- an undirected graph is G=(V,E), with V the vertices, E the edges. $V=\{V_1,V_2,...,V_n\}$ is a set of objects, E a set of connections between the objects s.t. $\forall e \in E, e = \{u, v\}$ with $u, v \in V$.
- a directed graph differs in its edges E, where $\forall e \in E, e = (u, v)$ with $u, v \in V$. - a subgraph of G is $H=(V_H,E_H)$ where $V_n\subseteq V, E_H\subseteq E$, and $(\forall e=(u,v)\in E)(u,v\in V_H)$
- connected component: maximal connected subgraph (can't connect more nodes) - a cycle in G=(V,E) is a sequence of nodes $\{v_k\}\in V$ s.t. $\{v_i,v_{i+1}\}\in E \land \{v_1,v_k\}\in E$
- a tree is an acyclic connected graph
- greedy algorithm:
- Minimum spanning tree (MST) problem: given an undirected connected graph G and nonnegative weights d(e) = d(u, v), find the subgraph T that connects all vertices and minimizes
- $\mathrm{cost}(T) = \sum_{\{u,v\} \in T} d(u,v)$

- MST Cut Property: let $S \subseteq V$, s.t. $1 \le |S| < |V|$, i.e. S is not empty but not all nodes. Call a
- pair $(S, V \setminus S)$ a cut of the graph. Every MST of G contains the lightest edge on the cut (where
- Prim's alg description - given graph G, choose arb node s, the start of T
- repeating |V| 1 times,
 - add to T, the lowest edge (and nodes) from "in T" to "not in T"
 - proof

 - adds edges in the MST.

- these edges are in the MST from above, the spanning tree is the MST. \Box - impl
 - (min) heap ADT - interface - fn new(items) -> Self; - fn min() -> Item;

- fn insert(item); - fn delete(item);

 - Figure 1: notice the monotonic decreasing upward. Also notice the array

2. O(1); choose arb start node u3. $O(\log n)$ work per heap operation, O(m) times total (because we only nbors the edges

distance from v to T, update this distance (and also set parent of v to u). With a heap, do del(v); insert(v, d(u, v)) or just decreaseKey(v, d(u, v)). TODO parent??

Reverse Delete

4. $O(\log n)$; set u to closest node to T (min of heap) and delete it

- remove edges by decreasing weight unless it'd split the graph - proof

- tree bc we removed all cycles by defn of algorithm

5. O(n) repetitions; while u exists, go to (3)

– spanning bc |V| – 1 thing and non-split clause - minimum: at some step, let e be the next edge removed. Since it's removed, it's in a cycle

and must be the largest edge in it. By cycle property, all removed edges are not in the

MST.

description

- repeating |V| - 1 times

- start with $T = (V, \{\})$, i.e. all the nodes and no edges

- proof - tree bc we didn't connect in a cycle... but why is output connected?
 - spanning bc |V| 1 thing and tree – minimum: at some step, let e be the next edge added. All rejected edges would have created cycles, and must be the max in the cycle they create by algo defn. This means, by

set

1

3 3

4

1

1

7

1

interface

4 5

- union-find abstract data type (ADT)

- array-based implementation

6

index item lists

- 2. for each x_i , make set[elem] be y3. update sizes array 4. prepend smaller to larger list
- union $\in O(1)$ (amortized?); move pointer, update height. is this really all we do? - work of Kruskal's for array-based union-find is $O(m \log n)$

- create all singleton nodes

Figure 4: depth-first search

- proof: WLOG, let x ancestor of y. When we pass x, we haven't seen y. All nodes between initially seeing x and leaving x are decendants of x. So, y must have been explored before

Figure 5: breadth-first search

- theorem: adjacent edges are near the same level. That is, if $(x,y) \in E$, then $|\operatorname{layer}(x)|$

- theorem: adjacent edges are not on the same level. That is, if $(x, y) \in E$, x is either an

 $|\operatorname{layer}(y)| \leq 1$ - proof: 1) WLOG, AFSOC that layer(x) < layer(y) - 1. 2) All nbors of x are added in or before layer(x) + 1. By 2, layer $(y) \le \text{layer}(x) + 1$. But by 1, layer(y) > layer(x) + 1.

- these (and Prim's!) are specifc types of tree-growing algorithms TreeGrowingAlg(graph G, initial node v, fn findnext)

- next/update is pop/push for DFS and de/enqueue for BFS, O(m) across entire program. - same logic as Prim's - everything else in O(n) (including loop) - thus, DFS and BFS are $\in O(n+m)$

- definition: a graph is bipartite if \exists a two-coloring. that is, if you can divide the nodes into

- - 3
- Figure 6: a bipartite graph - solution: do a BFS from any node, swapping colors per layer. check if any edge is monolayer (since edges are between adj layers or same layer) - todo: prove correctness

- todo: topological sort with "exists node with no inc. edges" and "DFS finishing times"

- local optimal decision to try solving a global problem - decisions are irrevocable (helpful for easy time complexity proofs)
- MST Cycle Property: let a cycle C be in G. the heaviest edge on the cycle C is not in G's MST.
- an "edge on the cut" is some $e = \{u, v\}, u \in S, v \in V \setminus S$).

- - The pair ("in T", "not in T") is a cut of G. By the Cut Property, the MST contains the lowest cost edge crossing this cut, which is by defn the next edge Prim's adds, i.e. Prim's

 - At any point in the algorithm, $T=(V_T,E_T)$ is a subgraph and a tree. T grows by 1 vertex and 1 edge at each step, stopping at $|V_G|-1$ steps, and so results in a spanning tree. Since
 - - heap-ordered-tree (as an array) implementation

 - - $\min \in O(1)$; it's at the top of the tree - insert $\in O(\log n)$; insert as leaf preserving shape (aka dense array), sift up
 - work of Prim's with a heap is $O(m \log n)$ 1. O(n); create empty heaparray (for max n items) that much, trust. see your example); $\forall v \in \mathsf{nbors}(u)$, if v is closer to T than our saved
 - description start with G - repeating |V| - 1 times

- this is $O(m \log n + n \log n)$ from (3) and repeating (4), which is $\in O(m \log n)$

- Kruskal's alg
 - add edges in increasing order unless it creates a cycle
 - cycle property, it's MST. - impl
 - fn new(items) -> Self; splits items into that many sets - fn find(item) -> Label; finds the set the item belongs to - fn union(a, b); merges two sets

1

2

3

7 Figure 2: array-based union-find

procedure

- proof

- $new \in O(n)$

- proof

- new $\in O(n)$; creates the three lists - find $\in O(1)$; size array lookup - union $\in O(\log n)$ amortized;

1. find smaller set $(x \le y)$

- (2) is computation. others O(1)- after k unions, $\leq 2k$ items touched - for any item v, set[v] is relabeled ≤ $\log_2 2k$ times (TODO WTF WHY) (2k is the # of items in the largest set????) $-2k\log_2 2k \in O(k\log k)$ work tree-based implementation Figure 3: tree-based union-find.

- create an array of node addresses, so we can get from a node id to its node in O(1)

– set at i is renamed at most $\log_2 n$ times because each renaming doubles size

- let struct Node { parent: Option<&Node>, height: uint }

- at most 2m find operations $\in O(2m)$ (to check if edge would create cycle)

- graph traversal problem: suppose a graph G = (V, E). Find a path from a node s to t if it exists.

- find $\in O(\log n)$; follow ptrs to the root, which is the set label

- depth of tree is number of renamings

- total runtime $\in O(m \log n + 2m + n \log n) \in O(m \log n)$

– work of Kruskal's for tree-based union-find is also $O(m \log n)$

- sorting edges $\in O(m \log m) \in O(m \log n)$ - because $m \le n^2$, so $\log m \le \log n^2 = 2 \log n$

- at most n-1 union ops in $O(n \log n)$

- sorting edges $\in O(m \log n)$ from above - at most 2m find $\operatorname{ops} \in O(2m \log n)$

- at most n-1 union ops $\in O(n)$ - total runtime $\in O(m \log n + 2m \log n + n) \in O(m \log n)$

ancestor or descendant of y.

leaving x, as a descendant.

breadth-first search

 $\rightarrow \leftarrow$.

- is-bipartite problem

 $T = (\{v\}, \{\})$

depth-first search

- 6
- S = set of nodes adj to vwhile S has items, e = nextEdge(G, S)T = T + eS = updateFrontier(G, S, e)

two colors s.t. all edges connect nodes of diff colors.

