Национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Прикладной искусственный интеллект Лабораторная работа №1

Выполнил:

Шиняков Артём Дмитриевич R32372

Преподаватель:

Евстафьев Олег Александрович

Цель:

Необходимо по данным с мобильных сенсоров при помощи прикладных алгоритмов машинного обучения предсказать активность человека по шести классам движений:

- Движется по прямой
- Движется вверх (например, движение по лестнице вверх)
- Движется вниз (например, движение по лестнице вниз)
- Сидит
- Стоит
- Лежит

Описание:

По сути задание представляет собой задачу классификации по классам движения. То есть при помощи данных гироскопа определять вид активности пользователя.

Подробнее о процессе классификации в блокноте по ссылке:

https://colab.research.google.com/drive/1w-V6T6pPsUc9ZILe7V3-6kjz0ulbWhCR?usp=sharing

Пояснения:

- 1) На самом деле я пробовал 3 вида классификации, но линейная регрессия даже интуитивно не подходить под нашу задачу, поскольку мы не предсказываем будущее, а пытаемся определить прошлое. Поэтому я оставил только 2 метода.
- 2) Про метод -ближайших соседей:

Учитывая быстроту обучения на наших данных, я построил график ошибок для разного количества соседей, таким образом я определил гиперпараметр, при котором можно достичь лучших accuracy, f1, precision and recall.

3) О параметрах:

Precision - метрика, отражающая отношение правильно выбранных объектов ко всем выбранным.

Recall - метрика, отражающая отношение правильно выбранных объектов ко всем объектам, которые должны были быть выбраны.

Accuracy - отражает точность модели, то есть отношение правильных предсказаний ко всем.

F1-score - метрика, объединяющая recall and precision в одно значение, некое среднее своего рода.

4) Метод опорных векторов:

В ходе игр с гиперпараметрами и моделями нашелся один довольно точный метод: опорных векторов. Для линейного и полиномиального разделителей модель показала точность в 96% против 91% для лучшего параметра в методе ближайших соседей.

Метод -ближайших соседей

	precision	recall	f1-score	support
Walking	0.84	0.98	0.90	496
Walking Upstairs	0.90	0.90	0.90	471
Walking Downstairs	0.96	0.78	0.86	420
Sitting	0.89	0.86	0.87	491
Standing	0.88	0.90	0.89	532
Laying	1.00	0.99	1.00	537
accuracy			0.91	2947
macro avg	0.91	0.90	0.90	2947
weighted avg	0.91	0.91	0.91	2947

Метод опорных векторов

	precision	recall	f1-score	support
Walking	0.96	0.99	0.97	496
Walking Upstairs	0.98	0.96	0.97	471
Walking Downstairs	0.99	0.98	0.98	420
Sitting	0.96	0.89	0.92	491
Standing	0.91	0.97	0.94	532
Laying	1.00	1.00	1.00	537
accuracy			0.96	2947
macro avg	0.97	0.96	0.96	2947
weighted avg	0.96	0.96	0.96	2947

Вывод:

В ходе работы я познакомился с некоторыми алгоритмами машинного обучения для задач классификации и опробовал их на практике.