HERITABLE TUMOR CELL DIVISION RATE HETEROGENEITY INDUCES CLONAL DOMINANCE

MARGRIET PALM, MARJET ELEMANS, AND JOOST BELTMAN

DRUG DISCOVERY & SAFETY LACDR, LEIDEN UNIVERSITY

DDS2 Meeting Leiden - January 15th 2018

m.m.palm@lacdr.leidenuniv.nl

INTRATUMORAL HETEROGENEITY

Image from Jamal-Hanjani et al., Clin. Canc. Res., 2015

- Cells within the same tumor vary:
 - variation in environment may cause difference in phenotype
 - variation in genotype/epigenetics may cause difference in phenotype
- Different clones respond differently to treatment

SOURCE OF INTRATUMORAL HETEROGENEITY

Image adapted from https://en.wikipedia.org/wiki/Tumour_heterogeneity

How to identify the *correct* hypothesis?

- Build computational model for each hypothesis
- Compare:
 - in vitro development of tumor cell population (published data)
 - in silico development of tumor cell population in matching experiment

ITERATED GROWTH & PASSAGE EXPERIMENT

Experimental setup as described in Porter et al. (Gen. Biol., 2014):

- Preparation
 - Barcodes are inserted in the DNA using a lentiviral vector
 - Infected cells are selected (using a GFP tag) and grown
 - Three cell populations, each containing 3·10⁵, cells are taken
- Experiment (three biological replicates)
 - Each population grows for 3 days, after which 4·10⁶ are present
 - 3·10⁵ cells are passed on to the next generation

ITERATED GROWTH & PASSAGE EXPERIMENT

We re-analyzed the experiments from Porter *et al.* (Gen. Biol., 2014), using the FASTQ files in the NIH Sequence Read Archive.

- K562 cell (chronic myelogenous leukemia cell line)
- Clones disappear and clonal dominance increases

COMPUTATIONAL MODEL OF SIMPLE GROWTH & PASSAGE

Initialization

- lacksquare ~12.000 clones with size c_i and $\sum_i c_i = 3 \cdot 10^5$.
- Clone sizes assigned too fit the experimental data.

Growth

- lacktriangle Each cell grows with a given rate r_i
- lacksquare Growth continues until $\sum_i c_i = 4 \cdot 10^6$

Passage

= $3 \cdot 10^5$ cells are taken randomly and passed to the next generation

SIMULATIONS WITH STOCHASTIC GROWTH & PASSAGE

- All cells growth with rate r
 - lacksquare deterministic: $c_i(t+\Delta t)=c_i(t)e^{r\Delta t}$
 - stochastic: c_i evolves with au-leaping Gillespie algorithm

- Clones disappear at a rate similar to that in vitro
- Clonal dominance does not develop

TEST HYPOTHESES FOR CLONAL DOMINANCE

Image adapted from https://en.wikipedia.org/wiki/Tumour_heterogeneity

MODEL WITH CANCER STEM CELLS

model based on Weekes et al., Bull. Math. Biol., 2014

- Parameterization based on analytical solution
- Monotonic growth for p₁ > p₃
- Population growth rate depends on r_{DC} and maximum DC age (M)

MODEL WITH CANCER STEM CELLS

- Cancer stem cells do not induce clonal dominance
- Almost all clones disappear

MODEL WITH CANCER STEM CELLS

TEST HYPOTHESES FOR CLONAL DOMINANCE

Image adapted from https://en.wikipedia.org/wiki/Tumour_heterogeneity

- Clonal evolution: division rate mutation
- Mutation requires tracking of individual cells

AGENT BASED MODEL (ABM) WITH WITH CLONAL EVOLUTION

- Cell i has a division rate r_i and a barcode.
- Initial variation to mimic evolution before experiment:
 - $r_i = rY$ with Y taken from $\mathcal{N}(1,\sigma_r^2)$
- Division
 - ullet division rate mutates: $r_{
 m child} = r_{
 m parent} X$ with X taken from $\mathcal{N}(1,\sigma_{
 m m}^2)$
- Division rate increases during the experiment

ITERATED GROWTH & PASSAGE WITH CLONAL EVOLUTION

Clone loss increases with division rate variation

Gini coefficient increases with division rate variation

MATCHING ABM TO IN VITRO RESULTS FOR K562

Maximum likelyhood estimation that includes the 3 time points

Results for best fit for Gini coefficient

MODEL DOES NOT REPRODUCE CLONAL OVERLAP

- No clonal overlap in the simulation because of initialization:
 - Simulation initialization: large population with clones distributed based on data at P0
 - Actual initialization: cells growth for 7-8 days after barcodes are inserted
- There should be correlation between division rates for cells of the same clone

IN VITRO RESULTS FOR CLONAL K562

• clonal K562 cell line is derived from a single cell

- Less clone loss compared to K562 cell line
- No development of clonal dominance

MATCHING ABM TO CLONAL K562 RESULTS

- Expectations:
 - Less initial variation \Rightarrow lower σ_r than for K562
 - Same cell type \Rightarrow similar $\sigma_{\rm m}$ as with K562
- Changes as expected:

	clonal K562	K562
σ_{r}	0	0.036
σ_{m}	0.002	0.0018
min(MLE)	~2000	~5

MATCHING ABM TO CLONAL K562 RESULTS

- Both clone loss is hard to match (min(MLE) = ~2000)
- Gini coefficient matches better (min(MLE) = ~5)

IN VITRO RESULTS FOR HELA CELLS

- Clone loss starts late
- Clonal dominance develops similar to K562 cell line

MATCHING ABM TO HELA RESULTS

Better fit for Gini coefficient

CONCLUSION

- Model based on cancer stem cells does not match in vitro iterated growth and passage
- Model based on clonal evolution can match in vitro iterated growth and passage
 - Model fits well to changes in clone size distribution observed in vitro
 - Model predicts same mutation dynamics for polyclonal and monoclonal K562 cells
 - Model fails to predict correct clone loss for monoclonal K562 and HeLa cells
 - Model fails to reproduce major clone overlap

NEXT STEP - SPACE

• In vivo lineage tracing shows various clone size dynamics

- Current model cannot simulate in vivo tumor development
- Matthijs should be able to tell us more in ~6 months....

FINALLY

- Accepted for PLoS Computational Biology
- It took
 - 6 submissions
 - to 5 journalsover ~14 months

HERITABLE TUMOR CELL DIVISION RATE HETEROGENEITY INDUCES CLONAL DOMINANCE

MARGRIET PALM, MARJET ELEMANS, AND JOOST BELTMAN

DRUG DISCOVERY & SAFETY LACDR, LEIDEN UNIVERSITY

DDS2 Meeting Leiden - January 15th 2018

m.m.palm@lacdr.leidenuniv.nl

LINEAGE TRACING WITH GENETIC BARCODES

• construct with random base pair sequence

• construct is inserted, e.g. with a virus vector

TAU-LEAPING INTERVAL

MODEL WITH CSC AND DIVISION RATE HETEROGENEITY

Division rate heterogeneity induces clonal dominance, but does not reduce excessive clone loss

MODEL WITH CSC AND DIVISION RATE HETEROGENEITY

Division rate standard deviation determines clonal dominance

CSC₀ and p₁ determine clone loss

Best fit with 100% CSCs that only divide into CSCs.

ALTERNATIVE DIVISION RATE DISTRIBUTION

CLONAL K562 CLONE LOSS CANNOT BE MATCHED

- Minimal clone loss for a model without any division rate variation
- Clone loss observed with clonak K562 is larger than that in a simulation without division rate variation

