

Jáder Louis de Souza Gonçalves¹

Nicolas Figueiredo Cavalcante Sales²

Wyllgner França de Amorim³

Orientador:Dr. Lucas Margues de Cunha⁴

https://github.com/visagetrack-project

1. Introdução

Em um mundo cada vez mais dinâmico e conectado, a busca por otimização e personalização se torna cada vez mais presente. No âmbito educacional e corporativo, essa necessidade se traduz na busca por métodos mais eficientes para garantir a presença e o engajamento dos funcionários ou alunos, elementos cruciais para o sucesso do processo de aprendizagem e produtividade. Tradicionalmente, a chamada de presença é realizada de forma manual, um processo moroso, sujeito a erros e que demanda tempo valioso que poderia ser dedicado a atividades mais produtivas. A mensuração do engajamento, por sua vez, é ainda mais desafiadora, muitas vezes se limitando a métodos subjetivos e pouco precisos, como a observação individualizada do comportamento em sala de aula ou reuniões. Essas deficiências geram consequências diretas na qualidade do ensino e na produtividade no trabalho.

Diante desse cenário, o projeto Visage Track surge como uma solução inovadora e disruptiva. Através da utilização de tecnologias de reconhecimento facial e análise de expressões, o Visage Track automatiza a chamada de presença e fornece análises detalhadas sobre o engajamento dos alunos e colaboradores, abrindo portas para um novo mundo de possibilidades na educação e no trabalho.

2. Revisão de Literatura

2.1 Unity

Segundo Santos (2021), o Unity se destaca como um motor de jogo multiplataforma, viabilizando a criação de games 2D e 3D para desktops, consoles, dispositivos móveis, realidade virtual e aumentada. Sua interface intuitiva e amigável facilita o aprendizado, tornando-o acessível tanto para iniciantes quanto para profissionais experientes.

2.1.1 Geração Procedural

Segundo Oliveira (2023), a geração procedural desponta como uma

ferramenta poderosa na criação de conteúdo digital, abrindo um universo de possibilidades para artistas e desenvolvedores. Através de algoritmos sofisticados, mapas, texturas, modelos 3D, músicas e até histórias são gerados automaticamente, com base em regras e parâmetros predefinidos.2.1.2.1 Geração de Caracteristicas Procedurais

2.1.2.2 Ferramentas para Geração de Caracteristicas

No trabalho de SHAN, Y (2021) aborda o uso de tecnologias avançadas na criação de personagens 3D de forma procedural, destacando ferramentas inovadoras que permitem aos desenvolvedores e artistas gerar personagens ricos e detalhados com eficiência e rapidez. Entre as tecnologias mencionadas, o Houdini se destaca por sua capacidade de oferecer um ambiente robusto de modelagem, animação e efeitos visuais, permitindo a criação complexa de personagens e ambientes com grande controle e precisão. Por outro lado, o Autodesk Character Generator e o Character Creator 3 são ferramentas que facilitam a criação de personagens detalhados, fornecendo uma vasta gama de opções de personalização que podem ser ajustadas para atender às necessidades específicas de um projeto.

2.2 Processamento de Imagens

2.2.2 Convolução

Esta é uma operação matemática que combina duas funções para produzir uma terceira função. No contexto da pesquisa de Chávez (2013), processamento de imagens, a convolução é utilizada para aplicar um filtro sobre uma imagem. Isso é feito "convoluindo" a imagem com um kernel ou máscara, que é uma pequena matriz usada para aplicar efeitos como desfoque, nitidez, realce de bordas, entre outros. A convolução é uma ferramenta poderosa pois permite a aplicação de diversas operações de filtragem espacial de maneira eficiente e eficaz, sendo fundamental em muitas aplicações de processamento de imagens.

2.2.3 Texturização Procedural

O trabalho de Íñigo Quílez em 2005 é um exemplo notável da aplicação da texturização procedural na geração de nuvens 2D que imitam o aspecto de nuvens volumétricas reais. Para criar essas camadas dinâmicas de nuvens 2D, o método começa com a definição de parâmetros pelo usuário, como a densidade das nuvens e a nitidez.

2.3 Estatística e Cálculo Linear

2.3.1 Simulação Estatística

Na aplicação de simulações computacionais e análises estatísticas ao estudo de fenômenos complexos, como a dinâmica populacional de pragas de importância econômica, a estatística desempenha um papel crucial em modelar, analisar e interpretar os dados gerados. Esse tipo de abordagem permite que pesquisadores e profissionais compreendam melhor os padrões, tendências e potenciais impactos dessas pragas, contribuindo significativamente para o desenvolvimento de estratégias de manejo mais eficazes. No trabalho de Castro e Oliveira (2010), por exemplo, a simulação computacional e a análise estatística são aplicadas ao estudo da dinâmica populacional do bicho-mineiro do cafeeiro e do ácaro rajado, pragas que representam sérias ameaças à produção de café devido aos danos significativos que podem causar às plantas.

2.3.2 Regressão Linear

Segundo Chein (2019), a Regressão Linear é uma técnica estatística que visa modelar e investigar a relação entre duas ou mais variáveis. Esta técnica assume que existe uma relação linear entre a variável dependente (ou variável de interesse) e uma ou mais variáveis independentes (ou variáveis preditoras). A

regressão linear pode ser simples, quando envolve apenas uma variável independente, ou múltipla, quando envolve duas ou mais variáveis independentes.

2.4 Inteligencia Artificial

De acordo com Coppin (2010), Inteligência Artificial é um campo da ciência da computação dedicado a criar sistemas capazes de realizar tarefas que, até então, requeriam intervenção humana. A IA engloba uma gama de técnicas e metodologias que permitem às máquinas aprender, raciocinar, perceber, inferir, comunicar e tomar decisões de forma autônoma. Esta área busca simular a capacidade cognitiva humana em máquinas, permitindo-lhes executar tarefas complexas, variando desde o reconhecimento de padrões até a solução de problemas de maneira inteligente.

3. Metodologia

- ¹Jáder Louis de Souza Gonçalves, Ciência da Computação, UNIR, <u>jaderlouis@proton.me</u>.
- ²N. Figueiredo Cavalcante Sales, Ciência da Computação, UNIR. nicolascavalcante0101@gmail.com.
- ³ Wyllgner França de Amorim, Ciência da Computação, UNIR, wyllgner franca@hotmail.com.
- Orientador: Dr. Lucas Marques de Cunha, UNIR, <u>lucas.marques@unir.br</u>

No início do projeto, a pesquisa exploratória emergiu como um componente vital na etapa preliminar, capacitando a equipe a alcançar uma compreensão profunda das tecnologias emergentes a serem utilizadas. Esta fase inicial foi marcada por uma investigação aprofundada sobre frameworks de ponta, variados tipos de Redes Neurais Convolucionais (CNNs), e a deliberação acerca da escolha da CNN mais adequada ao contexto do projeto, além de explorar técnicas avançadas de algoritmos. A natureza aberta e flexível dessa abordagem exploratória permitiu a identificação e seleção de ferramentas e metodologias inovadoras, que foram posteriormente adaptadas e integradas ao projeto, criando um fundamento robusto para o desenvolvimento subsequente.

Adicionalmente, a pesquisa aplicada desempenhou um papel essencial na superação dos desafios específicos do projeto, em especial os relacionados à busca por soluções eficazes que não implicassem em complicadas questões jurídicas. Através desta metodologia, a equipe pôde se concentrar em estratégias práticas e factíveis, assegurando que o projeto progredisse de forma ética e alinhada às normativas vigentes, mantendo ao mesmo tempo seu caráter inovador.

4. Resultados Alcançados

Ao avaliar o projeto em seu estágio atual, pode-se constatar que foram alcançados resultados satisfatórios para o nível de aplicação pretendido, que é o de um protótipo de uma ideia de projeto com potencial para ser aplicada ao mundo real, transcendendo o ambiente simulado. Esses resultados são um testemunho do cuidadoso planejamento, da implementação rigorosa das várias metodologias de pesquisa, e da aplicação de tecnologias de inteligência artificial e simulação.

A criação do ambiente Unity foi realizada a partir de materiais modelados em 3D pela própria equipe, onde se decidiu sobre o modelo dos seres e os nomes que eles iriam receber, sendo batizados de "blobs". Esses seres foram projetados para possuir suas próprias características distintas, cores e comportamentos conforme suas reações.

A diversidade de comportamentos e características faciais geradas proceduralmente permite uma ampla variação entre os blobs, garantindo que

cada ser possui uma identidade única.

Para a criação da simulação estatística, realizou-se uma ampla análise de fórmulas e métodos com o objetivo de criar um ambiente o mais próximo possível da realidade. Na primeira tentativa, era notável que os blobs possuíam tendência a estarem sempre mais atentos ou tristes, o que não era o ideal. Após muita reflexão pela equipe, decidiu-se por uma sequência de fórmulas matemáticas para atingir os valores esperados.

A partir do momento em que os blobs começaram a ser gerados e a se comportar de maneira satisfatória para a simulação, iniciou-se a implementação da geração procedural para os blobs. Nessa fase, embora cada blob possua exatamente a mesma forma básica, e tamanho de olhos, bocas e demais características faciais sejam uniformes, a técnica de geração procedural é aplicada para introduzir variações sutis e únicas em cada indivíduo.

A partir deste modelo pai, são extraídas as características atuais, e, com base nisso, é gerada uma imagem de ruído base, esta imagem de ruído serve como um mapa de possibilidades, delineando as variações permitidas para cada característica dos blobs, como o tamanho dos olhos e da boca. O critério de que os tamanhos não podem variar mais de 10 pixels em relação ao modelo pai é um mecanismo de controle para garantir a consistência e a credibilidade visual dos blobs.

A inteligência artificial (IA), utilizada no projeto, foi projetada para funcionar tanto como um sistema de detecção de objetos quanto para a análise de expressões faciais. Seu principal objetivo é detectar a presença dos blobs dentro do ambiente simulado e, simultaneamente, identificar suas expressões faciais.

Utilizando A CNN MobileNet que possibilita esta abordagem bifuncional que realiza compreensão mais profunda e detalhada do comportamento dos blobs, captando não apenas sua localização, mas também seu estado emocional em momentos específicos. Ao detectar um blob, a IA analisa sua expressão facial, utilizando os modelos treinados para reconhecer as diferentes emoções e comportamentos previamente definidos, como felicidade, tristeza, raiva, surpresa, entre outros. É feito um processo de transformação desses dados em um valor único de engajamento para cada dia. Inicialmente, é realizada a soma dos índices de humor de todos os blobs presentes, excluindo-se os ausentes. Essa soma é então convertida em um valor de engajamento que oscila entre -50 e +50, representando a dinâmica emocional coletiva dos blobs no respectivo dia. Cada ponto gerado nessa análise compõe a curva da regressão linear, representando visualmente o desempenho diário dentro do ambiente simulado.

A regressão linear é empregada com o propósito de avaliar o desempenho geral dos blobs, considerando as nuances de comportamento e variações emocionais manifestadas por suas expressões faciais. Essa metodologia de análise é atualizada periodicamente, a cada dez dias, proporcionando uma visão temporal aprofundada sobre o desenvolvimento e as transformações no comportamento dos blobs. Tal periodicidade é essencial para observar como interações específicas e eventos no ambiente influenciam os blobs ao longo do tempo.

O projeto se estrutura em componentes de Web, Comunicação e IA. A interface web, desenvolvida em Flutter, integra autenticação e banco de dados Firebase. A comunicação é facilitada por APIs, com a primária implementada em Go para interação web, uma secundária em Python para processamento de

imagens e uma terciária em C# para geração de imagens dos blobs e comunicação entre as APIs, incluindo a criação de novos ambientes Unity.

5. Conclusão

Através da integração bem-sucedida de diversas tecnologias e metodologias de pesquisa, o projeto não apenas atingiu seus objetivos iniciais, mas também abriu caminhos para futuras aplicações no mundo real, transcendendo suas origens como um protótipo de conceito.

A escolha estratégica de utilizar MobileNet com TensorFlow Lite para a criação do modelo de IA, juntamente com a eficácia das APIs de comunicação desenvolvidas, assegurou a eficiência e a sustentabilidade do projeto, mesmo diante de limitações de recursos. Além disso, a prática ética de converter imagens em dados e excluí-las subsequentemente reforça o compromisso da equipe com os princípios de responsabilidade e privacidade no desenvolvimento tecnológico.

Durante o projeto, uma série de lições valiosas foi aprendida no contexto de processamento de imagens, especialmente no que diz respeito à implementação e otimização de técnicas de inteligência artificial para reconhecimento e análise de expressões faciais em um ambiente simulado.

Durante o desenvolvimento do projeto, além das valiosas lições aprendidas no contexto de processamento de imagens, a equipe também adquiriu uma ampla gama de conhecimentos em desenvolvimento de software. A necessidade de utilizar diversas linguagens de programação e frameworks, incluindo Go, Flutter para desenvolvimento web, C# e C++ para o desenvolvimento no Unity, e Python com TensorFlow para o processamento de dados e inteligência artificial, proporcionou uma experiência de aprendizado rica e diversificada.

5. Referências

CHÁVEZ, G. **Fundamentos** . 2013. decom.ufo. Disponível em: http://www.decom.ufop.br/guillermo/BCC326/slides/Processamento-de-Imagens-Fundamentos.pdf>. Acesso em: 29 jan. 2024.

Mateas, M., & Stern, A. **Procedural content generation techniques for games**. In Proceedings of the 2005 ACM SIGGRAPH symposium on Video games (pp. 247-254). ACM.: URL Mateas & Stern, 2005

Unity Technologies¹. **UnityWebRequest**. Unity Manual. (2023). Disponível em: https://docs.unity3d.com/Manual/UnityWebRequest.html/>. Acesso em: 8 mar. 2024. ¹

OLIVEIRA, R. Complete Guide to Procedural Level Generation in Unity – Part 2. (2023). Disponível em: https://gamedevacademy.org/complete-guide-to-procedural-level-generation-in-unity-part-2/. Acesso em: 8 mar. 2024.

SHAN, Y. School of Arts Master's Programme in Game Design and Production A procedural character generation system. [s.l: s.n.]. (2021). Disponível em: https://aaltodoc.aalto.fi/server/api/core/bitstreams/9d5677f0-d8b8-49d0-9429-9a692310e12a/content. Acesso em: 8 mar. 2024.

Unity Technologies². (2023). **Creating Environments**. Unity Manual. (2023). Disponível em: https://docs.unity3d.com/Manual/CreatingEnvironments.html/>. Acesso em: 8 mar. 2024. ²

SANTOS, B.(2021) **O que é Unity?.** (2022). Disponível em: https://antlia.com.br/artigos/o-que-e-unity/>. Acesso em: 8 mar. 2024.

ARVALDO, N.; IGNACIO, L. **Texturas procedurales**. [s.l.] Universitat de València, 2009. Disponível em: https://www.uv.es/mperezm/proyectos/curso_13_14/presentaciones/Neira_Alvar ado Luis Ignacio TexProceduralGPU.pdf>. Acesso em: 8 mar. 2024.

QUILEZ, I. **2D dynamic clouds - 2005**. (2005). Disponível em: https://iquilezles.org/articles/dynclouds/>. Acesso em: 8 mar. 2024.

CASTRO, A.; DE OLIVEIRA, S. **SIMULAÇÃO COMPUTACIONAL E ANÁLISE ESTATÍSTICA APLICADAS AO ESTUDO DE DIFERENTES ASPECTOS DA DINÂMICA POPULACIONAL DE PRAGAS DE IMPORTÂNCIA ECONÔMICA -O BICHO-MINEIRO DO CAFEEIRO E O ÁCARO RAJADO**. (2010).. Disponível em: http://repositorio.ufla.br/jspui/bitstream/1/3866/1/TESE_Simula%C3%A7%C3%A3o%20computacional%20e%20an%C3%A1lise%20estat%C3%ADstica%20aplica das%20ao%20estudo%20de%20diferentes%20aspectos%20da%20din%C3%A2 mica%20populacional%20de%20pragas%20....pdf>. Acesso em: 8 mar. 2024.

CHEIN, F. Introdução aos modelos de regressão linear Metodologias COLEÇÃO. ENAP, 2019. Disponível em: https://repositorio.enap.gov.br/bitstream/1/4788/1/Livro_Regress%C3%A3o%20Linear.pdf>. Acesso em: 8 mar. 2024.

BEN-GAL, I. Outlier detection. In: MAIMON, O.; ROCKACH, L. (Ed.). Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers. 2nd. ed. [S.I.]: Kluwer Academic Publishers, 2005. cap. 1. Citado 2 vezes nas páginas 15 e 26.

COPPIN, B. INTELIGENCIA ARTIFICIAL - 1°ED.(2010) - Ben Coppin - Livro. [s.l.] LTC, 2010.

FERNEDA, E. **Redes neurais e sua aplicação em sistemas de recuperação de informação**. USP. 2006. Disponível em: ">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/?format=pdf&lang=pt>">https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCd

RODRIGUES, D. **DEEP LEARNING E REDES NEURAIS CONVOLUCIONAIS: RECONHECIMENTO AUTOMÁTICO DE CARACTERES EM PLACAS DE LICENCIAMENTO AUTOMOTIVO**. João Pessoa - Paraíba: UFPA, 2018.

Disponível em: https://repositorio.ufpb.br/jspui/bitstream/123456789/15606/1/DAR20052019.pdf >. Acesso em: 8 mar. 2024.

PINTO, G.; OSHIRO, H.; REIS, H.; DAL, R.; FILHO, M.; CLEMENTE, R.; DE SOUZA, T. Application of MobileNet Convolutional Neural Network for Classification of Pediatric Images of Chest X-rays Aplicação da Rede Neural Convolucional MobileNet para a classificação de imagens pediátricas de raio-x de tórax. Curitiba, Paraná: Conbepro, PPGEP, UTFPR, 2020. Disponível em:

https://aprepro.org.br/conbrepro/2020/anais/arquivos/09262020_180940_5f6fb12091cdd.pdf>. Acesso em: 9 mar. 2024.

Python Software Foundation. **Python 3.9.1 documentation**. 2020. Disponível em: https://docs.python.org/pt-br/3/tutorial/. Acesso em: 8 de março de 2024.

TensorFlow Team. **TensorFlow documentation**. TensorFlow. 2023. Disponível em: https://www.tensorflow.org/. Acesso em: 8 de março de 2024.

ALBERTO, M. **O que é Flutter? O Framework do Iniciante ao Avançado**. Alura. 2023. Disponível em: https://www.alura.com.br/artigos/flutter#:~:text=O%20Flutter%20utiliza%20o%20Dart>. Acesso em: 9 mar. 2024.

LIMA, C. O que é e como começar com Go (Golang)?. TreinaWeb. 2021. Disponível em: https://www.treinaweb.com.br/blog/o-que-e-e-como-comecar-com-golang. Acesso em: 9 mar. 2024.

FERNANDES, A. **O que é API? Entenda de uma maneira simples**. Vertigo Tecnologia. 2018. Disponível em: https://vertigo.com.br/o-que-e-api-entenda-de-uma-maneira-simples/>. Acesso em: 8 mar. 2024.

FERREIRA, G. **HTTP:** desmistificando o protocolo por trás da Web. Alura. 2023. Disponível em: https://www.alura.com.br/artigos/desmistificando-o-protocolo-http-parte-1. Acesso em: 8 mar. 2024.

VIDA UNIVERSITARIA. Conheça os tipos de metodologia de pesquisa que você pode usar no seu TCC. 2020. Disponível em: https://www.universia.net/br/actualidad/vida-universitaria/conheca-os-tipos-metodologia-pesquisa-que-voce-pode-usar-seu-tcc-1166813.html. Acesso em: 9 mar. 2024.