

FLINK IN ZALANDO'S WORLD OF MICROSERVICES

JAVIER LOPEZ
MIHAIL VIERU

AGENDA

- Zalando's Microservices Architecture
- Saiki Data Integration and Distribution at Scale
- Flink in a Microservices World
- Stream Processing Use Cases:
 - Business Process Monitoring
 - Continuous ETL
- Future Work

ABOUT US

Mihail Vieru
Big Data Engineer,
Business Intelligence

Javier López
Big Data Engineer,
Business Intelligence

DAMEN

HERREN

KINDER

Wunschzettel Warenkorb

Inspiration Neu Bekleidung Schuhe Sport Accessoires Wäsche Premium Marken Sale

Lieblingsprodukt suchen...

GROSSE GRÖSSEN, **GROSSARTIGE STYLES**

ENTDECKE DIE NEUESTEN TRENDS

One of Europe's largest online fashion retailers

15 countries

~19 million active customers

~3 billion € revenue 2015

1,500 brands

150,000+ products

11,000+ employees in Europe

ZALANDO TECHNOLOGY

1300+ TECHNOLOGISTS

Rapidly growing international team

http://tech.zalando.com

VINTAGE ARCHITECTURE

VINTAGE BUSINESS INTELLIGENCE

VINTAGE BUSINESS INTELLIGENCE

RADICAL AGILITY

RADICAL AGILITY

AUTONOMY MASTERY

PURPOSE

RADICAL AGILITY - AUTONOMY

Applications communicate using REST APIs

Databases hidden behind the walls of AWS VPC

Classical ETL process is impossible!

SAIKI

SAIKI DATA PLATFORM

SAIKI — DATA INTEGRATION & DISTRIBUTION

SAIKI — SUMMARY Data sources Data sources Data Data sources Connections **Technologies** Delivery Extraction В E F 0 R B C **REST** Α F Ε R

FLINK IN A MICROSERVICES WORLD

OPPORTUNITIES FOR NEXT GEN BI

Cloud Computing

- Distributed ETL
- Scale

Access to Real Time Data

All teams publish data to central event bus

Hub for Data Teams

- Data Lake provides distributed access and fine grained security
- Data can be transformed (aggregated, joined, etc.) before delivering it to data teams

Semi-Structured Data

"General-purpose data processing engines like Flink or Spark let you define own data types and functions."

- Fabian Hueske,

dataArtisans

THE RIGHT FIT

STREAM PROCESSING

THE RIGHT FIT — STREAM PROCESSING ENGINE

Storm & Samza ruled out because of batch processing requirement

SPARK VS. FLINK DIFFERENCES

Feature	Apache Spark 1.5.2	Apache Flink 0.10.1
Processing mode	micro-batching	tuple at a time
Temporal processing support	processing time	event time, ingestion time, processing time
Latency	seconds	sub-second
Back pressure handling	manual configuration	implicit, through system architecture
State access	full state scan for each microbatch	value lookup by key
Operator library	neutral	++ (split, windowByCount)
Support	neutral	++ (mailing list, direct contact & support from data Artisans)

APACHE FLINK

- true stream processing framework
- process events at a consistently high rate with low latency
- scalable
- great community and on-site support from Berlin/ Europe
- university graduates with Flink skills

https://tech.zalando.com/blog/apache-showdown-flink-vs.-spark/

FLINK ON AWS - OUR APPLIANCE

USE CASES

BUSINESS PROCESS MONITORING

BUSINESS PROCESS

A *business process* is in its simplest form a chain of correlated events:

Business Events from the whole Zalando platform flow through Saiki => opportunity to process those streams in near real time

REAL-TIME BUSINESS PROCESS MONITORING

- Check if business processes in the Zalando platform work
- Analyze data on the fly:
 - Order velocities
 - Delivery velocities
 - Control SLAs of correlated events, e.g. parcel sent out after order

ARCHITECTURE BPM

HOW WE USE FLINK IN BPM

- 1000+ Event Types; 1 Event Type -> 1 Kafka topic
- Analyze processes with correlated event types (Join & Union)
- Enrich data based on business rules
- Sliding Windows (1min to 48hrs) for Platform Snapshots
- State for alert metadata
- Generation and processing of Complex Events (CEP lib)

STREAMING ETL

Extract Transform Load (ETL)

Traditional ETL process:

- Batch processing
- No real time
- ETL tools
- Heavy processing on the storage side

WHAT CHANGED WITH RADICAL AGILITY?

- Data comes in a semi-structured format (JSON payload)
- Data is distributed in separate Kafka topics
- There would be peak times, meaning that the data flow will increase by several factors
- Data sources number increased by several factors

ARCHITECTURE STREAMING ETL

HOW WE (WOULD) USE FLINK IN STREAMING ETL

- Transformation of complex payloads into simple ones for easier consumption in Oracle DWH
- Combine several topics based on Business Rules (Union, Join)
- Pre-Aggregate data to improve performance in the generation of reports (Windows, State)
- Data cleansing
- Data validation

FUTURE USE CASES

COMPLEX EVENT PROCESSING FOR BPM

Cont. example business process:

- Multiple PARCEL_SHIPPED events per order
- Generate complex event ALL_PARCELS_SHIPPED, when all PARCEL_SHIPPED events received

(CEP lib, State)

DEPLOYMENTS FROM OTHER BI TEAMS

Flink Jobs from other BI Teams

Requirements:

- manage and control deployments
- isolation of data flows
 - prevent different jobs from writing to the same sink
- resource management in Flink
 - share cluster resources among concurrently running jobs

StreamSQL would significantly lower the entry barrier

REPLACE KAFKA2KAFKA COMPONENT

- Python app
- extracts events from REST API Nakadi Event Bus
- writes them to our Kafka cluster

Idea: Create Nakadi consumer/producer to enable stream processing with Flink to other internal users

(first POC done)

OTHER FUTURE TOPICS

- New use cases for Real Time Analytics/ BI
 - Sales monitoring
 - Price monitoring
- Fraud detection for payments (evaluation)
- Contact customer according to variable event pattern (evaluation)

CONCLUSION

Flink proved to be the right fit for our current stream processing use cases. It enables us to build Zalando's Next Gen BI platform.

https://tech.zalando.de/blog/?tags=Saiki

THANK YOU