

UNIVERSIDAD DE GUANAJUATO

D. I. C. I. S.

Microprocessors and Microcontrollers Laboratory

Laboratory session 2:

PIC18F45K50 A/D Converter

Laboratory session 2

PIC18F45K50 A/D Converter

Objetive:

To be able to configure and work with the PIC18F45K50 A/D converter

Resources:

- 1 Microcontroller PIC 18f45K50
- 8 LEDs
- 8 220 Ω resistors
- 1 Potentiometer (any value)
- 1 MPLAB IDE software
- 1 Laptop
- 1 PIC Programmer
- 1 PIC18F45K50 data sheet

2.1 Introduction.

The analog/digital converter integrated in PIC18F45K50 is a successive approximations type. It has a 10-bit resolution and 25 analog input channels.

The main features are presented in the following list.

Resolution: 10 bits
Maximum Vref+: VDD
Minimum Vref-: VSS

Minimum voltage difference between Vref+ and Vref-: 3V (if VDD is greater than 3V)

1.8 V (if VDD is less than 3V)

Analog channels available: 25

Associated Registers: ADRESH, ADRESL, ADCON0, ADCON1

ADCON2

A complete description of this converter and its operation is found in the Data Sheet.

Fig. 1. Analog/digital converter diagram

2.2 Procedure.

A. For editing, debugging and simulating code, in order to program the microcontroller, it will be used the graphical software MPLAB X IDE (Integrated Development Environment).

The following code will be written and compiled in MPLAB IDE

```
; Program for operating the A/D converter

LIST P = 18f45K50
    #include<p18f45k50.inc>

CONFIG WDTEN = OFF ; Disables the Watchdog
CONFIG MCLRE = ON ; Enables MCLEAR
CONFIG DEBUG = OFF ; Disables Debug mode
CONFIG LVP = OFF ; Disables Low-Voltage programming
CONFIG FOSC = INTOSCIO ; Enables the internal oscillator
```

org 0	; Sets first instruction in address 00		
Start:			
MOVLB	0x0F		
CLRF	ANSELB		
CLRF	PORTB		
CLRF	TRISB		
MOVLW	b'00110011'		
MOVWF	OSCCON		
MOVLW	b'00000001'	; Channel A0 is selected and the module is enabled	
MOVWF	ADCON0		
MOVLW	b'00000000'	; Vref-, Vref+ are defined	
MOVWF	ADCON1		
MOVLW	b'00010000'	; $ACQT = 4TAD$, $TAD = 2microS$, and	
MOVWF	ADCON2	; left justified	
MainLoop:			
BSF	ADCON0,1	; Starts conversion	
conv			
BTFSC	ADCON0,1	; Check for GO/DONE bit to clear	
GOTO	conv	; Loop to check for bit 1 of ADCON0	
MOVFF	ADRESH,PORTB	; Move ADRESH to PORTB	
GOTO	MainLoop	; Jumps to instruction just after MainLoop tag	
END		; End of program	

Once this code is written, compile it to generate the .hex file and program the microcontroller.

B. Once the PIC is programmed, place it on the proto-board and connect all components according to the diagram below. Be careful when handling the PIC because it can be damaged by static electricity. V_{DD} will be set at 5V and V_{SS} at 0V. Maximum current from each pin is 25 mA. If your LEDs cannot cope with this amount of current you should use a 220Ω resistor in series with the LED (as it is shown in the diagram).

Table with recommended values for passive components:

Símbolo	Valor Min	Valor Max
$V_{ m DD}$	5V	5V
R_1	10ΚΩ	I
R_2	100Ω	220Ω
C	0.1μF	-
P	1ΚΩ	$1M\Omega$

Resistor R1 and capacitor C1 are recommended to avoid voltages outside range restart the device or it having high energy consumption. If you are using a regulated power supply, you can go without them.

2.3 Laboratory activities

- 1. See the instruction set and registers associated to the converter to modify the previous code for changing the selected channel to channel 1 (RA1/AN1). Select as well, as clock source, the RC oscillator of the converter.
- 2. Look at and present in your report the default values for registers ADCON0, ADCON1 and ADCON2.