Math 237A HW 1

Zih-Yu Hsieh

September 27, 2025

ND

Lazarsfeld Problem Set 1 (4):

Let $n \geq 2$, and let $f \in k[x_1,...,x_n]$ be a non-constant polynomial over an algebraically closed field k. Show that $X = \{f = 0\} \subseteq \mathbb{A}^n$ is infinite. When $k = \mathbb{C}$, show that X is non-compact in the classical topology.

Solution: For $n \geq 2$, one can view $k[x_1,...,x_n] = R[x_n]$ (where $R = k[x_1,...,x_{n-1}]$, and R is not a field, since $n-1 \geq 1$, so there are indeterminates used in R). Then, for all $(a_1,...,a_{n-1}) \in \mathbb{A}^{n-1}$, one can consider $f(a_1,...,a_{n-1},x_n) \in k[x_n]$ (since plugging in $a_1,...,a_{n-1}$ for indeterminates $x_1,...,x_{n-1}$, f is left with only one indeterminate x_n), then because k is algebraically closed, $f(a_1,...,a_{n-1},x_n) \in k[x_n]$ has a solution, say $a_n \in k$. Then, $(a_1,...,a_{n-1},a_n) \in \mathbb{A}^n$ is a solution of $f(x_1,...,x_n)$.

Then, since k is algebraically closed (in particular infinite), then \mathbb{A}^{n-1} is infinite. Hence, since for each $(a_1,...,a_{n-1})\in\mathbb{A}^{n-1}$, there exists $a_n\in k$ such that $(a_1,...,a_{n-1},a_n)\in X$ (being a solution to f), we conclude that X is infinite.

Now, when $k=\mathbb{C}$, to show that X is non-compact, it suffices to show that it's not bounded (since in \mathbb{C}^n , with Heine-Borel Theorem it guarantees that X is compact iff it is closed and bounded). For all real number M>0, choose $a_1=\ldots=a_{n-1}=M\in\mathbb{C}$, since there exists $a_n\in\mathbb{C}$ such that $f(a_1,\ldots,a_{n-1},a_n)=0$, we have $(a_1,\ldots,a_{n-1},a_n)\in X$. Which, if consider its norm, we get:

$$\|(a_1,...,a_{n-1},a_n)\| = \sqrt{|a_1|^2 + ... + |a_{n-1}|^2 + |a_n|^2} = \sqrt{(n-1)\cdot M^2 + |a_n|^2} \geq M\sqrt{n-1} \geq M\sqrt{n-1}$$

Hence, for all M > 0, one can choose $(a_1, ..., a_{n-1}, a_n) \in X$, such that $\|(a_1, ..., a_{n-1}, a_n)\| \ge M$, showing that X is in fact not bounded, hence not compact in classical topology of \mathbb{C}^n .

Hartshorne Chapter 1 Exercise 1.1 (a),(b):

- (a) Let Y be the plane curve $y = x^2$ (i.e. Y is the zero set of the polynomial $f = y x^2$). Show that A(Y) (or k[Y]) is isomorphic to a polynomial ring in one variable over k.
- (b) Let Z be the plane curve xy=1. Show that A(Z) (or k[Z]) is not isomorphic to a polynomial ring in one variable over k.

Solution:

(a): Let ideal $a=(y-x^2)\subseteq k[x,y]$, then we have Y=Z(a) (the corresponding algebraic set of polynomial $y-x^2$, hence also corresponds to the ideal generated by it). Then, $I(Y)=I(Z(a))=\sqrt{a}$, so the coordinate ring $k[Y]=k[x,y]/\sqrt{a}$.

However, notice that $y-x^2$ is irreducible in k[x,y]: If consider k[x,y]=(k[x])[y] (with base ring k[x]), then $y-x^2$ has degree of y being 1, which is irreducible in (k[x])[y]. Hence, the ideal $a=(y-x^2)$ is in fact a prime ideal (since the generated element $y-x^2$ is irreducible, and k[x,y] is a UFD), then we get that $\sqrt{a}=a$ (since all prime ideal is its own radical).

Now, to prove that $k[x,y]/\sqrt{a}=k[x,y]/a\cong k[t]$ (where t is an indeterminate), consider a ring homomorphism $\varphi:k[x,y]\to k[t]$ by $\varphi(f(x,y))=f(t,t^2)$ for all $f(x,y)\in k[x,y]$. This is a well-defined ring homomorphism, since any $f,g\in k[x,y]$ satisfy the following:

$$\varphi(f(x,y)\cdot g(x,y)) = f(t,t^2)\cdot g(t,t^2) = \varphi(f(x,y))\cdot \varphi(g(x,y))$$

Since for all $f(t) \in k[t]$, consider $f(x) \in k[x] \subseteq k[x,y]$, then $\varphi(f(x)) = f(t)$, showing φ is surjective, hence $k[t] \cong k[x,y]/\ker(\varphi)$.

Now, to show that $\ker(\varphi) = a$, first, for all $f(x,y) \in a$, there exists $g(x,y) \in k[x,y]$ such that $f(x,y) = (y-x^2) \cdot g(x,y)$, hence we have $\varphi(f(x,y)) = \varphi((y-x^2) \cdot g(x,y)) = (t^2-t^2) \cdot g(t,t^2) = 0$, showing $f(x,y) \in \ker(\varphi)$, which proves $a \subseteq \ker(\varphi)$;

On the other hand, if $f(x,y) \in \ker(\varphi)$, then $\varphi(f(x,y)) = f(t,t^2) = 0$. So, for all $x \in k$, with $y = x^2$ we have $f(x,y) = f(x,x^2) = 0$, hence f(x,y) vanishes for all $(x,y) \in Y$. This shows that $f(x,y) \in I(Y) = \sqrt{a} = a$, hence $\ker(\varphi) \subseteq a$.

As a conclusion, we have $\ker(\varphi) = a$, hence $k[t] \cong k[x,y]/\ker(\varphi) = k[x,y]/a$, while k[x,y]/a = k[Y] the coordinate ring (due to the fact that $a = \sqrt{a}$). Hence, $k[Y] \cong k[t]$ (polynomial ring with single indeterminate).

(b): Given that Z is the plane curve xy=1, then Z is the algebraic set corresponding to the polynomial $xy-1\in k[x,y]$. Let ideal b=(xy-1), we have Z=Z(a) (Note: the second Z in Z(a) represents the function of mapping ideal to its algebraic set, not the algebraic set Z itself). Which, we get that $I(Z)=I(Z(b))=\sqrt{b}$, so the corresponding coordinate ring $k[Z]=k[x,y]/\sqrt{b}$.

Now, again if interpreting k[x,y]=(k[x])[y], since xy-1 is a polynomial with degree of y being 1, it is irreducible in (k[x])[y], hence the ideal b=(xy-1) is in fact a prime ideal, which implies that $\sqrt{b}=b$. So, the coordinate ring $k[Z]=k[x,y]/\sqrt{b}=k[x,y]/b$.

Finally, we'll show that $k[Z] \not\cong k[t]$ the polynomial ring in k with one indeterminate. Suppose the contrary that $k[Z] \cong k[t]$, then there exists a ring isomorphism $\psi: k[Z] = k[x,y]/b \to k[t]$. Then, if consider $\psi(\overline{x}), \psi(\overline{y}) \in k[t]$, since $\overline{x} \cdot \overline{y} = \overline{x}\overline{y} = 1 \in k[Z]$ (due to the fact that $xy - 1 \equiv 0 \mod b$, so $\overline{xy - 1} = 0 \in k[Z]$), then we get that $\psi(\overline{x}) \cdot \psi(\overline{y}) = \psi(\overline{x}\overline{y}) = \psi(1) = 1$, hence both $\psi(\overline{x}), \psi(\overline{y}) \in k[t]$ are invertible. Yet, since group of units $(k[t])^\times = k^\times$, this enforces $\psi(\overline{x}), \psi(\overline{y}) \in k^\times$ (nonzero constant polynomials), but this is a contradiction since ψ is supposed to be surjective, while now $\psi(\overline{f(x,y)}) = f(\psi(\overline{x}), \psi(\overline{y})) \in k$ for all $\overline{f(x,y)} \in k[Z]$, showing that ψ is not surjective. Hence, we conclude that $k[Z] \ncong k[t]$.

ND

Problem 4

Hartshorne Chapter 1 Exercise 1.2:

The Twisted Cubic Curve. Let $Y \subseteq \mathbb{A}^3$ be the set $Y = \{(t, t^2, t^3) | t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) (or k[Y]) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric representation $x = t, y = t^2, z = t^3$.

Solution: First, we'll show that given any $(x, y, z) \in \mathbb{A}^3$, there exists $t \in k$ such that $(x, y, z) = (t, t^2, t^3) \iff y = x^2$ and $z = x^3$.

For \Longrightarrow , if there exists $t \in k$ such that $(x,y,z) = (t,t^2,t^3)$, it's clear that $y = t^2 = x^2$ and $z = t^3 = x^3$, so the conditions are satisfied. Conversely (for \Longleftrightarrow), if $y = x^2$ and $z = x^3$, choose $t = x \in k$ we have $(x,y,z) = (x,x^2,x^3) = (t,t^2,t^3)$. Hence, the equivalence is shown.

Now, if consider the ideal $I=(y-x^2,z-x^3)$, we claim that I is the ideal corresponding to Y.

Hartshorne Chapter 1 Exercise 1.4:

If we identify \mathbb{A}^2 with $\mathbb{A}^1 \times \mathbb{A}^1$ in the natural way, show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^1 .

Solution: For this we'll prove by contradiction. First, recall the following lemma from point set topology:

Lemma

Given a topological space X, and consider $X \times X$ under the product topology. Then, the diagonal $\Delta = \{(x,x) \in X \times X \mid x \in X\}$ is closed under product topology $\iff X$ is Hausdorff.

Proof:

 \Longrightarrow : First, suppose $\Delta\subseteq X\times X$ is closed, which means $(X\times X)\setminus \Delta$ is open in $X\times X$ under product topology. Hence, for all $(x,y)\in (X\times X)\setminus \Delta$ (with $x\neq y$), there exists open neighborhood $U_x,U_y\subseteq X$ of x,y respectively, such that $(x,y)\in U_x\times U_y\subseteq (X\times X)\setminus \Delta$. Then, for all $z\in U_x$ and $w\in U_y$, since $(z,w)\in U_x\times U_y\subseteq (X\times X)\setminus \Delta$, we have $z\neq w$, hence $U_x\cap U_y=\emptyset$. Which, with $x,y\in X$ being arbitrary, $x\neq y,U_x\ni x$ and $U_y\ni y$ are open neighborhoods that're disjoint, hence X is Hausdorff.

 $\Longleftrightarrow \text{Suppose X is Hausdorff, then for all } (x,y) \in (X \times X) \setminus \Delta \text{ (where $x \neq y$), there exists open neighborhoods } U_x, U_y \subseteq X \text{ of } x,y \text{ respectively, such that } U_x \cap U_y = \emptyset.$ Hence, for all $(z,w) \in U_x \times U_y$, with $z \in U_x$ and $w \in U_y$, the two sets being disjoint implies $z \neq w$, hence $(z,w) \in (X \times X) \setminus \Delta$. Hence, $(x,y) \in U_x \times U_y \subseteq (X \times X) \setminus \Delta$, showing that $(X \times X) \setminus \Delta$ is open in $X \times X$ under product topology, hence $\Delta \subseteq X \times X$ is closed under product topology. \square

With this lemma in mind, suppose the contrary that the Zariski Topology on \mathbb{A}^2 is the same as the product topology of $\mathbb{A}^1 \times \mathbb{A}^1$ (with \mathbb{A}^1 equipped with its own Zariski Topology). Then, by the lemma above, the diagonal $\Delta = \left\{ (x,x) \in \mathbb{A}^2 \mid x \in k \right\} \subseteq \mathbb{A}^2$ is closed in $\mathbb{A}^2 \Longleftrightarrow \mathbb{A}^1$ is Hausdorff.

Now, notice that with the polynomial $y-x\in k[x,y]$, the corresponding algebraic set $Z(y-x)=\Delta$ (since $(x,y)\in\mathbb{A}^2$ satisfies y-x=0 iff y=x iff $(x,y)\in\Delta$). Hence, Δ itself is closed in \mathbb{A}^2 under Zariski Topology, so based on our assumption (together with the lemma), \mathbb{A}^1 is Hausdorff.

However, \mathbb{A}^1 has Zariski Topology being the same as Finite Complement Topology (here assume that k is algebraically closed, hence k is infinite):

Since k[x] is a PID (given that k is a field), then for any nonempty and proper algebraic set $Y \subseteq \mathbb{A}^1 = k$, its corresponding ideal I(Y) = (f(x)) for some $f(x) \in k[x]$, hence $t \in Y$ iff f(t) = 0, or t is a zero of f(x). Since f(x) only has finitely many roots, it follows that Y is finite.

Conversely, given any nonempty finite subset $X \subsetneq \mathbb{A}^1$, let $f(x) \coloneqq \prod_{a \in X} (x-a)$, we have X being the algebraic set corresponding to f(x) (since $a \in X$ iff f(a) = 0). Hence, the closed set in \mathbb{A}^1 under Zariski Topology (beside \mathbb{A}^1 and \emptyset) are all finite subsets of \mathbb{A}^1 , showing that all open sets in \mathbb{A}^1 (besides \emptyset and \mathbb{A}^1 itself) are precisely the subsets with their complements being finite, hence the Zariski Topology on \mathbb{A}^1 is equivalent to the Finite Complement Topology.

Then, given $\mathbb{A}^1=k$ is infinite, the Finite Complement Topology on \mathbb{A}^1 is not Hausdorff: Suppose the contrary that it is Hausdorff, then for any $x,y\in\mathbb{A}^1$ with $x\neq y$, there exists open neighborhoods $U_x,U_y\subseteq\mathbb{A}^1$ containing x,y respectively, such that $U_x\cap U_y=\emptyset$. However, it implies that $U_y\subseteq\mathbb{A}^1\setminus U_x$, while $\mathbb{A}^1\setminus U_x$ is finite, hence U_y is finite. Yet, this implies that $\mathbb{A}^1\setminus U_y$ is infinite (since \mathbb{A}^1 is infinite, while U_y is finite), which reaches a contradiction. So, \mathbb{A}^1 cannot be Hausdorff.

However, this contradicts one of the previous conclusion that \mathbb{A}^1 is Hausdorff. Hence, the initial assumption must be false, showing that Zariski Topology on \mathbb{A}^2 is not the same as product topology of $\mathbb{A}^1 \times \mathbb{A}^1$ (with \mathbb{A}^1 equipped with its own Zariski Topology).

(I think Here we can conclude that \mathbb{A}^2 has Zariski Topology being the same as product topology of $\mathbb{A}^1 \times \mathbb{A}^1$ iff the base field k is finite, since this is the only case where the Finite Complement Topology, i.e. the Zariski Topology on \mathbb{A}^1 , is Hausdorff).

Hartshorne Chapter 1 Exercise 1.5:

Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n for some n if and only if B is a finitely generated k-algebra with no nilpotent elements.

Solution:

 \implies : Suppose B is a k-algebra (here B can be assumed as a commutative algebra) that is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n for some n.

Then, there exists an algebraic set $Y\subseteq \mathbb{A}^n$, such that $B\cong k[Y]$, where let $J=I(Y)\subseteq k[x_1,...,x_n]$ the corresponding ideal (which J is a radical), we have $k[Y]=k[x_1,...,x_n]/J$. This shows that B is a finitely generated k-algebra (since it's isomorphic to a quotient of the polynomial ring $k[x_1,...,x_n]$), and also B has no nilpotent elements (since J is a radical ideal, so for all $f\in k[x_1,...,x_n]$, if the quotient $\overline{f}\in k[Y]$ satisfies $\overline{f}^k=0$ for some $k\in\mathbb{N}$, then $f^k\in J$, hence $f\in J$ since J is a radical, or $\overline{f}=0$). This proves the forward implication.

Also, the assumption that B has no nilpotent elements implies that $\ker(\varphi) \subseteq k[x_1,...,x_n]$ is a radical (since for all $f \in k[x_1,...,x_n]$, if $f^k \in \ker(\varphi)$ for some $k \in \mathbb{N}$, we have $\varphi(f)^k = \varphi(f^k) = 0$, showing that $\varphi(f) \in B$ is nilpotent, or $\varphi(f) = 0$. Hence $f \in \ker(\varphi)$, therefore $\sqrt{\ker(\varphi)} = \ker(\varphi)$).

Then, if we take $Y=Z(\ker(\varphi))\subseteq \mathbb{A}^n$ as the algebraic set, since $\ker(\varphi)=I(Y)=I(Z(\ker(\varphi)))$ (due to $\ker(\varphi)$ being a radical), we have the coordinate ring $k[Y]=k[x_1,...,x_n]/\ker(\varphi)$, hence $B\cong k[x_1,...,x_n]/\ker(\varphi)=k[Y]$, so B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n (for some $n\in\mathbb{N}$). This proves the converse.