1. ЕМК - структура, основни блокове, шинна организация.

Приложение: за контрол и управление на различни обекти и процеси. Вид Embedded System (вградена МП система със спец. предназначение).

Структура на микропроцесорно устройство

Класическа структура (Чарлз Бабидж): включват следните устройства (компоненти):

- Централен процесор (аритметично-логическо устройство, АЛУ, Arithmetic Logic Unit) с възможност за работа със специфична система от инструкции.
 Инструкциите се изпълняват за определено време в зависимост от тактовата честота и спецификата им;
- RAM (Random Access Memory) памет енергозависима;
- Управляващо устройство (УУ), Control Unit;
- Входно устройство (Input Unit);
- Изходно устройство (Output Unit);

- Магистрална (Шинна) организация:
 - AM (AB, AL, address bus) адресна магистрала;
 - ДМ (DB, DL, data line магистрала за данни;
 - УМ управляваща магистрала
 - Буфериране на шините (bus buffers);
- Блок за управление: управляващо устройство (control unit, CU), ROM за макрокода; стекова памет (STACK), указател на стека (SP, stack pointer), контролер на прекъсванията (IC, interrupt controller);
- Блок за обработка на командите: програмен брояч / брояч на командите (PC, program counter), регистър на командния код / код на инструкцията (IR, instruction register), дешифратор на на кода на инструкцията (ID);
- Блок за обработка на данните: АЛУ, акумулатор (ACC, accumulator); регистри с общо предназначение (RB, registers block), флагов регистър (CC, code condition)

2. Памети с последователен достъп. Видове. Параметри.

Паметите биват още: адресни и безадресни.

Безадресни – конкретен механизъм (FIFO, LIFO) или признак (асоциативни)за достъп без конкретен адрес;

- FIFO (First-In First-Out) - първи "влязъл" първи излязъл. При първи тях се чете първия бит записана информация. *"Кюнец"*.

Приложение на FIFO паметите:

- При монитори за четене на информация в процеса на визуализация;
- За обработка (трансфер) на "подредена" информация между несинхронизирани шини и устройства:

LIFO (Last-In First-Out) - последен влязъл първи излязъл. При тези памети първи се чете последния записан бит информация. *"Кофа".*

Приложение: при Stack паметите (бърз достъп до данни).

3.Памети с непосредствен достъп SRAM - блокова схема, шини.

Видове:

- RAM (random access memory) → енергозависими, за четене и за запис.

SRAM (static RAM);биполярни;

- CMOS:

- BiCMOS

DRAM (dynamic RAM);MOS

- ROM (read-only memory) → енергонезависими, само за четене.

<u>Режими на работа при RAM паметите</u>:

- неизбрана;
- четене:
- запис;
- standby (понижена консумация).

- Запомняща матрица на база тригери (SRAM) или други специфични транзисторни структури (DRAM);
- Адресни шини: $A_0...A_{N+M}$ адресират 2^N 3К с дължина на думата L.
- RAM със сериен адрес (с допълнителен регистър само през 1 АШ).
- CS (chip select) избор на схема (избрана при ниско ниво CS=0);
- R/W (read/write) четене запис (при R/W=0 запис), още WE (write enable);

4. Памети с непосредствен достъп SRAM - режими на работа.

четене от паметта:

! липсва режим на триене /новата информация се записва върху старата/

- AN адрес
 R/W четене / запис (R/W=1)
 CS избор на схема
- 4. DATA OUT данни в изхода.

 au_{ac} - време на достъп (access time) валидност на данните

запис в паметта:

- 1. AN адрес
- R/W четене / запис (R/W=0)
- 3. CS избор на схема
- 4. DATA IN –данни за запис.

! стробиране на данни по CS Разрешена памет

5. DRAM памети - блокова схема, шини, режими на работа.

- Запомняща среда (матрица от 3К)
- Логически схеми за избор на адрес.
- Усилватели за сигнала от 3К
- Логика за въвеждане на адресите
- Схеми за четене/запис.
- Вътрешни броячи за регенерация
- Изходна логика

Операции:

- Четене(стандартно)
- Четене(по страница- Fast Page Mode, FPM)
- Запис
- Четене-запис(Read-Modify-Write, IBM Corp.)

6. DRAM памети - методи за регенерация. Режим DMA - предназначение.

Необходимост – *разреждане на зап.капацитет с времето* при необръщане към ЗК – загуба на данни.

Методи за регенерация на DRAM:

- <u>пакетн</u>а: спира се микропроцесора, регенерира се цялата памет;
 - периодична: регенерира се 1 ред (дума) от паметта;
- принудителна при липса на обръщение към паметта над минималното време за регенерация преминава се към пакетна или периодична регенерация;
- <u>скрита</u> в рамките на вътрешния цикъл на обработка на една команда (по време на изпълнението й в АЛУ на микропроцесора).

DMA - direct memory access.

Същност – за достъп на устройството до паметта без да е необходима намесата на процесора. Осъществява обмен на блокове от паметта между две устройства.

Реализира се при персонални компютри: използва отделен **DMA** контролер или Bus mastering (PCI bus).

7. Разширение на паметта при памети с непосредствен достъп (разширяване на дължината на думата, увеличаване на обема)

Увеличаване разредността на паметта (L на думата)

Пример: Налични блокове памет 64К х 1. Необходима разредност 8 бита. Крайна структура 64 х 8. Време за регенерация – ЕДНАКВО.

Разширение на паметта при памети с непосредствен достъп

 Увеличаване обема на паметта

Пример: Налични блокове памет 64К x 8. Необходим общ обем на паметта 256К x 8.

Адресиране на паметта: A17 A16 A15.....A1 A0

8. ROM памети: основни типове и приложение.

Общи характеристики:

- само за четене (MROM) или за четене и Програмиране по специален начин (PROM, EPROM, EEPROM, Flash);
- енергонезависими;
- с непосредствен достъп (адресни памети):
 - същата организация като RAM (pin to pin compatible);
 - еднакво време за достъп до всеки ЗЕ;
- програмирането по специален начин при
- производството им или от потребителя.

Приложение:

- 1. За съхранение на програми за работа на микрокомпютъра и стартпрограми в PC (BIOS, монитори и др.);
- 2. За съхранение на големи таблици от данни (ТИ, т.нар. look-up tables);
- 3. За реализация на логически функции (OR, NOR, AND, NAND) ПЛМ (програмируеми логически матрици).

9. PROM - структура, програмиране, особености.

Основни характеристики:

- Еднократно програмируеми от потребителя (клиента) в лабораторни условия;
- Структура матрична решетка (масив) от "бушони" (array of fuses) NiCr, poly-Si, W връзка с възможност за прегаряне т.нар. Burning ROM;

Процес на програмиране:

- чрез устройство *Програматор*.
- пропуска се ток с Висока стойност, при което се прегаря жичката между АШ и ШД (липса на връзка) или се оставя (наличие на връзка). Биполярни (TTL). Запис бавен (5 мин.). Високо бързодействие.
- програмиране с ток (за разлика от EPROM);
- еднократно програмиране;
- биполярни PROM защитени от радиоактивно въздействие;
- високо бързодействие (до 1 ns);
- висока консумация.

Структура с 4 бр. ЗК, (четене, програмиране), блуждаещ ток

10. Памети EPROM - блокова схема, режими на работа.

- вид ROM, енергонезависима памет (non-volatile memory);
- представлява масив от MOS транзистори с плаващ гейт (floating gate transistors) т.нар. UVEPROM;
- програмиране с по-високо от захр.напрежение Vpp = 12,7 v;
- изтриване чрез облъчване с ултравиолетова UV светлина с определена дължина на вълната (w=253 nm), за определено време

_

Структура на MOS транзистор с плаващ гейт transistor)

(floating gate

- poly-Si на 1-во ниво (плаващ гейт, FG);

- poly-Si на 2-ро ниво (контролен гейт, CG);

Програмиране – чрез механизъм "hot injection" (CHE-channel hot el. injection);

Високо напрежение между G и D, импулс към избрания G.

Режими на работа:

- нормални: неизбрана, четене, standby
 - изтриване (UV светлина); *N.B. Първоначално изтриване около 20 min*
 - програмиране (запис).
 - запис (програмиране) -

Отн. бавен x 50 ms,

Адресира се цял байт;

11.Памети EEPROM - блокова схема, режими на работа.

Примерна блокова схема

Приложение:

за запис на технологични.
 програми, параметри;

-НЕ за програми в ЕМК.

Съвременно състояние:

- Hitachi (1Mbit)

- L= 0.6 µm, площ на 3E→22,5µm², обща площ на чипа → 51mm²

Режими на работа:

12. FLASH памети специфика на 3К. Типове.

Особености:

- блоково програмиране/изтриване и индивидуален запис до конкретна ЗК;
- изтриване чрез F-N тунелиране;
- програмиране чрез F-N тунелиране или СНЕ механизъм.

Опасност при Flash ROM - евентуална промяна в дадена зона (portion disturbance) докато се записва в друга. Липсва селектиращ транзистор (СИ ↑)

Предимство – напълно CMOS технология с допълнителни процеси за FG (до и под $0.18\mu m$) – постигане на висока CИ!

Реализация на структурно ниво:

- Boot block (Sector erased) Flash изтриване на сектори от 4КВ до 128КВ (16КВ boot block сигурност!);
- Bulk erased Flash изтрива се целия Flash.

Операциите четене и запис - на принципа на непосредствен побайтов достъп.

Съвременни FLASH архитектури – имат включен КА за автоматизация на WRITE и ERASE операциите.

Първите FLASH-софтуерно управление на операциите.

13.Общи шини на ЕМК НС11.

XTAL, EXTAL – осигуряват интерфейс с външен ТГ (тактов генератор): кварцов(XTAL) или CMOS-съвместим(EXTAL) за тактуване на вътрешните схмеи. Честотата на външния генератор е 4 пъти по-висока от вътрешната за ЕМК. При използване на EXTAL, XTAL следва да се оставя свободен.

RESET – двупосочна шина. Вход – за инициализация на МП в начално състояние. Изход – с ОД за индикация на вътрешна грешка при Clock monitor или COP.

Поради невъзможност да се изпълнят правилно инструкции при понижаване на захранването се изисква включване на допълнителна LVI (low-voltage-inhibit) схема за предпазване на EEPROM.

E-Clock (E) – изход от вътрешния ТГ. Честотата в изход E е 1/4 от тази на шини XTAL/EXTAL. При E=low се извършва обработка във вътрешните структури на EMK, при E=high – постъпване на данни. В режим STOP E-Clock се спира. За намаляване на радиоемисиите изход E се забранява.

IRQ (Заявка за прекъсване, InterruptRequest) – вход за асинхронна заявка за прекъсване към ЕМК. Може да се окаже активиране по заден фронт или по ниво.

XIRQ/V_{PPE} (Немаскирано прекъсване, Non-Maskable Interrupt) – вход за немаскирано прекъсване след Reset инициализация. При Reset, бита X в CCR(condition-code-register) се установява в 1 и всяко прекъсване се маскира, докато софтуерно не се разреши.

MODA,MODB (MODA/LIR, MODB/Vstby) – при Reset,MODA и MODB определят 1 от 4-те режима на работа: Single-chip(EMK), Expanded(MП), TEST, BOOT; LIR(load-instruction-register) – след избор на режима осигурява изход ОД като индикация, че изпълнението на инструкцията е започнало; Vstby – използва се за свързване на захранване за RAM в Standby режим

STRA/AS – Strobe A (STRA), Address strobe(AS) – в зависимост от режима на работа: В EMK(Single-chip) режим, STRA извършва функцията "input handshake" (strobe input); В МП(Expanded)режим, AS осигурява строб за адреса (adress strobe).

STRB/R/W – Strobe B и Read/Write – извършват или строб по отношение на изхода (output strobe) или индицират посоката на предаване на данни в ШД в зависимост от режима.

14. Програмен модел на НС11 (вътрешни регистри)

Акумулатори А и В – 8-битови регистри с общо предназначение. Съхраняват временно операндите (данни) и резултата от изпълнение на предишна операция от АЛУ. За някои инструкции-образуват 16-битов регистър (акумулатор D). Равнозначност на А и В <u>с изключение на</u>:

- инструкции ABX, ABY добавят съдържанието на акумулатор В към индексни регистри X или Y;
- инструкции ТАР, ТРА прехвърлят данни от акумулатор А към регистъра на състоянието и обратно;
- · Инструкция DAA (Decimal Adjust accumulator A) след BCD аритметични операции;
- Еднопосочност на операциите събиране, изваждане и сравнение.

Индексен регистър IX – при индексна адресация осигурява 16-битова стойност (базов адрес), която да се добави към 8-битовото отместване от инструкцията за образуване на ефективен адрес (EA).

Допуска изпълнение на операции INX, DEX, CPX.

Може да се ползва като брояч или за съхранение на данни.

Индексен регистър IY – 16-битов. Подобно на IX участва в индексен адресен режим. Повечето инструкции, ползващи IY, изискват допълнителен байт от кода/цикъл за изпълнение.

PC (програмен брояч) – 16-битов, съдържа абсолютния адрес на следващата команда за изпълнение. След Reset, PC се инициализира с един от 6-те вектора (в зависимост от режима):

ССК (регистър на състоянието). НЕ съдържа данни. Съдържа 8 бита (индикатори, флагове), от които:

- 5 индикатори на състоянието (C, V, Z, N, H);
- 2 маскови бита при прекъсване (IRQ, XIRQ);
- бит за освобождаване от стоп режим (S).

15. Организация на адресното пространство (карти на паметта) в различните режимите на работа на НС11.

карти на паметта – различни за 3-те фамилии схеми от серията Е на ЕМК
НС11 (еднакви за режими ЕМК и МП);
различни карти (разпределение на адресното пространство за отделните
режими на работа (Bootstrap, Test);
RAM (\$0000-\$01FF, 512 bt) - от адрес \$0000 след Reset, възможна
промяна - от регистър INIT (всяка 4K област \$x000);
регистров блок (\$1000-\$103F, 64 bt) - от адрес \$1000 след Reset,
възможна промяна - от регистър INIT (всяка 4K област \$x000);
<u>Приоритет</u> : Регистри→ RAM → ROM. Презастъпване – спазване на

 RAM (SRAM) – за съхранение на инструкции, адреси/данни, променливи, междинни данни. Може да ползва директна адресация (пести ресурси);

Съхранение съдържанието на RAM - методи:

- 1. Stop mode (SW) E-clocks се спира, V_{DD} е включено. Р≈F_{раб} (CMOS) ↓
- 2. $MODB/V_{STBY}$ батерийно захранване (Reset=low при ниско V_{DD}).
- Програма за начално установяване (bootloader) във вътрешна "bootstrap ROM" (\$BF00-\$BFFF) само в режим Bootstrap.
- В режим МП ROM/EPROM/OTPROM (ако са налични) достъпни след
 Reset в горните адреси на паметта

(ROMON=1, CONFIG).

приоритета!

- o ROM/ EPROM налични в режими EMK и Bootstrap (ROMON без значение).
- О При EEPROM=512 bt. (EEPROM →\$B600-\$B7FF) НЕ може да се мести (само при E1)!
- о EEPROM се програмира/изтрива SW (charge помпа разрешена).

16. Механизъм на Reset - време диаграма.

17. Какво означава СОР и какво включва?

Относителна:

□ Вътрешна.

НС11 използва 8-битов КОД (Код на операцията, Opcode). Всеки КОД идентифицира определена инструкция и метод на адресация.

КОД (КОП) – указан в карти, разпределени в 4 страници.

Допълнителен байт – PRE BYTE за увеличаване броя команди (препраща ЦП към съответната страница). Предшества КОД в общия формат. Пълна инструкция – дължина от 1 до 4 байта.

Всички методи за адресация (без вътрешна) използват ефективен адрес (ЕА).

ЕА- адрес от паметта, от който се вземат аргументите или от който се продължава изпълнението на програмата. ЕА – задава се в рамките на инструкцията или се изчислява.

Видове адресации в ЕМК НС11:

Непосредствена;

Директна;

Индексна;

18. COP Watchdog система в HC11 – предназначение.

- Ползва входен сигнал от E-clock, разделен 15 пъти (E ÷ 2¹⁵);
- СОР изработва изходен сигнал за генериране на ниско ниво към RESET извода за рестартиране на ЕМК и външните устройства *автоматично след изтичане на зададения таймаут период*;
- Таймаут периодът може да се настройва с помощта на prescaler битове
 CR[1:0].
- Включва логика за дефиниране на съответните I/O изводи PAO÷PA7 от Порт А като такива за таймерни функции (IC/OC) или за работа с общо предназначение;
- Изводи РАЗ, РА2, РА1, РАО <u>IC входове</u> или с общо предназначение.
 Логика за прихващане (детекция) на входния сигнал по фронт (положителен или отрицателен по избор);
 Нивата им могат да се четат по всяко време от регистъра PORTA безусловно.
- Изводи РАб, РА5, РА4, РА3 ОС изходи или с общо предназначение;
 При използване като ОС изводи не може да се записва в тях;
 Функциите на ОС[5:2] свързани с един от изводите от Порт А, само ОС1
 допълнителна функция за контрол посредством комбинация от стойности на изводи РА[7:3];
- Извод РА7: с общо предназначение, като ОС1 или като вход за пулсакумулатора.

19. Видове адресации в ЕМК НС11.

- □ Индексна адресация (продължение) адресиране на клетки от масив
- **□ Относителна** (Relative)

В - относително отместване.

Използва се САМО за преходи под условие. <u>При разклонение на програми!</u> 2-байтова инструкция.

Ако условието е "True", относителното отместване В от инструкцията се добавя към съдържанието на РС за формиране на ЕА. В противен случай при "False" се продължава към следващата поред инструкция

□ Вътрешна (Inherent)

В този адресен режим цялата информация за изпълнение на инструкцията се съдържа в КОД.

Използва се за работа с вътрешните регистри (акумулатори, индексни регистри, контролни инструкции без аргументи).

1 или 2-байтова инструкция.

20.Пълна адресация – формиране на адреса и приложение

Extended – Съдържа дирекотно след КОД адресите на операндите, които ще се обработват. В зависимост от дължината на ползваните регистри и наличието на PRE – обща дължина от 3 или 4 байта.

PRE	код	A _H	A _L
-----	-----	----------------	----------------

21. Директна адресация - формиране на адреса и приложение.

Direct – При тази адресация A_L съдържа в байта след КОД(DA), A_H се предполага \$00. Адреси в <u>диапазона \$00 – \$FF</u> са директни (2 байта инструкция). По-малко време за изпълнение. Обикновено тази 256 байта област се резервира за често ползвани данни (от вътрешни регистри, RAM, външна памет)

код DA

22. Непосредствена адресация - предназначение.

Immediate – Съдържа директно след КОД аргументите за съответната операция, която ще се извършва. В зависимост от дължината на ползваните регистри и наличието на PRE – обща дължина от 2, 3 или 4 байта.

код	C ^{tn} _H	C ^{tn} L
код	C ^{tn}	

23. Индексна адресация - формиране на адреса и приложение.

Indexed – В този адресен режим байтът след КОД съдържа 8-битовото отместване (D-индексно отместване) което се добавя към съдържанието на индексния регистър (IX или IY). Резултатът формира ефективния адрес (EA). Този режим позволява адресиране на всяка клета от адр. пространство. Обща дължина – 2 байта.

24.Относителна адресация- формиране на адреса и приложение.

В - относително отместване

Relative – използва се CAMO за преходи под условие. <u>При разклонение на програми!</u>

2-байтова инструкция.

Ако условието е "True", относителното отместване В от инструкцията се добавя към съдържанието на РС за формиране на ЕА. В противен случай при "False" се продължава към следващата поред инструкция

25.Вътрешна адресация – предназначение

Inherent – цялата информация за изпълнение се съдържа в КОД. Използва се за работа с вътрешните регистри (акумулатори, индексни регистри, контролни инструкции без аргументи).

1 или 2 байтова инструкция.

26. Интерфейсни шини на НС11-функции в различните режими на работа

- □ Активно изходно ниво (low/high);
- RESET неактивно състояние за ЕМК;
- □ Електрически схеми при свързване към изходните шини на:

ЛС - повторител

ЛС - инвертор

□ Електрически схеми при свързване към изходните шини на:

RESET - задължително изключен!

27. Аналогов интерфейс в НС11 - режими на работа.

Системата за АЦ преобразуване (A/D система) използва:

- ЦАП с последователна апроксимация и редистрибуция на заряда за преобразуване на аналоговия сигнал в цифров;
- 8-канална система (съответно 8-битов мултиплексор), 8-битова точност на преобразуване;
- Не изисква външна S/H (sample and hold) верига поради ползване техника на разпределение на заряд;
- АЦП може да синхронизиран от системния (E clock) или от вътрешен RC осцилатор.

Състав:

- мултиплексор;
- ЦАП;
- верига за цифров контрол;

структура за запомняне резултата от преобразуването

□ АЦП: Преобразуване – извършва се за сигнала от съответния аналогов вход, избран от мултиплексора (MUX).

Съдържа: (1) капацитивен масив (DAC-digital-to-analog capacitor), (2) компаратор, (3) регистър за последователна апроксимация (SAR, successive approximation register).

Принцип на извършване на преобразуването – последователност от 8 операции сравнение, започващо от бита MSB. Всяко сравнение определя стойността на съответния бит в регистъра SAR.

DAC масива извършва 2 функции: *действа като S/H верига, осигурява* напрежението за сравнение по време на апроксимацията.

Резултата от сравнението се съхранява в SAR и след приключване процеса на АЦП се прехвърля в друг регистър.

T.нар. "charge" помпа осигурява напрежение (7–8V, за време поне100µs) на превключване към гейтовете на аналоговите ключове в MUX. <u>Помпата се разрешава от бит ADPU на регистъра OPTION</u>.

- ✓ Синхронизация бит CSEL (clock select) от регистъра OPTION определя дали АЦП използва системната (E) тактова поредица или вътрешния RC тактов генератор (задължително при честота на E<750KHz, но чувствителен на промяна на честотата шум).
- ✓ Последователност на преобразуване

28. Какво означава прекъсване?

Interrupts – <u>зарежда РС с конкретен вектор, сочещ към определен адрес</u>от който да се заредят съответните инструкции за изпълнение.

Временно се спира работата на основната програма до приключване изпълнение на обработката на прекъсването(сервизна процедура). След това основната програма продължава да се изпълнява.

29. Видове прекъсвания в ЕМК 68НС11. Приоритети.

- SWI (SoftWare Interrupt) софтуерно (програмно) прекъсване:
- инструкция SWI не може да бъде прекъсната докато приключи изпълнението й
- НЕ МОЖЕ ДА СЕ ЗАБРАНИ глобално от маска в контролния регистър ССК
- SWI установява маска I в CCR в "1" след това други прекъсвания не се допускат до края на обработката или до нулиране на маската I софтуерно
- HWI (HardWave Interrupt) хардуерно (апаратно) прекъсване IRQ, XIRQ
- Немаскирано прекъсване (X вход) немаскираните прекъсвания водят ВИНАГИ до прекъсване работата на ЦП. Прилагат се при възникнали сериозни проблеми напр. програмни забиване, отпадане на захранването. IRQ

XIRQ - с най-висок приоритет /без Reset/ (по-висок от всички маскирани - с маска)

- Неправилен КОД (Ilegal Opcode Trap) при среща на несъществуващ КОД (PRE+КОД)
- Прекъсване през вход IRQ:
 - допълнително маскирано прекъсване през външен вход за ЕМК
 - задействане по ниско ниво на сигнала от източника на прекъсване
 - свързване на няколко източника в "жично-ИЛИ"

Приоритет на прекъсванията:

- Дефинира се хардуерно
- Определя кой тип RESET/прекъсване следва да се обработи първо при постъпили повече от една заявки за прекъсване
- На всяко маскирано прекъсване може да бъде зададен приоритет спрямо другите маскирани прекъсвания

НЕМАСКИРАНИ(not maskable) прекъсвания - източници, приоритет:

- 1. POR, външен Reset HW
- 2. Reset от Clock monitor (СМ) системата HW
- 3. Reset от COP WD Reset системата HW
- 4. От вход XIRQ HW
- 5. Неправилен (несъществуващ) КОД HW
- 6. Софтуерно прекъсване (SWI) SW

МАСКИРАНИ(maskable) прекъсвания - източници, приоритет:

- 1. Вход XIRQ <mark>HW</mark>
- 2.Прекъсване в реално време
- 3-4-5. -Таймер IC1-2-3 HW
- 6-7-8-9. Таймер OC1-2-3-4 HW
- 10. Таймер IC4/OC5 HW
- 11. Таймер препълване HW
- 12. Пулс акумулатор препълване HW
- 13. Пулс акумулатор входен фронт HW
- 14. SPI (асинхоронен сериен периферен интерфейс) завършил трансфер HW
- 15. SCI (синхронен сериен комуникационен интерфейс) HW

30. Алгоритъм за обработка на прекъсване.

- 1. Приключва се изпълнението на текущата инструкция време: зависи от броя на такта, необходими за изпълнението й.
 - 2. Текущото състояние на вътрешните регистри се записва в стека:

	Memory Location	CPU Registers	
	SP	PCL	
запис	SP-1	PCH	четене
	SP-2	IYL	
	SP-3	IYH	След
	SP-4	IXL	команда RTI
	SP-5	IXH	NOMAROA KII
	SP-6	ACCA	
+	SP-7	ACCB	
	SP-8	CCR	

- 3. <u>Флагът за прекъсване</u> I (и X при прекъсване от XIRQ) в ССК <u>се установява в "1"</u> и забранява последващи прекъсвания.
- 4. Зарежда се съответният на прекъсването вектор и изпълнението продължава от адреса, намиращ се в този вектор
- 5. След приключване изпълнението на обслужващата прекъсването програма, която трябва да завършва с RTI
- 6. Съдържанието на <u>вътрешните регистри се възстановява от стека</u> в обратен ред (LIFO памет)
- 7. Продължава изпълнението на основната програма.

31. Организация на стека- тип и организация.

68HC11 съхранява байтове в определена част от паметта. Той ползва специални регистри, наречени *stack pointer* or *SP, който следят мястото на стека в паметта.*

Когато число е сложено в стека се нарича stack push, числото се запазва в паметта на сегашния адрес на SP. След това stack pointer минава към следващата позиция в паметта.

Когато число се взима от стека се нарича *stack pull,* stack pointer се връща назад към последната локация и тогава числото на тази част от паметта се взема.

32.Прекъсване тип IRQ - предназначение и възприемане.

- Допълнително маскирано прекъсванепрез външен вход за ЕМК;
- Задействане по ниско ниво на сигналаот източника на прекъсване;
- Свързване на няколко източника всхема "жично ИЛИ";
- Флагът I от контролния регистър CCR се установява в "1" (заявка за прекъсване) и може да се нулира SW след обслужване на прекъсването.

33.Прекъсване тип XIRQ - предназначение и възприемане.

❖ Немаскирано прекъсване (XIRQ – вход)

Немаскираните прекъсвания водят ВИНАГИ до прекъсване работата на ЦП. Прилагат се при възникнали сериозни проблеми – напр. програмно забиване, отпадане на захранването.

XIRQ (в предишни версии – NMI, non-maskable interrupt);

След Reset – битове X, I от регистъра ССR се установяват в "1" и забраняват всички маскирани прекъсвания и XIRQ. След инициализация, бит X може да се нулира SW (инструкция TAP) и да се разреши входа XIRQ. След това X НЕ МОЖЕ да се установи в "1" SW – т.е. XIRQ е НЕМАСКИРАНО ПРЕКЪСВАНЕ!

XIRQ - с най-висок приоритет /без Reset/ (по-висок от всички маскирани - с маска I)

<u>При маскирано с I-бит прекъсване</u>, битът I се установява автоматично хардуерно след изпълнение на прекъсването и прехвърляне съдържанието на ССR от стека. При това X не се засяга!

<u>При прекъсване с X-бит</u> се засягат X и I битове - те се установяват хардуерно след прочитане на ССR от стека. Инструкцията RTI възстановява битовете X и I в предишните им стойности.

34. Прекъсване "Неправилен КОД" – предназначение и възприемане.

- Неправилен КОД (Illegal Opcode Trap)
- → При среща на несъществуващ КОД (РRE+КОД).

ЕМК притежава <u>хардуерна</u> <u>възможност</u> за генериране на прекъсване при откриване на неправилен КОД.

След откриване на несъществуващ КОД, текущата стойност на РС се прехвърля в стека;

Изпълнява се процедурата по прекъсването;

Реинициализира се действителен КОД' (действа за всички 4 страници с кодове).

35.Какво означава "ПЛЪЗГАНЕ НА ПРОГРАМА" – и методи за борба.

1. SW грешки – Beta версии

Много комбинации → възможни софтуерни грешки. Невъзможност на програмиста да тества физически всички възможни комбинации.Бета-версии - постепенно се отстраняват забелязани от клиентите грешки.

2. НW плъзгане: Адреси или Данни вместо КОД НW плъзгане (A/D вместо КОД) – Методи за борба

■ SW "капани" (изкуствено влагане на 4 команди SWI – "капани");

- СОР система. NOCOP бит (CONFIG) вкл./изкл. СОР система;
- Смяна статута на СОР системата запис в CONFIG, след това Reset;
- СОРRSТ за защита механизма на нулиране СОР системата (\$55)
 или принудително нулиране на таймера (\$AA);
- Чакащ Мултивибратор (ЧМВ);

36. Енергоспестяващи режими в 68НС11 - видове и предназначение.

Енергоспестяващи режими – работата на ЦП се прекратява до постъпване на Reset или друго прекъсване!

- ❖ Wait режим спира обработката на данни и намалява консумацията на междинно ниво (до около 3-4 пъти);
- ❖ Stop режим спира всички тактови източници и намалява консумираната мощност на възможно най-ниско ниво (съдържанието на RAM се съхранява).

37. Режим WAIT в HC11 - задаване на режима и особенности. Изход от режима

Поставяне на EMK в режим Wait

- чрез команда (КОД) WAI
- системните регистри се записват в стека;
- спира се работата на ЦП до пристигане на Reset или друго прекъсване (външно IRQ, XIRQ или вътрешно генерирано от таймер-системата, SCI, SPI);
 - кварцовият осцилатор остава включен.

Редукция на консумираната мощност - <u>зависи от това колко периферни</u> функции (поддържани от тактова поредица) могат да бъдат изключени.

!!! Шината за A/D се ЧЕТЕ НЕПРЕКЪСНАТО от адреса на стека, където е записан временно (при прекъсването) стойността на ССR регистъра.

Изход от режим Wait – при постъпване на прекъсване, което не е било маскирано.

Изключване на таймер-системата – при бит I="1" и забранена COP-система чрез NOCOP="1" (регистър CONFIG).

Консумацията на АЦП – системата не се влияе от режима Wait.

Ограничаване консумацията на АЦП – чрез поставяне бит ADPU="0".

SPI – разрешава се/забранява се – чрез бит SPE от съответния контролен регистър.

SCI предавател – разрешава се/забранява се – посредством бит ТЕ; **SCI приемник** – разрешава се/забранява се – посредством бит RE.

Консумацията в режим Wait - ЗАВИСИ ОТ КОНКРЕТНОТО ПРИЛОЖЕНИЕ!

38. Режим STOP в HC11 - задаване на режима и особенности. Изход от режима.

Поставяне на ЕМК в режим Stop

- чрез команда STOP при бит S="0" от CCR;
- При $S \neq 0 \rightarrow Stop KOД$ се третира като безоператорен (NOP);
- Режим Stop осигурява възможно най-ниска консумация (всички тактови източници, вкл.кварцовия генератор са спрени.

Излизане от режим Stop – подаване на ниско ниво на един от входове:

(IRQ, XIRQ) или RESET. Опция - по фронт на сигнала IRQ.

- ✓ Вътрешни периферни функции СПРЕНИ (изключени тактови източници);
- ✓ Данните в RAM съхранени (V_{DD} е включено);
- ✓ ЦП зпазва състоянието си, нивата на I/О шини непроменени;

При връщане към нормална работа (restart на системата) – ЦП възстановява обработката от позицията преди поставяне в режим Stop.

Връщане към нормална работа (рестарт):

- <u>чрез Reset</u> извършва се нормалната последователност (всички I/O шини и функции към техните начални състояния);
- през вход IRQ трябва бит I="0" от CCR (IRQ вход за немаскирано прекъсване). Стойността на бит X е без значение, като:
- \rightarrow при X="0" (немаскиран) ЦП изпълнява последователност, съответстваща на заявка за прекъсване от вход XIRQ;
- → при X="1" (маскиран/забранен) ЦП продължава изпълнението на следващата инструкция след Stop.

Необходимо е ВЪЗСТАНОВЯВАНЕ на кварцовия тактов генератор (спрян в този режим) при рестарт!

- При ползване на вътрешния генератор влагане на изкуствено закъснение – контролен бит DLY="1" (по подразбиране при Reset);
- о При ползване стабилизиран външен генератор DLY="0" софтуерно при инициализация. В този случай изход от режим Stop HE ТРЯБВА да се прави с Reset (по подразбиране DLY="1").

39. Таймер-система в НС11 - блокова схема, основни функции.

- Отделна система в ЕМК 68HC11 (към порт A)
- Включва 5 отделни вериги за делене на честотата
- Предварителен делител на честотата от кварцовия осцилатор на 4
- Основна таймерна верига 16-битов брояч с програмируем коефициент на броене
- Всички операции в таймерната система са съотнесени спрямо честотата на основния (таймерен) брояч
 - начало на броене \$0000 (след излизане от Reset)
- край на броене \$FFFF. Флагът на препълване O(overflow) в контролния регистър ССR се вдига в "1".

След това - броене отново то \$0000.

- При нормален режим на работна на EMK - НЕ Е ВЪЗМОЖНО СПИРАНЕ, нулиране или промяна състояните на брояча.

Таймер система – вътрешна структура

40. Таймер система - ІС (входна функция). Регистри. Приложение.

Записва(регистрира) момента на настъпване на външни събития от PA2, PA1, PA0 – по фронт. Запомня се стойността на таймерния брояч в момента на събитието.

Регистри:

- PACTL (пулс-акумулатор контролен регистър)
- TCTL2 (таймер-контрол регистър2) за конфигуриране IC функцията по вид на фронта за всеки извод по отделно (2 бита за извод)
- TMSK1 (таймер масков регистър1)
- TFLG1 (таймер-флагов регистър1)
- TICx (таймерни регистри) входни регистри за съхранение 16-битовото показание на брояча в съответния момент. НЕ ПРОМЕНЯТ СЪДЪРЖАНИЕТО СИ при Reset
- TI4/O5 ползва се едновременно за IC или OC регистър към извод PA3

41. Таймер система - ОС (изходна функция). Регистри. Приложение.

Програмира действие което да се изпълни в дефиниран момент време (достигане определено състояние на таймерния брояч).

- отделни 16-битови регистри и 16-битови компаратори за всеки от 5-те ОС изхода.

Регистри:

- TOCx 16-битови (2 x 8-битови) изходни регистри (за четене и запис).
- CFORC регистър за директно предизвикване на сравнение. Позволява сравнение м/у регистрите ОСх и текущото показание на таймерния брояч.
- OC1M OC масков регистър. Обвързва състоянието в изводите от Порт A PA[7:3] в зависимост от успешното сравнение (резултат в OC1) чрез залагане на маски за всеки от тях.
- OC1D OC регистър за данни. Позволява съхраняване на данните в съответните изводи от Порт A от OC1 след успешно сравнение.
- TCNT Таймерен броячен регистър 16-битов в режим сумиране (от него само се чете), съдържа текущото състояние на таймерния брояч
- TCTL1 Таймерен контролен регистър1 . Определя действието в резултат на на успешното ОСх сравнение.
- TMSK1 Таймерен масков регистър за прекъсване 1 8-битов, разрешава/забранява прекъсванията по отношение на функциите IC/OC.
- TFLG1 позволява таймера флагов регистър 1
- TMSK2 Таймерен масков регистър за прекъсване 2 8-битов, разрешава/забранява прекъсвания при препълване и в реално време (RTI)
- TFLG2 Таймерен флагов регистър за прекъсване 2 показва дали съответни събития в таймерната система за настъпили. Позволява таймера да работи в регистриращ режим или в режим с прекъсване.

42.Пулс-акумулатор - структура, режими на работа.

Отделна подсистема, включваща 8-битов брояч за работа в два режима:

- <u>Обикновен броячен режим</u> увеличава се стойността на брояча при постъпване на сигнал на външния му извод
- <u>Разрешителен акумулиращ режим</u> в този случай E-clock/64 тактува 8-битовия брояч, но само докато външния извод PAI е активиран Четене/запис от Пулс-акумулаторът – по всяко време.

Пулс-акумулатор – вътрешна структура 1 INTERRUPT REQUESTS PAII PAIF 2 E ÷ 64 CLOCK FROM MAIN TIMER TMSK2 INT ENABLES TFLG2 INTERRUPT STATUS PAI EDGE DISABLE FLAG SETTING PAEN OVERFLOW MCU PIN CLOCK 2;1 MUX INPUT BUFFER PA7/ PAI/ OC1 PACNT 8-BIT COUNTER AND EDGE DETECTOR ENABLE OUTPUT BUFFER PAEN FROM MAIN TIMER OC1 FROM DDRA7 PACTL CONTROL INTERNAL DATA BUS

43.SCI интерфейс в HC11 - особености, задаване формата на данните и честотата на обмен.

SCI – Сериен Комуникационен Интерфейс:

- универсален UART-тип интерфейс
- отделна подсистема в ЕМК 68НС11 Е серия
- стандартен NRZ (non-return to zero) формат: 1 старт-бит, 8/9 бита данни, 1 стоп-бит
- независими приемник и предавател, но една и съща скорост на предаване и общ формат на данните
- поддържа различни скорости на предаване

Формат на данните:

- свободна(Idle) линия преди старт на комуникацията в "1"
- старт-бит "0" начало на цикъл комуникацията
- данни предавани с LSB пръв (дължина 8 или 9 бита)
- стоп-бит "1" край на цикъл комуникацията

Честота на обмен:

44.SPI интерфейс – особености, режими на работа и приложение.

Serial Peripheral Interface – Асинхронен сериен периферен интерфейс

- Всяко устройство има свой ТГ (без обща синхронизация). Асинхронните устройства имат изводи TxD, RxD
- Обмен на данни при сериен интерфейс м/у различни устройства: Използват се по 1 до 4 кабелни линии, бит по бит, различна скорост на предаване. Предаване (Transmitting, шина TxD). Приемане (Receiving, шина RxD)
- Използва дуплекс връзка за обмен на данни (duplex, full-duplex): 2 линии, двупосочен обмен. едновременно във времето.
- Предаване на данните бит по бит (1 бит на такт)
- Може да комуникира на големи разстояния
- Изисква минимален брой линии: за предаване, за приемане и маса
- Възможност за софтуерно дефиниране формата на предаване на данните, прекъсванията и др.

45.Интерфейс I²C – тип, шини, приложение.

- синхронен двупосочен интерфейс от типа Multi-master.
- За връзка м/у различни ИС.
- Активни линии: SDA (Serial Data) SCL (Serial Clock) двупосочни
- Всяко устройство може да работи и като предавател и като приемник
- Приложение разширяване възможностите на EMK връзки с други серийни устройства.

46. Интерфейс IEA232 (RS232) - тип, шини, кодиране, предимства, недостатъци.

- интерфейс за сериен обмен на цифрови данни между 2 устройства на Electronic Industries Association (EIA). Създадена първоначално за връзка между компютри през телефонни модеми;
- позволява дефиниране на до 20 сигнала. Достатъчни са само три TxD (send data), RxD (receive data), маса;
 - двуполярно предаване (2 нива) от 5 до 25V, с противопо-ложна полярност спрямо маса;
 - прилага се за индустриален обмен с формат: 1 старт-бит, 7(8) бита данни, опция-бит за контрол по четност, 1(2)стоп-бита;
- скорост на предаване (не фиксирана, зависи от устройствата) $Ax150 (A=0\div7)$:
 - 150;
 - -300;
 - 600 ,...., 19,200.
 - специфично дефинирани (при необходимост) скорости под

150 baud;

- конектор DB-25: 25 извода (21 използваеми);
- понастоящем конектор DB-9 (COM) в компютрите.

<u>Необходимо</u> → 2-те устройства да са свързани с конектори от един и съш вид и да ползват еднаква скорост на предаване.

47.Интерфейс RS485 - особености, предназначение.

Осигурява директна връзка м/у DTE устройства (без модеми), връзка м/у DTE в мрежа, комуникация на по-големи разстояния, обмен на данни с по-висока скорост. Отличен при връзка м/у много устройства

- Липса на обща маса и необходимост от презапасяване за ибягване на шима по линията.
- Сиганлите по RS485 са "плаващи" всеки сигнал се предава спрямо линиите Sig+ и Sig- ,съответно
- Приемната част на RS485 сравнява разликата в напрежението м/у линиите, вместо абсолютната стойност на сигнала.
- Най-добро подтискане на шума
- диференциален тип връзка
- използва предаване тип "half-duplex"
- многовъзлов
- висока скорост на предаване
- висока чувствителност на приемната част

48.Интерфейс USB - особености, предназначение.

- специфициран интерфейс по отношение на Електрически, Механични и Протоколни изисквания. Отнася се за Host, Hub или Function.
- 7 адресни линии (до 127 устройства свързани заедно, топология звезда)
- диференциален сериен интерфейс
- 4 шини, 2 от тях заданни по усукана двойка -I2C
- данни предавани в NRZI код асинхронно или синхронно м/у свързаните устройства.
- максимална дължина на кабела 4м.
- 3(4) скорости на предаване от 10kbps до 400Mbps

Slow-Speed режим – обмен с бавни устройства; Full-Speed; High-Speed – USB 2.0; Super-Speed – USB 3.0 и за оптична комуникация.

49.Интерфейсна схема L9822E - особености, предназначение

Информацията се предава сериино на устройствата използващи Serial Peripheral Interface (SPI) protocol.

Основни характеристики:

- Осем ниски R_{DSon} DMOS изхода (0.5 O @ IO = 1 A @ 25 °C V_{CC} = 5 V \pm 5 %)
- 8 bit serial input data (SPI)
- 8 bit serial diagnostic output за претоварване
- Chip enable select function.
- Multipower BCD technology
- Package Multiwatt 15 and PowerSO-20