Q	(1) $D = 980 - 15P$
	D= 980 -15P
	15 15 15
	D = 980 - P
	15 15
-	P+D=980
	. 15
	P= 980-10
	. 15 15
	a b
,	
	26 2(1/15)
	D= 20.33 _ 152.4
	0-133
	(i) Most Profit =?
	$=TR-C_T$
	= P x D = CF + Cv x D
1	$= \frac{980 - 10 \times 152.4 - 1800 + 45 \times 152.4}{15 \times 15}$
	= -2 7
	=7 Loss. (6)

Profitable range ? Ly use Quad formula $\mathcal{H} = -b \pm \sqrt{b^2 - 4ac}$ => $(\alpha - c_v) D - b D^2 - C_f = 0$ $-\left(\alpha-Cv\right)\pm\left(\left(\alpha-Cv\right)^{2}-4\left(b\right)\left(C_{F}\right)\right)$ $-\left(\frac{980}{15} - 45\right) \pm \sqrt{\frac{980}{15} - 45}^{2} - 4\left(\frac{-1}{15}\right)\left(-1800\right)$ But bol Profit hai? Nahi to! So konsi range (ini) Products for max TR (Vi) $= \alpha = 980/15$ 2/15 = 490.

- (2)	$TR = \alpha D - b D^2$
	CF = 1450
	$c_v = 5.5$.
	$\alpha = 5.6$, $b = 0.0125$
	(i) Maximum Profit =?
	1) optimal
	$D = \alpha - cv = 5 \cdot 6 - 5 \cdot 5$
	26 2(0.0125)
	D= 0.1 = 4
	0:025
	(i) Max profit per month?
	@ a-cv > 0
	5.6-5.570 V
	6 TR 7 CT
	aD-60' > CF+CVD
	5.6×4-(0.0125×42) > 1450 +5.5×4
	22.4 - (0.2) > 1450+22
	22.2 > 1472
	Thus no profit (ini)
	(iii) No Profitable range
	$TR_{max} = \omega' = (5.6)^2$
	46 7x0.0125
	= 627.2

3 1) Profitable range? $D = -(\alpha - Cv) + \sqrt{(\alpha - Cv)^2 - 4(-6)(-C_F)}$ put values D, = 331500 Dr= 150 8500. variable cost reduced by 10% 15.57 x 0.1 = 1.557 15.57 - 1.557= 14.013 Fixed cost reduced by 15%. = 1,000,000 × 15 = 150 000 = 850000 Now again find D using quadratic formula. $D_1 = 184250$ $D_2 = 2299250$ 50 profitable area increased

D = 500 - 5P = 100 - 1 $D = \alpha - Cv = 100 - 25 = 75$ D= 187-5 Max Profit = TR-TC = PxD - CF+CVD = 6931.25 Range ? Use quadrate formula D= (-100-25) + (75) -4(0-2)(1000) 2(-0.2) $D_1 = 13.75$ D2 = 361.25.