

การจัดองค์การคอมพิวเตอร์

Boolean Logic

31110321 Computer Organization สำหรับนักศึกษาชั้นปีที่ 3 สาขาวิชาวิศวกรรมคอมพิวเตอร์

> ทรงฤทธิ์ กิติศรีวรพันธุ์ songrit@npu.ac.th สาขาวิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยนครพนม

Lecture plan

- 1.1 บูลีน ลอจิก
- 1.2 การสังเคราะห์ฟังก์ชั่นบูลีน
- 1.3 ลอจิกเกต
- •1.4 ภาษา HDL
- 1.5 โปรแกรมจำลอง Hardware Simulation
- 1.6 โค้ด HDL แบบ Multi-Bit Buses
- 1.7 โปรเจ็ค 1

บูลีน ลอจิก

ດັບ

ติด

No

Yes

0

1

False

True

Boolean Operations

x And y

хΛу

And(x,y)

X	0r	У
		_

x v y

0r(x,y)

 $\neg X$

Not(x)

x	У	And
0	0	0
0	1	0
1	0	0
1	1	1

x	у	Or
0	0	0
0	1	1
1	0	1
1	1	1

x	Not
0	1
1	0

สมการบูลีน

- Not(0 Or (1 And 1) =
- Not(0 Or 1) =
- Not (1) =

ฟังก์ชั่นบูลีน

• f(x,y,z) = (x And y) Or (Not(x) And z)

x	у	z	f
0	0	0	
0	0	1	1 -
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(0 And 0) Or (Not(0) And 1) = 0 Or (1 And 1) = 0 Or 1 = 1

ฟังก์ชั่นบูลีน

• f(x,y,z) = (x And y) Or (Not(x) And z) formula

x	у	z	f
0	0	0	
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth table

Boolean Identities

```
(x And y) = (y And x)(x Or y) = (y Or x)

    (x And (y And z)) = ((x And y) And z)
    (x Or (y Or z)) = ((x Or y ) Or z)

Associative laws

    (x And (y Or z)) = (x And y) Or (x And z)
    (x Or (y And z)) = (x Or y) And (x Or z)

    Not(x And y) = Not(x) Or Not(y)
    Not(x Or y) = Not(x) And Not(y)

De Morgan laws
```

Boolean Algebra

• Not(Not(x) And Not(x Or y)) =

Associative law

De Morgan law

• Not(Not(x) And (Not(x) And Not(y))) =

idempotence

• Not((Not(x)) And Not(x)) And $Not(\omega)) =$

De Morgan law

- Not(Not(x) And Not(y)) =
- Not(Not(x)) Or Not(Not(y)) = x Or y

Doble negative

Boolean Algebra

• Not(Not(x) And Not(x Or y)) =

x	у	Or
0	0	0
0	1	1
1	0	1
1	1	1

x Or y