

Cap.6 Iluminação

Engenharia Informática (5385)

- 2º ano, 2º semestre

Motivação)

- Modelo de Iluminação = aproximação da iluminação do mundo real
- Sensação da 3-dimensionalidade, percepção da profundidade
- Na maior parte das aplicações, usa-se o modelo de iluminação de Phong porque é temporalmente mais eficiente e porque permite uma representação bastante aproximada do mundo real.

Modelos de iluminação independentes da luz

- Coloração em Profundidade (Depth Shading)
 - Cor ou intensidade determinada somente pela "profundidade" do polígono.
 - Cores ou intensidades mais escuras em pontos de maior profundidade no objecto: por exemplo, na modelação de superfícies terrestres.
 - Evita os cálculos complexos dos modelos dependentes da luz.
 - Faz uma simulação realística.
- Percepção da Profundidade (Depth Cueing)
 - Reduz a intensidade do pixel quando a distância ao observador aumenta.
 - Simula a redução em claridade quando a distância ao observador aumenta.
 - A imagem desvanece com a distância.
 - Frequentemente usada em imagiologia médica.

Modelos de iluminação dependentes da luz

- O que um objecto parece depende de:
 - Propriedades da fonte de luz, tais como: cor, distância entre a fonte de luz e o objecto, direcção definida pela fonte de luz e pelo objecto, intensidade da fonte de luz
 - Características da superfície do objecto, tais como: cor e propriedades de reflexão
 - Localização do observador.
- A luz que incide na superfície dum objecto pode ser:
 - Reflectida (reflexão difusa & reflexão especular)
 - Absorvida
 - Transmitida (translucente ou transparente)
 - Combinação das três anteriores

Modelos de iluminação baseados na luz

- Iluminação Directa ou Local
 - Interacção simples entre luz & objectos
 - Processo em tempo-real suportado pela OpenGL
 - Exemplo: modelo de iluminação de Phong
- Iluminação Indirecta ou Global
 - Interacção múltipla entre luz & objectos:
 reflexões entre objectos, sombras e refracções
 - □ Não é em tempo-real (ainda)
 - Exemplos: raytracing, radiosidade, photon mapping ...

Sobrevisão: modelos baseados na luz

- Iluminação Directa ou Local
 - Tipos de Luz
 - Fontes de Luz (emissão)
 - Materiais da superfície dos objectos (reflexão)
- Iluminação Indirecta ou Global
 - □ Sombras
 - □ Refracções
 - □ Reflexões entre objectos

Tipos de Luz

Luz Ambiente

- Vem de todas as direcções; quando atinge a superfície, espalha-se igualmente em todas as direcções.
- Consequência do espalhamento da luz: não depende do ponto de vista (do observador).

Luz Difusa

- Vem de <u>uma direcção</u>; quando atinge a superfície, espalha-se igualmente em <u>todas as direcções</u>.
- Consequência do espalhamento da luz: não depende do ponto de vista (do observador).

Luz Especular

- Vem de <u>uma direcção</u>; tende a reflectir na superfície <u>numa direcção</u> <u>preferencial</u>.
- Consequência do espalhamento da luz: depende do ponto de vista (do observador).

Tipos de Luz (cont.)

Luz Ambiente

- Pode ser usada para dar a sensação da cor principal do ambiente.
- Contribuições:
 - iluminação em contra-luz tem uma grande percentagem de luz ambiente
 - um foco de luz fora-de-portas tem uma percentagem muito pequena de luz ambiente

Luz Difusa

- É o tipo de luz que mais se aproxima da cor da luz.
- Contribuições:
 - qualquer luz que venha duma posição ou direcção particular

Luz Especular

- É a luz que mais se aproxima da luz unidireccional.
- Contribuições:
 - um feixe laser bem-colimado que incida num espelho de elevada qualidade produz quase 100 porcento de reflexão especular
 - um metal brilhante tem uma elevada componente de luz especular
 - o giz não reflecte quase nenhuma luz especular

Fontes de luz e material

Fontes de Luz

- Tipos:
 - ambiente, posicional, direccional, cónica
- □ Cor
 - A cor de luz emitida é dada pelas quantidades de luz vermelha, verde e azul.
- Número
 - Cada fonte de luz pode ser ligada ou desligada.
- Tipos de luz emitida: ambiente, difusa, especular

Material da Superfície

- Especifica como a luz é reflectida (e absorvida)
 - A cor do material é dada pela <u>percentagem</u> das componentes vermelha, verde e azul que são <u>reflectidas</u> em várias direcções.
 - Superfícies diferentes têm propriedades diferentes; algumas são brilhantes,pelo que reflectem preferencialmente a luz em certas direcções, ao passo que outras espalham igualmente a luz em todas as direcções. A maior parte das superfícies situam-se entre os dois extremos anteriores.
- Tipo de luz emitida: emitida
- Tipos de luz reflectida: ambiente, difusa, especular.

Modelação de Fontes de Luz

- Modelo da Fonte de Luz: $I_L(P, \vec{D}, \lambda)$
 - descreve a intensidade de energia,
 - que sai da fonte de luz
 - $_{\square}$ e que chega à posição P(x,y,z)
 - $_{\square}$ vinda da direcção D (vector normalizado)
 - com comprimento de onda λ

Tipos de Fontes de Luz

São os seguintes:

- Fonte de luz ambiente
- Fonte de luz pontual
- Fonte de luz direccional
- Fonte de luz cónica (spotlight)

fonte de luz pontual

fonte de luz direccional

fonte de luz cónica

Fonte de Luz Ambiente

- Um objecto que não esteja
 directamente iluminado é ainda visível
 - por causa da luz reflectida a partir doutras superfícies
- Modelada por uma simples fonte de luz ambiente
 - Em vez de calcular as reflexões nas superfícies dos objectos, especifica-se uma luz ambiente constante para todas as superfícies
 - Definida somente pelas intensidades de luz ambiente RGB
- Intensidade da luz ambiente I_L que chega a um ponto P(x,y,z): $I(P,I_L) = I_L$

Luz Ambiente Global em OpenGL

- Não vem de nenhuma fonte de luz em particular.
- Permite-nos ver objectos numa cena mesmo que nela não haja quaisquer fontes de luz.
- A sua intensidade RGBA é especificada pelo parâmetro GL_LIGHT_MODEL_AMBIENT como se segue:

```
Exemplo: (Luz Ambiente Global)

// sets global ambient light

GLfloat lmodel_ambient[]={0.2,0.2,0.2,1.0};

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
```


Fonte de Luz Direccional

- Modela uma fonte de luz pontual no infinito (e.g. sol)
 - Definida pelas intensidades de luz emitida RGB de todos os tipos, e
 - $_{\square}$ pela direcção $\stackrel{.}{D}$
- A direcção é importante para calcular a luz reflectida
- Intensidade da luz I_L que chega ao ponto P(x,y,z):

$$I(P, \vec{D}, I_L) = I_L$$

nenhuma atenuação com a distância

Fonte de Luz Pontual

- Luz emitida a partir dum ponto duma forma radial em todas as direcções (fonte omni-direccional)
 - Definida pelas intensidades de luz (RGB) emitida de todos os tipos,
 - \Box pela posição L(x,y,z), e
 - pelos factores (k_c, k_l, k_q) de atenuação com a distância d a P(x,y,z)
- Intensidade da luz pontual I_L que chega a P(x,y,z):

lâmpada

$$I(P, L, k_c, k_l, k_q, I_L) = \frac{I_L}{k_c + k_1 d + k_q d^2}$$

Fonte de Luz Cónica

- Luz emitida num cone (e.g. candeeiro Luxo Jr.)
 - Definida pelas intensidades de luz (RGB) emitida de todos os tipos,
 - pela posição L, direcção D, expoente de recorte do holofote
 - pelos factores de atenuação constante, linear e quadrática (k_c, k_l, k_a)
- Intensidade da luz de holofote I_L que chega ao ponto P (x,y,z):

$$I(P, L, k_c, k_1, k_q, I_L) = \frac{I_L(\vec{D} \cdot \vec{L})}{k_c + k_1 d + k_q d^2}$$

Direcção e Posição das Fontes de Luz em OpenGL

- Fonte de luz direccional. Está localizada no infinito relativamente à cena.
- Fonte de luz pontual ou posicional. A sua distância à cena é finita.♪

Exemplo: (Fonte de Luz Direccional)

```
// sets GL_LIGHT0 with direction (x=1.0,y=1.0,z=1.0) at an infinite position (w=0.0) in homogeneous coordinates Glfloat light_position[]={1.0,1.0,1.0,0.0}; glLightfv(GL_LIGHT0, GL_POSITION, light_position);
```

Exemplo: (Fonte de Luz Pontual ou Posicional)

```
// sets GL_LIGHT0 at the position (x=1.0,y=1.0,z=1.0) that is finite (w\neq0.0) in homogeneous coordinates Glfloat light_position[]={1.0,1.0,1.0,1.0}; qlLightfv(GL_LIGHT0, GL_POSITION, light_position);
```


Direcção e Posição de Fontes de Luz em OpenGL (cont.)

- À semelhança da fonte de luz pontual, uma fonte luz de holofote (spot light) é também uma fonte de luz <u>posicional</u>.
- Fonte de luz pontual. Por defeito, a propriedade spotlight está inactiva porque o parâmetro GL_SPOT_CUTOFF é 180.0 graus. Este valor significa que a luz é emitida em todas as direcções (o ângulo no ápice do cone é 360 graus, ou seja, não é um cone afinal de contas).
- Fonte de luz de holofote. O valor do ângulo de recorte GL_SPOT_CUTOFF do holofote está limitado ao intervalo [0.0,90.0]. Exemplo: (Fonte de Luz do Holofote)

```
// sets GL_LIGHT0 as a spotlight with a cutoff angle of 30 degrees
glLight(GL_LIGHT0, GL_SPOT_CUTOFF, 30.0);

// sets spotlight's direction or the light cone axis
Glfloat spot_direction[]={-1.0,-1.0,0.0};
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction);
```


Cor da Luz Emitida por uma Fonte de Luz em OpenGL

- A OpenGL permite associar 3 parâmetros de cor a <u>qualquer</u> fonte de luz particular :
 - □ **GL_AMBIENT**. É a intensidade RGBA da luz ambiente que uma fonte de luz particular adiciona à cena.
 - Valores RGBA por omissão: (0.0,0.0,0.0,1.0) ⇒nenhuma luz ambiente
 - GL_DIFFUSE. É a intensidade RGBA da luz difusa que uma fonte de luz particular adiciona à cena.
 - Valores RGBA por omissão: (1.0,1.0,1.0,1.0) para a LIGHT0 (⇒brilhante, luz difusa branca) e (0.0,0.0,0.0,0.0) para qualquer outra fonte de luz.
 - GL_SPECULAR. É a intensidade RGBA da luz especular que uma fonte de luz particular adiciona à cena.
 - Valores RGBA por omissão: (1.0,1.0,1.0,1.0) para a LIGHT0 e (0.0,0.0,0.0,0.0) para qualquer outra fonte de luz.

Cor da Luz Emitida por uma Fonte de Luz em OpenGL (cont.)

Exemplo: (Cor da Luz Ambiente, Difusa e Especular)

```
// sets the ambient component of GL_LIGHT0
Glfloat light_ambient[]={0.0,0.0,1.0,1.0};  // blue color
Glfloat light_diffuse[]={1.0,1.0,1.0,1.0};  // white color
Glfloat light_specular[]={1.0,1.0,1.0,1.0};  // white color
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
```


Componentes de Luz

■ A imagem ao lado mostra os efeitos da luz ambiente (canto superior esquerdo), da luz difusa (canto superior direito), luz especular (canto inferior esquerdo), e todas as 3 componentes combinadas (canto inferior direito).

Sobrevisão: modelos baseados na luz

- Iluminação Directa ou Local
 - □ Tipos de Luz
 - □ Fontes de Luz (emissão)
 - Materiais da superfície dos objectos (reflexão)
- Iluminação Indirecta ou Global
 - Sombras
 - □ Refracções
 - □ Reflexões entre objectos

Modelo da Reflexão da Luz na Superfície dum Objecto

- $\blacksquare R(\theta, \phi, \gamma, \psi, \lambda)$
 - Descreve a quantidade de energia incidente na superfície
 - \Box que vem da direcção (θ,ϕ)
 - e que reflecte segundo a direcção (γ,ψ)
 - $_{\square}$ com o comprimento de onda λ

Modelo de Reflexão

- Modelo Analítico Simplificado:
 - ¬ Reflexão difusa +
 - Reflexão especular +
 - → Emissão +
 - Ambiente

Baseado no modelo proposto por Phong

Reflexão Difusa

- Um reflector difuso ideal, a nível microscópico, é uma superfície muito rugosa (exemplo do mundo real: giz)
- Devido a estas variações microscópicas, um raio de luz incidente é igualmente reflectido em todas as direcções acima do hemisfério definido pela superfície.
- Ou seja, assume-se que a superfície reflecte igualmente em todas as direcções.

Reflexão Difusa

- Como é que a luz é reflectida?
 - \Box Depende do ângulo θ da luz incidente.
 - Quanto maior é o valor de θ , menor é a quantidade de luz reflectida.
 - A quantidade de luz reflectida depende da posição da fonte de luz e da posição do objecto, mas é independente da posição do observador.

Reflexão Difusa

Modelo Lambertiano

Lei dos Cosenos de Lambert (producto interno)

A intensidade de luz difusa I_D reflectida pela superfície no ponto P (x,y,z) é proporcional ao coseno do ângulo entre o vector dia direcção da fonte de luz e o vector normal \vec{N} à superfície em P(x,y,z).

- $_{\square}$ I_{D} = intensidade de luz difusa reflectida
- □ I = intensidade da fonte de luz em P(x,y,z)
- Arr = coeficiente de reflexão da superfície (0<= K_D <=1)
- \Box $\theta =$ entre 0 e 90 graus

$$I_D = K_D I \cos \theta$$

$$\vec{N} \vec{I}$$

com
$$\cos \theta = \frac{\vec{N} \cdot \vec{L}}{\|\vec{N}\| \|\vec{L}\|} = \vec{N} \cdot \vec{L}$$
,

em que \vec{N} e \vec{L} são vectores unitários

$$I_D = K_D \left(\vec{N} \cdot \vec{L} \right) I$$

Reflexão Especular

- Reflexão é mais intensa junto do ângulo de reflexão
 - Exemplos: espelhos, metais
 - Visível quando o ângulo θ da luz incidente é igual ao ângulo de luz reflectida em direcção ao observador.

- \Box Depende do ângulo θ da luz incidente
- $_{\square}$ e do ângulo lpha ao observador
- Se o reflector não é perfeito, a intensidade da luz reflectida diminui rapidamente quando o ângulo α ao observador aumenta relativamente ao ângulo de incidência.

Reflexão Especular

Modelo de Phong

 \Box (cos α)ⁿ

- □ n = expoente de reflexão
 especular (reflector perfeito n=∞)
- □ I_S = intensidade de luz especular reflectida
- \Box *I* = intensidade de luz em P(x,y,z)
- $□ K_S$ = coeficiente de luz especular reflectida (0<= K_S <=1)
- \Box θ = entre 0 e 90 graus

$$I_S = K_S I(\cos \alpha)^n$$

$$\vec{V}.\vec{R} = \vec{x}$$

$$\cos \alpha = \frac{\vec{V} \cdot \vec{R}}{\|\vec{V}\| \|\vec{R}\|} = \vec{V} \cdot \vec{R},$$

e \vec{V} e \vec{R} vectores unitários

$$I_S = K_S \left(\vec{V} \cdot \vec{R} \right)^n I$$

Luz emissiva gerada por uma fonte de luz superficial

- É produzida por uma fonte de luz superficial, não por uma fonte de luz pontual.
- Representa a luz emitida directamente por um <u>polígono</u> ou disco dum objecto.
- Isto é preciso porque alguns objectos do mundo-real, nomeadamente lâmpadas, emitem luz.
- Assim, se uma lâmpada faz parte duma cena, temos de especificar não só a sua fonte de luz posicional, mas também que o material da sua superfície emite luz.

$$I_{EL} = I_E$$

Luz emissiva duma fonte de luz superficial em OpenGL

- Pela especificação duma cor RGBA para GL_EMISSION, podemos fazer com que um objecto pareça emitir luz daquela cor.
- Dado que os objectos do mundo-real (excepto luzes) não emitem luz, podemos usar o parâmetro GL_EMISSION para simular o funcionamento de lâmpadas e outras fontes de luz de uma cena..
- Contudo, uma fonte de luz superficial não funciona realmente como uma fonte de luz. Para conseguir tal efeito, é necessário também criar uma fonte de luz e posicioná-la na mesma posição que o objecto emissivo de luz.

Exemplo: (Luz emissiva a partir do material da superfície dum objecto)

```
Glfloat mat_emission[]={0.3,0.2,0.2,0.0};
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
```


Reflexão Ambiente

- Representa a reflexão de toda a iluminação indirecta
 - Luz ambiente que resulta da iluminação duma cena através da luz reflectida pelos objectos existentes na cena.
 - Calcular a luz ambiente duma forma exacta seria <u>muito</u> complicado.
 - Por isso, adopta-se o modelo simplificado que assume que a luz ambiente é uniforme em todo o ambiente.
 - □ *I_{AL}* = intensidade de luz ambiente reflectida
 - K_A = coeficiente de luz ambiente reflectida
 - \Box I_A = intensidade de luz ambiente \triangleright

$$I_{AL} = K_A I_A$$

Isto evita a complexidade da iluminação global!

Modelo de Reflexão

- Modelo Analítico Simplificado:
 - Reflexão difusa +
 - Reflexão especular +
 - Emissão +
 - ¬ "Ambiente"

Modelo de Reflexão

 Soma das Componentes Difusa, Especular, Emissiva e Ambiente

Phong	Pambient	$\rho_{diffuse}$	Pspecular	$\rho_{ m total}$
$\phi_i = 60^{\circ}$				
$\phi_i = 25^{\circ}$	•			
$\phi_i = 0^{\circ}$	•			

Cálculo da Iluminação da Superfície

■ 1 Fonte de Luz:

$$I = I_E + K_A I_A + K_D \left(\vec{N} \cdot \vec{L} \right) I + K_S \left(\vec{V} \cdot \vec{R} \right)^n I$$

Cálculo da Iluminação da Superfície

Várias Fontes de Luz:

$$I = I_E + K_A I_A + \sum_{i=1}^{\# lights} [K_D (\vec{N} \cdot \vec{L}_i) + K_S (\vec{V} \cdot \vec{R}_i)^n] I_i$$

Materiais em OpenGL

- As propriedades do material dum objecto definem como ele interage com as fontes de luz por forma a produzir a sua cor final.
- As propriedades do material são definidas através de:

```
glMaterial{fi}(GLenum face,GLenum pname,T param);
glMaterial{fi}v(GLenum face,GLenum pname,T *params);
```

 Os objectos podem ter materiais diferentes para os polígonos visíveis (anteriores) e para os polígonos ocultos (posteriores).

Propriedades dos Materiais em OpenGL

- GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, e
 GL_SPECULAR são usadas para definir como o material interage com
 as componentes respectivas da fonte de luz.
- GL SHININESS controla o extensão do realce ou brilho especular.
- GL_EMISSION controla a quantidade de luz que um objecto emite.

Cor do Material em OpenGL

- Normalmente, quando a iluminação é activada, a cor primária (especificada por glColor()) é ignorada.
- Contudo, pode ser conveniente mudar as cores do material através de glColor() em vez de usar glMaterial(). Isto é possível se se activar a cor do material com:

```
glEnable(GL_COLOR_MATERIAL);
```

 As componentes de material (ambiente, difusa, ambiente e difusa, ou especular) e as faces (anteriores, posteriores, ou ambas) afectadas pela cor do material podem ser controladas com:

```
glColorMaterial(GLenum face, GLenum mode);
```


Normais em OpenGL

A normal corrente é activada com:

```
void glNormal3{bsifd}(TYPE nx, TYPE ny, TYPE nz);
void glNormal3{bsifd}v(const TYPE *v);
```

As normais devem ter comprimento unitário para que os resultados sejam correctos. Se a matriz modelview mudar o comprimento das suas normais, há que renormalizá-los usando:

```
glEnable(GL NORMALIZE);
```

■ Se se variar a escala dum modo uniforme, uma forma alternativa a GL NORMALIZE é:

```
glEnable(GL_RESCALE_NORMAL);
```


The Lighting Model in OpenGL

O modelo de iluminação pode ser modificado usando:

```
void glLightModel{if}(GLenum pname, TYPE param);
void glLightModel{if}v(GLenum pname, const TYPE *param);
```

- As propriedades que podemos modificar incluem as seguintes:
 - ☐ GL LIGHT MODEL AMBIENT controla a luz ambiente global aplicada a todos os aobjectos
 - GL_LIGHT_MODEL_LOCAL_VIEWER controla se o observador está no infinito (modelo menos aproximado) ou está na posição da câmara (modelo mais aproximado)
 - GL LIGHT MODEL TWO SIZE controla se a iluminação é calculada para as faces anteriores e posteriores separadamente ou não.
 - □ GL_LIGHT_MODEL_COLOR_CONTROL permite que a OpenGL interpole a cor especular separadamente, aplicando-a então após a texturização, por forma a preservar os brilhos reflexos.

Sobrevisão: modelos baseados na luz

- Iluminação Directa ou Local
 - Tipos de Luz
 - □ Fontes de Luz (emissão)
 - Materiais da superfície dos objectos (reflexão)
- Iluminação Indirecta
 - ou Global
 - □ Sombras
 - □ Refracções
 - □ Reflexões entre objectos

