

Введение в оптоинформатику
 Лекция 1

Асеев Владимир Анатольевич, доцент Кафедры ОТиМ

aseev@oi.ifmo.ru

Начало

В начале сотворил Бог небо и землю.

Земля же была безвидна и пуста, и тьма над бездною, и Дух Божий носился над водою.

И сказал Бог: да будет свет. И стал свет.

И увидел Бог свет, что он хорош, и отделил Бог свет от тьмы.

И назвал Бог свет днем, а тьму ночью. И был вечер, и было утро: день один.

Информация - сведения о предметах, процессах и явлениях окружающего мира, передаваемые людьми устно, письменно или иным способом (напр., с помощью условных сигналов, технических средств и т. д.). С середины 20 века информация воспринимается более широко, как общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом (напр., роботом), автоматом и автоматом; обмен сигналами в животном и растительном мире; передачу признаков от клетки к клетке, от организма к организму

Информатика наука о способах получения, накопления, хранения, преобразования, передачи, защиты и использования информации

Введение:Закон Дерека Прайса

Закон Дерека Прайса

Первый в мире научный журнал появился в 1665 г., но их число стало непрерывно расти только с 1750 г., когда в Европе установилась регулярная почтовая связь. [...] кривая роста общего числа научных журналов, издаваемых во всех странах. Число научных журналов дано в логарифмическом масштабе; видно, что за последние триста лет их рост неизменно следует экспоненциальному закону

число научных работников и отпускаемые на научную работу средства тоже растут по тому же экспоненциальному закону, удваиваясь через каждые 10-15 лет

Введение: Закон Мура

Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Полоса пропускания

Полоса пропускания (прозрачности) — диапазон частот, в пределах которого амплитудно-частотная характеристика (АЧХ) акустического, радиотехнического, оптического или механического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного искажения его формы

Ширина полосы пропускания - полоса частот, в пределах которой неравномерность частотной характеристики не превышает заданной.

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ $f_2 - f_1$, на котором амплитуда колебаний равняется $\frac{1}{\sqrt{2}}$ или, что эквивалентно 1/2 для мощности) от максимальной. Этот уровень приблизительно соответствует -3 дБ.

Полоса пропускания

Любой сигнал имеет ограничение в связи с распределенной пропускной способностью по закону Пуассона.

$$g(t) = 0.5*c + \sum a_n \sin(2pnft) + \sum b_n \cos(2pnft)$$

f – частота

 a_n, b_n — амплитуды n-ой гармоники

t – время передачи сигнала

g(t) – определенное ограничение на пропускную способность.

Коэффициенты гармоники могут быть получены через амплитуду сигнала. При этом скорость передачи информации зависит от способа кодирования и скорости изменения кодирования. Скорость передачи ограниченна максимальной частотой.

Основы передачи данных

- Все виды информации могут быть представлены в виде электромагнитных сигналов (ЭМС) аналоговых или цифровых
- Любой ЭМС имеет спектр (ширина, частотный диапазон, форма спектра)
- Основная проблема ухудшение сигнала при передаче (потеря энергии, искажение формы, шумы)
- Основные характеристики систем передачи данных полоса пропускания, скорость передачи для цифровых данных, уровень шума, уровень ошибок при передаче

Непрерывный сигнал и

дискретный

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\omega} dx.$$

Рис. 1.1. Дискретизация непрерывного сигнала

Согласно преобразованию Фурье, любая непрерывная величина описывается множеством наложенных друг на друга волновых процессов, называемых гармониками. Гармоники это функции вида $Asin(t+\phi)$, где A-амплитуда, $\omega-$ круговая частота, t-время и $\varphi-$ фаза. Преобразование Фурье переводит временное представление сигналов в их частотное представление – спектр. Любые технически реализуемые сигналы имеют ограниченный сверху спектр частот, характеризуемый граничной частотой, в пределах которой сосредоточено около 90% энергии сигнала.

Сигнал как функция частоты

Двоичный сигнал и его среднеквадратический амплитудный спектр

(b) – (c) Аппроксимация исходного сигнала

Сигнал как функция частоты

Ско- рость, бит/с	Длительность 8-битного сигнала, мс	Первая гармоника ряда Фурье, Гц	Число гармоник, проходящих через канал Т0 шириной 3100 Гц
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Скорость передачи в коде ASCII и гармоники

тмо инічегзіту Теорема о выборках

для однозначного воспроизведения непрерывного сигнала по его выборкам, шаг дискретизации T должен определяться соотношением

$$T \le \frac{1}{2f\Gamma p}$$

В цифровых сетях телекоммуникаций носителем информации являются прямоугольные импульсы тока или напряжения. Частотный спектр прямоугольного импульса похож на косинусоиду с непрерывно убывающей амплитудой и для него 90% энергии сигнала сосредоточены до частоты frp=1/t, где t - длительность импульса. Для обеспечения скорости передачи данных 1 Гбит/с необходимо разрешение между двумя соседними импульсами менее 1нс (10-9 с). Согласно теореме о выборках, аппаратура сетей телекоммуникаций должна обеспечивать полосу пропускания аналоговых сигналов от 0 до 0.5 ГГц.

Схемы аналоговой и цифровой передачи

Сравнение аналоговой и цифровой передачи

- Затухание и нарушение формы в цифровом случае не столь сильно как в аналоговом
- При ретрансляции цифрового сигнала проще восстановить его изначальную форму, которая известна точно, в отличии от аналогового сигнала
- При ретрансляции аналогового ошибка накапливается
- Цифровая передача дешевле, не надо восстанавливать форму сигнала

Критерий Найквиста

В 1927 году Найквист установил, что число независимых импульсов в единицу времени, которые могут быть переданы через телеграфный канал, ограничено удвоенной максимальной частотой пропускания канала (этой частоте соответствует чередующаяся последовательность нулей и единиц, остальные комбинации сигналов соответствуют более низким частотам)

$$f \leq 2B$$

где fp - частота пульса (пульсов в секунду), и В — полоса пропускания (в герц).

Предел Найквиста:

C=2 $\Delta f \log_2 V$ бит/с Δf - полоса пропускания канала V- число различимых уровней

Скорость передачи информации

Скорость передачи данных — объём данных, передаваемых за единицу времени. Максимальная скорость передачи данных без появления ошибок (пропускная способность) вместе с задержкой определяют производительность системы или линии связи. Теоретическая верхняя граница скорости передачи определяется теоремой Шеннона — Хартли

Емкость канала C, означающая теоретическую верхнюю границу скорости передачи информации, которые можно передать с данной средней мощностью сигнала S через один аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

Где С — ёмкость канала в битах в секунду;

- В полоса пропускания канала в герцах;
- S полная мощность сигнала над полосой пропускания, измеренной в ваттах или вольтах в квадрате;
- N полная шумовая мощность над полосой пропускания, измеренной в ваттах или вольтах в квадрате;
 - S/N отношение сигнала к гауссовскому шуму, выраженное как отношение мощностей.

Физическая среда передачи

- Магнитные носители
- Витая пара (Twisted Pair)
- Коаксиальный кабель (Coaxial Cable)
- Оптическое волокно (Fiber Optics)

Физическая среда передачи

• характеристики физической среды:

- полоса пропускания
- пропускная способность (спектр частот, которые канал пропускает без существенного понижения мощности сигнала)
- задержка
- Затухание (Разные среды искажают форму сигнала и гасят его энергию в зависимости от частоты сигнала по -разному)
- помехоустойчивость
- достоверность передачи
- стоимость
- простота прокладки
- сложность в обслуживании.

Физическая среда передачи

тмо UNIVERSITY ОПТОВОЛОКОННЫЕ ЛИНИИ СВЯЗИ

- Достоинства оптоволоконных линий связи
- широкополосность оптических сигналов обусловленная чрезвычайно высокой несущей частотой f_0 = 10^{12} - 10^{14} Гц, что позволяет передавать информацию со скоростью 1 Тбит в сек (Последний рекорд скорости 255 Тбит/с)
- Долговечность. Время жизни волокна то есть сохранение им своих свойств в определенных пределах превышает 25 лет что позволяет проложить волоконно-оптический кабель один раз и по мере необходимости наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие
- Помехозащищенность
- Компактность
- Низкие потери

Недостатки волоконно-оптических технологий:

- Высокая стоимость активных компонент
- Высокая стоимость монтажа и обслуживания

Затухание в оптоволоконном кабеле

Литература

- J. Laferriere, G. Lietaert, R. Taws, S. Wolszczak, Reference Guide to Fiber Optic Testing. Second edition. 2011
- А. Л. Дмитриев. Оптические системы передачи информации /Учебное
- пособие. СПб: СПбГУИТМО, 2007. 96 с.
- Макаров Т. В. Когерентные волоконно-оптические системы передачи :
- Учебник / Макаров Т. В. Одесса: ОНАС им. А.С. Попова, 2009. 220 с.
- Emmanuel Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications Wiley, New York, 1994