JProf. Dr. Antonia Arsova

JProf. Dr. Rainer Schüssler

Zeitreihenanalyse Übungsblatt 6

Aufgabe 14 (Stationäre stochastische Prozesse)

a) Seien X_t und Y_t unabhängig und identisch verteilte (u.i.v. oder i.i.d.) Folgen, wobei $\mathbb{P}(X_t=0)=\mathbb{P}(X_t=1)=\frac{1}{2} \text{ und } \mathbb{P}(Y_t=-1)=\mathbb{P}(Y_t=1)=\frac{1}{2}.$ Sei $Z_t=X_t(1-X_{t-1})Y_t.$

Zeigen Sie, dass Y_t weißes Rauschen ist, aber nicht i.i.d.

- b) Sei $\varepsilon_t \sim i.i.d.N(0,1)$. Bestimmen Sie, ob die folgenden stochastischen Prozesse stationär sind. Wenn ja, geben Sie die Mittelwert- und Autokovarianzfunktionen an.
 - i) $Y_t = a + bt + \varepsilon_t$, $a, b \in \mathbb{R}$
 - ii) $Y_t = \varepsilon_t \varepsilon_{t-1}$
 - iii) $Y_t = \Delta \varepsilon_t$
 - iv) $Y_t = \cos(\varphi t)\varepsilon_t + \sin(\varphi t)\varepsilon_{t-2}, \quad \varphi \in [0, 2\pi)$
 - v) $Y_t = \theta_0 \varepsilon_t + \dots \theta_q \varepsilon_{t-q}$, wobei $\theta_0, \theta_q \neq 0$.
- c) Simulieren Sie fünf Realisierungen von ε_t mit Länge 100 und berechnen Sie Y_t aus Teil b) v) für q=5 mit Gewichten (0.2,0.4,0.4,0.4,0.2) (nutzen Sie dabei die R Funktion filter). Vergleichen Sie Y_t und ε_t und deren empirischen Autokorrelationsfunktionen miteinander. Wenden Sie den Filter erneut auf Y_t an, und vergleichen Sie mit den vorigen Ergebnissen. Welche Auswirkung hat die (wiederholte) Anwendung des gleitenden Durchschnitts?

Aufgabe 15 Zeigen Sie, dass die empirische Autokovarianzfunktion eines stationären stochastischen Prozesses

$$\hat{\gamma}(h) = \frac{1}{T} \sum_{t=1}^{T-h} (y_{t+h} - \bar{y})(y_t - \bar{y}), \quad h \in \mathbb{Z}^+,$$

nicht-negativ definit ist.