Wireless Communication Final Project Channel Emulator

108064535 陳文遠

I. 實驗介紹

在本次實驗中,我們要實做的是 COST 207 Channel Emulator。其中有三種具有不同 Scattering 狀況的 Doppler Spectrum。第一個是 Classical Doppler Spectrum (CLASS),他可以用來說明一個複雜的地區 (周圍很多建築物或障礙物) 的 Doppler Spectrum,故可以將其 Doppler Spectrum 假設為 Isotropic Scattering。而第二與第三個分別為 Gaussian 1 Doppler Spectrum (GAUS1) 以及 Gaussian 2 Doppler Spectrum (GAUS2),他們可以用來說明 Non-isotropic Scattering 的 Doppler Spectrum,而他們入射角 (正負頻) 的訊號強度不同。

此外,基於這些 Doppler Spectrum,又有數種 Channel Model 可以選擇,不同的 Channel Model 針對不同的場景又會具有不同的 delay 以及 fractional power。在這個 Project 中我們採用的是 6 taps Reduced Typical Urban (TU) Channel Model,下面 Fig 1. 和 Fig 2. 是我們為此 Model 假設的 Delay、Fractional Power 以及 Doppler Spectrum 的對照圖。

Reduced Typical Urban (TU) Power Delay Profiles					
Delay (µs)	Fractional Power	Doppler Spectrum			
0.0	0.189	CLASS			
0.2	0.379	CLASS			
0.5	0.239	CLASS			
1.6	0.095	GAUS1			
2.3	0.061	GAUS2			
5.0	0.037	GAUS2			

Fig 1. TU power delay profile assumption.

Fig 2. 6-rays Reduced Typical Urban

II. 輸入參數

(1) Number of oscillator: M = 16

Oscillator 的數量越多·也就是 M 越大·會使自相關越來越趨近理想狀態 (相關性越低越好)·在本次實驗中我們將固定 M 值為 16。並且能從 $M=\frac{1}{2}\times(\frac{N}{2}-1)$ 式子中推得 $N=4M+2=4\times16+2=66$,此 N 值在計算 CLASS Doppler Spectrum 的 incoming wave 的入射角 θ 時會用到。

(2) Doppler Spectrum Parameters

GAUS1 與 GAUS2 並非全向性反射,而是來自特定方向,在實驗中我們假設 a_1 及 a_2 兩個反射體的強度 (dB) 如下,而 $v_{11}, v_{21}, v_{12}, v_{22}$ 的值則是根據講義第二章的 P162 與 P163 而定。

	a_1	v ₁₁	v ₂₁	$\mathbf{a_2}$	v ₁₂	v ₂₂
GAUS1	10	-0.8f _m	$0.05f_{\rm m}$	1	$0.4f_{\rm m}$	0.1f _m
GAUS2	1	0.7f _m	0.1f _m	15	-0.4f _m	0.15f _m

Fig 3. Doppler Spectrum Parameters table

(3) MS velocity

在本實驗中測試當 MS 速度為 90 (km/hr) 時的結果。我們假設載波頻 $f_c=2$ (GHz),並可以套用下述的公式來求出其對應的 f_m 值。

1.
$$v = 20 \text{ (km/hr)} \rightarrow f_m = \frac{v}{c} \times f_c = \frac{20 \times 1000}{3600 \times 3 \times 10^8} \times 2 \times 10^9 = 37.0370 \text{ (Hz)}$$

2.
$$v = 90 \text{ (km/hr)} \rightarrow f_m = \frac{v}{c} \times f_c = \frac{90 \times 1000}{3600 \times 3 \times 10^8} \times 2 \times 10^9 = 166.6667 \text{ (Hz)}$$

(4) 6 taps power delay profiles

已在 Part I 的實驗介紹中說明。

III. 輸出結果

(1) Fading gain distribution

下面的 Fig 4. 與 Fig 5. 分別是 MS 速度為 20 (km/hr) 以及 90 (km/hr) 的 Fading gain 分佈狀況。雖然兩張圖的差距很微小,但是仍然可以發現當 MS 移動速度越快時,其分佈範圍會變廣。

Fig 4. Fading Gain Distribution when v = 20(km/hr)

Fig 5. Fading Gain Distribution when v = 90(km/hr)

(2) Time-domain strength profile

下圖 Fig 6. 和 Fig 7. 是將 6 個 tap 合併後的 time-domain strength profile \cdot 分別是 MS 速度為 20 (km/hr) 以及 90 (km/hr) 的狀況。速度越快(環境變動快)會使強度曲線變動得更為劇烈。

Fig 6. Time domain Strength Profile when v = 20(km/hr)

Fig 7. Time domain Strength Profile when v = 90(km/hr)

下方的 Fig 8. Fig 9. Fig 10. 分別提供了當 v = 20(km/hr) 時·CLASS、GAUS1 與 GAUS2 的 time-domain strength profile。

Fig 8. Time Domain Strength Profile of CLASS when v = 20(km/hr)

Fig 9. Time Domain Strength Profile of GAUS1 when v = 20(km/hr)

Fig 10. Time Domain Strength Profile of GAUS2 when v = 20(km/hr)

(3) Time-domain auto-correlation

下圖 Fig 11. 和 Fig 12. 是三種不同 Doppler Spectrum 在 v = 20 (km/hr) 與 v = 90 (km/hr) 的 time-domain auto-correlation。觀察 CLASS、GAUS1、GAUS2 的相關性可以發現 CLASS < GAUS1 < GAUS2。其中 CLASS 的相關性越小;而 GAUS2 的相關性越大,是為 三者中最糟糕的一種情況。此外,可以發現 CLASS 在 v = 90 (km/hr) 的高速環境下,雖 然其相關性下降的較快,但當 Time Delay($f_m \tau$) > 6.2 就會變得不可用,或許可以透過增加 M 值來使其相關性趨近於理想狀態。

Auto-Correlation of each type of Doppler Spectrum

CLASS
GAUS1
GAUS2

0.6

0.4

-0.4

-0.6

-0.8

Time Delay, f_m τ

Fig 11. Comparison in Auto-Correlation when v = 20(km/hr)

Fig 12. Comparison in Auto-Correlation when v = 90(km/hr)

下面的 Fig 13.(v = 20(km/hr)) 和 Fig 14.(v = 90(km/hr)) 則是將 6 個 tap 合併後的自相關結果圖。也可以發現當 MS 速度增加後其自相關會越偏離理想值。

Fig 13. Time-domain Auto-Correlation of the 6 taps combination when v = 20(km/hr)

Fig 14. Time-domain Auto-Correlation of the 6 taps combination when v = 90(km/hr)

(4) Level crossing rate (LCR)

LCR 是對訊號衰落快慢的一種度量,結果請看下圖 Fig 15. 和 Fig 16.。

Level Crossing Rate 10⁰ 10⁻¹ Level crossing rate 10⁻² 10⁻³ 10⁻⁴ – -20 Level (dB)

Fig 15. Level Crossing Rate when v = 20(km/hr)

Fig 16. Level Crossing Rate when v = 90(km/hr)

(5) Average fade duration

下圖 Fig 17. 與 Fig 18. 為不同 MS 速度下的 Average fade duration 圖形。我們可觀察到 fade duration 會隨著 level (dB) 的增加而增加,而最終會到達實驗總運行時間,在本實驗中 我們設定的運行時間為 8 秒。

Fig 17. Average Fade Duration when v = 20(km/hr)

Fig 18. Average Fade Duration when v = 90(km/hr)

(6) Coherence time (T_c)

1.
$$v = 20 (km/hr) \rightarrow f_m = 37.0370 (Hz) \rightarrow T_c = \frac{1}{6} = \frac{1}{27.0370} = 0.027 (sec)$$

1.
$$v = 20 (km/hr) \rightarrow f_m = 37.0370 (Hz) \rightarrow T_c = \frac{1}{f_m} = \frac{1}{37.0370} = 0.027 (sec)$$

2. $v = 90 (km/hr) \rightarrow f_m = 166.6667 (Hz) \rightarrow T_c = \frac{1}{f_m} = \frac{1}{166.6667} = 0.006 (sec)$

(7) Frequency-domain strength profile

下方的 Fig 19. 與 Fig 20. 為 Frequency-domain 的 strength profile。同樣地,以下結果也是由 6 個 tap 組合後所產生,其中包括了 CLASS、GAUS1、GAUS2。

Frequency-domain Strength Profile

100

100

100

200

300

400

500

Frequency (f/f_m)

Fig 19. Frequency-domain Strength Profile when v = 20(km/hr)

Fig 20. Frequency-domain Strength Profile when v = 90(km/hr)

(8) Frequency-domain auto-correlation

以下 Fig 21. 和 Fig 22. 將 6 個 taps 合併後轉頻域再取自相關後的結果。同樣是在 v = 20(km/hr) 和 v = 90(km/hr) 下實驗。

Fig 21. Frequency Domain Auto-Correlation of 6 taps combination when v = 20(hm/hr)

Fig 22. Frequency Domain Auto-Correlation of 6 taps combination when v = 90(hm/hr)

(9) Coherence bandwidth & Delay spread

根據以下公式來計算 Delay spread,從而推得 Coherence bandwidth。

Mean Delay =
$$\bar{\tau} = \frac{\int_0^\infty \tau A_c(\tau) d\tau}{\int_0^\infty A_c(\tau) d\tau}$$

Rms Delay Spread = $\tau_{\rm rms} = \sqrt{\frac{\int_0^\infty (\tau - \bar{\tau})^2 A_c(\tau) d\tau}{\int_0^\infty A_c(\tau) d\tau}}$

其中 au 就是 Delay \cdot $A_c(au)$ 其 Delay 所對應的 Fractional power \cdot 根據上兩式可求出

Delay spread(D) =
$$\tau_{rms}$$
 = 1.0552(μ s)

Coherence bandwidth(B_c) =
$$\frac{1}{D}$$
 = 947704(*Hz*) = 948(KHz)

(10) Doppler spread

以下計算 Doppler spread (Bd)

1.
$$v = 20(km/hr) \rightarrow B_d = \frac{1}{r} = \frac{1}{0.027} = 37.0370(Hz)$$

1.
$$v = 20(km/hr) \rightarrow B_d = \frac{1}{T_c} = \frac{1}{0.027} = 37.0370(Hz)$$

2. $v = 90(km/hr) \rightarrow B_d = \frac{1}{T_c} = \frac{1}{0.006} = 166.6667(Hz)$

(11) Doppler spectrum

為了使形成的圖形可以接近第二章講義的 P161、P162 及 P163,因此我們調整其 Power delay 下 profiles 如下 Fig 23.。而 Fig 24.、Fig 25.、Fig 26. 分別為 CLASS、GAUS1、GAUS2 的 Doppler Spectrum °

雖然其 Doppler Spectrum 曲線沒有很平緩,但仍能看出 CLASS 的 Doppler Spectrum 趨近 於一個 U Shape;而 GAUS1 與 GAUS2 則是因為訊號入射角的兩強度 a₁, a₂ 不同而導 致正負頻訊號強度一高一低。

Reduced Typical Urban (TU) Power Delay Profiles					
Delay (μs)	Fractional Power	Doppler Spectrum			
0.0	0.189	CLASS			
0.2	0.379	CLASS			
0.5	0.239	CLASS			
1.6	0.095	GAUS1			
2.3	0.061	GAUS2			
5.0	0.037	GAUS2			

Fig 23. New TU power delay profile assumption.

Fig 24. CLASS Doppler Spectrum

Fig 25. GAUS1 Doppler Spectrum

Fig 26. GAUS2 Doppler Spectrum

(12) Cross-correlation between different paths

下圖 Fig 27. 與 Fig 28. 分別是 MS 速度 v = 20(km/hr) 與 v = 90(km/hr) 時, CLASS&GAUS1(tap1&tap4)、GAUS1&GAUS2(tap4&tap5)、CLASS&GAUS2(tap1& tap5)的 cross-correlation 圖形。

Fig 27. Cross-Correlation Between Different paths when v = 20(km/hr)

Fig 28. Cross-Correlation Between Different paths when v = 90(km/hr)