Séries et intégrales convergentes : justification « directe » et calculs

- → Convergence de série : c'est la convergence des sommes partielles.
- → Exemple de convergences : télescopage, séries classiques.
- \rightarrow Intégrales convergentes : étude en $\pm \infty$, en un point x_0^{\pm} .
- \rightarrow Techniques de calcul d' \int : trois techniques sur un segment puis passage à la limite
 - * Primitivation à vue de l'intégrande : $\int_a^b f(t)dt = F(b) F(a)$ si F est \mathcal{C}^1 sur [a,b] et F' = f.
 - * Intégration par parties : pour $u, v \ \mathcal{C}^1$ on a : $\int_a^b u'v = [uv]_a^b \int_a^b uv'$
 - * Changement de variables : pour φ \mathcal{C}^1 on a $\int_a^b f(\varphi(t)) \, \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \, dx$
- → Extension de la notion d'intégrale aux fonctions admettant un nombre fini de points de discontinuité sur un intervalle. On étudie chaque « problème », puis Chasles
- → Fonction densité : une fonction $f: \mathbb{R} \to \mathbb{R}$, *) continue sauf évt. en un nb. fini de points, *) $f \geqslant 0$ et *) $\int_{-\infty}^{\infty} f = 1$, fonction de répartition associée.

Convergence absolue, utilisation des relations de comparaisons à la CA

- → Convergence d'une SATP :
 - * Une **série à termes positifs** converge *ssi* la suite de ses sommes partielles est majorée (*c'est le th. de cv. mononotone!*)
 - \star si $(u_n) \ge 0$, alors la série $\sum_{n\ge 0} u_n$ est **convergente** $ssi \ \exists A \ge 0, \forall N, \sum_{n=0}^N u_n \leqslant A$.
 - * Critère analogue pour les intégrales.
- → Notion de convergence absolue :
 - ★ On dit qu'une série converge si la SATP des valeurs absolues de ses termes converge.
 - \star La série $\sum_{n\geqslant 0}u_n$ est absolument convergente ssi $\sum_{n\geqslant 0}|u_n|$ converge.
 - * Analogue pour les intégrales : $\int_I f$ est absolument convergente ssi $\int_I |f|$ converge. On parle alors de fonction intégrable.
- → La convergence absolue implique la convergence
- → Relations de comparaison :
 - \star La convergence **absolue** se transfert par équivalence, et par prépondérance.
 - * Si v_n est le tg d'une série **absolument convergente** et si $u_n \sim v_n$ ou $u_n = o(v_n)$, alors (u_n) aussi
 - * Même critère pour les intégrales en $\pm \infty$, en x_0^{\pm} .
- → Intégrales, séries de référence :
 - \star Séries géométriques q^n , intégrale des fonctions exponentielles e^{-ax}
 - * Séries de Riemann : $\sum_{n} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.
 - $\star \text{ En } +\infty: \int_{1}^{+\infty} \frac{dt}{t^{\alpha}} \text{ converge } ssi \ \alpha > 1.$
 - \star En $0^+:\int_{0^+}^1 \frac{dt}{t^{\alpha}}$ converge ssi $\alpha<1$. Attention au retournement de l'inéquation!
- ightarrow Application à la convergence absolue : on compare judicieusement à une référence, souvent :
 - $\star \frac{1}{n^2}$, pour une série , et $\frac{1}{t^2}$ pour une intégrale en $+\infty$.
 - $\star \frac{1}{\sqrt{t}}$ pour une intégrale en 0^+ .