กระบวนการวิทยาศาสตร์ข้อมูล Data Science Process

ผศ.ดร. กุลวดี สมบูรณ์วิวัฒน์

kulwadee@eng.src.ku.ac.th

กระบวนการทางวิทยาศาสตร์ข้อมูล (Data Science Process)

1. Prior Knowledge

1.1 กำหนด Business Problem

• ถือว่าเป็นขั้นตอนที่สำคัญที่สุดในกระบวนการวิทยาศาสตร์ข้อมูล และจำเป็นอย่างยิ่งที่จะต้อง กำหนดปัญหาให้ชัดเจนถูกต้อง

ถ้าเรามีข้อมูลเกี่ยวกับอัตราดอกเบี้ยสินเชื่อและคะแนนเครดิตของผู้กู้ยืมในอดีต, เราสามารถสร้างโมเดลสำหรับทำนาย

อัตราดอกเบี้ยที่เหมาะสมของผู้กู้ยืมรายใหม่จากคะแนนเครดิตได้หรือไม่?

1.2 ศึกษาบริบทในเชิงธุรกิจ

- เข้าใจภาพกว้างของธุรกิจการให้สินเชื่อ
- รายละเอียดเกี่ยวกับกระบวนการและข้อมูลที่ใช้ในการสมัคร
- วิธีการกำหนดดอกเบี้ยที่เหมาะสม

ตารางที่ 2.1 ชุดข้อมูลล (Dataset) ของผู้ขอสินเชื่อ

label, class label, target variable

input features, attributes

ลาเบล

7.00

6.50

5.70

อินพุทฟีเจอร์

80

09

10

ค่าตัวแปรเป้าหมาย

+	K	~			
	Borrow ID	Credit Score	Interest Rate (%)		
	01	500	7.31		
	02	600	6.70		
	03	700	5.95		
	04	700	6.40		
	05	800	5.40		
	06	800	5.70		
	07	750	5.90		

550

650

825

instance, sample, data point ตัวอย่าง 1.3 รวบรวมและ ทำความเข้าใจข้อมูล

2. Model Building

2.1 Data Exploratory Analysis

• การสำรวจข้อมูล (data exploration หรือ exploratory data analysis) คือการทำความ เข้าใจเกี่ยวกับข้อมูลเบื้องต้น โดยการ ประยุกต์ใช้เครื่องมือพื้นฐานสำหรับการ วิเคราะห์ข้อมูล เช่น สถิติพรรณนา (descriptive statistics) และการทำให้เห็น เป็นภาพ (data visualization) เป็นต้น

ความสัมพันธ์ระหว่างคะแนนเครดิต กับอัตราดอกเบี้ยมีลักษณะ**แปรผกผัน** กล่าวคือ ยิ่งคะแนนเครดิตสูง อัตราดอกเบี้ยที่เหมาะสมก็จะต่ำลง

2.2 เตรียมข้อมูล

- เป็นขั้นตอนที่ใช้เวลานานที่สุดในกระบวนการวิทยาศาสตร์ข้อมูล เนื่องจาก โดยปกติชุดข้อมูลที่ รวบรวมมาได้ จะอยู่ในรูปแบบที่ไม่เหมาะกับการประมวลผลของอัลกอริทึมทางวิทยาศาสตร์ ข้อมูล ซึ่งส่วนใหญ่ต้องการอินพุทที่มีโครงสร้างแบบตาราง โดยแต่ละแถวคือหนึ่ง instance และ แต่ละคอลัมน์คือ attribute
- กรรมวิธีที่ใช้ในการเตรียมข้อมูลมีหลายวิธี เช่น การเติมค่าที่หายไปด้วยค่าเฉลี่ย ค่าแปลงค่าให้อยู่ ในช่วงมาตรฐาน การจัดการค่าผิดปกติ (outliers), การคัดเลือกฟีเจอร์ (feature selection), และการสุ่มตัวอย่างข้อมูล (data sampling)

2.3 สร้างชุดข้อมูลฝึกฝนและ ชุดข้อมูลทคสอบ

Borrow ID	Credit Score	Interest Rate (%)	
01	500	7.31	
02	600	6.70	
03	700	5.95	
04	700	6.40	
05	800	5.40	
06	800	5.70	
07	750	5.90	
08	550	7.00	
09	650	6.50	
10	825	5.70	

ู ฅารางที่ 2.2 ชุดข้อมูลฝึกฝน (training dataset)

Borrow ID	Credit Score	Interest Rate (%)		
	X	у		
01	500	7.31		
02	600	6.70		
03	700	5.95		
05	800	5.40		
06	800	5.70		
08	550	7.00		
09	650	6.50		

ตารางที่ 2.3 ชุดข้อมูลทดสอบ (testing dataset)

Borrow ID	Credit Score	Interest Rate (%)		
	X	у		
04	700	6.40		
07	750	5.90		
10	825	5.70		

2.4 กำหนดโมเคลที่จะใช้ และสร้างโมเคลด้วยชุดข้อมูลฝึกฝน

Linear Regression Model: y = wX + b

2.4 กำหนดโมเคลที่จะใช้ และสร้างโมเคลด้วยชุดข้อมูลฝึกฝน

ุตารางที่ 2.2 ชุดข้อมูลฝึกฝน (training dataset)

Borrow ID	Credit Score	Interest Rate (%)		
	Х	у		
01	500	7.31	Linear Regression	
02	600	6.70	Training	- 6 V 1 10
03	700	5.95	Training	$y = \frac{1000}{1000} x + 10$
05	800	5.40	Algorithm	4000
06	800	5.70	Algorithm	
80	550	7.00		
09	650	6.50		y = wX + b

2.4 กำหนดโมเคลที่จะใช้ และสร้างโมเคลด้วยชุดข้อมูลฝึกฝน

3. Model Testing

3.1 ประเมินประสิทธิภาพโมเคลด้วยชุดข้อมูลทคสอบ

3.1 ประเมินประสิทธิภาพโมเคลด้วยชุดข้อมูลทคสอบ

ตารางที่ 2.4 การประเมินประสิทธิภาพของโมเดลบนชุดข้อมูลทดสอบ

Borrow	Credit	Interest Rate	คำทำนายอัตรา	Errors	Squared Errors
ID	Score	(%)	ดอกเบี้ยที่ได้จากโมเดล		
	x	у	y= (-6/1000)X+ 10		
04	700	6.40	5.8	-0.6	0.36
07	750	5.90	5.5	-0.4	0.16
10	825	5.70	5.05	-0.65	0.4225

RMSE (Root Mean Squared Error)

$$=\frac{1}{3}\sqrt{(0.36+0.16+0.4225)}$$

= 0.324

4. Deployment

4. การนำโมเดลไปใช้งานจริง

- นำโมเดลที่ได้รวมเข้ากับแอปพลิเคชั่นขององค์กร เช่น ระบบงานอนุมัติสินเชื่อ
- ต้องมีการประสานงานกับส่วนงานอื่น ๆ ที่เกี่ยวข้องเช่น ผู้บริหาร ฝ่ายอนุมัติสินเชื่อ ฝ่ายไอที เป็นต้น

5. Knowledge and Actions

5. ความรู้และการกระทำ

• กระบวนการทางวิทยาศาสตร์ข้อมูลเริ่มต้นด้วย ความรู้ตั้งต้น (Prior Knowledge) และจบลงด้วย ความรู้แจ้งที่เพิ่มเติมขึ้น ซึ่งได้มาจากกระบวนการเรียนรู้จากข้อมูลแบบทำซ้ำ นักวิทยาศาสตร์ข้อมูล จะต้องคัดสรรความรู้ใหม่ที่มีนัยสำคัญ และนำไปใช้ในการตัดสินใจ หรือการกระทำอื่น ๆ ที่เป็น ประโยชน์ในเชิงธุรกิจ

การทำนายคามัธยฐานของราคาบ้านโดยใช้ California Housing Price dataset

- ไลบารี่ที่ใช้มีดังนี้คือ
 - numpy
 - pandas
 - matplotlib
 - sklearn

```
from sklearn.model_selection import train_test_split
  X = housing.data
  y = housing.target
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  X_train.shape, X_test.shape, y_train.shape, y_test.shape
((14448, 8), (6192, 8), (14448,), (6192,))
  from sklearn.linear_model import LinearRegression
  lin_reg = LinearRegression()
  lin_reg.fit(X_train, y_train)
  from sklearn.metrics import mean_squared_error
  import numpy as np # np.sqrt()
  lin_predict = lin_reg.predict(X_test) # 6192 rows
  lin_mse = mean_squared_error(y_test # actual value of housing price,
                              lin predict)
  lin_rmse = np.sqrt(lin_mse)
  print("RMSE of Linear Regressor = ", lin_rmse)
```

from sklearn.datasets import fetch_california_housing

housing = fetch california housing(as frame=True)

AI (Artificial Intelligence)

Machine Learning

Data Mining

KDD (Knowledge Discovery in Databases)

Data Science

What is artificial intelligence? (AI)

Hard for **Machines**

Manipulation Driving **Images** 'Deep' **Faces** Learning Language Jeopardy!

Prime factorization

Knowledge

Planning 'Classical' Logic Reasoning Remembering

Easy for **Machines**

Easy for humans

Hard for humans

Go

Chess

Math

Integration

Source: https://mit6874.github.io/assets/sp2021/slides/l01.pdf

General **▲**intelligence

How do machines play chess?

'Classical' Al approach (rule-based, tree search):

- 1. Human: Program in all the rules of chess
- 2. Human: Hand-craft a scoring function for each position
- 3. Search all moves that you can make (max score)
- 4. Search all moves that opponent can make (min score)
- 5. Repeat for many iterations
- 6. Choose move that gives best score

KDD Process (Fayyad et al., 1996)

Artificial Intelligence

Machine Learning

