작성일	2025.02.27	
작성부서	SW개발팀	
작성자	조환영	

A1로봇 센서 데이터 및 TF

SW개발팀_조환영 연구원 2025.02.27

everybot.

Confidential This document and any attachments to it may be contain trade secret, confidential information and are intended solely for the use of the individual to whom it is addressed. Any unauthorized dissemination, distribution, copying or use of the information contained in this communication is strictly prohibited. If you have received this communication in error, please contact the sender immediately, and delete this communication from any computer or network system.

CONTENTS.

- 1. sensor_to_pointcloud Node
- 2. Converting Data to PointCloud2
- 3. ToF TF / Data
- 4. Camera TF / Data
- 5. Cliff TF / Data
- 6. Robot TF Tree
- 7. 데이터(Topic) 확인 방법
- 8. 참고

1. sensor_to_pointcloud Node - Topic Graph

"base_link", "map" 좌표계 선택 가능 (파라미터로 선택 가능) 1D ToF /sensor_to_pointcloud/tof/mono PointCloud2 /tof data /sensor_to_pointcloud/tof/multi /sensor_to_pointcloud/tof/multi/left/row_1 uart_ communication **Multi-ToF** /sensor to pointcloud/tof/multi/left/row 4 PointCloud2 /bottom_status airbot /sensor_to_pointcloud/tof/multi/right/row_1 sensor_to_ pointcloud /sensor_to_pointcloud/tof/multi/right/row_4 ai_interface /camera_data /sensor_to_pointcloud/camera_object Camera PointCloud2, **BoundingBox** /sensor_to_pointcloud/camera/bbox Cliff (낙하) /sensor_to_pointcloud/cliff PointCloud2

1. sensor_to_pointcloud Node - Parameter

sensor_to_pointcloud Node의 "사용 방법"에 관한 파라미터

sensor_to_pointcloud_param.yaml 파일에서 수정 가능

(파일 위치: ~/airbot_ws/install/airbot_sensor_to_pointcloud/share/airbot_sensor_to_pointcloud/config/)

```
target_frame: "map" # "map" or "base_link"
tof:
                                                  camera:
                                                                                                                           lidar:
 all:
                                                   use: true
                                                                                                                             use: false
   use: true
                                                   publish rate ms: 100
                                                                                                                             publish_rate_ms: 100
 1D ·
                                                   pointcloud_resolution: 0.05
                                                                                                                             front:
   use: true
                                                   class id confidence th: # 형식: "class id: confidence score"
   publish rate ms: 10
                                                                                                                               range:
                                                     - "2: 55"
   tilting_angle_deg: 45.0 # double type
                                                                                                                                 angle max: 270.0
                                                     - "5: 55"
                                                                                                                                 angle min: 90.0
   publish rate ms: 50
                                                     - "6: 55"
                                                                                                                               geometry:
   left:
                                                   object direction: true # 정봉황(CCW+):True, 역봉황(CW+):False
                                                                                                                                 alpha: 180.0
     use: true
                                                                                                                                 offset:
   right:
                                                     use: true
                                                                                                                                    x: 0.15
                                                     margin:
                                                                                                                                   y: 0.0
                                                       distance diff: 0.5
     use: true
                                                                                                                                    z: 0.0
                                                       width diff: 0.1
     publish rate ms: 50
                                                                                                                             back:
                                                       height_diff: 0.1
                                                                                                                               range:
                                                                                                                                 angle_max: 270.0
                                                                                                                                 angle min: 90.0
 cliff:
                                                                                                                               geometry:
   use: true
                                                                                                                                 alpha: 0.0
   publish rate ms: 10
                                                                                                                                 offset:
                                                                                                                                   x: -0.15
                                                                                                                                   y: 0.0
                                                                                                                                    z: 0.0
```

1. sensor_to_pointcloud Node - Parameter

"센서 사양 및 기구적 제원"에 관한 파라미터

sensor_to_pointcloud.cpp 파일에서 수정 가능 (웬만하면 안바뀜)

```
// Robot, Sensor Geometric Specification
double tof top sensor frame x translate = 0.0942;
                                                       //[meter]
double tof_top_sensor_frame_y_translate = 0.0;
                                                       //[meter]
double tof top sensor frame z translate = 0.56513;
                                                       //[meter]
double tof bot sensor frame x translate = 0.14316;
                                                     //[meter]
double tof bot sensor frame y translate = 0.075446;
                                                       //[meter]
double tof_bot_sensor_frame_z_translate = 0.03;
                                                       //[meter]
double tof bot left sensor frame pitch ang = -2.0;
                                                       //[deg]
double tof bot right sensor frame pitch ang = -2.0;
                                                       //[deg]
double tof_bot_left_sensor_frame_yaw_ang = 13.0;
                                                       //[deg]
double tof bot rihgt sensor frame yaw ang = -15.0;
                                                       //[deg]
double tof bot fov ang = 45;
                                                       //[deg]
double camera sensor frame x translate = 0.15473;
                                                       //[meter]
double camera sensor frame y translate = 0.0;
                                                       //[meter]
double camera sensor frame z translate = 0.5331;
                                                       //[meter]
double cliff sensor distance center to front ir = 0.15; //[meter]
double cliff sensor angle to next ir sensor = 50;
                                                       //[deg]
```

2. Converting Sensor Data to PointCloud2 in Map Frame

최종 글로벌 좌표계(map frame) 기준으로 변환 후 PointCloud2 형태 데이터로 발행 (현재 로봇 위치-amcl_pose 고려) amcl_pose

3. ToF TF

everybot.

3. ToF Data

Raw Data

/tof_data

PointCloud2 Data

/sensor_to_pointcloud/tof/mono

/sensor to pointcloud/tof/multi

실제 sensor->MCU 로 들어올 때 데이터 배열

Re-Mapping

3	2	1	0	
7	6	5	4	
11	10	9	8	
15	14	13	12	

LEFT

12	13	14	15
8	9	10	11
4	5	6	7
0	1	2	3

RIGHT

숫자의 의미는 배열의 index (데이터 순서)입니다.

AP에서 re-mapping하여 주행에 사용하는 데이터 배열

/tof_data bot_left, bot_right

"ros2 topic echo /tof_data" 로 보는 데이터입니다.

TofData.msg

builtin interfaces/Time timestamp

float64 top float64[16] bot_left float64[16] bot_right

uint8 top_status uint8 bot_status

float64 robot_x float64 robot_y float64 robot_angle

4. Camera TF

4. Camera Data

Raw Data

PointCloud2 Data

/camera_data

/sensor_to_pointcloud/camera_object

AlData.msg

uint8 id uint8 score

float64 theta float64 width float64 height float64 distance

Camera Object Class ID

- # 0: cable
- # 1: carpet
- # 2: clothes
- # 3: liquid
- # 4: non obstacle
- # 5: obstacle
- # 6: poop
- # 7: scale
- # 8: threshold
- # 9: person
- # 10: dog
- # 11: cat

AlDataArray.msg

builtin_interfaces/Time timestamp

uint8 num

AIData[] data_array

float64 robot x float64 robot y float64 robot_angle

5. Cliff TF

5. Cliff Data

Raw Data

PointCloud2 Data

/bottom_status

/sensor_to_pointcloud/cliff

std_msgs/UInt8.msg uint8 data

FF 1 1 0x01 LF 10 0x02 100 0x04 LB 0x08 1000 BB RB 10000 16 0x10 RF 100000 32 0x20

예시) FF, LF, RF가 감지되었을 때

FF,LF,RF 100011 35 0x23

"ros2 topic echo /bottom_status" 로 보는 데이터입니다.

6. Robot TF Tree

7. 데이터(Topic) 확인 방법

모든 환경 세팅이 되어있다는 가정 하에 (ros2 humble, linux(ubuntu22.04 권장) 설치 및 ~/airbot_ws/install/robot_custom_msgs 파일 확보 – 자세한 내용은 문의)

터미널 창에서 아래 명령어 실행

export ROS_DOMAIN_ID = 30

source ~/airbot_ws/install/setup.bash

ros2 topic echo {토픽명}

{토픽명}에 원하는 데이터의 토픽명을 입력한다. (e.g. ros2 topic echo /camera_data) (이전 페이지들의 raw data 토픽명 확인)

{토픽명}은 터미널 창에 ros2 topic list 를 입력해서 확인할 수도 있다.

/camera_data 토픽의 출력 예시

```
timestamp:
 nanosec: 734337639
num: 3
data array:
 id: 5
  x: 0.001
  y: 0.001
  theta: -1.0995574287564276
  width: 0.46
  height: 0.614
  distance: 0.771
  id: 5
  score: 45
  x: 0.001
  y: 0.001
  theta: -1.3089969389957472
  width: -0.232
  height: 0.326
  distance: 1.909
 id: 5
  score: 27
  x: 0.001
  y: 0.001
  theta: -1.5707963267948966
  width: 0.414
  height: 0.12
  distance: 0.027
robot x: 0.0
robot y: 0.0
robot angle: 0.0
```

8. 참고

● Roll, Pitch, Yaw 데이터 확인 토픽

/odom

odom_msg.pose.pose.orientation 에서 확인

acc (Twist) 데이터 확인 토픽

/imu

현재 발행 막아 놓음, 추후 발행 예정

sensor_msgs/PointCloud2 메시지 타입

PointCloud2.msg

std_msgs/Header header uint32 height uint32 width sensor_msgs/PointField[] fields bool is_bigendian uint32 point_step uint32 row_step uint8[] data bool is_dense height, width: PointCloud2의 크기 결정 (1차원이면 height=1 / 2차원이면 height가 2 이상)

field: pointcloud의 데이터를 해석하는 방법을 알려주는 설명서 (point들의 데이터 타입, 크기, 이름등을 결정) (ros의 다른 노드들이 해당 토픽을 해석할 때 필요한 format)

bigendian: 빅엔디안인지, 리틀엔디안인지 명시 (True: 빅, False: 리틀)

point_step: 각 포인트가 차지하는 bytes (데이터 타입 bytes * PointField 개수)

row_step: 한 열의 bytes (point_step * width)

data: 실제 바이너리 데이터를 저장하는 곳

is_dense: 모든 포인트가 유효한지 (NaN or Inf가 없는지) (안전하게 false)

End of Document.