

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression

This is a learning algorithm that you use when the output label y in a supervised learning problem are all either zero or one, so for binary classification problem.

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n_x}$
Paraneters: $\omega \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$.

6 (01x)

When implement neural network, it will be easier to just keep B and W as separate parameters

if z is very small or If 2 large negation number

So in this class, we will not use any of this notational convention

So when you implement logistic regression, your job is to try to learn parameters W and B so that y hat becomes a good estimate of the chance of Y equal to one.

Andrew Ng

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Conver $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$.

Converge the function is the function level in eed to define the measure how good our output y-hat is when true labels is y. And square error seems like it might be a reasonable except it makes gradient descent not work well.

Convex If $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ is $y = 1$ is $y = 1$ is $y = 1$ if $y = 1$ if $y = 1$ is $y = 1$ if $y = 1$ if $y = 1$ if $y = 1$ is $y = 1$ if $y = 1$ if $y = 1$ if $y = 1$ if $y = 1$ is $y = 1$ if y

Lost function was defined with respect to a single training example. It measures how well you're doing on a single training example. Cost function, which measure how well you're doing on the entire training set, is the cost of your parameters.

