

MATH 165B - Introduction to Complex Variables

Worksheet 11

Topics: Conformal Mappings: Transformation of Harmonic Functions and Boundary Conditions

Readings from Brown & Churchill: Sections 105 and 106

In these two sections we will develop techniques to solve the problem of finding a harmonic function it such that

$$\left\{ \begin{array}{lll} \Delta h & = & 0 & \text{ on } D \\ h(x,y) & = & f(x,y) & \text{ on } \partial D \end{array} \right. \quad \left\{ \begin{array}{lll} \Delta h & = & 0 & \text{ on } D \\ \frac{dh}{m}(x,y) & = & g(x,y) & \text{ on } \partial D \end{array} \right.$$

Dirichlet Problem

Neumann Problem

where $\frac{dh}{dt} = (\operatorname{grad} h) \cdot \mathbf{n}$. These are two essential boundary value problems in applications that we will study

105. Transformations of Harmonic Functions

Consider the Theorem from the textbook (see picture below):

Theorem

- An analytic function w = (z) = u(x,y) + iv(x,y) maps a domain D_x in the z plane onto a domain D_w in the w plane.
- the function H(x,y) = h[u(x,y),v(x,y)]is harmonic in D
- h(u,v) is a harmonic function defined on D_w

• Read Examples 2 & 3 in page 367

• (P) Give your own examples of function f, a harmonic function h and a domain D_z that satisfy the hypothesis of the theorem and verify that the theorem is true in your situation.

106. Transformations of Boundary Conditions

Consider now the Theorem from the textbook about boundary conditions

Theorem

Hypothesis

- w = f(z) = u(x,y) + iv(x,y) is a conformal transformation on a smooth arc
- **□** be the image of **□** under f
- the function h(u,v) satisfies either of the conditions

along Γ , where h_{Γ} is a real constant and $\frac{d\Gamma}{d\Gamma}$ denotes derivatives normal to I

Thesis

the function

H(x,y) = h[u(x,y),v(x,y)] satisfies the corresponding condition $H = h_0$ or $\frac{dH}{dN} = 0$ along C,

where denotes derivatives normal to C

the grad

because

Read the Example in page 369.

 \bullet (P) Give your own examples of function f, a harmonic function h and a curve C that satisfy the hypothesis of the theorem and verify that the theorem is true in your situation.

The

HOMEWORK PROBLEMS FOR SECTION 105 and 106

- Page 370: #1, #3, #5 and #6
- Star Problems: Page 370: #10

The Star Problems are intended for students who are interested in challenging problems, they can substitute regular problems in the assignment.