Homework 3 STATS 449 (Due 10-11)

Instructions: Use R for all problems in this homework. **Attach** and annotate R output where relevant. Late homework cannot be accepted.

1) A study investigated factors that affect whether the female crab had any other males, called *satellites*, residing nearby her. The female crab's carapace width x_i , measured in centimeters, is believed to affect this. For eight groups of crabs, the data below shows the number of crabs having satellites and the average width.

	Number of Crabs		
	Having Satellites		
Width (x_i)	Yes	No	
22.69	2	13	
23.84	6	14	
24.77	7	23	
25.84	18	22	
26.79	13	12	
27.74	22	3	
28.67	15	5	
30.41	15	1	

Let y_i be the number yes in each row and fit the logistic regression model (use the actual x_i values given, not $1, 2, \ldots, 8$)

$$y_i \sim \text{Binomial}(n_i, p_i)$$

$$\log\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta x_i \qquad i = 1, \dots, N$$

- a) Make a scatterplot of x versus the sample logits. Does there appear to be a linear trend?
- b) What is G^2 and the degrees of freedom for this model? Does the model fit well? Explain.
- c) When width increases by 1 centimeter, what is the estimated odds ratio that a crab will have a satellite? Calculate a 95% confidence interval for the estimate.
- d) When width increases by 2.5 centimeters, what is the estimated odds ratio that a crab will have a satellite? Calculate a 95% confidence interval for the estimate.

2) The table below shows results from a three-center clinical trial designed to assess the effects of a new drug for treating infections. At each center subjects were randomly assigned to the placebo and drug groups. Use $\alpha=0.05$ in any tests of significance.

		Infection (Y)	
Center (Z)	Group (X)	Yes	No
1	Placebo	281	319
	Drug	182	418
2	Placebo Drug	252 160	248 340
3	Placebo Drug	204 114	196 286

a) Fit the sequence of logistic regression models shown below and fill in the values for degrees of freedom and G^2 . For the X variable, code Placebo equal to 1 and Drug equal to 0.

Model	df	G^2
α		
$\alpha + \beta_i^X$		
$\alpha + \beta_k^Z$		
$\alpha + \beta_i^X + \beta_k^Z$		

- b) State the hypothesis of conditional independence between X and Y and use your results from the table above to give the value of the test statistic, the critical value, and your conclusion.
- c) State the hypothesis of homogeneity of odds ratios between X and Y and use your results to give the value of the test statistic, the critical value, and your conclusion.
- d) Do your results support calculation of a common odds ratio? If so, report it along with a 95% confidence interval. Interpret the results.
- e) Is a collapsibility condition satisfied for collapsing the partial X Y tables into the marginal X Y table? Must explain why or why not.