MATH 110, Fall 2013 Tutorial #10 November 20, 2013

Today's main problems

 $\mathcal{V} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where

$$\vec{v}_1 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 3 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$

- 1. (a) Show that \mathcal{V} is an orthogonal basis. Is it an orthonormal basis?
 - (b) Create an orthonormal basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ by "fixing" the vectors in \mathcal{V} so they are orthonormal.
 - (c) Write the vector $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as a linear combination of vectors in the $\mathcal B$ basis.
- 2. Consider the three planes $\mathcal{P}_1 = \operatorname{span}\{\vec{v}_1, \vec{v}_2\}, \, \mathcal{P}_2 = \operatorname{span}\{\vec{v}_2, \vec{v}_3\}, \, \mathcal{P}_3 = \operatorname{span}\{\vec{v}_1, \vec{v}_3\}.$
 - (a) Find the normal vectors of the planes $\mathcal{P}_1, \mathcal{P}_2$, and \mathcal{P}_3 .
 - (b) Find the projection of $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ onto $\mathcal{P}_1, \mathcal{P}_2$, and \mathcal{P}_3 .
 - (c) Write $\vec{w} = \vec{a} + \vec{b}$ where $\vec{a} \in \mathcal{P}_1$ and \vec{b} is perpendicular to \mathcal{P}_1 .

Further Questions

- 3. Let $B = [\vec{b}_1|\vec{b}_2|\vec{b}_3]$ and $V = [\vec{v}_1|\vec{v}_2|\vec{v}_3]$ where \vec{b}_i and \vec{v}_i are from problem 1.
 - (a) Compute B^{-1} (Hint, this is easy. No computation required!)
 - (b) Compute V^{-1} (This requires a little thinking, but not much computation).
- 4. V is a subspace of \mathbb{R}^9 and P is a matrix that projects vectors in \mathbb{R}^9 onto V. Further, rank(P) = 3.
 - (a) How many vectors are in a basis for V?
 - (b) Let $\vec{v} \in \mathbb{R}^9$ and $\vec{w} = \vec{v} P\vec{v}$. What is the angle between \vec{w} and any vector in V?
 - (c) What is rank(I P)?

MATH 110, Fall 2013 Tutorial #10 November 20, 2013

Challenge questions

Recall that the trace of a matrix is the sum of the diagonal entries and that trace(A) = trace(B) if A and B are similar.

- 5. Let P be a projection matrix. Show that trace(P) is always an integer (Hint, think about what a projection matrix must be similar to).
- 6. Show that in fact trace(P) is the dimension of the subspace that P projects onto.

MATH 110, Fall 2013 Tutorial #10. Instructions for TAs

Objectives

Hidden objectives

Suggestions

Wrapup

Choose a question that most of the class has started but not yet finished, or a question that people particularly struggled with.

Solutions

1.