Contents

1	Classes					
	1.1	real - 1	real numbers and its functions	3		
		1.1.1	RealField – field of real numbers	5		
			1.1.1.1 getCharacteristic – get characteristic	6		
			1.1.1.2 issubring – subring test	6		
			1.1.1.3 issuperring – superring test	6		
		1.1.2	Real – a Real number	7		
			1.1.2.1 getRing – get ring object	8		
		1.1.3	Constant – real number with error correction	9		
		1.1.4	ExponentialPowerSeries – exponential power series	9		
		1.1.5	AbsoluteError – absolute error	9		
		1.1.6	RelativeError – relative error	9		
		1.1.7	exp(function) – exponential value	9		
		1.1.8	sqrt(function) – square root	9		
		1.1.9	$\log(\text{function}) - \log_{\text{arithm}} \dots \dots \dots$	9		
		1.1.10	$log1piter(function) - iterator of log(1+x) \dots \dots$	9		
		1.1.11	piGaussLegendre(function) – pi by Gauss-Legendre	9		
		1.1.12	eContinuedFraction(function) – Napier's Constant by con-			
			tinued fraction expansion	9		
		1.1.13	floor(function) – floor the number	10		
		1.1.14	$ceil(function) - ceil the number \dots \dots$	10		
			$tranc(function) - round-off the number \dots \dots$	10		
		1.1.16	$\sin(\text{function}) - \text{sine function} \dots \dots$	10		
		1.1.17	$\cos(\text{function}) - \cos\text{ine function}$	10		
		1.1.18	$tan(function) - tangent function \dots \dots$	10		
		1.1.19	$\sinh(\text{function}) - \text{hyperbolic sine function} \dots \dots$	10		
		1.1.20	cosh(function) – hyperbolic cosine function	10		
		1.1.21	tanh(function) – hyperbolic tangent function	10		
		1.1.22	$asin(function) - arc sine function \dots \dots$	11		
		1.1.23	$acos(function) - arc cosine function \dots \dots$	11		
		1.1.24	atan(function) – arc tangent function	11		
		1.1.25	atan2(function) – arc tangent function	11		
		1.1.26	hypot(function) – Euclidean distance function	11		
		1.1.27	now(function) = power function	11		

1.1.28	degrees(function) – convert angle to degree	11
1.1.29	radians(function) – convert angle to radian	11
1.1.30	fabs(function) – absolute value	11
1.1.31	fmod(function) – modulo function over real	11
1.1.32	frexp(function) – expression with base and binary exponent	12
1.1.33	ldexp(function) – construct number from base and binary	
	exponent	12
1.1.34	EulerTransform(function) – iterator yields terms of Euler	
	transform	19

Chapter 1

Classes

1.1 real – real numbers and its functions

The module real provides arbitrary precision real numbers and their utilities. The functions provided are corresponding to the math standard module.

- Classes
 - RealField
 - Real
 - †Constant
 - †ExponentialPowerSeries
 - †AbsoluteError
 - †RelativeError
- Functions
 - exp
 - sqrt
 - log
 - log1piter
 - piGaussLegendre
 - eContinuedFraction
 - floor
 - ceil
 - tranc
 - sin
 - cos

- tan
- sinh
- cosh
- tanh
- asin
- acos
- atan
- atan2
- hypot
- pow
- degrees
- radians
- fabs
- fmod
- frexp
- ldexp
- EulerTransform

This module also provides following constants:

e :

This constant is obsolete (Ver 1.1.0).

 \mathbf{pi} :

This constant is obsolete (Ver 1.1.0).

Log 2:

This constant is obsolete (Ver 1.1.0).

${\bf the Real Field} \ :$

the Real Field is the instance of **Real Field**.

1.1.1 RealField – field of real numbers

The class is for the field of real numbers. The class has the single instance the Real Field.

This class is a subclass of **Field**.

Initialize (Constructor)

RealField() o RealField

Create an instance of RealField. You may not want to create an instance, since there is already **theRealField**.

Attributes

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

Operations

operator	explanation
x in R	membership test; return whether an element is in or not.
repr(R)	return representation string.
str(R)	return string.

Methods

1.1.1.1 getCharacteristic – get characteristic

```
{\tt getCharacteristic(self)} \rightarrow integer
```

Return the characteristic, zero.

1.1.1.2 issubring – subring test

$$\textbf{issubring(self, aRing: } \textcolor{red}{\textbf{Ring}}) \rightarrow \textit{bool}$$

Report whether another ring contains the real field as subring.

${\bf 1.1.1.3}\quad {\bf is superring-superring\ test}$

```
is superring(self, aRing: \frac{\textbf{Ring}}{}) \rightarrow \textit{bool}
```

Report whether the real field contains another ring as subring.

1.1.2 Real – a Real number

Real is a class of real number. This class is only for consistency for other **Ring** object.

This class is a subclass of **CommutativeRingElement**.

All implemented operators in this class are delegated to Float type.

Initialize (Constructor)

 $\mathbf{Real}(\mathbf{value}:\, number) \,
ightarrow\, Real$

Construct a Real object.

value must be int, long, Float or Rational.

Methods

1.1.2.1 getRing – get ring object

 $\mathbf{getRing}(\mathbf{self}) \to \textit{RealField}$

Return the real field instance.

1.1.3 Constant – real number with error correction

This class is obsolete (Ver 1.1.0).

1.1.4 ExponentialPowerSeries – exponential power series

This class is obsolete (Ver 1.1.0).

1.1.5 AbsoluteError – absolute error

This class is obsolete (Ver 1.1.0).

1.1.6 RelativeError – relative error

This class is obsolete (Ver 1.1.0).

1.1.7 exp(function) – exponential value

This function is obsolete (Ver 1.1.0).

$1.1.8 \quad \text{sqrt(function)} - \text{square root}$

This function is obsolete (Ver 1.1.0).

1.1.9 log(function) – logarithm

This function is obsolete (Ver 1.1.0).

1.1.10 $\log 1 \text{piter}(\text{function}) - \text{iterator of } \log (1+x)$

 $log1piter(xx: number) \rightarrow iterator$

Return iterator for $\log(1+x)$.

1.1.11 piGaussLegendre(function) – pi by Gauss-Legendre

This function is obsolete (Ver 1.1.0).

1.1.12 eContinuedFraction(function) – Napier's Constant by continued fraction expansion

This function is obsolete (Ver 1.1.0).

1.1.13 floor(function) – floor the number

 $floor(x: number) \rightarrow integer$

Return the biggest integer not more than x.

1.1.14 ceil(function) – ceil the number

 $ceil(x: number) \rightarrow integer$

Return the smallest integer not less than x.

1.1.15 tranc(function) – round-off the number

 $tranc(x: number) \rightarrow integer$

Return the number of rounded off x.

$1.1.16 \sin(\text{function}) - \sin \text{e} \text{ function}$

This function is obsolete (Ver 1.1.0).

$1.1.17 \quad \cos(\text{function}) - \cos(\text{function})$

This function is obsolete (Ver 1.1.0).

1.1.18 tan(function) – tangent function

This function is obsolete (Ver 1.1.0).

1.1.19 sinh(function) – hyperbolic sine function

This function is obsolete (Ver 1.1.0).

1.1.20 cosh(function) – hyperbolic cosine function

This function is obsolete (Ver 1.1.0).

1.1.21 tanh(function) – hyperbolic tangent function

This function is obsolete (Ver 1.1.0).

1.1.22 asin(function) – arc sine function

This function is obsolete (Ver 1.1.0).

1.1.23 acos(function) – arc cosine function

This function is obsolete (Ver 1.1.0).

1.1.24 atan(function) – arc tangent function

This function is obsolete (Ver 1.1.0).

1.1.25 atan2(function) – arc tangent function

This function is obsolete (Ver 1.1.0).

1.1.26 hypot(function) – Euclidean distance function

This function is obsolete (Ver 1.1.0).

1.1.27 pow(function) – power function

This function is obsolete (Ver 1.1.0).

1.1.28 degrees(function) – convert angle to degree

This function is obsolete (Ver 1.1.0).

1.1.29 radians(function) – convert angle to radian

This function is obsolete (Ver 1.1.0).

1.1.30 fabs(function) – absolute value

 $fabs(x: number) \rightarrow number$

Return absolute value of x

1.1.31 fmod(function) – modulo function over real

 $fmod(x: number, y: number) \rightarrow number$

Return x-ny, where **n** is the quotient of **x** / y, rounded towards zero to an integer.

1.1.32 frexp(function) – expression with base and binary exponent

 $frexp(x: number) \rightarrow (m,e)$

Return a tuple (m,e), where $x=m\times 2^e,\ 1/2\leq \mathtt{abs}(\mathtt{m})<1$ and \mathtt{e} is an integer.

†This function is provided as the counter-part of math.frexp, but it might not be useful.

1.1.33 ldexp(function) – construct number from base and binary exponent

 $\mathbf{ldexp}(\mathtt{x:}\; number, \; \mathtt{i:}\; number) \to number$

Return $x \times 2^i$.

1.1.34 EulerTransform(function) – iterator yields terms of Euler transform

 $EulerTransform(iterator: iterator) \rightarrow iterator$

Return an iterator which yields terms of Euler transform of the given iterator.

Bibliography