Exercise sheet 2

Descriptive Set Theory

Academic year 2023-24

1. Prove that the map

$$\omega^{\omega} \to 2^{\omega}, \qquad x \mapsto \underbrace{0 \dots 0}_{x(0)} 1 \underbrace{0 \dots 0}_{x(1)} 1 \underbrace{0 \dots 0}_{x(2)} 1 \dots$$

is a (topological) embedding, and argue that this provides an alternative proof of the fact that

$$\{x \in 2^{\omega} \mid x(n) = 1 \text{ for infinitely many } n \in \omega\}$$

is a dense Polish subspace of 2^{ω} . In contrast, show that 2^{ω} cannot be embedded as a dense subset in ω^{ω} .

[Hint. Use compactness.]

- 2. A set $A \subseteq \omega^{\omega}$ is **bounded** if there is $z \in \omega^{\omega}$ such that for all $x \in A$ we have $x(n) \leq z(n)$ for all $n \in \omega$. Prove that the following conditions are equivalent for an arbitrary $F \subseteq \omega^{\omega}$:
 - (a) F is compact;
 - (b) F is closed and bounded;
 - (c) F = [T] with T a finitely branching tree (i.e. every node in T has only finitely many successors).

Conclude that $A \subseteq \omega^{\omega}$ is contained in a compact set (equivalently, has compact closure) if and only A is bounded, and therefore ω^{ω} is not locally compact.

3. A subset of a topological space is σ -compact (or K_{σ}) if it can be written as a countable union of compact spaces. (For example, finite-dimensional Euclidean spaces \mathbb{R}^n are σ -compact.) A set A is **eventually bounded** if there is $z \in \omega^{\omega}$ such that for all $x \in A$ there is $n \in \omega$ for which $x(m) \leq z(m)$ for all $m \geq n$. Prove that the following conditions are equivalent for an arbitrary $A \subseteq \omega^{\omega}$:

- (a) A is contained in a σ -compact set;
- (b) A is eventually bounded.

Conclude that $F \subseteq \omega^{\omega}$ is a σ -compact set if and only if it is F_{σ} and eventually bounded, and that ω^{ω} is not σ -compact. Provide an explicit example of a subset of the Baire space which is σ -compact but not compact. Argue¹ that ω^{ω} cannot be embedded as an F_{σ} (so neither closed) set into a σ -compact Polish space like \mathbb{R}^n .

4. Show that for every nonempty Polish space X there is a continuous open surjection $f: \omega^{\omega} \to X$.

[Hint. First show that if X is a metric space, then for every open U and every $\varepsilon \in \mathbb{R}^+$ there is a countable covering $(U_n)_{n \in \omega}$ of U such that $\operatorname{cl}(U_n) \subseteq U$ and $\operatorname{diam}(U_n) < \varepsilon$, for all $n \in \omega$. Use this to build an appropriate ω -scheme inducing the function f.]

5. Recall the notion of Cantor-Bendixson rank of a Polish space from Section 1.4 in the notes for the course. For each ordinal $\alpha < \omega_1$, provide an example of a Polish space X with Cantor-Bendixson rank α . (Optional: show that such an X can always be taken as a countable space, and that if α is a successor ordinal than X can be taken to be compact.)

[Hint. To geometrically visualize the problem it is easier to work in \mathbb{R}^2 . Use a construction by transfinite recursion over α . The cases $\alpha = 0, 1$ are easy. For $\alpha = 2$ consider $X = \{x\} \cup \{x_n \mid n \in \omega\}$ with $x_n \to x$ and all x_n isolated. This suggest the strategy when $\alpha = \beta + 1$ is successor: consider a sequence of spaces of Cantor-Bendixson rank β and construe them as a sequence of spaces accumulating towards a point. For limit cases, consider the (disjoint) sum of spaces with Cantor-Bendixson rank cofinal in α .]

¹This is half of Hurewicz's Theorem 1.3.19 on the notes. Modulo the homeomorphism between ω^{ω} and Irr, it also provides an alternative proof of the fact that the space Irr of irrational numbers is G_{δ} but not F_{σ} as a subset of \mathbb{R} .