

Enhancing RGB Sensitivity and Conversion Time

Introduction

The RGB sensor is a low power, high sensitivity, RED, GREEN, and BLUE color light sensor (RGB) with an I²C (SMBus compatible) interface. Its state of the-art photodiode array provides an accurate RGB spectral response and excellent light source to light source variation (LS2LS). The sensor is designed to reject IR in light sources allowing the device to operate in environments from sunlight to dark rooms. The integrating ADC rejects 50Hz and 60Hz flicker caused by artificial light sources. Selectable ranges allow the user to optimize sensitivity suitable for the specific application. The sensor has 2 sensitivity ranges such as range 0 from 5.7mlux to 375lux and range 1 from 0.125 lux to 10,000 lux. However, Intersil has options which can expose even higher sensitivity by simple setting in custom registers.

TABLE 1. EXPOSE THE CUSTOM REGISTER

		ISTER DRESS	REGISTER BITS									
NAME	DEC	HEX	В7	В6	B5	B4	В3	B2	B1	ВО	DEFAULT	ACCESS
Device ID	0	0x00	0	1	1	1	1	1	0	1	7Dh	RO
CUSTOM MODE ACCESS	0	0x00	х	х	Х	х	Х	Х	Х	Х	N/A	WO
REGISTER 0x02	2	0x02		See Datasheet for more detail							00h	RW
STATUS	8	0x08	TMEN	REVEN		Se	e Datashe	et for more d	etail		04h	RO
CUSTOM MODE 1	25	0x19	RESERVED	SENS_EN			RES	SERVED			00h	RW
CUSTOM MODE 2	26	0x1A		RI	ESERVED			FAST	RESE	RVED	00h	RW
CUSTOM MODE 3	27	0x1B		Gain Setting								RW
CUSTOM MODE 4	28	0x1C		RESERVED SENSX[1] SENSX[0]							00h	RW
CUSTOM MODE 5	29	0x1D		Gain Setting							Set by Intersil	RO

Register 0x00

Register 0x00 performs two functions. If Reg 0x00 is in READ ONLY mode then it will be a Device ID. When the register is in the WRITE ONLY mode it will open up access to CUSTOM MODE registers.

To access into a CUSTOM MODE, write 89h then C9h into Register 0x00.

To reset all Registers to default and/or all state machine by writing 46h into Reg 0x00.

TABLE 2. Device ID/ CUSTOM ACCESS

		GISTER DRESS	REGISTER BITS	R REGISTER BITS								
NAME	DEC	HEX	В7	В6	B5	B4	В3	B2	B1	во	DEFAULT	ACCESS
Device ID	0	0x00	0	1	1	1	1	1	0	1	7Dh	RO
CUSTOM MODE ACCESS	0	0x00	Х	х	х	х	х	х	Х	х	N/A	wo

Register 0x02

See datasheet for more detail on how to set IR compensation. Write 00h to Reg 0x02 then range 0 = 250 lux and range

1 = 6750 lux. Write BFh to Reg 0x02 then range 0 = 375 lux and range 1 = 10,000 lux.

Register 0x08

TABLE 3. STATUS REGISTER (REG0x08)

		GISTER DRESS				REGISTE	R BITS					
NAME	DEC	HEX	В7	В6	B5	В4	В3	B2	B1	во	DEFAULT	ACCESS
STATUS	8	0x08	TMEN	REVEN	RGBCF[1]	RGBCF[0]	RESERVED	BOUTF	CONVENF	RGBTHF	0x04	RO

RGBTHF [B0]

This is the status bit of the interrupt. The bit is set to logic high when the interrupt thresholds have been triggered (out of threshold window), and logic low when not yet triggered. Once activated and the interrupt is triggered, the $\overline{\text{INT}}$ pin goes low and the interrupt status bit goes high until the status bit is polled through the I^2C read command. Both the INT output and the interrupt status bit are automatically cleared at the end of the 8-bit (00h) command register transfer.

TABLE 4. INTERRUPT FLAG

ВО	OPERATION
0	Interrupt is cleared or not triggered yet
1	Interrupt is triggered

CONVENF [B1]

This is the status bit of conversion. The bit is set to logic high when the conversion have been completed, and logic low when the conversion is not completed or not converted.

TABLE 5. CONVERSION FLAG

B1	OPERATION
0	Still convert or cleared
1	Conversion completed

BOUTF [B2]

Bit2 on register address 0x08 is a status bit for the brownout condition (BOUT). The default value of this bit is HIGH, BOUT = 1, during the initial power-up. This indicates the device may possibly have gone through a brownout condition. Therefore, the status bit should be reset to LOW, BOUT = 0, by an I 2 C write command during the initial configuration of the device. The default register value is 0x04 at power-on.

TABLE 6. BROWNOUT FLAG

B2	OPERATION
0	No Brownout
1	Power-down or Brownout occurred

RGBCF [**B5:B4**]

B[5:4] are flag bits to display7.

TABLE 7. CONVERSION FLAG

B5:4	RGB UNDER CONVERSION
00	No Operation
01	GREEN
10	RED
11	BLUE

REVEN [B6]

REVEN is Bit 6 of the status register. The bit is asserted to logic ${\bf 1}$ when writing 89h to reg 0x00. By default this bit is logic low.

TABLE 8.

В6	OPERATION
0	Logic low or not writing 89h to Reg 0x00
1	Writing 89h to Reg 0x00

TMEN[B7]

TMEN is Bit 7 of the status bit of Custom Mode condition. The bit is asserted to logic 1 when writing C9h to reg 0x00 and REVEN is at logic 1. By default it is at logic low.

TABLE 9.

В7	OPERATION
0	Logic low or not writing C9h to Reg 0x00 and REVEN = 0
1	Writing C9h to reg 0x00 and REVEN = 1

B7 and B6 are indicated whether the RGB sensor is in the custom mode or not.

Register 0x19

TABLE 10. CUSTOM MODE 1 (REG 0x19)

		GISTER DRESS		REGISTER BITS								
NAME	DEC	HEX	B7	В6	B5	B4	В3	B2	B1	во	DEFAULT	ACCESS
CUSTOM MODE 1	25	0x19	RESERVED	SENS_EN			RESER	VED			00h	RW

SENS_EN is Bit 6 of CUSTOM MODE 1. In order to enable the CUSTOM MODE 4, SENS_EN should be asserted to a logic high. By default, it is a logic low or not enable CUSTOM MODE 4.

TABLE 11.

В6	OPERATION
0	Not Enable
1	Access to CUSTOM MODE 4

Register 0x1A

TABLE 12. CUSTOM MODE 2 (REG 0x1A)

		GISTER DRESS		REGISTER BITS								
NAME	DEC	HEX	B7	B7 B6 B5 B4 B3 B2 B1 B0 D							DEFAULT	ACCESS
CUSTOM MODE 2	26	0x1A		RESERVED					RESEI	RVED	00h	RW

FAST [2]

Bit 2 in Reg 0x1A is asserted to a logic high then ADC clock frequency is 4x faster than normal mode. By default FAST bit is set to low for normal mode.

TABLE 13.

B2	OPERATION					
0	Normal conversion time					
1	4x faster than normal conversion time					

Register 0x1B and 0x1D

TABLE 14. CUSTOM MODES 3 AND 5 (REG 0x1B AND REG 0x1D)

		GISTER DRESS	REGISTER BITS									
NAME	DEC	HEX	В7	В6	B5	B4	В3	B2	B1	во	DEFAULT	ACCESS
CUSTOM MODE 3	27	0x1B	GAIN SETTING						OOh	RW		
CUSTOM MODE 5	29	0x1D	GAIN SETTING						Set by Intersil	RO		

Both CUSTOM MODE 3 and CUSTOM MODE 5 are set by Intersil in order to have a better part-to-part variation performance.

Register 0x1C

TABLE 15. CUSTOM MODE 4 (REG 0x1C)

		GISTER DRESS				REGISTE	R BITS					
NAME	DEC	HEX	В7	В6	B5	B4	В3	B2	B1	ВО	DEFAULT	ACCESS
TEST MODE 4	28	0x1C			RESI	ERVED			SENX[1]	SENX[0]	00h	RW

SENX[1:0]

The full-scale range can be extended to be a high sensitivity at bit [1:0] of reg0x1C. The range determines the ADC resolution (12 bits, and 16 bits). Each selectable range at SENX has a maximum allowable lux value. More information will be discussed in the following section.

TABLE 16.

B1:0	HIGH SENSITIVITY RANGES
00	1X
01	1.5X
10	2X
11	2.5X

Application Information

In order to expose high sensitivity ranges and speed up its conversion time, the sensor needs to be in the custom mode, instructed in the following steps:

- 1. Write 89h to Reg 0x00
- Write C9h to Reg 0x00 to enter CUSTOM mode. If user want to check flag status at bit [7] and bit [6] of Reg0x08 should be asserted to logic. If they are asserted logic 1 then the sensor is in the CUSTOM mode.
- 3. Read reg 0x1D then store that value in a temp variable (software GUI/driver).
- 4. Write 40h to Reg 0x19 to enable high sensitivity ranges (Reg 0x1C/ CUSTOM MODE 4).
- 5. Write temp variable at step 2 to reg 0x1B.
- Following, Table 17 explains multiple higher sensitivity options the sensor can be:

TABLE 17. SENSITIVITY RANGES

Register 0x02	Write 00h to	Register 0x02	Write BFh to Register 0x02			
		= 250 lux, = 6750 lux	Range 0 = 375 lux, Range 1 = 10,000 lux			
Register 0x1C [1:0]	SENX[1:0]	High Sensitivity Range (Lux)	SENX[1:0]	High Sensitivity Range (Lux)		
RANGE 0	00	250	00	375		
	01	165	01	250		
	10	125	10	187.5		
	11	100	11	150		
RANGE 1	00	6750	00	10,000		
	01	4455	01	6750		
	10	3375	10	5062		
	11	2700	11	2362.5		

- 7. Following, Table 18 explains how the sensor can be sped up in the conversion time for 16-bit and 12-bit ADC.
 - **TABLE 18. SPEED-UP CONVERSION TIME**

Reg0x01 [4] (Bit)	16-bit ADC	(bit [4] = 0)	12-bit ADC (bit[4] = 1)		
Reg0x1A [2] (FAST bit)	FAST= 0 FAST = 1		FAST =0	FAST = 1	
Conversion time (ms)	100 25		6.25	1.56	
Number of Clocks	65	536	40	96	
ADC clock Period (µs)	1.52 0.38		1.52	0.38	

- 8. To get out of CUSTOM MODE without resetting the device, write any hex values other than 89h and C9 to Reg 0x00. OR
- 9. To get out of CUSTOM MODE and reset the device, write 46h to Reg 0x00. This will reset all registers to their default states.

Block Diagram for High Sensitivity Control Logic

FIGURE 1. HIGH SENSITIVITY CONTROL LOGIC DIAGRAM

 ${\tt Initialization}\ ({\tt 1}\ {\tt time}\ {\tt only})$

 Set CUSTOM Mode Enable
 W:0x00:0x89 W:0x00:0xC9

 Read Value
 R:0x1D → MEM

 Enable High Sensitivity
 W:0x19:0x40

 Write Value
 W:0x1B:MEM

 Exit CUSTOM Mode
 W:0x00:0x00

Run Time

 Set CUSTOM Mode Enable
 W:0x00:0x89 W:0x00:0xC9

 Set High Sensitivity
 W:0x1C:0x03*ON

 Exit CUSTOM Mode
 W:0x00:0x00

FIGURE 2. INITIALIZATION AND RUNNING TIME

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.