PES University, Bangalore

Established under Karnataka Act No. 16 of 2013

UE20CS312 - Data Analytics - Worksheet 2a - Simple Linear Regression

Dept. of CSE, Ishita Bharadwaj - PES1UG20CS648 Collaborated with Hita - PES1UG20CS645

Simple Linear Regression

Simple linear regression is a statistical technique for finding the existence of an association relationship between a dependent variable and an independent variable.

Data reading

library(ggplot2) dragon_neurons <- read.csv('dragon_neurons.csv')</pre>

5

```
head(dragon_neurons)
    X axon_diameter conduction_velocity X.1
```

1 0 72 4.541130 NA ## 2 1 4.275300 NA 74 ## 3 2 4.912093 NA

4 3 2.872806 NA 2.395194 NA ## 6 5 65 5.120160 NA

Solution 1 Find if a linear model is appropriate for representing the relationship between the conduction velocity (response variable) and axon diameter (explanatory variable) by finding the OLS solution. Print out the slope and the coefficient. Plot the OLS best-fit line of the model (Hint: use the ggplot library).

1m - linear model ols.lm<-lm(formula=conduction_velocity ~ axon_diameter, data=dragon_neurons)</pre> ggplot(dragon_neurons, aes(x=axon_diameter, y=conduction_velocity)) +geom_point() + geom_smooth(method='lm', se=F ALSE)

conduction_velocity 25 50 75 100 axon_diameter print(ols.lm) ## ## Call: ## lm(formula = conduction_velocity ~ axon_diameter, data = dragon_neurons) ## Coefficients: (Intercept) axon_diameter

2.98761 0.02475 The OLS for the the linear model between the conduction velocity and axon diameter is plotted above. The slope for the model is 0.02475 and the intercept is 2.98761. This Linear model has a slight non-uniformity in the spread of data points about the best fit line which can't be explained. Thus, I have explored other functional forms in search of a model which produces uniform variance about the best fit line.

Linear Model ols.lm<-lm(formula=conduction_velocity ~ axon_diameter, data=dragon_neurons)</pre> ols.lm

Plot the residuals of the model. Do the residuals look like white noise? If they do not, try to find a suitable functional form (hint: try transforming

Call:

##

##

5 -

Solution 2

either x or y using natural-log or squares).

lm(formula = conduction_velocity ~ axon_diameter, data = dragon_neurons) ## Coefficients: (Intercept) axon_diameter

 $ggplot(dragon_neurons, aes(x=axon_diameter, y=conduction_velocity)) + geom_point() + geom_smooth(method='lm', se=F)$

2.98761

0.02475

$geom_smooth()$ using formula 'y ~ x'

conduction_velocity

0 0

0

20

40

dragon_neurons\$log_axon_diameter<-log(dragon_neurons\$axon_diameter)</pre>

(Intercept) log_axon_diameter

0.5467

dragon_neurons\$log_conduction_velocity<-log(dragon_neurons\$conduction_velocity)</pre>

ols.lm.log<-lm(formula=log_conduction_velocity ~ log_axon_diameter, data=dragon_neurons)

lm(formula = log_conduction_velocity ~ log_axon_diameter, data = dragon_neurons)

0.2370

2 Ó.

ols.lm.log

Call:

Coefficients:

##

##

1.00 -

ols.res.log<-resid(ols.lm.log)</pre>

plot(dragon_neurons)

garithmic Model')

abline(0,0)

##

##

1.75 -

log_conduction_velocity

1.00 -

##

##

5

10 ## 46 ## 61

cell above.

summary(ols.lm)

Residuals:

Coefficients:

summary(ols.lm.log)

Coefficients:

##

R^2 = SSR/SST

Call:

##

Coefficients:

(Intercept)

75 25 50 100 axon_diameter ols.res<-resid(ols.lm)</pre> # plot(dragon_neurons) plot(dragon_neurons\$axon_diameter, ols.res,ylab='Residuals', xlab='Axon diameter', main='Residual Plot for Linear Model') abline(0,0)**Residual Plot for Linear Model** Ф Residuals 8 ∞ 8

60

Axon diameter

80

100

 $ggplot(dragon_neurons, aes(x=log_axon_diameter, y=log_conduction_velocity)) + geom_point() + geom_smooth(method='log_axon_diameter, y=log_conduction_velocity))$ m', se=FALSE) ## `geom_smooth()` using formula 'y ~ x' 1.50 log_conduction_velocity

Estimate Std. Error t value Pr(>|t|)0.54666 0.05017 10.90 2.62e-16 ***

The Multiple R-squared value is 0.8371 for logarithmic model. Thus this model better fits the data as compared to the linear model.

Moreover, from the above residual plot, it is evident that the log-vs-log model for the explanatory variable and response variable provide

log_axon_diameter 0.23701 0.01297 18.27 < 2e-16 ***

Residual standard error: 0.07465 on 65 degrees of freedom ## Multiple R-squared: 0.8371, Adjusted R-squared: 0.8345 ## F-statistic: 333.9 on 1 and 65 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log_axon_diameter

Residual Plot for Logarithmic Model

plot(dragon_neurons\$axon_diameter, ols.res.log,ylab='Residuals', xlab='Axon diameter', main='Residual Plot for Lo

geom_point(aes(van_model.center[1] , van_model.center[2]) , size=5 , color="magenta") +

geom_text(aes(label=row.names(van_model)), hjust=1, vjust=-1.5, size=2.5)

log_axon_diameter log_conduction_velocity

distances<-mahalanobis(x=van_model, center=van_model.center,</pre> cov=van_model.cov)

log_axon_diameter log_conduction_velocity distances cutoff

2.197225 0.8734643 11.993207 5.991465

 2.484907
 0.9968085
 6.972770
 5.991465

 2.197225
 1.1467301
 6.284871
 5.991465

lm(formula = conduction_velocity ~ axon_diameter, data = dragon_neurons)

3.803262

cutoff<-qchisq(p=0.95, df=ncol(van_model))</pre>

van_model[van_model\$distances>cutoff,]

2.079442

van_model\$distances<-distances</pre>

van_model\$cutoff<-cutoff

log_axon_diameter #van_model\$distances<-NA</pre> #van_model\$cutoff<-NA</pre> print(van_model.center)

Finding outliers:

Cutoff: 5.991465 Mahalanobis distance of 4 outliers: 11.993207 6.972770 6.284871 6.419079 Solution 4 What are the R-squared values of the initial linear model and the functional form chosen in Problem 2? What do you infer from this? (hint: use the summary function on the created linear models)

1.0918291 6.419079 5.991465

There are 4 potential outliers - 4 values whose mahalanobis distance is greater than the cutoff. Their values are displayed in the output

1.448066

Call: ## lm(formula = log_conduction_velocity ~ log_axon_diameter, data = dragon_neurons) ## Residuals: 1Q Median 3Q ## -0.193959 -0.059711 -0.003799 0.071776 0.115607

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.54666 0.05017 10.90 2.62e-16 ***

log_axon_diameter 0.23701 0.01297 18.27 < 2e-16 ***

Residual standard error: 0.07465 on 65 degrees of freedom ## Multiple R-squared: 0.8371, Adjusted R-squared: 0.8345 ## F-statistic: 333.9 on 1 and 65 DF, p-value: < 2.2e-16

For initial linear model - Multiple R-squared: 0.7656

SST = Sum of squares of total variation.

For logarithmic linear model- Multiple R-squared: 0.8371

dependant(Y) and independant(X) variable can be explained.

SSR = Sum of squares of variation explained by the regression model.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1Q Median ## -0.81519 -0.24935 -0.04665 0.32827 0.64757

Estimate Std. Error t value Pr(>|t|) ## (Intercept) 2.987611 0.101069 29.56 <2e-16 *** ## axon_diameter 0.024753 0.001699 14.57 <2e-16 ***

Residual standard error: 0.3509 on 65 degrees of freedom ## Multiple R-squared: 0.7656, Adjusted R-squared: 0.762 ## F-statistic: 212.3 on 1 and 65 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Solution 5 Using the same summary function as Problem 4, determine if there is a statistically significant linear relationship at a significance value of 0.05 of the **overall model** chosen in Problem 2. What do you understand about the relationship between dragons' axon diameters and conduction velocity? (Hint: understand the values displayed in summary and search for the right data). qf(0.05, 1, 65, lower.tail = FALSE)## [1] 3.98856

0.9149064

log_conduction_velocity

0.8749965

The logarithmic model seems to be a better fit as it has a higher coefficient of determination.

log_axon_diameter

Thank You!

earson"))

print(corr_log)

axon_diameter

corr<-cor(dragon_neurons[c('axon_diameter')], dragon_neurons[c('conduction_velocity')], method = c("pearson"))</pre> print(corr) conduction_velocity

corr_log<-cor(dragon_neurons[c('log_axon_diameter')], dragon_neurons[c('log_conduction_velocity')], method = c("p</pre>

Coefficient of determination - A higher value of R-squared implies a better fit, a higher proportion of the residual value between the

The relationship between dragons' axon diameters and conduction velocity is better fitted with the functional form log(y) = b0 + b1*log(x). The interpretation is given as an expected percentage change in Y when X increases by some percentage. The explanatory variable(Axon diameter) and the outcome variable(Conduction velocity) in the linear logarithmic model we've chosen is highly

This is because there is less resistance facing the ion flow. Hence, the conduction velocity increases with increase in axon diameter.

F statistic of linear model: 212.3 F statistic of log-log model: 333.9 F critical at 5% significant level, with 1 numerator dof, 65 denominator dof = 3.99856 If F statistic > F critical, we reject null hypothesis. F test is a right tailed test. Here, 212.3 and 333.9 >> 3.99856. So the null hypothesis is rejected as the linear relationship is statistically significant for alpha = 0.05. correlated(0.9149) which means their linear relationship is strong. As the axon diameter increases, they are able to send signals faster.