Behavioral model

1.
$$L_{wing} = C_{L_{wing}} \frac{1}{2} \rho V^2 S_{wing}$$

2.
$$L_{horizontal\ tail} = C_{L_{horizontal\ tail}} \frac{1}{2} \rho V^2 S_{horizontal\ tail}$$

3.
$$D_{vertical\ tail} = \frac{1}{2} \rho V^2 C_{D_{vertical\ tail}} A_{vertical\ tail}$$

4.
$$D_{horizontal\ tail} = \frac{1}{2} \rho V^2 C_{D_{horizontal\ tail}} A_{horizontal\ tail}$$

5.
$$D_{fuselage} = \frac{1}{2} \rho V^2 C_{D_{fuselage}} A_{fuselage}$$

6.
$$D_{landing gear} = \frac{1}{2} \rho V^2 C_{D_{landing gear}} A_{landing gear}$$

7.
$$D_{wing} = \frac{1}{2} \rho V^2 C_{D_{wing}} A_{wing}$$

8.
$$D_{left engine} = \frac{1}{2} \rho V^2 C_{D_{left engine}} A_{left engine}$$

9.
$$D_{right\ engine} = \frac{1}{2} \rho V^2 C_{D_{right\ engine}} A_{right\ engine}$$

$$10. \quad D_i = \frac{\left(L_{wing} + L_{horizontal\ tail}\right)^2}{0.5\pi\rho V^2 b^2 e}$$

11.
$$M_0 = \frac{V}{\sqrt{\gamma R T_0}}$$

12.
$$T_{t_0} = T_0 \left(1 + \frac{\gamma - 1}{2} M_0^2 \right)$$

13.
$$\theta_0 = \frac{T_{t_0}}{T_0}$$

14.
$$\theta_{T,right\ engine} = \frac{T_{t_0} \tau_{b,right\ engine} \tau_{c,right\ engine} \tau_{d,right\ engine}}{T_0}$$

15.
$$T_{right\ engine} = m^{dot} \sqrt{\gamma RT_0} \left(\sqrt{\frac{2\theta_0}{\gamma - 1}} \left(\frac{\theta_{T,right\ engine}}{\theta_0 \tau_{c,right\ engine}} - 1 \right) \left(\tau_{c,right\ engine} - 1 \right) + \frac{\theta_{T,right\ engine} M_0^2}{\theta_0 \tau_{c,right\ engine}} - M_0 \right)$$

16.
$$\theta_{T,left\ engine} = \frac{T_{t_0} \tau_{b,left\ engine} \tau_{c,left\ engine} \tau_{d,left\ engine}}{T_0}$$

17.
$$T_{left\ engine} = m^{dot} \sqrt{\gamma RT_0} \left(\sqrt{\frac{2\theta_0}{\gamma - 1} \left(\frac{\theta_{T,left\ engine}}{\theta_0 \tau_{c,left\ engine}} - 1 \right) \left(\tau_{c,left\ engine} - 1 \right) + \frac{\theta_{T,left\ engine}M_0^2}{\theta_0 \tau_{c,left\ engine}} - M_0} \right)$$

$$18. \quad T_{\textit{right engine}} + T_{\textit{left engine}} = D_{\textit{vertical tail}} + D_{\textit{horizontal tail}} + D_{\textit{fuselage}} + D_{\textit{landing gear}} + D_{\textit{wing}} + D_{\textit{left engine}} + D_{\textit{right engine}} + D_{\textit{interpolation}} + D_{\textit{inter$$

19.
$$L_{wing} + L_{horizontal\ tail} = w_{vertical\ tail} + w_{horizontal\ tail} + w_{fuselage} + w_{landing\ gear} + w_{wing} + w_{left\ engine} + w_{right\ engine} + w_{fuel}$$

20.
$$w_{vertical\ tail} = \rho_{vertical\ tail} v_{vertical\ tail}$$

21.
$$w_{horizontal\ tail} = \rho_{horizontal\ tail} v_{horizontal\ tail}$$

22.
$$w_{fuselage} = \rho_{fuselage} v_{fuselage}$$

23.
$$w_{landing gear} = \rho_{landing gear} v_{landing gear}$$

24.
$$w_{wing} = \rho_{wing} v_{wing}$$

25.
$$w_{left engine} = \rho_{left engine} v_{left engine}$$

26.
$$w_{right\ engine} = \rho_{right\ engine} v_{right\ engine}$$

27.
$$w_{fuel} = \rho_{fuel} v_{fuel}$$

28.
$$v_{vertical\ tail} = A_{vertical\ tail} b_{vertical\ tail}$$

29.
$$v_{horizontal\ tail} = A_{horizontal\ tail} b_{horizontal\ tail}$$

30.
$$v_{wing} = \frac{S_{wing}A_{wing}}{b}$$

31.
$$\delta = \frac{N(w_{fuselage} + w_{landing gear} + w_{left engine} + w_{right engine} + w_{cargo} + w_{horizontal tail} + w_{vertical tail} + w_{fuel})}{EI} \frac{b^3}{64}$$

32.
$$I = \frac{t^3c}{12}$$

33.
$$S_{wing} = \frac{c \, b}{2}$$

$$34. \quad A_{wing}^{wing} = \frac{tb}{2}$$

Fig. 1 Aircraft axes

Please refer to Fig. 1 for information on axes. For instance, aircraft dimensions in the parameter descriptions are given with respect to the x, y, and z axes shown in Fig. 1. Motion about the x axis would be roll, motion about the y axis would be pitch, and motion about the z axis would be yaw.

Table 1. Aircraft model parameter descriptions

Table 1. A	ircrait model parameter desc	приопѕ			
$A_{fuselage}$	Frontal area of fuselage (YZ axis)	t	Thickness of wing	С	Chord length of wing
A _{horizontal} ta	Frontal area of horizontal tail (YZ axis)	e	Wing efficiency factor	W _{landing} gear	Weight of landing gear
$A_{landing\ gear}$	Frontal area of landing gear (YZ axis)	L _{horizontal ta}	Lift generated by horizontal tail	W _{left} engine	Weight of left engine
$A_{\mathit{left}\mathit{engine}}$	Frontal area of left engine (YZ axis)	L_{wing}	Lift generated by wing	Wright engine	Weight of right engine
A _{right engine}	Frontal area of right engine (YZ axis)	m ^{dot}	Mass flow rate of air entering engines	W _{vertical tail}	Weight of vertical tail
$A_{vertical\ tail}$	Frontal area of vertical tail (YZ axis)	M_0	Freestream Mach number	W_{wing}	Weight of wing
A wing	Frontal area of wing (YZ axis)	R	Gas constant	γ	Specific heat ratio for air
b	Wingspan (Y axis)	S _{horizontal ta}	Planform area of horizontal tail (XY axis)	$ heta_{T,left\ engine}$	Stagnation-static temperature ratio for left engine turbine inlet
b _{horizontal tai}	Span of horizontal tail (Y axis)	S_{wing}	Planform area of wing (XY axis)	$\theta_{T,right\ engine}$	Stagnation-static temperature ratio for right engine turbine inlet
b _{vertical tail}	Span of vertical tail (Z axis)	T _{left engine}	Thrust generated by left engine	θ_0	Stagnation-static temperature ratio for freestream air
$C_{D_{\it fuse lage}}$	Drag coefficient of fuselage	$T_{right\ engine}$	Thrust generated by right engine	ρ	Air density
$C_{D_{\it horizontal\ tail}}$	Drag coefficient of horizontal tail	T_{t_0}	Freestream stagnation air temperature	ρ_{fuel}	Density of fuel
$C_{D_{landing\ gear}}$	Drag coefficient of landing gear	T_0	Freestream air temperature	$\rho_{fuselage}$	Density of material of fuselage
$C_{D_{\mathit{left engine}}}$	Drag coefficient of left engine	V	Airspeed	Phorizontal tail	Density of material of horizontal tail
$C_{D_{\it right engine}}$	Drag coefficient of right engine	v_{fuel}	Volume of fuel	Planding gear	Density of material of landing gear
$C_{D_{\mathit{vertical tail}}}$	Drag coefficient of vertical tail	$v_{\it fuse lage}$	Volume of fuselage	Pleft engine	Density of material of left engine
$C_{D_{wing}}$	Drag coefficient of wing	v _{horizontal ta}	Volume of horizontal tail	Pright engine	Density of material of right engine

$C_{L_{\mathit{horizontal tail}}}$	Lift coefficient of horizontal tail	V _{landing gear}	Volume of landing gear	ρ _{vertical tail}	Density of material of vertical tail
$C_{L_{\mathit{wing}}}$	Lift coefficient of wing	$v_{left\ engine}$	Volume of left engine	ρ_{wing}	Density of material of wing
$D_{fuselage}$	Drag generated by fuselage	Vright engine	Volume of right engine	$ au_{b,left\ engine}$	Temperature ratio of combustion chamber in left engine
D _{horizontal ta}	Drag generated by horizontal tail	v _{vertical tail}	Volume of vertical tail	τ _{b,right engine}	Temperature ratio of combustion chamber in right engine
D_i	Drag induced by lift	v_{wing}	Volume of wing	$\tau_{c,left\ engine}$	Temperature ratio of compressor in left engine
	Drag generated by landing gear	w_{bag}	Average weight of a single bag	$\tau_{c,right\ engine}$	Temperature ratio of compressor in right engine
11,111,0111	Drag generated by left engine	Weargo	Weight of cargo	$\tau_{d,left\ engine}$	Temperature ratio of inlet in left engine
$D_{right\ engine}$	Drag of right engine	W_{fuel}	Weight of fuel	$\tau_{d,right \ engine}$	Temperature ratio of inlet in right engine
D _{vertical tail}	Drag generated by vertical tail	$W_{fuselage}$	Weight of fuselage	δ	Wing tip deflection
D_{wing}	Drag generated by wing	W _{horizontal ta}	Weight of horizontal tail	E	Young's modulus of wing
N	Load factor	I	Moment of inertia of wing		