Matematická logika

Rostislav Horčík

horcik@math.feld.cvut.cz
 horcik@cs.cas.cz
 www.cs.cas.cz/~horcik

Informace k předmětu

- Osnova + požadavky: math.feld.cvut.cz -> Seznam předmětů -> Matematická logika
- Informace k přednášce: www.cs.cas.cz/~horcik

Literatura

- M. Demlová, B. Pondělíček: Matematická logika. Skripta ČVUT FEL.
- J. Velebil: Velmi jemný úvod do matematické logiky. Ke stažení na math.feld.cvut.cz/velebil/teaching/y01mlo.html

Množiny

 Množina je "souhrn, nebo soubor" navzájem rozlišitelných objektů, kterým říkáme prvky. Fakt, že prvek x patří do množiny A značíme x ∈ A. Opak značíme x ∉ A.

Množiny

- Množina je "souhrn, nebo soubor" navzájem rozlišitelných objektů, kterým říkáme prvky. Fakt, že prvek x patří do množiny A značíme x ∈ A. Opak značíme x ∉ A.
- Množinu můžeme zadat výčtem, tj. vypíšeme (naznačíme) její prvky, např.

$$A = \{3, 6, w, \{\pi\}\}, \qquad S = \{0, 2, 4, 6, 8, \ldots\}.$$

Množiny

- Množina je "souhrn, nebo soubor" navzájem rozlišitelných objektů, kterým říkáme prvky. Fakt, že prvek x patří do množiny A značíme x ∈ A. Opak značíme x ∉ A.
- Množinu můžeme zadat výčtem, tj. vypíšeme (naznačíme) její prvky, např.

$$A = \{3, 6, w, \{\pi\}\}, \qquad S = \{0, 2, 4, 6, 8, \ldots\}.$$

 Je-li V vlastnost, pak množinu C všech prvků x s vlastností V (a žádných jiných) zapisujeme

$$C = \{x \mid x \text{ má vlastnost } V\}$$
.

Např. množina všech lichých přirozených čísel

$$L = \{ m \mid m = 2k + 1, \ k \in \mathbb{N} \}.$$

Princip extensionality

Množiny S a T jsou si rovny (S = T) právě tehdy, když každý prvek množiny S je prvkem T a naopak každý prvek T je prvkem S.

$$\mathbf{A} = \{\alpha, \beta, \gamma\} = \{\gamma, \alpha, \beta\} = \{\beta, \beta, \gamma, \alpha, \alpha, \alpha\}.$$

Princip extensionality

Množiny S a T jsou si rovny (S=T) právě tehdy, když každý prvek množiny S je prvkem T a naopak každý prvek T je prvkem S.

$$\mathbf{A} = \{\alpha, \beta, \gamma\} = \{\gamma, \alpha, \beta\} = \{\beta, \beta, \gamma, \alpha, \alpha, \alpha\}.$$

Definice

Mějme dvě množiny S a T. Jestliže každý prvek množiny S je také prvkem množiny T, říkáme, že S je podmnožina T a píšeme $S \subseteq T$.

Princip extensionality

Množiny S a T jsou si rovny (S=T) právě tehdy, když každý prvek množiny S je prvkem T a naopak každý prvek T je prvkem S.

$$\mathbf{A} = \{\alpha, \beta, \gamma\} = \{\gamma, \alpha, \beta\} = \{\beta, \beta, \gamma, \alpha, \alpha, \alpha\}.$$

Definice

Mějme dvě množiny S a T. Jestliže každý prvek množiny S je také prvkem množiny T, říkáme, že S je podmnožina T a píšeme $S \subseteq T$.

Pozorování

S = T právě tehdy, když $S \subseteq T$ a současně $T \subseteq S$.

• \emptyset značí prázdnou množinu. $\emptyset \subseteq A$ pro každou množinu A.

- ∅ značí prázdnou množinu. ∅ ⊆ A pro každou množinu A.
- Mějme množiny A, B.

$$A \cup B = \{x \mid x \in A \text{ nebo } x \in B\}$$
 sjednocení,
 $A \cap B = \{x \mid x \in A \text{ a } x \in B\}$ průnik,
 $A - B = \{x \mid x \in A \text{ a } x \notin B\}$ rozdíl.

- ∅ značí prázdnou množinu. ∅ ⊆ A pro každou množinu A.
- Mějme množiny A, B.

$$A \cup B = \{x \mid x \in A \text{ nebo } x \in B\}$$
 sjednocení,
 $A \cap B = \{x \mid x \in A \text{ a } x \in B\}$ průnik,
 $A - B = \{x \mid x \in A \text{ a } x \notin B\}$ rozdíl.

Kartézský součin množin A, B

$$A \times B = \{(a,b) \mid a \in A, b \in B\},\ A_1 \times \cdots \times A_n = \{(a_1,\ldots,a_n) \mid a_1 \in A_1,\ldots,a_n \in A_n\}.$$

Když $A_1 = \cdots = A_n$ pak $A_1 \times \cdots \times A_n$ značíme A^n .

- ∅ značí prázdnou množinu. ∅ ⊆ A pro každou množinu A.
- Mějme množiny A, B.

$$A \cup B = \{x \mid x \in A \text{ nebo } x \in B\}$$
 sjednocení,
 $A \cap B = \{x \mid x \in A \text{ a } x \in B\}$ průnik,
 $A - B = \{x \mid x \in A \text{ a } x \notin B\}$ rozdíl.

Kartézský součin množin A, B

$$A \times B = \{(a,b) \mid a \in A, b \in B\},\ A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) \mid a_1 \in A_1, \dots, a_n \in A_n\}.$$

Když $A_1 = \cdots = A_n$ pak $A_1 \times \cdots \times A_n$ značíme A^n .

Potenční množina P(A) množiny A

$$P(A) = \{B \mid B \subseteq A\}$$
. (jiné značení: 2^A , $\exp(A)$)

Relace

Definice

Nechť A_1, \ldots, A_n jsou množiny a $R \subseteq A_1 \times \cdots \times A_n$. Pak R nazýváme n-ární relací. Pro n = 1, 2, 3 říkáme, že R je unární, binární, ternární relace. Jestliže $A_1 = \cdots = A_n$, mluvíme o relaci R na množině A.

Relace

Definice

Nechť A_1, \ldots, A_n jsou množiny a $R \subseteq A_1 \times \cdots \times A_n$. Pak R nazýváme n-ární relací. Pro n=1,2,3 říkáme, že R je unární, binární, ternární relace. Jestliže $A_1=\cdots=A_n$, mluvíme o relaci R na množině A.

Konvence

Mějme binární relaci R. Fakt, že $(a,b) \in R$, budeme také zapisovat zkráceně jako a R b.

Příklady - relační databáze

- L = množina jmen lidí v ČR, T = množina jejich telefonních čísel,
 A = množina jejich adres.
- Označme $M = L \cup T \cup A$.
- Pak telefonní seznam je ternární relace $R \subseteq M^3$ taková, že $(x,y,z) \in R$ p.t.k. člověk jména x má telefonní číslo y a adresu bydliště z.

jméno	tel.	adresa	
:	:	÷	
X	У	Z	
:	:	:	

• Množiny L, T, A jsou příklady unárních relací na M.

Příklady binárních relací

• Být menší nebo rovno. Jedná se např. o relaci \leq na množině všech přirozených čísel \mathbb{N} , kde $(m,n) \in \leq$ (tj. $m \leq n$) právě tehdy, když m je menší nebo rovno n.

Příklady binárních relací

- Být menší nebo rovno. Jedná se např. o relaci \leq na množině všech přirozených čísel \mathbb{N} , kde $(m, n) \in \leq$ (tj. $m \leq n$) právě tehdy, když m je menší nebo rovno n.
- Být podmnožinou. Jedná o relaci \subseteq na potenční množině P(U) pro nějakou množinu U. Pro dvě množiny $X, Y \in P(U)$ platí: $(X, Y) \in \subseteq$ (tj. $X \subseteq Y$) právě tehdy, když množina X je podmnožinou množiny Y.

Příklady binárních relací

- Být menší nebo rovno. Jedná se např. o relaci \leq na množině všech přirozených čísel \mathbb{N} , kde $(m, n) \in \leq$ (tj. $m \leq n$) právě tehdy, když m je menší nebo rovno n.
- Být podmnožinou. Jedná o relaci \subseteq na potenční množině P(U) pro nějakou množinu U. Pro dvě množiny $X, Y \in P(U)$ platí: $(X, Y) \in \subseteq$ (tj. $X \subseteq Y$) právě tehdy, když množina X je podmnožinou množiny Y.

Definice

Relace $f \subseteq A \times B$ se nazývá zobrazení z množiny A do množiny B, pokud pro každé $a \in A$ existuje právě jedno $b \in B$ takové, že $(a,b) \in f$. Toto jedno b značíme f(a).

Znázornění relací

Nechť

$$A = \{a, b, c\}, \qquad B = \{0, 1, 2, 3\},$$

$$R = \{(a, 0), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1)\}.$$

Charakteristickou funkcí

	0	1	2	3
а	1	0	0	1
a b	0	1	1	1
С	0	1	0	0

Orientovaným grafem

Příklad - podmnožiny dvouprvkové množiny

• $A = \{a, b\}, P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$

$$\subseteq = \{(\emptyset, \emptyset), (\emptyset, \{a\}), (\emptyset, \{b\}), (\emptyset, \{a, b\}), (\{a\}, \{a\}), (\{a\}, \{a, b\}), (\{b\}, \{b\}), (\{b\}, \{a, b\}), (\{a, b\}, \{a, b\})\}.$$

Operace s relacemi

• Množinové operace. Sjednocení, průnik, doplněk.

Operace s relacemi

- Množinové operace. Sjednocení, průnik, doplněk.
- Inversní relace. Mějme binární relaci $R \subseteq A \times B$. Pak inversní relací k relaci R je relace $R^{-1} \subseteq B \times A$ definovaná takto:

 $x R^{-1} y$ právě tehdy, když y R x.

Operace s relacemi

- Množinové operace. Sjednocení, průnik, doplněk.
- Inversní relace. Mějme binární relaci R ⊆ A × B. Pak inversní relací k relaci R je relace $R^{-1} \subset B \times A$ definovaná takto:

$$x R^{-1} y$$
 právě tehdy, když $y R x$.

• Skládání relací. Mějme binární relace $R \subset A \times B$ a $S \subset B \times C$. Pak složená relace $R \circ S \subseteq A \times C$ definovaná předpisem:

> $a R \circ S c$ právě tehdy, když existuje $b \in B$ takové, že aRb a bSc.

• Nechť A je množina nějakých obcí.

- Nechť A je množina nějakých obcí.
- Definujme binární relaci R na A takto:
 a R b právě tehdy, když obce a, b jsou spojeny přímou cestou nebo a = b.

- Nechť A je množina nějakých obcí.
- Definujme binární relaci R na A takto:
 a R b právě tehdy, když obce a, b jsou spojeny přímou cestou nebo a = b.
- R o R dává do relace obce, které jsou spojeny cestou maximálně přes jednu obec.

- Nechť A je množina nějakých obcí.
- Definujme binární relaci R na A takto:
 a R b právě tehdy, když obce a, b jsou spojeny přímou cestou nebo a = b.
- R o R dává do relace obce, které jsou spojeny cestou maximálně přes jednu obec.
- (R

 R)

 R dává do relace obce, které jsou spojeny cestou maximálně přes dvě obce.

- Nechť A je množina nějakých obcí.
- Definujme binární relaci R na A takto:
 a R b právě tehdy, když obce a, b jsou spojeny přímou cestou nebo a = b.
- R o R dává do relace obce, které jsou spojeny cestou maximálně přes jednu obec.
- (R

 R)

 R dává do relace obce, které jsou spojeny cestou maximálně přes dvě obce.
- $R \circ (R \circ R) = (R \circ R) \circ R$.

- Nechť A je množina nějakých obcí.
- Definujme binární relaci R na A takto:
 a R b právě tehdy, když obce a, b jsou spojeny přímou cestou nebo a = b.
- R o R dává do relace obce, které jsou spojeny cestou maximálně přes jednu obec.
- (R

 R)

 R dává do relace obce, které jsou spojeny cestou maximálně přes dvě obce.
- $R \circ (R \circ R) = (R \circ R) \circ R$.
- $\underbrace{R \circ \cdots \circ R}_{n-\text{krát}}$ dává do relace obce, které jsou spojeny cestou maximálně přes n-1 obcí.

Vlastnosti skládání

Tvrzení

Skládání relací je asociativní. Přesněji, je-li $R\subseteq A\times B,\,S\subseteq B\times C$ a $T\subseteq C\times D$, pak platí

$$R \circ (S \circ T) = (R \circ S) \circ T$$
.

Vlastnosti skládání

Tvrzení

Skládání relací je asociativní. Přesněji, je-li $R\subseteq A\times B$, $S\subseteq B\times C$ a $T\subseteq C\times D$, pak platí

$$R \circ (S \circ T) = (R \circ S) \circ T$$
.

Pozorování

Skládání relací není komutativní.

Např. pro $R = \{(a, a), (b, a)\}$ a $S = \{(a, b), (b, a)\}$ relace na $\{a, b\}$ máme $R \circ S \neq S \circ R$.

Řekneme, že binární relace R na množině A (tj. $R \subseteq A^2$) je

• reflexivní, jestliže pro všechna $a \in A$ platí a R a;

Řekneme, že binární relace R na množině A (tj. $R \subseteq A^2$) je

- reflexivní, jestliže pro všechna a ∈ A platí a R a;
- symetrická, jestliže pro všechna a, b ∈ A platí:
 je-li a R b, pak také b R a;

Řekneme, že binární relace R na množině A (tj. $R \subseteq A^2$) je

- reflexivní, jestliže pro všechna a ∈ A platí a R a;
- symetrická, jestliže pro všechna a, b ∈ A platí:
 je-li a R b, pak také b R a;
- antisymetrická, jestliže pro všechna a, b ∈ A platí:
 je-li a R b a b R a, pak a = b;

Řekneme, že binární relace R na množině A (tj. $R \subseteq A^2$) je

- reflexivní, jestliže pro všechna a ∈ A platí a R a;
- symetrická, jestliže pro všechna a, b ∈ A platí:
 je-li a R b, pak také b R a;
- antisymetrická, jestliže pro všechna a, b ∈ A platí:
 je-li a R b a b R a, pak a = b;
- tranzitivní, jestliže pro všechna a, b, c ∈ A platí:
 je-li a R b a b R c, pak a R c.

Ekvivalence a uspořádání

Definice

Binární relace R na množině A se nazývá:

- ekvivalence na A, pokud je reflexivní, symetrická a tranzitivní,
- (částečné) uspořádání na A, pokud je reflexivní, antisymetrická a tranzitivní.

Ekvivalence a uspořádání

Definice

Binární relace R na množině A se nazývá:

- ekvivalence na A, pokud je reflexivní, symetrická a tranzitivní,
- (částečné) uspořádání na A, pokud je reflexivní, antisymetrická a tranzitivní.

Příklad

• Mějme rovinu bodů \mathbb{R}^2 . Pak relace definovaná (x, y) E(u, v) pokud $x^2 + y^2 = u^2 + v^2$ je ekvivalence na \mathbb{R}^2 .

Ekvivalence a uspořádání

Definice

Binární relace R na množině A se nazývá:

- ekvivalence na A, pokud je reflexivní, symetrická a tranzitivní,
- (částečné) uspořádání na A, pokud je reflexivní, antisymetrická a tranzitivní.

Příklad

- Mějme rovinu bodů \mathbb{R}^2 . Pak relace definovaná (x, y) E(u, v) pokud $x^2 + y^2 = u^2 + v^2$ je ekvivalence na \mathbb{R}^2 .
- Nechť A je množina. Pak relace \subseteq na P(A) je uspořádání.

Ekvivalence a uspořádání

Definice

Binární relace R na množině A se nazývá:

- ekvivalence na A, pokud je reflexivní, symetrická a tranzitivní,
- (částečné) uspořádání na A, pokud je reflexivní, antisymetrická a tranzitivní.

Příklad

- Mějme rovinu bodů \mathbb{R}^2 . Pak relace definovaná (x, y) E(u, v) pokud $x^2 + y^2 = u^2 + v^2$ je ekvivalence na \mathbb{R}^2 .
- Nechť A je množina. Pak relace \subseteq na P(A) je uspořádání.
- Nechť A je množina. Pak relace $I_A = \{(x, x) \mid x \in A\}$ je ekvivalence i uspořádání.

Třídy ekvivalence

Definice

Je dána relace ekvivalence R na množině A. Třídou ekvivalence R odpovídající prvku $a \in A$ nazýváme množinu

$$R[a] = \{b \in A \mid a R b\}, \quad \text{(jiná značení: } [a]_R, a/R\text{)}$$

Množinu všech tříd dané ekvivalence, tj. množinu $\{R[a] \mid a \in A\}$ často nazýváme faktorovou množinou podle ekvivalence R a značíme A/R.

Třídy ekvivalence

Tvrzení

 $\{R[a] \mid a \in A\}$ má tyto vlastnosti:

- Každý prvek $a \in A$ leží v R[a] a platí rovnost $\bigcup \{R[a] \mid a \in A\} = A$.
- Třídy ekvivalence R[a] jsou po dvou disjunktní, tj. jestliže $R[a] \cap R[b] \neq \emptyset$, pak R[a] = R[b].

Nechť R je ekvivalence na množině A. Množina tříd ekvivalence

Rozklad

Definice

Mějme neprázdnou množinu A. Množina S neprázdných podmnožin množiny A se nazývá rozklad množiny A, jestliže jsou splněny následující podmínky:

- Každý prvek $a \in A$ leží v některé podmnožině z S, tj. (JS = A.
- Prvky množiny $\mathcal S$ jsou po dvou disjunktní; tj. jestliže $X\cap Y\neq\emptyset$, pak X=Y pro všechna $X,Y\in\mathcal S$.

Rozklad

Tvrzení

Nechť S je rozklad množiny A. Pak relace R_S definovaná:

 $a \mathrel{R_{\mathcal{S}}} b$ právě tehdy, když $a,b \in X$ pro nějaké $X \in \mathcal{S}$

je ekvivalence na množině A.

Rozklad

Tvrzení

Nechť S je rozklad množiny A. Pak relace R_S definovaná:

 $a R_{\mathcal{S}} b$ právě tehdy, když $a, b \in X$ pro nějaké $X \in \mathcal{S}$

je ekvivalence na množině A.

Poznámka

$$R \longrightarrow A/R \longrightarrow R_{A/R} = R$$

$$\mathcal{S} \longrightarrow R_{\mathcal{S}} \longrightarrow A/R_{\mathcal{S}} = \mathcal{S}$$

Příklad - rozklady množiny {1, 2, 3, 4}

Největší a maximální prvek

Definice

Mějme množinu A a na ní relaci uspořádání \leq .

- Řekneme, že prvek a ∈ A je největší prvek množiny A, jestliže pro všechny prvky x ∈ A platí x
 ≤ a.
- Řekneme, že prvek $b \in A$ je maximální prvek množiny A, jestliže neexistuje prvek $y \in A$, $y \neq b$, takový, že $b \leq y$.

Největší a maximální prvek

Definice

Mějme množinu A a na ní relaci uspořádání \leq .

- Řekneme, že prvek $a \in A$ je největší prvek množiny A, jestliže pro všechny prvky $x \in A$ platí $x \leq a$.
- Řekneme, že prvek $b \in A$ je maximální prvek množiny A, jestliže neexistuje prvek $y \in A$, $y \neq b$, takový, že $b \leq y$.

Tvrzení

Mějme množinu *A* a na ní uspořádání. Množina *A* má nejvýše jeden největší prvek; navíc, je-li *a* největší prvek množiny *A*, pak je jediným maximálním prvkem množiny *A*. Nemá-li množina *A* největší prvek, může mít několik maximálních prvků, anebo žádný.

Nejmenší a minimální prvek

Definice

Mějme množinu A a na ní relaci uspořádání \leq .

- Řekneme, že prvek $a \in A$ je nejmenší prvek množiny A, jestliže pro všechny prvky $x \in A$ platí $a \leq x$.
- Řekneme, že prvek $b \in A$ je minimální prvek množiny A, jestliže neexistuje prvek $y \in A$, $y \neq b$, takový, že $y \leq b$.

Nejmenší a minimální prvek

Definice

Mějme množinu A a na ní relaci uspořádání \leq .

- Řekneme, že prvek $a \in A$ je nejmenší prvek množiny A, jestliže pro všechny prvky $x \in A$ platí $a \leq x$.
- Řekneme, že prvek $b \in A$ je minimální prvek množiny A, jestliže neexistuje prvek $y \in A$, $y \neq b$, takový, že $y \leq b$.

Tvrzení

Mějme množinu *A* a na ní uspořádání. Množina *A* má nejvýše jeden nejmenší prvek; navíc, je-li *a* nejmenší prvek množiny *A*, pak je jediným minimálním prvkem množiny *A*. Nemá-li množina *A* nejmenší prvek, může mít několik minimálních prvků, anebo žádný.