Contents

An	limais and Environments	
	Introduction	2
	Homeostasis	3
	Physiology and Time	3
Mo	olecules and Cells in Animal Physiology	
	Cell Membrane Review	5
	Enzyme Fundamentals	5
	Post-Lecture Questions	2
Ge	enomics	
	Genomics	Ç
	Transcriptomics	
	Proteomics	
	Metabolomics	10
Ph	ysiological Development	
	Epigenetics	12
Tra	ansport of Solutes and Water	
	•	13
Wa	ater and Salt Physiology: Mechanisms	
	······································	14
Νu	itrition, Feeding, and Digestion	
	,	15

1 Animals and Environments

Introduction

- What is physiology?
 - Form and function of organisms; the study of how organisms work.
- ▷ Central questions of physiology: mechanism and origin.
 - Mechanism:
 - Refers to the components of living organisms and understanding how components interact to enable the organism to function.
 - o Origin:
 - Asks why a mechanism exists, or what is the mechanistic adaptive significance of the mechanism.
 - Mechanism and adaptive significance are distinct concepts; knowing about one doesn't necessarily mean you know anything about the other.
- Krogh's principle:

"For such a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied."

- This idea is central to disciplines that rely on the comparative method.
- o Other key concepts:
 - There is unity in diversity; many organisms are very much alike at the most fundamental levels.
 - The differences are subject to particular niches and often highly specialized that allow for biologist to study more complex systems.
 - The similarities allow us overcome technical limitations via animals that are easier to study.
- ▶ Physiology subdisciplines:
 - Mechanistic: emphasizes the mechanisms by which organisms perform their life functions.
 - Evolutionary: emphasizes evolutionary origins and the adaptive significance of traits.
 - Comparative: emphasizes the way in which diverse phylogenetic groups resemble and differ from each other.

- Environmental: emphasizes the ways in which physiology and ecology interact.
- Integrative: emphasizes the importance of all levels of organization, from genes to proteins and tissues to organs in order to better understand whole physiological systems.

Homeostasis

- ▶ Important ideas to remember:
 - Organisms are structurally dynamic; form stays relatively static while individual cells recycle frequently.
 - Most cells are exposed to the internal environment, not external.
 - o Internal cells may vary or kept constant with the environment.
- Temperature regulation:
 - **Conformity**: organism's internal temperature correlates with external temperature in a particular range of temperatures.
 - Regulation: internal environment is held mostly constant using celluar mechanisms.
- ▶ **Homeostasis**: the coordinated physiological processes that maintain a relatively constant state in the organism.
 - Positive feedback: less common in homeostasis due difficulty in regulation; leads to runaway effect easily.
 - Negative feedback: more common in homeostasis due to self correcting nature.
 - Effector: executes the change in action that produces an effect, e.g. signals to increase temperature.
 - Sensor: sense changes in environment and sends information to the effector.

Physiology and Time

- ▷ Timeframes of physiological change:
 - Acute: short-term, reversible, and quick to adapt to changes in environment. Usually minutes to hours.
 - **Chronic**: long-term after prolonged exposure to new environments. Changes are usually reversible, but often slower.

- Chronic can be termed acclimation, or phenotypic plasticity/flexibility.
- Repetitive acute responses usually lead to chronic responses.
- **Evolutionary**: changes due to alteration in gene frequencies in populations exposed to new environments.
- ▷ Acclimation is not the same as adaption.
 - Adaption is an evolutionary trait presnet at high frequency in a population due to survival/reproductive advantages.
 - Not all traits are adaptations.
 - The amount of natural variation in a trait must be considered across populations, species etc.

2 Molecules and Cells in Animal Physiology

Cell Membrane Review

- ▶ Major cell memberane structures:
 - **Glycoproteins**: carbohydrate chain attached to a protein.
 - o **Glycolipids**: similar to glycoproteins, but attached to lipid molecues.
 - Glycocalyx: combination of glycoproteins and glycolipids on the surface of cell.
 - o Integral proteins: embedded in phospholipid bilayer.
 - Peripheral proteins: associated with one side of the bilayer.
- ▶ **Unsaturated phospholipid**: whey hydrocarbon tails contain double bonds (less hydrogen).
 - o Increase membrane fluidity due to extra space created.
- ▶ The fluidity of the cell membrane allows proteins to from complexes and dynamically change shape.

Enzyme Fundamentals

- ▶ **Enzymes**: a protein catalyst that plays two primary roles: accelerating and regulating chemical reactions.
- ▷ Substrates: the initial reactants of the reaction that an enzyme catalyzes.
- ▶ Enzyme-substrate-complex (E-S): a combination of enzyme (E) with a molecule of substrate (S) that starts a reaction.
 - Usually stabalized by non-covalent bonds.
 - The substrate is converted to a product by first becomeing an enzyme-product complex (E-P), then dissociates to yield free product and free enzyme.
 - $\circ E + S \rightleftharpoons E-S \rightleftharpoons E-P \rightleftharpoons E+P$

▶ Saturation kinetics:

- \circ V_{max} : the maximum velocity of a reaction and is determined by:
 - The number of active enzyme molecues present relative to substrate.
 - The catalytic effectiveness of each enzyme molecule.
 - These properties usually undergo heavy selection pressure.

- Saturated: all enzymes are occupied by a substrate molecule nearly all the time and now unable to increase reaction velocity.
- Hyperbolic: asymptotically approaches V_{max}
 - Tends to happen when enzymes have just one substrate binding site.
 - Or when substrate sites behave independently
- Sigmodal: approaches V_{max} with a sigmodal trajectory.
 - When multiple sites influence each other.
- \circ **Turnover number (k_{cat})**: the total effectiveness, expressed as the number of substrate molecules coverted to product per second by each enzyme molecule when saturated.
 - Depends partly on the activation energy of the enzyme-catalyzed reaction.
 - Activation energy: the energy required for the substrate to enter the transition state.
 - Transition state: the intermediate chemical state between substrate and product.
 - Enzymes lower the activation energy required to enter transition state.
- ▶ **Enzyme-substrate affinity**: The proclivity of the enzyme to form a complex with the substrate when they meet.
 - Likely complex formation results in high-affinity.
 - Unlikely complex formation results in low-affinity.
 - Affinity affects the shape of the reaction velocity.
 - Higher affinity produces a steeper velocity, and a lower affinity produces a more linear result.
 - Enzyme concentration is not changed.
 - **Half-saturation constant, K**_m: the substrate concentration required to attain one-half maximum reaction velocity.
 - K_m and enzyme-substrate affinity are inversely related.
 - i.e. low-affinity enzyme has a greater K_m .
- Molecular Flexibility:
 - o **Conformation**: the three-dimensional shape of a protein.

- Stabalized mostly by weak, noncovalent bonds—hydrogen, van der Waals, hydrophobic, electrostatic, etc.
- Weak interactions allow for easy yet stable conformational changes.
- Enzyme molecules composed of two, three or our proteins are called dimeric, trimeric, or tetrameric respectively.
- - This is because they accelrate the approach towards equilibrium (principles of mass action).
- ▶ **Ligand**: any molecule that selectively binds by noncovalent bonds to structurally and complementary sites on a specific protein.
- ▶ Cooperativity: the interactions between multiple binding sites that may facilitate or inhibit the binding of other sites.
 - Can either positive or negative; facilitating or inhibiting binding on the same molecule.
 - o Homotropic cooperativity: facilitation or inhibition of the same ligand.
 - Heterotropic cooperativity: influences on the binding of other ligands.
 - Interactions occur at a distance, resulting in delayed, or rippling responses.
 - **Allosteric modulation**: the modulation of the catalytic properties.
 - Allosteric sites: nonsubstrate-binding regulatory sites for nonsubstrate ligands that modulate the catalytic properties.
 - Allosteric modulators: the nonsubstrate ligands.
 - Allosteric activation:increases and inhibition:impairs affinity, thus the catalytic activity.
- ▶ **Isozymes**: enzymes that catalyze the same chemical reaction but differ in amino acid sequence.
- ▶ Interspecific enzyme homologs: different molecular forms of an enzyme coded by homologous gen loci in different species.
 - Isozymes and interspecific enzyme homologs often differ in their catalytic and regulatory properties.
 - Functional differences often prove to be adaptive in different environments.

Post-Lecture Questions

- ▶ What are the two central questions of physiology?
- ▷ Describe the different sub-disciplines of physiology.
- ▶ What is the Krogh principle? Explain what it means to physiology.
- ▶ Define the terms conformity and regulation and understand how they relate to physiological processes. Discuss examples.
- Define the term homeostasis. Understand the process of negative and positive feedback regulation.
- ▷ Describe how physiology changes with time in response to the external environment. Define the terms acclimation, adaptation, natural selection, and evolution.
- ▶ Describe the structure and chemical components of lipid membranes.
- ▶ What are the effects of low and high temperatures on membranes? How are membrane properties altered to offset these effects?
- ▶ Describe the five functional types of membrane proteins and their basic functions.
- ▶ What are the two primary roles of enzymes?
- \triangleright Define the terms V_{max} and K_m . Explain the factors that affect these reaction properties.
- ▶ Define activation energy. Understand the effect of enzyme catalysis on a reaction's energy of activation.
- ▶ What are the effects of substrate concentration on the rate of an enzymatic reaction? How does enzyme-substrate affinity affect the reaction rate?
- ▶ Why are enzymatic rates unresponsive to increases in substrate concentration above a physiologically relevant range?
- ▶ Understand why conformational change is a critical part of enzyme function.
- ▶ Define the term isozyme and understand how they can contribute to natural selection.
- ▶ Define and understand the process of allosteric modulation.

Week 2 3 Genomics

3 Genomics

Genomics

▶ Genomics: study of the genomes—the full set of genetic material—of organisms.

- ▶ Metods of genomics:
 - Computational biology and bioinformatics use various computational methods to process large amount of genomic data.
 - High-throughput: methods of analyzing large data with out much human attention and mostly computation.
 - **Annotation**: laborious direct human interpretation.
- ▶ The overarching goals of genomics is to elucidate the evolution and the current functioning of genes and genomes.
- ▶ Gene families: genes that share distinctive DNA base sequences and tend to code for functionally similar proteins.
- ▶ **Postgenomic era**: the study of species after genome is sequenced.

Transcriptomics

- ▶ Transcriptomics: the study of which genes are transcribed to make mRNA and the rates at which they are transcribed.
 - aka transcription profiling.
 - Implies the study of great numbers of mRNAs.
- ▶ **Transcriptome**: a species full set set of mRNA molecules. It represents the full complement of genes being transcribed at any given time.
 - Time is emphasized; it's a snapshot transcription activity during the observed period.
 - Very useful in comparative methods.
- ▶ Methods of transcriptomics:
 - DNA midroarrays: aka gene chips; a high throughput method tht allows simultaneous analysis of large number of mRNAs.
 - mRNA sequencing: aka RNA-Seq; similar to microarrays, but can identify both known and novel transcripts.
 - More sensitive than microarrays.
 - Readily applicable across wide range of species.

Week 2 3 Genomics

 Gene manipulation: studies that permit the direct assessment of gene function by directly altering its expression.

- Gene deletion: aka gene knockout; breaking or disurbing function of an animal's gene to interfere with proteins, creating deficient or inferior phenotypic traits.
 - **Forced overexpression**: inverse of gene deletion; experimentally increasing synthesis of the mRNA.
 - **Compensation**: phenotypic alterations of that tend to make up for the manipulation done by forced expression or gene deletion.
- RNA interference (RNAi): allows specific mRNA targets to be silenced in animals with *normal* genomes.
 - · Normal genomes: wild type that is not artificially manipulated.
 - · RNAi is reversible.
- **CRISPR/Cas**: used to edit nuclear DNA in eukaryotic cells.
 - · Can be used to insert sequences that then can be transcribed and tranlasted, providing insights on protein function.

Proteomics

- > **Proteomics**: the study of proteins being synthesized by cells and tissues.
 - Implies simultaneous study of large numbers of proteins.
 - Predicting proteins from gene transcription is still very difficult; transcription, translation, and post-translational processing are all regulated dynamically and independently.
- ➤ Two-dimensional gel electrophoresis: the primary proteomics method that separates complex mixtures of samples using two different protein properties.
 - Separated by isoelectric points and then molecular weights.

Metabolomics

- ▶ **Metabolomics**: study of organic compounds in the cells and tissues other than macromolecules coded by the genome.
 - Metabolites: compounds currently being processed by metabolism and the majority of metabolmics focus of study.
 - e.g. sugars, amino acids, and fatty acids.

Week 2 3 Genomics

▶ **Nuclear magnetic resonance (NMR)**: primary method of metabolomics that is capable of detecting and quantifying a large variety of compounds through identification of unique signatures in the NMR spectrum.

4 Physiological Development

Epigenetics

 \triangleright

5 Transport of Solutes and Water

D

27 Water and Salt Physiology: Mechanisms

D

7 Nutrition, Feeding, and Digestion

 \triangleright