Inatel Instituto Nacional de Telecomunicações	10ª Aula de exercícios de M008		Turma: M008 A
	M008 – Probabilidade e Processos Estocásticos		
Professor: Renan Sthel Duque	Monitor: Igor Gonçalves de Souza		
Assunto(s): Média do processo estocástico e função de autocorrelação			
Conteúdo: Enunciado para as questões			
Nome:			Data:

- 1) Considere o processo estocástico $X(t) = A \cdot t^2$, em que A é uma variável aleatória uniformemente distribuída no intervalo [-2,2]. Pede-se:
 - (a) Calcule o valor médio deste processo estocástico.
 - (b) Calcule a função de autocorrelação deste processo estocástico.

Resposta:
$$R_X(t_1, t_2) = \frac{4}{3} \cdot t_1^2 \cdot t_2^2$$

Resposta: $R_X(t, t + \tau) = \frac{4}{3} \cdot t^2 \cdot (t + \tau)^2 = \frac{4}{3} \cdot (t^4 + 2\tau \cdot t^3 + \tau^2 t^2)$

- (c) Este processo estocástico é estacionário no sentido amplo? Justifique.
- (d) O processo é estacionário para estatísticas de até que ordem? Justifique.
- 2) Dois processos estocásticos X(t) e Y(t) são dados por:

$$X(t) = A \cdot \cos(\omega t + \theta)$$
 $Y(t) = A \cdot \sin(\omega t + \theta)$

 ω é a frequência da portadora, A é uma constante e θ é uma variável aleatória uniformemente distribuída no intervalo $[0, 2\pi]$. Determine a função de correlação cruzada entre X(t) e Y(t).

Resposta:
$$R_{XY}(\tau) = A^2/2 \cdot \operatorname{sen}(\omega \tau)$$