# **Building your Deep Neural Network: Step by Step**

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

- In this notebook, you will implement all the functions required to build a deep neural network.
- In the next assignment, you will use these functions to build a deep neural network for image classification.

### After this assignment you will be able to:

- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- Implement an easy-to-use neural network class

#### **Notation**:

- Superscript [l][l] denotes a quantity associated with the  $l^{th}$   $l^{th}$  layer.
  - Example:  $a^{[L]}a^{[L]}$  is the  $L^{th}L^{th}$  layer activation.  $W^{[L]}W^{[L]}$  and  $b^{[L]}b^{[L]}$  are the  $L^{th}L^{th}$  layer parameters.
- Superscript (i)(i) denotes a quantity associated with the  $i^{th}i^{th}$  example.
  - Example:  $x^{(i)}x^{(i)}$  is the  $i^{th}i^{th}$  training example.
- Lowerscript ii denotes the  $i^{th}i^{th}$  entry of a vector.
  - Example:  $a_i^{[l]} a_i^{[l]}$  denotes the  $i^{th} i^{th}$  entry of the  $l^{th} l^{th}$  layer's activations).

Let's get started!

## 1 - Packages

Let's first import all the packages that you will need during this assignment.

- numpy (www.numpy.org) is the main package for scientific computing with Python.
- matplotlib (http://matplotlib.org) is a library to plot graphs in Python.
- dnn\_utils provides some necessary functions for this notebook.
- testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed.

```
In [1]:
```

```
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v4 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

np.random.seed(1)
```

## 2 - Outline of the Assignment

To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

- Initialize the parameters for a two-layer network and for an LL-layer neural network.
- Implement the forward propagation module (shown in purple in the figure below).
  - Complete the LINEAR part of a layer's forward propagation step (resulting in  $Z^{[l]}Z^{[l]}$ ).
  - We give you the ACTIVATION function (relu/sigmoid).
  - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
  - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer LL). This gives you a new L\_model\_forward function.
- Compute the loss.
- Implement the backward propagation module (denoted in red in the figure below).
  - Complete the LINEAR part of a layer's backward propagation step.
  - We give you the gradient of the ACTIVATE function (relu\_backward/sigmoid\_backward)
  - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
  - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L model backward function
- Finally update the parameters.



Figure 1

**Note** that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

### 3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to LL layers.

### 3.1 - 2-layer Neural Network

**Exercise**: Create and initialize the parameters of the 2-layer neural network.

#### Instructions:

- The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use random initialization for the weight matrices. Use np.random.randn(shape)\*0.01 with the correct shape.
- Use zero initialization for the biases. Use np.zeros(shape).

```
In [2]:
# GRADED FUNCTION: initialize parameters
def initialize parameters(n_x, n_h, n_y):
    Argument:
    n_x -- size of the input layer
    n h -- size of the hidden layer
    n y -- size of the output layer
    Returns:
    parameters -- python dictionary containing your parameters:
                     W1 -- weight matrix of shape (n h, n x)
                     b1 -- bias vector of shape (n h, 1)
                     W2 -- weight matrix of shape (n y, n h)
                    b2 -- bias vector of shape (n y, 1)
    11 11 11
    np.random.seed(1)
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n h, n x)*0.01;
    b1 = np.zeros([n h,1])
    W2 = np.random.randn(n y, n h)*0.01;
    b2 = np.zeros([n_y,1])
    ### END CODE HERE ###
    assert(W1.shape == (n h, n x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n y, 1))
    parameters = {"W1": W1,
                   "b1": b1,
                   "W2": W2,
                   "b2": b2}
    return parameters
In [3]:
parameters = initialize parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01624345 - 0.00611756 - 0.00528172]
 [-0.01072969 \quad 0.00865408 \quad -0.02301539]]
b1 = [[0.]]
 [ 0.]]
W2 = [[ 0.01744812 - 0.00761207]]
b2 = [[0.]]
```

## **Expected output:**

| W1 | [[ 0.01624345 -0.00611756 -0.00528172]<br>[-0.01072969 0.00865408 -0.02301539]] |
|----|---------------------------------------------------------------------------------|
| b1 | [[ 0.] [ 0.]]                                                                   |
| W2 | [[ 0.01744812 -0.00761207]]                                                     |
| b2 | [[ 0.]]                                                                         |

### 3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize\_parameters\_deep, you should make sure that your dimensions match between each layer. Recall that  $n^{[l]}n^{[l]}$  is the number of units in layer ll. Thus for example if the size of our input XX is (12288, 209)(12288, 209) (with m = 209m = 209 examples) then:

|            | Shape of W                                           | Shape of b                     | Activation                                                                       | Shape of Activation                                     |
|------------|------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|
| Layer 1    | $(n^{[1]}, 12288)$<br>$(n^{[1]}, 12288)$             | $(n^{[1]}, 1)(n^{[1]}, 1)$     | $Z^{[1]} = W^{[1]}X + b^{[1]}$<br>$Z^{[1]} = W^{[1]}X + b^{[1]}$                 | $(n^{[1]}, 209)(n^{[1]}, 209)$                          |
| Layer 2    | $(n^{[2]}, n^{[1]})(n^{[2]}, n^{[1]})$               | $(n^{[2]}, 1)(n^{[2]}, 1)$     | $Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$<br>$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$     | $(n^{[2]}, 209)(n^{[2]}, 209)$                          |
| <b>:</b> : | <b>:</b> :                                           | <b>:</b> :                     | ::                                                                               | ::                                                      |
| Layer L-1  | $(n^{[L-1]}, n^{[L-2]})$<br>$(n^{[L-1]}, n^{[L-2]})$ | $(n^{[L-1]}, 1)(n^{[L-1]}, 1)$ | $Z^{[L-1]} = W^{[L-1]}A^{[L-2]}$<br>$Z^{[L-1]} = W^{[L-1]}A^{[L-2]}$             | $+b^{[L-1]}(n^{[L-1]}, 209) +b^{[L-1]}(n^{[L-1]}, 209)$ |
| Layer L    | $(n^{[L]}, n^{[L-1]}) \ (n^{[L]}, n^{[L-1]})$        | $(n^{[L]}, 1)(n^{[L]}, 1)$     | $Z^{[L]} = W^{[L]}A^{[L-1]} + b^{[L]}$<br>$Z^{[L]} = W^{[L]}A^{[L-1]} + b^{[L]}$ | $L_L^{[L]}(n^{[L]}, 209)(n^{[L]}, 209)$                 |

Remember that when we compute WX + bWX + b in python, it carries out broadcasting. For example, if:

$$W = \begin{bmatrix} j & k & l \\ m & n & o \\ p & q & r \end{bmatrix} \quad X = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad b = \begin{bmatrix} s \\ t \\ u \end{bmatrix}$$
 (2)

$$W = \begin{bmatrix} j & k & l \\ m & n & o \\ p & q & r \end{bmatrix} \quad X = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad b = \begin{bmatrix} s \\ t \\ u \end{bmatrix}$$

Then WX + bWX + b will be:

$$WX + b = \begin{bmatrix} (ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li) + s \\ (ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t \\ (pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri) + u \end{bmatrix}$$
(3)

$$WX + b = \begin{bmatrix} (ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li) + s \\ (ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t \\ (pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri) + u \end{bmatrix}$$

**Exercise**: Implement initialization for an L-layer Neural Network.

#### Instructions:

- The model's structure is [LINEAR -> RELU]  $\times \times (L-1)$  -> LINEAR -> SIGMOID. I.e., it has L-1L-1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
- Use random initialization for the weight matrices. Use np.random.randn(shape) \* 0.01.
- Use zeros initialization for the biases. Use np. zeros (shape).
- We will store  $n^{[l]}n^{[l]}$ , the number of units in different layers, in a variable layer\_dims. For example, the layer\_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
- Here is the implementation for L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

```
if L == 1:
    parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_
dims[0]) * 0.01
    parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
```

### In [4]:

```
# GRADED FUNCTION: initialize parameters deep
def initialize_parameters_deep(layer_dims):
    Arguments:
    layer dims -- python array (list) containing the dimensions of each layer in
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "
                    Wl -- weight matrix of shape (layer dims[1], layer dims[1-1])
                    bl -- bias vector of shape (layer dims[1], 1)
    11 11 11
    np.random.seed(3)
    parameters = {}
    L = len(layer dims)
                                   # number of layers in the network
    for l in range(1, L):
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters['W' + str(l)] = np.random.randn(layer dims[l], layer dims[l-1])
        parameters['b' + str(l)] = np.zeros([layer dims[l],1])
        ### END CODE HERE ###
        assert(parameters['W' + str(l)].shape == (layer dims[l], layer dims[l-1])
        assert(parameters['b' + str(l)].shape == (layer dims[l], 1))
    return parameters
```

```
In [5]:

parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01788628   0.0043651   0.00096497  -0.01863493  -0.00277388]
[-0.00354759  -0.00082741  -0.00627001  -0.00043818  -0.00477218]
[-0.01313865   0.00884622   0.00881318   0.01709573   0.00050034]
[-0.00404677  -0.0054536   -0.01546477   0.00982367  -0.01101068]]
b1 = [[ 0.]
```

#### **Expected output:**

[[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 W1 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] b1 [[ 0.] [ 0.] [ 0.] [ 0.]] [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 **W2** 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]] **b2** [[ 0.] [ 0.] [ 0.]]

## 4 - Forward propagation module

### 4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

- LINEAR
- LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
- [LINEAR -> RELU] × × (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$
(4)

where  $A^{[0]} = XA^{[0]} = X$ .

**Exercise**: Build the linear part of forward propagation.

**Reminder**: The mathematical representation of this unit is  $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$ . You may also find np.dot() useful. If your dimensions don't match, printing W.shape may help.

```
In [6]:
```

```
# GRADED FUNCTION: linear forward
def linear forward(A, W, b):
    Implement the linear part of a layer's forward propagation.
   Arguments:
   A -- activations from previous layer (or input data): (size of previous layer
   W -- weights matrix: numpy array of shape (size of current layer, size of pre
    b -- bias vector, numpy array of shape (size of the current layer, 1)
   Returns:
    Z -- the input of the activation function, also called pre-activation paramet
    cache -- a python dictionary containing "A", "W" and "b"; stored for computi
    ### START CODE HERE ### (≈ 1 line of code)
    Z = np.dot(W,A) + b
    ### END CODE HERE ###
    assert(Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)
    return Z, cache
```

```
In [7]:
A, W, b = linear_forward_test_case()
Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))
```

```
Expected output:
```

### 4.2 - Linear-Activation Forward

Z = [[ 3.26295337 -1.23429987]]

In this notebook, you will use two activation functions:

• **Sigmoid**:  $\sigma(Z) = \sigma(WA + b) = \frac{1}{1 + e^{-(WA + b)}} \sigma(Z) = \sigma(WA + b) = \frac{1}{1 + e^{-(WA + b)}}$ . We have provided you with the sigmoid function. This function returns **two** items: the activation value "a" and a "cache" that contains "z" (it's what we will feed in to the corresponding backward function). To use it you could just call:

```
A, activation cache = sigmoid(Z)
```

• **ReLU**: The mathematical formula for ReLu is A = RELU(Z) = max(0, Z)A = RELU(Z) = max(0, Z). We have provided you with the relu function. This function returns **two** items: the activation value "A" and a "cache" that contains "z" (it's what we will feed in to the corresponding backward function). To use it you could just call:

```
A, activation_cache = relu(Z)
```

For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.

**Exercise**: Implement the forward propagation of the *LINEAR->ACTIVATION* layer. Mathematical relation is:  $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} + b^{[l]})A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} + b^{[l]})$  where the activation "g" can be sigmoid() or relu(). Use linear\_forward() and the correct activation function.

```
In [8]:
# GRADED FUNCTION: linear_activation_forward
def linear activation forward(A prev, W, b, activation):
    Implement the forward propagation for the LINEAR->ACTIVATION layer
    Arguments:
    A prev -- activations from previous layer (or input data): (size of previous
    W -- weights matrix: numpy array of shape (size of current layer, size of pre
    b -- bias vector, numpy array of shape (size of the current layer, 1)
    activation -- the activation to be used in this layer, stored as a text strin
    Returns:
    A -- the output of the activation function, also called the post-activation v
    cache -- a python dictionary containing "linear cache" and "activation cache"
             stored for computing the backward pass efficiently
    11 11 11
    if activation == "sigmoid":
        # Inputs: "A prev, W, b". Outputs: "A, activation cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear cache = linear forward(A prev, W, b)
        A, activation cache = sigmoid(Z)
        ### END CODE HERE ###
    elif activation == "relu":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear cache = linear forward(A prev, W, b)
        A, activation cache = relu(Z)
        ### END CODE HERE ###
    assert (A.shape == (W.shape[0], A prev.shape[1]))
    cache = (linear_cache, activation_cache)
    return A, cache
In [9]:
A_prev, W, b = linear_activation_forward_test_case()
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation =
print("With sigmoid: A = " + str(A))
A, linear activation cache = linear activation forward(A prev, W, b, activation =
print("With ReLU: A = " + str(A))
```

11

With sigmoid:  $A = [[ 0.96890023 \ 0.11013289]]$ 

With ReLU: A = [[ 3.43896131 0.

### **Expected output:**

With sigmoid: A [[ 0.96890023 0.11013289]]

With ReLU: A [[ 3.43896131 0. ]]

**Note**: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers.

### d) L-Layer Model

For even more convenience when implementing the LL-layer Neural Net, you will need a function that replicates the previous one (linear\_activation\_forward with RELU) L-1L-1 times, then follows that with one linear activation forward with SIGMOID.



Figure 2 : [LINEAR -> RELU]  $\times \times (L-1)$  -> LINEAR -> SIGMOID model

**Exercise**: Implement the forward propagation of the above model.

**Instruction**: In the code below, the variable AL will denote  $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]}A^{[L-1]} + b^{[L]})$   $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]}A^{[L-1]} + b^{[L]})$ . (This is sometimes also called Yhat, i.e., this is  $Y\hat{Y}$ .)

### Tips:

- Use the functions you had previously written
- Use a for loop to replicate [LINEAR->RELU] (L-1) times
- Don't forget to keep track of the caches in the "caches" list. To add a new value c to a list, you can use list.append(c).

```
In [31]:
# GRADED FUNCTION: L_model_forward
def L model forward(X, parameters):
    Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID d
    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize parameters deep()
    Returns:
    AL -- last post-activation value
    caches -- list of caches containing:
                every cache of linear activation forward() (there are L-1 of them
    11 11 11
    caches = []
    A = X
                                               # number of layers in the neural ne
    L = len(parameters) // 2
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    for 1 in range(1, L):
        A prev = A
        ### START CODE HERE ### (≈ 2 lines of code)
        A, cache = linear activation forward(A prev,parameters['W' + str(l)],para
        caches.append(cache)
        ### END CODE HERE ###
    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    ### START CODE HERE ### (≈ 2 lines of code)
    AL, cache = linear activation forward(A, parameters['W' + str(l+1)], parameters
    caches.append(cache)
    ### END CODE HERE ###
    assert(AL.shape == (1, X.shape[1]))
    return AL, caches
In [32]:
X, parameters = L_model_forward_test_case_2hidden()
AL, caches = L model forward(X, parameters)
print("AL = " + str(AL))
print("Length of caches list = " + str(len(caches)))
AL = [ [ 0.03921668 \ 0.70498921 ]
                                0.19734387
                                             0.04728177]]
```

AL [[ 0.03921668 0.70498921 0.19734387 0.04728177]]

Length of caches list = 3

Great! Now you have a full forward propagation that takes the input X and outputs a row vector  $A^{[L]}A^{[L]}$  containing your predictions. It also records all intermediate values in "caches". Using  $A^{[L]}A^{[L]}$ , you can compute the cost of your predictions.

### 5 - Cost function

Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.

**Exercise**: Compute the cross-entropy cost J, using the following formula:

$$-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}\log(a^{[L](i)}) + (1-y^{(i)})\log(1-a^{[L](i)}))$$
 (7)

```
In [12]:
```

```
# GRADED FUNCTION: compute cost
def compute_cost(AL, Y):
    Implement the cost function defined by equation (7).
   Arguments:
   AL -- probability vector corresponding to your label predictions, shape (1, n
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), sh
   Returns:
    cost -- cross-entropy cost
   m = Y.shape[1]
    # Compute loss from aL and y.
    ### START CODE HERE ### (≈ 1 lines of code)
    cost = np.sum(np.dot(Y,np.log(AL).T) + np.dot((1-Y),np.log(1-AL).T))*(-1/m)
    ### END CODE HERE ###
   cost = np.squeeze(cost)
                             # To make sure your cost's shape is what we exp\epsilon
    assert(cost.shape == ())
    return cost
```

```
In [13]:
```

```
Y, AL = compute_cost_test_case()
print("cost = " + str(compute_cost(AL, Y)))
```

```
cost = 0.414931599615
```

## 6 - Backward propagation module

Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters.

#### Reminder:



**Figure 3**: Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID

The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

Now, similar to forward propagation, you are going to build the backward propagation in three steps:

- LINEAR backward
- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole model)

### 6.1 - Linear backward

For layer l, the linear part is:  $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$  (followed by an activation).

Suppose you have already calculated the derivative  $dZ^{[l]} = \frac{\partial \mathcal{L}}{\partial Z^{[l]}}$ . You want to get  $(dW^{[l]}, db^{[l]}dA^{[l-1]})$ .



Figure 4

The three outputs  $(dW^{[l]},db^{[l]},dA^{[l]})$  are computed using the input  $dZ^{[l]}$ . Here are the formulas you need:

$$dW^{[l]} = \frac{\partial \mathcal{L}}{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1]T}$$
(8)

$$db^{[l]} = \frac{\partial \mathcal{L}}{\partial b^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} dZ^{[l](i)}$$

$$\tag{9}$$

$$dA^{[l-1]} = \frac{\partial \mathcal{L}}{\partial A^{[l-1]}} = W^{[l]T} dZ^{[l]}$$
(10)

**Exercise**: Use the 3 formulas above to implement linear\_backward().

```
In [33]:
# GRADED FUNCTION: linear backward
def linear backward(dZ, cache):
    Implement the linear portion of backward propagation for a single layer (laye
    Arguments:
    dZ -- Gradient of the cost with respect to the linear output (of current layer
    cache -- tuple of values (A prev, W, b) coming from the forward propagation i
    Returns:
    dA prev -- Gradient of the cost with respect to the activation (of the previous
    dW -- Gradient of the cost with respect to W (current layer 1), same shape as
    db -- Gradient of the cost with respect to b (current layer 1), same shape as
    A prev, W, b = cache
    m = A prev.shape[1]
    ### START CODE HERE ### (≈ 3 lines of code)
    dW = np.dot(dZ,A prev.T)*(1/m)
    db = np.sum(dZ,axis=1,keepdims=True)*(1/m)
    dA prev = np.dot(W.T, dZ)
    ### END CODE HERE ###
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    return dA prev, dW, db
In [34]:
# Set up some test inputs
dZ, linear cache = linear backward test case()
dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA prev = "+ str(dA prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
dA_prev = [[ 0.51822968 -0.19517421]
 [-0.40506361 \quad 0.15255393]
 [ 2.37496825 -0.89445391]]
dW = [[-0.10076895 \quad 1.40685096 \quad 1.64992505]]
```

db

#### **Expected Output:**

db = [[ 0.50629448]]

**dA\_prev** [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]]

**dW** [[-0.10076895 1.40685096 1.64992505]]

[[ 0.50629448]]

### 6.2 - Linear-Activation backward

Next, you will create a function that merges the two helper functions: linear backward and the backward step for the activation linear activation backward.

To help you implement linear activation backward, we provided two backward functions:

• **sigmoid backward**: Implements the backward propagation for SIGMOID unit. You can call it as follows:

```
dZ = sigmoid backward(dA, activation cache)
```

• relu backward: Implements the backward propagation for RELU unit. You can call it as follows:

```
dZ = relu backward(dA, activation cache)
```

If g(.) is the activation function, sigmoid\_backward and relu\_backward compute  $dZ^{[l]} = dA^{[l]} * g'(Z^{[l]})$ (11)

**Exercise**: Implement the backpropagation for the LINEAR->ACTIVATION layer.

```
In [35]:
```

```
# GRADED FUNCTION: linear activation backward
def linear activation_backward(dA, cache, activation):
    Implement the backward propagation for the LINEAR->ACTIVATION layer.
   Arguments:
    dA -- post-activation gradient for current layer 1
    cache -- tuple of values (linear cache, activation cache) we store for comput
    activation -- the activation to be used in this layer, stored as a text strin
   Returns:
   dA prev -- Gradient of the cost with respect to the activation (of the previous
    dW -- Gradient of the cost with respect to W (current layer 1), same shape as
    db -- Gradient of the cost with respect to b (current layer 1), same shape as
    linear_cache, activation_cache = cache
    if activation == "relu":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = relu backward(dA,activation cache)
        dA_prev, dW, db = linear_backward(dZ,linear_cache)
        ### END CODE HERE ###
    elif activation == "sigmoid":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = sigmoid_backward(dA,activation_cache)
        dA prev, dW, db = linear backward(dZ, linear cache)
        ### END CODE HERE ###
    return dA_prev, dW, db
```

```
In [37]:
dAL, linear_activation_cache = linear_activation_backward_test_case()
dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activa
print ("sigmoid:")
print ("dA prev = "+ str(dA prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")
dA prev, dW, db = linear activation backward(dAL, linear activation cache, activa
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
sigmoid:
dA prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]
dW = [[ 0.10266786 \ 0.09778551 \ -0.01968084]]
db = [[-0.05729622]]
relu:
dA prev = [[ 0.44090989 -0.
                                    1
 [ 0.37883606 -0.
                         ]
```

### **Expected output with relu:**

db = [[-0.20837892]]

0.

]]

 $dW = [[ 0.44513824 \ 0.37371418 \ -0.10478989]]$ 

[-0.2298228

```
dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]

dW [[ 0.44513824 0.37371418 -0.10478989]]

db [[-0.20837892]]
```

### 6.3 - L-Model Backward

Now you will implement the backward function for the whole network. Recall that when you implemented the  $L_model_forward$  function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the  $L_model_backward$  function, you will iterate through all the hidden layers backward, starting from layer L. On each step, you will use the cached values for layer l to backpropagate through layer l. Figure 5 below shows the backward pass.



Figure 5: Backward pass

**Initializing backpropagation**: To backpropagate through this network, we know that the output is,  $A^{[L]} = \sigma(Z^{[L]})$ . Your code thus needs to compute  $\mathrm{dAL} = \frac{\partial \mathcal{L}}{\partial A^{[L]}}$ . To do so, use this formula (derived using calculus which you don't need in-depth knowledge of):

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L\_model\_forward function). After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula:

$$grads["dW"+str(l)] = dW^{[l]}$$
(15)

For example, for l=3 this would store  $dW^{[l]}$  in grads [ "dW3" ].

**Exercise**: Implement backpropagation for the [LINEAR->RELU]  $\times$  (L-1) -> LINEAR -> SIGMOID model.

```
In [40]:
# GRADED FUNCTION: L_model_backward
def L model backward(AL, Y, caches):
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -
    Arguments:
    AL -- probability vector, output of the forward propagation (L model forward)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear activation forward() with "relu" (it's cach
                the cache of linear activation forward() with "sigmoid" (it's cad
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(1)] = ...
             grads["dW" + str(1)] = ...
             grads["db" + str(1)] = ...
    11 11 11
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    # Initializing the backpropagation
    ### START CODE HERE ### (1 line of code)
    dAL = -1*(np.divide(Y,AL) - np.divide(1-Y,1-AL))
    ### END CODE HERE ###
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current cache". Outp
    ### START CODE HERE ### (approx. 2 lines)
    current cache = caches[L-1]
    grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_a
    ### END CODE HERE ###
    # Loop from 1=L-2 to 1=0
    for 1 in reversed(range(L-1)):
        # 1th layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(1 + 1)], current cache". Outputs: "grads["dA'
        ### START CODE HERE ### (approx. 5 lines)
        current cache = caches[1]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" +
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(1 + 1)] = dW temp
        grads["db" + str(1 + 1)] = db temp
```

### END CODE HERE ###

return grads

```
In [41]:
```

```
grads = L model backward(AL, Y assess, caches)
print grads(grads)
dW1 = [[ 0.41010002  0.07807203 ]
                                   0.13798444
                                                0.10502167]
 [ 0.
                             0.
                0.01005865
                            0.01777766
                                         0.0135308 ]]
 [ 0.05283652
db1 = [[-0.22007063]
 [ 0.
 [-0.02835349]]
dA1 = [[ 0.12913162 -0.44014127]
 [-0.14175655 \quad 0.48317296]
 [ 0.01663708 -0.05670698]]
```

AL, Y\_assess, caches = L\_model\_backward\_test\_case()

### **Expected Output**

```
[[ 0.41010002 0.07807203
        0.13798444 0.10502167] [ 0. 0. 0.
dW1
            0.][0.05283652 0.01005865
                0.01777766 0.0135308 ]]
db1
       [[-0.22007063] [ 0. ] [-0.02835349]]
              [[ 0.12913162 -0.44014127]
dA1
              [-0.14175655 0.48317296] [
               0.01663708 -0.05670698]]
```

### 6.4 - Update Parameters

In this section you will update the parameters of the model, using gradient descent:

$$W^{[l]} = W^{[l]} - \alpha \, dW^{[l]}$$

$$b^{[l]} = b^{[l]} - \alpha \, db^{[l]}$$
(16)

$$b^{[l]} = b^{[l]} - \alpha \, db^{[l]} \tag{17}$$

where  $\alpha$  is the learning rate. After computing the updated parameters, store them in the parameters dictionary.

**Exercise**: Implement update parameters() to update your parameters using gradient descent.

**Instructions**: Update parameters using gradient descent on every  $W^{[l]}$  and  $b^{[l]}$  for  $l=1,2,\ldots,L$ .

```
In [42]:
# GRADED FUNCTION: update parameters
def update_parameters(parameters, grads, learning_rate):
    Update parameters using gradient descent
    Arguments:
    parameters -- python dictionary containing your parameters
    grads -- python dictionary containing your gradients, output of L_model_backw
    Returns:
    parameters -- python dictionary containing your updated parameters
                  parameters["W" + str(1)] = ...
                  parameters["b" + str(l)] = ...
    11 11 11
    L = len(parameters) // 2 # number of layers in the neural network
    # Update rule for each parameter. Use a for loop.
    ### START CODE HERE ### (≈ 3 lines of code)
    for 1 in range(L):
        parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*g
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning rate*g
    ### END CODE HERE ###
    return parameters
In [43]:
parameters, grads = update parameters test case()
parameters = update parameters(parameters, grads, 0.1)
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
W1 = [[-0.59562069 -0.09991781 -2.14584584]
                                            1.826620081
 [-1.76569676 -0.80627147 0.51115557 -1.18258802]
 [-1.0535704 -0.86128581 0.68284052 2.20374577]
b1 = [-0.04659241]
[-1.28888275]
```

1.32964895]]

[ 0.53405496]]

b2 = [[-0.84610769]]

 $W2 = [[-0.55569196 \quad 0.0354055]$ 

### **Expected Output:**

| [[-0.59562069 -0.09991781 -2.14584584 1.826<br>W1 [-1.76569676 -0.80627147 0.51115557 -1.182<br>[-1.0535704 -0.86128581 0.68284052 2.2037 | 58802]  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------|
| b1 [[-0.04659241] [-1.28888275] [ 0.5340                                                                                                  | )5496]] |
| W2 [[-0.55569196 0.0354055 1.3296                                                                                                         | 34895]] |
| b2 [[-0.846 <sup>-</sup>                                                                                                                  | 10769]] |

## 7 - Conclusion

Congrats on implementing all the functions required for building a deep neural network!

We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier.

In the next assignment you will put all these together to build two models:

- A two-layer neural network
- An L-layer neural network

You will in fact use these models to classify cat vs non-cat images!

# **Building your Deep Neural Network: Step by Step**

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

- In this notebook, you will implement all the functions required to build a deep neural network.
- In the next assignment, you will use these functions to build a deep neural network for image classification.

### After this assignment you will be able to:

- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- Implement an easy-to-use neural network class

#### Notation:

- Superscript [I] denotes a quantity associated with the I^{th} layer.
  - Example: a^{[L]} is the L^{th} layer activation. W^{[L]} and b^{[L]} are the L^{th} layer parameters.
- Superscript (i) denotes a quantity associated with the i^{th} example.
  - Example:  $x^{(i)}$  is the  $i^{th}$  training example.
- Lowerscript i denotes the i^{th} entry of a vector.
  - Example: a^{[l]}\_i denotes the i^{th} entry of the I^{th} layer's activations).

Let's get started!

## 1 - Packages

Let's first import all the packages that you will need during this assignment.

- numpy (www.numpy.org) is the main package for scientific computing with Python.
- matplotlib (http://matplotlib.org) is a library to plot graphs in Python.
- dnn\_utils provides some necessary functions for this notebook.
- testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed.

In [1]:

## 2 - Outline of the Assignment

To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

- Initialize the parameters for a two-layer network and for an L-layer neural network.
- Implement the forward propagation module (shown in purple in the figure below).
  - Complete the LINEAR part of a layer's forward propagation step (resulting in Z^{[I]}).
  - We give you the ACTIVATION function (relu/sigmoid).
  - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
  - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer L). This gives you a new L\_model\_forward function.
- · Compute the loss.
- Implement the backward propagation module (denoted in red in the figure below).
  - Complete the LINEAR part of a layer's backward propagation step.
  - We give you the gradient of the ACTIVATE function (relu\_backward/sigmoid\_backward)
  - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
  - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L\_model\_backward function
- Finally update the parameters.



Figure 1

**Note** that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

## 3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to L layers.

### 3.1 - 2-layer Neural Network

**Exercise**: Create and initialize the parameters of the 2-layer neural network.

#### Instructions:

- The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use random initialization for the weight matrices. Use np.random.randn(shape)\*0.01 with the correct shape.
- Use zero initialization for the biases. Use np.zeros(shape).

```
In [2]:
In [3]:

W1 = [[ 0.01624345 -0.00611756 -0.00528172]
  [-0.01072969    0.00865408 -0.02301539]]
b1 = [[ 0.]
  [ 0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[ 0.]]
```

### **Expected output:**

| W1 | [[ 0.01624345 -0.00611756 -0.00528172]<br>[-0.01072969 0.00865408 -0.02301539]] |
|----|---------------------------------------------------------------------------------|
| b1 | [[ 0.] [ 0.]]                                                                   |
| W2 | [[ 0.01744812 -0.00761207]]                                                     |
| b2 | [[ 0.]]                                                                         |

### 3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize\_parameters\_deep, you should make sure that your dimensions match between each layer. Recall that n^{[I]} is the number of units in layer I. Thus for example if the size of our input X is (12288, 209) (with m=209 examples) then:

| Shape of Activation | Activation                                         | Shape of b     | Shape of W             |           |
|---------------------|----------------------------------------------------|----------------|------------------------|-----------|
| (n^{[1]},209)       | $Z^{[1]} = W^{[1]} X + b^{[1]}$                    | (n^{[1]},1)    | (n^{[1]},12288)        | Layer 1   |
| (n^{[2]}, 209)      | $Z^{[2]} = W^{[2]}$<br>$A^{[1]} + b^{[2]}$         | (n^{[2]},1)    | (n^{[2]}, n^{[1]})     | Layer 2   |
| \vdots              | \vdots                                             | \vdots         | \vdots                 | \vdots    |
| (n^{[L-1]}, 209)    | $Z^{[L-1]} = W^{[L-1]}$<br>$A^{[L-2]} + b^{[L-1]}$ | (n^{[L-1]}, 1) | (n^{[L-1]}, n^{[L-2]}) | Layer L-1 |
| (n^{[L]}, 209)      | $Z^{[L]} = W^{[L]}$<br>$A^{[L-1]} + b^{[L]}$       | (n^{[L]}, 1)   | (n^{[L]}, n^{[L-1]})   | Layer L   |

Remember that when we compute W X + b in python, it carries out broadcasting. For example, if:

Then WX + b will be:

 $WX + b = \left\{ \frac{begin\{bmatrix\} (ja + kd + lg) + s \& (jb + ke + lh) + s \& (jc + kf + li) + s \right\} (ma + nd + og) + t \& (mb + ne + oh) + t \& (mc + nf + oi) + t \right\} (pa + qd + rg) + u \& (pb + qe + rh) + u \& (pc + qf + ri) + u \right\} (pa + qd + rg) + u \& (pb + qe + rh) + u \& (pc + qf + ri) + u \right\} (pa + qd + rg) + u \& (pb + qe + rh) + u \& (pc + qf + ri) + u \right\} (pa + qd + rg) + u \& (pb + qe + rh) + u \& (pc + qf + ri) + u \right\} (pa + qd + rg) + u \& (pb + qe + rh) + u \& (pc + qf + ri) + u \right\} (pa + qd + rg) + u \& (pb + qe + rh) + u \& (pc + qf + ri) + u \& (pc + qf + ri$ 

**Exercise**: Implement initialization for an L-layer Neural Network.

### **Instructions**:

- The model's structure is [LINEAR -> RELU] \times (L-1) -> LINEAR -> SIGMOID. I.e., it has L-1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
- Use random initialization for the weight matrices. Use np.random.randn(shape) \* 0.01.
- Use zeros initialization for the biases. Use np. zeros (shape).
- We will store n^{[1]}, the number of units in different layers, in a variable layer dims. For example, the layer dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to L layers!
- Here is the implementation for L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

```
if L == 1:
     parameters["W" + str(L)] = np.random.randn(layer dims[1], layer
dims[0]) * 0.01
     parameters["b" + str(L)] = np.zeros((layer dims[1], 1))
```

```
In [4]:
```

```
In [5]:
```

```
W1 = [ ] 0.01788628 0.0043651
                                0.00096497 - 0.01863493 - 0.002773881
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865]
              0.00884622 0.00881318
                                       0.01709573
                                                   0.000500341
 [-0.00404677 -0.0054536 -0.01546477
                                      0.00982367 -0.01101068]]
b1 = [[0.]]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01185047 -0.0020565]]
                                0.01486148
                                            0.00236716]
[-0.01023785 -0.00712993 0.00625245 -0.00160513]
 [-0.00768836 -0.00230031
                           0.00745056
                                      0.01976111
b2 = [[0.]]
 [ 0.]
 [ 0.]]
```

### **Expected output:**

| W1 | [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b1 | [[ 0.] [ 0.] [ 0.] [ 0.]                                                                                                                                                                                                                         |
| W2 | [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]                                                                                                |
| b2 | [[.0.] [.0.]]                                                                                                                                                                                                                                    |

## 4 - Forward propagation module

### 4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

- LINEAR
- LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
- [LINEAR -> RELU] \times (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

```
Z^{[i]} = W^{[i]}A^{[i-1]} +b^{[i]}\times 4
where A^{[0]} = X.
```

**Exercise**: Build the linear part of forward propagation.

**Reminder**: The mathematical representation of this unit is  $Z^{\{[l]\}} = W^{\{[l]\}}A^{\{[l-1]\}} + b^{\{[l]\}}$ . You may also find np.dot() useful. If your dimensions don't match, printing W.shape may help.

```
In [6]:
In [7]:
```

```
Z = [[ 3.26295337 -1.23429987]]
```

### **Expected output:**

### 4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

• **Sigmoid**: \sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}}. We have provided you with the sigmoid function. This function returns **two** items: the activation value "a" and a "cache" that contains "z" (it's what we will feed in to the corresponding backward function). To use it you could just call:

```
A, activation cache = sigmoid(Z)
```

• **ReLU**: The mathematical formula for ReLu is A = RELU(Z) = max(0, Z). We have provided you with the relu function. This function returns **two** items: the activation value "A" and a "cache" that contains "Z" (it's what we will feed in to the corresponding backward function). To use it you could just call:

```
A, activation cache = relu(Z)
```

For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.

**Exercise**: Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is:  $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}) + b^{[l]})$  where the activation "g" can be sigmoid() or relu(). Use linear\_forward() and the correct activation function.

```
In [8]:
In [9]:
```

```
With sigmoid: A = [[ 0.96890023  0.11013289]]
With ReLU: A = [[ 3.43896131  0. ]]
```

### **Expected output:**

With sigmoid: A [[ 0.96890023 0.11013289]]

With ReLU: A [[ 3.43896131 0. ]]

**Note**: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers.

### d) L-Layer Model

For even more convenience when implementing the L-layer Neural Net, you will need a function that replicates the previous one (linear\_activation\_forward with RELU) L-1 times, then follows that with one linear activation forward with SIGMOID.



Figure 2 : [LINEAR -> RELU] \times (L-1) -> LINEAR -> SIGMOID model

**Exercise**: Implement the forward propagation of the above model.

**Instruction**: In the code below, the variable AL will denote  $A^{[L]} = \sum(Z^{[L]}) = \sum(W^{[L]}) A^{[L-1]} + b^{[L]})$ . (This is sometimes also called Yhat, i.e., this is  $\hat{Y}$ .)

#### Tips:

- Use the functions you had previously written
- Use a for loop to replicate [LINEAR->RELU] (L-1) times
- Don't forget to keep track of the caches in the "caches" list. To add a new value c to a list, you can use list.append(c).

```
In [31]:
In [32]:
```

```
AL = [[ 0.03921668 \ 0.70498921 \ 0.19734387 \ 0.04728177]]
Length of caches list = 3
```

**AL** [[ 0.03921668 0.70498921 0.19734387 0.04728177]]

Great! Now you have a full forward propagation that takes the input X and outputs a row vector A^{[L]} containing your predictions. It also records all intermediate values in "caches". Using A^{[L]}, you can compute the cost of your predictions.

## 5 - Cost function

Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.

**Exercise**: Compute the cross-entropy cost J, using the following formula:  $-\frac{1}{m} \$  \sum\\limits\_{i = 1}^{m} (y^{(i)}\log\\eft(a^{[L] (i)}\right) + (1-y^{(i)})\\log\\eft(1- a^{[L](i)}\right)) \tag{7}

In [12]:

In [13]:

cost = 0.414931599615

### **Expected Output:**

cost 0.41493159961539694

## 6 - Backward propagation module

Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters.

#### Reminder:



**Figure 3**: Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID

The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

Now, similar to forward propagation, you are going to build the backward propagation in three steps:

- LINEAR backward
- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- [LINEAR -> RELU] \times (L-1) -> LINEAR -> SIGMOID backward (whole model)

### 6.1 - Linear backward

For layer I, the linear part is:  $Z^{[I]} = W^{[I]} A^{[I-1]} + b^{[I]}$  (followed by an activation).

Suppose you have already calculated the derivative  $dZ^{[l]} = \frac{L} {\Phi^{[l]}}. You want to get <math>dW^{[l]}, db^{[l]} dA^{[l-1]}.$ 



The three outputs (dW^{[I]}, db^{[I]}) are computed using the input dZ^{[I]}. Here are the formulas you need: dW^{[I]} = \frac{L} {\left| W^{[I]} = \frac{1}{m} dZ^{[I]} A^{[I-1]} \right| db^{[I]} = \frac{1}^{m} dZ^{[I]} dA^{[I-1]} dZ^{[I]} dA^{[I-1]} dA^{[I-1]} = \frac{1}^{m} dZ^{[I]} dA^{[I-1]} d

**Exercise**: Use the 3 formulas above to implement linear\_backward().

In [33]:

```
In [34]:
```

```
dA_prev = [[ 0.51822968 -0.19517421]
  [-0.40506361   0.15255393]
  [ 2.37496825 -0.89445391]]
dW = [[-0.10076895   1.40685096   1.64992505]]
db = [[ 0.50629448]]
```

#### **Expected Output:**

| dA_prev | [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]] |
|---------|--------------------------------------------------------------------------------|
| dW      | [[-0.10076895 1.40685096 1.64992505]]                                          |
| db      | [[ 0.50629448]]                                                                |

### 6.2 - Linear-Activation backward

Next, you will create a function that merges the two helper functions: **linear\_backward** and the backward step for the activation **linear\_activation\_backward**.

To help you implement linear activation backward, we provided two backward functions:

• **sigmoid\_backward**: Implements the backward propagation for SIGMOID unit. You can call it as follows:

```
dZ = sigmoid backward(dA, activation cache)
```

• relu\_backward: Implements the backward propagation for RELU unit. You can call it as follows:

```
dZ = relu_backward(dA, activation_cache)
```

If g(.) is the activation function, sigmoid\_backward and relu\_backward compute  $dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \times \{11\}$ .

**Exercise**: Implement the backpropagation for the *LINEAR->ACTIVATION* layer.

```
In [37]:
sigmoid:
dA prev = [[ 0.11017994 ]
                          0.011053391
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]
dW = [[ 0.10266786   0.09778551   -0.01968084]]
db = [[-0.05729622]]
relu:
dA_prev = [[ 0.44090989 -0.
                                     ]
 [ 0.37883606 -0.
                          ]
 [-0.2298228
               0.
                          ]]
dW = [ [ 0.44513824 ]
                     0.37371418 - 0.10478989
```

### **Expected output with relu:**

db = [[-0.20837892]]

In [35]:

```
dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]

dW [[ 0.44513824 0.37371418 -0.10478989]]

db [[-0.20837892]]
```

### 6.3 - L-Model Backward

Now you will implement the backward function for the whole network. Recall that when you implemented the L\_model\_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the L\_model\_backward function, you will iterate through all the hidden layers backward, starting from layer L. On each step, you will use the cached values for layer I to backpropagate through layer I. Figure 5 below shows the backward pass.



Figure 5: Backward pass

**Initializing backpropagation**: To backpropagate through this network, we know that the output is,  $A^{[L]} = \sigma(Z^{[L]})$ . Your code thus needs to compute  $dAL = \frac{AL} = \sigma(\Delta L)$ . To do so, use this formula (derived using calculus which you don't need in-depth knowledge of):

```
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cos
t with respect to AL
```

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L\_model\_forward function). After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula:

```
grads["dW" + str(I)] = dW^{[I]} \times \{15\}
```

For example, for I=3 this would store dW^{[I]} in grads [ "dw3"].

**Exercise**: Implement backpropagation for the [LINEAR->RELU] \times (L-1) -> LINEAR -> SIGMOID model.

In [40]:

```
In [41]:
```

### **Expected Output**

```
dW1 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]]

db1 [[-0.22007063] [ 0. ] [-0.02835349]]

dA1 [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]]
```

### 6.4 - Update Parameters

In this section you will update the parameters of the model, using gradient descent:

```
W^{[i]} = W^{[i]} - \alpha \cdot ([i]) \cdot ([i]) \cdot ([i]) = b^{[i]} - \alpha \cdot ([i]) \cdot ([i])
```

where \alpha is the learning rate. After computing the updated parameters, store them in the parameters dictionary.

**Exercise**: Implement update\_parameters() to update your parameters using gradient descent.

**Instructions**: Update parameters using gradient descent on every W^{[I]} and b^{[I]} for I = 1, 2, ..., L.

```
In [42]:
```

```
In [43]:
```

#### **Expected Output:**

## 7 - Conclusion

Congrats on implementing all the functions required for building a deep neural network!

We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier.

In the next assignment you will put all these together to build two models:

- A two-layer neural network
- An L-layer neural network

You will in fact use these models to classify cat vs non-cat images!