Совместное распределение.

Базовый

- 1. Даны маргинальные распределения $Y = (1/2, 1/2^2, 1/2^3, 1/2^3), X = (1/3, 1/6, 1/2)$. Найти совместное распределение вектора (Y, X). X и Y считать независимыми.
- 2. Двумерное распределение пары целочисленных случайных величин ξ и η задаётся с помощью таблицы

	$\xi = -1$	$\xi = 0$	$\xi = 1$
$\eta = -1$	1/8	1/12	7/24
$\eta = 1$	5/24	1/6	1/8

где в пересечении столбца $\xi=i$ и строки $\eta=j$ находится вероятность $P\{\xi=i,\eta=j\}$. Найти:

- (а) Маргинальные распределения
- (b) Мат. ожидание $E\xi$ и $E\eta$
- (c) Дисперсия $D\xi$ и $D\eta$
- (d) Среднеквадратичное отклонение: $\sigma(\xi)$ и $\sigma(\eta)$
- (e) Ковариацию: $cov(\xi, \eta)$,
- (f) Корреляцию: $\rho(\xi,\eta)$
- (g) Информацию от выпадения $\xi=1$
- (h) Энтропию $H(\xi)$
- (i) Информацию от выпадения $(\xi, \eta) = (-1, -1)$
- (j) Совместную энтропию $H((\eta, \xi))$
- (k) Условную энтропию $H(\eta|\xi)$
- 3. Монета выпадает орлом с вероятностью p>0. Пусть ξ число подбрасываний, необходимых для достижения 1 выпадения орла. Найти производящую функцию для вероятности ξ , а также среднее и дисперсию ξ .

Совместное распределение.

Дополнительный

1. Двумерное распределение пары целочисленных случайных величин ξ и η задаётся с помощью таблицы

	$\xi = 1$	$\xi = 2$	$\xi = 3$
$\eta = 1$	3/24	2/24	5/24
$\eta = 2$	2/24	2/24	3/24
$\eta = 3$	3/24	2/24	2/24

где в пересечении столбца $\xi=i$ и строки $\eta=j$ находится вероятность $P\{\xi=i,\eta=j\}$. Найти:

- (a) (0.4) Ковариацию: $cov(\xi, \eta)$,
- (b) (0.4)Корреляцию: $\rho(\xi, \eta)$
- (c) (0.4)Информацию от выпадения $(\xi, \eta) = (2, 3)$
- (d) (0.4) Совместную энтропию $H((\eta, \xi))$
- (e) (0.4) Условную энтропию $H(\eta|\xi)$
- 2. Монета выпадает орлом с вероятностью p > 0. Пусть ξ_k число подбрасываний, необходимых для достижения k выпадений орла. Найти производящую функцию для моментов ξ_k , а также среднее и дисперсию ξ_k .
 - (a) (16)k = 2
 - (b) (26)k произвольное положительное
- 3. (16)Рассмотрим бесконечную последовательность $a_0, a_1, ..., a_n$. Пусть случайная величина ξ принимает значение a_i с вероятностью $\frac{\lambda^i}{i!} \cdot e^{-\lambda}$ для некоторого заданного λ . Найдите дисперсию случайной величины ξ^m для заданного m.
- 4. (0.5)В бар с целью застрелить Бессмертного Джо за час в среднем заходит 1 снайпер и 2 ламера. Предполагая, что каждый заходящий не уйдет, пока не пристрелит Джо, при этом ламер попадает с вероятностью 1/4, снайпер с вероятностью 3/4, найдите среднее за час число выстрелов.
- 5. (0.5)Дана марковская цепь.

$$P = \begin{pmatrix} 1/2 & 1/3 & 1/6 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\xi(t)$ - случайная величина, обозначающая длину пути, пройденного по марковской цепи, начиная в позиции 0. Найти $\xi(2)$