

Universidade Federal do Piauí

Centro de Tecnologia

Departamento de Recursos Hídricos, Geotecnia e Saneamento Ambiental

Água

Profa. Dra. Elaine Aparecida da Silva

Importância da água

- Componente bioquímico de seres vivos;
- Meio de vida de várias espécies vegetais e animais;
- Consumo doméstico (produção de alimentos e higiene);
- Fator de produção de vários bens de consumo (indústria e agricultura);
- Outros usos: geração de energia; esporte, lazer e turismo;

Água no corpo humano

❖ A água representa 70% da massa do corpo humano.

Sintomas de desidratação:

Perda de 1% a 5% de água: sede, pulso acelerado, fraqueza.

Perda de 6% a 10% de água: dor de cabeça, fala confusa, visão turva.

Perda de 11% a 12% de água: delírio, língua inchada, morte.

Uma pessoa pode suportar até 50 dias sem comer, mas apenas 4 dias sem beber água.

Fonte: http://tipospoluicao.tripod.com/Poluicao aquatica/agua no corpo humano.htm

Disponibilidade de água

A qualidade da água depende diretamente da quantidade de água existente para dissolver, diluir e transportar substâncias.

Ciclo hidrológico

 Fenômeno global de circulação da água entre a superfície terrestre e a atmosfera, impulsionado fundamentalmente pela energia solar associada à gravidade e à rotação terrestre.

Fonte: http://www.mma.gov.br/estruturas/167/ imagens/167 08122008121516.jpg

Distribuição das águas na Terra

Fonte: http://water.usgs.gov/edu/graphics/portuguese/earthwheredistribution.gif

Água no mundo

Continente	População	Recursos Hídricos
Ásia	60%	36%
América do Sul	6%	26%
América do Norte	8%	15%
África	13%	11%
Europa	13%	8%
Austrália e Oceania	< 1 %	4%

Fonte: http://www.daescs.sp.gov.br/index.asp?dados=ensina&ensi=planeta

Situação brasileira

- De acordo com relatório divulgado pela UNESCO, o Brasil é o país mais rico do mundo em recursos hídricos com 6,2 bilhões de m³ de água doce (12% do total disponível no planeta).
- Porém, a distribuição de água em nosso país é bastante desigual.

Fonte: http://www.daescs.sp.gov.br/index.asp?dados=ensina&ensi=planeta

Quantidade de água disponível

Estados Unidos:

600 L por habitante dia

Sertão: 10 L por habitante dia

Uso da água por setor no mundo

Fonte: Organização das Nações Unidas para Agricultura e Alimentação (FAO).

Principais usos da água

- ❖ Usos consuntivos refere-se aos usos que retiram a água de sua fonte natural diminuindo suas disponibilidades quantitativas, espacial e temporalmente.
 - ✓ Dessedentação de animais;
 - √ Uso para fins domésticos;
 - ✓ Agricultura, Pecuária, Irrigação;
- ❖ Usos não consuntivos refere-se aos usos que retornam à fonte de suprimento, praticamente a totalidade da água utilizada, podendo haver alguma modificação no seu padrão temporal de disponibilidade quantitativa.
 - ✓ Navegação, Recreação;
 - ✓ Piscicultura;
 - ✓ Mineração;
 - ✓ Transporte, diluição e depuração de efluentes.

Perfil do consumo de água

- Consumo crescente:
 - aumento da população
 - desenvolvimento industrial
 - outras atividades humanas

Aumento da retirada no sistema natural

Retorno na forma de efluentes

Alterações na qualidade

Água potável

- Água própria para o consumo humano.
- Para ser considerada como tal, ela deve obedecer a certos padrões de potabilidade necessitando muitas vezes de tratamento para se adequar ao consumo.

Portaria do Ministério da Saúde 2.914/2011

 Os métodos de tratamento vão desde a simples fervura até operações mais complexas.

PARÂMETROS FÍSICOS

Cor: derivada da existência de substâncias em solução, sendo, na maioria dos casos, de natureza orgânica.

Turbidez: propriedade de desviar raios luminosos, é decorrente da presença de materiais em suspensão na água.

Sabor e Odor: associados à presença de poluentes industriais ou outras substâncias indesejáveis, tais como matéria orgânica em decomposição, algas, etc.

Temperatura: influi em algumas propriedades da água (densidade, viscosidade, oxigênio dissolvido), com reflexos sobre a vida aquática. A temperatura pode variar em função de fontes naturais (energia solar) e fontes antropogênicas (despejos industriais e águas de resfriamento de máquinas).

PARÂMETROS QUÍMICOS

pH: indica se uma água é ácida (pH inferior a 7), neutra (pH igual a 7) ou alcalina (pH maior do que 7); o pH da água depende de sua origem e características naturais, mas pode ser alterado pela introdução de resíduos; pH baixo torna a água corrosiva; águas com pH elevado tendem a formar incrustações nas tubulações; a vida aquática depende do pH, sendo recomendável a faixa de 6 a 9.

Alcalinidade: causada por sais alcalinos, principalmente de sódio e cálcio; mede a capacidade da água de neutralizar os ácidos; em teores elevados, pode proporcionar sabor desagradável à água, tem influência nos processos de tratamento da água.

PARÂMETROS QUÍMICOS

Dureza – resulta da presença, principalmente, de sais alcalinos terrosos (cálcio e magnésio), ou de outros metais bivalentes, em menor intensidade, em teores elevados; causa sabor desagradável e efeitos laxativos; reduz a formação da espuma do sabão, aumentando o seu consumo; provoca incrustações nas tubulações e caldeiras.

Classificação das águas, em termos de dureza (em CaCO₃):

- ➤ Menor que 50 mg/1 CaCO₃ água mole
- ➤ Entre 50 e 150 mg/1 CaCO₃ água com dureza moderada
- ➤ Entre 150 e 300 mg/1 CaCO₃ água dura
- ➤ Maior que 300 mg/1 CaCO₃ água muito dura

• PARÂMETROS QUÍMICOS

Cloretos: Os cloretos, geralmente, provêm da dissolução de minerais ou da intrusão de águas do mar; podem, também, advir dos esgotos domésticos ou industriais; em altas concentrações, conferem sabor salgado à água ou propriedades laxativas.

Ferro e manganês: podem originar-se da dissolução de compostos do solo ou de despejos industriais; causam coloração avermelhada à água, no caso do ferro, ou marrom, no caso do manganês, manchando roupas e outros produtos industrializados; conferem sabor metálico à água; as águas ferruginosas favorecem o desenvolvimento das ferrobactérias, que causam maus odores e coloração à água e obstruem as canalizações.

Ferrobactérias

- As ferrobactérias são um grupo diversificado de seres microscópicos, que possuem a capacidade de depositar hidróxido de ferro ao redor de suas células.
- Excretam uma substância gelatinosa que forma uma espécie de lodo. Esse material é o agente responsável pela formação da incrustação e da consequente diminuição da vazão do poço.
- Etapas de limpeza: 1) pré-limpeza com um produto que possua ação alcalina, dispersante e tensoativa, em ação conjunta com escovação mecânica para remover primeiramente o lodo. 2) descarte da água. 3) desincrustação com produtos ácidos para remover os depósitos de hidróxido de ferro. 4) desinfecção com cloro ou produtos bactericidas específicos para ferrobactérias (de base oxigenada).

• PARÂMETROS QUÍMICOS

Nitrogênio: o nitrogênio pode estar presente na água sob várias formas: molecular, amônia, nitrito, nitrato; é um elemento indispensável ao crescimento de algas, mas, em excesso, pode ocasionar um exagerado desenvolvimento desses organismos, fenômeno chamado de eutrofização; a amônia é tóxica aos peixes; são causas do aumento do nitrogênio na água: esgotos domésticos e industriais, fertilizantes, excrementos de animais.

Fósforo: é essencial para o crescimento de algas, mas, em excesso, causa a eutrofização; suas principais fontes são: dissolução de compostos do solo; decomposição da matéria orgânica, esgotos domésticos e industriais; fertilizantes; detergentes; excrementos de animais.

• PARÂMETROS QUÍMICOS

Matéria Orgânica: a matéria orgânica da água é necessária aos seres heterótrofos, na sua nutrição, e aos autótrofos, como fonte de sais nutrientes e gás carbônico; em grandes quantidades, no entanto, podem causar alguns problemas, como: cor, odor, turbidez, consumo do oxigênio dissolvido pelos organismos decompositores.

O consumo de oxigênio é um dos problemas mais sérios do aumento do teor de matéria orgânica, pois provoca desequilíbrios ecológicos, podendo causar a extinção dos organismos aeróbios. Geralmente, são utilizados dois indicadores do teor de matéria orgânica na água: Demanda Bioquímica de Oxigênio (DBO) e Demanda Química de Oxigênio (DQO).

PARÂMETROS QUÍMICOS

Demanda Bioquímica de Oxigênio (DBO) é a quantidade de oxigênio necessária à oxidação da matéria orgânica por ação de bactérias aeróbias. Representa, portanto, a quantidade de oxigênio que seria necessário fornecer às bactérias aeróbias, para consumirem a matéria orgânica presente em um líquido (água ou esgoto). A DBO é determinada em laboratório, observando-se o oxigênio consumido em amostras do líquido, durante 5 dias, à temperatura de 20 °C.

Demanda Química de Oxigênio (DQO): é a quantidade de oxigênio necessária à oxidação da matéria orgânica, através de um agente químico. A DQO também é determinada em laboratório, em prazo muito menor do que o teste da DBO.

PARÂMETROS QUÍMICOS

Componentes Inorgânicos: alguns componentes inorgânicos da água, entre eles os metais pesados, são tóxicos ao homem: arsênio, cádmio, cromo, chumbo, mercúrio, prata, cobre e zinco; além dos metais, pode-se citar os cianetos; esses componentes, geralmente, são incorporados à água através de despejos industriais ou a partir das atividades agrícolas, de garimpo e de mineração.

Componentes orgânicos: alguns componentes orgânicos da água são resistentes à degradação biológica, acumulando-se na cadeia alimentar; entre esses, citam-se os agrotóxicos, alguns tipos de detergentes e outros produtos químicos, os quais são tóxicos.

PARÂMETROS QUÍMICOS

Fluoretos: os fluoretos têm ação benéfica de prevenção da cárie dentária; em concentrações mais elevadas, podem provocar alterações da estrutura óssea ou a fluorose dentária (manchas escuras nos dentes).

Oxigênio Dissolvido (OD): águas com baixos teores de oxigênio dissolvido indicam que receberam matéria orgânica; a decomposição da matéria orgânica por bactérias aeróbias é, geralmente, acompanhada pelo consumo e redução do oxigênio dissolvido da água; dependendo da capacidade de autodepuração do manancial, o teor de oxigênio dissolvido pode alcançar valores muito baixos, ou zero, extinguindo-se os organismos aquáticos aeróbios.

• PARÂMETROS BIOLÓGICOS

Algas - em grandes quantidades, como resultado do excesso de nutrientes, trazem inconvenientes: sabor e odor; toxidez, turbidez e cor; formação de massas de matéria orgânica que, ao serem decompostas, provocam a redução do oxigênio dissolvido; corrosão; interferência nos processos de tratamento da água: aspecto estético desagradável.

Coliformes Totais e Fecais - são indicadores de presença de microrganismos patogênicos na água; os coliformes fecais existem em grande quantidade nas fezes humanas e, quando encontrados na água, significa que a mesma recebeu esgotos domésticos, podendo conter microrganismos causadores de doenças.

Política Nacional dos Recursos Hídricos

- Instituída pela Lei nº 9.433/1997.
- Art. 1º A PNRH baseia-se nos seguintes fundamentos:
 - I a água é um bem de domínio público;
 - II a água é um recurso natural limitado, dotado de valor econômico;
 - III em situações de escassez, o uso prioritário dos recursos hídricos é o consumo humano e a dessedentação de animais;
 - IV a gestão dos recursos hídricos deve sempre proporcionar o uso múltiplo das águas;
 - V a bacia hidrográfica é a unidade territorial para implementação da PNRH e atuação do Sistema Nacional de Gerenciamento de Recursos Hídricos;
 - VI a gestão dos recursos hídricos deve ser descentralizada e contar com a participação do Poder Público, dos usuários e das comunidades.

Política Nacional dos Recursos Hídricos

Art. 2º São objetivos da Política Nacional de Recursos Hídricos:

I - assegurar à atual e às futuras gerações a necessária disponibilidade de água, em padrões de qualidade adequados aos respectivos usos;

II - a utilização racional e integrada dos recursos hídricos, incluindo o transporte aquaviário, com vistas ao desenvolvimento sustentável;

III - a prevenção e a defesa contra eventos hidrológicos críticos de origem natural ou decorrentes do uso inadequado dos recursos naturais.

Política Nacional dos Recursos Hídricos

Art. 5º São instrumentos da Política Nacional de Recursos Hídricos:

I - os Planos de Recursos Hídricos;

II - o enquadramento dos corpos de água em classes, segundo os usos preponderantes da água;

III - a outorga dos direitos de uso de recursos hídricos;

IV - a cobrança pelo uso de recursos hídricos;

V - Sistema de Informações sobre Recursos Hídricos.

Sistema de Informações sobre Recursos Hídricos

- Resolução nº 357, de 17 de março de 2005.
 - Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes.

```
I - águas doces: águas com salinidade igual ou inferior a 0,5 %;
II - águas salobras: águas com salinidade superior a 0,5 % e inferior a 30 %;
III - águas salinas: águas com salinidade igual ou superior a 30 %;
```

- O símbolo ‰ significa "partes por mil" ou"ppt".
- Resolução nº 430, de 13 de maio de 2011.
 - Complementa e altera a Resolução nº 357/2005.

- Resolução nº 357, de 17 de março de 2005.
- Art.3º As águas doces, salobras e salinas do Território Nacional são classificadas, segundo a qualidade requerida para os seus usos preponderantes, em treze classes de qualidade.
- Importância do enquadramento:
 - definição dos usos conflitos;
 - programas de controle da poluição (busca ações preventivas e corretivas).

- Art. 4º As **águas doces** são classificadas em:
 - ❖ I Classe especial: águas destinadas:
 - a) ao abastecimento para consumo humano, com desinfecção;
 - b) à preservação do equilíbrio natural das comunidades aquáticas; e,
 - c) à preservação dos ambientes aquáticos em UPI.
 - ❖ II classe 1: águas que podem ser destinadas:
 - a) ao abastecimento para consumo humano, após tratamento simplificado;
 - b) à proteção das comunidades aquáticas;
 - c) à recreação de contato primário, tais como natação, esqui aquático e mergulho;
 - d) à irrigação de hortaliças que são consumidas cruas e de frutas que se desenvolvam rentes ao solo e que sejam ingeridas cruas sem remoção de película; e
 - e) à proteção das comunidades aquáticas em Terras Indígenas.

- Art. 4º As águas doces são classificadas em:
 - ❖ III classe 2: águas que podem ser destinadas:
 - a) ao abastecimento para consumo humano, após tratamento convencional;
 - b) à proteção das comunidades aquáticas;
 - c) à recreação de contato primário, tais como natação, esqui aquático e mergulho;
 - d) à irrigação de hortaliças, plantas frutíferas e de parques, jardins, campos de esporte e lazer, com os quais o público possa vir a ter contato direto; e
 - e) à aqüicultura e à atividade de pesca.

- Art. 4º As **águas doces** são classificadas em:
 - ❖ IV classe 3: águas que podem ser destinadas:
 - a) ao abastecimento para consumo humano, após tratamento convencional ou avançado;
 - b) à irrigação de culturas arbóreas, cerealíferas e forrageiras;
 - c) à pesca amadora;
 - d) à recreação de contato secundário; e
 - e) à dessedentação de animais.
 - ❖ V classe 4: águas que podem ser destinadas:
 - a) à navegação; e
 - b) à harmonia paisagística.

- Art. 5º As águas salinas são classificadas em:
 - ❖ I Classe especial: águas destinadas:
 - a) à preservação dos ambientes aquáticos em UPI; e
 - b) à preservação do equilíbrio natural das comunidades aquáticas.

- ❖ II classe 1: águas que podem ser destinadas:
 - a) à recreação de contato primário;
 - b) à proteção das comunidades aquáticas; e
 - c) à aqüicultura e à atividade de pesca.

- Art. 5º As águas salinas são classificadas em:
 - ❖ III Classe 2: águas que podem ser destinadas:
 - a) à pesca amadora; e
 - b) à recreação de contato secundário.

- ❖ IV classe 3: águas que podem ser destinadas:
 - a) à navegação; e
 - b) à harmonia paisagística.

- Art. 6º As **águas salobras** são classificadas em:
 - ❖ I Classe especial: águas destinadas:
 - a) à preservação dos ambientes aquáticos em UPI; e,
 - b) à preservação do equilíbrio natural das comunidades aquáticas.

- ❖ II classe 1: águas que podem ser destinadas:
 - a) à recreação de contato primário;
 - b) à proteção das comunidades aquáticas;
 - c) à aquicultura e à atividade de pesca;
 - d) ao abastecimento para consumo humano após tratamento convencional ou avançado; e
 - e) à irrigação de hortaliças que são consumidas cruas e de frutas que se desenvolvam rentes ao solo e que sejam ingeridas cruas sem remoção de película, e à irrigação de parques, jardins, campos de esporte e lazer, com os quais o público possa vir a ter contato direto.

Enquadramento dos corpos d'água em classes

- Art. 6º As águas salobras são classificadas em:
 - ❖ III Classe 2: águas destinadas:
 - a) à pesca amadora; e
 - b) à recreação de contato secundário.
 - ❖ IV classe 3: águas que podem ser destinadas:
 - a) à navegação; e
 - b) à harmonia paisagística

Usos que dependem de outorga

- A derivação ou captação de parcela da água existente em um corpo d'água para consumo final, inclusive abastecimento público, ou insumo de processo produtivo;
- A extração de água de aquifero subterrâneo para consumo final ou insumo de processo produtivo;
- Lançamento em corpo de água de esgotos e demais resíduos líquidos ou gasosos, tratados ou não, com o fim de sua diluição, transporte ou disposição final;
- Uso de recursos hídricos com fins de aproveitamento dos potenciais hidrelétricos;
- Outros usos que alterem o regime, a quantidade ou a qualidade da água existente em um corpo de água.

Bacias hidrográficas

Fonte: http://brasildasaguas.com.br/educacional/regioes-hidrograficas/

Bacia hidrográfica do Parnaíba

Fonte: http://www2.ana.gov.br/Pagi nas/portais/bacias/Parnaiba.aspx

Área de Abrangência

Área Total: 344.112 km², 3,9% do território nacional

Estados: Piauí, Maranhão e Ceará

- A região hidrográfica do Parnaíba é hidrologicamente a segunda mais importante da Região Nordeste.
- Os principais afluentes do Parnaíba são os rios: Balsas, situado no Maranhão; Poti e Portinho, cujas nascentes localizam-se no Ceará; e Canindé, Piauí, Uruçuí-Preto, Gurguéia e Longá, todos no Piauí.
- O percentual da população abastecida por água, em 2010, apresentava uma média de 91%, equivalente, a média nacional. No entanto, a situação é crítica em relação a rede de esgotamento sanitário que apresenta um valor médio de 10%, muito abaixo da média nacional (62%) (ANA, 2013).

- A Pegada Hídrica de um indivíduo, comunidade ou empresa é definida como o volume total de água doce que é utilizado para produzir os bens e serviços consumidos (HOEKSTRA, 2009).
- No cálculo da PH é considerado o volume de água consumido a partir de fonte superficial e subterrânea, água da chuva no solo e, também, a água poluída durante o processo produtivo de um determinado local e período (SOUSA JÚNIOR e VIEIRA, 2012).

- Assim, a água é classificada de acordo com sua fonte e impacto em azul, verde e cinza (LEÃO, 2013, p. 1):
- A PH verde é definida como a quantidade de precipitação que é armazenada no solo e que é consumida pelas plantas;
- A PH azul refere-se à água consumida que é extraída dos corpos hídricos superficiais ou subterrâneos; e
- A PH cinza, por se tratar de um indicador de impactos sobre a qualidade da água, é definida como a quantidade de água necessária para diluir os poluentes presentes no efluente resultante do processo produtivo que se está avaliando.

- No website Water Footprint Network (WFN) está disponível uma calculadora para computar a pegada de água individual, que consiste na - quantidade de água necessária para produzir os bens e serviços consumidos por um indivíduo .
- Os cálculos baseiam-se nas necessidades de água por unidade de produto no país de residência do indivíduo que utiliza a calculadora.
 Para obtenção da referida pegada, é necessário o fornecimento de informações quantitativas sobre o consumo de produtos alimentícios, de bens industriais e o uso de água dentro e fora de casa.

Pegada Hídrica de uma Nação

Fonte: http://waterfootprint.org/en/water-footprint/national-water-footprint/

- De acordo com o relatório "The green, blue and grey water footprint of farm animals and animal products", para a produção de 1 kg de carne, no Brasil, são necessários, aproximadamente, 20 mil L de água (98,66% verde, 0,92% azul e 0,42% cinza de pegada hídrica).
- A média global é de 15 mil L de água. A variação desses valores é justificada por fatores, como: diferentes sistemas de produção, composição e origem da alimentação do gado entre os diferentes países (MEKONNEN e HOEKSTRA, 2010).
- Em consonância com Mekonnen e Hoekstra, Palhares (2011) afirma no estudo "Pegada hídrica dos suínos abatidos nos estados da região centro-sul do Brasil" que a gestão hídrica da cadeia produtiva de suínos não pode abordar somente a unidade produtiva, devendo inserir as cadeias agrícolas que se relacionam com ela.

Informações relevantes

- Um sexto da população mundial, mais de um bilhão de pessoas, não têm acesso a água potável;
- 40% dos habitantes do planeta não têm acesso a serviços de saneamento básico;
- Cerca de 6 mil crianças morrem diariamente devido a doenças ligadas à água insalubre e a um saneamento e higiene deficientes;
- Segundo a ONU, até 2025, se os atuais padrões de consumo se mantiverem, duas em cada três pessoas no mundo vão sofrer escassez moderada ou grave de água.

Atividade

- 1) Explique qual a importância do enquadramento da água em diferentes classes.
- 2) O que é outorga de uso de recursos hídricos? Cite três usos que dependem de outorga.
- 3) Assista o documentário 'Como tudo funciona Água' (vide link: https://www.youtube.com/watch?v=5-GSJbUmRbM) e escreva um texto de, no máximo, vinte linhas indicando as propriedades da água que você não conhecia e que considerou mais interessantes.

Bibliografia Consultada

Brasil (1998) *Lei nº 9.433, de 08 de janeiro de 1997.* Dispõe sobre a Política Nacional de Recursos Hídricos. Disponível em:

http://www.planalto.gov.br/ccivil_03/leis/L9433.htm

Brasil (2005) Resolução nº 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Disponível em:

http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459 Alterada pela Resolução 410/2009 e pela 430/2011.

Brasil (2011) *Portaria nº 2.914, de 12 de dezembro de 2012.* Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Disponível em:

http://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html

Bibliografia Consultada

HOEKSTRA, A. Y. Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. *Ecological Economics*, v. 68, p. 1963-1974, 2009.

LEÃO, R. S. Pegada Hídrica: visões e reflexões sobre sua aplicação. *Ambiente & Sociedade*, v. XVI, n. 4, p. 159-162, 2013.

MEKONNEN, M.M., HOEKSTRA, A.Y. *The green, blue and grey water footprint of farm animals and animal products.* Value of water research report series nº 48. UNESCO-IHE Institute for Water Education, Delft, the Netherlands, 2010.

PALHARES, J. C. P. Pegada hídrica dos suínos abatidos nos estados da região centro-sul do Brasil. *Acta Scientiarum. Animal Sciences*, v. 33, n. 3, p. 309-314, 2011.

Bibliografia Consultada

SOUSA JÚNIOR, W. C. D.; VIEIRA, B. C. Pegada hídrica como indicador: concepções e crítica metodológica. In: JACOBI, P. R.; EMPINOTTI, V. *Pegada hídrica*: inovação, corresponsabilização e os desafios de sua aplicação. São Paulo: Annablume, p. 45-62, 2012.

WFN. Water Footprint Network. Your water footprint – quick calculator. Disponível em:

http://www.waterfootprint.org/?page=cal/waterfootprintcalculator_indv_