Лабораторная работа №7

Математическое моделирование

Николаев Д. И.

24 марта 2023

Российский университет дружбы народов, Москва, Россия

Прагматика выполнения

Прагматика выполнения

- Ознакомление с простейшей моделью эффективности рекламы;
- Обучение построению графиков распространения рекламы с помощью Julia и OpenModelica;
- Примение полученных знаний на практике в дальнейшем.

Цели

- · Научиться работать с Julia и OpenModelica;
- Построение решения распространения информации о товаре, учитывая вклад платной рекламы; вклад "сарафанного радио"; вклад обеих компонент, зависимых от времени;
- Научиться определять в какой момент времени скорость распространения рекламы будет иметь максимальное значение для случая с наибольшим вкладом "сарафанного радио" (логистическая кривая).

Модель распространения рекламы

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t)),$$

где N- общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени), $\alpha_2(t)n(t)(N-n(t))-$ вклад узнавших о товаре потребителей, которые сами распространяют информацию среди потенциальных покупателей.

Причём при $\alpha_1\gg\alpha_2$ имеем модель Мальтуса (экспоненциальный рост), а при $\alpha_1\ll\alpha_2$ – логистическую кривую.

Задачи

Построить графики зависимости информированности покупателей в зависимости от времени начала рекламной кампании в трех случаях, математические модели которых описываются следующими уравнениями:

1. Модель Мальтуса:

$$\frac{dn}{dt} = (0.93 + 0.00003n(t))(N - n(t))$$

2. Модель с логистической кривой, для которой определить в какой момент времени скорость распространения рекламы будет иметь максимальное значение:

$$\frac{dn}{dt} = (0.00003 + 0.62n(t))(N - n(t))$$

3. Модель с переменными коэффициентами:

HIACTO MILMORAMADODOLINIA

$$\frac{dn}{dt} = (0.88\cos(t) + 0.77\cos(2t)n(t))(N - n(t))$$

Где N=1120 — общее число потенциальных покупателей; $n_0=19$ — начальное

Полученные графики

Изменение числа информированных покупателей в модели Мальтуса

Рис. 1: Модель Мальтуса

Изменение числа информированных покупателей в модели с логистической кривой

Рис. 2: Модель с логистической кривой

Изменение числа информированных покупателей в третьем случае

Рис. 3: Модель с переменными коэффициентами

Момент наибольшей скорости распространения рекламы

Момент наибольшей скорости распространения рекламы

Эффективность рекламы во второй модели будет иметь максимально быстрый рост в точке наибольшего значения производной. Получим, что момент наибыстрейшего роста числа информированных клиентов во второй модели t=0.005751316737428766.

Результаты

Результаты

По результатам работы, я научился составлять системы дифференциальных уравнений распространения рекламы в трех случаях с различным вкладом самой рекламы и "сарафанного радио", определил момент наибольшей скорости распространения рекламы в модели с логистической кривой ($\alpha_1 \ll \alpha_2$) в языках Julia и OpenModelica.