FMI, Info, Anul I

Logică matematică și computațională

Seminar 2

- (S2.1) Confirmați sau infirmați:
 - (i) pentru orice φ , $\psi \in Form$, $\vDash \varphi \land \psi$ dacă şi numai dacă $\vDash \varphi$ şi $\vDash \psi$;
 - (ii) pentru orice $\varphi, \psi \in Form, \vDash \varphi \lor \psi$ dacă şi numai dacă $\vDash \varphi$ sau $\vDash \psi$.
- (S2.2) Să se aducă următoarele formule la cele două forme normale prin transformări sintactice:
 - (i) $((v_0 \to v_1) \land v_1) \to v_0$;
 - (ii) $(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3)$.
- (S2.3) Să se aducă formula $\varphi = (v_0 \to v_1) \to v_2$ la cele două forme normale trecându-se prin funcția booleană asociată (i.e. metoda tabelului).
- (S2.4) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:
 - (i) $\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\};$
 - (ii) $\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$
- (S2.5) Să se determine mulțimea $Res(C_1, C_2)$ în fiecare dintre următoarele cazuri:
 - (i) $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$
 - (ii) $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$
- (iii) $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$
- (S2.6) Derivați prin rezoluție clauza $C := \{v_0, \neg v_2, v_3\}$ din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$