PREDICATE-TRANSFORMER-BASED VERIFICATION (LN CHAPTER 2)

wishnu@cs.uu.nl

www.cs.uu.nl/docs/vakken/pv

PLAN

- Hoare logic
- Verification using predicate transformers
- Verification with "Guarded Command Language" (GCL)
- Objects and exceptions
- Should at end give an answer to "how to mechanically verify a real program".

SPECIFYING PROGRAMS

• We can use "Hoare triples":

```
{ true } plusOne(x) body { return = x+1 }
```

```
\{ \#S>0 \} \max(S) body \{ return \in S / (\forall x: x \in S : return \ge x) \}
```

• total and partial correctness interpretation.

HOARE LOGIC

 Provides a set of "inference rules" to prove the validity of Hoare triples. Example:

$$O \Rightarrow P$$
, $\{P\}$ S $\{Q\}$
------ $\{O\}$ S $\{Q\}$

• **Note** : LN uses the notation $\vdash O \Rightarrow P$

THE LOGIC'S GENERAL IDEA: BREAK IT DOWN!

$$\{P\} S_1 \{Q\} , \{Q\} S_2 \{R\}$$
----- $\{P\} S_1; S_2 \{R\}$

$$\{P /\backslash g\} S_1 \{Q\}, \{P /\backslash \neg g\} S_2 \{Q\}$$

$$\{P\} \text{ if } g \text{ then } S_1 \text{ else } S_2 \{Q\}$$

ASSIGNMENT

- Eventually, everything boils down to "assignments"
- An assignment is correct if

$$P \Rightarrow Q[e/x]$$

 $\{P\} x := \{Q\}$

• **Note**: this assumes that the assignment only changes the value of x (it does not silently affect other variables)

LOOP

• A loop is correct if you can find an "invariant" :

• E.g. a trivial loop:

```
\{ k=1000 \} while k>0 do k := k-1 \{ k=0 \}
```

FEW MORE EXAMPLES

$$\{y=0 / k=0\}$$
 while k<10 do $\{y:=y+2; k++\}$ $\{y=20\}$

$$\{y=0 / k=10 \}$$
 while $k \neq 0$ do $\{y := y+2 ; k--\} \{y = 20 \}$

FEW MORE EXAMPLES

```
Home work:

{ s=false /\ k=0 }

while k<#b do {
    s = s \/ b[k] ;
    k = k + 1
    }
```

```
\{ s = (\exists i: 0 \le i \le \#b: b[i]) \}
```

PROVING TERMINATION (OF LOOP)

• Extend the previous rule to:

```
P \Rightarrow I
\{g \land I\} S \{I\}
I / \neg g \Rightarrow Q
\{I/\backslash g\} C:=m; S \{m < C\}
I / g \Rightarrow m > 0
\{P\} while g do S \{Q\}
```

// m decreasing
// m bounded below

EXAMPLE

```
{ x≥0 /\ y≥0 }
while x+y>0 do {
   if x>0 then { x-- ; y := y+100 }
   else y--
}
```

HOME WORK

```
{ x>1 }
  while x>0 do {
    if x>1 then x := x - 2
    else x := x + 1
}
```

HOARE LOGIC CANNOT BE DIRECTLY AUTOMATED

Problem:

 Let's now look at "predicate transformer-based verification". A predicate transformer is a function of type : Statement → Predicate → Predicate

FORWARD AND BACKWARD TRANSFORMER

- cp \triangleright S P (forward): transform a given pre-condition P to a post-condition.
- cp \triangleleft S Q (backward) : transform a given post-condition Q to a pre-condition.

Do they produce valid (sound) pre/post conditions? Yes if :

$$\{ cp \triangleleft S Q \} S \{ Q \}$$

FORWARD AND BACKWARD TRANSFORMER

Sound and complete if :

$$\{P\} \ S \ \{Q\} \equiv \operatorname{cp} \supset S \ P \Rightarrow Q$$

$$\{P\} \ S \ \{Q\} \equiv P \Rightarrow \operatorname{cp} \supset S \ Q$$

WP AND WLP TRANSFORMER

- wp S Q: the weakest pre-condtion so that S terminates in Q.
- wlp S Q: the weakest pre-condition so that S, if it terminates, will terminate in Q.

wlp = weakest liberal pre-conidtion.

Though, we will see later, that we may have to drop the completeness property of wp/wlp, but we will still call them wp/wlp.

GUARDED COMMAND LANGUAGE (GCL)

- Simple language to start
- Expressive enough to encode larger languages
- So that you can keep your logic-core simple
- Constructs
 - assignment, seq, while, if-then-else
 - var x in S, uninitialized local-var.
 - assert e , assume e
 - try-catch
 - program decl, program call
 - primitive types, arrays

WLP

- wlp skip Q = Q
- wlp (x:=e) Q = Q[e/x]
- wlp $(S_1; S_2)$ $Q = wlp S_1 (wlp S_2 Q)$

We don't need to propose our own intermediate predicate!

Example, prove:

$$\{x\neq y\}$$
 tmp:= x ; x:=y ; y:=tmp $\{x\neq y\}$

WLP

- wlp (assert e) Q = e / Q
- wlp (assume e) $Q = e \Rightarrow Q$
- wlp (S[]T) Q = (wlp S Q) / (wlp T Q)

 With respect to Hoare triples these two are equivalent (any Hoare triple satisfied by one is satisfied by the other):

```
if g then S_1 else S_2

\equiv

(assume g; S_1) [] (assume \neg g; S_2)
```

WLP

So, it follows:

wlp (if
$$g$$
 then S_1 else S_2) Q

$$= (g \Rightarrow \text{wlp } S_1 Q) / (\neg g \Rightarrow \text{wlp } S_2 Q)$$

• Note : it is equivalent to $(g / \backslash wlp S_1 Q) / (\neg g / \backslash wlp S_2 Q)$

FORMULA GROWTH

- Note that wlp of if-then-else "duplicates" Q (2x).
- So a series like:

```
wlp ( if g then S1 else S2 ; if h then S3 else S4 ; if l then S5 else S5 ) Q
```

will duplicate Q 8x. (exponential growth in the size of the resulting wlp)

PATH-BASED VERIFICATION

- Any program S that does not contain a loop or recursion can be equivalently decomposed into linear "program paths".
- Example :

```
if g then x:=e_1 else x:=e_2;
if h then y:=e_3 else y:=e_4
```

Can be decomposed to:

assume g; x:=e₁; assume h; y:= e₃
 assume g; x:=e₁; assume ¬h; y:= e₄
 assume ¬g; x:=e₂; assume h; y:= e₃
 assume ¬g; x:=e₂; assume ¬h; y:= e₄

PATH-BASED VERIFICATION

- {P} S {Q} is valid \equiv forall program path σ of S: {P} σ {Q} is valid.
- E.g. to verify:

```
 \left\{ \begin{array}{l} P \end{array} \right\} \\ \mbox{if g then } x := e_1 \mbox{ else } x := e_2 \ ; \\ \mbox{if h then } y := e_3 \mbox{ else } y := e_4 \\ \mbox{ } \left\{ \begin{array}{l} Q \end{array} \right\} \\ \end{array}
```

```
1. { P } assume g ; x:=e_1 ; assume h ; y := e_3 { Q } 2. { P } assume g ; x:=e_1 ; assume \negh ; y := e_4 { Q } 3. { P } assume \negg ; x:=e_2 ; assume h ; y := e_3 { Q } 4. { P } assume \negg ; x:=e_2 ; assume \negh ; y := e_4 { Q }
```

Each is reducible to pred. logic formula. We can automate this!

- This approach of verification is also called "symbolic execution", because it as if we symbolically execute each control path in the target program.
- The number of paths can still be a lot, but we can verify them incrementally, and even choose which ones to verify.

UNFEASIBLE PATH

 Consider as an example of program path (recall that the "assumes" came originally from branch-guards):

$$\begin{array}{c|c} \{\ P\ \} \ \textbf{assume} \ g\ ; \ x := x+1\ ; \ \textbf{assume} \ h\ ; \ y := x \ \{\ y>z\ \} \\ \hline C_1 = P \land g & C_2 = P \land g \ \land \ h[x+1/x] \\ \hline \end{array}$$

- A program path can turn out to be unfeasible if no actual execution can trigger it. This happens if one of its branch-guard is unfeasible towards the path pre-condition (P above):
 - Condition g above is unfeasible if C₁ is unsatisfiable
 - Condition h is unsatisfiable if C₂ in unsatisfiable
- Verifying an unfeasible path is waste of effort, but checking if a path in unfeasible also takes effort (above, you need to check C₁ and C₂).

FORWARD SYMBOLIC EXECUTION

• Forward symbolic execution: executing a program path, using "variables" to symbolically represent all possible inputs.

- " $x \mapsto x_0$ " means the variable x has the value x_0 .
- x0, y0, z0 : fresh variables representing initial values of x,y,z.
- "Constraint" is a condition that the symbolic values must satisfy, e.g. because it is imposed by the program's pre-condition.

FORWARD SYMBOLIC EXECUTION

Forward symbolic execution: we execute a program, taking a formula as its input:

• The Hoare triple on the left is valid if and only if the final symbolic state implies the post-condition. That is, if this is valid:

$$x=x_0+2 \land y=y_0 \land z=x_0+2-1 \land x_0=y_0 \implies x=y$$

FORWARD SYMBOLIC EXECUTION

- More generally a symbolic state consist of a pair (C,s) where C is a constrain and s is a mapping $\mathbf{x} \mapsto \mathbf{e}$ that maps every program variable to its symbolic value (which can be an expression e.g. $\alpha+1$). To keep it simple, we won't keep track of a stack (needed if you have recursive calls).
- Initially the symbolic state is (true, $[x_1 \mapsto \alpha_1, x_2 \mapsto \alpha_2, \dots]$) where α_k is a fresh variable representing an arbitrary initial value of x_k .
- Given a program path ρ (sequence of instructions), and an initial symbolic state (C,s), to symbolically execute ρ we simply execute the instructions in ρ in the order as they appear, passing on the new symbolic state after an instruction ρ_k to the execution of the instruction ρ_{k+1} .
- executing assume P on (C,s) gives (P \wedge C, s) as the new symbolic state.
- executing assert Q on (C,s) gives the same state (C, s) as the new symbolic state, if $C \land s \Rightarrow Q$ holds. Else the execution is aborted, reporting an error (the asserted Q is violated).
- executing y:=e on (C,s) gives (C, update y e's) as the new symbolic state, where e' is the symbolic value of the expression e on the state s, which can be obtained by replacing every program variable z that occurs in e with s(z) (the symbolic value of z in the state s).

BACKWARD VS FORWARD SYMBOLIC EXECUTION

Consider again the verification of:

- Wlp-based. The program is valid iff $x=y \Rightarrow x+2>y$
- Forward symbolic execution: the program is valid iff

$$x=x_0+2 \land y=y_0 \land z=x_0+2-1 \land x_0=y_0 \implies x=y$$

BACKWARD VS FORWARD TRANSFORMATION

- Backward execution yields: $x=y \Rightarrow x+2>y$.
- Forward execution yields:

$$y=y_0 / x_0=y_0 / x = x_0+2 / z=x_0+2-1 \Rightarrow x>y$$

- Backward transformation: yields cleaner formulas, containing only conditions relevant towards the post-cond.
- Forward transformation
 - The direction is more intuitive
 - The intermediate formulas also produce conditions that correspond to the feasibility of each branch-guard (1x, the blue box above), so you can immediately check the guard feasibility. Note we can also check this via wlp; it is just that we need more staging in the corresponding symbolic execution.

CAN WE PROVE THE SOUNDNESS AND COMPLETENESS OF THE WLP TRANSFORMER?

 Yes, e.g. wrt a denotational semantic. I will just give a sketch of how to do this.

- Consider the following semantical domains:
 - State: the space of all possible program states.
 - val: the space of all possible values of program variables

 Note: Chapter 1 and 2 propose two different representations of states. They are both usable, as they both support state query and update.

THE SEMANTIC OF EXPRESSIONS AND PREDICATES

- $\mathcal{E}: \mathsf{expr} \longrightarrow (\mathsf{State} \longrightarrow \mathsf{val})$
- $\mathcal{E}: \mathsf{Pred} \longrightarrow (\mathsf{State} \longrightarrow \mathsf{bool})$ // overloading \mathcal{E}
- e.g.

$$\mathcal{E}[x>y] = (\lambda s. \ s \ x > s \ y)$$

Note that P:State → bool can equivalently be seen as a set of all the states on which P is true:

"P as a set" =
$$\{ s \mid s \in \text{State } / P s \}$$

- Predicate operators translate to set operators, e.g. $\land \land \lor$, to $\cap \lor$, negation to complement wrt **State**.
- This ordering: " $P \Rightarrow Q$ is valid" translates to $P \subseteq Q$

THE SEMANTIC OF STATEMENTS

- \longrightarrow S : stmt \longrightarrow (State \longrightarrow State)
- Alternatively: S: stmt \rightarrow (State \rightarrow Pow(State)) to allow non-determinism.

where **Pow(State)** is the domain of all subsets of **State**. On this domain, we have: $\cap \cup \subseteq \supseteq$

THE SEMANTIC OF STATEMENTS (DETERMINISTIC)

•
$$S$$
 [skip] = $(\lambda s. s)$

•
$$\mathcal{S} [x := e] = (\lambda s. \mathbf{update} s \times (\mathcal{E} [e] s))$$

•
$$\mathcal{S} \llbracket S_1; S_2 \rrbracket = (\lambda s. \mathcal{S} \llbracket S_2 \rrbracket (\mathcal{S} \llbracket S_1 \rrbracket s))$$

SEMANTIC OF HOARE TRIPLE (DETERMINISTIC)

• \mathcal{H} : Hoare-triple \longrightarrow bool

$$\mathcal{H}(\{P\} S \{Q\}) = \forall s: \mathcal{E}[\![P]\!] s: \mathcal{E}[\![Q]\!] (\mathcal{S}[\![S]\!] s)$$

• wlp is sound and complete if:

```
\{P\} S \{Q\} if and only if P \Rightarrow wlp S Q is valid
```

- In comes down to proving that: for all state s, and post-cond Q: $\mathcal{E}[Q](\mathcal{S}[S]]$ s) if and only if $\mathcal{E}[W]$ wlp Q W if W
- Can be proven inductively over the stucture of S.

DEALING WITH LOOP

- Unfortunately, no general way to calculate wlp of loops.
- For annotated loop, let's "define" :

wlp (inv / while g do S) Q = I, provided

- $1 \land \neg g \Rightarrow Q$
- $I / g \Rightarrow wlp S I$

WHAT IF THERE IS NO I ANNOTATED?

- Heuristics to construct invariants e.g. based on the form of the post-condition → not in scope.
- Dynamically infer invariants → not in scope.
- Non-heuristic approaches, simple; can be used as starting points.
 - Fix point based
 - Unfolding

WLP AS FIX POINT

Note this first: loop
 while g do S
 ≡
 if g then { S while g do S } else skip

■ let
$$W = \text{wlp } loop Q$$
.

$$= (g \Rightarrow \text{wlp } S \text{ (wlp } loop Q)) \land (\neg g \Rightarrow Q)$$

$$= (g \land \text{wlp } S \text{ (wlp } loop Q)) \land (\neg g \land Q)$$

$$W$$

$$F(W)$$

• We are looking for the "weakest" solution of W = F(W)

THE DOMAIN OF STATE PREDICATES, POW(Σ)

• Suppose ∑ (set of all states) = { s,t,u }. The domain Pow(∑), ordered by ⊆ :

 $X \cup Y$ (union) acts as the least upper bound of X and Y $X \cap Y$ (intersection) acts as the greatest lower bound of X and Y

SOME BIT OF FIX POINT THEORY

- (A, \leq) where \leq is a p.o., is a *complete lattice*, if every subset $X \subseteq A$ has a supremum and infimum.
 - Supremum = least upper bound = join $\bigvee X \bigsqcup X$
 - Infimum = greatest lower bound = meet $\bigwedge X$
 - So, we will also have the supremum and infimum of the whole A, often called top T and bottom ⊥.
- Let $f: A \rightarrow A$. An x such that x = f(x) is a *fix point* of f.
- Knaster-Tarski. Let (A, \le) be a complete lattice. If $f: A \rightarrow A$ is monotonic over \le , and P is the set of all its fix points, then P is non-empty, and (P, \le) is a complete lattice.
- (thus, both $\square P$ and $\bigcap P$ are also in P).

SOME BIT OF FIX POINT THEORY

- The domain $(\mathbf{pow}(\Sigma), \subseteq)$ is a complete lattice.
 - $\sum = top$
 - \emptyset = bottom
 - AUB : least upper bound (\/)
 - A \cap B : greatest lower bound (/\)
- So, if F defined before is monotonic within this domain, then it has a greatest fix-point.
- Is F monotonic ?
- Is wlp monotonic?

SOME BIT OF FIX POINT THEORY

■ Consider now $f : \mathbf{pow}(\Sigma) \to \mathbf{pow}(\Sigma)$. It is \cap -continuous if for all decreasing chain $X_0 \supseteq X_1 \supseteq X_2$...:

$$f(X_0 \cap X_1 \cap \dots) = f(X_0) \cap f(X_1) \cap \dots$$

- If f is \cap -continuous, it is also monotonic.
- Is wlp ∩-continuous ?

FP ITERATION

- Define:
 - $f^0(X) = X$,
 - $f^{k+1}(X) = f(f^k(X))$
- Suppose f is \cap -continuous. Consider the series $f^0(\Sigma)$, $f^1(\Sigma)$, $f^2(\Sigma)$...

Corollaries:

- *f* is also monotonic.
- The series is a decreasing chain.
- $\alpha = f^0(\Sigma) \cap f^1(\Sigma) \cap f^2(\Sigma) \cap ...$ is a fix point of f.
- α is the greatest fix point of f.

FP ITERATION

- How to compute $\cap \{f^k(\Sigma) \mid k \ge 0\}$?
 - compute f^0 , f^1 , f^2 , ... but notice you only need to keep track of the last.
 - $X := \sum$; while $X \neq f(X)$ do X := f(X)

- Will give the greatest FP, if it terminates.
- For **wlp** :
 - W := true;
 while W ≠ F(W) do W := F(W)
 where F(W) = (g /\ wlp S W) \/ (¬g /\ Q)

EXAMPLE 1

```
while y>0 do \{ y := y-1 \} \{ y=0 \}
```

- Q is y=0
- W_0 = true
- $W_2 = (y>0 \ / \ y-1\ge0) \ / \ (-(y>0)/ \ y=0)$ = $y\ge1 \ / \ y=0$ = $y\ge0$
- $W_2 = W_1$

EXAMPLE 2

while
$$y>0$$
 do { $y := y-1$ } { d }

- Q is d -- c,d are bool vars
- W_0 = true
- $W_1 = (y>0 \ \ \text{wlp S } W_0) \ \ \ (\neg(y>0) \ \ \ d)$ = $(y>0 \ \ \text{true}) \ \ \ \ (y\leq 0 \ \ d)$

- does not terminate ⊗

EXAMPLE 3

```
while y>0 do { assert d; y := y-1 } { d }
```

- Q is d -- c,d are bool vars
- W_0 = true
- $W_1 = (y>0 \land wlp S W_0) \lor (\neg(y>0) \land d)$ = $(y>0 \land d) \lor (y\leq 0 \land d)$ = d
- $W_2 = W_1$

FINITE UNFOLDING

Define

```
[while]<sup>0</sup> (g,S) = assert \neg g

[while]<sup>k+1</sup> (g,S) = if g then \{ S ; [while]^k (g,S) \}

else skip

\langle while \rangle^0 \quad (g,S) = assume \neg g

\langle while \rangle^{k+1} (g,S) = if g then \{ S ; \langle while \rangle^k (g,S) \}

else skip
```

- Iterate at most k-times.
- Iterate at most k times, then miracle.

REPLACING WHILE WITH [WHILE]K

$$\{P\}$$
 while y>0 do $\{y := y-1\}$

- wlp ([while] 2 (y>0, y := y-1)) (y=0)
 - $= (y=2 \ \ y=1 \ \ y=0)$

- Works if P says y is exactly that (0,1,2).
- Does not work if P is e.g. y=3 or $y\ge0$
- Such unfolding produces sound wlp, but incomplete.

REPLACING WHILE WITH (WHILE)K

• wlp
$$(\langle \mathbf{while} \rangle^2 (y>0, y:=y-1))$$
 $(y=0 / b)$

=
$$y>2 \ (y=2/b) \ (y=1/b) \ (y=0/b)$$

- P: $y=0 \ \ y=1 \dots \text{ works}$
- P: y≥0 ... "works" as well
- This unfolding yields wlp which is complete but unsound. So, if P ⇒ W, W is the above wlp, is valid, we don't know if the original specification is also valid. However, if P ⇒ W is invalid, then so is the orig. spec.

VERIFICATION OF OO PROGRAMS

- GCL is not OO, but we can encode OO constructs in it. We'll need few additional ingredients:
 - local variables
 - simultant assignment
 - program call
 - array
 - object
 - method

LOCAL VARIABLE

• wlp (var x in x:=1; y := y+x end) (x=y)

Rename loc-vars to fresh-vars, to avoid captures:

Let's try another example :

wlp (var x' in assume x'>0;
$$y := y+x'$$
 end) (x=y)

Note that if x' is fresh we can alternatively treat this as:

assume
$$x'>0$$
; $y := y+x'$

SIMULTANT ASSIGNMENT

For example: x,y := y , x+y { x=y }

wlp
$$(x,y := e_1,e_2)$$
 Q = Q $[e_1,e_2/x,y]$

Compare it with : (x=y) [y/x] [x+y/y]

• But e.g. this is **not allowed**: $x,x := e_1, e_2$

PROGRAM AND PROGRAM CALL

- Syntax: $Pr(x, y \mid r)$ body
- x,y are input parameters \rightarrow passed by value
- r is an output parameter.
- Syntax of program call: $a := Pr(e_1, e_2)$

Example:

- $inc(x | r) \{ r := x+1 \}$
- x := inc(x)
- y := inc(x)

ENCODING PROGRAM CALL

- Consider : $Pr(x, y \mid r)$ body
- We treat program call as syntactic sugar :

```
a := Pr(e_1,e_2)

\equiv

var x,y, r in x,y := e1,e2 ; body ; <math>a := r end
```

Rename to make the loc-vars fresh.

- This allows you to using existing rules to calculate the wlp of calls (except when we have recursion, see next slide).
- example:

wlp
$$(x := inc(x))$$
 $(x>1) $\rightarrow x+1>1$$

BLACK-BOX CALL

• What if we don't know the body? Assuming you still have the specification, e.g.:

$$\{x>0\}$$
 drop $(x \mid r)$ $\{r < x\}$

We treat this as having this body:

$$drop(x \mid r)$$
 { assert $x>0$; assume $r < x$ }

- Note: reference to input params (e.g. "x") in a method post-cond is intended to refer to their initial value.
- example: **wlp** (x := drop(x)) (x<7) $\rightarrow x>0 / (r < x \Rightarrow r < 7)$
- (assuming r is fresh!)
- Note: this allows us to handle call to recursive programs, if they provide specifications (but proving the correctness of a recursive program is still another problem to solve)

ARRAYS

- Arrays in this GCL are infinite (but not in your project).
- a := b is assumed to clone b into a.
- Introduce the notation a(i repby e) to denote a clone of the array a, but differs at i-th element, which now has the value e. See LN, Rule 2.6.12.
- Treat a[i] := e as a := a(i repby e)
- Example : wlp (a[i] := 0) (a[i] = a[3])
- Encode a[i] := 0 in an RL language e.g. as :

assert
$$0 \le i < \#a$$
; $a[i] := 0$

ARRAY ASSIGNMENTS TRIGGER CASES

Consider wlp calculation of:

For each array expression in the post-condition, each array assignment adds a nested conditional expression. Above this leads to 3 cases that the back-end prover must consider. If the post-cond has one more array expression, it will create its own 3 cases. In combination with the first, now there are 3x3 cases to consider!

ARRAY ASSIGNMENTS TRIGGER CASES

Consider again this wlp calculation of:

- We can reduce/simplify this
- Simplifying cost effort.

OBJECTS

- Introduce 'heap' H : [int][fieldname] → value
- We may want to introduce one heap for each Class; but let's ignore this here.
- N, representing the number of existing objects.
- Objects are stored in H[0] ... H[N-1]
- Two types of values : primitive values, or reference to another object.
- Encoding :
 - x := o , unchanged, but note o is thus an int
 - o.fn := 3 is encoded by H[o][fn] := 3
 - Suppose C has a single int-field named a

```
x = new C() is encoded by \{H[N][a] := 0 ; x := N ; N ++ \}
```

METHODS

 Let m(x|r) be a method of class C. It implicitly has the instance-object and the whole heap as input and output parameter.

```
Example: class C { a:int inc(d) { this.a := this.a+d; } }
The method is translated to:
inc(this,H,d | H') { H[this][a] := H[this][a] + d;
H' := H }
```

call o.inc(3) is translated to ... ?

EXCEPTION

- Exception introduces non-standard flow of execution, which are often error prone.
- The problem is, exception can be thrown from many points in the program, basically exploding the goals to solve for verification.
- But first ... how to deal with exception in Hoare logic / wlp?
 - Approach-1: introduce a variable exc to represent that the program has entered an exceptional state, and explicitly encode the flow in the wlp.
 - Approach-2: extend post-condition to be a pair (Q_n, Q_e) representing the desired situation when a program terminates normally, and when it terminates exceptionally.

APPROACH 1

- Introduce a global variable exc : bool, initially false
- raise sets this variable to true
- entering a handler resets it to false
- A state where exc is true, is an 'exceptional' state, else it is a normal state.
- Multiple exception types can be encoded, but let's ignore this here...
- The obvious:
 wlp raise Q = Q[true/exc]

APPROACH 1

• S_1 ; S_2 is treated as: S_1 ; **if** exc **then** skip **else** S_2

Downside: this blows up the resulting wlp since each ";" will add one conditional clause.

Can we avoid that?

- We can optimize this by statically checking if exc would be true after S_1 . If so, there is no need to expand S_2 .
- Caution: what should we do with "if g then raise else skip; S"?
- while also need to be transformed due to the implicit sequencing between iterations

ASSIGNMENTS AND GUARDS

 In GCL evaluating an expression does not crash; so you either have to insist that they don't. E.g.:

```
x := a[k]/y
is transformed to:

assert 0≤k<#a;
assert y≠0;
x := a[k]/y;
```

Similar situation with guards in ite and loop.

ASSIGNMENTS AND GUARDS

Or we model exception throwing executions. E.g.:

```
x := a[k]/y

is then transformed to :

if k<0 \/ k≥#a then raise;

if y=0 then raise;

x := a[k]/y;
```

Similar situation with guards in ite and loop.

EXCEPTION HANDLER

APPROACH 2

 Extend the post-condition from a single predicate to a pair of predicate:

{P} S {Q,R} where Q describes the expectation when S terminates normally, and R the expectation when S terminates by exception.

- wip (x := e)(Q,R) = Q[e/x] -- assuming e does not throw an exception.
- wlp raise (Q,R) = R
- wlp $(S_1; S_2)(Q,R) = \text{wlp } S_1(\text{wlp } S_2(Q,R), R)$
- wlp (S!H)(Q,R) = wlp S(Q, wlp H(Q,R))
- This avoids blow up that we saw in Approach-1, but on the other hand wlp becomes more complicated.

EXCEPTION

- Approach 1:
 - wlp-rules are still the same
 - But it leads to blow up, unless we do the optimization.
- Approach 2:
 - does not blow up, but we need to keep track of two post-conditions.
- If g then raise else skip; S → needs some preprocessing to avoid blow up.
- To consider: using a control flow graph.

SUMMARY

- You have now the full wlp-based logic to verify GCL programs.
- The calculation of wlp is syntax driven.
- If loops are annotated, the calculation of **wlp** is fully automatic, else you may have to do some trade off.
- RL languages can be translated to GCL; we have shown how some core OO constructs can be translated.
- wlp-based logic does not deal with concurrency.