Fonction exponent

Propriété (admise) et définition. Fonction exponentielle

Il existe une <u>unique</u> fonction f définie et dérivable sur \mathbb{R} telle que f(0) = 1

Cette fonction est appelée fonction exponentielle. On la note exp

Propriété. La courbe représentative de la fonction exponentielle admet l'allure ci-contre.

Remarque. A quoi ça sert ? La fonction exponentielle est une solution

particulière de l'équation différentielle « f' = f ». Les solutions d'une équation différentielle plus générale de la forme « f' = af + b » où a, b sont des réels, peuvent s'exprimer à l'aide de la fonction exponentielle. On a besoin de résoudre ce type d'équations différentielles en physique, en économie, en biologie, ...

Notation exponentielle. On verra que les propriétés algébriques de l'exponentielle sont analogues à celles des puissances. Pour cette raison on préfère souvent la notation e^x plus compacte.

Définition. Pour tout $x \in \mathbb{R}$, on note $e^x = \exp(x)$

Définition. Le nombre e est l'image de 1 par la fonction exponentielle. $e = \exp(1) = e^1 \approx 2,718...$

Propriété. exp' = exp

Propriété. Pour tout $x \in \mathbb{R}$, $e^x \neq 0$.

Propriété. Pour tous $a, b \in \mathbb{R}$, $e^{a+b} = e^a \times e^b$

Propriété. Pour tout $a \in \mathbb{R}$, $e^{-a} = \frac{1}{a^a}$

Propriété. Pour tous $a,b \in \mathbb{R}, e^{a-b} = \frac{e^a}{e^b}$

Propriété. Pour tout $n \in \mathbb{Z}$, et $a \in \mathbb{R}$, $(e^a)^n = e^{na}$ **Propriété**. $e^0 = 1$ $e^1 = e$ $e^{-1} = \frac{1}{e}$ **Exemples**. $e^3 \times e^4 = e^{3+4} = e^7$ $e^{-2} = \frac{1}{e^2}$

Propriété. Pour tout $x \in \mathbb{R}$, on a : $e^x > 0$

Propriété. La fonction exponentielle est strictement croissante sur \mathbb{R} .

Propriété. Pour tous $a, b \in \mathbb{R}$, $e^a = e^b \Leftrightarrow a = b$

Propriété. Pour tous $a, b \in \mathbb{R}$, $e^a < e^b \Leftrightarrow a < b$

Propriété. Pour tous $a, b \in \mathbb{R}$, $e^a > e^b \Leftrightarrow a > b$

Propriété. $\sqrt{e} = e^{\frac{1}{2}}$.

Propriété. Pour tout $n \in \mathbb{N}^*$, $\sqrt[n]{e} = e^{\frac{1}{n}}$ $(e^{1,5})^4 = e^{1,5 \times 4} = e^6$ $(e^x)^4 = e^{4x}$

Propriété. Si f est une fonction définie sur \mathbb{R} par $f(x) = e^{u(x)}$ où u est une fonction affine de la forme u(x) = ax + b, alors f est dérivable et pour tout $x \in \mathbb{R}$, $f'(x) = a \times e^{u(x)} = a \times f(x)$.

Exemples. La dérivée de $x \mapsto e^{2x+1}$ est $x \mapsto 2e^{2x+1}$. La dérivée de $x \mapsto e^{-8x+2}$ est $x \mapsto -8e^{-8x+2}$

Propriété. Variations d'une fonction exponentielle paramétrée : $f: x \mapsto e^{kx}$ où $k \in \mathbb{R}$. Si k < 0, $f: x \mapsto e^{kx}$ est strictement décroissante sur \mathbb{R} . Si k > 0, $f: x \mapsto e^{kx}$ est strictement croissante sur \mathbb{R}

Propriété. La suite (u_n) définie pour $n \in \mathbb{N}$ par $u_n = e^{na}$ où $a \in \mathbb{R}$, est une suite géométrique de raison e^a . **Exemple.** La suite (u_n) définie par $u_n = e^{2n}$ est géométrique de raison e^2 .