Key Exchange and Elgamal Algorithms Cryptography – Lab 5

Name: Ojas Patil Reg No: 21BAI1106

Task

To Develop a Python-based implementation of the Key-Exchange Algorithm and Elgamal Algorithm.

Key-Exchange Algorithm Definition

The Key Exchange algorithm revolves around the fact of mutual key derivation by the communicating entities through the mathematical process without actually physically sharing the keys.

Key-Exchange Output Snapshot

Key-Exchange Handwritten sum

Source Code

```
import random

class DHKE:
    def __init__(self,G,P):
        self.G_param = G
        self.P_param = P

    def generate_privatekey(self):
        self.pk = random.randrange(start = 1,stop = 10,step = 1)

    def generate_publickey(self):
        self.pub_key = pow(self.G_param,self.pk) % self.P_param

    def exchange_key(self,other_public):
```

```
self.share_key = pow(other_public,self.pk) % self.P_param
#Simulating the Key Exchange b/w two entities. Let Alice and Bob be the two
entities.
Alice = DHKE(5,22)
Bob = DHKE(5,22)
Alice.generate_privatekey()
Bob.generate privatekey()
print("-----\n")
print("Alice Private Key Generated is ",Alice.pk,"\n")
print("Bob Private Key Generated is ",Bob.pk,"\n")
print("-----\n\n")
Alice.generate_publickey()
Bob.generate_publickey()
print("-----\n")
print("Alice Public Key Generated is ",Alice.pub_key,'\n')
print("Bob Public Key Generated is ",Bob.pub key,'\n')
print("-----\n\n")
#Alice & Bob Exchange each others key now.
Alice.exchange key(Bob.pub key)
Bob.exchange_key(Alice.pub_key)
print("-----\n")
print("Shared Key Generated now by Alice : ",Alice.share_key,'\n')
print("Shared Key Generated now by Bob : ",Bob.share key,'\n')
print("-----End of Shared Key Derieved-----\n")
```

Elgamal Algorithm Definition

The Elgamal algorithm uses asymmetric key encryption for communicating between two parties and encrypting the message. This cryptosystem is based on the difficulty of finding discrete logarithms in a cyclic group that is even if we know ga and gk, it is extremely difficult to compute gak.

Elgamal Output Snapshot

Elgamal Handwritten sum

Source Code

```
import random
from math import pow
a = random.randint(2, 10)
def gcd(a, b):
   if a < b:
       return gcd(b, a)
   elif a % b == 0:
       return b;
   else:
        return gcd(b, a % b)
# Generating large random numbers
def gen_key(q):
    key = random.randint(pow(10, 20), q)
   while gcd(q, key) != 1:
        key = random.randint(pow(10, 20), q)
   return key
# Modular exponentiation
def power(a, b, c):
   x = 1
   y = a
   while b > 0:
        if b % 2 != 0:
           x = (x * y) \% c
       y = (y * y) % c
       b = int(b / 2)
    return x % c
# Asymmetric encryption
def encrypt(msg, q, h, g):
   en_msg = []
   k = gen_key(q)# Private key for sender
    s = power(h, k, q)
   p = power(g, k, q)
```

```
for i in range(0, len(msg)):
        en_msg.append(msg[i])
   print("g^k used : ", p)
   print("g^ak used : ", s)
   for i in range(0, len(en_msg)):
        en_msg[i] = s * ord(en_msg[i])
   return en_msg, p
def decrypt(en_msg, p, key, q):
   dr msg = []
   h = power(p, key, q)
   for i in range(0, len(en_msg)):
        dr_msg.append(chr(int(en_msg[i]/h)))
    return dr_msg
# Driver code
def main():
   msg = 'crypto ojas patil'
   print("Original Message :", msg)
   q = random.randint(pow(10, 20), pow(10, 50))
   g = random.randint(2, q)
   key = gen_key(q)# Private key for receiver
   h = power(g, key, q)
   print("g used : ", g)
   print("g^a used : ", h)
   en_msg, p = encrypt(msg, q, h, g)
   dr_msg = decrypt(en_msg, p, key, q)
   dmsg = ''.join(dr_msg)
   print("Decrypted Message :", dmsg);
if __name__ == '__main__':
   main()
```

Conclusion		
The implementation of Key Exchange Algorithm and Elgamal Algorithm in Python successfully demonstrates the core components of these algorithms and provides a foundational understanding of both the algorithms and its practical application in securing data.		