σ -algebra Generated By Stopping Time

Guo Linsong 518030910419

June 5, 2020

Definition 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $(\mathcal{F}_n : n \geq 0)$, $X = (X_n : n \geq 0)$ be a process adapted to (\mathcal{F}_n) and T be a stopping time. We define σ -algebra generated by T:

$$\mathcal{F}_T = \sigma\{A \in \mathcal{F}, A \cap \{T \le n\} \in \mathcal{F}_n, \forall n\}$$

Next we prove that \mathcal{F}_T is a σ -algebra.

Proof. 1. $\emptyset \cap \{T \leq n\} = \emptyset \in \mathcal{F}_n \text{ implies } \emptyset \in \mathcal{F}_T.$

- 2. $\Omega \cap \{T \leq n\} = \{T \leq n\} \in \mathcal{F}_n \text{ implies } \Omega \in \mathcal{F}_T.$
- 3. If $A \in \mathcal{F}_T$, then $A \cap \{T \leq n\} \in \mathcal{F}_n$ for every n. Thus $A^c \cap \{T \leq n\} = (A^c \cap \{T \leq n\})^c \cap \{T \leq n\} \in \mathcal{F}_n$ implies $A^c \in \mathcal{F}_T$.
- 4. If $A_i \in \mathcal{F}_T$ for every i, then $(A_i \cap \{T \le n\}) \in \mathcal{F}_n$ for every n. Thus $(\bigcup_i A_i) \cap \{T \le n\} = \bigcup_i (A_i \cap \{T \le n\}) \in \mathcal{F}_n$ implies $\bigcup_i A_i \in \mathcal{F}_n$. Hence \mathcal{F}_T is a σ -algebra.

Lemma 2. If S and T are stopping times such that $S \leq T$, then $\mathcal{F}_S \subset \mathcal{F}_T$.

Proof. For every $A \in \mathcal{F}_S$, we have

$$A \cap \{S \leq n\} \in \mathcal{F}_n, \forall n$$

Thus we have

$$A \cap \{T \le n\} = \{A \cap \{S \le n\}\} \cap \{T \le n\} \in \mathcal{F}_n, \forall n$$

So $A \in \mathcal{F}_T$. This implies $\mathcal{F}_S \subset \mathcal{F}_T$.

Lemma 3. If S and T are **bounded** stopping times such that $S \leq T$ and $X = (X_n : n \geq 0)$ is a martingale, then $\mathbb{E}[X_T | \mathcal{F}_S] = X_S, a.s.$

Proof. As S and T are bounded, there exists $N \in \mathbb{N}$ such that $S \leq T \leq N$.

Firstly we prove that $\mathbb{E}[X_N \mathbb{1}_A] = \mathbb{E}\left[\mathbb{E}\left[X_N | \mathcal{F}_S\right] \mathbb{1}_A\right]$ for every $A \in \mathcal{F}_S$. By the definition of the conditional expectation, we have

$$\int_A X_N dP = \int_A \mathbb{E}[X_N | \mathcal{F}_S] dP$$

Hence

$$\mathbb{E}[X_N;A] = \mathbb{E}\left[\mathbb{E}\left[X_N|\mathcal{F}_S\right];A\right]$$

This implies $\mathbb{E}[X_N\mathbb{1}_A]=\mathbb{E}\left[\mathbb{E}\left[X_N|\mathcal{F}_S\right]\mathbb{1}_A\right].$

For every $A \in \mathcal{F}_S$, we have

$$\begin{split} \mathbb{E}[X_N \mathbb{1}_A] &= & \mathbb{E}\left[\mathbb{E}\left[X_N | \mathcal{F}_S\right] \mathbb{1}_A\right] \\ &= & \sum_{i=1}^N \mathbb{E}\left[\mathbb{E}\left[X_N | \mathcal{F}_i\right] \mathbb{1}_A \mathbb{1}_{S=i}\right] \\ &= & \sum_{i=1}^N \mathbb{E}\left[X_i \mathbb{1}_A \mathbb{1}_{S=i}\right] \\ &= & \mathbb{E}\left[X_S \mathbb{1}_A\right] \end{split}$$

The above equation implies that $\int_A X_N dP = \int_A X_S dP$ for every $A \in \mathcal{F}_S$. Thus $\mathbb{E}[X_N | \mathcal{F}_S] = X_S$. In the similar way, we have $\mathbb{E}[X_N | \mathcal{F}_T] = X_T$. Thus we can conclude that

$$\mathbb{E}[X_T|\mathcal{F}_S] = \mathbb{E}\left[\mathbb{E}\left[X_N|\mathcal{F}_T\right]|\mathcal{F}_S\right] = \mathbb{E}[X_N|\mathcal{F}_S] = X_S$$