Subar	1
Cub [*]	2
54/	3
-	4
	5
	6

Claims

 A method of in 	npedance control,	comprising
------------------------------------	-------------------	------------

providing an input/output cell having a controllable input/output impedance;

providing a reference cell including a node having a variable voltage;

comparing the voltage of the node to a reference voltage; 7

8

9

adjusting the voltage of the node during a defined period and according to a defined

10 procedure;

11

during said defined period, generating a digital signal; and 12

13 14

transmitting the digital signal to the input/output cell to adjust the input/output

impedance. 15

1 2

3

A method according to Claim 1, wherein: 2.

the generating step includes the step of increasing a count value during said defined

4 period; and

5

6

the transmitting step includes the step of transmitting said count value to the input/output

cell after the defined period. 7

A method according to Claim 2, wherein: 3. 1

2 3

the reference cell includes a series of transistors for adjusting the voltage of the node;

4 and

5

	1
6	the adjusting step includes the step of using the count value to activate said transistors in
7	a given order to adjust the voltage of the node.
1	4. A method according to Claim 1, wherein:
2	the reference cell includes a first set of transistors for adjusting the voltage of the node;
3	the reference cent includes a first set of filmissisters for adjusting the votings of the set,
5	the input/output cell includes a second set of transistors for adjusting the input/output
6	impedance;
7	
8	each of the transistors of said first set is associated with one of the transistors in said
9	second set;
10	
11	the adjusting step includes the step of activating a subset of the first set of transistors to
12	adjust the voltage of said node; and
13	
14	the transmitting step includes the step of transmitting the digital signal to the
15	input/output cell to activate transistors of the second set of transistors that are associated
16	with said subset of the first set of transistors.
1	5. A method according to Claim 1 wherein:
2	I
3	the input/output impedance of the input/output cell varies in a defined manner as a
4	function of a given set of variables; and
5	/
6	the variable voltage of the node of the reference cell also varies in said defined manner
7	as a function of said given set of variables.
1	6. A method according to Claim 5, wherein:
2	

3	the reference cell includes a reference resistor for establishing the variable voltage at
4	said node; and
5	
6	said resistor has an impedance that varies in said defined manner as a function of said
7	given set of variables.
1	7. A method according to Claim 1, wherein the adjusting step includes the steps of:
2	
3	if the voltage of the node is less than the reference voltage, then increasing the voltage of
4	the node in a first manner; and
5	
6	if the voltage of the node is more than the reference voltage, then decreasing the voltage
7	of the node in a second manner.
1	8. A method according to Claim 7, wherein:
2	
3	the increasing step includes the steps of
4	
5	i) applying a first signal to a digital controller, and
6	/
7	ii) the digital controller applying a signal to the reference cell to increase the voltage
8	of the node;
9	
10	the decreasing step includes the steps of
11	
12	i) applying a second signal to the digital controller, and
13	
14	ii) the digital controller applying a signal to the reference cell to decrease the
15	voltage of the node; and
16	

17	the generating step includes the step of using the digital controller to generate the digital
18	signal.
1	9. A circuit for controlling the impedance of an input/output/cell having a varying
2	input/output impedance, said circuit comprising:
3	
4	
5	a node having a variable voltage;
6	
7	a comparator for comparing the voltage of the node to a reference voltage;
8	
9	means for adjusting the voltage of the node during a defined period and according to a
10	defined procedure;
11	
12	a digital generator for generating a digital signal during said defined period; and
13	
14	means for transmitting the digital signal to the input/output cell to adjust the input/output
15	impedance.
1	10. A circuit according to Claim 9, wherein:
2	# # # # # # # # # # # # # # # # # # #
3	the digital generator increases a count value during said defined period; and
4	the transmitting means transmits said count value to the input/output cell after the
5	defined period.
6	defined period.
1	11. A circuit according to Claim 10, wherein the adjusting means includes:
2	11. A chedit according to Claim 10, wherein the acjusting means metaces.
3	a series of transistors for adjusting the voltage of the node; and
4	
-	

	,
5	means for using the count value to activate said transistors in a given order to adjust the
6	voltage of the node.
	/
1	12. A circuit according to Claim 9, wherein:
2	//
3	the input/output cell includes a first set of transistors for adjusting the input/output
4	impedance;
5	
6	the circuit further includes a second set of transistors for adjusting the voltage of the
7	node;
8	
9	each of the transistors of said second set is associated with one of the transistors in said
10	first set;
11	_
12	the adjusting means includes means for activating a subset of the second set of
13	transistors to adjust the voltage of said node; and
14	
15	the transmitting means includes means for transmitting the digital signal to the
16	input/output cell to activate transistors of the first set of transistors that are associated
17	with said subset of the second set of transistors.
1	13. A circuit according to Claim 9, wherein:
2	
3	the input/output impedance of the input/output cell varies in a defined manner as a
4	function of a given set of variables; and
5	
6	the variable voltage of said node also varies in said defined manner as a function of said
7	given set of variables.
1	14. A circuit according to Claim 13, wherein:

14

	A
2	the circuit further includes a reference resistor for establishing the variable voltage at
3	said node; and
4	
5	said resistor has an impedance that varies in said defined manner as a function of said
6	given set of variables.
1	15. A circuit according to Claim 9, wherein the adjusting means includes:
2	
3	means for increasing the voltage of the node in a first manner if the voltage of the node
4	is less than the reference voltage; and
5	
6	means for decreasing the voltage of the node in a second manner if the voltage of the
7	node is more than the reference voltage.
1	16. A circuit according to Claim 9, wherein said circuit is a digital controller
2	designed as a synthesized core or macro.