Social Network Analysis ESEGMPTbject Exam Help

https://powcoder.com

Robind We Chat powcoder
DePaul University
Chicago, IL

• • ERGM

- Fit network formation models to data
- Whatisactors Pariere Spandible for the observed effects? der.com

Add WeChat powcoder

Example: The Reds and The Blues

A community w/two groups

- the "Reds" and the "Blues" Assignment Project Exam Help

Question https://powcoder.com/

exploring comperation trust in the community

during a period of upheaval

 We can observe networks of trust/friendship within representative subgroups....

• • Polarization: Why?

• • Why does this happen?

- We want to find low-level mechanisms
 - hatiexplain the jeactor-level changes
- Example https://powcoder.com
 Increased tendency to closed triangles?
 - - · if dedsitWe Chatapawcoder
 - Leads to greater clustering
 - Decreased tendency to mutuality
 - combined with increased homophily?
- Can we quantify the effects?

• • | Modeling

- Solution: parametric models
 - Adeigtify@arPtiglate IstauctHrap mechanisms
 https://powcoder.com
 Parameterize using graph statistics
 Add WeChat powcoder

 Fit models to data

 - - Compare alternatives
 - Interpret parameter estimates
 - Assess adequacy

Possible Mechanisms

• • Factors in Tie Formation

- All ties are not equally probable
 - Chance of an (i.i) edge may depend on Assignment Project Exam Help properties of i and j
 - Can also depend on other (i,j) relations two Chat powcoder
- Examples
 - Homophily
 - Preferential attachment
 - Transitive closure

• • Graph model

- ER random graph
 - Assignment Project Exam Help
 - Addspesywith uniform robability
- What we want Add WeChat powcoder
 - a model where the edge probability varies
 - based on the nodes themselves
 - based on the characteristics of the network as whole

Logistic Network Regression

- Why not treat edges as independent binary variables?
 - log-odds as a linear function of covariates?
- O A (very special contents of sajector of the special of the speci
 - Dependent variable is a network adjacency matrix
- We could detthes://powcoder.com

$$\log \left(\frac{\Pr(M_{ij} + \theta_{ij})}{\Pr(M_{ij} = 0)} \right) \stackrel{\text{We Chat}}{=} P_{1} X_{ij1} + P_{2} X_{ij2} + \dots + P_{l} X_{ijl} = \theta^{T} X_{ij}$$

 $log(p/(1-p) = logit(p) maps (0,1) to (-\infty,\infty)$

 $\theta_1...\theta_1$ are the parameters we want to estimate

X_{ijk} is the value of the kth predictor on the i,j pair

• • But

- The logistic model can be quite powerful, but very limiting
 - No way to model conditional dependence among edges
 Assignment Project Exam Help
 E.g., true triad closure bias, reciprocity
 - Cannot handle exotic support constraints
- Not a good match to certain networks
 - Example And to Now to at hast potva out der
- A more general framework: discrete exponential families
 - Very general way of representing discrete distributions
 - Turns up frequently in statistics, physics, etc.
 - Subsumes many common distributions
 - Bernoulli, gamma, Poisson, normal, etc.

Exponential Random Graph Model

Exponential Random Graph

$$P(g \mid \theta, t, \gamma) = \frac{e^{\theta^{T}t(g)}}{\sum_{g \in \gamma} e^{\theta^{T}t(g)}}$$
Assignment Project Exam Help

- https://powcoder.com
 We model the probability of drawing the observed graph (g) from the set of all randow graphs of the same size γ
 - as a function of
 - t = functions that compute the characteristics we are interested in
 - θ = the weights associated with those characteristics
- \circ We want to find the θ values that maximize the probability of the observed graph
- Computing the denominator is crazy expensive
 - sum of all possible graphs of a given size!

Equivalent for Adjacency Matrix

$$P(m \mid \theta, t, \mu) = \frac{e^{\theta^{T}t(m)}}{\sum_{m' \in \mu} e^{\theta^{T}t(m')}}$$
Assignment Project Exam Help

- Now wettage/powelidenthenmatrix
- In particular we can talk about modeling
 - the presence or absence of an edge
 - m_{ij} represents the presence of edge <i,j>
 - m_{ij} represents its absence

• • Conditional odds of an edge

- Ratio of
 - probability no Pthetenet work with the edge
 - probability of the network without the edge https://powcoder.com

$$\frac{P(M = m_{i,j}^{\dagger} | \theta, t, \mu)}{P(M = m_{i,j}^{-} | \theta, t, \mu)}$$
• If this is high

- - then the edge is likely
 - given θ,t,μ

• • Conditional odds

$$\frac{P(M = m_{i,j}^{+} \mid \theta, t, \mu)}{P(M + snighthaten)t} = \frac{e^{\theta^{T} l(m_{i,j}^{+})}}{P(M + snighthaten)t}$$

- https://powcoder.comWhich means...
- - we can avoid the ugiy denominator

Simplifying

$$\frac{P(M = m_{i,j}^{+} \mid \theta, t, \mu)}{P(M = m_{i,j}^{+} \mid \theta, t, \mu)} e^{\theta^{T} I(m_{i,j}^{+})} \underbrace{P_{i,j}^{+} P_{i,j}^{-} P_{i,j}^{-} P_{i,j}^{-}}_{https://powcoder.com} \underbrace{P_{i,j}^{+} \mid \theta, t, \mu}_{e^{t} \mid t, \mu} \underbrace{P_{i,j}^{+} \mid \theta, t, \mu}_{https://powcoder.com} \underbrace{P_{i,j}^{+} \mid \theta, t, \mu}_{e^{t} \mid t, \mu} \underbrace{P_{i,j}^{+} \mid \theta, t, \mu}_{e^{t} \mid t, \mu} \underbrace{P_{i,j}^{+} \mid \theta, t, \mu}_{https://powcoder.com}$$

- So the conditional odds
 - is a function of the change score"
 - how the value of each t changes when an edge is added
- Remember that
 - θ is a vector of parameters
 - t is a vector of graph measurements
 - e.g. the # of asymmetric dyads

Conditional Log-odds

$$\log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \theta^T [t(m_{i,j}^+) - t(m_{i,j}^-)] = \theta^T \Delta_{ij}$$

$$= \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = \text{Ansight path perm})} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right] = \log \left[\frac{P(M = m_{i,j}^+ \mid \theta, t, \mu)}{P(M = m_{i,j}^+ \mid \theta, t, \mu)} \right]$$

$$\Delta_{ij} = t(m_{ij}^*) - t(m_{ij}^{ttps://powcoder.com})$$

- Useful implication We Chat powcoder
 - each unit change in the measurement t_k when (i,j) edge is present
 - increases the conditional log-odds of (*i,j*) by θ_k
- This is only conditionally true!
 - The marginal log-odds of an (i,j) edge is allowed to depend on the whole adjacency matrix

Conditional edge probability

prob = odds/(1+odds)

$$P(m_{ij}^{\text{Assignment}} e^{\theta^{T} \Delta_{ij}}_{\text{project}} = \underbrace{\text{Exam Helpogit}^{-1}}_{\text{https:}} (\theta^{T} \Delta_{ij})$$

$$\text{https:}//\text{powcoder.com}$$

- So, the conditional probability of an edger is the inverse logit of $\theta^{\mathsf{T}}\Delta_{\mathsf{ij}}$
- It would be nice if we could perform regression on this
 - "autologistic regression"
- The problem is that it is only conditional probability
 - and edge existence is not independent
 - and t() values are not independent

• • Estimation

- Perform maximum likelihood estimation
- We Avanity of mucht that ject Exam Help
 - Pr(M=m_{obs}|t, θ*, μ) is maximized, and https://powcoder.com
 - \bullet $E_{\theta^*}(t(M))=t(m_{obs})$
- Such parameters exist powcoder
 - as long as data is not "too extreme"
- Can calculate approximate standard errors
 - again, some assumptions, but all indications are that these are usually met

• • Example

- Simple networks
- Whatigwest Heofer Chamber fit mean? https://powcoder.com

Add WeChat powcoder

• • Break

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder