${\bf Formel sammlung} \\ {\bf Mathematik} \\$

Rumil, 2016 Lizenz: CC0

Inhaltsverzeichnis

1	Grundlagen	3	1.2 Mengenlehre		enlehre	3
	1.1 Komplexe Zahlen	3		1.2.1	Boolesche Algebra	3
	1.1.1 Rechenoperationen	3		1.2.2	Teilmengenrelation	

Grundlagen 1

1.1 Komplexe Zahlen

1.1.1 Rechenoperationen

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$
 (1.1)

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$
 (1.2)

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$
 (1.3)

$$\frac{z_1}{z_2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i$$
 (1.4)

$$\frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} i \tag{1.5}$$

1.2 Mengenlehre

1.2.1 Boolesche Algebra

Vereinigung	Schnitt	
$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup \overset{\smile}{G} = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A\cup \overline{A}=G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Kommutativgesetze
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	Assoziativgesetze
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgansche Regeln
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Absorptionsgesetze

G: Grundmenge

Umschreibung der Teilmengenrelation:

Distributivgesetze:

Thutivgesetze:
$$A \subseteq B \iff A \cap B = A$$

 $M \cup (A \cap B) = (M \cup A) \cap (M \cup B)$ (1.6) $\iff A \cup B = B$
 $M \cap (A \cup B) = (M \cap A) \cup (M \cap B)$ (1.7) $\iff A \setminus B = \{\}$

1.2.2 Teilmengenrelation

Kontraposition:

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A \tag{1.8}$$

$$A \subseteq B = \overline{B} \subseteq \overline{A}$$