Case 1: homogeneous water free space

a slice of 3D model on the X-Z plane, where the source is at origin, and the receivers are at the ranges of $0.1,\,0.2,\,0.4,\,0.8$ and 1.6 km

Sound pressure signals recorded by the receivers

plotted with the amplitudes normalized by their own peak values (dB re 1m) // the probing source signal is a Ricker wavelet @ 10 Hz $\,$

Calculating dependence of transmission loss on frequency

Driving with a quasi-time-harmonic narrowband source, e.g., a 10-period sine in Hanning window

Transmission loss on the X-Z plane

narrow band signal@ 10 Hz, dB re 1m

Case 2: Flat layers of water, sediment and baserock a slice of 3D model on the X-Z plane, where the source is at (1, -0.04) km, and the receivers are at the eastings of 1.5, 2 ... 4 km and the depth of 0.1 km

(km) (km)

Sound pressure signals recorded by the receivers

plotted with the amplitudes normalized by their own peak values (dB re 1m) // the probing source signal is a Ricker wavelet @ 10 Hz $\,$

Transmission loss on the horizontal plane at 0.1 km depth and the X-Z plane

narrow band signal@ 10 Hz, dB re 1m

Case 3: Slope with layers of water, sediment and baserock a slice of 3D model on the X-Z plane, where the source is at (1, -0.04) km, and the receivers are at the eastings of 1.5, 2 ... 4 km and the depth of 0.1 km

Sound pressure signals recorded by the receivers

plotted with the amplitudes normalized by their own peak values (dB re 1m) // the probing source signal is a Ricker wavelet @ 10 Hz

Transmission loss on the horizontal plane at 0.1 km depth and the X-Z plane

narrow band signal@ 10 Hz, dB re 1m

Comparing results between Spectral Element Method and Image Source Solution

Wedge shaped water layer over a fluid /solid bottom

Transmission Loss comparation: left(fluid bottom) and right(solid bottom)

narrow band signal@10 Hz, dB re 1m

source frequency perturbation

water sound speed perturbation

water geometry/slope angle perturbation

bottom sound speed perturbation

bottom sound attenuation perturbation

3D realistic model of Irish Waters: I. Geological structure bathymetry: GEBCO

3D realistic model of Irish Waters: I. Geological structure sediment thickness: NOAA

3D realistic model of Irish Waters: I. Geological structure sediment classification: EMODNET

Seabed substrate view as per this link

3D realistic model of Irish Waters: II. Hydrological structure

temperature: Copernicus Ocean plotted on the surface and in depth at source position

3D realistic model of Irish Waters: II. Hydrological structure

salinity: Copernicus Ocean plotted on the surface and in depth at source position

3D realistic model of Irish Waters: III. acoustical structure sound speed plotted on the surface and in depth at source position

3D realistic model for calculation

A vertical slice

Transmission loss at single frequency

driving with a time-harmonic signal at 10~Hz plotted on the horizontal slice at 150m depth, the vertical slice and at the ocean bottom

Transmission loss over one-third octave band. I driving with a white noise through a 1/3 octave band filter

Transmission loss over one-third octave band. II

plotted on the horizontal slice at 150m depth, the vertical slice and at the ocean bottom

- ► an realistic model can now be built for a source deployed at any time and place
- may borrow some indicators in room/physco-acoustics to describe the sound quality of ocean environment