Фундаментальные константы.

		• • • • • • • • • • • • • • • • • • • •	
Название константы.	Обозн.	Значение.	Измерение
Гравитационная постоянная.	G	6,672*10 ⁻¹¹	$H*m^2/\kappa\Gamma^2$
Ускорение свободного падения	G	9,8065	м/c ²
Атмосферное давление	p_0	101325	Па
Постоянная Авогадро	N _a	6,022045*10 ²³	Моль-1
Объем 1 моль идеального газа	V_0	22,41383	м ³ /моль
Газовая постоянная	R	8,31441	$\frac{\mathcal{Д}$ ж моль* K
Постоянная Больцмана	K	1,380662*10 ⁻²³	Дж/К
Скорость света в вакууме	С	2,99792458*10 ⁸	м/с
Магнитная постоянная	μ_0	$4\pi*10^{-7}=$	
		1,25663706*10 ⁻⁶	Гн/м
Электрическая постоянная	ϵ_0	8,8541878*10 ⁻¹²	$\Phi/_{M}$
Масса покоя электрона	m _e	9,109534*10 ⁻³¹	КГ
Масса покоя протона	m _p	1,6726485*10 ⁻²⁷	КГ
Масса покоя нейтрона	m _n	1,6749543*10 ⁻²⁷	КГ
Элементарный заряд	Е	1,6021892*10 ⁻¹⁹	Кл
Отношение заряда к массе	e/m _e	1,7588047*10 ¹¹	Кл/кг
Постоянная Фарадея	F	9,648456*10 ⁴	Кл/моль
Постоянная Планка	H	6,626176*10 ⁻³⁴	Дж*с
	$\hbar = \frac{h}{2\pi}$	1,054887*10 ⁻³⁴	Дж*с
Радиус 1 боровской орбиты	a_0	0,52917706*10 ⁻¹⁰	M
Энергия покоя электрона	$m_e c^2$	0.511034	МэВ
Энергия покоя протона	m_pc^2	938.2796	МэВ
.Энергия покоя нейтрона	m_nc^2	939.5731	МэВ

Система единиц.

Приставки Си.

	U	. •						
пристав.		поряд.	пристав.	поряд.	пристав.	порядок	Пристав.	порядок

экса	Э	18	мега	M	6	деци	Д	-1	Нано	Н	-9
пета	П	15	кило	К	3	санти	c	-2	пико	П	-12
тера	T	12	гекто	Γ	2	милли	M	-3	фемто	ф	-15
гига	Γ	9	дека	да	1	микро	МК	-6	атто	a	-18

Механика.

Кинематика.

Обозн.	Изм.	Смысл
S	M	пройденный путь
v	м/с	скорость
t	c	время
х	M	координата
a	м/c ²	ускорение
ω	c ⁻¹	угловая скорость
T	с	период
ν	Гц	частота
ε	c ⁻²	угловое ускорение
R	M	радиус

Скорость и ускорение.

$$\vec{v} = \frac{d\vec{S}}{dt}$$
, $\vec{v} = \frac{d\vec{r}}{dt}$, $\vec{a} = \frac{d\vec{v}}{dt}$

Равномерное движение: v = const

$$S = vt$$
, $x = x_0 + vt$;

Равнопеременное движение:

$$a = \frac{v - v_0}{t}, \qquad a = \frac{v^2 - v_0^2}{2S};$$

$$S = v_0 t + \frac{at^2}{2}, \quad S = \frac{v^2 - v_0^2}{2a}; \quad v = v_0 + at, \quad v = \sqrt{v_0^2 - 2aS};$$

$$x = x_0 + v_0 t + \frac{at^2}{2};$$

Криволинейное движение.

$$\vec{v} = |v| \cdot \vec{e}_{\tau}$$

$$\vec{a} = a_{\tau}\vec{e}_{\tau} + \frac{v^2}{R}\vec{e}_{n}, \quad \vec{a} = \vec{a}_{\tau} + \vec{a}_{n}$$

Вращательное движение.

$$\vec{\omega} = \frac{d\vec{\varphi}}{dt}, \quad \omega = \frac{v}{R}, \quad \omega = \frac{2\pi}{T}; \qquad \vec{\varepsilon} = \frac{d\vec{\omega}}{dt};$$

$$\vec{v} = [\vec{\omega} * \vec{r}], \quad v = \frac{2\pi R}{T}; \quad v = \frac{1}{T}, \quad v = \frac{N}{t};$$

$$a_u = [\vec{\varepsilon} * \vec{r}], \quad a_u = \omega v, \quad a_u = \frac{v^2}{R}, \quad a_u = \frac{4\pi^2 R}{T^2};$$

Динамика и статика.

Обозн.	Изм.	Смысл
\boldsymbol{F}	Н	сила
P	кг*м/с	импульс
а	м/c ²	ускорение
m	КГ	масса
v	м/с	скорость
p	Н	вес тела
g	$\rm m/c^2$	ускорение
	1.0, 0	свободного падения
E	Дж	энергия
\boldsymbol{A}	Дж	работа
N	Вт	мощность
t	c	время
I	кг*м ²	момент инерции
L	кг*м ² /с	момент импульса
M	Н*м	момент силы
ω	c ⁻¹	угловая скорость

Первый закон Ньютона:

при
$$\sum F = 0 \Rightarrow v = const.$$

Второй закон Ньютона.

$$\vec{F} = \frac{d\vec{P}}{dt}$$
, $\vec{F} = m\vec{a} + \frac{dm}{dt}\vec{v}$, $npu\ m = const \implies \vec{F} = m\vec{a}$

Третий закон Ньютона.

$$\vec{F}_{12} = \vec{F}_{21}$$

Основной закон динамики для неинерциальных систем отчета. $ma=ma_0+F_{uнер \mu}$,где a- ускорение в неинерциальной a_0 - в инерциальной системе отчета.

Силы разной природы.

$$v_{y.m.} = \frac{\sum_{i=1}^{n} P_i}{\sum_{i=1}^{n} m_i}$$

Скорость центра масс

Закон всемирного тяготения.

$$F = G \frac{m_1 m_2}{R^2}$$
 ,
$$g = G \frac{m_{\text{планеты}}}{R_{\text{планеты}}} \ \ \text{- ускорение свободного падения на планете.}$$
 $v = \sqrt{m_{\text{пл}} G} \ \ \text{- первая космическая скорость.}$

Вес тела.

p=mg - вес тела в покое. p=m(g+a) - опора движется с ускорением вверх. p=m(g-a) - опора движется с ускорением вниз. $p=m(g-v^2/r)$ - движение по выпуклой траектории. $p=m(g+v^2/r)$ - движение по вогнутой траектории. Сила трения.

$$\vec{F} = \mu N$$
.

Закон Гука.

 F_{vnp} =-kx, - сила упругости деформированной пружины.

$$\sigma = \frac{F}{s} - \text{механическое напряжение}$$

$$\varepsilon = \Delta l / l_0 - \text{относительное продольное удлинение (сжатие)}$$

$$\varepsilon' = \Delta d / d_0 - \text{относительное поперечное удлинение (сжатие)}$$

$$\frac{\varepsilon'}{\varepsilon} = \mu \text{, где } \mu\text{- коэффициент Пуассона.}$$
 Закон Гука: $\sigma = E\varepsilon$, где E - модуль Юнга.
$$\vec{F} = \frac{Es\Delta l}{l}$$

$$\vec{F} = \frac{ES\Delta l}{l_0}$$

$$W_{_{\mathrm{KUH}}}=V\,rac{Earepsilon^{\,2}}{2}$$
 , кинетическая энергия упругорастянутого

(сжатого) стержня. (V- объем тела)

Динамика и статика вращательного движения.

$$ec{L} = I ec{\omega}$$
 - момент импульса

$$ec{M}=rac{dec{L}}{dt}$$
 ; $ec{M}=Iec{arepsilon}+ec{\omega}rac{dI}{dt}$ - момент силы

L=const - закон сохранения момента импульса.

M=Fl, где l- плечо

 $I=I_0+mh^2$ - теорема Штейнера

1-10 то теорема Интештера						
система	ОСЬ	I				
точка по окружности	ось симметрии	mR^2				
стержень	через середину	$^{1}/_{12} mR^{2}$				
стержень	через конец	$^{1}/_{3} mR^{2}$				
шар	через центр шара	$^2/_5 mR^2$				
сфера	через центр сферы	$^2/_3 mR^2$				
кольцо или тонкостенный цилиндр	ось симметрии	mR^2				
диск сплошной цилиндр	ось симметрии	$^{1}/_{2}mR^{2}$				

Условие равновесия тел $\sum M = 0$

Законы сохранения.

Закон сохранения импульса.

P=mv; - импульс тела.

$$\sum F = 0$$

 $Ft = \Lambda P$

Потенциальная и кинетическая энергия. Мощность.

$$A = \vec{F} \cdot \vec{S}$$
 - работа силы F

$$A = \Delta E$$

$$N = \frac{dA}{dt}$$
 - мощность

$$E_{_{\mathit{K}\!\mathit{U}\!\mathit{H}}} = \frac{mv^2}{2}$$
 - кинетическая энергия

$$E_{_{\mathit{KUH}}} = rac{mv^2}{2} + rac{I\omega^2}{2}$$
 - кинетическая энергия вращательного

движения.

 E_{n} =mgh - nomen μ uальная энергия nodнятого над землей тела.

$$E_{p} = \frac{kx^{2}}{2}$$
 - потенциальная энергия пружины

Закон сохранения энергии.

$$E_{\kappa 1}+E_{p1}=E_{\kappa 2}+E_{p2}$$

Молекулярная физика. Свойства газов и жидкостей.

Обозн.	Изм.	Смысл
p	Па	давление
V	м ³	объем
T	К	температура
N	_	число молекул
m	КГ	масса
μ	кг/Моль	молярная масса
ν	Моль	кол-во вещества
U	Дж	вн. энергия газа

Q	Дж	кол-во теплоты
η	_	КПД

Уравнение состояния.

pV=NkT - уравнение состояния (уравнение Менделеева-Клайперона)

$$V=\frac{m}{\mu}, \quad V=\frac{m}{m_0}, \quad V=\frac{m}{m_0}, \quad V=\frac{m}{m_0}, \quad V=\frac{i}{2}Nkt, \quad U=\frac{i}{2}pV -$$

	<i>,</i> 1	1
Число атомов	i	i+2
		$\gamma = \frac{1}{i}$
1	3	5/3
2	7	9/7
3	13 (12)	15/13 (7/6)

 $p = \frac{1}{3} m_0 n v^2$ - основное уравнение молекулярно- кинетической теории.

$$p=\sum_{i=1}^{N}p_{i}$$
 - закон Дальтона для давления смеси газов. $n=\frac{N}{V}$, $p=nkT$;

$$npu \ N = const \rightarrow \frac{pV}{T} = const$$

T=const	изотерма	PV=const	закон Бойля-Мариотта
p=const	изобара	V/T=const	закон Гей-Люсака
V=const	изохора	p/T=const	закон Шарля

Броуновское движение.

$$\left\langle v^{2}\right\rangle =\frac{3kT}{m_{0}}$$
 среднеквадратичная скорость молекул.

$$v = \sqrt{2kT/m_0}$$
 - наиболее вероятная скорость молекул. $v = \sqrt{\frac{8kT}{\pi m_0}}$ - средняя арифметическая скорость молекул.

$$f(v) = 4\pi \left(\frac{m_0}{2\pi\,kT}\right)^{3/2} v^2 e^{\frac{-m_0 v^2}{2kT}}$$
 - Закон Максвелла для распределения молекул идеального газа по скоростям. Среднее число соударений молекулы за $1c$: $\langle z \rangle = \sqrt{2}\pi\,d^2n\langle v \rangle$

$$\langle l \rangle = \frac{1}{\sqrt{2}\pi\,d^2n}$$
 Средняя длинна свободного пробега молекул
$$\langle r \rangle = \frac{\langle v \rangle t}{n\sqrt{2}\pi\,d^2} \quad \text{- средний путь молекулы за время } t.$$

Распределение в потенциальном поле.

$$p_h=p_0e^{rac{-mgh}{kT}}$$
 - барометрическая формула. $n_h=n_0e^{rac{-mgh}{kT}}$ - распределение Больцмана.

Термодинамика.

$$\Delta U = \Delta Q - A$$
 - первое начало термодинамики.
$$A = p\Delta V - pабота \ \emph{газа}.$$
 $N_2 - \frac{d_2}{k_2} > N_1 - \frac{d_1}{k_1}$ - уравнение адиабаты.

$$C = \frac{dQ}{dT}$$
, удельная теплоемкость $c = C/m$.

Название	Опред.	Уравнение	A	Q	С
Изохора	V=const	$Q=\Delta U$	0	NkΔT/(γ-1)	Nk/(γ-1)
Изобара	p=const	$\Delta U = Q + p\Delta V$	$p\Delta V$	γpΔV/(γ-1)	γNk/(γ-1)
Изотерма	T=const	Q=A	$NkT \ln \frac{V_1}{V_2}$	A	∞
			$p_1V_1\ln\frac{p_1}{p_2}$		

Адиабата	Q=const	ΔU =-A	$\frac{1}{\gamma - 1} p_1 V_1 \left(1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right)$	0	0	
----------	---------	----------------	---	---	---	--

Тепловой баланс.

$$Q_{om\partial} = Q_{noлуч}$$

 $Q=cm\Delta T$ - теплота на нагрев (охлаждение)

Q=rm - Теплота парообразования (конденсации)

 $Q=\lambda m$ - плавление (кристаллизация)

Q=qm - сгорание.

Тепловое расширение.

$$l=l_0(1+\alpha\Delta T)$$
 $V=V_0(1+\beta\Delta T)$

Тепловые машины.

$$\eta = \frac{A}{Q}$$
 - коэффициент полезного действия

$$\eta = \frac{Q_1 - Q_2}{Q_1}, \quad \eta_{\text{max}} = \frac{T_1 - T_2}{T_1}$$

Гидростатика, гидродинамика.

Обозн.	Изм.	Смысл
p	Па	давление
V	м ³	объем
m	КГ	масса
σ	Н/м	коэффициент
		поверхностного натяжения
v	м/с	скорость жидкости
S	м ²	площадь
ρ	кг/м ³	плотность
h	M	высота столба жидкости.

$$p=rac{F_{_{\partial a B \pi}}}{S}$$
, $p=
ho gh$ (давление на глубине h). $ho=rac{m}{V}$ - плотность.

$$\begin{split} F_{\scriptscriptstyle A} &= {\rm g} \rho_{\scriptscriptstyle {\rm жид}} V_{\scriptscriptstyle {\rm meлa}} \quad ({\rm \, cuлa \, Apxимедa} \,). \\ \frac{F_{\scriptscriptstyle 1}}{S_{\scriptscriptstyle 1}} &= \frac{F_{\scriptscriptstyle 2}}{S_{\scriptscriptstyle 2}} \\ \rho h &= {\rm \, const} \quad \text{- \, sakoh \, cooбщающихся \, cocydos.} \\ \rho Sv &= {\rm \, const} \quad \text{- \, ypaвнение \, неразрывности.} \end{split}$$

$$\frac{\rho v^2}{2} + \rho g h + p = const$$
 - уравнение Бернулли ($\frac{\rho v^2}{2}$ -

динамическое, p - статическое, ρg^h - гидростатическое давление.)

 $F_{_{\!\mathit{I\!N}.}} = \sigma l$ $E_{_{\!\mathit{I\!N}.}} = \sigma S$ - сила и энергия поверхностного натяжения.

$$h = \frac{2\sigma}{\rho gr}$$
 - высота подъема жидкости в капилляре.

Электрические и электромагнитные явления.

Электростатика.

$$F_{K} = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{\left|q_{1}\right| \cdot \left|q_{2}\right|}{r^{2}} - \text{закон Кулона.}$$

$$E = \frac{F}{q}, \quad E = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{\left|q\right|}{r^{2}} - \text{напряженность электрического поля}$$

$$\vec{E} = \sum \vec{E}_{i} - \text{принцип суперпозиции полей.}$$

$$\Phi = \vec{E} \cdot \vec{S} - \text{поток через площадку S.}$$

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{\sum q_{\text{внутр}}}{\epsilon_{0}} - \text{теорема Гаусса.}$$

$$\oint_{L} E \cdot dl = 0 - \text{теорема о циркуляции.}$$

$$\phi = rac{W}{q}$$
 , $\phi = -\int \vec{E} \cdot d\vec{r}$ - потенциал.

плоскость	$\varepsilon = \frac{\sigma}{2\varepsilon_0}$	$\varphi = \frac{\sigma}{2\varepsilon_0} x $
сфера	$\varepsilon = \begin{cases} 0 & \text{, при } r < R \\ \frac{\sigma R^2}{\epsilon_0 r^2} & \text{, при } r \ge R \end{cases}$	$ \phi = \begin{cases} -\frac{\sigma R}{\varepsilon_0}, & \text{при } r < R \\ -\frac{\sigma R}{\varepsilon_0 r}, & \text{при } r \ge R \end{cases} $
шар	$\varepsilon = \begin{cases} \frac{\rho r}{3\varepsilon_0} & \text{, при } r < R \\ \frac{\rho R^3}{3r^2\varepsilon_0} & \text{, при } r \ge R \end{cases}$	$\begin{bmatrix} -\frac{\delta R}{\epsilon_0 r}, & \text{при } r \ge R \end{bmatrix}$ $\epsilon = \begin{cases} -\frac{\rho (3R^2 - r^2)}{6\epsilon_0}, & \text{при } r < R \end{cases}$ $-\frac{\rho R^3}{3r\epsilon_0}, & \text{при } r \ge R \end{cases}$
цилиндр (пустой)	$\epsilon = \begin{cases} 0 & \text{, при } r < R \\ \\ \frac{\tau}{2\pi\epsilon_0 r}, \text{при } r \ge R \end{cases}$	

$$A = q \int_{A}^{B} E \cdot dl$$
, $A = q(\varphi_{1} - \varphi_{2})$
 $U = \varphi_{1} - \varphi_{2}$, $U = \frac{A}{q}$, $U = E\Delta d$

 $C = \frac{q}{\varphi}$ - электроемкость уединенного проводника.

$$C=rac{q}{U}$$
 , $C=rac{\epsilon \epsilon_0 S}{d}$, $W=rac{q U}{2}=rac{C U^2}{2}=rac{q^2}{2C}$ плоский конденсатор.

 $C = 4\pi \varepsilon \varepsilon_0 r$ - электроемкость заряженного шара.

$$C=4\pi \epsilon \epsilon_0 \frac{r_1 r_2}{r_2-r_1}$$
 - электроемкость сферического конденсатора.

$$C_{napan} = \sum C_i \qquad \frac{1}{C_{nocned}} = \sum \frac{1}{C_i}$$
 - батарея конденсаторов. $p = qd$ - дипольный момент.

$$P = \frac{\sum p_i}{V}$$
 поляризованность диэлектрика. $P = \frac{\sum p_i}{V}$ годе, ж. диэлектрическая восприи

 $P= x \varepsilon_0 E$ где ж-диэлектрическая восприимчивость.

$$\varepsilon = \frac{E}{E_{\text{вак}}}$$
 $\varepsilon = \frac{E}{E_{\text{вак}}}$ ε - диэлектрическая проницаемость.
$$\oint \varepsilon E ds = \frac{\sum q_{\text{связ}}}{\varepsilon_0}$$
 - теорема Гаусса для диэлектриков.
Электродинамика. Постоянный ток.

Электродинамика. Постоянный ток.

$$I = rac{q}{\Delta t}$$
, $I = qnSv$, $j = rac{I}{S} = qnv$ $I = rac{U}{R}$, $I = rac{\varepsilon}{R+r}$, $j = rac{E}{
ho} = E\gamma$ Закон Ома.

 $R = \rho \frac{\iota}{S}$. $R = R_0(1 + \alpha \Delta T)$ - температурное изменение температуры.

 $\sum I_i = 0$ - правило Кирхгофа для узлов.

 $\sum I_i R_i = \sum \varepsilon_k$ - правило Кирхгофа для контуров.

Параллельное соединение проводников: $I = const, \quad U = \sum U_i$, $R = \sum R_i$

Последовательное соединение: $I=\sum I_i$, U=const, $\frac{1}{R}=\sum \frac{1}{R_i}$ Законы электролиза.

 $m=kq=k\Delta T$ - первый закон Фарадея.

$$k = \frac{\mu}{neN_A}$$
 - второй закон Фарадея.

Электромагнетизм.

$$F_{ ext{ iny nop}} = q ig[ec{v} * ec{B} ig], \;\; F_{ ext{ iny n}} = Bqv \;$$
 - сила Лоренца.

 $F_{\scriptscriptstyle A}=BIl\,$ - сила Ампера, действующая на проводник длиной l.

$$\vec{B} = \frac{\left[\vec{v} * \vec{E}\right]}{c^2}, \quad \vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{q\left[\vec{v} * \vec{r}\right]}{r^3}$$

 $\vec{B} = \frac{\mu_0 I}{2\pi b} (\cos \alpha_1 - \cos \alpha_2) \quad \alpha_2$

индукция поля в точке.

$$\vec{B} = \frac{\mu_0 I}{2R}$$
 - магнитная индукция в центре витка.

$$\vec{B} = \mu_0 I \frac{N}{l}$$
 - индукция внутри соленоида.

$$\vec{B} = \frac{\mu\mu_0}{4\pi} \cdot \frac{2I}{R}$$
 индукция поля проводника на расстоянии R от оси.

$$\oint \vec{B}d\vec{S} = 0 \quad \oint \vec{B}d\vec{l} = \mu_0 \sum I_{\text{внутр}}$$

 $\vec{B} = \mu \mu_0 \vec{H}$ связь между магнитной индукцией и напряженностью магнитного поля.

$$\vec{B} = \sum \vec{B}_i$$
 - принцип суперпозиции магнитных полей.

$$F = \mu \mu_0 \frac{I_1 I_2}{2\pi R}$$
 - сила взаимодействия двух проводников.

$$\Phi = \vec{B}d\vec{S}$$
 магнитный поток.

$$W_{_{M.n.}}=rac{LI^2}{2}$$
 - энергия магнитного поля.

$$L = \frac{\Phi}{I}$$

$$\varepsilon_i = -rac{d\Phi}{dt}$$
 ЭДС индукции в замкнутом контуре.

$$\varepsilon_{is} = -L \frac{dI}{dt}$$
 ЭДС самоиндукции.

Колебания и волны. Оптика. Акустика.

Механические и электромагнитные колебания.

 $x = A\cos(\omega_0 t + \varphi)$ - уравнение гармонических колебаний.

$$_{,n.3}a = -A\omega_0^2\cos(\omega_0 t + \varphi) = -\omega_0^2 x$$

 $E = \frac{1}{2} mA^2 \omega_0^2$ - полная энергия колеблющейся точки.

$$T = \frac{2\pi}{\omega}$$

Система.	Период	Цикл. частота	Уравнение
Математический маятник.	$T = 2\pi \sqrt{\frac{l}{g}}$	$\omega = \sqrt{\frac{g}{l}}$	$\ddot{\alpha} + \frac{g}{l}\alpha = 0$
Пружинный маятник.	$T = 2\pi \sqrt{\frac{m}{g}}$	$\omega = \sqrt{\frac{g}{m}}$	$\ddot{x} + \frac{k}{m}x = 0$
Физический маятник.	$T = 2\pi \sqrt{\frac{I}{mgb}}$	$\omega = \sqrt{\frac{mgb}{I}}$	$\ddot{\alpha} + \frac{mgb}{I}\alpha = 0$

Колебательн	$T = 2\pi\sqrt{LC}$	1	1 2 0
контур.		$\omega = \frac{1}{\sqrt{LC}}$	$q + \frac{1}{LC}q = 0$

Сложение колебаний.

$$A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)$$
, при $\omega_I = \omega_2$ $x = x_1 + x_2 = \hat{x}_{ml}e^{i\omega_1t} + \hat{x}_{m2}e^{i\omega_2t} = \hat{x}_{ml}e^{i\omega_1t}(1 + \frac{\hat{x}_{m2}}{\hat{x}_{ml}}e^{i\Delta\omega t})$ $T = \frac{2\pi}{\Delta\omega}$ - период пульсации.

Затухающие колебания.

$$\omega = i\lambda \pm \omega_0, \quad \omega_0 = \sqrt{\omega^2 - \lambda^2}$$

$$x = \hat{x}_m e^{-\lambda t} e^{\pm \omega_0 t}$$

$$q = q_0 e^{-\lambda t} e^{-t\sqrt{\frac{R^2}{4L} - \frac{1}{LC}}}$$

Переменный ток.

$$I_m = \frac{\varepsilon}{Z}$$

 $Z=Z_R+Z_L+Z_C$ - полный импеданс цепи.

$$Z_R = R, \qquad Z_L = i\Omega L, \qquad Z_C = \frac{1}{i\Omega C}$$

$$Z = \sqrt{R^2 + \left(\Omega L + \frac{1}{LC}\right)^2} \quad \text{- модуль полного импеданса цепи.}$$

$$I_{\text{действ}} = \frac{I_m}{\sqrt{2}}, \qquad U_{\text{действ}} = \frac{U_m}{\sqrt{2}} \quad \text{- действующие значения.}$$

Упругие волны.

Скорость волны в газе:
$$c=\sqrt{\gamma\,rac{kT}{m_0}}$$
 , в твердом теле: $c=\sqrt{rac{E}{
ho}}$ $\lambda=vT$, $v=\lambda \upsilon$

уравнение плоской волны: $\xi(x,t) = A\cos(\omega t - kx + \varphi_0)$

JP wortening into end in some of		
Отражение	$\alpha_{na\partial} = \alpha_{omp}$	$L = \frac{\mathcal{D}}{I}$
Преломление	$\frac{\sin \alpha_{na\partial}}{\sin \alpha_{npe\pi}} = \frac{c_2}{c_1}$	$\Delta \varphi = 0$ $\lim \alpha_{nao} = \arcsin(c_2/c_1)$

Интерференция:
$$\Delta_{\max} = \pm 2m\frac{\lambda}{2}$$
, $\Delta_{\min} = \pm (2m+1)\frac{\lambda}{2}$
 $\Delta x = A_1 \cos(\omega t - kx_1) + A_2 \cos(\omega t - kx)$

фазовая v и групповая и скорости: $v = \frac{\omega}{k}$, $u = \frac{d\omega}{dt}$, $u = v - \lambda \frac{dv}{d\lambda}$

$$\upsilon = \frac{\left(\mathbf{v} \pm \mathbf{v}_{npuem}\right)}{\left(\mathbf{v} \mp \mathbf{v}_{ucmo+}\right)} \upsilon_{0}$$
 - эффект Доплера.

Электромагнитные волны.

$$V = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \cdot \frac{1}{\sqrt{\epsilon \mu}} = \frac{c}{\sqrt{\epsilon \mu}}$$
 - фазовая скорость

$$E\sqrt{\epsilon_0\epsilon}=H\sqrt{\mu_0\mu}$$

Отражение	$\alpha_{nao} = \alpha_{omp}$	$\Delta \phi = \begin{cases} \pi, & \text{при } \rho_1 < \rho_2 \\ 0, & \text{при } \rho_1 > \rho_2 \end{cases}$
Преломление	$\frac{\sin \alpha_{na\partial}}{\sin \alpha_{npen}} = \frac{c_2}{c_1}$	$\Delta \varphi = 0$ $\lim \alpha_{nao} = \arcsin(c_2/c_1)$

Оптика

 $\Delta = n_1 x_1 - n_2 x_2$ - разность хода.

$$V = \frac{c}{n}$$
 - скорость света в среде $\frac{\sin \theta_{na\partial}}{\sin \theta_{omp}} = \frac{n_2}{n_1}$ - закон преломления. $\frac{1}{f} + \frac{1}{d} = \frac{1}{F} = \mathcal{I}$ - формула линзы. $K = \frac{h}{H} = \frac{f}{d}$ - увеличение линзы.

Квантовая физика и теория относительности.

 $E=h_{\mathcal{O}}$ - энергия фотона. h- постоянная Планка

$$hv = A_{\text{вых}} + \frac{mv^2}{2}$$
 - фотоэффект

$$E = m_0 c^2 + \frac{m v^2}{2}$$
 - полная энергия.

$$m = m_0 / \sqrt{1 - \frac{v^2}{c^2}}$$

$$t' = t / \sqrt{1 - \frac{v^2}{c^2}}$$

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$

$$S^2 = c^2 t^2 - l^2 = inv$$

Атомная физика.

$$r_n = \frac{4\pi\epsilon_0 \hbar^2 n^2}{mZe^2} = a_0 \frac{n^2}{Z}$$

$$N = N_0 \cdot 2^{-\frac{t}{T}}$$
 - закон распада