Hypothesis Testing and Model Choice Merlise Clyde

STA721 Linear Models

Duke University

October 9, 2014

• MLEs do not depend on the order of the variables in the model

- MLEs do not depend on the order of the variables in the model
- regression coefficients are adjusted for the other variables in the model

- MLEs do not depend on the order of the variables in the model
- regression coefficients are adjusted for the other variables in the model
- t-values correspond to test statistic for testing hypothesis H_o : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$ given the other variables are in the model

- MLEs do not depend on the order of the variables in the model
- regression coefficients are adjusted for the other variables in the model
- t-values correspond to test statistic for testing hypothesis H_o : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$ given the other variables are in the model
- \bullet all p-values less than α does not mean that all coefficients are zero!

- MLEs do not depend on the order of the variables in the model
- regression coefficients are adjusted for the other variables in the model
- t-values correspond to test statistic for testing hypothesis H_o : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$ given the other variables are in the model
- \bullet all p-values less than α does not mean that all coefficients are zero!
- redundancy

- MLEs do not depend on the order of the variables in the model
- regression coefficients are adjusted for the other variables in the model
- t-values correspond to test statistic for testing hypothesis H_o : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$ given the other variables are in the model
- \bullet all p-values less than α does not mean that all coefficients are zero!
- redundancy
- with factors use ANOVA for simultaneous testing

- MLEs do not depend on the order of the variables in the model
- regression coefficients are adjusted for the other variables in the model
- t-values correspond to test statistic for testing hypothesis H_o : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$ given the other variables are in the model
- \bullet all p-values less than α does not mean that all coefficients are zero!
- redundancy
- with factors use ANOVA for simultaneous testing

Estimates

> summary(climate.lm)
Coefficients: (2 not defined because of singularities)

Estimate Std Error t value Pr(>|t|)

	Estimate	Sta. Erro	r t varue	Pr(> t)
(Intercept)	-2.7933	2.3189	-1.205	0.235
Alkenone	0.4463	2.3234	0.192	0.849
Faunal	0.7235	2.4525	0.295	0.769
Sr/Ca	-2.9254	2.5318	-1.155	0.255
Del180	-0.3037	2.4030	-0.126	0.900
IceCore	-3.1407	2.8504	-1.102	0.277
Pollen	-2.6751	2.4528	-1.091	0.282
Noble Gas	-3.2520	2.5698	-1.265	0.213
poly(latitude, 2)1	-3.0092	10.5916	-0.284	0.778
poly(latitude, 2)2	-7.3654	26.6516	-0.276	0.784
Alkenone:poly(latitude, 2)1	3.5493	10.6675	0.333	0.741
Faunal:poly(latitude, 2)1	6.5637	11.7978	0.556	0.581
Sr/Ca:poly(latitude, 2)1	11.8701	15.6097	0.760	0.451
Del180:poly(latitude, 2)1	0.8912	11.7526	0.076	0.940
IceCore:poly(latitude, 2)1	NA	NA	NA	NA
Pollen:poly(latitude, 2)1	-4.0769	13.5600	-0.301	0.765
Noble Gas:poly(latitude, 2)1	-8.7078	17.9962	-0.484	0.631
Alkenone:poly(latitude, 2)2	3.0832	26.6984	0.115	0.909
Faunal:poly(latitude, 2)2	2.8690	27.4056	0.105	0.917
Sr/Ca:poly(latitude, 2)2	19.2753	31.4567	0.613	0.543
Del180:poly(latitude, 2)2	16.1802	26.9623	0.600	0.552
IceCore:poly(latitude, 2)2	NA	NA	NA	NA
Pollen:poly(latitude, 2)2	3.3119	27.6753	0.120	0.905
Noble Gas:poly(latitude, 2)2	18.6612	30.0579	0.621	0.538

Residual standard error: 2.112 on 41 degrees of freedom Multiple R-squared: 0.682, Adjusted R-squared: 0.5191 F-statistic: 4.187 on 21 and 41 DF, p-value: 4.382e-05

Anova and Sequential Sum of Squares

```
climate.lm = lm(deltaT ~ proxy *(poly(latitude,2)),
               weights=(1/sdev^2),
               data=climate)
anova(climate.lm)
Response: deltaT
                           Sum Sq Mean Sq F value
                                                    Pr(>F)
                        7 307.598 43.943 9.8541 3.848e-07 ***
proxy
poly(latitude, 2)
                        2 10.457 5.228 1.1725
                                                    0.3198
proxy:poly(latitude, 2) 12 74.065 6.172 1.3841
                                                    0.2126
Residuals
                       41 182.833 4.459
```

Sequential Sum of Squares

```
>anova(lm(deltaT ~ (poly(latitude,2))* proxy, weights=1/sdev^2,
         data=climate))
Analysis of Variance Table
Response: deltaT
                           Sum Sq Mean Sq F value Pr(>F)
poly(latitude, 2)
                        2 79.869 39.935 8.9553 0.0005931 ***
                        7 238.185 34.026 7.6304 6.93e-06 ***
proxy
poly(latitude, 2):proxy 12 74.065 6.172 1.3841 0.2125512
Residuals
                       41 182.833 4.459
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Order Matters!

$$\mathbf{M}_0: \mathbf{Y} = \mathbf{1}_n \beta_0 + \epsilon$$

$$\mathfrak{M}_0: \mathbf{Y} = \mathbf{1}_n \beta_0 + \epsilon$$

$$\mathbf{M}_1: \mathbf{Y} = \mathbf{1}_n \beta_0 + \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}$$

$$\begin{array}{rcl} \mathcal{M}_0: \mathbf{Y} & = & \mathbf{1}_n \beta_0 + \epsilon \\ \\ \mathcal{M}_1: \mathbf{Y} & = & \mathbf{1}_n \beta_0 + \mathbf{X}_1 \beta_1 + \epsilon \\ \\ \mathcal{M}_2: \mathbf{Y} & = & \mathbf{1}_n \beta_0 + \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \epsilon \end{array}$$

$$\begin{array}{rcl} \mathcal{M}_0: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \epsilon \\ \mathcal{M}_1: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \mathbf{X}_1 \beta_1 + \epsilon \\ \mathcal{M}_2: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \epsilon \\ & \vdots & \vdots \\ \mathcal{M}_k: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \dots \mathbf{X}_k \beta_k + \epsilon \end{array}$$

Consider a series of nested models:

$$\begin{array}{lcl} \mathcal{M}_0: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \epsilon \\ \mathcal{M}_1: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \mathbf{X}_1 \boldsymbol{\beta}_1 + \epsilon \\ \mathcal{M}_2: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \epsilon \\ & \vdots & \vdots \\ \mathcal{M}_k: \mathbf{Y} &=& \mathbf{1}_n \beta_0 + \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \dots \mathbf{X}_k \boldsymbol{\beta}_k + \epsilon \end{array}$$

Let P_j denote the projection on the column space in each of the models \mathcal{M}_j : $C(\mathbf{X}_0, \mathbf{X}_1, \dots, \mathbf{X}_j)$

Consider a series of nested models:

Let P_j denote the projection on the column space in each of the models \mathcal{M}_j : $C(\mathbf{X}_0, \mathbf{X}_1, \dots, \mathbf{X}_j)$

$$\|\mathbf{Y}^{T}\mathbf{Y}\|^{2} = \|P_{0}\mathbf{Y}\|^{2} + \|(P_{1} - P_{0})\mathbf{Y}\|^{2} + \|(P_{2} - P_{1})\mathbf{Y}\|^{2} + \dots \|(P_{k} - P_{k-1})\mathbf{Y}\|^{2} + \|(P_{n} - P_{k})\mathbf{Y}\|^{2}$$

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1 - P_0)\mathbf{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\frac{\ (P_1-P_0)\mathbf{Y}\ ^2}{r(P_1)-r(P_0)}}{\hat{\sigma}^2}$

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1 - P_0)\mathbf{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{\frac{r(P_1) - r(P_0)}{\hat{\sigma}^2}}$
$oldsymbol{eta}_2=0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2 - P_1)\mathbf{Y}\ ^2}{r(P_2) - r(P_1)}}{\hat{\sigma}^2}$

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1-P_0)\boldsymbol{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{r(P_1) - r(P_0)}$
$\boldsymbol{\beta}_2 = 0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2 - P_1)\mathbf{Y}\ ^2}{r(P_2) - r(P_1)}}{\hat{\sigma}^2}$
:	:	:	:
$\boldsymbol{\beta}_k = 0$	$\ (P_k-P_{k-1})\mathbf{Y}\ ^2$	$r(P_k) - r(P_{k-1})$	$\frac{\frac{\ (P_k - P_{k-1})\mathbf{Y}\ ^2}{r(P_k) - r(P_{k-1})}}{\hat{\sigma}^2}$

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1-P_0)\boldsymbol{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{r(P_1) - r(P_0)}}{\hat{\sigma}^2}$
$oldsymbol{eta}_2=0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2-P_1)\mathbf{Y}\ ^2}{r(P_2)-r(P_1)}}{\hat{\sigma}^2}$
:	:	:	:
$\boldsymbol{\beta}_k = 0$	$\ (P_k-P_{k-1})\mathbf{Y}\ ^2$	$r(P_k) - r(P_{k-1})$	$\frac{\frac{\left\ (P_k - P_{k-1})\mathbf{Y}\right\ ^2}{r(P_k) - r(P_{k-1})}}{\hat{\sigma}^2}$

• Sequential test $\beta_j = 0$ includes variables from the previous model $\beta_0, \beta_1, \dots, \beta_{j-1}$ but β_i for i > j are all set to 0

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1-P_0)\boldsymbol{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{r(P_1) - r(P_0)}$ $\frac{\hat{\sigma}^2}{\ (P_1 - P_0)\mathbf{Y}\ ^2}$
$\beta_2 = 0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2-P_1)\mathbf{Y}\ ^2}{r(P_2)-r(P_1)}}{\hat{\sigma}^2}$
:	:	:	:
$\boldsymbol{\beta}_k = 0$	$\ (P_k-P_{k-1})\mathbf{Y}\ ^2$	$r(P_k) - r(P_{k-1})$	$\frac{\frac{\left\ \left(P_{k}-P_{k-1}\right)Y\right\ ^{2}}{r\left(P_{k}\right)-r\left(P_{k-1}\right)}}{\hat{\sigma}^{2}}$

- Sequential test $\beta_j = 0$ includes variables from the previous model $\beta_0, \beta_1, \dots, \beta_{j-1}$ but β_i for i > j are all set to 0
- All use estimate of $\hat{\sigma}^2 = \|(\mathbf{I}_n \mathbf{P}_k)\mathbf{Y}\|^2/(n r(\mathbf{P}_k))$ under largest model

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1-P_0)\boldsymbol{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{r(P_1) - r(P_0)}$ $\hat{\sigma}^2$
$\boldsymbol{\beta}_2 = 0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2-P_1)\mathbf{Y}\ ^2}{r(P_2)-r(P_1)}}{\hat{\sigma}^2}$
:	:	:	:
$\boldsymbol{\beta}_k = 0$	$\ (P_k-P_{k-1})\mathbf{Y}\ ^2$	$r(P_k) - r(P_{k-1})$	$\frac{\frac{\ (P_k - P_{k-1})\mathbf{Y}\ ^2}{r(P_k) - r(P_{k-1})}}{\hat{\sigma}^2}$

- Sequential test $\beta_j = 0$ includes variables from the previous model $\beta_0, \beta_1, \dots, \beta_{i-1}$ but β_i for i > j are all set to 0
- All use estimate of $\hat{\sigma}^2 = \|(\mathbf{I}_n \mathbf{P}_k)\mathbf{Y}\|^2/(n r(\mathbf{P}_k))$ under largest model
- Unless $P_j P_i = \mathbf{0}$ for $i \neq j$, decomposition will depend on the order of \mathbf{X}_i in the model

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1-P_0)\boldsymbol{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{r(P_1) - r(P_0)}}{\hat{\sigma}^2}$
$\beta_2 = 0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2-P_1)\mathbf{Y}\ ^2}{r(P_2)-r(P_1)}}{\hat{\sigma}^2}$
:	:	:	:
$\boldsymbol{\beta}_k = 0$	$\ (P_k-P_{k-1})\mathbf{Y}\ ^2$	$r(P_k) - r(P_{k-1})$	$\frac{\frac{\left\ \left(P_{k}-P_{k-1}\right)Y\right\ ^{2}}{r\left(P_{k}\right)-r\left(P_{k-1}\right)}}{\hat{\sigma}^{2}}$

- Sequential test $\beta_j=0$ includes variables from the previous model $\beta_0,\beta_1,\ldots,\beta_{j-1}$ but β_i for i>j are all set to 0
- All use estimate of $\hat{\sigma}^2 = \|(\mathbf{I}_n \mathbf{P}_k)\mathbf{Y}\|^2/(n-r(\mathbf{P}_k))$ under largest model
- Unless $P_j P_i = \mathbf{0}$ for $i \neq j$, decomposition will depend on the order of \mathbf{X}_i in the model
- If last \mathbf{X}_k is $n \times 1$, then $t^2 = F$ for testing H_0 : $\beta_k = 0$

Hypothesis*	SS	df	F
$oldsymbol{eta}_1=0$	$\ (P_1-P_0)\boldsymbol{Y}\ ^2$	$r(P_1) - r(P_0)$	$\frac{\frac{\ (P_1 - P_0)\mathbf{Y}\ ^2}{r(P_1) - r(P_0)}}{\hat{\sigma}^2}$
$\beta_2 = 0$	$\ (P_2-P_1)\boldsymbol{Y}\ ^2$	$r(P_2) - r(P_1)$	$\frac{\frac{\ (P_2-P_1)\mathbf{Y}\ ^2}{r(P_2)-r(P_1)}}{\hat{\sigma}^2}$
:	:	:	:
$\boldsymbol{\beta}_k = 0$	$\ (P_k-P_{k-1})\mathbf{Y}\ ^2$	$r(P_k) - r(P_{k-1})$	$\frac{\frac{\left\ \left(P_{k}-P_{k-1}\right)Y\right\ ^{2}}{r\left(P_{k}\right)-r\left(P_{k-1}\right)}}{\hat{\sigma}^{2}}$

- Sequential test $\beta_j=0$ includes variables from the previous model $\beta_0,\beta_1,\ldots,\beta_{j-1}$ but β_i for i>j are all set to 0
- All use estimate of $\hat{\sigma}^2 = \|(\mathbf{I}_n \mathbf{P}_k)\mathbf{Y}\|^2/(n-r(\mathbf{P}_k))$ under largest model
- Unless $P_j P_i = \mathbf{0}$ for $i \neq j$, decomposition will depend on the order of \mathbf{X}_i in the model
- If last \mathbf{X}_k is $n \times 1$, then $t^2 = F$ for testing H_0 : $\beta_k = 0$

Data

Order 1: Sequential Sum of Squares

```
climate.lm = lm(deltaT ~ proxy *(poly(latitude,2)),
               weights=(1/sdev^2),
               data=climate)
anova(climate.lm)
Response: deltaT
                           Sum Sq Mean Sq F value
                                                    Pr(>F)
                        7 307.598 43.943 9.8541 3.848e-07 ***
proxy
poly(latitude, 2)
                        2 10.457 5.228 1.1725
                                                    0.3198
proxy:poly(latitude, 2) 12 74.065 6.172 1.3841
                                                    0.2126
Residuals
                       41 182.833 4.459
```

Order 2: Sequential Sum of Squares

Prediction with Latitude

Change in Temperature by Proxy

• Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)

- Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)
- ② Find residuals $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{Y}$ from regressing \mathbf{Y} on all variables except \mathbf{X}_i

- Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)
- ② Find residuals $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{Y}$ from regressing \mathbf{Y} on all variables except \mathbf{X}_i
- **9** Remove the effect of other explanatory variables from \mathbf{X}_j by taking residuals $\mathbf{e}_{\mathbf{X}_i|\mathbf{X}_{(-i)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{X}_j$

- Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)
- ② Find residuals $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{Y}$ from regressing \mathbf{Y} on all variables except \mathbf{X}_i
- **3** Remove the effect of other explanatory variables from \mathbf{X}_j by taking residuals $\mathbf{e}_{\mathbf{X}_i|\mathbf{X}_{(-i)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{X}_j$
- ullet Plot $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}}$ versus $\mathbf{e}_{\mathbf{X}_j|\mathbf{X}_{(-j)}}$

- Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)
- ② Find residuals $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{Y}$ from regressing \mathbf{Y} on all variables except \mathbf{X}_j
- **3** Remove the effect of other explanatory variables from \mathbf{X}_j by taking residuals $\mathbf{e}_{\mathbf{X}_i|\mathbf{X}_{(-i)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{X}_j$
- \bullet Plot $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}}$ versus $\mathbf{e}_{\mathbf{X}_j|\mathbf{X}_{(-j)}}$
- **3** Slope is adjusted regression coefficient in full model $\mu \in C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_j, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$

- Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)
- ② Find residuals $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{Y}$ from regressing \mathbf{Y} on all variables except \mathbf{X}_i
- **9** Remove the effect of other explanatory variables from \mathbf{X}_j by taking residuals $\mathbf{e}_{\mathbf{X}_i|\mathbf{X}_{(-i)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{X}_j$
- \bullet Plot $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}}$ versus $\mathbf{e}_{\mathbf{X}_j|\mathbf{X}_{(-j)}}$
- Slope is adjusted regression coefficient in full model $\mu \in C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_j, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$
- 0 library(car)

Added Variable Plots

- Let $P_{(-j)}$ denote the projection on the space spanned by $C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$ (omit variable j)
- ② Find residuals $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}} = (\mathbf{I} \mathbf{P}_{(-j)})\mathbf{Y}$ from regressing \mathbf{Y} on all variables except \mathbf{X}_i
- **9** Remove the effect of other explanatory variables from \mathbf{X}_j by taking residuals $\mathbf{e}_{\mathbf{X}_i | \mathbf{X}_{(-i)}} = (\mathbf{I} \mathbf{P}_{(-j)}) \mathbf{X}_j$
- \bullet Plot $\mathbf{e}_{\mathbf{Y}|\mathbf{X}_{(-j)}}$ versus $\mathbf{e}_{\mathbf{X}_j|\mathbf{X}_{(-j)}}$
- Slope is adjusted regression coefficient in full model $\mu \in C(\mathbf{X}_0, \dots, \mathbf{X}_{j-1}, \mathbf{X}_j, \mathbf{X}_{j+1}, \dots \mathbf{X}_k)$
- 1 library(car)
- \bullet avPlots(climate1.lm, terms= \sim .)

avPlots

Multiple Model Objects and Anova in R

Analysis of Variance Table

```
Model 1: deltaT ~ T.M
Model 2: deltaT ~ poly(latitude, 2) + T.M
Model 3: deltaT ~ poly(latitude, 2) + proxy
Model 4: deltaT ~ proxy * (poly(latitude, 2))
 Res.Df RSS Df Sum of Sq F Pr(>F)
1
     61 385.66
2
 59 347.11 2
                    38.542 4.3215 0.019814 *
3
  53 256.90 6
                    90.215 3.3718 0.008552 **
4
 41 182.83 12
                    74.065 1.3841 0.212551
              0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 '
Signif. codes:
```

> anova(climate3.lm,climate2.lm,climate1.lm, climate.lm)

Other order

```
> anova(climate3.lm,climate2.lm,climate1.lm, climate.lm)
Analysis of Variance Table
Model 1: deltaT ~ T.M
Model 2: deltaT ~ proxy
Model 3: deltaT ~ poly(latitude, 2) + proxy
Model 4: deltaT ~ proxy * (poly(latitude, 2))
 Res.Df RSS Df Sum of Sq F Pr(>F)
     61 385.66
2 55 267.35 6 118.301 4.4215 0.001555 **
3 53 256.90 2 10.457 1.1725 0.319767
4 41 182.83 12 74.065 1.3841 0.212551
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual Plots

Terrestrial versus Marine

```
T.MT
             -5.6360
                       0.7132 -7.902 1.26e-10 ***
T.MM
            -2.1145
                       0.4124 -5.127 3.93e-06 ***
proxyAlkenone -0.1408
                       0.4381 -0.321
                                       0.749
proxyFaunal -0.1507
                       0.8971 -0.168 0.867
proxySr/Ca -3.2188
                       0.7584 -4.244 8.49e-05 ***
proxyDel180 -0.6378
                       0.5048 -1.263 0.212
proxyIceCore 0.1360
                       1.3130 0.104 0.918
proxyPollen 0.5283
                       1.0033 0.527 0.601
proxyNoble Gas
                 NA
                           NA
                                  NA
                                         NA
Multiple R-squared: 0.9115, Adjusted R-squared: 0.8986
            Sum Sq Mean Sq F value Pr(>F)
T.M
         2 2635.27 1317.63 271.0625 < 2e-16 ***
         6 118.30 19.72 4.0561 0.00195 **
proxy
Residuals 55 267.35 4.86
```

climate.final = lm(deltaT ~ T.M + proxy -1, weights=(1/sdev^2))

Estimate Std. Error t value Pr(>|t|)

Even Simpler?

```
lm(formula = deltaT ~ T.M + I(proxy == "Sr/Ca"), weights = (1/sd
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       -5.3915 0.4486 -12.018 < 2e-16 ***
T.MM
                        3.0585 0.4649 6.579 1.30e-08 ***
I(proxy == "Sr/Ca")TRUE -3.0003 0.6371 -4.709 1.52e-05 ***
Residual standard error: 2.166 on 60 degrees of freedom
Multiple R-squared: 0.5103, Adjusted R-squared: 0.4939
Model 1: deltaT ~ T.M + I(proxy == "Sr/Ca")
Model 2: deltaT ~ T.M + proxy - 1
 Res.Df RSS Df Sum of Sq F Pr(>F)
     60 281.58
   55 267.36 5 14.228 0.5854 0.711
```

Boxplots

Design

• Ignoring proxies, there are systematic trends with latitude.

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude
- Weak evidence of a latitude effect, after taking into account proxies

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude
- Weak evidence of a latitude effect, after taking into account proxies
- Terrestrial sites differ from Marine sites, however there are significant difference among proxies within the Marine group driven by the Sr/Ca proxy which indicates a significantly greater increases in temperatures

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude
- Weak evidence of a latitude effect, after taking into account proxies
- Terrestrial sites differ from Marine sites, however there are significant difference among proxies within the Marine group driven by the Sr/Ca proxy which indicates a significantly greater increases in temperatures
- Significant warming for Terrestrial $(5.4^{\circ}C)$ with Marine sites significantly cooler $(3^{\circ}C)$

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude
- Weak evidence of a latitude effect, after taking into account proxies
- Terrestrial sites differ from Marine sites, however there are significant difference among proxies within the Marine group driven by the Sr/Ca proxy which indicates a significantly greater increases in temperatures
- Significant warming for Terrestrial $(5.4^{\circ}C)$ with Marine sites significantly cooler $(3^{\circ}C)$
- Sr/Ca proxies are significantly cooler than other marine proxies by about 3°C

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude
- Weak evidence of a latitude effect, after taking into account proxies
- Terrestrial sites differ from Marine sites, however there are significant difference among proxies within the Marine group driven by the Sr/Ca proxy which indicates a significantly greater increases in temperatures
- Significant warming for Terrestrial $(5.4^{\circ}C)$ with Marine sites significantly cooler $(3^{\circ}C)$
- Sr/Ca proxies are significantly cooler than other marine proxies by about 3°C

Uncertainty Measures?

- Ignoring proxies, there are systematic trends with latitude.
- Difference among proxies, even after adjusting for latitude
- Weak evidence of a latitude effect, after taking into account proxies
- Terrestrial sites differ from Marine sites, however there are significant difference among proxies within the Marine group driven by the Sr/Ca proxy which indicates a significantly greater increases in temperatures
- Significant warming for Terrestrial $(5.4^{\circ}C)$ with Marine sites significantly cooler $(3^{\circ}C)$
- Sr/Ca proxies are significantly cooler than other marine proxies by about 3°C

Uncertainty Measures? Normal Assumptions?

