离散数学 II Discrete Mathematics II

封筠

fengjun@stdu.edu.cn

20-11

课程回顾

代数系统的引入:集合A上的n元运算、n元运算在集合A上封闭、代数系统

运算及其性质:封闭性、交换律、结合律、 分配律、吸收律、等幂性、特异元素(幺 元、零元、逆元)

5-3 半群

半群是一种特殊的代数系统,它在形式语言、自动机等领域中,都有具体的应用。

- ●学习本节要熟悉如下术语(4个): 广群、半群、子半群、独异点
- ●要求:

掌握4个定理

一、广群

定义5-3.1 一个代数系统<S, *>, 其中S是非空集合, *是S上的一个二元运算, 如果运算*是封闭的, 则称代数结构<S, *>为广群。

二、半群

- 1、定义5-3.2 一个代数系统<S,*>,其中S 是非空集合,*是S上的一个二元运算,如果:
 - (1)运算*是封闭的;
- (2)运算*是可结合的,即对任意的x,y,z∈S,满足

$$(x*y)*z=x*(y*z)$$

则称代数结构<S, *>为半群。

例如 $\langle Z^+, + \rangle$ 、 $\langle N, + \rangle$ 、 $\langle Q, + \rangle$ 、 $\langle R, + \rangle$ 、 $\langle \rho(S), \cup \rangle$ 都是半群。

明显地,代数系统<I+,->和<R,/>
/>都不 是半群,这里,-和/分别是普通的减法和 除法。 例题1 设集合 $S_k=\{x|x\in I \land x\geq k\}, k\geq 0, m$ 么 $< S_k, +>$ 是一个半群,其中+是普通的加法运算。

解 因为运算+在 S_k 上是封闭的,而且普通加法运算是可结合的。所以, $\langle S_k, + \rangle$ 是一个半群。

在例题1中, $k \ge 0$ 这个条件是重要的,否则,如果k < 0,则运算+在 S_k 上将是不封闭的。

练习190页(1)

对于正整数k, N_k ={0,1,2,...,k-1},设* $_k$ 是 N_k 上的一个二元运算,使得a* $_k$ b=用k除a·b所得的余数,这里a,b \in N $_k$ 。

- a)当k=4时,试造出*k的运算表。
- b)对于任意正整数k,证明 $<N_k$,* $_k>$ 是一个半群。

解 a)当k=4时,

*k的运算表如下:

* k	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

8

b)对于任意的a,b∈N_k, $a*_kb=a*b*nk=r$, $0\le r\le k*-1$, 所以运算*_k在N_k上是封闭的。

对于任意的a, b, $c \in N_k$, 有

$$(a*_kb)*_kc=(a\cdot b-n_1k)\cdot c-n_2k=r_1 \quad 0\leq r_1\leq k-1$$
$$=a\cdot b\cdot c-k(n_1c+n_2)$$

$$a*_{k}(b*_{k}c)=a\cdot(b\cdot c\cdot n_{3}k)\cdot n_{4}k=r_{2} \quad 0\leq r_{2}\leq k\cdot 1$$
$$=a\cdot b\cdot c\cdot k(n_{3}a+n_{4})$$

可见r₁和r₂都是a·b·c用k除所得的余数,

所以 $\mathbf{r}_1 = \mathbf{r}_2$ 。所以($\mathbf{a}^*_k \mathbf{b}$) $*_k \mathbf{c} = \mathbf{a}^*_k (\mathbf{b}^*_k \mathbf{c})$,即 $*_k$ 满足结合律。因此, $<\mathbf{N}_k$, $*_k>$ 是半群。

例题2 设 $S=\{a,b,c\}$,在S上的一个二元运算 Δ 定

义如下表:

Δ	a	b	•
a	a	b	•
b	a	b	•
c	a	b	•

10

验证 $\langle S, \Delta \rangle$ 是一个半群。

解 从上表可知运算 Δ 是封闭的,同时a, b和 c都是左幺元。所以,对于任意的x, y, $z \in S$, 都有

 $x \Delta (y \Delta z) = x \Delta z = z = y \Delta z = (x \Delta y) \Delta z$ 因此, $\langle S, \Delta \rangle$ 是半群。

练习 设*是实数集R上的运算,其定义如下: a*b=a+b+2ab

- 1)求2*3,3*(-5)和7*1/2。
- 2)<R, *>是半群吗?*可交换吗?
- 3)求R中关于*的幺元(单位元)。
- 4)R中哪些元素有逆元,逆元素是什么?
- 解 1) 2*3=17, 3* (-5) =-32, 7*1/2=14.5

2)运算*在R上是封闭的。对任意a,b,c∈R,

$$(a*b)*c=(a+b+2ab)*c=a+b+2ab+c+2(a+b+2ab)c$$

$$=a+b+c+2ab+2ac+2bc+4abc$$

$$a*(b*c)=a*(b+c+2bc)=a+b+c+2bc+2a(b+c+2bc)$$

$$=a+b+c+2ab+2ac+2bc+4abc$$

所以(a*b)*c= a*(b*c)。因此<R, *>是半群。*可交换。

- 3)R中关于*的幺元是0。
- 4)R中除-1/2外所有元素都有逆元, a的逆元素是-a/(1+2a)。

2、子半群

定理5-3.1 设<S,*>为一半群, B⊆S且*在B上封闭,那么<B,*>也是一个半群, 称为</br>
<S,*>的子半群。

□ 证明 因为*在S上是可结合的,而B \subseteq S且* 在B上封闭,所以*在B上也是可结合的,因 此,<B, * >也是一个半群。□

证明<B, *>是<S, *>的
子半群,只须证明运算*
在B上是封闭的。

例题3 设·表示普通的乘法运算,那么 <[0,1],·>、<[0,1),·>和<I,·>都是<R,·>的 子半群。

解 首先,运算·在R上是封闭的,且是可结合的,所以<R,·>是一个半群。

其次,运算·在[0,1]、[0,1)和I上都是封闭的,且[0,1] \subset R,[0,1) \subset R,I \subset R。因此,由定理5-3.1可知<[0,1]、 \cdot >、<[0,1)、 \cdot >和<I、 \cdot >都是<R、 \cdot >的子半群。

练习 若<S,*>是半群, $a \in S$, $M = \{a^n | n \in N\}$,证明<M,*>是<S,*>的子半群。 证明 只须证明运算*在M上是封闭的。

任取 a^n , $a^m \in M$, a^n , $a^m \in S$

$$a^{n} * a^{m} = (a^{n} * a) * a^{m-1}$$

$$= a^{n+1} * a^{m-1}$$

$$= (a^{n+1} * a) * a^{m-2}$$

$$= a^{n+2} * a^{m-2}$$

$$= \dots$$

所以<M, *>是<S, *>的子半群。

 $= a^{n+m} \in M$

即有限半群中存在等幂元。

3、定理 5-3.2 设代数结构<S,*>为一个半群,如果S是一个有限集合,则必有a∈S,使得a*a=a。

□ 证明思路: 因<S,*>是半群,对于任意b∈S, 由于*的封闭性可知

b * b∈S 记b² = b * b b² * b = b * b² ∈ S 记b³ = b² * b = b * b²

b, b², b³, ..., bⁱ, ..., b^q, ..., bⁱ(最多有|S|个 不同元素)

因S是一个有限集合,所以必存在 i>i,使得 $b^i = b^j$ p=j-i 即 j=p+i 代入上式: bⁱ = b^p * bⁱ **令** 所以, $b^q = b^p * b^q$ $q \ge i$ 因为p ≥ 1所以总可以找到k ≥ 1,使得 kp ≥ i , 对于b^{kp} ∈ S,就有 b^{kp} = b^p * b^{kp} = b^p * (b^p * b^{kp}) $= b^{2p} * b^{kp} = b^{2p} * (b^p * b^{kp}) = ... = b^{kp} * b^{kp}$

这就证明了在S中存在元素a=bkp, 使得a*a=a

再看190页(1)对于正整数k, N_k ={0,1,2,...,k-1},设*_k是 N_k 上的一个二元运算,使得a*_kb=用k除a·b所得的余数,这里a,b \in N_k。我们已经证明了< N_k ,*_k>是一个半群。

当k=4时,*_k的运算表如下:

* k	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

找出<N_k, *_k>中的等幂元。

0和1都是等幂元。

例题2 设 $S=\{a,b,c\}$,在S上的一个二元运算 Δ 定义如下表所示。

Δ	a	b	c
a	a	b	c
b	a	b	c
c	a	b	C

前面已验证<S, $\triangle>$ 是一个半群。这里a,b,c都是等幂元。

三、独异点

1、定义5-3.3 设代数结构<S,*>为半群,若<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群。

代数系统<N-{0},+>虽是一个半群,但关于运算+不存在幺元,所以,这个代数系统不是独异点。

练习 有代数系统<S,*>,其中S ={a,0,1},运算*由下表定义,证明<S,*>是独异点。

*	a	0	1
a	a	0	1
0	0	0	1
1	1	0	1

证明 1) 运算*是

$$(x*y)*a=x*y$$
 $x*(y*a)=x*y$

$$(x*y)*0=0$$
 $x*(y*0)=x*0=0$

$$(x*y)*1=1$$
 $x*(y*1)=x*1=1$

所以运算*是可结合的。

3) a是S中关于运算*的幺元。

因此<S,*>是独异点。

- 2、定理5-3.3 设<S,*,e>是一个独异点,则在 关于运算*的运算表中任何两行或两列都是不 相同的。
- □ 证明: 因S 中关于*运算的幺元是e,因为对于任意的元素a,b∈S,且a≠b时,总有

$$e * a = a \neq b = e * b$$

和 $a*e=a \neq b=b*e$ 所以,在的运算表中不可能有两行或两列是相同的。 \Box

例题4 设I是整数集合,m是任意正整数, Z_m 是由模m的同余类组成的同余类集,在 Z_m 上定义两个二元运算 $+_m$ 和 \times_m 分别如下:对于任意的[i],[j] $\in Z_m$

$$[i] +_{m}[j] = [(i+j)(mod m)]$$
$$[i] \times_{m}[j] = [(i\times j)(mod m)]$$

试证明在这两个二元运算的运算表中任何两行或两列都是不相同的。

证明:考察代数结构< Z_m ,+ $_m$ >和< Z_m , X_m >,只须证明< Z_m ,+ $_m$ >和< Z_m , X_m >都是独异点,再利用定理5-3.3的结论。先分三步证明:

- 1) 根据运算定义,证明两个运算在Z_m上封闭;
- 2) 根据运算定义,证明两个运算满足结合律;
- 3)根据运算定义,证明[0]是< Z_m , $+_m$ >的幺元,[1]是< Z_m , \times_m >的幺元。

本例题的实例见表5-3.2和表5-3.3

上例中,如果给定 m=5, 那么, $+_{\delta}$ 和 \times_{δ} 的运算表分别如表 5-3.2 和表 5-3.3 所示。

5-3.2 表 [0] [2] [3] **[4]** +5 [0][0] [1] [2][3] **[4**] [1][2] [4] [0] [3] [2][2][3] [4] [0] [1][3] [3] [4] [1] [0] [2] [4] [4][0] [1] [2] [3] 5-3.3 [0][1] [2][3] [4]Χs [0] [0] [0] [0] [0][0] [1] [0] [1] [2][3] [4] [2][0] [2] [4] [1] [8] [8] [0] [3] [1] [4] [2] [0] [4] [3] [2] [4][1]

显然,上述运算表中没有两行或两列是相同的。

- 3、定理5-3.4 设<S,*,e>是一个独异点,如果 对于任意a,b∈S,且a,b均有逆元,则
 - a) $(a^{-1})^{-1}=a$
 - b) a*b有逆元,且(a*b)⁻¹ =b⁻¹ * a⁻¹。
 - 口证明: a) 因a⁻¹和a为互为逆元,直接得到结论。
 - b) 必须证明两种情况:

The End