1

GATE EE Q.17

EE23BTECH11203 - Adarsh A*

Question: A continuous-time system that is initially at rest is described by,

$$\frac{dy(t)}{dt} + 3y(t) = 2x(t)$$

where x(t) is the input voltage and y(t) is the output voltage.

The impulse response of the system is?

(A)
$$3e^{-2t}$$

(B)
$$\frac{1}{3}e^{-2t}u(t)$$

(C)
$$2e^{-3t}u(t)$$

(D)
$$2e^{-3t}$$
 (GATE EE 2023)

Solution:

Parameter	Value	Description
x(t)	-	Input voltage
y (t)	-	Output voltage
$h\left(t\right)$	$\frac{y(t)}{x(t)}$	Impulse response
X(s)	-	Input voltage in s-domain
Y(s)	-	Output voltage in s-domain
H(s)	$\frac{Y(s)}{Y(s)}$	Impulse response in s-domain

Input Table

Given equation is,

$$\frac{dy(t)}{dt} + 3y(t) = 2x(t) \tag{1}$$

Applying Laplace transform,

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
 (2)

$$y(t) \xleftarrow{\mathcal{L}} Y(s)$$
 (3)

From the differentiation property,

$$\frac{dy(t)}{dt} \xleftarrow{\mathcal{L}} sY(s) \tag{4}$$

The equation becomes,

$$sY(s) + 3Y(s) = 2X(s) \tag{5}$$

$$Y(s)(s+3) = 2X(s)$$
 (6)

$$H(s) = \frac{Y(s)}{X(s)} \tag{7}$$

$$H(s) = \frac{2}{s+3} \tag{8}$$

$$\frac{1}{s+a} \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-at} u(t) \tag{9}$$

Using these results,

$$h(t) = 2e^{-3t}u(t) (10)$$

Plot of h(t) vs t:

