Aula 17 – Continuidade Uniforme

Metas da aula: Discutir o conceito de função uniformemente contínua, estabelecer o Teorema da Continuidade Uniforme e o Teorema da Extensão Contínua.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber a definição de função uniformemente contínua bem como seu uso para demonstrar se uma função é ou não uniformemente contínua.
- Saber os enunciados do Teorema da Continuidade Uniforme e do Teorema da Extensão Contínua bem como a aplicação desses resultados em casos específicos.

Introdução

Nesta aula vamos apresentar o conceito de função uniformemente contínua sobre um conjunto dado. Como veremos trata-se de uma propriedade que determinadas funções apresentam que é mais forte que a propriedade de ser contínua sobre o mesmo conjunto. Estabeleceremos também dois resultados muito importantes relacionados com esse conceito: o Teorema da Continuidade Uniforme e o Teorema da Extensão Contínua.

Funções Uniformemente Contínuas

Iniciaremos apresentando a definição de função uniformemente contínua que será discutida subsequentemente.

Definição 17.1

Diz-se que uma função $f: X \subset \mathbb{R} \to \mathbb{R}$ é uniformemente contínua em X se para cada $\varepsilon > 0$ existe um $\delta = \delta(\varepsilon) > 0$ tal que se $x \in \bar{x} \in X$ satisfazem $|x - \bar{x}| < \delta$, então $|f(x) - f(\bar{x})| < \varepsilon$.

Como podemos ver, a definição anterior se assemelha muito com a Definição 14.1 de função contínua em \bar{x} , com \bar{x} podendo variar em todo conjunto X. O ponto crucial que distingue a Definição 17.1 da Definição 14.1 é que o número $\delta > 0$ na Definição 14.1 depende em geral não apenas de $\varepsilon > 0$ mas também de $\bar{x} \in X$. Já na Definição 17.1 o número $\delta > 0$ deve depender somente de $\varepsilon > 0$! Ou seja, para que a função seja uniformemente contínua

em X, dado qualquer $\varepsilon > 0$, devemos ser capazes de encontrar um $\delta > 0$ tal que para todo $\bar{x} \in X$ se $x \in V_{\delta}(\bar{x})$, então $f(x) \in V_{\varepsilon}(f(\bar{x}))$.

Exemplos 17.1

- (a) Se f(x) = 3x + 1, então $|f(x) f(\bar{x})| = 3|x \bar{x}|$. Assim, dado $\varepsilon > 0$, se tomarmos $\delta = \varepsilon/3$, então para todos $x, \bar{x} \in \mathbb{R}, |x - \bar{x}| < \delta$ implica $|f(x)-f(\bar{x})|<\varepsilon$. Portanto, f(x)=3x+1 é absolutamente contínua em R. Da mesma forma, verificamos que toda função afim, isto é, da forma f(x) = ax + b, com $a, b \in \mathbb{R}$, é absolutamente contínua em \mathbb{R} . De fato, o caso a=0 é trivial já que a função é constante, e se $a\neq 0$, como $|f(x) - f(\bar{x})| = |a||x - \bar{x}|$, dado $\varepsilon > 0$ podemos tomar $\delta = \varepsilon/|a|$ para termos que se $x, \bar{x} \in \mathbb{R}$ e $|x - \bar{x}| < \delta$, então $|f(x) - f(\bar{x})| < \varepsilon$.
- (b) Consideremos a função f(x) = 1/x em $X := \{x \in \mathbb{R} : x > 0\}$ (veja Figura **17.1**). Como

$$|f(x) - f(\bar{x})| = \frac{1}{|x||\bar{x}|} |x - \bar{x}|,$$

dado $\bar x>0$ e $\varepsilon>0,$ vemos que se $\delta:=\min\{\frac{1}{2}|\bar x|,\,\frac{1}{2}\bar x^2\varepsilon\},$ então $|x-\bar x|<$ δ implica $\frac{1}{2}\bar{x} < x < \frac{3}{2}\bar{x}$. Logo, se $|x - \bar{x}| < \delta$ temos, em particular, $1/|x||\bar{x}| < 2/\bar{x}^2$ e, portanto,

$$|f(x) - f(\bar{x})| < \frac{2}{\bar{x}^2}|x - \bar{x}| < \frac{2}{\bar{x}^2}\delta < \varepsilon,$$

o que prova que f é contínua em \bar{x} , como já era sabido. Observe que o δ que definimos depende não só ε mas também de \bar{x} . Poderíamos ter definido δ de vários outros modos capazes de nos fornecer a desigualdade desejada $|f(x) - f(\bar{x})| < \varepsilon$, mas em qualquer uma dessas outras definições δ sempre dependeria inevitavelmente de \bar{x} , além de ε , e de tal modo que $\delta \to 0$ quando $\bar{x} \to 0$, como ficará mais claro quando analisarmos a seguir o critério de negação da continuidade uniforme.

Será útil escrevermos com precisão a condição equivalente a dizer que uma função f $n\tilde{a}o$ é uniformemente contínua, isto é, a proposição equivalente à negação da condição dada pela Definição 17.1. Para enfatizar, colocaremos essa sentença como enunciado do seguinte teorema ao qual chamaremos de critério de negação da continuidade uniforme. A prova será deixada para você como simples exercício.

Teorema 17.1 (Critério de Negação da Continuidade Uniforme) Seja $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$. Então as seguintes condições são equivalentes:

Figura 17.1: Dois gráficos de f(x) := 1/x para x > 0. Observe que o δ máximo é cada vez menor à medida que \bar{x} se aproxima de 0.

- (i) f não é uniformemente contínua em X.
- (ii) Existe $\varepsilon_0 > 0$ tal que para todo $\delta > 0$ existem pontos x_δ, \bar{x}_δ em X tais que $|x_\delta \bar{x}_\delta| < \delta$ e $|f(x_\delta) f(\bar{x}_\delta)| \ge \varepsilon_0$.
- (iii) Existe $\varepsilon_0 > 0$ e duas seqüências (x_n) e (\bar{x}_n) em X tais que $\lim (x_n \bar{x}_n) = 0$ e $|f(x_n) f(\bar{x}_n)| \ge \varepsilon_0$ para todo $n \in \mathbb{N}$.

Exemplos 17.2

- (a) Podemos aplicar o critério de negação da continuidade uniforme 17.1 para verificar que f(x) = 1/x não é uniformemente contínua em $X = (0, \infty)$. De fato, se $x_n := 1/n$ e $\bar{x}_n := 1/(n+1)$, então $\lim(x_n \bar{x}_n) = 0$, mas $|f(x_n) f(\bar{x}_n)| = 1$ para todo $n \in \mathbb{N}$.
- (b) De modo semelhante, podemos usar o critério 17.1 para verificar que a função f(x) = sen(1/x) não é contínua em $X = (0, \infty)$. Com efeito, definimos $x_n := 1/(n\pi)$ e $\bar{x}_n := 2/((2n-1)\pi)$. Então $\lim(x_n \bar{x}_n) = 0$, mas $|f(x_n) f(\bar{x}_n)| = |0 (\pm 1)| = 1$ para todo $n \in \mathbb{N}$.

Apresentamos a seguir um importante resultado que assegura que uma função contínua num intervalo limitado fechado é uniformente contínua nesse intervalo.

Teorema 17.2 (da Continuidade Uniforme)

Seja I:=[a,b] um intervalo limitado fechado e seja $f:I\to\mathbb{R}$ uma função contínua em I. Então f é uniformemente contínua em I.

Prova: Se f não é uniformemente contínua em I, então, pelo Teorema 17.1, existem $\varepsilon_0 > 0$ e duas seqüências (x_n) e (\bar{x}_n) em I tais que $|x_n - \bar{x}_n| < 1/n$ e $|f(x_n) - f(\bar{x}_n)| \ge \varepsilon_0$ para todo $n \in \mathbb{N}$. Como I é limitado, a seqüência

 (x_n) é limitada e, pelo Teorema de Bolzano-Weierstrass 8.5, existe uma subseqüência (x_{n_k}) de (x_n) que converge a um certo $\bar{x} \in \mathbb{R}$. Como $a \leq x_n \leq b$, segue do Teorema 7.5 que $a \leq \bar{x} \leq b$, isto é, $\bar{x} \in I$. Também é claro que a subseqüência correspondente (\bar{x}_{n_k}) satisfaz $\lim \bar{x}_{n_k} = \bar{x}$, já que

$$|\bar{x}_{n_k} - \bar{x}| \le |\bar{x}_{n_k} - x_{n_k}| + |x_{n_k} - \bar{x}|.$$

Agora, como f é contínua em I, f é contínua em \bar{x} e, portanto, ambas as seqüências $(f(x_{n_k}))$ e $(f(\bar{x}_{n_k}))$ têm que convergir a $f(\bar{x})$. Mas isso é absurdo já que $|f(x_n) - f(\bar{x})| \geq \varepsilon_0$. Temos então uma contradição originada pela hipótese de que f não é uniformemente contínua em I. Concluímos daí que f é uniformemente contínua em I.

Funções Lipschitz

A seguir vamos definir uma classe especial de funções cuja propriedade característica implica imediatamente, como veremos, a continuidade uniforme de seus membros em seus respectivos domínios.

Definição 17.2

Seja $X \subset \mathbb{R}$ e seja $f: X \to \mathbb{R}$. Diz-se que f é uma **função Lipschitz** ou que f satisfaz uma **condição Lipschitz** em X se existe uma constante C > 0 tal que

$$|f(x) - f(\bar{x})| \le C|x - \bar{x}|$$
 para todos $x, \bar{x} \in X$. (17.1)

Quando X é um intervalo em \mathbb{R} , a condição (17.1) admite a seguinte interpretação geométrica. Podemos escrever (17.1) como

$$\left| \frac{f(x) - f(\bar{x})}{x - \bar{x}} \right| \le C, \quad x, \bar{x} \in I, \ x \ne \bar{x}.$$

A expressão dentro do valor absoluto na desigualdade anterior é o valor da inclinação (ou coeficiente angular) de um segmento de reta ligando os pontos (x, f(x)) e $(\bar{x}, f(\bar{x}))$ do gráfico de f. Assim, a função f satisfaz uma condição Lipschitz se, e somente se, as inclinações de todos os segmentos de reta ligando dois pontos quaisquer do gráfico de f sobre I são limitados pelo número C.

Uma consequência imediata da definição de função Lipschitz é a seguinte proposição.

Teorema 17.3

Se $f:X\to\mathbb{R}$ é uma função Lipschitz, então f é uniformemente contínua em X.

Prova: Se a condição (17.1) é satisfeita, então, dado $\varepsilon > 0$, podemos tomar $\delta := \varepsilon/C$. Se $x, \bar{x} \in X$ satisfazem $|x - \bar{x}| < \delta$, então

$$|f(x) - f(\bar{x})| < C\frac{\varepsilon}{C} = \varepsilon.$$

Portanto, f é uniformemente contínua em X.

Exemplos 17.3

(a) Se $f(x) := x^2$ em X := (0, b), onde b > 0, então

$$|f(x) - f(\bar{x})| = |x + \bar{x}||x - \bar{x}| \le 2b|x - \bar{x}|$$

para todos $x, \bar{x} \in (0, b)$. Assim, f satisfaz (17.1) com C := 2b em X e, portanto, f é uniformemente contínua em X.

Naturalmente, como f está definida e é contínua no intervalo limitado fechado [0,b], então deduzimos do Teorema da Continuidade Uniforme 17.2 que f é uniformemente contínua em [0,b] e, portanto, também em X=(0,b). Aqui usamos o fato de que se $X\subset Y\subset \mathbb{R}$ e f é uniformemente contínua em Y, então f é uniformemente contínua em X (por quê?).

(b) Nem toda função uniformemente contínua num conjunto $X \subset \mathbb{R}$ é Lipschitz em X!

Como exemplo disso, consideremos a função $f(x):=\sqrt{x}, x\in I:=[0,1]$. Como f é contínua em I, segue do Teorema da Continuidade Uniforme 17.3 que f é uniformemente contínua em I. Contudo, não existe C>0 tal que $|f(x)|\leq C|x|$ para todo $x\in I$. Com efeito, se tal desigualdade valesse para todo $x\in (0,1]$, então, multiplicando a desigualdade por $1/\sqrt{x}$, teríamos $1\leq C\sqrt{x}$. Como o membro à direita da última desigualdade tende a 0 quando x decresce para zero, partindo dela chegaríamos a $1\leq 0$, que é absurdo. Portanto, f não é uma função Lipschitz em I.

(c) Em certos casos, é possível combinar o Teorema da Continuidade Uniforme 17.2 com o Teorema 17.3 para demonstrar a continuidade uniforme de uma dada função num conjunto.

Por exemplo, consideremos a função $f(x) := \sqrt{x}$ no conjunto $X = \sqrt{x}$ $[0,\infty)$. A continuidade uniforme de f no intervalo [0,1] segue do Teorema da Continuidade Uniforme como vimos em (b). Se $J := [1, \infty)$, então para $x, \bar{x} \in J$ temos

$$|f(x) - f(\bar{x})| = |\sqrt{x} - \sqrt{\bar{x}}| = \frac{|x - \bar{x}|}{\sqrt{x} + \sqrt{\bar{x}}} \le \frac{1}{2}|x - \bar{x}|.$$

Logo, f é uma função Lipschitz em J com $C = \frac{1}{2}$ e, portanto, segue do Teorema 17.3 que f é uniformemente contínua em J.

Agora, $X = I \cup J$, f é contínua em X e $I \cap J = \{1\}$. Além disso, se $x \in I$ e $\bar{x} \in J$, então $x \leq \bar{x}$. Assim, dado $\varepsilon > 0$, como f é uniformemente contínua em I, existe $\delta_1 > 0$ tal que se $x, \bar{x} \in I$ e $|x - \bar{x}| < \delta_1$, então $|f(x) - f(\bar{x})| < \varepsilon$. Da mesma forma, como f é uniformemente contínua em J, existe $\delta_2 > 0$ tal que se $x, \bar{x} \in J$ e $|x - \bar{x}| < \delta_2$, então $|f(x)-f(\bar{x})|<\varepsilon$. Mais ainda, como f é contínua em 1, existe $\delta_3>0$ tal que se $x, \bar{x} \in V_{\delta_3}(1) = \{ y \in \mathbb{R} : |y - 1| < \delta_3 \}, \text{ então } |f(x) - f(\bar{x})| < \varepsilon \}$ (por quê?). Então, tomando

$$\delta := \min\{\delta_1, \, \delta_2, \, \delta_3\},\,$$

deduzimos que se $x, \bar{x} \in X$ e $|x - \bar{x}| < \delta$, então $|f(x) - f(\bar{x})| < \varepsilon$ (por quê?). Logo, f é uniformemente contínua em X.

O Teorema da Extensão Contínua

Vimos que se f é uma função contínua num intervalo limitado fechado [a,b], então f é uniformemente contínua em [a,b]. Em particular, se f é uma função contínua em [a, b], então f é uniformemente contínua no intervalo limitado aberto (a, b) (por quê?). No que segue, vamos provar uma espécie de recíproca desse fato, isto é, que se f é uniformemente contínua no intervalo limitado aberto (a,b), então f pode ser extendida a uma função contínua sobre o intervalo limitado fechado [a, b]. Antes porém vamos estabelecer um resultado que é interessante por si só.

Teorema 17.4

Se $f: X \to \mathbb{R}$ é uniformemente contínua num subconjunto X de \mathbb{R} e se (x_n) é uma sequência de Cauchy em X, então $(f(x_n))$ é uma sequência de Cauchy em \mathbb{R} .

Prova: Seja (x_n) uma seqüência de Cauchy em X, e seja dado $\varepsilon > 0$. Primeiro escolhemos $\delta > 0$ tal que se $x, \bar{x} \in X$ satisfazem $|x - \bar{x}| < \delta$, então $|f(x) - f(\bar{x})| < \varepsilon$. Como (x_n) é uma seqüência de Cauchy, existe $N_0(\delta)$ tal que $|x_n - x_m| < \delta$ para todos $n, m > N_0(\delta)$. Pela escolha de δ , isso implica que para $n, m > N_0(\delta)$, temos $|f(x_n) - f(x_m)| < \varepsilon$. Portanto, a seqüência $(f(x_n))$ é uma seqüência de Cauchy em \mathbb{R} .

Agora sim estamos prontos para estabelecer o resultado sobre a extensão de funções uniformemente contínuas.

Teorema 17.5 (da Extensão Contínua)

Se f é uma função uniformemente contínua num intervalo aberto limitado (a,b), ou ilimitado (a,∞) ou $(-\infty,b)$, então f pode ser estendida como função contínua aos intervalos fechados correspondentes [a,b], $[a,\infty)$ e $(-\infty,b]$.

Prova: Vamos considerar o caso de um intervalo aberto limitado (a, b); o caso de um intervalo ilimitado (a, ∞) ou $(-\infty, b)$ decorre imediatamente da análise do caso limitado, sendo ainda mais simples, e será deixado para você como exercício. Suponhamos então que f seja uniformemente contínua em (a, b). Mostraremos como estender f a a; o argumento para estender ao ponto b é semelhante.

Essa extensão é feita mostrando-se que $\lim_{x\to a} f(x) = L$ existe. Isso por sua vez pode ser alcançado utilizando-se o critério seqüencial para limites. Se (x_n) é uma seqüência em (a,b) com $\lim x_n = a$, então ela é uma seqüência de Cauchy e, pelo Teorema 17.4, a seqüência $(f(x_n))$ também é de Cauchy. Pelo Teorema 9.1 (Critério de Cauchy), $(f(x_n))$ é convergente, isto é, existe $\lim f(x_n) = L$. Se (\bar{x}_n) é uma outra seqüência qualquer em (a,b) com $\lim \bar{x}_n = a$, então $\lim (x_n - \bar{x}_n) = a - a = 0$. Assim, pela continuidade uniforme de f, dado $\varepsilon > 0$ qualquer, existe $N_0 \in \mathbb{N}$ tal que se $n > N_0$, $|x_n - \bar{x}_n| < \delta(\varepsilon)$ e, portanto, $|f(x_n) - f(\bar{x}_n)| < \varepsilon$, o que prova que $\lim (f(x_n) - f(\bar{x}_n)) = 0$. Logo, $\lim f(\bar{x}_n) = \lim f(x_n) = L$.

Como obtemos o mesmo limite L para $(f(x_n))$ para toda seqüência (x_n) em (a,b) convergindo a a, concluímos pelo critério seqüencial para limites que f tem limite L em a. O mesmo argumento se aplica para b. Assim, concluímos que f tem extensão contínua ao intervalo [a,b].

Exemplos 17.4

(a) A função f(x) := sen(1/x) em $(0, \infty)$ não possui limite em $\bar{x} = 0$;

,

7

- concluímos pelo Teorema da Extensão Contínua 17.5 que f não é uniformemente contínua em (0, b), qualquer que seja b > 0.
- (b) A função $f(x) := x \operatorname{sen}(1/x)$ em $(0, \infty)$ satisfaz $\lim_{x\to 0} f(x) = 0$. Fazendo, f(0) := 0, vemos que f assim estendida é contínua em $[0, \infty)$. Portanto, f é uniformemente contínua em (0,b), qualquer que seja b>0, já que é a restrição ao intervalo aberto (0,b) de uma função contínua em [0, b] e esta, por sua vez, é uniformemente contínua, pelo Teorema da Continuidade Uniforme 17.2.

Exercícios 17.1

- 1. Mostre que a função f(x) := 1/x é uniformemente contínua em X := $[a, \infty)$, para qualquer a > 0.
- 2. Mostre que a função f(x) := sen(1/x) é uniformemente contínua em $X:=[a,\infty)$ para todo a>0, mas não é uniformemente contínua em $Y := (0, \infty).$
- 3. Use o critério da negação da continuidade uniforme 17.2 para mostrar que as seguintes funções não são uniformemente contínuas.
 - (a) $f(x) := x^2$, em $X := [0, \infty)$.
 - (b) $f(x) := \cos(1/x^2)$, em $X := (0, \infty)$.
- 4. Mostre que a função $f(x) := 1/(1+x^2)$ é uniformemente contínua em \mathbb{R} .
- 5. Mostre que se f e g são uniformemente contínuas em $X \subset \mathbb{R}$, então f + g é uniformemente contínua em X.
- 6. Mostre que se $f \in g$ são limitadas e uniformemente contínuas em $X \subset \mathbb{R}$, então fg é uniformemente contínua em X.
- 7. Se f(x) := x e g(x) := sen x, mostre que f e g são ambas uniformemente contínuas em \mathbb{R} , mas seu produto fg não é função uniformemente contínua em \mathbb{R} . Por que o ítem anterior não é aplicável a esse exemplo?
- 8. Prove que se $f, g: \mathbb{R} \to \mathbb{R}$ são uniformemente contínuas em \mathbb{R} , então sua composta $f \circ g : \mathbb{R} \to \mathbb{R}$ é uniformemente contínua em \mathbb{R} .
- 9. Prove que se f é uniformemente contínua em $X \subset \mathbb{R}$ e $|f(x)| \geq k > 0$ para todo $x \in X$, então a função 1/f é uniformemente contínua em X.

- 10. Prove que se f é uniformemente contínua num conjunto $limitado\ X\subset\mathbb{R},$ então f é limitada em X.
- 11. Mostre que se f é contínua em $[0, \infty)$ e uniformemente contínua em $[a, \infty)$ para algum a > 0, então f é uniformemente contínua em $[0, \infty)$.
- 12. Diz-se que uma função $f: \mathbb{R} \to \mathbb{R}$ é **periódica** em \mathbb{R} se existe um número $\ell > 0$ tal que $f(x+\ell) = f(x)$ para todo $x \in \mathbb{R}$. Prove que uma função contínua periódica em \mathbb{R} é limitada e uniformemente contínua em \mathbb{R} .