Protokoll

Gleichmäßig beschleunigte Drehbewegung Physikalisches Grundpraktikum

Free University Berlin

Christoph Haaf - christoph.haaf@fu-berlin.de Zacharias V. Fisches - zacharias.vf@gmail.com Tutor: Stefan Ulonska

12.12.2014

Inhaltsverzeichnis

1	Physikalischer Hintergrund	2
	Drehbewegung starrer Körpert	2
	Drehmoment	2
	Adiabengleichung	2
	Kappa & Freiheitsgrade	3
	Clemens-Desormes Methode	4
2	Aufgaben	4
	Aufgabe 1	4
	Aufgabe 2	4
3	Geräteliste	4
4	Nennfehler und Literaturwerte	4
5	Messprotokoll	4
6	Auswertung	5
	Aufgabe 1	5
	Aufgabe 2	5
7	Fazit	5

1 Physikalischer Hintergrund

Drehbewegung starrer Körpert

Eine Menge von Massepunkten, die fest miteinander verbunden sind (nicht verformbar), wird als starrer Körper bezeichnet. Die Drehbewegung (Rotation) wird durch die Winkelgeschwindigkeit φ beschrieben und ist Abhängig vom Drehwinkel ϖ und der Zeit t

Drehmoment

Wenn eine Kraft auf einen Hebelarm wirkt, erzeugt dies ein Drehmoment

$$\vec{M} = \vec{F} \times \vec{r} \tag{1}$$

Drehmoment Rotationsbewegung

Für eine Rotationsbewegung um eine feste Achse gilt

$$\vec{M} = I \cdot \dot{\vec{\omega}} \tag{2}$$

Drehimpuls - Drehmoment

Die Ableitung des Dehimpuls nach der Zeit ergibt das Drehmoment

$$\vec{M} = \frac{d\vec{L}}{dt} \tag{3}$$

Trägheitsmoment

Das Trägheitsmoment gibt an, wie träge ein drehbar gelagerter Körper gegenüber der Änderung seines Bewegungszustandes ist.

$$I = m \cdot r^2 \tag{4}$$

Steinerscher Satz

Wenn der Schwerpunkt nicht der Drehmittelpunkt ist kommt der sogenannte Steinaranteil dazu (d = Entfernung zwischen Drehpunkt und Schwerpunkt)

$$I = I + d \cdot m^2 \tag{5}$$

Zeitabhängigkeit des Drehwinkels

da $\vec{F} \perp$ zu \vec{r} ist kann auf die Vektorpfeile verzichtet werden Setzt man (1) und (2) gleich und stellt nach $\dot{\omega}$ um

$$\dot{\omega} = \frac{r \cdot f}{I} \tag{6}$$

und das ganze 2 mal Integrieren

$$\varphi_{(t)} = \frac{r \cdot F}{2I} t^2 + \omega_0 t + \varphi_0 \tag{7}$$

Zeitabhängigkeit des Drehwinkels

da $\vec{F} \perp$ zu \vec{r} ist kann auf die Vektorpfeile verzichtet werden Setzt man (1) und (2) gleich und stellt nach $\dot{\omega}$ um

$$\dot{\omega} = \frac{r \cdot f}{I} \tag{8}$$

Zeitabhängigkeit des Drehwinkels

da $\vec{F} \perp$ zu \vec{r} ist kann auf die Vektorpfeile verzichtet werden Setzt man (1) und (2) gleich und stellt nach $\dot{\omega}$ um

$$\dot{\omega} = \frac{r \cdot f}{I} \tag{9}$$

2 Aufgaben

Aufgabe 1

Bestimmung des Verhältnisses der spezifischen Wärmen $\frac{c_p}{c_V}=\kappa$ für Luft nach der Methode von Clemens-Desormes.

Aufgabe 2

Bestimmung des Wertes κ für ein einatomiges (Argon), ein zweiatomiges (N_2) und ein dreiatomiges Gas (CO_2) durch Messung der Eigenfrequenzen eines Gasoszillators. Vergleich der Ergebnisse untereinander und mit den erwarteten Werten aus der kinetischen Gastheorie für ein ideales Gas.

3 Geräteliste

4 Nennfehler und Literaturwerte

5 Messprotokoll

Please see inserted page.

6 Auswertung

Aufgabe 1

Wir messen drei verschiedene Höhen im Druckmanometer, und setzen in die Messgleichung zur Bestimmung von κ ein:

$$\kappa = \frac{dp_a}{dp_a + dp_i} \approx \frac{\Delta h_1}{\Delta h_1 - \Delta h_3} \tag{10}$$

Aufgabe 2

7 Fazit