

Semester 1 Examinations 2014/2015

Exam Codes 4BS3, 4BS9, 4FM2, 4BMS2, 3BA1, 4BA4

Exams B.Sc. Mathematical Science

B.Sc. Financial Mathematics & Economics

B.Sc.

B.A. (Mathematics)

Module Measure Theory

Module Code MA490 MA540

External Examiner Dr Mark Lawson Internal Examiner(s) Prof. Graham Ellis

Dr Ray Ryan

<u>Instructions:</u> Answer every question.

Duration 2 Hours

No. of Pages 3 pages, including this one

Department School of Mathematics, Statistics and Applied Mathematics

Requirements: No special requirements

Release to Library: Yes

Q1 [49%] Answer six of the following:

- (a) Let X be a non empty set and let E, F be two subsets of X. Let \mathcal{A} be the σ -algebra generated by E and F. What is the biggest possible number of sets that \mathcal{A} can contain? What is the smallest possible number?
- (b) In Bernoulli Space Ω , let E_n be the event that the *n*th toss is heads. Write down a formula in terms of the E_n for the following event: "The sequence HTTH appears infinitely often".
- (c) Prove that in an infinite sequence of coin tosses, the probability that Heads will never appear is zero.
- (d) Find the Jordan content and the Lebesgue measure of the set of rational numbers in the interval [0, 1].
- (e) Let \mathcal{A} be the σ -algebra of subsets of \mathbb{R} consisting of \emptyset , \mathbb{R} , $(-\infty, 1]$ and $(1, \infty)$. Give an example, with proof, of a function that is not measurable with respect to \mathcal{A} .
- (f) Let $f_n(x) = \sqrt{2n+1} x(1-x^2)^n$. The sequence (f_n) converges pointwise to zero on the interval [0,1]. Is the convergence uniform? Explain your answer.
- (g) A random variable is defined on Bernoulli space by the formula $X(\omega) = \sum 2^{-n} \omega_n$. Find the integral of X with respect to the Bernoulli probability measure P.
- (h) Is the function $f = \sum_{n=1}^{\infty} (-1)^n n^{-1} \chi_{[n,n+1)}$ Lebesgue integrable on \mathbb{R} ? Explain your answer.
- (i) Give an example of a series $\sum g_n$ of Lebesgue integrable functions on \mathbb{R} that converges pointwise but for which term by term integration is not valid.
- (j) Find the value of the following sum:

$$\sum_{n=0}^{\infty} \int_0^{\pi/2} \left(1 - \sqrt{\sin x}\right)^n \cos x \, dx \, .$$

Justify each step in your calculation.

(k) Give the definition of the Cantor Set C. Which of the following numbers belong to C?

(i)
$$\frac{1}{7}$$
, (ii) $\frac{8}{81}$.

You must answer every question.

$\mathbf{Q2} \, \left[\mathbf{17\%} \, \, \, \right]$

- (a) Give the definition of an algebra and a σ -algebra and give an example of an algebra that is not a σ -algebra. [5%]
- (b) Show that the set \mathbb{Q}^c of irrational numbers belongs to the σ -algebra generated by the intervals in \mathbb{R} .
- (c) Let μ be a measure on a σ -algebra \mathcal{A} of subsets of a set X. Show that if (E_n) is a sequence of measurable subsets of X, then

$$\mu\bigg(\bigcup_{n=1}^{\infty} E_n\bigg) \le \sum_{n=1}^{\infty} \mu(E_n).$$

[6%]

Q3 [17%] Let X be a set and \mathcal{A} a σ -algebra of subsets of X.

- (a) Explain how Lebesgue's approach to the definition of the integral leads to the definition of measurability for a real-valued function on X. [5%]
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be the function

$$f = 2\chi_{[0,2]} + 3\chi_{[3,5]}.$$

- (i) Working directly from the definition, show that f is measurable with respect to the Borel σ -algebra. [3%]
- (ii) What is the smallest σ -algebra for which f is measurable? [3%]
- (c) Let (f_n) be a sequence of measurable functions that converges pointwise to a function f. Show that f is measurable. [6%]

 ${\bf Q4}$ [17%] Let (X,\mathcal{A},μ) be a measure space.

- (a) Give a brief account of the construction of the integral $\int_X f d\mu$ for measurable functions on X. [5%]
- (b) If f is an integrable function, show that |f| is also integrable and that

$$\left| \int_X f \, d\mu \right| \le \int_X |f| \, d\mu \, .$$

[5%]

(c) State, without proof, two of the convergence theorems that relate to term by term integration of a sequence or series of integrable functions. In each case, give an example of a sequence or series to which the theorem can be applied. [7%]