- Semi-conducteur
- Transistor nMOS
- Transistor pMOS

andre.stauffer@epfl.ch

Transistor MOS

Types de transistors

La <u>technologie CMOS</u> (MOS complémentaire) utilisée dans ce cours comporte deux types de transistors:

le transistor MOS de type n ou simplement <u>transistor nMOS</u>

le transistor MOS de type p ou simplement <u>transistor pMOS</u>

L'appellation MOS des transistors en question découle de leur abréviation anglaise MOSFET qui désigne à la fois la structure et le fonctionnement du dispositif:

metal-oxyde-semiconductor field-effect-transistor

Classement des corps solides

Selon leur <u>conductivité électrique</u> les corps solides sont classés en trois groupes:

les <u>métaux</u> présentent une grande conductivité pratiquement indépendante de la température

les <u>isolants</u> ont une conductivité pratiquement nulle à toute température

les <u>semi-conducteurs</u> sont caractérisés par une conductivité qui augmente fortement avec la température, dépend fortement des impuretés se trouvant dans le matériau et peut varier en surface sous l'action d'un champ électrique

Semi-conducteur

Silicium pur: arrangement atomique

Le silicium pur est le semi-conducteur de base pour le substrat

Silicium pur: atomes tétravalents

Le silicium (Si) possède quatre électrons de valence

Semi-conducteur

Silicium pur: libération d'un électron (énergie=1ev)

Silicium dopé de type n: atome pentavalent (0,1ev)

Adjonction d'atomes donneurs: phosphore (P) ou arsenic (As)

Semi-conducteur

Silicium dopé de type p: atome trivalent

Adjonction d'atomes accepteurs: bore (B)

Fonctionnement du transistor

Le transistor <u>conduit</u> lorsque VGS > VT Le transistor est <u>bloqué</u> lorsque VGS < VT

VT: tension de seuil du transistor

$$V_T \approx 0.5 - 1 [V]$$

Transistor nMOS

Transistor utilisé en interrupteur

Fonctionnement du transistor

Le transistor <u>conduit</u> lorsque VGS < VT Le transistor est <u>bloqué</u> lorsque VGS > VT

VT: tension de seuil du transistor

$$V_T \approx -1 [V]$$

Transistor pMOS

Transistor pMOS Transistor utilisé en interrupteur G G G G G G G D D D D

Paramètres géométriques et technologiques

W: largeur du canal, L: longueur du canal, D: épaisseur de l'oxyde

Transistor nMOS

Modèle linéaire

Le modèle linéaire du transistor est valable pour V_{DS} petit:

$$I_{DS} = \beta (V_{GS} - V_T) V_{DS}$$

Dans ce modèle β est le <u>facteur de gain</u> du transistor:

$$\beta = \epsilon \mu / \mathbf{D} \cdot \mathbf{W} / \mathbf{L}$$

Le <u>facteur technologique</u> $\epsilon\mu/D$ introduit la constante diélectrique de l'oxyde (ϵ) et la mobilité des électrons (μ_n) ou des trous (μ_p) avec:

$$\mu_n \approx 1.6 \, \mu_p$$

Le <u>facteur géométrique</u> correspond à W/L

Modèle linéaire

Près de l'origine des axes V_{DS} et I_{DS} , le transistor se comporte comme une résistance:

$$I_{DS} = 1/R V_{DS}$$

Dans cette relation, la conductance 1/R satisfait la relation:

$$1/R = \beta (V_{GS} - V_T)$$

Transistor nMOS

Modèle quadratique

Le modèle quadratique du transistor s'applique lorsque V_{DS} augmente:

$$I_{DS} = \beta (V_{GS} - V_T) V_{DS} - 1/2 \beta V_{DS}^2$$

La valeur limite s'obtient par dérivation:

$$\begin{aligned} dI_{DS} / dV_{DS} &= 0 \\ \beta \left(V_{GS} - V_T \right) - \beta V_{DS} &= 0 \\ V_{DS} &= V_{GS} - V_T \end{aligned}$$

Il s'agit de la tension de saturation:

$$V_{DSsat} = V_{GS} - V_{T}$$

Le <u>courant de saturation</u> correspondant vaut:

$$I_{DSsat} = 1/2 \beta (V_{GS} - V_T)^2 = 1/2 \beta V_{DSsat}^2$$

- Semi-conducteur
- Transistor nMOS
- Transistor pMOS

andre.stauffer@epfl.ch

Transistor MOS

Types de transistors

La <u>technologie CMOS</u> (MOS complémentaire) utilisée dans ce cours comporte deux types de transistors:

le transistor MOS de type n ou simplement <u>transistor nMOS</u>

le transistor MOS de type p ou simplement transistor pMOS

L'appellation MOS des transistors en question découle de leur abréviation anglaise MOSFET qui désigne à la fois la structure et le fonctionnement du dispositif:

metal-oxyde-semiconductor field-effect-transistor

Classement des corps solides

Selon leur <u>conductivité électrique</u> les corps solides sont classés en trois groupes:

les <u>métaux</u> présentent une grande conductivité pratiquement indépendante de la température

les <u>isolants</u> ont une conductivité pratiquement nulle à toute température

les <u>semi-conducteurs</u> sont caractérisés par une conductivité qui augmente fortement avec la température, dépend fortement des impuretés se trouvant dans le matériau et peut varier en surface sous l'action d'un champ électrique

Semi-conducteur

Silicium pur: arrangement atomique

Le silicium pur est le semi-conducteur de base pour le substrat

Silicium pur: atomes tétravalents

Le silicium (Si) possède quatre électrons de valence

Semi-conducteur

Silicium pur: libération d'un électron (énergie=1ev)

Silicium dopé de type n: atome pentavalent (0,1ev)

Adjonction d'atomes donneurs: phosphore (P) ou arsenic (As)

Semi-conducteur

Silicium dopé de type p: atome trivalent

Adjonction d'atomes accepteurs: bore (B)

Fonctionnement du transistor

Le transistor <u>conduit</u> lorsque VGS > VT Le transistor est <u>bloqué</u> lorsque VGS < VT

VT: tension de seuil du transistor

$$V_T \approx 0.5 - 1 [V]$$

Transistor nMOS

Transistor utilisé en interrupteur

Fonctionnement du transistor

Le transistor <u>conduit</u> lorsque VGS < VT Le transistor est <u>bloqué</u> lorsque VGS > VT

VT: tension de seuil du transistor

$$V_T \approx -1 [V]$$

Transistor pMOS

Transistor pMOS Transistor utilisé en interrupteur G G G G G G G D D D D

Paramètres géométriques et technologiques

W: largeur du canal, L: longueur du canal, D: épaisseur de l'oxyde

Transistor nMOS

Modèle linéaire

Le modèle linéaire du transistor est valable pour V_{DS} petit:

$$I_{DS} = \beta (V_{GS} - V_T) V_{DS}$$

Dans ce modèle β est le <u>facteur de gain</u> du transistor:

$$\beta = \epsilon \mu / \mathbf{D} \cdot \mathbf{W} / \mathbf{L}$$

Le <u>facteur technologique</u> $\epsilon\mu/D$ introduit la constante diélectrique de l'oxyde (ϵ) et la mobilité des électrons (μ_n) ou des trous (μ_p) avec:

$$\mu_n \approx 1.6 \, \mu_p$$

Le <u>facteur géométrique</u> correspond à W/L

Modèle linéaire

Près de l'origine des axes V_{DS} et I_{DS} , le transistor se comporte comme une résistance:

$$I_{DS} = 1/R V_{DS}$$

Dans cette relation, la conductance 1/R satisfait la relation:

$$1/R = \beta (V_{GS} - V_T)$$

Transistor nMOS

Modèle quadratique

Le modèle quadratique du transistor s'applique lorsque V_{DS} augmente:

$$I_{DS} = \beta (V_{GS} - V_T) V_{DS} - 1/2 \beta V_{DS}^2$$

La valeur limite s'obtient par dérivation:

$$\begin{aligned} dI_{DS} / dV_{DS} &= 0 \\ \beta \left(V_{GS} - V_T \right) - \beta V_{DS} &= 0 \\ V_{DS} &= V_{GS} - V_T \end{aligned}$$

Il s'agit de la tension de saturation:

$$V_{DSsat} = V_{GS} - V_{T}$$

Le <u>courant de saturation</u> correspondant vaut:

$$I_{DSsat} = 1/2 \beta (V_{GS} - V_T)^2 = 1/2 \beta V_{DSsat}^2$$

