

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

ناحیهبندی تصویر

Image Segmentation

ناحیهبندی تصویر

آستانه گذاری سطح خاکستری

- ساده ترین راه برای استخراج ناحیه از تصویر استفاده از مقادیر سطح خاکستری است
 - پس از این عملگر نقطهای، هر ناحیه به هم پیوسته یک ناحیه است

تعیین سطح آستانه

- سطح آستانه بهینه چه عددی است؟
- می توان با استفاده از دانش پیشین از یک عدد ثابت استفاده کرد
- می توان از مشخصه های آماری مانند میانگین یا میانه سطوح خاکستری استفاده کرد
 - می توان از استفاده از هیستوگرام استفاده کرد

- یک الگوریتم تعیین سطح مقدار آستانه بر حسب مشخصههای آماری است
- سلح آستانه و کلاس بین پیکسلهای و کلاس کنیم که واریانس بین پیکسلهای هر کلاس فلاصه الگوریتم این است که سطح آستانهای و کلاس خلاصه مینه شود $\sigma_w^2 = w_1 \sigma_1^2 + w_2 \sigma_2^2$
 - تعداد پیکسلهای کلاس او σ_i^2 و اریانس پیکسلهای آن کلاس است w_i •

• برای یک تصویر ۸ بیتی سطح آستانه یکی از ۲۵۵ مقدار است

• برای یک تصویر ۸ بیتی سطح آستانه یکی از ۲۵۵ مقدار است

• برای یک تصویر ۸ بیتی سطح آستانه یکی از ۲۵۵ مقدار است

1 8 6 9 2 2 4 9 1 6 4 5 3 7 2 3 9 2 3 5 9 9 9 8 6 4 1 5 6 4

1		8			6	9	2	
	2		4	9		1		
	6						4	5
		3		7				
	9					2		3
					5			9
9							8	
	15		1				6	4
		i		5				

الگوريتم Otsu

آستانه گذاری وفقی

- به منظور رفع چالش قبل، مناسب است تا برای هر ناحیه از تصویر یک آستانه متناسب تعریف شود
 - در حالت حدی می توان برای هر پیکسل یک آستانه تعریف کرد
 - البته این محاسبات پیچیده برای هر پیکسل هزینهبر است
 - می توان میانگین پیکسل های اطراف هر ناحیه را به عنوان معیاری برای مقدار آستانه محاسبه کرد

آستانه گذاری وفقی

dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

```
// src:
// maxValue:
Non-
// adaptiveMethod:
Adap
// thresholdType:
Thre
// blockSize:
Size
// C:
Cons
// dst:
Dest
```

Source 8-bit single-channel image
Non-zero value assigned to the pixels for which the condition is satisfied Adaptive thresholding algorithm to use (MEAN or GAUSSIAN)
Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV
Size of a pixel neighborhood that is used to calculate a threshold value
Constant subtracted from the mean or weighted mean
Destination image of the same size and the same type as src

استخراج ناحیهها از تصویر باینری

- با استفاده از روشهای ذکر شده، یک تصویر دوسطحی بدست میآید
 - حال باید پیسکلهای مربوط به هر ناحیه را مشخص کنیم

0	0	0	1	1	0	0	0
0	0	1	1	1	1	0	0
0	0	0	1	0	1	0	0
0	1	0	0	0	0	0	1
1	1	0	0	0	1	1	1
1	1	0	0	1	1	0	0
1	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0

0	0	0	1	1	0	0	0
0	0	1	1	1	1	0	0
0	0	0	1	0	1	0	0
0	2	0	0	0	0	0	3
2	2	0	0	0	3	3	3
2	2	0	0	3	3	0	0
2	0	0	0	0	0	3	3
0	0	0	0	0	0	3	0

8-connectivity

4-connectivity

• کدام پیکسلها به هم متصل هستند؟

8-connectivity

4-connectivity

• کدام پیکسلها به هم متصل هستند؟

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع می کنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه می کنیم

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع می کنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه می کنیم

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع می کنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه می کنیم

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع می کنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه می کنیم
 - سپس، این روند برای پیکسلهای بعدی که هنوز برچسب نخوردهاند تکرار میشود

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع میکنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه میکنیم
 - سپس، این روند برای پیکسلهای بعدی که هنوز برچسب نخوردهاند تکرار میشود

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع می کنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه می کنیم
 - سپس، این روند برای پیکسلهای بعدی که هنوز برچسب نخوردهاند تکرار میشود

- چگونه اجزاء متصل در تصویر باینری را مشخص کنیم؟
 - الگوریتم یک جزء در هر زمان
- در این الگوریتم برای استخراج اجزاء، از پیکسل نخست تصویر شروع می کنیم و به هر پیکسل که رسیدیم پیکسلهای متصل به آن را محاسبه می کنیم
 - سپس، این روند برای پیکسلهای بعدی که هنوز برچسب نخوردهاند تکرار میشود

1. Initialize

- 1. Create a result set S that contains only p
- 2. Create a Visited flag at each pixel, and set it to be False except for p
- 3. Initialize a queue (or stack) Q that contains only p.
- 2. Repeat until Q is empty:
 - 1. Pop a pixel x from Q.

$$S = \{(1,3)\}$$

$$Q = \{(1,3)\}$$

1. Initialize

- 1. Create a result set S that contains only p
- 2. Create a Visited flag at each pixel, and set it to be False except for p
- 3. Initialize a queue (or stack) Q that contains only p.
- 2. Repeat until Q is empty:
 - 1. Pop a pixel x from Q.
 - 2. For each unvisited object pixel y connected to x, add y to S, set its flag to be visited, and push y to Q.

$$S = \{(1,3)\}$$

$$Q = \{ \}$$

1. Initialize

- 1. Create a result set S that contains only p
- 2. Create a Visited flag at each pixel, and set it to be False except for p
- 3. Initialize a queue (or stack) Q that contains only p.
- 2. Repeat until Q is empty:
 - 1. Pop a pixel x from Q.
 - 2. For each unvisited object pixel y connected to x, add y to S, set its flag to be visited, and push y to Q.
- 3. Output S

$$S = \{(1,3), (0,3), (1,2), ...\}$$

 $Q = \{(0,3), (1,2), ...\}$

1. Initialize

- 1. Create a result set S that contains only p
- 2. Create a Visited flag at each pixel, and set it to be False except for p
- 3. Initialize a queue (or stack) Q that contains only p.
- 2. Repeat until Q is empty:
 - 1. Pop a pixel x from Q.
 - 2. For each unvisited object pixel y connected to x, add y to S, set its flag to be visited, and push y to Q.
- 3. Output S

$$S = \{(1,3), (0,3), (1,2), ...\}$$

 $Q = \{ \}$

1. Initialize

- 1. Create a result set S that contains only p
- 2. Create a Visited flag at each pixel, and set it to be False except for p
- 3. Initialize a queue (or stack) Q that contains only p.
- 2. Repeat until Q is empty:
 - 1. Pop a pixel x from Q.
 - 2. For each unvisited object pixel y connected to x, add y to S, set its flag to be visited, and push y to Q.

3. Output S

• هدف از این الگوریتم استخراج ناحیه مربوط به یک شیئ در تصویر است که یک نقطه از آن را میدانیم

• هدف از این الگوریتم استخراج ناحیه مربوط به یک شیئ در تصویر است که یک نقطه از آن را میدانیم

• هدف از این الگوریتم استخراج ناحیه مربوط به یک شیئ در تصویر است که یک نقطه از آن را میدانیم

• هدف از این الگوریتم استخراج ناحیه مربوط به یک شیئ در تصویر است که یک نقطه از آن را میدانیم

• هدف از این الگوریتم استخراج ناحیه مربوط به یک شیئ در تصویر است که یک نقطه از آن را میدانیم

- الگوریتم رشد ناحیه مشابه با استخراج یک جزء متصل در تصویر باینری است
- تفاوت با تصویر باینری آن است که مقادیر پیکسلها باینری نیستند و حتی می توانند رنگی باشند
- در پیادهسازی، تفاوت اصلی در این است که پیکسلهای همسایه به چه شرطی به ناحیه اضافه شوند؟
 - باید محتوای مشابهی داشته باشد که معادل با اختلاف کم است
 - اختلاف با چه معیاری سنجیده شود؟

معیار اختلاف برای رشد ناحیه

- میتوان رنگ پیکسل مورد نظر را با رنگ پیکسل بذر مقایسه کرد و اگر اختلاف آنها از حدی کمتر بود به ناحیه اضافه شوند
- این روش معادل با این است که ابتدا تصویر را بر اساس اختلاف با رنگ مورد نظر باینری کرده و سپس ناحیه متصل به این پیکسل را استخراج کنیم

