BEICHAR MATEMATKA

Tema 3. Cuctembi Juheühbix aaregpauueckux ypabhehuŭ (CAAY)

Глоссарий

Система линейных уравнений с n неизвестными.

Системой m линейных уравнений с n неизвестными будем называть выражение вида:

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \\ \dots & \dots & \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

где x_1 , x_2 ,..., x_n — неизвестные (переменные), a_{11} , a_{12} , ..., a_{1n} ,..., a_{m1} , a_{m2} ,..., a_{mn} - коэффициенты при неизвестных, b_1 , b_2 ,..., b_n — правая часть (свободные члены).

если каждое из уравнений данной системы обращается в верное равенство при подстановке вместо $x_1, x_2, ..., x_n$ чисел $\alpha_1, \alpha_2, ..., \alpha_n$

- **З.** Совместная система уравнений Система, уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.
- Определённая совместная система уравнений Совместная система уравнений называется определенной, если она имеет единственное решение и неопределенной, если она имеет более одного решения.
- **उ** Теорема Кронекера-Капелли. Система линейных <mark>алгебраических уравнений совместна тогд</mark>а и только тогда, когда

ранг основной матрицы системы равен рангу расширенной матрицы этой системы: $r(A) = r(\bar{A})$. При этом, если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система имеет единственное решение. Если ранг совместной системы меньше числа переменных, т.е. r < n, то система неопределенная и имеет бесконечно много решений.

© Система линейных однородных уравнений.

Система m линейных уравнений с n неизвестными называется системой линейных однородных уравнений, если все свободные члены в этой системе равны нулю.

Система линейных однородных уравнений всегда совместна, так как имеет по крайней мере нулевое решение. Система линейных однородных уравнений имеет ненулевое решение тогда и только тогда, когда ранг ее матрицы меньше числа переменных, т.е. r < n

7. Свойства решения системы линейных однородных уравнений:

- Если $I_1 = (k_1, k_2, ..., k_n)$ решение, то λI_1 , решение, где $\lambda \in \mathbb{R}$.
- \circ Если I_1 , = $(k_1, k_2,...,k_n)$ решение и I_2 = $(m_1, m_2,...,m_n)$ решение, то для любых $\lambda_1, \lambda_2 \in \mathbb{R}$ линейная комбинация $\lambda_1 I_1 + \lambda_2 I_2$ решение.

🕃 Фундаментальная система решений

Система линейно независимых решений l_1 , l_2 , ..., l_n называется фундаментальной, если каждое решение системы является линейной комбинацией решений l_1 , l_2 , ..., l_k

Пеорема о количестве фундаментальных решений

Если ранг матрицы системы линейных однородных уравнений меньше числа переменных, т.е. r < n, то всякая фундаментальная система решений состоит из n-r решений.