Introduction to Statistical Learning

2020-2021 Fall

Bias vs Variance

Variance:

- Variance refers to the amount by which f(X) would change if we estimated it using a different training data set.
- Since the training data are used to fit the statistical learning method, different training data sets will result in a different f(X).
- But ideally the estimate for f should not vary too much between training sets.
- However, if a method has high variance then small changes in the training data can result in large changes in f(X).

Bias vs Variance

• Bias:

- refers to the error that is introduced by approximating a (possibly extremely complicated) real-life problem, by a much simpler model
- linear regression assumes that there is a linear relationship between Y and X1,X2, . . . ,Xp.
- It is unlikely that any real-life problem truly has such a simple linear relationship, and so performing linear regression will undoubtedly result in some bias in the estimate of f.
- If the true f is very close to linear, and so given enough data, it should be possible for linear regression to produce an accurate estimate.
- Generally, more flexible methods result in less bias.

- Why people still choose linear models although we have many different ways of predicting?
 - Prediction Accuracy
 - Model Predictability.
- Prediction Accuracy
- Provided that the true relationship between the response and the predictors is approximately linear, the least squares estimates will have low bias.

Prediction Accuracy

- If $n \gg p$,
 - then the least squares estimates tend to also have **low variance**, and hence will perform well on test observations.
- If n is not much larger than p,
 - then there can be a lot of variability in the least squares fit, resulting in overfitting and consequently poor predictions on future observations not used in model training
- If p > n,
 - then there is no longer a unique least squares coefficient estimate: the variance is infinite so the method cannot be used at all.

Prediction Accuracy

- By *constraining* or *shrinking* the estimated coefficients,
 - we can often substantially reduce the variance at the cost of a negligible increase in bias.
 - This can lead to substantial improvements in the accuracy with which we can predict the response for observations not used in model training.

Model Interpretability

- When the many of the variables used in the regression model, some of them are not associated with the response.
 - Including such irrelevant variables leads to unnecessary complexity in the resulting model.
- By removing these variables (i.e., by setting the corresponding coefficient estimates to zero),
 - We can obtain a model which is more easily interpreted.
 - Least squares is extremely unlikely to yield any coefficient estimates that are exactly zero.

Three important class of methods

• 1. Subset selection:

Reduced set of variables obtained. These variables are related to response.

• 2. Shrinkage:

- Model involves all p varibles, but the estimated coefficients are shunken towards zero relative to the least squares estimates.
- The shrinkage is also known as *regularization*.
- It affects the reducing variance and also it can be used for variable selection

• 3. Dimension Reduction:

- projecting the p predictors into a M-dimensional subspace, where M < p.
- This is achieved by computing M different linear combinations, or projections, of the variables.
- Then these M projections are used as predictors to fit a linear regression model by least squares.

1. Subset Selection

- We fit a separate least squares regression for each possible combination of the p predictors.
 - All p models contains only one variable,
 - All $\binom{p}{2} = p(p-1)/2$ models contain two variables, ...
- Then we look at the resulting models, with the goal of identifying the one that is best.
- There are 2^p posibilities to select best model.

Algorithm 6.1 Best Subset Selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Credit Data Set

- Best subset selection is
 - A simple and conceptually appealing approach,
 - But suffers form *computational limits* (2^p with subsets of p predictors).
 - Consequently, it becomes computationally infeasible for values of p greater than around 40, even with extremely fast modern computers.
 - And also, when p is large, it suffers from statistical problems.
 - The larger the space, the higher the chance finding models that look good on the training data. (overfitting and high variance of coefficient estimates)
 - For this reason alternative methods such as *stepwise selections* are used.

- A computationally efficient alternative, contains much less than 2^p variables.
- Forward stepwise selection model begin with no predictors, and then adds predictors to model, one at a time, until all of the predictors in the model.
- A total amount of models

$$1 + \frac{p(p+1)}{2}$$

• At each step the variable that gives the greatest additional improvement to the fit is added to the model.

Algorithm 6.2 Forward Stepwise Selection

- 1. Let \mathcal{M}_0 denote the null model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

- Example: Credit data set
- Comparison of the best subset selection and forward stepwise selection

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

- Forward stepwise selection can be applied even in the highdimensional setting where n < p,
 - However, in this case, it is possible to construct submodels M_0, \ldots, M_{n-1} only, since each submodel is fit using least squares, which will not yield a unique solution if $p \ge n$.

Algorithm 6.3 Backward Stepwise Selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

- Backward stepwise selection
 - begins with the full least squares model containing *all p predictors*, and then iteratively removes the least useful predictor, one-at-a-time.
 - searches $1 + \frac{p(p+1)}{2}$ models.
 - can be applied in setting where p is too large to apply best subset selection.
 - is **not** also **guranteed** to yield the **best model** containing a subset of the p predictors.
 - requires that n > p.
 - In contrast, forward stepwise selection can be used even when n < p (the only viable subset method when p is very large).

Stepwise Selection Hybrid Approaches

- Hybrid version of forward and backward stepwise selection are available.
 - Variables are added to the model sequentially, in analogy to forward selection.
 - After adding each new variable, the method may also remove any variables that no longer provide an improvement in the model fit.
- Such an approach attempts to more closely mimic best subset selection while retaining the computational advantages of forward and backward stepwise selection.

Choosing Optimal Model

- Best subset selection, forward selection, backward selection
 - To implement these methods, we need to determine which of these models is **best**.
- The model containing all of the predictors will always have the smallest RSS and the $largest R^2$
 - These quantities are related to the training error.
 - But, we want to choose model with a low test error.
 - Morever, the training error can be poor estimate of the test error.
- Therefore, RSS and \mathbb{R}^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.

Choosing Optimal Model

- To select best model, we need to estimate the test error.
- There are two common approaches:
 - 1. We can *indirectly* estimate test error by *making an adjustment* to the training error to account for the bias due to overfitting.
 - 2. We can *directly* estimate the test error, using either a validation set approach or a cross-validation approach.

C_p , AIC, BIC, and Adjusted \mathbb{R}^2

 A number of techniques for adjusting the training error for the model size are available. These approaches can be used to select among a set of models with different numbers of variables:

•
$$C_p = \frac{1}{n} (RSS + 2d\widehat{\sigma}^2)$$

- Akaike information criterion (AIC) $AIC = \frac{1}{n\widehat{\sigma}^2} (RSS + 2d\widehat{\sigma}^2)$
- Bayesian information criterion (BIC) $BIC = \frac{1}{n} \left(RSS + \log(n) \ d\widehat{\sigma}^2 \right)$
- Adjusted $R^2 R^2 = 1 \frac{RSS}{TSS}$

Validation and Cross-Validation

- Another alternative approaches is *directly estimating the test error* using the validation set and cross-validation methods.
 - Compute the validation set error or the cross-validation error for each model under consideration,
 - Then, select the model for which the resulting estimated test error is smallest.
- In the past, performing cross-validation was computationally prohibitive for many problems with large p and/or large n.
 - Cross-validation is a very attractive approach for selecting from among a number of models under consideration.

2. Shrinkage Models - Ridge

Ridge

Lasso

Shrinkage Methods

- The subset selection method
 - Involves using *least squares* to fit a linear model that contains a subset of the predictors.
- Alternatively, a model containing all p predictors can be fit by using a technique that
 - constraints or regularizes the coefficient estimates, or
 - *shrinks* the coefficient estimates towards zero.
- Techniques for shrinking the regression coefficients
 - Ridge regression
 - Lasso

The ridge regression coefficient estimates $\hat{\beta}^R$ are the values that minimizes

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$
Shrinkage Penalty

where $\lambda \geq 0$ is a tuning parameter.

The Lasso

- The *lasso* is a relatively recent alternative to ridge regression.

• The lasso coefficients,
$$\hat{\beta}_{\lambda}^{L}$$
, minimize the quantity
$$\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}| = RSS + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
Lasso Penalty

- The lasso uses an l_1 .
- The l_1 norm of a coefficient vector β is given by $||\beta||_1 = \sum |\beta_i|$

- Tuning Parameter:
 - When $\lambda = 0$, the penalty term has no effect, and ridge regression will produce the least squares estimates.
 - As $\lambda \to \infty$, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach zero.

- The shrinkage penalty is applied to $\beta_1, ..., \beta_p$ but not to the intercept β_0 .
 - We want to shrink the estimated association of each variable with the response

Null model, Lambda is extremely large and coefficient estimates are zero

Example: Credit Data Set

- The ridge regression coefficient estimates can change *substantially* when multiplying a given predictor by a constant.
- $X_j \hat{\beta}_{j,\lambda}^R$ will depend not only on the value of λ , but also on the scaling of the jth predictor.
 - In fact, the value of $X_j \hat{\beta}_{j,\lambda}^R$ may even depend on the scaling of the other predictors!
 - Therefore, it is best to apply ridge regression after standardizing the predictors

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \bar{x}_j)^2}}$$

as λ increases from 0 to 10.

- When the number of variables p is almost as large as the number of observations n, the least squares estimates will be extremely variable.
- And if p > n, then the least squares estimates do not even have a unique solution, whereas ridge regression can still perform well by trading off a small increase in bias for a large decrease in variance.
 - Hence, ridge regression works best in situations where the least squares estimates have high variance.
- Ridge regression also has substantial computational advantages over best subset selection

2. Shrinkage Models - Lasso

Ridge

Lasso

The Lasso

- Ridge regression will include all p predictors in the final model.
- The penalty $\lambda \sum_{j=1}^{p} \beta_j^2$ will shrink all of the coefficients towards zero, but it will not set any of them exactly to zero (unless $\lambda = \infty$).
 - This may not be a problem for prediction accuracy,
 - But it can create a challenge in model **interpretation** in settings in which the number of variables p is quite large.
- Increasing the value of λ will tend to reduce the magnitudes of the coefficients, but will not result in exclusion of any of the variables.

The Lasso

- The *lasso* is a relatively recent alternative to ridge regression.

• The lasso coefficients,
$$\hat{\beta}_{\lambda}^{L}$$
, minimize the quantity
$$\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}| = RSS + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
Lasso Penalty

- The lasso uses an l_1 .
- The l_1 norm of a coefficient vector β is given by $||\beta||_1 = \sum |\beta_i|$

The Lasso

• The lasso also shrinks the coefficient estimates towards zero.

- Hence, much like best subset selection, the lasso performs variable selection.
- The lasso are generally much easier to interpret than those produced by ridge regression.
- The lasso yields *sparse models*, models that involve only a subset of the variables.

The Lasso

Example: Credit data set

variables.

Depending on the value of λ , the lasso can

produce a model involving any number of

Another Formulation for Ridge Regression and the Lasso

Lasso

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \text{ subject to} \left(\sum_{j=1}^{p} |\beta_j| \right) \le s$$

Ridge

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \text{ subject to} \left(\sum_{j=1}^{p} \beta_j^2 \right) \le s$$

Comparing the Lasso and Ridge Regression

- Lasso produces simpler and more interpretable models that involve only a subset of the predictors.
- Neither ridge regression nor the lasso will universally dominate the other.
 - In general, one might expect the lasso to perform better in a setting where a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - Ridge regression will perform better when the response is a function of many predictors, all with coefficients of roughly equal size.
- A technique such as cross-validation can be used in order to determine which approach is better on a particular data set.

Selecting the Tuning Parameter

- We choose a grid of λ values.
- And compute the cross-validation error for each value of λ .
- Then select the tuning parameter value for which the cross-validation error is smallest.
- Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

- We now explore squares model using the transformed variables.
 - These techniques are dimension reduction methods.
- Let Z_1, Z_2, \dots, Z_M represent M < p linear combinations of our original p predictors. That is,

$$Z_m = \sum_{j=1}^p \emptyset X_j$$

for some constants \emptyset_{1m} , \emptyset_{2m} , ..., \emptyset_{pm} , $m=1,\ldots,M$.

We can then fit the linear regression model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \qquad i = 1, \dots, n$$

using least squares.

• The term *dimension reduction* comes from the fact that this approach reduces the problem of estimating the p+1 coefficients $\beta_0, \beta_1, \dots, \beta_p$ to the simpler problem of estimating the M + 1 coefficients $\theta_0, \theta_1, \dots, \theta_M$, where M < p.

$$\sum_{m=1}^{M} \theta_{m} z_{im} = \sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \emptyset_{jm} x_{ij} = \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_{m} \emptyset_{jm} x_{ij}$$
$$= \sum_{j=1}^{p} \beta_{j} x_{ij}$$

Where $\beta_j = \sum_{m=1}^M \theta_m \emptyset_{jm}$.

- This constraint on the form of the coefficients has the potential to bias the coefficient estimates.
- However, in situations where p is large relative to n, selecting a value of $M \ll p$ can significantly reduce the variance of the fitted coefficients.
- If M=p, and all the Z_m are linearly independent, then the function in the previous slide poses no constraints.

- All dimension reduction methods work in two steps.
- 1. the transformed predictors Z_1, Z_2, \ldots, Z_M are obtained.
- 2. The model is fit using these M predictors.

- The choice of Z_1, Z_2, \dots, Z_M , or equivalently, the selection of the \emptyset_{im} 's, can be achieved in different ways. The approaches:
 - Principal components
 - Partial least squares

- A popular approach for deriving a low-dimensional set of features from a large set of variables.
 - PCA is a technique for reducing the dimension of a $n \times p$ data matrix X.
 - The first principal component direction of the data is that along which the observations vary the most.

Mathematical representation of the first principal component:

$$Z_1 = 0.839 \times (pop - \overline{pop}) + 0.544 \times (ad - \overline{ad})$$

 $\emptyset_{11} = 0.839 \ ve \ \emptyset_{21} = 0.544$

• The crosses represent the projection of each point onto the first principal component line.

- In general, one can construct up to p distinct principal components.
 - The second principal component Z_2 is a linear combination of the variables that is uncorrelated with Z_1 , and has largest variance subject to this constraint.

• It turns out that the zero correlation condition of Z_1 with Z_2 is equivalent to the condition that the direction must be *perpendicular*, or *orthogonal*, to the first principal component direction.

Second Principal Component Results – Advertising Data

$$Z_2 = 0.544 \times (pop - \overline{pop}) - 0.839 \times (ad - \overline{ad})$$

- With two-dimensional data, we can construct at most two principal components.
- If we had other predictors, then additional components could be constructed.
 - They would successively maximize variance, subject to the constraint of being uncorrelated with the preceding components.

The Principal Components Regression Approach

- The principal components regression (PCR)
 - involves constructing the first M principal components, Z_1, \ldots, Z_M ,
 - then using these components as the predictors in a linear regression model that is fit using least squares.

- The key idea is that
 - often a small number of principal components suffice to explain most of the variability in the data, as well as the relationship with the response.