CSCI 2011 HW 5

Fletcher Gornick

October 21, 2020

1 Chapter 4 Problem 16

Let a be a real number. Use induction to prove that $\sum_{i=0}^{n} (a+i) = \frac{1}{2}(n+1)(2a+n)$ for every nonnegative integer n.

For this problem we will proceed by using the principle of mathematical induction.

BASE CASE: When n = 0, $\sum_{i=0}^{n} (a+i) = a$, and $\frac{1}{2}(n+1)(2a+n) = \frac{1}{2} \cdot 1 \cdot (2a) = a$, therefore the claim holds for the base case.

INDUCTIVE STEP: Assume, for some $k \in \mathbb{N}$, that $\sum_{i=0}^{k} (a+i) = \frac{1}{2}(k+1)(2a+k)$, we show that $\sum_{i=0}^{k+1} (a+i) = \frac{1}{2}(k+2)(2a+k+1)$.

 $\sum_{i=0}^{k+1}(a+i)=\sum_{i=0}^{k}(a+i)+a+k+1=\frac{1}{2}(k+1)(2a+k)+a+k+1$ by the inductive hypothesis. $\frac{1}{2}(k+1)(2a+k)+a+k+1=ak+\frac{k^2}{2}+a+\frac{k}{2}+a+k+1=\frac{k^2}{2}+ak+\frac{3k}{2}+2a+1=\frac{1}{2}(k^2+2ak+3k+4a+2)=\frac{1}{2}(k+2)(2a+k+1).$ Hence, the claim holds for the inductive step as well.

Therefore, by the principle of mathematical induction, the claim $\sum_{i=0}^{n} (a+i) = \frac{1}{2}(n+1)(2a+n)$ is true for every nonnegative integer n.

2 Chapter 4 Problem 20

A sequence $\{a_n\}$ is defined recursively by $a_1 = 2$, $a_2 = 4$, and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Prove that $a_n = 2^n$ for every positive integer n.

For this problem we will proceed by using the principle of strong mathematical induction.

BASE CASE: We will prove this for n = 1 and n = 2. $a_1 = 2^1 = 2$ and $a_2 = 2^2 = 4$, therefore the claim holds for the base cases n = 1 and n = 2.

INDUCTIVE STEP: Suppose, for $1 \le i \le k$, where $k \ge 3$, that $a_i = 2^i$. We show that $a_{k+1} = 2^{k+1}$.

By definintion, $a_{k+1}=a_k+2a_{k-1}$, and by our strong inductive hypothesis, $a_k+2a_{k-1}=2^k+2\cdot 2^{k-1}$. $2^k+2\cdot 2^{k-1}=2^k+2^k=2\cdot 2^k=2^{k+1}$. Hence, the claim holds for our inductive step as well.

Therefore, by the principle of strong mathematical induction, the claim $a_n = 2^n$ is true for every positive integer n.

3 Chapter 4 Problem 28

Prove for every positive integer n and the Fibonacci numbers $F_1, F_2, ...$ that $F_{n+6} = 4F_{n+3} + F_n$. For this problem we will proceed by using the principle of strong mathematical induction.

BASE CASE: We will prove the claim for the n = 1 case. $F_{n+6} = F_7 = 13$. $4F_{n+3} + F_n = 4F_4 + F_1 = 4 \cdot 3 + 1 = 12$, so the claim holds for the base case.

INDUCTIVE STEP: Suppose, for $1 \le i \le k$, where k > 1, that $F_{i+6} = 4F_{i+3} + F_n$. We show that $F_{k+7} = 4F_{k+4} + F_{k+1}$.

By the definition of Fibonacci Series, $F_{k+7} = F_{k+6} + F_{k+5}$, and by our strong inductive hypothesis... $F_{k+6} + F_{k+5} = 4F_{k+3} + F_k + 4F_{k+2} + F_{k-1} = 4(F_{k+3} + F_{k+2}) + F_k + F_{k-1} = 4F_{k+4} + F_{k+1}$, again, by the definition of Fibonacci Series. Hence, the claim holds for the inductive step.

Therefore, by the principle of strong mathematical induction, the claim $F_{n+6} = 4F_{n+3} + F_n$ is true for all positive integers n.

4 Chapter 5.1 Problem 10

The following are relations on the set \mathbb{R} of real numbers. Which of the properties reflexive, symmetric and transitive does each relation below possess?

(a) $x R_1 y \text{ if } |x - y| \le 1$.

Reflexive: the relation is reflexive because $|x - x| = 0 \le 1$.

Symmetric: the relation is symmetric because |x - y| = |y - x|.

Transitive: the relation is not transitive. Take for example the relations 1 R 2 and 2 R 3. 1 R 2 = $|1-2|=1 \le 1$. 2 R 3 = $|2-3|=1 \le 1$. Now if we take 1 R 3, we get $|1-3|=2 \le 1$, therefore the relation is NOT transitive.

(b) $x R_2 y \text{ if } y \leq 2x + 1.$

Reflexive: the relation is not reflexive because if we take for example x = -10, we get $-10 \le 2(-10) + 1 = -19$ which isn't true.

Symmetric: the relation is also not symmetric because take for example x = 10, y = 1, which gives us $1 \le 20(10) + 1 = 21$ which is true, but if we switch x and y, we get $10 \le 2(1) + 1$ which is not true. **Transitive:** the relation is also not transitive. Take, for example, x = 5, y = 10, and z = 20. $y = 10 \le 11 = 2(5) + 1 = 2x + 1$, so this relation is true. $z = 20 \le 21 = 2(10) + 1 = 2y + 1$, this relation is true as well. But when we relate x to z, we get $z = 20 \le 2(5) + 1 = 2x + 1$ which is not true.

(c) $x R_3 y \text{ if } y = x^2$.

Reflexive: this relation is not reflexive. Take for example x = 2, since $x^2 = 4 \neq 2$ the relation cannot be reflexive.

Symmetric: this relation is not symmetric. Take for example x = 2 and y = 4, $x^2 = 4 = y$ so $x R_3 y$ is true, but if we look at $y R_3 x$, we get $x = 2 = 16 = y^2$ which is not true.

Transitive: this relation is not transitive. Take for example x = 2, y = 4, and z = 16. $x^2 = 4 = y$, so $x R_3 y$ is true. $y^2 = 16 = z$, so $y R_3 z$ is true. But looking at $x R_3 z$, we get $x^2 = 4 = z$ which is not true

(d) $x R_4 y \text{ if } x^2 + y^2 = 9.$

Reflexive: the relation is not reflexive. Take for example x=2 and $y=\sqrt{5}$, so $x^2+y^2=4+5=9$. But if we take just x, we get $x^2+x^2=4+4=8\neq 9$, so this relation cannot be reflexive.

Symmetric: The relation is symmetric because addition is commutative $(x^2 + y^2 = y^2 + x^2 = 9)$.

Transitive: The relation is not transitive. Take for example x=2, $y=\sqrt{5}$, and z=2. $x^2+y^2=4+5=9$, and $y^2+z^2=5+4=9$, but $x^2+z^2=4+4=8\neq 9$, so the relation cannot be commutative.

5 Chapter 5.2 Problem 14

A relation R is defined on the set \mathbb{R}^+ of positive real numbers by a R b if the arithmetic mean (the average) of a and b equals the geometric mean of a and b, that is, if $\frac{a+b}{2} = \sqrt{ab}$.

(a) Prove that R is an equivalence relation.

Reflexive: $a R a = \frac{a+a}{2} = \frac{2a}{2} = a = \sqrt{a \cdot a}$, this shows the relation is reflexive.

Symmetric: Since addition and multiplication are both commutative properties, this means $\frac{a+b}{2} = \frac{b+a}{2} = \sqrt{ab} = \sqrt{ba}$, therefore the relation is symmetric.

Transitive: For this case, we can assume that it is given that $\frac{a+b}{2} = \sqrt{ab}$ and $\frac{b+c}{2} = \sqrt{bc}$. Now we show that $\frac{a+c}{2} = \sqrt{ac}$...

$$\frac{a+b}{2} = \sqrt{ab} \Rightarrow a+b = 2\sqrt{ab} \Rightarrow (a+b)^2 = (2\sqrt{ab})^2 \Rightarrow a^2+b^2+2ab = 4ab \Rightarrow a^2+b^2-2ab = 0 \Rightarrow (a-b)^2 = 0 \Rightarrow a=b$$

Since a must equal b, the relation $b \ R \ c$ is equivalent to the relation $a \ R \ c$, therefore, the relation is transitive.

Since the relation is reflexive, symmetric, and transitive, this means it's an equivalence relation.

(b) Describe the distinct equivalence classes resulting from R.

As we proved in part b, in order for the relation to be true, the relation variables a and b must be equivalent. Therefore, the only equivalence class is Class $[a] = \{a\}, \forall a \in \mathbb{R}^+$.