

Estimation of transpiration using sap flow sensors calibrated with whole canopy transpiration measurements

1ST LIAISE CONFERENCE AND
DETERMINING EVAPOTRANSPIRATION CROSSCUT WORKSHOP

Lleida, March 27, 2023

Jordi Oliver-Manera
Dr Joan Girona and Dr Omar Garcia-Tejera
Ús Eficient de l'Aigua en l'Agricultura
Institut de Recerca i Tecnologia Agroalimentària

Background:

- The original goal of the experiment:
 - Assessment of the effects of summer pruning (crop forcing technique) of Tempranillo grapevines on whole canopy transpiration (Vines were fully irrigated (Ψ_s > -0.8 Mpa))
 - Three treatments were performed: non-pruned vines, vines pruned on June 3 and vines pruned on July 1
 - One sap flow sensor was installed in four vines per each treatment to measure transpiration (Dr García-Tejera).
 - Vines were fully irrigated ($\Psi_s > -0.8$ Mpa)
 - 80% of the sap flow wires were destroyed by furious rabbits (exactly when vines were pruned) affecting dramatically data quality and the whole experiment

Can we take a reliable measurement of transpiration with one sap flow sensor per vine????

We can't! => controversial but not new

LA: 8.33 m²

LA:7.07 m²

LA: 8.66 m²

LA: 9.7 m²

LA: 10.41 m²

LA: 10.53 m²

LA: 5.34 m²

LA: 6.96 m²

 $Transpiration = Air flow (Water_{in} - Water_{out})$

Calibration method: whole canopy gas exchange chamber

Managing whole canopy chambers:

Tedious

Technically skilled staff

Difficult to move between rows: BIG PROBLEM (big distance between vines)

It was suggested to calibrate as many sap flows as possible in one day:

WCCH was measuring for three hours in each vine

We only have one Li-6400

Calibration method:

Actual Transpiration = $T_{sap} \alpha$

Where α is the calibration coefficient ($^{T_{chamber}}/_{T_{sap}}$)

 $T_{chamber}$ was measured one day of the year, for 3 hours in each chamber.

IRTA Generalitat de Catalunya

Comparison between two methods

Comparison between two methods and calibration

$k_{cb} = Transpiration/ETo$

Vaisala Calibrated validation:

$k_{cb} = Transpiration/ETo$

We used the calibration to other whole canopy chambers without Licor-6400 measurements

Generalitat de Catalunya

Sap flow double calibration:

Kcb = $0.40 \approx 0.37$ (theorical)

Conclusions:

- Sap flow sensors need to be calibrated for a whole day and at different days of the year
- Vaisala calibration with Li-6400 improved the data
- Vaisala-sap flow Double calibration is a good choice in case of spatial limitation for using portable gas exchange system system
- Vaisala calibration is cheaper than using several portable gas exchange systems
- Vaisala system allow to measure transpiration continuously

