计算机网络·理论作业4

20337251伍建霖

P4

- P4. 考虑习题 P3 中所示的网络。使用 Dijkstra 算法和一个类似于表 5-1 的表来说明你做的工作:
 - a. 计算出从 t 到所有网络节点的最短路径。
 - b. 计算出从 u 到所有网络节点的最短路径。
 - c. 计算出从 v 到所有网络节点的最短路径。
 - d. 计算出从 w 到所有网络节点的最短路径。
 - e. 计算出从 y 到所有网络节点的最短路径。
 - f. 计算出从z到所有网络节点的最短路径。

答:

a.

N'	D(x), $p(x)$	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
t	∞	2,t	4,t	∞	7,t	∞
tu	∞	2,t	4,t	5,u	7,t	∞
tuv	7,v	2,t	4,t	5,u	7,t	∞
tuvw	7,v	2,t	4,t	5,u	7,t	∞
tuvwx	7,v	2,t	4,t	5,u	7,t	15,x
tuvwxy	7,v	2,t	4,t	5,u	7,t	15,x
tuvwxyz	z 7,v	2,t	4,t	5,u	7,t	15,x
b.						
N'	D(x), p(x)	D(t),p(t)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
u	∞	2,u	3,u	3,u	∞	∞
ut	∞	2,u	3,u	3,u	9,t	∞
utv	6,v	2,u	3,u	3,u	9,t	∞
utvw	6,v	2,u	3,u	3,u	9,t	∞
utvwx	6,v	2,u	3,u	3,u	9,t	14,x
utvwxy	6,v	2,u	3,u	3,u	9,t	14,x
utvwxyz	2 6,v	2,u	3,u	3,u	9,t	14,x

	N'	D(x), p(x)	<i>D(u),p(u)</i>	<i>D(t),pt)</i>	D(w),p(w)	D(y),p(y)	$D(z), \rho(z)$
	v vx vxu vxut vxutw vxutwy vxutwy	3,v 3,v 3,v 3,v 3,v 3,v 3,v	3,v 3,v 3,v 3,v 3,v 3,v 3,v	4,v 4,v 4,v 4,v 4,v 4,v 4,v	4,v 4,v 4,v 4,v 4,v 4,v 4,v	8,v 8,v 8,v 8,v 8,v 8,v 8,v	∞ 11,x 11,x 11,x 11,x 11,x 11,x
d.							
	N'	D(x), p(x)	D(u),p(u)	D(v),p(v)	D(t),p(t)	D(y),p(y)	D(z),p(z)
	w wu wuv	6,w 6,w 6,w	3,w 3,w 3,w	4,w 4,w 4,w	∞ 5,u 5,u	∞ ∞ 12,v	∞ ∞ ∞
	wuvt wuvtx wuvtxy wuvtxyz	6,w 6,w 6,w	3,w 3,w 3,w 3,w	4,w 4,w 4,w 4,w	5,u 5,u 5,u 5,u	12,v 12,v 12,v 12,v	∞ 14,x 14,x 14,x
e.							
	N'	D(x), p(x)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(t),p(t)	D(z),p(z)
	y yx yxt yxtv yxtvu yxtvuw yxtvuwz	6,y 6,y 6,y 6,y 6,y 6,y	∞ 9,t 9,t 9,t 9,t 9,t 9,t	8,y 8,y 8,y 8,y 8,y 8,y	∞ 12,x 12,x 12,x 12,x 12,x 12,x 12,x	7,y 7,y 7,y 7,y 7,y 7,y 7,y	12,y 12,y 12,y 12,y 12,y 12,y 12,y
f.							
	N'	D(x), p(x)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(t),p(t)
	z zx zxv zxvy zxvyu zxvyuw zxvyuwt	8,z 8,z 8,z 8,z 8,z 8,z 8,z	∞ 14,∨ 14,∨ 14,∨ 14,∨ 14,∨	∞ 11,x 11,x 11,x 11,x 11,x 11,x	50 14,x 14,x 14,x 14,x 14,x 14,x	12,z 12,z 12,z 12,z 12,z 12,z 12,z	∞ 15,v 15,v 15,v 15,v 15,v

P5

P5. 考虑下图所示的网络,假设每个节点初始时知道到它的每个邻居的开销。考虑距离向量算法,并显示在节点 z 中的距离表表项。

答:

从(第一行)到(第一列)	u	v	x	у	z
х	∞	∞	∞	∞	∞
V	∞	∞	∞	∞	∞
Z	∞	6	2	∞	0

从(第一行)到(第一列)	u	V	x	у	z
Х	∞	3	0	3	2
V	1	0	3	∞	6
Z	7	5	2	5	0

从(第一行)到(第一列)	u	v	x	у	z
Х	4	3	0	3	2
V	1	0	3	3	5
Z	6	5	2	5	0

从(第一行)到(第一列)	u	v	x	у	z
Х	4	3	0	3	2
V	1	0	3	3	5
Z	6	5	2	5	0

P9

P9. 考虑距离向量路由选择中的无穷计数问题。如果我们减小一条链路的开销,将会出现无穷计数问题吗?为什么?如果我们将没有链路的两个节点连接起来,会出现什么情况?

答:

不会;将没有链路的节点连接起来,相当于将开销从无穷降到了有限值,也不会出现无穷计数问题。

P14

- P14. 考虑下图所示的网络。假定 AS3 和 AS2 正在运行 OSPF 作为其 AS 内部路由选择协议。假定 AS1 和 AS4 正在运行 RIP 作为其 AS 内部路由选择协议。假定 AS 间路由选择协议使用的是 eBGP 和 iBGP。 假定最初在 AS2 和 AS4 之间不存在物理链路。
 - a. 路由器 3c 从下列哪个路由选择协议学习到了前缀 x: OSPF、RIP、eBGP 或 iBGP?
 - b. 路由器 3a 从哪个路由选择协议学习到了前缀 x?
 - c. 路由器 1c 从哪个路由选择协议学习到了前缀 x?
 - d. 路由器 1d 从哪个路由选择协议学习到了前缀 x?

答:

- a) eBGP
- b) iBGP
- c) eBGP
- d) iBGP