Presentation for use with the textbook Data Structures and Algorithms in Java, 6<sup>th</sup> edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

## Heaps



#### Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the PriorityQueue ADT
  - insert(k, v)inserts an entry with key kand value v
  - removeMin()removes and returns the entry with smallest key

- Additional methods
  - min()
     returns, but does not
     remove, an entry with
     smallest key
  - size(), isEmpty()
- Applications:
  - Standby flyers
  - Auctions
  - Stock market
  - ...

## Recall PQ Sorting

- We use a priority queue
  - Insert the elements with a series of insert operations
  - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
  - Unsorted sequence gives selection-sort:  $O(n^2)$  time
  - Sorted sequence gives insertion-sort:  $O(n^2)$  time
- Can we do better?

## Algorithm *PQ-Sort*(*S*, *C*) Input sequence *S*, comparator *C*for the elements of *S*

**Output** sequence *S* sorted in increasing order according to *C* 

 $P \leftarrow$  priority queue with comparator C

while  $\neg S.isEmpty$  ()

 $e \leftarrow S.remove(S.first())$ 

P.insert (e, e)

while *¬P.isEmpty*()

 $e \leftarrow P.removeMin().getKey()$ 

S.addLast(e)

## Heaps (Sec.9.3)

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap-Order: for every node v other than the root,
   key(v) ≥ key(parent(v))
- Complete Binary Tree: let h be the height of the heap
  - levels i = 0, ..., h 1 have the maximal number of nodes, i.e., there are  $2^i$  nodes at depth i.
  - The remaining nodes at level/depth h reside in the leftmost possible positions at that level/depth.

 The last node of a heap is the rightmost node of maximum depth













## Height of a Heap

□ Theorem: A heap storing n keys has height  $O(\log n)$ 

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are  $2^i$  keys at depth i = 0, ..., h-1 and at least one key at depth h, we have  $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- Thus,  $n \ge 2^h$ , i.e.,  $h \le \log n$



## Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node



# Insertion into a Heap

- Method *insertItem* of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps
  - Find the insertion node z
     (the new last node)
  - Store k at z
  - Restore the heap-order property (discussed next)



## Upheap

- ullet After the insertion of a new key k, the heap-order property may be violated.
- ullet Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node.
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.
- □ Since a heap has height  $O(\log n)$ , upheap runs in  $O(\log n)$  time.



#### **Exercise**

- Convince yourself that the upheap method is correct.
- This is, after the upheap method is completed, the result is a heap.

#### Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps
  - Replace the root key with the key of the last node w
  - Remove w
  - Restore the heap-order property (discussed next)



## Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- floor Algorithm downheap restores the heap-order property by swapping the key k along a downward path from the root
- floor Downheap terminates when the key k reaches a leaf or a node whose children have keys greater than or equal to k
- $\Box$  Since a heap has height  $O(\log n)$ , downheap runs in  $O(\log n)$  time





#### **Exercise**

- Convince yourself that the downheap method is correct.
- Do we need to scan the entire tree?
  Why?

## Exercise: insert 13, 8, 7





















Always swap with the smaller child!



## Array-based Heap Implementation

- We can represent a heap with n keys by means of a vector or ArrayList of length n + 1
- The cell of at index 0 is not used
- Links between nodes are not explicitly stored
- For the node at index i
  - the left child is at index 2*i*
  - the right child is at index 2i + 1
- Operation *insert* corresponds to inserting at index n + 1
- Operation removeMin corresponds to moving index n to index 1



|   | 2 | 5 | 6 | 9 | 7 |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |

## Implementing Priority Queue with a Heap

- To create a priority queue, initialise a heap
- To insert in the priority queue, insert in the heap
- To get the value with the minimal key, ask for the value of the root of the heap
- To dequeue the highest priority item, remove the root and return the value stored there.

## Heap-Sort

- Consider a priority
   queue with n items
   implemented by means
   of a heap
  - the space used is O(n)
  - methods insert and removeMin take O(log n) time
  - methods size, isEmpty, and min take time O(1) time

- Using a heap-based priority
   queue, we can sort a
   sequence of n elements in
   O(n log n) time.
- The resulting algorithm is called *heap-sort*.
- Heap-sort is much faster
   than quadratic sorting
   algorithms, such as
   insertion-sort and selection-sort.

#### Conclusion

- Priority Queue ADT can be implemented using an unsorted list, a sorted list, or a heap.
- In the first two cases, one of the methods has to run in O(n) time. For the heap implementation, all methods run in  $O(\log n)$ .