Stewart House 32 Russell Square London WC1B 5DN

FINAL

January 2001

HWK

Advanced Supplementary/Advanced Level

17-01-01

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
1.(0)	Resolving vertically e.g. $R_p + R_Q = 70$ $R_p = 20 \implies R_Q = 50$	M ₁ A ₁ (2)
C CH	A valid moments equation e.g. Rp x 0:5 + RQ x x = 70 x \frac{3}{2}	MI
	$20 \times 0.5 + 50 \times 2 = 70 \times \frac{3}{2}$	DMI
	Completing method to find AQ AQ = 1.9	A1 cao (4)
a .	T ISN	
(a)	ONE Modulin equation e.g. Tond = 15 of Tsid = 29 are most likely but T=15 cod + 29 sid, 29 cod = 15 sid	Mi
	also privible as is also hamis cheren. One equation correct; second independent equi, correct (omission of g loss A1 only) L. 15 0 141 only)	AI +AI MIAIFE
	tan $\chi = \frac{29}{15}$ or $\frac{2}{15}$ [tend = $\frac{15}{29}$ scars M1 A0] Answer for χ as 53 or 52.6	A1 (6)
(b)	Using valid equation (line 1 M1 required) to extract value of T (or climinating & from valid equations	MI
	T = 24.7 or 25 "Over accurate" answers in (a) or (b) or bot which round	

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
3.(0)	For particle A T-3mg = 3ma	MI
	Note T-mg=ma or T-m=ma etc scores MI)	$A_1 \rightarrow A_1(3)$
(h)	T - 3 mg = 3m ($\frac{2}{5}$ 9) \rightarrow T = $\frac{21}{5}$ mg String is inextensible	B1 (1)
(c)	For particle B $kmg - T = km a$ $(\sigma r system) kmg - 3mg = (km + 3m) a$	
	(or system) King - 3 mg = (Km + 3 m) a]	AIFF
	$kq - \frac{21}{5}q = \frac{2}{5}kq$ (or equivalent equation in k)	DMI
	Solving DMI dependent on first MI in (c)	A1 cas (4)
l	Tension is of some magnitude throughout the strong	B1 (1)
	At $t=0$ $T_P = 2i-j$; At $t=2$, $T_P = 6i+j$	
	Velocity of P constant $\Rightarrow y_P = \frac{(b\underline{i}+\underline{j})-(2\underline{i}-\underline{j})}{2}$	MIAI AIRE (3)
	Up = 2i+1 (one slip in i or j only)	AIAt. (3)
(4)	arctan 1/2 (or arctan 2 about for MI) 26.6° only	A1 (2)
(c)	$\vec{OC} = 2i - j + 5(2i + j)$ OR $6i + j + 3(2i + j)$	MI
	$\overrightarrow{OC} = 12i + 4j$	A(4t
	(oc) = 1(122+42)	AI Ft.
	OC = 12.6 only or equivalent fit. anner given to I decimal place also depends or MI+MI	(4)

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks	
5.(a)	Before $\rightarrow 4.5$ $\leftarrow 3$ Momentum conserved on system A $\bigcirc \bullet$ $\bigcirc \bullet$ $\bigcirc \bullet$ $\bigcirc B$ O $\bigcirc b \times 4.5 - 0.2 \times 3 = 0.6 \times 2 + 0.2 \times V$ Solving for $V \rightarrow V = 4.2$	MI AI	(4)
	Change in momentum of A of B attempted $0.2(3+4.2)$ or $0.6(4.5-2.1) \rightarrow 1.44$ units NS	AIFE BI	(3)
(c)	R = mg uR = jung = retarding force or decelleration jung ,	BI -MI	
	$V^2 = U + 2aS$ applied $0 = 4\cdot 2 - 2\mu g \times 2$ $M = \frac{4\cdot 2^2}{4g} = 0.45$ $M = \frac{4\cdot 2^2}{4g} = 0.45$	MI AIFE	(6)
6 (A)	G1 2 stages V stope G2 3 stages V stope +G1 for 2,7,4 on overs.	63,2,1,0	(3)
(4)	Using v=u+at -> v=9.8 x2 = 19.6	MIAI R. CL	(2)
(c)	Stage 1 distance $\frac{1}{2} \times 9.8 \times 4$ or $\frac{1}{2} \times 2 \times 19.6 = 19.6$ Stage 2 distance $\frac{1}{2} (19.6 + 4) \times 5 (000 \text{ equiphet two stage meit od})$ $= 59 (acceleration = 3.12 \text{ MiAI, 59 AI})$	BIFE MIAIFE Alcap	
	Minum high for 11 = 59 + 19.6 = 78.6 m	A1 4.t.	(5)
(4)	From a height of 125m, there are 46.4m to fell at 4 mg to for stage 3 = 46.4 s -> (11.6 s) Total time = 2+5+(11.6) -> 18.65	MI MIAIFT AI COO	(4)
(e)	Air resistance in (a) or equipment sound reason	Ві	(1)

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
7.(0)	$d = \arctan \frac{5}{12}$ $\cos d = \frac{12}{13}$ $\sin d = \frac{5}{13}$ $\cos d = \frac{5}{13}$ $\cos d = \frac{5}{13}$	MIAI
Ò	R = 789 cod	BI
·	F = 789 cnd (0.25) F = 789 sid	MI AI F.E.
	Newton II dong slage attempted with T, F, & inch T-F-G = 78 (0:5)	MI
	Solving for T (dependent on MI)	LDMI
	T = 509.4 (accept this or 510 the 25.f. or 509 th 35.f. mut only	A (9)
(4)	Accelerating force down slage is G-F for Friding reversed and T no longer included)	MI
	Newton II $G - F = 78 \alpha$ $\alpha = g \sin \alpha - \mu g \cos \alpha$	Aı
	$= 9.8 \left(\frac{5}{13} - \frac{3}{13} \right)_{\text{or } \frac{2}{13}} 9$	DM,
	= 1.5, 1.50, 1.51/Scre A2 otter answer which round to 1.5 screet	A251,0 (6)