



# Power input menagement



# 5V step-down converter



# 3.3V LDO regulator



# Battery level sense



Voltage divider calculations:

 $U_in max = 8.4V$  $U_out\ max = 3V$ 

U\_out = U\_in \* R2/(R1+R2) U\_out \* (R1+R2) = U\_in \* R2 U\_out \* R1+ U\_out \* R2 = U\_in \* R2 U\_out \* R1 = (U\_in - U\_out) \* R2 R1 = R2 \* (U\_in - U\_out)/U\_out

assume R2 = 10k

R1 = 10000 \* (8.4 - 3)/3 = 18 kohm

# Power level indicator



Power red led current resistor calculations:

target current: I = 5mA input voltage: U1= 3.3V forward voltage: Uf = 1.6V

 $R = (U-Uf)/I \\ R\_3.3V = (3.3 -1.6)/0.005 = 340 \text{ ohm } -> 360 \text{ ohm}$ 

Sheet: /power/ File: power.sch

Title: Sneak100 Main Board V1.0

Date: August 2021 Rev: KiCad E.D.A. kicad (5.1.6)-1Id: 3/7



### user buttons



#### user leds



#### Green led current resistor calculations:

target current: I = 5mA input voltage: U = 3.3V forward voltage: Uf = 2V

R = (U-Uf)/I R = (3.3 - 2)/0.005 = 260 ohm -> 300 ohm

Yellow led current resistor calculations:

target current: I = 5mA input voltage: U = 3.3V forward voltage: Uf = 2V

R = (U-Uf)/I R = (3.3 - 2)/0.005 = 260ohm - > 270ohm

## bluetooth module

HC-05 module



# **OLED** display



## IR receiver



Sheet: /interface/ File: interface.sch

Title: Sneak100 Main Board V1.0

Size: A4 Date: August 2021 Rev: KiCad E.D.A. kicad (5.1.6)-1 Id: 5/7



