CSE332 Week 2 Section Worksheet Solutions

1. Prove f(n) is O(g(n)) where

a.

$$f(n)=7n$$

 $g(n)=n/10$

Solution:

According to the definition of O(), we need to find positive real #'s n_0 & c so that $f(n) \le c g(n)$ for all $n \ge n_0$

So, set one of them, solve the equation. $n_0=1$ & c greater than or equal to 70 works.

b.

$$f(n)=1000$$

 $g(n)=3n^3$

Solution:

According to the definition of O(), we need to find positive real #'s n_0 & c so that $f(n) \le c*g(n)$ for all $n \ge n_0$

Easiest way to do this would be to set $n_0=1$ and solve the equation. $n_0=1$ and any c from 334 and up works.

c.

$$f(n)=7n^2+3n$$

 $g(n)=n^4$

Solution:

According to the definition of O(), we need to find positive real #'s n_0 & c so that $f(n) \le c*g(n)$ for all $n \ge n_0$

Easiest way to do this would be to set $n_0=1$ and solve the equation. We then get c=10, and g rises more quickly than f after that. There are many more other such solutions, just make sure you plug them back in to check that they work.

These, you could solve in a number of ways. You could also graph them and observe their behavior to find an appropriate value.

d.

Solution:

$$n_0=2 \& c=3$$

The values we choose do depend on the base of the log; here we'll assume base 2 To keep the math simple, we choose n_0 of 2. Solving the equation gets us c=3.

We could also use log base 10, and we'd get c = 3, and $n_0 = 10$. Or $n_0 = 2$, c=10.

2. True or false, & explain

```
a. f(n) is \Theta(g(n)) implies f(n) is O(g(n))
```

Solution:

True: Based on the definition of Θ , f(n) is O(g(n))

```
b. f(n) is \Theta(g(n)) implies g(n) is \Theta(f(n))
Solution:
        True: Intuitively, \Theta is an equals, and so is symmetric.
        More specifically, we know
                f is O(g) & f is \Omega(g)
        SO
                There exist positive # c, c', n_0 & n_0' such that
                        f(n) \le cg(n) for all n \ge n_0
                and
                        f(n) > = c'g(n) for all n > = n_0
        SO
                       g(n) \le f(n)/c' for all n \ge n_0'
                and
                        g(n) \ge f(n)/c for all n \ge n_0
        so g is O(f) and g is \Omega(f)
        so g is \Theta(f)
c. f(n) is \Omega(g(n)) implies f(n) is O(g(n))
Solution:
       False: Counter example: f(n)=n^2 \& g(n)=n; f(n) is \Omega(g(n)), but f(n) is NOT \Omega(g(n))
3. Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of
O() must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient n_0
when c=1.
Solution: Basically, you need to think up two functions where one is always greater than the
other and never crosses, but if you multiply one of them by something, there is a crossing point
where they reverse, and it will shoot up past the other function.
        Consider
                f(n)=n+1
                g(n)=n
        we know f(n) is O(g(n)); both run in linear time
        Yet f(n) > g(n) for all values of n; no n_0 we pick will help with this if we set c=1.
        Instead, we need to pick c to be something else; say, 2.
                n+1 \le 2n \text{ for } n \ge 1
4. Write the O() run-time of the functions with the following recurrence relations
a. T(n)=3+T(n-1), where T(0)=1
Solution:
        T(n)=3+3+T(n-2)=3+3+3+T(n-3)=...=3k+T(0)=3k+1, where k=n,
        so O(n) time.
b. T(n)=3+T(n/2), where T(1)=1
Solution:
        T(n)=3+3+T(n/4)=3+3+3+T(n/8)=...=3k+T(n/2^k)
        we want n/2^k=1 (since we know what T(1) is), so k=\log_2 n
        so T(n)=3\log n+1, so O(\log n) time.
```

c.
$$T(n)=3+T(n-1)+T(n-1)$$
, where $T(0)=1$ Solution:

We can re-write T(n) as T(n) = 3+2 T(n-1)
Then to expand T(n)
T(n)
= 3 + 2 (3 + 2 T(n-2))
= 3 + 2 (3 + 2 (3 + 2 T (n-3)))
= 3 + 2 (3 + 2 (3 + 2 T (n-4))))
= 3 + 2 (3 + 2 (3 + 2 T (n-4))))
= 3 + 2 (3 + 2 (3 + 2 T (n-4))))
=
$$3 \cdot 2^{0} + 3 \cdot 2^{1} + 3 \cdot 2^{2} + \dots + 3 \cdot 2^{k-1} + 2^{k} T(0)$$
 where k is the number of iterations
= $\sum_{i=1}^{k-1} 3 \cdot 2^{i} + 2^{k} \cdot 1$

Because $\sum_{i=0}^{j} m^i = m^{j+1}-1$, we can replace the summation with $= 3 \cdot (2^k - 1) + 2^k \cdot 1$

And in this case, since we know that the number of iterations that occur is just n, k=n, and so $= 4 \cdot 2^n - 3$

and we see that have $T(n) = 8 \cdot 2^n$, and thus T(n) is in $O(2^n)$.

Basically, since we can tell the # of calls to T() is doubling every time we expand it further, it runs in $O(2^n)$ time.

5. Prove by induction that the
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

First, check the base case. Set n=1, and show that the right-hand side of the equation above is equal to $0^2 + 1^2$.

Second, do the induction step.

$$I + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^{2}}{6} = \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(2n^{2} + n + 6n + 6)}{6} = \frac{(n+1)(2n^{2} + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(n+2)(2(n+1)+1)}{6}$$

The final expression, on the right, is the same as if we had substituted (n+1) for (n) in the original equation, and hence we have proven the equation true for the inductive case.

(equation images in the solution to this problem above, courtesy of http://pirate.shu.edu/~wachsmut/ira/infinity/answers/sm_sq_cb.html)

6. What's the O() run-time of this code fragment in terms of n:

```
a)
        int x=0;
        for(int i=n;i>=0;i--)
               if((i\%3)==0) break;
               else x+=i;
```

Solution:

At a glance we see a loop and it looks like it should be O(n); it looks like we go through the loop n times.

However, that 'break' makes things a bit weirder. Consider how the loop will work for any real data; we start at some n, count backwards until the value is a multiple of 3, at which point we break.

So the loop's code will run at most 3 times (not a function of n); so the whole thing is O(1).

**Recall that '%' is the remainder operator; i%3 divides i by 3 and returns the remainder (which will be 0, 1 or 2).

b)
$$O(n^3)$$

Outer loop is n. Inner loop is $\frac{n^2}{3}$ times. Hence, the whole thing runs in $\frac{n^3}{3}$ time. Dropping the 1/3 constant, we get $O(n^3)$

c) This one is trickier. Outer loop runs in n, but inner loop runs in i*i time. Which means the first time the inner loop runs, i is only 0, so the inner loop runs 0 times. Next, i is 1, so inner loop runs 1 time. Next i=2, inner loop hence runs i^2 times, which is 4. Next time, i=3, inner loop goes 9 times. And so forth. So the number of executions ends up being $0 + 1 + 4 + 9 + ... + n^2$ times. We can use the formula we just found in problem 5 here, to represent this summation. $\frac{n(n+1)(2n+1)}{6}$. And so, this expression is O(n^3).