Piggybacking in Go-Back-N ARQ

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Question

- สาเหตุที่ต้องมีการใช้งาน Protocol ในการจัดการในการส่งข้อมูล (Data link control) สำหรับ node-to-node comm. ?
- ความสำคัญของ Flow control คือ?
- ความสำคัญของ Error control คือ?

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Protocols comparison

Protocol	Flow control	Error control	Sender	Receiver
Simplest				
Stop-and-Wait				
Stop-and-Wait ARQ				
Go-Back-N ARQ				
Selective Repeat ARQ				

HDLC

- High-level Data Link Control (HDLC) is a bitoriented protocol for communication over point-topoint and multipoint links. It implements the ARQ mechanisms we discussed in this chapter.
 - -Configurations and Transfer Modes
 - -Frames
 - -Control Field

Transfer Modes

Normal response mode

• Asynchronous balanced mode

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

HDLC frames & Control field format

HDLC frames & Control field format

• Flag (8 bits): "01111110" Flag Address Control

- Address (>= 1 byte)
 - Receiving address
 - Length

• 1 byte : last bit in address field = "1"

• > 1 byte : last bit of each byte = '0'

except last bit of last address byte = "1"

- FCS (Frame Check Sequence) (2 or 4 byte)
 - Error detection
 - CRC (16-bit CRC-CCITT: 0x1021 or CRC-32: 0x04C11DB7)*
 - Error detection for all fields
 - Except Flag

I-frame control field

- 1st bit: '0': defined type of frame (I-Frame)
- N(S) (3 bits): Transmitting Frame number (0-7)
 - Can extend to 7 bits
- N(R) (3 bits): ACK or NAK Frame number (0-7)
 - When piggybacking is used
 - Can extend to 7 bits

- P/F bit
 - P bit (Poll bit): Poll Frame from Primary
 - 11: Poll Frame from Primary
 - '0': otherwise
 - F bit (Final bit): Frame from Secondary
 - 12: Last I-frame from Secondary
 - '0': otherwise

FCS Flag

S-frame control field

- Code
 - 00: RR (Receive Ready)
 - N(R) = ACK no.
 - 01: REJ (REJect)
- -> NAK for Go-back-N

Flag Address

Control FCS Flag

- N(R) = NAK no.
- 10: RNR (Receive Not Ready): receiver announces that receiver is busy and cannot receive more frame (acts as kind of congestion control mechanism by asking sender to slow down)
 - N(R) = ACK no.
- 11: SREJ (Selective-REJect) -> NAK for Selective-reject (N(R) = NAK no.)
- P/F bit
 - Depend on the condition of Code field

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

U-frame control command and response

Code	Command	Response	Meaning	
00 001	SNRM		Set normal response mode	
11 011	SNRME		Set normal response mode, extended	
11 100	SABM	DM Set asynchronous balanced mode or disconnect m		
11 110	SABME		Set asynchronous balanced mode, extended	
00 000	UI	UI	Unnumbered information	
00 110		UA	Unnumbered acknowledgment	
00 010	DISC	RD	Disconnect or request disconnect	
10 000	SIM	RIM	Set initialization mode or request information mode	
00 100	UP		Unnumbered poll	
11 001	RSET		Reset	
11 101	XID	XID	Exchange ID	
10 001	FRMR	FRMR	Frame reject	

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Example of connection and disconnection

Example of piggybacking without error

Example of piggybacking with error

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

HDLC (Activity)

• A

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

54

HDLC (Activity)

• B

HDLC (Activity)

• (

55