

SEQUENCE LISTING

<110> Payne, Jewel
Sick, August J.

<120> Novel Bacillus thuringiensis Isolate Active Against Lepidopteran Pests, and Genes Encoding Novel Lepidopteran-Active Toxins

<130> MA-43CDF2D4

<150> US 09/837,961
<151> 2001-04-19

<150> US 09/521,344
<151> 2000-03-09

<150> US 08/933,891
<151> 1997-09-19

<150> US 08/356,034
<151> 1994-12-14

<150> US 08/210,110
<151> 1994-03-17

<150> US 07/865,168
<151> 1992-04-09

<150> US 07/451,261
<151> 1989-12-14

<150> US 371,955
<151> 1989-06-27

<160> 10

<170> PatentIn version 3.2

<210> 1
<211> 3528
<212> DNA
<213> Bacillus thuringiensis

<400> 1
atgaataatc agaatcaatg cgttccttat aactgttga atgatccgac aattgaaata 60
ttagaaggag aaagaataga aactggttac accccaatag atatttcctt gtcgctaacg 120
caatttctgt tgagtgaatt tgtcccaggt gctgggttg tattaggtt aattgattta 180
atatgggggt ttgtgggtcc ctctcaatgg gatgcatttc ttgtgcaaat tgaacagtt 240
attaacccaaa gaatagagga attcgctagg aaccaagcaa tttctagatt agaagggcta 300
agcaaccttt atcaaattta cgcagaagct ttttagaggt gggaaagcaga tcctactaat 360
ccagcattaa cagaagagat gcgtattcag ttcaatgaca tgaacagtgc tc ttacaacc 420

gctattcctc ttttacagt tcaaaattat caagtacctc ttctatcagt atatgttcaa	480
gctgcaaatt tacatttac ggtttgaga gatgttcag tgtttggaca acgttggga	540
tttgatgtag caacaatcaa tagtcgttat aatgatttaa ctaggcttat tggcacctat	600
acagattatg ctgtacgctg gtataatacg ggattagaac gtgtatgggg accggattct	660
agagattggg taaggatataa tcaatttaga agagagctaa cactaactgt attagatatc	720
gtttctctgt tcccgaaacta tgatagtaga acgtatccaa ttcgaacagt ttcccaatta	780
actagagaaa tttatacAAA cccagtatta gaaaattttg atggtagtt tcgtggaatg	840
gctcagagaa tagaacagaa tattaggcaa ccacatctta tggatctcct taatagtata	900
accattata ctgatgtgca tagaggctt aattatttgt caggacatca aataacagct	960
tctcctgtcg gtttgcggg gccagaattt actttccta gatatggaac catggaaat	1020
gctgctccac ccgtactgat ctcaactact ggTTTGGGA tttttagAAC attatctca	1080
cctctttaca gaagaattat acttggttca ggcccaaATA atcagaacct gtttgcctt	1140
gatggAACGG aattttcttt tgccccccta acagccgatt tacttctac tatatacaga	1200
caaAGGGAA cggtcgattc actagatgtA ataccGCCAC aggataatAG tgtGCCAGCA	1260
cgtgcgggat ttagtcatcg attaagtcat gttacaatgc tgagccaAGC agctggagca	1320
gtttacacct tgagagCTCC aacgtttct tggcgacATC gtagtgctGA attctctaAC	1380
ctaattcctt catcacAAAT cacacagata ccttaACAA agtctattAA tcttggctct	1440
gggacctctg ttgttAAAGG accaggATT acaggaggAG atattctcg aataacttca	1500
cctggccaga ttcaacctt aagagtgact attacggcac cattatcaca aagatatcgc	1560
gtaagaattc gctacgcttc tactacAAAT ttacaattcc atacatcaat tgacggaaAGA	1620
cctattaATC agggAAATTt ttcaGCAACT atgagtagtg gggtaattt acagtccggA	1680
agctttagga ctgcaggTTT tactactCG tttaactTTT caaatggATC aagtatATT	1740
acgttaagtG ctcatgtctt caattcaggc aatgaagtTT atatagAGCG aattgaattt	1800
gttccggcag aagtaacatt tgaggcggAA tatgattAG aaagAGCGA agaggcggTG	1860
aatgctctgt ttacttcttc caatcaacta ggattAAAAA caaatgtgac ggactatcat	1920
attgatcaag tgcCAATCT agtcaatgt ttatccggTG aattctgtct ggatgAAAAG	1980
agagaattgt ccgagAAAGT caaacatgcG aaccgactca gtgtgagCG gaatttactt	2040
caagacccaa acttcagagg catcaatAGA caaccagACC gtggctggAG aggcagtacG	2100

gatattacca tccaaaggagg agatgacgta ttcaaagaga attacgtcac actaccgggt	2160
acctttaatg agtgttatcc tacgtatctg tatcaaaaaa tagatgagtc gaaattaaaa	2220
gcctataccc gttaccaatt aagagggtac atcgaggata gtcaacactt agaaatctat	2280
ttaattcgct acaatacaca acacgaaaca gtaaatgtgc caggtacggg ttccttatgg	2340
ccgctttcag tcgaaaatcc aattggaaag tgcggagaac caaatcgatg cgaccaccaa	2400
cttgaatgga atcctgatct agattgttcc tgcagagacg gggaaaaatg tgcacatcac	2460
tcccatcatt tctccttggc cattgatatt ggatgtacag atttaaatga gaacttaggt	2520
gtatgggtga tattcaaaat taagatgcaa gatggtcacg caagactagg taatctagag	2580
tttctcgaag agaaaccatt agtaggcgaa tcgtagcac gcgtgaagag agcggagaag	2640
aagtggagag acaaacgaga gaaattgcaa gtggaaacaa atatcgaaa taaagaggca	2700
aaagaatctg tagatgctt atttgtaac tctcaatatg atagattaca agcggatacc	2760
gacatcgcgaa tgattcatgc ggcagataaa cgcgttcatc gaattcgaga agcatatctt	2820
ccagagttat ctgttaattcc ggggtcaat gcgggcattt ttgaagaatt agagggacgt	2880
attttcacag cctactctt atatgatgca agaaatgtca taaaaatgg cgattcaat	2940
aatggcttat catgctggaa cgtgaaaggg catgtagatg tagaagaaca aaacaaccac	3000
cgttcggttc ttgttgccc ggaatggaa gcagaggtgt cacaagaggt tcgtgtctgt	3060
ccaggtcgtg gctatatcct acgtgttaca gcgtacaaag agggatatgg agaaggttgc	3120
gtAACGATTC atgagatcga agacaataca gacgaactga aattcagcaa ctgtgtagaa	3180
gaggaagtat atccaaacaa cacggtaacg tgtaatgatt atactgaaa tcaagaagaa	3240
tacgggggtg cgtacacttc tcgtaatcgt ggatatggc aatcttatga aagtaattct	3300
tccataccag ctgagtatgc gccagtttat gaggaagcat atatagatgg aagaaaagag	3360
aatccttgtg aatctaacag aggatatggg gattacacgc cactaccagc tggttatgtg	3420
acaaaagaat tagagtactt cccagaaacc gataaggtat ggattgagat cggggaaacg	3480
gaaggaacat tcatcggttga tagcgtggaa ttactcctta tggaggaa	3528

<210> 2
 <211> 1176
 <212> PRT
 <213> *Bacillus thuringiensis*

<400> 2

Met Asn Asn Gln Asn Gln Cys Val Pro Tyr Asn Cys Leu Asn Asp Pro
1 5 10 15

Thr Ile Glu Ile Leu Glu Gly Glu Arg Ile Glu Thr Gly Tyr Thr Pro
20 25 30

Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser Glu Phe Val
35 40 45

Pro Gly Ala Gly Phe Val Leu Gly Leu Ile Asp Leu Ile Trp Gly Phe
50 55 60

Val Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile Glu Gln Leu
65 70 75 80

Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala Ile Ser Arg
85 90 95

Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu Ala Phe Arg
100 105 110

Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Thr Glu Glu Met Arg
115 120 125

Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala Ile Pro Leu
130 135 140

Phe Thr Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val Tyr Val Gln
145 150 155 160

Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser Val Phe Gly
165 170 175

Gln Arg Trp Gly Phe Asp Val Ala Thr Ile Asn Ser Arg Tyr Asn Asp
180 185 190

Leu Thr Arg Leu Ile Gly Thr Tyr Thr Asp Tyr Ala Val Arg Trp Tyr
195 200 205

Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg Asp Trp Val
210 215 220

Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val Leu Asp Ile
225 230 235 240

Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro Ile Arg Thr
245 250 255

Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val Leu Glu Asn
260 265 270

Phe Asp Gly Ser Phe Arg Gly Met Ala Gln Arg Ile Glu Gln Asn Ile
275 280 285

Arg Gln Pro His Leu Met Asp Leu Leu Asn Ser Ile Thr Ile Tyr Thr
290 295 300

Asp Val His Arg Gly Phe Asn Tyr Trp Ser Gly His Gln Ile Thr Ala
305 310 315 320

Ser Pro Val Gly Phe Ala Gly Pro Glu Phe Thr Phe Pro Arg Tyr Gly
325 330 335

Thr Met Gly Asn Ala Ala Pro Pro Val Leu Ile Ser Thr Thr Gly Leu
340 345 350

Gly Ile Phe Arg Thr Leu Ser Ser Pro Leu Tyr Arg Arg Ile Ile Leu
355 360 365

Gly Ser Gly Pro Asn Asn Gln Asn Leu Phe Val Leu Asp Gly Thr Glu
370 375 380

Phe Ser Phe Ala Ser Leu Thr Ala Asp Leu Pro Ser Thr Ile Tyr Arg
385 390 395 400

Gln Arg Gly Thr Val Asp Ser Leu Asp Val Ile Pro Pro Gln Asp Asn
405 410 415

Ser Val Pro Ala Arg Ala Gly Phe Ser His Arg Leu Ser His Val Thr
420 425 430

Met Leu Ser Gln Ala Ala Gly Ala Val Tyr Thr Leu Arg Ala Pro Thr
435 440 445

Phe Ser Trp Arg His Arg Ser Ala Glu Phe Ser Asn Leu Ile Pro Ser
450 455 460

Ser Gln Ile Thr Gln Ile Pro Leu Thr Lys Ser Ile Asn Leu Gly Ser
465 470 475 480

Gly Thr Ser Val Val Lys Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu
485 490 495

Arg Ile Thr Ser Pro Gly Gln Ile Ser Thr Leu Arg Val Thr Ile Thr
500 505 510

Ala Pro Leu Ser Gln Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr
515 520 525

Thr Asn Leu Gln Phe His Thr Ser Ile Asp Gly Arg Pro Ile Asn Gln
530 535 540

Gly Asn Phe Ser Ala Thr Met Ser Ser Gly Gly Asn Leu Gln Ser Gly
545 550 555 560

Ser Phe Arg Thr Ala Gly Phe Thr Thr Pro Phe Asn Phe Ser Asn Gly
565 570 575

Ser Ser Ile Phe Thr Leu Ser Ala His Val Phe Asn Ser Gly Asn Glu
580 585 590

Val Tyr Ile Glu Arg Ile Glu Phe Val Pro Ala Glu Val Thr Phe Glu
595 600 605

Ala Glu Tyr Asp Leu Glu Arg Ala Gln Glu Ala Val Asn Ala Leu Phe
610 615 620

Thr Ser Ser Asn Gln Leu Gly Leu Lys Thr Asn Val Thr Asp Tyr His
625 630 635 640

Ile Asp Gln Val Ser Asn Leu Val Glu Cys Leu Ser Gly Glu Phe Cys
645 650 655

Leu Asp Glu Lys Arg Glu Leu Ser Glu Lys Val Lys His Ala Asn Arg
660 665 670

Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile
675 680 685

Asn Arg Gln Pro Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile
690 695 700

Gln Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly
705 710 715 720

Thr Phe Asn Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu
725 730 735

Ser Lys Leu Lys Ala Tyr Thr Arg Tyr Gln Leu Arg Gly Tyr Ile Glu
740 745 750

Asp Ser Gln His Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Thr Lys His
755 760 765

Glu Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Val
770 775 780

Glu Asn Pro Ile Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro Gln
785 790 795 800

Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys
805 810 815

Cys Ala His His Ser His His Phe Ser Leu Asp Ile Asp Ile Gly Cys
820 825 830

Thr Asp Leu Asn Glu Asn Leu Gly Val Trp Val Ile Phe Lys Ile Lys
835 840 845

Met Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu
850 855 860

Lys Pro Leu Val Gly Glu Ser Leu Ala Arg Val Lys Arg Ala Glu Lys
865 870 875 880

Lys Trp Arg Asp Lys Arg Glu Lys Leu Gln Val Glu Thr Asn Ile Val
885 890 895

Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln
900 905 910

Tyr Asp Arg Leu Gln Ala Asp Thr Asp Ile Ala Met Ile His Ala Ala
915 920 925

Asp Lys Arg Val His Arg Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser
930 935 940

Val Ile Pro Gly Val Asn Ala Gly Ile Phe Glu Glu Leu Glu Gly Arg
945 950 955 960

Ile Phe Thr Ala Tyr Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn
965 970 975

Gly Asp Phe Asn Asn Gly Leu Ser Cys Trp Asn Val Lys Gly His Val
980 985 990

Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu
995 1000 1005

Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg
1010 1015 1020

Gly Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu
1025 1030 1035

Gly Cys Val Thr Ile His Glu Ile Glu Asp Asn Thr Asp Glu Leu
1040 1045 1050

Lys Phe Ser Asn Cys Val Glu Glu Glu Val Tyr Pro Asn Asn Thr
1055 1060 1065

Val Thr Cys Asn Asp Tyr Thr Ala Asn Gln Glu Glu Tyr Gly Gly
1070 1075 1080

Ala Tyr Thr Ser Arg Asn Arg Gly Tyr Gly Glu Ser Tyr Glu Ser
1085 1090 1095

Asn Ser Ser Ile Pro Ala Glu Tyr Ala Pro Val Tyr Glu Glu Ala
1100 1105 1110

Tyr Ile Asp Gly Arg Lys Glu Asn Pro Cys Glu Ser Asn Arg Gly
 1115 1120 1125

Tyr Gly Asp Tyr Thr Pro Leu Pro Ala Gly Tyr Val Thr Lys Glu
 1130 1135 1140

Leu Glu Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu Ile Gly
 1145 1150 1155

Glu Thr Glu Gly Thr Phe Ile Val Asp Ser Val Glu Leu Leu Leu
 1160 1165 1170

Met Glu Glu
 1175

<210> 3
 <211> 3495
 <212> DNA
 <213> Bacillus thuringiensis

<400> 3		
atgaaataa ataatcaaaa ccaatgtgtc cttacaatt gtttaagtaa tcctaaggag	60	
ataatattag gcgagggaaag gctagaaaca ggaaatactg tagcagacat ttcattaggg	120	
cttattaatt ttctatattc taatttgtt ccaggaggag gatttatagt aggtttacta	180	
gaattaatat ggggatttat agggcattcg caatggata ttttttagc tcaaattgag	240	
caattgatta gtcaaagaat agaagaattt gcttagaattc aggcaatttc aagattggag	300	
gggctaagca atcttataa ggtctatgtt agagcatttgc gcaactggaa gaaagatcct	360	
actaatcctg cttaaggga agaaatgcgt atacaatttta atgacatgaa tagtgctc	420	
ataacggcta ttccacttt tagagttcaa aattatgaag ttgctcttt atctgtat	480	
gttcaagccg caaacttaca ttatctatt ttaagggatg ttcatgttt cgagaaaga	540	
tggggatatg atacagcgac tatcaataat cgctatactg atctgactag cttattcat	600	
gtttatacta accattgtgt ggatacgtat aatcaggat taaggcgat ggaaggcgat	660	
tttcttagcg attggattgt atataatcg ttccggagac aattgacaat ttcatgtt	720	
gatattgttgc gttttttcc aaattatgtt attagaacat atccaattca aacagctact	780	
cagctaacga gggaaatcta tctggattta ctttttattttt atgaaaatct ttctcctgca	840	
gcaagctatc caaccttttc agctgctgaa agtgcataaa tttagaagtcc tcatttagta	900	
gacttttaa atagcttac cattataca gatagtctgg cacgttatgc atattggggaa	960	

ggcacttgg taaattcttt ccgcacagga accactacta atttgataag atcccttta	1020
tatggaaggg aaggaaatac agagcgcccc gtaactatta ccgcattacc tagcgtacca	1080
atatttagaa cacttcata tattacaggg cttgacaatt caaatcctgt agctggaatc	1140
gagggagtgg aattccaaaa tactataagt agaagtatct atcgtaaaag cggtccaata	1200
gattctttta gtgaattacc acctcaagat gccagcgtat ctccgtcaat tgggtatagt	1260
caccgtttat gccatgcaac attttagaa cgatttagtg gaccaagaat agcaggcacc	1320
gtatTTCTT ggacacacccg tagtgcagc cctactaatg aagtaagtcc atctagaatt	1380
acacaaattc catggtaaa ggccatact cttgcattctg gtgcctccgt cattaaaggt	1440
cctggattta caggtggaga tattctgact aggaatagta tggcgagct ggggacctta	1500
cgagtaacct tcacaggaag attaccacaa agttattata tacgttccg ttatgcttcg	1560
gtagcaaata ggagtggatc atttagatat tcacagccac ctgcgtatgg aatttcattt	1620
ccaaaaacta tggacgcagg tgaaccacta acatctcggt cgttcgctca tacaacactc	1680
ttcactccaa taacctttc acgagctcaa gaagaatttg atctatacat ccaatcggt	1740
gttatatacg atcgaattga atttataccg gttactgcaa catttgggc agaatatgat	1800
ttagaaagag cgcaaaaggt ggtgaatgcc ctgttacgt ctacaaacca actagggcta	1860
aaaacagatg tgacggatta tcatattgtat caggtatcca atctagttgc gtgttatcg	1920
gatgaatttt gtctggatga aaagagagaa ttgtccgaga aagttaaaca tgcaaagcga	1980
ctcagtgtatc agcggaaattt acttcaagat ccaaacttca gagggatcaa taggcaacca	2040
gaccgtggct ggagaggaag tacggatatt actatccaag gaggagatga cgtattcaa	2100
gagaattacg ttacgctacc gggtaacccc gatgagtgct atccaacgtt tttatata	2160
aaaatagatg agtcgaaattt aaaagcctat acccggttac aattaagagg gtatatcgaa	2220
gatagtcaag acttagaaat ctatataatt cgttacaatg caaaacacga aatagtaat	2280
gtaccaggta caggaagttt atggccttt tctgtagaaa atcaaattgg accttgcgg	2340
gaaccgaatc gatgcgcgc acacccgtt gccaatccgt atttacactg ttcctgcaga	2400
gacggggaaa aatgtgcaca tcattctcat catttctttt tggacattga tggtggatgt	2460
acagacttaa atgaggactt aggtgtatgg gtgatattca agattaagac gcaagatggc	2520
cacgcacgac tagggaatct agagttctc gaagagaaac cattattagg agaagcacta	2580
gctcgtgtga aaagagcgga gaaaaatgg agagacaaac gcgaaacatt acaattggaa	2640

acaactatcg tttataaaga ggcaaaagaa tctgttagatg ctttatttgt aaactctcaa	2700
tatgatagat tacaagcggta tacgaacatc gcgtatgttgc atgcggcaga taaaacgcgtt	2760
catagaattc gagaagcgta tctgccggag ctgtctgtga ttccgggtgt caatgcggct	2820
attttgaag aattagaaga gcgtatccc actgcatttt ccctatatga tgcgagaaat	2880
attattaaaa atggcgattt caataatggc ttattatgct ggaacgtgaa agggcatgta	2940
gaggtagaag aacaaaacaa tcaccgttca gtcctggta tcccagaatg ggaggcagaa	3000
gtgtcacaag aggttcgtgt ctgtccaggt cgtggctata tccttcgtgt tacagcgtac	3060
aaagagggat atggagaagg ttgcgttaacg atccatgaga tcgagaacaa tacagacgaa	3120
ctgaaattca acaactgtgt agaagaggaa gtatatccaa acaacacggt aacgtgtatt	3180
aattatactg cgactcaaga agaatatgag ggtacgtaca cttctcgtaa tcgaggat	3240
gacgaaggct atggtaataa cccttccgtt ccagctgatt atgcgtcagt ctatgaagaa	3300
aaatcgata cagatagacg aagagagaat cttgtgaat ctaacagagg atatggagat	3360
tacacaccac taccagctgg ttatgtaaaca aaggaattag agtacttccc agagaccat	3420
aaggtatgga ttgagattgg agaaacagaa ggaacattca tcgtggacag cgtgaaatta	3480
ctccttatgg aggaa	3495

<210> 4
<211> 1165
<212> PRT
<213> *Bacillus thuringiensis*

<400> 4

Met	Glu	Ile	Asn	Asn	Gln	Asn	Gln	Cys	Val	Pro	Tyr	Asn	Cys	Leu	Ser
1									10					15	

Asn	Pro	Lys	Glu	Ile	Ile	Leu	Gly	Glu	Glu	Arg	Leu	Glu	Thr	Gly	Asn
								20				25		30	

Thr	Val	Ala	Asp	Ile	Ser	Leu	Gly	Leu	Ile	Asn	Phe	Leu	Tyr	Ser	Asn
									35				40		45

Phe	Val	Pro	Gly	Gly	Gly	Phe	Ile	Val	Gly	Leu	Leu	Glu	Leu	Ile	Trp
									50			55		60	

Gly	Phe	Ile	Gly	Pro	Ser	Gln	Trp	Asp	Ile	Phe	Leu	Ala	Gln	Ile	Glu
									65			70		75	

Gln Leu Ile Ser Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala Ile
 85 90 95

Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Lys Val Tyr Val Arg Ala
 100 105 110

Phe Ser Asp Trp Glu Lys Asp Pro Thr Asn Pro Ala Leu Arg Glu Glu
 115 120 125

Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Ile Thr Ala Ile
 130 135 140

Pro Leu Phe Arg Val Gln Asn Tyr Glu Val Ala Leu Leu Ser Val Tyr
 145 150 155 160

Val Gln Ala Ala Asn Leu His Leu Ser Ile Leu Arg Asp Val Ser Val
 165 170 175

Phe Gly Glu Arg Trp Gly Tyr Asp Thr Ala Thr Ile Asn Asn Arg Tyr
 180 185 190

Ser Asp Leu Thr Ser Leu Ile His Val Tyr Thr Asn His Cys Val Asp
 195 200 205

Thr Tyr Asn Gln Gly Leu Arg Arg Leu Glu Gly Arg Phe Leu Ser Asp
 210 215 220

Trp Ile Val Tyr Asn Arg Phe Arg Arg Gln Leu Thr Ile Ser Val Leu
 225 230 235 240

Asp Ile Val Ala Phe Phe Pro Asn Tyr Asp Ile Arg Thr Tyr Pro Ile
 245 250 255

Gln Thr Ala Thr Gln Leu Thr Arg Glu Val Tyr Leu Asp Leu Pro Phe
 260 265 270

Ile Asn Glu Asn Leu Ser Pro Ala Ala Ser Tyr Pro Thr Phe Ser Ala
 275 280 285

Ala Glu Ser Ala Ile Ile Arg Ser Pro His Leu Val Asp Phe Leu Asn
 290 295 300

Ser Phe Thr Ile Tyr Thr Asp Ser Leu Ala Arg Tyr Ala Tyr Trp Gly
305 310 315 320

Gly His Leu Val Asn Ser Phe Arg Thr Gly Thr Thr Thr Asn Leu Ile
325 330 335

Arg Ser Pro Leu Tyr Gly Arg Glu Gly Asn Thr Glu Arg Pro Val Thr
340 345 350

Ile Thr Ala Ser Pro Ser Val Pro Ile Phe Arg Thr Leu Ser Tyr Ile
355 360 365

Thr Gly Leu Asp Asn Ser Asn Pro Val Ala Gly Ile Glu Gly Val Glu
370 375 380

Phe Gln Asn Thr Ile Ser Arg Ser Ile Tyr Arg Lys Ser Gly Pro Ile
385 390 395 400

Asp Ser Phe Ser Glu Leu Pro Pro Gln Asp Ala Ser Val Ser Pro Ala
405 410 415

Ile Gly Tyr Ser His Arg Leu Cys His Ala Thr Phe Leu Glu Arg Ile
420 425 430

Ser Gly Pro Arg Ile Ala Gly Thr Val Phe Ser Trp Thr His Arg Ser
435 440 445

Ala Ser Pro Thr Asn Glu Val Ser Pro Ser Arg Ile Thr Gln Ile Pro
450 455 460

Trp Val Lys Ala His Thr Leu Ala Ser Gly Ala Ser Val Ile Lys Gly
465 470 475 480

Pro Gly Phe Thr Gly Gly Asp Ile Leu Thr Arg Asn Ser Met Gly Glu
485 490 495

Leu Gly Thr Leu Arg Val Thr Phe Thr Gly Arg Leu Pro Gln Ser Tyr
500 505 510

Tyr Ile Arg Phe Arg Tyr Ala Ser Val Ala Asn Arg Ser Gly Thr Phe
515 520 525

Arg Tyr Ser Gln Pro Pro Ser Tyr Gly Ile Ser Phe Pro Lys Thr Met
530 535 540

Asp Ala Gly Glu Pro Leu Thr Ser Arg Ser Phe Ala His Thr Thr Leu
545 550 555 560

Phe Thr Pro Ile Thr Phe Ser Arg Ala Gln Glu Glu Phe Asp Leu Tyr
565 570 575

Ile Gln Ser Gly Val Tyr Ile Asp Arg Ile Glu Phe Ile Pro Val Thr
580 585 590

Ala Thr Phe Glu Ala Glu Tyr Asp Leu Glu Arg Ala Gln Lys Val Val
595 600 605

Asn Ala Leu Phe Thr Ser Thr Asn Gln Leu Gly Leu Lys Thr Asp Val
610 615 620

Thr Asp Tyr His Ile Asp Gln Val Ser Asn Leu Val Ala Cys Leu Ser
625 630 635 640

Asp Glu Phe Cys Leu Asp Glu Lys Arg Glu Leu Ser Glu Lys Val Lys
645 650 655

His Ala Lys Arg Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn
660 665 670

Phe Arg Gly Ile Asn Arg Gln Pro Asp Arg Gly Trp Arg Gly Ser Thr
675 680 685

Asp Ile Thr Ile Gln Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val
690 695 700

Thr Leu Pro Gly Thr Phe Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln
705 710 715 720

Lys Ile Asp Glu Ser Lys Leu Lys Ala Tyr Thr Arg Tyr Gln Leu Arg
725 730 735

Gly Tyr Ile Glu Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr
740 745 750

Asn Ala Lys His Glu Ile Val Asn Val Pro Gly Thr Gly Ser Leu Trp
755 760 765

Pro Leu Ser Val Glu Asn Gln Ile Gly Pro Cys Gly Glu Pro Asn Arg
770 775 780

Cys Ala Pro His Leu Glu Trp Asn Pro Asp Leu His Cys Ser Cys Arg
785 790 795 800

Asp Gly Glu Lys Cys Ala His His Ser His His Phe Ser Leu Asp Ile
805 810 815

Asp Val Gly Cys Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile
820 825 830

Phe Lys Ile Lys Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu
835 840 845

Phe Leu Glu Glu Lys Pro Leu Leu Gly Glu Ala Ala Arg Val Lys
850 855 860

Arg Ala Glu Lys Lys Trp Arg Asp Lys Arg Glu Thr Leu Gln Leu Glu
865 870 875 880

Thr Thr Ile Val Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe
885 890 895

Val Asn Ser Gln Tyr Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met
900 905 910

Ile His Ala Ala Asp Lys Arg Val His Arg Ile Arg Glu Ala Tyr Leu
915 920 925

Pro Glu Leu Ser Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu
930 935 940

Leu Glu Glu Arg Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn
945 950 955 960

Ile Ile Lys Asn Gly Asp Phe Asn Asn Gly Leu Leu Cys Trp Asn Val
965 970 975

Lys Gly His Val Glu Val Glu Glu Gln Asn Asn His Arg Ser Val Leu
 980 985 990

Val Ile Pro Glu Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys
 995 1000 1005

Pro Gly Arg Gly Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly
 1010 1015 1020

Tyr Gly Glu Gly Cys Val Thr Ile His Glu Ile Glu Asn Asn Thr
 1025 1030 1035

Asp Glu Leu Lys Phe Asn Asn Cys Val Glu Glu Glu Val Tyr Pro
 1040 1045 1050

Asn Asn Thr Val Thr Cys Ile Asn Tyr Thr Ala Thr Gln Glu Glu
 1055 1060 1065

Tyr Glu Gly Thr Tyr Thr Ser Arg Asn Arg Gly Tyr Asp Glu Ala
 1070 1075 1080

Tyr Gly Asn Asn Pro Ser Val Pro Ala Asp Tyr Ala Ser Val Tyr
 1085 1090 1095

Glu Glu Lys Ser Tyr Thr Asp Arg Arg Arg Glu Asn Pro Cys Glu
 1100 1105 1110

Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu Pro Ala Gly Tyr
 1115 1120 1125

Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp Lys Val Trp
 1130 1135 1140

Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp Ser Val
 1145 1150 1155

Glu Leu Leu Leu Met Glu Glu
 1160 1165

<210> 5
 <211> 3567
 <212> DNA
 <213> *Bacillus thuringiensis*

<400> 5	
atggaggaaa ataatcaaaa tcaatgcata cttacaatt gtttaagtaa tcctgaagaa	60
gtactttgg atggagaacg gatatcaact ggtaattcat caattgatat ttctctgtca	120
cttggtcagt ttctggtac taactttgtc ccagggggag gatTTTtagt tggattaata	180
gatTTTgtat gggaaatagt tgcccttct caatggatg catttctagt acaaattgaa	240
caattaatta atgaaagaat agctgaattt gcttaggaatg ctgctattgc taatttagaa	300
ggatttaggaa acaatttcaa tatatatgtg gaagcattt aagaatggga agaagatcct	360
aataatccag caaccaggac cagagtaattt gatcgcttc gtatacttga tggctactt	420
gaaaggaca ttccctcggt tcgaatttct ggatttgaag taccctttt atccgtttat	480
gctcaagcgg ccaatctgca tctagctata ttaagagatt ctgttatttt tggagaaaga	540
tggggattga caacgataaa tgtcaatgaa aactataata gactaatttgc gcatatttgc	600
aatatgctg atcacttgtc aaatacgtat aatcggttgc taaataattt accgaaatct	660
acgtatcaag attggataac atataatcga ttacggagag acttaacattt gactgttattt	720
gatatcgccg ctttcttcc aaactatgac aataggagat atccaatttca gccagtttgt	780
caactaacaa gggaaatttta tacggaccca ttaatttattt ttaatccaca gttacagtct	840
gtagctcaat tacctacttt taacgttgc gagagcagcg caatttttttgc ttctcatttta	900
tttgatatat tgaataatct tacaatctt acggatttgtt ttagtgttgg acgcaattttt	960
tattggggag gacatcgagt aatatctgc cttataggag gtggtaacat aacatctcct	1020
atatatggaa gagagggcgaa ccaggagcct ccaagatcct ttacttttaa tggaccggta	1080
tttaggactt tatcaaatttcc tactttacga ttattacagc aaccttggcc agcgccacca	1140
tttaattttac gtgggtttga aggagtagaa ttttctacac ctacaaatag ctttacgtat	1200
cgaggaagag gtcaggttga ttcttaactt gaattaccgc ctgaggataa tagtgttgc	1260
cctcgcgaag gatatagtca tcgttatgt catgcaactt ttgttcaag atctggaaaca	1320
ccttttttaa caactgggtt agtattttct tggacgcattc gtagtgcaac tcttacaaat	1380
acaatttgc cagagagaat taatcaaata cttttttgtga aaggatTTTtagt agtttgggg	1440
ggcacctctg tcattacagg accaggattt acaggagggg atatccttcg aagaaatacc	1500
tttggtgatt ttgtatcttca acaagtcaat attaatttgc caatttacca aagataccgt	1560
ttaagatttc gttacgcttc cagtagggat gcacgagtta tagtattaac aggagcggca	1620
tccacaggag tgggaggcca agtttgta aatatgcctc ttcagaaaac tatggaaata	1680

ggggagaact taacatctag aacattttaga tataccgatt ttagtaatcc ttttcattt	1740
agagctaatac cagatataat tggataagt gaacaacctc tatttggtgc aggttctatt	1800
agtagcggtg aactttatat agataaaatt gaaattattc tagcagatgc aacattgaa	1860
gcagaatctg atttagaaaag agcacaaaaag gcggtaatg ccctgttac ttcttccaat	1920
caaatcggt taaaaaccga tgtgacggat tatcatattt atcaagtatc caatttagtg	1980
gattgttat cagatgaatt ttgtctggat gaaaagcgag aattgtccga gaaagtcaaa	2040
catgcgaagc gactcagtga tgagcggaat ttactcaag atccaaacctt cagagggatc	2100
aatagacaac cagaccgtgg ctggagagga agtacagata ttaccatcca aggaggagat	2160
gacgtattca aagagaatta cgtcacacta ccgggtaccg ttgatgagtg ctatccaacg	2220
tatttataatc agaaaataga ttagtcgaaa taaaagctt ataccgtta tgaattaaga	2280
ggtatatcg aagatagtca agacttagaa atctatttga tccgttacaa tgcaaaacac	2340
gaaatagtaa atgtgccagg cacgggttcc ttatggccgc tttcagccc aagtccaatc	2400
ggaaagtgtg gagaaccgaa tcgatgcgcg ccacacctt aatggaatcc tgatctagat	2460
tgttcctgca gagacgggaa aaaatgtgca catcattccc atcatttcac cttggatatt	2520
gatgttggat gtacagactt aaatgaggac ttaggtctat gggtgatatt caagattaag	2580
acgcaagata accatgcaag actaggaaat ctagagttc tcgaagagaa accattatta	2640
gggaaagcac tagctcgtgt gaaaagagcg gagaagaagt ggagagacaa acgagagaaa	2700
ctcgagttgg aaacaaatat tggataaaa gaggcaaaag aatctgtaga tgctttat	2760
gtaaactctc aatatgatag attacaagtg aatacgaaca tcgcaatgtat tcgtggca	2820
gataaacgac ttcatagaat ccgggaagcg tatctgccag agttgtctgt gattccaggt	2880
gtcaatgcgg ccatttcga agaatttagag ggacgtattt ttacagcgta ttccctat	2940
gatgcgagaa atgtcattaa aaatggcgat ttcaataatg gcttattatg ctggAACGTG	3000
aaaggtcatg tagatgtaga agagcaaaac aaccaccgtt cggcccttgt tatcccagaa	3060
tgggaggcag aagtgtcaca agaggttcgt gtctgtccag gtcgtggcta tatttcgt	3120
gtcacagcat ataaagaggg atatggagag ggctgcgtaa cgatccatga gatcgaagac	3180
aatacagacg aactgaaatt cagcaactgt gttagaagagg aagtataatcc aaacaacaca	3240
gttaacgtgtatatac tggactcaa gaagaatatg agggtaatgtatc cacttctcgat	3300
aatcaaggat atgacgaagc ctatggtaat aacccttccg taccagctga ttacgcttca	3360
gtctatgaag aaaaatcgta tacagatgga cgaagagaga atccttgcgtatctaacaga	3420

ggctatgggg attacacacc actaccggct ggttatgtaa caaaggattt agagtaactc	3480
ccagagacccg ataaggatcg gatttagatc ggagaaacag aaggaacatt catcggttgat	3540
agcgtggaat tactccttat ggaggaa	3567

<210> 6
<211> 1189
<212> PRT
<213> **Bacillus thuringiensis**

<400> 6

Met Glu Glu Asn Asn Gln Asn Gln Cys Ile Pro Tyr Asn Cys Leu Ser	
1	5
10	15

Asn Pro Glu Glu Val Leu Leu Asp Gly Glu Arg Ile Ser Thr Gly Asn	
20	25
30	

Ser Ser Ile Asp Ile Ser Leu Ser Leu Val Gln Phe Leu Val Ser Asn	
35	40
45	

Phe Val Pro Gly Gly Phe Leu Val Gly Leu Ile Asp Phe Val Trp	
50	55
60	

Gly Ile Val Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile Glu	
65	70
75	80

Gln Leu Ile Asn Glu Arg Ile Ala Glu Phe Ala Arg Asn Ala Ala Ile	
85	90
95	

Ala Asn Leu Glu Gly Leu Gly Asn Asn Phe Asn Ile Tyr Val Glu Ala	
100	105
110	

Phe Lys Glu Trp Glu Glu Asp Pro Asn Asn Pro Ala Thr Arg Thr Arg	
115	120
125	

Val Ile Asp Arg Phe Arg Ile Leu Asp Gly Leu Leu Glu Arg Asp Ile	
130	135
140	

Pro Ser Phe Arg Ile Ser Gly Phe Glu Val Pro Leu Leu Ser Val Tyr	
145	150
155	160

Ala Gln Ala Ala Asn Leu His Leu Ala Ile Leu Arg Asp Ser Val Ile	
165	170
175	

Phe Gly Glu Arg Trp Gly Leu Thr Thr Ile Asn Val Asn Glu Asn Tyr
180 185 190

Asn Arg Leu Ile Arg His Ile Asp Glu Tyr Ala Asp His Cys Ala Asn
195 200 205

Thr Tyr Asn Arg Gly Leu Asn Asn Leu Pro Lys Ser Thr Tyr Gln Asp
210 215 220

Trp Ile Thr Tyr Asn Arg Leu Arg Arg Asp Leu Thr Leu Thr Val Leu
225 230 235 240

Asp Ile Ala Ala Phe Phe Pro Asn Tyr Asp Asn Arg Arg Tyr Pro Ile
245 250 255

Gln Pro Val Gly Gln Leu Thr Arg Glu Val Tyr Thr Asp Pro Leu Ile
260 265 270

Asn Phe Asn Pro Gln Leu Gln Ser Val Ala Gln Leu Pro Thr Phe Asn
275 280 285

Val Met Glu Ser Ser Ala Ile Arg Asn Pro His Leu Phe Asp Ile Leu
290 295 300

Asn Asn Leu Thr Ile Phe Thr Asp Trp Phe Ser Val Gly Arg Asn Phe
305 310 315 320

Tyr Trp Gly Gly His Arg Val Ile Ser Ser Leu Ile Gly Gly Asn
325 330 335

Ile Thr Ser Pro Ile Tyr Gly Arg Glu Ala Asn Gln Glu Pro Pro Arg
340 345 350

Ser Phe Thr Phe Asn Gly Pro Val Phe Arg Thr Leu Ser Asn Pro Thr
355 360 365

Leu Arg Leu Leu Gln Gln Pro Trp Pro Ala Pro Pro Phe Asn Leu Arg
370 375 380

Gly Val Glu Gly Val Glu Phe Ser Thr Pro Thr Asn Ser Phe Thr Tyr
385 390 395 400

Arg Gly Arg Gly Gln Val Asp Ser Leu Thr Glu Leu Pro Pro Glu Asp
 405 410 415

Asn Ser Val Pro Pro Arg Glu Gly Tyr Ser His Arg Leu Cys His Ala
 420 425 430

Thr Phe Val Gln Arg Ser Gly Thr Pro Phe Leu Thr Thr Gly Val Val
 435 440 445

Phe Ser Trp Thr His Arg Ser Ala Thr Leu Thr Asn Thr Ile Asp Pro
 450 455 460

Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe Arg Val Trp Gly
 465 470 475 480

Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu
 485 490 495

Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln Val Asn Ile Asn
 500 505 510

Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg Tyr Ala Ser Ser
 515 520 525

Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala Ser Thr Gly Val
 530 535 540

Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys Thr Met Glu Ile
 545 550 555 560

Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr Asp Phe Ser Asn
 565 570 575

Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly Ile Ser Glu Gln
 580 585 590

Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu Leu Tyr Ile Asp
 595 600 605

Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu Ala Glu Ser Asp
 610 615 620

Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe Thr Ser Ser Asn
625 630 635 640

Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His Ile Asp Gln Val
645 650 655

Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys Leu Asp Glu Lys
660 665 670

Arg Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg Leu Ser Asp Glu
675 680 685

Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile Asn Arg Gln Pro
690 695 700

Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile Gln Gly Gly Asp
705 710 715 720

Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly Thr Val Asp Glu
725 730 735

Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu Ser Lys Leu Lys
740 745 750

Ala Tyr Thr Arg Tyr Glu Leu Arg Gly Tyr Ile Glu Asp Ser Gln Asp
755 760 765

Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His Glu Ile Val Asn
770 775 780

Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Ala Gln Ser Pro Ile
785 790 795 800

Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His Leu Glu Trp Asn
805 810 815

Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys Cys Ala His His
820 825 830

Ser His His Phe Thr Leu Asp Ile Asp Val Gly Cys Thr Asp Leu Asn
835 840 845

Glu Asp Leu Gly Leu Trp Val Ile Phe Lys Ile Lys Thr Gln Asp Asn
 850 855 860

His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu Lys Pro Leu Leu
 865 870 875 880

Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys Lys Trp Arg Asp
 885 890 895

Lys Arg Glu Lys Leu Gln Leu Glu Thr Asn Ile Val Tyr Lys Glu Ala
 900 905 910

Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln Tyr Asp Arg Leu
 915 920 925

Gln Val Asn Thr Asn Ile Ala Met Ile His Ala Ala Asp Lys Arg Val
 930 935 940

His Arg Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser Val Ile Pro Gly
 945 950 955 960

Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg Ile Phe Thr Ala
 965 970 975

Tyr Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn Gly Asp Phe Asn
 980 985 990

Asn Gly Leu Leu Cys Trp Asn Val Lys Gly His Val Asp Val Glu Glu
 995 1000 1005

Gln Asn Asn His Arg Ser Val Leu Val Ile Pro Glu Trp Glu Ala
 1010 1015 1020

Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly Tyr Ile
 1025 1030 1035

Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys Val
 1040 1045 1050

Thr Ile His Glu Ile Glu Asp Asn Thr Asp Glu Leu Lys Phe Ser
 1055 1060 1065

Asn Cys Val Glu Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys
 1070 1075 1080

Asn Asn Tyr Thr Gly Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr
 1085 1090 1095

Ser Arg Asn Gln Gly Tyr Asp Glu Ala Tyr Gly Asn Asn Pro Ser
 1100 1105 1110

Val Pro Ala Asp Tyr Ala Ser Val Tyr Glu Glu Lys Ser Tyr Thr
 1115 1120 1125

Asp Gly Arg Arg Glu Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly
 1130 1135 1140

Asp Tyr Thr Pro Leu Pro Ala Gly Tyr Val Thr Lys Asp Leu Glu
 1145 1150 1155

Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr
 1160 1165 1170

Glu Gly Thr Phe Ile Val Asp Ser Val Glu Leu Leu Leu Met Glu
 1175 1180 1185

Glu

<210> 7
 <211> 3522
 <212> DNA
 <213> Bacillus thuringiensis

<400> 7	
atggagaata atattcaaaa tcaatgcgtt ctttacaatt gtttaataaa tcctgaagta	60
gaaatattaa atgaagaaag aagtactggc agattaccgt tagatatac cttatcgctt	120
acacgtttcc ttttgagtga atttgttcca ggtgtggag ttgcgtttgg attatttgat	180
ttaatatggg gtttataac tccttctgat tggagctt ttctttaca gattgaacaa	240
ttgattgagc aaagaataga aacattggaa aggaaccggg caattactac attacgaggg	300
ttagcagata gctatgaaat ttatattgaa gcactaagag agtgggaagc aaatcctaatt	360
aatgcacaat taagggaga tgtgcgtatt cgatttgcta atacagacga cgcttataa	420
acagcaataa ataattttac acttacaagt tttgaaatcc ctctttatc ggtctatgtt	480

caagcggcga atttacattt atcactatta agagacgctg tatcgtttg gcagggttgg	540
ggactggata tagctactgt taataatcat tataatagat taataaatct tattcataga	600
tatacgaaac attgtttgga cacatacaat caaggattag aaaacttaag aggtactaat	660
actcgacaat gggcaagatt caatcagttt aggagagatt taacacttac tgtatttagat	720
atcgttgctc ttttccgaa ctacgatgtt agaacatatac caattcaaac gtcatcccaa	780
ttaacaaggg aaatttatac aagttcagta attgaggatt ctccagttc tgctaata	840
cctaatggtt ttaatagggc ggaatttggg gttagaccgc cccatcttat ggactttatg	900
aattctttgt ttgttaactgc agagactgtt agaagtcaaa ctgtgtgggg aggacactta	960
gttagttcac gaaatacggc tggtaaccgt ataaattcc ctatgttacgg ggtcttcaat	1020
cctgggtggcg ccatttggat tgcagatgag gatccacgac ctttttatcg gacattatca	1080
gatcctgttt ttgtccgagg aggatttggg aatcctcatt atgtactggg gcttagggga	1140
gtagcatttc aacaaactgg tacgaaccac acccgaacat ttagaaatag tggaccata	1200
gattctctag atgaaatccc acctcaggat aatagtggg caccttggaa tgattata	1260
catgtattaa atcatgttac atttgtacga tggccaggtg agatttcagg aagtgattca	1320
tggagagctc caatgtttc ttggacgcac cgtatgcac cccctacaaa tacaattgtat	1380
ccggagagga ttactcaaaccatggta aaagcacata cacttcagtc aggtactact	1440
gttgtaagag ggccccgggtt tacgggagga gatatttttc gacgaacaag tggaggacca	1500
tttgcttata ctattgttaa tataatggg caattacccc aaaggatcg tgcaagaata	1560
cgctatgcct ctactacaaa tctaagaatt tacgtaacgg ttgcaggtga acggattttt	1620
gctggtcaat ttaacaaaac aatggataacc ggtgaccat taacattcca atcttttagt	1680
tacgcaacta ttaatacagc ttttacattt ccaatgagcc agagtagttt cacagtaggt	1740
gctgatactt ttagttcagg gaatgaagtt tatatagaca gatttgaatt gattccagtt	1800
actgcaacat ttgaagcaga atatgattt gaaagagcac aaaaggcggt gaatgcgcgt	1860
tttacttcta taaaccaaattt aggataaaaa acagatgtga cggattatca tattgatcaa	1920
gtatccaaattt tagtggattt ttatcagat gaattttgtc tggatgaaaa gcgagaattt	1980
tccgagaaaag tcaaacatgc gaagcgactc agtgtatgagc ggaatttact tcaagatcca	2040
aacttcaaag gcatcaatag gcaactagac cgtgggtggg gaggaagtac ggatattacc	2100
atccaaagag gagatgacgt attcaaagaa aattatgtca cactaccagg tacctttgat	2160

gagtgcatac caacgtattt atatcaaaaa atagatgagt cgaaattaaa accctatact	2220
cgttatcaat taagaggta tatcgaggat agtcaagact tagaaatcta tttgatccgc	2280
tataatgcaa aacacgaaac agtaaatgtg ctaggtacgg gttctttag gcccgtttca	2340
gtccaaagtc caatcagaaa gtgtggagaa ccgaatcgat gcgcgccaca ccttgaatgg	2400
aatcctgatc tagattgttc ctgcagagac ggggaaaaat gtgcacatca ttgcacatcat	2460
tttccttgg acattgatgt tgatgtaca gacttaatg aggacttaga tgtatggtg	2520
atattcaaga ttaagacgca agatggccat gcaagactag gaaatctaga gtttctcgaa	2580
gagaaaccat tagtcggga agcactagct cgtgtaaaa gagcagagaa aaaatggaga	2640
gataaacgtg aaaaatttggaa attggaaaca aatattgttt ataaagaggc aaaagaatct	2700
gtagatgctt tatttgtaaa ctctcaatat gatcaattac aagcggatac gaatattgcc	2760
atgattcatg cggcagataa acgtgttcat agaattcggg aagcgtatct tccagagtt	2820
tctgtgattc cgggtgtaaa ttagacatt ttcaagaat taaaagggcg tattttcact	2880
gcattcttcc tatatgtatgc gagaaatgtc attaaaacg gtgatttcaa taatggctta	2940
tcatgctgga acgtgaaagg gcatgttagat gtagaagaac aaaacaacca cggcggtc	3000
cttgttgttc cggatggga agcagaagtg tcacaagaag ttctgtctg tccgggtcgt	3060
ggctatatcc ttctgtcac agcgtacaag gagggatatg gagaagggtt cgtaaccatt	3120
catgagatcg agaacaatac agacgaactg aagtttagca actgcgtaga agaggaagtc	3180
tatccaaaca acacggtaac gtgtatgtat tatactgcaa atcaagaaga atacgggggt	3240
gcgtacactt cccgtaatcg tggatgtac gaaacttatg gaagcaattc ttctgtacca	3300
gctgattatg cgctagtcta tgaagaaaaa tcgtatacag atggacgaag agacaatcct	3360
tgtaatcta acagaggata tggggattac acaccactac cagctggcta tgtgacaaaa	3420
gaatttagagt acttcccaga aaccgataag gtatggattg agatcggaga aacggaagga	3480
acattcatcg tggacagcgt ggaattactc cttatggagg aa	3522

<210> 8
 <211> 1174
 <212> PRT
 <213> *Bacillus thuringiensis*

<400> 8

Met	Glu	Asn	Asn	Ile	Gln	Asn	Gln	Cys	Val	Pro	Tyr	Asn	Cys	Leu	Asn
1				5					10					15	

Asn Pro Glu Val Glu Ile Leu Asn Glu Glu Arg Ser Thr Gly Arg Leu
 20 25 30

Pro Leu Asp Ile Ser Leu Ser Leu Thr Arg Phe Leu Leu Ser Glu Phe
 35 40 45

Val Pro Gly Val Gly Val Ala Phe Gly Leu Phe Asp Leu Ile Trp Gly
 50 55 60

Phe Ile Thr Pro Ser Asp Trp Ser Leu Phe Leu Leu Gln Ile Glu Gln
 65 70 75 80

Leu Ile Glu Gln Arg Ile Glu Thr Leu Glu Arg Asn Arg Ala Ile Thr
 85 90 95

Thr Leu Arg Gly Leu Ala Asp Ser Tyr Glu Ile Tyr Ile Glu Ala Leu
 100 105 110

Arg Glu Trp Glu Ala Asn Pro Asn Asn Ala Gln Leu Arg Glu Asp Val
 115 120 125

Arg Ile Arg Phe Ala Asn Thr Asp Asp Ala Leu Ile Thr Ala Ile Asn
 130 135 140

Asn Phe Thr Leu Thr Ser Phe Glu Ile Pro Leu Leu Ser Val Tyr Val
 145 150 155 160

Gln Ala Ala Asn Leu His Leu Ser Leu Leu Arg Asp Ala Val Ser Phe
 165 170 175

Gly Gln Gly Trp Gly Leu Asp Ile Ala Thr Val Asn Asn His Tyr Asn
 180 185 190

Arg Leu Ile Asn Leu Ile His Arg Tyr Thr Lys His Cys Leu Asp Thr
 195 200 205

Tyr Asn Gln Gly Leu Glu Asn Leu Arg Gly Thr Asn Thr Arg Gln Trp
 210 215 220

Ala Arg Phe Asn Gln Phe Arg Arg Asp Leu Thr Leu Thr Val Leu Asp
 225 230 235 240

Ile Val Ala Leu Phe Pro Asn Tyr Asp Val Arg Thr Tyr Pro Ile Gln
245 250 255

Thr Ser Ser Gln Leu Thr Arg Glu Ile Tyr Thr Ser Ser Val Ile Glu
260 265 270

Asp Ser Pro Val Ser Ala Asn Ile Pro Asn Gly Phe Asn Arg Ala Glu
275 280 285

Phe Gly Val Arg Pro Pro His Leu Met Asp Phe Met Asn Ser Leu Phe
290 295 300

Val Thr Ala Glu Thr Val Arg Ser Gln Thr Val Trp Gly Gly His Leu
305 310 315 320

Val Ser Ser Arg Asn Thr Ala Gly Asn Arg Ile Asn Phe Pro Ser Tyr
325 330 335

Gly Val Phe Asn Pro Gly Gly Ala Ile Trp Ile Ala Asp Glu Asp Pro
340 345 350

Arg Pro Phe Tyr Arg Thr Leu Ser Asp Pro Val Phe Val Arg Gly Gly
355 360 365

Phe Gly Asn Pro His Tyr Val Leu Gly Leu Arg Gly Val Ala Phe Gln
370 375 380

Gln Thr Gly Thr Asn His Thr Arg Thr Phe Arg Asn Ser Gly Thr Ile
385 390 395 400

Asp Ser Leu Asp Glu Ile Pro Pro Gln Asp Asn Ser Gly Ala Pro Trp
405 410 415

Asn Asp Tyr Ser His Val Leu Asn His Val Thr Phe Val Arg Trp Pro
420 425 430

Gly Glu Ile Ser Gly Ser Asp Ser Trp Arg Ala Pro Met Phe Ser Trp
435 440 445

Thr His Arg Ser Ala Thr Pro Thr Asn Thr Ile Asp Pro Glu Arg Ile
450 455 460

Thr Gln Ile Pro Leu Val Lys Ala His Thr Leu Gln Ser Gly Thr Thr
465 470 475 480

Val Val Arg Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Arg Arg Thr
485 490 495

Ser Gly Gly Pro Phe Ala Tyr Thr Ile Val Asn Ile Asn Gly Gln Leu
500 505 510

Pro Gln Arg Tyr Arg Ala Arg Ile Arg Tyr Ala Ser Thr Thr Asn Leu
515 520 525

Arg Ile Tyr Val Thr Val Ala Gly Glu Arg Ile Phe Ala Gly Gln Phe
530 535 540

Asn Lys Thr Met Asp Thr Gly Asp Pro Leu Thr Phe Gln Ser Phe Ser
545 550 555 560

Tyr Ala Thr Ile Asn Thr Ala Phe Thr Phe Pro Met Ser Gln Ser Ser
565 570 575

Phe Thr Val Gly Ala Asp Thr Phe Ser Ser Gly Asn Glu Val Tyr Ile
580 585 590

Asp Arg Phe Glu Leu Ile Pro Val Thr Ala Thr Phe Glu Ala Glu Tyr
595 600 605

Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe Thr Ser Ile
610 615 620

Asn Gln Ile Gly Ile Lys Thr Asp Val Thr Asp Tyr His Ile Asp Gln
625 630 635 640

Val Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys Leu Asp Glu
645 650 655

Lys Arg Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg Leu Ser Asp
660 665 670

Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Lys Gly Ile Asn Arg Gln
675 680 685

Leu Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile Gln Arg Gly
690 695 700

Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly Thr Phe Asp
705 710 715 720

Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu Ser Lys Leu
725 730 735

Lys Pro Tyr Thr Arg Tyr Gln Leu Arg Gly Tyr Ile Glu Asp Ser Gln
740 745 750

Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His Glu Thr Val
755 760 765

Asn Val Leu Gly Thr Gly Ser Leu Trp Pro Leu Ser Val Gln Ser Pro
770 775 780

Ile Arg Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His Leu Glu Trp
785 790 795 800

Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys Cys Ala His
805 810 815

His Ser His His Phe Ser Leu Asp Ile Asp Val Gly Cys Thr Asp Leu
820 825 830

Asn Glu Asp Leu Asp Val Trp Val Ile Phe Lys Ile Lys Thr Gln Asp
835 840 845

Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu Lys Pro Leu
850 855 860

Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys Lys Trp Arg
865 870 875 880

Asp Lys Arg Glu Lys Leu Glu Leu Glu Thr Asn Ile Val Tyr Lys Glu
885 890 895

Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln Tyr Asp Gln
900 905 910

Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala Asp Lys Arg
915 920 925

Val His Arg Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser Val Ile Pro
930 935 940

Gly Val Asn Val Asp Ile Phe Glu Glu Leu Lys Gly Arg Ile Phe Thr
945 950 955 960

Ala Phe Phe Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn Gly Asp Phe
965 970 975

Asn Asn Gly Leu Ser Cys Trp Asn Val Lys Gly His Val Asp Val Glu
980 985 990

Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu Trp Glu Ala
995 1000 1005

Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly Tyr Ile
1010 1015 1020

Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys Val
1025 1030 1035

Thr Ile His Glu Ile Glu Asn Asn Thr Asp Glu Leu Lys Phe Ser
1040 1045 1050

Asn Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys
1055 1060 1065

Asn Asp Tyr Thr Ala Asn Gln Glu Glu Tyr Gly Gly Ala Tyr Thr
1070 1075 1080

Ser Arg Asn Arg Gly Tyr Asp Glu Thr Tyr Gly Ser Asn Ser Ser
1085 1090 1095

Val Pro Ala Asp Tyr Ala Ser Val Tyr Glu Glu Lys Ser Tyr Thr
1100 1105 1110

Asp Gly Arg Arg Asp Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly
1115 1120 1125

Asp Tyr Thr Pro Leu Pro Ala Gly Tyr Val Thr Lys Glu Leu Glu
1130 1135 1140

Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu Ile Gly Glu Thr
1145 1150 1155

Glu Gly Thr Phe Ile Val Asp Ser Val Glu Leu Leu Leu Met Glu
1160 1165 1170

Glu

<210> 9
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> 42-mer oligonucleotide constructed to the sequence of the insert
in pM2,31-4

<400> 9
ggataccgggt gacccattaa cattccaatc ttttagttac gc 42

<210> 10
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> 40-mer oligonucleotide constructed to the sequence of the insert
in pM2,31-1

<400> 10
gaagtttatg gccttttct gtataaaatc aaattggacc 40