Введение в искусственный интеллект. Машинное обучение

Тема: Эмпирический риск и стохастический градиентный спуск

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

• Эмпирический риск и его минимизация

- Эмпирический риск и его минимизация
- 2 Разделяющая поверхность

- Эмпирический риск и его минимизация
- Разделяющая поверхность
- 3 GD и SGD

- Эмпирический риск и его минимизация
- Разделяющая поверхность
- 3 GD и SGD

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$
- Задача обучения по прецедентам состоит в том, чтобы построить алгоритм $a: X \to Y$, который приближал бы целевую зависимость y^* как на обучающей выборке X^m , так и на всём множестве X

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$
- Задача обучения по прецедентам состоит в том, чтобы построить алгоритм $a: X \to Y$, который приближал бы целевую зависимость y^* как на обучающей выборке X^m , так и на всём множестве X
- Эмпирический риск это средняя величина ошибки a на X^m

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$
- Задача обучения по прецедентам состоит в том, чтобы построить алгоритм $a:X\to Y$, который приближал бы целевую зависимость y^* как на обучающей выборке X^m , так и на всём множестве X
- Эмпирический риск это средняя величина ошибки a на X^m
- Метод минимизации эмпирического риска это общий подход к решению широкого класса задач обучения по прецедентам (задачи классификации и регрессии)

Эмпирический риск - определения

Функция потерь L(y, y')

Характеризует величину отклонения ответа y=a(x) от правильного ответа $y'=y^*(x)$ на объекте $x\in X$

Эмпирический риск - определения

Функция потерь L(y, y')

Характеризует величину отклонения ответа y=a(x) от правильного ответа $y'=y^*(x)$ на объекте $x\in X$

Множество алгоритмов $A = \{a : X \rightarrow Y\}$

В этом множестве будет вестись поиск отображения, приближающего неизвестную целевую зависимость

Эмпирический риск - определения

Функция потерь L(y, y')

Характеризует величину отклонения ответа y=a(x) от правильного ответа $y'=y^*(x)$ на объекте $x\in X$

Множество алгоритмов $A = \{a : X \rightarrow Y\}$

В этом множестве будет вестись поиск отображения, приближающего неизвестную целевую зависимость

Эмпирический риск

Функционал качества, характеризующий среднюю ошибку алгоритма a на выборке X^m : $R(a, X^m) = \frac{1}{m} \sum_{i=1}^m L(a(x_i), y^*(x_i))$

Минимизация эмпирического риска

Минимизация эмпирического риска (М.Э.Р.)

В заданном множестве алгоритмов A найти алгоритм, минимизирующий эмпирический риск:

$$a = \underset{a \in A}{\operatorname{arg\,min}} R(a, X^m)$$

Минимизация эмпирического риска

Минимизация эмпирического риска (М.Э.Р.)

В заданном множестве алгоритмов A найти алгоритм, минимизирующий эмпирический риск:

$$a = \underset{a \in A}{\operatorname{arg \, min}} R(a, X^m)$$

Достоинство М.Э.Р.

Конструктивный и универсальный подход, позволяющий сводить задачу обучения к задачам численной оптимизации

Минимизация эмпирического риска

Минимизация эмпирического риска (М.Э.Р.)

В заданном множестве алгоритмов A найти алгоритм, минимизирующий эмпирический риск:

$$a = \underset{a \in A}{\operatorname{arg \, min}} R(a, X^m)$$

Достоинство М.Э.Р.

Конструктивный и универсальный подход, позволяющий сводить задачу обучения к задачам численной оптимизации

Недостаток М.Э.Р.

Явление переобучения на обучающей выборке X^m , которое возникает практически всегда при использовании метода М.Э.Р., поскольку критерием качества является ошибка на этой же выборке (решение: для оценки менять выборку) .

Примеры функций потерь

Задача классификации

- Пороговая функция $L(y,y')=[y \neq y']$
- Функция разрывна \Rightarrow минимизация эмпирического риска это задача комбинаторной оптимизации \Rightarrow во многих практически важных случаях сводится к поиску максимальной совместной подсистемы в системе неравенств (число неравенств совпадает с число объектов обучения m) и является NP-полной

Примеры функций потерь

Задача классификации

- Пороговая функция $L(y, y') = [y \neq y']$
- Функция разрывна \Rightarrow минимизация эмпирического риска это задача комбинаторной оптимизации \Rightarrow во многих практически важных случаях сводится к поиску максимальной совместной подсистемы в системе неравенств (число неравенств совпадает с число объектов обучения m) и является NP-полной

Задача регрессии

Квадратичная функция потерь $L(y, y') = (y - y')^2$

Время для вопросов

• Функцию потерь для задачи классификации $L(y,y')=[y\neq y']$ нельзя продифференцировать (и, значит, эффективно минимизировать)

- Функцию потерь для задачи классификации $L(y, y') = [y \neq y']$ нельзя продифференцировать (и, значит, эффективно минимизировать)
- Для подключения известного дифференциального аппарата вводятся два понятия разделяющая поверхность и аппроксимация Э.Р.

- Функцию потерь для задачи классификации $L(y,y')=[y\neq y']$ нельзя продифференцировать (и, значит, эффективно минимизировать)
- Для подключения известного дифференциального аппарата вводятся два понятия разделяющая поверхность и аппроксимация Э.Р.
- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$

- Функцию потерь для задачи классификации $L(y, y') = [y \neq y']$ нельзя продифференцировать (и, значит, эффективно минимизировать)
- Для подключения известного дифференциального аппарата вводятся два понятия разделяющая поверхность и аппроксимация Э.Р.
- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x,w)=\mathrm{sign}\,g(x,w)$, где g(x,w) дискриминантная функция, а w вектор параметров

- Функцию потерь для задачи классификации $L(y,y')=[y\neq y']$ нельзя продифференцировать (и, значит, эффективно минимизировать)
- Для подключения известного дифференциального аппарата вводятся два понятия разделяющая поверхность и аппроксимация Э.Р.
- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x,w) = \operatorname{sign} g(x,w)$, где g(x,w) дискриминантная функция, а w вектор параметров
- g(x,w)=0 разделяющая поверхность (граница между классами); тогда ошибка классификации $a(x_i,w)\neq y_i\Leftrightarrow y_ig(x_i,w)<0$.

• Наиболее простой вид разделяющей поверхности — прямая (гиперплоскость)

- Наиболее простой вид разделяющей поверхности прямая (гиперплоскость)
- Однако разделяющая поверхность может быть нелинейной

- Наиболее простой вид разделяющей поверхности прямая (гиперплоскость)
- Однако разделяющая поверхность может быть нелинейной
- Разделяющая поверхность может быть не одна

- Наиболее простой вид разделяющей поверхности прямая (гиперплоскость)
- Однако разделяющая поверхность может быть нелинейной
- Разделяющая поверхность может быть не одна

• Через понятие разделяющей поверхности можем переопределить ошибку классификации: $a(x_i, w) \neq y_i \Leftrightarrow y_i g(x_i, w) < 0$

- Через понятие разделяющей поверхности можем переопределить ошибку классификации: $a(x_i, w) \neq y_i \Leftrightarrow y_i g(x_i, w) < 0$
- ullet Но нужно еще ввести аппроксимацию самого eta.Р. $- ilde{R}$ со свойствами:
 - \bullet \tilde{R} дифференцируема

- Через понятие разделяющей поверхности можем переопределить ошибку классификации: $a(x_i, w) \neq y_i \Leftrightarrow y_i g(x_i, w) < 0$
- ullet Но нужно еще ввести аппроксимацию самого eta.Р. $- ilde{R}$ со свойствами:
 - \bullet \tilde{R} дифференцируема
 - ② \tilde{R} верхняя граница для Э.Р. R (чтобы минимизация \tilde{R} подразумевала и минимизацию R)
- М.Э.Р.: $R(a, X^m) = \frac{1}{m} \sum_{i=1}^m [y_i g(x_i, w) < 0] \le \tilde{R}(a, X^m) = \frac{1}{m} \sum_{i=1}^m L(y_i g(x_i, w))$, где новая функция потерь $L(y_i g(x_i, w))$ невозрастающая и неотрицательная аппроксимация функции $[y_i g(x_i, w) < 0]$, т.ч.: $L(y_i g(x_i, w)) \ge [a(x_i, w) \ne y_i]$

- Через понятие разделяющей поверхности можем переопределить ошибку классификации: $a(x_i, w) \neq y_i \Leftrightarrow y_i g(x_i, w) < 0$
- ullet Но нужно еще ввести аппроксимацию самого eta.Р. $- ilde{R}$ со свойствами:
 - \bullet \tilde{R} дифференцируема
 - ② \tilde{R} верхняя граница для Э.Р. R (чтобы минимизация \tilde{R} подразумевала и минимизацию R)
- М.Э.Р.: $R(a, X^m) = \frac{1}{m} \sum_{i=1}^m [y_i g(x_i, w) < 0] \le \tilde{R}(a, X^m) = \frac{1}{m} \sum_{i=1}^m L(y_i g(x_i, w))$, где новая функция потерь $L(y_i g(x_i, w))$ невозрастающая и неотрицательная аппроксимация функции $[y_i g(x_i, w) < 0]$, т.ч.: $L(y_i g(x_i, w)) \ge [a(x_i, w) \ne y_i]$

Упражнение. Зачем нужны свойства невозрастаемости и неотрицательности L? Замечание. В дальнейшем будем предполагать, что мы работаем сразу с аппроксимаций Э.Р. \tilde{R} , поэтому знак $\tilde{\ }$ будем опускать.

Вероятностный смысл минимизации аппроксимированного Э.Р.

Рассмотрим принцип максимизации правдоподобия, или MLE (Maximum Likelihood Estimation).

- Параметрическая модель плотности распределения p(x,y|w)
- Максимизация логарифма правдоподобия

$$L(w, X^m) = \ln \prod_{i=1}^m p(x_i, y_i | w) = \sum_{i=1}^m \ln p(x_i, y_i | w) \to \max_w$$

Вероятностный смысл минимизации аппроксимированного Э.Р.

Рассмотрим принцип максимизации правдоподобия, или MLE (Maximum Likelihood Estimation).

- Параметрическая модель плотности распределения p(x,y|w)
- Максимизация логарифма правдоподобия

$$L(w, X^m) = \ln \prod_{i=1}^m p(x_i, y_i | w) = \sum_{i=1}^m \ln p(x_i, y_i | w) \to \max_w$$

• Минимизация аппроксимированного Э.Р.

$$R(w,X^m) = \frac{1}{m} \sum_{i=1}^m L(y_i g(x_i, w)) \to \min_w$$

Вероятностный смысл минимизации аппроксимированного Э.Р.

Рассмотрим принцип максимизации правдоподобия, или MLE (Maximum Likelihood Estimation).

- Параметрическая модель плотности распределения p(x,y|w)
- Максимизация логарифма правдоподобия

$$L(w, X^m) = \ln \prod_{i=1}^m p(x_i, y_i | w) = \sum_{i=1}^m \ln p(x_i, y_i | w) \to \max_w$$

• Минимизация аппроксимированного Э.Р.

$$R(w,X^m) = \frac{1}{m} \sum_{i=1}^m L(y_i g(x_i, w)) \to \min_w$$

Вывод. Эти два принципа эквивалентны при $L(y_i g(x_i, w)) = -\ln p(x_i, y_i | w)$ (коэффициент $\frac{1}{m}$ не влияет на вывод).

Об аппроксимации

• Рассмотрим аппроксимацию функции ошибки на обучающем примере: $L(y_ig(x_i, w)) \ge [y_ig(x_i, w) < 0]$

$$L(y_ig(x_i, w)) \ge [y_ig(x_i, w) < 0]$$

В дальнейшем будем рассматривать

- В дальнейшем будем рассматривать в основном достаточно гладкие (непрерывные и дифференцируемые) функции $L(y_ig(x_i, w))$
- Некоторые аппроксимации способны улучшать обобщающую способность классификатора
- Непрерывные аппроксимации позволяют применять известные численные методы оптимизации для настройки весов w (например, градиентные методы и методы выпуклого программирования)

Примеры аппроксимации функции [yg(x, w) < 0]:

Время для вопросов

Классический градиентный спуск

Задача: минимизировать аппроксимированный Э.Р. (выбор алгоритма осуществляется по w):

$$R(w) = \frac{1}{m} \sum_{i=1}^{m} L(y_i g(x_i, w)) = \frac{1}{m} \sum_{i=1}^{m} L_i(w) \to \min_{w}$$

Классический градиентный спуск

Задача: минимизировать аппроксимированный Э.Р. (выбор алгоритма осуществляется по w):

$$R(w) = \frac{1}{m} \sum_{i=1}^{m} L(y_i g(x_i, w)) = \frac{1}{m} \sum_{i=1}^{m} L_i(w) \to \min_{w}$$

Численная оптимизация методом градиентного спуска

- $w^{(0)} :=$ начальное приближение
- ullet $w^{(t+1)} := w^{(t)} \eta \cdot
 abla R(w^{(t)})$ итерация алгоритма
- η градиентный шаг

Классический градиентный спуск

Задача: минимизировать аппроксимированный Э.Р. (выбор алгоритма осуществляется по w):

$$R(w) = \frac{1}{m} \sum_{i=1}^{m} L(y_i g(x_i, w)) = \frac{1}{m} \sum_{i=1}^{m} L_i(w) \to \min_{w}$$

Численная оптимизация методом градиентного спуска

- $w^{(0)} :=$ начальное приближение
- ullet $w^{(t+1)} := w^{(t)} \eta \cdot
 abla R(w^{(t)})$ итерация алгоритма
- ullet η градиентный шаг

Проблема: сложно считать в условиях большого количества объектов в обучающей выборке.

Стохастический градиентный спуск

Алгоритм стохастического градиентного спуска

- Инициализация весов *w*
- ullet Инициализация eta.Р. $R := rac{1}{m} \sum_{i=1}^m L_i(w)$

Итерации

- ullet Выбор объекта $x_i \in X^m$ (например, случайным образом)
- Вычисление ошибки на данном объекте: $\varepsilon_i = L_i(w)$
- ullet Шаг градиентного спуска: $w:=w-\eta\cdot
 abla L_i(w)$
- Вычисление сглаженного Э.Р.: $R := (1 \lambda)R + \lambda \varepsilon_i$

Замечание: параметр сглаживания $\lambda \in [0,1]$ (можно использовать, например, 0.1).

Вариативность SGD

Инициализация

- $w_j = 0 \quad \forall j = 1, \dots, n$ (где n число весов)
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$
- Предобучение на другой обучающей выборке

Вариативность SGD

Инициализация

- ullet $w_j=0$ $\forall j=1,\ldots,n$ (где n число весов)
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$
- Предобучение на другой обучающей выборке

Порядок выбора объектов x_i

- Случайная перетасовка: попеременно брать объекты разных классов
- Чаще брать объекты с большой ошибкой (маленькое значение $y_i g(x_i, w)$)
- Чаще брать объекты с большой неуверенностью (маленькое значение $|y_i g(x_i, w)|)$

Вариативность SGD

Инициализация

- ullet $w_j=0$ $\forall j=1,\ldots,n$ (где n число весов)
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$
- Предобучение на другой обучающей выборке

Порядок выбора объектов x_i

- Случайная перетасовка: попеременно брать объекты разных классов
- Чаще брать объекты с большой ошибкой (маленькое значение $y_i g(x_i, w)$)
- Чаще брать объекты с большой неуверенностью (маленькое значение $|y_i g(x_i, w)|)$

Критерий остановки

- Исчерпали лимит по числу шагов
- Значение Э.Р. либо весов перестало меняться

Визуализации градиентных методов

Пакетный (mini-batch) SGD

Пакетный SGD

Идея: на каждом шаге использовать более надежную оценку градиента не на одном примере, а на нескольких

Итерации

- ullet Выбор подмножества объектов мощности 1 < k < m: $J = \{i_1, \dots, i_k\}$
- ullet Вычисление ошибки на этих объектах: $L_{i_1}(w^{(t)}), \dots, L_{i_k}(w^{(t)})$
- ullet Шаг градиентного спуска: $w^{(t+1)} := w^{(t)} \eta \cdot rac{1}{k} \sum_{j=1}^k
 abla_w L_{i_j}(w^{(t)})$

Выбор шага SGD

Способы управления градиентным шагом в SGD

- Уменьшать (например, делить на 2...10) каждые N итераций;
- Уменьшать (например, делить на 2...10) каждые N итераций, когда значение 9.P. перестало существенно меняться за последние K шагов;
- Использование стратегии "разогрева" 1
- Использование косинусного 2 / линейного 3 закона (вместо дискретных делений) изменения
- Использование цикличности⁴

⁴Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017

¹Goyal, Priya, et al. "Accurate, large minibatch sgd: Training imagenet in 1 hour." 2017

²Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." 2016

³Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." 2018

Иллюстрация выбора шага SGD

О переобучении

Причины переобучения

- Маленькая обучающая выборка;
- Большое число признаков;
- Неинформативные (шумовые/зависимые) признаки.

О переобучении

Причины переобучения

- Маленькая обучающая выборка;
- Большое число признаков;
- Неинформативные (шумовые/зависимые) признаки.

Проявление переобучения

- Резкое увеличение нормы w (настройка на конкретные признаки);
- Большая разница в ошибке на тестовой и обучающей выборках.

О переобучении

Причины переобучения

- Маленькая обучающая выборка;
- Большое число признаков;
- Неинформативные (шумовые/зависимые) признаки.

Проявление переобучения

- Резкое увеличение нормы w (настройка на конкретные признаки);
- Большая разница в ошибке на тестовой и обучающей выборках.

Борьба с переобучением

- Уменьшение норм весов (регуляризация);
- Процедура кросс-валидации;
- Ранняя остановка обучения.

MAP

Рассмотрим принцип максимума апостериорной вероятности, или **MAP** (Maximum A Posteriori Probability).

Дано:

- Параметрическая модель плотности распределения p(x,y|w)
- Априорная информация о плотности распределения параметров модели p(w) Например, параметрическое семейство априорных распределений p(w;h), где h неизвестная и неслучайная величина (гиперпараметр).

MAP

Рассмотрим принцип максимума апостериорной вероятности, или MAP (Maximum A Posteriori Probability).

Дано:

- Параметрическая модель плотности распределения p(x,y|w)
- Априорная информация о плотности распределения параметров модели p(w)Например, параметрическое семейство априорных распределений p(w; h), где h - mнеизвестная и неслучайная величина (гиперпараметр).

Тогда:

- Вероятность по формуле Байеса $p(w|X^m) = \frac{p(X^m|w)p(w;h)}{p(X^m)} \propto p(X^m|w)p(w;h)$
- Максимизируем логарифм

$$-L(w, X^m) = \ln p(w|X^m) = \sum_{i=1}^m \ln p(x_i, y_i|w) + \ln p(w; h) \to \max_{w, h}$$

Вероятностный смысл простой регуляризации

$$-L(w,X^m) = \sum_{i=1}^m \ln p(x_i,y_i|w) + \ln p(w;h) \to \max_{w,h}$$

Т.о., если вероятностное семейство распределения весов — нормальное, т.е.

$$p(w;h) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{||w-\mu||^2}{2\sigma^2}}$$
 с зафиксированными $\mu = 0$ и σ , то

$$\sum_{i=1}^{m} \ln p(x_i, y_i|w) + \ln p(w) \rightarrow \max_{w} \Leftrightarrow -\sum_{i=1}^{m} \ln p(x_i, y_i|w) + \frac{\tau}{2} ||w||^2 \rightarrow \min_{w}$$

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w,X^m) = R(w,X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $\nabla R_{ au}(w,X^m) = \nabla R(w,X^m) + au w$,

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w, X^m) = R(w, X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $\nabla R_{\tau}(w, X^m) = \nabla R(w, X^m) + \tau w$, А градиентный шаг: $w^{(t+1)} = (1 - \tau \eta) w^{(t)} - \eta \nabla R(w^{(t)}, X^m)$.

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w, X^m) = R(w, X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $\nabla R_{\tau}(w, X^m) = \nabla R(w, X^m) + \tau w$, A градиентный шаг: $w^{(t+1)} = (1 - \tau \eta) w^{(t)} - \eta \nabla R(w^{(t)}, X^m)$.

Подбор параметра регуляризации au

- ullet Больше значение au больше штрафа за переобучение (но сходимость медленнее!)
- Методом скользящего контроля (cross-validation);

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w,X^m) = R(w,X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $\nabla R_{\tau}(w, X^m) = \nabla R(w, X^m) + \tau w$, A градиентный шаг: $w^{(t+1)} = (1 - \tau \eta)w^{(t)} - \eta \nabla R(w^{(t)}, X^m)$.

Подбор параметра регуляризации au

- ullet Больше значение au больше штрафа за переобучение (но сходимость медленнее!)
- Методом скользящего контроля (cross-validation);

Замечание. В англоязычной литературе зачастую данная техника называется "Weight Decay" (из-за того, что веса линейно уменьшаются каждый шаг), а сам коэффициент WD обычно задается явно (и равен в обозначениях выше $\tau\eta$).

Плюсы и минусы SGD

Плюсы

- Легко реализуется на практике;
- Легко обобщается на любые алгоритмы и функции потерь;
- Возможно онлайн до-обучение (для нового x_i);
- Необязательно использовать все объекты x_i .

Плюсы и минусы SGD

Плюсы

- Легко реализуется на практике;
- Легко обобщается на любые алгоритмы и функции потерь;
- Возможно онлайн до-обучение (для нового x_i);
- Необязательно использовать все объекты x_i .

Минусы

- На практике возможны расходимость / медленная сходимость;
- Локальные минимумы!!!
- Подбор шага градиента, условия остановки неочевидны.

• Эмпирическим риском измеряем качество классификатора

- Эмпирическим риском измеряем качество классификатора
- На практике используется аппроксимационный эмпирический риск

- Эмпирическим риском измеряем качество классификатора
- 2 На практике используется аппроксимационный эмпирический риск
- Градиентный спуск алгоритм оптимизации первого порядка

- Эмпирическим риском измеряем качество классификатора
- На практике используется аппроксимационный эмпирический риск
- Градиентный спуск алгоритм оптимизации первого порядка
- SGD практическая версия GD

- Эмпирическим риском измеряем качество классификатора
- На практике используется аппроксимационный эмпирический риск
- Градиентный спуск алгоритм оптимизации первого порядка
- SGD практическая версия GD
- ullet L_2 -Регуляризация возникает из-за принципа MAP и изменяет коэффициенты для SGD

Время для вопросов

