On the probability that a group satisfies a law

Mohammad Farrokhi Derakhshandeh Ghouchan

Muroran Institute of Technology

Research on Finite Groups and Their Representations, Vertex Operator Algebras, and Algebraic Combinatorics Kyoto University, RIMS December 19, 2014

Definition

Let G be a finite group, $g \in G$ be a fixed element and $w \in F_n$ be a nontrivial word. Then the probability that a randomly chosen n-tuples of elements of G satisfies w = g is defined by

$$P(G, w = g) = \frac{|\{(g_1, \ldots, g_n) \in G^n : w(g_1, \ldots, g_n) = g\}|}{|G|^n}.$$

If g = 1 is the identity element of G, then we simply write P(G, w) instead of P(G, w = 1).

Definition

The *commutativity degree* of a finite group is defined to be P(G, [x, y]) and it is denoted by d(G).

¹P. Erdös and P. Turan, On some problems of a statistical group-theory, IV, *Acta Math. Hungar.* **19**(3-4) (1968), 413–435.

Definition

The *commutativity degree* of a finite group is defined to be P(G, [x, y]) and it is denoted by d(G).

Theorem (Erdös and Turan, 1968¹)

If G is a finite group, then

$$d(G)=\frac{k(G)}{|G|},$$

where k(G) denotes the number of conjugacy classes of G.

¹P. Erdös and P. Turan, On some problems of a statistical group-theory, IV, *Acta Math. Hungar.* **19**(3-4) (1968), 413–435.

Put $\mathcal{D} := \{d(G) : G \text{ is a finite group}\}.$

¹K. S. Joseph, *Commutativity in non-abelian groups*, Ph.D. Thesis, UCLA (1969).

²K. S. Joseph, Several conjectures on commutativity in algebraic structures, *Amer. Math. Monthly* **84** (1977), 550–551.

Put $\mathcal{D} := \{d(G) : G \text{ is a finite group}\}.$

Conjecture (Joseph, 1977^{1,2})

 $^{^{1}\}text{K. S. Joseph}$, Commutativity in non-abelian groups, Ph.D. Thesis, UCLA (1969).

²K. S. Joseph, Several conjectures on commutativity in algebraic structures, *Amer. Math. Monthly* **84** (1977), 550–551.

Put $\mathcal{D} := \{d(G) : G \text{ is a finite group}\}.$

Conjecture (Joseph, 1977^{1,2})

(1) Every limit point of \mathcal{D} is rational.

 $^{^{1}\}text{K. S. Joseph}$, Commutativity in non-abelian groups, Ph.D. Thesis, UCLA (1969).

²K. S. Joseph, Several conjectures on commutativity in algebraic structures, *Amer. Math. Monthly* **84** (1977), 550–551.

Put $\mathcal{D} := \{d(G) : G \text{ is a finite group}\}.$

Conjecture (Joseph, 1977^{1,2})

- (1) Every limit point of \mathcal{D} is rational.
- (2) If I is a limit point of \mathcal{D} , then there exists $\epsilon = \epsilon_I > 0$ such that $\mathcal{D} \cap (I \epsilon, I) = \emptyset$.

¹K. S. Joseph, *Commutativity in non-abelian groups*, Ph.D. Thesis, UCLA (1969).

²K. S. Joseph, Several conjectures on commutativity in algebraic structures, *Amer. Math. Monthly* **84** (1977), 550–551.

Put $\mathcal{D} := \{d(G) : G \text{ is a finite group}\}.$

Conjecture (Joseph, 1977^{1,2})

- (1) Every limit point of \mathcal{D} is rational.
- (2) If I is a limit point of \mathcal{D} , then there exists $\epsilon = \epsilon_I > 0$ such that $\mathcal{D} \cap (I \epsilon, I) = \emptyset$.
- (3) $\mathcal{D} \cup \{0\}$ is a closed subset of \mathbb{R} .

¹K. S. Joseph, *Commutativity in non-abelian groups*, Ph.D. Thesis, UCLA (1969).

²K. S. Joseph, Several conjectures on commutativity in algebraic structures, *Amer. Math. Monthly* **84** (1977), 550–551.

Put $\mathcal{D}' := \{d(S) : S \text{ is a finite semigroup}\}$

¹B. Givens, The probability that two semigroup elements commute can be almost anything, *College Math. J.* **39**(5) (2008), 399–400.

²V. Ponomarenko and N. Selinski, Two semigroup elements can commute with any positive rational probability, *College Math. J.* **43**(4) (2012), 334–336.

Put $\mathcal{D}' := \{d(S) : S \text{ is a finite semigroup}\}$

Theorem (Givens, 2008¹)

The set \mathcal{D}' is dense in [0,1].

¹B. Givens, The probability that two semigroup elements commute can be almost anything, *College Math. J.* **39**(5) (2008), 399–400.

²V. Ponomarenko and N. Selinski, Two semigroup elements can commute with any positive rational probability, *College Math. J.* **43**(4) (2012), 334–336.

Put $\mathcal{D}' := \{d(S) : S \text{ is a finite semigroup}\}$

Theorem (Givens, 2008¹)

The set \mathcal{D}' is dense in [0,1].

Theorem (Ponomarenko and Selinski, 2012²)

We have $\mathcal{D}' = \mathbb{Q} \cap [0,1]$.

¹B. Givens, The probability that two semigroup elements commute can be almost anything, *College Math. J.* **39**(5) (2008), 399–400.

²V. Ponomarenko and N. Selinski, Two semigroup elements can commute with any positive rational probability, *College Math. J.* **43**(4) (2012), 334–336.

Theorem (Joseph, 1969¹; Gustafson, 1973²)

If G is a finite (rep. compact) non-abelian group, then

$$d(G) \leq \frac{5}{8}$$

and the equality holds if and only if $G/Z(G) \cong C_2 \times C_2$.

¹K. S. Joseph, *Commutativity in non-abelian groups*, Ph.D. thesis, UCLA (1969).

²W. H. Gustafson, What is the probability that two group elements commute? *Amer. Math. Monthly* **80** (1973), 1031–1034.

Theorem (Rusin, 1979¹)

The values of d(G) above $\frac{11}{32}$ are precisely

$$\frac{3}{8}, \frac{25}{64}, \frac{2}{5}, \frac{11}{27}, \frac{7}{16}, \frac{1}{2}, \dots, \frac{1}{2}\left(1 + \frac{1}{2^{-2n}}\right), \dots, \frac{1}{2}\left(1 + \frac{1}{2^2}\right), 1$$

¹D. Rusin, What is the probability that two elements of a finite group commute, *Pacific. J. Math.* **82**(1) (1979), 237–247.

Theorem (Das and Nath, 2011¹)

Let G be a group of odd order. The values of d(G) above $\frac{11}{75}$ are precisely

$$\frac{11}{75}, \frac{29}{189}, \frac{3}{19}, \frac{7}{39}, \frac{121}{729}, \frac{17}{81}, \frac{55}{343}, \frac{5}{21}, \dots, \frac{1}{5} \left(1 + \frac{4}{5^{-2n}} \right), \dots, \frac{1}{5} \left(1 + \frac{4}{5^2} \right), \dots, \frac{1}{3} \left(1 + \frac{2}{3^2} \right), \dots, \frac{1}{3} \left(1 + \frac{2}{3^2} \right), 1$$

¹A. K. Das and R. K. Nath, A characterisation of certain finite groups of odd order, Math. Proc. Royal. Irish Acad 111A(2) (2011), 69-78.

Theorem (Hegarty, 2013¹)

If $l \in (\frac{2}{9}, 1]$ is a limit point of \mathcal{D} , then

¹P. Hegarty, Limit points in the range of the commuting probability function on finite groups, *J. Group Theory* **16**(2) (2013), 235–247.

Theorem (Hegarty, 2013¹)

If $l \in (\frac{2}{9}, 1]$ is a limit point of \mathcal{D} , then

(i) I is rational, and

¹P. Hegarty, Limit points in the range of the commuting probability function on finite groups, *J. Group Theory* **16**(2) (2013), 235–247.

Theorem (Hegarty, 2013¹)

If $l \in (\frac{2}{9}, 1]$ is a limit point of \mathcal{D} , then

- (i) I is rational, and
- (ii) there exists an $\epsilon = \epsilon_l > 0$ such that $\mathcal{D} \cap (l \epsilon_l, l) = \emptyset$.

¹P. Hegarty, Limit points in the range of the commuting probability function on finite groups, J. Group Theory 16(2) (2013), 235-247.

Theorem (Neumann, 1989¹)

For any real number r, there exists numbers $n_1 = n_r(r)$ and $n_2 = n_2(r)$ such that if G is any finite group in which

$$d(G) \geq \frac{1}{r}$$

then there exists normal subgroups H, K of G with $H \leq K$ such that K/H is abelian,

$$[G:K] \leq n_1 \text{ and } |H| \leq n_2.$$

¹P. M. Neumann, Two combinatorial problems in group theory, *Bull. London Math. Soc.* **21** (1989), 456–458.

Theorem (Lévai and Pyber, 2000¹)

Let G be a profinite group with positive commutitivity degree. Then G is abelian-by-finite.

¹L. Lévai and L. Pyber, Profinite groups with many commuting pairs or involutions, *Arch. Math.* **75** (2000), 1–7.

Theorem (Rusin, 1979¹; Lescot, 1995²)

Let G be a finite group. Then

¹D. Rusin, What is the probability that two elements of a finite group commute, *Pacific. J. Math.* **82**(1) (1979), 237–247.

²P. Lescot, Isoclinism classes and Commutativity degrees of finite groups, *J. Algebra* **177** (1995), 847–869.

Theorem (Rusin, 1979¹; Lescot, 1995²)

Let G be a finite group. Then

(i) If $d(G) > \frac{1}{2}$, then G is isoclinic with an extra special 2-group. In particular, G is nilpotent.

¹D. Rusin, What is the probability that two elements of a finite group commute, *Pacific. J. Math.* **82**(1) (1979), 237–247.

²P. Lescot, Isoclinism classes and Commutativity degrees of finite groups, *J. Algebra* **177** (1995), 847–869.

Theorem (Rusin, 1979¹; Lescot, 1995²)

Let G be a finite group. Then

- (i) If $d(G) > \frac{1}{2}$, then G is isoclinic with an extra special 2-group. In particular, G is nilpotent.
- (ii) If $d(G) = \frac{1}{2}$, then G is isoclinic to S_3 .

¹D. Rusin, What is the probability that two elements of a finite group commute, *Pacific. J. Math.* **82**(1) (1979), 237–247.

²P. Lescot, Isoclinism classes and Commutativity degrees of finite groups, *J. Algebra* **177** (1995), 847–869.

Theorem (Barry, MacHale and Ní Shé, 2006¹)

Let G be a finite group. If $d(G) > \frac{1}{3}$, then G is supersolvable.

¹F. Barry, D. MacHale and Á. Ní Shé, Some supersolvability conditions for finite groups, *Math. Proc. Royal Irish Acad.* **106**A(2) (2006), 163–177.

Theorem (Barry, MacHale and Ní Shé, 2006 1)

Let G be a finite group. If $d(G) > \frac{1}{3}$, then G is supersolvable.

Theorem (Barry, MacHale and Ní Shé, 2006¹)

Let G be a finite group of odd order. If $d(G) > \frac{11}{75}$, then G is supersolvable.

¹F. Barry, D. MacHale and Á. Ní Shé, Some supersolvability conditions for finite groups, *Math. Proc. Royal Irish Acad.* **106**A(2) (2006), 163–177.

Theorem (Lescot, Nguyen and Yang, 2014¹)

Let G be a finite group. If $d(G) > \frac{5}{16}$, then

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Lescot, Nguyen and Yang, 2014^1)

Let G be a finite group. If $d(G) > \frac{5}{16}$, then

(i) G is supersolvable,

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Lescot, Nguyen and Yang, 2014¹)

Let G be a finite group. If $d(G) > \frac{5}{16}$, then

- (i) G is supersolvable,
- (ii) G is isoclinic to A_4 , or

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Lescot, Nguyen and Yang, 2014^1)

Let G be a finite group. If $d(G) > \frac{5}{16}$, then

- (i) G is supersolvable,
- (ii) G is isoclinic to A_4 , or
- (iii) G/Z(G) is isoclinic to A_4 .

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Lescot, Nguyen and Yang, 2014¹)

Let G be a finite group. If $d(G) > \frac{5}{16}$, then

- (i) G is supersolvable,
- (ii) G is isoclinic to A_4 , or
- (iii) G/Z(G) is isoclinic to A_4 .

Corollary (Lescot, Nguyen and Yang, 2014¹)

If G is a finite group. Then $d(G) = \frac{1}{3}$ if and only if G is isoclinic to A_4 .

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, Monatsh. Math. 174 (2014), 567-576.

Theorem (Lescot, Nguyen and Yang, 2014^1)

Let G be a finite group of odd order. If $d(G) > \frac{35}{243}$, then

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Lescot, Nguyen and Yang, 2014^1)

Let G be a finite group of odd order. If $d(G) > \frac{35}{243}$, then

(i) G is supersolvable, or

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Lescot, Nguyen and Yang, 2014¹)

Let G be a finite group of odd order. If $d(G) > \frac{35}{243}$, then

- (i) G is supersolvable, or
- (ii) G is isoclinic to $(C_5 \times C_5) \rtimes C_3$.

¹P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, *Monatsh. Math.* **174** (2014), 567–576.

Theorem (Heffernan, MacHale and Ní Shé, 2014¹)

Let G be a finite group. If $d(G) > \frac{7}{24}$, then G is metabelian.

¹R. Heffernan, D. MacHale and Á. Ní Shé, Restrictions on commutativity ratios in finite groups, *Int. J. Group Theory* **3**(4) (2014), 1–12.

Theorem (Heffernan, MacHale and Ní Shé, 2014¹)

Let G be a finite group. If $d(G) > \frac{7}{24}$, then G is metabelian.

Theorem (Heffernan, MacHale and Ní Shé, 2014¹)

Let G be a finite group of odd order. If $d(G) > \frac{83}{675}$, then G' is nilpotent.

¹R. Heffernan, D. MacHale and Á. Ní Shé, Restrictions on commutativity ratios in finite groups, *Int. J. Group Theory* **3**(4) (2014), 1–12.

Theorem (Guralnick and Robinson, 2006¹)

Let G be a finite group. Then

$$d(G) \leq d(F(G))^{\frac{1}{2}}[G:F(G)]^{-\frac{1}{2}} \leq [G:F(G)]^{-\frac{1}{2}}.$$

In particular,

$$d(G) \rightarrow 0$$
 as $[G:F(G)] \rightarrow \infty$.

¹R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, *J. Algebra* **300** (2006), 509–528.

Theorem (Guralnick and Robinson, 2006¹)

If G is a finite group, then $d(G) \leq [G : sol(G)]^{-\frac{1}{2}}$ with equality if and only if G is abelian.

¹R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, *J. Algebra* **300** (2006), 509–528.

Theorem (Guralnick and Robinson, 2006¹)

If G is a finite group, then $d(G) \leq [G : sol(G)]^{-\frac{1}{2}}$ with equality if and only if G is abelian.

Theorem (Guralnick and Robinson, 2006¹)

If G is a finite group such that $d(G) > \frac{3}{40}$, then either G is solvable, or $G \cong A_5 \times C_2^n$ $(n \ge 1)$, in which case $d(G) = \frac{1}{12}$.

¹R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, *J. Algebra* **300** (2006), 509–528.

Theorem (Guralnick and Robinson, 2006¹)

Let G be a finite solvable groups of derived length $d \ge 4$. Then

$$d(G) \leq \frac{4d-7}{2^{d+1}}.$$

¹R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, *J. Algebra* **300** (2006), 509–528.

Theorem (Guralnick and Robinson, 2006¹)

Let G be a finite solvable groups of derived length $d \ge 4$. Then

$$d(G) \leq \frac{4d-7}{2^{d+1}}.$$

Theorem (Guralnick and Robinson, 2006¹)

Let G be a finite p-group of derived length $d \ge 2$. then

$$d(G) \leq \frac{p^d + p^{d-1} - 1}{p^{2d-1}}.$$

¹R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, *J. Algebra* **300** (2006), 509–528.

Definition

A *positive law* in groups is law w=1, which can be stated as an equation of the form u=v, where u and v are words in a given free semigroup, that is, $w=uv^{-1}$ or $u^{-1}v$.

Definition

A *positive law* in groups is law w=1, which can be stated as an equation of the form u=v, where u and v are words in a given free semigroup, that is, $w=uv^{-1}$ or $u^{-1}v$.

Example

The commutator law [x, y] = 1 is a positive law as it is equivalent to the equation xy = yx.

Theorem (Tărnăuceanu, 2009¹)

Let $G = D_{2n}$ be the dihedral group of order 2n. Then

$$P(L(G), xy = yx) = \frac{\tau(n)^2 + 2\tau(n)\sigma(n) + 2^{\Omega(n)}\tau(n)\sigma(n)}{(\tau(n) + \sigma(n))^2}$$

¹M. Tărnăuceanu, Subgroup commutativity degrees of finite groups, *J. Algebra* **321**(9) (2009), 2508–2520.

Theorem (Tărnăuceanu, 2009¹)

Let $G = D_{2n}$ be the dihedral group of order 2n. Then

$$P(L(G), xy = yx) = \frac{\tau(n)^2 + 2\tau(n)\sigma(n) + 2^{\Omega(n)}\tau(n)\sigma(n)}{(\tau(n) + \sigma(n))^2}$$

Corollary (Tărnăuceanu, 2009¹)

$$P(L(D_{2^{n}}), xy = yx) = \frac{(n-2)2^{n+2} + n2^{n+1} + (n-1)^{2} + 8}{(n-1+2^{n})^{2}} \to 0$$

$$P(L(Q_{2^{n}}), xy = yx) = \frac{(n-3)2^{n+1} + n2^{n} + (n-1)^{2} + 8}{(n-1+2^{n-1})^{2}} \to 0$$

$$P(L(SD_{2^{n}}), xy = yx) = \frac{(n-3)2^{n+1} + n2^{n} + (3n-2)2^{n-1} + (n-1)^{2} + 8}{(n-1+3\cdot 2^{n-2})^{2}} \to 0$$

¹M. Tărnăuceanu, Subgroup commutativity degrees of finite groups, *J. Algebra* **321**(9) (2009), 2508–2520.

Theorem (Farrokhi, 2013¹; Farrokhi and Saeedi, 2013^{2,3})

If
$$G = PSL_2(p^n)$$
, then

$$P(L(G), xy = yx) = \frac{1 + \mathcal{N}'_1 + \mathcal{N}'_2 + \mathcal{N}'_3 + \mathcal{N}'_4 + \mathcal{N}'_5 + \mathcal{N}'_6 + \mathcal{N}'_7 + \mathcal{N}'_8}{(1 + \mathcal{N}_1 + \mathcal{N}_2 + \mathcal{N}_3 + \mathcal{N}_4 + \mathcal{N}_5 + \mathcal{N}_6 + \mathcal{N}_7 + \mathcal{N}_8)^2},$$

in which

¹M. Farrokhi D. G., Factorization numbers of finite abelian groups, Int. J. Group Theory 2(2) (2013), 1-8.

²M. Farrokhi D. G. and F. Saeedi, Factorization numbers of some finite groups, Glasgow Math. J. 54 (2012), 345-354.

³M. Farrokhi D. G. and F. Saeedi, Subgroup permutability degree of PSL(2, pⁿ), Glasgow Math. J. **55** (2013), 581–590.

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \ \mathcal{N}_2 = \frac{\varrho^n(\varrho^n+1)}{2} \left(\tau\left(\frac{\varrho^n-1}{d}\right)-1\right) + \frac{\varrho^n(\varrho^n-1)}{2} \left(\tau\left(\frac{\varrho^n+1}{d}\right)-1\right),$$

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \quad \mathcal{N}_2 = \frac{\rho^n(\rho^n+1)}{2} \left(\tau\left(\frac{\rho^n-1}{d}\right)-1\right) + \frac{\rho^n(\rho^n-1)}{2} \left(\tau\left(\frac{\rho^n+1}{d}\right)-1\right),$$

(3)
$$\mathcal{N}_3 = \frac{1}{2} |G| \left(\frac{d}{p^n - 1} \sigma \left(\frac{p^n - 1}{d} \right) + \frac{d}{p^n + 1} \sigma \left(\frac{p^n + 1}{d} \right) - 2 \right),$$

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \quad \mathcal{N}_2 = \frac{\rho^n(\rho^n+1)}{2} \left(\tau\left(\frac{\rho^n-1}{d}\right)-1\right) + \frac{\rho^n(\rho^n-1)}{2} \left(\tau\left(\frac{\rho^n+1}{d}\right)-1\right),$$

(3)
$$\mathcal{N}_3 = \frac{1}{2} |G| \left(\frac{d}{p^n - 1} \sigma \left(\frac{p^n - 1}{d} \right) + \frac{d}{p^n + 1} \sigma \left(\frac{p^n + 1}{d} \right) - 2 \right),$$

(4)
$$\mathcal{N}_4 = \frac{1}{12}|G|$$
 if $p > 2$ and zero otherwise,

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \quad \mathcal{N}_2 = \frac{p^n(p^n+1)}{2} \left(\tau\left(\frac{p^n-1}{d}\right)-1\right) + \frac{p^n(p^n-1)}{2} \left(\tau\left(\frac{p^n+1}{d}\right)-1\right),$$

(3)
$$N_3 = \frac{1}{2} |G| \left(\frac{d}{p^n - 1} \sigma \left(\frac{p^n - 1}{d} \right) + \frac{d}{p^n + 1} \sigma \left(\frac{p^n + 1}{d} \right) - 2 \right),$$

- (4) $\mathcal{N}_4 = \frac{1}{12} |G|$ if p > 2 and zero otherwise,
- (5) $\mathcal{N}_5=rac{1}{12}|\mathcal{G}|$ if $p^n\equiv -1\pmod 8$ and zero otherwise,

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \quad \mathcal{N}_2 = \frac{\rho^n(\rho^n+1)}{2} \left(\tau\left(\frac{\rho^n-1}{d}\right)-1\right) + \frac{\rho^n(\rho^n-1)}{2} \left(\tau\left(\frac{\rho^n+1}{d}\right)-1\right),$$

(3)
$$\mathcal{N}_3 = \frac{1}{2} |G| \left(\frac{d}{p^n - 1} \sigma \left(\frac{p^n - 1}{d} \right) + \frac{d}{p^n + 1} \sigma \left(\frac{p^n + 1}{d} \right) - 2 \right),$$

- (4) $\mathcal{N}_4 = \frac{1}{12} |G|$ if p > 2 and zero otherwise,
- (5) $\mathcal{N}_5 = \frac{1}{12}|G|$ if $p^n \equiv -1 \pmod{8}$ and zero otherwise,
- (6) $\mathcal{N}_6 = \frac{1}{30}|G|$ if $p^n \equiv \pm 1 \pmod{10}$ and zero otherwise,

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \quad \mathcal{N}_2 = \frac{p^n(p^n+1)}{2} \left(\tau\left(\frac{p^n-1}{d}\right)-1\right) + \frac{p^n(p^n-1)}{2} \left(\tau\left(\frac{p^n+1}{d}\right)-1\right),$$

(3)
$$\mathcal{N}_3 = \frac{1}{2} |G| \left(\frac{d}{p^n - 1} \sigma \left(\frac{p^n - 1}{d} \right) + \frac{d}{p^n + 1} \sigma \left(\frac{p^n + 1}{d} \right) - 2 \right),$$

- (4) $\mathcal{N}_4 = \frac{1}{12} |G|$ if p > 2 and zero otherwise,
- (5) $\mathcal{N}_5 = \frac{1}{12} |G|$ if $p^n \equiv -1 \pmod{8}$ and zero otherwise,
- (6) $\mathcal{N}_6 = \frac{1}{30} |G|$ if $p^n \equiv \pm 1 \pmod{10}$ and zero otherwise,

(7)
$$\mathcal{N}_7 = p^n(p^n + 1) \left(\sum_{m|n} \alpha_{p,m} \beta_{p^m,\frac{n}{m}} - \beta_{p,n} \right)$$
, where

$$\alpha_{p,m} = |\{h : dh|p^m - 1, dh \nmid p^k - 1, k < m, k|m\}|,$$

is the number of generators of the field $GF(p^m)$ in $GF(p^m)^d$ and

$$\beta_{p^m,\frac{n}{m}} = \frac{1}{p^n} \sum_{l=1}^{\frac{m}{m}} \left(\frac{\frac{n}{m}}{l}\right)_{p^m} p^{ml} = \frac{1}{|V|} \sum_{0 \neq U \leq V} |U|,$$

in which $V = GF(p^n)/GF(p^m)$ is a vector space of dimension n/m over a field of order p^m .

(1)
$$\mathcal{N}_1 = (p^n + 1) \sum_{m=1}^n \binom{n}{m}_p$$

$$(2) \quad \mathcal{N}_2 = \frac{p^n(p^n+1)}{2} \left(\tau\left(\frac{p^n-1}{d}\right)-1\right) + \frac{p^n(p^n-1)}{2} \left(\tau\left(\frac{p^n+1}{d}\right)-1\right),$$

(3)
$$\mathcal{N}_3 = \frac{1}{2} |G| \left(\frac{d}{p^n - 1} \sigma \left(\frac{p^n - 1}{d} \right) + \frac{d}{p^n + 1} \sigma \left(\frac{p^n + 1}{d} \right) - 2 \right),$$

- (4) $\mathcal{N}_4 = \frac{1}{12} |G|$ if p > 2 and zero otherwise,
- (5) $\mathcal{N}_5 = \frac{1}{12}|G|$ if $p^n \equiv -1 \pmod{8}$ and zero otherwise,
- (6) $\mathcal{N}_6 = \frac{1}{30} |G|$ if $p^n \equiv \pm 1 \pmod{10}$ and zero otherwise,

(7)
$$\mathcal{N}_7 = p^n(p^n + 1) \left(\sum_{m|n} \alpha_{p,m} \beta_{p^m,\frac{n}{m}} - \beta_{p,n} \right)$$
, where

$$\alpha_{p,m} = |\{h : dh|p^m - 1, dh \nmid p^k - 1, k < m, k|m\}|,$$

is the number of generators of the field $GF(p^m)$ in $GF(p^m)^d$ and

$$\beta_{p^m,\frac{n}{m}} = \frac{1}{p^n} \sum_{l=1}^{\frac{n}{m}} {\frac{n}{m} \choose l}_{p^m} p^{ml} = \frac{1}{|V|} \sum_{0 \neq U \leq V} |U|,$$

in which $V = GF(p^n)/GF(p^m)$ is a vector space of dimension n/m over a field of order p^m .

(8)
$$N_8 = |G| \left(\sum_{m|n} \frac{1}{|PSL(2,p^m)|} + \sum_{2m|n} \frac{1}{|PSL(2,p^m)|} \right)$$

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(2)
$$F_2(C_n) = \prod_{p^{\alpha} || n} (2\alpha + 1)$$
,

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(2)
$$F_2(C_n) = \prod_{p^{\alpha} || n} (2\alpha + 1),$$

$$(3) \quad \textit{F}_2(\textit{D}_{2n}) = \begin{cases} \phi_n + 2\delta_n, & \text{odd } n, \\ \phi_n + 2\phi_{\frac{n}{2}} + 2\delta_n, & \text{even } n, \end{cases}, \text{ where}$$

$$\phi_n = \prod_{\rho^{\alpha} \parallel n} \left(2 \frac{\rho^{\alpha+1}-1}{\rho-1} - 1 \right) \text{ and } \delta_n = \prod_{\rho^{\alpha} \parallel n} \left(\alpha + \frac{\rho^{\alpha+1}-1}{\rho-1} \right),$$

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(2)
$$F_2(C_n) = \prod_{p^{\alpha} || n} (2\alpha + 1),$$

$$(3) \quad \textit{F}_2(\textit{D}_{2n}) = \begin{cases} \phi_n + 2\delta_n, & \text{odd } n, \\ \phi_n + 2\phi_{\frac{n}{2}} + 2\delta_n, & \text{even } n, \end{cases}, \text{ where}$$

$$\phi_n = \prod_{\rho^{\alpha} \parallel n} \left(2 \frac{\rho^{\alpha+1} - 1}{\rho - 1} - 1 \right) \text{ and } \delta_n = \prod_{\rho^{\alpha} \parallel n} \left(\alpha + \frac{\rho^{\alpha+1} - 1}{\rho - 1} \right),$$

(4)
$$F_2(A_4) = 27$$
,

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(2)
$$F_2(C_n) = \prod_{p^{\alpha} || n} (2\alpha + 1),$$

$$(3) \quad \textit{F}_2(\textit{D}_{2n}) = \begin{cases} \phi_n + 2\delta_n, & \text{odd } n, \\ \phi_n + 2\phi_{\frac{n}{2}} + 2\delta_n, & \text{even } n, \end{cases}, \text{ where}$$

$$\phi_n = \prod_{\rho^{\alpha} \parallel n} \left(2 \frac{\rho^{\alpha+1} - 1}{p-1} - 1 \right) \text{ and } \delta_n = \prod_{\rho^{\alpha} \parallel n} \left(\alpha + \frac{\rho^{\alpha+1} - 1}{p-1} \right),$$

(4)
$$F_2(A_4) = 27$$
,

(5)
$$F_2(S_4) = 177$$
,

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(2)
$$F_2(C_n) = \prod_{p^{\alpha} || n} (2\alpha + 1),$$

$$(3) \quad \textit{F}_2(\textit{D}_{2n}) = \begin{cases} \phi_n + 2\delta_n, & \text{odd } n, \\ \phi_n + 2\phi_{\frac{n}{2}} + 2\delta_n, & \text{even } n, \end{cases}, \text{ where}$$

$$\phi_n = \prod_{p^{\alpha} \parallel n} \left(2 \frac{p^{\alpha+1}-1}{p-1} - 1 \right) \text{ and } \delta_n = \prod_{p^{\alpha} \parallel n} \left(\alpha + \frac{p^{\alpha+1}-1}{p-1} \right),$$

(4)
$$F_2(A_4) = 27$$
,

(5)
$$F_2(S_4) = 177$$
,

(6)
$$F_2(A_5) = 237$$
,

and $\mathcal{N}_i' = \sum_{S \in L_i^*(G)} \mathcal{N}_S F_2(S)$, in which $L_i^*(G)$ is the set of representatives of isomorphism classes of subgroups of G of type (i), and

(1)
$$F_2(C_p^n) = \sum_{0 \le i+j \le n} p^{ij} \begin{bmatrix} n \\ i,j \end{bmatrix}_p$$

(2)
$$F_2(C_n) = \prod_{p^{\alpha} || n} (2\alpha + 1),$$

$$(3) \quad F_2(D_{2n}) = \begin{cases} \phi_n + 2\delta_n, & \text{odd } n, \\ \phi_n + 2\phi_{\frac{n}{2}} + 2\delta_n, & \text{even } n, \end{cases}, \text{ where}$$

$$\phi_n = \prod_{\rho^{\alpha} \parallel n} \left(2 \frac{p^{\alpha+1}-1}{p-1} - 1 \right) \text{ and } \delta_n = \prod_{\rho^{\alpha} \parallel n} \left(\alpha + \frac{p^{\alpha+1}-1}{p-1} \right),$$

- (4) $F_2(A_4) = 27$,
- (5) $F_2(S_4) = 177$
- (6) $F_2(A_5) = 237$,
- (7) $F_2(C_p^m \rtimes C_k) = \sum_{C_k = XY} \Xi_1(H, (E_{C_k}^{\times 2}); (E_X^{\times 2}), (E_Y^{\times 2})), \text{ where}$

$$\Xi_n(V,F;E_1,E_2) = \sum_{\substack{V = U_1 + U_2 \\ U_1/E_1 \leq V/E_1 \\ U_2/E_2 \leq V/E_2}} \left(\frac{|V|}{|U_1|} \cdot \frac{|V|}{|U_2|}\right)^n = \sum_{\substack{V = U_1 + U_2 \\ U_1/E_1 \leq V/E_1 \\ U_2/E_2 \leq V/E_2}} \frac{|V|^n}{|U_1 \cap U_2|^n},$$

where V is a vector space over the field F and E_1 , E_2 are subfields of F, and

Theorem (continued)			

$$(8.1) \quad F_2(PSL_2(\rho^n)) = \begin{cases} 2|L(PSL_2(\rho^n))| + 2\rho^n(\rho^{2n}-1)-1, & \rho=2, n>1, \\ 2|L(PSL_2(\rho^n))| + \rho^n(\rho^{2n}-1)-1, & \rho>2 \text{ and } (\rho^n-1)/2 \text{ is odd,} \\ p^n \neq 3, 7, 11, 19, 23, 59, & \text{and } (\rho^n-1)/2 \text{ is even,} \\ 2|L(PSL_2(\rho^n))| - 1, & \rho>2 \text{ and } (\rho^n-1)/2 \text{ is even,} \\ p^n \neq 5, 9, 29 \end{cases}$$

$$F_2(G) = 17, 27, 237, 1141, 2033, 4935, 17223, 48261, 68799, 780695$$
 if
$$p^n = 2, 3, 5, 7, 9, 11, 19, 23, 29, 59,$$
 respectively, and

$$(8.1) \quad F_2(PSL_2(p^n)) = \begin{cases} 2|L(PSL_2(p^n))| + 2p^n(p^{2n} - 1) - 1, & p = 2, n > 1, \\ 2|L(PSL_2(p^n))| + p^n(p^{2n} - 1) - 1, & p > 2 \text{ and } (p^n - 1)/2 \text{ is odd,} \\ p^n \neq 3, 7, 11, 19, 23, 59, & \text{and} \\ 2|L(PSL_2(p^n))| - 1, & p > 2 \text{ and } (p^n - 1)/2 \text{ is even,} \\ p^n \neq 5, 9, 29 \end{cases}$$

$$F_2(G) = 17, 27, 237, 1141, 2033, 4935, 17223, 48261, 68799, 780695$$

if $\rho^n = 2, 3, 5, 7, 9, 11, 19, 23, 29, 59,$ respectively, and

(8.2) $F_2(PGL_2(p^n)) = \begin{cases} 3p^n(p^{2n}-1) + 4|L(PGL_2(p^n))| - 2|L(PSL_2(p^n))| - 3, & n \text{ even or } p \equiv 1 \pmod 4, \\ 4p^n(p^{2n}-1) + 4|L(PGL_2(p^n))| - 2|L(PSL_2(p^n))| - 3, & n \text{ odd and } p \equiv 3 \pmod 4 \end{cases}$ if $p^n > 29$ and $F_2(G)$ equals

if p^n equals respectively.

$$3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29,$$

respectively

Theorem (Aivazidis, 2013¹)

We have

$$\lim_{n\to\infty} P(L(PSL_2(2^n)), xy = yx) = 0.$$

¹S. Aivazidis, The subgroup permutability degree of projective special linear groups over fields of even characteristic, *J. Group Theory* **16** (2013), 383–396.

²S. Aivazidis, On the subgroup permutability degree of the simple Suzuki groups, To appear in *Monatsh. Math.*

Theorem (Aivazidis, 2013¹)

We have

$$\lim_{n\to\infty} P(L(PSL_2(2^n)), xy = yx) = 0.$$

Theorem (Aivazidis, 2014²)

We have

$$\lim_{n \to \infty} P(L(Sz(2^{2n+1})), xy = yx) = 0.$$

¹S. Aivazidis, The subgroup permutability degree of projective special linear groups over fields of even characteristic, *J. Group Theory* **16** (2013), 383–396.

²S. Aivazidis, On the subgroup permutability degree of the simple Suzuki groups, To appear in *Monatsh. Math.*

Conjecture

Let G denotes a non-abelian finite simple group. Then

$$\lim_{|G|\to\infty} P(L(G), xy = yx) = 0.$$

Conjecture

Let G denotes a non-abelian finite simple group. Then

$$\lim_{|G|\to\infty} P(L(G), xy = yx) = 0.$$

Conjecture

Let G be a finite group. If

$$P(L(G), xy = yx) > P(L(A(5)), xy = yx) = \frac{861}{3481},$$

then G is solvable.

Theorem (Erfanian and Farrokhi, 2013¹)

Let G be a finite 3-metabelian group which is not a 2-Engel group. If $p = \min \pi(G)$, then

$$P(G, [x, y, y]) \le \frac{1}{p} + \left(1 - \frac{1}{p}\right) \frac{|L_2(G)|}{|G|}$$

and if $L_2(G) \leq G$, then

$$P(G,[x,y,y]) \leq \frac{2p-1}{p^2}.$$

Moreover, both of the upper bounds are sharp at any prime p.

¹A. Erfanian and M. Farrokhi D. G., On the probability of being a 2-Engel group, *Int. J. Group Theory* **2**(4) (2013), 31–38.

Theorem (Erfanian and Farrokhi, 2013¹)

Let G be a finite 3-metabelian group which is not a 2-Engel group. If $p = \min \pi(G)$, then

$$P(G, [x, y, y]) \le \frac{1}{p} + \left(1 - \frac{1}{p}\right) \frac{|L_2(G)|}{|G|}$$

and if $L_2(G) < G$, then

$$P(G,[x,y,y]) \leq \frac{2p-1}{p^2}.$$

Moreover, both of the upper bounds are sharp at any prime p.

Conjecture

If G is a finite non-2-Engel group, then $P(G, [x, y, y]) \leq \frac{13}{16}$.

¹A. Erfanian and M. Farrokhi D. G., On the probability of being a 2-Engel group, Int. J. Group Theory 2(4) (2013), 31-38.

Theorem (Erfanian and Farrokhi, 2013¹)

Let G be a finite 3-metabelian group which is not a 2-Engel group. If $p = \min \pi(G)$, then

$$P(G, [x, y, y]) \ge d(G) - (p-1)\frac{|Z(G)|}{|G|} + (p-1)\frac{k_G(L(G))}{|G|}$$

and if either G is a p-group or G' has a unique involution, then

$$P(G, [x, y, y]) \ge pd(G) - (p-1)\frac{|Z(G)|}{|G|}.$$

Moreover, both of the lower bounds are sharp at any prime p.

¹A. Erfanian and M. Farrokhi D. G., On the probability of being a 2-Engel group, Int. J. Group Theory 2(4) (2013), 31–38.

Theorem (Mann and Martinez, 1998¹)

Let L be a finite Lie algebra of characteristic p, which is not n-Engel. Then

$$P(L,[x,_n y]) \leq 1 - \frac{1}{2^{n+1}}.$$

¹A. Mann and C. Martinez, Groups nearly of prime exponent and nearly Engel Lie algebras, *Arch. Math.* **71** (1998), 5–11.

The commutator word [x, y]The Engel words $[x,_n y]$ The power word x^n Sets of words

Definition

Let G be a finite group and $w_n = x^n$. Then the probability that an element of G satisfies the word $w_n = 1$ is denoted by $p_n(G)$.

¹G. Frobenius, Verallgemeinerung des Sylowschen Satze, *Berliner Sitz*. (1895), 981–993.

Let G be a finite group and $w_n = x^n$. Then the probability that an element of G satisfies the word $w_n = 1$ is denoted by $p_n(G)$.

Theorem (Frobenius, 1895¹)

Let G be a finite group whose order is divisible by a number n. Then the number of solutions to the equation $x^n = 1$ is a multiple of n.

¹G. Frobenius, Verallgemeinerung des Sylowschen Satze, *Berliner Sitz.* (1895), 981–993.

Let G be a finite group and $w_n = x^n$. Then the probability that an element of G satisfies the word $w_n = 1$ is denoted by $p_n(G)$.

Theorem (Frobenius, 1895¹)

Let G be a finite group whose order is divisible by a number n. Then the number of solutions to the equation $x^n = 1$ is a multiple of n.

Corollary

If G is a finite group whose order is divisible by a number n, then

$$p_n(G) \geq \frac{n}{|G|}.$$

¹G. Frobenius, Verallgemeinerung des Sylowschen Satze, *Berliner Sitz*. (1895), 981–993.

The commutator word [x, y]The Engel words $[x,_n y]$ **The power word** x^n Sets of words

Conjecture (Frobenius, 1895¹)

Let G be a finite group whose order is divisible by a number n. If the set $L_n(G)$ of solutions to the equation $x^n = 1$ has n elements, then $L_n(G)$ is a subgroup of G.

¹G. Frobenius, Verallgemeinerung des Sylowschen Satze, *Berliner Sitz*. (1895), 981–993.

²N. liyori and H. Yamaki, On a conjecture of Frobenius, *Bull. Amer. Math. Soc.* **25** (1991), 413–416.

Conjecture (Frobenius, 1895¹)

Let G be a finite group whose order is divisible by a number n. If the set $L_n(G)$ of solutions to the equation $x^n = 1$ has n elements, then $L_n(G)$ is a subgroup of G.

Theorem (Iiyoria and Yamaki, $1991^2)$

The conjecture of Frobenius is always true.

¹G. Frobenius, Verallgemeinerung des Sylowschen Satze, *Berliner Sitz*. (1895), 981–993.

²N. liyori and H. Yamaki, On a conjecture of Frobenius, *Bull. Amer. Math. Soc.* **25** (1991), 413–416.

Theorem (Miller, 1907¹)

Let G be a non-abelian finite group. Then $p_2(G) \leq \frac{3}{4}$. Moreover, if $p_2(G) > \frac{1}{2}$, then $p_2(G)$ is equal to one of the following numbers.

$$\dots, \frac{2^n+1}{2^{n+1}}, \dots, \frac{17}{32}, \frac{9}{16}, \frac{5}{8}, \frac{3}{4}$$

¹G. A. Miller, Note on the possible number of operators of order 2 in a group of order 2^m, Ann. Math. (2) **7**(2) (1907), 55-60.

²G. A. Miller, Groups containing a relatively large number of operators of order two, Bull. Amer. Math. Soc. 25(9) (1919), 408-413.

Theorem (Miller, 1907¹)

Let G be a non-abelian finite group. Then $p_2(G) \leq \frac{3}{4}$. Moreover, if $p_2(G) > \frac{1}{2}$, then $p_2(G)$ is equal to one of the following numbers.

$$\dots, \frac{2^n+1}{2^{n+1}}, \dots, \frac{17}{32}, \frac{9}{16}, \frac{5}{8}, \frac{3}{4}$$

Theorem (Miller, 1919²)

Let G be a non-abelian finite group of even order which is not a 2-group. If $p_2(G) > \frac{1}{2}$, then G is a generalized dihedral group.

¹G. A. Miller, Note on the possible number of operators of order 2 in a group of order 2^m, Ann. Math. (2) **7**(2) (1907), 55-60.

²G. A. Miller, Groups containing a relatively large number of operators of order two, Bull. Amer. Math. Soc. 25(9) (1919), 408-413.

The commutator word [x, y]The Engel words [x, n, y]**The power word x^n** Sets of words

Theorem (Wall, 1970¹; Liebeck and MacHale, 1972²)

¹C. T. C. Wall, On groups consisting mostly of involutions, *Math. Proc. Camb. Phil. Soc.* **67** (1970), 251–262.

²H. Liebeck and D. MacHale, Groups with automorphisms inverting most elements, *Math. Z.* **124** (1972), 51–63.

Let G be a non-abelian finite group such that $p_2(G) > \frac{1}{2}$. Then either $G = H \times E$, where E is an elementary abelian 2-group and H is one of the following groups:

(1) a generalized dihedral group,

¹C. T. C. Wall, On groups consisting mostly of involutions, *Math. Proc. Camb. Phil. Soc.* **67** (1970), 251–262.

²H. Liebeck and D. MacHale, Groups with automorphisms inverting most elements, *Math. Z.* **124** (1972), 51–63.

- (1) a generalized dihedral group,
- (2) direct product of two copies of dihedral groups of order 8,

¹C. T. C. Wall, On groups consisting mostly of involutions, *Math. Proc. Camb. Phil. Soc.* **67** (1970), 251–262.

²H. Liebeck and D. MacHale, Groups with automorphisms inverting most elements, *Math. Z.* **124** (1972), 51–63.

- (1) a generalized dihedral group,
- (2) direct product of two copies of dihedral groups of order 8,
- (3) a central product of dihedral groups of order 8, or

¹C. T. C. Wall, On groups consisting mostly of involutions, *Math. Proc. Camb. Phil. Soc.* **67** (1970), 251–262.

²H. Liebeck and D. MacHale, Groups with automorphisms inverting most elements, *Math. Z.* **124** (1972), 51–63.

- (1) a generalized dihedral group,
- (2) direct product of two copies of dihedral groups of order 8,
- (3) a central product of dihedral groups of order 8, or
- (4) a group of with the following presentation

$$\langle x_1, y_1, \dots, x_n, y_n, z : x_i^2 = y_i^2 = z^2 = [x_i, x_j] = [y_i, y_j]$$

= $[x_i, y_j] = [y_i, z] = 1, [x_i, z] = y_i, i, j = 1, \dots, n \rangle.$

¹C. T. C. Wall, On groups consisting mostly of involutions, *Math. Proc. Camb. Phil. Soc.* **67** (1970), 251–262.

²H. Liebeck and D. MacHale, Groups with automorphisms inverting most elements, *Math. Z.* **124** (1972), 51–63.

The commutator word [x, y]The Engel words $[x,_n y]$ **The power word** x^n Sets of words

Theorem (Potter, 1988¹)

Let G be a non-solvable group with $p_2(G) > \frac{1}{4}$. Then G is isomorphic to the product of A_5 with an elementary abelian 2-group. In this case, $p_2(G) = \frac{4}{15}$.

¹W. M. Potter, Nonsolvable groups with an automorphism inverting many elements, *Arch. Math.* **50** (1988), 292–299.

Theorem (Hegarty, 2005¹)

Let G be a finite solvable group of derived length $n \ge 3$

$$p_2(G) \leq \frac{1}{2} \left(\frac{3}{4}\right)^{n-3}.$$

Moreover, if n = 5 then

$$p_2(G)\leq \frac{4}{15}.$$

¹P. V. Hegarty, Soluble groups with an automorphism inverting many elements, *Math. Proc. Royal Irish Acad.* **105**A(1) (2005), 59–73.

Theorem (Mann, 1994¹)

Let G be a finite group. If $p_2(G) \ge r + \frac{1}{|G|}$, then G contains a normal subgroup H such that both [G:H] and H' are bounded by some function of r.

¹A. Mann, Finite groups containing many involutions, *Proc. Amer. Math. Soc.* **122**(2) (1994), 383–385.

Theorem (Laffey, 1976¹)

Let G be a finite group, p be a prime divisor of |G| and assume that is not a p-group. Then

$$p_p(G) \leq \frac{p}{p+1}$$
.

 $^{^{1}}$ T. J. Laffey, The number of solutions of $x^{p} = 1$ in a finite group, *Math. Proc. Cambridge Philos. Soc.* **80** (1976), 229–231.

Theorem (Laffey, 1976¹)

Let G be a finite 3-group. Then

$$p_3(G)\leq \frac{7}{9}.$$

 $^{^{1}}$ T. J. Laffey, The number of solutions of $x^{3} = 1$ in a 3-group, *Math. Z.* **149** (1976), 43–45.

²The number of solutions of $x^4 = 1$ in finite groups, *Math. Proc. Roy. Irish Acad.* **79**A(4) (1979), 29–36.

Theorem (Laffey, 1976¹)

Let G be a finite 3-group. Then

$$p_3(G)\leq \frac{7}{9}.$$

Theorem (Laffey, 1979²)

Let G be a finite group which is not a 2-group. Then

$$p_4(G)\leq \frac{8}{9}.$$

 $^{^{1}}$ T. J. Laffey, The number of solutions of $x^{3} = 1$ in a 3-group, *Math. Z.* **149** (1976), 43–45.

²The number of solutions of $x^4 = 1$ in finite groups, *Math. Proc. Roy. Irish Acad.* **79**A(4) (1979), 29–36.

The commutator word [x, y]The Engel words $[x,_n y]$ The power word x^n Sets of words

Definition

A finite *p*-group *G* is called *powerful* if $G' \subseteq G^p$ when *p* is odd and $G' \subseteq G^4$ when p = 2.

¹L. Héthelyi and L. Lévai, On elements of order *p* in powerful *p*-groups, *J. Algebra* **270** (2003), 1–6.

A finite *p*-group *G* is called *powerful* if $G' \subseteq G^p$ when *p* is odd and $G' \subseteq G^4$ when p = 2.

Theorem (Héthelyi and Lévai, 2003¹)

Let G be a powerful p-group. Then

$$P_p(G)=\frac{1}{|G^p|}.$$

¹L. Héthelyi and L. Lévai, On elements of order *p* in powerful *p*-groups, *J. Algebra* **270** (2003), 1–6.

Theorem (Mazur, 2007¹; Fernández-Alcober, 2007²)

Let G be a powerful p-group and $k \ge 1$. Then

$$P_{p^k}(G) = \frac{1}{|G^{p^k}|}.$$

¹M. Mazur, On powers in powerful *p*-groups, *J. Group Theory* **10** (2007), 431–433.

²G. A. Fernández-Alcober, Omega subgroups of powerful *p*-groups, *Israel J. Math.* **162** (2007), 75–79.

Theorem (Mann and Martinez, 1996¹)

Let G be an m-generated finite group of exponent not dividing n.

Then $P(m, n^2)$

$$P_n(G) < \frac{R(m, n^2)}{R(m, n^2) + 1},$$

where R(m, n) is the order of largest m-generated finite group of exponent n.

¹A. Mann and C. Martinez, The exponent of finite groups, *Arch. Math.* **67** (1996), 8–10.

Theorem (Mann and Martinez, 1996¹)

Let G be an m-generated finite group of exponent not dividing n.

Then $P(m, n^2)$

$$P_n(G) < \frac{R(m, n^2)}{R(m, n^2) + 1},$$

where R(m, n) is the order of largest m-generated finite group of exponent n.

Theorem (Mann and Martinez, 1996¹)

Let G be an m-generated finite p-group of exponent $> p^n$. Then

$$P_{p^n}(G) \leq \frac{pR(m,p^n)-1}{pR(m,p^n)}.$$

¹A. Mann and C. Martinez, The exponent of finite groups, *Arch. Math.* **67** (1996), 8–10.

Theorem (Mann and Martinez, 1998¹)

Let G be a finite p-group such that

$$p_p(G) > \frac{3^p-2}{3^p-1}.$$

Then L(G) is an (p-1)-Engel Lie algebra.

¹A. Mann and C. Martinez, Groups nearly of prime exponent and nearly Engel Lie algebras, *Arch. Math.* **71** (1998), 5–11.

A group G is said to satisfy the deficient kth power property on m-subsets if $|X^k| < |X|^k$ for any m-subset X of G. The set of all finite groups with the deficient square property on m-subsets is denoted by DS(m).

A group G is said to satisfy the deficient kth power property on m-subsets if $|X^k| < |X|^k$ for any m-subset X of G. The set of all finite groups with the deficient square property on m-subsets is denoted by DS(m).

Notation

A group G is said to satisfy the deficient kth power property on m-subsets if $|X^k| < |X|^k$ for any m-subset X of G. The set of all finite groups with the deficient square property on m-subsets is denoted by DS(m).

Notation

■ Let W(m,n) be the set of all nontrivial words $x_{i_1} \cdots x_{i_n} x_{j_n}^{-1} \cdots x_{j_1}^{-1}$, where $i_1, \ldots, i_n, j_1, \ldots, j_n = 1, \ldots, m$.

A group G is said to satisfy the deficient kth power property on m-subsets if $|X^k| < |X|^k$ for any m-subset X of G. The set of all finite groups with the deficient square property on m-subsets is denoted by DS(m).

Notation

- Let W(m,n) be the set of all nontrivial words $x_{i_1} \cdots x_{i_n} x_{j_n}^{-1} \cdots x_{j_1}^{-1}$, where $i_1, \ldots, i_n, j_1, \ldots, j_n = 1, \ldots, m$.
- The probability that a randomly chosen m-tuple of G satisfies at least one of the words in $W \subseteq F_m \setminus \{1\}$ is denoted by $\tilde{P}(G,W)$.

Theorem (Freiman, 1981¹)

Let G be a finite group. Then

$$\tilde{P}(G,W(2,2))=1,$$

if and only if either G is abelian or $G \cong Q_8 \times C_2^n$ for some $n \geq 0$.

¹G. A. Freiman, On two- and three-element subsets of groups, *Aequationes Math.* **22** (1981), 140–152.

²M. Farrokhi D. G. and S. H. Jafari, On the probability of being a deficient square group on 2-element subsets, Preprint.

Theorem (Freiman, 1981¹)

Let G be a finite group. Then

$$\tilde{P}(G,W(2,2))=1,$$

if and only if either G is abelian or $G \cong Q_8 \times C_2^n$ for some $n \geq 0$.

Theorem (Farrokhi and Jafari, 2014²)

Let G be a finite group which does not belong to DS(2). Then

$$\tilde{P}(G,W(2,2))\leq \frac{27}{32}$$

and the equality holds if and only if $G \cong D_8 \times C_2^n$ for some $n \geq 0$.

¹G. A. Freiman, On two- and three-element subsets of groups, *Aequationes Math.* **22** (1981), 140–152.

²M. Farrokhi D. G. and S. H. Jafari, On the probability of being a deficient square group on 2-element subsets, Preprint.

Let G be a finite group and H be a subgroup of G. Then the degree of normality of H in G in defined to be

$$P_N(G,H):=\frac{|\{(g,h)\in G\times H: h^g\in H\}|}{|G||H|}.$$

Indeed, $P_N(G, H) = \tilde{P}((G, H), W(G, H))$, where

$$W(G,H) = \{ [x_1,x_2] = h : h \in H \}.$$

Let \mathcal{P}_N denote the set of normality degrees of subgroups of finite groups. Also, let $\mathcal{P}_N^* = \mathcal{P}_N \setminus \{1\}$.

The commutator word [x, y]The Engel words [x, n]The power word x^n Sets of words

Theorem (Farrokhi, Jafari and Saeedi, 2011¹)

If G is a finite simple group, then $\max \mathcal{P}_N^*(G) \leq \frac{8}{15}$. Moreover the bound is sharp.

¹M. Farrokhi D. G., S. H. Jafari and F. Saeedi, Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

²M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pp.

The commutator word [x, y]The Engel words $[x,_n y]$ The power word x^n Sets of words

Theorem (Farrokhi, Jafari and Saeedi, 2011¹)

If G is a finite simple group, then $\max \mathcal{P}_N^*(G) \leq \frac{8}{15}$. Moreover the bound is sharp.

Theorem (Farrokhi and Saeedi, 2012²)

If G is a finite group such that $\mathcal{P}_N^*(G) \subseteq (0, \frac{1}{2}]$ or $(\frac{3}{10}, 1)$, then G is a solvable group. Moreover both of the intervals are sharp.

¹M. Farrokhi D. G., S. H. Jafari and F. Saeedi, Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

²M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pp.

Lemma (Farrokhi and Saeedi, 2012¹)

Let A be the set of all numbers $\frac{1}{n}\left(1+\sum_{i=1}^{n-1}\frac{1}{m_i}\right)$, which satisfy the following inequalities

$$\frac{1}{2} < \frac{1}{n} \left(1 + \sum_{i=1}^{n-1} \frac{1}{m_i} \right) \le \frac{1}{2} + \frac{1}{2n}$$

and $n, m_1, \ldots, m_{n-1} \geq 2$. Then $A \subseteq \{\frac{1}{2} + \frac{1}{k}\}$.

¹M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pp.

Lemma (Farrokhi and Saeedi, 2012¹)

Let A be the set of all numbers $\frac{1}{n}\left(1+\sum_{i=1}^{n-1}\frac{1}{m_i}\right)$, which satisfy the following inequalities

$$\frac{1}{2} < \frac{1}{n} \left(1 + \sum_{i=1}^{n-1} \frac{1}{m_i} \right) \le \frac{1}{2} + \frac{1}{2n}$$

and $n, m_1, \ldots, m_{n-1} \geq 2$. Then $\mathcal{A} \subseteq \{\frac{1}{2} + \frac{1}{k}\}$.

Theorem (Farrokhi and Saeedi, 2012¹)

$$\mathcal{P}_N \cap \left(\frac{1}{2}, 1\right] = \left\{\dots, \frac{1}{2} + \frac{1}{2n}, \dots, \frac{1}{2} + \frac{1}{4}, 1\right\} = \left\{\frac{1}{2} + \frac{1}{2n}\right\}_{n=1}^{\infty}.$$

¹M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pp.

Conjecture (Farrokhi and Saeedi, 2012¹)

The values of \mathcal{P}_N in the interval $(\frac{1}{3}, \frac{1}{2}]$ fall into the following seven sequences

$$\left\{\frac{2i+1}{5i+4}\right\}, \left\{\frac{2i+1}{5i+3}\right\}, \left\{\frac{2i+1}{5i+2}\right\}, \left\{\frac{2i+1}{5i+1}\right\}, \left\{\frac{2i+1}{4i+8}\right\}, \left\{\frac{2i+1}{4i+4}\right\}, \left\{\frac{i}{3i-6}\right\}.$$

¹M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pp.

Conjecture (Farrokhi and Saeedi, 2012¹)

The values of \mathcal{P}_N in the interval $(\frac{1}{3}, \frac{1}{2}]$ fall into the following seven sequences

$$\left\{\frac{2i+1}{5i+4}\right\}, \left\{\frac{2i+1}{5i+3}\right\}, \left\{\frac{2i+1}{5i+2}\right\}, \left\{\frac{2i+1}{5i+1}\right\}, \left\{\frac{2i+1}{4i+8}\right\}, \left\{\frac{2i+1}{4i+4}\right\}, \left\{\frac{i}{3i-6}\right\}.$$

Conjecture (Farrokhi and Saeedi, 2012¹)

For each natural number n, the set $\mathcal{P}_N \cap (\frac{1}{n+1}, \frac{1}{n}]$ is the union of some finitely many sequences of the form

$$\left\{\frac{ai+b}{ci+d}\right\}_{i=1}^{\infty}.$$

¹M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, J. Algebra Appl. 11(4) (2012), 8 pp.

Theorem (Solomon, 1969¹)

Let G be a finite group and w be a word on two or more letters. Then the number of solutions to the equation w=1 is a multiple of |G|.

¹L. Solomon, The solution of equations in groups, *Arch. Math.* **20**(3) (1969), 241–247.

Theorem (Solomon, 1969¹)

Let G be a finite group and w be a word on two or more letters. Then the number of solutions to the equation w=1 is a multiple of |G|.

Corollary

If G is a finite group and $w = w(x_1, ..., x_n)$ is a word on n > 1 letters, then 1

$$P(G, w) \geq \frac{1}{|G|^{n-1}}.$$

¹L. Solomon, The solution of equations in groups, *Arch. Math.* **20**(3) (1969), 241–247.

Theorem (Amit¹)

If G is a finite nilpotent group, then there exists a constant c>0 such that

$$\inf\{P(G,w):w\in F_{\infty}\}\geq c.$$

¹A. Amit, On equations in nilpotent groups, Unpublished.

Conjecture (Amit¹)

If G is a finite solvable group, then there exists a constant c>0 such that

$$\inf\{P(G,w):w\in F_{\infty}\}\geq c.$$

¹A. Amit, On equations in nilpotent groups, Unpublished.

Conjecture (Amit¹)

If G is a finite solvable group, then there exists a constant c>0 such that

$$\inf\{P(G,w):w\in F_{\infty}\}\geq c.$$

Conjecture (Amit¹)

If G is a finite nilpotent group, then

$$\inf\{P(G,w):w\in F_{\infty}\}\geq \frac{1}{|G|}.$$

¹A. Amit, On equations in nilpotent groups, Unpublished.

Question (Amit¹)

Let G is a finite non-solvable group, then

$$\inf\{P(G,w):w\in F_\infty\}=0.$$

¹A. Amit, On equations in nilpotent groups, Unpublished.

Theorem (Levy, 2011¹)

Let G be a finite group of nilpotency class 2. Then the set

$$\inf\{P(G,w):w\in F_{\infty}\}\geq \frac{1}{|G|}.$$

¹M. Levy, On the probability of satisfying a word in nilpotent groups of class 2, Preprint.

²N. Nikolov and D. Segal, A characterization of finite soluble groups, *Bull. London Math. Soc.* **39** (2007) 209–213.

Theorem (Levy, 2011¹)

Let G be a finite group of nilpotency class 2. Then the set

$$\inf\{P(G,w):w\in F_{\infty}\}\geq \frac{1}{|G|}.$$

Theorem (Nikolov and Segal, 2007²)

Let G be a finite group. Then G is nilpotent if and only if

$$\inf\{P(G, w = g) : w \in F_{\infty}, g \in G\} \setminus \{0\} > 0.$$

¹M. Levy, On the probability of satisfying a word in nilpotent groups of class 2, Preprint.

²N. Nikolov and D. Segal, A characterization of finite soluble groups, *Bull. London Math. Soc.* **39** (2007) 209–213.

Theorem (Nikolov and Segal, 2007¹)

Let G be a finite group. Then G is solvable if and only if

$$\inf\{P(G,w):w\in F_{\infty}\}>0.$$

¹N. Nikolov and D. Segal, A characterization of finite soluble groups, *Bull. London Math. Soc.* **39** (2007) 209–213.

²M. Abért, On the probability of satisfying a word in a group, *J. Group Theory* **9** (2006), 685–694.

Theorem (Nikolov and Segal, 2007¹)

Let G be a finite group. Then G is solvable if and only if

$$\inf\{P(G,w):w\in F_{\infty}\}>0.$$

Theorem (Abért, 2006^2)

Let G be a finite just non-solvable group. Then the set

$$\{P(G, w): w \in F_{\infty}\}$$

is dense in [0,1].

¹N. Nikolov and D. Segal, A characterization of finite soluble groups, *Bull. London Math. Soc.* **39** (2007) 209–213.

²M. Abért, On the probability of satisfying a word in a group, *J. Group Theory* **9** (2006), 685–694.

Theorem (Jones, 1974¹)

Let $w \neq 1$ be a word. Then P(G, w) < 1 for all but finitely many non-abelian finite simple groups G.

 $^{^{1}}$ G. A. Jones, Varieties and simple groups, *J. Aust. Math. Soc.* **17** (1974) 163173.

²J. D. Dixon, L. Pyber, Á. Seress and A. Shalev, Residual properties of free groups and probabilistic methods, *J. Reine Angew. Math.* **556** (2003), 159–172.

Theorem (Jones, 1974¹)

Let $w \neq 1$ be a word. Then P(G, w) < 1 for all but finitely many non-abelian finite simple groups G.

Theorem (Dixon, Pyber, Seress and Shalev, 2003²)

Let $w \in F_2$ be a word. Then

$$\lim_{|G|\to\infty}P(G,w)=0,$$

where G ranges over non-abelian finite simple groups.

¹G. A. Jones, Varieties and simple groups, J. Aust. Math. Soc. 17 (1974) 163173.

²J. D. Dixon, L. Pyber, Á. Seress and A. Shalev, Residual properties of free groups and probabilistic methods, J. Reine Angew. Math. 556 (2003), 159-172. 56/77

Theorem (Larsen and Shalev, 2012¹)

For every word $w \neq 1$ there exists $\epsilon = \epsilon(w) > 0$ such that

$$P(G, w) \leq |G|^{-\epsilon}$$

for all non-abelian finite simple groups G of order at least $N = N(\epsilon) > 0$.

¹M. Larsen and A. Shalev, Fibers of word maps and some applications, *J. Algebra* **354** (2012), 36–48.

Theorem (Larsen and Shalev, 2012¹)

For every word $w \neq 1$ there exists $\epsilon = \epsilon(w) > 0$ such that

$$P(G, w) \leq |G|^{-\epsilon}$$

for all non-abelian finite simple groups G of order at least $N = N(\epsilon) > 0$.

Theorem (Larsen and Shalev, 2012^1)

For every $1 \neq w \in F_n$, there exists a number $\epsilon = \epsilon(w) > 0$ and a constant c such that

$$P(G, w = g) \le c|G|^{-\epsilon}$$

for all non-abelian finite simple groups G and elements $g \in G$.

¹M. Larsen and A. Shalev, Fibers of word maps and some applications, *J. Algebra* **354** (2012), 36–48.

Definition

Let $w \in F_n$ be a word on x_1, \ldots, x_n . For any group G, the word w determines a map

$$\begin{array}{ccc} w:G^n & \longrightarrow & G\\ (g_1,\ldots,g_n) & \longmapsto & w(g_1,\ldots,g_n) \end{array}$$

and it is called a word map.

Definition

Let $w \in F_n$ be a word on x_1, \ldots, x_n . For any group G, the word w determines a map

$$\begin{array}{ccc} w:G^n & \longrightarrow & G\\ (g_1,\ldots,g_n) & \longmapsto & w(g_1,\ldots,g_n) \end{array}$$

and it is called a word map.

Remark

If w is a word and G is a finite group, then the word map defined by w is surjective if and only if P(G, w = g) > 0 for all $g \in G$.

Theorem (Lubotzky, 2014¹)

Let G be a non-abelian finite simple group and X be an $\operatorname{Aut}(G)$ -invariant subset of G containing the identity. Then there exists a word $w \in F_2$ such that w(G) = X.

¹A. Lubotzky, Images of word maps in finite simple groups, *Glasgow Math. J.* **56**(2) (2014), 465–469.

Theorem (Lubotzky, 2014¹)

Let G be a non-abelian finite simple group and X be an $\operatorname{Aut}(G)$ -invariant subset of G containing the identity. Then there exists a word $w \in F_2$ such that w(G) = X.

Corollary (Lubotzky, 2014¹)

For every non-abelian finite simple group G, there exists a word $w = w(x, y) \in F_2$ such that $w(a, b) \neq 1$ if and only if $G = \langle a, b \rangle$ for all elements $a, b \in G$.

¹A. Lubotzky, Images of word maps in finite simple groups, *Glasgow Math. J.* **56**(2) (2014), 465–469.

Theorem (Levy, 2014¹)

Let G be a non-abelian almost simple group with simple socle S and suppose that $G \subseteq \operatorname{Aut}(S)$. Let X be an $\operatorname{Aut}(G)$ -invariant subset of S containing the identity. Then there exists a word $w \in F_2$ such that w(G) = X.

¹M. Levy, Images of word maps in almost simple groups and quasisimple groups, *Internat. J. Algebra Comput.* **24**(1) (2014), 47–58.

Conjecture (Ore, 1951¹)

The commutator map is surjective over all non-abelian finite simple groups.

¹O. Ore, Some remarks on commutators, *Proc. Amer. Math. Soc.* **2** (1951), 307–314

Theorem (Shalev, 2009^1)

Let w = [x, y] be the commutator word. Then

$$\lim_{|G|\to\infty}\frac{|w(G)|}{|G|}=1,$$

where G ranges over non-abelian finite simple groups.

¹A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem, *Ann. Math.* **170** (2009), 1383–1416.

Alternating groups (Ore, 1951),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),
- Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),
- Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),
- $PSp_{2n}(q)$ with $q \equiv 1 \pmod{4}$ (Gow, 1988),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),
- Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),
- $PSp_{2n}(q)$ with $q \equiv 1 \pmod{4}$ (Gow, 1988),
- Exceptional groups of Lie type of rank at most 4 (Bonten, 1993),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),
- Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),
- $PSp_{2n}(q)$ with $q \equiv 1 \pmod{4}$ (Gow, 1988),
- Exceptional groups of Lie type of rank at most 4 (Bonten, 1993),
- $lue{}$ Groups of Lie type over a finite field of order ≥ 8 (Ellers and Gordeev, 1998),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),
- Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),
- $PSp_{2n}(q)$ with $q \equiv 1 \pmod{4}$ (Gow, 1988),
- Exceptional groups of Lie type of rank at most 4 (Bonten, 1993),
- Groups of Lie type over a finite field of order ≥ 8 (Ellers and Gordeev, 1998),
- Semisimple elements of finite simple groups of Lie type (Gow, 2000),

- Alternating groups (Ore, 1951),
- $PSL_n(q)$ (Thompson, 1961-1962),
- Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),
- $PSp_{2n}(q)$ with $q \equiv 1 \pmod{4}$ (Gow, 1988),
- Exceptional groups of Lie type of rank at most 4 (Bonten, 1993),
- Groups of Lie type over a finite field of order ≥ 8 (Ellers and Gordeev, 1998),
- Semisimple elements of finite simple groups of Lie type (Gow, 2000),
- Groups of Lie type over a finite field of order q < 8 (Liebeck, O'Brien, Shalev and Tiep, 2010).

Theorem (Frobenius, 1896¹)

Let G be a finite group and $g \in G$. The number of solutions to the equation [x,y]=g equals

$$|G| \sum_{\chi \in Irr(G)} \frac{\chi(g)}{\chi(1)}.$$

$$\sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)} = 1 + \sum_{1 \neq \chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)}$$

¹F. G. Frobenius, Über Gruppencharaktere, Sitzber. Preuss. Akad. Wiss. (1896) 985–1021.

Definition

Let G be a finite group and s be a complex number. Then

$$\zeta^{G}(s) = \sum_{\chi \in Irr(R)} \chi(1)^{-s}$$

is the Witten's zeta function of G.

¹A. Shalev, Mixing and generation in simple groups, *J. Algebra* **319** (2008),

Definition

Let G be a finite group and s be a complex number. Then

$$\zeta^{G}(s) = \sum_{\chi \in Irr(R)} \chi(1)^{-s}$$

is the Witten's zeta function of G.

Lemma (Shalev, 2008¹)

If G is a finite non-abelian simple group, then

$$\lim_{|\mathcal{G}|\to\infty}\zeta^{\mathcal{G}}(2)\to 1.$$

¹A. Shalev, Mixing and generation in simple groups, J. Algebra 319 (2008),

Theorem (Garion and Shalev, 2009¹)

Let G be a finite group and $\theta = \theta_G$ be the commutator map. Then

$$\left|\frac{|\theta^{-1}(Y)|}{|G|^2} - \frac{|Y|}{|G|}\right| \le 3\epsilon(G)$$

for every subset Y of G, and

$$\frac{|\theta(X)|}{|G|} \ge \frac{|X|}{|G|^2} - 3\epsilon(G)$$

for every subset X of $G \times G$, where $\epsilon(G) = (\zeta^G(2) - 1)^{\frac{1}{4}}$.

¹S. Garion and A. Shalev, Commutator maps, measure preservation, and T-systems, Trans. Amer. Math. Soc. **361**(9) (2009), 4631–4651.

Engels maps and beyond

Conjecture (Shalev, 2007¹)

The *n*-th Engel word $(n \ge 1)$ map is surjective for any finite simple non-abelian group G.

¹A. Shalev, Commutators, words, conjugacy classes and character methods, *Turkish J. Math.* **31** (2007), Suppl., 131–148.

Engels maps and beyond

Conjecture (Shalev, 2007¹)

The *n*-th Engel word $(n \ge 1)$ map is surjective for any finite simple non-abelian group G.

Conjecture (Shalev, 2007¹)

Let $w \neq 1$ be a word which is not a proper power of another word. Then there exists a number C(w) such that if G is either A_r or a finite simple group of Lie type of rank r, where r > C(w), then w(G) = G.

¹A. Shalev, Commutators, words, conjugacy classes and character methods, *Turkish J. Math.* **31** (2007), Suppl., 131–148.

Engel maps

Theorem (Bandman, Garion and Grunewald, 2012¹)

The n-th Engel word $(n \ge 1)$ map is almost surjective for the group $SL_2(q)$ provided that $q \ge q_0(n)$ is sufficiently large.

¹T. Bandman, S. Garion and F. Grunewald, *Groups Geom. Dyn.* **6** (2012), 409–439

Engel maps

Theorem (Bandman, Garion and Grunewald, 2012¹)

The n-th Engel word (n \geq 1) map is almost surjective for the group $SL_2(q)$ provided that $q \geq q_0(n)$ is sufficiently large.

Corollary

The n-th Engel word (n \leq 4) map is surjective for all groups $PSL_2(q)$.

¹T. Bandman, S. Garion and F. Grunewald, *Groups Geom. Dyn.* **6** (2012), 409–439

Theorem (Bannai, Deza, Frankl, Kim and Kiyota, 1989¹)

Let G be a finite group and $w = x^n$, when n is a divisor of |G|.

 $\frac{|w(G)|}{|G|} \le 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|}.$

¹E. Bannai, M. Deza, P. Frankl, A. C. Kim and M. Kiyota, On the number of elements which are not *n*-th powers in finite groups, *Comm. Algebra* **17**(11) (1989), 2865–2870.

²A. K. Das, On group elements having square roots, *Bull. Iranian Math. Soc.* **31**(2), 33–36.

Theorem (Bannai, Deza, Frankl, Kim and Kiyota, 1989¹)

Let G be a finite group and $w = x^n$, when n is a divisor of |G|. Then

 $\frac{|w(G)|}{|G|} \le 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|}.$

Theorem (Das, 2005^2)

Let $w = x^2$. Then the values of |w(G)|/|G| are dense in the unit interval [0,1] as G ranges over all finite groups.

¹E. Bannai, M. Deza, P. Frankl, A. C. Kim and M. Kiyota, On the number of elements which are not *n*-th powers in finite groups, *Comm. Algebra* **17**(11) (1989), 2865–2870.

²A. K. Das, On group elements having square roots, *Bull. Iranian Math. Soc.* **31**(2), 33–36.

Question (Das, 2005¹)

Let $w = x^2$ and $S = \{|w(G)|/|G| : G \text{ is a finite group}\}$. Is it true that $S = \mathbb{Q} \cap [0,1]$?

¹A. K. Das, On group elements having square roots, *Bull. Iranian Math. Soc.* **31**(2), 33–36.

²M. Farrokhi D. G., Problems and solutions, *Amer. Math. Monthly* **115**(8) (2008), p. 758.

Question (Das, 2005¹)

Let $w = x^2$ and $S = \{|w(G)|/|G| : G \text{ is a finite group}\}$. Is it true that $S = \mathbb{Q} \cap [0,1]$?

Proposition (Farrokhi, 2008²)

Let $w=x^2$. Then for every rational number $r\in[0,1]$, there exists a number n and a finite group G such that

$$\frac{|w(G)|}{|G|} = \frac{1}{2^n} \cdot r.$$

¹A. K. Das, On group elements having square roots, *Bull. Iranian Math. Soc.* **31**(2), 33–36.

²M. Farrokhi D. G., Problems and solutions, *Amer. Math. Monthly* **115**(8) (2008), p. 758.

Theorem (Martinez and Zelmanov, 1996¹; Saxl and Wilson, 1997²)

For every d, there is an integer n = n(d) such that for every finite simple group G not of exponent dividing d we have

$$G = \{g_1^d \cdots g_n^d : g_1, \ldots, g_n \in G\}.$$

¹C. Martinez and E. Zelmanov, Products of powers in finite simple groups, *Israel J. Math.* **96** (1996), 469–479.

² J. Saxl and J. S. Wilson, A note on powers in simple groups, *Math. Proc. Camb. Phil. Soc.* **122** (1997), 91–94.

Power maps: Lagrange's four square theorem for groups

Theorem (Liebeck, O'Brien, Shalev and Tiep, 2012¹)

Every element of every non-abelian finite simple group G is a product of two squares.

¹M. W. Liebeck, E. A. O'Brien, A. Shalev and P. H. Tiep, Products of squares in finite simple groups, *Proc. Amer. Math. Soc.* **140**(1) (2012), 21–33.

Power maps: Lagrange's four square theorem for groups

Theorem (Liebeck, O'Brien, Shalev and Tiep, 2012¹)

Every element of every non-abelian finite simple group G is a product of two squares.

Theorem (Liebeck, O'Brien, Shalev and Tiep, 2012¹)

Every element of every finite non-abelian simple group G is a product of two p-th powers provided that p > 7 is a prime.

¹M. W. Liebeck, E. A. O'Brien, A. Shalev and P. H. Tiep, Products of squares in finite simple groups, *Proc. Amer. Math. Soc.* **140**(1) (2012), 21–33.

Theorem (Larsen, 2004¹)

For every non-trivial word w and $\epsilon > 0$ there exists a number $C(w,\epsilon)$ such that if G is a finite simple group with $|G| > C(w,\epsilon)$, then $|w(G)| \ge |G|^{1-\epsilon}$.

¹M. Larsen, Word maps have large image, *Israel J. Math.* **139** (2004), 149–156.

²A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem, *Ann. Math.* **170** (2009), 1383–1416.

Theorem (Larsen, 2004¹)

For every non-trivial word w and $\epsilon > 0$ there exists a number $C(w,\epsilon)$ such that if G is a finite simple group with $|G| > C(w,\epsilon)$, then $|w(G)| \ge |G|^{1-\epsilon}$.

Theorem (Shalev, 2009^2)

Let $w \neq 1$ be a group word. Then there exists a positive integer N = N(w) such that for every finite simple group G with $|G| \geq N(w)$ we have $w(G)^3 = G$.

¹M. Larsen, Word maps have large image, *Israel J. Math.* **139** (2004), 149–156.

²A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem, *Ann. Math.* **170** (2009), 1383–1416.

Theorem (Larsen and Shalev, 2009¹)

For each triple of non-trivial words w_1, w_2, w_3 , there exists a number $N = N(w_1, w_2, w_3)$ such that if G is a finite simple group of order at least N, then $w_1(G)w_2(G)w_3(G) = G$.

¹M. Larsen and A. Shalev, Word maps and Waring type problems, *J. Amer. Math. Soc.* **22**(2) (2009), 437–466.

Theorem (Larsen and Shalev, 2009^1)

For each triple of non-trivial words w_1, w_2, w_3 , there exists a number $N = N(w_1, w_2, w_3)$ such that if G is a finite simple group of order at least N, then $w_1(G)w_2(G)w_3(G) = G$.

Conjecture (Larsen and Shalev, 2009¹)

For each pair of non-trivial words w_1, w_2 , there exists a number $N = N(w_1, w_2)$ such that if G is a finite simple group of order at least N, then $w_1(G)w_2(G) = G$.

¹M. Larsen and A. Shalev, Word maps and Waring type problems, *J. Amer. Math. Soc.* **22**(2) (2009), 437–466.

Theorem (Larsen, Shalev and Tiep, 2013¹)

If w_1 , w_2 and w_3 are nontrivial words, then for all finite quasisimple groups G of sufficiently large order, $w_1(G)w_2(G)w_3(G) = G$.

¹M. Larsen, A. Shalev and P. H. Tiep, Waring problem for finite quasisimple groups, Int. Math. Res. Not. Vol. **2013**, No. 10, 2323–2348.

Theorem (Larsen, Shalev and Tiep, 2011¹)

Let $w_1, w_2 \in F_d$ be nontrivial words. Then there exists a constant $N = N(w_1, w_2)$ such that for all non-abelian finite simple groups G of order greater than N, we have $w_1(G)w_2(G) = G$.

¹M. Larsen, A. Shalev and P. H. Tiep, The Waring problem for finite simple groups, *Ann. Math.* **174** (2011), 1885–1950.

²R. M. Guralnick and P. H. Tiep, The Waring problem for finite quasisimple groups. II, Preprint.

Theorem (Larsen, Shalev and Tiep, 2011¹)

Let $w_1, w_2 \in F_d$ be nontrivial words. Then there exists a constant $N = N(w_1, w_2)$ such that for all non-abelian finite simple groups G of order greater than N, we have $w_1(G)w_2(G) = G$.

Theorem (Guralnick and Tiep, 2013²)

Let w_1 and w_2 be two non-trivial words. Then there exists a constant $N = N(w_1, w_2)$ depending on w_1 and w_2 such that for all finite quasisimple groups G of order greater than N we have $w_1(G)w_2(G) \supseteq G \setminus Z(G)$.

¹M. Larsen, A. Shalev and P. H. Tiep, The Waring problem for finite simple groups, *Ann. Math.* **174** (2011), 1885–1950.

²R. M. Guralnick and P. H. Tiep, The Waring problem for finite quasisimple groups. II, Preprint.

Definition Non-surjective map Special words General words

Thank You for Your Attention!