MA571 Problem Set 5

Carlos Salinas

September 21, 2015

Problem 5.1 (Munkres §23, Ex. 3)

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Proof.

Problem 5.2 (Munkres §23, Ex. 6)

Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and $X \setminus A$, then C intersects ∂A .

Proof.

Problem 5.3 (Munkres $\S23$, Ex. 7)

Is the space \mathbf{R}_ℓ connected? Justify your answer.

Proof.

Problem 5.4 (Munkres §23, Ex. 9)

Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that

$$(X \times Y) \setminus (A \times B)$$

is connected.

Proof.

Problem 5.5 (Munkres §24, Ex. 1(ac))

- (a) Show that no two of the spaces (0,1), (0,1] and [0,1] are homeomorphic. [Hint: What happens if you remove a point from each of these spaces?]
- (c) Show \mathbf{R}^n and \mathbf{R} are not homeomorphic if n > 1.

Proof.

Problem 5.6 (Munkres $\S24$, Ex. 2)

Let $f: S^1 \to \mathbf{R}$ be a continuous map. Show there exists a point x of S^1 such that f(x) = f(-x).

Proof.

Problem 5.7 (Munkres §25, Ex.2(b))

(b) Consider \mathbf{R}^{ω} in the uniform topology. Show that \mathbf{x} and \mathbf{y} lie in the same component of \mathbf{R}^{ω} if and only if the sequence

$$\mathbf{x}-\mathbf{y}=(x_1-y_1,x_2-y_2,\ldots)$$

is bounded. [Hint: It suffices to consider the case where $\mathbf{y}=\mathbf{0}.$]

Proof.

Problem 5.8 (Munkres §25, Ex. 4)

Let X be locally path connected. Show that every connected open set in X is path connected.

Proof.

Problem 5.9 (Munkres §25, Ex. 6)

A space X is said to be weakly locally path connected at x if for every neighborhood U of x, there is a connected subspace of X contained in U that contains a neighborhood of x. Show that if X is weakly locally connected at each of its points, then X is locally connected. [Hint: H]

Proof.

CARLOS SALINAS PROBLEM 5.10(A)

Problem 5.10 (A)

Let X be a topological space. The quotient space $(X \times [0,1])/(X \times 0)$ is called the *cone* of X and denoted CX.

Prove that if X is homeomorphic to Y then CX is homeomorphic to CY (Hint: There are maps in both directions).

Proof.

Problem 5.11 (Extra problem)

Notation: for positive integers i, n, I, N, let us write $(i, n) \gg (I, N)$ if i > I and n > N.

Theorem 13. A sequence $\{\mathbf{x}_n\}$ in \mathbf{R}^{ω} converges to $\mathbf{0}$ in the box topology if and only if two conditions hold:

- $\begin{array}{l} \textit{(i) for each k, $\lim_{n\to\infty}x_n^{(k)}=0$, and}\\ \textit{(ii) there is a pair (I,N) with $x_n^{(k)}=0$ whenever $(i,n)\gg(I,N)$.} \end{array}$

Proof.