REMARKS/ARGUMENTS

The specification has been conformed to correspond to the preferred format for U.S. patent applications as required in the Office Action, and a Substitute Specification and Comparison Copy are submitted herewith.

Claims 1-7 and 9-28 are presently pending in this application. Claim 8 has been canceled. Claims 24-28 are new claims.

Applicant notes with appreciation the indicated allowability of claims 2, 5, 6, 10-16 and 20.

Claims 2, 7, 12-17, 20 and 22 were rejected on formal grounds for a variety of informalities, including missing antecedents, the use of the word "preferably", and lacking structural relationships in claims 15, 16 and 17. The claims were amended, antecedents were provided where required, the word "preferably" was deleted, and the dependencies of claims 15 and 16 were revised so that the needed structural relationships are as recited in their parent claim 10. The changes were made for purposes of clarification unrelated to patentability concerns.

All claims, including the newly submitted claims, are in full compliance with Section 112.

New independent claim 24 is a combination of claim 1 and allowable claim 5. Claim 24 is therefore in condition for allowance.

New independent claim 25 is a combination of original claims 1 and 6, which was held to be allowable. Claim 25 is therefore in condition for allowance.

New independent claim 26 is a combination of original claims 7 and 10, claim 10 having been held to be directed to allowable subject matter. In addition, claim 26 has been made independent. Thus, claim 26 is in condition for allowance.

New claim 27 is a combination of original claims 7 and 15. Claim 15 was previously held to be directed to allowable subject matter. In addition, claim 27 has been made independent. Accordingly, claim 27 is in condition for allowance.

New claim 28 is a combination of original claims 7 and 20. Claim 20 was previously held to be directed to allowable subject matter. In addition, claim 28 has been made independent. Accordingly, claim 28 is in condition for allowance.

Claim 1 has been amended by combining it with claim 2, although the preferable temperature of 1000° C has been deleted as constituting a range within a range. Accordingly, claim 1 is in condition for allowance.

Dependent claims 5 and 6, which depend from claim 1, were previously held to be allowable. Since claims 3-6 depend from an allowable parent claim, they are also in condition for allowance.

Apparatus claim 7, which previously depended from method claim 1, has been made independent. It now recites that it is an arrangement for producing thermal energy from small-grained oilseeds "in a continuous process" and specifically recites that the arrangement includes "devices in the feed line, the at least one combustion air supply line and the flame exit opening for maintaining a pressure of at least 2 bar in the combustion space".

Claim 7 was rejected for obviousness over West (5,249,952) in view of Guida (4,334,485) because West was considered to disclose the present invention substantially as claimed, with the exception of using small-grained oilseeds as fuel, feeding the seeds in controlled amounts into the combustion space, and placing pressure control devices in the feed line and/or the flame exit opening. Guida was viewed as providing the elements missing from West.

The primary reference, West, is for a <u>continuous combustion process</u> for a variety of fuels (column 1, line 9), and it discloses that following an initial startup the chamber 14 becomes so hot that "continual explosions are resonantly set up within chambers 14, 16 and 18 without the need for initializing ignition in these chambers" (column 4, lines 53-56). Thus, the combustion process of West, like the combustion process of the present invention, become self-sustaining.

In contrast to West and the present invention, Guida discloses an <u>intermittent</u> <u>combustion process</u> employing an "internal combustion chamber 10" (column 1, lines 64-65). Guida has a "flow system 12 for intermittently introducing explosive smoke charges into internal combustion chamber 10 and for scavenging the combustion products therefrom" (column 1, lines 63-66). Guida further discloses:

When the pressure within internal combustion chamber 10 reaches a predetermined level, which is determined by a pressure gauge 56 and a pressure switch 58, an explosion is initiated by ignition coil 38 and occurs within a time period during which the temperature and pressure rise to a maximum (column 3, 15-21)

The heated combustion products are "retained for a period of time during which most of its thermal energy is transferred to the wall of internal combustion chamber 10" (column 2, lines 20-23) and "[c]ontrol 52 times the sequence of explosions in such a way that each explosion occurs after all of the heat from the previous explosion is dissipated into the heat exchange system" (column 3, lines 29-31).

In order to function as an intermittent combustor employing an internal combustion chamber, Guida employs a check valve 30 at one end of the combustion chamber and a vent pipe 32 of a diameter "which is selected to provide a gradual reduction in pressure in the internal combustion chamber" (column 2, lines 18-20) so that the heated combustion products can be retained therein until they have been cooled.

In contrast to Guida, West, as well as the present invention, are directed to a continuing process in which fuel (e.g. grain) flows continually in the combustion chamber, is explosively combusted therein, and is discharged hot, as a flame, through the hot exhaust pipe of West or the "flame exit 9" of the present invention. Although West discloses a check valve to prevent pressure building up in the combustion chamber 14 from flowing upstream against the air/fuel/water mixture, no flow control devices are provided in the hot exhaust gas pipe, in air supply tubes 30a-c and/or waste intake 40.

Neither West nor Guida contain any suggestion to combine the two references by placing flow control devices (of the type required by Guida to let it operate as an internal combustion chamber) in the exhaust, air intake conduits and/or waste conduit of West, for the simple reason that he knows that internal combustion chambers require valving to effect combustion, as well as to retain the hot gases until they have dissipated their heat to the surrounding walls. Such flow control devices, or valving, would make a continuous process impossible to maintain since it would be continuously interrupted. Similarly, one skilled in the art would not be motivated to combine them for the same reasons, namely because flow control devices, e.g. valving as required by internal combustion chambers (as found in internal combustion engines), would prevent the intended operation of a continuing combustion chamber, such as a turbine or rocket engine, which operate without valving.

Accordingly, one of ordinary skill in the art would not combine the teachings of West and Guida. For this reason alone, claim 7 is not obvious over these references.

Moreover, even if the references were combined, they do not suggest an arrangement a for continuous process of combusting small oilseeds and the like in a combustion chamber into which multiple supply lines extend and providing "devices in the feed line, the at least one combustion air supply line and the flame exit opening for maintaining a pressure of at least 2 bar in the combustion space" as recited in claim 7.

Since the two references contain no suggestion to combine them, and one of ordinary skill in the art would not do so for the reasons summarized above, rejecting claim 7 over West in view of Guida is a objection based on a hindsight reconstruction of the prior art based on what the present application teaches, and not what the prior art fairly suggests to one of ordinary skill in the art is inappropriate, and should be withdrawn.

Accordingly, applicant submits that claim 7 is not obvious over West in view of Guida and, therefore, is allowable.

Application No. 10/089,396 Amendment dated October 27, 2003 Reply to Office Action of July 30, 2003

Claims 9-23, all of which depend directly or indirectly from claim 7, are to a large extent independently allowable, as has been acknowledged in the Office Action, and the claims are further allowable because they now depend from an allowable parent claim.

CONCLUSION

In view of the foregoing, applicant submits that all claims 1-7 and 9-28 are in condition for allowance, and a formal notification to that effect at an early date is requested.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 415-576-0200.

Respectfully submitted,

J. Georg Seka Reg. No. 24,491

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor

San Francisco, California 94111-3834

Tel: (415) 576-0200 Fax: (415) 576-0300

JGS:jhw 60068808 v1

SUBSTITUTE SPECIFICATION

METHOD FOR GENERATING THERMAL ENERGY FROM FINE-GRAINED OILSEEDS, PREFERABLY FROM RAPESEED, AND DEVICE FOR CARRYING OUT THE METHOD

Background of the Invention

[0001] The invention relates to a method for producing thermal energy from small-grained oilseeds, preferably from rapeseed. The invention also relates to an arrangement for the implementation of such a method.

[0002] It is already known from prior art that rapeseed oil produced by pressing the seeds can be burned and that the resulting thermal energy can be utilized. However, such a production of rapeseed oil requires a separate operation, which means that such a method is cost-intensive. Furthermore, the hulls of the seeds, which remain after pressing, must be removed separately, for example by incinerating them in special burners.

[0003] An arrangement for producing thermal energy is known from US patent 5,249,952, which shows combustion air supply lines which lead into several combustion chambers arranged in succession. One of these combustion chambers has a feed line for liquid and/or gaseous combustible substances and a feed line for solids, which can be admixed during the combustion process in this combustion chamber. To start the combustion process, it is provided with a sparkplug which can ignite an oil that is being supplied. With this known arrangement, it is not possible to burn the unreduced seeds of oil crops without an additional supply of liquid and/or gaseous fuels.

Summary of the Invention

[0004] It is an object of the present invention to avoid the above-mentioned disadvantages and to create a method and an arrangement for producing thermal energy from small-grained oilseeds, preferably from rapeseed, with which the seeds can be burned without the need of prior processing. To achieve this objective, the invention proposes a method in which the combustion space of a combustion chamber is first preheated, and in which unreduced seeds and combustion

air are supplied in controlled amounts, after which the preheating ends and a pressure of at least 2 bar is maintained in the combustion space, whereby the subsequently supplied oilseeds burn explosively, and the resulting flame exits through a flame exit opening.

[0005] It has been found that after the seeds fed in first have ignited due to the temperature in the preheated combustion space, the seeds fed in subsequently are burning explosively in a chain reaction if the combustion air is delivered in controlled amounts as needed, and if the required pressure is maintained in the combustion space. It is not necessary to process the seeds before they are fed into the combustion space, which means a considerable simplification of the method and a reduction in cost. It is sufficient only to ensure a continuously controlled supply of seeds into the combustion space, preferably individually in succession.

[0006] Preferably, the combustion space of a combustion chamber is preheated to a temperature between 500° C and 1250° C, for example, to a temperature of c. 1000° C. This temperature ensures the ignition of the seeds fed into the combustion space first, and the preheating process can be ended after such ignition.

[0007] An uninterrupted chain reaction during the explosive combustion of the seeds is ensured if a pressure between 2 bar and 13 bar is maintained in the combustion chamber; the maximum values of pressure represent peak values which occur during the explosion of the seeds.

[0008] Preferably, the seeds of the oil crops fed in are forced to perform a spiral movement in at least one section of the combustion space, which prolongs their retention time in the combustion space and thus ensures the complete combustion of all the seeds fed in.

[0009] It is furthermore an advantage if the volume of the combustion space is variable, so that the pressure existing in the combustion space can be controlled as well and can be adapted to the requirements, especially in the starting phase during the preheating process.

[0010] An arrangement for implementing the method according to the invention is characterized substantially by a combustion chamber with a combustion space in which a disconnectible preheating device, such as an oil burner, is provided, leading into which are a feed line for feeding in the oilseeds and at least one combustion air supply line, and which is provided with a flame exit opening, whereby devices for maintaining a pressure in the combustion space are provided. In such an arrangement, the seeds are fed in controlled amounts through the feed line

into the combustion space, where they are explosively burned after initial ignition due to the temperature following preheating, while the required amount of combustion air is present and while the required pressure is maintained, whereby the resulting flame exits from the flame exit opening and delivers its heat energy.

[0011] If the oilseeds are fed in through the feed line and the required combustion air is delivered through the combustion air supply line with positive pressure, a pressure drop can be prevented in the combustion space. However, to ensure that the arrangement according to the invention operates satisfactorily, it is advantageous when, according to a further embodiment of the invention, the required pressure in the combustion space is maintained by means of pressure control devices provided in the feed line for feeding in the seeds and/or in the area of the flame exit opening.

[0012] It is practical when a controllable proportioning device is provided in the feed line for feeding in the oilseeds, which not only adapts the amount of fed-in seeds to the combustion process, but can also be designed as a pressure control device.

[0013] In a preferred embodiment of the arrangement according to the invention, the combustion space consists of an interior tube and an exterior casing which surrounds the interior tube with clearance and communicates with the interior tube. This results in a design which, in spite of its compact size, ensures the required retention time of the oilseeds in the combustion space.

[0014] In such an embodiment, it is an advantage if the feed line for feeding in the seeds leads into the interior tube in which the disconnectible preheating device is arranged, and if the flame exit opening is provided in the exterior casing. In that case, the oilseeds are first fed through the feed line into the interior tube, which was heated by the preheating device to a temperature at which the initial ignition takes place. Subsequently, the preheating device can be disconnected, since the temperature required for igniting the individual seeds is maintained by the combustion process. The oilseeds fed into the interior tube pass through the interior tube into the exterior casing, which communicates with the interior tube, where afterburning occurs until finally the resulting flame exits through the flame exit opening. Due to the fact that the feed line leads into the interior tube and thus penetrates the space defined by the exterior casing where afterburning occurs, the seeds are already heated in the section of the feed line which penetrates the space

before the seeds enter the interior tube, thus promoting the combustion process in the interior tube.

[0015] It has been found advantageous to provide the interior wall of the interior tube with a spiral recess, whereby the feed line preferentially leads tangentially into the interior tube. This design forces the oilseeds fed into the interior tube to perform a spiral movement, thus enlarging the path of the seeds inside the interior tube and prolonging their retention time in the interior tube.

[0016] As already mentioned, it is advantageous if the volume of the combustion space is variable. For that purpose, according to the invention, a wall of the exterior casing, preferably an end wall that extends perpendicular to the axis of the interior tube, can be of adjustable design. By adjusting the wall, the volume of the combustion space is enlarged when the arrangement according to the invention is started, and the pressure control devices in the area of the flame exit opening also are adjusted in such a way that the low pressure required in the combustion space during the starting process is ensured. After initial ignition has occurred, the volume of the combustion space is decreased, thus ensuring the pressure required for the explosive combustion of the oilseeds.

[0017] It is practical to design one wall of the exterior casing as a plate that is movable, preferably by means of an electrical actuator. According to the invention, at least one combustion air supply line leads into the interior tube, preferably tangentially, ensuring that the amount of combustion air required for the combustion of the oilseeds is available there. The tangential delivery of the combustion air promotes the spiral movement of the seeds in the interior tube.

[0018] To ensure complete afterburning in the space enclosed by the exterior casing, another combustion air supply line for delivering secondary air can lead into this space.

[0019] It is practical to provide a controllable blower in at least one combustion air supply line, which controls the amount of combustion air needed for the explosive combustion. This blower can be designed in such a way that it serves as a pressure controller device for maintaining the required pressure in the combustion space.

[0020] To provide pressure control in the area of the flame exit opening, the flame exit opening may, for example, be designed as a Venturi nozzle, whereby it is advantageous to design the

flame exit opening as a multi-stage Venturi nozzle. In that case, an afterburner device can be provided between the individual stages, where the afterburning of the unburned gases can take place. Preferably, however, in the flame exit opening, which is preferably designed as a pipe end, at least one throttle is provided with which the pressure in the combustion space can be controlled by changing the flap position.

[0021] To maintain the pressure in the combustion space, the flame exit opening may also be designed as a labyrinth.

[0022] As already mentioned, considerably high temperatures occur in the combustion space. To prevent damage caused by these temperatures, it is advantageous to construct the combustion chamber with the combustion space, in particular the interior tube and the surrounding exterior casing, from a fire resistant, preferably ceramic, material. However, the combustion space may also be surrounded by a cooling jacket, which prevents overheating.

[0023] The arrangement according to the invention is described by means of examples of embodiments shown in schematic view in the following drawings.

Brief Description of the Drawings

[0024] Fig. 1 shows a section of a first embodiment of the arrangement according to the invention; and

[0025] Fig. 2 shows another embodiment of the arrangement according to the invention.

Description of the Preferred Embodiments

[0026] The arrangement shown in Fig. 1 consists of a combustion chamber 1 with a combustion space 2. Leading into this combustion space 2 is a feed line 3 through which small-grained oilseeds are fed individually in succession from a reservoir 4 into the combustion space 2 through a controllable proportioning device 5, and a combustion air supply line 6 with a controllable blower 7. It must be ensured that after initial ignition has occurred, the pressure does not drop in combustion space 2 either through feed line 3 or through combustion air supply line 6. For that purpose, lines 3 and 6 may be provided with separate devices for maintaining the pressure in combustion space 2. However, it is advantageous to design the controllable proportioning device 5 and the controllable blower 7 in such a way that these devices also ensure that pressure is maintained in combustion space 2.

[0027] Combustion space 2 also contains a disconnectible preheating device 8 in the form of an oil burner.

[0028] When the arrangement according to the invention is started up, combustion space 2 is first of all preheated to a temperature of c. 1000° C by means of the preheating device 8, after which a predetermined amount of seeds is fed to combustion space 2 through feed line 3, and these seeds ignite due to the high temperature in combustion space 2. Subsequently, additional individual seeds, whose number can be controlled by proportioning device 5, are fed in. At the same time, an amount of combustion air required for the complete combustion of the seeds is delivered through combustion air supply line 6 and the controllable blower 7. The unreduced seeds fed in succession are ignited explosively by the already burning seeds, resulting in a chain reaction which ensures the complete combustion without residue, after which the preheating device 8 can be disconnected.

[0029] The resulting flame exits from flame exit opening 9 and can then be utilized for heating purposes. Here, too, it must be ensured that no pressure drop results in the combustion space through this flame exit opening 9. In the embodiment shown as an example, this is accomplished because the flame exit opening is designed as a Venturi nozzle. The drawing shows only a one-stage Venturi nozzle, but in some cases it would be an advantage to provide a multi-stage Venturi nozzle with afterburner devices between the individual stages, which is not only certain to prevent a pressure drop in combustion space 2, but also ensures that the energy inherent in the oilseeds is completely utilized.

[0030] Instead of designing the flame exit opening as a Venturi nozzle, it can also be designed as a labyrinth.

[0031] The overheating of combustion chamber 1 is prevented by surrounding combustion space 2 with a cooling jacket 10.

[0032] In the embodiment of the arrangement according to the invention shown in Fig. 2, combustion space 2 consists of an interior tube 11 and an exterior casing 12 which surrounds the interior tube 11 with clearance and is also designed as a tube that extends coaxially to interior tube 11. A feed line 3, through which the small-grained oilseeds are fed from a storage container (not shown) to interior tube 11, leads tangentially into the interior tube. It is practical if the air that is used as the conveyance medium also forms part of the combustion air.

[0033] Also leading tangentially into interior tube 11 is a combustion air supply line 6 through which the primary air needed for the combustion of the seeds in the interior tube is delivered. The interior wall of interior tube 11 is provided with a spiral recess 13 which forces the fed-in seeds to perform a spiral movement, thus prolonging their retention time in the interior tube.

[0034] One end of the interior tube is closed by a wall 14, in which a pipe end 15 is provided into which a preheating device 8 extends which may, for example, consist of a gas burner. The opposite end of interior tube 11 is open, allowing the interior tube to communicate with space 16 surrounded by exterior casing 12. Leading into this space 16 is pipe end 17 which forms flame exit opening 9 and which is provided with throttles 18. Furthermore, in the area of the open end of interior tube 12, space 16 is connected to another air supply line 19 which delivers secondary air.

[0035] One wall of exterior casing 12 is formed as a movable plate 20. It is moved via a rod 21 by means of an electrical actuator (not shown). By changing the position of plate 20, the volume of space 16 and thus of the combustion chamber can be varied.

[0036] Interior tube 11 and exterior casing 12 as well as plate 20 consist of fire resistant, in particular ceramic, material that is able to withstand temperatures up to 1600° C which occur during the combustion of the seeds.

[0037] When the arrangement according to the invention, shown in Fig. 2, is started up, interior tube 11 is first of all preheated with preheating device 8 to a temperature required for the combustion of the seeds, for example to a temperature of 1000° C. Subsequently, a certain quantity of seeds is fed into the interior tube through feed line 3. The seeds move along spiral recess 13 and are ignited by the hot wall of the interior tube. During this, plate 20 is in a position in which the volume of space 16 is small, and the throttles 18 are open.

[0038] After initial ignition of the fed-in seeds has thus occurred, the preheating device can be disconnected. By changing the position of plate 20, the volume of space 16 is enlarged, and the direction of the throttles 18 is changed to closing position. The seeds successively fed through feed line 3 ignite due to the high temperature that now prevails in interior tube 11, causing a chain reaction, and these seeds burn explosively if the primary air is appropriately supplied through combustion air supply line 11. This prevents the temperature from dropping. The hot gases which occur at the open end of interior tube 11 are reversed and led through space 16

(which is surrounded by exterior casing 12 and in which, thanks to the supply of secondary air through air supply line 19, afterburning takes place) into pipe end 17, whereby the resulting flame exits from the flame exit opening 9. By appropriately controlling throttles 18, the required pressure is maintained in the combustion space. Due to the fact that a section of oilseed feed line 3 and a section of combustion air supply line 6 pass through space 16 in which a high temperature prevails, the seeds as well as the combustion air are preheated before entering interior tube 11, which means that combustion in interior tube 11 is promoted.

60041199 v1

COMPARISON COPY

Deletions appear as Overstrike text Additions appear as Double-Underlined text

Attorney Docket No. 89780

Method for generating thermal energy from fine grained oilse	e ds,
———preferably from rapeseed,	
and a device for carrying out said method	
• 0	Client No. 11317/1/V:

Description

SUBSTITUTE SPECIFICATION

METHOD FOR GENERATING THERMAL ENERGY FROM FINE-GRAINED OILSEEDS, PREFERABLY FROM RAPESEED, AND DEVICE FOR CARRYING OUT THE METHOD

Background of the Invention

<u>[0001]</u> The invention relates to a method for producing thermal energy from small-grained oilseeds, preferably from rapeseed. The invention also relates to an arrangement for the implementation of such a method.

[0002] It is already known from prior art that rapeseed oil produced by pressing the seeds can be burned and that the resulting thermal energy can be utilized. However, such a production of rapeseed oil requires a separate operation, which means that such a method is cost-intensive. Furthermore, the hulls of the seeds, which remain after pressing, must be removed separately, for example, by incinerating them in special burners.

<u>[0003]</u> An arrangement for producing thermal energy is known from US-A-5 249 952; it has patent 5,249,952, which shows combustion air supply lines which lead into several combustion chambers arranged in succession. One of these combustion chambers has a feed line for liquid and/or gaseous combustible substances and a feed line for solids, which can be admixed during the combustion process in this combustion chamber. To start the combustion process, it is provided with a spark plugsparkplug which can ignite an oil that is being supplied. With this known arrangement, it is not possible to burn the unreduced seeds of oil crops without an additional supply of liquid and/or gaseous fuels.

Summary of the Invention

Object [0004] It is an object of the present invention is to avoid the above mentioned disadvantages and to create a method and an arrangement for producing thermal energy from small-grained oilseeds, preferably from rapeseed, with which the seeds can be burned without the need of prior processing. To achieve this objective, the invention proposes a method in which the combustion space of a combustion chamber is first preheated, and in which unreduced seeds and combustion air are supplied in controlled amounts, after which the preheating ends and a pressure of at least 2 bar is maintained in the combustion space, whereby the subsequently supplied seeds of the oil cropsoilseeds burn explosively, and the resulting flame exits through a flame exit opening.

<u>[0005]</u> It has been found that after the seeds fed in first have ignited due to the temperature in the preheated combustion space, the seeds fed in subsequently are burning explosively in a chain reaction if the combustion air is delivered in controlled amounts as needed, and if the required pressure is maintained in the combustion space. It is not necessary to process the seeds before they are fed into the combustion space, which means a considerable simplification of the method and a reduction in cost. It is sufficient only to ensure a continuously controlled supply of seeds into the combustion space, preferably individually in succession.

[0006] Preferably, the combustion space of a combustion chamber is preheated to a temperature between 500@-°C and 1250@-°C, for example, to a temperature of c. 1000@-°C. This temperature ensures the ignition of the seeds fed into the combustion space first, and the preheating process can be ended after such ignition.

[0007] An uninterrupted chain reaction during the explosive combustion of the seeds is ensured if a pressure between 2 bar and 13 bar is maintained in the combustion chamber; the maximum values of pressure represent peak values which occur during the explosion of the seeds.

<u>[10008]</u> Preferably, the seeds of the oil crops fed in are forced to perform a spiral movement in at least one section of the combustion space, which prolongs their retention time in the combustion space and thus ensures the complete combustion of all the seeds fed in.

<u>100091</u> It is furthermore an advantage if the volume of the combustion space is variable, so that the pressure existing in the combustion space can be controlled as well and can be adapted to the requirements, especially in the starting phase during the preheating process.

<u>[0010]</u> An arrangement for implementing the method according to the invention is characterized substantially by a combustion chamber with a combustion space in which a disconnectible preheating device, such as an oil burner, is provided, leading into which are a feed line for feeding in the seeds of oil cropsoilseeds and at least one combustion air supply line, and which is provided with a flame exit opening, whereby devices for maintaining a pressure in the combustion space are provided. In such an arrangement, the seeds are fed in controlled amounts through the feed line into the combustion space, where they are explosively burned after initial ignition due to the temperature following preheating, while the required amount of combustion air is present and while the required pressure is maintained, whereby the resulting flame exits from the flame exit opening and delivers its heat energy.

<u>[0011]</u> If the seeds of oil cropsoilseeds are fed in through the feed line and the required combustion air is delivered through the combustion air supply line with positive pressure, a pressure drop can be prevented in the combustion space. However, to ensure that the arrangement according to the invention operates satisfactorily, it is advantageous when, according to a further embodiment of the invention, the required pressure in the combustion space is maintained by means of pressure control devices provided in the feed line for feeding in the seeds and/or in the area of the flame exit opening.

[0012] It is practical when a controllable proportioning device is provided in the feed line for feeding in the seeds of oil cropsoilseeds, which is not only adapting adapts the amount of fed-in seeds to the combustion process, but can also be designed as a pressure control device.

[0013] In a preferred embodiment of the arrangement according to the invention, the combustion space consists of an interior tube and an exterior casing which surrounds saidthe interior tube with clearance and communicates with saidthe interior tube. This results in a design which, in spite of its compact size, ensures the required retention time of the oilseeds in the combustion space.

[0014] In such an embodiment, it is an advantage if the feed line for feeding in the seeds leads into the interior tube in which the disconnectible preheating device is arranged, and if hethe

flame exit opening is provided in the exterior casing. In that case, the oilseeds are first fed through the feed line into the interior tube, which was heated by the preheating device to a temperature at which the initial ignition takes place. Subsequently, the preheating device can be disconnected, since the temperature required for igniting the individual seeds is maintained by the combustion process. The oilseeds fed into the interior tube pass through the interior tube into the exterior casing, which communicates with saidthe interior tube, where afterburning occurs until finally the resulting flame exits through the flame exit opening. Due to the fact that the feed line leads into the interior tube and thus penetrates the space defined by the exterior casing where afterburning occurs, the seeds are already heated in the section of the feed line which penetrates saidthe space before the seeds are enteringenter the interior tube, thus promoting the combustion process in the interior tube.

[0015] It has been found advantageous to provide the interior wall of the interior tube with a spiral recess, whereby the feed line preferentially leads tangentially into the interior tube. This design forces the oilseeds fed into the interior tube to perform a spiral movement, thus enlarging the path of the seeds inside the interior tube and prolonging their retention time in the interior tube.

<u>[0016]</u> As already mentioned, it is advantageous if the volume of the combustion space is variable. For that purpose, according to the invention, a wall of the exterior casing, preferably an end wall that extends perpendicular to the axis of the interior tube, can be of adjustable design. By adjusting <u>saidthe</u> wall, the volume of the combustion space is enlarged when the arrangement according to the invention is started, and the pressure control devices in the area of the flame exit opening, <u>too</u>, <u>also</u> are adjusted in such a way that the low pressure required in the combustion space during the starting process is ensured. After initial ignition has occurred, the volume of the combustion space is decreased, thus ensuring the pressure required for the explosive combustion of the oilseeds.

[0017] It is practical to design one wall of the exterior casing as a plate that is movable, preferably by means of an electrical actuator. According to the invention, at least one combustion air supply line leads into the interior tube, preferably tangentially, ensuring that the amount of combustion air required for the combustion of the oilseeds is available there. The tangential delivery of the combustion air promotes the spiral movement of the seeds in the interior tube.

[0018] To ensure complete afterburning in the space enclosed by the exterior casing, another combustion air supply line for delivering secondary air can lead into this space.

[0019] It is practical to provide a controllable blower in at least one combustion air supply line, which controls the amount of combustion air needed for the explosive combustion. This blower can be designed in such a way that it serves as a pressure controller device for maintaining the required pressure in the combustion space.

<u>[0020]</u> To provide pressure control in the area of the flame exit opening, saidthe flame exit opening may, for example, be designed as a Venturi nozzle, whereby it is advantageous to design the flame exit opening as a multi-stage Venturi nozzle. In that case, an afterburner device can be provided between the individual stages, where the afterburning of the unburned gases can take place. Preferably, however, in the flame exit opening, which is preferably designed as a pipe end, at least one throttle is provided with which the pressure in the combustion space can be controlled by changing the flap position.

[0021] To maintain the pressure in the combustion space, the flame exit opening may also be designed as a labyrinth.

[0022] As already mentioned, considerably high temperatures occur in the combustion space. To prevent damage caused by these temperatures, it is advantageous to construct the combustion chamber with the combustion space, in particular the interior tube and the surrounding exterior casing, from a fire resistant, preferably ceramic, material. However, the combustion space may also be surrounded by a cooling jacket, which prevents overheating.

[0023] The arrangement according to the invention is described by means of examples of embodiments shown in schematic view in the following drawings, where.

Brief Description of the Drawings

[0024] Fig. 1 shows a section of a first embodiment of the arrangement according to the invention; and

[0025] Fig. 2 shows another embodiment of the arrangement according to the invention.

Description of the Preferred Embodiments

<u>[0026]</u> The arrangement shown in Fig. 1 consists of a combustion chamber 1 with a combustion space 2. Leading into this combustion space 2 is a feed line 3 through which seeds of small-grained oil eropsoilseeds are fed individually in succession from a reservoir 4 into the combustion space 2 through a controllable proportioning device 5, and a combustion air supply line 6 with a controllable blower 7. It must be ensured that after initial ignition has occurred, the pressure does not drop in combustion space 2 either through feed line 3 or through combustion air supply line 6. For that purpose, lines 3 and 6 may be provided with separate devices for maintaining the pressure in combustion space 2. However, it is advantageous to design the controllable proportioning device 5 and the controllable blower 7 in such a way that these devices also ensure that pressure is maintained in combustion space 2.

[0027] Combustion space 2 also contains a disconnectible preheating device 8 in the form of an oil burner.

[10028] When the arrangement according to the invention is started up, combustion space 2 is first of all preheated to a temperature of c. 1000@ C by means of the preheating device 8, after which a predetermined amount of seeds is fed to combustion space 2 through feed line 3, and these seeds ignite due to the high temperature in combustion space 2. Subsequently, additional individual seeds, whose number can be controlled by proportioning device 5, are fed in. At the same time, an amount of combustion air required for the complete combustion of the seeds is delivered through combustion air supply line 6 and the controllable blower 7. The unreduced seeds fed in succession are ignited explosively by the already burning seeds, resulting in a chain reaction which ensures the complete combustion without residue, after which the preheating device 8 can be disconnected.

[0029] The resulting flame exits from flame exit opening 9 and can then be utilized for heating purposes. Here, too, it must be ensured that no pressure drop results in the combustion space through this flame exit opening 9. In the embodiment shown as an example, this is accomplished because the flame exit opening is designed as a Venturi nozzle. The drawing shows only a one-stage Venturi nozzle, but in some cases it would be an advantage to provide a multi-stage Venturi nozzle with afterburner devices between the individual stages, which is not only certain

to prevent a pressure drop in combustion space 2, but also ensures that the energy inherent in the oilseeds is completely utilized.

[0030] Instead of designing the flame exit opening as a Venturi nozzle, it can also be designed as a labyrinth.

[0031] The overheating of combustion chamber 1 is prevented by surrounding combustion space 2 with a cooling jacket 10.

[0032] In the embodiment of the arrangement according to the invention shown in Fig. 2, combustion space 2 consists of an interior tube 11 and an exterior casing 12 which surrounds saidthe interior tube 11 with clearance and is also designed as a tube that extends coaxially to interior tube 11. A feed line 3, through which the small-grained oilseeds are fed from a storage container (not shown) to interior tube 11, leads tangentially into saidthe interior tube. It is practical if the air that is used as the conveyance medium also forms part of the combustion air.

[0033] Also leading tangentially into interior tube 11 is a combustion air supply line 6 through which the primary air needed for the combustion of the seeds in the interior tube is delivered. The interior wall of interior tube 11 is provided with a spiral recess 13 which forces the fed-in seeds to perform a spiral movement, thus prolonging their retention time in the interior tube.

[0034] One end of the interior tube is closed by a wall 14, in which a pipe end 15 is provided into which a preheating device 8 extends which may, for example, consist of a gas burner. The opposite end of interior tube 11 is open, allowing the interior tube to communicate with space 16 surrounded by exterior casing 12. Leading into this space 16 is pipe end 17 which forms flame exit opening 9 and which is provided with throttles 18. Furthermore, in the area of the open end of interior tube 12, space 16 is connected to another air supply line 19 which delivers secondary air.

[0035] One wall of exterior casing 12 is formed as a movable plate 20. It is moved via a rod 21 by means of an electrical actuator (not shown). By changing the position of plate 20, the volume of space 16 and thus of the combustion chamber can be varied.

[0036] Interior tube 11 and exterior casing 12 as well as plate 20 consist of fire resistant, in particular ceramic, material that is able to withstand temperatures up to 1600@_C which occur during the combustion of the seeds.

[0037] When the arrangement according to the invention, shown in Fig. 2, is started up, interior tube 11 is first of all preheated with preheating device 8 to a temperature required for the combustion of the seeds, for example to a temperature of 1000@ C. Subsequently, a certain quantity of seeds is fed into the interior tube through feed line 3. The seeds move along spiral recess 13 and are ignited by the hot wall of the interior tube. During this, plate 20 is in a position in which the volume of space 16 is small, and the throttles 18 are open.

100381 After initial ignition of the fed in seeds has thus occurred, the preheating device can be disconnected. By changing the position of plate 20, the volume of space 16 is enlarged, and the direction of the throttles 18 is changed to closing position. The seeds successively fed through feed line 3 ignite due to the high temperature that now prevails in interior tube 11, causing a chain reaction, and these seeds burn explosively if the primary air is appropriately supplied through combustion air supply line 11. This prevents the temperature from dropping. The hot gases which occur at the open end of interior tube 11 are reversed and led through space 16 (which is surrounded by exterior casing 12 and in which, thanks to the supply of secondary air through air supply line 19, afterburning takes place) into pipe end 17, whereby the resulting flame exits from the flame exit opening 9. By appropriately controlling throttles 19,18, the required pressure is maintained in the combustion space. Due to the fact that a section of oilseed feed line 3 and a section of combustion air supply line 6 pass through space 16 in which a high temperature prevails, the seeds as well as the combustion air are preheated before entering interior tube 11, which means that combustion in interior tube 11 is promoted.

60070029 v1