Lecture 5

Effect of Substituents on Orientation in S_EAr

Dr Andrea Vernall
andrea.vernall@otago.ac.nz

Reference textbook

- "Organic Chemistry" by Paula Yurkanis Bruice, 8th Edn.
- This lecture Chapter 18, in particular 18.13, 18.14, 18.15

<u>Learning Objectives – Lecture 5</u>

Section 2- Substituted benzenes and electrophilic aromatic substitution

Describe and account for the differences in how an electron-donating (+I or +M) or weakly deactivating substituent affects the reactivity of different positions relative to it (ortho-, meta- and para-) in the aromatic ring towards electrophilic aromatic substitution.

Describe and account for the differences in how an electron-withdrawing (-I or -M) substituent affects the reactivity of different positions relative to it (ortho-, meta- and para-) in the aromatic ring towards electrophilic aromatic substitution

Appreciate that the overall directing and reactivity effects of some substituents (e.g. halogens) may be based on some combination of opposing inductive and mesomeric effects

Understand that steric effects also play a part in determining the relative reactivity of the different sites in an aromatic ring

Predict and account for the effects of common substituents on the chemical shifts of aromatic protons in 1H NMR spectra of substituted benzene derivatives

Lecture Outline: L5

- 1. Introduction
- 2. Electron Donating Substituents
- 3. Electron Withdrawing Substituents
- 4. Steric considerations
- 5. Mixed examples

1. Introduction

When substituted benzenes react with electrophiles where does the new substituent attach?

- All activating and weakly deactivating (the halogens) substituents direct E⁺ to the ortho and para positions.
- All other deactivating groups direct E⁺ to the meta position.

1. Introduction - Table from Lecture 4

(refer to Table 18.1 page 923)

Strongly Activating towards S_EAr

$-NH_2$	Ortho/Para	+M >> -I
-NHR	Ortho/Para	+M>> -I
$-NR_2$	Ortho/Para	+M >> -I
−OH	Ortho/Para	+M >> -I
−OR	Ortho/Para	+M>> -I

Activating towards S_EAr

-NHCOR (amide)	Ortho/Para	+M > -I
—OCOR (ester)	Ortho/Para	+M > -I
—Alkyl	Ortho/Para	+I

1. Introduction - Table from Lecture 4

(refer to Table 18.1 page 923)

Weakly Deactivating towards S_EAr

-F, -Cl, -Br, -I

Ortho/Para

-I > +M

Deactivating towards S_EAr

—COH (aldehyde)

Meta

-I, -M

—COR (ketone)

Meta

-I, -M

-COOR (ester)

Meta

-I, -M

-COOH (acid)

Meta

-I, -M

—COCl (acid chloride)

Meta

-I, -M

Strongly Deactivating towards S_EAr

 $-NO_2$

Meta

-I, -M

-CN

Meta

-I, -M

 $-SO_3H$

Meta

-I, -M

 $-NH_3^+$

Meta

strong –I

 $-NR_3^+$

Meta

strong –I

- Recall from Lecture 4, +I and +M substituents activate the Ar ring to S_FAr and speed up the S_FAr reaction (relative to 'S' being H)
- But what relative ring position(s) is more activated than others?

Methylbenzene (toluene), the CH₃ group is inductively donating (+I)

Methylbenzene (toluene), the CH₃ group is inductively donating (+I)

Consider *meta* attack

Consider *para* attack

Methylbenzene (toluene), the CH₃ group is inductively donating (+I)

- Conclusion S_EAr with a +I substituent present directs to ortho and para E+ reaction as these have more stable intermediates than that of meta.
- The transition states leading to their formation are lower in energy.
- Thus $\triangle E_a$ is smaller
- Hence the ortho and para products are formed faster.

Now you can fully explain your lab 1 results!

Methoxybenzene is mesomerically electron donating (+M) (+M > -I)

Consider *ortho* attack

Methoxybenzene is mesomerically electron donating (+M) (+M > -I)

Consider *meta* attack

Methoxybenzene is mesomerically electron donating (+M) (+M > -I)

Consider *para* attack

Methoxybenzene is mesomerically electron donating (+M) (+M > -I)

- Both *ortho* and *para* substitution have an 'extra' **very stable intermediate** while *meta* does not.
- Therefore +M substituents are ortho, para directing

Methoxybenzene is mesomerically electron donating (+M) (+M > -I)

- Now with an activating substituent a less reactive E+ can sometimes be used...
- Recall to brominate benzene, bromine had to be turned into a better E+

But bromination of methoxybenzene is fast and occurs without a catalyst

- Recall from Lecture 4, -I and -M substituents deactivate the Ar ring to S_EAr and slow down the S_EAr reaction (relative to 'S' being H)
- But what relative ring position(s) is more activated than others?

An anilinium ion (protonated analine) is strongly inductively withdrawing (-I)

Consider *ortho* attack

An anilinium ion (protonated analine) is strongly inductively withdrawing (-I)

Consider *meta* attack

Consider *para* attack

All -M substituents are also all -I

Consider *ortho* attack

- S_FAr para substitution results in **similar high energy contributors**.
- However, the meta pathway does not.
- Thus -M substituents are meta directing.

All –M substituents are also all -I

e.g. Nitration of nitrobenzene, NO₂ group is deactivating and meta directing

$$HNO_2$$
 HNO_3
 H_2SO_4
 NO_2

The rate is 10⁻⁴ slower than that of benzene. Forcing conditions are required.

Much more forcing nitration conditions will result in possibly tri-nitro products. But since each nitro group is deactivating the rates of these further substitution reactions is even slower.

Does this also explain why di-NO₂ products were not formed in lab 1....?

All –M substituents are also all -I

- Friedel Crafts acylation and alkylation are the slowest of the S_EAr's
- If a benzene ring has a moderate or strongly deactivating group a Friedel Crafts reaction will not even occur

3. Electron withdrawing substituents - halogens

- Halogens are an interesting case, although electron withdrawing (-I) and classified as weakly deactivating for S_EAr are o/p directing
 ... why?
- Weakly deactivating just means S_EAr is comparatively slower to if an 'H' was the substituent instead.
- Halogens are the only 'deactivating' group that is NOT meta directing, instead o/p

4. Steric considerations

 Often with small sized substituents the products are the expected statistical ratio based on activation/deactivation of o, m, p positions

But if the substituent is LARGE the para position is favoured, steric factors

5. Mixed examples

- What about a phenyl with 2 substituents?
- This may be additive or opposing in 'directing' and 'activating' aspects.

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ Br & HNO_3/H_2SO_4 & Br \\ \hline \\ Br & Br \\ \end{array}$$

3-bromo-4-nitrotoluene

5-bromo-2-nitrotoluene

Methyl and bromo groups direct to their *o* and *p* positions

e.g. "ortho to bromo" "ortho to methyl", specify o, m, or p in relation to something...

5. Mixed examples

 If two groups direct to different positions the group with the stronger activating properties wins.

$$\begin{array}{c} CH_3 \\ \hline \\ OMe \end{array}$$

The methoxy +M effect (strongly activating) is much greater than the alkyl +l effect (activating)