$\frac{\text{Problem 1}}{\text{Prove}} = \{og(n!) = \Theta(n \mid og n)\}$

Problem 2 (20 points)

Resources used: Collaborators:

The Fibonacci numbers F_0, F_1, F_2, \ldots , are defined by the rule

$$F_0=0, F_1=1, F_n=F_{n-1}+F_{n-2}.\\$$

- a) Use induction to prove that $F_n \ge 2^{0.6n}$ for all $n \ge 13$.
- b) Use induction to prove that $F_n \leq 2^{0.7n}$ for all $n \geq 0$.

(a)
$$\frac{3}{5}$$
 = $\frac{6}{13}$ = $\frac{23}{2}$ = $\frac{2}{2}$ =

For all
$$n^{2}13$$
: $F_{n} \geq 2^{0.6(n-1)}$

$$\Rightarrow F_{n-1} \geq 2^{0.6(n-1)}$$

Juductive Step

$$F_{n+1} \ge 2^{0.6(n+1)}$$
 $F_{n+1} \ge 2^{0.6(n+1)}$
 $F_{n+1} \ge 2^{0.6(n+1)}$
 $F_{n+1} \ge 2^{0.6(n+1)}$

According to $f_{yp} \Rightarrow F_{n} \ge 2^{0.6n}$ and $F_{n-1} \ge 2^{0.6(n-1)}$
 $F_{n+1} \ge 2^{0.6(n-1)}$

Problem 3 (10 Points)

Resources used: Collaborators:

Use mathematical induction to show that if n is an exact power of 2 and if T(n) = 2T(n/2) + n for n > 2 with T(2) = 2, then $T(n) = n \log_2 n$.

$$T(n) = 2T(n/2) + n \qquad n > 2$$

$$\frac{\beta ase}{4 = 2} \int \frac{(4)}{(4)} = \frac{4 \log_2(2)}{(2)} = \frac{4 \cdot 2}{2}$$

Inductive Hyp
$$T(2n) = 2n \log_2(2n) \stackrel{\text{g}}{\underset{\text{d}}{\cancel{\ }}} T(n) = n \log_2(n)$$

$$= 2 \left(n \log_2(n) \right) + n$$

$$= 2n \cdot 1042 (n^2) + n$$

Problem	4	Inse	stron	Sort.	
76	5 4	3	2	1	Compare
6 7	$\overbrace{5}$ 4	3	2	1	المالية المالية
$6\overline{\smash{\big)}}5$	7 4	3	2	1	
5 6	7 4	3	2	1	
5 6	4 7	3	2	1	
5 4	6 7	3	2	1	
4 5	6 7	$\sqrt{3}$	2	1	
4 5	6 3	7	2	1	
4 5	3 6	7	2	1	
43	5 6	7	2	1	
3 4	5 6	7	2	1	
3 4	5 6	$\bigcirc 2$	7	1	
3 4	5 2	6	7	1	
3 4	2 5	6	7	1	
3 2	4 5	6	7	1	
2 3	4 5	6	7	1	
2 3	4 5	6	1	7	
2 3	$4 \frac{5}{5}$	$\sum_{i=1}^{n}$	6	7	
2 3	4 1	5	6	7	
2 3	1 4	5	6	7	
2 1	3 4	5	6	7	
1 2	3 4	5	6	7	

Problem	(ye) Compare Swap	
Problem Sap = P	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	
	8 15 14 13 12 11 10 9 16 7 6 5 4 3 2 1	
	8 7 14 13 12 11 10 9 16 15 6 5 4 3 2 1	
	8 7 6 13 12 11 10 9 16 15 14 5 4 3 2 1	
	8 7 6 5 12 11 10 9 16 15 14 13 4 3 2 1	
	8 7 6 5 4 11 10 9 16 15 14 13 12 3 2 1	
	8 7 6 5 4 3 10 9 16 15 14 13 12 11 2 1	
	8 7 6 5 4 3 2 9 16 15 14 13 12 11 10 1	
69p: 4	8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9	
- \ V	4 7 6 5 8 3 2 1 16 15 14 13 12 11 10 9	
	4 3 6 5 8 7 2 1 16 15 14 13 12 11 10 9	
	4 3 2 5 8 7 6 1 16 15 14 13 12 11 10 9	
	4 3 2 1 8 7 6 5 16 15 14 13 12 11 10 9	
	4 3 2 1 8 7 6 5 16 15 14 13 12 11 10 9	
	4 3 2 1 8 7 6 5 16 15 14 13 12 11 10 9	
	4 3 2 1 8 7 6 5 16 15 14 13 12 11 10 9	
	4 3 2 1 8 7 6 5 12 15 14 13 16 11 10 9	
	4 3 2 1 8 7 6 5 12 11 14 13 16 15 10 9	
	4 3 2 1 8 7 6 5 12 11 10 13 16 15 14	
yap = 2	4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13	
	2 3 4 8 7 6 5 12 11 10 9 16 15 14 13	
	2 1 4 3 8 7 6 5 12 11 10 9 16 15 14 13	
	2 1 4 3 8 7 6 5 12 11 10 9 16 15 14 13	

1	2	3	4	5	6	7	8	9	10	12	11	14	13	16	15
1	2	3	4	5	6	7	8	10	N ₉	12	11	14	13	16	15
1	2	3	4	5	6	7	بخر 8	10	9	12	11	14	13	16	15
1	2	3	4	5	6	8	7	10	9	12	11	14	13	16	15
1	2	3	4	6	5	8	7	10	9	12	11	14	13	16	15
1	2	3	4	6	5	8	7	10	9	12	11	14	13	16	15
1	2	4	3	6	5	8	7	10	9	12	11	14	13	16	15
1	2	4	3	6	5	8	7	10	9	12	11	14	13	16	15
2	1	4	3	6	5	8	7	10	9	12	11	14	13	16	15
2	1	4	3	6	5	8	7	10	9	12	11	14	15	16	×13
2	1	4	3	6	5	8	7	10	9	12	11	16	15	A 14	13
2	1	4	3	6	5	8	7	10	9	12	11	16	15	14	13
2	1	4	3	6	5	8	7	10	9	12	11	16	15	14	13
2	1	4	3	6	5	8	7	10	11	12	79	16	15	14	13
2	1	4	3	6	5	8	7	12	11	10	9	16	15	14	13
2	1	4	3	6	5	8	7	12	11	10	9	16	15	14	13
2	1	4	3	6	5	8	7	12	11	10	9	16	15	14	13
2	1	4	3	6	70	8	× 5	12	11	10	9	16	15	14	13
2	1	4	3	8	7	6	5	12	11	10	9	16	15	14	13

99p = ()

(n, n-1, n-2,] 0 T4% has n elements 100 2 2 inv 3 n -l Messem

N=(

```
incressini
          ount
merston
                                The runtime
                                                    insertion
                                                              Sorl
                                                                     ncrease.
                               Sul Abors
                        a١
                                      The
              after.
                      (Inversion)
                                                More
                                                         mersions
                                                                           wore
      Fron
             sort
                     hould
                                           mabe
                              have
```

algorithm merge(A, 1, m, r)

for (i = 0 to n1 - 1) L[i] = A[1 + i]end for for (j = 0 to n2 - 1) R[j] = A[m + j + 1]end for

 $L[n1] = \infty$, $R[n2] = \infty$ i = 0, j = 0

for (k = 1 to r - 1)

if (L[i] <= R[j]) A[k] = L[i] i = i + 1

A[k] = R[j]

end for

return A

let L be an array of size n1 + 1 let R be an array of size n2 + 1

n1 = m - l + 1 n2 = r - m

```
Algorithm
algorithm MergeSort(A, 1, r)
  if (1 < r)
     m = (1 + r) / 2
     MergeSort(A, 1, m)
     MergeSort(A, m + 1, r)
     merge(A, 1, m, r)
  end if
  return A
end algorithm
```

Merge Sort

- Time Complexity: $T(n) \in \Theta(n \log_2(n))$
- Space Complexity: $\Theta(n)$

j = j + 1 end if end algorithm

