Oznaczenie: $X \sim U[a,b]$ oznacza, że zmienna losowa X podlega rozkładowi jednostajnemu na przedziale [a,b]. Innymi słowy: $f_X(x) = \frac{1}{b-a}$, dla $x \in [a,b]$.

5. Załóżmy, że $X \sim U[0,1]$ i niech $Y = X^n$. Udowodnić, że $f_Y(y) = \frac{y^{1/n-1}}{n}$, dla $0 \le y \le 1$.

$$\times \sim U \left[0, 1 \right] \left(= \right) \qquad f_{\times} \left(\times \right) = \frac{1}{1 - 0} = 1$$

$$y = x^{n}$$

Definicja 1. Niech X będzie zmienną losową. Dystrybuantą $F_X(t)$ nazywamy funkcję określoną jako $F_X(t) = P(X < t)$.

Jeżeli wiadomo o jakiej zmiennej losowej mówimy, to używamy oznaczenia F(t). W wypadku dyskretnym $F_X(t) = \sum_{x_i < t} p_i$, w wypadku zmiennej typu ciągłego $F_X(t) = \int_{-\infty}^t f(x) \, dx$.

$$F_{y}(t) = P(y \angle t) = P(X^{n} \angle t) = P(X < \sqrt{T})$$

$$F_{y}(y) = F_{x}(\sqrt{y}) = \int_{-\infty}^{y} 1 \, dx = [X]_{0}^{y} = \sqrt{y}$$

$$\int_{0 \times 6E_{0}}^{y} \sqrt{y} \, dx = [X]_{0}^{y} = \sqrt{y}$$

Twierdzenie 1.

Funkcja f(x) jest całkowalna na zbiorze \mathbb{R} . Niech $F(t) = \int_{-\infty}^{t} f(x) dx$. Jest wówczas:

- (a) $funkcja F(t) jest ciągła w \mathbb{R}$,
- (b) funkcja F(t) jest różniczkowalna w każdym punkcie t ciągłości funkcji f(t), i w tychże punktach jest F'(t) = f(t).

Z czysto praktycznego (obliczeniowego) punktu widzenia interesuje nas podpunkt (b).

2 two hence 1 may
$$\partial C$$
 $\int y (y) = (\sqrt[n]{y})^2 = (y^{\frac{1}{n}})^2 = \frac{1}{n} y^{\frac{1}{n}-1}$