-个新的多项式不可约判定定理

梅汉飞

龙占洪

(湖南常德师专 415000) (湖南常德市五中)

本文利用复数性质深化了 Brow, Graha 判定 定理[1], 使其有更广的应用范围.

约定 Q 为有理数域, Z 为整数环, \overline{x} 表 示 x 的共轭数, ||A|| 表示集 A 的元素个数. $\partial^{\circ}(v)$ 表示多项式 v(x) 的次数. 设 f(x) 为整系 数多项式, $N = ||\{x| || f(x)|| = 1, x \in Z\}||, N_p = ||$ $||\{x| || f(x)||$ 是素数 $x \in Z\}||$.

定理 设 f(x) 是 n 次整系数多项式, $x_0 =$ $a + \sqrt{mbi}, |f(x_0)| = 1, \text{ 其中 } a, m, b \in Z, m \ge$ $1, b \neq 0$.

- 在Q上不可约.
- (2) 若 $mb^2 \ge 3.2N + N_p > n 4$, 则 f(x)在 Q 上不可约.
- 在 Q 上不可约.

可以看出定理中的不等式比 Brow,Graha 定 理中的不等式要弱,首先证明:

引理 1 设 v(x), u(x) 是整系数多项式, $x_0 = a + \sqrt{mbi}, a, b, m \in Z, m \ge 1, b \ne 0.$

- (1) 若 $mb^2 \ge 2$, $|v(x_0)| = 1$, 则 $v(x_0) = 1$ 或 -1;
- -1 或 i 或 -i;
- (3) 若 $|v(x_0)u(x_0)| = 1$, 则 $|v(x_0)| =$ $|u(x_0)|=1.$

证明 因 $x_0 = a + \sqrt{mbi}$, 可设 $v(x_0) =$ $A + \sqrt{mbBi}, A, B \in \mathbb{Z}, \mathbb{M} A^2 + mb^2B^2 =$ $|v(x_0)\overline{v(x_0)}| = |v(x_0)|^2 = 1.$ (1) $\boxtimes mb^2 > 2,$ 所以 $A = \pm 1, B = 0$, 结论 (1) 正确. (2) 因 $mb^2 = 1$, $M = \pm 1$, M = 0 A = 0, $M = \pm 1$. 有结论 (2). (3) 由条件 $|v(x_0)|^2 |u(x_0)|^2 = 1$, 由 前面的证明可知, $|v(x_0)|^2 = v(x_0)\overline{v(x_0)}, |u(x_0)|^2$ 是非负整数,于是, $|v(x_0)|^2 = |u(x_0)|^2 = 1$, 推 $\exists |v(x_0)| = |u(x_0)| = 1.$

- $1, v(x_1) = -1, x_0, x_1 \in \mathbb{Z}$. \emptyset
- (1) 最多还存在另外两个不等的整数满足 |v(x)|=1;
- (2) $\partial^{\circ}(v) = 1$ 时,不存在其它整数满足 |v(x)|=1.

设 g(x) 是整系数多项式, n(q) ${x||g(x)|=1, x\in Z}.$

定理证明 假设 f(x) = v(x)u(x), v(x) 、 u(x) 是非零次整系数多项式. 当 $x \in Z$ 时, 若 |f(x)| = 1, f(x) = |u(x)| = 1, f(x)是素数,有 |v(x)| = 1 或 |u(x)| = 1. 于是有 $||n(v)|| + ||n(u)|| \ge 2N + N_p.$

- (1) 有 ||n(v)|| + ||n(u)|| > n-2, 故 $||n(v)|| > \partial^{\circ}(v) - 1 \text{ if } ||n(u)|| > \partial^{\circ}(u) - 1, \text{ } \pi$ 妨设 $||n(v)|| > \partial^{\circ}(v) - 1$. 再由引理 1(1),(3) 有 $|v(x_0)| = 1, v(x_0) = 1$ 或 -1, 若 $v(x_0) = 1$, 则 $v(\overline{x_0}) = 1$, \emptyset $v(x) = v_1(x)(x - x_0)(x - \overline{x_0}) +$ $1, v_1(x)$ 一定是整系数多项式,这时 ||n(v)|| > $\partial^{\circ}(v) - 1 > 2 - 1 > 0$, 如果 n(v) 中的数都满 足 v(x) = 1, 那么非零次多项式 v(x) - 1 至少有 $\partial^{\circ}(v) + 2$ 个根,不可能,故必有 $x_1 \in n(v)$ 满足 $v(x_1) = -1$, 那么 $v_1(x_1)(x_1 - x_0)(x_1 - \overline{x_0}) = -2$ 即 $v_1(x_1)[(x_1-a)^2+mb^2]=-2$, 因 $v_1(x_1)$ 是整 数, $mb^2 > 2$, 故 $x_1 = a$, 故在 n(v) 中只有一个 数 a 满足 v(x) = -1, 总共就有 ||n(v)|| - 1 + 2 =||n(v)|| + 1 个数满足 v(x) = 1, 那么 v(x) - 1 = 0根的个数超过 $\partial^{\circ}(v)$, 矛盾. 若 $v(x_0) = -1$, 观察 -v(x) 即可.
- (2) 从前面证明可知, $||n(v)|| > \partial^{\circ}(v) 2$ 或 $||n(u)|| > \partial^{\circ}(u) - 2$, 不妨设 $||n(v)|| > \partial^{\circ}(v) - 2$. 由条件有, $v(x_0) = 1$ 或 -1, 若 $v(x_0) = 1$, 故 $v(x) = v_1(x)(x - x_0)(x - \overline{x_0}) + 1, v_1(x)$ 一定是整 系数多项式, ||n(v)|| > 2 - 2 = 0, 同样, n(v) 中 的数不可能都满足 v(x) = 1, 必有 $x_1 \in n(v)$ 满足

引理 $2^{[1]}$ 设 v(x) 是整系数多项式, $v(x_0)=v(x_1)=-1$, 于是 $v_1(x_1)(x_1-x_0)(x_1-\overline{x_0})=-2$, (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

 $v_1(x_1)[(x_1-a)^2+mb^2]=-2$, 因 $mb^2\geq 3$, $v_1(x_1)$ 是整数,此式不成立,矛盾,若 $v(x_0)=-1$, 观察 -v(x) 即可.

(3) 有 $||n(v)|| > \partial^{\circ}(v) + 1$ 或 $||n(u)|| > \partial^{\circ}(u) + 1$, 不妨设 $||n(v)|| > \partial^{\circ}(v) + 1$, 同样,n(v) 中的数不可能都满足 v(x) = 1, 也不可能都满足 v(x) = -1, 设 x_1 、 $x_2 \in n(v)$, 分别满足 $v(x_1) = 1$, $v(x_2) = -1$, 由引理 2(1) 有 $||n(v)|| \le 4$, 当 ||n(v)|| = 4 时, $4 > \partial^{\circ}(v) + 1$, 故 $\partial^{\circ}(v) = 1$ 或 2, 若 $\partial^{\circ}(v) = 1$, 由引理 2(2) 有 ||n(v)|| = 2, 与 ||n(v)|| = 4 矛盾,所以 $\partial^{\circ}(v) = 2$, 这时,n(v) 中的另两个数 x_3, x_4 不可能都满足 v(x) = 1, 也不可能都满足 v(x) = 1, 也不可能都满足 v(x) = -1, 设 $v(x_3) = 1$, $v(x_4) = -1$, 于是 $v(x) = a_1(x - x_1)(x - x_3) + 1$, $v(x) = b_1(x - x_2)(x - x_4) - 1$, a_1 、 $b_1 \in Z$,因 $|f(x_0)| = 1$,由引理 1(2),(3) 有 $v(x_0) = 1$ 或 -1 或 i 或 -i. 从前面分析有 $v(x_0) = \pm i$, 这样有,

$$\begin{split} a_1[(a-x_1)+\sqrt{m}bi][(a-x_3)+\sqrt{m}bi] &= -1 \pm i \\ b_1[(a-x_2)+\sqrt{m}bi][(a-x_4)+\sqrt{m}bi] &= 1 \pm i \\ a_1^2[(a-x_1)^2+mb^2][(a-x_3)^2+mb^2] &= 2 \\ b_1^2[(a-x_2)^2+mb^2][(a-x_4)^2+mb^2] &= 2 \end{split}$$

因 $mb^2 = 1$, 则 $|a - x_j| \le 1$, j = 1,2,3,4, 而 x_1, x_2, x_3, x_4 互不相等,那么 $|a - x_j|$ (j = 1,2,3,4) 中只能有一个为 0,其余的为 1,则 $(a - x_j)$ (j = 1,2,3,4) 四个数有两个相等,推出 x_j (j = 1,2,3,4) 四个数中定有两个相等,矛盾。当 |n(v)||=3 时, $\partial^{\circ}(v)<2$, 即 $\partial^{\circ}(v)=1$,

由引理 2(2) 有 ||n(v)|| = 2, 矛盾, 当 ||n(v)|| < 3 时, $\partial^{\circ}(v) < 1$, 与 v(x) 非零次矛盾.

应用本文定可以解决下列问题,其中有的无 法用 Brow,Graha 定理解决.

例 1 设 $f(x) = x^4 + x^3 - x^2 + x - 3$, 因 |f(0)| = 3, |f(-1)| = 5, |f(1)| = 1, |f(2)| = 19, |f(-2)| = 1, |f(i)| = 1, 故 $N \ge 2$, $N_p \ge 3$, $2N + N_p \ge 2 \times 2 + 3 > 4 + 2$, 由定理中的 (3) 有 f(x) 在 Q 上不可约.

例 2 设 $f(x) = x^5 + x^4 + 3x^3 + 3x^2 + 2x + 3$, 因为 |f(0)| = 3, |f(-1)| = 1, |f(1)| = 13, $2N + N_p \ge 2 \times 1 + 2 > 5 - 2$. 而 $|f(\sqrt{2}i)| = 1$, 由定理中 (1) 有 f(x) 在 Q 上不可约.

例 3 设 $a_1, a_2, a_3, \dots, a_n$ 是 n 个不相等的整数, $m \ge 3$ 是整数, g(x) 是次数小于 (n+2) 的整系数多项式. 则

$$f(x) = g(x)(x - a_1)(x - a_2)(x - a_3)$$
$$\cdots (x - a_n)(x^2 + m) \pm 1$$

在 Q 上不可约.

证明 $|f(a_j)| = 1, j = 1, 2, 3, \dots, n, |f(\sqrt{m}i)| = 1, 2N + N_p \ge 2n = n + 2 + n + 2 - 4 > n + 2 + \partial^{\circ}(g) - 4 > \partial^{\circ}(f) - 4,$ 由定理中 (2) 有 f(x) 在 Q 上不可约.

例 3 用 Brow, Graha 定理不能解决.

参考文献

1 梅汉飞. 多项式的值与多项式不可约. 数学通报, 1992.8:26-27.

三维空间中的梅耐劳斯定理

刘毅

(齐齐哈尔教育学院 161005)

梅耐劳斯定理可叙述为:设一直线与三角形 ABC的三条边 BC,CA,AB或其延长线分别相交于点 A',B',C',则有

$$A'B \cdot B'C \cdot C'A = AB' \cdot BC' \cdot CA'$$

它可向三维空间推广为如下的

定理 设一直线与四面体 ABCD 的四个面

BCD,CDA,DAB,ABC 或其延展面分别相交于 点 A',B',C',D',则有

$$A'BC \cdot B'CD \cdot C'DA \cdot D'AB$$

$$=ABC' \cdot BCD' \cdot CDA' \cdot DAB' \qquad (1)$$

为证明这一推广定理, 先介绍平行射影对应

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne