

Bebizonyítással kért tételek 2022-2023. tanév 1. félév

2022. november 22.

Tartalomjegyzék

Oszcillációs összegek. Az integrálhatóság jellemzése oszcillációs összegekkel.	2
Az összegfüggvény integrálhatóságára vonatkozó tétel.	3
A szorzatfüggvény integrálhatóságára vonatkozó tétel	4
Függvények hányadosának integrálhatóságára vonatkozó tétel	5
A monoton függvény integrálhatóságára vonatkozó tétel	6
Az egyenletes folytonosságra vonatkozó Heine-tétel	7
Folytonos függvények integrálhatóságára vonatkozó tétel	8
Newton-Leibniz tétel	9
Az integrálfüggvény folytonosságára vonatkozó tétel	10
Az integrálfüggvény differenciálhatóságára vonatkozó állítás	11
A parciális integrálásra vonatkozó tétel határozott integrálra	12
A helyettesítéses integrálás szabálya határozott integrálra	13

1. Tétel. Oszcillációs összegek. Az integrálhatóság jellemzése oszcillációs összegekkel.

$$f \in R[a, b] \iff \forall \varepsilon > 0 \text{-}hoz \ \exists \tau \in \mathcal{F}[a, b] : \Omega(f, \tau) < \varepsilon$$

Bizonyítás:

 \implies Tegyük fel, hogy $f\in R[a,b]:I_*(f)=I^*(f)=I(f). A szuprémum definíciója alapján:$

$$\sup\{s(f,\tau) \mid \tau \in \mathcal{F}[a,b]\} = I_*(f) = I(f) \overset{\text{sup def.}}{\Longrightarrow}$$

$$\forall \varepsilon > 0 \text{-hoz } \exists \tau_1 \in \mathcal{F}[a,b] : I(f) - \frac{\varepsilon}{2} < s(f,\tau_1) \leq I(f)$$

Az infimum definíciója alapján:

$$\inf\{S(f,\tau)\mid \tau\in\mathcal{F}[a,b]\} = I^*(f) = I(f) \overset{\text{inf def.}}{\Longrightarrow}$$

$$\forall \varepsilon>0\text{-hoz } \exists \tau_2\in\mathcal{F}[a,b]: I(f) + \frac{\varepsilon}{2} > S(f,\tau_2) \geq I(f)$$

Legyen $\tau=\tau_1\cup\tau_2\in\mathcal{F}[a,b]$. Ekkor τ finomítása τ_1 -nek és τ_2 -nek, ezért:

$$I(f) - \frac{\varepsilon}{2} < s(f, \tau_1) \le s(f, \tau) \le I_*(f) \le I^*(f) \le S(f, \tau) \le S(f, \tau_2) \le I(f) + \frac{\varepsilon}{2} \Longrightarrow \Omega(f, \tau) = S(f, \tau) - s(f, \tau) < \varepsilon$$

— Legyen $\varepsilon>0$ tetszőleges és $\tau\in\mathcal{F}[a,b]:\Omega(f,\tau)<\varepsilon.$ Mivel $s(f,\tau)\leq I_*(f)\leq I^*(f)\leq S(f,\tau)$ ezért

$$0 \le I^*(f) - I_*(f) \le S(f,\tau) - s(f,\tau) = \Omega(f,\tau) < \varepsilon \Longrightarrow$$
$$0 \le I^*(f) - I_*(f) < \varepsilon \quad (\forall \varepsilon > 0) \Longrightarrow$$
$$I^*(f) - I_*(f) = 0 \Longrightarrow I^*(f) = I_*(f) \Longrightarrow f \in R[a,b]$$

2. Tétel. Az összegfüggvény integrálhatóságára vonatkozó tétel.

Tegyük fel, hogy $f, g \in R[a, b]$. Ekkor $f + g \in R[a, b]$ és

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

Bizonyítás:

Legyen $\tau = \{x_0 = a < x_1 < \dots < x_n = b\} \in \mathcal{F}[a, b]$ és

$$f_i = \inf_{[x_{i-1}, x_i]} f$$

$$F_i = \sup_{[x_{i-1}, x_i]} f$$

$$g_i = \inf_{[x_{i-1}, x_i]} g$$

$$G_i = \sup_{[x_{i-1}, x_i]} g$$

Mivel $f_i + g_i \le f(x) + g(x) \le F_i + G_i \ \forall x \in [x_{i-1}, x_i]$ ezért $f_i + g_i \le \inf_{[x_{i-1}, x_i]} (f + g) \le \sup_{[x_{i-1}, x_i]} (f + g) \le F_i + G_i$. Ebből $x_i - x_{i-1}$ -el való szorzással kapjuk, hogy

$$s(f,\tau) + s(g,\tau) \le s(f+g,\tau) \le S(f+g,\tau) \le S(f,\tau) + S(g,\tau)$$

Tegyük fel, hogy $\tau_1, \tau_2 \in \mathcal{F}[a, b]$ és legyen $\tau = \tau_1 \cup \tau_2 \in \mathcal{F}[a, b]$. Ekkor

$$s(f, \tau_1) + s(g, \tau_2) \le s(f, \tau) + s(g, \tau) \le s(f + g, \tau) \le I_*(f + g)$$

Innen először a τ_1 majd a τ_2 felosztásokra a bal oldal felső határát véve következik, hogy

$$I_*(f) + I_*(q) < I_*(f+q)$$

Hasonlóan igazolható, hogy $I^*(f) + I^*(g) \ge I^*(f+g)$. Így:

$$I_*(f) + I_*(g) \le I_*(f+g) \le I^*(f+g) \le I^*(f) + I^*(g)$$

Mivel $f,g\in R[a,b]$ ezért $I_*(f)=I^*(f)=\int_a^b f$ és $I_*(g)=I^*(g)=\int_a^b g$ ezért $I_*(f+g)=I^*(f+g)$ tehát $f+g\in R[a,b]$ és

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

3. Tétel. A szorzatfüggvény integrálhatóságára vonatkozó tétel

Tegyük fel, hogy $f, g \in R[a, b]$. Ekkor $f \cdot g \in R[a, b]$.

Bizonyítás:

1. Tegyük fel, hogy $f, g \ge 0$, $\tau = \{a = x_0 < x_1 < \dots < x_n\} \in \mathcal{F}[a, b]$. Az előző bizonyításban bevezetett jelölésekkel:

$$f_{i} \cdot g_{i} \leq f(x) \cdot g(x) \leq F_{i} \cdot G_{i} \quad \forall x \in [x_{i-1}, x_{i}] \Longrightarrow$$

$$f_{i} \cdot g_{i} \leq \inf_{[x_{i-1}, x_{i}]} f \cdot g \leq \sup_{[x_{i-1}, x_{i}]} f \cdot g \leq F_{i} \cdot G_{i} \quad \forall x \in [x_{i-1}, x_{i}] \Longrightarrow$$

$$\Omega(f \cdot g, \tau) = S(f \cdot g, \tau) - s(f \cdot g, \tau) =$$

$$\sum_{i=1}^{n} \left(\sup_{[x_{i-1}, x_{i}]} f \cdot g - \inf_{[x_{i-1}, x_{i}]} f \cdot g \right) \cdot (x_{i} - x_{i-1}) \leq$$

$$\sum_{i=1}^{n} (F_{i} \cdot G_{i} - f_{i} \cdot g_{i}) \cdot (x_{i} - x_{i-1})$$

Mivel f és g korlátos ezért $\exists M : |f|, |g| \leq M$ [a, b]-n. Így

$$\Omega(f \cdot g, \tau) \le \sum_{i=1}^{n} (F_i(G_i - g_i) + (F_i - f_i)g_i) \cdot (x_i - x_{i-1}) \le M \cdot \sum_{i=1}^{n} (G_i - g_i)(x_i - x_{i-1}) + M \cdot \sum_{i=1}^{n} (F_i - f_i)(x_i - x_{i-1}) = M \cdot (\Omega(g, \tau) + \Omega(f, \tau))$$

Mivel $f,g\in R[a,b]$ ezért $\forall \varepsilon>0$ -hoz $\exists \tau:\Omega(f,\tau),\Omega(g,\tau)<\varepsilon$. Tehát $\forall \varepsilon>0$ -hoz $\exists \tau\in \mathcal{F}[a,b]$ felosztás:

$$\Omega(f \cdot g) \le 2 \cdot M \cdot \varepsilon \Longrightarrow f \cdot g \in R[a, b]$$

2. Tegyük fel, hogy f,g tetszőleges és legyen $m_f=\inf_{[a,b]}f$ és $m_g=\inf_{[a,b]}g$. Ekkor $f-m_f\geq 0$ és $g-m_g\geq 0$ [a,b]-n integrálható függvények és az 1. szerint:

$$(f - m_f)(g - m_g) = f \cdot g - \underbrace{f \cdot m_g - m_f \cdot g + m_f \cdot g}_{\in R[a,b]} \in R[a,b]$$

következtetésképpen $f \cdot g \in R[a, b]$.

4. Tétel. Függvények hányadosának integrálhatóságára vonatkozó tétel

Tegyük fel, hogy $f,g\in R[a,b]$ és $|g(x)|\geq m>0$ $(\forall x\in [a,b]).$ Ekkor $\frac{f}{g}\in R[a,b].$

Bizonyítás:

A szorzat tétel miatt elég csak azt bebizonyítani, hogy a g-re tett feltétel esetén $\frac{1}{g} \in R[a,b]$. Legyen $\tau = \{a = x_0 < x_1 < \dots < x_n = b\} \in \mathcal{F}[a,b]$ tetszőleges. Ekkor $\forall x,y \in [x_{i-1},x_i]$ pontokban

$$\frac{1}{g(x)} - \frac{1}{g(y)} = \frac{g(y) - g(x)}{g(y)g(x)} \le \frac{|g(y) - g(x)|}{|g(y)g(x)|} \le \frac{G_i - g_i}{m^2}$$

Ebből következik, hogy

$$\sup_{[x_{i-1},x_i]} \frac{1}{g} - \inf_{[x_{i-1},x_i]} \frac{1}{g} \leq \frac{G_i - g_i}{m^2}$$

 $(x_i - x_{i-1})$ -gyek való szorzás és összegzés után azt kapjuk, hogy

$$\Omega\left(\frac{1}{g},\tau\right) \leq \frac{1}{m^2}\Omega(g,\tau)$$

Mivel $g \in R[a, b]$ ezért $\forall \varepsilon > 0$ -hoz $\exists \tau \in \mathcal{F}[a, b] : \Omega(g, \tau) < \varepsilon$. Így:

$$\Omega\left(\frac{1}{q}, \tau\right) < \frac{\varepsilon}{m^2} \Longrightarrow \frac{1}{q} \in R[a, b]$$

5. Tétel. A monoton függvény integrálhatóságára vonatkozó tétel

 $Ha\ f:[a,b]\to\mathbb{R}\ f\ddot{u}ggv\acute{e}ny\ monoton\ az\ [a,b]\ intervallumon,\ akkor\ integr\'{a}lhat\'{o}\ [a,b]$ -n.

Bizonyítás:

Az integrálhatóság oszcillációs összegekkel való jellemzésére vonatkozó állítást alkalmazzuk, tehát

$$\forall \varepsilon > 0$$
-hoz $\exists \tau \in \mathcal{F}[a, b] : \Omega(f, \tau) < \varepsilon$

Legyen pl $f \nearrow$. Ha f(a) = f(b) akkor f állandó ezért ebben az esetben igaz. Ha f(a) < f(b) akkor $\forall \tau = \{a = x_0 < \dots < x_n = b\} \in \mathcal{F}[a,b]$ felosztásra $m_i = \inf_{[x_{i-1},x_i]} = f(x_{i-1})$ és $M_i = \sup_{[x_{i-1},x_i]} = f(x_i)$. Ezért

$$\Omega(f,\tau) = S(f,\tau) - s(f,\tau) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \cdot (x_i - x_{i-1})$$

Legyen $\varepsilon>0$ adott és $n\in\mathbb{N}^+$: $\frac{b-a}{n}<\frac{\varepsilon}{f(b)-f(a)}$ valamit τ az [a,b] egyenletes felosztása. Ekkor $x_i-x_{i-1}<\frac{\varepsilon}{f(b)-f(a)}$ minden $i=1,\ldots,n$ indexre és

$$\Omega(f,\tau) < \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \cdot \frac{\varepsilon}{f(b) - f(a)} < \frac{\varepsilon}{f(b) - f(a)} \cdot \left(\underbrace{f(x_1) - \underbrace{f(x_0)}_{f(a)} + \underbrace{f(x_2) - \underbrace{f(x_1)}}_{f(b)} + \cdots + \underbrace{\underbrace{f(x_n) - \underbrace{f(x_{n-1})}}_{f(b)}}_{f(b)} \right) = \varepsilon$$

Ezzel az erdeti állítást igazoltuk $\Longrightarrow f \in R[a,b]$.

6. Tétel. Az egyenletes folytonosságra vonatkozó Heine-tétel

 $\mathit{Ha} - \infty < a < b < + \infty$ és $f \in C[a,b]$ akkor f egyenletesen folytonos az [a,b] intervallumon

Bizonyítás:

Indirekt módon. Tegyük fel, hogy f nem egyenletesen folytonos [a,b]-n. Ezt azt jelenti, hogy

$$\exists \varepsilon > 0 \text{ hogy } \forall \delta > 0 \text{-hoz } \exists x, y \in [a, b], |x - y| < \delta : |f(x) - f(y)| \ge \varepsilon$$

A $\delta = \frac{1}{n} \quad (n \in \mathbb{N}^+)$ választással kapjuk, hogy minden n-re létezik $x_n, y_n \in [a, b]$:

$$|x_n - y_n| < \frac{1}{n}$$
 és $\underbrace{|f(x_n) - f(y_n)| \ge \varepsilon}_{(*)}$

 x_n sorozat korlátos ezért van egy x_{n_k} konvergens részsorozata, amelynek az α határértéke ugyancsak [a,b]-ben van. Így

$$y_{n_k} = (y_{n_k} - x_{n_k}) + x_{n_k} \to 0 + \alpha = \alpha$$
, ha $n_k \to +\infty$

Mivel $f\in C[a,b]$ ezért $f\in C\{\alpha\}$ is teljesül. Az átviteli elv szerint tehát $f(x_{n_k})\to f(\alpha)$ és $f(y_{n_k})\to f(\alpha)$ ezért

$$\lim_{n_k \to +\infty} (f(x_{n_k}) - f(y_{n_k})) = 0$$

Ez azonban ellent mond a (*) állításnak.

7. Tétel. Folytonos függvények integrálhatóságára vonatkozó tétel

 $\textit{Ha az f f\"{u}ggv\'{e}ny folytonos az } [a,b] \textit{ intervallumon, akkor integr\'{a}lhat\'{o}} \ [a,b] \textit{-} n$

Bizonyítás:

Elég megmutatni azt, hogy $\forall f \in C[a,b]$ függvényre a következő teljesül:

$$\forall \varepsilon > 0$$
-hoz $\exists \tau \in \mathcal{F}[a, b] : \Omega(f, \tau) < \varepsilon$

Mivel $f \in C[a,b] \Longrightarrow$ (Heine tétel) f egyenletesen folytonos az [a,b] intervallumon, ezért $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, hogy

$$\forall x, y \in [a, b], |x - y| < \delta : |f(x) - f(y)| < \frac{\varepsilon}{b - a}$$

Legyen $\varepsilon>0$ és $\tau=\{x_0=a< x_1<\cdots< x_n=b\}\in \mathcal{F}[a,b]:||\tau||=\max\{x_i-x_{i-1}\mid i=1,\ldots,n\}\leq \delta.$ Ekkor $\Omega(f,\tau)$ -ban $i=1,\ldots,n$ esetén legyen

$$m_i = \min_{[x_{i-1}, x_i]} f = f(u_i) \text{ és } M_i = \max_{[x_{i-1}, x_i]} f = f(v_i)$$

(Weierstrass tétel miatt $\exists u_i, v_i$). Ekkor

$$\Omega(f,\tau) = \sum_{i=1}^{n} (M_i - m_i) \cdot (x_i - x_{i-1}) \le \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon$$

Ez pedig azt jelenti, hogy $f \in R[a, b]$.

8. Tétel. Newton-Leibniz tétel

Ha $f \in R[a,b]$ és az f függvénynek van primitív függvénye [a,b]-n akkor

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: [F(x)]_{a}^{b}$$

Ahol F az f függvény egy tetszőleges primitív függvénye.

Bizonyítás:

Legyen $\tau=a=x_0 < x_1 < \cdots < x_n=b \in \mathcal{F}[a,b]$ tetszőleges. A Lagrange-féle k.é.t. szerint $\forall i=1,\ldots,n$ indexre $\exists \xi_i \in (x_{i-1},x_i)$:

$$F(x_i) - F(x_{i-1}) = F'(\xi_i) \cdot (x_i - x_{i-1}) = f(\xi_i) \cdot (x_i - x_{i-1})$$

Ha ezeket az egyenlőségeket összeadjuk $\forall i=1,\ldots,n$ -en akkor a baloldalon minden tag kivéve $F(x_0)=F(a)$ és $F(x_n)=F(b)$ kiesik tehát:

$$F(b) - F(a) = \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1}) = \sigma(f, \tau, \xi)$$

ahol
$$\xi = (\xi_1, \dots \xi_n)$$
. Mivel $\inf_{[x_{i-1}, x_i]} f \le f(\xi_i) \le \sup_{[x_{i-1}, x_i]} f$ ezért

$$s(f,\tau) \le \sigma(f,\tau,\xi) \le F(b) - F(a) \le S(f,\tau,\xi)$$

Következtetésképpen

$$I_*(f) = \sup_{\tau \in \mathcal{F}[a,b]} s(f,\tau) \le F(b) - F(a) \le \inf_{\tau \in \mathcal{F}[a,b]} S(f,\tau,\xi) = I^*(f)$$

Mivel $f \in R[a,b]$ ezért $I_*(f) = I^*(f) = \int_a^b f,$ így

$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$

9. Tétel. Az integrálfüggvény folytonosságára vonatkozó tétel

Tegyük fel, hogy $f \in R[a,b]$ és $x_0 \in [a,b]$. Ekkor a

$$F(x) = \int_{x_0}^{x} f(t)dt \quad (x \in [a, b])$$

 $integrálfüggvény\ folytonos\ az\ [a,b]\ intervallumon.$

Bizonyítás:

Tetszőleges $x, y \in [a, b], x < y$ esetén

$$|F(x) - F(y)| = \left| \int_{x_0}^{y} f - \int_{x_0}^{x} f \right| = \left| \int_{x_0}^{y} f + \int_{x}^{x_0} f \right| = \left| \int_{x}^{y} f \right| \le \int_{x}^{y} |f| \le M \cdot \int_{x}^{y} 1 = M(y - x)$$

ahol M az f függvény egy korlátja: $|f(x)| \leq M \quad (x \in [a,b])$. (Mivel $f \in R[a,b]$ ezért f korlátos [a,b]-n). Ha tehát $\varepsilon > 0, \delta > 0$: $M\delta < \varepsilon$, akkor $\forall x,y \in [a,b], |x-y| < \delta$ esetén:

$$|F(y) - F(x)| < M \cdot \frac{\varepsilon}{M} = \varepsilon$$

Ez azt jelenti F egyenletesen folytonos [a,b]-n így folytonos is.

10. Tétel. Az integrálfüggvény differenciálhatóságára vonatkozó állítás

Tegyük fel, hogy $f \in R[a,b]$ és $x_0 \in [a,b]$. Ekkor ha a

$$F(x) = \int_{x_0}^x f(t)dt \quad (x \in [a, b])$$

integrálfüggvény egy $d \in [a,b]$ pontban folytonos, akkor ott az F integrálfüggvény deriválható és F'(d) = f(d). Ha $f \in C[a,b]$ akkor $F \in D[a,b]$ és F'(x) = f(x) minden $x \in [a,b]$ pontban.

Bizonyítás:

Legyen $d \in (a,b)$ és tegyük fel, hogy $f \in C\{d\}$. Ez azt jelenti, hogy $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$:

$$\forall t \in [a, b] : |t - d| < \delta \text{ eset\'en } |f(t) - f(d)| < \varepsilon$$

Tegyük fel, hogy h-ra $d + h \in (a, b)$ teljesül. Ekkor

$$F(d+h) - F(d) = \int_{x_0}^{d+h} f - \int_{x_0}^{d} f = \int_{d}^{d+h} f$$

Mivel $f(d) = \frac{1}{h} \int_{d}^{d+h} f(d)dt$ ezért

$$\frac{F(d+h) - F(d)}{h} - f(d) = \frac{1}{h} \int_{d}^{d+h} (f(t) - f(d))dt$$

Ha $0 < h < \delta$, akkor

$$\left|\frac{F(d+h) - F(d)}{h}\right| < \frac{1}{h} \cdot \int_{d}^{d+h} |f(t) - f(d)| dt < \frac{1}{h} \int_{d}^{d+h} \varepsilon = \frac{1}{h} \cdot \varepsilon \cdot h$$

 $\mathrm{Ha} - \delta < h < 0$, akkor

$$\left| \frac{F(d+h) - F(d)}{h} - f(d) \right| \le \frac{1}{|h|} \int_{d}^{d+h} |f(t) - f(d)| dt < \varepsilon$$

Az előzőek alapján tehát $\forall \varepsilon > 0$ -hoz $\exists \delta > 0 : \forall |h| < \delta$:

$$\left| \frac{F(d+h) - F(d)}{h} - f(d) \right| < \varepsilon$$

Ez azt jelenti, hogy:

$$\lim_{h \to 0} \frac{F(d+h) - F(d)}{h} - f(d) = 0 \Longrightarrow \lim_{h \to 0} \frac{F(d+h) - F(d)}{h} = f(d)$$

vagyis $F \in D\{d\}$ és F'(d) = f(d). A végpontokban az előzőekhez hasonlóan kapjuk meg az egyoldali deriváltakra vonatkozó állításokat.

11. Tétel. A parciális integrálásra vonatkozó tétel határozott integrálra

Tegyük fel, hogy $f, g \in [a, b] \to \mathbb{R}, f, g \in D[a, b]$ és $f', g' \in R[a, b]$. Ekkor

$$\int_a^b fg' = f(b)g(b) - f(a)g(a) - \int_a^b f'g$$

Bizonyítás:

Egyrészt $f \in D[a,b] \Longrightarrow f \in C[a,b] \Longrightarrow f \in R[a,b]$. Mivel $g' \in R[a,b]$ ezért $fg' \in R[a,b]$. Hasonlóan kapjuk meg azt is, hogy $f'g \in R[a,b]$. Így $f'g + g'f \in R[a,b]$. Másrészt fg primitív függvénye az f'g + g'f függvénynek. A Newton-Leibniz tétel szerint

$$\int_{a}^{b} (f'g + g'f) = [fg]_{a}^{b} = f(b)g(b) - f(a)g(a)$$

A határozott integrál additivitását felhasználva rendezés után azt kapjuk, hogy

$$\int_a^b fg' = [fg]_a^b - \int_a^b f'g$$

12. Tétel. A helyettesítéses integrálás szabálya határozott integrálra

Tegyük fel, hogy $f \in C[a,b]$ és a $g \in [\alpha,\beta] \to [a,b]$ függvény folytonosan deriválható. Ekkor

$$\int_{g(\alpha)}^{g(\beta)} f = \int_{\alpha}^{\beta} f \circ g \cdot g'$$

Bizonyítás:

Tekintsük az

$$F(x) = \int_{g(\alpha)}^{x} f \quad (x \in [a, b]), \quad G(u) = \int_{\alpha}^{u} f \circ g \cdot g' \quad (x \in [\alpha, \beta])$$

integrálfüggvényeket. Megmutatjuk, hogy

$$\int_{g(\alpha)}^{g(\beta)} f = \underbrace{F(g(\beta)) = G(\beta)}_{(*)} = \int_{\alpha}^{\beta} f \circ g \cdot g'$$

Egyrész $f \in C[a,b] \Longrightarrow F' = f$, másrészt $f \circ g \cdot g' \in C[\alpha,\beta] \Longrightarrow G' = f \circ g \cdot g'$. Mivel $(F \circ g)' = F' \circ g \cdot g' = f \circ g \cdot g'$, ezért $(F \circ g - G)' = 0 \Longrightarrow \exists c \in \mathbb{R} : F \circ g - G = c$. Ugyanakkor $F(g(\alpha)) = 0 = G(\alpha) \Longrightarrow c = 0$. Követ keztetésképpen $F \circ g = G \Longrightarrow F(g(\beta)) = G(\beta)$.