Chapter 11.1 Introduction

Jim Albert and Monika Hu

Chapter 11 Simple Linear Regression

Review

- Continuous response variables
 - Roger Federer's time-to-serve data in Chapter 8
 - snowfall amounts in Buffalo, New York in Chapter 9
- Normal sampling models have been applied
 - observations are identically and independently distributed (i.i.d.) according to a Normal density

$$Y_i \overset{i.i.d.}{\sim} \text{Normal}(\mu, \sigma)$$
 (1)

▶ What if μ_i is different for each record i?

Adding a predictor variable

- ▶ It is common that other variables are recorded that may be associated with the primary response measure
- ▶ The tennis example: the rally length of the previous point
- ► The Buffalo snowfall example: the average temperature in winter season

Adding a predictor variable cont'd

▶ A Normal curve for modeling the snowfalls $Y_1, ..., Y_n$ for n winters (Chapter 9)

$$Y_i \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma), i = 1, \dots, n$$
 (2)

- ightharpoonup Additional information: average temperature in winter i, x_i
- Weather the snowfall amount Y_i can be explained by the average temperature x_i in the same winter?
- x_i: a predictor variable

An observation-specific mean

▶ To intorudce a new variable in the sampling model: the common mean μ is replaced by a winter specific mean μ_i

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma), \ i = 1, \cdots, n$$
 (3)

The observations $Y_1, ..., Y_n$ are no longer identically distributed since they have different means, but the observations are still independent

Linear relationship between the mean and the predictor

▶ One basic approach for relating a predictor x_i and the response Y_i : assume that the mean of Y_i , μ_i , is a linear function of x_i

$$\mu_i = \beta_0 + \beta_1 x_i, \tag{4}$$

for $i = 1, \ldots, n$

- ► Each x_i is a known constant (that is why a small letter is used for x)
- ▶ β_0 and β_1 are unknown parameters (Bayesian approach: prior + data → posterior)

Linear relationship between the mean and the predictor cont'd

- ► The linear function $\beta_0 + \beta_1 x_i$ is interpreted as the **expected** snowfall amount when the average temperature is equal to x_i
- ▶ The intercept β_0 represents the expected snowfall when the winter temperature is $x_i = 0$
- ▶ The slope parameter β_1 gives the increase in the expected snowfall when the temperature x_i increases by one degree

Linear relationship between the mean and the predictor cont'd

- ► The linear function $\beta_0 + \beta_1 x_i$ is interpreted as the **expected** snowfall amount when the average temperature is equal to x_i
- ► The intercept β_0 represents the expected snowfall when the winter temperature is $x_i = 0$
- ► The slope parameter β_1 gives the increase in the expected snowfall when the temperature x_i increases by one degree
- This linear relationship is a statement about the **expected** or average snowfall amount μ_i , not the **actual** snowfall amount Y_i

Linear regression model

One expression:

$$Y_i \mid \beta_0, \beta_1, \sigma \stackrel{ind}{\sim} \text{Normal}(\beta_0 + \beta_1 x_i, \sigma), i = 1, \dots, n$$
 (5)

- Y_i independently follow a normal density with observation specific mean $\beta_0 + \beta_1 x_i$ and common standard deviation σ
- also known as simple linear regression (one predictor)

Linear regression model

One expression:

$$Y_i \mid \beta_0, \beta_1, \sigma \stackrel{ind}{\sim} \text{Normal}(\beta_0 + \beta_1 x_i, \sigma), i = 1, \dots, n$$
 (5)

- Y_i independently follow a normal density with observation specific mean $\beta_0 + \beta_1 x_i$ and common standard deviation σ
- also known as simple linear regression (one predictor)
- Another expression:

$$Y_i = \mu_i + \epsilon_i, i = 1, \cdots, n \tag{6}$$

• the mean response $\mu_i = \beta_0 + \beta_1 x_i$ and the residuals $\epsilon_1, ..., \epsilon_n$ are *i.i.d.* from a normal distribution with mean 0 and standard deviation σ

Linear regression model cont'd

Our model: the snowfall for a particular season Y_i is a linear function of the average season temperature x_i plus a random error ϵ_i that is normal with mean 0 and standard deviation σ

Linear regression model cont'd

Summary

- \triangleright The observation Y_i is random
- ightharpoonup The predictor x_i is a fixed constant
- ▶ The unknown parameters are β_0 , β_1 , and σ

Summary

- \triangleright The observation Y_i is random
- ightharpoonup The predictor x_i is a fixed constant
- ▶ The unknown parameters are β_0 , β_1 , and σ
- ► The Bayesian paradigm:
 - \blacktriangleright a joint prior for $(\beta_0, \beta_1, \sigma)$
 - ▶ after the response values $Y_i = y_i, i = 1, ..., n$ are observed
 - ▶ MCMC estimation for $(\beta_0, \beta_1, \sigma)$ to get posterior
 - posterior summarization for inferences

Summary cont'd

- ► Some inference questions:
 - learning about the relationship between the average temperature and the mean snowfall that is described by the linear model $\mu = \beta_0 + \beta_1 x$
 - ▶ the posterior probability of β_1 < 0: what can we learn?
 - predicting future snowfall amount