MICROECONOMIC THEORY, ECONOMICS 713, 2ND QUARTER, SPRING 2012 UNIVERSITY OF WISCONSIN-MADISON, PROFESSOR: MARZENA ROSTEK

PROBLEM SET 1

Due in(=before) class April 10, 2012

Question 1: Weak and strict preferences

Suppose \succ on X is a weak order, that is asymmetric (if $x \succ y$, then not $y \succ x$, for every x,y in X) and negatively transitive (if (not $x \succ y$, not $y \succ z$), then not $x \succ z$, for every x,y,z in X). (A binary relation \succ on X is called a *preference relation* if it is asymmetric and negatively transitive.)

Let us use \succ to define two other binary relations: $x \succcurlyeq y$ if (not $y \succ x$), called *weak preference*; and $x \sim y$ if (not $x \succ y$ and not $y \succ x$), called *indifference*. Show that

- (a) For all x and y, exactly one of $x \not> y$, $y \not> x$ or $x \sim y$ holds;
- (b) \geqslant is complete and transitive;
- (c) $x \not\succ y$ if, and only if, $x \not\succ y$ or $x \sim y$.
- (d) Note how the definition of indifference infers/equates the absence of strict preference from/with indifference. Alternatively, what could the absence of strict preference in either direction capture? (A one-line response suffices.)

Question 2: Equilibria in a Second-Price Auction with Common Values

Consider a second-price sealed-bid auction with 2 bidders with common values. The valuation of each bidder i is given by $v_i = t_i + t_j$, where j is the other player. For example, the signal t_i is the number of barrels of oil in a tract. Each bidder knows only his own signal and that the signals come from a uniform distribution on [0,1], which is common knowledge. Show that for any value of α >0, there is an *asymmetric* BNE in which player 1 bids $(1+\alpha)t_1$ and player 2 bids $(1+\frac{1}{\alpha})t_2$.

Question 3: Bayesian Nash Equilibria

Consider a Bayesian game with a finite number of players, and actions.

- (a) Prove the equivalence between the set of the *ex ante* and *interim* Bayesian Nash equilibria.
- (b) Argue how the set of *ex post* Bayesian Nash equilibria relates to these.
- (c) Assume independent private values. Is the equilibrium in the descending/Dutch auction *ex post*? Is the equilibrium in the ascending/English auction *ex post*?

Question 4: Solving an All Pay Auction via the Revenue Equivalence Theorem

Consider an auction of a single object with *I* risk-neutral bidders with independent private valuations for the object that are independently drawn from a from a uniform distribution on [0,V]. The auctioneer sells the object through an "all-pay" auction, defined as a simultaneous sealed-bid auction in which the high bidder wins the object, but *every* bidder pays her submitted bid.

(a) What would be the expected payment of a bidder in the second-price (sealed-bid) auction in this market?

(Hint: You might use that, for a uniform distribution F[a,b], the expected kth order statistic for an independent draw of I values is equal to a + (b-a)((I+1-k)/(I+1)).

(b) Applying the Revenue Equivalence Theorem, solve for the bidding functions in a symmetric equilibrium in the "all-pay" auction.

Practice problems (You do not need to turn answers to the question below. Solutions will be provided.)

Other practice problems: Sample midterms will be available at Learn@UW.