ADVANCED DATA SCIENCE CAPSTONE PROJECT: PREDICTION OF CARDIOVASCULAR EVENTS.

PREPARED BY: MAXIM LUKIN

AS OF DATE: 2/10/2020

Use Case:

Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year *.

Data Set:

For current case study Heart Disease Data Set has been chosen **.

Data Set Creators:

- 1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.
- 2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.
- 3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.
- 4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.

^{*} https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1

^{**} https://www.kaggle.com/ronitf/heart-disease-uci

• Libraries and Versions:

- Python: 3.6.9 | Anaconda, Inc. | (default, Jul 30 2019, 19:07:31)
- [GCC 7.3.0]
- Pandas: 0.25.3
- Numpy: 1.15.4
- Sklearn: 0.20.3
- Matplotlib: 3.1.3
- Keras: 2.2.4

Data Quality Assessment:

Heart Disease Data Set from Kaggle has been initially available as a cleansed and transformed/adopted data set.

During ETL process dataset has been checked once again for any possible missing values in data frame and inappropriate attributes formats.

- <u>Data Attribute Information:</u>
- age {age}
- sex (1 = male; 0 = female) {sex}
- chest pain type (4 values) {cp}
- resting blood pressure {trestbps}
- serum cholestoral in mg/dl {chol}
- fasting blood sugar > 120 mg/dl (1 = true; 0 = false) {fbs}
- resting electrocardiographic results (values 0,1,2) {restecg}
- maximum heart rate achieved {thalach}
- exercise induced angina {exang}
- oldpeak = ST depression induced by exercise relative to rest {oldpeak}
- the slope of the peak exercise ST segment {slope}
- number of major vessels (0-3) colored by flourosopy {ca}
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect {thal}

```
# check for missing values
df.isnull().sum()
age
sex
ср
trestbps
chol
fbs
restecg
thalach
exang
oldpeak
slope
ca
thal
target
dtvne: int64
```

```
# summary of dataset
df.info()
<class 'pandas.core.frame.DataFrame
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
           303 non-null int64
           303 non-null int64
sex
           303 non-null int64
trestbps
           303 non-null int64
           303 non-null int64
chol
fbs
           303 non-null int64
           303 non-null int64
restecg
thalach
           303 non-null int64
           303 non-null int64
exang
oldpeak
            303 non-null float64
           303 non-null int64
slope
           303 non-null int64
ca
thal
           303 non-null int64
           303 non-null int64
target
dtypes: float64(1), int64(13)
memory usage: 33.2 KB
```

- <u>Data Attribute Information:</u>
- age {age}
- sex (1 = male; 0 = female) {sex}
- chest pain type (4 values) {cp}
- resting blood pressure {trestbps}
- serum cholestoral in mg/dl {chol}
- fasting blood sugar > 120 mg/dl (1 = true; 0 = false) {fbs}
- resting electrocardiographic results (values 0,1,2) {restecg}
- maximum heart rate achieved {thalach}
- exercise induced angina {exang}
- oldpeak = ST depression induced by exercise relative to rest {oldpeak}
- the slope of the peak exercise ST segment {slope}
- number of major vessels (0-3) colored by flourosopy {ca}
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect {thal}

- <u>Data Attribute Information:</u>
- age {age
- sex (1 = male; 0 = female) {sex}
- chest pain type (4 values) {cp}
- resting blood pressure {trestbps}
- serum cholestoral in mg/dl {chol}
- fasting blood sugar $> 120 \text{ mg/dl} (1 = \text{true}; 0 = \text{false}) \{\text{fbs}\}$
- resting electrocardiographic results (values 0,1,2) {restecg}
- maximum heart rate achieved {thalach}
- exercise induced angina {exang}
- oldpeak = ST depression induced by exercise relative to rest {oldpeak}
- the slope of the peak exercise ST segment {slope}
- number of major vessels (0-3) colored by flourosopy {ca}
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect {thal}

- <u>Data Attribute Information:</u>
- age {age}
- sex (1 = male; 0 = female) {sex}
- chest pain type (4 values) {cp}
- resting blood pressure {trestbps}
- serum cholestoral in mg/dl {chol}
- fasting blood sugar $> 120 \text{ mg/dl} (1 = \text{true}; 0 = \text{false}) \{\text{fbs}\}$
- resting electrocardiographic results (values 0,1,2) {restecg}
- maximum heart rate achieved {thalach}
- exercise induced angina {exang}
- oldpeak = ST depression induced by exercise relative to rest {oldpeak}
- the slope of the peak exercise ST segment {slope}
- number of major vessels (0-3) colored by flourosopy {ca}
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect {thal}

Data Attribute Information:

age {age}

```
sex (1 = male; 0 = female) {sex}
```

- chest pain type (4 values) {cp}
- resting blood pressure {trestbps}
- serum cholestoral in mg/dl {chol}
- fasting blood sugar > 120 mg/dl (1 = true; 0 = false) {fbs}
- resting electrocardiographic results (values 0,1,2) {restecg}
- maximum heart rate achieved {thalach}
- exercise induced angina {exang}
- oldpeak = ST depression induced by exercise relative to rest {oldpeak}
- the slope of the peak exercise ST segment {slope}
- number of major vessels (0-3) colored by flourosopy {ca}

thal: 3 = normal; 6 = fixed defect; $7 = \text{reversable defect } \{\text{thal}\}$

Checking correlation correlation = df.corr() correlation['target'].se 1.000000 target 0.433798 ср thalach 0.421741 slope 0.345877 restecg 0.137230 fbs -0.028046 chol -0.085239 trestbps -0.144931 -0.225439 age -0.280937 sex thal -0.344029 -0.391724 ca -0.430696 oldpeak -0.436757 exang Name: target, dtype: flo

Correlation Heatmap of Heart Disease Dataset																
39e	1.00	-0.10	-0.07	0.28		0.12	-0.12	-0.40	0.10		-0.17	0.28	0.07	-0.23		0.9
ge*	-0.10	1.00	-0.05	-0.06	-0.20	0.05	-0.06	-0.04	0.14	0.10	-0.03	0.12		-0.28		
Ø.	-0.07	-0.05	1.00	0.05	-0.08	0.09	0.04	0.30	-0.39	-0.15	0.12	-0.18	-0.16	0.43		
trestbps -	0.28	-0.06	0.05	1.00	0.12		-0.11	-0.05	0.07		-0.12	0.10	0.06	-0.14	-	0.6
diol		-0.20	-0.08	0.12	1.00	0.01	-0.15	-0.01	0.07	0.05	-0.00	0.07	0.10	-0.09		
105 T	0.12	0.05	0.09		0.01	1.00	-0.08	-0.01	0.03	0.01	-0.06	0.14	-0.03	-0.03		
restec9	-0.12	-0.06	0.04	-0.11	-0.15	-0.08	1.00	0.04	-0.07	-0.06	0.09	-0.07	-0.01	0.14		0.3
thalach	-0.40	-0.04	0.30	-0.05	-0.01	-0.01	0.04	1.00	-0.38	-0.34	0.39	-0.21	-0.10	0.42		
exang -	0.10	0.14	-0.39	0.07	0.07	0.03	-0.07	-0.38	1.00	0.29	-0.26	0.12		-0.44		0.0
oldbeak -		0.10	-0.15		0.05	0.01	-0.06	-0.34	0.29	1.00	-0.58			-0.43		***
40pe	-0.17	-0.03	0.12	-0.12	-0.00	-0.06	0.09	0.39	-0.26	-0.58	1.00	-0.08	-0.10	0.35		
ø.	0.28	0.12	-0.18	0.10	0.07	0.14	-0.07	-0.21	0.12	0.22	-0.08	1.00	0.15	-0.39	-	-0.3
thal -	0.07		-0.16	0.06	0.10	-0.03	-0.01	-0.10			-0.10	0.15	1.00	-0.34		
barget .	-0.23	-0.28	0.43	-0.14	-0.09	-0.03	0.14	0.42	-0.44	-0.43	0.35	-0.39	-0.34	1.00		
	age -	×95	8	restbps -	- lorb	- squ	restecg -	thalach -	exang -	oldpeak -	- adops	ġ	thal -	target -		

Training and testing models and algorithms

Based on the capstone project requirements and for educational purposes the following algorithms have been used:

- Logistic Regression,
- Support Vector Machines,
- Linear Support Vector Machines (SVC),
- k-Nearest Neighbors algorithm (KNN),
- Gaussian Naive Bayes,
- Perceptron,
- Stochastic Gradient Descent,
- Decision Tree Classifier,
- Random Forest,
- Ridge Classifier.

models.sort_values(by=['Score_test', 'Score_train'], ascending=False)

	Model	Score_train	Score_test	
0	Logistic Regression	84.71	85.25	
4	Naive Bayes	83.47	85.25	
8	Random Forest	100.00	83.61	
2	Linear SVC	84.30	83.61	
9	RidgeClassifier	83.47	83.61	
7	Decision Tree Classifier	100.00	77.05	
5	Perceptron	67.77	70.49	
6	Stochastic Gradient Decent	63.22	70.49	
3	k-Nearest Neighbors	78.10	63.93	
1	Support Vector Machines	100.00	59.02	

https://eu-gb.dataplatform.cloud.ibm.com/analytics/notebooks/v2/4c28ac5d-30c8-4029-85c6-bebfc22418ec/view?projectid=535fa780-2008-4612-9dad-6472967021c4&context=analytics

Keras Neural Network

```
# define a function to build the keras model
def create_model():
    # create model
    model = Sequential()
    model.add(Dense(16, input_dim=13, kernel_initializer='normal', activation='relu'))
    model.add(Dense(8, kernel_initializer='normal', activation='relu'))
    model.add(Dense(2, activation='softmax'))

# compile model
adam = Adam(lr=0.001)
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
    return model

model = create_model()
```

		tegorical	Model		
0.803278		precision	recall	f1-score	support
	0	0.70	0.88	0.78	24
	1	0.90	0.88	0.78	37
micno	21/5	0.00	0.00	0.00	61
micro macro	-	0.80 0.80	0.80 0.82	0.80 0.80	61
weighted	avg	0.82	0.80	0.81	61

Keras Neural Network (one more iteration):

Loss: categorical => binary
Output layer: softmax => sigmoid

```
def create_binary_model():
    # create model
    model = Sequential()
    model.add(Dense(16, input_dim=13, kernel_initializer='normal', activation='relu'))
    model.add(Dense(8, kernel_initializer='normal', activation='relu'))
    model.add(Dense(1, activation='sigmoid'))

# Compile model
    adam = Adam(lr=0.001)
    model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
    return model

binary_model = create_binary_model()
```

Results for Binary Model 0.8852459016393442										
		precision	recall	f1-score	support					
	0	0.87	0.83	0.85	24					
	1	0.89	0.92	0.91	37					
micro	avg	0.89	0.89	0.89	61					
macro	avg	0.88	0.88	0.88	61					
weighted	avg	0.88	0.89	0.88	61					

THANK YOU FOR YOUR TIME!!!

Postscript:

That paper has been created based on the studies of the following contributors and data scientists:

https://www.kaggle.com/prashant111/extensive-eda-visualization-with-python

https://www.kaggle.com/faressayah/heart-disease-eda-9-ml-algorithms-90

https://www.kaggle.com/tentotheminus9/what-causes-heart-disease-explaining-the-model#The-Model

https://www.kaggle.com/cdabakoglu/heart-disease-classifications-machine-learning

https://www.kaggle.com/vbmokin/heart-disease-comparison-of-20-models

https://www.kaggle.com/rahul197/heart-disease-classification-machine-learning

https://www.kaggle.com/mytymohan/heart-disease-eda-Ir-dt-rf-gb-svm-dl

https://towardsdatascience.com/machine-learning-for-diabetes-562dd7df4d42

https://towardsdatascience.com/machine-learning-for-diabetes-562dd7df4d42

Thanks to everyone! Your work was very helpful for me!