Examen SAI seria 15, sem. I, 1.02.2021 ¹

Subiectul I. Pe mulțimea numerelor naturale $\mathbb N$ se consideră relația $a \sim b$ dacă și numai dacă există $k \in \mathbb Z$ astfel încât $b = 3^k a$.

- 1. Arătați că \sim este o relație de echivalență pe \mathbb{N} . (3 pct.)
- 2. Dacă \widehat{a} este clasa de echivalență a lui $a \in \mathbb{N}$ modulo \sim , descrieți $\widehat{0}$, $\widehat{1}$, $\widehat{6}$ și $\widehat{12}$. (2 pct.)
- 3. Determinați un sistem complet de reprezentanți pentru \sim . (2 pct.)
- 4. Dacă $\frac{\mathbb{N}}{\mathbb{N}}$ este mulțimea claselor de echivalență pe \mathbb{N} modulo \sim , există $f: \frac{\mathbb{N}}{\mathbb{N}} \to \mathbb{N}$ funcție bijectivă? Dar $g: \mathbb{N} \to \frac{\mathbb{N}}{\mathbb{N}}$ funcție bijectivă? (2 pct.)

Subjectul II.

Fie grupul $G = (\mathbb{Z} \times \mathbb{Z}, +)$ şi $H = \langle (2,3) \rangle = \{(2k,3k) \mid k \in \mathbb{Z}\}$ subgrupul lui G generat de (2,3).

- 1. Demonstrați că G este generat de elementele (1,0) și (0,1). Este G grup ciclic? (2+2 pct.)
- 2. Arătați că, grupul factor $(\frac{G}{H},+)$ este generat de $\overline{(1,1)}$, clasa elementului $(1,1) \in G$ modulo H. Este grupul factor $\frac{G}{H}$ izomorf cu $(\mathbb{Z},+)$? (3+2 pct.)

Subjectul III.

Se consideră permutarea

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 8 & 11 & 17 & 16 & 5 & 9 & 3 & 1 & 15 & 14 & 2 & 4 & 13 & 12 & 6 & 10 & 7 \end{pmatrix} \in S_{17}.$$

- 1. Descompuneți σ în produs de cicluri disjuncte și în produs de transpoziții. (2+1 pct.)
- 2. Aflați ordinul și signatura permutării σ . Calculați σ^{2021} . (3 pct.)
- 3. Determinați toate permutările τ din S_{17} cu proprietatea că $\tau^2 = \sigma$. (3 pct.)

Subjectul IV.

- 1. În inelul de polinoame $\mathbb{Z}_{350}[X]$, există divizori ai lui zero nenuli ce nu sunt elemente nilpotente? Dar polinoame inversabile de grad n, n număr natural nenul? (2+2 pct.)
- 2. Arătați că $f = X^3 + X^2 + \hat{1}$ este un polinom ireductibil în $\mathbb{Z}_2[X]$. Descrieți inelul factor $L = \frac{\mathbb{Z}_2[X]}{f\mathbb{Z}_2[X]}$ și determinați elementele inversabile din L. (3 pct.)
- 3. Este $f = X^4 + X^2 + \widehat{1}$ polinom reductibil în $\mathbb{Z}_3[X]$? În caz afirmativ, descompuneți f în produs de polinoame ireductibile. (2 pct.)

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru $2\frac{1}{2}$ ore. Succes!