DEPARTMENT OF MATHEMATICS, IIT - Kharagpur

Mid Semester Examination (Autumn 2018)

MA 61027 Cryptography and Network Security

Instructor: Dr. Sourav Mukhopadhyay

No. of students: 150. Total Points: 30. DURATION: 2 Hours

Answer ALL QUESTIONS. All the notations are standard and no query or doubts will be entertained. If any data/statement is missing, identify it in your answer script. Marks are indicated at the end of each question.

1.

An S-box $S:\{0,1\}^m \to \{0,1\}^n$ is said to be balanced if $|S^{-1}(y)|=2^{m-n}$ for all $y\in\{0,1\}^n$. Consider the following DES S-box $S_5:\{0,1\}^6\to\{0,1\}^4$:

2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	L					
4	2	1	11		13		8				5				
11	8	12	7	1	14	2	13	6	15		9		-	5	3

Table 1: DES S-box S_5

- (a) Determine the set $S_5^{-1}(1001)$.
- (b) Prove that S_5 is balanced.

[4]

2. What is perfect secrecy? State Shannon's theorem.

[2]

3. Describe the AES-Rijndael encryption function.

- [5]
- 4. In the RSA cryptosystem encryption is performed using $C \equiv M^e \pmod{N}$, where N = pq for suitably chosen large primes p,q, and $gcd(e,\phi(N)) = 1$. In a chaining attack on RSA, given a ciphertext $C \equiv M^e \pmod{N}$ the attacker computes,

$$C^e(mod\ N),\ C^{e^2}(mod\ N),\ \ldots,\ C^{e^k}(mod\ N)$$

unless $C \equiv C^{e^k} \pmod{N}$ is obtained. That is, k is the least positive integer that specifies the cycle.

- (a) Explain why attacker can always find $k \in [1, N-1]$ so that $C \equiv C^{e^k} \pmod{N}$. Hint: Recall that RSA is an encryption algorithm and therefore bijective, i.e. $M_1 \neq M_2$ cannot be mapped to the same ciphertext.
- (b) Can attacker recover the message M from the observed sequence above in case $C \equiv C^{e^k} \pmod{N}$ is valid?
- (c) Explain how attacker can factor N by finding an integer u such that $gcd(C^{e^u}, N) > 1$. [6]

- 4. What is Knapsack problem? Describe Merkle-Hellman Knapsack cryptosystem. [5]
- 5. Describe Diffie-Hellman Key exchange protocol and the Man in the middle (MITM) attack on Diffie-Hellman Key exchange protocol. [4]
- 6. In ElGamal cryptosystem let us choose prime p=107, randomness k=46, generator g=2. If you have the secret key as $\alpha=67$, then find the ciphertext encrypting the message m=44.
- 7. Let P=(3,8) and Q=(10,13) be two points on an Elliptic curve $y^2=x^3-5x+1$ over \mathbb{Z}_{17} . Find P+Q and 2P.

[End]