Computational Methods

NUMERICAL SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

QUOTE

A **vector norm** on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- (i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$,
- (ii) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,
- (iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$,
- (iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

The l_2 and l_{∞} norms for the vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ are defined by

$$\|\mathbf{x}\|_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{1/2} \quad \text{and} \quad \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

A **matrix norm** on the set of all $n \times n$ matrices is a real-valued function, $\|\cdot\|$, defined on this set, satisfying for all $n \times n$ matrices A and B and all real numbers α :

- (i) $||A|| \geq 0$;
- (ii) ||A|| = 0, if and only if A is O, the matrix with all 0 entries;
- (iii) $\|\alpha A\| = |\alpha| \|A\|$;
- (iv) $||A + B|| \le ||A|| + ||B||$;
- (v) $||AB|| \leq ||A|| ||B||$.

If $||\cdot||$ is a vector norm on \mathbb{R}^n , then $||A|| = \max_{\|\mathbf{x}\|=1} ||A\mathbf{x}\||$ is a matrix norm. The matrix norms we will consider have the forms

$$||A||_{\infty} = \max_{\|\mathbf{x}\|_{\infty}=1} ||A\mathbf{x}||_{\infty}$$
, the l_{∞} norm,

and

$$||A||_2 = \max_{\|\mathbf{x}\|_2=1} ||A\mathbf{x}||_2$$
, the l_2 norm.

If
$$A = (a_{ij})$$
 is an $n \times n$ matrix, then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$.

The **Jacobi iterative method** is obtained by solving the *i*th equation in $A\mathbf{x} = \mathbf{b}$ for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \sum_{\substack{j=1 \ j \neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}} \right) + \frac{b_i}{a_{ii}}, \quad \text{for } i = 1, 2, \dots, n.$$

For each $k \ge 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from the components of $\mathbf{x}^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \dots, n.$$

The linear system $A\mathbf{x} = \mathbf{b}$ given by

E₁:
$$10x_1 - x_2 + 2x_3 = 6$$
,
E₂: $-x_1 + 11x_2 - x_3 + 3x_4 = 25$,
E₃: $2x_1 - x_2 + 10x_3 - x_4 = -11$,
E₄: $3x_2 - x_3 + 8x_4 = 15$

has the unique solution $\mathbf{x} = (1, 2, -1, 1)^t$. Use Jacobi's iterative technique to find approximations $\mathbf{x}^{(k)}$ to \mathbf{x} starting with $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$ until

$$\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty}}{\|\mathbf{x}^{(k)}\|_{\infty}} < 10^{-3}.$$

Solution We first solve equation E_i for x_i , for each i = 1, 2, 3, 4, to obtain

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5},$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11},$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10},$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}.$$

From the initial approximation $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$ we have $\mathbf{x}^{(1)}$ given by

$$x_1^{(1)} = \frac{1}{10}x_2^{(0)} - \frac{1}{5}x_3^{(0)} + \frac{3}{5} = 0.6000,$$

$$x_2^{(1)} = \frac{1}{11}x_1^{(0)} + \frac{1}{11}x_3^{(0)} - \frac{3}{11}x_4^{(0)} + \frac{25}{11} = 2.2727,$$

$$x_3^{(1)} = -\frac{1}{5}x_1^{(0)} + \frac{1}{10}x_2^{(0)} + \frac{1}{10}x_4^{(0)} - \frac{11}{10} = -1.1000,$$

$$x_4^{(1)} = -\frac{3}{8}x_2^{(0)} + \frac{1}{8}x_3^{(0)} + \frac{15}{8} = 1.8750.$$

Additional iterates, $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})^t$, are generated in a similar manner and are presented in Table.

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.0473	0.9326	1.0152	0.9890
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103
$x_{2}^{(k)}$ $x_{3}^{(k)}$ $x_{4}^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214

k	6	7	8	9	10
$x_1^{(k)}$	1.0032	0.9981	1.0006	0.9997	1.0001
$x_2^{(k)}$	1.9922	2.0023	1.9987	2.0004	1.9998
	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$x_{3}^{(k)}$ $x_{4}^{(k)}$	0.9944	1.0036	0.9989	1.0006	0.9998

We stopped after ten iterations because

$$\frac{\|\mathbf{x}^{(10)} - \mathbf{x}^{(9)}\|_{\infty}}{\|\mathbf{x}^{(10)}\|_{\infty}} = \frac{8.0 \times 10^{-4}}{1.9998} < 10^{-3}.$$

In fact, $\|\mathbf{x}^{(10)} - \mathbf{x}\|_{\infty} = 0.0002$.

A possible improvement can be seen by reconsidering the Jacobi method. The components of $\mathbf{x}^{(k-1)}$ are used to compute all the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$. But, for i>1, the components $x_1^{(k)},\ldots,x_{i-1}^{(k)}$ of $\mathbf{x}^{(k)}$ have already been computed and are expected to be better approximations to the actual solutions x_1,\ldots,x_{i-1} than are $x_1^{(k-1)},\ldots,x_{i-1}^{(k-1)}$. It seems reasonable, then, to compute $x_i^{(k)}$ using these most recently calculated values. That is, to use

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i \right],$$

for each i = 1, 2, ..., n. This modification is called the **Gauss-Seidel iterative technique**.

Use the Gauss-Seidel iterative technique to find approximate solutions to

$$10x_1 - x_2 + 2x_3 = 6,$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25,$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11,$$

$$3x_2 - x_3 + 8x_4 = 15$$

starting with $\mathbf{x} = (0, 0, 0, 0)^t$ and iterating until

$$\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty}}{\|\mathbf{x}^{(k)}\|_{\infty}} < 10^{-3}.$$

Solution The solution $\mathbf{x} = (1, 2, -1, 1)^t$ was approximated by Jacobi's method in Example. For the Gauss-Seidel method we write the system, for each k = 1, 2, ... as

$$\begin{split} x_1^{(k)} &= \frac{1}{10} x_2^{(k-1)} - \frac{1}{5} x_3^{(k-1)} + \frac{3}{5}, \\ x_2^{(k)} &= \frac{1}{11} x_1^{(k)} + \frac{1}{11} x_3^{(k-1)} - \frac{3}{11} x_4^{(k-1)} + \frac{25}{11}, \\ x_3^{(k)} &= -\frac{1}{5} x_1^{(k)} + \frac{1}{10} x_2^{(k)} + \frac{1}{10} x_4^{(k-1)} - \frac{11}{10}, \\ x_4^{(k)} &= -\frac{3}{8} x_2^{(k)} + \frac{1}{8} x_3^{(k)} + \frac{15}{8}. \end{split}$$

When $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$, we have $\mathbf{x}^{(1)} = (0.6000, 2.3272, -0.9873, 0.8789)^t$. Subsequent iterations give the values in Table.

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_2^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_3^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Because

$$\frac{\|\mathbf{x}^{(5)} - \mathbf{x}^{(4)}\|_{\infty}}{\|\mathbf{x}^{(5)}\|_{\infty}} = \frac{0.0008}{2.000} = 4 \times 10^{-4},$$

 $\mathbf{x}^{(5)}$ is accepted as a reasonable approximation to the solution. Note that Jacobi's method in Example required twice as many iterations for the same accuracy.

Exercises

Find the first two iterations of the Jacobi method and the Gauss-Seidel method for the following linear systems, using $\mathbf{x}^{(0)} = \mathbf{0}$:

a.
$$3x_1 - x_2 + x_3 = 1$$
, $3x_1 + 6x_2 + 2x_3 = 0$, $3x_1 + 3x_2 + 7x_3 = 4$.

c.
$$10x_1 + 5x_2 = 6$$
,
 $5x_1 + 10x_2 - 4x_3 = 25$,
 $-4x_2 + 8x_3 - x_4 = -11$,
 $-x_3 + 5x_4 = -11$.

b.
$$10x_1 - x_2 = 9$$
, $-x_1 + 10x_2 - 2x_3 = 7$, $-2x_2 + 10x_3 = 6$.

c.
$$10x_1 + 5x_2 = 6$$
, $4x_1 + x_2 + x_3 + x_5 = 6$, $5x_1 + 10x_2 - 4x_3 = 25$, $-x_1 - 3x_2 + x_3 + x_4 = 6$, $-x_1 + x_2 + 5x_3 - x_4 - x_5 = 6$, $-x_1 - x_2 - x_3 + 4x_4 = 6$, $-x_1 - x_2 - x_3 + 4x_4 = 6$, $2x_2 - x_3 + x_4 + 4x_5 = 6$.