| 1 | (a) | Distinguish between scalars and vectors.                              |
|---|-----|-----------------------------------------------------------------------|
|   |     | [1]                                                                   |
|   | (b) | Underline all the vector quantities in the list below.                |
|   |     | acceleration kinetic energy momentum power weight [2]                 |
|   | (c) | A force of 7.5 N acts at 40° to the horizontal, as shown in Fig. 1.1. |
|   |     | 7.5 N                                                                 |
|   |     |                                                                       |
|   |     | 40° horizontal                                                        |
|   |     | Fig. 1.1                                                              |
|   |     | Calculate the component of the force that acts                        |
|   |     | (i) horizontally,                                                     |
|   |     |                                                                       |
|   |     |                                                                       |
|   |     | horizontal component = N [1]                                          |
|   |     | (ii) vertically.                                                      |
|   |     |                                                                       |
|   |     |                                                                       |
|   |     | vertical component = N [1]                                            |
|   |     |                                                                       |

(d) Two strings support a load of weight 7.5 N, as shown in Fig. 1.2.



Fig. 1.2

One string has a tension  $T_1$  and is at an angle 50° to the horizontal. The other string has a tension  $T_2$  and is at an angle 40° to the horizontal. The object is in equilibrium. Determine the values of  $T_1$  and  $T_2$  by using a vector triangle or by resolving forces.

$$T_1 = \dots N$$

$$T_2 = \dots N$$

[4]