AE504: Homework Assignment 2

Alex Faustino

March 29, 2019

Problem 1. Consider the state space $S = \{s^1, s^2, s^3, s^4\}$ and action set $A = \{a^1, a^2\}$. Notation $(s, a) \to (s'; R)$ will denote that applying action a at state s results in the system transitioning to state s' at the next time step, while collecting the reward R. The transitions and rewards are as follows:

$$(s^{1}, a^{1}) \rightarrow (s^{4}; 4), \quad (s^{1}, a^{2}) \rightarrow (s^{2}; 6),$$

 $(s^{2}, a^{1}) \rightarrow (s^{2}; 3), \quad (s^{2}, a^{2}) \rightarrow (s^{3}; 7),$
 $(s^{3}, a^{1}) \rightarrow (s^{1}; 2), \quad (s^{3}, a^{2}) \rightarrow (s^{1}; 5),$
 $(s^{4}, a^{1}) \rightarrow (s^{3}; 1), \quad (s^{4}, a^{2}) \rightarrow (s^{1}; 4).$

The initial state of the system is $s_0 = s^1$. Determine the optimal control policy (i.e., optimal path) that maximizes $\sum_{t=0}^{6} R(s_t, a_t)$, if the system is required to satisfy $s_1 = s_3 = s_6 = s^2$.

Solution: Looking at the graph of the system in Figure 1 it is clear that the constraint on initial condition, $s_0 = s^1$, and the transient condition, $s_1 = s^2$, gives $a_0 = a^2$. Additionally, if $s_3 = s^2$ then $a_1 = a_2 = a^1$ since a choice of $a_1 = a^2$ would result in a s_2 where achieving $s_3 = s^2$ is impossible. Lastly, because $s_6 = s^2$ we know that $a_6 = a_2$ since this is the maximum reward that can be attained from s^2 . Therefore, we can simplify the original problem to:

$$\max_{a} \sum_{t=3}^{5} R(s_t, a_t)$$

where $s_3 = s_6 = s^2$. Again from Figure 1 we can see there are three possible sequences of (s_t, a_t) that satisfy our constraints, $\{(s^2, a^1), (s^2, a^1), (s^2, a^1)\}$, $\{(s^2, a^2), (s^3, a^1), (s^1, a^2)\}$, and $\{(s^2, a^2), (s^3, a^2), (s^1, a^2)\}$. The total reward from each sequence is 9, 15, and 18 respectively. Therefore, the optimal control policy is $A^* = \{a^2, a^1, a^1, a^2, a^2, a^2, a^2\}$.

Figure 1: Graphical deposition of the state and action space described in Problem 1. Blue lines represent a^1 and red represent a^2 with their associated rewards, R.

Problem 2. Let S be a finite state space, A a finite action set, and $f: S \times A \to S$ a transition function for a discrete-time control system with initial state $s_0 \in S$. Let $\overline{R} \geq 0$, and let $R: S \times A \to [0, \overline{R}]$ describe the rewards attained for each transition (note — every reward is nonnegative, but no greater than \overline{R}).

It is clear that $\max_{T\geq 0} V^T(s_0)$ does not need to exist: the longer the run, the system may collect more and more rewards. However, show that

$$\max_{T>0} \left(V^T(s_0) - T^2 \right)$$

does exist (and does not equal $+\infty$).

Solution: By listing the possible values of $V^T(s_0)$ for different T: $V^0(s_0) = [0, \overline{R}]$, $V^1(s_0) = [0, \overline{2R}]$, $V^2(s_0) = [0, \overline{3R}]$, etc.. It's clear that the maximum value $V^T(s_0)$ can take on for any T is $(T+1)\overline{R}$. We can then rewrite

$$\max_{T\geq 0} \left(V^T(s_0) - T^2 \right) \to \max_{T\geq 0} \left(-T^2 + \overline{R}T + \overline{R} \right)$$

which is a simple quadratic function of T. We can then use the first and second derivative test to find and confirm the global maximum.

$$\frac{d}{dT}\left(-T^2 + \overline{R}T + \overline{R}\right) = -2T + \overline{R}$$

$$\frac{d^2}{dT^2} \left(-T^2 + \overline{R}T + \overline{R} \right) = -2$$

It's clear then that there exists a global maximizer at $T = \frac{\overline{R}}{2}$ and the global maximum is $\frac{1}{4}\overline{R} + \overline{R}$.

Problem 3. One model of the Boeing 747 longitudinal dynamics is given by

$$\begin{pmatrix} u_{t+1} \\ w_{t+1} \\ q_{t+1} \\ \theta_{t+1} \end{pmatrix} = \begin{pmatrix} 0.994 & 0.026 & 0 & -32.2 \\ -0.094 & 0.376 & 820 & 0 \\ 0 & -0.002 & 0.332 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_t \\ w_t \\ q_t \\ \theta_t \end{pmatrix} + \begin{pmatrix} 0 \\ -32.7 \\ -2.08 \\ 0 \end{pmatrix} \delta_t,$$

where u is the difference from the aircraft's nominal horizontal velocity, w its vertical velocity, q its pitch rate, θ its pitch angle, and δ the deflection from the neutral elevator position (in units of rad, ft, and sec, as appropriate).

The initial state of the aircraft at time t = 0 is (0, 100, 0, 0.4).

- (a) Find the control inputs $(\delta_0, \ldots, \delta_9)$ that minimize $\sum_{t=0}^{10} w_t^2$. Note that you need to find the actual control inputs, which are real numbers, not just their relationship to the system state.
- (b) Discuss why the inputs in (a) are not realistic to apply on an aircraft.
- (c) Propose how the problem in (a) could be modified in such a way that the solution would generate more realistic inputs, while still aiming to minimize the aircraft's vertical speed.

Solution: (a) We can find the control inputs using the standard discrete LQR finite time horizon formula where

$$\delta_t = F_t x_t$$

$$F_t = -\left(R + B^T P_{t+1} B\right)^{-1} B^T P_{t+1} A \tag{1}$$

$$P_{t} = A^{T} P_{t+1} A - A^{T} P_{t+1} B \left(R + B^{T} P_{t+1} B \right)^{-1} B^{T} P_{t+1} A + Q \qquad (2)$$

and $P_N = Q_N = Q$. To obtain the given cost function, $\sum_{t=0}^{10} w_t^2$, from the standard, $\sum_{t=0}^{10} x_t^T Q x_t + \delta_t^T R \delta_t$ we choose

When we solve the first recursive step we immediately see that the first two terms of (2) cancel and P = Q for all t. This means that F is also constant for all t so we can easily find all of our δ_t by marching our state space system forward through time. $\delta_t = \{1.15, -64.96, 3367, -1.745e+05, -1.745e+05, -4.687e+08, 2.429e+10, -1.259e+12, 6.525e+13, -3.382e+15\}$

- (b) These inputs are unrealistic because their magnitudes are ridiculously beyond feasible bounds for elevator deflection.
- (c) More realistic inputs can be achieved by increasing the value of R so that the cost function considers the magnitude of commanded inputs as well, $\sum_{t=0}^{10} w_t^2 + u_t^2$.

Problem 4. Consider the following discrete-time control system (traditionally known as double integrator):

$$\begin{pmatrix} x_{t+1,1} \\ x_{t+1,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{t,1} \\ x_{t,2} \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u_t.$$

The initial state of the system is (0,1) at time t=0. Find any control input (u_0, u_1) which minimizes $x_{2,2}^2$.

(Do not be discouraged if the usual formulae for the LQR method that we used in class don't work, as all matrices Q, Q_N, R are "heavily nonregular". This is a feature, not a bug.)

Solution: We begin by attempting to solve this identically to Problem 3 except here

$$Q = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

This approach immediately leads to an issue when attempting to solve the first recursive step of (1) since $R + B^T P_2 B$ evaluates to 0 and 0^{-1} is undefined. However, we can take the Moore-Penrose inverse where $0^+ = 0$ then find that $F_1 = 0$ and subsequently that $u_1 = 0$. We can then carry on solving LQR in the standard way and we find that the control input $u_t = \{-1, 0\}$ successfully minimizes $x_{2,2}^2$.