Jones Polynomial

Jaehoon Yoo

Department of Mathematics Sungkyunkwan University

August 5, 2023

Table of Contents

- 1 Knot and Link
- 2 Kauffman Bracket
- 3 Writhe
- 4 Jones Polynomial

Link

A link is simply a collection of (finitely-many) disjoint closed loops of string in \mathbb{R}^3 ; each loop is called a component of the link.

Knot

Knot and Link

A knot is a closed loop of string in \mathbb{R}^3 ; two knots are equivalent if one can be wiggled around, stretched, tangled and untangled until it coincides with the other. Cutting and rejoining is not allowed.

Knot

Knot and Link

Isotopic

Isotopy is a homotopy H such that for each fixed t, H(x,t) gives an embedding.

Figure: Isotopic

Figure: Isotopic

We have many different diagrams of the same knot! Example)

Mirror-image

Knot and Link 00000000

(a) Left Trefoil

(b) Right Trefiol

Figure: Mirror images of Trefoils

Definition

The Kauffman bracket polynomial of an unoriented link diagram D is a Laurent polynomial $\langle D \rangle \in \mathbb{Z}\left[A^{\pm 1}\right]$, defined by the following recursive rules.

SKKU

- 1 It is invariant under planar isotopy of diagrams.
- Skein relation

$$\langle \langle \sum_{j} \rangle \rangle = A \langle \langle \sum_{j} \rangle \rangle + A^{-1} \langle \langle \sum_{j} \rangle \rangle$$

- 3 $\langle D \sqcup U \rangle = (-A^2 A^{-2}) \langle D \rangle$ where U is any closed crossingless loop in the diagram.
- $\langle U \rangle = 1$ and $\langle \emptyset \rangle = 1$

Example)

1 Unlink

Kauffman bracket example

Example)

- 1 Unlink
- 2 Left Trefoil

Kauffman bracket example

Example)

- Unlink
- 2 Left Trefoil

$$\langle \bigodot \rangle = A \langle \bigodot \rangle + A^{-1} \langle \bigodot \rangle.$$

$$= A \left\{ A \langle \bigodot \rangle \rangle + A^{-1} \langle \bigodot \rangle \right\} + A^{-1} \left\{ A \langle \bigodot \rangle \rangle + A^{-1} \langle \bigodot \rangle \right\}$$

$$= A^{2} (-A^{2} - A^{-2}) \langle \bigodot \rangle + 1. \langle \bigodot \rangle \rangle + 1. \langle \bigodot \rangle \rangle + A^{-2} \langle \bigodot \rangle.$$

$$= (-A^{4} + 1)(-A^{3}) + A^{-2}(-A^{-3}) = A^{7} - A^{3} - A^{-5}.$$

The Kauffman bracket can be expressed by the explicit state-sum formula

$$\langle D \rangle = \sum_{s} \langle D|_{s} \rangle$$

where s runs over all states of D, and

$$\langle D|_s \rangle = A^{\sum_s} \left(-A^2 - A^{-2} \right)^{|s(D)|-1}$$

State

State

A state s of a diagram D is an assignment of either +1 or -1 to each crossing. Form a new diagram sD by resolving or splitting the crossings of D.

State

A state s of a diagram D is an assignment of either +1 or -1 to each crossing. Form a new diagram sD by resolving or splitting the crossings of D.

|sD|

Thus, sD is a crossingless diagram, |sD| that number of the disjoint loops.

State

A state s of a diagram D is an assignment of either +1 or -1 to each crossing. Form a new diagram sD by resolving or splitting the crossings of D.

|sD|

Thus, sD is a crossingless diagram, |sD| that number of the disjoint loops.

$\sum s$

For a state s, let $\sum s$ denote the sume of its values.

Appling the formula

Right Trefoil

Appling the formula

Right Trefoil

$$A^{3}(-A^{2}-A^{-2}) + A + A + A^{-1}(-A^{2}-A^{2}) + A + A^{-1}(-A^{2}-A^{-2}) + A^{-1}(-A^{2}-A^{-2}) + A^{-1}(-A^{2}-A^{-2}) + A^{-3}(-A^{2}-A^{-2})^{2} = -A^{5} + A^{-3} + A^{-7}$$
 We can see the mirror images through the Kauffman bracket.

Skein Relation

Is it invariant under the Reidemeister moves?

Is it invariant under the Reidemeister moves?

$$\langle (\bigwedge^{\backprime} \bigvee^{\backprime}) \rangle = A^2 \langle (\bigwedge^{\backprime} \bigvee^{\backprime}) \rangle + \langle (\bigwedge^{\backprime} \bigvee^{\backprime}) \rangle + \langle (\bigwedge^{\backprime} \bigvee^{\backprime}) \rangle + A^{-2} \langle (\bigwedge^{\backprime} \bigvee^{\backprime}) \rangle = \langle (\bigvee^{\backprime} \bigvee^{\lor}) \rangle = \langle (\bigvee^{\backprime} \bigvee^{\backprime}) \rangle = \langle (\bigvee^{\backprime} \bigvee^{\lor$$

Writhe

Skein Relation

Is it invariant under the Reidemeister moves?

Writhe

Skein Relation

Is it invariant under the Reidemeister moves?

$$\langle (\bigvee) \rangle = A^2 \langle (\bigvee) \rangle + A^{-2} \langle (\bigvee) \rangle + A^{-2} \langle (\bigvee) \rangle = \langle (\bigvee) \rangle$$

$$\langle (\bigvee) \rangle = A \langle (\bigvee) \rangle + A^{-1} \langle (\bigvee) \rangle + A^{-1} \langle (\bigvee) \rangle = A \langle (\bigvee) \rangle$$

The Kauffman bracket is invariant under R2 and R3.

$$\langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle = A \langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} + A^{-1} \langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle = (-A^{3}) \langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle$$

$$\langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle = A \langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle + A^{-1} \langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle = (-A^{-3}) \langle \underbrace{(\bigcap_{j} \bigcap_{l} A)}_{l} \rangle$$

Definition

If D is an oriented link diagram, then the writhe w(D) is just the sum of the signs of all crossings of D.

$$w(\frac{1}{2}) = w(\frac{1}{2}) - 1$$
 $w(\frac{1}{2}) = w(\frac{1}{2}) + 1$

The *writhe* of an oriented link diagram is invariant under R2, R3 but changes by ± 1 under R1.

Writhe and Reidemeister move

The writhe of an oriented link diagram is invariant under R2, R3 but changes by ± 1 under R1.

Invariant of oriented links

The polynomial $f_D(A) = (-A^3)^{-w(D)} \langle D \rangle$ is invariant under all three Reidemester moves.

Proof.

Certainly it is invariant under R2, R3 since both the writhe and bracket are. All that remains is R1. If a diagram D is altered by the addition of a positive kink somewhere, then its Kauffman bracket multiplies by $(-A^3)$ and its writhe increases by 1; therefore $f_D(A)$ is unchanged. Similarly for the negative kink case.

The Jones polynomial $V_L(t)$ of an oriented link L is the polynomial obtained by computing $f_D(A) = (-A^3)^{-w(D)} < D >$ for any diagram D of L, and the substituting $A = t^{-1/4}$.

Skein Relation

The Jones Polynomial satisfies

- 1 It is an invariant of oriented links lying in $\mathbb{Z}[t^{\pm 1/2}]$.
- 2 The Jones polynomial of the unknot is 1.
- There is a skein relation

$$t^{-1}V(L_{+}) - tV(L_{-}) = (t^{1/2} - t^{-1/2})V(L_{0})$$

1 $V(U_2)$

SKKU

- 1 $V(U_2)$
- $V(H_{+})$

- - 1 $V(U_2)$
 - $V(H_{+})$
 - 3 right-handed trefoil

Left-handed trefoil
$$V(T_L) = -t^{-4} + t^{-3} + t^{-1}$$

Left-handed trefoil $V(T_L) = -t^{-4} + t^{-3} + t^{-1}$

Distinct from its mirror-image

The *Jones polynomial* of the mirror-image \bar{L} of an oriented link L is the conjugate under $t \leftrightarrow t^{-1}$ of the polynomial of L.

$$V_{\bar{L}}(t) = V_L(t^{-1})$$

Characterisation

Suppose I is a $\mathbb{Z}[t^{\pm 1/2}]$ -valued function of oriented links which satisfies

- Isotopy invariance it is an invariant of oriented links.
- 2 The Jones skein relation $t^{-1}I(L_+) tI(L_-) = (t^{1/2} t^{-1/2})I(L_0).$
- **3** The normalisation I(U) = 1.

Then I(L) = V(L) for all oriented links L.

Tait Conjecture

Tait conjecture

Any reduced diagram of an alternating link has the fewest possible crossings.

Unknotting problem

The unknot is the unique knot K with V(K) = 1.

Conjectures

Unknotting problem

The unknot is the unique knot K with V(K) = 1.

Volume Conjecture

https://en.wikipedia.org/wiki/Volume_conjecture

SKKU

Khobanov Homology

Categorification of the Jones polynomial

Others

- Alexander Polynomial
- Knot Floer Homology
- etc

- [1] URL https://knotplot.com/zoo/.
- [2] URL https://mathweb.ucsd.edu/~justin/ Roberts-Knotes-Jan2015.pdf.

