

QTLP650C-2 / QTLP650D-2 HER QTLP650C-4 / QTLP650D-4 Green QTLP650C-B Blue QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

APPLICATIONS

- · Keypad backlighting
- · Push-button backlighting
- LCD backlighting

DESCRIPTION

These surface mount chip LEDs are designed to fit industry standard footprint. Low profile and wide viewing angle make these LEDs ideal choices for backlighting applications and panel illumination.

FEATURES

- Small footprint 3.2(L) X 1.6(W) X 1.1(H) mm
- Wide viewing angle of 140°(QTLP650C) or 160°(QTLP650D)
- · Water clear (QTLP650C) or diffused (QTLP650D) optics
- · Moisture-proof packaging
- Available in 0.315" (8mm) width tape on 7" (178mm) diameter reel; 2,000 units per reel

QTLP650C-2 / QTLP650D-2 HER QTLP650C-4 / QTLP650D-4 Green QTLP650C-B Blue QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

ABSOLUTE MAXIMUM RATINGS (T _A =25°C Unless otherwise specified)											
Parameter	Symbol	QTLP650C / QTLP650D					Linita				
		-2	-3	-4	-7	-B*	- Units				
Continuous Forward Current	I _F	30	30	30	30	30	mA				
Peak Forward Current (f = 1.0 KHz, Duty Factor = 1/10)	I _{FM}	160	160	160	180	100	mA				
Reverse Voltage (I _R = 10 μA)	V _R	5	5	5	5	5	V				
Power Dissipation	P _D	84	84	84	72	135	mW				
Operating Temperature	T _{OPR}	-40 to +85									
Storage Temperature	T _{STG}	-40 to +90									
Lead Soldering Time	T _{SOL}	260 for 5 sec									

ELECTRICAL / OPTICAL CHARACTERISTICS (T _A =25°C)											
Part Number	Symbol		Condition								
		-2	-3	-4	-7	-B*	Condition				
Luminous Intensity (mcd)											
Minimum	I _V	4/3	4/3	6/5	10 / 8	10 / -	I _F = 20mA				
Typical		10 / 8	10 / 8	10 / 8	20 / 15	20 / -					
Forward Voltage (V)											
Maximum	V _F	2.8	2.8	2.8	2.4	4.5	I _F = 20mA				
Typical		2.0	2.0	2.1	1.9	3.8					
Wavelength (nm)											
Peak	λ_{P}	635	585	565	660	430	I _F = 20mA				
Dominant	λ_{D}	630	590	570	645	465					
Spectral Line Half Width (nm)	Δλ	45	35	30	20	65	I _F = 20mA				
Viewing Angle (°)	2Θ _{1/2}	140 / 160	140 / 160	140 / 160	140 / 160	140 / -	I _F = 20mA				

^{*} Available only in QTLP650C

QTLP650C-2 / QTLP650D-2 HER QTLP650C-4 / QTLP650D-4 Green QTLP650C-B Blue QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

TYPICAL PERFORMANCE CURVES

1.0

2.5 3.0

V_F - FORWARD VOLTAGE (V)

4.0

5.0

Fig. 1 Forward Current vs. Forward Voltage

Fig. 2 Relative Luminous Intensity vs.
DC Forward Current

2.0

AIGAAS
RED

1.5

AIGAAS
RED

HER
YELLOW
GREEN

0.0

0 5 10 15 20 25 30

IF - DC FORWARD CURRENT (mA)

Fig. 3 Relative Intensity vs. Peak Wavelength

QTLP650C-2 / QTLP650D-2 HER

QTLP650C-4 / QTLP650D-4 Green Q

QTLP650C-B Blue

QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

RECOMMENDED PRINTED CIRCUIT BOARD PATTERN

RECOMMENDED IR REFLOW SOLDERING PROFILE

QTLP650C-2 / QTLP650D-2 HER QTLP650C-4 / QTLP650D-4 Green QTLP650C-B Blue QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

TAPE AND REEL DIMENSIONS

Polarity

Dimensional tolerance is \pm 0.1mm unless otherwise specified

Angle: ± 0.5

Unit: mm

Polarity marks on opposite sprocket side.

QTLP650C-2 / QTLP650D-2 HER
QTLP650C-4 / QTLP650D-4 Green
QTLP650C-B Blue

QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

TAPE AND REEL DIMENSIONS

for -2, -3, -4 and -B

Polarity Dimensional tolerance is \pm 0.1mm unless otherwise specified

Angle: ± 0.5 Unit: mm

Polarity marks on the sprocket side.

QTLP650C-2 / QTLP650D-2 HER QTLP650C-4 / QTLP650D-4 Green QTLP650C-B Blue QTLP650C-3 / QTLP650D-3 Yellow QTLP650C-7 / QTLP650D-7 AlGaAs Red

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.