Influence of stochastic jumps on the dynamics of SIRS systems

Systems of stochastic differential equations

K.El Bakkioui* & A.Settati*

*Faculty of Sciences and Techniques of Tangier
*Abdelmalek Essaâdi University

*Department of Mathematics

April 07-11, 2025 | Fes, Morocco

Table of Contents

- 1. Introduction and Problem Statement
- 2. Model Description
- 3. Main Results
- 3.1 Positivity and Existence
- 3.2 Extinction
- 3.3 Persistence
- 4. Numerical Simulations
- 4.1 Extinction Case
- 4.2 Persistence Case
- 5. Conclusion
- 6. References

Context and Motivation

Epidemiological Modeling

- Fundamental tool for understanding infectious disease dynamics
- Historical evolution: from SIR model (Kermack & McKendrick, 1927) to modern stochastic approaches
- Crucial importance of random perturbations in modeling

Limitations of Existing Approaches

- Deterministic models: unable to capture random fluctuations
- Classical stochastic models: underestimation of extreme events
- Traditional SIRS models: absence of Lévy jumps
- Major challenge: modeling the impact of sudden environmental shocks

Deterministic SIRS Model

Deterministic Differential Equations

$$\begin{cases} dS_t = [\rho(1 - S_t) + \eta R_t - \alpha S_t I_t] dt \\ dI_t = [\alpha S_t I_t - (\rho + \lambda) I_t] dt \\ dR_t = [\lambda I_t - (\rho + \eta) R_t] dt \end{cases}$$

State Variables

- S_t : Proportion of susceptible individuals in the population
- I_t : Proportion of infectious individuals in the population
- \bullet R_t : Proportion of recovered (immune) individuals in the population

Deterministic Parameters $(\alpha, \eta, \lambda, \rho) \in (0, 1)^4$

- ρ : Mortality/birth rate (constant population on average)
- α : Transmission rate (contacts $S \rightarrow I$)
- λ : Recovery rate $(I \rightarrow R)$
- η : Immunity loss rate $(R \to S)$

Stochastic SIRS Model with Jumps

Stochastic Differential Equations (SDEs)

$$\begin{cases}
dS_{t} = [\rho(1 - S_{t}) + \eta R_{t} - \alpha S_{t} I_{t}] dt - \int_{\mathbb{D}} \varsigma_{\upsilon} S_{t-} I_{t-} \widetilde{\mathcal{N}}(dt, d\upsilon) \\
dI_{t} = [\alpha S_{t} I_{t} - (\rho + \lambda) I_{t}] dt + \int_{\mathbb{D}} \varsigma_{\upsilon} S_{t-} I_{t-} \widetilde{\mathcal{N}}(dt, d\upsilon) \\
dR_{t} = [\lambda I_{t} - (\rho + \eta) R_{t}] dt
\end{cases} \tag{1}$$

Jump Process Definitions

- $\mathcal{N}(dt, dv)$: Random Poisson measure counting jumps
 - •• $\mathcal{N}((t, t + dt] \times A)$: Number of jumps in $A \subseteq \mathbb{D}$ during (t, t + dt]
- $\pi(dv)$: Lévy measure (jump intensity) and $\pi(A)$: Jump intensity in $A \subseteq \mathbb{D}$
- $\widetilde{\mathcal{N}}(dt, dv)$: Compensated Poisson measure $\widetilde{\mathcal{N}}(dt, dv) = \mathcal{N}(dt, dv) \pi(dv)dt$

Model Parameters

ullet ς_v : Jump amplitude $(|\varsigma_v|<1)$ and $\mathbb D$: Jump domain

SIRS Model Transition Diagram with Jumps

- Deterministic transitions
- Stochastic jumps
- Demographic dynamics

Assumptions and Conditions

- Jump control: $\sup_{t>0} \int_{\mathbb{D}} \ln(1+\varsigma(v)) \pi(dv) < \infty$
- Population positivity: $S_t + I_t + R_t = 1$ with $S_t, I_t, R_t \ge 0$ $\forall t \ge 0$

Fundamental Lemma

Meyer's Angle Bracket

For a local martingale $(M_t)_{t\geq 0}$: $\langle M \rangle_t$ is the unique predictable increasing process such that $M_t^2 - \langle M \rangle_t$ is a local martingale

Theorem (Asymptotic Behavior[6])

For any local martingale M_t starting at 0:

$$arphi_{M_t} := \int_0^t (1+s)^{-2} d\langle M \rangle_s$$

If $\mathbb{P}(\lim_{t\to\infty}\varphi_{M_t}<\infty)=1$, then:

$$\mathbb{P}\left(\lim_{t\to\infty}\frac{M_t}{t}=0\right)=1$$

This lemma will be crucial for analyzing the long-term behavior of our system.

Existence and Uniqueness Theorem

Theorem (Existence and Uniqueness)

Let $v \in \mathbb{D}$, $(S, I) \in (0, 1)^2$, and define $\Psi(v, S, I) = [1 - \varsigma_v I] [1 + \varsigma_v S]$, if

$$\sup_{0 < S, I < 1} \int_{\mathbb{D}} \ln \left[\Psi^{-1}(v, S, I) \right] \pi(dv) < \infty. \tag{2}$$

Then for each initial value $(S_0, I_0, R_0) \in \Delta$, there exists a unique solution $(S_t, I_t, R_t) \in \Delta$ for equation (1).

Proof Idea.

Define N = S + I + R so $dN_t = -\rho(N_t - 1)dt \Rightarrow N_t = 1 + (N_0 - 1)e^{-\rho t}$ and show that $N_t = 1$ almost surely by integration. By local Lipschitz continuity of the coefficients, there exists a maximal local solution.

Continuation of the Proof Idea

Applying Itô's formula to $\Sigma_t = -\ln(S_t I_t R_t)$,

$$d\Sigma_{s} \leq \left[3\rho + \lambda + \eta + \alpha + \pi(\mathbb{D}) + \underbrace{\sup_{0 < S, I < 1} \int_{\mathbb{D}} \ln\left[\Psi^{-1}(v, S, I)\right] \pi(dv)\right] ds}_{\text{jump terms}}$$

$$-\underbrace{\int_{\mathbb{D}} \ln\left[\left(1 + \varsigma_{v} S_{s}\right) \left(1 - \varsigma_{v} I_{s}\right)\right] \widetilde{\mathcal{N}}(ds, dv)}_{\text{martingale}}.$$
(3)

We obtain an upper bound. If $\tau_e < \infty$, we reach a contradiction. Thus $\tau_e = \infty$ and the solution is global.

Extinction Theorem

Theorem (Exponential Extinction Criterion)

Let $(S_0, I_0, R_0) \in \Delta$ and assume that (2) holds. Also assume that

$$\sup_{0 < y < 1} \int_{\mathbb{D}} \ln^2 \left[1 + \varsigma_{\upsilon} y \right] \pi(d\upsilon) < \infty. \tag{4}$$

We define the thresholds

$$\mathcal{T}^3 = \alpha \left[\rho + \frac{1}{4} \int_{\mathbb{D}} \varsigma_v^2 \pi(dv) \right]^{-1}, \tag{5}$$

and

$$\mathcal{T}^4 = \frac{1}{2} \int_{\mathbb{D}} \varsigma_v^2 \pi(dv). \tag{6}$$

If $T^3 < 1$ or $\alpha \ge T^4$, then system (1) exhibits extinction with an exponential decay rate.

Proof Idea.

Let $\Sigma_t = \ln(Z_t)$ with $Z_t = I_t + R_t$. By Itô's formula:

$$\begin{split} d\Sigma_t &\leq \underbrace{\left[-\rho + \alpha \frac{S_t I_t}{Z_t} - \frac{1}{4} \int_{\mathbb{D}} \varsigma_v^2 \pi(dv) \left(\frac{S_t I_t}{Z_t} \right)^2 \right] dt}_{\text{deterministic terms}} + \underbrace{\int_{\mathbb{D}} \ln \left(1 + \varsigma_v \frac{S_t I_t}{Z_t} \right) \widetilde{\mathcal{N}}(dt, dv)}_{\text{local martingale}} \\ &\leq \underbrace{\left[-\rho + \alpha \delta - \frac{1}{4} \int_{\mathbb{D}} \varsigma_v^2 \pi(dv) \delta^2 \right] dt}_{\text{deterministic terms}} + \underbrace{\int_{\mathbb{D}} \ln \left(1 + \varsigma_v \delta \right) \widetilde{\mathcal{N}}(dt, dv)}_{\text{local martingale}}, \end{split}$$

where $\delta = \frac{S_t I_t}{Z_t}$ and M_t is a local martingale. Integrating and using $\limsup_{t \to \infty} \frac{M_t}{t} = 0$ a.s., the result follows.

Public Health Implications

- ullet Strategies targeting the reduction of the transmission coefficient lpha
- Importance of controlling rare but significant amplitude events
- ⇒ Prevention policies adapted to non-linear dynamics

System Regulation Equations and Parameters

The system is governed by the following equations and parameters:

$$\begin{cases} H(S) = -(\rho + \lambda) + \alpha S - \left[\frac{1}{4} \int_{\mathbb{D}} \varsigma_{v}^{2} \pi(dv)\right] S^{2} \\ \mathcal{T}^{1} = \frac{\alpha}{\rho + \lambda + \frac{1}{4} \int_{\mathbb{D}} \varsigma_{v}^{2} \pi(dv)} \\ \Pi(S) = -(\rho + \lambda) + \alpha S - \left[\frac{1}{2} \int_{\mathbb{D}} \varsigma_{v}^{2} \pi(dv)\right] S^{2} \\ \mathcal{T}^{2} = \frac{\alpha}{\rho + \lambda + \frac{1}{2} \int_{\mathbb{D}} \varsigma_{v}^{2} \pi(dv)} \end{cases}$$
(8)

Remark

Threshold comparison: $\mathcal{T}^1 > \mathcal{T}^2$ shows that \mathcal{T}^1 is the more conservative threshold.

Persistence Theorem

Theorem

Under assumptions (2), $|\varsigma_v| < 1$ and

$$\sup_{0 < y < 1} \int_{\mathbb{D}} \ln^2 (1 + \varsigma_{\upsilon} y) \pi(d\upsilon) < \infty, \tag{9}$$

for $(S_0, I_0, R_0) \in \Delta$, if $\mathcal{T}^1 > 1$ and $\mathcal{T}^2 > 1$ for all $v \in \mathbb{D}$, then:

(i)
$$\limsup S_t \geq \varrho$$
 a.s. (iv) $\liminf S_t \leq \varrho'$ a.s.

$$(ii) \liminf_{t \to \infty} I_t \leq \frac{(\rho + \eta)(1 - \varrho)}{\rho + \eta + \lambda} \quad \text{a.s.} \qquad (v) \limsup_{t \to \infty} I_t \geq \frac{(\rho + \eta)(1 - \varrho')}{\rho + \eta + \lambda} \quad \text{a.s.}$$

(iii)
$$\limsup_{t\to\infty} R_t \leq \frac{\lambda(1-\varrho)}{\rho+\eta+\lambda}$$
 a.s. (vi) $\limsup_{t\to\infty} R_t \geq \frac{\lambda(1-\varrho')}{\rho+\eta+\lambda}$ a.s. where ρ and ρ' denote the positive roots on the interval $(0,1)$ of the equations

H(S) = 0 and $\Pi(S) = 0$ respectively.

Important Remark

Since $-1 < \varsigma_v < 1$ for all $v \in \mathbb{D}$, it follows that for all $S \in (0,1)$, $\Pi(S) < H(S)$, and consequently $\rho < \rho'$.

Proof Idea

• (i) Use Itô's formula for $ln(I_t)$

$$\ln(I_t) = \underbrace{\ln(I_0)}_{\text{Initial value}} - \underbrace{\int_0^t \left[(\rho + \lambda) - \alpha S_s \right] ds}_{\text{Deterministic decay}} + \underbrace{\int_{\mathbb{D}} \int_0^t \left[\ln\left(1 + \varsigma_v S_s\right) - \varsigma_v S_s \right] \pi(dv)}_{\text{Jump correction (compensator drift)}} + \underbrace{\int_{\mathbb{D}} \int_0^t \ln\left[1 + \varsigma_v S_s\right] \widetilde{\mathcal{N}}(ds, dv)}_{\text{Compensated jump process (martingale)}}. \tag{10}$$

- Show that H(S) < 0 for $S < \varrho$ leads to $I_t \to 0$ and $S_t \to 1$, hence contradiction
- ullet (iv) Same approach but with a lower bound and $\Pi(S)>0$ for S>arrho'
- (ii) and (v) Combination of (i) and (iv) with Fatou's lemma on R_t
- (iii) and (vi) Direct consequences of the other points

Numerical Method: Euler-Maruyama Scheme with Jumps

Discretization of the Stochastic SIRS System

For fixed $\Delta t > 0$ and $t_k = k \Delta t$, the scheme is written as:

$$\begin{cases} S_{k+1} = S_k + [\rho(1 - S_k) + \eta R_k - \alpha S_k I_k] \Delta t - \sum_{i=1}^{N_k} \varsigma_{v_i} S_k I_k \\ I_{k+1} = I_k + [\alpha S_k I_k - (\rho + \lambda) I_k] \Delta t + \sum_{i=1}^{N_k} \varsigma_{v_i} S_k I_k \\ R_{k+1} = R_k + [\lambda I_k - (\rho + \eta) R_k] \Delta t \end{cases}$$

- **Jump process**: $N_k \sim \mathcal{P}(\pi(\mathbb{D})\Delta t)$ (Poisson law)
- **Amplitudes**: $\varsigma_{v_i} \sim \pi(dv)$ (Lévy measure on $\mathbb D$)
- Constraint: $S_k + I_k + R_k = 1$ (population conservation)

Scheme Convergence

Strong order 0.5 for jumps (Platen & Bruti-Liberati theorem, see [4])

Numerical Implementation

Algorithm (Pseudocode)

- 1: Initialize S_0 , I_0 , R_0 , Δt , T
- 2: **for** k = 0 to N 1 **do**
- 3: $N_k \sim \mathsf{Poisson}(\pi(\mathbb{D})\Delta t)$
- 4: Generate $\{\varsigma_{v_i}\}_{i=1}^{N_k}$ according to $\pi(dv)$
- 5: Update via Euler-Maruyama scheme
- 6: Normalization: $S_{k+1} + I_{k+1} + R_{k+1} = 1$
- 7: end for

Recommended Parameters

- Δt : 0.01 day (numerical stability)
- $\pi(\mathbb{D})$: Lévy measure intensity (typically 0.1)
- ς_v : amplitudes on domain $\mathbb D$

Case 1: Stochastic SIRS dynamics with jumps - Extinction theorem

Figure 1: Guaranteed extinction according to the theorem: $\mathcal{T}^4=0.396<\alpha=0.800$ (first condition satisfied). Condition $\mathcal{T}^3=2.684<1$ is not verified.

Case 2: Stochastic SIRS dynamics with jumps - Extinction theorem

Figure 2: Exponential extinction conforming to the theorem: although $\mathcal{T}^4=0.179<\alpha=0.99$ is satisfied, the alternative condition $\mathcal{T}^3=0.952<1$ is also verified.

11/34

Case 3: Stochastic SIRS dynamics with jumps - Extinction theorem

Figure 3: Exponential extinction: the first condition $\mathcal{T}^4 = 0.500 < \alpha = 0.018$ is not satisfied, while the condition $\mathcal{T}^3 = 0.066 < 1$ is verified.

Case 4: Stochastic SIRS dynamics with jumps - Extinction theorem

Figure 4: Possible persistence according to predictions: $\mathcal{T}^4 = 0.500 > \alpha = 0.460$ AND $\mathcal{T}^3 = 1.839 > 1$ (neither alternative condition satisfied).

Simulations Illustrating Theorem 4

Case 1: Stochastic SIRS Dynamics with Jumps for Persistence Theorem

Figure 5: Marked persistence ($\mathcal{T}^1=3.999>1$, $\mathcal{T}^2=2.000>1$). Parameters: $\rho=2.60\times 10^{-5}$, $\alpha=1.0$, $\lambda=1.10\times 10^{-5}$. Stable dynamics with predominance of infected.

Simulations Illustrating Theorem 4

Case 2: Stochastic SIRS Dynamics with Jumps for Persistence Theorem

Figure 6: Progressive extinction ($\mathcal{T}^1=1.042>1$, $\mathcal{T}^2=0.825\leq 1$). Parameters: $\rho=0.31$, $\alpha=0.99$, $\lambda=0.39$. Sharp drop in infected before t=20.

Simulations Illustrating Theorem 4

Case 3: Stochastic SIRS Dynamics with Jumps for Persistence Theorem

Figure 7: Rapid extinction ($\mathcal{T}^1 = 0.128 \ll 1$, $\mathcal{T}^2 = 0.118 \ll 1$). Parameters: $\rho = 1.0$, $\alpha = 0.28$, $\lambda = 1.0$. Exponential decay of infected.

Case 4: Stochastic SIRS Dynamics with Jumps for Persistence Theorem

Figure 8: Persistence ($\mathcal{T}^1 = 997.662 \gg 1$, $\mathcal{T}^2 = 576.750 \gg 1$). Parameters: $\rho = 1.10 \times 10^{-4}$, $\alpha = 0.96$, $\lambda = 1.50 \times 10^{-4}$.

Threshold Diagram for the Stochastic SIRS Model with Jumps

Threshold Diagram with Multiple T^4 Values (Critical α)

Figure 9: Threshold diagram for the stochastic SIRS model: extinction (green), intermediate (orange), persistence (red). Critical lines T^1 , T^2 , T^3 , and $T^4 \in [0.05, 0.8]$.

Analysis of the Stochastic SIRS Model with Jumps

Extinction Conditions

- Exponential extinction when:
 - ullet $egin{aligned} ullet ullet \mathcal{T}^3 < 1 & ext{ (where } \mathcal{T}^3 = rac{lpha}{
 ho + rac{1}{4}\mathbb{E}[arsigma^2]} ext{)} \end{aligned}$
 - •• $\alpha \geq \mathcal{T}^4$ (where $\mathcal{T}^4 = \frac{1}{2}\mathbb{E}[\varsigma^2]$)
- Visualization in the diagram:
 - •• Green zone ($\alpha > \mathcal{T}^4$ or left of $\mathcal{T}^3 = 1$)
 - •• Vertical lines \mathcal{T}^4 (0.05 to 0.8) as critical thresholds

Key Parameters

- Controlled by α (infection rate) and $\mathbb{E}[\varsigma^2]$ (jump intensity)
- Fixed parameters:
 - •• $\rho = 0.05$ (demographic rate)
 - •• $\eta = 0.1$ (immunity loss)
 - •• $\mathbb{E}[\varsigma^2] = 0.2$ (baseline)

Persistence Conditions

- Stochastic persistence when:
 - ullet $\mathcal{T}^1>1$ and $\mathcal{T}^2>1$
 - •• Red zone in the diagram
- Noise effects:
 - •• $\mathbb{E}[\varsigma^2] \uparrow \Rightarrow$ reduced persistence zone
 - Stricter thresholds than deterministic model

Control Strategies

- Reducing α : sanitary measures
- Controlling $\mathbb{E}[\varsigma^2]$: limit super-spreading events
- Increasing λ (recovery rate) and η (vaccination)

Public Health Implications

Adaptive Strategies Based on Epidemiological Thresholds

- Continuous monitoring of critical thresholds:
 - $-\mathcal{T}^1$ (conservative threshold)
 - $-\mathcal{T}^2$ (standard threshold)
 - $-\mathcal{T}^3$, \mathcal{T}^4 (extinction criteria)
- Persistence case Figure 5:
 - Maintaining healthcare capacity
 - Control strategies for stable endemicity
 - $(\mathcal{T}^1 > 1 \text{ and } \mathcal{T}^2 > 1)$

- Extreme case Figure 8:
 - Emergency plan activation
 - Managing unpredictable oscillations
 - $(\mathcal{T}^1\gg 1 \text{ and } \mathcal{T}^2\gg 1)$
- Borderline cases Figures 6 and 7:
 - Early detection of residual outbreaks
 - Targeted interventions
 - $(\mathcal{T}^1 pprox 1 ext{ or } \mathcal{T}^2 < 1)$

Theoretical reminder: Persistence is guaranteed when $\mathcal{T}^1 > 1$ and $\mathcal{T}^2 > 1$ (Theorem 4), while exponential extinction occurs if $\mathcal{T}^3 < 1$ or $\alpha \geq \mathcal{T}^4$ (Theorem 3).

Stochastic SIRS Phase Diagram

Figure 10: **Trajectories**: Numerical solutions showing the evolution of populations S(t) and I(t) under different initial conditions. **Fixed point**: Equilibrium where $\frac{dS}{dt} = \frac{dI}{dt} = 0$ (disease-free or endemic). In the stochastic version, the trajectories fluctuate around the theoretical fixed point. The convergence/divergence reveals system stability.

Stochastic Simulation of 1000 SIRS Model Solutions with Jumps

Figure 11: The diagram illustrates trajectories of the stochastic SIRS model with jumps, showing varied dynamics according to initial conditions. Despite random perturbations, all curves converge toward a stable epidemic equilibrium with constant proportions of susceptible, infected, and recovered individuals.

Professional Implications

Public Health

- Better preparation for rare events
- Optimization of intervention strategies
- Enhanced epidemiological surveillance

Future Research

- Extension to multi-patch models
- Integration of real-world data
- Optimization of control policies

Interdisciplinary Approach

Figure 12: Interdisciplinary approach

Synthesis and Conclusion

Key Results

- Deterministic dynamics show smoothed behavior (thin line)
- A significant gap between stochastic and deterministic trajectories is systematically observed
- ullet Theoretical thresholds \mathcal{T}^1 to \mathcal{T}^4 precisely characterize epidemic dynamics
- Stochastic jumps (ς_{υ}) introduce critical variations (Figure 8)
- A hybrid approach combining deterministic and stochastic models proves essential

Major Implications

Random jump processes radically alter epidemic dynamics and must be systematically integrated into predictive models

Fundamental Question

HOW CAN AN EPIDEMIC COME TO AN END?

Analysis reveals that:

Conditions $\mathcal{T}^3 < 1$ or $\alpha \geq \mathcal{T}^4$ govern the system's exponential extinction

Bibliographic References I

- [1] Kermack, W. O. & McKendrick, A. G. (1927).

 A contribution to the mathematical theory of epidemics.

 Proceedings of the Royal Society of London. Series A, 115(772), 700–721.
- [2] Zhang, X. & Wang, K. (2013). Stochastic SIR model with jumps. Applied Mathematics Letters, 26(8), 867–874.
- [3] Lipster, R. (1980).

 A strong law of large numbers for local martingales.

 Stochastics, 3, 217–228.
- [4] Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525–546.
- [5] Applebaum, D. & Siakalli, M. (2009).

 Asymptotic stability of stochastic differential equations driven by Lévy noise.

 Journal of Applied Probability, 46(2), 1116–1129.

Bibliographic References II

[6] Settati, A., Lahrouz, A. et al. (2020).
The impact of nonlinear relapse and reinfection to derive a stochastic threshold for SIRI epidemic model.

[7] Lu, Q. (2009).
 Stability of SIRS system with random perturbations.
 Physica A: Statistical Mechanics and its Applications, 388(18), 3677–3686.

[8] Zhang, X. et al. (2016). Stochastic SIRS model driven by Lévy noise. Acta Mathematica Scientia, 36(3), 740–752.

Chaos. Solitons & Fractals. 137, 109897.

[9] Zhou, D., Shi, X. & Zhou, X. (2023). Dynamic Analysis of a Stochastic Delayed SEIRS Epidemic Model with Lévy Jumps. Axioms, 12(6), 560.

Thank you for your attention!