Machine Learning Report

1 2 3 4 5 6 7 8	Akash Bahri College of Engineering Northeastern University Toronto, ON Bahri.a@northeastern.edu
9	Abstract
10 11	In this project, a movie recommendation system was developed using four distinct algorithms:
12 13 14 15	Item-Item Collaborative Filtering, Graph-based Hybrid Recommendation System (GHRS), Content-Based Filtering, Popularity-Based Recommendation.
16 17 18 19 20 21 22 23	The system accurately predicts personalized movie recommendations by analyzing users' historical ratings, movie attributes, and interaction patterns. An interactive, user-friendly web application was built using Flask for backend APIs and React for the frontend, providing seamless and personalized user experiences. Major challenges addressed included efficiently managing large-scale datasets, optimizing recommendation performance, and ensuring low-latency responses for a smooth user interaction.
24	
25 26	1 Introduction
27 28 29 30 31 32 33 34 35 36 37	Recommendation systems play a crucial role in enhancing user experience on digital platforms by providing personalized content, thereby increasing user engagement and satisfaction. This project presents an advanced Movie Recommendation System, named "NEUFLIX," developed to provide personalized movie recommendations tailored to user preferences. The system integrates sophisticated machine learning algorithms, intuitive frontend design inspired by popular streaming services such as Netflix, and robust backend functionalities for seamless user interaction. By combining user-centric design and advanced recommendation strategies, NEUFLIX addresses critical challenges in content personalization, demonstrating a significant improvement over traditional recommendation methods. Objective: The goal of this project is to develop a recommendation system using Item-Item Collaborative Filtering to suggest movies to users based on their ratings and the similarity between movies. (similar to Netflix)
39	Scope: This system includes:
40	• Jupyter notebook for data processing and building the model
41	• A backend for processing recommendations using Flask.
42 43	 A frontend developed with React to display recommendations in an interactive manner.
44 45	2 Datasets

Akash Bahri Page 1 of 13

Description:

- The dataset contains movie ratings, user ratings, and movie metadata (including movie titles and genres).
- MovieLens dataset was used, which includes ratings and metadata for movies.

Dataset Characteristics:

- **Size**: 100,000 ratings, 9,000 movies, 600 users.
- Attributes: Movie ID, title, genres, user ratings.
- Challenges: Sparse data (most users have rated a small portion of movies), handling missing values.

3 Data Preprocessing

Akash Bahri Page 2 of 13

The dataset used in this project is the **MovieLens dataset**, which includes ratings from users for various movies. The data preprocessing steps include:

1. Handling Missing Data:

65

66

67

68

69

70

71

72

73

74

75

76

77

78 79

80

81

82

83

84

85

86

96

 The user-item interaction matrix contains missing values where users haven't rated some movies. These missing values are handled by using zeros in the matrix, which means unrated movies are considered as "not rated yet."

2. Data Transformation:

The MovieLens dataset is in CSV format. We use pandas to load the dataset and transform it into the required user-item matrix format, where each row represents a user, and each column represents a movie. The entries in the matrix are the ratings given by users to movies, with zeros indicating unrated movies.

3. Matrix Creation:

- O We create two main matrices:
 - 1. User-Item Matrix: This matrix represents user preferences. Each entry MijM_{ij}Mij in the matrix represents the rating given by user iii to movie jjj.
 - Item-Item Similarity Matrix: This matrix stores the cosine similarity between each pair of movies. It helps in identifying which movies are similar to each other, so we can recommend similar movies to users.

4 Methodology

4.1 Item-Item Collaborative Filtering

- 87 The recommendation system implemented in this project uses **Item-Item Collaborative**
- 88 **Filtering**, a popular algorithm in recommendation systems. This approach works by
- 89 recommending items that are similar to those the user has previously rated or interacted
- 90 with. The main idea is to find the similarity between items (movies, in this case) and
- suggest those that are most similar to the movies the user has rated highly.

92 Cosine Similarity

- 93 To determine the similarity between items, we use Cosine Similarity, which measures the
- 94 cosine of the angle between two vectors in a multidimensional space. The formula for
- 95 Cosine Similarity between two items AAA and BBB is given by:

Cosine Similarity =
$$\frac{A \cdot B}{\|A\| \|B\|}$$

Where:

- $A \cdot B$ is the dot product of vectors A and B,
- ||A|| and ||B|| are the magnitudes (norms) of the vectors.

97 This metric produces values between **0** and **1**:

Akash Bahri Page 3 of 13

98 A value of 1 means the two items are identical (i.e., their vectors are pointing in the 99 same direction). 100 A value of 0 means the items are completely dissimilar. 101 In our system, item-item similarity is calculated for all movie pairs using their ratings from all users. Once the similarity between items is computed, the next step is to predict ratings 102 103 for items that a user hasn't rated yet. 104 105 **Item-Item Similarity Calculation** 106 The similarity between items is calculated using Cosine Similarity. For each movie jij, the 107 system computes the similarity between it and all other movies based on user ratings. The 108 resulting similarity values are stored in the item-item similarity matrix, where each entry 109 SijS {ij}Sij represents the similarity between movie iii and movie jij. 110 Once the similarity matrix is computed, the top-N most similar movies are identified for 111 each movie. These similar movies are then used to predict the rating a user would give to 112 unrated movies based on their ratings for the similar movies. 113 **Rating Prediction** 114 For each user, the system predicts the rating for movies that the user has not yet rated. The 115 predicted rating RuiR {ui}Rui for a user uuu and an unrated movie iii is computed as the 116 weighted sum of the ratings for similar movies, weighted by their similarity to movie iii. 117 Specifically, the prediction is calculated as:

$$R_{ui} = \frac{\sum_{j \in \text{similar to } i} S_{ij} \cdot R_{uj}}{\sum_{j \in \text{similar to } i} |S_{ij}|}$$

Where:

- R_{uj} is the rating given by user u to movie j,
- S_{ij} is the similarity between movies i and j,
- The sum is taken over all movies j that are similar to movie i.

118 119

120 4.2 Graph-based Hybrid Recommendation System (GHRS)

- 121 The Graph-based Hybrid Recommendation System (GHRS) enhances traditional
- 122 recommendation approaches by incorporating graph theory, deep learning, and clustering
- techniques. This method addresses the limitations of purely collaborative filtering systems
- by capturing deeper user-user interaction patterns.

125 Graph Construction

- 126 A user-user interaction graph was constructed based on shared movie ratings. In this graph:
- **Nodes** represent users.

Akash Bahri Page 4 of 13

128 129	 Edges connect users who have co-rated a minimum number of common movies, reflecting similar interests and viewing patterns.
130	Graph Feature Extraction
131 132 133	Centrality features from the constructed graph were extracted to quantify each user's influence and connectivity within the user community. Specifically, the following centrality measures were computed:
134	• Degree Centrality
135	• Closeness Centrality
136	• Betweenness Centrality
137	• Eigenvector Centrality
138	• PageRank
139 140	These features offer rich insights into user interaction patterns, beyond mere rating similarities.
141	Dimensionality Reduction using Autoencoders
142 143 144	To efficiently handle the high dimensionality of graph-based features, we employed an Autoencoder , a neural network designed for dimensionality reduction and feature extraction:
145	• The Autoencoder consists of an encoder-decoder architecture:
146 147	 Encoder: Compresses the high-dimensional graph features into lower-dimensional latent embeddings.
148 149	 Decoder: Reconstructs the original graph features from latent embeddings, guiding the model to capture meaningful patterns.
150	This approach yielded compact and representative embeddings for each user.
151	User Clustering with KMeans
152 153	The latent embeddings produced by the autoencoder were clustered using the KMeans clustering algorithm:
154 155	• KMeans groups similar user embeddings, ensuring users within the same cluster share similar movie preferences.
156 157	 The optimal number of clusters was determined experimentally using the Elbow method.
158	Recommendation Generation
159 160 161	Recommendations for each user were generated based on their assigned cluster. Movies popular and highly rated within the user's cluster but unseen by the user were recommended effectively leveraging the collective preferences of similar users.
162	4.3 Content-Based Filtering

Akash Bahri Page **5** of **13**

163 164	Content-based filtering recommends items similar to those the user previously liked, leveraging item-specific attributes (movie metadata such as genres, titles, and descriptions).		
165	Feature Extraction		
166	•	Movies were represented using textual metadata including genres and titles.	
167 168 169	•	TF-IDF (Term Frequency-Inverse Document Frequency) vectorization was applied to convert textual metadata into numerical vectors, capturing the importance of each feature.	
170	Similarity Computation		
171 172	•	Cosine Similarity was used to measure similarity between movies based on their TF-IDF feature vectors, forming a movie-movie similarity matrix.	
173	Rating	Prediction	
174 175 176	•	For each user, ratings for unseen movies were predicted by calculating weighted averages of similarity scores between unrated movies and movies previously rated positively by the user.	
177	4.4	Popularity-Based Recommender	
178 179 180	The popularity-based recommender is a non-personalized baseline algorithm that recommends movies based purely on overall popularity metrics, ensuring reliable recommendations even for new users or during cold-start scenarios.		
181	Popularity Calculation		
182	Popularity scores were determined based on two criteria:		
183	•	Average Rating: Higher average ratings indicated better perceived movie quality.	
184 185	•	Number of Ratings : A high number of ratings indicated general popularity among users.	
186	Movies	were ranked according to a composite popularity score combining these two metrics.	
187	Recommendation Generation		
188 189	•	The top-N movies with the highest composite popularity scores were recommended to users.	
190 191	•	This method provided robust fallback recommendations, especially beneficial for new or less active users with limited rating history.	
192			
193 194	4	System Design and Implementation	
195 196	For the application I have only considered GHRS and Item-Item CF methods to serve recommendations.		
197	Backend Functionalities		

Akash Bahri Page 6 of 13

198 199	The backend of NEUFLIX is built using Flask , providing RESTful APIs for seamless communication between frontend and machine learning models:		
200	• Endpoints:		
201 202	 /api/recommendations/<user_id>: Provides personalized movie recommendations using collaborative filtering.</user_id> 		
203 204	 /api/cluster_recommendations/<user_id>: Offers recommendations using GHRS clustering.</user_id> 		
205 206	 /api/movie/<movie_id>/poster: Fetches movie posters dynamically from TMDB API.</movie_id> 		
207	• Data Management:		
208 209	 Utilizes efficient data structures and caching mechanisms to handle large datasets, optimizing recommendation retrieval performance. 		
210 211	 CORS Handling: Ensured seamless frontend-backend communication by enabling Cross-Origin Resource Sharing (CORS). 		
212	4.3 Frontend Design and Functionalities		
213 214	The frontend, developed using React.js , is inspired by modern streaming platforms (Netflix), offering an intuitive and engaging user experience:		
215	• User Interface:		
216	o Clean, Netflix-inspired layout, emphasizing usability and visual appeal.		
217 218	 Interactive movie cards displaying posters, titles, genres, and predicted ratings. 		
219	• User Interactivity:		
220	o Simple user login via User ID to personalize recommendations.		
221	o Dynamic loading states and responsive UI updates based on API response		
222 223	 Hover-based interactions to display movie details smoothly, enhancing use engagement. 		
224	• Frontend-Backend Integration:		
225 226	 Axios used for HTTP requests to interact with Flask backend, handling asynchronous data fetching gracefully. 		
227 228 229	By integrating cutting-edge recommendation techniques, robust backend engineering, and thoughtful frontend design, NEUFLIX effectively addresses user-centric content discovery providing a sophisticated yet user-friendly recommendation experience.		
230			
231	5 Challenges and Solutions		

Akash Bahri Page 7 of 13

232	Data Challenges		
233 234	•	Sparsity : The user-item matrix was sparse, with many missing ratings. This made it difficult to find enough similar movies for accurate recommendations.	
235 236	•	Cold Start Problem : New users or movies that have few ratings had no data to base predictions on. A fallback strategy was used for handling new users and movies.	
237			
238	Perfori	nance Optimization	
239 240 241	•	Memory Usage : The large size of the dataset required optimization to prevent memory issues. The matrices were precomputed to speed up the recommendation process.	
242 243 244	•	Speed of Recommendations : The recommendation process was optimized by storing precomputed item similarities, reducing the time needed to make predictions.	
245	6	Results and Evaluation	
246	Key Observations:		
247 248 249	•	GHRS demonstrated significantly higher performance than traditional item-item collaborative filtering, highlighting the advantage of incorporating graph-based features and user clustering.	
250 251	•	Improvement in Precision, Recall, and F1-score underscores GHRS's effectiveness in capturing nuanced user preferences through enhanced user representation.	
252	User Experience Insights:		
253 254	•	User feedback on the frontend indicated high satisfaction, especially regarding the intuitive and visually appealing interface.	
255 256	•	Responsive and dynamic interactions significantly improved perceived recommendation quality and user engagement.	
257 258 259	achievi	, the results clearly indicate the effectiveness of hybrid methods like GHRS in ng superior recommendation quality, aligning with user preferences, and improving isfaction.	
260			

Evaluation Metrics

Akash Bahri Page 8 of 13

263

264

Akash Bahri Page 9 of 13

270271

Updated User Interface (advanced)

272

Akash Bahri Page 10 of 13

Akash Bahri Page 11 of 13

Akash Bahri Page 12 of 13

279	7	Conclusion	
280 281 282 283 284 285 286	This project successfully developed a comprehensive movie recommendation system, NEUFLIX, utilizing four recommendation algorithms—Item-Item Collaborative Filtering, Graph-based Hybrid Recommendation System (GHRS), Content-Based Filtering, and a Popularity-Based Recommender. By integrating sophisticated graph-based features, dimensionality reduction via autoencoders, and user clustering techniques, the GHRS algorithm demonstrated notably superior recommendation performance, highlighting the strength of hybrid approaches.		
287 288 289 290 291	The interactive web application, developed using Flask for backend services and React for a responsive and intuitive frontend, provided users with a seamless and engaging experience, closely resembling popular streaming services like Netflix. Effective handling of large datasets and optimized algorithmic performance ensured fast, relevant, and personalized recommendations, significantly improving user satisfaction.		
292	Future directions for enhancing NEUFLIX include:		
293 294	•	Integrating additional user feedback mechanisms, such as user watch-history analysis and explicit user preference tracking.	
295 296	•	Implementing real-time recommendation updates to instantly adapt to evolving user preferences.	
297 298	•	Exploring advanced deep learning models like neural collaborative filtering to further refine prediction accuracy and personalization.	
299 300	•	Scaling the application architecture using containerization and cloud deployment to support higher user volumes and broader accessibility.	
301 302 303	This project not only demonstrates the capabilities of advanced recommendation systems but also provides a robust foundation for continued research and development in personalized digital content delivery.		
304			
305	8	References	
306	1.	MovieLens Dataset - https://grouplens.org/datasets/movielens/	
307	2.	Cosine Similarity Explanation - https://en.wikipedia.org/wiki/Cosine_similarity	
308	3.	TMDB API Documentation - https://www.themoviedb.org/documentation/api	
309	4.	Flask Documentation - https://flask.palletsprojects.com/	
310	5.	React Documentation - https://reactjs.org/docs/	

Akash Bahri Page 13 of 13

6. OpenAI. ChatGPT: Language Model 4o for Assistance: https://www.openai.com/chatgpt