A Book of Abstract Algebra (2nd Edition)

Chapter 29, Problem 3EA

Bookmark

Show all steps: ON

Problem

If $a = \sqrt{1 + \sqrt{2}}$, show that $\{1, 2^{1/3}, 2^{2/3}, a, 2^{1/3}a, 2^{2/3}a\}$ is a basis of (a) over (a). Describe the elements of \bigcirc (a).

Step-by-step solution

Step 1 of 3

Consider that $a = \sqrt{1+\sqrt[3]{2}}$. Objective is to show that $\{1, 2^{1/3}, 2^{2/3}, a, 2^{1/3}a, 2^{2/3}a\}$ is a basis of O(a) over Q.

Let $x = \sqrt[3]{2}$. Then $x^3 = 2$, and $x^3 - 2 = 0$. Note that, $x^3 - 2$ is a minimal polynomial of $\sqrt[3]{2}$, because it is irreducible by Eisenstein's irreducible criterion.

Since polynomial is of degree 3, therefore $[Q(\sqrt[3]{2}):Q]=3$. The basis for this will be:

$$\{1, 2^{1/3}, 2^{2/3}\}$$

Comment

Step 2 of 3

Also from $a=\sqrt{1+\sqrt[3]{2}}$, it implies that $a^2-1=\sqrt[3]{2}$. Then $\sqrt[3]{2}\in Q(a)$, and therefore $Q(a)=Q(\sqrt[3]{2},a)$.

Next, in $Q(\sqrt[3]{2})$, a satisfies $a^2 - 1 - \sqrt[3]{2} = 0$. So, a is a root of the polynomial $x^2 - 1 - \sqrt[3]{2} = 0$. Since the root of this quadratic equation is some irrational number, therefore it is irreducible over $Q(\sqrt[3]{2})[x]$. Hence, quadratic polynomial $x^2 - 1 - \sqrt[3]{2} = 0$ is the minimal polynomial of a over $Q(\sqrt[3]{2})[x]$. Thus,

$$\left[Q(\sqrt[3]{2}, a): Q(\sqrt[3]{2})\right] = 2$$

And the basis will be $\{1, a\}$.

Comment

Step 3 of 3

Then,

$$\left[Q(\sqrt[3]{2}, a) : Q \right] = \left[Q(\sqrt[3]{2}, a) : Q(\sqrt[3]{2}) \right] \cdot \left[Q(\sqrt[3]{2}) : Q \right]
= 2 \cdot 3
= 6$$

The required basis, with the help of theorem, will be:

$$\{1, 2^{1/3}, 2^{2/3}, a, 2^{1/3}a, 2^{2/3}a\}$$

And the elements of Q(a) will be of the form:

$$Q(a) = \left\{ p + q \cdot 2^{1/3} + r \cdot 2^{2/3} + s \cdot a + t \cdot 2^{1/3} a + u \cdot 2^{2/3} a : p, q, r, s, t, u \in Q \right\}.$$

Comment