FUNDAMENTAL LAW OF BINARY THEORIES

UNIVERSAL NUMBER THEORY EQUATION OF SAT

Oscar Riveros

2016

$$\mathtt{SAT}(v_0,\dots,v_{n-1}|c_0,\dots,c_{m-1}) = \sum_{j=0}^{m-1} 2^{\sum\limits_{i=0}^{n-1} v_{(n-1-i)j} 2^i}$$

oscar.riveros@peqnp.com

twitter.com/maxtuno

http://soundcloud.com/maxtuno

http://independent.academia.edu/oarr

http://github.com/maxtuno/SAT EQUATION

SAT EQUATION 1

$$\begin{split} \sum_{j=0}^{m-1} 2^{\sum\limits_{i=0}^{n-1} v_{(n-1-i)j} 2^i} &= \underbrace{(v_0^{\pm} \vee \dots \vee v_{n-1}^{\pm})}_{c_0} \wedge \underbrace{(v_0^{\pm} \vee \dots \vee v_{n-1}^{\pm})}_{c_1} \wedge \dots \wedge \underbrace{(v_0^{\pm} \vee \dots \vee v_{n-1}^{\pm})}_{c_{m-1}}) \\ & \text{SAT}(c_0, c_1 \dots c_{m-1}) = \sum_{j=0}^{m-1} 2^{c_j} \\ & c_j = \sum_{i=0}^{n-1} v_{(n-1-i)j} 2^i \\ & v_{(n-1-i)j} = \begin{cases} 0 & +v_{(n-1-i)j} \\ 1 & -v_{(n-1-i)j} \end{cases} \end{split}$$

¹Copyright © 2012-2017 Oscar Riveros. all rights reserved.

EXAMPLE

$$(a \lor b \lor c \lor d) \land (a \lor \neg b \lor c \lor \neg d) \land (\neg a \lor \neg b \lor c \lor d)$$

d	c	b	a	value
False	False	False	False	False
False	False	False	True	True
False	False	True	False	True
False	False	True	True	True
False	True	False	False	True
False	True	False	True	False
False	True	True	False	True
False	True	True	True	True
True	False	False	False	True
True	False	False	True	True
True	False	True	False	True
True	False	True	True	True
True	True	False	False	False
True	True	False	True	True
True	True	True	False	True
True	True	True	True	True
		= 3, n =		
v	$v_{11}v_{21}v_{31}$	$v_{41} = \{$	1, 1, 1, 1	.}
2,	1022022	$n_{10} = \{$	1, 0, 1, 0	ıl
v	$13v_{23}v_{33}$	$v_{43} = \{$	0, 0, 1, 1	.}
	$2^{c_1} =$	$2^{15} = 3$	32768	
	2^{c_2} -	$= 2^{10} =$	1024	
	$2^{c_{i}}$	$= 2^3 =$	= 8	
$SAT(c_1, c_2)$	a- a-) —	- 22762	+ 29 + C	S — 33800
$\mathcal{I}_{\mathbf{AI}}(c_1,c_2)$	(2, (3) =	- 54100	T 94 T	<i>5</i> — 33 600
$3800_2 =$	1000010	000001	000 =	$\begin{bmatrix} 0 & True \\ 1 & Fals \end{bmatrix}$

False, True, True, True, False, True, Tr

IMPLEMENTATION

```
http://github.com/maxtuno/SAT EQUATION
def bits(n, p):
     s = []
     while n:
           s = [n \% 2 = 0] + s
           n / = 2
     s = (p - len(s)) * [True] + s
     return s
def sat equation (cnf, n, m):
     sat = 0
     for j in range(m):
           v = 0
           for i in range(n):
                 v \; + = \; \mathbf{int} \, (\; c \, \dot{n} \, f \, [\; \dot{j}\; ] \, [\; n \; - \; 1 \; - \; \dot{i}\; ] \; > \; 0) \; * \; 2 \; ** \; \dot{i}
           sat += 2 ** v
     return sat
\mathbf{i} \mathbf{f} __name__ == '__main__':

\overline{\text{cnf}} = \overline{[(1, 2, 3, 4), (1, -2, 3, -4), (-1, -2, 3, 4)]}

     n = 4
     m = len(cnf)
     print(bits(sat equation(cnf, n, m), 2 ** n))
```

DISCLAIMER

All this work is the effort of 5 years of research, everything is completely original and of my authority, no reference exist, and no exist collaborators, only elementary concepts of the theory of complexity were used. Special thanks to my wife, my favorite persons, all my friends and followers, thank for all, today is my official retirement of the sciences...