CLRS 15.2-15.3

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Multiplicação iterada de matrizes

```
Se A \in p \times q e B \in q \times r então AB \in p \times r.

(AB)[i,j] = \sum_k A[i,k] B[k,j]

MULT-MAT (p,A,q,B,r)

1 para i \leftarrow 1 até p faça

2 para j \leftarrow 1 até r faça

3 AB[i,j] \leftarrow 0

4 para k \leftarrow 1 até q faça

5 AB[i,j] \leftarrow AB[i,j] + A[i,k] \cdot B[k,j]
```

Número de multiplicações escalares = $p \cdot q \cdot r$

Multiplicação iterada

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2 \cdots A_n$.

Exemplo: $A_1 \cdot A_2 \cdot A_3$

Soluções ótimas contêm soluções ótimas

$$(A_1A_2)(A_3((A_4A_5)A_6))$$

é ordem ótima de multiplicação então

$$(A_1A_2)$$
 e $(A_3((A_4A_5)A_6))$

também são ordens ótimas.

Soluções ótimas contêm soluções ótimas

Se

$$(A_1A_2)(A_3((A_4A_5)A_6))$$

é ordem ótima de multiplicação então

$$(A_1A_2)$$
 e $(A_3((A_4A_5)A_6))$

também são ordens ótimas.

Decomposição:
$$(A_i \cdots A_k) (A_{k+1} \cdots A_j)$$

m[i,j] =número mínimo de multiplicações escalares para calcular $A_i \cdots A_j$

Recorrência

$$m[i,j] =$$
número mínimo de multiplicações escalares para calcular $A_i \cdots A_j$

se
$$i = j$$
 então $m[i, j] = 0$
se $i < j$ então

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + p[i-1]p[k]p[j] + m[k+1,j] \}$$

Exemplo:

$$m[3,7] = \min_{3 \le k \le 7} \{ m[3,k] + p[2]p[k]p[7] + m[k+1,7] \}$$

Algoritmo recursivo

Recebe p[i-1..j] e devolve m[i,j]

```
REC-MAT-CHAIN (p, i, j)
  1 se i=i
            então devolva 0
      m[i,j] \leftarrow \infty
      para k \leftarrow i até j-1 faça
  5
            q_1 \leftarrow \mathsf{REC}\text{-}\mathsf{MAT}\text{-}\mathsf{CHAIN}\left(p,i,k\right)
            q_2 \leftarrow \mathsf{REC}\text{-}\mathsf{MAT}\text{-}\mathsf{CHAIN}\left(p, k+1, i\right)
  6
           q \leftarrow q_1 + p[i-1]p[k]p[i] + q_2
            se q < m[i, j]
                 então m[i,j] \leftarrow q
       devolva m[i, j]
10
```

Consumo de tempo?

A plataforma utilizada nos experimentos é um PC rodando Linux Debian ?.? com um processador Pentium II de 233 MHz e 128MB de memória RAM.

O programa foi compilado com o gcc versão ?? e opção de compilação "-O2".

n	3	6	10	20	25
tempo	0.0 <i>s</i>	0.0 <i>s</i>	0.01 <i>s</i>	201 <i>s</i>	567 <i>m</i>

$$T(n) = \text{ número comparações entre } q \text{ e } m[\star, \star]$$

$$\text{ na linha 8 quando } n := j - i + 1$$

$$T(1) = 0$$

$$T(n) = \sum_{h=1}^{n-1} (T(h) + T(n-h) + 1) = 2 \sum_{h=2}^{n-1} T(h) + (n-1)$$

$$= 2(T(2) + \dots + T(n-1)) + (n-1) \text{ para } n > 2$$

$$T(n) =$$
 número comparações entre q e $m[\star, \star]$ na linha 8 quando $n := j - i + 1$

$$T(1) = 0$$

$$T(n) = \sum_{h=1}^{n-1} (T(h) + T(n-h) + 1) = 2 \sum_{h=2}^{n-1} T(h) + (n-1)$$
$$= 2(T(2) + \dots + T(n-1)) + (n-1) \text{ para } n \ge 2$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda.

$$T(n) =$$
 número comparações entre q e $m[\star, \star]$ na linha 8 quando $n := j - i + 1$

$$T(n) = 2(T(2) + \cdots + T(n-1)) + (n-1)$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda:

$$T(n) =$$
 número comparações entre q e $m[\star, \star]$ na linha 8 quando $n := j - i + 1$

$$T(n) = 2(T(2) + \cdots + T(n-1)) + (n-1)$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda:

$$T(n) - T(n-1) = 2 T(n-1) + 1.$$

Logo
$$T(n) = 3 T(n-1) + 1$$
.

$$T(n) =$$
 número comparações entre q e $m[\star, \star]$ na linha 8 quando $n := j - i + 1$

$$T(n) = 2(T(2) + \cdots + T(n-1)) + (n-1)$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda:

$$T(n) - T(n-1) = 2 T(n-1) + 1.$$

Logo
$$T(n) = 3 T(n-1) + 1$$
.

Fácil verificar que $T(n) \ge \frac{3^{n-1}-1}{2}$ para $n \ge 1$.

Recorrência

n	1	2	3	4	5	6	7	8
T(n)	0	1	4	13	40	121	364	1093
$\frac{T(n)}{3^{n-1}-1}$	0	2	8	26	80	242	728	2186

Prova: Para n = 1, T(1) = 0 = (1 - 1)/2.

Recorrência

Prova: Para n = 1, T(1) = 0 = (1 - 1)/2.

Para $n \geq 2$,

$$T(n) = 3T(n-1) + 1$$

$$\stackrel{\text{hi}}{=} 3(\frac{3^{n-1} - 1}{2}) + 1$$

$$= \frac{3^n - 3}{2} + 1 = \frac{3^n - 3 + 2}{2}$$

$$= \frac{3^n - 1}{2}.$$

Conclusão

$$T(n) \geq \frac{3^{n-1}-1}{2}$$
 para $n \geq 1$.

O consumo de tempo do algoritmo REC-MAT-CHAIN é $\Omega(3^n)$.

Resolve subproblemas muitas vezes

$$p[0] = 10$$
 $p[1] = 100$ $p[2] = 5$ $p[3] = 50$

Número mínimo de mults = 7500

Resolve subproblemas muitas vezes

```
REC-MAT-CHAIN(p, 1, 5)
                                        REC-MAT-CHAIN(p, 4, 4)
 REC-MAT-CHAIN(p, 1, 1)
                                     REC-MAT-CHAIN(p, 5, 5)
 REC-MAT-CHAIN(p, 2, 5)
                                   REC-MAT-CHAIN(p, 1, 2)
    REC-MAT-CHAIN(p, 2, 2)
                                      REC-MAT-CHAIN(p, 1, 1)
    REC-MAT-CHAIN(p. 3, 5)
                                      REC-MAT-CHAIN(p. 2, 2)
      REC-MAT-CHAIN(p, 3, 3)
                                    REC-MAT-CHAIN(p, 3, 5)
      REC-MAT-CHAIN(p, 4, 5)
                                      REC-MAT-CHAIN(p, 3, 3)
        REC-MAT-CHAIN(p, 4, 4)
                                      REC-MAT-CHAIN(p, 4, 5)
        REC-MAT-CHAIN(p, 5, 5)
                                        REC-MAT-CHAIN(p, 4, 4)
      REC-MAT-CHAIN(p, 3, 4)
                                        REC-MAT-CHAIN(p, 5, 5)
        REC-MAT-CHAIN(p, 3, 3)
                                     REC-MAT-CHAIN(p, 3, 4)
        REC-MAT-CHAIN(p. 4, 4)
                                        REC-MAT-CHAIN(p. 3, 3)
      REC-MAT-CHAIN(p, 5, 5)
                                        REC-MAT-CHAIN(p, 4, 4)
    REC-MAT-CHAIN(p, 2, 3)
                                      REC-MAT-CHAIN(p, 5, 5)
      REC-MAT-CHAIN(p. 2, 2)
                                    REC-MAT-CHAIN(p, 1, 3)
      REC-MAT-CHAIN(p, 3, 3)
                                      REC-MAT-CHAIN(p, 1, 1)
    REC-MAT-CHAIN(p, 4, 5)
                                      REC-MAT-CHAIN(p, 2, 3)
      REC-MAT-CHAIN(p. 4, 4)
                                        REC-MAT-CHAIN(p. 2, 2)
      REC-MAT-CHAIN(p, 5, 5)
                                        REC-MAT-CHAIN(p, 3, 3)
    REC-MAT-CHAIN(p, 2, 4)
                                     REC-MAT-CHAIN(p, 1, 2)
      REC-MAT-CHAIN(p, 2, 2)
                                        REC-MAT-CHAIN(p, 1, 1)
      REC-MAT-CHAIN(p, 3, 4)
                                        REC-MAT-CHAIN(p, 2, 2)
        REC-MAT-CHAIN(p, 3, 3)
                                     REC-MAT-CHAIN(p, 3, 3)
        REC-MAT-CHAIN(p, 4, 4)
                                    REC-MAT-CHAIN(p, 4, 5)
      REC-MAT-CHAIN(p. 2. 3)
                                      REC-MAT-CHAIN(p. 4, 4)
        REC-MAT-CHAIN(p, 2, 2)
                                     REC-MAT-CHAIN(p, 5, 5)
        REC-MAT-CHAIN(p, 3, 3)
                                   REC-MAT-CHAIN(p, 1, 4)
```

```
REC-MAT-CHAIN(p, 1, 1)
  REC-MAT-CHAIN(p. 2, 4)
    REC-MAT-CHAIN(p, 2, 2)
    REC-MAT-CHAIN(p, 3, 4)
      REC-MAT-CHAIN(p. 3, 3)
      REC-MAT-CHAIN(p, 4, 4)
    REC-MAT-CHAIN(p, 2, 3)
      REC-MAT-CHAIN(p, 2, 2)
      REC-MAT-CHAIN(p, 3, 3)
    REC-MAT-CHAIN(p, 4, 4)
  REC-MAT-CHAIN(p, 1, 2)
    REC-MAT-CHAIN(p. 1, 1)
    REC-MAT-CHAIN(p, 2, 2)
  REC-MAT-CHAIN(p, 3, 4)
    REC-MAT-CHAIN(p. 3, 3)
    REC-MAT-CHAIN(p, 4, 4)
  REC-MAT-CHAIN(p, 1, 3)
    REC-MAT-CHAIN(p. 1, 1)
    REC-MAT-CHAIN(p, 2, 3)
      REC-MAT-CHAIN(p, 2, 2)
      REC-MAT-CHAIN(p, 3, 3)
    REC-MAT-CHAIN(p, 1, 2)
      REC-MAT-CHAIN(p, 1, 1)
      REC-MAT-CHAIN(p, 2, 2)
    REC-MAT-CHAIN(p. 3, 3)
  REC-MAT-CHAIN(p, 4, 4)
REC-MAT-CHAIN(p, 5, 5)
```

Cada subproblema

$$A_i \cdots A_j$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2,6] preciso de ...

Cada subproblema

$$A_i \cdots A_j$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2,6] preciso de . . .

m[2,2], m[2,3], m[2,4], m[2,5] e de m[3,6], m[4,6], m[5,6], m[6,6].

Cada subproblema

$$A_i \cdots A_j$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2,6] preciso de . . .

m[2,2], m[2,3], m[2,4], m[2,5] e de m[3,6], m[4,6], m[5,6], m[6,6].

Calcule todos os m[i,j] com j-i+1=2, depois todos com j-i+1=3, depois todos com j-i+1=4, etc.

$$\rho[0]{=}10 \ \rho[1]{=}10 \ \rho[2]{=}20 \ \rho[3]{=}30 \ \rho[4]{=}10 \ \rho[5]{=}15 \ \rho[6]{=}30$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	??					
2		0					
3			0				
4				0			
5					0		
6						0	

i

$$m[1,1] + p[1-1]p[1]p[2] + m[1+1,2] = 0 + 2000 + 0 = 2000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000					
2		0	??				
3			0				
4				0			
5					0		
6						0	

i

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0				
4				0			
5					0		
6						0	

$$m[2,2] + p[2-1]p[2]p[3] + m[2+1,3] = 0 + 6000 + 0 = 6000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	??			
4				0			
5					0		
6						0	

$$m[3,3] + p[3-1]p[3]p[4] + m[3+1,4] = 0 + 6000 + 0 = 6000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	??		
5					0		
6						0	

i

m[4,4] + p[4-1]p[4]p[5] + m[4+1,5] = 0+4500+0=4500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	4500		
5					0	??	
6						0	

1

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[5,5] + p[5-1]p[5]p[6] + m[5+1,6] = 0+4500+0=4500$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	??				
2		0	6000				
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

i

$$m[1,1] + p[1-1]p[1]p[3] + m[1+1,3] = 0 + 3000 + 6000 = 9000$$

$$m[1,2] + p[1-1]p[2]p[3] + m[2+1,3] = 2000 + 6000 + 0 = 8000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	??			
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

m[2,2] + p[2-1]p[2]p[4] + m[2+1,4] = 0 + 2000 + 6000 = 8000

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[2,3] + p[2-1]p[3]p[4] + m[3+1,4] = 6000 + 3000 + 0 = 9000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	??		
4				0	4500		
5					0	4500	
6						0	

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	13500		
4				0	4500		
5					0	4500	
6						0	

$$m[3,3] + p[3-1]p[3]p[5] + m[3+1,5] = 0 + 9000 + 4500 = 13500$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500		
5					0	4500	
6						0	

$$m[3,4] + p[3-1]p[4]p[5] + m[4+1,5] = 6000 + 3000 + 0 = 9000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	??	
5					0	4500	
6						0	

$$\rho[0]{=}10 \ \rho[1]{=}10 \ \rho[2]{=}20 \ \rho[3]{=}30 \ \rho[4]{=}10 \ \rho[5]{=}15 \ \rho[6]{=}30$$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[4,4] + p[4-1]p[4]p[6] + m[4+1,6] = 0 + 9000 + 4500 = 13500$$

$$\rho[0]{=}10 \ \rho[1]{=}10 \ \rho[2]{=}20 \ \rho[3]{=}30 \ \rho[4]{=}10 \ \rho[5]{=}15 \ \rho[6]{=}30$$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

m[4,5] + p[4-1]p[5]p[6] + m[5+1,6] = 4500 + 13500 + 0 = 18000

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	??			
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

m[1,1] + p[1-1]p[1]p[4] + m[1+1,4] = 0 + 1000 + 8000 = 9000

m[1,2] + p[1-1]p[2]p[4] + m[2+1,4] = 2000 + 2000 + 6000 = 10000

$$m[1,3] + p[1-1]p[3]p[4] + m[3+1,4] = 8000 + 3000 + 0 = 11000$$

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	??		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	12000		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,2] + p[2-1]p[2]p[5] + m[2+1,5] = 0 + 3000 + 9000 = 12000$$

$$\rho[0]{=}10 \ \rho[1]{=}10 \ \rho[2]{=}20 \ \rho[3]{=}30 \ \rho[4]{=}10 \ \rho[5]{=}15 \ \rho[6]{=}30$$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	12000		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

m[2,3] + p[2-1]p[3]p[5] + m[3+1,5] = 6000 + 4500 + 4500 = 15000

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

m[2,4] + p[2-1]p[4]p[5] + m[4+1,5] = 8000 + 1500 + 0 = 9500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	??	
4				0	4500	13500	
5					0	4500	
6						0	

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	31500	
4				0	4500	13500	
5					0	4500	
6						0	

m[3,3] + p[3-1]p[3]p[6] + m[3+1,6] = 0 + 18000 + 13500 = 31500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[3,4] + p[3-1]p[4]p[6] + m[4+1,6] = 6000 + 6000 + 4500 = 16500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[3,5] + p[3-1]p[5]p[6] + m[5+1,6] = 9000 + 9000 + 0 = 18000

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	??		
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[1,1] + p[1-1]p[1]p[5] + m[1+1,5] = 0 + 1500 + 9500 = 11000

m[1,2] + p[1-1]p[2]p[5] + m[2+1,5] = 2000 + 3000 + 9000 = 14000

m[1,3] + p[1-1]p[3]p[5] + m[3+1,5] = 8000 + 4500 + 4500 = 17000

6

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

1 2 3 4 5 6 j

1 0 2000 8000 9000 10500

2 0 6000 8000 9500

3 0 6000 9000 16500

4 0 0 4500 13500

5 0 4500

m[1,4] + p[1-1]p[4]p[5] + m[4+1,5] = 9000 + 1500 + 0 = 10500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	??	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$\rho[0]{=}10 \ \rho[1]{=}10 \ \rho[2]{=}20 \ \rho[3]{=}30 \ \rho[4]{=}10 \ \rho[5]{=}15 \ \rho[6]{=}30$$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	22500	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[2,2] + p[2-1]p[2]p[6] + m[2+1,6] = 0 + 6000 + 16500 = 22500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	22500	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[2,3] + p[2-1]p[3]p[6] + m[3+1,6] = 6000 + 9000 + 13500 = 28500

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	15500	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[2,4] + p[2-1]p[4]p[6] + m[4+1,6] = 8000 + 3000 + 4500 = 15500

$$\rho[0]{=}10 \ \rho[1]{=}10 \ \rho[2]{=}20 \ \rho[3]{=}30 \ \rho[4]{=}10 \ \rho[5]{=}15 \ \rho[6]{=}30$$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[2,5] + p[2-1]p[5]p[6] + m[5+1,6] = 9500 + 4500 + 0 = 14000

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	??	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

m[1,1] + p[1-1]p[1]p[6] + m[1+1,6] = 0 + 3000 + 14000 = 17000

6

$$m[1,2] + p[1-1]p[2]p[6] + m[2+1,6] = 2000 + 6000 + 16500 = 24500$$

6

m[1,3] + p[1-1]p[3]p[6] + m[3+1,6] = 8000 + 9000 + 13500 = 30500

6

m[1,4] + p[1-1]p[4]p[6] + m[4+1,6] = 9000 + 3000 + 4500 = 16500

Simulação

6

m[1,5] + p[1-1]p[5]p[6] + m[5+1,6] = 10500 + 4500 + 0 = 15000

0

Simulação

$$p[0]=10$$
 $p[1]=10$ $p[2]=20$ $p[3]=30$ $p[4]=10$ $p[5]=15$ $p[6]=30$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	15000	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

i

Algoritmo de programação dinâmica

```
Recebe p[0..n] e devolve m[1,n].
MATRIX-CHAIN-ORDER (p, n)
      para i \leftarrow 1 até n faça
          m[i,i] \leftarrow 0
     para \ell \leftarrow 2 até n faça
 3
 4
          para i \leftarrow 1 até n - \ell + 1 faça
 5
             i \leftarrow i + \ell - 1
             m[i, j] \leftarrow \infty
              para k \leftarrow i até i-1 faça
                 q \leftarrow m[i, k] + p[i - 1]p[k]p[j] + m[k+1, j]
 8
 9
                 se q < m[i, j]
                     então m[i,j] \leftarrow q
10
11
     devolva m[1, n]
```

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Consumo de tempo: ???

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Consumo de tempo: $O(n^3)$ (três loops encaixados)

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ Consumo de tempo: $O(n^3)$ (três loops encaixados) Curioso verificar que consumo de tempo é $\Omega(n^3)$: Número de execuções da linha 8:

Linhas 3–10: tratam subcadeias $A_i \cdots A_i$ de comprimento ℓ

Consumo de tempo: $O(n^3)$ (três loops encaixados)

Curioso verificar que consumo de tempo é $\Omega(n^3)$:

Número de execuções da linha 8:

ℓ	i	execs linha 8
2	$1,\ldots,n-1$	$(n-1)\cdot 1$
3	$1,\ldots,n-2$	$(n-2)\cdot 2$
4	$1,\ldots,n-3$	$(n-3)\cdot 3$
n-1	1, 2	$2 \cdot (n-2)$
n	1	$1 \cdot (n-1)$
	total	$\sum_{h=1}^{n-1} h(n-h)$

Consumo de tempo

Para
$$n \ge 6$$
, $\sum_{h=1}^{n-1} h(n-h) =$

$$= n \sum_{h=1}^{n-1} h - \sum_{h=1}^{n-1} h^2$$

$$= n \frac{1}{2} n(n-1) - \frac{1}{6} (n-1) n(2n-1) \quad \text{(CLRS p.1060)}$$

$$\ge \frac{1}{2} n^2 (n-1) - \frac{1}{6} 2 n^3$$

$$\ge \frac{1}{2} n^2 \frac{5n}{6} - \frac{1}{3} n^3$$

$$= \frac{5}{12} n^3 - \frac{1}{3} n^3$$

$$= \frac{1}{12} n^3.$$

Consumo de tempo é $\Omega(n^3)$

Conclusão

O consumo de tempo do algoritmo MATRIX-CHAIN-ORDER é $\Theta(n^3)$.

Versão recursiva eficiente

```
MEMOIZED-MATRIX-CHAIN-ORDER (p, n)

1 para i \leftarrow 1 até n faça

2 para j \leftarrow 1 até n faça

3 m[i,j] \leftarrow \infty

4 devolva LOOKUP-CHAIN (p,1,n)
```

Versão recursiva eficiente

```
LOOKUP-CHAIN (p, i, j)
    se m[i,j] < \infty
         então devolva m[i, j]
 3
     se i = i
         então m[i,j] \leftarrow 0
 5
         senão para k \leftarrow i até i-1 faça
                    q \leftarrow \text{LOOKUP-CHAIN}(p, i, k)
 6
                      + p[i-1]p[k]p[j]
                      + LOOKUP-CHAIN (p, k+1, j)
 9
                    se q < m[i, j]
10
                       então m[i,j] \leftarrow q
11
     devolva m[i, j]
```

Ingredientes de programação dinâmica

- Subestrutura ótima: soluções ótimas contém soluções ótimas de subproblemas.
- ► Subestrutura: decomponha o problema em subproblemas menores e, com sorte, mais simples.
- Bottom-up: combine as soluções dos problemas menores para obter soluções dos maiores.
- ► Tabela: armazene as soluções dos subproblemas em uma tabela, pois soluções dos subproblemas são consultadas várias vezes.
- Número de subproblemas: para a eficiência do algoritmo é importante que o número de subproblemas resolvidos seja 'pequeno'.
- Memoized: versão top-down, recursão com tabela.

Exercício

O algoritmo MATRIX-CHAIN-ORDER determina o número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

Na aula, mencionamos uma maneira de obter uma parentização ótima a partir dos cálculos feitos, usando para isso um dado a mais que podemos guardar no decorrer do algoritmo.

Faça os ajustes sugeridos na aula, de modo a guardar esse dado extra, e devolvê-lo junto com o valor m[1, n].

Faça uma rotina que recebe a informação extra armazenada pelo algoritmo acima e imprime uma parentização ótima das matrizes $A_1A_2\cdots A_n$.

3. Algoritmo p/ Valor Ótimo (Bottom-up, não recursivo)

```
MCM-PD(p, n)
     Criar matriz m[0...n, 0...n]
      para i \leftarrow 1 até n: m[i, i] \leftarrow 0
      para \ell \leftarrow 2 até n:
             para i \leftarrow 1 até n - \ell + 1: j \leftarrow i + \ell - 1
                    m[i,j] \leftarrow \infty
  5
  6
                    para k \leftarrow i até j-1
                           q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_i
  8
                           se (m[i,j] > q) então
  9
                                  m[i,j] \leftarrow q
 10
      retorne m[1, n]
Tempo \Theta(n^3)
```

3. Algoritmo p/ Valor Ótimo (Bottom-up, não recursivo)

```
MCM-PD(p, n)
     Criar matriz m[0...n, 0...n]
      para i \leftarrow 1 até n: m[i, i] \leftarrow 0
      para i \leftarrow n-1 até 1 (dec):
             para j \leftarrow i + 1 até n:
                   m[i,j] \leftarrow \infty
  5
  6
                   para k \leftarrow i até j-1
                          q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_i
  8
                          se (m[i,j] > q) então
  9
                                m[i,j] \leftarrow q
 10
      retorne m[1, n]
Tempo \Theta(n^3)
```

3. Algoritmo p/ Valor Ótimo (Bottom-up, não recursivo)

```
MCM-PD(p, n)
     Criar matriz m[0...n, 0...n]
      para i \leftarrow 1 até n: m[i, i] \leftarrow 0
     para j \leftarrow 2 até n:
             para i \leftarrow j-1 até 1 (dec):
                   m[i,j] \leftarrow \infty
  5
  6
                   para k \leftarrow i até j-1
                          q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_i
  8
                          se (m[i,j] > q) então
  9
                                m[i,j] \leftarrow q
 10
      retorne m[1, n]
Tempo \Theta(n^3)
```

4. Algoritmo p/ obter uma Solução Ótima (Bottom-up)

```
MCM-PD(p, n)
  1 Criar matriz m[0...n, 0...n]
      para i \leftarrow 1 até n: m[i, i] \leftarrow 0; R[i, i] \leftarrow i
      para i \leftarrow n-1 até 1 (dec):
            para i \leftarrow i + 1 até n:
  5
                  m[i,j] \leftarrow \infty
  6
                   para k \leftarrow i até i-1
                         q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_i
  8
                         se (m[i,j] > q) então
  9
                                m[i,j] \leftarrow q; R[i,j] \leftarrow k
      retorne m[1, n] e R
Tempo \Theta(n^3)
```

4b. Algoritmo p/ escrever a Solução Ótima (recursivo)

```
Print-OPT(i, j, R)
  1 se i = j então print "A"; retorne
  2 k \leftarrow R[i, j]
  3 print "("
  4 Print-OPT(i, k, R)
  5 Print-OPT(k+1, i, R)
  6 print ")"
Exemplo: ((A_1(A_2A_3))((A_4A_5)A_6))
Tempo \Theta(n)
```

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12 × 5	-	-	-	0	∞	∞
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	3000 [4]	∞
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

		5×10	10 × 3	3 × 12	12×5	5×50	50 × 6
5×1	10	0	∞	∞	∞	∞	∞
10 ×	3	-	0	∞	∞	∞	∞
3×1	12	-	-	0	180 [3]	∞	∞
12 ×	5	-	-	-	0	3000 [4]	1860 [4]
5 × 5	50	-	-	-	-	0	1500 [5]
50 ×	6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3 × 12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3 × 12	-	-	0	180 [3]	930 [4]	∞
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50×6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	360 [2]	∞	∞	∞
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	∞	∞
3×12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	∞	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5×10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	2010 [2]
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3 × 12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	∞	∞	∞	∞
10 × 3	-	0	360 [2]	∞	∞	∞
3×12	-	-	0	180 [3]	∞	∞
12×5	-	-	-	0	3000 [4]	∞
5×50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	∞	∞
3 × 12	-	-	0	180 [3]	930 [4]	∞
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50×6
5 × 10	0	150 [1]	330 [2]	405 [2]	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12×5	-	-	-	0	3000 [4]	1860 [4]
5×50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50 × 6
5×10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3×12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5×50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	2010 [2]
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	∞	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3 × 12	12 × 5	5×50	50 × 6
5 × 10	0	150 [1]	∞	∞	∞	∞
10 × 3	-	0	∞	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5×10	0	150 [1]	∞	∞	∞	∞
10 × 3	-	0	360 [2]	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	∞	∞	∞
10 × 3	-	0	360 [2]	∞	∞	∞
3×12	-	-	0	∞	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	∞	∞	∞
10 × 3	-	0	360 [2]	∞	∞	∞
3×12	-	-	0	180 [3]	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50×6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	∞	∞	∞
10 × 3	-	0	360 [2]	330 [2]	∞	∞
3×12	-	-	0	180 [3]	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50×6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	∞	∞
10 × 3	-	0	360 [2]	330 [2]	∞	∞
3 × 12	-	-	0	180 [3]	∞	∞
12×5	-	-	-	0	∞	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	∞	∞
10 × 3	-	0	360 [2]	330 [2]	∞	∞
3×12	-	-	0	180 [3]	∞	∞
12×5	-	-	-	0	3000 [4]	∞
5 × 50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	∞	∞
10 × 3	-	0	360 [2]	330 [2]	∞	∞
3 × 12	-	-	0	180 [3]	930 [4]	∞
12 × 5	-	-	-	0	3000 [4]	∞
5 × 50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5×10	0	150 [1]	330 [2]	405 [2]	∞	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3 × 12	-	-	0	180 [3]	930 [4]	∞
12×5	-	-	-	0	3000 [4]	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3 × 12	-	-	0	180 [3]	930 [4]	∞
12 × 5	-	-	-	0	3000 [4]	∞
5×50	-	-	-	-	0	∞
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3 × 12	-	-	0	180 [3]	930 [4]	∞
12 × 5	-	-	-	0	3000 [4]	∞
5×50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50×6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3×12	-	-	0	180 [3]	930 [4]	∞
12×5	-	-	-	0	3000 [4]	1860 [4]
5×50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	∞
3×12	-	-	0	180 [3]	930 [4]	1770 [4]
12×5	-	-	-	0	3000 [4]	1860 [4]
5×50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50 × 6
5×10	0	150 [1]	330 [2]	405 [2]	1655 [4]	∞
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3×12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10×3	3×12	12×5	5×50	50 × 6
5 × 10	0	150 [1]	330 [2]	405 [2]	1655 [4]	2010 [2]
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Encontre a maneira ótima de fazer a multiplicação iterada das seis matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

	5×10	10 × 3	3×12	12×5	5×50	50 × 6
5×10	0	150 [1]	330 [2]	405 [2]	1655 [4]	2010 [2]
10 × 3	-	0	360 [2]	330 [2]	2830 [4]	1950 [2]
3 × 12	-	-	0	180 [3]	930 [4]	1770 [4]
12 × 5	-	-	-	0	3000 [4]	1860 [4]
5 × 50	-	-	-	-	0	1500 [5]
50 × 6	-	-	-	-	-	0

Solução:
$$A_1 \times ... \times A_6 = ((A_1A_2) \times ((A_3A_4)(A_5A_6)))$$

Obs:
$$A_1 \times ... \times A_5 = (((A_1A_2)(A_3A_4)) \times A_5)$$

Considere o seguinte algoritmo para determinar a melhor ordem de multiplicação de matrizes $A_1 \times A_2 \times \ldots \times A_n$ de dimensões p_0, p_1, \ldots, p_n : primeiro escolha k que minimize p_k ; depois determine recursivamente as ordens de multiplicação de $A_1 \times \ldots \times A_k$ e $A_{k+1} \times \ldots \times A_n$. Esse algoritmo produz uma ordem que minimiza o número total de multiplicações escalares? E se k for escolhido de modo a maximizar p_k ?

- ► Contraexemplo Mínimo p_k : $A_1(1 \times 1)$, $A_2(1 \times 2)$ e $A_3(2 \times 100)$.
- $ightharpoonup (A_1(A_2A_3))$: 100+200=300 multiplicações escalares (min p_k)
- $((A_1A_2)A_3)$: 2+200=202 multiplicações escalares (OPT)
- ► Contraexemplo Máximo p_k : $A_1(1 \times 100)$, $A_2(100 \times 1)$ e $A_3(1 \times 1)$.
- \triangleright $(A_1(A_2A_3))$: 100+100=200 multiplicações escalares (max p_k)
- $((A_1A_2)A_3)$: 100+1=101 multiplicações escalares (OPT)

Mostre que são necessários exatamente n-1 pares de parênteses para especificar exatamente a ordem de multiplicação de $A_1 \times \ldots \times A_n$

Solução: Indução

- **Caso base:** n = 1: Uma matriz A_1 , zero par de parêntesis. OK
- **Caso base:** n=2: Duas matrizes (A_1A_2) , um par de parêntesis. OK
- ▶ **H.I.:** Fixe n > 2 e suponha valer para todo $n^o < n$ de matrizes.
- ▶ **P.I.:** Vamos provar que vale para *n* matrizes.
- ▶ Toda multiplicação de $A_1 \times ... \times A_n$ será da forma:
- $\blacktriangleright (A_1 \ldots A_k \times A_{k+1} \ldots A_n)$
- Pela H.I., a 1° e a 2° parte usam respectivamente k-1 e n-k-1 pares de parêntesis.
- ► Total = (k-1) + (n-k-1) + 1 = n-1 pares de parêntesis.

Exercícios

Exercício 13.A [CLRS 15.2-1]

Encontre a maneira ótima de fazer a multiplicação iterada das matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

Exercício 13.B [CLRS 15.2-5]

Mostre que são necessários exatamente n-1 pares de parênteses para especificar exatamente a ordem de multiplicação de $A_1 \cdot A_2 \cdots A_n$.

Exercício 13.C [CLRS 15.3-2]

Desenhe a árvore de recursão para o algoritmo Merge-Sort aplicado a um vetor de 16 elementos. Por que a técnica de programação dinâmica não é capaz de acelerar o algoritmo?

Mais exercícios

Exercício 13.D [CLRS 15.3-5 expandido]

Considere o seguinte algoritmo para determinar a ordem de multiplicação de uma cadeia de matrizes A_1, A_2, \ldots, A_n de dimensões p_0, p_1, \ldots, p_n : primeiro, escolha k que minimize p_k ; depois, determine recursivamente as ordens de multiplicação de A_1, \ldots, A_k e A_{k+1}, \ldots, A_n . Esse algoritmo produz uma ordem que minimiza o número total de multiplicações escalares? E se k for escolhido de modo a maximizar p_k ? E se k for escolhido de modo a minimizar p_k ?

Exercício 13.E

Prove que o número de execuções da linha 9 em Matrix-Chain-Order é $\mathrm{O}(n^3)$.