EII – Übungsblatt 2

Die Folgenden Aufgaben sind Schreibtischarbeit!

Die Ergebnisse sollen mit LATEX dokumentiert werden unter Verwendung der in Felix vorgegebenen Ausarbeitungsform. Es ist das erzeugte PDF-Dokument abzugeben.

Hinweise zur Ausarbeitung:

- x.1) Was muss getan werden? Beschreiben Sie die Aufgabe jeweils kurz in eigenen Worten
- x.2) Wie funktioniert die Umrechnung im Prinzip? In eigenen Worten!
- x.3) Exemplarische Rechnung einer Umrechnung und alle Ergebnisse
- x.4) Woher weiß ich, daß die Ergebnisse korrekt sind? Belegen Sie dies an mindestens einer Berechnung.

x=1,2,3

Ziele diese Übung

- Umrechnen zwischen Binär- und Dezimalsystem
- Gewöhnung an Binäroperationen

1 Umrechnung zwischen Zahlensystemen

Üben Sie die Umrechnung von verschiedenen Ausgangs-Zahlensystemen in verschiedene Basissysteme:

- Folgende Zahlen sollen umgerechnet werden:
 192₁₀,0C₁₆,764₈,01111110₂
 Berechnen Sie für jede Zahl die Darstellung in den anderen hier verwendeten Zahlensystemen.
- Bestimmen Sie für die nachfolgenden aufeinander aufbauenden Festlegungen jeweils den unteren und oberen darstellbaren Wert im Dezimalsystem und im Hexadezimalsystem.

Beispiel aus der Thematik IPv4 Adressen:

Es ist hilfreich zunächst die kleinste und größte Zahl binär zu schreiben und anschliessend die Umrechnungen durchzuführen.

- Sie haben 8 Bit zur Informationsdarstellung: Die Wertedarstellung geht von 0_{10} =00₁₆ bis 255₁₀ = FF_{16}
- Das höchstwertige Bit muss 0 sein: Die Wertedarstellung geht von bis
- Jetzt muss das höchstwertige Bit immer 1 sein, das zweithöchste Bit muss 0 sein: Die Wertedarstellung geht von: bis
- Jetzt müssen das höchste und das zweithöchstes Bit 1 gesetzt sein, das dritthöchste Bit muss 0 sein: Die Wertedarstellung geht von: bis

Wenn Sie diese Punkte richtig gerechnet haben, dann haben Sie schon die ersten wichtigen Informationen zu der Internet Adressierung (IP-Adressen) kennengelernt.

2 Gebrochenrationale Zahlen

Gebrochenrationale Zahlen werden unterschiedlich dargestellt.

- Berechnen Sie die grösst mögliche Zahl (dezimal), wenn Sie jeweils 4 Bit für die Vorkommastellen und für die Nachkommastellen zur Verfügung hätten.
- Gebrochenrationale Zahlen in den Systemen Dual, Oktal und Hexadezimal

Dualsystem	Oktalsystem	Hexadezimalsystem
101101.101		
		AB.CD

Füllen Sie die Lücken in der Tabelle.

3 Binäre Addition/Subtraktion

- Addition im Dualsystem

Lösen Sie die folgenden Aufgaben, indem Sie die Dezimalzahlen zuerst in das Dualsystem umwandeln und dann im Dualsystem die Addition durchführen.

$$125_{10} + 199_{10} = ?_2$$

$$27_{10} + 30_{10} = ?_2$$

$$115_{10} + 21_{10} = ?_2$$

Subtraktion im Dualsystem
 Subtrahieren Sie die folgenden Zahlen unter Nutzung des Zweierkomplements. Sie haben
 8 Stellen zur Verfügung.

$$55_{10} - 120_{10} = ?_2$$

 $42_{10} - 12_{10} = ?_2$
 $18_{10} - 105_{10} = ?_2$

– Warum ist bei der Subtraktion die Begrenzung auf 8 Binärstellen zwingend notwendig für die Lösung der Aufgabe?