Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_şt-nat* Barem de evaluare și de notare

Varianta 6

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{8} = 2\sqrt{2}$ $2\sqrt{2} - 2\sqrt{2} + 6 = 6 \in \mathbb{N}$	2p
		3p
2.	f(0)=1 $(f \circ f)(0) = f(1) = 4$	2p
	$(f \circ f)(0) = f(1) = 4$	3 p
3.	$x^2 + 1 = 5$	3p
	Rezultă $x = -2$ sau $x = 2$, care verifică ecuația	2p
4.	Se notează cu x prețul inițial $\Rightarrow 20\% \cdot x = 200$	2p
	x = 1000, deci prețul după ieftinire este 800 de lei	3p
5.	$\vec{u} = -\vec{v} \Rightarrow a - 1 = -2$	3p
	a = -1	2p
6.	M mijlocul lui $(BC) \Rightarrow AM = \frac{BC}{2}$	3p
	AM = 5	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$1-2+2\cdot 1=a$, $2\cdot 1-2=0$ și $2-1=1$	3р
	a = 1	2 p
b)	Determinantul sistemului este $\begin{vmatrix} 1 & -1 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{vmatrix} =$	2p
	=1+4+0-0-0-2=3	3 p
c)	x = 0	2p
	y = 0	2 p
	z = -1	1p
2.a)	$f = X^3 - X - 2 \Rightarrow f(2) = 2^3 - 2 - 2 =$	3 p
	=4	2p
b)	$x_1 + x_2 + x_3 = 0$, $x_1 x_2 + x_1 x_3 + x_2 x_3 = -1$	2p
	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 2$	3p
c)	$k \in \mathbb{Z}$ este rădăcină a lui $f \Rightarrow k^3 - k + a = 0$	2p
	$a = -(k-1) \cdot k \cdot (k+1) \Rightarrow a$ este număr întreg multiplu de 6, deoarece este divizibil cu trei	
	numere întregi consecutive	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$f'(x) = \left(\frac{2}{x} + \ln x\right)' = 2\left(\frac{1}{x}\right)' + \frac{1}{x} =$	2p
	$= -\frac{2}{x^2} + \frac{1}{x} = \frac{x-2}{x^2}$, pentru orice $x \in (0, +\infty)$	3 p

b)	$f'(x) = 0 \Leftrightarrow x = 2$	2p
	$f'(x) < 0$, pentru $x \in (0,2)$ şi $f'(x) > 0$, pentru $x \in (2,+\infty)$	2 p
	Punctul de extrem este $x = 2$	1p
c)	$f''(x) = \left(\frac{x-2}{x^2}\right)' = \frac{1 \cdot x^2 - (x-2) \cdot 2x}{x^4} = \frac{4-x}{x^3}$	3р
	$x \in (0,4) \Rightarrow 4-x>0 \Rightarrow f'(x)>0 \Rightarrow f$ este convexă pe intervalul $(0,4)$	2p
2.a)	$\int_{2}^{4} (x-1) f(x) dx = \int_{2}^{4} \frac{1}{x+1} dx =$	2p
	$= \ln(x+1) \begin{vmatrix} 4 \\ 2 \end{vmatrix} = \ln\frac{5}{3}$	3p
b)	$\int_{2}^{3} (x^{3} - 1) \frac{1}{x^{2} - 1} dx = \int_{2}^{3} \frac{x^{2} + x + 1}{x + 1} dx =$	2p
	$= \int_{2}^{3} \left(x + \frac{1}{x+1} \right) dx = \left(\frac{x^{2}}{2} + \ln(x+1) \right) \Big _{2}^{3} = \frac{5}{2} + \ln\frac{4}{3}$	3р
c)	$A = \int_{2} f(x) dx = \int_{2}^{1} \frac{1}{x^{2} - 1} dx =$	2p
	$= \frac{1}{2} \ln \left(\frac{x-1}{x+1} \right) \Big _{2}^{3} = \frac{1}{2} \ln \frac{3}{2}$	3р