examples involving coordinate transformations.

e.g. There is a vector (polynomial) in P_2 which has the coordinate vector $K_{\mathbf{v}}(p(x)) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(i) with respect to the basis $B_i = \{1, x, x^2\}$, find p(x). (ii) with respect to the basis $B_2 = \{1-x, x, x^2\}$, find p(x).

(so here $Y=B_2$)

$$\frac{301}{501}$$
: (i) $p(x) = (1)(1) + (-1)(x) + (3)(x^2)$

(ii)
$$P(x) = 1(1-x) + (-1)(x) + (3)x^{2}$$

= $1-x-x+3x^{2}$
= $1-2x+3x^{2}$

exercise: show Bz is a basis of Pz (used in this example)

e.g. (i) find the coordinate vector K_{B} (p(x)) with the

of $p(x) = 5 + 6x + 6x^2$ (already as a lin. (amb. of elements from B.) $K_{B_1}(p(x)) = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ So $\begin{cases} 30 \\ 5 \\ 6 \end{bmatrix}$

(ii) find the coordinate vector $K_{B_Z}(p(x))$

If $p(x) = 6 + 6x + 6x^2$ we need to write p(x) as a linear combination of elements in $B_2 = \{1-x,x,x^2\}$ p(x) = 5 4+ $(-5x + 11x) + 6x^2$ $50 \quad K_{B_2}(p(x)) = \begin{bmatrix} 5 \\ 6 \end{bmatrix} = 5(1-x) + 11x + 6x^2$

Showing a set is linearly independent in P2
e.g., Let $X = \{1, 1-x\}$ (this is a set of vectors, polynomials in P_2) Show that X is linearly independent in P_2 .
SOLO to show X is linearly independent we show that the ONLY solution to the equation
$C_1(1) + C_2(1-x) = 0$ (*) 13 when $C_1 = 0$ and $C_2 = 0$ (see definition of linearly independent on p^{-165})
uell let's manipulate this equation (*):
$c_1(1) + c_2(1-x) = 0$
$\iff (c_1 + c_2)1 + (-c_2)x = 0 \qquad (* *)$
but we know the set $\{1, x\}$ is linearly independent (see prop 4.4.1 an p174) So the only way for $(x \times x)$ to be true is for both $C_1+C_2=0$
AND -C2 = 0 by definition of linear independence SO -