ÜBUNGEN ZUR PHYSIK IV – FESTKÖRPERPHYSIK

Wolfgang Hansen, Sommersemester 2015

Übungsblatt 8

Ausgabe 8.06.2015, Abgabe: 15.06.2015, 10:15 Uhr (vor der Vorlesung), Hörsaal AP

Übungsgruppe: Teilnehmer 1:
Gruppenleiter: Teilnehmer 2:

Aufgabe	17	18	19	Σ
mögliche Punkte	6	2	2	10
erreichte Punkte				

Aufgabe 17: Dispersionsrelation im Modell für stark gebundene Elektronen

Die Dispersionsrelation für Elektronen in einem kubisch flächenzentrierten Gitter lautet im Modell stark gebundener Elektronen näherungsweise

$$E(k) = E_{\alpha}' - 4 \left| A \right| \left(\cos \frac{k_x a}{2} \cos \frac{k_y a}{2} + \cos \frac{k_y a}{2} \cos \frac{k_z a}{2} + \cos \frac{k_x a}{2} \cos \frac{k_z a}{2} \right)$$

mit der Gitterkonstanten a, dem Austauschintegral A und der Energie $E_{\alpha}^{'}$, die sich überwiegend aus der Energie des atomaren Niveaus α ergibt.

- a) Welche Bedeutung hat das Austauschintegral?
- b) Berechnen und zeichnen Sie die Dispersion in der ersten Brillouin-Zone jeweils für die Γ X- und die Γ L-Richtung. Wie groß ist sind jeweils die Bandbreiten?
- c) Zeigen Sie, dass im Modell für stark gebundene Elektronen das unterste Band eines zweidimensionalen Gitters mit hexagonaler Symmetrie in der Näherung stark gebundener Elektronen durch folgenden Ansatz beschrieben werden kann:

$$\mathcal{E}(\vec{k}) = \mathcal{E}'_{\alpha} - 2A \left[\cos(k_x a) + 2\cos\left(\frac{k_x a}{2}\right) \cos\left(\frac{\sqrt{3}}{2}k_y a\right) \right]$$

wobei *a* der Abstand der Atome im hexagonalen Gitter ist und das Koordinatensystem so orientiert sein soll, dass eine der beiden elementaren Translationen in x-Richtung weist (s. Abb.).

Punkte: 1+3+2=6

Aufgabe 18: Wellenfunktion im Modell für stark gebundene Elektronen

Das Modell stark gebundener Elektronen basiert auf folgendem in der Vorlesung diskutierten Ansatz für die Wellenfunktion der Kristallelektronen:

$$\Psi_{n,\vec{\mathbf{k}}}(\vec{\mathbf{r}}) = \sum_{\mathbf{R}_l} e^{i\vec{\mathbf{k}}\cdot\mathbf{R}_l} \, \Phi(\vec{\mathbf{r}} - \vec{\mathbf{R}}_l)$$

Zeigen Sie, dass dieser Ansatz folgende Eigenschaften von Blochfunktionen besitzt:

ÜBUNGEN ZUR PHYSIK IV – FESTKÖRPERPHYSIK

Wolfgang Hansen, Sommersemester 2015

- (a) für alle Gittervektoren $\vec{\mathbf{R}}$ gilt $\Psi_{n,\vec{\mathbf{k}}}(\vec{\mathbf{r}}+\vec{\mathbf{R}}) = e^{i\vec{\mathbf{k}}\cdot\vec{\mathbf{R}}} \Psi_{n,\vec{\mathbf{k}}}(\vec{\mathbf{r}})$;
- (b) für alle Vektoren \vec{G} des reziproken Gitters gilt $\Psi_{n,\vec{k}+\vec{G}}(\vec{r}) = \Psi_{n,\vec{k}}(\vec{r})$.

Punkte: 1+1 = 2

Aufgabe 19: Brillouinzonen

- a) Konstruieren Sie graphisch die ersten vier Brillouinzonen eines zweidimensionalen quadratischen Gitters mit der Gitterkonstanten *a*.
- b) Auf welche Weise kann man die Teile der n-ten (n = 2 4) durch Translation in die erste Brillouinzone übertragen (reduziertes Zonenschema)? Zeigen Sie durch Zeichnung des Ergebnisses für n=4, dass sich alle Teilflächen zur Fläche der 1. BZ aufsummieren!

Punkte: 1+1 = 2