23T2 COMP4601 Week 2 Lab Hand-in exercises

Exercise 1:

i.

Clock		10ns	s	9ns	8	ns	7ns		6ns		5ns		4ns		3ns		2ns		1ns	
ap_clk	Target	10.0	0 ns	9.00 n	8 8	.00 ns	7.00	ns	6.00	ns	5.00 n	ıs	4.00 ו	ns	3.00 ns	5	2.00 ns	T	1.00 ns	
	Estimated	7.19	0 ns	7.190	ns 5	.232 ns	5.23	2 ns	5.232	ns 2	3.880	ns	2.960	ns	2.020 r	าร	1.668 ns	5	1.199 ns	
Latency																				
			10n:	S	9ns	8r	ıs	7ns		6ns		5ns		4ns		3n	S	21	ns	1ns
Latency	cycles)	min	23		23	34		34		23		23		24		27		40	0	51
		max	23		23	34		34		34		45		57		93		12	28	150
Latency	Latency (absolute)		0.23	0 us	0.207	us 0.2	o.272 us		0.238 us		38 us	0.115 us 96.0		000 ns 81.000 ns		.000 ns	80.000 ns		61.149 r	
		max	0.23	0 us	0.207	us 0.2	272 us	0.23	88 us	0.20)4 us	0.22	25 us	0.22	28 us	0.2	79 us	0.	256 us	0.180 us
Interval (cycles)	min	23		23	34	34		34		23 23			24		27		40	0	51
		max	23		23	34		34		34		45		57		93		12	28	150
ilization	Estimates																			
	10ns	9ns	8ns	7ns	6ns	5ns	4ns	3ns	2ns	1r	ns									
BRAM_18	K 0	0	0	0	0	0	0	0	0	0										
OSP48E	4	4	4	4	4	4	4	4	4	4										
FF	211	211	217	217	244	287	619	725	799	98	36									
LUT	221	221	218	218	227	233	299	221	282	28	36									
URAM	0	0	0	0	0	0	0	0	0	0										

- ii. More clock period provides smaller area usage, with fewer intervals, fewer cycles, and fewer gaps between min and max, but more absolute latency.
- iii. In terms of latency, a clock period of 1ns performs the best with an average of 120ns absolute latency even though it takes the highest number of cycles. In terms of utilization, a clock period of 9ns performs the best with the least number of both flip-flops and look-up-table usages (with the same number of usages as a clock period of 10ns but having less absolute latency).
- iv. The FPGA has 234240 flip-flops available and 117120 look-up tables available. By comparing 10ns and 1ns solutions, the usage of flip-flops is reduced by 0.003% while the usage of look-up tables is reduced by 0.0005%. This means the reduction of the usage of flip-flops is more significant than the usage of look-up tables even though the number of look-up tables available is less than the flip-flops.
- v. The factor influencing the estimated clock period (worst-case delay) is the resources used since it needs to be optimized to meet the timing requirement.
- vi. In the if-else statement, the first branch requires only 4 cycles but the other requires 13 cycles. That's why the minimum iteration latency is 4 and the maximum is 13.

Exercise 2:

		10ns	new_ifelse
Latency (cycles)	min	23	21
	max	23	21
Latency (absolute)	min	0.230 us	0.210 us
	max	0.230 us	0.210 us
Interval (cycles)	min	23	21
	max	23	21

Utilization Estimates

	10ns	new_ifelse
BRAM_18K	0	0
DSP48E	4	4
FF	211	121
LUT	221	222
URAM	0	0

- i. The new design has less latency and interval cycles, and less estimated clock period, with 1 extra lookup table and 90 fewer flip-flops.
- ii. The new solution has a smaller estimated clock period with the same number of uncertainty. In terms of latency, the new solution takes 2 fewer cycles from iterating 1 less iteration.
- iii. Instead of iterating the loop 11 times, the new design only iterates 10 times and computes the last multiplication separately from the iteration.

Exercise 3:

■ Timing

Clock		10ns	partition
ap_clk	Target	10.00 ns	10.00 ns
	Estimated	7.190 ns	6.435 ns

□ Latency

		10ns	partition
Latency (cycles)	min	23	44
	max	23	44
Latency (absolute)	min	0.230 us	0.440 us
	max	0.230 us	0.440 us
Interval (cycles)	min	23	44
	max	23	44

Utilization Estimates

	10ns	partition
BRAM_18K	0	0
DSP48E	4	2
FF	211	129
LUT	221	205
URAM	0	0

The new design has less estimated clock period. It has a higher number of interval and latency cycles since it is not pipelined and has to iterate 2 loops (TDL and MAC). It uses up fewer areas/resources (flip-flops, look-up tables, DSP) because it does fewer operations in one iteration.

Exercise 4:

erforman	ce Estimate	es										
∃ Timing												
Clock		pai	tition	tion unro		II_4 unrol		unro	II_TDL	array.	array_partition	
ap_clk	Target	10.	10.00 ns		10.00 ns		10.00 ns		10.00 ns		ns	
	Estimated	6.4	35 ns	s 6.435		6.43	.435 ns 6.		6.435 ns		ns	
Latency												
			part	ition	unro	oll_4	unr	oll_8	unroll	TDL	array_par	titio
Latency ((cycles)	min	44		40		43		32		23	
		max	44		44		51		32		23	
Latency (absolute)	min	0.44	0 us	0.40 us		0.430 us		0.320	us	0.230 us	
		max	0.44	0 us	0.44	0 us	0.5	10 us	0.320	us	0.230 us	
Interval (cycles)	min	44	44			43		32		23	
		max	44	44			51		32		23	
tilization	Estimates											
	partitio	on I	unroll_4	uni	roll_8	uni	oll_T	DL	array_pa	rtition		
BRAM_18	K 0		2	2		2	2		0			
DSP48E	2		2		2		2		2			
FF	129		118	147		320		727				
LUT	205		360	532		313		167				
URAM	0	-)	0		0			0			

As the unroll factor is increased, the number of resources used is also increased for both flip-flips and look-up tables but not the others. Interval and latency cycles are also increased accordingly. In terms of latency, unrolling with a factor of 4 is slightly better compared to not unrolling, but with a factor of 8 is much worse with an increasing number of DSP, FF, and LUT. When unrolling completely, the number of resources used is changed (in this case, the number of flip-flops used is increased but the look-up table is decreased compared to using other factors) to gain the best performance in terms of latency (better performances but used up more resources compared to not unrolling). However, when trying to partition the arrays while unrolling completely, it achieves a better performance in terms of latency with no BRAM used, more flip-flops used but fewer look-up tables used.

Exercise 5:

By unrolling the MAC loop, it has a higher estimated clock period but better performance in terms of latency (since TDL's load and write take many cycles). It uses up more BRAM, DSP, and URAM but less FF. This is because it needs to do more multiplication at a time compared to the other two designs.

Exercise 6:

Clock		MAC		pipelined_1		pipelined_2		pipelined_3		pipelined_4		
ap clk	Target		10.00 ns		ns n	10.00 ns		10.00 ns		10.00 ns		
up_c.ix	Estimated	6.43		6.435 ns		6.435 ns		6.435 ns		6.435 ns		
Latency												
			MAC		pipelin	ed_1	pipelin	ed_2	pipelin	ed_3	pipeline	d_4
Latency ((cycles)	min	44		34		45		45		45	
		max	44		34		45		45		45	
Latency (absolute)		min	0.44	0 us	us 0.340 us		0.450 us		0.450 u	IS	0.450 us	
		max	0.440 us		us 0.340 us		0.450 us		0.450 u		0.450 us	
Interval (cycles)	min	44		34		45		45	45		
		max	44		34		45		45		45	
tilization	Estimates											
	MAC	pipeli	ned_1	pi	pelined_2	2 pi	pelined_	3 pi	pelined_4	4		
BRAM_18	K 0	0	0			0		0				
DSP48E	2	2		2	2			2				
FF	129	127		12	125		125		125			
LUT	205	224		21	210		210		210			
URAM	0	0		0		0	0		0			

In terms of utilization, there are not many differences between them. In terms of latency, having pipelined with 1 II beats all the other solutions.

Increasing the II tends to increase latency cycles and decrease the number of resources used compared to less II, however, it stops changing after II equals to the number of the loop's iteration latency (2 in this case).