《高等数学》练习册

班级		
姓名		
/—— <u>—</u>		
学 是		

无锡科技职业学院 2021 年 10 月

目 录

第一章 函数的极限与连续	1
第一节 函数及其性质	· 1
第二节 极限	8
【一】 极限的概念	8
【二】 无穷小与无穷大	13
【三】 极限的四则运算法则	16
【四】 两个重要极限	18
【五】 无穷小阶的比较	20
第三节 函数的连续性	22
第二章 导数与微分	25
第一节 导数的概念	25
第二节 导数的计算	26
【一】 导数公式及四则运算法则	26
【二】 复合函数的导数	31
【三】 隐函数的导数	33
【四】 高阶导数	35
第三节 函数的微分	37
第三章 导数的应用	39
第一节 微分中值定理	39

第二节 函数的性质	39
【一】 函数的单调性	39
【二】 函数的极值	40
【三】 函数的最值	43
第三节 洛必达法则	44
第四章 不定积分	45
第一节 不定积分的概念	45
第二节 不定积分的计算	49
【一】直接积分法	49
【二】第一类换元积分法(凑微分法)	51
【三】第二类换元积分法	54
【四】分部积分法	55

第一章 函数的极限与连续

第一节 函数及其性质

- 一、写出基本初等函数的解析式.
- 1、常数函数
- 2、幂函数
- 3、指数函数
- 4、对数函数
- 5、三角函数

6、反三角函数

二、画出下列各组函数的图像.

1,
$$y = -1$$
, $x = 2$

$$2, y = x$$

$$3, \quad y = x^2$$

$$4, \quad y = \sqrt{x}$$

$$5, \quad y = \frac{1}{x}$$

6,
$$y = e^x$$
, $y = e^{-x}$

7.
$$y = \ln x$$
, $y = \log_{0.5} x$

三、画出下列函数的图像,并写出定义域和值域.

$$1, y = \sin x$$

$$2, y = \cos x$$

$$3, y = \tan x$$

$$4, y = \cot x$$

$$5, y = \arcsin x$$

$$6, y = \arccos x$$

7.
$$y = \arctan x$$

8,
$$y = \operatorname{arc} \cot x$$

四、填空

1、特殊角的三角函数值

$$\sin 0 = \sin \frac{\pi}{6} = \sin \frac{\pi}{4} = \sin \frac{\pi}{3} = \sin \frac{\pi}{2} =$$

$$\cos 0 = \cos \frac{\pi}{6} = \cos \frac{\pi}{4} = \cos \frac{\pi}{3} = \cos \frac{\pi}{2} =$$

$$\tan 0 = \tan \frac{\pi}{6} = \tan \frac{\pi}{4} = \tan \frac{\pi}{3} =$$

$$\cot \frac{\pi}{6} = \cot \frac{\pi}{4} = \cot \frac{\pi}{3} =$$

$$\cot \frac{\pi}{6} = \cot \frac{\pi}{4} = \cot \frac{\pi}{3} =$$

2、常见的反三角函数值

$$\arcsin \frac{1}{2} =$$

$$\arcsin \frac{\sqrt{2}}{2} =$$

$$\arcsin \frac{\sqrt{3}}{2} =$$

$$\arcsin(-1) =$$

$$\arcsin\left(-\frac{1}{2}\right) =$$

$$\arccos \frac{1}{2} =$$

$$\arccos \frac{\sqrt{2}}{2} =$$

$$\arccos \frac{\sqrt{3}}{2} =$$

$$\arccos(-1) =$$

$$\arccos\left(-\frac{1}{2}\right) =$$

$$\arccos\left(-\frac{\sqrt{3}}{2}\right) =$$

$$\arctan \frac{\sqrt{3}}{3} =$$

$$\arctan \sqrt{3} =$$

$$\arctan\left(-\sqrt{3}\right) =$$

$$\arctan(-1) =$$

$$\operatorname{arc} \cot \frac{\sqrt{3}}{3} =$$

$$\operatorname{arc} \cot \sqrt{3} =$$

$$\operatorname{arc} \operatorname{cot} \left(-\frac{\sqrt{3}}{3} \right) =$$

$$\operatorname{arc} \cot (-1) =$$

五、常见的三角函数公式

1、倒数关系

$$\frac{1}{\sin x} =$$

$$\frac{1}{\cos x} =$$

$$\frac{1}{\tan x} =$$

2、平方关系

$$\sin^2 x + \cos^2 x =$$

$$1 + \tan^2 x =$$

$$1 + \cot^2 x =$$

3、二倍角公式

$$\sin 2x =$$

$$\cos 2x = = =$$

六、化简下列式子

$$1, \ \frac{\sqrt{x}}{x^2}$$

$$2\sqrt{x\sqrt{x}}$$

$$3, \ \frac{\sqrt{x^3}}{x\sqrt{x}}$$

$$4, \frac{\sqrt{x} - \sqrt[5]{x}}{\sqrt[3]{x}}$$

七、对数函数的常用性质

$$1 \cdot \log_a(MN) =$$

$$2 \log_a \frac{M}{N} =$$

$$3 \log_a N^b =$$

$$4, e^{\ln A} = \left(A > 0\right)$$

第二节 极限

【一】极限的概念

一、定义和定理

1、什么是数列?什么是通项?

2、数列的极限的定义?

3、当x→∞时,函数f(x)极限的定义?

4、当x→∞时,函数f(x)极限存在的充要条件是什么?

5、当 $x \rightarrow x_0$ 时,函数f(x)极限的定义?

6、当 $x \rightarrow x_0$ 时,函数f(x)极限存在的充要条件是什么?

二、观察下列数列的变化趋势,若极限存在,求出其极限.

$$1, u_n = \frac{1}{n}$$

$$2, u_n = \left(\frac{1}{2}\right)^n$$

$$3, u_n = 2 + \frac{1}{n^2}$$

$$4, \quad u_n = \frac{n-1}{n+1}$$

$$5, u_n = -3$$

$$6, u_n = \left(-1\right)^n$$

$$7, \ u_n = 2n$$

三、画出下列函数的图像,并求当 $x \to \infty$ 时,函数f(x)的极限.

$$1, f(x) = \frac{1}{x}$$

$$2, f(x) = \arctan x$$

$$3, f(x) = \operatorname{arc} \cot x$$

$$4, f(x) = e^x$$

五、画出函数 $f(x) = \begin{cases} x^2, x \neq 0 \\ 1, x = 0 \end{cases}$ 的图像,并求当 $x \to 0$ 时,函数 f(x) 的极限.

六、画出函数 $f(x) = \begin{cases} x, & x \ge 0 \\ -x+1, x < 0 \end{cases}$ 的图像,并求当 $x \to 0$ 时,函数 f(x) 的左、右极限,并讨论其极限是否存在.

七、设函数
$$f(x) = \begin{cases} x^2 - 1, x < 1 \\ 0, & x = 1, 证明当 x \to 1 时, f(x)$$
的极限不存在. 1, $x > 1$

八、判断题

1、如果
$$f(x)$$
在点 x_0 处有定义,那么 $\lim_{x \to x_0} f(x)$ 存在. ()

2、因为
$$\lim_{x \to x_0} f(x)$$
存在,所以 $f(x)$ 在点 x_0 处一定有定义. ()

$$3$$
、当 $x \to x_0$ 时,如果函数 $f(x)$ 存在极限,那么极限值一定等于 $f(x_0)$. (

4.
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}.$$

$$5, \lim_{x \to -\infty} e^x = 0 \tag{}$$

【二】无穷小与无穷大

- 一、定义和定理
- 1、无穷小的定义?
- 2、无穷小的运算性质有哪些?

3、无穷大的定义?

- 4、无穷大与无穷小的关系?
- •
- 二、指出下列各题中函数在相应的自变量的趋势下是无穷大还是无穷小.

$$1, e^x(x \to -\infty)$$

$$2, e^x(x \to +\infty)$$

 $3. \ln x (x \to 1)$

 $4. \ln x \left(x \to 0^+ \right)$

 $5, \ \frac{1}{x}(x \to 0)$

 $6, \ \frac{1}{x}(x \to \infty)$

 $7, x^2(x \to 0)$

 $8, \ x^2(x \to \infty)$

 $9, \sin x (x \to 0)$

10. $\cos x \left(x \to \frac{\pi}{2} \right)$

 $11 \cdot \tan x (x \to 0)$

12. $\tan x \left(x \to \frac{\pi}{2} \right)$

 $13\cdot \cot x(x\to 0)$

14. $\arctan x(x \to 0)$

三、计算下列极限

$$1, \lim_{x\to\infty}\frac{1}{x^2}$$

$$2, \lim_{x \to +\infty} \frac{2}{\sqrt{x}}$$

$$3, \lim_{x\to 0}\frac{1}{x}$$

$$4, \lim_{x\to 2}\frac{5}{x-2}$$

$$5, \lim_{x \to +\infty} \frac{1}{x} \sin x$$

$$6. \lim_{x\to 0} x \sin\frac{1}{x}$$

7. $\lim_{x\to 0} x \arctan x$

四、判断题

1、无穷小就是很小很小的数.	()
2、常数零是无穷小.	()
3、有限个无穷小的积是无穷小.	()
4、无穷大的倒数是无穷小.	()
5、无穷大就是绝对值很大的常数.	()

【三】极限的四则运算法则

一、定义和定理

1、极限的四则运算法则是什么?

二、计算下列极限

$$1, \lim_{x\to 2} 6x$$

$$2 \cdot \lim_{x \to 1} \left(3x + 4 \right)$$

$$3 \cdot \lim_{x \to 3} \left(x^2 - 2x \right)$$

$$4, \lim_{x \to 2} \frac{2x - 3}{5x + 3}$$

$$5, \lim_{x \to -6} \frac{x^2 - 36}{x + 6}$$

6.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$

$$7. \lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 + 3x - 4}$$

$$8, \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$

三、计算下列极限

$$1 \cdot \lim_{x \to \infty} \left(3 + \frac{1}{x^2} \right)$$

$$2 \cdot \lim_{x \to \infty} \frac{1 + \frac{3}{x}}{2 - \frac{1}{x^2}}$$

$$3 \cdot \lim_{x \to \infty} \frac{x^2 + 3x - 1}{2x + 1}$$

$$4 \cdot \lim_{x \to \infty} \frac{3x^2 + 5x + 2}{7x^2 - 3x - 1}$$

$$5. \lim_{x \to \infty} \frac{x^2 - x + 2}{2x^3 + x + 5}$$

$$6, \quad \lim_{n\to\infty}\frac{3n+1}{2n-1}$$

【四】两个重要极限

一、定义和定理

1、第一个重要极限

$$\lim_{x\to 0}\frac{\sin x}{x} = \underline{\hspace{1cm}}$$

拓展:

若□是自变量 x 在任意变化过程中的无穷小量,那么第一个重要极限可以表示成

2、第二个重要极限

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \underline{\hspace{1cm}}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \underline{\hspace{1cm}}$$

拓展:

若□是自变量 x 在任意变化过程中的无穷小量,那么第二个重要极限可以表示成

$$\lim_{x} (1+\Box)^{\frac{1}{\Box}} = \underline{\hspace{1cm}}$$

二、计算下列极限

$$1, \lim_{x\to 0}\frac{\tan x}{x}$$

$$2, \lim_{x\to 0} \frac{\sin x}{3x}$$

$$3 \cdot \lim_{x \to 0} \frac{\sin 5x}{x}$$

$$4, \lim_{x\to\infty} x \sin\frac{1}{x}$$

$$5 \cdot \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{4x}$$

$$6. \lim_{x\to\infty} \left(1+\frac{5}{x}\right)^x$$

$$7. \lim_{x\to\infty} \left(1 - \frac{1}{3x}\right)^x$$

$$8 \cdot \lim_{x \to \infty} \left(1 - \frac{4}{x} \right)^{2x}$$

$$9 \cdot \lim_{x \to 0} \left(1 + x\right)^{7x}$$

10.
$$\lim_{x\to 0} (1+3x)^{\frac{1}{x}}$$

11.
$$\lim_{x\to 0} (1-6x)^{\frac{1}{x}}$$

12.
$$\lim_{x\to 0} (1+5x)^{\frac{2}{x}}$$

三、判断题

1、第一个重要极限是 $\frac{0}{0}$ 型未定式求极限的问题.

()

2、第二个重要极限是1°型未定式求极限的问题.

()

【五】无穷小阶的比较

- 一、定义和定理
- 1、什么是高阶无穷小?低阶无穷小?同阶无穷小?等价无穷小?

2、等价无穷小的替换定理?

3、常用的等价无穷小替换有哪些?

二、计算下列极限

$$1, \lim_{x \to 0} \frac{\tan 4x}{x}$$

$$2 \cdot \lim_{x \to 0} \frac{\arcsin 5x}{x}$$

$$3 \cdot \lim_{x \to 0} \frac{\arctan 3x}{\sin 7x}$$

$$4 \cdot \lim_{x \to 0} \frac{\ln(1+x)}{6x}$$

$$5 \cdot \lim_{x \to 0} \frac{\ln(1 - 3x)}{x}$$

$$6, \lim_{x\to 0}\frac{e^x-1}{\sin 3x}$$

7.
$$\lim_{x\to 0} \frac{2x}{e^{4x}-1}$$

$$8 \cdot \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$9, \lim_{x\to 0} \frac{\sin^2 2x}{1-\cos x}$$

10.
$$\lim_{x\to 0} \frac{(1+x)^3-1}{x}$$

$$11, \lim_{x\to 0} \frac{\ln(1+2x)}{\sqrt{1+x}-1}$$

12.
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x^2} - 1}{1 - \cos 2x}$$

第三节 函数的连续性

- 一、定义和定理
- 1、函数 y = f(x) 在点 x_0 处连续的定义?
- 2、函数 y = f(x)在开区间(a,b)内连续的定义?

- 3、一切初等函数在其定义区间内是_____的.
- 4、什么是第一类间断点?什么是第二类间断点?

- 5、在第一类间断点中,左、右极限相等者称为_____,不相等者称为_____.
- 6、在第二类间断点中,常见的间断点有_____和___和___
- 二、已知函数 $f(x) = \begin{cases} 1, & x < 1 \\ 2x 1, x \ge 1 \end{cases}$,请问该函数在点 x = 1 处是否连续?

三、已知函数 $f(x) = \begin{cases} x, & x < 0 \\ 3x + 1, x \ge 0 \end{cases}$,请问该函数在点 x = 0 处是否连续?如果不连续,请指出该间断点类型.

四、已知函数 $f(x) = \begin{cases} 2x+1, x \neq 0 \\ 0, & x=0 \end{cases}$,请问该函数在点 x = 0 处是否连续?如果不连续,请指出该间断点类型.

五、指出下列函数的间断点,并判断其类型.

$$1, f(x) = \frac{1}{x-1}$$

$$2, f(x) = \sin\frac{1}{x}$$

六、求下列函数的连续区间

$$1, f(x) = \frac{1}{x+2}$$

$$2, \quad f(x) = \sqrt{2x+1}$$

$$3, f(x) = \ln(x+3)$$

4.
$$f(x) = \arcsin x$$

七、判断题

1、若函数
$$f(x)$$
 在点 x_0 处连续,那么 $\lim_{x \to x_0} f(x)$ 一定存在. ()

2、若
$$\lim_{x \to x_0} f(x)$$
存在,那么函数 $f(x)$ 在点 x_0 处连续. ()

4、若函数 f(x)在闭区间[a,b]上连续,那么函数 f(x)在闭区间[a,b]上一定能取到最大值和最小值.

第二章 导数与微分

第一节 导数的概念

一、定义和定理

1、函数f(x)在点 x_0 处可导的定义?

2、函数 f(x) 的导函数的定义?

3、导数的几何意义是什么?

4、函数的可导性与连续性的关系是什么?

第二节 导数的计算

【一】导数公式及四则运算法则

- 一、定义与定理
- 1、导数的四则运算是什么?

2、导数的基本公式有哪些?

二、求下列函数的导数

1,
$$y = x^2$$

$$2, \quad y = x^3$$

$$3, y = x$$

$$4, \quad y = \frac{1}{x}$$

$$5, \quad y = \sqrt{x}$$

$$6, \quad y = \sqrt[3]{x}$$

$$7, \quad y = \frac{1}{x^4}$$

$$8, \quad y = \frac{\sqrt{x}}{x}$$

9.
$$y = 2^x$$

10,
$$y = \log_3 x$$

三、求下列函数的导数

$$1, \quad y = e^x + \left(\frac{2}{3}\right)^x$$

$$2, \quad y = x^3 + 2\ln x$$

$$3, y = \sin x - \cos x$$

4.
$$y = \arcsin x + \arccos x$$

$$5, y = \sec x + \tan x$$

6.
$$y = 3 \arctan x + \operatorname{arc} \cot x$$

$$7, \quad y = 5x^2 + 2x + 1$$

$$8. \ \ y = \frac{1}{\sqrt{x}} + \frac{\sqrt{x}}{2} - \frac{\pi}{2}$$

四、求下列函数的导数

$$1, \quad y = xe^x$$

$$2, y = x^2 \sin x$$

$$3, \quad y = e^x \cos x$$

4.
$$y = x^2 \arctan x$$

$$5, y = x \ln x$$

$$6, y = x^2 \arcsin x$$

五、求下列函数的导数

$$1, \quad y = \frac{x^2}{\ln x}$$

$$2, \quad y = \frac{e^x}{\sin x}$$

$$3, \quad y = \frac{x+5}{2x-1}$$

$$4, \quad y = \frac{x^3}{\cos x}$$

$$5, \quad y = \frac{\tan x}{e^x}$$

$$6, \quad y = \frac{\sec x}{x}$$

六、求下列函数在给定点处的导数

$$1, \quad y = \sin x - \cos x, \quad \vec{x} \ y' \Big|_{x = \frac{\pi}{6}}.$$

2.
$$y = x \sin x + \frac{1}{2} \cos x$$
, $|x| y'|_{x = \frac{\pi}{4}}$.

3.
$$f(x) = \frac{1-x}{1+x}$$
, $\pi f'(4)$.

4.
$$f(x) = \frac{3}{5-x} + \frac{x^2}{5}$$
, $\Re f'(2)$.

七、求曲线
$$y = \frac{1}{x}$$
 在点 $\left(2, \frac{1}{2}\right)$ 处的切线方程.

八、求曲线
$$y = \sin x$$
 在 $x = \frac{\pi}{3}$ 处的切线方程.

【二】复合函数的导数

一、定义和定理

1、复合函数的链式求导法则是什么?

二、写出下列复合函数的复合过程

$$1, y = \sin 3x$$

$$2, \quad y = e^{2x}$$

$$3, y = \ln(1+2x)$$

4.
$$y = (x-10)^{20}$$

$$5, \quad y = \cos^3 x$$

$$6, \quad y = 2^{\sqrt{x}}$$

7.
$$y = \arcsin(\tan x)$$

$$8, y = \sec x^2$$

$$9, \quad y = \csc(4x + 3)$$

10.
$$y = \arctan \frac{1}{x}$$

$$11, \quad y = \ln \sqrt{1 - 3x}$$

$$12, \quad y = \left(\operatorname{arc} \cot x^3\right)^2$$

三、求下列函数的导数

$$1, y = \sin 3x$$

$$2, \quad y = e^{2x}$$

$$3, y = \ln(1+2x)$$

4.
$$y = (x-10)^{20}$$

$$5, y = \cos^3 x$$

$$6, \quad y = 2^{\sqrt{x}}$$

7.
$$y = \arcsin(\tan x)$$

$$8, \quad y = \sec x^2$$

$$9, \quad y = \csc(4x + 3)$$

10.
$$y = \arctan \frac{1}{x}$$

$$11, \quad y = \ln \sqrt{1 - 3x}$$

12.
$$y = \left(\operatorname{arc} \cot x^3\right)^2$$

四、求下列函数的导数

$$1, \quad y = xe^{\sin x}$$

$$2, \quad y = e^{-3x} \cos 2x$$

$$3, \quad y = x^2 \ln 3x$$

$$4, \quad y = \frac{\sin 2x}{\left(x+1\right)^2}$$

【三】隐函数的导数

一、定义和定理

1、什么是隐函数?什么是显函数?

2、隐函数求导的方法是什么?

3、什么是幂指函数?

4、什么是对数求导法?

二、求下列方程所确定的隐函数 y = f(x)的导数

1,
$$y^3 - 3x^2 = 0$$

$$2xy + 6\sin x = 0$$

$$3, e^{x+y} - xy = 1$$

$$4 \cdot \cos x + ye^x - xy = e$$

$$5, \quad y^2 + 2xy - x^3 = 0$$

$$6. 1 + \sin(x+y) = e^y$$

三、求下列幂指函数函数的导数

$$1, \quad y = x^x \ \left(x > 0 \right)$$

$$2, \quad y = x^{\sin x} \ \left(x > 0 \right)$$

【四】高阶导数

一、定义和定理

1、什么是二阶导数?什么是高阶导数?标记符号分别是什么?

二、求下列函数的二阶导数

$$1, \quad y = x^4 + 2x^2 + 3$$

$$2, \ \ y = 3x^3 + x - \frac{1}{x}$$

$$3, \quad y = 3e^x + \cos x$$

$$4, y = \sin 4x$$

$$5, \quad y = e^{5x}$$

6.
$$y = (2x+1)^5$$

$$7, \quad y = xe^x$$

$$8, y = x \ln x$$

三、已知
$$f(x) = \ln(2x^3)$$
,求 $f'''(1)$.

四、已知
$$y = 2x^4 - 3x^2 + x - 1$$
,求 $y^{(4)}$.

五、已知
$$y = e^{2x}$$
,求 $y^{(n)}$.

第三节 函数的微分

一、定义和定理

写成 dy = _____.

二、求下列函数的微分

$$1, d(ax+b) =$$

$$2, d(x^2) =$$

$$3, d(\sqrt{x}) =$$

$$4, d(e^x) =$$

$$5 \cdot d(\ln x) =$$

6.
$$d(\sin x) =$$

7.
$$d(\cos x) =$$

8.
$$d(\tan x) =$$

9.
$$d(\cot x) =$$

10.
$$d(\arcsin x) =$$

11.
$$d(\arctan x) =$$

12.
$$d(e^{ax})=$$

13.
$$d\left(\frac{1}{x}\right) =$$

14.
$$d(\sec x) =$$

15,
$$d(\csc x) =$$

三、求下列函数的微分

1,
$$y = x^4 + 2x^3 + 1$$

$$2, \quad y = x^2 \sin 2x$$

$$3, \quad y = \frac{\ln x}{x^2}$$

$$4, \quad y = \cos e^{-x}$$

$$5, \quad y = \tan\left(x^2 - 1\right)$$

$$6, \quad y = x + \frac{1}{x}$$

四、已知函数 $y = \sqrt{2x}$, 求该函数在点 x = 2 处的微分 $dy|_{x=2}$.

第三章 导数的应用

第一节 微分中值定理

第二节 函数的性质

【一】函数的单调性

一、定义和定理

1、函数单调性的判别法是什么?

2、函数单调区间的分界点有几类?分别是什么?

二、求下列函数的单调区间

 $1, \quad y = x + e^x$

$$2, \ \ y = \frac{1}{3}x^3 - 4x$$

$$3, \ y = 3 - 2(x+1)^{\frac{2}{3}}$$

【二】函数的极值

一、定义和定理

1、什么是函数 f(x) 的极大值和极小值?

2、极值的第一充分条件是什么?

3、极值的必要条件是什么?

4、求函数 f(x) 单调区间与极值的一般步骤是什么?

二、求下列函数的单调区间和极值

1.
$$y = \frac{1}{3}x^3 - \frac{3}{2}x^2 - 4x$$

$$2, \ \ y = \frac{3}{2}x^{\frac{2}{3}}$$

$$3, \quad y = \frac{3}{5}x^{\frac{5}{3}} - \frac{3}{2}x^{\frac{2}{3}}$$

四、判断题

【三】函数的最值

- 一、定义和定理
- 1、求连续函数 f(x)在闭区间[a,b]上最值的一般方法是什么?

- 二、求下列函数在对应区间上的最值.

1.
$$f(x) = x^3 - 3x^2 - 9x + 5$$
 $(-2 \le x \le 1)$

2.
$$f(x) = \sqrt[3]{x-2}$$
 $(1 \le x \le 3)$

第三节 洛必达法则

一、定义和定理

1、洛必达法则可以用来计算_____型或____型未定式求极限的问题.

二、求下列各式的极限

$$1, \lim_{x \to 1} \frac{\ln x}{x - 1}$$

$$2. \lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1}$$

$$3. \lim_{x \to 1} \frac{x^3 - x}{2x^2 + 1}$$

$$4, \lim_{x \to 1} \frac{2x^3 - x^2 - 1}{3x^3 - x^2 - 2x}$$

$$5 \cdot \lim_{x \to +\infty} \frac{\ln x}{x^2}$$

$$6, \lim_{x \to +\infty} \frac{x^2}{e^x}$$

$$7. \lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$$

$$8. \lim_{x \to +\infty} \frac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}}$$

第四章 不定积分

第一节 不定积分的概念

- 一、定义和定理
- 1、什么是原函数?

2、不定积分的概念是什么?

$$(1) \left[\int f(x) dx \right]' =$$

(2)
$$d\left[\int f(x)dx\right] =$$

$$(3) \int f'(x)dx =$$

$$(4) \int df(x) =$$

4、不定积分的几何意义是什么?

5、不定积分的基本公式有哪些?

6、不定积分的性质是什么?

二、求下列不定积分

$$1, \int 2^x dx$$

$$2, \int x^2 dx$$

$$3, \int \sqrt{x} dx$$

$$4, \int \sqrt[3]{x^4} \, dx$$

$$5, \int 5 dx$$

$$6, \int \frac{1}{x} dx$$

$$7. \int \left(\frac{1}{3}\right)^x dx$$

$$8, \int \frac{1}{x^2} dx$$

$$9 \cdot \int \sec^2 x \, dx$$

$$10 \cdot \int \csc^2 x \, dx$$

$$11, \int \cos x \, dx$$

$$12 \cdot \int \sin x \, dx$$

13.
$$\int \sec x \tan x \, dx$$

14.
$$\int \csc x \cot x \, dx$$

$$15, \int \frac{1}{1+x^2} dx$$

$$16, \int \frac{1}{\sqrt{1-x^2}} dx$$

三、(1) 求每一点处的切线斜率为 $\cos x$ 的积分曲线族.

(2) 若以上积分曲线族中有一条曲线过点(0,1), 求该曲线方程.

四、判断题

2、若
$$F(x)$$
是 $f(x)$ 的一个原函数,那么 $F(x)+C$ 是 $f(x)$ 的全体原函数. ()

$$3 \cdot \cos x$$
 是 $\sin x$ 的一个原函数. ()

$$4$$
、 $2x$ 有一个原函数是 $x^2 + 1$. ()

5、若
$$f'(x) = g'(x)$$
, 那么 $f(x) = g(x)$.

第二节 不定积分的计算

【一】直接积分法

一、定义和定理

1、什么是直接积分法?

$$1, \int (\cos x + \sin x) dx$$

$$2 \cdot \int \left(x^3 + \sqrt[3]{x}\right) dx$$

$$3, \int \frac{3^x}{5^x} dx$$

$$4, \int \left(2e^x - x^2\right) dx$$

$$5. \int \left(\frac{1}{x^2} - 3\cos x + \frac{2}{x}\right) dx$$

$$6. \int \left(\sin x + \frac{2}{\sqrt{1 - x^2}} + \pi \right) dx$$

$$7. \int \left(\frac{2}{x} + \frac{x}{3}\right)^2 dx$$

$$8. \int \frac{2x^2 - 5x + 1}{x} dx$$

$$9, \int \frac{x - x^3 e^x + x^2}{x^3} dx$$

$$10, \int \sec x (\sec x - \tan x) \, dx$$

11.
$$\int \csc x (\cot x - \csc x) dx$$

$$12, \int \frac{x^2}{1+x^2} dx$$

【二】第一类换元积分法(凑微分法)

- 一、定义和定理
- 1、什么是第一类换元积分法?

2、常用的凑微分有哪些?

$$1, \int \sin 2x \, dx$$

$$2, \int e^{-x} dx$$

$$3. \int \left(2x-3\right)^5 dx$$

$$4, \int \frac{1}{2x+1} dx$$

$$5, \int \sqrt{3x-1} \, dx$$

$$6, \int \cos 7x \, dx$$

$$7. \int \frac{1}{\left(x+2\right)^2} dx$$

$$8 \cdot \int \sec^2 5x \, dx$$

$$9, \int \frac{1}{\sqrt[3]{3-2x}} dx$$

$$10. \int \frac{1}{1+9x^2} dx$$

 $11. \int e^x \sin e^x \, dx$

 $12, \int \sin x \cos^6 x \, dx$

13. $\int \frac{1}{x} \cdot \ln x \, dx$

 $14. \int xe^{x^2} dx$

 $15, \int \frac{1}{x^2} e^{\frac{1}{x}} dx$

 $16. \int \frac{1}{\sqrt{x}} \cos \sqrt{x} \, dx$

【三】第二类换元积分法

- 一、定义和定理
- 1、什么是第二类换元积分法?

2、什么是根式代换?

$$1, \int \frac{x}{\sqrt{x-1}} \, dx$$

$$2, \int x\sqrt{1+x} \, dx$$

$$3. \int \frac{\sqrt{x}}{1+\sqrt{x}} dx$$

$$4, \int x(x-2)^{10} dx$$

【四】分部积分法

一、定义和定理

1、分部积分公式是什么?

$$1, \int \ln x \, dx$$

$$2, \int \arctan x \, dx$$

$$3, \int xe^x dx$$

$$4 \cdot \int x \sin x \, dx$$

$$5, \int xe^{3x} dx$$

$$6, \int x^2 \cos x \, dx$$