Comparação de Complexidades de Algoritmos de Ordenação

Algoritmo	Melhor Caso	Pior Caso
Selection Sort	$O(n^2)$	$O(n^2)$
Bubble Sort	O(n) (vetor já ordenado)	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n \log n)$	$O(n^2)$ (partição desbalanceada)
Heap Sort	$O(n \log n)$	$O(n \log n)$

Table 1: Complexidade de Tempo para Algoritmos de Ordenação (Melhor e Pior Caso)

Comparação: Quick Sort vs Heap Sort

Critério	Quick Sort	Heap Sort
Complexidade (Melhor	$O(n \log n)$	$O(n \log n)$
Caso)		
Complexidade (Pior	$O(n^2)$ (partição desbal-	$O(n \log n)$
Caso)	anceada)	
Constante Oculta	Menor, devido ao menor	Maior, devido à manutenção
	número de operações por	do heap
	comparação	
Uso de Memória	Excelente localidade de cache	Menor localidade de cache
	(acesso sequencial)	(acesso disperso)
Estabilidade	Não estável (em imple-	Não estável
	mentações padrão)	
Robustez	Sensível à escolha de pivô	Robusto para qualquer en-
		trada
Praticidade	Melhor desempenho na	Utilizado em casos específicos
	prática para a maioria das	
	entradas	,
Aplicações	Geralmente preferido em bib-	Útil em sistemas embarcados
	liotecas padrão de ordenação	e situações críticas

Table 2: Comparação entre Quick Sort e Heap Sort