# **B-Trees - 2-3 Trees and AVL Trees**

Balanced BSTs, Operations Insertions and Rotations

**SoftUni Team Technical Trainers** 







http://softuni.bg

#### **Table of Contents**



- 1. B-Trees
- 2. 2-3 Trees
  - Ordered Operations
  - Insertion
- 3. AVL Trees
  - Properties of AVL
  - Rotations in AVL (Double Left, Double Right)
  - AVL Insertion Algorithm





### What is a Balanced Binary Search Tree?



- Binary search trees can be balanced
  - Subtrees hold nearly equal number of nodes
  - Subtrees are with nearly the same height



## **Balanced Binary Search Tree – Example**







#### What are B-Trees?



- B-trees are generalization of the concept of ordered binary search trees see the <u>visualization</u>
  - B-tree of order b has between b and 2\*b keys in a node and between b+1 and 2\*b+1 child nodes
  - The keys in each node are ordered increasingly
  - All keys in a child node have values between their left and right parent keys
- B-trees can be efficiently stored on the hard disk

### **B-Tree – Example**



■ B-Tree of order 3 (max count of child nodes), also known as 2-3



### **B-Trees vs. Other Balanced Search Trees**



- B-Trees hold a range of child nodes, not single one
  - B-trees do not need re-balancing so frequently
- B-Trees are good for database indexes
  - Because a single node is stored in a single cluster of the hard drive
  - Minimize the number of disk operations (which are very slow)
- B-Trees are almost perfectly balanced
  - The count of nodes from the root to any null node is the same



#### **Definition**



- A 2-3 search tree can contain:
  - Empty node (null)
  - 2-node with 1 key and 2 links (children)
  - 3-node with 2 keys and 3 links (children)
- As usual for BSTs, all items to the left are smaller, all items to the right are larger.

## 2-3 Tree Example





# 2-3 Tree Searching





# 2-3 Tree Insertion (at 2-node)





# 2-3 Tree Insertion (at 3-node)





#### 2-3 Tree Insertion



Into a 3-node whose parent is a 2-node



### 2-3 Tree Insertion (2)



Into a 3-node whose parent is a 3-node



### **2-3 Tree Construction**





# 2-3 Tree Construction (2)





# 2-3 Tree Construction (3)





# 2-3 Tree Construction (4)





## 2-3 Tree Construction (5)





## 2-3 Tree Construction (6)





## 2-3 Tree Construction (7)





## 2-3 Tree Construction (8)





# 2-3 Tree Construction (9)





### **2-3 Tree Properties**



- Unlike standard BSTs, 2-3 trees grow from the bottom
- The number of links from the root to any null node is the same
- Transformations are local
- Nearly perfectly balanced
- Inserting 10 nodes will result with height of the tree 2
  - For normal BSTs the height can be 9 in the worst case

#### 2-3 Tree - Quiz



TIME'S

- Suppose that you are inserting a new node to a 2-3 tree. Under which of the following scenarios must the height of the 2-3 tree increase by one?
  - A. Number of nodes is equal to power of 2
  - B. Number of nodes is one less than a power of 2
  - C. When the final node on a search path from the root is a 3-node
  - D. When every node on the search path from the root is a 3-node

#### 2-3 Tree - Answer



- Suppose that you are inserting a new node to a 2-3 tree. Under which of the following scenarios must the height of the 2-3 tree increase by one?
  - A. Number of nodes is equal to power of 2
  - B. Number of nodes is one less than a power of 2
  - C. When the final node on a search path from the root is a 3-node
  - D. When every node on the search path from the root is a 3-node

## 2-3 Tree - Summary



| Structure | Worst case |        |        | Average case |           |
|-----------|------------|--------|--------|--------------|-----------|
|           | Search     | Insert | Delete | Search Hit   | Insert    |
| BST       | N          | N      | N      | 1.39 lg N    | 1.39 lg N |
| 2-3 Tree  | c lg N     | c lg N | c lg N | c lg N       | c lg N    |

**Constants depend on implementation** 



#### **AVL Tree**



- AVL tree is a self-balancing binary-search tree (visualization)
  - Height of two subtrees can differ by at most 1



|        | Average  | Worst case |  |
|--------|----------|------------|--|
| Space  | O(n)     | O(n)       |  |
| Search | O(log n) | O(log n)   |  |
| Insert | O(log n) | O(log n)   |  |
| Delete | O(log n) | O(log n)   |  |

## **AVL Tree Rebalancing**



Height difference is measured by a balance factor (BF)



- BF of any node is in the range [-1, 1]
- If BF becomes -2 or 2 → rebalance



### **AVL Tree Rebalancing**



Rebalancing is done by retracing

Start from inserted node's parent and go up to root

Perform rotations to restore balance



## **Right Rotation**



Set x to be child of y

Set Right Child of y to be Left Child of x



Right rotation (x)



### **Left Rotation**



Set y to be child of x

Set Left Child of x to be Right Child of

In Order Preserved



Left rotation (y)



## **AVL Tree Insertion Algorithm**



- Insert like in ordinary BST
- Retrace up to root
  - Modify balance / height
  - If balance factor ∉ [-1,1]
    - → rebalance

























■ Right node is null → insert

Update 10 height

balance is -1







Belance is -1







12 balance is 1





- Update 20 height
- 20 balance is 2
- 20 is left heavy
- rotate 20 right



















More: <a href="https://en.wikipedia.org/wiki/AVL">https://en.wikipedia.org/wiki/AVL</a> tree

### **AVL Tree - Quiz**



TIME'S

Delete 25. What will be the resulting tree?



### **AVL Tree - Quiz**



TIME'S UP!

Delete 25. What will be the resulting tree?





# Double Rotations Double Left, Double Right Rotation

# **Single Rotation Problem**





# Single Rotation Problem (2)



Rotate a node with opposite balanced child





# Double Right Rotation Right-Left

## **Double Right Rotation**



Rotate Right (node) with negatively balanced Left Child



# **Double Right Rotation**































# Double Left Rotation Left-Right



Rotate Left (node) with positively balanced Right Child





Rotate Right (3)



Update Balance (3)



Update Balance (3)



Rotate Left (5) **Reduced to** Single Left (5)









## **AVL Tree - Double Rotations**





#### **AVL Tree - Quiz**



TIME'S

• Insert 22. What will be the resulting tree?



#### **AVL Tree - Quiz**



TIME'S UP!

Insert 22. What will be the resulting tree?



# **AVL Tree - Summary**



| Structure | Worst case |           |           | Average case |           |
|-----------|------------|-----------|-----------|--------------|-----------|
|           | Search     | Insert    | Delete    | Search Hit   | Insert    |
| BST       | N          | N         | N         | 1.39 lg N    | 1.39 lg N |
| 2-3 Tree  | c lg N     | c lg N    | c lg N    | c lg N       | c lg N    |
| Red-Black | 2 lg N     | 2 lg N    | 2 lg N    | lg N         | lg N      |
| AVL Tree  | 1.44 lg N  | 1.44 lg N | 1.44 lg N | lg N         | lg N      |

Insert/Delete perform O(IgN) rotations



# **AVL Tree**Balancing Implementation

#### **Rotate Right**



```
public Node<T> rotateRight(Node<T> node) {
  Node<T> left = node.left;
  node.left = node.left.right;
  left.right = node;
  updateHeight(node);
  return left;
```

#### **Balance Node**



```
private Node<T> balance(Node<T> node) {
  int balance = height(node.Left) - height(node.Right);
  if (balance < -1) // Right child is heavy {</pre>
    balance = height(node.right.left) - height(node.right.right);
    if (balance <= 0) { return rotateLeft(node); }</pre>
    else { node.right = rotateRight(node.right); return rotateLeft(node); }
  else if (balance > 1) // Left child is heavy {
    balance = height(node.Left.Left) - height(node.Left.Right);
    if (balance >= 0) { return rotateRight(node); }
    else { node.left = rotateLeft(node.left); return rotateRight(node); }
  return node;
```

### Summary



- B-Trees can be efficiently sored on disks
- 2-3 tree is B-Tree of order 3
- Not perfectly balanced
- Performs local transformations
- AVL Trees
  - Rotations right and left
  - Double rotations





# Questions?

















#### **SoftUni Diamond Partners**



SUPER HOSTING .BG

























# Trainings @ Software University (SoftUni)



- Software University High-Quality Education,
   Profession and Job for Software Developers
  - softuni.bg, about.softuni.bg
- Software University Foundation
  - softuni.foundation
- Software University @ Facebook
  - facebook.com/SoftwareUniversity
- Software University Forums
  - forum.softuni.bg









#### License



- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni <a href="https://about.softuni.bg/">https://about.softuni.bg/</a>
- © Software University <a href="https://softuni.bg">https://softuni.bg</a>

