МГТУ им. Н.Э. Баумана

Дисциплина электроника

Лабораторный практикум №2 По теме: «Исследование характеристик и параметров полупроводниковых диодов»

Работу выполнил: Студент группы ИУ7-34Б

Андреев Александр Алексеевич

Вариант №3

Работу проверил: Оглобин Дмитрий Игоревич

Оглавление

Цель работы	2
Построение контура	3
Задание параметров	3
Отрисовка графика	4
Отрисовка графика со Stepping	4
Создание таблицы и произведение вычислений в Mathcad	5
Вычисление барьерной емкости	6

Цель работы

Цель работы - для заданного варианта типа диода провести экспериментальное исследование поведения диода как управляемой электрической емкости и по результатам исследования получить параметры барьерной емкости диода.

Построение контура

Для диода, соответствующему моему варианту №3, график оказался в виде наклонной прямой, поэтому пришлось выбрать диод из группы 1N. Я выбрал диод марки 1N625. Сначала построим колебательный контур в программе Microcap.

Задание параметров

Дальше при помощи Analysis -> AC Analysis Limits задаем в параметрах данные шагов и функцию:

Отрисовка графика

Отрисовка графика со Stepping

Для того, чтобы отобразить Stepping на графике в параметрах Stepping указываем данные:

И получаем график:

Создание таблицы и произведение вычислений в Mathcad

Дальше переносим данные в программу Mathcad для дальнейших вычислений в таблицу, после этого вычисляем :

Строим график зависимости Cdi от VVARi:

Вычисление барьерной емкости

Выполняем расчет параметров барьерной емкости:

$$M := 0.8$$
 $CJ0 := 1.7 \cdot 10^{-12}$ $VJ0 := 0.15$ $U := -10, -8...0$
$$Cd(U) := CJ0 \cdot \left(1 - \frac{U}{VJ0}\right)^{-M}$$

$$Cd(U) = U =$$

$$\begin{array}{c|ccccc} Cd(U) = & U = \\ \hline & 5.836 \cdot 10^{-14} & -10 \\ \hline & 6.957 \cdot 10^{-14} & -8 \\ \hline & 8.714 \cdot 10^{-14} & -6 \\ \hline & 1.194 \cdot 10^{-13} & -4 \\ \hline & 2.02 \cdot 10^{-13} & -2 \\ \hline & 1.7 \cdot 10^{-12} & 0 \\ \hline \end{array}$$

Given

$$(5.836 \times 10^{-14}) = \text{CJO} \cdot \left(1 - \frac{-10}{\text{VJO}}\right)^{-1} \text{M}$$

 $(2.02 \times 10^{-13}) = \text{CJO} \cdot \left(1 - \frac{-2}{\text{VJO}}\right)^{-1} \text{M}$
 $(8.714 \times 10^{-14}) = \text{CJO} \cdot \left(1 - \frac{-6}{\text{VJO}}\right)^{-1} \text{M}$

find (CJ0, VJ0, M) =
$$\begin{pmatrix} 1.657 \times 10^{-12} \\ 0.156 \\ 0.801 \end{pmatrix}$$

Данные диода для сравнения

