AAE 539 Chapter 3: 1-D Incompressible Flow Friction Factor and K_t Tables

All figures and tables below are from:

"SAE Aerospace Applied Thermodynamics Manual," Developed by SAE Committee AC-9, Aircraft Environmental Systems, Society of Automotive Engineers, Inc., New York, 1969.

Moody Diagram

Fig. 1A-5—Friction factor versus Reynolds number

Fig. 1A-5 shows variation in friction factor, f, with Reynolds number, Re, and relative roughness, ε/D .

Here f = Fanning Friction Factor (4f = Darcy Friction Factor)

Fig. 1A-9 shows combined effect of friction and K_t loss in a 90° elbow for $Re = 10^6$. Note minimum loss at bend radius to pipe diameter ratio, r/D, of approximately 3.

Fig. 1A-10—Loss coefficient versus Reynolds number for 90 deg radius bends, circular ducts. (Data for $N_{Re} > 10^5$ from Ref. 1, for $N_{Re} < 10^5$ from Ref. 28)

Fig. 1A-10 shows effects of Re and r/D on K_t for 90° bend (K_{t90}) .

Fig. 1A-11 shows effects of bend angle, θ , on K_t in terms of a correction factor, C. C is defined as the ratio of K_t , for bend angle θ , to K_{t90} .

Table 1A-5 Angular Displacement Versus Loss Coefficient*

2θ , deg	Κ,
0-30	0
30-45	0.05
45–180	Sudden contraction from A_1 to A_2 , as shown in Par. 3.3.1.

*Ref. 27, p. 115.

Table 1A-5 shows effects of contraction angle, θ , on K_t . For total included angles, 2θ , greater that 45° use Fig. 1A-39 below.

Fig. 1A-39 — Loss coefficient of a sudden contraction

Fig. 1A-39 plots the loss coefficient, K_t , for a sudden contraction as a function of area ratio, A2/A1 nd entrance radius to diameter ratio, r/d_2 . When calculating loss use dynamic pressure in smaller section, q_2 .

Fig. 1A-38 plots the loss coefficient, K_t , for a sudden expansion as a function of area ratio, A_1/A_2 . When calculating loss use dynamic pressure in smaller section, q_1 .

Schematic of geometry for an orifice in a duct.

Fig. 1A-44—Loss coefficient for an orifice in a duct: $A_1 = A_3$. (From Ref. 45, Table 11)

Fig. 1A-44 shows K_t for orifice in a duct when $A_1 = A_3$ based on area ratio, A_2/A_1 . When calculating loss use dynamic pressure in orifice, q_2 .

Fig. 1A-45—Loss coefficient for an orifice in a duct: $K_1 = [(1/C_c) - (A_2/A_3)]^2$

Fig. 1A-44 shows K_t for orifice in a duct when $A_1 \neq A_3$ based on area ratio, A_2/A_3 , and the contraction coefficient, C_c , which can be found from Fig. 1A-46 below. When calculating loss use dynamic pressure in orifice, q_2 .

Fig. 1A-46—Contraction coefficient of an orifice. (From Ref. 45, Tables 8 and 13)

Fig. 1A-45 shows C_c for an orifice based on area ratio A2/A1 Note as zero C_c tends toward 0.6.

Fig. 1A-48 shows K_t for a diverging duct based on divergence half angle, α , and the weight velocity ratio, G_2/G_1 . Where G = mass flow rate/cross-sectional area. When calculating loss use dynamic pressure in entrance, q_1 .