Grafi

Grafi (13.1)

- Un grafo è una coppia (V, E), dove
 - V è un insieme di nodi, detti vertici
 - *E* è una collezione di coppie di vertici, dette spigoli (o archi)
 - Vertici e spigoli sono Position e contengono elementi
- Esempio:
 - Un vertice rappresenta un aeroporto e contiene il codice aeroportuale di tre lettere
 - Uno spigolo rappresenta una rotta di volo fra due aeroporti e contiene la lunghezza della rotta

Tipi di spigolo

- Spigolo orientato (o diretto)
 - coppie ordinate di vertici (u,v)
 - il primo vertice u è l'origine
 - il secondo vertice v è la destinazione
 - ad esempio, un volo
- Spigolo non orientato (o non diretto)
 - coppia non ordinata di vertici (u,v)
 - ad esempio, una rotta
- Grafo diretto (od orientato)
 - tutti gli spigoli sono orientati
 - ad esempio, una rete di voli
- Grafo non diretto (o non orientato)
 - tutti gli spigoli sono non orientati
 - ad esempio, una rete di rotte aeree

Applicazioni

- Circuiti elettronici
 - Circuito stampato
 - Circuiti integrato
- Reti di trasporto
 - Rete autostradale
 - Rete di voli
- Reti di computer
 - LAN
 - Internet
 - Web
- Basi di dati
 - Diagramma entità-relazione

Terminologia

- Vertici (o punti) terminali di uno spigolo
 - U e V sono i punti terminali di a
- Spigoli incidenti su un vertice
 - a, d e b sono incidenti su V
- Vertici adiacenti
 - U e V sono adiacenti
- Grado di un vertice
 - X ha grado 5
- Spigoli paralleli (o multipli)
 - h ed i sono spigoli paralleli
- Autoanelli (self-loop)
 - j è un self-loop

Terminologia (cont.)

- Percorso (path)
 - sequenza di vertici alternati a a spigoli
 - inizia con un vertice
 - termina con un vertice
 - ciascuno spigolo è preceduto e seguito dai punti terminali
- Percorso semplice
 - percorso in cui tutti i vertici e spigoli sono distinti
- Esempi
 - P₁=(V,b,X,h,Z) è un percorso semplice
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) è un percorso non semplice

Terminologia (cont.)

- Ciclo
 - sequenza circolare di vertici alternati a spigoli
 - ciascuno spigolo è preceduto e seguito dai suoi punti terminali
- Ciclo semplice
 - ciclo in cui tutti i vertici e spigoli sono distinti
- Esempi
 - C₁=(V,b,X,g,Y,f,W,c,U,a,↓) è un ciclo semplice
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,↓)
 è un ciclo non semplice

Proprietà

Proprietà 1

$$\Sigma_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{m}$$

Prova: ciascuno spigolo è contato due volte

Proprietà 2

In un grafo non diretto e privo di autoanelli e di spigoli multipli

$$m \le n (n-1)/2$$

Prova: ciascun vertice ha grado al più (n-1)

Che accade nel caso di grafi diretti?

Notazione

n m

numero di vertici numero di spigoli deg(v) grado del vertice v

Esempio

$$n=4$$

$$\mathbf{m} = 6$$

$$\bullet \deg(\mathbf{v}) = 3$$

Metodi principali del TdA Grafo

- Vertici e spigoli
 - sono Position
 - contengono elementi
- Metodi accessori
 - endVertices(e): array con i due vertici terminali di e
 - opposite(v, e): il vertice opposto di v, sullo spigolo e
 - areAdjacent(v, w): vero se e solo se v e w sono adiacenti
 - replace(v, x): sostituisce
 l'elemento nel vertice v con
 - replace(e, x): sostituisce l'elemento nello spigolo e con x

- Metodi modificatori
 - insertVertex(o): inserisce un vertice contenente l'elemento o
 - insertEdge(v, w, o):
 inserisce uno spigolo (v, w)
 contenente l'elemento o
 - removeVertex(ν): rimuove il vertice ν (e gli spigoli incidenti)
 - removeEdge(e): rimuove lo spigolo e
- Metodi iteratori
 - incidentEdges(v): spigoli incidenti su v
 - vertices(): tutti i vertici nel grafo
 - edges(): tutti gli spigoli nel grafo

La lista degli spigoli (13.2.1)

- Oggetto Vertex
 - elemento
 - riferimento alla posizione nella sequenza di vertici
- Oggetto Edge
 - elemento
 - riferimento all'oggetto vertice origine
 - riferimento all'oggetto vertice destinazione
 - riferimento alla posizione nella sequenza di spigoli
- Sequenza di vertici
 - sequenza di oggetti Vertex
- Sequenza di spigoli
 - sequenza di oggetti Edge

La lista delle adiacenze (13.2.2)

- Lista degli spigoli
- Sequenza di incidenze per ciascun vertice
 - sequenza di riferimenti agli oggetti spigolo associati agli spigoli incidenti il vertice
- Oggetti spigolo incrementati
 - riferimenti alle posizioni nelle sequenze di incidenza dei vertici terminali

Matrice delle adiacenze (13.2.3)

- Lista degli spigoli
- Oggetti vertice aumentati
 - ad ogni vertice viene associata una chiave intera (indice)
- Matrice delle adiacenze
 - Riferimenti all'oggetto spigolo per ciascuna coppia di vertici adiacenti
 - null per coppie di vertici non adiacenti
- La versione tradizionale prevedeva solamente 1 o 0 (spigolo presente o assente)

Prestazioni asintotiche

 n vertici, m spigoli no spigoli multipli no autoanelli Costi in O-grande 	Lista spigoli	Lista adiacenze	Matrice adiacenze
Space	n+m	n+m	n^2
incidentEdges(v)	m	deg(v)	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	deg(v)	n^2
removeEdge(e)	1	1	1