Schulinterner Lehrplan zum Kernlehrplan, Lise-Meitner-Gymnasium, Willich

Informatik

Inhalt

\sim		
₾.	\sim	1+^
. 7	-	

1	Rahmenbedingungen der fachlichen Arbeit3
2	Entscheidungen zum Unterricht4
2.1	Übersichtsraster Unterrichtsvorhaben Einführungsphase
2.2	Konkretisierte Unterrichtsvorhaben6
2.3 2.4	Grundsätze der Leistungsbewertung und Leistungsrückmeldung 14 Lehr- und Lernmittel

1 Rahmenbedingungen der fachlichen Arbeit

Das Lise-Meitner-Gymnasium liegt in Anrath, einer von vier ehemals selbstständigen Gemeinden (Willich, Neersen, Schiefbahn, Anrath), die im Zuge der Kommunalreform 1972 zur Gesamtgemeinde Willich zusammengeschlossen wurden. Im Bewusstsein der Einwohner ist das Bewusstsein der Eigenständigkeit aber immer noch relativ stark ausgeprägt. Dazu trägt auch bei, dass die Verkehrsverbindungen im ÖPNV zwischen den einzelnen Ortsteilen und dem mittlerweile neu hinzugekommenen Ortsteil Wekeln nicht optimal sind.

Die Kommune ist noch stark ländlich geprägt, besitzt aber sehr attraktive Gewerbegebiete. Wegen der Nähe zu den Großstädten Düsseldorf, Köln, Krefeld, Mönchengladbach und zum Ruhrgebiet ist der Anteil der Berufspendler hoch.

Die Kommune war eine der ersten in NRW, die im weiterführenden Schulbereich auf das "Zwei-Säulen-Modell" gesetzt hat, sodass sich das Angebot an Schulformen auf zwei Gesamtschulen und zwei Gymnasien beschränkt.

Das Lise-Meitner-Gymnasium ist als Reaktion auf die derzeit stark steigende Einwohnerzahl 1998 gegründet worden. 1999 wurde ein neues Schulgebäude bezogen. Die Schule ist eine vierzügige "Halbtagsschule" mit zahlreichen Angeboten in der Über-Mittag-Betreuung. Die Schülerschaft kommt aus allen Willicher Ortsteilen, vornehmlich aus Anrath und Alt-Willich. Der Anteil der Fahrschüler beträgt ca. 60%.

Ab Klasse 8 wird am LMG im Differenzierungsbereich das Fach Informatik (IF) in der Sekundarstufe I angeboten, wobei ein Kernlehnplan des Landes bis zum heutigen Tag nicht existiert. In der Jahrgangsstufe 5 nehmen wir mit einer Klasse am Pilotprojekt Modellvorhaben "Informatik in der Erprobungsstufe eines Gymnasiums" des Landes NRW teil. In der Oberstufe wird in den Jahrgangsstufen EF bis Q2 das Informatik (IF) als ordentliches Fach im naturwissenschaftlichen Aufgabenfeld seit 2017 auch als Leistungskurs angeboten; es werden in der Regel in den Stufen EF zwei Informatikkurse und in der Q1 und Q2 jeweils ein Informatikkurs mit ca. 20 Schülerinnen und Schülern eingerichtet. In der Sek II besteht eine Kooperation mit der Robert-Schumann-Europaschule in Willich.

Pro Abiturjahrgang entscheiden sich einige Schülerinnen und Schüler für Informatik als Abiturfach, wobei es die überwiegende Zahl als schriftliches Prüfungsfach wählt.

Die Fachgruppe besteht aus drei Fachkollegen, die eine Fakultas für das Fach IF in der Sek I und Sek II besitzen.

Für den Informatikunterricht in der Sek II ist als Lehrwerk Informatik 2 von Schöningh und zusätzlich für den LK Einführung in die Informatik eingeführt worden.

2 Entscheidungen zum Unterricht

Einführungsphase:

Für den Einstieg in die EF ist es vorgesehen, die Arbeitsweise eines Computers zu verstehen. Ziel ist es zu begreifen, wie man mit Strom rechnen und Informationen darstellen kann.

In der Jahrgangsstufe EF steht nach wie vor das Erlernen einer modernen objektorientierten Programmiersprache im Vordergrund. Diese Programmiersprache (Java) bildet die Basis und das Werkzeug für Beispiele und Aufgaben im gesamten Durchlauf durch die Sek.II und verdeutlicht das objektorientierte Denken sehr konsequent.

Ebenso steht die Modellierung, d.h. das anforderungsspezifische Abbilden von Sachverhalten der realen Welt auf ein Modell, im Vordergrund. Hierbei und bei der Methode der objektorientierten Analyse kommt die Modellierungs- und Dokumentationssprache UML (Unified Modelling Language) mit dem Klassendiagramm zum Einsatz, wobei sowohl Implementations- und Entwurfsdiagramme, als auch die unterschiedlichen Objektbeziehungen "Ist-Beziehung", "hat-Beziehung" und kennt-Beziehung die Basis stellen.

Qualifikationsphase1:

In der Jahrgangsstufe Q1 stehen vor allem elementare Algorithmen und Datenstrukturen und deren Umsetzung in Java im Vordergrund. Die Vorstellung der Algorithmen und Datenstrukturen sollte einführend als Kurzreferat erfolgen. Als Beispiele wären vor allem Sortierverfahren auf lineare Strukturen wie z.B. Listen zu nennen und die Datenstrukturen Stapel (Stack) und Warteschlange (Queue), die sich in vielen Anwendungsbereichen (z.B. Druckerwarteschlange) wiederfinden. Daneben werden Grundoperationen und Anwendungssituationen auf verzweigte Baumstrukturen sowie Such- und Verschlüsselungsverfahren behandelt. Darüber hinaus werden im Leistungskurs auch Graphen und komplexe Sortierverfahren behandelt

Qualifikationsphase2:

In der Jahrgangsstufe Q2 werden der Aufbau und die Funktionsweise von Informatiksystemen untersucht. Neben den physikalischen Grundlagen stehen vor allem Protokolle als Kommunikationsvereinbarung in Theorie (ISO-OSI-Schichtenmodell) und Praxis (TCP, IP, Ethernet) im Vordergrund.

Das Inhaltsfeld Datenbanken wird von der Modellierung im ER-Diagramm bis zur normalisierten Datenbank mit Anbindung an eine graphische Benutzerschnittstelle in Java aufbereitet.

Automaten und deren Einordnung und Überführung sind ebenfalls Themen, die im Grundkurs wie im Leistungskurs behandelt werden

2.1 Übersichtsraster Unterrichtsvorhaben:

Übersicht der Abdeckung der Inhaltsfelder und Kompetenzen durch die Unterrichtsvorhaben der EF:

Einführungsphase	Daten und ihre	Algorithmen	Formale Sprachen	Informatik- systeme	IF, Mensch und
	Strukturierung		und Automaten	Systeme	Gesellschaft
Argumantiaran	UV3	UV4	UV3	UV1	UV1
Argumentieren		_	073	UVI	UVI
Modellieren	UV3	UV4			
Implementieren	UV3	UV2, UV4,	UV2, UV3		UV4
·		UV5			
Darstellen und	UV1	UV2	UV2, UV3,	UV1	
Interpretieren			UV5		
Kommunizieren	UV3	UV4	UV5		
und Kooperieren					

Übersicht der Abdeckung der Inhaltsfelder und Kompetenzen durch die Unterrichtsvorhaben der Q1 Grundkurs:

Einführungsphase	Daten und	Algorithmen	Formale	Informatik-	IF, Mensch
	ihre		Sprachen	systeme	und
	Strukturierung		und		Gesellschaft
			Automaten		
Argumentieren	UV1	UV3	UV2	UV4	UV4
Modellieren	UV2	UV2			
Implementieren	UV1, UV2,	UV1, UV3	UV1, UV2		UV4
	UV3				
Darstellen und	UV1, UV3	UV1, UV3,	UV2		UV2, UV4
Interpretieren		UV4			
Kommunizieren	UV1, UV2,	UV3, UV4	UV1, UV2	UV4	UV4
und Kooperieren	UV3				

Übersicht der Abdeckung der Inhaltsfelder und Kompetenzen durch die Unterrichtsvorhaben der Q2 ¹ Grundkurs:

Einführungsphase	Daten und ihre	Algorithmen	Formale Sprachen	Informatik- systeme	IF, Mensch und
	Strukturierung		und	Systeme	Gesellschaft
	C		Automaten		
Argumentieren				UV1	UV1
Modellieren			UV2	UV1	
Implementieren	UV2	UV1	UV2	UV1	UV2
Darstellen und	UV2	UV2	UV2	UV1	UV1
Interpretieren					
Kommunizieren			UV2	UV2	UV1
und Kooperieren					

¹ Da das Abschlussprojekt UV3 eine Vertiefungsmöglichkeit in der Auswahl der SuS darstellt, erfolgt hier keinerlei Zuordnung der Inhaltsfelder.

5

2.2 Konkretisierte Unterrichtsvorhaben

2.2.1 Einführungsphase

UV 1: Vom Bit zum Computer. Kann man mit Strom rechnen?

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend von der geschichtlichen Entwicklung der EDV und	Darstellen und	18
der wiederholenden, kooperativen Aufbereitung des binären	Interpretieren	Std.
Zahlensystems wird über die Disjunktive Normalform der	(LogikSim,	
binären Addition und über die logischen Schaltungen Und	DNF, binäre	
(Reihenschaltung), Oder (Parallelschaltung) und Nicht	Darstellungen)	
(Transistorschaltung), nachgewiesen, dass mit Strom addiert	Argumentieren	
werden kann. Ebenso soll erfahren werden, dass sich hinter	(Erläutern u.	
einer binären Codierung diverse Informationen verbergen	Begründen	
können (Zeichenketten, negative ganze Zahlen,	eines	
Fließkommazahlen, Bilder,).	Schaltnetzes,	
Repräsentierte Inhaltsfelder: Informatiksysteme (prinzipieller)	
Aufbau singulärer Rechnersysteme), Daten und ihre		
Strukturierung (binäre Darstellung von Daten), Informatik,		
Mensch und Gesellschaft.		

UV 2: Syntax und Semantik der Programmiersprache Java

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Strukturierungsmerkmale und der formale Aufbau der	Implementieren	27
Programmiersprache Java werden an einfachen	Darstellen und	Std.
Quelltextbeispielen in der Entwicklungsumgebung BlueJ	Interpretieren	
analysiert und von den SuS modifiziert. Die Kontrollstrukturen	Kooperieren	
der Programmiersprache und die Verwendung	-	
dokumentierter Programmbibliotheken werden anhand einer		
Turtlegrafik (Aplu.jar) erprobt und eigene Lösungen für		
gestellte Probleme werden implementiert.		
Repräsentierte Inhaltsfelder: Formale Sprachen und		
Automaten, Algorithmen		

UV 3: Vom Modell zum Programm: Objektorientiertes Modellieren und Objektorientiertes Programmieren in Java

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Einführung in das OO-Paradigma am gängigen Modell des	Implementieren	36
Onlinebankings. Analyse und Modellierung der Klasse Konto	Darstellen und	Std.
mit den zugehörigen Attributen und Methoden im UML-	Interpretieren	
Klassendiagramm. Implementation der Klasse Konto nach	Modellieren	
dem Modell. Deklaration und Initialisierung von Variablen.	Kooperieren	
Unterscheidung von Klassen und Objekten durch die	Argumentieren	
Erfassung der Zustände eines Objektes in BlueJ. Einführung	_	
in das Geheimnisprinzip. Initialisierung von Objekten in Java		

und Verwendung unterschiedlicher Konstruktoren.	
Verwendung von Sammlungsobjekten in Java am Beispiel	
von Arrays im Rahmen des Lottoprojekts. Einsatz von	
Dienstklassen und Darstellung der Hat-Beziehung im UML-	
Klassendiagramm. Einsatz der Vererbung in Java und	
Darstellung der "ist-Beziehung" im UML-Klassendiagramm.	
Repräsentierte Inhaltsfelder: Formale Sprachen und	
Automaten, Daten und ihre Strukturierung	

UV 4: "Sortieren geht über Probieren". Sortierung von Datenmengen: Implementierung naiver Sortier- und Suchverfahren.

implementionally narror contact and cachivertainer	••	
Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend vom Problem der Sortierung eines reellen Ir	mplementieren	18
Kartenstapels sollen die SuS kooperativ algorithmische	Parstellen und	Std.
Beschreibungen zur Lösung dieses Problems finden und Ir	nterpretieren	
diese schriftlich fixieren, um später Kontrollstrukturen zur K	Cooperieren	
Implementierung zu identifizieren. Die Implementierung A	rgumentieren	
erfolgt zunächst am Beispiel des Arrays aus dem Lottoprojekt		
und wird dann auf größere Datenmengen übertragen.		
Aufwandsabschätzungen bezüglich Zeitaufwand und		
Speicherbedarf können dann zunächst auf größeren		
unsortierten Datenmengen und dann auf entsprechende		
sortierte Datenmengen erfahren werden. Die gemachten		
Erfahrungen sollen dann für die Fälle Best-Case, Average-		
Case und Worst-Case auf die bereits kennengelernten		
Sortierverfahren übertragen werden.		
Repräsentierte Inhaltsfelder: Formale Sprachen und		
Automaten, Algorithmen		

UV 5: "Klick mich": GUI-Programmierung in Java

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Am Beispiel des Projektes Fuchs und Hase (Barnes &	•	
Kölling) werden die objektorientierten Begriffe abstrakte Methoden und - Klassen eingeführt und der Begriff der		Std.
Vererbung wiederholt. Als abstrakteste Klasse wird das	-	
Interface im Rahmen der GUI-Programmierung aufgegriffen.	•	
Das Java-Listener-Konzept wird nun an einfachen GUI-		
Beispielen kooperativ implementiert (flüchtiger Button,		
Bildbetrachter,)		
Repräsentierte Inhaltsfelder: Formale Sprachen und Automaten, Algorithmen		

2.2.2.1 Qualifikationsphase 1 GK

UV 1: "Hinten anstellen!" Algorithmen und Datenstrukturen im Alltag

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend von rekursiven Arbeitsweisen und Strukturen	Implementieren	30
werden an ausgewählten Alltagssituationen	Darstellen und	Std.
(Druckerschlange, Abstellgleis) die linearen Datenstrukturen	Interpretieren	
Stack und Queue (zunächst Arrayimplementationen) und die	Modellieren	
Datenstruktur List in Kurzreferaten grafisch dargestellt und	Kooperieren	
kooperativ, entsprechend der Dokumentation der Materialien	Argumentieren	
für das Zentralabitur, in Java implementiert. Die Array-		
Implementationen von Stack und Queue werden durch linear		
rekursive Datenstrukturen abgelöst. Inhaltsfelder: Formale		
Sprachen, Daten und ihre Strukturierung, Algorithmen		

UV2: Das Kartenspielprojekt

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Auf der Grundlage der Substantiv-Verb-Methode (Barnes,	Implementieren	40
Kölling Kap. 13) und den der anschließenden Modellierung	Darstellen und	Std.
(Implementations- und Entwurfsdiagramm) wird ein einfaches	Interpretieren	
Kartenspiel beschrieben, modelliert und als Anwendung mit	Modellieren	
graphischer Darstellung in Kleinstgruppen implementiert und	Kooperieren	
bewertet.	Argumentieren	

UV3: Sortieren komplex! Binäre Suche und Suchbäume und verzweigt rekursive Lösungsstrategien.

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Am Problem der Sortierung von Kartenblättern in	Implementieren	25
Kartenspielen werden die naiven Sortierverfahren wiederholt	Darstellen und	Std.
und komplexe verzweigte Lösungsansätze dargestellt. Die		
Darstellung und Implementation der Klasse	Argumentieren	
BinarySearchTree veranschaulicht dabei in der Methoden	Kooperieren	
insert(Object pObject) das Prinzip der binären Suche. Auf der		
Grundlage der Traversierungsmethoden (inorder, postorder		
und preorder) werden alle rekursiv möglichen Durchläufe		
grafisch dargestellt und auf der Grundlage der Methode		
inorder selbstständig implementiert. Die komplexen		
Sortierverfahren Quick-Sort und Merge-Sort werden		
abschließend von den SuS kooperativ graphisch dargestellt,		
erläutert und hinsichtlich der Effizienz und Komplexität		
bewertet.		

UV4: Wie werden Informationen sicher? Historische und aktuelle Ansätze der Kryptographie.

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend von aktuellen Problemen der Datensicherheit	Implementieren	25
werden chronologisch zunächst die symmetrischen	Darstellen und	Std.
Verschlüsselungverfahren nach Cäsar und Vignere	Interpretieren	
dargestellt und anschließend implementiert. Die Beurteilung	Argumentieren	
der Sicherheit der Verschlüsselungsverfahren durch die SuS	Kooperieren	
erfolgt nach der Erprobung von einfachen Brute-Force		
Methoden zur Entschlüsselung. Die asymmetrischen		
Verschlüsselungsverfahren insbesondere RSA werden		
zunächst an einfachen Beispielen erprobt und kooperativ		
arbeitsteilig in Teilschritten dargestellt. Die SuS untersuchen		
und bewerten im Anschluss Möglichkeiten dieses Verfahren		
mit einfachen Möglichkeiten zu entschlüsseln.		

2.2.2.2 Qualifikationsphase 2 GK

UV1: Wie können Computer miteinander kommunizieren?

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend vom Versuch innerhalb eines SuS-Netzwerks	Implementieren	35
binär, analog, non-akustisch und non-visuell eine Nachricht	Darstellen und	Std.
von Sender zum Empfänger zu schicken, werden	Interpretieren	
Netzwerktopologien und grundlegende Aufgaben von		
Protokollen entwickelt. Theoretische Modelle (ISO-OSI-		
Schichtenmodell) und praktischen Protokollen werden		
grafisch dargestellt und unterschiedliche Zustände in Graph-	Automaten	
bzw. Tabellenform erfasst. Auf der Basis hierauf aufsetzender		
einfacher Protokolle (POP3) wird ein Protokoll in der für das		
Zentralabitur vorgesehenen Form implementiert (Client-		
Server) und auch hinsichtlich der Sicherheit bewertet. SuS		
entwickeln auf dieser Grundlage eigene Protokolle für		
unterschiedliche Anwendungssituationen. Bei der		
Implementation ist die Verwendung von bereits behandelten		
linearen Datenstrukturen intendiert.		

UV2: Umgang und Verwaltung von Datenmassen?

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Die Modellierung und Realisierung einer Schuldatenbank	Implementieren	40
über die Schritte ER-Diagramm, Relationenschema und	Darstellen und	Std.
Datenbankentwurf ist die Grundlage für die Entwicklung von	Interpretieren	
einfachen und komplexeren Abfragen in SQL. Die	Argumentieren	
Anwendung von Normalisierungsformen (1-3) zur	Formale	
Optimierung der Datenbank, sowie die Anbindung dieser an	Sprachen und	
Informationssysteme bildet den Abschluss dieses	Automaten	
Unterrichtsvorhabens.		

UV3: Welche Vorgänge lassen sich automatisieren?

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Wo liegen die Grenzen der Berechenbarkeit, wie lassen sich	Implementieren	25
Vorgänge automatisieren und wie lassen sich Automaten	Darstellen und	Std.
beschreiben? Zustandsdiagramme Mealy- und Kellerautomat	Interpretieren	
sowie NEA und DEA, sowie das Thema formale Sprachen bis	Argumentieren	
hin zum Compiler sollen die Übergänge von Soft- zur	Formale	
Hardware ausloten und die Arbeitsweise von	Sprachen und	
Programmiersprachen verdeutlichen.	Automaten	

2.2.2.3 Qualifikationsphase 1 LK

UV 1: "Hinten anstellen!" Algorithmen und Datenstrukturen im Alltag

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend von rekursiven Arbeitsweisen und Strukturen	Implementieren	35
werden an ausgewählten Alltagssituationen	Darstellen und	Std.
(Druckerschlange, Abstellgleis) die linearen Datenstrukturen	Interpretieren	
Stack und Queue (zunächst Arrayimplementationen) und die	Modellieren	
Datenstruktur List in Kurzreferaten grafisch dargestellt und	Kooperieren	
kooperativ, entsprechend der Dokumentation der Materialien	Argumentieren	
für das Zentralabitur, in Java implementiert. Die Array-		
Implementationen von Stack und Queue werden durch linear		
rekursive Datenstrukturen abgelöst. Inhaltsfelder: Formale		
Sprachen, Daten und ihre Strukturierung, Algorithmen		

UV2: Das Kartenspielprojekt

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Auf der Grundlage der Substantiv-Verb-Methode (Barnes,	Implementieren	55
Kölling Kap. 13) und den der anschließenden Modellierung	Darstellen und	Std.
(Implementations- und Entwurfsdiagramm) wird ein einfaches	Interpretieren	
Kartenspiel beschrieben, modelliert und als Anwendung mit	Modellieren	
graphischer Darstellung in Kleinstgruppen implementiert und	Kooperieren	
bewertet. Die Verwendung der Datenstrukturen aus UV1 ist	Argumentieren	
hierbei verbindlich.		

UV3: Sortieren komplex! Binäre Suche und Suchbäume und verzweigt rekursive Lösungsstrategien.

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Am Problem der Sortierung von Kartenblättern in	Implementieren	35
Kartenspielen werden die naiven Sortierverfahren wiederholt	Darstellen und	Std.
und komplexe verzweigte Lösungsansätze dargestellt. Die	Interpretieren	
Darstellung und Implementation der Klasse	Argumentieren	
BinarySearchTree veranschaulicht dabei in der Methoden	Kooperieren	
insert(Object pObject) das Prinzip der binären Suche. Auf der		
Grundlage der Traversierungsmethoden (inorder, postorder		
und preorder) werden alle rekursiv möglichen Durchläufe		
grafisch dargestellt und auf der Grundlage der Methode		

inorder selbstständig implementiert. Die komplexen	
Sortierverfahren Quick-Sort und Merge-Sort werden	
abschließend von den SuS kooperativ graphisch dargestellt,	
erläutert, implementiert und hinsichtlich der Effizienz und	
Komplexität bewertet. Die Implementation der Datenstruktur	
Graph ist obligatorisch.	

UV4: Wie werden Informationen sicher? Historische und aktuelle Ansätze der Kryptographie.

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend von aktuellen Problemen der Datensicherheit	Implementieren	35
werden chronologisch zunächst die symmetrischen	Darstellen und	Std.
Verschlüsselungverfahren nach Cäsar und Vignere	Interpretieren	
dargestellt und anschließend implementiert. Die Beurteilung	Argumentieren	
der Sicherheit der Verschlüsselungsverfahren durch die SuS	Kooperieren	
erfolgt nach der Erprobung von einfachen Brute-Force		
Methoden zur Entschlüsselung. Die asymmetrischen		
Verschlüsselungsverfahren insbesondere RSA werden		
zunächst an einfachen Beispielen erprobt und kooperativ		
arbeitsteilig in Teilschritten dargestellt. Die SuS untersuchen		
und bewerten im Anschluss Möglichkeiten dieses Verfahren		
mit einfachen Möglichkeiten zu entschlüsseln. RSA oder Diffie		
& Hellmann sollen in arbeitsteiligen Schritten implementiert		
werden.		

2.2.2.4 Qualifikationsphase 2 LK

UV1: Wie können Computer miteinander kommunizieren?

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Ausgehend vom Versuch innerhalb eines SuS-Netzwerks	Implementieren	40
binär, analog, non-akustisch und non-visuell eine Nachricht	Darstellen und	Std.
von Sender zum Empfänger zu schicken, werden	Interpretieren	
Netzwerktopologien und grundlegende Aufgaben von	Argumentieren	
Protokollen entwickelt. Theoretische Modelle (ISO-OSI-	Formale	
Schichtenmodell) und praktischen Protokollen werden	Sprachen und	
grafisch dargestellt und unterschiedliche Zustände in Graph-	Automaten	
bzw. Tabellenform erfasst. Auf der Basis hierauf aufsetzender		
einfacher Protokolle (POP3) wird ein Protokoll in der für das		
Zentralabitur vorgesehenen Form implementiert (Client-		

Server) und auch hinsichtlich der Sicherheit bewertet. SuS	
entwickeln auf dieser Grundlage eigene Protokolle für	
unterschiedliche Anwendungssituationen. Bei der	
Implementation ist die Verwendung von bereits behandelten	
linearen Datenstrukturen intendiert.	

UV2: Umgang und Verwaltung von Datenmassen?

Inhaltsfelder und inhaltliche Schwerpunkte Kompetenzen	Zeit
Die Modellierung und Realisierung einer Schuldatenbank Implementieren	40
über die Schritte ER-Diagramm, Relationenschema und Darstellen und	Std.
Datenbankentwurf ist die Grundlage für die Entwicklung von Interpretieren	
einfachen und komplexeren Abfragen in SQL. Die Argumentieren	
Anwendung von Normalisierungsformen (1-3) zur Formale	
Optimierung der Datenbank, sowie die Anbindung dieser an Sprachen und	
Informationssysteme bildet den Abschluss dieses Automaten	
Unterrichtsvorhabens.	

UV3: Welche Vorgänge lassen sich automatisieren?

Inhaltsfelder und inhaltliche Schwerpunkte	Kompetenzen	Zeit
Wo liegen die Grenzen der Berechenbarkeit, wie lassen sich	Implementieren	35
Vorgänge automatisieren und wie lassen sich Automaten		Std.
beschreiben? Zustandsdiagramme Mealy- und Kellerautomat	Interpretieren	
sowie NEA und DEA, sowie das Thema formale Sprachen bis	Argumentieren	
hin zum Compiler sollen die Übergänge von Soft- zur	Formale	
Hardware ausloten und die Arbeitsweise von	Sprachen und	
Programmiersprachen verdeutlichen.	Automaten	

2.3 Grundsätze der Leistungsbewertung und Leistungsrückmeldung

Auf der Grundlage von § 48 SchulG, APO-GOst sowie Kapitel 3 des Kernlehrplans Informatik hat die Fachkonferenz im Einklang mit dem entsprechenden schulbezogenen Konzept die nachfolgenden Grundsätze zur Leistungsbewertung und Leistungsrückmeldung beschlossen.

Verbindliche Absprachen:

- In der EF soll im ersten Halbjahr nur eine 90-minütige Klausur durchgeführt und im Plenum ausgewertet werden. Im zweiten Halbjahr werden zwei 90minütige Klausuren geschrieben.
- In der Q1 werden pro Halbjahr im GK zwei zweistündige Klausuren geschrieben. Im Leistungskurs werden je zwei dreistündige Klausuren geschrieben.
- 3. In der Q2 werden im ersten Halbjahr zwei dreistündige Klausuren geschrieben und im LK jeweils zwei 4,25 Stunden dauernde Klausuren. Die Vorabiturklausuren werden unter Abiturbedingungen geschrieben.
- **4.** Ein (kleineres) Programmierprojekt soll im Rahmen jedes Jahrgangs der Sek. 2 durchgeführt werden.

Die Grundsätze der Leistungsfeststellung werden den Schülerinnen und Schülern (zum Schuljahresbeginn) sowie den Erziehungsberechtigten (u.a. im Rahmen des Elternsprechtages und der Jahrgangsstufenpflegschaftssitzungen) transparent gemacht und erläutert. Sie finden Anwendung im Rahmen der grundsätzlichen Unterscheidung von Lern- und Leistungssituationen, die ebenfalls im Unterrichtsverlauf an geeigneter Stelle transparent gemacht wird.

Verbindliche Instrumente:

Überprüfung der schriftlichen Leistung

- Im 1. Halbjahr der Einführungsphase wird lediglich eine Klausur zur Überprüfung der schriftlichen Leistung geschrieben.
- Das Format der Aufgaben des schriftlichen Abiturs wird schrittweise entwickelt und schwerpunktmäßig eingeübt.

Überprüfung der sonstigen Leistung

Neben den o. g. obligatorischen Formen der Leistungsüberprüfung werden weitere Instrumente der Leistungsbewertung genutzt, u. a.:

- mündliche Beiträge zum Unterricht (z. B. Beiträge zum Unterrichtsgespräch, Referate, Präsentationen, Kurzvorträge)
- Mitarbeit in Partner- und Gruppenarbeiten
- projektbezogenes Arbeiten (Quelltexte, Ergebnisprotokolle, Dokumentationen, UML-Diagramme)
- weitere schriftliche Beiträge zum Unterricht (z. B. Protokolle, Materialsammlungen, Hefte/Mappen)
- Beiträge im Rahmen eigenverantwortlichen, schüleraktiven Handelns (z. B. Präsentation, Rollenspiel)

Übergeordnete Kriterien:

Die Bewertungskriterien für eine Leistung werden den Schülerinnen und Schülern zu Beginn der jeweiligen Kurshalbjahre transparent gemacht. Die folgenden – an die Bewertungskriterien des Kernlehrplans für die Abiturprüfung angelehnten – allgemeinen Kriterien gelten sowohl für die schriftlichen als auch für die sonstigen Formen der Leistungsüberprüfung:

- Umfang und Differenzierungsgrad der Ausführungen
- sachliche Richtigkeit und Schlüssigkeit der Ausführungen
- Angemessenheit der Abstraktionsebene
- Herstellen geeigneter Zusammenhänge
- argumentative Begründung eigener Urteile, Stellungnahmen und Wertungen
- Eigenständigkeit der Auseinandersetzung mit Sachverhalten und Problemstellungen
- Klarheit und Strukturiertheit in Aufbau von Darstellungen
- Sicherheit im Umgang mit Fachmethoden
- Verwendung von Fachsprache und geklärter Begrifflichkeit
- Erfüllung standardsprachlicher Normen

Der Grad der Anwendung der angeführten Maßstäbe hängt insgesamt von der Komplexität der zu erschließenden und darzustellenden Gegenstände ab.

Konkretisierte Kriterien:

Kriterien für die Bewertung der schriftlichen Leistung

Die Bewertung der schriftlichen Leistungen, insbesondere von Klausuren, erfolgt anhand von jeweils zu erstellenden Bewertungsrastern (Erwartungshorizonte), die sich an den Vorgaben für die Bewertung von Schülerleistungen im Zentralabitur orientieren.

Kriterien für die Überprüfung der sonstigen Leistungen

- inhaltliche Qualität und gedankliche Stringenz der Beiträge
- Selbständigkeit der erbrachten Leistung
- Bezug der Beiträge zum Unterrichtsgegenstand
- Verknüpfung der eigenen Beiträge mit bereits im Unterricht erarbeiteten Sachzusammenhängen sowie mit den Beiträgen anderer Schülerinnen und Schüler
- funktionale Anwendung fachspezifischer Methoden
- sprachliche und fachterminologische Angemessenheit der Beiträge
- Qualität und Selbständigkeit der Implementation in Java

Grundsätze der Leistungsrückmeldung und Beratung:

Die Leistungsrückmeldung erfolgt in mündlicher Form.

Intervalle

- punktuelles Feedback auf im Unterricht erbrachte spezielle Leistungen
- Quartalsfeedback

Formen

- Einstufung der Beiträge im Hinblick auf den deutlich werdenden Kompetenzerwerb,
- individuelle Lern-/Förderempfehlungen in der EF bei Versetzungsgefährdung
- Beratung am Eltern- oder Schülersprechtag

2.4 Lehr- und Lernmittel:

BARNES, D.J. KÖLLING, M.: Java lernen mit *BlueJ*: Eine Einführung in die objektorientierte Programmierung. Pearson Studium. München 2007.

DRESCH, P.; FROBEL G.; KOSCHORREK, H.J.: Informatik 2, Schöningh. ISBN: 978-3-14-037127-8

KEMPE, T.; LÖHR A.; TEPAßE, D.: Informatik 1, Schöningh. ISBN: 978-3-14-037126-1

HEROLD, H.; LURZ, B.; WOHLRAB, J.: Grundlagen der Informatik. Praktisch – Technisch – Theoretisch. Pearson Studium. München 2007.

KEMPER, A.; Eickler, A.: Datenbanken. ISBN: 978-3486257069