2D Ising Model

TERRI POXON-PEARSON

PHY 905 SPRING 2017

Outline

- Introduction to Ferromagnetism and the Ising Model
- Monte Carlo Methods and the Metropolis Algorithm
- Implementation
- Tests of Code
- Results
 - Equilibrium time
 - Probability Distributions
 - Phase Transitions
- Conclusions

Ferromagnetic Materials

- Materials that exhibit domains where the spins of unpaired electrons align
- Domains grow with an applied B field and can be maintained after the B field is removed

- This alignment competes with thermal excitations
- At the Curie temperature, spins are forced out of alignment
 - Phase Transition

http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html

The 2D Ising Model

Models spins on two dimensional lattice where closest neighbors interact

$$E = -J \sum_{\langle kl \rangle}^{N} s_k s_l.$$

- Very simple model that allows us to study properties of phase transitions
- Has been widely applied outside of ferromagnetism
 - Anti-ferromagnetism
 - Opinions on the economy
 - Urban segregation
 - Language evolution

2 by 2 Lattice with Ising Model

Number of Spin Ups	Number of Configurations	Energy	Magnetization
0	1	-8J	-4
1	4	0	-2
2	4	0	0
2	2	8J	0
3	4	0	2
4	1	-8J	4

2 by 2 Lattice with Ising Model

• Because of the limited number of energy states, we can calculation the partition function explicitly

$$Z = \sum_{i=1}^{M} e^{-\beta E_i}$$

Expectation values can be calculated using the formula

$$\langle X \rangle = \sum_{i=1}^{M} X_i P_i$$

where

$$P_i(\beta) = \frac{e^{i\beta E_i}}{Z}$$

In this work we examined the behavior of 4 quantities

$$\langle E \rangle = \frac{-8J \sinh(8\beta J)}{3 + \cosh(8\beta J)} \qquad \langle |M| \rangle = \frac{2(2 + e^{8J\beta})}{3 + \cosh(8\beta J)}$$

$$\langle E \rangle = \frac{-8J sinh(8\beta J)}{3 + cosh(8\beta J)} \qquad \langle |M| \rangle = \frac{2(2 + e^{8J\beta})}{3 + cosh(8\beta J)} \qquad C_V = \frac{1}{T^2} (\langle E^2 \rangle - \langle E \rangle^2) \qquad \chi = \frac{1}{T} (\langle M^2 \rangle - \langle |M| \rangle^2). \\ = \frac{64J^2}{T^2} \frac{1 + 3cosh(8J\beta)}{(3 + cosh(8J\beta))^2} \qquad = \frac{4}{T} \frac{3 + 4cosh(8J\beta) + 2sinh(8J\beta)}{(3 + cosh(8J\beta))^2}.$$

Introduction to Monte Carlo

- Monte Carlo Methods are statistical simulation methods
 - Use random numbers to preform simulation
- Useful in situations where the behavior of a system cannot be easily described analytically
- •The general components of a Monte Carlo method are
 - A PDF which characterizes a system
 - Calculation of random numbers to create proposed transition in the system
 - A sampling rule to decide whether or not to accept a proposed transition

$$P_i(\beta) = \frac{e^{i\beta E_i}}{Z} \qquad Z = \sum_{i=1}^M e^{-\beta E_i}$$

The Metropolis Algorithm

- The PDF for large (physical) systems is intractable and we don't know the transition probability analytically
 - Make a choice for the transition probability, W

$$w_i(t+1) = \sum_j W_{ij} w_j(t) \qquad W(j \to i) = T(j \to i) A(j \to i)$$

Then we can write the full expression

$$w_i(t+1) = \sum_j [w_j(t)T_{j\to i}A_{j\to i} + w_i(t)T_{i\to j}(1 - A_{i\to j})]$$

• Simplify using normalization of probabilities, equilibrium conditions, and detailed balance

Hjorth-Jensen, Morten. Computational Physics, Lecture Notes Fall 2015.

The Metropolis Algorithm

Then we are left with

$$\frac{A(j \to i)}{A(i \to j)} = e^{-\beta(E_i - E_j)}.$$

• The Metropolis Algorithm is the sampling rule that we get from this relation

$$A(j \to i) = \begin{cases} e^{-\beta(E_i - E_j)} & \text{if } E_i - E_j > 0\\ 1 & \text{else} \end{cases}$$

- Accept all transitions to a lower energy state. Transitions to higher energy states are accepted with some probability depending on change in energy
 - Preserves ergodicity

Hjorth-Jensen, Morten. Computational Physics, Lecture Notes Fall 2015.

Implementation

```
subroutine Metropolis(NumSpins, idum, SpinMatrix, E, M, w)
  integer::NumSpins,x,y,ix,iy,deltaE,right,left,up,down,idum
 integer, dimension(NumSpins,NumSpins)::SpinMatrix
 real(8)::E,M
 real(8)::w(-8:8)
 do y=1,NumSpins
     do x=1,NumSpins
       ix=int(rand()*NumSpins)+1
       iy=int(rand()*NumSpins)+1
       riaht = ix+1
        if (ix == numspins) then
          right = 1
        left = ix-1
        if (ix == 1)then
          left = numspins
       up = iy+1
        if (iy == numspins) then
          up = 1
       down = iy-1
        if (iy == 1) then
          down = numspins
       deltae = 2*spinmatrix(ix,iy)*(spinmatrix(right,iy)+&
            spinmatrix(left,iy)+spinmatrix(ix,up)+ &
             spinmatrix(ix,down)
        if ( rand() <= w(deltae) ) then
           spinmatrix(ix,iy) = -spinmatrix(ix,iy)
          M = M+2*spinmatrix(ix,iy)
          E = E+deltaE
    subroutine Metropolis
```

- 1) Using a random number generator, choose a random position on the lattice and compute the energy of that state.
- 2) Flip only one spin in that configuration and compute the new energy of the state.
- 3) Calculate the energy difference between these two state.
- 4) If the energy difference is less than 0, we accept the transition.
- If the energy difference is greater than 0, we calculate $w=e^{-\beta\Delta E}$
- 6) We generate a random number between 0 and 1. If that number is less that w, we accept the change. If not, we keep the old configuration.
- Update expectation values for various quantities.
- 8) Repeat these steps for each desired Monte Carlo iteration at every desired temperature.

Verifying Code with 2 by 2 Lattice

• Ran calculation with T=1.0 (units if kT/J) and compared to exact results

Exact:	-1.99	9598	0.99	98661	0.03	20823	0.00	401074
Cycles	E/N	ϵ	M /N	ϵ	C_V/N	ϵ	χ/N	ϵ
10	-1.8182	0.0891	0.9091	0.0869	1.3223	40.2163	0.3306	81.4232
50	-1.9608	0.0176	0.9894	0.0183	0.3076	8.5870	0.0769	18.1719
100	-1.9208	0.0377	0.9703	0.0284	0.6086	17.9689	0.0955	22.8063
500	-1.9521	0.0290	0.9820	0.0166	0.3741	10.6592	0.0586	13.6080
1000	-1.9740	0.0110	0.9905	0.0082	0.2051	5.3927	0.3061	6.6317
5000	-1.9908	2.5953E-3	0.9966	2.0625E-2	0.0732	1.2831	0.0112	1.7804
10000	-1.9928	1.5939E-3	0.9974	1.3123E-3	0.0574	0.7887	8.6711E-3	1.1620
50000	-1.9945	7.5256E-4	0.9981	5.8151E-4	0.0440	0.3726	5.9893E-3	0.4923
100000	-1.9955	2.6162E-4	0.9985	2.0301E-4	0.0363	0.1305	4.721E-3	0.17697
500000	-1.9961	7.9066E-5	0.9987	4.9233E-5	0.0308	0.0393	3.8735E-3	0.0342
1000000	-1.9961	4.9031E-5	0.9987	2.4270E-5	0.0313	0.0244	3.9692E-3	0.01036

Results – Equilibrium Time

- •We can explore how long it takes to reach equilibrium, using MCS as a proxy for time
 - 20 by 20 Lattice at T=1.0 and 2.4 (well below and above critical temperature)

Results – Accepted Transitions

- We can study the number of accepted spin configurations as a function of MCS at different temperatures
- Log-log plot reveal linear relationship
- Slope increases with temperature
- As the temperature increases, more configurations are open to the system, allowing for a higher acceptance

Results – Probability Distributions

- Compare energy probability distribution at T=1.0 and T=2.4
 - Widening of distributions is related to the variance, which is captured by the heat capacity.

Introduction to Phase Transitions

•Near the critical temperature, many physical properties are modeled using a power law

$$\langle M(T) \rangle \sim (T - T_C)^{1/8}$$

$$C_V(T) \sim |T_C - T|^0$$

$$\chi(T) \sim |T_C - T|^{7/4}$$

- •We can also model a correlation length by $\xi(T) \sim |T_C T|^{-1}$ which is on the order of lattice spacing above the Curie Temperature
- •We can relate the behavior of finite lattices to the infinite lattice using

$$T_C(L) - T_C(L = \infty) = aL^{-1}$$

• 100,000 cycles at step size of 0.03

• 100,000 cycles at step size of 0.03

• 1,000,000 cycles at step size of 0.005

 ullet We can use the relation $\ T_C(L)-T_C(L=\infty)=aL^{-1}$ we get

L	T_C	ϵ
20	2.195	0.033
40	2.233	0.016
60	2.237	0.014
80	2.242	0.012
100	2.262	0.0031
140	2.264	0.0022

• We see that as L gets larger, the curie temperature approaches the value in an infinite lattice.

Conclusions

- I created a Monte Carlo Simulation which employed the Metropolis Algorithm to solve the 2D Ising Model and study magnetic phase transitions on a lattice
- This code was verified using analytic results for the simple 2 by 2 lattice

- I explored the energy probability distribution at different temperatures and connected this quantity to the heat capacity.
- I saw evidence of a 2nd order phase transition in the magnetic material
- I used finite size scaling relations to relate the Curie temperature on a finite lattice to the critical temperature for an infinite lattice