2. AEERY

· AEEay:

A linear array is a list of finite

number on a n' of homogenous data element Such that:

a) The element of the array are

reference respectively by an

index Set consisting of n cons

b) The element of the azzay aze stazed zespectively in Successive.

· Syntax: inti[s]

i is the name of an attay of integer data type having size s.

· Length of AEEny : - Myorith State 1

[UB - LB + 1]

inti[s]; 1+05 : L = 1-5+

eg An automobile company uses an affay auto to record the number of autobiobile. Sold each year from 1932 to 1984. So identify no of elements in an affay auto.

1932 10 1984 UB-LB +1 = 1984 - 1932 + 1 52 11 531 Representation of Linear array in memory. LOC (LACKI) - BOSE(LA) + W (K-1B) AFFOY AHO : 1930 40 1984 Base [Auto] = 200 IN & 4 CHOTAG per monar copy 1 1 K 1965 LOC (Auto (1965)) = Base (Auto) + W (K-LB) 200 4 4 (1965 - 1932) 200 1 4 (33) 200 + 132 232 Base [Auto] = 200 K= 1933

Page His.

Page	No.		-
Date	-	1	1-

10c(Auto[1933]) = Base(Auto) + W(K-LE
= 200 + 4 (1933-19
= 200 + 9
209
eg consider the linear array AAA (\$:50)
13 BB (-9:10)
CCC (18)
of find the no of element in each ass b) suppose Base (AAA) = 300, M = 4 per memory cell. find the address of AAA (Is), AAA (35), AAA (55)
Ans:-a)
i) Length of AEFRY AAA (5:50]
= UB - LB + I
= 50 - 5 + 1
- 45 + 1
= 46.
ii) length of AFFRY BBB[-5:10]
= O.B-1.B + 1
= 10 t s + 1 .
= 16

и

-	Page No
+	iii) CCC (18)
	:. Length of AEFay = 18
(d	ADS:- i) AFFRAY AAA :- (50 to 50) Base (AAA) :- 300 Lal :- 4 K :- 15
	LOC (Auto AAA[IS]) = Base(AAA)+W(K-1 = 300 + 4 (15-5 = 340
	i) AFERY AAA: - (50 to 50) Base (AAA): - 300 N : - 4 K : - 35
	LOC(AAA[35]) = Base [AAA] + W (K-1B) = 300 + 4 (35-5) = 300 + 4 (30) = 300 + 120 = 420
-	
11	

Traversing in an array element
BEOWN Devid John Smith Wagner
Algorithim Linear (LA, K, LB, UB) ① Set K:= LB ② Repeat Step ② 4 ② Meite K < UB ③ Apply Process to IACK) ⑤ Set K: K + I ⑤ Exit
Inscrtion in an array.
BEDANN TOSEET > FOED Devid John Smith Coangee G G G G G G G G G G G G

Page	No	
Date	: 1	

HERE A DE E CALLE AND LINEAR DE CONTROL DE SUCH L'AND L'AND L'ES A POSITIVE INTEGER SUCH THAT K & N.

This algorithim insert an element iter into kan position in LA.

INSERA(IA, N, K, item) [] is counter various

1) Set J = N

2) Repeat Step 3 & @ while J > K.

3) SO+ LA[J+1]:-LA[J]

4) set J := J - 1

5) set LACK] := Hem.

6) set N = N+1

FXit.

Deletion in an affay

Here LA is an Linear array with N clements and k is a posite integer such that K SN this algorithm delete the kth element from LA

DETETE (LA, K.M. item)

1) Set item := LACK) LACA)

2) Repeat for J: - K - to N-1

Ward Lacopy and Lote: 1/ medispassisfate a de copy 5. - 3) Set LA[J] : = LA[J+1] (4) Set N:= 14-1 · Binary Search Cosending order IF 140+ then a. DATA = 11, 22, 30, 39, 40, 44, 55, 60,66,77,80,88,99 DATA [2]DATA[7] = 55 \$ item Now item < data [mid] 40 (55 CTEUE) End = mid - 1 => 7-1-6 @ Beg => 1, End=6

mid = Beg + mid - 7 = 3.5 = 3 Data [3] = 30 + Hem. item < data [item] 40 < 30 (Talse)

	The same of the sa	, Date :_ /_ /_
		,
	Beg > mid + 4 = 7 3+4 =	4.1
-	Beg > 4 End = 5.	Maria de la companya della companya
	mid = 4+5 = 10 =	5.
	DATA [5] - 40 = Her	D
	Item is present in an	GEEGY DATA
	If (item < Data (mid))	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2)	item - 100 77 Begin - 1 End - 13	March March
	1) Beg = 1	- +
	DATA (7) = 55 + item.	Secretary to
	Beg > mid + y => 7+1= 8	
	@ Beg => 8, End = 13. mid - 8+13 = 21/2 10	-10

Page No.

DATA [10] = ff = item

Item is present in an array a DATA at location 10

3) item = 100

Begin = 1

D Beg = 7, End = 13

mid - Beg + End = 1+13 = 14 = 7

DATA(7) - 55 \(\data(n)id)

180 < 55

Beg => mid+1 -> 7+1 = 8

3 Beg = 8, End = 13 mid = 8 + 13 = 2112 = 10.5 = 10

DATH [10] - 77 + item Now,

item < data (item)

Beg => mid + 1 => 10+1 = 11

(3) Beg = 11 End = 13

mid = 11+13 = 24 = 12

DATA (12) = 88 # item

HOW

item < data (item)

100 < 88

Beg = mid + 7 = 12 + 7 = 13

1 Beg = 13 End = 13

mid = 13+13 = 26 = 13

DATA[13] = 99 \ item

item < data (item)

100 < 8699

Beg = mid+ 1 = 13 + 7 = 14.

Beg = 14 and End = 13.

Since begining is greater than end we cannot perform searching operation further 100 is not tocated in this Series.

Page	No.	
Date		

· Algorithim.

BINARY [DATA, IB, UB, TTEM, LOC)

- D Set Beck := LB, END := UB,
 MID = INT (BECK + END)
- 2) Repeat Steps 3 6 4 While
 BEG & END and DATA [mid] & item
- 3) if TTEM < DATA [mid] then
 END = mid 1

else

BEG = mid + 1

- 4) Sat mid INT (BEG+ END)
- s) if DATA (mid) = item then set loc:=mid else
- 6) Exit

Page	No	-
Date	:_/_/_	+

* Sorting

Bubble SOEt :-

Let, A be a list of AT D numbers
Sorting A refers to the operation
Of referranging the elements of A
So they are in increasing order

0.7 32, 5.1, 27, 85, 66, 23, 13, 57.

 $Pase-I \rightarrow 32, s1, 27, 85, 66, 23, 13, 57$ 32, s1, 27, 85, 66, 23, 13, 57C=7 32, 27, (S), 85, 66, 23, 13, 57

C = 7 32, 27, S, 85, 66, 23, 13, S? T = 5 32, 27, S1, 85, 66, 23, 13, S7

32, 27, 51, 66, 85, 23, 13, 57

32, 27, 51, 66, 823, 85, 13, 53

32, 27, 51, 66, 23, 13, 57, 85

Pass-II -> 32,27,51,66,23,13,57,85

C=6 27, 32, 51, 66, 23, 13, 57, 85 T=4 27, 32, 51, 66, 23, 13, 57, 85

27, 32, 51, 66, 23, 13, 57, 85

27, 32, 51, 23, 13, 66, 57,85

27, 32, 51, 23, 13, 57, 66, 95

27, 32, 51, 23, 13, 57, 66, 85

Pass III -> 27; 32, 51, 23, 13, 57, 66, 85 27, 32, 51, 23, 13, 57, 66, 85 C= 5 27, 32; 51, 23, 13, 57, 66, 85 I-2 27, 32, 23; (5D, 13, 57, 66, 85 27, 32, 23, 13, (5D, 57, 66, 85 27, 32, 23, 13, 51, [57], 66, 85

Pass $V \rightarrow 27, 32, 23, 13, 51, 57, 66, 85$ 27, 32, 23, 13, 51, 57, 66, 85 C = 4 27, 23, 32, 13, 51, 57, 66, 85 I = 2 27, 23, 13, 32, 51, 57, 66, 8527, 23, 13, 32, [51], 57, 66, 85

Pass $\sqrt{-7}$ 27, 23, 13, 32, 51, 57, 66, 85 23, (27), 13, 32, 51, 57, 66, 85 $\sqrt{1}$ = 2 23, 13, (27), 32, 51, 57, 66, 85 $\sqrt{1}$ = 3 23, 13, 27, 32, 51, 57, 66, 85

Poss VI -7 23, 13, 27, 32, 51, 57, 66, 85 C = 2 13, 23, 27, 32, 51, 57, 66, 85 I = 1 13, 23, 27, 32, 51, 57, 66, 85.

Pass VII -> 13, 23, 27, 32, 51, 57, 66, 85.

C=1 I=0

: comparisons = 7+6+5+4+3+2+1=28 Interchange = 5+4+2+2+3 2+1+0 = 16

Page No.....

Q.2 FOREST Pass T:- FOR E OR T-4 FOER FOE R Pass II :- FOERS I FOER FEQRSI FEORS FEORIS EORST E. ORST F F O R S T EFORST Pass IV :-E FORST T = 0 E F O R S T Pass V:-FORST I =0 : Comparisons - 5+413+2+7 - 15 Interchange = 7+1+1+0+6 - 3

The complexity of bubble sort algorithm is a

Pag	e	No.		-
Dat	e	Same.	1_	1

· Bubble SOET (DATA, N)

HEER DATA is an affay with N'elements this algorithm sort the elements in DATA. Passes

BUBBIE (DATA, N)

al if DATA [PTR] > DATA [PTR + 1] then interchange DATA [PTR] &

DATA [PTR++1]

b) Set PTR - PTR + 1 (Increment) 4) Exit

Q.1P,E,OPLE

=> Pass-I -> PEOP

Pass - II

PASS-TI -> FOIFPP

EOLEPP

EOLEPP

T-2 FIGHPP

PASS-IV -> ELEOPP

C=2
ELEOPP

I=I
EEDOPP

PASS-V -> EFLOPP C=1

I = 0

Total Comparision = 5+4+3+2+1

Total Interchange = 0+1+2+2+1

The complexity of Bubble SOET Algorithim is O(n2)

Q.	
	G26 000/11
	sition the bubble sort
	String TADOBA LADOBA
	0
	Pass I:- TADOBA
1	APDOBA
	A D D O B A C= S A D TO B A
	C=S ADBA
	A D (O) (T) B A
	A DOB (T) A
	A DOBAID
	ADOBATT
	At the end of first page the
	Biggest alPhabet (T) Take it's position
	OU TO POSITION

			Page No
Pass II :-	AB	0 B	ATAT
C-4 T-2	A D A D		AI
Pass TI :	AD	BA	OT
C= 3 I = 2	A B A B	7	0 T 0 T
Pas TV ·-	AB	a A	OT
C=2 I=1	AA	(B) D	OT
	AAA	BD	O T
I = 0 :. Total c	ompare	sion = 7	1213+4
Total To	deschar	rgės =	0+1+2+2
The compi			-

* Mullidimensional AFFay

A two dimensional AFFAY:

A two dimensional raxa array A is
a collection of man data elements

Such that each element is specified

by a pair of integer colled Subscript

with the property that I < J < m

The element of A with first Subscript
I and second Subscript k will be
denoted by Ajk OE A (J.K)

Two dimensional affay are called matrices in mathematics.

· Memory Representation of two dimensional Afray.

in
$$+ A [3,3] \rightarrow (4,1), (4,2), (4,3) \stackrel{?}{\leftarrow}$$

$$(3,1), (3,2), (3,3) \stackrel{?}{\leftarrow}$$

$$(3,1), (3,2), (3,3) \stackrel{?}{\leftarrow}$$

ROW COLUMN A(1,1) A(1,1) A(1,2) A(2,1) A(1,3) A(3,1)

A(3,3) (A(3,3).

Page No.____ Date :_/_ Formulae:-LOC (A (J, K)) => Base (A) + W [M(K-1)+(J-1)]

ROW: 100 (A(J,K)) => Base (A)+W[N(J-D)+(K-1)]

Ex. considez

```
Formulae:
 Wloc(A[JK]) => Base(A)+ W
  [M(K-1)+(J-1)]
                                       SUP
 loc (A [JK]) => Base (A) + W[N
                                        MA
     [J-1)+(K-1)]
  Ex. Consider [25-4] Array score.
                                       wo
 suppose Base of score = 200 and
                                       ide
 there are W=4 words per memory
  cell. Further more suppose programme
  language store 2D array using row
  major order. Then determine address
  of score [12 3]
  ⇒ 5core [ 25 4]
  Loc[ Score (12 3)] = Base (Score)
   + W[N(J-1)+ (K-1)]
   = 200 + 4 [ 4 (12-1) ] + (3-1)]
     = 200 + 4 [ 46]
= 384
  Multidimensional Erray =
      More than 2 dimensional is
   called as Multidimensional array
Ex Suppose a 3-D array MAZE is
    use declaring
      MAZE (2:8 -4:1 6:10)
   Then the length of 3 dimensions
     array MAZE (2:8, -4:1 6:10)
```


LI = UB - 1B+1 -> 8-2+1=7 L2 = 6 13 = 5 L = LIXL2XL3 L = 7X6X5 L = 210 suppose programming language store MAZE in memory row major order 2 suppose base of MAZE = 200 l W=4 words per mon memory cell then identify address of MAZE [5 - 18] To identify address of MAZE (5-18) will need effective indices Base [MAZE] = 200 W=4 MAZE = [5-18] E1 = 5-LB = 5-2=3 fiz = -1-(-4) = 3 E3 = 8-6 = 2 Row major order => (E112+ E2) L3 + F3 =(3x6+3)5+2= 21 X 5 + 2 = 107

LOC[MAZE (5 -18)] = Base (MAZE)
+
$$\omega$$
 (107)
= 200 + 4 (107)
= 200 + 428
= 628

suppose multidimensional orray p and B are declared using

p and B are declared using -10:5)) Find length of each dimension of and no of element in ARB 2) Consider element B[333] Find effective indices Rase of B = 400, and W=4 words per memory cell using column major. A (-2:2 2:22) L = 5 x 21 = 105 B (1:8, -5:5 -10:5) L1= 8-1+1=8 | L2=5-(-5)+1=1 L3 = 5-(-10)+1=16 L' = LIXL2 X L3 L' = 8X11X16 = 1408 B = 3-2 = 2 = E1 E2 = 3+5 = 8 E3 = 3+10=13 Column major = (E3 l2 + E2) 12 = (13(11)+8)11+2

= 1663

1) Consider a multi-dimensional array \times (-5:5) 3:33) \times (3:10,1:15,10:20) Find the length of each dimension and number of elements in X and Y. 2) Suppose Base (Y) = 400

W = 4 Determine effective

indices E₁ E₂ E₃ and address of Y[5, 10, 15] Assuming-') Y is stored in row major measured order
2) y is stored in column majormeasured order. Ans 1) FOX X $L_1 = 5 - (-5) + 1 = 11$ L2 = 33-3+1 = 31 No of elements in X = LIL2 $= 11 \times 31 = 341$ 2) For Y 5 Li = 10-3+1 = 8 L2 = 15-1+1 = 15 L3 = 20-10+1 = 11 No of elements in Y = LILZL3 = 8×15×11 = 1320

For Effective indices Ans E1 = 5 - 3(LB) = E2 = 10 -1 = 9 E3 = 15-10 = 5 For Row major order Row major => (E1. L2 + E2) L3+1 => (2 × 15 + 9) 11 + 5 = 39 X11 + 5 = 429 + 5 = 434 Row millor y [5 10 15] = Base (Y) + w (434) = 400 + 4 (434) = 400 + 1736 736 2136 order For Column major => (E3-L2+E2) Litt $=(5\times15+9)8+2$ = (75+9)8+2 $= 84 \times 8 + 2$ = 672 + 2 = 674 Column major = Y [5 10 15] = Base (Y) + w (674 = 400 + 4 × 674 = 400 + 2696 = 3096

· Record Structure

collection of Data are frequently organized into a higher Specifically feith. record and file. Specifically record is a collection of similar data atom each of which is called feild or atribute and a file is a collection of similar record although a record is collection of data atom. It differs from the linear area in the following ways.

A record may be a collection of non-homogenous:

The Data atom in a Fecord are index by atribute names, so their may not be a natural Ordering of it's element.

e.g consider a hospital keeps a record on each new-born baby which contain the following data

Name, gender, birth date, mother father. Suppose that birth date is a group atom with subatom menth, day, and year father

Page No.____

another also are group atom age DEad the EpocoEd StEucture 1. Newborn baby (20) -7 if mention & Ans:-2. Name 2. Gender 2. BiEth day 3. moth 3. Year 2. Father 3. Name 3- age Mother 3. Name 3. age. To accesses the information of babiber Newborn. father. Name. (6) Q. The following is an list of entry with a level number in a Student record One Student, From number, Two name 3 Flasst, 3 First, 3 Middle name, 2 gender, 2 tiethday, 3 Day, 3

i) DEaco the COEFESponding

Page	No.		
Date	-	1	1

Steucture	
in a shich of the atoms are	elemen
tary atoms.	-
0	

soln-i) 1. Student

2. Name

3. Last

3. first

3. Middle

2. Gende E

2. BiEthday
3. Day

3. moth

3. Year

2. Test

3. Math

3. VeEbal

ii) => Number, Gender, Last, first middle, Day, month, year, Math, and verbal.

1. Student [200]

2. Name

3. First Manne

3. Middle Name

3. Last Name

Date: _/ / 2. Major 2. Sat 3. Math 3. Verbal 2. GPA (4) 2. COM. il How many elementry atoms are their in the file ila) How does one accesses the major of eigth. Student. iil B) The sophomore GPA of 45th Studen ive Find each output. al Write: Name (15) b) WEITE: COM c) WEITE: GPA [2] d) WEITE : GPA (113) Ans:- i) Since GPA is counted 4 times per Student their are II elementry atom per students therefore the total no of elementer atom in EccoEd Student - 11 x 200 - 22001 ii) Student. Major[8] iii) Student. GRA [45,2] iv) -; a) It will print the name of 16th Student.

Page	No.		
Date	1	1	

at Eay.

· Representation of polynomial using

The polynomial expression $3x^4 + 5x^3 + 6x^2 + 10x - 14$ can be stored in a signle dimenssion array as follows.

0	1-14
I	10
2	6
3	5
4	3

· Pointer and pointer array.

Let DATA be any azzay a vaziable p is called pointez if p points to an element in data : 1.e if to P

contain address of an element in DATA. and An afray PTR is called called pointer array if each element of PTR is a pointer pointer and pointer array are use to facillate the processing of the information in data consider an Organisation which divide it's membership into four groups where each group contain an alphabetical list of those members living in certain area.

GEOUPY GEOUPS GEOUPY Enzad Even Davis Baker te1+ segal Coofee glass FOED Levis GERRY Hill Ring Jones Reed Peco TEAY Magnez

90				PAGE NO.:	
14.01.2	Group 1	Group '	2 (nroup 3	Groups
	Evan Harris Levis Shawn	Control Felt Glas Hill king Paen Silve	5	Davis	Baker Coofer Ford Giray Jones Reed
	0 1 2	Wagne	1		
9 3	H L S C F & G H K P S T W P S	Evan Harris Levis Shawn \$\$\$ C F GI H K P S T W \$\$\$	to all and a second and a secon	of Giron	
		D 5 \$ \$		100 1000	

Member				-
To a E	GEOUP	7	E	GEO
	, ,	2	H	(3)
2	1	- 3	1	1
3 5	7	1 4	S	
	19	5	,	
CTOUD 6 F	23	G		
GEOUP 6 F		.7	C	
	NUMB	8	F	
		9	G	
	[a]	10	14	
134 TOP	g	11	K	
101	2	12	P	
12 1	6	13	S	
13 M		14	T	
	FEEE	15	W	
15 S		16	-	
		12	8	
13 C	2	18		
18	3	19	.D	
T	2	20	S	
20 J 21 R	(4)	21	1	
355		22		
		23		
The dollar		24		
sign comes at		+ 25	.8.	
the end of		26	C	
OF FOY.		27	F	
		28	G	
			5	
A		30	R	