SEQUENCE LISTING

<110		Yamar TAKEI ABE, YAMA	OA, 1 Kun:	Masay itak	yosh: e		tica.	l Co	., L1	td.						
<120)>]	NOVEI	. PRO	TOMC	ER											
<130)> (Q8386	55													
<140 <141		10/50 2004-	•													
<150 <151		PCT/3 2003-			07											
		JP 20 2002-			43											
<160)>	33														
<170)>	Pater	ntIn	vers	sion	3.3										
<210 <211 <212 <213	-> ?> :	1 3675 DNA Homo	sap:	iens												
<220 <221 <222	.>	CDS (1).	. (36'	75)												
<400		1 ccc	cac	aca	cac	aas	taa	caa	ממכ	tta	aca	aca	cta	taa	ato	48
		Pro														30
		gcg Ala														96
		gca Ala 35														144
		cgg Arg	_			_	_	_		_		_	_	_		192
		gag Glu	-					-		-			_		_	240
cac	cat	cag	cgg	cgg	aga	aga	gca	gtg	gcc	gtg	tcc	gag	gtt	gag	tct	288

His	His	Gln	Arg	Arg 85	Arg	Arg	Ala	Val	Ala 90	Val	Ser	Glu	Val	Glu 95	Ser	
				_	aaa Lys					_				_	_	336
					cta Leu											384
					aag Lys											432
_					tct Ser 150	_	_			-					-	480
			_		ggc Gly	_										528
					cca Pro											576
					agc Ser											624
					cct Pro											672
					cat His 230											720
					cag Gln											768
					gaa Glu											816
	_				aag Lys											864
					acc Thr											912
aac	cat	ggc	cat	gaa	aat	atc	acc	acc	tac 2/2		ctc	acg	ata	ctc	aac	960

Asn 305	His	Gly	His	Glu	Asn 310	Ile	Thr	Thr	Tyr	Val 315	Leu	Thr	Ile	Leu	Asn 320	
					ttc Phe											1008
					ctg Leu											1056
					gca Ala											1104
					ggg Gly											1152
	_			_	gat Asp 390											1200
	_			-	ccc Pro		_									1248
_	_			_	gat Asp		_									1296
					aac Asn			_			-		-			1344
					gag Glu											1392
_					tcc Ser 470											1440
					gct Ala											1488
		_	_		aag Lys											1536
					tgc Cys											1584
tgc	atg	ctg	gac	ttt	aaa	aag	gac	atc	tgt 3/2		gcc	ctg	tgg	tgc	cat	1632

Cys	Met 530	Leu	Asp	Phe	Lys	Lys 535	Asp	Ile	Cys	Lys	Ala 540	Leu	Trp	Cys	His	
_					_	gag Glu				_				-	-	1680
		_			-	atg Met		_				_	-			1728
		_	-			aag Lys							_	_		1776
					-	tcc Ser			_				-			1824
						aac Asn 615										1872
_	-	~ ~			_	act Thr	_	_		_		_	_		_	1920
		_	-	-	_	ttc Phe	_	_	_	_	_	_				1968
_	_	_		_		cgg Arg			_		_					2016
-	_	_	_	_		tgc Cys				_		_	_			2064
						tca Ser 695										2112
						gtt Val										2160
						gga Gly										2208
						tca Ser										2256
acc	aag	cac	cac	cac	acc	aac	cag	tat	tat		atg	gtc	acc	att	cct	2304

Thr	Lys	His 755	His	His	Thr	Asn	Gln 760	Tyr	Tyr	His	Met	Val 765	Thr	Ile	Pro		
		_		_	atc Ile	_						-				235	2
				_	aat Asn 790	_		-				-				240	0
					ccc Pro											244	8
-		_			tat Tyr								_			249	6
					ctg Leu											254	4
_		_	_		gaa Glu											259	2
_			_	_	ccc Pro 870	_				_			_			264	0
_				_	gga Gly			_	_			_			_	268	8
	_	_	_	_	ttt Phe		_		_			_			_	273	6
					ggg Gly											278	4
					ggg Gly											283	2
					cgc Arg 950											288	0
	_				ccg Pro						_		-			292	8
agc	agg	cag	gcc	tgc	aac	tct	cag	agc	tgc 5/2		cct	gca	tgg	agc	gcc	297	6

Ser Arg Gln Ala Cys Asn Ser Gln Ser Cys Pro Pro Ala Trp Ser Ala 980 985 990

		•					_						_		
	Pro S					Ser H					Lys G			agg aag Arg Lys	3024
						agc Ser 1015	Thr					Arg			3069
						tgc Cys 1030	Thr					Pro		atg Met	3114
	-	_	_	-		cag Gln 1045	Arg	_		-		Lys		-	3159
						tgg Trp 1060	Ser					Thr			3204
						ttc Phe 1075	Leu					Lys			3249
						ctg Leu 1090	Ala					Ser		ttg Leu	3294
						ctg Leu 1105	Glu					Pro			3339
						ttt Phe 1120	Ala					Ser			3384
Ser	tgg Trp 1130	Phe	-		Pro	tgg Trp 1135	Ser	_	_	Thr	-	Ser	_		3429
						tcc Ser 1150	Val					Gly			3474
_	_			-		ctg Leu 1165	His	_				Ala		_	3519
_	_					tgc Cys 1180	Pro		_	_		Lys	_	-	3564
ttc	tgc	aaa	gac	tac	ttc	cac	tgg	tgc	tac 6/21	_	gta	ccc	cag	cac	3609

Phe Cys Lys Asp Tyr Phe His Trp Cys Tyr Leu Val Pro Gln His 1190 1195 1200 ggg atg tgc agc cac aag ttc tac ggc aag cag tgc tgc aag act 3654 Gly Met Cys Ser His Lys Phe Tyr Gly Lys Gln Cys Cys Lys Thr 1205 tgc tct aag tcc aac ttg tga Cys Ser Lys Ser Asn Leu 3675 1220 <210> 2 <211> 1224 <212> PRT <213> Homo sapiens <400> 2 Met Lys Pro Arg Ala Arg Gly Trp Arg Gly Leu Ala Ala Leu Trp Met 10 Leu Leu Ala Gln Val Ala Glu Gln Ala Pro Ala Cys Ala Met Gly Pro 20 25 Ala Ala Ala Pro Gly Ser Pro Ser Val Pro Arg Pro Pro Pro Pro 40 Ala Glu Arg Pro Gly Trp Met Glu Lys Gly Glu Tyr Asp Leu Val Ser 55 Ala Tyr Glu Val Asp His Arg Gly Asp Tyr Val Ser His Glu Ile Met 70 65 His His Gln Arg Arg Arg Ala Val Ala Val Ser Glu Val Glu Ser 85 90 95 Leu His Leu Arg Leu Lys Gly Ser Arg His Asp Phe His Val Asp Leu 100 105 Arg Thr Ser Ser Ser Leu Val Ala Pro Gly Phe Ile Val Gln Thr Leu 115 120 Gly Lys Thr Gly Thr Lys Ser Val Gln Thr Leu Pro Pro Glu Asp Phe 130 135 Cys Phe Tyr Gln Gly Ser Leu Arg Ser His Arg Asn Ser Ser Val Ala

7/21

145	150	155	160
Leu Ser Thr Cys Gl		Gly Met Ile Arg Th	nr Glu Glu Ala 175
Asp Tyr Phe Leu Are	g Pro Leu Pro	Ser His Leu Ser Tr 185	rp Lys Leu Gly 190
Arg Ala Ala Gln Gl	y Ser Ser Pro		yr Lys Arg Ser
195	200)5
Thr Glu Pro His Ala	a Pro Gly Ala	Ser Glu Val Leu Va	al Thr Ser Arg
210	215	220	
Thr Trp Glu Leu Ale	a His Gln Pro	Leu His Ser Ser As	sp Leu Arg Leu
225	230	235	240
Gly Leu Pro Gln Ly		Cys Gly Arg Arg Ly	ys Lys Tyr Met
24		250	255
Pro Gln Pro Pro Ly	s Glu Asp Leu	Phe Ile Leu Pro As	sp Glu Tyr Lys
260		265	270
Ser Cys Leu Arg Hi	s Lys Arg Ser		is Arg Asn Glu
275	280		35
Glu Leu Asn Val Gl	u Thr Leu Val	Val Val Asp Lys Ly	ys Met Met Gln
290	295	300	
Asn His Gly His Gl	u Asn Ile Thr 310	Thr Tyr Val Leu Th	nr Ile Leu Asn 320
Met Val Ser Ala Le 32		Gly Thr Ile Gly G	ly Asn Ile Asn 335
Ile Ala Ile Val Gl	y Leu Ile Leu	Leu Glu Asp Glu G 345	ln Pro Gly Leu 350
Val Ile Ser His Hi	s Ala Asp His		ne Cys Gln Trp
355	360		55
Gln Ser Gly Leu Me	t Gly Lys Asp	Gly Thr Arg His As	sp His Ala Ile

370					375				380
T T	 1	0 3	_	_	~1	a	m	•	

Leu Leu Thr Gly Leu Asp Ile Cys Ser Trp Lys Asn Glu Pro Cys Asp Thr Leu Gly Phe Ala Pro Ile Ser Gly Met Cys Ser Lys Tyr Arg Ser Cys Thr Ile Asn Glu Asp Thr Gly Leu Gly Leu Ala Phe Thr Ile Ala His Glu Ser Gly His Asn Phe Gly Met Ile His Asp Gly Glu Gly Asn Met Cys Lys Lys Ser Glu Gly Asn Ile Met Ser Pro Thr Leu Ala Gly Arg Asn Gly Val Phe Ser Trp Ser Pro Cys Ser Arg Gln Tyr Leu His Lys Phe Leu Ser Thr Ala Gln Ala Ile Cys Leu Ala Asp Gln Pro Lys

Pro Val Lys Glu Tyr Lys Tyr Pro Glu Lys Leu Pro Gly Glu Leu Tyr

Asp Ala Asn Thr Gln Cys Lys Trp Gln Phe Gly Glu Lys Ala Lys Leu

Cys Met Leu Asp Phe Lys Lys Asp Ile Cys Lys Ala Leu Trp Cys His

Arg Ile Gly Arg Lys Cys Glu Thr Lys Phe Met Pro Ala Ala Glu Gly

Thr Ile Cys Gly His Asp Met Trp Cys Arg Gly Gly Gln Cys Val Lys

Tyr Gly Asp Glu Gly Pro Lys Pro Thr His Gly His Trp Ser Asp Trp

Ser Ser Trp Ser Pro Cys Ser Arg Thr Cys Gly Gly Val Ser His 9/21

595	600	605

Pro	Thr	Asn 835	Glu	Thr	Leu	Ile	Val 840	Glu	Leu	Leu	Phe	Gln 845	Gly	Arg	Asn
Pro	Gly 850	Val	Ala	Trp	Glu	Tyr 855	Ser	Met	Pro	Arg	Leu 860	Gly	Thr	Glu	Lys
Gln 865	Pro	Pro	Ala	Gln	Pro 870	Ser	Tyr	Thr	Trp	Ala 875	Ile	Val	Arg	Ser	Glu 880
Cys	Ser	Val	Ser	Cys 885	Gly	Gly	Gly	Gln	Met 890	Thr	Val	Arg	Glu	Gly 895	Cys
Tyr	Arg	Asp	Leu 900	Lys	Phe	Gln	Val	Asn 905	Met	Ser	Phe	Cys	Asn 910	Pro	Lys
Thr	Arg	Pro 915	Val	Thr	Gly	Leu	Val 920	Pro	Cys	Lys	Val	Ser 925	Ala	Cys	Pro
Pro	Ser 930	Trp	Ser	Val	Gly	Asn 935	Trp	Ser	Ala	Cys	Ser 940	Arg	Thr	Cys	Gly
Gly 945	Gly	Ala	Gln	Ser	Arg 950	Pro	Val	Gln	Cys	Thr 955	Arg	Arg	Val	His	Tyr 960
Asp	Ser	Glu	Pro	Val 965	Pro	Ala	Ser	Leu	Cys 970	Pro	Gln	Pro	Ala	Pro 975	Ser
Ser	Arg	Gln	Ala 980	Cys	Asn	Ser	Gln	Ser 985	Суѕ	Pro	Pro	Ala	Trp 990	Ser	Ala
Gly	Pro	Trp 995	Ala	Glu	Cys	Ser	His 1000		c Cys	s Gly	y Ly:	5 Gly 100		rp Ai	rg Lys
Arg	Ala 1010		l Ala	а Суя	s Lys	Sei 101		nr As	sn Pi	ro Se		la <i>1</i> 020	Arg 1	Ala (Gln
Leu	Leu 1025		a Ası	Ala	a Val	Cys 103		nr Se	er Gl	lu Pi	_	/s 1 035	Pro 1	Arg N	let .
His	Glu	Ala	a Cys	s Lei	ı Leı	ı Glr	n Ai	rg Cy	/s Hi	_	/s Pi	co I	Lys I	Lys I	Leu

	1040					1045					1050			
Gln	Trp 1055	Leu	Val	Ser	Ala	Trp 1060	Ser	Gln	Cys	Ser	Val 1065	Thr	Cys	Glu
Arg	Gly 1070		Gln	Lys	Arg	Phe 1075	Leu	Lys	Cys	Ala	Glu 1080	_	Tyr	Val
Ser	Gly 1085		Tyr	Arg	Glu	Leu 1090	Ala	Ser	Lys	Lys	Cys 1095	Ser	His	Leu
Pro	Lys 1100	Pro	Ser	Leu	Glu	Leu 1105	Glu	Arg	Ala	Cys	Ala 1110	Pro	Leu	Pro
Cys	Pro 1115	Arg	His	Pro	Pro	Phe 1120	Ala	Ala	Ala	Gly	Pro 1125	Ser	Arg	Gly
Ser	Trp 1130	Phe	Ala	Ser	Pro	Trp 1135	Ser	Gln	Cys	Thr	Ala 1140	Ser	Cys	Gly
Gly	Gly 1145		Gln	Thr	Arg	Ser 1150		Gln	Cys	Leu	Ala 1155	Gly	Gly	Arg
Pro	Ala 1160	Ser	Gly	Cys	Leu	Leu 1165	His	Gln	Lys	Pro	Ser 1170	Ala	Ser	Leu
Ala	Cys 1175	Asn	Thr	His	Phe	Cys 1180	Pro	Ile	Ala	Glu	Lys 1185	Lys	Asp	Ala
Phe	Cys 1190		Asp	Tyr	Phe	His 1195	Trp	Cys	Tyr	Leu	Val 1200	Pro	Gln	His
Gly	Met 1205	Cys	Ser	His	Lys	Phe 1210	Tyr	Gly	Lys	Gln	Cys 1215	Cys	Lys	Thr
Cys	Ser 1220	Lys	Ser	Asn	Leu									
<210 <210 <210 <210	1> 5	NA	icia	l Sed	quenc	ce								

<220> <223>	an artificially synthesized linker sequence	
<400> ctagcg	3 cggc cgcaggatcc gactacaagg acgacgatga caaatgataa	50
<210><211><211><212><213>		
<220> <223>	an artificially synthesized linker sequence	
<400> gatctt	4 atca tttgtcatcg tcgtccttgt agtcggatcc tgcggccgcg	50
<210><211><211><212><213>	34	
<220> <223>	an artificially synthesized primer sequence	
<400> ggacta	5 gtct agaagctggg taccagctgc tagc	34
<210><211><211><212><213>	29	
<220> <223>	an artificially synthesized primer sequence	
<400> ggacta	6 gtgt cgaccggtca tggctgcgc	29
<210><211><211><212><213>	7 38 DNA Artificial Sequence	
<220> <223>	an artificially synthesized primer sequence	
<400> ggacta	7 gtgc catgggaccc gcagcggcag cgcctggg	38
24.0		

<210> 8

```
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
<400> 8
                                                                    40
gggcggccgc acccctgtga atcgtgcagg ctgagttatt
<210> 9
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
                                                                    41
ggactagtac catgaagccc cgcgcgcgcg gatggcgggg c
<210> 10
<211> 30
<212> DNA
<213> Homo sapiens
<400> 10
                                                                    30
ccctgtggtc aacctcgtag gcagagacca
<210> 11
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide expressed from polynucleotide comprising NotI recognition
      sequence and FLAG tag
<400> 11
Ala Ala Asp Tyr Lys Asp Asp Asp Lys
               5
<210> 12
<211> 5
<212> PRT
<213> Homo sapiens
<400> 12
His Glu Ser Gly His
```

<210>	13	
<211>	41	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	an artificially synthesized primer sequence	
<400>	13	
tggcctt	cac cattgcccat cagtctggac acaactttgg c	41
<210>	14	
<211>	41	
<212>		
	Artificial Sequence	
1213	Internal poddonos	
<220>		
	an artificially synthesized primer sequence	
<223>	an artificially synthesized primer sequence	
- 4.0.0	1.4	
<400>	14	41
gccaaag	gttg tgtccagact gatgggcaat ggtgaaggcc a	41
<210>		
<211>		
<212>	DNA	
<213>	Homo sapiens	
<400>	15	
cacctta	aagt agcttctgcc agtggcagtc t	31
<210>	16	
<211>		
<212>		
	Homo sapiens	
72137	Tiomo Sapiens	
<400>	16	
		32
acaaaca	atta cggctatcct ccgagcatgg ag	32
040	4.7	
<210>	17	
<211>		
<212>		
<213>	Homo sapiens	
<400>	17	
atatgaa	acta caaaaatttt gcacacaatc attgtaattt tttccactaa agacaagtgt	60
tgatgca	acaa tacaatgota cottotttga aacotgacta gtttcagotg tgtgtgagat	120
asaassa	rgaa caaaattaca gactaaacag aatctttgta gggcacaaac acatccaatt	180

240 cttctctgtt tcggttgtat ggatggtggt tttacataca aggtaatgtg cccacttgca 300 ctgctttagt ttaaagttta tgcaatttag aaaagggtta tgacaaagtt tggtcctttt aatctaaaat gccatttgtt tccacatgag aaagggccct ggctcctttc attgtgaaag 360 ggcactgggc atgggagagc atgcagccgt tagaagaaac tctctctcag atcctttgct 420 480 aagcactttg tttttatttt taatttaatt tttattctct attgaaacgt ctacttgata ttcaaaatga cctaagtaat cagaacctct gtctgaaagg aaacaagtgc taactgtgaa 540 tggtctaaat aatttacagc aacatttttc tgtgaagggc cagatggtaa atagtttagg 600 660 ctttgcaggg cacacagtct ctgttgcagt gacttaactc tgccattgtg aaagcattca 720 cagacgatct gcaaacaaat aaaactttat ttacaaaatg agtcagctgg ccagatttga 780 tcttaggcag tagagagttt tctgaccctg gatgtaaaca aatgatgaca aaactgcttt cctaaacttt gacctcaaag ttaagagtgc taagttcttg aagggctgca aagtgaagta 840 900 gtttgaggct ggcggtttgt tttgactctt ccaatatttg ttctcagggt tactttgctg 960 ggacaccttt aaactgaagg gactccatat acatatttag atttccattt tacctttaaa aattaggcag gtctggtccc caatactgta tggcaccaac ccatgcgctg gccactcagt 1020 1080 gccaggagtc ccttttaagg cagacacgtg tgctccagtt tgcccctccc tctccatccc 1140 tccctgagac ggacaggcag ctgcgagtta ctgccaccat gttagatggc cagtcttaaa 1200 ctcggtccac tcgtgtgttt tgcatctcag ctcccactct ggcctctata gcctggactc 1260 aaccacccct ctttgttacc tggagacatt catactgcag gatgagcgct gaaatccgtg caccgctaga ggaactggga aacactagtc attttaaaga atgttgtttc tttcttcaca 1320 1380 atgaaaagag actcatttag cactgctctg gtcttactgt tcttaagcat accgtaagag 1440 tgaatccttt tatatcagcc attcttcttt ttttccatct gtttgaactt acagaagagg 1500 gcccctaggt atctccatgt gatagactgg aaaaaatctc actccctttc atgttacact ggacacaatt agaagtacgt agagatcccc atttatcaag cgtgcaatgt actcaggaca 1560 1620 agggaaattc tgccggcaga ttctggagac ttccaggcac tgccgaaccc ccccttcaag gtaagtgtaa gctccctgag gtgtgagctg aggcagacgc ttgttaggca ttggcagaga 1680 1740 ggaagggtgg caggtgtttt aaggtccctc ccaatgccag gctttatgta aaaaatattt 1800 gcactttgag gaatggtttc aaataaatga ataagagagg gagtgtgtgt tgctatggaa tgaggatgcc catacacagc caggcggttc tactgcccct acctggggtc tggggcttca 1860

1920 ggacagccct agcagggcgc ctgctgggag ctctccctgg gtacccacag actcgcgaca ggctgggcaa agaaagccag agcccaagac accatttccc ccattcatcc ccctctccaa 1980 2040 agtgtgcaaa agaggcaacg tcaagctaag ctggctgtga aggacactgg aaccaaacaa agggcagctg aaggcccagg atccacataa ggtgtgtgat gggaaagcag ccacggatgg 2100 2160 ggagcgccac acacacac gtgtgcaaac atgcactccc acgcgcgcag tcctactgag 2220 aggtgacage gtgctggcag tecteagage cetegettge tetgggcaee teceetgeet 2280 gggctccgac tttggcggca tttgaggagc ccttcagctc cccactgcac tgtgggagcc 2340 cctttctggg ctggccaagg ctggagccca ctccctcagc ttgcagggag gtgtggaggg 2400 agaggcacga gcgggaaccg gggctgcgtg cagcgcttgc gggccagctg gagttccggg 2460 tgggcgtggg cttggcgggc cccgcactca gagcagccgg ccagccctgc tggccccggg 2520 caatgaggga cttagcacct gggccagtgg ctgcggaggg tgtactgggt cccccagcag 2580 tgccggccca ccggggctgt gctcgatttc ttgccgagcc ttagctgcct tcctgcgggg cagggetegg gacetgeage eegecatgee tgageeteee acceaeteea tgggeteetg 2640 tgcggcccga gcctccccaa ggagcgccac cccctgctcc acagcgccca gtcccatgga 2700 2760 ccacccaagg gctgaggaat gcgagcgcac ggcgcaggac tggcaggcag ctccacctgc 2820 gccccggtgc ggggatccac taggtgaagc cagctgggat cctgagtctg gtggggatgt 2880 ggagagtctt tatgtctagc tcagggattg taaatacacc aatcagcacc ctgtgtttag 2940 ctcaaggttt gtgagtgcac caatcgatac tctgtatcta gctgctctgg tggggccttg 3000 gagaacctgt gtgtggaaac tctgtgtatc taactaatct gatggggacg tggagaacct 3060 ttgtatctag ctcagggatg gtaaacgcac caatcagcgc cctgacaaaa caggccactc 3120 ggctctacca atcagcagga tgtcgctagg gccagataag agaataaaag caggctgccc cagccagccg tggcaaccgg ctcaggtccc cttccatgct gtggaagctt tgttcttttg 3180 3240 ctttttgcaa taaatcttac tactgctcac tcttttttt tttttttt tttttttt 3300 tgagacggag tctcgctctg tcgcccaggc tggagtgcag tggcgggatc tcggctcact 3360 gcaageteeg ceteeegggt teaegecatt eteetgeete ageeteeeaa gtagetggga 3420 ctacaggcgc ccgccactac gcccgtctaa ttttttgtat ttttagtaga gacggggttt caccgtttta gccgggatgg tctcgatctc ctgacctcgt gatccgcccg cctcggcctc 3480 ccaaagtgct gggattacag gcgtgagcca ccgcgcccgg cctactgctc actctttggg 3540

tccactctgc	tttcatgagc	tgtaacactc	accgtgaaga	tctgcagctt	cactcctgag	3600
cccagcgaga	ccacgagccc	accgggaaga	acgaacaact	ccagacgctc	tgccttaaga	3660
gctgtaacac	tcaccgccta	ggtctgcagc	ttcaatcctg	agccagcgag	accacgaacc	3720
caccagaagg	aagaaactcc	gaacacatct	gaacatcaga	agtaacaaac	tccagacgca	3780
ccaccttaag	agctgtaccc	actcaccgcg	agggtatgcg	gcttcattct	tgaagtcagt	3840
gagaccaaga	acccaccaat	tccagacaca	ctatgggctc	acagcgtgta	ctcgcgcaca	3900
cgcagtcagg	tgtggatgta	cacccgcgca	cacccaggca	catgtacacc	cgcgcgctca	3960
cacaccccat	ccagctacag	cagaattctg	gcgaggctgt	tgaccgcaca	cctgctgcct	4020
ccttggccac	cctgtccaca	cagtagcccg	atcgaccccc	gtggcggccg	agacccaggc	4080
ccatccgcag	ccctgagacc	tccctaggga	ttgcacccag	cagccagtca	ccggcctccg	4140
cggcctggcc	agttgagggt	ggccgtgacc	gcggggccag	gagcgccgcc	acatctcggg	4200
gcaaatggcg	cgggggaaga	gtttcctcct	cagcctcccc	gtctccgatc	gctccgcaaa	4260
ctccagagcg	aggcacgcgc	ctttaaaggc	aggtccgcgg	ctctcccacg	tcctggcgcc	4320
cggttttccg	cacccagtgt	ccccacagct	gtgcccgggc	acagaggcgc	ggccagaccg	4380
cactccgcgg	gctgcaggtg	teceggeete	tggcggcgcc	ggtgcggccc	ggaggtggga	4440
gcccgcggag	ccactgcagt	agctggagtc	ccgccgagtc	cccagcccca	aggcagggca	4500
ggagcgcgca	ccggccggag	gtccatgctg	agcatcgccc	gcgccggtgc	ccggcagcct	4560
ctccaactgt	gtggtccccg	cgctggcaga	gaggcacgga	ctgcaggccg	tgggcagctc	4620
catcttcccg	cgtcctcctc	ctctggcgct	gcccgctgtc	tcccgccttc	cctctgctcc	4680
cctctcgcct	ccgcctcagc	gccccgctga	cctcgcctcc	tcccctctgc	tctttgtccc	4740
tgcactctcc	cctcctcggt	cctctgaccc	ccccgccctc	acctcctccc	ctcctctc	4800
ccctgcccgc	cccgcgctct	cccaccgctc	ccgccgcccc	cgccgccgcg	gctgccactc	4860
cgcccccgc	gccgcacgga	gcttcagtaa	taaccccggc	gcggcggcgg	agtcgctgtg	4920
gggaatcctc	ccgcgctctg	cctgggtcgg	gtcctccctg	cccgctcgca	cgctgccggc	4980
cggggaccct	ccggtggccc	ctagcccctc	ggagcgctcc	tgg		5023

<210> 18 <211> 30

<212> DNA

<213> Homo sapiens

<400> tttgaga	<400> 18 tttgagacgg agtctcgctc tgtcgcccag		
<210><211><211><212><213>	19 29 DNA Homo sapiens		
<400> ccagga	19 gcgc tccgaggggc taggggcca	29	
<210> <211> <212> <213>			
<220> <223>	an artificially synthesized primer sequence		
<400> aagagc	20 . tctg ctagctgaga cggagtctcg ctctgtcgcc cag	43	
<210><211><211><212><213>			
<220> <223>	an artificially synthesized primer sequence		
<400> taaagc	21 ttag atctccagga gcgctccgag gggctagggg cca	43	
<210><211><211><212><213>	22 42 DNA Artificial Sequence		
<220> <223>	an artificially synthesized primer sequence		
<400> 22 aaacgcgtat atgaactaca aaaattttgc acacaatcat tg			
<210><211><211><212><213>	25		
<400> catctg	23 gccc ttcacagaaa aatgt	25	

<210>	24	
<211>	24	
<212>	DNA	
	Homo sapiens	
<400>	24	
	tato tocatgtgat agac	24
cctaggi	tate tecatytyat ayac	2.4
010	25	
<210>	25	
<211>	30	
<212>	DNA	
<213>	Homo sapiens	
<400>	25	
aaggcag	gcta aggctcggca agaaatcgag	30
<210>	26	
<211>	31	
	DNA	
	Homo sapiens	
<213>	nomo saprens	
400		
<400>	26	2.1
gtttggt	tcct tttaatctaa aatgccattt g	31
<210>	27	
<211>	25	
<212>	DNA	
<213>	Homo sapiens	
	-	
<400>	27	
	tett gggetetgge titet	25
ucgg cg (teet gggeteegge teete	
-210-	20	
<210>	28	
<211>	31	
<212>	DNA	
<213>	Homo sapiens	
<400>	28	
aacaaa	gggc agctgaaggc ccaggatcca c	31
<210>	29	
<211>	28	
<212>	DNA	
<213>	Homo sapiens	
-	-	
<400>	29	
	duut uuccaauuan ucaucauu	28

<210>	30	
<211>	19	
<212>	DNA	
<213>	Rattus sp.	
<400>	30	
	gctc ccgatccaa	19
ugcccu	good cogadooda	
	31	
	21	
<212>		
<213>	Rattus sp.	
<400>	31	
	ccag agtotocaca t	21
ccacca	ccay agececaca e	21
•		
<210>	32	
<211>	15	
<212>	DNA	
<213>	Rattus sp.	
<400>	32	
		15
aagcag	gcgg ccgag	13
<210>	33	
<211>	21	
<212>		
	Rattus sp.	
-400-	22	
<400>		21
atcaaa	ggtg gaagaatggg a	41