Fall 2019

Graphs - Part:2

CMPE 250 - Data Structures & Algorithms

Presenter: Meriç Turan

Outline

- Depth-First Search (DFS)
- Dijkstra's Algorithm
- Prim's Minimum Spanning Tree (MST)

DFS DEMO

Dijkstra's Algorithm

Figure: A directed graph (v₁ is source).

Graphs - Part:2

Dijkstra's Algorithm

ν	known	d_{ν}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
ν ₃	F	∞	0
ν ₄	F	∞	0
v ₅	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

Initial configuration table

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
ν ₃	F	∞	0
ν ₄	F	1	ν_1
ν ₅	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

After v₁ is declared known

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
v_3	F	3	v_4
ν ₄	T	1	v_1
v ₅	F	3	ν ₄
ν ₆	F	9	ν ₄
ν ₇	F	5	ν ₄

After v₄ is declared known

Graphs - Part:2

Dijkstra's Algorithm

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
ν ₃	F	3	ν ₄
ν ₄	T	1	v_1
v ₅	F	3	ν ₄
v_6	F	9	v_4
ν ₇	F	5	v_4

After v₂ is declared known

ν	known	d_{v}	p_{ν}
ν_1	T	0	0
v_2	T	2	v_1
ν ₃	T	3	ν ₄
ν ₄	T	1	v_1
v_5	T	3	v_4
v_6	F	8	ν ₃
ν ₇	F	5	ν ₄

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	ν_1
v_3	T	3	v_4
ν ₄	T	1	ν_1
ν ₅	T	3	ν4
v_6	F	6	ν ₇
ν ₇	T	5	ν4

After v₇ is declared known

After v_5 and v_3 is declared known

Dijkstra's Algorithm

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
ν_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
ν ₅	T	3	ν ₄
ν ₆	T	6	ν ₇
ν ₇	T	5	ν ₄

After v₆ is declared known, and algorithm terminates

DIJKSTRA DEMO

Minimum Spanning Tree

Figure: A graph G and its minimum spanning tree.

- One way to compute a minimum spanning tree is to grow the tree in successive stages.
- In each stage, one node is picked as root, and we add an edge, and thus an associated vertex, to the tree.
- At any point in the algorithm, we can see that we have a set of vertices that have already been included in the tree; the rest of the vertices have not.
- The algorithm then finds, at each stage, a new vertex to add to the tree by choosing the edge (u, v) such that the cost of (u, v) is the smallest among all edges where u is in the tree and v is not.
- In each step, one edge and one vertex is added to the tree.

Figure: Prim's algorithm after each step.

- We can see that Prim's algorithm is essentially identical to Dijkstra's algorithm for shortest paths.
- As before, for each vertex we keep values d_v and p_v and an indication of whether it is known or unknown.
- d_v is the weight of the shortest edge connecting v to a known vertex, and p_v , as before, is the last vertex to cause a change in d_v .
- Rest of the algorithm is exactly the same, with the exception that since the definition of d_{ν} is different, so is the update rule.
- For this problem, update rule is even simpler than before: After a vertex, v, is selected, for each unknown w adjacent to v, $d_w = \min(d_w, c_{w,v})$.

ν	known	d_{ν}	p_{ν}
v_1	F	0	0
ν_2	F	∞	0
ν ₃	F	∞	0
ν ₄	F	∞	0
ν ₅	F	∞	0
v_6	F	∞	0
ν_7	F	∞	0

Initial configuration table

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
ν_2	F	2	v_1
ν ₃	F	4	ν_1
ν ₄	F	1	v_1
ν ₅	F	∞	0
v_6	F	∞	0
ν ₇	F	∞	0

ν	known	d_{v}	p_{ν}
ν_1	T	0	0
v_2	F	2	v_1
ν ₃	F	2	ν ₄
ν ₄	T	1	ν_1
V 5	F	7	ν4
v_6	F	8	ν ₄
ν ₇	F	4	ν ₄

After v4 is declared known

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
ν ₃	T	2	ν ₄
ν ₄	T	1	v_1
ν ₅	F	7	ν ₄
ν ₆	F	5	ν ₃
ν ₇	F	4	ν ₄

After v₂ and v₃ is declared known

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
ν ₃	T	2	ν ₄
ν ₄	T	1	v_1
ν ₅	F	6	ν ₇
v_6	F	1	ν ₇
ν_7	T	4	ν ₄

ν	known	d_{ν}	p_{ν}
ν_1	T	0	0
v_2	T	2	v_1
ν ₃	T	2	ν ₄
ν ₄	T	1	v_1
ν ₅	T	6	ν7
v_6	T	1	ν_7
ν_7	T	4	ν_4

After v_6 and v_5 is declared known, and Prim's algorithm terminates

- Edges in the spanning tree can be read from the table:
 - (v2, v1), (v3, v4), (v4, v1), (v5, v7), (v6, v7), (v7, v4).
 - Total cost is 16.
- Entire implementation of this algorithm is virtually identical to that of Dijkstra's algorithm, and everything that was said about the analysis of Dijkstra's algorithm applies here.
- Be aware that Prim's algorithm runs on undirected graphs, so when coding it, remember to put every edge in two adjacency lists.
- Running time is O(IVI²) without heaps, which is optimal for dense graphs, and O(IEI log IVI) using binary heaps, which is good for sparse graphs.

PRIM'S MST DEMO