SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: FLECKENSTEIN, Bernhard ENSSER, Armin
- (ii) TITLE OF INVENTION: HUMAN SEMAPHORIN L (H-SEMAL) AND CORRESPONDING SEMAPHORINS IN OTHER SPECIES
- (iii) NUMBER OF SEQUENCES: 44
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Frommer Lawrence & Haug LLP
 - (B) STREET: 745 Fifth Avenue
 - (C) CITY: New York
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10151
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US NYA
 - (B) FILING DATE: 09-JUL-1998
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lawrence, William F.
 - (B) REGISTRATION NUMBER: 28,029
 - (C) REFERENCE/DOCKET NUMBER: 514429-3647
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 212-588-0800
 - (B) TELEFAX: 212-588-0500
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2636 base pairs
 - (B) TYPE: nucleic acid
 - (E) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGGGGCCACG GGATGACGCC TCCTCCGCCC GGACGTGCCG CCCCCAGCGC ACCGCGCGCC 60 CGCGTCCCTG GCCCGCCGGC TCGGTTGGGG CTTCCGCTGC GGCTGCGGCT GCTGCTGCTG 120 CTCTGGGCGG CCGCCGCCTC CGCCCAGGGC CACCTAAGGA GCGGACCCCG CATCTTCGCC 180 GTCTGGAAAG GCCATGTAGG GCAGGACCGG GTGGACTTTG GCCAGACTGA GCCGCACACG 240 GTGCTTTTCC ACGAGCCAGG CAGCTCCTCT GTGTGGGTGG GAGGACGTGG CAAGGTCTAC 300 CTCTTTGACT TCCCCGAGGG CAAGAACGCA TCTGTGCGCA CGGTGAATAT CGGCTCCACA 360 AAGGGGTCCT GTCTGGATAA GCGGGACTGC GAGAACTACA TCACTCTCCT GGAGAGGCGG 420 AGTGAGGGC TGCTGGCCTG TGGCACCAAC GCCCGGCACC CCAGCTGCTG GAACCTGGTG 480 AATGGCACTG TGGTGCCACT TGGCGAGATG AGAGGCTACG CCCCCTTCAG CCCGGACGAG 540 AACTCCCTGG TTCTGTTTGA AGGGGACGAG GTGTATTCCA CCATCCGGAA GCAGGAATAC 600 AATGGGAAGA TCCCTCGGTT CCGCCGCATC CGGGGCGAGA GTGAGCTGTA CACCAGTGAT 660 ACTGTCATGC AGAACCCACA GTTCATCAAA GCCACCATCG TGCACCAAGA CCAGGCTTAC 720 GATGACAAGA TCTACTACTT CTTCCGAGAG GACAATCCTG ACAAGAATCC TGAGGCTCCT 780 CTCAATGTGT CCCGTGTGGC CCAGTTGTGC AGGGGGGACC AGGGTGGGGA AAGTTCACTG 840 TCAGTCTCCA AGTGGAACAC TTTTCTGAAA GCCATGCTGG TATGCAGTGA TGCTGCCACC 900 AACAAGAACT TCAACAGGCT GCAAGACGTC TTCCTGCTCC CTGACCCCAG CGGCCAGTGG 960 AGGGACACCA GGGTCTATGG TGTTTTCTCC AACCCCTGGA ACTACTCAGC CGTCTGTGTG 1020 TATTCCCTCG GTGACATTGA CAAGGTCTTC CGTACCTCCT CACTCAAGGG CTACCACTCA 1080 AGCCTTCCCA ACCCGCGGCC TGGCAAGTGC CTCCCAGACC AGCAGCCGAT ACCCACAGAG 1140 1200 ACCTTCCAGG TGGCTGACCG TCACCCAGAG GTGGCGCAGA GGGTGGAGCC CATGGGGCCT CTGAAGACGC CATTGTTCCA CTCTAAATAC CACTACCAGA AAGTGGCCGT TCACCGCATG 1260 CAAGCCAGCC ACGGGGAGAC CTTTCATGTG CTTTACCTAA CTACAGACAG GGGCACTATC 1320 CACAGGTGG TGGAACCGGG GGAGCAGGAG CACAGCTTCG CCTTCAACAT CATGGAGATC 1380 CAGCCCTTCC GCCGCGCGC TGCCATCCAG ACCATGTCGC TGGATGCTGA GCGGAGGAAG 1440 CTGTATGTGA GCTCCCAGTG GGAGGTGAGC CAGGTGCCCC TGGACCTGTG TGAGGTCTAT 1500 GGCGGGGGCT GCCACGGTTG CCTCATGTCC CGAGACCCCT ACTGCGGCTG GGACCAGGGC 1560 CGCTGCATCT CCATCTACAG CTCCGAACGG TCAGTGCTGC AATCCATTAA TCCAGCCGAG 1620 CCACACAGG AGTGTCCCAA CCCCAAACCA GACAAGGCCC CACTGCAGAA GGTTTCCCTG 1680 GCCCCAAACT CTCGCTACTA CCTGAGCTGC CCCATGGAAT CCCGCCACGC CACCTACTCA 1740

TGGCGCCACA	AGGAGAACGT	GGAGCAGAGC	TGCGAACCTG	GTCACCAGAG	CCCCAACTGC	1800
ATCCTGTTCA	TCGAGAACCT	CACGGCGCAG	CAGTACGGCC	ACTACTTCTG	CGAGGCCCAG	1860
GAGGGCTCCT	ACTTCCGCGA	GGCTCAGCAC	TGGCAGCTGC	TGCCCGAGGA	CGGCATCATG	1920
GCCGAGCACC	TGCTGGGTCA	TGCCTGTGCC	CTGGCTGCCT	CCCTCTGGCT	GGGGGTGCTG	1980
CCCACACTCA	CTCTTGGCTT	GCTGGTCCAC	TAGGGCCTCC	CGAGGCTGGG	CATGCCTCAG	2040
GCTTCTGCAG	CCCAGGGCAC	TAGAACGTCT	CACACTCAGA	GCCGGCTGGC	CCGGGAGCTC	2100
CTTGCCTGCC	ACTTCTTCCA	GGGGACAGAA	TAACCCAGTG	GAGGATGCCA	GGCCTGGAGA	2160
CGTCCAGCCG	CAGGCGGCTG	CTGGGCCCCA	GGTGGCGCAC	GGATGGTGAG	GGGCTGAGAA	2220
TGAGGGCACC	GACTGTGAAG	CTGGGGCATC	GATGACCCAA	GACTTTATCT	TCTGGAAAAT	2280
ATTTTTCAGA	CTCCTCAAAC	TTGACTAAAT	GCAGCGATGC	TCCCAGCCCA	AGAGCCCATG	2340
GGTCGGGGAG	TGGGTTTGGA	TAGGAGAGCT	GGGACTCCAT	CTCGACCCTG	GGGCTGAGGC	2400
CTGAGTCCTT	CTGGACTCTT	GGTACCCACA	TTGCCTCCTT	ссстссстс	TCTCATGGCT	2460
GGGTGGCTGG	TGTTCCTGAA	GACCCAGGGC	TACCCTCTGT	CCAGCCCTGT	CCTCTGCAGC	2520
TCCCTCTCTG	GTCCTGGGTC	CCACAGGACA	GCCGCCTTGC	ATGTTTATTG	AAGGATGTTT	2580
GCTTTCCGGA	CGGAAGGACG	GAAAAAGCTC	TGAAAAAAA	ААААААААА	AAAAA	2636

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1195 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	CGGGGCTGCG	GGATGACGCC	TCCTCCTCCC	GGACGTGCCG	CCCCCAGCGC	ACCGCGCGCC	60
`.	CGCGTCCTCA	GCCTGCCGGC	TCGGTTCGGG	CTCCCGCTGC	GGCTGCGGCT	TCTGCTGGTG	120
	TTCTGGGTGG	CCGCCGCCTC	CGCCCAAGGC	CACTCGAGGA	GCGGACCCCG	CATCTCCGCC	180
	GTCTGGAAAG	GGCAGGACCA	TGTGGACTTT	AGCCAGCCTG	AGCCACACAC	CGTGCTTTTC	240
	CATGAGCCGG	GCAGCTTCTC	TGTCTGGGTG	GGTGGACGTG	GCAAGGTCTA	CCACTTCAAC	300
	TTCCCCGAGG	GCAAGAATGC	CTCTGTGCGC	ACGGTGAACA	TCGGCTCCAC	AAAGGGGTCC	360

TGTCAGGAC	A AACAGGACTG	TGGGAATTAC	ATCACTCTTC	TAGAAAGGCG	GGGTAATGGG	420
CTGCTGGTC	r GTGGCACCAA	TGCCCGGAAG	CCCAGCTGCT	GGAACTTGGT	GAATGACAGT	480
GTGGTGATG	r cacttggtga	GATGAAAGGC	TATGCCCCCT	TCAGCCCGGA	TGAGAACTCC	540
CTGGTTCTG	r ttgaaggaga	TGAAGTGTAC	TCTACCATCC	GGAAGCAGGA	ATACAACGGG	600
AAGATCCCT	C GGTTTCGACG	CATTCGGGGC	GAGAGTGAAC	TGTACACAAG	TGATACAGTC	660
ATGCAGAAC	C CACAGTTCAT	CAAGGCCACC	ATTGTGCACC	AAGACCAAGC	CTATGATGAT	720
AAGATCTAC'	r acttcttccg	AGAAGACAAC	CCTGACAAGA	ACCCCGAGGC	TCCTCTCAAT	780
GTGTCCCGA	G TAGCCCAGTT	GTGCAGGGGG	GACCAGGGTG	GTGAGAGTTC	GTTGTCTGTC	840
TCCAAGTGG	A ACACCTTCCT	GAAAGCCATG	TTGGTCTGCA	GCGATGCAGC	CACCAACAGG	900
AACTTCAAT	C GGCTGCAAGA	TGTCTTCCTG	CTCCCTGACC	CCAGTGGCCA	GTGGAGAGAT	960
ACCAGGGTC	T ATGGCGTTTT	CTCCAACCCC	TGGAACTAGT	CAGCTGTCTG	CGTGTATTCG	1020
CTTGGTGAC.	A TTGACAGAGT	CTTCCGTACC	TCATCGCTCA	AAGGCTACCA	CATGGGCCTT	1080
TCCAACCCT	C GACCTGGCAT	GTGCCTCCCA	AAAAAGCAGC	CCATACCCAC	AGAAACCTTC	1140
CAGGTAGCT	G ATAGTCACCC	AGAGGTGGCT	CAGAGGGTGG	AACCTATGGG	GCCCC	1195

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 666 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: n/a
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: amino acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Thr Pro Pro Pro Pro Gly Arg Ala Ala Pro Ser Ala Pro Arg Ala 1 5 10 15

Arg Val Pro Gly Pro Pro Ala Arg Leu Gly Leu Pro Leu Arg Leu Arg 20 25 30

Leu Leu Leu Leu Trp Ala Ala Ala Ser Ala Gln Gly His Leu 35 40 45

Arg Ser Gly Pro Arg Ile Phe Ala Val Trp Lys Gly His Val Gly Gln 50 55 60

Asp Arg Val Asp Phe Gly Gln Thr Glu Pro His Thr Val Leu Phe His

65

Glu Pro Gly Ser Ser Ser Val Trp Val Gly Gly Arg Gly Lys Val Tyr 85 90

Leu Phe Asp Phe Pro Glu Gly Lys Asn Ala Ser Val Arg Thr Val Asn 105

Ile Gly Ser Thr Lys Gly Ser Cys Leu Asp Lys Arg Asp Cys Glu Asn

Tyr Ile Thr Leu Leu Glu Arg Arg Ser Glu Gly Leu Leu Ala Cys Gly

Thr Asn Ala Arg His Pro Ser Cys Trp Asn Leu Val Asn Gly Thr Val

Val Pro Leu Gly Glu Met Arg Gly Tyr Ala Pro Phe Ser Pro Asp Glu 165 170

Asn Ser Leu Val Leu Phe Glu Gly Asp Glu Val Tyr Ser Thr Ile Arg 180 185

Lys Gln Glu Tyr Asn Gly Lys Ile Pro Arg Phe Arg Arg Ile Arg Gly 200

Glu Ser Glu Leu Tyr Thr Ser Asp Thr Val Met Gln Asn Pro Gln Phe

Ile Lys Ala Thr Ile Val His Gln Asp Gln Ala Tyr Asp Asp Lys Ile 235

Tyr Tyr Phe Phe Arg Glu Asp Asn Pro Asp Lys Asn Pro Glu Ala Pro 250

Leu Asn Val Ser Arg Val Ala Gln Leu Cys Arg Gly Asp Gln Gly Gly 260 265

Glu Ser Ser Leu Ser Val Ser Lys Trp Asn Thr Phe Leu Lys Ala Met

Leu Val Cys Ser Asp Ala Ala Thr Asn Lys Asn Phe Asn Arg Leu Gln 290

Asp Val Phe Leu Leu Pro Asp Pro Ser Gly Gln Trp Arg Asp Thr Arg 310

Val Tyr Gly Val Phe Ser Asn Pro Trp Asn Tyr Ser Ala Val Cys Val 325 330

Tyr Ser Leu Gly Asp Ile Asp Lys Val Phe Arg Thr Ser Ser Leu Lys 340

Gly Tyr His Ser Ser Leu Pro Asn Pro Arg Pro Gly Lys Cys Leu Pro 360

Asp Gln Gln Pro Ile Pro Thr Glu Thr Phe Gln Val Ala Asp Arg His

Pro 385	Glu	Val	Ala	Gln	Arg 390	Val	Glu	Pro	Met	Gly 395	Pro	Leu	Lys	Thr	Pro 400
Leu	Phe	His	Ser	Lys 405	Tyr	His	Tyr	Gln	Lys 410	Val	Ala	Val	His	Arg 415	Met
Ğln	Ala	Ser	His 420	Gly	Glu	Thr	Phe	His 425	Val	Leu	Tyr	Leu	Thr 430	Thr	Asp
Arg	Gly	Thr 435	Ile	His	Lys	Val	Val 440	Glu	Pro	Gly	Glu	Gln 445	Glu	His	Ser
Phe	Ala 450	Phe	Asn	Ile	Met	Glu 455	Ile	Gln	Pro	Phe	Arg 460	Arg	Ala	Ala	Ala
Ile #465	Gln	Thr	Met	Ser	Leu 470	Asp	Ala	Glu	Arg	Arg 475	Lys	Leu	Tyr	Val	Ser 480
Ser	Gln	Trp	Glu	Val 485	Ser	Gln	Val	Pro	Leu 490	Asp	Leu	Cys	Glu	Val 495	Tyr
Gly	Gly	Gly	Cys 500	His	Gly	Cys	Leu	Met 505	Ser	Arg	Asp	Pro	Tyr 510	Cys	Gly
Trp	Asp	Gln 515	Gly	Arg	Cys	Ile	Ser 520	Ile	Tyr	Ser	Ser	Glu 525	Arg	Ser	Val
Leu	Gln 530	Ser	Ile	Asn	Pro	Ala 535	Glu	Pro	His	Lys	Glu 540	Cys	Pro	Asn	Pro
Lys 545	Pro	Asp	Lys	Ala	Pro 550	Leu	Gln	Lys	Val	Ser 555	Leu	Ala	Pro	Asn	Ser 560
Arg	Tyr	Tyr	Leu	Ser 565	Cys	Pro	Met	Glu	Ser 570	Arg	His	Ala	Thr	Tyr 575	Ser
Trp	Arg	His	Lys 580	Glu	Asn	Val	Glu	Gln 585	Ser	Суз	Glu	Pro	Gly 590	His	Glr
Ser	Pro	Asn 595	Cys	Ile	Leu		11e 600		Asn	Leu	Thr	Ala 605		Gln	Туг
Gly	His 610		Phe	Cys	Glu	Ala 615		Glu	Gly	Ser	Tyr 620		Arg	Glu	Ala
Gln 625		Trp	Gln	Leu	Leu 630	Pro	Glu	Asp	Gly	1le 635		Ala	Glu	His	Le: 640
Leu	Gly	His	Ala	Cys 645	,	Leu	Ala	Ala	Ser 650		Trp	Leu	Gly	Val 655	
Pro	Thr	Leu	Thr	Leu	Gly	Leu	Leu	Val 665		Į.					

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: n/a
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: amino acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Thr Pro Pro Pro Pro Gly Arg Ala Ala Pro Ser Ala Pro Arg Ala 1 5 10 15
- Arg Val Leu Ser Leu Pro Ala Arg Phe Gly Leu Pro Leu Arg Leu Arg 20 25 30
- Leu Leu Val Phe Trp Val Ala Ala Ala Ser Ala Gln Gly His Ser 35 40 45
- Arg Ser Gly Pro Arg Ile Ser Ala Val Trp Lys Gly Gln Asp His Val 50 55 60
- Asp Phe Ser Gln Pro Glu Pro His Thr Val Leu Phe His Glu Pro Gly 70 75 80
- Ser Phe Ser Val Trp Val Gly Gly Arg Gly Lys Val Tyr His Phe Asn 85 90 95
- Phe Pro Glu Gly Lys Asn Ala Ser Val Arg Thr Val Asn Ile Gly Ser
- Thr Lys Gly Ser Cys Gln Asp Lys Gln Asp Cys Gly Asn Tyr Ile Thr 115 120 125
- Leu Leu Glu Arg Arg Gly Asn Gly Leu Leu Val Cys Gly Thr Asn Ala
 130 135
- Arg Lys Pro Ser Cys Trp Asn Leu Val Asn Asp Ser Val Val Met Ser 145 150 155 160
- Leu Gly Glu Met Lys Gly Tyr Ala Pro Phe Ser Pro Asp Glu Asn Ser 165 170 175
- Leu Val Leu Phe Glu Gly Asp Glu Val Tyr Ser Thr Ile Arg Lys Gln
 180 185 190
- Glu Tyr Asn Gly Lys Ile Pro Arg Phe Arg Arg Ile Arg Gly Glu Ser × 195 200 205
- Glu Leu Tyr Thr Ser Asp Thr Val Met Gln Asn Pro Gln Phe Ile Lys 210 215 220
- Ala Thr Ile Val His Gln Asp Gln Ala Tyr Asp Asp Lys Ile Tyr Tyr

230 235 240

4 Fr 4

Phe Phe Arg Glu Asp Asn Pro Asp Lys Asn Pro Glu Ala Pro Leu Asn 245 250 255

Val Ser Arg Val Ala Gln Leu Cys Arg Gly Asp Gln Gly Glu Ser 260 265 270

Ser Leu Ser Val Ser Lys Trp Asn Thr Phe Leu Lys Ala Met Leu Val 275 280 285

Cys Ser Asp Ala Ala Thr Asn Arg Asn Phe Asn Arg Leu Gln Asp Val 290 295 300

Phe Leu Leu Pro Asp Pro Ser Gly Gln Trp Arg Asp Thr Arg Val Tyr 305 310 315 320

Gly Val Phe Ser Asn Pro Trp Asn Tyr Ser Ala Val Cys Val Tyr Ser 325 330 335

Leu Gly Asp Ile Asp Arg Val Phe Arg Thr Ser Ser Leu Lys Gly Tyr
340 345 350

His Met Gly Leu Ser Asn Pro Arg Pro Gly Met Cys Leu Pro Lys Lys 355 360 365

Gln Pro Ile Pro Thr Glu Thr Phe Gln Val Ala Asp Ser His Pro Glu 370 375 380

Val Ala Gln Arg Val Glu Pro Met Gly Pro 385 390

(2) INFORMATION FOR SEQ ID NO:5:

225

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACTCACTATA GGGCTCGAGC GGC

23

(2) INFORMATION FOR SEQ ID NO:6:

- - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(i) SEQUENCE CHARACTERISTICS:

	(ii) MOL	ECULE TYPE: DNA (genomic)		
	(xi) SEQ	UENCE DESCRIPTION: SEQ ID NO:6:	e f	
AGC	CGCACAC G	GTGCTTTTC		. 20
(2)	INFORMAT	ION FOR SEQ ID NO:7:		
	(A (B (C	UENCE CHARACTERISTICS: a) LENGTH: 20 base pairs b) TYPE: nucleic acid c) STRANDEDNESS: single b) TOPOLOGY: linear		
	(ii) MOL	ECULE TYPE: DNA (genomic)		
				r *
	(xi) SEC	QUENCE DESCRIPTION: SEQ ID NO:7:		
GCA	CAGATGC G	TTCTTGCCC		20
(2)	INFORMAT	TION FOR SEQ ID NO:8:		
	(A (E (C	QUENCE CHARACTERISTICS: a) LENGTH: 20 base pairs b) TYPE: nucleic acid c) STRANDEDNESS: single b) TOPOLOGY: linear		
	(ii) MOL	ECULE TYPE: DNA (genomic)		
				::
	(xi) SEQ	QUENCE DESCRIPTION: SEQ ID NO:8:		
ACC	ATAGACC C	TGGTGTCCC	j trakting in the second of th	20
(2)	INFORMAT	TION FOR SEQ ID NO:9:		
	(A (E (C	QUENCE CHARACTERISTICS: A) LENGTH: 20 base pairs B) TYPE: nucleic acid C) STRANDEDNESS: single D) TOPOLOGY: linear	• .	
	(ii) MOI	ECHLE TYPE: DNA (genomic)		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

2)

	20	
. '		
. *		
	20	

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO:11:

(A) LENGTH: 20 base pairs

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ACATGAGGCA ACCGTGGCAG

CCAGACCATG TCGCTGGATG

GCAGTGATGC TGCCACCAAC

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

(ii) MOLECULE TYPE: DNA (genomic)

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

20

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCATCCTAAT ACGACTCACT ATAGGGC

27

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA (genomic)		
			; ·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	en e	
AGGT	AGACCT TGCCACGTCC		20
(2)	INFORMATION FOR SEQ ID NO:14:		
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA (genomic)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:		
GAAC	TTCAAC AGGCTGCAAG ACG		23
(2)	INFORMATION FOR SEQ ID NO:15:		
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA (genomic)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:		
ATG	TGAGCG GAGGAAGCTG		20
(2)	INFORMATION FOR SEQ ID NO:16:		
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA (genomic)		

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:16:		
CCGCCATACA CCTCACACAG		20
(2) INFORMATION FOR SEQ ID NO:17:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	M _{ex} 2	
(D) TOPOLOGY: linear	. •	
(ii) MOLECULE TYPE: DNA (genomic)	1:	•.
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:		
CTGGAAGCTT TCTGTGGGTA TCGGCTGC		28
(2) INFORMATION FOR SEQ ID NO:18:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	٠.	
(ii) MOLECULE TYPE: DNA (genomic)	. ,	
	: : ;	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	•	
TTTGGATCCC TGGTTCTGTT TGAAG		25
(2) INFORMATION FOR SEQ ID NO:19:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

·		
TTCTAGAATT CAGCGGCCGC TTTTTTTTT TTTTTTTTT	TTTTTTTT	50
(2) INFORMATION FOR SEQ ID NO:20:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		:
(ii) MOLECULE TYPE: DNA (genomic)		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:		
GGGGAAAGTT CACTGTCAGT CTCCAAG		27
(2) INFORMATION FOR SEQ ID NO:21:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	A CONTRACTOR OF THE CONTRACTOR	.40
<pre>(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:</pre>		
GGGAATACAC ACAGACGGCT GAGTAG	•	26
(2) INFORMATION FOR SEQ ID NO:22:	• :	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: DNA (genomic)		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

AGCAAGTTCA GCCTGGTTAA GT

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 base pairs

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	4
TTATGAGTAT TTCTTCCAGG G	21
(2) INFORMATION FOR SEQ ID NO:24:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	• •
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CCATTAATCC AGCCGAGCCA CACAAG	. 26
(2) INFORMATION FOR SEQ ID NO:25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	÷.
CATCTACAGC TCCGAACGGT CAGTG	25
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEOUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid

(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	*
CAGCGGAAGC CCCAACCGAG	20
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
	9
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GGGATGACGC CTCCTCCGCC CGG	23
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
AAGCTTCACG TGGACCAGCA AGCCAAGAGT G	31
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

AAGCTTTTTC CGTCCTTCCG TCCGG

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

2) INFORMATION FOR SEQ ID NO:30:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: DNA (genomic)		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:		
ATGGTGAGCA AGGGCGAGGA GCTG		24
(2) INFORMATION FOR SEQ ID NO:31:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		ż
(ii) MOLECULE TYPE: DNA (genomic)		•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:		
CTTGTACAGC TCGTCCATGC CGAG	•	24
(2) INFORMATION FOR SEQ ID NO:32:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(ii) MOLECULE TYPE: DNA (genomic)		
	$\Phi_{k} = -i - i $	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:		
GGGTGGTGAG AGTTCGTTGT CTGTC		25
(2) INFORMATION FOR SEQ ID NO:33:		
(i) SECTIFNOR CHARACTERISTICS.		

(A) LENGTH: 25 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GAGCGATGAG GTACGGAAGA CTCTG

.25

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5856 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

AGCGCCCAAT	ACGCAAACCG	CCTCTCCCCG	CGCGTTGGCC	GATTCATTAA	TGCAGCTGGC	60
ACGACAGGTT	TCCCGACTGG	AAAGCGGGCA	GTGAGCGCAA	CGCAATTAAT	GTGAGTTAGC	120
TCACTCATTA	GGCACCCCAG	GCTTTACACT	TTATGCTTCC	GGCTCGTATG	TTGTGTGGAA	180
TTGTGAGCGG	ATAACAATTT	CACACAGGAA	ACAGCTATGA	CCATGATTAC	GCCAAGCTTC	240
ACGTGGACCA	GCAAGCCAAG	AGTGAGTGTG	GGCAGCACCC	CCAGCCAGAG	GGAGGCAGCC	300
AGGGCACAGG	CATGACCCAG	CAGGTGCTCG	GCCATGATGC	CGTCCTCGGG	CAGCAGCTGC	360
CAGTGCTGAG	CCTCGCGGAA	GTAGGAGCCC	TCCTGGGCCT	CGCAGAAGTA	GTGGCCGTAC	420
TGCTGCGCCG	TGAGGTTCTC	GATGAACAGG	ATGCAGTTGG	GGCTCTGGTG	ACCAGGTTCG	480
CAGCTCTGCT	CCACGTTCTC	CTTGTGGCGC	CATGAGTAGG	TGGCGTGGCG	GGATTCCATG	540
GGGCAGCTCA	GGTAGTAGCG	AGAGTTTGGG	GCCAGGGAAA	CCTTCTGCAG	TGGGGCCTTG	600
TCTGGTTTGG	GGTTGGGACA	CTCCTTGTGT	GGCTCGGCTG	GATTAATGGA	TTGCAGCACT	660
GACCGTTCGG	AGCTGTAGAT	GGAGATGCAG	CGGCCCTGGT	CCCAGCCGCA	GTAGGGGTCT	720
CGGGACATGA	GGCAACCGTG	GCAGCCCCCG	CCATAGACCT	CACACAGGTC	CAGGGGCACC	780
TGGCTCACCT	CCCACTGGGA	GCTCACATAC	AGCTTCCTCC	GCTCAGCATC	CAGCGACATG	840
GTCTGGATGG	CAGCCGCGCG	GCGGAAGGGC	TGGATCTCCA	TGATGTTGAA	GGCGAAGCTG	900

rcggro	GCCG	GGCGCGGTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	4380
AGCATO	TTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	4440
ATAACA	CTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	4500
TTTTGC	CACAA	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	4560
AAGCCA	ATACC	AAACGACGAG	AGTGACACCA	CGATGCCTGT	AGCAATGCCA	ACAACGTTGC	4620
GCAAAC	CTATT	AACTGGCGAA	CTACTTACTC	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	4680
TGGAGG	GCGGA	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	4740
TTGCT	SATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA	GCACTGGGGC	4800
CAGATO	GTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	4860
ATGAA	CGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	4920
CAGAC	CAAGT	TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	4980
GGATC.	raggt	GAAGATCCTT	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	5040
CGTTC	CACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	5100
TTCTG	CGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	GTGGTTTGTT	5160
TGCCG	GATCA	AGAGCTACCA	ACTCTTTTC	CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	5220
TACCA	AATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	5280
CACCG	CCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	5340
AGTCG'	TGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	5400
GCTGA	ACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	5460
GATAC	CTACA	GCGTGAGCAT	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	5520
GGTAT	CCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	5580
ACGCC	TGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	5640
TGTGA	TGCTC	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC	5700
GGTTC	CTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	TCCCCTGATT	5760
CTGTG	GATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	AGCCGAACGA	5820
CCGAG	CGCAG	CGAGTCAGTG	AGCGAGGAAG	CGGAAG			, 5856

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7475 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GACGGATCGG	GAGATCTCCC	GATCCCCTAT	GGTCGACTCT	CAGTACAATC	TGCTCTGATG	÷	: 60
CCGCATAGTT	AAGCCAGTAT	CTGCTCCCTG	CTTGTGTGTT	GGAGGTCGCT	GAGTAGTGCG		120
CGAGCAAAAT	TTAAGCTACA	ACAAGGCAAG	GCTTGACCGA	CAATTGCATG	AAGAATCTGC		180
TTAGGGTTAG	GCGTTTTGCG	CTGCTTCGCG	ATGTACGGGC	CAGATATACG	CGTTGACATT	*.	240
GATTATTGAC	TAGTTATTAA	. TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA		300
TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC		360
CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA	GGGACTTTCC		420
ATTGACGTCA	ATGGGTGGAC	TATTTACGGT	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT		480
ATCATATGCC	AAGTACGCCC	CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT		540
ATGCCCAGTA	CATGACCTTA	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA		600
TCGCTATTAC	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG		660
ACTCACGGGG	ATTTCCAAGT	CTCCACCCCA	TTGACGTCAA	TGGGAGTTTG	TTTTGGCACC		720
AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ACAACTCCGC	CCCATTGACG	CAAATGGGCG		780
GTAGGCGTGT	ACGGTGGGAG	GTCTATATAA	GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	,	840
CTGCTTACTG	GCTTATCGAA	ATTAATACGA	CTCACTATAG	GGAGACCCAA	GCTGGCTAGC		900
GTTTAAACGG	GCCCTCTAGA	CTCGAGCGGC	CGCCACTGTG	CTGGATATCT	GCAGAATTCG		960
GCTTGGGATG	ACGCCTCCTC	CGCCCGGACG	TGCCGCCCCC	AGCGCACCGC	GCGCCCGCGT	. 1	.020
CCCTGGCCCG	CCGGCTCGGT	TGGGGCTTCC	GCTGCGGCTG	CGGCTGCTGC	TGCTGCTCTG	1	080
GGCGGCCGCC	GCCTCCGCCC	AGGGCCACCT	AAGGAGCGGA	CCCCGCATCT	TCGCCGTCTG	. 1	140
GAAAGGCCAT	GTAGGGCAGG	ACCGGGTGGA	CTTTGGCCAG	ACTGAGCCGC	ACACGGTGCT	. 1	200
TTTCCACGAG	CCAGGCAGCT	CCTCTGTGTG	GGTGGGAGGA	CGTGGCAAGG	TCTACCTCTT	. 1	260
TGACTTCCCC	GAGGGCAAGA	ACGCATCTGT	GCGCACGGTG	AATATCGGCT	CCACAAAGGG	. 1	320
GTCCTGTCTG	GATAAGCGGG	ACTGCGAGAA	CTACATCACT	CTCCTGGAGA	GGCGGAGTGA	1	.380
GGGGCTGCTG	GCCTGTGGCA	CCAACGCCCG	GCACCCCAGC	TGCTGGAACC	TGGTGAATGG	1	.440

TCCTTGACCC TGGAAGGTGC CACTCCCACT GTCCTTTCCT AATAAAATGA GGAAATTGCA TCGCATTGTC TGAGTAGGTG TCATTCTATT CTGGGGGGTG GGGTGGGGCA GGACAGCAAG 3240 GGGGAGGATT GGGAAGACAA TAGCAGGCAT GCTGGGGATG CGGTGGGCTC TATGGCTTCT 3300 GAGGCGGAAA GAACCAGCTG GGGCTCTAGG GGGTATCCCC ACGCGCCCTG TAGCGGCGCA 3360 TTAAGCGCGG CGGGTGTGGT GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA 3420 GCGCCCGCTC CTTTCGCTTT CTTCCCTTCC TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT 3480 ′ CAAGCTCTAA ATCGGGGCAT CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACCTCGAC 3540 CCCAAAAAAC TTGATTAGGG TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT 3600 TTTCGCCCTT TGACGTTGGA GTCCACGTTC TTTAATAGTG GACTCTTGTT CCAAACTGGA 3660 ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTTAT AAGGGATTTT GGGGATTTCG GCCTATTGGT TAAAAAATGA GCTGATTTAA CAAAAATTTA ACGCGAATTA ATTCTGTGGA 3780 ATGTGTGTCA GTTAGGGTGT GGAAAGTCCC CAGGCTCCCC AGGCAGGCAG AAGTATGCAA 3840 AGCATGCATC TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC 3900 AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC CCTAACTCCG 3960 CCCATCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCT CGCCCCATGG CTGACTAATT 4020 TTTTTTTTT ATGCAGAGGC CGAGGCCGCC TCTGCCTCTG AGCTATTCCA GAAGTAGTGA 4080 GGAGGCTTTT TTGGAGGCCT AGGCTTTTGC AAAAAGCTCC CGGGAGCTTG TATATCCATT 4140 TTCGGATCTG ATCAAGAGAC AGGATGAGGA TCGTTTCGCA TGATTGAACA AGATGGATTG 4200 CACGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTCG GCTATGACTG GGCACAACAG 4260 ACAATCGGCT GCTCTGATGC CGCCGTGTTC CGGCTGTCAG CGCAGGGGCG CCCGGTTCTT 4320 TTTGTCAAGA CCGACCTGTC CGGTGCCCTG AATGAACTGC AGGACGAGGC AGCGCGGCTA 4380 TCGTGGCTGG CCACGACGGG CGTTCCTTGC GCAGCTGTGC TCGACGTTGT CACTGAAGCG 4440 GGAAGGGACT GGCTGCTATT GGGCGAAGTG CCGGGGCAGG ATCTCCTGTC ATCTCACCTT 4500 GCTCCTGCCG AGAAAGTATC CATCATGGCT GATGCAATGC GGCGGCTGCA TACGCTTGAT 4560 CCGGCTACCT GCCCATTCGA CCACCAAGCG AAACATCGCA TCGAGCGAGC ACGTACTCGG 4620 ATGGAAGCCG GTCTTGTCGA TCAGGATGAT CTGGACGAAG AGCATCAGGG GCTCGCGCCA 4680 GCCGAACTGT TCGCCAGGCT CAAGGCGCGC ATGCCCGACG GCGAGGATCT CGTCGTGACC 4740 CATGGCGATG CCTGCTTGCC GAATATCATG GTGGAAAATG GCCGCTTTTC TGGATTCATC 4800 GACTGTGGCC GGCTGGTGT GGCGGACCGC TATCAGGACA TAGCGTTGGC TACCCGTGAT 4860

ATTGCTGAAG AGCTTGGCGG CGAATGGGCT GACCGCTTCC TCGTGCTTTA CGGTATCGCC 4920 GCTCCCGATT CGCAGCGCAT CGCCTTCTAT CGCCTTCTTG ACGAGTTCTT CTGAGCGGGA 4980 CTCTGGGGTT CGAAATGACC GACCAAGCGA CGCCCAACCT GCCATCACGA GATTTCGATT 5040 CCACCGCCGC CTTCTATGAA AGGTTGGGCT TCGGAATCGT TTTCCGGGAC GCCGGCTGGA 5100 TGATCCTCCA GCGCGGGGAT CTCATGCTGG AGTTCTTCGC CCACCCCAAC TTGTTTATTG 5160 CAGCTTATAA TGGTTACAAA TAAAGCAATA GCATCACAAA TTTCACAAAT AAAGCATTTT 5220 TTTCACTGCA TTCTAGTTGT GGTTTGTCCA AACTCATCAA TGTATCTTAT CATGTCTGTA 5280 TACCGTCGAC CTCTAGCTAG AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA 5340 ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGTAAAGCCT 5400 GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG CCCGCTTTCC 5460 AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG 5520 GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC 5580 GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG 5640 GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA 5700 AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC 5760 GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC 5820 CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG 5880 CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT 5940 CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC 6000 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 6060 CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 6120 AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG 6180 CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA 6240 CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG 6300 GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT 6360 CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA 6420 ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT 6480 ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG 6540

TTGCCTGACT	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA	6600
GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	AGATTTATCA	GCAATAAACC	6660
AGCCAGCCGG	AAGGCCGAG	CGCAGAAGTG	GTCCTGCAAC	TTTATCCGCC	TCCATCCAGT	6720
CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	6780
TTGTTGCCAT	TGCTACAGGC	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	6840
GCTCCGGTTC	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG	6900
TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG	TTATCACTCA	6960
TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC	ATCCGTAAGA	TGCTTTŢĊTG	7020
TGACTGGTGA	GTACTCAACC	AAGTCATTCT	GAGAATAGTG	TATGČGGCĠA	CCGAGTTGCT	7080
CTTGCCCGGC	GTCAATACGG	GATAATACCG	CGCCACATAG	CAGAACTTTA	AAAGTGCTCA	7140
TCATTGGAAA	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA	7200
GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT	TTCACCAGCG	7260
TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA	AAAGGGAATA	AGGGCGACAC	7320
GGAAATGTTG	AATACTCATA	CTCTTCCTTT	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	7380
ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	АААТАААСАА	ATAGGGGTTC	7440
CGCGCACATT	TCCCCGAAAA	GTGCCACCTG	ACGTC			7475

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8192 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

. 60	TGCTCTGATG	CAGTACAATC	GGTCGACTCT	GATCCCCTAT	GAGATCTCCC	GACGGATCGG
120	GAGTAGTGCG	GGAGGTCGCT	CTTGTGTGTT	CTGCTCCCTG	AAGCCAGTAT	CCGCATAGTT
180	AAGAATCTGC	CAATTGCATG	GCTTGACCGA	ACAAGGCAAG	TTAAGCTACA	CGAGCAAAAT
240	CGTTGACATT	CAGATATACG	ATGTACGGGC	CTGCTTCGCG	GCGTTTTGCG	TTAGGGTTAG
300	AGCCCATATA	ATTAGTTCAT	TTACGGGGTC	TAGTAATCAA	ТАСТТАТТАА	GATTATTGAC

TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	360
CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA	GGGACTTTCC	420
ATTGACGTCA	ATGGGTGGAC	TATTTACGGT	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	480
ATCATATGCC	AAGTACGCCC	CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	540
ATGCCCAGTA	CATGACCTTA	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	600
TCGCTATTAC	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG	660
ACTCACGGGG	ATTTCCAAGT	CTCCACCCCA	TTGACGTCAA	TGGGAGTTTG	TTTTGGCACC	720
AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ACAACTCCGC	CCCATTGACG	CAAATGGGCG	780
GTAGGCGTGT	ACGGTGGGAG	GTCTATATAA	GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	840
CTGCTTACTG	GCTTATCGAA	ATTAATACGA	CTCACTATAG	GGAGACCCAA	GCTGGCTAGC	900
GTTTAAACGG	GCCCTCTAGA	CTCGAGCGGC	CGCCACTGTG	CTGGATATCT	GCAGAATTCG	960
GCTTGGGATG	ACGCCTCCTC	CGCCCGGACG	TGCCGCCCC	AGCGCACCGC	GCGCCCGCGT	1020
CCCTGGCCCG	CCGGCTCGGT	TGGGGCTTCC	GCTGCGGCTG	CGGCTGCTGC	TGCTGCTCTG	1080
GGCGGCCGCC	GCCTCCGCCC	AGGGCCACCT	AAGGAGCGGA	CCCCGCATCT	TCGCCGTCTG	1140
GAAAGGCCAT	GTAGGGCAGG	ACCGGGTGGA	CTTTGGCCAG	ACTGAGCCGC	ACACGGTGCT	1200
TTTCCACGAG	CCAGGCAGCT	CCTCTGTGTG	GGTGGGAGGA	CGTGGCAAGG	TCTACCTCTT	1260
TGACTTCCCC	GAGGGCAAGA	ACGCATCTGT	GCGCACGGTG	AATATCGGCT	CCACAAAGGG	1320
GTCCTGTCTG	GATAAGCGGG	ACTGCGAGAA	CTACATCACT	CTCCTGGAGA	GGCGGAGTGA	1380
GGGGCTGCTG	GCCTGTGGCA	CCAACGCCCG	GCACCCCAGC	TGCTGGAACC	TGGTGAATGG	1440
CACTGTGGTG	CCACTTGGCG	AGATGAGAGG	CTACGCCCCC	TTCAGCCCGG	ACGAGAACTC	1500
CCTGGTTCTG	TTTGAAGGGG	ACGAGGTGTA	TTCCACCATC	CGGAAGCAGG	AATACAATGG	1560
GAAGATCCCT	CGGTTCCGCC			CTGTACACCA	GTGATACTGT	1620
CATGCAGAAC	CCACAGTTCA		•	CAAGACCAGG	CTTACGATGA	1680
CAAGATCTAC	TACTTCTTCC	GAGAGGACAA	TCCTGACAAG	AATCCTGAGG	CTCCTCTCAA	1740
TGTGTCCCGT	GTGGCCCAGT	TGTGCAGGGG	GGACCAGGGT	GGGGAAAGTT	CACTGTCAGT	1800
CTCCAAGTGG		TGAAAGCCAT		AGTGATGCTG	CCACCAACAA	1860
GAACTTCAAC				CCCAGCGGCC	AGTGGAGGGA	1920
CACCAGGGTC	TATGGTGTTT	TCTCCAACCC	CTGGAACTAC	TCAGCCGTCT	GTGTGTATTC	1980
CCTCGGTGAC	ATTGACAAGG	TCTTCCGTAC	CTCCTCACTC	AAGGGCTACC	ACTCAAGCCT	2040

	•	· t			*		
			•				
TCCCAACCCG	CGGCCTGGCA	AGTGCCTCCC	AGACCAGCAG	CCGATACCCA	CAGAGACCTT	2100	
CCAGGTGGCT	GACCGTCACC	CAGAGGTGGC	GCAGAGGGTG	GAGCCCATGG	GGCCTCTGAA	2160	•
GACGCCATTG	TTCCACTCTA	AATACCACTA	CCAGAAAGTG	GCCGTTCACC	GCATGCAAGC	2220	
CAGCCACGGG	GAGACCTTTC	ATGTGCTTTA	CCTAACTACA	GACAGGGCA	CTATCCACAA	2280	
GGTGGTGGAA	CCGGGGGAGC	AGGAGCACAG	CTTCGCCTTC	AACATCATGG	AGATCCAGCC	2340	
CTTCCGCCGC	GCGGCTGCCA	TCCAGACCAT	GTCGCTGGAT	GCTGAGCGGA	GGAAGCTGTA	2400	
TGTGAGCTCC	CAGTGGGAGG	TGAGCCAGGT	GCCCCTGGAC	CTGTGTGAGG	TCTATGGCGG	2460	i i i i i i i i i i i i i i i i i i i
GGGCTGCCAC	GGTTGCCTCA	TGTCCCGAGA	CCCCTACTGC	GGCTGGGACC	AGGGCCGCTG	2520	
CATCTCCATC	TACAGCTCCG	AACGGTCAGT	GCTGCAATCC	ATTAATCCAG	CCGAGCCACA	2580	
CAAGGAGTGT	CCCAACCCCA	AACCAGACAA	GGCCCCACTG	CAGAAGGTTT	CCCTGGCCCC	2640	er .
AAACTCTCGC	TACTACCTGA	GCTGCCCCAT	GGAATCCCGC	CACGCCACCT	ACTCATGGCG	2700	
CCACAAGGAG	AACGTGGAGC	AGAGCTGCGA	ACCTGGTCAC	CAGAGCCCCA	ACTGCATCCT	2760	
GTTCATCGAG	AACCTCACGG	CGCAGCAGTA	CGGCCACTAC	TTCTGCGAGG	CCCAGGAGGG	2820	
CTCCTACTTC	CGCGAGGCTC	AGCACTGGCA	GCTGCTGCCC	GAGGACGGCA	TCATGGCCGA	2880	V .
GCACCTGCTG	GGTCATGCCT	GTGCCCTGGC	TGCCTCCCTC	TGGCTGGGGG	TGCTGCCCAC	2940	
ACTCACTCTT	GGCTTGCTGG	TCCACATGGT	GAGCAAGGGC	GAGGAGCTGT	TCACCGGGGT	3000	. •
GGTGCCCATC	CTGGTCGAGC	TGGACGCCGA	CGTAAACGGC	CACAAGTTCA	GCGTGTCCGG	3060	· 1
CGAGGGCGAG	GGCGATGCCA	CCTACGGCAA	GCTGACCCTG	AAGTTCATCT	GCACCACCGG	3120	
CAAGCTGCCC	GTGCCCTGGC	CCACCCTCGT	GACCACCCTG	ACCTACGGCG	TGCAGTGCTT	3180	
CAGCCGCTAC	CCCGACCACA	TGAAGCAGCA	CGACTTCTTC	AAGTCCGCCA	TGCCCGAAGG	3240	
CTACGTCCAG			GGACGACGGC		CCCGCGCCGA	3300	
GGTGAAGTTC					TCGACTTCAA	. 3360	
GGAGGACGGC	AACATCCTGG	GGCACAAGCT	GGAGTACAAC	TACAACAGCC	ACAACGTCTA	3420	•
TATCATGGCC	GACAAGCAGA	AGAACGGCAT	CAAGGTGAAC	TTCAAGATCC	GCCACAACAT	3480	
CGAGGACGGC	AGCGTGCAGC	TCGCCGACCA	CTACCAGCAG	AACACCCCCA	TCGGCGACGG	3540	
CCCCGTGCTG	CTGCCCGACA	ACCACTACCT	GAGCACCCAG	TCCGCCCTGA	GCAAAGACCC	3600	
CAACGAGAAG	G CGCGATCACA	TGGTCCTGCT	GGAGTTCGTG	ACCGCCGCCG	GGATCACTCT	3660	٠.
CGGCATGGAC	GAGCTGTACA	AGGTGAAGCT	TGGGCCCGAA	CAAAAACTCA	TCTCAGAAGA	3720	

X = 0 - 1 - 1

	GGATCTGAAT	AGCGCCGTCG	ACCATCATCA	TCATCATCAT	TGAGTTTAAA	CCGCTGATCA	3780	•
	GCCTCGACTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCCTCCCC	CGTGCCTTCC	3840	
	TTGACCCTGG	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG	3900	
	CATTGTCTGA	GTAGGTGTCA	TTCTATTCTG	GGGGGTGGGG	TGGGGCAGGA	CAGCAAGGGG	3960	
	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT	GGCTTCTGAG	4020	,
	GCGGAAAGAA	CCAGCTGGGG	CTCTAGGGGG	TATCCCCACG	CGCCCTGTAG	CGGCGCATTA	4080	• "
	AGCGCGGCGG	GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG	4140	
	CCCGCTCCTT	TCGCTTTCTT	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT	TCCCCGTCAA	4200	
	GCTCTAAATC	GGGGCATCCC	TTTAGGGTTC	CGATTTAGTG	CTTTACGGCA	CCTCGACCCC	4260	
	AAAAAACTTG	ATTAGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	4320	, Y
	CGCCCTTTGA	CGTTGGAGTC	CACGTTCTTT	AATAGTGGAC	TCTTGTTCCA	AACTGGAACA	4380	
	ACACTCAACC	CTATCTCGGT	CTATTCTTTT	GATTTATAAG	GGATTTTGGG	GATTTCGGCC	4440	
	TATTGGTTAA	AAAATGAGCT	GATTTAACAA	AAATTTAACG	CGAATTAATT	CTGTGGAATG	4500	
	TGTGTCAGTT	AGGGTGTGGA	AAGTCCCCAG	GCTCCCCAGG	CAGGCAGAAG	TATGCAAAGC	4560	(), o
	ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	4620	
	AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	4680	
	ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTT	4740	
	TTTATTTATG	CAGAGGCCGA	GGCCGCCTCT	GCCTCTGAGC	TATTCCAGAA	GTAGTGAGGA	4800	
•	GGCTTTTTTG	GAGGCCTAGG	CTTTTGCAAA	AAGCTCCCGG	GAGCTTGTAT	ATCCATTTTC	4860	
	GGATCTGATC	AAGAGACAGG	ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	TGGATTGCAC	4920	
	GCAGGTTCTC	CGGCCGCTTG	GGTGGAGAGG	CTATTCGGCT	ATGACTGGGC	ACAACAGACA	4980	
•	ATCGGCTGCT	CTGATGCCGC	CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	5040	;
	GTCAAGACCG	ACCTGTCCGG	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	5100	
	TGGCTGGCCA	CGACGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	5160	
	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	TCACCTTGCT	5220	
	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	5280	
	GCTACCTGCC	CATTCGACCA	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	TACTCGGATG	5340	
	GAAGCCGGTC	TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	5400	
	GAACTGTTCG	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	5460	

4

GGCGATGCCT GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	ATTCATCGAC	5520
TGTGGCCGGC TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	5580
GCTGAAGAGC TTGGCGGCGA	ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	5640
CCCGATTCGC AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC	5700
TGGGGTTCGA AATGACCGAC	CAAGCGACGC	CCAACCTGCC	ATCACGAGAT	TTCGATTCCA	5760
CCGCCGCCTT CTATGAAAGG	TTGGGCTTCG	GAATCGTTTT	CCGGGACGCC	GGCTGGATGA	5820
TCCTCCAGCG CGGGGATCTC	ATGCTGGAGT	TCTTCGCCCA	CCCCAACTTG	TTTATTGCAG	5880
CTTATAATGG TTACAAATAA	AGCAATAGCA	TCACAAATTT	CACAAATAAA	GCATTTTTTT	5940
CACTGCATTC TAGTTGTGGT	TTGTCCAAAC	TCATCAATGT	ATCTTATCAT	GTCTGTATAC	6000
CGTCGACCTC TAGCTAGAGC	TTGGCGTAAT	CATGGTCATA	GCTGTTTCCT	GTGTGAAATT	6060
GTTATCCGCT CACAATTCCA	CACAACATAC	GAGCCGGAAG	CATAAAGTGT	AAAGCCTGGG	6120
GTGCCTAATG AGTGAGCTAA	CTCACATTAA	TTGCGTTGCG	CTCACTGCCC	GCTTTCCAGT	6180
CGGGAAACCT GTCGTGCCAG	CTGCATTAAT	GAATCGGCCA	ACGCGCGGGG	AGAGGCGGTT	6240
TGCGTATTGG GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC	6300
TGCGGCGAGC GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	GAATCAGGGG	6360
ATAACGCAGG AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	CGTAAAAAGG	6420
CCGCGTTGCT GGCGTTTTTC	CATAGGCTCC	GCCCCCTGA	CGAGCATCAC	AAAAATCGAC	6480
GCTCAAGTCA GAGGTGGCGA	AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	6540
GAAGCTCCCT CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTCCGCCT	6600
TTCTCCCTTC GGGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT	CTCAGTTCGG	6660
TGTAGGTCGT TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	CCCGACCGCT	6720
GCGCCTTATC CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	6780
TGGCAGCAGC CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	GCTACAGAGT	6840
TCTTGAAGTG GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGCGCTC	6900
TGCTGAAGCC AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	AAACAAACCA	6960
CCGCTGGTAG CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	AAAAAAGGAT	7020
CTCAAGAAGA TCCTTTGATC	C TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	7080
GTTAAGGGAT TTTGGTCATG	G AGATTATCAA	AAAGGATCTT	CACCTAGATO	CTTTTAAATT	7140

AAAAATGA	AG	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC	7200
AATGCTTA	АТ	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	TCCATAGTTG	7260
CCTGACTC	CC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	GGCCCCAGTG	7320
CTGCAATG	АТ	ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	7380
CAGCCGGA	AG	GGCCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	7440
TTAATTGT	TG	CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	CGCAACGTTG	;7500
TTGCCATT	GC	TACAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	TCATTCAGCT	7560
CCGGTTCC	CA	ACGATCAAGG	CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	AAAGCGGTTA	7620
GCTCCTTC	GG	TCCTCCGATC	GTTGTCAGAA	GTAAGTTGGC	CGCAGTGTTA	TCACTCATGG	7680
TTATGGCA	.GC	ACTGCATAAT	TCTCTTACTG	TCATGCCATC	CGTAAGATGC	TTTTCTGTGA	7740
CTGGTGAG	TA	CTCAACCAAG	TCATTCTGAG	AATAGTGTAT	GCGGCGACCG	AGTTGCTCTT	7800
GCCCGGCG	TC	AATACGGGAT	AATACCGCGC	CACATAGCAG	AACTTTAAAA	GTGCTCATCA	7860
TTGGAAAA	.CG	TTCTTCGGGG	CGAAAACTCT	CAAGGATCTT	ACCGCTGTTG	AGATCCAGTT	7,920
CGATGTAA	.CC	CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	ACCAGCGTTT	7980
CTGGGTGA	.GC	AAAAACAGGA	AGGCAAAATG	CCGCAAAAAA	GGGAATAAGG	GCGACACGGA	8040
AATGTTGA	АТ	ACTCATACTC	TTCCTTTTTC	ААТАТТАТТG	AAGCATTTAT	CAGGGTTATT	8100
GTCTCATG	AG	CGGATACATA	TTTGAATGTA	TTTAGAAAAA	TAAACAAATA	GGGGTTCCGC	8160
GCACATTT	CC	CÇGAAAAGTG	CCACCTGACG	TC			8192

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7000 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

 AGATCTCGGC	CGCATATTAA	GTGCATTGTT	CTCGATACCG	CTAAGTGCAT	TGTTCTCGTT	60
AGCTCGATGG	ACAAGTGCAT	TGTTCTCTTG	CTGAAAGCTC	GATGGACAAG	TGCATTGTTC	120
TCTTGCTGAA	AGCTCGATGG	ACAAGTGCAT	TGTTCTCTTG	CTGAAAGCTC	AGTACCCGGG	180

AGTACCCTCG ACCGCCGGAG TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT 240 TCAAACAAGC AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT 300 GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA AAAGTAACCA 360 GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA GAAGTAATTA TTGAATACAA 420 GAAGAGAACT CTGAATACTT TCAACAAGTT ACCGAGAAAG AAGAACTCAC ACACAGCTAG 480 CGTTTAAACT TAAGCTTGGT ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGGAATTCGG 540 CTTGGGATGA CGCCTCCTCC GCCCGGACGT GCCGCCCCA GCGCACCGCG CGCCCGCGTC 600 CCTGGCCCGC CGCTCGGTT GGGGCTTCCG CTGCGGCTGC GGCTGCTGCT GCTGCTCTGG 660 GCGGCCGCCG CCTCCGCCCA GGGCCACCTA AGGAGCGGAC CCCGCATCTT CGCCGTCTGG 720 AAAGGCCATG TAGGGCAGGA CCGGGTGGAC TTTGGCCAGA CTGAGCCGCA CACGGTGCTT 780 TTCCACGAGC CAGGCAGCTC CTCTGTGTGG GTGGGAGGAC GTGGCAAGGT CTACCTCTTT 840 GACTTCCCCG AGGGCAAGAA CGCATCTGTG CGCACGGTGA ATATCGGCTC CACAAAGGGG 900 TCCTGTCTGG ATAAGCGGGA CTGCGAGAAC, TACATCACTC TCCTGGAGAG GCGGAGTGAG 960 GGGCTGCTGG CCTGTGGCAC CAACGCCCGG CACCCCAGCT GCTGGAACCT GGTGAATGGC 1020 ACTGTGGTGC CACTTGGCGA GATGAGAGGC TACGCCCCCT TCAGCCCGGA CGAGAACTCC 1.080 CTGGTTCTGT TTGAAGGGGA CGAGGTGTAT TCCACCATCC GGAAGCAGGA ATACAATGGG 1140 AAGATCCCTC GGTTCCGCCG CATCCGGGGC GAGAGTGAGC TGTACACCAG TGATACTGTC 1200 ATGCAGAACC CACAGTTCAT CAAAGCCACC ATCGTGCACC AAGACCAGGC TTACGATGAC 1260 AAGATCTACT ACTTCTTCCG AGAGGACAAT CCTGACAAGA ATCCTGAGGC TCCTCTCAAT 1320 1380 GTGTCCCGTG TGGCCCAGTT GTGCAGGGGG GACCAGGGTG GGGAAAGTTC ACTGTCAGTC TCCAAGTGGA ACACTTTTCT GAAAGCCATG CTGGTATGCA GTGATGCTGC CACCAACAAG 1440 AACTTCAACA GGCTGCAAGA CGTCTTCCTG CTCCCTGACC CCAGCGGCCA GTGGAGGGAC 1500 ACCAGGGTCT ATGGTGTTTT CTCCAACCCC TGGAACTACT CAGCCGTCTG TGTGTATTCC 1560 CTCGGTGACA TTGACAAGGT CTTCCGTACC TCCTCACTCA AGGGCTACCA CTCAAGCCTT 1620 CCCAACCGC GGCCTGGCAA GTGCCTCCCA GACCAGCAGC CGATACCCAC AGAGACCTTC 1680 CAGGTGGCTG ACCGTCACCC AGAGGTGGCG CAGAGGGTGG AGCCCATGGG GCCTCTGAAG 1740 ACGCCATTGT TCCACTCTAA ATACCACTAC CAGAAAGTGG CCGTTCACCG CATGCAAGCC 1800 AGCCACGGGG AGACCTTTCA TGTGCTTTAC CTAACTACAG ACAGGGGCAC TATCCACAAG 1860 GTGGTGGAAC CGGGGGAGCA GGAGCACAGC TTCGCCTTCA ACATCATGGA GATCCAGCCC 1920

TTCCGCCGCG CGGCTGCCAT CCAGACCATG TCGCTGGATG CTGAGCGGAG GAAGCTGTAT 1980 GTGAGCTCCC AGTGGGAGGT GAGCCAGGTG CCCCTGGACC TGTGTGAGGT CTATGGCGGG 2040 GGCTGCCACG GTTGCCTCAT GTCCCGAGAC CCCTACTGCG GCTGGGACCA GGGCCGCTGC 2100 ATCTCCATCT ACAGCTCCGA ACGGTCAGTG CTGCAATCCA TTAATCCAGC CGAGCCACAC 2160 AAGGAGTGTC CCAACCCCAA ACCAGACAAG GCCCCACTGC AGAAGGTTTC CCTGGCCCCA 2220 AACTCTCGCT ACTACCTGAG CTGCCCCATG GAATCCCGCC ACGCCACCTA CTCATGGCGC 2280 CACAAGGAGA ACGTGGAGCA GAGCTGCGAA CCTGGTCACC AGAGCCCCAA CTGCATCCTG 2340 TTCATCGAGA ACCTCACGGC GCAGCAGTAC GGCCACTACT TCTGCGAGGC CCAGGAGGGC 2400 TCCTACTTCC GCGAGGCTCA GCACTGGCAG CTGCTGCCCG AGGACGGCAT CATGGCCGAG 2460 CACCTGCTGG GTCATGCCTG TGCCCTGGCT GCCTCCCTCT GGCTGGGGGT GCTGCCCACA 2520 CTCACTCTTG GCTTGCTGGT CCACGTGAAG CTTGGGCCCG TTTAAACCCG CTGATCAGCC 2580 TCGACTGTGC CTTCTAGTTG CCAGCCATCT GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG 2640 ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT 2700 2760 GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGC TTCTGAGGCG 2820 GAAAGAACCA GCTGGGGCTC TAGGGGGTAT CCCCACGCGC CCTGTAGCGG CGCATTAAGC 2880 GCGGCGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC 2940 GCTCCTTTCG CTTTCTTCCC TTCCTTTCTC GCCACGTTCG CCGGCTTTCC CCGTCAAGCT 3000 CTAAATCGGG GCATCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCCAAA 3060 AAACTTGATT AGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCGC 3120 CCTTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC TGGAACAACA 3180 CTCAACCCTA TCTCGGTCTA TTCTTTTGAT TTATAAGGGA TTTTGGGGAT TTCGGCCTAT . 3240 TGGTTAAAAA ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTAATTCTG TGGAATGTGT 3300 GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT CCCCAGGCAG GCAGAAGTAT GCAAAGCATG 3360 CATCTCAATT AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT 3420 ATGCAAAGCA TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCTAAC TCCGCCCATC 3480 CCGCCCTAA CTCCGCCCAG TTCCGCCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTT 3540 ATTTATGCAG AGGCCGAGGC CGCCTCTGCC TCTGAGCTAT TCCAGAAGTA GTGAGGAGGC 3600

TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTCCCGGGAG CTTGTATATC CATTTTCGGA 3660 TCTGATCAAG AGACAGGATG AGGATCGTTT CGCATGATTG AACAAGATGG ATTGCACGCA 3720 GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA TTCGGCTATG ACTGGGCACA ACAGACAATC 3780 GGCTGCTCTG ATGCCGCCGT GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTTGTC 3840 AAGACCGACC TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG 3900 CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA AGCGGGAAGG 3960 GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC TGTCATCTCA CCTTGCTCCT 4020 GCCGAGAAAG TATCCATCAT GGCTGATGCA ATGCGGCGGC TGCATACGCT TGATCCGGCT 4080 ACCTGCCCAT TCGACCACCA AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA 4140 GCCGGTCTTG TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA 4200 CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG ATCTCGTCGT GACCCATGGC 4260 GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT TTTCTGGATT CATCGACTGT 4320 GGCCGCTGG GTGTGCCGA CCGCTATCAG GACATAGCGT TGGCTACCCG TGATATTGCT 4380 GAAGAGCTTG GCGGCGAATG GGCTGACCGC TTCCTCGTGC TTTACGGTAT CGCCGCTCCC 4440 GATTCGCAGC GCATCGCCTT CTATCGCCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG 4500 GGTTCGAAAT GACCGACCAA GCGACGCCCA ACCTGCCATC ACGAGATTTC GATTCCACCG 4560 CCGCCTTCTA TGAAAGGTTG GGCTTCGGAA TCGTTTTCCG GGACGCCGGC TGGATGATCC 4620 TCCAGCGCGG GGATCTCATG CTGGAGTTCT TCGCCCACCC CAACTTGTTT ATTGCAGCTT 4680 4740 ATAATGGTTA CAAATAAAGC AATAGCATCA CAAATTTCAC AAATAAAGCA TTTTTTTCAC TGCATTCTAG TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGTATACCGT 4800 CGACCTCTAG CTAGAGCTTG GCGTAATCAT GGTCATAGCT GTTTCCTGTG TGAAATTGTT 4860 ATCCGCTCAC AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG 4920 CCTAATGAGT GAGCTAACTC ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG 4980 GAAACCTGTC GTGCCAGCTG CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC 5040 GTATTGGGCG CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC 5100 5160 GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG 5220 5280 CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA 5340

GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	5400
TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	TAGGTATCTC	AGTTCGGTGT	5460
AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	GACCGCTGCG	5520
CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	5580
CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	5640
TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	5700
TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	CAAACCACCG	5760
CTGGTAGCGG	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	AAAGGATCTC	5820
AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	5880
AAGGGATTTT	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	CTÄGATCCTT	TTAAATTAAA	5940
AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	6000
GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	ATAGTTGCCT	6060
GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	CCCAGTGCTG	6120
CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	6180
CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	CAGTCTATTA	6240
ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	6300
CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	6360
GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAAA	GCGGTTAGCT	6420
CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	CTCATGGTTA	6480
TGGCAGCACT	GCATAATTCT	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	TCTGTGACTG	6540
GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGCC	6600
CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	CTCATCATTG	6660
GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	GCTGTTGAGA	TCCAGTTCGA	6720
TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	TACTTTCACC	AGCGTTTCTG	6780
GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT	6840
GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	GGTTATTGTC	6900
TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCCGCGCA	6960
CATTTCCCCG	AAAAGTGCCA	CCTGACGTCG	ACGGATCGGG			7000

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7108 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

AGATCTCGGC	CGCATATTAA	GTGCATTGTT	CTCGATACCG	CTAAGTGCAT	TGTTCTCGTT	60
AGCTCGATGG	ACAAGTGCAT	TGTTCTCTTG	CTGAAAGCTC	GATGGACAAG	TGCATTGTTC	120
TCTTGCTGAA	AGCTCGATGG	ACAAGTGCAT	TGTTCTCTTG	CTGAAAGCTC	AGTACCCGGG	180
AGTACCCTCG	ACCGCCGGAG	TATAAATAGA	GGCGCTTCGT	CTACGGAGCG	ACAATTCAAT	240
TCAAACAAGC	AAAGTGAACA	CGTCGCTAAG	CGAAAGCTAA	GCAAATAAAC	AAGCGCAGCT	300
GAACAAGCTA	AACAATCTGC	AGTAAAGTGC	AAGTTAAAGT	GAATCAATTA	AAAGTAACCA	360
GCAACCAAGT	AAATCAACTG	CAACTACTGA	AATCTGCCAA	GAAGTAATTA	TTGAATACAA	420
GAAGAGAACT	CTGAATACTT	TCAACAAGTT	ACCGAGAAAG	AAGAACTCAC	ACACAGCTAG	480
CGTTTAAACT	TAAGCTTGGT	ACCGAGCTCG	GATCCACTAG	TCCAGTGTGG	TGGAATTCGG	540
CTTGGGATGA	CGCCTCCTCC	GCCCGGACGT	GCCGCCCCA	GCGCACCGCG	CGCCCGCGTC	600
CCTGGCCCGC	CGGCTCGGTT	GGGGCTTCCG	CTGCGGCTGC	GGCTGCTGCT	GCTGCTCTGG	660
GCGGCCGCCG	CCTCCGCCCA	GGGCCACCTA	AGGAGCGGAC	CCCGCATCTT	CGCCGTCTGG	720
AAAGGCCATG	TAGGGCAGGA	CCGGGTGGAC	TTTGGCCAGA	CTGAGCCGCA	CACGGTGCTT	780
TTCCACGAGC	CAGGCAGCTC	CTCTGTGTGG	GTGGGAGGAC	GTGGCAAGGT	CTACCTCTTT	840
GACTTCCCCG	AGGGCAAGAA	CGCATCTGTG	CGCACGGTGA	ATATCGGCTC	CACAAAGGGG	. 900
TCCTGTCTGG	ATAAGCGGGA	CTGCGAGAAC	TACATCACTC	TCCTGGAGAG	GCGGAGTGAG	960
GGGCTGCTGG	CCTGTGGCAC	CAACGCCCGG	CACCCCAGCT	GCTGGAACCT	GGTGAATGGC	1020
ACTGTGGTGC	CACTTGGCGA	GATGAGAGGC	TACGCCCCCT	TCAGCCCGGA	CGAGAACTCC	1080
CTGGTTCTGT	TTGAAGGGGA	CGAGGTGTAT	TCCACCATCC	GGAAGCAGGA	ATACAATGGG	1140
AAGATCCCTC	GGTTCCGCCG	CATCCGGGGC	GAGAGTGAGC	TGTACACCAG	TGATACTGTC	1200
ATGCAGAACC	CACAGTTCAT	CAAAGCCACC	ATCGTGCACC	AAGACCAGGC	TTACGATGAC	1260

1		, 12			,		
	•	•					
AAGATCTACT	ACTTCTTCCG	AGAGGACAAT	CCTGACAAGA	ATCCTGAGGC	TCCTCTCAAT	1320	
GTGTCCCGTG	TGGCCCAGTT	GTGCAGGGGG	GACCAGGGTG	GGGAAAGTTC	ACTGTCAGTC	1380	,
TCCAAGTGGA	ACACTTTTCT	GAAAGCCATG	CTGGTATGCA	GTGATGCTGC	CACCAACAAG	1440	
AACTTCAACA	GGCTGCAAGA	CGTCTTCCTG	CTCCCTGACC	CCAGCGGCCA	GTGGAGGGAC	1500	
ACCAGGGTCT	ATGGTGTTTT	CTCCAACCCC	TGGAACTACT	CAGCCGTCTG	TGTGTATTCC	1560	
CTCGGTGACA	TTGACAAGGT	CTTCCGTACC	TCCTCACTCA	AGGGCTACCA	CTCAAGCCTT	1620	• •
CCCAACCCGC	GGCCTGGCAA	GTGCCTCCCA	GACCAGCAGC	CGATACCCAC	AGAGACCTTC	1680	
CAGGTGGCTG	ACCGTCACCC	AGAGGTGGCG	CAGAGGGTGG	AGCCCATGGG	GCCTCTGAAG	1740	
ACGCCATTGT	TCCACTCTAA	ATACCACTAC	CAGAAAGTGG	CCGTTCACCG	CATGCAAGCC	1800	8,
AGCCACGGGG	AGACCTTTCA	TGTGCTTTAC	CTAACTACAG	ACAGGGGCAC	TATCCACAAG	1860	
GTGGTGGAAC	CGGGGGAGCA	GGAGCACAGC	TTCGCCTTCA	ACATCATGGA	GATCCAGCCC	1920	
TTCCGCCGCG	CGGCTGCCAT	CCAGACCATG	TCGCTGGATG	CTGAGCGGAG	GAAGCTGTAT	1980	
GTGAGCTCCC	AGTGGGAGGT	GAGCCAGGTG	CCCCTGGACC	TGTGTGAGGT	CTATGGCGGG	2040	
GGCTGCCACG	GTTGCCTCAT	GTCCCGAGAC	CCCTACTGCG	GCTGGGACCA	GGGCCGCTGC	2100	
ATCTCCATCT	ACAGCTCCGA	ACGGTCAGTG	CTGCAATCCA	TTAATCCAGC	CGAGCCACAC	2160	
AAGGAGTGTC	CCAACCCCAA	ACCAGACAAG	GCCCCACTGC	AGAAGGTTTC	CCTGGCCCCA	2220	
AACTCTCGCT	ACTACCTGAG	CTGCCCCATG	GAATCCCGCC	ACGCCACCTA-	CTCATGGCGC	2280	
CACAAGGAGA	ACGTGGAGCA	GAGCTGCGAA	CCTGGTCACC	AGAGCCCCAA	CTGCATCCTG	2340	
TTCATCGAGA	ACCTCACGGC	GCAGCAGTAC	GGCCACTACT	TCTGCGAGGC	CCAGGAGGGC	2400	·
TCCTACTTCC	GCGAGGCTCA	GCACTGGCAG	CTGCTGCCCG	AGGACGGCAT	CATGGCCGAG	2460	
CACCTGCTGG	GTCATGCCTG	TGCCCTGGCT		GGCTGGGGGT	GCTGCCCACA	2520	
CTCACTCTTG	GCTTGCTGGT	CCACGTGAAG	CTTGGGCCCG	AACAAAAACT	CATCTCAGAA	2580	
GAGGATCTGA	ATAGCGCCGT	CGACCATCAT	CATCATCATC	ATTGAGTTTA	TCCAGCACAG	2640	•
TGGCGGCCGC	TCGAGTCTAG	AGGGCCCGTT	TAAACCCGCT	GATCAGCCTC	GACTGTGCCT	2700	
TCTAGTTGCC	AGCCATCTGT	TGTTTGCCCC	TCCCCCGTGC	CTTCCTTGAC	CCTGGAAGGT	2760	
GCCACTCCCA	CTGTCCTTTC	CTAATAAAAT	GAGGAAATTG	CATCGCATTG	TCTGAGTAGG	2820	
TGTCATTCTA	TTCTGGGGGG	TGGGGTGGGG	CAGGACAGCA	AGGGGGAGGA	TTGGGAAGAC	2880	
AATAGCAGGC	ATGCTGGGGA	TGCGGTGGGC	TCTATGGCTT	CTGAGGCGGA	AAGAACCAGC	2940	
TGGGGCTCTA	GGGGGTATCC	CCACGCGCCC	TGTAGCGGCG	CATTAAGCGC	GGCGGGTGTG	3000	

GTGGTTACGC _,	GCAGCGTGAC	CGCTACACTT	GCCAGCGCCC	TAGCGCCCGC	TCCTTTCGCT	3060
TTCTTCCCTT	CCTTTCTCGC	CACGTTCGCC	GGCTTTCCCC	GTCAAGCTCT	AAATCGGGGC	3120
ATCCCTTTAG	GGTTCCGATT	TAGTGCTTTA	CGGCACCTCG	ACCCCAAAAA	ACTTGATTAG	3180
GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	TGATAGACGG	TTTTTCGCCC	TTTGACGTTG	3240
GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	TTCCAAACTG	GAACAACACT	CAACCCTATC	3300
TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	TTGGGGATTT	CGGCCTATTG	GTTAAAAAAT	3360
GAGCTGATTT	AACAAAAATT	TAACGCGAAT	TAATTCTGTG	GAATGTGTGT	CAGTTAGGGT	3420
GTGGAAAGTC	CCCAGGCTCC	CCAGGCAGGC	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	3480
TCAGCAACCA	GGTGTGGAAA	GTCCCCAGGC	TCCCCAGCAG	GCAGAAGTAT	GCAAAGCATG	3540
CATCTCAATT	AGTCAGCAAC	CATAGTCCCG	CCCCTAACTC	CGCCCATCCC	GCCCCTAACT	3600
CCGCCCAGTT	CCGCCCATTC	TCCGCCCCAT	GGCTGACTAA	TTTTTTTTAT	TTATGCAGAG	3660
GCCGAGGCCG	CCTCTGCCTC	TGAGCTATTC	CAGAAGTAGT	GAGGAGGCTT	TTTTGGAGGC	3720
CTAGGCTTTT	GCAAAAAGCT	CCCGGGAGCT	TGTATATCCA	TTTTCGGATC	TGATCAAGAG	3780
ACAGGATGAG	GATCGTTTCG	CATGATTGAA	CAAGATGGAT	TGCACGCAGG	TTCTCCGGCC	3840
GCTTGGGTGG	AGAGGCTATT	CGGCTATGAC	TGGGCACAAC	AGACAATCGG	CTGCTCTGAT	3900
GCCGCCGTGT	TCCGGCTGTC	AGCGCAGGGG	CGCCCGGTTC	TTTTTGTCAA	GACCGACCTG	3960
TCCGGTGCCC	TGAATGAACT	GCAGGACGAG	GCAGCGCGGC	TATCGTGGCT	GGCCACGACG	4020
GGCGTTCCTT	GCGCAGCTGT	GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	CTGGCTGCTA	4080
TTGGGCGAAG	TGCCGGGGCA	GGATCTCCTG	TCATCTCACC	TTGCTCCTGC	CGAGAAAGTA	4140
TCCATCATGG	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	CTGCCCATTC	4200
GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC	CGGTCTTGTC	4260
GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC	CAGCCGAACT	GTTCGCCAGG.	4320
CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT	CTCGTCGTGA	CCCATGGCGA	TGCCTGCTTG	4380
CCGAATATCA	TGGTGGAAAA	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	CCGGCTGGGT	4440
GTGGCGGACC	GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	AGAGCTTGGC	4500
GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA	TTCGCAGCGC	4560
ATCGCCTTCT	ATCGCCTTCT	' TGACGAGTTC	TTCTGAGCGG	GACTCTGGGG	TTCGAAATGA	4620
CCGACCAAGC	GACGCCCAAC	CTGCCATCAC	GAGATTTCGA	TTCCACCGCC	GCCTTCTATG	4680

٠., .

AAAGGTTGGG	CTTCGGAATC	GTTTTCCGGG	ACGCCGGCTG	GATGATCCTC	CAGCGCGGG	4740	
ATCTCATGCT	GGAGTTCTTC	GCCCACCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA	4800	
AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG	CATTCTAGTT	4860	٠.
GTGGTTTGTC	CAAACTCATC	AATGTATCTT	ATCATGTCTG	TATACCGTCG	ACCTCTAGCT	4920	*
AGAGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	AAATTGTTAT	CCGCTCACAA	4980	
TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	5040	
GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	5100	
GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	5160	
CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	5220	
CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	5280	
ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	5340	
TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	TCGACGCTCA	AGTCAGAGGT	5400	
GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC	TCCCTCGTGC	5460	
GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	5520	
GCGTGGCGCT	TTCTCAATGC	TCACGCTGTA	GGTATCTCAG	TTCGGTGTAG	GTCGTTCGCT	5580	
CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	5640	
ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	GCCACTGGCA	GCAGCCACTG	5700	
GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	GCGGTGCTAC	AGAGTTCTTG	AAGTGGTGGC	5760	
CTAACTACGG	CTACACTAGA	AGGACAGTAT	TTGGTATCTG	CGCTCTGCTG	AAGCCAGTTA	5820	
CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	AACCACCGCT	GGTAGCGGTG	5880	
GTTTTTTGT	TTGCAAGCAG	CAGATTACGĊ	GCAGAAAAA	AĞĞATCTCAA	GAAGATCCTT	5940	
TGATCTTTTC	TACGGGGTCT	GACGCTCAGT	GGĀĀĊGĀĀĀĀ	CTCACGTTAA	GGGATTTTGG	6000	
TCATGAGATT	ÄTCAAAAAGG	ATCTTCACCT	AGATCCTTTT	АААТТАААА	TGAAGTTTTA	6060	١
AATCAATCTA	AAGTATATAT	GAGTAAACTT	GGTCTGACAG	ŤTACCAATGĊ	TTAATCAGTG	6120	
AGGCACCTAT	CTCAGCGATC	TGTCTATTTC	GTTCATCCAT	AGTTGCCTGA	CTCCCCGTCG	6180	
TGTAGATAAC	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	CAGTGCTGCA	ATGATACCGC	6240	
GAGACCCACG	CTCACCGGCT	CCAGATTTAT	CAGCAATAAA	CCAGCCAGCC	GGAAGGGCCG	6300	
AGCGCAGAAG	TGGTCCTGCA	ACTTTATCCG	CCTCCATCCA	GTCTATTAAT	TGTTGCCGGG	.6360	
AAGCTAGAGT	AAGTAGTTCG	CCAGTTAATA	GTTTGCGCAA	CGTTGTTGCC	ATTGCTACAG	6420	

GCATCGTGGT	GTCACGCTCG	TCGTTTGGTA	TGGCTTCATT	CAGCTCCGGT	TCCCAACGAT	6480
CAAGGCGAGT	TACATGATCC	CCCATGTTGT	GCAAAAAAGC	GGTTAGCTCC	TTCGGTCCTC	6540
CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG	TGTTATCACT	CATGGTTATG	GCAGCACTGC	6600
ATAATTCTCT	TACTGTCATG	CCATCCGTAA	GATGCTTTTC	TGTGACTGGT	GAGTACTCAA	6660
CCAAGTCATT	CTGAGAATAG	TGTATGCGGC	GACCGAGTTG	CTCTTGCCCG	GCGTCAATAC	6720
GGGATAATAC	CGCGCCACAT	AGCAGAACTT	TAAAAGTGCT	CATCATTGGA	AAACGTTCTT	6780
CGGGGCGAAA	ACTCTCAAGG	ATCTTACCGC	TGTTGAGATC	CAGTTCGATG	TAACCCACTC	6840
GTGCACCCAA	CTGATCTTCA	GCATCTTTTA	CTTTCACCAG	CGTTTCTGGG	TGAGCAAAAA	6900
CAGGAAGGCA	AAATGCCGCA	AAAAAGGGAA	TAAGGCCGAC	ACGGAAATGT	TGAATACTCA	6960
TACTCTTCCT	TTTTCAATAT	TATTGAAGCA	TTTATCAGGG	TTATTGTCTC	ATGAGCGGAT	7020
ACATATTTGA	ATGTATTTAG	АААААТАААС	AAATAGGGGT	TCCGCGCACA	TTTCCCCGAA	7080
AAGTGCCACC	TGACGTCGAC	GGATCGGG				7108

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4019 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTCGAGAAAT	CATAAAAAAT	TTATTTGCTT	TGTGAGCGGA	TAACAATȚAT	AATAGATTCA	60
ATTGTGAGCG	GATAACAATT	TÇACACAGAA	TTCATTAAAG	AGGAGAAATT	AACTATGAGA	120
GGATCGCATC	ACCATCACCA	TCACGGATCC	CTGGTTCTGT	TTGAAGGGGA	CGAGGTGTAT	180
TCCACCATCC	GGAAGCAGGA	ATACAATGGG	AAGATCCCTC	GGTŢĊCGCCG	CATCCGGGGC	240
GAGAGTGAGC	TGTACACCAG	TGATACTGTC	ATGCAGAACC	CACAGTTCAT	CAAAGCCACC	300
 ATCGTGCACC	AAGACCAGGC	TTACGATGAC	AAGATCTACT	ACTTCTTCCG	AGAGGACAAT	360
CCTGACAAGA	ATCCTGAGGC	TCCTCTCAAT	GTGTCCCGTG	TGGCCCAGTT	GTGCAGGGGG	420
GACCAGGGTG	GGGAAAGTTC	ACTGTCAGTC	TCCAAGTGGA	ACACTTTTCT	GAAAGCCATG	480
CTGGTATGCA	GTGATGCTGC	CACCAACAAG	AACTTCAACA	GGCTGCAAGA	CGTCTTCCTG	540

CTCCCTGACC	CCAGCGGCCA	GTGGAGGGAC	ACCAGGGTCT	ATGGTGTTTT	CTCCAACCCC	600	
TGGAACTACT	CAGCCGTCTG	TGTGTATTCC	CTCGGTGACA	TTGACAAGGT	CTTCCGTACC	660	
TCCTCACTCA	AGGGCTACCA	CTCAAGCCTT	CCCAACCCGC	GGCCTGGCAA	GTGCCTCCCA	720	
GACCAGCAGC	CGATACCCAC	AGAAAGCTTA	ATTAGCTGAG	CTTGGACTCC	TGTTGATAGA	780	
TCCAGTAATG	ACCTCAGAAC	TCCATCTGGA	TTTGTTCAGA	ACGCTCGGTT	GCCGCCGGGÇ	840	
GTTTTTTATT	GGTGAGAATC	CAAGCTAGCT	TGGCGAGATT	TTCAGGAGCT	AAGGAAGCTA	900	
AAATGGAGAA	AAAAATCACT	GGATATACCA	CCGTTGATAT	ATCCCAATGG	CATCGTAAAG	960	
AACATTTTGA	GGCATTTCAG	TCAGTTGCTC	AATGTACCTA	TAACCAGACC	GTTCAGCTGG	1020	
ATATTACGGC	CTTTTTAAAG	ACCGTAAAGA	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	1080	`~j`
TTCACATTCT	TGCCCGCCTG	ATGAATGCTC	ATCCGGAATT	TCGTATGGCA	ATGAAAGACG	1140	
GTGAGCTGGT	GATATGGGAT	AGTGTTCACC	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG	1200	
AAACGTTTTC	ATCGCTCTGG	AGTGAATACC	ACGACGATTT	CCGGCAGTTT	СТАСАСАТАТ	1260	
ATTCGCAAGA	TGTGGCGTGT	TACGGTGAAA	ACCTGGCCTA	TTTCCCTAAA	GGGTTTATTG	1320	•
AGAATATGTT	TTTCGTCTCA	GCCAATCCCT	GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	1380	
TGGCCAATAT	GGACAACTTC	TTCGCCCCCG	TTTTCACCAT	GGGCAAATAT	TATACGCAAG	1440	•
GCGACAAGGT	GCTGATGCCG	CTGGCGATTC	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC	1500	
ATGTCGGCAG	AATGCTTAAT	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG	GGCGGGGGT	1560	
AATTTTTTTA	AGGCAGTTAT	TGGTGCCCTT	AAACGCCTGG	GGTAATGACT	CTCTAGCTTG	1620	
AGGCATCAAA	TAAAACGAAA	GGCTCAGTCG	AAAGACTGGG	CCTTTCGTTT	TATCTGTTGT	1680	
TTGTCGGTGA	ACGCTCTCCT	GAGTAGGACA	AATCCGCCGC	TCTAGAGCTG	CCTCGCGCGT	1740	
TTCGGTGATG	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	1800	
CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	1860	
TGTCGGGGCG	CAGCCATGAC	CCAGTCACGT	AGCGATAGCG	GAGTGTATAC	TGGCTTAACT	1920	
ATGCGGCATC	AGAGCAGATT	GTACTGAGAG	TGCACCATAT	GCGGTGTGAA	ATACCGCACA	1980	
GATGCGTAAG	GAGAAAATAC	CGCATCAGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	2040	
TGCGCTCGGT	CTGTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	2100	
TATCCACAGA	ATCAGGGGAT	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	2160	
CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCTGACG	2220	

	AGCATCACAA	AAATCGACGC	TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	2280
	ACCAGGCGTT	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	2340
	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT	2400
	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	2460
	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	2520
	GACACGACTT	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	2580
	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	2640
	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	2700
	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	2760
	CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	2820
	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	2880
	CCTAGATCCT	TTTAAATTA	AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	2940
٠.	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	3000
	TTCGTTCATC	CATAGCTGCC	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGCT	3060
	TACCATCTGG	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	3120
	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	3180
	CCGCCTCCAT	CCAGTCTATT	AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	3240
	ATAGTTTGCG	CAACGTTGTT	GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	3300
	GTATGGCTTC	ATTCAGCTCC	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	3360
	TGTGCAAAAA	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	3420
	CAGTGTTATC		ATGGCAGCAC		TCTTACTGTC	ATGCCATCCG	3480
	TAAGATGCTT				ATTCTGAGAA	TAGTGTATGC	3540
	GGCGACCGAG	TTGCTCTTGC	CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	3600
	CTTTAAAAGT	GCTCATCATT	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	3660
	CGCTGTTGAG	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT	3720
. (TTACTTTCAC	CAGCGTTTCT	GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	3780
	GAATAAGGGC	GACACGGAAA	TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	TATTATTGAA	3840
	GCATTTATCA	GGGTTATTGT	CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA	3900
	AACAAATAGG	GGTTCCGCGC	ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	3960

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

				·		
CTCGAGAAAT	САТАААААТ	TTATTTGCTT	TGTGAGCGGA	TAACAATTAT	AATAGATTCA	60
ATTGTGAGCG	GATAACAATT	TCACACAGAA	TTCATTAAAG	AGGAGAAATT	AACTATGAGA	120
GGATCGCATC	ACCATCACCA	TCACACGGAT	CCGCATGCGA	GCTCCCAGTG	GGAGGTGAGC	180
CAGGTGCCCC	TGGACCTGTG	TGAGGTCTAT	GGCGGGGGCT	GCCACGGTTG	CCTCATGTCC	240
CGAGACCCCT	ACTGCGGCTG	GGACCAGGGC	CGCTGCATCT	CCATCTACAG	CTCCGAACGG	300
TCAGTGCTGC	AATCCATTAA	TCCAGCCGAG	CCACACAAGG	AGTGTCCCAA	CCCCAAACCA	360
GACAAGGCCC	CACTGCAGAA	GGTTTCCCTG	GCCCCAAACT	CTCGCTACTA	CCTGAGCTGC	420
CCCATGGAAT	CCCGCCACGC	CACCTACTCA	TGGCGCCACA	AGGAGAACGT	GGAGCAGAGC	480
TGCGAACCTG	GTCACCAGAG	CCCCAACTGC	ATCCTGTTCA	TCGAGAACCT	CACGGCGCAG	540
CAGTACGGCC	ACTACTTCTG	CGAGGCCCAG	GAGGGCTCCT	ACTTCCGCGA	GGCTCAGCAC	600
TGGCAGCTGC	TGCCCGAGGA	CGGCATCATG	GCCGAGCACC	TGCTGGGTCA	TGCCTGTGCC	660
CTGGCTGCCT	CCCTCTGGCT	GGGGGTGCTG	CCCACACTCA	CTCTTGGCTT	GCTGGTCCAC	720
GTGAAGCTTA	ATTAGCTGAG	CTTGGACTCC	TGTTGATAGA	TCCAGTAATG	ACCTCAGAAC	780
TCCATCTGGA	TTTGTTCAGA	ACGCTCGGTT	GCCGCCGGGC	GTTTTTTATT	GGTGAGAATC	840
CAAGCTAGCT	TGGCGAGATT	TTCAGGAGCT	AAGGAAGCTA	AAATGGAGAA	AAAAATCACT	900
GGATATACCA	CCGTTGATAT	ATCCCAATGG	CATCGTAAAG	AACATTTTGA	GGCATTTCAG	960
TCAGTTGCTC	AATGTACCTA	TAACCAGACC	GTTCAGCTGG	ATATTACGGC	CTTTTTAAAG	1020
ACCGTAAAGA	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	TTCACATTCT	TGCCCGCCTG	1080
ATGAATGCTC	ATCCGGAATT	TCGTATGGCA	ATGAAAGACG	GTGAGCTGGT	GATATGGGAT	1140
AGTGTTCACC	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG	AAACGTTTTC	ATCGCTCTGG	1200

AGTGAATACC ACGACGATTT	CCGGCAGTTT	CTACACATAT	ATTCGCAAGA	TGTGGCGTGT	1260	: ;	
TACGGTGAAA ACCTGGCCTA	TTTCCCTAAA	GGGTTTATTG	AGAATATGTT	TTTCGTCTCA	1320	•	
GCCAATCCCT GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	TGGCCAATAT	GGACAACTTC	1380		
TTCGCCCCCG TTTTCACCAT	GGGCAAATAT	TATACGCAAG	GCGACAAGGT	GCTGATGCCG	1440		
CTGGCGATTC AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC	ATGTCGGCAG	AATGCTTAAT	1500		
GAATTACAAC AGTACTGCGA	TGAGTGGCAG	GGCGGGGCGT	AATTTTTTA	AGGCAGTTAT	1560		
TGGTGCCCTT AAACGCCTGG	GGTAATGACT	CTCTAGCTTG	AGGCATCAAA	TAAAACGAAA	1620		
GGCTCAGTCG AAAGACTGGC	CCTTTCGTTT	TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT	1680		
GAGTAGGACA AATCCGCCGC	TCTAGAGCTG	CCTCGCGCGT	TTCGGTGATG	ACGGTGAAAA	1740		
CCTCTGACAC ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	1800	<i>y</i> -	
CAGACAAGCC CGTCAGGGCC	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCG	CAGCCATGAC	1860		
CCAGTCACGT AGCGATAGCC	GAGTGTATAC	TGGCTTAACT	ATGCGGCATC	AGAGCAGATT	1920		
GTACTGAGAG TGCACCATAT	GCGGTGTGAA	ATACCGCACA	GATGCGTAAG	GAGAAAATAC	1980		
CGCATCAGGC GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	CTGTCGGCTG	2040		
CGGCGAGCGG TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT	2100		
AACGCAGGAA AGAACATGTC	G AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	2160	. 4	
GCGTTGCTGG CGTTTTTCC	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	AAATCGACGC	2220		
TCAAGTCAGA GGTGGCGAAA	A CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA	2280		
AGCTCCCTCG TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	2340	٠.	
CTCCCTTCGG GAAGCGTGG	C GCTTTCTCAA	TGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	2400	*	
TAGGTCGTTC GCTCCAAGC	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	2460		
GCCTTATCCG GTAACTATCC	G TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	2520		
GCAGCAGCCA CTGGTAACA	G GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	2580		
TTGAAGTGGT GGCCTAACT	A CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG \	2640	•	
CTGAAGCCAG TTACCTTCG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	2700		
GCTGGTAGCG GTGGTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	2760		
CAAGAAGATC CTTTGATCT	r TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	AAACTCACGT	2820	.*	
TAAGGGATTT TGGTCATGA	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	2880		

AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	2940
TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGCTGCC	3000
TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	3060
GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	3120
GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	3180
AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	3240
GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	3300
GGTTCCCAAC	GATCAAGGCG ⁻	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	3360
TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	3420
ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	3480
GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	3540
CCGGCGTCAA	TACGGGATAA	TACCÉCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	3600
GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	3660
ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	3720
GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA.	3780
TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	3840
CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	3900
ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	TTATTATCAT	GACATTAACC	3960
ТАТАААААТА	GGCGTATCAC	GAGGCCCTTT	CGTCTTCAC			3999

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8888 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GAGCCGCACA	CGGTGCTTTT	CCACGAGCCA	GGCAGCTCCT	CTGTGTGGGT	GGGAGGACGT	60
GGCAAGGTCT	ACCTCTTTGA	CTTCCCCGAG	GGCAAGAACG	CATCTGTGCG	CACGGTGAGC	120

CTCTCTCTC CCCCAACACC CCCCCTACCC TCTTATCTCC CCTCTGGCCC TGCCAAGGGT 180 CCTCAGGGAA TCCGAGGGAG CTGGCTTCTC TTCCTAAACT GCCCCCACCT CCGTATCCTA 240 TAAATGGCTC CTGGGGGAGG CTCCCTAAAG GTAGTCCAGA TTGGAGTGGG GAGCTGGGGC 300 GGTGTGGAGA AAAACAGGAG CTAATGGGCC TGGCCAGCTG GGCAGCGCTG CTGCGGAAAG 360 CCCAGGCTGG AAGCTGGGCC CCAGAGCCCA TGCCTGGTCT TCTGAACCCT CTGGGCCTCA 420 GCTCTGGATA TGAGACCCTG TTTGACCTCA GGTAGATCAC TCACCCTCTC AGAGCCCCAG TTGCTCATCT GTCAGATGAG AATAATGGTT GCTTCCTTTG GGGCTTATCC TGAGGCTGTG 540 TGGAAAGCAT TTCAGGGGTA CCTCACCCCT GGCAGATTGA ACTAATGCTT CTCCCCTTCC 600 CCAGGTGAAT ATCGGCTCCA CAAAGGGGTC CTGTCTGGAT AAGCGGGTGA GCGGGGGAGG 660 GATCTGGAGG GGTCTGAGCC ACTTGGTAAA GGGAGAGGAG ACCCTGAGGG TCTAAGGAAG 720 GAAGCATGGC CCTGCCCCAC GAGTCCCAGA CTGATGGGGA GACGTGGTCC TCTGTGCTTA 780 GGGGATGGCG TCAGCTGCAC ACACTCTGGG CTGTCCCGGG AGGCTGTCAC CTATGCTAAG 840 CCCTTCTGAC ACCTTCTTCC CTGATCCTGG GGGTCCTAGT GCTAGGCTTG CCAGGGCCTT 900 CCAGCAACCA ATTTCTCTCC TCCCTTCTCT CTTCCCCGGG CAGGACTGCG AGAACTACAT 960 CACTCTCCTG GAGAGGCGGA GTGAGGGGCT GCTGGCCTGT GGCACCAACG CCCGGCACCC 1020 CAGCTGCTGG AACCTGGTGA GAAGGCTGCT CCCCATGTGC CTGATCAGCT CACCTTCTAC 1080 TGCGTGGGCT TCTGCCCCTC ATGGTGGGAA GGAGATGGCG AGACTCCAAT GCTGGCCTTG 1140 CCCTGGGAGG ATGGGGCTCC TGGCCGAGAA ACTGGCCGTC ATGGGAGGCA GTGGCTGTGG 1200 GATTATGTGG CCATCCAACC CTCTGGATCT CCCACAGGTG AATGGCACTG TGGTGCCACT 1260 TGGCGAGATG AGAGGCTACG CCCCTTCAG CCCGGACGAG AACTCCCTGG TTCTGTTTGA 1320 AGGTTGGGGC ATGCTTCGGA ACTGGGCTGG GAGCAGGATG GTCAGCTCTT TGTCCAGTGT 1380 CCGGAGGAGG GACTTCCAGG AGCTGCCTGC CCTTACTCAT TTCTCCCTCC CACTGACCCC 1440 AGGGGACGAG GTGTATTCCA CCATCCGGAA GCAGGAATAC AATGGGAAGA TCCCTCGGTT 1500 CCGCCGCATC CGGGGCGAGA GTGAGCTGTA CACCAGTGAT ACTGTCATGC AGAGTGAGTC 1560 AGGCTCCGGC TGGGCTGAGG GTGGGCAAGG GGGTGTGAGC ACTTAAGGTG GCAGATGGGA 1620 TCCTGATGTT TCTGGGAGGG CTCCCTGAGG GCCGCTGGGG CCATGCAGGA AAGCAGGACC 1680 TTGGTATAGG CCTGAGAAGT TAGGGTTGGC TGGGAGCAGA GGAACAGACA AGGTATAGCA 1740 GTGGGATGGG CCCAGCCCTC TTCAGGAACA CAAACAGAGG GAGCCCCAGA CCCAGTGCAG 1800 GGTCCCCAGG AGCCAAAGTT TATCCTCTGC TGAGTTCACG TGGAGGCAGC CCCCCAACTC 1860

	Ţ	•						
•								. "
CCTCCTCATC	AGGGCTCTGC	CAATTGAGCA	GAAGTGACAT	AGGGGCCCCC	AGGGACCTTC	1920		
CCCCACTCCC	CAGGCATGAA	GTCATTGCTC	CTGGGCCGAT	GACATCTTTG	TAGGAAGAGG	1980		•
-GCAAAACAGG	TGTGGGGTGG	AGGTGCAGGG	TCTAGGGCCC	CTCGGGGAGT	TGGACCTGAT	2.040		
GTTATGAGTC	CTATTCCAGA	TCTGATTTGC	CATGGTTTGT	GCAGACCCGA	AGGAGGGAGG	2100		
AGAGTGTGCA	GGGTTGGAAT	GGTCTCCCGG	GCAAGCTTCC	CAGCCTTACG	CCCATTCGCT	2160	yu i	
TCTGTGCCCT	GGCAGACCCA	CAGTTCATCA	AAGCCACCAT	CGTGCACCAA	GACCAGGCTT	2220		
ACGATGACAA	GATCTACTAC	TTCTTCCGAG	AGGACAATCC	TGACAAGAAT	CCTGAGGCTC	2280		
CTCTCAATGT	GTCCCGTGTG	GCCCAGTTGT	GCAGGGTGAA	CACGGGCGTG	AGGGCTGCTG	2340	ann an ann an	
GCTACGTGTC	TGTGCATGAA	TAGGCCTGAG	TGAGGGTGAG	TTCTGTGTGT	CCGTGTGCAT	2400		
GTAGAAGTTG	TGTGGATGTA	TGAGTGGGTC	TGTGTCAGGG	ACTGTGGGAG	CAGCTGTGTG	2460		
TGCATGGAGC	ATCATGTGTC	TGTGTGTGGG	TAAAGGTGGC	TGAGCTCCTG	TGCACGTATG	2520		
ATGGCGTGTG	AGCGTGTGTA	TGATGGGGTG	TGTGTGTGTG	TGTGTGTGTG	TGTTTTGCCT	2580		
GTGTGAATGT	GCTGTGCCAC	GTATGTGGGT	GCGTGAGTCA	GTAAATGTGT	GTCTGAGTCC	2640	4	
GTCTGCTCTG	TGGGGACCTG	GCACTCTCAC	CTGCCCTGAC	CCTGGGCACT	GCTGGCCCTG	2700	·	
GGCTCTGGAT	CAGCCAGGCC	TGCTTGCAGG	AGTCTCATCT	GGAGACCTGC	CCTGAGTCCT	2760		
GGGGCACCCC	CGGCAGGTCC	TGGCCCCTCG	CAGCCTGCCT	TCCTCCTCTG	GGCCCAGGTG	2820		
TTGATATTGC	TGGCAGTGGT	TTCCTGGGGT	GTGTGGGGAA	GCCCGGGCAG	GTGCTGAGGG	2880		
GCCTCTTCTC	CCCTCTACCC	TTCCAGGGGG	ACCAGGGTGG	GGAAAGTTCA	CTGTCAGTCT	2940		
CCAAGTGGAA	CACTTTTCTG	AAAGCCATGC	TGGTATGCAG	TGATGCTGCC	ACCAACAAGA	3000		*.
ACTTCAACAG					TGGAGGGACA	3060	:	
	TGGTGTTTTC	TCCAACCCCT	GGTGAGTGGC	CCTTGTCCTG	GGGCCGGGGC	3120		
TGGCATTGGT		GTAGGGACAG			GGGCCTCCCT	3180		
				CTGTTGCTGG	GTGTGGGGTG	3240		
GGGGGACAGC	CAGTGCGATG	TATGTACTGT	TGTGTGAGTG	AGTCTGCACT	CATGGGTGTG	3300		
TGTGCATGCC	CTATATGCAC	ACTCATGACT	GCACTTGTGC	CTGTGTGTCC	CACCACCTGC	3360		
TTGTGCCGAG	AGTGGACACT	GGGCCCAGGA	GGAAGCTGCT	GAAGCATCTC	TCGGGGAGCT	3420		
GGGTGCTATT	ACACCTGCTC	AGGCACTGCC	TGAGCCCGAT	AATTCACACT	TCTTAATCAC	3480		
TCTCATTGAT	TGAACACACG	GCAGGCGGAA	GTGTTGGGTG	TGTGTGGGGA	GAGTTAGGGA	3540		

TAGAGTGGAG	GAAGCCAAGA	CCCTGCTCTG	TGGCTCCTGG	GTGAGTGGGT	CCCCAGGCT	3600	
GGGAAGGGGT	TGGGGGTCTG	GCCTCCTGGG	GCATCAGCAC	CCCACAGCCT	GTGCCCAGGG	3660	
AGGGCTAGAG	AACTGCTCAG	CCTATGATGG	GGTTCCTCCT	GCCTTGGGGT	TGGGTAGAGC	3720	.v =
AGATGGCCTC	TAGACTCAGT	GATTCTGTAA	CAGGATACAA	GTTTGTGGTT	TTAAATTGCA	3780	
GCACAAAGAA	ATTAGGCTGA	ACTCCTCTCC	TTCCTCCTCT	CCATCCCTCC	CCATTTTCAG	3840	
TGGTGGTTGG	CAACTCAGTG	CCAGGCACAA	GGCTGGCCTG	GGTGAGTGGA	GGTGGATGGG	3900	
TGGGTTCTGG	GCCCCCCATT	GAGCTGGTCT	CCATGTCACT	GCAGGAACTA	CTCAGCCGTC	3960	,
TGTGTGTATT	CCCTCGGTGA	CATTGACAAG	GTCTTCCGTA	CCTCCTCACT	CAAGGGCTAC	4020	
CACTCAAGCC	TTCCCAACCC	GCGGCCTGGC	AAGGTGAGCG	TGACACCAGC	CGTGGCCCAG	4080	
GCCCAGCCCT	CCTTCTGCCT	CACCTCCCAC	CACCCCACTG	ACCTGGGCCT	GCTCTCCTTG	4140	
CCCAGTGCCT	CCCAGACCAG	CAGCCGATAC	CCACAGAGAC	CTTCCAGGTG	GCTGACCGTC	4200	
ACCCAGAGGT	GGCGCAGAGG	GTGGAGCCCA	TGGGGCCTCT	GAAGACGCCA	TTGTTCCACT	4260	
CTAAATACCA	CTACCAGAAA	GTGGCCGTCC	ACCGCATGCA	AGCCAGCCAC	GGGGAGACCT	4320	
TTCATGTGCT	TTACCTAACT	ACAGGTGAGA	GGCTACCCCG	GGACCCTCAG	TTTGCTTTGT	4380	
AAAAACGGGC	ATGAAAGGTG	TAAGGAATAA	TGTAGTTAAC	ATCTGGTTGG	ATCTTTACAT	4440	
GTGGAAGGAA	TAATTGAGTG	ACTGGAGTTG	TCAGGGGTTA	ATGTGTGTGG	GTGTGGAAGA	4500	
GCCAGGCAGG	GAGAGCTTCC	TGGAGGAGGT	AGGGGCAAGA	GGGAAAGGGG	GATGGGAGAA	4560	
AAGCAAGCAC	TGGGATTTGG	AGGCGGAAAT	CTGGAGAGTĊ	TGAGCAAAGC	CAGGTGCACC	4620	•
TTTGGTCCAG	ATGTCTGACT	CAGGGAAGAA	GATGGTAGGA	AGAGACGTGG	CAAATGAGGA	4680	
GGAGGGGCCT	GAACCACAGG	GATACTGGCC	TCTGCCAGGC	AGAATGAGGG	AGTCAGGCCC	4740	
					ATGGGGCACA	4800	
AATTAGGTAT	GGGGAAGGAG		CAGAACCTTT		AGAGGACAGG	4860	•
			CTGCTGGGGG	AAGCTGGGTG	GAATGCCGTG	4920	
GGAGATGCTC	CTGCTTTCTG	GAAAGCCACA		GAGCCAGTCC	TGAGTTGGGT	4980	
TTGTCGCAGC	TTCCCATGCC	AGCTGCCTTC	CTTGAGACTG	GAAAGGGCCT	CTAGCACCCC	5040	
	CAATTCAGGC	CCAGGCGCCC	AACCTCAGTT		CCCATGTGAT	5100	
			•	•	GGAAACTGGA	5160	•
ACCCCAGCAC	CATTGTTTGG	CTCCTGGAAG	CCTTGGGGAG	AGGAATTTCC	CACAGGGCAG	5220	
GGCCTGGGTC	CTGATTCCCT	GCCTCTTTAC	TCCCTATTCA	TCCCGGCTAC	ACCCTTGGGC	5280	

t e

n 11 - A

CCCCATCCTT GCTTGGCTCC AGTACTGGCT GGCACAGCTG TTGTGGTCAT CCAGGGATGG 5340 CAGGGCACTG GGGAACAGAA GAGAGAGGTC ACACAGTGCG GAACTGGGAG CAGGAGCTAG 5400 GACAAGGAAG GCTGGACTTG GGCCATGGAT TCCCTTCCTG CAGACTTGGG AAGTGAGCAC 5460 ACTTGAGTGA TTAGAGAAGG TGTCTTCGTT CTAAGGGCAG TGGAGGAGGC ACCATTTTGG 5520 AGCCTGCATC ATTCGTATTT GGGCTAGATT GAAAAATAGA GCTTTCTAAG TCCTCTGCAG 5580 AGAATGGGAG GCTCTCACAA CTGGGAGAAG TATTGGCTCT TTTCCTGAGA ATTTTGCCAA 5640 GGGTATGCTG TTACTGGGGC TGGTTTGGAA GGAGTATAGG GCATTATGTC TGTGAAGGCA 5700 GTGGCTGGGG TGGGGCCTTA TCAGGCCCAA GGAGCATCTG GCCACATCTC AGAGTCCACA 5760 GATGAGGATC ACGGATGTGT AGAGGAAACA TCCTAGGCAG GCAATCATCT GACTGCTTTT 5820 TTGGGGCAGG TGATGCCCTG GGAAATTGGG AGGGAGGAG AGAGGGAGGT AGGCTATTCT 5880 AGAAACTGGG AGAGCAGGTG AGGTAGGATT GGGAGGACCA GGGGTCAGGG TCCCCATTGG 5940 TCCCTAATTG AGAACGGAGA GAGCATTGGT CTAGGAGGCA GGCAGCTCGG TTATAAGACC 6000 TTGGGAACTC TTGATTTAGA ATCCAAGATC CTTTTTAGAT CTAGGATTTT ATAAAATTAA 6060 GATATCCCCT AAGATCAAAT GCAACGTGGA GTCCTGAATT GGATCCTAGA ACAGAAGAG 6120 GACATTTGTG GAAAAACTAG TGAAATCCAA ATAAAGTCTG TAGTTTTGTT AATAGTAATG 6180 CACCAATGTC AGTTGCCTAG TTGTGACAAA TATACCGTGG TTATGTAAGA TGGTAACATT 6240 AGGGGGAACT GGAGAAGGGT AGATTGGAGC TCTCTGTACT ATCTTTGCAA CTTTTCTGGG 6300 AATCTAAAAT TACTCCAAAA TAAAAAAAAA ATGTATTTAA AGTAAATATA TTCCCTAAGA 6360 GTCCAGGAGG CAGGGGAGTT GTAGAAGCAG CTGAGTGGTT GGGTTCTGAC AGATTTGGTT 6420 CCAACTCGGT CTCTGCTGCT CACCAGCTGT GTGACCTTGA GCAAGTGGCT TAGCCTTTCT 6480 GAGCCTGATT TCCTTATCTG TGGAGTGGGG AAGATGACAG CCACCTCGCA GGGCTGTGGA 6540 GGGTTAAACG AGGTGATGCA TGGACAGCAG CCGCACTGAC CTTGCTGGTG TGGGGCTCCT 6600 GCTTCTGTTC TTCCCGTGCA GCCTTGGGAA TGTTGGAGGC CGTATCCAGG GACCCCTGGG 6660 CCTCCTGGGA TGGCCTCTCT GGATCAGCCT TGGAAGGTTC CAGGCTGCCC TTAGGCTCCC 6720 ACATTCTTCC CCAGTCACGC TCTCCTCGCC CTGCCCACAC CAGTCCTGTG ACCCTTGCCT 6780 GAGTTGTGAC TTCCCACCCC TCCCCGGCCT AGAGGAAAGC-TGCCTGGCCC CTCAGTGGGA 6840 CTCCCGCCCA CTGACCCTCT GTCCACCATA CACAGACAGG GGCACTATCC ACAAGGTGGT 6900 GGAACCGGGG GAGCAGGAGC ACAGCTTCGC CTTCAACATC ATGGAGATCC AGCCCTTCCG 6960

CCGCGCGCT GCCATCCAGA CCATGTCGCT GGATGCTGAG CGGGTGAGCC TTCCCCCACT 7020 GCGTCCCATG GGCTATGCAG TGACTGCAGC TGAGGACAGG GCTCCTTTGC ATGTGATTTG 7080 TGTGTTCTTT TAAGAGCTTC TAGGCCTTAG GGCCTGGACA TTTAGGACTG AGTGTGGGGT 7140 GGGGCCCGGG CCTGACCCAA TCCTGCTGTC CTTCCAGAGG AAGCTGTATG TGAGCTCCCA 7200 GTGGGAGGTG AGCCAGGTGC CCCTGGACCT GTGTGAGGTC TATGGCGGGG GCTGCCACGG 7260 TTGCCTCATG TCCCGAGACC CCTACTGCGG CTGGGACCAG GGCCGCTGCA TCTCCATCTA 7320 CAGCTCCGAA CGGTACGTTG GCCGGGATCC CTCCGTCCCT GGGACAAGGT GGGCATGGGA 7380 CAGGGGGAGG TGTTGTCGGG CTGGAAGAGG TGGCGGTACT GGGCCTTTCT TGTGGGACCT 7440 CCTCTCTACT GGAACTGCAC TAGGGGTAAG GATATGAGGG TCAGGTCTGC AGCCTTGTAT 7500 CTGCTGATCC TCTTTCGTCC TTCCCACTCC AGGTCAGTGC TGCAATCCAT TAATCCAGCC 7560 GAGCCACACA AGGAGTGTCC CAACCCCAAA CCAGGTACCT GATCTGGCCC TGCTGGCGGC 7620 TGTGGCCCAA TGAGTGGGGT ACTGCCCTGC CCTGATTGTC CTGGTCTGAG GGAAACATGG 7680 CCTTGTCCTG TGGGCCCCAG GTACATGGGG CAGGATACAG TCCTGCAGAG GGAGCCCTCT 7740 TGGTGGGATG AGCGAGACGG GAGAAAAAG GAGGACGCTG AGGGCTGGGT TCCCCACGTT 7800 CATTCAGAAG CCTTGTCCTG GGATCCCAGT CGGTGGGGAG GACACATCCT CCCCTGGGAG 7860 CTCTTGTCC CTCCTCACGG CTGCTTCCCC ACTGCCTCCC CAGACAAGGC CCCACTGCAG 7920 AAGGTTTCCC TGGCCCCAAA CTCTCGCTAC TACCTGAGCT GCCCCATGGA ATCCCGCCAC 7980 GCCACCTACT CATGGCGCA CAAGGAGAAC GTGGAGCAGA GCTGCGAACC TGGTCACCAG 8040 AGCCCCAACT GCATCCTGTT CATCGAGAAC CTCACGGCGC AGCAGTACGG CCACTACTTC 8100 TGCGAGGCCC AGGAGGGCTC CTACTTCCGC GAGGCTCAGC ACTGGCAGCT GCTGCCCGAG 8160 GACGGCATCA TGGCCGAGCA CCTGCTGGGT CATGCCTGTG CCCTGGCCGC CTCCCTCTGG 8220 CTGGGGGTGC TGCCCACACT CACTCTTGGC TTGCTGGTCC ACTAGGGCCT CCCGAGGCTG 8280 GGCATGCCTC AGGCTTCTGC AGCCCAGGGC ACTAGAACGT CTCACACTCA GAGCCGGCTG 8340 GCCCGGGAGC TCCTTGCCTG CCACTTCTTC CAGGGGACAG AATAACCCAG TGGAGGATGC 8400 CAGGCCTGGA GACGTCCAGC CGCAGGCGGC TGCTGGGCCC CAGGTGGCGC ACGGATGGTG 8460 AGGGGCTGAG AATGAGGGCA CCGACTGTGA AGCTGGGGCA TCGATGACĆC AAGACTTTAT 8520 CTTCTGGAAA ATATTTTCA GACTCCTCAA ACTTGACTAA ATGCAGCGAT GCTCCCAGCC 8580 CAAGAGCCCA TGGGTCGGGG AGTGGGTTTG GATAGGAGAG CTGGGACTCC ATCTCGACCC 8640 TGGGGCTGAG GCCTGAGTCC TTCTGGACTC TTGGTACCCA CATTGCCTCC TTCCCCTCCC 8700

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6622 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

	•				100 (100)	•
GATATCATGG	AGATAATTAA	AATGATAACC	ATCTCGCAAA	TAAATAAGTA	TTTTACTGTT	60
TTCGTAACAG	TTTTGTAATA	AAAAAACCTA	TAAATATGAA	ATTCTTAGTC	AACGTTGCCC	120
TTGTTTTTAT	GGTCGTATAC	ATTTCTTACA	TCTATGCGGA	TCGATGGGGA	TCCGCCCAGG	180
GCCACCTAAG	GAGCGGACCC	CGCATCTTCG	CCGTCTGGAA	AGGCCATGTA	GGGCAGGACC	240
GGGTGGACTT	TGGCCAGACT	GAGCCGCACA	CGGTGCTTTT	CCACGAGCCA	GGCAGCTCCT	300
CTGTGTGGGT	GGGAGGACGT	GGCAAGGTCT	ACCTCTTTGA	CTTCCCCGAG	GGCAAGAACG	360
CATCTGTGCG	CACGGTGAAT	ATCGGCTCCA	CAAAGGGGTC	CTGTCTGGAT	AAGCGGGACT	420
GCGAGAACTA	CATCACTCTC	CTGGAGAGGC	GGAGTGAGGG	GCTGCTGGCC	TGTGGCACCA	480
ACGCCCGGCA	CCCCAGCTGC	TGGAACCTGG	TGAATGGCAC	TGTGGTGCCA	CTTGGCGAGA	540
TGAGAGGCTA	TGCCCCCTTC	AGCCCGGACG	AGAACTCCCT	GGTTCTGTTT	GAAGGGGACG	600
AGGTGTATTC	CACCATCCGG	AAGCAGGAAT	ACAATGGGAA	GATCCCTCGG	TTCCGCCGCA	660
TCCGGGGCGA	GAGTGAGCTG	TACACCAGTG	ATACTGTCAT	GCAGAACCCA	CAGTTCATCA	720
AAGCCACCAT	CGTGCACCAA	GACCAGGCTT	ACGATGACAA	GATCTACTAC	TTCTTCCGAG	780
AGGACAATCC	TGACAAGAAT	CCTGAGGCTC	CTCTCAATGT	GTCCCGTGTG	GCCCAGTTGT	840
GCAGGGGGGA	CCAGGGTGGG	GAAAGTTCAC	TGTCAGTCTC	CAAGTGGAAC	ACTTTTCTGA	900
AAGCCATGCT	GGTATGCAGT	GATGCTGCCA	CCAACAAGAA	CTTCAACAGG	CTGCAAGACG	960
TCTTCCTGCT	CCCTGACCCC	AGCGGCCAGT	GGAGGGACAC	CAGGGTCTAT	GGTGTTTTCT	1020

CCAACCCCTG GAACTACTCA GCCGTCTGTG TGTATTCCCT CGGTGACATT GACAAGGTCT 1080 TCCGTACCTC CTCACTCAAG GGCTACCACT CAAGCCTTCC CAACCCGCGG CCTGGCAAGT 1140 GCCTCCCAGA CCAGCAGCCG ATACCCACAG AGACCTTCCA GGTGGCTGAC CGTCACCCAG 1200 AGGTGGCGCA GAGGGTGGAG CCCATGGGGC CTCTGAAGAC GCCATTGTTC CACTCTAAAT 1260 ACCACTACCA GAAAGTGGCC GTTCACCGCA TGCAAGCCAG CCACGGGGAG ACCTTTCATG 1320 TGCTTTACCT AACTACAGAC AGGGGCACTA TCCACAAGGT GGTGGAACCG GGGGAGCAGG 1380 AGCACAGCTT CGCCTTCAAC ATCATGGAGA TCCAGCCCTT CCGCCGCGCG GCTGCCATCC 1440 AGACCATGTC GCTGGATGCT GAGCGGAGGA AGCTGTATGT GAGCTCCCAG TGGGAGGTGA 1500 GCCAGGTGCC CCTGGACCTG TGTGAGGTCT ATGCCGGGGG CTGCCACGGT TGCCTCATGT 1560 CCCGAGACCC CTACTGCGGC TGGGACCAGG GCCGCTGCAT CTCCATCTAC AGCTCCGAAC 1620 GGTCAGTGCT GCAATCCATT AATCCAGCCG AGCCACACAA GGAGTGTCCC AACCCCAAAC 1680 CAGACAAGGC CCCACTGCAG AAGGTTTCCC TGGCCCCAAA CTCTCGCTAC TACCTGAGCT 1740 GCCCCATGGA ATCCCGCCAC GCCACCTACT CATGGCGCCA CAAGGAGAAC GTGGAGCAGA 1800 GCTGCGAACC TGGTCACCAG AGCCCCAACT GCATCCTGTT CATCGAGAAC CTCACGGCGC 1860 AGCAGTACGG CCACTACTTC TGCGAGGCCC AGGAGGGCTC CTACTTCCGC GAGGCTCAGC 1920 ACTGGCAGCT GCTGCCCGAG GACGGCATCA TGGCCGAGCA CCTGCTGGGT CATGCCTGTG 1980 CCCTGGCTGC CTGAATTCGA AGCTTGGAGT CGACTCTGCT GAAGAGGAGG AAATTCTCCT 2040 2100 TGAAGTTTCC CTGGTGTTCA AAGTAAAGGA GTTTGCACCA GACGCACCTC TGTTCACTGG TCCGGCGTAT TAAAACACGA TACATTGTTA TTAGTACATT TATTAAGCGC TAGATTCTGT 2160 GCGTTGTTGA TTTACAGACA ATTGTTGTAC GTATTTTAAT AATTCATTAA ATTTATAATC 2220 TTTAGGGTGG TATGTTAGAG CGAAAATCAA ATGATTTTCA GCGTCTTTAT ATCTGAATTT 2280 1 5, 14 AAATATTAAA TCCTCAATAG ATTTGTAAAA TAGGTTTCGA TTAGTTTCAA ACAAGGGTTG 2340 TTTTTCCGAA CCGATGGCTG GACTATCTAA TGGATTTTCG CTCAACGCCA CAAAACTTGC 2400 CAAATCTTGT AGCAGCAATC TAGCTTTGTC GATATTCGTT TGTGTTTTGT TTTGTAATAA 2460 AGGTTCGACG TCGTTCAAAA TATTATGCGC TTTTGTATTT CTTTCATCAC TGTCGTTAGT 2520 GTACAATTGA CTCGACGTAA ACACGTTAAA TAAAGCCTGG ACATATTTAA CATCGGGCGT 2580 GTTAGCTTTA TTAGGCCGAT TATCGTCGTC GTCCCAACCC TCGTCGTTAG AAGTTGCTTC 2640 CGAAGACGAT TTTGCCATAG CCACACGACG CCTATTAATT GTGTCGGCTA ACACGTCCGC 2700

GATCAAATTT GTAGTTGAGC TTTTTGGAAT TATTTCTGAT TGCGGGCGTT TTTGGGCGGG 2760 TTTCAATCTA ACTGTGCCCG ATTTTAATTC AGACAACACG TTAGAAAGCG ATGGTGCAGG 2820 CGGTGGTAAC ATTTCAGACG GCAAATCTAC TAATGGCGGC GGTGGTGGAG CTGATGATAA 2880 ATCTACCATC GGTGGAGGCG CAGGCGGGGC TGGCGGCGGA GGCGGAGGCG GAGGTGGTGG 2940 CGGTGATGCA GACGGCGGTT TAGGCTCAAA TTGTCTCTTT CAGGCAACAC AGTCGGCACC 3000 TCAACTATTG TACTGGTTTC GGGCGTATGG TGCACTCTCA GTACAATCTG CTCTGATGCC 3060 GCATAGTTAA GCCAGCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTGT 3120 CTGCTCCCGG CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG 3180 AGGTTTTCAC CGTCATCACC GAAACGCGCG AGACGAAAGG GCCTCGTGAT ACGCCTATTT 3240 TTATAGGTTA ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCGGGGA 3300 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC 3360 ATGAGACAAT AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT 3420 CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT 3480 CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT 3540 TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC CGAAGAACGT 3600 TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC 3660 GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC 3720 TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCAGTGCT 3780 GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG 3840 AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG 3900 GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA 3960 ATGGCAACAA CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA 4020 CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT 4080 CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA CACGACGGGG 4200 AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT 4260 The second of th AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT 4320 CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT GACCAAAATC 4380 CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT 4440 TCTTGAGATC CTTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAAA ACCACCGCTA 4500 CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC 4560 TTCAGCAGAG CGCAGATACC AAATACTGTT CTTCTAGTGT AGCCGTAGTT AGGCCACCAC 4620 TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT 4680 GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT 4740 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG 4800 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA 4860 GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG 4920 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA 4980 CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC 5040 AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTTCTTTCCT 5100 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC TGATACCGCT 5160 CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCATC CTGCACCATC 5220 GTCTGCTCAT CCATGACCTG ACCATGCAGA GGATGATGCT CGTGACGGTT AACGCCTCGA 5280 ATCAGCAACG GCTTGCCGTT CAGCAGCAGC AGACCATTTT CAATCCGCAC CTCGCGGAAA 5340 CCGACATCGC AGGCTTCTGC TTCAATCAGC GTGCCGTCGG CGGTGTGCAG TTCAACCACC 5400 GCACGATAGA GATTCGGGAT TTCGGCGCTC CACAGTTTCG GGTTTTCGAC GTTCAGACGT. 5460 AGTGTGACGC GATCGGTATA ACCACCACGC TCATCGATAA TTTCACCGCC GAAAGGCGCG 5520 GTGCCGCTGG CGACCTGCGT TTCACCCTGC CATAAAGAAA CTGTTACCCG TAGGTAGTCA 5580 CGCAACTCGC CGCACATCTG AACTTCAGCC TCCAGTACAG CGCGGCTGAA ATCATCATTA 5640 AAGCGAGTGG CAACATGGAA ATCGCTGATT TGTGTAGTCG GTTTATGCAG CAACGAGACG 5700 TCACGGAAAA TGCCGCTCAT CCGCCACATA TCCTGATCTT CCAGATAACT GCCGTCACTC 5760 CAACGCAGCA CCATCACCGC GAGGCGGTTT TCTCCGGCGC GTAAAAATGC GCTCAGGTCA 5820 AATTCAGACG GCAAACGACT GTCCTGGCCG TAACCGACCC AGCGCCCGTT GCACCACAGA 5880 TGAAACGCCG AGTTAACGCC ATCAAAAATA ATTCGCGTCT GGCCTTCCTG TAGCCAGCTT 5940 TCATCAACAT TAAATGTGAG CGAGTAACAA CCCGTCGGAT TCTCCGTGGG AACAAACGGC 6000 GGATTGACCG TAATGGGATA GGTCACGTTG GTGTAGATGG GCGCATCGTA ACCGTGCATC 6060 TGCCAGTTTG AGGGGACGAC GACAGTATCG GCCTCAGGAA GATCGCACTC CAGCCAGCTT 6120

TCCGGCACCG	CTTCTGGTGC	CGGAAACCAG	GCAAAGCGCC	ATTCGCCATT	CAGGCTGCGC	6180
			•			0100
					GGCGAAAGGG	6240
GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	6300
AAAACGACGG	GATCTATCAT	TTTTAGCAGT	GATTCTAATT	GCAGCTGCTC	TTTGATACAA	6360
CTAATTTTAC	GACGACGATG	CGAGCTTTTA	TTCAACCGAG	CGTGCATGTT	TGCAATCGTG	6420
					ACACCACGTT	
						6480
GAACTCGCCG	CAGTTTTGCG	GCAAGTTGGA	CCCGCCGCGC	ATCCAATGCA	AACTTTCCGA	6540
CATTCTGTTG	CCTACGAACG	ATTGATTCTT	TGTCCATTGA	TCGAAGCGAG	TGCCTTCGAC	6600
TTTTTCGTGT	CCAGTGTGGC	ጥጥ				
				•		6622

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: CCGGATCCGC CCAGGGCCAC CTAAGGAGCG G
- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: CTGAATTCAG GAGCCAGGGC ACAGGCATG

31

en en en europea de la companya del la companya de la companya de

29