Products Matrix

Consider a square $\mathbf{n} \times \mathbf{n}$ matrix \mathbf{A} . The cell $\mathbf{A}_{i,j}$ is equal to the product i * j (i, j are 1-based). Let's create a one-dimensional array which contains all the elements of the matrix \mathbf{A} . The length of this array will be equal to \mathbf{n}^2 . Sort this array and return the element which will be in the \mathbf{k} -th position (\mathbf{k} is a 1-based index).

Input Format

The only line of input contains numbers \mathbf{n} and \mathbf{k} .

Constraints

- $1 \le \mathbf{n} \le 10^5$
- $1 \le k \le \min(n^2, 10^9)$

Output Format

Print a single number — the element which will be in the k-th position of the sorted array.

Sample Input 0

3 7

Sample Output 0

6

Explanation 0

The matrix will be:

- 123
- 246
- 369

The array after sorting will be: {1, 2, 2, 3, 3, 4, 6, 6, 9}.

Sample Input 1

2 4

Sample Output 1

4

Explanation 1

k is 1-based.

Sample Input 2

3 8

Sample Output 2

6		
Sample Input 3		
11		
Sample Output 3		
1		
Sample Input 4		
4 4		
Sample Output 4		
3		