BA.1 Booleovy algebry.

BA.1.1. Struktury $\underline{^{I}2}$.

Buď

$$\underline{2} = \langle 2, -1, \vee_1, \wedge_1, 0, 1 \rangle, \tag{1}$$

kde $2 = \{0, 1\}$ a dále:

Funkce
 Definice

$$-_1: 2 \rightarrow 2$$
 $-_1(0) = 1, -_1(1) = 0$
 $\vee_1: 2 \times 2 \rightarrow 2$
 $\vee_1(x, y) = \max(x, y)$
 $\wedge_1: 2 \times 2 \rightarrow 2$
 $\wedge_1(x, y) = \min(x, y)$

(1) je L-struktura, kde $L=\langle -,\vee,\wedge,0,1\rangle$ s unárním-, binárními \vee,\wedge a nulárními 0, 1; L je signatura Booleových algeber.

Obecněji pro $I \neq \emptyset$ buď

$$\underline{I_2} = \langle I_2, -_I, \vee_I, \wedge_I, 0_I, 1_I \rangle, \tag{2}$$

kde každá uvedená operace se bere po složkách v 2. Struktura $\underline{^{I}2}$ je I-tá mocnina struktury $\underline{2}$. $\underline{2}$ snadno ztotožníme s $\underline{^{1}2}$, tj. prokážeme jejích izomorfizmus. (Přitom $1=\{0\}$.) $\underline{^{I}2}$ můžeme také chápat jako strukturu všech pravdivostních ohodnocení prvovýroků, tvořících právě množinu I.

BA.1.2. Booleovy algebry.

Pro struktury $\underline{^{I}2}$ platí booleovské zákony (též axiomy), tj. pro x, y, z z jejích univerz máme, vynecháme-li dolní index $_{I}$:

asociativita
$$x \diamond (y \diamond z) = (x \diamond y) \diamond z$$
 \diamond je \vee nebo \wedge komutativita $x \diamond y = y \diamond x$ \diamond je \vee nebo \wedge distributivita $x \diamond (y \diamond' z) = (x \diamond y) \diamond' (x \diamond z)$ \diamond [\diamond'] je \vee [\wedge] nebo \wedge [\vee] absorbce $x \vee (x \wedge y) = x = x \wedge (x \vee y)$ komplementace $x \vee (-x) = 1$, $x \wedge (-x) = 0$

Každá struktura $\underline{B} = \langle B, -^B, \vee^B, \wedge^B, 0^B, 1^B \rangle$, o jejíchž funkcích (operacích) platí booleovské zákony (kde místo operace \diamond píšeme \diamond^B) se nazývá Booleova algebra. Platí-li navíc $0 \neq 1$, je netriviální, když 0 = 1, je triviální

To, že $\underline{^{I}2}$ je Booleova algebra vidíme ihned např. z toho, že $\underline{\mathcal{P}(I)}$ je izomorfní s $\underline{^{I}2}$, píšeme

$$\underline{\mathcal{P}(I)} \cong \underline{I_2},$$

kde $\underline{\mathcal{P}(I)}$ je potenční Booleova algebra:

$$\mathcal{P}(I) = \langle \mathcal{P}(I), -, \cup, \cap, \emptyset, I \rangle.$$

kde $-, \cup, \cap$ jsou operace komplementu, sjednocení a průniku, zúžené na $\mathcal{P}(I)$; tedy -u = I - u pro $u \subseteq I$. Izomorfizmem je $u \mapsto \operatorname{ch}_u$, přičemž ch_u je charakteristická funkce u na I.

V Booleově algebře $\underline{B} = \langle B, -, \vee, \wedge, 0, 1 \rangle$ (vynechali jsme pro jednoduchost index B) definujeme kanonické $uspořádání \leq$ na B vztahem $a \leq b \Leftrightarrow a = a \wedge b$. Dále definujeme binární operaci – rozdíl resp. $\dot{-}$ symetrická diference vztahy $a-b=a \wedge (-b)$ resp. $a \dot{-} b = (a-b) \vee (b-a)$ a dále (booleovskou) implikaci \rightarrow resp. ekvivalenci \leftrightarrow takto: $a \rightarrow b = -a \vee b$ resp. $a \leftrightarrow b = (a \rightarrow b) \wedge (b \rightarrow a)$.

BA.1.3. V Booleově algebře $\langle B, -, \vee, \wedge, 0, 1 \rangle$ pro $x, y, z, x', y' \in B$ platí:

 $\begin{array}{ll} \textit{Idempotence:} & x \vee x = x, \ x \wedge x = x \\ & x \vee y = x \Leftrightarrow x \wedge y = y \\ & \leq \text{je uspořádání,} \ \ x \vee y = \sup_{\leq} \{x,y\}, \ \ x \wedge y = \inf_{\leq} \{x,y\} \\ \textit{Monotonie:} & x \leq y \ \ \text{a} \ \ x' \leq y' \Rightarrow x \vee x' \leq y \vee y' \ \ \text{a} \ \ x \wedge x' \leq y \wedge y' \\ \end{array}$

Extremalita: $x \lor 1 = 1$, $x \land 0 = 0$ Neutralita: $x \lor 0 = x$, $x \land 1 = x$

$$x \wedge y = 0 \text{ a } x \vee y = 1 \Leftrightarrow y = -x, \quad 0 = -1, \quad 1 = -0$$

$$x \wedge y = -(-x \vee -y), \qquad x \vee y = -(-x \wedge -y)$$

$$-(-x) = x, \quad -x = -y \Rightarrow x = y, \quad x \leq y \Leftrightarrow -y \leq -x$$

$$x \dot{-} y = y \dot{-} x, \qquad (x \dot{-} y) \dot{-} z = x \dot{-} (y \dot{-} z)$$

$$-(x - y) = x \rightarrow y, \qquad -(x \dot{-} y) = x \leftrightarrow y$$

Důkaz se provede zcela rutinně.

Vidíme, že kanonické uspořádání \leq Booleovy algebry \underline{B} má nejmenší prvek 0 a největší 1 a každá konečná množina $s\subseteq B$ má supremum a infimum, $\langle B, \leq \rangle$ je tedy svaz. Definujeme operace \bigvee a \bigwedge z $\{s\subseteq B;\ s$ je konečná $\}$ do B:

$$\bigvee s = \sup_{<} s, \quad \bigwedge s = \inf_{\leq} s; \qquad \text{speciálně} \quad \bigvee \emptyset = 0, \quad \bigwedge \emptyset = 1.$$

Platí ovšem $\bigwedge\{x_0,\ldots,x_{n-1}\}=x_0\wedge\cdots\wedge x_{n-1},\ \bigvee\{x_0,\ldots,x_{n-1}\}=x_0\vee\cdots\vee x_{n-1};$ závorky v uvedených výrazech díky asociativitě a komutativitě vynecháváme.

Podstruktura Booleovy algebry \underline{B} je struktura $\underline{A} = \langle A, -^A, \vee^A, \wedge^A, 0^A, 1^A \rangle$, kde $A \subseteq B$ a operace \diamond^A jsou zúžením \diamond^B na A (speciálně $0^A = 0^B, 1^A = 1^B$.) Každá podstruktura Booleovy algebry je Booleova algebra, neboť v ní jasně platí všechny booleovské zákony.

Pro $0 < m < n \in \mathbb{N}$ je každá Booleova algebra <u>***2</u> až na izomorfizmus podalgebrou <u>***2</u> a také podalgebrou <u>***2</u>.

BA.1.4. Atomy v Booleově algebře.

- 1. Atom v Booleově algebře je nenulový prvek x, pod kterým leží jen nula a on sám. Množinu všech atomů Booleovy algebry \underline{B} označíme At_B .
- 2. Booleova algebra je *atomární*, leží-li pod každým jejím nenulovým prvkem atom. Booleova algebra je *bezatomární*, neexistuje-li v ní žádný atom.

Zřejmě atomy Booleovy algebry jsou právě minimální prvky množiny jejich nenulových prvků v kanonickém uspořádání. Dále je každá konečná netriviální Booleova algebra atomární.

TVRZENÍ BA.1.5. $Bud'\underline{B}$ atomární Booleova algebra. Zobrazení $h: B \to \mathcal{P}(\mathsf{At}_B)$, $kde\ h(b) = \{a;\ a \leq b, a\ je\ atom\ v\ B\}$, je izomorfizmus \underline{B} a nějaké podalgebry potenční algebry $\mathcal{P}(\mathsf{At}_B)$. Je-li \underline{B} konečná, je h izomorfizmus B a $\underline{\mathcal{P}}(\mathsf{At}_B)$. Speciálně jsou každé dvě konečné Booleovy algebry izomorfní, právě když mají týž počet atomů; tedy $\mathcal{P}(n)$ je izomorfní s \underline{n} .

Důkaz. Buďte $b, b' \in B$. h je prosté, neboť když $b - b' \neq 0$, existuje atom $a \leq b - b'$; pak není $a \leq b'$ a tedy $h(a) \neq h(b)$. Zřejmě $h(-^Bb) = \operatorname{At}_B - h(b), h(b \wedge^B b') = h(b) \cap h(b'), h(b \vee^B b') = h(b) \cup h(b')$. $h(0^B) = \emptyset$ a $h(1^B) = \operatorname{At}_B$; h je tedy izomorfizmus B a podalgebry $\mathcal{P}(\operatorname{At}_B)$ s univerzem $\{h(b); b \in B\}$. Je-li \underline{B} konečná, je At_B konečná a h je zřejmě na $\mathcal{P}(\operatorname{At}_B)$.

BA.1.6. Spočetná bezatomární Booleova algebra.

Buď <u>K</u> podalgebra algebry $\underline{\mathbb{N}}_2$ s univerzem $K \subseteq \mathbb{N}_2$ tvořeným právě všemi funkcemi $f: \mathbb{N} \to 2$, které mají nějakou periodu p, 0 .

TVRZENÍ. <u>K</u> je spočetná bezatomární Booleova algebra a je to až na izomorfizmus jediná spočetná bezatomární Booleova algebra.

Algebra AP výroků nad spočetně prvovýroky je spočetná bezatomární. AP je tvořená třídami $\varphi/\sim=\{\psi;\,\varphi\sim\psi\}$ výroků nad danou spočetnou množinou prvovýroků $\mathbb P$; přitom

$$\varphi \sim \psi \quad \Leftrightarrow \quad \models \varphi \leftrightarrow \psi.$$

Booleovským operacím odpovídají \neg , \lor , &, \bot (falešný výrok), \top (tautologie).