

Distribuição de Energia Elétrica Introdução

Prof. Lucas Melo

Univ. Fed. do Ceará - UFC

Maio de 2021

Objetivo da disciplina

Fornecer uma visão ao mesmo tempo geral e aprofundada em diversos aspectos do sistema de distribuição de energia elétrica (SDEE) com o objetivo de capacitar os estudantes nas seguintes atribuições:

- Realizar estudos por meio de simulações;
- Interpretar resultados de medições reais;
- Projetar eletricamente um SDEE aéreo ou subterrâneo;
- Especificar os principais componentes do SDEE;
- **Propor soluções** corretivas para as principais anomalias no SDEE.

Temas abordados na disciplina

Esta disciplina irá dedicar-se ao estudo das **características** e **especificidades** do sistema de distribuição de energia elétrica, abordando os temas:

- Constituição do SDEE;
- Modelagem trifásica dos elementos característicos do SDEE;
- Cálculos de queda de tensão e perdas no SDEE com métodos aproximados e exatos;
- Estudos do **fluxo de carga e curto-circuito** no SDEE, utilizando ferramentas computacionais;
- Elaboração de **projeto elétrico simplificado** de uma rede de distribuição de energia elétrica.

Detalhamento do conteúdo

- Unidade 01: Introdução ao SDEE;
- Unidade 02: Natureza das cargas no SDEE;
- Unidade 03: Métodos aproximados de análise;
- Unidade 04: Linhas de distribuição de eletricidade;
- **Unidade 05**: Regulação de tensão em redes de distribuição de eletricidade;
- Unidade 06: Transformadores de distribuição trifásicos;
- **Unidade 07**: Análise de alimentadores de distribuição utilizando ferramentas computacionais;
- Unidade 08: Introdução a proteção de sistemas de distribuição.

Detalhamento do conteúdo

Conteúdo da Avaliação Parcial 01:

- Unidade 01: Introdução ao SDEE;
- Unidade 02: Natureza das cargas no SDEE;
- Unidade 03: Métodos aproximados de análise;
- Unidade 04: Linhas de distribuição de eletricidade;

Conteúdo da **Avaliação Parcial 02**:

- Unidade 05: Regulação de tensão em redes de distribuição de eletricidade;
- Unidade 06: Transformadores de distribuição trifásicos;
- Unidade 07: Análise de alimentadores de distribuição utilizando ferramentas computacionais;
- Unidade 08: Introdução a proteção de sistemas de distribuição.

Trabalhos Computacionais

- Trabalho 1: Análise de cargas em SDEE;
- Trabalho 2: Modelagem de linha de distribuição;
- Trabalho 3: Análise de fluxo de carga em SDEE.

Estrutura da nota

A nota da disciplina será composta pela média ponderada de avaliações, trabalhos computacionais, da seguinte forma:

$$NF = 0,7 \cdot NAP + 0,3 \cdot NT \tag{1}$$

Em que, NF é a nota final da disciplina; NAP é a média das notas das avaliações parciais; NT é média das notas obitidas nos trabalhos computacionais.

$$NAP = \frac{NAP_1 + NAP_2}{2} \tag{2}$$

$$NT = \frac{NT_1 + NT_2 + NT_3}{3} \tag{3}$$

Estrutura da nota

No decorrer da disciplina serão solicitadas algumas **atividades complementares** a serem entregues em prazo determinado. Essas atividades poderão valer até **0,5 pontos na média** em dois casos específicos:

- caso o aluno necessite para não ser reprovado sem possibilidade de realizar avaliação final, média final entre 3,5 e 3,99;ou
- para ser aprovado sem necessidade de realizar a avaliação final, média final entre 6,5 e 6,99.

Avisos importantes

- As aulas serão gravadas e disponibilizadas sob demanda;
- Os trabalhos serão realizados em equipes com no máximo 04 membros cada;
- Não serão aceitos trabalhos **após o prazo** estipulado.
- As APs de 2ª Chamadas terão nível consideravelmente elevado em relação às AP de 1ª Chamada.

Livro texto

Título: Dystribution System Modeling and Analysis

Autor: William H. Kersting

Editora: CRC Press

Ano: 2002

Além dos slides que trarão bastante informação e outros recursos de texto que serão disponibilizados no decorrer da disciplina.

Recursos de Software

Serão realizadas **simulações computacionais** ao longo da disciplina com base nos conhecimentos adquiridos nas aulas. Para isso será

necessárioa a implementação de alguns modelos computacionais utilizando alguma **Linguagem de Programação** e o **OpenDSS**.

Introdução

Mas quais os elementos e especificidades que caracterizam um sistemas de distribuição?

O Sistema de testes IEEE 13 barras pode dar uma noção...

Sistema de testes IEEE 13 barras

Trata-se de um sistema de testes proposto pelo *Distributon Systems Analysis Subcommittee* da *Power Energy Society* do IEEE. Embora simples apresenta características diversas como:

- Pequeno mas carregado na tensão nominal de 4,16kV;
- Presença de um regulador de tensão;
- Presença de linhas aéreas e subterrâneas;
- Presença de bancos de capacitores;
- Transformador em série;
- Cargas concentradas e distribuídas desbalanceadas.

Sistema IEEE 13 barras

Modelos de cargas

- Podem ser concentradas em um nó ou distribuídas ao longo de uma seção de linha.
- Podem ser trifásicas (balanceadas ou desbalanceadas) e monofásicas;
- Cargas trifásicas podem ser conectadas em delta ou estrela;
- Cargas monofásicas podem ser conectadas em fase-fase ou fase-neutro;
- Podem ser modeladas como potência, impedância ou corrente constante.

Modelos de cargas

Table 1Load Model Codes

Code	Connection	Model
Y-PQ	Wye	Constant kW and kVAr
Y-I	Wye	Constant Current
Y-Z	Wye	Constant Impedance
D-PQ	Delta	Constant kW and kVAr
D-I	Delta	Constant Current
D-Z	Delta	Constant Impedance

Capacitores em Paralelo

Podem ser conectados em delta ou estrela se forem bancos trifásicos ou fase-fase e fase-neutro se forem bancos monofásicos.

Modelos de linhas aéreas

Table 2 Overhead Line Spacings

Spacing ID	Туре
500	Three-Phase, 4 wire
505	Two-Phase, 3 wire
510	Single-Phase, 2 wire

Dados dos condutores

Os dados especificados para os condutores são:

- Bitola do condutor em AWG;
- Tipo de condutor: AA, ACSR, CU;
- 3 Resistência à 50°C (ohms/milha);
- 4 Diâmetro do condutor (in);
- 6 Raio Médio Geométrico GMR (ft.);
- 6 Ampacidade à 50°C (A);

Dados dos condutores

Table 3 Conductor Data

1	2	3	4	5	6
1,000	AA	0.105	1.15	0.0368	698
556.5	ACSR	0.1859	0.927	0.0313	730
500	AA	0.206	0.813	0.026	483
336.4	ACSR	0.306	0.721	0.0244	530
250	AA	0.410	0.567	0.0171	329
# 4/0	ACSR	0.592	0.563	0.00814	340
# 2/0	AA	0.769	0.414	0.0125	230
# 1/0	ACSR	1.12	0.398	0.00446	230

# 1/0	AA	0.970	0.368	0.0111	310
# 2	AA	1.54	0.292	0.00883	156
# 2	ACSR	1.69	0.316	0.00418	180
# 4	ACSR	2.55	0.257	0.00452	140
# 10	CU	5.903	0.102	0.00331	80
# 12	CU	9.375	0.081	0.00262	75
# 14	CU	14.872	0.064	0.00208	20

Modelos de linhas subterrâneas

Table 4 Underground Line Spacings

Spacing ID	Туре
515	Three-Phase, 3 Cable
520	Single-Phase, 2 Cable

Figure 2 – Underground Line Spacings

Dados dos condutores neutro concêntrico

- Bitola do condutor em AWG;
- Diâmetro sob a isolação;
- 3 Diâmetro sobre a isolação;
- 4 Diâmetro externo;
- **5** Bitola e quantidade de condutores neutro;
- 6 Ampacidade.

Table 5 Concentric Neutral 15 kV All Aluminum (AA) Cable

1	2	3	4	5	6
2(7x)	0.78	0.85	0.98	6 x 14	135
1/0(19x)	0.85	0.93	1.06	6 x 14	175
2/0(19x)	0.90	0.97	1.10	7 x 14	200
250(37x)	1.06	1.16	1.29	13 x 14	260
500(37x)	1.29	1.39	1.56	16 x 12	385
1000(61x)	1.64	1.77	1.98	20 x 10	550

Dados dos condutores neutro concêntrico

Dados dos condutores blindados

- Bitola do condutor em AWG;
- Diâmetro sob a isolação;
- 3 Diâmetro sob a blindagem;
- 4 Diâmetro externo;
- 6 Ampacidade.

Table 6 Tape Shielded 15 kV All Aluminum (AA) Cable Tape Thickness = 5 mils

1	2	3	4	5	6
1/0	0.82	0.88	80	1.06	165

Dados dos condutores blindados

Tabelas de descrição do sistema

Tabela de Códigos de configuração: descreve cada um dos **tipos de configuração possíveis** das linhas do sistema;

Tabela de Dados dos trechos de linhas: descreve as interligações de cada nó do sistema, os comprimentos dos trechos de linhas e suas configurações, de acordo com a tabela de códigos de configuração.

Underground Line Configuration Data:

Config.	Phasing	Cable	Neutral	Space
				ID
606	ABCN	250,000 AA, CN	None	515
607	A N	1/0 AA, TS	1/0 Cu	520

Overhead Line Configuration Data:

Config.	Phasing	Phase	Neutral	Spacing
		ACSR	ACSR	ID
601	BACN	556,500 26/7	4/0 6/1	500
602	CABN	4/0 6/1	4/0 6/1	500
603	CBN	1/0	1/0	505
604	ACN	1/0	1/0	505
605	CN	1/0	1/0	510

Line Segment Data:

Node A	Node B	Length(ft.)	Config.
632	645	500	603
632	633	500	602
633	634	0	XFM-1
645	646	300	603
650	632	2000	601
684	652	800	607
632	671	2000	601
671	684	300	604
671	680	1000	601
671	692	0	Switch
684	611	300	605
692	675	500	606

Capacitor Data:

Node	Ph-A	Ph-B	Ph-C
	kVAr	kVAr	kVAr
675	200	200	200
611			100
Total	200	200	300

Regulator Data:

Regulator ID:	1		
Line Segment:	650 - 632		
Location:	650		
Phases:	A - B -C		
Connection:	3-Ph,LG		
Monitoring Phase:	A-B-C		
Bandwidth:	2.0 volts		
PT Ratio:	20		
Primary CT Rating:	700		
Compensator Settings:	Ph-A	Ph-B	Ph-C
R - Setting:	3	3	3
X - Setting:	9	9	9
Volltage Level:	122	122	122

Transformer Data:

	kVA	kV-high	V-high kV-low		X - %
				%	
Substation:	5,000	115 - D	4.16 Gr. Y	1	8
XFM -1	500	4.16 – Gr.W	0.48 – Gr.W	1.1	2

Spot Load Data:

Node	Load	Ph-1	Ph-1	Ph-2	Ph-2	Ph-3	Ph-3
	Model	kW	kVAr	kW	kVAr	kW	kVAr
634	Y-PQ	160	110	120	90	120	90
645	Y-PQ	0	0	170	125	0	0
646	D-Z	0	0	230	132	0	0
652	Y-Z	128	86	0	0	0	0
671	D-PQ	385	220	385	220	385	220
675	Y-PQ	485	190	68	60	290	212
692	D-I	0	0	0	0 170		151
611	Y-I	0	0	0	0	170	80
	TOTAL	1158	606	973	627	1135	753

Distributed Load Data:

Node A	Node B	Load	Ph-1	Ph-1	Ph-2	Ph-2	Ph-3	Ph-3
		Model	kW	kVAr	kW	kVAr	kW	kVAr
632	671	Y-PQ	17	10	66	38	117	68