

ABOV SEMICONDUCTOR 8-BIT SINGLE-CHIP MICROCONTROLLERS

MC81F4204

MC81F4204 R/M/V/D/B

User's Manual (Ver. 1.35)

Version 1.35
Published by FAE Team
©2008 ABOV Semiconductor Co., Ltd. All rights reserved.

Additional information of this manual may be served by ABOV Semiconductor offices in Korea or Distributors.

ABOV Semiconductor reserves the right to make changes to any information here in at any time without notice.

The information, diagrams and other data in this manual are correct and reliable; however, ABOV Semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

REVISION HISTORY

VERSION 1.35 (October 19, 2009) This book

Add a note about SCK port at R0CONM register description.

Change EVA.board picture. (the board's color is changed from blue to green)

VERSION 1.34 (September 30, 2009)

Correct the duty equation of PMW0/1.

Add more tools at "1.3 Development Tools".

VERSION 1.33 (September 18, 2009)

Add more descriptions at PWM function descriptions.

VERSION 1.32 (September 4, 2009)

Remove rising/falling time at LVR electrical characteristics.

Change '1.83v' to "POR level" in POR description.

Add POR level at "DC CHARACTERISTICS".

Add ROM option read timing information.

Add "Typical Characteristics".

VERSION 1.22 (August 12, 2009)

Add "16TSSOP" at 16pin pin assignment page.

Remove fxt(sub-clock source) at block diagrams and register descriptions of T0/1/2 and Buzzer.

VERSION 1.21 (July 7, 2009)

"25.3 Hardware Conditions to Enter the ISP Mode" is updated.

Notes of R35 port control registers are updated.

R3CONH, R3CONL register's address are corrected at "Table 9-4 Control Register 4/4"

"R1 PORT PULL-UP ENABLE REGISTER table" is corrected.

VERSION 1.2 (June 29, 2009)

Remove 'WDT' at "Stop release" description. 'WDT' is not a release source of STOP mode.

Change "fxin" to "fbuz" at buzzer frequency calculation in "BUZZER" chapter.

VERSION 1.1 (June 17, 2009)

Add rom writing endurance at features.

Remove 16 bit mode at Timer0.

VERSION 1.0 (June 15, 2009)

Remove "preliminary".

Some errata are fixed.

Add "Buzzer frequency table".

VERSION 0.81 Preliminary (April 28, 2009)

Delete a note1 at '20.5 recommended circuit'.

VERSION 0.8 Preliminary (April 16, 2009)

Add a sub-chapter 'Changing the stabilizing time' at the chapter 'Power down operation'.

Add a note for R33/R34 ports after R3CONH description.

One of BIT's clock source '2048' is changed to '1024'.

VERSION 0.7 Preliminary (April 7, 2009)

Description of SIO procedure is updated.

Description of ISP chapter is updated.

VERSION 0.6 Preliminary (April 1, 2009)

Chapter '7.ELECTICAL CHARICTORISTICS' is updated.

VERSION 0.5 Preliminary (March 5, 2009)

The SCLK pin for ISP is moved to R11 port.

Note for ADC recommended circuit is changed.

VERSION 0.4 Preliminary (February 12, 2009)

Correct 16 SOP package diagram.

Update the chapter '6. PORT STRUCTURE'.

Update the chapter '7. ELECTRICAL CHARACTERISTICS'.

Update the chapter '25. IN SYSTEM PROGRAMMING'.

VERSION 0.3 Preliminary (December 19, 2008)

Block diagrams of Timer 2/3 and PWM are corrected.

VERSION 0.2 Preliminary (November 17, 2008)

Some errata are corrected.

VERSION 0.1 Preliminary (November 12, 2008)

Change some bit and symbol names about interrupts.

VERSION 0.0 Preliminary (October 31, 2008)

TABLE OF CONTENTS

REVISION HISTORY	3
TABLE OF CONTENTS	5
1. OVERVIEW	8
1.1 Description	8
1.2 Features	8
1.3 Development Tools	9
1.4 Ordering Information	10
2. BLOCK DIAGRAM	11
3. PIN ASSIGNMENT	12
3.1 20 pin- PDIP/SOP	12
3.2 16 pin- PDIP/SOP/TSSOP	12
3.3 Summary	13
4. PACKAGE DIAGRAM	14
4.1 20 PDIP- MC81F4204B	14
4.2 20 SOP - MC81F4204D	14
4.3 16 PDIP - MC81F4204V	15
4.4 16 SOP - MC81F4204M	15
4.5 16 TSSOP - MC81F4204R	16
5. PIN DESCRIPTION	17
6. PORT STRUCTURE	20
7. ELECTRICAL CHARACTERISTICS	24
7.1 Absolute Maximum Ratings	24
7.2 Recommended Operating Conditions	24
7.3 A/D Converter Characteristics	25
7.4 DC Electrical Characteristics	26
7.5 DC Electrical Characteristics (Continued)	27
7.6 Input/Output Capacitance	27
7.7 Serial I/O Characteristics	28
7.8 Data Retention Voltage in Stop Mode	30
7.9 LVR (Low Voltage Reset) Electrical Characteristics	31
7.10 Main clock Oscillator Characteristics	32
7.11 External RC Oscillation Characteristics	33
7.12 Internal RC Oscillation Characteristics	34
7.13 Main Oscillation Stabilization Time	34
7.14 Operating Voltage Range	35
7.15 Typical Characteristics	36
8. ROM OPTION	40
8.1 Rom Option	40
8.2 Read Timing	41
9. MEMORY ORGANIZATION	42
9.1 Registers	42
9.2 Program Memory	46
9.3 Data Memory	49
9.4 User Memory	49
9.5 Stack Area	50

9.6 Control Registers (SFR)	50
9.7 Addressing modes	55
10. I/O PORTS	62
10.1 R0 Port Registers	63
10.2 R1 Port Registers	67
10.3 R3 Port Registers	71
11. INTERRUTP CONTROLLER	73
11.1 Registers	74
11.2 Interrupt Sequence	76
11.3 BRK Interrupt	79
11.4 Shared Interrupt Vector	79
11.5 Multi Interrupt	80
11.6 Interrupt Vector & Priority Table	81
12. EXTERNAL INTERRUPTS	82
12.1 Registers	82
12.2 Procedure	85
13. OSCILLATION CIRCUITS	86
13.1 Main Oscillation Circuits	86
13.2 PCB Layout	87
14. BASIC INTERVAL TIMER	88
14.1 Registers	89
15. WATCH DOG TIMER	90
15.1 Registers	91
16. Timer 0/1	92
16.1 Registers	92
16.2 Timer 0 8-Bit Mode	96
16.3 Timer 1 8-Bit Mode	98
17. Timer 2	100
17.1 Registers	
17.2 Timer 2 8-Bit Mode	
18. High Speed PWM	
18.1 Registers	
19. BUZZER	
19.1 Registers	
19.2 Frequency table	
20. 12-BIT ADC	
20.1 Registers	
20.2 Procedure	
20.3 Conversion Timing	
20.4 Internal Reference Voltage Levels	
20.5 Recommended Circuit	
21. SERIAL I/O INTERFACE	
21.1 Registers	
21.2 Procedure	
22. RESET	
22.1 Reset Process	
22.2 Reset Sources	
22.3 External Reset	119

22.4 Watch Dog Timer Reset	120
22.5 Power On Reset	121
22.6 Low Voltage Reset	121
23. POWER DOWN OPERATION	
23.1 Sleep Mode	122
23.2 Stop Mode	124
23.3 Sleep vs Stop	127
23.4 Changing the stabilizing time	128
23.5 Minimizing Current Consumption	128
24. EMULATOR	130
25. IN SYSTEM PROGRAMMING	133
25.1 Getting Started	133
25.2 Basic ISP S/W Information	134
25.3 Hardware Conditions to Enter the ISP Mode	136
25.4 Entering ISP mode at power on time	137
25.5 USB-SIO-ISP Board	138
26. INSTRUCTION SET	
26.1 Terminology List	139
26.2 Instruction Map	140
26.3 Instruction Set	141

MC81F4204

8 bit MCU with 12-bit A/D Converter

1. OVERVIEW

1.1 Description

MC81F4204 is a CMOS 8 bit MCU which provides a 4K bytes FLASH-ROM and 192 bytes RAM. It has following major features,

12 bit ADC: It has 10 ch A/D Converter which can be used to measure minute electronic voltage and currents.

810 Core : Same with ABOV's 800 Core but twice faster. 800 Core use a divided system clock but 810 Core use a system clock directly

1.2 Features

ROM (FLASH): 4K Bytes

(Endurance: 100 cycle)

SRAM :192 Bytes

Minimum instruction execution time

166n sec at 12MHz (NOP instruction)

12-bit A/D converter: 10 ch General Purpose I/O (GPIO)

20-pin PKG: 18 16-pin PKG: 14

Timer/counter

8Bit x 3ch SIO: 1ch

PWM

8Bit x 2ch

10Bit x 2ch (High Speed PWM)

Basic Interval Timer (BIT): 8Bit x 1ch **One Watchdog timer (WDT)**: 8Bit x 1ch

Buzzer: 1ch

244 ~ 250kHz @8MHz

Power On Reset(POR)

Low Voltage Reset (LVR)

4 level detector (2.4/2.7/3.0/4.0V)

Interrupt sources : 21ch
External Interrupt : 12ch
Timer : 8ch
SIO : 1ch

Power Down Mode

Stop mode Sleep mode

Operating Voltage & Frequency

2.2V – 5.5V (at 1.0 – 4.2MHz) 2.7V – 5.5V (at 1.0 – 8.0MHz) 4.0V – 5.5V (at 1.0 – 12.0MHz)

Operating Temperature

- 40°C ~ 85°C

Oscillator Type

Crystal, Ceramic, RC for main clock

Internal Oscillator (8MHz/4MHz/2MHz/1MHz)

Package

20PDIP, 20SOP

16PDIP, 16SOP, 16TSSOP Available Pb free package

1.3 Development Tools

The MC81F4204 is supported by a full-featured macro assembler, C-Compiler, an in-circuit emulator CHOICE-Dr. FALSH programmers and ISP tools. There are two different type of programmers such as single type and gang type. For more detail, Macro assembler operates under the MS-Windows 95 and up versioned Windows OS. And HMS800C compiler only operates under the MS-Windows 2000 and up versioned Windows OS.

Please contact sales part of ABOV semiconductor. And you can see more information at (http://www.abov.co.kr)

Figure 1-1 PGMplusUSB (Single Writer)

Figure 1-2 SIO ISP (In System Programmer)

Figure 1-3 StandAlone ISP (VDD power is not supplied)

Figure 1-4 Ez-ISP
(VDD supplied Standalone type ISP)

Figure 1-5 StandAlone Gang4 (for Mass Production)

Figure 1-6 StandAlone Gang8 (for Mass Production)

Figure 1-7 Choice-Dr (Emulator)

1.4 Ordering Information

Device Name	FLASH ROM	RAM	Package	
MC81F4204R			16_TSSOP	
MC81F4204M	4K Bytes		16_SOP	
MC81F4204V		es 192 Bytes	16_PDIP	
MC81F4204D			20_SOP	
MC81F4204B			20_PDIP	

2. BLOCK DIAGRAM

Figure 2-1 System Block Diagram

3. PIN ASSIGNMENT

3.1 20 pin- PDIP/SOP

3.2 16 pin- PDIP/SOP/TSSOP

3.3 Summary

	alternative functions	Pin nu	umber	Pin status	
	alternative functions	20pin	16pin	at RESET	
R00	EXT10/SXin	17	13	input	
R01	EXT11/SXout	18	14	input	
R02	AN0/EXT0/EC0	19	15	input	
R03	AN1/EXT1/T0O/PWM0O	20	16	input	
R04	AN2/EXT2/EC1/SCK	1	1	input	
R05	AN3/EXT3/T1O/PWM1O/SI	2	2	input	
R06	AN4/EXT4/EC2/SO	3	3	input	
R07	AN5/EXT5/T2O	4	4	input	
R10	Vref/EXT6	6	6	input	
R11	AN6/EXT7/PWM2O	7	7	input	
R12	AN7/EXT8/PWM3O/BUZO	8	8	input	
R13	AN8/EXT9/PWM4O	9	Х	Open-drain output	
R14	-	10	Х	Open-drain output	
R31	AN14	11	Х	Open-drain output	
R32	-	12	Х	Open-drain output	
R33	Xout	13	9	input	
R34	Xin	14	10	input	
R35	RESETB	15	11	input	
VDD	-	5	5	-	
VSS	-	16	12	-	

Note:

Some pins are initialized by open-drain output mode, when the device is reset. Because the pins are hided in 16 pin package and it is stable that hided pins are be in open-drain-output mode.

4. PACKAGE DIAGRAM

4.1 20 PDIP- MC81F4204B

4.2 20 SOP - MC81F4204D

4.3 16 PDIP - MC81F4204V

4.4 16 SOP - MC81F4204M

4.5 16 TSSOP - MC81F4204R

5. PIN DESCRIPTION

Pin Names	1/0	Pin Description	Alternative Functions
R00	I/O	This port is a 1-bit programmable I/O pin.	EXT10
R01		Schmitt trigger input, Push-pull, or Open-drain output port.	EXT11
R02		When used as an input port, a Pull-up resistor can be	AN0/EC0/EXT0
R03		specified in 1-bit.	AN1/T0O/ PWM0O/EXT1
R04			AN2/EC1/SCK/ EXT2
R05			AN3/SI/EXT3/ T1O/PWM1O
R06			AN4/EC2/SO/ EXT4
R07			AN5/T2O/EXT5
R10	I/O	This port is a 1-bit programmable I/O pin.	Vref/EXT6
R11		Schmitt trigger input, Push-pull, or Open-drain output port. When used as an input port, a Pull-up resistor can be	AN6/PWM2O/ EXT7
R12		specified in 1-bit.	AN7/PWM3O/ BUZO/EXT8
R13			AN8/EXT9
R14			_
R31	I/O	This port is a 1-bit programmable I/O pin.	AN14
R32		Input, Push-pull, or Open-drain output port. When used as an input port, a Pull-up resistor can be specified in 1-bit.	_
R33	I/O	This port is a 1-bit programmable I/O pin.	Xout
R34		Schmitt trigger input, Push-pull, or Open-drain output port.	Xin
R35		When used as an input port, a Pull-up resistor can be specified in 1-bit.	RESETB
EXT0	I/O	External interrupt input	R02/AN0/EC0
EXT1	I/O	External interrupt input/Timer 0 capture input	R03/AN1/T0O/ PWM0O
EXT2	I/O	External interrupt input	R04/AN2/SCK/ EC1
EXT3	I/O	External interrupt input/Timer 1 capture input	R05/AN3/SI/ T1O/PWM1O
EXT4	I/O	External interrupt input	R06/AN4/SO/ EC2

Pin Names	1/0	Pin Description	Alternative Functions
EXT5	I/O	External interrupt input/Timer 2 capture input	R07/AN5/T2O
EXT6	I/O	External interrupt input	R10/Vref
EXT7			R11/AN6/
			PWM2O
EXT8			R12/AN7/
			PWM3O/BUZO
EXT9			R13/AN8
EXT10			R00
EXT11			R01
T0O	I/O	Timer 0 clock output	R03/AN1/EXT1/ PWM0O
PWM0O	I/O	PWM 0 clock output	R03/AN1/EXT1/ T0O
EC0	I/O	Timer 0 event count input	R02/AN0/EXT0
T10	I/O	Timer 1 clock output	R05/AN3/EXT3/ SI/PWM1O
PWM1O	I/O	PWM 1 clock output	R05/AN3/EXT3/ SI/T1O
EC1	I/O	Timer 1 event count input	R04/AN2/SCK/ EXT2
T2O	I/O	Timer 2 clock output	R07/AN5/EXT5
EC2	I/O	Timer 2 event count input	R06/AN4/SO/
			EXT4
PWM2O	I/O	PWM 2 clock output	R11/AN6/EXT7
PWM3O	I/O	PWM 3 clock output	R12/AN7/EXT8/ BUZO
BUZO	I/O	Buzzer signal output	R12/AN7/ PWM1O/EXT8
AN0	I/O	ADC input pins	R02/EXT0/EC0
AN1			R03/EXT1/T0O/
			PWM0O
AN2			R04/EXT2/SCK /EC1
AN3			R05/EXT3/SI/ T1O/PWM1O
AN4			R06/EXT4/SO/ EC2
AN5			R07/EXT5/T2O
LIND			107/LX13/120

Pin Names	I/O	Pin Description	Alternative Functions
AN6	I/O	ADC input pins	R11/EXT7/ PWM2O
AN7			R12/EXT8/ PWM3O/BUZO
AN8			R13/EXT9
AN14			R31
SCK	I/O	Serial clock input	R04/AN2/EC1/ EXT2
SI	I/O	Serial data input	R05/AN3/EXT3/ T1O/PWM1O
SO	I/O	Serial data output	R06/AN4/EC2/ EXT4
RESETB	I	System reset pin	R35
XIN	_	Main and illaten wine	R34
Хоит	_	Main oscillator pins	R33
VDD	_	Davier input sing	_
Vss	_	Power input pins	_
VREF	_	A/D converter reference voltage	R10/EXT6

6. PORT STRUCTURE

[Schmitt trigger In] + [Out/Open-drain-out] + [Xin/Xout]

[Schmitt trigger In] + [Out/Open-drain-out] + [SXin/SXout]

Input/Output data	Input data	Output data	ADC
R02	EXT0 / EC0	-	AN0
R03	EXT1	T0O/PWM0O	AN1
R04	EXT2/SCK/EC1	SCK	AN2
R05	EXT3/SI	T1O/PWM1O	AN3
R06	EXT4/EC2	SO	AN4
R07	EXT5	T2O	AN5
R10	EXT6	-	Vref
R11	EXT7	PWM2O	AN6
R12	EXT8	PWM3O/BUZO	AN7
R13	EXT9	PWM4O	AN8

R35/RESETB

7. ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Supply Voltage	VDD	-0.3 – +6.0	V	-
	VI	-0.3 – VDD+0.3	V	Voltage on any pin with respect
	VO	-0.3 – VDD+0.3	V	to Vss
Normal Voltage Pin	IOH	-10	mA	Maximum current output sourced by (IOH per I/O pin)
Nominal Voltage Fill	ΣΙΟΗ	-80	mΑ	Maximum current (ΣΙΟΗ)
	IOL	15	mA	Maximum current sunk by (IOL per I/O pin)
	ΣIOL	120	mA	Maximum current (ΣIOL)
Total Power Dissipation	fXIN	600	mW	-
Storage Temperature	TSTG	-65 – +150	°C	-

Note:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Operating Voltage		fx = 1.0 - 4.2MHz	2.2	-	5.5	
	V_{DD}	fx = 1.0 - 8.0MHz	2.7	-	5.5	V
		fx = 1.0 - 12.0MHz	4.0	-	5.5	
Operating Temperature	TOPR	VDD = 2.2 - 5.5V	-40		85	°C

7.3 A/D Converter Characteristics

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, \text{Vref} = 2.7 \,\, \text{V to} \,\, 5.5 \,\, \text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
A/D converting Resolution	-	1	_	12	_	bits
Integral Linearity Error	ILE		ı	1	± 3	
Differential Linearity Error	DLE	Vref = 5.12V,	_	-	± 2	
Offset Error of Top	EOT	$V_{SS} = 0V$, $T_A = +25$ $^{\circ}C$	_	± 1	± 3	LSB
Offset Error of Bottom	EOB		-	± 1	± 3	
Overall Accuracy	_		-	± 3	± 5	
Conversion time	tCONV	_	25	_	_	μS
Analog input voltage	VAIN	_	V _{SS}	_	Vref	V
Analog Reference Voltage	Vref	-	2.7	-	5.5	V
Analog input current	I _{AIN}	VDD = Vref = 5V	-	_	10	μΑ
		VDD = Vref = 5V VDD = Vref = 3V	_ _	1 0.5	3 1.5	mA
Analog block current	IAVDD	VDD = Vref = 5V Power down mode	-	100	500	nA
	-	VDD = 5v, T _A = + 25 °C	-	1.67	-	V
BGR	-	VDD = 4v, T _A = + 25 °C	-	1.63	-	V
	-	VDD = $3v$, $T_A = +25$ $^{\circ}C$	-	1.62	-	V

26

7.4 DC Electrical Characteristics

(T_A = - 40 °C to + 85 °C, V_{DD} = 2.2 – 5.0V, V_{SS} =0V, f_{XIN} =12MHz)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
	VIH1	R0x, R1x, R33 – R35 V _{DD} = 4.5V – 5.5V	0.8VDD	ı	VDD+0.3	
Input High Voltage	VIH2	All input pins except VIH1, VIH3, VDD = 4.5V - 5.5V	0.7VDD	I	VDD+0.3	V
	VIH3	Xin, Xout $V_{DD} = 4.5V - 5.5V$	0.8VDD	ı	VDD+0.3	
	VIL1	R0x, R1x, R33 – R35 V _{DD} = 4.5V – 5.5V	- 0.3	1	0.2VDD	
Input Low Voltage	VIL2	All input pins except VIH1, VIH3, VDD = 4.5V - 5.5V	- 0.3	I	0.3VDD	V
	VIL3	Xin, Xout $V_{DD} = 4.5V - 5.5V$	- 0.3	-	0.2VDD	
Output High Voltage	VOH	All output ports IOH = - 2mA VDD = 4.5V - 5.5V	VDD-1.0	-	-	V
Output Low Voltage	VOL	All output ports IOL=15mA VDD = 4.5V - 5.5V	-	_	2.0	V
Input high leakage current	IIH	R0x – R3x, Vin=VDD	-	-	1	uA
Input low leakage current	IIL	R0x – R3x, Vin=Vss	- 1	ı	-	uA
Pull-up resistor	RPU	VI=0V, TA=25°C, R0x – R3x except R35 VDD=5V	25	50	100	kΩ
ruii-up Tesisioi	KFU	VI=0V, TA=25°C, R0x – R3x except R35 VDD=3V	50	100	200	K12

7.5 DC Electrical Characteristics (Continued)

(T_A = -40 $^{\circ}$ C to +85 $^{\circ}$ C, V_{DD} = 2.2 – 5.0V, Vss=0V, fxIN=12MHz)

Parameter	Symbol	Conditions	Min	Тур	Max	Units	
OSC feedback	RX	Xin=VDD, Xout=VSS	350	700	1500	МΩ	
resistor		TA=25 °C, VDD=5V		,			
Supply current	IDD1	Active mode, fx=12MHz, VDD=5V±10% Crystal oscillator	I	8.0	15.0	mA	
		fx=8MHz, VDD=3V±10%	-	3.0	6.0		
	ISLEEP1	Sleep mode, fx=12MHz, VDD=5V±10% Crystal oscillator	I	2.0	4.0	mA	
		fx=8MHz, VDD=3V±10%	-	1.0	2.0	-	
	ISTOP	Stop mode VDD=5.5V, TA=25°C	-	0.5	5.0	uA	
POR level			1.82		2.1	V	

7.6 Input/Output Capacitance

 $(T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C}, \, V_{DD} = 0 \, \text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Capacitance	CIN	f=1MHz				
Output Capacitance	COUT	Unmeasured pins	_	-	10	pF
I/O Capacitance	CIO	are connected Vss				

7.7 Serial I/O Characteristics

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.2 \,\,\text{V to} \,\, 5.5 \,\,\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
SCK cycle time	^t KCY	External SCK source	1,000			nS
SOR Cycle time	KCY	Internal SCK source	1,000			13
COK bish Januaridah	t t	External SCK source	500			,
SCK high, low width	^t KH ^{, t} KL	Internal SCK source	t _{KCY} /2-50			nS
SI setup time to SCK high	tour	External SCK source	250			nS
Si setup time to SCK nigh	^t SIK	Internal SCK source	250			10
SI hold time to SCK high	ticol	External SCK source	400			nS
SI hold time to SCK high	^t KSI	Internal SCK source	400			10
Output delay for SCK	ticoo	External SCK source			300	nS
to SOUT	^t KSO	Internal SCK source	_	-	250	10
Interrupt input, high,low width	^t INTH, ^t INTL	All interrupt, V _{DD} = 5 V	200		ı	nS
RESETB input low width	^t RSL	Input, $V_{DD} = 5 \text{ V}$	10	_	_	uS

Figure 7-1 Input Timing for External Interrupts

Figure 7-2 Input Timing for RESETB

Figure 7-3 Serial Interface Data Transfer Timing

7.8 Data Retention Voltage in Stop Mode

$$(T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C}, \, V_{DD} = 2.2 \, \text{V to} \, 5.5 \, \text{V})$$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Data retention supply voltage	V _{DDDR}	-	2.2	I	5.5	V
Data retention supply current	IDDDR	$V_{DDDR} = 2.2V$ ($T_{A} = 25^{\circ}C$), Stop mode	-	ı	1	uA

Figure 7-4 Stop Mode Release Timing When Initiated by an Interrupt

Figure 7-5 Stop Mode Release Timing When Initiated by RESETB

7.9 LVR (Low Voltage Reset) Electrical Characteristics

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.2 \, \text{V} \, \text{to} \, 5.5 \, \text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
LVR voltage			2.2	2.4	2.6	
	VLVR	-	2.5	2.7	2.9	V
			2.7	3.0	3.3	V
			3.6	4.0	4.4	
Hysteresis voltage of LVR	Δ۷	-	-	10	100	mV
Current consumption	ILVR	VDD = 3V	_	45	80	uA

NOTES:

- 1. The current of LVR circuit is consumed when LVR is enabled by "ROM Option".
- 2. $2^{16}/fx$ (= 6.55 ms at fx = 10 MHz)

7.10 Main clock Oscillator Characteristics

$$(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.2 \, \text{V to} \, 5.5 \, \text{V})$$

Oscillator	Parameter	Conditions	Min	Тур.	Max	Units
		2.2 V – 5.5 V	1.0	_	4.2	
Crystal	Main oscillation frequency	2.7 V – 5.5 V	1.0	ı	8.0	MHz
	requeries	4.0 V – 5.5 V	1.0	ı	12.0	
	Main oscillation frequency	2.2 V – 5.5 V	1.0	1	4.2	
Ceramic Oscillator		2.7 V – 5.5 V	1.0	ı	8.0	MHz
Comator		4.0 V – 5.5 V	1.0	ı	12.0	
		2.2 V – 5.5 V	1.0	ı	4.2	
External Clock	X _{IN} input frequency	2.7 V – 5.5 V	1.0	-	8.0	MHz
		4.0 V – 5.5 V	1.0	1	12.0	

Figure 7-6 Crystal/Ceramic Oscillator

Figure 7-7 External Clock

7.11 External RC Oscillation Characteristics

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.2 \,\text{V to} \, 5.5 \,\text{V})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
RC oscillator frequency Range (1)	fERC	T _A = 25°C	1	_	8	MHz
Acquiropy of BC		$V_{DD} = 5.5V, T_{A} = 25^{\circ}C$	-6	-	+ 6	
Accuracy of RC Oscillation (2)	ACCERC	$V_{DD} = 5.5V$, $T_{A} = -40^{\circ}C \text{ to } + 85^{\circ}C$	- 12	-	+ 12	%
RC oscillator setup time (3)	tSUERC	T _A = 25°C	_	ı	10	mS

NOTES:

1. The external resistor is connected between V_{DD} and X_{IN} pin and the 270pF capacitor is

connected between X_{IN} and V_{ss} pin. (X_{out} pin can be used as a normal port). The frequency is adjusted by external resistor.

- 2. The min/max frequencies are within the range of RC OSC frequency (1MHz to 8MHz)
- 3. Data based on characterization results, not tested in production

Figure 7-8 External Clock

7.12 Internal RC Oscillation Characteristics

$$(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.2 \,\,\text{V to} \,\, 5.5 \,\,\text{V})$$

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
RC oscillator frequency (1)		$V_{DD} = 5.5V, T_{A} = 25^{\circ}C$	-4%	8.0	4%	
	fIRC	$V_{DD} = 5.5V,$ $T_{A} = -40^{\circ}C \text{ to } + 85^{\circ}C$	-20%	8.0	20%	MHz
Clock duty ratio	TOD	_	40	50	60	%
RC oscillator setup time (2)	tSUIRC	T _A = 25°C	ı	ı	10	mS

NOTES:

- 1. Data based on characterization results, not tested in production
- 2. X_{IN} and X_{OUT} pins can be used as I/O ports.

7.13 Main Oscillation Stabilization Time

$$(T_A = -10 \, ^{\circ}\text{C to} + 70 \, ^{\circ}\text{C}, \, V_{DD} = 2.2 \, \text{V to} \, 5.5 \, \text{V})$$

Oscillator	Conditions	Min	Тур.	Max	Units
Crystal	fx > 1 MHz	_	_	60	mS
Ceramic	Oscillation stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.	-	-	10	mS
External Clock	X_{IN} input high and low width (t_{XH}, t_{XL})	40.0	I	480	nS

Figure 7-9 Clock Timing Measurement at XIN

7.14 Operating Voltage Range

Figure 7-10 Operating Voltage Range

7.15 Typical Characteristics

These graphs and tables provided in this section are for design guidance only and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

Figure 7-11 I_{DD} – V_{DD} in Normal Mode

Figure 7-13 I_{DD2} – V_{DD} in Sub Active Mode

Figure 7-15 I_{STOP} - V_{DD} in STOP Mode

Figure 7-12 I_{SLEEP} - V_{DD} in Sleep Mode

Figure 7-14 I_{SLEEP2} – V_{DD} with Sub Clock

Figure 7-17 $\,I_{\text{OL}}$ - V_{OL} at $V_{\text{DD}}\!\!=\!\!5v$

Figure 7-18 V_{IH1} - V_{DD}

Figure 7-19 V_{IL1} - V_{DD}

Figure 7-20 V_{IH2} - V_{DD}

Figure 7-21 V_{IL2} - V_{DD}

20 MHz .<u>...</u> 18 16 14 12 10 8 6 2.2V 2.5V 3.0V 3.5V 4.0V 4.5V 5.0V 5.5V 6.0V **--** 5.1 kΩ ••• 12.0 kΩ **──** 19.7 kΩ •••ו•• 39.4 kΩ **—** 61.2 kΩ ···◆·· 81.0 kΩ ···•• 122.0 kΩ **−**□**−** 97.5 kΩ -×-- 147.2 kΩ ···Δ··· 198.9 kΩ **− 339.0** kΩ

Figure 7-24 8MHz Internal OSC Freq. - V_{DD}

Figure 7-25 Ext. R/C OSC Freq. - VDD at 25°C

Figure 7-27 Ext.I R/C OSC Freq. - V_{DD} at -40°C

8. ROM OPTION

The ROM Option is a start-condition byte of the chip. The default ROM Option value is 00H (LVR enable and External RC is selected). It can be changed by appropriate writing tools such as PGMPlusUSB, ISP, etc.

8.1 Rom Option

	7	6	5	4	3	2	1	0
ROM	LVREN	LVI	RS	_	_		oscs	}
OPTION								

r	T				
LVREN	LVR Enable/Disable bit	0: Enable (R35)			
LVKEN	LVK Eliable/Disable bit	1: Disable (RESETB)			
		00: 2.4V			
LVDC	LVR Level Selection bits	01: 2.7V			
LVRS	LVR Level Selection bits	10: 3.0V			
		11: 4.0V			
-	bit4 – bit3	Not used MC81F4204			
		000: External RC			
		001: Internal RC; 4MHz			
		010: Internal RC; 2MHz			
oscs	Ossillatar Calaatian hita	011: Internal RC; 1MHz			
USCS	Oscillator Selection bits	100: Internal RC; 8MHz			
		101: Not available (Note 4)			
		110: Not available (Note 5)			
		111: Crystal/ceramic oscillator			

Note:

- 1. When LVR is enabled, LVR level should be set to appropriate value, not default value.
- 2. When you select the Crystal/ceramic oscillator, R33 and R34 pins are automatically selected for XIN and XOUT mode.
- 3. When you select the external RC, R34 pin is automatically selected for XIN mode.
- 4. If OSCS is set by '101', Oscillator works as 'Internal RC; 4MHz' mode.
- 5. If OSCS is set by '110', Oscillator works as 'Internal RC; 2MHz' mode.

8.2 Read Timing

Figure 8-1 ROM option read timing diagram

Rom option is affected 32 mili-second (typically) after VDD cross the POR level. More precisely saying, the 32 mili-second is the time for 1/2 counting of 1024 divided BIT with 4 MHz internal OSC. After the ROM option is affected, system clock source is changed based on the ROM option. And then, rest 1/2 counting is continued with changed clock source. So, hole stabilization time is variable depend on the clock source.

	Before read ROM option	After read ROM option	OSC Stabilization Time	
Formula	250ns x 128(BTCR) x 1024(divider)	Period x 128(BTCR) x 1024(divider)	Before + After	
Int-RC 4MHz	32 ms	32 ms	64 ms	
Int-RC 8MHz	32 ms	16 ms	48 ms	
X-tal 12 MHz	32 ms	10.7 ms	42.7 ms	
X-tal 16 Mhz	32 ms	8 ms	40 ms	

Table 8-1 examples of OSC stabilization time

Note that ROM option is affected in OSC stabilization time. So even you change the ROM option by ISP. It is not affected until system is reset. In other words, you must reset the system after change the ROM option.

9. MEMORY ORGANIZATION

This MCU has separated address spaces for the *program memory* and the *data Memory*.

The program memory is a ROM which stores a program code. It is not possible to write a data at the program memory while the MCU is running.

The Data Memory is a REM which is used by MCU at running time.

9.1 Registers

There are few registers which are used for MCU operating.

Figure 9-1 Configuration of Registers

Accumulator(A Register): Accumulator is the 8-bit general purpose register, which is used for accumulating and some data operations such as transfer, temporary saving, and conditional judgment, etc.

And it can be used as a part of 16-bit register with Y Register as shown below.

Figure 9-2 Configuration of YA 16-bit Registers

X, Y Registers: In the addressing mode, these are used as a index register. It makes it possible to access at Xth or Yth memory from specific address. It is extremely effective for referencing a subroutine table and a memory table.

These registers also have increment, decrement, comparison and data transfer functions, and they can be used as a simple accumulator.

Figure 9-3 Stack Pointer

Stack Pointer: Stack Pointer is an 8-bit register which indicates the current 'push' point in the stack area. It is used to push and pop when interrupts or general function call is occurred. Stack Pointer identifies the location in the stack to be accessed (save or restore).

Generally, SP is automatically updated when a subroutine call is executed or an interrupt is accepted. However, if it is used in excess of the stack area permitted by the data memory allocating configuration, the user-processed data may be lost.

The stack can be located at any position within 00H to 0AFH of the internal data memory. The SP is not initialized by hardware, requiring to write the initial value (the location with which the use of the stack starts) by using the initialization routine. Normally, the initial value of "AFH" is used.

Figure 9-4 Stack Operation

Figure 9-5 PSW (Program Status Word) Registers

Program Status Word: Program Status Word (PSW)contains several bits that reflect the current state of the CPU. It contains the Negative flag, the Overflow flag, the Break flag the Half Carry (for BCD operation), the Interrupt enable flag, the Zero flag, and the Carry flag.

[Carry flag C]

This flag stores any carry or borrow from the ALU of CPU after an arithmetic operation and is also changed by the Shift Instruction or Rotate Instruction.

[Zero flag Z]

This flag is set when the result of an arithmetic operation or data transfer is "0" and is cleared by any other result.

[Interrupt disable flag I]

This flag enables/disables all interrupts except interrupt caused by Reset or software BRK instruction. All interrupts are disabled when cleared to "0". This flag immediately becomes "0" when an interrupt is served. It is set by the EI instruction and cleared by the DI instruction.

[Half carry flag H]

After operation, this is set when there is a carry from bit 3 of ALU or there is no borrow from bit 4 of ALU. This bit can not be set or cleared except CLRV instruction with Overflow flag (V).

[Break flag B]

This flag is set by software BRK instruction to distinguish BRK from TCALL instruction with the same vector address.

[Direct page flag G]

This flag assigns RAM page for direct addressing mode. In the direct addressing mode, addressing area is from zero page 00H to 0FFH when this flag is "0". If it is set to "1", addressing area is assigned 100H to 1FFH. It is set by SETG instruction and cleared by CLRG.

[Overflow flag V]

This flag is set to "1" when an overflow occurs as the result of an arithmetic operation involving signs. An overflow occurs when the result of an addition or subtraction exceeds +127(7FH) or -128(80H). The CLRV instruction clears the overflow flag. There is no set instruction. When the BIT instruction is executed, bit 6 of memory is copied to this flag.

[Negative flag N]

This flag is set to match the sign bit (bit 7) status of the result of a data or arithmetic operation. When the BIT instruction is executed, bit 7 of memory is copied to this flag.

9.2 Program Memory

A 16-bit program counter is capable of addressing up to 64K bytes, but this device has 4K bytes program memory space only physically implemented. Accessing a location above FFFFH will cause a wrap-around to 0000H.

Figure 9-6 shows a map of Program Memory. After reset, the CPU begins execution from reset vector which is stored in address FFFEH and FFFFH. As shown in Figure 9-6, each area is assigned a fixed location in Program Memory.

Program memory area contains the user program Page Call (PCALL) area contains subroutine program to reduce program byte length by using 2 bytes PCALL instead of 3 bytes CALL instruction. If it is frequently called, it is more useful to save program byte length.

Table Call (TCALL) causes the CPU to jump to each TCALL address, where it commences the execution of

the service routine. The Table Call service area spaces 2-byte for every TCALL: 0FFC0H for TCALL15, 0FFC2H for TCALL14, etc., as shown in Figure 9-7.

The interrupt causes the CPU to jump to specific location where it commences the execution of the service routine. The interrupt service locations spaces 2-byte interval. The External interrupt 1, for Example, is assigned to location 0FFFCH.

Any area from 0FF00H to 0FFFFH, if it is not going to be used, its service location is available as general purpose Program Memory.

TCALL→ n

4A TCALL 4

	PCALL Area Memory	Program Memory
0FF00H		OFECOH
		0FFC1H TCALL 15
		0FFC2H
		0FFC3H TCALL 14
		0FFC4H
		0FFC5H TCALL 13
		0FFC6H
		0FFC7H TCALL 12
		0FFC8H
		0FFC9H TCALL 11
		0FFCAH TOALL 40
		0FFCBH TCALL 10 ——
		0FFCCH TOALL 0
		0FFCDH TCALL 9
		0FFCEH
	PCALL Area (256 Byte)	0FFCFH TCALL 8
		0FFD0H
		0FFD1H TCALL 7
		0FFD2H
		0FFD3H TCALL 6
		0FFD4H
		0FFD5H TCALL 5
		0FED6H
		0FFD7H TCALL 4
		0FED8H
		0FFD9H TCALL 3
		OFFDAH
		0FFDBH TCALL 2
		OFFDCH
		0FFDDH TCALL 1
		0EEDEH
0FFFFH		0FFDFH TCALL 0
2		

Figure 9-7 PCALL and TCALL Memory Area

Example: Usage of TCALL

LDA #5

TCALL 0FH ;1BYTE INSTRUCTION : ;INSTEAD OF 3 BYTES

; NORMAL CALL

;TABLE CALL ROUTINE

FUNC_A : LDA LRG0

RET

FUNC_B : LDA LRG1

RET

;TABLE CALL ADD. AREA

ORG OFFCOH ;TCALL ADDRESS AREA

DW FUNC_A
DW FUNC_B

9.3 Data Memory

Figure 9-8 Data Memory Map

Figure 9-8 shows the internal Data Memory space available. Data Memory is divided into three groups, a user RAM, Stack memory and Control registers.

9.4 User Memory

The MC81F4204 has a 192 bytes user memory (RAM). RAM pages are selected by the RPR register.

RPR

RAM PAGE SELECT REGISTER

00E1H

RPR bit Ram Page Select bit 0: page 0 1: page 1	
---	--

Note:

After setting RPR(RAM Page Select Register), be sure to execute SETG instruction. Whenever CLRG instruction is excuted, PAGE0 is selected regardless of RPR.

9.5 Stack Area

The stack provides the area where the return address is saved before a jump is performed during the processing routine at the execution of a subroutine call instruction or the acceptance of an interrupt.

When returning from the processing routine, executing the subroutine return instruction [RET] restores the contents of the program counter from the stack; executing the interrupt return instruction [RETI] restores the contents of the program counter and flags.

The save/restore locations in the stack are determined by the stack pointed (SP). The SP is automatically decreased after the saving, and increased before the restoring. This means the value of the SP indicates the stack location number for the next save. Refer to Figure 9-4.

9.6 Control Registers (SFR)

The control registers are used by the CPU and Peripheral function blocks for controlling the desired operation of the device. Therefore these registers contain control and status bits for the interrupt system, the timer counters, analog to digital converters and I/O ports. The control registers are in address range of 0B0H to 0FFH. It also be called by SFR(Special Function Registers).

Note that unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

More detailed information of each registers are explained in each peripheral section.

Example : To write at CKCTLR	
LDM CKCTLR,#0AH ;Divide ratio(÷32)	

Address	Register Name	Mnemonic	R/W	Initial value							
Hex	Register Nume	WIII CITIOTIO	1011				····	vai			
00B0H	Timer 0 Status And Control Register	T0SCR	R/W	- 0 0 0 0 0 0 0					0		
00B1H	Timer 0 Data Register	T0DR	R/W	1	1	1	1	1	1	1	1
00B2H	Timer 0 Counter Register	T0CR	R	0	0	0	0	0	0	0	0
00B3H	Timer 1 Status And Control Register	T1SCR	R/W	ı	0	0	0	0	0	0	0
00B4H	Timer 1 Data Register	T1DR	R/W	1	1	1	1	1	1	1	1
00B5H	Timer 1 Counter Register	T1CR	R	0	0	0	0	0	0	0	0
00B6H	Timer 2 Status And Control Register	T2SCR	R/W	•	-	0	0	0	0	0	0
00B7H	Timer 2 Data Register	T2DR	R/W	1	1	1	1	1	1	1	1
00B8H	Timer 2 Counter Register	T2CR	R	0	0	0	0	0	0	0	0
00BDH	A/D Mode Register	ADMR	R/W	0	0	0	0	0	0	0	0
00BEH	A/D Converter Data Register High Byte	ADDRH	R	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х
00BFH	A/D Converter Data Register Low Byte	ADDRL	R	Χ	Χ	Χ	Χ	-	-	-	-
00C0H	R0 Port Data Register	ort Data Register R0 R						0	0	0	0
00C1H	R1 Port Data Register	R1	R/W	-	-	-	1	1	0	0	0
00C3H	R3 Port Data Register	R3	R/W	-	-	0	0	0	1	1	_
00C6H	R0 Port Control Register High Byte	R0CONH	R/W	0	0	0	0	0	0	_	0
00C7H	R0 Port Control Register Middle Byte	R0CONM	R/W	0	0	0	0	0	0	0	0
00C8H	R0 Port Control Register Low Byte	R0CONL	R/W	-	-	0	0	0	0	0	0
00C9H	R0 Port Pull-up Resistor Enable Register	PUR0	R/W	0	0	0	0	0	0	0	0
00CAH	R0 Port External Interrupt Register High Byte	EINT0H	R/W	0	0	0	0	0	0	0	0
00CBH	R0 Port External Interrupt Register Low Byte	EINT0L	R/W	0	0	0	0	0	0	0	0
00CCH	R0 Port External Interrupt Request Register	ERQ0	R/W	0	0	0	0	0	0	0	0
00CDH	External Interrupt Flag Register	EINTF	R/W	0	0	0	0	0	0	0	0
00CEH	PWM Status And Control Register	PWMSCR	R/W	-	0	0	0	-	1	_	-
00CFH	PWM Period And Duty Register	PWMPDR	R/W	-	-	1	1	1	1	1	1
00D0H	PWM2 Data Register	PWM2DR	R/W	1	1	1	1	1	1	1	1
00D1H	PWM3 Data Register	PWM3DR	R/W	1	1	1	1	1	1	1	1
00D3H	R1 Port Control Register High Byte	R1CONH	R/W	-	-	-	-	-	-	0	1
00D4H	R1 Port Control Register Middle Byte	R1CONM							_		
00D5H	R1 Port Control Register Low Byte	R1CONL	R/W	0 0 0 0 0							
00D6H	R1 Port Pull-up Resistor Enable Register	PUR1	R/W	0 0 0 0 0							
00D7H	R1 Port External Interrupt Register	EINT1	R/W	0 0 0 0 0 0 0							
00D8H	R1 Port External Interrupt Request Register	ERQ1	R/W	0 0 0 0						0	

Table 9-1 Control Register 1/4

Address	Desigter Name	Mnemonic	R/W	Initial value									
Hex	Register Name	Register Name Willemonic					IIIIIai value						
00DCH	R3 Port Control Register High Byte	R3CONH	R/W	-	-	0	0	0	0	0	0		
00DDH	R3 Port Control Register Low Byte	R3CONL	R/W	1	0	0	1	1	-	-	_		
00E1H	RAM Page Selection Register	RPR	R/W	-	_	_	-	-	_	-	0		
00E5H	Buzzer Control Register	BUZR	R/W	1	1	0	0	-	-	-	_		
00E6H	Buzzer Period Data Register	BUPDR	R/W	1	1	1	1	1	1	1	1		
00E7H	SIO Control Register	SIOCR	R/W	-	0 0 0 0 0 0				0				
00E8H	SIO Data Register	SIODAT	R/W	0	0	0	0	0	0	0	0		
00E9H	SIO Prescaler Register	R/W	0	0	0	0	0	0	0	0			
00EAH	Interrupt Enable Register High Byte	IENH	R/W	0	0	0	0	0	0	_	_		
00EBH	Interrupt Enable Register Low Byte	IENL	R/W	-	0	_	-	-	0	-	0		
00ECH	Interrupt Request Register High Byte	IRQH	R/W	0	0	0	0	0	0	-	_		
00EDH	Interrupt Request Register Low Byte	IRQL	R/W	_	0	_	_	_	0	_	0		
00EEH	Interrupt Flag Register High Byte	INTFH	R/W	0	0	0	0	0	0	-	_		
00F1H	Basic Timer Counter Register	BTCR	R	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х		
00F2H	Clock control Register	CKCTLR	R/W	_	_	_	1	0	1	1	1		
00F3H	Power On Reset Control Register	PORC	R/W	0	0	0	0	0	0	0	0		
00F4H	Watchdog Timer Register	WDTR	R/W	0	1	1	1	1	1	1	1		
00F5H	Stop & Sleep Mode Control Register	SSCR	R/W	0	0	0	0	0	0	0	0		
00F6H	Watchdog Timer Status Register	WDTSR	R/W	R/W 0 0 0 0 0 0 0 0			0						
00F7H	Watchdog Timer Counter Register	WDTCR	R	x x x x x x x x x					Х				

Table 9-2 Control Register 2/4

Mnemonic	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TOCOD	Hex		TO	MC	TOCC		T0	00		
T0SCR	00B0H	- TOMS TOCC TOCS								
T0DR	00B1H		Timer 0 Data Register Timer 0 Counter Register							
T0CR	00B2H					nter Regist				
T1SCR	00B3H	-	I1	MS	T1CC			SCR		
T1DR	00B4H				Timer 1 Da					
T1CR	00B5H		T		mer 1 Cou	nter Regist				
T2SCR	00B6H	-	-	T2MS	T2CC			SCR		
T2DR	00B7H				Timer 2 Da	ta Registe	r			
T2CR	00B8H		T	Ti	mer 2 Cou	nter Regist	er			
ADMR	00BDH	SSBIT	EOC	AD	CLK		AD	CH		
ADDRH	00BEH			A/D Con	verter Data	Register H	ligh Byte			
ADDRL	00BFH		A/D Converter Data Register Low Byte							
R0	00C0H		R0 Port Data Register							
R1	00C1H		R1 Port Data Register							
R3	00C3H		R3 Port Data Register							
R0CONH	00C6H		R07 R06 - I						R05	
R0CONM	00C7H	R	05		R04			R03		
R0CONL	00C8H	-	-	R	02	R	01	R00		
PUR0	00C9H	PUR07	PUR06	PUR05	PUR04	PUR03	PUR02	PUR01	PUR00	
EINT0H	00CAH	EXT	5IE	EX	Γ4ΙΕ	EXT	T3IE	EXT	Γ2IE	
EINT0L	00CBH	EXT	T1IE	EX	ГОІЕ	EXT	11IE	EXT	10IE	
ERQ0	00CCH	EXT5IR	EXT4IR	EXT3IR	EXT2IR	EXT1IR	EXT0IR	EXT11IR	EXT10IR	
EINTF	00CDH	EXT0IF	EXT2IF	EXT4IF	EXT7IF	EXT8IF	EXT9IF	EXT10IF	EXT11IF	
PWMSCR	00CEH	_	POL3	POL2	PWMS	_	_	_	_	
PWMPDR	00CFH	-	_	P3DH	P3DL	P2DH	P2DL	PPH	PPL	
PWM2DR	00D0H				PWM 2 Da	ta Registe	r			
PWM3DR	00D1H				PWM 3 Da	ta Registe	r			
R1CONH	00D3H	_	_				14			
R1CONM	00D4H		R13	R12 -				_		
R1CONL	00D5H	-	_	-		R11		R	10	
PUR1	00D6H	-	_	-	PUR14	PUR13	PUR12	PUR11	PUR10	
EINT1	00D7H	EXT	9IE	EX	Г8ІЕ	EXT	T7IE	EXT	T6IE	
ERQ1	00D8H	-	_	-	_	EXT9IR	EXT8IR	EXT7IR	EXT6IR	

Table 9-3 Control Register 3/4

Mnemonic	Address Hex	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
R3CONH	00DCH	_	_	R	35	R	34	R	33	
R3CONL	00DDH	R	32		R31		_	_	_	
RPR	00E1H	_	_	_	_	_	_	-	RPR0	
BUZR	00E5H	BU	CK	BUSS	BURL	_	_	-	_	
BUPDR	00E6H			Buz	zer Period	Data Regi	ister			
SIOCR	00E7H	_	-	CSEL	DAT	SIOM	SIOP	CCLR	SEDGE	
SIODAT	00E8H		SIO Data Register							
SIOPS	00E9H		SIO Prescaler Register							
IENH	00EAH	TOMIE	T00VIE	T1MIE T1OVIE T2MIE T2OVI		T20VIE	_	_		
IENL	00EBH	_	SIOIE	-	_	_	WDTIE	-	BTIE	
IRQH	00ECH	T0MIR	T00VIR	T1MIR	T10VIR	T2MIR	T20VIR	-	_	
IRQL	00EDH	-	SIOIR	-	-	_	WDTIR	-	BTIR	
INTFH	00EEH	TOMIF	T00VIF	T1MIF	T10VIF	T2MIF	T20VIF	ı	_	
BTCR	00F1H			Bas	ic Timer Co	ounter Reg	ister			
CKCTLR	00F2H	_	_	_	WDTON	BTCL		BTS		
PORC	00F3H				POF	REN				
WDTR	00F4H	WDTCL				WDTCMP				
SSCR	00F5H			Stop	and Sleep	Control Re	egister			
WDTSR	00F6H		Watchdog Timer Status Register							
WDTCR	00F7H			Watch	dog Timer	Counter R	egister			

Table 9-4 Control Register 4/4

9.7 Addressing modes

The MC81Fxxxx series MCU uses six addressing modes;

- Register Addressing
- Immediate Addressing
- Direct Page Addressing
- Absolute Addressing
- Indexed Addressing
- Indirect Addressing

Register Addressing

Register addressing means to access to the data of the A, X, Y, C and PSW registers. For Example 'ASL (Arithmetic Shift Left)' only accesses the A register.

Immediate Addressing

In this mode, second byte (operand) is accessed as a data immediately.

Example:

When G-flag is 1, then RAM address is defined by 16-bit address which is composed of 8-bit RAM paging register (RPR) and 8-bit immediate data.

Example:

Direct Page Addressing -> dp

In this mode, an address is specified within direct page. Current accessed page is selected by RPR(RAM Page select Register). And dp(Direct Page) is an one byte data which indicates the target address in the current accessed page.

Example:

Absolute Addressing

Absolute addressing sets corresponding memory data to Data, i.e. second byte (Operand I) of command becomes lower level address and third byte (Operand II) becomes upper level address. With 3 bytes command, it is possible to access to whole memory area.

ADC, AND, CMP, CMPX, CMPY, EOR, LDA, LDX, LDY, OR, SBC, STA, STX, STY

The operation within data memory (RAM): ASL, BIT, DEC, INC, LSR, ROL, ROR

Example:

Example: Addressing accesses the address 0135H regardless of G-flag.

Indexed Addressing

X indexed direct page (no offset) \rightarrow {X}

In this mode, an address is specified by the X register.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA, XMA

Example:

X indexed direct page, auto increment→ {X}+

In this mode, a address is specified within direct page by the X register and the content of X is increased by 1.

LDA, STA

X indexed direct page (8 bit offset) → dp+X

This address value is the second byte (Operand) of command plus the data of X-register. And it assigns the memory in direct page.

ADC, AND, CMP, EOR, LDA, LDY, OR, SBC, STA, STY, XMA, ASL, DEC, INC, LSR, ROL, ROR

Example:

Y indexed direct page (8 bit offset) → dp+Y

This address value is the second byte (Operand) of command plus the data of Y-register, which assigns Memory in Direct page.

This is same with above 'X indexed direct page'. Use Y register instead of X.

Y indexed absolute → !abs+Y

Accessing the value of 16-bit absolute address plus Y-register value. This addressing mode can specify memory in whole area.

Indirect Addressing

Direct page indirect → [dp]

Assigns data address to use for accomplishing command which sets memory data (or pair memory) by Operand.

Also index can be used with Index register X,Y.

JMP, CALL

Example:

X indexed indirect \rightarrow [dp+X]

Processes memory data as Data, assigned by 16-bit pair memory which is determined by pair data [dp+X+1][dp+X] Operand plus X-register data in Direct page.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA

Y indexed indirect \rightarrow [dp]+Y

Processes memory data as Data, assigned by the data [dp+1][dp] of 16-bit pair memory paired by Operand in Direct page plus Y-register data.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA

Example:

Absolute indirect → [!abs]

The program jumps to address specified by 16-bit absolute address.

JMP

10. I/O PORTS

The MC81F4204 microcontroller has three I/O ports, P0,P1 and P3. The CPU accesses ports by writing or reading port register directly.

The R0 port has following features,

- 1-bit programmable I/O port.
- Schmitt trigger input, push-pull or open-drain output mode can be selected by software.
- A pull-up resistor can be specified in 1-bit.
- R00-R01 can be used as EXT10/SXin, EXT11/SXout
- R02-R07 can be used as EXT0-EXT5/AD0-AD5
- R02-R03 can be used as EC0, T0O/T0PWM
- R04-R05 can be used as EC1/SCK, T10/T1PWM/SI
- R06-R07 can be used as EC2/SO, T2O

The R1 port has following features,

- 1-bit programmable I/O port.
- Schmitt trigger input, push-pull or open-drain output mode can be selected by software.
- A pull-up resistor can be specified in 1-bit.
- R10-R13 can be used as EXT6-EXT9/Vref, AN6-AN8
- R11-R13 can be used as PWM2O-PWM4O
- R12 can be used as BUZO

The R3 port has following features,

- 1-bit programmable I/O port.
- Schmitt trigger or normal input, push-pull or open-drain output mode can be selected by software.
- R31 can be used as AN14
- R33-R34 can be used as Xout, Xin
- R35 can be used as RESETB

10.1 R0 Port Registers

R0CONH - R05~07

R0 PORT CONTROL HIGH REGISTER

00C6H

A reset clears the R0CONH register to '00H', makes R07-R05 pins input mode. You can use R0CONH register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the ROCONH register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R0CONH		R07			R06		_	R05	Reset value:
	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W	0000_00-0b

		000: Schmitt trigger input mode (EXT5)					
		001: Output mode, open-drain					
R07	R07/AN5/EXT5/T2O	010: Alternative function (AN5)					
		011: Alternative function (T2O)					
		1xx: Output mode, push-pull					
		000: Schmitt trigger input mode (EC2/EXT4)					
200	D00/4414/EV/T4/00/E00	001: Output mode, open-drain					
R06	R06/AN4/EXT4/SO/EC2	010: Alternative function (AN4)					
		011: Alternative function (SO)					
		1xx: Output mode, push-pull					
_	bit1	Not used for MC81F4204					
DOE.	R05/AN3/EXT3/SI/T1O/PWM1O	1: Output mode, push-pull					
R05	RUS/ANS/EXTS/SI/TTO/PWWITO	0: depend on R0CONM.76					

Note:

- When R0CONH.0 is selected to '1', R05 is push-pull output mode.
 When R0CONH.0 is selected to '0', R05 depends on R0CONM.7 .6 bits.

R0CONM - R03~05

R0 PORT CONTROL MIDDLE REGISTER

00C7H

A reset clears the R0CONM register to '00H', makes R04-R03 pins input mode. You can use R0CONM register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the R0CONM register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R0CONM	R	05		R04			R03		Reset value: 00H
	R/W	-							

		00: Schmitt trigger input mode (SI/EXT3)		
R05	R05/AN3/EXT3/SI/T1O/PWM1O	01: Output mode, open-drain		
KU5	ROS/ANS/EXTS/SI/TTO/FWIVITO	10: Alternative function (AN3)		
		11: Alternative function (T10/PWM10)		
		000: Schmitt trigger input mode (*SCK in / EC1 / EXT2)		
D04		001: Output mode, open-drain		
R04	R04/AN2/EXT2/SCK/EC1	010: Alternative function (AN2)011: Alternative function (SCK out)		
		1xx: Output mode, push-pull		
		000: Schmitt trigger input mode (EXT1)		
		001: Output mode, open-drain		
R03	R03/AN1/EXT1/T0O/PWM0O	010: Alternative function (AN1)		
		011: Alternative function (T0O/PWM0O)		
		1xx: Output mode, push-pull		

Note:

If you want to use SIO module in slave mode, you must set SCK port as an input mode.

R0CONL - R00~02

R0 PORT CONTROL LOW REGISTER

00C8H

A reset clears the R0CONL register to '00H', makes R02-R00 pins input mode. You can use R0CONL register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the R0CONL register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R0CONL	_	ı	R	02	R	01	R	00	Reset value: 00H
	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

_	bit7 – bit6	Not used for MC81F4204		
		00: Schmitt trigger input mode (EC0/EXT0)		
R02	R02/AN0/EXT0/EC0	01: Output mode, open-drain		
		10: Alternative function (AN0)		
		11: Output mode, push-pull		
		00: Schmitt trigger input mode (EXT11)		
R01	DO4/CVaut/EVT44	01: Output mode, open-drain		
KUI	R01/SXout/EXT11	10: Alternative function (SXout)		
		11: Output mode, push-pull		
		00: Schmitt trigger input mode (EXT10)		
Doo	D00/0V:-/FVT40	01: Output mode, open-drain		
R00	R00/SXin/EXT10	10: Alternative function (SXin)		
		11: Output mode, push-pull		

PUR0

R0 PORT PULL-UP ENABLE REGISTER

00C9H

Using the PUR0 register, you can configure pull-up resistors to individual R07-R00 pins.

PUR07	DOZ Dull up Booistor Enoble Bit	0: Disable pull-up resistor				
PORU	R07 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
PUR06	DOS Dull up Posistor Enoble Bit	0: Disable pull-up resistor				
PURU	R06 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
DUDOS	DOS Dull up Decister Enoble Bit	0: Disable pull-up resistor				
PUR05	R05 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
DUDO4	DO4 Dull up Decister Englis Dit	0: Disable pull-up resistor				
PUR04	R04 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
DUDOS	DO2 Dull up Docietor Epoblo Bit	0: Disable pull-up resistor				
PUR03	R03 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
PUR02	DO2 Dull up Docietor Epoblo Bit	0: Disable pull-up resistor				
PURUZ	R02 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
DUDA	DO1 Dull up Docietor Enghle Bit	0: Disable pull-up resistor				
PUR01	R01 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				
DUDAA	DOO Bull up Booistor Engblo Bit	0: Disable pull-up resistor				
PUR00	R00 Pull-up Resistor Enable Bit	1: Enable pull-up resistor				

R0

R0 PORT DATA REGISTER

00C0H

	7	<u> </u>		•	3		•		
R0	R07	R06	R05	R04	R03	R02	R01	R00	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Reset value: 00H

In input mode, it represents the R0 port status.	1: High
In output mode, R0 port represents it.	0: Low

10.2 R1 Port Registers

R1CONH - R14

R1 PORT CONTROL HIGH REGISTER

00D3H

A reset clears the R1CONH register to '----_--01b', makes the R14 pins to open-drain output mode. You can use R1CONH register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the R1CONH register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R1CONH	-	-	-	-	-	-	R	14	Reset value:
	R/W	01b							

_	bit7 – bit2	Not used for MC81F4204		
		00: Schmitt trigger input mode		
R14	R14	01: Output mode, open-drain		
K14	K14	10: Not available		
		11: Output mode, push-pull		

R1CONM - R12~R13

R1 PORT CONTROL MIDDLE REGISTER

00D4H

A reset clears the R1CONM register to '20H', makes the R13 pin to open-drain output mode and the R12 pin to input mode. You can use R1CONM register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the R1CONM register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R1CONM		R13			R12		-	-	Reset value: 20H
	R/W	R/W	R/W	R/W	R/W	R/W	_	_	-

		000: Schmitt trigger input mode (EXT9)		
		001: Output mode, open-drain		
R13	R13/AN8/EXT9/PWM4O	010: Alternative function (AN8)		
		011: Alternative function (PWM4O)		
		1xx: Output mode, push-pull		
		000: Schmitt trigger input mode (EXT8)		
		001: Output mode, open-drain		
		010: Alternative function (AN7)		
R12	R12/AN7/EXT8/PWM3O/BUZO	011: Alternative function (PWM3O)		
		101: Alternative function (BUZO)		
		111: Output mode, push-pull		
		Others: Not available		
_	bit1 – bit0	Not used for MC81F4204		

R1CONL - R10~11

R1 PORT CONTROL LOW REGISTER

00D5H

A reset clears the R1CONL register to '00H', makes R11-R10 pins input mode. You can use R1CONL register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the R1CONL register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R1CONL	_	ı	ı		R11		R	10	Reset value: 00H
	_	_	_	R/W	R/W	R/W	R/W	R/W	-

_	bit7 – bit5	Not used for MC81F4204
		000: Schmitt trigger input mode (EXT7)
		001: Output mode, open-drain
R11	R11/AN6/EXT7/PWM2O	010: Alternative function (AN6)
		011: Alternative function (PWM2O)
		1xx: Output mode, push-pull
		00: Schmitt trigger input mode (EXT6)
B40	R10/Vref/EXT6	01: Output mode, open-drain
R10	KTU/VTEI/EXTO	10: Alternative function (Vref)
		11: Output mode, push-pull

PUR1

R1 PORT PULL-UP ENABLE REGISTER

00D6H

Using the PUR1 register, you can configure pull-up resistors to individual R17-R10 pins.

7 3 2 1 6 5 4 0 PUR1 PUR14 PUR13 PUR12 PUR11 PUR10 Reset value: 00H R/W R/W R/W R/W R/W R/W R/W R/W

-	bit7 – bit5	Not used for MC81F4204			
PUR14	P14 Pull up Posistor Engblo Pit	0: Disable pull-up resistor			
PUK14	R14 Pull-up Resistor Enable Bit	1: Enable pull-up resistor			
PUR13	D42 Dull up Decister Englis Dit	0: Disable pull-up resistor			
PUKIS	R13 Pull-up Resistor Enable Bit	1: Enable pull-up resistor			
DUD42	P42 Pull up Posistor Engblo Pit	0: Disable pull-up resistor			
PUR12	R12 Pull-up Resistor Enable Bit	1: Enable pull-up resistor			
PUR11	R11 Pull-up Resistor Enable Bit	0: Disable pull-up resistor			
PORTI	KTT Full-up Resistor Enable bit	1: Enable pull-up resistor			
PUR10	D40 Dull up Decister Englis Dit	0: Disable pull-up resistor			
FURIU	R10 Pull-up Resistor Enable Bit	1: Enable pull-up resistor			

R1

R1 PORT DATA REGISTER

00C1H

7 6 5 4 3 2 1 0 R1 --R14 R13 R12 R11 R10 Reset value: ---0_000b R/W R/W R/W R/W R/W R/W R/W R/W

In input mode, it represents the R1 port status.	1: High
In output mode, R1 port represents it.	0: Low

10.3 R3 Port Registers

R3CONH - R33~R35

R3 PORT CONTROL HIGH REGISTER

00DCH

A reset clears the R3CONH register to '00H', makes R35-R33 pins input mode. You can use R3CONH register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

	7	6	5	4	3	2	1	0	
R3CONH	_	_	R	35	R	34	R	33	Reset value: 00H
	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

_	bit7 – bit6	Not used for MC81F4204		
		00: Schmitt trigger input mode		
R35	D25/DECETD / *noto* \	01: Not available		
N33	R35/RESETB (*note*)	10: Output mode, open-drain		
		11: Not available		
		00: Schmitt trigger input mode		
R34	R34/Xin(*note*)	01: Schmitt trigger input pull-up mode		
K34		10: Output mode, open-drain		
		11: Output mode, push-pull		
		00: Schmitt trigger input mode		
Daa	D00/V+/**	01: Schmitt trigger input pull-up mode		
R33	R33/Xout(*note*)	10: Output mode, open-drain		
		11: Output mode, push-pull		

Note:

If you want to use RESETB, the LVREN (ROM OPTION [7]) must select to LVR disable mode ('1'). If you want to use R35, the LVREN (ROM OPTION [7]) must be selected to LVR enable mode ('0').

If you want to use X_{IN} and X_{OUT} , the OSCS (ROM OPTION [2:0]) must select to Crystal/ceramic oscillator mode (111b). If you want to use R33 and R34, the OSCS (ROM OPTION [2:0]) must select to Internal RC mode (001b, 010b, 011b, 100b).

Even you are in case of using emulator you must select the ROM OPTION switch properly to use those R33,R34,R35 ports.

R3CONL - R31~R32

R3 PORT CONTROL LOW REGISTER

00DDH

A reset clears the R3CONL register to '1001_1---b', makes the R32-R31 pins to open-drain output mode. You can use R3CONL register setting to select input or output mode (open-drain or push-pull) and enable alternative functions.

When programming the port, please remember that any alternative peripheral I/O function that defined by the R3CONL register must also be enabled in the associated peripheral module.

	7	6	5	4	3	2	1	0	
R3CONL	R	32		R31		-	-	-	Reset value:
	R/W	1001_1b							

		00: Input mode		
R32	R32	01: Input pull-up mode		
K32	1.752	10: Output mode, open-drain		
		11: Output mode, push-pull		
		000: Input mode		
		001: Input pull-up mode		
R31	R31/AN14	010: Alternative function (AN14)		
		011: Output mode, open-drain		
		1xx: Output mode, push-pull		
-	bit2 – bit0	Not used for MC81F4204		

R3

R3 PORT DATA REGISTER

00C3H

	7	6	5	4	3	2	1	0	_
R3	-	-	R35	R34	R33	R32	R31	-	Reset value:
	R/W	00_011-b							

In input mode, it represents the R3 port status.	1: High
In output mode, R3 port represents it.	0: Low

11. INTERRUTP CONTROLLER

Figure 11-1 Block Diagram of Interrupt

The MC81F4204 interrupt circuits consist of Interrupt enable register (IENH, IENL), Interrupt request flags of IRQH, IRQL, Priority circuit, and Master enable flag ("I" flag of PSW). And 21 interrupt sources are provided.

The interrupt vector addresses are shown in '11.6 Interrupt Vector & Priority Table' on page 81. Interrupt enable registers are shown in next paragraph. These registers are composed of interrupt enable flags of each interrupt source and these flags determine whether an interrupt will be accepted or not. When the enable flag is "0", a corresponding interrupt source is disabled.

Note that PSW contains also a master enable bit, I-flag, which disables all interrupts at once.

11.1 Registers

IENH

INTERRUPT ENABLE HIGH REGISTER

00EAH

	7	6	5	4	3	2	1	0	_
IENH	TOMIE	T00VIE	T1MIE	T10VIE	T2MIE	T2OVIE	-	-	Reset value: 00H
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

TOMIE	Timer O Metab Interrupt Enable Dit	0: Disable interrupt		
TOMIE	Timer 0 Match Interrupt Enable Bit	1: Enable interrupt		
TOOVIE	Timer O Overflow Interrupt Enable Bit	0: Disable interrupt		
TOOVIE	Timer 0 Overflow Interrupt Enable Bit	1: Enable interrupt		
T1MIE	Timer 1 Metab Interrupt Enable Bit	0: Disable interrupt		
ITIVITE	Timer 1 Match Interrupt Enable Bit	1: Enable interrupt		
T10VIE	Timer 1 Overflow Interrupt Enable Bit	0: Disable interrupt		
TIOVIE	Timer i Overnow interrupt Eriable Bit	1: Enable interrupt		
T2MIE	Timer 2 Metab Interrupt Enable Bit	0: Disable interrupt		
I ZIVIIE	Timer 2 Match Interrupt Enable Bit	1: Enable interrupt		
T20VIE	Times 2 Overflow Intersunt Enghle Bit	0: Disable interrupt		
IZOVIE	Timer 2 Overflow Interrupt Enable Bit	1: Enable interrupt		
- bit 1 – bit 0		Not used for MC81F4204		

IENL

INTERRUPT ENABLE LOW REGISTER

00EBH

	7	6	5	4	3	2	1	0	
IENL	•	SIOIE	•	-	-	WDTIE	-	BITIE	Reset value: 00H
	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W	•

_	bit 7	Not used for MC81F4204		
SIOIE	SIO Interrupt Enoble Bit	0: Disable interrupt		
SIOIE	SIO Interrupt Enable Bit	1: Enable interrupt		
_	bit5 – bit 3	Not used for MC81F4204		
WDTIE	Motob dog Timor Interrupt Enoble Dit	0: Disable interrupt		
WDITE	Watchdog Timer Interrupt Enable Bit	1: Enable interrupt		
_	bit1	Not used for MC81F4204		
BTIE	Pagis Timer Interrupt Englis Dit	0: Disable interrupt		
BIIE	Basic Timer Interrupt Enable Bit	1: Enable interrupt		

IRQH

INTERRUPT REQUSEST HIGH REGISTER

00ECH

IQRH

1	6	5	4	3	2	1	0	
T0MIR	T00VIR	T1MIR	T10VIR	T2MIR	T2OVIR	-	•	Reset value: 00H
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

TOMIR	Timer 0 Match Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
T0OVIR	Timer 0 Overflow Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
T1MIR	Timer 1 Match Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
T10VIR	Timer 1 Overflow Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
	, , ,	1: Interrupt request flag is pending		
T2MIR	Timer 2 Match Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
T2OVIR	Timer 2 Overflow Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
-	bit 1 – bit 0	Not used for MC81F4204		

IRQL

INTERRUPT REQUSEST LOW REGISTER

00EDH

IRQL

7	6	5	4	3	2	1	0	
-	SIOIR		-	-	WDTIR	-	BTIR	Reset value: 00H
R/W	R/W	R/W	R/W	R/W	R/W	_	R/W	

_	bit 7	Not used for MC81F4204		
SIOIR	SIO Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
-	bit5 – bit 3	Not used for MC81F4204		
WDTIR	Watchdog Timer Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		
-	bit1	Not used for MC81F4204		
BTIR	Basic Timer Interrupt Request Flag	0: Interrupt request flag is not pending, request flag bit clear		
		1: Interrupt request flag is pending		

INTFH

INTERRUPT FLAG HIGH REGISTER

00EEH

7	6	5	4	3	2	1	0	
TOMIF	T00VIF	T1MIF	T10VIF	T2MIF	T2OVIF			Reset value: 00H
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

TOMIF	Timer 0 Metab Interrupt Flog Pit	0: No generation	
I OWIT	Timer 0 Match Interrupt Flag Bit	1: Generation	
T00VIF	Timer 0 Overflow Interrupt Flag Bit	0: No generation	
TOOVIE	Timer o Overnow interrupt Flag Bit	1: Generation	
T1MIF	Timer 1 Match Interrupt Flag Bit	0: No generation	
1 HVIII	Timer Fiviator interrupt Flag Bit	1: Generation	
T10VIF	Timer 1 Overflow Interrupt Flag Bit	0: No generation	
110011	Timer i Overnow interrupt Flag Bit	1: Generation	
T2MIF	Timer 2 Match Interrupt Flag Bit	0: No generation	
I ZIVIII	Timer 2 Match interrupt Flag Bit	1: Generation	
T2OVIF	Timer 2 Overflow Interrupt Flog Bit	0: No generation	
120VIF	Timer 2 Overflow Interrupt Flag Bit	1: Generation	
-	bit 1 – bit 0	Not used for MC81F4204	

Note:

When you use 'Shard Interrupt Vector', those INTFH is used to recognize which interrupt is generated. See '11.4 Shared Interrupt Vector' on page 79 for more information.

11.2 Interrupt Sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to "0" by a reset or an instruction. Interrupt acceptance sequence requires 8 cycles of fXIN (1µs at fXIN= 4MHz) after the completion of the current instruction execution. The interrupt service task is terminated upon execution of an interrupt return instruction [RETI].

Interrupt acceptance

- 1. The interrupt master enable flag (I-flag) is cleared to "0" to temporarily disable the acceptance of any following maskable interrupts. When a non-maskable interrupt is accepted, the acceptance of any following interrupts is temporarily disabled.
- 2. Interrupt request flag for the interrupt source accepted is cleared to "0".
- 3. The contents of the program counter (return address) and the program status word are saved (pushed) onto the stack area. The stack pointer decreases 3 times.
- 4. The entry address of the interrupt service program is read from the vector table address and the entry address is loaded to the program counter.
- 5. The instruction stored at the entry address of the interrupt service program is executed.

Figure 11-2 Timing chart of Interrupt Acceptance and Interrupt Return Instruction

A interrupt request is not accepted until the I-flag is set to "1" even if a requested interrupt has higher priority than that of the current interrupt being serviced. When nested interrupt service is required, the I-flag should be set to "1" by "EI" instruction in the interrupt service program. In this case, acceptable interrupt sources are selectively enabled by the individual interrupt enable flags.

Saving/Restoring General-purpose Register

the program status word are automatically saved on the stack, but accumulator and other registers are not saved itself. These registers are saved by the software if necessary. Also, when multiple interrupt services are nested, it is necessary to avoid using the same data memory area for saving registers.

Figure 11-3 Saving/Restoring in Interrupt Routine

The following method is used to save/restore the general-purpose registers.

Example: Register save using push and pop instructions.

```
INTxx :
PUSH A
PUSH X
PUSH Y
;SAVE ACC.
;SAVE X REG.
;SAVE Y REG.
;; interrupt processing ;;
POP Y
POP X
POP A
RETI
;RESTORE Y REG.
;RESTORE X REG.
; RESTORE ACC.
; RETURN
```


11.3 BRK Interrupt

Software interrupt can be invoked by BRK instruction, which has the lowest priority order. Interrupt vector address of BRK is shared with the vector of TCALL 0 (Refer to Program Memory Section). When BRK interrupt is generated, B-flag of PSW is set to distinguish BRK from TCALL 0.

Each processing step is determined by B-flag as shown in Figure

11.4 Shared Interrupt Vector

Some interrupts share the interrupt vector address. To recognize which interrupt is occurred, some interrupt flag registers are used.

Note that, interrupt request bits are cleared after call the interrupt service routine. So interrupt request bits can not be used to recognize which interrupt is occurred.

External Interrupt Group

In case of using interrupts of Ext group. It is necessary to check the EINTF register in the interrupt service routine to find out which external interrupt is occurred. Because the 8 external interrupts share the one interrupt vector address. These flag bits must be cleared by software after reading this register.

Timer match / overflow

In case of using interrupts of Timer match and overflow together, it is necessary to check the INTFH register in the interrupt service routine to find out which interrupt is occurred. Because the timer match and overflow share the on interrupt vector address. See 'INTFH' on page 76 to know which bit is which.

11.5 Multi Interrupt

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the interrupt are received at the same time simultaneously, an internal polling sequence determines by hardware which request is serviced. However, multiple processing through software for special features is possible. Generally when an interrupt is accepted, the I-flag is cleared to disable any further interrupt. But as user sets I-flag in interrupt routine, some further interrupt can be serviced even if certain interrupt is in progress.

Figure 11-4 Execution of Multi Interrupt

11.6 Interrupt Vector & Priority Table

Address	Interrupt	INT number	Priority
0FFE0H	Basic Interval Timer	INT0	15 (lowest priority)
0FFE2H	Watchdog Timer	INT1	14
0FFE4H	-	-	13
0FFE6H	Timer 2 match/overflow	INT3	12
0FFE8H	Timer 1 match/overflow	INT4	11
0FFEAH	Timer 0 match/overflow	INT5	10
0FFECH	-	-	9
0FFEEH	-	-	8
0FFF0H	SIO	INT8	7
0FFF2H	-	-	6
0FFF4H	External Group	INT10	5
0FFF6H	External 6	INT11	4
0FFF8H	External 5	INT12	3
0FFFAH	External 3	INT13	2
0FFFCH	External 1	INT14	1
0FFFEH	RESET	INT15	0 (highest priority)

Table 11-1 Interrupt Vector & Priority

Note: External Interrupt Group = (EXT0, EXT2, EXT4, EXT7 – EXT11)

12. EXTERNAL INTERRUPTS

The external interrupt pins are edge triggered depending on the 'external interrupt registers'.

The edge detection of external interrupt has three transition activated mode: rising edge, falling edge, and both edge.

12.1 Registers

EINT0H - EXT 2~5 / R04~R07

R0 PORT EXTERNAL INTERRUPT ENABLE HIGH REGISTER

00CAH

A reset clears the EINT0H register to '00H', disables EXT5-EXT2 interrupt. You can use EINT0H register setting to select Disable interrupt or Enable interrupt (by falling, rising, or both falling and rising edge).

	7	6	5	4	3	2	1	0	
EINT0H	EXT	5IE	EXT	Г4ІЕ	EXT	ГЗІЕ	EXT	T2IE	Reset value: 00H
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

EXT5IE	R07/EXT5 External Interrupt Enable Bits	00: Disable Interrupt
EXT4IE	R06/EXT4 External Interrupt Enable Bits	01: Enable Interrupt by falling edge
EXT3IE	R05/EXT3 External Interrupt Enable Bits	10: Enable Interrupt by rising edge
EXT2IE	R04/EXT2 External Interrupt Enable Bits	11: Enable Interrupt by both falling and rising edge

EINT0L - EXT 10,11,0,1 / R00~R03

R0 PORT EXTERNAL INTERRUPT ENABLE LOW REGISTER

00CBH

A reset clears the EINTOL register to '00H', disables EXT1-EXT0, EXT11-EXT10 interrupt. You can use EINT0L register setting to select Disable interrupt or Enable interrupt (by falling, rising, or both falling and rising edge).

	7	6	5	4	3	2	1	0	
EINT0L	EXT	T1IE	EX	ГОІЕ	EXT	11IE	EXT	10IE	Reset value: 00H
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

EXT1IE	R03/EXT1 External Interrupt Enable Bits	00: Disable Interrupt
EXT0IE	R02/EXT0 External Interrupt Enable Bits	01: Enable Interrupt by falling edge
EXT11IE	R01/EXT11 External Interrupt Enable Bits	10: Enable Interrupt by rising edge
EXT10IE	R00/EXT10 External Interrupt Enable Bits	11: Enable Interrupt by both falling and rising edge

EINT1 - EXT 6~9 / R10~R13

R1 PORT EXTERNAL INTERRUPT ENABLE REGISTER

00D7H

A reset clears the EINT1 register to '00H', disables EXT9-EXT6 interrupt. You can use EINT1 register setting to select Disable interrupt or Enable interrupt (by falling, rising, or both falling and rising edge).

EXT9IE	R13/EXT9 External Interrupt Enable Bits	00: Disable Interrupt
EXT8IE	R12/EXT8 External Interrupt Enable Bits	01: Enable Interrupt by falling edge
EXT7IE	R11/EXT7 External Interrupt Enable Bits	10: Enable Interrupt by rising edge
EXT6IE	R10/EXT6 External Interrupt Enable Bits	11: Enable Interrupt by both falling and rising edge

ERQ0 - EXT 10,11,0~5 / R00~R07

RO PORT EXTERNAL INTERRUPT REQUEST REGISTER

00CCH

When an interrupt is generated, the bit of ERQ0 that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated.

EXT5IR	R07/EXT5 External Interrupt Request Flag					
EXT4IR	R06/EXT4 External Interrupt Request Flag					
EXT3IR	R05/EXT3 External Interrupt Request Flag	0: Interrupt request flag is not				
EXT2IR	R04/EXT2 External Interrupt Request Flag	pending, request flag bit clear				
EXT1IR	R03/EXT1 External Interrupt Request Flag					
EXT0IR	R02/EXT0 External Interrupt Request Flag	1: Interrupt request flag is pending				
EXT11IR	R01/EXT11 External Interrupt Request Flag					
EXT10IR	R00/EXT10 External Interrupt Request Flag					

ERQ1 - EXT 6~9 / R10~R13

R1 PORT EXTERNAL INTERRUPT REQUEST REGISTER

00D8H

When an interrupt is generated, the bit of ERQ1 that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated.

_	bit7 – bit4	Not used for MC81F4204		
EXT9IR	R03/EXT9 External Interrupt Request Flag	0: Interrupt request flag is not pending,		
EXT8IR	R02/EXT8 External Interrupt Request Flag	request flag bit clear		
EXT7IR	R01/EXT7 External Interrupt Request Flag			
EXT6IR	R00/EXT6 External Interrupt Request Flag	1: Interrupt request flag is pending		

EINTF

EXTERNAL INTERRUPT FLAG REGISTER

00CDH

	7	6	5	4	3	2	1	0	
EINTFH	EXT0IF	EXT2IF	EXT4IF	EXT7IF	EXT8IF	EXT9IF	EXT10IF	EXT11IF	Reset value: 00H
	R/W	R/W							

EXT0IF	EXT0 External Interrupt Flag				
EXT2IF	EXT2 External Interrupt Flag				
EXT4IF	EXT4 External Interrupt Flag				
EXT7IF	EXT7 External Interrupt Flag	0: Not generated			
EXT8IF	EXT8 External Interrupt Flag	1: Generated			
EXT9IF	EXT9 External Interrupt Flag	T. Contractor			
EXT10IF	EXT10 External Interrupt Flag				
EXT11IF	EXT11 External Interrupt Flag				

12.2 Procedure

To generate external interrupt, following steps are required,

- 1. Prepare external interrupt sub-routine.
- 2. Set external interrupt pins to read mode
- 3. Enable the external interrupt and select the edge mode.
- 4. Make sure global interrupt is enabled(use 'El' instruction).

After finish above steps, the external interrupt sub-routine is calling, when the edge is detected.

When the generated external interrupt is one of the external interrupt group, the EINTF register is used to recognize which external interrupt is generated.

13. OSCILLATION CIRCUITS

There are few example circuits for main oscillators.

Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

13.1 Main Oscillation Circuits

Figure 13-1 Crystal/Ceramic Oscillator

Figure 13-2 External Clock

Figure 13-3 External RC Oscillator

Figure 13-4 Internal RC Oscillator

13.2 PCB Layout

For reference, here is a example layout for oscillator circuit.

Figure 13-5 Layout of Oscillator PCB circuit

Note

Minimize the wiring length. Do not allow the wiring to intersect with other signal conductors. Do not allow the wiring to come near changing high current. Set the potential of the grounding position of the oscillator capacitor to that of Vss. Do not ground it to any ground pattern where high current is present. Do not fetch signals from the oscillator.

14. BASIC INTERVAL TIMER

The MC81F4204 has one 8-bit Basic Interval Timer that is free-run and can not be stopped except when peripheral clock is stopped.

The Basic Interval Timer generates the time base for watchdog timer counting. It also provides a Basic interval timer interrupt (BTIF).

The 8-bit Basic interval timer register (BTCR) is increased every internal count pulse which is divided by prescaler. Since prescaler has divided ratio by 8 to 1024, the count rate is 1/8 to 1/1024 of the oscillator frequency.

As the count overflow from FFH to 00H, this overflow causes the interrupt to be generated. The Basic Interval Timer is controlled by the clock control register (CKCTLR).

When write "1" to bit BTCL of CKCTLR, BTCR register is cleared to "0" and restart to count-up. The bit BTCL becomes "0" after one machine cycle by hardware.

The bit WDTON decides Watchdog Timer or the normal 7-bit timer.

Source clock can be selected by lower 3 bits of CKCTLR.

14.1 Registers

CKCTLR

CLOCK CONTROL REGISTER

00F2H

	7	6	5	4	3	2	1	0	
CKCTLR	_	-	-	WDTON	BTCL		BTS		Reset value: 17H
	_	_	_	R/W	R/W	R/W	R/W	R/W	

_	bit7 – bit5	Not used for MC81F4204
WDTON	Watahdag Timar Enabla Pit	0: Operate as 7-bit timer
WDTON	Watchdog Timer Enable Bit	1: Enable Watchdog timer
		0: Normal operation (free-run)
BTCL	Basic Timer Clear Bit	1: Clear 8-bit counter (BITR) to "0", This bit becomes 0 automatically after one machine cycle, and starts counting.
		000: fxin/8
		001: fxin/16
		010: fxin/32
BTS	Basic Interval Timer Source Clock	011: fxin/64
ыз	Selection Bits	100: fxin/128
		101: fxin/256
		110: fxin/512
		111: fxin/1024

CKCTLR[2:0]	Source clock	Interrupt(overflow) period (ms) @ fxin = 8MHz
000	fxin/8	0.256
001	fxin/16	0.512
010	fxin/32	1.024
011	fxin/64	2.048
100	fxin/128	4.096
101	fxin/256	8.192
110	fxin/512	16.384
111	fxin/1024	32.768

Figure 14-1 Basic Interval Timer Interrupt Period

BTCR

BASIC TIMER COUNTER REGISTER

00F1H

	/	6	5	4	3	2	1	0	<u>_</u>
BTCR	One byte register						Reset value: XXH		
	R	R	R	R	R	R	R	R	_

A 8 bit count register for the basic interval timer.

15. WATCH DOG TIMER

Figure 15-1 Block diagram of Basic Interval Timer/Watchdog Timer

The watchdog timer rapidly detects the CPU malfunction such as endless looping caused by noise or the like, and resumes the CPU to the normal state. The watchdog timer signal for detecting malfunction can be selected either a reset CPU or a interrupt request.

When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals.

The watchdog timer uses the Basic Interval Timer as a clock source.

The watchdog timer consists of 7-bit binary counter and the watchdog timer data register. When the value of 7-bit binary counter is equal to the lower 7 bits of WDTR, the interrupt request flag is generated. This can be used as Watchdog timer interrupt or reset the CPU in accordance with the bit WDTON.

Watchdog reset feature is disabled when the watchdog timer status register(WDTSR) value is '0A5h'. Note that, WDTSR's reset value is '00h'. And reset value of WDTON is '1'. So watchdog timer reset is enabled at reset time.

15.1 Registers

WDTR

WATCHDOG TIMER REGISTER

00F4H

	7	6	5	4	3	2	1	0	_
WDTR	WDTCL		WDTCMP						Reset value: 7FH
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

WDTCMP	Watchdog Timer Clear Bit	counter is cleared to "0". And the WDTCL becomes "0" automatically after one machine cycle. Counter count up again. 7-bit compare data
WDTCI	Matchdog Timor Cloor Dit	1: When the WDTCL is set to "1", binary
		0: Free-run count

WDTSR

WATCHDOG TIMER STATUS REGISTER

00F6H

Watchdog Timer Function Disable Code	10100101: Disable watchdog timer function
(for System Reset)	Others: Enable watchdog timer function

Figure 15-2 Watchdog Timer Timing

16. Timer 0/1

The 8-bit timer 0/1 are an 8-bit general-purpose timer. Timer 0/1 have three operating modes, you can select one of them using the appropriate T0SCR/T1SCR setting:

- Interval timer mode (Toggle output at T0O/T1O pin)
- Capture input mode with a rising or falling edge trigger at EXT1/EXT3 pin
- PWM mode (PWM0O/PWM1O)

16.1 Registers

T₀DR

TIMER 0 DATA REGISTER

00B1H

A 8-bit compare value register for the timer 0 match interrupt.

T₀CR

TIMER 0 COUNTER REGISTER

00B2H

A 8-bit count register for the timer 0

T0SCR

TIMER 0 STATUS AND CONROL REGISTER

00B0H

To enable the timer 0 match interrupt, you must set "1" to T0MIE(IENH.7).

When the timer 0 match interrupt sub-routine is serviced, the timer 0 match interrupt request flag bit, T0MIR(IRQH.7), is automatically cleared.

To enable the timer 0 overflow interrupt, you must set "1" to T0OVIE(IENH.6).

When the timer 0 overflow interrupt sub-routine is serviced, the timer 0 overflow interrupt request flag bit, T0OVIF(IRQH.6), is automatically cleared.

	7	6	5	4	3	2	1	0	
T0SCR	T0MOD	TOMS		T0CC	TOCS				Reset value: 00H
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

-	-	Not used for MC81F4204
TOMS	Timer 0 Mode Selection Bit	00: Interval mode (T0O) 01: PWM mode (OVF and match interrupt can occur)
TOCC	Timer 0 Counter Clear Bit	1X: Capture mode (OVF can occur) 0: No effect 1: Clear the Timer 0 counter (When write, automatically cleared "0" after being cleared counter)
TOCS	Timer 0 Clock Selection Bits	0000: Counter stop 0001: Not available 0010: Not available 0011: Not available 0100: Not available 0101: External clock (EC0) rising edge 0110: External clock (EC0) falling edge 0111: Not available 1000: fxx/2 1001: fxx/4 1010: fxx/8 1011: fxx/16 1100: fxx/32 1101: fxx/128 1111: fxx/2048

Note:

You must set the T0CC(T0SCR.4) bit after set T0DR register. The timer 0 counter value is compared with timer 0 buffer register instead of T0DR. And T0DR value is copied to timer 0 buffer register when 1)T0CC is set 2)T0OVIR is set 3) T0MIR is set.

T1DR

TIMER 1 DATA REGISTER

00B4H

A 8-bit compare value register for the timer 1 match interrupt.

T1CR

TIMER 0 COUNTER REGISTER

00B5H

A 8-bit count register for the timer 1

T1SCR

TIMER 1 STATUS AND CONTROL REGISTER

00B3H

To enable the timer 1 match interrupt, you must set "1" to T1MIE.

When the timer 1 match interrupt sub-routine is serviced, the timer 1 match interrupt request flag bit, T1MIR(IRQH.5), is automatically cleared..

To enable the timer 1 overflow interrupt, you must set "1" to T10VIE.

When the timer 1 overflow interrupt sub-routine is serviced, the timer 1 overflow interrupt request flag bit, T10VIR(IRQH.4), is automatically cleared.

	7	6	5	4	3	2	1	0	
T1SCR	_	T1MS		T1CC	T1CS				Reset value: 00H
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

_	bit7	Not used for MC81F4204
T1MS	Timer 1 Mode Selection Bit	00: Interval mode (T10) 01: PWM mode (OVF and match interrupt can occur) 1X: Capture mode (OVF can occur)
T1CC	Timer 1 Counter Clear Bit	No effect Clear the Timer 1 counter (When write, automatically cleared "0" after being cleared counter)
T1CS	Timer 1 Clock Selection Bits	0000: Counter stop 0001: Not available 0010: Not available 0011: Not available 0100: Not available 0101: External clock (EC1) rising edge 0110: External clock (EC1) falling edge 0111: Not available 1000: fxx/1 1001: fxx/2 1010: fxx/4 1011: fxx/8 1100: fxx/16 1101: fxx/64 1110: fxx/256 1111: fxx/1024

Note

You must set the T1CC(T1SCR.4) bit after set T1DR register. The timer 1 counter value is compared with timer 1 buffer register instead of T1DR. And T1DR value is copied to timer 1 buffer.

16.2 Timer 0 8-Bit Mode

Figure 16-1 8-bit Timer 0 Block Diagram

Timer 0 has the following functional components:

- Clock frequency divider (fxx divided by 2048, 512, 128, 32, 16, 8, 4, 2) with multiplexer
- External clock input pin, EC0 (R02)
- I/O pins for capture input, EXT1 (R03) or PWM or match output PWM0O/T0O (R03)
- 8-bit counter (TOCR), 8-bit comparator, and 8-bit reference data register (TODR)
- Timer 0 status and control register (T0SCR)
- Timer 0 overflow interrupt and match interrupt generation

Function Description

Interval Timer Mode

A match signal is generated and T0O pins are toggled when the T0CR register value equals the T0DR register value. The match signal generates a timer match interrupt and clears the T0CR register.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the PWM0O pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the T0DR register. In PWM mode, however, the match signal does not clear the counter. Instead, it runs continuously, overflowing at FFH, and then continues incrementing from 00H.

Although you can use the match signal to generate a timer 0 overflow interrupt, interrupts are not typically used in PWM-type applications. Instead, the pulse at the PWM0O pin is held to Low level as long as the reference data value is less than or equal to (\leq) the counter value and then the pulse is held to High level for as long as the data value is greater than (>) the counter value. One pulse width is equal to t_{CLK} * 256.

So, the period and duty times are,

Duty =
$$t_{CLK} * (T0DR + 1)$$

Period = $t_{CLK} * 256$

In order to generate the PWM0O signal, 3 steps are required,

Steps	Example C code
Make sure the PWM0O port is set by PWM output mode	T0CONM = 0x03;
Set the T0DR value properly	T0DR = 25;
Set the T0SCR register properly	T0SCR = 0x38;

Capture Mode

In capture mode, you have to set EXT1 interrupt. When the EXT1 interrupt is occurred, the T0CR register value is loaded into the T0DR register and the T0CR register is cleared.

And the timer 0 overflow interrupt is generated whenever the T0CR value is overflowed.

So, If you count how many overflow is occurred and read the T0DR value in EXT1 interrupt routine, it is possible to measure the time between two EXT1 interrupts. Or it is possible to measure the time from the T0 initial time to the EXT1 interrupt occurred time.

The time = (256 * tCLK) * overflow_count + (tCLK * T0DR)

Note

'tCLK' is the period time of the timer-counter's clock source

You must set the T0DR value before set the T0SCR register. Because T0DR value is fetched when the count is started(the T0CC bit is set) or match/overflow event is occurred.

16.3 Timer 1 8-Bit Mode

Figure 16-2 8-bit Timer 1 Block Diagram

Timer 1 has the following functional components:

- Clock frequency divider (fxx divided by 1024, 256, 64, 16, 8, 4, 2, 1) with multiplexer
- External clock input pin, EC1 (R04)
- I/O pins for capture input, EXT3 (R05) or PWM or match output PWM1O/T1O (R05)
- 8-bit counter (T1CR), 8-bit comparator, and 8-bit reference data register (T1DR)
- Timer 1 status and control register (T1SCR)
- Timer 1 overflow interrupt and match interrupt generation

Function Description

Interval Timer Mode

A match signal is generated and T1O pins are toggled when the T1CR register value equals the T1DR register value. The match signal generates a timer match interrupt and clears the T1CR register.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the PWM1O pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the T1DR register. In PWM mode, however, the match signal does not clear the counter. Instead, it runs continuously, overflowing at FFH, and then continues incrementing from 00H.

Although you can use the match signal to generate a timer 1 overflow interrupt, interrupts are not typically used in PWM-type applications. Instead, the pulse at the PWM1O pin is held to Low level as long as the reference data value is less than or equal to (\leq) the counter value and then the pulse is held to High level for as long as the data value is greater than (>) the counter value. One pulse width is equal to tCLK * 256.

So, the period and duty times are,

Duty =
$$t_{CLK} * (T1DR + 1)$$

Period = $t_{CLK} * 256$

In order to generate the PWM1O signal, 3 steps are required,

Steps	Example C code			
Make sure the PWM1O port is set by PWM output mode	T1CONM = 0xC0;			
Set the T1DR value properly	T1DR = 25;			
Set the T1SCR register properly	T1SCR = 0x38;			

Capture Mode

In capture mode, you have to set EXT3 interrupt. When the EXT3 interrupt is occurred, the T1CR register value is loaded into the T1DR register and the T1CR register is cleared.

And the timer 1 overflow interrupt is generated whenever the T1CR value is overflowed.

So, If you count how many overflow is occurred and read the T1DR value in EXT3 interrupt routine, it is possible to measure the time between two EXT3 interrupts. Or it is possible to measure the time from the T1 initial time to the EXT3 interrupt occurred time.

The time = (256 * tCLK) * overflow_count + (tCLK * T1DR)

Note

'tCLK' is the period time of the timer-counter's clock source

You must set the T1DR value before set the T1SCR register. Because T1DR value is fetched when the count is started(the T1CC bit is set) or match/overflow event is occurred.

17. Timer 2

The 8-bit timer 2 is an 8-bit general-purpose timer. Timer 2 have two operating modes, you can select one of them using the appropriate T2SCR setting:

- Interval timer mode (Toggle output at T2O pin)
- Capture input mode with a rising or falling edge trigger at EXT5 pin

17.1 Registers

T2DR

TIMER 2 DATA REGISTER

00B7H

A 8-bit compare value register for the timer 2 match interrupt.

T2CR

TIMER 2 COUNTER REGISTER

00B8H

A 8-bit count register for the timer 2

T2SCR

TIMER 2 STATUS AND CONTROL REGISTER (T2SCR)

00B6H

To enable the timer 2 match interrupt, you must set "1" to T2MIE.

When the timer 2 match interrupt sub-routine is serviced, the timer 1 match interrupt request flag bit, T2MIR(IRQH.3), is automatically cleared.

To enable the timer 2 overflow interrupt, you must set "1" to T2OVIE.

When the timer 2 overflow interrupt sub-routine is serviced, the timer 2 overflow interrupt request flag bit, T2OVIR(IRQH.2), is automatically cleared.

	7	6	5	4	3	2	1	0	_
T2SCR	-	-	T2MS	T2CC	T2CS				Reset value: 00H
	-	_	R/W	R/W	R/W	R/W	R/W	R/W	-

-	bit7 - bit6	Not used for MC81F4204
T2MS	Timer 2 Made Calaction Bit	0: Interval mode (T2O)
121013	Timer 2 Mode Selection Bit	1: Capture mode (OVF can occur)
		0: No effect
T2CC	Timer 2 Counter Clear Bit	1: Clear the Timer 2 counter (When write, automatically cleared "0" after being cleared counter)
		0000: Counter stop
		0001: Not available
		0010: Not available
		0011: Not available
		0100: Not available
		0101: External clock (EC2) rising edge
		0110: External clock (EC2) falling edge
T2CS	Timer 2 Clock Selection Bits	0111: Not available
1200	Timer 2 Glock Gelection Bits	1000: fxx/1
		1001: fxx/2
		1010: fxx/4
		1011: fxx/8
		1100: fxx/16
		1101: fxx/64
		1110: fxx/256
		1111: fxx/1024

Note:

You must set the T2CC(T2SCR.4) bit after set T2DR register. The timer 2 counter value is compared with timer 2 buffer register instead of T2DR. And T2DR value is copied to timer 2 buffer.

17.2 Timer 2 8-Bit Mode

Figure 17-1 8-bit Timer 2 Block Diagram

Timer 2 has the following functional components:

- Clock frequency divider (fxx divided by 1024, 256, 64, 16, 8, 4, 2, 1) with multiplexer
- External clock input pin, EC2 (R06)
- I/O pins for capture input, EXT5 (R07) or match output T2O (R07)
- 8-bit counter (T2CR), 8-bit comparator, and 8-bit reference data register (T2DR)
- Timer 2 status and control register (T2SCR)
- Timer 2 overflow interrupt and match interrupt generation

Function Description

Interval Timer Mode

A match signal is generated and T2O pins are toggled when the T2CR register value equals the T2DR register value. The match signal generates a timer match interrupt and clears the T2CR register.

Capture Mode

In capture mode, you have to set EXT5 interrupt. When the EXT5 interrupt is occurred, the T2CR register value is loaded into the T2DR register and the T2CR register is cleared.

And the timer 2 overflow interrupt is generated whenever the T2CR value is overflowed.

So, If you count how many overflow is occurred and read the T2DR value in EXT5 interrupt routine, it is possible to measure the time between two EXT5 interrupts. Or it is possible to measure the time from the T2 initial time to the EXT5 interrupt occurred time.

The time = (256 * tCLK) * overflow_count + (tCLK * T2DR)

Note

'tCLK' is the period time of the timer-counter's clock source

You must set the T2DR value before set the T2SCR register. Because T2DR value is fetched when the count is started(the T2CC bit is set) or match/overflow event is occurred.

18. High Speed PWM

Figure 18-1 High Speed PWM Block Diagram

The MC81F4204 has two high speed PWM (Pulse Width Modulation) function which shared with Timer2.

In PWM mode, the R11/PWM2O, R12/PWM3O, pins operate as a 10-bit resolution PWM output port. For this mode, the R11 of R1CONL and the R12 of R1CONM should be set to alternative function mode.

The period of the PWM output is determined by the T2DR (T2 data Register) and PWMPDR[1:0] (PWM Period Duty Register) and the duty of the PWM output is determined by the PWM2DR, PWM3DR, (PWM Data Register) and PWMPDR[5:2] (PWM Period Duty Register).

User can use PWM data by writing the lower 8-bit period value to the T2DR and the higher 2-bit period value to the PWMPDR[1:0]. And the duty value can be used with the PWM2DR, PWM3DR, and the PWMPDR[5:2] in the same way.

The bit POL2 and POL3 of PWMSCR decides the polarity of duty cycle. The duty value can be changed when the PWM outputs. However the changed duty value is output after the current period is over. And it can be maintained the duty value at present output when changed only period value shown as Example of PWM2. As it were, the absolute duty time is not changed in varying frequency.

Note:

When user need to change mode from the Timer2 mode to the PWM mode, the Timer2 should be stopped firstly, and then set period and duty register value. If user writes register values and changes mode to PWM mode while Timer2 is in operation, the PWM data would be different from expected data in the beginning.

PWM Period = [PWMPDR[1:0]T2DR+1] X Source Clock PWM2 Duty = [PWMPDR[3:2]PWM2DR+1] X Source Clock PWM3 Duty = [PWMPDR[5:4]PWM3DR+1] X Source Clock

If it needed more higher frequency of PWM, it should be reduced resolution.

Note:

If the duty value and the period value are same, the PWM output is determined by the bit POL (1: High, 0: Low). And if the duty value is set to "00H", the PWM output is determined by the bit POL(1: Low, 0: High). The period value must be same or more than the duty value, and 00H cannot be used as the period value.

Figure 18-2 Example of PWM2 at 8MHz

18.1 Registers

PWMSCR

PWM STATUS AND CONTROL REGISTER

00CEH

	7	6	5	4	3	2	1	0	
PWMSCR		POL3	POL2	PWMS	ı	ı	1	ı	Reset value: 0-H
	R/W	R/W	R/W	R/W	_	_	_	_	

-	bit 7	Not used for MC81F4204				
POL3	PWM 3 Polarity Selection Bit	0: PWM 3 duty active low				
	PWW 3 Polarity Selection Bit	1: PWM 3 duty active high				
POL2	DWM 2 Polority Solontion Bit	0: PWM 2 duty active low				
	PWM 2 Polarity Selection Bit	1: PWM 2 duty active high				
PWMS	PWM Selection Bit	0: Timer 2 mode (interval or capture)				
	PWW Selection Bit	1: PWM mode (PWM2O, PWM3O, PWM4O)				
_	Bit3 – bit0	Not used for MC81F4204				

PWMPDR

PWM PERIOD DUTY REGISTER

00CFH

	7	6	5	4	3	2	1	0	
PWMPDR	-	-	P3DH	P3DL	P2DH	P2DL	PPH	PPL	Reset value: FFH
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

-	bit 7 – bit 6	Not used for MC81F4204			
P3DH	PWM 3 Duty High Bit	PWM3 duty value (9,8th bits)			
P3DL	PWM 3 Duty Low Bit				
P2DH	PWM 2 Duty High Bit	PWM2 duty value (9,8th bits)			
P2DL	PWM 2 Duty Low Bit	FYVIVIZ duty value (9,0th bits)			
PPH	PWM Period High Bit	Period value (9/8th bits)			
PPL	PWM Period Low Bit	Period value (9/8th bits)			

PWM2DR

PWM 2 DATA REGISTER

00D0H

A 8-bit data register for lower bits of 10-bit PWM 2 duty value.

PWM3DR

PWM 3 DATA REGISTER

00D1H

A 8-bit data register for lower bits of 10-bit PWM 3 duty value.

19. BUZZER

Figure 19-1 Buzzer Driver Block Diagram

The buzzer driver consists of 8-bit binary counter, the buzzer period data register BUPDR, and the buzzer driver register BUZR, the clock selector. It generates square-wave which is very wide range frequency (244 Hz \sim 250 KHz at fxx = 8MHz) by user programmable counter.

Pin R12/BUZO is assigned for output port of Buzzer driver by setting the bits R12 of R1 Control Middle Register (R0CONM) to "101".

The 8-bit buzzer counter is cleared and start the counting by writing signal to the register BUZR. It is increased from 00H until it matches with BUPDR[7:0].

Also, it is cleared by counter overflow and count up to output the square wave pulse of duty 50%.

The bit 0 to 7 of BUPDR determines output frequency for buzzer driving. BUPDR is initialized to FFH after reset.

Frequency calculation is following as shown below.

BUZZER Output Freq. =
$$\frac{f_{BUZ}}{2 * (BUPDR + 1)}$$

19.1 Registers

BUZR

BUZZER DRIVER REGISTER

00E5H

	7	6	5	4	3	2	1	0	
BUZR	BU	CK	BUSS	BURL	_	_	_	_	Reset value: C-H
	R/W	R/W	R/W	R/W	_	_	_	_	

		00: Not available			
BUCK	Buzzer Clock Selection Bit	01: fxx/16			
ВОСК	Buzzer Clock Selection bit	10: fxx/32			
		11: fxx/64			
DUCC	Director Chart/Char Dit	0: Disable Buzzer			
BUSS	Buzzer Start/Stop Bit	1: Enable Buzzer			
BURL	Buzzer Dete Beleed Bit	0: No effect			
BURL	Buzzer Data Reload Bit	1: Reload buzzer data to buffer			
-	bit3 – bit1	Not used for MC81F4204			

BUPDR

BUZZER PERIOD DATA REGISTER

00E6H

A 8-bit data register for the buzzer period value.

19.2 Frequency table

System Clock = 4MHz BUCK :01 = div16 frequency unit = KHz

High	Low nibble of BUPDR									
nibble	0	1	2	3	4	5	6	7		
0	125.000	62.500	41.667	31.250	25.000	20.833	17.857	15.625		
1	7.353	6.944	6.579	6.250	5.952	5.682	5.435	5.208		
2	3.788	3.676	3.571	3.472	3.378	3.289	3.205	3.125		
3	2.551	2.500	2.451	2.404	2.358	2.315	2.273	2.232		
4	1.923	1.894	1.866	1.838	1.812	1.786	1.761	1.736		
5	1.543	1.524	1.506	1.488	1.471	1.453	1.437	1.420		
6	1.289	1.276	1.263	1.250	1.238	1.225	1.214	1.202		
7	1.106	1.096	1.087	1.078	1.068	1.059	1.050	1.042		
8	0.969	0.962	0.954	0.947	0.940	0.933	0.926	0.919		
9	0.862	0.856	0.850	0.845	0.839	0.833	0.828	0.822		
Α	0.776	0.772	0.767	0.762	0.758	0.753	0.749	0.744		
В	0.706	0.702	0.698	0.694	0.691	0.687	0.683	0.679		
С	0.648	0.644	0.641	0.638	0.635	0.631	0.628	0.625		
D	0.598	0.595	0.592	0.590	0.587	0.584	0.581	0.579		
Е	0.556	0.553	0.551	0.548	0.546	0.543	0.541	0.539		
F	0.519	0.517	0.514	0.512	0.510	0.508	0.506	0.504		

High	Low nibble of BUPDR									
nibble	8	9	Α	В	С	D	Е	F		
0	13.889	12.500	11.364	10.417	9.615	8.929	8.333	7.813		
1	5.000	4.808	4.630	4.464	4.310	4.167	4.032	3.906		
2	3.049	2.976	2.907	2.841	2.778	2.717	2.660	2.604		
3	2.193	2.155	2.119	2.083	2.049	2.016	1.984	1.953		
4	1.712	1.689	1.667	1.645	1.623	1.603	1.582	1.563		
5	1.404	1.389	1.374	1.359	1.344	1.330	1.316	1.302		
6	1.190	1.179	1.168	1.157	1.147	1.136	1.126	1.116		
7	1.033	1.025	1.016	1.008	1.000	0.992	0.984	0.977		
8	0.912	0.906	0.899	0.893	0.887	0.880	0.874	0.868		
9	0.817	0.812	0.806	0.801	0.796	0.791	0.786	0.781		
Α	0.740	0.735	0.731	0.727	0.723	0.718	0.714	0.710		
В	0.676	0.672	0.668	0.665	0.661	0.658	0.654	0.651		
С	0.622	0.619	0.616	0.613	0.610	0.607	0.604	0.601		
D	0.576	0.573	0.571	0.568	0.566	0.563	0.561	0.558		
Е	0.536	0.534	0.532	0.530	0.527	0.525	0.523	0.521		
F	0.502	0.500	0.498	0.496	0.494	0.492	0.490	0.488		

Ex) BUPDR = 0xFC -> Freq = 0.494KHz

20. 12-BIT ADC

Figure 20-1 A/D Converter Block Diagram

The 12-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the 1` input channels to equivalent 12-bit digital values. The analog input level must lie between the V_{REF} and V_{SS} values. The A/D converter has the analog comparator with successive approximation logic, D/A converter logic (resistor string type), A/D mode register (ADMR), 11 multiplexed analog data input pins (AD0-AD8,AD14,BGR), and 12-bit A/D conversion data output register (ADDRH/ADDRL).

20.1 Registers

ADMR

A/D MODE REGISTER 00BDH

	7	6	5	4	3	2	1	0	
ADMR	SSBIT	EOC	ADO	CLK		ADCH			Reset value: 00H
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	

After reset, the start/stop bit is turned off. You can select only one analog input channel at a time. Other analog input (AD0-AD8,AD14,BGR) can be selected dynamically by manipulating the ADCH. And the pins not used for analog input can be used for normal I/O function.

SSBIT	Start or Stop bit	0: Stop operation			
33611	Start of Stop bit	1: Start operation			
EOC	End of Conversion	0: Conversion not co	omplete		
200	End of Conversion	1: Conversion comp	lete		
ADCLK	A/D Clock Selection	00: fxx/1	10: fxx/4		
ADCLK	AVD Clock Selection	01: fxx/2	11: fxx/8		
		0000: AN0	1000: AN8		
		0001: AN1	1001: Not available		
		0010: AN2	1010: Not available		
ADCH	A/D Innut Din Coloction	0011: AN3	1011: Not available		
ADCH	A/D Input Pin Selection	0100: AN4	1100: Not available		
		0101: AN5	1101: Not available		
		0110: AN6	1110: AN14		
		0111: AN7	1111: BGR		

ADDRH

A/D CONVERTER DATA HIGH REGISTER

00BEH

ADDRH

	0	1	2	3	4	5	6	7
Reset value: XXH	.4	.5	.6	.7	.8	.9	.10	.11
	R	R	R	R	R	R	R	R

A 8-bit data register for higher 8-bits of the 12-bit ADC result.

ADDRL

A/D CONVERTER DATA LOW REGISTER

00BFH

ADDRL

7	6	5	4	3	2	1	0	
.3	.2	.1	.0	-	-	-	-	Reset value: X-H
R	R	R	R	R	R	R	R	_

A 8-bit data register for lower 4-bits of the 12-bit ADC result.

20.2 Procedure

To do the A/D converting, follow these basic steps:

- 1. Set the ADC pins as the alternative mode.
- 2. Set the ADMR register for
 - setting ADC channel
 - setting Clock
 - clearing the 'End of Conversion' bit
 - starting ADC
- 3. Wait until ADC is finished (check the 'End of Conversion' bit). When ADC is finished, EOC bit is set and SSBIT is cleared automatically.
- 4. Read the ADCRH and ADCRL register.

To initiate an analog-to-digital conversion procedure, at first you must set ADC pins to alternative function (ADC analog input) mode. And you write the channel selection data in the A/D mode register (ADMR) to select one of analog input channels and set the conversion start/stop bit, SSBIT. The pins not used for ADC can be used for normal I/O.

To start the A/D conversion, you should set the start/stop bit, SSBIT. When a conversion is completed, the end-of-conversion bit, EOC is automatically set to 1 and the result is dumped into the ADDRH/ADDRL register. Then the A/D converter enters an idle state. The EOC bit is cleared when SSBIT is set.

Note that, ADC interrupt is not provided.

Note

Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation of the analog level at the AD0–AD8,AD14 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to noise, will invalidate the result.

If the chip enters to STOP or IDLE mode in conversion process, there will be a leakage current path in A/D block. You must use STOP or IDLE mode after ADC operation is finished.

20.3 Conversion Timing

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D conversion. Therefore, total of 66 clocks are required to complete a 12-bit conversion: When fxx/8 is selected for conversion clock with a 12 MHz fxx clock frequency, one clock cycle is 0.66 μ s. Each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit \times 14 bits + set-up time = 66 clocks, 66 clock \times 0.66 μ s = 44.0 μ s at 1.5 MHz (12 MHz/8)

Note : The A/D converter needs at least 25 μs for conversion time. So you must set the conversion time slower than 25 μs .

20.4 Internal Reference Voltage Levels

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must be remained within the range V_{SS} to V_{REF} .

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first conversion bit is always $1/2 \, V_{RFF}$.

20.5 Recommended Circuit

Figure 20-2 Recommended A/D Converter Circuit

Note

1. Lay out the GND of V_{AIN} as close as possible to the power source.

21. SERIAL I/O INTERFACE

Figure 21-1 SIO Block Diagram

Serial I/O interface modules, SIO can interface with various types of external device that require serial data transfer. The components of SIO function block are:

- 8-bit control register (SIOCR)
- Clock selector logic
- 8-bit data register (SIODAT)
- 8-bit pre-scaler register (SIOPS)
- 3-bit clock counter
- Serial data I/O pins (SI, SO)
- Serial clock pin (SCK)

The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control register settings. To ensure flexible data transmission rates, you can select internal or external clock source.

21.1 Registers

SIOCR

SERIAL I/O INTERFACE CONTROL REGISTER

00E7H

A reset clears the SIOCR register value to "00H". Whit this value, internal clock source and receiveonly mode are selected and the 3-bit counter is cleared. The data shift operation is disabled. The selected data direction is MSB-first.

	7	6	5	4	3	2	1	0	
SIOCR	_	_	CSEL	DAT	SIOM	SIOP	CCLR	SEDGE	Reset value:
	_	_	R/W	R/W	R/W	R/W	R/W	R/W	00_000b

_	bit7 – bit6	Not used for MC81F4432				
CSEL	SIO Shift Clock Selection Bit	0: Internal clock (P.S clock)				
CSEL	SIO STIII CIOCK Selection Bit	1: External clock (SCK)				
DAT	Data Direction Control Bit	0: MSB-first mode				
DAI	Data Direction Control Bit	1: LSB-first mode				
SIOM	SIO Mode Selection Bit	0: Receive only mode				
SIOW	SIO Wode Selection Bit	1: Transmit/Receive mode				
SIOP	CIO Chift Operation Enable Dit	0: Disable shifter and clock counter				
SIOP	SIO Shift Operation Enable Bit	1: Enable shifter and clock counter				
CCLR	CIO Countar Class and Chiff Start Dit	0: No action				
COLK	SIO Counter Clear and Shift Start Bit	1: Clear 3-bit counter and start shifting				
SEDOE	Chiff Clask Edge Calastian Dit	0: Tx at falling edges, Rx at rising edges				
SEDGE	Shift Clock Edge Selection Bit	1: Tx at rising edges, Rx at falling edges				

SIODAT

SIO DATA REGISTER 00E8H

A 8-bit data register for SIO Rx/Tx data

SIOPS

SIO PRE-SCALER REGISTER

00E9H

Baud rate = (fxx/4) / (SIOPS+1)

21.2 Procedure

To program the SIO module, follow these basic steps:

- 1. Configure the I/O pins at port (SCK/SI/SO) by loading the appropriate value to the R0CONM, R0CONH register if necessary.
 - If one side uses a internal clock, the other side must use a external clock.
 - Note that, if the external clock is used, you must set the SCK port as an input mode.
- 2. Set SIOPS register with proper pre-scale value.
- 3. Load an 8-bit value to the SIOCR to properly configure the serial I/O module. In this operation, SIOP [SIOCR.2] bit must be set to "1" to enable the data shifter.
- 4. For interrupt generation, set the SIO interrupt enable bit, SIOIE to "1".
- 5. Data transmit and receiving are occurred at the same time. So before start the shift operation, you must set the SIODAT with what you want to transmit.
 - When SIOM [SIOCR.3] bit is 0, it does not transmit a data.
- 6. When set SIOCR.1 to 1, the shift operation starts.
 - With internal clock: shift operation is started right after SIOCR.1 is set.
 - With external clock: shift operation is started when the master starts the operation.
- 7. When the shift operation (transmit/receive) is completed, the SIO interrupt request flag bit, SIOIR is set to "1" and SIO interrupt request is generated.
 - Don't forget to set the SIOCR.1 bit by 1, to receive next SIO data if want.

When the SIO interrupt sub-routine is serviced, the SIO interrupt request flag bit, SIOIR, is cleared automatically.

22. RESET

22.1 Reset Process

Figure 22-1 Timing Diagram After Reset

When the reset event is occurred, there is a 'stabilization time' at the beginning. This time is counted from 00h to FFh by BIT. So it takes 1/(fxin/1024) * 256 second.

After that, the 'reset process step' is started. It takes 6 system clock time. At this time, following statuses are initialized.

On- chip Hardware	Initial Value				
Program Counter (PC)	high byte = a byte at FFFFh				
	low byte = a byte at FFFEh				
	FFFFh and FFFEh stores the reset vector.				
RAM Page Register (PRP)	0				
G-flag (G)	0				
Operation Mode	OSCS setting of Rom option				
Control registers	Initialized by reset values (See '9.6 Control Registers (SFR)' on page 50)				
Low Voltage Reset	LVREN setting of Rom option				

22-1 Initializing Status by Reset

After that, the main program execution is started from the reset vector address which is stored at FFFFh and FFFFeh.

22.2 Reset Sources

Figure 22-2 Reset Sources Diagram

There are four reset sources in MC81F4204. Those are external reset, watch dog timer reset, power on reset and low voltage reset.

22.3 External Reset

When the external reset is enabled and the input signal of RESET pin is going to low for a while and going to high, the external reset is occurred.(See '0

Serial I/O Characteristics' on page 28 for more timing information.) It is possible to use a external power on reset circuit like Figure 22-3.

Figure 22-3 External Power On Reset Example

22.4 Watch Dog Timer Reset

See '15. WATCH DOG TIMER' on page 90.

22.5 Power On Reset

There is a internal power on reset circuit internally. We simply call it POR. POR occurs the reset event when VDD is rising over the POR level.

Note that, POR can be enabled and disabled by the PORC register. And default setting is 'POR enable'. So at the first time power is supplied, POR is working always even external reset is enabled.

PORC

POWER ON RESET CONTROL REGISTER (00F3H) 7 6 5 4 3 2 1 0 PORC One byte register Reset value:00H POR Enable/Disable Others: POR disable Others: POR enable

Note:

It is recommended to disable the POR. When POR is enabled, current consumption is increased and, the LVR(Low Voltage Reset) is ignored even the LVR is enabled by the 'ROM OPTION'.

22.6 Low Voltage Reset

Figure 22-4 LVR Timing Diagram at 4MHz system clock

The low voltage reset occurs the reset event when current VDD is going down under the LVR level. It is configurable by the rom-option. (See '8. ROM OPTION' on page 40)

If you want to know more detail timing information, see '7.9 LVR (Low Voltage Reset) Electrical Characteristics' on page 31.

23. POWER DOWN OPERATION

In the power-down modes, power consumption is reduced considerably. For applications where power consumption is a critical factor, device provides two kinds of power saving functions, STOP mode and SLEEP mode. Table 23-1 on page 127 shows the status of each Power Saving Mode. SLEEP mode is entered by the SSCR register to "0Fh". and STOP mode is entered by STOP instruction after the SSCR register to "5Ah".

23.1 Sleep Mode

In this mode, the internal oscillation circuits remain active. Oscillation continues and peripherals are operated normally but CPU stops. Movement of all peripherals is shown in Table 23-1 on page 127. SLEEP mode is entered by setting the SSCR register to "0Fh". It is released by Reset or interrupt. To be released by interrupt, interrupt should be enabled before SLEEP mode.

SSCR

STOP AND SLEEP CONTROL REGISTER

00F5H

	7	6	5	4	3	2	1	0	_
SSCR				One byte	e registe	r			Reset value: 00H
	W	W	W	W	W	W	W	W	_

It is used to get the etem or clean made	5Ah : STOP
It is used to set the stop or sleep mode.	0Fh : SLEEP

Note:

To get into STOP mode, **SSCR must be set to 5AH** just before STOP instruction execution. At STOP mode, Stop & Sleep Control Register (SSCR) value is cleared automatically when released.

To get into SLEEP mode, SSCR must be set to 0FH.

Release the SLEEP mode

The exit from SLEEP mode is hardware reset or all interrupts. Reset re-defines all the Control registers but does not change the on-chip RAM (Be careful, If the code is compiled with RAM clear option, RAM is cleared after reset by ram clear routine. It is possible to disable the RAM clear option by option menu). Interrupts allow both on-chip RAM and Control registers to retain their values. If I-flag = 1, the normal interrupt response takes place. If I-flag = 0, the chip will resume execution starting with the instruction following the SLEEP instruction. It will not vector to interrupt service routine. (refer to Figure 23-3)

When exit from SLEEP mode by reset, enough oscillation stabilization time is required to normal operation. Figure 23-2 shows the timing diagram. When released from the SLEEP mode, the Basic interval timer is activated on wake-up. It is increased from 00H until FFH. The count overflow is set to start normal operation.

Note:

After SLEEP mode, at least one or more NOP instruction for data bus pre-charge time should be written.

LDM SSCR,#0FH

NOP ;for data bus pre-charge time NOP ;for data bus pre-charge time

Figure 23-1 SLEEP Mode Release Timing by External Interrupt

Figure 23-2 Timing of SLEEP Mode Release by Reset

23.2 Stop Mode

In the Stop mode, the main oscillator, system clock and peripheral clock is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Control registers are held. The port pins out the values held by their respective port data register, port direction registers. Oscillator stops and the systems internal operations are all held up.

The states of the RAM, registers, and latches valid immediately before the system is put in the STOP state are all held.

The program counter stop the address of the instruction to be executed after the instruction "STOP" which starts the STOP operating mode.

Note:

The Stop mode is activated by execution of STOP instruction after setting the SSCR to "5AH". (This register should be written by byte operation. If this register is set by bit manipulation instruction, for example "set1" or "clr1" instruction, it may be undesired operation)

In the Stop mode of operation, VDD can be reduced to minimize power consumption. Care must be taken, however, to ensure that VDD is not reduced before the Stop mode is invoked, and that VDD is restored to its normal operating level, before the Stop mode is terminated.

The reset should not be activated before VDD is restored to its normal operating level, and must be held active long enough to allow the oscillator to restart and stabilize.

Note:

After STOP instruction, at least two or more NOP instruction should be written.

Ex)

LDM CKCTLR,#0FH ;more than 20ms

LDM SSCR,#5AH

STOP

NOP ;for stabilization time NOP ;for stabilization time

In the STOP operation, the dissipation of the power associated with the oscillator and the internal hardware is lowered; however, the power dissipation associated with the pin interface (depending on the external circuitry and program) is not directly determined by the hardware operation of the STOP feature. This point should be little current flows when the input level is stable at the power voltage level (VDD/Vss); however, when the input level gets higher than the power voltage level (by approximately 0.3 to 0.5V), a current begins to flow. Therefore, if cutting off the output transistor at an I/O port puts the pin signal into the high-impedance state, a current flow across the ports input transistor, requiring to fix the level by pull-up or other means.

Release the STOP mode

The source for exit from STOP mode is hardware reset, external interrupt, Timer(EC0,1,2), SIO. Reset re-defines all the Control registers but does not change the on-chip RAM.

If I-flag = 1, the normal interrupt response takes place. If I-flag = 0, the chip will resume execution starting with the instruction following the STOP instruction. It will not vector to interrupt service routine.

(refer to Figure 23-3) When exit from Stop mode by external interrupt, enough oscillation stabilization time is required to normal operation. Figure 23-4 shows the timing diagram. When released from the Stop mode, the Basic interval timer is activated on wake-up. It is increased from 00H until FFH. The count overflow is set to start normal operation. Therefore, before STOP instruction, user must be set its relevant prescaler divide ratio to have long enough time (more than 20msec). This guarantees that oscillator has started and stabilized. By reset, exit from Stop mode is shown in Figure 23-5.

Figure 23-3 STOP Releasing Flow by Interrupts

Figure 23-4 STOP Mode Release Timing by External Interrupt

Figure 23-5 Timing of STOP Mode Release by Reset

23.3 Sleep vs Stop

Peripheral	STOP Mode	SLEEP Mode
CPU	Stop	Stop
RAM	Retain	Retain
Basic Interval Timer	Stop	Operates Continuously
Watchdog Timer	Stop	Operates Continuously
Timer/Counter	Stop (The event counter can operate normally)	Operates Continuously
Buzzer, ADC	Stop	Operates Continuously
SIO	Only operated with external clock	Operates Continuously
Main Oscillator	Stop	Oscillation
I/O Ports	Retain	Retain
Control Registers	Retain	Retain
Prescaler	Retain	Retain
Address Data Bus	Retain	Retain
Release Source	Reset, Timer(EC0/EC1/EC2) , SIO, External Interrupt	Reset, All Interrupts

Table 23-1 Peripheral Operation During Power Saving Mode

23.4 Changing the stabilizing time

After reset or wake up from the stop/sleep mode, there is a stabilizing time to make sure the system oscillation is stabilized. Actually the stabilizing time is the basic interval timer's one cycle time.

So it is adjustable by changing the basic interval timer's clock division. (See chapter '14.BASIC INTERVAL TIMER' at page 88 to know how to change the basic interval timer's clock division.)

It is useful to reduce the power consumption in battery operation with stop/sleep mode. In the battery operation, reducing normal operation time is the key-point to reducing the power consumption.

Note that, it is not possible after reset. Because after reset, the control registers are initialized.

23.5 Minimizing Current Consumption

The Stop mode is designed to reduce power consumption. To minimize current drawn during Stop mode, the user should turnoff output drivers that are sourcing or sinking current, if it is practical.

Figure 23-6 Application Example of Unused Input Port

Figure 23-7 Application Example of Unused Output Port

Note:

In the STOP operation, the power dissipation associated with the oscillator and the internal hardware is lowered; however, the power dissipation associated with the pin interface (depending on the external circuitry and program) is not directly determined by the hardware operation of the STOP feature. This point should be little current flows when the input level is stable at the power voltage level (VDD/Vss); however, when the input level becomes higher than the power voltage level (by approximately 0.3V), a current begins to flow. Therefore, if cutting off the output transistor at an I/O port puts the pin signal into the high impedance state, a current flow across the ports input transistor, requiring it to fix the level by pull-up or other means.

It should be set properly in order that current flow through port doesn't exist.

First consider the port setting to input mode. Be sure that there is circuit. In input mode, the pin impedance viewing from external MCU is very high that the current doesn't flow. But input voltage level should be Vss or VDD. Be careful that if unspecified voltage, i.e. if uncertain voltage level (not Vss or VDD) is applied to input pin, there can be little current (max. 1mA at around 2V) flow.

If it is not appropriate to set as an input mode, then set to output mode considering there is no current flow. The port setting to High or Low is decided by considering its relationship with external circuit. For example, if there is external pull-up resistor then it is set to output mode, i.e. to High, and if there is external pull-down register, it is set to low.

24. EMULATOR

Mark	Name	Description				
Mark ① ① ② ②	SW5.1 – SELL4416 SW5.2 – SELL4204	Those two switch are used to select the device mode SW5.1 :On & SW5.2:On : 4432 mode SW5.1 :Off & SW5.2:On : 4416 mode SW5.1 :On & SW5.2:Off : 4204 mode				
	SW5.3 - MODE	It is used for developing emulator. So, user must turn it off always.				
	SW5.4	Not Connected				
(0	SW4.1 – OSCS.0 SW4.2 – OSCS.1 SW4.3 – OSCS.2	Rom Option bit 0~2 : OSC Selection bits (On : 1, Off : 0) 000: External RC 001: Internal RC; 4MHz 010: Internal RC; 2MHz 011: Internal RC; 1MHz 100: Internal RC; 8MHz 101: Not available 111: Crystal/ceramic oscillator				
(2)	SW4.4	Not Connected				
	SW4.5	Not Connected				
	SW4.6 – LVRS.0 SW4.7 – LVRS.1	Rom Option bit 5~6 : Low Voltage Reset Level Selection bit (On: 1, Off : 0) 00: 2.4V 10: 3.0V 01: 2.7V 11: 4.0V				
	SW4.8 – LVREN	Rom Option bit 7 : Low Voltage Reset Enable bit On : (1) Disable (RESETB) Off : (0) Enable (R35)				
	SW3.1 – R34	On: Connect the XTAL to R34/XIN pin Off: Disconnect				
	SW3.2 – R33	On: Connect the XTAL to R33/XOUT pin Off: Disconnect				
	SW3.3 – R34	On: Connect the EXT.RC to R34/XIN pin Off: Disconnect				
3	SW3.4 – R35	On : Connect the Reset to R35/Reset pin Off : Disconnect				
	SW3.5 – R00	On : Connect the Sub-Clock to R00/SXIN pin Off : Disconnect				
	SW3.6 – R01	On : Connect the Sub-Clock to R01/SXOUT pin Off : Disconnect				

Mark	Name	Description					
4	X2	A Oscillator socket					
	X1	A Crystal/Resonator socket					
5	C11	A capacitor socket for crystal					
	C12	A capacitor socket for crystal					
	R8	Register socket for External RC Oscillator					
	SW2 – EVA PWR SEL	Eva.Board power source selection switch					
6		Use MDS Power Use MDS Power Use Vser's Power User's power source is supplied from the connector V_USER(⑦) which is described below.					
7	V_USER	A connector for power source which can be used for Eva.Board.					
8	J_USERA	A connecter for target system.					

Note -

Only GND is connected between Eva.Board and the target system. VDD is not connected. So, the target system is required it's own power source.

25. IN SYSTEM PROGRAMMING

25.1 Getting Started

The In-System Programming (ISP) is an ability to program the code into the MCU while it is installed in a complete system.

USB_SIO_ISP uses both USB to communicate with PC and SIO to communicate with MCU. That is why we call it as 'USB_SIO_ISP'. In fact there are another ISP types. So remember that all MC81F4xxx series use 'USB_SIO_ISP'.

Here is a procedure to use ISP.

1. Power off the target system.

If you use the RESET/Vpp pin as an output mode, power on timing is very important. So you must read 'Entering ISP mode at power on time' and strictly obey the procedure.

- 2. Install the USB_SIO_ISP software. (It is required at only first time)
 - 1) Download the ISP software from http://www.abov.co.kr
 - 2) Unzip the downloaded file and connect the USB_SIO_ISP board.
 - 3) Install the driver for USB_SIO_ISP. (There is a driver file in the zip file.)
- 3. Make sure the hardware condition is satisfied. And connect the ISP cable.

See '25.3 Hardware Conditions to Enter the ISP Mode' page 136,

4. Run the software and select a device.

All commands are enabled after select the device.

5. Power on the target system.

If you use the RESET/Vpp pin as an input mode, power on timing is not that important. But make sure the power is turned-on before execute the ISP commands.

6. Execute ISP commands as you want.

If you want to write a code into your MCU, it is recommendable to do following step. 'Load File' -> 'Auto'(while 'Auto Option Write' and 'Auto Show Option' options are enabled).

After finish an ISP command is executed, the MCU enters to normal operation mode automatically. So you can see the system is working right after the ISP command is finished. ('Auto' is assumed as one command')

In fact, it is possible to repeat the step-6 until the hardware condition is changed. But in case of RESET/Vpp pin is used as an output mode, do not repeat step-6. In that case, you must follow the procedure. See 'Entering ISP mode at power on time' for more information.

After you change the 'Rom Option', you must do power-off and power-on to reflect the changed 'Rom Option', even you can repeat the step-6 and see the changed code's operation without doing it. The MCU reads the 'Rom option' when only the 'power on reset time'.

25.2 Basic ISP S/W Information

Figure 25-1 ISP Software

The Figure 25-1 is the USB_SIO_ISP software based on MS-Windows. This software supports only SIO_ISP type devices.

Function	Description						
Load File	Load the data from the selected file storage into the memory buffer.						
Save File	Save the current data in your memory buffer to a disk storage by using the Intel Motorola HEX format.						
Blank Check	Verify whether or not a device is in an erased or un-programmed state. Program This button enables you to place new data from the memory buffer into the target device.						
Program	Write the current data into the MCU.						
Read	Read the data in the target MCU into the buffer for examination. The checksum will be displayed on the checksum box.						

Verify	Assures that data in the device matches data in the memory buffer. If your device is secured, a verification error is detected.
Erase	Erase the data in your target MCU before programming it.
Option Selection	Set the configuration data of target MCU. The security locking is set with this button.
Option Write	Progam the configuration data of target MCU. The security locking is performed with this button.
AUTO	Following sequence is performed; 1.Erase 2.Program 3.Verify 4.Option Write
Auto Option Write	Enable the option writing when the 'AUTO' sequence is executing.
Auto Show Option	Enable showing the option window when 'AUTO' button is pressed.
Ver. Info	It shows the version information.
Log	It shows/hides the log windows
Hex Edit	It shows/hides 'Hex editor'. In 'Hex editor' you can modify the currently loaded data.
Fill	Buffer Fill the selected area with a data.
Goto	Display the selected page.
Start	Starting address
End	End address
Checksum	Display the check sum(Hex decimal) after reading the target device.
Option	It shows currently selected option code in hexadecimal.
Device Select	It is used to select a target device.
Device	It shows currently selected device.

Note

MCU Configuration value is erased after erase operation. It must be configured to match with user target board. Otherwise, it is failed to enter ISP mode, or its operation is not desirable.

25.3 Hardware Conditions to Enter the ISP Mode

Anytime RESET/Vpp pin goes +9V, the MCU entering an ISP mode except RESET/Vpp pin is output mode(See note1).

Note:

1) Using RESET/Vpp pin as an output mode is not recommended even it is possible. Anytime RESET/Vpp pin goes +9v, the MCU entering an ISP mode except RESET/Vpp pin is output mode. If it is output mode, +9v signal is clashing with the output voltage.

Figure 25-2 Hardware Conditions to Enter the ISP Mode

So if RESET/Vpp pin is used as an output mode, do not try to execute any ISP commands when MCU is in normal operation mode. It is allowable when only power on time. See 'Entering ISP mode at power on time' for more information.

2) There is a $10 \mathrm{K}\Omega$ pull-down register at VPP pin in the ISP Board. That is why $75 \mathrm{K}\Omega$ register is suggested for R/C reset circuit. So those two register makes a voltage divider circuit when ISP board is connected. So the VPP level can't go down to low level status if the register of reset circuit value is too small. Otherwise, if the register value is too large the capacitor value also changed and the reset circuit's characteristics also changed.

25.4 Entering ISP mode at power on time

Basically anytime +9v signal is forced to RESET/Vpp pin, the MCU is entering into ISP mode. But it makes trouble when the RESET/Vpp pin is output mode. Because the +9v signal is clashing with the port's output voltage.

But it is possible to enter the ISP mode at the power on time even RESET/Vpp pin is used as an output mode. There is an oscillator stabilizing time when power is turn on. While in the time RESET/Vpp pin is in input mode even it is used as an output mode in operation time.

A proper procedure is required to make sure that ISP board catch the oscillator stabilizing time to enter the ISP mode. See following procedure.

- 1. Power off the target system.
- 2. Configure the target system as ISP mode.
- 3. Attach a ISP B/D into the target system.
- 4. Run the ISP S/W
- 5. Select the target device.
- 6. Power on the target system.
- 7. Execute ISP commands as you want.

Note:

Power on the target system after select the target device is essential. Because when target device is selected, ISP board is getting ready to catch the proper timing to rise the Vpp(+9v) signal.

25.5 USB-SIO-ISP Board

Figure 25-3 USB-SIO-ISP Board

26. INSTRUCTION SET

26.1 Terminology List

А	Accumulator
Х	X - register
Υ	Y - register
PSW	Program Status Word
#imm	8-bit Immediate data
dp	Direct Page Offset Address
!abs	Absolute Address
[]	Indirect expression
{}	Register Indirect expression
{}+	Register Indirect expression, after that, Register auto-increment
.bit	Bit Position
A.bit	Bit Position of Accumulator
dp.bit	Bit Position of Direct Page Memory
M.bit	Bit Position of Memory Data (000H~0FFFH)
rel	Relative Addressing Data
upage	U-page (0FF00H~0FFFFH) Offset Address
n	Table CALL Number (0~15)
+	Addition
х	Upper Nibble Expression in Opcode when it is even number (bit7~bit5, bit4=0)
	Bit Position
v	Upper Nibble Expression in Opcode when it is odd number (bit7~bit5, bit4=1)
У	
	→ Bit Position
-	Subtraction
×	Multiplication
/	Division
()	Contents Expression
^	AND
V	OR
⊕	Exclusive OR
~	NOT
←	Assignment / Transfer / Shift Left
\rightarrow	Shift Right
	1

\leftrightarrow	Exchange
=	Equal
≠	Not Equal

26.2 Instruction Map

fow	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111				
	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F				
HIGH																				
000		SET1	BBS	BBS	ADC	ADC	ADC	ADC	ASL	ASL	TCALL	SETA1	BIT	POP	PUSH	BRK				
	-	dp.bit	A.bit,rel	dp.bit,rel	#imm	dp	dp+X	!abs	Α	dp	0	.bit	dp	Α	Α	DKK				
001	OL DO	,,	,,	,,	SBC	SBC	SBC	SBC	ROL	ROL	TCALL	CLRA1	СОМ	POP	PUSH	BRA				
	CLRC	"	,,	"	#imm	dp	dp+X	!abs	Α	dp	2	.bit	dp	Х	Х	rel				
010	01.00	,,	,,	,,	CMP	CMP	CMP	CMP	LSR	LSR	TCALL	NOT1	TST	POP	PUSH	PCALL				
	CLRG	ILRG "	" "	"	#imm	dp	dp+X	!abs	Α	dp	4	M.bit	dp	Υ	Υ	Upage				
011	i	,,	"	,,	OR	OR	OR	OR	ROR	ROR	TCALL	OR1	CMPX	POP	PUSH	DET				
	DI "	"		"	#imm	dp	dp+X	!abs	Α	dp	6	OR1B	dp	PSW	PSW	RET				
100		.RV "	,,	,,	AND	AND	AND	AND	INC	INC	TCALL	AND1	CMPY	CBNE	T)/05	INC				
	CLRV		"	"	"	#imm	dp	dp+X	!abs	Α	dp	8	AND1B	dp	dp+X	TXSP	Х			
101		"		"				EOR	EOR	EOR	EOR	DEC	DEC	TCALL	EOR1	DBNE	XMA		DEC	
	SETC		"	"	"	"	"		"	#imm	dp	dp+X	!abs	Α	dp	10	EOR1B	dp	dp+X	TSPX
110					LDA	LDA	LDA	LDA		LDY	TCALL	LDC	LDX	LDX		DAS				
	SETG	"	"	"	#imm	dp	dp+X	!abs	TXA	dp	12	LDCB	dp	dp+Y	XCN	(N/A)				
111					LDM	STA	STA	STA		STY	TCALL	STC	STX	STX						
	EI	"	"	"	dp,#imm	dp	dp+X	!abs	TAX	dp	14	M.bit	dp	dp+Y	XAX	STOP				

row	10000 10	10001 11	10010 12	10011 13	10100 14	10101 15	10110 16	10111 17	11000 18	11001 19	11010 1A	11011 1B	11100 1C	11101 1D	11110 1E	11111 1F
HIGH																
000	BPL rel	CLR1 dp.bit	BBC A.bit,rel	BBC dp.bit,rel	ADC {X}	ADC !abs+Y	ADC [dp+X]	ADC [dp]+Y	ASL !abs	ASL dp+X	TCALL 1	JMP !abs	BIT !abs	ADDW dp	LDX #imm	JMP [!abs]
001	BVC rel	"	"	"	SBC {X}	SBC !abs+Y	SBC [dp+X]	SBC [dp]+Y	ROL !abs	ROL dp+X	TCALL 3	CALL !abs	TEST !abs	SUBW dp	LDY #imm	JMP [dp]
010	BCC rel	"	"	"	CMP {X}	CMP !abs+Y	CMP [dp+X]	CMP [dp]+Y	LSR !abs	LSR dp+X	TCALL 5	MUL	TCLR1	CMPW dp	CMPX #imm	CALL [dp]
011	BNE rel	"	"	"	OR {X}	OR !abs+Y	OR [dp+X]	OR [dp]+Y	ROR !abs	ROR dp+X	TCALL 7	DBNE Y	CMPX !abs	LDYA dp	CMPY #imm	RETI
100	BMI rel	"	"	"	AND {X}	AND !abs+Y	AND [dp+X]	AND [dp]+Y	INC !abs	INC dp+X	TCALL 9	DIV	CMPY !abs	INCW dp	INC Y	TAY
101	BVS rel	"	"	"	EOR {X}	EOR !abs+Y	EOR [dp+X]	EOR [dp]+Y	DEC !abs	DEC dp+X	TCALL 11	XMA {X}	XMA dp	DECW dp	DEC Y	TYA
110	BCS rel	"	"	"	LDA {X}	LDA !abs+Y	LDA [dp+X]	LDA [dp]+Y	LDY !abs	LDY dp+X	TCALL 13	LDA {X}+	LDX !abs	STYA dp	XAY	DAA (N/A)
111	BEQ rel	"	"	"	STA {X}	STA !abs+Y	STA [dp+X]	STA [dp]+Y	STY !abs	STY dp+X	TCALL 15	STA {X}+	STX !abs	CBNE dp	XYX	NOP

26.3 Instruction Set

Arithmetic / Logic

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
1	ADC #imm	04	2	2		
2	ADC dp	05	2	3		
3	ADC dp + X	06	2	4		
4	ADC !abs	07	3	4	Add with carry.	NN/ 11 70
5	ADC !abs + Y	15	3	5	A ← (A) + (M) + C	NVH-ZC
6	ADC [dp+X]	16	2	6		
7	ADC [dp]+Y	17	2	6		
8	ADC {X}	14	1	3		
9	AND #imm	84	2	2		
10	AND dp	85	2	3		NZ-
11	AND dp + X	86	2	4		
12	AND !abs	87	3	4	Logical AND	
13	AND !abs + Y	95	3	5	$A \leftarrow (A) \land (M)$	
14	AND [dp+X]	96	2	6		
15	AND [dp]+Y	97	2	6		
16	AND {X}	94	1	3		
17	ASL A	08	1	2	A risk-re-atic alsife lafe	
18	ASL dp	09	2	4	Arithmetic shift left	N 70
19	ASL dp + X	19	2	5	C 7 6 5 4 3 2 1 0 ←←←←←←←←←←←	NZC
20	ASL !abs	18	3	5		
21	CMP #imm	44	2	2		
22	CMP dp	45	2	3		
23	CMP dp + X	46	2	4	Compare accumulator contents with memory contents	==
24	CMP !abs	47	3	4	(A) - (M)	NZC
25	CMP !abs + Y	55	3	5		
26	CMP [dp+X]	56	2	6		

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
27	CMP [dp]+Y	57	2	6		
28	CMP {X}	54	1	3		
29	CMPX #imm	5E	2	2		
30	CMPX dp	6C	2	3	Compare X contents with memory contents (X) - (M)	NZC
31	CMPX !abs	7C	3	4		
32	CMPY #imm	7E	2	2		
33	CMPY dp	8C	2	3	Compare Y contents with memory contents (Y)-(M)	NZC
34	CMPY !abs	9C	3	4		
35	COM dp	2C	2	4	1's Complement : (dp) ← ~(dp)	NZ-
36	DAA	-	ı	-	Unsupported	-
37	DAS	-	-	-	Unsupported	-
38	DEC A	A8	1	2		
39	DEC dp	A9	2	4		
40	DEC dp + X	B9	2	5	Decrement	NZ-
41	DEC !abs	B8	3	5	M ← (M) - 1	N <u>Z</u> -
42	DEC X	AF	1	2		
43	DEC Y	BE	1	2		
44	DIV	9B	1	12	Divide: YA/X Q:A, R:Y	NVH-Z-
45	EOR #imm	A4	2	2		
46	EOR dp	A5	2	3		
47	EOR dp + X	A6	2	4		
48	EOR !abs	A7	3	4	Exclusive OR	NZ-
49	EOR !abs + Y	B5	3	5	A ← (A) ⊕ (M)	INZ-
50	EOR [dp+X]	В6	2	6		
51	EOR [dp]+Y	B7	2	6		
52	EOR {X}	B4	1	3		
53	INC A	88	1	2	Increment	N 7
54	INC dp	89	2	4	M ← (M) + 1	NZ-

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
55	INC dp + X	99	2	5		
56	INC !abs	98	3	5		
57	INC X	8F	1	2		
58	INC Y	9E	1	2		
59	LSR A	48	1	2		
60	LSR dp	49	2	4	- Arithmetic shift left	
61	LSR dp + X	59	2	5	7 6 5 4 3 2 1 0 C	NZC
62	LSR !abs	58	3	5		
63	MUL	5B	1	9	Multiply: $YA \leftarrow Y \times A$	NZ-
64	OR #imm	64	2	2		
65	OR dp	65	2	3		
66	OR dp + X	66	2	4		NZ-
67	OR !abs	67	3	4	Logical OR	
68	OR !abs + Y	75	3	5	$A \leftarrow (A) \lor (M)$	
69	OR [dp + X]	76	2	6		
70	OR [dp]+Y	77	2	6	•	
71	OR {X}	74	1	3	•	
72	ROL A	28	1	2	Potesta la fi di decessada a como	
73	ROL dp	29	2	4	Rotate left through carry C 7 6 5 4 3 2 1 0	NZC
74	ROL dp + X	39	2	5	<u></u> ←□← <u>ससससससस</u> ←←	N2C
75	ROL !abs	38	3	5		
76	ROR A	68	1	2	Rotate right through carry	
77	ROR dp	69	2	4	7 6 5 4 3 2 1 0 C	NZC
78	ROR dp + X	79	2	5	→→ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ΙνΔ-
79	ROR !abs	78	3	5		
80	SBC #imm	24	2	2		
81	SBC dp	25	2	3	Subtract with carry $A \leftarrow (A) - (M) - \sim (C)$	NVHZC
82	SBC dp + X	26	2	4		

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
83	SBC !abs	27	3	4		
84	SBC !abs + Y	35	3	5		
85	SBC [dp+X]	36	2	6		
86	SBC [dp]+Y	37	2	6		
87	SBC {X}	34	1	3		
88	TST dlp	4C	2	3	Test memory contents for negative or zero (dp) – 00H	NZ-
89	XCN	CE	1	5	Exchange nibbles within the accumulator A7~A4 ↔ A3~A0	NZ-

Register / Memory Operation

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
1	LDA #imm	C4	2	2		
2	LDA dp	C5	2	3		
3	LDA dp + X	C6	2	4		
4	LDA !abs	C7	3	4	Load accumulator $A \leftarrow (\ M\)$	NZ-
5	LDA !abs + Y	D5	3	5		
6	LDA [dp+X]	D6	2	6		
7	LDA [dp]+Y	D7	2	6		
8	LDA {X}	D4	1	3		
9	LDA {X}+	DB	1	4	X-register auto-increment : $A \leftarrow (M), X \leftarrow X + 1$	
10	LDM dp, #imm	E4	3	5	Load memory with immediate data : (M) ← imm	
11	LDX #imm	1E	2	2		NZ-
12	LDX dp	СС	2	3	Load X-register	
13	LDX dp + Y	CD	2	4	X ← (M)	
14	LDX !abs	DC	3	4		
15	LDY #imm	3E	2	2		
16	LDY dp	C9	2	3	Load Y-register	NZ-
17	LDY dp + Y	D9	2	4	Y ← (M)	NZ-
18	LDY !abs	D8	3	4		
19	STA dp	E5	2	4		
20	STA dp + X	E6	2	5		
21	STA !abs	E7	3	5		
22	STA !abs + Y	F5	3	6	Store accumulator contents in memory (M) ← A	
23	STA [dp+X]	F6	2	7		
24	STA [dp]+Y	F7	2	7		
25	STA {X}	F4	1	4		
26	STA {X}+	FB	1	4	X-register auto-increment : (M) ← A, X ← X + 1	

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
27	STX dp	EC	2	4	Store X-register contents in memory (M) \leftarrow X	
28	STX dp + Y	ED	2	5		
29	STX !abs	FC	3	5		
30	STY dp	E9	2	4		
31	STY dp + X	F9	2	5	Store Y-register contents in memory (M) ← Y	
32	STY !abs	F8	3	5		
33	TAX	E8	1	2	Transfer accumulator contents to X-register : $X \leftarrow A$	NZ-
34	TAY	9F	1	2	Transfer accumulator contents to Y-register : $Y \leftarrow A$	NZ-
35	TSPX	AE	1	2	Transfer stack-pointer contents to X-register : $X \leftarrow sp$	NZ-
36	TXA	C8	1	2	Transfer X-register contents to accumulator : $A \leftarrow X$	NZ-
37	TXSP	8E	1	2	Transfer X-register contents to stack-pointer : $sp \leftarrow X$	NZ-
38	TYA	BF	1	2	Transfer Y-register contents to accumulator : $A \leftarrow Y$	NZ-
39	XAX	EE	1	4	Exchange X-register contents with accumulator : $X \leftrightarrow A$	
40	XAY	DE	1	4	Exchange Y-register contents with accumulator : $Y \leftrightarrow A$	
41	XMA dp	вс	2	5		
42	XMA dp + X	AD	2	6	Exchange memory contents with accumulator : (M) \leftrightarrow A	NZ-
43	XMA {X}	ВВ	1	5		
44	XYX	FE	1	4	Exchange X-register contents with Y-register : $X \leftrightarrow Y$	

16 BIT manipulation

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
1	ADDW dp	1D	2	5	16-bits add without carry YA ← (YA) + (dp + 1) (dp)	NVH-ZC
2	CMPW dp	5D	2	4	Compare YA contents with memory pair contents : (YA) - (dp + 1) (dp)	NZC
3	DECW dp	BD	2	6	Decrement memory pair (dp + 1) (dp) ← (dp + 1) (dp) − 1	NZ-
4	INCW dp	9D	2	6	Increment memory pair (dp + 1) (dp) ← (dp + 1) (dp) + 1	NZ-
5	LDYA dp	7D	2	5	Load YA YA ← (dp + 1) (dp)	NZ-
6	STYA dp	DD	2	5	Store YA (dp + 1) (dp) ← YA	
7	SUBW dp	3D	2	5	16-bits subtract without carry YA ← (YA) - (dp + 1) (dp)	NVH-ZC

BIT manipulation

	•					
NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
1	AND1 M.bit	8B	3	4	Bit AND C-flag : C \leftarrow (C) \wedge (M.bit)	C
2	AND1B M.bit	8B	3	4	Bit AND C-flag and NOT : $C \leftarrow (C) \land \sim (M.bit)$	C
3	BIT dp	0C	2	4	Bit test A with memory :	MM 7
4	BIT !abs	1C	3	5	$Z \leftarrow (A) \land (M), N \leftarrow (M7), V \leftarrow (M6)$	MMZ-
5	CLR1 dp.bit	y1	2	4	Clear bit : (M.bit) ← "0"	
6	CLRA1 A.bit	2B	2	2	Clear A bit : (A.bit) ← "0"	
7	CLRC	20	1	2	Clear C-flag : C ← "0"	0
8	CLRG	40	1	2	Clear G-flag : G ← "0"	0
9	CLRV	80	1	2	Clear V-flag : V ← "0"	-00
10	EOR1 M.bit	AB	3	5	Bit exclusive-OR C-flag : $C \leftarrow (C) \oplus (M.bit)$	C
11	EOR1B M.bit	АВ	3	5	Bit exclusive-OR C-flag and NOT : $C \leftarrow (C) \oplus \sim (M.bit)$	C
12	LDC M.bit	СВ	3	4	Load C-flag : C ← (M.bit)	C
13	LDCB M.bit	СВ	3	4	Load C-flag with NOT : C \leftarrow ~(M.bit)	C
14	NOT1 M.bit	4B	3	5	Bit complement : (M.bit) ← ~(M.bit)	
15	OR1 M.bit	6B	3	5	Bit OR C-flag : $C \leftarrow C \lor (M.bit)$	C
16	OR1B M.bit	6B	3	5	Bit OR C-flag and NOT : C \leftarrow C \vee ~ (M.bit)	C
17	SET1 dp.bit	x1	2	4	Set bit : (M.bit) ← "1"	
18	SETA1 A.bit	0B	2	2	Set A bit : (A.bit) ← "1"	
19	SETC	A0	1	2	Set C-flag : C ← "1"	1
20	SETG	C0	1	2	Set G-flag : G ← "1"	1
21	STC M.bit	EB	3	6	Store C-flag : (M.bit) ← C	
22	TCLR1 !abs	5C	3	6	Test and clear bits with A : $A - (M), (M) \leftarrow (M) \land \sim (A)$	NZ-
23	TSET1 !abs	3C	3	6	Test and set bits with A : $A - (M), (M) \leftarrow (M) \lor (A)$	NZ-
	l	!	I	I	i .	_1

Branch / Jump

Branch / Gump								
NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC		
1	BBC A.bit, rel	y2	2	4/6	Branch if bit clear :			
2	BBC dp.bit, rel	уЗ	3	5/7	If (bit) = 0, then $pc \leftarrow$ (pc) + rel			
3	BBS A.bit, rel	x2	2	4/6	Branch if bit set :			
4	BBS dp.bit, rel	х3	3	5/7	If (bit) = 1, then pc ← (pc) + rel			
5	BCC rel	50	2	2/4	Branch if carry bit clear : If (C) = 0, then $pc \leftarrow (pc) + rel$			
6	BCS rel	D0	2	2/4	Branch if carry bit set : If $(C) = 1$, then $pc \leftarrow (pc) + rel$			
7	BEQ rel	F0	2	2/4	Branch if equal : If $(Z) = 1$, then $pc \leftarrow (pc) + rel$			
8	BMI rel	90	2	2/4	Branch if minus : If $(N) = 1$, then $pc \leftarrow (pc) + rel$			
9	BNE rel	70	2	2/4	Branch if not equal : If $(Z) = 0$, then $pc \leftarrow (pc) + rel$			
10	BPL rel	10	2	2/4	Branch if plus : If $(N) = 0$, then $pc \leftarrow (pc) + rel$			
11	BRA rel	2F	2	4	Branch always : pc ← (pc) + rel			
12	BVC rel	30	2	2/4	Branch if overflow bit clear : If $(V) = 0$, then $pc \leftarrow (pc) + rel$			
13	BVS rel	В0	2	2/4	Branch if overflow bit set : If $(V) = 1$, then $pc \leftarrow (pc) + rel$			
14	CALL !abs	3B	3	8	Subroutine call M(sp) ← (pcH), sp ← sp − 1,			
15	CALL [dp]	5F	2	8	$M(sp) \leftarrow (pcL), sp \leftarrow sp - 1,$ If !abs, pc \lefta abs; if [dp], pcL \lefta (dp), pcH \lefta (dp + 1)			
16	CBNE dp, rel	FD	3	5/7	Compare and branch if not equal :			
17	CBNE dp+X, rel	8D	3	6/8	if (A) ≠ (M), then pc ← (pc) + rel			
18	DBNE dp, rel	AC	3	5/7	Decrement and branch if not equal :			
19	DBNE Y, rel	7B	2	4/6	if (M) ≠ 0, then pc ← (pc) + rel			
20	JMP !abs	1B	3	3				
21	JMP [!abs]	1F	3	5	Unconditional jump : pc ← jump address			
22	JMP [dp]	3F	2	4				
23	PCALL upage	4F	2	6	U-page call M(sp) ← (pcH), sp ← sp − 1,			

NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
					$M(sp) \leftarrow (pcL), sp \leftarrow sp - 1,$ $pcL \leftarrow (upage), pcH \leftarrow "0FFH"$	
24	TCALL n	nA	1	8	Table call $M(sp) \leftarrow (pcH), sp \leftarrow sp - 1,$ $M(sp) \leftarrow (pcL), sp \leftarrow sp - 1,$ $pcL \leftarrow (Table vector L), pcH \leftarrow (Table vector H)$	

Control Operation / Etc

			1		T	
NO.	MNEMONIC	OP CODE	BYTE NO	CYCLE NO	OPERATION	FLAG NVGBHIZC
1	BRK	0F	1	8	Software interrupt : B \leftarrow "1", M(sp) \leftarrow (pcH), sp \leftarrow sp - 1, M(sp) \leftarrow (pcL), sp \leftarrow sp - 1, M(sp) \leftarrow (PSW), sp \leftarrow sp - 1, pcL \leftarrow (0FFDEH), pcH \leftarrow (0FFDFH)	1-0
2	DI	60	1	3	Disable interrupt : I ← "0"	0
3	EI	E0	1	3	Enable interrupt : I ← "1"	1
4	NOP	FF	1	2	No operation	
5	POP A	0D	1	4		
6	POP X	2D	1	4	$ sp \leftarrow sp + 1, A \leftarrow M(sp) sp \leftarrow sp + 1, X \leftarrow M(sp) $	
7	POP Y	4D	1	4		
8	POP PSW	6D	1	4		restored
9	PUSH A	0E	1	4		
10	PUSH X	2E	1	4	$ M(sp) \leftarrow A, sp \leftarrow sp - 1 M(sp) \leftarrow X, sp \leftarrow sp - 1 $	
11	PUSH Y	4E	1	4	$ M(sp) \leftarrow Y, sp \leftarrow sp - 1 M(sp) \leftarrow PSW, sp \leftarrow sp - 1 $	
12	PUSH PSW	6E	1	4		
13	RET	6F	1	5	Return from subroutine $sp \leftarrow sp + 1$, $pcL \leftarrow M(sp)$, $sp \leftarrow sp + 1$, $pcH \leftarrow M(sp)$	
14	RETI	7F	1	6	Return from interrupt $sp \leftarrow sp + 1, PSW \leftarrow M(sp), \\ sp \leftarrow sp + 1, pcL \leftarrow M(sp), \\ sp \leftarrow sp + 1, pcH \leftarrow M(sp)$	restored
15	STOP	EF	1	3	Stop mode (halt CPU, stop oscillator)	