Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчет

по лабораторной работе №3 «Выполнение циклических программ»

по дисциплине «Основы профессиональной деятельности»

вариант 716

Выполнил: Качанов Д.В., группа Р3106

Преподаватель: Афанасьев Д.Б..

Санкт-Петербург

~ 2023 ~

Оглавление

Оглавление	. 2
Задание	. 3
Текст исходной программы	. 4
Описание программы	. 6
Назначение программы	. 6
Функция программы	. 6
Описание и назначение исходных данных	. 6
Область представления данных	. 6
Область допустимых значений	. 6
Расположение команд программы в памяти ЭВМ, исходных данных и	
результатов	. 6
Адреса первой и последней команды программы	
Таблица трассировки	. 7
Вывод	

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Ход работы, содержание отчета и контрольные вопросы описаны в методических указаниях

422:		0436	I	430:	7EF4
423:		A000	ĺ	431:	F801
424:		E000	ĺ	432:	EEF2
425:		E000	Ī	433:	8424
426:	+	AF40	ĺ	434:	CEF9
427:		0680	ĺ	435:	0100
428:		0500	ĺ	436:	F500
429:		EEFB	ĺ	437:	A429
42A:		AF05	ĺ	438:	F600
42B:		EEF8		439:	1200
42C:		AEF5	ĺ	43A:	0000
42D:		EEF5			
42E:		AAF4	Ī		
42F:		F203	ĺ		

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий
422	0436	Х	Адрес первого элемента массива.
423	A000	-	Промежуточное значение для подсчёта адресов элементов массива.
424	E000	-	Количество элементов в массиве.
425	E000	R	Результат выполнения программы.
426	AF40	LD #F40	Прямая загрузка M -> AC (0040)
427	0680	SWAB	Обмен старшего и младшего байтов аккумулятора
428	0500	ASL	Побитовый сдвиг аккумулятора влево, в старший разряд записывается С, в младший 0
429	EEFB	ST (IP - 5)	Прямое относительное сохранение. Записываем значение аккумулятора в ячейку 425
42A	AF05	LD #F05	Прямая загрузка M -> AC (0005)
42B	EEF8	ST (IP - 8)	Прямое относительное сохранение. Записываем значение аккумулятора в ячейку 424
42C	AEF5	LD (IP - 11)	Записываем содержимое в аккумулятор из ячейки Прямая относительная загрузка М -> AC (422)
42D	EEF5	ST (IP - 11)	Прямое относительное сохранение. Записываем значение аккумулятора в ячейку 423
42E	AAF4	LD (423)+	Косвенная автоинкрементная загрузка. Получаем адрес операнда смещением на IP – 12(423), адрес 0436(F500). Увеличиваем адрес в ячейке на 1 после загрузки операнда из памяти.
42F	F203	BMI 03	В случае N == 1 увеличиваем IP на 3 + 1 (433)
430	7EF4	CMP (IP-12)	Устанавливаем флаги по разности значения в аккумуляторе с ячейкой по адресу IP - 12(425)
431	F801	BLT 01	Переходим на 2 ячейки вперёд в случае, если значения N и V различны.
432	EEF2	ST (IP-13)	Прямое относительное сохранение. Записываем значение аккумулятора в IP - 14(425)
433	8424	LOOP \$424	Уменьшаем на один значение в ячейке 424, в случае неположительного значения в ячейке переходим в IP + 1
434	CEF9	JUMP (IP-7)	Прямой относительный прыжок в IP - 7(42E)
435	0100	HLT	Останов
436	F500	a ₁	Первый элемент массива
437	A429	a ₂	Второй элемент массива
438	F600	a ₃	Третий элемент массива
439	1200	a ₄	Четвертый элемент массива
43A	0000	a ₅	' Пятый элемент массива

Описание программы

Назначение программы

Поиск наибольшего числа, большего числа -24575 в массиве. В случае, если таковых нет, результат равен -24575.

Функция программы

 $R = f(a_1, a_2, a_3, a_4, a_5) = max(-24575, a_1, a_2, a_3, a_4, a_5)$

Описание и назначение исходных данных

Х – адрес первого элемента массива.

 $a_{1,}a_{2,}a_{3,}a_{4,}a_{5-}$ массив из пяти элементов.

R – Результат.

Область представления данных

Х – беззнаковое 11-разрядное знаковое целое число.

R – 16-разрядное знаковое целое число.

аі – 16-разрядные знаковые целые числа.

Область допустимых значений

 $0xA000 \le R \le 0x7FFF$

 $-2^{15} \le a_i \le 2^{15} - 1$

- 1. $0x000 \le X \le 0x421$
- 2. $0x436 \le X \le 0x7FB$

Расположение команд программы в памяти ЭВМ, исходных данных и результатов

436 – адрес первого элемента массива.

[426...435] – команды программы.

423, 424 — вспомогательные ячейки.

425 – Результат.

Адреса первой и последней команды программы

Адрес первой команды: 426

Адрес последней команды: 435

Таблица трассировки

Адрес	Значение	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Значение
405	0000	426	0000	404	4FEE	000	0000	0000	0000		
426	AF40	427	AF40	426	0040	000	0040	0040	0000		
427	0680	428	0680	427	0680	000	0427	4000	0000		
428	0500	429	0500	428	4000	000	0428	8000	1010		
429	EEFB	42A	EEFB	425	8000	000	FFFB	8000	1010	425	8000
42A	AF05	42B	AF05	42A	0005	000	0005	0005	0000		
42B	EEF8	42C	EEF8	424	0005	000	FFF8	0005	0000	424	0005
42C	AEF5	42D	AEF5	422	0400	000	FFF5	0400	0000		
42D	EEF5	42E	EEF5	423	0400	000	FFF5	0400	0000	423	0400
42E	AAF4	42F	AAF4	400	1B0D	000	FFF4	1B0D	0000	423	0401
42F	F203	430	F203	42F	F203	000	042F	1B0D	0000		
430	7EF4	431	7EF4	425	8000	000	FFF4	1B0D	1010		
431	F801	432	F801	431	F801	000	0431	1B0D	1010		
432	EEF2	433	EEF2	425	1B0D	000	FFF2	1B0D	1010	425	1B0D
433	8424	434	8424	424	0004	000	0003	1B0D	1010	424	0004
434	CEF9	42E	CEF9	434	042E	000	FFF9	1B0D	1010		
42E	AAF4	42F	AAF4	401	2141	000	FFF4	2141	0000	423	0402
42F	F203	430	F203	42F	F203	000	042F	2141	0000		
430	7EF4	431	7EF4	425	1B0D	000	FFF4	2141	0001		
431	F801	432	F801	431	F801	000	0431	2141	0001		
432	EEF2	433	EEF2	425	2141	000	FFF2	2141	0001	425	2141
433	8424	434	8424	424	0003	000	0002	2141	0001	424	0003
434	CEF9	42E	CEF9	434	042E	000	FFF9	2141	0001		
42E	AAF4	42F	AAF4	402	1DDA	000	FFF4	1DDA	0001	423	0403
42F	F203	430	F203	42F	F203	000	042F	1DDA	0001		
430	7EF4	431	7EF4	425	2141	000	FFF4	1DDA	1000		
431	F801	433	F801	431	F801	000	0001	1DDA	1000		
433	8424	434	8424	424	0002	000	0001	1DDA	1000	424	0002
434	CEF9	42E	CEF9	434	042E	000	FFF9	1DDA	1000		
42E	AAF4	42F	AAF4	403	452E	000	FFF4	452E	0000	423	0404
42F	F203	430	F203	42F	F203	000	042F	452E	0000		
430	7EF4	431	7EF4	425	2141	000	FFF4	452E	0001		
431	F801	432	F801	431	F801	000	0431	452E	0001		
432	EEF2	433	EEF2	425	452E	000	FFF2	452E	0001	425	452E
433	8424	434	8424	424	0001	000	0000	452E	0001	424	0001
434	CEF9	42E	CEF9	434	042E	000	FFF9	452E	0001		
42E	AAF4	42F	AAF4	404	4FEE	000	FFF4	4FEE	0001	423	0405
42F	F203	430	F203	42F	F203	000	042F	4FEE	0001		
430	7EF4	431	7EF4	425	452E	000	FFF4	4FEE	0001		
431	F801	432	F801	431	F801	000	0431	4FEE	0001		
432	EEF2	433	EEF2	425	4FEE	000	FFF2	4FEE	0001	425	4FEE
433	8424	435	8424	424	0000	000	FFFF	4FEE	0001	424	0000
435	0100	436	0100	435	0100	000	0435	4FEE	0001		
436	0000	437	0000	436	0000	000	0436	4FEE	0001		

Вывод

В ходе выполнения данной лабораторной работы я рассмотрел виды адресации, их применение.