STAT333 Applied Probability

Austin Xia

August 10, 2020

Contents

1	Course Information		3
	1.1	Contact	
	1.2	Grading Scheme	•
2			9
	2.1	Review of Elementary Probablity	3
	2.2	Conditional Distributions and Conditional Expectation	4
	2.3	Computing Probability by conditioning	4
3	Disc	crete-time Markov Chain	4
	3.1	transiant and recurrance	Ę
	3.2	Galton Waston Branching Process	7
4	The	Exponential Distribution and the Poisson Process	7
	4.1	poisson Process	8

List of Figures

List of Tables

1 Course Information

1.1 Contact

Instructor: Steve Drekic Email: sdrekic@uwaterloo.ca

1.2 Grading Scheme

4 assignments 100%...

 $\mathbf{2}$

2.1 Review of Elementary Probablity

Definition 2.1.1 (Probability Function)

For each event A of a sample space S, P(A) is defined as the probability of event A, satisfying 3 conditions:

- $0 \le P(A) \le 1$
- p(S)=1
- $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ if the sequence of events A_i are mutually exclusive

Definition 2.1.2 (independent)

X and Y are independent rvs if f(x,y) = f(x)f(y)

Definition 2.1.3 (multivariate mgf)

 $\phi_{x,y}(a,b) = E(e^{ax+by})$

Theorem 2.1.1

if $X_1, X_2...X_n$ are independent rvs where $\phi_{X_i}(t)$ is the mgf of $X_i, i = 1, 2, ...n$. then $T = \sum_{i=1}^n X_i$ has mgf $\phi_X(t) = \prod_{i=1}^n \phi_{X_i}(t)$

Theorem 2.1.2 (Strong Law of Large Numbers)

If $X_1,...,X_n$ is an iid sequence of rvs, each having mean $\mu < \infty$, then with probability 1, as $n \to \infty$

$$\bar{X}_n = \frac{X_1 + X_2 \dots + X_n}{n} \to \mu$$

2.2 Conditional Distributions and Conditional Expectation

Theorem 2.2.1 (Law of total Expectation)

For rvs X and Y,

$$E[g(X)] = E[E[g(x)|Y]]$$

Theorem 2.2.2

For rvs X and Y,

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

2.3 Computing Probability by conditioning

recall

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]p_Y(y)$$

similarly

$$P(A) = \sum_{y} P(A|Y = y)p_Y(y)$$

P(X < Y) is good example of application

3 Discrete-time Markov Chain

Definition 3.0.1 (Stochastic Process)

 $\{X(t), t \in T\}$ is called a stochastic process if X(t) is a rv for any $t \in T$

Definition 3.0.2 (DTMC)

A stochastic process $\{X_n, n \in N\}$ is said to be a discrete-time Markov chain (DTMC) if:

- X_n is a discrete rv for all $n \in N$
- the Markov property hold:

$$P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}...X_0 = x_0) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$

Definition 3.0.3 (transition probability Matrix)

the transition probability from state i at time n to state j at time n+1 is:

$$P_{nij} = P(X_{n+1} = j | X_n = i), \ n \in \mathbb{N}$$

the transition probability matrix is all number of $P_{i,j}^{(n)}$ we can show by linear algebra that:

$$P^{(n)} = P^n$$

We will only be dealing with stationary or homogeneous situation we at every step we have the same P

Definition 3.0.4 (α_n)

The marginal pmf of X_n is $\alpha_n = (\alpha_{n0}...\alpha_{nk})$ where $\alpha_{nk} = P(X_n = k) \forall k \in \mathbb{N}$

3.1 transiant and recurrence

Definition 3.1.1

The probability that starting from state i, FIRST visit to j occurs at time n is

$$f_{i,j}^{(n)} = P(X_n = j, X_{X-1} \neq j...x_1 \neq j | X_0 = i)$$

note $f_{i,j}^{(1)} = P_{i,j}$

Definition 3.1.2 (transiant)

State i is transient if $f_{i,i} < 1$ otherwise, state i is recurrent

Definition 3.1.3 (M_i)

 M_i is a rv which counts the number of times the DTMC visits state i

$$P(M_i = k | X_0 = i) = f_{i,i}^k (1 - f_{i,i})$$

visit k times, then never visit it again. We also notice this is geometric Distribution so

$$E[M_i|X_0=i] = E[Y-1] = \frac{1}{1-f_{i,i}} - 1$$

so if $f_{i,i} = 1$, $E[M_i|X_0 = i] = \infty$, the state is recurrent we can derive that

$$E[M_i|X_0 = i] = \sum_{i,i} P_{i,i}^{(n)}$$

Theorem 3.1.1

if $i \leftrightarrow j$ and state i is recurrent, than state j is recurrent

Theorem 3.1.2

if $i \leftrightarrow j$ and state i is recurrent, than $f_{i,j} = 1$

Theorem 3.1.3

inconclusion, if sates are within the same communication class, then

- the states communicate with each other
- these states all have the same period
- these sates are either recurrent or all transiant

Theorem 3.1.4

A finite state DTMC has at least one recurrent state

Theorem 3.1.5

for any i and transient state j of DTMC,

$$lim_{n\to\infty}P_{i,j}^{(n)} = 0$$

Definition 3.1.4

 $N_i = min\{n \in \mathbb{Z} : X_n = i\}$ mean recurrent time

$$m_i = E[N_i|X_0 = i] = \sum n f_{i,i}^{(n)}$$

Definition 3.1.5

Suppose i is recurrent. i is positively recurrent iff $m_i < \infty$, i is null recurrent iff $m_i = \infty$

Theorem 3.1.6 (Positive and null recurrence)

- if $i \leftrightarrow j$ and i is positively recurrent then j is also
- in finite state DTMC, there can never be null recurrent states

Definition 3.1.6 (stationary distribution)

if $\sum_{i=0}^{\infty} p_i = 1$ and $p_j = \sum_{i=0}^{\infty} p_i P_{i,j}$

or in matrix form $\sum_{i=0}^{n} P_i = \sum_{i=0}^{n} P_i = i$

$$p(1,1,1...) = 1 p = pP$$

Theorem 3.1.7

if irreducible DTMC is positive reccurent iff stationary distribution exisist Stationary distributions are not nessarily unique

Theorem 3.1.8 (Basic Limit thm)

For an irredicible, recurrent, aperioadic DTMC, $\lim_{n\to\infty}$ exisist and independent of state i satisfying

$$\lim_{n\to\infty} P_{i,j}^{(n)} = \pi_j = \frac{1}{m_i} \forall i, j \in N$$

If it is also positive recurrent, then π_i is the unique positive solution to

$$\pi_j = \sum \pi_i P_{i,j} \sum \pi_j = 1$$

3.2 Galton Waston Branching Process

 $Z_i^{(j)}$ be the number of offspringt produced from individual i in jth generation

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i^{n-1}$$

since X_n is a random sum, we get

$$E[X_n] = \mu E[X_{n-1}]$$

$$\pi_0 = \sum_{j=0}^{\infty} \pi_0^j \alpha_j$$

this is summing x_0 has 0 to infty offsprings

4 The Exponential Distribution and the Poisson Process

$$Y = min\{X_1, ...X_n\} \vdash EXP(\sum_{i=1}^{n} \lambda_i)$$

$$P(X_1 < X_2 ... < X_n) = \prod_{i=1}^{n-1} P(X_i = min\{X_i, X_{i+1} ...\})$$

Theorem 4.0.1

A rv X is memoryless iff

$$P(x > y + z | X > y) = P(X > z) \forall y, z > 0$$

Theorem 4.0.2

A rv X is memoryless iff

$$P(x > y + z) = P(X > y) * P(X > z) \forall y, z \ge 0$$

Erlang Distribution:

$$\phi_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^n$$

which is product of n mgf of $exp(\lambda)$

4.1 poisson Process

Definition 4.1.1 (counting process)

A counting process is a stochastic process in which N(t) represents number of event by time t

Definition 4.1.2 (independent increments)

A counting process has independent increments if $N(t_1) - N(S_1)$ is independent of $N(t_2) - N(s_2)$ whenever the intervels do not overlap

Definition 4.1.3 (stationary increments)

A counting process has independent increments if N(s+t) - N(s) dependes only on t

Definition 4.1.4 (o(h))

A function y=f(x) is said to be "o(h)" (of order h) if

$$\lim_{h \to 0} \frac{f(h)}{h} = 0$$

Definition 4.1.5 (Poisson process)

a counting process is a Poisson process at rate λ if

- $\bullet\,$ the process has independent and stationary increments
- $P(N(h) = 1) = \lambda h + o(h)$
- $P(N(h) \ge 2) = o(h)$

Theorem 4.1.1

if $\{N(t), t \geq 0\}$ is a Poisson process at rate λ , $N(t) \sim POI(\lambda t)$

$$\neg \exists x A(x) \vdash \forall x \neg A(x)$$

Theorem 4.1.2

if $\{N(t), t \geq 0\}$ is a Poisson process, then $\{T_i\}$ is a suquence of iid $EXP(\lambda)$