Exercise 1. Consider the series $\sum_{n=1}^{\infty} \frac{\sqrt{n^3}}{n^{5r}}$ where r is a real number and do the following:

- 1) Identify the general term of the series and simplify it.
- II) Is our series a p-series? How can you justify that?
- III) State the convergence result for p series. This means, given ANY p-series $\sum \frac{1}{n^p}$, for what values of p will that converge?
- IV) Determine for which values of r will our series converge. [Hint: The answer to this item is NOT the same as the last item.]
 - 1. The general term is $\frac{\sqrt{n^3}}{n^{5p}}$. We may simplify it to $\frac{1}{n^{5r-3/2}}$.
 - 2. Indeed it's a p-series, as the general term looks like 1 over n to some power, in this case $5r \frac{3}{2}$.
 - 3. A general p series converges when p > 1.
 - 4. We require that $5r \frac{3}{2} > 1$ so solving for r we get $5r > \frac{5}{2}$ which means that $r > \frac{1}{2}$. So for values of r larger than $\frac{1}{2}$, our series converges.

Exercise 2 (Filling a triangle). Consider an empty triangle of area A which we start filling with smaller triangles. The objective of this question is to determine if we can fill completely the triangle in question.

We start adding a triangle with area $a_1 = \frac{A}{4}$ in the middle, then the second step adds 3 triangles of area $\left(\frac{A/4}{4}\right) = \frac{A}{16}$. So in total we are adding an area of $a_2 = \frac{3A}{16}$.

- I) In the third step, how many triangles do we add? What is the area of each of the new smaller triangles? In total how much area a_3 are we adding in the third step?
- II) Derive a formula for the area added a_n at the n^{th} step by considering how many triangles are we adding and the area of each of those new triangles.
- III) As a sequence, is a_n geometric? If it is, what's is initial term and common ratio?
- IV) Consider the series $\sum_{n=1}^{\infty} a_n$, in terms of area, what does this series represent? What do the partial sums represent?
- V) Write an expression for the partial sums of this series.
- VI) Using the information above, determine if we fill up the triangle.
 - 1. In the third step we are adding 9 triangles in total. Each triangle will have as area a fourth of the previous triangle that we added. In this case this is $\frac{A}{64}$, so the total area that we are adding is $\frac{9A}{64}$.
 - 2. In the n^{th} step we are adding 3^{n-1} triangles each with area $\frac{A}{4^n}$. The area added is thus $a_n = \frac{3^{n-1}A}{4^n}$
 - 3. The sequence a_n is geometric with initial term $c = \frac{A}{4}$ and common ratio $r = \frac{3}{4}$.
 - 4. As a series, the infinite series represents the total area that is covered by the shaded triangles. The partial sums represents the total area at step m.

5. The partial sum is

$$S_m = \sum_{n=1}^m \frac{3^{n-1}A}{4^n} = A\left(\frac{1}{4} + \frac{3}{16} + \frac{9}{16} + \dots + \frac{3^{m-1}}{4^m}\right)$$

from which we get

$$S_m - \frac{3}{4}S_m = A\left(\frac{1}{4} - \frac{3^m}{4^{m+1}}\right) \Rightarrow S_m = \frac{A\left(\frac{1}{4} - \frac{3^m}{4^{m+1}}\right)}{1 - \frac{3}{4}}.$$

6. The series $\sum_{n=1}^{\infty} \frac{3^{n-1}A}{4^n}$ is a convergent geometric series because $\frac{3}{4} < 1$. The limit value of this series can be found by computing the limit of the partial sums. We see that S_m tends to A as m grows. This means that in the limit, the figure fills out with the shaded triangles because the total area will be the area of the original triangle.