Contrôle 1

Durée: trois heures

Documents et calculatrices non autorisés

Exercice	1	(3	points)

1. Déterminer le développement limité en 0 à l'ordre 2 de $e^x \ln(e+ex)$.

2. Déterminer $\lim_{x\to 0} (1+\sin(x))^{1/x}$.

Exercice 2 (5 points)

1. Déterminer $\lim_{n\to+\infty}\frac{\ln(n+1)}{\ln(n)}$ puis, via la règle de d'Alembert, déterminer la nature de $\sum \frac{\ln(n)}{(n-1)!}$

2. Déterminer la nature de la série de terme général $e-\left(1+\frac{1}{n}\right)^n$.

3. Déterminer la nature de $\sum \left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}\right)$.

4. Déterminer la nature de $\sum \frac{\sin(n!)}{n^2}$.

Exercice 3 (5 points)

Le but de cet exercice est de donner la nature de la série de terme général $u_n = (-1)^n n^{\alpha} \left(\ln \left(\frac{n+1}{n-1} \right) \right)^{\beta}$ où $(\alpha, \beta) \in \mathbb{R}^2$ et $n \in \mathbb{N} \setminus \{0, 1\}$.

1. Montrer que $\ln\left(\frac{n+1}{n-1}\right) = \frac{2}{n}\left(1 + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right)\right)$.

2. En déduire que $u_n=(-1)^n\frac{2^\beta}{n^{\beta-\alpha}}\bigg(1+\frac{\beta}{3n^2}+o\left(\frac{1}{n^2}\right)\bigg).$

3. Montrer que si $\beta\leqslant\alpha,$ la série $\sum u_n$ diverge.

4. Étude du cas $\beta > \alpha$. On a

$$u_n = (-1)^n \frac{2^{\beta}}{n^{\beta - \alpha}} + v_n$$
 avec $v_n = (-1)^n \frac{\beta 2^{\beta}}{3n^{2+\beta - \alpha}} + o\left(\frac{1}{n^{2+\beta - \alpha}}\right)$

a. Étudier la nature de la série $\sum v_n.$

b. Étudier la nature de la série de terme général $w_n=(-1)^n\frac{2^\beta}{n^{\beta-\alpha}}.$

c. En déduire la nature de $\sum u_n$.

Exercice 4 (3 points)

Soit la série $\sum u_n$ où $u_n = \left(\frac{n^2 - 3n + 1}{n^2 + n + 1}\right)^{n^2}$.

 $1. \text{ V\'erifier que } \ln\left(\frac{n^2-3n+1}{n^2+n+1}\right) = \ln\left(1-\frac{3}{n}+\frac{1}{n^2}\right) - \ln\left(1+\frac{1}{n}+\frac{1}{n^2}\right).$

2. Déterminer $a \in \mathbb{R}$ tel que $\ln\left(\frac{n^2-3n+1}{n^2+n+1}\right) = \frac{a}{n} + o\left(\frac{1}{n}\right)$.

3. En déduire la nature de $\sum u_n$ via la règle de Cauchy.

Exercice 5 (5 points)

Soient $a \in \mathbb{R}$ et la série $\sum u_n$ où $u_n = \left(\cos\left(\frac{1}{\sqrt{n}}\right)\right)^n - a$.

1. Via un développement limité, déterminer $\lim_{n \to +\infty} \left(\cos \left(\frac{1}{\sqrt{n}} \right) \right)^n$ puis en déduire $\lim_{n \to +\infty} \left(\cos \left(\frac{1}{\sqrt{n}} \right) \right)^n - a$.

2. On suppose $a \neq \frac{1}{\sqrt{e}}$. Que peut-on en conclure sur la nature de $\sum u_n$?

3. On suppose $a = \frac{1}{\sqrt{e}}$.

a. Via un développement limité, montrer que $e^{n \ln(\cos(1/\sqrt{n}))} = e^{-\frac{1}{2}} e^{-\frac{1}{12n} + o(\frac{1}{n})}$.

b. En déduire un équivalent de u_n puis la nature de $\sum u_n$.