ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики

Моя первая нейронная сеть. Классификация графов с помощью НС

Проектная работа студента образовательной программы бакалавриата «Прикладная математика» по направлению подготовки 01.03.04 ПРИКЛАДНАЯ МАТЕМАТИКА

Студент Морозов Д.С.

Руководитель Профессор В. Ю. Попов

Аннотация

В данной работе рассматривается применение нейросетевых алгоритмов для решения задачи определения гамильтоновости графа. Цель проекта — создать модель машинного обучения, способную эффективно и точно определять наличие гамильтоновых циклов в графах различной структуры и размерности.

Этапы работы включают в себя обзор теоретических условий гамильтоновости, генерацию датасетов различного размера и непосредственную работу с нейросетями. Описывается процесс преобразования графа в эмбеддинги, обучение нескольких моделей, их оптимизацию и валидацию. В конце приводится анализ применимости такого подхода.

Ожидается, что результаты проекта найдут применение в различных областях, где требуется быстрое определение гамильтоновых путей и циклов, например, в задачах оптимизации маршрутов, планирования и анализа сетей. Проект также может способствовать развитию теоретических аспектов теории графов и машинного обучения.

Содержание

AH	нотация
Вв	едение
1	О теории графов
	1.1 Свойства гамильтоновости графа
	1.2 Представление графов в памяти компьютера
	1.2.1 Матрица смежности
	1.2.2 Матрица признаков
	1.2.3 Эмбеддинги
2	Генерация датасета
3	Баланс классов
4	Выделение эмбеддингов
5	Обучение моделей
6	MLP
Зак	спючение

Введение

В современной науке гамильтоновы графы представляют практический интерес для изучения и моделирования конкретных задач. [1] Например, нерешенная задача о коммивояжере является частным случаем гамильтоновости графа.

Ключевой задачей в теории алгоритмов является решенение так называемых NP-полных задач. Множество задач P характеризуется существованием алгоритма решение, время работы которого полиномиально зависит от размера входных данных, $O(n^p)$. В NP-задачах стоит вопрос о принадлежности задачи к классу P и разрешимости их за полиномиальное время. Задача называется NP-полной, если ее принадлежность к классу P означает принадлежность к этом классу все остальных NP-задач. В частности, определение гамильтоновости графа является одной из нерешенных NP-полных задач.

Гамильтоновы графы используются в криптографии, в качестве хеш-функции для протоколов с нулевым разглашением. При этом сам граф является объектом шифрования, а гамильтонов цикл ключом, который можно передать в зашифрованном виде для изоморфного графа, не раскрывая при этом изначального графа.

В квантовых вычислениях гамильтоновы графы моделируют непосредственно кубиты информации в квантовом компьютере и взаимоотношения между ними. Применение знаний о гамильтоновости графа позволит ускорить сложнопроизводительные задачи и увеличить эффективность процессоров.

Также гамильтоновы графы используются в задачах логистики, в моделировании углеродных нанотрубок стабильной конфигурации, в системах автоматического проектирования в инженерии и моделировании химических реакций.

В данный момент не существует эффективного алгоритма для определения гамильтоновости графа. [2] Используемые на практике методы в большинстве основаны на алгоритме brute-force, то есть полного перебора, что для графа составляет сложность O(n!). Граф, состоящий примерно из 30 вершин и большого количества ребер может проверяться системой около получаса, что крайне долго для практических задач. Поэтому целью работы является оптимизация классификации графов по гамильтоновости с помощью использования нейросетей и глубинного обу-

чения.

Цель работы – разработать нейросетевую модель, которая сможет определять гамильтоновость графов с точностью не менее 95 %.

Задачи:

- Обзор методов работы с графами
- Генерация датасетов гамильтоновости графов
- Преобразование графов в эмбеддинги
- Обучение моделей машинного обучения и MLP
- Отбор моделей и подбор гиперпараметров
- Анализ полученных результатов и путей дальнейшего развития проекта

1 О теории графов

1.1 Свойства гамильтоновости графа

Графом G(V, E) будем называть совокупность пар вершин и ребер без петель и кратных ребер. Если в графе имеется простой остовный цикл, то граф называется гамильтоновым.[3] Для классификации имеет смысл рассматривать только связные графы.

Достаточное условие гамильтоновости графа (теорема Дирака): Если в графе G(V,E) с $p\geq 3$ вершинами $\forall v\in V$ степень $v\geq p/2$, то граф G является гамильтоновым. [4]

Теорема Оре: Если в графе G для любой пары несмежных вершин v и w их степень вершин будет большей или равной количеству вершин в графе, то G является гамильтоновым.

Будем рассматривать две выборки гамильтоновых графов: полную и выборочную. В первой учтем графы с любым количеством ребер от v-1 до $\frac{v(v-1)}{2}$, множество графов оттуда будут отсечены достаточными условиями выше. В выборочной

выборке будут находиться графы с количеством ребер не более $\frac{v^2}{4}$, что поможет изучить конкретно интересующую область графов.

1.2 Представление графов в памяти компьютера

В рамках данной работы для анализа и манипуляции структурами графов на языке Python будет применяться библиотека NetworkX. Стандартно графы храняться в библиотеке как отдельный класс, содержащий неориентированные ребра. Рассмотрим несколько подходов к обработке графов с их преимуществами и недостатками и выберем подходящий для наших целей:

1.2.1 Матрица смежности

Для хранения рёбер используется двумерная матрица размерности [V,V], каждый [a,b] элемент которой равен 1, если вершины a и b являются смежными и 0 в противном случае. [5]

В случае неориентированного графа матрица является симметричной относительно главной диагонали, а сумма каждой строчки и каждого столбца равна степени вершины.

Представив граф в виде матрицы смежности можно преобразовать ее в многомерный тензор и обучить на этом CNN модели, как будто работа идет с картинкой.

Неоднозначность такого подхода в том, что среднестатистические модели предобучены на стандартных датасетах по типу ImageNet, которые содержат реально значащие картинки. Матрица смежности же будет бинарным изображением с хаотическим расположением черных и белых пикселей.

1.2.2 Матрица признаков

Для работы с данными при помощи моделей машинного обучения необходимы табличные данные. Можно сделать выделение признаков графов вручную, например, количество ребер, средняя степень вершины, коэффицент Жаккара, планарность, хроматическое число графа, вырожденность матрицы смежности и так далее.

Преимуществом такого подхода будет интерпретируемость данных, можно будет сделать некоторые эвристические выводы о признаках и зависимости их на гамильтоновость графа. Основным же недостатком является трудозатратность генерации таких признаков вручную, а также сложности в извлечении некоторых из них из графов. Например, проверка планарности графа требует асимптотической сложности O(n), что довольно немного, однако при большом количестве таких признаков извлечение признаков может занимать значительное время.

1.2.3 Эмбеддинги

Нам бы хотелось оптимизировать и автоматизировать процесс извлечения признаков из графов с использованием нейронной сети.

Формулировка задачи: Дан набор графов $\mathbb{G} = \{G1, G2, \dots\}$ и целое положительное число δ (ожидаемый embedding size), необходимо получить δ -мерные векторы для представления каждого графа $G_i \in \mathbb{G}$.

В статье [6] рассматривается аналогия между нейросетью для выделения эмбеддингов word2vec, используемой в NLP (Natural Language Processing) и graph2vec.

Принцип работы word2vec строится на предположении, что слова, встречающиеся в схожих контекстах, как правило, имеют схожие семантические значения и, следовательно, должны иметь схожие векторные представления. Чтобы узнать эмбеддинг целевого слова, эта модель использует понятие контекста — фиксированного количества слов, окружающих целевое слово.

Архитектура нейронной сети skipgram выделяет эмбеддинги на основе контекста целевого слова и максимизирует следующую логарифмическую вероятность: [7]

$$\sum_{t=1}^{T} \log Pr(w_{t-c}, \dots, w_{t+c} | w_t), \tag{1}$$

где w_t - целевое слово, c - расстояние окна контекста слова, w_{t-c},\ldots,w_{t+c} - контекст слова.

Вероятность $Pr(w_{t-c}, \dots, w_{t+c}|w_t)$ вычисляется по формулам 2 и 3

$$\prod_{-c \le l \le c, j \ne 0} Pr(w_{t+j}|w_t) \tag{2}$$

$$\prod_{-c \le l \le c, j \ne 0} Pr(w_{t+j}|w_t)$$

$$\frac{\exp(\vec{w_t} \cdot \vec{w_{t+j}})}{\sum_{w \in \nu} \exp(\vec{w_t} \cdot \vec{w}),}$$
(3)

 ν - словарь всех слов, \vec{w} и $\vec{w'}$ - входные и выходные векторы слова w

Doc2vec – прямое дополнение к word2vec, позволяющее изучать вложения слов в различные последовательности слов. Doc2vec также использует модель skipgram, которая может обучаться представления последовательностей слов произвольной длины (предложения, абзацы и даже целые большие документы)

Переходя от модели обработки документов к графам, будем использовать предположение, что весь граф рассматривается как документ, а корневые подграфы вокруг каждой вершины в графе как слова, составляющие документ. Другими словами, разные подграфы образуют графы аналогично тому, как разные слова образуют предложения или документы.

Puc. 1: Аналогия между doc2vec и graph2vec

Установив вышеупомянутую аналогию документов и слов с графами и корневыми подграфами, можно использовать нейронную архитектуру skipgram и для графов. Основное предположение заключается в том, что структурно похожие графы будут близки друг к другу в векторном виде.

Имея датасет из графов, graph2vec рассматривает набор всех корневых подграфов (т.е. окрестностей вершин) вокруг каждой вершины (до определенной степени c) в качестве словаря. Далее выполняется процесс обучения skipgram с помощью doc2vec, по приведенным выше формулам.

Алгоритм состоит из двух основных компонентов:

- 1. процедура генерации корневых подграфов вокруг каждой вершины в данном графе
- 2. процедура обучения эмбеддингов данных графов

Как показано на рис.2 и 3, мы хотим получить δ -мерные эмбеддинги для всех графов в датасете \mathbb{G} за e эпох. Начиная со случайной инициализации эмбеддингов для всех графов в датасете (строка 2), приступаем к извлечению корневых подграфов вокруг каждой вершины для каждого из графов (строка 8) и итеративно обучаем (т.е. уточняем) эмбеддинг соответствующего графа в несколько эпох (строки с 3 по 10).

```
Algorithm 1: GRAPH2VEC (\mathbb{G}, D, \delta, \mathfrak{e}, \alpha)
     input: \mathbb{G} = \{G_1, G_2, ..., G_n\}: Set of graphs such that each
                 graph G_i = (N_i, E_i, \lambda_i) for which embeddings have to
                 be learnt
                 D: Maximum degree of rooted subgraphs to be
                 considered for learning embeddings. This will produce
                 a vocabulary of subgraphs, SG_{vocab} = \{sg_1, sg_2, ...\}
                 from all the graphs in G
                 \delta: number of dimensions (embedding size)
                 e: number of epochs
                 \alpha: Learning rate
     output: Matrix of vector representations of graphs \Phi \in \mathbb{R}^{|\mathbb{G}| \times \delta}
 1 begin
          Initialization: Sample \Phi from R^{|\mathbb{G}| \times \delta}
 \mathbf{2}
          for e = 1 to \mathfrak{e} do
 3
                \mathfrak{G} = \text{Shuffle} (\mathbb{G})
 4
                for each G_i \in \mathfrak{G} do
 5
                      for each n \in N_i do
 6
                           for d = 0 to D do
                                sg_n^{(d)} := \text{GetWLSubgraph}(n, G_i, d)

J(\Phi) = -\log \Pr (sg_n^{(d)} | \Phi(G))

\Phi = \Phi - \alpha \frac{\partial J}{\partial \Phi}
 8
 9
10
          return \Phi
11
```

Рис. 2: Алгоритм graph2vec в псевдокоде

Рис. 3: Алгоритм graph2vec в блок-схеме

2 Генерация датасета

Для создания датасета необходима возможность генерации случайных связных графов и проверки их на гамильтоновость. Такой алгоритм вшит в систему Maple 2024 в пакетах RandomGraphs и GraphTheory.

```
printGraph := proc()
local V, mxE, E, G, bool, is_hamilton;
V := 15;
mxE := 1/2*V*(V - 1);
E := (rand() mod (mxE - V + 2)) + V - 1;
G := RandomGraph(V, E, connected);
bool := IsHamiltonian(G);
ExportGraph(G, "hamilton", graph6, append);
return subs([false = 0, true = 1], bool);
end proc;
```

Рис. 4: Генерация связного графа на 15 вершинах

```
main := proc()
local target, i;
target := String();
for i from 0 to 1000 do
target := cat(target, printGraph());
end do;
Export("bools.txt", target);
end proc;
```

Рис. 5: Формирование датасета из 1000 элементов в отдельном файле

Время генерации возрастает экспоненциально. Например, датасет на 10000 графов генерируется 3911.81 секунд, а на 50000 графов более суток. Также сами графы проходят проверку на гамильтоновость неравномерно - некоторые могут отсеяться по достаточному признаку в доли секунд, а другие брутфорсится около получаса.

Именно поэтому эффективнее для большей однородности датасета использовать выборочную генерацию, несмотря на то, что она и дольше (10000 графов на 20 вершин - 50525.93 секунды)

Рис. 6: Зависимость времени генерации графов от их количества

3 Баланс классов

Как ключевая метрика будет использована ассигасу, значит крайне важен баланс классов. При генерации связных графов с количеством ребер от v-1 до $\frac{v(v-1)}{2}$ в большинстве случаев они получаются гамильтоновыми, исходя из теорем Дирака и Оре.

Действительно, доля положительного класса в полном датасете значительно больше, чем выборочном, как видно на рисунках 7 и .8

Рис. 7: Распределение классов для графов с 20 вершинами - полный

Рис. 8: Распределение классов для графов с 20 вершинами - выборочный

Удаление значительной части положительного класса не критично, так как есть возможность заранее сгенерировать датасет любой необходимой величины.

4 Выделение эмбеддингов

Для выделения эмбеддингов из графов использовался репозиторий graph2vec.[8] Он написан на python 2.7 со старыми версиями библиотек, поэтому пришлось внести некоторые необходимые изменения для его работоспособности [Измененная версия кода].

Для обучения датасет необходимо привести в подходящий формат: каждый граф должен храниться в формате «i.gexf», где i - порядок соответсвующего графа в специальной папке. Метки target должны быть записаны в файл расширения .Labels с указанием названия графового файла, которому каждая из них соответствует. После проведения данной процеды можно делать запуск файла «main.py», указав папку графов, файл лейблов и различные гиперпараметры.

В таблице 1 указаны результаты обучения на соответствующих датасетах. Файлы с обученными эмбеддингами хранятся на диске.

кол-во	кол-во	тип	кол-во	размер	learning
вершин графов			эпох	эмбеддинга	rate
15	1000	full	1000	1024	0.3
15	1000	full	1000	128	0.2
20	10000	full	1000	128	0.2
20	10000	selected	1000	128	0.2
20	10000	selected	500	1024	0.1

Таблица 1: Обученные датасеты эмбеддингов

5 Обучение моделей

Для применения моделей машинного обучения необходимо разделить все данные на трейн и тест. Однако для этого предварительно нужно расписать эмбеддинги и целевые значения в массивы X и y соответственно, а также сделать масштабирование данных. Поскольку мы собираемся использовать SVC и MLP в качестве моделей, то от нормализации данных напрямую зависит скорость сходимости градиентного спуска. Для масштабирования используем MinMaxScaler из библиотеки

sklearn, приводящий все данные в диапазон [0, 1]. [9]

При разделении на трейн и тест стратификацию использовать нет необходимости, так как классы уже сбалансированы. Объем тестовой выборки берем как 15%.

Модели, выбранные для обучения:

- KNN
- Наивный Байесовский классификатор
- Random Forest
- SVC
- SGD
- Градиентный бустинг

Это стандартная выборка моделей, содержащая базовые алгоритмы машинного обучения, реализованные в библиотеке sklearn.

KNN – модель, классифицирующая целевой объект, исходя из того, какие классы у объектов, которые максимально похожи на него (близки по расстоянию). Метрика расстояния - евклидова норма. Настраеваемым гиперпараметром возьмем количество соседей. В нашем случае его использование логически обоснованно тем, что похожие графы имеют схожие векторные представления и скорее всего совпадают по гамильтоновости.[10]

Наивный Баесовский классификатор – вероятностный классификатор, использующий для оценки плотности многомерного распределения P(X|Y) оценки плотности одномерных распределений $P(X^i|Y)$ при предположении, что все признаки линейно независимы:

$$P(X|Y) = P(X^1, X^2, \dots, X^d|Y) = P(X^1|Y)P(X^2|Y)\dots P(X^d|Y)$$

Для оценки используем Гауссовский наивный байесовский классификатор, потому что признаки, с которыми мы работаем непрерывны, лежат в отрезке [0,1] и

скорее всего имеют гауссовское распределение. Настраеваемый гиперпараметр - наибольшая дисперсии из всех фич, которая добавляется к дисперсиям для обеспечения стабильности расчета (var_smoothing)

Random Forest – ансамблиевый метод обучения, основанный на одновременном обучение различных решающих деревьев с со случайным набором признаков. Итоговым прогнозом считается самый частовстречающийся из деревьев класс. Гиперпараметром настройки служит количество деревьев в лесу.

SVC (метод опорных векторов) – алгоритм, основанный на поиске гипер-плоскости или линии, разделяющей классы наилучшим образом. Расположенные ближе всего к разделяющей гиперплоскости эмбеддинги называются опорными векторами. Мы используем линейную версию SVC, потому что она минимизирует квадрат от функции потерь hinge, что работает быстрее, чем при указания линейности ядра путем SVC(kernel="linear"). Настраеваемый гиперпараметр – коэффицент регуляризации C.

SGD – подвид алгоритма градентного спуска, подгоняющий линейные классификаторы под выпуклые функции потерь, такие как линейный SVC и логистическая регрессия. SGD реализует процедуру стохастического спуска, где шаг делается не относительно всех объектов, а определенной малой выборки. Основные параметры модели взяты стандартными, настраивается коэффицент регуляризации alpha.

Градиентный бустинг — ансамблиевый алгоритм, последовательно улучшающий показания слабых классификаторов (решающих деревьев) и минимизирующий функцию потерь MSE с помощью градиентного спуска. Данный алгоритм реализован наиболее эффективно в библиотеке xgboost. Настраиваемый гиперпараметр - коэффицент gamma, контролирующий тенденцию модели к переобучению.

По итогам обучения лучше всего проявила себя модель LinearSVC, показав точность в 95.2%. Остальные результаты можно посмотреть в таблице 2 и на рис.9.

Модель	Гиперпараметр	Значение	Точность
KNN	n_neighbors	25	87.1%
NaiveBayes	var_smoothing	0.12	93.5%
Random Forest	n_estimators	1000	93.9%
SVC	C	0.1	95.2%
SGD	alpha	0.01	94.8%
Gradient Boost	gamma	0.01	94.7%

Таблица 2: Результаты скоринга моделей и подбора гиперпараметров

Тучшиие гиперпа _!	раметры {'ı	n_neighbor	s': 25}	alling 35 fits	Fitting 5 fol Лучшиие гипер	параметры {'	C': 0.1}		talling 30	fits
KNeighbours accuracy:0.8718626155878467 precision recall f1-score support					LinearSVC acc					
P		1 CCUII	11 30010	заррог с		precision	recall	f1-score	support	
0	0.81	0.96	0.88	356	0	0.94	0.96	0.95	356	
1	0.96	0.80	0.87	401	1	0.96	0.95	0.95	401	
accuracy			0.87	757	accuracy			0.95	757	
macro avg	0.88	0.88	0.87	757	macro avg	0.95	0.95	0.95	757	
veighted avg	0.89	0.87	0.87	757	weighted avg	0.95	0.95	0.95	757	
Fitting 5 folds for each of 100 candidates, totalling 500 fits Лучшиме гиперпараметры { 'var_smoothing': 0.12328467394420659} NaiveBayes accuracy:0.9352708058124174 precision recall f1-score support					} Лучшиие гипер	Itting 30 folds for each of 6 candidates, totalling 30 fits Лучшиме гиперпараметры {'alpha': 0.01} SGD accuracy:0.9484808454425363				
P	LECTATOR	recarr	11-30016	зиррог с		precision	recall	f1-score	support	
0	0.93	0.94	0.93	356	0	0.95	0.94	0.94	356	
1	0.94	0.93	0.94	401	1	0.95	0.96	0.95	401	
accuracy			0.94	757	accuracy			0.95	757	
macro avg	0.93	0.94	0.94	757	macro avg	0.95	0.95	0.95	757	
weighted avg	0.94	0.94	0.94	757	weighted avg	0.95	0.95	0.95	757	
Fitting 5 folds for each of 7 candidates, totalling 35 fits Лучшиие гиперпараметры {'n_estimators': 1000} RandomForest accuracy:0.9392338177014531 precision recall f1-score support				Лучшиие гипер	Fitting 5 folds for each of 6 candidates, totalling 30 fits Лучшиие гиперпараметры {ˈgammaˈ: 0.01} GradientBoost accuracy:0.9471598414795245				fits	
pi	recision	recall	T1-Score	Support		precision	recall	f1-score	support	
0	0.94	0.94	0.94	356	0	0.94	0.95	0.94	356	
1	0.94	0.94	0.94	401	1	0.95	0.95	0.95	401	
accuracy			0.94	757	accuracy			0.95	757	
macro avg	0.94	0.94	0.94	757	macro avg	0.95	0.95	0.95	757	
veighted avg	0.94	0.94	0.94	757	weighted avg	0.95	0.95	0.95	757	

Рис. 9: Результаты метрик классификаторов

6 MLP

Многослойный персептрон — нейросетевой алгоритм, обучающий функцию $f:R^m\to R^o$, где m — количество измерений для ввода и o - количество размеров для вывода. Ключевым отличием многослойного персептрона от других моделей является наличие между входным и выходным слоями одного или нескольких нелинейных слоев, называемых скрытыми слоями, рис. 10. [11]

Модель многослойного персептрона использует back-propagation или же алгоритм обратного распространения, использующийся для настройки весов между нейронами. Сначала совершается прямой проход forward pass и вычисление всех промежуточных представлений. После чего делается обратный проход backward pass, на котором вычисляются все градиенты. С помощью полученных градиентов происходит шаг в градиентном спуске. Таким образом ошибка передается от выходного слоя к входному для коррекции весов нейронов.

Самый левый (входной) слой состоит из набора нейронов $x_i|x_1,x_2,...,x_m$ представляющие входные функции. Каждый нейрон в скрытом слое преобразует значения из предыдущего слоя с помощью линейной комбинации: $w_1x_1+w_2x_2+...+w_mx_m$, за которой следует нелинейная функция активации. Выходной слой получает значения из последнего скрытого слоя и преобразует их в соответствующие выходные значения.

Рис. 10: Модель многослойного персептрона

В нашем случае персептрон имеет три слоя: Dense размера (None, 350) с режимом активации ReLu, Dense размера (None, 50) с режимом активации ReLu и Dense размера (None, 2) с режимом активации SoftMax (рис. 11)

Model: "sequential"								
Layer (type)	Output	Shape	Param #					
dense (Dense)	(None,	350)	45150					
dense_1 (Dense)	(None,	50)	17550					
dense_2 (Dense)	(None,	2)	102					
Total params: 62802 (245.32 KB) Trainable params: 62802 (245.32 KB) Non-trainable params: 0 (0.00 Byte)								

Рис. 11: Слои персептрона

Dense – полносвязный слой, где каждый из нейронов НС связан с любым другим из предыдущего слоя. У этого слоя есть такие характеристики как количество нейронов, функция активации, инициализация весов и смещение. [12]

Количество нейронов определяет количество выходов, которые слой может сгенерировать и напрямую зависит от размерности входных данных. С его помощью можно управлять сложностью и «гибкостью» извлекаемых признаков.

Функция активации задает нелинейность в обработке данных и помогает изучить сложные шаблоны данных. Функция **ReLu** (Rectified Linear Unit) определяется по формуле

$$f(x) = max(0, x)$$

, которая помогает сохранить линейных характер положительных значений и решить проблему исчезающего градиента. Функция SoftMax преобразует вектор входных значений в вектор вероятности с общей суммой всех вероятностей 1, поэтому ее удобно применить в случае классификации на последнем слое.

Инициализация весов определяет скорость и качество обучения. Например, если мы стартуем с локального минимума или точки, близкой к нему, то шаг градентного спуска, а следовательно и прирост точности у модели будет минимальным. В стандартном Dense слое по умолчанию стоит инициализация Глорота, который устанавливает веса с медианой 0 и дисперсией равной обратной величие к среднему количеству входов и выходов нейрона. Этот метод помогает поддерживать градиенты в управляемом диапазоне. Инициализация Не задает веса случайным образом, однако используя при этом нормальное распределение и дисперсию, равную удвоенной величине, обратной к среднему количеству входов в нейрон. При Не учитывается количество нейронов в предыдущем слое, чтобы уменьшить вероятность неконтроллируемых градиентов (уменьшающихся или взрывающихся).

Смещение регулирует выход каждого нейрона, добавляя дополнительный параметр. По умолчанию в Dense слое стоит нулевое смещение.

Процесс обучения MLP иллюстрируют графики на рис.12. После 4-5 эпохи прирост точности практически нулевой, это объясняется довольно малым количеством данных для нейронной сети. Итоговый результат у MLP: Loss - 0.12, Accuracy: 96%

Рис. 12: Графики зависимости потерь и точности MLP от количества эпох

Заключение

В результате проделанной работы были сгенерированы датасеты гамильтоновости графа, а также код в Maple 2024, способный создать набор данных с любым количеством графов и вершин в них. Все материалы и датасеты опубликованы в открытом доступе на Github, а также лежат на диске. Данный проект имеет перспективы развития в генерации более универсальных датасетов больших размеров на более производительном железе.

Все поставленные в начале задачи были выполнены. Удалось добиться точности в 95.6% при использовании модели многослойного персептрона. Среди моделей машинного обучения лучшую точность показала LinearSVC (95.2%), а также SDG (94.8%) и Gradient Boost (94.7%). Модели Random Forest и Naive Bayes пока-

зали себя хуже - 93.9% и 93.5% соответственно.

В дальнейшей перспективе развития проекта можно опробовать работу с другими методами представления графов в памяти компьютера, такими как матрица смежности или матрица признаков. Работа с графом как с изображением или совокупностью значащих признаков может как послужить для увеличения точности предсказаний, так и для новых эвристических предположений.

Еще одним вектором развития проекта может послужить углубленное математическое исследование свойств гамильтоновости графов и вывод новых закономерностей. Можно провести EDA (Exploriation Data Analysis) зависимостей и корреляций различных характеристик графа и его гамильтоновости. Самый простой из аспектов - количество ребер. Очевидно, что чем больше ребер в графе, тем больше вероятность, что он гамильтонов.

Возможно стоит провести минорные изменения в коде для его оптимизации. Например, одна из ячеек в Collab иногда не работает с первого раза, вне зависимости от обстоятельств.

Во время работы над проектом были углублены знания в сфере машинного обучения и нейронных сетей, проведена оптимизация кода с Python 2.7 на Python 3 и исследование методов Graph2Vec и SkipGram, использующихся и в других областях ML, например в NLP.

Список литературы

- [1] Jianliang Xu Yun Peng, Byron Choi. Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art / Jianliang Xu Yun Peng, Byron Choi. https://arxiv.org/pdf/2008.12646.
- [2] Jean-Claude Bermond. Hamiltonian Graphs / Jean-Claude Bermond // Selected topics in graph theory. 1979. no. 6. Pp. 127–167. https://inria.hal.science/hal-02352666/document.
- [3] Ф. Харари. ТЕОРИЯ ГРАФОВ / Ф. Харари. М.: Мир, 1973. Р. 300 стр.
- [4] Гамильтоновы графы. https://portal.tpu.ru/SHARED/t/TRACEY/Courses/English/Tab1/graph_lec_08.pdf.
- [5] FFormula. Способы хранения графа в памяти компьютера / FFormula. https://habr.com/ru/companies/otus/articles/675730/.
- [6] Annamalai Narayanan. graph2vec: Learning Distributed Representations of Graphs / Annamalai Narayanan et al. https://arxiv.org/pdf/1707.05005.
- [7] Arlei Silva. Machine Learning with Graphs: Representation learning 1/3 Introduction, Random Walk based Embedding / Arlei Silva. Spring 2022. https://cs.rice.edu/~al110/teaching/ssj_S22/lecture_3_representation_learning_1.pdf.
- [8] Annamalai Narayanan. graph2vec_tf/Annamalai Narayanan. https://github.com/annamalai-nr/graph2vec_tf.git.
- [9] Feature scaling in machine learning. https://www.blog.trainindata.com/feature-scaling-in-machine-learning/.
- [10] Школа анализа данных. Учебник по машинному обучению / Школа анализа данных. https://education.yandex.ru/handbook/ml.

- [11] Scikit Learn Documentation. Neural Network Models Supervised / Scikit Learn Documentation. https://scikit-learn.ru/1-17-neural-network-models-supervised/.
- [12] Глубокое погружение в Dense слой: от основ до передовых практик. https://www.yourtodo.ru/posts/glubokoe-pogruzhenie-v-dense-sloj-ot-osnov-do-peredovyih-praktik/.