

Physics of Advanced Materials

Lecture 1: Organic semiconductors - physics

In this lecture...

- What are organic semiconductors?
- Origin of semiconductvity in organic materials:
 - hybridisation of orbitals
 - π-conjugation
- Bound states:
 - polarons
 - excitons
- Energy transitions and PL spectra
- Physics of charge transfer

What are organic semiconductors?

Types of OSCs

- single molecules
- polymers:
 - plastics
 - rubbers
 - foams
 - foils

- ...

organic = carbon-based

Why organic semiconductors?

Silicon – material of choice:

- + abundant
- + high-quality

but also:

- not luminescent
- costly to purify and handle
- not ideal for large-area applications

Properties of organic electronics

advantages:

- solution processing
 - price (low temp & pressure)
 - substrate choice (flexibility)
 - area size
 - printing (roll-to-roll)
- biocompatibility
- molecular design

disadvantages:

- slower than silicon
- sensitive to water, UV, oxygen...

Example materials

molecular

polymers

Already available:

- Rollable TVs: https://www.lg.com/global/lg-signature/rollable-oled-tv-r
- Flexible, compostable PVs
- Retinal chips
- Smart fabrics

•

do

Images: https://www.researchgate.net/figure/Foldable-and-photovoltaic-wide-field-retinal-prosthesis-a-3D-model-of-the-fabricated_fig1_323641091 https://www.sait.samsung.co.kr/saithome/research/organic.

Semiconductivity of organic materials

How can polymers and molecules become semiconductive?

Hybridisation

sp₂ hybridisation

Bonding between C atoms

σ-bonds:

- overlap of hybridised orbitals
- along the chain
- strong
- highly directional
- forms stable carbon structures

π-bonds:

- overlap of 2p, orbitals
- weak
- restricts rotation (planarise)
- forms stable carbon structures
- delocalised in conjugated molecules

sp² hybrid orbital

Nonhybridized p orbital

Hydrogen atom 1s orbital

PHAS0058, Lecture 2

Conjugation

Non-conjugated π system (π bonds do not interact)

All carbon atoms sp²

Conjugated π system (Electron density delocalized over all four carbon atoms)

CONJUGATION

delocalisation of π/π^* states over many
carbon atoms

π-bonding

conjugation = delocalisation of π/π^* orbitals over many carbon atoms

HOMO/LUMO

alternating single and double bonds usually indicate conjugation

LUMO – lowest unoccupied molecular orbital

HOMO – highest occupied molecular orbital

π-π stacking

overlap of π orbitals of neighbouring molecules

delocalization

- efficient charge transport
- lower optical bandgap

Structure vs. conjugation length

The size of the bandgap depends on both the number of monomers n and the effective conjugation length

- more planar molecules have lower energy gap (longer conjugation length)
- planarity may be affected by:
 - chemical defects
 - topological defects
 - interaction between molecules (e.g. sidechains)

Polarons

Peierl's transition (aka. dimerization)

Peierl's transition

Result:

- alternated short and long bonds
- longer period = lower energy
- result: chain of dimers
- different phases available

Types of dimerization (phases)

trans-polyacetylene

degenerate

cis-polyacetylene

non-degenerate

NB. For inorganic semiconductors *degenerate* indicates instead a semiconductor doped so heavily that the Fermi Energy is inside the conduction or valence band. Here: degenerate means having the same energy (like in Quantum Mechanics).

Dimerisation in other polymers

pera-terphenyl

non-degenerate

Solitons

positive wall

negative wall

positive wall

SOLITON

ANTI-SOLITON

SOLITON S

order parameter for the physical displacement of n-th atom (u_n): $\phi_n = (-1)^n u_n$

State distribution in solitons

typical dimer

neutral SOLITON q=0

negative SOLITON q = -e

positive SOLITON q = +e

filled state
---- empty state

spin $s = \pm \frac{1}{2}$

spin s = 0

spin s = 0

$S - \overline{S}$ configurations

S	Ī	total charge	interaction	
+e	-e	0	annihilation	
-е	+e	U		
+e	+e	+2e large		
-е	-e	-2e	separation	
+e	0	40	bound state	
0	+e	+e		
-е	0		(polaron)	
0	-е	-e		

Polarons

- quasiparticle
- bound state of an $S-\overline{S}$ pair
- created by structural deformation
- moving with the structural deformation
- spin $\pm 1/2$ (like in e/h)
- carries charge and spin

positive POLARON

$$q = +\epsilon$$

negative POLARON

Excitons

Excitons

- quasiparticle
- bound excited state of electron and hole
- held together by Coulomb interaction of e-h

Wannier exciton

- weak coupling
- binding energy ~10 meV
- large distance between e/h (~10 nm)
- typical in inorganic semiconductors

Frenkel exciton

- strong coupling between e/h
- binding energy 0.2-1 eV
- small distance between e/h
 (~1 nm) (comparable with
 lattice spacing)
- typical for organic semiconductors

PHAS0058, Lectu

Singlet-triplet splitting

- ground state is usually a singlet
- triplet population is 3 times larger
- introduces further energy level splitting

singlet

triplet

- exchange energy usually contains a polaronic contribution
- spin-orbit coupling can enable triplets emission (e.g. heavy atom)

Transitions

Spin transitions

- optical transitions only allowed within manifolds
- non-radiative transitions between manifolds are frequent (Intersystem Crossing)
- each state additionally split into a manifold of vibrational states

Simplified scheme – Jablonski diagram

- 3 --> Phosphorescence
- 4 vibrational relaxation
- S --- Non-radiative relaxation
- ⑥ ---▶ Intersystem crossing
- ⑦ ---▶ Quenching
- Reverse intersystem crossing

Timescales:

- absorption: fs or less
 - internal conversion: 10⁻¹⁴-10⁻¹¹ s
- vibrational relaxation: <10⁻¹² s
- fluorescence (after) few ns
- phosphorescence: 10⁻³-10² s

Lifetimes:

- singlet S1: 10^{-9} - 10^{-7} s

Spectroscopy of OSc

Transition rates

$$dN = kNdt$$

$$k = k_r + k_{nr}$$

$$k_{nr} = \sum_{i} k_{nri}$$

$$N = N_0 e^{-kt} = N_0 e^{-\frac{t}{\tau}}$$

- N population of the excited state
- dN no. of excited states decaying in a time interval dt
- k decay rate
- k_r = radiative decay
- k_{nr} non-radiative decay
- i individual non-radiative channels
- τ decay time (lifetime) of the excited state
- N_0 initial population (at t=0)
- L luminescence

$$L = k_r N = k_r N_0 e^{-kt} = k_r N_0 e^{-\frac{t}{\tau}}$$

Photoluminescence Quantum Efficiency (PLQE)

$$L = k_r N = k_r N_0 e^{-kt} = k_r N_0 e^{-\frac{t}{\tau}}$$

$$\eta = PLQY = \frac{emitted\ photons}{absorbed\ photons} = \frac{emitted\ photons}{generated\ singlets}$$

$$\eta = \frac{k_r}{k_r + k_{nr}}$$

to maximise PLQE: reduce k_{nr} and increase k_r

Stokes Shift

Temperature dependence

as temperature increases:

- average twist angle along the chain increases
- conjugation decreases
- energy gap increases
- absorption and emission are blueshifted

Transfer of charges

Transition vs. transfer

transition: within the same atom/molecule

transfer: between molecules (donor and acceptor)

Förster Transfer

- dipole-dipole energy transfer
- non-radiative, only for spin-allowed transitions
- requires spectral overlap of emission (donor) and absorption (acceptor) spectrum
- long-range: 10 nm

$$k_{ET} \sim \frac{1}{\tau_d} \left(\frac{r_0}{r}\right)^{\epsilon}$$

k - transfer rate

r – distance between donor and acceptor

 τ_d – lifetime of the excited state of donor

r₀ – Förster radius

Dexter Transfer

- diffusion direct charge transfer between excitons
- tunnelling of electrons, i.e. two charges moving between molecules
- two exchanges do not need to be simultaneous
- net transfer of excitation energy
- spin is unimportant
- short-range: 2nm

$$k_{ET} \sim e^{-\frac{21}{L}}$$

k - transfer rate

r – distance between donor and acceptor

L – van der Waals radii

Marcus Charge-Transfer theory

$$k = \frac{J^2}{\hbar} \sqrt{\frac{\pi}{\lambda k_B T}} \exp\left(-\frac{(\lambda + G_0)^2}{4\lambda k_B T}\right)$$

- k charge-transfer rate
- J transfer integral
- λ reorganisation energy
 - ΔG_0 change of total Gibbs free energy

for crystals ΔG_0 =0 and the equation becomes:

$$k = \frac{J^2}{\hbar} \sqrt{\frac{\pi}{\lambda k_B T}} \exp\left(-\frac{\lambda}{4k_B T}\right)$$

- usually unipolar (one charge preferred over the other)
- often directional (molecule/chain orientation governing conjugation)

Charge transfer summary

Aspect	Markus Charge Transfer	Förster Transfer (FRET)	Dexter Transfer
Mechanism	Electron/hole hopping	Dipole-dipole interaction	Electron exchange
Nature of Transfer	Charge transfer	Energy transfer	Energy transfer via charge exchange
Range	Medium (~nm range)	Long (1–10 nm)	Short (<2 nm)
Dependence	Free energy, V , λ	Spectral overlap, distance	Wavefunction overlap

Properties vs. applications

property	meaning	important for:
mobility	how easily can charge move through the material?	OFET
recombination	how easy is to separate an exciton?	PV
luminescence	how efficient is radiative recombination?	OLED

Summary

- Organic = carbon-based
- hybridization to π/π^* orbitals results in creation of a band gap
- HOMO/LUMO affected by conjugation length
- intra- and inter-molecular alignment important
- limited free charge transport (excitons and polarons)

Next week:

Organic Light Emitting Diodes (OLEDs)

Basic semiconducting devices (on Moodle)