

LEARNING PROGRESS REVIEW

Week 6

Entropy Team

OUR TEAM

Entropy Team

- Adhang Muntaha Muhammad https://www.linkedin.com/in/adhangmuntaha/
- Aziz Fauzi
 https://www.linkedin.com/in/aziz-fauzi-a6904711b/
- lwan Wahyu
 https://www.linkedin.com/in/iwan-wahyu-setyawan-506809183
- Marcellina Alvita F
 https://www.linkedin.com/in/marcellina-alvita-faustina-63a284226
- Ramadhan Luthfan
 https://www.linkedin.com/in/luthfan-mahathir-91369b18b

DAFTAR ISI

1.

Introduction to Kaggle

Pengenalan platform Kaggle

2.

Analytical & Critical Thinking

Kerangka berpikir dalam pemecahan masalah

3.

Intermediate Dataframe

Materi Pandas dataframe (menengah)

Introduction to Kaggle

Pengenalan platform Kaggle

Kaggle

Kaggle merupakan **komunitas** online bagi **data scientist** dan praktisi **machine learning**

Fitur dalam Kaggle

- Beberapa fitur dalam Kaggle:
 - Competitions
 - Datasets
 - Code
 - Discussions
 - Courses
- Kaggle dapat menjadi portofolio bagi seorang data scientist

Fitur - Competitions

Setiap *user* dapat **melatih skill** dengan mengikuti kompetisi yang memiliki beragam hadiah, seperti:

- Uang
- Merchandise (swag)
- Pengakuan dari penyelenggara (kudos)
- Tanpa hadiah, alias hanya untuk pembelajaran

Fitur - Datasets

- Setiap user dapat membagikan (upload) dataset ke dalam Kaggle
- Setiap user dapat menggunakan semua dataset yang ada pada Kaggle

Fitur - Code

- Setiap user dapat melihat code dari user lain yang bersifat publik
- Setiap user juga dapat membagikan code secara publik

Fitur - Code (Notebook)

- Kaggle menyediakan web-based notebook yang dapat digunakan untuk menjalankan code secara online
- Notebook tersebut juga dapat digunakan untuk kolaborasi bersama user lain

Fitur - Discussions

- Setiap user dapat
 berdiskusi tentang
 segala hal yang berkaitan
 dengan data science dan
 machine learning
- Setiap user juga dapat berdiskusi bahkan berkolaborasi terkait suatu project

Fitur – Courses

 Kaggle menyediakan materi pembelajaran yang dapat diakses secara gratis

Kaggle Progression System

- Setiap user dapat memiliki beragam tingkatan (tier)
- Tier tersebut digunakan untuk melihat performa dan pencapaian dari tiap user

Analytical & Critical Thinking

Kerangka berpikir dalam pemecahan masalah

Design Thinking

Design thinking adalah istilah yang digunakan untuk mewakili suatu **strategi** atau rencana dalam **pemecahan masalah** dan berfokus pada *user*.

IBM Design Thinking Framework

The Principle guide us

The Loop drives us

The Keys align us

Sumber: https://www.ibm.com/design/thinking/page/framework

The Principles

Melihat masalah dan solusi sebagai percakapan yang berkelanjutan.

Fokus pada user

Dorong bisnis dengan membantu *user* mencapai tujuannya.

Reinvention

Selalu melakukan pembaruan dan perlakukan semua hal sebagai prototipe.

Pemberdayaan keberagaman

Melihat sesuatu dari beberapa sudut pandang dapat menghasilkan ide terobosan yang beragam.

The Loop

Memahami masa kini dan membayangkan masa depan dalam siklus observasi, refleksi, dan pembuatan yang berkelanjutan.

Observasi

Suatu ide terobosan dapat tercipta dari pemahaman tentang masalah di dunia nyata.

Refleksi

Menyinkronkan langkah dengan tim dan menyatukan apa yang telah dipelajari.

Pembuatan

Satu-satunya cara untuk melihat hasil dari suatu gagasan adalah dengan membuatnya.

The Keys

Membantu menjaga tim tetap fokus dan selaras pada hasil yang penting bagi *user*.

- Hills
 Menyelaraskan kita sebagai tim.
- Playback
 Menyelaraskan kita sepanjang waktu.
- Sponsor users
 Menyelaraskan kita dengan kebutuhan user.

Intermediate Dataframe

Materi Pandas dataframe (menengah)

Sorting

Data awal

	name	age	score
0	Entropy	25	80
1	Team	24	90
2	Digital	24	70
3	Skola	25	85

Digunakan untuk **mengurutkan** dataframe **berdasarkan** suatu **kolom** atau beberapa kolom

Sorting – Satu Kolom

```
in # ascending
  data.sort_values(by='score')

in # descending
  data.sort_values(by='score', ascending=False)
```

Diurutkan secara ascending

	name	age	score
2	Digital	24	70
0	Entropy	25	80
3	Skola	25	85
1	Team	24	90

Diurutkan secara descending

	name	age	score
1	Team	24	90
3	Skola	25	85
0	Entropy	25	80
2	Digital	24	70

Sorting – Beberapa Kolom

```
in data.sort_values(by=['age','score'])
```

	name	age	score
2	Digital	24	70
1	Team	24	90
0	Entropy	25	80
3	Skola	25	85

- Sorting dimulai dari kolom pertama. Jika terdapat data yang sama, maka diurutkan lagi berdasarkan kolom kedua, dan seterusnya
- Baris ke-1 dan ke-2 memiliki 'age' yang sama, sehingga urutan baris tersebut ditentukan oleh 'score'

Filtering

Data awal

	name	age	score
0	Entropy	25	80
1	Team	24	90
2	Digital	24	70
3	Skola	25	85

Digunakan untuk **mengekstrak suatu bagian** dari dataframe

Filtering – Kolom Tertentu

```
in data[['name', 'age']]
in data.filter(items=['name', 'age'])
```

	name	age
0	Entropy	25
1	Team	24
2	Digital	24
3	Skola	25

- Dapat menggunakan
 double square brackets
 [[nama kolom]] ataupun
 fungsi filter()
- Penggunaan double square brackets akan menghasilkan dataframe baru, sedangkan single square bracket akan menghasilkan series

Filtering – Data Tertentu

```
in data.loc[:2, ['name', 'age']]
in data.iloc[:3, [1, 2]]
```

	name	age
0	Entropy	25
1	Team	24
2	Digital	24

- loc digunakan untuk memilih baris dan kolom berdasarkan namanya
- iloc digunakan untuk memilih baris dan kolom berdasarkan indeksnya
- Syntax penulisannya yaitu [baris, kolom]

Filtering – Berdasarkan Kondisi

in data.loc[data['score'] > 80]

	name	age	score
1	Team	24	90
3	Skola	25	85

- Digunakan untuk memilih data berdasarkan suatu kondisi
- Kondisi dapat berjumlah lebih dari satu
- Beberapa kondisi dapat dihubungkan dengan operator logika
 - & operator 'dan'
 - | operator 'atau'

Membuat Kolom Baru

in | data['score_10'] = data['score']/10

Sebelum

	name	age	score
0	Entropy	25	80
1	Team	24	90
2	Digital	24	70
3	Skola	25	85

Sesudah

	name	age	score	score_10
0	Entropy	25	80	8.0
1	Team	24	90	9.0
2	Digital	24	70	7.0
3	Skola	25	85	8.5

Grouping

Data awal

	name	city	age
0	Entropy	Jogja	25
1	Team	Jakarta	26
2	Digital	Jogja	27
3	Skola	Jakarta	28

Digunakan untuk **mengelompokkan data** berdasarkan suatu kolom atau beberapa kolom, sekaligus **melakukan agregasi**

Grouping – Satu Agregasi

```
in data[['city','age']].groupby('city').mean()
```

city	age
Jakarta	27.0
Jogja	26.0

- Misal mencari rata-rata usia (kolom 'age') berdasarkan nama kota (kolom 'city')
- Setelah grouping berdasarkan nama kota, nama kota akan menjadi indeks

Grouping – Beberapa Agregasi

 Misal mencari nilai terbesar dan rata-rata usia (kolom 'age') berdasarkan nama kota (kolom 'city')

city	avg_age	max_age
Jakarta	27.0	28
Jogja	26.0	27

Grouping – Beberapa Kolom

```
in data[['city','class','age']].groupby(['city','class']).mean()
```

	name	city	class	age
0	Entropy	Jogja	DS	25
1	Team	Jakarta	DS	26
2	Digital	Jogja	DE	27
3	Skola	Jakarta	DS	28

		age
city	class	
Jakarta	DS	27.0
Jogja	DE	27.0
	DS	25.0

Merging

LEFT JOIN (A + C)

INNER JOIN (C)

RIGHT JOIN (C + B)

FULL OUTER JOIN (A + C + B)

Digunakkan untuk **menggabungkan** beberapa dataframe dari segi **kolom**

Merging – Inner Join

in data_1.merge(data_2, how='inner', on='id')

 Hasilnya hanyalah data yang beririsan

data_1

	id	name	
0	1	Entropy	
1	2	Team	
2	3	Digital	

	id	class	
0	2	DS	
1	3	DE	
2	4	DA	

	id	name	class
0	2	Team	DS
1	3	Digital	DE

Merging – Left Join

```
in data_1.merge(data_2, how='left', on='id')
```

- Hasilnya adalah data yang beririsan dan semua data pada dataframe pertama
- Data yang tidak beririsan akan bernilai null (NaN)

data_1

	id	name
0	1	Entropy
1	2	Team
2	3	Digital

	id	class	
0	2	DS	
1	3	DE	
2	4	$D\Delta$	

	id	name	class
0	1	Entropy	NaN
1	2	Team	DS
3	3	Digital	DE

Merging – Right Join

```
in data_1.merge(data_2, how='right', on='id')
```

- Hasilnya adalah data yang beririsan dan semua data pada dataframe kedua
- Data yang tidak beririsan akan bernilai null (NaN)

data_1

	id	name
0	1	Entropy
1	2	Team
2	3	Digital

	id	class	
0	2	DS	
1	3	DE	
2	4	DΔ	

	id	name	class
0	2	Team	DS
1	3	Digital	DE
3	4	NaN	DA

Merging – Full Outer Join

```
in data_1.merge(data_2, how='outer', on='id')
```

- Hasilnya adalah semua data pada dataframe pertama dan kedua
- Data yang tidak beririsan akan bernilai null (NaN)

data_1

	id	name
0	1	Entropy
1	2	Team
2	3	Digital

	id	class	
0	2	DS	
1	3	DE	
2	4	DA	

	id	name	class
0	7	Entropy	NaN
1	2	Team	DS
3	3	Digital	DE
4	4	NaN	DA

THANKS

Entropy Team

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**