MONTHLY WEATHER REVIEW.

Editor: Prof. Cleveland Abbe. Assistant Editor: Frank Owen Stetson.

Vol. XXXII.

DECEMBER, 1904.

No. 12

INTRODUCTION.

The Monthly Weather Review for December, 1904, is based on data from about 3300 stations, classified as follows:

Weather Bureau stations, regular, telegraph, and mail, 167; West Indian Service, cable and mail, 4; River and Flood Service, regular 43, special river and rainfall, 190, special rainfall only, 56; voluntary observers, domestic and foreign, 2565; total Weather Bureau Service, 3025; Canadian Meteorological Service, by telegraph and mail, 20, by mail only, 13; Meteorological Service of the Azores, by cable, 2; Meteorological Office, London, by cable, 8; Mexican Telegraph Company, by cable, 3; Army Post Hospital reports, 18; United States Life-Saving Service, 9; Southern Pacific Company, 96; Hawaiian Meteorological Service, 75; Jamaica Weather Service, 130; Costa Rican Meteorological Service, 25; The New Panama Canal Company, 5; Central Meteorological Observatory of Mexico, 20 station summaries, also printed daily bulletins and charts, based on simultaneous observations at about 40 stations; Mexican Federal Telegraph Service, printed daily charts, based on about 30 stations.

Special acknowledgment is made of the hearty cooperation of Prof. R. F. Stupart, Director of the Meteorological Service of the Dominion of Canada; Mr. R. C. Lydecker, Territorial Meteorologist, Honolulu, Hawaii; Señor Manuel E. Pastrana, Director of the Central Meteorological and Magnetic Observatory of Mexico; Camilo A. Gonzales, Director-General of Mexican Telegraphs; Capt. S. I. Kimball, Superintendent of the United States Life-Saving Service; Lieut. Commander H. M. Hodges, Hydrographer, United States Navy; H. Pit-

tier, Director of the Physico-Geographic Institute, San José, Costa Rica; Commandant Francisco S. Chaves, Director of the Meteorological Service of the Azores, Ponta Delgada, St. Michaels, Azores; W. N. Shaw, Esq., Secretary, Meteorological Office, London; Rev. José Algué, S. J., Director, Philippine Weather Service; and H. H. Cousins, Chemist, in charge of the Jamaica Weather Office; Señor Enrique A. Del Monte, Director of the Meteorological Service of the Republic of Cuba.

Attention is called to the fact that the clocks and self-registers at regular Weather Bureau stations are all set to seventy-fifth meridian or eastern standard time, which is exactly five hours behind Greenwich time; as far as practicable, only this standard of time is used in the text of the Review, since all Weather Bureau observations are required to be taken and recorded by it. The standards used by the public in the United States and Canada and by the voluntary observers are believed to conform generally to the modern international system of standard meridians, one hour apart, beginning with Greenwich. The Hawaiian standard meridian is 157° 30′, or 10^h 30^m west of Greenwich. The Costa Rican standard meridian is that of San José, 5^h 36^m west of Greenwich. Records of miscellaneous phenomena that are reported occasionally in other standards of time by voluntary observers or newspaper correspondents are sometimes corrected to agree with the eastern standard; otherwise, the local standard is mentioned.

Barometric pressures, whether "station pressures" or "sealevel pressures," are now reduced to standard gravity, so that they express pressure in a standard system of absolute measures.

FORECASTS AND WARNINGS.

By Prof. E. B. GARRIOTT, in charge of Forecast Division

During the first half of the month pressure was low over the western part of the North Atlantic, except from the 3d to the 5th, when an area of high pressure covered the eastern half of the United States and extended over Bermuda. During the latter half of the month pressure was generally high over the ocean between Bermuda and the south Atlantic coast of the United States, but low over New Foundland, Nova Scotia, and the north Atlantic coast. Over the Azores during the first half of the month the pressure was high, except from the 4th to the 8th, when an area of low pressure was apparently passing to the north of the islands. High winds were reported during this period, a velocity of 60 miles per hour from the southwest being recorded at Horta on the 6th. ing the latter half of the month low pressure prevailed, the lowest barometric reading at Horta being 29.60 inches on the 28th, on which date a wind velocity of 64 miles per hour from the south was recorded. The month closed with the reestablishment of high pressure over the Azores. Over southeastern Europe pressure was generally high, except on the 10th and from the 23d to the 26th. Over the British Isles low pressure prevailed throughout the month, except on the 18th, from the 24th to 28th, and on the 31st, when pressure was relatively high. The storm of the 12th was quite severe, and high winds and gales were reported from many coast stations. The most severe storm of the month occurred at its close. On the 29th and 30th high winds and gales did considerable damage to shipping along the coasts, and to tele-

graph lines in all parts of the United Kingdom. This storm apparently passed on over the Baltic Sea, and shipping and property in the coast towns of Germany sustained considerable loss.

The areas of low pressure that traversed the United States during the month were more numerous and took a course somewhat more southerly than usual. With a single exception these storms presented no features of particular interest. Four storms passed up the Atlantic coast during the month causing high winds and rain and snow in the coast States. A number of schooners was driven ashore, but no very great loss was sustained. On the Pacific coast the month was unusually free from storms, four only, making their appearance on the Washington and Oregon coast. The most severe of these reached the coast on the morning of the 29th and occasioned some damage to wharfs and shipping along the Washington, Oregon, and northern California coast. On the Great Lakes navigation closed December 15, and storm warnings were discontinued for the season on that date. The two storms that occurred before that time were not remarkable. During the latter half of the month, storms were more numerous, but, with one exception, did little damage. The only remarkable storm of the month traversed the country from the 24th to the 28th and reached its maximum intensity during the 27-28th, in the Lake region. Barometric readings below 29.00 inches were recorded at several Lake stations, and considerable damage was sustained from the high winds and heavy snow that

accompanied this storm. Telegraphic communication was interrupted over a large territory for twenty-four hours, and the heavy snow delayed traffic on railroads and street car lines. A more detailed account of this storm is given on another page. Storm warnings were issued in all cases well in advance of the storm and were very generally appreciated and heeded.

storm and were very generally appreciated and heeded.

Temperatures were generally below the average throughout the country during the first decade of the month, except in the upper Lake region and the upper Mississippi Valley, where they were above. During the second decade they were above normal west of the Mississippi and slightly below in the east. During the third decade temperatures were quite generally below the normal in all parts of the country. The first decided cold wave of the season made its appearance in Alberta on the morning of the 22d, and by the evening of the same date had advanced over Montana. On the morning of the 23d, it covered the Dakotas, and by night had advanced southward as far as Iowa and Nebraska and eastward over Minnesota. On the morning of the 24th the cold wave had reached Kansas, and by evening had extended over the upper Mississippi and Ohio valleys and the Lake region. On the 25th the cold wave reached the New England coast, although with diminished intensity and extent. The temperatures recorded during the passage of this cold wave were not remarkably low. The most important cold wave of the month was that which followed the storm of the 24th to 28th, and is treated in connection with that storm in another place. Ample warnings were given for both of these cold waves for all localities affected, and the favorable comments of the press showed the growing appreciation of this service. The following is from the Springfield, Ill., News of December 28, 1904.

One of the worst blizzards in many years has swept this country causing distress and damage. Life and property must be sacrificed to these storm monsters that no human ingenuity can control. The best that we can do is to send warning ahead and forewarn others of their approach. This is the work the Government has undertaken in its Weather Bureau. How much life and property has been saved by the Government's system of forewarning can not be computed. There is no branch of public service that is of such immense value to the people. This is attested by the widespread credit given it and the unanimity with which shipping, mercantile, railroad, manufacturing, and farming interests watch the weather forecasts. A twenty-four hour or even twelve hour warning of the approach of such a storm as that which swept upon us yesterday is often more than ample to protect life and property that are exposed.

Heavy frost occurred in northern Florida and along the east Gulf coast on the 13th, 16th, 18th, 19th, 20th, and 21st, and killing frost on the 29th and 30th. Heavy frost occurred as far south as Tampa, Fla., on the morning of the 21st, and killing frost on the 29th. On the latter date Jacksonville reported a minimum temperature of 30°, Tampa 34°, and Jupiter 38°. These frosts were all forecast and much loss was avoided by the timely frost warnings.

The month as a whole was unusually dry throughout the country. During the first decade light rains occurred in the Southern States and on the Washington coast and light rain and snow in the Lake region. During the second decade precipitation occurred along the Atlantic and north Pacific coasts and in the Lake region. During the third decade precipitation was more general, but still deficient in amount. The prolonged drought of the Mississippi Valley and the interior of the country was broken only by the heavy rains and snows which attended the passage of the storm of the 24th to 28th.

NEW ENGLAND FORECAST DISTRICT.

The weather was abnormally and continuously cold, the monthly mean temperature for the section, 18.3°, being 9.8° below normal and without a parallel in the twenty years of records since the establishment of the New England Section of the Climate and Crop Service. Reports from numerous observers, scattered over the district, with records dating back many years, state that a new low temperature record for December was made by the month just closed. The month

was characterized by several severe storms, but those of the first part of the month were of slight importance in the northern portion of the district. Those of the latter part, however, reached all sections. Along the coast the month as a whole was considered as unusually severe and blusterous, with some storms and gales of unusual force. The most conspicuous storms were those of the 18-19th and 27-28th. During the former snow fell to an unusual depth throughout Cape Cod and well into Rhode Island and eastern Connecticut. The wind prevailed with hurricane force and there was great damage to shipping and to telegraph, telephone, and trolley wires, and much delay in railroad traffic. According to the published accounts of the damage from the storm, at least fifteen schooners were torn from their anchors and driven on shore in the Vineyard Haven Harbor. So far as reported, no vessel proved a total loss and there was no loss of life. storm of the 27-28th was severe along the coast, and in some instances resulted in dense and persistent fog. Shipping was at a standstill and in great danger. Storm warnings were issued on fourteen days of the month and doubtless resulted in the saving of many lives and of much property. No storms passed during the month without warnings.—J. W. Smith, District Forecaster.

WEST GULF FORECAST DISTRICT.

Warnings of frost or freezing temperature were issued on several dates for parts of the sugar region, and while on some dates the subsequent temperatures at regular Weather Bureau stations did not verify the warnings yet temperature records in the sugar region showed 8° to 14° lower, and severe freezing. The first general cold wave of the season crossed the district from the 26th to the 28th, and timely warnings were issued. Storm warnings were issued on two dates. The warnings issued for the sugar region resulted in saving much sugar cane which otherwise would have been lost. This is shown by the following press comments which also show the popular appreciation and value of the service.

The Times-Democrat (New Orleans) of December 12, 1904, in commenting editorially on the sugar crop and freezes, says:

* * * This, however, no longer causes the terror it did of old, when the freeze descended suddenly on the planters without the slightest warning, and if it came early cut down the yield of sugar 50 or even 75 per cent. The Weather Bureau now gives the planters two or three days' notice, ample time to protect themselves against any damage by a

The Picayune (New Orleans) of December 29, 1904, in speaking of the freeze of December 28, says:

While the temperature has been below freezing in the sugar and trucking region around New Orleans several times this season, the freezing mark at New Orleans was registered for the first time yesterday morning. Timely warnings were scattered broadcast by the Weather Bureau, stating that planters and the public should prepare for temperatures of 24° to 28° in the sugar region and 30° at New Orleans. The predictions were fully verified. The Weather Bureau issued warnings for every severe change in the weather, and the few failures were when certain conditions which were expected did not materialize. Farming interests consider the warnings of incalculable value, and they do not complain if a prediction sometimes falls short. One freeze without warning means the loss of many thousands of dollars, and perhaps of millions of dollars, while the expense of occasional protection when a predicted freeze does not come is a very small matter. So accurate and definite have the warnings become, that no planting interest in this State has suffered from weather conditions if the warnings are believed and action taken to prevent loss and damage.

I. M. Cline, District Forecaster.

NORTH-CENTRAL FORECAST DISTRICT.

The temperature was higher than usual throughout the district, and there were very few special features during the month. Regular navigation having closed on December 15, this date terminated the storm-warning season. No general storm warnings were issued during the first half of the month, the weather on the Lakes continuing moderate and uneventful.

The most severe storm of the month, and possibly of the

004

he

he

rt.

as

18.

n-

Ir-

pe

it.

y

ie

st

m

10

е

d

d

year, crossed over the Rocky Mountain region on the 25th. It moved thence southeastward to Texas, where it was central on the morning of the 26th. Its path was thence directly northeastward over the Central States and the Lake districts, reaching Illinois by the morning of the 27th. It was accompanied by rain, turning to snow, and shifting gales, and was followed by a well-marked cold wave. Cold-wave warnings were sent out well in advance of the fall in temperature, and all sections of this district had thirty-six hours notice of the cold wave. Advisory messages were sent to all open ports on Lake Michigan that maintain winter navigation, cautioning all vessels to remain in port. In consequence no wrecks resulted. Telephone and telegraph wires suffered much damage from the storm in this district, and it was several days before the telegraphic service was again satisfactory. The snowfall was heavy in the middle and upper Mississippi valleys, which resulted in great inconvenience and delay to transportation interests.—H. J. Cox, Professor and District Forecaster.

ROCKY MOUNTAIN FORECAST DISTRICT.

On the morning of the 25th warnings were sent to points in Wyoming and northeastern Colorado for the cold wave that overspread the eastern slope of the Continental Divide. The following information was given transportation companies: "Cold wave to-night; temperature will reach zero or lower in Wyoming and 10°, or lower, in northeastern Colorado. High northerly winds with snow."

Apart from the low temperature that prevailed from the 26th to the 28th over the greater part of the district, the weather conditions were generally fine during the month.—
F. H. Brandenburg, District Forecaster.

SOUTH PACIFIC FORECAST DISTRICT.

The month as a whole was one of deficient rainfall in California. At San Francisco hardly one-third of the normal rain fell. In the southern part of the State cloudy weather prevailed about the beginning of the month, and rain fell from a disturbance that apparently traversed the northern portion of Lower California, northwestern portion of Mexico, and the Valley of the Colorado. During this period no rain fell in northern California. A marked winter storm appeared on the northern coast on the night of December 8, and gave general rain in northern and central California. The disturbance passed rapidly eastward, as indeed did nearly all of the northern disturbances during the month. Another disturbance appeared on December 11, on the northern coast, causing, as before, rains only in the northern part of the State. An area of high pressure over the intermountain section and extending well to the west was the predominant feature of the pressure distribution during the month. A marked storm appeared off the Washington coast on December 22. By December 23 the disturbance was well marked over the northern half of the coast. On December 24 there appeared off the coast of southern Oregon and northern California a depression which subsequently traversed the entire country, causing heavy rains in northern California and high winds along the coast, in the valleys, and in the mountains. Its passage over Nevada was followed by a cold wave in that State on Christmas morning. Frost warnings were issued for California. It is also interesting to note that heavy frost was reported at Mount Tamalpais, although the wind blew from 45 to 60 miles an hour. Another storm appeared on the Washington coast on the morning of December 28, and moved slowly southward, causing rain by the end of the month as far south as San Diego.

It may be noted that in the San Francisco Bay section dur-

ing the month of December an unusually large number of earthquakes occurred.—Alexander G. McAdie, Professor and District Forecaster.

NORTH PACIFIC FORECAST DISTRICT.

December in the North Pacific States was not so stormy as the preceding month, although several gales occurred the most severe of which was the one that swept the district on the 28th and 29th, at which time a maximum wind velocity of 76 miles from the south was recorded at North Head. Timely warnings were issued for this, as well as for all the other storms and they were undoubtedly of great benefit to shipping as the casualties reported were all of a minor character.

No cold-wave warnings were issued during the month, and the only zero weather reported lasted but an hour or two and occurred in southeastern Idaho on the morning of the 26th.— Edward A. Beals, District Forecaster.

RIVERS AND FLOODS.

There were no floods during the month, although the heavy rains of the last ten days of the month over the Willamette and Sacramento watersheds started a rise that gave promise of danger-line stages over their lower portions during the first few days of the succeeding month. Warnings to this effect were issued on the 30th. About the same time substantial rains over the Ohio Valley caused a general rise in the Ohio River, and navigation was resumed between the 27th and 29th. On the upper Tennessee navigation was possible at intervals.

The ice situation during the month may be summarized as follows: Red River of the North at Moorhead, Minn., increase in thickness from seven to eighteen inches. Missouri River, open throughout the month from Sioux City southward; closed at Pierre on the 12th. Mississippi River, practically closed during the latter half of the month above Davenport; at the end of the month there were twelve inches of ice at St. Paul and six inches at La Crosse. There was much heavy floating ice from below Davenport to the mouth of the Ohio River, necessitating a suspension of navigation from the 16th to the 22d, inclusive. The Ohio River was not frozen over, but there was considerable floating ice, with an occasional gorge between Portsmouth and Cincinnati.

The rivers of New England were generally frozen, the Connecticut at Hartford having closed on the 10th. The Hudson and its tributaries were also frozen, and at the close of the month there were from nine to twelve inches of ice at Albany. The Susquehanna closed earlier than usual, and the entire river above Harrisburg was frozen over by the 12th. General rains on the 27th caused a thaw and a break-up, and the ice passed down the river doing some damage. A gorge that was formed in Cecil County, Md., remained intact at the end of the month, and proved a source of serious apprehension to all who remember the great gorge of January, 1904. Warnings of the thaw and break-up were issued on the 27th, and they were the means of saving considerable property.

The highest and lowest water, mean stage, and monthly range at 257 river stations are given in Table VII. Hydrographs for typical points on seven principal rivers are shown on Chart V. The stations selected for charting are Keokuk, St. Louis, Memphis, Vicksburg, and New Orleans, on the Mississippi; Cincinnati and Cairo, on the Ohio; Nashville, on the Cumberland; Johnsonville, on the Tennessee; Kansas City, on the Missouri; Little Rock, on the Arkansas; and Shreveport, on the Red.—H. C. Frankenfield, Professor.

CLIMATE AND CROP SERVICE.

By Mr. JAMES BERRY, Chief of Climate and Crop Divison

The following summaries relating to the general weather and crop conditions during December are furnished by the directors of the respective sections of the Climate and Crop Service of the Weather Bureau; they are based upon voluntary reports from meteorological observers and crop correspondents, of whom there are about 3300 and 14,000, respectively:

Alabama.—Weather generally mild and favorable for farm work. Temperature about normal; precipitation nearly normal and fairly well distributed, though more needed to put soil in good condition. Several light freezes. Cold wave during last few days slightly damaged oats in some northern counties, though oats and wheat generally promising. More oats sown, making acreage near average. Some ground broken for next year's crops. Fruit trees and strawberry plants in good condition.—F. P. Chaffee.

Arizona.—With temperature nearly normal and light rains generally over the Territory, the conditions were favorable for agricultural and

Arizona.—With temperature nearly normal and light rains generally over the Territory, the conditions were favorable for agricultural and stock interests. In the southern and central sections alfalfa and other seasonal crops made good growth until the cold days the latter part of the month checked plant development. Plowing and seeding were still in progress, except in some portions of the northern section, where scarcity of water continued. Ranges and stock were in good condition. scarcity of wate H. K. Holcomb.

Arkansas.—The temperature was nearly normal. The rainfall was deficient until the third decade, when general and heavy rains fell in all portions of the State, except the northwest portion, effectually breaking the drought that had prevailed since August. Cotton practically all picked. Too dry first of month for plowing and too cold and wet latter part. Small acreage sown to winter grains, but where sown they did fairly well. Stock healthy.—Edward B. Richards.

California.—Nearly normal weather conditions prevailed during the month. Severe frosts were frequent, but caused no material damage to oranges or other crops. The heavy rainfall toward the close of the month was of inestimable value to all farming interests in southern California, and other sections were also considerably benefited. Farm work had been very backward in the southern districts, but after the work had been very backward in the southern districts, but after the rains the soil was in good condition there and elsewhere and grain made good growth.—Alexander G. McAdie.

Colorado.—During the greater portion of the month the weather was exceptionally fine and mild, but on the 25th a cold wave with snow ex-

ed over the State, the cold weather lasting to the close of the month. With a few exceptions, the ranges over the State were in good condition; also cattle, horses, and sheep. Stock water was generally sufficient for all requirements.—F. H. Brandenburg.

all requirements.—F. H. Brandenburg.

Florida.—The month was generally favorable for farm work. Much plowing was accomplished and a good acreage was planted to oats; the early planted pushed forward, although the need of rain retarded growth somewhat. The month was colder than the average and there was a deficiency of more than an inch of rain. As a result vegetables were backward. During the latter part of the month tender vegetables suffered slightly from frosts in the central district. Ice formed over the northern and western districts.—A. J. Mitchell.

Georgia.—Temperature for the month was practically normal; low readings were registered from the 19th to the 22d and from the 29th of the 31st. The rainfall was slightly below normal and well distributed.

the 31st. The rainfall was slightly below normal and well distributed. All conditions were favorable to agricultural pursuits. Grain germinated a good stand and made rapid growth. Fruit trees were healthy and thrifty; many young peach trees were set out. Strawberries were in bloom in a few sections. Winter plowing progressed favorably. Stock was in good condition.—J. B. Marbury.

Idaho.—Weather pleasant most of the month, but became cold and stormy near its close. The minimum temperature for the State was the The rainfall was slightly below normal and well distributed

Idaho.—Weather pleasant most of the month, but became cold and stormy near its close. The minimum temperature for the State was the lowest on record for December. The range continued open later than usual, but was generally covered by the close of the month. The hay supply was good and stock was generally in good condition. Winter wheat was fairly good, though suffering in some localities from lack of snow covering. Trees were in good condition.—Edward L. Wells.

Illinois.—The growth of wheat was retarded by extremely dry conditions during October and November. It had little snow protection during December. Rains toward the latter part of the month were of great benefit, but the sudden change to very low temperatures on the 27th to 29th found the plant weak and small and not in good condition to withstand, unprotected, the severe cold. It was feared that some injury ensued, but it was not possible to estimate the extent.—Wm. G. Burns. Indiana.—The ground was lightly covered with snow from the 10th to the 22d. The drought that had been more or less intense in all sections since the beginning of October was relieved by copious rains on the 22d-26th. When the snow disappeared, wheat, although small and mostly thin, looked green and fairly vigorous. Considerable shocked corn was still in the fields, but the greater portion of the crop had been cribbed or marketed. Stripping tobacco was in progress during the last decade — W. T. Blythe.

Iowa .- With mean temperature and precipitation for the State nearly normal, December was generally favorable for the usual farm work and for feeding stock. During the first decade the weather was dry and very favorable for completing corn husking, and the crop was cribbed in excellent condition. During the coldest weather winter grain and grass were protected by snow. The blizzard on the 27th was severe on stock, were protected by show. The blizzard on the 27th was severe on stock, but not much loss was reported.—John R. Sage.

Kansas.—Wheat was in fair condition in many of the southern and

eastern counties, and in good condition over the greater portion of the State; but few unfavorable reports received. Corn was mostly gathered over a large part of the State; only a few counties reporting much still in the fields. Stock was in good condition, but one county making an unfavorable report.—T. B. Jennings.

Kentucky.—The temperature averaged somewhat below the normal, but no severe cold was experienced. The rainfall was about the normal, was fairly well distributed, and gave complete relief from the intense was fairly well distributed, and gave complete relief from the intense drought that prevailed during October and November. Winter wheat and rye improved greatly, but were still far from promising. Fruit trees were in good condition. Tobacco handling progressed well. Stock was generally in good condition.—H. B. Hersey.

Louisiana.—The rainfall was well distributed throughout the month and, except in a few localities, was sufficient for agricultural interests.

and, except in a few localities, was sufficient for agricultural interests. Preparations for spring planting were well advanced in some localities but were generally backward. Freezing temperatures occurred in the sugar region on several dates. The bulk of the sugar cane crop standing was windrowed on advices contained in Weather Bureau warnings. The outlook was that a large acreage would be planted to cane this season. Seed cane generally was in good condition.—I. M. Cline.

Maryland and Delaware.—Inclement weather, due to storms of 5th, 10th, 17th and 27th, and steady, moderately cold weather, with normal precipitation, prevailed during the month. The temperature averaged more than 5° per day below normal. The snowfall, seventeen inches, was the greatest on record at Baltimore for December; about half fell on the 10th, and for two weeks thereafter protected and greatly benefited vegetation throughout the section. Wheat had recovered much by the end of the month, and was generally in average condition.—

fell on the 10th, and for two weeks thereafter protected and greatly benefited vegetation throughout the section. Wheat had recovered much by the end of the month, and was generally in average condition.—

Oliver L. Fassig.

Michigan.—The cold, moderately dry weather of December was not the most desirable for winter wheat and rye, although the actual effect will not be discernible until next spring, and even then with favorable conditions may be entirely counterbalanced. The ground in the principal winter wheat counties was bare much of the month. At the close of December wheat and rye did not show any marked change since the end of November and continued fairly promising in appearance.—C. F. of November and continued fairly promising in appearance.-C. F.

Moderately cold periods occurred on the 12th, 13th, 27th, and 28th, with the lowest temperature for the month generally on the 28th. Warm periods occurred on the 7th, 8th, 30th, and 31st, with the highest temperature for the month on the 30th and 31st. The precipitation was practically all snow, the largest amounts falling late in the month. Farm work was about all finished before December 1.—T. S. Outram.

Mississippi.—The weather during the month was generally favorable, although excessive rains in the northern counties during the last week were somewhat damaging to the soil, bridges, and unpicked cotton. gathering of crops was completed, excepting a little cotton in scattered localities. A small acreage of oats was sown in the south and some plowing was done in the east, but not much farm work was accomplished.—W. L. Belden.

Missouri.-The weather during the month of December, 1904, was generally favorable for winter crops. The moisture received, while not sufficient for all purposes, greatly improved the condition of wheat and rye. Ground was fairly well covered with snow during coldest spells, and at close of month wheat was in fair condition and free from insects, except in a few scattered localities. Considerable corn in shock still in the fields, weather having been rather too dry for husking. Fall sown grasses in fair condition.—George Reeder.

fair condition.—George Reeder.

Montana.—Mild, open weather prevailed till the 21st, when general, though light, precipitation began, lasting about three days, and was followed by unseasonably cold till the 28th. Snowfall was too light to interfere materially with grazing, and practically no feeding of stock was neces sary. Cattle and sheep were for the most part strong and vigorous and in condition to endure the severe weather usual later in the season. Fall sown grain failed to germinate east of the mountains because of absence of moisture, but came up and made fall growth west of the mointains. sence of moisture, but came up and made fair growth west of the main

divide.—R. F. Young.

Nebraska.—The dry weather and moderate temperature of the month Nebraska.—The dry weather and moderate temperature of the month allowed rapid progress in corn husking and nearly all of the corn was secured before the end of the month. While the soil continued dry and without a covering of snow throughout the month, little or no damage resulted to winter wheat. The mild weather was favorable for stock, which was in excellent condition in all parts of the State.—G. A. Loveland. Nevada.—Temperature slightly above normal. Precipitation somewhat deficient. Weather generally fair during first and second decades;

SUMMARY OF TEMPERATURE AND PRECIPITATION BY SECTIONS, DECEMBER, 1904.

the Climate and Crop Service of the Weather Bureau, the average temperature and rainfall, the stations reporting the highest and lowest temperatures with dates of occurrence, the stations reporting greatest and least monthly precipitation, and other data, as indicated by the several headings.

The mean temperatures for each section, the highest and

In the following table are given, for the various sections of lowest temperatures, the average precipitation, and the greatest and least monthly amounts are found by using all trustworthy records available.

The mean departures from normal temperature and precipitation are based only on records from stations that have ten or more years of observation. Of course the number of such records is smaller than the total number of stations.

			Temperature	-in e	legrees	Fahrenheit.					Precipitation—in inch	es and	hundredths.	
Section.	rage.	from		М	onthly	extremes.			average.	from	Greatest monthly	у.	Least monthly.	
Section.	Section average	Departure from the normal.	Station.	Highest.	Date.	Station.	Lowest.	Date.	Section average Departure from the normal.		Station.	Amount.	Station.	Amount.
\labama	45. 8	- 0.1	Pushmataha	83	26	Delmar, Madison	15	29	4.38	+0.01	Riverton	7. 58	Notasulga	1. 8
Arizona		- 0.1	Gila Bend	88	1,3	Fort Defiance	- 7	27	0.84	-0.13	Alpine	2, 52	3 stations	0. 0
rkansas		- 0.4	Lutherville	80	2	Newport	- 9	297	5. 10	+1.28	Elon	10. 93	Fort Smith	0, 8
					-	Oregon	4	285	3, 04	-1.06	Monumental Mine.	25, 14	3 stations	0. (
alifornia	47. 2	+ 0.1 + 1.4	Ventura Trinidad	88 79	19 23	Bodie Lay, Waldron	-13 -33	26	0. 55	-0.28	Marshall Pass	2. 36	Grover	T.
oloradolorida	58, 4	+ 1.4 - 1.0	4 stations	86	5.6	Molino		20	1. 97	-1. 15	Pensacola	6, 72	Fort Pierce	0.
eorgia	47. 1	+ 0.1	Waverly	83	5, 6 27 20	Diamond	13	30	3, 59	-0.39	Columbus	6. 25	Waverly	0.
laho			Blue Lakes	60	20	Chesterfield	-35	27	1.92	*******	Landore	4. 72	Lost River	0.
linois		- 0.6	New Burnside	68	22	Kishwaukee	-21	14	1.93	-0.36	Robinson	4, 50	Springfield	
ndiana	29. 2	- 3.0	Topeka	70	27		-12	14	3, 48	+0.79	Bloomington	6, 10	Auburn	1.
wa	23. 4		Albia	67	22		-19	14	1. 44	+0.15	Newton	3, 68	Storm Lake	0.0
ansas	31.7	- 1.3	Gove	79	25)	Macksville		15	0. 64	-0.33	Columbus	1, 52	Newton	0, (
entucky	36, 4	- 0.5	Alpha	72 72	26	Farmers	- 2	11	4. 30	+0.45	Hopkinsville	6. 44	Lexington	3. 1
ouisiana			Schriever		3	Baton Rouge	18 18	28, 30) 18	5. 74	+0.96	Liberty Hill	14. 09	Reserve	1, 8
			Willer Del	00	28	Dealing, Robeline.	-11	11	3, 50	+0.29	Millsboro, Del	6. 19	Boettcherville, Md.	1.
aryland and Delaware.	29. 6	- 5. 2	Milford, Del Charlotte	66 62	28	Oakland, Md Humboldt	-11	15	1, 84	-0.53	Eagle Harbor	4. 57	Birmingham	
lehigan	21. 2		(Worthington	57	8)		6							1
linnesota	16, 7	+ 0.8	Mora	57	315	Pokegama Falls	-37	13	0.82	-0.03	Mount Iron	2.61	Mora	0.
ississippi	47.1	- 0.8	Crystal Springs	85	3	Ripley	14	28	5, 31	+0.97	Ripley	13, 70	Fayette (near)	1.
issouri	32.9		Vichy	75	1	Unionville	-10	28	1.50	-0.67	New Madrid	4, 52	Rockport	0.
ontana	26, 7	+2.4	Decker	77	13, 17	Culbertson		27	0.85	+0.04	Saltese	3, 70	Decker	0.
ebraska	28. 3	+ 0.9	North Loup	76	31	Valentine		27	0. 20	-0.39	Pawnee City	0.70	Republican	0.
	33, 3	+ 2.0	Elko	76	2		-23	27 25	0. 51	-0.45	Lewers Ranch	3, 63	Vanceboro, Me	0.
ew England *	18.3	- 9.8	Provincetown, Mass.	61	5 28?	Fort Fairfield, Me	-34	-	2.46	-0.87	New Bedford, Mass.	5. 27		
ew Jersey		- 6.8	Friesburg Cape May, C. H Brice, Lordsburg	60 78	315	Layton		15	3. 19	-0.52	Cape May	5, 38	Somerville	2.
ew Mexico	35. 6	0.0	Fort Union	78	315	Estancia		6	0.79	+0.46	Fort Wingate	2, 27	Vermejo	0.
ew York	19, 8	- 6.8	Ripley	60	28	Chazy	-28	25	2, 55	-0.59	Palermo	6. 54	Plattsburg	0.
orth Carolina	40, 0	- 2.2	Southern Pines	80	27	Linville	9	20, 29	3. 34	-0.48	Horse Cove	6, 28	Waynesville	1.
orth Dakota		+ 1.3	New England City	55	304	Medora	-43	26	0.62	+0.20	Wishek	2.00	Milton	T.
		- 2.9	Cambridge	55 69	29	Orangeville		15	3.09	+0.25	Plattsburg	4. 97	Orangeville	1.
hio	28. 0	- 2.0	(Eldorado, Okla	76	1)									
Territories.	39. 4	- 0, 5	Ravia, Ind. Ter	76	250	5 stations	2 0	dates	0.79	-1.06	Goodwater, Ind. T	2. 77	2 stations	0.
	97 9	. 0.9	Klamath Falls	63	18	Burns	- 6	25	7, 15	+0.89	Glenora	25, 06	Ontario	0.
regon	31, 8		Williams	63	295									1.
ennsylvania	25. 8	- 5.7	Uniontown	71	27	Smethport	-19	15 30	2.48	-0, 95	Scranton	3. 71 8. 42	Center Hall Juana Diaz	T.
orto Rico	75, 4	******	Vieques	95	27)	Adjuntas	50 16	197	2.40	******	La Carmelita (a)	1		1
uth Carolina	45.5	- 1.5	Cheraw	78 78	246	Walhalla		296	2, 79	-0.45	Greenville	4, 90	Charleston	1.
uth Dakota		+ 0.2	Seivern	72	30	Asheroft	-33	29§ 27	0.46	-0.10	Aberdeen	1, 60	Leslie	0.
nnessee	40.5	+ 0.5	Dover	75	25	Rugby	5	29	6, 07	+1.96	Memphis	10.40	Leadvale	3.
xas	49. 4	- 0.7	Sabinal	92	1	Tulia	7	28	2.06	-0.39	Rockland	10. 09	3 stations	0,
tah		+ 0.4	Rockville	81	2	Tulia	-25	27	0.74	-0.18	Huntsville	2. 12	Loa	
			(Callaville	70	264	McDowell		11	3, 71	+0.69	Williamsburg	7, 45	Shenandoah	1.
irginia	04. 4	0. 4	Cape Henry	70	285									-
ashington	36. 9	+ 1.8	Southbend	70	29	Cusick		26 11	4.75	-0.74 +0.16	Clearwater	20. 92 5. 91	Sunnyside Creston	
est Virginia	32. 8	- 2.4	Grafton, Philippi Whitehall	71 58	27 29	Weston Darlington	20	14	3, 12 1, 88	+0.16	Madison	3, 34	Spooner	0.
ashingtonest Virginiaisconsinyoming	19. 1	- 0.1	Pine Bluff, Story	98	30	Upper Geyser Basin	-39	26)	0.63	-0.35	SUpper Geyser Basin,	2.80	3 stations	T.

* Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut.

cloudy and stormy on 23d, 24th, 30th, and 31st. The condition of winter range was generally above average; stock did well, with less feeding than usual. Considerable snow fell in the high ranges the latter part of month. Outlook good for a satisfactory water supply the coming season.—J. H.

New England .- The past December was the coldest of record, the next lowest mean temperature for December having been 21.1° in 1890. The cold weather was very favorable to the ice harvest which progressed to completion in many sections. The general covering of snow and ice was favorable to grass and winter grain. The water famine was somewhat

New Jersey.—The month was the coldest since the establishment of this service, 1887. As the ground was well blanketed with snow during the entire month in the northern and central, and up to the 28th in the southern section, grain and grass were well protected from the severe freezing weather and were in very good condition. Late sown wheat in the southern section was greatly improved by the slowly melting snow. The average depth of snowfall, 19.1 inches, was the greatest on record.— Edward W. McGann.

New Mexico.—The month was somewhat stormy and rather cold and windy over much of the Territory. Considerable snow occurred, stock

water was plentiful, the subsoil was well moistened, and outlook for later water was periodic, the subsoli was well moistened, and outslook for later plowing, seeding, and range was very good. Stock was mostly doing well, although the range was very short in the northeast districts and shrinkage was reported from Lincoln County. Little or no loss was reported from storms and much good was expected from the heavy deposits

I snow.—Charles E. Linney.

New York.—The month was the coldest December for a number of years and was rather dry, but winter grain and grass were well protected by snow until the 23d and were in good condition at the close of the month. Many wells and streams were dry until the drought was broken by a general rain on the 27th. The conditions were generally favorable

oy a general rain on the 21th. The conditions were generally favorable for live stock.—R. G. Allen.

North Carolina.—On the whole the weather during December was not detrimental to crops. The cold period from the 11th to 16th checked growth somewhat, but the development of the roots of the winter cereals was not hindered thereby. There was a favorable covering of snow during the middle of the month. Most of the winter wheat was sown late, so that much was not up, that which was up showed a good stand. Fall oats and rye were nearly all up and looked well.—C. F. von Herrmann.

North Dakota.—The temperature and precipitation were slightly in excess of the normal. The snowfall was not heavy enough to interfere

with stock feeding on the open ranges, but was sufficient to satisfy thirst, and stock, as a rule, came through the month in good condition.—

B. H. Bronson.

Ohio.—Wheat was very small and thin on the ground the first of the month, owing to dry and unfavorable weather, but was well protected by snow during the low temperatures of the middle of the month. Abundant rain fell from the 23d to 27th, and greatly improved the property is the ground on the control of the ground on Abundant rain fell from the 23d to 27th, and greatly improved the prospect. It was feared, however, that the sudden freezing of the ground on the 27th caused considerable damage to unprotected plants. Rye was looking well. Corn husking was not completed. Tobacco cured well and was of good quality.—J. Warren Smith.

Oklahoma and Indian Territories.—Moderate temperatures prevailed during the month. The precipitation was decidedly below the normal, but was fairly well distributed over the section. Wheat was greatly benefited by occasional snowfall during the month, but the general condition of the crop was poor to fair.—C. M. Strong.

Oregon.—East of the Cascade Mountains the rainfall was insufficient for rapid germination, and fall wheat made slow growth. Pasturage in this section was generally short, and considerable extra feeding was done. West of the Cascade Mountains the rains were heavier, and plowing and

West of the Cascade Mountains the rains were heavier, and plowing and seeding were finished earlier than usual. Fall crops in this section germinated nicely, and at the end of the month they all were well rooted and presented a green and thrifty appearance.—Edward A. Beals.

Pennsylvania.—At the beginning of the month early sown grain ranged from fair to good, but a large acreage of late sown had germinated and developed always on account of providing department. The

developed slowly on account of prevailing drought conditions. The average snowfall (13.4 inches) was much in excess of the usual amount,

and grain, meadows, and pastures were doubtless unusually well protected.—T. F. Townsend.

Porto Rico.—Weather generally clear to partly cloudy, with rainfall below normal; favorable for the maturing of canes. Sugar making continued throughout the month in the southern division, and the yield was

tinued throughout the month in the southern division, and the yield was generally better than at this season last year. Young canes did well; more than the usual amount was planted. Some cotton picked; yield satisfactory. Coffee picking throughout the month; yield very light. Oranges plentiful and of good quality. Some corn and beans harvested. Pasturage fair and stock in good condition.—E. C. Thompson.

South Carolina.—The month was colder than usual, although without any severe cold waves. The precipitation was approximately normal and was ample, as most of it was absorbed as it fell. Wheat and oat seeding was nearly completed, though retarded somewhat by frozen ground and snow in the western portions. Truck was damaged on the coast by the killing frost of the 15th. Little plowing was done for spring planting, as the soil was generally too wet. Streams continued exceptionally low, though rising slowly toward the close of the month.—J. W. Bauer.

South Dakota.—Except during a stormy and cold period from the 26th to 28th, the weather was very favorable for the grazing of stock on the open ranges. In some localities deficient soil moisture was unfavorable for winter rye and the limited acreage of winter wheat. Live stock and

for winter rye and the limited acreage of winter wheat. Live stock and range pasturage were in very good condition and reports indicated a sufficient supply of hay and coarse feed on hand for winter. Corn husking was completed under very favorable conditions.—S. W. Glenn.

Tennessee.—The month was generally mild. Moderate rains fell at intervals and heavy amounts on the 26-27th. Early sown wheat at the end of the month was looking well, as a rule, and the rains during the month were beneficial in bringing up late sown grain. Winter oats were not in good condition, owing to previous drought and to poor germination.—H. C. Rate.

Texas .- Drougthy conditions continued with increasing severity over

the entire section during the first and second decades of the month, but during the third decade these conditions were fully relieved over the eastern and coast divisions and partially so over the other parts of the eastern and coast divisions and partially so over the other parts of the State, but more rain is needed in some places. The temperatures of the month were above normal until about the 25th, when a cold wave of considerable intensity caused freezing temperatures, with frost, to the coast line. All harvesting operations, except the gathering of some little cotton in a few of the western counties and the grinding of some cane in the coast district, were completed and preparatory work for a new crop was well advanced. Early sown grain made some advance but the late sown was inferior and backward, the stand being bad and growth retarded by unfavorable weather conditions. Trucking interests prospered and pasturage was unusually good and abundant, except where the drought continued.—W. H. Alexander.

Utah.—The precipitation during the month was below the normal and insufficient for the needs of the soil, which was very dry owing to the

insufficient for the needs of the soil, which was very dry owing to the long drought. Temperatures were above normal, except near the close of the month, when they fell in some districts to below zero. Fall grain was generally in poor condition and in some localities the seed remained

dormant owing to lack of sufficient moisture. Ranges offered no sustenance, but stock was kept in good condition by feeding.—R. J. Hyatt.

Virginia.—The weather for December was rather more favorable for crop progress than in either of the two preceding months. Although it was quite cold, especially during the second decade, a good snow covering obtained, and this, with ample moisture at other times, was of great benefit to clover and to the fall seeded crops of wheat, oats, rye, and barley.—Edward A. Evans.

Washington.—The mild weather was generally favorable for the fall wn wheat. Drought during the fall greatly delayed seeding, and also retarded germination and growth, so that the wheat was generally short, but was of good color and fairly good condition in Spokane and Whitman counties. In the central counties it germinated late, so that the crop was not vigorous. In southeast counties the prospect was below average. Owing to drought much grain failed to germinate, making reseeding necessary. No snow covering in east and southeast counties.—G. N.

West Virginia.—The weather was dry and quite cold during the greater portion of the month, and the ground was covered with snow from the 5th to the 24th. The snow was all taken off by the heavy rainfall of the 24-27th, and the warm spell at that time was followed by high winds and a freeze on the 28th. The drought then broken had continued from late summer and was undoubtedly the most severe in years. At the close of the month, wheat, rye, and oats were in very poor condition and the prospects were not favorable; stock was in fairly good condition.—E. C.

-The feature of the month was the storm that passed over the southeastern portion of the State on the 27th, causing very heavy snow and sleet over the central counties. The heavy deposits of snow and ice broke the branches from shade and fruit trees in many localities, prostrated telegraph and telephone wires, and delayed trains. Although there were two cold periods during the month winter grains and grasses were well protected and were reported in satisfactory condition.—W. M.

Wyoming.—The weather conditions for the month were very favorable. Stock remained in excellent condition, and no losses occurred. The cold wave of the 26th and 27th was not severe and was soon followed by unusually mild weather. The snowfall for the month was usually sufficient to allow stock to be kept on the winter ranges. There was a marked deficiency of snow in the mountains of the State.—W. S. Palmer. deficiency of snow in the mountains of the State.- W. S. Palmer.

SPECIAL ARTICLES.

RECENT PAPERS BEARING ON METEOROLOGY.

Mr. H. H. KIMBALL, Librarian and Climatologist

The subjoined titles have been selected from the contents of the periodicals and serials recently received in the Library of the Weather Bureau. The titles selected are of papers or other communications bearing on meteorology or cognate branches of science. This is not a complete index of the meteorological contents of all the journals from which it has been compiled; it shows only the articles that appear to the compiler likely to be of particular interest in connection with the work of the Weather Bureau. Unsigned articles are indicated by a

Nature. London. Vol. 71.

— Hydrology in the United States. Pp. 187-188.

Hann, Julius. Mean temperatures of high southern latitudes. P.

Knowledge. London. New Series. Vol. 2.
Lockyer, William J. S. Our sun and weather. Pp. 6-8.
Science Abstracts. London. Vol. 7.

B[orns], H. Temperature decrease in the atmosphere up to heights

of 10 kilometers. [Abstract of article of J. Hann.] Pp. 949-950.

B[orns], H. Measuring the electric conductivity and ionisation of the air from balloons. P. 974.

B[orns], H. Registering electrometer for the dispersion of atmospheric electricity. [Abstract of article of G. Lüdeling.] P. 974.

American Journal of Science. New Haven. 4th Series. Vol. 19.

Dabourian, H. M. Radio-activity of underground air. Pp. 16-22.

National Geographical Magazine. Washington. Vol. 16.

— The farmers of the United States. [Extract from Annual Report of the Secretary of Agriculture, 1904.] Pp. 39-46.

Scottish Geographical Society. Edinburgh. Vol. 21.

Pirie, Harvey and Brown, N. Rudmose. The Scottish National Antarctic Expedition. Second Antarctic Voyage of the "Scotia." [Meteorological abstract.] Pp. 24-37.

— "Rain-making" among the North American Indians. [Note of H. R. Mill.] P. 46.

— Antarctic meteorology. [Note on paper of H. Arctowski.] Pp.

Antarctic meteorology. [Note on paper of H. Arctowski.] Pp.

The Argentine Government and meteorology. [Note.] Pp. 48-49.

Scientific American. New York. Vol. 91.

— The Lebaudy airship "Le Jaune." P. 478.

Rotch, A. Lawrence. The use of kites for meteorological observations at sea. P. 479.

New York. Vol. 92. Scientific American.

— Radio-activity. P. 1.

Willey, Day Allen. Snow crystals. Pp. 21-22.

rnal of the Western Society of Engineers. Chicago. Vol. 9.

Slichter, C. S. Measurement of underflow streams in southern California. Pp. 632-653.

ence. New York. New Series. Vol. 21.

Science.

California. Pp. 632-653.

mce. New York. New Series. Vol. 21.

— [Note on report of meteorological council for the year ending March 31, 1904.] Pp. 39-40.

Wead, Charles K. Variations in insolation and in the polarization of blue skylight. [Note on paper of H. H. Kimball.] Pp. 67-68 67 - 68

The first observations with "Ballons-sondes" in America. Pp. 76-77

Astrophysical Journal. Chicago. Vol. 21.

Schuster, Arthur. Radiation through a foggy atmosphere. Pp.

Kempf, P. The spectroheliograph of the Potsdam Observatory.
Pp. 49-54.

Horticulture. Boston. Vol. 1.

— Experiments made in Austria-Hungary, Italy, and Switzerland to prevent the formation of hail. Pp. 964-265.

Proceedings of the American Academy of Arts and Sciences. Boston. Vol. 40. Edwards, Harold. A manometer device for air thermometers. Pp. 541-545.

Pp. 541-545.

Edwards, Harold. Notes on resistance measurements in platinum thermometry. Pp. 549-555.

Climate. London. Vol. 5.

Cook, J. Howard. The climate of Uganda. Pp. 114-119.

Fisher, Walter. The climate of Lovaleland. Pp. 119-122.

— The treatment of disease by climate. [Review of work of Ram Narain.] Pp. 139-141.

— Climate and health in hot countries. [Review of work of G. M.

Climate and health in hot countries. [Review of work of G. M.

— Climate and health in hot countries. [Review of work of G Giles.] Pp. 181-184.

La Nature. Paris. 33me année
Touchet, E L'aurore polaire. Pp. 19-20.
Rudaux, Lucien. Les hautes altitudes atteintes. Pp. 49-50.

Le Temps qu'il Fait. Mons. 2me année.
V., V. D, L'atmospère et sa transparence. Pp. 9-12.
— La tempête du 6 et 7 décembre [1904.] P. 20.

Ciel et Terre. Bruxelles. 25me année.
Ditte, A. Les métaux dans l'atmosphère. Pp. 497-510.
Vanderlinden, E. L'année des nuages. Pp. 511-518.
— Le service des annonces des crues aux États-Unis. [Note.]

- Le service des annonces des crues aux États-Unis. [Note.] Pp.

Bulletin de la Société Belge d'Astronomie. Bruxelles. 3me année. Spée, E. Groupe remarquable de taches solaires d'octobre 1904.

Spée, E. Groupe remarquable de l Pp. 357-360. uptes Rendus de l'Académie des Sciences. Paris.

Guillaume, J. Observations du soleil faites à l'Observatoire (équatorial Brunner de 0mm, 16 d'ouverture) pendant le troisième tri-

torial Brunner de 0mm, 16 d'ouverture) pendant le troisième trimestre de 1904. Pp. 1017-1019.

La Géographie. Paris. Vol. 10.

Rabot, Charles. Climat comparée de l'Islande et du Grönland oriental et relations entre le régime barométrique de l'Islande et le climat de l'Europe. [Review of article of Hann.] Pp. 119-120.

Humbert, P. Pluviosité et nebulosité en Asie Mineure. [Abstract of work of Rudolf Fitzner.] Pp. 120-122.

Archives des Sciences Physiques et Naturelles. Genève. 4 Période. Tome 18.

— Observations météorologiques faites aux fortifications de Saint-Maurice pendant les mois de mars, avril, et mai 1904. Pp. 594-601.

G, R. Klimatographie von Niederösterreich. [Note on work of Hann.] Pp. 618-619.

G., R. Der Bergeller Nordföhn. [Note on work of Robert Billwiller, jr.] P. 620.

Hann.] Pp. 618-619.

G., R. Der Bergeller Nordföhn. [Note on work of Robert Billwiller, jr.] P. 620.

Beiträge zur Physik der freien Atmosphäre. Strassburg. 1 Band.

Hergesell, H. Drachen aufstiege auf dem Bodensee. Pp. 1-34.

Assmann, Richard. Ein Jahr simultaner Drachenaufstiege in Berlin und Hamburg. Pp. 35-46.

Quervain, A. de. Ueber die Bestimmung der Bahn eines Registrier-ballons am internationalen Aufstiege vom 2 Juli 1903 in Strassburg. Pp. 47-54.

Das Wetter. Berlin. 21 Jahrgang.

Arendt, Th. Ueber die Gewitterverhältnisse von Berlin und dessen Umgebung. Pp. 265-274.

Stade, Hermann. Die vierte Konferenz der Internationalen Kommission für wissenschaftliche Luftschiffahrt zu St. Petersburg vom 29 August bis 4 September 1904. Pp. 274-282.

Assmann, Julius, sr. Niederschläge in Lüdenscheid. Pp. 283-284.

Gewitterhäufigkeit und Sonnenflecken. Pp. 285-386. Adler, Eduard Schiefer. Erster Schneefall, Gewitter und Sturm. Pp. 286-287.

Das Weltall. Berlin. 5 Jahrgang.

Weltall. Berlin. 5 Jahrgang. Krebs, Wilhelm. Sonnenflecken und erdmagnetische Ungewitter im Jahre 1903. Pp. 99-101.

Zeitschrift für Instrumentkunde. Berlin. 24 Jahrgang. Kempf, P. Der Spektroheliograph des Potsdamer Observatoriums. Pp. 317–322.

Annalen der Hydrographie und Maritimen Meteorologie. Berlin. 33 Jahr-

Heidke, P. Einfluss des Windes auf die Fahrt von Dampfern. Pp.

Geographische Zeitschrift. Leipzig. 10 Jahrgang.
—— Austrocknung des Grossen Salzsees. [Abstract.] Pp. 639-640.

Physikalische Zeitschrift. Leipzig. 6 Jahrgang.

Knoche, W. Einige Messungen luftelektrischer Zerstreuung auf dem Pico de Teyde und in Puerto Orotava (Tenerife). Pp. 2-4.

Rose, Emil. Enwendung des Radiums zur Prüfung des Strahlungsgetzes für niedrige Temperaturen. Pp. 5-6.

Beiblätter zu den Annalen der Physik. Leipzig. Band 28. Konen, H. Ueber die Absorption und Emission der Luft und ihrer Bestandteile für Licht der Wellenlängen von 250 bis 100. [Abstract of article of V. Schumann.] Pp. 1172-1175.

Gaea. Leipziz. 41 Jahrgang.

Drachenaufstiege zu wissenschaftlichen Zwecken. I Die Schwedische antarktische Expedition. Pp. 75-84. Pp. 72-75.

Die Schwedische antarktische Expedition. Pp. 75-84. Der periodische Verlauf der als Wärme in Boden, Luft und Was-

ser aufgespeicherten Energie. Pp. 97-102.

Verhalten der atmosphärischen Elektrizität. Pp. 119-121.

Wiener Luftschiffer Zeitung. Wien. 3 Jahrgang.
Silberer, Victor. Grundzüge der praktischen Luftschiffahrt. Pp. 265-267.

Schlein, Anton. Die wiener Oktober-Hochfahrt. Pp. 26 Bordé, —. Vom St. Petersburger Kongress. Pp. 273–275.

- Aëronautische Rekords. P, 284.

Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Wien. 112 Lampa, A. Ueber einen Versuch mit Wirbelringen. Pp. 603-605. Zölss, B. Beiträge zur Kenntnis der atmosphärischen Elektrizität. XIII. Messungen der Elektrizitätszerstreuung in Kramanianta.

XIII. Messungen der Elektrizitätszerstreuung in Kremsmünster.
 Pp. 1117-1222.
 Zölss, Bonifaz. Beiträge zur Kenntnis der atmosphärischen Elek-

trizität. XIV. Mes ster. Pp. 1407–1499. Messungen des Potentialgefälles in Kremsmün-

ster. Pp. 1407-1499.

Schweidler, Egon R. v. Beiträge zur Kenntnis der atmosphärischen Elektrizität. XV. Weitere luftelektrische Beobachtungen zu Mattsee im Jahre 1903. Pp. 1501-1531.

Exner, F. M. Ueber eine Beziehung zwischen Luftdruckverteilung und Bewölkung. Pp. 1667-1684.

Meteorologische Zeitschrift. Wien. Band 21.

Maurer, J. Experimentelle Untersuchungen über das Verhalten des Trägheitskoeffizienten der ventilierten Thermometer unter variablem Druck des aspirierenden Mediums (mit einem Anhang: Einiges über die Tätigkeit der Schweizer Begistrierballon-station) Einiges über die Tätigkeit der Schweizer Registrierballon-station). Pp. 489-502.

Woeikof, A. Das sommerliche asiatische Luftdruckminimum. Pp. 502-510.

Pp. 502-510.

Elsner, G. v. Die Niederschlagsverhältnisse der "Gorlitzer Heide" und ihrer Umgebung. Pp. 510-514.

Laska, W. Ueber die Dämmerungserscheinungen des Jahres 1903 und 1904. Pp. 514-516.

— A. Ricco ueber Sonnenflecken und Störungen des Erdmagnetismus und der Erdelektrizität. Pp. 516-517

mus und der Erdelektrizität. Pp. 516-517.

— Ueber den Einfluss des Mondes auf die Niederschläge. Pp. 517-

Anderko, A. v. Ein neuer Ombrograph. Pp. 518-521. Hamberg, H. E. Vieljährige Temperaturmittel für Schweden. Pp. 521-523.

Hann, J. Ergebnisse der meteorologischen Beobachtungen in den Britischen Kolonien und anderen auswärtigen Kolonien. P. 524. Fényi, J. Meteorologische Beobachtungen in Zumbo am Zambesi,

Fényi, J. Meteorologische Beobachtungen in Zumbo am Zambesi, Südafrika. Pp. 524–526.
Hann, J. J. R. Sutton über den jährlichen Gang des Luftdruckes und der Temperatur auf dem Plateau von Südafrika. Pp. 526–527.
Hann, J. J. R. Sutton über die tägliche Periode der meteorologischen Elemente zu Kimberley. Pp. 527–530.
— Resultate der meteorologischen Beobachtungen zu Mozambique 1900 und 1901. Pp. 530–531.
— Resultate der meteorologischen Beobachtungen in Ouiveramo.

— Resultate der meteorologischen Beobachtungen in Quixeramo-bim (Ceará, Brasilien) im Jahre 1901 und 1902. Pp. 531-533. H[ann], J. Regenfall auf dem Marianen und in Deutsch-Neu-Gui-nea. 1902. Pp. 533-534. — Resultate der Regenmessungen in Deutsch-Neu-Guinea 1902.

Hemel en Dampkring. Amsterdam. 2 Jahrgang. Mars, S. De algemeene circulatie van den Dampkring. Pp. 118-121.

De telegrafische verbinding met Ijsland en de weêrvoorspellingen. Pp. 122-124.

RECENT ADDITIONS TO THE WEATHER BUREAU LIBRARY

By Mr. H. H. KIMBALL, Librarian.

The following titles have been selected from among the books recently received, as representing those most likely to be useful to Weather Bureau officials in their meteorological work and studies. Most of them can be loaned for a limited time to officials and employees who make application for them.

Brennecke, Wilhelm. Beziehungen zwischen der Luftdruckverteilung und den Eisverhältnissen des Östgrönländischen Meeres. 18 pp. erlin. 1904

Clerk, Agnes M. Problems in astrophysics. XVI, 567 pp. 8°. Lon-

Czermak, Paul. Ueber elektricitätszerstreuung in der Atmosphäre. (Besonders Abgedruckt aus dem LXXIV Bande der Denkschriften der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie

mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften). 33 pp. 4°. Wien. 1903.

Dexter, Edwin Grant. Weather influences. With introduction by Cleveland Abbe. XXXI, 286 pp. 8°. New York. 1904.

Dutton, Clarence Edward. Earthquakes in the light of the new seismology. (23), 314 pp. 8°. London. 1904.

Elias, Hermann. Der Gang der meteorologischen Elemente im Nebel. 10 pp. 4°. Berlin. 1903.

Ebermeyer. Untersuchungen über den Einfluss des Waldes auf den Grundwasserstand. Bearbeitet von Ebermayer und Otto Hartmann. (Separat-Abdruck Jahrgang 1903.) 17 pp. 4°. München. 1904.

Hahn, R. Das Wetter, die Winde und die Strömungen der Meere. 48 pp. 4°. Hamburg. 1904.

Hahn, R. Das Wetter, die Winde und die Strömungen der Meere. 48 pp. 4°. Hamburg. 1904.

Hering, Carl. Ready reference tables. Vol. 1. 196 pp. 16°. New York. 1904.

York. 1904.

Herrmann, E. Wetterprognosen für den Ozean und ihre Bedeutung für die Schiffahrt. 24 pp. 8°. Hamburg. 1904.

International Kommission für wissenschaftliche. Beobachtungen mit bemannten, unbemannten Ballons und Drachen sowie auf Berg-und Wolkenstationen. Juni 1901 6 August 1903. Herausgeben von Prof. Dr. H. Hergesell. (Veröffentlichungen der Internationalen Kommission für wissenschaftliche Luftschiffahrt.) 211 pp. 4°. Strassburg. 1904. 1904.

burg. 1904.

Kayser, H. Handbuch der Spectroscopie. Zwei Bände. XXIV, 781;
XI, 696 pp. 8°. Leipzig. 1902.

Keller, Hermann. Die Hochwassererscheinungen in den deutschen Strömen. VIII, 104 pp. 4°. Jena. 1904.

Keller, Konrad. Die Atmosphäre ein elektro-pneumatischer Motor. 102 pp. 8°. Zürich. 1903.

Kelvin, Lord. Baltimore lectures on molecular dynamics and wave theory of light. (21) 694 pp. 8°. London. 1904.

Kelvin, Lord. Battimore fectures of molecular dynamics and wave theory of light. (21), 694 pp. 8°. London. 1904.

Klimpert, B. Entstehung und Entladung der Gewitter, sowie ihre Zerstreuung durch den "Blitzkamm" (Fulgura frango). VIII, 203 pp. 12°. Bremerhaven. 1902.

12°. Bremerhaven. 1902. Kommission für luftelektrische Forschungen. Denkschrift der Kommission für luftelektrische Forschungen nebt Berichten über die Tätigkeit der luftelektrischen Stationen. (Separat-Abdruck aus den Sitzungsberichten der mathem.—phys. Klasse der Kgl. Bayer. Akademie der Wissenschaften. Bd. XXXIII 1903 Heft II.) Pp. 257-379.
L. Chatelier, H. and Boudard, O. High-temperature measurements. Authorized translation and additions by G. K. Burgess. 2d ed. (15), 341 pp. 12°. New York. 1904.
Lehmann, — Das Klima des Herzogtumas Sachsen-Meiningen. (Sonderabdruck aus Heft 44 der Schriften des Vereins für Meiningische

Lehmann, — Das Klima des Herzogtumas Sachsen-Meiningen. (Sonderabdruck aus Heft 44 der Schriften des Vereins für Meiningische Geschichte und Landeskunde.) Pp. 495–526. 8°. Hildburghausen. 1903.

Mangels, H. Wirtschaftliche, naturgeschichtliche und klimatologische Abhandlungen aus Paraguay. VIII, 364 pp. 8°. München. 1904.

McClelland, J. A. Ionization in atmospherie air. (Scientific transactions of the Royal Dublin Society. Vol. 8. (Ser. II.) Pp. 57–64.

Merriman, Mansfield and Woodward, Robert S. Higher mathmetics. XI, 576 pp. 8°. New York. 1902.

Nippoldt, A., Jun. Erdmagnetismus, Erdstrom and Polarlicht. 136 pp. 24°. Leipzig. 1903.

Pernter, J. M. Jelineks Psychrometer-Tafeln erweitert und vermehrt.

metics. XI, 576 pp. 8°. New York. 1902.

Nippoldt, A., Jun. Erdmagnetismus, Erdstrom and Polarlicht. 136 pp. 24°. Leipzig. 1903.

Pernter, J. M. Jelineks Psychrometer-Tafeln erweitert und vermehrt von J. Hann neu herausgegeben und mit Hygrometer-Tafeln versehen von J. M. M. Perpter. 5 ed. XIII, 107 pp. 4°. Leipzig. 1903.

Pernter, J. M. Meteorologische Optik. Zweiter Abschnitt. 55–212 pp. Pietzmann, Gustav. Die Beobachtuneen der Lufttemperatur während der totalen Sonnenfinsterniss vom 22. Januar, 1898 in India. (Nova acta. Abh. der Kaiserl. Leop.—Carol. Deutschen Akademie der Naturforscher. Band LXXXI. Nr. 6.) Pp. 307–378.

Quervain, Alfred de. Die Hebung der atmosphärischen Isothermen in den schweizer Alpen und ihre Beziehung zu den Höhengrenzen (Sonderabdruck aus Gerlands Beiträgen zur Geophysik. Bd. 6, Heft 4.)

(Sonderabdruck aus Gerlands Beiträgen zur Geophysik. Bd. 6, Heft 4.)

(8), 53 pp. 8°. Leipzig. 1903.

Rayet, G. Note historique sur la Commission Météorologique de la Gironde et sur ses travaux. 24 pp. 8°. Bordeaux. 1903.

Rid, Hans. Klimalehre der alten Griechen nach den geographica

62 pp. 8°. Kaiserlautern.

Rubel, Otto. Das Klima der Stadt Heidelberg in den Jahren 1886 bezw. 1888-1900. (Sonderabdruck aus Gerlands Beiträgen zur Geophysik. Bd. 6, Heft 1.) Pp. 170-237. 8°. n.t.p.

Rudolph, H. Lufteletrizität und Sonnenstrahlung. 24 pp. 8°. Leip-

zig. 1903.

Rutherford, E. Radio-activity. 8°. (8), 399 pp. Cambridge. 1904. Schubert, Johannes. Der Wärmeaustausch im festen Erdboden, in Gewässern und in der Atmosphäre. 30 pp. 8°. Berlin.

Schürmann, Karl. Beiträge zur Kenntnis der monatlichen Drehung der Winde nach 16 jährigen Beobachtungen der meteorologischen Stationen in: Wilhelmshaven, Hamburg, Kiel, Berlin, Wustrow, Neufahrwasser, Memel. 23 pp. 8°. Rostock. 1903.

Sverdrup, Otto. New land. Four years in Arctic regions. Translated from the Norwegian by Ethel Harriet Hearn. In two volumes. XVI, 496; XII, 505 pp. 8°. London. 1904.

Thevenet. Recherches de thermodynamique sur la distribution des éléments météorologiques a l'intérieur des masses d'air en mouvement. X. 94 pp. 4°. Alger. 1903.

X, 94 pp. 4°. Alger. 1903.

Vanhove, D. Étude pluviométrique sur le bassin de la Meuse.

(Mémoires couronnés et mémoires des savants étrangers publié par l'Académie Royale des sciences, des lettres et des beaux-arts de Belgique. Tome XLII. 16 fasc.). 30 pp.

Voss, Ernst Ludwig. Beiträge zur Klimatologie der südlichen Staaten von Brasilien. IV, 48 pp. 4°. Gotha. 1904.

Weber, L. Wind und Wetter. 130 pp. 12°. Leipzig. 1904.

Wiebe. Tafeln über die Spannkraft des Wasserdampfes. Berechnet und herausgegeben von Dr. H. F. Wiebe. IX, 30 pp. 8°. Braunschweig.

THE NEW "METEOROLOGIA" BY A. I. WOEIKOF.

By STANISLAV HANZLIK, Ph. D. Dated January 15, 1905.

To the series of treatises on meteorology written by scientists of different nations and culminating in Hann's Lehrbuch is now to be added this newest work by the well-known Russian authority, Professor Woeikof, of the University of St. Petersburg. This work of 719 pages, in 30 chapters, was published in four parts during the year 1904, but, unfortunately for American readers, it is in the Russian language. We give the titles of the chapters, hoping that some one will publish a complete English translation.

In the preface the author explains the reasons that led him to write a new work on meteorology, namely, that the treatise by Kaemtz, long ago translated into Russian by Professor Spassky, is to-day out of print and antiquated. The idea of translating Hann into Russian was abandoned because every meteorologist reads the German language. Still there is need of a Russian handbook for the use of those who are interested in meteorology in general, and especially for the young students, who at the beginning of their studies can not be familiar with the terms and the literature of this special subject. Woeikof has written his book for those who have only an elementary knowledge of physics and mathematics.

In the first part he explains the general scope of the science and the methods employed, Lambert's and Bessel's formulæ, graphic methods of illustration, etc. He then passes on to the laws of gases and the composition, mass, and altitude of the atmosphere.

In the chapters on radiation and actinometry he speaks of the source and the measurement of radiant heat; gives the details of the Violle-Savelieff actinometer and of the measurements made in Kief and Ekaterinburg; the distribution of energy in the spectrum and its selective absorption by aqueous vapor and by carbonic acid gas.

In chapter 6 the author enters into the largest part of his work, namely the distribution of temperature in the deep earth, the surface soil, and oceans and lakes, to all of which he devotes 151 pages. The reason for treating this subject in such elaborate detail is stated in the introduction, i. e., that so many investigations in this field have been made in Russia (see, for instance, Woeikof's reports in the Meteorologische Zeitschrift, 1903, p. 451), and also because the memoirs on this subject are scattered through different kinds of publications, and he wishes to bring them all together here.

p-

in

In the chapters on the temperature of the water he includes rivers, lakes, and seas, and gives a résumé of the numerous works done since the publication of the oceanographies of Boguslawski, Krümmel, and Thoulet. He mentions here a new, large volume by Professor Spyndler.

Chapters 6, 7, and 8 give the distribution of temperature in the earth's crust, having regard, first, to the surface layer of the crust; the arrangement employed for investigation; the daily and yearly gain and loss of heat; the influence of underground waters, rainfall, foliage of plants, etc.

Chapters 9 and 10 treat of the temperatures observed in oceans, lakes, and smaller bodies, mentioning the influence of winds. He gives the yearly curve and the types of temperature distribution. The distribution of salinity, surface temperatures, and currents in the great oceans is discussed, and

the influence of shape and size of the ocean bed on the direction and velocity of the current is also considered.

Chapter 11 treats of the snow, ice, and icebergs. Chapter 12 explains the temperature and humidity of the

air (Assmann's ventilated psychrometer, maximum and minimum thermometers, Saussure's hygrometer, Wilds evaporimeter), and the evaporation of sea water.

Chapters 12 and 13 deal with the thermodynamics of the atmosphere, especially as illustrated by the results of the balloon work at Berlin and the theoretical investigations of von Bezold on the successive stages in the condition of an ascending current of moist air.

Chapters 14 and 15 treat of the vertical and horizontal distribution of the average temperature and humidity and their periodic and nonperiodic changes.

Chapter 16; the cloudiness and especially the kind of clouds.

Chapter 17; rain, snow, and hail.

Chapter 18; the study of atmospheric pressure, the instruments, the changes of pressure with time, diurnal periods, isobars, the reduction to sea level.

Chapters 19 and 20; the anemometer, the velocity of the

wind, the Koeppen-Espy theory as to the diurnal periodicity of the upper and lower winds, the relation between pressure and wind, barometric gradients, etc.

Chapter 21; the general circulation of the air between the poles and the equator.

Chapter 22; the influence of the continents on the winds, the monsoons, and other local winds.

Chapter 23; the optical phenomena of the atmosphere.

Chapter 24; atmospheric electricity, its measurement, with especial reference to the new theories of ions of Arrhenius, Ekholm, and others.

Chapters 25, 26, and 27 treat of cyclonic storms and chapter 28 of thunderstorms.

Chapter 29 is devoted to climate. The treatise closes with chapter 30, describing the national meteorological bureaus, forecasts, observing stations, the hours of observation, and the international meteorological congresses.

The work is richly illustrated with diagrams and pictures, such as are used by Woeikof in his lectures at the university. At the end of each chapter Woeikof adds references to the literature of the respective subjects. The whole work is well adapted to the use of students in universities.

THE RESULTS OF THE WORK DONE AT THE AERO-NAUTICAL OBSERVATORY AT TEGEL, NEAR BERLIN, FROM OCTOBER 1, 1901, TO DECEMBER 31, 1902.¹ By STANISLAV HANZLIK, Ph. D.

This second official publication of the Aeronautical Observatory near Berlin relates to fifteen months of work with kites, kite balloons, free manned and free sounding balloons. This report differs from the first in that the authors have abandoned the complete reproduction of all original curves and daily weather maps, which were formerly given with the view to the possibility of the practical application of aerial exploration to the daily work of forecasting.

Many troubles occurred after the military aeronautical battalion began its full service at the end of the year 1901. This battalion is quartered across the road just opposite the observatory at Tegel, and it often happened that the wires of the kite, when flying in the air, interfered with the lines of the kite balloons of the military battalion. Therefore the plan of flying the kites from the top of the kite tower built for this purpose was abandoned and, by means of a pulley, the kite wire was led from the reel in an opposite direction along the ground away from the observatory. Another disadvantage due to proximity to the city was experienced when the kite wires broke and fell on telephone wires or on lines conducting currents of high potential, causing many disagreeable and dangerous accidents, both in Berlin and the adjacent suburbs. For these reasons it has now been decided to remove this observatory still farther from Berlin, and a new location has been chosen in Lindenberg, 60 kilometers southeast of Berlin, where it is expected that a new series of ascensions will begin in April, 1905.

As regards the kites, as indeed I had occasion to see during my stay at Tegel, all kinds have been built and tried, not only the patterns proposed by members of this observatory, but those by other meteorologists in all parts of the world, and the balloon house at Tegel is a real museum of kites exhibiting the greatest variety of shapes and sizes. The observatory employs a carpenter, whose entire time is given to building and mending the kites. A wide experience with many patterns has shown that the great Hargrave kite, with curved front surfaces devised by Mr. Clayton of Blue Hill, is the best. For light winds kites of seven square meters of surface are used, but for the strongest winds those of six, four, or three square meters are used. For the very lightest winds, a delicate kite of aluminum tubes covered with silk, devised by Assmann, has been successfully flown. Recently the X kites devised by the assistant of the observatory, Mr. Mund, have been used. They are of the Hargrave pattern, but easily fold up flat for convenience of transportation, and are used therefore as auxiliary for holding up the kite line. The advantage of folding up is apparent when the kites in high winds tear away or are auto-

matically released and carried far away. As regards kite balloons, it is found that when they are frequently used the balloon fabric becomes useless within a half year, making them very expensive when we recall that a kite balloon of 68 cubic meters capacity costs 1300 marks.

As regards the self-registering instruments, Professor Marvin's kite meteorograph proved to be a satisfactory working instrument up to the height of 2500 meters for which it was designed; but a considerable correction must be applied if one wishes to use it at higher elevations. In fact, the first great height attained at Tegel, December 6, 1902, as computed from the original barograph curves, gave 5475 meters, but a subsequent very careful investigation reduced this height to 4820 meters. The sharpness of the curves given by the Marvin meteorograph is injured by the oscillations of the kite, unavoidable in strong winds, but the curves were much improved by an arrangement devised by Doctor Elias, who fastened the meteorograph by springs to the front cell of the kite, thus shielding it from shocks and vibrations. Marvin's electricallyregistering anemograph worked with much uncertainty and often entirely stopped. Moreover, being exposed on top of the kites, it was often injured and the friction coefficient changed thereby. For this reason some columns given in the present volume are left entirely blank as to the wind velocity. As an improvement, Professor Assmann has applied the Woltmann vanes (like the vanes of an electric fan).

¹ Ergebnisse der Arbeiten am Aeronautischen Observatorium, October 1, 1891, bis December 31, 1902, von R. Assmann u. A. Berson.

framework carrying these small vanes is attached to the front of the opening of the Marvin meteorograph. The vanes are calibrated by comparison with an anemometer, and must be

recalibrated from time to time.

For use with his expansible India rubber sounding balloons, or Platz balloons, Assmann invented a very light meteorograph. To this end he adopted an endless roll of gelatinized Japanese This endless roll passes over two small aluminum rollers, of which the upper one is moved step by step by the aneroids, which act on ratchets attached to either end of the upper roller, while a weight on the lower roller keeps the sheet stretched smooth. The thermometer is a metallic one, consisting of two circular plates of metal, copper and invar (Guillaume's nickelsteel), soldered together. The motion of the free end of this compound ring is magnified by levers, which eventually move a delicate silk thread running over a wheel so that its recording pen marks the temperature curve on the sheet of silk at right angles to the direction of its motion. This pen describes a nearly closed curve from the beginning to the end of any ascension, which curve is a function of the pressure and temperature. The thermograph and the hair hygrometer are inclosed in a vertical polished aluminum tube, which protects them from direct solar radiation. When the balloon falls to a pressure of about 600 millimeters, the pens are mechanically lifted and their record ceases. This arrangement has the advantage that we may thus clearly discriminate between the ascending and the descending curves; it also preserves the whole record from injury or other damage when the kite falls to the ground, especially if the instrument remains a long time in the open air and is tossed about by the In order to know whether the balloon actually bursts or how long it floats at a high level, exposed to the sunshine, there is added a clock, which also makes a record on the same sheet. This new form of meteorograph is inclosed in a box of magnalium; it weighs 620 grams and can be furnished for 360 marks by R. Fuess, Steglitz.

In order to measure the angular altitude of a kite carrying a meteorograph a special apparatus was used; a Steinheil astronomical telescope with a large field of view and a pair of cross wires in the center was furnished with horizontal and altitude circles reading to 0.1°; a self-recording apparatus was contrived so that this really constituted a "goniograph." The observer has only to keep the cross wire pointed on the balloon or kite as closely as possible, and the apparent altitude and azimuth are simultaneously recorded on two sheets of paper from time to time. At the new observatory at Lindenberg it is proposed to keep two of these goniographs at work, at the ends of a short base line, in order to calculate the loca-

tion of kite or balloon at any moment.

The work at Tegel is to be considered as preliminary to future work. Four hundred and seventy-five ascensions were made, of which 356 occurred during the fifteen months whose results are published in the present volume. They may be

classified as follows:

(A) Fifteen ascensions of manned balloons; of these the longest voyage was 1470 kilometers in twenty-nine hours to the government of Poltava, in southern Russia, by Professor Berson and Doctor Elias; the highest ascent was 7832 meters.

(B) Twenty-two ascensions of free sounding balloons of the Assmann type, one of which was lost. The average altitude attained by 21 of these was 9816 meters. The average of the 17 highest was 11,157 meters, 3 rose above 19,000 and the

maximum was 19,960 meters.

(C) Two hundred and five kite-balloon flights and (D) 103 kite flights. The excess in the number of flights of kite balloons was due largely to the fact that Doctor Elias was engaged in his study of the formation of fogs and also to the fact that at first there was no great familiarity with the management of kite ascents; but all this was changed in August, 1902, when Pro-

fessor Assmann ventured to start with daily flights in any kind of weather, and the use of kite balloons was then reduced to a minimum. Under these conditions very often a kite ascent was accomplished when at first sight it seemed impossible on account of the feeble winds near the surface. In such cases by unrolling several hundred meters of wire, laying it out in the direction of the feeble wind, attaching the kite and reeling in with great speed, they produced an "artificial" wind, which increased the actual wind so that the kites were thrown up into a stratum of air of greater velocity. But very often the trees around the observatory prevented such experiments. In a similar way when much line had been played out and the kites, owing to the feeble upper wind, did not rise high, they were forced to rise higher by reeling in rapidly. Frequently when the kite was caught in the top branches of a tree it was necessary for an archer to shoot a light arrow carrying a light line over the tree; by this line a stronger one was drawn up and over, so that one could climb up to the kite and rescue it, or at other times the balloon was used to lift the kites from the trees.

As regards the personnel of the observatory it may be said to consist of the director, Professor Assmann, the permanent assistants, Professor Berson and Doctor Elias; and clerical work is done by Messrs. Dintner, Brehm, Koercke, and Koblenz.

The most expert mechanician, Thieme, was continually engaged in building and repairing the meteorological and other instruments, while R. Schmidt and W. Mund usually assisted during the kite flying, and F. Schmidt acted as balloon inspector. A carpenter was also continually employed, as mentioned above, in building and mending the kites.

The observatory at Tegel constituted a division of the Central Meteorological Office. But it is understood that the new establishment at Lindenberg will be an entirely separate institution for aerial research under Professor Assmann.

Appended to the record of kites and balloons is a paper on the formation of fogs by Doctor Elias that was translated in part by Mr. Proctor for the Monthly Weather Review for

September, 1904.

A second appendix by Berson and Elias gives the results of kite flying over the Baltic Sea, the North Sea, and Norwegian These flights were made during their vacation excursion to Spitzbergen on the steamer Othonna. On this occasion all the instruments and kites were supplied by the Tegel Observatory in order to practically test the well-known idea of Mr. Rotch as to the possibility of flying kites on the open sea from ships. Mr. Dines and Teisserenc de Bort had also done some work in this line following the idea of Mr. Rotch, and quite recently the Prince of Monaco has done so near the the Azores, according to the report of Professor Hergesell to the International Aeronautical Congress held last year, 1904, in St. Petersburg. On the Bodensee, in Switzerland, Hergesell and Zeppelin have also used a steamboat with success. Ascensions were made by Berson and Elias nearly every day from August 3 to 29 from the steamer Oihonna, and the results are given in full, showing in general that this method can be applied everywhere.

EVAPORATION OBSERVATIONS IN THE UNITED STATES.

By HERBERT HARVEY KIMBALL, Librarian, U. S. Weather Bureau. [Read before the Twelfth National Irrigation Congress at El Paso, Tex., November 16-18, 1904.]

It is important that irrigation engineers should know not only the rainfall, but also the evaporation over any given region. Unfortunately, the measurement of evaporation presents many more difficulties than the measurement of precipitation. In fact, the rate of evaporation from land surfaces depends upon so many different elements that it can be treated only in the most general manner. Thus, it has been shown that the)4

e

8-

n

ge

e

y i-

t

ı,

}-

a

W

e

1

evaporation from saturated soil covered with growing plants is greater than from a water surface, but becomes less when the level of complete saturation falls a few inches below the soil surface, and continually diminishes as this level recedes to increasing depths. Also, the evaporation from a forest of evergreen trees is greater than from a forest of leafy trees; from the latter it is greater than from grass, from which in turn it is greater than from bare soil. The composition of the soil has its effect upon the rate of evaporation, and so also has the state of cultivation. Furthermore, the rate of evaporation from any surface has been found to vary with its temperature, with the quantity of moisture in the air, and with the wind velocity.

Even if we were able to determine the exact relation between each of these elements and evaporation, we see at once how hopeless it would be to undertake to compute accurately the evaporation over any very extended region of land surface. It is therefore customary to deduct the run-off from the rainfall over a watershed, and to attribute the difference to evaporation. This has been done by Mr. George W. Rafter in "Water Supply and Irrigation Papers No. 80, U. S. Geological Survey," for twelve drainage basins in the eastern part of the United States, as follows:

	Drainage basins.	Years of record.	Rainfall.	Run-off.	Evaporation.
1.	Muskingum River, Ohio	1888-1895	Feet. 39. 7	Feet. 13. 1	Feet. 26. 6
2.	Genesee River, N.Y	1890-1898	40.3	14.2	26.1
3.	Croton River, N. Y. Lake Cochituate, Mass.	1877-1899 1863-1900	49, 4	22.8	26.6 26.8
5.	Sunbury River, Mass	1875-1900	46.1	22.6	23.5
	Mystic Lake, Mass	1878-1895	44.1	20. 0	24. 1
7.	Neshaminy Creek, Pa	1884-1899	47.6	23. 1	24. 5
8.	Perkiomen Creek, Pa	1884-1899	48.0	23.6	24. 4
9.	Tohickon Creek, Pa	1884-1898	50.1	28.4	21. 7
10.	Hudson River, N. Y	1888-1901	44. 2	23. 3	20, 9
11.	Pequannock River, Conn	1891-1899	46.8	26.8	20. 0
12,	Connecticut River, Conn	1872-1885	43. 0	22.0	21.0

The rainfall and run-off have been computed for many other watersheds in the United States, particularly in California, where the run-off is a much smaller percentage of the rainfall than in the Eastern States.

As a practical problem in irrigation, however, the evaporation from water surfaces is of much more importance than the evaporation from land surfaces. The engineer will naturally determine his water supply, not from the annual precipitation, but from the run-off of available streams. Having ascertained this, the question of losses becomes important, and if storage basins are of considerable area the loss by evaporation in a dry climate becomes very serious, having been estimated, in some cases, to be as much as 30 to 50 per cent of the amount stored.

Fortunately, the determination of the evaporation from a water surface presents fewer difficulties than the evaporation from land surfaces. Generally speaking, the determination may be made by two quite different methods; (1) by direct measurements from properly exposed water surfaces, and (2) by computations based upon the temperature of the water surface and the value of certain meteorological elements. With proper attention to exposure, direct measurements of evaporation from water surfaces should give the more reliable results. Unfortunately, proper exposure is not always practicable, and it is therefore necessary to consider the character of the exposure in connection with each series of evaporation experiments, and in some cases to apply a correction before the results will fairly represent the evaporation from a reservoir or a lake.

One of the most exhaustive series of evaporation experiments in the United States was conducted by Mr. Desmond Fitzgerald, between the years 1876 and 1886, in connection

 $^1\mathrm{Transactions}$ of the American Society of Civil Engineers, vol 15, p.581.

with the reservoirs of the Boston waterworks. He not only measured the evaporation directly by means of tanks floating on the surface of reservoirs, some of them arranged to record automatically the rate of evaporation, but he also conducted elaborate experiments to determine the relation between the rate of evaporation and the temperature of the water surface, the temperature of the air, the amount of moisture in the air, and the movement of the air.

He found that the rate of evaporation depended upon three elements; the vapor pressure corresponding to the temperature of the surface of the water, the vapor pressure corresponding to the dew-point of the atmosphere, and the velocity of the wind.

Representing by E the evaporation in inches per hour from a water surface, by e_a the vapor pressure in inches corresponding to the surface temperature of the water, by e_a the vapor pressure corresponding to the dew-point of the atmosphere, and by v the wind velocity in miles per hour, he obtained:

$$E = 0.0166 \ (e_{\rm s} - e_{\rm d}) \ \bigg(\ 1 + \frac{v}{2} \bigg)$$

as the equation for the hourly rate of evaporation. This equation he found to hold good for an ice surface as well as for a water surface, in the shade as well as in the sunshine, and by night as well as by day.

Measurements of evaporation from the water in a tank three feet cube, the top flush with the surface of the ground, have been made since 1887 at Fort Collins, Colo., under the direction of Prof. L. G. Carpenter. The temperature of the water in the tank was found to be lower than the temperature of the water in reservoirs and lakes in the victnity, and in consequence the evaporation was less. Fitzgerald a notes a like deficiency in temperature and evaporation in connection with tanks set in the ground near Croton Reservoir, N. Y., but at Lakeport and Kingsbury Bridge, Cal., the temperature and the evaporation, as measured in a tank set in the ground, were found to exceed like measurements in tanks floating in lakes. Since a great many measurements of evaporation have been made from tanks set in the ground, it is important that these discrepancies in water temperature and evaporation be borne in mind.

From his investigations in 1889 Professor Carpenter found that the daily evaporation could be very accurately expressed by the equation:

$$E = 0.3868 \ (e_{\rm s} - e_{\rm d}) \ (1 + 0.0025 \ W),$$

where W represents the wind movement in twenty-four hours, the other symbols having the same significance as in Fitzgerald's equation. Reduced to a like period (twenty-four hours), the latter becomes:

$$E = 0.3984 \ (e_{\scriptscriptstyle b} - e_{\scriptscriptstyle d}) \ (1 + 0.0208 \ W).$$

The agreement between the two is quite remarkable when we consider the difference in the climatic conditions at the two stations. The difference in the values of the coefficient of W was attributed by Professor Carpenter to the fact that Fitzgerald measured the wind velocity at the surface of the water, while Carpenter's wind velocities were obtained from an anemometer on the roof of the college building.

Subsequent observations served to confirm the accuracy of Carpenter's formula, and after ten years, by means of comparative readings between his standard tank and tanks floated on water surfaces, he computed the average annual evaporation from a free water surface at Fort Collins to be 59.5 inches instead of 46.3 inches, as he had measured it.

In 1887 and 1888 Prof. T. Russell, of the U. S. Signal Service, investigated the rate of evaporation in standard ther-

²See Annual Reports of the Agricultural Experiment Station, Fort Collins, Colo.

⁸ Proceedings of the American Society of Civil Engineers, vol. 15, p. 617.

⁴ Monthly Weather Review, 1888, p. 235.

Fig. 1.—Lines of equal annual depth of evaporation in inches from a free water surface, computed from meteorological observations from July, 1887, to June, 1888.

mometer shelters, by means of observations with Piche evaporimeters. This instrument, as is well known, consists of a glass tube about nine inches long and 0.4 inch internal diameter, hermetically sealed at the top. Over the bottom is placed a disk of porous paper, which is held in position by a copper disk pressed against the open end of the tube by a suitable spring attachment. Capillary action keeps the paper moist. Its exposed area is known, and the amount of evaporation is determined by means of a scale etched on the side of the tube.

To determine the relation between the rate of evaporation from a Piche evaporimeter and a water surface Professor Russell exposed two of the Piche instruments in a closed room in which were two open tin dishes filled with water. Both the Piche evaporimeters and the dishes were weighed at frequent intervals, and it was found that the Piche instruments evaporated 1.33 times as fast as the open dishes. Eighteen Piche instruments were then exposed at various Signal Service stations, from May 31 to September 30, 1888, and the observed quanity of evaporation was divided by 1.33 to reduce it to the evaporation from a water surface. By the method of least squares, the relation between the rate of evaporation, the temperature of the evaporating surface, and the amount of moisture in the air was determined from observations made during the month of June. The temperature of the evaporating surface in this case was the same as that of the wet-bulb thermometer. The monthly rate of evaporation was found to be quite accurately expressed by the equation:

$$E{=}30\left\lceil \frac{43.88\;(e_{_{\text{w}}}{-}e_{_{\text{d}}})\;+1.96\;e_{_{\text{w}}}}{B}\right\rceil$$

in which e is the vapor pressure in inches corresponding to the monthly mean temperature of the wet-bulb thermometer, e_4 is the vapor pressure corresponding to the monthly mean dewpoint of the atmosphere, and B the monthly mean barometric pressure in inches. By means of this formula Professor Russell computed the monthly evaporation at 140 Signal Service stations from July, 1887, to June, 1888, inclusive, using the monthly mean wet-bulb and dew-point temperatures derived from tridaily observations. From the data thus computed, the accompanying chart showing "Lines of equal annual depth of evaporation in inches from a free water surface" was prepared. Professor Russell states his belief that this chart represents approximately the evaporation that takes place from the surfaces of ponds, rivers, reservoirs, and lakes in the vicinity of Signal Service stations, basing his belief principally upon the results of evaporation experiments conducted under the direction of the Central Physical Observatory at St. Petersburg, from May to October, 1875, and discussed by Ed. Stelling in Band VIII, No. 3, of Wild's Repertorium für Meteorologie, 1882. Stelling's equation, however, is:

$$E = A (e_{\bullet} - e_{\bullet}) (1 - Bv)$$

which is identical in form with Fitzgerald's, the symbols having the same significance. His constants, E, A, and B, which are computed for the centigrade system, were found to

vary with the seasons, and are therefore not easily comparable

with Fitzgerald's.

Russell's formula, however, departs radically from those of Fitzgerald, Carpenter, and Stelling, in that it substitutes the vapor pressure corresponding to the temperature of the wetbulb thermometer for the vapor pressure corresponding to the temperature of the surface of the water, and adds a term depending upon this same vapor pressure, e_x , in place of the wind velocity term. This latter is dropped, and the equation represents the evaporation with a wind velocity outside the shelter of 7.1 miles per hour, which was the average at the stations where the Piche observations were being made, during June, 1887.

It is evident that this wind velocity will not apply to all parts of the United States for all seasons of the year. Neither will it do to substitute the temperature of the wet-bulb thermometer for the temperature of the water surface, the former being cooler than the latter. No doubt the additive term containing e_{π} compensates for this in a measure, but we must conclude that Russell's formula does not rest upon as sound a physical basis as do the formulas of Stelling, Fitzgerald,

and Carpenter. The term $\frac{1}{B}$ was introduced on account of

the wide variations in the value of B at the different stations. It is unimportant when discussing the observations at a single station.

Upon the organization of the Irrigation Survey by the U.S. Geological Survey in 1888, arrangements were made for measuring the evaporation at several points in the arid regions of the United States. It was recognized that the rate of evaporation depended upon the dryness of the air, the temperature of the water surface, and the velocity of the wind at the water surface. An effort was therefore made to measure the evaporation from a water surface having the same temperature as the surface of lakes or reservoirs, and exposed to the same wind velocity. To accomplish this galvanized-iron evaporating pans, three feet square and eighteen inches deep, were floated on the surface of the body of water from which the evaporation was to be measured. The pans were kept nearly full, with the surface of the water in them about on a level with the water outside. The evaporation was at first measured by some sort of gage, but later was determined from the amount of water that was added to bring the surface to the top of a pin projecting from the center of the pan. A record of the water temperature inside and outside the pans was kept. Usually a difference was noted, the inside temperature being higher in the daytime and lower at night. The average is, however, about the same in each. It is not probable that the water in pans is exposed to quite so high a wind velocity as the average over outside surfaces, but to offset this the water in the pan wets the sides, and this increases the evaporating surface. It is therefore assumed that in general the evaporation from a floating pan of this type when kept nearly full represents the evaporation from the outside water surface very closely.

Several of the agricultural experiment stations measure the evaporation from pans, but most of the pans are set in the ground, and for reasons already given their indications are not believed to represent the evaporation from reservoirs and lakes as closely as do those from floating pans.

For the purpose of checking Russell's computed values, the following table has been prepared. In the first two columns are the names of stations and the evaporation computed by Russell. In the following columns are the names of neighboring stations at which measurements of evaporation from water surfaces have been made, the amount of evaporation measured, and the character of the exposure. We are thus enabled to judge of the probable value of Russell's chart.

Annual evaporation.

a.	Surface	measure	ements.
Evaporation.	Stations.	Evaporation.	Exposure.
40.6	Boston, Mass	39, 11	Beacon Hill Reservoir. Chestnut Hill Reservoir, floating pan. Croton Reservoir, float- ing pan
74.4	Fort Collins, Colo Fort Collins, Colo Fort Bliss, Tex Fort Douglas, Utah	46.16 59,50 82.65 42.46	Ground. Ground. Computed for reservoir Floating pan. Floating pan.
	Tempe, Ariz	65, 00 32, 38	Floating pan. Floating pan. Ground.
37. 2	Kingsbury Bridge, Cal Kingsbury Bridge, Cal Arrowhead Reservoir	47, 79 59, 49 36, 60	Floating pan. Ground. Ground. (Elev. 5,160 ft.) Floating pan.
	Inches. 34.4 40.6 76.5 82.0 74.4 101.2 56.0 54.3 65.8 37.2	Stations. Stations.	Stations. Stat

The results above given are not strictly comparable, since the stations are not in all cases identical, and in some cases, especially in California, the reservoirs are at a greater height than the Weather Bureau stations, and in consequence the water surfaces are correspondingly colder. Generally speak-

ing, Russell's results appear to be the higher.

Since Russell's equation was deduced from tridaily observations, it is not applicable to the present 8 a. m. and 8 p. m. observations of the Weather Bureau unless one first applies a correction to the mean of these two observations to reduce it to the mean derived from tridaily observations. The equations of Fitzgerald and Carpenter appear to have a quite general application, provided we know the temperature of the water surface, the dew-point, and the wind velocity. It would seem, therefore, that in the absence of reliable measurements of evaporation from water surfaces, an effort should be made to determine the temperature of water surfaces near Weather Bureau stations, and where the evaporation is measured from tanks sunk in the ground the relation between the temperature of this evaporation surface and the temperature of lakes or reservoirs in the vicinity should be carefully determined.

Seasonal evaporation naturally varies with geographical position. Some of its peculiarities are shown in the following table:

Brupora	tion in in	CHCO.		
Month.	Boston, Mass.	Fort Collins, Colo.	Clear Lake, Cal.	Fort Bliss, Tex.
January	0, 90	1. 50	0, 85	2. 35
February	1, 20	2.00	0, 60	2. 45
March	1. 80	3, 50	2.00	6, 28
April	3, 10	5, 00	2. 82	7. 35
May	4, 61	6, 50	3, 85	10. 85
June	5.86	8, 00	4. 30	11. 20
July	6, 28	9, 50	5, 90	9. 66
August	5. 49	8, 50	4, 70	9, 50
September	4, 09	6, 50	3.72	9. 20
October	2.95	4. 50	2, 12	6. 80
November	1, 63	2, 50	0.65	4. 15
December	1, 20	1.50	0. 85	2. 98
Year	39. 11	59, 50	32, 38	82, 65

Several series of evaporation measurements that do not cover the winter season have not been referred to in this paper. While they are of value, the above table indicates the importance to irrigation engineers of making the readings throughout the entire year.

PERPENDICULAR COLD AIR MOVEMENTS AS RELATED TO CLOUD VELOCITY.

By WILLIAM ABNER EDDY, Bayonne, N. J. Dated January 9, 1905.

While flying kites at Stamford, Delaware County, N. Y., in the Catskill Mountains, during a cloudy day threatening rain,

I found little wind to sustain the kites and enable them to lift an aerial crossbow, with which I was trying to discharge flying machine models of small diameter. I looked back at the distant mountain side as I held the kites, and I saw what I thought was a moving cloud floating along the mountain side in apparent contact with the surface, near the base of the mountain. I expected every moment that the seemingly approaching mass of mist would enshroud the kites and hide the arrow aeroplanes aloft from view. The wind velocity was probably less than six miles per hour. I waited for the cloud to approach, but it remained stationary for over two hours until rain set in, when its vaporous mass was somewhat thinned. It remained stationary with a light wind blowing right through it, but not moving it. On looking closer at the mountain, I found that a deep ravine cut the mountain side just below the cloud, and it was clear that slightly cooler air had formed a perpendicular upward column, which condensed the vapor directly above the ravine, but nowhere else.

In studying cumulus clouds I find sometimes a perpendicular circular motion like the Ferris wheel, but without much horizontal motion. In summer I have measured the velocity of cirrus clouds, and at times, during a prolonged warm wave, I have found them almost stationary. This is a rare phenomenon, which I believe is partly due to the cold air currents rising into a warmer inert mass of air. In the lower cloud levels I have seen somewhat narrow bands of vapor extending north and south. Their forward edges were often more dense than their rear edges. I think that this indicates that the cold air rises in successions of narrow ridges into a warmer stratum. The uprising long ridge of cooler air makes a dense forward edge fading away to a thinner rear edge. If the cold ridge of air were motionless, then the warmer air of the upper stratum, even when in active motion, would have floating in it a stationary cloud. The amount of condensation is limited in the upper warm stratum, and is soon exhausted, as shown by a long, narrow cloud formation. It is evident that the motion of the cirrus clouds from west to east is accompanied by the motion of cold air ridges from west to east and below the level of the cirrus cloud. I think the bands of clouds with heavy forward edges in the direction of motion denote rising ridges of cold air due to storm formations working their way upward from below. It indicates a specially disturbed atmospheric equilibrium. This fact is further shown by the high velocity of the stratified cumulus, sometimes making high speed from the northwest. The significant fact is that, as on the mountain side, a stationary cloud does not necessarily mean stationary air currents. This element, I think, ought to be considered in studying cloud velocities.

Although we can not entirely indorse the explanations of cloud formation given in this article by Mr. Eddy, yet we publish it because we desire to stimulate all our readers to the closest possible study or cloud phenomena until the myriad of details has been thoroughly recorded and satisfactorily explained. Sketches or photographs of cloud forms and the changes that they undergo should frequently be made, noting the direction of the wind and the detailed topography of the ground for a hundred miles to the windward. There are a number of cases on record in which a special cloud formation has been traced back a hundred miles to a distant hill, mountain, or ridge. The atmosphere is as full of eddies and standing waves as is any river at its flood flowing over a rocky bottom in what is called turbulent motion. There are many cases, such as the well-known cloud caps on mountain tops; the helm-bar cloud of the Crossfield Range, as explained in "Espy's Philosophy of Storms"; the tablecloth on Table Mountain, South Africa; in which the wind blows rapidly through a cloud. Aeronauts have been carried in their balloons directly through such clouds, and, of course, special students have always recognized the fact that the motion of a cloud is not necessarily the motion of a current of air. In fact, striated cirri and stratus formations generally move in a direction that is the resultant of the motion of the upper and lower currents between which the clouds themselves are being formed. Anyone who looks down from a hilltop upon the ocean and islands along the coast of Maine may see streaks of fog floating hither and thither, apparently in defiance of the actual movement of the air itself. Cloudy condensation may work backward or sidewise through an advancing mass of air so rapidly that the movement of the front of the cloud has no apparent connection with the movement of the air.

The penetration of a current of cold air into a mass of warm, moist air can, even in favorable circumstances, form only so slight a cloud that we doubt whether it will explain the phenomenon observed by Mr. Eddy. When the wind blows up a ravine on the mountain side the central portion of the current certainly advances much faster than the bottom or sides, and must rise faster, so that it may easily happen that it forms a cloud over the center of the ravine, just as we see clouds forming over the river valleys. It is not proper to say that slightly cooler air, rising perpendicularly, condensed the vapor in the warmer air above the ravine, but that it condensed the vapor within itself by the mechanical cooling of the air due to the work that it had to perform in expanding as it rose so rapidly. Similarly, the cirrus clouds and the long ridges of cooler air spoken of in the latter part of Mr. Eddy's article seem to us to be due to the cooling of ascending streaks and masses of moist air, not to the mixture of cold and moist air; the latter can sometimes form a slight haze, but not a thick cloud.

A CLOUD PHENOMENON AT OMAHA, NEBR.

By Rev. WILLIAM FRANCIS RIGGE, S. J., Creighton University Observatory, Omaha, Nebr.

At about fifty minutes after sunset, on July 18, 1904, my attention was attracted to a cumulus cloud about 10° high in the east-northeast which was pretty strongly illuminated by the sunlight. No other clouds, not even those near the point of sunset, showed the least trace of sunlight. The clouds were in detached bunches and covered about one-tenth of the sky. The brightness of the cloud diminished gradually, but it was still visible a full hour after sunset. The sun set on that day at 7:28 local time, or 7:52 central time.

The data I am enabled to supply are probably insufficient to measure the altitude of the cloud, which seems to have been enormous, since the sun was about 10° below the horizon.

WILLIAM NORRINGTON.

Mr. William Norrington, Observer, died at San Francisco, Cal., December 31, 1904. Mr. Norrington was born in London in 1847 and emigrated to America in time to see service in the civil war, having enlisted in the 16th U.S. Cavalry in 1863. In 1875 he entered the Meteorological Service of the Army, and, with the exception of about two years, continued in that branch of the Government service and in the Weather Bureau until his death. During the last eight years of his life he was on duty at the San Francisco station. He was a valued and faithful employee.

THE INTRODUCTION OF METEOROLOGY INTO THE COURSES OF INSTRUCTION IN MATHEMATICS AND PHYSICS.

[Continued from page 515, Monthly Weather Review, November, 1904.]

[Read at Chicago, Ill., November 26, 1904, before the Physics and Mathematics Sections of the Central Association of Science and Mathematics Teachers, and reprinted from School Science and Mathematics.]

Mathematics and physics go hand in hand, so closely that

04

n

d

g

10

8

of

d

f

n

n

we dare not think of separating them. If one experiments he keeps the mathematical laws in mind; if he studies the subject mathematically he keeps the physical laws in mind. A problem in one is also a problem in the other; both are rigorous and develop the reasoning powers, but sometimes it is easier to handle the experimental than the analytical method.

In the Monthly Weather Review for 1897 will be found a splendid memoir on the "Equations of hydrodynamics" ranged for the study of the general circulation of the atmos-This and the corresponding solution of the complex differential equations give the mathematician more than he can handle at present, but the suggestive paper by MacMahon, read at the recent International Scientific Congress, on the n-fold Riemann surface, opens up great hopes for the future.

Meanwhile we must mingle experiment and theory; each must guide the other. The physicist may, in his laboratory, carry out some of the following experiments and at a glance perceive the resulting atmospheric motions, or the solution of the differential equations under any given special conditions that the analyst would find it difficult to attain, but can easily confirm when once the result is known.

We may experiment on small local motions before proceed-

ing to the larger ones.

In a large room, or in a case with double glass walls, so that the inside temperature may be controlled, let a shallow stream of cool air flow along the bottom. By giving this a slight but adjustable slope the rate of flow may be regulated; by altering the bottom we may pass from water or smooth sand to wavy, rolling prairie or ranges of hills and mountains. We may imitate every variety of ordinary atmospheric motion.

By utilizing a layer of CO, for the bottom we may even study

the flow of upper air currents over lower ones.

We make all these movements visible by introducing a little smoke, but especially by applying the so-called "Schleier" method of Foucault, as perfected by Mach and Dubois, which enables us to photograph the feeblest differences of density, whether due to pressure or temperature or moisture.

Among other problems in aerodynamics should be mentioned that more elementary one, the hypsometric formula of Laplace. Our students and the surveyors and mountaineers use this with aneroids for determining altitudes, without understanding its derivation or the sources of mistakes in applying it, especially the uncertainty of our knowledge of the temperatures of the air. Now the formulas may be deduced analytically by integration of the simple differential formula or by algebraic or geometric or arithmetical or graphic method, and all should be combined as an illustration of the unity of logic in whatever form presented. Science is but logic applied to material nature.

I will merely mention some other problems that appeal to us from both analytical and experimental points of view.

The total resistance and the pressure and motions of the air all around a resisting plate, sphere, or other obstacle.

The action of the wind in producing "suction" at the top

of an open pipe or chimney.

Among problems that may be handled first by pure mathematics and then by experiment and observation are the determination of the calibration correction of a thermometer, the protruding stem correction, and the Poggendorff Correction.

These belong to elementary physics, but will give your students a chance to apply their mathematics to physical problems.

A complex trigonometrical problem involving a slight knowledge of astronomy is the determination of the duration and intensity of sunshine or the total amount of heat received by a unit horizontal surface for any moment of the day and the The calculation is to be made for the outside of the atmosphere, because if we attempt to make allowance for the absorption by the atmosphere the problem becomes too complex for our present purposes. The simpler problem may be

treated geometrically and graphically and is essentially a matter of familiarity with "the use of the globes," as it was called one hundred years ago.

Globes and charts are vital matters in meteorology and are elegant classics in geometry. Chartography and projections and the globes themselves are too much neglected—pushed aside by the crush of new demands for instruction in every other branch of knowledge; but they are absolutely fundamental to astronomy and meteorology, terrestrial physics, and all geographic relations, and I hope to see them properly appreciated in the schools of pure mathematics and terrestrial physics. The properties and methods of construction of various equal surface projections ought to be as familiar to a student as those of the ordinary stereographic projection. The problems of chartography are beautiful for the drafting room, but more vivid and better adapted to the comprehension of many persons if worked out on the globe itself; and one does not need an expensive globe; even a homemade globe or rubber ball

can be very useful. The globes and conic section in solido should be handled by

your students at some early stage in their education.

But, finally, to return to our aerodynamics. Nothing can be more attractive to a student than the formation of a waterspout by Weyher's method and the study of the wind velocity and pressure, the barometric pressure, the temperature, and

the dimensions of the cloud column.

We simply set a horizontal disk at the top of a room or closed case into rapid rotation. Soon the air beneath is dragged into rotation down to the very floor. Below we place a dish of water, and the vapor from it is drawn up into the inner revolving vortex while at the same time thrown out; eventually it descends and ascends in regular circulation. As the disk and air increase their rotary speed, the central vortex diminishes in barometric pressure while increasing in velocity, and the moist air flowing into it cools by expansion, forming a central waterspout column or vortex. Here we begin to be stirred with a desire to measure. We insert a long Pitot tube and determine the wind pressure at many points and chart the pressure or velocity on ruled paper.

We insert a pair of small plane plates as in my method of barometic exposure (see Meteorological Apparatus and Methods), and determine and chart the pressure at many points. We send a thermometer or thermoelectric junction exploring the vortex and plat the temperature, or we use some form of hygrometer and determine the dew-point. In fact we experimentally determine all the elements that enter into the structure of the waterspout and compare our observations with the theories that have been worked out by Ferrel and Bigelow.

I have said enough for the present. I hope to elaborate this effort to help the mathematician and physicist to find a new field of problems for their students. Thus they will help

us to develop the talents of future meteorologists.

These are but special illustrations of the general law that thinking, seeing, and doing must go together. We learn by doing as much as by reasoning—each helps the other. Every theory or hypothesis or suggestion should be reduced to exact formula, exact experiment, exact measurement. Precision is the vital essence of all valuable knowledge.

I hope to live and see special schools of meteorology, special laboratories and mathematical seminaries devoted to this as to every other profession, but for the present at least I urge that you illustrate the value of and enliven the interest in your mathematical and physical courses by frequently quoting or proposing problems drawn from meteorology.

THE STORM AND COLD WAVE OF DECEMBER 24 TO 29, 1904.

By WALTER J. BENNETT, Forecast Division, U. S. Weather Bureau.

A storm of unusual intensity, closely followed by a marked-

cold wave, crossed the United States from the 24th to the 29th. The weather maps showing the progress of this storm are of special interest and will be found on Charts XIII-XV.

At 8 a. m. of the 24th the storm center was near Roseburg, Oreg., with a central pressure of 29.42 inches. It then moved rapidly due east and at 8 p. m., was over southern Idaho, with a barometer reading of 29.56 inches, an area of high pressure having in the meantime advanced over Alberta. At 8 a. m. of the 25th the storm was central near Denver, Colo., with a pressure of 29.54 inches, and the northern high-pressure area had increased in intensity and moved southward over northern Montana, where for the next few days it remained nearly stationary while increasing in intensity. Barometric conditions were favorable for a sharp fall in temperature to the north and west of the storm center, and frost, in some places heavy, occurred in the central valleys of California, while western Montana experienced a cold wave with temperatures of zero or below.

During the 25th, the storm center moved in a south-southeasterly direction to the panhandle of Texas with pressure of 29.60 inches, and the cold wave covered Montana, eastern Wyoming, and western South Dakota. Continuing a southsoutheasterly movement, the storm center reached central Texas by 8 a. m. of the 26th. The cold wave had advanced over South Dakota and western Nebraska, and had extended over Wyoming, northern Nevada, and southern Idaho, the line of zero temperature reaching the southern boundary of Wyoming. During the 26th the storm reached the most southerly point of its path, and recurved, changing the direction of its motion from south-southeast to north-northeast, while it increased in intensity and in rapidity of motion. At 1 p. m. it was central over southwestern Arkansas, and at 6 p. m. was near Little Rock, Ark. At 8 p. m. it was over southeastern Missouri with a barometer of 29.56 inches. Rain fell throughout the Mississippi Valley, and was particularly heavy in its southern portion. The cold wave had advanced as far south as Taylor, Tex., and Roswell, N. Mex., and covered Nebraska, Kansas, Oklahoma, the eastern portions of Colorado, New Mexico, the Dakotas, and eastern and central Texas. During the night of the 26-27th, the storm center continued its north-northeastward movement, increasing in intensity, and by the morning of the 27th had reached northern Illinois, with a barometric pressure of 29.24 inches. Heavy rains were general throughout the Mississippi and Ohio valleys, and rain and snow fell quite heavily in the Lake region. These were the first heavy rains that had occurred in the Mississippi Valley for several months, and were much needed. In the rear of the storm, the cold wave extended from North Dakota to the Texas coast, and from the Rocky Mountains to the Mississippi River, the greatest twenty-four hour, temperature fall, from 60° to 6°, occurring at Springfield, Mo. Temperatures of zero or lower were recorded as far south as Concordia, Kans., and Pueblo, Colo., and a minimum of 36° below zero occurred at Williston, N. Dak.

During the 27th the storm moved in a northeasterly direction over northern Illinois and southern Lake Michigan. The center was near Chicago, Ill., at 1 p. m., and at 8 p. m. was over southern Lake Michigan. Milwaukee, Wis., recorded the unusually low barometer reading of 28.84 inches. High winds were experienced at all Lake stations and throughout the Ohio and upper Mississippi valleys, Chicago recording a wind velocity of 72 miles an hour from the southwest. The high winds caused much damage to property along the Lake shores, houses were unroofed, and telegraph and telephone lines suffered severely. Telegraphic communication was entirely cut off over the Lake region and the Ohio and upper Mississippi valleys for twenty-four hours, and several days elapsed before the lines could be put into good working order. The heavy snow that accompanied this storm in many sections blocked

trains and street cars. The cold wave covered the Mississippi Valley from Minnesota to Louisiana and extended to the Texas coast.

During the night of the 27-28th, high winds continued over the Lakes, while the storm center was passing over the Michigan Peninsula and Lake Huron. At 8 a.m. of the 28th it was near Rockliffe, Ont.; a secondary center had developed over the Atlantic coast near Long Island, and high winds were reported from all coast stations. Several vessels were wrecked near Hatteras, N. C. The cold wave extended from the Mississippi Valley nearly to the Atlantic coast, the line of zero temperature reached as far south as Keokuk, Iowa, and freezing temperatures were reported from all Gulf stations except in southern Florida and extreme southern Texas. During the day the storm center passed down the St. Lawrence Valley and high winds with snow continued on the New England coast and in the lower Lake region. The cold wave covered the lower Lake region and the middle and south Atlantic coast, but no very low temperatures were recorded in those districts. On the 29th the storm passed off to sea, colder weather followed in the Atlantic coast States, and the cold wave reached central Florida, with killing frost at Jacksonville and Tampa and a temperature of 38° at Jupiter.

SOME RELATIONS BETWEEN DIRECTION AND VELOCITY OF MOVEMENTS AND PRESSURE AT THE CENTER OF ELLIPSOIDAL CYCLONES.

By STANISLAV HANZLIK, Ph. D., Prague.

Loomis in his "Contribution to Meteorology," Chapter I, on areas of low pressure, tried to find out the causes that produce the different velocities of progression of lows. He selected for that purpose those lows moving more than 1000 miles and less than 240 miles in twenty-four hours whose pressure at the center changed very little (.02 inch) or not at all during the twenty-four hours considered. He tabulated rain, wind, pressure of the following high, and changes of pressure in twenty-four hours at the first station and also at the second station; the first station being the location of the low when first observed, the second station its location twenty-four hours later. One of the results of this investigation was to show that the rate of progress of low pressure areas is proportional to the changes of pressure on the first and second stations. Whether the lows that he compared exhibited any similarity, such, for instance, as similar forms of isobars, or whether they were primary or secondary, Loomis does not mention.

In this paper I have taken for investigation the opposite case; leaving the changes of pressure at the first and second stations out of consideration, I tried to find out whether there are any relations between the rate of progress and the change of pressure in the center of the respective lows, and how far it depends upon the azimuth toward which the low moves. I selected for that purpose, from the semidaily manuscript weather maps of the Forecast Division of the Weather Bureau, cyclones of different velocities, ranging from 50 to 900 miles in twelve hours, having at least two well shaped, closed isobars, ellipsoidal or circular (of 0.100 inch of difference). These lows are, of course, not strictly comparable in all respects, as they are of different dimensions, gradients, and ratios of axes, ranging from big circular lows extending from the Rockies to the Atlantic Ocean and from the Gulf up to the Lakes, on the one hand, to lows of long oval isobars on the other: but all are comparable in one respect; they are all primary. Their total number for the period 1893-1902 for five months, November to March, inclusive, amounts to 288. A list of all these, classified according to direction of movement, with a subclassification by months of occurrence, is given in Table 1. For instance (under east-northeast, December), will be found XIII, (November) 2p.01, referring to the cyclone track No. XIII, from 8 p. m. on the 2d of December, 1901, to 8 a. m.

pi

er

an

ar

t-

be

ar

pi

re

R-

10

h

n

e

on the 3d; "November" is inserted in parentheses because this length of track is shown on the November chart. I have chosen this group of five winter months because it is during these that the "southern circuit" track occurs. The lows were classified according to the trend of their movement into N., NNE., NE., ENE., E., ESE., SE., and SSE., and also according to the length of track in twelve hours. The distribution ing to the length of track in twelve hours. of velocities in miles is given in Table 2 for intervals of 50-150, 150-250, etc., and also separately for 0-100, 100-200, etc. I have done this because it was found that the 288 cyclones were not sufficient to give consistently the average values of pressures or pressure changes for each class of cyclones of different velocities. I have, therefore, used smoothed values of these quantities as shown in Tables 3 and 4, which were both calculated by the formula $\frac{a+2b+c}{a+2\beta+\gamma}$, where, in Table 3, b is the sum

of the pressures of all cyclones in the class considered, and a and c are the sums of pressures in the preceding and following classes, respectively. a, β , and γ are the numbers of cyclones in these three classes, respectively. For example, the value 29.177 inches, given in Table 3 for cyclones moving toward the north with velocities of 100 to 200 miles in twelve hours, is obtained by adding the pressures of all cyclones in the classes 50-150 miles and 150-250 miles to twice the sum of the pressures of cyclones in class 100-200 miles, and dividing the total by $21 = (1 + 2 \times 7 + 6)$. A similar method was used in computing Table 4. In order to compute the above-mentioned averages the data were read off from the daily map and tabulated as follows:

(1) Pressure at the center of the low at the first location (8 a. m. or 8 p. m.).

(2) Pressure at the center of the low at the second location

twelve hours later (8 p. m. or 8 a. m.).

(3) The length of the track between these two locations, for which length I shall use the word "velocity." Weight is to be given only to the averages for the four azimuths, NNE., NE., ENE., E., with velocities 300-600 miles. From the general trend of the data within these limits we may infer the probable results outside of these limits where the data are not sufficiently numerous to give reliable averages.

I do not wish to place much weight on the absolute values of the pressures and pressure changes; they should be considered merely as relative numbers showing how these elements change for each azimuth and for different velocities.

Having thus computed the smoothed averages of pressure and pressure changes for each azimuth, I added in the last column of Tables 3 and 4 the true general averages. These are not computed from the preceding columns, but represent the sums of all cases for the given range of velocities divided by the number of cases. Many of these numbers in Tables 3 and 4, especially for the extreme velocities, are inclosed in parentheses, either because they are not an average but simply the only case that occurred, or because the average does not conform to the general series of numbers, being too high or too low on account of some one extraordinary case entering into it.

The discussion of these Tables 3 and 4 is the subject of this paper. I have also presented them in diagrams on fig. 1 as "pressure-velocity curves" and "pressure-change-velocity curves." These curves give the pressure or change of pressure as a function of velocity of lows for each azimuth of motion. These are smoothed curves and show the general trend of direction for the smoothed numbers given in Tables 3 and 4. (We must consider the ESE., pressure curve a very rough approximation.) I have also added as a heavy black line the average curve, drawn to accord with the numbers given in the last columns of these tables.

The results drawn from these two sets of curves are as follows:

(1) The pressure curves ascend with each increase of velocity, that is to say, on the average the lows moving with greater velocity have greater pressure (absolute sea level) at the center and vice versa.

(2) Though much alike, the angles made with the velocity axis by the tangents to the pressure curves are not the same for different azimuths of movement. If we count these azimuths clockwise from north eastward, we see that the gradient ΔB : Δυ (ratio of increase of pressure to increase of velocity) decreases as we go from N., curve over to NNE., NE., and ENE. but increases again when we pass over to the curves with southerly component of direction, or ESE., SE., SSE.

(3) The pressure change curves generally pass from positive to negative changes as velocity increases. They give the average change in pressure in twelve hours for cyclones moving in each different azimuth and velocity. These curves show average dips that decrease as the azimuth changes from N., to NNE., NE., ENE., and E., increasing afterwards, so that the greatest dip is for the curves of N. and SE. direction.

(4) The pressure-change curves for different azimuths do not all cross the line of zero change at the same point, but with each change of azimuth from north through east to 'south-southeast the crossing shifts toward greater velocities.

Fig. 1.—Pressure and pressure changes at the centers of cyclones of different directions and velocities of progression.

The logical explanation of these points I would give as follows

Section 2 seems to me to indicate the influence of upper westerly drift on the movements of lows. If we look over the curves for the velocities of 300 to 600 miles in twelve hours, we see that the ENE. curve runs pretty nearly parallel to the velocity axis (the axis of abscissas) showing only a very slight increase of pressure for the higher velocities.

If we go over to the next adjacent azimuth in either direction, toward the north or toward the south, this increase becomes larger, which means that lows of various velocities that go over the American Continent with the prevailing westerlies and move toward the ENE. and E. do not show so great a range of pressure at the center as do those lows whose azimuths of direction form a greater angle with the prevailing westerlies.

Section 3 shows that the pressure-change curves decrease their dip as the azimuth increases (from north to east clockwise) increasing in dip afterward, and the point of zero change shifts continuously toward higher velocities with increasing azimuth. These curves, as mentioned above, give the changes of pressure that the lows experience when progressing in different directions and at different velocities in twelve hours.

But we see that for a low moving with a given velocity the amount of increase or decrease of the pressure, and so also of the velocity itself, depends on the azimuth in which it moves, or, in other words, it depends on its relation to that velocity which corresponds to the zero crossing of the respective azimuth.

Let us for instance consider a low moving at the rate of 350 miles in twelve hours and in any of the azimuths here considered.

With lows moving toward the N., NNE., NE., ENE., there would be reduction of pressure in the center, as we see from the pressure-change curves. The greatest or most rapid fall would be for those with northerly component of direction, the smallest for the east-northeasterly. This means that the northward moving low would experience the greatest reduction in velocity of progression. This great reduction of pressure would cause steep gradients, and the drawing of the air from all sides would give a good opportunity for the development of larger circular cyclones than in any other azimuth, especially if an opposing high in the east (St. Lawrence high) stops for a short time or moves very slowly eastward. are really a good many evidences that lows, even small in extent, which on their passage on the eastern path of the southern circuit were deflected toward the north by the St. Lawrence high, developed into big circular storms. Professor Garriott's "Storms of the Great Lakes" (W. B. No. 288, Bulletin K, 1903), gives many excellent examples of this.

Let us now consider a low moving toward the E., ESE., or SE. at a velocity of 350 miles in twelve hours. All the corresponding pressure-change curves show that there is a tendency toward increase of pressure at the center, and that this is greatest in the case of a low moving toward the southeast, and parallel with the increase of pressure there is also, as the pressure curves show, an increase in the velocity of progression. This is the reason why, for instance, a big circular low in the proximity of the Great Lakes, if the retarding influence of the St. Lawrence high ceases, experiences an increase of pressure at the center on the way eastward, with decrease of energy, until the influence of its transition from land to see becomes experient

land to sea becomes apparent. If we consider lows of 500 miles we see that at that velocity lows moving eastward already decrease in pressure and velocity, while those moving toward the east-southeast would not increase in pressure and velocity so much as would the southeasterly, so after all it is apparent that the southeasterly moving lows are able to develop the greatest velocities, greater than lows moving in any other direction. In corroboration I wish to quote from my paper (Monthly Weather Review, August, 1904, p. 363, and Chart XIII). I mention there high velocities over 60 miles per hour along the eastern Rocky Mountain slope. Now the explanation of high velocities along the Atlantic shore is obvious, since the lesser friction on the sea surface is an important factor. But how about these fast lows on the eastern slope of the Rockies moving with extremely great velocities in the southerly direction? Is that due to the fact that the American lows in comparison with the European have the steepest gradients usually on the western side?

Now we have seen from the preceding results and Section 1 that increase of pressure goes hand in hand with increase of velocity and vice versa. Hence the obvious explanation seems to me to be the following:

In cyclones we have to deal with the ascending currents in the front and descending in the rear. The pressure in the center may be considered as a balance between supply and discharge of the air due to these currents. If the pressure falls it means that less air is supplied in the rear than is discharged in the front. If the pressure rises it means an excess or increase of descending currents in the rear. These descending currents turn anticlockwise and flow into or feed the right side of the cyclone, increasing thus the winds and gradients in this portion, and therefore, according to Koeppen's law, increasing the whole progressive energy of the low in an easterly direction. Therefore increase of pressure in the center would correspond to increase of easterly velocity and vice versa, if there be no other causes that influence the velocities of the low.

The changes of pressure and velocity are corresponding, and as they oscillate up and down they work toward a steady condition of dynamic equilibrium or a certain velocity, which is different for different azimuths, and at which there would be no change of pressure at the center. This "certain velocity" is therefore that which we know under the term of "average" velocity, and this average velocity is different for each azimuth of movement. So if in Table 4, or fig. 1, we follow the line of zero change, we obtain for different azimuths the respective average velocities. We see that the average velocity increases with increasing azimuth. So, for instance, the average velocity as taken from the pressure-change curves for the lows going in a northerly direction is smallest being about 170 miles (in twelve hours), increases toward NNE. (about 180 miles), NE. (260 miles), ENE. (235 miles), E. 420 miles), ESE. (475 miles), and for SE. (if the four cases amount to anything) would be about 585 miles. So we see that cyclones traveling SE. would move in general with the greatest velocities.

If we take the average pressure-change curve, based on the data for all azimuths, we see that it crosses the line of zero change something below 300 miles (per twelve hours). From the data given in the Monthly Weather Review (1893–1902) for the months here considered I have computed the average velocity to be 354 miles (per twelve hours). That is, the difference between the results obtained by these two methods is about 60 miles (in twelve hours). If we remember that this average (354 miles) includes also many secondary lows of various shapes, whose great velocities are hardly ever reached by the well-shaped ellipsoidal cyclones selected for consideration in this paper, we may say that there is a good coincidence between the data for "average" velocities obtained by these two quite different methods.

From this we see that we may now give our numerical term "average" velocity a more definite significance from a dynamic point of view; namely, it is the theoretical velocity of movement of a low at whose center the pressure neither increases nor decreases. This ideal case is, of course, hardly ever realized, especially if we have in mind the change of form of the low from day to day, the great influence of highs, and the influence of the physiographic features of the earth's surface, for instance in the transition from land to sea and vice versa.

The reader may have the impression that, in discussing the relation between velocities of movements of lows and pressure at their center, I have attempted to show that the former is the effect of the latter. This was not my intention, as the reverse may be the case, and it is also possible that both pressure and velocity may be the result of a third cause not considered in this paper. A discussion of this point would lead to a discussion of the theory of cyclones, whereas my purpose in the present paper is only to show the relation between

pressures and velocities in well-shaped ellipsoidal primary south-southeast. cyclones.

Table 1.—List of the cyclones studied.

NORTH

904

n 1

of

ems

in the

and ure

lisess ndght nts aw,

an ter ice ies

nd dy ch ıld V е" zihe re-

in-

ge WS es 75 g) ng he ro m 2) fis

18 e n

n

m C

8 1e e

e e

NORTH
November: I. 2a. 96.
December: VIII. 22p. 00; V. 15p. 02; VII. 10p. 99; V. 15a. 02.
January: XII. 29a. 00; VIII. 19p. 98.
February: VI. 27p. 02.
March: VII. 24a. 01; VI. 15a. 98; VI. 14p. 98; VI. 20a. 01.

NORTH-NORTHEAST.

NORTH-NORTHEAST.

November: IX. 21p. 98, XI. 27p. 93; VIII. 26a, 96; XII. 27a. 93; IX. 25p. 95.
December: V. 13p. 97; VIII. 23a. 00; VII. 11p. 99; V. 14p. 97.

January: VIII. 21p. 02; I. 1a. 93; II. 6a. 99.
February: VIII. 22a. 00; VIII. 20p. 00; VI. 28a. 02; III. 6a. 96; XII. 27a. 93; VIII. 26a. 99; I. 1p. 02.

March: VI. 19p. 01; VIII. 26a. 02; IV. 9p. 01; X. 28p. 99; IX. 27p. 98; V. 11a. 99; IX. 27a. 98.

NORTHEAST.

NORTHEAST.

November: I. 1a. 97; 11. 4p. 97; VIII. 25p. 02; I. 2a. 97; X. 30p. 99; XIII. 25p. 00; IX. 21a. 98; X. 23a. 01; III. 5p. 02; II. 1p. 94; III. 10a. 96; XIII. 24a. 00; XII. 22a. 00; IV. 9p. 98; XI. 21a. 00. December: V. 18p. 98; VI. 20p. 02; II. 3p. 98; V. 19a. 98; III. 9p. 01; VI. VIII. 12a. 94; VI. 9a. 93; XII. 26a. 95; I. 3p. 99; V. 14a. 01; I. 2a. 02; I 2p. 93; XIV. 30a. 95; V. 14p. 02.

January: XV. 20p. 94; I. 3p. 97; IX. 21a. 95; IX. 22p. 98; IX. 22a. 98; VI. 11p. 93; X. 25p. 95; XIII. 30p. 01; II. 6a. 01; X. 24p. 98. February: VII. 22a. 99; III. 17p. 02; III. 17a. 02; V. 26a. 02; XII. 27p. 93; VI. 17a. 93; V. 9p. 94; VI. 27a. 02; VI. 22a. 94; V. 9a. 94; VIII. 25p. 99; VII. 12p. 96; IV. 8p. 96; I 5a. 00; I 2p. 01; III. 5p. 96; III. 3a. 99; V. 13a. 01; V. 12a. 01; VI. 15p. 98; IX. 23a. 93; XII. 15a. 94; V. 10a. 01; II. 5a. 99; III. 6a. 00; IV. 19p. 96; IV. 10p. 98; VII. 10p. 94; IV. 18p. 96; II. 4a. 99; X. 29a. 99; IV. 12a. 02; IV. 11a. 96; IX. 28a. 02; V. 12p. 98; X. 27p. 99. X. 27p. 99.

EAST-NORTHEAST.

EAST-NORTHEAST.

November: XIII. 26a. 00; IX. 22a. 98; X. 21p. 93; VI. 11p. 01; II. 5a. 97; I. 1p. 97; IV. 10p. 97; IV. 10a. 98; VIII. 25a. 02; VII. 19a. 95; III. 9a. 97; XII. 22p. 00; XII. 29p. 93; III. 11a. 96; I. 2p. 97; VII. 25p. 97.

December: V. 13a. 97; V. 18a. 98; X. (November) la. 99; VI. 21a. 02; I. 3a. 93; I. 2p. 02; II. 4p. 02; I. 2a. 95; II. 4a. 98; XIII. (November) 2p. 01; IX. 16p. 93; VIII. 27a. 01; IV. 12p. 02.

January: VIII. 22a. 02; XV. 20a. 94; VIII. 20a. 98; I. 1p. 93; IX. 20p. 95; IV. 11p. 01; VIII. 20a. 02; XI. 26p. 99; VII. 15a. 98; IV. 4p. 94; IV. 11a. 01; VII. 14p. 98; X. 24p. 99.

February: V. 25a. 02; VIII. 21p. 00; II. 4p. 98; VII. 21p. 99; I. 3a. 01; I. 4p. 00; VIII. 25a. 99; II. 5a. 98; II. 2p. 93; III. 9p. 93; IV. 9p. 96; XII. 28p. 00; VII. 13a. 96; II. 6a. 93; III. 9a. 93; IV. 14p. 93; III. 8p. 01.

March: IX. 13p. 94; VI. 12p. 93; VI. 19a. 01; IV. 8a. 93; VI. 19a. 96; VI. 13p. 93; V. 10p. 93; VI. 14p. 99; VII. 19p. 98; VII. 19a. 99; V. 14a. 97; VIII. 22p. 98; III. 7p. 02; IV. 4a. 95; IV. 12a. 97; IV. 12p. 02; VII. 17p. 99; II. 5a. 97; V. 13a. 98; VII. 25a. 01; VIII. 25p. 96.

November: X. 22a. 93; III. 7a. 01; IV. 14a. 99; II. 5p. 97; X. 21a. 93; III. 6p. 01; XIV. 26p. 94; VI. 21a. 97; IX. 29p. 02.

December: VII. 24a. 02; VI. 20a. 02; IX. 16a. 93; III. 8a. 94; XI. 18p. 93; XII. 20p. 94; VI. 9p. 93; IX. 15p. 93; XII. 21a. 94; III. 7a. 95; I. 2a. 93; VII. 12a. 93; IX. 16p. 94; III. 8p. 00; X. 22a. 96.

January: X. 24p. 00; XI. 25p. 99; III. 10a. 01; VIII. 21a. 02; XI. 26a. 99; VI. 12a. 98; X. 25a. 98; IX. 21p. 01; VIII. 20.p. 02; VIII. 18a. 95; X. 25p. 98; VII. 15p. 98; V. 18p. 02; III. 8a. 99; IV. 8p, 98; III. 9p. 00.

February: XII. 28a. 00; VIII. 21a. 00; I. 3p. 00; I. 2a. 02; V. 15a. 98; XI. 23p. 93; IX. 6p. 95; I. 4a. 00.

March: V. 11a. 93; V. 12p. 01; IX. 29a. 02; VI. 13a. 93; IX. 13a. 94; XIII. 18p. 94; XIII. 19a. 94; IV. 13a. 02; VII. 11a. 94; III. 5p. 00; I. 4a. 01; V. 12a. 99; I. 9a. 00.

EAST-SOUTHEAST.

November: II. 9a. 99; VI. 12a. 01; IV. 11p. 97.

December: VI. 19p. 02; IV. 12p. 00; XV. 31p. 99.

January: XIII. 17p. 94; XIII. 24a. 93; VII. 13p. 93; V. 18a. 97; II. 6p. 01; I. 8a. 01; II. 7a. 01; I. 2a. 02; XII. 31a. 98; X 25a. 00.

February: XI. 23a. 93.

March: IV. 8p. 93; VIII. 23a. 98; III. 8p. 02; XV. 20a. 95.

SOUTHEAST.

November: X. 24a. 01; IV. 11a. 97.

December: January: III. 6p. 98.

February:

XII. 15p. 94.

November

December: II. 7a. 00; V. 11a. 95; V. 11p. 95.

January:

February: IX. 18p. 96; IX. 18a. 96.

March.

Table 2.—Distribution of numbers of cyclones according to velocity and azimuth of movement.

Veloc-								Aziı	nuth	la .								
ity.	2	v.	N!	NE.	N	E.	EN	NE.	1	E.	E	BE.	s	E.	ss	E.	Tot	al.
0-100		0		0		2 (3)		0		0		1		1		1		6
50-150	. 1		1		4		1		2		1		1		2		(14)	
100-200		7		2	(5)	6 (7)		3		5		1		0		1		26
150-250	6		3		7 (8)		4		5		1		0		0		(27)	
200-300		0		6		10		10		5		1		1				33
250-350	-		4		12		13		10		2		1				(44).	000
300-400 350-450		2	8	4	12	12	11	8	7					0	1		(41)	39
400-500	2	0		7		11	11	10		9	i	1	-	0			(41)	38
450-550	1		6		15	44	19	10	8		7		1				(51)	
500-600		2		3		20				4.00		8		1			(02)	71
550-650	1		1		4.0		20		1 400		4		1				(63)	
600-700		0								11				1				48
550-750	1		2		6		13		4		5		0		0		(31)	
700-800		1		1		4		10		4		2		0		0		22
750-850	. 0		1		5		5		4		0		0		0		(15)	
300-900						4		1		3		1					*****	16
850-950	. 0		0		0		1	****	1		0	****	0		0	****	(2)	
	(12)	12	(26)	26	(79)	73	(80)	80	(61)	61	(21)	21	(4)	4	(5)	5	(288)	288

Table 3.—Pressure in thousandths of an inch (in excess of 29 inches) in the first location.

Velocity, miles		Smoothed averages,										
in 12 hours.	N.	NNE.	NE.	ENE.	E.	ESE.	SE.	SSE.	genera aver- age.			
	29.+	29.+	29. +	29. +	29. +	29. +	29.+	29. +	29. +			
50-150	(204)	(565)	(428)	300	(466)	(326)	380	(776)	(487)			
100-200	177	(490)	(357)	341	(438)	(210)	380	(830)	348			
150-250	(164)	331	333	418	437	(270)	(280)		(299)			
200-300	(157)	332	352	473	472	532	(280)	570	422			
250-350	(580)	342	357	488	(421)	600	(280)	594	424			
300-400	(580)	390	395	493	(425)	570	(280)	629	434			
350-450	580	366	471	499	483	(640)		672	(500)			
400-500	667	340	497	497	499	(675)	460	741	465			
450-550	(795)	421	487	493	485	(643)	460		504			
500-600	750	571	511	497	509	616	500	*****	525			
550-650	(705)	(684)	537	515	538	592	580		544			
600-700	(430)	636	546	557	560	578	620		578			
650-750	(200)	595	557	579	576	(558)	620		560			
700-800	(200)	658	604	(540)	633	(549)			561			
750-850	(===)	760	647	(478)	661	(546)			598			
800-900				(434)	(636)	(520)			618			
850-950				(201)	(200)	,,,,,,,						

Table 4.—Change of pressure in thousandths of an inch in twelve hours at the centers of cyclones moving toward different azimuths and with different velocities.

			Sm	oothed	averag	es.				rue.
Velocity.	N.	NNE.	NE.	ENE.	E.	ESE.	SE.	SSE.	general averages.	
50-150	(-020)	+070	+006 (-023)	+084	(+081)	(+103)	(+040)	(-064)	+004	
100-200	+003	+005	+015	+078	+103	+225	(+040)	(-025)		+034
150-250	+014	-042	+016	+041	+090	(+261)	+200	(+040)	+033 (+050)	
200-300	+020	-055	+006	-034	+064	+196	+200	+080		+00
250-350	-020	-085	-027	(-095)	+076	+130	+200	+080	008	
300-400	-140	-151	-084	(-110)	+058	+085	+200	+080		06
350-450	-140	-170	-127	-068	-018	+010		+-080	-091?	
100-500	-166	-178	-142	-067	-014	+002	+140	+080		-10
150-550	-220	-200	-109	(-109)	003	+008	+140		-0879	
500-600	-220	-222	097	(-104)	-017	+014	+080			-07
550-650	-220	-258	-127	-074	-033	000	-040		078	
500-700	(-150)	-290	-170	(-045)	-041	-084	-100			-08
550-750	(-080)	(-272)	-194	(-053)	(-006)	-160	-100		-107	
700-800	(-080)	(-250)	-199	-078	(+041)	-195				-10
750-850		(-275)	(-159)	-077	(+020)	(-113)			-084	****
300-900		-300	(-118)	(-063)	(-026)	(+060)		******	*****	-07
350-950		-300			(-053)			******	******	

NOTES AND EXTRACTS.

NITROGEN IN RAIN WATER.

Meteorologists generally consider that they have done their duty by the rainfall when they measure the quantity and the time of occurrence, either daily or hourly. But the students of agriculture and forestry, those who drink rain water, and those who study the physics of the atmosphere are all alike interested in the chemical composition of the rain water. The time must come when chemical analysis of the rain water will be made systematically at a large number of carefully selected rainfall stations. It is hardly desirable that any of these should be located in large cities, since the rain that falls there has so little influence on agriculture or water supply. The most important stations will be those in the open country, whether inland or near the seacoast, and especially those at mountain tops and base stations. The importance of this subject to agriculture may be estimated from a statement by Mr. H. Ingle, in charge of the chemical work of the Department of Agriculture of the government of the Transvaal. According to "Nature", Mr. Ingle finds that Transvaal soils are deficient in nitrogen, but that the receipt of combined nitrogen from the atmosphere, namely, nitrates, ammonia, etc., is much larger than in England. Thus, at Rothamsted the average annual receipt of atmospheric nitrogen in the rain water amounts to 4.75 pounds annually, whereas in February and March, 1904, in Pretoria, the rainfall brought down about two pounds per acre. As the normal rainfall for these two months is seven inches, while the annual rainfall is thirty inches, it may, therefore, be estimated that the annual quantity of nitrogen brought down by the rain at Pretoria is at least eight and possibly ten pounds per acre, or twice as much as received at Rothamsted in England.

By analogy we may anticipate that the varying proportions of nitrogen brought down in different portions of the United States by the rainfall may be an important consideration in explaining the agricultural peculiarities of special regions.-

THE VAPOR PRESSURE OF MERCURY.

The measurement of atmospheric pressure by means of the mercurial barometer is subject to a slight additive correction, by reason of the fact that the vacuum chamber is filled with the vapor of mercury pressing down on the column and making the atmospheric pressure appear smaller than it actually is.

Professor Morley has recently published the results of a series of determinations of the vapor pressure of mercury at temperatures between 0° and 100°.¹ The results previously given are, as he points out, based mainly upon interpolated or extrapolated values and are widely discordant. Professor Morley's method consists in passing a pure and dry inert gas, either carbon dioxide or hydrogen, through a weighed quantity of mercury contained in Winkler absorption tubes, the current of gas being so slow and contact with the metal so thorough that the gas becomes perfectly saturated with the vapor of mercury. The volume of the gas is measured, and gives, when reduced to the temperature of the mercury, the volume of the saturated vapor. The loss of weight of the mercury in the absorption tubes gives the weight of this saturated vapor, and from these data the pressure of the vapor may be computed.

In one series of experiments, each of which continued for about two weeks, the mercury was kept in a room whose nearly constant temperature was measured by a thermograph. In another case the mercury was immersed in a water bath maintained at constant temperature.

The following table indicates the method of calculation and gives the results.

The last column is computed by the formula-

 $p = ab^t$, in which $\log a = 4.6064$ and $\log b = 0.02856$.

Tempera- ture.	Weight of 1 liter of mer- cury vapor.	Weight of 1 liter of mer- cury vapor at 1 mm.	Vapor pressure observed.	Vapor pressure computed.
° C.	Milligram.	Milligrams.	Millimeter.	Millimeter, 0,0004
10				0.0008
16 20			0, 0010	0. 0012 0. 0015
30	0.028	10, 60	0.0027	0.003
40	0.054	10. 26	0.0052	0.006
50	0.112	9, 94	0. 0113	0. 011
60 70	0, 206 0, 378	9, 65 9, 37	0. 0214	0, 021 0, 040

These results agree well with those computed by Hertz from 0° to $50^\circ.$ They are about one-tenth as large as the values found at 0° and 10° by van der Plaats, who used a similar but somewhat less simple method. Professor Morley states that his own values "have now been found the same in experiments made in three different years and with many modifications of apparatus."-F. O. S.

WEATHER BUREAU MEN AS INSTRUCTORS.

Prof. H. J. Cox, Chicago, Ill., reports that classes from the schools named below visited the local office of the Weather Bureau during 1904 and were given instruction in the work of the Bureau by some one of the assistants on duty at the

February 27 and March 5, Mayfair High School.

March 7 and 8, Austin High School.

March 18, 21, 22, and 23, West Division High School.

April 7, Austin High School.

April 15, West Division High School.

April 28, Young Men's Christian Association Institute. July 28, John Spry Vacation School.

October 21, Austin High School.

December 8 and 10, University of Chicago.

December 10, Morgan Park High School.

Mr. Charles Stewart, Observer, Spokane, Wash., lectured at the local office on December 9 to the 45 pupils constituting the physical geography class of the Spokane High School on meteorology and the work of the Bureau. Fore-casting was touched upon, and the fallacy of long-range forecasts and the moon's influence on the weather were discussed.

Mr. George A. Loveland, Section Director, Lincoln, Nebr., on December 28 spoke briefly before the "Teachers of Science" section of the Nebraska State Teachers Association on the subject of meteorology in the public schools. Mr. Loveland was subsequently elected secretary of the section, of which he has been a member for many years in virtue of his position as instructor in the University of Nebraska.

Mr. Clarence J. Root, Assistant Observer at Charles City, Iowa, reports that on December 10 the office was visited by the superintendent of schools and the seven teachers of the Charles City High School. The instruments were explained and the work of the Bureau and the movement of storm areas discussed.

¹On the vapor pressure of mercury at ordinary temperatures. London, Edinburgh, and Dublin Philosophical Magazine, June, 1904, pp. 662-67.

Mr. H. W. Richardson, Local Forecaster, Duluth, Minn., on December 7 delivered a lecture of about an hour's duration, on the Weather Bureau and its work, to twenty students of the class in physiography of the Superior State Normal School.

Mr. John R. Weeks, Observer, Macon, Ga., delivered two lectures before the students of the science department and members of the faculty of Wesleyan Female College. These lectures were given on November 29 and December 7 and were illustrated with the stereopticon, about one-hundred and seventy-five views and charts being shown. The topics treated were as follows:

FIRST LECTURE.

A brief history history of the science and its progress. The U. S. Weather Bureau and its work.

A description of the instruments used.

The earth and the sun—the sun the source of all weather.

The atmosphere and its general circulation. How cyclones and anticyclones are formed. Their structure and general characteristics.

Some typical cyclones and anticyclones charted and miscellaneous views showing frosts, snow, floods, progress of cold waves, blizzards, etc., caused by them.

Weather forecasting, how its done, its limitations, and its practical

application.
To-day's weather (charted) and today's forecast.

SECOND LECTURE.

Hurricanes, a special type of cyclone.

Local storms and their connection with cyclones and anticyclones.

Tornadoes.

Thunderstorms

The simple physical laws governing the general condition of the atmos-

Rain, its formation, distribution, and effect on life. Temperature, its distribution and effect on life. Sunshine, its distribution and effect on life.

instruments and forecast work of the Bureau.

Climate, a summary of its controls and divisions.

Mr. R. M. Hardinge, Local Forcaster, Syracuse, N. Y., on December 3 lectured at the Weather Bureau office to the physical geography class of the Fayetteville High School on the

Mr. Alfred F. Sims, Local Forecaster, Albany, N. Y., lectured on December 9, at the Weather Bureau office, to a class from the Rensselaer High School.

Mr. S. S. Bassler, Local Forecaster, Cincinnati, Ohio, on December 30 lectured before the Farmers' Institute at Collinsville on "Weather and Weather Forecasting.

KITE WORK BY THE BLUE HILL OBSERVATORY AND THE UNITED STATES WEATHER BUREAU.

In the following communication Mr. A. Lawrence Rotch, Director of the Blue Hill Observatory, calls attention to an apparent inaccuracy in the October Review:

To the EDITOR OF THE MONTHLY WEATHER REVIEW.

To the EDITOR OF THE MONTHLY WEATHER REVIEW.

The article by S. Tetsu Tamura in the October Review contains a misstatement on page 464, namely: "While the Weather Bureau was conducting this work kiteflying was begun at the Blue Hill Observatory under the direction of Mr. A. L. Rotch." It was said previously: "In 1895 the United States Weather Bureau decided to equip with kites a number of stations." The fact is, however, that in 1894 kites were flown at Blue Hill to obtain meteorological records, and these records, with a description of the apparatus, were published in the Appals of the Hardescription of the apparatus, were published in the Annals of the Harvard College Observatory, Volume XLII, Part I.

A. LAWRENCE ROTCH, Director.

BLUE HILL METEOROLOGICAL OBSERVATORY,

Hyde Park, Mass., January 12, 1905.

If the expression "this work" in the sentence quoted refers to the use of self-recording instruments, then it is, as Mr. Rotch has pointed out, a mistake. The use of kites by the Blue Hill Observatory to obtain continuous meteorological records ante-

dates their use for that purpose by the United States Weather Bureau. Professor Marvin, in the Monthly Weather Review for April, 1896, page 114, has referred to the fact that kites were used at Blue Hill in 1894 to secure observations of atmospheric conditions at as high elevations as possible.

In connection with the more important events in the kite work of these two institutions, the following dates are worthy of record. So far as they relate to the Weather Bureau, they are taken for the most part from the notes of Prof. C. F. Marvin, to whom, more than to anyone else, belongs the credit for the form of kite and the instruments, accessories, and methods finally adopted. Work by the Blue Hill Observatory is distinguished by printing the dates in italics.

A paper kite about four feet long, covered May 6, 1885. with cloth and tin foil, was used by Professor McAdie, at Cambridge, for observations of atmospheric electricity. May 7 a height of 500 feet was attained.²

June 17, 1885. Similar kites were used by Professor McAdie for the same purpose at Blue Hill Observatory.

periments were repeated in June and July, 1891.4

August 9, 1892. Professor McAdie used a kite at Blue Hill to determine the value of the potential at points comparatively free from ground and local influences. Mr. Rotch not only placed the observatory at the disposal of the experimenter, but generously defrayed all incidental expenses.

1893. Professor Harrington read a paper before the International Meteorological Congress at Chicago, Ill., on the use of kites in meteorological investigations.

1894. In the summer of this year experiments in kite flying were made by Professor McAdie and Mr. Potter. A large number of kites, mostly of the Malay type, were flown successfully at Mr. Potter's country residence.

In July and August, 1894, Mr. William A. Eddy, who had been very successful in reaching great altitudes with kites designed by himself, spent two weeks at the observatory for the purpose of elevating instruments with his kites.

August 3, 1894. An ordinary Richard thermograph was altered for use in the experiments, the heavy parts being replaced by wood and aluminum.

August 4, 1894. This instrument was raised to a height of 1430 feet.

January 18, 1895. The first Richard thermograph was purchased and records of temperature were obtained during the summer of this year.

August 18, 1895. The first Hargrave kite constructed at the observatory was flown.

August 19, 1895. The first barothermograph was elevated with kites.

September, 1895. A kite of the Hargrave cellular type, made by Mr. Potter, was successfully flown by him. Up to this time kites of the Eddy or Malay type had been used almost exclu-The evident superiority of the Hargrave type in power and stability of flight led Mr. Potter shortly thereafter to devise the modified form of the cellular kite known as the Potter diamond kite, which can hardly be surpassed in lightness and simplicity of construction.

September 21, 1895. An improved Hargrave kite was used for raising the barothermograph.

October 14, 1895. Professor Hazen and Mr. Potter were officially assigned to the work of devising and perfecting an

Annals of the Astronomical Observatory of Harvard College, vol. 42, part 1, pp. 42 and 67. Monthly Weather Review, September, 1896, vol.

24, p. 323. 2 Proceedings of the American Academy of Arts and Sciences, N. S. vol.

12, 1884-85, p. 448.

³ Proceedings of the American Academy of Arts and Sciences, N. S. vol. 13, 1885-86, p. 129.

⁴ Annals of the Astronomical Observatory of Harvard College, vol. 40,

part 1, p. 53.

⁵ Annals of the Astronomical Observatory of Harvard College, vol 40, part 2, p. 122.

appliance for procuring upper air readings, as Professor McAdie had been placed on duty in San Francisco.

November 16, 1895. The first thermoanemograph was put

November 18, 1895. Professor Marvin was officially directed to construct appliances for carrying meteorological instruments into the upper air, and to give attention to the construction of the necessary instruments. The first step taken by Professor Marvin was to abandon the use of twine for kite lines.

December 7, 1895. The diamond kite was publicly flown by Mr. Potter at the Weather Bureau.

December 20, 1895. Phosphor bronze was used for the kite line and a wooden reel was employed.

January 7, 1896. In order to scientifically compare the flying qualities of different kinds of kites, methods were devised for regularly observing the angle of flight and angle of incidence to the wind, the latter being obtained by means of a scale of division in bold lines stencilled on the cloth of the kite, and viewed from the reel by aid of a small telescope with graduated vertical circle.

January 10, 1896. The properties of the catenary as applied to the science of kiteflying were fully developed and tables of results computed.

January 24, 1896. The advantage of using a small motor attached to the line below the kite was considered and discussed.

January 27, 1896. Music wire was substituted for cord, and was used exclusively for the kite line thereafter. During this month waterproof kites were employed in rain or snowstorms.

February 4, 1896. Steel music wire was substituted for the bronze wire and subsequently used exclusively for the kite line.

February 13, 1896. Apparatus was devised and installed for testing the strength of wire, string, splices, etc. An improved style of splice was developed and tools devised for making such splices expeditiously.

March 5, 1896. Early in the tests of kites the marked inefficiency due to the fluttering of the cloth and looseness at the edges was noticed. On the above date a kite with the frame construction located entirely at the edges of the cell was completed and tested with very satisfactory results. This improved feature was ultimately used exclusively, and was generally adopted elsewhere in all high grade kites.

March 21, 1896. Recognizing that the greater part of the pulling power exerted by the wind upon a kite is concentrated in the front cell, a Hargrave kite with three planes in both front and rear cells was made and tested. Subsequently the third plane was omitted from the rear cell, and at this point of the work a great variety of structures were made and tested for the purpose of determining how much the surface and extent of the rear cell might be diminished. It was recognized that the prime function of this part of the kite was that of controlling and maintaining the equilibrium. Structural and constructural considerations, however, led to the adoption of the simple Hargrave kite, with three horizontal planes in the forward cell and two in the rear.

April 4, 1896. A Richard meteorograph of aluminum, recording pressure, temperature, and humidity, was used.

April 13, 1896. A height of one kilometer above the hill was attained for the first time.

July 20, 1896. A height of 1.8 kilometers, or over one mile, was reached.

July 23, 1896. A tail composed of hollow cones was attached to one of the kites at the suggestion of Mr. Douglas Archibald.

August 1, 1896. The height of 2000 meters was reached. October 8, 1896. The height of 2665 meters, probably the greatest to which a kite had attained up to that date, was

February, 1897. To facilitate the use of a greater length of line under continued strain, a new windless with a strain pulley controlled by a steam engine was constructed. During this year important modifications of the meteorograph were made and new forms of kites tested.

February 3, 1897. Safety line devised and used in ascen-

April 21, 1897. Ascensions at Washington with thermograph on kite were continued more or less regularly on every favorable day from this date until June.

June 11, 1897. Design completed of the hand and power kite reels afterward employed by the Weather Bureau.

August 7, 1897. Drawings and specifications of the improved kite meterograph of the Marvin design were sent to contractors.

September 20, 1897. The construction of a collapsible, three plane kite of the standard type for station use was begun, to serve as a model for the use of contractors in manufacturing kites for station supplies.

October 15, 1897. The meteorograph was raised to a height of 3379 meters above the hill or 3599 meters above the valley.

March 3, 1898. The automatic power kite reel for use at the Washington station and also the hand reels for the equipment of outlaying stations had been completed. Each one of these was separately filled with wire and calibrated, in order to give the length unwound during ascensions. All other details of the equipment for stations were also completed about this time, and shortly thereafter the instruction of observers employed to fly kites at stations began.

April, 1898. Systematic ascensions were begun at seventeen kite stations, established in different parts of the country.

1899. The Weather Bureau issued Bulletin F, by Prof. H. C. Frankenfield, containing a report of the kite observations of 1898.

August, 1901. Mr. Rotch was the first to use a steamer to raise a kite on a calm day.-F. O. S.

STORM ON THE PACIFIC COAST, DECEMBER 27-31, 1904.

A steep barometric gradient on the northern Pacific coast during the last days of the month was accompanied by notably high winds and heavy precipitation at several points. On the 28th an area of low pressure was central at North Head. Wash.. with a reduced reading of 29.7 inches, with a high area to the southeast. The low developed rapidly in intensity during the next twenty-four hours, and the reduced pressure on the morning of the 29th ranged from 29.0 inches at Tatoosh Island to 30.0 inches at San Francisco and in the neighborhood of Boise, Idaho, a gradient of one inch in about 530 miles. The pressure then rose slowly as the low moved eastward. The influence of topography on wind velocity is well shown by the records from the various stations. The time given is 75th meridian.

At San Francisco the maximum wind velocity was 38 miles from the south on the 30th, and moderate rains fell on the 29th, 30th, and 31st. At Southeast Farallon, a small island 30 miles due west of San F isco, occasional light rains fell on the 27th, 28th, and 29th, with heavier precipitation beginning at 9:15 p.m. on this date. On the 27th the observer notes that the sea was unusually smooth all day, without surf. High wind began on the 28th, reaching a velocity of 49 miles from the south on the following day. Conditions on the 30th and 31st are described in the following extracts from the daily journal of the Assistant Observer in Charge, Mr. E. C. Hobbs:

December 30.—Cloudy; falling barometer until 3:15 p. m., followed by idden and rapid rise. Wind veered from south to northwest and velocity sudden and rapid rise. Wind veered from south to northwest and velocity dropped from 48 to 15 miles in fifteen minutes. Rain ended at 10 p. m.;

Gale raged furiously up to 3:15 p. m.; maximum velocity of 58 miles from the south occurred at 8:45 a. m. Communication with Professor

04

th

in

g

1-

y

r

0

McAdie being still interrupted, the southeast storm warning was continued until 3:15 p. m., when, it being evident that the storm had spent its fury, the warning was taken down.

This has been the most severe storm since last March. The night was a pandemonium of roaring winds, thundering surf, and driving rain. The noise prevented sleep, and the observer kept a close watch on the self-register during the entire night. All went well until the observers were at breakfast, when the anemometer broke down completely, some parts of it being blown away. Assistant Observer, Mr. James Jones, volunteered to mount the extra instrument, and a hard two or three hours followed. The extra instrument also soon showed signs of distress, and it was only by combining parts of both instruments and making some repairs that the record was started again.

Mr. Jones must have ascended the anemometer support at least a dozen times in a drenching rain, with a wind blowing between 50 and 60 miles per hour. His action was very commendable.

The east end of the bridge was wrecked again by the wind and surf, cutting off communication with the east end of the island.

December 31.—Clear; rising barometer; wind from the northwest freshened during the night, blowing a gale from 3:50 a. m. to 11 p. m. Maximum velocity of 40 miles from the northwest at 7:25 a. m. Amount of rainfall, trace. Clear in the evening.

rainfall, trace. Clear in the evening.

Point Reyes Light, 30 miles northeast of the island, experienced high winds on the 29th and 30th, with a maximum of 80 miles per hour from the south at 1:25 p.m. The velocity then decreased rapidly to 25 miles, veering to the northwest at 2:45 p. m., and increasing to a maximum of 52 miles from that direction at 6:10 a. m. of the following morning. Precipitation amounted to 1.77 inches.

At Eureka, Cal., the highest wind velocity was 29 miles and the precipitation amounted to 3.92 inches, of which 3.65 inches

fell in the twenty-four hours ending at 7:40 a.m. on the 30th. This was the heaviest 24-hour rainfall in any December since the station was established in 1887.

A similar heavy rainfall of 3.89 inches at Roseburg, Oreg., between 2 a. m. of the 29th and 2 a. m. of the 30th, is, with one exception, the greatest amount in twenty-four hours in the records of that station, which was established in 1877. The total precipitation at Roseburg was 4.68 inches, and the winds generally light, reaching a maximum of nineteen miles from the southeast on the night of the 28-29th, but not rising above nine miles per hour during the remainder of the month.

At North Head, Wash., strong winds from southeast to southwest prevailed from the 28th to the 31st, with maximum velocities of 74, 85, 46, and 48 miles, respectively, on those dates, and an average velocity during the 29th of 48 miles per hour. Nothing approaching these figures was reported from Portland, Oreg., or Seattle, Wash., where the maximum velocities were 22 and 29 miles, respectively, with averages on the 29th of about eight miles at the former station and six miles at the The total precipitation was as follows: North Head, 3.28; Portland, 2.71; Seattle, 2.51.-F. O. S.

CORRIGENDA.

Monthly Weather Review for November, p. 514, column 2, 2d line from bottom, for "W C" read "W to C"; p. 515, column 2, 15th line from bottom, for "Meteorology" read "Mechanics."

THE WEATHER OF THE MONTH.

By Mr. WM. B. STOCKMAN, Chief, Division of Meteorological Records.

PRESSURE.

The distribution of mean atmospheric pressure is graphically shown on Chart VIII and the average values and departures from normal are shown in Tables I and VI.

The mean pressure for the month was highest over the middle Plateau region and lowest over New England.

The mean monthly pressure was above the normal in North Dakota, northwestern Minnesota, eastern South Dakota, the Pacific districts, except on the coast of Washington and extreme southern California, the middle and southern Plateau and southern slope regions, portions of the middle slope region and west Gulf States, and southern Florida; elsewhere it was below the normal.

The greatest excess in pressure occurred in New Mexico and southwestern Colorado, and the greatest deficiency over the central Mississippi Valley, Ohio Valley, lower Lake region, Middle Atlantic States, and northern portion of the South Atlantic States.

The mean pressure for the month increased over the preceding month in the Atlantic, Gulf, and Pacific States, eastern lower Lake region, and western portions of the Plateau. In all other sections the mean pressure diminished, the most marked changes occurring over the middle slope region.

TEMPERATURE OF THE AIR.

The distribution of maximum, minimum, and average surface temperatures is graphically shown by the lines on Chart V.

The mean temperature for the month was generally below the normal east of the slope regions, and in north-central California, and above normal in the remaining districts.

In southeastern Texas, lower Missouri Valley, eastern middle slope region, northern portion of the South Atlantic States, Middle Atlantic States, New England, Lake region, and northern portion of the upper Mississippi Valley the changes were quite marked and ranged from -2° to -10° , the greatest deficiencies occurring in the northeastern portion of the Middle Atlantic States and in New England.

The most marked positive departures occurred over southern California, northern slope, and eastern portion of the northern

Plateau regions, where they ranged from $+2^{\circ}$ to somewhat more than +4°.

The mean temperature was the lowest by 1° during any December since the establishment of the station at Block Island, R. I., Eastport, Me., Harrisburg, Pa., Nantucket, Mass., and Syracuse, N. Y.; as low as the lowest at Binghamton, N. Y., Modena, Utah, North Head, Wash., Richmond, Va., and Scran-

The average temperatures for the several geographic districts and the departures from the normal values are shown in the following table:

Average temperatures and departures from normal.

Districts.	Number of stations.	Average tempera- tures for the current month.	Departures for the current month.	Accumu- lated departures since January 1.	Average departures since January 1.
		0	0	0	
New England	8	22.3	- 7.6	-31.6	- 2.0
Middle Atlantic	12	31 2	- 5, 0	-25, 6	- 2.1
South Atlantic	10	46.3	- 1.6	-13.3	- 1.
Florida Peninsula	8	60. 8	- 0.4	+ 0.8	+ 0.1
East Gulf	9	49.8	- 1,0	- 3.4	- 0.3
West Gulf	7	49.9	- 1.5	+ 7.2	+ 0.6
Ohio Valley and Tennessee	11	35. 4	- 2.4	-16.1	- 1.
Lower Lake	8	25. 4	- 5.1	-27. 2	- 2.1
Upper Lake	10	21.1	- 3.2	-21.7	- 1.1
North Dakota	8	15. 4	+ 1.2	- 5.2	0.
Upper Mississippi Valley	11	27.4	- 1.0	-15.1	- 1.3
Missouri Valley	11	27.4	- 1.3	+ 0.3	0.0
Northern Slope	7	27. 1	+ 2.6	+18.3	+ 1.
Middle Slope	6	33. 6	- 1.3	+11.3	+ 0.
Southern Slope *	6	40. 6	- 1.0	+14.5	+ 1.
Southern Plateau *	13	39. 6	- 0.1	+ 3.4	+ 0.3
Middle Plateau *	8	29. 3	+ 1.8	+ 7.3	+ 0.4
Northern Plateau*	12	32.3	+ 0.2	+26.7	+ 2.1
North Pacific	7	43.6	+ 1.7	+ 9.0	+ 0.1
Middle Pacific	5	48.7	- 0.1	+ 8.2	+ 0.
South Pacific	4	55.0	+ 2.2	+16.2	+ 1.4

* Regular Weather Bureau and selected voluntary stations.

Maximum temperatures of 80°, or higher, occurred in Florida, southern and western Louisiana, southeastern Texas, and portions of the southwestern parts of Arizona and California.

The maximum temperature equaled the highest on record at Cheyenne, Wyo., and Pensacola, Fla., and exceeded it by 2° at North Platte, Nebr., and by 4° at Valentine, Nebr.

Freezing temperatures occurred everywhere except in the southern and central portions of the Peninsula of Florida, portions of the Texas coast, in southwestern Arizona, extreme southern California, and along the coast of the Pacific States.

The minimum temperature at Williston, N. Dak., was 6° lower than any recorded during December since the establishment of the station.

In Canada.—Prof. R. F. Stupart says:

The mean temperature of December was higher than the average by 2° to 4° from western Manitoba to the Pacific coast, and was lower than the average over other parts of the Dominion, the negative departures increasing from 3° in eastern Manitoba and Keewatin to 6° in Algoma, and 9° or 10° in eastern Ontario and western Quebec, and in portions of the Maritime Provinces. In southwestern Ontario the negative departures ranged between 2° and 5°.

PRECIPITATION.

The distribution of total monthly precipitation is shown on Chart III.

The precipitation was above the normal along the southern New England and middle Atlantic coasts, central Ohio Valley, about eastern Lake Ontario, in southern Wisconsin, eastern Iowa, Tennessee, southeastern Arkansas, northwestern Louisiana, extreme western Florida, east-central and extreme southern Texas, southwestern Kansas, extreme southwestern and northwestern California, southwestern Oregon, western South Dakota, and central North Dakota; elsewhere it was below the normal.

The excess of precipitation was quite marked in southwestern Tennessee and northwestern Louisiana. The greatest deficiency was reported from central California.

Kalispell, Mont., reports the least amount of precipitation during any December since the establishment of the station.

Snow occurred as far south as the central portions of South Carolina, Georgia, the Gulf States, upper Rio Grande Valley, southwestern Arizona, and northeastern California.

HAIL

The following are the dates on which hail fell in the respective States:

Arkansas, 13, 27. California, 8, 11, 23–25. Georgia, 17. Idaho, 1. Indiana, 23. Kentucky, 5. Louisiana, 26, 27. Maryland, 12. Missouri, 26. Nevada, 25. New York, 4. Ohio, 3, 4. Oregon, 1, 9, 10, 21, 23–26, 28, 30, 31. Texas, 4, 26. Utah, 2, 12. Washington, 21, 23, 24, 28, 29, 31. Wyoming, 1, 8.

SLEET.

The following are the dates on which sleet fell in the respective States:

Alabama, 13–18. Arizona, 8, 22. Arkansas, 3, 5, 6, 13, 16, 26, 27. California, 22, 24, 29, 30. Colorado, 25. Connecticut, 22, 23, 27, 28. Delaware, 3, 5, 24. Georgia, 12, 14–17, 19. Idaho, 8–10, 12–14, 18, 22, 23, 29–31. Illinois, 2, 3, 5, 9, 16, 24–27. Indiana, 2, 3, 5, 9, 24–26. Indian Territory, 5, 16, 26. Iowa, 2, 3, 9, 16, 18, 23–27. Kansas, 5, 25–27. Kentucky, 3, 5, 6, 17. Louisiana, 13. Maine, 23, 26–28, 31. Maryland, 2–5, 17, 24–27. Massachusetts, 5, 8, 18, 20, 23, 26–28, 31. Michigan, 18, 20, 23, 25–27. Minnesota, 9, 23, 26. Mississippi, 16. Missouri, 3–5, 11, 12, 14, 16, 17, 23, 24, 26, 27. Montana, 10, 11, 17, 29, 31. Nebraska, 12, 13, 15, 25, 26. New Hampshire, 27, 28. New Jersey, 3–5, 12, 13, 15, 24–27. New Mexico, 3, 19. New York, 4, 23, 24, 27, 28. North Carolina, 6, 11–17. North Dakota, 4, 17. Ohio, 2, 3, 5, 7, 17, 24–27. Oklahoma, 3–5, 13. Oregon, 1, 9–11, 22–25, 27–29. Pennsylvania, 2–5, 12, 24–27. South Carolina, 11, 14, 15, 17, 19. South Dakota, 1, 10, 26. Tennessee, 4, 12, 16, 17, 27. Texas, 4, 5. Utah, 1, 5, 10, 12, 21, 23–25, 31. Vermont, 27, 28. Virginia, 2–6, 9, 10, 12, 15–17, 25–27. Washington, 6–10, 13, 14, 17, 21, 24, 25, 27–31. West Virginia, 3–6, 25, 26, 28. Wisconsin, 25–27. Wyoming, 13.

Average precipitation and departure from the normal.

	r of	Ave	rage.	Depa	rture.
Districts.	Number stations	Current month.	Percentage of normal.	Current month.	Accumu- lated since Jan. 1.
		Inches.		Inches.	Inches.
New England	8	2, 69	75	-0.9	- 5.
Middle Atlantic	12	3, 32	103	+0.1	- 9.
South Atlantic	10	2, 09	62	-1.3	-13.
Florida Peninsula *	8	1.40	56	-1.1	- 0.1
East Gulf	9	3, 78	83	-0.8	-17.1
West Gulf	7	3, 63	109	+0.3	- 8.1
Ohio Valley and Tennessee	11	4. 37	122	+0.8	-11.
Lower Lake	8	2, 50	86	-0.4	- 2.1
Upper Lake	10	1.70	77	-0.5	- 4.5
North Dakota	8	0.85	189	+0.4	0, 6
Upper Mississippi Valley	11	1.58	80	-0.4	- 2.
Missouri Valley	11	0.78	71	-0.3	1.
Northern Slope	7	0.32	62	-0.2	- 0.6
Middle Slope	6	0, 52	57	-0.4	+ 1.1
Southern Slope	6	0.39	30	-0.9	- 2.7
Southern Plateau *	13	0, 72	78	-0.2	- 0.6
Middle Plateau *	8	0.84	74	-0.3	+ 1.7
Northern Plateau *	12	1. 54	84	-0.3	- 2.5
North Pacific	7	7.96	94	-0.5	- 2.4
Middle Pacific	5	3, 54	65	-1.9	+ 6.0
South Pacific	4	1.94	64	-1.1	- 1.6

*Regular Weather Bureau and selected voluntary stations.

In Canada.—Professor Stupart says:

The precipitation was almost wholly in the form of snow from the Ottawa Valley to the Maritime Provinces, and amounts ranging from about fifteen inches in the more western districts and in New Brunswick to nearly 30 inches in eastern Nova Scotia.

In western Ontario the precipitation was very generally less than average, part snow and part rain, the latter occurring chiefly on the 27th. In Manitoba the snowfall was between ten and sixteen inches, and in the Territories ranged from two inches in southern Alberta to about ten inches in northern Alberta and eastern Assiniboia. In British Columbia the rainfall was decidedly heavy on Vancouver Island and the lower mainland, with also a few inches of snow, while on the upper mainland there were a few moderate snowfalls and less rain.

At the close of the month, much of southern and southwestern Ontario was bare of snow, while other parts of the Dominion, excepting British Columbia, were snow covered, the depth being greatest, but not excessive, in Quebec and the eastern portions of the Maritime Provinces. In strong contrast to the conditions at the close of December, 1903, is the small depth of snow now on the higher lands of Ontario east of Lake Huron and the Georgian Bay which in the previous year were covered by 30 to 60 inches.

CLEAR SKY AND CLOUDINESS.

The cloudiness was normal in the upper Mississippi Valley; below normal in the west Gulf States, lower Lake region, southern slope, and middle and northern Plateau and south Pacific regions. In all other districts it was above the normal.

The distribution of clear sky is graphically shown on Chart IV, and the numerical values of average daylight cloudiness, both for individual stations and by geographic districts, appear in Table I.

The average for the various districts, with departures from the normal, are shown in the following table:

Average cloudiness and departures from the norma

Districts.	Average.	Departure from the normal.	Districts.	Average.	Departure from the normal.
New England	5, 2 4, 9 5, 3 5, 1 6, 4 7, 2	+ 0.6 + 1.1 + 0.5 + 0.3 + 0.1 - 0.2 + 0.3 - 0.4 + 0.5 + 1.5	Missouri Valley Northern Slope Middle Slope Southern Slope Southern Plateau Middle Plateau Northern Plateau North Pacific Middle Pacific South Pacific	6.1 5.4 4.4 3.5 3.2 4.6 6.4 8.4 5.7 4.2	+ 1.0 + 0.8 + 0.6 + 0.5 - 0.5 - 0.5 + 1.1 + 0.3 - 0.5

HUMIDITY.

The relative humidity was normal in the Ohio Valley and Tennessee, Missouri Valley, and northern Plateau region; below the normal in New England, South Atlantic and west 904

nk

n e n

Gulf States, the upper Lake, southern slope, middle Plateau, north Pacific, and south Pacific regions. In the remaining 1; Edmonton, 9; Prince Albert, 16. districts it was above the normal.

The averages by districts appear in the following table: Average relative humidity and departures from the normal.

Districts.	Average.	Departure from the normal.	Districts.	Average.	Departure from the normal.
New England Middle Atlantic South Atlantic Florida Peninsula East Gulf West Gulf Ohio Valley and Tennessee Lower Lake Upper Lake North Dakota Upper Mississippi Valley	74 76 77 82 78 71 76 79 81 83 80	- 2 + 1 - 1 + 1 + 1 - 3 0 + 1 - 1 + 4 + 2	Missouri Valley Northern Slope Middle Slope Southern Slope Southern Plateau Middle Plateau Northern Plateau North Pacific Middle Pacific South Pacific	75 73 70 64 52 64 78 86 81 64	0 + 4 + 4 + 2 + 6 - 4 - 1 + 2 - 5

ATMOSPHERIC ELECTRICITY.

Numerical statistics relative to auroras and thunderstorms are given in Table IV, which shows the number of stations from which meteorological reports were received, and the number of such stations reporting thunderstorms (T) and auroras (A) in each State and on each day of the month, respectively.

Thunderstorms.—Reports of 253 thunderstorms were received during the current month as against 164 in 1903 and 144 during the preceding month.

The dates on which the number of reports of thunderstorms for the whole country was most numerous were: 26th, 79; 27th, 51; 25th, 21.

Reports were most numerous from: Louisiana, 28; Missouri, 22; Tennessee and Texas, 20.

Auroras.-The evenings on which bright moonlight must have interfered with observations of faint auroras are assumed to be the four preceding and following the dates of full moon, viz, December 18 to 26, inclusive.

In Canada: Thunderstorms were reported from Sidney, 1; Parry Sound, 27; Port Simpson, 18; Hamilton, Bermuda, 18.

Auroras were reported from Father Point, 4; Minnedosa,

WIND.

The maximum wind velocity at each Weather Bureau station for a period of five minutes is given in Table I, which also gives the altitude of Weather Bureau anemometers above ground.

Following are the velocities of 50 miles and over per hour registered during the month:

Maximum wind velocities.

Stations.	Date.	Velocity.	Direction.	Stations.	Date.	Velocity.	Direction.
Block Island, R. I	9	54	nw.	Mount Weather, Va	29	64	nw
Do	12	53	ne.	Nantucket, Mass	13	51	ne.
Do	18	60	n.	Do	18	64	n.
Do	28	60	w.	New York, N. Y	8	53	nw
Do	29	57	W.	Do	28	54	W.
Buffalo, N. Y	8	50	nw.	North Head, Wash	14	70	8.
Do	20	54	W.	Do	16	60	80.
Do	28	71	W.	Do	22	69	80,
Cape Henry, Va	10	54	nw.	Do	23	54	W.
Carson City, Nev	24	62	sw.	Do	24	50	nw
Cheyenne, Wyo	15	52	W.	Do	28	74	se.
Chicago, Ill	27	72	sw.	Do	29	85	90,
Do	28	50	BW.	Pittsburg, Pa	28	54	W.
Cleveland, Ohio	20	60	W.	Point Reyes Light, Cal	9	52	80,
Columbus, Ohio	20	51	8W.	Do	21	58	nw
Do	27	51	SW.	Do	22	70	nw
Do	28	50	aw.	Do	24	62	8.
Detroit, Mich	27	50	sw.	Do	25	62	nw
Do	18	55	sw.	Do	29	65	8.
Duluth, Minn	18	51	nw.	Do	30	80	8.
Do	27	65	nw.	Do	31	52	nw
Do	28	68	nw.	Port Huron, Mich	28	50	8W
Eastport, Me	27	50	0.	Pueblo, Cal	15	53	nw
Hatteras, N. C	10	50	n.	Sioux City, Iowa	27	57	nw
Helena, Mont	15	50	W.	Southeast Farallon, Cal.	22	50	nw
Indianapolis, Ind	27	58	sw.	Do	30	58	8.
Lincoln, Nebr	27	50	nw.	Tatoosh Island, Wash	1	52	BW.
Memphis, Tenn	27	56	sw.	Do	3	58	θ,
Mount Tamalpais, Cal	24	54	sw.	Do	9	62	8.
Do	25	50	nw.	Do	14	72	RW.
Do	30	58	se.	Do	15	60	W.
Do	31	54	nw.	Do	16	66	8.
Mount Weather, Va	7	50	nw.	Do	18	52	8W
Do	8	58	nw.	Do	31	66	BW.
Do	20	60	nw.	Valentine, Nebr	16	50	nw
Do	21	54	nw.	Do	18	52	nw.
Do	28	73	nw.	9			

DESCRIPTION OF TABLES AND CHARTS.

By Mr. Wm. B. STOCKMAN, Chief, Division of Meteorological Records.

For description of tables and charts see page 475 of Review for October, 1904. 76 -

Table I.—Climatological data for Weather Bureau stations, December, 1904.

	Eleva			Press	ure, in	inches,	7	'empera			he a		deg	rees		er.	the	ity,		pitation nches.	, in		w	ind.		-	1	1	9	
Stations.	eter above evel, feet.	Thermometers above ground.	o meter		el, reduced na of 24 brs.	riure from normal.	max. +	rture from .	um.		maximum.	um.		minimum.	est daily range.	wet thermometer.	temperature of dew-point.	e a		rture from normal.	with .01, or more.	movement, miles.	ling direc-	per	aximu elocity	7.	ays.	cloudy days.	days.	tenths.
	Barometer sea level,	Ther	Anemabove	Actual, mean	Sea level, to mean o	Departure	Mean	Departure	Maximum.	Date.	Mean 1	Minimum.	Date.	Mean	Greate	Mean	Mean 1	Mean	Total.	Departure	Days	Total	Prevailing tion.	Miles p	Direction.	Date.	Clear	Partly	Average	
New England.		69	82	29. 85	29. 94	04	22.3 17.0	- 7.6 - 8.5	46	28		- 6	25	9	29	15	9	74 69	2.69 2.41	- 0.9 - 1.6		19, 376	nw.	50	e,	27	9	11	11 6	5. 4
ortland, Meoncord	288	81 70 16	117 79 60	29, 86 29, 65 29, 66	29, 99 30, 00 30, 03		18, 6 18, 6 11, 4	- 8.8 - 7.4 -10.0	37 49 48		25 28 22	- 3 - 4 -14	25 25 15	12 9 1	27 45 37	17	12	76	1. 43 1. 81 1. 32	-2.1 -1.5 -1.4	11 9	6, 106 3, 280 4, 913	nw. nw.	28 27 35	sw. w. nw.	29	10 10 5	6	15 6	5. 2 8 3. 1 10 5. 8 9
oston	125	115	181 90	29, 86 29, 96	30.00 29.97		25, 8 30, 0	- 5.3 - 6.4	49 53		33	6	25 11	19 25	36 24	23 29	17 25	67 79	2, 52	- 1.0 + 0.4	9	8,004 13,184	nw.	33 64	w.	29	6	10	15 6	5. 8 1: 7. 3 2
lock Island	26	11 9	46 38	29, 98	30, 00	06	29. 6 25. 2	- 6.6 - 7.6	53 52	28 28	35 34	12 6 5	11	24 16	27 32	27	23	76	2, 93 3, 50	-0.7 -0.2		17, 031	nw. ne.	60	n.	18	6 10	9 5	16 7 16	7.01
ew Haven		116		29, 91	30, 03	04	24.8 31.2	- 7.4 - 5.0	48		32		13	18	31	23	17	70	3, 64 3, 32	+ 0.2	13	7,958	n.	33	W.	28	8		14 6	. 5
nghamton	875		90 350	29, 94 29, 95	30, 05	03 08	20.4	- 8.2 - 5.2	49 54	28	30	- 2 4 9	14	13 16 23	32 38 30	18	15	81	1. 78	- 1.0 - 1.7	15 20	5, 700	n. w.	26 30 54	n. w.	24 28 28	0 10	8 :	19 7 23 8	1.3 1
ew York	374	108 94 116	104	29, 68 29, 66 29, 98	30, 04 30, 08 30, 06	05 04 05	28, 2 27, 0 29, 8	- 6.2 - 7.4 - 5.7	52 53 54	28 23 28	33	7	11 15 11	21 24	30 30	26 24 27	19 22	73 70	3, 87 2, 39 2, 28	+0.6 -0.6 -0.5	13 12 13	10, 695 5, 322 8, 680	W. W. SW.	40 29	BW.	8 8	8 7	4	17 6 19 6 17 6	. 8 1
rantontlantic City	805	111		29, 15 29, 99	30, 05	05 05	24.8	- 4.6	58 52	28 28	32	2 8	15	18 25	34	23 29	19 25	77	3, 71 4, 68	+ 0.8	24 15	6, 226 7, 095	sw.	38	w. ne.	28		11 3	20 8 16 6	1. 4 2
pe May	17	48	82 117	30, 05 29, 92	30, 07 30, 06	04 07	32. 6 31. 6	- 5.3 - 5.9	32 58	28 31		12 12	11	27 25	28 27 33	30 27	22	71	5. 38 3. 34	+1.6 + 0.2	15 11	7, 806 5, 503	n. nw.	36 40	nw.	28 28	8	11 2	12 6 21 7	1.1
ashington		11	76 58	29, 95 30, 95	30, 08 30, 07	05 05	30, 9 39, 9	- 5.3 - 4.0	60 70	28 28	47	6 24	15 17	23 33	37 37	27	22	74	3, 33 4, 49	+ 0.3 + 0.6	11 14		nw.	28 54	nw.		8 12	6	$\frac{17}{12} = \frac{6}{5}$	5. 3
ount Weather	681 1, 725	10	58 88 57	29, 32 28, 16	30, 09 30, 04	05	36, 0 27, 2	- 3.3	65 85	23 31	34	13	14	27 20	36	31 24	27 21	74 80	2.81	- 0.2	14	3, 187 12, 779	BW.	23 73	s. nw.	27 28	9	10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5. 5
orfolk	144		90 47	29, 98 29, 93	30, 08	05 05	39, 3 35, 8	- 8.5	67	28 28	47	20 12	11 13 14	32 27	38 37	35	31	76	5, 22 3, 71	+ 1.6	13 15	7, 440 4, 176	n. sw.	32	sw.	28	14	4	13 5	. 1
theville	2, 293 2, 255		75	27. 62 27. 68	30, 08	07	34. 2 46. 3 38, 6	- 0.5 - 1.6 - 1.0	62	27 25	42	12	29	26 30	34	30	30	81 77 76	2. 48 2. 09 2. 02	$ \begin{array}{r} -0.3 \\ -1.3 \\ -0.9 \end{array} $	11	5, 620 6, 494	w.	30	w.	27		8 1	5	. 2
heville	778		76 47	29, 25 30, 07	30, 11	05 05	40, 8	- 2.8 - 1.8	71 70	27 28	49 53	23 29	29	33 40	30 28	36 43	31 40	75 82	2.86	- 1.2 - 2.8	12 10	5, 409 12, 282	sw. ne.	34 50	sw.	28	12 13	6	13 5	
leigh	376 78	71	79 90	29, 68 30, 00	30, 10	05 06	40. 4 45. 7	-3.5 -2.6	73 71	27 27	49 55	20 24	11	32 36	37 33	35 40	30 37	76 80	3. 02	$\frac{-0.1}{-1.2}$	12 10	4, 927 5, 964	sw. ne.	30	sw.	28	14	5 1	12 5 10 4	. 2
arlestonlumbia, S. C	48 351	14	92 175	30, 07 29, 71	30. 12 30. 10	03 06	50. 4 45. 6	-1.1 -2.3	72 75	23 27	58 54	29 25	29 29	43 37	28 29	45 40	41 35	79 74	1.08 2.38	- 2.2 - 0.6	10 11	7, 616	W.	34 40	w. sw.	17	11	7 1	13 5	
gustavannah	180 65	81	97 89	29, 92 30, 06	30, 12 30, 13	64 02	47, 2 52, 0	- 0.5 - 0.4	75 72	27 27	57 61	24 31	30 29	38	37 27	41 45	37 41	76 74	2.48 0.93	-0.9 -2.3	12	4,772 5,759	W.	36 28	W.	17	13	14		. 2
ksonville			129	30, 06	30, 11	03	55, 6 65. 3	- 0.4 - 0.9	76	3	65	31	29	46	29	.49	46	79 82	0.75	- 1.2 - 1.3	6	6, 113	nw.	42	SW.			10 1	4	. 9
piter	28 22	10	48 53	30, 07	30, 10	+ .01	65, 6 69, 5	-0.5	82 83	3	74	39 56	29	58 65	32 17	64	58 62	82 82	0, 49 0, 34	- 2.3 - 1.3	7 2	7, 280 6, 841	nw. ne.	30 26	s, nw,	17	8	19	4 5	. 0
Kast Gulf States.	1, 174	79	96 216	30, 08 28, 85	30, 12	.00	60, 8 49, 8 43, 8	- 1.1	68	26	70 51	35	29	37	30	10	35	81 78 76	1. 41 3. 78 3. 25	- 0.4 - 0.8 - 0.9	7	5, 523 9, 824	ne.	46	w.		13	7 1	5	
lanta neon nsacola	370	98	99 96	29, 71 30, 07	30, 11 30, 11 30, 13	05 02	47. 9 58. 6	- 1. 5 - 0. 9	72 76	26 5	57 61	24 30	30 28	39 46	33 29				8, 32 6, 72	+ 2.8	12	4, 841 7, 016	nw.	29 38	8. 8W.	27	11	4 1	16 5	. 7
mingham	700 57	136	143 96	29, 33 30, 08	30. 12 30. 14	04 01	47. 2 52. 0	- 1.0 - 0.4	72 73	26	56 61	21 29	29 30	39 44	41 31	48	44	78	5. 05 2. 77	0.0	11	5, 876 4, 825	w. nw.	36 26	s. nw.	27	12	3 1	16 5	. 6
ntgomery	223 375	100	112 93	29, 88 29, 72	30, 12 30, 13	04 08	49.3 47.6	- 0.3 - 2.9	75 76	26 3	59 58	25 23	30 30	40 38	34 48	45	42	83	3, 64	- 1.6 - 1.8	12	5,004 4,338	W. W.	35 28	sw.	27	13 13		3 5	0
w Orleans	247 51		74 121	29, 84 30, 98	30, 11 30, 13	04	50, 0 54, 9	- 0.6 - 0.6	74 78	26 25	59	25 32	28 28	41	41 36	44 50	39 46	74 78	3. 57 2. 37	-1.4 -2.0	10 10	6,005 6,719	se, nw,	30 35	BW.,	17 26				6
West Gulf States, reveport	249		84	29, 85	30, 13	.00	49. 9 48. 9	-1.5 -0.6	77	2	58	22	27	39	35	43	37	78 71 70	3. 63 9. 62	+ 0.3	5	5, 964	80.	32	w.		15			. 7
tle Rock	457 357		94 100	29, 60 29, 72	30, 09 30, 11	04		- 1.3 - 0.8	72 70	24		12 19	27 28	31 35	35 30	36	30 32	70 68	5, 64	-2.6 + 1.3	9	7,764 6,774	e. sw.	34	w, nw,	27 1	11	6 1	4 5	
rpus Christi	670		114	30, 12 29, 40 30, 08	30, 14 30, 13 30, 14			- 2.1 - 2.1	80 73	25 25 2	65 57 60	33 19 32	28 27 27	50 37 50	24 44 21	52 51	48	75	2. 47 0. 36 2. 00	+ 1.2	12 2 10	6, 161 9, 708 8, 912	n. nw.	32 40 42	ne. nw. nw.	31 16 26			9 3	.8
estine	510		79 91	29, 58 29, 39	30, 12	+ .02 00 + .02	49, 6	- 1.8 - 2.1	75 80 85	2	59 64	22 26	27 28	40 42	36 35	44 45	38	72 65		+ 0.3 - 0.8	8	5, 473 5, 028	nw.	27 39	nw.		12	10	9 4 8 4	. 9
ylor	583			29. 51	30, 14		50. 4 35. 4	- 2.4 - 0.4	82	2		22	28	40	41			76	0.82 4.37	+ 0.8	7	6, 607	9,	32	nw.			12 1	8 6	
attanooga	762	106 35	112	29, 30 29, 02	30, 14 30, 10	02 06	40, 0	+ 0.1	68 69	25 27	52 48	20 17	29 29	35 32	34 37	39 36	34 33	75 81	4, 12 5, 37	- 0.2 + 1.3	13 14	5, 719 5, 854	SW.	34 48	sw.		9	2 2	3 5. 9 6.	. 6
mphisshville	397 1 546 1	122	134	29, 70 29, 52	30, 12	02 03	42, 0	+ 0.6 + 0.3	60 72	25 25	50	19 16	29 29	37 34		38 37	33 32	70 75	10, 40 5, 01	+ 6.2 + 1.3	12 11	8, 780 5, 987	B.	56 37	SW.	26 1	11	7 1		. 4
rington	989 525 1	114	136	28, 98 29, 50	30. 10	06 04	35, 8	- 4.6 - 2.6	65 63	26	42 44	12	29 29	26 28	42 42	32	28	74	3, 10	- 0.3 - 0.2	13	9, 383 7, 412	sw. sw.	48	W.	27 27	7		7 6	. 5
ianapolis	431 822 1	154	164	29, 59 29, 15	30.08	05 05	29, 2	- 3.9	62 59 63	27	37	6	28 14	29 21	45 50	27	23 25	80	3, 88	+ 1.7	11	6, 576 8, 771	ne.	36 58	W.	27		10 1	2 5.	.0
cinnatiumbus	824 1 842 3	78	190	29, 38 29, 16 29, 11	30, 00 30, 06 30, 05	04 06 06	29, 0	- 4.2 - 4.3 - 3.8	62 70		41 37	8 5 6	14 16 11	24 21 24	41 37 34	29 26 27	23 23 22	75 80 71	3, 75 3, 63 2, 34	+0.6 + 0.7 - 0.5	13 9 13	6, 257 9, 961 8, 762	sw.	37 51 54	SW. SW. W.	97	7 5 2	10 1	6 6. 6 6. 2 8.	.7
kersburg	638 1, 940	77	84	29, 39 27, 95	30, 10	04 07	32, 3	- 4.8 - 1.2	64 65	27		1	11	25 22	36 49	29 28	24 23	74 76	3, 01	+ 0.3	11 16	5, 023 3, 882	n. w.	31 24	nw.	20 1	11	5 1	5 5.	91
falo	767 1			29. 14	30.00	06	25. 4	- 5.1	58		30	5	15	19	27	22	18	79 78	2.50	- 0.4 - 0.7		13, 898	sw.	71	w.		0			. 2
rego	835 523	81	102	29, 62 29, 42		05	23, 8	- 7.5 - 4.8	49 50	31	28 30	0	11 16	15 18	25 22	21 21	18 18	87 80	4, 12 2, 46	+ 0.7	19 15	9,536 7,244	80. 8W.	39	W. sw.	28	0	7 2	7 9. 4 8.	8 1
acuse	597 713	92 1	02	29, 35 29, 22		05 05	21.7	- 5.7	51 61	27	28 82	- 1	10 15	15 21	28		21	77	2, 80 1, 82	- 1.4		9, 188 10, 121	sw.	47	W. 80.	27	1	2 2	5 8. 8 9.	1 1
velanddusky	762 1 629 628 1	62	70	29, 18 29, 32 29, 33	30, 03 30, 03 30, 04	06 06 04	27. 5	- 8,9 - 5,0 - 4,5	62 62 60	27	33 34 33	11 9 6	29 14 14	22 21 20	33 41 44	25	20	72	2, 49 2, 31 2, 33	- 0.1 - 0.1	19 10 13	13, 132 7, 874 9, 360	*W.	60 35 48	W.	28	5	8 1	2 8. 8 7. 9 7.	. 2 4
roit	730 1			29, 20	30. 02	04	25, 8			27			28	20	38	24	20	80	1.83	- 0.1 - 0.7 - 0.5		10, 326	sw.	55	SW.		4	7 2	0 7.	7 7
enaanaba	609			29. 31 29. 31	80, 00 80, 01	02 02	21.3	- 3.5 - 1.8	44		28 26	1 2	16 21	15 13	30 25	20 17	17 13	84 78	1.74	- 0.5 - 0.7 - 0.3	19 11	8, 033 6, 227	W.	36 33	nw.		2		0 8.	1 5
and Rapids	707 1 668	27 1 66	65 74	29. 22 29. 24	30, 02	03 02		- 4.1		23 30	31 26 -	- 2	13 15	18	26 21	23	20	82	1.72	- 1.2	10 24	9, 599 5, 138	sw.	42 32	8W.	27 28		10 1	6 7.	5 18
t Huron	734 638	76 I	16 20	29, 17 29, 32	30, 00 -	02	20. 8 24. 0	- 2.0 - 3.8	49 85	31 27	27 30	6 7	24 16	15 18	27 35	19 22		79 79	2. 35 1. 55	- 0.1 - 0.8	18	9,318 10,079	W.	42 50	BW.	28 28	3	9 1	9 7.	
lt Ste. Marie	614 823 2	40 41 2	61 74	29, 28 29, 12	29, 99 30, 04	01	14.6 26.8	- 8.0 - 2.5	39 54	31 23	21 -	-13	24 29	8	32 32	14 25	11	86 79	0. 98	- 1.1 - 1.1	13 11	6, 871 15, 265	e. sw.	38 72 43	ne.	27 27	7	4 2	3 8. 9 7.	1 10
waukeeen Bay	681 1:				30, 02	04	25, 2			23 23	32 27	4	28	19 13	25 27	23 18	19 14			+ 0.7		10, 162 8, 899	W.	43	sw.	27	5		9 7.	

Table I.—Climatological data for Weather Bureau stations, December, 1904—Continued.

Bell Community of the c	11. 8 14. 2 27. 4 19. 9 20. 4 21. 2 21. 4 18. 6 26. 7 25. 3 23. 4 29. 9 30. 2	+ 2.8 + 0.9 + 1.2 - 1.0 - 0.2 + 1.6 - 2.4 - 1.1 - 1.5 - 2.5 + 0.1 - 0.3	Waximum: 44 44 45 50 49 51 44 558 558	9 Pate Warm maximum N Pate N P	5 -18 5 -25 5 -25 5 -38 8 -11 - 9	985 27 28 27 28 27	wee w	Se Greatest daily range.	Mean 3	Mean temperature of the dew-point. Mean relative humidity, per cent.	Total.	Depart	Days with .01, or more.	Total movement,	Prevailing direction.		Direction.	y.	Clear days.	Partly cloudy days.	Cloudy days. Average cloudiness,
30. 10 + .02 30. 10 + .02 30. 10 + .62 30. 06 .00 30. 0404 30. 0701 30. 0604 30. 0705 30. 0607 30. 0607 30. 0606 30. 0705 30. 0805 30. 0903 30. 0903	14. 2 14. 2 15. 6 11. 8	+ 1.6 + 2.8 + 0.9 + 1.2 - 1.0 - 0.2 + 1.6 - 2.4 - 1.1 - 1.5 - 2.5 + 0.1 - 0.3	44 47 44 45 50 49 49 51 44 58	31 22 30 22 7 22 31 22 31 22 23 21	5 -18 5 -25 5 -25 5 -38 8 -11 - 9	28 27 28	wee w	5 Greatest d	Mean 3	Mean tem dev Mean relai	0. 90	Departure	Days with , more.	movem miles.	Prevailing di		Direction.	Date.	Clear days.	Partly cloudy	day
30, 10 + .02 30, 05 30, 0404 30, 05 30, 0401 30, 04 30, 05 30, 0406 30, 1001 30, 06 30, 06 30, 06 30, 06 30, 07 30, 08 30, 08 30, 09 30, 09 30, 09 30	14.7 15.6 11.8 27.4 19.9 20.1 21.4 21.2 21.4 18.6 26.7 25.3 23.4 29.9 38.9 30.2 31.2 27.4 32.4 32.4	+ 2.8 + 0.9 + 1.2 - 1.0 - 0.2 + 1.6 - 2.4 - 1.1 - 1.5 - 2.5 + 0.1 - 0.3	47 44 45 50 49 49 51 44 58	19 21 30 2 7 21 31 21 31 22 31 22 23 23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28	6 3	42			0.90										Clo
30. 10 + .02 30. 05 30. 06 30. 0404 30. 0701 30. 04 30. 05 30. 04 30. 05 30. 06 30. 06 30. 06 30. 06 30. 06 30. 07 30. 08 30. 08 30. 09 30. 0	11. 8 14. 2 27. 4 19. 9 20. 4 21. 2 21. 2 21. 4 18. 6 26. 7 25. 3 23. 4 29. 9 30. 2 31. 2 31. 2 32. 4	+ 1. 2 - 1. 0 - 0. 2 + 1. 6 - 2. 4 - 1. 1 - 1. 5 - 2. 5 + 0. 1 - 0. 3	47 44 45 50 49 49 51 44 58	30 2 7 23 31 26 31 26 31 27 23 28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	3		40 1	11 89	0.74	0.0	8	7,547	nw.	40	nw.	19			
30. 04 - 04 30. 07 - 01 30. 04 - 01 30. 04 - 06 30. 10 - 01 30. 06 - 04 30. 05 - 07 30. 10 - 05 30. 06 - 04 30. 06 - 05 30. 07 - 05 30. 06 - 07 30. 08 - 05 30. 09 - 03 30. 09 - 03	20. 4 21. 2 21. 4 18. 6 26. 7 25. 3 23. 4 29. 9 30. 2 31. 4 7 27. 4	+ 1.6 - 2.4 - 1.1 - 1.5 - 2.5 + 0.1 - 0.3	49 49 51 44 58	31 2 31 2 23 2	- 9		4	41 42	13 10 13	8 71 7 83 11 88 80	1. 39 0. 31 0. 58 1. 58	+ 0.7 - 0.1 - 0.4	11 6 8	7, 210 9, 514 6, 805	nw. sw.	46	nw.	19 19 19	4	8 10	18 7. 17 6. 5.
30. 04 30. 05 30. 04 30. 04 30. 06 30. 10 30. 06 30. 06 30. 05 30. 06 30. 06 30. 07 30. 07 30. 07 30. 08 30. 08 30. 07 30. 08 30. 08 30. 07 30. 08 30. 09 30. 00 30. 00 30. 00 30. 00 30. 00 30. 00	21. 4 18. 6 26. 7 25. 3 23. 4 29. 9 30. 2 31. 2 34. 7 27. 4	- 1.1 - 1.5 - 2.5 + 0.1 - 0.3	51 44 58	23 28	- 8	28	12 13 14	32 28 27	18	14 79	0. 61 0. 73 1. 32	$ \begin{array}{r} -0.9 \\ -0.6 \\ -0.1 \end{array} $	9 8 9	9, 721 8, 241 6, 050	s. nw.	48 48 38	nw. nw. w.	20 27 20		11	16 14 6. 15 6.
30, 04 — 06 30, 10 — 01 30, 06 — 04 30, 05 — 07 30, 10 — 05 30, 06 — 06 30, 07 — 05 30, 06 — 07 30, 08 — 05 30, 09 — 03 30, 09 — 03	26. 7 25. 3 23. 4 29. 9 38. 9 30. 2 31. 2 34. 7 27. 4	$ \begin{array}{r} -1.1 \\ -1.5 \\ -2.5 \\ +0.1 \\ -0.3 \end{array} $	58		3 - 2	15	15	30 35	19 17	17 84 16 90	3, 34	0.0	9	8, 958 6, 578	sw.	39 37	nw.		10	8	13 5.
30.0604 30.0507 30.1005 30.0606 30.0605 30.0607 30.0705 30.12 .00 30.0805 30.0903 30.0903	23, 4 29, 9 38, 9 30, 2 31, 2 34, 7 27, 4 32, 4	$\begin{vmatrix} -2.5 \\ +0.1 \\ -0.3 \end{vmatrix}$	5.0	31 2 22 3	- 4		19	32	24	21 81	2. 21	+ 0.5	7	6,945	sw.	39	nw.	27	18	3	15 5.
30, 05 — 0.7 30, 10 — 0.5 30, 06 — 0.6 30, 07 — 0.5 30, 06 — 07 30, 07 — 0.5 30, 12 — 00 30, 08 — 0.5 30, 09 — 0.3 30, 09 — 0.3	29. 9 38. 9 30. 2 31. 2 34. 7 27. 4 32. 4	+ 0.1	53	22 3 22 3	-12	13	16 16	33 26	23 21	19 79 18 81	2, 02	+ 0.6	6 9	7, 033 5, 292	sw.	34 28	nw.	20		8	
30. 06 06 30. 07 05 30. 06 07 30. 07 05 30. 12 . 00 30. 08 05 30. 09 03 30. 09 03	30. 2 31. 2 34. 7 27. 4 32. 4	- 0.3	60 64	22 3	- 1	28	22 31	33 42	26	23 79 31 79	1. 45 2. 98	- 0.5 - 0.4	7	7, 405 7, 974	SW.	36 48	nw.	27	13	10	10 4. 12 5.
30. 06 07 30. 07 05 30. 12 .00 30. 08 05 30. 09 03 30. 09 02	34. 7 27. 4 32. 4		59	26 46	1	28	21	49	35 27	23 77	0, 57	- 2.2	7	7,975	ne.	43	sw.	27	12	7	12 5.
30. 07 05 30. 12 . 00 30. 08 05 30. 09 03 30. 09 02	27. 4 32. 4	- 0.9	63 64	22 40 22 43			22 26	32 48	31	26 74	1. 15 1. 36	- 0.5 - 1.4	11 9	7,623 9,397	ne.	46 42	W.		10 11		15 5. 14 5.
30, 12 .00 30, 0805 30, 0903 30, 0902		- 1.3	66	1 43	-1	28	23	34		75	0. 73 1. 96	-0.3 + 0.1	11	7, 401	sw.	39	w.	27	12	3	16 5.
30. 09 03 30. 09 02		+ 0.7	66	1 4	1 1	27	24	31	29	25 76	1.47	- 0.1	6	7, 235 9, 228	nw.	32	nw.	17		6	15 6.
30, 09 02	35. 3	- 3.0	66	1 43 22 43		27 27	27 22	29 34	32	28 77	1. 72 0. 50	- 0.9 - 0.4	9	8, 130	8.	43 37	W.	22	10	9	12 5.
	27. 6		60	22 30 22 30		27 28	17 19	38	23 23	17 69 17 68	0. 29 0. 57	- 0.5 - 0.4	5 3	9,020 8,132	n. n.	50 39	nw.	27	6	13	13 6. 11 6.
30.0901	25. 9 23. 8	- 1.3	72	30 39	-20	27	13 14	47	21	16 72	0. 16 0. 20	$-0.2 \\ -0.7$	5	8, 132 7, 565 10, 792	w.	52 57	nw.	18 27	7 8	16	8 5.
30, 09 03 30, 12 + . 02	21.6	- 3.1	60 55	8 3 19 3	-15		12	48	18	14 77	0.34	- 0.1	7	4,714	e.	25	nw.	18	6	9	16 6.
30.11 + .01	18.8	+1.1	54 64	30 30		28	13	46	16	14 84	0, 44	-0.2 -0.4	5 5	8, 784 7, 317	se, nw,	41 42	nw.	18 27	5	12	14 6. 18 7.
	27. 1	+ 2.6	56				11	59	19	73 15 78	0. 32 0. 45	- 0.2 - 0.1	9	6,578	nw.	43	sw.	29	8		5.
30.0401 30.0307	26, 0	+ 6.7	52	29 33 7 36	-20	26 27	16	36	22	20 87	0.14	- 0.2	6	3,774	SW.	48	W.	15	15	12	4 3.
30. 10 03 30. 06 01	29. 0		53 49	30 33 19 30		26 26	21 25	32 17	24 28	18 65 25 81	0. 39	- 0,5	6 12	4, 993 2, 916	W.	50 28	W.	15 31			
30, 06 03	28. 4	- 1.8	66	30 40	- 8	27	17	43	23	18 74	0.54	+ 0.3	5	5, 260	W.	36	nw.	16	19	1	11 8.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31. 0 23. 6		64 55	30 43		26 27	20 10	38 40	24 19	14 52 14 72	0. 06	$-0.2 \\ -0.3$	2	9, 454 2, 486	nw.	52 48	w. nw.	15		14 22	3 4.
30. 17 + . 01 30. 10 . 00	22. 7 30. 6		42 72	7 30	-10	27 27	15 18	27 45	20 24	15 78 19 72	1. 19 0. 19	- 0.4	12	6, 111 6, 315	s. w.	30 44	nw.	15	14	8 10	
	33. 6	- 1.3								70	0. 52	- 0.4									4.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+ 2.6 + 0.5	65 69	31 43		27	22 19	43	28 26	21 60 15 54	0, 41 0, 43	-0.2 -0.1	3 4	6, 157 5, 352	s. nw.	40 53	ne. nw.	25 15		11	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.5	- 3, 5 - 2, 2	63 74	22 39		28	20 18	34 43	25 24	22 79 21 78	0.04	- 0.1 + 0.6	6	5, 778 7, 414	s. nw.	34	nw.	27	16 13	- 6	9 4.
30. 12 + . 01	33. 7	- 4.2	67	1 4	1 5	28	23	38	29	24 73	0. 24	- 0.8	6	8,028	n.	37	sw.	22	15	7	9 4.
30, 10 - , 01	39. 2 41. 5		69	1 50	11	27	28	43	34	29 73 64	0.48	- 1.6 - 0.8	5	9, 988	nw.	37	nw.		13		11 4.
30. 12 + . 01 30. 09 . 00	46, 0	- 1.5 + 0.7	73 70	1 5		28 27	35 24	38 47	38 29	32 64 22 63	0, 10	- 1.4 - 0.3	5	7, 422 9, 783	s. sw.	36 40	W.		19 28		
	42.5	0.0		1 54	1					26 57	0.41	- 0.7									3.
30, 11 + .08 30, 14 + .08	29. 4		72 52	1 58		27	32 20	39 27	36 23	26 57 16 62	0. 84	+ 0.3	7	6, 366 5, 949	nw. ne.	35	w. nw.	16	20 21		4 2
30, 07 + . 01	30. 5	0.0	54	15 4	- 4	26	18	39 39	24 43	16 62 32 52	0, 42 0, 35	- 1.5 - 0.5	7 3	5, 124 2, 828	n. e.	32 18	sw.	24	14 20	6	11 4.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52. 7 56. 4	+ 0.5	77	1 66	36	31	44	35	45	31 45	0.10	- 0.4	1	4,002	n.	26	n.	26	22	7	2 1.
30, 11 01	31.0		61	1 54	19	28	29	32	31	15 36 64	O. 61	- 2.0 - 0.5	0	4, 687	nw.	41	80.	30	12	10	9 4.
30.17 + .02	34. 3	+ 0.1	61	14 49		26	21 19	45 42	29 26	24 71 20 67	0.79	- 1.4 - 0.5	5 5	4, 683 5, 507	s. ne.	62 34	SW.	24 24	11	7 10	
30. 20 + .02 30. 14 + .02	31. 6	+ 1.9	57 56	30 44	-1	26 27 27	17	41	23	17 63	0. 23	0.0	4	6, 970	W.	44	W.	25	18	- 9	4 3.
30, 18 + . 03 30, 16 + . 06	33. 0 28. 6		55 52	21 43 1 41		27 28	24	33	27 23	20 60 15 60	0. 90	- 0.7 0.0	8 5	3, 623 2, 376	nw.	31 29	BW.	15	10 18		
	33. 3 28. 6	+ 1.0					22	24	26	78 22 76	1.55 1.62	- 0.3 - 0.1	15	3, 891	80.	21	w.	15	8	4	6.
30, 23 + . 03	32.6	- 0.6	42 56	8 3 29 40	9	26 27	25	29	29	25 76	1.71	- 0.2	12	2,503	nw.	19	W.	25	11	8	12 5.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37. 8 28. 8		55 50	17 43 30 39		27	32	23	25	20 72	1, 03	-0.3 -0.2	16 10	4, 625 7, 835	e, e,	46 38	W.	15	13		11 4.
30, 12 + . 04	38. 6	+ 2.3	47	19 38	18	26	29	18 24	32 36	30 85 33 82	1.80	- 0.8 - 0.4	12 14	4, 224 4, 366	8W.	40	8W. 80.	15 29	1	- 8	
30, 13 + . 01	43.6	+ 1.7	61	29 44		4				86	7.96	- 0.5		1							8.
30. 02 01 29. 96 02	46. 2		57 56	29 50 29 40		25 26	42 36	14	44	42 88	9. 34	- 0.6 + 1.2	26 22	16, 063 3, 884	e, se,	85 37	86,	29	0		19 7.
30.05 + .04	43, 9	+ 1.3	55 57	29 48 29 48	3 32	- 5	40 38	15 15	42	39 85	5. 29 5. 07	-0.8 -2.3	21	3, 095 4, 913	80. 8W.	36 37	sw.	14	0		
29, 93 03	45. 2	+ 1.9	53	29 48	35	22	42	13	43	41 86	12. 01	- 2.4	26	17,623	e,	72	sw.	14	0	3	28 9.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43. 3	1+1.2	55 62	18 48 29 48		7 22	39	17	41	38 81 39 88	7. 14 8. 72	- 0.6 + 2.3	24 20	4,988 2,094	80. SW.	28 20	SW.	14			23 8. 20 8.
	48.7	- 0.1						20		43 81	3. 54 8. 18	- 1.9 + 0.9	15	4,947	9.	41	n.	24	9		12 5.
30, 14 + . 02 30, 14 + . 02			61 67	20 51	32	26 25	43	17	46	36 75	2.92		11	14,581	nw.	58	se.	30	12	11	8 4.
30 16 1 09			62 60			5	38	27 23	42 44	38 82 41 86	1.20	-1.5 -2.9	8	5, 054	90,	47	80.	24	- 5	7	19 7.
30, 16 + .02	50.6	- 0.8	61	13 58	38	20	46	13	48	45 82	1.59	- 3.4	10	4,876	n.	38	8.	30			10 5.
30, 16 + . 02 30, 18 + . 06	54. 0		61			22	51	8			2. 22				nw.	58	8.				12 5.
30, 16 + , 02	55.0	+ 2.2	68	29 58	29	26	37	32	42	39 80	1. 12	-1.1 -0.4	2	2,927	nw.	19	nw.	24	7		
30. 16 + .02 30. 18 + .06 30. 13 30. 16 + .03	59. 7	+ 4.3	86	19 70	39	26	49	34	49	38 53	2.45	- 1.5		8,659	ne.	25	nw.	13	17	10	4 2.
30, 16 + .02 30, 18 + .06 30, 13 30, 16 + .03 30, 07 .00			82			28	44	39	48	40 62	1. 72	$\frac{+0.3}{-2.8}$	2	4, 732	ne.	25	80,				10 4.
30. 16 + .02 30. 18 + .06 30. 13 30. 16 + .03																					
30. 16 + . 02 30. 18 + . 06 30. 13 30. 16 + . 03 30. 07 . 00 30. 04 03	73. 2		78 84			23 19	71 67	19 17			1.45	- 0.9	9 5	8, 191	e.	39	ne. e.				
30, 16 + .02 30, 18 + .06 30, 13 30, 16 + .03 30, 0403 30, 12 + .01 30, 04 + .03						***						******									
	30, 16 + .02 30, 16 + .02 30, 18 + .06 30, 13 30, 16 + .03 30, 07 .00 30, 0403 30, 12 + .01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• More than one date.

TABLE II.—Climatological record of voluntary and other cooperating observers, December, 1904.

			ature. helt.)		cipita- ion.			mpera ahren			ripita- on.			mpera ahrent		Prec	ipita- on,
Stations.	Maximum.	Minimum.	Mean,	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow,	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Alabama. Alaga	68	16		Ins. 4. 28 3. 79	Ins.	Arizona—Cont'd. Oro Parker	. 80	21		Ins. 2. 45 0. 07	Ins.	California—Cont'd. Blue Canyon	. 50	17 2	39. 8 27. 6	Ins. 7. 11 3. 90	Ind 19 16
Ashville Bermuda	77	21	49.6	3, 62	T.	Phoenix		26		0, 30	_	Bodie	. 58	-13	23, 0	0. 84 12. 66	32
Boligee Bridgeport	*****	20	47. 2	. 5.14		Prescott	. 684		£ 42. 40		T.	Brush Creek	. 56	25 24		13, 80 12, 92	0.
Burkeville	*****			3, 35 4, 66		San Carlos San Simon	. 77	18 18	42.7	1. 44	T.	Butte Valley	. 60	82	44.8	12, 25 1, 35	76
Camphill	681	24	48, 2	6. 18		Seligman	. 64	11 32		0.61	T.	Cambria		28	46. 4	1.84 2.39	
Itropelie	77 80	27 20		3. 99 2. 75		Signal				0, 49 1, 40		Campo		5	31.3	1, 82 2, 28	10.
ordova				4.59		Taylor	. 60	5 19		0. 46 2. 16	3.5	Chico	57	28 30	45. 0 54. 6	3. 99 1. 02	10.
adeville	76	26 21		3, 45		Thatcher	67	26	46, 0	0.74		Cisco *1	. 42	18	32, 1	7. 20	51.
ecaturelmar	70	15		4. 50 2. 77	T.	Upper San Pedro	. 72	28 18	44.3	0. 93 T.		Claremont	. 68	32 31	57. 6 48. 4	1. 23 7. 88	
emopolis	73	24	48.6	4. 08 5. 02		Vail * 5	68	33 16	55, 3 41, 9	0. 16 0. 75		Corning *1	. 60	30	45, 2 47, 0	2, 91	
vergreenlomaton	74 79	24 24		2, 78 5, 86		Williams	. 59	7	35. 4	0. 67 0. 50	5. 5	Crescent City	. 60	32	48, 5	15, 39 4, 95	5.
lorence a	71	18		5, 68	T.	Young	73	12	41. 1	0. 52		Cuyamaca	. 56	18 28	37.0	2. 95 1. 30	T.
ort Deposit	78 70	25 20	48. 9	2, 78	**	Amity	78	16		4. 67	1.5	Delano* i	. 70	32	48. 7 49. 3	6.38	
odwater	70	18	44.9	4. 82 3. 14	T	Arkadelphia	740	18	43.90	8, 02 9, 10	4.0	Dobbins Drytown	. 61	32 28	49. 0 44. 4	4. 94 2. 90	
reensboro	73	22	47.8	3.77 2.53		Batesville	69	14 12	41.5 42.8	2, 92 2, 95		Dunnigan*1 Durham	. 59	34 26	46. 8 45, 0	2, 88 4, 78	
intersville	72	19		5. 34 4. 06	T. T.	Black Rock		23	46, 2	2, 68 7, 82	T.	Eleajon	. 87	32	54. 8	2.73	
tohatchie		*****		2.93		Brinkley	70	19		9.46	T.	Electra	66	26	45. 4	1.02	
ck No. 4	74 71	21 19		4. 33		Calico Rock	*****		****	1. 07 9. 04		Elsinore	80	26 22	52. 0 49. 1	0.91 1.68	
cydison Station	80 73	20 15		2, 02 5, 54	0.5	Camden b	75	22 13	44.4	9. 47 3. 51	T. 4.0	Folsom Fordyce Dam				1. 98 10. 30	62
plegrove	72 72	18 22		4, 21	T.	Corning	68	12 14	37.8	2.46	1.4	Fort Bragg		*****		5, 84	-
stead				5. 98		Darlas			44. 4	2, 83	1.0	Fort Ross		35	49, 4	9, 91 2, 40	_
wberntasulga	77	20	48, 1	4.27 1.52	_	Des Are Dodd City	71 69	16	43, 8 38, 8	6, 33 1, 12	1. 0 0. 2	Georgetown	70	30 24	45, 2 48, 2	5, 57 1, 45	T.
eonta	70 70	17 22	42. 8 51. 4	4. 85 3. 80	T.	Dutton	67 75	3 24	38. 6 45. 8	1. 29 10. 67	1.1	Greenville		8 24	35. 0 45. 2	9. 07 1. 16	21.
ark	79 77	24 20	50, 8	5. 61 3. 21		Elon Eureka Springs	76f 70	221	47. 1f 39. 8	10. 93 1. 03	0.8	Healdsburg Hollister	67	29 25	48. 0 48. 2	4. 51 1. 11	
shmataha	83 70	20 15	49. 8 43. 6	5. 55 7. 58	T.	Forrest City	70	17	42, 4	6. 81	*****	Idylwild		20	43. 2	0.98	T.
rerton	70	16	45, 2	5, 35		Fulton	72	10	41.3	3. 01 1. 29	1.2	Irvine		28	46. 2	5. 23 1. 47	1.
ma	74	24 30	48, 3 52, 2	4. 10 3. 47		Helenaa	71	12	42. 2	4. 29 9. 10	Т.	Jamestown		19 28	45. 6 44. 0	0. 62 3. 38	
lladega	76	17	43. 6	3. 79 4. 78	2.4	Helenab	72 78	19 21	43. 8 47. 2	9. 27 6. 71	0, 5	Jolon Kennedy Gold Mine				1. 63 3. 58	
omasville	74 72	24 21	47. 9 45. 0	3. 93 4. 76		Howe	75 69	18 14	46. 2 42. 8	4. 31 5. 97	T. 0, 2	Kentfield Kernville				4.98 0.72	
scumbia	70 75	20 22	43. 0 50. 0	5. 73 4. 57	T.	Lacrosse	70	10	39.5	1.74	T.	King City	78	22	50.0	1.45	
ion Springs	79	24	48, 8	5, 50		Lake Village	76 70	23 17	45, 9 43, 8	10. 75 4. 53	T. 1.0	Le Grand	72	28	45, 2 48, 2	1. 48 1. 78	
iontown	77 66	18 16	46. 7 43. 1	3. 44 5. 01	1.6	Lutherville	80	9	45. 4	1. 90 4. 22	0. 2 T.	Lick Observatory	65 67		43.0	3.84	11.
tumpka	76	21	49. 0	5. 77 5. 03		Malvern	72	16	43. 0 36. 8	6. 35 0. 62	1.0 T.	Lodi Los Gatos	60 62		45.8 47.3	1. 66 3. 23	
Alaska.	53	16	36. 3	8. 55	1.0	Marked Tree	72	19	44.5	5, 63 9, 36	T. 1.2	Lowe Observatory Mammoth			56.0	1. 98 T.	
ring	54	15 24	38. 2 39. 0	20. 01 8. 13	14.0	Mossville. Mount Nebo	68	4 9	39.0	2.91	0.1	Marysville	61	30	45, 5	2.72	
Arizona.			30.0		4.5	New Gascony			43. 0	2. 54 9. 35	0. 5 1. 0	Merced			46. 2	1, 15 8, 52	
zona Canal Co, Dam	80	35	55. 3	0. 79	T.	New Lewisville Newporta	77	*****	47.0	4. 14 4. 06	T.	Mills College		*****		1.81 2.37	
ecson	85 72	30 22	57. 0 46. 8	T. 1. 17		Newport b Oregon	70		41. 2 38. 5	4. 18 1. 02	T. 0.5	Milton (near)	59 78		46, 0 53, 2	2. 10 1. 31	
bee	62 64	25 13	45. 3 36. 8	1. 33 2. 06	T. 2, 5	Osceola	70 73	19	43. 8 42. 0	5. 70 1, 83	T. 0.5	Mohave	76		56. 5	0.60 2.83	
rie	78	25 24	50, 6	2.05	2.0	Perry	71	5	42.4	2.40	2.5	Montague	54		33. 5	2.68	T.
agrande	81	28	52.4	0. 17 0. 63	- 1	Pinebluff	73 68	11	42.9	8. 38 2. 73	2.0 0.7	Monterio	70 68		48, 8 51, 1	3. 11	
mpie Camphise * 1	82 58	17 22	49. 6 42. 0	0. 40 0. 30		Prescott	69 76		38.6	0. 76 7. 22	0, 5	Mount St. Helena Napa	64	30	47.4	10, 49 2, 40	
greasglas	71 74	31 20	52. 8 45. 8	0. 22 1. 09		Princeton	74 70s		43. 6 36. 1°	6, 43 1, 30		Needles	79		59. 1	0. 20 2. 40	T
goon *1	80 76	32 26	46.9 49.0	1.73	T.	Silversprings	69 74	6	39, 7 42, 4	0. 94 1. 27	1.3	Nevada City	73		43. 8	5, 90	0. !
ican	70 69	16	41.6	1.83	T.	Springbank	*****			6. 71	_	Newcastle Newman	59 64	29	49. 6 45. 2	2. 50 0, 95	
t Apache	56	10 -7	38, 3 26, 2	1.75 0.87	5. 2	Stuttgart Texarkana	72 76	18	44. 0 51. 4	5, 30		Niles	62	32	48. 5	2, 13 3, 10	
t Grantt Huachuca	70 70	26	45, 9 46, 4	0. 16 0. 70	T.	Warren	75	19	45. 4	10. 63 3, 42	1. 5	North Bloomfield Oakland	69 59		42. 8 49. 0	7. 99 1. 52	2. (
Mohave	78J 88	18	48.0° 56.8	0. 21		Wiggs Winchester	71 76		42. 4 49. 0	4. 04 6, 99	2.0	Ontario (near)	81 61	31	53. 4 44. 8	1. 30	
nd Canyon	52 68	0	27. 2 45. 6	0.60	6.0	Witts Springs	56		37. 5	1. 34	1.0	Orleans	67	30	47.8	13. 07	
er				1.40	9.0	Alturas						Oroville (near)	64	28	45. 7 45. 8	4. 87	
brook	66 63	22	34. 7 44. 3	0.10	T.	Angiola	76 87	32	46, 8 57, 3	1. 00		Peachland	62		46. 9	7. 48 8. 11	10.5
gman	66 75		45, 8 49, 6	0. 27 0. 35		Bagdad	75 75	35	52. 5	T.		Pine Crest	80 60	43 8	59. 6 41. 4	2. 58 4. 27	
nawk Summit *1	80	28 42	52, 6	1.01		Barstow	68		51. 9	T.	11 1	Point Lobos	69	45 3	56, 1	1.63	
ural Bridge		44	57. 0	1, 05		Bear Valley	59	32	46. 4	8. 89 2. 03	23. 0	Porterville	75	27 4	48. 0	1. 33	

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

		mperat			ipita- on.			nperat hrenh			ipita- on.			perat hrenh		Preci	
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Onlifornia—Cont'd. Redding. Reedley. Repressa Riverside Riverside Sacramento Salinas Salton San Bernardino San Bernardino San Joseinto San Jacinto San Jacinto San Mateo*1 San Miguel *1 San Miguel *1 San Miguel Island San Rafael.	73 60 59 83 75 84 85 68 66 60 85 66	30 25 30 31 28 30 29 27 27 27 27 27 27 27 27 27 27 27 27 27	45. 2 45. 8 46. 4 45. 4 53. 1 50. 8 55. 4 54. 0 44. 5 48. 8 46. 6 49. 8 47. 3	Ins. 5, 90 1, 77 2, 03 1, 45 1, 11 11, 80 1, 46 1, 35 0, 00 1, 03 1, 02 2, 28 2, 06 0, 96 1, 09 4, 01	Ins.	Colorado—Cont'd. Leroy Longs Peak Mancos Marshall Pass Meeker. Montrose. Pagoda. Platte Canyon. Rocky ford Saguache Salida. San Luls Santa Clara. Sapinero Sheridan Lake Silt.	56 54 59 56	-1 -6 -15 -26 -10 -22 -11 -7 -11 -2 ^h -24 -11 -13	33. 2 24. 4 28. 4 23. 9 27. 8 25. 9 33. 0 18. 2 28. 4 22. 6 30. 1 ^h 18. 8 31. 4 27. 4 20. 4	Ins. 0.05 0.94 0.88 2.36 0.23 0.93 0.63 0.31 0.34 0.50 0.17 0.82 0.28 1.02	Ins. 0.9 12.5 14.2 43.0 9.3 5.0 11.0 6.2 7.5 5.0 7.5 2.3 8.8 12.0 16.0	Florida—Cont'd. Pinemount	82 70	26f 29 26g 25 30 31 24 22 29i 30 30 29 24 26	59. 4 54. 88 52. 6 57. 4 59. 3 54. 0 55. 6 55. 2 58. 6 59. 4 53. 4	Ins. 2. 33 1. 66 1. 34 6. 17 1. 24 2. 12 4. 17 1. 58 4. 76 2. 37 0. 95 3. 61 5. 53	Ins.
santa Barbara. anta Clara College. anta Cruz santa Maria. santa Rosa. sausalito shasta. sierra Madre. sisson. medden.	64 71 79 69	41 27 30 33 29 23 40 8	58. 4 47. 7 49. 2 54. 8 46. 8 45. 4 57. 4 34. 2	1, 53 2, 50 2, 11 1, 55 4, 50 3, 32 6, 38 1, 56 4, 95 1, 35		Sugar City Sugar Loaf Trinidad Victor Vilas Wagon Wheel Walden Waterdale Westeliffe Wray	55 79 52 52 45 57 59 73		28. 9 39. 2 23. 8 18. 4 19. 3 27. 4 24. 4 34. 8	0. 20 0. 73 0. 84 0. 50 0. 55 0. 50 0. 31 0. 43 0. 39 0. 20	11. 0 12. 0 6. 8 6. 0 6. 0 5. 2 5. 0 2. 0	Albany Americus Athens Bainbridge Blakely Bowersville Butler Camak Carrollton Canton	73 69	26 25 21 24 21 24 15	50. 6 48. 8 42. 6 50. 6 42. 6 48. 8 46. 2	3, 95 4, 16 4, 44 3, 29 3, 51 4, 40 3, 77 3, 50 2, 95 4, 72	T. T. T.
Sonoma Sonora. Storekton Storey. Storey. Summerdale. Summit Susanville Telenama* Tejon Ranch Truckee. Tulare Tustin Ukiah Upland Upland Upperlake Vacaville. Ventura. Visalia	67 68 50 49 64 69 58 82 64 75 64 64 88 88 76	32 29 23 18 18 32 29 11 24 26 32 21 28 40 20 24 24	43. 9 44. 8 44. 0 41. 5 32. 6 31. 3 48. 7 27. 8 46. 6 45. 4 52. 3 42. 6 60. 6 44. 2 53. 8 45. 6	3. 57 3. 25 1. 28 4. 39 8. 60 4. 10 3. 63 2. 04 1. 42 1. 42 1. 42 8. 31 1. 09 5. 69 1. 71 1. 03 0. 00 95	16. 0 66. 0 14. 0 28. 0	Yuma. Connecticut. Bridgeport Canton Colchester Falls Village Hartfordb Hawleyville Lake Konomoc New London North Grosvenor Dale. Norwalk Southington South Manchester Storrs Voluntown Wallingford Waterbury West Cornwall West Simsbury	47 49 48 45 47 49 48 46 48 47 53	6 -11 - 5 - 8 -11 -12 - 7 - 3	25. 3 19. 8 23. 6 22. 8 22. 2 27. 3 20. 1 22. 2 22. 2 22. 2 23. 8 22. 7 21. 4	0. 27 3. 26 2. 96 3. 66 2. 58 3. 37 4. 28 4. 18 2. 78 2. 80 2. 61 2. 42 2. 43 4. 33 3. 28 3. 28 9. 3. 13	3. 0 25. 8 16. 0 24. 2 16. 4 18. 5 26. 0 33. 5 27. 7 21. 0 20. 8 29. 6 28. 5 25. 1 17. 0	Carlton Clayton Columbus Cordele Dahlonega Dawson Diamond Dublin Dudley Eastman Eatonton Experiment Fitzgerald Fleming Forsyth Fort Gaines Gainesville Gillsville	64 755 77 67 764 66 75 71 68 69 80 76 72 74 69 65 75	18 25 ** 20 17 21 d 13 26 23 26 23 21 22 20° 20 23 24 22 22 25 25 20 20 20 20 20 20 20 20 20 20	47.4° 47.7 41.0 51.4° 40.4 49.5 49.6 46.4 44.1 46.6 51.0 47.8 49.4 42.4 43.8 49.2	4. 05 4. 97 6. 25 2. 79 5. 45 3. 34 4. 29 3. 28 2. 16 4. 29 4. 37 3. 18 2. 26 4. 85 1. 40 1. 40	0. 2. 0. 1.
feldon festpoint fheatland fillow osemite reka enia Colorado, Iford ntelope Springs shcroft laine oulder	57 62 	28 31 18 0 -25 -23 -3 4	44. 4 48. 0 42. 6 30. 0 14. 4 18. 8 32. 8 37. 6	0. 55 3. 92 2. 06 3. 10 3. 63 5. 44 12. 68 0. 01 0. 55 1. 15 0. 93 0. 70	11. 5 T. 0, 2 7. 5 15. 0 12. 0 8. 5	Delaware City Milford Millsboro. Newark Seaford Distributing Reservoir*5 Receiving Reservoir*5 Receiving Reservoir Florida. Apalachicola Archer	66 60 55 60 62 61 60 76 79		31. 8 31. 2 26. 5 30. 4 31. 5 31. 0 30. 0 56. 4 55. 4	3. 73 5. 55 6. 19 1. 70 6. 07 2. 13 2. 64 3. 58 3. 87 2. 32	21. 5 18. 5 17. 0 12. 8 15. 5	Greenbush Greensboro Griffin Harrison Hawkinsville Hephzibah Lost Mountain Louisville Lumpkin Marshall ville Mauzy Milledgeville Millen	67 73 70 73 79 74 70 73 75 73 77° 73 76°	17 20 22 20 21 24 19 22 23 26 23° 25	42. 4 44. 8 45. 0 48. 6 49. 0 47. 2 43. 9 47. 1 51. 0 48. 4 52. 2° 45. 0 50. 9°	4. 93 4. 35 3. 95 3. 84 1. 76 1. 15 3. 30 2. 76 4. 69 3. 92 2. 78 4. 39 2. 11	T
oxelder reckenridge uena Vista uriington anyon heesman heyeune Wells learview ollbran ollbran olorado Springs onejos ripplecreek urango agle ort Collins ort Morgan owler ox ruita arnett leneyre lenwood rand Valley	78 66 58 69 55 54 66 52 55 52 66 67 73 54 50 68	-21 0 -14 -12 -2 -8 -16 -5 -17 -13 -29 1 0 -7 -26 -12 -22 -12	18. 7 32. 2 36. 7 30. 4 33. 2 23. 0 24. 6 33. 4 18. 6 27. 7 20. 4 32. 1 31. 0 33. 9 26. 0 13. 0 32. 8 23. 0 24. 6 27. 7 20. 4 20. 4 20. 4 20. 6 20. 7 20. 6 20. 7 20. 6 20. 6 20	0. 12 1. 72 0. 20 0. 30 0. 49 0. 29 0. 81 0. 66 0. 28 0. 47 0. 10 0. 82 0. 25 0. 25 0. 25 0. 83 0. 83	1.0 30.0 2.0 2.0 11.0 3.5 4.5 9.8 4.0 7.0 9.3 11.8 1.0 T . 8.0 2.0 4.2 9.5 2.0 11.0	Avon Park Bartow Bonifay Brooksville Clermont De Funiak Springs Eustis Federal Point Fernandina Flamingo Fort Meade Fort Pierce Gainesville Grasmere Huntington Hypoluxo Inverness Jasper Johnstown Kissimmee Lake City Macclenny Madison	86 83 78 84 85 82 80 78 86 81 81 81 85 82 82 82 82 82	36 31 25 30 34 23 32 32 32 44 31 37 26 34 41 27 25 32 28	66. 4 56. 3 54. 7 ^d 59. 0 54. 6	0. 30 1. 18 1. 62 2. 05 0. 80 1. 50 1. 36 1. 82		Montezuma Monticello Morgan Newnan Point Peter Poulan Putnam Quitman Ramsey Resaca Rome St. Marys Statesboro Talbotton Tallapoosa Thomasville Toccoa Valona Vidalia Washington Wasverly Waycross Waynesboro	73	24 23 21 19 20 23 25 17 19 24 24 20 19 26 19 23 27 22 21 23 24 24 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	46. 2 48. 6 45. 0 44. 0 50. 2 48. 4 52. 1 45. 0 43. 9 53. 0 50. 9 44. 3 52. 8 40. 8 52. 6 51. 8 44. 2 55. 8 51. 8 44. 2 55. 8	4. 25 4. 83 3. 92 3. 44 4. 54 7. 4. 35 3. 63 6. 63 6. 19 2. 93 2. 93 2. 93 2. 93 4. 59 9. 89 9. 80 9.	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
recley rover	53 39 69 71 72 74 65 50 73 71 53 47	-5 -25 -19 -4 -21 0 -4 -18 3 -2 -7 -33 -17	33, 2 14, 4 14, 0 31, 0 30, 0 30, 6 33, 2 29, 2 25, 2 31, 2 31, 8 20, 5 20, 6	0. 04 T. 0. 25 1. 17 0. 04 0. 43 0. 80 0. 06 0. 19 0. 85 1. 30 0. 13 0. 23 0. 86 0. 86	0. 4 T. 4. 0 23. 8 1. 5 5. 6 9. 0 1. 0 2. 5 13. 0 1. 8 2. 0 16. 5 10. 5	Malabar. Manatee. Marco Marianna Merritt Island Miami Middleburg Molino Myers New Smyrna Nocatee Ocala Orange City Orange Home Orlando	85 83 84 80 82 85 80 81 80 85 84 82 86 83	35 35 41 23 38 44 23 20 38 28 28 27 25 28	60. 8 60. 7 66. 6 53. 0 61. 8 68. 1 54. 4 52. 2 62. 6 58. 2 61. 5 57. 4 58. 4 61. 1	1. 45 1. 40 0. 46 3. 51 0. 40 2. 32 6. 17 0. 83 0. 70 1. 10 1. 07 0. 68 1. 40		Westpoint Woodbury Idaho. Albion American Falls Black foot s Blue Lakes Caldwell Cambridge Chesterfield Dewey Ditto Creek Forney Garnet Grangeville	45 60	19 17 - 5 -20 -25 0 11 -14 -35 -10 0 -12	47. 2 44. 3 29. 9 24. 6 24. 1 34. 5 31. 2 25. 5 21. 0 28. 0 32. 6 22. 8 34. 1 32. 6	3. 92 3. 94 1. 29 1. 26 0. 67 1. 57 4. 15 1. 61 2. 42 1. 42 2. 90 0. 32 2. 35	10. 3 22 24 11 20

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

		mpers			cipita- ion.	1		mpera			cipita-			mpera			ipita-
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Idaho-Cont'd. Idaho City	0 51 80	0 -15 -23	24.1	0, 78	11.0	Illinois—Cont'd. Streator	57 59	- 5 3	30. 6	Ins. 1, 57 1, 66	Ins. 4.8	Iowa—Cont'd, Amana	53 53	-13 - 6	23. 4 22. 2	Ins. 1. 62 0. 79	Ins. 13, 8.
Lake	26 49	-16 18				Sycamore	52	- 9 6	21. 8 34. 0	2.16 1.66	10.0	Atlantic	64	- 9 - 8	24. 8 23. 2	1. 05 0, 45	10.
Landore				4.72	46. 4	Tiskilwa	52	- 4	24.7	1.90	5. 9	Baxter	54	- 8	23. 4	1, 40	15.
Lost River	45 54	-16 14		0. 21 4. 45	2.1	Tuscola	57 55	4 2	28. 0	0, 87 0, 83	7.5	Belleplaine	63 50	-8 -14	26. 4 21. 4	0. 70 3. 15	3,
Malad City	53	10	27. 8	0, 25		Walnut	54	- 6	26, 2	2. 18	5, 6	Bonaparte	58	- 2	26, 6	2, 25	4.
Miluer	58 57	- 6 11			3.5	Winchester Windsor	59 60	1 3	31.0	0, 95 1, 23	4. 2 3. 2	Boone	54 50	-7 -10	24.3 19.3	1. 65 0. 83	18.
Murray	44	4	28. 8	3, 62	15,0	Winnebago	52	15	21.8	3, 34	15.0	Buckingham				1.99	22,
Dakley	54 46	-11	29, 2		3, 0	Yorkville	53 54	- 8 -13	23, 7 23, 0	2. 18 2. 25	4.8	Burlington		-2 -11	28. 1 22. 9	2. 48 1. 45	14
Paris	50	-25			12.7	Indiana.						Cedar Rapids	55	-11	21.8	1.75	20.
Pollock	52 52	9		2, 29	20.1	Anderson	59 56	-1	27 6 24.9	1. 83	2.6 14.5	Chariton	60 65	- 7 - 7	25. 8 24. 0	1, 20 0, 88	10.
Poplar	*****			1.57		Auburn	53c	-12	23.60	1.17	*****	Clearlake	45	-12	20.8	1.40	14.
Porthill	47	- 8	31.5	1, 83	17. 0 56. 0	Bloomington	62 60	6	32. 2	6. 10 4. 38	8. 0 10. 7	College Springs	52 66	- 7	24. 1 27. 4	2. 85 0. 83	10.
St. Maries	47	12		2. 27	6. 2	Cambridge City	59	- 6	25, 6	5, 10	8.3	Columbus Junction	56	- 3	26, 1	2. 54	7.
Soldier	48 58	$-20 \\ -20$	18.8	1.45	22.0	Connersville	66 59	- 2	30, 8 27, 8	4. 33 5. 04	7.0	Corning	62 61	- 8 - 6	24.3	1.39	14.
Victor	48	-21	21.6	1.50	15. 0	Crawfordsville	53	- 4	29, 2			Cresco	43	-13	19, 8	1, 26	14.
Weston	51	-22	25, 2	0, 99	15, 0	Parmersburg	57 58	- 2	26, 0 30, 3	2. 18 4. 68	4. 8 5. 5	Cumberland Decorah	45	-12	21. 2	1. 20	12. 16.
Albion	60	7	33. 2	3. 28	5, 5	Farmland	60	- 3	28. 4	3, 94	5. 7	Delaware	45	-10	20. 1	1.77	17.
Aledo	57 59	- 4	26, 2 30, 1	1. 75 0. 68	6.1	Franklin	56	3 5	30, 2 29, 0	4. 74	6. 4 5. 8	Denison	59 59	$-10 \\ -14$	24. 4 25. 2	0, 62 2, 30	23.
Antioch	50	- 9	22.0 22.4	1, 30	6.0	Greenfield	60	4	29, 4	5, 00	3, 5	Dows	50	-12	20.8	1.97	19.
Ashton	53 56	18	28. 4	2. 71 1. 90	12. 4 5. 0	Greensburg	59 48	0	29. 9 26. 1	1. 73 2. 06	9.5 7.0	Elkader	60 48	$-16 \\ -19$	22.5 20.6	1. 29 2, 30	15. 24.
urora	52	- 5	24.6	1.69	8.3	Hector	57	- 7	25. 6	4. 15	6.0	Estherville	56	-10	18.8	0.62	11.
Benton	64 55	9	35. 9 28. 9	2.76 1.53	4.5	Holland	62 54	- 1	35. 8 24. 7	4. 21 2. 84	6. 2	Fort Dodge	47 53	$-10 \\ -6$	18, 2 20, 6	0, 70 1, 00	10.
Jushnell	57	- 2	28.4	1. 05	5. 0	Jeffersonville	62	13	35, 6	4. 01	3.0	Fort Madison				1.78	7.
Cambridge	53 66	-4	26, 6 32, 2	2. 14 1. 02	8.7	Lafayette	58 55	- 2 3	26, 8 27, 4	2, 30	4.5	Galva	56	-11	22. 8	0.32 2.07	3. 20.
Carrollton	62	- 1	32.2	1, 20	6, 0	Laporte	58	1	25. 4	1.40	6.8	Glenwood	64	- 7	28. 4	0, 20	2.
Charleston	57	- 5	31.3	1.84	3. 2 4. 2	Logansport	56 63	10	26, 6 33, 8	1. 49 3, 36	0. 9 4. 0	Grand Meadow	46 47	$-16 \\ -8$	19.0 20.3	1.75	15. 20.
liene	61	6	34.1	2, 63	6. 5	Madison b				2.88	*****	Greenheld	59	- 9	24.6	1. 26	13.
Coatsburg	63	- 3	28.0 37.2	1. 67 2. 55	1.5	Marion	64 58	- 1	33. 5 26. 6	4. 07 3. 55	4. 7 5. 2	Grinnell	55 50	$-5 \\ -11$	24. 2 21. 5	2. 68 1. 73	17. 21.
Colchester	59	0	29, 4	1.45	6. 5	Markle	59	- 3	25.8	3.40	3, 5	Guthrie Center	60	- 9	24.8	1, 14	
Danville	62	2	30, 6	1. 23	7,3	Mauzy	59 58	- 5 5	27. 2 30. 5	5.73 3.99	10. 5 8. 8	Hampton	51 48	$-10 \\ -10$	21. 4 19. 6	1, 86	23. 14.
Dixon	55	-13	21.6	2.17	11.5	Mount Vernon	63	9	34.2	4. 25	4.5	Harlan	60	-11	25. 5	0.60	7.
Effingham	58 64	11	32. 0	2, 28 2, 66	8. 0 1. 5	Northfield	61	- 7 6	26, 2 32, 4	3. 50 4. 37	7.0	Hopeville	59 54	- 8 - 8	25. 3 23. 0	1. 33	7.
lora	59 60	6 8	32. 1	2. 15	6, 5	Frinceton	62	8	34.6	3, 20	5, 0	Independence	45	-12	19.8	2, 10	21.
riendgrove	55	- 4	33. 4 24. 1	3. 42 1. 96	4. 5 6. 0	Reusselaer	57 60	- ² 7	26. 8 27. 1	2. 39 4. 03	2.8 4.5	Indianola	60 58	- 9 -15	25. 8 21. 0	1. 57 0. 35	15.
rafton	60		99 9	1.84	8, 5	Rochester	54 56	0	26, 6 29, 8	1. 35	2.3	Iowa City	55	- 7	22.4	1.96	11.
reenville	62	8	32. 3 31. 6	1.02	5. 5 10, 2	Rockville	68	12	36, 3	1. 97 4. 56	1. 0 6. 0	Iowa Falls	48 59	$-11 \\ -4$	20. 4 24. 7	1. 85 2. 24	18.
laifway	60 57	1	35, 8 29, 7	2. 81 1. 26	3.5 2.5	Salem	61 62	.7	33, 2 34, 9	3, 98	10.0	Knoxviile	60	- 6	26. 7	2.00	19.
lenry	54	- 6	26, 4	1.71	5.5	Seymour!	60	0	30. 6	3, 90	9, 5	Lacona	58	-12	21.6	0, 63	14.
lillsboro	60 54	0	33. 4 27. 3	1. 35		ShelbyvilleSouth Bend	60 54	- 3	28, 2 23, 6	4, 94 1, 79	6.0	Leclaire				1.67	8.
loopeston	56	4	26. 4	1. 63	6. 0 5. 3	Syracuse	53	- 4	25, 4	1. 19	3.0	Lenox	62	-12 -10	23. 0 24. 9	0, 15 0, 80	1.
ishwaukee	53	$\frac{-21}{-4}$	22. 7 26. 0	1. 93	1.9 3.0	Terre Haute	66 70	-10	32, 7 23, 8	3, 39	4. 0 2. 0	Leon	59 60	- 6 - 9	26, 4	1.70	17.
agrange	53	- 2	24. 7	0.99	8.0	Valparaiso	55	4	26. 4	1. 43		Little Sioux Logan	56	- 6	25, 6 25, 4	0. 07 0. 60	6.
aharpe	57 45	-20	27. 7 21. 7	1. 92 2. 65	14.7	Veedersburg Vevay	64	9	33. 9	1.83	4. 0 7. 0	Maple Valley	54	-17	21.3	0.40	13.
oami			*****	0.68	4.8	Vincennes	61	7	32.9	3, 78	7. 0	Marshalltown	52	- 9	20.0	2.59	
leLeansboro	60 54°	50	34. 9 29. 6°	3. 17	22	Washington	62 55f	7 00	32. 4 27. 2°	3. 92 2. 06	5. 2 2. 5	Massena	60	- 8 - 9	21. 2 24. 8	1. 62 0. 71	16. 3
fartinton	58	0	27.0	1.85	4.5	Worthington	62	7	33. 8	4. 77	6. 5	Mountayr	65	-8	26, 8	1.97	22. (
ascoutah	64	4	32. 0 34. 2	1. 52 0. 83	2.1	Indian Territory.	72	17	42.4	0, 45	T.	Mount Pleasant	57 53	$\frac{-3}{-8}$	26. 3 22. 8	3, 34 2, 10	17.1
linonk	56	-3	25, 9	1.43	4.0	Calvin				0.84	0.5	Muscatine		****		2.12	1.
onmouth	56 56	-14	26, 1 24, 0	1. 67 2. 81	11.7	Chiekasha Durant	74	12 17	42.1	0. 20 0. 82	2.0	New Hampton	46 52	-11 -7	20.6	2, 22	28. 6
orrisonville	62	2	31. 2	1. 20	7.0	Fairland	71	3	38, 5	1.52	2.0	Northwood	44	-10	18, 6	1.01	10. 1
ount Carmel	57	2	29. 8	3, 66	7.0	Fort Gibson	72	11	43. 4	0.38 2.77	T.	Odebolt	57 58		24. 0 24. 3	0, 65 1, 20	6. 3
ount Vernon	64	7	34. 4	3, 10	7.0	Hartshorne	75	17	45, 2	1.28	0, 2	Olin	53	-12	22.8	2.00	11. 6
ew Burnsideiney	68	10	36. 4	3. 20 4. 02	3, 4	Healdton	71 74	11	43.0	0. 62 0. 80	4.0	Onawa Osage	59 41		25, 3 19, 4	0, 42 2, 29	2.2
tawa	55	- 3	26. 9	1.86	6.7	Mariow	74	8	40.2	0, 30	0. 8	Oskaloosa	59	- 4	25, 1	1.09	12.
alestine	57	6 3	31.6 31.0	1. 34	4.5	Muskogee	72 75	11	40.3 41.2	0. 59	T.	Ottumwa Pacific Junction			27. 2 25. 6	1. 52 0. 58	15. 2
aris	57	5	31.0	2 26 .		Pauls Valley	74	9	41.0	0.73	0.8	Perry	58	-10	.4.0	1. 35	13, 5
eoria b	54	3	31.0	1, 30 1, 33	5. 7	Ravia	76 72	16	45. 1 44. 3	0. 41 0. 50	0. 2	Plover			20.6	0. 69	5. 8
hilo	59	8	28. 0	0, 76	3, 5	South McAlister	73		44, 4	0.21	1.5	Redoak	62	- 5	28, 2	0.94	11. 6
umhill		- 6	34. 0 27. 8	0, 81 2, 14	1. 5 5. 0	Tulsa	71		37.8	0. 43 1. 21	1.7	Rock Rapids			22. 7 21. 2	2. 75	16. 9
antoul	55 65	2 9	28.0	1. 25	4.5	Wagoner	71=	20s	35, 86	0.52	2.7	Rockwell City	55	-10	23. 2	0. 71	7.6
ley	49	-14	36. 6 22. 4	3.58 1.35	3. 2 8. 6	Webbers Falls	69	10	39. 5	0.40		Sac City s			27.5 26.9	2.44	22.9
obinson	58	5	32.4	4, 50	6, 5	Afton			25.6	2.30	23, 0	Sheldon	61°	—13°	22.6°	0, 46	5, 8
shville		- 8	30, 4 23, 6	2, 09 2, 25	3, 5 12. 5	AlbiaAlgona			23. 5 19. 6	1. 17	14.5 12 0	Sibley Sioux Center			18. 4 21. 5	0, 50	5, 0 6, 0
John	63		35, 8	2, 96	3.0	Allerton			26. 4	1. 23	11.6	Stockport			27.4	2. 08	9. 0

Table II.—Climatological record of voluntary and other cooperating observers—Continued.

		mperat			ipita- on.			aperat breub			ipita- on.			perati hrenhe		Preci	
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of
Joura-Cont'd.	e 57	- 7	9 25. 3	Ins.	Ins.	Kentucky.	72	0	40, 6	Ins. 4. 85	Ins. 0. 5	Maine-Cont'd.	35	• —23	12.2	Ins. 1.76	In
nart hurman		- 5	26, 6	0.40	4.5	Anchorage	67	10	33.8	3, 96	5. 5	Ft. Fairfield	35	-34	5.4	1.31	1
pton	54	- 4	25. 2	2.06	13.0	Bardstown	65	10	37. 2	4.96		Gardiner	35	-21	14.6	2, 28	1
oledo	54	-13	22. 2	1.58	20.5	Beattyville	68	13	34.9	3.37	0.2	Houlton	39	-20	9.1	1.44	1
inton	50 56	-18	23.4	1. 60 2. 27	16. 0 7. 0	Beaver Dam	65 68	12	37. 1 35. 7	5. 06 3. 20	T. 1. 2	Lewiston	37	$-14 \\ -22$	15, 3 10, 8	1. 93 1. 55	1 1
apelloashington	100.00	4	26. 2	2.01	1.0	Blandville	66	13	37. 4	3. 93	1.2	Mayfield	33	-10	12. 1	1. 47	î
ashta	1			0.30	3, 0	Bowling Green	65	13	39. 0	5. 40	0.2	Millinocket	31	-22	9.0	1.89	1
aterloo	49	-14	22.4	2, 66	23. 0	Burnside	67	18	38, 8	4. 15	1.0	North Bridgton	34	-13	16. 0	1. 67	1
aukee	59 47	$-12 \\ -11$	26, 2 20, 7	1.90 2.40	17. 5 21. 8	Cadiz	65 65	15 10	39. 6 39. 0	5. 52 4. 51	T. T.	Oquossoc	34	$-25 \\ -27$	8. 0 11. 8	1, 99 2, 00	1
estbend	54	- 8	21. 3	1.30	12.5	Catlettsburg	67	5	36. 1	3, 32	8.0	Patten	33	-20	7. 4	1.50	li
hatcheer		- 21	29, 21		10.0	Earlington	65	12	87. 2	4. 82	T.	Rumford Falls	33	-11	14.0	1, 51	1
hitten	46	-10	21.0	2.30	23, 0	Edmonton	65	9	38. 0	4.98	0.6	South Lagrange	32	-28	9. 7	1. 75	1
ilton Junction	55	- 6	24.8	2. 28 1. 50	15. 5	Falmouth	64	11	34.6	3. 53 4. 14	0. 6 8. 0	The Forks	31	-25	4.9	1.58	1
oodburnaring	51	- 8	22.1	1. 60	21.8	Farmers	65	- 2	33. 6	3. 21	4.5	Vanceboro	42	-19	10.6	0.95	i
B						Frankfort	62	12	36. 0	4, 26	0.5	Winslow	30	-19	11.0	1.65	1
Kansas.				0.16	1.0	Franklin	68 66	15 11	38. 9 36. 3	4. 60	T. T.	Maryland, Annapolis	58	10	30.0	3, 50	
ilene	72	- 3	31. 5	0, 16	1.0	Greensburg	65	10	36, 6	3. 39	T.	Bachmans Valley	48	- 7	24. 2	2.66	1
ton	68	- 3	30, 5	1.02	8, 2	Hopkinsville	66	12	38. 6	6. 44	1.	Boettcherville	63	- 6	31.0	1.63	
thony		*****	*****	0.95	9.5	Irvington	64	12	37. 0	4.19	1.8	Cambridge	60	12	32, 4	4, 29	1 3
chison a	65 67	$-\frac{1}{2}$	31.6 26.5	0.62	5. 4 7. 0	Jackson	72 64	14	39, 8 36, 6	3. 12 5. 14	T. 5. 0	Cheltenham	64	6	30. 6 28. 6	4. 09 3. 58	
ker rlington	67	i	33. 6	0, 60	5.0	Loretto	65	15°	39.50	5. 25	0.5	Chewsville	57	- 9	26. 8	1.69	
apman	65	- 3	30.7	0. 22	2.2	Manchester	67	11	36, 8	3. 62	T.	Clearspring	59	3	28. 6	3. 02	1 :
ay Center	66	- 1	27.6	0.40	2.5	Mayfield	65	15	39. 0	4. 19	0.5	Coleman	60	9	30, 0	3.34	1
ffeyville	72 73	- 6	40, 0 32, 0	1. 24 0. 56	10. 0 6. 0	Maysville	65 68°	3 14e	32, 4 38, 6°	3. 41 5. 20	10.6	Cumberland	****			2. 41 1. 97	1
lbylumbus	66	3	34.9	1. 52	5, 6	Mount Sterling	64	10	34. 6	3, 92	2.0	Darlington	564	- 1º	26, 64		1
nningham	65	- 6	31.6	0, 37	3.7	Owensboro	63	13	38. 4	4.04	T.	Dearpark	59	-10	27.7	*****	
esden	71	1	32.6	0.66	5, 8	Owenton	60	7	31. 6	4. 69	5. 0	Denton	62	4 0	28.8	4. 93	1
loradoinwood	68 69	0 3	33, 8	0, 27 0, 93	2, 7 9, 0	Paducah b	68	16	39. 6	3. 74 4. 38	0, 5	Easton	61 57	4	30, 6 27, 5	3.51	
sworth	68	0	31.0	0, 56	3, 5	Princeton	64	13	38, 8	6.04	T.	Frederick	59	- 6	28, 6	2.92	
poria	67	1	32.4	0.80	8.0	Richmond	65	9	35. 9	3. 25		Grantsville	60	- 5	26. 7	2.73	1
glewood	75 67	0	33, 2 28, 6	1.05 0.38	9.5	St. John	63 60	10	34.6	5. 46 4. 08	1. 1 8. 1	Greatfalls	63	$-\frac{0}{2}$	29, 2 28, 2	2.61	* * *
terprise reka	499	- 4	28.0	0. 30	0.7	Scott	66	5 6	35. 0	3, 98	2.0	Hancock	59	- 5	28, 4	2. 15	1
l River	67	5	33, 6	0.62	6, 3	Shelbyville	65	10	33. 0	3.56	7.0	Harney				2.40	1
rnsworth	72	3	31.5	0.54	5. 7	Taylorsville	65 68	10	35, 7	4. 26	0.5	Jewell	63 58	12	31. 2 32. 0	3, 89	1
rshart Leavenworth	65 66	- 2 - 2	32.6 32.8	0. 25 1. 20	2. 5 12. 0	Williamsburg	62	10	40, 0 33, 4	3. 79	7.6	Keedysville	60	- 8	28. 4	2. 80	1
rt Scott	68	1	34. 4	0.78	4.6	Louisiana.						Laurel	58	- 2	29.8	3, 58	1
inkfort	66	- 2	29. 2 29. 4	0. 75	7.5	Abbeville	78 82	26	52. 6 49. 6	3, 50 4, 62		Mount St. Marys College	58 56	8	29, 2 27, 7	2. 28 3. 53	1
rden City	71 79	- 4	30. 2	1. 30 0. 55	13. 0 5. 5	Alexandria	78	23 23	50.0	5. 27		New Market	61	-11	27.7	4.00	1
nola	66	4	32.6	0.40	4.0	Baton Rouge	83	18	52.0	4.57		Pocomoke City	64	12	34.2	5, 83	
rrison	60	- 4	27. 8	0. 16	1.4	Burnside	79	23	53.0	2.95		Princess Anne	64	5	31.6	5. 22	1
rtonxie	66 68	-1	30. 1	0. 61 0. 50	6.0	Calhoun	77 66×	21 24	46. 8 52. 7 ⁴	9. 79 2. 67		Solomons	60	13	33. 7 30. 0	4, 13	
goton	70	3	30, 3	0, 80	8.0	Caspiana	79	25	50. 2	12.98		Takoma Park	59	5	29.4	4, 69	1
tchinson	67	- 2	30. 6	0.50	5.1	Cheneyville	78	22	47.2			Van Bibber	50	6	28. 4	3. 29	
ependence	71	5	35. 6	0.69	3.0	Collinston	78 76	24 23	50.9 47.0	4. 97 13. 40		Westernport	58	7	29. 0 30. 8	2.09	
Crosse	69	0	29.5	0, 61	7.0	Covington	77	23	50.0	2.51		Massachusetts.		1			
in	68	- 3	29.4	1.00	10.0	Donaldsonville	83h	28c	55. 1	2.80		Amherst	44	-4	19.4	2. 75	
ned	75 58°	- 1 - 2e	30, 0	0. 85	8.5 4.0	Emilie	80 77	26	52. 8	2.69		BedfordBluehill (summit)	44	- 1 2	22. 7 22. 4	2. 49 3. 21	1
oanon	67	- 20	31.8	0. 43	4.3	Franklin	81	27	52, 9	2.76		Cambridge	47	2	23.6	4. 35	
ksville	69	- 8	30.1	1.09	10.7	Georgetown	80	20	49, 8	5. 26		Chestnuthill	47	2	23. 6	2.81	
Pherson	67 66	0	29. 8	0.33	2.5	Grand Coteau	79 76	26 24	52.8	3. 67		ConcordEast Templeton *1	46	- 5 - 3	20, 6 20, 0	2. 13 2. 10	
lison	69	3	32. 0	0. 85 0. 58	8.5	Hammond Houma	78	24	51.7	4. 82 3. 19		Fall River.	50	6	26. 2	3, 92	
nhattan c	70	0	29. 7	0, 53	5, 3	Jennings	79	26	51.8	4.17		Fitchburg a	44	1	21.4	1.77	
ion	64	0	32.0	0.30	3.0	Lafayette	77 80	25	51.1	5. 09		Fitchburg b	46 48	- 7	21.6	2.44 2.96	
icine Lodge	69 66	4	33. 2 34. 2	0.58	6.0	Lake Charles	80	27	52.7	3, 90 4, 38		Framingham	43	- 9	20. 0	1. 90	
nthope	66	6	35, 6	0. 50	5.0	Lawrence	79	30	55. 2	2.16		Hyannis			20.0	4. 33	
City	674	36	28. 8#	0.80	8.0	Leesville	80	20	50. 2	8. 10	1	Jefferson				2.98	
ton	67	- 5	30.3	0, 05	0.5	Libertyhill	81	21	48.6	14. 09		Lawrence	46	-4	20, 7	1.97	
wich	71 67	0 2	30, 4	0.35 0.50	3. 5 5. 0	Logansport	744	184	45, 44	10.60		Leominster	45	0	22.4	2, 54 2, 33	
din			30, 0	0.65	5.0	Melville	80	23	50. 0	5. 11		Lowell b	47	-1	22. 2		
ge City	664	04	32.0^{d}	0.47	4.7	Minden	74	23	45.5	10.66		Ludlow Center				2. 33	
orne			20.0	0, 50 1, 33	5.0	Monroe	82 76	24 28	48. 7 54. 0	11. 03 3. 00		Middleboro	49	- 9 -12	22. 4 21. 0	4. 12 2. 70	
ego	77 67	0	36, 9	0.48	4.5 2.7	Opelousas	80	23	51.0	6, 52		New Bedford	50	4	24.8	5. 27	
lipsburg	71	1	30, 0	0, 43	4.3	Plain Dealing	75	18	46. 5	10. 47		Pittsfield				2.71	1
santon	67	2	34. 8	0, 83	3.5	Port Eads	77	33	60. 4	6. 17		Plymouth*1	50	8	27.2	4. 10	1
ablic	69	- 3	31. 7 27. 8	0. 63	6.3 2.0	Rayne	78 77	26 28	52. 4 51. 6	1. 56		Princeton	61	14	31. 4	2. 50	
ie	70	- 3 0	34. 2	0. 75	7.5	Robeline	75	18	46. 6	3, 73		Salem				2.55	
sell	67	0	30. 3	0, 61	6.4	Ruston	77	22	49. 2	8, 22	1	Somerset *1	45	- 2	28.4	4. 40	1
08	66	0 7	31. 2 34. 2	0, 53	5.3	St. Francisville	78 84°	21 24°	48. 6 53. 8 ^d	7. 70 3. 72		Taunton		- 11	21.0	2. 87 3. 25	
anonto	67	ó	31.0	1.50	6.5	Southern University	94	240	00.0	2, 85		Webster		- 11	41.0	2. 94	
58es	72	- 3	31.4	1.20	12.0	Sugar Experiment Station.	78	29	55.0	3. 02		Westboro	46	-7	22.8	3.05	1
ley Falls	67	-1	31, 2	0, 72	7.9	Sugartown	77	26 "	51.7	3, 28		Weston		-1	21.8	2, 31	
oqua	731 694	31	35, 81	0, 80	8.0	Summerport	79	90	54.6	1. 96		Williamstown	47	- 4	19. 2	1. 39 2. 40	
keeney (near)	600	14	31. 84	0, 65	6.5	Venice	10	29	54. 6	13. 75		Winchendon	48	4	22.8	2, 40	
lace	74	1	33, 2	0, 59	6.0	Bar Harbor	48	- 8	18.2	3, 63	16.5	Michigan.					
	66	3	35. 6 30. 8	0. 26	1.6		36	-10	15, 4	0.59	16. 0 8, 2	Adrian		-13 -18	25. 0 21. 7	1.46	
nut nego*1	66	0			4.5												

MONTHLY WEATHER REVIEW.

		l'emper Fahrer	ature.		ecipita- tion.			mperi			cipita-			empera ahren			ipita-
Stations.	Maximum.			and melted	th of	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Michigan—Cont'd. Ann Arbor Arbela	. 4	2 -	4 22.5 7 23.6	0 2.2	8.2 9.5	Minnesota—Cont'd. Faribault	. 49	-12	18.4	0.50	Ins. 9. 0 5. 0	Mississippi—Cont'd. Woodville Yazoo City	77				Ins
Ball Mountain Bargas Bargas Battlecreek Bay City Benzonia Berlin Benzonia Berlin Big Rapids Birmingham Bloomingdale Calumet Cassopolis Charlevoix Charlotte Charlotte Chatham Cheyboygan Clinton Coldwater Deer Park Detour Dundee Eagle Harbor Eagle Harbor East Tawas Eloiso Ewen Fitchburg Filint Gaylord Gladwin Grand Marais Grape Grayling Hagar Hagar Harbor Beach Harrison Harrisville Hastings Hagar Hayes Highland Hilladale Huwell Humboldt Iron River f Ironwood Ishpeming Ivan Isackson Ieddo Lake City Lansing Mackinae Island	55 55 54 44 44 55 56 56 44 44 44 56 56 56 56 56 56 56 56 56 56 56 56 56	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 23.4 6 21.4 1 21.4 21.4 21.4 21.4 21.4 22.8 23.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 25.8 26.8	6 0, 74 1, 90 1, 53 3, 1, 11 3, 1, 12 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	5. 3 19. 5 8 12. 5 8 12. 5 8 5. 5 9 10. 0	Fergus Falls Floodwood Glencoe Grand Meadow Hallock Lake Winnibigoshish Leech Long Prairie Luverne Lynd Mankato Mapleplain Milaca Milan Minneapolis 1 Montevideo Morris Mount Iron New London New Richland New Ulm Park Rapids Pine River Pleasant Mounds Pokegama Falls Reeds Rolling Green St. Charles St. Cloud St. Peter Sandy Lake Dam Shakopee Two Harbors Wabasha Wadena Willow River Winnebago. Winona Worthington Zumbrota Mississippi. Aberdeen Austin Batesville Bay St. Louis Biloxi Booneville Canton. Columbus Corinth Crystal Springs Duck Hill.	43 49 52 44 43 43 43 48 53 52 54 48 55 52 46 48 47 54 47 54 48 47 54 48 47 54 48 48 47 54 48 48 48 48 48 48 48 48 48 48 48 48 48	-18 -25 -11 -10 -31 -19 -22 -16 -13 -11 -11 -12 -14 -14	16. 4 13. 0 17. 0 17. 8 7. 8 11. 4 11. 2 16. 8 18. 6 19. 3 17. 2 18. 0 19. 2 18. 4 17. 0	0.82	8.00 12.00 3.00 18.55 21.66 11.8 4.8 6.50 6.50 7.2 5.8 3.0 12.1 4.8 0.5 7.2 5.8 10.5 7.6 4.7 7.6 6.5 10.5 7.6 1.6 7.6 1.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7	Missouri, Appleton City. Arthur Avalon. Bethany. Birchtree Blue Springs Boonville Brunswick Carrollton. Caruthersville. Conception Darksville. Dean. Desoto Doniphan Downing Fairport Fayette Fulton Gallatin*1 Gano. Glasgow Gorin Grant City Harrisonville Hazlehurst Hermann Houston Ironton Jackson Jefferson City Joplin Kidder Koshkonong Lamar Lamonte Lebanon Lexington Levington Marbiehill Marshall Maryville Mexico Miami** Mounte Mountaingrove Mounte Mountaingrove Mount Vernon	677 644 655 666 666 666 666 666 666 666 666	0 2 2 3 3 4 3 3 5 5 5 10 0 10 1 1 1 1 1 1 2 2 3 9 9 0 5 1 1 1 1 2 2 3 3 9 9 0 2 2 3	34. 0 36. 2 28. 7 26. 8 36. 8 36. 8 30. 9 29. 2 30. 0 40. 7 23. 2 30. 8 33. 5 35. 9 32. 8 30. 9 32. 8 33. 9 33. 8 34. 8 35. 9 36. 0 36. 0 37. 0 38. 0	1. 13 1. 29 1. 38 1. 20 1. 81 1. 108 1. 90 2. 33 0. 24 4. 52 0. 90 0. 68 1. 35 2. 70 1. 21 1. 22 1. 53 1. 93 2. 47 1. 15 1. 54 1. 15 1. 54 1. 15	11 3 3 13 12 2 2 5 5 2 8 8 2 2 7 8 8 1 1 3 3 7 8 8 2 1 5 5 6 6 1 1 1 7 7 1 3 1 5 5 6 6 1 1 3 3 3 5 5 6 9 3 4 4 5 5 8 8 1 0 8 8 6 6 1 1 4 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fancelona	43 47 51	1	20. 8	1. 14 1. 48 0. 75 0. 96	11. 0 5. 0 7. 5 8. 1	Enterprise Fayette Fayette (near)	74	20 22 23	47. 2 47. 0 48. 4	3. 57 4. 16 3. 30 2. 22 1. 91	Т.	New Haven New Madrid New Palestine. Oakfield	70 68 73 67	4 4 2 2	38. 1 35. 0 34. 1 35. 0	1. 34 1. 55 3. 53 1. 15 1. 12	5. 8. 3. 5.
lontague	47 48 40 46	- 4 4 3 5	24. 2 25. 7 19. 7 22. 6	1, 25 1, 38 0, 70 1, 55	8. 0 8. 5 7. 0 10. 9	Greenville b	76 75 76	23 25 21	46, 6 46, 6 45, 4	8, 87 9, 26 6, 51	T.	Oregon	69 66 62	- 5 - 5 2	38. 4 27. 8 31. 1	0, 98 0, 46 1, 26	0. 4 4. 6 8. 6
nivet mer maway vid etookey owers eed City oocommon aginaw (W. S.) L. Ignace L. Johns locum outh Haven anton homaston	51 43 51 40 44 47 45 ⁴ 52 38 56 47 49 50 45	- 9 	21. 9 19. 8 21. 4 21. 2 16. 7 21. 2 18. 6 ⁴ 23. 0 18. 6 94. 2 23. 2 20. 3 20. 6 14. 4	1. 50 1. 72 2. 15 1. 25 3. 20 1. 95 1. 52 1. 05 1. 13 1. 58 2. 20 1. 05 1. 95 2. 20 2. 20 20 20 20 20 20 20 20 20 20 20 20 20 2	5. 8 31, 0 19. 5 9. 0 5. 5 10. 9 12. 5 12. 3 6. 0 10. 0 6. 0 20. 0	Hattiesburg Hazlehurst Hernando Holly Springs Jackson Kosciusko Lake Lake Como Laurel Leakesville Louisville Macon Magnolia Natchez Nitta Yuma Okolona	81 71 70 76 76 81 80 80 80 75 78 84 76 73	20 22 29 25	48. 3 43. 0 41. 6 47. 4 46. 5 45. 3 49. 0 48. 6 50. 5 46. 6 47. 2 53. 4 52. 2 44. 4 43. 9	3. 72 4. 10 7. 05 9. 20 3. 08 4. 58 4. 10 4. 45 4. 73 3. 76 4. 60 5. 83 3. 98 2. 74	T.	Pine Hill. Princeton Rockport Rolla St. Charles St. Joseph Sarcoxie Sedalia. Seymour Sikeston. Steffenville Trenton Unionville Versailles.	60 64 65 65 68 60 60 60 67	0 0 13 -1 -3 -4 -10 -1	29, 5 33, 0 35, 2 38, 8 30, 4 28, 8 29, 1 26, 1 34, 0	1. 86 1. 87 0. 12 0. 89 1. 19 0. 83 1. 25 1. 18 1. 16 2. 43 1. 35 2. 40 1. 20 1. 66 0. 92	4. 6 3. 6 7. 6 7. 6 3. 4 6. 8 2. 3 2. 6 11. 8 11. 6 4. 3
nornville raverse City assar 'asspi 'ebberville 'est Branch etmore - hitefish Point psilanti Minnesola. ibert Lea	51 46° 50 52 52 62 41 41 52	11 5° -13 -16 -20 -4 - 6	25. 5 23. 3° 23. 0 21. 8 21. 5 17. 9 19. 0 23. 0	1. 52 1. 63 0. 75 2. 22 1. 90 0. 92 2. 80 8. 18 1. 96	9. 0 11. 3 4. 1 7. 5 8. 0 9. 0 28. 0 34. 6 7. 1	Patmos. Pearlington Pecan Pittsboro. Pontotoe Poplarville Port Gibson Ripley Shelby Shecoe	76 79 73 71 78 80 74 76 78	24 23 18 20 24 22 14 17	51. 8 53. 2 45. 1 44. 3 52. 4 48. 2	4, 06 4, 15 13, 70 5, 65 2, 21	T.	Vichy 4. Warrensburg. Warrenton Warsaw Wheatland Willowsprings Windsor b. Zeitonia Montana. Adel Alzada. Araconde		6 8 -22	33. 1 34. 4 30. 7 33. 6 35. 7 33. 9 36. 6	0. 40 0. 89 1. 52 1. 26 1. 36 1. 80 2. 31 0. 95 1. 58	4. 6 6. 3 8. 0 2. 6 7. 8 3. 2 1. 3 9. 5 14. 8
lexandria ngus shby emidji ird island aledonia ollegevilie rookston	50 40 42 46 46 46 44 51	-18 -23 -18 -19 -12 -10 -13	18. 7 14. 6 11. 3 16. 7 14. 9 18. 8 18. 7 19. 0 11. 0 12. 1	1. 80 0. 49 0. 65 1. 78 0. 66 1. 17 0. 60 0. 60 0. 88	7. 0 17. 8 5. 1 14. 1 8. 5 6. 0	Shubuta. Stonington Suffolk Tchula Tupelo University Utica. Walnutgrove Watervalley Waynesboro	80 77 73 72 80 79= 74 80	20 20 17 20 21° 19	45. 3 51. 2 48. 4°	9, 22 3, 39 10, 95	T. T.	Anaconda Angusta Billings Boulder Bozeman Butte Canyon Ferry Cascade Chester Chinook	51 60 64 49 50 51 54 67	-26 -19 -17 -10 - 3 -11 -24	27. 8 29. 7 32. 4 25. 6 25. 7 28. 2 27. 4 33. 3	0. 80 0. 40 0. 21 2. 03 1. 35 0. 54 0. 54 0. 85 0. 77	8.0 4.0 2.2 2.6 20.3 13.5 3.7 8.0 8.5

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

		mpera	ture. leit.)		cipita- on.			mperat shrenh			ipita- on.			mpera ahrenh		Prec	ipit on.
Stations.	Maximum,	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Western Account
Montana-Cont'd.	o 46	0	28.7	Ins. 2, 18	Ins. 6. 5	Nebraska—Cont'd. Halsey	72	-10	29. 2	Ins. 0.05	Ins.	Nevada—Cont'd. Humboldt.	64	10	38.6	Ins. 0.40	1
w Agency	61	-20	27.6	1, 30	9. 0	Hartington	62	- 8	22.6	0. 10	1.0	Lewers Ranch	65	8 7	36. 5 30. 8	3. 63 T.	
bertson	55 48	-41 7	14. 8 28. 8	0.39	3. 4	Harvard Hastings *1	60	- 7 - 7	25, 6 27, 3	0. 15	1.5 2.0	Lovelocks	55 71	4	36. 4	0.70	1
ker	77	-15	29. 8	0. 10	1.0	Hayes Center	00		21.0	0. 15	2.0	Mill City *1	60	12	39. 5	0, 05	1
rlodge	49	- 8	25.0			Hebron	61	- 3	27.8	0.18	1.5	Palisade	58	-13	29.6	*****	4
on	52	-18	28. 2	0. 29	2.7	Hendley	*****		*****	0. 27	2.0	Pioche	56	- 3	28.6	0.38	1
on	59 58	-35 -26	20. 0 25. 8	0, 29 0, 50	5, 0	Hickman		*****	*****	0. 17	1.8	Reno State University	49 58	-19 11	23, 8	0. 37	1
Harrison	65	-15	27. 6	0, 00	0, 0	Holbrook	65	-4	29.4	0, 20	2.0	San Jacinto	56	-10	26. 8	0. 63	1
Logan	48	-23	26.0	0, 30	3.0	Holly				0.42	4.2	Sodaville	70	14	42.2	0.18	1
gow #	50	-37	16.0	1.44		Hooper*1	60	- 6	25. 2	0. 12	2.3	Tecoma	64	-4	34. 0	0. 95	ı
dive	40	-40 -39	18. 2 14. 6	0, 90 1, 01	9. 0 23. 0	Imperial			30. 8	0. 36	1.5 0.6	Wabuska Wadsworth	69	9	37. 4	0. 10	1.
tfalls	54	-20	31.4	0.38		Kearney	73	3	29. 5	0.11		Wells *1	53	-23	26. 0	1. 30	1
ilton	54	-10	30. 8	0.97	5.0	Kennedy	72	-11	28.8	0. 25	2.5	Wood	49	-11	27. 9	0.81	1
eview	55	0	33. 6	0.50	5. 0 4. 0	Kimball	67 73	-12 -12	32, 0 28, 6	0. 15	1.5	New Hampshire, Alstead	44	- 5	16.4	1.76	ı
ngstonistown	58	-22	28. 7	1.00	10.0	Leavitt	64	-16	24.1	0. 20	2.0	Bartlett				1.28	1
egrass	60	-21	27.8	0.50	2.5	Lexington	72	- 4	28.2	0.40	2.0	Berlin Mills	43	-26	10.6	1.33	1
oula	52° 50	-12°	27. 2° 30, 3	1. 35 0. 95	12.0	Loup	63 71	$-5 \\ -8$	26. 8 27. 2	0, 30 0, 20	3.5	Bethlehem Brookline *1	41	-12 -11	11.6	1. 41 2, 25	
oula	43	-13	24. 8	1. 46	11.5	Loup McCook		0	21.2	0. 10	1.0	Chatham	35	-15	13, 0	1. 10	
ot	53	-14	30.6	0.18	1.8	McCool				0.07		Durham	43	- 8	18.0	2.22	1
psburg	58	- 5 6	30. 3 29. 8	0.18	1.8	Madison		- 8		0. 35	3. 5	Franklin Falls	47 42	- 7 -12	17. 4	1.80	1
18 Ar	48 51	-37	18. 2	0. 20 1. 00	10.0	Marquette				0. 30	2, 5	Grafton	48	-12	13. 3	1.57	1
odge	57	-13	28.6	0.36	8.0	Merriman				0. 20	2.0	Keene	47	-10	17.6	1.66	ı
auls	50	30	24.0	0.79	23.0	Minden		- 6	27.8	0. 20	1.0	Nashua	44	- 3 - 6	19.8	2. 31 1. 95	
eter	51	-13	30. 5	0. 87 3. 70	8. 5 38. 0	Monroe Nebraska City	64	- 4	29. 0	0. 30 0. 50	3, 0 4, 0	Newton North Woodstock	40	_ 0	10.0	1. 77	
gbrook	57	-32	21.1	1.02	7.7	Nemaha				0.20	2.0	Plymouth	44	- 9	15.0	1.36	
on	49	-17	24. 2	0, 60		Norfolk	72	- 9	24.8	0. 23	3.5	Stratford	39	-23	10. 2	1.31	
	50°	-20	31.6c	2, 86 0, 24	12.5	North Loup		- 8 - 9	27. 2 23. 5	0. 05	0.5	New Jersey. Asbury Park	57	5	30. 0	4. 40	
ick				0. 62	6.2	Odell			*****	T.	T.	Bayonne	49	5	26. 6	2.78	
Creek	55	-11	31.0	0.42	5.0	O'Neill	72	-12	26. 7	0.36	2.5	Belvidere	47	- 2	23.6	2. 77 3. 29	
Nebraska.	57	-20	28. 8	0.70	7.0	Ord		*****	*****	0.05	1.0	Bergen Point	47 52	6	26. 1 27. 6	3. 11	
#	60	- 7	27.4	0.36	4.0	Palmer	64	- 4	27.6	0. 15	1.5	Blairstown	44	- 3	23. 7	2. 15	
•1	70	- 8	23.1	0.49	4.8	Pawnee City	66	- 2	29.5	0.70	6. 0	Bridgeton	59	0	29. 2	4. 09	
on	720	-10°	24. 40	0. 30 T.	3.0	Plymouth				0. 18 0. 25	1.8	Canton	60	7	31.4	1, 95 5, 02	
nce	68 70	- 6 - 3	33, 2 29, 1	T.	T.	Plattsmouth b	74	-11	28, 0	T.	T.	Charlotteburg	51	- 4	23. 9	2. 25	
y		- 8	27. 2	0. 15	1.5	Ravennaa	76	- 8	28.0	0.14	1.1	Chester	49	2	24.4	2.65	
	****			0. 20	3.0	Redcloud		- 4	26. 4	0. 15	1.5	College Fram	58 49	- 3	27. 0 25. 8	2. 35	
dia		-4	27. 7	T. 0. 30	7.0	Republican				0. 00	4.0	College Farm	47	0	22.8	3. 10	
			*****	0. 27	4.0	St. Libory				0.10	1.0	Dover Englewood	49	6	25, 6	4. 19	
on	****		20.0	T.	T.	St. Paul		-7	28. 2	0.09	1.0	Flemington	50 60	-10 0	25. 0 28. 4	2, 09	
ra		$\frac{-3}{-6}$	29. 2 27. 2	0. 42	3. 8 0. 2	Santee		-10	25. 8	0. 65 0. 25	6. 5	Friesburg Hightstown	49	0	26.8	3. 21	
еу	62	- 3	30.0	0.10	0.5	Seneca				T.	T.	Imlaystown	56	3	28. 2	3. 12	
ice		- 2	29.5	0.39	1. 6 2. 0	Seward	60	-12	25. 1	0. 12 0. 20	1.2	Indian Mills Lakewood	58 58	0 3	28. 6 28. 9	3. 77 3. 77	
vue		- 4	31. 3	0. 19	8.0	Smithfield Springview	71	-14	28. 0	0. 15	1.5	Lambertville	50	- 1	26. 4	2. 33	
leman				0. 01	0.1	Stanton	66			0.30	5.0	Layton	50	-15	21.0	2. 26	
leman	80		25.4	0. 56	5. 6	Strang	*****			0.05	0.5	Moorestown	53 48	5	26, 2	2, 93	
ill	98	- 8	25. 4	0. 20	2.8 1.0	StrattonStromsburg		*****		0. 21 .	*****	Newark	48	4	26. 4	2. 93	
haw		*****		0, 04	0.5	Superior	57	- 5	25. 8	0. 20	2.0	Newton	50	- 4	24.4	3. 10	
eport	71	-4	31.4	0, 20	2.0	Syracuse				0.40	4.0	Oceanic	56 49	8	28.8	3. 52 2. 59	
n Bow	10	-10	29. 2	T. 0. 05	2.0	Tablerock Tecumseh b.	67	-3	27.4	0. 13 0. 21	3.0	Phillipsburg	49	2	24. 0	2.40	
				0.36	2.3	Tecumseh c				0. 30	3.0	Plainfield	48	1	25. 1	3. 22	
ell		*****	90.0	T.	T.	Tekamah	62	-7	25, 2	0. 25 0. 58	6.0	Pleasantville	*****	*****	*****	4, 15 3, 54	
al City	74	- 0	30, 2	T.	T.	Turlington University Farm	61		27. 9 28. 0	0. 28	2.7	Rivervale	47	-14	22. 2	2.98	
Br				0. 20	2.0	Wahoo				0.30	3.0	Somerville	48	-1	24.8	2.06	
			04.6	0, 17	1.7	Wakefield	66	- 9	23. 8	0. 21	2.1	South Orange	48	- 3	25, 4	2. 55	
ord	70	- 6	24.6	0, 13	2.0	Wauneta		*****		0. 22	5.5	Sussex	55	10	31.2	2.30	
********	60	-4	27.8	0. 21	4.0	Westpoint	65	- 9	25. 8	0. 25	2.5	Tuckerton	59	- 1	29.6	4.77	
rtson	68	0	33. 8	0, 27		Whitman				0. 25	****	Vineland	59	- 8	27. 8	4. 08 3. 00	
City		- 2 - 6	28. 8 26. 3	0, 28	1.0	Wilber			*****	0. 45	4.5	Woodstown	*****	*****	*****	5. 00	
n	67	-1	29. 6	0.19	1.9	Winnebago	64		23. 1	0.17	2.0	Alamagordo	55	17	41.6	0.75	
***************	****			0. 02	0.2	Wisner			****	0.06	2.0	Albuquerque	76 61	13 12	39.5	0. 71	
Ing		*****	*****	0. 07	2.0	Wymore	61	- 5	28. 4	0. 10 T .	T. 0	Alma	70	11	40.0	1.50	
n		*****	****	0. 60	6.0	Nevada.	01					Arbela	71	1	40.7	0.25	
		****	****	0. 25	2.5	Amos	52		30. 2	0. 28		Bellranch	72 58	10	40, 6 31, 0	0. 61 1. 03	
ont		- 5 - 5	27. 4	0, 22	1.5	Austin	52 72		38.6	0. 88 T.		Bloomfield	78		47.0	0. 47	-
Robinson			30. 1	0. 32	3, 2	Belmont	54		30. 1	0.50	5, 0	Cambray	71			1.78	
din	68	-3	29.5	0. 25	0, 2	Beowawe *1	52	4	30. 4	0. 10	1.0	Carlsbad	72n		44.41	0, 28	
ont			26. 0	0. 25	1.2	Caliente	71 62		49. 0 37. 3	0.00		Cimarron	70 48	- 1	33. 7 28. 5	1. 36	1
a		- 4	28, 3	0. 12	1.5	Carlin *1			24.2			Deming	70	14	41.0	1.18	ľ
(near)	68	-10	27. 2	0. 25	3.7	Carson City	60		33. 8	0.85	1.5	Dorsey	70	0	34. 2	0.23	
g	69	- 2	31.6	0.11	2.0	Cranes Ranch			****	0.64		Eagle Rock Ranch	61	- 5	30, 4	0. 78 0. 15	1
nnburg		-4	29.8	0. 50 T	5. 0 T.	Dyer Elko *1			31. 6 29. 6	T. 1. 60	16.0	Elk	64		37. 4	1. 13	
Island a			29. 8	T. 0. 20	1.5	Eureka	64			0. 25	1.8	Estancia	62	- 9	29. 5	0.75	
			31.5	0. 20	2.5	Geyser				0. 27	3.5	Fairview	73 63		41.1	1. 15 2. 13	
y		- 1		0, 10	1.0	Golconda				T.	T.			12	38. 0		

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

		mperat ahrenh			ipita- on.			mperat ahrenh			ipita- on.			mperat ahrenh		Preci	ipit on,
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total denth of
New Merico-Cont'd.	60	-4	30.2	Ins. 2, 26	Ins. 23. 3	New York—Cont'd.	o 49	0 - 1	20, 9	Ins. 3, 75	Ins. 23. 9	North Dakota.	451	-201	17. 6f	Ins. 0, 06	1
ruitland	62	5	29.4	0. 26	1.5	Oyster Bay	54	9	28, 4	4.95	25, 2	Ashley	41	-23	12.7	0, 50	
s Vegas	65 65	14	40, 2 29, 9	1. 31	13.0	Palermo	50	- 8	20.8	6. 54 1. 80	52. 1 13. 0	BerlinBottineau	47	$-25 \\ -25$	13. 4 10. 6	0.72	1
rdsburg	78	17	43. 2	1.21	1.3	Plattsburg Barracks	45	-18	13.8	0. 20	*****	Cando	46	-26	12.4	0. 29	
s Lunas	60 59	14	35, 3 31, 5	2, 00 1, 30	8.2	Port Jervis	52 42	$-10 \\ -18$	22.0 11.6	2. 10 1. 46	16. 7 14. 0	Churchs Ferry	49	$-24 \\ -27$	11.8 12.8	0.30	1
silla Park	73	16	42.0	0, 63		Primrose	50	-3	23, 9	3. 10	25.5	Dickinson	52	-32	18.8	0.80	
neral Hill	58	0	30, 6	1, 20	13. 0 11. 0	Redhook	44	-10	17. 2	2. 51 4. 35	13. 8 33. 5	Donnybrook	45	30 28	13. 7 10. 0	0. 70 0. 40	1
ton	64	- 3	32.8	0. 20	2.2	Richmondville	55	- 6	18.8	2.62	15. 2	Edgeley	46	-20	15.3	0. 81	
ciada	65 66	- 7 11	34. 0	0, 54 0, 20	10.0 T.	Ridgeway	48	3	24.2	2.05	11.9	Ellendale	46	-17	17.8	0, 35	
Marcial	61	8	32, 1	0. 47	3.0	Ripley	60 43	- 4	26. 3 18. 8	3, 55 4, 66	27. 0 26, 5	Fargo	45 48	$-21 \\ -19$	12, 3 16, 4	1. 37 0. 30	1
orro	60	15	36.5	1.12	T. 4.2	Romulus	53	3	23. 9	1, 83	11.7	Fort Berthold	51	- 35	17. 6	0.30	Ì
inger	66 72	26	28.6	0.34	0.8	Salisbury Mills	42	-18	14.2	3, 58	18. 5 7. 2	Fort Yates	50 45	$-26 \\ -21$	19, 6 15, 4	0.64	
38	56	- 3	27.0	0, 30	4.0	Scarsdale	46	2	24.0	4.08	33. 0	Glenullin	46	-28	18, 0	0.94	1
New York.	70	-8	32. 2	0, 08	1.0	Setauket	50 51	- 11 - 5	28. 4 22. 5	3. 63 2. 06	25. 6 7. 5	Hamilton	42 50	$-28 \\ -30$	9. 4 16. 0	0. 99	
ams	****			1.85	15. 5	Skaneateles	****			2. 52		Kulm	47	-22	15.5	0.69	l
dison	56	- 9	23. 0	1. 13 2. 17	5, 5	South Butler	49	5	27.6	6. 38 3. 55	57. 4 24. 0	Larimore	45 46	$-20 \\ -18$	12. 6 15. 8	0. 10 0. 60	ŀ
len	50	- 2	22, 1	2.92	21.1	South Canisteo	51	-12	21.0	2, 10	11.5	Lisbon	47	-36	9.7	0, 90	1
es	48	-15 - 7	19. 4 18. 0	2, 53	15.5	Southeast Reservoir	54	- 9	10.4	3, 37	10.8	Manfred	42	$-27 \\ -19$	13. 8 14. 8	0, 84	-
sterdam	50	5	25. 3	1, 51		South Kortright	54 45	-12	19. 4 13. 8	1.87 2.06	18.4	Mayville Medora	42	-43	17. 8	0.84	ı
ade	48	-20	17.4	3, 89	29.4	Spier Falls	46	-11	18. 2	1.75	8. 3	Melville	47°	-22*	17.4	0.10	1
ens	82	- 5 - 9	22. 2 20. 8	1, 70 2, 05	15, 0 10, 5	Volusia	45 55	- 6 1	16.9 22.8	1.09 2.42	8. 1 23. 0	Milton	40	$-22 \\ -26$	10.1	T. 0.00	
rater	*****			2.47	11.6	Wappinger Falls	46	-21	18.8	3, 66	25. 5	Minto	43	-23	8.9	0, 31	
D	50	-4	22, 6 22, 2	2. 77 1. 89	14.0	Warwick	50	— <u>17</u>	16.1	2. 13 2. 32	23, 0 19, 0	Napoleon New England	45 55	-30 - 3	13. 9 19. 3	1. 14 0, 90	
iwinsville	48	- 4	20.6	3, 09	20.0	Waverly	58	- 8	23. 0	1.81	9. 1	Oakdale	55	-25	20.6	0.95	ı
ford	46 57	-11	17. 7 24. 9	2. 01 3. 75	14.6 15.3	Wedgwood	48	-24	20, 4 17, 0	1.87 2.70	9, 0 18, 0	Park River	49	-24 -30	12. 4 7. 1	0, 23 0, 50	
lin	49	-10	18.6	2, 86	15.1	West Berne	48	-10	18.5	2.16	14. 0	Portal	40	-36	13. 2	1.00	
e Mountain Lake	54	-16	21.1	3. 30 2. 41	18. 0 12. 1	Westfield Windham	58 58	2	24.8	1.98	18.7	Power	45	-19 -27	13.8	0. 75 0. 25	
ekville	48	- 8	18.2	3, 88	23. 0	Youngstown	90	-20	20, 5	2, 20 1, 65	7.0	RollaRugby	40	-33	10.7	0.26	
ds Corners	50	3	23.8	3, 48 2, 32	19. 2	North Curolina,	er.	10	99.7	4 **	3.8	Sentinel Butte	54	-34 -24°	19. 9 14. 8°	0. 33 1. 00	
iwell	43	- 5	17.9	2.05	10.6	Brewers	65 66	12	38.7	4. 54 3. 26	8.0	Steele	44° 45	-16	14.80	0. 43	
e Vincent	42	- 6 - 3	16. 7 20. 8	1. 85 3. 26	18. 5 26. 3	Bryson City				4. 26	1.5	Wahpeton	47	$-20 \\ -32$	16. 2	0. 41 0. 20	
melvers Falls	44	-12	15, 0	1. 20	4.0	Chapelhill	70	18	38, 0	3. 38 4. 81	9, 0 1, 0	Walhalla	48	-32	11. 6 11. 2	0. 21	
tham	47 38	$\frac{-2}{-28}$	20.5	1. 46	14.5	Eagletown	62	20	38.1	5, 00	5. 2	Willow City	440	-33°	8. 6e	2.00	
ymans	90	-20	10, 4	2, 23	12.3	Edenton	67 75	20 22	40, 3	5, 80 2, 88	4. 0 0, 8	Wishek	42	-25	14. 0	2.00	
Spring Harbor				3, 88	33. 2	Goldsboro	74	22	39. 0	3. 41	1.2	Akron	61	4	26.0	2.62	
perstown	43	- 5	18.4	2. 49 2. 68	11.0 8.4	Graham	69	16	39. 4	3, 30	5. 4 3. 0	Amesville	63	- 9	30. 8	3. 52 1. 85	
chogue	48	9	27.2	6. 17	49. 0	Henderson	65	18	37.2	4. 53	. 5	Bangorville	60	5	27. 0	3.98	
alb Junction	43	-16	11.4	2, 50	10.0	Hendersonville Henrietta	64	14	39. 1 40. 6	3, 13 3, 51	3. 8 5. 0	Bellefontaine	59 62	- 2 - 4	25, 8 27, 5	3. 67 2. 70	
Ruyter	43	-6	19. 4	2.78	11.3	Horse Cove	62	12	39.0	6. 28	4.2	Bowling Green			24.6	2.16	
ton	48	- 5	22. 4	1. 62 3. 54	10. 0 18. 0	Hot Springs	70 60f	18 10f	42. 6 33. 4 ¹	*****		Bucyrus	60 62	-3	26. 0 28. 6	4, 50 3, 27	
ira	58	0	24.6	1.15		Kinston	69	20	40.8	2.82	T.	Cambridge	69	- 9	30. 4	4. 09	
etteville	46 50	$-21 \\ -10$	10. 4 20. 8	5, 00 2, 61	10.7	Lexington	591 68	144	38, 8#	4, 20 3, 60	14.5	Camp Dennison Canal Dover	62	- 2 - 6	30, 6 27, 4	3.51	
t Plain	47	-4	21.3	2. 11		Lincolnton	65	19	38.8	1.55	3.5	Canton	61	2	27, 2	2. 23	
riels	58 42	$-22 \\ -23$	20.0	3. 52 2. 30	25, 5 20, 5	Linville	59 70	9	33. 6 36. 6	3, 46 3, 13	7. 0 6. 5	Cardington Chillicothe	60	- 8 - 4	26, 2 29, 4	2, 87 3, 59	
sevoort				2, 86	17.0	Louisburg	70	19	38.3	3, 31	4.0	Circleville	63	- 4	29, 4	3, 56	
s Falls	43	-12 -12	16.2	2.03	12. 4 24. 0	Lumberton	76 64	22 24	42, 3 43, 2	2, 50 5, 23		Clarksville	67	$-\frac{2}{2}$	32. 2 30. 4	2, 78	
nfield	48	-10	17.3	3.05	13.5	Marion	66	16	40. 4	2, 94	3.0	Cleveland a	62	10	29. 2	2. 25	
nwich	49	-12 -17	16. 6 18. 6	2, 81 1, 93	11. 0 14. 1	Marshall	63 ⁴	14 ^d	37. 4 ⁴ 39. 5	1. 41 3. 13	1.5	Cleveland b	62 60°	10 - 6°	26. 6 27. 8°	2. 94 3. 22	
kness	44	-19	12.2	1.15	4.5	Monroe	75	18	40.6	3. 78	2.0	Coalton	63	11	31.1	3. 80	
tinville	50	-4	22. 4	2. 00 1. 96	9.6	Morganton	64	14	39. 6	2. 85 3. 78	5. 6	Colebrook	50	- 1	24.8	2. 35	
t	53	- 9	20, 8	3, 21	17.0	Murphy			*****	4. 60	1.1	Dayton b	62	-4	29, 3	4.16	
an Lake	52	-24	14.2	1.78	27.8	Nashville	741	181	39.11		7. 8 T.	Defiance	60	-10	25. 2	2. 44 3. 45	
estown	54		23. 6 22. 8	2. 08	12.0 14.6	Newbern	72 56	22 16	44. 8 35. 8	3. 94	T. 4.2	Delaware	61 61	- 5	26. 6 29. 6	2.84	
rsonville	47	-19	20.8	2.74	16.0	Pinehurst	73	22	42.0	2.70 .		Findlay	62	0	26. 0	2.40	
George	49		13.3 17.4	0. 97 2. 96	5.5	Reidsville	71 63	17 77	38. 8 38. 2	1. 61 3. 51	6.0	Frankfort	60	- 8	30. 4	2.97	
оу	50	-3	22, 3	2.81	21. 3	Rockingham	76	23	41.8	2, 38	T.	Fremont	62	- 6	26. 2	2.27	
rty efalls, City Res			18, 2 17, 5	2, 99 3, 01	15. 4 17. 5	Salem	63 70		37. 2 37. 4	3, 73	6.0	Granville			28, 2 28, 4	4. 62	
port	50	1	23. 6	1. 32 .		Saxon	62	12	36. 6	3. 57		Green	66	3	33.4	2.94	
ville	45	-19	13, 3	2. 74 1. 39	25, 8 5, 3	Scotland Neck	70		39. 1 40. 2	3, 56	5.0	Greenfield	62 65	- 7	30. 4 26. 0	3, 26 2, 21	
18			23. 5	2.84	24.0	SelmaSettle	711	201	41. 01	3. 10	7.7	Greenville	63	- 5	26.8	3. 93	
iletownonk Lake	46	- 3	22.4	2. 86	21, 1	SloanSoapstone Mount	72	21	44.2	2.74	T.	Hedges			25. 6 24. 9	2. 30 1. 52	
A	41		20. 4 10. 0	2. 27 1. 76	10.5	Southern Pines	71 80	21	38. 4 ⁴ 42. 6	4. 49 3. 80 .	5.0	Hillhouse	61	5	25, 6	1.96	
ark Valley				2. 29	14.0	Southport	67	24	47.8	2. 35		Hudson	58	1	24. 8	2.30	
Lisbon	02		18.6 13.8	2, 08	10.5	Statesville	67 75		38. 4 40. 0	3. 64 4. 48		Ironton	66 62		34. 6 29. 5	2, 99 4, 22	
- Anna	44		13.8	0. 87	6. 9	Washington	69	20	42.4	3. 12	T.	Killbuck	60	0	26, 4	3. 59	
Chathar									36. 4						29.4	3. 54	
chatham		-1	21.8	3. 16	19.5	Waynesville	59 73		37. 1	1. 08 3. 68	5.0	Lima			27. 3	3. 25	

Table II .- Climatological record of voluntary and other cooperating observers-Continued.

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

		mperat ahrenh			cipita- ion.			nperat hrenh			ipita- on.			nperat hrenh			ipitn- on,
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of show.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
South Chrolina—Cont'd. Society Hill Spartanburg Statesburg Statesburg Summerville Trenton Trial Walbaila Walterboro. Winnsboro Winthrop College Yemassee Yorkville South Dakota. Aberdeen Academy Alexandria Armour Asheroft Bowdle. Brookings Canton Cavite. Centerville Chamberlain Cheyenne Clark Clear Lake DeSmet Doland Elxpoint Fairfax Farmingdale Faulkton Frandreau Forestburg Fort Meade Gannvalley Grand River School Green wood Herreid Highmore Hotch City Howard Howell Ipswich Kidder Kindbal Leola Leslie Marion Mellette Menno Mil'bank Mitchell On-the-Trees Camp Pine Ridge	777 774 774 772 774 777 775 772 778 778 779 779 779 779 779 770 770 770 770 770	244 215 222 233 18 16 12 22 21 233 -21 1 -15 -12 24 -17 -20 21 12 -15 -16 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17	26. 4 18. 2 17. 9 19. 3 28. 0 19. 7 27. 4 16. 9 19. 6 17. 0 19. 6 17. 0 21. 8 18. 6 18. 2 19. 0 21. 8 19. 0 21. 8 19. 0 21. 8 19. 0 21. 5 18. 6 19. 2 21. 5 21. 5 22. 2 23. 2 24. 2 25. 2 26. 2 27. 4 27. 4 27. 4 28. 2 29. 29. 2 29. 29. 2 29. 29. 2 29.	Ins. 2. 49 4. 10 2. 32 1. 64 4. 26 1. 58 4. 47 1. 44 3. 70 3. 23 3. 30 1. 60 0. 35 0. 16 0. 14 0. 65 0. 09 0. 25 0. 59 0. 59 0. 50 0. 65 0. 50 0. 65 0. 7 0. 59 0. 54 0. 53 0. 38 0. 72 0. 51 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 53 0. 38 0. 72 0. 54 0. 55 0. 56 0. 57 0. 59 0. 54 0. 59 0. 54 0. 59 0. 54 0. 59 0. 54 0. 59 0. 54 0. 59 0. 54 0. 59 0. 54 0. 59 0. 54 0. 59 0. 59 0. 54 0. 59 0. 59 0. 54 0. 59 0.	T. T. 1.0 4.0 8.65 3.00 11.20 6.5 7.8 6.0 T. 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.	Tennessee—Cont'd. Isabella Jackson Johnsonville Jonesboro Kenton Kingston Lafayette Leadvale Lewisburg Loudon Lynnville McKenzie McMinnville Maryville Monterey Newport Nunnelly Palmetto Pope Rogersville Rotherwood Rugby Savannah Sewanee Silver Lake Springville Tazewell Tellico Plains Tracy City Trenton Tullahoma Walling Wildersville Yukon Tezus Albany Alvin Arthur Athens Austin Ballinger Beaumont Beeville Bigspring Blanco Boerne Bonham Booth Bowie Brazoria Brenham Brighton Burnet Channing Childress	69 70 71 68 66 66 70 70 67 70 68 70 67 70 67 70 67 70 67 70 67 70 70 67 70 70 70 70 70 70 70 70 70 70 70 70 70	16 19 14 16 11 18 17 15 12 12 12 12 12 12 12 12 12 12 12 12 12	40, 7 42, 8 40, 9 41, 5 41, 5 41, 5 41, 5 41, 5 41, 5 41, 5 41, 6	## 5.64 ## 6.40 ## 7.367 ## 7.43 ## 7.43 ## 7.55	## 1.1 1	Jefferson Jewett Junction Kaufman Kerrville. Kniekerbocker Kopperl Lampasas Lapara Liberty Llano Longlake. Longview Luling McKinney Mann Marlin Menardville. Mexia. Midland Mount Blanco Nacogdoches New Braunfels Orange Panter Paris. Pearsail Pecos Port Lavaca Quanahk Rhineland Riverside Rockisland Rockland Rockland Rockland Rockland Rockport Runge Sabinal San Marcos San Saba Santa Gertrude Sherman Sonora Sugarland Sulphur Springs Temple a Temple a Temple b Textine Trinity Tulia Tyler Victoria Waco Waxabachie Weatherford Wichita Falls	76 81 74 80 78 76 77 77 77 77 78 81 82 92 92 92 93 84 77 77 77 77 77 78 86 86 76 76 77 77 78 86 86 76 76 77 77 78 86 86 76 76 76 77 77 78 86 86 76 76 77 77 78 86 86 76 76 77 77 78 86 87 77 78 88 86 76 74	e 22 112 18 222 -13 18 222 12 16 222 17 7 22 16 25 26 19 25 25 26 19 25 26 17 17 22 12 12 12 12 12 12 12 12 12 12 12 12	48. 8 48. 4 49. 9 51. 8 47. 2 47. 3 45. 7 48. 6 44. 8 45. 7 48. 6 44. 8 49. 6 41. 7 49. 6 41. 7 49. 6 52. 4 49. 6 56. 8 56. 8 56. 8 56. 8 56. 8 56. 8 56. 8 56. 8 57. 9 58. 1 58. 1 58. 1 58. 1 58. 2 58. 1 58. 2 58. 3 58. 4 58. 5 58. 8 58. 8 58	### ### ### ### ### ### ### ### ### ##	0. 3. 0 3. (1
Ramsey Ramsey Redfield. Silver City Spearfish Stephan Tyndall Vermillion Wentworth Wentworth Wolsey Fennessee. Andersonville Ashwood Renton Bluff City Bolivar Bristol Brydstown Carthage Catlettsburg Cedar Hill Celina Charleston Clarksville Clinton Covington Dovers Dovers Dovers Dovers Dovers Franklin Grace Grac	53 53 53 63 47 59 65 51 55 60 70 72 66 67 66 67 67 66 67 70 70 70 65 68 65 65 65 65 65 65 65 65 65 65 65 65 65	213 16 15 17 14 11 12 18 14 9 17 16	17. 4 16. 6 20. 5 20. 5 20. 18. 1 30. 0 22. 18. 1 24. 9 25. 0 41. 6 41. 8 40. 8 40. 6 41. 8 40. 6 41. 2 40. 7 41. 0 40. 7 41. 0 39. 8 39. 8 39. 8 39. 8	0. 30 0. 37 0. 41 0. 66 0. 60 0. 22 0. 53 0. 34 0. 53 6. 54 3. 55 3. 80 5. 41 6. 51 6. 51 6. 69 6. 69 6. 69 6. 69 6. 72 6. 75 6.	3. 0 3. 0 3. 0 4. 0 4. 0 6. 0 7. 0 7. 0 4. 3 3. 4 5. 2 0. 4 T. 4. 0 1. 3 0. 2 T. T. T	Clarksville Clayton ville Coleman College Colorado Colombia Colombia Comanche Corsicana Cotulla Crockett Cuero Dallas Danevang Decatur Dialville Duval Estelle Fort Brown Fort Clark Fort Davis Fort Ringold Fort Stockton Fredericksburg Gainesville Georgetown Grabam Grapevine Greenville Hale Center Hallettsville Haskell Hearne Hempstead Hewitt Hillsboro Hondo Houston	754 777 82 774 79 82 82 82 82 83 755 81 776 83 776 778 83 777 778 83 777 78 83 777 83 84 87 87 88 88 88 88 88 88 88 88	17 29 19 15 25 25 22 28 22 29 24 18 23 23 22 24 16 19 20 18 18 16 6 27 14 21 19 20 18 16 6 27 14 21 19 28	44.5 d 4.4 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5	1. 14 0. 63 0. 50 0. 50 6. 63 3. 38 0. 20 0. 50 8. 11 6. 66 0. 74 2. 50 0. 53 1. 26 0. 53 1. 26 0. 53 1. 26 0. 50 0. 50	0.5 T. 0.5 T.	Utah. Alpine Aneth Beaver Blackrock Callao Castledale Castledale Coyoto Deseret Emery Ex. Farm Farmington Fillmore Fort Duchesne Frisco Garrison Giles Government Creek Grayson Green River Heber Hender Hite Huntsville Ibapah Indianola Kanab Kelton La Sal Levan Logan Manti Marysvale Meadowville Millville Minersville Mooab	5770 555 555 558 566 587 65 54 552 631 559 554 552 651 554 555 65 65 65 65 65 65 65 65 65 65 65 65		31, 5 31, 5 27, 4 22, 27, 4 22, 36, 0 31, 2 26, 7 36, 0 31, 2 31,	1. 33 0. 28 0. 40 0. 55 0. 05 1. 50 1. 00 0. 77 0. 40 0. 77 0. 95 0. 62 0. 05 1. 157 0. 25 2. 12 0. 20 0. 30 0. 10 0. 30 0. 10 0. 30 0. 10 0. 30 0. 40 0. 40 0. 40 0. 77 0. 22 0. 22 0. 62 0. 62 0. 62 0. 62 0. 63 0. 05 1. 91 0. 30 0. 40 0. 30 0. 40 0. 40 0. 50 0. 62 0. 50 0. 62 0. 50 0. 50 0	T. 4. 6. 5. 5. 6. 6. 10. 6. 6. 13. 6. 6. 13. 6. 6. 12. 5. 6. 8. 8. 8. 17. 6. 8. 6. 11.

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

		mpera ahreni			cipita- on.		Ter (Fa	mperat ahrenh	ure. elt.)		ipita- on.			mperat threnh		Preci	ipit on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total denth of
Utah—Cont'd.	55	- 8	28.0		Ins. 19.0	Washington—Cont'd.	o 52	-1	o 30. 3	Ins. 2.97	Ins. 13. 7	West Virginia—Cont'd. Wheeling b	66	0	34.6	Ins. 1. 39	I
Kephi		0	30. 0	1. 10	9, 5	Danville	45 59	7 16	29, 2 36, 8	1.35 2.59	12.7	Williamson	69	12	37. 6	3, 30	
anquitch				0 20	2.0	East Sound	57	25	41.7	5, 76		Amherst	44	-15	17. 6	1.50	1
arowan	55	- 7	29. 6	0, 79	9.5	Ellensburg	48 51	15 13	30, 8	1.44	9, 0 6, 0	Antigo	45	$-11 \\ -7$	16, 6 20, 4	2. 70 1. 74	1
into	60	- 5		0.17	2.0	Ephrata	54	26	41.0	8, 09	T.	Appleton Marsh	46	-17	18. 4	2.17	1
lateauromontory*1	63 55	-15		0.65	6.5	Granite Falls				7, 36 0, 61	2.0	AshlandBarron	48	-12	15. 2	1. 68 0. 90	
070	0.6	- 6	29.8	1.05	8.6	Ilwaeo	59	82	45. 2	14.60		Beloit	49.	-15	22. 2	2, 51	1
inchindolph	66	- 3	31. 2	0. 10	4.0	Lacenter	54 48	24 13	40. 6 32. 2	8, 03 1, 87	0.5 20.0	BerlinBrodhead	50	$-11 \\ -24$	18.4 21.3	3, 00	1
chfield	616			0.80	8.0	Lester	48	18	36.0	7.74	13.5	Burnett	45	-14	19.4	2.01	1
ckville	81 67	16 10		0. 29		Mottinger Ranch	48 59	19 23	34. 4	1. 13	1. 7	Butternut	49	-20 -11	14. 6 19. 5	2. 48 2. 78	1
t Air	54	2	30. 8	0. 29	3.0	Mount Pleasant	60	31	41.0	8.02	T.	Darlington	52	-29	18.4	1. 42	1
pio	61 52	-21 -18	29. 4 23. 8	1. 99	15. 0 9. 0	Moxee	55 45	12	32. 6	0.77 2.18	1.3 21.8	Easton	41	$-22 \\ -12$	17. 3 18. 8	1.76	
dier Summit	50	-20	18. 0	0, 66	10.0	Odessa	51	15	33. 6	1. 31		Florence	48	- 8	15.8	2.19	1
istle	57 55	-20 5	24.8	1.50 0.65	15.0	Olga	59 54	29 24	43, 1	4, 10 8, 32	T.	Fond du Lac	45	$-18 \\ -15$	19.3 17.8	1, 71	
pic	58	1	31. 9	0.10	1.0	Olympia Pinehill	56	22 15	37.7	4.63	1. 5	Grand River Locks				1.18	
h Lake				0, 53	4.0	Pomeroy	55 53	13	36. 0 43. 7	2.14	2.0 3.5	Grantsburg	50 42	-19 -20	17. 4 18. 0	1.50 2.20	
Vermont,	40	-14	16.0	1.63	8.5	Pullman	48	32 16	34. 2	2.36	3.7	Hancock	46	-20	14.2	1.14	1
endish	46	- 9	15.8	1.77		Rattlesnake	534	144	32, 3d	1. 67 1. 79	2.5	Hillsboro	49	-24	18. 1	2, 30 2, 40	
lseattenden	42	-13	11.6	1. 36	16.0	Republic	45	1	27.8	1.52	13.0	Koepenick Lancaster	48 51	-17 -15	16. 2 19. 4	1.87	1
wall	44	-11	15.8	1.49	6.4	Ritzville (near)		10	99 0	1.58 2.34	0. 5 4. 2	Manitowoc	43	-3	22, 4	2, 40	
sburg Falls	47 32	-33 -19	12.0 14.0	3, 11	13, 5 43, 3	RosaliaSedro	55	18 28	33 2 41.5	5. 39	3.0	Meadow Valley	48	$-17 \\ -11$	17. 6 18. 4	1, 48 2, 90	
chester	45	- 8	17. 2	2. 13	9. 5	Snohomish	52	25	42.0	6, 83	T.	Menasha				1.41	
risville	44	$-22 \\ -14$	11. 2	2, 60 2, 05	21. 7 11. 0	Snoqualmie Southbend	52 70	27 30	41. 2 43. 6	8. 82 11. 14		Minoequa	47 50	$-15 \\ -8$	16. 2 18. 4	2, 25 2, 65	
Johnsbury	42	-22	11.8	1.63	12. 2	South Ellensburg	44	16	31.8	1. 26	13.0	Neillsville	42	-20	18. 2	3, 31	
lsdstock	46	-9 -16	14. 6 13. 4	1, 93	11. 5 19. 0	Sprague	56	14	33. 8	2, 90 0, 55	2.0 T.	New Richmond	44	$-15 \\ -10$	18. 2 18. 4	1. 93 0. 50	
Virginia.						Trinidad	52	12	32.6	1. 25	12.5	Oconto	47	- 7	19.5	1. 75	
landboursville	63 62	_ 1	32, 2	3. 16	10.0 11.5	Twisp Union	46 54	24	25, 6 40, 4	2, 64 15, 36	31.0	OsceolaOshkosh	48	$-12 \\ -8$	16. 8 18. 9	0, 50 2, 16	
ford	65	11	34. 4		6.5	Vancouver	58	27	42.2	6, 82		Pine River	48	-13	19, 3	1.66	1
stone Gap	65 60	12	37. 4 33. 6	5. 12 3. 12	6.5	Vashon Wahluke	54	32 15	43. 1 34. 8	6. 08 0. 74	T.	Portage Port Washington	47 50	-14 - 7	20. 2 19. 4	1.82 2.40	
hanan				3, 00	0.7	Waterville	49	5	27.9	1. 43	13. 0	Prairie du Chiena	54	-16	24. 6	2, 40	1
kinghamkes Garden	65 58	6	33. 9	4.38	1.0	Wenatchee (near)	48	10	29. 3 29. 1	2, 25 1, 68	20. 1 6. 3	Prairie du Chien b Prentice	49	-17	17.7	2, 09 1, 83	
aville	70	10	37. 4	4.71	7.0	Zindel	534	20 ^d	38. 44	1. 25		Racine	50	5	25. 4	1.80	
rlottesville	65	15	37. 0	2, 82 3, 55	7. 0 6. 0	West Virginia. Bancroft	67	2	36, 0	1.82	7.5	Sheboygan Spooner	47	-16	24. 0 15. 6	1.70 0.49	1
ımbia	63	0	32.4	3, 79	8, 0	Bayard	60	- 8	27.4	3.55	16.1	Stanley	48	-14	17. 2	1.63	1
Enterpriseville	58	0	31. 4	2, 38 3, 02	7. 0 2. 5	Bens Run	64	- 6	32. 4 28. 0	3. 02	13. 0 13. 0	Stevens Point	48	-19	19.9	1. 00 1. 95	1
widdie	69-	20	33, 80	5. 18	6. 2	Bluefield	62	9	34.9	0.95	8.0	Valley Junction	48	-17	19. 4	2. 82	
Knob	59 58	10	36. 4 33. 8	5, 95 1, 60	6, 0 5, 3	Buckhannon	69	- 5 - 7	33. 2 28. 6	3.87	18, 0 13. 0	Viroqua Watertown	46	- 9 -14	19. 0 18. 8	2. 40 2. 30	
nville lericksburg	62	0	31.6	3, 85	14.2	Burlington	66	-12	31.6	3. 03	13, 0	Waukesha	49	- 1	21. 4	1. 38	
apton	63 59	- 19 - 1	37. 6 31. 0	6. 36 2. 54	6.0	Central	65 70	-13	31.8	3. 37 2. 73	9. 2	Wanpaca Whitehall	43	-13		1. 38	
Springs			31.0	2.80	3.0	Charleston	65	-11	32. 2	1.63	8.0	Wyoming.	58	-17	19. 4	0. 82	
hoe				2. 52		Cuba	67 65	- 8 8	32. 1 36. 0	2. 91 3. 72	12.0	Afton	52 52	-24	22.8	1. 03	
ington	61	- 7	33. 0 26, 8	2.71	7.8	DoaneElkhorn	66	12	36. 4	5. 63	3.8	Alcova Basin	53	$-12 \\ -15$	29. 0 24. 6	0, 11	
owell	58	- 9	29, 0	1. 52 4. 46	12.8 2.0	Fairmont	70	-ii	34.4	2, 98 2, 95	9. 5 11. 0	Bedford Border	46 46	-28 -32	22. 0 18. 1	1.64 0.58	
dota port News	65	18	38.4	5, 86	6.3	Glenville	71	- 3	32.8	2, 93	11.3	Buffalo	62	-15	25. 6	0. 25	
rsburg	62	10	35. 2	5. 24 1. 20	10.8	Green Sulphur Springs	67 69	- 4	32. 4 34. 0	1, 69 2, 45	1.0	Cambria	52	-12	26.4	0, 90	
fordrton			*****	2.03	8.0	Hamlin				2.58	15. 1	Daniel	50	20	17.6	0.55	
noke	65	9	37. 4	3. 21 3. 43	7. 8 6. 5	Hinton	65	7	34. 4	2. 87 3. 66	3, 5	Embar	56 51	$-12 \\ -20$	27. 4 24. 0	0. 70 0. 53	
	65	11	35. 8	3, 16	4.2	Leonard	53	6	29.4	5. 33	12.0	Fontenelle	48	-28	18.2	0.75	
andoah				1. 20 5. 75	4. 2 5. 0	Logan	60 70	13	32. 2	3. 27 4. 06	10.0	Fort Laramie	62 57	-13	30, 8 25, 2	0. 21 0. 18	
rs Ferry	68	8	36. 4	4. 42	8.5	Lost Creek	65	-16	28.4	2.77	6. 5	Gillette	50	-12	27. 3	0. 50	
nton	62	1 2	34.0	2.42	7.0	Mannington	69 51	-14	31. 3 27. 7	2. 54	9. 0	Granite Canyon Green River	52.	-180	22.8	0.30	
nens City	62 65 ^h	6h	30, 8 31, 4 ^h	3. 77 2. 58	15. 0 9. 0	Martinsburg	65	- 1 - 8	32.4	2.70	11.0	Griggs	61	-31	27.6	0.92	
erson	65	8	33. 2	4. 32	14.1	Morgantown	70	1	31.6	2.56	9.0	Hyattville	60	-20	29, 2	0.60	
iamsburgdstock	65 62	9	35. 6 30. 9	7. 45 2. 73	11.8 9.4	Moundsville New Cumberland	67 64	- 6 - 5	33. 0 28. 3	2. 99	11.1	Iron Mountain Kirtley	56 60	-2 -10	28. 0 27. 4	0.05	
neville	65	11	35. 2	2.58	1.6	New Martinsville	66	- 3	32.6	3. 09	10.5	Laramie	53	-11	26. 2	0.08	
Washington,	57	30	41.8	11.89	2.0	Nuttallburg Parsons	78 65°	10 - 6°	40. 6 29. 8°	0. 87 4. 40	13.0	Leo Little Medicine	47	$-21 \\ -18$	24. 2 19. 2	0, 35	1
ortes				2.54		Philippi	71	-14	31.6	4. 29	10.0	Lolabama Ranch	47	-10	24.4	0. 01	
ordngham	57	26	44.0	11, 25 3, 11	17. 0 T.	Pickens Point Pleasant	68	2	29. 8 36. 1	5. 91 2. 88	16. 0 9. 0	Lusk	60	-12 -15	26. 7 32. 1	0. 30 T.	*
ne	56	26	41. 9	8, 29	2.0	Princeton	62	8	35. 2	5.90	9. 5	Meeteetse	47	- 9	21.9	0.10	
nonnia	52 45	27 13	40. 3 30. 8	11.86	11.1	Romney	60	- 6	31. 2	2. 72 4. 26	10. 0 12. 4	Moore	56 54	$-\frac{1}{-21}$	29, 9 25, 3	0, 12	
ralia	61	27	42.4	7. 15	T.	Ryan		-14	33. 1	2. 52	10.8	Phillips	67	- 5	33. 1	0. 20	
rbrook	56 57	14 24	33. 0 39. 9	2. 42 8. 29	10.0	Smithfield	69 68		31. 5 34. 9	3. 00 2. 00	11. 5 11. 6	Pine Bluff	68 62	-4 -17	31. 8 24. 1	T. 2.04	7
rwater	53	29	41.4	20, 92	9, 0	Terra Alta	60	- 7	34. 0	4, 37	16. 2	Rock Springs	45	- 7	24. 2		
Elum	50 45	17	32. 2	3, 89	19.0	Uppertract		- 5	32. 6 36. 3	2.51	7. 0 10. 2	Sheridan	67	-12 -28	28. 8 16. 8	0, 60	
ille	46	3	29. 6 27. 0	1. 90 2. 33	17. 8 19. 9	Wellsburg	64	1	28. 0	3. 05	10. 5	South Pass City	68 .		****	2, 55	2
peville	55	30	43, 6	2.36	T. 10.0	Weston	70		33. 8	4. 16 .		Thayne Wells		-30	20.3	1.38	1

TABLE II.—Climatological record of voluntary and other cooperating observers. Late reports for November—Continued.

		mpera ahreni			cipita- ion.			mperat ahrenh			eipita- on.
Stations.	Maximum.	Minimum,	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.
Wyoming-Cont'd.		0	0	Ins.	Ins.	Alaska-Cont'd.	0	0	0	Ins.	Ins.
Yellowstone Park (C. H.).	42	-26	15, 4	1.44	30, 5	Kenai	39	-21	17.6	0, 48	3.2
Yellowstone Pk. (Foun'n)				2, 30	23. 0	Wood Island		12	34. 7	. 5. 20	
Yellowstone Pk. (Lake)	40	-18	18.0	1, 60	16.0	Arizona.					
Yellowstone Pk. (U. Ba'n)	43	-32	18.4	2.80	30, 5	Alpine				0.00	
Yellewstone Pk. (Soda B.)		-27	16.9	1.80	16, 0	Pinal Ranch				0, 00	
Porto Rico.	-	-		1.00	200.0	Arkansas.				0,00	
Adjuntas	88	50	70.5	0.90		Batesville	79	23	49, 8	0.36	
Aguirre		63	78. 4	0. 93		California.			200.00	0.00	
Aricebo		55	74.1	2.65		Meadow Valley				4, 46	4.0
Bayamon		50	75.5	2, 60		San Miguel Island				0. 10	
Caguas		56	72.9	2, 58		Georgia,			*****	01.40	
Canovanas	84	66	76. 2	3, 20		Bainbridge	77*	20%	54.30	3, 40	
Corozal		60		2,50		Iosca.		-	01.0	0. 40	
Fajardo		62	76, 8	2.73		Earlham	72	7	40, 2	0, 13	T.
Guanica		58	75. 0	0.55		Fayette		7	35. 9	T.	T.
Hacienda Colosa		58	75, 1	1.94		Greenfield		8	42.1	0. 24	0.3
Hacienda Josefa		00	****	1.00		Lenox	68	11	42.2	0, 11	T.
Humacao		72	79, 9	8. 75		Ottumwa		16	44.6	0. 13	
Isabela	87	63	75. 0	1. 70		Kansas.	10	10	**. 0	0. 10	
Juana Diaz	92	66	79.6	T.		Anthony				0.15	1.5
La Carmelita	85	60	73. 6	8, 42		Madison	76	13	46, 4	0. 13	0.5
Lares	87	55	71. 8	3, 46		Viroqua 1	74	12	45. 2	T.	T.
Manati	92	60	75. 6	1.41		Minnesota.	1.8	14	40, 2	1.	4.
	90	64	77. 6	1, 10		Two Harbors	70	- 5	35, 6	0,00	
Maunabo						William Disco	68				0.0
Mayagues	92 91	58	76. 2	3, 80 4, 90		Willow River	68	- 8	34. 6	0.30	0.9
Morovis	91	65	74.1	0, 05						0.00	
Pio Planco	87	62	78.0	3, 07		New Hampshire,	*****	*****		0.00	
Rio Blanco	01	62	75, 8	2, 54		Jefferson Highland				1 20	16.0
San German	88	60	75.1	5, 95		New Mexico.		*****		1.38	10, 0
	87		73. 0				70	0	49.0	T.	T.
San Lorenzo	84	56 59		2. 01		Dorsey	70	8	42. 9	T.	4.
San Salvador	87	60	71.6			New York.	54		99.0	0.70	4.5
Santa Isabel	95	70	75. 3	0.52		Caldwell	0.4	8	32. 9	0. 70	4.5
Vieques			78. 6	1.88			50	**	00.0	0.00	0.4
Yauco	83	63	74. 2	1.58		Pawtucket	58	11	36, 6	2. 20	0.1
New Brunswick.	ATT			0.01	10.0	Texas.	22	90	80.0	0.00	
St. John	43	- 6	15. 5	2.04	12.3	San Marcos	77	30	59. 3	0. 33 1. 10	
Late reports for	or No	vemb	er, 19	04.		Utah. Blacksmith Fork			****	0.00	
-	-		-	-		Porto Rico. Bayamon	90	60	77. 2	2. 45	
Alaska.				Ins.	Ins.			400		4, 10	
	43	17	31.6				89	36	79.8	2 01	
Coal Harbor	43	17	31.6	Ins. 2.83	Ins. 3.2	Mezico. Vera Cruz	83	36	72.8	3.01	

EXPLANATION OF SIGNS.

- EXPLANATION OF SIGNS.

 *Extremes of temperature from observed readings of dry thermometer.

 A numeral following the name of a station indicates the hours of observation from which the mean temperature was obtained, thus:

 1 Mean of 7 a. m. + 2 p. m. + 9 p. m. + 9 p. m. + 4.

 *Mean of 8 a. m. + 8 p. m. + 2.

 *Mean of 8 a. m. + 8 p. m. + 2.

 *Mean of 6 a. m. + 6 p. m. + 2.

 *Mean of 7 a. m. + 2 p. m. + 2.

 *Mean of readings at various hours reduced to true daily mean by special tables.

 The absence of a numeral indicates that the mean temperature has been obtained from daily readings of the maximum and minimum thermometers.

 An italic letter following the name of a station, as "Livingston a," "Livingston b," indicates that two or more observers, as the case may be, are reporting from the same station. A small roman letter following the name of a station, or in figure columns, indicates the number of days missing from the record; for instance, "a" denotes 14 days missing.

 No note is made of breaks in the continuity of temperature records when the same do not exceed two days. All known breaks of whatever duration, in the precipitation record receive appropriate notice.

CORRECTIONS,

October, 1904, Minnesota, Angus, make mean temperature 44.9 instead of 44.8; Luverne, make total precipitation 5.13 instead of 5.63. November, 1904, Colorado, Fort Morgan, make total precipitation 0.05 instead of T; Trinidad, make total precipitation 0.05 instead of T. California, Georgetown, make total precipitation 2.53 instead of 2.05.

Table III.—Resultant winds from observations at 8 a. m. and 8 p. m., daily, during the month of December, 1904.

	Comp	onent di	rection f	rom-	Result	ant.		Comp	onent di	rection i	rom-	Result	ant.
Stations.	N.	S.	E.	w.	Direction from—	Dura- tion.	Stations.	N.	8.	E.	w.	Direction from-	Dura-
New England,	Hours.	Hours.	Hours.	Hours.	0	Hours.	North Daketa,	Hours.	Hours.	Hours.	Hours.	0	Hours
astport, Me	29 27	5 12	6	36 39	n. 51 w. n. 69 w.	38 42	Moorhead, Minn	28 18	20 17	11 21	17 20	n. 37 w. n. 45 e.	1
ortland, Me	19	3	3	14	n. 34 w.	19	Devils Lake, N. Dak		20	12	24	n. 85 w.	1
ncord, N. H. †	29	26	7	9	n. 34 w.	4	Williston, N. Dak	17	23	16	24	s. 53 w.	1
ston, Mass		13 8	12	36 33	n. 68 w. n. 56 w.	34 25	Upper Mississippi Valley. Minneapolis. Minn.*	12	12	5	7	w.	
ock Island, R. I	25	10		32	n. 57 w.	25 28 11	St. Paul, Minn	24	23	12	15	n. 72 w.	
ock Island, R. I	12	5	9 7	16	n. 52 w.	11	La Crosse, Wis. †	13	12	5	7 22	n. 63 w.	
ovidence, R. I		7 18	6 2	31 22	n. 46 w. n. 55 w.	35 24	Madison, Wis	22 21	16 16	13 21	20	n. 56 w. n. 11 e.	1
w Haven, Conn		12	12	24	n. 31 w.	23	Davenport, Iowa	18	13	17	23 25	n. 50 w.	
Middle Atlantic States.							Des Moines, Iowa	21	18	14	25	n. 75 w.	1
bany, N. Y	28 10	21	9 7	14 14	n. 36 w. n. 45 w.	10	Dubuque, Iowa	26 21	16 18	12 16	23 24	n. 48 w. n. 69 w.	1
bany, N. Ynghamton, N. Y.†w York, N. Y.	28	7	10	32	n. 46 w.	30	Cairo. Ill	19	28	5 8	19	s. 57 w.	
rrisburg, Pa	15	12	16	30	n. 78 w.	14	La Salle, Ill	11	7	8 15	14	n. 56 w.	
iladelphia, Pa	27 22	13 19	10 16	27 24	n. 51 w. n. 69 w.	22 8	Springfield, Ill	21	22	7	17 13	s. 63 w. n. 72 w.	
antic City, N. J	25	9	11	32	n. 53 w.	26	St. Louis, Mo	18	23	21	15	s. 50 e.	
anton, Pa antic City, N. J pe May, N. J Itimore, Md	30	12	8	25	n. 43 w.	25	Missouri Valley.	10	9	7	9	n 69 m	
shington, D. C.	25 24	13 20	12 11	26 19	n. 49 w. n. 63 w.	18 9	Columbia, Mo. *	24	21	15	20	n. 63 w. n. 59 w.	
e Henry, Va.†	11	12	5	10	s. 79 w.	5	Kansas City, Mo	17	23	13	22	s. 56 w.	
e Henry, Va.† nchburg, Va unt Weather, Va.	19	18	16	30	n. 86 w.	14	Topeka, Kans,*	12	9 22	13	9	n. 34 w.	
rfolk, Va	20 28	14 16	16 10	30 23	n. 67 w. n. 47 w.	15 18	Comaha, Nebr	21	23	12	21	n. 63 w. s. 77 w.	
hmond, Va	24	20	6	25	n. 78 w.	19	Valentine, Nebr	19	11	10	33	n. 71 w.	
theville, Va	6	9	15	37	s. 82 w.	22	Sioux City, Iowa †	11	13	5	8	8. 56 W.	
South Atlantic States.	26	20	11	18	n. 49 w.	9	Pierre, S. Dak Huron, S. Dak	19 22	8 23	29 18	18 17	n. 45 e. s. 45 e.	
riotte, N. C	16	21	18	22	s. 39 w.	6	Yankton, S. Dak. +	11	9	9	8	n. 27 e.	
ieville, N. C. Itteras, N. C. Iteras, S. C. Iteras, S. C. Iteras, S. C.	31	9	10	26	n. 36 w.	27	Northern Slope,	**	40	**	0.4		
mington N C	24 24	14	11 16	25 29	n. 54 w. n. 43 w.	17 19	Havre, Mont	15 18	12 18	14 11	34 25	n. 81 w. w.	
rleston, S. C	19	11	15	28	n. 58 w.	15	Helena, Mont	12	21	3	42	s. 77 w.	
umping C. Cereses eres eres eres eres	10	16	19	26	W.	7	Kalispell, Mont	11	15	4	46	s. 85 w.	
gusta, Ga	17 18	16	16 13	30 30	n. 86 w. n. 74 w.	14 18	Rapid City, S. Dak	20 32	9 5	9	34 38	n. 66 w. n. 52 w.	
annah, Gaksonville. Fla		13 17	13	22	n. 61 w.	10		24	16	3 7	30	n. 71 w.	
ksonville, Fla	-						Yellowstone Park, Wvo	8	44	4	17	s. 20 w.	1
iter, Fla	28 32	13	13 30	26 9	n. 41 w.	20 31	North Platte, Nebr	14	16	9	34	s. 85 w.	:
West, Flad Key, Fla. †	15	6	15	4	n. 42 e. n. 51 e.	14	Denver, Colo	18	31	8	12	s. 17 w.	1
npa, Fla		10	20	18	n. 6 e.	19	Pueblo, Colo	22	17	16	23	n. 54 w.	
Eastern Gulf States.			10	ne		10	Concordia, Kans	21 23	26 17	9	19 23	s. 63 w.	1
anta, Ga	21 12	14	16 6	26 12	n. 55 w. n. 63 w.	12 7	Dodge, Kans	26	21	14	15	n. 63 w, n. 11 w,	1
sacola, Fla.†	14	4	8	10	n. 11 w.	10	Oklahoma, Okla	26	21	8	20	n. 67 w.	1
mingham, Ala. †	6	8	9	13	s. 63 w.	4	Southern Slope.	**	33	10	10	- 10 -	
bile, Alantgomery, Ala	22 14	22 20	12 18	18 24	w. s. 45 w.	6	Abilene, Tex	15 20	24	12	18 30	s. 18 w. s. 82 w.	1 2
ridian, Miss. †	11	7	7	16	n. 66 w.	10	Southern Plateau,						
ksburg, Miss	16	26	18 18	16	s. 11 e.	10	El Paso, Tex	23 41	2 5	14 28	34	n. 44 w.	4
Western Gulf States.	25	18	10	15	n. 23 e.		Santa Fe, N. Mex. Flagstaff, Ariz.	27	8	13	20	n. 30 e. n. 20 w.	2
eveport, La	15	24	21	19	s. 13 e.	9	Phoenix. Ariz	11	10	38	14	n. 88 e.	5
t Smith, Ark	13	9	26 12	23 24	n. 37 e.	5	Yuma, Ariz	40 22	6 18	15 14	8 24	n. 12 e.	1
le Rock, Arkpus Christi, Tex	17 32	23 15	16	9	s. 63 w. n. 22 e.	13 18		22	10	14	24	n. 68 w.	
t Worth, Tex	16	28	4	26	s. 61 w.	25	Middle Plateau. Carson City, Nev	18	19	19	19	8.	
veston, Tex	24	21	16	11	n. 59 e.	6	Winnemucca, Nev	26	15	24	17	n. 32 e.	1
Antonio, Tex	17 25	25 20	14	7 18	s. 14 e. n. 39 w.	8	Modena, Utah	7	1	17	39	n. 75 w.	2
lor, Tex. †	11	13	5	8	s. 56 w.	4	Salt Lake City, Utah	25 31	12 12	19 17	26 17	n. 28 w. n.	1
Ohio Valley and Tennessee.		-		04	- 00			01	1.0	4.	**	и.	,
ttanooga, Tenn	17 19	22 25 24 29	14	24 29	s. 63 w. s. 75 w.	11 23	Northern Plateau. Baker City, Oreg	10	31	27	15	s. 30 e.	2
nphis, Tenn	18	24	12	20	s. 58 w.	10	Boise, Idaho	18	24	27 12	22 7	s. 59 w.	1
hville, Tenn	16	29	9	20 10	s. 40 w. s. 37 w.	17	Lewiston, Idaho †	3 2	6	16 29	22	8, 72 e. 8, 22 e.	
ington, Ky.†isville, Ky.	17	15 25	10	23	s. 58 w.	10 15	Spokane, Wash	12	30	15	19	8. 22 e. 8. 13 w.	
nsville, Ind. †	9	13	6	9	s. 37 w.	5	Walla Walla, Wash	8	41	8	12	s. 7 w.	
anapolis, Ind	24	21	13 19	17 26	n. 53 w.	5 7	North Pacific Coast Region.						
cinnati, Óhioumbus, Ohio	18	19 23	15	28	s. 82 w. s. 53 w.	10	North Head, Wash	7	21	31	12	s. 54 e.	
sburg, Pa	25	16	13	27	n. 57 w.	17	Port Crescent, Wash.*. Seattle, Wash.	10	14	15 35	7 5	s. 45 e. s. 60 e.	
sburg, Pa kersburg, W. Va ins, W. Va	24	20	5	21	n. 76 w.	16	Tacoma, Wash	6	27 39 23 25	10	29	s. 60 e. s. 30 w.	
Lower Lake Region.	17	14	0	41	n. 86 w.	41	Tatoosh Island, Wash	1	23	29 22 14	17	в. 29 е.	
falo. N. Y	11	14	19	28	s. 72 w.	10	Portland, Oreg	10	25 28	22	19 19	s. 11 e.	1
rego, N. Y hester, N. Y	14	31	18	14	s. 13 e.	18	Roseburg, Oreg	14	28	14	19	в. 20 м.	1
hester, N. Y	6	23	13	34	8. 51 W.	27	Middle Pacific Coast Region.	19	96	16	14		
, Pa	17 15	20	11	21 23	s. 51 w. s. 52 w.	13 11	Eureka, Cal	12 31	26 10	16 20	14 19	s. 8 e. n. 3 e.	
eland, Ohio	17	23 25 22 27	16	20	s. 22 w.	11	Red Bluff, Cal	28 21	17	19	14	n. 24 e.	1
lusky, Ohio †	7	10	6	17	s. 75 w.	11	Sacramento Cal	21	22 7	24	9	s. 86 e.	1
edo, Ohio	22 22	20 19	11	25 24	n. 82 w. n. 73 w.	14	San Francisco, Cal	31 14	7 7	15	20 14	n. 12 w. n. 55 w.	2
Upper Lake Region.		19		1	d. 10 W.	- 11	Point Reyes Light, Cal.*Southeast Farallon, Cal.*	18	3	8	11	n. 11 w.	1
ena, Mich	17	14	10	32	n. 82 w.	22	South Pacific Coast Region,	-					
naba, Mich	25	. 13	8	33	n. 64 w. s. 23 e.	28	Fresno, Cal	28	16	15	19	n. 18 w.	1
nd Rapids, Mich.	16 12	23 5	10	16 11	s. 23 e. n. 8 w.	8 7	Fresno, Cal Los Angeles, Cal	25	10	21	25	n. 15 w.	1
ighton, Mich.†	14	17	9	33	s. 83 w.	24	San Diego, Cal	25 40	10	23 11	20 10	n. 11 e.	1 3
	11	23	15	27	s. 45 w.	17		40	9	11	10	n. 2 e.	3
lt Ste. Marie, Mich	18	15 17	31 15	11 27	n. 81 e. n. 85 w.	20 12	West Indies Grand Turk, W. I. †	5	3	25	2	n. 85 e.	2
waukee, Wis	21	11	9	34	n. 68 w.	27	Hamilton, Bermuda	21	16	7	30	n. 78 w.	2
waukee, Wis en Bay, Wis	24	22	7	26	n. 84 w.	19	Havana, Cubat	8	7	20	2	n. 87 e.	1
uth, Minn	20	15	8	36	n. 80 w.	28	San Juan, Porto Rico	1	35	34	5	s. 41 e.	4

TABLE IV.—Thunderstorms and auroras, December, 1904.

States.	No. of tations.		1	1	2	3	4	5	6				9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	To	
Llabama	60	T.																		1	1							1		1	12	2				18	-
rizona	56	T.				2		***			i		*** *	***		****				****		****	****		****	****	1	****								4	0
rkansas	57	A. T.			2	***						-										****						2		2	1					0 7	,
alifornia	167	A. T.				***							1		2																	****				0)
olorado	70	A. T.		-																****					****		****		****	***						0)
onnecticut	21	A. T.																1			***	****	****		****		***	****	****	****	****	****	***	***		0	1
elaware	5	A. T.														****	****	****	****			****					****	****		****	****	****	****	***	****	0)
st. of Columbia	4	A. T.				***		****			* * * * *								****	****	****	****	****					****	****	****	****		****			0)
orida	61	A. T.				***					* * * * *				***			****	****	****	***		* * * * * ;					****	****	****	****	***	****		****	0)
orida	67	A. T.													***		****		2		****								****		2	1	****		****	7 0)
	34	A. T.				***		****					** **				****	****	****		****	1		***					****	1	7				****	10)
aho	-	A. T.												* * *			****	****	****					***												0	
inois	84	A. T.							1	1	1					***											1	1	2	13	1	1	3			18	
diana	58	A. T.													***							***				1	1	2	1	12						16	
dian Territory																		****			****									****		****	****		****	0	
W&		T.					***											****			****	***				***				1		***	****	****	****	1	
ansas	88	A. T. A.											2				****													2	****	****			****	4	
entucky	41	T.						***								***	****	****	****	****	****	***				2	1 .	***	1	1	1		** *		****	3	1
uisiana		T.	***	5		4	3				****							****		***		***					ï.		4	7	4			****	****	28	1
aine		A: :					***		****		****							****		***		***					***	***			****			****		0	1
ryland		A. :		***	* * * *		***									***					***	***			***		***				***				****	0	
ssachusetts		A. :	***												1 .					***											1					0	1
ehigan		A. T.	***				***																											****	****	0	1
nnesota	67	A. T.	***			* * .	***									1	1	1			***		***												****	3	ı
missippi	57	A. T.		2		1				***		***															***				4			1		1 15	ı
wourl	86	A. T.											,			***	***						***						***	10		***	***		****	0 22	ı
ntana		A																	***				***							16	2				****	0	ı
braska		A. F.								****	****	***			** *				1 .		***														****	0	l
vada	40	A			. 1	i		***		****		***			** **			***	***		***		*** * * *	****			i :			***	***			***		2	l
w Hampshire	21	Α								****	****	***									***									***			***			0	
w Jersey	40 9	Α						***										***					***								***					0	
w Mexico	1	A. ::		***			***			****	****											**													***	0	
	1						**											***																		0	
	1	1.			***		**																							2			***			2	
rth Carolina	1		**									1																			1 .		***			2	
rth Dakota	48 7		1									****						***	*** **				** **											** *	***	6	
	101 T		1 .														** *														4				***	18	
ahoma	36 T			***				***	200			1					1 .										1									2	
gon	70 T											2	****				7.7										i	* * * * *					2	4 :	***	11	
nsylvania	91 T									****		****																				1			***	0	
de Island	6 T				***			**					****	***						** **															***	0	
th Carolina	54 T				ï				1	***		***		***							5										2					9	
h Dakota	56 T				***					***	***	***	****																						***	0	
nessee	56 T							~ ~	1 .	***			****															2		1 1		1				5 20	
	26 T					3			1			***																						3		0 20	
	64 A										***		***					** **	****											5			** **	3		0 4	
nont	12 A												****					** **																		0	
	40 A								** .	***			****	***				** **				* * * * *													***	0	-
	71 A				****				***	***				***											-											0	-
	47 A.				****	* 68																										1		1		1	-
	A.				***	***								****																						0	-
	A.				***	***								1	1																			1		1 8	-
ning	38 T.				***	***																					. 1		1							0	
ns 29	93 T.	-	-	-	_	_	-	-	-	_	_	_	-														1	***							4.4	-	_

Table V.—Accumulated amounts of precipitation for each 5 minutes, for storms in which the rate of fall equaled or exceeded 0.25 in any 5 minutes, or 0.75 in 1 hour during December, 1904, at all stations furnished with self-registering gages.

		Total d	luration.	fotal amount of precipita- tion.	Excess	ive rate.	t before		D	epths	of prec	ipitati	on (in	inche	s) dur	ing per	iods o	ftime	indicat	ed.	
Stations.	Date.	From-	То-	Total a of pre	Began-	Ended-	Amount excessi	5 min.	10 min.	15 min	20 min.	25 min.	30 min.	35 min	40 min	45 min.	50 min.	60 min.	80 min.	100 min.	. 15 m
hans V V	1 12-13	2	3	4 0.58	5	6	7		1												-
bany, N. Y pena, Mich aarillo, Tex		**********		. 0.67														:		*****	olour.
parillo, Tex	4-5																	0.17	1-00000		
heville, N. C lanta, Ga lantic City, N. J	27			0. 72														. 0. 29			
lantic City, N. J gusta, Ga	. 5																	0. 16			
ltimore, Md	9-10	*********		. 1.00	*********															****	
nghamton, N. Y mingham, Ala	26-27	7:15 a. m.	10:45 a. m.		7:20a. m.			0.07	0. 28	0. 76	0.89	1, 63								*****	
marck, N. Dak	. 25-26	*********		. 0.68	***** *****																
ck Island, R. I	24-25	*********																			
ton. Mass	27-28		********															0.17			
ffalo, N. Y				1.56														0.32	*****		
pe Henry, Va arleston, S. Carlotte, N. C	. 11-12		********															0. 23	*****		
rieston, S. C	. 5		**********	. 1.04 .														0. 27			
attanooga, Tenn cago, Ill	. 27			1.06														0, 65			
cinnati, Ohio	. 26-27																	0.44			
veland, Ohio	. 26-27																	0, 22			
ımbia, Mo ımbia, S. C	. 27		**********		*********												*****	0. 33			
ambus, Ohio	. 26-27	**********			********																
pus Christi, Tex	27-28		**********		*********												*****	0.59			1:
enport, Iowa	. 26-27	********			*********																
wer, Colo	. 25-26 . 26-28	**********			**********														*****		1:
roit, Mich	. 26-27				********												*****	:			
ge, Kans	. 3-4		*********														*****	0, 16			
uth, Minn	. 26-28				********												****				
port, Me ns, W. Va	. 27-28		**********		**********													0. 16		* * * * * *	
, Pa	. 23-24			0.30 .	*********																
naba, Mich nsville, Ind	27-28				**********												*****	0. 25	*****		
Smith, Ark	. 23			0.11	********												*****	0. 10			
Worth, Tex				0. 36		*******										*****	*****	0. 13			**
eston, Tex	. 26-27	******	********	0,50 .		********												0. 27			
d Junction, Colo d Rapids, Mich		******		0. 24 .	*********											*****	*****				**
n Bay, Wis	. 27-28	********		1.70 .	******												*****				
nibal, Mo risburg, Pa	. 16-17				*********						*****										
eras, N. C	. 12			0.62 .				****									*****	0. 50		*****	
on, S. Dak anapolis, Ind				0. 18 . 2. 75 .	***** *****			*****	*****					*****			*****	0. 45			
sonville, Fla	. 14			1.17	********												*****	0. 26			
ter, Flaspell, Mont	. 29-30			200 000	**********			*****					*****	*****	*****	*****	*****		******	*****	
as City, Mo	. 26-27	*********		0.94	********	********															
West, Fla		*********					*****	** **							*****			0. 16 0. 51	*****		
rosse, Wis	. 26-27			0. 93																	
ston, Idaho ngton, Ky									*****		*****	*****				*****	*****	:	******		**
oln, Nebr	. 15-16			0. 20		********	****														
e Rock, Ark Ingeles, Cal	23							4000									*****	0.46			
sville, Ky	26-27			1. 98		**********			*****									0.39	*****		
hburg, Va n, Ga	27	1:15 p. m.	7:25 p. m.	0, 86	2:21 p. m.	2:41 p. m.		0. 16	0. 40	0, 57	0 00				1,00000	*****	*****				
phis, Tenn	23-24			3. 36		**** b												0.68			
lian, Missaukee, Wis	26-27	9:00 p. m.	9:35 a. m.	1. 16	5:21 a. m.	5:36 a. m.		0. 26	0. 46	0. 54	0.58					*****			*****		
eapolis, Minn	26-27			0. 48	*********			*****				*****		*****					*****		
gomery, Ala icket, Mass	27 17-18											****	00000				*****	0, 58			
ville, Tenn	26-27			1. 76				****								*****		0. 67			**
Haven, Conn Orleans, La	27-28															*****		0. 21 0. 45			
York, N. Y	26-27			0. 66														0.14			
lk, Va nfield, Vt	12 27-28											very al						0, 23			
Head, Wash	22-23	**********		1.18		*********							coeres!								
Head, Wash oma, Oklaa, Nebr	15-16	*********			*********	********								*****	*****	*****				WENE 0	**
ine, Tex	25-26				*********	**********			*****												
rsburg, W. Va cola, Fla	25	5.40 n m	4.15 0		9.57 a m	2.47 a m	1 00	0 20	0.50	0.79	0.70	0 90	0.01	0 09	0.02	1 09	1 10	0.35		****	
Do	4-5	5:40 p. m. 8:10 a. m.		2. 26 2. 83	2:57 a. m. 1:55 p. m.	3:47 a. m. 3:20 p. m.	0. 18	0, 20 0, 12	0. 50 0. 26	0. 73 0. 41				0. 93 0. 67	0. 93 0. 73	1. 02 0. 80	0. 88	0. 93	1. 16		
ielphia, Pa	+				********						*****					*****		*****			
urg, Paello, Idaho								****	*****	*****		*****				*****					
nd, Me	27			0. 52					****						*****	*****		0. 17			
o, Colo	96	**********							*****	****	*****	*****	*****		*****	*****					
gh, N. C	2.3	********		0.84					*****	*****			*****					0. 12			
nond, Vaster, N. Y	0 .	*********												****	*****	****	*****				
mento, Cal	9 .	*********		0, 24	********								*****					0. 20			
uis, Mo ul, Minn			********	0. 42								2222			****	*****					
ake City, Utah ntonio, Tex				0. 33	********						*****						*****				
																		0. 20			

Table V.—Accumulated amounts of precipitation for each δ minutes, etc.—Continued.

a		Total d	uration.	mount cipita-	Excessi	ive rate.	before ve be-		De	pths o	f preci	pitatio	n (in i	nches)	durin	g peri	ods of t	time ir	ndicate	d,	
Stations.	Date.	From-	То-	Total am of preci	Began-	Ended-	Amount excessi gan.	5 min.	10 min.	15 min.	20 min.	25 min.	30 min.	35 min.	40 min.	45 min.	50 min.	60 min.	80 min.	100 min.	120 min
	1	2	3	1.4	5	6	7	1													
andusky, Ohio	26-27	**********	*********	. 1.56	**********		*****				*****	*****	*****								
an Francisco, Cal	28	*********	********	. 0.41	********	*********			*****				*****		*****			0, 16	*****		
avannah, Gu	27-28	*********		. 0. 29		*********				****	*****		*****	****			*****	0, 13			
eranton, Pa	26-27	*********		. 1.09														0, 10			
eattle, Wash	29			. 1.37	**********													0, 21			
hreveport, La	23 - 24	6:30 p. m.			8:57 p. m.	10:02 p. m.				0.38	0.59	0.79	0.97	1.11	1. 21	1.30	1. 36	1.51	1. 63		
Do	25 - 26	8:02 p. m.	10:20 p. m.		11:07 a. m.	12:25 p. m.	3, 41	0, 06	0, 15	0.39	0.50	0, 56	0, 66	0, 78	0.87	0, 96	1.05	1.16	1.39		
pokane, Wash	28-29		********		********													*			
pringfield, Ill	26-27			0, 26																	
pringfield, Mo	26 - 27			0.66																	
vracuse, N. Y	27			1.87														*			
ampa, Fla	14			0, 64														0.27			
aylor, Tex	23			0, 26																	
oledo, Ohio	26-27			1, 32																	1
opeka, Kans	26-27			0, 25																	
alentine, Nebr	23-24			0.06															*****	*****	***
icksburg, Miss	26-27			2.67	**********			*****									*****				ARK
ashington, D. C	94			0, 69														0, 19			
ichita, Kans	4.5	********		0.10	********		*****				*****		* * * * * * *	******	*****	*****	*****	4	****	*****	***
illiston, N. Dak	15-16	****** *****		0. 22	*********	*********			*****	*****	*****	*****		*****	*****		*****			*****	
ilmington, N. C	5	*********		0. 68	*****	*********	*****	*****		*****	*****	*****	*****	*****	*****		*****		*****	*****	
ytheville, Va	5	*********	********	1. 17	*********	*********			*****	*****	*****	*****	****	*****		*****	*****	0.18	*****	****	***
ankton, S. Dak	26-27	*********		0.24	*********	*********				*****	*****	*****	*****	*****	*****	*****	*****	0, 19			
	15	********	*****		*****	*********	*****	*****			*****	*****					*****		*****	*****	
avana, Cuba		*********	*********	0, 56		*********	*****	*****	*****		*****	*****	*****	*****	*****		*****	0.39	*****	*****	
an Juan, Porto Rico	15-16		*********	0, 40	*********		*****			****			*****			****	*****	0.22		*****	

*Self-register not working † No precipitation during month.

Table VI.—Data furnished by the Canadian Meteorological Service, December, 1904.

	Pressu	re, in i	nches.	Tem	perature	ž.	Pre	ecipitati	on.		Pressu	are, in i	nches.		Tempe	erature	e.	Pre	cipitati	on.
Stations.	Actual, reduced to mean of 24 hours.	Sea level, reduced to mean of 24 hours.	Departure from normal.	Mean. Departure from	Mean maximum.	Mean minimum.	Total.	Departure from normal.	Depth of snow.	Stations.	Actual, reduced to mean of 24 hours.	Sea level, reduced to mean of 24 hours.	Departure from normal.	Mean.	Departure from normal.	Mean maximum.	Mean minimum.	Total.	Departure from normal.	Depth of snow.
st. Johns, N. F	29, 78	30, 03 30, 01 30, 03 30, 02	Ina, 22 -, 07 -, 05 -, 06 -, 04 -, 07 -, 05 -, 02 -, 02 -, 00 -, 04 -, 07 -, 04 -, 05 -, 05 -, 05 -, 05	0 0 23.6 - 5. 22.3 - 5. 20.2 - 7. 20.3 - 8. 24.1 - 6. 16.0 - 8. 10.4 - 6. 16.0 - 8. 10.4 - 6. 16.0 - 8. 15.0 - 8. 22.3 - 12. 8.9 - 8. 15.0 - 8. 15.0 - 8. 22.3 - 4. 1.8 - 7. 23.6 - 4. 1.8 - 7. 23.6 - 4. 4. 22.0 - 4.	9 28.6 4 28.1 9 28.2 9 28.2 9 30.0 6 20.6 4 16.3 9 13.0 1 14.4 1 16.1 7 23.1 7 29.4 9 14.5 9 30.2	0 18. 0 16. 1 12. 3 12. 4 18. 3 9. 1 0. 2 3. 8 - 0. 3 2. 9 - 9. 7 1. 8 6. 9 15. 1 11. 0 17. 1 13. 7	Ins. 7, 00 5, 50 4, 60 2, 63 3, 04 1, 90 1, 38 2, 19 2, 39 3, 54 1, 04 1, 89 1, 85 1, 41 2, 12 2, 78	+0.41 +0.30	35. 5 27. 3 14. 1 19. 1 15. 8 13. 2 21. 9 23. 9 30. 6 10. 4 18. 9 14. 3 7. 2 21. 2	Parry Sound, Ont Port Arthur, Ont Winnipeg, Man Minnedosa, Man Qu'Appelle, Assin Medicine Hat, Assin. Swift Current, Assin. Calgary, Alberta Banff, Alberta Edmonton, Alberta. Prince Albert, Sask. Battleford, Sask Kamloops, B. C. Victoria, B. C. Barkerville, B. C. Hamilton, Bermuda	Ins. 29, 23 29, 30 29, 19 28, 14 27, 65 27, 66 27, 34 26, 30 25, 27 27, 54 28, 32 28, 19 28, 74 29, 89 25, 51 29, 95	29.96	Ins. + .01 + .05 + .06 + .03 + .0100 + .03 + .11020503 + .04 + .02 + .0100	12. 8 10. 1 6. 2 8. 7 10. 7 22. 4 17. 8 20. 2 19. 8 16. 6 5. 4 11. 2 31. 5 43. 8 22. 9 64. 7	0 - 8.4 + 2.1 + 3.0 + 3.4 + 2.0 + 1.8 + 2.6 + 2.6 + 2.6 + 2.0 0.0	22. 9 19. 6 16. 5 18. 6 19. 3 32. 4 26. 5 29. 1 27. 5 25. 5 14. 6 20. 1 36. 6 47. 2 29. 0 69. 5	2. 7 0. 7 - 4. 2 - 1. 2 2. 0 12. 4 9. 1 11. 5 12. 1 7. 7 - 3. 8 2. 3 26. 4 40. 5 16. 8 59. 9	3, 56	-0. 63 +0. 56 +0. 74 +0. 14 +0. 33 -0. 05 -0. 47 -0. 28 +0. 07 +0. 39 -0. 22 -0. 07 +0. 04 -3. 27	7na 28, 14, 16, 7, 8, 3, 3, 12, 10, 5, 2, 4, 0, 35,

Table VII.—Heights of rivers referred to zeros of gages, December, 1904.

Stations.	istance to mouth of river.	Danger line on gage.	Highe	st water.	Lowe	st water.	stage.	onthly range.	Stations.	uth of	er line gage.	Highes	t water.	Lowes	st water.	stage.	thly nge.
*	Dista mo riv	Dang	Height.	Date.	Height.	Date.	Mean	M o I		Distance mouth river.	Danger on gr	Height.	Date.	Height.	Date.	Mean	M o n
Milk River. Havre, Mont. (31)	Miles. 237	Feet.	Feet.		Feet.	0 0 0 0 0 0 0 0 0	Feet.	Feel.	Iowa River. Iowa City, Iowa (14) Illinois River.	Miles. 57	Feet.	Feet. — 1.3	12	Feet. - 1.8	2, 4, 24	Feet. -1, 6	Feet.
Huron, S. Dak. (31)		9							Peoria, Ill	135	14	8, 7	29-31	7. 6	4, 5	7, 9	1.
Clay Center, Kans Smoky Hill River.		18	6.8	23	5. 6	28	6 4	1.2	Brookville, Pa	35	8	1.7	28	- 0.4	1-23	-0.1	2.
Abilene, Kans	45	22	3.0	27	1.6	17-26	1, 9	1. 4	Clarion, Pa. (12)	32	10	6, 9	28	- 0.4	2, 3, 7-11	0.8	7.
Manhattan, Kans Fopeka, Kans. (*)		18 21	8.5 7.2	31 23	2.5 6.1	14-21 12-14	6.5	1.0	Johnstown, Pa. (13)	64	7	3. 9	28	0.4	2-10		3.
Missouri River. Bismarck, N. Dak	1,309	14 14	4.1	29, 30	- 0.5	1	1.8	4.6	Warren, Pa. (it)	177 123	14 13	7. 8 8. 2	29 29	0.0	9, 10	1.9 2.6	7.
lierre, S. Dak. (19)	784	19 15	4.8	1	- 1.3 2.5 2.0	13 12	-0.3 3.7	2.6 2.3 2.3	Parker, Pa. Freeport, Pa. (*)		20 20	7. 4 14. 0	28 29	0, 2 1, 0	1, 2	1.9	13.
t. Joseph, Mo Cansas City, Mo	481	10	0.2	1-3	- 4.5 2.1	29 29-31	3.4 -1.6 4.5	4.7	Cheat River. Rowlesburg, W. Va. (18) Youghiogheny River.	36	14	5. 6	25	0, 6	1-4	2.4	5.
lasgow, Mo. (4)	231	18 20	1.9	6	- 1.0 2.1	15, 16	0.5	2.9	Confluence, Pa. (11)	59 15	10 23	3.6	28 28	- 0.8	5-7 1-11	0.3	4.
lermann, Mo	103	24	4.7	1, 2	2.0	31	8. 7	2.7	Monongahela River.				-			-	
fankato, Minn	127	18	2.2	28-31	1.8	21-27	2.0	0.4	Weston, W. Va. (12) Fairmont, W. Va	119	18 25	1. 0 17. 8	25 26	- 2.4 10.7	1-12	12.2	3.
tillwater, Minn. (81)	23	11							Greensboro, Pa. (1) Lock No. 4, Pa	81 40	18 28	12.8 12.9	26 28	6.7	1-8, 12-22 8	6, 5 7, 8	6.
Cedar Rapids, Iowa (*)	77	14	4.3	29	2.6	1, 3-9, } 11, 12, 16	2.8	1.7	Beaver River. Ellwood Junction, Pa. (18)	10	14	2.5	28	1.1	1-10	1.4	1.

TABLE VII.—Heights of rivers referred to zeros of gages—Continued.

Stations.	nce to uth of er.	Danger line on gage.	Highe	est water.	Lower	st water.	stage.	onthly range.	Stations.	nce to uth of er.	Danger line on gage.	Highe	st water.	Lowe	st water.	stage.	thly
Stations	Distance mouth river.	Dange on g	Height.	Date.	Height.	Date.	Mean	M o n rai	- Stations	Distance mouth river.	Dang	Height.	Date.	Height.	Date.	Mean	Mont
Muskingum River.	Miles.	Feet,	Feet. 12. 9	28	Feet. 7, 3	16, 23	Feet. 8. 1	Feet. 5, 6	Red River-Cont'd.	Miles. 515	Feet.	Feet. 5. 5	27, 28	Feet.	22, 23	Feet.	Feet 1.
Little Kanawha River.									Springbank	441	29	6. 2	31	2.8	20	3.4	3,
lenville, W. Va reston, W. Va	77 38	20 20	3. 0 4. 2	25 29	-0.4 -0.8	7, 8 1-19	0, 5	3, 4 5, 0	Shreveport, La Alexandria, La	327 118	29 33	3. 0 8. 6	28 31	-1.8 -1.8	22, 23 24	0, 4	10.
Great Kanawha, River. harleston, W. Va	58	30	8.0	29	7.0	15-25,27,31	7.2	1.0	Mississippi River.	2,034	4						
New River.									St. Paul, Minn. (19)	1,954	14	3.7	12	2.6	5, 6	3. 1	1.
adford, Vainton, W. Va	155 95	14 14	0.0 2.1	11, 12 29	- 1.8 0.8	1, 19-22 22, 23	-0.9 1.3	1.8	Red Wing, Minn. (31) Reeds Landing, Minn	1,914	14 12	2.2	1	0.3	30, 31	0, 9	1
Scioto River. olumbus, Ohio (10)	110	17	4.0	28	1.0	2-13	1.7	3.0	La Crosse, Wis. (17) Prairie du Chien, Wis. (27)	1, 819 1, 759	12 18	3.5 4.0	1-3	3.2	13, 14	3.3	1
Licking River.	30			28	0. 2		0.6		Dubuque, Iowa	1,699 1,629	18 16	5, 0 4, 3	28 29	2.4	9 15	3.7	
Miami River.		25	1.8			1-9		1.6	Clinton, Iowa Leclaire, Iowa (18)	1,609	10	2.1	1	0, 4	13	1.3	
yton, Ohio (15) Kentucky River.	77	18	2.8	28	0. 5	1-8	1.0	2.3	Davenport, Iowa (1) Muscatine, Iowa	1, 593 1, 562	15 16	9. 2 5. 3	31 27	0.8	16, 18 15	2.6 4.1	
ekson, Ky	287 254	24 30	5.9 2.3	29 29	$-\frac{2.4}{0.3}$	1-5 1-4	4. 2 0. 7	3.5	Galland, Iowa (1) Keokuk, Iowa (1)	1, 472 1, 463	8 15	2. 0 5, 9	30	- 0.6	17,18,25,26 18,19	1.1	
gh Bridge, Ky	117	17	10.5	31	8, 0	3-10	8.7	2.5	Warsaw, Ill. (2)	1,458	18	6.8	31	2.3	19	4.4	
Wabash River.	65	31	7. 0	27, 31	4, 1	1-4, 14-18	4.8	2. 9	Hannibal, Mo. (17) Grafton, Ill	1, 402 1, 306	13 23	3. 9 6. 2	1	0.2 2.3	21 22, 31	3.0	
rre Haute, Ind ount Carmel, Ill. (4)	171 75	16 15	0, 6 5, 6	27 31	- 1.2 0.6	19-23 6-17	-0.7 1.0	1. 8 5. 0	St. Louis, Mo Chester, Ill	1, 264 1, 189	30 30	5. 0 5. 1	1	0.0	31	2. 3 2. 9	
Cumberland River.									Cape Girardeau, Mo	1,128	28	9. 1	1, 2	5, 0 2, 3	31 26	6.9	
rnside, Kylina, Tenn	518 383	50 45	10. 1 13. 4	29 30	1. 1 0. 8	22-24 1, 2	3, 3	9. 0 12. 6	New Madrid, Mo Luxora, Ark	905	34	9. 1	31	- 2.0	24	-0.7	
rthage, Tennshville, Tenn	308 193	40	15. 8 18. 8	29 31	0, 2 6, 8	1-4	3. 5 9. 3	15. 6 12. 0	Memphis, Tenn	843 767	33 42	3.3 4.5	31 31	0. 6 2. 3	26 26	1.9	
rksville, Tenn. (*)	126	42	22.6	28	0.3	7	6. 2	22, 3	Arkansas City, Ark Greenville, Miss	635 595	42 42	5. 5 4. 3	31 31	2. 5 1. 9	26 26	3.8	
Powell River. zewell, Tenn	44	20	6.0	29	0.4	3, 4, 13, 23	1.6	5. 6	Vicksburg, Miss	474	45	2.3	1	0. 2	26	1.1	
Clinch River, ers Ferry, Va	156	20	3.1	6	- 0.5	2, 23	0.4	3. 6	Natchez, Miss Baton Rouge, La	373 240	46 35	6.1 3.4	27	4. 3 1. 6	16-19 18	4.8 2.6	
nton, Tenn	52	25	11.5	28, 30	3. 3	23	6. 0	8. 2	Donaldsonville, La New Orleans, La	188 108	28 16	3, 3 4, 3	27 27	1.2	21 20	1. 9 3. 6	
off City, Tenn	170	15	2.0	28	0.3	1, 2, 23, 24	0.8	1.7	Atchafalaya River.	127			31	- 1.2	19, 20	3. 0	
gersville, Tenn French Broad River.	103	14	3.4	1	1.3	1, 2	1.9	2.1	Simmesport, La	103	31	6. 6 10. 7	31	3.2	20, 21	4.6	
heville, N. C	144 70	15	0.7	28, 29 7, 28, 29	- 1.9 - 1.4	1, 2 9, 23	-1.3 -0.7	2.6	Penobscot River. Mattawamkeag, Me	87		13.1	3	10.5	1	11.9	
Little Tennessee River. Ghee, Tenn	17	20	5. 2	28	1.1	21-23	2.0	4.1	Montague, Me. (19) Kennebec River.	60		1. 3	11	3. 1	2	3. 6	
Hiwassee River.	18	22	5, 5	28	0. 2	€ 16, 19, ₹	1.3	5. 3	Winslow, Me	46		4. 2	18	3, 3	17	3, 8	
Tennessee River.						20, 22, 235			FranklinJunction, N. H. (14)	110		4.9	12	3, 6	4	4.2	
oxville, Tenn		29 25	3. 6 3. 9	30 29	0, 2	23, 24 1, 2	0.9 1.5	3.4	Concord, N. H. (81) Manchester, N. H.	94 68		3. 1	4, 26	1.0	21	2.0	
agston, Tennattanooga, Tenn		25 33	7. 1 10. 2	28 29	0.9	1	2. 4 3. 5	6, 2 9, 1	Connecticut River. Wells River, Vt. (31)	255							
idgeport, Alantersville, Ala		24 31	8. 7 13. 2	30 30	0. 4 1. 0	1	2.1	8. 3 12. 2	WhiteriverJunction, Vt (29) Bellows Falls, Vt	209 170	12	2.8	4	0.0	22, 23	1.4	
rence, Ala	255	16	8, 5	31	- 0.1	1, 2	1.9	8.6	Holyoke, Mass	84	9	3.0	26	- 0.2	17	1.6	
rerton, Ala	225 95	26 21	12. 6 12. 1	30 30	- 0.9 - 0.1	1	3. 9	11. 7 12. 0	Hartford, Conn. (21) Housatonic River.	50	13	3. 5	6	1. 9	2	2. 7	
Ohio River.	966	22	12. 3	29	4.3	15, 16	6, 0	8. 0	Gaylordsville, Conn Mohawk River.	44	15	4.7	28	3. 8	11	4. 1	
vis Island Dam, Pa.(b). iver Dam, Pa	960 925	25 27	12.3 17.2	29 29	1.5 2.1	9,10	3. 4 4. 7	10. 8 15. 1	Tribeshill, N. Y	42 19	15 15	5, 0 9, 0	28	0.7	12-21 13-27	1.3	
eeling, W. Va	875	36	16. 4	30	1.4	11, 18, 21	3, 8	15.0	Hudson River.		10						
kersburg, W. Va nt Pleasant, W. Va ntington, W. Va	785 703	36 39	15. 0 15. 8	30, 31	1. 6 0. 8	3, 4, 23	3.6 2.5	13, 4 15, 0	Glens Falls, N. Y Troy, N. Y	197 154	14	10. 3	11, 27 29	4.5 2.0	3, 5, 20	5, 5	
ntington, W. Va	660 651	50 50	18. 6 18. 2	31 31	3, 0	3, 23, 25 2-7	4.9 3.2	15. 6 17. 1	Troy, N. Y	147 128	12	6, 9 4, 0	29 28	- 0.1 - 0.5	3 5	2, 5 1, 6	
tsmouth, Ohio	612	50	17. 5	31	2.2	4-8	3, 8	15.3	Pompton River.	120				0.0		4.0	
ysville, W. Va	559 499	50 50	15. 5 11. 8	30 31	2, 2 3, 4	24-26 10	3 5 4.6	13.3	Pompton Plains, N. J. (3)	6	8	4.7	28	4.4	1-24	4.4	
lison, Indisville, Ky	413 367	46 28	5, 9 3, 4	29 29, 30	2.9	10, 11 7-12	3.9	3.0	Passaic River.	69	7	4.0	29	2.3	4, 5	2.7	
unt Vernon, Ind	184 148	35 35	5, 0 4, 0	31 31	1. 2 0. 5	3, 4, 12-16	1.8	3.8	Chatham, N. J. (17) Lehigh River. Mauchehunk, Pa. (17)	45	15	5, 6	29	4.3	5, 10, 11	4.2	
lucah, Ky	47	40	10.4	31	0.4	14-23 1-3	1. 0 2. 5	3. 5 10. 0	Schuylkill River.								
ro, Ill	1	45	13. 0	31	3. 1	25	5. 7	9, 9	Reading, Pa Delaware River.	66	12	0.7	28	- 0.1	21-23	0. 1	
rked Tree, Ark	104	17	3.1	28-31	1. 2	1-4, 13-24	1.6	1.9	Hancock (E. Branch), N. Y. Hancock (W. Branch), N. Y.	269 269	12 10	6. 6 7. 1	28 28	3.7	5, 6, 8	4.6	
osho Rapids, Kans	326	22	0.3	1, 5, 12-16	0, 2	(2-4, 6-11) 17-31	0. 2	0.1	Port Jervis, N. Y Phillipsburg, N. J. (25)	204 142	14 26	5. 5 8. 7	29 29	0. 5 1. 8	10-12 4, 5	1. 2 2. 2	
, Kans	262	10	0. 4	9-25	0.3	1-8, 27-31	0, 4	0.1	Trenton, N. J.	92	18	10.7	31	1. 2	11	2.8	
rego, Kanst Gibson, Ind. T	184	20 22	0. 4 9. 0	1-10, 17-31	8.9	1, 2, 29, 30 11-16	9.0	0. 2 0. 1	North Branch Susquehanna. Binghamton, N. Y	183	16	10, 0	29	2.5	5 13, 18, 2	3.4	
Canadían River.	99	10	1.6	15	0.0	1-4	0.5	1.6	Towanda, Pa. (16)	139	16	8.8	29	1.1	20, 23, 245	2.9	
Black River.	67	12	1.6	24, 25		1-23, 29-31		0. 2	Wilkesbarre, Pa	60	17	13.7	30	3. 1	11	4.5	1
White River.									Clearfield, Pa	165	8	3, 5	28	0.4	4-23	0.8	
corock, Arkesville, Ark	272 217	15 18	0. 7 2. 4	1-31 26	0.7 2.2	1-31 1-9	0. 7 2. 3	0.0	Lockhaven, Pa. (17) Williamsport, Pa	65 39	12 20	5, 5	30	0.2	18-23	0,8	
port, Arkendon, Ark. (*)	185 75	26 30	0. 6 7. 3	26-28 28, 29	0. 2 5. 4	1-7, 16-23 19, 21	6, 0	0. 4 1. 9	Juniata River. Huntingdon, Pa. (\$\mathbb{S}\$)	90	24				-		
Arkansas River	832								Susquehanna River.			9.0	20	0.5	7-10 15 00	1.0	
hita, Kanssa, Ind. T	551	10 16	0. 4 1. 9	24 1, 11	- 0.4 1.7	7, 22, 27	0.1	0.8	Selingsgrove, Pa. (18) Harrisburg, Pa	116 69	17	9. 4	30	1. 3	7–10, 15–23 17	1.0	
bers Falls, Ind. T	465	23 22	3. 0 2. 4	30 28-30	2, 6	9-18, 21-27	2.8	0.4	Shenandoah River. Riverton, Va	58	22	0.5	1-31	0,5	1-31	0.5	
danelle, Arkle Rock, Ark	256 176	21 23	2.0	1-31 27	2, 0	1-30	2.0	0.0	Potomac River. Cumberland, Md.	290	8	2.8	31	1.0	1-10	1.5	
Yazoo River.					3. 4	10-23	3, 5	0. 5	Harpers Ferry, W. Va	172	18	2. 0	30	- 2.8	15, 16	-2.1	
en wood, Miss	175 80	38 25	18. 0 9. 0	31 31	- 0.4 - 2.5	1,2	2, 9 -0, 8	17. 6 11. 5	James River. Buchanan, Va	305	12	2.4	29	1.7	14-17	1.9	
Ouachita River. nden, Ark	304	39	22. 5	30		2-4, 21-23	6.6	18.5	Lynchburg, Va. Columbia, Va. Richmond, Va.	260 167	18 18	0. 9 3. 6	28, 29 28	0. 1 2. 1	1-4	0. 4 2. 6	1
aroe, La	122	40	23. 3	31	1.0	4	4.9	22. 3	Richmond, Va	111	12	0. 9	8, 27		1, 2, 17, 18	-0.4	
Red River. hur City, Tex.	688	27	4.3	1-31	4.3	1-31	4.3	0.0	Dan River. Danville, Va	55	8	0, 6	7	- 0.4	1-4	0.1	

TABLE VII.—Heights of rivers referred to zeros of gages.—Continued

Stations.	nce to	Danger line on gage.	Highe	st water.	Lower	st water.	stage.	onthly range.	Stations.	oce to	er line	Highes	it water.	Lower	t water.	stage.	thly ge.
Grantons.	Distance mouth river.	Dange on g	Height.	Date.	Height.	Date.	Mean	M o n	Stations,	Distance mouth river.	Danger on gag	Height.	Date.	Height.	Date.	Mean	M o n
Roanoke River.	Miles.	Feet.	Feet.		Feet.		Feet.	Feet.	Tombigbee River.	Miles.	Feet.	Feet.		Feet.		Feet.	Feet.
Weldon, N. C	129	30	16, 9	7	8, 4	1	10.0	8, 5	Columbus, Miss		33	2.5	31	- 1.9	23, 24		
Cape Fear River, Fayetteville, N. C Waccamaw River,	112	38	17. 0	7	5.0	1, 2	9. 2	12. 0	Vienna, Ala. (4)		42 35	6.5 17.3	31 31	- 2.6	3	2.1	6, 19,
Conway, S. C	40	7	2.8	18	1. 0	22	2.0	1.8	Hattiesburg, Miss	60	20	5, 0	5	2.3	1	2.9	2.
Cheraw, S. C	149	27	11, 8	7	1.9	2	3.7	9, 9	Enterprise, Miss	144	18	5.1	27-29	0.0	1-4	2.2	5.
Smiths Mills, S. C	51	16	9, 8	12, 13	3. 3	3	6. 1	6. 5	Shubuta, Miss	106	25	10.0	29-31	3.1	23-26	4.7	6.
Effingham, S. C	35	12	6.0	28, 29	3, 7	1	5. 0	2.3	Merrill, Miss. (*) Pearl River.		20	5. 4	31	0.7	23-26	1.7	4.
Kingstree, S. C	45	12	4.0	14-19, 31	3, 4	3	3, 7	0, 6	Jackson, Miss	242	20	2.4	31	0.8	(1, 12, 15-)	1.3	1. 0
Mount Holly, N.C Wateree River.	28	15	2. 2	7	1.5	1, 2	1.4	0, 7	Columbia, Miss	110	14	2. 0	30	0.0	21, 23, 24, 26	4.6	2. (
Camden, S. C	37	24	14. 1	7	3.7	1	6, 0	10. 4	Logansport, La	315	25	26. 8	29	0.6	18-23	4.7	26, 2
Columbia, S. C	52	15	3, 8	8	- 0.7	1, 2	0. 8	4.5	Rockland, Tex	105 18	20 10	13. 0 1. 7	28 23	- 0.3 - 0.9	1-3, 19-23 28	1.3 0.2	13.3
St. Stephens, S. C Ediato River.	50	12	7.4	12	- 0.4	3	3.0	7.8	Dallas, Tex	320	25	2.5	6	2.2	4, 5, 12- 15, 21,	2.3	0, 2
Edisto, S. C	75	6	3.2	31	1.8	1-3	2.7	1.4	Riverside, Tex	112	40	12.4	29	- 0.3	28-31) 14-22	1.6	12.7
Carlton, Ga	30	11	4.2	6	1.9	1, 20-24	2.3	2.3	Liberty, Tex	20	25	17. 0	30	2.8	15, 17, 18	5, 1	14. 2
Calhoun Falls, S. C	847	15	4.0	29	2.2	1	2.9 7.4	1.8	Kopperl, Tex	345	21	0, 0	1, 2	- 0.8	23-31	-0.5	0.8
Augusta, Ga	268	32	11.0	7	5.4	2	7.4	5, 6	Waco, Tex	285 140	40	2, 8 6, 8	1-12 29	-2.5		-0.8	9, 3
Oconee River. Milledgeville, Ga	147	25	5.4	28	1.3	1	2.5	4.1	Booth, Tex	61	39	6. 4	30	2.2	3, 10	4. 2	4.1
Dublin, Ga Oemulgee River.	79	30	3.0	. 9	- 0.5	19, 29	1.0	3, 5	Ballinger, Tex	489 214	21 18	1. 6 1. 5	5-7 8-10	1.4	29-31 18-21,27-31	1.5 1.3	0. 2
Macon, Ga	208	18	6.4	28	1.0	1	2.6	5.4	Columbus, Tex	98	24	19. 5	26	5.9	6-9	7. 0	13.6
Abbeville, Ga	96	11	5, 3	10	1.2	2	2.8	4.1	Guadalupe River.	110	22	1.7	26	0.8	00.00		
Woodbury, Ga	227	10	1.5	29	0.1	1	0.5	1, 4	Gonzales, Tex	112 35	16	17. 2	26	0.5	29, 30 19	0, 7 3, 2	1. 2
Montesuma, Ga	152	20	6, 3	30	2.0	1	3, 7	4,3	Red River of the North.	-			•			0	40.1
Albany, Ga	90 29	20 22	4.1	9, 10	0.5 2.8	1-3	2.0	3, 6	Moorhead, Minn. (**)	284	26						
West Point, Ga	239	20	3.7	30	1.7	1, 21-24	2.3	2.0	Bonners Ferry, Idaho (6) Pend d'Oreille River.	123	24	- 0.1	1	- 1.6	24	0, 9	0. 5
Eufaula, Ala	30	40 25	6, 0 7, 5	28-30	1.2	1 2	3.2	5, 6 6, 3	Newport, Wash	86	14	- 1.1	4-10	1.4	25-29	-1.3	0. 3
Chosa River.									Lewiston, Idaho	144	24	2.1	2, 3	1. 2	30	1.8	0. 9
Rome, Ga	271	30	5, 0	7, 29	0, 0	1, 25	1.7	5, 0	Wenatchee, Wash	473	40	5, 2	7	4.3	30, 31	4.8	0.9
adsden, Ala	144	22	6.4	30	- 0.8	1	1.2	7. 2	Umatilla, Oreg	270	25	0.8	1	- 0.7	30, 31	-0.1	1.5
Vetumpka, Ala	6	17 45	9. 0	31 31	- 0.3 0.8	1, 2 1, 2	1.3	5. 7 8. 2	The Dalles, Oreg	166	40	2.0	2, 15	0.4	12	1.1	1.6
Tuliapoosa River. dilstead, Ala	38	35	6.9	30	1. 2	1, 2	2.3	5.7	Albany, Oreg.	183	10 20 20	14. 0 16. 8 15. 7	31	1.8	1-3	5. 4	11. 0
fontgomery, Ala	265	35	5, 6	81	- 0.9	1,2	1.0	6.5	Salem, Oreg	84 12	15	10. 4	31	1. 5	9 4	5. 6 4. 8	14. 2 8. 2
elma, Ala	212	35	6.7	81	- 1.6	25-27	1. 2	8.3	Sacramento River.		-		01			16.0	0. 4
Black Warrior River.	90	43	26, 5	29	4. 1	1		22.4	Red Bluff, Cal	201 64	23 25	21. 3 17. 0	30 31	3, 4 10, 6	4-6 25	5. 8 11. 7	17. 9 6. 4

Small figures indicate number of days river was frozen.

(a) For 26 days only.

(b) Wickets lowered on 25th.

(*) For 16 days only.

(4) For 28 days only.

HAWAIIAN CLIMATOLOGICAL DATA.

By ALEXANDER McC. ASHLEY, Section Director, United States Weather Bureau.

GENERAL SUMMARY FOR DECEMBER, 1904.

Following is the summary of meteorological conditions in the Hawaiian Islands during December, 1904:

Approximate percentages of district rainfall as compared with normals: Hawaii, Hilo, 47; Hamakua, 44; Kohala, 86; Kau, 74. Maui (East), 131. Oahu, Honolulu, 82; Nuuanu, 99; Koolau, 126; Ewa, 70. Kauai, Lihue, 109; Kilauea, 100.

The greatest monthly rainfall reported was 17.58 inches at Nahiku, Maui. The greatest 24-hour rainfall was 5.35 inches, on the 3d, at Maunawili ranch, Oahu.

Hawaii—Pahala reports gale on 20th and 21st; Niulii reports a particularly calm month; Pepeekeo reports a fall of snow covering the hills on the 20th.

Oahu—Thunderstorms occurred on the 2d, 19th and 21st accompanied by lightning.

Correction note: The greatest 24-hour rainfall for November was 4.50 inches on the 9th at Puuohua, Hawaii.

Temperature table for December, 1904.

Stations,	Eleva- tion.	Mean max.	Mean min.	Cor, av'ge,	High- est.	Low- est.
	Feet.	0	0	0	0	0
Olaa Mill		83. 0	62. 0	73, 0	90	58
Kan	1,850	77. 0	57. 0	67.0	85	50
Ookala	400	80, 0	65. 0	72. 0	84	66
Pepeekeo	100	79.0	67. 0	73. 0	83	64
Niulii	200	78. 0	68, 0	73, 0	83	6!
Pahala	850	79. 0	64. 0	71.0	83	57
Hakalau	200	78.0	65.0	72.0	80	62
Paauhau	300	79. 0	70. 0	74.0	84	66
Kohala Mission	270	80. 0	65. 0	73. 0	83	66
United States Weather Bureau	121	77. 0	68, 0	72.0	80	64
United States Magnetic Station	45	79.0	65.0	72.0	83	56
United States Experiment Station	350	79. 0	67. 0	73. 0	82	62
Ahuimanu	350	77. 0	66, 0	72.0	86	61
Kahuku	25	78.0	68. 0	73. 0	82	62
Waiawa	675	77. 0	64. 0	71.0	82	59
Punahou	47	77. 0	68. 0	72.0	80	62
Ewa Mill	60	78.0	64.0	71.0	82	58
Kalihi-uka	485	79.0	64.0	72. 0	86	59
Koloa	241	79.0	64. 0	72.0	83	57
Kealia	15	77.0	65. 0	71.0	81	56
ihue	200	79.0	63. 0	71.0	84	54
fakaweli	140	81.0	65. 0	73.0	85	57
Cilauea	342	76.0	63, 0	70.0	82	56
Vaiakoa	2, 700	73. 0	58. 0	66.0	80	51
Cailua	285	78.0	63. 0	70.0	85	58
Ceanae	1,000	85.0	65.0	75.0	99	60
Ianomanu	1,800	70.0	60.0	65.0	79	56
Vahiku	1,600	73.0	62. 0	68.0	81	57
Cihei	55	81.0	68.0	74.0	85	63
Vailuku	250	82.0	65. 0	73. 0	85	55
Caanapali	12	80 0	65. 0	72. 0	83	60
Ceomuku	10	72.0	59. 0	65.0	84	53
Cashoolawe	10	80.0	70.0	75.0	84	60

Honolulu, Hawaii, latitude, 21° 19' north, longitude 157° 52' west; barometer above sea, 38 feet; gravity correction, —.057 applied. December, 1904.

	Press	sure.*	A	ir tem	peratu	re.		Mois	sture.			W	ind.			eipita- on.			Cl	ouds.		
Den							8 a	. m.	8 p.	. m.	8 a.	m.	8 p.	m.	1			8 a. 1	n.	İ	8 p. 1	n.
Day.	8 a. m.	8 p. m.	8 a. m.	8 p. m.	Maximum.	Minimum.	Wet.	Relative humidity.	Wet,	Relative humidity.	Direction.	Velocity.	Direction.	Velocity.	8 a. m.	8 p. m.	Amount.	Kind.	Direction.	Amount.	Kind.	Direction.
	30, 01 29, 90 29, 77	29, 92 29, 80 29, 87	74, 5 75, 0 73, 1	75, 3 75, 2 71, 3	78 78 78	70 72 68	72. 0 72. 1 71. 9	89 87 94	71. 3 73. 2 68. 3	82 91 86	80. 8. 80.	5 18 20	s. se. nw.	15 19 4	0. 05 0. 03 0. 45	0, 00 0, 03 0, 01	10 10 10	Scu. Scu. N.	8. 8. 8.	5 10 3	Seu. N. Seu.	s. s. calm
	29, 91 29, 96	29, 92 30, 01	72. 5 74. 5	75. 0 71. 2	76 80	68 70	67. 8 68. 2	78 72	71. 0 67. 3	82 82	nw.	6 13	w. ne.	10 8	0, 00	0. 00 T.	2 1 few.	Cicu. Scu. Cu.	calm.	} 10 10	A8. Scu.	calm
	30, 02 30, 00 30, 00 30, 08 30, 17	30, 00 30, 00 30, 01 30, 09 30, 12	73. 4 73. 4 74. 0 74. 0 76. 1	72. 5 71. 5 69. 0 73. 0 74. 2	79 78 76 78 79	68 67 67 66 72	68. 4 69. 2 68. 3 68. 2 68. 3	78 81 75 75 67	69. 0 67. 0 63. 0 67. 0 68. 2	84 79 72 73 74	sw. e. ne. ne. ne.	3 2 2 4 7	ne. ne. ne. ne.	2 3 5 3 11	0, 00 0, 03 0, 00 0, 00 0, 00	0. 01 0. 03 0. 00 0. 00 T.	8 4 1 few. 4	Scu. Scu. Scu. Cu. Scu.	calm. se. calm. calm. e.	2 1 1 few. 7	Scu. Scu. Scu. Cu. Scu.	calm calm calm calm ne.
	30, 11 30, 10 30, 08 30, 08 30, 12	30. 11 30. 05 30. 02 30. 08 30. 10	76. 1 74. 0 75. 2 70. 4 69. 5	74. 0 71. 2 74. 0 72. 1 70. 5	79 79 80 75 74	72 69 67 67 66	67. 9 68. 7 69. 9 68. 3 66. 0	65 77 77 90 83	67. 0 67. 2 67. 5 66. 1 64. 0	69 81 71 73 70	e. e. e. n. ne.	9 6 1 4	ne. ne. s. ne.	4 4 15 4 16	T. 0.00 0.00 0.09 0.34	T. T. T. 0. 39 0. 30	1 5 5 10 8	Scu, Scu, Acu, Scu, N.	e, e. calm. ne, ne,	few. 6 10	S -cu, S,-cu, Cu, S,-cu, N,	e. calm e. e. ne.
	30, 09 30, 05 30, 00 29, 94 29, 91	30, 05 30, 00 29, 96 29, 91 29, 87	71. 7 71. 0 67. 6 67. 0 74. 8	70, 0 71, 0 69, 0 70, 0 73, 5	74 74 74 74 74 76	68 67 67 64 70	62. 5 60. 3 64. 4 65. 4 67. 0	60 53 84 92 67	61. 0 62. 2 65. 0 66. 0 68. 0	59 61 81 81 76	ne. ne. ne. n.	8 12 7 3 5	ne. ne. ne. ne.	7 3 12 9	0. 01 0. 00 T . 0. 45 0. 19	0, 00 T. 0, 01 0, 52 0, 01	2 2 10 9 5	Seu, Seu, N. N. Seu,	e, ne, ne, n.	6 9 10 10 6	Scu. Scu, N. Scu. N.	ne. ne. ne. ne.
	29, 86	29, 83	74, 0	73, 5	77	71	66. 7	68	68, 0	76	n.	8	ne.	20	0. 01	0, 02	§ 9 1	Acu. Cu.	sw. e.	3 6	Cis Scu.	ealn ne.
	29. 84 29. 76	29.75 29.79	75. 0 74. 3	74. 0 71. 4	79 76	72 68	68, 8 69, 3	73 78	68. 1 64. 2	74 68	ne.	4	ne.	5 4	T. 0, 00	T. 0.01	few.	Aeu. Seu. Seu.	ealm.	few.	8eu.	ne.
	29, 86 29, 97	29, 91 29, 96	74.5	72. 0 70. 0	76 77	69	70. 3 69. 5	81 78	68. 5 66. 0	84 81	e. sw.	13	n. nw.	2	0.00	0. 11	5 2	Seu. Aeu.	sw.	i 1	Seu. Seu.	calm
	30, 01 30, 01	29, 99 29, 99	70. 2 70. 5	70. 0 70. 0	77 76	65 66	66, 2 66, 5	81 81	66, 0 66, 5	81 83	ne. n.	4 4	n. nw.	5 4	0, 00	T. 0. 00	9 1	Scu. Cu.	se, calm,	few.	Seu. Seu.	ealm ealm
	30, 06 30, 15 30, 19 30, 18	30, 07 30, 17 30, 14 30, 16	71. 4 72. 2 70. 5 70. 0	71. 0 70. 0 70. 0 70. 2	76 75 75 77	66 68 67 65	66, 0 63, 7 61, 0 62, 5	75 63 58 66	66, 2 61, 5 63, 0 64, 2	78 61 68 72	ne. ne. e.	13 3 4	n. ne. ne.	8 14 5 4	0, 00 0, 01 0, 00 0, 00	T. 0.00 0.00 0.00	few. 6 4 7	Seu. Seu. Seu.	calm. ne. e.	few.	Scu. Scu. Scu. Scu.	n, ne. calm n.
Mean	30, 007	29, 989			76, 8	68, 0	67. 3	75. 7	66. 5	75. 9	ne.	6.6	ne.	8.1	1, 68	1. 45	5. 4		е.	4.8	Seu.	ne.

Mean... 30.007 29.989 72.7 71.8 76.8 68.0 67.3 75.7 66.5 75.9 ne. 6.6 ne. 8.1 1.68 1.45 5.4 S.-cu. e. 4.8 S.-cu. ne.

Observations are made at 8 a. m. and 8 p. m., local standard time, which is that of 157° 39′ west, and is 5° and 30° slower than 75th meridian time. *Pressure values are reduced to sea level and standard gravity.

Rainfall data for December, 1904.

NOTE.—The letters n, s, e, w, and c show the exposure of the station relative to the winds.

CLIMATOLOGICAL DATA FOR JAMAICA.

Through the kindness of Mr. H. H. Cousins, chemist to the government of Jamaica and now in charge of the meteorological service of that island, we have received the following table in advance of the regular monthly weather report for Jamaica:

Comparative table of rainfall for November, 1904. [Based upon the average stations only.]

Divisions.	Relative area.	Number of stations.	Rainfall.	
			1904.	Average.
Northeastern division Northern division West-central division Southern division	Per cent. 25 22 26 27	23 53 25 31	Inches. 17. 81 8. 60 3, 16 1, 92	Inches, 12. 99 6, 20 5, 38 4, 11
Means	100	132	7, 87	7, 19

The rainfall for November was, therefore, above the aver-

age for the whole island. The greatest rainfall, 65.06 inches, occurred at Moore Town, in the northeastern division, while, 0.22 inch fell at Lunatic Asylum in the southern division.

Comparative table of rainfall for December, 1904.

Divisions.	Relative area.	Number of stations.	Rainfall.	
			1904.	Average.
Northeastern division Northern division West-central division Southern division	Per cent, 25 22 26 27	28 51 19 34	Inches, 6, 85 3, 13 3, 41 2, 36	Inches. 10, 61 5, 95 3, 52 2, 28
Means	100	132	3. 94	5. 59

The rainfall for December was, therefore, very much below the average for the whole island. The greatest fall, 19.12 inches, occurred at Moore Town, in the northeastern division, while no rain was recorded at Amity Hall in the southern division.

Chart III. Total Precipitation. December, 1904.

XXXII-141.

1 Barkerville

XXXII-142.

· Berkerville Chart V. Surface Temperatures; Maximum, Minimum, and Mean. December, 1904.

XXXII-148.

Mexico Vera Cruz

XXXII-144.

Chart VII. Isobars and Isotherms at 3500 feet. December, 1904.

Mexico Vera Cruz

Chart IX. See-Level Isobars, Surface Temperatures, and Resultant Winds., December, 1904.

Total Snowfall for December, 1904.

Chart XI.

December 25, 1904. 8 a. m.

December 27, 1904. 8 a. m.

December 29, 1904. 8 a. m.

