

概述

CL9901系列是高纹波抑制率、低功耗、低压差,具有过流和短路保护的CMOS降压型电压稳压器。这些器件具有很低的静态偏置电流(8.0µA Typ.),它们能在输入、输出电压差极小的情况下提250mA的输出电流,并且仍能保持良好的调整率。由于输入输出间的电压差很小和噪声很小以及静态偏置电流很小,这些器件不仅特别适用于希望延长有用电池寿命的电池供电类产品,如计算机、消费类产品和工业设备等,还特别适用于希望对纹波抑制较高的语音和图像设备,如摄像头、蓝牙等消费类产品等。

特性

- ◆低降压电压
- ◆最大输出电流: 250mA
- ◆输出电压: 1.2V-5.0V (步长0.1V)
- ◆高精度输出电压: ±2%
- ◆低的温度调整系数

应用范围

- ◆摄像头
- ◆蓝牙
- ◆电池供电系统
- ◆电压基准源
- ◆相机, 摄录机
- ◆便携式影音系统
- ◆通讯工具
- ◆便携式游戏

CL9901采用SOT-23-3L、SOT-23和SOT-89-3L封装

典型应用

选型指南

CL9901系列低压差电压稳压器

管脚分布图 SOT-23-3L **SOT-23** SOT-89-3L VIN VIN 3 3 1 2 2 1 2 **GND VIN VOUT GND VOUT GND VOUT**

丝印说明

芯片型号	芯片封装	芯片丝印		芯片型号	芯片封装	芯片丝印
CL9901A15S3M	SOT-23	65E9		CL9901A28L3M	SOT-23-3L	54FK
CL9901A15L3M	SOT-23-3L	65E9		CL9901A28P3M	SOT-89-3L	6206A YYWW/28
CL9901A15P3M	SOT-89-3L	6206A YYWW/15		CL9901A30S3M	SOT-23	65Z5
CL9901A18S3M	SOT-23	65K5	4	CL9901A30L3M	SOT-23-3L	65Z5
CL9901A18L3M	SOT-23-3L	65K5	IK	CL9901A30P3M	SOT-89-3L	6206A YYWW/30
CL9901A18P3M	SOT-89-3L	6206A YYWW/18		CL9901A33S3M	SOT-23	662K
CL9901A25S3M	SOT-23	58GC		CL9901A33L3M	SOT-23-3L	662K
CL9901A25L3M	SOT-23-3L	58GC		CL9901A33P3M	SOT-89-3L	6206A YYWW/33
CL9901A25P3M	SOT-89-3L	6206A YYWW/25		CL9901A36L3M	SOT-23-3L	5916
CL9901A28S3M	SOT-23	54FK		CL9901A36P3M	SOT-89-3L	6206A YYWW/36

管脚描述

	脚位号	脚位	说明	
SOT-89-3L	SOT-23-3L	SOT-23	1247 <u>17</u>	<i>7</i> /2-7/7
1	1	1	GND	接地端。
2	3	3	VIN	电源端。
3	2	2	VOUT	输出端。

CL9901系列低压差电压稳压器

封装耗散等级

封装	Pd(mW)
SOT-23	150
SOT-23-3L	300
SOT-89-3L	500

极限参数

参数	符号	极限值	单位
Vin 脚电压	V_{IN}	6.0	V
Vout 脚电流	l _{out}	500	mΑ
Vout 脚电压	V_{out}	Vss-0.3 ~ Vout+0.3	V
工作温度	T_{Opr}	-25 ~ +85	$^{\circ}\mathbb{C}$
存贮温度	T_{stg}	-40 ~ +125	$^{\circ}\!\mathbb{C}$
焊接温度和时间	T_{solder}	260℃, 10s	

注释: 超出"绝对极限参数"可能损毁器件。推荐在工作范围内器件可以工作,但不保证其特性。长时间运行在绝对极限参数条件下可能会影响器件的可靠性。

CL9901系列低压差电压稳压器

功能块框图 Vin 🔯 Vout Current Limit Voltage Reference Vss

主要参数及工作特性

CL9901A30/33

(Vin=Vout+1V,Cin=Cout=1u,Ta=25°C 除特别指定)

特性	符号	条件	最小值	典型值	最大值	单位
输出电压	V _{OUT} (E) (Note 2)	I _{OUT} =40mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
输入电压	V _{IN}				6.0	
最大输出电流	I _{OUT} (max)	V _{IN} =Vout+1V	250			mA
负载特性	ΔV_{OUT}	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤100mA		30		mV
压差	V_{dif1}	I _{OUT} =80mA		200		mV
(Note 3)	V_{dif2}	I _{OUT} =200mA		400		mV
静态电流	I _{SS}	V _{IN} =Vout+1V		8		uA
电源电压调整率	$\frac{\Delta V_{OUT}}{\Delta V_{IN} * V_{OUT}}$	I _{OUT} =40mA Vout+1V ≤V _{IN} ≤9V		0.05		%/V
纹波抑制比	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz	>>	50		dB
短路电流	Ishort			10		mA
过流保护电流	llimt			500		mA

CL9901A15

(Vin=Vout+1V,Cin=Cout=1u,Ta=25°C 除特别指定)

特性	符号	条件	最小值	典型值	最大值	单位
输出电压	V _{OUT} (E) (Note 2)	I _{OUT} =5mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
输入电压	V _{IN}				5.0	
最大输出电流	I _{OUT} (max)	V _{IN} =Vout+1V	20			mA
负载特性	ΔV_{OUT}	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤20mA		10		mV
压差	V_{dif1}	I _{OUT} =5mA		100		mV
(Note 3)	V_{dif2}	I _{OUT} =20mA		200		mV
静态电流	I _{SS}	V _{IN} =Vout+1V		8		μΑ
电源电压调整率	$\frac{\Delta V_{OUT}}{\Delta V_{IN} * V_{OUT}}$	I _{OUT} =5mA Vout+1V ≤V _{IN} ≤5V		0.05		%/V
纹波抑制比	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =5mA,f=1kHz		40		dB
短路电流	Ishort			10		mA
过流保护电流	llimt			200		mA

CL9901系列低压差电压稳压器

CL9901B33P3M

(Vin=Vout+1V,Cin=Cout=1u,Ta=25°C 除特别指定)

特性	符号	条件	最小值	典型值	最大值	单位
输出电压	V _{OUT} (E) (Note 2)	I _{OUT} =40mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
输入电压	V _{IN}				6.0	
最大输出电流	I _{OUT} (max)	V _{IN} =Vout+1V	250			mA
负载特性	ΔV_{OUT}	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤100mA		30		mV
压差	V _{dif1}	I _{OUT} =80mA		200		mV
(Note 3)	V_{dif2}	I _{OUT} =200mA		400		mV
静态电流	I _{SS}	V _{IN} =Vout+1V		150	300	uA
电源电压调整率	$\frac{\Delta V_{OUT}}{\Delta V_{IN} * V_{OUT}}$	I _{OUT} =40mA Vout+1V ≤V _{IN} ≤9V	1	0.05		%/V
纹波抑制比	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		60		dB
短路电流	Ishort			10		mA
过流保护电流	llimt			500		mA

注释: 1、 V_{OUT} (T): 规定的输出电压

2、 V_{OUT} (E): 有效输出电压 (即当 I_{OUT} 保持一定数值, V_{IN} = (V_{OUT} (T)+1.0V)时的输出电压。

 $3 \cdot V_{dif} : V_{IN1} - V_{OUT} (E)$

V_{IN1}:逐渐减小输入电压,当输出电压降为 V_{OUT} (E)98%时的输入电压。

 V_{OUT} (E)'= V_{OUT} (E)X98%.

Symbol	Dimensions	In Millimeters
Syllibol	Min	Max
A1	0.02	0.1
A2	1.0	Typical
b	0.4	Typical
С	0.1	Typical
D	2.70	3.10
E	1.10	1.50
E1	2.20	2.60
e1	1.80	2.00
L	0.35	0.48

封装说明: SOT-23-3L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
_	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A 1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 (0.950 (BSC)		(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
r	00	80	00	80	

CL9901系列低压差电压稳压器

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
Суппоп	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550R	REF.	0.061	REF.	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.5007	ΥP	0.060TYP		
e1	3.0007	ΥP	0.118	BTYP	
L	0.900	1.200	0.035	0.047	

CL9901系列低压差电压稳压器

- 此处描述的信息有可能有所修改, 恕不另行通知。
- 智浦芯联不对由电路或图表描述引起的与的工业标准,专利或第三方权利相关的问题负有责任。应用 电路图仅作为典型应用的示例用途,并不保证其对专门的大规模生产的实用性。
- 当该产品及衍生产品与瓦圣纳协议或其他国际协议冲突时,其出口可能会需相关政府的授权。
- 未经智浦芯联刊印许可的任何对此处描述信息用于其他用途的复制或拷贝都是被严厉禁止的。
- 此处描述的信息若智浦芯联无书面许可不能被用于任何与人体有关的设备,例如运动器械,医疗设备,安全系统,燃气设备,或任何安装于飞机或其他运输工具。
- 虽然智浦芯联尽力去完善产品的品质和可靠性,当半导体产品的失效和故障仍在所难免。因此采用该产品的客户必须要进行仔细的安全设计,包括冗余设计,防火设计,失效保护以防止任何次生性意外、火灾或相关损毁。