

K-Means and Support Vector Machines

Introduction and examples 13th of November 2018

Part I

What kind of problem do I have?

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Classification Problems

Yappiness

Classification Problems

Yappiness

What if we have no training data?

Yappiness

Intuitions: We know that there are two types of thing represented in the data

Blueberry Content

Algorithm:

Pick some random centre points in our parameter space

Algorithm:

- 1. Pick some random centre points in our parameter space
- Calculate distance between all data and all centre points

Algorithm:

- 1. Pick some random centre points in our parameter space
- 2. Calculate distance between all data and all centre points
- Assign every datum to a centre point

Algorithm:

- 1. Pick some random centre points in our parameter space
- 2. Calculate distance between all data and all centre points
- 3. Assign every datum to a centre point
- Set centre points to means of each cluster

Yappiness

Algorithm:

- 1. Pick some random centre points in our parameter space
- 2. Calculate distance between all data and all centre points
- 3. Assign every datum to a centre point
- 4. Set centre points to means of each cluster
- 5. Repeat

Intuitions: We know that there are two types of thing represented in the data Blueberry Content

Yappiness

Algorithm:

- 1. Pick some random centre points in our parameter space
- Calculate distance between all data and all centre points
- 3. Assign every datum to a centre point
- 4. Set centre points to means of each cluster
- 5. Repeat

Yappiness

Algorithm:

- Pick some random centre points in our parameter space
- 2. Calculate distance between all data and all centre points
- 3. Assign every datum to a centre point
- 4. Set centre points to means of each cluster
- 5. Repeat

K-Means issue #1

Sensitive to scale

Performs badly where parameters have differing variance

https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means?answertab=oldest#tab-top

Dr Joe Fennell | Jodrell Bank Centre for Astrophysics, University of Manchester, UK | joseph.fennell@manchester.ac.uk

K-Means issue #2

Local Minima

Can be improved using KMeans++

https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means?answertab=oldest#tab-top

Dr Joe Fennell | Jodrell Bank Centre for Astrophysics, University of Manchester, UK | joseph.fennell@manchester.ac.uk

K-Means issue #3

It will cluster non-clustered data https://stats.stackexchange.com/guestions/133656/how-to-understa nd-the-drawbacks-of-k-means?answertab=oldest#tab-top

But what if we have a training set?

Yappiness

Simple approach?

- Calculate the arithmetic mean of each class
- Classify a new point by calculating the distance to each mean point and finding * the minimum geometric distance

Simple approach?

- Calculate the arithmetic mean of each class
- Classify a new point by calculating the distance to each mean point and finding * the minimum geometric distance
- But this only holds if our parameters are normally distributed

Simple approach?

A solution?

Instead of finding the centres of the cluster, let's focus our efforts on finding margins

A new intuition

SVM

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 $\stackrel{ ext{s.t.}}{\swarrow} \text{s.t.} \quad y^{(i)}(w^T)$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, i = 1, ..., m$

Pretty Simple?

http://cs229.stanford.edu/notes/cs229-notes3.pdf

(Full notes on SVM)

Non-separable cases

Summary points

- K-means is great for 'well-behaved' data in low dimensional feature space but performs badly in high dimensional feature space
- Classifying in terms of the mean is somewhat difficult with less well behaved data - other clustering techniques
- For supervised learning, SVM can be really successful but is costly to train with very large data