Problem 1

Insert 35 -double rotation

Delete 50 - case 3 two children -double rotation

* Always select min node in right subtree

Problem 3

Insert 30: overflow -split -transfer-update

Figure 9: Insert 30

Insert 48: overflow-transfer-update

Figure 10: Insert 48

Delete 19: underflow -merge -borrow - update

Figure 11: Delete 19

Problem 4

We want to store the following sequence of keys in a hash table: **407**, **801**, **815**, **704**, **814**, **721**, **935**. Draw the result of inserting these keys for each of the following tables:

1. Hash function: Select the last two digits then use division by 7: h(k) = (k%100)%7. Collision resolution strategy: Linear rehashing with c = 2 (Show the number of probes).

Solution

Key	407	801	815	704	814	721	935
H(Key)	0	1	1	4	0	0	0

Index	Key	Probe(s)
0	407	<mark>1</mark>
1	801	<mark>1</mark>
2	814	2
3	815	2
4	704	1
5	935	7
6	721	4

probes =Number of inspected cells

% 7 --> 7 cells for the

2.

3. Hash function: $h(k) = (3 \times (k\%100))\%7$. Collision resolution strategy: coalesced chaining with a cellar size of 2 (Show clearly the links and the final location of epla).

Key	407	801	815	704	814	721	935
H(Key)	0	3	3	5	0	0	0

Index	Key	
0	407	
1		
2	epla	
3	801	
4	935 <	
5	704	
6	721	
7	814	<
8	815	