Projecto de Algoritmos e Modelação Computacional

 $2011/12 - 1^{a}$ parte

MEBiom, LMAC

Conteúdo

1	Obj	ectivo	5
2	Conceitos básicos		
	2.1	Classificador	8
	2.2	Dados	9
	2.3	Classificar vs estimar	10
	2.4	Redes de Bayes	12
	2.5	Aprendizagem de Redes de Bayes	15
3	Tipo	os de dados	17

4 CONTEÚDO

3.1	Amostra	18
3.2	Grafos orientados	19
3.3	Grafos com pesos	20
3.4	Redes Bavesianas	21

Capítulo 1

Objectivo

O objectivo do projecto é desenvolver um classificador baseado em redes de Bayes. O classificador é aprendido a partir de dados públicos que são fornecidos na página da disciplina, estes dados provêm do *UCI machine learning repository*.¹

¹http://archive.ics.uci.edu/ml/

Em particular, para avaliar a qualidade do classificador serão utilizadas as seguintes bases de dados:

• Cancer:

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagn

• Heart disease:

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

Acute inflamation:

http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations

A qualidade do classificador será avaliada por intermédio de um método chamado *stratified cross validation*. Chama-se a atenção que, apesar de o exemplos a aplicar neste projecto se concentrarem em aplicações biomédicas, o domínio de aplicação do mesmo é muito mais extenso.

Capítulo 2

Conceitos básicos

2.1 Classificador

Um classificador sobre um domínio D é simplesmente um mapa $f:D\to C$ onde C é chamado o conjunto de classes. Por exemplo, para o caso da base da dados Cancer, o conjunto de classes é $C=\{\text{benign, malignant}\}$ e um elemento em D corresponde a um tuplo de dez medições sobre o tumor. Nos casos de interesse, o domínio é sempre estruturado da seguinte forma: $D=\prod_{i=1}^n D_i$ onde n é o número de medições e D_i é o domínio da i-ésima medição. Assim, um elemento $d\in D$ é da forma $d=(d_1,\ldots,d_n)$.

2.2. DADOS 9

2.2 Dados

O classificador é construído (ou aprendido) a partir de um conjunto de dados T. Os dados são uma amostra de elementos do domínio e respectiva classe ou seja $T=\{T_1,\ldots,T_m\}$ e $T_j=(d_{1j},\ldots,d_{nj},c_j)$ onde m é a dimensão dos dados, $d_{i,j}\in D_i$, $c_j\in C$ para todo o $1\leq i\leq n$ e $1\leq j\leq m$. Como os dados são discretizados, isto é $D_i\subseteq \mathbb{N}$, podemos ver os dados como uma matriz $m\times (n+1)$ de entradas naturais.

2.3 Classificar vs estimar

Uma maneira simples de classificar consiste em inferir a distribuição que gera os dados (há muitas outras maneiras). Sejam $X_1 \dots X_n$ e Y variáveis aleatórias para as quais os dados T são uma amostra multinomial do vector aleatório $\vec{V} = (X_1 \dots, X_n, Y)$. O objectivo de classificar pode-se reduzir a inferir a distribuição deste vector da seguinte forma

$$f(d_1,\ldots,d_n)=c$$

tal que
$$\Pr(\vec{V} = (d_1, \dots, d_n, c)) > \Pr(\vec{V} = (d_1, \dots, d_n, c'))$$
 para $c' \neq c$.

Por outras palavras, sabendo a distribuição do vector \vec{V} , classificar um elemento do domínio reduz-se a escolher o elemento da classe que maximiza a probabilidade de observar o elemento do domínio com este elemento da classe (ou seja f é o estimador de máxima verosimilhança para a classe dado o elemento do domínio).

Note que a dimensão do domínio D cresce exponencialmente com o número de variáveis, e portanto inferir a distribuição (multinomial) do vector V utilizando a lei dos grandes números requer dados de dimensão exponencial no número de variáveis para obter distribuições próximas das distribuições reais. Nestas condições, quando se utilizam dados pequenos, a distribuição obtida fica muito enviesada aos dados, fenómeno a que se dá o nome de *overfitting*.

 $[\]overline{{}^1\mathrm{Prob}(\vec{V}=(d_1,\ldots,d_n,c))=\lim_{m\to\infty}\frac{|\{i\leq m:T_i=(d_1,\ldots,d_n,c)\}|}{m}}$ e T é uma amostra arbitrariamente grande.

2.4 Redes de Bayes

Para ultrapassar a limitação de não se possuir dados suficientemente grandes, supõe-se que existem dependências directas entre as variáveis e que estas dependências estão descritas num grafo acíclico $G=(\mathcal{X},E)$ onde $\mathcal{X}=\{X_1,\ldots X_n,Y\}$ tal que $(Y,X_i)\in E$ para $1\leq i\leq n$. O facto de todas as variáveis X_i dependerem de Y prende-se com o facto de que, em princípio, X_i não é independente de Y, pois caso contrário X_i não serve para classificar (ou estimar) Y. Assim podemos decompor a distribuição de probabilidade do vector \vec{V} da seguinte forma

$$\Pr(\vec{V} = (d_1, \dots, d_n, c)) = \Pr(Y = c) \prod_{i=1}^n \Pr(X_i = d_i | \vec{P}_i = (d_{i,1} \dots d_{i,k_i}, c))$$
 (2.4.1)

onde $\vec{P_i} = (X_{i,1}, \dots, X_{i,k_i}, Y)$ é um vector constituido pelos pais de X_i no grafo G.

Supondo que, com cada nó X_i tem um pai X_{P_i} para além de Y, com a excepção de um nó X_r que só tem Y como pai, podemos rescrever a Equação (2.4.1) da seguinte forma

$$\Pr(\vec{V} = (d_1, \dots, d_n, c)) =$$

$$\Pr(Y = c)\Pr(X_r = d_r | Y = c) \prod_{i \neq r} \Pr(X_i = d_i | X_{P_i} = d_{P_i}, Y = c).$$
 (2.4.2)

Assim para obter a distribuição de \vec{V} basta conhecer as distribuições Y, $X_r|_Y$ e $X_i|_{(X_{P_i},Y)}$. Note que como todo os dados estão discretizados, e $|D_i|$ é finito, as variáveis Y, $X_r|_Y$ e $X_i|_{(X_{P_i},Y)}$ são variáveis multinomiais. Neste caso já se torna possível estimar as distribuições Y, $X_r|_Y$ e $X_i|_{(X_{P_i},Y)}$, utilizando a lei dos grande números, mesmo com dados relativamente pequenos.

Com generalidade, uma rede de Bayes é um tuplo (G,Θ) onde $\Theta=\{\Theta_{i|w_i}\}_{i\in N,w_i\in D_{\vec{P}_i}}$ e $\Theta_{i|w_i}$ é uma distribuição multinomial para a variável X_i e $D_{\vec{P}_i}$ é o domínio dos pais de X_i em G. Fixado um grafo G as distribuições multinomiais em Θ que maximizam a verosimilhança dos dados T são dadas por

$$\Theta_{i|w_i}(d_i) = \frac{|T_{d_i,w_i}|}{|T_{w_i}|}$$

onde T_{d_i,w_i} é o conjunto de amostras de T onde a variável X_i toma o valor d_i e os seus pais tomam o valor w_i e, de forma semelhante T_{w_i} é o conjunto de amostras de T onde os pais de X_i tomam o valor w_i . Caso T_{w_i} seja vazio, $\Theta_{i|w_i}$ deverá ser uniforme. Esta distribuição é chamada a distribuição das frequências observadas (DFO).

2.5 Aprendizagem de Redes de Bayes

Pelo o que foi apresentado anteriormente, para aprender redes Bayes dado T basta aprender o grafo orientado G já que Θ é obtido das DFO's. Encontrar o grafo que maximiza a verosimilhança de T é um problema NP-completo e para o qual não se espera haver solução eficiente. Mais, ao maximizar a verosimilhança obtêm-se grafos completos e não grafos esparsos. Mas mais uma vez, para grafos completos as DFO's associadas a dados pequenos fazem overfitting. A solução é restringir a aprendizagem a grafos com estruturas mais simples, e no caso deste projecto só serão aprendidas árvores, isto é, o grafo G restringido às variáveis $X_1, \ldots X_n$ forma uma árvore.

Como derivado nas aula teórica T7, a árvore A que maximiza a verosimilhança de T é a expansão arborescente mais pesada do grafo completo com nós $X_1, \ldots X_n$ e onde cada aresta de X_i para X_j é pesada por

$$I_T(X_i, X_j|C)$$
.

Note que $I_T(X_i, X_j | C)$ é a informação mútua condicional de X_i com X_j dado C medida com a distribuição de probabilidade obtida pela DFO. Esta expansão pode ser obtida em tempo polinomial, pelo algoritmo *greedy* MST, discutido na aula teórica T8.

Capítulo 3

Tipos de dados

Os tipos de dados a serem utilizados neste projecto são os seguintes:

3.1 Amostra

- emptyS: retorna a amostra vazia;
- add: recebe um vector e um amostra e acrescenta o vector à amostra;
- length: recebe uma amostra e retorna o comprimento da amostra;
- element: recebe uma amostra e uma posição e retorna o vector da amostra;
- count: recebe uma amostra, um vector de variáveis e um vector de valores e retorna o número de ocorrências desses valores para essas variáves na amostra;
- join: recebe duas amostra e retorna uma nova amostra com as duas concatenadas;

3.2 Grafos orientados

- ullet disc: recebe um natural n e retorna o grafo com n nós e sem arestas.
- add_edge: recebe um grafo e dois nós e adiciona ao grafo uma aresta de um nó para outro.
- parents: recebe um grafo e um nó e retorna a lista de nós que são pais do nó.

3.3 Grafos com pesos

- ullet discWD: recebe um natural n e retorna o grafo com pesos com n.
- add_Wedge: Recebe um grafo, dois nós e um peso real e adiciona o grafo uma aresta de um nó para outro com o peso do real.
- MST: Recebe um grafo pesado e retorna a expansão arborescente maximal como um grafo orientado.

3.4 Redes Bayesianas

- newBN: Recebe um grafo e um conjunto de dados e retorna a rede de Bayes com as distribuições DSO.
- prob: Recebe uma rede de Bayes e um vector e retorna a probabilidade desse vector.