Lembremos que a derivada, além da inclinação da tangente, também pode ser interpretrada como a taxa de variação de uma função.

A inclinação da reta secante é a taxa média de variação de 'y' em reação a 'x'

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

E tomando o limite, com $\Delta x \rightarrow 0$, temos

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}, \text{ taxa (instantânea) de variação no ponto.}$$
Ou seja, a derivada no ponto.

Em muitas situações práticas, conhecemos a taxa de variação de uma grandeza, mas não os valores da grandeza em si. Por exemplo, um físico que conhece a velocidade de uma partícula pode desejar saber sua posição em um dado instante.

Um engenheiro que pode medir a taxa de variação segundo a qual a água está escoando de um tanque quer saber a quantidade escoada durante certo período.

Um biólogo que conhece a taxa segundo a qual uma população de bactérias está crescendo pode querer deduzir qual o tamanho da população em certo momento futuro.

Em cada caso, o problema é encontrar uma função F cuja derivada é uma função conhecida f (a taxa de variação). Se a função F existir, ela é chamada primitiva de f.

Definição Uma função F é denominada uma **primitiva** de f num intervalo I se F'(x) = f(x) para todo x em I.

1 Teorema Se F é uma primitiva de f em um intervalo I, então a primitiva mais geral de f em I é

$$F(x) + C$$

onde C é uma constante arbitrária.

É fácil ver que,
$$\frac{d}{dx}[F(x) + C] = F'(x) = f(x)$$
.

Por exemplo, quem seriam as primitivas da função $f(x) = x^2$? A função, cuja derivada é $y = x^2$, tem de ser da forma $y = x^3/3 + C$. Isso representa uma família de funções, considerando todos os possíveis valores de C.

EXEMPLO 1 Encontre a primitiva mais geral de cada uma das seguintes funções.

(a)
$$f(x) = \sin x$$

(b)
$$f(x) = 1/x$$

(b)
$$f(x) = 1/x$$
 (c) $f(x) = x^n, n \neq -1$

(a)
$$G(x) = -\cos x + C.$$

(a)
$$G(x) = -\cos x + C$$
.
(b) $\frac{d}{dx} (\ln |x|) = \frac{1}{x} \implies F(x) = \ln |x| + C$
(c) $F(x) = \frac{x^{n+1}}{n+1} + C$

$$F(x) = \frac{x^{n+1}}{n+1} + C$$

De modo geral, toda fórmula de derivação dá origem a uma fórmula de primitivação.

Função	Primitiva particular	Função	Primitiva particular
cf(x)	cF(x)	sec^2x	tg x
f(x) + g(x)	F(x) + G(x)	$\sec x \operatorname{tg} x$	sec x
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{\sqrt{1-x^2}}$	sen ⁻¹ x
$\frac{1}{x}$	$\ln x $	$\frac{1}{1+x^2}$	$tg^{-1}x$
e^x	e^x	$\cosh x$	senh x
cos x	sen x	senh x	$\cosh x$
sen x	$-\cos x$		

EXEMPLO 2 Encontre todas as funções g tais que

$$g'(x) = 4 \operatorname{sen} x + \frac{2x^5 - \sqrt{x}}{x}$$

$$g(x) = -4\cos x + \frac{2}{5}x^5 - 2\sqrt{x} + C$$

EXEMPLO 3 Encontre f se $f'(x) = e^x + 20(1 + x^2)^{-1}$ e f(0) = -2.

$$f(x) = e^x + 20 \, \text{tg}^{-1} x - 3$$

EXEMPLO 4 Encontre f se $f''(x) = 12x^2 + 6x - 4$, f(0) = 4 e f(1) = 1.

$$f(x) = x^4 + x^3 - 2x^2 - 3x + 4$$

EXEMPLO 6 Uma partícula move-se em uma reta e tem aceleração dada por a(t) = 6t + 4. Sua velocidade inicial é v(0) = -6 cm/s, e seu deslocamento inicial é s(0) = 9 cm. Encontre sua função posição s(t).

$$s(t) = t^3 + 2t^2 - 6t + 9$$