet funktioniert am besten unter leichter Last
 - Auslastung über 30% kann als stark angenommen werden
 - Netzwerkkapazität wird durch Kollisionen verschwendet
- Die meisten Netzwerke sind auf ca. 200 Hosts beschränkt
 - Spezifikation erlaubt bis zu 1024
- Die meisten Netzwerke sind kürzer als die Spezifikation erlaubt
 - 5 to 10 μs RTT
- Ethernet ist billig, schnell und einfach zu administrieren

Fast and Gigabit Ethernet

- Fast Ethernet (100Mbps) nutzt im Vergleich zu 10Mbps Ethernet ähnliche Technologie
 - Andere Codierung auf der physikalischen Schicht
 - Die meisten Adapter unterstützen wahlweise 10 und 100 Mbps
- Gigabit Ethernet (1,000Mbps)
 - Kompatibel mit den geringeren Geschwindigkeiten
 - Benutzt Standard Frames und CSMA/CD Algorithmus
 - Entfernungen sind stark beschränkt
 - Typischerweise im Backbone benutzt
- Heute üblich: Punkt-zu-Punkt Vollduplex-Verbindungen!
 - Keine Kollisionen mehr
 - Trotzdem rückwärtskompatibel
 - CSMA/CD implementiert
 - Mindestlänge 64 Byte

LAN-Strukturelemente Übersicht

- Ebene 1
 - Medien-Verbund (z.B. gemeinsamer Ethernet-Kollisionsbereich)
 - unabhängig von Ebene 2/3 Info
 - ⇒ Repeater / Hubs
- Ebene 2
 - Frame-Verbund
 - unabhängig von Ebene 3 Info
 - ⇒ Bridges / Switches
- Ebene 3
 - (IP-)Paket-Verbund
 - ⇒ Router

Strukturierte Verkabelung Bereiche

Backbone Concepts

Distributed Backbone

- Subnets sind verbunden über ein (schnelles) Netzwerk
- Möglicherweise über Bridges oder Routers

Collapsed Backbone

 Subnets sind verbunden über einen zentralen Switch/Router

LANs Martin Gergeleit

LAN-Strukturelemente Hubs & Switches

Funktionsweise

LANs Martin Gergeleit

Ethernet Switching (1)

- Switch kann mehrere Frames gleichzeitig weiterleiten

LANs Martin Gergeleit

Erhöhte Kapazität

Ethernet Switching (2)

- 1. Überprüft den Header eines einkommenden Frames
- Wenn die Zieladdr. in einer internen Tabelle bekannt ist, wird das Frame zu dem entsprechenden Port weitergeleitet
- 3. Wenn die Zieladdr. in der internen Tabelle nicht bekannt ist, wird das Frame als Braodcast an allen Ports versendet (ausser an dem von dem es gekommen war).
- 4. Die Inhalte der Tabelle werden aus den Quelladr. der einkommenden Frames gelernt.

LANs Martin Gergeleit

Ethernet Switching (3)

Ethernet Switching (4)

LANs Martin Gergeleit

Redundante Wege

 Bei gekoppelten Netzwerken z.B. über Switches können redundante Wegezwischen zwei Netzen existieren (z.B. zur Fehlertoleranz).

Problem:

- Repliziert empfangene Datenpakete (über verschiedene Wege)
- Endlos kreisende Datenpakete (Schleifen)

Lösung:

- Etablierung einer logischen Baumstruktur über allen Brücken der involvierten Netzwerke (⇒ Spanning-Tree-Algorithmus)
- Weiterleiten von Datenpaketen nur entlang der Baumstruktur (eindeutiger Pfad), restliche Brücken blockieren ihre Ports

Beispiel: Spanning Tree

Protocol operation:

- 1. Picks a root
- 2. For each LAN, picks a designated bridge that is closest to the root.
- 3. All bridges on a LAN send packets towards the root via the designated bridge.

LANs Martin Gergeleit

Example Spanning Tree

LANs Martin Gergeleit

Spanning-Tree-Algorithmus

Voraussetzungen:

- Gruppenadresse zur Adressierung aller Bridges im Netz

- Eindeutige Bridgekennungen
 Eindeutige Anschlusskennungen in jeder Brücke
 Kosten an allen Anschlüssen einer Brücke ("Anschlusskosten)

Ablauf: 1. Bestimmen der Root-Brücke (Wurzel des Baumes):

- Zuerst nimmt jede Brücke an, dass sie Root-Brücke ist
- Root-Bridge senden regelmäßig Hello-Pakete mit ihrer Bridgekennung aus
 Bei Erhalt eines Hello-Pakets mit kleinerer Bridgekennung ordnet sich eine Root-Brücke der anderen unter und sendet das Paket als Broadcast

2. Bestimmen der Root-Ports

- Root-Port einer Brücke = Port über den der günstigste Pfad Richtung Root-Brücke (nur Kosten für Ausgangsports berücksichtigen!) verläuft
- Summe über alle Anschlusskosten auf dem Weg zur Root-Brücke ist zu minimieren
- Ubertragungsgeschwindigkeit kann als Kostenfunktion dienen

3. Bestimmen der Designated-Brücke:

- Brücke mit günstigstem Root-Anschluss in einem Netzwerk wird als Designated-Brücke bestimmt
- Root-Brücke ist Designated-Brücke für alle an sie angeschlossenen Netze

LANs Martin Gergeleit

Virtuelle LANs (1)

- VLAN
 - Eine nach bestimmten Kriterien definierbare Broadcast-Domän
- Ziel: Trennung von physikalischer und logischer Netzwerkstruktur
 - Datenpakete werden ausschließlich innerhalb des jeweiligen VLANs verteilt
 - Mitglieder eines VLANs k\u00f6nnen r\u00e4umlich verteilt sein, z.B. an verschiedenen LAN-Switches
 - ⇒ Unabhängigkeit von Standort und VLAN-Zugehörigkeit

Virtuelle LANs (2)

Vorteile

- Einschränkung von Broadcasts/Multicasts ⇒ bessere Ausnutzung der Bandbreite
- Effizientere Verwaltung durch vereinfachte Konfiguration
 - z.B. bei Änderungen der Netztopologie durch Umzug
- Erhöhte Sicherheit
 - Authentifikation vor dem Beitritt einer Station zu einem VLAN
 - Strikte Trennung des Datenverkehrs verschiedener LANs

Realisierung

- Analyse des eingehenden Pakets auf VLAN-Zugehörigkeit (interne Tabelle)
- Erster Switch fügt ein "Tag" an das Paket an (Feststehende Kennung für jedes VLAN)
 - IEEE 802.1q
- Weiterleitung des Datenpakets an den n\u00e4chsten Switch
- Letzter Switch entfernt das Tag und übergibt das Paket an das Endsystem

1

Virtuelle LANs (3)

Schicht-2-VLANs

- Realisierung durch LAN-Switches
- VLAN wird durch mehrere Ports festgelegt (port based VLAN)
- VLAN wird durch eine Liste von MAC-Adressen definiert (MAC-based VLAN)
 - einfacher Umzug einzelner Stationen möglich
- ⇒ Router zur Kommunikation zwischen VLANs notwendig

Schicht-3-VLANs

- Realisierung durch Layer-3-Switches
- VLAN wird durch Subnetz-Adresse festgelegt (subnet-based VLAN)
- VLAN wird durch Netzwerkprotokoll festgelegt (protocol-based VLAN)
- ⇒ Kein Router zur Kommunikation zwischen VLANs notwendig

Regelbasierte VLANs

Beliebige Verknüpfung von Feldern der Schicht 2/3 zur Definition eines VLANs

Layer 2 - Geräte

Managed Switches

unterstützen:

- VLANs
- STP
- Port Security
 - IEEE 102.1x ("Login am Port")
- Port Mirroring
 - Zum Monitoring
- Unmanaged Switches

Typ. Desktop Switches

nur Frame-Weiterleitung

Power over Ethernet (PoE)

Nach Standard IEEE 802.3af

- Sinn: nur ein Kabel zum Geräte
- Typisch für WLAN-APs

Hardware

- TP-Kabel nach CAT-5
- RJ45-Stecker

Leistung

- Abgegebene Spannung zwischen 44 V und 54 V (in der Regel 48 V)
- Leistung von 15,4 W (eingeteilt in 4 Klassen)
- Kabellänge bis zu 100 m

Varianten der Energieversorgung

- Endspan (direkte Versorgung durch Switch)
- Midspan (Versorgung über zwischengeschaltete Quellen)
 - -sog. "Power Injector"

