Constructing Guaranteed Automatic Numerical Algorithms for Univariate Integration

Yizhi Zhang, Joint work with Prof. Fred Hickernell

Department of Applied Mathematics, Illinois Institute of Technology

February 24, 2017

Contents

- Introduction.
- Automatic Numerical Integration, Theory and Practice.
- GAIL
- Future Work

Motivation

- Non-adaptive methods provide guarantees.
- Adaptive methods provide no guarantee.

Non-adaptive, guaranteed

The user provides a function, the error tolerance, and some conditions.

$$x \mapsto f(x), \varepsilon = \text{tolerance}, \sigma \text{ such that } ||f''||_1 \le \sigma.$$

For example, using the trapezoidal rule to compute $\int_a^b f(x)dx$:

$$cost = n + 1 = \left\lceil \sqrt{\frac{\sigma}{8\varepsilon}} \right\rceil + 1.$$

We can have an estimation of $T_n(f)$ such that

$$\left| \int_{a}^{b} f(x)dx - T_{n}(f) \right| \leq \varepsilon.$$

Guaranteed!

Adaptive, but not guaranteed

The user provides a function, and the error tolerance.

$$x \mapsto f(x), \varepsilon =$$
tolerance.

For example, using MATLAB's integral to compute $\int_a^b f(x)dx$, the cost depends on how hard the problem is. But, there is no guarantee to achieve an estimation of $Q_n(f)$ such that

$$\left| \int_{a}^{b} f(x)dx - Q_{n}(f) \right| \le \varepsilon,$$

What do we think of automatic

- By "automatic", it is meant that the user provides a function f and an error tolerance, ε , and the algorithm attempts to provide an approximate solution that is within a distance of ε of the true solution. The algorithm will adaptively decide how many and which pieces of function data are needed.
- We want to establish a framework for providing rigorous guarantees for automatic algorithms.

Trapezoidal Rule

The problem to be solved is univariate integration on interval [a, b],

 $\operatorname{INT}(f) := \int_a^b f(x) \, \mathrm{d}x \in \mathcal{G} := \mathbb{R}$. The space of input functions is \mathcal{V}^3 , the space of functions whose first derivatives have finite variation:

$$\mathcal{V}^{1}[a,b] = \{ f \in C^{1}[a,b] : Var(f') < \infty \},$$

The space of outputs is the real space \mathbb{R} .

The cone of the integrand is defined as

$$C_{\tau_{a,b}} := \left\{ f \in \mathcal{V}^1 : \operatorname{Var}(f') \le \frac{\tau_{a,b}}{b-a} \left\| f' - \frac{f(b) - f(a)}{b-a} \right\|_1 \right\}.$$

Simpson's Rule

Now we use Simpson's rule based on an even number of 3n intervals. The space of input functions is \mathcal{V}^3 , the space of functions with continuous first and second derivatives and third derivatives having finite variation:

$$\mathcal{V}^{3}[a,b] = \{ f \in C^{1}[a,b] : Var(f''') < \infty \},$$

The cone of the integrand is defined as:

$$\begin{split} \mathcal{C} := \left\{ f \in \mathcal{V}^3, \mathrm{Var}(f''') \leq \mathfrak{C}(\mathrm{size}(\{x_j\}_{j=0}^{n+1})) \widehat{V}(f''', \{x_j\}_{j=0}^{n+1}), \right. \\ \text{for all choices of } n \in \mathbb{N}, \text{and } \{x_j\}_{j=0}^{n+1} \text{with size}(\{x_j\}_{j=0}^{n+1}) < \mathfrak{h} \right\}, \end{split}$$

where $\mathfrak{C}(\operatorname{size}(\{x_j\}_{j=0}^{n+1}))$ is the inflation factor. The cut-off value $\mathfrak h$ and the inflation factor $\mathfrak C$ define the cone. The choice of $\mathfrak C$ is flexible. But it must be non-decreasing. One choice could be $\mathfrak C(h)=\mathfrak C(0)\frac{\mathfrak h}{\mathfrak h-h},\mathfrak C(0)\geq 1.$

From reference, the error bound of Simpson's rule is related to the variation of the third derivatives of the function to be integrated:

$$\operatorname{err}(f, n) \le \overline{\operatorname{err}}(f, n) := \frac{(b - a)^4 \operatorname{Var}(f''')}{5832n^4}.$$
 (1)

We do not have the variation of the third derivative of the function. In order to find the error bound, \widehat{V} is introduced: Given any partition $\{x_j\}_{j=0}^{n+1}$, where $a=x_0\leq x_1\leq \cdots \leq x_n\leq x_{n+1}=b$, define an approximation to $\mathrm{Var}(f''')$ as:

$$\widehat{V}(f''', \{x_j\}_{j=0}^{n+1}) = \sum_{j=1}^{n-1} |f'''(x_{j+1}) - f'''(x_j)|.$$

By definition, the approximation is actually a lower bound of Var(f'''):

$$\widehat{V}(f''', \{x_j\}_{j=0}^{n+1}) \le \text{Var}(f'''), \quad \forall f \in \mathcal{C}, \quad \{x_j\}_{j=0}^{n+1}, \quad n \in \mathbb{N}.$$
 (2)

We cannot use $\widehat{V}(f''',\{x_j\}_{j=0}^{n+1})$ to approximate $\mathrm{Var}\,(f''')$ because it depends on values of f''', not values of f. However, $\widehat{V}(f''',\{x_j\}_{j=0}^{n+1})$ is closely related to the following approximation to $\mathrm{Var}\,(f''')$:

$$\widetilde{V}_n(f) = \frac{27n^3}{(b-a)^3} \sum_{j=1}^{n-1} |f(t_{3j+3}) - 3f(t_{3j+2}) + 3f(t_{3j+1}) - 2f(t_{3j}) + 3f(t_{3j-1}) - 3f(t_{3j-2}) + f(t_{3j-3})|, \quad (3)$$

where the t_i 's are uniformly distributed between [a,b]

$$t_i = a + \frac{i(b-a)}{3n}, \qquad i = 0, \dots, 3n, \qquad n \in \mathbb{N}.$$
 (4)

We use divided differences to explain (3). Let $h = t_{i+1} - t_i = (b-a)/3n$ and

$$f[t_i, t_{i-1}, t_{i-2}, t_{i-3}] = \frac{f(t_i) - 3f(t_{i-1}) + 3f(t_{i-2}) - f(t_{i-3})}{6h^3}, \text{ for } i = 3, \dots, 3n.$$

According to Mean Value Theorem for divided differences,

$$f'''(x_j) = \frac{f(t_{3j}) - 3f(t_{3j-1}) + 3f(t_{3j-2}) - f(t_{3j-3})}{h^3},$$

$$= \frac{27n^3}{(b-a)^3} [f(t_{3j}) - 3f(t_{3j-1}) + 3f(t_{3j-2}) - f(t_{3j-3})].$$
(5)

If we combine (3) and (5) together, we obtain

$$\widetilde{V}_n(f) = \sum_{j=1}^{n-1} |f'''(x_{j+1}) - f'''(x_j)| = \widehat{V}(f''', \{x_j\}_{j=0}^{n+1}).$$
 (6)

Then we can use $\widetilde{V}_n(f)$ to approximate $\operatorname{Var}(f''')$ by just using function values.

Lemma

For all $f \in \mathcal{C}$, it follows that $\widetilde{V}_n(f) \leq \operatorname{Var}(f''') \leq \mathfrak{C}(2(b-a)/n)\widetilde{V}_n(f)$, for $n > 2(b-a)/\mathfrak{h}$.

Proof.

By (2) and (6), $\widetilde{V}_n(f) \leq \operatorname{Var}(f''')$.

Moreover, for any $x_j \in (t_{3j-3}, t_{3j})$ and $x_{j+1} \in (t_{3j}, t_{3j+3})$, it follows that $x_{j+1} - x_j \le t_{3j+3} - t_{3j-3} = 6h = 2(b-a)/n$. So by $(\ref{eq:sum})$, (6), the assumption that $\mathfrak C$ is non-decreasing, and the fact that $2(b-a)/n \ge \operatorname{size}(\{x_j\}_{j=0}^{n+1})$,

$$\widetilde{V}_n(f) = \widehat{V}(f''', \{x_j\}_{j=0}^{n+1}) \ge \frac{\operatorname{Var}(f''')}{\mathfrak{C}(\operatorname{size}\{x_j\}_{j=0}^{n+1})} \ge \frac{\operatorname{Var}(f''')}{\mathfrak{C}(2(b-a)/n)}.$$

Then data-based upper bound on Var(f''') in this lemma can be combined with the error bound in (1) to provide the following data-based error bound:

$$\begin{aligned} \operatorname{err}(f,n) &\leq \overline{\operatorname{err}}(f,n) = \frac{(b-a)^4 \operatorname{Var}(f''')}{5832n^4} \\ &\leq \frac{(b-a)^4 \mathfrak{C}(2(b-a)/n)\widetilde{V}_n(f)}{5832n^4} =: \widetilde{\operatorname{err}}(f,n), \forall n > 2(b-a)/\mathfrak{h}. \end{aligned} \tag{7}$$

Therefore, we can use Simpson's rule using 3n intervals, where 3n is an even number, to approximate integrals such that the error bound is guaranteed in (7):

$$S_n(f) := \int_a^b A_n(f) dt$$

$$= \frac{(b-a)}{18n} [f(t_0) + 4f(t_1) + 2f(t_2) + 4f(t_3) + 2f(t_4) \cdots + 4f(t_{3n-1}) + f(t_{3n})].$$
(8)

where t_i 's are defined in (4) and $n/2 \in \mathbb{N}$.

Multi-step Automatic Algorithms

Algorithm (Adaptive Univariate Integration)

Given an interval [a,b], an inflation function, \mathfrak{C} , a positive key mesh size \mathfrak{h} , a positive error tolerance, ε , and a routine for generating values of the integrand, f, set l=1, and $n_1=2(\lfloor (b-a)/\mathfrak{h}\rfloor+1)$.

- Stage 1 Compute the error estimate $\widetilde{\text{err}}(f, n_l)$ according to (7).
- Stage 2 If $\widetilde{\text{err}}(f, n_l) \leq \varepsilon$, then return the Simpson's rule approximation $S_{n_l}(f)$ as the answer.
- Stage 3 Otherwise let $n_{l+1} = \max(2, m)\eta_l$, where $m = \min\{r \in \mathbb{N} : \eta(rn_l)V_{n_l(f)} \leq \varepsilon\},$

with
$$\eta(n) := \frac{(b-a)^4 \mathfrak{C}(2(b-a)/n)}{5832n^4}$$
.

increase l by one, and go to 1.

Theorem

Let $N(f,\varepsilon)$ denote the final number of n_l in Stage 2 when the algorithm terminates. Then this number is bounded below and above in terms of the true, yet unknown, $\mathrm{Var}(f''')$.

$$\max\left(\left\lfloor \frac{2(b-a)}{\mathfrak{h}}\right\rfloor + 1, \left\lceil (b-a)\left(\frac{\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4}\right\rceil\right) \le N(f,\varepsilon) \\
\le 2\min\left\{n \in \mathbb{N} : n \ge 2\left(\left\lfloor \frac{(b-a)}{\mathfrak{h}}\right\rfloor + 1\right), \eta(n)\operatorname{Var}(f''') \le \varepsilon\right\} \\
\le 2\min_{0<\alpha\le 1}\max\left(2\left(\left\lfloor \frac{(b-a)}{\alpha\mathfrak{h}}\right\rfloor + 1\right), (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4} + 1\right). \tag{9}$$

The number of function values required by the algorithm is $3N(f,\varepsilon)+1$.

Proof.

No matter what inputs f and ε are provided, $N(f,\varepsilon) \geq n_1 = 2(\lfloor (b-a)/\mathfrak{h} \rfloor + 1)$. Then the number of intervals increases until $\widetilde{\text{err}}(f,n) \leq \varepsilon$, which by (7) implies that $\overline{\text{err}}(f,n) \leq \varepsilon$. This implies the lower bound on $N(f,\varepsilon)$. Let L be the value of l for which Algorithm 1 terminates. Since n_1 satisfies the upper bound, we may assume that $L \geq 2$. Let m be the integer found in Step 3, and let $m^* = \max(2,m)$. Note that $\eta((m^*-1)n_{L-1})\operatorname{Var}(f''') > \varepsilon$. For $m^*=2$, this is true because $\eta(n_{L-1})\operatorname{Var}(f''') \geq \eta(n_{L-1})\widetilde{V}_{n_{L-1}}(f) = \widetilde{\text{err}}(f,n_{L-1}) > \varepsilon$. For $m^*=m>2$ it is true because of the definition of m. Since η is a decreasing function, it follows that

$$(m^* - 1)n_{L-1} < n^* := \min \left\{ n \in \mathbb{N} : n \ge \left| \frac{2(b-a)}{n} \right| + 1, \eta(n) \operatorname{Var}(f''') \le \varepsilon \right\}.$$

Proof.

Therefore $n_L = m^* n_{L-1} < m^* \frac{n^*}{m^*-1} = \frac{m^*}{m^*-1} n^* \le 2n^*$. To prove the latter part of the upper bound, we need to prove that

$$n^* \leq \max\left(\left\lfloor\frac{2(b-a)}{\alpha\mathfrak{h}}\right\rfloor + 1, (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4} + 1\right), \quad 0 < \alpha < 1.$$

Proof.

For fixed $\alpha \in (0,1]$, we only need to consider that case where $n^* > \lfloor 2(b-a)/(\alpha \mathfrak{h}) \rfloor + 1$. This implies that $n^* - 1 > \lfloor 2(b-a)/(\alpha \mathfrak{h}) \rfloor \geq 2(b-a)/(\alpha \mathfrak{h})$ thus $\alpha \mathfrak{h} \geq 2(b-a)/(n^*-1)$. Also by the definition of n^* , η , and $\mathfrak C$ is non-decreasing:

$$\begin{split} &\eta(n^*-1)\operatorname{Var}(f''')>\varepsilon,\\ &\Rightarrow 1<\left(\frac{\eta(n^*-1)\operatorname{Var}(f''')}{\varepsilon}\right)^{1/4},\\ &\Rightarrow n^*-1< n^*-1\left(\frac{\eta(n^*-1)\operatorname{Var}(f''')}{\varepsilon}\right)^{1/4},\\ &= n^*-1\left(\frac{(b-a)^4\mathfrak{C}(2(b-a)/(n^*-1))\operatorname{Var}(f''')}{5832(n^*-1)^4\varepsilon}\right)^{1/4},\\ &\leq (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4}. \end{split}$$

This completes the prove of latter part of the upper bound.

Building fooling function:

$$\mathsf{bump}(x;t,h) := \begin{cases} (x-t)^3/6, & t \leq x < t+h, \\ [-3(x-t)^3 + 12h(x-t)^2 - 12h^2(x-t) + 4h^3]/6, & t+h \leq x < t+2h \\ [3(x-t)^3 - 24h(x-t)^2 + 60h^2(x-t) - 44h^3]/6, & t+2h \leq x < t+3h \\ (t+4h-x)^3/6, & t+3h \leq x < t+4h \\ 0, & \mathsf{otherwise}, \end{cases}$$

(10a)

$$\operatorname{Var}(\mathsf{bump'''}(\cdot;t,h)) \le 16 \text{ with equality if } a < t < t + 4h < b, \tag{10b}$$

$$\int_{a}^{b} \operatorname{peak}(x;t,h) dx = h^{4}. \tag{10c}$$

Theorem

Let int be any (possibly adaptive) algorithm that succeeds for all integrands in \mathcal{C} , and only uses function values. For any error tolerance $\varepsilon>0$ and any arbitrary value of $\mathrm{Var}(f''')$, there will be some $f\in\mathcal{C}$ for which int must use at least

$$-\frac{5}{4} + \frac{b - a - 5\mathfrak{h}}{8} \left[\frac{[\mathfrak{C}(0) - 1]\operatorname{Var}(f''')}{\varepsilon} \right]^{1/4} \tag{11}$$

function values. As ${\rm Var}(f''')/arepsilon o \infty$ the asymptotic rate of increase is the same as the computational cost of integral.

Numerical Example

Consider the family of bump test functions defined by

$$f(x) = \begin{cases} \beta[4\alpha^2 + (x-z)^2 - (x-z-\alpha)|x-z-\alpha| \\ -(x-z+\alpha)|x-z+\alpha|], & z-2\alpha \le x \le z+2\alpha, \\ 0, & \text{otherwise.} \end{cases}$$
 (12)

with $\log_{10}(\alpha) \sim \mathcal{U}[-4,-1]$, $z \sim \mathcal{U}[2\alpha,1-2\alpha]$, and $\beta = 1/(4\alpha^3)$ chosen to make $\int_0^1 f(x) \, \mathrm{d}x = 1$. It follows that $|f|_{\widetilde{\mathcal{F}}} = 1/\alpha$ and $\mathrm{Var}(f') = 2/\alpha^2$. The probability that $f \in \mathcal{C}_\tau$ is $\min\left(1, \max(0, (\log_{10}(\tau/2) - 1)/3)\right)$.

Experiment Setup

Results

	au	$\operatorname{Prob}(f \in \mathcal{C}_{\tau})$	Success No Warning	Success Warning	Failure No Warning
Algorithm ??	10 100 1000	$0\% \to 25\%$ $23\% \to 58\%$ $57\% \to 88\%$	25% 56% 68%	$< 1\% \ 2\% \ 20\%$	75% $42%$ $12%$
quad integral chebfun			8% 19% 29%		$92\% \\ 81\% \\ 71\%$

Table: The probability of the test function lying in the cone for the original and eventual values of τ and the empirical success rate of Algorithm ?? plus the success rates of other common quadrature algorithms.

Guaranteed Automatic Integration Library (GAIL)

The ideas presented here are being implemented in MATLAB code (code.google.com\p\gail), which also include:

- Automatic univariate function recovery via linear splines.
- Guaranteed automatic Monte Carlo algorithm for multidimensional integration.
- Guaranteed automatic quasi-Monte Carlo algorithm for multidimensional integration.
- And more.

Future Work

- Guaranteed automatic algorithms with higher order convergence rate.
- Locally adaptive algorithms.
- Relative Error.

References 1

Clancy N, Ding Y, Hamilton C, Hickernell FJ, Zhang Y (2013) The complexity of guaranteed automatic algorithms: Cones, not balls. Submitted for publication, arXiv.org:1303.2412 [math.NA]

Now we compute the lower bound by constructing fooling functions. We choose the triangle shaped function $f_0: x \mapsto 1/2 - |1/2 - x|$. Then

$$|f_0|_{\widetilde{\mathcal{F}}} = ||f_0' - f_0(1) + f_0(0)||_1 = \int_0^1 |\operatorname{sign}(1/2 - x)| \, dx = 1,$$

 $|f_0|_{\mathcal{F}} = \operatorname{Var}(f_0') = 2 = \tau_{\min}.$

Lower Bound of Computational Cost, continued

For any $n\in\mathcal{J}:=\mathbb{N}_0$, suppose that the one has the data $L_i(f)=f(\xi_i)$, $i=1,\ldots,n$ for arbitrary ξ_i , where $0=\xi_0\leq\xi_1<\cdots<\xi_n\leq\xi_{n+1}=1$. There must be some $j=0,\ldots,n$ such that $\xi_{j+1}-\xi_j\geq 1/(n+1)$. The function f_1 is defined as a triangle function on the interval $[\xi_j,\xi_{j+1}]$:

$$f_1(x) := \begin{cases} \frac{\xi_{j+1} - \xi_j - |\xi_{j+1} + \xi_j - 2x|}{8} & \xi_j \le x \le \xi_{j+1}, \\ 0 & \text{otherwise}. \end{cases}$$

Lower Bound of Computational Cost, continued

This is a piecewise linear function whose derivative changes from 0 to 1/4 to -1/4 to 0 provided $0 < \xi_j < \xi_{j+1} < 1$, and so $|f_1|_{\mathcal{F}} = \operatorname{Var}(f_1') \le 1$. Moreover,

INT
$$(f) = \int_0^1 f_1(x) dx = \frac{(\xi_{j+1} - \xi_j)^2}{16} \ge \frac{1}{16(n+1)^2} =: g(n),$$
$$g^{-1}(\varepsilon) = \left\lceil \sqrt{\frac{1}{16\varepsilon}} \right\rceil - 1.$$

Using these choices of f_0 and f_1 , along with the corresponding g above, we can have that the complexity of the integration problem over the cone of functions \mathcal{C}_{τ} is bounded below as

$$\mathrm{comp}(\varepsilon, \mathcal{A}(\mathcal{C}_{\tau}, \mathbb{R}, \mathrm{INT}, \Lambda^{\mathrm{std}}), \mathcal{B}_s) \geq \left\lceil \sqrt{\frac{(\tau - 2)s}{32\tau\varepsilon}} \right\rceil - 1.$$