班级	学号	姓名	教师签字之人,大
实验日期	2024/9/12	. 预习成绩 <u> </u>	总成绩

实验名称 磁光效应及其在光通信中的应用

一、 预习

- 1. 简述采用磁光效应的非互易性制作光隔离器的原理。
- 2. 在光通信应用中,可以采用不同的光功率大小表示二进制"0"和"1",例如光功率高于某一数值时代表"1",低于这一数值时代表"0"。简述采用磁光效应实现这一功能的原理。
 - 1. 海疫争效为多生的就免具多独场的有关,中国更作情方向天关、中印克俄兹底一国 改其角倍增, 从数量一似正的好入时,偏极的这样中,改量压缩抗性大局分中,则可以出射。但割从另一部入针对, 依过被免别体增加了 10偏角,从南元号通过各一个海拉片、从南京和电隔高级效果

2、用配备器获取货偏振光,再改量一个整偏器. 面过 改画的视电流,可改变吸收处理 路底, 世市改变偏振电面过磁光晶体建筑运而改变,从南改变磁光晶体制扩充与整隔器 保极化方向的关闭 p. 由品类定律 I:= Losa 故改变电流 不以改变效射光线医由市改变功率。工程估价作为 o, 如序高时作为 1.

二、原始数据记录

1.

磁致旋光角与励磁电流大小的关系数据记录

电流大小(A)	消光时偏振片 P ₂ 的角度读数θ	旋光角Δθ(包含正负号)
0.00	2.0°	0.0°
0175	4.v°	2.2°
0.10	2.9 °	3.9°
۹75	7.0°	5.0 °
1.00	8.9 °	6.9°
1.75	10,5°	8.5°
1.70	1200	10,D°
1.75	14. °	12- 0
2.00	12.50	13.50
2.び	17.0 4	1200
NO	19.5 °	16.5°
275	2015°	18.50

2.

磁致旋光角方向与光束传播方向的关系数据记录

电流大小 (A)	消光时偏振片 P_2 的角度读数 θ	旋光角Δθ(包含正负号)
0.00	259.5 "	0.0°
0175	26/12"	17°
0,10	263. "	3.6°
٩75	264.50	5,00
1.00	266.5°	7.0°
1.75	268.5 °	9.0"
۵۲۰۱	269.9°	10.4°
1.75	271.2°	11.7°
2.00	272.7 °	13.20
2.び	274.F°	14.9°
2.50	275.5°	16.0°
275	מי נוב	17.5°

3.

磁致旋光角方向与励磁电流方向的关系数据记录

反向电流大小	消光时偏振片 P ₂ 的角度读数θ	旋光角Δθ(包含正负号)	
(A)	们/山町/闸JK/厂12日3/円/文/关级U		
0.00	241,50	0.0°	
0.75	237.00	-2·5 °	
0,10	235. 8°	-5.7°	
٩.75	234.5°	- ۲،۰°	
1.00	233.0	- 8.5-0	
1.75	24 .8°	-9.7°	
1.70	230. 2°	- 1 . 3°	
1.75	228.0°	-13.5°	
2.00	226.90	- 14.b°	
2.15	225.5°	- 16.0°	
2290	224.5°	۰ ۱ ر ۱	
275	22/.20	-20,3 *	

4.

磁光材料对不同波长的光的响应情况数据记录(选做)

波长 (nm)	电流大小(A)	消光时偏振片 P ₂ 的角度 读数θ	旋光角Δθ(包含正负 号)
	0.00		0.0°

三、数据处理及实验现象、结论

绘制各实验任务中偏振片 2 的角度变化值(即磁致旋光角)与励磁电流的关系曲线,注 意正负号,根据结果总结磁致旋光角与磁感应强度大小、光束传播方向、磁场方向的关系; 描述利用磁光效应调制音频信号的实验现象。

②由表二图像趋势和表一大致相同可知, 改变光束传播方向,磁致旋光角不变,仍 然和励磁电流成正比关系,即磁致旋光角 和光束传播方向无关。

③由表三相关系数 $R^2 = 0.9865$,可知磁致旋光角仍然和励磁电流有较强的线性相关性,由斜率 k = -6.7203 为负可知,改变励磁电流方向,磁致旋光角改变符号,即磁致旋光角与磁感应强度方向有关。

综上,磁致旋光角与磁感应强度大小成正比,与光束传播方向无关,与磁感应强度方向有关。

利用磁光效应调制音频信号的实验现象:

①对于一定的励磁电流(1A 左右),当两偏振片的偏振化方向垂直时,听不到声音;偏振化方向夹角逐渐减小时,噪声先增大随后减小,乐声逐渐增大且在接近平行时,声音最为清晰;恰好平行时,声音响度最大。

②对于一定偏振片偏振化方向的夹角,随着励磁电流增大,声音响度先增大后减小,但减小不明显; 声音清晰度增加,但增加越来越不明显。

四、讨论题

如图 1 所示,一束偏振光穿过置于线圈之中、长度为 d 的磁光晶体,线圈中通有大小为 I 的电流,电流方向如箭头所示。在磁场作用下,偏振光的偏振方向发生旋转。请根据该结果,画出图 2 和图 3 中出射光的偏振方向,标出角度值。

