

Ziele:

IP Adressen bei einem Host konfigurieren

Funktionsweise von IP basierten Services kennen (Remote Zugriff, NTP, Mailserver, SNMP,)

IP Adressen konfigurieren

Ziele:

ARP:

MAC-Adresse und IP-Adressen verbinden

RARP:

IP-Adresse anhand der MAC-Adresse konfigurieren

BOOTP, DHCP:

IP-Informationen anhand der MAC-Adresse konfigurieren

APIPA:

IP-Konfiguration für die Insel

Wenn Host A an Host B eine Paket senden will, so muss Host A die MAC-Adresse von Host B kennen, um ein Paket senden zu können.

Wie kann Host A die MAC-Adresse von Host B herausfinden?

Host A sendet einen ARP-Request für die IP-Adresse von Host B. Da Host A das Ziel nicht kennt, muss er diesen Request als Broadcast absenden.

In diesem Request fragt Host A das lokale Netzwerk: "Who has 192.168.1.20?"

Der Rechner, der die gesuchte IP-Adresse konfiguriert hat, beantwortet die Anfrage direkt an Host A mit "192.168.1.20 is at 0000.2222.2222".

Alle anderen Rechner ignorieren die Anfrage!

Damit nun Host A dieses "Spiel" nicht für jedes Paket durchspielen muss, speichert Host A die Antwort in seiner ARP-Tabelle ab.

UNIX:

Windows:

C:\>arp -a

```
Schnittstelle: 192.168.23.34 on Interface 0x1000003
Internetadresse Physikal. Adresse Typ
192.168.23.1 00-17-31-85-97-eb dynamisch
```


Cisco:

zhspi-gw1>show ip arp									
Protocol	Address	Age (min)	Hardware Addr	Type	Interface				
Internet	212.55.196.65	-	000f.34e7.8bae	ARPA	FastEthernet0.3				
Internet	212.55.196.74	0	0001.0237.cc95	ARPA	FastEthernet0.3				
Internet	212.55.208.73	-	000f.34e7.8bae	ARPA	${\sf FastEthernet0.1}$				
Internet	212.55.208.78	3	00a0.c530.3d8d	ARPA	${\sf FastEthernet0.1}$				

Zyxel Router: (im cmdline Modus)

791> ip arp status

received 29746 badtype 0 bogus addr 0 reqst in 55400 replies 33518 reqst out 21893 cache hit 823251294 (0%), cache miss 3082489 (0%)

IP-addr	Type	Time	Addr	stat	iface					
212.55.22.64	10 Mb Ethernet	280	00:e0:4c:39:45:7e	41	enif0					
212.55.22.79	10 Mb Ethernet	0	ff:ff:ff:ff:ff	43	NULL					
62.12.130.137	10 Mb Ethernet	300	00:a0:c5:d2:6a:07	41	wanif0					
62.12.130.129	10 Mb Ethernet	280	00:13:60:3e:ca:00	41	wanif0					
62.12.130.135	10 Mb Ethernet	270	00:a0:c5:3f:0e:c7	41	wanif0					
62.12.130.132	10 Mb Ethernet	180	00:a0:c5:c0:9a:ea	41	wanif0					
mum of any autology C										

num of arp entries= 6

- Einträge in der ARP-Tabelle werden dynamisch eingetragen und nach einer – konfigurierbaren – Zeit wieder gelöscht.
- Je nach System ist der default ARP-Cache Timer zwischen 30 Sekunden (Linuxen) und 4 Stunden (Cisco-Router).
- Einträge können auch fix eingetragen werden:
 - Um die Sicherheit zu erhöhen (ARP-Replay kann jeder senden ...)
 - Um ein Gerät zu konfigurieren.

ARP timer, MAC-Tables

Die MAC-Adresse steht nicht nur in der ARP-Tabelle der Router, sondern auch in der MAC-Tabelle der Switches.

Wenn der Timeout der ARP-Tabelle grösser als der Timeout der MAC-Tabelle, führt das dazu, dass die Pakete nach dem MAC-Timeout auf dem Switch geflodded werden. Dieses Verhalten ist unerwünscht, da dadurch alle Links (mit dem entsprechenden VLAN enabled) am Switch unnötigerweise belastet werden.

Wird der ARP-Timeout etwas kleiner oder gleich dem MAC-Timeout gewählt, so kann das verhindert werden.

Da die Einträge in der ARP-Tabelle recht langlebig sein können, kann es sein, das ein neuer Host mit derselben IP-Adresse wir der Alte, lange Zeit nicht ansprechbar ist.

Um das zu verhindern, kann der Host auch ARP-Requests versenden, in denen er seine neue MAC-Adresse mitteilt (gratuitous ARP).

Diese gratuitous ARP Requests sind nicht authentifiziert! (jeder kann solche Pakete versenden ..., zu welchem Zweck auch immer!)

Mit ARP kann überprüft werden ob ein Host erreichbar ist, ohne dass ICMP Ping eingeschaltet sein muss (leider so eine Krankheit bei Firewalls)

Ist ein ARP-Eintrag für die Zieladresse eingetragen so besteht eine Layer 2 Verbindung zwischen den Geräten.

Achtung:

- Vor dem Test sollte ein vorhandener Eintrag zur Sicherheit gelöscht werden.
- Die Verbindung muss in beide Richtungen getestet werden!

Da die Einträge in der ARP-Tabelle recht langlebig sein können, kann es sein, das ein neuer Host mit derselben IP-Adresse wir der Alte lange Zeit nicht ansprechbar ist.

Um das zu verhindern, kann der Host auch ARP-Requests versenden, in denen er seine neue MAC-Adresse mitteilt (gratuitous ARP).

Diese gratuitous ARP Requests sind nicht authentifiziert! (jeder kann solche Pakete versenden ..., zu welchem Zweck auch immer!)

Hosts können auch ARP-Requests beantworten, wenn sie eine Route für die gesuchte Adresse besitzen. Damit können fehlerhafte IP-Konfiguration teilweise (!) korrigiert werden.

Host A: who has 10.1.1.20?

gw1: 10.1.1.20 is at 0000.aaaa.aaaa

Bei Verbindungs-Problemen muss sichergestellt sein, dass

- die IP-Konfiguration richtig ist (alle Rechner verwenden unterschiedliche IP-Adressen aus dem gleichen IP Subnetz)
- ARP-Einträge richtig sind.

Mit der ARP-Tabelle können verschiedene Netz-Probleme eingegrenzt werden:

- Habe ich den korrekten ARP-Eintrag vom Ziel-Rechner bzw. default Gateway?
- Hat der Ziel-Rechner bzw. default Gateway meine eigene MAC-Adresse in der ARP-Tabelle?
- Stimmen die MAC-Adressen in der ARP-Tabelle? (wenn nicht, so sind IP-Adressen doppelt vergeben, Dann kann man in den MAC-Adresse-Tabellen der Switches das Gerät lokalisiert werden).

ARP verwendet einen eigenen Ethertyp (0x0806)

RARP verwendet einen eigenen Ethertyp (0x8035) RARP kommt später ...

Fragen?

Wie bringe ich die IP Konfiguration auf den Rechner?

- Manuelle Konfiguration
 - Handarbeit :)
- Automatische Konfiguration
 - RARP
 - BOOTP
 - DHCP
 - Zero Konfiguration (APIPA)

Unix:

```
ifconfig <iface> <ipaddr/netmask> broadcast <broadcastaddr>
ifconfig <iface> <ipaddr> netmask <netmask> broadcast <broadcastaddr>
ifconfig <iface>
```

Generell müssen nur die von den IP-Klassen abweichende Netzmasken / Broadcastadressen angeben werden

Defaultrouten müssen separat (`route add default gw <IP-ADDR>`) konfiguriert werden.

DNS-Server werden in der Datei /etc/resolv.conf eingetragen.

Router:

router# configure terminal
router(config)#interface serial 1
router(config-if)#ip address 172.26.2.1 255.255.252
router(config-if)#end

Windows:

Mac OS X:

für eida, anerkannte Bildungsgänge

Mac OS X:

Fragen?

RARP

In der Regel verwendet ein Rechner ARP um die MAC-Adresse eines anderen Rechners zu finden. wenn der Rechner nach seiner eigenen IP-Adresse sucht, so kann er das **Reverse Address Resolution Protocol** (**RARP**) verwenden.

Damit RARP funktioniert, muss innerhalb der Ethernet Broadcast-Domain ein RARP-Server installiert und konfiguriert sein.

RARP kann nur die IP-Adresse übermitteln. Alle zusätzlichen Informationen müssen anschliessen von Hand konfiguriert werden!

Bootstrap Protocol (BOOTP)

RARP ist sehr stark limitiert (Nur IP-Adresse, nur im lokalen Netz). Um diese Einschränkungen zu umgehen wurde BOOTP erfunden.

Der Client sendet einen BOOTP-Request als UDP Broadcast. Der BOOTP-Server beantwortet den Request mit einem BOOTP-Replay – sofern er den Client in seiner Datenbank findet.

Das BOOTP-Replay Paket kann neben der IP-Adresse auch die Netzmaske, DNS-Server, Default Gateway und viele andere Parameter übertragen.

Bootstrap Protocol (BOOTP)

Da der BOOTP-Request als UDP-Broadcast gesendet wird, ist es möglich, dass dieses Paket an einen entfernten BOOTP-Server weiter geleitet werden kann. Es ist pro LAN Segment (Broadcast Domain) nicht mehr ein einzelner, dedizierter Server notwendig. Dazu muss der Router im Segment konfiguriert sein.

Der Administrator vom BOOTP-Server muss jede MAC-Adresse **vorgängig** in der Konfiguration vom BOOTP-Server registrieren sein um die notwendigen Parameter zuweisen.

Bootstrap Protocol (BOOTP)

BOOTP verwendet einen Schlüssel um den Klient zu identifizieren. In 99.9% aller Fälle ist das die Ethernet-Adresse vom Netzwerk-Schnittstelle die konfiguriert werden soll.

Wird ein Rechner in ein anderes Netz-Segment gezügelt, so muss dies auch beim BOOTP-Server angepasst werden, da der Rechner sonst die falschen IP-Parameter (die vom alten Standort) zugewiesen bekommt.

DHCP basiert auf BOOTP.

Der Unterschied ist, dass der DHCP-Server IP-Adressen an die Clients dynamisch verteilen kann.

Die Clients müssen nicht mehr im voraus beim Server registriert sein.

Der Server muss jedoch IP-Pools besitzen aus denen er die IP-Adressen 'verteilen' kann.

Da die IP-Adresse nicht mehr fix zugeteilt ist, ist das Protokoll zwischen dem DHCP-Client und -Server komplizierter als bei BOOTP oder RARP:

Der Client sendet eine DHCP-DISCOVERY Meldung

Der DHCP-Server antwortet mit einer DHCP-**OFFER** Meldung

Der Client überprüft, ob die IP-Adresse aus der OFFER Meldung brauchbar ist. Wenn die IP OK ist, so sendet der Client dem Server eine DHCP-**REQUEST** Meldung zu.

Der Server bestätigt dem Client die Parameter mit einer DHCP-**ACK** Meldung. Der Client kann die Parameter verwenden.

Ist die IP-Adresse aus der DHCP-OFFER nicht verwendbar, so sendet der Client eine DHCP-**DECLINE** Meldung zurück.

Bekommt der DHCP-Client mehrere DHCP-OFFER Meldungen - weil beispielsweise mehrerer DHCP-Server am Netz sind - so gewinnt der schnellste Server, der eine passende Offer sendet.

Tipp: Versuchen sie mal mit Wireshark einen solchen Ablauf aufzuzeichnen. Starten sie Wireshark und geben sie ihre DHCP-Lease mit `ipconfig /release` frei und holen sie ich mit `ipconfig /renew` eine 'neue' IP-Adresse

DHCP kennt folgende Meldungs Typen:

DHCP Discover (Client > Server)

DHCP Offer (Server > Client)

DHCP Request (Client > Server)

DHCP Decline (Client > Server)

DHCP Ack (Server > Client)

DHCK NAck (Server > Client)

DHCP Release (Client > Server)

DHCP Server müssen nicht mehr jeden Client im voraus zu kennen. Die DHCP-Server brauchen IP-Pools um IP-Adresse zu verteilen.

In den folgenden Beispielen ist der Pool immer 172.16.84.32 - 172.16.84.63

Zyxel Router:

DHCP Setup
DHCP= Server
Client IP Pool Starting Address= 172.16.84.32
Size of Client IP Pool= 32
Primary DNS Server= 62.12.130.66
Secondary DNS Server= 193.246.253.10
Remote DHCP Server= N/A

Cisco:

```
ip dhcp exclude-address 172.16.1.0 172.16.1.31
ip dhcp exclude-address 172.16.84.64 172.16.84.255
ip dhcp pool users
  network 172.16.84.0 255.255.252.0
  domain-name example.com
  default-router 172.16.84.1
  dns-server 62.12.130.66 193.246.253.10
```

Unix:

```
subnet 172.16.84.0 netmask 255.255.255.0 {
  option domain-name "example.com";
  range 172.16.84.32 172.16.84.63;
  option broadcast-address 172.16.84.255;
  option routers 172.16.84.1;
  option subnet-mask 255.255.255.0;
  max-lease-time 7200;
}
```


für eida, anerkannte Bildungsgänge

Wen im Netz ein falsch konfiguriert DHCP-Server zu finden ist, führt das zu grossen Problemen. Von

Der Client bekommt eine falsche IP-Adresse, die Kommunikation funktioniert nicht.

Bis zu

Der Traffic kann abgehört werden,

Ist das ganze Spektrum möglich!

Moderne, managed Switches können dies verhindern!

Wenn ein DHCP-Client keine IP-Adresse beziehen kann, so vergibt sich der DHCP-Client eine beliebige Adresse aus dem Netz 169.254.0.0/16.

Der ganze Vorgang ist sehr träge, da verschiedene Time-Outs abgewartet werden müssen.

Da sich der Klient eine einzige Adresse selber zuordnet, eignet sich diese Methode nur für kleine, isolierte Netze. Zusätzlich müssen Dienste vorhanden sein, die die Host-, Service-Namen via Broad-/ Multicast announcen.

Das Netz 169.254.0.0/16 ist wie die RFC-1918 Netze nicht in der globalen Routing Tabelle enthalten.

Fragen?

Domain Name Service

Namen sind besser zu merken als IP-Adressen

Ursprünglich wurde die /etc/hosts Datei verwendet um die Namen zu IP-Adressen (vorwärts, forward-Lookup) und IP-Adressen zu Namen (rückwärts, reverse-Loopup) zu 'wandeln'.

# Adresse 127.0.0.1	FQDN localhost	Alias	-Namen
::1	localhost		
2001:8a8:30:11::2 212.55.196.74 192.168.23.1	guybrush.maillink. guybrush.maillink. guybrush.maillink.	ch	guybrush guybrush guybrush
192.168.42.2 192.168.42.23	toaster.maillink.d		toaster pegnose

Domain Name Service

Die hosts-Datei wurde am Anfang vom Internet von Rechner zu Rechner kopiert. Solange das Netz nur ein paar dutzende Hosts hatte funktioniert das gut. Ist das Netz grösser wird das nicht mehr

Ist das Netz grosser wird das nicht mehr funktionieren:

- Der Hostnamen muss eindeutig sein.
- Das File wird mit der Zeit viel zu gross und die Suche im File ist ineffizient
- Der Administrative Aufwand wird zu gross

Domain Name Service

Um diese Probleme zu lösen wurde eine verteilte, hierarchische Datenbank entwickelt.

- Durch das hierarchische Konzept, muss nur der Administrator einer Zone sicherstellen, dass der Hostname eindeutig ist.
- Durch die Verteilung der Datenbank verteilt sich die Last der auf viele Name Servern und die Administration wird einfacher.

Hierarchische Konzept

Der ganze Namensraum wird als Baum dargestellt.

Von der Wurzel (root) aus werden immer weitere Namens teile hintereinander angehängt.

Der komplette Domain Namen (Full Qualified Domain Name, FQDN) wird vom Blatt des Baums gegen die Wurzel gebildet und jeder Namen wird durch einen Punkt abgetrennt

DNS Zonen bilden eine administrative Einheit. Für die ersten 3 Level der Domains wird jeweils eine eigene Zone erstellt

Das Huhn und Ei Problem

Wenn man die IP-Adresse vom www.abbts.ch herausfinden will, so muss man zuerst die zuständigen DNS-Server finden. Dies erfolgt indem man von der Wurzel her den Namen abarbeitet.:

ch

Die Root-Zone kennt die DNS-Server, die für die Zone ch zuständig sind.

Die DNS-Server der switch abbts google Zone ch wissen welche DNS-Server für abbts zuständig ist.

Root

com

Das Huhn und Ei Problem

Das bedeutet, wenn ein DNS-Server die Root-Server kennt, kann er alle **existierende** Namen auflösen.

Kennt ein DNS-Server die Root_Server nicht, so kann er die meisten Namen nicht auflösen kann.

Darum sind bei allen DNS-Server die Root_Server von Hand im sogenannten hint-File konfiguriert.

Der DNS-Server wird die aktuelle Liste der Root-Server nach dem Start bei einem der konfiguriert Root-Server 'abholen'.

Master und Slaves

- Da DNS-Server sehr wichtig sind, wird eine Zone in der Regel auf mehreren Servern gehostet.
- Damit der Administrator nicht auf allen Servern die Daten anpassen muss, gibt es die Primary-Name-Server und die Secondary-Name-Server.
- Ein Primary-NameServer besitzen immer die aktuelle Daten der entsprechenden Zone.

Master und Slaves

- Die Secondary-Name-Server überprüfen in regelmässigen Abständen ob aktuellere Daten beim Primary Server bereitstehen und holen sich die Daten gegeben falls und speichern die Daten lokal ab (Pull-Methode).
- Primary-Server können den Secondary-Name-Server eine Meldung senden (Notify), dass neue Daten vorhanden sind, damit diese den Transfer der Daten einleiten (Push-Methode).

Daten im DNS

In den DNS-Zonen können verschiedene Informationen angelegt werden. Die folgenden Typen sind die wichtigsten heute verwendeten Resource Records (RR)

A (IPv4 Adresse)

PTR (**P**oin**t**e**r**) Werden gebraucht für die Übersetzung von IP-Adressen in FQDN.

MX (**M**ail e**X**change) Gibt an welche Mailserver verwendet werden sollen.

NS (Name Server) Gibt die Nameserver der eigenen Zone an.

SOA (Start of Autoritativ) Definiert die Gültigkeitsdaten für eine Zone.

CNAME (canonical name) Alias Namen (Vorsicht!)

AAAA (IPv6 Adressen (4 mal 32Bit lang, darum AAAA))

SRV (**Serv**ice) Wo befindet sich der entsprechende Service.

TXT (**T**ext) Freier Text

Der MX Record wird verwendet, um die Mailserver einer Domain anzugeben.

Man kann mehrerer Mailserver mit unterschiedlichen Prioritäten konfigurieren. Mails sollen an den Server mit der tiefste Priorität gesendet werden.

```
$host -t mx heuer.org
heuer.org mail is handled by 10 mail.heuer.org.
heuer.org mail is handled by 20 mx2.cyberlink.ch.
```


Reverse Lookups bei IPv4

Um von der IP-Adresse auf dem Hostnamen zu kommen ist ein Reverse Lookup notwendig.

Wenn sie beispielsweise wissen wollen, welchem Host die IP 212.55.197.226 zugeordnet ist so passiert folgendes:

Der DNS-Client erstellt eine Anfrage vom Type Pointer für den Host 226.197.55.212.in-addr.arpa.

```
$ host 212.55.197.226
226.197.55.212.in-addr.arpa domain name pointer example.org.
```

Das bedeutet, dass die Reverse Lookups nicht aus dem vorwärts Baum erstellt werden, sondern dass diese separat erstellt werden müssen.

Reverse Lookups bei IPv6

Bei IPv6 erfolgt die reverse DNS-Auflösung analog der Lösung vom IPv4

Anstelle von in-addr.arpa wird bei IPv6 die Domain ip6.arpa der umgedrehten IP-Adresse angehängt und nach einem PTR (Pointer) gefragt.

rekursive und authoritiveonly DNS-Server

DNS-Server beantworten die Fragen Aufgrund ihrer lokalen – konfigurierten – Datenbank. Wenn der DNS-Server nun eine Frage bekommt, die er aufgrund der lokalen Informationen nicht beantworten kann so hat er zwei Möglichkeiten:

 Der DNS-Server kann herausfinden, welcher DNS-Server für die gesuchte Zone zuständig ist und dann die Frage an diesen Server weiterleiten und die Antwort dem Client zurück liefern. (rekursive Server)

Der DNS-Server wird selber zum Client gegenüber dem zuständigen Server.

rekursive und authoritiveonly DNS-Server (2)

 Der DNS-Server kann dem Client zurückmelden, dass er diese Domain nicht kennt. (authoritiveonly)

DNS-Clients von Benutzer-Rechnern und Servern sollten nur rekursive DNS-Server verwenden. d.h. verwenden sie immer nur die DNS-Server, die der Provider angibt - oder sie wissen was sie tun und installieren selber einen rekursiven DNS-Server.

Wenn sie 'fremde' DNS-Server verwenden, kann es sein, dass sich dieser DNS-Server wie ein authoritive-only Server verhält.

rekursive und authoritiveonly DNS-Server (3)

Die rekursiven DNS-Server cachen die Resultate der Abfragen, so dass sie bei einer gleichen Abfrage das Ergebnis direkt liefern können.

Einerseits wird da durch das Ergebnis schneller geliefert und andererseits werden die Root-, TopLevelund SecondLevel-Server entlastet.

Sowohl positive (Name gefunden) wie auf negative (Name nicht gefunden) Ergebnisse werden im Cache abgelegt.

Die DNS-Clients verwenden in der Regel immer zuerst die lokale hosts Datei und danach die DNS-Server um einen Namen aufzulösen.

DNS-Clients werden in der Regel mit 2 DNS-Server konfiguriert. Oft erfolgt dies automatisch mittels DHCP.

Der 2. DNS-Server wird nur verwendet, wenn der der erste Server ausfällt. Da jedes mal einen Timeout abgewartet werden muss, scheint das Internet "langsam" zu sein.

DNS Clients - searchdomain

DNS-Clients können so konfiguriert werden, dass ein relativer Hostname mit verschiedenen Domains versucht wird aufzulösen. (Unixen: /etc/resolv.conf, Windows: Netzwerk, TCP/IP Einstellungen)

```
$ host -v monet
Trying "monet.maillink.ch"
Trying "monet.heuer.org"
Trying "monet.cyberlink.ch"
Trying "monet.magnet.ch"
```

Der erste Hostnamen der einen gesuchten Eintrag besitzt wird zurück gegeben.

Die RootServer sind der Zentrale Punkt, mit denen der ganze DNS-Service steht und fällt.

Weltweit gibt es 13 Root-Server. (Die maximale Anzahl ist aufgrund der minimalem Paket Grösse von 576Byte limitiert. Diese minimale Paket Grösse definiert diemaximale DNS Paketgrösse).

Um trotzdem mehr Root Servers zu verwenden sind einige Server in AnyCast Netzen platziert.

AnyCast-Server sind Server die an verschiedenen Orten im Netz angeschlossen sind. Diese Server besitzen all dieselben IP-Adressen (!).

Kennen die Root Server eine Top-Level Domain nicht, so können keine Domain-Namen aus dieser Top-Level Domain aufgelöst werden. Der Betreiber der Root Zone hat extrem grossen Einfluss aufs Internet.

Neben den IANA-Root Servern gibt es weitere Root-Server Netzwerke. Viele der alternativen RootServer verwenden zusätzliche Top-Level Domains - was zu Problemen führt wenn eine dieser zusätzlichen Domain offiziell etabliert wird.

ORSN, European Open Root Server Network, betreibt alternative RootServer, die zu 100% kompatibel zu den RootServern von IANA sind.

Betreiben eines DNS-Servers

Wenn sie einen eigenen authoritiven DNS-Server betrieben möchten, so müssen sie einige Randbedingungen beachten:

- Die Server müssen rund um die Uhr erreichbar sein.
- Die Server sollten geographisch an unterschiedlichen Orten stehen. Das bedingt, dass es mehrere Server sind, und dass die Server über verschiedene Leitungen am Netz angeschlossen sind.
- Die Server sollten in unterschiedlichen CIDR-Blöcken liegen, wenn möglich sollen die Server über unterschiedliche ISPs angeschlossen sein.

Betreiben eines DNS-Servers (2)

Eine Möglichkeit um diese Anforderungen zu "umgehen" ist der Einsatz eines versteckten Primary-Servers.

In der Zone werden die öffentlichen Server des Providers konfiguriert. Diese Server sind jedoch alles Secondary NameServer, die die Informationen vom ihrem nicht öffentlichen Primary Server abholen. Dadurch behalten sie die Kontrolle über ihre Daten in den Zonen, müssen aber nicht die DNS-Server selber verwalten.

Verschiedene Anbieter bieten auch global verteilte DNS-Server an.

Denken sie immer daran, ohne DNS-Server ist ihre Domain wertlos, denn niemand wird sie finden!

DNS Software:

Bind http://www.isc.org/index.pl?/sw/bind/

Powerdns http://www.powerdns.com/

TinyDns http://tinydns.org/

RootServer: http://www.root-servers.org/

RootServer der RIPE: http://k.root-servers.org/

ORSN Network: http://european.ch.orsn.net/index.php

Tools: http://www.dns.net/dnsrd/

IANA http://www.iana.org/

IANA-Domains http://www.iana.org/domain-names.htm

Die Domain example.com ist reserviert. Sie können diese für lokale Experimente oder für Dokumentationen verwenden.

Fragen?

- Remote Sessions: Telnet / ssh / X11 / RDP
- Mail: SMTP, POP3, IMAP4, (X.400)
- Zeit: NTP
- Überwachung / Konfiguration: SNMP

Remote Session

- + Mehr Anschlüsse sind möglich
- Sicherheit?

Remote Session

bei graphischen Oberflächen:

- X11-Clients können den X-Server direkt via TCP (Port 6000 ...) ansprechen, oft wird der Datenstrom durch einen ssh-Tunnel weitergeleitet
- Windows: verwendet Remote Desktop Protokoll (RDP oder Citrix)

für eida, anerkannte Bildungsgänge

Mail Dienste

- User sendet die Mail an den eigenen MTA
 (MUA -> MTA, Protokoll: SMTP)
- 2) der MTA schaut im DNS nach dem MX-Eintrag für die Zieldomain (b.org) (DNS)
- 3) Aus der Antwort von 2) weiss der MTA welcher andere MTA zuständig ist.

4) Der MTA kontaktiert den MTA und überliefert ihm die Mail. Der andere MTA nimmt die Mail entgegen und speichert diese im MailStorage vom User bob@b.org (MTA -> MTA, Protokoll SMTP)

5) Der User bob prüft ob neue Mails in seiner Mailbox (Mailstorage) sind und ruft diese ab. (MUA -> MS, Protokoll POP3, IMAP4)

für eida, anerkannte Bildungsgänge

Beispiel einer SMTP-Session zwischen einem MUA und einem MTA:

SMTP < 220 largo.maillink.ch ESMTP

ESMTP> EHLO guybrush.maillink.ch

ESMTP < 250-largo.maillink.ch

ESMTP < 250-STARTTLS

ESMTP < 250-PIPELINING

ESMTP < 250-8BITMIME

ESMTP< 250 AUTH LOGIN PLAIN

ESMTP> MAIL FROM:<ueli@heuer.org>

SMTP < 250 ok

SMTP> RCPT TO:<ueli@heuer.org>

SMTP < 250 ok

SMTP> **DATA**

SMTP < 354 go ahead

... hier wird die Mail transferiert

SMTP > . (EOM)

SMTP< 250 ok 1172662923 qp 8920

für eida, anerkannte Bildungsgänge

Beispiel einer POP-Session: (Post Office Protocoll)

RFC 1939

```
heuer@flunder:~$ telnet mail.heuer.org 110
Trying 2001:8a8:30:10::2...
Connected to largo.maillink.ch.
Escape character is '^]'.
+OK <10796.1172664285@pop.maillink.ch>
user ueli@heuer.org
+OK
pass <password>
+OK
list
+OK
1 4017
2 9059
3 2826
retr 1
+OK
Received: (qmail 13954 invoked by uid 600); 30 Nov 2006 23:25:09
-0000
quit
+OK
```


Beispiel einer IMAP-Session: (Internet Message Access Protocol)

RFC 3501

heuer@flunder:~\$ telnet mail.heuer.org 143

Trying 2001:8a8:30:10::2...

Connected to largo.maillink.ch.

Escape character is '^]'.

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE

0 LOGIN ueli@heuer.org <PASSWORD>

0 OK LOGIN Ok.

1 STATUS "INBOX" (MESSAGES)

* STATUS "INBOX" (MESSAGES 377)

1 OK STATUS Completed.

2 STATUS "INBOX" (MESSAGES)

* STATUS "INBOX" (MESSAGES 378)

2 OK STATUS Completed.

3 LOGOUT

* BYE Courier-IMAP server shutting down

3 OK LOGOUT completed

Mail hat heute verschiedene Probleme:

MailClients versenden Mails wie MailServer an den konfigurierten Mailserver. Die Mailclients verwenden dazu das SMTP. Würden alle MailClients die Mails an einem anderen Port abliefern (submission RFC2476), könnte man jeden User zwingen sich per SMTP-AUTH mit Usernamen und Passwort zu authentisieren und zu autorisieren. Die Folge wäre sehr viel weniger 'zombie'-Mailer und damit weniger Viren- und Spam-Mails.

RBLs und Gray-listing können helfen diese abzuwehren

RBL: Realtime Black Listen

Mails sind offen. Die Mails liegen unverschlüsselt auf den MailStorage und jeder der Administrator der zugriff auf den Rechner hat, kann diese lesen. → Mails mit PGP oder S-MIME verschlüsselt versenden.

Beim Transfer von MTA zu MTA können – müssen aber nicht - die Kanäle verschlüsselt sein. Auch gibt es Möglichkeiten die IMAP und POP Dienste entsprechend zu verschlüsseln.

Sie sind nicht sicher, ob die Mail auch wirklich von der Person stammen die im Mail angegeben sind? → Da jeder Mails mit beliebigen Absendern versenden kann, ist nicht sicher, ob die Mail wirklich von dieser Person stammt!

Nur Mails signieren und den entsprechenden Schlüssel sicher austauschen hilft hier weiter.

Mails von bestimmten Mail-Adressen können von der Strafverfolgungs-Behörde auf Anfrage in Echtzeit überwacht werden. Der Inhaber der Mail-Adresse wird dabei logischerweise nicht informiert!

MAIL Server selber aufsetzen

Einen eigenen Mail-Server selber aufzusetzen ist nur dann zu empfehlen, wenn sie genau wissen was sie tun. Wenn die Installation nicht 100% abgesichert ist, wird es keine lange Zeitspanne dauern, bis ihr Mailserver missbraucht wird.

Die Folge ist, das sie mit ihre IP-Adresse umgehend auf verschiedenen Blacklisten landen - und sie dann ihre eigenen Mails nicht mehr versenden können. Gleichzeitig wird ihr guter Ruf kein guter Ruf mehr sein wird.

Fragen?

Jeder Rechner hat eine eigene Uhr, die mal gestellt wurde und mehr oder weniger genau läuft.

Das ist ein Problem, wenn über mehrere Rechner kommuniziert wird. Stimmen die Uhren der Rechner nicht genau überein, erschwert das den Vergleich von Logfiles, ...

Um die Zeit zu synchronisieren gibt es das Network Time Protokoll (NTP) RFC 1305

NTP-Server können die Zeit von anderen NTP-Servern oder von Funk-, GPS-, Atom-, ...-Uhren bekommen.

NTP Stratum Levels

Um den eigenen Rechner zu synchronisieren brauchen sie keine eigene Atom-Uhr, es reicht wenn sie ihren NTP-Client auf den Pool **<TDL-CODE>.pool.ntp.org** (ch.pool.ntp.org) synchronisieren.

Passende Clients sind auf der NTP-Homepage http://www.ntp.org/aufgelistet.

Fragen?

Simple Network Management Protocol SNMP

 Lesen und schreiben von Parametern von netzwerkfähigen Geräten

Mittels SNMP können die verschiedensten Werte eines Gerätes abgefragt werden.

Praktisch jedes Gerät, das sich remote managen lässt, hat einen SNMP-Agent integriert.

Bei entsprechender Konfiguration kann das Gerät auch via SNMP konfiguriert werden.

Die Geräte werden mittels GET-, GET-NEXT-Requests, GET-Response und SET Request abgefragt.

Die Geräte können TRAPs versenden, um auf spezielle Bedingungen aufmerksam zu machen. (beispielsweise Temperatur zu hoch, Interface X ist ausgeschaltet worden, ...)

INFORM sind Meldungen, die wie TRAPs vom Gerät versendet wird, INFORM-Meldungen müssen – im Gegensatz zu den TRAPs – vom Empfänger bestätigt werden.

Welche Parameter wie abgefragt bzw gesetzt werden können ist in den Management Information Base (MIB) beschrieben.

In den MIB-Files wird jede Variable genau beschrieben:

Die Parameter, die angesprochen werden, sind hierarchisch organisiert.

Angesprochen werden die einzelnen Variablen mittels der Object Identifier (OID). In den MIBs sind die OIDs spezifiziert.

ABB Technikerschule, Baden

ifTable

Internet = 1.3.6

Interface = 1.3.6.2.2

IfNumber = 1.3.6.1.2.2.1

= 1.3.6.1.2.2.2

ifNumber(1

directory(1)

system(1)

SNMP ist sehr verbreitet, weil die Hersteller den MIB-Tree mit eigenen Erweiterungen ergänzen können. Dazu wird jeder Firma/Projekt eine eigene Nummer unter der OID 1.3.6.1.4.1 (enterprises) zugeordnet. [1] Unter der zugeteilten Nummer ist die Firma selber verantwortlich wie sie ihre OIDs aufteilen wollen.

iso(1)org(3)dod(6)Internet(1) private(4) enterprises(1)

Zuständig für die Vergabe ist IANA

[1] http://www.iana.org/assignments/enterprise-numbe

cisco(9) wellfleet(18)

hp(11)

Höhere Fachschule HF

für eida, anerkannte Bildungsgänge

ibm(2)

...(n)

SNMP V1 und V2c verwenden eine Community (eine Art Passwort) um sich aus zuweisen

SNMPV3 hat eine starke Authentisierung eingebaut. Die Pakete werden bei SNMPv3 mit einem Hash-Wert gesichert.

Mit den Programmen snmpwalk / snmpget können ganze Bäume bzw. einzelne Werte abgefragt werden:

Unter UNIX [1]:

```
snmpwalk -c <communtiy> -v <version> <host> [OID]
snmpget -c <communtiy> -v <version> <host> [OID]
```

Mit dem Programm snmpset könnten Werte gesetzt werden. Das geht nur, wenn die OID-Variable schreibbar und die Write-Community eingerichtet ist.

snmpget -c <communtiy> -v <version> <host> OID Type
Value

[1] Auf der Net-SNMP Hompage (http://net-snmp.sourceforge.net/) kann unter 'Download' auch ein Windows CLI Version heruntergeladen werden.

Abfragen (Beispiel)

```
snmpwalk -cpublic -v2c 212.55.196.65 ifDescr
IF-MIB::ifDescr.1 = STRING: FastEthernet0/0
IF-MIB::ifDescr.2 = STRING: FastEthernet0/1
IF-MIB::ifDescr.3 = STRING: Serial0/0/0
IF-MIB::ifDescr.4 = STRING: Serial0/0/1
IF-MIB::ifDescr.5 = STRING: Null0
IF-MIB::ifDescr.6 = STRING:
                            Loopback0
IF-MIB::ifDescr.7 = STRING: FastEthernet0/0.1
IF-MIB::ifDescr.8 = STRING: FastEthernet0/0.3
IF-MIB::ifDescr.9 = STRING: FastEthernet0/0.100
IF-MIB::ifDescr.10 = STRING: FastEthernet0/0.500
IF-MIB::ifDescr.11 = STRING: Multilink1
IF-MIB::ifDescr.12 = STRING: Multilink1-mpls layer
$
```


Höhere Fachschule HF

für eida, anerkannte Bildungsgänge

SNMP Anwendungen:

net-snmp: snmpget, snmpwalk MRTG, (RRD)

Network Management Systeme

HP Openview, OpenNMS, Netsight, Cacti, Nagios, DVG,

Hyper Text Transfer Protocol

Das Protokoll wurde 1989 von Tim Berners-Lee am CERN zusammen mit der URL-Syntax und HTML-Regeln entwickelt, wodurch das World Wide Web geboren wurde.

Gopher wurde fast gleichzeitig entwickelt

Praktisch gleichzeitig wurde **Gopher** (RFC 1436 a distributed document search and retrieval protocol) als Web ähnliches Protokoll an der University of Minnesota definiert.

- Gopher verwendet den TCP-Port 70
- Gopher kann verschiedene Datei Typen transferieren.
- Gopher Clients können jeweils nur einen einzigen Type darstellen.
- Im Browser können Gopher Seiten mit der URL gopher://<Host>/<URI> angesehen werden. Beispielsweise: gopher://quux.org/

- http verwendet den TCP-Port 80
- https verwendet den TCP-Port 443
 Pro Zertifikat ist eine IP notwendig.
- http ist ein Client/Server Protokoll. Client ist der Webbrowser. Der Client sendet Request Server der Web/Server. Der Server sendet Response
- http ist ein stateless Protokoll
- http kann zusätzliche Informationen im Header mitsenden. Durch die Angabe des Content-Type können beliebige Datei-Formate Transferiert werden.

Ein Request für die Seite https://guybrush.maillink.ch/ Der Request wird vom Browser gesendet:

```
GET / HTTP/1.1
Host: guybrush.maillink.ch
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; ...
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en,de;q=0.7,de-ch;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
```


Cookie: dvg_remember=ueli%3B74ed81ec2e6e9b6edb7e0ca64f4b833d;

Die Antwort wird vom Server gesendet:

HTTP/1.x 401 Authorization Required Date: Mon, 05 Oct 2009 08:38:24 GMT

Server: Apache/2.2.6 (Unix) mod_ssl/2.2.6 OpenSSL/0.9.8k DAV/2

WWW-Authenticate: Basic realm="MyCastle"

Vary: accept-language, accept-charset

Accept-Ranges: bytes

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=iso-8859-1

Content-Language: en

Diese Seite ist Passwort geschützt und es wurde kein (oder ein falcher) Username/Passwort gesendet

für eida, anerkannte Bildungsgänge

Der Broser sendet eine neue Anfrage, dieses mal mit Username/Passwort

```
GET / HTTP/1.1
Host: guybrush.maillink.ch
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; ...
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en,de;q=0.7,de-ch;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: dvg_remember=ueli%3B74baddatad81ec2e6e9b6edb7e0ca64f4b833d;
Authorization: Basic dWVsaTpmbaddatabGxtYQRyQA==
```


Die Antwort wird vom Server gesendet:

HTTP/1.x 200 OK

Date: Mon, 05 Oct 2009 08:38:27 GMT

Server: Apache/2.2.6 (Unix) mod_ssl/2.2.6 OpenSSL/0.9.8k DAV/2

Last-Modified: Mon, 20 Jul 2009 05:44:24 GMT

Content-Length: 3753

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=ISO-8859-1

Die Seite wird nun im Anhang von diesem Header gesendet.

Die wichtigsten HTTP Server-Codes:

200: OK

301: Moved Permanently

400: Bad request

401: unauthorized

403: forbidden

404: Not Foiund

500: Internal Server Error

501: Not Implemented

Siehe auch: http://de.wikipedia.org/wiki/HTTP-Statuscode

