5

10

15

TABLE 1

Reactants	Results (Color)			
	45°C	50°C	60°C	74°C
1 + 2	Pink	Pink	Pink	Pink
1 + 2 + 3 (match)	Blue	Blue	Blue	Blue
1 + 2 + 4 (half complement mismatch)	Pink	Pink	Pink	Pink
1 + 2 + 5 (-6 bp)	Blue	Pink	Pink	Pink
1 + 2 + 6 (1 bp mismatch)	Blue	Blue	Pink	Pink
1 + 2 + 7 (2 bp mismatch)	Pink	Pink	Pink	Pink

As can be seen in Table 1, hybridization at 60°C gave a blue spot only for the fully-matched target 3. Hybridization at 50°C yielded blue spots with both targets 3 and 6. Hybridization at 45°C gave blue spots with targets 3, 5 and 6.

In a related series, a target containing a single mismatch T nucleotide was found to give a positive test at 58°C (blue color) and a negative test (red color) at 64°C with conjugates 1 and 2. Under the same conditions, the fully-matched target (3) gave a positive test at both temperatures, showing that the test can discriminate between a target that is fully matched and one containing a single mismatched base.

Similar results were achieved using a different hybridization method. In particular, selective hybridization was achieved by freezing, thawing and then warming rapidly to the stringent temperature. For example, hybridization was carried out in 100 μ L of 0.1 M NaCl containing 15 nM of each oligonucleotide-colloid conjugate 1 and 2, and 10 picomoles of target oligonucleotide 3, 4, 5, 6, or 7, freezing in a dry ice-isopropyl alcohol bath for 5 minutes, thawing at room temperature, then warming rapidly to the temperatures indicated in Table 2 below, and incubating the mixture at this temperature for 10 minutes. A 3 μ L sample of each reaction mixture was then spotted on a C-18 TLC silica plate. The results are presented in Table 2.

TABLE 2

Reactants (probes) + target	Results (color)					
	RT	35°C	40°C	54°C	64°C	
(1 + 2) + 3	blue	blue	blue	blue	pink	
(1 + 2)	pink	pink	pink	pink	pink	
(1+2)+4	pink	pink	pink	pink	pink	
(1 + 2) + 5	blue	blue	pink	pink	pink	
(1 + 2) + 6	blue	blue	blue	pink	pink	
(1+2)+7	blue	pink	pink	pink	pink	

An important feature of these systems was that the color change associated with the temperature change was very sharp, occurring over a temperature range of about 1°C. This indicates high cooperativity in the melting and association processes involving the colloid conjugates and enables one to easily discriminate between oligonucleotide targets containing a fully-matched sequence and a single basepair mismatch.

The high degree of discrimination may be attributed to two features. The first is the alignment of two relatively short probe oligonucleotide segments (15 nucleotides) on the target is required for a positive signal. A mismatch in either segment is more destabilizing than a mismatch in a longer probe (e.g., an oligonucleotide 30 bases long) in a comparable two-component detection system. Second, the signal at 260 nm, obtained on hybridization of the target oligonucleotides with the nanoparticle conjugates in solution, is nanoparticle-based, not DNA-based. It depends on dissociation of an assembly of nanoparticles organized in a polymeric network by multiple oligonucleotide duplexes. This results in a narrowing of the temperature range that is observed for aggregate dissociation, as compared with standard DNA thermal denaturation. In short, some duplexes in the crosslinked aggregates can dissociate without dispersing the nanoparticles into solution. Therefore, the temperature range for aggregate melting is very narrow (4°C) as compared with the temperature range associated with melting the comparable system without nanoparticles (12°C). Even more striking and advantageous for this detection approach is the temperature range for the

25

5

10

colorimetric response (<1°C) observe on the C18 silica plates. In principle, this three-component nanoparticle based strategy will be more selective than any two-component detection system based on a single-strand probe hybridizing with target nucleic acid.

A master solution containing 1 nmol of target 3 was prepared in 100 μ l of hybridization buffer (0.3 M NaCl, 10 mM phosphate, pH 7). One μ l of this solution corresponds to 10 picomole of target oligonucleotide. Serial dilutions were performed by taking an aliquot of the master solution and diluting it to the desired concentration with hybridization buffer. Table 3 shows the sensitivity obtained using 3 μ l of a mixture of probes 1 and 2 with different amounts of target 3. After performing the hybridization using freeze-thaw conditions, 3 μ l aliquots of these solutions were spotted onto C-18 TLC plates to determine color. In Table 3 below, pink signifies a negative test, and blue signifies a positive test.

TABLE 3

Amount of Target	Results		
1 picomole	blue (positive)		
200 femtomole	blue (positive)		
100 femtomole	blue (positive)		
20 femtomole	blue (positive)	P**	
10 femtomole	purplish (ambiguous)		

This experiment indicates that 10 femtomoles is the lower limit of detection for this particular system.

Example 6: Assays Using Nanoparticle-Oligonucleotide Conjugates

DNA modified nanoparticles were adsorbed onto modified transparent substrates as shown in Figure 13B. This method involved the linking of DNA modified nanoparticles to nanoparticles that were attached to a glass substrate, using DNA hybridization interactions.