Core Questions

##

x freq

```
## 1 Every 1-2 hours 175
## 2 Every 3-4 hours 164
## 3
        Every hour
                     33
## 4
             Other
                     28
# for (i in 1:nrow(Core_Questions)) {
   if (Core_Questions$R_Style[i] == "Hands-off") {
#
#
     Core_Questions$R_Style[i] = "Hands-off"
#
   } else if (Core_Questions$R_Style[i] == "") {
#
     Core_Questions$R_Style[i] = NA
#
   } else{
     Core_Questions$R_Style[i] = "Hands-on"
#
#
#
#
   #
#
#
   if (Core_Questions$NP[i] == "1-2") {
     Core_Questions$NP[i] = "NP1"
#
#
  } else if (Core_Questions$NP[i] == "3-4") {
#
     Core_Questions$NP[i] = "NP2"
#
   } else if (Core_Questions$NP[i] == "5-6") {
#
     Core_Questions$NP[i] = "NP3"
#
   } else if (Core_Questions$NP[i] == "7-9") {
#
    Core_Questions$NP[i] = "NP3"
#
   } else if (Core_Questions$NP[i] == "") {
#
    Core_Questions$NP[i] = NA
#
   } else {
#
     Core Questions$NP[i] = "NP3"
#
#
#
#
#
#
   if (Core Questions$T[i] == "Minutes before deadline") {
#
     Core Questions$T[i] = "T1"
#
   } else if (Core_Questions$T[i] == "1-3 hours before deadline") {
#
     Core_Questions$T[i] = "T1"
   } else if (Core_Questions$T[i] == "3-6 hours before deadline") {
#
     Core_Questions$T[i] = "T1"
#
#
   } else if (Core_Questions$T[i] == "1 day before deadline") {
    Core_Questions$T[i] = "T2"
#
#
  } else if (Core_Questions$T[i] == "") {
#
     Core_Questions T[i] = NA
#
   } else {
#
     Core Questions$T[i] = "T2"
#
#
```

```
if (Core_Questions$DS[i] == "Extremely less") {
#
#
      Core Questions$DS[i] = "DS1"
#
   } else if (Core_Questions$DS[i] == "Significantly less") {
#
     # Core_Questions$DS[i]=2
#
     Core_Questions$DS[i] = "DS1"
#
   } else if (Core_Questions$DS[i] == "Same") {
#
    # Core_Questions$DS[i]=3
    Core_Questions$DS[i] = "DS1"
#
#
   } else if (Core_Questions$DS[i] == "Significantly more") {
#
     # Core Questions$DS[i]=4
#
     Core_Questions$DS[i] = "DS2"
   } else if (Core_Questions$DS[i] == "Extremely more") {
#
#
     # Core_Questions$DS[i]=5
#
     Core_Questions$DS[i] = "DS2"
#
   } else {
#
     Core_Questions$DS[i] = NA
#
#
#
   if (Core_Questions$FA[i] == "NSF") {
     Core_Questions$FA[i]="NSF"
#
#
   } else if (Core_Questions$FA[i]=="NIH"){
#
    Core_Questions$FA[i]="NIH"
#
   } else if (Core Questions$FA[i]=="DOE"){
#
     Core_Questions$FA[i]="DOE"
#
   } else if (Core Questions$FA[i]=="DOD"){
#
    Core Questions$FA[i]="DOD"
#
   } else if (Core Questions$FA[i] == "NASA") {
#
    Core Questions$FA[i]="NASA"
   } else if (Core_Questions$FA[i]==""){
#
#
    Core_Questions$FA[i]=NA
#
   } else{
#
     Core_Questions$FA[i]="Other"
#
# }
```

```
# levels(factor(Core_Questions$State))
 # levels(factor(Core_Questions$S_D_E))
 # levels(factor(Core_Questions$RO_F_EG))
 # levels(factor(Core Questions$Deadline today))
 # levels(factor(Core_Questions$Workload_today))
 # levels(factor(Core Questions$Workplace))
 # levels(factor(Core_Questions$RS))
 # levels(factor(Core_Questions$TW_W_H))
 # levels(factor(Core Questions$Break))
 # levels(factor(Core Questions$Email))
 # levels(factor(Core_Questions$funding_proposal))
 # levels(factor(Core Questions$NP))
 # levels(factor(Core_Questions$FA))
 # levels(factor(Core_Questions$Success))
 # levels(factor(Core_Questions$Com_Proposal))
 # levels(factor(Core_Questions$L_Of_SR))
 # levels(factor(Core_Questions$W_WB_PD))
 # levels(factor(Core_Questions$T))
```

```
# levels(factor(Core_Questions$DS))
# levels(factor(Core_Questions$refereed_conference))
# levels(factor(Core_Questions$A_N_Conf_Pap))
# levels(factor(Core_Questions$core_rank))
# levels(factor(Core_Questions$if_you_submit_manuscripts))
# levels(factor(Core_Questions$far_in_advance_do_you))
# levels(factor(Core_Questions$length_of_supp))
# levels(factor(Core_Questions$in_the_week_leading_to_a_c))
# levels(factor(Core_Questions$you_typically_subm))
# levels(factor(Core_Questions$ss_level_in_a_fundi))
# count(Core_Questions$FA)
```

```
# #####Test a single core questions
 temp <- count(Core_Questions$Workload_today)</pre>
  colnames(temp) <- c("item", "count")</pre>
#
#
   temp <- temp[!(temp$item == ""),]</pre>
# bar_plot \leftarrow ggplot(data = temp, aes(x = item, y = count)) +
      geom_bar(stat = "identity",
#
#
               width = 0.5,
#
               fill = "steelblue") +
#
     theme minimal() +
#
      scale_y_continuous(breaks = seq(0, ylimit, by = 5),
#
                          limits = c(0, ylimit)) +
#
     labs(x = "", y = "Participant count", title = title_list[i - 1]) +
#
     theme(
        panel.grid.major = element_blank(),
#
        panel.grid.minor = element_blank(),
#
#
       plot.title = element_text(hjust = 0.5),
#
       axis.text.x = element_text(
#
         face = "bold",
#
         size = 10 ,
#
         angle = 30,
#
         hjust = 1
#
        ),
        axis.text.y = element_text(face = "bold", size = 10)
#
#
      )+
#
     scale_x_discrete( limits=list[[1]])
# bar_plot
```

Raw version

```
## [1] "state_do_you_reside"
## Warning: Removed 1 rows containing missing values (position_stack).
## Warning: Removed 1 rows containing missing values (geom_text).
```


95% CI East(7.84, 13.92) Midwest(16.35, 24.23) South(45.34, 55 West(15.21, 22.90)

% CI Other(12.49, 19.67) Three months(76.84, 84.57) Two months(1

Percentage of research operations funded by external gran

95% CI 1–25%(10.48, 17.23) 25–50%(8.71, 15.03) 50–75%(14.75, 5–100%(21.22, 29.76) Fully funded(18.89, 27.14) Not funded(6.34, 1

Any looming deadline- Today/Next couple of days?

95% CI No(52.33, 62.03) Yes(37.48, 47.17)

95% CI Heavy(30.22, 39.57)

Light(10.48, 17.23)

Standard(46.58, 5

95% CI Home(47.33, 57.13) Office(38.70, 48.43) Other(2.65, 6.

Research style

95% CI RS1(34.56, 44.15) RS2(55.85, 65.44)

Working hours- In a typical week

95% CI < 30(0.37, 2.64) > 50(52.58, 62.28) 30–40(5.08, 10.29 40–50(29.74, 39.06)

Every 1–2 hours(38.94, 48.68) Every 3–4 hours(36.26, 45.91) Every h Other(4.87, 9.97)

95% CI Reply instantly(59.92, 69.30) Reply Once/Twice(30.70, 40.08)

Participants submitting funding proposals

95% CI NA(NA, NA) (,)

Average number of proposals per year

95% CI >=10(2.46, 6.44) 1-2(31.66, 41.10) 3-4(32.15, 41.61 5-6(12.49, 19.67) 7-9(5.08, 10.25)

Funding agencies

95% CI DOD(3.64, 8.23) DOE(3.24, 7.64) NASA(1.53, 4.91 NIH(14.52, 22.09) NSF(57.37, 66.89) Other(4.46, 9.39)

Perceived proposal success rate

95% CI < 10%(21.45, 30.02) > 90%(1.00, 3.96) 10–20%(20.28, 26.12, 23.96) 30–50%(11.37, 18.32) 50–75%(5.92, 11.39) 75–90%

% CI < 1 week(0.03, 1.77) > 2 months(37.23, 46.92) 1–2 months(35.1) 1–2 weeks(0.52, 2.98) 2–4 weeks(13.39, 20.75)

5 CI < 1 month($3.84,\ 8.52$) > 12 months($22.15,\ 30.80$) 1–3 months($18.36,\ 3-6,\ 17.27,\ 25.29$) 6–12 months($20.75,\ 29.24$)

95% CI About the same(8.28, 14.48) Less(0.12, 1.99) More(24.74, Significantly less(0.52, 2.98) Significantly more(53.33, 63.01)

95% CI T1(41.15, 50.93) T2(49.07, 58.85)

95% CI About the same(22.86, 31.58) Less(2.46, 6.44) More(41.39, Significantly less(0.67, 3.31) Significantly more(17.50, 25.55)

Participants submitting papers in refereed conferences

Average number of conference papers per year

95% CI >= 10(3.24, 7.64) 1-2(10.03, 16.68) 3-4(8.93, 15.31 5-6(6.55, 12.24) 7-9(3.64, 8.23)

CORE rank of conferences

95% CI A(17.27, 25.29) A*(9.15, 15.58) B(6.34, 11.96) C(1.35, 4.59)

Perceived success rate in conference submissions

% CI < 1 week(0.12, 1.99) > 2 months(10.25, 16.96) 1–2 months(13. 1–2 weeks(1.17, 4.28) 2–4 weeks(8.93, 15.31)

Length of supporting research for conference papers 21 Month 3-6 Months 6-12 Months 7 12 Months

% CI < 1 month(1.17, 4.28) > 12 months(8.06, 14.20) 1–3 months(2 3–6 months(6.98, 12.80) 6–12 months(14.07, 21.56)

95% CI About the same(11.14, 18.05) Less(0.03, 1.77) More(12.94, Significantly less(0.12, 1.99) Significantly more(10.03, 16.68)

3 hours before(8.49, 14.75) 1 day before(7.20, 13.08) 2 or more days 3–6 hours before(6.98, 12.80) Minutes before(5.49, 10.83)

Stress level on conference deadlines wrt regular working da

Significantly less

About the same

Significantly more

CI About the same(18.66, 26.87) More(11.81, 18.86) Significantly less Significantly more(4.05, 8.81)


```
Data_CQ <- Core_Questions[,c(13, 16, 9, 10, 18, 20)]
file_name='Selected_Core_Questions.csv'
write.csv(Data_CQ,file.path(curated_data_dir, file_name), row.names = FALSE)</pre>
```

```
# ylimit= 150
  temp <- count(Core_Questions[14])</pre>
  colnames(temp) <- c("item", "count")</pre>
  temp <- temp[!(temp$item == ""),]</pre>
   temp <- temp[order(temp$count), ]</pre>
#
   temp <- temp[complete.cases(temp),]</pre>
#
#
#
    bar_plot \leftarrow ggplot(data = temp, aes(x = item, y = count)) +
#
      geom_bar(stat = "identity",
#
               width = 0.5,
               fill = "steelblue") +
#
#
      theme_bw() +
#
      scale_y\_continuous(breaks = seq(0, ylimit, by = 50),
#
                          limits = c(0, ylimit)) +
#
      labs(x = "", y = "Count", title = "Funding Agencies") +
#
      theme(
#
        panel.grid.major = element_blank(),
#
        panel.grid.minor = element_blank(),
#
        plot.title = element_text(hjust = 0.5),
      axis.text.x = element\_text(
```

```
face = "bold",
#
#
          size = 10 ,
#
          angle = 30,
#
          hjust = 1
#
        ),
#
        axis.text.y = element_text(face = "bold", size = 10)
#
#
    # +scale_x_discrete( limits=Ticks_list[[i-1]])
#
#
    bar_plot
#
#
    # plot_list[[length(plot_list) + 1]] <- bar_plot</pre>
#
#
   temp <- temp %>%
#
   mutate(
#
     cs = rev(cumsum(rev(count))),
#
     prop = percent(count / sum(count)),
#
     pos = count/2 + lead(cs, 1),
#
     pos = if_else(is.na(pos), count/2, pos))
# temp$pos[is.na(temp$pos)] <- 1</pre>
#
# # temp<-temp[match(order_list[[1]], temp$item),]</pre>
\# pichart <-ggplot(temp, aes(x = "" , y = count, fill = item)) +
  geom\_col(width = 1) +
   coord_polar(theta = "y", start = 0 ) +
#
#
   scale_fill_brewer(palette = "Set3", direction = -4) +
#
   geom_label_repel(aes(y = pos, label =pasteO(item," " ,prop)), data = temp, size=4, show.legend = F,
#
   theme_void() +
#
   theme(legend.position = "none", legend.title = element_blank())+
#
   labs(title = "")+
   theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),plot.title = element_te
#
# pichart
#
#
# plots_act=ggarrange(bar_plot, pichart, nrow = 2, ncol = 1)
#
        # final_plot<-plot_grid(plots_act[[i]])</pre>
#
        filename<-"FA.pdf"
#
        full_path<-file.path(plot_dir, filename)</pre>
        ggsave(full_path, plots_act, width = 8.5, height = 11, units = "in")
#
#
        # print(final_plot)
```