Notas de Aula

Álgebra Linear

Fernando R. L. Contreras

Núcleo de Tecnologia Universidade Federal de Pernambuco (UFPE)

August 19, 2018

1 Revisão de Matrizes

Definição 1. Uma matriz $m \times n$ é uma tabela de mn números dispostos em m linhas e n colunas denotado por:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ & & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Usaremos sempre letras maiúsculas (por exemplo: A) para denotar matrizes, e quando quisermos especificar a ordem de uma matriz A, escreveremos $A_{m \times n}$.

Exemplo 1. Seja a matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -4 & 5 \\ 4 & -3 & 2 & 6 \end{bmatrix}$$

cuja ordem é 2×4 . O elemento da primeira linha é $a_{13} = -4$.

Definição 2. Duas matrizes $\mathbf{A} = [a_{ij}]_{m \times n}$ e $\mathbf{B} = [b_{ij}]_{r \times s}$ são iguais $(\mathbf{A} = \mathbf{B})$, se elas tem o mesmo número de filas m = r e o mesmo número de colunas n = s e todos os elementos correspondentes são iguais $a_{ij} = b_{ij}$.

Exemplo 2. Seja a matriz

$$\begin{bmatrix} 3^2 & 1 & \log(1) \\ 2 & 2^2 & 5 \end{bmatrix} = \begin{bmatrix} 9 & \sin(90^\circ) & 0 \\ 2 & 4 & 5 \end{bmatrix}$$

cuja ordem é 2×4 . O elemento da primeira linha é $a_{13} = -4$.

1.1 Tipos especiais de matrizes

Definição 3. Uma matriz quadrada é aquela cujo número de linhas é igual ao número de colunas, ou seja:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ & & \dots & \dots & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

Exemplo 3. Sejam as matrizes quadradas:

$$\begin{bmatrix} 1 & -2 & 0 \\ 3 & 0 & 1 \\ 4 & 5 & 6 \end{bmatrix} \quad e \quad [1]$$

No caso de matrizes quadradas $A_{n \times n}$, acostumamos dizer que A é uma matriz quadrada de ordem n.

Definição 4. A matriz nula é aquela que $a_{ij} = 0$ para todo i e j.

Exemplo 4. Sejam as matrizes nulas:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e \quad [0]$$

Definição 5. A matriz coluna é aquela que possui uma única coluna (n = 1).

Exemplo 5. Sejam as matrizes coluna:

$$\begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} \quad e \quad \begin{bmatrix} x \\ y \end{bmatrix}$$

Definição 6. A matriz fila é aquela que possui uma única linha (m = 1).

Exemplo 6. Sejam as matrizes fila:

$$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
 e $\begin{bmatrix} x & y \end{bmatrix}$

Definição 7. Matriz diagonal é uma matriz quadrada m = n onde $a_{ij} = 0$, para todo $i \neq j$, isto é, os elementos que não estão na "diagonal" são nulos.

Exemplo 7. Sejam as matrizes diagonais:

$$\begin{bmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad e \quad \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Definição 8. A matriz identidade quadrada é aquela matriz em que $a_{ii} = 1$ e $a_{ij} = 0$ para $i \neq j$.

Exemplo 8. Sejam as matrizes:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad e \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

3

Definição 9. A matriz triangular superior é uma matriz quadrada onde todos os elementos abaixo da diagonal são nulos, isto é, m = n e $a_{ij} = 0$ para i > j.

Exemplo 9. Sejam as matrizes triangular superior:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix} \quad e \quad \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

De maneira análoga podemos definir a matriz triangular inferior.

Definição 10. A matriz triangular inferior é uma matriz quadrada onde todos os elementos acima da diagonal são nulos, isto é, m = n e $a_{ij} = 0$ para i < j.

Exemplo 10. Sejam as matrizes triangular inferior:

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \quad e \quad \begin{bmatrix} 5 & 0 & 0 \\ 7 & 0 & 0 \\ 2 & 1 & 3 \end{bmatrix}$$

Definição 11. *Matriz simétrica é aquela onde* m = n *e* $a_{ij} = a_{ji}$ *para todo i e j.*

Exemplo 11. Sejam as matrizes simétricas:

$$\begin{bmatrix} 4 & 3 & -1 \\ 3 & 2 & 0 \\ -1 & 0 & 5 \end{bmatrix} \quad e \quad \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

Observe que no caso da matriz simétrica a parte superior é uma reflexão da parte inferior em relação a diagonal.

1.2 Operações com matrizes

Definição 12. A soma de duas matrizes $\mathbf{A} = [a_{ij}]_{m \times n}$ e $\mathbf{B} = [b_{ij}]_{m \times n}$ resulta outra matriz de ordem $m \times n$ que denotamos por $\mathbf{A} + \mathbf{B}$, cujos elementos são somas dos elementos correspondentes de \mathbf{A} e \mathbf{B} . Isto é, $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]_{m \times n}$.

Exemplo 12. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 4 & 0 \\ 2 & 5 \end{bmatrix} \quad e \quad \mathbf{B} = \begin{bmatrix} 0 & 4 \\ -2 & 5 \\ 3 & 0 \end{bmatrix}$$

Se chamamos de C a soma das duas matrizes A e B, então

$$C = \begin{bmatrix} 1 & -1 \\ 4 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 4 \\ -2 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & -1+4 \\ 4-2 & 0+5 \\ 2+1 & 5+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 3 & 5 \end{bmatrix}$$

Propriedades

Dadas as matrizes **A**, **B** e **C** da mesma ordem $m \times n$ temos:

- (a). A + B = B + A (comutatividade) (Prove...!)
- (b). $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$ (Associatividade)
- (c). $\mathbf{0} + \mathbf{A} = \mathbf{A} + \mathbf{0} = \mathbf{A}$, onde $\mathbf{0}$ denota a matriz nula de ordem $m \times n$.

Definição 13. A multiplicação de uma matriz $\mathbf{A} = [a_{ij}]_{m \times n}$ por um escalar (qualquer numero real) $\alpha \in \mathbb{R}$ resulta em outra matriz $\mathbf{C} = [c_{ij}]_{m \times n}$, denotado por $\mathbf{C} = \alpha \mathbf{A} = \alpha [a_{ij}]_{m \times n} = [\alpha a_{ij}]_{m \times n}$, onde $c_{ij} = \alpha a_{ij}$.

Neste caso podemos dizer que C é um múltiplo escalar da matriz A.

Exemplo 13. Seja a matriz:

$$A = \begin{bmatrix} 1 & -1 \\ 4 & 0 \end{bmatrix}$$

Se chamamos de C é a multiplicação escalar de $\alpha = 2$ por A, então

$$C = 2 \begin{bmatrix} 1 & -1 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 2 \times 1 & 2 \times (-1) \\ 2 \times 4 & 2 \times 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 8 & 0 \end{bmatrix}$$

Propriedades

Dadas duas matrizes **A** e **B** da mesma ordem $m \times n$ e números α_1 , α_2 e α_3 temos:

- (a). $\alpha_1(\mathbf{A} + \mathbf{B}) = \alpha_1 \mathbf{A} + \alpha_1 \mathbf{B}$
- (b). $(\alpha_1 + \alpha_2)\mathbf{A} = \alpha_1\mathbf{A} + \alpha_2\mathbf{A}$
- (c). 0A = 0, onde 0 é o número zero.
- (d). $\alpha_1(\alpha_2 \mathbf{A}) = (\alpha_1 \alpha_2) \mathbf{A}$

Definição 14. O produto de duas matrizes, tais que o número de colunas da primeira matriz é igual ao número de linhas da segunda, $\mathbf{A} = [a_{ij}]_{m \times r}$ e $\mathbf{B} = [b_{ij}]_{r \times n}$ é definido pela matriz de ordem $m \times n$:

$$C = AB$$

obtida da seguinte forma:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ir}b_{rj}$$

para todo i = 1,...,m e j = 1,...,n.

Exemplo 14. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 5 & 3 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix}$$

Se chamamos de C a soma das duas matrizes A e B, então

$$C = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 1 \times 0 & 2 \times (-1) + 1 \times 4 \\ 4 \times 1 + 2 \times 0 & 4 \times (-1) + 2 \times 4 \\ 5 \times 1 + 3 \times 0 & 5 \times (-1) + 3 \times 4 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 4 \\ 5 & 7 \end{bmatrix}$$

Propriedades

- (a). Em geral $AB \neq BA$.
- (b). IA = AI = A (I matriz identidade de ordem $n \times n$).
- (c). A(B+C) = AB + AC, onde a matriz A é de ordem $m \times r$ e as matrizes B e C são de ordem $r \times n$.
- (d). $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$, onde a matriz \mathbf{C} é de ordem $r \times n$ e as matrizes \mathbf{A} e \mathbf{B} são de ordem $m \times r$.
- (e). (AB)C = A(BC), em geral as matrizes **A** pode-se considerar de ordem $m \times r$, **B** de ordem $r \times s$ e **C** de ordem $s \times n$.
- (d). 0A = A0 = 0.

Definição 15. A transposta de uma matriz $\mathbf{A} = [a_{ij}]_{m \times n}$ é definida por:

$$\boldsymbol{B} = \boldsymbol{A}^t$$

obtida trocando-se as linhas com as colunas, ou seja,

$$b_{ij} = a_{ji}$$

para todo i = 1,...,m e j = 1,...,n.

Exemplo 15. Sejam as matrizes:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ -1 & 4 \end{bmatrix}$$

A matriz transposta de A é dada por:

$$A^t = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 3 & 4 \end{bmatrix}$$

Propriedades

Consideremos duas matrizes **A** e **B** de ordem $m \times n$:

(a). Dizemos que uma matriz é simétrica se, e somente se, ela é igual à sua transposta ($\mathbf{A} = \mathbf{A}^t$).

(b). $(\mathbf{A}^t)^t = \mathbf{A}$, isto é, a transposta da transposta de uma matriz é ela mesma.

(c). $(\mathbf{A} + \mathbf{B})^t = \mathbf{A}^t + \mathbf{B}^t$ sempre que $\mathbf{A} \in \mathbf{B}$.

(d). $(\alpha \mathbf{A})^t = \alpha \mathbf{A}^t$, onde α é qualquer escalar.

(e). $(\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$, para $\mathbf{A} = [a_{ij}]_{m \times r}$ e $\mathbf{B} = [b_{ij}]_{r \times n}$.

1.3 Exercícios

1. Dada as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Calcule $(\mathbf{B}^t \mathbf{A})^t$

Rpta:
$$(\mathbf{B}^t \mathbf{A})^t = \begin{bmatrix} a \\ c \\ b \end{bmatrix}$$

2. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

Calcule AB - I.

2. Mostre que:

2.1. AA^t é simétrica.

2.2. $\mathbf{A} + \mathbf{A}^t$ é simétrica.

2.3. $\mathbf{A} - \mathbf{A}^t$ é anti-simétrica.

3. Mostre que toda matriz quadrada é a soma de uma matriz simétrica e uma matriz anti-simétrica. $Sugest\~ao$. $\frac{1}{2}(\mathbf{A}+\mathbf{A}^t)$ é simétrica e $\frac{1}{2}(\mathbf{A}-\mathbf{A}^t)$ é anti-simétrica a soma dos dois é uma matriz quadrada \mathbf{A} .

7

2 Sistemas lineares

Definição 16. Dados os números reais $\alpha_1, \alpha_2, ..., \alpha_n, \beta$ $(n \ge 1)$, à equação:

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = \beta$$

damos o nome de **equação linear** sobre \mathbb{R} nas incógnitas $x_1, x_2, ... x_n$, onde cada x_i são variáveis em \mathbb{R}

Uma *solução* dessa equação é uma sequência de n números reais (não necessariamente distintos entre si), indicada por $(b_1,...,b_n)$, tal que:

$$\alpha_1b_1 + \alpha_2b_2 + ... + \alpha_nb_n = \beta$$

é uma frase verdadeira.

Exemplo 16. Dada a equação: $2x_1 - x_2 + x_3 = 1$, a terna ordenada (1,1,0) é uma solução dessa equação pois $2 \cdot 1 - 1 + 0 = 1$ é verdadeira.

Definição 17. Um sistema de m equações lineares com n incógnitas $(m, n \ge 1)$ é um conjunto de m equações lineares, cada uma delas com n incógnitas, consideradas simultaneamente. Um sistema linear se apresenta do seguinte modo:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = \beta_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = \beta_2 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = \beta_m \end{cases}$$

Uma solução do sistema acima é uma n-upla $(b_1,...,b_n)$ de números reais que é solução de cada uma das equações do sistema.

Se, num sistema, tivermos $\beta_1, \beta_2, ..., \beta_m$, o sistema será homogêneo. A n-upla (0,0,...,0) é solução do sistema neste caso e por isso todo sistema homogêneo é compatível, de acordo com a definição anterior. A solução (0,0,...,0) chama-se solução trivial do sistema homogêneo.

Exemplo 17. Dado o sistema:

$$\begin{cases} 2x - y + z = 1\\ x + 2y = 6 \end{cases}$$

Uma solução do sistema é (0,3,4). Notemos que essa solução não é única: a terna $(\frac{8}{5},\frac{11}{5},0)$ também é solução do sistema.

Definição 18. Dizemos que um sistema S linear é **incompatível** se S não admite nenhuma solução. Um sistema linear que admite uma única solução é chamado **compatível determinado**. Se o sistema linear S admitir mais do que uma solução então ele recebe o nome de **compatível indeterminado**.

Exemplo 18. O sistema:

$$\begin{cases} x - 2y = -1 \\ -x + 3y = 3 \end{cases}$$

Possui exatamente uma única solução o qual é (3,2) (fazer o gráfico).

Exemplo 19. O sistema:

$$\begin{cases} x - 2y = -1 \\ -x + 2y = 3 \end{cases}$$

Não possui nenhuma solução (fazer o gráfico).

Exemplo 20. O sistema:

$$\begin{cases} x - 2y = -1 \\ -x + 2y = 1 \end{cases}$$

Possui infinitas soluções (fazer o gráfico).

Dadas as retas:

$$\begin{cases} r : ax + by + c = 0 \\ s : a_1x + b_1y + c_1 = 0 \end{cases}$$

Temos os seguintes casos:

- a) se $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$, então as retas r e s são coincidentes
- b) se $\frac{a}{a_1} = \frac{b}{b_1} \neq \frac{c}{c_1}$, então as retas r e s são paralelas
- b) se $\frac{a}{a_1} \neq \frac{b}{b_1}$, então as retas r e s são concorrentes

3 Sistemas equivalentes

Seja S um sistema linear de m equações com n incógnitas. Interessa-nos considerar os sistemas que podem ser obtidos de S de uma das seguintes maneiras:

- I. *Permutar* duas das equações de S. É evidente que se S_1 indicar o sistema assim obtido, então toda solução de S_1 é solução de S e vice-versa.
- II. *Multiplicar* uma das equações S por um número real $\lambda \neq 0$. Indicamos por S_1 o sistema assim obtido, então toda solução de S_1 é solução de S e vice-versa.
- III. *Somar* a uma das equações do sistema uma outra equação desse sistema multiplicada por um número real, ou seja

$$S_{1}: \begin{cases} \alpha_{11}x_{1} + ... + \alpha_{1n}x_{n} = \beta_{1} \\ ... \\ \alpha_{i1}x_{1} + ... + \alpha_{in}x_{n} = \beta_{i} \\ (\lambda \alpha_{i1} + \alpha_{j1})x_{1} + ... + (\lambda \alpha_{in} + \alpha_{jn})x_{n} = \lambda \beta_{i} + \beta_{j} \\ ... \\ \alpha_{m1}x_{1} + ... + \alpha_{mn}x_{n} = \beta_{m} \end{cases}$$

O sistema obtido S_1 e o sistema S ou são ambos incompatíveis ou admitem ambos as mesmas soluções.

Definição 19. Dado um sistema linear S, qualquer das modificações explicadas acima em (I), (II) e (III) que se faça com esse sistema S recebe o nome de operação elementar com S. Se um sistema linear S_1 foi obtido de um sistema linear S através de um número finito de operações elementares, dizemos que S_1 é equivalente a S e denotaremos por $S_1 \equiv S$.

Propriedades

- (a). $S \equiv S$ (reflexiva)
- (b). $S_1 \equiv S$, então $S \equiv S_1$ (simétrica)
- (c). $S_1 \equiv S$ e $S \equiv S_2$, então $S_1 \equiv S_2$ (transitiva)

Desta forma criamos um mecanismo extremamente util para a procura de soluções de um sistema linear *S*. Então, procuramos sempre encontrar um sistema linear equivalente a *S* e que seja mais simples.

Exemplo 21. Analise o seguinte sistema:

$$\begin{cases} x - y + z = 1 \\ 2x - y + z = 4 \\ x - 2y + 2z = 0 \end{cases}$$

Solução:

$$\begin{cases} x - y + z = 1 \\ 2x - y + z = 4 \\ x - 2y + 2z = 0 \end{cases} \equiv (*) \begin{cases} x - y + z = 1 \\ y - z = 2 \\ -y + z = -1 \end{cases} \equiv (**) \begin{cases} x - y + z = 1 \\ y - z = 2 \\ 0 = 1 \end{cases}$$

- (*) Multiplicamos por -2 a primeira equação e somamos o resultado com a segunda equação; multiplicamos a primeira equação por -1 e somamos com a terceira.
- (**) Somamos a segunda equação com a terceira.

4 Sistemas escalonados

Consideramos um sistema linear de m equações com n incógnitas que tem o seguinte aspecto:

$$\begin{cases} \alpha_{1r_1}x_{r_1} + ... + \alpha_{1n}x_n = \beta_1 \\ \alpha_{2r_2}x_{r_2} + ... + \alpha_{2n}x_n = \beta_2 \\ ... \\ \alpha_{kr_k}x_{r_k} + ... + \alpha_{kn}x_n = \beta_k \\ 0x_n = \beta_{k+1} \end{cases}$$

onde $\alpha_{1r_1} \neq 0$, $\alpha_{2r_2} \neq 0$, ..., $\alpha_{kr_k} \neq 0$ e cada $r_i \geq 1$.

Se tivermos $1 \le r_1 < r_2 < ... < r_k \le n$ diremos que S é um sistema linear escalonado.

Exemplo 22. Exemplo de sistema escalonado:

$$\begin{cases} 2x - y - z - 3t = 0\\ z - t = 1\\ 2t = 2 \end{cases}$$

Teorema 1. Todo sistema linear S é equivalente a um sistema escalonado.

Exemplo 23. Escalonar o seguinte sistema:

$$\begin{cases} 2x - y + z - t = 4 \\ 3x + 2y - z + 2t = 1 \\ 2x - y - z - t = 0 \end{cases} \equiv \begin{cases} z + 2x - y - t = 4 \\ -z + 3x + 2y + 2t = 1 \\ -z + 2x - y - t = 0 \end{cases} \equiv \begin{cases} z + 2x - y - t = 4 \\ 5x + y + t = 5 \\ 4x - 2y - 2t = 4 \\ 5x + 2t = 1 \end{cases}$$

$$\equiv \begin{cases} z + 2x - y - t = 4 \\ x + \frac{1}{5}y + \frac{1}{5}t = 1 \\ 4x - 2y - 2t = 4 \\ 5x + 2t = 1 \end{cases} \equiv \begin{cases} z + 2x - y - t = 4 \\ x + \frac{1}{5}y + \frac{1}{5}t = 1 \\ 4x - 2y - 2t = 4 \end{cases} \equiv \begin{cases} z + 2x - y - t = 4 \\ 5x + y + t = 5 \\ y + t = 0 \\ -2t = 4 \end{cases} \equiv \begin{cases} z + 2x - y - t = 4 \\ 5x + y + t = 5 \\ y + t = 0 \\ -2t = 4 \end{cases}$$

Exemplo 24. Discutir e resolver o seguinte sistema:

$$\begin{cases} x - y + z = 1\\ 2x + y + 2z = 5\\ 3x - y + z = 1 \end{cases}$$

 $\it Resposta$: O sistema é compatível determinado e (0,-2/3,1/3) é sua solução.

5 Matrizes Inversíveis

Definição 20. *Uma matriz A de ordem n se diz inversível se, e somente se, existe uma matriz B, também de ordem n, de modo que:*

$$AB = BA = I$$

Esta matriz B, caso existe, é única e chama-se inversa de A, indica-se por A^{-1} .

Observação.

- (a) Se uma linha (ou coluna) de uma matriz A é nula, então A não é invertível.
- (b) Se A e B são matrizes de ordem n, ambas inversíveis, então AB também é inversível e $(AB)^{-1} = B^{-1}A^{-1}$.
- (c) Se A é invertível, então A^{-1} também e $(A^{-1})^{-1} = A$.

Teorema 2. Uma matriz A é inversível se, e somente se, $I \equiv A$. Neste caso, a mesma sequencia de operações elementares que transforma A em I, transforma I em A^{-1} .

Exemplo 25. Verificar se a matriz:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

É inversível e determinar A^{-1} , caso esta matriz exista.

Sistemas de Cramer

A regra do Cramer somente é aplicado a sistemas cujo, número de incógnitas é igual ao número de equações do sistema. Seja:

$$S: \begin{cases} \alpha_{11}x_1 + ... + \alpha_{1n}x_n = \beta_1 \\ \alpha_{21}x_1 + ... + \alpha_{2n}x_n = \beta_2 \\ ... \\ \alpha_{m1}x_1 + ... + \alpha_{mn}x_n = \beta_n \end{cases}$$

Um sistema linear de *m* equações com *n* incógnitas sobre o conjunto dos números reais. Se formamos as matrizes

$$A = egin{bmatrix} lpha_{11} & \dots & lpha_{1n} \ lpha_{21} & \dots & lpha_{2n} \ \dots & \dots & \dots \ lpha_{m1} & \dots & lpha_{mn} \end{bmatrix}, \quad X = egin{bmatrix} x_1 \ x_1 \ \dots \ x_n \end{bmatrix} \quad \mathbf{e} \quad B = egin{bmatrix} eta_1 \ eta_1 \ \dots \ eta_m \ egin{bmatrix} eta_1 \ eta_2 \ eta_3 \ eta_4 \ eta_5 \ eta_$$

de tipos $m \times n$, $n \times 1$ e $m \times 1$, respectivamente, então S poderá ser escrito sob a forma matricial

$$AX = B$$

onde A recebe o nome de matriz dos coeficientes de S.

Um sistema de Cramer é um sistema linear de n equações com n incógnitas cuja matriz dos coeficientes é inversível. Se AX = B é um sistema de Cramer, como:

$$AX = B \Leftrightarrow A^{-1}(AX) = A^{-1}B \Leftrightarrow X = A^{-1}B$$

Então, esse sistema é compatível determinado e sua única solução é dada por $A^{-1}B$. Em particular um sistema quadrado e homogêneo cuja matriz dos coeficientes é inversível só admite a solução trivial.

Exemplo 26. Verificar se a matriz:

$$\begin{cases} x+y=1\\ y+z=1\\ x+2z=0 \end{cases}$$

é a matriz

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

que já vimos ser inversível; já determinamos também

$$A^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{-1}{3} \\ \frac{-1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Logo:

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

e a solução do sistema é (0,1,0).

6 Espaços Vetoriais

Definição 21. Dizemos que um conjunto V não vazio é um espaço vetorial sobre \mathbb{R} quando e somente quando:

I. Existe uma adição $(u,v) \mapsto u+v$ em V, com as seguinte propriedades:

- u+v=v+u, $\forall u,v \in V$ (comutativa);
- u+(v+w)=(u+v)+w, $\forall u,v,w \in V$ (associativa);
- Existe em V um elemento neutro para essa adição o qual será simbolizado genericamente por 0. Ou seja:

$$\exists 0 \in V | u + 0 = u, \ \forall u \in V ;$$

• Para todo elemento u de V existe o oposto; indicaremos por (-u) esse é oposto. Assim: $\forall u \in V, \exists 0 \in V | u + (-u) = 0;$

II. esta definida uma multiplicação de $\mathbb{R} \times V$ em V, o que significa que a cada par (α, u) de $\mathbb{R} \times V$ esta associado um único elemento de V que se indica por αu , e para essa multiplicação tem-se o seguinte:

- $\alpha(\beta u) = (\alpha \beta)u$
- $(\alpha + \beta)u = \alpha u + \beta u$
- $\bullet \ \alpha(u+v) = \alpha u + \alpha v ;$
- 1u = u, para quaisquer u, v de $V \in \alpha, \beta$ de \mathbb{R} .

Exemplo 27. Para todo número natural n, o simbolo \mathbb{R}^n representa o espaço vetorial euclidiano n-dimensional. Os elementos de \mathbb{R}^n são as listas ordenadas $u=(x_1,...,x_n)$ e $v=(y_1,...,y_n)$ de números reais.

As equações do espaço vetorial \mathbb{R}^n são definidas pondo:

$$u + v = (x_1 + y_1, ..., x_n + y_n)$$

 $\alpha u = (\alpha x_1, ..., \alpha x_n).$

O vetor zero é, por definição, aquela cujas coordenadas são todos iguais a zero, 0 = (0,...,0). O inverso aditivo de $u = (x_1,...,x_n)$ é $-u = (-x_1,...,-x_n)$ verifica-se, sem dificuldade que estas definições fazem \mathbb{R}^n um espaço vetorial.

Exemplo 28. Uma matriz (real) $m \times n$, $A = [a_{ij}]$ é uma lista de números reais a_{ij} com indices duplos, onde $1 \le i \le m$ e $1 \le i \le n$, podemos representar a matriz A como:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ & & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

O conjunto M ($m \times n$) de todas as matrizes $m \times n$ torna-se um espaço vetorial quando nele se define a soma das matrizes $A = [a_{ij}]$ e $B = [b_{ij}]$ como $A + B = [a_{ij} + b_{ij}]$ e o produto da matriz A pelo numero real α como $\alpha A = [\alpha a_{ij}]$.

A matriz nula $0 \in M(m \times n)$ é aquela formada por zeros e o inverso aditivo da matriz $A = [a_{ij}]$ é $-A = [-a_{ij}]$.

Exemplo 29. Em \mathbb{R}^2 , mantenhamos a definição do produto αv de um número por um vetor mas modifiquemos, de 3 maneiras diferentes, a definição da soma u = (x,y) e v = (x',y'). Em cada tentativa, dizer quais axiomas de espaço vetorial continuam válidos e quais são violados:

a)
$$u + v = (x + y', x' + y)$$

b)
$$u + v = \left(xx', yy'\right)$$

c)
$$u + v = (3x + 3x', 5x + 5x')$$

Escrevemos $u = (x_1, y_1)$, $v = (x_2, y_2)$ e $w = (x_3, y_3)$ no que se segue. Em todos os itens funcionam os axiomas da associatividade do produto e da multiplicação por 1, que não tem nada ver com a adição.

a) Para $u + v = (x_1 + y_2, x_2 + y_1)$.

Verificamos a comutatividade:

 $u + v = (x_1, y_1) + (x_2, y_2) = (x_1 + y_2, x_2 + y_1)$ e $v + u = (x_2, y_2) + (x_1, y_1) = (x_2 + y_1, x_1 + y_1)$. São diferentes em geral. FALHA!!

Agora verificamos a associatividade:

$$(u+v)+w=(x_1+y_2,x_2+y_1)+(x_3,y_3)=(x_1+y_2+y_3,x_3+x_2+y_1)$$
 e $u+(v+w)=(x_1,y_1)+(x_2+y_3,x_3+y_2)=(x_1+x_3+y_2,x_2+y_3+y_1)$. São diferentes em geral. FALHA!!

Verificamos o vetor nulo:

 $O+u=(a,b)+(x_1,y_1)=(a+y_1,x_1+b)=(x_1,y_1)$ logo $a=x_1-y_1$ e $b=y_1-x_1$, assim concluímos que o suposto vetor nulo O=(a,b) não é único. Consequentemente não faz sentido falar do inverso aditivo.

Verificamos a distributividade:

sejam $\alpha u + \beta u = (\alpha x_1 + \beta y_1, \beta x_1 + \alpha y_1)$ e $(\alpha + \beta)u = ((\alpha + \beta)x_1, (\alpha + \beta)y_1)$. São diferentes em geral. FALHA!!

De outra parte temos:

$$\alpha(u+v) = (\alpha(x_1+y_2), \alpha(x_2+y_1)) e \alpha u + \alpha v = (\alpha x_1, \alpha y_1) + (\alpha x_2, \alpha y_2) = (\alpha(x_1+y_2), \alpha(x_2+y_1)).$$
 Funciona!!

Deixar como tarefa o **b**) e **c**).

6.1 Subespaço vetorial

Definição 22. Dado um espaço vetorial V, um subconjunto W, não vazio, será um subespaço vetorial de V se:

- i. $0 \in W$:
- ii. Para quaisquer u, v, então $u + v \in W$;
- iii. Para quaisquer $\alpha \in \mathbb{R}$, $u \in W$, tivermos $\alpha u \in W$

<u>Note</u>. Todo espaço vetorial admite pelo menos dois subespaços vetoriais (que são chamados subespaços triviais), o conjunto somente formado pelo vetor nulo e o próprio espaço vetorial.

Exemplo 30. Seja $V = \mathbb{R}^3$ e $W \subset V$, um plano passando pela origen.

Exemplo 31. Seja $V = \mathbb{R}^5$ e $W = \{(0, x_2, x_3, x_4, x_5) : x_i \in \mathbb{R}\}$, um plano que não passa pela origem.

W não é subespaço de V, pois existem u e $v \in W$ tal que $u + v \notin W$.

Exemplo 32. Seja $V = \mathbb{R}^5$ e $W = \{(0, x_2, x_3, x_4, x_5) : x_i \in \mathbb{R}\}$, um plano que não passa pela origem.

Exemplo 33. Seja $V = \mathbb{R}^2$ e $W = \{(x, x^2) : x \in \mathbb{R}\}$. Se escolhermos u = (1, 1) e v = (2, 4) temos que $u + v = (3, 5) \notin W$. Assim W não é subespaço vetorial de V.

Teorema 3. (Interseção de subconjuntos): Dados W_1 e W_2 subespaços de um espaço vetorial V, a interseção $W_1 \cap W_2$ ainda é subespaço vetorial.

Exemplo 34. Seja $V = \mathbb{R}^3$ e $W_1 \cap W_2$ é a reta de interseção dos planos W_1 e W_2 .

Teorema 4. (Soma de subespaços): Sejam W_1 e W_2 subespaços de um espaço vetorial V. Então, o conjunto $W_1 + W_2 = \{v \in V : v = w_1 + w_2, w_1 \in W_1 \in w_2 \in W_2\}$ é subespaço de V.

Quando $W_1 \cap W_2 = \{0\}$, então $W_1 + W_2$ é chamado de soma direta de W_1 e W_2 , denotado por $W_1 \oplus W_2$. Todo vetor $w \in W_1 \oplus W_2$ se escreve, de modo único, como a soma $w = w_1 + w_2$ onde W_1 e W_2 .

6.2 Combinação Linear

Vamos comentar, agora, uma das características mais importantes de um espaço vetorial, que é a obtenção de novos vetores a partir de vetores dados.

Definição 23. Sejam V um espaço vetorial real e sejam $v_1,...,v_n \in V$ e $\alpha_1,...,\alpha_n \in \mathbb{R}$. Então, o vetor $v = \alpha_1 v_1 + ... + \alpha_n v_n$ \acute{e} um elemento de V ao que chamaremos combinação linear de $v_1,...,v_n$.

6.2.1 Subespaços gerados

Uma vez fixados os vetores $v_1,...,v_n \in V$, o conjunto W de todos os vetores de V que são combinação linear destes, é chamado de subespaço gerado por $v_1,...,v_n$ e usamos a notação

$$W = [v_1, ..., v_n] = \{v \in V : v = \alpha_1 v_1 + ... + \alpha_n v_n, \alpha_i \in \mathbb{R}, \le i \le n\}.$$

Uma outra caracterização de subespaço gerado é a seguinte: $W = [v_1, ..., v_n]$ é o menor subespaço de V que contem o conjunto de vetores $\{v_1, ..., v_n\}$, no sentido de que qualquer outro subespaço W' de V que contenha $\{v_1, ..., v_n\}$ satisfará $W \subset W'$. (TAREFA-PROVE!!!)

Exemplo 35. No espaço vetorial P_2 dos polinômios de grau ≤ 2 , o polinômio $v = 7x^2 + 11x - 26$ e uma combinação linear dos polinômios $v_1 = 5x^2 - 3x + 2$ e $v_2 = -2x^2 + 5x - 8$?.

Seja $v = \alpha v_1 + \beta v_2$, devemos calcular α e β , caso eles existam e sejam números reais, então podemos conclui que v pode-se escrever como combinação linear de v_1 e v_2 .

Em efeito:

$$7x^2 + 11x - 26 = \alpha(5x^2 - 3x + 2) + \beta(-2x^2 + 5x - 8) = (5\alpha - 2\beta)x^2 + (-3\alpha + 5\beta)x + (2\alpha - 8\beta)x + (-3\alpha + 5\beta)x + (-3\alpha + 5\alpha)x +$$

Logo resolvendo o seguinte sistema linear:

$$\begin{cases} 5\alpha - 2\beta = 7\\ -3\alpha + 5\beta = 11\\ 2\alpha - 8\beta = -26 \end{cases}$$

obtemos o valor de $\alpha = 3$ e $\beta = 4$. Portanto, v pode-se escrever como combinação linear de v_1 e v_2 .

Exemplo 36. Sejam os vetores $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$. Escreva o vetor v = (-4, -18, 7) como combinação linear dos vetores v_1 e v_2 .

Pretende-se que: $v = a_1v_1 + a_2v_2$, sendo a_1 e a_2 escalares a determinar. Então, devemos ter: $(-4, -18, 7) = a_1(1, -3, 2) + a_2(2, 4, -1) = (a_1 + 2a_2, -3a_1 + 4a_2, 2a_1 - a_2)$ logo

$$\begin{cases} a_1 + 2a_2 = -4 \\ -3a_1 + 4a_2 = -18 \\ 2a_1 - a_2 = 7 \end{cases}$$

Cuja solução do sistema de equações lineares anterior é $a_1 = 2$ e $a_2 = -3$. Portanto, $v = 2v_1 - 3v_2$.

Exemplo 37. Mostre que o subconjunto $W = \{(x,y,0) \in \mathbb{R}^3 : x,y \in \mathbb{R}\}$ é gerado pelo conjunto $\{(1,0,0),(0,1,0)\}$ do \mathbb{R}^3 .

Seja $(x, y, 0) \in W$ tal que $(x, y, 0) = \alpha(1, 0, 0) + \beta(0, 1, 0)$, logo:

$$\begin{cases} x = \alpha \\ y = \beta \end{cases}$$

, então qualquer vetor $(x, y, 0) \in W$ pode ser escrito como combinação linear de $\{(1, 0, 0), (0, 1, 0)\}$.

Exemplo 38. Seja $V = \mathbb{R}^3$. Determine o subespaço gerado pelo vetor $v_1 = (1,2,3)$.

Temos $[v_1] = \{(x,y,z) \in \mathbb{R}^3 : (x,y,z) = \alpha(1,2,3), \alpha \in \mathbb{R}\}$ logo $(x,y,z) = \alpha(1,2,3)$, então $x = \alpha$, $y = 2\alpha$ e $z = 3\alpha$. Assim $[v_1] = \{(x,y,z) \in \mathbb{R}^3 : y = 2xez = 3x\}$. onde $[v_1]$ é subespaço gerado de $v_1 \in \mathbb{R}^3$ (particularmente é uma reta que passa pela origem).

O subespaço gerado por um vetor $v_1 \in \mathbb{R}^3$, $v_1 \neq 0$ é uma reta que passa pela origem. Se a esse vetor acrescentamos $v_2, v_3, ...$ todos colineares entre si, o subespaço gerado por $v_2, v_3, ...$ vetores continuará sendo a mesma reta: $[v_1] = [v_1, v_2] = [v_1, v_2, v_3] = ...$, por exemplo o vetor (7, 14, 21) posso escrever como combinação linear de (1, 2, 3) e (2, 4, 6), ou seja, (7, 14, 21) = 1(1, 2, 3) + 3(2, 4, 6).

Exemplo 39. Determine o subespaço gerado pelo conjunto $A = \{(1, -2, -1), (2, 1, 1)\}.$

Temos $[v_1, v_2] = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = \alpha(1, -2, -1) + \beta(2, 1, 1), \alpha, \beta \in \mathbb{R} \}$. Da desigualdade acima, temos:

$$\begin{cases} \alpha + 2\beta = x \\ -2\alpha + \beta = y \\ -\alpha + \beta = z \end{cases}$$

, então

$$\begin{cases} \beta = \frac{x+z}{3} \\ \alpha = \frac{x-2z}{3} \end{cases}$$

Substituindo na equação (II) do primeiro sistema de eqs. lineares temos: x + 3y - 5z = 0.

Logo,
$$[v_1, v_2] = \{(x, y, z) \in \mathbb{R}^3 : x + 3y - 5z = 0\}$$
 (FAZER O GRÁFICO)

O subespaço gerado pelos vetores $v_1, v_2 \in \mathbb{R}^3$, não colineares, é um plano P que passa pela origem. Se esses dois vetores acrescentamos v_3, v_4, \dots todos coplanares, ao subespaço gerado por v_3, v_4, \dots vetores continuará sendo o mesmo plano P: $[v_1, v_2] = [v_1, v_2, v_3] = [v_1, v_2, v_3, v_4] = \dots$

6.3 Dependência e independência linear

Definição 24. Seja V um espaço vetorial e $v_1,...,v_n \in V$. Dizemos que o conjunto $\{v_1,...,v_n\}$ é linearmente independente (LI), ou que os vetores $v_1,...,v_n$ são LI, se a equação:

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0$$

Implica $\alpha_1 = ... = \alpha_n = 0$. No caso que exista algum $\alpha_i \neq 0$ dizemos que $\{v_1, ..., v_n\}$ é linearmente dependente (LD), ou que os vetores são $v_1, ..., v_n$ são LD.

Teorema 5. $\{v_1,...,v_n\}$ é LD se, e somente se, um desses vetores for uma combinação linear dos outros.

Exemplo 40. No espaço vetorial $V = \mathbb{R}^4$, os vetores $v_1 = (2,2,3,4)$, $v_2 = (0,5,-3,1)$ e $v_3 = (0,0,4,-2)$ são linearmente independentes?

De fato: a partir de a(2,2,3,4) + b(0,5,-3,1) + c(0,0,4,-2) = (0,0,0,0) temos: (2a,2a+5b,3a-3b+4c,4a+b-2c) = (0,0,0,0), isto é,

$$\begin{cases} 2a = 0 \\ 2a + 5b = 0 \\ 3a - 3b + 4c = 0 \\ 4a + b - 2c = 0 \end{cases}$$

O sistema admite unicamente a solução a = 0, b = 0 e c = 0.

Exemplo 41. No espaço vetorial $V = \mathbb{R}^3$, os vetores $v_1 = (2, -1, 3)$, $v_2 = (-1, 0, -2)$ e $v_3 = (2, -3, 1)$ forman um conjunto LI? (TAREFA !!!!)

6.4 Base de um espaço vetorial

Agora estamos interessados em encontrar, dentro de um espaço vetorial V, um conjunto finito de vetores, tais que qualquer outro vetor V seja uma combinação linear deles. Denominaremos um conjunto de vetores desse tipo de base.

Definição 25. *Um conjunto de vetores de V será uma base se:*

i.
$$\{v_1,...,v_n\} \notin LI$$

ii.
$$[v_1,...,v_n] = V$$

Exemplo 42.

- **a**. Se $V = \mathbb{R}^2$ e sejam $e_1 = (1,0)$, $e_2 = (0,1)$. O conjunto $\{e_1,e_2\}$ é uma base de V, conhecida como base canônica de \mathbb{R}^2 .
- **b**. O conjunto $\{(1,1),(0,1)\}$ também é uma base de $V=\mathbb{R}^2$.

De fato: Se (0,0) = a(1,1) + b(0,1), então a = 0 e b = 0. Isto é, $\{(1,1),(0,1)\}$ é LI. E ainda [(1,1),(0,1)] = V pois dado $v = (x,y) \in V$, temos (x,y) = x(1,1) + (y-x)(0,1).

Ou seja todo vetor de V é combinação linear dos vetores $\{(1,1),(0,1)\}$.

- c. O conjunto $\{(0,1),(0,2)\}$ não é uma base \mathbb{R}^2 , pois é um conjunto LD. Se (0,0) = a(0,1) + b(0,2), $a = -2b \log a$ e b são necessariamente zero.
- **d**. O conjunto $\{(1,0,0),(0,1,0)\}$ não é base de \mathbb{R}^3 mesmo sendo LI, já que não gera tudo o \mathbb{R}^3 , isto é, $[(1,0,0),(0,1,0)] \neq \mathbb{R}^3$.

Teorema 6. Sejam $v_1, ..., v_n$ vetores não nulos que geram um espaço vetorial V. Então, dentre estes vetores podemos extrair uma base de V.

Teorema 7. Seja um espaço vetorial V gerado por um conjunto finitos de vetores $\{v_1, ..., v_n\}$. Então, qualquer conjunto de mais de n vetores em V é necessariamente LD (e portanto, qualquer conjunto LI tem no máximo n vetores).

<u>Note-se</u>. Se o espaço vetorial V admite uma base $\{v_1, ..., v_n\}$ com n elementos, qualquer outra base de V possui n elementos. Concluímos, portanto, que qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, e é denotado dim(V).

Exemplo 43. Se $V = \mathbb{R}^2$, os conjuntos $\{(1,0),(0,1)\}$ e $\{(1,1),(0,1)\}$ são bases de V, então dim(V) = 2.

Exemplo 44. Se V = M(2,2), uma base tem 4 elementos, então dim(V) = 4.

Teorema 8. Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita pode ser completado de modo a formar uma base em V (por exemplo, $\{(1,0,0),(0,1,0)\}$ é LI logo $\{(1,0,0),(0,1,0),(0,0,1)\}$ é base de \mathbb{R}^3).

Note-se. Se dim(V) = n, qualquer conjunto de n vetores LI formará uma base de V.

Teorema 9. Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então $dim(U) \leq dim(V)$ e $dim(W) \leq dim(V)$. Além disso,

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

Teorema 10. Dada uma base $\{v_1,...,v_n\}$ de V, cada vetor de V é escrito de maneira única como combinação linear de $v_1,...,v_n$.

Definição 26. Sejam $\beta = \{v_1, ..., v_n\}$ base de V e $v \in V$ onde $v = a_1v_1 + ... + a_nv_n$. Chamamos estes números $a_1, ..., a_n$ de coordenadas de v em relação a base β e denotamos por:

$$[v]_{\beta} = \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix}$$

Exemplo 45. Calcule as coordenadas do vetor (4,3) nas bases $\beta = \{(1,0),(0,1)\}\ e\ \beta' = \{(1,1),(0,1)\}.$

O coordenadas do vetor (4,3) = 4(1,0) + 3(0,1) na base β são 4 e 3, ou seja,

$$[v]_{\beta} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

O coordenadas do vetor (4,3) = 4(1,1) - 1(0,1) na base β' são 4 e -1, ou seja,

$$[v]_{\beta'} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

<u>Note-se</u>. Que a ordem dos elementos de uma base também influi na matriz das coordenadas de um vetor em relação a base. Isto é,

$$\beta_1 = \{(1,0),(0,1)\}\ e\ \beta_2 = \{(0,1),(1,0)\},\ ent\ \tilde{a}$$
o

$$[v]_{\beta_1} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
 e $[v]_{\beta_1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

, respectivamente.

Exemplo 46. Considere $U = \{(x, y, z) : x + y - z = 0\}$ e $W = \{(x, y, z) : x = y\}$. Determine U + W

Observe que U = [(1,0,1),(0,1,1)] e W = [(1,1,0),(0,0,1)], então V + W = [(1,0,1),(0,1,1),(1,1,0),(0,0,1)] como $(x,y,z) \in \mathbb{R}^3$, podemos escrever $(x,y,z) = \alpha(1,0,1) + \beta(0,1,1) + \gamma(1,1,0) + \theta(0,0,1)$ com $\alpha = x$, $\beta = y$, $\gamma = 0$ e $\theta = z - x - y$. Portanto, $U + W = \mathbb{R}^3$.

Logo $dim(U+W) = dim(\mathbb{R}^3) = dim(U) + dim(W) - dim(U \cup W)$ e temos que $dim(U \cap W) = 1$ já que $V \cap W = \{(x,y,z) : x+y-z = 0ex = y\} = \{(x,y,z) : x = y = \frac{z}{2}\} = [(1,1,1/2)].$

Exemplo 47. Prove que os polinômios seguintes são LI $p(x) = x^3 - 5x^2 + 1$, $q(x) = 2x^4 + 5x - 6$ e $r(x) = x^2 - 5x + 2$.

Exemplo 48. Exiba uma base para cada um dos subespaços de \mathbb{R}^4 listados a seguir:

$$F = \{(x_1, x_2, x_3, x_4) : x_1 = x_2 = x_3 = x_4\}$$

$$G = \{(x_1, x_2, x_3, x_4) : x_1 = x_2, x_3 = x_4\}$$

$$H = \{(x_1, x_2, x_3, x_4) : x_1 = x_2 = x_3\}$$

$$K = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 + x_3 + x_4 = 0\}$$

Exemplo 49. Mostre que os polinômios 1, x - 1 e $x^2 - 3x + 1$ formam uma base de P_2 . Exprima os polinômio $2x^2 - 5x + 6$ como combinação linear dos elementos dessa base.

Exemplo 50. Dados u = (1,2) e v = (-1,2), sejam F_1 e F_2 respectivamente as retas que passam pela origem em \mathbb{R}^2 e contem u e v. Mostre que $\mathbb{R}^2 = F_1 \oplus F_2$.