"固体物理基础"试卷 2004.05.

		姓名	班级学号	
	填空(40分) . 德布罗意关系式把粒子和波联系起	来了,粒子的能量 E	与波的频率レ、粒	子的动量 \bar{p}
和	1 波矢 $ar{k}$ 之间的关系分别是	和	o	
2.	常数为我们提供了何时	寸必须用量子力学的;	方法来处理问题的	判据。
	无限空间中自由电子能量是	龙量呈现 <u></u>		
4.	一维运动的粒子处在 $\psi(x) = \begin{cases} A \sin \frac{n\pi}{2a} \\ 0 \end{cases}$; 粒子在空间($ x < (x+a)$ $(n=1,2,3,\cdots)$ $ x < x \ge 1$	a 的状态,归一化》	皮函数为。
5. (提 在 ⁻ 6.	玻色-爱因斯坦分布与麦克斯韦-玻耳是示:可否区分),后者的粒子是	兹曼分布的区别在于 ; 玻色-爱因期理,后者的粒子 在"模型均属束缚态的	一前者的粒子是 所坦分布与费米狄拉 泡利不相等	立克分布的区别 容原理。
	能量特性具有这样一些共性: 布喇菲点阵中的点代表			
8.	晶体中原子排列的最大特点是		o	
	体心立方晶体中每个固体物理学原胞 心立方晶体中每个固体物理学原胞含_			
物ヨ	晶格常数相同的简立方、体心立方和同型学原胞之比为;第一区的体积之比又为。	一布里渊区的体积之		
基: k 耳	由 N 个原子构成的、长度为 L 的一维 矢大小为,第一布里渊区的 双分立的值,在第一布里渊区里电子允占据的线度为。	的范围为 ὰ许的状态(即 k 的Ι	,考虑边界条	《件的限制使得

8. 晶格振动产生格波,格波的波矢数目等于							
9. 在一维双原子晶格中,若相邻原子平衡间距为 a,那么波长为 6a 的格波与波长为 的格波,它们的振动状态相同。							
10. 绝缘体的热传导主要依靠子的运动来完成。导体的热传导主要依靠子的运动来完成。							
11. 布洛赫函数 $\psi(x) = e^{ikx} u_k(x)$,它描述了中电子的运动状态,其中指数部分							
描述了							
10. 根据定态微扰理论,在非简并情况下经过一级修正后的波函数具有下列形式:							
$\psi_k = \psi_k^{(0)} + \sum_n \frac{H'_{nk}}{E_k^{(0)} - E_n^{(0)}} \psi_n^{(0)}$, $\exists r \in \psi_k^{(0)}$ 的意义是							
是情况下,上述微扰公式不适用。							
11. 当晶体电子的位置不确定量 ΔX 与波矢不确定量 ΔK 分别满足 ΔX 、 ΔK 时,晶体中的电子可以近似当作经典粒子来处理,其行为用波包来描述。							
12. 图中所示 A、B 两直线分别是两晶面在 Y-Z 平面上的投影,请写出它们的晶面指数。							
A 面:							
A † B							

_	阐明:	도제(二郎	(28	4
	甲甲	וויעייו	コルバ	\ \ \ \ \ \ \	///

1. 为什么在量子力学应用的范围中,粒子的运动状态要用薛定谔方程而不能用牛顿定律来反映呢?写出**定态**薛定谔方程的表达式,并说明什么是定态。

2. 在讨论晶体中的电子状态时,应用了紧束缚方法和准自由电子方法。这两种方法均采用了 微扰理论,试问这两种方法分别将什么看作零级近似?什么看作微扰?各自的适用范围有何不同?

3. 什么叫声子? 对于一给定的晶体,它是否拥有一定数目的声子?为什么?

4. 说明有效质量的概念及引入的意义。

三. 计算(请写出详细步骤)(32分)

- 1. 设有同种原子组成的一维单原子链,相邻原子间距为 a/2。
 - (1) 利用紧束缚方法 $E(k)=E_0-J_0-J_1\sum_{R_s}e^{-i\bar{k}\cdot\bar{R}_s}$,在只考虑最邻近原子互作用的近似下,求

出由 S 态电子形成的能带;

- (2) 求能带的宽度;
- (3) 求电子运动速度的表达式;
- (4) 求能带底部和顶部附近电子的有效质量。

- 3. 一维双原子点阵,已知一种原子的质量 $m=2.5\times1.67\times10^{-27}kg$,另一种原子的质量 M=2m, 力常数 $\beta=15N.m^{-1}$ 。求:
- (1) 光学波的最大频率 ω_{\max}^{o} 和最小频率 ω_{\min}^{o} ;
- (3) 温度为 300K(k₀T=0.026eV)激发多少个短声学波声子?
- (4) 如果用电磁波来激发长光学波振动,试问电磁波的波长要多少?