

静電界

真空中

真空の誘電率 $\varepsilon_0 = 8.854 \times 10^{-12} \, [\mathrm{Fm}^{-1}]$ クーロンの法則 $F = \frac{1}{4\pi\varepsilon_0} \frac{r_0 - r_1}{|r_0 - r_1|^3} Q_0 Q_1$ ガウスの法則 $\operatorname{div} \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$ $\oint_{\mathcal{S}} \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{S} = \frac{Q}{\varepsilon_0}$

電界保存 $\operatorname{rot} \mathbf{E} = 0(\mathbf{B} = \operatorname{const})$ 電界 \boldsymbol{E} [NC⁻¹, Vm⁻¹] 電荷密度 $\rho = \lim_{\delta v \to 0} \frac{\delta Q}{\delta v} [\text{Cm}^{-3}]$ 電荷 $Q = \int \rho dv [C]$ 電位 $V = -\int_{-}^{p} \boldsymbol{E} \cdot d\boldsymbol{S} V \quad \boldsymbol{E} = -\operatorname{grad} V$ ポアソン方程式 $\nabla^2 V = -\frac{\rho}{c}$ 静電容量 C = Q/V [F, CV⁻¹

静磁界 真空中

真空の透磁率 $\mu_0 = 4\pi/10^7 \, [\mathrm{Hm}^{-1}]$

磁極のクーロンの法則 $\boldsymbol{F} = \frac{1}{4\pi\mu_0} \frac{\boldsymbol{r}_0 - \boldsymbol{r}_1}{|\boldsymbol{r}_0 - \boldsymbol{r}_1|^3} q_{m0} q_{m1}$ 磁極の定義より $\operatorname{div} \boldsymbol{H} = \frac{\rho_m}{\mu_0} \quad \oint_S \boldsymbol{H} \cdot \mathrm{d} \boldsymbol{S} = \frac{q_m}{\mu_0}$

磁束保存 $\operatorname{div} \boldsymbol{B} = 0(\text{Maxwell4}) \quad \oint_{\boldsymbol{C}} \boldsymbol{B} \cdot d\boldsymbol{S} = 0$

真電流がないなら rot $\boldsymbol{H} = 0(\boldsymbol{J} = 0, \boldsymbol{D} = \text{const})$ 磁界の強さ H [Am⁻¹]

磁束密度 \boldsymbol{B} [T, Wbm⁻²]

ビオ・サバールの法則 $\delta oldsymbol{B} = rac{\mu_0}{4\pi} rac{I \mathrm{d} oldsymbol{s} imes oldsymbol{r}}{r^3}$

アンペールの法則 $\oint_C m{B} \cdot \mathrm{d} m{s} = \mu_0 I$ rot $m{B} = \mu_0 m{J}$ ローレンツカ $F = q(E + v \times B)$

分極の強さ $\mathbf{P} = \rho_0 \delta \mathbf{r} \, [\mathrm{Cm}^{-2}]$ 分極電荷の体積密度 $\rho_P = -\operatorname{div} \mathbf{P} [\operatorname{Cm}^{-3}]$ 分極電荷 $Q_P = \int_{\mathbb{R}} \rho_P dv = -\oint_{\mathcal{S}} \mathbf{P} \cdot d\mathbf{S} [C, FV]$

電東密度 $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P} [\mathrm{Cm}^{-2}]$ ガウスの法則 $\operatorname{div} \boldsymbol{D} = \rho(\operatorname{Maxwell3})$ $\oint \boldsymbol{D} \cdot \mathrm{d} \boldsymbol{S} = Q$ 等方性誘電体 $P = \chi E = \chi_S \varepsilon_0 E$

分極率 χ [C²N⁻¹m⁻²] 比分極率 χ_s [-] $D = \varepsilon E = \varepsilon_0 \varepsilon_s E$

誘電体の誘電率 $arepsilon \left[\mathrm{Fm}^{-1}
ight]$ 比誘電率 $arepsilon_s \left[-
ight]$ 電界のエネルギー密度 $\frac{1}{2} \mathbf{E} \cdot \mathbf{D}$

磁気モーメントの強さ $m = I\Delta S [\mathrm{Am}^2]$

磁化の強さ $M = \Delta m/\Delta v [\mathrm{Am}^{-1}]$

磁極の強さの体積密度 $ho_m = -\operatorname{div}(\mu_0 oldsymbol{M}) \, [ext{Wbm}^{-3}]$

磁極の強さ $q_m = \int_{v} \rho_m dv \, [\mathrm{Wb}, \mathrm{Tm}^2]$ 磁界の強さ $\boldsymbol{H} = \frac{\boldsymbol{B}}{\mu_0} - \boldsymbol{M} \, [\mathrm{Am}^{-1}]$

磁気分極 $J_m = \mu_0 M [T]$

 $\boldsymbol{B} = \mu_0 \boldsymbol{H} + \boldsymbol{J_m}$ アンペールの法則 $\oint_C oldsymbol{H} \cdot \mathrm{d}s = I_f$ $\mathrm{rot}\, oldsymbol{H} = oldsymbol{J_f}$

等方性磁性体 $\overline{M} = \chi H$

磁化率 $\chi[-]$

 $\boldsymbol{B} = \mu \boldsymbol{H} = \mu_s \mu_0 \boldsymbol{H}$

磁性体の透磁率 μ [Hm⁻¹] 比透磁率 μ_s [-]

磁界のエネルギー密度 $\frac{1}{2}H \cdot B$

定常電流界

電界は保存的 (KVL) rot E=0電流 $I = \frac{\mathrm{d}Q}{\mathrm{d}t} = \int_{S} \mathbf{J} \cdot \mathrm{d}\mathbf{S} \left[\mathbf{A}, \mathbf{C}\mathbf{s}^{-1} \right]$ 電流連続 $\operatorname{div} \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0 \to \operatorname{div} \boldsymbol{J} = 0(\operatorname{KCL})$ オームの法則 V = RI $\mathbf{J} = \sigma \mathbf{E} = \frac{\mathbf{E}}{\sigma}$ 抵抗 $R = \frac{\rho l}{S} = \frac{l}{\sigma S} [\Omega, VA^{-1}]$ 導電率 $\sigma \left[\Omega^{-1} \mathbf{m}^{-1} \right]$ 抵抗率 $\rho \left[\Omega \mathbf{m} \right]$

起電力 (ファラデーの電磁誘導の法則) $e = \oint_C \mathbf{E} \cdot \mathrm{d}\mathbf{s} = -\frac{\partial \Phi}{\partial t} [\mathrm{V}]$

磁気回路

真電流 \boldsymbol{J} がないなら $\operatorname{rot} \boldsymbol{H} = 0$

磁束 $\Phi = \int_{\mathcal{S}} \boldsymbol{B} \cdot d\boldsymbol{S} [Wb, Tm^2]$

磁束保存 $\operatorname{div} \boldsymbol{B} = 0$

 $NI = R_m \Phi$ $\boldsymbol{B} = \mu \boldsymbol{H} = \frac{\boldsymbol{H}}{\mu}$

磁気抵抗 $R_m = \frac{l}{\mu S} [A/Wb]$

透磁率 μ [Hm⁻¹] 磁気抵抗率 ν [H⁻¹m]

起磁力 $NI = \oint_C \boldsymbol{H} \cdot d\boldsymbol{s} [A]$

マックスウェル方程式

ファラデーの電磁誘導の法則 $\operatorname{rot} \boldsymbol{E} = - \frac{\partial \boldsymbol{B}}{\partial t}$ ガウスの法則 $\operatorname{div} \mathbf{D} = \rho$ 一様なら $oldsymbol{D}=arepsilon oldsymbol{E},\, oldsymbol{B}=\mu oldsymbol{H}$

アンペール+変位電流 $\operatorname{rot} \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{\mu}}$ 磁束保存 $\operatorname{div} \mathbf{B} = 0$ 一様なら $oldsymbol{J} = \sigma oldsymbol{E}$