CSP THEORY OF COMMUTATIVE IDEMPOTENT BINARS

William DeMeo

williamdemeo@gmail.com

Iowa State University

joint work with

Cliff Bergman Jiali Li

May 25, 2015

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a wnu term operation

The left-to-right direction is known, the converse is open.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a wnu term operation

The left-to-right direction is known, the converse is open.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a wnu term operation

A term $t(x_1, \ldots, x_n)$ is a weak near unanimity term operation if it satisfies

$$t(x, x, \dots, x) \approx x$$
 (idempotent)

$$t(y,x,\ldots,x)\approx t(x,y,\ldots,x)\approx\cdots\approx t(x,x,\ldots,y).$$

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

COMMUTATIVE IDEMPOTENT BINARS

Some more definitions.

- A set *A* together with a single binary operation is called a binar.
- A commutative idempotent binar is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.
- A binary operation $x \cdot y = t(x, y)$ is a WNU term if and only if it is idempotent and commutative. This suggests the following

COMMUTATIVE IDEMPOTENT BINARS

Some more definitions.

- A set *A* together with a single binary operation is called a binar.
- A commutative idempotent binar is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.
- A binary operation $x \cdot y = t(x, y)$ is a WNU term if and only if it is idempotent and commutative. This suggests the following

QUESTION

Is every finite commutative idempotent binar tractable?

If the dichotomy conjecture is to hold, then the answer must be "yes."

COMMUTATIVE IDEMPOTENT BINARS

Some more definitions.

- A set *A* together with a single binary operation is called a binar.
- A commutative idempotent binar is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.
- A binary operation $x \cdot y = t(x, y)$ is a WNU term if and only if it is idempotent and commutative. This suggests the following

QUESTION

Is every finite commutative idempotent binar tractable?

If the dichotomy conjecture is to hold, then the answer must be "yes."

A semilattice is an associative CIB.

Semilattices are tractable (in fact, they have *finite width*).

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

V(A) is CP \iff A has Malcev term

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

V(A) is CP \iff A has Malcev term

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

$$V(A)$$
 is CP \iff A has Malcev term \implies A has cube term

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has Malcev term} \\ & \Longrightarrow & A \text{ has cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \end{array}$$

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

A = a finite idempotent algebra

 S_2 = the 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \end{array}$$

A = a finite idempotent algebra

 S_2 = the 2-elt semilattice.

$$\begin{array}{ccc} V(\textbf{A}) \text{ is CP} & \Longleftrightarrow & \textbf{A} \text{ has a Malcev term} \\ & \Longrightarrow & \textbf{A} \text{ has a cube term} \\ & \Longrightarrow & V(\textbf{A}) \text{ is CM} \\ & \Longrightarrow & \textbf{S}_2 \text{ is not in } V(\textbf{A}) \end{array}$$

lacksquare cube term \Longrightarrow CM

Proof: few subalgebras of powers

Berman, Idziak, Marković, McKenzie, Valeriote, Willard (BIMMVW) 2010.

A = a finite idempotent algebra

 S_2 = the 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & \mathbf{S}_2 \text{ is not in } V(A) \end{array}$$

■ cube term ⇒ CM Proof: few subalgebras of powers Berman, Idziak, Marković, McKenzie, Valeriote, Willard (BIMMVW) 2010.

COMMUTATIVE IDEMPOTENT BINARS (CIBS)

Let A be a CIB.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has Malcev term} \\ & \Longrightarrow & A \text{ has cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & \mathbf{S}_2 \text{ is not in } V(A) \end{array}$$

COMMUTATIVE IDEMPOTENT BINARS (CIBS)

Let A be a CIB.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has Malcev term} \\ & \Longrightarrow & A \text{ has cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \end{array}$$

COMMUTATIVE IDEMPOTENT BINARS (CIBS)

Let A be a CIB.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has Malcev term} \\ & \Longrightarrow & A \text{ has cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \end{array}$$

CUBE TERMS

A cube operation is a function $c:A^n\to A$ satisfying for each $1\leqslant i\leqslant n$ $c(w_1,\ldots,w_n)=x$ where $\{w_1,\ldots,w_n\}\subseteq \{x,y\}$ and $w_i=y$.

Here x and y are distinct variables.

An algebra ${\bf A}$ is said to have a cube term if its clone of term operations contains a cube operation.

CUBE TERMS

A cube operation is a function $c:A^n\to A$ satisfying for each $1\leqslant i\leqslant n$ $c(w_1,\ldots,w_n)=x$ where $\{w_1,\ldots,w_n\}\subseteq \{x,y\}$ and $w_i=y$.

Here x and y are distinct variables.

An algebra ${\bf A}$ is said to have a cube term if its clone of term operations contains a cube operation.

Cube terms were introduced in... ?

Berman, Idziak, Marković, McKenzie, Valeriote, Willard, "Varieties with few subalgebras of powers," 2010.

Marković, Maróti, McKenzie, "Finitely related clones & algebras with cube terms," 2012.

CUBE TERM BLOCKERS

A cube term blocker (CTB) for **A** is a pair (C,B) of subuniverses of **A** satisfying $\emptyset < C < B \leqslant A$ and for every term $t(x_1,\ldots,x_n)$ of **A** there is an index $i \in [n]$ such that

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

Marković, Maróti, McKenzie proved that a finite idempotent algebra has a cube term iff it possesses no CTB.

CUBE TERM BLOCKERS

A cube term blocker (CTB) for **A** is a pair (C, B) of subuniverses of **A** satisfying $\emptyset < C < B \leqslant A$ and for every term $t(x_1, \ldots, x_n)$ of **A** there is an index $i \in [n]$ such that

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

Marković, Maróti, McKenzie proved that a finite idempotent algebra has a cube term iff it possesses no CTB.

LEMMA

A finite CIB $\mathbf{A} = \langle A, \cdot \rangle$ has a CTB if and only if $\mathbf{S}_2 \in \mathsf{HS}(\mathbf{A})$.

CUBE TERM BLOCKERS

A cube term blocker (CTB) for **A** is a pair (C, B) of subuniverses of **A** satisfying $\emptyset < C < B \leqslant A$ and for every term $t(x_1, \ldots, x_n)$ of **A** there is an index $i \in [n]$ such that

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

Marković, Maróti, McKenzie proved that a finite idempotent algebra has a cube term iff it possesses no CTB.

LEMMA

A finite CIB $A = \langle A, \cdot \rangle$ has a CTB if and only if $S_2 \in \mathsf{HS}(A)$.

PROOF.

If (C, B) is a CTB, then $\theta = C^2 \cup (B - C)^2$ is a congruence of $\mathbf{B} = \langle B, \cdot \rangle$ and $\mathbf{B}/\theta \cong \mathbf{S}_2$.

Conversely, suppose $S_2 \in \mathsf{HS}(A)$, and **B** is a subalgebra of **A** with B/θ a meet-SL for some θ . Let C/θ be the bottom of B/θ , then (C,B) is a CTB.

COLLAPSE FOR CIBS

Kearnes and Tschantz, "Automorphism groups of squares and of free algebras," 2007.

LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of $\mathbf{F} := \mathbf{F}_V\{x,y\}$ (the 2-generated free algebra) satisfying

- 1. $x \in U \cap W$
- 2. $y \in U^c \cap W^c$
- 3. $(U \times F) \cup (F \times W) \leqslant \mathbf{F}^2$

COLLAPSE FOR CIBS

Kearnes and Tschantz, "Automorphism groups of squares and of free algebras," 2007.

LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of $\mathbf{F} := \mathbf{F}_V\{x,y\}$ (the 2-generated free algebra) satisfying

- 1. $x \in U \cap W$
- 2. $y \in U^c \cap W^c$
- 3. $(U \times F) \cup (F \times W) \leqslant \mathbf{F}^2$

For CIB's, U or W will be an ideal.

This implies a CTB and a semilattice.

CONCLUSION

Let A be a CIB and $S_2\notin V(A).$ Then CSP(A) is tractable.

CONCLUSION

Let A be a CIB and $S_2 \notin V(A)$. Then CSP(A) is tractable.

OPEN QUESTION

Let \mathbf{A} be a CIB and $\mathbf{S}_2 \in V(\mathbf{A}).$ Is $CSP(\mathbf{A})$ tractable?

Recall, for every A,

CONCLUSION

Let A be a CIB and $S_2 \notin V(A)$. Then CSP(A) is tractable.

OPEN QUESTION

Let A be a CIB and $S_2 \in V(A)$. Is CSP(A) tractable?

Recall, for every A,

 \blacksquare if $S_2 \in V(A)$, then V(A) is not CM;

CONCLUSION

Let A be a CIB and $S_2 \notin V(A)$. Then CSP(A) is tractable.

OPEN QUESTION

Let A be a CIB and $S_2 \in V(A)$. Is CSP(A) tractable?

Recall, for every A,

- \blacksquare if $S_2 \in V(A)$, then V(A) is not CM;
- $\ \ \, \hbox{if $V(A)$ is SD_{\wedge}, then $CSP(A)$ is tractable (in fact, always has a solution)}.$

CONCLUSION

Let A be a CIB and $S_2 \notin V(A)$. Then CSP(A) is tractable.

OPEN QUESTION

Let A be a CIB and $S_2 \in V(A)$. Is CSP(A) tractable?

Recall, for every A,

- \blacksquare if $S_2 \in V(A)$, then V(A) is not CM;
- \blacksquare if V(A) is $SD_{\wedge},$ then CSP(A) is tractable (in fact, always has a solution).

REVISED QUESTION

Let A be a CIB with S_2 in V(A), not SD_{\wedge} . Is CSP(A) tractable?

EXAMPLES

	0	1	2	3
0	0	0	0	1
1	0	1	3	2
2	0	3	2	1
3	1	2	1	3

*	0	1	2	3
0	0	0	1	1
1	0	1	3	2
2	1	3	2	1
3	1	2	1	3

Maroti's idea:

0	0	1	2	3
0	0	0	2	1
1	0 0 2	1	3	2
2	2	3	2	1
3	1	2	1	3

Bergman's idea: replace basic binary operation with a term from $Clo(\mathbf{A})$, say t(x,y)=(x*y)*x.

If $\langle A, t \rangle$ tractable, then so is $\langle A, * \rangle$