Introducción a los sistemas en tiempo real

- Introducción
- Clasificación de los sistemas en tiempo real
- Características de los sistemas en tiempo real

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

1

Definición

- Alguna definiciones de STR (sistema de tiempo real):
 - Oxford Dictionary of Computing:
 - "Cualquier sistema en el que el tiempo en el que se produce la salida es significativo. Esto generalmente es porque la entrada corresponde a algún movimiento en el mundo físico, y la salida está relacionada con dicho movimiento. El intervalo entre el tiempo de entrada y el de salida debe ser lo suficientemente pequeño para una temporalidad aceptable"
 - Young (1982):
 - "...cualquier actividad o sistema de proceso de información que tiene que responder a un estímulo de entrada generado externamente en un periodo finito y especificado"
 - Randell et al. (1995):
 - "Un sistema de tiempo real es aquél al que se le solicita que reaccione a estímulos del entorno (incluyendo el paso de tiempo físico) en intervalos del tiempo dictados por el entorno"

Definición

Resumiendo:

- Los STR están interaccionan con el mundo real. Responden al paso del tiempo (activados por tiempo) o a sucesos externos (activados por eventos)
- En un STR no sólo es importante el resultado lógico de la computación, sino también el tiempo en el que se producen los resultados
- En la práctica, las restricciones temporales (cuándo se genera un resultado, cuánto tarda en generarse...) forman parte las especificaciones que debe cumplir. Si no se cumplen, es rechazado ⁽³⁾
- Motivo: el sistema puede no funcionar correctamente si las restricciones temporales se incumplen :-/
- Además (características ausentes de muchas definiciones pero habitualmente muy importantes):
 - Alta fiabilidad
 - Tolerancia a fallos (algún componente puede fallar y fallará)

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

3

Restricciones temporales

- Ciclo (T)
 - No existe en actividades esporádicas (activadas por eventos)
- Coste (C)
 - Tiempo de ejecución máximo si no existen interferencias de otras actividades
 - Difícil de medir con precisión (¿Cuál es el peor de los casos que a la vez sea realista?)
- Tiempo de respuesta (R)
 - Tiempo de ejecución máximo (peor) en condiciones reales
 - No puede ser inferior al coste
- Tiempo límite o"deadline" (D)
 - Máximo tiempo de respuesta admisible (condición de diseño)
 - Nunca puede fijarse inferior al coste
- Restricción temporal típica:
 - Tiempo de respuesta no superior al plazo: R <= D

Restricciones temporales

- $\bullet \quad R_i = \max_j(r_{ij})$
- $C_i = \max_j (c_{ij})$
- Las tareas de alta prioridad "roban" tiempo a las de baja prioridad (interferencia)

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

5

Clasificación

- Clasificación habitual:
 - Sistemas críticos ("hard real time"): El tiempo de respuesta debe ser siempre menor que el máximo – si no es así, será rechazado
 - Sistemas no críticos ("soft real time"): Se pueden tolerar retrasos ocasionales dentro de ciertos límites (10% de los ciclos, por ejemplo). Dos subtipos:
 - Restricciones "firmes" ("firm"): Si se incumplen, el resultado carece de valor
 - Restricciones "no-firmes": Si se incumplen, el resultado es útil, pero no óptimo
- Un mismo sistema puede tener ambos tipos de restricciones en funciones distintas
- Algunas funciones pueden tener ambos tipos de restricciones:
 - Restricción no crítica a 50 ms
 - Restricción crítica a 200 ms

Sistemas empotrados

Concepto de sistemas empotrados

- También conocidos como embebidos, o embarcados
- STR y sistema empotrado no siempre se consideran sinónimos
- Funcionan como un componente más del sistema
- No son computadores para el usuario
- No tienen los recursos habituales en un computador
- Tienen los recursos y periféricos apropiados para su función, probablemente no los habituales

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

7

Tipos de sistemas y especificaciones

- No de tiempo real:
 - No se definen plazos
 - La calidad de funcionamiento se degrada muy lentamente

Tiempo real crítico:

27/09/2015

- Plazo estricto plazos
- La calidad de funcionamiento cae bruscamente

Tiempo real no crítico:

- Se toleran incumplimientos del plazo
- La calidad de funcionamiento cae de manera progresiva
- Puede haber otro plazo crítico

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

Combinación de restricciones

- M₁: restricción "firm".
 Solución óptima, pero a veces R_{M1} > D
- M₂: restricción "hard".
 Solución subóptima, pero siempre R_{M2} << D
- Pueden combinarse ambos para conseguir la restricción crítica de M: M₂ se usa en caso de sobretiempo

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

9

Ejemplos de S.T.R.

Sistema de control de procesos

Sistema de control de producción

Central eléctrica

Ejemplos de S.T.R.

Sistema de mando y control

Sistemas aéreos tripulados y no tripulados

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

11

Ejemplos de S.T.R.

Integrated Modular Avionics (IMA)

Un sistema de tiempo real básico

- Función principal: Control de temperatura
- Otras funciones:
 - Mostrar estado del sistema a lo largo del tiempo
 - Leer órdenes de usuario
 - Mantener un reloj de tiempo real

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

13

Un sistema en tiempo real básico

- Implementación con módulos concurrentes
- Necesidad de comunicación y sincronización
- El tiempo de CPU es compartido. Se necesita planificación ("scheduling")

Controlador de vehículo

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

15

Ejemplos de S.T.R.

Ejemplos de S.T.R.

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

17

Ejemplos de S.T.R.

Características de los sistemas en tiempo real

- Tiempo de respuesta predecible
- Sistemas grandes y complejos
- Necesidad de soporte para cálculo numérico
- Alta fiabilidad y tolerancia a fallos
- Actividad concurrente de los componentes
- Necesidad de servicios de temporización
- Interacción con el soporte físico ("hardware")
- Eficiencia frente a predictibilidad

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

19

Características de los sistemas de tiempo real

- Sistemas grandes y complejos
 - Diseño basado en especificaciones
 - Programación estructurada
 - Ocultación de datos; programación orientada a objeto
 - Extensibilidad
- Necesidad de soporte para cálculo numérico
 - Soporte adecuado para entero y punto flotante
 - Selección del tipo adecuado
 - Extensión
 - Resolución
 - Aritmética de punto fijo

Características de los sistemas en tiempo real

- Alta fiabilidad y tolerancia a fallos
 - Diseño basado en especificaciones para conseguir alta fiabilidad
 - Sistema tolerante a fallos para superar fallos y circunstancias excepcionales
 - Redundancia estática: Duplicación de funciones
 - Redundancia dinámica: Detección de fallos y ejecución de algoritmos de recuperación
 - Características del lenguaje de programación
 - Claridad
 - Restricciones estrictas para conversiones de tipo
 - Estructuras de programación incorporadas, tales como el tratamiento de excepciones (C++, ADA...)

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

21

Fallo del vuelo 501 del Arianne 5

- Vuelo normal hasta el segundo 36
- Maniobra brusca a los 37 s
- Explosión a unos 4000 m
- Restos esparcidos en 12 Km² de pantanos
- 4 satélites perdidos

Fallo del vuelo 501 del Arianne 5

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

Fallo del vuelo 501 del Arianne 5 (4/6/96)

Sistemas de referencia inercial IRS1 IRS2 OBC Computador de control de vuelo

- Odusas.
- Cambio del perfil de vuelo
- Error aritmético no tratado
- Redundancia no efectiva
- Función inútil activa en vuelo
- Falta de especificación y prueba

Secuencia de fallo:

- Error de conversión de 64 a 16 bits en función de autocalibración
- Falla el IRS activo
- !No puede actuar el de respaldo porque falló pocos ms antes!
- El control de vuelo recibe datos espúreos
- Tobera en ángulo límite
- Vehículo en ángulo extremo
- Daños estructurales
- Autodestrucción

23

Características de los sistemas en tiempo real

- Actividad concurrente de los componentes
 - Habitualmente la implementación más natural
 - Se necesita sistema operativo multitarea o sistema de soporte en tiempo de ejecución
 - Necesidad de utilizar servicios de comunicación, sincronización y planificación
 - Dos opciones de implementación
 - Sistema operativo + lenguaje de programación convencional (C, C++)
 - Lenguajes de programación concurrentes (ADA, Java)
- Servicios de temporización
 - Se necesita una base de tiempos: Reloj de tiempo real. Puede medir intervalos.
 - Servicios específicos:
 - Activación periódica
 - · Retraso relativo
 - Activación en un instante determinado (fecha, hora)
 - Sobretiempo: Capacidad para abortar funciones o esperas

27/09/2015

© Joaquín Ferruz Melero 2006-15 (Dpto. Ing. Sist. y Automática, ESI Sevilla)

25

Características de los sistemas en tiempo real

- Interacción con el soporte físico ("hardware")
 - Puede ser necesario gestionar el soporte físico a bajo nivel
 - Dispositivos especiales
 - Maneras especiales de gestionar dispositivos convencionales
 - El "software" de entrada/salida de bajo nivel es en sí mismo un ejemplo de sistema de tiempo real
 - El "software" de bajo nivel debería codificarse (en su mayor parte) mediante lenguajes de alto nivel
 - Compromiso entre fiabilidad y flexibilidad del lenguaje
 - Falta de portabilidad (Excepción: ADA)
- Eficiencia frente a predictibilidad
 - La eficiencia no es un fin en sí misma
 - Lo fundamental es que el sistema debe ser predecible: Deben cumplirse los plazos (siempre)
 - Puede que sea necesaria la eficiencia para tal fin
 - Es necesario evitar funciones de coste no predecible:
 - Arrancar actividades concurrentes
 - Pedir memoria
 - ...