KISI-KISI SOAL IF420 ANALISIS NUMERIK

TA.Genap 2024 2025

Soal 1: Metode Iteratif untuk Sistem Persamaan Linear (10 Poin)

Gunakan metode Gauss-Seidel untuk menyelesaikan sistem persamaan berikut dengan threshold $\epsilon = 0.000001$:

$$4x_1 - x_2 + 2x_3 = 5$$

 $-2x_1 + 6x_2 + x_3 = -9$
 $x_1 + x_2 + 5x_3 = 7$

Cek terlebih dahulu apakah matriks koefisien dominan secara diagonal sebelum melakukan iterasi.

Library yang digunakan:

- numpy untuk perhitungan matriks

Soal 2: Nilai dan Vektor Eigen dengan Power Method (10 Poin)

Gunakan Power Method untuk menemukan nilai eigen terbesar dan vektor eigen terkait dari matriks berikut:

[123]

[2 3 1]

[2 4 1]

Gunakan vektor awal [1, 0, 0] dan iterasi sebanyak 60 kali.

Library yang digunakan:

- numpy untuk operasi matriks

Soal 3: Nilai dan Vektor Eigen dengan Built-in Function (5 Poin)

Gunakan fungsi eig dari numpy.linalg untuk mencari semua nilai dan vektor eigen dari matriks di soal sebelumnya.

Bandingkan hasilnya dengan metode Power Method.

Library yang digunakan:

- numpy.linalg.eig

Soal 4: Regresi Kuadrat Terkecil (Least Squares Regression) (10 Poin)

Diberikan data buatan berikut:

```
import numpy as np

x = np.linspace(0, 5, 301)

y = 25 * x + np.random.random(len(x))
```

Gunakan metode Least Squares Regression (LSR) untuk menemukan parameter α_1 dan α_2 dalam model regresi linier sederhana:

```
y = \alpha_1 x + \alpha_2
```

Tampilkan hasil regresi dalam bentuk grafik scatter plot dengan garis regresi.

Library yang digunakan:

- numpy untuk perhitungan matriks
- matplotlib untuk visualisasi

Soal 5: Perbandingan Metode Pseudo-inverse dan LSTSQ (10 Poin)

Bandingkan hasil regresi di soal sebelumnya dengan menggunakan metode Pseudo-inverse dan built-in function numpy.linalg.lstsq.

Library yang digunakan:

- numpy.linalg.pinv untuk Pseudo-inverse
- numpy.linalg.lstsq untuk built-in function

Soal 6: Interpolasi Lagrange – Implementasi Manual (10 Poin)

Buat fungsi Python my_lagrange(x, y, X) yang menerima titik data (x, y) dan menghitung nilai interpolasi Lagrange untuk titik-titik di X.

Gunakan nested for-loop tanpa menggunakan library scipy.interpolate.lagrange.

Library yang digunakan:

- numpy untuk operasi array

Soal 7: Interpolasi Lagrange – Visualisasi Hasil (10 Poin)

Gunakan fungsi my_lagrange(x, y, X) yang telah dibuat untuk menghitung interpolasi dari titik data berikut:

$$x = [1, 2, 5, 7, 9]$$

 $y = [2, 8, 3, -5, 1]$
 $X = \text{np.linspace}(0, 8, 100)$

Buat scatter plot dari titik data asli dan plot hasil interpolasi dalam bentuk garis halus.

Library yang digunakan:

- numpy untuk array
- matplotlib untuk visualisasi

Soal 8: Analisis Konvergensi Metode Iteratif (5 Poin)

Diberikan dua sistem persamaan linear berikut:

Sistem 1:

$$10x_1 - x_2 + 2x_3 = 6$$

 $-1x_1 + 11x_2 - 1x_3 = 25$
 $2x_1 - 1x_2 + 10x_3 = -11$

Sistem 2:

$$3x_1 + 2x_2 + x_3 = 10$$

 $2x_1 + 3x_2 + 2x_3 = 15$
 $x_1 + 2x_2 + 3x_3 = 14$

Tentukan apakah masing-masing sistem dapat diselesaikan dengan metode Gauss-Seidel dengan memeriksa dominasi diagonal matriks koefisiennya.

Library yang digunakan:

- numpy untuk matriks

Soal 9: Penerapan Analisis Numerik dalam Machine Learning (5 Poin)

Diberikan data harga rumah berdasarkan luas tanah, bagaimana metode Interpolasi Lagrange dan Regresi Linier dapat digunakan untuk memprediksi harga rumah dengan luas 150m² jika dataset yang diberikan adalah:

$$x = [50, 75, 100, 125, 175, 200]$$

 $y = [200, 275, 350, 425, 600, 700]$

Bandingkan hasil interpolasi dan regresi dalam bentuk grafik.

Library yang digunakan:

- numpy untuk regresi
- matplotlib untuk visualisasi

Soal 10: Implementasi Metode Numerik dalam Python (10 Poin)

Implementasikan kode Python untuk menyelesaikan persamaan nonlinear berikut dengan metode Newton-Raphson:

$$f(x) = x^3 - 5x + 1$$

Gunakan x_0 = 1 sebagai tebakan awal dan toleransi kesalahan ϵ = 0.0001.

Library yang digunakan:

- numpy untuk fungsi matematika