

Лекция 2 2 модуль Выявление нетипичных наблюдений (выбросов) Три формы системы нормальных уравнений

02.11.20

Демидова О.А. E-mail:demidova@hse.ru

План лекции

- 1) Выявление нетипичных наблюдений
- 2) Оценка модели при наличии нетипичных наблюдений
- 3) Влияние изменения масштаба измерения переменных на оценки коэффициентов регрессии и их дисперсий.
- 4) Регрессия в центрированных и нормированных переменных

Пример нетипичных наблюдений – выбросов (outliers)

Leverage V Residuals

$$Y = X\beta + \varepsilon, e = \hat{Y} - Y$$
 $H = X (X'X)^{-1} X' - hat matrix$
 $\hat{Y} = HY, \hat{Y}_i = \sum_{j=1}^n h_{ij} Y_j,$
 $h_{ii} - leverage, i = 1,..., n$
 $var[e] = [I - H] var[\varepsilon]$
 $var(e_i) = (1 - h_{ii})\sigma_{\varepsilon}^2$

If h_{ii} is $high$, then $var(e_i)$ is $small$.

Vertical Outliers

Studentized residues

$$e_i^* = \frac{e_i}{s_{(-i)}\sqrt{1-h_{ii}}}$$

Rule of thumb: if le*I > 2 this is outlier

Vertical Outliers

Studentized residues

Results of estimation with outliers and without outliers

. reg price mpg weight length foreign

Source	SS	df		MS		Number of obs F(4, 69)	04 04
Model Residual	348708940 286356456	4 69	_	177235 093.57		Prob > F R-squared	= 0.0000 $= 0.5491$
Total	635065396	73	8699	525.97		Adj R-squared Root MSE	= 0.5230 = 2037.2
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
mpg weight length foreign _cons	-13.40719 5.716181 -92.48018 3550.194 5515.58	72.10 1.016 33.5 655.4 5241.	5095 5912 1564	-0.19 5.63 -2.75 5.42 1.05	0.853 0.000 0.008 0.000 0.296	-157.2579 3.689127 -159.4928 2242.594 -4941.807	130.4436 7.743235 -25.46758 4857.793 15972.97

. reg price mpg weight length foreign if abs(residst) < 2</pre>

Source	ss	df		MS		Number of obs		70 20.90
Model Residual	229069621 178137969	4 65		7405.2 584.14		F(4, 65) Prob > F R-squared	= =	0.0000 0.5625 0.5356
Total	407207590	69	5901	.559.27		Adj R-squared Root MSE	=	1655.5
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
mpg weight length foreign _cons	-33.53987 3.976065 -49.88628 3403.566 3011.892	61.63 .9860 32.82 537.8 4811.	319 274 999	-0.54 4.03 -1.52 6.33 0.63	0.588 0.000 0.133 0.000 0.533	-156.6258 2.006823 -115.4378 2329.306 -6596.604	5 1 4	9.54609 1.945306 1.5.66525 1.477.826 1.2620.39

Bad leverage points

DF BETA

$$D_{ij} = b_j - b_{j(-i)},$$

 $i = 1, ..., n,$
 $j = 1, ..., k$

Rule of thumb: If

$$|D_{ij}| \ge 2 / \sqrt{n}$$
 (in practice often > 1), this is outlier.

But we have many factors!

Bad leverage points

DFITS :		*	1	l_{ii}	-
	— ($\epsilon_i $	1 –	$-h_{ii}$	•

Rule of thumb

DFITS_i >
$$2\sqrt{\frac{k}{n}}$$
,

$$D_{i} = \frac{1}{k} \frac{s_{(i)}^{2}}{s^{2}} DFITS$$

$$Cook 's Dis tan ce$$

$$D_i > \frac{4}{n}$$

$$W_{i} = DFITS \quad \sqrt{\frac{n-1}{1-h_{ii}}}$$

Welsch 's Dis tan ce

$$W_i > 3\sqrt{k}$$

Bad leverage points

- . predict cooksd, cooksd
- . list make if cooksd > 4/74

	make
2. 12. 13. 28. 42.	AMC Pacer Cad. Eldorado Cad. Seville Linc. Versailles Plym. Arrow
43.	Plym. Champ

Results with and without bad leverage points

. reg price mpg weight length foreign

Source	e SS	df		MS		Number of obs	
Mode Residua		-	_	7177235 0093.57		F(4, 69) Prob > F R-squared	= 0.0000 $= 0.5491$
Tota	63506539	6 73	8699	525.97		Adj R-squared Root MSE	= 0.5230 = 2037.2
price	e Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
mpo weigh lengtl foreign _cons	5.716181 n -92.48018 n 3550.194	1.016 33.5 655.4	5095 5912 1564	-0.19 5.63 -2.75 5.42 1.05	0.853 0.000 0.008 0.000 0.296	-157.2579 3.689127 -159.4928 2242.594 -4941.807	130.4436 7.743235 -25.46758 4857.793 15972.97

. reg price mpg weight length foreign if cooksd < 4/74

Source	SS	df		MS		Number of obs = 68 F(4. 63) = 23.62
Model Residual	242230722 161542206	4 63		7680.6 161.99		Prob > F = 0.0000 R-squared = 0.5999
Total	403772928	67	6026	461.61		Adj R-squared = 0.5745 Root MSE = 1601.3
price	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
mpg weight length foreign _cons	-35.5219 4.953208 -78.29578 3583.937 5405.938	62.06 1.118 36.2 532.0 4834.	628 578 723	-0.57 4.43 -2.16 6.74 1.12	0.569 0.000 0.035 0.000 0.268	-159.5536 88.50981 2.717809 7.188606 -150.7512 -5.840351 2520.675 4647.199 -4255.166 15067.04

Оценка модели при наличии нетипичных наблюдений

- Оценка по выборке без выбросов (не очень хорошо)
- Дамми переменные для наблюденийвыбросов
- Робастные оценки параметров
- Критерий $\sum_{i=1}^{n} g(e_i)$, где g(x) медленнее растет при больших x, чем x^2 , например, $|\mathbf{x}|$ (медианная регрессия).

variable	regols	regmed	mreg	rreg	mmreg70
mpg	-13.407192	6.2978704	-23.500289	-23.873543	-122.79988***
weight	5.7161809***	3.6727916***	4.5636207***	3.2814101***	-3.0145735
length	-92.480183**	-35.375678	-61.1696	-27.096799	93.802086*
foreign	3550.1937***	3222.1316***	3529.0743***	3346.3483***	692.4751*
_cons	5515.5801	-92.609125	3116.0435	480.00227	-1456.2602

legend: * p<0.05; ** p<0.01; *** p<0.001

3 формы системы нормальных уравнений

1)
$$Y = X\beta + \varepsilon$$
, $X'X\hat{\beta} = X'Y - 1^{\text{as}} \phi opma$. 2) Уравнения в отклонения x : $y = Y - Y\overline{i}$, $x_j = X_j - X_j\overline{i}$, $j = 1, \dots, k$ $y = x\alpha + \varepsilon$, Важный результат . $\hat{\alpha} = \hat{\beta}_{-0}$

3 формы системы нормальных уравнений

Доказательство.
$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \ldots + \hat{\beta}_k X_k$$

$$\bar{Y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{X}_1 + \ldots + \hat{\beta}_k \bar{X}_k$$

$$\hat{y} = \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k \Rightarrow \hat{\alpha} = \hat{\beta}_{-0}.$$

$$x'x\hat{\beta}_{-0} = x'y \Leftrightarrow$$
 $V\hat{a}r(X)\hat{\beta}_{-0} = C\hat{o}v(X,Y) - 2^{aa} \phi opma.$

3 формы системы нормальных уравнений

3)
$$\widetilde{x}_{j} = \frac{x_{j}}{\hat{\sigma}_{j}}, j = 1, ..., k$$

$$\hat{\sigma}_{j} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ji} - \overline{X}_{j})^{2}, \widetilde{y} = \frac{y}{\hat{\sigma}_{y}},$$

$$\widetilde{x}\widetilde{\beta} = \widetilde{x}\widetilde{y} \Leftrightarrow$$

$$C\hat{o}r[X]\widehat{\beta} = C\hat{o}r[X,Y] - 3^{\text{bg}} \phi opma.$$

Thank you for your attention!

20, Myasnitskaya str., Moscow, Russia, 101000 Tel.: +7 (495) 628-8829, Fax: +7 (495) 628-7931 www.hse.ru