## PRVI MEĐUISPIT IZ ELEKTRONIKE 1

## PRVA SKUPINA ZADATAKA

1. Pojačalo na slici ima naponsko pojačanje neopterećenog pojačala  $A_v = 150$ , ulazni otpor  $R_{ul} = 1 \text{ k}\Omega$  i izlazni otpor  $R_{iz} = 2 \text{ k}\Omega$ . Uz koji će otpor  $R_T$  naponsko pojačanje biti  $A_V = u_{iz}/u_{ul} = 100$ ? Koliko je pri tome strujno pojačanje  $A_I = i_{iz}/i_{ul}$  (1 bod)?



- a)  $R_T = 4 \text{ k}\Omega, A_I = 25,$
- **b)**  $R_T = 4 \text{ k}\Omega, A_I = 400,$
- c)  $R_T = 2 \text{ k}\Omega, A_I = 200,$
- **d)**  $R_T = 1 \text{ k}\Omega, A_I = 50,$
- e)  $R_T = 1 \text{ k}\Omega$ ,  $A_I = 100$ .
- 2. Zadana su dva CR člana čije se vremenske konstante odnose kao  $\tau_1 << \tau_2$ . Kako se odnose srednje vrijednosti njihovih izlaznih napona ako je na ulaz doveden napon sa slike (1 bod)?



- a)  $U_{SRI} = U_{SR2} = 0 \text{V}$ ,
- b)  $U_{SRI} >> U_{SR2}$ ,
- c)  $U_{SRI} = U_{SR2} = -2V$ ,
- $\mathbf{d)} \quad U_{SRI} << U_{SR2},$
- e)  $U_{SRI} = U_{SR2} = +1/3 \text{ V}.$
- 3. Zadana su dva RC člana čije se vremenske konstante odnose kao  $\tau_1 << \tau_2$ . Kako se odnose srednje vrijednosti njihovih izlaznih napona ako je na ulaz doveđen napon sa slike (1 bod)?



- a)  $U_{SRI}/U_{SR2} = -3$ ,
- b) Odnos ovisi o drugim parametrima,
- c)  $U_{SRI}/U_{SR2} = 1$ ,
- $\mathbf{d)} \quad U_{SRI} >> U_{SR2},$
- e)  $U_{SR1} \ll U_{SR2}$ .
- **4.** Silicij je dopiran jednim tipom primjese koncentracije *N*. Fermijeva energija nalazi se 0,2 eV od dna vodljivog pojasa. Koji tip i koliku koncentraciju primjese treba dodati da Fermijeva energija završi na udaljenosti 0,2 eV od vrha valentnog pojasa. Treba dodati (**1 bod**):
  - a) donore,  $N_D = 2 \cdot N$ ,
  - b) akceptore,  $N_A = 2 \cdot N$ ,
  - c) akceptore,  $N_A > 2 \cdot N$ ,
  - d) donore,  $N_D = N$ ,
  - e) akceptore,  $N_A = N$ .
- 5. Pločica silicija dopirana je donorima koncentracije  $N_{DI}$ . Specifična vodljivost pločice je  $\sigma_I$ . Koji tip i koncentraciju primjesa treba dodati u pločicu da silicij promijeni tip vodljivosti, a da specifična vodljivost nakon drugog dopiranja bude  $\sigma_2 = \sigma_I$ . Treba dodati (1 bod):
  - a) akceptore,  $N_{A2} < 2 \cdot N_{DL}$
  - **b)** akceptore,  $N_{A2} = 2 \cdot N_{DI}$ ,
  - c) akceptore,  $N_{A2} > 2 \cdot N_{DI}$ ,
  - d) donore,  $N_{D2} = N_{DI}$ ,
  - e) akceptore,  $N_{A2} = N_{DI}$ .

- 6. Silicij je dopiran donorima koncentracije  $N_D = 10^{16}$  cm<sup>-3</sup>. Temperatura poraste s  $T_I = 300$  K na  $T_Z = 350$  K. Pri tome za koncentracije elektrona n i šupljina p vrijedi (1 bod):
  - a) n pada, p raste,
  - b) n pada, p ostaje približno isti,
  - c) n ostaje približno isti, p raste,
  - d) n ostaje približno isti, p ostaje približno isti,
  - e) n raste, p ostaje približno isti.
- 7. Dva pn-spoja imaju jednake koncentracije primjesa pri čemu 1. pn-spoj ima uske strane, a 2. pn-spoj ima široke strane. Za struje zasićenja  $I_S$  i kapacitete osiromašenih slojeva  $C_B$  tih pn-spojeva vrijedi (1 bod):
  - a)  $I_{S1} < I_{S2} i C_{B1} = C_{B2}$
  - **b)**  $I_{S1} > I_{S2}$  i  $C_{B1} = C_{B2}$
  - c)  $I_S = I_{S2} i C_{B1} = C_{B2}$ ,
  - d)  $I_{S1} < I_{S2}$  i  $C_{B1} < C_{B2}$
  - e)  $I_{SI} > I_{S2}$  i  $C_{BI} < C_{B2}$ .
- 8. pn-dioda sa širokim stranama ima n-stranu puno jače dopiranu od p-strane i spojena je na napon  $U_D$ =0,5 V. Smanjimo li koncentraciju primjesa na p-strani, vrijedit će (1 bod):
  - a) struja kroz diodu će se povećati, električno polje će se povećati,
  - b) struja kroz diodu će se povećati, električno polje će se smanjiti,
  - c) struja kroz diodu i električno polje ostat će nepromijenjeni,
  - d) struja kroz diodu će se smanjiti, električno polje će se povećati,
  - e) struja kroz diodu će se smanjiti, električno polje će se smanjiti.
- 9. Za silicijski pn-spoj priključen na vanjski napon U = 0,55 V s koncentracijama primjesa iznosa  $N_A = 10^{15} \text{ cm}^{-3}$  i  $N_D = 10^{16} \text{ cm}^{-3}$ , te širokim stranama, uz pokretljivosti nosilaca  $\mu_n = 2\mu_p$  i istim vremenima života manjinskih nosilaca vrijedi (T=300 K) (1 bod):
  - a) struja elektrona veća je od struje šupljina, pn-spoj je zaporno polariziran,
  - b) struja elektrona veća je od struje šupljina, pn-spoj je propusno polariziran,
  - c) struja elektrona jednaka je struji šupljina, pn-spoj je u ravnoteži,
  - d) struja elektrona manja je od struje šupljina, pn-spoj je zaporno polariziran,
  - e) struja elektrona manja je od struje šupljina, pn-spoj je propusno polariziran.
- 10. Strujno-naponske karakteristike dioda u mreži na slici mogu se opisati Schockleyevom jednadžbom. Kolika struja I teče u mreži ako su struje zasićenja  $I_{S1} = 1$  pA,  $I_{S2} = I_{S3} = 2$  pA i  $I_{S4} = 3$  pA? Na kojoj je diodi najveći pad napona (1 bod)?



- a) I = 1 pA, najveći pad napona na  $D_1$ ,
- **b)** I = 2 pA, najveći pad napona na  $D_3$ ,
- c) I = 2 pA, najveći pad napona na  $D_2$ ,
- d) I = 4 pA, najveći pad napona na  $D_2$ ,
- e) I = 3 pA, najveći pad napona na  $D_4$ ,

## DRUGA SKUPINA ZADATAKA

**ZADATAK 1.** Za sklop na slici a) priključen je ulazni napon  $u_{UL}(t)$  prema slici b). U t = 0 ms napon na kondenzatoru iznosi  $U_{C0} = 2$  V.

- a) Odrediti vremensku konstantu (1 bod),
- b) Napisati izraze za izlazni napon  $u_{IZ}$  u intervalima 0 < t < 1 ms, 1 ms < t < 2 ms i t > 2 ms, te izračunati vrijednosti izlaznog napona u t = 0 ms, 1 ms, 2 ms i 3 ms (3 boda).
- c) Na istom grafu nacrtati ulazni i izlazni napon (1 bod).



**ZADATAK 2**. Silicij p-tipa homogeno je dopiran primjesom koncentracije  $10^{16}$  cm<sup>-3</sup>. Doda li se u taj silicij druga primjesa, Fermijeva energija će se pomaknuti za 0,15 eV, a specifična vodljivost će se smanjiti. Pokretljivosti slobodnih nosilaca su 820 cm<sup>2</sup>/Vs i 400 cm<sup>2</sup>/Vs, T = 300 K. Izračunati:

- a) Tip i iznos druge primiese (2 boda),
- b) Koncentraciju manjinskih nosilaca nakon drugog dopiranja (1 bod),
- c) Specifični otpor silicija nakon prvog i drugog dopiranja (2 boda).

**ZADATAK** 3 Silicijska pn-dioda ima homogeno dopirane strane. Koncentracije primjesa su  $N_D = 2 \cdot 10^{17}$  cm<sup>-3</sup> i  $N_A = 8 \cdot 10^{15}$  cm<sup>-3</sup>, efektivne širine neutralnih strana  $W_n = 1$  µm i  $W_p = 200$  µm, a površina pn-spoja iznosi S = 0.1 mm<sup>2</sup>. Pokretljivosti manjinskih nosilaca iznose  $\mu_n = 1000$  cm<sup>2</sup>/Vs i  $\mu_p = 200$  cm<sup>2</sup>/Vs, a vremena života  $\tau_n = 0.1$  µs i  $\tau_p = 0.5$  µs. Pretpostaviti T = 300 K.

- a) Odrediti iznos struje kroz diodu ako se na nju spoji napon propusne polarizacije  $U_D = 0.55 \text{ V}$  (3 boda).
- b) Nacrtati raspodjele manjinskih nosilaca, izračunati i označiti rubne te ravnotežne koncentracije za zadani priključeni napon (2 boda).