Deep Learning for stock movement prediction

THESIS

Submitted in partial fulfillment of the requirements of $BITS\ F421T,\ Thesis$

by

Kevin Abraham 2012B5A7530G

Under the supervision of

Viral M Parmar Research Lead, Absentia

Acknowledgements

I thank Mr. Viral M Parmar, my guide and Mr. Tirthraj Dash, my co-guide throughout this thesis. They inspired me to take up this project and have supported me with constant motivation and guidance. They have spent a substantial amount of time in discussing various topics and their implementations with me. I would also like to express my gratitude to all the contributors who published papers and released it under open source licenses. I thank Absentia VR for providing the resources. I thank Almighty God for giving me confidence and courage throughout the project

Thesis Title: Deep Learning for stock movement prediction

Supervisor : Mr. Viral M Parmar

Semester : II Year : 2017

Name : Kevin Abraham ID : 2012B5A7530G

Abstract

Stock market moment relies on the previous stock moments, current news, futures and options closing, foreign investments and history. It is quite visible that there is a historical pattern in the stock movement which repeats periodically. And Also based on the news sentiments the stock value fluctuates. The thesis is an attempt to predict the stock value movement using deep learning technique. Historical data is fed into a convolutional auto encoder along with the news sentiments to predict the stock chart with a 15 minute resolution

CERTIFICATE

This is to certify that the Thesis entitled, Deep Learning for stock movement prediction is submitted by Kevin Abraham ID No 2012B5A7530G in partial fulfillment of the requirements of BITS F421T Thesis embodies the work done by him under my supervision.

28/11/2016 Viral M Parmar

Research Lead, Absentia VR

Contents

Acknow	wledgements	i
List of	Figures	v
Abbrev	viations	vi
Introdu	uction	vii
Neural	Networks and Deep Learning	x
0.1	Auto encoders	xii
0.2	Convolutional Neural Networks	xiv
0.3	Deep Learning Applications	XV
0.4	Competitions	xv
Stock I	Market Prediction	xvii
0.5	Nifty 50 stocks	xvi
0.6	Foreign Facttors	xvi
0.7	The Network Architecture	xvi
0.8	Data and preprocessing	xix
0.9	Training	xx
0.10	Furture works	
Conclu	sion	xxi
Appen	dix	xxii
Data S	craping and processing code	xxiv
.1	Data Collection	xxi
.2	Data Formatting	xxi
Bibliog	graphy	xxv
Bibliog	XXV	

List of Figures

1	autoencoder architecture
2	CNN architecture
3	CAEN Keras snippet
4	acutal
5	predicted
6	List of NSE stocks xxii

Abbreviations

CAEN Convolutional Auto Encoder Network

CNN Convolutional Neural Network

ANN Artificial Neural Network

 \mathbf{NSE} National Stock Exchange

DL Deep Learning

TF Tensor Flow

Introduction

After the invention of computers man has been trying for decades to make the computers intelligent as possible. It started from the logic in computer science. Many research came in the way which takes care of common sense logic also. The advancement of networks, increase in the computational power, Advances in research has boosted the AI research. The main reason behind this boost is vast availability of data or the development of Big Data and data analytics. If you are wondering what data has to do with AI, then you are reading the right thesis This this aims at explaining the most interesting field of present age Deep Learning in laymans point of view. Once data became enormous the computer science geeks started to think of a way to extract information out of the data. Yes you read it right, data and information are not the same. In simple terms, information is the useful outputs we get when the input (data) is processed and churned properly. For example an excel sheet containing the the atmospheric temperature of the past 3 months is data. When a weather expert analyse the data[1–9] to see that past three months were scorching summer is information. then he may analyse the same temperature data for the past five years and say oh, don't worry the summer is going to be less intense next year. The data says so . Here he made a prediction. Yes he just took the input data of daily temperatures, through his input receptive units also known as eyes, reshaped and reformatted his data by sending though eyes and making it fall on the cornea walls. Then comes the neutrons who receive all these data. This is followed by an exhaustive processing by the best super computer in the world the brain. Not on the best but also the processor. You might have understood the reason I am stressing on the skills of brain. Of course, the Artificial neural networks [1, 2] and deep learning is based on the inspiration form the biological models of out brain. We have not reached the full potential of the brain. Because there is no complete model that explains the functionality of brain.

This thesis is intended for beginners who has no idea about deep learning or geeks who are searching for the right information and path to master deep learning. The fist three chapters will help such people to understand deep learning and explore it further. The main subject of the thesis is covered in the final chapter which describes a neural network architecture for stock prediction. The inspiration, intuition, model and the code snippets are given there.

The first chapter explains the working of neural networks, different neural network architectures, learning algorithms and the draw backs of shallow neural networks. Also an introduction to deep learning is provided in the first chapter. Its worthy to remind the reader that deep learning and neural networks are not two separate entities. More details will be given in the chapter.

When the giants like Google, Nvidia, Microsoft working on Deep Learning and Neural networks decided to join their hands and started an initiative to involve the computer scientist and geeks around the world to further boost the AI research, the openSource tools and libraries like Tensor flow was born. To name a few others Theano, Keras, Cuda, Torch ,openAI, openCV and so on. These names have different functionalities and uses, which will be explained in the second chapter. The second chapter covers best softwares libraries and tools for deep learning. A brief comparison is also given in the chapter.

The Most interesting of all from to know is whats the buzz about? Its sound very cool, but does it have an application? If you are very keen and excited to know the applications and use of Deep Learning you can jump to chapter three. Almost all applications which is available to the public is given in that chapter. Details of some open and developing projects are also given there.

Out of all the applications, one intriguing application is stock market [3, 4] price predictions. If you are familiar to the field you might be already thinking whats new about this, its already there. Yes its already there. But the same application can be implemented in different ways. The thesis target to predict daily graphs of stock market from previous data. I would have been riding a Ferrari If this model predicted the graph very accurately. Unfortunately I still depend on Uber. But there is a vast scope of improvement for this project including training with more data, integrating with existing systems etc. To further develop this project a brief descriptions of existing projects are

given in this chapter. And suggestions for integrating various projects is also suggested in this chapter.

Finally comes the conclusion and the results. The project is still ongoing. The training requires enormous time even though a GTX 1050TI machine[5, 6] is used for training. So the results given here may not represent the actual results being achieved due to time constraints.

Neural Networks and Deep Learning

Whats the first thing a baby does when he/she is born? They cry as loud as possible. How is that possible? How does the baby knows she has to cry to survive? An easy answer could be, its hardcoded in the genes. Ok then comes the next questions how does the baby learns to speak, crawl or walk? No one force her to do such things isn't it? All she has is the five senses (maybe more). From now onwards I will mention these senses as input/output units.

Eye is one fundamental input unit to the brain which receives the information such as visuals. It is difficult to define visuals. Visuals are related to seeing or sight [1 Dictionary]. It could be colours, pictures, film, objects etc. Lets go back to the baby example. An eight month old baby sees her mother and calls her Ammaor ma and so on. How is this possible. Its nothing but Muti modal learning. She sees her mother and her brain recognise it to be someone familiar. As she grows to learn to process voices also, whenever she is next to her mother, someone would tell her her is your mother or Amma, she recognise the word. Now comes the interesting feature, the baby relates the word Amma to the object she recognised through visuals. When the baby learns to speak (How does she learns to speak is a different question which will be covered in the following paragraph) baby starts calling her mother Amma. Wow from a set of inputs the visuals and the auditory signals and even more she recognise her mother. How fascinating our brain is. How does the brain does this? You will get a better idea if you study the thesis. But I have to warn you that this is not a complete model to explain the functionality of brain.

I have just mentioned above how a baby learns to call her mother Amma. Believe me, an object identification system which simply real world objects developed by Deep Learning experts is put into use on a large scale. And its required lot of research for its development. Let me complete the human analogy by giving a few more examples. Have you ever got any training for sports? (If no is your answer just think of something that you have learned after repeated trials). Lets take the case of a future cricketer who is under the training of a good coach. I have highlighted the word good coach and you will understand the reason in a while. The cricket aspirant goes to the coach and starts the training. The coach is teaching him the famous paddle sweep invented by our own Master blaster. There are three factors that define a good shot, position and pose , trajectory of the bat and action, finally the timing. The coach shows the aspirant the position, pose, trajectory and action. The fist time he tried he made a mistake in all the four. So coach tells him each mistake one by one. When he tried again he mastered the position and pose but failed to follow the trajectory and action. So the coach stops him and appreciate for pose, position and gives a negative remark for his mistakes. So after replacing the same process again and again the aspirant masters all of it perfectly. If it was a bad coach he wouldn't have neither appreciated him for his correct learning neither would have pointed out and rectified his mistakes. So a good coach is one who gives positive score for right actions and give negative score for wrong actions, rectify the mistakes. If you are wondering what is the place of such an example in this thesis, then you are thinking it right. Because, the neural network learns easily if its penalised/rewarded by the right amount for wrong/right actions.

With one more example to show the importance of the type of data, I will wind up the human analogies. Once I visited a program called dark room. The aim of that program was to make you understand the importance of the senses other that eyes(vision). So in the dark room its complete darkness. You cannot see anything at all. Inside the dark room I was given many task. One was to play cricket in the dark, other was to identify objects by touching it, another was to identify spices by smelling it. Last but not the least, I was taken to a dark restaurant where I have to pay by cash (in the darkness) and taste a food. This program helped me realise our brain doesn't just learn by visuals. I could predict the spice by just concentrating on its smell. I never did that before. I could identify by seeing it, but by its smell? But the more fascinating task, which made me wonderstruck about our skills is the following. As I had mentioned earlier, I had to

pay by cash for the food in the darkness. I had to pay a sum of rupees thirty. So in the darkness I pick up my wallet and search for notes. To my surprise, I identified the notes with its texture and size. I have never done this before, still I could. The relevance of this paragraph will be more clear when you read the fourth chapter (In future works session). This process of learning using multiple modes of input is called multi-modal learning.

The brain is nothing but a large interconnected network of neutrons, memory cells. Lets not go deep into the brain models. In this thesis all I would like to mentions is that the deep learning and neural network is a pure inspiration from the way our brain works. The more we learn about the brain the better we get at the field of Artificial Intelligence. So if you are a biology student thinking about some research in the field of brain working, don't think again got for it. Who knows, you might become the most wanted in the field of deep learning. Here ends the analogy to the human brain and in the following sessions, a brief introduction to artificial networks, its working, learning algorithms and the details of different neural networks architectures that was used for the thesis will be discussed.

Neural network architecture, can be broadly classified into two categories, the feed forward neural network and the recurrent neural network. In the feed forward neural network, there is a an input layer, hidden layer and output layer. If there are multiple hidden layers then it is a deep feed forward network. In the feed forward network the input units are fully connected to the hidden layers. i.e. each input neutron is connected to all the hidden units. But there are no connections between the input units. Similarly each hidden neurone is connected to either all of the next layer hidden neurone or all of the output unit. And there are no interconnection within a layer. They compute a series of transformation to determine the hidden patter of the data.

The difference between a feed forward neural network and recurrent neural network is that there are directed cyclic connection within the hidden layers. This makes the dynamics of recurrent neural networks more complex and make it difficult to train, even though this is more biologically realistic. They are widely used for time series prediction and word predictions.

0.1 Auto encoders

In this session I will try to explain the working and mechanics of auto encoders [7] without using math or physics. If you are familiar with machine learning then one of the biggest headache for a data scientist is labelled data. The availability of labelled data makes supervised learning a big challenge. There are multiple solutions including clustering for unsupervised learning. When it comes to deep learning and neural networks, auto encoders is the solution. If you have ever attended a drawing class, you would easily understand how auto encoders work. An armsture drawing enthusiast goes to a drawing class. After teaching the basics of drawing, the teaching master gives the students a set of assignment. The assignment is nothing else but, he gave them simple pencil drawing and asked them to replicate it. The enthusiast gets excited and start doing the work right away. He starts with simplest of all, a sunset scene. He tries to replicate it exactly. In his first attempt the edges were not properly dawn as in the original. So he rectify them. Then he correct the points and corners. Then the shades. After multiple trials and correction he replicates it to a good level of satisfaction. But he being so excited about this act, he does the same for all the assignments that was given to him. While the other students being lazy either couldn't complete all the assignment or did not match it exactly. The very next day the enthusiast becomes the star of the drawing class because he became an expert in replication images that was similar to the assignment. Now

FIGURE 1: autoencoder architecture.

lets assume that the enthusiast is a neural network. More specifically the auto encoder. We feed the network wit the assignments (or so called the training data), then all the network does is try to replicate it. The architecture of the network is shown in the figure below.

The date is fed into the input neutrons (it could be vector representation of words, images, or any preprocessed data). All the neurones in the input layer is connected to the hidden layer (fully connected). This process is continued. If you closely observe you will understand that the number of neurones is decreasing till the middle layer. After the middle layer the layers followed is just a replication of the layers before the middle layer. (with the weights transposed). Basically the hidden layer learn a stronger representation of the data (important features of data). The the layers following the middle layer tries to create the data taking the middle layer as input. More the output layer resembles the input data, we can say the network has learned some good features. The error between the output layer and the input layer is propagated backwards through the network to Make changes in the weight.

One important challenge in auto encoder learning is overfitting[8]. The network might just learn to copy the input without learning anything. (A common mistake among humans also right). In this case the network produce excellent results with previously seen data but fails when it comes to new and variant inputs. To avoid this case many methods are tried out like adding noise to input and purposefully setting some neurone activation to zero (dropouts). With these techniques in hand the neural network will learn a good representation of the data. Thus the auto encoder can be used for dimensionality reduction and feature extractions. The features will be represented by the middle hidden layer.

0.2 Convolutional Neural Networks

Convolutional Neural Networks has vast applications in the field of object recognition, image classification, sentiment analysis etc. CNN[9] is a feed forward network but it is not a fully connected network. The structure of the network is given below in the diagram. With an analogy I will explain how to works. I believe Sherlock Holmes would be the best person to explain this situation. Sherlock is trying to crack a very mysterious case. Something mysterious has happened in an apartment. No one knows what exactly happened. But everyone knows that the room is mysterious. So Sherlock gets inside the room and turns on the main light, he looks around and finds nothing. Just an empty room. Then something suddenly strikes Mr. Holmes. Lets take a closer look. He gets two torch lights one normal and one UV light torch. Then he scans the room walls from

corner to corner. Sherlock analyses each patch of the light that came into his view. He takes the normal torch start from one corner analyse the visible round patch, then shift the torch towards the right. He analyse the area where the light is making patch. When he shifted the patch the fist patch and second patch could be overlapping. He stores these patch wise information in his mind palace and continues the process. He repeats the process with a UV light. Now he has the information provided by each patch of light which he stored in his mind palace. Thats it these are our convolutional neurones. Further he analyse the convolutional neurones in a similar way till he gets a good result. The below given diagram describes the entire process. This patch wise relationship will help to learn edges and corners. And it also helpful in making the network translational and rotational invariant.

FIGURE 2: CNN architecture.

In this thesis we have used a convolutional auto encoder. We will have three convolutional layers followed by three de convolutional layers.

0.3 Deep Learning Applications

This session of the thesis is aimed at geeks who are interested in implementing a deep learning system. Here an explanation of the existing deep learning applications and its further possibilities are given. Most of the cutting edge technologies in the field of deep learning evolved from many competitions. A brief discussion of such competitions is also given in this session.

Colorisation of black and white images

This sees to be a simple application but intact this applications uses deep convolutional neural networks and supervised layers. The system is trained with converted image pairs. The process involves identifying the objects, background, predicting time of the day, lighting conditions, and mapping the subjects to its corresponding colour. You can refer to deep colorisation for more information.

Brain Cancer Detection

University of Michigan is advancing in the field of cancer detection using neural networks. They make use of scan images and use it to determine anomalies. Different algorithms were used for the purpose of anomaly detection. Mainly the cell size and shape is taken into account. Also growth rate of cells (where time series data is available) is a dominant factor for the prediction purpose.

Adding sound to Silent movies

This interesting application involves reading the lips and predicting the words using lip Movement. The system will be trained on movies with sound. A similar applications is subtitle synthesis

There are many more applications such and video description generation, story generation, music generation, weather predictions, caption synthesis, driving automation, and so on.

0.4 Competitions

Imagenet Image net gave rise to the evolution of convolutional neural networks. It aims at image classification, image recognition, object recognition in images etc.

GVGAI competition

This is a marvellous completion hosted by Google Deep mind where the participants are required to create a general game playing agent. The agent who is able to play maximum different types of game will succeed in the competition. This comes as a direct application of Deep Q networks which is used for Reinforcement learning. This completion also host level generation based on a few parameters .

Stock Market Prediction

NIFTY50 intraday chart is dependent on the current and past movement of the Nifty50 stocks, the news (world news, industry related news, particular stock related news etc), foreign investments, future and options closing, human fear and greed, last but not the least time. Lets take each factor one by one.

0.5 Nifty 50 stocks

The NIFTY 50 is a diversified 50 stock index accounting for 12 sectors of the economy. It is used for a variety of purposes such as benchmarking fund portfolios, index based derivatives and index funds. [nseindia.com] .NIFTY 50 is owned and managed by India Index Services and Products Ltd. (IISL). IISL is India's specialised company focused upon the index as a core product.NIFTY 50 is ideal for derivatives trading. Below given is a table containing details of the nifty50 stocks. Based on the daily moment and the previous moment of these fifty stock values the nifty50 stock value changes. And there is a pattern in the individual stocks movement and in the combined effect of these 50 stocks in the nifty50. Also there are temporal patterns within a day, within a week, within 2 days and so on. Out target is to detect all possible patterns to predict the next day chart. These patterns are dependant on foreign investment cycles, future and option closing (which comes in every month), and depends on the time of the day, time of the month, even year. A convolutional auto encoder is used to identify this common patterns.

0.6 Foreign Facttors

The news about industry, war, famine, election etc will strongly affect the stock market. So we will use a news sentiments analyser (taking inputs from twitter and money control) to predict a buy/sell for each of the nifty50 stock. This is our second system.

The aspect of human greed and fear has a small effect in the market. The effect is small because the market is mainly controlled by foreign investments. Also the emotions will be controlled by News, patterns and trends. Since the need of accounting for this human greed and fear, we will not put this system into implementation as of now. We can make use of gamydala[] emotion engine integrated with a DQN agent. But as I have mentioned earlier this wont be implemented immediately.

0.7 The Network Architecture

The intraday chart of a single stock is converted to a numpy 1D array containing y values for different time frames (ntf). If we have a 100 such array, we will process them again to create a matrix containing the data for 5 consecutive days. We make a 5 x ntf matrix for the same. So one such matrix will have the following information. Row 0 will contain day0 information, (day 0 stock array) Row 1 will contain day 1 information and so on. This matrix will be provide as an input to the CNN auto encoder.

We create the input matrix each nifty50 stock, nifty50 itself individually. The auto encoder training is done individually. ie We train one auto encoder network with the historical data matrix of DLF, another network with idea cellular and so on for all 51 stocks. After the training is done we have 51 separate trained neural networks where the hidden units representing the strong features of the individual stock. We also train on the news sentiment analyser individually in a similar manner.

Now we have another feed forward neural network. The input to the feed forward network are the following hidden layer of the auto encoder Output of news sentiment analyser for each stock These inputs are arranged as a matrix and fed into the feed forward network. The feed forward network will converge to ntf neurones where the activation of these each ntf neutron will given the stock value (normalised) at that time frame.

The code snippet below written in Keras explains the architecture for the convolutional auto encoder.

```
from keras.layers import Input, Dense, Com/2D, MaxPeoling2D, UpSampling2D
from keras.adobts import Model
from keras.adopt beckend as a

Medians the input import and import product
from keras.adopt beckend as a

Medians the input import import input import input import import
```

FIGURE 3: CAEN Keras snippet

fifty one instances of the above class CAENClassifier is made and each of them is trained individually. Each instance is trained only with the historical data of one stock. For example instance SBIN is trained only of historical data of SBIN. Once the individual training is done the hidden layers (written as encoder) is fed into the inputs of the feed forward network in the format that was discussed earlier. In the testing part each instance is fed with the test data (the past5 days data of respective stock) and the feed forward network gives the chart information for day6 of NSE.

0.8 Data and preprocessing

The data is collected from http://etfeeds.indiatimes.com. The data pulled from the site is intraday data, with a resolution of 15 minutes for four months staring from January 2017. The data is pulled in .json format. To covert this to a suitable input format for the 2D convolutional auto encoder we did the following preprocessing. We arranged the intraday data into an array of size 28 (there were 28 ticks for each day). Then the array of five consecutive days were combined to form a matrix. The first row of matrix has information for day1, second row day2 and so on. Further each row was normalised

using the maximum and minimum as the borders. So the maximum was given value 1 and minimum was give value 0. This normalisation will help the neural network to focus on the data patterns and trends rather than the value itself. The data consist of opening, closing, lowest and highest price for each 15 minutes session. So we have used each of these value as filter (channel). This will be further used for creating a candle stick of values.

For the news ticker we did a sentiment analysis on the sentences pulled from different source.

0.9 Training

Autoencoders will be trained independently

the feed forward network will be trained with target being the next day intraday chart. ie input to the entire system is day0 to day5(of each nifty50 stock and NSE) charts, news pretrained and output being day6 chart of NSE.

0.10 Furture works

Emotion based DQN agent for better learning. The stock market action can be considered as a game where the agent environment in controlled by the current stock value, volume, news sentiments also the simulated and real life emotions of speculators and traders respectively. For simulating the sentiment of speculators we can use gamydala engine for emotions. For collecting real time stock traders we would require EEG machines and collect data which force us. to put this for future works. Actions of the DQN agent is predicting the buy sell or hold.

2) Using LSTM or RNN to analyse real time stock data for improving the output of the current system.

Recurrent networks being difficult to train puts this work to phase two.

Conclusion

We have trained the system using only one months data (Due to monetary constraints and resolution issues with larger data). Even with one months data we were able to produce some satisfying results. The auto encoders quickly learned to recreate the inputs. But here we have not still confirmed whether the auto encoder is just trying to copy the data. (These attempts are not included in the report due to time constraints). A few charts are given below to show the accuracy. Currently we used sum of squared error as a measure of accuracy. The system is giving an accuracy of 50 percentage which is a good value considering the existing systems and lack of data. A graph showing a reasonable comparison is given below.

Figure 4: acutal.

FIGURE 5: predicted.

Appendix

Company Name	Industry	Symbol
ABB India Ltd.	INDUSTRIAL MANUFACTURING	ABB
Ashok Leyland Ltd.	AUTOMOBILE	ASHOKLEY
Bajaj Finance Ltd.	FINANCIAL SERVICES	BAJFINANCE
Bajaj Finserv Ltd.	FINANCIAL SERVICES	BAJAJFINSV
Bharat Electronics Ltd.	INDUSTRIAL MANUFACTURING	BEL
Bharat Heavy Electricals Ltd.	INDUSTRIAL MANUFACTURING	BHEL
Britannia Industries Ltd.	CONSUMER GOODS	BRITANNIA
Cadila Healthcare Ltd.	PHARMA	CADILAHC
Colgate Palmolive (India) Ltd.	CONSUMER GOODS	COLPAL
Container Corporation of India Ltd.	SERVICES	CONCOR
Cummins India Ltd.	INDUSTRIAL MANUFACTURING	CUMMINSIND
DLF Ltd.	CONSTRUCTION	DLF
Dabur India Ltd.	CONSUMER GOODS	DABUR
Divi's Laboratories Ltd.	PHARMA	DIVISLAB
Emami Ltd.	CONSUMER GOODS	EMAMILTD
GlaxoSmithkline Consumer Healthcare Ltd.	CONSUMER GOODS	GSKCONS
Glaxosmithkline Pharmaceuticals Ltd.	PHARMA	GLAXO
Glenmark Pharmaceuticals Ltd.	PHARMA	GLENMARK
Godrej Consumer Products Ltd.	CONSUMER GOODS	GODREJCP
Havells India Ltd.	CONSUMER GOODS	HAVELLS
Hindustan Petroleum Corporation Ltd.	ENERGY	HINDPETRO
Hindustan Zinc Ltd.	METALS	HINDZINC
ICICI Prudential Life Insurance Company Ltd.	FINANCIAL SERVICES	ICICIPRULI
ldea Cellular Ltd.	TELECOM	IDEA
InterGlobe Aviation Ltd.	SERVICES	INDIGO
JSW Steel Ltd.	METALS	JSWSTEEL
LIC Housing Finance Ltd.	FINANCIAL SERVICES	LICHSGFIN
Marico Ltd.	CONSUMER GOODS	MARICO
Motherson Sumi Systems Ltd.	AUTOMOBILE	MOTHERSUMI
NHPC Ltd.	ENERGY	NHPC
NMDC Ltd.	METALS	NMDC
Oil India Ltd.	ENERGY	OIL
Oracle Financial Services Software Ltd.	П	OFSS
Petronet LNG Ltd.	ENERGY	PETRONET
Pidilite Industries Ltd.	CHEMICALS	PIDILITIND
Piramal Enterprises Ltd.	PHARMA	PEL
Power Finance Corporation Ltd.	FINANCIAL SERVICES	PFC
Procter & Gamble Hygiene & Health Care Ltd.	CONSUMER GOODS	PGHH
Punjab National Bank	FINANCIAL SERVICES	PNB 16

FIGURE 6: List of NSE stocks

Data Scraping and processing code

.1 Data Collection

```
import urllib, urllib2 from os import path template = "http://etfeeds.indiatimes.com/ETServiceChartC from sys import argv if len(argv) \not = 2 and argv[1] == 'doscrape': companies = map( lambda l: l.strip(), open("companies.txt", "r").readlines() ) for c in companies: c1 = c + "EQ" url = template print c, "getting", url json = urllib2.urlopen(url).read() with open(path.join("scraped",("f.write(json) else: print "argv[1] must be doscrape"
```

.2 Data Formatting

```
Sample data collected of ACC is given below "query": "results": "companydata": "companyid": 6, "compan Ltd.", "quote": ["Low": 1570, "Open": 1625, "Adj_Close": 1593.05, "Close": 1593.05, "Date": "2017 - 05 - 02", "Volume": 357316, "High": 1625, "Low": 1606.05, "Open": 1626.65, "Adj_Close": 1593.05, "Open": 1626.65, "Op
```

Bibliography

- [1] K. R. Venugopal. Fuzzy Based Neuro Genetic Algorithm for Stock Market Prediction.
- [2] Advances in Intelligent Systems and Computing. 2016.
- [3] Hessine, Moez, and Souad Ben. Accurate fault classifier and locator for ehv transmission lines using neural networks. *Mathematical problems in engineering*, 2014.
- [4] Haddadnia. N-feature neural network human face recognition.
- [5] Guangfang. Menn method application for stock market prediction. $arXiv:1009.2840v2,\ 2012.$
- [6] Essam Al-Mansouri. Using artificial neural networks and sentiment analysis to predict upward movements in stock price. 2016.
- [7] Xingjian Shi, Zhourong Chen, Hao Wang, and Dit-Yan Yeung. Convolutional lstm network: A machine learning approach for precipitation nowcasting. *Phys. Rev. Lett.* 86, 5188-519, 2001.
- [8] Eesa Nikah, Mahboobeh Houshmand and Morteza Saheb Zamani, and Mehdi Sedighi. One-way quantum computer simulation. 2015.
- [9] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network.