Атвудова машина

Лабораторно упражнение №4

Виолета Кабаджова, ККТФ, факл. номер: 3PH0600026

Физически Факлутет, Софийски Университет "Св. Климент Охридски" 15 ноември 2022 г.

Фигура 1: Атвудова машина

1 Теоритична част

Атвудовата машина е уред, чрез който могат да се изследват праволинейни вертикални движения. Схема на такъв уред е показана на фиг. 1 - той представлява макара, от двете страни на която има закачени на нишка две тела с равна маса m_{τ} . Приемаме, че нишката е неразтеглива и не се хлъзга по макарата. В началото и края на указанато на фигурата разстояние S_2 се намира по една фотоклетка, с помощта на които може да се измери времето, за което тялото преминава през горната част на S_2 и достига до долната част от уреда, като се удря в основата. На тялото от страната на фотоклетките могат да се поставят пръстени, които нарушават баланса, установен между двете тела в изходното положение, като по този начин създават равноускорително движение.

2 Експериментална част

2.1 Експериментална установка

Освен самото устройство, илюстрирано на фиг. 1, имаме и общо три пръстена, които могат да се слагат върху тялото, чието време на падане засичаме. Именуваме всеки от пръстените по стандарта Πi и записваме съответните пръстени с техните маси в таблица 1.

име	$m_i, [g]$
П1	2.16
П2	8.01
ПЗ	14.78

Таблица 1: Пръстените, използвани за допълнителни тежести, и техните маси.

2.2 Задача 1: Проверка на закона за пътя при равноускорително движение

Многократно измерваме времето, за което едното тяло изминава път L=18 ст и L=25 ст. Получените резултати записваме в таблица 2. Измерванията от 1 до 5 са при $L=S_2=18cm$, а от 6 до 10 - при $L=S_2=25cm$. Законът за пътя при равноускорително движение без начална скорост е $S=\frac{at^2}{2}$. Построявайки графиката на $2S(t^2)$ при дължини на $S_2=L$ (18 или 25 ст) по Ох и квадрата на средните стойности на измереното време, можем да определим ускорението $a=tan\alpha$, където α е ъгълът, получен при пресичането на графиката с Ох. В горепосочената таблица пресмятаме и ускоренията по закона $S=\frac{at^2}{2}$. Проверяваме този закон като сравняваме стойностите на полученото а от тангенса на ъгъл α и полученото от средните стойности, които трябва да са равни в рамките на грешката.

За средна стойност на ускорението от получените стойности в таблицата получаваме $a=1.173\frac{m}{s^2}$. Също така знаем, че:

$$g = \frac{2m_T + m_\Pi}{m_\Pi} a \tag{1}$$

От уравнение 1 получаваме, че теоритичната стойност за а е $0.87\pm0.14\frac{m}{s^2}$, равно на получената от експерименталните данни стойност $1.17\pm0.16\frac{m}{s^2}$ в рамките на грешките им, откъдето и доказваме закона за равноускорително движение.

N	$t_i, [s]$	$a_i, [m/s]$
1	0.589	1.038
2	0.518	1.342
3	0.556	1.165
4	0.570	1.108
5	0.524	1.311
6	0.656	1.162
7	0.693	1.041
8	0.648	1.191
9	0.641	1.217
10	0.658	1.155
	$\bar{t}_{1-5} = 0.551s$	$\bar{a}_{1-5} = 1.193s$
	$\bar{t}_{6-10} = 0.659s$	$\bar{a}_{6-10} = 1.153s$

Таблица 2: Направени измервания на височини L=18cm и L=25cm.

2.3 Задача 2: Измерване на стойността на земното ускорение

Фиксираме $S_2 = 20cm$, $S_1 = 15cm$. От пръстените, описани в таблица 1, избираме следните три комбинации от пръстени: П3, П2, П1+П2. Записваме измерванията в таблици 3, 4 и 5.

Докато тялото пада надолу с допълнителните си тежести, то се движи равноускорително без начална скорост (от състояние на покой), което означава, че тялото се движи равноускорително в сектор $S_1 = \frac{at^2}{2}$. При достигане на началната точка от пътя S_2 обаче (виж фиг. 1) тялото започва да се движи равномерно по закона $S_2 = vt$.

От закона за пътя при равномерно праволинейно движение се получава $S_1 = \frac{at_1^2}{2}, v_1 = at_1, S_2 = v_1t_2$, където t_1, t_2 са времената за изминаване на съответните разстояния S_1 и S_2 . От тези уравнения изключваме t_1 за равноускорителното движение, което не можем да измерим поради липсата на фотоклетки и изразяваме a само чрез S_1, S_2, t_2 (формула 2), откъдето следва и формула 3. Следователно формулата за абсолютна грешка за земното ускорение ще бъде посочената в уравнение 4.

N	$\mathbf{t}_i, [s]$	$(t_i - \bar{t}_{\Pi 3})^2 \cdot 10^{-3}$
1	0.38	0.001
2	0.383	0.016
3	0.381	0.004
4	0.377	0.004
5	0.376	0.009
	$\bar{t}_{\Pi 3} = 0.379$	$g_{\Pi 3} = 8.425 \pm 2.861$

Таблица 3: Измервания за експеримент с добавена тежест Π 3, чиято маса се причислява на 14.78 g.

N	$t_i, [s]$	$(t_i - \bar{t}_{\Pi 2})^2 \cdot 10^{-3}$
6	0.499	0.009
7	0.489	0.049
8	0.498	0.004
9	0.494	0.004
10	0.502	0.036
	$\bar{t}_{\Pi 2} = 0.496$	$g_{\Pi 2} = 8.528 \pm 2.923$

Таблица 4: Измервания за експеримент с добавена тежест Π 2, чиято маса се причислява на $8.01~{\rm g}$.

$$a = \frac{S_2^2}{2S_1 t_2^2} \tag{2}$$

$$g = \frac{(2m_{\tau} + m_j)S_2^2}{2m_j S_1 t_2^2} \tag{3}$$

$$\Delta g = \pm g \left(\frac{2\Delta m_T + \Delta m_j}{2m_T + m_j} + 2 \frac{\Delta S_2}{S_2} + \frac{S_1}{S_1} + \frac{\Delta m_j}{m_j} + 2 \frac{\Delta t_2}{t_2} \right)$$
(4)

От таблиците с измервания 3, 4 и 5 пресмятаме средните времена за преминаване през S_2 . Откъдето получаваме и стойностите за земното ускорение g по формула 3 със съответните грешки по формула 4.

Получените стойности за g можем да поставим на графика, по Ox оста, на която ще разположим $\frac{1}{m}$, а по Oy - съответното получено g. Прекарвайки медиана между тези точки, екстраполираме и получаваме стойността на g в пресечната точка с Oy (това действие е показано на

N	$\mathbf{t}_i, [s]$	$(t_i - \bar{t}_{\Pi 12})^2 \cdot 10^{-3}$
11	0.448	0.036
12	0.444	0.1
13	0.456	0.004
14	0.458	0.016
15	0.464	0.1
	$\bar{t}_{\Pi 12} = 0.454$	$g_{\Pi 12} = 8.239 \pm 2.896$

Таблица 5: Измервания за експеримент с добавена тежест $\Pi 2 + \Pi 1$, чиято обща маса става $10.17~{
m g}$.

Фигура 2: Графика на екстраполацията, пресичаща 0у в точка с координати (0, 8.24)

фиг. 2). Графиката пресича Оу в $g=8.24\frac{m}{s^2}$. Причината да получаваме g, толкова по-малко от очакваното e, че Нютоновата механика e създадена за тела с големи маси, докато тези в текущата лаборатория са ограничени до 1 kg, което на практика води до това много от силите, които пренебрегваме (като триене между макарата и нишката), в същност да се оказват съществетни.