Exercice Bonus – DS 2

Soit f une fonction périodique à valeurs dans \mathbb{R} , continue sur \mathbb{R} . Montrons que f est uniformément continue sur \mathbb{R} .

Soit $T \in \mathbb{R}_+^*$ une période de f. D'après Heine, f étant continue sur [-2T,2T] segment, elle y est uniformément continue. Donc

$$\forall \epsilon > 0, \ \exists \eta > 0, \ \forall x, y \in [-2T, 2T], \ |x - y| \le \eta \Longrightarrow |f(x) - f(y)| < \epsilon$$
 (*)

Soit $\epsilon > 0$. On choisit $\eta \leq \frac{T}{2}$ vérifiant (*) (on peut le faire puisque $\frac{T}{2} > 0$ et si $\eta > \frac{T}{2}$, $\frac{T}{2}$ fonctionne, et sinon $\eta \leq \frac{T}{2}$ et tout va bien).

Soient $x,y\in\mathbb{R}$, supposons que $|x-y|\leq\eta\leq\frac{T}{2}$. Il existe un unique entier naturel n tel que $nT\leq x<(n+1)T$, d'où $0\leq x-nT< T$. Mais on a aussi

$$|y-nT|=|y-x+x-nT|\leq |y-x|+|x-nT|\leq \eta+T\leq \frac{3T}{2}\leq 2T$$

Donc $x-nT,y-nT \in [-2T,2T]$, mais aussi $|x-nT-(y-nT)|=|x-y| \leq \eta$, donc $|f(x-nT)-f(y-nT)| < \epsilon$ d'après (*). Or $|f(x)-f(y)|=|f(x-nT)-f(y-nT)| < \epsilon$.

On a ainsi montré que

$$\forall \epsilon > 0, \ \exists \eta > 0, \ \forall x, y \in \mathbb{R}, \ |x - y| \le \eta \Longrightarrow |f(x) - f(y)| < \epsilon$$

f est donc bien uniformément continue.