Analisis Regresi Linier

Kuliah 4 STA1381 – Pengantar Sains Data

Septian Rahardiantoro

Outline

- Pengantar Pemodelan Statistika
- Analisis Regresi
 - Regresi Linier Sederhana
 - Regresi Linier Berganda
- Dummy Variable

Pengantar Pemodelan Statistika

$$y = f(x_1, x_2, \dots, x_p) + \varepsilon$$

- Membangun miniatur dari dunia nyata
 - dinyatakan dalam satu atau beberapa fungsi matematis

- Menyederhanakan fenomena nyata sehingga mudah memahami pola umum yang ada
 - memberikan penjelasan terhadap perubahan
 - memberikan penjelasan tentang perbedaan yang terjadi
 - menemukan faktor yang menyebabkan perubahan dan perbedaan

Pemodelan

- Tujuan/Manfaat:
 - Sering digunakan untuk meng-explore dataset yang dimiliki
 - Digunakan untuk melakukan p<u>redik</u>si berdasarkan informasi dari variabel prediktor
 - Digunakan untuk mengkaji dan memahami bagaimana suatu variabel berhubungan dengan variabel yang lain

Are not perfect

"All models are wrong, but some are useful" (GEP Box)

Beberapa Model Statistika yang Populer

Jenis Variabel Target	Model Statistika
Numerik	Regresi Linier
Kategorik	Regresi Logistik Pohon Klasifikasi (Classification Tree)

Analisis Regresi

→Analisis statistika yang memanfaatkan hubungan sebab akibat antara dua atau lebih peubah kuantitatif sehingga salah satu peubah dapat diramalkan dari peubah lainnya.

Hubungan Antar Peubah:

- Fungsional (deterministik) → Y=f(X); misalnya: Y=10X
- Statistik (stokastik) -> amatan tidak jatuh pas pada kurva (terdapat galat)
 - Mis: IQ vs Prestasi, Berat vs Tinggi, Dosis Pupuk vs Produksi

Analisis Regresi

- Analisis Regresi digunakan untuk:
 - Menjelaskan dampak perubahan peubah prediktor terhadap peubah respon
 - Memprediksi nilai dari peubah respon berdasarkan nilai dari setidaknya sebuah peubah prediktor

Peubah Respon (peubah tak bebas, peubah terikat, dependent variable): peubah yang ingin kita jelaskan

Peubah Prediktor (peubah bebas, independent variable): peubah yang digunakan untuk menjelaskan peubah respon

Regresi Linier

- Syarat Utama: Variabel output (Y) bersifat numerik
- Variabel prediktor (X)
 - numerik OK, kategorik OK
 - satu OK, lebih dari satu OK
- Bentuk model

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$$

Regresi Linier Sederhana

- Suatu pendekatan untuk memprediksi peubah respon kuantitatif Y berdasarkan sebuah peubah prediktor X
- ullet Pendekatan ini mengasumsikan bahwa ada hubungan linier antara X dan Y

Regresi Linier Sederhana

Sehingga:

Model regresi
$$Y = \beta_0 + \beta_1 X + \varepsilon$$

diduga oleh

Persamaan regresi
$$\hat{Y} = b_0 + b_1 X$$

Regresi Linier Sederhana

- Maka
 - β_0 diduga oleh b_0
 - β_1 diduga oleh b_1

 b_0 adalah nilai rataan Y ketika X= 0 (tidak dapat diinterpretasikan oleh X)

 b_1 adalah perubahan nilai rataan Y untuk setiap perubahan 1 satuan X.

Pendugaan Parameter

• Misalkan $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ adalah prediksi untuk Y berdasarkan nilai ke-i peubah X (dengan i = 1, 2, 3 ..., n)

6=7-3

= y - ((2 + p, x)

e= 3-12-12, x

• Maka residual ke-i didefinisikan oleh:

$$e_i = y_i - \hat{y}_i \rightarrow e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

• JKG (Jumlah Kuadrat Galat) didefinisikan oleh:

$$JKG = e_1^2 + e_2^2 + \dots + e_n^2 \qquad \exists e_1^2$$

$$JKG = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

• Penduga MKT (Metode Kuadrat Terkecil), memilih $\hat{\beta}_0$ dan $\hat{\beta}_1$ yang meminimumkan JKG. Dengan perhitungan kalkulus diperoleh:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(\bar{y}_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}; \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Pendugaan Parameter

Metode Kuadrat Terkecil → Meminimumkan jumlah kuadrat galat

Ilustrasi kontur dan plot 3D pada JKG (RSS) untuk model dengan Y = sales dan X = TV

FIGURE 3.2. Contour and three-dimensional plots of the RSS on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, given by (3.4).

Pendugaan Parameter

Keragaman yang dapat dijelaskan dan tidak dapat dijelaskan

Regresi Linier Berganda

- Analisis regresi linear berganda:
 - Secara umum, kita memodelkan peubah respon Y sebagai fungsi linier dari k peubah prediktor (X) sebagai:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$$

$$N = \text{by k personal}$$

• Atau dalam notasi matriks $y = X\beta + \varepsilon$

$$\frac{1}{2} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\ y_n \\ \vdots \\ y_n \end{pmatrix}$$

$$\frac{1}{2} \times \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \vdots \\$$

• Jika kita memiliki dua variabel X, model dapat diilustrasikan sebagai berikut

- Pendugaan koefisien regresi:
 - Pendugaan koefisien regresi diperoleh dengan meminimumkan jumlah kuadrat galat (residual) → OLS (Ordinary Least Square) atau MKT (Metode Kuadrat Terkecil)
 - Dalam hal ini dicari dugaan dari β_j , $j=0,1,2\dots,k$ yang meminimumkan $\sum_i \varepsilon^2$, dengan $\varepsilon=Y-\widehat{Y}$, yang dalam notasi matriks diperoleh

Asumsi model regresi linear

Nilai mean dari peubah *Y* dimodelkan secara akurat oleh fungsi linier dari peubah-peubah *X*

Antar peubah *X* tidak ada multikolinearitas

そ~(0,0~)

E(名)=0

W(名;,45)=0

Galat bersifat independen/
saling bebas
(tidak ada autokorelasi)

Galat acak diasumsikan menyebar normal dengan nilai tengah nol dan memiliki ragam yang konstan σ^2 (ragam homogen)

Kesesuaian Model

• Kualitas kecocokan regresi linier biasanya dinilai menggunakan dua besaran terkait: Galat Baku Residual (residual standard error) dan statistik \mathbb{R}^2

Galat Baku Residual

• Galat Baku Residual merupakan dugaan simpangan baku dari residual, yakni jumlah rata-rata respon yang akan menyimpang dari garis regresi yang sebenarnya.

Galat Baku Residual =
$$\sqrt{\frac{1}{n-p-1}}JKG = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

- Galat Baku Residual dianggap sebagai ukuran kecocokan model dengan data.
 - Jika prediksi yang diperoleh dengan menggunakan model sangat dekat dengan nilai hasil sebenarnya—yaitu, jika $\hat{y}_i \approx y_i$ untuk $i=1,\ldots,n$ —maka Galat Baku Residual akan menjadi kecil, dan kita dapat menyimpulkan bahwa model tersebut sangat cocok dengan data.
 - Di sisi lain, jika \hat{y}_i sangat jauh dari y_i untuk satu atau lebih pengamatan, maka Galat Baku Residual mungkin cukup besar, menunjukkan bahwa model tidak sesuai dengan data dengan baik.

• Statistik R²

- Galat Baku Residual memberikan ukuran mutlak ketidaksesuaian model dengan data.
- Tetapi karena diukur dalam satuan Y, tidak selalu jelas apa yang dimaksud dengan Galat Baku Residual yang baik.
- Statistik R^2 memberikan alternatif ukuran kecocokan model.
- Bentuknya berupa proporsi (proporsi ragam yang dijelaskan) sehingga selalu mengambil nilai antara 0 dan 1, dan tidak bergantung pada skala Y.

$$R^{2} = \frac{JKT - JKG}{JKT} = 1 - \frac{JKG}{JKT} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

• R^2 mengukur proporsi keragaman dalam Y yang dapat dijelaskan dengan menggunakan X.

Dummy Variable (Peubah Boneka)

• Dummy variable diterapkan pada peubah prediktor dengan skala kategorik

• Banyaknya dummy variable yang dibentuk dari satu peubah kategorik adalah k-1, dengan k adalah banyaknya kategori dalam peubah tersebut. $\times (1,1,3) \rightarrow (1,1,3) \rightarrow$

Misalkan pada peubah pekerjaan yang terdiri dari 3 kategori: Pegawai BUMN,

Pegawai swasta, dan PNS

Pilih satu kategori sebagai reference, misalkan Pegawai BUMN

Kategori	D1		D2	
Pegawai BUMN	0 /		0	
Pegawai swasta V	1 🗸		0)
PNS	0 4	7	1 🗸	

Ilustrasi Kasus

Misalkan telah diperoleh data scraping harga rumah beserta karakteristiknya

Ingin diketahui pengaruh setiap karakteristiknya ke harga rumah tersebut.

Data: RUMAH.TXT

- ID, Identification number
- sales_price, Sales price of residence (dollars)
- X1, Finished area of residence (square feet)
- X2, Total number of bedrooms in residence
- X3, Total number of bathrooms in residence
- X4, Presence or absence of air conditioning: 1 if yes; 0 otherwise
- X5, Number of cars that garage will hold
- X6, Presence or absence of swimming pool: 1 if yes; 0 otherwise
- X7, Year property was originally constructed
- X8, Index for quality of construction Indicates high quality; 2. Indicates medium quality; 3. Indicates low quality

 Saylor Angel Saylor Angel Saylor Say
- X9, Qualitative indicator of architectural style
- X10, Lot size (square feet)
- X11, Presence or absence of adjacency to highway: 1 if yes; 0 otherwise

usia = 2023 - X7

```
rumah <- read.table("D:/rumah.txt", header=TRUE)
head(rumah)</pre>
```

Penjelasan:

Baris #1: membaca file TXT dengan nama "rumah.txt" yang tersimpan pada folder D. Opsi "header=TRUE" mengatakan bahwa baris pertama pada file yang dibaca merupakan nama-nama kolom. Hasil pembacaan file tersebut disimpan dalam bentuk data frame di R dengan nama "rumah"

Baris #2: mencetak 6 (enam) baris pertama dari data frame "rumah"

plot(rumah\$X1, rumah\$sales price)

plot(rumah\$X1, rumah\$sales_price,
xlab="Finished area of residence (square feet)",
ylab="Sales price of residence (dollars)",
col="blue")

Finished area of residence (square feet)

Model Regresi Linier Sederhana: Y ~ X1

lm(sales price ~ 1 + X1, data=rumah)

```
R Console
                                                         - - X
> lm(sales_price ~ 1 + X1, data=rumah)
Call:
lm(formula = sales price ~ 1 + X1, data = rumah)
Coefficients:
(Intercept)
                     X1
     -81433
                     159
```

model1 <- lm(sales_price ~ 1 + X1, data=rumah)
summary(model1)</pre>

```
- - X
R Console
> model1 <- lm(sales price ~ 1 + X1, data=rumah)</pre>
> summary(model1)
Call:
lm(formula = sales price ~ 1 + X1, data = rumah)
Residuals:
   Min
            10 Median 30 Max
-239405 -39840 -7641 23515 388362
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -81432.946 11551.846 -7.049 5.74e-12 ***
X1
             158.950 4.875 32.605 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 79120 on 520 degrees of freedom
Multiple R-squared: 0.6715, Adjusted R-squared: 0.6709
F-statistic: 1063 on 1 and 520 DF, p-value: < 2.2e-16
```

Memprediksi Harga Rumah Seluas 4500 ft²

```
rumahku <- c(4500)
rumahku <- data.frame(rumahku)
colnames(rumahku) <- c("X1")
predict(model1, newdata=rumahku)</pre>
```

```
> rumahku <- c(4500)
> rumahku <- data.frame(rumahku)
> colnames(rumahku) <- c("X1")
> predict(modell, newdata=rumahku)
1
633843.1
> |
```


Model Regresi Linier Berganda

```
rumah$umur = 2023 - rumah$x7
rumah$ind.med <- ifelse(rumah$X8==2,1,0)
rumah$ind.low <- ifelse(rumah$X8==3,1,0)
model2 <- lm(sales price ~ 1 + X1 + umur + ind.med + ind.low, data=rumah)
summary(model2)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.585e+05 2.102e+04 12.30 < 2e-16 ***
X1
   9.756e+01 5.396e+00 18.08 < 2e-16 ***
umur -1.119e+03 1.953e+02 -5.73 1.7e-08 ***
ind.med -1.524e+05 1.040e+04 -14.65 < 2e-16 ***
ind.low -1.709e+05 1.404e+04 -12.17 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 61770 on 517 degrees of freedom
Multiple R-squared: 0.801, Adjusted R-squared: 0.7994
F-statistic: 520.1 on 4 and 517 DF, p-value: < 2.2e-16
```

Xexerny

referenz

- Interpretasi
 - dugaan model yang diperoleh sales_price = 258478 + 97.56 X1 1119.16 Umur 152382.80 Indeks Medium 170876.66 Indeks Low
 - UMUR
 - Koef = -1119.16, artinya jika rumah bertambah tua satu tahun, harganya turun dengan rata-rata sebesar 1119.16 dollar (signifikan)
 - X1 (luas bangunan)
 - Koef = 97.56, artinya jika luas rumah bertambah satu feet², harganya naik dengan rata-rata sebesar 97.56 dollar (signifikan)
 - Indeks Medium
 - Rumah dengan indeks medium memiliki rata-rata harga rumah 152382.80 dollar lebih rendah dari rumah dengan indeks tinggi (high) (signifikan)
 - Indeks Low
 - Rumah dengan indeks medium memiliki rata-rata harga rumah 170876.66 dollar lebih rendah dari rumah dengan indeks tinggi (high) (signifikan)

atau

```
Kategori yang menjadi reference selalu kategori
rumah$ind <- as.factor(rumah$X8)</pre>
                                                 yang pertama
str(rumah)
model3 <- lm(sales price ~ 1 + X1 + umur + ind, data=rumah)</pre>
summary(model3)
coef(model3)
> coef(model3)
                                                          ind2
  (Intercept)
                            X1
                                                                          ind3
                                          umur
 258477.75900
                                  -1119.15626 -152382.80986 -170876.66457
                     97.55652
```

Langsung gunakan factor pada peubah kategorik

Lalu bagaimana jika reference kategori peubah X8 diganti menjadi indeks "Low"?

```
##referensi X8 diganti menjadi "Low"
rumah$ind.high <- ifelse(rumah$X8==1,1,0)</pre>
str(rumah)
model4 <- lm(sales price ~ 1 + X1 + umur + ind.high + ind.med, data=rumah)</pre>
summary(model4)
coef(model4)
> coef(model4)
 (Intercept) X1 umur ind.high ind.med
 87601.09443 97.55652 -1119.15626 170876.66457 18493.85470
##dengan factor dari X8 (ind)
model5 <- lm(sales price ~ 1 + X1 + umur + relevel(ind, ref=3), data=rumah)</pre>
summary(model5)
coef(model5)
> coef(model5)
           (Intercept)
                                         X1
                                                             umur
          87601.09443
                      97.55652
                                                      -1119.15626
relevel (ind, ref = 3) 1 relevel (ind, ref = 3) 2
         170876.66457 18493.85470
```

Terima kasih ©