CONFIDENCE INTERVALS

Use **confidence intervals** to **estimate** a parameter with a particular **confidence level, C**.

IDENTIFY: Identify the parameter and the confidence level.

CHOOSE: Choose and name the appropriate interval.

CHECK: Check that conditions for the procedure are met.

CALCULATE:

CI: point estimate \pm critical value \times SE of estimate

df = (if applicable)
(_____ , ____)

CONCLUDE:

We are C% confident that the true [parameter] is between ____ and ____. (Put the parameter in *context*.)

We have evidence that [...], because [...]. OR We do not have evidence that [...], because [...].

When the parameter is: a single proportion p

CHOOSE: **1-Proportion Z-Interval** to estimate p, or **1-Proportion Z-Test** to test H_0 : $p = p_0$.

CHECK:

- Data come from a random sample or process.
- for CI: $n\hat{p} \ge 10$ and $n(1 \hat{p}) \ge 10$. for Test: $np_0 \ge 10$ and $n(1 - p_0) \ge 10$.

CALCULATE: (1-PropZInt or 1-PropZTest)

point estimate: sample proportion \hat{p}

SE of estimate: for CI, use $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$; for Test, use $\sqrt{\frac{p_0(1-p_0)}{n}}$

When the parameter is: a difference of proportions p_1-p_2

CHOOSE: **2-Proportion Z-Interval** to estimate $p_1 - p_2$, or **2-Proportion Z-Test** to test H_0 : $p_1 = p_2$.

CHECK:

- Data come from 2 independent random samples or 2 randomly assigned treatments.
- $n_1 \hat{p}_1 \ge 10$, $n_1 (1 \hat{p}_1) \ge 10$, $n_2 \hat{p}_2 \ge 10$, $n_2 (1 \hat{p}_2) \ge 10$.

CALCULATE: (2-PropZInt or 2-PropZTest)

point estimate: difference of sample proportions $\,\hat{p}_1 - \hat{p}_2\,$

SE of estimate:
$$\hat{p}$$
 is the *pooled* proportion for CI, use $\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$; for Test, use $\sqrt{\hat{p}(1-\hat{p})}$ $\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

HYPOTHESIS TESTS

Use **hypothesis tests** to **test** H_0 versus H_A at a particular **significance level,** α .

IDENTIFY: Identify the hypotheses and the significance level.

CHOOSE: Choose and name the appropriate test.

CHECK: Check that conditions for the procedure are met.

CALCULATE:

standardized test statistic = $\frac{\text{point estimate} - \text{null value}}{SE \text{ of estimate}}$ df = (if applicable)

p-value =

CONCLUDE:

p-value $< \alpha$, so we reject H_0 .

We have evidence that $[H_A]$. (Put H_A in *context*.)

OR

p-value > α , so we do NOT reject H_0 .

We do NOT have evidence that $[H_A]$. (Put H_A in context.)

When the parameter is: a single mean μ

CHOOSE: **1-Sample T-Interval** to estimate μ , or **1-Sample T-Test** to test H_0 : $\mu = \mu_0$.

CHECK:

- Data come from a random sample or process.
- $n \ge 30$, OR population known to be nearly normal, OR population could to be nearly normal because data has no excessive skew or outliers (draw graph).

CALCULATE: (TInterval or T-Test)

point estimate: sample mean \bar{x}

SE of estimate: $\frac{s}{\sqrt{n}}$

df = n - 1

When the parameter is: a difference of means μ_1 - μ_2

CHOOSE: **2-Sample T-Interval** to estimate $\mu_1 - \mu_2$, or **2-Sample T-Test** to test H_0 : $\mu_1 = \mu_2$.

CHECK:

- Data come from 2 independent random samples or 2 randomly assigned treatments.
- $n_1 \ge 30$ and $n_2 \ge 30$, OR *both* populations known to be nearly normal, OR *both* populations could be nearly normal because both data sets have no excessive skew or outliers (draw 2 graphs).

CALCULATE: (2-SampTInt or 2-SampTTest)

point estimate: difference of sample means $\bar{x}_1 - \bar{x}_2$

SE of estimate: $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

df: use technology