DISPOSITIVOS ÓPTICOS

4.1. OBJETIVO

O objetivo principal da prática descrita neste capítulo é determinar, a partir de um conjunto de lentes, a ampliação angular de um microscópio composto e de um telescópio. Para alcançar tal objetivo, realizaram-se três experimentos que, a seguir, serão descritos.

4.2. INTRODUÇÃO

O tamanho aparente de um objeto é determinado pelo tamanho da sua imagem sobre a retina. O tamanho da imagem na retina é maior para objetos próximos do que para objetos distantes; assim, o tamanho aparente de um objeto aumenta quando ele é deslocado para mais perto do olho. O tamanho da imagem é proporcional ao ângulo θ subentendido pelo objeto na posição do cristalino. A Figura 4.1 ilustra a situação citada.

Figura 4.1 Objeto de altura h a uma distância d = 25 cm do olho é subentendido por um ângulo θ .

Para pequenos objetos localizados a distâncias relativamente grandes do olho, pode-se aproximar o ângulo θ por:

$$\theta \approx \frac{h}{d} \Rightarrow \theta \approx \frac{h}{25}$$
 (4.1)

onde h é a altura do objeto; e d é a distância do objeto ao olho, conhecido como *ponto próximo* (neste capítulo, adotou-se para esse ponto o valor de 25 cm).

Na Figura 4.2, o observador está vendo o objeto através de uma lente convergente, que forma uma imagem de tamanho transversal h, a uma distância d do olho.

Figura 4.2 A imagem I, de altura h', é observada a uma distância d', subentendida por um ângulo θ' .

O tamanho angular aparente da imagem para o observador, considerando-se ângulos pequenos, é dado pela seguinte relação:

$$\theta' \approx \frac{h'}{d'}$$
 (4.2)

A imagem vista através da lente parecerá, ao observador, maior do que o objeto original se ela for subentendida por um ângulo sólido maior do que o subentendido pelo objeto. Portanto, o que importa na medida do tamanho aparente da imagem é a *ampliação angular*, m_{θ} , definida como:

$$m_{\theta} = \frac{\theta'}{\theta} \tag{4.3}$$

Assumindo-se que o objeto está muito próximo do foco f da lente, ao combinar-se as Equações 4.1, 4.2 e 4.3, tem-se a expressão para ampliação angular, ou seja:

$$m_{\theta} = \frac{25 \,\mathrm{cm}}{f} \tag{4.4}$$

A lente de aumento é usada em microscópios e telescópios para observar a imagem formada por outra lente ou sistema de lentes. O microscópio, por sua vez, é usado para observar objetos muito pequenos a curta distância. Na sua forma mais simples, é constituído por duas lentes convergentes. A lente mais próxima do objeto, denominada objetiva, forma uma imagem real do objeto. Essa imagem é aumentada e invertida. A lente mais próxima do olho, que recebe o nome de ocular, é usada como lente de aumento para observar a imagem formada pela objetiva. A ocular é posicionada de tal forma que a imagem formada pela objetiva fica no foco primário daquela lente. A luz emerge, portanto, da ocular na forma de um feixe de raios paralelos, como se estivesse vindo de um ponto situado a uma grande distância da lente. A Figura 4.3 ilustra essa situação.

Diagrama esquemático de um microscópio constituído por duas lentes convergentes.

A distância entre o foco secundário da objetiva e o foco primário da ocular é chamada de comprimento do tubo e é representada pela letra g. A ampliação $global\,M_{\scriptscriptstyle heta}$ é o produto da ampliação da objetiva e da ampliação da ocular. Em termos matemáticos, tem-se:

$$M_{\theta} = -\frac{g}{f_{ob}} \times \frac{25 \,\text{cm}}{f_{oc}} \tag{4.5}$$

onde f_{ob} é a distância focal da ocular; f_{oc} é a distância focal da ocular; e g é o comprimento do tubo. O sinal negativo indica que a imagem é invertida.

O telescópio é um instrumento utilizado para observar objetos distantes, quase sempre de grande porte. Esse instrumento funciona criando uma imagem do objeto que está muito mais próxima do observador do que o próprio objeto. Como no microscópio, a objetiva do telescópio projeta uma imagem que é examinada pela ocular. A Figura 4.4 abaixo mostra um objeto muito distante do observador, mas grande de tal forma que ele representa uma abertura angular α na posição do telescópio. Visto pelo telescópio, o ângulo de abertura é α '.

Figura 4.4 Diagrama esquemático de um telescópio refrator.

A ampliação angular do telescópio é dada pela seguinte expressão:

$$M_{\theta} = \frac{\alpha'}{\alpha} \Rightarrow M_{\theta} = -\frac{f_{ob}}{f_{oc}}$$
 (4.6)

onde f_{ob} é a distância focal da objetiva; e f_{oc} é a distância focal da ocular. O sinal é negativo, pois ao utilizar lentes convergentes, a imagem será invertida. A expressão torna-se positiva caso a ocular seja uma lente divergente.

4.3. MATERIAL UTILIZADO

- Anteparo;
- Lâmpada;
- Lentes;
- Trena;
- Trilho óptico.

PARTE EXPERIMENTAL E RESULTADOS

4.4.1. Experimento I

Inicialmente, montou-se o trilho óptico sobre a bancada do laboratório. Após esse procedimento, determinou-se, utilizando-se uma lâmpada e um anteparo, a distância focal f de quatro lentes convergentes, que aqui serão denominadas lentes I, II, III e IV. A lâmpada foi fixada na extremidade esquerda do trilho óptico, enquanto que o anteparo ficou livre para a movimentação.

Logo após montar o trilho óptico, posicionou-se a lente I na frente da lâmpada. Em seguida, variou-se a distância entre a lâmpada e lente até que se formasse uma imagem nítida do filamento da lâmpada no anteparo. Uma vez obtida essa imagem, mediu-se, utilizando-se uma trena, as distâncias entre a lâmpada e a lente e entre esta e o anteparo. A margem de erro da trena é igual à metade da menor divisão da sua escala, ou seja, 0,05 cm. Doravante, denominar-se-á as distâncias entre a lâmpada e a lente e entre esta e o anteparo de s e s', respectivamente. Para se determinar a distância focal f da lente, utilizou-se a equação de Gauss (1/f = 1/s + 1/s') para lentes esféricas.

Esse mesmo procedimento foi repetido para as lentes II, III e IV, sendo que, para a lente IV, a imagem foi projetada na parede do laboratório. Uma vez determinada a distância focal das quatro lentes, foi possível comparar os valores obtidos experimentalmente com os valores nominais de cada lente. Os dados obtidos estão transcritos na Tabela 4.1.

Tabela 4.1 Valores da distância focal, f, das quatro lentes convergentes utilizadas no experimento I.

Lente	f nominal (cm)	s (cm)	s' (cm)	f obtida experimentalmente (cm)	Diferença percentual (%)
1	5	6,20±0,05	24,50±0,05	4,95±0,03	1,00
11	10	11,50±0,05	69,50±0,05	9,87±0,04	1,30
111	20	32,00±0,05	52,50±0,05	19,88±0,03	0,60
IV	50	62,00±0,05	242,00±0,05	49,36±0,03	1,28

4.4.2. Experimento II

Como primeiro passo, montou-se um microscópio com as lentes I e III, de forma que a lente I funcionasse como lente objetiva e a lente III como ocular. As lentes foram dispostas de tal modo que a distância entre os focos de cada uma, ou seja, o comprimento do tubo g, fosse igual a 16 cm. Em seguida, utilizando-se a Equação 4.5 e os valores nominais da distância focal de cada lente, foi possível determinar a ampliação angular M_{θ} do microscópio. Esse procedimento foi repetido para outros três comprimentos do tubo g, como se pode observar na Tabela 4.2.

Como fator de comparação, determinou-se experimentalmente a ampliação angular do microscópio, utilizando-se, para tal tarefa, duas réguas graduadas. Os resultados obtidos estão transcritos na Tabela 4.2.

Tabela 4.2 Valor da ampliação angular, M_{θ} , para diferentes comprimentos do tubo gdo microscópio utilizado no experimento II. O sinal negativo indica que a imagem formada é invertida.

Comprimento do tubo g (cm)	Ampliação angular, <i>M_θ</i> , obtida utilizando-se Equação 4.5	Ampliação angular, $M_{ heta^*}$ obtida experimentalmente
16,00±0,05	-4	-4
12,00±0,05	-3	-3
8,00±0,05	-2	-2
4,00±0,05	-1	-1

4.4.3. Experimento III

Como ponto de partida, montou-se um telescópio, utilizando-se as lentes I e IV, de modo que a lente I funcionasse como lente ocular e a lente IV como objetiva. As lentes foram dispostas de tal modo que a distância entre elas fosse igual a, aproximadamente, 62,5 cm. Em seguida, utilizando-se a Equação 4.6 e os valores nominais da distância focal de cada lente, determinou-se a ampliação angular M_{θ} do telescópio.

O procedimento acima foi repetido para uma nova configuração de lentes, a saber: a lente I foi substituída por uma lente divergente, aqui denominada lente V, de distância focal f igual a -10 cm. A lente objetiva utilizada foi a mesma da configuração anterior, ou seja, a lente IV.

Como fator de comparação, determinou-se experimentalmente a ampliação angular, utilizando-se, para tal tarefa, um padrão de escala fixado na parede do laboratório e o telescópio montado. Os resultados obtidos estão transcritos na Tabela 4.3.

Tabela 4.3 Valor da ampliação angular, M_{θ} , para diferentes configurações de lentes utilizadas no telescópio montado no experimento III. O sinal negativo indica que a imagem formada é invertida.

Lentes utilizadas no telescópio	Ampliação angular, M_{θ} , obtida utilizando-se Equação 4.6	Ampliação angular, M_{θ} , obtida experimentalmente	
l e IV	-10	-10	
V e /V	5	5	

4.5. DISCUSSÃO DOS RESULTADOS E CONCLUSÃO

Neste capítulo, foram abordados e explicados os procedimentos de três experimentos cujo objetivo maior foi determinar, a partir de um conjunto de lentes, a ampliação angular de um microscópio e de um telescópio.

No primeiro experimento, determinou-se, utilizando-se uma lâmpada e um anteparo, a distância focal f de quatro lentes convergentes (I, II, III e IV). A lâmpada foi fixada na extremidade esquerda do trilho óptico, enquanto que o anteparo ficou livre para a movimentação. Para realizar tal tarefa, primeiramente posicionou-se a lente I na frente da lâmpada. Em seguida, variou-se a distância entre a lâmpada e lente até que se formasse uma imagem nítida do filamento da lâmpada no anteparo. Uma vez obtida essa imagem, mediu-se, utilizando-se uma trena, as distâncias entre a lâmpada e a lente e entre esta e o anteparo. Para se determinar a distância focal f da lente, utilizou-se a equação de Gauss para lentes esféricas. Esse mesmo procedimento foi repetido para as lentes II, III e IV, sendo que, para a lente IV, a imagem foi projetada na parede do laboratório. Uma vez determinada a distância focal das quatro lentes, foi possível comparar os valores obtidos experimentalmente com os valores nominais de cada lente (Tabela 4.1). A diferença percentual média entre os valores obtidos experimentalmente e os valores nominais foi de, aproximadamente, 1,05%.