Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по курсовой работе по дисциплине «Вычислительные комплексы»

Выполнил студент: Митенев Александр Владимирович группа: 3630102/70201

Проверил: к.ф.-м.н.,доцент Баженов Александр Николаевич

Санкт-Петербург 2020г.

Содержание

1	Пос	Постановка задачи				
2	Teo	рия	2			
	2.1	Особенные матрицы	2			
	2.2	Сходимость методов	2			
		2.2.1 Субдифференциальный метод	2			
		2.2.2 Треугольное расщепление	2			
3	Pea	лизация	3			
4	Рез	ультаты	4			
	4.1	Проверка на работоспособность	4			
		4.1.1 Субдифференциальный метод	4			
		4.1.2 Треугольное расщепление	5			
	4.2		5			
		4.2.1 Субдифференциальный метод	6			
		4.2.2 Треугольное расщепление	6			
	4.3	Эксперименты	7			
		4.3.1 Субдифференциальный метод	7			
		4.3.2 Трегольное расщепление матрицы	8			
	4.4	Обсуждение	9			
5	Прі	Приложения 10				
C	писо	к используемой литературы	10			

1 Постановка задачи

- 1. Решить ИСЛАУ субдифференциальным методом.
- 2. Решить ИСЛАУ треугольным расщеплением.

2 Теория

2.1 Особенные матрицы

Интервальная матрица $\mathbf{A} \in \mathbb{IR}^{n \times n}$ называется неособенной (невырожденной), если неособенными являются все точечные $n \times n$ - матрицы $A \in \mathbf{A}$.

Интервальная матрица $\mathbf{A} \in \mathbb{IR}^{n \times n}$ называется особенной (вырожденной), если она содержит особенную точечную матрицу.

Теорема. Пусть интервальная матрица $\mathbf{A} \in \mathbb{IR}^{n \times n}$ такова, что mid \mathbf{A} неособенная и

$$\max_{1 \le j \le n} (rad \mathbf{A} \cdot |(mid \mathbf{A})^{-1}|)_{jj} \ge 1$$

Тогда А особенная.

2.2 Сходимость методов

2.2.1 Субдифференциальный метод

Теорема. Пусть интервальная $n \times n$ - матрица ${\bf C}$ удовлетворяет условию построчной согласованности, и интервальная $2n \times 2n$ - матрица

$$\begin{pmatrix} (pro \ \mathbf{C})^+ & (pro \ \mathbf{C})^- \\ (pro \ \mathbf{C})^- & (pro \ \mathbf{C})^+ \end{pmatrix}$$

является неособенной. Если при этом ${\bf C}$ достаточно узка, то алгоритм SubDiff2 со значением релаксационного параметра $\tau=1$ сходится за конечное число итераций к $sti({\bf x}^*)$, где ${\bf x}^*$ — формальное решение интервальной системы ${\bf C}x+{\bf d}=0$.

2.2.2 Треугольное расщепление

Теорема. Пусть для интервальной матрицы ${\bf C}$ системы уравнений вещественные квадратные $n \times n$ - матрицы ${\bf D},\,{\bf L},\,{\bf R}$ определяются формулами

$$D=diag\{|c_{11}^{-1}|,\ |c_{22}^{-1}|,\ \dots,\ |c_{nn}^{-1}|\}$$

$$L=(l_{ij}),$$
 где $l_{ij}=egin{cases} |c_{ij}|, & ext{если } i>j \ 0, & ext{если } i\leq j \end{cases}$

$$R=(r_{ij}),\;\;$$
где $\;r_{ij}=egin{cases} |c_{ij}|,\;\; ext{eсли}\; i< j\ 0,\;\;\;\; ext{eсли}\; i\geq j \end{cases}$

Если матрица

$$P = \sum_{i=0}^{n-1} (DL)^{i} DR = (I - DL)^{-1} DR$$

такова, что $\rho(P)<1$, то итерационный процесс TrSplit для нахождения формального решения ИСЛАУ в полной интервальной арифметике сходится из любого начального приближения $\mathbf{x}^{(0)}$ к единственной неподвижной точке \mathbf{x}^* , являющейся формальным решением системы. При этом имеет место оценка

$$Dist(\mathbf{x}^*, \mathbf{x}^{(k)}) \le \left((I - P)^{-1} - \sum_{j=0}^{k-1} P^j \right) \cdot Dist(\mathbf{x}^{(0)}, \mathbf{x}^{(1)})$$

3 Реализация

Лабораторная работа выполнена с помощью библиотк numpy, scipy, seaborn, kaucherpy на языке программирования Python в среде разработки JupiterNotebook.

4 Результаты

4.1 Проверка на работоспособность

Прежде чем решать поставленную задачу, проверим работоспособность реализованных методов на простом примере. Возьмем систему Барта-Нудинга.

$$\begin{pmatrix} [2, 4] & [-2, 1] \\ [-1, 2] & [2, 4] \end{pmatrix} x = \begin{pmatrix} [-2, 2] \\ [-2, 2] \end{pmatrix}$$

Рассмотрим матрицу А

$$\mathbf{A} = \begin{pmatrix} [2, \ 4] & [-2, \ 1] \\ [-1, \ 2] & [2, \ 4] \end{pmatrix}$$

 ${\rm C}$ помощью теоремы из пункта 2.1 получили, что матрица не является особенной.

4.1.1 Субдифференциальный метод

С помощью теоремы из пункта 2.2.1 получили, что субдифференциальный метод на данной системе сходиться за конечное число итераций.

Дейстивтельно, алгоритм сошелся за 2 итерации к следующим значениям

$$\begin{pmatrix} [-0.3333333,\ 0.3333333] \\ [-0.3333333,\ 0.3333333] \end{pmatrix}$$

Гарантируемая точность - 6 знаков после запятой.

Рис. 1: Результаты

4.1.2 Треугольное расщепление

С помощью теоремы из пункта 2.2.2 получили, что метод треугольного расщепления матрицы на данной системе сходиться за конечное число итераций.

Дейстивтельно, алгоритм сошелся за 11 итерации к следующим значениям

$$\begin{pmatrix}
[-0.3333333, 0.3333333] \\
[-0.33333332, 0.33333332]
\end{pmatrix}$$

Гарантируемая точность - 6 знаков после запятой.

Рис. 2: Результаты

4.2 Решение поставленной задачи

Дана следующая ИСЛАУ

$$\begin{pmatrix} [4, 6] & [-9, 0] & [0, 12] & [2, 3] & [5, 9] & [-23, -9] & [15, 23] \\ [0, 1] & [6, 10] & [-1, 1] & [-1, 3] & [-5, 1] & [1, 15] & [-3, -1] \\ [0, 3] & [-20, -9] & [12, 77] & [-6, 30] & [0, 3] & [-18, 1] & [0, 1] \\ [-4, 1] & [-1, 1] & [-3, 1] & [3, 5] & [5, 9] & [1, 2] & [1, 4] \\ [0, 3] & [0, 6] & [0, 20] & [-1, 5] & [8, 15] & [-6, 1] & [10, 17] \\ [0, 7, -2] & [1, 2] & [7, 14] & [-3, 1] & [0, 2] & [3, 5] & [-2, 1] \\ [-1, 5] & [-3, 2] & [0, 8] & [1, 11] & [-5, 10] & [2, 7] & [6, 82] \end{pmatrix} x = \begin{pmatrix} [-10, 95] \\ [35, 14] \\ [-6, 2] \\ [30, 7] \\ [4, 95] \\ [-6, 46] \\ [-2, 65] \end{pmatrix}$$

С помощью теоремы из пункта 2.1 получили, что матрица ${\bf A}$ является особенной.

4.2.1 Субдифференциальный метод

С помощью теоремы из пункта 2.2.1 получили, что субдифференциальный метод на данной системе **не** сходиться за конечное число итераций.

Однако, алгоритм сошелся за 8 итерации к следующим значениям

```
 \begin{bmatrix} [-1.2247431, \ 0.5054298] \\ [18.2644433, \ -9.517504] \\ [-0.0281865, \ 1.1607552] \\ [16.4076957, \ -14.455534] \\ [-1.3435652, \ 3.9882184] \\ [-3.5289385, \ 4.5434583] \\ [5.4308623, \ -0.6740083] , \end{bmatrix}
```

Гарантируемая точность - 6 знаков после запятой.

То, что метод сошелся, является очень интересным фактом. В книге [3] это явление названо "mysterious behavior of the subdifferential Newton method"

Рис. 3: Результаты

4.2.2 Треугольное расщепление

С помощью теоремы из пункта 2.2.2 получили, что метод треугольного расщепления матрицы на данной системе **не** сходиться за конечное число итераций.

И дейстивтельно, алгоритм не сошелся за 100 итераций, а значения стремятся в бесконечность.

Рис. 4: Результаты

4.3 Эксперименты

4.3.1 Субдифференциальный метод

Исследуем сходимость алгоритма, меняя один из элементов матрицы ${f A}$. Будем менять нижнюю границу ${f A}_{77}$

\mathbf{A}_{77}	Результат
[6, 82]	Сошелся
[6.5, 82]	Сошелся
[7, 82]	Сошелся
[7.5, 82]	Сошелся
[8, 82]	Не сошелся
[8.5, 82]	Не сошелся
[9, 82]	Не сошелся
[9.5, 82]	Не сошелся
[10, 82]	Не сошелся
[10.5, 82]	Не сошелся
[11, 82]	Сошелся
[11.5, 82]	Сошелся
[12, 82]	Сошелся
[12.5, 82]	Сошелся

Таблица 1: Результаты при $\tau{=}1$

Так же мы можем поменять релаксационный параметр данного алгоритма. Возьмем $\tau=0.8$

\mathbf{A}_{77}	Результат
[6, 82]	Сошелся
[6.5, 82]	Сошелся
[7, 82]	Сошелся
[7.5, 82]	Сошелся
[8, 82]	Сошелся
[8.5, 82]	Сошелся
[9, 82]	Сошелся
[9.5, 82]	Сошелся
[10, 82]	Сошелся
[10.5, 82]	Сошелся
[11, 82]	Сошелся
[11.5, 82]	Сошелся
[12, 82]	Сошелся
[12.5, 82]	Сошелся

Таблица 2: Результаты при $\tau{=}0.8$

Поменяв параметр релаксации мы добились сходимости алгоритма на всех исследуемых значениях.

4.3.2 Трегольное расщепление матрицы

Проведем аналогичное изменение элемента ${f A}_{77}$

\mathbf{A}_{77}	Результат
[6, 82]	Не сошелся
[6.5, 82]	Не сошелся
[7, 82]	Не сошелся
[7.5, 82]	Не сошелся
[8, 82]	Не сошелся
[8.5, 82]	Не сошелся
[9, 82]	Не сошелся
[9.5, 82]	Не сошелся
[10, 82]	Не сошелся
[10.5, 82]	Не сошелся
[11, 82]	Не сошелся
[11.5, 82]	Не сошелся
[12, 82]	Не сошелся
[12.5, 82]	Не сошелся

Таблица 3: Результаты при $\tau{=}1$

Метод треугольного расщепления матрицы не сходиться нигде с требуемой точностью.

4.4 Обсуждение

Можно сделать вывод, что субдифференциальный метод сходится за меньшее количество итераций, чем метод треугольного расщепления матрицы, с одинаковой точностью. Так же мы столкнулись с интересной осбоенностью субдифференциального метода - сходимость на некоторых особенных матрицах, что, несомненно, является его преимуществом. Так же субдифференциальный метод поддается настройке, что может значительно улучшить его свойства.

5 Приложения

• Репозиторий с исходным кодом: https://github.com/mitenevav/computer_complex/tree/master/course_project

Список литературы

- [1] Баженов А. Н. Интервальный анализ. Основы теории и учебные примеры: учебное пособие. https://elib.spbstu.ru/dl/2/s20-76.pdf/info
- [2] Шарый С. П. Конечномерный интервальный анализ.
- [3] Шарый С. П. Алгебраический подход к интервальным линейным статическим задачам идентификации, о допусках и об управлении, или еще одно применение арифметики Каухера.