Leveraging Heterogeneity in DRAM Main Memories to Accelerate Critical Word Access

Niladrish Chatterjee

Manjunath Shevgoor

Rajeev Balasubramonian

Al Davis

Zhen Fang^{‡†}

Ramesh Illikkal*

Ravi lyer*

University of Utah , NVidia[‡] and Intel Labs*

[†]Work done while at Intel

Memory Bottleneck

- High DRAM power consumption
- Recent proposals for Low-Power DRAM instead of DDR3

 The use of LPDRAM does not address the latency wall problem that continues to grow

DRAM Variants

No one memory works best

Heterogeneous Memory

- Combine high-performance and low-power dram to outperform DDR3 at a lower energy cost
- Many design options

Critical Word Regularity

Frequency of accesses to individual words of a cache-line

Most DRAM requests are for word-0 of the cache-line

Critical Word Acceleration

- Critical Word from RLDRAM
- Rest of cache-line from LPDRAM
- Improves both system throughput (13%) and energy (6%)

