

多阶段归并

归并

- ◎ 两路归并
- ◎ 多路归并
- ◎ 多阶段归并

多阶段归并

- K路归并策略需要用2K条磁带,这可能限制了它在某些应用中的使用。
- 我们可以仅用K+1根磁带实现K路归并,这称为多阶段归并
- 直观的方法:假设有三条磁带:T1,T2和T3,以及一个在T1上的输入 文件,它能产生34个已排序片段。
 - ◆ 在T2和T3上各放部分(比如各17个)已排序片段,然后把结果归 并到T1。
 - → 把其中的一部分放到T2上以执行另一次归并。

多阶段归并的过程

- ◎ 按非均匀的方法分解原先的34个已排序片段。
- ◎ 如果把21个已排序片段放在T2, 13个已排序片段放在T3
 - ◆ 在T3为空以前我们能够归并13个已排序片段到T1上。然后回绕 T1和T3
 - → 并将具有13个已排序片段的T1和具有8个已排序片段的T2归并到T3上。
 - → 然后归并T1和T3

多阶段归并的已排序片段数

	Run Const.	After						
		T3 + T2	T1 + T2	T1 + T3	T2 + T3	T1 + T2	T1 + T3	T2 + T3
T1	0	13	5	0	3	1	0	1
T2	21	8	0	5	2	0	1	0
T3	13	0	8	3	0	2	1	0

如何分布初始片断

- ◎ 如果已排序片段的数目是一个斐波纳契数F_N,那么分布 最好的方法把它们分解成两个斐波纳契数F_{N-1}和F_{N-2}。
- 否则,为了将已排序片段数增加到一个斐波纳契数,必须在磁带上填充虚拟的已排序片段。