Retail

Data Resources

https://archive.ics.uci.edu/ml/datasets/Online+Retail+II (https://archive.ics.uci.edu/ml/datasets/Online+Retail+II)

The Objective

What kinds of items should be recommend and bundle together for sales promotions according to users' previous datasets? The Market Basket Analysis is a powerful tool for translating vast amounts of customer transaction and viewing data into simple rules for product promotion and recommendation.

Load data and extract data

dtype='object')

```
In [2]:
    import pandas as pd
   from mlxtend.preprocessing import TransactionEncoder
In [134]:
    retail=pd.read excel('online retail II.xlsx')
    print(retail.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 525461 entries, 0 to 525460
Data columns (total 8 columns):
#
    Column
              Non-Null Count
                                  Dtype
    -----
                 -----
                                  ____
                 525461 non-null object
 0
    Invoice
 1
    StockCode
                 525461 non-null object
 2
    Description 522533 non-null object
 3
                 525461 non-null int64
    Quantity
 4
    InvoiceDate 525461 non-null datetime64[ns]
 5
                 525461 non-null float64
    Price
    Customer ID 417534 non-null float64
                 525461 non-null object
    Country
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 32.1+ MB
None
In [135]:
   retail.columns
Out[135]:
Index(['Invoice', 'StockCode', 'Description', 'Quantity', 'InvoiceDat
       'Price', 'Customer ID', 'Country'],
```

(InvoiceNo). Sometimes, the transaction gets cancelled, because this is an online retail. When there is a cancellation on a particular transaction, it will be datificated in Quantity column as a negative value.

```
In [137]:
```

```
1 retail=retail['Quantity']>=0]
```

To perform any machine learning model, we should handle the NaN or Null values in our datasets.

In [138]:

```
1 retail.isnull().sum()
Out[138]:
Invoice
                     0
StockCode
Description
                 1101
Quantity
                     0
InvoiceDate
                     0
Price
                     0
Customer ID
               105440
Country
dtype: int64
```

In [139]:

```
1 retail['Country'].value_counts()
```

Out[139]:

United Kingdom	474938			
EIRE	9460			
Germany	7661			
France	5532			
Netherlands	2730			
Spain	1235			
Switzerland	1170			
Portugal	1061			
Belgium	1038			
Sweden	887			
Channel Islands	821			
Italy	710			
Australia	630			
Cyprus	541			
Austria	524			
Greece	512			
Denmark	418			
United Arab Emirates	399			

The distribution of country is not even. We retain the majority of the data in the country of United Kingdom

In [140]:

```
1 retail=retail['Country']=='United Kingdom']
```

```
In [141]:
```

```
1 retail['Description']
Out[141]:
0
          15CM CHRISTMAS GLASS BALL 20 LIGHTS
                           PINK CHERRY LIGHTS
1
2
                          WHITE CHERRY LIGHTS
                 RECORD FRAME 7" SINGLE SIZE
3
               STRAWBERRY CERAMIC TRINKET BOX
                          . . .
525456
                         FELTCRAFT DOLL ROSIE
525457
                 FELTCRAFT PRINCESS LOLA DOLL
               FELTCRAFT PRINCESS OLIVIA DOLL
525458
525459
           PINK FLORAL FELTCRAFT SHOULDER BAG
525460
                       JUMBO STORAGE BAG SUKI
Name: Description, Length: 474938, dtype: object
In [142]:
   desc= pd.DataFrame(retail['Description'].value_counts())
```

In [143]:

```
1 desc=desc.reset_index()
```

In [144]:

1 desc

Out[144]:

	index	Description
0	WHITE HANGING HEART T-LIGHT HOLDER	3343
1	REGENCY CAKESTAND 3 TIER	1866
2	STRAWBERRY CERAMIC TRINKET BOX	1616
3	ASSORTED COLOUR BIRD ORNAMENT	1374
4	HOME BUILDING BLOCK WORD	1338
4531	CAMOUFLAGE DOG COLLAR	1
4532	DOORMAT GREEN PAISLEY	1
4533	HEN PARTY BANNER TAPE	1
4534	LILAC FEATHERS CURTAIN	1

In [146]:

1 retail

Out[146]:

	Invoice StockCode		Description	Quantity InvoiceDate		Price	Customer ID	Country
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom

525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	United Kingdom
525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	United Kingdom
525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	United Kingdom
525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	United Kingdom
525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	United Kingdom

474938 rows × 8 columns

Keep the inovice that contain more than 2 items

In [150]:

```
1 retail_num=pd.DataFrame(retail['Invoice'].value_counts()).reset_index()
```

In [152]:

```
1 retail_num=retail_num[retail_num['Invoice']>1]
```

```
In [154]:
    invoice_num=list(retail_num['index'])
In [155]:
   invoice num
Out[155]:
[537434,
 538071,
 537638,
 537237.
 536876,
 536592,
 537823,
 536031,
 490074,
 491966,
 537240,
 490149,
 491969,
 490741,
 537666,
 536544,
 489857,
 513574.
In [157]:
    retail=retail['Invoice'].isin(invoice num)]
In [158]:
   invoice=retail['Invoice'].unique()
In [159]:
   libraries=[list(retail[retail['Invoice']==u].Description) for u in invoice]
In [160]:
 1 print(libraries[0])
['15CM CHRISTMAS GLASS BALL 20 LIGHTS', 'PINK CHERRY LIGHTS', ' WHITE
CHERRY LIGHTS', 'RECORD FRAME 7" SINGLE SIZE ', 'STRAWBERRY CERAMIC TR
INKET BOX', 'PINK DOUGHNUT TRINKET POT ', 'SAVE THE PLANET MUG', 'FANC
Y FONT HOME SWEET HOME DOORMAT']
```

One-hot encoding transactions

we need to encode the basket data into a binary data that shows whether an items is bought (1) or not (0).

In [162]:

1 onehot=encoder.fit(libraries)

In [163]:

1 onehot=onehot.transform(libraries)

In [164]:

1 onehot=pd.DataFrame(onehot,columns=encoder.columns_)

In [165]:

```
print(onehot.head())
     DOORMAT UNION JACK GUNS AND ROSES
                                            3 STRIPEY MICE FELTCRAFT
0
                                   False
                                                                 False
1
                                   False
                                                                 False
2
                                   False
                                                                 False
3
                                   False
                                                                 False
4
                                   False
                                                                 False
    4 PURPLE FLOCK DINNER CANDLES
                                       ANIMAL STICKERS
0
                              False
                                                  False
                              False
1
                                                  False
2
                              False
                                                  False
3
                              False
                                                  False
4
                              False
                                                  False
                                    BROWN PIRATE TREASURE CHEST
    BLACK PIRATE TREASURE CHEST
0
                            False
                                                               False
                            False
1
                                                              False
2
                            False
                                                              False
3
                            False
                                                              False
4
                            False
                                                               False
    CAMPHOR WOOD PORTOBELLO MUSHROOM
                                          CHERRY BLOSSOM
                                                          DECORATIVE FLAS
K
0
                                 False
                                                                       Fals
е
1
                                 False
                                                                       Fals
е
2
                                 False
                                                                       Fals
е
3
                                 False
                                                                       Fals
е
4
                                 False
                                                                       Fals
е
    FAIRY CAKE CANDLES
                           FLAMINGO LIGHTS
0
                  False
                                      False
1
                  False
                                      False
2
                  False
                                      False
3
                  False
                                      False
4
                  False
                                      False
                                             . . .
   ZINC HEART LATTICE CHARGER LARGE ZINC HEART LATTICE CHARGER SMALL
\
0
                                False
                                                                     False
1
                                False
                                                                     False
2
                                False
                                                                     False
3
                                False
                                                                     False
4
                                False
                                                                     False
   ZINC HEART LATTICE DOUBLE PLANTER ZINC HEART LATTICE PLANTER BOWL
\
0
                                 False
                                                                     False
1
                                 False
                                                                     False
2
                                 False
                                                                     False
3
                                 False
                                                                     False
4
                                 False
                                                                     False
```

0 1 2 3 4	ZINC HEART LATTICE T-LIGHT HOLDER False False False False False False	ZINC HEART LATTICE TRAY OVAL False False False False False False
0 1 2 3 4	ZINC METAL HEART DECORATION ZINC False False False False False False	POLICE BOX LANTERN \ False False False False False False
0 1 2 3 4	ZINC TOP 2 DOOR WOODEN SHELF ZI False False False False False	INC WILLIE WINKIE CANDLE STICK False False False False False False

[5 rows x 4500 columns]

Aprior algorithm

*Reducing the number of itemsets * sensible

- · subsets of frequent sets are frequent
- · retain sets known to be frequent
- prune sets not known to be frequent
- Pruning with confidence association_rules(frequent_itemsets,metrics='confidence',min_threshold = 0.5 min_support=0.0015

Metric definitions

Support

support(X)=frequency(X)/N support(X-Y)=frequency(X&y)/N

Confidence

confidence(X-y)=support(x-y)/support(x) can imporve over support with additional metrics add confidence provides a more complete picture Support(milk&coffee)/Support(milk)

Lift

Support(X&Y)/Support(X)*Support(Y) lift(x-y)=support(x-y)/support(X)support(y)

good rule is 1

leverage

leverage(x-y)=support(x-y)-support(X)support(y)

good rule is 0 Conviction(x-y)= support(X)support(y)/support(x-y)

In [166]:

```
# Import apriori from mlxtend
from mlxtend.frequent_patterns import association_rules,apriori
# Compute frequent itemsets using the Apriori algorithm
frequent_itemsets=apriori(onehot,min_support=0.01,use_colnames=True,max_len=2)
frequent_itemsets
```

Out[166]:

	support	itemsets
0	0.012471	(SET 2 TEA TOWELS I LOVE LONDON)
1	0.013562	(WHITE CHERRY LIGHTS)
2	0.014712	(10 COLOUR SPACEBOY PEN)
3	0.010402	(12 IVORY ROSE PEG PLACE SETTINGS)
4	0.011953	(12 MESSAGE CARDS WITH ENVELOPES)
•••		
1336	0.017470	(WOOD 2 DRAWER CABINET WHITE FINISH, WOODEN FR
1337	0.016551	(WOODEN PICTURE FRAME WHITE FINISH, WOOD 2 DRA
1338	0.018735	(WOOD S/3 CABINET ANT WHITE FINISH, WOODEN FRA
1339	0.015401	(WOODEN PICTURE FRAME WHITE FINISH, WOOD S/3 C
1340	0.034021	(WOODEN PICTURE FRAME WHITE FINISH, WOODEN FRA

1341 rows × 2 columns

In [167]:

```
# Generate the initial set of rules
rules = association_rules(frequent_itemsets)
rules
```

Out[167]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	levera
0	(CHILDS GARDEN FORK BLUE)	(CHILDS GARDEN TROWEL BLUE)	0.010976	0.013562	0.010229	0.931937	68.714571	0.0100
1	(CHILDS GARDEN FORK PINK)	(CHILDS GARDEN TROWEL PINK)	0.011838	0.014195	0.011034	0.932039	65.661570	0.0108
2	(CHILDS GARDEN TROWEL BLUE)	(CHILDS GARDEN TROWEL PINK)	0.013562	0.014195	0.011149	0.822034	57.911789	0.0109
3	(PINK REGENCY TEACUP AND SAUCER)	(GREEN REGENCY TEACUP AND SAUCER)	0.013677	0.019309	0.011666	0.852941	44.172707	0.0114
4	(POPPY'S PLAYHOUSE BEDROOM)	(POPPY'S PLAYHOUSE KITCHEN)	0.016551	0.017930	0.014252	0.861111	48.026264	0.0139
5	(POPPY'S PLAYHOUSE LIVINGROOM)	(POPPY'S PLAYHOUSE BEDROOM)	0.013562	0.016551	0.011609	0.855932	51.715543	0.0113
6	(POPPY'S PLAYHOUSE LIVINGROOM)	(POPPY'S PLAYHOUSE KITCHEN)	0.013562	0.017930	0.012241	0.902542	50.336987	0.0119

In [168]:

```
## convert antecendents and consequents into strings
rules = association_rules(frequent_itemsets)
rules['antecedents']=rules['antecedents'].apply(lambda a:','.join(list(a)))
rules['consequents']=rules['consequents'].apply(lambda a:','.join(list(a)))
```

In [174]:

```
1 support_table=rules.pivot(index='consequents',columns='antecedents',values='supp
```

In [170]:

```
1 import seaborn as sns
```

In [176]:

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(8,8))
sns.heatmap(support_table,annot=True,cbar=False,cmap='ocean')
```

Out[176]:

<AxesSubplot:xlabel='antecedents', ylabel='consequents'>

In [177]:

support_table2=rules.pivot(index='consequents',columns='antecedents',values='lif
sns.heatmap(support_table2,annot=True,cbar=False,cmap='ocean')

In [178]:

1 support_table2

Out[178]:

antecedents	CHILDS GARDEN FORK BLUE	CHILDS GARDEN FORK PINK	CHILDS GARDEN TROWEL BLUE	PINK REGENCY TEACUP AND SAUCER	POPPY'S PLAYHOUSE BEDROOM	POPPY'S PLAYHOUSE LIVINGROOM
consequents						
CHILDS GARDEN TROWEL BLUE	68.714571	NaN	NaN	NaN	NaN	NaN
CHILDS GARDEN TROWEL PINK	NaN	65.66157	57.911789	NaN	NaN	NaN
GREEN REGENCY TEACUP AND SAUCER	NaN	NaN	NaN	44.172707	NaN	NaN
POPPY'S PLAYHOUSE BEDROOM	NaN	NaN	NaN	NaN	NaN	51.715543
POPPY'S PLAYHOUSE KITCHEN	NaN	NaN	NaN	NaN	48.026264	50.336987

(CHILDS GARDEN TROWEL BLUE), (CHILDS GARDEN FORK BLUE) (CHILDS GARDEN TROWEL PINK), (CHILDS GARDEN FORK PINK) (CHILDS GARDEN TROWEL PINK), (CHILDS GARDEN TROWEL BLUE) (POPPY'S PLAYHOUSE BEDROOM), (POPPY'S PLAYHOUSE LIVINGROOM) (POPPY'S PLAYHOUSE

BEDROOM),(POPPY'S PLAYHOUSE LIVINGROOM) (GREEN REGENCY TEACUP AND SAUCER),(PINK REGENCY TEACUP AND SAUCER) would make it a good combinations

Scatterplot

identify natural threshold in data visualize entire datasets use finding to prune

```
In [179]:
```

```
frequent_itemsets=apriori(onehot,min_support=0.01,use_colnames=True,max_len=2)
rules2 = association_rules(frequent_itemsets,metric='support',min_threshold=0)
```

In [180]:

1 rules2

Out[180]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	
0	(3 STRIPEY MICE FELTCRAFT)	(FELTCRAFT 6 FLOWER FRIENDS)	0.020401	0.047641	0.010861	0.532394	11.175144	(
1	(FELTCRAFT 6 FLOWER FRIENDS)	(3 STRIPEY MICE FELTCRAFT)	0.047641	0.020401	0.010861	0.227986	11.175144	(
2	(6 RIBBONS RUSTIC CHARM)	(REGENCY CAKESTAND 3 TIER)	0.042929	0.103960	0.011379	0.265060	2.549648	(
3	(REGENCY CAKESTAND 3 TIER)	(6 RIBBONS RUSTIC CHARM)	0.103960	0.042929	0.011379	0.109453	2.549648	(
4	(SCANDINAVIAN REDS RIBBONS)	(6 RIBBONS RUSTIC CHARM)	0.025056	0.042929	0.010229	0.408257	9.510145	(
1109	(WOODEN FRAME ANTIQUE WHITE)	(WOOD S/3 CABINET ANT WHITE FINISH)	0.063560	0.039883	0.018735	0.294756	7.390558	(
1110	(WOODEN PICTURE FRAME WHITE FINISH)	(WOOD S/3 CABINET ANT WHITE FINISH)	0.052583	0.039883	0.015401	0.292896	7.343928	(
1111	(WOOD S/3 CABINET ANT WHITE FINISH)	(WOODEN PICTURE FRAME WHITE FINISH)	0.039883	0.052583	0.015401	0.386167	7.343928	(
1112	(WOODEN PICTURE FRAME WHITE FINISH)	(WOODEN FRAME ANTIQUE WHITE)	0.052583	0.063560	0.034021	0.646995	10.179342	(
1113	(WOODEN FRAME ANTIQUE WHITE)	(WOODEN PICTURE FRAME WHITE FINISH)	0.063560	0.052583	0.034021	0.535262	10.179342	(

1114 rows × 9 columns

```
In [181]:
```

```
fig, ax = plt.subplots(figsize=(8,8))
sns.scatterplot(x='antecedent support',y='consequent support',size='lift',data=r
```

Out[181]:

<AxesSubplot:xlabel='antecedent support', ylabel='consequent support'>

Conclusion

Good combination (CHILDS GARDEN TROWEL BLUE), (CHILDS GARDEN FORK BLUE) (CHILDS GARDEN TROWEL PINK), (CHILDS GARDEN FORK PINK) (CHILDS GARDEN TROWEL PINK), (CHILDS GARDEN TROWEL BLUE) (POPPY'S PLAYHOUSE BEDROOM), (POPPY'S PLAYHOUSE LIVINGROOM) (POPPY'S PLAYHOUSE BEDROOM), (POPPY'S PLAYHOUSE LIVINGROOM) (GREEN REGENCY TEACUP AND SAUCER), (PINK REGENCY TEACUP AND SAUCER)

Item Placements.

We could put The same kind color of forks and trowel in a set in a closer place, maybe in a same shelf or any other closer place.

Products Bundling.

We could different colors of TEACUP AND SAUCER as a single bundle of product with a lower price compare to each price combined. This way will attract more sales and generates more income.

Customer Recommendation and Discounts.

We could put Pink Regency Teacup and Saucer in the cashier, so that every time a customer bought Green Regency Teacup and Saucer, we could offer and recommend them to buy Green Regency Teacup and Saucer with a lower price.