ANALISIS PERANCANGAN JARINGAN HETEROGEN LTE-A TDD DENGAN SMALL CELL

ANALYSIS OF HETEROGENOUS NETWORK PLANNING FOR LTE-A TDD WITH SMALL CELL

Binar Alam Pamungkas¹, Achmad Ali Muayyadi², Ishak Ginting³

^{1,2}Prodi S1 Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom ³PT. Smartfren Telecom

¹binarpamungkas@student.telkomuniversity.ac.id, ²alimuayyadi@telkomuniveristy.ac.id, ³ishak.ginting83@gmail.com

Abstrak

Tingginya kepadatan penduduk yang ada di Kelurahan Lengkong Kecamatan Bojongsoang karena pembangunan pemukiman yang semakin masif, Kelurahan Lengkong Kecamatan Bojongsoang hanya memiliki 1 site makro tepatnya di Jalan Cikoneng. Dalam satu hari secara kumulatif site ini menampung lebih dari 3000 pengguna. Berdasarkan evaluasi dari percobaan, 52,19 % penggguna yang mencoba mengakses layanan ditolak. Dalam mengatasi hal ini pada teknologi LTE-A terdapat suatu skema teknologi untuk meningkatkan kapasitas yaitu heteroenous network. Jaringan heterogen (HetNet) merupakan suatu skema pada jaringan seluler yang menerapkan small cell di dalam cakupan macro cell dengan teknologi yang sama maupun yang berbeda. Jurnal ini melakukan perancangan jaringan heterogen untuk teknologi LTE-A TDD dengan small cell berupa micro cell di Kelurahan Lengkong Kecamatan Bojongsoang dengan menggunakan perhitungan capacity calculation dan coverage calculation. Frekuensi yang digunakan yaitu 2360 MHz TDD untuk site makro dan 2360 MHz TDD untuk site mikro. Hasil dari jurnal ini didapatkan skenario dengan jumlah 3 site mikro dengan bandwidth 20 MHz adalah pilihan yang terbaik dari semua skenario yang dilakukan. Performansi yang baik untuk nilai-nilai parameter yang sudah sesuai standar operator. Nilai Reference Signal Receive Power (RSRP) rata-rata hasil dari perancangan jaringan heterogen yaitu -75,29 dBm. Untuk nilai Carrier to Interference Noise Ratio (CINR) rata-rata yaitu 10,27 dB. Nilai throughput yang diperoleh untuk downlink rata rata sebesar 19,665 Mbps dan uplink sebesar 10,578 Mbps. Hasil persentase dari user connected yaitu sebesar 99 %. Dari hasil tersebut maka perancangan jaringan heterogen dengan small cell berupa micro cell layak untuk diimplementasikan.

Kata Kunci: LTE-A, TDD, Jaringan Heterogen, Micro Cell

Abstract

The high population densities that exist in Kelurahan Lengkong Bojongsoang Subdistrict because residential developments that increasingly massif. Bojongsoang Subdistrict Lengkong village only has 1 site in the macro exactly in Cikoneng street. In one day this site cumulatively more than 3000 users. Based on the evaluation of the experiment, 52.19% users who try to access the service denied. To solve this problem in technology LTE-A there is a plan to increase the capacity of the technology that is heteroenous network. Heterogeneous network (HetNet) is a cellular network scheme that applying small cell within the scope of the macro cell with the same technology as well as different. This journal is doing the design of heterogeneous networks for LTE-A TDD technology with small cell in the form of micro cell in Bojongsoang Subdistrict Lengkong Village by using the calculation of capacity calculation and coverage calculation. Frequencies used i.e. 2360 MHz TDD for site macro and 2360 MHz TDD for micro site. The results of this journal study obtained a scenario with the number of 3 micro sites with bandwidth of 20 MHz is the best choice of all the scenarios carried out. Good performance for parameter values that are in accordance with operator standards. Reference Signal Receive Power (RSRP) value average result from the design of heterogeneous networks average i.e. -75.29 dBm. For the value of the Carrier to Interference Noise Ratio (CINR) average i.e. 10.27 dB. The value obtained for the downlink throughput averages of 19.665 Mbps and uplink of 10.578 Mbps. The result of percentage of user connected is 99%. From these results, the design of heterogeneous networks with small cells forming micro cells is feasible to implement.

Keyword: LTE-A, TDD, Heterogenous Network, Micro Cell

1. Pendahuluan

Tingginya kepadatan penduduk di wilayah Kelurahan Lengkong Kecamatan Bojongsoang mengakibatkan traffic overload pada jaringan LTE-A TDD di wilayah tersebut. Untuk mengatasi masalah tersebut dilakukan perancangan HetNet agar terjadi traffic offload dari site makro ke site mikro. Penelitian ini bertujuan untuk mendapatkan jumlah site mikro yang efektif unutuk perancangan HetNet agar dapat meningkatkan performansi jaringan. Perancangan HetNet pada jurnal ini menggunakan frekuensi operator 2360 MHz. Studi kasus dari penelitian adalah site eksisting yang berlokasi di Jalan Cikoneng Kelurahan Lengkong Kecamatan Bojongsoang. Perancangan jaringan HetNet akan dilakukan di sisi Radio Access Network (RAN). Parameter yang akan dianalisis yaitu RSRP, CINR, throughput, dan user connected. Pada penelitian [1] dilakukan perancangan jaringan HetNet di Kota Cimahi dengan pico cell dengan konfigurasi macro site pada frekuensi 1800 MHz dan pico cell pada frekuensi 2300 MHz, yang mana menghasilkan jumlah pico cell sebanyak 44 sel untuk mencakup seluruh Kota Cimahi dan sesuai dengan target operator. Pada penelitian [6] dilakukan analisis perancangan jaringan heterogen LTE-A small cell frekuensi 1800 Mhz pada studi kasus wilayah Kota Bandung. Penelitian tersebut melakukan perancangan jaringan heterogen dengan penambahan small cell berupa Wi-Fi 802.11n, yang mana trafik yang di bebankan pada macro cell dialihkan sebagian ke small cell berupa Wi-Fi 802.11n. Didapatkan hasil jumlah sel heterogen pada wilayah sub urban sebanyak 4 sel, pada daerah urban sebanyak 6 sel, dan pada daerah dense urban sebanyak 9 sel. Pada penelitian [3] dilakukan analisis performansi small cell pada jaringan heterogen LTE-A. Pada penelitian tersebut didapatkan jumlah 5 pico cell dan menerapkan metode eICIC yang mana metode tersebut digunakan untuk mengurangi gangguan komunikasi antar macro dan small cell. Pada penelitian [2] dilakukan penelitian alokasi distribusi power untuk multi-flow carrier aggregation pada jaringan kognitif heterogen seluler. Yang mana pada penelitian tersebut mengatur algoritma dalam pembagian distribusi power pada jaringan heterogen kognitif sehingga didapatkan algoritma yang menghasilkan alokasi untuk distribusi power pada jaringan heterogen.

2. Dasar Teori

a. Long Term Evolution-Advanced (LTE-A)

LTE-Advanced diperkenalkan 3GPP dalam rilis 10 dan 11. LTE *Advanced* sebagai evolusi dari LTE diharapkan mampu untuk memberikan kecepatan data rate yang lebih tinggi baik pada sisi downlink maupun uplink. Selain itu, evolusi menuju LTE- Advanced ini diharapkan juga dapat memberikan efisiensi dalam penggunaan *spectrum*. 3GPP mengembangkan kemampuan LTE *Advanced* sesuai dengan spesifikasi rilis 11 seperti *carrier aggregation*, MIMO, eICIC, CoMP, *Relay Nodes*. [7]

b. Heterogenous Network

Sistem jaringan seluler yang mana *macro cell* yang bekerja di suatu jaringan dapat dilapisi oleh *small cell*, dimana *small cell* dapat berupa *micro cell*, *pico cell*, *femto cell*, *relay*. Penempatan *small cell* dapat menghilangkan *coverage holes* pada *macro cell*. Sistem ini dapat juga meningkatkan kapasitas dari suatu *cell*. [5]

Small cell terdiri dari sebuah eNB biasa denga daya transmisi yang lebih rendah dari macro cell, tapi memiliki fungsi yang sama. Small cell bisa di aplikasikan untuk kondisi indoor maupun outdoor dan biasanya diletakan di hotspot area. Pada dasarnya small cell dapat diaplikasikan menggunakan frekuensi yang sama dengan macro eNB (co-channel deployment) ataupun dengan frekuensi yang berbeda dengan macro eNB (multicarrier deployment). [7]

c. Model Propagasi

Model empiris ini adalah kombinasi dari model-model dari J. Walfisch dan F. Ikegami. Ini dikembangkan oleh COST 231. Biasanya disebut COST Empiris-Walfisch-Ikegami Model. Frekuensi berkisar dari 800MHz hingga 2000 MHz. [4]

$$P_L = 46.3 + 33.9 (\log F_c) - 13.82 \log H_b - a(h_m) + (44.9 - 6.55 \log H_b) \log D + CM$$
 (1)

Untuk Daerah Urban:

$$a(h_m) = (1,1(\log F_c) - 0,7)H_m - (1,56\log F_c) - 0,8)$$
(2)

3. Model Sistem

Adapun gagasan pendekatan pada jurnal ini akan dilakukan adalah menerapkan jaringan heterogen dengan menempatkan *small cell* sebagai *traffic offload* pada suatu *macro cell*. Pada jaringan heterogen tersebut akan digunakan frekuensi kerja operator 2360 MHz TDD dengan *small cell* dengan frekuensi 2360 MHz TDD. Perancangan jaringan dipilih berdasarkan *macro cell* yang memiliki *user* yang padat. Sehingga nantinya akan dilakukan perancangan jaringan heterogen. Perancangan tersebut akan dihitung melalui proses perhitungan *capacity* dan *coverage*. Perhitungan tersebut akan menghasilkan jumlah sel yang akan diimplementasikan. Hasil perhitungan tadi akan disimulasikan dengan parameter analisis yaitu RSRP, *throughput*, *SINR*, dan *user connected*.

a. Diagram Alir

diimplementasikan.

Untuk menstrukturkan pengerjaan jurnal ini, maka dibuatlah suatu diagram alir agar dapat mempertahankan konsistensi pengerjaan yang terstruktur dan sistematis. Langkah awal adalah menganalisis performa *site* eksisting, jika tidak memenuhi standar operator maka akan dilakukan perancangan HetNet dengan menggunakan perhitungan berdasarkan *capacity calculation* dan *coverage calculation*. Seletah dilakukan simulasi maka dilihat performansi hasil perancangan. Jika performa jaringan memenuhi standar maka perancangan HetNet sudah layak untuk

Gambar 1 Diagram Alir Pengerjaan

b. Coverage Calculation

Perhitungan coverage calculation dilakukan untuk menentukan luas cakupan sel serta jumlah sel untuk small cell. Pada coverage calculation diperlukan spesifikasi perangkat dan media propagasi dari suatu daerah, keduanya diperlukan untuk melakukan perhitungan link budget dimana hasil dari perhitungan link budget akan menghasilkan MAPL (Maximum Alowable Path Loss) pada sisi downlink dan uplink. Dari MAPL tersebut nantinya dapat diketahui radius sel sehingga luas sel dapat ditentukan. Setelah mendapatkan luas sel maka jumlah sel yang dibutuhkan untuk mencakup wilayah tersebut dapat ditentukan

•	_
Parameter	Value
MAPL	135.7
Radius Cell (Km)	0.64
Luas Area (Km ²)	7.271
Luas Cell (Km ²)	0.81
Jumlah Cell	8.9
Jumlah Site Mikro	3

Tabel 1 Hasil Perhitungan Coverage Calculation

c. Capacity Calculation

Capacity calculation diperlukan untuk mengestimasi jumlah *user* yang dapat dilayani dalam satu sel. Perhitungan berdasarkan *capacity* merupakan perencanaan yang tinjauannya bertujuan agar dapat melayani banyaknya *user* di suatu daerah sesuai dengan *service* yang ditawarkan.

Tabel 2 Hasil Perhitungan Capacity Calculation

BW	Jumlah Site		
30	1 site		
20	2 site		
10	4 site		

Dari tabel 2 di atas dapat dilihat bahwa hasil perhitungan berdasarkan *capacity calculation* adalah sebanyak 1 *site* mikro untuk *bandwidth* 30 MHz, 2 *site* mikro untuk *bandwidth* 20 MHz, dan 4 *site* mikro untuk *bandwidth* 10 MHz

4. Pembahasan

Pada penelitian jurnal ini, simulasi akan dilakukan before dan after. Simulasi before dilakukan untuk melihat bagaimana performansi site eksisting dengan keadaan jumah pengguna diestimasi 591 user. Pada simulasi Before akan dilihat bagaimana performansi jaringan dengan parameter Reference Signal Receive Power (RSRP), Carrier to Interference Noise Ratio (CINR), Throughput dan User Connected. Simulasi selanjutnya adalah simulasi After. Simulasi after akan memperlihatkan bagaimana hasil dari simulasi yang sudah dilakukan perancangan smallcell. Simulasi after akan dibagi menjadi dua yaitu untuk mensimulasikan hasil dari perhitungan coverage dan hasil perhitungan capacity. Pada hasil perhitungan capacity ada tiga jenis konfigurasi yaitu konfigurasi bandwidth 30 MHz, 20 MHz, dan 10 MHz. Parameter yang akan dianalisis pada simulasi after adalah Reference Signal Receive Power (RSRP), Carrier to Interference Noise Ratio (CINR), Throughput dan User Connected.

a. Simulasi Before Perancangan HetNet

Simulasi efore dilakukan untuk mendapatkan nilai parameter secara simulasi. Berikut ini merupakan hasil dari percobaan pada simulasi before sebelum melakukan perancangan *small cell* pada site eksisting makro.

Site	Average	Average	Average	Average	User
	RSRP	CINR	Throughput	Throughput	Rejected
	(dBm)	(dB)	DL (Mbps)	UL (Mbps)	(%)
Eksisting	-82,74	10,78	1,45	0,16	52,19

Tabel 3 Hasil *Before* Perancangan HetNet

Dari tabel 3 di atas merupakan simualsi *before* perancangan jaringan HetNet. Dapat dilihat bahwa nilai tersebut kurang dari standar operator dimana nilai *user connected* harus kurang dari sama dengan 1 % dan nilai untuk *throughput downlink* belum memenuhi standar dimana nilai standar dari *throughput downlink* sebesar 5 Mbps. Dari parameter tersebut, maka perancangan jaringan heterogen layak untuk di lakukan.

b. Simulasi After Berdasarkan Capacity Calculation

Tabel 4 Hasil Simulasi After Perancangan HetNet Berdasarkan Capacity Calculation

Small Cell	Jarak Dari Makro (m)	No User Reject	RSRP (dBm)	CINR (dB)	DL Throughput (Mbps)	UL Throughput (Mbps)
4 Small Cell 10 MHz	300	13,52%	-75,22	5	5,966	5,731
	600	8,45%	-64,39	4,73	8,307	6,533
	900	5,81%	-78,95	7,75	12,312	7,607
	1200	2,54%	-79,95	9,75	14,202	8,221
	300	28,22%	-77,28	9,32	11,227	6,484
2 Small Cell 20	600	10,68%	-74,81	7,88	11,450	7,097
MHz	900	9,00%	-81,52	7,66	13,860	8,504
	1200	7,12%	-75,36	8,97	15,764	8,922
	300	25,73%	-82,27	8,71	10,168	5,297
1 Small Cell 30 MHz	600	23,72%	-82,02	9,35	11,859	5,489
	900	25,25%	-81,87	9,56	12,248	5,726
	1200	31,15%	-80,42	11,23	14,811	6,127

Dari tabel 4 di atas, setelah melakukan simulasi hasil dari percobaan ternyata nilai yang paling baik secara parameter dari keseluruhan adalah pada 4 site mikro pada bandwidth 10 MHz di jaraik 1200 meter dari site makro nya. Hasilnya pada parameter RSRP didapatkan nilai -79,95 dBm secara average, CINR sebesar 9,75 dB secara average, downlink throughput 14,202 Mbps, uplink throughput 8,221 Mbps, dan user rejected sebesar 2,54%. Dari tabel 4 di atas juga dapat kita perhatikan bahwa semakin dekat site mikro dengan site makro maka semkain kecil pula nilai CINR yang didapat. Hal tersebut dikarenakan terjadinya interferensi yang disebabkan penggunaan sinyal frekuensi yang sama.

c. Simulasi After Berdasarkan Capacity Calculation

RSRP Jarak Dari No User **CINR** DL Throughput UL Throughput Small Cell Makro (m) (dBm) (dB) (Mbps) (Mbps) Reject 300 18% -81.35 7.253 5,572 5.74 600 5,31% -79,68 7,27 9,597 6,178 3 Small Cell 10 MHz 900 2,47% 7,243 -81,16 8,5 11,678 1200 1,68% -75,24 9,37 13,757 7,710 300 18,60% -81,37 7,28 9,310 6,480 7,21 7,638 600 11,08% -79,71 11,531 3 Small Cell 20 MHz 900 3,42% -81,18 7,83 9,571 15,504 1200 1,00% -75,29 10,27 10,578 19,665 300 5,74 5,572 13,63% -81,35 7,131 600 6,25% -79,68 7,23 9,381 6,178 3 Small Cell 30 MHz 900 3,18% -81,16 8,45 11,431 7,243 1200 13,539 1.00% -75,24 9,31 7,710

Tabel 5 Hasil After Perancangan HetNet Berdasarkan Coverage Calculation

Dari tabel 5 di atas, setelah melakukan simulasi hasil dari percobaan ternyata nilai yang paling baik secara parameter dari keseluruhan adalah pada 3 site mikro pada *bandwidth* 20 MHz di jaraik 1200 meter dari site makro nya. Hasilnya pada parameter RSRP didapatkan nilai -75,29 dBm secara *average*, CINR sebesar 10,27 dB secara average, *downlink throughput* 19,665 Mbps, *uplink throughput* 10,578Mbps, dan *user rejected* sebesar 1 %. Tabel 5 di atas juga dapat kita perhatikan bahwa semakin dekat *site* mikro dengan *site* makro maka semkain kecil pula nilai CINR yang didapat. Hal tersebut dikarenakan terjadinya interferensi yang disebabkan penggunaan sinyal frekuensi yang sama

5. Kesimpulan dan Saran

Hasil dari perancangan jaringan HetNet dengan *small cell* berupa *site* mikro berdasarkan *capacity calculation* berjumlah 1 *site* mikro untuk *bandwidth* 30 MHz, 2 *site* mikro untuk *bandwidth* 20 MHz, dan 4 *site* mikro untuk *bandwidth* 10 MHz. Berdasarkan *coverage calculation* didapatkan jumlah *site* mikro sebanyak 3 *sitei untuk setiap* bandwidth nya. Hasil yang paling baik adalah perancangan dengan jumlah 3 *site* mikro dengan *bandwidth* 20 MHz. Konfigurasi 3 *site* mikro dengan *bandwidth* 20 MHz menghasilkan parameter RSRP sebesar -75,29 dBm, CINR sebesar 10,27 dB secara average, *downlink throughput* 19,665 Mbps, *uplink throughput* 10,578Mbps, dan *user rejected* sebesar 1 %. Semakin dekat *site* mikro dengan *site* makro maka akan semakin menurunkan performa dair parameter CINR yang disebabkan oleh interferensi. Perlu dikaji dalam penanganan interferensi yang diakibatkan oleh perancangan HetNet menggunakan *tools* atau perangkat lunak yang lain. Dapat melakukan perancangan HetNet dengan pemilihan jenis *small cell* seperti *pico cell* dan *femto cell* agar mengetahui pemilihan *small cell* terbaik untuk perancangan HetNet pada studi kasus. Perlu dikaji dalam analisis pada layanan *service* yang diakibatkan oleh perancangan jaringan HetNet

Daftar Pustaka:

- [1] A. Maulana, A. Fahmi, & U.K. Usman, "Perancangan Jaringan Heterogen LTE-Advanced Dengan Pico Cell Menggunakan Range Expansion Di Kota Cimahi", *e-Proceeding of Engineering*, vol. 5, no. 2, Agustus 2018.
- [2] F. Foukalas. R. Shakeri, & T. Khattab, "Distributted Power Allocation for Multi flow Carrier Aggregation in Heterogenous Cognitive Cellular Networks", *IEEE Transactions on Wireless Communications*, vol. 17, pp. 2486 2498, April 2018.
- [3] H. Finandriyanto, A. Fahmi, & U.K. Usman "Analisis Performansi Small Cell pada Jaringan Heterogen LTE-Advanced", *e-Proceeding of Engineering*, vol. 3, no. 2, Agustus 2016.
- [4] H. Kumar, S Sahu, & S Sharma, "Enhanced Cost231 W.I. Propagation Model in Wireless Network", *International Journal of Computer Applications*, vol. 19, no.6, pp. 0975-8887, April 2011.
- [5] Qualcomm Incorporated, LTE-Advanced Heterogenous Network. California: Qualcomm, 2011.

- [6] S. Wibowo, A. A. Muayyadi, & D. M. Saputri, "Analisis Perencanaan Jaringan Heterogen LTE-Advanced Small Cell Frekuensi 1800 Mhz Studi Kasus Kota Bandung", *e-Proceeding of Engineering*, vol.3, no.1, April 2016.
- [7] Y. Yuan, LTE-Advanced Relay Technology and Standardization. 1st ed., United Kingdom: Springer, 2013.

