- Team Leader: Benjamin Aaron
- Comms: Ernesto Villalba
- Power: Crispina Weissenberg

External Component Layout

- Retro-Reflector (30)
- Photovoltaic (6)
- Laser Diode (6)
- GSE Interface (1)
- RF Inhibit (1)
 - Ejection axis
- Lift Point (2)

CAPE Ejection System

- Canister for All Payload Ejection (CAPE)
- Will be deployed from Space Shuttle
- Designed to fit payload requirements for Space Shuttle.

USNA Mission Statement

To construct a communications system able to transmit telemetry data and provide communications support in the amateur satellite service, for at least one year, via a zero drag antenna for the ANDE risk reduction flight satellite.

USNA Mission Requirements

- 1. Mechanical Configuration (Spherical)
- 2. Transmit Telemetry Data
- 3. Command and Control
- 4. Communications Transponder in Amateur Satellite Service
- 5. Power System

USNA Spring 2004 Schedule

•	<u>Date</u>	<u>Event</u>	
•	JAN 06	New team member selection and orientation	COMPLETE
	JAN 30	Mechanical Review with NRL	COMPLETE
•	MAR 26	Complete Prototype and Testing	COMPLETE
•	APR 2	Complete Lithium Battery Vacuum Testing	COMPLETE
•	APR 14	Begin Flight Battery Board Assembly	
•	APR 21	Begin Flight Interface Board Assembly	
•	APR 26	System Progress Report Presentation	

To be completed by MAY 2004:

APR 28

Complete and Deliver Hardware to NRL

Test Operations

Mission Architecture

Mission Architecture

Basic Schematic of ANDE

Power System

- Battery Selection
 - Tadiran TL-5930 D-size Lithium Thionyl Chloride (Li/SOCl₂) primary
 - 19 Ah capacity
 - 5 ma nominal discharge
 - Rated temperature range -55 to +85C
 - Designed for harsh environments
 - Bobbin construction

Battery Board Layout

Each PCB is 11"x11"x1.75"

ANDE Battery

(TADIRAN TL-5930)

Capacity: 7450 WHrs

Life: 1.5 Years

Mass: 12 Kg

Volume: 7683 cu cm

112 cells in 4 packs of 28 cells wired as 7 strings of 4 cells each.

Total is 28 strings

Half the batteries in each half of RNDE

As of 16 October decision has been made to use only 2 battery packs per side

13 Nov 2002

Communications Tray Layout

COMMUNICATIONS MODULE

The 10 1/8" square comms tray allows for the interface board to be internal which helps reduce external interconnects in the wiring harness.

VHF Transmitter

VHF Receiver

Terminal Node Controller

ANDE Block Diagram

Demonstration Sequence

- Use ping commands to wake ANDE
- Observe 40 seconds of telemetry
- Prove sensors work
- Log on
- Turn on the LEDs
- Observe temperature rise on lasers
- Fail each battery
- Log off