2020

MATHEMATICS — **GENERAL**

Paper: DSE-A-1

(Particle Dynamics)

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

51

 (\overline{z}) $\frac{1}{r}$

Day 1							
(বহু বিকল্পক নৈৰ্ব্যক্তিক প্ৰশাবলী)							
নিম্নলিখিত সব প্রশ্নের উত্তর দাও ঃ ১×১০							
যদি I	ঘাতের ক্রিয়ায় সরলরেখায় গতিশীল একটি কণ	ার গতি	বেগ u থেকে $ u$ তে পরিবর্তিত হয়, তবে গতিশক্তির পরিবর্তনের				
মান ৰ	হবে						
(অ)	$\frac{1}{2}I(u+v)$	(আ)	$\frac{1}{2}I(u-v)$				
(ই)	2 I (u + v)	(ঈ)	কোনোর্টিই নয়।				
সরল	রৈখিক গতিতে চলমান একটি কণার সরণ x	$= \frac{1}{2}vt$, যেখানে $ u$ হল গতিবেগ। তবে কণার ত্বরণ				
(অ)	ধ্রুবক	(আ)	v^2				
(₹)	0	(ঈ)	t				
পৃথিই	াী পৃষ্ঠ থেকে 'h' উচ্চতায় অবস্থিত m ভরবির্বি	শিষ্ট এব	চটি বস্তুকণার স্থিতিশক্তি হল				
(অ)	mgh	(আ)	gh				
(<u>ই</u>)	mg	(ঈ)	কোনোর্টিই নয়।				
যদি (কন্দ্রীয় বলের প্রভাবে কোনো গতিশীল কণার	া কেন্দ্ৰী	য় কক্ষপথটি একটি শক্কুচেছেদ $\dfrac{l}{r} = 1 + e \cos heta$ হয়, তবে বল				
সরল	ভেদে থাকবে						
(অ)	$\frac{1}{r^2}$	(আ)	r^2				
(₹)	$\frac{1}{r}$	(ঈ)	$\frac{1}{r^3}$ এর সঙ্গে।				
		া বরাবর (আ)	র চলমান হয়, তবে কণাটির লম্ব-তারীয় ত্বরণ সরলভেদে থাকবে r^2				
	যদি I মান হ (অ) (ই) সরল (অ) (ই) পৃথিই (অ) (ই) যদি (সরল (অ) (ই) সরল (অ) (ই) সরল (অ)	(বহু বিকল্পক নৈ লখিত সব প্রশ্নের উত্তর দাও ঃ যদি I ঘাতের ক্রিয়ায় সরলরেখায় গতিশীল একটি কণ মান হবে (অ) ½ I ($u + v$) (ই) $2 I$ ($u + v$) সরলরৈখিক গতিতে চলমান একটি কণার সরণ x (অ) ধ্রুবক (ই) 0 পৃথিবী পৃষ্ঠ থেকে ' h ' উচ্চতায় অবস্থিত m ভরবিগি (অ) mgh (ই) mg যদি কেন্দ্রীয় বলের প্রভাবে কোনো গতিশীল কণার সরলভেদে থাকবে (অ) $\frac{1}{r^2}$ (ই) $\frac{1}{r}$	বহু বিকল্পক নৈর্ব্যক্তিব লখিত সব প্রশ্নের উত্তর দাও ঃ যদি I ঘাতের ক্রিয়ায় সরলরেখায় গতিশীল একটি কণার গতি মান হবে (আ) ½ $I(u+v)$ (আ) (ই) $2 I(u+v)$ (ঈ) সরলরৈখিক গতিতে চলমান একটি কণার সরণ $x=$ ½ vt (আ) প্রুবক (আ) (ই) 0 (ঈ) পৃথিবী পৃষ্ঠ থেকে ' h ' উচ্চতায় অবস্থিত m ভরবিশিষ্ট এব (আ) mgh (আ) (ই) mg (ঈ) যদি কেন্দ্রীয় বলের প্রভাবে কোনো গতিশীল কণার কেন্দ্রী সরলভেদে থাকবে (আ) $\frac{1}{r^2}$ (আ) (ই) $\frac{1}{r}$ (আ)				

 $(\overline{\aleph})$ $\frac{1}{r^2}$ এর সঙ্গে।

Please Turn Over

T(5th	Sm.)-	Mathe	ematics-G/DSE-A-1/CBCS	$\overline{\mathbf{s}}$ (2)				
	(<u>b</u>)	যদি এ	একটি বস্তুকণার ত্বরণের অভিত	— লম্ব উপাংশ এবং স্পর্শক :	উপাংশ সমান হ	য়, তবে এর গতি	চবেগ নিম্নলিখিত <i>(</i>	কোনটির সঙ্গে
			পোতিক, যেখানে tanψ = ^হ					
		(অ)	Ψ	(আ)	e^{ψ}			
		(ই)	$e^{2\psi}$	$(\overline{\imath})$	$e^{-\psi}$			
	(ছ)	এক দ	অশ্বশক্তি ধ্রুবকের পরিমাপ ব	কত হবে?				
		(অ)	746.3 ওয়াট (আনুমানিক)	(আ)	750 ওয়াট (ব	মানুমানিক)		
		(ই)	740 ওয়াট (আনুমানিক)	$(\overline{\imath})$	কোনোটিই নয়	11		
	(জ)		একটি বস্তুকণা <i>y-</i> অক্ষের সমা গীল হয়, তবে বস্তুকণাটির গাঁ		চবেগে এবং <i>x-</i>	অক্ষের সমান্তরা	ল <i>y</i> -এর সমানুপা	তী গতিবেগে
		(অ)	একটি উপবৃত্ত	(আ)	একটি অধিবৃত	3		
		(ই)	একটি সরলরেখা	$(\overline{\imath})$	কোনোটিই নয়	11		
	(ঝ)	একটি	ট 2 kg. ভরকে 5 মিটার উ	টিচ্চতায় তুলতে কার্যের গ	পরিমাণ হবে [g	g = 980 সে.মি/	'সেকেভ ²]	
		(অ)	$98 \times 10^7 \ ergs$	(আ)	9.8×10^7	ergs		
		(ই)	9800 ergs	$(\overline{\imath})$	কোনোটিই নয়	11		
	(ক্ট)	সরল	দোল গতিতে চলমান কোনে	না বস্তুকণার সমীকরণ x	$= \sin\left(\frac{\pi t}{2}\right)$	হল,ে এর দালে	নর পর্যায়কাল হ	.ব
		(অ)	4 একক	(আ)	2 একক			
		(₹)	¹/ ₂ একক	$(\overline{\mathfrak{F}})$	কোনোটিই নয়	11		
			4	যে-কোনো একটি প্রশ্নে	র উত্তর দাও ঃ			
રા	(ক)		না চলমান বস্তুকণার অবস্থান এর গতিপথ, বেগ ও ত্বরণ		t এবং $y=a$	$sin\ t\ (a\ $ একটি $ s$	ধ্রুবক) সমীকরণ	ৰারা নির্ধারিত ৫
	(খ)	প্রমাণ	া করো যে, বায়ু শ্ ন্য স্থানে প্র	াাসের গতিপথ একটি অ	थेवृख।			Œ
	যে-৫	কানো	<i>পাঁচটি</i> প্রশারে উত্তর দাও ঃ					
৩।	(ক)	নিউট	নের দ্বিতীয় গতিসূত্রটি বিবৃত	ত করো।				
	(খ)	m ॼ	রবিশিষ্ট একটি কণা $m\mu$ $\left(x^{2} ight)$	$\left(x + \frac{a^4}{x^3}\right)$ আকর্ষক বলে	র অধীনে সরল	ারেখায় গতিশীল	ি, যেখানে μ একা	ট ধ্রুবক। যদি
		মূলবি	ন্দু থেকে a দূরত্বে থেকে ক	গ্ণাটি স্থিরাবস্থা থেকে যা	তা শুরু করে, গ	তবে দেখাও যে	$\frac{\pi}{4\sqrt{\mu}}$ সময়ে উ	হা মূলবিন্দুতে
		পৌঁছ	াবে।					২+৮

- 8। (ক) কেপলারের গ্রহপথ সম্বন্ধিত সূত্রগুলি বিবৃত করো।
 - (খ) একটি বস্তুকণা $x^2 = 8y$ অধিবৃত্তাকার পথে এরূপ বলের অধীনে গতিশীল হয়, যা সর্বদাই y-অক্ষের সঙ্গে লম্ব। বলের সূত্রটি নির্ণয় করো এবং কণাটির গতিপথের যে-কোনো একটি বিন্দুতে তার গতিবেগ নির্ণয় করো। ৩+৭
- ৫। (ক) প্রান্তিক গতিবেগের সংজ্ঞা দাও।
 - (খ) একটি কণাকে u গতিবেগে উল্লম্বভাবে ঊর্ধ্বমুখে এমন একটি মাধ্যমে ছোঁড়া হল যার বাধা গতিবেগের বর্গের সমানুপাতী।

দেখাও যে কণাটি
$$\dfrac{V^2}{2g} \; log_e \Biggl(1 + \dfrac{u^2}{V^2} \Biggr)$$
 সর্বোচ্চ উচ্চতা লাভ করবে যেখানে V হল প্রান্তিক গতিবেগ। ২+৮

৬। একটি কণা প্রতি একক ভরে F কেন্দ্রীয় আকর্ষক বলের প্রভাবে সমতলে চলে। প্রচলিত অর্থে ব্যবহৃত প্রতীক ধরে দেখাও যে,

গতিপথের অবকলজ সমীকরণ হল
$$\frac{h^2}{p^3} \frac{dp}{dr} = F$$
.

- ৭। সমতলীয় বক্ররেখায় চলমান একটি কণার ত্বণের স্পর্শক এবং অভিলম্ব উপাংশ নির্ণয় করো। ১০
- ৮। একটি স্থিতিস্থাপক স্ট্রিং-এর প্রান্তবিন্দু 'A' টি স্থির এবং অপর প্রান্তবিন্দুটিতে একটি ভারী বস্তুকণা ঝোলানো আছে। স্ট্রিং-টির স্থিতিস্থাপকতা ধ্রুবকের (modulus of elasticity) মান বস্তুটির ওজনের সমান। ভারী বস্তুটিকে 'A' বিন্দু থেকে নিক্ষিপ্ত করলে, বস্তুটি স্থির হওয়ার সময়ে স্ট্রিংটির দৈর্ঘ্য ($2+\sqrt{3}$) a হবে।
- ৯। 'H' ধ্রুবক হারে কার্যরত একটি ইঞ্জিন একটি 'M' ওজনবিশিষ্ট বস্তুকে 'R' প্রতিবন্ধকতার বিরুদ্ধে টানছে। দেখাও যে এর সর্বোচ্চ

গতি
$$H/R$$
 এবং এর অর্ধেক গতি প্রাপ্ত করতে ইঞ্জিনটির $\dfrac{MH\left(\ln 2-\dfrac{1}{2}\right)}{R^2}$ পরিমাণ সময় লাগে।

১০। একটি কণা $\frac{\mu}{\left(\bar{\eta}$ রস্ক $\right)^2}$ বলের অধীনে উপবৃত্তাকার পথে গতিশীল। (বলটি নাভিবিন্দু অভিমুখী) যদি বলের কেন্দ্র থেকে 'R' দূরস্বে

কণাটি '
$$V$$
' বেগে প্রক্ষিপ্ত হয়, তবে এর পর্যায়কাল $\frac{2\Pi}{\sqrt{\mu}} \bigg(\frac{2}{R} - \frac{V^2}{\mu} \bigg)^{-\frac{3}{2}}$ হবে দেখাও।

1.

[English Version]

 ${\it The figures in the margin indicate full marks.}$

MULTIPLE CHOICE QUESTIONS

Ansv	ver <i>al</i>	<i>It</i> the questions :		1×10		
(a)		a rectilinear motion of a particle, if a ge in Kinetic energy is	an im	pulse I changes its velocity from u to v , then the		
	(i)	$\frac{1}{2}I(u+v)$	(ii)	$\frac{1}{2}I(u-v)$		
	(iii)	2 I (u + v)	(iv)	None of these.		
(b)	The law of motion in a straight line is $x = \frac{1}{2} vt$. The acceleration is					
	(i)	f = const	(ii)	$f = v^2$		
	(iii)	f = t	(iv)	f = 0.		
(c)	The potential energy of a particle of mass m at a height h above the Earth's surface is					
	(i)	mgh	(ii)	mg		
	(iii)	gh	(iv)	None of these.		
(d)	r					
		the force varies as				
	(i)	$\frac{1}{r^2}$	(ii)	r^2		
	(iii)	$\frac{1}{r}$	(iv)	$\frac{1}{r^3}.$		
(e)	If a particle moves along the curve $r = ae^{\theta}$ with constant angular velocity, then the cross-radial acceleration is proportional to					
	(i)	r	(ii)	r^2		
	(iii)	$\frac{1}{r}$	(iv)	$\frac{1}{r^2}$.		
(f)	If the tangential and normal components of acceleration be equal, then the velocity is proportional to					
	(i)	Ψ	(ii)	e^{ψ}		
	(iii)	$e^{2\psi}$	(iv)	$e^{-\psi}.$		

(g) Horse-Power =

- (i) 746.3 watts (Approx)
- (ii) 750 watts (Approx)
- (iii) 740 watts (Approx)
- (iv) None of these.

(h) If a particle is moving with a constant velocity parallel to the axis of y and velocity proportional to y parallel to the axis of x, then the path of the particle is

(i) an ellipse

(ii) a parabola

(iii) a straight line

(iv) None of these.

(i) The work done in raising a mass of 2 kg to a height of 5 meters is $[g = 980 \text{ cm/sec}^2]$

(i) $98 \times 10^7 \ ergs$

(ii) 9.8×10^7 ergs

(iii) 9800 ergs

(iv) None of these.

(j) For a Simple Hormonic motion defined by $x = sin\left(\frac{\pi t}{2}\right)$ the time period is

(i) 4 unit

(ii) 2 unit

(iii) ½ unit

(iv) None of these.

Answer any one question:

2. (a) The position of a moving point at time t is given by $x = a \cos t$ and $y = a \sin t$. Find its path, velocity and acceleration.

(b) Prove that the path of a projectile in vacua is a parabola.

5

Answer any five questions:

3. (a) State Newton's second law of motion.

(b) A particle of mass m is acted on by a force $m\mu\left(x+\frac{a^4}{x^3}\right)$, μ being constant, towards the origin.

If it starts from rest at a distance a from origin, show that it will arrive at the origin in time $\frac{\pi}{4\sqrt{\mu}}$.

2+8

4. (a) State the Kepler's laws of planetary motion.

(b) A particle describes a parabola $x^2 = 8y$ under a force always perpendicular to y-axis. Find the law of force and the velocity of the particle at any point of its orbit.

T(5th Sm.)-Mathematics-G/DSE-A-1/CBCS

- (6)
- 5. (a) Define terminal velocity.
 - (b) A particle is projected vertically upwards with a velocity 'u' in a medium whose resistance varies as the square of the velocity. Show that the greatest height attained by the particle is

$$\frac{V^2}{2g} log_e \left(1 + \frac{u^2}{V^2}\right)$$
, where V is the terminal velocity.

6. A particle describes a plane curve under the action of a central attractive force F per unit mass. Prove

that in usual notation the differential equation to the path of the particle is
$$\frac{h^2}{p^3} \frac{dp}{dr} = F$$
.

- 7. Find the expressions for tangential and normal components of velocity and acceleration of a particle moving in a plane.
- 8. One end of an elastic string is fixed at A and the other end is fastened to a heavy particle, the modulus of elasticity of the string being equal to the weight of the particle. Show that if the particle be dropped from A, it will descend a distance $(2 + \sqrt{3}) a$ before coming to rest.
- 9. An engine working at a constant rate H, draws a load M against a resistance R. Show that the maximum

speed is
$$\frac{H}{R}$$
 and the time taken to attain half this speed is $\frac{MH\left(\ln 2 - \frac{1}{2}\right)}{R^2}$.

10. A particle describes an ellipse under a force $\frac{\mu}{\left(\text{distance}\right)^2}$, towards a focus. If it was projected with a

velocity V from a point distant R from the centre of force, then show that the periodic time is

$$\frac{2\Pi}{\sqrt{\mu}} \left(\frac{2}{R} - \frac{V^2}{\mu} \right)^{-\frac{3}{2}}.$$