

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு நான்காம் தவணைப் பரீட்சை - 2024 National Field Work Centre, Thondaimanaru.

4th Term Examination - 2024

Combined mathematics - I

Gr -13 (2024)		10		T			В
---------------	--	----	--	---	--	--	---

பகுதி - B

- 11) (a) $a,k\in\mathbb{R},\ k\neq 0$ எனவும் $f(x)=x^2+3x+k,\ g(x)=2x^2+ax+k$ எனவும் கொள்வோம். f(x)=0 இன் மூலங்கள் $\alpha,\ \beta$ எனவும் g(x)=0 இன் மூலங்கள் $\alpha,\ \gamma$ எனவும் தரப்பட்டுள்ளன. $\alpha=3-a$ எனவும் k=-(a-3)(a-6) எனவும் காட்டுக.
 - (i) f(x) = 0, g(x) = 0 ஆகியவற்றின் பிரித்துக்காட்டிகளை a இன் உறுப்புகளில் காண்க. **இதிலிருந்து**, f(x) = 0, g(x) = 0 ஆகிய இரு சமன்பாடுகளின் மூலங்களும் மெய்யானவை எனக் காட்டுக.
 - (ii) f(x) = 0 இன் மூலங்கள் இரண்டும் மறையானவை எனின், 3 < a < 6 எனக் காட்டி, g(x) = 0 இன் இரண்டு மூலங்களும் மறையானவை எனக் காட்டுக.
 - (iii) β , γ ஆகியவற்றை a இன் சார்பில் கண்டு, β , γ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச்சமன்பாடு $2x^2+3(6-a)x+(6-a)^2=0$ எனக் காட்டுக.
 - (b) பல்லுறுப்பிச் சார்பு f(x) ஐ lpha x eta இனால் வகுக்கப்படும்போது மீதி $f\left(rac{eta}{lpha}
 ight)$ எனக் காட்டுக.

 $p(x) = 4x^4 + 4x^3 - 7x^2 + x - 2$ எனக் கொள்வோம்.

p(x) ஐ 2x-1, 2x+1 இனால் வகுக்கும்போது வரும் மீதிகளைக் கண்டு, p(x) ஐ $4x^2-1$ இனால் வகுக்க வரும் மீதியைக் காண்க. மேலும், p(1), p(-2) ஆகியவற்றின் பெறுமானங்களைக் கண்டு, p(x) ஐக் காரணிப்படுத்துக.

- $f(x) = \sin x$ இன் பெறுதியை முதற்கோட்பாடுகளில் இருந்து காண்க. **இதிலிருந்து,** $-\frac{1}{2} < x < \frac{1}{2}$ இற்கு $\frac{d}{dx} \{ \sin^{-1} 2x \}$ ஐக் காண்க.
 - (b) $x = \tan \theta$ எனும் பிரதியீட்டைப் பயன்படுத்தி அல்லது வேறுவழியாக 0 < x < 1 ஆக இருக்கும்போது $\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ குறித்து $\cos^{-1}\left(\frac{2x}{1+x^2}\right)$ இன் பெறுதியைக் காண்க.
 - (c) $k \in \mathbf{R} \{0\}$ இற்கு $y = x.e^{-\frac{k}{x}}$ எனக் கொள்வோம்.
 - (i) $x^2 \frac{dy}{dx} = (x+k)y$ எனவும்
 - (ii) $x^3 \frac{d^2y}{dx^2} kx \frac{dy}{dx} + ky = 0$ எனவும் காட்டுக.

 $\left(\frac{dy}{dx}\right)_{x=-k}$, $\left(\frac{d^3y}{dx^3}\right)_{x=-k}$ ஆகியவற்றைக் காண்க.

- $x \in \mathbf{R} \{-2,2\}$ இந்கு $f(x) = -\frac{x^3}{(x-2)(x+2)}$ எனக் கொள்வோம். f(x) இன் பெறுதி 13) (a) ஆனது $x \in \mathbf{R} - \{-2, 2\}$ இற்கு $f'(x) = -\frac{x^2(x^2 - 12)}{(x-2)^2(x+2)^2}$ f'(x)இனால் இதிலிருந்து f(x)தரப்படுகின்றதெனக் காட்டுக. இன் திரும்பந் பள்ளியின் (0,0)QGJ புள்ளியெனத் **ஆள்கூறுகளைக்** காண்க. ஆனது <u>ஒ</u>(Ђ விபத்திப் தரப்பட்டுள்ளது. திரும்பற் புள்ளிகள், விபத்திப் புள்ளி ஆகியவற்றைக் அணுகுகோடுகள், காட்டி y = f(x) இன் வரைபைப் பரும்படியாக வரைக.
 - (b) a நீளமான ABC என்னும் கம்பித்துண்டொன்று உருவில் காட்டியவாறு $A\widehat{B}C=\frac{\pi}{2}$ ஆகுமாறு ஒரு செங்கோண முக்கோணி ABC இன் வடிவத்தில் வளைக்கப்பட்டுள்ளது. AB=x, எனவும் BC=y எனவும் கொள்வோம்.

- (i) $y = \frac{a(a-2x)}{2(a-x)}$ எனக் காட்டுக.
- (ii) முக்கோணி ABC இன் பரப்பளவு A ஆனது $A=\frac{ax(a-2x)}{4(a-x)}$ எனக் காட்டி $x=(1-\frac{1}{\sqrt{2}})a$ ஆகும் போது A உயர்வெனக் காட்டுக.
- 14) (a) பிரதியீடு $x+\frac{1}{x}=t$ ஐப் பயன்படுத்தி $\int_{1}^{2}\frac{x^{2}-1}{x^{4}+6x^{2}+1}dx=\frac{1}{2}\tan^{-1}\left(\frac{5}{4}\right)-\frac{\pi}{8}$ எனக் காட்டுக.
 - (b) எல்லா $x \in \mathbf{R}$ இற்கும் $3x^3 = A(x-1)(x^2+x+1) + B(x^2+x+1) + (x+c)(x-1)^2$ ஆகுமாறு A,B,C என்னும் மாறிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து, $\frac{3x^3}{(x-1)^2(x^2+x+1)}$ ஐப் பகுதிப்பின்னங்களில் எழுதி, $\int \frac{3x^3}{(x-1)^2(x^2+x+1)} dx$ ஐக் காண்க.

- (c) (i) பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int e^x \{f(x) + f'(x)\} dx = e^x f(x) + c$ எனக் காட்டுக; இங்கு f'(x) என்பது x குறித்து f(x) இன் பெறுதியாகும். $\int_1^2 \frac{e^x (1+x \ln x)}{x} dx = e^2 \ln 2$ என்பதை **உய்த்தறிக.**
 - (ii) $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$ என்பதை நிறுவுக. **இதிலிருந்து,** $\int_{\frac{1}{4}}^{\frac{3}{4}} \ln\left(\frac{1}{x}-1\right) dx$ ஐப் பெறுமானங் கணிக்க.

15) $P \equiv (x_0, y_0)$ எனவும் l ஆனது ax + by + c = 0 இனால் தரப்படும் நேர்கோடு எனவும் கொள்வோம். P இலிருந்து l இற்குள்ள செங்குத்துத் தூரம் $\frac{|ax_0+by_0+c|}{\sqrt{a^2+h^2}}$ எனக் காட்டுக.

ஒரு சாய்சதுரம் ABCD இன் மூலைவிட்டம் AC யின் சமன்பாடு 2x+y-4=0 எனவும் உச்சி $C\equiv (1,2)$ எனவும் பக்கம் AB யின் சமன்பாடு x+2y+4=0 எனவும் தரப்பட்டுள்ளன. மூலைவிட்டங்கள் AC,BD என்பன புள்ளி E இல் சந்திக்கின்றன.

 $A \equiv (4, -4)$ எனக் காட்டி, E இன் ஆள்கூறுகளையும் காண்க.

BD இன் சமன்பாடு 2x-4y-9=0 எனக் காட்டி, புள்ளி B யின் ஆள்கூறுகளையும் காண்க.

பக்கம் *BC* இன் சமன்பாட்டைக் காண்க.

AC மீது E இந்கும் A இந்கும் இடையில் உள்ள யாதாயினும் ஒரு புள்ளி Q இன் ஆள்கூறுகள் வடிவம் $\left(\frac{5}{2}+t,-1-2t\right)$ இல் எழுதப்படலாம் எனக் காட்டுக;

இங்கு $0 < t < \frac{3}{2}$.

புள்ளி $Q\left(\frac{5}{2}+t,-1-2t\right)$ இலிருந்து AB, BD இற்கான செங்குத்துத் தூரங்கள் சமனாயின் $t=\frac{9}{16}$ எனக் காட்டுக.

இதிலிருந்து $A\widehat{B}D$ இன் இருகூறாக்கியின் சமன்பாட்டைக் காண்க.

16) சமன்பாடு $x^2 + y^2 - 6x - 8y + 16 = 0$ இனால் தரப்படும் வட்டம் s இன் மையத்தின் ஆள்கூறுகளையும் ஆரையையும் கண்டு, xy - தளத்தில் வட்டம் s ஐப் பரும்படியாக வரைக.

P என்பது வட்டம் s மீது உற்பத்தி O விலிருந்து மிக அண்மையாக உள்ள புள்ளியெனக் கொள்வோம். புள்ளி P யின் ஆள்கூறுகளைக் காண்க.

வட்டம் s இந்குப் புள்ளி P யில் உள்ள தொடலிக் கோடு l இன் சமன்பாடு 3x+4y-10=0 இனால் தரப்படுமெனக் காட்டுக.

கோடு l ஐத் தொடுகின்ற ஒரு வட்டம் s' ஆனது வட்டம் s ஐ P யிலிருந்து வேறுபட்ட ஒரு புள்ளியில் வெளியே தொடுகின்றது. வட்டம் s' இன் மையத்தின் ஆள்கூறுகள் (h,k) எனக் கொள்வோம். கோடு l குறித்து O வினதும் s' இன் மையத்தினதும் தானங்களைக் கருதுவதனால்

3h + 4k > 10 எனக் காட்டுக.

 s^\prime இன் மையத்தின் ஆள்கூறுகள் (h,k) ஆனது சமன்பாடு

 $16x^2 + 9y^2 - 24xy - 180x - 240y + 375 = 0$ ஐத் திருப்தியாக்குகின்றன எனவும் காட்டுக.

மேலும், வட்டம் s' இன் மையம் y-அச்சு மீது உள்ளதெனத் தரப்படின், s' இன் மையங்களின் ஆள்கூறுகளைக் காண்க.

- 17. (a) சமன்பாடு $y = \frac{1+\sin x}{5+4\cos x}$ ஐ வடிவம் $\cos(x+\alpha) = R$ இல் எடுத்துரைக்க. இங்கு R, α என்பன y சார்பில் துணியப்படவேண்டியவை. **இதிலிருந்து**, $x \in R$ இந்க $0 \le \frac{1+\sin x}{5+4\cos x} \le \frac{10}{9}$ எனக் காட்டுக. சமன்பாடு $\frac{1+\sin x}{5+4\cos x} = \frac{1}{3}$ ஐத் தீர்க்க.
 - (b) வழமையான குறியீடுகளுடன் யாதாயினும் ஒரு முக்கோணி *ABC* இற்கு சைன் நெறியைக் கூறி நிறுவுக.

குறியீடுகளுடன் முக்கோணி ABC இல் கோணம் ഖழமையான இன் BCஉள்ளிருகூறாக்கி ജ D இல் சந்திக்கின்றது எனத் தரப்பட்டுள்ளது. ABC, ABD, ACD முக்கோணிகள் ஆகியவந்நிந்கு சைன் நெறியைப் பயன்படுத்துவதன் மூலம்

- (i) AB:AC=BD:DC எனவும்
- (ii) $AD = \frac{2bc}{b+c}\cos\frac{A}{2}$ எனவும் காட்டுக.
- (c) $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$ எனின், xy + yz + zx = 1 எனக் காட்டுக.