Math 217: The Power of the Rank Nullity Theorem

The Rank-Nullity Theorem Let $T:V\to W$ be a linear transformation between finitely dimensional vector spaces. Then

 $\dim \ker T + \dim \operatorname{im} T = \dim \operatorname{Source} T.$

Problem 1.

- (a) Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation with standard matrix A. We can make a number of statements about T and A, including all of the following:
 - (i) $\ker(A) = \{\vec{0}\}.$
- (iv) The system $A\vec{x} = \vec{0}$ has a unique solution $\vec{0}$.
- (ii) rank(A) = m.
- (v) The linear system $A\vec{x} = \vec{0}$ has no free variables.
- (iii) T is injective.
- (vi) For any $\vec{b} \in \mathbb{R}^n$, $A\vec{x} = \vec{b}$ has at most one solution.

Which of these statements are equivalent, and why?

(b) Explain why, if any one of the above conditions holds, we must have $m \le n$. What can be said about T if m = n and any one of the above conditions holds?

Solution: They are all equivalent:

- $(i) \Leftrightarrow (iv)$ by definition of kernel.
- (i) \Leftrightarrow (iii) by the theorem that a linear transformation is injective if and only if its kernel is trivial.
- (i) \Leftrightarrow (ii) by rank nullity.
- So (i), (ii), (iii) and (iv) are all equivalent. Also, (ii) and (v) are the same by the definition of rank. And, finally, (vi) \Leftrightarrow (iii) by the definition of injective. So all are equivalent.

For (b), note that since the rank is the dimension of the image, and then image is a subspace of \mathbb{R}^n , we know dim im $T \subset \mathbb{R}^n$ so $m \leq n$. If equality holds, then T is invertible if and only if any one of the conditions (and hence all) hold.

Problem 2. TRUE or FALSE? Justify your answer.

(a) There exists a 4×5 matrix of rank 3 and such that the dimension of the space spanned by its columns is 4.

Solution: False. The dimension of the image is the rank of A.

(b) There exists a surjective linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^4$ given by multiplication by a rank 3 matrix.

Solution: False. Surjective means the image is all of \mathbb{R}^4 , which has dimension 4. The dimension of the image is the rank of the matrix, which is 3.

(c) If A is 7×6 and rref(A) has 6 pivots, then the map given by multiplication by A is injective.

Solution: True. The rank of A is 6 and the source has dimension 6. By rank-nullity, the kernel has dimension 0. This means the map is injective.

(d) If A is a 4×5 matrix, then it is possible for rank(A) to be 3 and dim(ker(A)) to be 3.

Solution: No. dim ker + dim im = dim source = 5. So we would have 3 + 3 = 5, which is impossible.

(e) Every injective linear transformation $\mathbb{R}^5 \to \mathcal{P}_4$ is an isomorphism.

Solution: True. dim $R^5 = \dim \mathcal{P}_4 = 5$, so if the kernel of a LT $\mathbb{R}^5 \to \mathcal{P}_4$ has dimension zero, then its image is dimension 5 by Rank-Nullity, and must be all of \mathcal{P}_4 .

(f) Every surjective linear transformation $\mathbb{R}^5 \to \mathcal{P}_4$ is an isomorphism.

Solution: True. dim $R^5 = \dim \mathcal{P}_4 = 5$, so if a LT $\mathbb{R}^5 \to \mathcal{P}_4$ is surjective, then its image is dimension 5, so by rank-nulity, its kernel has dimension zero, so the map is injective.

(g) There exists a 4×5 matrix A of rank 3 such that $\dim(\ker(A))$ is 2.

Solution: True. It is possible and in fact always true by Rank Nullity.

(h) If A is a 4×5 matrix and B is a 5×3 matrix, then $\operatorname{rank}(A) \leq \operatorname{rank}(B)$.

Solution: False! B could be the zero matrix, which has rank 0. But A will have rank more than 0 if it has even one non-zero entry.

(i) If matrix A has columns C_1, \ldots, C_4 which admit the relation $C_1 + C_2 - C_3 - 3C_4 = 0$, then $\begin{bmatrix} 1 & 1 & -1 & -3 \end{bmatrix}^T$ is a solution to $A\vec{x} = 0$.

Solution: True. A relation on the columns is the same as a solution to the corresponding homogenerous system of linear equations.

(j) If A is a 4×5 matrix and B is a 5×3 matrix, then rank $(A) \leq \text{rank}(AB)$.

Solution: False. If B is the zero matrix, so is AB. So its rank is zero, regardless of A.

(k) There does not exist a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\ker(T)$ and $\operatorname{im}(T)$ are both lines in \mathbb{R}^3 .

Solution: True. By rank-nullity, in that case, we would have 3 = 1 + 1.

(l) If the linear system $A\vec{x} = \vec{b}$ has at least 5 solutions for some choice of \vec{b} , then it must have at least 5 solutions for any other choice of \vec{b} .

Solution: False. If it has at least 5 solutions, it must have infinitely many. But maybe it has no solutions for some values of \vec{b} . A counterexample is $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $A\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has infinitely many solutions, which is at least 5. But $A\vec{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ has no solutions (is inconsistent).

(m) If A is an $n \times n$ matrix such that $rank(A^2) < n$, then rank(A) < n as well.

Solution: True. Suppose A has rank n. Since A is $n \times n$, this means it is invertible. So also A^2 is invertible. So its rank would be n.

(n) If A is a 4×5 matrix and B is a 5×3 matrix, then $rank(AB) \le rank(B)$.

Solution: True. Think about the composition linear transformation

$$\mathbb{R}^3 \xrightarrow{B} \mathbb{R}^5 \xrightarrow{A} \mathbb{R}^4.$$

The image of AB is the same as the image of imB under A. The dimension of a vector space can only go down under a transformation, so the dimension of imAB is at most $\dim imB$. So rank $AB \leq \operatorname{rank} B$.

(o) If A is a 4×5 matrix and B is a 5×3 matrix, then $rank(AB) \le rank(A)$.

Solution: True. Think about the composition linear transformation

$$\mathbb{R}^3 \xrightarrow{B} \mathbb{R}^5 \xrightarrow{A} \mathbb{R}^4.$$

The image of AB is contained in the image of A, so dimension $\operatorname{im} AB \leq \operatorname{dim} \operatorname{im} A$.

(p) For each natural number $n \geq 2$, there is a non-zero square matrix A such that A^n is the zero matrix.

Solution: True. For any $n \ge$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

(q) For each natural number $n \geq 2$, there is a non-identity square matrix A such that A^n is the identity matrix.

Solution: TRUE. Think about 2×2 matrices as giving linear transformations of \mathbb{R}^2 to itself. The question can be rephrased as asking whether or not there is a transformation that, when composed with itself n times, gives us the identity transformation. Rotation through an angle of $\frac{2\pi}{n}$ will work. Explicitly, the matrix $A = \begin{bmatrix} \cos \frac{2\pi}{n} & -\sin \frac{2\pi}{n} \\ \sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{bmatrix}$ is a square matrix such that A^n is the identity matrix.

(r) If A is a 5×5 matrix such that $A^{20} = I_5$, then the rank of A is 5.

Solution: TRUE. If $A^{20} = I_5$, then $A^{19}A = AA^{19} = I_5$. This means that A is invertible, so has full rank 5.

(s) The linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ sending $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ to $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ is given by multiplication by a diagonal matrix.

Solution: FALSE. We can compute the matrix of this map. We just need to see where it sends \vec{e}_1 and \vec{e}_2 . Since $\vec{e}_1 = \frac{1}{2}(\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\-1\end{bmatrix})$, we see that $T(\vec{e}_1) = \frac{1}{2}(T(\begin{bmatrix}1\\1\end{bmatrix} + T(\begin{bmatrix}1\\-1\end{bmatrix})) = \frac{1}{2}(\begin{bmatrix}1\\2\end{bmatrix} + \begin{bmatrix}3\\-2\end{bmatrix}) = \begin{bmatrix}2\\0\end{bmatrix}$. So the first column is $\begin{bmatrix}2\\0\end{bmatrix}$. Since $\vec{e}_2 = \frac{1}{2}(\begin{bmatrix}1\\1\end{bmatrix} - \begin{bmatrix}1\\-1\end{bmatrix})$, we see that $T(\vec{e}_2) = \frac{1}{2}(T(\begin{bmatrix}1\\1\end{bmatrix} - T(\begin{bmatrix}1\\-1\end{bmatrix})) = \frac{1}{2}(\begin{bmatrix}1\\2\end{bmatrix} - \begin{bmatrix}3\\-2\end{bmatrix}) = \begin{bmatrix}-1\\2\end{bmatrix}$. So the matrix is $\begin{bmatrix}2\\-1\end{bmatrix}$, which is NOT DIAGONAL.

(t) The linear transformation $\mathcal{P}_7 \to \mathbb{R}$ sending a polynomial f to f'(0) has a six-dimensional kernel.

Solution: False. The map is surjective (since f(x) = cx is sent to $c \in \mathbb{R}$ for any c). By rank nullity, the kernel is 7 dimensional, since the image is 1 dimensional.

(u) There is exactly one linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ sending $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ to $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

Solution: TRUE. It is easy to compute the matrix of this map, so map is completely determined by the given information. We need to find $T(\vec{e}_1)$ and $T(\vec{e}_2)$. Compute $T(\vec{e}_1) = T(\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 2 \end{bmatrix}) = T(\begin{bmatrix} 1 \\ -1 \end{bmatrix}) + \frac{1}{2}T(\begin{bmatrix} 0 \\ 2 \end{bmatrix}) = \begin{bmatrix} 3 \\ -2 \end{bmatrix} + \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3.5 \\ -1 \end{bmatrix}$. This is the first column. Also, since T sends $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, we know that \vec{e}_2 is sent to $\begin{bmatrix} 1/2 \\ 1 \end{bmatrix}$. So the second column of the matrix is $\begin{bmatrix} 1/2 \\ 1 \end{bmatrix}$. Thus the map T is multiplication by $\begin{bmatrix} 3.5 & .5 \\ -1 & 1 \end{bmatrix}$. This is the only map with the stated properties.

(v) If we know the output of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ on some basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ for \mathbb{R}^3 , then we can find the standard matrix of T.

Solution: TRUE. To find the matrix, we would need to find where \vec{e}_1 , \vec{e}_2 , and \vec{e}_3 go. But each of these is a linear combination of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, and T is linear. So, for example, we can find \vec{e}_1 by writing $\vec{e}_1 = a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3$. Then $T(\vec{e}_1) = aT(\vec{v}_1) + bT(\vec{v}_2) + cT(\vec{v}_3)$. This is a column vector in \mathbb{R}^3 and the first column of the matrix of T. Similarly, we can find $T(\vec{e}_2)$ and $T(\vec{e}_3)$ which are the second and third columns of the matrix.

(w) The standard matrix of the projection of \mathbb{R}^3 onto to some plane through the origin in \mathbb{R}^3 has rank 2.

Solution: TRUE. The rank of the matrix is the dimension of the image. Clearly, when we project onto a plane, the image of that mappign is exactly the plane, which is dimension 2.