Computational Photography Term Project

Animation Image Harmonization

Team 11 涂皓鈞 蔡惠芸

Outline

- Introduction & Motivation
- Related Work
- Framework
- Experiment
 - Assumption
 - Justification
- Result
- Conclusion

Introduction & Motivation

• Composited image harmonization

Introduction & Motivation

- The different between real-world image and animation image
 - Color of light source is more various in animation image
 - Color saturation

real-world image

animation image

Related Work

Auto-encoder based structure

Source: Yi-Hsuan Tsai, "Deep Image Harmonization", CVPR 2017

Framework

• Dataset construction

Real Image (Ground Truth)

Foreground Object 2

Color
Transfer
pdf or lab

Composite Image (Training Input)

Framework

• Auto-encoder based model + mask

Experiment-1

- Assumption
 - Artifact around the edge
 - Hard mask → blurred soft mask
- Justification

Experiment-2

- Assumption
 - Patch size: 128 v.s. 256
 - Foreground object size
- Justification

Real image

Composite image

Patchsize=(256, 256) result

Patchsize=(128, 128) result

Small object result

Large object result

Result

	fMSE	MSE	PSNR	SSIM
Ours	62.17	11.83	35.83	0.9763
iSSAM	98.59	13.47	34.60	0.9547

Evaluation results on testing data

Composite image

Ours

iSSAM

Example results of ours and iSSAM work on our animation dataset.

Conclusion

- Construct animation dataset
- Find an appropriate use of model
- Demonstrate that property of animation and real-world image is quite different