# DSC 204A: Scalable Data Systems Fall 2025

Staff
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

#### Where We Are

Machine Learning Systems

Big Data

Cloud

2000 - 2016

Foundations of Data Systems

1980 - 2000

#### Problem: We need All-Reduce



Program This? Will be in PA2!

#### Performance

- Message size over networks:
  - Sum: 3N
  - Send Sum back: 3N
  - $\bullet$  = 6N
- Can we do better?
  - Hint: we cannot do better than 3N

# Why Collective Communication?

- Programming Convenience
  - Use a set of well-defined communication primitives to express complex communication patterns
- Unification and Performance
  - Since they are well defined and well structured, we can optimize them to the extreme
- ML Systems Collective communication

#### Make it Formal



• A 1D Mesh of workers (or devices, or nodes)

# Model of Parallel Computation

- a node can send directly to any other node (maybe not true)
- a node can simultaneously receive and send
- cost of communication
  - sending a message of length n between any two nodes

$$\alpha + n\beta$$



#### Collective Communications

- Broadcast
- Reduce(-to-one)
- Scatter
- Gather
- Allgather
- Reduce-scatter
- Allreduce
- All-2-All

# Broadcast



# Reduce(-to-one)



# Broadcast/Reduce(-to-one)



# Scatter



# Gather



# Scatter/Gather



# Allgather



### Reduce-scatter



# Allgather/Reduce-scatter



# Allreduce



# All2All



#### Some Facts

- Collective is much more expensive than P2P
  - Collective can be assembled using many P2P
  - Collective is cheaper than realizing collective using P2P (we'll see)
- Collective is highly optimized in the past 20 years
  - Look out for "X"CCL libraries
    - NCCL, MCCL, OneCCL, UCCL
- Collective is not fault-tolerant
  - A major sources of faults in ML systems

# Communication Model: $\alpha\beta$ model

Communication Model: 
$$\alpha + n\beta$$
,  $\beta = \frac{1}{B}$ 

- Small Message size  $(n \to 0)$ :  $\alpha$  dominates, emphasize latency
- Large Message Size  $(n \to +\infty)$ :  $n\beta$  dominate, emphasize bandwidth utilization

# Two Family of Mainstream Algorithms/Implementations

- Small message: Minimum Spanning Tree algorithm
  - Emphasize low latency
- Large Message: Ring algorithm
  - Emphasize bandwidth utilization



- There are 50+ different algorithms developed in the past 50 years by a community called "High-performance computing"
  - 2021 Turing award

# General principles: Low Latency

- Minimize the number of rounds needed for communication
- Minimal-spanning tree algorithm



message starts on one processor



divide logical linear array in half



 send message to the half of the network that does not contain the current node (root) that holds the message



• send message to the half of the network that does not contain the current node (root) that holds the message





continue recursively in each of the two halves

# Broadcast















## Let us view this more closely

ullet Red arrows indicate startup of communication (leading to latency, lpha)

• Green arrows indicate packets in transit (leading to a bandwidth related cost proportional to eta and the length of the packet





















































































## Cost of minimum spanning tree broadcast



## Reduce(-to-one)





















Cost of minimum spanning tree reduce(-to-one)

$$\lceil log(p) \rceil (\alpha + n\beta + n\gamma)$$

## Scatter































## Cost of minimum spanning tree scatter

Assumption: power of two number of nodes

$$\sum_{k=1}^{\log(p)} \left( \alpha + \frac{n}{2^k} \beta \right)$$

$$=$$

$$\log(p) - \alpha + \frac{p-1}{p} n\beta$$

#### Gather































### Cost of minimum spanning tree gather

Assumption: power of two number of nodes

$$\sum_{k=1}^{\log(p)} \left( \alpha + \frac{n}{2^k} \beta \right)$$

$$=$$

$$\log(p) - \alpha + \frac{p-1}{p} n\beta$$

# Using the building blocks





### Allgather (short vector)



#### Cost of gather/broadcast allgather

Assumption: power of two number of nodes

gather 
$$\log(p)\alpha + \frac{p-1}{p}$$
 broadcast 
$$\log(p)(\alpha + n\beta)$$
 
$$2\log(p)\alpha + \left(\frac{p-1}{p} + \log(p)\right)n\beta$$

#### Reduce-scatter (small message)



# Reduce-scatter (short vector)



# Reduce-scatter (short vector)



### Cost of Reduce(-to-one)/scatter Reduce-scatter

Assumption: power of two number of nodes

Reduce(-to-one) 
$$log(p)(\alpha + n\beta + n\gamma)$$

$$scatter \qquad log(p) \frac{p-1}{\alpha} + \frac{p-1}{p}$$

$$2log(p) \frac{\alpha + \left(\frac{p-1}{p} + log(p)\right)n\beta + log(p)n\gamma}{p}$$

## Allreduce (Latency-optimized)



#### Allreduce (Latency-optimized)



# Allreduce (short vector)



### Cost of reduce(-to-one)/broadcast Allreduce

Assumption: power of two number of nodes

Reduce(-to-one) 
$$log(p)(\alpha + n\beta + n\gamma)$$
  
broadcast  $log(p)(\alpha + n\beta)$   
 $2log(p)\alpha + 2log(p)n\beta + log(p)n\gamma$ 

#### Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

Reduce-scatter

Allreduce

## Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

# Reduce-scatter $2log(p)\alpha + log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

Allreduce

#### Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}$$

#### Broadcast

$$log(p)(\alpha + n\beta)$$

#### Reduce-scatter

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

#### Allreduce

$$2log(p)\alpha + log(p)n(2\beta + \gamma)$$

Allgather
$$2log(p)\alpha + log(p)n\beta + \frac{p-1}{p}n\beta$$

#### Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

#### Broadcast

 $log(p)(\alpha + n\beta)$ 

#### Reduce-scatter

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

#### Allreduce

 $2log(p)\alpha + log(p)n(2\beta + \gamma)$ 

#### Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

#### Reduce-scatter

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

#### Allreduce

$$2\log(p)\alpha + \log(p)n(2\beta + \gamma)$$

Allgather
$$2log(p)\alpha + log(p)n\beta + \frac{p-1}{p}n\beta$$

#### Summary of MST algorithms

- Small message: Minimum Spanning Tree algorithm
  - Emphasize low latency
- Can we do better?

- Problem of Minimum Spanning Tree Algorithm?
  - It prioritize latency rather than bandwidth
  - Hence: Some links are idle

Next: Large message size algorithm

#### Large Message

Communication Model: 
$$\alpha + n\beta$$
,  $\beta = \frac{1}{B}$ 

- The second term dominates we want to minimize the second term
  - We want to utilize the bandwidth as much as possible

## General principles

- Use all the links between every two nodes
- A logical ring can be embedded in a physical linear array with worm-hole routing, since the "wrap-around" message doesn't conflict





 A logical ring can be embedded in a physical linear array with worm-hole routing, since the "wrap-around" message doesn't conflict







## General principles

Ring algorithm has the following advantages

- Fully utilize the bandwidth (bandwidth optimal)
- implementation for arbitrary numbers of node

# Allgather







































#### Cost of bucket Allgather

$$(p-1) \left(\alpha + \frac{n}{p}\beta\right)$$
number of steps
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

## Reduce-scatter







































### Cost

number of steps 
$$= \frac{(p-1)\left(\alpha + \frac{n}{p}\beta + \frac{n}{p}\gamma\right)}{(p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma}$$

# Scatter: Can Ring Be Better?

Notice: Scatter as implemented before using MST was optimal in Bandwidth as well (How to Prove?)



### Gather

Notice: Gather as implemented before using MST was optimal in bandwidth as well (how to prove?)



# Using the building blocks

# Broadcast (Large Message)



# Broadcast (long vector)



# Broadcast (long vector)



# Cost of scatter/allgather broadcast

Assumption: power of two number of nodes

scatter 
$$\frac{\log(p)\alpha + \frac{p-1}{p}n\beta}{ (\log(p) + p-1)\alpha + \frac{p-1}{p}n\beta}$$
 allgather 
$$\frac{(p-1)\alpha + \frac{p-1}{p}n\beta}{(\log(p) + p-1)\alpha + 2\frac{p-1}{p}n\beta}$$

# Cost of scatter/allgather broadcast

Assumption: power of two number of nodes

scatter 
$$\frac{\log(p)\alpha + \frac{p-1}{p}n\beta}{ \text{allgather}}$$
 
$$\frac{(p-1)\alpha + \frac{p-1}{p}n\beta}{(\log(p) + p-1)\alpha + 2\frac{p-1}{p}n\beta}$$

Vs. MST broadcast:  $\lceil log(p) \rceil (\alpha + n\beta)$ 

# Reduce(-to-one) (long vector)



# Reduce (long vector)



# Combine-to-one (long vector)



# Cost of Reduce-scatter/Gather Reduce(-to-one)

Assumption: power of two number of nodes

Reduce-scatter 
$$(p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma$$
gather  $log(p)\alpha + \frac{p-1}{p}n\beta$ 

$$\frac{p}{(log(p)+p-1)\alpha + 2\frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma}$$

# Cost of Reduce-scatter/Gather Reduce(-to-one)

Assumption: power of two number of nodes

Reduce-scatter 
$$(p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma$$

$$\frac{\log(p)\alpha + \frac{p-1}{p}n\beta}{(\log(p) + p-1)\alpha + 2\frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma}$$

Vs. MST reduce:  $\lceil log(p) \rceil (\alpha + n\beta + n\gamma)$ 

# Allreduce (Large Message)



# Allreduce (Large Message)



# Allreduce (long vector)



# Cost of Reduce-scatter/Allgather Allreduce

Assumption: power of two number of nodes

Reduce-scatter(
$$p-1$$
) $\alpha+\frac{p-1}{p}$  $\alpha+\frac{p-1}{p}$  $\alpha+\frac{p-1}{p}$ Allgather 
$$(p-1)\alpha+\frac{p-1}{p}$$
$$\frac{p}{2(p-1)\alpha+2\frac{p-1}{p}}$$

### Cost of Reduce-scatter/Allgather Allreduce

Assumption: power of two number of nodes

Reduce-scatter 
$$(p-1)\alpha + \frac{p-1}{p} n\beta + \frac{p-1}{p} n\gamma$$
Allgather  $(p-1)\alpha + \frac{p-1}{p} n\beta + \frac{p-1}{p} n\gamma$ 

$$2(p-1)\alpha + 2\frac{p-1}{p} n\beta + \frac{p-1}{p} n\gamma$$

Vs. Reduce-broadcast allreduce

$$2log(p)\alpha + 2log(p)n\beta + log(p)n\gamma$$

## Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce(-to-one)

Allreduce

Broadcast

# Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

# Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Allgather
$$(p-1)\frac{p-1}{\alpha+\frac{p-1}{p}}$$

Reduce(-to-one)
$$(p-1+log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Allreduce

Broadcast

### Reduce-scatter

$$(p-1)\frac{p-1}{p}n(\beta+\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

# Allgather $(p-1)\alpha + \frac{p-1}{n\beta}$

$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce(-to-one)
$$(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

### Allreduce

$$2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Broadcast
$$(log(p) + p - 1)\alpha + 2 \frac{p-1}{p}n\beta$$

## Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

# Allgather $(p-1)\alpha + \frac{p-1}{p}n\beta$

# Reduce(-to-one) $(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

Allreduce
$$2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Broadcast

### Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather 
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather 
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$



Reduce(-to-one)
$$(p-1+log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

### Allreduce

$$2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Broadcast
$$(log(p) + p - 1)\alpha + 2 \frac{p-1}{p}n\beta$$

# A More Complicate Case

- Real Cluster to train ChatGPT:
  - If using GPU: 2D Mesh
  - If using TPU: 3D Mesh, see figure below



# Example: 2D Broadcast



• Idea: Use 1D to compose 2



- Idea: Use 1D to compose 2
- Option 1:
  - MST broadcast in column



- Option 1:
  - MST broadcast in column
  - MST broadcast in rows



- Option 2:
  - Scatter in column



- Option 2:
  - Scatter in column
  - MST broadcast in rows



- Option 2:
  - Scatter in column
  - MST broadcast in rows
  - Allgather in columns



- Option 3:Scatter in column
  - Scatter in rows

  - Allgather in rowsAllgather in columns



- Option 3:Scatter in column
  - Scatter in rows



- Option 3:Scatter in column
  - Scatter in rows
  - Allgather in rows



- Option 3:Scatter in column
  - Scatter in rows

  - Allgather in rowsAllgather in columns

- Option 1:
  - MST broadcast in column
  - MST broadcast in rows
- Option 2:
  - Scatter in column
  - MST broadcast in rows
  - Allgather in columns
- Option 3:
  - Scatter in column
  - Scatter in rows

  - Allgather in rowsAllgather in columns

$$\frac{\log(c)\alpha + \log(c)n\beta}{\log(r)\alpha + \log(r)n\beta}$$
$$\frac{\log(r)\alpha + \log(r)n\beta}{\log(p)\alpha + \log(p)n\beta}$$

- Option 1:
  - MST broadcast in column
  - MST broadcast in rows
- Option 2:
  - Scatter in column
  - MST broadcast in rows
  - Allgather in columns
- Option 3:
  - Scatter in column
  - Scatter in rows
  - Allgather in rows
  - Allgather in columns

$$log(c)\frac{c-1}{c}n\beta$$

$$log(r)\alpha + log(r)\frac{n}{c}\beta$$

$$(c-1)\frac{c-1}{\alpha + \frac{c-1}{c}n\beta}$$

$$(log(p) + \frac{c-1}{c})\alpha + \frac{2c-1+log(r)}{c}n\beta$$

- Option 1:
  - MST broadcast in column
  - MST broadcast in rows
- Option 2:
  - Scatter in column
  - MST broadcast in rows
  - Allgather in columns
- Option 3:
  - Scatter in column
  - Scatter in rows
  - Allgather in rows
  - Allgather in columns

$$log(c)\alpha + \frac{c-1}{r} \frac{n\beta}{c}$$

$$log(r)\alpha + \frac{r-1}{r} \frac{n\beta}{\beta}$$

$$(r-1)\alpha + \frac{r-1}{r} \frac{n\beta}{c}$$

$$(c-1)\alpha + \frac{c-1}{c} \frac{n\beta}{\beta}$$

$$(log(p) + r + c - 2)\alpha + 2 \frac{p-1}{p} \frac{n\beta}{\beta}$$

- Option 1:
  - MST broadcast in column
  - MST broadcast in rows
- Option 2:
  - Scatter in column
  - MST broadcast in rows
  - Allgather in columns
- Option 3:
  - Scatter in column
  - Scatter in rows
  - Allgather in rows
  - Allğather in columns

$$log(p)\alpha + log(p)n\beta$$

$$(\log(p) + \frac{c-1}{c}\alpha + \left(\frac{2c-1+\log(r)}{c}\right)n\beta$$

$$(\log(p) + r + c - 2)\alpha + 2\frac{p-1}{p}n\beta$$

#### Summary and Question

- MST -> when alpha dominates
- Ring -> when n\*beta dominates
- 2D can be composed using 1D, 3D can be composed using 2D,

• • •

Latency / Bandwidth trade-offs

#### Recap

- Q1: Which collective primitive maps to the distributed SGD gradient synchronization step?
- Q2: How many messages do we need to transfer over the network for a single iteration of GPT-3 SGD update assuming 8-gpu parallelism?

Q3: For Q2, assuming 1D mesh, should we use MST or Ring?

#### Collective Pros

- A set of structured / well-defined communication primitives
- Extremely well-optimized
- Beautiful math, easy to analyze, and easy to understand its performance

#### Collective Cons

- Lack of Fault Tolerance
  - What if one node (in the ring) is dead?
- Requires Homogeneity
  - What if one node computes slower than all other nodes?
  - What if one link has lower bandwidth than the other node?

#### Real Cluster:

- Need Fault tolerance
- Heterogeneous hardware setup

#### Next Topics

- This week 2 classes: Data base + Cloud Storage
  - Delta from previous year offering:
    - we skip a substantial part of relational database
    - spend more time one networking, HPC, and ML

- Next week: Parallelism and Big Data processing
  - We will come back to study how we address the problem of Collectives