

# Basic State Computations and Stability Analysis for Selected BOLT-II Flight Conditions



Fei Li, Scott Berry, Meelan Choudhari NASA Langley Research Center, Hampton, VA 23681

**Pedro Paredes** 

National Institute of Aerospace, Hampton, VA 23666

FD-14, BOLT-II Flight Experiment II

January 23, 2023, from 2:00 PM to 3:40 PM Eastern Time.



#### Introduction

- ☐ The ability to predict boundary-layer transition and flow separation is a crucial issue according to CFD Vision 2030 (Slotnick et al., NASA/CR-2014-218178, 2014)
  - Insufficient validation of BLT predictions for hypersonic configurations
  - Inadequacy of classical stability theory in many instances due to increased complexity of hypersonic transition (bluntness effects, streaks, shock-BL interactions, roughness effects on prevalent TPS)
  - CFD predictions especially critical due to limitations of ground facilities and challenges in detailed, high-frequency measurements
- ☐ BOLT/BOLT-II experiments provide a good opportunity to explore transition physics for complex configurations and to calibrate predicative tools against flight data
  - BOLT/BOLT-II flight campaigns provide unprecedented opportunity to explore transition physics for complex configurations and to calibrate the predictive tools against quality flight data

#### **☐** Objectives of present work

- Extend previous instability analyses to flight conditions at higher Re
- Wake evolution behind discrete trips and comparison with preliminary flight data
- Preliminary characterization of step-excrescence effects



#### **Outline**

- ☐ Introduction
- Numerical details and previous results
  - > See Li et al. 2020-3028, 2021-2905, 2022-1063, Choudhari et al. 2021-1207
- □ Basic State Features for Smooth Surface and Effect of Reynolds Number
  - Near centerline
  - > Acreage region (will be impacted by surface roughness on real-world surface!)
- □ Stability Characteristics ( $\alpha = \beta = 0$  deg)
  - > Mack's second modes (MM) and crossflow instabilities (CF) in quasihomogeneous regions
  - Streak instabilities near centerline
  - Streak instabilities in acreage region
- ☐ Effect of Step Excrescence
- ☐ Secondary Side Experiment: Effect of Discrete Trips
  - Wake evolution and disturbance growth
  - Wake evolution and comparison with preliminary data from BOLT-II flight
- ☐ Concluding Remarks



#### Flow Conditions: Smooth Surface BOLT (Preflight) Configuration

| $(\alpha = \beta = 0 \text{ deg})$                                       | M    | Re<br>(10 <sup>6</sup> /m) | P<br>(Pa) | T<br>(K) | T <sub>w</sub> (K) |
|--------------------------------------------------------------------------|------|----------------------------|-----------|----------|--------------------|
| FAL: Flight Ascent, Low Re                                               | 5.53 | 4.25                       | 2.379e3   | 221.90   | 400                |
| FAH: Flight, Ascent, High Re                                             | 5.37 | 6.60                       | 3.735e3   | 219.09   | 400                |
| BOLT-II Preliminary Flight Trajectory Flight Ascent, <i>t</i> = 27.8 sec | 6.23 | 8.00                       | 3.751e3   | 212.70   | 355                |
| FA3: Flight, Ascent, Higher Re                                           | 5.25 | 9.98                       | 5.690e3   | 216.65   | 400                |
| FD3: Flight, Descent, Higher Re                                          | 7.36 | 9.98                       | 4.108e3   | 218.48   | 400                |
| FD4: Flight, Descent, Highest Re                                         | 7.36 | 11.53                      | 4.717e3   | 217.76   | 400                |





### **BOLT-II Preliminary Trajectory (t = 27.90 sec.)**





# Overall N-Factor Envelope over Primary Test Surface (Case FD4)



#### **Caution:**

- Critical N-factor likely to vary with type of instability!
- Surface roughness effects (neglected herein) likely to be significant for CF and sideline streaks



#### Effect of Backward Facing Step (FA3)

M = 5.25, Re = 9.98M/m Step location: x = 0.18415 m

k = 0.533 mm

 $k/\delta \approx 1.4$  near leading edge



- Backward facing step leads to emergence of streak from the corner near the intersection with the LE
  - Will induce streak instabilities analogous to those due to naturally occurring streaks within acreage region
- Ongoing computations for additional step parameters



AIAA SciTech 2023



### Streak Instability Characteristics of Step Vortex





#### Flow Conditions: Secondary Surface BOLT-II Flight Configuration

|                              | M    | <b>Re</b><br>(10 <sup>6</sup> /m) | P<br>(Pa) | T<br>(K) | T <sub>w</sub> (K) |
|------------------------------|------|-----------------------------------|-----------|----------|--------------------|
| Descent (preflight)          | 5.44 | 2.50                              | 1.638e3   | 225.50   | 400                |
| Ascent, $t = 28 \text{ sec}$ | 6.23 | 7.55                              | 3.547e3   | 212.80   | 400                |
| Ascent, $t = 29 \text{ sec}$ | 6.17 | 5.63                              | 2.682e3   | 213.48   | 400                |
| Ascent, $t = 30 \text{ sec}$ | 6.11 | 4.20                              | 2.034e3   | 214.4    | 400                |



#### Wake Flow Behind Leading Edge Trip













### Wake Instability Analysis: Leading Edge Trip (L = 1 m)





#### Predicted Trip-Wake Trajectories Consistent with Flight Data





### **Turbulent Wedges Downstream of Wake Transition** Behind Leading-Edge Trip (marked by "x")

RANS CFD with localized onset of transition within trip wake



Steady RANS computations by introducing localized source of turbulence at several locations which results in a turbulent wedge.



January 2023 AIAA SciTech 2023 14



#### **Summary**

- □ State of the art tools for computational analysis of BOLT/BOLT-II flight configurations
- ☐ Various base flow features and instabilities on (smooth) primary side
  - Streaks become stronger with increasing flight Re and are likely to dominate transition process both in the vicinity of centerline and near the middle of the acreage region
    - ➤ Multitude of streak instability modes hybrid MM/SI and pure SI
    - For BOLT descent case FD4, peak centerline N reaches 14 at x = 0.62 m and acreage streaks achieve N=14 also near x = 0.62 m. Base Flow Features and Instabilities for Secondary Side
- ☐ Step excrescence effect:
  - Preliminary computations for a single step height (k = 0.533 mm) indicate the emergence of a prominent streak originating from the intersection of step with the LE.
  - Peak N-factor reaches 14 at x = 0.32 m.
- ☐ Base Flow Feature and Instabilities for Secondary Side, Discrete trips
  - Predicted wake trajectory behind LE trip consistent with preliminary flight data
- ☐ Need (much) further analysis to improve predictive tools using flight measurements

## Acknowledgements

- Supported by NASA Hypersonic Technology Project
- Air Force Office of Scientific Research (Paredes)
- NASA Advanced Supercomputing (NAS)
- People
  - Dr. Frank Greene, NASA Langley, for sharing a basic state grid and solutions based on LAURA.
  - Dr. Robert Baurle and Mr. Jeffery White, NASA Langley, for help with VULCAN code
  - Dr. Daniel Rodriguez for help with grid generation for trips

### Extra Charts

### Inflection Line Illustrated







# Streak Instability Characteristics in Acreage Region (continued)





#### N-Factor Evolution for Streak Instabilities near Centerline





#### Streak Instability Characteristics in Acreage Region





# **BOLT-II Secondary Side**Transition Patterns Behind Discrete Trips

(Preliminary Analysis of Flight Data by Scott Berry)

