Лабораторна робота № 2

Дослідження усталених режимів та побудова статичних характеристик САУ

Мета роботи: засвоїти методику побудови статичних характеристик розімкнених і замкнених САУ при різних видах з'єднання ланок та методику формування і дослідження впливу параметрів на точність лінійних замкнених САУ в усталених режимах.

Теоретичні відомості

Режими роботи САУ

Система автоматичного керування працює нормально, якщо вихідна координата y(t) відхиляється від бажаного значення $y_{\delta}(t)$ у допустимих межах.

Режим роботи САУ, при якому помилка керування, тобто різниця $\varepsilon(t) = y_6(t) - y(t) \ \text{між бажаним і фактичним значеннями вихідної координати постійна в часі, називається$ *усталеним*.

Усталений режим при постійному вхідному впливі називається *статичним* (рис. 2.1, а). Усталений режим при вхідному впливі, що змінюється у часі, називається *усталеним динамічним* режимом (рис. 2.1, б).

3 моменту подачі на систему впливу вона починає відпрацьовувати створене розузгодження між $y_6(t)$ і y(t). При цьому виникає *збурений рух системи*, в результаті якого вона повертається до попереднього або переходить у новий усталений стан. Режим роботи, що відповідає цьому переходу, називається *перехідним*.

Робота системи в перехідному режимі й в динамічному усталеному режимі називається *динамічним* режимом САУ.

Рис. 2.1. Режими роботи САУ при постійному (а) та змінному (б) вхідних впливах

Ознаки класифікації САУ

Вище зазначалось, що САУ відповідно до вирішуваних задач поділяються на системи стабілізації, програмного керування, слідкуючі, екстремального керування, оптимальні, адаптивні.

Існують також й інші ознаки класифікації САУ. Наведемо основні з них.

<u>Статичні та астатичні САУ.</u> Залежно від наявності помилки регулювання в усталеному режимі САУ поділяються на статичні та астатичні.

Система, в якій в усталеному режимі при постійному вхідному впливі (статичному режимі) помилка не дорівнює нулю, називається *статичною* (рис. 2.2). Характерною особливістю статичної САУ ϵ те, що помилка регулювання прямо пропорційна величині зовнішнього впливу.

Рис. 2.2. Перехідні процеси в статичній (крива 1) і астатичній (крива 2) системах

Система, в якій в усталеному режимі помилка дорівнює нулю, називається астатичною. Причому, якщо ця помилка дорівнює нулю за умов x(t)=const, то система є астатичною першого порядку. Якщо помилка дорівнює нулю при впливах, що лінійно змінюються, тобто x(t)=kt, то система є астатичною другого порядку, а при x(t) = kt^2 - астатичною третього порядку і т.д.

Одноконтурні й багатоконтурні САУ. Системи, що мають тільки один головний зворотний зв'язок і не мають місцевих зворотних зв'язків, називають одноконтурними. У багатоконтурних системах, окрім одного контуру головного зворотного зв'язку, ϵ ще головні зворотні зв'язки або місцеві зворотні зв'язки.

<u>Стаціонарні та нестаціонарні САУ.</u> Залежно від того, входить або ні час явно в рівняння, що описує САУ, системи поділяються на стаціонарні та нестаціонарні. Автоматичні системи керування називаються *стаціонарними*, якщо вони описуються рівняннями з постійними коефіцієнтами, тобто рівняннями, які явно не залежать від часу. Це означає, що властивості системи з часом не змінюються. *Нестаціонарними* системами, або системами зі змінними параметрами, називаються системи, які описуються рівняннями із змінними коефіцієнтами. Якщо коефіцієнти рівняння нестаціонарної системи змінюються повільно, то таку систему називають *квазістаціонарною*.

<u>Безперервні та дискретні САУ</u>. Залежно від проходження і характеру сигналів системи поділяються на безперервні та дискретні.

У *безперервній* системі сигнали на виході її елементів є безперервними функціями. Між елементами системи існує безперервний функціональний зв'язок. Безперервні системи описуються диференціальними рівняннями.

САУ називається *дискретною*, якщо вихідна величина будь-якого з її елементів має дискретний характер. Перетворення безперервних сигналів на дискретні пов'язано з наявністю в системі дискретного елемента. Дискретні системи описуються диференціально-різницевими рівняннями.

Порядок виконання роботи

1. За допомогою програмного пакету Matlab отримати функціональні залежності та побудувати статичні характеристики трьох ланок які виражаються наступними аналітичними залежностями:

$$y_1(x) = k_1 \left(1 - e^{-\frac{x}{X_T}} \right);$$

 $y_2(x) = k_2 |x|;$
 $y_3(x) = k_3 x^2.$

Моделювання статичних характеристик здійснити для вхідного сигналу, що змінюється на інтервалі x=0...20 при $\Delta x=0.01$.

Значення коефіцієнтів k_1 , k_2 , k_3 задаються викладачем.

Приклад побудови статичної характеристики функціональної ланки

$$y_1(x) = k_1 x^2 + 3$$

наведено в лістингу 3.1.

Лістинг 3.1. Використання засобів пакету Matlab для побудови статичних характеристик ланок САУ

```
      k1=5;
      Введення постійних складових

      x=0:0.01:5;
      Задання масиву вхідної величини

      y1=k1.*x.*x+3;
      Розрахунок масиву вихідної величини

      plot(x,y1);
      Побудова статичної характеристики

      ylabel('y_1(x)');
      Побудова статичної характеристики

      title('y_1=k_1x^2+3');
```

Результат роботи лістингу 3.1:

2. За допомогою середовища моделювання Simulink побудувати на інтервалі x = 0...20 ($\Delta x = 0.01$) узагальнену статичну характеристику трьох послідовно з'єднаних ланок, статичні характеристики яких повинні мати вигляд наступних аналітичних залежностей:

$$y_1(x) = k_1 \left(1 - e^{-\frac{x}{X_T}} \right); \quad y_2(x) = k_2 |x|; \quad y_3(x) = k_3 x^2.$$

Для симуляції статичної характеристики ланки використати блок Simulink/Lookup Tables/Lookup Table. Для цього в полі Vector of input values вказати назву масиву вихідної величини (x), а в полі Vector of output values вказати діапазон вхідної величини (y1).

Значення коефіцієнтів задаються викладачем.

3. За допомогою середовища моделювання Simulink побудувати узагальнену статичну характеристику чотирьох паралельно з'єднаних ланок:

$$y_1(x) = k_1 \left(1 - e^{-\frac{x}{X_T}} \right); \quad y_2(x) = k_2 |x|;$$

 $y_3(x) = k_3 x^2; \quad y_4(x) = f(x).$

Значення коефіцієнтів та функція $y_4(x) = f(x)$ для моделювання задаються викладачем.

4. Побудувати за допомогою Simulink узагальнену статичну характеристику розімкненої САУ для однієї з наведених нижче схем (рис. 2.3-3.6):

ПРИ
$$y_1(x) = k_1 \sqrt{x}$$
; $y_2(x) = k_2 |x|$; $y_3(x) = k_3 x^2$; $y_4(x) = f(x)$;

Номер варіанта та значення параметрів задаються викладачем.

Рис. 2.3. Фрагмент системи до варіанта А

Рис. 2.4. Фрагмент системи до варіанта Б

Рис. 2.5. Фрагмент системи до варіанта В

Рис. 2.6. Фрагмент системи до варіанта Γ

5. Побудувати узагальнену статичну характеристику $x_{\text{вих}} = f(x_{\text{вх}})$ ланки, що охоплена від'ємним зворотним зв'язком (рис. 2.7), якщо $x_{\text{вих}} = f_1(\varepsilon)$ статична характеристика основної ланки; $x_{\text{зв.з}} = f_2(x_{\text{вих}})$ — статична характеристика ланки зворотного зв'язку.

Рис. 2.7. Реалізація від'ємного зворотного зв'язку

Дані для моделювання на інтервалі $x=0...20~(\Delta x=0.001)$ задаються викладачем:

$$x_{_{\mathrm{BUX}}}=k_{1}\varepsilon$$
;
$$\mathbf{X}_{_{_{\mathrm{3B.3}}}}=\mathbf{k}_{_{_{\mathrm{3B.3}}}}\mathbf{X}_{_{\mathrm{BUX}}}\,.$$

6. Побудувати узагальнену статичну характеристику $x_{\text{вих}} = f_{\text{I}}(x_{\text{вх}})$ ланки, що охоплена додатним зворотним зв'язком (рис. 2.8), за таких умов:

$$x_{_{\mathrm{BHX}}} = f_{1}(\varepsilon) = k_{1} \arctan g(\alpha \varepsilon) \; ;$$

$$x_{_{_{\mathrm{3B},3}}} = f_{2}(x_{_{\mathrm{BHX}}}) = k_{_{_{\mathrm{3B},3}}} x_{_{\mathrm{BHX}}} \; .$$

Рис. 2.8. Реалізація додатного зворотного зв'язку

Дані для моделювання на інтервалі $x=0...20~(\Delta x=0.001)$ задаються викладачем.

7. Сформувати рівняння статики $x_{\text{вих}} = f(x_{\text{зад}}, F)$ та дослідити вплив коефіцієнтів підсилення k_i (i = 1..5), що задаються викладачем, на вигляд статичної характеристики замкненої САУ, структурна схема якої наведена на рис. 2.9.

Рис. 2.9. Структура замкненої САУ

Дослідити вплив параметрів САУ на статичну характеристику замкненої САУ

$$x_{\text{вих}} = f(F)$$
, при $x_{\text{зал}} = \text{const}$

та величину її статичної похибки при змінному характері зовнішнього збурення

$$F = N...(20 + N)$$

та постійному значенні задавального сигналу $x_{\text{зад}} = 20 + N/3$, де N - порядковий номер студента в журналі.

Для моделювання змінного характеру зовнішнього впливу використати блок *Simulink/Signal Routing/Switch*, що представляє собою керований комутатор сигналів, в параметрах якого значення *Threshold* встановити рівним 3. Приклад побудови моделі змінного зовнішнього збурення з використанням блоку *Simulink/Signal Routing/Switch* наведено на рис. 2.10.

У режимі моделювання при встановленні методу обчислень вибрати наступні параметри модельного часу системи $t_{_0}=0;\;t_{_{\kappa}}=5;\;\Delta t=0,01.$

Рис. 2.10. Simulink-модель змінного зовнішнього збурення

Варіанти даних задаються викладачем.

- 8. Підготувати до захисту звіт, який повинен містити:
- а) назву та мету виконання лабораторної роботи;
- б) побудовані з використанням Simulink статичні характеристики за пп. 2-7;
- в) аналітичний вираз для статичної характеристики замкненої САУ, статичну характеристику замкненої САУ, результати дослідження впливу коефіцієнтів k_i на точність замкненої САУ;
 - г) результати моделювання в графічному вигляді та їх аналіз.

Контрольні питання

- 1. Загальна характеристика усталених режимів роботи САУ.
- 2. Поняття про статичні характеристики. Типи статичних характеристик.
- 3. Зв'язок між рівнянням статики та рівнянням динаміки САУ.
- 4. Методика побудови статичних характеристик розімкнених САУ при різних видах з'єднання ланок (кусково-лінійні та аналітичні методи).
- 5. Методика експериментальної побудови статичних характеристик.
- 6. Особливості побудови статичних характеристик у системі Simulink.
- 7. Статичні характеристики замкнених САУ.
- 8. Статична похибка САУ.
- 9. Методика формування статичної характеристики лінійної замкненої САУ в аналітичній формі.

- 10. Методика дослідження статичної характеристики лінійної замкненої САУ в системі Matlab та на основі аналітичних залежностей.
- 11. Аналіз результатів досліджень.