Name: Brad Hall

ISDS 7024 Homework 4

1) Variables created by counting people, objects, events, etc., are usually characterized by:

- (a) a right skew
- (b) a left skew
- (c) a symmetrical shape
- (d) none of these

Solution: (d) None of these

2) Transformations are commonly used to change all of the attributes of data distributions below except:

- (a) the center
- (b) scaling
- (c) shapes, skewness, and kurtosis
- (d) rank order of elements

Solution: (d) rank order of elements

3) When $\lambda = 0.5$, Y^{λ} is equivalent to \sqrt{Y} .

- (a) True
- (b) False

Solution: (a) True

4) The log() function is at the high end of the ladder of powers between $\lambda = 1.5$ and $\lambda = 2.5$.

- (a) True
- (b) False

Solution: (b) False

Use dataset29.xlsx to answer questions 5-9.

5) Run the model $Y = X_1 + X_2$.

(a) What is the value of \mathbb{R}^2 ? (Round to 4 decimal places.)

Solution: $R^2 = 0.7064$

(b) Is the assumption of normal residuals violated? Why or why not?

Solution: Yes. The assumption of normal residuals is violated, because the p-value from the Shapiro-Wilk test yields a p-value less than .0001. This corresponds to rejecting the null hypothesis which states that the data is from a normal distribution.

- 6) Using the model $Y = X_1 + X_2$, linearity and non-constant variance seem to be issues. Which variable is responsible? (Plot X_1 and X_2 against Y separately. Plot Y, X_1 , and X_2 against the fitted values. You may need to standardize X_1 and X_2 to make them easier to compare.)
 - (a) X_1
 - (b) X_2
 - (c) X_1 and X_2

Solution: (c) X_1 and X_2

- 7) Use the Box-Cox approach to transform Y, X_1 , and X_2 in an attempt to reduce the curvilinearity and non-constant variance. Do not drop any variables or delete any cases. What is the best lambda for each of the following variables. (Round to 1 decimal place.)
 - (a) X_1 Solution: $\lambda = -0.5$
 - **(b)** X_2 Solution: $\lambda = -0.3$
 - (c) Y Solution: $\lambda = -0.1$
 - (d) Run the regression analysis (transformed $Y = \text{transformed } X_1 + \text{transformed } X_2)$ using the transformations obtained from the Box-Cox approach. What is the R^2 value? (Be sure to use the coefficients from the Box-Cox method rounded to one decimal here.)

Solution: $R^2 = 0.8$

- (e) Have the following violations satisfactorily been improved?
 - Linearity Assumption? Yes or No

Solution: Yes. Found by comparing the scatterplot of externally studentized residuals vs predicted values for both models.

• Equal Variance Assumption? Yes or No

Solution: Yes. For the original model, the Breusch-Pagan Test yields a p-value of CHISQ.DIST.RT(37.5237,2) = 0. For the transformed model, the Breusch-Pagan Test yields a p-value of CHISQ.DIST.RT(8.5812, 2) = 0.01.

• Normality of Residuals? Yes or No

Solution: Yes. This is because the Shapiro-Wilk test statistic increases from .9733 to .9940, which increases the p-value to 0.1216 and allows us to conclude normality of the residuals.

For problems 8 and 9, do not drop any variables or delete any cases. Using the bulging rule, you could use $\log(Y)$ or \sqrt{Y} , and $\log(X)$ or \sqrt{X} for each of the X's, or any other combinations.

- 8) The model $\log(Y) = \log(X_1) + \log(X_2)$ is _____.
 - (a) better than the model using the original untransformed variables.
 - (b) worse than the model using the original untransformed variables.
 - (c) about the same as the model using the original untransformed variables.

Solution: (a) better than the model using the original untransformed variables. (Larger \mathbb{R}^2 in transformed model.)

- **9)** The model $\sqrt{Y} = \sqrt{X_1} + \sqrt{X_2}$ is _____.
 - (a) better than the model using the original untransformed variables.
 - (b) worse than the model using the Box-Cox transformed variables.
 - (c) worse than the model using the LOG-transformed variables.
 - (d) All of the above statements are true.
 - (e) None of the above statements are true.

Solution: (d) All of the above statements are true. (Produces $R^2 = .76112$.)

Have the following violations satisfactorily been improved?

• Linearity Assumption? Yes or No

Solution: Yes. Found by comparing the scatterplot of externally studentized residuals vs predicted values for both models.

• Equal Variance Assumption? Yes or No

Solution: Yes. For the original model, the Breusch-Pagan Test yields a Chi-squared test statistic value of 37.5237. For the transformed model, the Breusch-Pagan Test yields a Chi-squared test statistic value of 28.7275. The smaller test statistic produces a slightly larger p-value, which improves (but does not quite show) equal variance.

• Normality of Residuals? Yes or No

Solution: Yes. This is because the Shapiro-Wilk test statistic increases from .9733 to .9889, which increases the p-value to 0.0045.

Use the dataset set6f.xlsx to answer questions 10 and 11.

- 10) The scatterplot of Y versus X shows two distinct groups in set6f.xlsx. Create a dummy variable (d) and assign 0 or 1 to each case to separate the groups. Run the model Y = d. Select the range that contains the regression coefficient for d.
 - (a) Coeff(d) < 5.0
 - **(b)** $5.0 \le \text{Coeff}(d) < 6.0$
 - (c) $6.0 \le \text{Coeff}(d) < 7.0$
 - (d) $7.0 \le \text{Coeff}(d) < 8.0$
 - (e) $Coeff(d) \ge 8.0$

Solution: (e) Coeff(d) $\geq 8.0 \ [\widehat{\beta} = 8.4861]$

- 11) Compare the coefficients and standard errors for the models Y = X, Y = d, and Y = X + d. Run the diagnostics. Which assumptions are violated by Y = X + d?
 - (a) Constant variance

Solution: Not violated. The Breusch-Pagan Test yields a Chi-squared test statistic value of 2.536215, which results in a p-value of 0.281364. We fail to reject the null hypothesis, which implies constant variance of the model.

Solution:

(b) Normality of residuals

Solution: Not violated. The Shapiro-Wilk Test yields a p-value of 0.4123, which means we fail to reject the null hypothesis and thus conclude with normality of the residuals.

(c) No outliers or influential cases

Solution: Violated. Row 38 gives us an influential outlier with a Cook's D of 0.13, above the threshold of $4/n = 4/43 \approx 0.093$.