Big Data Engineering: Assignment 6

Leo Forster, Maximilian Prinz, Bastian Simon

1

Plan Enumeration

Subproblem 1

a) Determine the optimal join order using only "left-deep" plans. Complete and extend the following table with subplans of size two, three and four:

subplan	costs	result size	
A	cost(A) = 0	50	
B	cost(B) = 0	95	
C	cost(C) = 0	20	
D	cost(D) = 0	65	

subplan	costs	result size
$A\bowtie B$	$cost(A) + cost(B) + cost(A \bowtie B) \implies 0 + 0 + (50 + 95) = 145$	40
$A\bowtie C$	$cost(A) + cost(C) + cost(A \bowtie C) \implies 0 + 0 + (50 + 20) = 70$	70
$A \times D$	$cost(A) + cost(D) + cost(A \times D) \implies 0 + 0 + (50 * 65) = 3250$	3250
$B\bowtie C$	$cost(B) + cost(C) + cost(B \bowtie C) \implies 0 + 0 + (95 + 20) = 115$	100
$B \times D$	$cost(B) + cost(D) + cost(B \times D) \implies 0 + 0 + (95 * 65) = 6175$	6175
$C\bowtie D$	$cost(C) + cost(D) + cost(C \bowtie D) \implies 0 + 0 + (20 + 65) = 85$	180

subplan	costs	result size
$(A \bowtie B) \bowtie C$	$cost(A\bowtie B) + cost(C) + cost((A\bowtie B)\bowtie C) \implies 145 + 0 + (40 + 20) = 205$	40
$(A \bowtie C) \bowtie B$	$cost(A \bowtie C) + cost(B) + cost((A \bowtie C) \bowtie B) \implies 70 + 0 + (70 + 95) = 235$	40
$(B \bowtie C) \bowtie A$	$cost(B\bowtie C)+cost(A)+cost((B\bowtie C)\bowtie A)\implies 115+0+(100+50)=265$	40
$(A \bowtie B) \times D$	$cost(A\bowtie B) + cost(D) + cost((A\bowtie B)\times D) \implies 145 + 0 + (40*65) = 2745$	2600
$(A \times D) \bowtie B$	$cost(A \times D) + cost(B) + cost((A \times D) \bowtie B) \implies 3250 + 0 + (3250 + 95) = 6595$	2600
$(B \times D) \bowtie A$	$cost(B \times D) + cost(A) + cost((B \times D) \bowtie A) \implies 6175 + 0 + (6175 + 50) = 12400$	2600
$(A \bowtie C) \bowtie D$	$cost(A\bowtie C) + cost(D) + cost((A\bowtie C)\bowtie D) \implies 70 + 0 + (70 + 65) = 205$	300
$(A \times D) \bowtie C$	$cost(A \times D) + cost(C) + cost((A \times D) \bowtie C) \implies 3250 + 0 + (3250 + 20) = 6520$	300
$(C \bowtie D) \bowtie A$	$cost(C\bowtie D) + cost(A) + cost((C\bowtie D)\bowtie A) \implies 85 + 0 + (180 + 50) = 315$	300
$(B\bowtie C)\bowtie D$	$cost(B\bowtie C) + cost(D) + cost((B\bowtie C)\bowtie D) \implies 115 + 0 + (100 + 65) = 280$	543
$(B \times D) \bowtie C$	$cost(B \times D) + cost(C) + cost((B \times D) \bowtie C) \implies 6175 + 0 + (6175 + 20) = 12370$	543
$(C \bowtie D) \bowtie B$	$cost(C\bowtie D) + cost(B) + cost((C\bowtie D)\bowtie B) \implies 85 + 0 + (180 + 95) = 360$	543

subplan	costs	result size
$(A\bowtie B\bowtie C)\bowtie D$	$cost(A\bowtie B\bowtie C)+cost(D)+cost((A\bowtie B\bowtie C)\bowtie D)\implies 205+0+(40+65)=310$	8
$(A \bowtie B \times D) \bowtie C$	$cost(A\bowtie B\times D)+cost(C)+cost((A\bowtie B\times D)\bowtie C)\implies 2745+0+(2600+20)=5365$	8
$(A\bowtie C\bowtie D)\bowtie B$	$cost(A\bowtie C\bowtie D)+cost(B)+cost((A\bowtie C\bowtie D)\bowtie B)\implies 205+0+(300+95)=600$	8
$(B \bowtie C \bowtie D) \bowtie A$	$cost(B\bowtie C\bowtie D)+cost(A)+cost((B\bowtie C\bowtie D)\bowtie A)\implies 280+0+(543+50)=873$	8

Here we can see that $(A \bowtie B \bowtie C) \bowtie D$ has the lowest cost and therefore is the optimal join order.

Subproblem 2

b) Draw the join graph for the given query. Label the edges with the respective join predicates.

Graph is above the Question somehow :D

Subproblem 3

c) How could you have used the join graph to exclude certain entries in the table from Task (a)?

We can omit the Cartesian products $A \times D$ and $B \times D$ because in the join graph we see that there is no direct connection between A-D and B-D.

1. Cost-based Optimisation

1.1 (a)

1. Dataset:

Costs B, B.s = 12:

• scan: 300,000

• index: 252,018.19

=> use index

Costs $C.z \neq 17$:

• scan: 50,000

• index: 21,015.61

=> use index

Costs C.c < 123:

• scan: 50,000

• index: 105.015, 61

=> use scan

2. Dataset:

Costs B, B.s = 12:

• scan: 70,000

 \bullet index: 117, 616.10

=> use scan

Costs $C.z \neq 17$:

• scan: 150,000

• index: 94, 517.19

=> use index

Costs C.c < 123:

• scan: 150,000

 \bullet index: 472.517, 19

=> use scan

Thus, for dataset 1:

- $\sigma_{B.s=12}$ should be replaced with $\sigma_IndexBased_{B.s=12}$
- $\sigma_{C.c<123}$ should be replaced with $\sigma_ScanBased_{C.c<123}$
- $\sigma_{C.z\neq17}$ should be replaced with $\sigma_IndexBased_{C.z\neq17}$

For dataset 2:

- $\sigma_{B.s=12}$ should be replaced with $\sigma_ScanBased_{B.s=12}$
- $\sigma_{C.c<123}$ should be replaced with $\sigma_ScanBased_{C.c<123}$
- $\sigma_{C.z\neq17}$ should be replaced with $\sigma_{IndexBased_{C.z\neq17}}$

1.2 (b)

Given the rule, to use the index if: scan(T) > index(T, p):

$$|T| > \log_2(|T|) + 42 \cdot \operatorname{sel}(p) \cdot |T|$$

Solving this for sel(p) we get:

$$\mathrm{sel}(p) < \frac{|T| - \log_2(|T|)}{|T| \cdot 42}$$

With large table sizes this approximates:

$$\mathrm{sel}(p) \approx \frac{1}{42} \approx 0.024$$

Exercise 3

- 1. HashMap hm1; HashMap hm2
- A1: Populate hm1 with tuples from ScanBasedU
 - 2. For all u in ScanBasedU:
 - 3. hm1.insert(u.v,u);
- A2: Filter and aggregate tuples from ScanBasedV
 - 4. For all v in ScanBasedV:
 - 5. if v.s \geq 10 && v.s \leq 75:
 - 6. avgD = calculateAverage(hm1.values(), u.d);
 - 7. count = getCount(hm1.values());
 - 8. aggregateTuple = Tuple(v.v, count, avgD);
 - 9. hm2.insert(aggregateTuple.v, aggregatedTuple);
- A3: Join operation using hm2
 - 10. For all v in ScanBasedV:
 - 11. if v.s \geq 10 && v.s \leq 75:
 - 12. matchingTuples = hm2.probe(v.v);
 - 13. For all mt in matchingTuples:
 - 14. Yield Tuple(mt.v, mt.count, mt.avgD);