Business Problem - Predict the Price of House using K-NN algorithms (Regression)

Load Libraries

In [1]:

import pandas as pd

Load Data

In [9]:

dataset = pd.read_csv('bangalore house price.csv')

In [10]:

dataset

Out[10]:

	bath	balcony	price	total_sqft_int	bhk	price_per_sqft
0	3	2	150.00	1672	3	8971.291866
1	3	3	149.00	1750	3	8514.285714
2	3	2	150.00	1750	3	8571.428571
3	2	2	40.00	1250	2	3200.000000
4	2	2	83.00	1200	2	6916.666667
5	2	2	40.00	1170	2	3418.803419
6	2	2	65.00	1425	3	4561.403509
7	2	2	43.00	947	2	4540.654699
8	2	2	36.00	1130	2	3185.840708
9	2	2	76.00	1417	3	5363.443896
10	2	1	58.00	1230	2	4715.447154
11	3	2	75.00	1705	3	4398.826979
12	2	1	47.00	1116	2	4211.469534
13	2	2	40.00	991	2	4036.326942
14	1	1	27.00	550	1	4909.090909
15	2	2	70.00	1450	3	4827.586207
16	1	1	25.50	700	1	3642.857143
17	1	0	28.00	440	1	6363.636364
18	1	0	25.25	510	1	4950.980392
19	1	1	25.25	510	1	4950.980392
20	2	0	480.00	2400	3	20000.000000
21	3	2	85.00	1540	3	5519.480519
22	1	0	45.00	600	1	7500.000000
23	4	2	150.00	3150	4	4761.904762
24	2	1	67.00	1250	2	5360.000000
25	4	1	428.00	2850	4	15017.543860
26	3	2	194.00	1630	3	11901.840490
27	2	3	235.00	1875	3	12533.3333330
28	2	0	130.00	1200	3	10833.333333

In [12]:

```
x = dataset.drop('price', axis=1)
```

In [13]:

Х

Out[13]:

	bath	balcony	total_sqft_int	bhk	price_per_sqft
0	3	2	1672	3	8971.291866
1	3	3	1750	3	8514.285714
2	3	2	1750	3	8571.428571
3	2	2	1250	2	3200.000000
4	2	2	1200	2	6916.666667
5	2	2	1170	2	3418.803419
6	2	2	1425	3	4561.403509
7	2	2	947	2	4540.654699
8	2	2	1130	2	3185.840708
9	2	2	1417	3	5363.443896
10	2	1	1230	2	4715.447154
11	3	2	1705	3	4398.826979
12	2	1	1116	2	4211.469534
13	2	2	991	2	4036.326942
14	1	1	550	1	4909.090909
15	2	2	1450	3	4827.586207
16	1	1	700	1	3642.857143
17	1	0	440	1	6363.636364
18	1	0	510	1	4950.980392
19	1	1	510	1	4950.980392
20	2	0	2400	3	20000.000000
21	3	2	1540	3	5519.480519
22	1	0	600	1	7500.000000
23	4	2	3150	4	4761.904762
24	2	1	1250	2	5360.000000
25	4	1	2850	4	15017.543860
26	3	2	1630	3	11901.840490
27	2	3	1875	3	12533.333330
28	2	0	1200	3	10833.333330

In [14]:

y=dataset['price']

```
In [15]:
У
Out[15]:
      150.00
      149.00
1
2
      150.00
3
       40.00
4
       83.00
5
       40.00
6
       65.00
7
       43.00
8
       36.00
9
       76.00
10
       58.00
11
       75.00
       47.00
12
13
       40.00
14
       27.00
15
       70.00
16
       25.50
17
       28.00
18
       25.25
19
       25.25
20
      480.00
21
       85.00
22
       45.00
23
      150.00
24
       67.00
25
      428.00
26
      194.00
27
      235.00
28
      130.00
Name: price, dtype: float64
In [16]:
print('Shape of X = ', x.shape)
print('Shape of y = ', y.shape)
Shape of X = (29, 5)
Shape of y = (29,)
```

Split Dataset into to training set and test dataset

```
In [17]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=51)
```

```
In [18]:
```

```
print('Shape of X_train = ', X_train.shape)
print('Shape of y_train = ', y_train.shape)
print('Shape of X_test = ', X_test.shape)
print('Shape of y_test = ', y_test.shape)

Shape of X_train = (23, 5)
Shape of y_train = (23,)
Shape of X_test = (6, 5)
Shape of y_test = (6,)
```

K Nearest Neighbor Regression - ML Model Training

In [19]:

```
from sklearn.neighbors import KNeighborsRegressor
regressor = KNeighborsRegressor(n_neighbors=3)
regressor.fit(X_train, y_train)
```

Out[19]:

KNeighborsRegressor(n_neighbors=3)

In [20]:

```
regressor.score(X_test, y_test)
```

Out[20]:

0.8656000870057868

Predict the price of Home

In [21]:

```
X_test
```

Out[21]:

	bath	balcony	total_sqft_int	bhk	price_per_sqft
15	2	2	1450	3	4827.586207
8	2	2	1130	2	3185.840708
2	3	2	1750	3	8571.428571
22	1	0	600	1	7500.000000
7	2	2	947	2	4540.654699
26	3	2	1630	3	11901.840490

```
In [22]:
X_test.iloc[-1, :]
Out[22]:
bath
                       3.00000
balcony
                       2.00000
total_sqft_int
                   1630.00000
                       3.00000
price_per_sqft
                 11901.84049
Name: 26, dtype: float64
In [23]:
regressor.predict([X_test.iloc[-1, :]])
Out[23]:
array([171.6666667])
In [24]:
y_test.iloc[-1]
Out[24]:
194.0
In [25]:
X_test.iloc[-2, :]
Out[25]:
bath
                     2.000000
                     2.000000
balcony
total_sqft_int
                   947.000000
bhk
                     2.000000
price_per_sqft
                4540.654699
Name: 7, dtype: float64
In [26]:
regressor.predict([X_test.iloc[-2, :]])
Out[26]:
array([56.6666667])
In [27]:
y_test.iloc[-2]
Out[27]:
43.0
In [28]:
y_pred = regressor.predict(X_test)
```

```
In [29]:
y_pred
Out[29]:
         66. , 35.16666667, 127.33333333, 86.66666667, 56.66666667, 171.66666667])
array([ 66.
In [30]:
y_test
Out[30]:
15
        70.0
8
        36.0
2
       150.0
22
       45.0
7
       43.0
26
       194.0
Name: price, dtype: float64
In [ ]:
```