Moscow Aviation Institute
(National Research University)
Institute 1 «Aviation engineering»

Department 101 "Design and Certification of Aviation technic"

Laboratory work 1

Of "Parts and assemblies" course

Design a cantilever beam for given load, length and materials

Fifth case

Performed by I. I. Uliushin	
Student of group M1O-321E-20	
Accepted by Dukhnovskiy D.A.	
Accepted by Dukillovskiv D.A.	

Moscow 2023

1. Terms of reference

fig. 1, Load scheme and beam cross-section

2. Material choosing

3. Load calculating

$$P_2 \cdot L - P_1 \cdot a = M(0) = 146 \times 10^6 \text{ N} \cdot \text{mm}$$

 $P_2 \cdot (L - a) = M(a) = 120 \times 10^6 \text{ N} \cdot \text{mm}$

fig. 2, load diagrams

$$M(0.5m) = P_2 \cdot (L - 0.5) - P_1(a - 0.5) = 133 \times 10^6 \text{ N} \cdot \text{mm}$$

$$M(3m) = P_2(L-3) = 60 \times 10^6 \text{ N} \cdot \text{mm}$$

$$F(0) = \frac{M(0)}{0.95 \cdot H_{\text{spar}}} = 439000 \text{ N}$$

$$F(0.5m) = \frac{M(0.5m)}{0.95 \cdot H_{spar}} = 400000 \text{ N}$$

$$F(3m) = \frac{M(3m)}{0.95 \cdot H_{spar}} = 180450 \text{ N}$$

4. Calculation of caps area

$$\begin{split} & [\sigma_{ult,cap}] = 1100 \text{ MPa} \\ & A(0) = \frac{F(0)}{[\sigma_{ult,cap}]} = 399 \text{ mm}^2 \\ & A(0.5) = \frac{F(0.5\text{m})}{[\sigma_{ult,cap}]} = 364 \text{ mm}^2 \\ & A(3) = \frac{F(3\text{m})}{[\sigma_{ult,cap}]} = 164 \text{ mm}^2 \end{split}$$

Thus, following standard T-Bar sections for caps were chosen:

Tab. 1, standard sections parameters

Rectangular Equilateral T-Bar Sections State Standard 13622 - 90											
№	Number of Profile	Н	В	S	S_1	R	r	Cross-sectional Area,	Moment of Inertia, cm ⁴		
		mm						mm^2	I_x	I_y	
5	420159	26	40	3,0	4,5	2,5	0,0	247.2	1,44	1,05	
9	420209	30	45	4,0	6,5	5,0	0,0	397.2	2,13	4,96	
10	420325	40	50	3,5	6,5	4,0	0,0	449.1	4,65	6,78	

fig. 3, section parameters

Checking the stress safety factor:

$$\begin{split} \sigma &= \frac{F}{A} \quad \eta_{stress} = \frac{\left[\sigma_{ult,cap}\right]}{\sigma} \\ \eta_{stress,1} &= \frac{A_{10}\left[\sigma_{ult,cap}\right]}{F(0)} = 1.13 \\ \eta_{stress,2} &= \frac{A_{9}\left[\sigma_{ult,cap}\right]}{F(0.5m)} = 1.10 \\ \eta_{stress,3} &= \frac{A_{5}\left[\sigma_{ult,cap}\right]}{F(3m)} = 1.51 \end{split}$$

Thus, each spar cap will be produced out of three steel profiles with different cross-section, and then welded into one part.

5. Calculation of spar cap local buckling stress

$$\sigma_{loc,cap} = \frac{0.9 k E_{cap}}{(b/S_1)^2}, \ b = \frac{B-S}{2}, \ k \approx 0.45, \ E_{cap} = 210000 \text{ MPa}$$

Local buckling stress of first section (from 0 to 0.5 meters):

$$\sigma_{loc,cap,1} \approx 6650 \text{ MPa}$$

Local buckling stress of second section (from 0.5 to 3 meters):

$$\sigma_{loc, cap, 2} \approx 8550 \text{ MPa}$$

Local buckling stress of third section (from 3 to 5 meters):

$$\sigma_{loc,cap,3} \approx 5000 \text{ MPa}$$

Checking the safety factor for caps:

$$\eta_{buckling} = \frac{\sigma_{loc}}{\sigma}$$

$$\eta_{buckling,1} = \frac{A_{10}\sigma_{loc,cap,1}}{F(0)} = 6.8$$

$$\eta_{buckling,2} = \frac{A_{9}\sigma_{loc,cap,2}}{F(0.5m)} = 8.5$$

$$\eta_{buckling,3} = \frac{A_{5}\sigma_{loc,cap,3}}{F(3m)} = 6.85$$

Thus, local buckling stress of spar caps much higher than working stress.

6. Calculation of web thickness and stiffeners quantity at tip section

Shear stress in web:

$$\tau_{\rm web} = \frac{F}{A_{\rm web}} = \frac{Q_{tip}}{H_{\rm eq}\delta_{\rm web}}$$

Local buckling shear stress in web with stiffeners:

$$\tau_{loc,web} = \frac{0.9 k E_{web}}{(b/\delta_{web})^2}, \quad k = 5.6 + \frac{3.8}{(a/h)^2}$$

Where a is web high, b is distance between stiffeners, optimal a/b = 1 $E_{web} = 72000 \, MPa$ Nearest possible a/b very near to one, if 13 stiffeners at tip section will be used. Optimum safety factor $\eta_{buckling,web} = \frac{\tau_{loc,web}}{\tau_{web}} = 1.2$

fig. 4, web thickness optimization

 $\tau_{loc,web} = \eta_{buckling,web} \cdot \tau_{web}$

Thus, optimum web thickness $\delta_{\text{web}} = 2.8 \text{ mm}$

7. Calculation of stiffeners quantity at the engine section Using founded web thickness:

$$\tau_{\text{web}} \cdot \eta_{buckling,web} = \frac{Q_{engine} \eta_{buckling,web}}{H_{\text{eq}} \delta_{\text{web}}} = \tau_{loc,web} = \frac{0.9 k E_{web}}{(b/\delta_{web})^2}$$

$$5.6 + \frac{3.8}{\left(\frac{a}{b}\right)^2} = \frac{Q_{engine} b^2 \eta_{buckling,web}}{0.9 H_{\text{eq}} \delta_{web}^3 E_{web}}$$

 $b \approx 420mm$, thus, in engine section two stiffeners is near to optimal.

