

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 1º Trabalho de Laboratório: Circuito RC Série 2º Semestre - Ano Letivo 2023/2024

1 - OBJETIVOS

- Adaptação ao equipamento laboratorial;
- Verificação do comportamento de um condensador em CC;
- Verificação do comportamento de um condensador em CA;
- Introdução à criação de modelos para o estudo de circuitos;
- Simulação do circuito teórico/prático.

2 - MATERIAL UTILIZADO

2.1 - Base de Ensaios

A base de ensaios (*breadboard*) é uma base que permite ligar eletricamente os componentes sem os modificar de modo a poder substituí-los e reutilizá-los com facilidade, permitindo o ensaio dos circuitos.

2.2 - Osciloscópio

O osciloscópio permite a observação de uma forma de onda de tensão repetitiva. A impedância de entrada é de $1M\Omega$.

2.3 - Gerador de Sinais

O gerador de sinais (G.S.) que se encontra na Figura 1 é uma fonte de tensão programável que permite definir a amplitude, a frequência e a forma de onda da tensão fornecida. Têm normalmente uma impedância de saída próxima de 50Ω (na Figura 1 está representada por R_1).

2.4 - Resistência e o Condensador

As resistências em eletrónica analógica e de sinal são normalmente de baixa potência e de valores muito superiores a 1Ω . O valor nominal encontra-se codificado com riscas de cor no corpo da resistência.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 1º Trabalho de Laboratório: Circuito RC Série 2º Semestre - Ano Letivo 2023/2024

3 - ESQUEMA DE MONTAGEM

Para a resposta às questões colocadas no dimensionamento, considere a seguinte montagem:

Figura 1

4 - DIMENSIONAMENTO

- 4.1 Explique o funcionamento do circuito da Figura 1.
- 4.2 **Utilizando exclusivamente o software MATLAB/SIMULINK** e tendo em conta o circuito da Figura 1, simule as evoluções temporais de V_{G.S.}, V_C e V_{R2}=V_{G.S}-V_C para as seguintes situações:
 - a) Para uma onda quadrada com uma amplitude entre 0 e 5V, com uma frequência (f_{G.S.}) de 1kHz.
 - b) Para uma onda sinusoidal com uma amplitude entre 0 e 5V, com uma frequência (fg.s.) de 1kHz.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 1º Trabalho de Laboratório: Circuito RC Série 2º Semestre - Ano Letivo 2023/2024

5 - CONDUÇÃO DO TRABALHO

5.1 - Monte o circuito da Figura 2.

Figura 2

- 5.2 Ajuste a saída do gerador de sinais (G.S.) para uma onda quadrada com uma amplitude entre 0 e 5V, com uma frequência de 1kHz (desligado do circuito). Ligue o gerador de sinais ao circuito.
- a) Com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_{G.S.}, V_C e V_{R2}=V_{G.S}-V_C.
- 5.3 Modifique a saída do gerador de sinais para uma onda alternada sinusoidal com uma amplitude entre 0 e 5V, com uma frequência de 1kHz.
- a) Com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: $V_{G.S.}$, V_C e V_{R2} = $V_{G.S}$ - V_C .
- b) Meça as formas de onda obtidas no condensador tanto em amplitude como em fase.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 1º Trabalho de Laboratório: Circuito RC Série 2º Semestre - Ano Letivo 2023/2024

6 - Análise dos Resultados e Conclusões

- 6.1 Indique as expressões matemáticas que permitem calcular a tensão de carga e descarga do condensador.
- 6.2 Desenhe o diagrama vetorial das tensões (trata-se de um circuito série, comece pela corrente do circuito).

7 - ELABORE UM RELATÓRIO DE ACORDO COM O MODELO FORNECIDO