Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 11 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) a) Behauptung: Das untenstehende Sequenzkalkül ist korrekt:

$$(\exists\Rightarrow)\frac{\Phi,\psi(c)\Rightarrow\Delta}{\Phi,\exists x\psi(x)\Rightarrow\Delta}c \text{ kommt nicht in }\Phi,\delta,\psi(x) \text{ vor }$$

Beweis: Sei $J = (A, \beta)$ ein τ -Interpretation die Φ und für mindestens ein x, $\psi(x)$ erfüllt. Also:

$$J \vDash \Phi$$
$$J \vDash \exists x \psi(x)$$

Sei $a := [\![c]\!]^J$. Also gilt $J \models \psi[x/a]$, daraus folgt offensichtlich, dass $J \models \psi(c)$ gilt. Nach Vorraussetzung gibt es also ein $\varphi \in \Delta$, sodass $J \models \varphi$.

b) Behauptung: Das untenstehende Sequenzkalkül ist korrekt:

$$(\Rightarrow \exists) \frac{\Phi \Rightarrow \Delta, \psi(t)}{\Phi \Rightarrow \Delta, \exists x \psi(x)}$$

Beweis: Sei τ die Signatur die alle Relations-, Funktions- und Konstantensymbole enthält, die in Φ, Δ, $\psi(x)$ vorkommen, aber nicht t. Sei $\mathcal{J}=(\mathcal{A},\beta)$ eine τ -Interpretation mit $J \vDash \Phi$. Nach Vorraussetzung erfüllt J eine Formel in $\Delta \cup \{\psi(t)\}$

Fall: 1. $\mathcal{J} \models \varphi \in \Delta$, dies gilt offensichtlich.

Fall: 2. $\mathcal{J} \models \psi(t)$

Z.z. $\mathcal{J} \models \exists \forall x \psi(x)$

Sei J_a die $\tau \cup \{t\}$ -Interpretation sodass \mathcal{J}_a die Konstante c mit a belegt und sonst ist \mathcal{J}_a gleich J. Es gilt $\mathcal{J}_{a|\tau} = J$, daraus folgt, dass $\forall \varphi \in \Delta.J_a \not\models \varphi$. Also muss $J_a \models \psi(t)$. Also gilt $\mathcal{J} \models \psi[a]$ für mindestens ein $a \in A$. Daher also $J \models \exists \psi(x)$

Aufgabe 2

(i)

$$\frac{\Phi,\psi\Rightarrow\Delta}{\Phi\Rightarrow\Delta}$$

Wir geben ein Gegenbeispiel an. Wir wählen $\Phi = \{\top\}$, $\psi = \bot$ sowie $\Delta = \{\top\}$. Dann gilt:

$$\frac{\{\top\},\bot\Rightarrow\{\top\}}{\{\top\}\Rightarrow\{\top\}}$$

Somit gilt in jeder beliebigen Interpretation \mathcal{J} , dass die obere Sequenz ungültig ist, die untere aber nicht.

(ii)

$$\frac{\Phi,\neg\forall x\varphi\Rightarrow\Delta}{\Phi\Rightarrow\Delta,\exists x\varphi}$$

Wir geben ein Gegenbeispiel an. Wir wählen $\Phi = \{\top\}$, $\varphi = (x = x)$ sowie $\Delta = \emptyset$. Dann gilt:

$$\frac{\{\top\}, (\neg \forall x \ x = x) \Rightarrow \emptyset}{\{\top\} \Rightarrow (\exists x \ x = x)}$$

Somit gibt es offensichtlich eine Interpretation, sodass die obere Sequenz gültig ist, die untere aber nicht

Aufgabe 3

Es gilt:

$$\{\forall x f(x) = x\} \Rightarrow \{f(f(c)) = c\} \equiv \{\forall x f(x) = x\} \cup \{\forall x f(x) = x\} \Rightarrow \{f(f(c)) = c\}$$

Mit dem Sequenzenkalkül kann man das Axiom nun beweisen:

$$\begin{aligned} (\mathcal{S} \Rightarrow) & \frac{\{f(f(c)) = c\} \Rightarrow \{f(f(c)) = c\}}{\{f(c) = c, f(f(c)) = f(c)\} \Rightarrow \{f(f(c)) = c\}} \\ (\forall \Rightarrow) & \frac{\{\forall x f(x) = x, f(f(c)) = f(c)\} \Rightarrow \{f(f(c)) = c\}}{\{\forall x f(x) = x\} \cup \{\forall x f(x) = x\} \Rightarrow \{f(f(c)) = c\}} \end{aligned}$$