CS 188 Discussion 1:

Uninformed Search and State Spaces

Kenny Wang (kwkw@berkeley.edu) Wed Aug 30, 2023

Who am I?

- Junior, EECS major
- Bay Area native
- can impersonate Peyrin
- not a morning person (zzzzzz)
- occasionally plays badminton
- pretty good at whistling
- Mark Rober's selfie friend

Hate icebreakers? Sorry ...

- What's your name?
- What's your grade?
- Is cereal a soup?

Administrivia

- Homework 0 (optional!) and Project 0 (optional!) are "due" today
- Need extensions? We will give you extensions!
- Discussion extra credit: possibly 1-2%, more details in the future

Today's Topics

- Agents
- Search Problems (Q1)
 - State Spaces
- Uninformed Search (Q2)
 - Depth-First Search
 - Breadth-First Search
 - Uniform Cost Search

Agents

Reflex agents

- Choose action based on current world state without considering future consequences
- Consider how the world is

Planning agents

- Choose action based on hypothesized consequences of actions
- Consider how the world would be

Search Problems

A search problem consists of

- A state space
 - set of all possible states in world
- A successor function (with actions, costs)
 - function that takes in state and action that returns successor state and cost of performing action
- A start state
- A goal test
 - function that tells us if the goal has been reached

Examples: Pathing

- States: (x,y) locations
- Actions: North, South, East, West
- Successor: Update location only
- Goal test: Is (x,y)=END?

Eat-all-dots

- States: (x,y) location, dot booleans
- Actions: North, South, East, West
- Successor: Update location and booleans
- Goal test: Are all dot booleans false?

Worksheet Q1

Depth-First Search (DFS)

- Strategy: Expand deepest node first
- Fringe: Stack (LIFO)
- Complete: No*
 - if graph has cycles, could keep cycling forever m tiers
- Optimal: No
 - finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search (BFS)

- Strategy: Expand shallowest node first
- Fringe: Queue (FIFO)
- Complete: Yes
 - o if a solution exists, s is finite
- Optimal: Sometimes
 - o only guaranteed if all costs are the same

Uniform Cost Search (UCS)

- Strategy: Expand cheapest node first
 - like Dijkstra's algorithm from CS 61B
- Fringe: Priority Queue
- Complete: Yes
 - assuming best solution has finite cost
- Optimal: Yes

Worksheet Q2

Search Algorithms (summarized)

Depth-First Search

- Strategy: Expand deepest node first
- Fringe: Stack (LIFO)
- Complete: No*
 - if graph has cycles, could keep cycling forever
- Optimal: No
 - finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

- Strategy: Expand shallowest node first
- Fringe: Queue (FIFO)
- Complete: Yes
 - if a solution exists, s
 is finite
- Optimal: Sometimes
 - only guaranteed if all costs are the same

Uniform Cost Search

- Strategy: Expand cheapest node first
 - like Dijkstra's algorithm from CS 61B
- Fringe: Priority Queue
- Complete: Yes
 - assuming best solution has finite cost
- Optimal: Yes

Summary

- Agents
- Search Problems (Q1)
 - State Spaces
- Uninformed Search (Q2)
 - Depth-First Search
 - Breadth-First Search
 - Uniform Cost Search

Thank you for attending!

Attendance link:

- https://tinyurl.com/cs188fa23

My email:

- kwkw@berkeley.edu

