title

Nafiz Imtiaz, Abrar Fahim, S. S. Somik First 2 slides contain sample blocks, columns and stuff

Remark

in block

important theorem

in alertblock

Examples

in users block

text in frame this is alert

columns

Nafiz Imtiaz, Abrar Fahim, S. S. Somik

text in first column

$$E = mc^2$$

text in second column

- first item
- hello there

Real World Applications

Nafiz Imtiaz, Abrar Fahim, S. S. Somik

Maximum Bipartite Matching CSE 300 Presentation

Nafiz Imtiaz, Abrar Fahim, S. S. Somik

Department of CSE, BUET, Dhaka 1000, Bangladesh

September 5, 2019

Bipartite Graph Definition

Nafiz Imtiaz, Abrar Fahim, S. S. Somik

1

Maximum Matching

Max Flow Problem Overview

Relating Max Flow Problem with Maximum Matching

Max Flow problem Algorithm

Nafiz Imtiaz, Abrar Fahim, S. S. Somik

solving max flow using ford fulkerson takes O(ef*) time, where f* = max flow, but in our problem, f* = n = no of vertices and no of edges = m + 2n, m = no of edges in bipartite graph and 2n edges are added later to convert the problem into max flow problem. So running time

$$= O((m+2n)n) = O(mn+n^2) = O(mn)$$

- but, we can use a simpler way to solve this since edges are unweighted, although we get same time complexity
- even simpler way is a recursive way which is shown as "Alternative approach" in the fancy slides from the internet

Solving Main Problem

Time Complexity

Alternate solutions

References