ЛР №6 «Критерий Найквиста и системы с запаздыванием»

Отчет

Студент Кирилл Лалаянц R33352 336700 Вариант - 6

Преподаватель Пашенко А.В.

Факультет Систем Управления и Робототехники

ИТМО

Содержание

1	Вводные данные										1			
	1.1	Цель работы							1					
	1.2	Воспроизведение результатов								1				
2	Выполнение работы											2		
	2.1 Задание 1. Годограф Найквиста									2				
		2.1.1 Теория												2
		2.1.2 Результаты												2
	2.2	2 Задание 2. Коэффициент усиления											7	
		2.2.1 Теория												7
		2.2.2 Результаты												7
	2.3	Задание 3. Запаздыван	ие											9
		2.3.1 Теория												9
		2.3.2 Результаты												9
3	Заключение									11				
	3.1 Выводы							12						

1 Вводные данные

1.1 Цель работы

В этой работе будет проведенно исследование следующих вопросов:

- Критерий Найквиста.
- Системы с запаздыванием.
- Зависимость устойчивости от запаздывания и усиления.

1.2 Воспроизведение результатов

Все результаты можно воспроизвести с помощью репозитория.

- 2 Выполнение работы
- 2.1 Задание 1. Годограф Найквиста.

2.1.1 Теория

В этом задании надо придумать TF k степени с n неустойчивых полюсов, что- бы при замыкании у получившейся системы было m нейустойчивых. В общем виде получение такой передаточной функции происходит в несколько простых действий. Пусть $W_{open} = \frac{N_{open}}{D_{open}}$. Тогда:

1.
$$\forall (i \in N) \leq k \rightarrow D_{open}(\lambda_{open\ i}) = 0 \Rightarrow D_{open} = \prod_{i=1}^{k} (s - \lambda_{open\ i});$$

2.
$$\forall (i \in N) \leq k \rightarrow D_{closed}(\lambda_{closed\ i}) = 0 \Rightarrow D_{closed} = \prod_{i=1}^{k} (s - \lambda_{closed\ i});$$

3.
$$W_{closed} = \frac{W_{open}}{1 + W_{open}} = \frac{N_{open}}{N_{open} + D_{open}} = \frac{N_{open}}{D_{closed}} \Rightarrow N_{open} = D_{closed} - D_{open}$$

После этого можно наглядно проверить выполнения критерий Найквиста. Изменения количества устойчивых полюсов должно совпадать с количеством оборотов вокрук точки (-1,0).

2.1.2 Результаты

На графике (Рис. 1) представлен АФЧХ для системы с 4 неустойчивыми полюсами:

$$W_{open} = \frac{3.0s^2 - 31.0s + 74.0}{1.0s^3 - 10.0s^2 + 33.0s - 34.0}$$

$$W_{closed} = \frac{3.0s^2 - 31.0s + 74.0}{1.0s^3 - 7.0s^2 + 2.0s + 40.0}$$

По критерию Найквиста, у замкнутой должно быть 3 неустойчивых, что совпадает с действительностью. Результат преобразования корней видно ниже (Рис. 2).

Выход систем представлен на рис. 3

Рис. 1: Критерий Найквиста 1.

Рис. 2: Корни систем 1.

На графике (Рис. 4) представлен АФЧХ для системы с 0 неустойчивыми полюсами:

$$W_{open} = \frac{-23.0s^2 + 6.0s - 111.0}{1.0s^3 + 11.0s^2 + 41.0s + 51.0}$$

Рис. 3: Step response 1.

$$W_{closed} = \frac{23.0s^2 - 6.0s + 111.0}{-1.0s^3 + 12.0s^2 - 47.0s + 60.0}$$

Рис. 4: Критерий Найквиста 2.

По критерию Найквиста, у замкнутой должно быть 3 неустойчивых, что совпадает с действительностью. Результат преобразования корней видно ниже (Рис. 5).

Рис. 5: Корни систем 2.

Выход систем представлен на рис. 6

Рис. 6: Step response 2.

На графике (Рис. 7) представлен АФЧХ для системы с 4 неустойчивыми полюсами:

$$\begin{split} W_{open} &= \frac{27.0s^3 + 8.0s^2 + 287.0s + 18.0}{1.0s^4 - 13.0s^3 + 63.0s^2 - 133.0s + 102.0} \\ W_{closed} &= \frac{27.0s^3 + 8.0s^2 + 287.0s + 18.0}{1.0s^4 + 14.0s^3 + 71.0s^2 + 154.0s + 120.0} \end{split}$$

Рис. 7: Критерий Найквиста 3.

По критерию Найквиста, у замкнутой должно быть 0 неустойчивых, что совпадает с действительностью. Результат преобразования корней видно ниже (Рис. 8).

Выход систем представлен на рис. 9

Рис. 8: Корни систем 3.

Рис. 9: Step response 3.

2.2 Задание 2. Коэффициент усиления.

2.2.1 Теория

Для нахождения граничного коэффициента усиления на ФЧХ находится частота, соответсвующая усилению 1. После этого находится амплитуда, соответсвующая этой частоте, на АЧХ. Граничный коэффициент усиления обратен этому значению.

2.2.2 Результаты

$$W_1 = \frac{s - 2}{s^2 + 3s + 9}$$

Для системы W_1 имеем годограф (рис. 20). Запас по амплитуде K – 4.5.

Ниже приведены графики с разными К (рис. 11 – 13) Как видно, годограф при

Рис. 10: Годограф 1, K = 1

превышении граничного значения начинает делать поворот по часовой вокруг точки -1, что добавляет системе неустойчивый полюс.

Ниже приведен пример моделирования системы с разными К. Как видно, при значении больше граничного годограф начинает делать оборот вокруг точки -1, что добавляет неуйстойчивый полюс.

$$W_2 = \frac{10s^2 + 10s + 3}{10s^3 - 10s^2}$$

Для системы W_2 имеем годограф (рис. 15). Запас по амплитуде – 0.2.

Ниже приведены графики с разными K (рис. 16-18) Как видно, годограф при превышении граничного значения начинает делать поворот по часовой вокруг точки -1, что добавляет системе неустойчивый полюс.

Ниже приведен пример моделирования системы с разными K. Как видно, при значении меньше граничного система становится неуйстойчивой

Рис. 11: Годограф 1, K = 0.45.

2.3 Задание 3. Запаздывание.

2.3.1 Теория

Для нахождения граничного коэффициента усиления на Φ ЧХ находится частота, соответсвующая усилению 1. После этого находится угол отставания, соответсвующая этой частоте, на Φ ЧХ. Граничный коэффициент запаздывания равен этой фазе + 180 разделить на частоту.

2.3.2 Результаты

$$W_1 = \frac{9s + 2}{s^2 + 3s + 5}$$

Для системы W_1 имеем годограф (рис. 20). Запас по фазе t-0.21.

Ниже приведены графики с разными t (рис. 21-23) Как видно, годограф при превышении граничного значения начинает делать поворот по часовой вокруг точки -1, что добавляет системе неустойчивый полюс.

Рис. 12: Годограф 1, K = 2.98.

Ниже приведен пример моделирования системы с разными t. Как видно, при значении больше граничного годограф начинает делать оборот вокруг точки -1, что добавляет неуйстойчивый полюс.

$$W_2 = \frac{10s^2 - 6s + 11}{10s^3 - s^2 + 38s + 20}$$

Для системы W_2 имеем годограф (рис. 25). Запас по t – 0.05.

Ниже приведены графики с разными K (рис. 26-28) Как видно, годограф при превышении граничного значения начинает делать поворот по часовой вокруг точки -1, что добавляет системе неустойчивый полюс.

Ниже приведен пример моделирования системы с разными t. Как видно, при значении меньше граничного система становится неуйстойчивой

Рис. 13: Годограф 1, K = 5.5.

Рис. 14: Система 1, симуляция.

3 Заключение

В этой работе было проведенно исследование следующих вопросов:

• Критерий Найквиста.

Рис. 15: Годограф 2, K = 1.

- Системы с запаздыванием.
- Зависимость устойчивости от запаздывания и усиления.

3.1 Выводы

- 1. Критерий Найквиста работает.
- 2. Для систем у которых амплитуду надо уменьшать, чтобы она попала в -1 поведение при изменнении коэфициента усиления обратное.
- 3. Аналогично для задержек

Рис. 16: Годограф 2, K=0.02.

Рис. 17: Годограф 2, K=0.61.

Рис. 18: Годограф 2, K = 1.2.

Рис. 19: Система 2, симуляция.

Рис. 20: Годограф 1, t=0.

Рис. 21: Годограф 1, t=0.21.

Рис. 22: Годограф 1, t=0.6.

Рис. 23: Годограф 1, t = 1.21.

Рис. 24: Система 1, симуляция.

Рис. 25: Годограф 2, t=0.

Рис. 26: Годограф 2,
 $t=0.02.\,$

Рис. 27: Годограф 2,
 $t=0.50.\,$

Рис. 28: Годограф 2, t = 1.06.

Рис. 29: Система 2, симуляция.