Advanced Machine Learning

Probabilistic Inference

Hierarchical Models, Mixture of Gaussians, Expectation Maximisation

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Building Probabilistic Models

- To describe a system with uncertainty we use random variables, X, Y, Z, etc.
- We use the convention of writing random variables in capitals (this is sometimes confusing as when you observe a random variables it is no longer random)
- \bullet The variables are described by probability mass function $\mathbb{P}(X,Y,Z)$ or if our variables are continuous, but probability densities $f_{X,Y,Z}(x,y,z) \mathbb{I}$
- A major rule of probability is

$$\sum_{X} \mathbb{P}(X, Y, Z) = \mathbb{P}(Y, Z) \blacksquare$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Discriminative Models

- We often think of our observations as given and the predictions as random variables
- \bullet For example we might be given some features x and we wish to predict a class $C \in \mathcal{C} \mathbb{I}$
- ullet Our objective is then to find the probability $\mathbb{P}(C|x)$
- This is known as a discriminative model
- E.g. in *foundations of machine learning* you learnt how to find the Bayes' optimal discrimination surface!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Latent Variables

- Sometimes we have models that involve random variables that we don't observe and we don't care about
- These are called latent variables
- ullet If we have a latent variable Z and observed variable X and we are predicting a variable Y then we would ullet marginalise over the latent variable

$$\mathbb{P}(\boldsymbol{X},\!Y) = \sum_{Z}\!\mathbb{P}(\boldsymbol{X},\!Y,\!Z) \mathbb{I}$$

Outline

- 1. Building Probabilistic Models
- 2. Mixture of Gaussians
- 3. Expectation Maximisation

Adam Prügel-Bennett

OMP6208 Advanced Machine Learning

Conditional Probabilities

- When developing models it is often useful to consider conditional probabilities e.g. $\mathbb{P}(X,Y|Z)$ or $f_{X|Y,Z}(x|y,z)$
- A second major rule in probabilistic modelling is

$$\mathbb{P}(X,Y) = \mathbb{P}(X|Y)\mathbb{P}(Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$$

- This is a mathematical identity that does not imply causality (it defines conditional probability)
- \bullet It is the origins of Bayes' rule: $\mathbb{P}(X|Y) = \frac{\mathbb{P}(Y|X)\mathbb{P}(X)}{\mathbb{P}(Y)}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Generative Models

- Sometimes it is easy to think about the joint process of generating the features and outputs together!
- This leads to a joint distribution $\mathbb{P}(X,Y)$ where X are your features and Y is your output you are trying to predict!
- This is known as a generative model
- Generative models are often more natural to think about
- We can use them to do discrimination using

$$\mathbb{P}(Y|\boldsymbol{X}) = \frac{\mathbb{P}(\boldsymbol{X},Y)}{\mathbb{P}(\boldsymbol{X})} = \frac{\mathbb{P}(\boldsymbol{X},Y)}{\sum\limits_{Y} \mathbb{P}(\boldsymbol{X},Y)}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Modelling Virus

- Suppose we want to estimate the number of hospitalisation from Corona virus in the next month
- Our observable is the number of reported cases
- In our model we might want to estimate the number of actual cases
- This would be a latent variable (it is not an observable or our final target, but it is very useful intermediate in our model)
- This will be a random variable (we are uncertain, but we can build a probabilistic model giving a distribution of number of actual cases)

Hierarchical Models

- ullet Of course, if I was really modelling the spread of a disease I would care about the probability, f(C|A,V), of catching the disease, C, given the persons age A and the variant of the disease V^{\blacksquare}
- I would want to know the distribution of ages f(A) and try to infer the probability of different variants $\mathbb{P}(V)$
- I would care about the probability, f(R|A,V), of cases being reported given age and variant
- \bullet And the probability, f(H|A,V), of hospitalisation given A and V
- This would involve an elaborate (hierarchical) model with a large number of latent variables

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Problem with Bayes

- Bayes is problematic because it is often hard
- The posterior is often not expressible as a nice probability function
- ullet We need to compute the evidence or $margin\ likelihood$ we use

$$\mathbb{P}(\mathcal{D}) = \sum_{\boldsymbol{\Theta}} \mathbb{P}(\mathcal{D}|\boldsymbol{\Theta}) \, \mathbb{P}(\boldsymbol{\Theta}) \mathbf{I}$$

- But sometimes the number of values that Θ can take are so large that we cannot easily compute this
- Nevertheless we can usually do this using Monte Carlo techniques

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Maximum Likelihood

- When we assume a uniform prior then the MAP solution is just maximising the likelihood
- Weirdly this hack was accepted as part of mainstream statistics even when Bayesian statistics was considered unscientific
- Maximum likelihood is often sufficient for government work, but it isn't the best you can do!
- In high-dimensional problems using a non-uniform prior can make a big difference
- And, of course, doing a full probabilistic calculation has real advantages

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Mixture of Gaussians

- Suppose we were observing the decays from two types of short-lived particle, A or B
- ullet We observe the half life, X_i , but not the particle type
- We assume X_i is normally distributed with unknown means and variances: $\Theta = \{\mu_A, \, \sigma_A^2, \, \mu_B, \, \sigma_B^2\}$
- ullet Let $Z_i \in \{0,1\}$ be an indicator that particle i is of type A
- ullet The probability of X_i is given by

$$f(X_i|Z_i,\Theta) = Z_i \mathcal{N}(X_i|\mu_A, \sigma_A^2) + (1 - Z_i) \mathcal{N}(X_i|\mu_B, \sigma_B^2) \mathbf{I}$$

Probabilistic Inference

ullet We can use Bayes' rules to learn a set of parameter ullet that occur in our likelihood function

$$\mathbb{P}(\mathbf{\Theta}|\mathcal{D}) = rac{\mathbb{P}(\mathcal{D}|\mathbf{\Theta})\,\mathbb{P}(\mathbf{\Theta})}{\mathbb{P}(\mathcal{D})}$$

- This provides us a full probabilistic description of the parameters
- It doesn't overfit (we are not choosing the best)
- Bayesian inference provides a description of its own uncertainty
- We need to specify a likelihood and prior, but this is usually not difficult

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

10

Maximum A Posteriori (MAP) Solution

• One work around is to compute the mode of the posterior

$$\Theta_{\mathsf{MAP}} = \operatorname*{argmax}_{\boldsymbol{\Theta}} f(\mathcal{D}|\boldsymbol{\Theta}) f(\boldsymbol{\Theta}) = \operatorname*{argmax}_{\boldsymbol{\Theta}} \log(f(\mathcal{D}|\boldsymbol{\Theta})) + \log(f(\boldsymbol{\Theta})) \mathbf{I}$$

- We don't need to calculate f(D) or explicitly calculate the posterior distribution
- But it is not Bayesian (despite what you are sometime told)
 —its not properly probabilistic
- You can overfit and you don't get an estimate of the error in your inference!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

- Building Probabilistic Models
- 2. Mixture of Gaussians
- 3. Expectation Maximisation

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

14

Data

Note that

$$\begin{split} f(X_i|\Theta) &= \sum_{Z_i \in \{0,1\}} f(X_i,Z_i|\Theta) \mathbb{I} = \sum_{Z_i \in \{0,1\}} f(X_i|Z_i,\Theta) \mathbb{P}(Z_i) \mathbb{I} \\ &= \mathbb{E}_{Z_i} [f(X_i|Z_i,\Theta)] \mathbb{I} = p \mathcal{N} \big(X_i \big| \mu_A, \sigma_A^2 \big) + (1-p) \mathcal{N} \big(X_i \big| \mu_B, \sigma_B^2 \big) \mathbb{I} \end{split}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

Maximum Likelihood

- To solve the model as a Bayesian we would have to assign priors to our parameters $\Theta = (\mu_A, \sigma_A, \mu_B, \sigma_B, p)$
- This is doable, but complicated (we would also end up with a distribution for our parameters)
- Often we only want a reasonable estimate for some of our parameters (e.g. the half-lives μ_A and μ_B)
- A reasonable approach is to seek those parameters that maximise the likelihood of our observed data

$$f(\mathcal{D}|\Theta) = \prod_{X \in \mathcal{D}} f(X|\Theta)$$

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Maximum Likelihood with Latent Variables

- The maximum likelihood is a non-linear function of the parameters so cannot be immediately maximised
- If we knew which type of particle a data-point belongs to (Z_i) then it would be straightforward to maximise the likelihood
- As we don't we need to estimate $\mathbb{P}(Z_i=1)$, but this depends on μ_A , σ_A^2 , μ_B , σ_B^2 and p
- We could use a standard optimiser, but this is slightly inelegant

Why EM Algorithm Works

- The argument around why this works is quite involved
- Note that at each step we maximise

$$Q(\boldsymbol{\Theta}|\boldsymbol{\Theta}^{(t)}) = \sum_{\boldsymbol{Z} \in \{0,1\}^m} \mathbb{P}\Big(\boldsymbol{Z}\big|\mathcal{D}, \boldsymbol{\Theta}^{(t)}\Big) \log(f(\mathcal{D}|\boldsymbol{Z}, \boldsymbol{\Theta})) \mathbf{I}$$

ullet We can show that the maximum, $\Theta^{(t+1)}$, is such that

$$\log \Big(f(\mathcal{D}|\Theta^{(t+1)}) \Big) - \log \Big(f(\mathcal{D}|\Theta^{(t)}) \Big) \geq Q(\Theta^{(t+1)}|\Theta^{(t)}) - Q(\Theta^{(t)}|\Theta^{(t)}) \mathbb{I} \geq 0 \mathbb{I}$$

• The details are given in the supplemental notes

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

EM for Mixture of Gaussians

ullet Maximise with respect to parameters $oldsymbol{ heta}$

$$\begin{split} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) &= \sum_{\boldsymbol{Z}} \mathbb{P}\Big(\boldsymbol{Z}|\mathcal{D}, \boldsymbol{\Theta}^{(t)}\Big) \log(f(\mathcal{D}|\boldsymbol{Z}, \boldsymbol{\Theta})) \mathbb{I} = \sum_{i=1}^{m} \sum_{Z_{i}} \mathbb{P}\Big(Z_{i}|\mathcal{D}, \boldsymbol{\Theta}^{(t)}\Big) \log(f(X_{i}|Z_{i}, \boldsymbol{\Theta})) \mathbb{I} \\ &= \sum_{i=1}^{m} \sum_{Z_{i} \in \{0,1\}} \mathbb{P}\Big(Z_{i}|X_{i}, \boldsymbol{\theta}_{i}^{(t)}\Big) \Big(Z_{i} \log(p) + (1 - Z_{i}) \log(1 - p) \\ &\qquad \qquad - \frac{(X_{i} - \mu_{Z_{i}})^{2}}{2\sigma_{Z_{i}}^{2}} - \log\Big(\sqrt{2\pi}\sigma_{Z_{i}}\Big) \Big) \mathbb{I} \end{split}$$

• Compute update equations

$$\frac{\partial Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})}{\partial \mu_k} = 0, \qquad \frac{\partial Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})}{\partial \sigma_k} = 0, \qquad \frac{\partial Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})}{\partial p} = 0$$

Outline

- Building Probabilistic Models
- 2. Mixture of Gaussians
- 3. Expectation Maximisation

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

EM Algorithm

- Instead we can use an expectation-maximisation algorithm usually known as an EM algorithm
- We proceed iteratively by maximising the expected log-likelihood with respect to the current set of parameters

$$\Theta^{(t+1)} = \underset{\Theta}{\operatorname{argmax}} \sum_{\boldsymbol{Z}} \mathbb{P} \Big(\boldsymbol{Z} \big| \mathcal{D}, \boldsymbol{\Theta}^{(t)} \Big) \log(f(\mathcal{D} | \boldsymbol{Z}, \boldsymbol{\Theta})) \mathbf{I}$$

• It isn't obvious why this works

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

20

Conditional Latent Variables

- We need to compute the distribution of latent variables conditioned on the data and current estimated parameters
- For our problem

$$\mathbb{P}\left(\boldsymbol{Z}\big|\mathcal{D},\boldsymbol{\Theta}^{(t)}\right) = \prod_{i=1}^{m} \mathbb{P}\left(Z_{i}\big|X_{i},\boldsymbol{\Theta}^{(t)}\right) \mathbf{I}$$

where

$$\mathbb{P}\left(Z_{i} = 1 \middle| X_{i}, \mathbf{\Theta}^{(t)}\right) = \frac{p^{(t)} \mathcal{N}\left(X_{i} \middle| \mu_{A}^{(t)}, \sigma_{A}^{2(t)}\right)}{p^{(t)} \mathcal{N}\left(X_{i} \middle| \mu_{A}^{(t)}, \sigma_{A}^{2(t)}\right) + (1 - p^{(t)}) \mathcal{N}\left(X_{i} \middle| \mu_{B}^{(t)}, \sigma_{B}^{2(t)}\right)}$$

$$\mathbb{P}\left(Z_{i} = 0 \middle| X_{i}, \mathbf{\Theta}^{(t)}\right) = 1 - \mathbb{P}\left(Z_{i} = 1 \middle| X_{i}, \mathbf{\Theta}^{(t)}\right) \mathbb{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

22

Update Equations

Means

$$\mu_{Z_i}^{(t+1)} = \frac{\sum_{i=1}^n \mathbb{P}(Z_i|X_i, \boldsymbol{\theta}^{(t)}) X_i}{\sum_{i=1}^n \mathbb{P}(Z_i|X_i, \boldsymbol{\theta}^{(t)})}, \blacksquare$$

Variances

$$(\sigma_{Z_i}^{(t+1)})^2 = \frac{\sum_{i=1}^n \mathbb{P}(Z_i|X_i, \boldsymbol{\theta}^{(t)}) (X_i - \mu_{Z_i}^{(t+1)})^2}{\sum_{i=1}^n \mathbb{P}(Z_i|X_i, \boldsymbol{\theta}^{(t)})}$$

• Probability of being type 1

$$p^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}\left(Z_i = 1 \mid X_i, \theta_i^{(t)}\right) \mathbf{I}$$

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

,

COMP6208 Advanced Machine Learning

Example Summary

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

• Building probabilistic models is an intricate process

• Identifying random variables that describe the system is the first

- Often we need to introduce variables that we don't observe and need to be marginalised out
- The EM algorithm provide one approach to maximising likelihoods or MAP solutions when we have latent variables
- It often gives nice update equations, but convergence can be slow