Exercícios de Diodos

Professor

Jorge Leonid Aching Samatelo ilasam001@gmail.com

Lista de Exercícios

Configurações em paralelo e em serie

Exercício 2

 \square Determinei V_a e I para os seguintes circuitos:

 \square Lembrar que as curvas características v-i aproximadas dos diodos Si e Ge são:

Lista de Exercícios

Pequeno sinal

Exercício 1

- □ No circuito da Figura. Considere que o diodo tem como características: n = 1.84 e $V_T = 26$ mV e esta polarizado no ponto de operação Q $(V_{DQ}, I_{DQ}) = (0.7158\text{V}, 9.284\text{mA})$. Determinar:
 - a) O valor da resistência dinâmica do diodo.
 - Tensão instantânea no diodo $v_D(t)$

 $v(t) = 50\sin(wt)$ mV

Lista de Exercícios

Método de Estados Assumidos

Exercício 3

16

- ☐ No circuito da figura cada diodo é descrito pelo modelo simplificado, onde:
 - ightharpoonup O diodo D_1 é de $Ge \operatorname{com} r_D = 20 \Omega \operatorname{e} V_{DO} = 0.2 \operatorname{V}$.
 - ightharpoonup O diodo D_2 é de Si com $r_D = 15 \Omega$ e $V_{DQ} = 1,6 \text{ V}$.
- ☐ Determinar as correntes em ambos diodos se:
 - a) $R = 100 \text{K} \Omega$
 - \vec{b}) $R = 1 \text{K} \Omega$

Método dos Pontos de Quebra

Exercício 4

- ☐ No circuito da Figura os diodos são ideais. Determinar:
 - ightharpoonup A curva característica $v_i v_o$, indicando o valor da inclinação em cada segmento de reta.

22

Lista de Exercícios

Método dos Pontos de Quebra

Exercício 5

- ☐ No circuito da Figura os diodos são ideais. Determinar:
 - ightharpoonup A curva característica $i_i v_i$, indicando o valor da inclinação em cada segmento de reta.

24

Lista de Exercícios

Método dos Pontos de Quebra

Exercício 6

- ☐ No circuito da Figura os diodos são ideais. Determinar:
 - a) A curva característica $v_i v_o$.
 - b) Se a entrada é uma onda sinusoidal de 50V de amplitude e uma frequência de 50Hz, desenhe a forma de onda da tensão de saída v_o .

Lista de Exercícios

Método dos Pontos de Quebra

Exercício 7

 \square No circuito da Figura os diodos são ideais. Determine a forma de onda da característica de transferência i = f(v). Indicar na gráfica a inclinação de cada segmento de reta.

24

Método dos Pontos de Quebra

Exercício 8

- ☐ Considerando diodos ideais para o circuito da Figura.
 - a) Sem tomar em conta o diodo *Zener*, determinar a curva característica $v_i v_o$, indicando o valor da inclinação em cada segmento de reta.
 - b) Tomando em conta o diodo *Zener* (supondo ele ideal e com uma tensão *Zener* de 12V).
 - ❖ Como é modificada a curva característica $v_i v_o$ do circuito.
 - ❖ Se a entrada é uma onda sinusoidal de 30V de amplitude e uma frequência de 50Hz, desenhe a forma de onda da tensão de saída v_o .

Lista de Exercícios

Método dos Pontos de Quebra

Exercício 9

- No circuito da Figura os diodos são ideais. Determine A curva característica v_i
 - $-v_o$, indicando para cada segmento de reta
 - > o valor da inclinação da reta
 - > que diodos conduzem.

31

Lista de Exercícios

Método dos Pontos de Quebra

Exercício 10

ightharpoonup No circuito da Figura os diodos são ideais e a tensão de *Zener* é 3V. Determine A curva característica $v_i - v_o$, indicando o valor da inclinação para cada segmento de reta.

Lista de Exercícios

Circuitos Lógicos

Exercício 11

☐ Considerando que:

$$v_1(t) = A\sin(2\pi t)$$

$$v_2(t) = A\sin(2\pi t + 2\pi/3)$$

$$v_3(t) = A\sin(2\pi t - 2\pi/3)$$

 \square Determine a forma de onda de v_o para o circuito mostrado.

35

Ceifadores

Exercício 12

 \square O circuito da figura é alimentado pela tensão de entrada $v_i(t)$. A corrente pico do diodo tem que estar limitada em 30mA, considerando que o diodo é ideal, determine:

- a) O valor mínimo de R.
- b) A tensão de saída $v_o(t)$.
- c) A corrente média no diodo.
- d) A corrente eficaz no diodo (rms).
- e) A potência eficaz dissipada por R.

39

Lista de Exercícios

Ceifadores

Exercício 13

☐ Usando o método de pontos de quebra, Feterminar a tensão de saída dos seguintes circuitos, supondo uma tensão sinusoidal de entrada.

Lista de Exercícios

Ceifadores

Exercício 14

☐ Usando o método de pontos de quebra, determinar a tensão de saída dos seguintes circuitos.

Lista de Exercícios

Ceifadores

Exercício 15

Usando o método de pontos de quebra, determine a tensão de saída v_o de cada circuito da seguinte figura, considerando que o sinal de entrada é uma tensão senoidal de 8Vp.

47

Grampeadores

Exercício 16

☐ Projetar um circuito grampeador para uma tensão de entrada quadrada, simétrica com 60Vpp e frequência de 200Hz. Considerar que a resistência de saída deverá ser de $50K\Omega$.

49

52

Lista de Exercícios

Grampeadores

Exercício 17

- ☐ Para o circuito da figura,
- a) Calcule 5τ.
 - b) Compare 5τ à metade do ciclo do sinal aplicado.
 - c) Esboce a forma de onda da tensão de saída v_a .

51

Lista de Exercícios

Circuitos retificadores

Exercício 18

- \square Para o circuito retificador mostrado na figura, supondo: $R_L = 820\Omega$, f = 60Hz e o modelo de queda de tensão constante para os diodos com $V_D = 0.7V$. Determinar:
 - Qual é a corrente de pico em cada diodo SEM o capacitor de filtro?
 - b) Qual é a tensão reversa máxima (PIV) em cada diodo SEM o capacitor de filtro?
 - Desenhe a forma de onda da tensão de saída na carga (R_t) SEM (retificada) e COM (filtrada) o capacitor de filtro, supondo $C = 470 \mu F$.
- ☐ OBS: As tensões dadas na figura estão em valores RMS.

Lista de Exercícios

Circuitos retificadores

Exercício 19

- ☐ Para o retificador em ponte da figura, use o modelo de queda de tensão constante para o diodo a fim de mostrar que:
 - a) O valor médio de tensão de saída (ou componente cc) é $V_{cc} = (2/\pi)V_s$ –
 - b) A corrente de pico no diodo é $(V_s 2V_T)/R$.
 - c) Qual a tensão de pico reversa PIV de cada diodo?
- ☐ Calcule os valores numéricos das grandezas em (a) e (b) e a PIV para o caso em que $V_s = 12 \text{ V(rms)}, V_T = 0.7 \text{V e } R = 100 \Omega.$

Circuitos retificadores

Exercício 20

- \square Um circuito retificador de onda completa com R=1K Ω opera a partir de uma rede elétrica de 120V(rms) e 60Hz por meio de um transformador rebaixador de 5:1 com derivação central (observar que a relação 5:1 é unicamente entre). Ele utiliza dois diodos de silício que têm uma queda de tensão de 0,7 V para qualquer corrente.
 - a) Qual é a tensão de pico da saída retificada?
 - b) Para qual fração do ciclo o diodo conduz?
 - Qual é a tensão média de saída?

61

74

Lista de Exercícios

Circuitos retificadores

Exercício 21

- \square Dado $P_{MAX} = 14$ mW para cada diodo da figura,
 - a) determine a corrente máxima nominal de cada diodo (utilizando o modelo que queda de tensão constante).
 - b) Determine I_{MAX} para $v_{i(MAX)} = 160 \text{ V}.$
 - c) Determine a corrente através de cada diodo para $v_{i(MAX)}$ utilizando os resultados do item (b).
 - d) Se apenas um diodo estivesse presente, determine qual seria a corrente máximo dele compare valor nominal. com 0

67

Lista de Exercícios

Circuitos retificadores

Exercício 22

- \square Dado P_{MAX} = 14mW para cada diodo da figura,
 - a) determine a corrente máxima nominal de cada diodo (utilizando o modelo simplificado com $r_D = 8\Omega$).
 - Determine I_{MAX} para $v_{i(MAX)} = 160 \text{ V}.$
 - Determine a corrente através de cada diodo para $v_{i(MAX)}$ utilizando os resultados do item (b).
 - Se apenas um diodo estivesse presente, determine qual seria a corrente dele compare máximo com valor nominal.

Lista de Exercícios

Diodo Zener

Exercício 23

 \square Determinar a faixa de valores que pode ter o resistor R para garantir que a tensão nos extremos da carga R_L seja constante:

Diodo Zener

Exercício 24

- O diodo Zener do circuito da seguinte figura mantém a tensão entre seus terminais igual a 5,6V para $10\text{mA} \le I_Z \le 400\text{mA}$. Considere que a tensão V_i de alimentação é 10V ± 10%.
 - a) Verifique se $R_S = 200\Omega$ permite a regulação da tensão na carga se R_L é 500Ω .
 - b) Determine a faixa de variação da resistência de carga R_t , para a qual o resistor $R_S = 200\Omega$ permite a regulação da tensão. Qual a variação correspondente na corrente de carga?

85

Lista de Exercícios

Diodo Zener

Exercício 25

- ☐ Uma fonte de alimentação possui uma tensão média de saída de 30V com ripple de 3V. Determinar a resistência R_S VALIDA do regulador de tensão que elimina o ripple desta fonte e estabiliza a tensão em 15V, sabendo-se que ela será utilizada para alimentar cargas de 50Ω até $100\text{K}\Omega$ e que o diodo Zener do circuito pode apresentar as seguinte especificações:
 - a) $I_{Z(MIN)} = 23 \text{mA} \text{ e } I_{Z(MAX)} = 250 \text{mA}.$
 - b) $I_{Z(MIN)} = 30 \text{mA} \text{ e } I_{Z(MAX)} = 700 \text{mA}.$

Lista de Exercícios

Diodo Zener

Exercício 26

☐ Calcular a potência nominal mínima do diodo Zener para que o circuito regulador da Figura estabilize corretamente a tensão de entrada, quando ela pode variar entre 10 e 15V e R_t entre 1K Ω e 10K Ω . O diodo Zener tem uma tensão Zener de 5V e a resistência R_s do circuito tem um valor de 100Ω .

Lista de Exercícios

Diodo Zener

Exercício 27

- \square Os parâmetros do diodo Zener do circuito regulador da Figura são: $V_z = 6.3 \text{ V}$, I_{ZT} = 40mA e R_Z = 2 Ω . A tensão de entrada varia entre 12V e 18V. A corrente de carga mínima é $I_{L(\text{MIN})} = 0$ mA. A corrente do Zener mínima é $I_{Z(\text{MIN})} = 1$ mA . A dissipação de potência $P_{Z(MAX)}$ do Zener não deve exceder 750mW a 25°C. Determinar:
 - a) O valor máximo permissível da corrente de Zener $I_{Z(MAX)}$.
 - b) O valor de R_S que limita a corrente Zener $I_{Z(MAX)}$
 - c) A dissipação de potência máxima de R_s .
 - d) A corrente de carga máxima $I_{I(MAX)}$

Diodo Zener

Exercício 28

- Para o circuito da figura v_i é uma onda senoidal de $V_p = 15$ V (tensão de pico) e frequência de 60Hz. Considere que os diodos Zener têm $Vz_1 = 6.8$ V e $Vz_2 = 5.6$ V na região reversa e $V_D = 0.7$ V na região direta de condução.
 - \triangleright a) Desenhe a curva v_o vs v_i .
 - \triangleright b) Desenhe as formas de onda de entrada e saída (v_i e v_o).

