8-Bit Microcontroller

phisticated on-chip peripheral capabilities. This high-speed and low-power MCU has a nominal bus This publication contains condensed information on the MCU; for detailed information, refer to Ad-Single-Chip Microcontroller Programmer's Reference Manual (M68HC11RM/AD) or contact your lo-The MC68HC811E2 high density CMOS (HCMOS) microcontroller unit (MCU) contains nighly sospeed of two megahertz, and the fully static design allows operations at frequencies down to dc. vance information Manual, HCMOS Single-Chip Microcontroller (MC68HC11A&D), M68HC11 HCMOS cal Motorola sales office.

Rafer to the block diagram for the hardware features and to the list below for additional features available on the MCU.

- Enhanced 16-Bit Timer System with Four-Stage Programmable Prescaler
 - Power Saving STOP and WAIT Modes Serial Peripheral Interface (SPI)
- Enhanced NRZ Serial Communications Interface (SCI)
- 8-Bit Pulse Accumulator Circuit
 - Bit Test and Branch Instructions
 - Real-Time Interrupt Circuit
 - 2K Bytes of EEPROM
- 256 Bytes of Static RAM
- Eight-Channel 8-Bit A.D Converter

BLOCK DIAGRAM

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MOTOROLA MICROPROCESSOR DATA

OPERATING MODES

to select one of two basic operating modes or one of two The MCU uses two dedicated pins (MODA and MODB) special operating modes. The basic operating modes are single-chip and expanded-multiplexed; the special operating modes are bootstrap and special test. The following paragrphs describe the different modes.

SINGLE-CHIP MODE (MODED)

In this mode, the MCU functions as a self-contained microcontroller and has no external address or data bus. This mode provides maximum use of the pins for onchip peripheral functions, and all address and data activity occur within the MCU.

EXPANDED MULTIPLEXED MODE (MODE1)

vides the control output used in demultiplexing the low-order address at port C. The $RN\!\overline{\!W}$ pin is used to control In this mode, the MCU can address up to 64K bytes of address space. Higher-order address bits are output on the port B pins, and lower-order address bits and the data bus are mutliplexed on the port C pins. The AS pin prothe direction of data transfer on port C bus.

BOOTSTRAP MODE

In this mode, all vectors are fetched from the 192-byte on-chip bootloader ROM. This mode is very versatile and can be used for such functions as test and diagnostics on completed modules and for programming the EEPROM. The serial receive logic is initialized by software in the bootloader ROM, which provides program control for the serial communications interface (SCI) baud and word format. In this mode, a special control bit is configured that allows for self-testing of the MCU. This mode can be changed to other modes under program control.

This mode is primarily intended for main production at time of manufacture; however, it may be used to program calibration or personality data into the internal EE-PROM. In this mode, a special control bit is configured to permit access to a number of special test control bits. This mode can be changed to other modes under pro-

SIGNAL DESCRIPTION

Voo AND Vss

Power is supplied to the microcontroller using these two pins. VDD is +5 volts (±0.5V) power, and VSS is ground.

This active low bidirectional control pin is used as an input to initialize the MCU to a known startup state and as an open-drain output to indicate that an internal failure has been detected in either the clock monitor or the computer operating properly (COP) circuit.

XTAL EXTAL

These pins provide the interface for either a crystal or

generator circuitry. The frequency applied shall be four times higher than the desired clock rate. Refer to Figure a CMOS-compatible clock to control the internal clock This pin provides an output for the internally generated quency of the E output is one-fourth that of the input E clock, which can be used for timing reference. The fre-1 for crystal and clock connections.

frequency at the XTAL and EXTAL pins.

This pin is configured to level-sensitive during reset. An plying interrupts to the MCU. Either negative edge-sen-This pin provides the capability for asynchronously apsitive or level-sensitive triggering is program selectable. external resistor connected to VDD is required on IRO.

on reset (POR). During reset, the X bit in the condition code register is set, and any interrupt is masked until enabled by software. This input is level-sensitive and re-This pin provides the capability for asynchronously applying non-maskable interrupts to the MCU after a power quires an extenal pullup resistor to VDD.

MODA/LIR AND MODB/Vstby

basic operating modes and the two special operating modes. The LIR output can be used as an aid in debugging once reset is completed. The open-drain LIR pin goes to an active low during the first E-clock cycle of each During reset, these pins are used to control the two instruction and remains low for the duration of that cycle. The V_{stby} (voitage standby) is used to retain RAM contents during device powerdown. The mode selections are shown below.

MODE SELECTED	Single Chip	Expanded Multiplexed	Special Bootstrap	Special Test
MODA	0	,	0 .	1
МОРВ	+	+	0	0

VRL and VRH

These pins provide the reference voltage for the A.D. converter.

R/W/STRB

This pin provides two different functions, depending on the operating mode. In single-chip mode, the pin provides STRB (output strobe) function; in the expandedmultiplexed mode, it provides R/W (read-write) function. The R/W is used to control the direction of transfers on the external data bus.

"includes all stray capacitances.

3

One Crystal Driving Two MCUs

Figure 1. Oscillator Collections

AS/STRA

This pin provides two different functions depending on the operating mode. In single-chip mode, the pin provides STRA (input strobe) function, and in the expandedmultiplexed mode, it provides AS (address strobe) function. The AS may be used to demultiplex the address and data signals at port C.

NPUT/OUTPUT LINES (PA0-PA7, PB0-PB7, PC0-PC7, PD0-PD5, PE0-PE7)

lists a summary of the pin functions to operating modes. Refer to INPUT/OUTPUT PORTS for additional informa-These I:O lines are arranged into four 8-bit ports (A, B, C, and E) and one 6-bit port (D). All ports serve more than one purpose depending on the operating mode. Table 1

INPUT/OUTPUT PORTS

Port functions are controlled by the particular mode selected. In the single-chip mode and bootstrap mode, four ports are configured as parallel I/O data ports and port E can be used for general-purpose static inputs and/ or analog-to-digital converter channel inputs. In the ex-panded-multiplexed mode and test mode, ports B, C, AS, and RW are configured as a memory expansion bus.

Table 1 lists the different port signals available. The following paragraphs describe each port.

capture functions; and a pulse a accumulator input (PAI) pin provides for a transitional input, which is used to latch The output compare pins provide an output whenever a match is made between the value in the free-running particular 16-bit output compare register, When port A bit 7 is configured as a PAI, the external input pulses are port A lines may be used as general-purpose input or In all operating modes, port A may be configured for four input capture functions and three output compare functions; four output compare functions and three input or a fifth output compare function. Each input capture a timer value into the 16-bit input capture register. External devices provide the transitional inputs, and internal decoders determine which input transition edge is sensed. counter (in the timer system) and a value loaded into the applied to the pulse accumulator system. The remaining output lines.

PORT B

port B is written. In the expanded-multiplexed mode, all purpose output pins. Port B may also be used in a simple strobed output mode where the STRB pulses each time In the single-chip mode, all port B pins are general-

Table 1. Port Signai Functions

Sie and Bo	Single-Chip and Bootstrap Mode	Expanded- Multiplexed and Special Tast Mode
PAD/IC3 PA1/IC2 PA2/IC1		PAQMC3 PATMC2 PAZMC1
PA3/OC5/IC4/and-or I PA4/OC4/and-or OC1	50	PA3/OC5/IC4/and-or OC1
PAS/OC3/and-or OC1		PA5/OC3/and-or OC1
PA7/PAl/and-or OC1	_	PA7/PAl/and-or OC1
P80		A8
PB1		64
P82		A10
PB4		A12
PBS	7	A13
PB7	. 4	A15
PCO	-	A0,D0
PC1	_ ~	A1.D1
PC2	4	A2:D2
53	*	A3/D3
5 5	4.4	A5.D5
PC6		A6.D6
PC7	7	A7:07
PD0/RxD	1	PD0/RxD
PD1/TxD	u. i	PDI/TXO
PDZ/MISO	<u>.</u>	PD2:MISO
PD4 SCK	_ 0.	D4 SCK
PD5/SS	а.	PDSSS
STRA	٩۵	AS
PE0/AN0	1	PE0/AND
PE1/AN1	a	PE1,AN1
PE3/AN2	a.	PE2/AN2
PE3/AN3	<u>a</u>	PE3/AN3
PE4.AN4**	<u>a.</u>	PE4/AN4##
PE5/AN5##	a. c	PES.ANS##
PEG/AND##	<u> </u>	PEDANG##
E/ WW/##		TE / DE / H

##Not Bonded in 48-Pin Versions

of the port B pins act as high-order (bits 8-15) address output pins.

In the single-chip mode, port C pins are general-purpose input/output pins. Port C inputs can be latched by the STRA or may be used in full handshake modes of parallel I:O where the STRA input and STRB output acts as handshake control lines, in the expanded-multiplexed data pins. During the address cycle, bits 0 through 7 of the address are output on PC0-PC7; during the data cycle, bits 0 through 7 (PC0-PC7) are bidirectional data pins mode, port C pins are configured as multiplexed address/ controlled by the R/W signal.

MC68HC811E2

in all modes, port D bits 0-5 may be used for general-purpose I/O or with the serial communications interface (SCI) and serial peripheral interface (SPI) subsystems. Bit 0 is the receive data input, and bit 1 is the transmit data output for the SCI. Bits 2 through 5 are used by the SPI subsystem PORT E

Port E is used for general-purpose static inputs and/or Port E should not be read as static inputs while an A/D test is shown in Figure 2. In the single-chip mode, the the contents of the shaded areas are shown on the right in Figure 2. In the single-chip mode, the MCU does not except the bootstrap program ROM is located at memory locations \$8F40 through \$8FFF. The special test mode is The memory maps for each mode of operation, a single-chip, expanded-multiplexed, special boot, and special MCU does not generate external addresses. The internal memory locations are shown in the shaded areas, and side of the diagram, In the expanded-multiplexed mode, the memory locations are basically the same as the single-chip, except the memory locations between s shown (EXT) are for externally addressed memory and 10. The special bootstrap mode is similar to the single-chip mode. similar to the expanded-multiplexed mode, except the analog-to-digital channel inputs in all operating modes conversion is actually taking place. MEMORY

interrupt vectors are at external niemory locations.

The MCU contains the registers described in the folowing paragraphs.

ACCUMULATOR A AND B

These accumulators are general-purpose 8-bit registers used to hold operands and results of arithmetic calcuare treated as a single, double-byte accumulator called lations or data manipulations. These two accumulators the D accumulator for some instructions.

 -	4	0	1	
 ž.		١٦	0	9

INDEX REGISTER X (IX)

dexed addressing mode. It provides a 16-bit value that may be added to an 8-bit offset provided in an instruction This index register is a 16-bit register used for the into create an effective address. The index register may also be used either as a counter or a temporary storage

ı	0
1	
١	
1	
l	
1	×
l	
1	
1	
١	
Ì	'n

MOTOROLA MICROPROCESSOR DATA

FFCO NORMAL INTERRUPT VECTORS SPECIAL MODES INTERRUPT VECTORS 2K EEPROM (MAY BE REMAPPED TO ANY 4K PAGE BY THE EEPROM CONFIG REGISTER) 0000 IMAY BE REMAPPED TO ANY 4K PAGE BY THE INIT REGISTERI 1000 84 BYTE REGISTER BLOCK IMAY BE REMAPPED TO ANY 4K PAGE BY THE INIT REGISTER) 8FC0 BFFF FFF 8007 FOM BF40 ŧ F800 90FF BFFF CHIP (MODE 0) 20001 2 See 7 ¥FFF \$8000 \$000

NOTE:
1. Either or both the internal RAM and registers can be remapped to any 4K boundary by software.

3

	Bit 7	Brt 6	Bit 5	8π 4	Bit 3	Bit 2	Brt 1	Brt 0		
\$1000	Bit 7		1	1	1		i l	Brt 0		PORTA VO Port A
10015									Reserved	
\$1002	STAF	STAI	CWOM	HNDS	NIO	PLS	EGA	INVB]P10C	Parallel 1/0 Control Register
21003	Bit 7		1	1	1		1	Βπ 0	PORTC	I/O Port C
\$1004	Bit 7	1	1	ı	1			Bit 0]РОЯТВ	Output Port B
\$1005	Bit 7		1	ı	1		1	Bit 0]РОЯТС	PORTCL Alternate Larched Port C
\$1006									Reserved	
\$1007	B _{11.7}		1	ı	1	1		Bit 0	ODRC	Data Direction for Port C
\$1008			Bit 5	1	1	1	1	Bit 0	PORTO	1/0 Port 0
\$1009			Bit 5	1	į	ı	1	Bit 0]00R0	Data Direction for Port O
\$100A	Bit 7	1		1		+	1	Bit 0	PORTE	Input Port E
81008	F0C1	F0C2	F0C3	F0C4	FOCS]CF0RC	Compare Force Register
\$100C	0C1M7	0C1M6	DC1M5	DC1M4	0C1M3				DC1M	OC1 Action Mask Register

Figure 2. Memory Map (Sheet 1 of 3)

MOTOROLA MICROPROCESSOR DATA

MOTOROLA MICROPROCESSOR DATA

1000	Bit 7	But 6	But 5	Bit 4	Brt 3	Brt 2	- Mari	Bit 0	OC1 Action Data Register
3	_		3						
\$100E	81 15	ı	1	1	1	1		Bit 8 TCNT	Timer Counter Register
\$100	But 7	I	1	1	1	1	1	B _{st} 0	
\$1010	81 15	1	1	ı	1	,		Bit 8 TIC:	Input Capture Register
\$1011	Bit 7	ı	'	1	'	,	1	Г	
61013	1 10				1			But R TIC?	Social Canture 2 Register
\$1013	Bit 7	1	1	1	1	,	1	$\neg \neg$	
	9. 10							1.0	Sport Cantine 3 Secreter
\$1015	Bit 7	1 1	1	1 1	1 1	! 1	!!	B10	ancher calmide policies
								۱ [
\$1016	Bat 15	1	1	1	'	1	'	Bit 8 TOC!	Output Compare 1 Register
\$1017	Bit 7	-	1	_	'	1		Brt 0	
\$1018	Bit 15	1	1	1	'		1	Bit 8 TOC2	Output Compare 2 Register
\$1018	Bit 7	ı			1		1	Brt 0	
41014	3					1		But 8	Output Compare 3 Begister
\$1018	Ш.	1	1	,		1			
								1 (
\$1010	Brt 15	1	ı	-	1	1	1	Bit 8 TOC4	Output Compare 4 Register
\$1010	Bit 7	1	ı	+	1	1	f	Brt 0	
\$1015	Rr 15	!	ļ	1	'	,	1	B.t 8 T1405	Output Compare 5 Register
S101F	Bit 7			1	1		ı		
] [
\$1020	OMZ	017	OM3	2	DM4	970	OMS	OUS TCTL!	Timer Control Register 1
\$1021	E064B	EDG4A	E001B	E0G1A	E062B	EDG2A	E003B	E0G3A TCTL2	Timer Control Register 2
\$1022	1200	1200	0031	004	(405)	ij	ICSI	IC3I TMSK1	1 Timer Interrupt Mask Reg
\$1023	9100	0C2F	0C3F	OCAF	1405F	ICIF	IC2F	IC3F TFLG1	Timer Interrupt Flag Reg. 1
\$1024	101	RTII	PAOVI	PAH			PR:	PR0 TMSK2	2 Timer Interrupt Mask Reg.
\$1025	10F	RTIF	PAOVF	PAIF				TFLG2	Timer Interrupt Flag Reg. 2
\$1026	00RA7	PAEN	PAMOO	PEOGE	00RA3	14:05	RTR	RTRO PACTL	L Pulse Accum. Control Reg.
								11	
\$1027	Bit 7	ı	!	!	'	ŧ		Bit 0 PACNT	T Pulse Accum Count Heg.
\$1028	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0 SPCR	SPI Control Register
\$1029	SPIF	WCOL		MOOF				SPSR	SPI Status Register
\$102A	Bit 7	1	1		'	1	\$	Bit 0 SPDR	SPI Data Register
\$102B	TCLA		SCP1	SCP0	RCKB	SCR2	SCR1	SCR0 BAU0	SCI Baud Rate Control
\$102C	88	18		Σ	WAKE			SCCR1	1 SCI Control Register 1
	!								

Figure 2. Memory Map (Sheet 2 of 3)

š

3-1615

149

									Reg.		tions	2	6		è	jıster	_
	ster 2	ter	30R.	ster	ter 1	ter 2	ter 3	ter 4	EEPROM Block Protect Reg.		System Configuration Options	Arm/Reset COP Timer Cir.	EEPROM Prog.Control Reg.	Highest Priority I-Bit Int and Misc	RAM and I/O Mapping Reg.	Factory TEST Control Register	COP, ROM, and EEPROM Enables
	ol Regi	s Regis	(Read	rol Regi	it Regis	it Regis	ilt Regis	alt Regis	Block I		onfigur.	t COP	Prog.C	Priority	0/1 N	EST Co	M, and
	SCI Control Register 2	SCI Status Register	SCI Data IRead ROR, Write TDRI	A/D Control Register	A.D Result Register 1	A/O Result Register 2	A/D Result Register 3	A/O Result Register	EPROM		уѕтет (rm/Resi	EPROM	ighest Prid and Misc	AM and	actory]	DP, ROM, Enables
										Reserved	DPTION S	COPRST A	PPROG E	HPR10 H			CONFIG
	SCCR2	SCSR	SCOR]ADCTL	ADRI	AOR2	ADR3	ADR4		- &	<u>_</u>	8		=-1	Ĭ,]TEST1	.8
Bit 0	SBK		Brt 0	8	Brt 0	Brt 0	8 t 0	Bit 0	BPRT0 8PROT		85	Bit 0	EEPGM	PSELO	REGO	TCON	EEDN
		1:-1	1	1		1"1		1-1	1-1		11	1-1	-				
B.t	NWB	#	1 1	8					BPRT1		CR	1	EELAT	PSELI	REG1	FCOP	
2]	[]		[]		[]			2	[]	Γ	Γ	SS.	2	22	_ s	8
911 2	₩.	A.		20				[_]	8PRT2				ERASE	PSEL2	REG2	FCM	NDCOP
813	핃	8		93		$\left \cdot \right $		11	BPRT3		CME		ROW	PSEL3	REG3	DISR	
8rt 4	JUE	OLE	1	MULT	1	1			PTCON		٥١٨	-	BYTE	IRV	RAMO	C8yP	EEO
				1	+-1		H	+1	1-1		\- ·		H		H		
817.5	3IE	RORF		SCAN		1	11	11			ROE	1		MDA	RAM1	OCCR	93
B.t. 6	TCIE	٤		11					11		CSEL		EVEN	SMDD	RAMZ		EE2
ĕ	=	-	1 1	11	Γ	11	Т	11		1 1		\perp		NS.	[2]	11	١٣١
7		w	7			~	[~]	1			2	-		5	S	٩	[
Bit 7	=	TORE	8it 7	100 100	Bit 7	8rt 7	8rt 7	But 7			ADPU	8 _{it} 7	8	R800T	RAM3	TILOP	653
	81020	\$102E	\$102F	\$1030	\$1031	\$1032	\$1033	\$1034	\$1035	\$1036 Thru \$1038	\$1039	\$103A	\$1038	S103C	\$1030	\$103E	\$103F

3

Figure 2. Memory Map (Sheet 3 of 3)

NDEX REGISTER Y (IY)

This index register is an 16-bit register used for the opcodes and require an extra byte of machine code and indexed addressing mode similar to the IX register; however, most instructions using the IY register are two-byte an extra cycle of execution time. The index register may also be used as a counter or a temporary storage area.

PROGRAM COUNTER (PC)

The program counter is a 16-bit register that contains the address of the next byte to be fetched. MOTOROLA MICROPROCESSOR DATA

2 15 is configured as a sequence of fast-in-first-out read/write interrupts and subroutine calls. Each time a new byte is added to the stack, the SP is decremented; each time a registers, which allow important data to be stored during byte is removed, the SP is incremented. The address contained in the SP also indicates the location at which the

STACK POINTER (SP)

The stack pointer is a 16-bit register that contains the

address of the next free location on the stack. The stack

accumulators A and B and registers IX and IY can be

stored during certain instructions.

SP

MC68HC811E2

puter operating properly (COP) watchdog-timer timeout; and 4) a clock monitor failure. The RESET input consists The MCU can be reset four ways: 1) an active low input to the RESET pin; 2) a power-on reset function; 3) a commainly of a Schmitt trigger that senses the RESET line logic level.

RESET PIN

The condition code register is an 8-bit register in which each bit is used to indicate the results of the instruction just executed. These bits can be individually tested by a program, and specific actions can be taken as a result of their state. Each bit is explained in the following para-

CONDITION CODE REGISTER (CCR)

between internal and external resets). To prevent the To request an external reset, the RESET pin must be held low for eight E_{Cyc} (two E_{Cyc} if no distinction is needed transitions, the reset line should be held low while VDD hibit (LVI) circuit is required to protect EEPROM from EEPROM contents from being corrupted during power is below its minimum operating level. A low voltage incorruption as shown in Figure 3.

POWER-ON RESET (POR)

of the arithmetic logical unit (ALU) occurred during the last arithmetic operation. This bit is also affected during

shift and rotate instructions.

Overflow (V)

When set, this bit indicates that a carry or borrow out

Carry/Borrow (C)

S X Z N - H X S

graphs.

Power-on reset occurs when a positive transition is tect any drop in the power supply voltage. If the external RESET pin is low at the end of the power-on delay time, detected on VDD. The power on reset is used strictly for power turn on conditions and should not be used to dethe processor remains in the reset condition until RESET goes high.

The overflow bit is set if an arithmetic overflow occurred as a result of the operation; otherwise, the V bit

is cleared. Zero (Z) When set, this bit indicates that the result of the last

arithmetic, logical, or data manipulation was zero.

When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative

Negative (N)

(the MSB of the result is a logic one).

COMPUTER OPERATING PROPERLY (COP) RESET

reset sequence. If the COP watchdog timer is allowed to The MCU contains a watchdog timer that automatically times out if not reset within a specific time by a program timeout, a reset is generated, which drives the RESET pin low to reset the MCU and the external system.

in the configuration options register, allow the user to The COP reset function can be enabled or disabled by setting the control bit in an EEPROM cell of the system configuration register. Once programmed, this control bit remains set (or cleared) even when no power is applied, and the COP function is enabled or disabled independent select one of four COP timeout rates. Table 2 shows the of resident software. Protected control bits (CR1 and CR0), relationship between CR1 and CR0 and the COP timeout period for various system clock frequencies.

> This bit is set either by hardware or program instruction to disable (mask) all maskable interrupt sources (both

Interrupt (I)

external and internal).

Half Carry (H)

CLOCK MONITOR RESET

This bit is set during ADD, ABA, and ADC operations

to indicate that a carry occurred between bits 3 and 4

This bit is mainly useful in BCD calculations.

ures the E clock input frequency. If the E clock input rate erate a MCU reset. If the E clock signal is lost or its freand the RESET pin is driven low to reset the external The MCU contains a clock monitor circuit which measis above 200 kHz, then the clock monitor does not genquency fails below 10 kHz, then a MCU reset is generated, system.

The clock monitor reset can be enabled or disabled by a read-write control bit (CME) in the system configuration options register.

This bit, under program control, is set to disable the STOP instruction, and is cleared to enable the STOP in-

Stop Disable (S)

struction. The STOP instruction is treated as no operation

NOP) if the S bit is set.

This mask bit is set only by hardware (reset or XIRQ)

X Interrupt Mask (X)

and is cleared only by program instruction (TAP or RTI).

MOTOROLA MICROPROCESSOR DATA

3-1617

Reset Circuit with LVI and RC Delay

Figure 3. Typical LVI Reset Circuits

Table 2. COP Timeout Periods

CR1	CR0	E/2 ¹⁵ Divided By	XTAL = 2 ²³ Timeout - 1/ + 15.6 ms	XTAL = 8.0 MHz Timeout -0/+16.4 ms	XTAL = 4.9152 MHz Timeout - 0/ + 26.7 ms	XTAL = 4.0 MHz Timeout - 0/ + 32.8 ms	XTAL = 3.6864 MHz Timeout - 0/ + 35.6 ms
0	0	1	15.625 ms	16.384 ms	26.667 ms	32.768 ms	35.556 ms
0	,	4	62.5 ms	65.536 ms	106.67 ms	131.07 ms	142.22 ms
-	0	16	250 ms	262.14 ms	426.67 ms	524.29 ms	568.89 ms
-	-	2	s.	1.049 s	1.707 s	2.1 s	2.276 \$

921.6 kHz

1.0 MHz

1.2288 MHz

2.0 MHz

2.1 MHz

ű

MOTOROLA MICROPROCESSOR DATA

3-1618

MC68HC811E2

-- SP BEFORE INTERNUPT

莡

δ

3 25 3 Š 5.7 3

STACK

There are seventeen hardware and one software interrupts (excluding reset type interrupts) that can be generated from all the possible sources. These interrupts can be divided into two categories, maskable and non-maskable. Fifteen of the interrupts can be masked with the condition code register | bit. All the on-chip interrupts are individually maskable by local control bits. The software interrupt is non-maskable. The external input to the $X H \overline{\Omega}$ enabled, it cannot be masked by software; however, it is masked during reset and upon receipt of an interrupt at the XIRO pin. The last interrupt, illegal opcode, is also a non-maskable interrupt. Table 3 provides a list of each pin is considered a non-maskable interrupt because, once interrupt, its vector location in ROM, and the actual condition code and control bits that mask it. Figure 4 shows the interrupt stacking order.

ACCA ACCB

Š

를

S

g

as setting the I bit, CPU registers are stacked, etc.

The SWI instruction cannot be fetched as long as once fetched, no other interrupt can be honored until the first instruction in the SWI service routine another interrupt is pending execution. However,

SWI execution is similar to the maskable interrupts such

Figure 4. Stacking Order

- - SP AFTER INTERRUPT

SP.9

is completed.

The SWI is executed the same as any other instruction and will take precedence over interrupts only if the other interrupts are masked (I and X bits in the CCR set). The

SOFTWARE INTERRUPT (SWI)

Table 3. Interrupt Vector Assignments

Vector	Interrupt Source	CC Register Mask	Local Mask
FFC0, C1	Reserved		
FFD4, D5, FFD6, D7	Reserved Sci. Senai System Receive Data Register Full Receive Overrun Idle Line Detect Transmir Data Register Empty Transmir Complete	l iii	1 분분 개
FFD8, D9 FFDA, D8 FFDC, D0 FFDE, DF	SPI Serial Transfer Complete Puise Accumulator Input Edge Puise Accumulator Overflow Timer Overflow	1 8 it	SPIE PAUI PAOVI
FFE0, E1 FFE2, E3 FFE4, E5 FFE6, E7	Timer Input Capture 4-Output Compare 5 Timer Output Compare 4 Timer Output Compare 3 Timer Output Compare 2	184 186 187	1405i 0C4i 0C2i
FFE8, E9 FFEA, EB FFEC, ED FFEE, EF	Timer Output Compare 1 Timer Input Capture 3 Timer Input Capture 2 Timer Input Capture 1	<u> </u>	0C3I 0C3I 0C2I
FFF0, F1 FFF2, F3 FFF4, F5 FFF6, F5	Real-Time Interrupt RMC (External Pin or Parallel I-O) External Pin Parallel I/O Hondshate XIRQ Pin (Pseudo Non-Maskable Interrupt) SWI	l Bit t Bit X Bit None	RTII None STAI None
FFF8, F9 FFFA, F8 FFFC, F0	Illegal Opcode Trap COP Failure (Reset) COP Clock Monitor Fail (Reset) RESET	None None None	None NOCOP CME None

ILLEGAL OPCODE TRAP

Since not all possible opcodes or opcode sequences are defined, an illegal opcode detection circuit has been included in the MCU. When an illegal opcode is detected, an interrupt is requested to the illegal opcode vector

REAL-TIME INTERRUPT

The real-time interrupt provides a programmable periodic interrupt. This interrupt is maskable by either the on the MCU E clock and is software selectable to be E/ 2¹³, E/2¹⁴, E/2¹⁵, or E/2¹⁶. I bit in the CCR or the RTII control bit. The rate is based

LOW-POWER MODES

The MCU contains two programmable low-power operating modes: stop and wait. In the wait mode, the onchip oscillator remains active; in the stop mode, the oscillator is stopped. The following paragraphs describe the two low-power modes.

3

In this mode, all clocks are stopped, thereby haiting all The STOP instruction places the MCU in its lowest power consumption mode, provided the S bit in the CCR is clear. nternal processing.

ing the STOP instruction, A low input to the RESET pin To exit the stop mode, a low level must be applied to either IRQ, XIRQ or RESET. An external interrupt used at ever, the actual recovery sequence differs, depending on the X-bit setting. If the X bit is clear, the MCU starts with the stacking sequence leading to the normal service of the XIRQ request. If the X bit is set, the processing will will always result in an exit from the stop mode, and the IRO is only efective if the I bit in the CCR is clear. An external interrupt applied at the XIRQ input would be effective regardless of the X-bit setting in the CCR; howalways continue with the instruction immediately followstart of MCU operations is determined by the reset vector.

A restart delay is required if the internal oscillator is used, a control bit in the OPTION register may be used (cleared) to bypass the delay. If the control bit is clear, then the RESET pin would not normally be used for exiting the stop mode. In this case, the reset sequence sets being used, to allow the oscillator to stabilize when exiting the stop mode. If a stable external oscillator is being the delay control bit and the restart delay will be imposed.

instruction, the machine state is stacked and program execution stops. The wait state can only be exited by an COP is disabled, the timer system will be turned off to unmasked interrupt or RESET. If the I bit is set and the further reduce power consumption. The amount of power savings is application dependent and depends upon circuitry connected to the MCU pins and upon subsystems The wait (WAI) instruction places the MCU in a lowpower consumption mode, but the wait mode consumes slightly more power than the stop mode. In the wait mode the oscillator is kept running. Upon execution of the WAIT (i.e., timer, SPI, SCI) that are active when the wait mode

is entered. Turning off the A/D subsystem by clearing ADPU further reduces wait mode current.

PROGRAMMABLE TIMER

The timer system uses a "time-of-day" approach in that The free-running counter can be read by software at any time without affecting its value because it is clocked and read on opposite half cycles of the E clock. The counter is cleared on reset and is a read-only register. The counter repeats every 65,536 counts, and when the count changes overflow interrupt enable bit is set. The timer has four all timing functions are related to a single 16-bit freerunning counter. The free-running counter is clocked by the output of a programmable prescaler (divide by 1, 4, 8, or 16), which is, in turn, clocked by the MCU E clock. from SFFFF to \$0000, a timer overflow flag bit is set. The overflow flag also generates an internal interrupt if the input capture and five output compare functions. The functions and registers of the timer are explained in the following paragraphs.

INPUT CAPTURE FUNCTION

There are four 16-bit read-only input capture registers devices provide the inputs on the PA0-PA3 pins, and an that are not affected by reset. Each register is used to latch the value of the free-running counter when a selected transition at an extenal pin is detected. External interrupt can be generated when an input capture edge is detected. The time of detection can be read from the appropriate register as part of the interrupt routine.

14/05 to "one" in the PACTL register. The 14/05 bit is configured to OC5 (cleared to zero) on reset. If DDRA3 is Port A pin 3 serves multiple functions. After reset, data direction bit 3 (DDRA3), in the PACTL register is cleared 3 can then be used as a input capture 4 (IC4), by setting configured as an output and IC4 is enabled, writes to port When the TI405 register is acting as the IC4 capture register it cannot be written to. When PA3 is being used as to zero configuring port A pin 3 as an input. Port A pin A bit 3 causes edges on the PA3 to result in input captures. C4, writes to TI405 register have no meaning.

IMER CONTROL REGISTER 2 (TCTL2) \$1021

EDG48 EDG4A EDG18 EDG1A EDG28 EDG2A EDG38 EDG3A 0 0 0 0 RESET

These two bits (EDGxB and EDGxA) are cleared to zero by reset and are encoded to configure the input EDGxB and EDGxA — Input Capture x Edge Control sensing logic for input capture x.

Configuration	Capture disabled	Capture on rising edges only	Capture on falling edges only	Capture on any (rising or falling) edge
EDGxA	0	-	0	-
EDGxB	0	0	-	-

OUTPUT COMPARE FUNCTION

counter value during each E-clock cycle. If a match is into the SE registers is compared to the free-running found, the particular output compare flag is set, and an interrupt is generated, provided that particular interrupt There are five 16-bit read/write output compare registers, which are set to SFFF on reset. A value written is enabled.

OC5. one specific timer output is affected as controlled by the two-bit fields in a timer control register. These rides DDRA3 to force the Port A pin 3 to be an output In addition to the interrupt, a specified action may be initiated at a timer output pin(s). For output compare one (OC1), the output action to be taken when a match is found is controlled by a 5-bit mask register and a 5-bit port outputs are to be used, and the data register specifies what data is placed on the SE timer ports. For OC2 through toggle output compare line, 3) clear output compare data register. The mask register specifies which timer actions include: 1) timer disconnect from output pin logic. line to zero, or 4) set output compare line to one. Upon reset, 14/05 is configured as OC5. The OC5 function overwhenever OM5:OL5 bits are not 0:0. In all other aspects, OC5 works the same as the other output compares.

TIMER COMPARE FORCE REGISTER (CFORC) \$100B

because a normal compare occurring immediately before put compare actions. This compare force function is not recommended for use with the output toggle function This 8-bit write-only register is used to force early outor after the force may result in undersirable operation.

		ı
0	0	
-	0	
2	0	
	FOCS	
4	F0C4	
5	FOC3	
ø	FOC2	
7	FOC1	Į,

1 = Causes action programmed for output compare 0 0 0 0 0 FOC1-FOC5 — Force Output Compare x Action

x, except the OCxF flag bit is not set 0 = Has no meaning

These bits always read zero. Bits 2-0 — Not Implemented

OUTPUT COMPARE 1 MASK REGISTER (OC1M) \$100C

the bits of port A which are affected as a result of a This register is used with output compare 1 to specify successful OC1 compare.

, ۲.

4

ď **

0
0
•
0
0
0
RESET

Set bit(s) to enable OC1 to control corresponding pin(s)

OUTPUT COMPARE 1 DATA REGISTER (OC1D) \$100D

This register is used with output compare 1 to specify the data which is to be stored to the affected bit of port A as a result of a successful OC1 compare.

0	
_	Ľ
-	0
2	-
۲.	60100
7	00104
s	00100
ø	00.106
7	00100

MC68HC811E2

if OC1Mx is set, data in OC1Dx is output to port A bit-x 0 0 on successful OC1 compares. 0 _ c RESET

TIMER CONTROL REGISTER (TCTL1) \$1020

,	01.5		-
	OMS		_
,	014		-
,	0M4		_
,	อเว		_
n	CM0		_
0	270		_
	0M2	RESET	_
		_	

OM2-OM5 — Output Mode OL2-OL5 -- Output Level

These control bit pairs (OMx and OLx) are encoded to specify the output action taken as a result of a successful OCx compare.

			Г Т	
Action Taken Upon Successful Compare	Timer disconnected from output pin logic	Toggle OCx output line	Clear OCx output line to zero	Set QCx output line to one
OMx OLx	0	-	0	
OMX	. 0	0	-	-

TIMER INTERRUPT MASK REGISTER 1 (TMSK1) .

	r 1	
0	និ	9
-	, C21	0
2	CII	0
m	14051	0
4	DC41	
S	10031	0
9	0031	0
7	1100	ESET
	ل ا	æ

1=Interrupt sequence requested if OCxF=1 in OCx! — Output Compare x Interrupt TFLG1

0 = Interrupt inhibited

1 = Interrupt sequence requested if ICxF = 1 in TFLG1ICxI — Input Capture x Interrupt

0 = Interrupt inhibited

bit. When 14:05 is zero, the 1405l bit acts as the the I405I bit behaves as the input capture 4 interrupt When the 14:05 bit in the PACTL register is one, output compare 5 interrupt control bit. This register is used to indicate the occurrence of timer system events and, with the TMSK1 register, allows the timer subsystem to operate in a polled or interrupt driven system. Each bit in the TFLG1 has a corresponding bit in the TMSK1 in the same bit position.

IMER INTERRUPT FLAG REGISTER 1 (TFLG1)

	_	
0	35	
-	IC2F	
2	ICIF	
3	1405F	
4	0C4F	
s	0036	
g	0025	
,	0C1F	

_ 0 _

MOTOROLA MICROPROCESSOR DATA

3-1620

Set each time the timer counter matches the output compare register x value. To clear a flag bit in TFLG1, you must write a "one" to the corresponding bit po-OCxF — Output Compare x Flag

0 = Not affected 1 = Bit cleared

Set each time a selected active edge is detected on the ICx input line. To clear a flag bit in TFLG1, you must write a "one" to the corresponding bit posi-ICxF - Input Capture x Flag

0 = Not affected 1 = Bit cleared

When the 14/05 bit in the PACTL register is one, the I405F bit behaves as the input capture 4 flag bit. When 14/05 is zero, the 14051 bit acts as the output compare 5 flag.

This register is used to control whether or not a hardstatus bit being set in TFLG1. Two timer prescaler bits ware interrupt sequence is requested as a result of a IMER INTERRUPT MASK REGISTER 2 (TMSK2) \$1024 are also included in this register.

3

TOI RTII PAOVI PAII 0 0 PR1 PR0

0 TOI — Timer Overflow Interrupt Enable 0 0

1 = Interrupt requested when RTIF = 1 0 = TOF interrupt disabled RTII — RTI Interrupt Enable

1 = Interrupt request when TOF = 1

PAOVI — Pulse Accumulator Overflow interrupt Enable 1 = Interrupt requested when PAOVF = 1 0 = RTIF interrupt disabled

PAI! — Pulse Accumulator Input Interrupt Enable 0 = PAOVF disabled

1 = Interrupt requested when PAIF = 1 0 = PAIF disabled

Bits 3-2 — Not Implemented

These bits always read zero.

Can only be written to during initialization. Writes are disabled after the first write or after 64 E cycles PR1 and PR0 — Timer Prescaler Selects out of reset.

Divide-by-Factor	-	4	8	16
E G	0	-	0	-
F	0	0	1	-

TIMER INTERRUPT FLAG REGISTER 2 (TFLG2) \$1025

system events and, with the TMSK2 register, allows the This register is used to indicate the occurrence of times

timer subsystem to operate in a polled or interrupt driven system, Each bit in the TFLG2 has a corresponding bit in the TMSK2 in the same bit position.

0	0	
-	0	
2	-	
٣	0	
-	PAIF	
s	PAOVE	
4	ATIF	
7	707	

TOF - Timer Overflow 0

0

0

0

0

0

RESET

Set to one each time the 16-bit free-running counter advances from a value of SFFFF to \$0000. Cleared by a write to TFLG2 with bit 7 set.

Set at each rising edge of the selected tap point. Cleared by a write to TFLG2 with bit 6 set. RTIF - Real-Time Interrupt Flag

Set when the count in the pulse accumulator rolls over from \$FF to \$00. Cleared by a write to the TFLGZ PAOVF — Pulse-Accumulator Overflow Interrupt Flag with bit 5 set.

Set when an active edge is detected on the PAI input PAIF — Pulse-Accumulator Input-Edge Interrupt Flag pin. Cleared by a write to TFLG2 with bit 4 set.

These bits always read zero. Bits 3-0 — Not Implemented

PULSE ACCUMULATOR

clock divided by two. In the gated time accumulation mode, a free-running E clock/64 signal drives the 8-bit erate in either of two modes, depending on the state of a control bit in the PACTL register. These are the event In the event counting mode, the 8-bit counter is clocked to increasing values by an external pin. The meximum clocking rate for the external event counting mode is E The pulse accumulator is an 8-bit counter that can opcounting mode and the gated time accumulation mode. counter, but only while the external PAI input pin is ac-

PULSE ACCUMULATOR CONTROL REGISTER (PACTL)

Four bits in this register are used to control an 8-bit puise accumulator system, and two other bits are used to select the rate for the real-time interrupt system.

-	۰	.	-	-	7	-	-
DRA7	PAEN	PAMOD	PEDGE	00RA3	50/41	RTR1	RTRO

DDRA7 — Data Direction for Port A Bit 7 1 = Output

0 0

0

0

PAEN — Pulse-Accumulator System Enable 1 = Pulse accumulator on 0 = Input only

PAMOD — Pulse Accumulator Mode I = Gated time accumulator 0 = Pulse accumulator off

0 = External even counting

MOTOROLA MICROPROCESSOR DATA

MC68HC811E2

XTAL = 4.9152 MHz XTAL = 4.0 MHz XTAL = 3.6864 MHz	8.89 ms	17.78 ms	35.56 ms	71.11 ms	921.6 kHz
XTAL = 4.0 MHz	8.19 ms	16.38 ms	32.77 ms	65.54 ms	1.0 MHz
XTAL = 4.9152 MHz	6.67 ms	13.33 ms	26.67 ms	53.33 ms	1.2288 MHz
XTAL = 8.0 MHz	4.10 ms	8.19 ms	16.38 ms	32.77 ms	2.0 MHz
XTAL = 2 ²³	3.91 ms	7.81 ms	15.62 ms	31.25 ms	2.1 MHz
Divide	213	214	215	216	ä
RTRO		-	c	,	
FIE	c	, .		-	

PEDGE — Pulse Accumulator Edge Control

1=Sensitive to rising edges at PAI pin if PA MOD = 0. In gated accumulation mode counting is enabled by a low on PAI pin if PAMOD = 1. This bit provides clock action along with PAMOD.

0 = Sensitive to falling edges at PAI pin if PAMOD = 0. In gated accumulation mode counting is enabled by a high on PAI pin if PAMOD = 1.

DDRA3 — Data Directional for Port A Bit 3

1 = Output

14/05 — Input 4/Output 5 0 = Input only

0 = Output compare 5 function enabled (No IC4) 1 = Input capture 4 function enabled (No OC5)

time periodic interrupt circuits. Reset clears these two bits and after reset, a full RTI period elapses These two bits select one of four rates for the real-RTR1 and RTR0 - RTI Interrupt Rate Selects before the first RTI interrupt.

EEPROM PROGRAMMING

The following paragraphs describe how to program or configuration register (CONFIG) is zero. Programming and conds when the E clock is between 2 MHz and should be increased to as much as 20 milliseconds when E clock is between 1 MHz and 2 MHz. When E clock is below 1 MHz, the clock source for the charge pump should be switched This is done by setting the CSEL bit in the OPTION regsetting the CSEL bit to allow the charge pump to stabilize. The 2K bytes of EEPROM are located at \$F800 through SFFC0. Programming of the EEPROM is controlled by the EEPROM is disabled when the EEON bit in the system erasure of the EEPROM relies on an internal high-voltage charge pump. At E clock frequencies below 2 MHz, the efficiency of this charge pump decreases, which increases the time required to program or erase a location. Recommended program and erase time is 10 millisefrom the system clock to an on-chip R-C oscillator clock. ister. A 10 millisecond period should be allowed after EEPROM programming control register (PPROG). The erase the EEPROM using the PPROG control register

EEPROM BLOCK PROTECT REGISTER (BPROT) \$1035

This 5-bit register protects against inadvertent writes to the CONFIG register and to the EEPROM. To permit the user to separate EEPROM into categories like 'temporary' or 'permanent', EEPROM is divided into four individually protected blocks. The CONFIG register is also protected.

protected out of reset, and the user has 64 E clock cycles cleared, written to zero, during the first 64 E clock cycles after reset. Once the bits are cleared, the associated grammed or erased in the normal manner. The EEPROM is visible only if the EEON bit in the CONFIG register is register can be set or cleared at any time. In either singlechip or expanded mode, BPROT register bits can be written back to one anytime after the first 64 E clock cycles in order to protect the EEPROM and/or the CONFIG register. However, these bits can only be cleared again in In normal operating modes, EEPROM and CONFIG are to unprotect any of the blocks that will require programming or erasing. The BPROT register bits can only be EEPROM section and/or the CONFIG register can be proset, in the test or bootstrap modes, bits of the BPROT the test or bootstrap modes.

[20	
٦	8	_
-	BPRT	-
~	8PRT2	-
	8PRT3	-
-	PTCON	-
'n	۰	
	-	
_	-	RESET

These bits aiways read zero Bits 7-5 - Not Implemented

1=Programming/erasure of the CONFIG register PTCON — Protect CONFIG Register Bit

0 = Programming/erasure of the CONFIG register disabled

BPRT3-BPRT0 - Block Protect Bits

1 = A set bit protects a block of EEPROM against programming or erasure.

0 = A cleared bit permits programming or erasure of the associated block.

ä	Block Protected	Block Size
BPRT0	\$1800-19FF	512 Bytes
BPRT1	\$1A00-18FF	512 Bytes
BPRT2	\$1C00-10FF	512 Bytes
8PRT3	\$1E00-1FF	512 Bytes

ERASING THE EEPROM

PPROG, and the appropriate bits in the BPROT register must also be cleared before the EEPROM can be changed. Programs can be written to perform bulk, row, or byte erased. In row erase, 16 bytes (\$B600-\$B60F, \$B610-Erasure of the EEPROM is controled by bit settings in erase. In bulk erase, all 512 bytes of the EEPROM are \$B61F), etc) are erased. Other MCU operations can continue to be performed during erasing provided the operations do not include reads of data from EEPROM.

PROGRAMMING EEPROM

During programming, the ROW and BYTE bits are not bit in the OPTION register must be set. Zeros must be formed during programming provided the operations do not include reads of data from EEPROM. used. If the E clock frequency is 1 MHz or less, the CSEL erased by a separate erase operation before programming. Other MCU operations can continue to be per-

EEPROM PROGRAMMING CONTROL REGISTER (PPROG)

This 8-bit register is used to control programming and erasure of the EEPROM. This register is cleared on reset so the EEPROM is configured for normal reads.

000	EVEN		BYTE	. NO.	ERASE EELAT EEPGM	- EEAT	EEPGM
	0	0	0	0	0	0	0
		Š	(TSST) street by the street of	TECT			

EVEN — Program Even Rows (TEST)

3

This bit always reads zero. BYTE — Byte Erase Select Bit 5 -- Not Implemented

This bit overrides the ROW bit. I = Erase only one byte 0 = Row or bulk erase If BYTE bit = 1, ROW has no meaning. 1 ≈ Row erase

ROW — Row Erase Select

0 = Bulk or byte erase

0 = Normal read or program FRASE — Erase Mode Select 1 ≈ Erase mode

0 = EEPROM Address and data configured for read 1 = EEPROM Address and data configured for pro-EELAT — EEPROM Latch Control gramming/erasing

EEPGM — EEPROM Programming Voltage Enable ! = Programming voltage turned on

0 = Programming voltage turned off NOTE

A strict register access sequence must be followed to allow successful programming and erase operations. The following procedures for modifying the EEPROM and CONFIG register detail the seand EEPGM bits in the same write cycle and if this attempt occurs before the required write cycle with the EELAT bit set, then neither is set. If a write to an EEPROM address is performed while the EEPGM bit is set, the write is ignored, and the programming address is written between when EELAT is set and EEPGM is set, then no program or erase operation takes place. These safeguards were included to prevent accidental EEPROM changes in cases of provent quence. If an attempt is made to set both the EELAT operation in progress is not disturbed. If no EEPROM gram runaway.

ERASING THE CONFIG REGISTER

or erased while the MCU is operating in any mode de-pending on the setting of bit A in BPROT. The bulk erase restriction on CONFIG is not present on all derivatives in Erasing the CONFIG register follows the same procedures as that used for the EEPROM including bulk, byte. and row erase. The CONFIG register may be programmed the M68HC11 Family. Please check the applicable data sheet or technical summary for the restrictions.

PROGRAMMING THE CONFIG REGISTER

Programming the CONFIG register follows the same procedures as that used for the EEPROM except the CON-FIG register address is used. On mask set B96D, the CON-FIG register may only be programmed while the MCU is operating in the test or bootstrap mode.

The CONFIG is implemented in EEPROM cells and con-SYSTEM CONFIGURATION REGISTER (CONFIG) \$103F

trols the presence of ROM and EEPROM in the memory

map and enables the COP watchdog system.

-	0
2	NOCOP
۳	0
•	033
2	噩
9	EE2
1	EE3

EEON

EEPROM address. These bit have no meaning in the single-chip mode, because the 2K EEPROM is forced These four bits specify the upper four bits of the on at locations \$F800 through \$FFFF. EE0-EE3 — EEPROM Map Position

Location	\$0800-\$0FF	\$1800-\$1FFF	\$2800-\$2FFF	\$3800-\$3FFF	\$4800-\$4FF	\$5800-\$5FFF	\$6800-\$6FFF	\$7800-\$7FFF	\$8800-\$8FF	\$3800-\$9FFF	SA800-SAFF	\$B800-\$BFFF	\$C800-\$CFFF	\$D800-\$DFFF	SE800-SEFFF	SF800-SFFFF
EEO	0	+	0	-	0	1	0	-	0	-	0	-	0	-	0	-
E	0	0	-		0	0	1	-	0	0	-	-	0	0	-	-
EE2	0	0	0	0	~	-	-	-	0	0	0	0	-	-	-	-
EE3	0	0	0	٥	0	0	0	0	-	-	-	-	-	-	-	-

Bit 3 — Not Implemented

1 = COP watchdog system disable NOCOP — COP System Disable This bit always reads zero

0 = COP watchdog system enabled

EEON — Enable On-Chip EEPROM This bit always reads zero Bit 1 — Not Implemented

When this bit is programmed to "zero", the 512-byte EEPROM is disabled, and that memory space becomes externally accessed space.

7

MC68HC811E2

SERIAL COMMUNICATIONS INTERFACE

and PD1 for transmit data (TxD). The baud rate generation The serial communications interface (SCI) allows the MCU to be interfaced efficiently with peripheral devices that require an asynchronous serial data format. The SCI uses a standard NRZ format with a variety of baud rates complished using port D pins PD0 for receive data (RxD), derived from the crystal clock circuit. Interfacing is accircuit contains a programmable prescaler and divider

clocked by the MCU E clock. Figure 5 shows a block diagram of the SCI.

DATA FORMAT

Receive data in or transmit data out is the serial data presented between the PD0 and the internal data bus and between the internal data bus and PD1. The data format 1) An idle line in the high state prior to transmission/ reception of a message;

NOTE: The Senal Communications Data Register (SCDR) is controlled by the internal RW signal. It is the transmit data register when written and received data register when read.

Figure 5. SCI Block Diagram

MOTOROLA MICROPROCESSOR DATA

- 2) A start bit that is transmitted/received, indicating
 - Data that is transmitted and received least-signifthe start of each character;

icant bit (LSB) first;

- 4) A stop bit (tenth or eleventh bit set to logic one), which indicates the frame is complete; and
- 5) A break defined as the transmission or reception of a logic zero for some multiple of frames.

Selection of the word length is controlled by the M bit in serial communications control register 1 (SCCR1).

TRANSMIT OPERATION

The SCI transmitter includes a parallel data register and a serial shift register. This double-buffered system allows ferred into the serial shift register. The output of the serial shift register is applied to PD1 as long as transmission is a character to be shifted out serially while another character is waiting in the transmit data register to be transin progress or the transmit enable bit is set,

RECEIVE OPERATION

3

word. This double-buffered system allows a character to ferred to a parallel receive data register as a complete be shifted in serially while another character is already in the receive data register. An advanced data recovery scheme is used to distinguish valid data from noise in the serial data stream. The data input is selectively sampled to detect receive data, and a majority voting circuit Data is received in a serial shift register and is transdetermines the value and intergrity of each bit.

WAKE UP FEATURE

the most-significant bit (MSB) of a character is used to The wake-up feature reduces SCI service overhead in message is intended for a different receiver, the SCI can be placed in a sleep mode, disabling the rest of the message from generating requests for service. Whenever a becomes idle. In the address mark wake up, a "one" in indicate that the message is an address that wakes up a multiple receiver systems. Software for each receiver evaluates the first character(s) of each message. If the new message begins, logic causes the sleeping receivers line wake up or address mark wake up. In idle-line wake up, a sleeping receiver wakes up as soon as the RxD line to awaken and evaluate the initial character(s) of the new message. Two methods of wake up are available: idle-

SCI REGISTERS

The following paragraphs describe the operations of the five registers used in the SCI.

Serial Communications Data Registers (SCDR)

The SCDR performs two functions: as the receive data register when it is read and as the transmit data register when it is written. Figure 5 shows the SCDR as two separate registers.

Serial Communications Control Register 1 (SCCR1)

The SCCR1 provides the control bits to determine word ength and select the method used for the wake-up fea-

	_	
0	0	
-	0	٠
2	0	
e	WAKE	
-	Σ	٠
un	0	-
9	T8	=
,	R8	RESET
		_

R8 — Receive Data Bit 8

If the M bit is set, this bit provides a storage location If the M bit is set, this bit provides a storage location for the ninth bit in the receive data character. T8 — Transmit Data Bit 8

for the ninth bit in the transmit data character. This bit always reads zero. Bit 5 — Not Implemented

1=1 start bit, 9 data bits, 1 stop bit 0=1 start bit, 8 data bits, 1 stop bit M — SCi Character Length

WAKE - Wake-Up Method Select 1 = Address mark

These bits always read zero. Bits 2-0 - Not Implemented

Serial Communications Control Register 2 (SCCR2)

The SCCR2 provides the control bits that enable/disable individual SCI functions.

	<u></u>	1	
0	SBK		0
-	FW.		0
2	끮		0
۳	Ħ		0
4	ILIE		0
s	RIE		0
9	TCIE		0
7	Ħ	RESET	0

TIE — Transmit Interrupt Enable

1 = SCI interrupt if TDRE = 1 0 = TDR interrupts disabled

ICIE — Transmit-Complete Interrupt Enable 1 = SCI interrupt if TC = 1

0 = TC interrupts disabled Receive Interrupt Enable

1 = SCI interrupt if RDRF or OR = 1

0 = RDRF or OR interrupt disabled ILIE — Idle-Line Interrupt Enable 1 = SCI interrupt if IDLE = 1

1 = Transmit shift register output is applied to the 0=IDLE interrupts disabled TE — Transmit Enable

0 = PD1 pin reverts to general-purpose I/O as soon as current transmitter activity finishes. TxD line

0 = Receiver disabled and RDRF, IDLE, OR, NF, and 1 = Receiver enabled RE — Receive Enable

When set by user's software, this bit puts the receiver F. interrupts are inhibited RWU — Receiver Wake Up

to sleep and enables the "wake-up" function. If the

MOTOROLA MICROPROCESSOR DATA

3-1626

0=Cleared by a read of SCSR (with OR=1) followed by a read of SCDR

after receiving 10 (M = 0) or 11 (M = 1) consecutive ones, if WAKE is one, RWU is cleared by the SCI logic

after receiving a data word whose MSB is set.

SBK — Send Break

WAKE bit is zero, RWU is cleared by the SCI logic

MC68HC811E2

= Automatically set when majority voting logic does not bind unanimous agreement of all samples in any bit in the received frame NF - Noise Flag

0=Cleared by a read of SCSR (with NF=1) followed by a write to SCDR FE - Framing Error

1 = Automatically set when a logic 0 is detected where a stop bit was expected

transmitter will continually send whole frames of

zeros (sets of 10 or 11) until cleared.

sends 10 (M=0) or 11 (M=1) zeros and then reverts to idle or to sending data. If SBK remains set, the

if this bit is toggled set and cleared, the transmitter

0 = Cleared by a read of SCSR (with FE = 1) followed by a read of SCDR Bit 0 — Not Implemented

This bit always reads zero.

The SCSR provides inputs to the interrupt logic circuits

Serial Communications Status Register (SCSR) for generation of the SCI system interrupts.

Baud-Rate Register (BAUD)

TORE TC RORF IDLE OR NF FE 0

4

S

This register is used to select different baud rates that may be used as the rate control for the receiver and trans-

0

0

0

0

0

	SCRC	_
	SCR1	Ð
	SCR2	∍
	RCKB	ę.
	SCPO	
	SCP1	6
,		
	TCLA	RESET 0

This bit is used to clear the baud-rate counter chain during factory testing. TCLR is zero and cannot be set while in normal operating modes. TCLR — Clear Baud-Rate Counters (Test)

1 = Automatically set when all data frame, pream-

ble, or break condition transmissions are com-

0=Cleared by a read of SCSR (with TC=1) fol-

lowed by a write to SCDR RDRF — Receive Data Register Full

communications data register was transferred

to the transmit serial shift register

lowed by a write to SCDR

TC — Transmit Complete

1 = Automatically set when contents of the serial 0=Cleared by a read of SCSR (with TDRE = 1) fol-

TDRE — Transmit Data Register Empty

This bit always reads zero. Bit 6 — Not Implemented

1 = Automatically set when a character is trans-

ferred from the receiver shift register to the 0 = Cleared by a read of SCSR (with RDRF = 1) fol-

the input to a second divider which is controlled by These bits control a prescaler whose output provides SCP1 and SCP0 — SCI Baud-Rate Prescaler Selects the SCR2-SCR0 bits. Refer to Table 4.

clock to be driven out the TxD pin. RCKB is zero and This bit is used during factory testing to enable the exclusive-OR of the receiver clock and transmitter cannot be set while in normal operating modes. RCKB — SCI Baud-Rate Clock Check (Test)

1 = Automatically set when the receiver serial input

This bit is inhibited while RWU = 1.

IDLE — Idle-Line Detect

lowed by a read of SCDR

0=Cleared by a read of SCSR (with IDLE=1) fol-

lowed by a read of SCDR

OR - Overrun Error

becomes idle after having been active

These bits select the baud rate for both the transmitter and the receiver. The prescaler output selected by SCP1 and SCP0 is further divided by the setting SCR2-SCR0 — SCI Baud-Rate Selects of these bits. Refer to Table 5.

> 1 = Automatically set when a new character cannot transfer from the receive shift register because

the character in SCDR has not been read

Table 4. Prescaler Highest Baud-Rate Frequency Output

3.6864	57.60 K Baud	19.20 K Baud	14.40 K Baud	4430 Baud	
4.0	62.50 K Baud	20.833 K Baud	15.625 K Baud	4800 Baud	
4.9152	76.80 K Baud	25.60 K Baud	19.20 K Baud	5.907 K Baud	
8.0	125.000 K Baud	41.666 K Baud	31.250 K Baud	9600 Baud	
8.3886	131.072 K Baud	43.690 K Baud	32.768 K Baud	10.082 K Baud	
Divided By	-	e	4	13	
•	0	-	0	-	
-	0		-	-	1
	8.3886 8.0 4.9152 4.0	8.0 4.9152 4.0 131.072 K Baud 125.000 K Baud 76.80 K Baud 62.50 K Baud	8.3886 8.0 4.9152 4.0 131.072 K Baud 125.000 K Baud 76.80 K Baud 62.50 K Baud 43.890 K Baud 20.833 K Baud 20.833 K Baud	8.3886 8.0 4.9152 4.0 131.072 K Baud 125.000 K Baud 76.80 K Baud 62.50 K Baud 43.890 K Baud 71.866 K Baud 20.833 K Baud 32.768 K Baud 31.250 K Baud 15.625 K Baud 15.625 K Baud	8.1886 8.0 4.9152 4.0 131.072 K Baud 125.000 K Baud 76.80 K Baud 62.50 K Baud 43.890 K Baud 41.666 K Baud 25.60 K Baud 20.833 K Baud 32.788 K Baud 31.250 K Baud 19.20 K Baud 15.625 K Baud 10.082 K Baud 9600 Baud 5.907 K Baud 4800 Baud

*The clock in the "Clock Divide By" column is the internal processor clock.

Table 5. Transmit Baud-Rate Output for a Given Prescaler Output

8	SCR Bit	Divided		Representative A	Representative Highest Prescaler Baud-Rate Output	ud-Rate Output	
	0	8	131.072 K Baud	32.768 K Baud	76.80 K Baud	19.20 K Baud	9600 Baud
~	0	-	131.072 K Baud	32.768 K Baud	76.80 K Baud	19.20 K Baud	9600 Baud
_	-	2	65.536 K Baud	16.384 K Baud	38.40 K Baud	9600 Baud	4800 Baud
-	-	4	32.768 K Baud	8.192 K Baud	19.20 K Baud	4800 Baud	2400 Baud
-1	-	80	16.384 K Baud	4.096 K Baud	9600 Baud	2400 Baud	1200 Baud
0	0	16	8.192 K Baud	2.048 K Baud	4800 Baud	1200 Baud	600 Baud
۷	0	32	4.096 K Baud	1.024 K Baud	2400 Baud	600 Baud	300 Baud
-1	0	25	2.048 K Baud	512 Baud	1200 Baud	300 Baud	150 Baud
-	-	128	1.024 K Baud	256 Baud	600 Baud	150 Baud	75 Band

SERIAL PERIPHERAL INTERFACE

grammable to allow direct compatibility with a large chronous serial I/O system. The transfer rate is software selectable up to one-half of the MCU E clock rate. The SPI may be used for simple I/O expansion or to allow The serial peripheral interface (SPI) is a high-speed synseveral MCUs to be interconnected in a multimaster configuration. Clock phase and polarity are software pronumber of peripheral devices.

Four basic signal lines are associated with the SPI system. These are the master-out-slave-in (MOSI), the master-in-slave-out (MISO), the serial clock (SCK), and the

slave select (SS). When data is written to the SPI data initiated. A series of eight SCK clock cycles are generated register of a master device, a transfer is automatically to synchronize data transfer.

full duplex transmission with both data out and data in nating the need for separate transmit-empty and receiver-full status bits. Figure 6 shows a block diagram of the SPI. When a master device transmits data to a slave device via the MOSI line, the stave device responds by sending data to the master device via the MISO line. This implies synchronized with the same clock signal. The byte transmitted is replaced by the byte received, thereby elimi-

Figure 6. SPI Block Diagram

MOTOROLA MICROPROCESSOR DATA

MC68HC811E2

SPI REGISTERS

There are three registers in the SPI that provide control, status, and data-storage functions. These registers are described in the following paragraphs.

Serial Peripheral Control Register (SPCR) \$1028

~	œ	2	4	•	2	-	0
SPIE	SPE	DWOM	WOM MSTR	CPOL	СРНА	SPRI	SPRO
RESET							

SPIE — Serial Peripheral Interrupt Enable 1 = SP! interrupt if SP!F = 1

0 = SPIF interrupts disabled

SPE — Serial Peripheral System Enable 1 = SP! system on 0 = SPI system off

This bit affects all six port D pins together. DWOM - Port D Wire-OR Mode Option

0 = Port D outputs are normal CMOS outputs 1 = Port D outputs act as open-drain outputs

MSTR — Master Mode Select 1 = Master mode

CPOL - Clock Polarity 0 = Slave mode

This bit selects the polarity of the SCK clock 1 = SCK line idles high 0 = SCK line idles low

This bit selects one of two fundamentally different clock protocols. Refer to Figure 7. CPHA — Clock Phase

If CPHA = 0, transfer begins when SS goes low and ends when SS goes high after eight clock cycles on SCK. If CPHA = 1, transfer begins the first time SCK becomes active while SS is low and ends when the SPIF flag gets set.

These two bits select one of four baud rates to be used as SCK if the SPI is set as the master. They have SPR1 and SPR0 - SPI Clock Rate Select no effect in the slave mode

Internal Processor Clock Divide By	2	4	16	32
SPRO	0	-	0	-
SPR1	0	0	-	

>

Serial Peripheral Status Register (SPSR) \$1029

0	0	0
-	0	6
2	0	
۳	0	
4	MDDF	
2	0	
9	WCOL	0
7	SPIF	RESET 0

0 = Cleared by a read of SPSR (with SPIF = 1), fol-1 = Automatically set when data transfer is complete between processor and external device SPIF — SPI Transfer Complete Flag

lowed by an access (read or write) of the SPDR WCOL — Write Collision

1 = Automatically set when an attempt is made to write to the SPI data register while data is being

Figure 7. Data Clock Timing Diagram

0 = Cleared by a read of SPSR (with WCOL = 1), followed by an access (read or write) of the SPDR

This bit always reads zero. Bit 5 - Not Implemented

This bit indicates the possibility of a multi-master conflict for system control and therefore allows a proper exit from system operation to a reset or de-MODF -- Mode Fault

1 = Automatically set when a master device has its SS pin pulled low fault system state.

0 = Cleared by a read of SPSR (with MODF = 1), followed by a write to the SPCR.

These bits always read zero. Bits 3-0 — Not Implemented

Serial Peripheral Data I/O Register (SPDR)

writes data to this register for later transmission to a master. When transmission is complete, the SPIF status This register is used to transmit and receive data on the serial bus. A write to this register in a master will initiate transmission/reception of another byte. A slave bit is set in both the master and slave device. When a read is performed on the SPDR, a buffer is actually being read. The first SPIF must be cleared by the time a second is initiated, or an overrun condition will exist. In case of transfer of data from the shift register to the read buffer an overrun, the byte causing the overrun is lost.

3

ANALOG-TO-DIGITAL CONVERTER

The MCU contains an 8-channel, multiplexed-input, successive approximation, analog-to-digital (A/D) converter with sample and hold. Two dedicated lines (VRL, and VRH) are provided for the reference supply voltage input. These pins are used instead of the device power pins to increase the accuracy of the A/D conversion.

within ±1 LSB (±1/2 LSB quantizing errors and ±1/2 LSB all other errors combined). Each conversion is accomplished in 32 MCU E-clock cycles. An internal control The 8-bit A/D conversions of the MCU are accurate to bit allows selection of an internal conversion clock oscillator that allows the A/D to be used with very low MCU clock rates. A typical conversion cycle requires 16 micro-Four result registers are included to further enhance seconds to complete at a 2-MHz bus frequency.

the A/D subsystem along with control logic to control conversion activity automatically. A single write instruction selects one of four conversion sequences, resulting in a conversion complete flag after the first four conversions. The sequences are as follows:

- 1) Convert one channel four times and stop, sequential results placed in the result registers.
- 2) Convert one group of four channels and stop, each result register is dedicated to one channel.
 - Convert one channel continuously, updating the result registers in a round-robin fashion.
- 4) Convert one group of four channels (round-robin fashion) continuously, each result register is ded icated to one channel.

INSTRUCTION SET

instructions. In addition to these instructions, 91 new opaccumulator and memory, 2) index register and stack The MCU can execute all of the M6800 and M6801 codes are provided by the paged opcode map. These instructions can be divided into five different types: 1) pointer, 3) jump, branch, and program control, 4) bit manipulation, and 5) condition code register instructions. The following paragraphs briefly explain each type.

ACCUMULATOR/MEMORY INSTRUCTIONS

other operand is obtained from memory using one of the addressing modes. The accumulator/memory instructions can be divided into four subgroups: 1) load/store/ Most of these instructions use two operands. One operand is either the accumulator or the index register. The transfer, 2) arithmetic/math, 3) logical, and 4) shift/rotate. The following paragraphs describe the different groups of accumulator/memory instructions.

Refer to the following table for load/store/transfer in-Load/Store/Transfer

structions.	
Function	Mnemonic
Clear Memory Byte	CLR
Clear Accumulator A	CLRA
Clear Accumulator B	CLRB
Load Accumulator A	LDAA
Load Accumulator B	LDAB
Load Double Accumulator D	רסם
Push A onto Stack	PSHA
Push B onto Stack	PSHB
Pull A from Stack	PULA
Pull B from Stack	PULB
Store Accumulator A	STAA
Store Accumulator B	STAB
Store Accumulator D	STD
Transfer A to B	TAB
Transfer A to CC Register	TAP
Transfer B to A	TBA
Transfer CC Register to A	TPA
Exchange D with X	XGDX
Exchange D with Y	XGDX

This group is used to make comparisions, decisions, and extractions of data. Refer to the following list for the logical instructions.

Function	Mnemonic
AND A with Memory	ANDA
AND 8 with Memory	ANDB

- Continued

M00 COMA COMB EORA EORB 1's Complement Memory Byte OR Accumulator A (Inclusive) Exclusive OR A with Memory Exclusive OR B with Memory OR Accumulator B (Inclusive) Bit(s) Test A with Memory Bit(s) Test B with Memory 1's Complement A 1's Complement B

Maemonic

Function

86780

MC68HC811E2

Shift/Rotate

The shift and rotate instructions automatically operate through the carry bit, which allows easy extension to multiple bytes. Refer to the following list for the shift rotate instructions.

Function	Mnemonic
Arithmetic Shift Left	ASL
(Logical Shift Left)	(LSL)
Arithmetic Shift Left A	ASIA
(Logical Shift Left Accumulator A)	(LSLA)
Arithmetic Shift Left B	ASLB
(Logical Shift Left Accumulator B)	(LSLB)
Arithmetic Shift Left Double	ASLD
(Logical Shift Left Double)	(LSLD)
Arithmetic Shift Right	ASR
Arithmetic Shift Right A	ASRA
Arithmetic Shift Right B	ASRB
Logical Shift Right	LSR
Logical Shift Right Accumulator A	LSRA
Logical Shift Right Accumulator B	LSRB
Logical Shift Right Double	LSRO
Rotate Left	ROL
Rotate Left Accumulator A	ROLA
Rotate Left Accumulator B	ROLB
Rotate Right	ROR
Rotate Right Accumulator A	RORA
Rotate Right Accumulator B	RORB

Arithmetic/Math

Refer to the following table for the arithmetic/math instructions.

Mnemonic	ABA	ABX	
Function	Add Accumulators	Add B to X	

- Continued

runction	ALICH PRINCE
Add B to Y	ABY
Add with Carry to A	ADCA
Add with Carry to B	ADCB
Add Memory to A	ADDA
Add Memory to B	ADOB
Add 16-Bit to D	ADDD
Compare A to B	CBA
Compare A to Memory	CMPA
Compare B to Memory	CMPB
Compare D to Memory (16 Bit)	CP3
Decimal Adjust A	DAA
Decrement Memory Byte	DEC
Decrement Accumulator A	DECA
Decrement Accumulator B	DECB
Fractional Divide 16×16	PDIV
Integer Divide 16×16	ΝO
Increment Memory Byte	ÎNC
Increment Accumulator A	INCA
Increment Accumulator B	INCB
Multiply 8×8	MUL
2's Complement Memory Byte	NEG
2's Complement A	NEGA
2's Complement B	NEGB
Subtract B from A	SBA
Subtract with Carry from A	SBCA
Subtract with Carry from B	SBCB
Subtract Memory from A	SUBA
Subtract Memory from B	SUBB
Subtract Memory from D	SUBD
Test for Zero or Minus	TST
Test for Zero or Minus A	TSTA
Test for Zero or Minus B	TSTB

INDEX-REGISTER AND STACK-POINTER INSTRUCTIONS

These instructions provide a method for storing data and for manipulation of index register, stack pointer, and individual segments of data within the register and stack pointer. Refer to the following list for the index-register and stack-pointer instructions.

Function	Mnemonic
Add 8 to X	ABX
Add B to Y	ABY
Compare X to Memory (16 Bit)	CPX
Compare Y to Memory (16 Bit)	CPY

- Continued -

acitain.	Manager
Decrement Stack Pointer	DES
Decrement Index Register X	OEX
Decrement Index Register Y	DEY
Increment Stack Pointer	INS
increment index Register X	XNI
Increment Index Register Y	IN
Load Index Register X	ΧOΊ
Load Index Register Y	ГОУ
Load Stack Pointer	ros
Push X onto Stack (Low First)	PSHX
Push Y onto Stack (Low First)	PSHY
Pull X from Stack (High First)	PULX
Pull Y from Stack (High First)	PULY
Store Stack Pointer	STS
Store Index Register X	STX
Store Index Register Y	STY
Transfer Stack Pointer to X	TSX
Transfer Stack Pointer to Y	TSY
Transfer X to Stack Pointer	TXS
Transfer Y to Stack Pointer	TYS
Exchange D with X	XGDX
Exchange D with Y	XGDY

BIT-MANIPULATION INSTRUCTIONS

tions use an 8-bit mask, which allows simultaneous operations on any combination of bits in a location. Refer The MCU is capable of setting or clearing any bit residing in the first 256 bytes of the memory space in direct ory map, and all bit-manipulation instructions can be used and/or internal registers, or external memory space can occupy these addresses. The bit-manipulation instrucaddress mode. The MCU can use any bit in the 64K memwith direct or index (x or v) addressing modes. Software can configure the memory map so that internal RAM, to the following list for the bit-manipulation instructions.

Function	Mnemonic
Clear Bit(s)	BCRL
Branch if Bit(s) Clear	BRCRL
Branch if Bit(s) Set	BRSET
Set Bit(s)	BSET

JUMPS/BRANCHES/PROGRAM-CONTROL INSTRUC-

These instructions provide techniques for modifying the normal sequence of the program for conditional and unconditional branching. Refer to the following list for the jump/branch/program-control instructions, MOTOROLA MICROPROCESSOR DATA

Function	Mnemonic
Branch if Carry Clear	BCC
(Branch if Higher or Same)	(BHS)
Branch if Carry Set	BCS
(Branch if Lower)	(810)
Branch if = zero	BEQ
Branch if≇zero	BGE
Branch if)zero	BGT
Branch if Higher	8HI
Branch if≤Zero	BLE
Branch of Lower or Same	BLS
Branch if < Zero	BLT
Branch if Minus	BMI
Branch if not = Zero	BNE
Branch if Plus	BPL
Branch Always	BRA
Branch if Bit(s) Clear	BRCLR
Branch Never	BRN
Branch if Bit(s) Set	BRSET
Branch to Subroutine	BSR
Branch if Overflow Clear	BVC
Branch if Overflow Set	BVS
Jump	JMP
Jump to Subroutine	JSR
No Operation	NOP
Return from Interrupt	RTI
Return from Subroutine	RTS
Stop Internal Clocks	STOP
Software Interrupt	SWi
Test Operation (Test Mode Only)	TEST
Wait for Interrupt	WAI

3

CONDITION-CODE-REGISTER INSTRUCTIONS

These instructions are register reference instructions and are used to control processor operation during program execution. Refer to the following list for the condition-code-register instructions.

Function	Mnemonic
Clear Carry Bit	CLC
Clear interrupt Mask	CT
Clear Overflow Flag	CLV
Set Carry	SEC
Set Interrupt Mask	SEI
Set Overflow Flag	SEV
Transfer A to CC Register	TAP
Transfer CC Register to A	TPA

OPCODE MAP SUMMARY

MC68HC811E2

Table 6 is an opcode map for the instructions used on the MCU.

ADDRESSING MODES

The MCU uses six different addressing modes to provide the programmer with an opportunity to optimize the code for all situations. Some instructions require an additional byte before the opcode to accommodate a multipage opcode map; this byte is called a prebyte.

fined as the address from which the argument for an instruction is fetched or stored. The following paragraphs The term "effective address" (EA) is used in describing the various addressing modes. Effective address is dedescribe the different addressing modes.

MMEDIATE

In the immediate addressing mode, the operand is contained in the byte immediately following the opcode: These are two, three, or four (if prebyte is required) byte instructions.

the user to directly address \$0000 through \$00FF using two-byte instructions, and execution time is reduced by of the operand address is contained in a single byte following the opcode and the most-significant byte of an address is assumed to be \$00. Direct addressing allows eliminating the additional memory access, in most applications, this 256-byte area is reserved for frequently referenced data. In the MCU, software can configure the memory map so that internal RAM, and/or internal registers, or external memory space can occupy these ad-In the direct addressing mode, the least-significant byte

EXTENDED

In the extended addressing mode, the effective address of the argument is contained in the two bytes following

the opcode byte. These are three or four (if prebyte is required) byte instructions: one or two for the opcode and two for the effective address.

INDEXED

ister (X or Y) being used, and 2) the 8-bit unsigned offset contained in the instruction. This addressing mode allows referencing any memory location in the 64K byte is required) byte instructions, the opcode plus the 8-bit In the indexed addressing mode, one of the index registers (X or Y) is used in calculating the effective address. In this case, the effective address is variable and depends on two factors: 1) the current contents of the index regaddress space. These are usually two or three (if prebyte offset.

RELATIVE

bit signed byte (the offset) following the opcode is added to the PC if, and only if, the branch conditions are true. Otherwise, control proceeds to the next instruction. These The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8are usually two-byte instructions.

INHERENT

necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator as well as the control instruction with no other arguments are included in this mode. These in-In the inherent addressing mode, all the information structions are one- or two-byte instructions.

PREBYTE

To expand the number of instructions used in the MCU, a prebyte instruction has been added to certain instructions. The instructions affected are usually associated with index register Y. Accessing opcodes from page 2, 3, or 4 would require a prebyte instruction.

ELECTRICAL SPECIFICATIONS

MAXIMUM RATINGS

IA)X1S

8ARO

вэач

вьоз

8818

BOBS СМРВ

3

o

э oar

ş 8118

, **8**0NA

ε doda

0

MC68HC811E2

(Y)XT2

(A)XG1

ars

OGT

8ARO

вэах

8803

8812 8801

8118

OGGV

вамо

Rating	Symbol	Value	Cuit
Supply Voitage	QOA	-0.3 to +7.0	>
Input Voitage	V.	- 0.3 to + 7.0	>
Operating Temperature Range MC68HC811E2 MC68HC811E2V MC68HC811E2M	ΤA	T _L to T _H -40 to 85 -40 to 105 -40 to 125	አ
Storage Temperature Range	Tstg	- 55 to 150	ာ့
Current Drain per Pin* Excluding VDD, VSS, VRH, and VRL	ъ	25	Ą

buts against damage due to high static voltages or electric fields, however, it is advised that normal presaultors be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are lifed to an appropriate logic voltage level (e.g., either CND or VDD).

This device contains circuitry to protect the in-

*One pin at a time, observing maximum power dissipation limits.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Vaiue	Ę
Thermal Resistance	ΨĪθ		ş
Plastic 52-Pin Quad Pack (PLCC)		9	

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:

 $T_J = T_A + (P_D \cdot \theta_{JA})$

Ê

= Ambient Temperature, °C = Package Thernal Resistance, Junction-to-Ambient, °C/W

= PINT + PI/O

= IDX VD. Watts — Chip Internal Power = Power Dissipation on Input and Output Pins, Watts — User Determined

For most applications PI/O<PINT and can be neglected. The following is an approximate relationship between PD and TJ (if PI/O is neglected):

<u>@</u> Solving equations (1) and (2) for K gives: K=PD • (TA + 273°C) + 6JA • PD²

(2)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equaliphrun) for a known TA. Using this value of K, the values of PD and T (2 and be obtained by solving equations (1) and (2) iteratively for any value of TA.

(Page 2 Opcode) (2) saiska a Byles (Y)

4 Et 3

ainom an N	9649	Opcode	2017B	c
L (È	68		
]	E	€6	3	
]	3	83		
]	3	£A	£	
	•	£Α		
	3	D∀	3	
	-	DA.	3	
	E I	33	Ε	
1	•	33	3	
	[[13	3	

	I					9	E	33	1		xar				
10)	1 1 *	291	γB		-			- EE	+	 	Kd3		(YIX ASDO)	INDXINI	
1 .	(Å)XNI ◄	011				L	£	D∀	3		CbA		Divid	SIC	
			MNEMON				. 3	£A.	Þ	1			babneix3	1×3	
3 🖈	(2)	(A)	Bytes			1	- E	£8 £A	3	-			aterpawing	MMI	
,	_					9	ε	€6	- E	4					
96ed (5	7	68	Ė	1	GPD		Svitelafi	138	
						Cycles	Bytes	Opcode	9649	pinome			ព្រែងគេព្រះ	HNI	
								ace.	eralah abo	odd & bna c	aneu				
,	1	, , <u>,</u>	-ni 7		100		10	-71			T .		7 701		
IYIXTZ "	1 9OTZ	s is	21S 1	212	(XCDX(Y)	810	, t	ים כו	CLRB	. ∀B1⊃	IMS	318	висги	J3S	1111
		ī.	-4- /	7		·	7 19-			·	" ;		(4)		
(VIXO)	, INIXOI	501	5 501	เรดา	501	, awr	, d	WF .r.			IAW	108	EBRSET ,	, no	3
ars		-	·	-,	 >		7 7					,	190		-
012	▶ 30A9	a AZL	a AZL	a ARL	ุ พรต	181	, 1	SI EU	BTZT	ATZI	100	1.18	всгв	295	(011
ag1 /	901		" CPXIY1."	7			1 .7.				150		1 1		
uuı	, 001	(Y)X93	9 1 41	CPXIY	CPXINI	2 JNI	1 3	NI rriz	BONI	INCA	(Y)XHS4	358	1328	. כרכ	20011
8004	800A	A00A	AUGA 1	AGGA				_			1		(
0001	, 8000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• v0dv	4004	, A00A						17.8	IMB	, A8A	, A3S	1101
BAHO	BAHO ,	AARO L	AARO ,	AARO ,	AARO		1 19.				199		-		
	, 01.00	• • • • • • • • • • • • • • • • • • • •	, ,,,,,	. 4490	, AARO	, 23d	1 3	30,	8030	AD30	L YIXBA	148	£ 30A9	, ATO	0101
вэоу ′	BOOV '	ADGA ,	A30A .	ADDA ,	ADGA	10#	7 77	OH ,					1	190 (1001
	t		1 15.	1	/ *.///	1011	- '	·F- /	8108	AJOR	2 STR	, SA8	\$ AAG	, DEXIN ,	6
89O3 (8903	FORA	ARU3 ,	ARO3 ,	¥₩O3	15.4	1 1/1	s∀ ′	BJSA	AJSA ,	9	*****		10	0001
	·	,	•	(100)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 130		41 €	8 '50	, A12A	" KYIX TOA "	BAC	PAGE 2	" INXNI "	R
8818		AATZ ,	AA12	AATZ ,		ASA	1 1/1 M	5∀ ′	BASA	ARSA	BHSd	038			1110
		•	F (E)			9	9	, in 5	803V	4034	E 8429	(038	5 A81	4 A9T	4
8807	8801	4401	AAGI	4401	AAG1 .	ноя	1 27	он ′	внон ,	А ЯОЯ	AHS	AME.	841		0110
- ,	,	·	m 7	<u>'</u>	/		*	4) 2		, ,,,,,,	(1/130	(3,49	2 801	, aat	9
8118	8118	A198	ATIB	ATI8	ATIB				- 1		SIYIXI ,	SOB '	ВСГВ	alsa ,	1910
		ľ——,	101			ļ. 	-1				1 150	(1018)	9 0134	, ורצרםו	5
80NA	BONA	AONA	AGNA	AGNA	AGNA	ษรา	' ' ' B	sı (ยหรา '	ARSI	530	228 ,	1328	ดษรา	9010
	·	'- 7	* 10			1		151 /			f	, (SH8)	9 1936	(0821	
000A	0004	dans '	" dens '	asus	aeus ,	WO0	' W	oo 'l	виоэ '	COMA,	BJU4 '	S78 ,	виств	FOIV	1100
	, ,	·	151 7	·				-0.1		·	,	t		11 /1103	C
838S	, BOBS	SBCA	A382	ADB2	₹388	ĺ					AJU4	IHB ,	13288 ,	AIQI (0150
,	7		197	·	·						,	(9		2
CMPB	CWbB	A9MD	CMPA "	CMPA	CMPA						SNI	NHB ,	veo '	40N	1000
- ,	,		161 /	·	·		100	,			t e		2		1
8905	, 88∩\$	ABUS	ABUS "	ABUS	ABUS	NEC .		an in	NEC'B	MEGA	(A)XSI	. AAB ,	A82 ,	1531	0000
1911	9911	(161	DI GI	1901	9001	1110	-	10 2	1010	0010	1100	0100	(000		0
_ 0		0	XONI	6				9	5	,	E			0	at MOT
AIG	MMI	TX3	(A)	ЯIG	MMI	1X3	(A)	INI	B33¥	ACCA	HNI	138	н		
			¥33	A									<u> </u>		

Table 6. Opcode Map

3

DC ELECTRICAL CHARACTERISTICS (VDD=5.0 Vdc = 10%, VSS=0 Vdc, TA=TL to TH, unless otherwise noted)

Ools Ools Ools Ools Ools Ools Ools Ools	- E	Ē	ž	Wax	1
All Outputs Except RESET and MODA VOH All Outputs Except RESET VOH All Outputs Except RESET VOH All Outputs Except RESET VIH All Inputs Except RESET VIH ASSTRA, MODALIR, RESET IN MODBASSTRAY Powerdown VSB Powerdown SB WIDD SG AND SG AND SG AND CA AND CA CA CA CA CA CA CA CA CA C					
All Outputs Except RESET and MODA All Outputs Except RESET VOH All Inputs Except RESET VIH PAJ, PAJ, PCD-PCJ, PDD-PD, PDD-PD, POD-PD, PDD-PD, PDD	All Outputs	√or	ı	1.0	>
All Outputs Except RESET	Outputs Except RESET and MODA	VOH	VDD - 0.1	!	
All Inputs Except XTAL VOL All Inputs Except RESET VIH RESET VIH RESET VIL All Inputs VIL PAJ, PAJ, PCD-PCJ, PDD-PD, IOZ ASSTRA, MODA/UR, RESET IIN PAD-PAJ IR DEBY STRA Powerdown VSB Powerdown ISB CON CON PAD-PAJ PED-PEJ, IRO XIRIQ. EXTAL CON CON PAD-PAJ PED-PEJ, IRO XIRIQ. EXTAL PAD-PAJ PED-PEJ, IRO XIRIQ. EXTAL CON PAD-PAJ PED-PEJ, IRO XIRIQ. EXTAL PAD-PAJ PED-PEJ, IRO XIRIQ. EXTAL CON PAD-PAJ PED-PEJ PED-PEJ PED-PEJ	All Outpo	МОЛ	VDD - 0.8	ı	>
All Inputs Except RESET VIH RESET VIL All Inputs VIL PA3. PA7. PCD.PC7. PDD.PD5. 102 AS.STRA. MODALIR. RESET III PA0.PA3. IRQ. XIRQ. Powerdown VSB Powerdown ISB Powerdown ISB WIDD Down I DD I	All Outputs Except XTAL	VOL	ı	0.4	>
Aul Inputs 1/1, PA3, PA7, PC0, PC7, POD-PO5, AS/STRA, MODA/UR, RESET PA0, PA3, IRO, XIRO NOBEN/STRY MODEN/STRY Powerdown VSB Powerdown VSB Powerdown VSB Powerdown VSB Powerdown VSB Powerdown SB SG SG SG SG SG SG SG SG SG	All Inputs Except RESET	H.	0.7 × VDD 0.8 × VDD	000	>
PAS, PAY, PCQ, PCT, PQQ, PQS, PQS, PQS, PQS, PQS, PQS, PQS	All Inputs	√ _H	VSS	0.2 × VDD	>
PAO-PA3, IRO, XIRO In	PA3, PA7, PCG-PC7, PDG-PD5, AS/STRA, MODA/LIR, RESET	ZO ₁	_	± 10	4
Powerdown VSB Powerdown SB Power	PAQ-PA3, IRQ. XIRQ MODBVSTBY	ri.	l 1	±10	4
Down Down PAO.PA3. PEO.PE7. IRO XIRO. EXTAL Con Con	Powerdown	VSB	4.0	Λοο	>
100 (100 (100 (100 (100 (100 (100 (100	Powerdown	₽Sŧ	ţ	20	Ą
Midoo Multiplexed Mode Multiplexed Mode SiDD Igie-Chip Mode PAQ-PA3_PEQ-PE7_ROX_NRQ_EXTAL Cin		00,	1.1	15	E E
Multiplexed Mode Sippingle-Chip Mode PA0-PA3_PE0-PE7_RIO_XIRQ_EXTAL_Cn		WIDD			1
igle-Chip Mode PAQ-PA3, PEQ-PE7, IRO XIRO: EXTAL Cin		Ü	1 1	ء د	E E
PAO-PA3. PEO-PE7, IRO. XIRO. EXTAL. Cin		200	I	001	፭
_	PAO-PA3, PEO-PE7, IRO, XIRO, EXTAL PA7, PCO-PC7, PDO-PDS, AS/STRA, MODALIR, RESET	C.	1.1	12	a a
Power Dissipation Single-Chip Mode PD Expanded-Multiplexed Mode —	Single-Chip Mode Expanded-Multiplexed Mode	o ₀	1 1	88 021	¥

1. VOH specification for RESET and MODA is not applicable because they are open-drain pins. VOH specification not applicable to borts can but of bin wire-of mode.

2. See AV specification for leakage current for port E.

3. III ports configured as inputs,
VILGO 2 V,
VIH 2 VDD - 0.2 V,
VIH 2 VDD - 0.2 V,
VIH 3 VDD - 0.2 V,
VIH 3 VDD - 0.3 V,
VIH 3 VDD - 0.3 V,
VIH 3 VDD - 0.4 V,
VIH 3 VDD -

MC68HC811E2

2.38K 200pF

	0.4 Volts 7	70% of V ₀₀	VDD - 0.8 Voits	
je I	STROBES "YOU " "YOU " " YOU "	NPUTSNOMINAL TIMING	OUTPUTS	D.C. TESTING

NOTES:
1. Full est loads are applied during all ac electrical test and ac inming measurements.
2. During ac timing measurements, inputs are driven to 0.4 volts and VDD - 0.8 volts while timing measurements are taken at the 20% and 70% of VDD points.

Figure 8. Test Methods

MOTOROLA MICROPROCESSOR DATA

3-1637

CONTROL TIMING (VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH)

Characteristic	Symbol	1.0	1.0 MHz	2.0	2.0 MHz	2.1	2.1 MHz	ini.
	dillo	Ē	XªX	Ē	Max	Ē	Mex	5
Frequency of Operation	fo	å	1.0	ę	5.0	qc	2.1	MHz
	tcyc	1000	1	83	ı	476	1	ş
Crystal Frequency	fXTAL	_	4.0	ı	8.0	ı	8.4	WHS
External Oscillator Frequency	4 fo	မွ	4.0	ģ	8.0	용	8.4	MHz
Processor Control Setup tpcs = 1/4 t _{Cyc} - 50 ns Time (See Figures 10, 12, and 13)	tPCS	200	ı	75	ı	69	ı	2
Reset Input Pulse Width (To Guarantee External Isse Note 1) And Figure 10) (Minimum Input Time; May be Presented by	PWRSTL	œ	ı		1	80	ı	to,
Internal Reset		-	1	-	ı	-	ı	
Mode Programming Setup Time (See Figure 10)	tMPS	2	1	2	ŀ	2	ı	tcyc
Mode Programming Hold Time (See Figure 10)	tМРH	0	ı	0	1		1	ş
IRO Edge Sensutive Mode (See Figure 11 and 13)	PWIRD	1020	ŀ	520	I	496	ı	ş
Wait Recovery Startup Time (See Figure 12)	1WRS	ı	4	1	4	1	4	cyc
Timer Pulse Width PWTIM=1 _{CyC} + 20 ns Input Capture, Pulse Accumulator Input [See Figure 9]	PWTIM	1020	ı	520	1	496	1	2

<u>က</u>

NOTES:
1. RESET will be recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, refeases the pin, and samples the pin level two cycles later to determine the source of the interupt. See RESETS, INTERRUPT, AND LOW-POWER MODES for details.

2. All timing is shown with respect to 20% VDD and 70% VDD unless otherwise noted.

Rising edge sensitive input.
 Falling edge sensitive input.
 Maximum pulse accumulator clocking rate is E frequency divided by 2.

Figure 9. Timer Inputs Timing Diagram

MC68HC811E2

Figure 10. POR External Reset Timing Diagram

Figure 11. Stop Recovery Timing Diagram

3. ISTOPDELLY = 4064 L_{GyC} if DLY bit = 1 or 4 L_{GyC} if DLY = 0. 4. XIQ with X bit in CCR = 1. 5. IRQ or (XIRO with X bit in CCR = 0.

MOTOROLA MICROPROCESSOR DATA

1 Refer to Table 9-7 for pin states during WAIT.
2 RESET will also cause recovery from WAIT.

Figure 12. WAIT Recovery from Interrupt Timing Diagram

Figure 13. Interrupt Timing Diagram

NOTES;
1. Edge sensitive IRO pin (IROE bit = 1).
2. Level sensitive IRO pin (IROE bit = 0).

MC68HC811E2

Figure 14, Port Write Timing Diagram

Figure 15. Port Read Timing Diagram

Figure 16. Simple Output Strobe Timing Diagram

Figure 17. Simple Input Strobe Timing Diagram

NOTES: 1. After reading PIOC with STAF set: 2. Figure shows rising edge STRA (EGA= I) and high true STRB (INVB~ I).

Figure 18. Port C Input Handshake Timing Diagram

NOTES.
1. After reading PIOC with STAF set.
2. Figure shows naing edge STRA (EGA=1) and high true STRB (INVB=1).

Figure 19. Port C Output Handshake Timing Diagram

1 DEB - 'AES-PCH. VALID DATA READY VALID DATA - 10E8 + 00d - 4) STRA ACTIVE BEFORE PORTCL WRITE - WRITE PORTCL - GMd 1-344 XXX 1,000 PORT C (OUT) PORT C (OUT) PORT C (OUT) STRB (OUT) STRA (IN) STRA (IN)

NOTES:
1. After reading PIOC with STAF set.
2. Figure andwar reangle GRA (EGA» 11 and high true STRB (INVB» 11.

- b) STRA ACTIVE AFTER PORTCL WRITE

Figure 20. Three-State Variation of Output Handshake Timing Diagram (STRA Enables Output Buffer)

MOTOROLA MICROPROCESSOR DATA

T.

PERIPHERAL PORT TIMING (V_{DD} = 5.0 V_{dc} = 10%, V_{SS} = 0 V_{dc} , T_A = T_L to T_H)

MC68HC811E2

Characteristic Frequency of Operation (E Clock Frequency) E Clock Period								
Frequency of Operation (E Clock Frequency) E Clock Period	Symbol	Ē	Max	Ā	Max	Min	Max	Unit
Clock Period	f _o	1.0	1.0	2.0	2.0	2.1	2.1	MHz
	tcyc	1000	1	200	ı	476	1	υS
Peripheral Data Setup Time (MCU Read of Ports A. C. D. and E) (See Figure 15)	tPDSU	001	_	100	_	100	,	su
Perioheral Data Hold Time (MCU Read of Ports A. C. D. and E) (See Figure 15)	tPO _H	20	_	50	_	20	l	SU
Delay Time, Peripheral Data Write	tPwD							SU.
MCI Write to Dark A		ı	150	ı	150	١	150	
tpwD = 1.4 t _{cyc} + 90 ns		1	340	ŀ	215	i	209	
Input Data Setup Time (Port C) (See Figures 17 and 18)	Sh	09	1	99	I	9	i	SE
input Data Hold Time (Port C) (See Figures 17 and 18)	Hi	100	ł	100	ı	100	ı	Su
Detay Time, E Fall to STRB (DEB = 1.4 t _{CyC} + 100 ns (See Figure 16, 18, 19, and 20)	63O ³	1	350	1	225	1	219	SU
Setup Time, STRA Asserted to E Fall (see Note 1) (See Figures 18, 19, 20)	tAES	0	1	0	1	0	ı	S
Delay Time, STRA Asserted to Port C Data Output Valid (See Figure 20)	1PCD	_	100	1	100	1	001	SL
Hold Time, STRA Negated to Port C Data (See Figure 20)	tPCH	0	1	0	1	0	1	Su
Three-State Hold Time (See Figure 20)	tPC2	1	150	ı	150	1	150	SC

If this setup time is met, STRB will acknowledge in the next cycle. If it is not met, the response may be delayed one more cycle.
 Port C and D timing is wait for anxiety we drive [CWOM and DWOM bits not set in MCD and SPCR registers respectively).
 All timing is shown with respect to 20% VDD and 70% VDD unless otherwise noted.

MC68HC811E2

A/D CONVERTER CHARACTERISTICS $(V_{DD}=5.0~Vdc=10\%,~VsS=0~Vdc,~T_A=T_L~10~T_H,~750~kHz~\approx E~\approx 2.1~MHz,$ unless otherwise noted)

Characteristic	Perameter	ž	Absolute	Max	C.
Resolution	Number of Bits Resolved by the A/D	8	1	1	Bits
Non-Linearity	Maximum Deviation from the Ideal A/D Transfer Characteristics	ı	1	±1/2	r.SB
Zero Error	Difference Between the Output of an Ideal and an Actual A/D for Zero Input Voitage	,	ı	2.1.2	LS8
Full-Scale Error	Difference Between the Output of an Ideal and an Actual A/D for Full-Scale Input Voltage	I		= 1/2	RS1
Total Unadjusted Error	Maximum Sum of Non-Linearity, Zero Error, and Full-Scale Error		ı	=12	rsB
Quantization Error	Uncertainty Due to Converter Resolution	1	1	=12	rSB.
Absolute Accuracy	Difference Between the Actual Input Voltage and the Full-Scale Weighted Equivalent of the Binary Output Code, All Error Sources Included	1	1	-	RS.
Conversion Range	Analog Input Voltage Range	VRL	1	VRH	>
VRH	Maximum Analog Reference Voltage (see Note 2)	VRL	1	VDD ~ 0.1	>
VRL	Minimum Analog Reference Voltage (see Note 2)	VSS-0.1	1	Y8A	>
JVR	Minimum Difference between VRH and VRL (see Note 2)	8	1	1	>
Conversion Time	Total Time to Perform a Single Analog-to-Digital Conversion: a. E. Clock b. Internal RC Oscillator	1.1	32	- toc - 32	r cy
Monotonicity	Conversion Result Never Decreases with an increase in Input Voltage and has no Missing Codes		Guaranteed		
Zero-Input Reading	Conversion Result when Vin = VRL	8		1	Hex
Fuii-Scale Reading	Conversion Result when Vin = VRH	1		tt	Hex
Sample Acquisition Time	Analog input Acquisition Sampling Time; a. £ Clock b. Internal RC Oscillator	1	12	12	toyc Frs
Sample/Hold Capacitance	Input Capacitance during Sample PE0-PE7	ı	20 (Typ)	1	Ā
Input Leakage	Input Leakage on A/D Pins PE0-PE7	1 +	11	0 7	4 4
	שע. איני			2	£

1. Source impedances greater than 10 K1 will adversely affect accuracy, due mainly to input leakage. 2. Performance verified down to 2.5 V \pm VP, but accuracy is tested and guaranteed at Δ VR = 5 V \pm 10%.

T -5+

EXPANSION BUS TIMING (VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH, see Figure 21)

MC68HC811E2

			1.0	1.0 MHz	2.0 MHz	/Hz	2.1 MHz	¥¥	
E E	Characteristic	Symbol	Ē	Ϋ́	Ē	Mex	Min	Max	ži.
	Frequency of Operation (E Clock Frequency)	fo.	1.0	1.0	2.0	2.0	2.1	2.1	MHz
-	Cycle Time	tcyc	1000	ı	88	1	476	1	S
2	Pulse Width, E Low PWEL = 1/2 tcyc - 23 ns	PWEL	477	ı	227	ı	215	ı	S
m	Pulse Width, E High PWEH = 1/2 tcyc - 28 ns	PWEH	472	1	222	1	210	I	S U
4	E and AS Rise and Fall Time	tr. tf	1	20	à	20	1	50	S
6	Address Hold Time tAH = 1/8 t _{QvC} = 29.5 ns see Note 1(a)	1AH	95.5	1	33	. 1	30	I	ş
12	Non-Muxed Address Valid Time to E Rise tAV = PWEL - (tASD + 80 ns) see Note 1(b)	tAV	281.5	-	8	1	82	1	S
11	Read Data Setup Time	tosa	30	1	30	1	30	I	Su
81	Read Data Hold Time (Max=tMAD)	tOHR	10	145.5	10	83	10	8	Su.
19	Write Data Delay Time tDDW = 1/8 tcyc + 65.5 ns see Note 1(a)	MQQ1	1	190.5	ı	128	1	125	SU
12	Write Data Hold Time 1/BHW = 1/8 t _{Cyc} - 29.5 ns see Note 1(a)	WHQ	95.5	ı	33	1	30	I	SC
22	Muxed Address Valid Time to E Rise \$\text{AVM} = \text{PWEL} - (\text{ASD} + 90 \text{ ns} \text{ see Note 1(b)}	IAVM	271.5	1	8	1	75	1	S
24	Muxed Address Valid Time to AS Fall tASL = PWASH - 70 ns	tASL	151	1	56	ı	20	ı	SC
52	Muxed Address Hold Time 1AHL = 1/8 tcyc - 29.5 ns see Note 1(b)	tAHL	95.5	1	33	1	30	ı	υs
26	Delay Time, E to AS Rise tASD = 1/8 tcyc - 9.5 ns see Note 1(a)	tASD	115.5	1	53	ı	20	1	S.
22	Pulse Width, AS High PWASH = 1/4 tcyc - 29 ns	PWASH	122	1	96	i	8	1	ā
28	Delay Time, AS to E Rise tASED = 1/8 t _{Cyc} - 9.5 ns see Note 1(b)	tASED	115.5	ı	23	ı	50	ı	S
59	MPU Address Access Time see note 1(b) tACCA = tAVM + tr + PWEH - tOSR	tACCA	733.5	-	296	i	275	ı	Su
35	MPU Access Time tACCE = PWEH - toSR	TACCE	1	442	ı	192	1	180	S
36	Muxed Address Delay (Previous Cycle MPU Read) (MAD = LASD + 30 ns see Note 1(a)	(MAD	145.5	1	8	1	80	I	۶

3

NOTES

Input clocks with duty cycles other than 50% will affect bus performance. Timing parameters affected by input clock duty cycle
are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place of
18 kpg in the above formulas where applicable:
(a) 11-CD(x 14 kpg.
(b) DC x 14 kpg.

DC is the decimal value of duty cycle percentage (high time)
2. All timing is shown with respect to 20% VDD and 70% VDD unless otherwise noted.

SERIAL PERIPHERAL INTERFACE (SPI) TIMING (VDD = 5.0 Vdc # 10%, VSG = 0 Vdc, Ta = Tt to TH, see Figure 22)

	SENIOR FERNITIONAL INTERNATION (NO. 1907) 1100 - 3.0 VOC. 10.3, VSS - 0 VOC. 1A- 1[10 1H, see rights 2.2]	SS - O VOC. IA	F to H' set	132 0106.10	
Ę	Characteristic	Symbol	Z.	Max	Ç,
	Operating Frequency Master Slave	(m)doj (ob(s)	88	2.1	og WHZ
-	Cycle Time Master Slave	tcyc(m)	2.0	1.1	tcvc ns
2	Enable Lead Time Master Slave	(lead(m)	240		SU SU
e e	Enable Lag Time Master Siave	(m)flag(m)	240	}	SC S
4	Clock (SCK) High Time Master Slave	fw(SCKH)m tw(SCKH)s	340 190	11	Sc Sc
va .	Clock (SCK) Low Time Master Slave	(w(SCKL)m	340	11	s s
Q	Data Setup Time (Inputs) Master Slave	(su(m)	001	ł I	s s
7	Data Hold Time (Inputs) Master Slave	th(m)	100	1.1	SC SC
80	Access Time (Time to Data Active from High-Impedance State) Slave	ę,	0	120	Su
o	Disable Time (Hold Time to High-Impedance State) Slave	StD ₁	1	240	sc
5	Data Valid (After Enable Edge)**	(vis)	1	240	S
Ξ	Data Hold Time (Outputs) (After Enable Edge)	tho	0	1	Su
12	Rise Time (20% VDp to 70% VDp, CL = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	F sz	1 1	100	Sul
52	Fall Time (70% VDD to 20% VDD, C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	e st:	11	100	S 3

*Signal production depends on software.
*Assumes 200 pF load on all SPI pins.
*NOTE:
1. All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

a) SPI MASTER TIMING (CPHA = 0)

MC68HC811E2

EEPROM CHARACTERISTICS (VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH)

MC68HC811E2

		T	Temperature Range	96	1
		-40 to 85°C	- 40 to 105°C	-40 to 85°C -40 to 105°C -40 to 125°C	Ĕ
Programming Time	Under 1.0 MHz with RC Oscillator Enabled	10	15	20	S E
(see Note 1)	1.0 to 2.0 MHz with RC Oscillator Disabled	20	Must Use RC	Must Use RC Must Use RC	
	2.0 MHz (or Anytime RC Oscillator Enabled)	01	15	70	
Erase Time (see Note 1)	Byte. Row. and Bulk	10	10	01	sш
Write/Erase Endurance (see Note 2)	see Note 2)	10.000	10,000	10,000	Cycles
Data Retention (see Note 2)	e 2)	10	10	10	Years

The RC oscillator must be enabled (by setting the CSEL bit in the OPTION register) for EEPROM programming and erasure when the E-door frequency is below 10 in the two the current failure rate information.
 See current quartery Reliability Monitor report for current failure rate information.

NOTE: Messurement points shown are 20% and 70% VDO.

Figure 21. Expansion Bus Timing Diagram

SEE MOTE SEC MASTER LSB OUT 9 N BS3 <u>†</u> 1 <u>•</u> BT 8 BIT 6 .. MASTER MSB OUT SS is Held High on Master N 8ST (Fe) 01 SCK (CPOL-9) SCK (CPOL-1) (OUTPUT) MOSI (OUTPUT) 25 (346)

Figure 22. SPI Timing Diagrams (Sheet 1 of 2)

b) SPI MASTER TIMING (CPHA=1)

NOTE: This less chock edge is generated internally but is not seen at the SCK pin.

Not defined but normally MSB of character just received NOTE

3

c) SPI SLAVE TIMING (CPHA = 0)

NOTE: Not defined but normally LSB of character previously transmitted.

Figure 22. SPI Timing Diagrams (Sheet 2 of 2)

d) SPI SLAVE TIMING (CPHA=1)

MOTOROLA MICROPROCESSOR DATA

ORDERING INFORMATION

The following information is required when ordering a custom MCU. The information may be transmitted to Motorola in the following media:

MS-DOS/PC-DOS disk file (360K)

EPROM(s): three 2532/2732 or two 2764
To initiate a ROM pattern for the MCU, it is necessary to first contact the local field-service office, a sales person, or a Motorola representative.

FLEXIBLE DISKS

file), programmed with the customer's program (positive pattern generation. In either case, the diskette should be clearly labeled with the customer's name, date, project Several types of flexible disks (MS-DOS®/PC-DOS disk ogic sense for address and data), may be submitted for or product name, and the name of the file containing the

program source code listing can be included. This data will be kept confidential and used to expedite the process In addition to the program pattern, a file containing the in case of any difficulty with the pattern file.

format. The S-record format is a character-based object MS-DOS is Microsoft's Disk Operating System. PC-DOS is IBM® Personal Computer Disk Operating System. Disk media submitted must be a standard density (360K), double-sided 5 1/4-inch compatible floppy diskette. The diskette must contain object file code in Motorola's S-record file format generated by M68HC11 cross assemblers and linkers on IBM PC-style machines.

sense for address and data), may be submitted for pattern Three 2532/2732 or two 2764 type EPROM(s), programmed with the customer's program (positive logic generation. EPROMs must be clearly marked to indicate which EPROM corresponds to which address space. Figure 22 illustrates the markings for the three 2532/2732 EPROMs required to contain the customer's program.

set to zero. For shipment to Motorola, EPROMs should All unused bytes, including the user's space, must be be placed in a conductive IC carrier and packed securely. Styrofoam is not acceptable for shipment.

. 909 ٤ XXX -- Customer ID E000 0000

Figure 23. EPROM Marking

VERIFICATION MEDIA

should be completed, signed, and returned to Motorola. The signed verification form constitutes the contractual agreement for creation of the customer mask. To aid in All original pattern media (EPROMs or floppy disks) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked, and the verification form the verification process, Motorola will program customer supplied blank EPROM(s) or 00S disks from the data file used to create the custom mask.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask, but are for the purpose of ROM verification only. For expediency, the MCUs are unmarked, packaged in ceramic, and tested with five volts at room temperature. These RVUs are free with the minimum-order quantity, but are not production parts. These RVUs are not guaranteed by Motorola Quality As-

ORDERING INFORMATION

numbers for the MC68HC811E2 HCMOS single-chip The following table provides ordering information pertaining to the package type, temperature, and MC part microcontroller devices.

Package Type	Temperatura	CONFIG	MC Part Number	
PLCC	- 40° to +85°C	SFF	MC68HC811E2FN	
FN Suffix)	-40 to +105°C	SFF	MC68HC811E2VFN	-
	-40 to +125°C	FF	MC68HC811E2MFN	

PIN ASSIGNMENTS

52-Lead Quad Package

£ ž ž 2 2 **PB**2 £ Ē PE3 PE3 PE7 PE7 PE7 PE3 PE3 0 52 52 55 56 ydis V.800M 3 2A 813\400M JATX3 Rviv

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

MC146818

Advance Information

REAL-TIME CLOCK PLUS RAM (RTC)

year calendar, a programmable periodic interrupt and square-wave generator, and 50 bytes of low-The MC146818 Real-Time Clock plus RAM is a peripheral device which includes the unique MO-TEL concept for use with various microprocessors, microcomputers, and larger computers. This part combines three unique features; a complete time-of-day clock with alarm and one hundred

year usuantian a programmation periodic mentry and square-wave generators of programmation periodic mentry and square-wave generators of programmation periodic mentry and square-wave generators of power static RAM. The MC1488B uses high-speed CMOS technology to innerhase with 1 Marz processor to cook gues and many be used ways? (MMOS micro-processor to relieve the software of the timekeeping workload and to extend the ways? (MMOS micro-processor to relieve the software of the timekeeping workload and to extend the ways? (MMOS micro-processor to relieve the software of the timekeeping workload and to extend the ways? (MMOS micro-processor to relieve the software of the timekeeping workload and to extend the ways? (MMOS micro-processor to relieve the software of the timekeeping workload and to extend the ways? (MMOS micro-processor High-Speed, High-Density CMOS)

• Internal Time Base and Oscillator
• Counts Days of the Week, Date, Month, and Year
• 3 V to 6 V Operation
• Time Base input Options: 4.194304 MHz, 1.048576 MHz, 2.758 kHz
• Time Base input Options: 4.194304 MHz, 1.048577 Mmc Base
• 4.0 to 200 µW Typical Operating Power at Low Frequench Time Base
• 4.0 to 200 µW Typical Operating Power at High Frequench Time Base
• 4.0 to 200 µW Typical Operating Power at High Frequench Time Base
• 8 mary or GCD Bepresentation of Time, Calendaring Alarm
• 12- or 24-Hour Clock with Am and PM in 12-Heart Mode
• Automatic End of Month Recognition
• Automatic End of Month Recognition
• Mortel Circuit for Bus Universality
• Multiplewed Bus to Pin Efficient Companies
• Multiplewed Bus to Pin Efficient Companies
• Multiplewed Bus to Pin Efficient Companies

- Interfaced with Software as 64
- 50 Bytes of General Purpos NAM 14 Bytes of Clock and Conj
- Status Bit Indicates Dates
- Signals (IRQ) Bus Compatible Internal
- barately Software Maskable and Testable Time-of-Day Merm, Once-per-Second to Once-per-Day Periodic Rates from 30.5 µs to 500 ms End-of-Clock Update Cycle Three Interrupts at
- Clock Output May Be Used as Microprocessor Clock Input Programmable Square-Wave Output Signal
 - At Time Base Frequency + 1 or + 4 24-Pin Dual-In-Line Package

This document contains information on a new product. Specifications and information herein are subject to change without notice

Car.

MOTOROLA MICROPROCESSOR DATA

3-1653

MOTOROLA MICROPROCESSOR DATA

3