

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

MEMBERSHIP

Lecture E

ANOTHER PROBABILISTIC FAILURE DETECTOR

SWIM FAILURE DETECTOR PROTOCOL

SWIM VERSUS HEARTBEATING

SWIM FAILURE DETECTOR

PARAMETER	SWIM
First Detection Time	 Expected
Process Load	•Constant per period •<8L* for 15% loss
False Positive Rate	•Tunable (via K) •Falls exponentially as load is scaled
Completeness	•Deterministic time-bounded •Within O(log(N)) periods w.h.p.

ACCURACY, LOAD

- PM(T) is exponential in -K. Also depends on pml (and pf)
- See paper

$$\frac{L}{L^*} < 28$$

$$\frac{E[L]}{L^*} < 8$$

 $\frac{E[L]}{L^*}$ < 8 for up to 15 % loss rates

DETECTION TIME

- Prob. of being pinged in T'= $1-(1-\frac{1}{N})^{N-1}=1-e^{-1}$
- $E[T] = T! \frac{e}{e-1}$
- Completeness: *Any* alive member detects failure
 - Eventually
 - By using a trick: within worst case O(N) protocol periods

TIME-BOUNDED COMPLETENESS

- Key: select each membership element once as a ping target in a traversal
 - Round-robin pinging
 - Random permutation of list after each traversal
- Each failure is detected in worst case 2N-1 (local) protocol periods
- Preserves FD properties

NEXT

• How do failure detectors fit into the big picture of a group membership protocol?

What are the missing blocks?