© Singular Value Decomposition
ogenerally Gayssian - Elimination is not proper in the finite-productor rounding-off process.
* SVD: A = USVT for mxn matrix.
inst find the eigenvalues of ATA, (nxn)
ATAX = λX GUN/ $X^{T}A^{T}AX = \lambda \ X\ ^{2} \Rightarrow \lambda = \frac{\ A X \ ^{2}}{\ X \ ^{2}} \ge 0$ [non-zero assume there are r non-zero (positive) eigenvalues $\lambda_{1} \ge \lambda_{2} \ge \cdots \ge \lambda_{r} > 0$ and $\lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_{n} = 0$ $(A^{T}A \to nxn \ matrix)$
= singular values: 6; = 12;
Since A^TA is symmetric \rightarrow the eigenvectors are orthonormal in \mathbb{R}^n . $V_1 = \begin{bmatrix} V_1 & V_2 & \cdots & V_r \end{bmatrix} \rightarrow \text{orthonormal eigenvectors of } A^TA$ for A_1 , A_2 , A_3 , A_4 , A_2 , A_4 , A
$V_1 = \begin{bmatrix} V_1, V_2 & \cdots & V_r \end{bmatrix} \rightarrow \text{or the normal eigenvectors of } A^TA$ for $\lambda_1, \lambda_2, \cdots, \lambda_r$
$\Sigma_{1} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$ $\Sigma_{2} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

 $\sum_{i} = \begin{bmatrix} 6 \\ 6_{1} \end{bmatrix}$ $\sum_{i} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\max_{i} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

VI, V2... Vr . > basis of Row Space. C(AT) CO DS=

```
for eigenvalues, \lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_n = 0, the corresponding eigenvectors; \lambda_{r+1} = \lambda_r + 
                                                                        A^{r}Av_{j}=0  j=r+1, r+2, \cdots, n
                                                                                             V_j = 0 j = r+1, r+2, \dots, n.

V_j is the basis of N(A^TA) = N(A), in \mathbb{R}^n
                                                                             V_2 = V_{rt1} V_{rt2} V_n
                                                             =) AV2 = 0 = null space of A.
                                                                          V = [V \mid V_{\perp}] \Rightarrow V \mid V_{\perp}^{T} = I_{\parallel}
Now, we show that AV=UE (V: orthogonal matrix)
             A\left[\begin{array}{ccccc} V_1 & V_2 & \cdots & V_r & V_{r+1} & \cdots & V_n \end{array}\right] = \left[\begin{array}{ccccc} U_1 & U_2 & \cdots & U_m \end{array}\right] \left[\begin{array}{ccccc} G_1 & & & & \\ & G_2 & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}\right]
                                                                                                                                                                                                                                                         = \left[ 6_1 U_1 \quad 6_2 U_2 \cdots \quad 6_r U_r \quad 0.0 \cdots 0 \right]
                     Av_i = \delta_i U_i \qquad i = 1, 2, \dots r.
                           Ui = 7. AVi i=1,2...,r.
                                      U1 = [U1 U2 ... U2]
                                                                                                                                                                                                                                                                                                                                                                                                                                          or thonormal matrix.
```

 $AV_1 = U_1 \Sigma_{1,1}$ \Rightarrow $A = U_1 \Sigma_1 V_1^T$

MOOKEUK

SVD - 7,3 $u_{i}^{\mathsf{T}}u_{j} = \left(\frac{1}{6i} \mathsf{A} V_{i}\right)^{\mathsf{T}} \left(\frac{1}{6j} \mathsf{A} V_{j}\right) = \frac{1}{6i6j} V_{i}^{\mathsf{T}} \mathsf{A}^{\mathsf{T}} \mathsf{A} V_{j} = \frac{1}{6i6j} V_{i}^{\mathsf{T}} \lambda_{j} V_{j}^{\mathsf{T}}$ $= \int_{ij} \left(\frac{i=j=1}{i \neq j} = 0 \right)$ Since Vi are orthonormal eigenvectors \Rightarrow thus U_i 's $(i=1, 2, \cdots, r)$ form an orthonormal basis. in \mathbb{R}^m , $(\mathbb{C}(A')) \Rightarrow {}^{\text{Column}}$ space. U2 = [UH Ulra in almension. Let | left mill space!

> we usually construct on orthonormal basis tor-M(AT)

[Urn, Urn, ... Um] by G.S.D or inspection. $\left[\begin{array}{c} U_1 & U_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"} = \left[\begin{array}{c} v_1 & v_2 \\ \hline \end{array} \right]_{"}$ finally = U, Z, V, T ⇒ V and V. are not unique, but 6, 62... or are unique.

Example >
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 \Rightarrow $A^{T}A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ \Rightarrow $\lambda_{1} = 4$, $\lambda_{2} = 0$ \Rightarrow $\delta_{1} = 2$. $\delta_{2} = 0$.)

$$Y_{1} = \frac{1}{12} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 \Rightarrow $V_{2} = \frac{1}{12} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$