Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003 BEST AVAILABLE COPY

Docket No.: 025756-00003

BEST AVAILABLE COPY

1. Synthesis (performed in an Ar Glove Box)

Mg Synthesis

2. Remove THF with dissolved by-products

Dry Mg(nano)

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Synthesized Mg

FIG. 3

Sample	Amount Made	XRD crystallite size (Scherrer equation)*
Mg 1-2	0.198g	23nm
Mg 1-10	0.4g	Used in Pd capping
Mg 1-13	0.4g	37nm
Mg 1-18	0.2g	34nm
Mg 1-41	0.2g	Used for Co capping
Mg 1-51	0.4g	33nm
Mg 1-57a	0.5g	25nm
Mg 1-57b	0.5g	Still in dry box
Mg 1-57c	0.5g	Almost amorphous

*t = $[(0.9)(0.154)]/[(\beta)(\cos \theta)]$

t = crystallite size in nm β = full width half max θ = Bragg angle

Klug and Alexander, 1950

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

intensity

s Synthesized Mg XRL

XRD of Mg 1-13 sample matches that of an indexed Mg pattern Material is coated with amorphous sp² carbon allowing it to be stable in air

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

intensity

Mg 1-13 sample was stable in atmospheric conditions for 3 months

Still Mg Metal

FIG. 5

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

intensity

Phase Stabil in Water

Mg 1-13 turned white with XRD giving $Mg(OH)_2$ After exposure to water for \sim 48 hours \Rightarrow

Title: HYDROGEN STORAGE MATERIAL BASED ON A MULTILAYERED CORE/SHELL STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application

Docket No : 025756-00003

BEST AVAILABLE COPY

Pd coated Mg Synthesis

Mg via Rieke method $-Pd(NO_3)_2$

Igepal CO-520 Stirring Rapped

Reduced Pd and Mg

Additanal THF

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003 2) Reduction of Pd⁺² using Hydrazine Hydrate (H₂NNH₂•xH₂O)

cyclohexane

 $2Pd^{+2}(aq) + N_2H_4(aq) + 4OH^{-}(aq) \rightarrow 2Pd^{0}(s) + N_2(g) + 4H_2O$

3) Break the Micelle and collect the Pd with ethanol

Ethanol

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Controlling The Size

of surfactant (Igapal) to water often referred to as the R value. The size of the Pd spherical particle is dependent on the mole% ratio

R = [water]/[surfactant]

The larger the R value the larger the radius of the particle

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Spherical Pd Synthesized to Date

Sample	R value	Amount made	Particle size*
Pd 1-62	8	1.3mg	
Pd 1-67	6	4mg	
Pd 1-68-1)	2mg	
Pd 1-68-2	2	4mg	
Pd 1-69-1	1	.67mg	
Pd 1-68-2	2	1.35mg	
Pd 1-69-6	6	12.3mg	
Pd 1-69-8	8	16.32mg	
Pd 1-70-7	7	19mg	
Pd 1-70-9	9	30.5mg	~9nm
Pd 1-71	9	61mg	
Pd 1-73	Us.	63.6mg	
Pd 1-74-3	y	61mg	
Pd 1-74-7	7	71mg	
Pd 1-91-6	6	81.4mg	5nm
Pd 1-91-8	8	108.5mg	4nm
Pd 1-96	7	399mg	
Pd 1-100	25	84.8mg	6nm

*By Scherrer equation

Title: HYDROGEN STORAGE MATERIAL BASED ON A MULTILAYERED CORE/SHELL STRUCTURE Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

0

XRD Of Spherical Pd

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application Docket No.: 025756-00003

Synthetic Approach For latelet Pd Particles

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application

Docket No.: 025756-00003

Platelet Size Control R = [Water]/[Surfactant]

Surfactant = Octylamine + 5% Amylamine [CH₃(CH₂),NH₂]

[CH₃(CH₂),NH₂]

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Platelets Made

Sample	R Value	Amount Made	F*	T*
Pd 1-75	6.8	. 20.4mg		
Pd 1-77	20.4	228mg		
Pd 1-80-3.4	3.4	66mg		
Pd 1-80-1.7	1.7	33mg		
Pd 1-86	10.2	236mg		
Pd 1-91-8.5	8.5	212mg		
Pd 1-91-6.8	6.8	254mg	· ·	
Pd 2-5-1.7	1.7	21.2		
Pd 2-5-3.4	3.4	21.2		_
Pd 2-5-6.8	6.8	21.2	33nm	2nm
Pd 2-5-8.5	8.5	21.2		:
Pd 2-5-10.2	1.2	21.2	150nm	6nm
Pd 2-5-20.4	20.4	21.2		·
Pd 2-8a	10.2	21.2	130nm ,	8nm
Pd 2-8b (AA)	10.2	21.2	80nm	1.7nm

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

Materials Synthesized Spherical nPd

Campic	Amount Made
Mg 1-2	0.198g
Mg 1-10	0.4g
Mg 1-13	0.4g
Mg 1-18	0.2g
Mg 1-41	0.2g
Mg 1-51	0.4g
Mg 1-57a	0.5g
Mg 1-57b	0.5g
Mg 1-57c	0.5g

P
7
itel
et

Sample	R Value	Amount Made
Pd 1-75	6.8	20.4mg
Pd 1-77	20.4	228mg
Pd:1-80-3.4	3.4	66mg
Pd 1-80-1.7	1.7	33mg
Pd 1-86	10.2	236mg
Pd 1-91-8.5	5.8	212mg
Pd 1-91-6.8	8.6	254mg ~
Pd 2-5-1.7	1.7	21.2
Pd 2-5-3.4	3.4	21.2
Pd 2-5-6.8	8.3	21.2
Pd 2-5-8.5	8.5	21.2
Pd 2-5-10.2	1.2	21.2
Pd 2-5-20.4	20.4	21.2
Pd 2-8a	10.2	21.2
Pd 2-8b (AA)	10.2	21.2

Pd 1-91-6

Pd 1-74-3 Pd 1-74-7

71 mg

81.4mg 108.5mg

Pd 1-91-8

00

Pd 1-71 Pd 1-73

Pd 1-70-9

ہ ا ہ

61mg 63.6mg

30.5mg

Pd 1-100

25

84.8mg

399mg

	,	
Sample	R Value	Amount Made
Pd 1-62		1.3mg
Pd 1-67	6	4mg
Pd 1-68-1	1	2mg
Pd 1-68-2	2	4mg
Pd 1-69-1	1	.67mg
Pd 1-68-2	2	1.35mg
Pd 1-69-6	6 .	12.3mg
Pd 1-69-8	œ	16.32mg
Pd 1-70-7	7	19mg

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

FIG. 17

Spherical particles: R = 7 (5nm) and R = 9(8nm);

Bulk sample particle size: 1.0 - 1.5 Microns

Platelets R=10.2 (8nm thick)

Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Declar No.: 025755 02022

Comparison of TGA Evaluations at 100C for Nano and Bulk Samples

affected by sintering	* Possibly affected t	* p,		
0.002	200.0	80.0 ∼	~ 0.6	Bulk (1.0 – 1.5μm)
0.003	0.007	~ 0.2	~ 0.65	Pd 1-86 R = 10.2 (8 nm thick Platelets)
500.0~	~0.01	~ 0.47	~ 0.78	Pd 1-74-7 R = 7 (4-5 nm Spheres)
Estimated Desorption Rate* (H/Pd/min)	Estimated Adsorption Rate* (H/Pd/min)	Plateau Onset (Wt %)	Knee for H/Pd Ratio	Sample

IG.
17
TGA
Compositional
al Anal
ysis

Sample	Pd in	Wt.%Pd as	Wt.%	n corr.
	sample	PdO in	Carbon	factor
		sample		
Spherical				
Pd 2-35 R=2	95.34%	0%	2.37%	1.05
(4nm)				,
Pd 2-71 R=8	96.16%	0%	0.05%	1.04
Platelet				
Pd 2-65-10 R=10	87.26%	0%	0.08%	1.15
(327nm X 2.8nm to 109nm X 1.5nm)				
Pd 2-65-7 R=7	94.69%	0%	0.17%	1.06
(82nm X 1.3nm)				

Title: HYDROGEN STORAGE MATERIAL BASED ON A MULTILAYERED CORE/SHELL STUCTURE Inventor's Name: Peter C. EKLUND, et al.

Inventor's Name: Terumi FURUTA, et al. Application No.: New Application Docket No.: 025756-00003

Moire fringes

FIG. 24 HRTEM of Platelet nanoPd

FIG. 25 AFM of Platelet nanoPd

(1) 327nm X 2.8nm (2) 109nm X 1.5nm

BEST AVAILABLE COPY

FIG. 26 H Adsorption of Spherical Pd

FIG. 27 H.Adsorption of Pd Platelets

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Hydrogen Saturation vs Pd

* Kuji, et.al, taken as maximum H/Pd at 0.1 MPa at 353K

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application

Hydrogen Absort Isotherms of Pd Nanoparticles

Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

HRTEM of Platelet Particles

BEST AVAILABLE COPY

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

Review of nanoPd Sample tested for Hydrogen Storage

of platelet particle in nm. * Samples washed with hydrazine R = [water]/[Surfactant], 1= diameter of spherical particle, 2 = face size of platelet particle, and 3 = thickness

FIG. 31

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

Sintering of Platelet Particles

O = room temperature, $\square = 50$ °C, $\diamondsuit = 75$ °C, $\triangle = 100$ °C, * = 150 °C, $\bullet = 200$ °C. $\blacksquare = 250$ °C. consist of only platelets. Sample C(sample 2-65-10) is a mix of platelets and spherical particles. Heating temperatures are Surface area vs. heating time for sample synthesized by bilayers. Samples A(sample 3-18) and B(sample 3-33)

FIG. 32

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Sintering of Spherical Particles

are both of sample 2-35. Heating temperatures are O = room temperature, \Box = 50 °C, \triangle = 100 °C, and * = 150 °C. not washed with hydrazine hydrate. C(sample 2-71) and D(sample 2-35) = washed with hydrazine hydrate. Lines B and D Surface area vs. heating time for spherical particles synthesized via reverse micelles. A(sample 2-44) and B(sample 2-35) =

FIG. 33

Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

intensity

MgPd Alloy

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

MgPd Alloy with Mg and Pd Metal

FIG. 35