0
2

First name(s)

Surname

GCE A LEVEL

1400U30-1

Centre

Number

THURSDAY, 5 JUNE 2025 - AFTERNOON

BIOLOGY – A2 unit 3 Energy, Homeostasis and the Environment

2 hours

Question	Maximum Mark	Mark Awarded			
1.	8				
2.	12				
3.	13				
4.	17				
5.	14				
6.	17				
7.	9				
Total	90				

ADDITIONAL MATERIALS

A calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 7.

The quality of written communication will affect the awarding of marks.

4000301

Answer all questions.

Following digestion of lipids, fatty acids become available as an energy source.
 Image 1 shows how fatty acids are metabolised in cells.

Image 1

(a)	Name the following shown in Image 1:	[2]
	the organelle where fatty acid metabolism takes place;	
	PLANA CONTRACTOR CONTR	
	the pathway labelled P;	
	the pathway labelled Q ;	
	- ADDROGADA	
	the enzyme contained in the structure labelled Z.	

(b) During fatty acid metabolism fatty acids are broken down to 2-carbon fragments.

	Examiner only
er .	
[1]	
[2]	(Carry)
	14000130
[2]	
-	
[1]	
HORS	

	Each 2-carbon fragment is converted to one molecule of acetyl CoA. The acetyl CoA enters pathway P . State how many molecules of the following compounds will be generated from one molecule of acetyl CoA directly from pathway P .	[1]
	Reduced NAD	
	Reduced FAD	
	ATP	
(c)	 Describe what is represented by the arrows on the following structures in Image 1. 	
	I. Proteins: V, X and Y;	[2]
		-
	II. Structure Z .	[2]
		7
	(ii) Water is formed as part of pathway Q .	
	State the role of oxygen in this pathway.	[1]
		8
8		

 (a) One theory for the process of non-cyclic photophosphorylation is summarised in Image 2.1.

Image 2.1

(i) Use the abbreviations given in Table 2.2 to label the four components shown as rectangles in Image 2.1.

You may use each term once, more than once or not at all. [2]

Table 2.2

Component	Abbreviation
Chloroplast Stroma	cs
Electron Acceptor	EA
Light harvesting pigments	LHP
Photosystem I	PSI
Photosystem II	PSII

(ii)	For each pair of electrons passing through the process two molecules of ATP a produced.	are
	Draw and label an arrow on Image 2.1 to show where and how ATP is produced.	[2]
(iii)	State the biological term for the process labelled water splitting in Image 2.1.	[1]
(iv)	Describe what happens to the following products of water splitting.	
	I. Protons (hydrogen ions);	[1]
	II. Oxygen atoms.	[1]
(v)	Describe how the energy from the photons shown in Image 2.1 would be used photophosphorylation.	in [1]

Image 3.1A shows three planes of section of the human body. Image 3.1B shows a section through the human abdomen.

Image 3.1A

Image 3.1B

Posterior of body

(a) Answer the following questions about the section through the abdomen shown in Image 3.1B.

(i) Identify the plane of the section shown in Image 3.1B.

[1]

(ii) Name the two blood vessels labelled in Image 3.1B.

[1]

(iii) State which of the regions of the kidney, labelled X, Y or Z, on Image 3.1B is the site of ultrafiltration.

.....

© WJEC CBAC Ltd.

The filtration barrier in a nephron has three components. **Image 3.2** shows a diagrammatic representation of the three components. The values given represent the effective pore size of each component.

Image 3.2

Diagram not drawn to scale

Table 3.3 shows the diameters of some components of blood.

Table 3.3

Component	Diameter/nm
red blood cells	7000
albumin (plasma protein)	7.1
glucose	1.0

(b) With reference to Image 3.2 and Table 3.3, complete Table 3.4 to explain the presence or absence of albumin and glucose in the glomerular filtrate. [2]

Table 3.4

Component of blood	Present in glomerular filtrate	Reason					
albumin	no						
glucose	yes						
		(1995) 9110000 (1995) 1995					

Question continued overleaf

(c) (i) The total length of the capillaries in a single glomerulus is 95 mm, and one kidney contains one million glomeruli. The mean radius of glomerular capillaries is 0.002 mm.

Use the formula below to calculate the total area of the capillary walls in one kidney. Give your answer in standard form.

[3]

Area of capillary walls in one kidney = $2\pi r \ln$.

where

 $\pi = 3.14$,

r = radius,

I = length of capillaries in a single glomerulus,

n = the number of glomeruli in a kidney

Total area of the capillary walls in one kidney =

 $\,\mathrm{mm}^2$

Image 3.5 shows a part of a filter from a dialysis machine cut in half. It contains about 10 000 hollow fibres which form the filtration membrane.

The estimated total area of the filtration membrane in the dialysis machine is $2.2 \,\text{m}^2$ (1 $\,\text{m}^2$ = 1 \times 10⁶ $\,\text{mm}^2$).

Image 3.5

dialysis fluid out

	(ii) Give one reason why the estimate of the area for the dialysis filter is likely to be more accurate than the calculated area for the capillary walls of the kidney. [1]	Examir
	Section 1	
	(iii) Explain why having a large surface area is important in ultrafiltration. [1]	
(d)	Alport syndrome is a genetic condition that results in the thickening of the basement membranes in the glomeruli. It is caused by an X-linked recessive allele.	in the second se
	(i) Suggest how the filtration rate would be affected in Alport syndrome. Explain your answer. [1]	
	(ii) State what is meant by the term X-linked. Explain why males are more likely to have Alport syndrome than females. [2]	
		13

(a) State what is Explain why a	meant b transed	y the ter at is prefe	m trans erred o	sect. ver ra	ndom	distribu	tion of	quadra	ats in t	his situ	ıaı
45											
ä											
2											
Image 4.1 shows the quadrat was placed	e shore	profile a	nd the	stude	nts' res	ults in	the for	m of ki	te diaç	grams.	E
	one ver	ucai met	ie up u	ic sin	ne no	ii tiie b	receui	ng qua	urat.		
Image 4.1											
		Upper	shore	7	Mid s	shore		Lov	ver sh	ore	
	16.0		1		Ţ.						
ast	14.0										
Height above lowest tide level/m	12.0										
ve /	10.0		•	•							
ght above lov tide level/m	8.0				1	-					
ght a	6.0						•	•			
₽̈́	4.0-								•	-	
Ad ama S	2.0					1					
Seaweed	0.0					1			1		
Fucus spiralis											
r deds spiralis	Percentage cover										
Ascophyllum nodosum	າ <u>ອ</u> ີ 🕂	- 3 ×		4		4		-	-		_
Fucus vesiculosus	, tage ⊥			_							
r dodd rodiodiodd				7	T				-		
Fucus serratus	3 a +			9	-					4	
	11	10	9	8	7	6	5	4	3	2	
	30.0	10	9	0	*	rat nur		#	3	2	
(b) Use Image 4. to the same of	1 to des	cribe the	distrib	ution	of the	three	specie	s of sea	aweed	that b	elo
to the same d	enus ac	ross tne	upper.	mid	ana low	er sno	re.				

(c) The students collected their data on one day in September. Image 4.2 shows the heights of the tides on three consecutive days in September in the Severn Estuary.

Image 4.2

(i) The students decided to start their survey at 05:30 on September 17th.

 Use Image 4.2 to suggest why they selected that day to carry out their survey.

[1]

II. Suggest one difficulty the students would have encountered by starting at 05:30am.

One of the challenges for organisms on a rocky shore is that for part of the time they are exposed to the air. Organisms living at different heights on the shore are exposed for different lengths of time.

The bars labelled A1 and A2 in Image 4.2, show that organisms living in quadrat 3 at 4 m above lowest tide would be exposed to air for a total of 9 hours on September 17th.

(ii) Use information from Images 4.1 and 4.2 to calculate how many hours the organisms living in quadrat 7 would be exposed to air on September 17th. Draw lines on Image 4.2 to show how you arrived at your answer.

[2]

Time exposed to air in quadrat 7 = ...

hours

© WJEC CBAC Ltd.

(1400U30-1)

(d) Image 4.3 shows photographs of two of the species of seaweed included in the study. Unlike higher plants, seaweeds do not have roots, stems and leaves. Instead, they have a flattened body called a thallus (plural, thalli).

Image 4.3

Serrated wrack-Fucus serratus

The thallus of <i>F. spiralis</i> is curled whereas the thallus of <i>F. serratus</i> is flat. Explain how the curled thallus of <i>F. spiralis</i> is an adaptation to increased exposure to air.	[2]
NAMAAA	40.554
30000 TURNET	
(11.7-11.48.13.1-11.1-11.14.1.1.1.1.1.1.1.1.1.1.1.1.1.	

Examiner only

(e) The internal structure of a seaweed thallus might also provide adaptations to reduce the effect of exposure to air. Image 4.4 is a low power plan of a cross-section through the thallus of a seaweed.

Image 4.4

actual thickness x–x = $330 \,\mu m$ actual thickness y–y = $198 \,\mu m$

(i) Measure distance x-x on the low power plan and calculate the magnification of the drawing. [2

Space for working

Magnification = ×

(ii) Use the actual thicknesses of **x-x** and **y-y** shown in the box on **Image 4.4** to calculate the percentage of the thallus that is made up of core. [2]

(1400U30-1)

Percentage of thallus made up of core =

One student suggested that the core could act as a water store. Seaweeds adapted o longer periods of exposure to air would have a thicker core. The student made the following plan to test their suggestion.	Exa
 Place one quadrat on the upper shore and one quadrat on the lower shore. Collect 15 thalli from each quadrat. Prepare a transverse section of each thallus and examine using a microscope. Calculate the mean percentage of thallus made up of core for each quadrat. Carry out a statistical test to find out if there is a significant difference between the mean percentage of thallus made up of core for each quadrat. 	ne
(i) State an appropriate statistical test that could be used to determine whether the difference between two means is significant.	[1]
(ii) Use the information given above to state the Null Hypothesis for their test.	[1]
(iii) Suggest two ways that the student's plan could be improved to increase confidence in their results.	2]
95	
<u> </u>	
	o longer periods of exposure to air would have a thicker core. The student made the ollowing plan to test their suggestion. Place one quadrat on the upper shore and one quadrat on the lower shore. Collect 15 thalli from each quadrat. Prepare a transverse section of each thallus and examine using a microscope. Calculate the mean percentage of thallus made up of core for each quadrat. Carry out a statistical test to find out if there is a significant difference between the mean percentage of thallus made up of core for each quadrat. State an appropriate statistical test that could be used to determine whether the difference between two means is significant. Use the information given above to state the Null Hypothesis for their test. Suggest two ways that the student's plan could be improved to increase confidence in their results.

Examiner only

Reflex actions are defined as being rapid and automatic. Image 5.1 shows the reflex arc involved in the knee-jerk reflex.

Image 5.1

(a)	(i)	Use Image 5.1 to name the effector and the part of the Central Nervous System (CNS) involved in this reflex. [1]
		Effector
		Part of CNS
	(ii)	Name the types of neurones labelled A and B . [1]
		Α
		В
	(iii)	Explain, in terms of the structures visible in Image 5.1 , why this reflex is rapid and automatic . [2]
	A88	
	-0.07	
	****	995/495/99

(b) Image 5.2 shows a stage in the generation of an action potential across the cell membrane of a neurone. Examiner only

Image 5.2

(1)	Name the stage of the action potential shown in Image 5.2.	[1]
(ii)	Describe how you would expect the needle on the microvoltmeter to move as stage progresses.	
(iii)	Explain the roles of potassium ion channels and sodium ion channels in the generation of an action potential.	[2]
		(1557)
		(41,411,122)
(iv)	Explain the role of the sodium-potassium ion pump in returning the cell membro of the neurone to its resting potential.	ane [2]
38		

Examiner only

(c) Synapses between neurones and muscles are called neuromuscular junctions. When a nerve impulse reaches a neuromuscular junction, it triggers the release of acetylcholine (ACh) as in many other synapses.

Lambert Eaton Syndrome (LES) is an autoimmune disease in which a person produces antibodies that block some calcium ion channels in the presynaptic membranes of neuromuscular junctions as shown in **Image 5.3**.

Image 5.3

To diagnose LES, doctors test for knee-jerk reflexes.

Explain why someone with LES has no knee-jerk reflexes.

14

[4]

- Bacterial resistance to antibiotics is a serious concern in modern medicine so a great deal of research is being carried out to discover new antibiotics.
 - (a) Microbiologists tested the effectiveness of four antibiotics (A-D) by measuring their Minimum Inhibitory Concentration (MIC). This is the lowest concentration of an antibiotic that will inhibit the visible growth of a micro-organism. This is done using a microdilution plate, as shown in Image 6.1A. Image 6.1B shows a side view of the microdilution plate and the concentrations of antibiotics produced in the different wells.

Image 6.1A

The method used is shown below:

- Place 20 µl of culture medium in wells 1–10 of a microdilution plate.
- 2. Add 20 µl of antibiotics at concentration 64 µg/ml to well 1.
- Transfer 20 µl from well 1 to well 2 and repeat to produce the concentrations shown in Image 6.1B.
- Add 5 µl of a culture of the bacterial strain to wells 1–10.
- Add 10 µl of culture medium, 10 µl of distilled water and 5 µl of a culture of the bacterial strain to well 12.
- Repeat Steps 1–5 for two more rows in the microdilution plate.
- 7. Incubate plates at 37 °C for 24 hours.
- Determine MIC by finding the lowest concentration at which no bacterial growth was seen in the well.

iswer the	e following questions about the experiment.	
(i)	State the purpose of the culture medium.	[1]
(ii)	Use the volumes specified in Image 6.1B to describe how the concentra of antibiotic was produced in well 1.	tion [2]
	II. Name the method by which the different concentrations are produced.	[1]
(iii)	Explain why well 12 was set up using the volumes stated in step 5 of the method.	e [1]
	II. Explain the purpose of well 12 in this experiment.	[1]
		20222

Examiner only

The method described on page 20 was used to determine the MIC of antibiotic C against E. coli and S. aureus. The results for E. coli are shown in Image 6.2.
Image 6.2
bacterial growth
Well number 1 2 3 4 5 6 7 8 9 10 11 12
Repeat 1
Repeat 2
Repeat 3
Concentration of 32 16 8 4 2 1 0.5 0.25 0.125 0.0625 control antibiotic μg/ml
(iv) I. For each of the repeats 1, 2 and 3, find the lowest concentration of antibiotic C that inhibits the growth of E. coli. [1]
Repeat 1µg/ml
Repeat 2 µg/ml
Repeat 3µg/ml
II. Calculate the mean value for MIC in µg/ml. [1]
Mean MIC =μg/ml
(v) Describe one limitation of this method for determining MIC. [1]
THE PROPERTY OF THE PROPERTY O

(b)	The method on page 20 was also used to find the MIC for antibiotics A, B and D. The
	MIC for the four antibiotics against E. coli and S. aureus are shown in Table 6.3.

Table 6.3

Antibiotic	Minimum Inhibitory Concentration/μΜ	
Antibiotic	E. coli	S. aureus
А	16.13	>64.52
В	>67.01	>67.01
С	1.17	18.71
D	8.19	>65.50

(1)	promise as a potential new treatment. Explain your answer. [1]
	Antibiotic
2000	
20022	
(ii)	E. coli is Gram negative, but S. aureus is Gram positive.
	 Describe one difference between the cell walls of the two types of bacteria. [1]
	72/24
	7007
	 Suggest how the difference in the cell walls might account for the MICs shown in Table 6.3 for antibiotics A, C and D. [1]
	<u> </u>

Examine

Trimethoprim (TMP) is an antibiotic that affects DNA synthesis. Compound X has been identified as a possible new antibiotic. Image 6.4 shows the chemical structures of trimethoprim and compound X.

Image 6.4

Trimethoprim

Compound X

- Name one pyrimidine that could be found in a DNA nucleotide. [1]
- TMP is a competitive inhibitor of dihydrofolate reductase, which is an enzyme involved in DNA synthesis. With reference to Image 6.4, explain how compound X might also inhibit dihydrofolate reductase.

(iii) Compound X was extracted from a plant discovered growing in a tropical rainforest. Explain the importance of conserving plant species such as this. [2]

17

[2]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

- 7. To achieve sustainable fishing, political decisions were made to develop a policy to conserve fish stocks. This policy included:
 - · methods for regulating fishing;
 - · monitoring fish populations;
 - · targets for achieving sustainable fish populations in marine waters.

Two criteria are used to assess whether the targets for sustainable fish populations in marine waters have been met. These criteria are:

- 1. Level of exploitation, measured as the biomass of fish caught Fish Deaths (FD).
- Reproductive capacity, measured as the biomass of reproducing fish Reproductive Biomass (RB).

The results of monitoring commercial fish populations in the North Sea are shown in Image 7.

Image 7

Percentage of fish populations in the North Sea meeting sustainable fishing targets.

our knowledge of population density to explain the scientific basis for choosing the two (1. and 2.) listed opposite.
ata from Image 7 to evaluate the effectiveness of the policy to regulate fishing in the Sea. [9 QI

or
-

	only

END OF PAPER	9

© WJEC CBAC Ltd. (1400U30-1)

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examin
		7
		2.70
		5515
		17.77
	——————————————————————————————————————	
		1000
		1144
		iiii
		735
	TO A PROPERTY OF THE PROPERTY	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner
namber	Write the question number(s) in the left-hand margin.	1
		1
		**
		1
		1
		**
		i.
		**
		1
1		
		**
		**
		1
		~
		1

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

