Analitzant malalties neurològiques des de la perspectiva de la teoria de grafs

JUDIT YEBRA VALENCIA

Supervisat per: Jordi Casas-Roma i Carlos Boned Riera

ÍNDEX

01 Introducció i Marc Teòric

0.4

Metodologia

02

Estat de l'art

05

Resultats

03

Dades

06

Conclusions

INTRODUCCIÓ 01 l MARC TEÒRIC

ESCLEROSIS MÚLTIPLE

MULTIPLE SCLEROSIS

- Malaltia neurològica crònica
- Afecta cervell i medul·la espinal
- Desmielinització (dany a la mielina)
- Problemes motors, visuals, sensorials, cognitius

Tipus:

- Relapsing-Remitting MS: Brots i remissió
- Secondary Progressive MS: Progressió constant, inicialment RRMS
- Primary Progressive MS: Progressió constant, sense remissió

FONT:

https://www.news-medical.net/health/Type s-of-Multiple-Sclerosis-%28MS%29.aspx

FONT: https://www.nature. com/articles/s4138 0-020-0700-1

ANISOTROPIA FRACCIONAL

Quantifica la direccionalitat preferida de la difusió de l'aigua en teixits.

SUBSTÀNCIA GRISA

SUBSTÀNCIA GRISA

És el teixit cerebral que conté principalment cossos neuronals.

SUBSTÀNCIA BLANCA

FONT:

-0.3 -0.4 -0.5

https://assets.technologynetworks.com/production/dynamic/images/content/322973/gray-matter-vs-white-matter-322973-960x540.jpg?cb=12656808

ESTAR DE REPÓS

Condició en què un sistema o objecte es manté sense moviment ni canvi d'energia.

FONT: https://www.ajnr.org/content /34/10/1866.figures-only

ESTAT DE L'ART FONT: https://datascientest.com/en/machine-learning-

what-is-it-and-why-does-it-change-the-world

MACHINE LEARNING

Tipus:

- Aprenentage Supervisat: dades etiquetades
- Aprenentatge NO Supervisat: dades no etiquetades
- Aprenentatge Semi-Supervisat: combina dades etiquetades i no etiquetades
- Aprenentatge per Reforç: Agent pren decisions mitjançant recompenses o penalitzacions

FONT:

 ${\tt https://www.fsm.ac.in/blog/an-introduction-to-machine-learning-its-importanc\ e-types-and-applications/}$

https://ukhabrani.medium.com/logistic-regression-4 a5b63364d06

SVM

REGRESSIÓ LOGÍSTICA

$$P(Y = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_n X_n)}}$$

On:

- (P(Y=1|X)) és la probabilitat de l'esdeveniment d'interès.
- $(\beta_0, \beta_1, \dots, \beta_n)$ són els coeficients del model que s'aprenen durant l'entrenament.
- (X_1, \ldots, X_n) són les variables independents o característiques.
- Classificació binària
- Funció sigmoide: Entrades p(0,1)
- Maximitza la versemblança

- Classificació i Regressió
- Marge màxim: Hiperpla que fa màxima la distància entre classes
- **Kernels:** Per gestionar dades no lineals
- Robustesa: Eficients i amb capacitat de generalització

FONT:

http://graphstream-project.org/doc/Algorithms/Random-walks-on-graphs/https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200804102717/Capt ure15.png

FONT:

https://medium.com/@tejpal.abhyuday/deep-walk-and-node2vec-graph-embeddings-faf02d369442

DEEP WALKS

RANDOM WALKS

Toursancial authors

Only 10 Projection

Toursancial authors

On 201

Toursancial authors

On 201

Toursancial authors

On 201

Toursancial authors

On 201

Toursancial authors

Shop Orano

Toursancial authors

Toursanc

- Explora grafs de manera aleatòria
- Comença en un node i segueix nodes adjacents
- Captura l'extructura local del graf

- Utilitza random walks per analitzar els grafs
- Genera representacions vectorials de nodes
- Captura relacions estructurals com el Word2Vec

FONT: https://tkipf.github.io/graph-convolutional-networks/

GNN - GCNS

FONT:

https://www.researchgate.net/figure/Illustration-of-sampling-and-aggregation-in-GraphSAGE-method-A-sample-of-neighboring_fig1_351575091

GRAPHSAGE

- Xarxes neuronals per dades en forma de graf
- Apliquen operacions de convolució sobre nodes
- Aprenen representacions de nodes combinant informació dels seus veïns.
- Efectives per a tasques de classificació

- Genera embeddings de nodes en grafs.
- Agrega informació dels veïns de cada node de manera iterativa.
- Permet generalitzar a nodes no vistos durant l'entrenament.

DADES

270 pacients

DADES DE L'HOSPITAL CLÍNIC:

FA, GM, RS (amb 165 csvs cadascuna)

DADES DE NÀPOLS

DTI, GM, RS (amb 105 csvs cadascuna)

- Demographics.csv (mstype pacient o control)
- nodes.csv

FONT:

hhttps://www.freepik.es/vector-gratis/seo-concepto-optimizacion-motores-busqueda_22 069291.htm#fromView=search&page=1&position=1&uuid=d9a70844-8ec1-4b22-b14c-0c 9382fd2139

04 METODOLOGIA

05 RESULTATS

FONT:

https://www.freepik.es/vector-gratis/conjunto-diagramas-croquis_4611210.htm#fromView=search&page=1&position =0&uuid=54053156-c94c-4a66-b7e2-355525168abc

SVM

ANÀLISI GENERAL

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
FA	0.8519	0.85	0.85	0.85	0.85	0.85	0.85
$\mathbf{G}\mathbf{M}$	0.8642	0.89	0.84	0.83	0.90	0.86	0.87
\mathbf{RS}	0.926	0.97	0.89	0.88	0.97	0.92	0.93

LOGISTIC REGRESSION

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
FA	0.8642	0.92	0.82	0.80	0.93	0.86	0.87
$\mathbf{G}\mathbf{M}$	0.9136	0.95	0.88	0.88	0.95	0.91	0.92
\mathbf{RS}	0.9383	1.0	0.89	0.88	1.0	0.94	0.94

ANÀLISI DELS NODES

SVM

FA

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Degree	0.8765	0.90	0.86	0.85	0.90	0.88	0.88
Strength	0.8395	0.91	0.79	0.76	0.93	0.83	0.85
Closeness Centr.	0.8025	0.82	0.79	0.78	0.82	0.80	0.80
Betwenness Centr.	0.8642	0.88	0.85	0.85	0.88	0.86	0.86
Eigenvector Centr.	0.8395	0.89	0.80	0.78	0.90	0.83	0.85

GM

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Degree	0.9259	0.95	0.90	0.90	0.95	0.92	0.93
Strength	0.9012	0.95	0.86	0.85	0.95	0.90	0.90
Closeness Centr.	0.8519	0.82	0.89	0.90	0.80	0.86	0.84
Betwenness Centr.	0.8765	0.92	0.84	0.83	0.93	0.87	0.88
Eigenvector Centr.	0.9259	0.97	0.89	0.88	0.97	0.92	0.93

RS

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Degree	0.7407	0.71	0.79	0.83	0.65	0.76	0.71
Strength	0.6666	0.63	0.72	0.80	0.53	0.71	0.61
Closeness Centr.	0.8765	0.84	0.92	0.93	0.82	0.88	0.87
Betwenness Centr.	0.6790	0.67	0.68	0.71	0.65	0.69	0.67
Eigenvector Centr.	0.6666	0.67	0.67	0.68	0.65	0.67	0.66

LOGISTIC REGRESSION

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Degree	0.8395	0.83	0.85	0.85	0.82	0.84	0.84
Strength	0.8272	0.83	0.82	0.83	0.82	0.83	0.82
Closeness Centr.	0.8395	0.85	0.83	0.83	0.85	0.84	0.84
Betwenness Centr.	0.8888	0.90	0.88	0.88	0.90	0.89	0.89
Eigenvector Centr.	0.8518	0.89	0.82	0.80	0.90	0.85	0.86

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Degree	0.9259	0.97	0.89	0.88	0.97	0.92	0.93
Strength	0.9136	0.97	0.87	0.85	0.97	0.91	0.92
Closeness Centr.	0.9012	0.92	0.88	0.88	0.93	0.90	0.90
Betwenness Centr.	0.9136	0.97	0.87	0.85	0.97	0.91	0.92
Eigenvector Centr.	0.9383	1.0	0.89	0.88	1.0	0.94	0.94

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Degree	0.7777	0.74	0.82	0.85	0.70	0.80	0.86
Strength	0.6914	0.66	0.74	0.80	0.57	0.73	0.65
Closeness Centr.	0.8519	0.84	0.87	0.88	0.82	0.86	0.85
Betwenness Centr.	0.753	0.76	0.75	0.76	0.75	0.76	0.75
Eigenvector Centr.	0.7407	0.72	0.77	0.80	0.68	0.76	0.72

ANÀLISI DELS GRAFS

SVM

FA

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Av Degree	0.9259	1.0	0.87	0.85	1.0	0.92	0.93
Av Clustering	0.8888	0.94	0.84	0.83	0.95	0.88	0.89
Density	0.9259	1.0	0.87	0.85	1.0	0.92	0.93

LOGISTIC REGRESSION

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Av Degree	0.9136	0.97	0.85	0.85	0.97	0.91	0.92
Av Clustering	0.8519	0.87	0.83	0.83	0.88	0.85	0.85
Density	0.9136	0.97	0.87	0.85	0.97	0.91	0.92

GM

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Av Degree	0.9012	1.0	0.83	0.80	1.0	0.89	0.91
Av Clustering	0.8765	1.0	0.80	0.76	1.0	0.86	0.89
Density	0.9012	1.0	0.83	0.80	1.0	0.89	0.91

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Av Degree	0.9012	1.0	0.83	0.80	1.0	0.89	0.91
Av Clustering	0.9012	1.0	0.83	0.80	1.0	0.89	0.91
Density	0.9012	1.0	0.83	0.80	1.0	0.89	0.91

RS

Mètrica	Accuracy	Precisió		Recall		F1 score	
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Av Degree	0.8765	0.88	0.88	0.88	0.88	0.88	0.88
Av Clustering	0.7531	0.82	0.71	0.66	0.85	0.73	0.77
Density	0.8765	0.88	0.88	0.88	0.88	0.88	0.88

Mètrica	Accuracy	Precisió	Recall F1 score				
Classe	General	Classe 0	Classe 1	Classe 0	Classe 1	Classe 0	Classe 1
Av Degree	0.8642	0.86	0.87	0.88	0.85	0.87	0.86
Av Clustering	0.7654	0.79	0.74	0.73	0.80	0.76	0.77
Density	0.8642	0.86	0.87	0.88	0.85	0.87	0.86

06 CONCLUSIONS