## Research Paper Analysis & Classification Pipeline

## 1. Tools & Libraries Used

- Hugging Face Transformers
- PyTorch
- Pandas, NumPy, Scikit-learn
- LangChain for structured prompts

## 2. Repository Contents

- preparing\_dataset\_csv.py: Script to convert raw abstract files to CSV
- fine\_tuning\_data.csv: Output CSV for training
- Question\_1\_and\_3\_Research\_Paper\_Analysis\_&\_Classification\_Pipeline\_Velsera.ipynb: Fine-tuning notebook
- Disease\_Specific\_Identification\_from\_Abstracts.ipynb: Disease NER extraction notebook
- Project Structure

|                                                                                          | – dataset/                                                                       |                                                           |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|--|
|                                                                                          | cancer/                                                                          | # Text files containing cancer-related abstracts          |  |
| L                                                                                        | non_cancer/                                                                      | # Text files containing non-cancer abstracts              |  |
|                                                                                          | – preparing_dataset_                                                             | csv.py # Script to preprocess text files and generate CSV |  |
|                                                                                          | fine_tuning_data.cs                                                              | v # Generated dataset CSV for classification              |  |
| -                                                                                        | Question_1_and_3_Research_Paper_Analysis_&_Classification_Pipeline_Velsera.ipynb |                                                           |  |
|                                                                                          | # Notebook for classification model training & evaluation                        |                                                           |  |
| —— Disease_Specific_Identification_from_Abstracts # Notebook for disease name extraction |                                                                                  |                                                           |  |
| L                                                                                        | – README.md                                                                      | # Project documentation                                   |  |



Input Format: Raw .txt files in two folders: cancer and non\_cancer, each with id, title, and abstract.

Processing:

Combined into a single CSV using preparing\_dataset\_csv.py

Output CSV: fine\_tuning\_data.csv with fields: id, text, label

Labels: 1 for Cancer, 0 for Non-Cancer

2. Model Selection

Classification Model

Model: DistilBERT from Hugging Face

**Justification:** 

Retains ~97% of BERT's performance

60% faster, 40% smaller – ideal for environments like Google Colab

Seamless integration with Hugging Face's Trainer API

Supports LoRA fine-tuning for efficient parameter updates

Outperforms larger models in terms of training speed and ease for general classification

♦ Disease Extraction Model

Model: en\_ner\_bc5cdr\_md (SciSpaCy)

Justification:

Specialized for biomedical named entity recognition

Trained on the BioCreative V CDR corpus

Outperforms general NER models for disease entity detection

**7** 3. Fine-Tuning Process

Approach: LoRA-based fine-tuning of DistilBERT on binary classification task.

Notebook:

Question\_1\_and\_3\_Research\_Paper\_Analysis\_&\_Classification\_Pipeline\_Velsera.ipynb

Notebook: Disease\_Specific\_Identification\_from\_Abstracts.ipynb

"extracted\_diseases": ["Lung Cancer", "Breast Cancer"]

Example:

"abstract\_id": "PMC1234567",

{

}