2.2.1 Propositional Logic.

Prove the following logical equivalences making use of truth tables:

a)
$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

A	В	\mathbf{C}	$A \wedge (B \vee C)$	$(A \land B) \lor (A \land C)$
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0
0	1	1	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

b)
$$A \lor B \equiv \neg(\neg A \land \neg B)$$

A	В	$A \lor B$	$\neg(\neg A \land \neg B)$
1	1	1	1
1	0	1	1
0	1	1	1
0	0	0	0

c)
$$A \wedge B \equiv \neg(\neg A \vee \neg B)$$

A	В	$A \wedge B$	$\neg(\neg A \lor \neg B)$
1	1	1	1
1	0	0	0
0	1	0	0
0	0	0	0

d)
$$A \to B \equiv \neg A \lor B$$

\mathbf{A}	В	$A \rightarrow B$	$\neg A \lor B$
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	1

e)
$$A \to B \equiv \neg (A \land \neg B)$$

A	В	$A \rightarrow B$	$\neg (A \land \neg B)$
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	1

f`) (1	(A)	\oplus	B	\oplus	B) =	A

A	В	$((A \oplus B) \oplus B)$	A
1	1	1	1
1	0	1	1
0	1	0	0
0	0	0	0

g)
$$((A \leftrightarrow B) \leftrightarrow B) \equiv A$$

A	В	$((A \leftrightarrow B) \leftrightarrow B)$	A
1	1	1	1
1	0	1	1
0	1	0	0
0	0	0	0

2.2.2 Propositional Logic.

Prove or disprove making use of truth tables:

a)
$$\models (A \to B) \lor (B \to A)$$

A	В	$(A \to B) \lor (B \to A)$
1	1	1
1	0	1
0	1	1
0	0	1

As we can see, this is a Tautology, so is proved

b)
$$\models ((A \rightarrow B) \rightarrow B) \rightarrow B$$

A	В	$((A \to B) \to B) \to B$
1	1	1
1	0	0
0	1	1
0	0	1

As we can see, there is a combination that it's not true, so this fails

$$\mathbf{c}) \ \models (A \leftrightarrow B) \leftrightarrow (A \leftrightarrow (B \leftrightarrow A))$$

A	В	$(A \leftrightarrow B) \leftrightarrow (A \leftrightarrow (B \leftrightarrow A))$
1	1	1
1	0	1
0	1	0
0	0	0

As we can see, there is two combinations that are not true, so this fails

$$\mathrm{d}) \ \models ((A \land B) \to C) \to ((A \to C) \lor (B \to C))$$

A	В	\mathbf{C}	$((A \land B) \to C) \to ((A \to C) \lor (B \to C))$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	1

As we can see, this is a Tautology, so is proved