

PROJET NUMERIQUE

Berrandou Nassim Calvano Romain Landier Gabin Piguet Fabien

SOMMAIRE

- 1. Simulation d'un paquet d'ondes
- 2. Calcul des états stationnaires
- 3. Résolution analytique du problème stationnaire
- 4. Comparaison avec les mesures expérimentales
- 5. Étude analytique d'un paquet d'ondes non stationnaire

ÉTAPE 1 SIMULATION DE LA PROPAGATION D'UN PAQUET D'ONDES

Coder un algorithme Python pour résoudre numériquement l'équation de Schrödinger dépendante du temps et observer la propagation d'un paquet d'ondes quantique.

- Discrétisation spatio-temporelle (différences finies explicites)
- Séparation des parties réelle et imaginaire de la fonction d'onde
- Itérations successives pour faire évoluer le paquet d'onde

Implémentation Python (fichier etape1.py)

- Paquet d'onde gaussien initialisé à x=0.3
- Puits de potentiel fini V(x) = -200 sur [1.0, 1.2]
- Paramètres :
 - dx = 0.001, $dt = 10^{-7}$, nt = 120000
 - $E=15 imes |V_0|$

Résultat

Une animation dynamique montre l'évolution de la densité de probabilité du paquet d'onde en interaction avec le puits. On visualise clairement la propagation, réflexion partielle et transmission.

ÉTAPE 2. CALCUL DES ÉTATS STATIONNAIRES

Résolution par morceaux avec continuité de $\psi(x)$ et $\psi'(x)$

Utilisation des fonctions exponentielles / sinusoïdales selon les zones

Déterminer numériquement les états stationnaires (solutions de l'équation de Schrödinger indépendante du temps) pour un puits de potentiel fini.

Méthode

- Discrétisation de l'espace en N points sur un domaine L=2
- Construction du Hamiltonien tridiagonal (matrice symétrique diagonale)
- Résolution par la fonction eigh_tridiagonal de SciPy (valeurs propres)

Implémentation Python (etape2.py)

- Potentiel: V(x)=-V0 sur [1.0,1.2], nul ailleurs
- États positifs extraits et normalisés
- Affichage graphique des ψn(x) surélevés à leur énergie En

Résultat

Courbes des fonctions d'onde stationnaires associées aux énergies positives. Visualisation claire des niveaux d'énergie discrets et du comportement dans le puits.

ÉTAPE 3 RÉSOLUTION ANALYTIQUE DE L'ÉQUATION DE SCHRÖDINGER

Résoudre **analytiquement** l'équation de Schrödinger **indépendante du temps** pour un **puits de potentiel fini**. Cela permet d'obtenir le **coefficient de transmition T** en fonction des paramètres a, V0, E.

Modèle considéré

• Puits de potentiel 1D :

 On va étudié le cas où E>0 ce qui nous donne l'équation de Schrödinger indépendante du

temps:

$$-\frac{\pi^2}{2m}\frac{d^2\Psi}{dz^2}+V(z)\Psi(z)=E\Psi(z)$$

- Résolution analytique par morceaux dans les trois zones.
- Application des conditions de continuité de ψ et de sa dérivée en x=0 et x=a.
- Calcul algébrique complet des constantes d'intégration (A, B, C, D, E).

Résultat

Formule explicite du coefficient de transmission :

$$T=\left|rac{E}{A}
ight|^2=rac{1}{|M|^2} \quad ext{avec} \quad T=rac{1}{\cos^2(qa)+\sin^2(qa)\left(rac{k^2-q^2}{2kq}
ight)^2} \quad egin{array}{c} & k=\sqrt{2mE}/\hbar \ & q=\sqrt{2m(E+V_0)}/\hbar \ & q=\sqrt{2m(E+V_0)}/\hbar \ & ext{avec} \end{array}$$

•
$$k = \sqrt{2mE/\hbar}$$

$$q=\sqrt{2m(E+V_0)}/\hbar$$

ÉTAPE 4 COMPARAISON AVEC LES MESURES EXPÉRIMENTALES

Comparer la courbe de transmission théorique T(E) obtenue par le modèle quantique avec les mesures expérimentales (section efficace $\sigma(E)$).

Principe

Une particule (ex : électron) lancée sur un puits de potentiel peut :

- être transmise → elle traverse le puits
- être réfléchie → elle rebondit

La courbe T(E) représente la probabilité de transmission selon l'énergie E.

Lien avec l'expérience

Dans les expériences (ex : atomes d'hélium), on mesure la section efficace de diffusion $\sigma(E)$:

- Si $\sigma(E)$ est petite \rightarrow la particule n'est pas déviée, donc T(E) est grande
- Si σ(E) est grande → la particule est déviée, donc T(E) est petite

Résultat

À certaines énergies, T(E)≈1, la particule traverse sans être déviée.

C'est une résonance, phénomène expliqué par l'effet Ramsauer–Townsend.

ÉTAPE 5 PROPAGATION D'UN PAQUET D'ONDES

© Objectif

Étudier **analytiquement** le comportement d'un **paquet d'ondes** en interaction avec un **puits de potentiel**, contrairement aux étapes précédentes qui traitaient des ondes stationnaires.

Modélisation du paquet initial

- Paquet = superposition d'ondes planes (spectre de k)
- Forme à t=0 :

$$\psi(z,0)=A\cdot e^{-rac{(z-z_0)^2}{2\sigma^2}}\cdot e^{ik_0z}$$

Evolution temporelle sans potentiel

$$\psi(z,t) = \int A(k)e^{i[kz-\omega(k)t]}\,dk \quad ext{avec} \quad \omega(k) = rac{\hbar k^2}{2m}$$

Le paquet se déplace (vitesse de groupe) et s'étale (dispersion).

Interaction avec un puits de potentiel

Chaque composante k du paquet est transmise selon un coefficient T(k).

Fonction transmise:

$$\psi_{ ext{transmise}}(z,t) = \int A(k) T(k) e^{i[kz - \omega(k)t]} \, dk$$

Lien avec l'effet Ramsauer-Townsend

- À certaines énergies, T(k)≈1 : le paquet traverse sans être diffusé
- Cela reproduit l'effet observé expérimentalement avec la section efficace minimale $\sigma(E)$.

ÉTAPE 6 INTRODUCTION

© Objectif

Utiliser un potentiel plus réaliste (puits gaussien) pour modéliser la diffusion quantique. Puis le comparer avec le puits carré étudié précédemment.

POURQUOI UN PUITS GAUSSIEN?

Avantages physiques :

- Potentiel continu, sans rupture
 Forme symétrique réaliste (nuage électronique)
- Pas de discontinuité → transition douce
- Mieux adapté aux simulations numériques

MÉTHODE NUMÉRIQUE – PAQUET D'ONDES

- Simulation dynamique
- Initialisation d'un paquet d'ondes gaussien
- Évolution selon Schrödinger dépendant du temps
- Interaction avec le puits gaussien

Réflexion partielle, transmission, dispersion

MÉTHODE NUMÉRIQUE -ÉTATS STATIONNAIRES

- Résolution stationnaire
- Discrétisation spatiale
- Hamiltonien tridiagonal
- Calcul des énergies propres et ψ(x)

Fonctions d'onde liées au puits gaussien

TRANSMISSION T(E) DANS LE PUITS GAUSSIEN

- T(E) sans formule exacte
- T(E) estimée par le comportement asymptotique
- Résonances de transmission bien visibles
- Pas de sin(qa) comme dans le puits carré

CONCLUSION DE L'ÉTAPE 6

Le puits gaussien :

- Reproduit les phénomènes de transmission et réflexion
- Modèle plus proche de la réalité physique
- Permet d'expliquer l'effet Ramsauer-Townsend de façon plus réaliste

CONCLUSION GÉNÉRALE

© Bilan du projet

- Simulation complète de la diffusion quantique à 1D
- Étude du comportement d'un paquet d'ondes dans différents potentiels
- Comparaison entre puits carré (modèle simple) et puits gaussien (modèle réaliste)

CONCLUSION GÉNÉRALE

Enseignement principal

- Le puits gaussien permet de reproduire l'effet Ramsauer– Townsend de façon réaliste
- Le phénomène de transmission totale à certaines énergies (T(E) ≈ 1) est une conséquence directe de la mécanique quantique

CONCLUSION GÉNÉRALE

Conclusion

- Même un modèle simple permet d'expliquer un phénomène expérimental subtil
- Simulation numérique et analyse théorique se complètent pour interpréter la transparence quantique

MERCIPOUR VOTRE ECOUTE