ASSIGNMENT-2

Course : Statistical machine learning

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import skew, kurtosis
```

dp=pd.read_csv('/content/housing.csv')
dp

→ *		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_val
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	45260
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	35850
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	35210
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	34130
	4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	34220
2	20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	7810
2	20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	7710
2	20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	9230
2	20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	8470
2	20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	8940
20	0640 rows × 10 columns									

Next steps: Generate code with dp View recommended plots New interactive sheet

< 1Q

```
X={1.3,1.5,2.6,2.6,3.2,3.9,4.2,3.7,3.10,3.0,11,6.7,1.9}
plt.hist(X,bins=5,color="darkblue",edgecolor="black" )
plt.xlabel('value')
plt.ylabel('Density')
plt.title('Histogram with 5 Bins')
plt.show()
```


~ 2Q

```
X=[12,13,56,23,41,28,51]
Y=[51,63,37,88,33,72.81]
def mean(data):
  return np.mean(data)
def median(data):
  return np.median(data)
def mode(data):
  return stats.mode(data)
def variance(data):
  return np.var(data)
def range(data):
  return max(data) - min(data)
def iar(data):
  q1, q3 = np.percentile(data, [25,75])
def skewness(data):
  return stats.skew(data)
def kurtosis(data):
  return stats.kurtosis(data)
def stddev(data):
  return np.std(data)
print("Statistics for X:")
print("Mean:", mean(X))
print("Median:", median(X))
print("Mode:", mode(X))
print("Variance:", variance(X))
print("Standard deviation:", stddev(X))
print("Range:", range(X))
print("Interquartile range (IQR):", iqr(X))
print("Skewness:", skewness(X))
print("Kurtosis:", kurtosis(X))
print("\nStatistics for Y:")
print("Mean:", mean(Y))
print("Median:", median(Y))
print("Mode:", mode(Y))
print("Variance:", variance(Y))
print("Standard deviation:", stddev(Y))
print("Range:", range(Y))
print("Interquartile range (IQR):", iqr(Y))
print("Skewness:", skewness(Y))
print("Kurtosis:", kurtosis(Y))
→ Statistics for X:
     Mean: 32.0
     Median: 28.0
     Mode: ModeResult(mode=12, count=1)
     Variance: 268.0
     Standard deviation: 16.3707055437449
     Range: 44
     Interquartile range (IQR): None
     Skewness: 0.18755223867066048
     Kurtosis: -1.47684021258314
     Statistics for Y:
     Mean: 57.468333333333334
     Median: 57.0
     Mode: ModeResult(mode=33.0, count=1)
     Variance: 376.2733472222222
     Standard deviation: 19.397766552420983
     Range: 55
     Interquartile range (IQR): None
     Skewness: 0.19971617107804526
     Kurtosis: -1.2801310517130808
```

~ 3Q

```
Y = [51,63,37,88,33,72.81]
X_{dependent} = [12,13,56,23,41,28,51]
X_dependent = X_dependent[:len(Y)]
XY_df = pd.DataFrame({'Y': Y, 'X': X_dependent})
XY_stats = XY_df.describe().T
XY_stats['IQR'] = XY_stats['75%'] - XY_stats['25%']
XY_stats['Skewness'] = XY_df.apply(lambda x: skew(x), axis=0)
XY_stats['Kurtosis'] = XY_df.apply(lambda x: kurtosis(x), axis=0)
print("\nStatistical measures for the features in the given table:")
print(XY_stats)
 \overline{\mathcal{T}}
       Statistical measures for the features in the given table:

        count
        mean
        std
        min
        25%
        50%
        75%
        max
        IQR

        Y
        6.0
        57.468333
        21.249189
        33.0
        40.5
        57.0
        70.3575
        88.0
        29.8575

        X
        6.0
        28.833333
        17.057745
        12.0
        15.5
        25.5
        37.7500
        56.0
        22.2500

                                                                                                                   IQR \
           Skewness Kurtosis
       Y 0.199716 -1.280131
       X 0.569986 -0.984739
```

Done By KODAM SHISHIR BHAGATH [2303A52164]