Competition Report

AyoungLeines

2025-04-23

Packages

```
library(tidyverse)
library(readxl)
library(ggplot2)
library(forecast)
library(Kendall)
library(tseries)
library(outliers)
library(smooth)
library(zoo)
library(kableExtra)
library(tsibble)
library(tibble)
library(forecastHybrid)
library(purrr)
library(tictoc)
library(janitor)
```

Directory

```
base_dir <- "D:/Geani/Box/Home Folder gnl13/Private/1 Academics/3 Time series/AyoungLeines_ENV797_TSA_F
data_dir <- file.path(base_dir, "Data")
output_dir <- file.path(base_dir, "Forecast")

file1 <- "load.xlsx"
file2 <- "temperature.xlsx"
file3 <- "relative_humidity.xlsx"
file4 <- "submission_template.xlsx"

file_path1 <- file.path(data_dir, file1)
file_path2 <- file.path(data_dir, file2)
file_path3 <- file.path(data_dir, file3)
file_path4 <- file.path(data_dir, file4)

load_raw <- read_excel(file_path1) %>% clean_names()
temp_raw <- read_excel(file_path2) %>% clean_names()
hum_raw <- read_excel(file_path3) %>% clean_names()
template <- read_excel(file_path4)</pre>
```

Wrangling data - Aggregate the hourly data to daily using averages

```
#Demand
# from wide (h1-h24) to long format, convert hour to integer
load_long <- load_raw %>%
  pivot_longer(
   cols = starts_with("h"),
names_to = "hour",
   names_prefix= "h",
   values_to = "load_kwh"
  ) %>%
  mutate(
   date = as_date(date),
hour = as.integer(hour),
    meter_id = factor(meter_id)
# compute per-meter daily mean
daily_load <- load_long %>%
  group_by(meter_id, date) %>%
  summarise(
    daily_load_kwh = mean(load_kwh, na.rm = TRUE),
    .groups = "drop"
 )
# Temperature
```

```
# daily mean across all hours and stations
daily_temp <- temp_raw %>%
 pivot_longer(
   cols = starts_with("t_ws"),
names_to = "station",
    names_prefix = "t_ws",
    values to = "temp c"
  ) %>%
 mutate(date = as_date(date)) %>%
  group_by(date) %>%
  summarise(
   mean_temp_c = mean(temp_c, na.rm = TRUE),
    .groups = "drop"
# Relative humidity
daily_hum <- hum_raw %>%
 pivot_longer(
   cols = starts_with("rh_ws"),
names_to = "station",
    names_prefix = "rh_ws",
    values_to = "rh_pct"
  ) %>%
  mutate(date = as_date(date)) %>%
  group_by(date) %>%
```

```
summarise(
   mean_rh_pct = mean(rh_pct, na.rm = TRUE),
    .groups = "drop"
daily_data <- daily_load %>%
  inner_join(daily_temp, by = "date") %>%
  inner_join(daily_hum, by = "date")
# total system demand per day, plus averaged covariates
agg_daily <- daily_data %>%
 group_by(date) %>%
  summarise(
   demand_kwh = sum(daily_load_kwh, na.rm = TRUE),
   temp_c = mean(mean_temp_c, na.rm = TRUE),
   rh_pct = mean(mean_rh_pct, na.rm = TRUE),
    .groups = "drop"
 )
agg_daily %>%
  slice_head(n = 6) %>%
 kable(
   caption = "First six days of aggregated daily demand, temperature, and humidity",
   digits = 2
  ) %>%
 kable_styling(full_width = FALSE)
```

Table 1: First six days of aggregated daily demand, temperature, and humidity $\,$

date	${\rm demand}_{\rm kwh}$	$temp_c$	rh_pct
2005-01-01	2889.12	53.57	76.71
2005-01-02	2788.96	53.76	80.48
2005-01-03	2708.46	55.91	81.23
2005-01-04	2211.58	61.69	74.84
2005-01-05	2035.12	60.43	76.07
2005-01-06	2109.62	62.00	77.99

Define training and testing sets

```
train <- agg_daily %>%
  filter(date >= ymd("2005-01-01") & date <= ymd("2009-12-31"))

test <- agg_daily %>%
  filter(date >= ymd("2010-01-01") & date <= ymd("2010-02-28"))

full_train <- agg_daily %>%
  filter(date >= ymd("2005-01-01") & date <= ymd("2010-12-31"))</pre>
```

```
# 5.2 Construct msts objects with weekly and yearly seasonality
y_train <- msts(</pre>
  train$demand kwh,
  seasonal.periods = c(7, 365.25),
                    = c(2005, 1)
  start
y_test <- msts(</pre>
 test$demand_kwh,
  seasonal.periods = c(7, 365.25),
  start
                   = c(2010, 1)
)
y_full <- msts(</pre>
 full_train$demand_kwh,
  seasonal.periods = c(7, 365.25),
  start
                    = c(2005, 1)
)
```

Forecasting until 2010

```
# 1) Forecast horizon
h <- length(y_test)
# 2) Fit each model
# ARIMA + Fourier + weather regressors
         <- fourier(y_train, K = c(2,6))
f tr
            <- fourier(y_train, K = c(2,6), h = h)
f_ts
fit_reg
            <- auto.arima(
                 y_train,
                  seasonal = FALSE,
                 xreg = cbind(f_tr, train$temp_c, train$rh_pct)
fc_reg
             <- forecast(
                 fit_reg,
                 h = h
                 xreg = cbind(f_ts, test$temp_c, test$rh_pct)
# ETS with Box-Cox (lambda chosen to stabilize MAPE)
fc_ets_bc <- forecast(ets(y_train, lambda="auto"), h = h)</pre>
              <- naive(y_train, h = h)</pre>
fc naive
fc_tbats
             <- forecast(tbats(y_train), h = h)</pre>
# TBATS with weather covariates
          <- matrix(train$temp_c, ncol = 1)</pre>
xreg_temp
xreg_hum <- matrix(train$rh_pct, ncol = 1)</pre>
xreg_test_hum <- matrix(test$rh_pct, ncol = 1)</pre>
```

```
xreg_both <- cbind(train$temp_c, train$rh_pct)</pre>
xreg_test_both <- cbind(test$temp_c,</pre>
                                    test$rh_pct)
fc_tbats_temp <- forecast(tbats(y_train, xreg = xreg_temp), h = h, xreg = xreg_test_temp)</pre>
# 3) Extract accuracy metrics
models <- list(</pre>
    `ARIMA+F+Wx`
               = fc_reg,
   `ETS-BoxCox` = fc_ets_bc,
   Naive = fc_naive,
                = fc_tbats,
   TBATS
  TBATS+Temp = fc_tbats_temp,
  `TBATS+Hum`
              = fc_tbats_hum
)
accuracy_tbl <- purrr::map_df(models, function(fit) {</pre>
 acc <- accuracy(fit, y_test)</pre>
  # if accuracy() returned two rows (train & test), use the test row
  idx \leftarrow if (nrow(acc) == 2) 2 else 1
  # pull out the six metrics we want
  acc[idx, c("ME", "RMSE", "MAE", "MAPE", "MASE", "ACF1"), drop=FALSE] %>%
   as_tibble(rownames = "dummy") %>%
   select(-dummy)
}, .id = "Model")
# 4) Render comparison table, sorted by MAPE
accuracy_tbl %>%
  arrange(MAPE) %>%
  kable(
   caption = "Forecast accuracy comparison (all models)",
   digits = 2
  ) %>%
 kable_styling(full_width = FALSE) %>%
 row_spec(1, bold = TRUE, background = "#F0F0F0") # highlight best MAPE
```

Table 2: Forecast accuracy comparison (all models)

Model	ME	RMSE	MAE	MAPE	MASE	ACF1
ARIMA+F+Wx	562.58	1007.86	800.76	14.95	1.04	0.65
ETS-BoxCox	485.94	1239.18	984.90	19.28	1.28	0.80
Naive	486.05	1239.22	984.94	19.28	1.28	0.80
TBATS	438.30	1244.69	1008.28	20.35	1.31	0.80
TBATS+Temp	438.30	1244.69	1008.28	20.35	1.31	0.80
${ m TBATS}{+}{ m Hum}$	438.30	1244.69	1008.28	20.35	1.31	0.80

Forecasting until 2011- top 5 models - with all information

```
forecast_dates <- seq(as.Date("2011-01-01"), as.Date("2011-02-28"), by = "day")
h_future <- length(forecast_dates) # 59</pre>
```

```
#Model 1: # ETS with Box-Cox (lambda chosen to stabilize MAPE)
fc_ets_bc_full <- forecast(ets(y_full, lambda="auto"), h = h_future)
print(fc_ets_bc_full)</pre>
```

##		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	2011.0027		5434.701	4095.479	7951.106	3614.502	10422.48
##	2011.0055		5434.701	3709.794	9768.706		
##	2011.0082		5434.701	3457.804	11797.605		27561.24
##	2011.0110		5434.701	3269.399	14245.249	2683.988	61189.65
##	2011.0137		5434.701	3118.904	17357.289	2527.699	1086869.88
##	2011.0164		5434.701	2993.767	21521.223	2400.613	NA
##	2011.0192		5434.701	2886.840	27437.657	2294.034	NA
##	2011.0219		5434.701	2793.647			NA
##	2011.0247		5434.701	2711.184	52358.137	2122.862	NA
##	2011.0274		5434.701	2637.341	86170.280	2052.322	NA
##	2011.0301		5434.701	2570.571	203285.559	1989.248	NA
##	2011.0329		5434.701	2509.710	NA	1932.334	NA
##	2011.0356		5434.701	2453.857	NA	1880.582	NA
##	2011.0384		5434.701	2402.301	NA	1833.215	NA
##	2011.0411		5434.701	2354.472	NA	1789.614	NA
##	2011.0438		5434.701	2309.904	NA	1749.280	NA
##	2011.0466		5434.701	2268.213	NA	1711.805	NA
##	2011.0493		5434.701	2229.078	NA	1676.849	NA
##	2011.0521		5434.701	2192.229	NA	1644.130	NA
##	2011.0548		5434.701	2157.433	NA	1613.408	NA
##	2011.0575		5434.701	2124.494	NA	1584.478	NA
##	2011.0603		5434.701	2093.241	NA	1557.165	NA
##	2011.0630		5434.701	2063.523		1531.318	NA
##	2011.0658		5434.701	2035.211	NA	1506.805	NA
##	2011.0685		5434.701	2008.189	NA	1483.510	NA
##	2011.0712		5434.701	1982.357	NA	1461.331	NA
	2011.0740		5434.701	1957.624	NA	1440.179	NA
	2011.0767			1933.908		1419.974	NA
	2011.0795			1911.138		1400.645	NA
	2011.0822			1889.249		1382.127	NA
	2011.0849			1868.181		1364.364	NA
	2011.0877			1847.883		1347.304	NA
	2011.0904			1828.304		1330.900	NA
	2011.0932			1809.401		1315.110	NA
	2011.0959			1791.135		1299.894	NA
	2011.0986			1773.467		1285.219	NA
	2011.1014		5434.701			1271.051	NA
##	2011.1041			1739.796		1257.362	NA
##	2011.1068			1723.733		1244.123	NA
##	2011.1096			1708.149		1231.311	NA
##	2011.1123			1693.019		1218.902	NA
##	2011.1151			1678.320		1206.874	NA
##	2011.1178		5434.701	1664.032	NA	1195.208	NA

```
## 2011.1205
                    5434.701 1650.135
                                               NA 1183.886
                                                                    NA
## 2011.1233
                   5434.701 1636.609
                                               NA 1172.890
                                                                    NA
## 2011.1260
                   5434.701 1623.439
                                               NA 1162.205
                                                                    NA
## 2011.1288
                    5434.701 1610.608
                                               NA 1151.817
                                                                    NA
## 2011.1315
                    5434.701 1598.101
                                               NA 1141.710
                                                                    NA
## 2011.1342
                    5434.701 1585.904
                                               NA 1131.873
                                                                    NA
## 2011.1370
                    5434.701 1574.004
                                               NA 1122.293
                                                                    NA
## 2011.1397
                    5434.701 1562.388
                                               NA 1112.959
                                                                    NA
## 2011.1425
                    5434.701 1551.045
                                               NA 1103.860
                                                                    NA
## 2011.1452
                    5434.701 1539.964
                                               NA 1094.987
                                                                    NA
## 2011.1479
                    5434.701 1529.134
                                               NA 1086.329
                                                                    NA
## 2011.1507
                    5434.701 1518.546
                                               NA 1077.879
                                                                    NA
## 2011.1534
                    5434.701 1508.190
                                               NA 1069.628
                                                                    NA
## 2011.1562
                   5434.701 1498.058
                                               NA 1061.567
                                                                    NA
## 2011.1589
                   5434.701 1488.141
                                               NA 1053.690
                                                                    NA
## 2011.1616
                    5434.701 1478.432
                                               NA 1045.990
                                                                    NA
```

plot(fc_ets_bc_full)

Forecasts from ETS(A,N,N)


```
#Plot model + observed data
autoplot(y_full) +
  autolayer(fc_ets_bc_full, series="ETS with Box-Cox",PI=FALSE) +
  ylab("Electricity demand")
```


checkresiduals(fc_ets_bc_full)

Residuals from ETS(A,N,N)

##


```
## Ljung-Box test
##
## data: Residuals from ETS(A,N,N)
## Q* = 790.65, df = 438, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 438

# Export to CSV
submission <- template %>%
mutate(
   date = format(forecast_dates, "%Y-%m-%d"),
   load = as.numeric(fc_ets_bc_full$mean)
)
out_name <- "submission_final_ETS_with_Box-Cox.csv"</pre>
```

```
#Model 2: Naive

fc_naive_full <- naive(y_full, h = h_future)
print(fc_naive_full)</pre>
```

```
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 2011.0027 5434.625 4717.82576 6151.424 4338.37516 6530.875
## 2011.0055 5434.625 4420.91779 6448.332 3884.29361 6984.956
```

readr::write_csv(submission, file.path(output_dir, out_name))

```
7333.385
## 2011.0082
                   5434.625 4193.09230
                                        6676.158
                                                   3535.86458
                                                   3242.12532
## 2011.0110
                   5434.625 4001.02652
                                        6868.223
                                                               7627.125
                                         7037.437
## 2011.0137
                   5434.625 3831.81317
                                                   2983.33584
                                                               7885.914
                   5434.625 3678.83261
                                        7190.417
## 2011.0164
                                                   2749.37227
                                                               8119.878
## 2011.0192
                   5434.625 3538.15247
                                         7331.098
                                                   2534.22055
                                                               8335.029
                                        7462.039
                                                               8535.288
## 2011.0219
                   5434.625 3407.21058
                                                   2333.96222
## 2011.0247
                   5434.625 3284.22728
                                         7585.023
                                                   2145.87549
                                                               8723.375
## 2011.0274
                   5434.625 3167.90677
                                         7701.343
                                                   1967.97863
                                                               8901.271
## 2011.0301
                   5434.625 3057.27087
                                         7811.979
                                                   1798.77561
                                                                9070.474
## 2011.0329
                   5434.625 2951.55959
                                         7917.690
                                                   1637.10417
                                                               9232.146
## 2011.0356
                   5434.625 2850.16858
                                         8019.081
                                                   1482.04000
                                                               9387.210
## 2011.0384
                   5434.625 2752.60783
                                         8116.642
                                                   1332.83370
                                                               9536.416
## 2011.0411
                   5434.625 2658.47348
                                         8210.777
                                                   1188.86763
                                                               9680.382
## 2011.0438
                   5434.625 2567.42804
                                         8301.822
                                                   1049.62565
                                                               9819.624
                   5434.625 2479.18602
                                         8390.064
                                                    914.67113
## 2011.0466
                                                               9954.579
## 2011.0493
                   5434.625 2393.50338
                                         8475.747
                                                    783.63083 10085.619
## 2011.0521
                   5434.625 2310.16955
                                         8559.080
                                                    656.18274 10213.067
## 2011.0548
                   5434.625 2229.00134
                                         8640.249
                                                    532.04668 10337.203
## 2011.0575
                   5434.625 2149.83822
                                        8719.412
                                                    410.97714 10458.273
## 2011.0603
                   5434.625 2072.53854
                                        8796.711
                                                    292.75748 10576.493
## 2011.0630
                   5434.625 1996.97661
                                        8872.273
                                                    177.19547 10692.055
                                         8946.210
## 2011.0658
                   5434.625 1923.04022
                                                     64.11953 10805.130
## 2011.0685
                   5434.625 1850.62880
                                         9018.621
                                                    -46.62419 10915.874
## 2011.0712
                   5434.625 1779.65168
                                         9089.598
                                                   -155.17432 11024.424
## 2011.0740
                                                   -261.65625 11130.906
                   5434.625 1710.02689
                                        9159.223
## 2011.0767
                   5434.625 1641.67994
                                        9227.570
                                                   -366.18389 11235.434
                                        9294.707
## 2011.0795
                   5434.625 1574.54296
                                                   -468.86105 11338.111
## 2011.0822
                   5434.625 1508.55387
                                         9360.696
                                                   -569.78265 11439.033
                                        9425.594
## 2011.0849
                   5434.625 1443.65573
                                                   -669.03578 11538.286
## 2011.0877
                   5434.625 1379.79617
                                         9489.454
                                                   -766.70055 11635.951
## 2011.0904
                   5434.625 1316.92686
                                        9552.323
                                                   -862.85087 11732.101
## 2011.0932
                   5434.625 1255.00311
                                        9614.247
                                                   -957.55507 11826.805
## 2011.0959
                   5434.625 1193.98350
                                        9675.266 -1050.87650 11920.127
## 2011.0986
                   5434.625 1133.82956
                                        9735.420 -1142.87403 12012.124
                   5434.625 1074.50544
                                        9794.745 -1233.60244 12102.852
## 2011.1014
## 2011.1041
                   5434.625 1015.97772
                                        9853.272 -1323.11285 12192.363
## 2011.1068
                   5434.625
                             958.21518
                                        9911.035 -1411.45304 12280.703
## 2011.1096
                   5434.625
                             901.18855 9968.061 -1498.66774 12367.918
                   5434.625
                             844.87041 10024.380 -1584.79891 12454.049
## 2011.1123
                             789.23499 10080.015 -1669.88594 12539.136
## 2011.1151
                   5434.625
## 2011.1178
                   5434.625
                             734.25804 10134.992 -1753.96592 12623.216
                   5434.625
                             679.91674 10189.333 -1837.07378 12706.324
## 2011.1205
## 2011.1233
                   5434.625
                             626.18951 10243.060 -1919.24247 12788.492
                   5434.625
                             573.05602 10296.194 -2000.50314 12869.753
## 2011.1260
## 2011.1288
                   5434.625
                             520.49699 10348.753 -2080.88524 12950.135
                   5434.625
                             468.49418 10400.756 -2160.41667 13029.667
## 2011.1315
## 2011.1342
                   5434.625
                             417.03031 10452.220 -2239.12387 13108.374
## 2011.1370
                   5434.625
                             366.08896 10503.161 -2317.03194 13186.282
## 2011.1397
                   5434.625
                             315.65452 10553.595 -2394.16476 13263.415
## 2011.1425
                   5434.625
                             265.71217 10603.538 -2470.54500 13339.795
                             216.24776 10653.002 -2546.19429 13415.444
## 2011.1452
                   5434.625
## 2011.1479
                   5434.625
                             167.24784 10702.002 -2621.13320 13490.383
## 2011.1507
                   5434.625
                            118.69956 10750.550 -2695.38139 13564.631
## 2011.1534
                   5434.625
                              70.59065 10798.659 -2768.95761 13638.208
```

```
## 2011.1562 5434.625 22.90941 10846.341 -2841.87978 13711.130
## 2011.1589 5434.625 -24.35538 10893.605 -2914.16503 13783.415
## 2011.1616 5434.625 -71.21444 10940.464 -2985.82978 13855.080

plot(fc_naive_full)
```

Forecasts from Naive method


```
#Plot model + observed data
autoplot(y_full) +
  autolayer(fc_naive_full, series="Naive",PI=FALSE) +
  ylab("Electricity demand")
```


checkresiduals(fc_naive_full)

Residuals from Naive method

##

)


```
## Ljung-Box test
##
## data: Residuals from Naive method
## Q* = 888.66, df = 438, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 438

# Export to CSV
submission <- template %>%
    mutate(
    date = format(forecast_dates, "%Y-%m-%d"),
    load = as.numeric(fc_naive_full$mean)
```

```
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 2011.0027 5380.085 4500.220 6431.809 4094.244 7069.322
## 2011.0055 5517.120 4318.157 7048.632 3792.779 8024.480
```

readr::write_csv(submission, file.path(output_dir, out_name))

out_name <- "submission_final_Naive.csv"</pre>

```
## 2011.0082
                   5429.911 4170.880 7068.590 3627.191 8127.492
                   5431.497 4143.706 7119.079 3590.553 8215.164
## 2011.0110
## 2011.0137
                   5488.393 4174.928 7214.637 3612.029 8338.276
                   5502.866 4179.752 7244.364 3613.371 8379.185
## 2011.0164
## 2011.0192
                   5641.948 4281.575 7434.080 3699.650 8602.675
                   5876.817 4457.006 7748.428 3849.954 8969.423
## 2011.0219
                   5886.765 4462.254 7765.537 3853.437 8991.674
## 2011.0247
                   5719.353 4333.369 7548.151 3741.230 8742.081
## 2011.0274
## 2011.0301
                   5674.506 4297.585 7492.105 3709.511 8679.097
## 2011.0329
                   5702.158 4316.805 7531.617 3725.314 8726.710
## 2011.0356
                   5693.586 4308.633 7523.231 3717.493 8718.793
                   5817.851 4401.000 7690.345 3796.424 8914.255
## 2011.0384
## 2011.0411
                   6042.138 4568.961 7989.797 3940.533 9263.191
## 2011.0438
                   6035.782 4562.421 7984.425 3934.101 9258.824
                   5848.697 4419.302 7739.918 3809.915 8977.119
## 2011.0466
## 2011.0493
                   5787.844 4371.665 7662.290 3768.090 8888.863
                   5801.133 4380.058 7682.764 3774.574 8914.384
## 2011.0521
## 2011.0548
                   5777.578 4360.632 7654.446 3757.086 8883.294
                   5888.533 4442.730 7804.333 3827.070 9059.019
## 2011.0575
## 2011.0603
                   6099.819 4600.453 8087.322 3962.167 9389.322
## 2011.0630
                   6077.697 4582.050 8061.014 3945.534 9360.636
                   5874.103 4426.870 7793.950 3811.141 9052.340
## 2011.0658
                   5797.953 4367.842 7695.799 3759.575 8940.118
## 2011.0685
                   5796.233 4364.921 7696.378 3756.321 8942.549
## 2011.0712
## 2011.0740
                   5757.776 4334.343 7648.166 3729.270 8888.285
## 2011.0767
                   5853.211 4404.567 7777.789 3788.953 9040.682
                   6047.635 4549.217 8039.060 3912.633 9346.174
## 2011.0795
## 2011.0822
                   6010.266 4519.425 7992.360 3886.243 9293.710
                   5794.126 4355.250 7707.856 3744.319 8964.676
## 2011.0849
## 2011.0877
                   5704.534 4286.308 7591.499 3684.321 8831.087
## 2011.0904
                   5688.513 4272.693 7572.975 3671.900 8811.259
## 2011.0932
                   5636.700 4232.207 7506.775 3636.393 8735.946
## 2011.0959
                   5716.005 4290.188 7615.166 3685.500 8863.794
                   5891.483 4420.299 7851.777 3796.547 9140.945
## 2011.0986
## 2011.1014
                   5840.991 4380.796 7787.361 3761.882 9067.725
                   5617.573 4211.648 7492.309 3615.911 8725.897
## 2011.1041
## 2011.1068
                   5517.787 4135.304 7361.944 3549.671 8575.745
## 2011.1096
                   5489.650 4112.709 7327.087 3529.590 8536.798
                   5427.375 4064.559 7246.633 3487.588 8444.702
## 2011.1123
                   5491.567 4111.144 7334.994 3526.884 8549.308
## 2011.1151
                   5647.908 4226.672 7546.516 3625.306 8797.514
## 2011.1178
                   5587.656 4180.047 7468.750 3584.618 8708.546
## 2011.1205
## 2011.1233
                   5362.831 4010.361 7170.912 3438.423 8362.919
                   5256.980 3929.760 7031.955 3368.662 8202.458
## 2011.1260
## 2011.1288
                   5219.955 3900.663 6984.971 3343.074 8149.223
                   5150.960 3847.700 6895.163 3297.044 8046.000
## 2011.1315
## 2011.1342
                   5202.327 3884.674 6966.425 3328.094 8130.701
## 2011.1370
                   5340.965 3986.781 7154.616 3414.928 8351.914
## 2011.1397
                   5274.970 3936.084 7068.787 3370.853 8253.312
## 2011.1425
                   5054.418 3770.113 6775.744 3228.082 7912.715
                   4946.868 3688.545 6633.987 3157.630 7748.667
## 2011.1452
## 2011.1479
                   4904.658 3655.750 6579.759 3128.957 7686.798
## 2011.1507
                   4832.918 3600.971 6485.867 3081.479 7578.562
## 2011.1534
                   4874.508 3630.664 6544.015 3106.302 7647.949
```

plot(fc_tbats_full)

Forecasts from TBATS(0.001, {1,2}, -, {<7,2>, <365.25,2>})


```
#Plot model + observed data
autoplot(y_full) +
  autolayer(fc_tbats_full, series="TBATS",PI=FALSE) +
  ylab("Electricity demand")
```


checkresiduals(fc_tbats_full)

Residuals from TBATS(0.001, {1,2}, -, {<7,2>, <365.25,2>})


```
##
## Ljung-Box test
##
## data: Residuals from TBATS(0.001, {1,2}, -, {<7,2>, <365.25,2>})
## Q* = 437.14, df = 438, p-value = 0.5027
##
## Model df: 0. Total lags used: 438
```

```
# Export to CSV
submission <- template %>%
  mutate(
    date = format(forecast_dates, "%Y-%m-%d"),
    load = as.numeric(fc_tbats_full$mean)
)
out_name <- "submission_final_TBATS.csv"
readr::write_csv(submission, file.path(output_dir, out_name))</pre>
```

```
fc_temp <- forecast(fit_temp, h = h_future)$mean</pre>
fc_hum <- forecast(fit_hum, h = h_future)$mean</pre>
#-- 2) Build xreg matrices - just the covariates --#
# Historical (2005-2010):
xreg_full_temp <- matrix(full_train$temp_c, ncol=1)</pre>
xreg_full_hum <- matrix(full_train$rh_pct, ncol=1)</pre>
xreg full both <- cbind(full train$temp c, full train$rh pct)</pre>
# Future (2011):
xreg_future_temp <- matrix(fc_temp, ncol=1)</pre>
xreg_future_hum <- matrix(fc_hum, ncol=1)</pre>
xreg_future_both <- cbind(as.numeric(fc_temp), as.numeric(fc_hum))</pre>
# Model 4: TBATS + Temp
fit_tb_temp_full
                  <- tbats(y_full, xreg = xreg_full_temp)</pre>
fc_tbats_temp_full <- forecast(fit_tb_temp_full,</pre>
                               = h_future,
                          xreg = xreg_future_temp)
print(fc_tbats_temp_full)
             Point Forecast
                               Lo 80
                                        Hi 80
                                                  Lo 95
                                                            Hi 95
## 2011.0027
                   5539.938 4631.264 6626.897 4212.228 7286.146
## 2011.0055
                   5823.408 4555.477 7444.244 4000.187 8477.625
## 2011.0082
                   5838.615 4487.720 7596.156 3904.159 8731.567
## 2011.0110
                   5949.202 4551.732 7775.724 3950.214
                                                         8959.770
                   5991.887 4579.571 7839.754 3972.163 9038.580
## 2011.0137
## 2011.0164
                   5996.749 4578.487 7854.341 3969.020 9060.423
## 2011.0192
                   6143.125 4685.347 8054.470 4059.410 9296.422
## 2011.0219
                   6397.117 4873.989 8396.223 4220.524 9696.213
## 2011.0247
                   6406.109 4875.788 8416.737 4219.768 9725.233
## 2011.0274
                   6221.596 4730.475 8182.742 4091.773 9460.020
## 2011.0301
                   6171.773 4687.774 8125.560 4052.632 9399.024
## 2011.0329
                   6201.652 4705.643 8173.269 4065.874
                                                         9459.341
## 2011.0356
                   6192.060 4693.569 8168.967 4053.249 9459.475
## 2011.0384
                   6328.028 4791.749 8356.852 4135.805 9682.260
                   6573.677 4972.710 8690.076 4289.688 10073.747
## 2011.0411
## 2011.0438
                   6566.744 4962.450 8689.684 4278.549 10078.681
## 2011.0466
                   6361.758 4802.712 8426.898 4138.622 9779.093
## 2011.0493
                   6294.974 4747.531 8346.800 4088.900 9691.286
                   6309.433 4753.679 8374.345 4092.027
## 2011.0521
                                                         9728.418
## 2011.0548
                   6283.603 4729.499 8348.381 4069.064
                                                         9703.376
## 2011.0575
                   6405.093 4816.149 8518.261 4141.434 9906.042
## 2011.0603
                   6636.562 4985.251 8834.851 4284.596 10279.605
## 2011.0630
                   6612.384 4962.190 8811.355 4262.549 10257.624
## 2011.0658
                   6389.327 4790.092 8522.488 4112.576 9926.504
## 2011.0685
                   6305.797 4722.839 8419.317 4052.732 9811.425
## 2011.0712
                   6303.822 4716.746 8424.913 4045.409 9823.028
## 2011.0740
                   6261.675 4680.645 8376.746 4012.376
                                                         9771.910
## 2011.0767
                   6366.160 4754.123 8524.810 4073.266 9949.754
## 2011.0795
                   6579.136 4908.407 8818.548 4203.296 10297.876
## 2011.0822
                   6538.257 4873.204 8772.219 4171.018 10249.010
```

```
## 2011.0849
                  6301.490 4692.221 8462.683 4014.071 9892.396
## 2011.0877
                  6203.254 4614.645 8338.747 3945.704 9752.470
## 2011.0904
                  6185.622 4597.129 8323.005 3928.736 9738.991
                  6128.860 4550.599 8254.501 3887.008
## 2011.0932
                                                       9663.712
## 2011.0959
                  6215.662 4610.658 8379.381 3936.324
                                                       9814.856
## 2011.0986
                  6407.841 4748.702 8646.663 4052.142 10133.018
## 2011.1014
                  6352.599 4703.316 8580.225 4011.405 10060.191
                  6107.928 4517.913 8257.526 3851.358 9686.656
## 2011.1041
## 2011.1068
                  5998.565 4432.854 8117.294 3776.970
                                                       9526.890
                  5967.679 4405.899 8083.072 3752.141 9491.433
## 2011.1096
## 2011.1123
                  5899.488 4351.484 7998.182 3703.967 9396.401
## 2011.1151
                  5969.720 4399.182 8100.952 3742.719 9521.837
## 2011.1178
                  6140.882 4521.105 8340.976 3844.554 9808.791
## 2011.1205
                  6074.975 4468.441 8259.104 3797.908 9717.276
## 2011.1233
                  5828.862 4283.459 7931.821 3638.906 9336.769
## 2011.1260
                  5712.914 4194.388 7781.202 3561.502
                                                       9163.937
## 2011.1288
                  5672.323 4160.761 7733.020 3531.231 9111.624
## 2011.1315
                  5596.811 4101.610 7637.073 3479.340
                                                       9002.940
## 2011.1342
                  5652.985 4138.989 7720.785 3509.348 9106.032
## 2011.1370
                  5804.699 4246.193 7935.232 3598.506 9363.478
## 2011.1397
                  5732.539 4189.599 7843.711 3548.836 9259.938
## 2011.1425
                  5491.223 4009.603 7520.329 3394.742 8882.422
## 2011.1452
                  5373.485 3920.089 7365.735 3317.368 8703.990
## 2011.1479
                  5327.252 3882.858 7308.949 3284.293
                                                       8641.011
                  5248.781 3822.223 7207.770 3231.466 8525.451
## 2011.1507
## 2011.1534
                  5294.240 3851.867 7276.725 3254.980 8611.104
## 2011.1562
                  5429.333 3946.618 7469.093 3333.468 8842.939
## 2011.1589
                  5355.357 3889.373 7373.900 3283.566 8734.360
## 2011.1616
                  5124.122 3718.131 7061.780 3137.520 8368.591
```

plot(fc_tbats_temp_full)

Forecasts from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})


```
#Plot model + observed data
autoplot(y_full) +
  autolayer(fc_tbats_temp_full, series="TBATS",PI=FALSE) +
  ylab("Electricity demand")
```


checkresiduals(fc_tbats_temp_full)

Residuals from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})


```
##
## Ljung-Box test
##
## data: Residuals from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})
## Q* = 451.67, df = 438, p-value = 0.3157
##
## Model df: 0. Total lags used: 438
```

```
# Export to CSV
submission <- template %>%
  mutate(
   date = format(forecast_dates, "%Y-%m-%d"),
   load = as.numeric(fc_tbats_temp_full$mean)
)
out_name <- "submission_final_TBATS_temp.csv"
readr::write_csv(submission, file.path(output_dir, out_name))</pre>
```

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

##

```
## 2011.0027
                   5539.938 4631.264 6626.897 4212.228
                                                         7286.146
                   5823.408 4555.477 7444.244 4000.187
## 2011.0055
                                                         8477.625
## 2011.0082
                   5838.615 4487.720 7596.156 3904.159
                                                         8731.567
## 2011.0110
                   5949.202 4551.732 7775.724 3950.214
                                                         8959.770
## 2011.0137
                   5991.887 4579.571 7839.754 3972.163
                                                         9038.580
## 2011.0164
                   5996.749 4578.487 7854.341 3969.020
                                                         9060.423
## 2011.0192
                   6143.125 4685.347 8054.470 4059.410
                                                         9296.422
## 2011.0219
                   6397.117 4873.989 8396.223 4220.524
                                                         9696.213
## 2011.0247
                   6406.109 4875.788 8416.737 4219.768
                                                         9725.233
## 2011.0274
                   6221.596 4730.475 8182.742 4091.773
                                                         9460.020
## 2011.0301
                   6171.773 4687.774 8125.560 4052.632
                                                         9399.024
## 2011.0329
                   6201.652 4705.643 8173.269 4065.874
                                                         9459.341
## 2011.0356
                   6192.060 4693.569 8168.967 4053.249
                                                         9459.475
## 2011.0384
                   6328.028 4791.749 8356.852 4135.805
                                                         9682.260
                   6573.677 4972.710 8690.076 4289.688 10073.747
## 2011.0411
## 2011.0438
                   6566.744 4962.450 8689.684 4278.549 10078.681
## 2011.0466
                   6361.758 4802.712 8426.898 4138.622
                                                         9779.093
## 2011.0493
                   6294.974 4747.531 8346.800 4088.900
                                                         9691,286
                   6309.433 4753.679 8374.345 4092.027
## 2011.0521
                                                         9728.418
## 2011.0548
                   6283.603 4729.499 8348.381 4069.064
                                                         9703.376
## 2011.0575
                   6405.093 4816.149 8518.261 4141.434
                                                         9906.042
                   6636.562 4985.251 8834.851 4284.596 10279.605
## 2011.0603
                   6612.384 4962.190 8811.355 4262.549 10257.624
## 2011.0630
                   6389.327 4790.092 8522.488 4112.576
## 2011.0658
                                                         9926.504
## 2011.0685
                   6305.797 4722.839 8419.317 4052.732
                                                         9811.425
## 2011.0712
                   6303.822 4716.746 8424.913 4045.409
                                                         9823.028
                   6261.675 4680.645 8376.746 4012.376
## 2011.0740
                                                         9771.910
## 2011.0767
                   6366.160 4754.123 8524.810 4073.266
                                                         9949.754
                   6579.136 4908.407 8818.548 4203.296 10297.876
## 2011.0795
## 2011.0822
                   6538.257 4873.204 8772.219 4171.018 10249.010
## 2011.0849
                   6301.490 4692.221 8462.683 4014.071
                                                         9892.396
## 2011.0877
                   6203.254 4614.645 8338.747 3945.704
                                                         9752.470
## 2011.0904
                   6185.622 4597.129 8323.005 3928.736
                                                         9738.991
## 2011.0932
                   6128.860 4550.599 8254.501 3887.008
                                                         9663.712
## 2011.0959
                   6215.662 4610.658 8379.381 3936.324
                                                         9814.856
                   6407.841 4748.702 8646.663 4052.142 10133.018
## 2011.0986
## 2011.1014
                   6352.599 4703.316 8580.225 4011.405 10060.191
## 2011.1041
                   6107.928 4517.913 8257.526 3851.358
                                                         9686.656
                   5998.565 4432.854 8117.294 3776.970
## 2011.1068
                                                         9526.890
                   5967.679 4405.899 8083.072 3752.141
## 2011.1096
                                                         9491.433
## 2011.1123
                   5899.488 4351.484 7998.182 3703.967
                                                         9396.401
                   5969.720 4399.182 8100.952 3742.719
## 2011.1151
                                                         9521.837
## 2011.1178
                   6140.882 4521.105 8340.976 3844.554
                                                         9808.791
                   6074.975 4468.441 8259.104 3797.908
## 2011.1205
                                                         9717.276
## 2011.1233
                   5828.862 4283.459 7931.821 3638.906
                                                         9336.769
                   5712.914 4194.388 7781.202 3561.502
## 2011.1260
                                                         9163.937
## 2011.1288
                   5672.323 4160.761 7733.020 3531.231
                                                         9111.624
## 2011.1315
                   5596.811 4101.610 7637.073 3479.340
                                                         9002.940
## 2011.1342
                   5652.985 4138.989 7720.785 3509.348
                                                         9106.032
## 2011.1370
                   5804.699 4246.193 7935.232 3598.506
                                                         9363.478
## 2011.1397
                   5732.539 4189.599 7843.711 3548.836
                                                         9259.938
## 2011.1425
                   5491.223 4009.603 7520.329 3394.742
                                                         8882.422
                   5373.485 3920.089 7365.735 3317.368
## 2011.1452
                                                         8703.990
## 2011.1479
                   5327.252 3882.858 7308.949 3284.293 8641.011
```

```
## 2011.1507 5248.781 3822.223 7207.770 3231.466 8525.451

## 2011.1534 5294.240 3851.867 7276.725 3254.980 8611.104

## 2011.1562 5429.333 3946.618 7469.093 3333.468 8842.939

## 2011.1589 5355.357 3889.373 7373.900 3283.566 8734.360

## 2011.1616 5124.122 3718.131 7061.780 3137.520 8368.591
```

plot(fc_tbats_hum_full)

Forecasts from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})


```
#Plot model + observed data
autoplot(y_full) +
  autolayer(fc_tbats_hum_full, series="TBATS",PI=FALSE) +
  ylab("Electricity demand")
```


checkresiduals(fc_tbats_hum_full)

Residuals from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})


```
##
## Ljung-Box test
##
## data: Residuals from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})
## Q* = 451.67, df = 438, p-value = 0.3157
##
## Model df: 0. Total lags used: 438
```

```
# Export to CSV
submission <- template %>%
  mutate(
    date = format(forecast_dates, "%Y-%m-%d"),
    load = as.numeric(fc_tbats_hum_full$mean)
)
out_name <- "submission_final_TBATS_hum.csv"
readr::write_csv(submission, file.path(output_dir, out_name))</pre>
```

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

##

```
## 2011.0027
                   5539.938 4631.264 6626.897 4212.228
                                                         7286.146
                   5823.408 4555.477 7444.244 4000.187
## 2011.0055
                                                         8477.625
                   5838.615 4487.720 7596.156 3904.159
## 2011.0082
                                                         8731.567
## 2011.0110
                   5949.202 4551.732 7775.724 3950.214
                                                         8959.770
## 2011.0137
                   5991.887 4579.571 7839.754 3972.163
                                                         9038.580
## 2011.0164
                   5996.749 4578.487 7854.341 3969.020
                                                         9060.423
## 2011.0192
                   6143.125 4685.347 8054.470 4059.410
                                                         9296.422
## 2011.0219
                   6397.117 4873.989 8396.223 4220.524
                                                         9696.213
## 2011.0247
                   6406.109 4875.788 8416.737 4219.768
                                                         9725.233
## 2011.0274
                   6221.596 4730.475 8182.742 4091.773
                                                         9460.020
## 2011.0301
                   6171.773 4687.774 8125.560 4052.632
                                                         9399.024
                   6201.652 4705.643 8173.269 4065.874
## 2011.0329
                                                         9459.341
## 2011.0356
                   6192.060 4693.569 8168.967 4053.249
                                                         9459.475
## 2011.0384
                   6328.028 4791.749 8356.852 4135.805
                                                         9682.260
                   6573.677 4972.710 8690.076 4289.688 10073.747
## 2011.0411
## 2011.0438
                   6566.744 4962.450 8689.684 4278.549 10078.681
## 2011.0466
                   6361.758 4802.712 8426.898 4138.622
                                                         9779.093
## 2011.0493
                   6294.974 4747.531 8346.800 4088.900
                                                         9691,286
                   6309.433 4753.679 8374.345 4092.027
## 2011.0521
                                                         9728.418
## 2011.0548
                   6283.603 4729.499 8348.381 4069.064
                                                         9703.376
## 2011.0575
                   6405.093 4816.149 8518.261 4141.434
                                                         9906.042
                   6636.562 4985.251 8834.851 4284.596 10279.605
## 2011.0603
                   6612.384 4962.190 8811.355 4262.549 10257.624
## 2011.0630
                   6389.327 4790.092 8522.488 4112.576
## 2011.0658
                                                         9926.504
## 2011.0685
                   6305.797 4722.839 8419.317 4052.732
                                                         9811.425
## 2011.0712
                   6303.822 4716.746 8424.913 4045.409
                                                         9823.028
                   6261.675 4680.645 8376.746 4012.376
## 2011.0740
                                                         9771.910
## 2011.0767
                   6366.160 4754.123 8524.810 4073.266
                                                         9949.754
                   6579.136 4908.407 8818.548 4203.296 10297.876
## 2011.0795
## 2011.0822
                   6538.257 4873.204 8772.219 4171.018 10249.010
## 2011.0849
                   6301.490 4692.221 8462.683 4014.071
                                                         9892.396
## 2011.0877
                   6203.254 4614.645 8338.747 3945.704
                                                         9752.470
## 2011.0904
                   6185.622 4597.129 8323.005 3928.736
                                                         9738.991
                   6128.860 4550.599 8254.501 3887.008
## 2011.0932
                                                         9663.712
## 2011.0959
                   6215.662 4610.658 8379.381 3936.324
                                                         9814.856
                   6407.841 4748.702 8646.663 4052.142 10133.018
## 2011.0986
## 2011.1014
                   6352.599 4703.316 8580.225 4011.405 10060.191
## 2011.1041
                   6107.928 4517.913 8257.526 3851.358
                                                         9686.656
                   5998.565 4432.854 8117.294 3776.970
## 2011.1068
                                                         9526.890
                   5967.679 4405.899 8083.072 3752.141
## 2011.1096
                                                         9491.433
## 2011.1123
                   5899.488 4351.484 7998.182 3703.967
                                                         9396.401
                   5969.720 4399.182 8100.952 3742.719
## 2011.1151
                                                         9521.837
## 2011.1178
                   6140.882 4521.105 8340.976 3844.554
                                                         9808.791
                   6074.975 4468.441 8259.104 3797.908
## 2011.1205
                                                         9717.276
## 2011.1233
                   5828.862 4283.459 7931.821 3638.906
                                                         9336.769
                   5712.914 4194.388 7781.202 3561.502
## 2011.1260
                                                         9163.937
## 2011.1288
                   5672.323 4160.761 7733.020 3531.231
                                                         9111.624
## 2011.1315
                   5596.811 4101.610 7637.073 3479.340
                                                         9002.940
## 2011.1342
                   5652.985 4138.989 7720.785 3509.348
                                                         9106.032
## 2011.1370
                   5804.699 4246.193 7935.232 3598.506
                                                         9363.478
## 2011.1397
                   5732.539 4189.599 7843.711 3548.836
                                                         9259.938
## 2011.1425
                   5491.223 4009.603 7520.329 3394.742
                                                         8882.422
                   5373.485 3920.089 7365.735 3317.368
## 2011.1452
                                                         8703.990
## 2011.1479
                   5327.252 3882.858 7308.949 3284.293 8641.011
```

```
## 2011.1507 5248.781 3822.223 7207.770 3231.466 8525.451

## 2011.1534 5294.240 3851.867 7276.725 3254.980 8611.104

## 2011.1562 5429.333 3946.618 7469.093 3333.468 8842.939

## 2011.1589 5355.357 3889.373 7373.900 3283.566 8734.360

## 2011.1616 5124.122 3718.131 7061.780 3137.520 8368.591
```

plot(fc_tbats_both_full)

Forecasts from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})


```
#Plot model + observed data
autoplot(y_full) +
  autolayer(fc_tbats_both_full, series="TBATS",PI=FALSE) +
  ylab("Electricity demand")
```


checkresiduals(fc_tbats_both_full)

Residuals from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})


```
## Ljung-Box test
##
## data: Residuals from TBATS(0, {0,3}, -, {<7,2>, <365.25,2>})
## Q* = 451.67, df = 438, p-value = 0.3157
##
## Model df: 0. Total lags used: 438

# Export to CSV
submission <- template %>%
mutate(
   date = format(forecast_dates, "%Y-%m-%d"),
   load = as.numeric(fc_tbats_both_full$mean)
)
```

Graph

out_name <- "submission_final_TBATS_both.csv"</pre>

readr::write_csv(submission, file.path(output_dir, out_name))

##

```
autoplot(y_full) +
  autolayer(fc_ets_bc_full, PI=FALSE, series="ETS") +
  autolayer(fc_naive_full, PI=FALSE, series="NAIVE") +
  autolayer(fc_tbats_full,PI=FALSE, series="TBATS") +
```

```
autolayer(fc_tbats_temp_full,PI=FALSE, series="TBATS+T") +
autolayer(fc_tbats_hum_full,PI=FALSE, series="TBATS+H") +
autolayer(fc_tbats_both_full,PI=FALSE, series="TBATS+BOTH") +
xlab("Day") + ylab("Daily Electricity demand") +
guides(colour=guide_legend(title="Forecast"))
```


Conclusions