#### 1. Intro & Word vectors

LING-581-Natural Language Processing1

Instructor: Hakyung Sung

August 26, 2025

\*Acknowledgment: These course slides are based on materials from CS224N: NLP with Deep Learning @ Stanford University.

#### Table of contents

- 1. Introduction
- 2. Lesson plan
- 3. Human language & Word meaning
- 4. Encoding and embedding
- 5. Wrap-up

Introduction

• Instructor: Dr. Hakyung Sung

- Instructor: Dr. Hakyung Sung
  - $\cdot\,$  PhD in Linguistics, MS in Computer Science @ University of Oregon

- Instructor: Dr. Hakyung Sung
  - $\cdot\,$  PhD in Linguistics, MS in Computer Science @ University of Oregon
- Grader: Bea (Bey-uh) Pulido

- · Instructor: Dr. Hakyung Sung
  - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
  - · a second year Experimental Psychology graduate student

- Instructor: Dr. Hakyung Sung
  - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
  - · a second year Experimental Psychology graduate student
- Time: Tu/Th 12:30PM-1:45PM

- Instructor: Dr. Hakyung Sung
  - · PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
  - · a second year Experimental Psychology graduate student
- Time: Tu/Th 12:30PM-1:45PM
- · Office: EAS 3173

- · Instructor: Dr. Hakyung Sung
  - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
  - · a second year Experimental Psychology graduate student
- Time: Tu/Th 12:30PM-1:45PM
- · Office: EAS 3173
- Office hour: TuTh 3:30-4:30 in-person, or Zoom by appointment

- · Instructor: Dr. Hakyung Sung
  - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
  - · a second year Experimental Psychology graduate student
- Time: Tu/Th 12:30PM-1:45PM
- · Office: EAS 3173
- Office hour: TuTh 3:30-4:30 in-person, or Zoom by appointment
- Email: hksgla@rit.edu

- · Instructor: Dr. Hakyung Sung
  - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
  - · a second year Experimental Psychology graduate student
- Time: Tu/Th 12:30PM-1:45PM
- · Office: EAS 3173
- Office hour: TuTh 3:30-4:30 in-person, or Zoom by appointment
- Email: hksgla@rit.edu
- Course website: https://hksung.github.io/Fall25\_LING581/

• The foundations of the effective modern methods for deep learning applied to NLP

- The foundations of the effective modern methods for deep learning applied to NLP
  - Basics first: word vectors, feed-forward networks, recurrent networks, attention

- The foundations of the effective modern methods for deep learning applied to NLP
  - Basics first: word vectors, feed-forward networks, recurrent networks, attention
  - Then key methods used in NLP: encoder-decoder models, transformers, pre-training, post-training, benchmark and evaluation, NLP applications (to language research), etc.

• A big picture understanding of human languages and the difficulties in understanding and producing them via computers

- A big picture understanding of human languages and the difficulties in understanding and producing them via computers
- An understanding of an application to build systems for some of the major problems in NLP: Word meaning, dependency parsing, machine translation, question answering

- A big picture understanding of human languages and the difficulties in understanding and producing them via computers
- An understanding of an application to build systems for some of the major problems in NLP: Word meaning, dependency parsing, machine translation, question answering
- · Hands-on exercises conducted during classes (on Thursday)

- A big picture understanding of human languages and the difficulties in understanding and producing them via computers
- An understanding of an application to build systems for some of the major problems in NLP: Word meaning, dependency parsing, machine translation, question answering
- · Hands-on exercises conducted during classes (on Thursday)
- Opportunities to connect NLP techniques to specific domains of interest using language data (Final project)

#### $[a \times b]$ a = number; b = points

- Lab exercises [8 × 5]: 40%
- · Background research 20%
  - Assignment [1 x 10] 10%
  - Presentation [1 × 10] 10%
- · Final project 40%
  - Final project proposal [1 x 10] 10%
  - Final presentation [1 × 15]: 15%
  - Final paper [1 × 15]: 15%

• **Lab exercises** [8 × 5]: 40%

| Week | Date | Торіс                                  | <b>Due</b><br>( <b>Friday</b> , 11:59 pm) |
|------|------|----------------------------------------|-------------------------------------------|
| 1    | 8/26 | Introduction, Word vectors             |                                           |
|      | 8/28 | Lab1 – Python basics                   | Lab exercise 1                            |
| 2    | 9/2  | Word vectors                           |                                           |
|      | 9/4  | Lab2 – Word vectors                    | Lab exercise 2                            |
| 3    | 9/9  | Backpropagation, neural network basics |                                           |
|      | 9/11 | Lab 3 – PyTorch                        | Lab exercise 3                            |

• Lab exercises [8 × 5]: 40%

| Week | Date | Торіс                                  | Due<br>(Friday, 11:59 pm) |
|------|------|----------------------------------------|---------------------------|
| 1    | 8/26 | Introduction, Word vectors             |                           |
|      | 8/28 | Lab1 – Python basics                   | Lab exercise 1            |
| 2    | 9/2  | Word vectors                           |                           |
|      | 9/4  | Lab2 – Word vectors                    | Lab exercise 2            |
| 3    | 9/9  | Backpropagation, neural network basics |                           |
|      | 9/11 | Lab 3 – PyTorch                        | Lab exercise 3            |

• Please bring your laptop on Thursday.

• Lab exercises [8 × 5]: 40%

| Week | Date | Topic                                  | Due<br>(Friday, 11:59 pm) |
|------|------|----------------------------------------|---------------------------|
| 1    | 8/26 | Introduction, Word vectors             |                           |
|      | 8/28 | Lab1 – Python basics                   | Lab exercise 1            |
| 2    | 9/2  | Word vectors                           |                           |
|      | 9/4  | Lab2 – Word vectors                    | Lab exercise 2            |
| 3    | 9/9  | Backpropagation, neural network basics |                           |
|      | 9/11 | Lab 3 – PyTorch                        | Lab exercise 3            |
|      |      |                                        |                           |

- · Please bring your laptop on Thursday.
- Students are expected to complete their exercises during class and submit their answers before the class ends.

• Lab exercises [8 × 5]: 40%

| Week | Date | Торіс                                  | <b>Due</b><br>( <b>Friday</b> , 11:59 pm) |
|------|------|----------------------------------------|-------------------------------------------|
| 1    | 8/26 | Introduction, Word vectors             |                                           |
|      | 8/28 | Lab1 – Python basics                   | Lab exercise 1                            |
| 2    | 9/2  | Word vectors                           |                                           |
|      | 9/4  | Lab2 – Word vectors                    | Lab exercise 2                            |
| 3    | 9/9  | Backpropagation, neural network basics |                                           |
|      | 9/11 | Lab 3 – PyTorch                        | Lab exercise 3                            |

- Please bring your laptop on Thursday.
- Students are expected to complete their exercises during class and submit their answers before the class ends.
- If not possible, the official due date is **Friday** of the same week.

- · Background research 20%
  - Assignment [1 × 10] 10%
  - Presentation [1 × 10] 10%
- https://youtube.com/shorts/Yg7WrDt5I1E?si=12YMKYi\_OJRj9c6r

 To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Think about the areas you are interested in. (e.g., Language learning and NLP applications)

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Think about the areas you are interested in. (e.g., Language learning and NLP applications)
- At the end of this class, I will give you some time to reflect on this; Submit your area of interest (it can be broad), and I will form groups of four.

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Think about the areas you are interested in. (e.g., Language learning and NLP applications)
- At the end of this class, I will give you some time to reflect on this; Submit your area of interest (it can be broad), and I will form groups of four.
- In Week 7, you will submit a more specific research topic.

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Think about the areas you are interested in. (e.g., Language learning and NLP applications)
- At the end of this class, I will give you some time to reflect on this; Submit your area of interest (it can be broad), and I will form groups of four.
- In Week 7, you will submit a more specific research topic.
- In Week 13, you will give a presentation about the background research. This presentation will be connected to your Assignment.

#### · Final project 40%

- Final project proposal [1 × 10] 10%
- Final presentation [1 × 15]: 15%
- Final paper [1 × 15]: 15%

- · Final project 40%
  - Final project proposal [1 × 10] 10%
  - Final presentation [1 × 15]: 15%
  - Final paper [1 × 15]: 15%
- Based on the problems and prior solutions you identified in your background research, you will design a final project that applies NLP techniques to address the problem (\*Continue working on the same group)

- · Final project 40%
  - Final project proposal [1 × 10] 10%
  - Final presentation [1 × 15]: 15%
  - Final paper [1 × 15]: 15%
- Based on the problems and prior solutions you identified in your background research, you will design a final project that applies NLP techniques to address the problem (\*Continue working on the same group)
- The project proposal is due in Week 9.

- · Final project 40%
  - Final project proposal [1 × 10] 10%
  - Final presentation [1 × 15]: 15%
  - Final paper [1 × 15]: 15%
- Based on the problems and prior solutions you identified in your background research, you will design a final project that applies NLP techniques to address the problem (\*Continue working on the same group)
- · The project proposal is due in Week 9.
- The final presentation and paper are due in Week 16.

#### More notes

• This process actually follows the typical research flow:

#### More notes

- This process actually follows the typical research flow:
  - 1. Review previous research

- This process actually follows the typical research flow:
  - 1. Review previous research
  - 2. Identify a research gap

- This process actually follows the typical research flow:
  - 1. Review previous research
  - 2. Identify a research gap
  - 3. Apply proposed techniques / conduct analysis

- This process actually follows the typical research flow:
  - 1. Review previous research
  - 2. Identify a research gap
  - 3. Apply proposed techniques / conduct analysis
  - 4. Present findings

- This process actually follows the typical research flow:
  - 1. Review previous research
  - 2. Identify a research gap
  - 3. Apply proposed techniques / conduct analysis
  - 4. Present findings
  - 5. Write up the paper

• 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.
- Extenuating circumstances: Whenever possible, please request an official document that can prove the circumstances—this allows me to accommodate you fairly while respecting your privacy.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.
- Extenuating circumstances: Whenever possible, please request an official document that can prove the circumstances—this allows me to accommodate you fairly while respecting your privacy.
  - If that is not possible, contact me as soon as you can. Extensions are generally not granted retroactively.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.
- Extenuating circumstances: Whenever possible, please request an official document that can prove the circumstances—this allows me to accommodate you fairly while respecting your privacy.
  - If that is not possible, contact me as soon as you can. Extensions are generally not granted retroactively.
- No extensions will be granted for the **final paper**.

• For the group works, all members are expected to contribute their time and effort equally.

- For the group works, all members are expected to contribute their time and effort equally.
- Each submission will include a section outlining both individual and group contributions, which will be evaluated separately.

- For the group works, all members are expected to contribute their time and effort equally.
- Each submission will include a section outlining both individual and group contributions, which will be evaluated separately.
- Collaboration with AI tools is permitted, but you are responsible for the quality and integrity of the work produced.

- For the group works, all members are expected to contribute their time and effort equally.
- Each submission will include a section outlining both individual and group contributions, which will be evaluated separately.
- Collaboration with AI tools is permitted, but you are responsible for the quality and integrity of the work produced.
- You must acknowledge and document how AI tools were used in your work (including individual exercises).

#### Pause

Any questions?

1. Course logistics

- 1. Course logistics
- 2. Human language and word meaning

- 1. Course logistics
- 2. Human language and word meaning
- 3. Encoding and embedding: Encoding

- 1. Course logistics
- 2. Human language and word meaning
- 3. Encoding and embedding: Encoding
- 4. Wrap up

- 1. Course logistics
- 2. Human language and word meaning
- 3. Encoding and embedding: Encoding
- 4. Wrap up

- 1. Course logistics
- 2. Human language and word meaning
- 3. Encoding and embedding: Encoding
- 4. Wrap up

Key idea: Language and writing are remarkable technologies; NLP problems begin with encoding meaning in computers.

Human language & Word meaning

• Enables us to tell stories, ask questions, share knowledge, plan ahead, and even imagine alternate realities.

- Enables us to tell stories, ask questions, share knowledge, plan ahead, and even imagine alternate realities.
- Serves as a tool for coordinating with others, transmitting ideas, and building shared culture.

- Enables us to tell stories, ask questions, share knowledge, plan ahead, and even imagine alternate realities.
- Serves as a tool for coordinating with others, transmitting ideas, and building shared culture.
- Universally present across all human societies (regardless of geography or historical period).

- Enables us to tell stories, ask questions, share knowledge, plan ahead, and even imagine alternate realities.
- Serves as a tool for coordinating with others, transmitting ideas, and building shared culture.
- Universally present across all human societies (regardless of geography or historical period).
- Estimated age: 100,000–200,000 years, making it one of the oldest and most powerful human inventions.

- Enables us to tell stories, ask questions, share knowledge, plan ahead, and even imagine alternate realities.
- Serves as a tool for coordinating with others, transmitting ideas, and building shared culture.
- Universally present across all human societies (regardless of geography or historical period).
- Estimated age: 100,000–200,000 years, making it one of the oldest and most powerful human inventions.
- Evidence includes archaeological findings such as *symbolic* beads, tools, and burial sites, which suggest abstract thought and communication.



**Figure 1:** Clay tablet inscribed with the earliest known writing system, cuneiform—recording the receipt of barley and malt (around 3000 BCE, left)—and a close-up of cuneiform text on a mudbrick (around 1200 BCE, right).

Sourced from: https://en.wikipedia.org/wiki/Cuneiform

Writing = another amazing technology!

· Records language, which is otherwise ephemeral

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- Enables wide communication—even with strangers!

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- · Enables wide communication—even with strangers!
- · Key to history, law, science, culture

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- · Enables wide communication—even with strangers!
- · Key to history, law, science, culture
- Not all people or societies use writing

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- · Enables wide communication—even with strangers!
- · Key to history, law, science, culture
- · Not all people or societies use writing
- Estimated age: 5,000–6,000 years

# Writing systems in NLP

What is NLP?

#### Writing systems in NLP

#### What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

# Writing systems in NLP

#### What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

 To process language with computers, NLP requires a way to encode language → that's where writing systems come in!

# Writing systems in NLP

#### What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

- To process language with computers, NLP requires a way to encode language → that's where writing systems come in!
- Evolution of writing technologies: clay → papyrus → printing press → digital text

# Writing systems in NLP

#### What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

- To process language with computers, NLP requires a way to encode language → that's where writing systems come in!
- Evolution of writing technologies: clay → papyrus → printing press → digital text
- Digital writing allows for new forms of communication and makes language machine-readable → Leap!

#### Machine translations



#### Sourced from:

# Generating texts



Sourced from: https://www.makeuseof.com/use-chatgpt-write-work-emails/

# Generating image



Sourced from: https://openai.com/about/

#### Chatbot



Sourced from:

https://www.theguardian.com/technology/2024/jan/10/openai-launches-gpt-store-customized-chatbots

Definition: meaning (Webster)

- · Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.

- · Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.
  - the idea that a person wants to express by using words, signs

- Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.
  - the idea that a person wants to express by using words, signs
  - the idea that is expressed in a work of writing, art, etc.

- Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.
  - the idea that a person wants to express by using words, signs
  - the idea that is expressed in a work of writing, art, etc.
- Commonest linguistic way of thinking about meaning:

- Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.
  - the idea that a person wants to express by using words, signs
  - the idea that is expressed in a work of writing, art, etc.
- Commonest linguistic way of thinking about meaning:
  - Signifier (symbol) ↔ Signified (idea or thing)

- Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.
  - the idea that a person wants to express by using words, signs
  - the idea that is expressed in a work of writing, art, etc.
- Commonest linguistic way of thinking about meaning:
  - $\cdot$  Signifier (symbol)  $\leftrightarrow$  Signified (idea or thing)

- Definition: meaning (Webster)
  - the idea that is represented by a word, phrase, etc.
  - the idea that a person wants to express by using words, signs
  - the idea that is expressed in a work of writing, art, etc.
- · Commonest linguistic way of thinking about meaning:
  - Signifier (symbol) ↔ Signified (idea or thing)
  - · Denotational semantics



# How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

# How do we represent the meanings in computer

Can computers understand meanings of the words as we do? No.

# How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

No.

Traditional NLP method: Use the sets of synonyms and hypernyms of word by querying some databases (e.g., WordNet)

 Missing nuances (e.g., proficient is listed as a synonym of good (but not always)

- Missing nuances (e.g., proficient is listed as a synonym of good (but not always)
- Missing new meanings of words (e.g., rizz)

- Missing nuances (e.g., proficient is listed as a synonym of good (but not always)
- Missing new meanings of words (e.g., rizz)
  - Word meanings constantly change and adapt based on how people really use the language in the world

- Missing nuances (e.g., proficient is listed as a synonym of good (but not always)
- · Missing new meanings of words (e.g., rizz)
  - Word meanings constantly change and adapt based on how people really use the language in the world
- Practically, building/updating a database is expensive and inefficient.

- Missing nuances (e.g., proficient is listed as a synonym of good (but not always)
- Missing new meanings of words (e.g., rizz)
  - Word meanings constantly change and adapt based on how people really use the language in the world
- Practically, building/updating a database is expensive and inefficient.
- Can't compute accurate word similarity

Encoding and embedding

• In traditional NLP, we regard words as discrete symbols

- In traditional NLP, we regard words as discrete symbols
- Words themselves cannot be given as inputs to computers

- In traditional NLP, we regard words as discrete symbols
- · Words themselves cannot be given as inputs to computers
- BUT numbers can be given as inputs to computers

- In traditional NLP, we regard words as discrete symbols
- · Words themselves cannot be given as inputs to computers
- BUT numbers can be given as inputs to computers
- Encoding = converting words to numbers

- In traditional NLP, we regard words as discrete symbols
- · Words themselves cannot be given as inputs to computers
- · BUT numbers can be given as inputs to computers
- Encoding = converting words to numbers
- Will continue discussions on encoding/embedding and word vectors next Tuesday.

 $\boldsymbol{\cdot}$  Please check the syllabus; let know if you have any question(s).

- Please check the syllabus; let know if you have any question(s).
- Lab session 1 is planned on Thursday, which we will go over some basic Python functions (If you want to brush up your Python skills, this session will be helpful.)

- · Please check the syllabus; let know if you have any question(s).
- Lab session 1 is planned on Thursday, which we will go over some basic Python functions (If you want to brush up your Python skills, this session will be helpful.)
- A mini survey for group projects: https://forms.gle/4dtPDFFhDpccfvBu8