Thermodynamic Universe

ADIABATIC WALL

The system is separated from its surroundings by walls.

For closed systems the walls can be:

Adiabatic – no heat crosses wall

or

Diathermal – heat passes through wall

Thermodynamic Universe

ADIABATIC WALL

Thermodynamic state

The system is in a thermodynamic state if macroscopic observable properties (e.g. *P*, *V*, *T*) have fixed, definite values. These measurable properties are variables of state.

Thermodynamic Universe

ADIABATIC WALL

Equilibrium state

In equilibrium the variables of state are constant throughout the system and they do not vary with time.

Thermodynamic Universe

ADIABATIC WALL

Equilibrium state

In equilibrium the variables of state are constant throughout the system and they do not vary with time.

Concerned only with equilibrium states in this course

Indicator diagrams

Compressible Gases

P, V and T are the variables of state.

These three variables are related by an **equation of state**. For example, for an ideal gas PV = NkT. Therefore, there are two independent variables.

We can represent thermodynamic processes on a 2D indicator diagram.

Reversible Process

A reversible process is one performed in such a way that, after its completion, the **system** may be taken back to its initial state with all **surroundings** also returned to their initial states.

Reversible Process

Requirements

- There are no dissipative effects, such as friction.
- The temperature (pressure) differential between surroundings and the system causing heat flow (mechanical movement) must be infinitesimal.
- The process must be quasistatic (slow enough to pass through series of equilibrium states).

Cyclic Process

A cyclic process is where a system passes through a sequence of states and ends up back in its original state. Functions of state return to their original values at end of cycle, but heat and work do not.

Temperature

W1 and W2 are diathermal, W3 is adiabatic.

Suppose that when C is moved from 1 to 2 there is no change in either C or B.

If W3 is replaced by a diathermal wall we find no change in either A or B.

Presumably there is something in common.

Temperature

W1 and W2 are diathermal, W3 is adiabatic.

Suppose that when C is moved from 1 to 2 there is no change in either C or B.

If W3 is replaced by a diathermal wall we find no change in either A or B.

Presumably there is something in common.

Temperature

W1 and W2 are diathermal, W3 is adiabatic.

Suppose that when C is moved from 1 to 2 there is no change in either C or B.

If W3 is replaced by a diathermal wall we find no change in either A or B.

Presumably there is something in common.

Temperature

W1 and W2 are diathermal, W3 is adiabatic.

Suppose that when C is moved from 1 to 2 there is no change in either C or B.

If W3 is replaced by a diathermal wall we find no change in either A or B.

Presumably there is something in common.

Temperature

W1 and W2 are diathermal, W3 is adiabatic.

Suppose that when C is moved from 1 to 2 there is no change in either C or B.

If W3 is replaced by a diathermal wall we find no change in either A or B.

Presumably there is something in common.

Temperature

W1 and W2 are diathermal, W3 is adiabatic.

Suppose that when C is moved from 1 to 2 there is no change in either C or B.

If W3 is replaced by a diathermal wall we find no change in either A or B.

Presumably there is something in common.

Temperature

Zeroth Law of Thermodynamics

If system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with system C, then system A is in thermal equilibrium with system C.

Temperature

Zeroth Law of Thermodynamics

If system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with system C, then system A is in thermal equilibrium with system C.

Hence there is a function of state known as temperature, and we are able to set up a temperature scale.

Energy of System

$$dW = -Fdx = -\frac{F}{A}Adx = -PdV$$

Energy of System

Work done on a compressible gas

$$dW = -Fdx = -\frac{F}{A}Adx = -PdV$$

$$dW = -PdV$$

Energy of System

$$W = -\int_{i}^{f} PdV$$

$$W_1 \neq W_2 \neq W_3$$

Energy of System

Heat is the non-mechanical exchange of energy between system and surroundings

$$Q_1 \neq Q_2 \neq Q_3$$

Energy of System

However we find empirically

$$W_1 + Q_1 = W_2 + Q_2 = W_3 + Q_3$$

Energy of System

This constant energy difference is the change in internal energy $\Delta U = U_f - U_i$. Unlike Q and W, ΔU is independent of path because U is a function of state. Q and W are not.

First Law of thermodynamics

$$\Delta U = Q + W$$

 ΔU is the gain in internal energy of the system

Q is the **heat into** the system

W is the **work done on** the system

(Note sign convention.)

Energy of System

This constant energy difference is the change in internal energy $\Delta U = U_f - U_i$. Unlike Q and W, ΔU is independent of path because U is a function of state. Q and W are not.

First Law of thermodynamics

$$\Delta U = Q + W$$
 Conservation of energy

 ΔU is the **gain in internal energy** of the system

Q is the **heat into** the system

W is the **work done on** the system

(Note sign convention.)

Generalise

System	Work
Gas	-PdV
Wire	FdL
Film	ΓdA
Electrolytic cell	arepsilon dZ
Magnetic material	BdM
Dielectric material	EdP

Once we have solved for gases, don't have to do any more work for other systems. Simply substitute appropriate variables.

P, F, etc. are **intensive variables** (size-independent)

V, L etc. are **extensive variables** (\propto size)

All the maths you need for classical thermodynamics

If
$$x = x(y, z)$$

$$dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_y dz$$

Condition for x to be a single-valued function of state and for dx to be exact

$$\left(\frac{\partial}{\partial z} \left(\frac{\partial x}{\partial y}\right)_z\right)_y = \left(\frac{\partial}{\partial y} \left(\frac{\partial x}{\partial z}\right)_y\right)_z$$

Reciprocal rule

$$\left(\frac{\partial x}{\partial z}\right)_{y} = \frac{1}{\left(\frac{\partial z}{\partial x}\right)_{y}}$$

Cyclic rule

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

Chain rule

$$\left(\frac{\partial x}{\partial z}\right)_{\varphi} = \left(\frac{\partial x}{\partial y}\right)_{\varphi} \left(\frac{\partial y}{\partial z}\right)_{\varphi}$$