Birzeit University

Department of Electrical & Computer Engineering First Semester, 2020/2021 ENCS313 Linux Laboratory

ToDo#2 - Text Message Encryption and Decryption

You are required to build a Python program that does simple encryption/decryption algorithm based on Caesar cipher algorithm for English- based text messages.

Caesar cipher

The Caesar cipher is one of the earliest methods in cryptography. In this method, the message is hidden from unauthorized readers by shifting the letters of a message by an agreed number. It uses the substitution of a letter by another one further in the alphabet. Upon receiving the message, the recipient would then shift the letters back by the same number agreed upon earlier.

Encryption example: Assume shift value = 3

Plain text ABCDEFGHIJKLMNOPQRSTUVWXYZ
Caesar cipher (+3) DEFGHIJKLMNOPQRSTUVWXYZABC

Decryption example:

Decrypt GFRGHA with shift value = 3.

To decrypt G, take the alphabet and look 3 letters before: D. So, G is decrypted with D.

To decrypt X, loop the alphabet: before A: Z, before Z: Y, before Y: X. So, A is decrypted X.

So, GFRGHA is decrypted to DCODEX.

Here we need to update Caesar method by making dynamic shifting value. The shift value calculated as following: Shift value = Max ((sum of characters frequencies for each word in the text) mod 26).

For example:

Given the following plain text message:

"Welcome to Linux lab"

The frequency of each character is:

$$F(w) = 1$$
, $F(e) = 2$, $F(l) = 3$, $F(c) = 1$, $F(o) = 2$, $F(m) = 1$, $F(t) = 1$, $F(i) = 1$, $F(n) = 1$, $F(u) = 1$, $F(x) = 1$, $F(a) = 1$, $F(b) = 1$

Shift value = $Max \{ [(1+2+3+1+2+1+2), (1+2), (3+1+1+1+1), (3+1+1)] \mod 26 \} = 12 \}$

Note: If a word is repeated more than one time, its sum of characters frequencies will be multiplied by the number of repetitions. For example:

"Welcome welcome to Linux lab"

The frequency of each character is:

$$F(w) = 2$$
, $F(e) = 4$, $F(l) = 4$, $F(c) = 2$, $F(o) = 3$, $F(m) = 2$, $F(t) = 1$, $F(i) = 1$, $F(n) = 1$, $F(u) = 1$, $F(x) = 1$, $F(a) = 1$, $F(b) = 1$

Shift value = Max $\{[2*(2+4+4+2+3+2+4), (1+2), (3+1+1+1+1), (3+1+1)] \mod 26\} = 16$

Procedure:

- 1. The program will ask user to choose between encryption and decryption (e.g. e for encryption and d for decryption)
- 2. If the user enters 'e':
 - a. The program should print on the screen "Please input the name of the plain text file"
 - b. The program should remove none alphabet characters
 - c. Convert all characters to lower case
 - d. After that, the program must print the sum of word characters frequencies
 - e. After that, the program should print shift value
 - f. Ask user to input the name of the cipher text file
 - g. The program will write the generated cipher text on the cipher file
- 3. If the user enters 'd':
 - a. The program should print on the screen "Please input the name of the cipher text file"
 - b. After that, the program must print the sum of word characters frequencies
 - c. After that, the program should print shift value
 - d. Ask user to input the name of the plain text file
 - e. The program will write the generated plain text on the plain text file

Submission:

Please submit the following:

- 1. Python program
- 2. Test cases

Notes:

- Write the code for the Python program to satisfy the requirements described above and name the script as SimpleEncryption.
- Make sure your code is clean and well indented; variables have meaningful names, etc.
- Make sure your script has enough comments inserted to add clarity.
- The program should have at least two functions (encryption and decryption).