Amendments to the Claims:

the automatic gain control tab.

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of calibrating video, comprising:

calibrating at least one of pixel offset and pixel gain of a video signal;

calibrating for pixel gain by covering a video signal input for a video channel

provided with an automatic gain control tab by sensing the video signal input for the video

channel provided with the automatic gain control tab to determine a value for calibration; and

calibrating for pixel gain a video signal input for a video channel not provided

with the automatic gain control tab by multiplying the video signal input for the video

channel not provided with the automatic control tab with a video signal output error value

from an integrator, said video signal output error value compensating for pixel error for both

a-the video signal for the video channel provided with an-the automatic gain control tab and a

2. (Previously Presented) The method according to claim 1, further including calibrating for pixel offset by setting a correction range for pixel offset calibration, adjusting an uncalibrated video signal to be within the correction range, and providing an offset level setpoint before calibrating pixel gain.

the video signal for the video channel without annot provided with the automatic gain control

tab, with a video signal inputted to a video channel other than the video channel covered with

3. (Original) The method according to claim 2, further including calibrating for pixel offset by subtracting a current state of offset of a video signal from the offset level setpoint to provide an error value.

Xerox Docket No. D/99645 Application No. 09/466,982

- 4. (Original) The method according to claim 3, further including calibrating for pixel offset by applying a variable gain factor to the error value to provide a variable gain/error value.
- 5. (Original) The method according to claim 4, wherein the variable gain factor is fixed for different trip points.
- 6. (Original) The method according to claim 4, further including calibrating for pixel offset by adding the variable gain/error value to a pixel offset value stored in a storage device to provide a specified pixel offset value.
- 7. (Original) The method according to claim 6, further including calibrating for pixel offset by dividing the specified pixel offset value by 16.
- 8. (Original) The method according to claim 7, further including calibrating for pixel offset by adding the divided value to the video signal adjusted to be within the range.
- 9. (Original) The method according to claim 1, further including calibrating for pixel gain by setting a range for pixel gain calibration, adjusting an uncalibrated video signal to be within the range, and providing for continuing compensation of changes in video intensity.
 - 10. (Canceled)
- 11. (Currently Amended) The method according to claim 9, further including calibrating for pixel gain the video signal input for the video channel provided with the automatic gain control tab by subtracting a current state of gain of a-the video signal from an automatic gain control tab setpoint to provide an-the error value.
- 12. (Previously Presented) The method according to claim 11, further including calibrating for pixel gain by inputting the error value into the integrator to apply the error value to a video signal over a period of time.

- 13. (Currently Amended) The method according to claim 12, further including calibrating for pixel gain by multiplying the video signal output <u>error value</u> from the integrator with a video signal <u>inputted input for to the video channel eovered provided</u> with the automatic gain control tab.
 - 14. (Canceled)
- 15. (Previously Presented) The method according to claim 1, further including calibrating for pixel gain by subtracting a current state of gain of a video signal from a white level setpoint to provide an error value.
- 16. (Original) The method according to claim 15, further including calibrating for pixel gain by applying a variable gain factor to the error value to provide a variable gain/error value.
- 17. (Original) The method according to claim 16, wherein the variable gain factor is fixed for different trip points.
- 18. (Original) The method according to claim 16, further including calibrating for pixel gain by adding the variable gain/error value to a pixel gain value stored in a storage device, to provide a specified pixel gain value.
- 19. (Original) The method according to claim 18, further including calibrating for pixel gain by dividing the specified pixel gain value by 16.
- 20. (Original) The method according to claim 19, further including calibrating for pixel gain by multiplying the divided value to the video signal adjusted to be within the range.
- 21. (Currently Amended) An image sensor for use with a document scanner, comprising:

digital hardware that calibrates at least one of pixel offset and pixel gain of a video signal;

an automatic gain control tab that coversprovided for a video channel; and

other than the video channel provided with the automatic gain control tab is calibrated for by multiplying the video signal with a video signal output error value from the integrator, said video signal output error value compensating for pixel error for both the video signal input for a the video channel provided with an the automatic gain control tab and the video signal input for the a video channel without not provided with the an automatic gain control tab, with a video signal inputted to a video channel other than the video channel covered with the automatic gain control tab.

- 22. (Original) The image sensor according to claim 21, further including a device that calibrates for pixel offset by setting a range for pixel offset calibration, adjusting an uncalibrated video signal to be within the range, and providing an offset level setpoint.
- 23. (Original) The sensor according to claim 21, further including a device that calibrates for pixel gain by setting a range for pixel gain calibration, adjusting an uncalibrated video signal to be within the range, and providing for continuing compensation of changes in video intensity.