la congruenza

γ β

teoremi sugli angoli

teorema sugli angoli complementari

Se due angoli sono complementari di uno stesso angolo **allora** sono congruenti

In generale:

Se due angoli sono complementari di due angoli congruenti **allora** sono congruenti

teorema sugli angoli supplementari

Se due angoli sono supplementari di uno stesso angolo **allora** sono congruenti

In generale:

 $\textbf{Se} \ \ \text{due angoli sono supplementari di due angoli congruenti} \\ \ \ \textbf{allora} \ \ \text{sono congruenti} \\$

teorema sugli angoli esplementari

Se due angoli sono esplementari di uno stesso angolo **allora** sono congruenti

In generale:

Se due angoli sono esplementari di due angoli congruenti **allora** sono congruenti

teorema sugli angoli opposti al vertice

Gli angoli opposti al vertice sono congruenti

teoremi sui triangoli

I criterio di congruenza

Se due triangoli hanno due lati e l'angolo tra essi compresi congruenti **allora** sono congruenti

II criterio di congruenza

Se due triangoli hanno due angoli e il lato tra essi compreso congruenti **allora** sono congruenti

III criterio di congruenza

Se due triangoli hanno i tre lati congruenti **allora** sono congruenti

I teorema sul triangolo isoscele

Se un triangolo è isoscele allora gli angoli adiacenti alla base sono congruenti

Vale anche l'inverso:

Se un triangolo ha due angoli congruenti **allora** il triangolo è isoscele

II teorema sul triangolo isoscele

Se un triangolo è isoscele allora la bisettrice dell'angolo al vertice è mediana e altezza relativa alla base

Vale anche:

In un triangolo isoscele

- la mediana relativa alla base è bisettrice dell'angolo al vertice e altezza relativa alla base
- l'altezza relativa alla base è mediana relativa alla base e bisettrice dell'angolo al vertice

I teorema sul triangolo equilatero

Se un triangolo è equilatero **allora** gli angoli sono tutti congruenti

Vale anche l'inverso:

Se un triangolo ha tutti gli angoli congruenti **allora** è un triangolo equilatero

II teorema sul triangolo equilatero

Se un triangolo è equilatero **allora** le tre mediane coincidono con le tre bisettrici e con le tre altezze

II criterio di congruenza generalizzato

Se due triangoli hanno due angoli e un lato congruenti **allora** sono congruenti

I criterio di congruenza dei triangoli rettangoli

Se due triangoli rettangoli hanno i due cateti congruenti **allora** sono congruenti

II criterio di congruenza dei triangoli rettangoli

Se due triangoli rettangoli hanno un cateto e l'angolo acuto opposto congruenti

allora sono congruenti

Se due triangoli rettangoli hanno un cateto e l'angolo acuto adiacente congruenti allora sono congruenti

III criterio di congruenza dei triangoli rettangoli

Se due triangoli rettangoli hanno l'ipotenusa e un angolo acuto congruenti

allora sono congruenti

IV criterio di congruenza dei triangoli rettangoli

Se due triangoli rettangoli hanno l'ipotenusa e un cateto congruenti **allora** sono congruenti

teorema della mediana in un triangolo rettangolo

In ogni triangolo rettangolo la mediana relativa all'ipotenusa è congruente alla metà dell'ipotenusa stessa

teorema inverso della mediana in un triangolo rettangolo

Se in un triangolo la mediana relativa al lato maggiore è congruente alla metà di questo

allora il triangolo è rettangolo

teorema sulla somma degli angoli interni di un triangolo

In un triangolo la somma degli angoli interni è congruente a un angolo piatto

I teorema dell'angolo esterno

In un triangolo ogni angolo esterno è maggiore di ciascun angolo interno non adiacente ad esso

Osserva che:

La somma di due angoli di un triangolo è minore di un angolo piatto

II teorema dell'angolo esterno

In un triangolo ogni angolo esterno è congruente alla somma degli angoli interni non adiacenti ad esso

I teorema sulle disuguaglianze dei lati di un triangolo

Se un triangolo ha due lati disuguali **allora** al lato maggiore si oppone l'angolo maggiore

Vale anche:

Se un triangolo ha due angoli disuguali allora all'angolo maggiore si oppone il lato maggiore

II teorema sulle disuguaglianze dei lati di un triangolo

In un triangolo ogni lato:

- è minore della somma degli altri due
- è maggiore della differenza degli altri due

Ad esempio:

- a < b + c
- a > b c

relazione tra gli elementi di due triangoli

Se due triangoli hanno due lati congruenti e gli angoli compresi disuguali

allora dei terzi lati è maggiore quello opposto all'angolo maggiore

Vale anche l'inverso:

Se due triangoli hanno due lati congruenti e i terzi lati diseguali allora degli angoli opposti ai terzi lati è maggiore quello opposto al lato maggiore

teoremi sui poligoni

Se due poligoni con lo stesso numero di lati hanno congruenti tutti i lati e gli angoli compresi ad *eccezione* di **due** lati consecutivi e dell'angolo compreso

allora essi sono congruenti

II criterio di congruenza dei poligoni

Se due poligoni con lo stesso numero di lati hanno congruenti tutti i lati e gli angoli compresi ad *eccezione* di **due** angoli e del lato compreso

allora essi sono congruenti

III criterio di congruenza dei poligoni

Se due poligoni con lo stesso numero di lati hanno congruenti tutti i lati e gli angoli compresi ad *eccezione* di **tre** angoli consecutivi **allora** essi sono congruenti

teorema sulle disuguaglianze dei lati di un poligono

In un poligono ogni lato è minore della somma di tutti gli altri lati

Ad esempio:

 $\bullet \quad a < b + c + d + e$

relazione tra i perimetri di due poligoni

Se un poligono convesso è inscritto in un altro poligono **allora** il suo perimetro è minore del perimetro del poligono circoscritto

teoremi sulle rette perpendicolari e sulle rette parallele

teorema sulle rette perpendicolari

Se due rette incidenti formano un angolo retto **allora** esse sono perpendicolari

teorema sull'esitenza ed unicità della retta perpendicolare

Da un punto esterno ad una retta passa una ed una sola perpendicolare alla retta stessa

Il teorema vale anche nel caso in cui il punto appartiene alla retta

teorema sulla distanza di un punto da una retta

La distanza di un punto da una retta è il segmento di perpendicolare condotto dal punto alla retta

Osserva che:

La distanza di un punto da una retta è il segmento minore tra tutti i segmenti condotti dal punto alla retta

teorema sull'esistenza di rette parallele

Se due rette sono perpendicolari ad una stessa retta **allora** esse sono parallele tra loro

teorema sulle rette parallele tagliate da una trasversale

Due rette parallele tagliate da una trasversale formano:

- angoli alterni interni ed alterni esterni congruenti
- angoli corrispondenti congruenti
- angoli coniugati interni e coniugati esterni supplementari

criterio di parallelismo

Se due rette tagliate da una trasversale formano:

- angoli alterni interni o alterni esterni congruenti o
- angoli corrispondenti congruenti o
- angoli coniugati interni o coniugati esterni supplementari

allora le due rette sono parallele

proprietà transitiva del parallelismo

Se due rette sono parallele ad una terza retta **allora** esse sono parallele tra loro

distanza tra due rette parallele

Se due rette sono parallele allora i punti di una retta hanno uguale distanza dall'altra retta

cioè le due rette mantengono sempre la stessa distanza

teoremi sulle proiezioni

teorema sulle proiezioni congruenti

Se due segmenti obliqui condotti da un punto ad una retta hanno proiezioni congruenti allora essi sono congruenti

Vale anche l'inverso:

Se due segmenti obliqui condotti da un punto ad una retta sono congruenti allora hanno proiezioni congruenti

teorema sulle proiezioni non congruenti

Se due segmenti obliqui condotti da un punto ad una retta hanno proiezioni **non** congruenti

allora è maggiore il segmento avente proiezione maggiore

Vale anche l'inverso:

Se due segmenti obliqui condotti da un punto ad una retta non sono congruenti allora quello maggiore ha proiezione maggiore

teorema generale sulle proiezioni

La proiezione di un segmento su una retta è minore o uguale del segmento stesso

teoremi sui quadrilateri particolari

teorema sul trapezio

Se un trapezio è isoscele allora

- gli angoli adiacenti alle basi sono congruenti
- le diagonali sono congruenti

In un parallelogrammo:

- - i triangoli in cui esso viene diviso da una diagonale sono congruenti

teorema sul parallelogrammo

- i lati opposti sono a due a due congruenti
- gli angoli opposti sono a due a due congruenti
- le diagonali si incontrano nel loro punto medio
- gli angoli adiacenti a ciascun lato sono supplementari

teorema inverso sul parallelogrammo

Se un quadrilatero ha:

- i lati opposti a due a due congruenti o
- gli angoli opposti a due a due congruenti o
- le diagonali che si incontrano nel loro punto medio o
- gli angoli adiacenti a ciascun lato supplementari o
- due lati opposti congruenti e paralleli

allora il quadrilatero è un parallelogrammo

teorema sul rettangolo

In un rettangolo le diagonali sono congruenti

Vale anche l'inverso:

Se un parallelogrammo ha le diagonali congruenti **allora** è un rettangolo

teorema sul rombo

In un rombo le diagonali sono

- perpendicolari tra loro
- bisettrici degli angoli interni

Vale anche l'inverso:

Se in un parallelogrammo le diagonali sono

- perpendicolari tra loro o
- bisettrici degli angoli interni

allora il parallelogrammo è un rombo

primi teoremi sul fascio di rette parallele

teorema sul fascio di rette parallele

Se un fascio di rette parallele è tagliato da due trasversali **allora** a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull'altra trasversale

teorema della parallela dal punto medio di un lato di un triangolo

Se dal punto medio di un lato di un triangolo si conduce la parallela ad un secondo lato

allora questa incontra il terzo lato nel suo punto medio

teorema sulla corda dei punti medi di due lati di un triangolo

Se una corda di un triangolo ha per estremi i punti medi di due lati **allora** essa è parallela al terzo lato ed uguale alla sua metà

teoremi sulla circonferenza

teorema sulla relazione tra diametro e corda

In una circonferenza, un diametro è maggiore di qualunque corda

teorema sull'asse di una corda

Se un diametro di una circonferenza è perpendicolare ad una corda **allora** il diametro la dimezza

Vale anche:

L'asse di una corda passa per il centro della circonferenza

teorema sui punti di una circonferenza

Per tre punti non allineati passa una ed una sola circonferenza

Vale anche:

Tre punti di una circonferenza non possono essere allineati

I teorema sulle corde e loro distanza dal centro

Se due corde di una stessa circonferenza, o di due circonferenze congruenti, sono congruenti

allora sono equidistanti dal centro

Se due corde di una stessa circonferenza, o di due circonferenze congruenti, hanno la stessa distanza dal centro

allora sono congruenti

II teorema sulle corde e loro distanza dal centro

Se due corde di una stessa circonferenza, o di due circonferenze congruenti, sono disuguali

allora la corda maggiore ha distanza minore dal centro

Vale anche l'inverso:

 ${f Se}$ due corde di una stessa circonferenza, o di due circonferenze congruenti, hanno distanza disuguale dal centro

allora è maggiore la corda con distanza minore dal centro

teorema sulla relazione tra archi, corde e angoli al centro

Se due angoli al centro di una stessa circonferenza, o di due circonferenze congruenti, sono congruenti

allora gli archi e le corde corrispondenti sono congruenti

Vale anche l'inverso:

Se due archi (corde) di una stessa circonferenza, o di due circonferenze congruenti, sono congruenti

allora le corde (gli archi) e gli angoli al centro corrispondenti sono congruenti

teorema sulla posizione reciproca di una retta e di una circonferenza

Se la distanza di una retta dal centro di una circonferenza è minore, uguale o maggiore del raggio

allora la retta ha in comune con la circonferenza rispettivamente due punti (secante), un punto (tangente), nessun punto (esterna)

Vale anche l'inverso:

Se una retta ha in comune con una circonferenza due punti o un punto o nessun punto **allora** la retta ha distanza dal centro della circonferenza, rispettivamente, minore, uguale o maggiore del raggio

teorema sulla retta tangente ad una circonferenza

Se una retta è tangente in un punto ad una circonferenza allora è perpendicolare al raggio in quel punto

Vale anche l'inverso:

Se una retta è perpendicolare al raggio in un punto appartenente alla circonferenza allora la retta è tangente alla circonferenza in quel punto

I teorema sulla posizione reciproca di due circonferenze circonferenze esterne

Se due circonferenze hanno i punti dell'una esterni all'altra allora la distanza tra i centri è maggiore della somma dei raggi

Vale anche l'inverso:

Se la distanza tra i centri di due circonferenze è maggiore della somma dei raggi allora le due circonferenze hanno i punti dell'una esterni all'altra (circonferenze esterne)

II teorema sulla posizione reciproca di due circonferenze circonferenze tangenti esterne

Se due circonferenze hanno un punto in comune e i punti dell'una esterni all'altra

allora la distanza tra i centri è congruente alla somma dei raggi

Se la distanza tra i centri di due circonferenze è congruente alla somma dei raggi **allora** le due circonferenze hanno un punto in comune (circonferenze tangenti esterne)

III teorema sulla posizione reciproca di due circonferenze circonferenze secanti

Se due circonferenze hanno due punti in comune **allora** la distanza tra i centri è minore della somma dei raggi e maggiore della differenza dei raggi

Vale anche l'inverso:

Se la distanza tra i centri di due circonferenze è minore della somma dei raggi e maggiore della differenza dei raggi

allora le due circonferenze hanno due punti in comune (circonferenze secanti)

IV teorema sulla posizione reciproca di due circonferenze circonferenze tangenti interne

Se due circonferenze hanno un punto in comune e i punti dell'una interni all'altra

allora la distanza tra i centri è congruente alla differenza dei raggi

Vale anche l'inverso:

Se la distanza tra i centri di due circonferenze è congruente alla differenza dei raggi **allora** le due circonferenze hanno un punto in comune (circonferenze tangenti interne)

V teorema sulla posizione reciproca di due circonferenze circonferenze interne

Se due circonferenze hanno i punti dell'una interna all'altra allora la distanza dei centri è minore della differenza dei raggi

Vale anche l'inverso:

Se la distanza dei centri di due circonferenze è minore della differenza dei raggi **allora** i punti dell'una sono interni all'altra (circonferenze interne)

teorema sugli angoli alla circonferenza

In ogni circonferenza un angolo alla circonferenza è congruente alla metà dell'angolo al centro che insiste sullo stesso arco o sulla stessa corda

I teorema sugli angoli alla circonferenza

Se due angoli alla circonferenza insistono sullo stesso arco o sulla stessa corda

allora sono congruenti

II teorema sugli angoli alla circonferenza

Se due angoli alla circonferenza insistono su archi o su corde congruenti

allora sono congruenti

Vale anche l'inverso:

Se due angoli alla circonferenza sono congruenti allora gli archi e le corde su cui insistono sono congruenti

III teorema sugli angoli alla circonferenza

Se un angolo alla circonferenza insiste su una semicirconferenza **allora** è retto

Un triangolo inscritto in una semicirconferenza è rettangolo

teorema delle tangenti ad una circonferenza

Se da un punto esterno ad circonferenza si tracciano le tangenti ad essa

allora i segmenti compresi tra il punto esterno e i punti di tangenza alla circonferenza sono congruenti

Vale anche:

La retta che congiunge il punto esterno alla circonferenza con il suo centro è bisettrice dell'angolo formato dalle due tangenti

luoghi geometrici

asse di un segmento

L'asse di un segmento è il luogo geometrico dei punti equidistanti dagli estremi del segmento

bisettrice di un angolo

La bisettrice di un angolo è il luogo geometrico dei punti equidistanti dai lati dell'angolo

punti notevoli di un triangolo

circocentro

Gli assi dei tre lati di un triangolo passano per uno stesso punto detto circocentro

incentro

Le bisettrici degli angoli interni di un triangolo passano per uno stesso punto detto incentro

L'incentro è il centro della circonferenza inscritta al triangolo

baricentro

Le mediane dei lati di un triangolo passano per uno stesso punto detto baricentro. Il baricentro divide ciascuna mediana in due parti tale che quella contenente il vertice è doppia dell'altra

Osserva che:

Il baricentro di una figura viene indicato tradizionalmente con la lettera ${f G}$

ortocentro

Le altezze relative ai lati di un triangolo passano per uno stesso punto detto ortocentro

triangolo equilatero

In un triangolo equilatero i punti notevoli coincidono

Osserva che:

In un triangolo equilatero il raggio della circonferenza circoscritta al triangolo è doppio del raggio della circonferenza inscritta al triangolo stesso

distanza del baricentro dai lati di un triangolo

In ogni triangolo la distanza del baricentro da un lato è congruente alla terza parte dell'altezza relativa allo stesso lato

teorema di Eulero

In ogni triangolo il circocentro, il baricentro e l'ortocentro sono allineati cioè giacciono sulla stessa retta detta retta di Eulero. La distanza tra il baricentro e l'ortocentro è doppia della distanza tra baricentro e circocentro

corollario al teorema di Eulero

La distanza del circocentro da un lato è congruente alla metà del segmento che congiunge l'ortocentro con il vertice opposto a tale lato

poligoni inscritti e circoscritti ad una circonferenza

teorema sui quadrilateri inscritti

Se un quadrilatero è inscritto in una circonferenza allora gli angoli opposti sono supplementari

Vale anche l'inverso:

Se un quadrilatero ha gli angoli opposti supplementari allora è inscrittibile in una circonferenza

corollario

Se un quadrilatero è inscrittibile in una circonferenza allora un suo angolo esterno è congruente all'angolo interno opposto al suo adiacente

Vale anche:

Se un quadrilatero ha due angoli opposti retti allora è inscrittibile in una circonferenza

teorema sui quadrilateri circoscritti

Se un quadrilatero è circoscritto ad una circonferenza **allora** la somma di due lati opposti è congruente alla somma degli altri due lati

Vale anche l'inverso:

Se in un quadrilatero la somma di due lati opposti è congruente alla somma degli altri due allora il quadrilatero è circoscrittibile ad una circonferenza

corollario

Se in un trapezio isoscele la somma della basi è congruente al doppio del lato obliquo

allora il trapezio è circoscrittibile ad una circonferenza

Ogni quadrilatero equilatero è circoscrittibile ad una circonferenza

teorema sulla inscrittibilità e circoscrittibilità dei poligoni regolari

Se un poligono è regolare **allora** si può inscrivere e circoscrivere con due circonferenze concentriche

teorema sui poligoni regolari

Se si divide una circonferenza in tre o più archi congruenti allora il poligono ottenuto congiungendo successivamente i punti di divisione e il poligono ottenuto conducendo le tangenti alla circonferenza negli stessi punti sono poligoni regolari

teorema sul lato dell'esagono regolare

Il lato di un esagono regolare è congruente al raggio della circonferenza circoscritta ad esso

l'equivalenza e la similitudine

teoremi sull'equivalenza

teorema sull'equivalenza di parallelogrammi

Se due parallelogrammi hanno le basi e le altezze congruenti **allora** essi sono equivalenti

secondo teorema sull'equivalenza di parallelogrammi

Se due parallelogrammi sono equivalenti ed hanno le basi congruenti **allora** essi hanno anche le altezze congruenti

Vale anche:

Se due parallelogrammi sono equivalenti ed hanno le altezze congruenti allora essi hanno anche le basi congruenti

teorema sull'equivalenza del triangolo e del parallelogrammo

Se un triangolo ha la stessa altezza di un parallelogrammo e la base congruente al doppio di quella del parallelogrammo **allora** il triangolo e il parallelogrammo sono equivalenti

Vale anche:

Se due triangoli hanno le basi e le altezze congruenti **allora** essi sono equivalenti

teorema sull'equivalenza di due triangoli

Se due triangoli hanno le basi e le altezze congruenti **allora** essi sono equivalenti

Se due triangoli sono equivalenti ed hanno le basi (o le altezze) congruenti **allora** essi hanno anche le altezze (o le basi) congruenti

teorema sull'equivalenza del triangolo e del trapezio

Se un triangolo ha la stessa altezza di un trapezio e la base congruente alla somma delle basi del trapezio **allora** il triangolo e il trapezio sono equivalenti

teorema sull'equivalenza di un poligono circoscritto ad una circonferenza e di un triangolo

Se un poligono è circoscritto ad una circonferenza allora è equivalente ad un triangolo che ha la base congruente al perimetro del poligono e altezza congruente al raggio della circonferenza

teorema sull'equivalenza di un poligono regolare e di un triangolo

Se un poligono è regolare

allora è equivalente ad un triangolo avente la base congruente al perimetro del poligono e altezza congruente all'apotema del poligono (cioè al raggio della circonferenza inscritta nel poligono)

teorema sull'equivalenza del trapezio rettangolo e del rettangolo

Se un trapezio rettangolo è circoscrittibile ad una circonferenza **allora** esso è equivalente ad un rettangolo avente i lati congruenti alle basi del trapezio

teorema sull'equivalenza del triangolo rettangolo e del rettangolo

Un triangolo rettangolo è equivalente al rettangolo i cui lati sono congruenti ai due segmenti in cui l'ipotenusa è divisa dal punto di contatto con la circonferenza inscritta nel triangolo rettangolo

I teorema di Euclide (enunciato secondo l'equivalenza)

In un triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo che ha per dimensioni la proiezione del cateto sull'ipotenusa e l'ipotenusa stessa

Vale anche l'inverso:

Se il quadrato costruito su un lato minore di un triangolo è equivalente al rettangolo che ha per dimensioni la proiezione del lato minore sul lato maggiore e il lato maggiore **allora** il triangolo è rettangolo

II teorema di Euclide (enunciato secondo l'equivalenza)

In un triangolo rettangolo il quadrato costruito sull'altezza relativa all'ipotenusa è equivalente al rettangolo che ha per dimensioni le proiezioni dei cateti sull'ipotenusa

Vale anche l'inverso:

Se il quadrato costruito sull'altezza relativa al lato maggiore di un triangolo è equivalente al rettangolo che ha per dimensioni le proiezioni degli altri due lati sul lato maggiore allora il triangolo è rettangolo

teorema di Pitagora

In un triangolo rettangolo il quadrato costruito sull'ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti

Vale anche l'inverso:

Se il quadrato costruito sul lato maggiore di un triangolo è equivalente alla somma dei quadrati costruiti sugli altri due lati **allora** il triangolo è rettangolo

Grandezze omogenee e Grandezze proporzionali

$$\frac{l}{d}$$
 = irrazionale

teorema sull'incommensurabilità tra il lato e la diagonale del quadrato

Il lato del quadrato e la sua diagonale sono segmenti incommensurabili

Osserva che:

Il rapporto tra il lato del quadrato e la sua diagonale è un numero irrazionale, cioè un numero decimale con infinite cifre diverse dopo la virgola

Se a e b sono due grandezze commensurabili allora $\frac{a}{b}$ può essere:

- 1. un numero intero
- un numero decimale con finite cifre dopo la virgola
- 3. un numero periodico Se a e b sono due grandezze incommensurabili allora $\frac{a}{b}$ è un numero decimale con infinite cifre diverse dopo la virgola

teorema sul rapporto di grandezze commensurabili

Se il rapporto di due grandezze omogenee è un numero razionale **allora** le due grandezze sono commensurabili

Il rapporto di due grandezze commensurabili è un numero razionale Il rapporto di due grandezze incommensurabili è un numero irrazionale

= **:**

a:b=c:d

teorema fondamentale sulla proporzionalità

Condizione necessaria e sufficiente affinché quattro grandezze a due a due omogenee siano in proporzione è che lo siano le loro misure

teorema sulla quarta proporzionale

Assegnate tre grandezze se le prime due sono omogenee tra loro allora esiste ed è unica la quarta grandezza omogenea con la terza che è quarta proporzionale dopo le tre

Se a = b allora a' = b'Se a + b = c allora a' + b' = c'

Criterio generale di proporzionalità

Condizione necessaria e sufficiente affinché le grandezze di due classi in corrispondenza biunivoca siano direttamente proporzionali è che:

- a grandezze uguali in una classe corrispondono grandezze uguali dell'altra
- alla somma di due o più grandezze qualsiasi di una classe corrisponde la somma delle grandezze corrispondenti dell'altra classe

teoremi sui rettangoli proporzionali alle basi

I rettangoli aventi altezze congruenti sono proporzionali alle rispettive basi

Vale anche:

I rettangoli aventi basi congruenti sono proporzionali alle rispettive altezze

 $\mathbf{a} : \mathbf{b} = \alpha : \beta$

teorema sugli elementi proporzionali in un cerchio

Gli archi di uno stesso cerchio o di cerchi congruenti sono proporzionali ai rispettivi angoli al centro

teorema sui rettangoli equivalenti e sui segmenti in proporzione

Se quattro segmenti sono in proporzione **allora** il rettangolo che ha per lati i segmenti estremi della proporzione è equivalente al rettangolo che ha per lati i segmenti medi della proporzione

Vale anche l'inverso:

Se due rettangoli sono equivalenti

allora due lati consecutivi dell'uno sono i medi e i due lati consecutivi dell'altro sono gli estremi di una stessa proporzione

teorema sui segmenti e sui quadrati in proporzione

Se quattro segmenti sono in proporzione **allora** i quadrati costruiti su di essi sono in proporzione

CP: PB = AC: AB

teorema sulla bisettrice dell'angolo interno di un triangolo

La bisettrice dell'angolo interno di un triangolo divide il lato opposto in parti proporzionali agli altri due lati

Vale anche l'inverso:

Se un punto interno ad un lato di un triangolo divide il lato in parti proporzionali agli altri due lati

allora la congiungente il punto con il vertice opposto è la bisettrice dell'angolo compreso tra gli altri due lati del triangolo

teorema sulla bisettrice dell'angolo esterno di un triangolo

Se la bisettrice di un angolo esterno di un triangolo incontra il prolungamento del lato opposto in un punto

allora le distanze di questo punto dagli estremi di quel lato sono proporzionali agli altri due lati

Vale anche l'inverso:

Se un punto del prolungamento di un lato di un triangolo è tale che le sue distanze dagli estremi di quel lato sono proporzionali agli altri lati

allora la congiungente questo punto con il vertice opposto è la bisettrice del corrispondente angolo esterno del triangolo

teorema di Talete

Dato un fascio di rette parallele tagliato da due trasversali i segmenti determinati su una trasversale sono proporzionali ai corrispondenti segmenti sull'altra trasversale

corollario del teorema di Talete

Se una retta è parallela ad un lato di un triangolo allora sulle rette degli altri due lati si determinano segmenti proporzionali

Vale anche l'inverso:

Se una retta determina sui due lati di un triangolo segmenti proporzionali allora essa è parallela al terzo lato

 $AC \cdot BD = (AB \cdot DC) + (AD \cdot BC)$

teorema di Tolomeo

Se un quadrilatero è inscritto in una circonferenza allora il prodotto delle misure delle diagonali è congruente alla somma dei prodotti delle misure dei lati opposti

Vale anche l'inverso:

Se il prodotto delle misure delle diagonali di un quadrilatero è congruente alla somma dei prodotti delle misure dei lati opposti

allora il quadrilatero è inscrittibile in una circonferenza

teoremi sulla similitudine

PP'C è simile ad ABC

teorema fondamentale della similitudine

Se una retta passante per un lato di un triangolo è condotta parallelamente ad un altro suo lato allora la retta determina un triangolo simile al triangolo iniziale

ABC è simile ad A'B'C'

I criterio di similitudine

Se due triangoli hanno gli angoli congruenti allora essi sono simili

Vale anche:

Se due triangoli hanno due angoli congruenti allora essi sono simili

ABC è simile ad A'B'C'

II criterio di similitudine

Se due triangoli hanno due lati in proporzione e gli angoli tra essi compresi congruenti

allora essi sono simili

III criterio di similitudine

Se due triangoli hanno i tre lati ordinatamente in proporzione allora essi sono simili

AH : AC = AC : AB

I teorema di Euclide (enunciato secondo la proporzionalità)

In un triangolo rettangolo ogni cateto è medio proporzionale tra la proiezione del cateto sull'ipotenusa e l'ipotenusa stessa

AH : CH = CH : HB

II teorema di Euclide (enunciato secondo la proporzionalità)

In un triangolo rettangolo l'altezza relativa all'ipotenusa è media proporzionale tra le proiezioni dei cateti sull'ipotenusa

teorema delle altezze

Se due triangoli sono simili **allora** le basi stanno tra loro come le rispettive altezze

teorema dei perimetri

Se due triangoli sono simili **allora** i perimetri stanno tra loro come due lati omologhi

teorema delle aree

Se due triangoli sono simili **allora** le aree stanno tra loro come i quadrati di due lati omologhi

In generale:

Se due poligoni sono simili

allora le aree stanno tra loro come i quadrati di due lati omologhi

I teorema dei poligoni regolari

Se due poligoni sono regolari e hanno lo stesso numero di lati **allora** essi sono simili

teorema della bisettrice

In ogni triangolo il prodotto delle misure di due lati è congruente al quadrato della misura della bisettrice dell'angolo da essi formato aumentato del prodotto delle misure dei segmenti in cui tale bisettrice divide il terzo lato

AP : CP = PD : PB

teorema delle corde

Se due corde di una stessa circonferenza si intersecano in un punto **allora** i segmenti formati su una stessa corda sono indifferente medi o estremi di una stessa proporzione

Vale anche l'inverso:

Se due segmenti si intersecano in un punto tale che le parti appartenenti ad uno stesso segmento sono medi o estremi di una proporzione

allora gli estremi dei segmenti dati appartengono alla stessa circonferenza

AP : DP = CP : BP

teorema delle secanti

Se da un punto esterno ad una circonferenza si conducono due secanti

allora l'intera parte e la parte esterna di ciascuna secante sono indifferentemente medi oppure estremi di una stessa proporzione

Vale anche l'inverso:

Se due segmenti consecutivi ma non adiacenti sono tali che un segmento e una sua parte sono medi proporzionali tra l'altro segmento e una sua parte

allora i quattro punti estremi non comuni dei quattro segmenti in proporzione appartengono alla stessa circonferenza

PC: PT = PT: PB

teorema della tangente e della secante

Se da un punto esterno ad una circonferenza si conduce una tangente e una secante

allora il segmento di tangenza è medio proporzionale tra l'intera secante e la sua parte esterna

Vale anche l'inverso:

Se un punto di uno di due segmenti consecutivi ma non adiacenti è tale che determina due parti estremi proporzionali all'altro segmento

allora l'altro segmento è tangente alla circonferenza passante per i tre estremi non comuni dei segmenti

teorema sul lato del decagono regolare

Il lato del decagono regolare inscritto in una circonferenza è congruente alla sezione aurea del raggio

il lato è medio proporzionale tra il raggio e la differenza tra il raggio e il lato cioè $r{:}\; l = l = (r - l)$

teorema sul lato del pentagono regolare

Il lato del pentagono regolare è congruente all'ipotenusa di un triangolo rettangolo avente per cateti il raggio della circonferenza inscritta e la sezione aurea del lato del pentagono stesso