

Actividad integradora 5.3 Resaltador de sintaxis en paralelo

Francisco José Urquizo Schnaas A01028786 13 de junio de 2024

Implementación de métodos computacionales
Gilberto Echeverría Furió

Análisis de tiempo y speed-up

Usando la función :timer.tc(), se logró determinar el tiempo de ejecución de cada uno de los modos empleados para resolver el problema en cuestión (secuencial y paralelo). Se ejecutó el programa 5 veces y se obtuvo un promedio de los tiempos de ejecución de cada modo. Este proceso se muestra a continuación:

1. Primera eiecución

Secuencial: 37432 μs
 Paralelo: 27449 μs

2. Segunda ejecución

Secuencial: 43255 μs
 Paralelo: 26353 μs

3. Tercera ejecución

Secuencial: 35641 μs
 Paralelo: 27091 μs

4. Cuarta ejecución

Secuencial: 34916 μs
 Paralelo: 26210 μs

5. Quinta ejecución

Secuencial: 39178 μs
 Paralelo: 24682 μs

Habiendo tomado las medidas anteriores, se determinaron los siguientes tiempos promedio:

Secuencial: 38084.4 μs
 Paralelo: 26357.0 μs

Con esta información, se concluyó que el modo paralelo es aproximadamente **1.44 veces más rápido** que el modo secuencial, usando todos los cores del equipo de cómputo en el que se realizó esta comparación (12 cores).

Análisis de complejidad

La complejidad del programa secuencial es $O(n\cdot m)$, donde n es el número de archivos y m es el número de líneas por archivo. Esto se debe a que el programa lee y procesa cada archivo línea por línea, aplicando varias operaciones de regex y escribiendo la salida correspondiente. En contraste, el programa paralelo también tiene una complejidad de $O(n\cdot m)$ en términos de trabajo total, pero distribuye las tareas entre múltiples núcleos de CPU. Idealmente, esto reduce el tiempo de ejecución a $O(\frac{n\cdot m}{p})$, donde p es el número de núcleos disponibles. Sin embargo, la eficiencia real del programa paralelo puede verse afectada por la sobrecarga de sincronización y otros factores relacionados con la paralelización.

Es por esta distinción en la complejidad de los diferentes programas que el tiempo se reduce con el modo paralelo.

Implicaciones éticas

El desarrollo de tecnologías como el resaltador de sintaxis, que mejora la legibilidad y comprensión del código fuente, tiene implicaciones éticas importantes en la sociedad. Por un lado, facilita el aprendizaje y la colaboración en programación, democratizando el acceso al conocimiento técnico y fomentando la inclusión digital. Esto puede reducir barreras de entrada para nuevos programadores y contribuir al crecimiento de una comunidad de desarrolladores diversa y capacitada.

Sin embargo, también existen riesgos asociados. La automatización y optimización de tareas pueden reducir la demanda de ciertas habilidades humanas, desplazando trabajos y aumentando la dependencia en la tecnología. Además, la accesibilidad a herramientas avanzadas debe ser equitativa para evitar brechas tecnológicas que perpetúen desigualdades sociales. Es crucial que el desarrollo de estas tecnologías considere estos impactos y promueva un uso responsable, inclusivo y ético, asegurando que los beneficios sean compartidos ampliamente y no exacerben las disparidades existentes.