Devoir Libre 9

Exercice 1: Développement Eulérien et Fonction périodique

Partie 1: Etude de φ

1. Symétrie et prériode

(a) $D = \mathbb{R} - \mathbb{Z}$ Pour $x \in D$, on a :

$$\varphi(x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2} = \frac{1}{x} - \sum_{n=1}^{+\infty} u_n(x)$$

Soit x un réel.

Pour que $\varphi(x)$ soit définie sur D, il faut que $\forall x \in D$, $\varphi(x)$ converge. Décomposons $\varphi(x)$ en deux :

$$\varphi(-x) = \underbrace{\frac{1}{x}}_{A(x)} - \underbrace{\sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}}_{B(x)}$$

- \square A(x) existe pour $x \neq 0$.
- \square B(x) n'existe pas si $x = n \in \mathbb{N}$. De plus, pour $x \in D$, on a :

$$\frac{2x}{n^2 - x^2} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$$

Ainsi, par le théorème de compraison des séries à termes positifs, B(x) a même nature que $\sum_{n=0}^{+\infty} \frac{1}{n^2}$.

Or, la série de référence de Riemann $\sum_{n=0}^{+\infty} \frac{1}{n^2}$ converge. Alors B(x) converge.

D'où, φ bien définie sur D.

De plus, pour $x \in D$:

$$\varphi(-x) = \frac{1}{-x} - \sum_{n=1}^{+\infty} \frac{2(-x)}{n^2 - x^2}$$

$$\iff \varphi(-x) = -\frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}$$

$$\iff \varphi(-x) = -\left(\frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}\right)$$

$$\iff \varphi(-x) = -\varphi(x)$$

Ainsi:

 φ est bien définie sur D et φ est **impaire**.

(b) Soit $x \in D$. D'après l'ennoncé, on a :

$$\varphi(x) = \frac{1}{x} - \underbrace{\sum_{n=1}^{+\infty} \left(\frac{1}{n-x}\right)}_{A(x)} + \underbrace{\sum_{n=1}^{+\infty} \left(\frac{1}{n+x}\right)}_{B(x)}$$

Ces séries A(x) et B(x) sont divergentes, passons donc par des somme partielles puis faisons tendre la borne N vers $+\infty$. \odot

Soit
$$N \in \mathbb{N}$$
. Posons $\varphi_N(x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \left(\frac{1}{n-x}\right) + \sum_{n=1}^{+\infty} \left(\frac{1}{n+x}\right)$. Calculons $\varphi_N(x+1)$:
$$\varphi_N(x+1) = \frac{1}{x+1} - \sum_{n=1}^{N} \left(\frac{1}{n-1-x}\right) + \sum_{n=1}^{N} \left(\frac{1}{n+1+x}\right)$$

$$\iff \varphi_N(x+1) = \frac{1}{x+1} - \sum_{n=0}^{N-1} \left(\frac{1}{n-x}\right) + \sum_{n=2}^{N+1} \left(\frac{1}{n+x}\right)$$

$$\iff \varphi_N(x+1) = \frac{1}{x+1} - \left(\sum_{n=1}^{N-1} \left(\frac{1}{n-x}\right) + \frac{1}{-x} - \frac{1}{N-x}\right) + \left(\sum_{n=1}^{N+1} \left(\frac{1}{n+x}\right) - \frac{1}{1+x} + \frac{1}{N+1+x}\right)$$

$$\iff \varphi_N(x+1) = \frac{1}{x} - \sum_{n=1}^{N} \left(\frac{1}{n-x} - \frac{1}{n+x}\right) + \underbrace{\frac{1}{N+1+x} + \frac{1}{N-x}}$$

$$\iff \varphi_N(x+1) = \varphi_N(x) + \epsilon(x)$$

Or

$$\lim_{N \to +\infty} \epsilon(x) \quad = \quad 0$$

$$\Rightarrow \qquad \varphi(x+1) = \varphi(x)$$

Ainsi:

 φ est 1-préiodique.

Remarques .

- j'ai utilisé les sommes partielles parce que vous nous l'avez dit en cours, je n'avais pas vu de problème à utiliser des séries qui divergent...
- (c) D n'est pas un intervalle mais une union infinie d'intervalles ouverts. De plus, φ est une somme infinie de fonctions continues, donc je ne pense pas que l'argument "en tant que somme de fonctions continues" marche ici.

2. Continuité

(a) Je n'avais pas réussi cette question. J'ai compris avec le corrigé, mais franchement je ne pense pas que j'aurai trouvé sans y passer beaucoup de temps... Concrètement en DS/concours j'aurai sauté la question!

Par contre dans le corrigé il n'y aurait pas une erreur? à la ligne :

$$\text{Mais on a } x+h \in \left[-\frac{1}{2},\frac{3}{2}\right] \text{ donc } \left\{ \begin{array}{l} x+h \leq \frac{3}{2} \Rightarrow n-(x+h) \geq n-\frac{3}{2} \\ \\ x+h \leq -\frac{1}{2} \Rightarrow n+(x+h) \geq n-\frac{1}{2} \end{array} \right.$$

(b) D'après la question précédente, on a :

$$\forall x \in [0,1], \left| \frac{g(x+h) - g(x)}{h} \right| \le C$$

avec $C = \sum_{n=2}^{+\infty} \frac{2}{(n-1)(n-\frac{3}{2})}$ Or, $\frac{2}{(n-1)(n-\frac{3}{2})} \sim \frac{2}{n^2}$, donc par le théorème de comparaison de séries à termes positifs, C converge.

$$g\in\mathcal{C}([0,1])$$

(c) Soit $x \in]0,1[$.

$$\varphi(x) = \underbrace{\frac{1}{x} + \frac{2x}{1 - x^2}}_{\in \mathcal{C}([0,1])} - \underbrace{g(x)}_{\in \mathcal{C}([0,1])}$$

Alors $\varphi \in \mathcal{C}([0,1])$. De plus, comme φ est 1-périodique :

$$\varphi\in\mathcal{C}(D)$$

(d) Je suppose qu'ici c'est le piège d'inverser limite et somme infinie :

$$\lim_{x \to 0} \left(\sum_{n=0}^{+\infty} \frac{2x}{n^2 - x^2} \right) \underset{\text{pas forcément}}{=} 0$$

Ha oui mais non car ici g(0) existe d'après la question 2.(b). Donc on peut le calculer directement, sans faire de limite?

$$g(0) = 0$$
 et

$$\varphi(x) = \frac{1}{x} + \frac{2x}{1 - x^2} - g(x)$$

$$\Rightarrow \varphi(x) \underset{x \to 0}{\sim} \frac{1}{x}$$

De plus, comme φ est 1-périodique, φ aura le même équivalent en 0 qu'en 0+1 D'où

$$\begin{cases} \varphi(x) \underset{x \to 0}{\sim} \frac{1}{x} \\ \varphi(x) \underset{x \to 1}{\sim} \frac{1}{x} \end{cases}$$

Partie 2: Etude d'un endomorphisme de E

1. Bon comme je ne me suis pas bouché les oreilles, je sais qu'il faut faire attention à l'*endo* plus qu'au *morphisme*!

Soit
$$f \in E \iff f \in \mathcal{C}([0,1])$$

 \square Montrons que T est une application linéaire. Soit $(f,i) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$T(\mu f + \lambda i)(x) = (\mu f + \lambda i) \left(\frac{x}{2}\right) + (\mu f + \lambda i) \left(\frac{x+1}{2}\right)$$
$$= \mu f\left(\frac{x}{2}\right) + \lambda i \left(\frac{x}{2}\right) + \mu f\left(\frac{x+1}{2}\right) + \lambda i \left(\frac{x+1}{2}\right)$$
$$= \mu T(f)(x) + \lambda T(i)(x)$$

Donc T est linéaire.

 \square Montrons que $T: E \to E$ $x \in [0,1] \to \frac{x}{2} \in [0,1]$ et $\frac{x+1}{2} \in [0,1]$. Donc:

$$T(f)(x) = \underbrace{f\left(\frac{x}{2}\right)}_{\in E} + \underbrace{f\left(\frac{x+1}{2}\right)}_{\in E}$$

Ainsi, T est un endomorphisme.

 \square Montrons que F_n est stable par T i.e. montrons que $T(F_n) = F_n$ avec :

Pour
$$x \in [0, 1]$$
, $F_n = Vect\{\underbrace{(x \mapsto 1, x \mapsto x, x \mapsto x^2, x \mapsto x^3, ..., x \mapsto x^n)}_{e_0}\}$

$$f \in F_n \implies f = \sum_{k=0}^n \alpha_k e_k$$

$$\Rightarrow T(f)(x) = \sum_{k=0}^n \alpha_k T(e_k)(x)$$

$$\Rightarrow T(f)(x) = \sum_{k=0}^n \alpha_k \frac{x^k + (x+1)^k}{2^k}$$

$$\Rightarrow T(f)(x) = \sum_{k=0}^n \beta_k \left(x^k + (x+1)^k\right)$$

On retrouve une combinaison linéaire des e_k . Donc $T(f) = \sum_{k=0}^n \alpha'_k e_k$.

Ainsi

T est un endomorphisme de E et F_n est stable par T.

2. On a donc; $T_n: F_n \to F_n$. Les fonctions sont donc maintenant uniquement des polynômes Montrons que T_n est diagonalisable. Notons d'abord que \mathcal{B}_n est une base car une famille de degré échelonnée donc libre et génératrice de F_n car $\mathcal{B}_n = Vect\{F_n\}$. Ecrivons la matrice associée à T_n dans la base \mathcal{B}_n . On a :

$$T_n(e_j) = x \mapsto \frac{x^j}{2^j} + \frac{(x+1)^j}{2^j}$$
$$= x \mapsto \frac{x^j}{2^j} + \frac{1}{2^j} \times \sum_{k=0}^j \binom{j}{k} x^k$$

Donc:

$$mat(T_n) = A = \begin{pmatrix} T_n(e_1) & T_n(e_2) & \dots & T_n(e_j) & \dots & T_n(e_n) \\ 2 & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ 0 & 1 & & & \vdots \\ \vdots & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & 2^{1-i} & & a_{in} \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 & 2^{1-n} \end{pmatrix} \begin{array}{c} e_1 \\ e_2 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{pmatrix}$$

On remarque donc que A est triangulaire supérieure, et donc, par propriété son déterminant est le produit des coefficients de la diagnoale. On en déduit son polynôme caractéristique :

$$\chi(x) = \prod_{k=0}^{n} \left(x - \frac{1}{2^{k-1}} \right)$$

 χ est donc scindé à racines simples dans \mathbb{R} , par théorème, A est diagonalisable, d'où :

 T_n est diagonalisable.

- 3. Etude de l'espace propre de T associé à 2
 - (a) Comme on l'a montré précédemment, $\chi(x) = \prod_{k=0}^{n} \left(x \frac{1}{2^{k-1}}\right)$. 2 est racine du polynôme, donc 2 est valeur propre de T_n . Ainsi

$$2 \in Sp(T)$$

- (b) On a:
 - -- [0, 1] est un intervalle
 - $--f \in \mathcal{C}([0,1])$

Par le théorème des bornes atteintes, f est bornée et atteint ses bornes. D'où :

$$\exists (x_0, x_1) \in [0, 1]/(m, M) = (f(x_0), f(x_1))$$

(c) On a $f \in Ker(T - 2Id_E)$, donc f est vecteur propre de T associé à la valeur propre 2, d'où :

$$T(f) = 2f$$

$$\Rightarrow T(f)(x_0) = 2f(x_0)$$

$$\Rightarrow f\left(\frac{x_0}{2}\right) + f\left(\frac{x_0 + 1}{2}\right) = 2m$$

$$\Rightarrow f\left(\frac{x_0}{2}\right) \le m$$

De même :

$$f\left(\frac{x_0}{2}\right) = 2f(x_0) - \underbrace{f\left(\frac{x_0+1}{2}\right)}_{\geq m}$$

$$\Rightarrow f\left(\frac{x_0}{2}\right) \ge 2f(x_0) - m$$
$$\Rightarrow f\left(\frac{x_0}{2}\right) \ge m$$

On a donc bien:

$$f\left(\frac{x_0}{2}\right) = m$$

- (d) Pour $n \in \mathbb{N}$ on définit " $P(n) : f\left(\frac{x_0}{2^n}\right) = m$ ".

 - \square <u>Heredite</u>: pour $n \in \mathbb{N}$ fixé, supposons P(n) vraie, montrons que P(n+1) l'est aussi. On a, d'après le raisonnement précédent:

$$f\left(\frac{x_0}{2^n}\right) = m \Rightarrow f\left(\frac{x_0}{2^{n+1}}\right) = m$$

D'où P(n+1) vraie.

 \square Conclusion : On a montré l'initialisation et l'hérédité de P. Par le principe de démonstration par récurrence, on a montré :

$$\forall n \in \mathbb{N}, f\left(\frac{x_0}{2^n}\right) = m$$

De plus:

$$\lim_{n \to +\infty} f\left(\frac{x_0}{2^n}\right) = m$$

$$\Rightarrow f(0) = m$$

Donc

$$f\left(0\right)=m$$

(e) Par exactement le même raisonnement que pour les 3 relations précédentes :

$$M = f(0)$$

(f) On a montré que pour f quelconque appartenant à $Ker(T-2Id_E)$:

$$\inf_{x \in [0,1]} \! f(x) = \sup_{x \in [0,1]} \! f(x) = f(0)$$

$$\Rightarrow \forall x \in [0,1], f(x) = f(0)$$

Donc

$$Ker(T - 2Id_E) = \{ f \in \mathcal{C}([0, 1]) / \forall x \in [0, 1], f(x) = f(0) \}$$

Partie 3: Etude de cotan

1. $cotan(x) = \frac{cos(x)}{sin(x)}$

Soit $x \in \mathbb{R}$.

D'après le théorème de la bijection écrit dans mon cours de PTSI :

Si.

- f est strictement monotone sur I
- f et continue sur I

Alors:

- f réalise une bijection de I sur f(I)
- f et f^{-1} ont la même monotonie
- $-f^{-1}$ est continue
- \Box Continuité : cotan est continue sur $]0,\pi[$ car sin s'annule en 0 et π .

Par théorème :

f réalise une bijection de $I =]0, \pi[$ sur $f(I) = \mathbb{R}$

2. Soit $y \in \mathbb{R}$. On cherche $x \in I$ tel que y = cotan(x)

$$\iff y = \frac{\cos(x)}{\sin(x)}$$

$$\iff y = \frac{1}{\tan(x)}$$

$$\iff x = \arctan\left(\frac{1}{y}\right)$$

$$\iff$$

Or, on a la relation : $\forall x \in \mathbb{R}, arctan(x) + arctan(\frac{1}{x}) = \frac{\pi}{2}$. D'où

$$\iff$$
 $x = \frac{\pi}{2} - arctan(x)$

Donc:

$$\forall y \in \mathbb{R}, arccotan(y) = \frac{\pi}{2} - arctan(y)$$

3. Pour $x \in I$

$$\psi(x) = \pi \cot n(\pi x) = \pi \frac{\cos(\pi x)}{\sin(\pi x)}$$

$$\iff \psi(x) = \pi \left(\frac{1 - \frac{\pi^2 x^2}{2} + o(x^2)}{\pi x}\right)$$

$$\iff \psi(x) = \frac{1}{x} - \frac{\pi^2}{2}x + o(x)$$

$$\iff \psi(x) = \pi \left(\frac{1 - \frac{\pi^2 x^2}{2} + o(x^2)}{\pi x + \frac{\pi^3 x^3}{6} + o(x^3)} \right)$$

$$\iff \psi(x) = \left[\frac{1}{x} \right] \left[1 - \frac{\pi^2 x^2}{2} + o(x^2) \right] \underbrace{\left[\frac{1}{1 + \frac{\pi^2 x^2}{6} + o(x^2)} \right]}_{=1 + \frac{\pi^2 x^2}{6} + o(x^2)}$$

$$\iff \psi(x) = \begin{bmatrix} \frac{1}{x} \end{bmatrix} \left[1 - \frac{\pi^2 x^2}{2} + o(x^2) \right] \left[1 + \frac{\pi^2 x^2}{6} + o(x^2) \right]$$
$$\iff \psi(x) = \frac{1}{x} - \frac{\pi^2}{3} x + o(x)$$

D'où:

$$\psi(x) = \frac{1}{x} - \frac{\pi^2}{3}x + o(x)$$

4. Soit $x \in D$.

$$\begin{array}{lll} \psi\left(\frac{x}{2}\right) + \psi\left(\frac{x+1}{2}\right) & = & \pi\left[\cot an\left(\frac{\pi x}{2}\right) + \cot an\left(\frac{\pi(x+1)}{2}\right)\right] \\ & = & \pi\left[\cot an\left(X\right) + \cot an\left(X + \frac{\pi}{2}\right)\right] \\ & = & \pi\left[\cot an\left(X\right) + \tan\left(X\right)\right] \\ & = & \pi\left[\frac{\cos^2(X) + \sin^2(X)}{\sin(X)\cos(X)}\right] \\ & = & 2\pi\left[\frac{\cos(2X)}{\sin(2X)}\right] \\ & = & 2\pi\cot an(\pi x) \\ & = & 2\psi\left(x\right) \end{array}$$

D'où

$$\forall x \in D, \psi\left(\frac{x}{2}\right) + \psi\left(\frac{x+1}{2}\right) = 2\psi(x)$$

5. ψ ne peut pas être vecteur propre de T car $\psi \notin E$ car ψ non continue en 0 et 1.

Partie 4: Développement eulérien

1. Passons par les sommes partielles. Soit $N \in \mathbb{N}$

$$\varphi_N\left(\frac{x}{2}\right) = \frac{2}{x} - \sum_{n=1}^N \left(\frac{2}{2n-x}\right) + \sum_{n=1}^N \left(\frac{2}{2n+x}\right)$$
$$= 2\left[\frac{1}{x} - \sum_{n=2}^{2N} \left(\frac{1}{n-x}\right) + \sum_{n=2}^{2N} \left(\frac{1}{n+x}\right)\right]$$

Or,

$$\begin{cases} \sum_{n=2}^{2N} \left(\frac{1}{n-x}\right) &= -\frac{1}{1-x} + \sum_{n=1}^{N} \left(\frac{1}{n-x}\right) + \sum_{n=N+1}^{2N} \left(\frac{1}{n-x}\right) \\ \sum_{n=2}^{2N} \left(\frac{1}{n+x}\right) &= -\frac{1}{1+x} + \sum_{n=1}^{N} \left(\frac{1}{n+x}\right) + \sum_{n=N+1}^{2N} \left(\frac{1}{n+x}\right) \end{cases}$$

De même :

$$\varphi_N\left(\frac{x+1}{2}\right) = 2\left[\frac{1}{x+1} - \sum_{n=2}^{2N} \left(\frac{1}{n-x-1}\right) + \sum_{n=2}^{2N} \left(\frac{1}{n+x+1}\right)\right]$$
$$= 2\left[\frac{1}{x+1} - \sum_{n=1}^{2N-1} \left(\frac{1}{n-x}\right) + \sum_{n=3}^{2N+1} \left(\frac{1}{n+x}\right)\right]$$

Et.

$$\begin{cases} \sum_{n=1}^{2N-1} \left(\frac{1}{n-x}\right) &= -\frac{1}{1-x} - \frac{1}{2N-x} + \sum_{n=1}^{N} \left(\frac{1}{n-x}\right) + \sum_{n=N+1}^{2N} \left(\frac{1}{n-x}\right) \\ \sum_{n=3}^{2N+1} \left(\frac{1}{n+x}\right) &= -\frac{1}{1+x} - \frac{1}{2+x} + \frac{1}{2N-x} + \sum_{n=1}^{N} \left(\frac{1}{n+x}\right) + \sum_{n=N+1}^{2N} \left(\frac{1}{n+x}\right) \end{cases}$$

En sommant tous les termes, on trouve :

$$\varphi_N\left(\frac{x}{2}\right) + \varphi_N\left(\frac{x+1}{2}\right) = 2\varphi_N(x) + \frac{2}{2N-x}$$

Donc, lorsque $N \to +\infty$:

$$\varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = 2\varphi(x)$$

2. On a déjà $\varphi - \psi$ continue sur]0,1[.

Calculons, si elle existe, la limite en 0 de $\varphi - \psi$. Comme ψ et φ sont 1-périodiques, elles auront la même limite en 1. On a déjà calculé les DL en 0 de ψ et φ , d'où :

$$\begin{array}{rcl} \varphi-\psi&\equiv&\frac{1}{x}-\frac{1}{x}+\frac{\pi^2}{3}x+o(x)\\ &\equiv&\frac{\pi^2}{3}x+o(x)\\ \Rightarrow&\lim_{x\to0}(\varphi-\psi)&=&0 \end{array}$$

Ainsi:

$$\varphi-\psi$$
 se prolonge par continuité en 0 et 1, et $(\varphi-\psi)(0)=(\varphi-\psi)(1)=0$

3. Pour un peu plus de clareté, notons $\Psi = \varphi - \psi$. $\Psi \in \mathcal{C}([0,1]) \Rightarrow \Psi \in E$. On peut donc appliquer T à Ψ .

Notons de plus que, grâce aux questions III 4. et IV 1., on peut écrire :

$$T(\Psi) = 2\Psi$$

$$\Rightarrow \quad \Psi \in Ker(T - 2Id_E)$$

$$\Rightarrow \quad \forall x \in [0, 1], \Psi(x) = \Psi(0) = 0$$

$$\Rightarrow \quad \varphi = \psi$$

On a donc montré que :

$$\varphi = \psi$$

4. Application et généralisation

(a) On remarque que:

$$\sum_{n=1}^{\infty} \frac{2}{9n^2 - 1} = \sum_{n=1}^{\infty} \frac{2 \times \frac{1}{3}}{n^2 - \frac{1}{3}}$$

$$= 3 - \psi \left(\frac{1}{3}\right)$$

$$= 3 - \pi \cot an \left(\frac{\pi}{3}\right)$$

$$= 3 - \pi \frac{1}{\sqrt{3}}$$

$$= 1 - \frac{\pi}{3\sqrt{3}}$$

D'où

$$\sum_{n=1}^{\infty} \frac{2}{9n^2 - 1} = 1 - \frac{\pi}{3\sqrt{3}}$$

(b) Je suppose que ce n'est pas $\sum_{k=1}^{\infty} \frac{1}{n^2}$ mais $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

On a:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - x^2} = \frac{1}{2x} (2 - \varphi)$$

$$= \frac{1}{2x} (2 - \psi)$$
Or
$$\frac{1}{2x} (2 - \psi) \sim_{0} \frac{1}{2x} \left(2 - \frac{1}{x} + \frac{\pi^2}{3} x + o(x) \right)$$

$$\sim_{0} \frac{\pi^2}{6} + o(1)$$
Donc
$$\lim_{x \to 0} \sum_{n=1}^{\infty} \frac{1}{n^2 - x^2} = \frac{\pi^2}{6}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

D'où

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Remarques:

- je ne pense pas avoir bien rédiger...
- il me semble qu'en cours on avait vu la fonction zeta de Riemann, et :

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \zeta(2) = \frac{\pi^2}{6}$$

(c)

$$(\mathcal{R}'_0): \forall x \in \mathbb{C} - \mathbb{Z}, \pi cotan(\pi x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}$$

Passons sous forme exponentielle

$$cotan(x) = \frac{cos(x)}{sin(x)}$$

$$\Rightarrow cotan(x) = i\frac{e^{ix} + e^{-ix}}{e^{ix} - e^{-ix}}$$

$$\Rightarrow cotan(x) = -i\frac{cosh(x)}{sinh(x)}$$

Donc, pour $y \in \mathbb{R}^*$

$$-\pi \frac{\cosh(\pi y)}{\sinh(\pi x)} = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} = \frac{1}{2x} \left(\frac{1}{x} + \pi \frac{\cosh(\pi x)}{\sinh(\pi x)} \right)$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} = \frac{1}{2x^2} \left(1 + \pi x \frac{\cosh(\pi x)}{\sinh(\pi x)} \right)$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} = \frac{1}{2x^2} \left(1 + \pi x \frac{\cosh(\pi x)}{\sinh(\pi x)} \right)$$

$$\Rightarrow \begin{cases} x = iy \\ \sum_{n=1}^{+\infty} \frac{1}{n^2 + y^2} = -\frac{1}{2y^2} \left(1 + \pi \frac{\cosh(\pi iy)}{\sinh(\pi iy)} \right) \end{cases}$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2 + y^2} = \frac{1}{2y^2} \left(-\pi \frac{\cosh(\pi iy)}{\sinh(\pi iy)} - 1 \right)$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2 + y^2} = \frac{1}{2y^2} \left(\pi \frac{\cosh(\pi y)}{\sinh(\pi iy)} - 1 \right)$$

D'où

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + y^2} = \frac{1}{2y^2} \left(\pi \frac{\cosh(\pi y)}{\sinh(\pi y)} - 1 \right)$$

Partie 5: Calcul d'un intégrale à paramètre

1. (a) Soit $(x,t) \in \mathbb{R} \times]0, +\infty[$

$$\begin{aligned} |sin(xt)| &\leq |x|t \\ \Rightarrow & |h(x,t)| \leq 1 \times \frac{|x|t}{e^t - 1} \\ \Rightarrow & M = 1 \end{aligned}$$

Donc:

$$\exists M \in \mathbb{R}/\forall (x,t) \in \mathbb{R} \times]0, +\infty[, |h(x,t)| \leq M|x| \frac{t}{e^t-1}$$

- (b) Γ est une intégrale à paramètre, appliquons le théorème du cours : On a:

 $\frac{\text{Regularite selon } t \in]0, +\infty[\ :}{\forall x \in \mathbb{R}, h(x, \blacksquare) :} \ \frac{]0, +\infty[\to \mathbb{R}}{t \mapsto h(x, t)} \ \text{continue sur }]0, +\infty[\ \text{car} \ \forall t > 0, (e^t - 1) > 0$

 \Box Domination : D'après la question précédente :

 $\exists M \in \mathbb{R}/\forall (x,t) \in \mathbb{R} \times]0, +\infty[, |h(x,t)| \leq M|x|\underbrace{\frac{t}{e^t-1}}$

Or,

$$\left\{ \begin{array}{ccc} e^t-1 & \sim & e^t \\ & +\infty & \\ & t & = & o(e^{t/2}) \end{array} \right.$$

$$\Rightarrow \quad \frac{t}{e^t} = o(e^{-t/2})$$

$$\Rightarrow \quad \varphi(t) = o(e^{-t/2})$$

Or, $e^{-t/2}$ est intégrale sur $[0, +\infty]$ en tant qu'intégrale de référence. Par le théorème de comparaison des fonctions positives, $\varphi(t)$ est intégrale sur $[0, +\infty]$.

Par théorème :

 Γ continue sur \mathbb{R}

- (c) On a déjà presque tout dit, mais il faut tout recommencer, alors qu'on aurait pu tout faire en une question... (Heureusement qu'il y a le copier-coller!)
 - \square Regularite selon $x \in \mathbb{R}$:

$$\forall t \in]0, +\infty[, h(\blacksquare, t) : \begin{array}{c} \mathbb{R} \to \mathbb{R} \\ x \mapsto h(x, t) \end{array} \text{ de classe } \mathcal{C}^1 \text{ sur } \mathbb{R}$$

- - $\Box h(x,\blacksquare): \begin{array}{l}]0,+\infty[\to\mathbb{R} \\ t\mapsto h(x,t) \end{array}$ continue et intégrable sur $]0,+\infty[$
 - $\label{eq:definition} \square \ \, \frac{\partial h}{\partial x}(x,\blacksquare): \ \, \frac{]0,+\infty[\to \mathbb{R}}{t\mapsto \frac{\partial h}{\partial x}(x,t)} \ \, \text{continue} \]0,+\infty[$
- $\hfill \square$ Domination :

D'après la question précédente :

$$\exists M \in \mathbb{R}/\forall (x,t) \in \mathbb{R} \times]0, +\infty[, |h(x,t)| \leq M|x|\underbrace{\frac{t}{e^t-1}}_{\varphi(t)}$$

Avec $\varphi(t)$ est continue et intégrable sur $[0, +\infty[$.

Par théorème :

 Γ est de classe \mathcal{C}^1 \mathbb{R}

2. Soit $(x, t, N) \in \mathbb{R} \times]0, +\infty[\times \mathbb{N}]$. On a :

$$\begin{array}{rcl} h(x,t) & = & \frac{\sin(xt)}{e^t - 1} \\ \\ \Rightarrow & h(x,t) & = & e^{-t} \sin(xt) \frac{1}{e^{-t}(e^t - 1)} \\ \\ \Rightarrow & h(x,t) & = & e^{-t} \sin(xt) \frac{1}{1 - e^{-t}} \end{array}$$

De plus, $\forall q \in \mathbb{R}, |q| < 1$:

$$\sum_{k=0}^{N} q^{k} = \frac{1 - q^{N+1}}{1 - q}$$

$$\Rightarrow \sum_{k=0}^{N} q^{k} = \frac{1}{1 - q} - \frac{q^{N+1}}{1 - q}$$

$$\Rightarrow \frac{1}{1 - q} = \sum_{k=0}^{N} q^{k} + \frac{q^{N+1}}{1 - q}$$

Or, $\forall t > 0, |e^{-t}| < 1$, la relation précédente est donc valable pour $q = e^{-t}$. D'où :

$$h(x,t) = e^{-t}sin(xt)\left(\sum_{k=0}^{N} e^{-tk} + \frac{e^{-t(N+1)}}{1-e^{-t}}\right)$$

Ainsi:

$$\Gamma(x) = \int_0^{+\infty} e^{-t} \sin(xt) \left(\sum_{k=0}^N e^{-tk} + \frac{e^{-t(N+1)}}{1 - e^{-t}} \right) dt$$

3. Soit $(x, t, N) \in \mathbb{R} \times]0, +\infty[\times \mathbb{N}.$ On a :

$$\begin{array}{rcl} |h(x,t)| & \leq & M|x|\frac{t}{e^{t}-1} \\ \Rightarrow & |h(x,t)|e^{-(N+1)t} & \leq & M|x|\frac{te^{-(N+1)t}}{e^{t}-1} \end{array}$$

Or, on a les équivalences suivantes :

$$\begin{array}{cccc} & e^{t}-1 & \sim & e^{t} \\ \text{et} & & t & = & o(e^{t}) \\ \Rightarrow & \frac{te^{-(N+1)t}}{e^{t}-1} & = & o(e^{-(N+1)t}) \\ \Rightarrow & \frac{te^{-(N+1)t}}{e^{t}-1} & = & o(e^{-(N+1)t}) \end{array}$$

Ainsi:

$$\begin{aligned} &|h(x,t)|e^{-(N+1)t} &\leq & M|x|e^{-(N+1)t} \\ \Rightarrow & \int_0^{+\infty} |h(x,t)|e^{-(N+1)t}dt &\leq & M|x| \int_0^{+\infty} e^{-(N+1)t}dt \\ \Rightarrow & \left| \int_0^{+\infty} h(x,t)e^{-(N+1)t}dt \right| &\leq & M|x| \int_0^{+\infty} e^{-(N+1)t}dt \\ \Rightarrow & \left| \int_0^{+\infty} h(x,t)e^{-(N+1)t}dt \right| &\leq & \frac{M|x|}{(N+1)} \end{aligned}$$

Par le théorème de l'encadrement, on a alors :

$$\lim_{N \to +\infty} R_n(x) = 0$$

4. Soit $(x, t, k) \in \mathbb{R} \times]0, +\infty[\times \mathbb{N}$. Utilisons la formule d'Euler :

$$sin(xt) = \operatorname{Im} \left(e^{ixt} \right)$$

$$J_{k_{Im}}(x) = \int_{0}^{+\infty} e^{-t(1+k-ix)} dt$$

$$\Rightarrow J_{k_{Im}}(x) = \frac{1}{1+k-ix}$$

$$\Rightarrow J_{k_{Im}}(x) = \frac{1+k+ix}{(1+k)^2+x^2}$$

$$\Rightarrow J_k(x) = \frac{x}{(1+k)^2+x^2}$$

Donc:

$$\forall x \in \mathbb{R}, J_k(x) = \frac{x}{(1+k)^2 + x^2}$$

5. Soit $(x, t, N) \in \mathbb{R} \times]0, +\infty[\times \mathbb{N}.$

$$\Gamma(x) = \int_0^{+\infty} e^{-t} \sin(xt) \left(\sum_{k=0}^N e^{-tk} + \frac{e^{-t(N+1)}}{1 - e^{-t}} \right) dt$$

$$\Rightarrow \Gamma(x) = \int_0^{+\infty} e^{-t} \sin(xt) \sum_{k=0}^N e^{-tk} dt + R_N(x)$$

$$\Rightarrow \Gamma(x) = \int_0^{+\infty} \sum_{k=0}^N e^{-t} \sin(xt) e^{-tk} dt + R_N(x)$$

$$\Rightarrow \Gamma(x) = \sum_{k=0}^N \int_0^{+\infty} e^{-t} \sin(xt) e^{-tk} dt + R_N(x)$$

$$\Rightarrow \Gamma(x) = \sum_{k=0}^N \int_0^{+\infty} e^{-t} \sin(xt) e^{-tk} dt + R_N(x)$$

$$\Rightarrow \Gamma(x) = \sum_{k=0}^N \frac{x}{(1+k)^2 + x^2} + R_N(x)$$

$$\Rightarrow \Gamma(x) = x \sum_{k=0}^N \frac{1}{k^2 + x^2} + R_N(x)$$

Ainsi, en faisant tendre N vers $+\infty$, et en utilisant \mathcal{R}_1 :

$$\forall x \neq 0, \Gamma(x) = \frac{1}{2x} \left(\pi x \frac{\cosh(\pi x)}{\sinh(\pi x)} - 1 \right)$$

6. Soit $x \in \mathbb{R}$.

$$\frac{\cosh(\pi x)}{\sinh(\pi x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$\Rightarrow \frac{\cosh(\pi x)}{\sinh(\pi x)} \sim \frac{1 + \frac{\pi^2 x^2}{2} + o(x^2)}{\pi x + \frac{\pi^3 x^3}{6} + o(x^3)}$$

$$\Rightarrow \frac{1}{2x} \left(\pi x \frac{\cosh(\pi x)}{\sinh(\pi x)} - 1 \right) \sim \frac{\pi^2}{+\infty} \frac{\pi^2}{6} x + o(x)$$

On remarque que :

$$\int_{0}^{+\infty} \frac{t}{e^t - 4} dt = \Gamma'(0)$$

D'où:

$$\int_0^{+\infty} \frac{t}{e^t - 4} dt = \frac{\pi^2}{6}$$

Exercice 2: Temps d'attente d'une séquence dans un automate

Partie 1: Etude d'un cas simple

1. On reconnait une loi géométrique de paramètre q.

$$Y \hookrightarrow \mathcal{G}(q)$$

D'où :

$$\forall n \in \mathbb{N}^*, P(Y=n) = (1-q)^{n-1}q$$

2. Redémontrons la formule de la série génératrice d'une loi géométrique. On se souvient de bien faire attention aux indices, le seul piège.

$$G_{y}(t) = \sum_{n=1}^{+\infty} P(Y=n)t^{n}$$

$$\Rightarrow G_{y}(t) = \sum_{n=1}^{+\infty} (1-q)^{n-1}qt^{n}$$

$$\Rightarrow G_{y}(t) = \frac{q}{p} \sum_{n=1}^{+\infty} (pt)^{n}$$

$$\Rightarrow G_{y}(t) = \frac{q}{p}pt \sum_{n=1}^{+\infty} (pt)^{n-1}$$

$$\Rightarrow G_{y}(t) = qt \sum_{n=0}^{+\infty} (pt)^{n}$$

$$\Rightarrow G_{y}(t) = qt \frac{1}{1-pt}$$

$$\Rightarrow G_{y}(t) = \frac{qt}{1-pt}$$

De plus : $G_y(t) = \frac{q}{p} \sum_{n=1}^{+\infty} (pt)^n$ converge pour $|pt| < 1 \Rightarrow |t| < \frac{1}{p}$. Donc le rayon de convergence est $R_y = \frac{1}{p}$ avec $p \in]0,1[$.

Ainsi:

$$\begin{cases} R_y = \frac{1}{p} > 1 \\ \forall t \in]-R_y, R_y[, G_y(t) = \frac{qt}{1-pt} \end{cases}$$

3. $1 \in]-R_Y, R_Y[$ et G_Y est de classe \mathcal{C}^{∞} sur $]-R_Y, R_Y[$ en tant que fonction décompsable en série entière, donc G_Y est deux fois dérivable en 1. De plus, $\forall t \in]-R_Y, R_Y[$:

$$G_{y}(t) = \frac{qt}{1-pt}$$

$$\Rightarrow G'_{y}(t) = \frac{q(1-pt)+qpt}{(1-pt)^{2}} = \frac{q}{(1-pt)^{2}}$$

$$\Rightarrow G''_{y}(t) = q - \frac{-2p(1-pt)}{(1-pt)^{4}} = \frac{2pq}{(1-pt)^{3}}$$

$$G''_{y}(t) = \frac{q}{(1-pt)^{3}} = \frac{1}{2}$$

Donc:

$$\Rightarrow \begin{cases} G'_y(1) &= \frac{q}{(1-p)^2} &= \frac{1}{q} \\ G''_y(1) &= \frac{2pq}{q^3} &= \frac{2p}{q^2} \end{cases}$$

Ainsi:

$$G_Y$$
 deux fois dérivables et
$$\left\{ \begin{array}{lcl} G_y'(1) & = & \frac{1}{q} \\ \\ G_y''(1) & = & \frac{2p}{q^2} \end{array} \right.$$

4. Par propriété:

$$\left\{ \begin{array}{lcl} E(Y) & = & G_Y'(1) \\ V(Y) & = & G_Y'(1) + G_Y''(1) - G_Y'(1)^2 \end{array} \right.$$

D'où:

$$\begin{cases} E(Y) &= \frac{1}{q} \\ V(Y) &= \frac{p}{q^2} \end{cases}$$

Partie 2: Etude d'un cas intermédiaire

1. On a:

$$\begin{cases}
p_1 = 0 \\
p_2 = q^2 \\
p_3 = pq^2
\end{cases}$$

2. Pour que ce système soit un système complet d'évenements, il faut que les évenements soient deux à deux incompatibles $(A_i \cap A_i = 0)$, et que la réunion des évenements forme Ω . Ici les évènements ne peux pas se produire en même temps, donc sont incompatbles. Deplus les 3 évenements couvrent toutes les possibilités. Ainsi:

 $(P_1, C_1 \cup P_2, C_1 \cup C_2)$ forme un système complet d'évenements.

3. D'après la formule des probabilités totales :

$$\underbrace{P(Z=n)}_{p_n} = P(Z=n|P_1)P(P_1) + P(Z=n|C_1 \cap P_2)P(C_1 \cap P_2) + P(Z=n|C_1 \cap C_2)P(C_1 \cap C_2)$$

- $\begin{array}{c} \square \ \underline{P(Z=n|P_1)P(P_1)} : \\ \ \boxed{P(P_1)=p} \\ \ \ \\ \ \ \\ \end{array}$ Puisque l'évenement P_1 vient d'être réalisé, on retourne à l'état initial, donc il ne reste plus que n-1 tirages possibles, d'où $P(Z=n|P_1)=p_{n-1}$
- $\square P(Z = n | C_1 \cap P_2) P(C_1 \cap P_2) :$
 - $|P(C_1 \cap P_2) = pq|$
 - Par le même raisonnement : $P(Z = n | C_1 \cap P_2) = p_{n-2}$
- $\begin{array}{c} \square \ \underline{P(Z=n|C_1\cap C_2)P(C_1\cap C_2)} \ : \\ \ [P(C_1\cap C_2)=q^2] \\ \ [Pour \ n>2, \ l'évenement \ \underline{(Z=n|C_1\cap C_2) \ n'est} \ pas \ possible \ car \ une \ fois \ que \ l'on \ atteint \ C_2 \\ \end{array}$ l'expérience s'arrête, d'où $P(Z = n | C_1 \cap C_2) = 0$

D'où

$$p_n = pp_{n-1} + pqp_{n-2}$$

4. Soit $t \in]-R_Z, R_Z[.$

$$G_{Z}(t) = \sum_{G_{Z}(t)} p_{n}t^{n}$$

$$G_{Z}(t) = \sum_{G_{Z}(t)} (p_{n-1} + qp_{n-2})pt^{n}$$

$$G_{Z}(t) = p\sum_{G_{Z}(t)} p_{n-1}t^{n} + pq\sum_{G_{Z}(t)} p_{n-2}t^{n}$$

$$G_{Z}(t) = pt\sum_{n=0}^{+\infty} p_{n}t^{n} + pqt^{2}\sum_{n=0}^{+\infty} p_{n}t^{n} + p_{2}t^{2}$$

$$G_{Z}(t) = q^{2}t^{2}$$

$$G_{Z}(t)(1 - pt - pqt^{2}) = q^{2}t^{2}$$

On a donc bien:

$$G_Z(t)(1 - pt - pqt^2) = q^2t^2$$

5. Q(t) est un polynôme de degré 2, il peut donc se mettre sous la forme : $Q(t) = \alpha(t - r_1)(t - r_2)$ avec r_1 et r_2 les racines de Q et α le coefficient dominant. D'où :

$$Q(t) = -pt(t-a)(t-b)$$

6. J'étais parti sur de longues inégalités avec les formules de a et b. J'ai vu le corrigé, c'est super malin!

7.

$$f(t) = \frac{q^2t^2}{1 - pt - pqt^2} = -\frac{qt^2}{p(t - a)(t - b)} = -\frac{q}{p}t^2\frac{1}{(a - t)}\frac{1}{(b - t)} = -\frac{qt^2}{pab}\frac{1}{(1 - \frac{t}{a})}\frac{1}{(1 - \frac{t}{b})}$$

Or $\frac{1}{(1-\frac{t}{a})}$ et $\frac{1}{(1-\frac{t}{b})}$ sont décompsables en séries entières de rayon respectifs |a| et |b|. Comme il y a produit de 2 DSE, c'est le plus petit rayon des deux qui compte, ici |a|, donc $R \leq |a|$, mais f n'existe pas en t=a donc R=|a|.

Donc:

$$f$$
 est développable en série entière
$$\forall t \in]-a, a[, f(t) = G_Z(t)$$

$$R_Z = |a|$$

8. On calcule le produit de Cauchy pour trouver G_z sous forme d'une seule somme, puis on identifie : Soit $t \in]-a,a[$

$$G_Z(t) = -\frac{qt^2}{pab} \frac{1}{(1-\frac{t}{a})} \frac{1}{(1-\frac{t}{b})}$$

$$\Rightarrow G_Z(t) = -\frac{qt^2}{pab} \sum_{n=0}^{\infty} \left(\frac{t}{a}\right)^n \sum_{n=0}^{\infty} \left(\frac{t}{b}\right)^n$$

$$\Rightarrow G_Z(t) = -\frac{qt^2}{pab} \sum_{n=0}^{+\infty} \sum_{k=0}^{n} \frac{t^n}{a^k b^{n-k}}$$

$$\Rightarrow G_Z(t) = \sum_{n=0}^{+\infty} \left[-\frac{q}{pab^{n+1}} \sum_{k=0}^{n} \left(\frac{b}{a}\right)^k \right] t^{n+2}$$

Or:

$$\sum_{k=0}^{n} \left(\frac{b}{a}\right)^k = \frac{a^{n+1} - b^{n+1}}{a^{n+1}(a-b)}$$

Donc

$$p_{n+2} = -\frac{q}{p(ab)^{n+1}} \frac{a^{n+1} - b^{n+1}}{a - b}$$

D'où:

$$p_n = \frac{q}{p(ab)^{n-1}} \frac{b^{n-1} - a^{n-1}}{a - b}$$

9. $G_Z(t)$ est une série entière, par propriété elle est de classe $\mathcal{C}^{+\infty}$ sur]-a,a[. Or $1\in]-a,a[$, donc $G_Z'(1)$ et $G_Z''(1)$ existent. Par propriété :

$$\left\{ \begin{array}{lcl} E(Z) & = & G_Z'(1) \\ V(Z) & = & G_Z'(1) + G_Z''(1) - G_Z'(1)^2 \end{array} \right.$$

De plus, en reprenant la formule : $G_Z(t)(1-pt-pqt^2)=q^2t^2$, on trouve :

$$G'_{Z}(t) = \frac{2tq^{2}(1-pt-pqt^{2})-t^{2}q^{2}(-p-2pqt)}{(1-pt-pqt^{2})^{2}}$$

$$\Rightarrow G'_{Z}(1) = \frac{2q^{2}(1-p-pq)-q^{2}(-p-2pq)}{(1-p-pq)^{2}}$$

$$\Rightarrow G'_{Z}(1) = \frac{2q^{2}(q^{2})-q^{2}(-p-2pq)}{(q^{2})^{2}}$$

$$\Rightarrow G'_{Z}(1) = \frac{2q^{2}+p+2pq}{q^{2}}$$

$$\Rightarrow G'_{Z}(1) = 2+\frac{1-q}{q^{2}}+2\frac{1-q}{q}$$

$$\Rightarrow G'_{Z}(1) = \frac{1}{q^{2}}+\frac{1}{q}$$

D'où

$$E(Z) = \frac{1}{q^2} + \frac{1}{q}$$

10.

$$\begin{array}{rcl} & E(Z) & \geq & E(Y)+1 \\ \Rightarrow & \frac{1}{q}+\frac{1}{q^2} & \geq & \frac{1}{q}+1 \\ \Rightarrow & \frac{1+q}{q^2} & \geq & \frac{1+q}{q} \\ \Rightarrow & 1 & \leq & \frac{1}{q} \end{array}$$

Dernière égalité vraie car $q\in]0,1[$ D'où :

$$E(Z) \ge E(Y) + 1$$

11. Oui car $Z \ge Y + 1$.