NCERT-12.9.1.7

Arnav Mahishi Dept. of Electrical Engg. IIT Hyderabad.

January 8, 2025

Problem

- Solution
 - Input Parameters
 - Laplace Transforms
 - Simplification and Substituution
 - Computational Solution
 - Difference Equation

Problem Statement

Solve the differential equation y'''+2y''+y'=0 with initial conditions $y\left(0\right)=1,y'\left(0\right)=-1$, and $y''\left(0\right)=1$

Input Parameters

Variable	Description
n	Order of given differential equation
Уi	ith derivative of the function in the equation
С	constant in the equation
a _i	coefficient of ith derivative of the function in the equation
$\mathbf{V}(t)$	Vector containing all 1 and y_i from $i = 0$ to $i = n - 1$
$\mathbf{V}'(t)$	Vector containing 1 and y'_i from $i = 0$ to $i = n - 1$
Α	the coefficient matrix that transforms each y_i to its derivative
h	the stepsize between each t we are taking
to	The start time from which we are plotting
t_f	The end time at which we stop plotting

Laplace Transforms

We apply the Laplace transform to each term in the equation. The Laplace transforms for the derivatives of y(t) are:

$$\mathcal{L}y'(t) = sY(s) - y(0) \tag{3.1}$$

$$\mathcal{L}y''(t) = s^{2}Y(s) - sy(0) - y'(0)$$
(3.2)

$$\mathcal{L}y'''(t) = s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)$$
(3.3)

Simplification and Substitution

$$(s^3 + 2s^2 + s) Y(s) = s^2 + s$$
 (3.4)

$$Y(s) = \frac{s^2 + s}{s(s+1)^2}$$
 (3.5)

$$\implies Y(s) = \frac{1}{s+1} \tag{3.6}$$

Now, take the inverse Laplace transform:

$$\mathcal{L}^{-1}\left(\frac{1}{s+1}\right) = e^{-t} \tag{3.7}$$

Computational Solution

 y_i is the *i*th derivative of the function then

Difference Equation

At any n, by defining derivative:

$$y'_{n,k} = \lim_{h \to 0} \frac{y_{n,k+1} - y_{n,k}}{h} \tag{3.11}$$

$$y_{n,k+1} = y_{n,k} + hy'_{n,k} (3.12)$$

$$\implies y_{0,k+1} = y_{0,k} + hy'_{0,k} \tag{3.13}$$

$$\implies y_{1,k+1} = y_{1,k} + hy'_{1,k} \tag{3.14}$$

$$\implies y_{2,k+1} = y_{2,k} + hy'_{2,k} \tag{3.15}$$

$$\implies y_{n-1,k+1} = y_{n-1,k} + h\left(\frac{-\left(\sum_{i=0}^{i=n-1} a_i y_i\right) - c}{a_n}\right)$$
 (3.17)

$$\implies \mathbf{y}_{k+1} = \mathbf{y}_k + h(A\mathbf{y}_k) \tag{3.18}$$

Plot

When k ranges from 0 to $\frac{t_o-t_f}{h}$ in increments of 1, discretizing the steps gives us all \mathbf{y}_k , Record the $y_{0,k}$ for each k we got and then plot the graph. The result will be as given below.

Codes

 ${\it Code: https://github.com/arnavmahishi} \\ / {\it EE1003/tree/main/assignments/Problem\%201/codes} \\$