27-07-2022 Q1-15

EE24btech11058-P.Shiny Diavajna

1) The domain of the function

$$f(x) = \sin^{-1} \left[2x^2 - 3 \right] + \log_2 \left(\log_{1/2} \left(x^2 - 5x + 5 \right) \right)$$

where [t] is the greatest integer function, is:

- a) $\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)$
- b) $\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)$ c) $\left(1, \frac{5-\sqrt{5}}{2}\right)$

- 2) Let S be the set of all (α, β) , $\pi < \alpha, \beta < 2\pi$, for which the complex number $\frac{1-i\sin\alpha}{1-2i\cos\beta}$ is purely real. Let $Z_{\alpha\beta} = \sin 2\alpha + i\cos 2\beta$, $(\alpha,\beta) \in S$. Then $\sum_{(\alpha,\beta)\in S} \left(iZ_{\alpha\beta} + \frac{1}{i\bar{Z}_{\alpha\beta}}\right)$ is equal to:
 - a) 3
 - b) 3*i*
 - c) 1
 - d) 2 i
- 3) If α, β are the roots of the equation

$$x^{2} - \left(5 + 3\sqrt{\log_{3} 5} - 5\sqrt{\log_{5} 3}\right) + 3\left(3^{(\log_{3} 5)^{\frac{1}{3}}} - 5^{(\log_{5} 3)^{\frac{2}{3}}} - 1\right) = 0$$

then the equation, whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$,

- a) $3x^2 20x 12$
- b) $3x^2 10x 4$
- c) $3x^2 10x + 2$
- d) $3x^2 20x + 16$
- 4) Let A = $\begin{pmatrix} 4 & -2 \\ \alpha & \beta \end{pmatrix}$ If $A^2 + \gamma A + 18I = 0$, then det(A) is equal to
 - a) -18
 - b) 18
 - c) -50
 - d) 50
- 5) If for $p \neq q \neq 0$, the function

$$f(x) = \frac{\sqrt[7]{p(729 + x)} - 3}{\sqrt[3]{729 + qx} - 9}$$

is continuous at x=0, then:

- a) 7pqf(0) 1 = 0
- b) $63qf(0) p^2 = 0$
- c) $21qf(0) p^2 = 0$
- d) 7pqf(0) 9 = 0
- 6) Let

$$f(x) = 2 + |x| - |x - 1| + |x + 1|$$

 $x \in \mathbf{R}$ Consider

$$(S1): f'(-\frac{3}{2}) + f'(-\frac{1}{2}) + f'(\frac{1}{2})f'(\frac{3}{2}) = 2$$

- $(S2): \int_{2}^{2} f(x) dx = 12$ Then,
- a) both (S1) and (S2) are correct
- b) both (S1) and (S2) are wrong
- c) only (S1) is correct
- d) only (S2) is correct
- 7) Let the sum of an infinite G.P., whose first term is a and the commom ratio is r, be 5. Let the sum of its first five terms be $\frac{98}{25}$. Then the sum of the first 21 terms of an AP, whose first term is 10ar, n^{th} term is a_n and the common difference is $10ar^2$ is equal to:
 - a) $21a_{11}$
 - b) 22a₁₁
 - c) $15a_{16}$
 - d) 14a₁₆
- 8) The area of the region enclosed by $y \le 4x^2, x^2 \le 9y$ and $y \le 4$, is equal to :

 - a) $\frac{40}{3}$ b) $\frac{56}{3}$ c) $\frac{112}{3}$ d) $\frac{80}{3}$
- 9) $\int_0^2 \left(|2x^2 3x| + \left[x \frac{1}{2} \right] \right) dx$ where [t] is the greatest integer function, is equal to :

 - b) $\frac{19}{12}$ c) $\frac{31}{12}$
- 10) Consider a curve y = y(x) in the first quadrant as shown in the figure. Let the area A_1 is twice the area A_2 . Then the normal to the curve perpendicular to the line 2x - 12y = 15 does **NOT** pass through the point.

- a) (6, 21)
- b) (8,9)
- c) (10, -4)
- d) (12, -15)
- 11) The equation of the sides AB, BC and CA of a triangle ABC are 2x+y=0, x+py=39 and x-y=3 respectively and P(2,3) is its circumcentre. Then which of the following is NOT true:
 - a) $(AC)^2 = 9p$
 - b) $(AC)^2 + p^2 = 136$
 - c) $32 < area(\Delta ABC) < 36$
 - d) $34 < area(\Delta ABC) < 38$
- 12) A Circle C_1 passes through the origin \mathbf{O} and has diameter 4 on the positive x-axis. The line y=2x gives a chord OA of a circle C_1 . Let C_2 be the circle with OA as a diameter. If the tangent to C_2 at the point \mathbf{A} meets the x-axis at \mathbf{P} and y-axis at \mathbf{Q} , then QA:AP is equal to:
 - a) 1:4
 - b) 1:5
 - c) 2:5
 - d) 1:3
- 13) If the length of the latus rectum of a parabola, whose focus is (a, a) and the tangent at its vertex is x + y = a, is 16, then |a| is equal to
 - a) $2\sqrt{2}$
 - b) $2\sqrt{3}$
 - c) $4\sqrt{2}$
 - d) 4
- 14) If the Length of the perpendicular drawn from the point $\mathbf{P}(a,4,2)$, a>0 on the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$ is $2\sqrt{6}$ units and $\mathbf{Q}(\alpha_1,\alpha_2,\alpha_3)$ is the image of the point \mathbf{P} in this line, then $a+\sum_{i=1}^3\alpha_i$ is equal to :
 - a) 7
 - b) 8
 - c) 12

- d) 14
- 15) If the line of intersection of the planes ax + by = 3 and ax + by + cz = 0, a > 0 makes an angle 30° with the plane y-z+2=0, then the direction cosines of the line are :

 - a) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$ b) $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0$ c) $\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}, 0$ d) $\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0$