CG4002: Computer Engineering Capstone Project

Visualizer and Game Engine

JITHIN VACHERY

jithin@comp.nus.edg.sg

The Five Parts Comms External: Internet based communication eval_server **H/WAI:** AI accelerator on FPGA Relay Node S/W Visualizer: AR Laser tag Comms Internal: Wireless body are N/W

H/W sensors: Laser tag gun, target, sensors

CG4002 Project: Laser tag

What's in a modern (smart) phone?

iPhone 13 Pro Max

TrueDepth Camera System

Telephoto lens, Wide lens, Ultra-wide lens

Other Sensors:

- barometer
- three-axis gyro
- accelerometer
- proximity sensor
- ambient light sensor

Apple A15 Bionic

LiDAR

4352 mAH battery

Source: https://unitedlex.com/insights/apple-iphone-13-pro-max-teardown-report/

Phone Processor: A15 Bionic

- 2 high performance Avalanche cores
- 4 energy efficient Blizzard cores

15 billion transistors

Dedicated 16-core Neural Engine hardware

15.8 trillion operations per second

Image processor

Five-core GPU

6GB RAM

Compare to other CPUs:

- Core i7 (2008): 731 million transistors
- Xeon Ivy Bridge (2014): 4 billion transistors
- Xbox One X (2017): 7 billion transistors

Cameras

Telephoto lens
77 mm focal length
3x optical zoom
f/2.8 aperture
Focus Pixels
6-element lens
Dual OIS

Wide lens
26 mm focal
length
1.9 µm pixels
f/1.5 aperture
100% Focus Pixels
7-element lens
Sensor-shift OIS

LiDAR System

- Light detection and ranging
- Emits pulsed light waves
 - Pulses bounce off objects and return to sensor
- Creates 3D map of environment
 - Point cloud
- Depth map -> helps AR apps

Software Visualizer

Software Visualizer

- Player's window to the world
 - Phone as camera + display

- What kind of information to show on the visualizer?
 - Game play: HP, ammo, etc.
 - The other player
 - Detected action
 - Effects of actions
- Advice: Avoid clutter
 - Debug mode is not the default mode

Software Visualizer

Where to place the phone visualizer?

- mount on gun
- AR headset

Effects of actions

- Reload
 - Update info

- Shoot
 - Graphics overlaid on other player

- Grenade
 - Graphics overlaid on environment and player

Example: Grenade – AR effects

Example: Grenade – AR effects

Need to track player's position in phone camera

AR: camera, graphics

AR Basics: Motion Tracking

SLAM (Simultaneous localization and mapping)

Goals:

- Tracked feature points
- Their relation in space
- Inferred camera/device position

Uses sensor data from:

- Camera
- Accelerometer, Gyroscope
- GPS, light sensor, depth sensor

Source: MonoSLAM: Real-time single camera SLAM. Davison et al.

AR Basics: Anchoring Virtual Objects

Anchoring: ensure the object stays at the location where you put it

Where to anchor?

- Environment
- Visual marker (e.g., QR code)
- Person

How does it work?

- Detect feature points
- Feature points need to be reliable

Source: https://www.andreasjakl.com/basics-of-ar-anchors-keypoints-feature-detection/

Programming and Development Framework

Unity: Game Engine

Use cases

- Able to develop AR applications
- Develop apps for multiple platforms
 - Android
 - iOS

AR Framework

- Unity Frameworks
 - Unity AR Foundation
 - Vuforia

Implements most of the low-level tracking, anchoring, detection algorithms

Android: ARCore

• iOS: ARKit

Game Engine

Rules

- Health Point
 - Player: 100 HP.
 - •Shield: 30 HP/10 Sec
- Damage
 - Bullet: 10 HP
 - •Grenade: 30 HP

Rules

- Ammo and constraints
 - Unlimited magazines
 - 6 bullets per magazine
 - Reload can be performed only if the magazine is empty
 - 2 grenades per life
 - 3 shields per lifetime
 - Cannot activate shield within 10 sec of previous activation, even if 0-HP
 - Delays
 - Grenade impact has 2 Sec delay on Visualizer
 - Rebirth is instantaneous

The Five Parts

H/W sensors: Laser tag gun, target, sensors

Game Engine: Brain Comms External eval_server Game Engine H/WAI S/W

Visualizer

Game Engine: Coordination

Al

- Receive the Detected Actions (including Shoot)
- Update player info (HP, Ammo, shield time, etc.)
- Send the information to Visualizer
- Decide on when to send actions to Eval Server
 - May need a Barrier

Eval Server

- Receive and update game state
- Send the updated information to Visualizer

Visualizer

- Receive player detection information (for Grenade)
- Process inputs from the APP

Game Engine: Design

- Should be Multi-Threaded
- Threads need to be synchronized
 - Events serialization
 - Barrier
 - Buffer clearing
- Graceful Failure
 - Should continue to function even if a few components fail
- Resilient (not graded)
 - Should have capability to restart each components

Individual subcomponent test

- Visualizer
 - Design choices
 - Aesthetics
 - Functionality
 - Demo
- Game Engine
 - Design
 - Demo

