

SEQUENCE LISTING <110> CANFIELD, WILLIAM M <120> METHODS FOR
PRODUCING HIGHLY PHOSPHORYLATED LYSOSOMAL HYDROLASES <130> 210119US0CONT <150>
60/153,831 <151> 1999-09-14 <150> US 09/635,872 <151> 2000-08-10 <160> 52 <170>
PatentIn version 3.1 <210> 1 <211> 928 <212> PRT <213> Homo sapiens <400> 1

Met Leu Phe Lys Leu Leu Gln Arg Gln Thr Tyr Thr Cys Leu Ser His
1 5 10 15

Arg Tyr Gly Leu Tyr Val Cys Phe Leu Gly Val Val Val Thr Ile Val
20 25 30

Ser Ala Phe Gln Phe Gly Glu Val Val Leu Glu Trp Ser Arg Asp Gln
35 40 45

Tyr His Val Leu Phe Asp Ser Tyr Arg Asp Asn Ile Ala Gly Lys Ser
50 55 60

Phe Gln Asn Arg Leu Cys Leu Pro Met Pro Ile Asp Val Val Tyr Thr
65 70 75 80

Trp Val Asn Gly Thr Asp Leu Glu Leu Leu Lys Glu Leu Gln Gln Val
85 90 95

Arg Glu Gln Met Glu Glu Glu Gln Lys Ala Met Arg Glu Ile Leu Gly
100 105 110

Lys Asn Thr Thr Glu Pro Thr Lys Lys Ser Glu Lys Gln Leu Glu Cys
115 120 125

Leu Gln Thr His Cys Ile Lys Val Pro Met Leu Val Leu Asp Pro Ala
130 135 140

Leu Pro Ala Asn Ile Thr Leu Lys Asp Val Pro Ser Leu Tyr Pro Ser
145 150 155 160

Phe His Ser Ala Ser Asp Ile Phe Asn Val Ala Lys Pro Lys Asn Pro
165 170 175

Ser Thr Asn Val Ser Val Val Val Phe Asp Ser Thr Lys Asp Val Glu
180 185 190

Asp Ala His Ser Gly Leu Leu Lys Gly Asn Ser Arg Gln Thr Val Trp
195 200 205

Arg Gly Tyr Leu Thr Thr Asp Lys Glu Val Pro Gly Leu Val Leu Met
210 215 220

Gln Asp Leu Ala Phe Leu Ser Gly Phe Pro Pro Thr Phe Lys Glu Thr

225 230 235 240
Asn Gln Leu Lys Thr Lys Leu Pro Glu Asn Leu Ser Ser Lys Val Lys
245 250 255

Leu Leu Gln Leu Tyr Ser Glu Ala Ser Val Ala Leu Leu Lys Leu Asn
260 265 270

Asn Pro Lys Asp Phe Gln Glu Leu Asn Lys Gln Thr Lys Lys Asn Met
275 280 285

Thr Ile Asp Gly Lys Glu Leu Thr Ile Ser Pro Ala Tyr Leu Leu Trp
290 295 300

Asp Leu Ser Ala Ile Ser Gln Ser Lys Gln Asp Glu Asp Ile Ser Ala
305 310 315 320

Ser Arg Phe Glu Asp Asn Glu Glu Leu Arg Tyr Ser Leu Arg Ser Ile
325 330 335

Glu Arg His Ala Pro Trp Val Arg Asn Ile Phe Ile Val Thr Asn Gly
340 345 350

Gln Ile Pro Ser Trp Leu Asn Leu Asp Asn Pro Arg Val Thr Ile Val
355 360 365

Th~~r~~ His Gln Asp Val Phe Arg Asn Leu Ser His Leu Pro Thr Phe Ser
370 375 380

Ser Pro Ala Ile Glu Ser His Ile His Arg Ile Glu Gly Leu Ser Gln
385 390 395 400

Lys Phe Ile Tyr Leu Asn Asp Asp Val Met Phe Gly Lys Asp Val Trp
405 410 415

Pro Asp Asp Phe Tyr Ser His Ser Lys Gly Gln Lys Val Tyr Leu Thr
420 425 430

Trp Pro Val Pro Asn Cys Ala Glu Gly Cys Pro Gly Ser Trp Ile Lys
435 440 445

Asp Gly Tyr Cys Asp Lys Ala Cys Asn Asn Ser Ala Cys Asp Trp Asp
450 455 460

Gly Gly Asp Cys Ser Gly Asn Ser Gly Gly Ser Arg Tyr Ile Ala Gly
465 470 475 480

Gly Gly Gly Thr Gly Ser Ile Gly Val Gly His Pro Trp Gln Phe Gly
485 490 495

Gly Gly Ile Asn Ser Val Ser Tyr Cys Asn Gln Gly Cys Ala Asn Ser
500 505 510

Trp Leu Ala Asp Lys Phe Cys Asp Gln Ala Cys Asn Val Leu Ser Cys
515 520 525

Gly Phe Asp Ala Gly Asp Cys Gly Gln Asp His Phe His Glu Leu Tyr
530 535 540

Lys Val Ile Leu Leu Pro Asn Gln Thr His Tyr Ile Ile Pro Lys Gly
545 550 555 560

Glu Cys Leu Pro Tyr Phe Ser Phe Ala Glu Val Ala Lys Arg Gly Val
565 570 575

Glu ~~Gly~~ Ala Tyr Ser Asp Asn Pro Ile Ile Arg His Ala Ser Ile Ala
580 585 590

Asn ~~Lys~~ Trp Lys Thr Ile His Leu Ile Met His Ser Gly Met Asn Ala
595 600 605

Thr ~~Thr~~ Ile His Phe Asn Leu Thr Phe Gln Asn Thr Asn Asp Glu Glu
610 615 620

Phe ~~Lys~~ Met Gln Ile Thr Val Glu Val Asp Thr Arg Glu Gly Pro Lys
625 630 635 640

Leu Asn Ser Thr Ala Gln Lys Gly Tyr Glu Asn Leu Val Ser Pro Ile
645 650 655

Thr Leu Leu Pro Glu Ala Glu Ile Leu Phe Glu Asp Ile Pro Lys Glu
660 665 670

Lys Arg Phe Pro Lys Phe Lys Arg His Asp Val Asn Ser Thr Arg Arg
675 680 685

Ala Gln Glu Glu Val Lys Ile Pro Leu Val Asn Ile Ser Leu Leu Pro
690 695 700

Lys Asp Ala Gln Leu Ser Leu Asn Thr Leu Asp Leu Gln Leu Glu His
705 710 715 720

Gly Asp Ile Thr Leu Lys Gly Tyr Asn Leu Ser Lys Ser Ala Leu Leu
725 730 735

Arg Ser Phe Leu Met Asn Ser Gln His Ala Lys Ile Lys Asn Gln Ala
740 745 750

Ile Ile Thr Asp Glu Thr Asn Asp Ser Leu Val Ala Pro Gln Glu Lys
755 760 765

Gln Val His Lys Ser Ile Leu Pro Asn Ser Leu Gly Val Ser Glu Arg
770 775 780

Leu Gln Arg Leu Thr Phe Pro Ala Val Ser Val Lys Val Asn Gly His
785 790 795 800

Asp Gln Gly Gln Asn Pro Pro Leu Asp Leu Glu Thr Thr Ala Arg Phe
805 810 815

Arg Val Glu Thr His Thr Gln Lys Thr Ile Gly Gly Asn Val Thr Lys
820 825 830

Glu Lys Pro Pro Ser Leu Ile Val Pro Leu Glu Ser Gln Met Thr Lys
835 840 845

Glu Lys Lys Ile Thr Gly Lys Glu Lys Glu Asn Ser Arg Met Glu Glu
850 855 860

Asn Ala Glu Asn His Ile Gly Val Thr Glu Val Leu Leu Gly Arg Lys
865 870 875 880

Leu Gln His Tyr Thr Asp Ser Tyr Leu Gly Phe Leu Pro Trp Glu Lys
885 890 895

Lys Lys Tyr Phe Gln Asp Leu Leu Asp Glu Glu Glu Ser Leu Lys Thr
900 905 910

Gln Leu Ala Tyr Phe Thr Asp Ser Lys Asn Thr Gly Arg Gln Leu Lys
915 920 925

<210> 2 <211> 328 <212> PRT <213> Homo sapiens <400> 2

Asp Thr Phe Ala Asp Ser Leu Arg Tyr Val Asn Lys Ile Leu Asn Ser
1 5 10 15

Lys Phe Gly Phe Thr Ser Arg Lys Val Pro Ala His Met Pro His Met
20 25 30

Ile Asp Arg Ile Val Met Gln Glu Leu Gln Asp Met Phe Pro Glu Glu
35 40 45

Phe Asp Lys Thr Ser Phe His Lys Val Arg His Ser Glu Asp Met Gln
50 55 60

Phe Ala Phe Ser Tyr Phe Tyr Tyr Leu Met Ser Ala Val Gln Pro Leu
65 70 75 80

Asn Ile Ser Gln Val Phe Asp Glu Val Asp Thr Asp Gln Ser Gly Val
85 90 95

Leu Ser Asp Arg Glu Ile Arg Thr Leu Ala Thr Arg Ile His Glu Leu
100 105 110

Pro Leu Ser Leu Gln Asp Leu Thr Gly Leu Glu His Met Leu Ile Asn
115 120 125

Cys Ser Lys Met Leu Pro Ala Asp Ile Thr Gln Leu Asn Asn Ile Pro
130 135 140

Pro Thr Gln Glu Ser Tyr Tyr Asp Pro Asn Leu Pro Pro Val Thr Lys
145 150 155 160

Ser Leu Val Thr Asn Cys Lys Pro Val Thr Asp Lys Ile His Lys Ala
165 170 175

Tyr Lys Asp Lys Asn Lys Tyr Arg Phe Glu Ile Met Gly Glu Glu Glu
180 185 190

Ile Ala Phe Lys Met Ile Arg Thr Asn Val Ser His Val Val Gly Gln
195 200 205

Leu Asp Asp Ile Arg Lys Asn Pro Arg Lys Phe Val Cys Leu Asn Asp
210 215 220

Asn Ile Asp His Asn His Lys Asp Ala Gln Thr Val Lys Ala Val Leu
225 230 235 240

Arg Asp Phe Tyr Glu Ser Met Phe Pro Ile Pro Ser Gln Phe Glu Leu
245 250 255

Pro Arg Glu Tyr Arg Asn Arg Phe Leu His Met His Glu Leu Gln Glu
260 265 270

Trp Arg Ala Tyr Arg Asp Lys Leu Lys Phe Trp Thr His Cys Val Leu
275 280 285

Ala Thr Leu Ile Met Phe Thr Ile Phe Ser Phe Phe Ala Glu Gln Leu
290 295 300

Ile Ala Leu Lys Arg Lys Ile Phe Pro Arg Arg Arg Ile His Lys Glu
305 310 315 320

Ala Ser Pro Asn Arg Ile Arg Val
325

<210> 3 <211> 305 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> (1)..(24)
<223>

<400> 3

Met Ala Ala Gly Leu Ala Arg Leu Leu Leu Leu Gly Leu Ser Ala
1 5 10 15

Gly Gly Pro Ala Pro Ala Gly Ala Ala Lys Met Lys Val Val Glu Glu
20 25 30

Pro Asn Ala Phe Gly Val Asn Asn Pro Phe Leu Pro Gln Ala Ser Arg
35 40 45

Leu Gln Ala Lys Arg Asp Pro Ser Pro Val Ser Gly Pro Val His Leu
50 55 60

Phe Arg Leu Ser Gly Lys Cys Phe Ser Leu Val Glu Ser Thr Tyr Lys
65 70 75 80

Tyr Glu Phe Cys Pro Phe His Asn Val Thr Gln His Glu Gln Thr Phe
85 90 95

Arg Trp Asn Ala Tyr Ser Gly Ile Leu Gly Ile Trp His Glu Trp Glu
100 105 110

Ile Ala Asn Asn Thr Phe Thr Gly Met Trp Met Arg Asp Gly Asp Ala
115 120 125

Cys Arg Ser Arg Ser Arg Gln Ser Lys Val Glu Leu Ala Cys Gly Lys
130 135 140

Ser Asn Arg Leu Ala His Val Ser Glu Pro Ser Thr Cys Val Tyr Ala
145 150 155 160

Leu Thr Phe Glu Thr Pro Leu Val Cys His Pro His Ala Leu Leu Val
165 170 175

Tyr Pro Thr Leu Pro Glu Ala Leu Gln Arg Gln Trp Asp Gln Val Glu
180 185 190

Gln Asp Leu Ala Asp Glu Leu Ile Thr Pro Gln Gly His Glu Lys Leu
195 200 205

Leu Arg Thr Leu Phe Glu Asp Ala Gly Tyr Leu Lys Thr Pro Glu Glu
210 215 220

Asn	Glu	Pro	Thr	Gln	Leu	Glu	Gly	Gly	Pro	Asp	Ser	Leu	Gly	Phe	Glu
225					230					235					240

Thr Leu Glu Asn Cys Arg Lys Ala His Lys Glu Leu Ser Lys Glu Ile
245 250 255

Lys Arg Leu Lys Gly Leu Leu Thr Gln His Gly Ile Pro Tyr Thr Arg
260 265 270

Pro Thr Glu Thr Ser Asn Leu Glu His Leu Gly His Glu Thr Pro Arg
..... 275 280 285

Ala **Lys** Ser Pro Glu Gln Leu Arg Gly Asp Pro Gly Leu Arg Gly Ser
290 295 300

Leu 305

<210> 4 <211> 5597 <212> DNA <213> Homo sapiens <400> 4
cgaggccgag cgggcgtccg tcgcccggac tgcaatgac ggcgcggga ggctgtgacc 60
tgcgcggcggc ggccccaccg gggccctgaa atggcggttc gctgaggcg gggcgccggc 120
ggccgcgtcag gctcctcgaa gcgtggcgta gcggtaagg ggtgtatgtt ttcaagctcc 180
tgcagagaca aacctatacc tgcctgtccc acaggatgg gctctacgtg tgcttcttg 240
gcgtcggttgtt caccatcgta tccgccttcc agttcggaga ggtgggtctg gaatggagcc 300
gagatcaata ccatgttttgc ttgtatttc atagagacaa tattgttggaa aagtcccttc 360
agaatcggtt ttgtctgccc atgccgatttgc acgttggttt cacctgggtg aatggcacat 420
atcttgaact actgaaggaa ctacagcagg tcagagaaca gatggaggag gagcagaaag 480
caatgagaga aatccttggg aaaaacacaa cggAACCTAC taagaagagt gagaagcagt 540
tagagtgttt gctaacacac tgcattaaagg tgccaatgct tgtactggac ccagccctgc 600
cagccaaacat caccctgaag gacgtgccat ctcttttatcc ttctttcat tctgccagtg 660
acattttcaa tggatgttggaa gatgccact ctggactgct taaaggaaat agcagacaga 720
cagttatggag ggggtacttg acaacagata aagaagtccc tggatttagtg ctaatgcaag 780
atttggcttt cctgagtgaa ttccaccaa cattcaagga aacaatcaa cttaaaaacaa 840
900

aattgccaga aaatcttcc tctaaagtca aactgttgca gttgtattca gaggccagtg 960
tagcgcttct aaaactgaat aaccccaagg atttcaaga attgaataag caaactaaga 1020
agaacatgac cattgatgga aaagaactga ccataagtcc tgcatattta ttatggatc 1080
tgagcgccat cagccagtct aagcaggatg aagacatctc tgccagtcgt tttgaagata 1140
acgaagaact gaggtactca ttgcgatcta tcgagaggca tgcaccatgg gttcggaata 1200
ttttcattgt caccaacggg cagattccat cctggctgaa ccttgacaat cctcgagtga 1260
caatagtaac acaccaggat gttttcgaa atttgagcca cttgcctacc tttagttcac 1320
ctgctattga aagtcacatt catcgcatcg aagggtgtc ccagaagttt atttacctaa 1380
atgatgatgt catgtttggg aaggatgtct ggccagatga ttttacagt cactccaaag 1440
gccagaaggt ttatttaca tggcctgtgc caaactgtgc cgagggctgc ccaggttcct 1500
ggattaagga tggctattgt gacaaggctt gtaataattc agcctgcgtat tgggatggta 1560
gggat~~t~~gctc tggaaacagt ggagggagtc gctatattgc aggagggtgaa ggtactggga 1620
gtat~~t~~ggagt tggacacccc tggcagtttgc gtggaggaat aaacagtgtc tcttactgtat 1680
atcaggatg tgcgaattcc tggctcgctg ataagttctg tgaccaagca tgcaatgtct 1740
tgt~~t~~gtgg gtttgcgttgc ggcgactgtg ggcaagatca ttttcatgaa ttgtataaaag 1800
tgat~~t~~ttct cccaaaccag actcaactata ttattccaaa aggtgaatgc ctgccttatt 1860
tcag~~t~~ttgc agaagtagcc aaaagaggag ttgaaggtgc ctatagtgac aatccaataa 1920
ttcgacatgc ttctattgcc aacaagtggaa aaaccatcca cctcataatg cacagtggaa 1980
tgaat~~t~~ccac cacaatacat tttaatctca cgtttcaaaa tacaaacgtat gaagagttca 2040
aaat~~t~~cgat aacagtggag gtggacacaa gggagggacc aaaactgaat tctacggccc 2100
agaagggta cgaaaattta gttagtccc taacacttct tccagaggcg gaaatccctt 2160
ttgaggatat tcccaaagaa aaacgcttcc cgaagtttaa gagacatgtat gttaactcaa 2220
caaggagagc ccaggaagag gtgaaaattc ccctggtaaa tatttcactc cttccaaaag 2280
acgcccagtt gagtctcaat accttggatt tgcaactggaa acatggagac atcactttga 2340
aaggatacaa tttgtccaag tcagccttgc tgagatcatt tctgtatgaac tcacagcatg 2400
ctaaaataaa aaatcaagct ataataacag atgaaacaaa tgacagtttgc gtggctccac 2460
aggaaaaaca gttcataaaa agcatcttgc caaacagctt aggagtgtct gaaagattgc 2520
agaggttgac ttttcctgca gtgagtgtaa aagtgaatgg tcatgaccag ggtcagaatc 2580
caccctgga cttggagacc acagcaagat ttagagtggaa aactcacacc caaaaaacca 2640
taggcggaaa tgtgacaaaaa gaaaagcccc catctctgat tggccactg gaaagccaga 2700
tgacaaaaga aaagaaaatc acagggaaag aaaaagagaa cagttagaatg gaggaaaatg 2760

ctgaaaatca cataggcgtt actgaagtgt tacttggaaag aaagctgcag cattacacag 2820
atagttactt gggcttttg ccatggaga aaaaaaaagta tttccaagat cttctcgacg 2880
aagaagagtc attgaagaca caattggcat acttcactga tagcaaaaat actgggaggc 2940
aactaaaaga tacatggca gattccctca gatatgtaaa taaaattcta aatagcaagt 3000
ttggattcac atcgcgaaa gtccctgctc acatgcctca catgattgac cgattgtta 3060
tgcaagaact gcaagatatg ttcccgtaaag aatttgacaa gacgtcattt cacaaagtgc 3120
gccattctga ggatatgcag tttgccttct cttatttta ttatctcatg agtgcagtgc 3180
agccactgaa tatatctcaa gtcttgatg aagttgatac agatcaatct ggtgtcttgt 3240
ctgacagaga aatccgaaca ctggctacca gaattcacga actgccgtta agtttgcagg 3300
atttgacagg tctggAACAC atgctaataa attgctcaaa aatgcttcct gctgatata 3360
cgtagctaaa taatattcca ccaactcagg aatcctacta tgatccaaac ctgccaccgg 3420
tcactaaaag tcttagtaaca aactgtaaac cagtaactga caaaatccac aaagcatata 3480
aggaaaaaaa caaatataagg tttgaaatca tggagaaga agaaatcgct tttaaaatga 3540
ttccatccaa cgtttctcat gtggggcc agttggatga cataagaaaa aaccctagga 3600
agtttttttg cctgaatgac aacattgacc acaatcataa agatgctcag acagtgaagg 3660
ctgtttctcag ggacttctat gaatccatgt tccccatacc ttcccaattt gaactgcca 3720
gagagttatcg aaaccgttcc ttccatgc atgagctgca ggaatggagg gcttatcgag 3780
acaatttgaa gttttggacc cattgtgtac tagcaacatt gattatgttt actatattct 3840
catttttgc tgagcagtta attgcactta agcggaaagat atttcccaga aggaggatac 3900
acaagaagc tagtcccaat cgaatcagag tatagaagat ctccatttga aaaccatcta 3960
cctcagcatt tactgagcat tttaaaactc agttcacag agatgtctt gtgatgtgat 4020
gcttagcagt ttggccgaa gaaggaaaat atccagtacc atgctgttt gtggcatgaa 4080
tatagccccac tgacttagaa ttatccaacc aacccactga aaacttgtt gtcgagcagc 4140
tctgaactga ttttactttt aaagaatttg ctcatggacc tgtcatcctt tttataaaaa 4200
ggctcactga caagagacag ctgttaattt cccacagcaa tcattgcaga ctaactttat 4260
taggagaagc ctatgccagc tgggagtgtat tgctaaagagg ctccagtctt tgcattccaa 4320
agcctttgc taaagtttg cactttttt ttttcatttc ccattttaa gtagttacta 4380
agttaacttag ttattcttgc ttctgagttt aacgaattgg gatgtctaaa cctatTTTA 4440
tagatgttat ttaaataatg cagcaatatac acctcttatt gacaataacct aaattatgag 4500
ttttattaaat atttaagact gtaaatggtc ttaaaccact aactactgaa gagctcaatg 4560
attgacatct gaaatgctt gtaattatttgc acctcagcccc ctaagaatgc tatgatttca 4620

cgtgcaggc taatttcaac aggctagagt tagtactact taccagatgt aattatgtt 4680
 tggaaatgta catattcaaa cagaagtgcc tcattttaga aatgagtagt gctgatggca 4740
 ctggcacatt acagtggtgt cttgttaat actcatttgt atattccagt agctatctct 4800
 ctcagtttgt ttttgataga acagaggcca gcaaacttgc tttgtaaaag gctggtagt 4860
 aaattattgc aggccacctg tgtctttgtc atacattctt cttgctgttgc ttttagttgt 4920
 ttttttcaa acaaccctct aaaaatgtaa aaaccatgtt tagcttgcag ctgtacaaaa 4980
 actgcccacc agccagatgt gaccctcagg ccatcatttgc ccaatcactg agaattattt 5040
 ttgttggtgt tggttgtt gttttgaga cagagtctct ctctgttgc caggctggag 5100
 tgcagtggcg caatctcagc tcactgcaac ctccgcctcc cgggttcaag cagttctgtc 5160
 tcagccttct gagtagctgg gactacaggt gcatgccacc acaccctgt aatttttgta 5220
 ttttagtag agacgggggt tccaccatat tggtcaggct tatcttgaac tcctgacctc 5280
 aggtatcca cctgcctctg cctccaaag tgctgagatt acaggcataa gccagtgcac 5340
 ccaggccgaga attagttttt ttatgtatgg ttaaaccttgc gctgttagcc atattttatg 5400
 tcataataca atggattttgt gaagagcaga ttccatgagt aactctgaca ggtatttttag 5460
 atcatgatct caacaatatt cctccaaat ggcatacatac ttttgtacaa agaacttgaa 5520
 atgttaatac tgtgtttgtc ctgttaagagt tgtgttatttc aaaaactgaa atctcataaaa 5580
 aagttaattt ttgaaaaa 5597

<210> 5 <211> 1219 <212> DNA <213> Homo sapiens <220> <221> sig_peptide <222>
 (24) (95) <223>

<400> 5
 gtaagacgca ggtgcgcggc tcgatggcg cggggctggc gcggctcctg ttgctcctcg 60
 ggctctcgcc cggcgggccc ggcgcggcag gtgcagcgaa gatgaaggtg gtggaggagc 120
 ccaacgcgtt tgggttgaac aaccgttct tgcctcaggc cagtcgcctc caggccaaga 180
 gggatccttc acccgtgtct ggacccgtgc atctcttccg actctcgggc aagtgttca 240
 gcctggtggc gtccacgtac aagtatgagt tctgccccgtt ccacaacgtg acccagcacg 300
 agcagacctt ccgttggAAC gcctacagtgg ggttcctcgg catctggcac gagtgggaga 360
 tcgccaacaa cacccatcgg ggcacgttggc tgaggacgg tgacgcctgc cggtccgg 420
 gccggcagag caaggtggag ctggcgtgtg gaaaaagcaa ccggctggcc catgtgtccg 480
 agccgagcac ctgcgtctat ggcgttgcgt tcgagacccc cctcgtctgc caccccccacg 540
 ccttgcttagt gtacccaaacc ctgcccaggcc ccctgcagcg gcagtggac caggttagagc 600
 aggacccatggc cgttggatgc atcaccatggc agggccatggc gaagttgttggc aggacacttt 660
 ttgaggatgc tggctactta aagacccatggc aagaaaatggc acccaccatggc ctggaggag 720

gtcctgacag cttggggttt gagaccctgg aaaactgcag gaaggctcat aaagaactct 780
 caaaggagat caaaaggctg aaagggttgc tcacccagca cggcatcccc tacacgaggc 840
 ccacagaaac ttccaacttg ggcacttgg gccacgagac gcccagagcc aagtctccag 900
 agcagctgcg gggtagccca ggactgcgtg ggagttgtg accttgggtt gggagagcag 960
 aggtggacgc ggccgagagc cctacagaga agctggctgg taggaccgc aggaccagct 1020
 gaccaggctt gtgctcagag aagcagacaa aacaaagatt caaggttta attaattccc 1080
 atactgataa aaataactcc atgaattctg taaaccattg cataaatgct atagtgtaaa 1140
 aaaatttaaa caagtgttaa cttaaacag ttgcctacaa gtaaatgatt ataaatacta 1200
 aaaaaaaaaa aaaaaaaaaa 1219

<210> 6 <211> 515 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> (1)..(24)
 <223>

<220> <221> PROPEP <222> (25)..(49) <223>
 <400> 6

Met	Ala	Thr	Ser	Thr	Gly	Arg	Trp	Lle	Lle	Lle	Arg	Lle	Ala	Lle	Phe
1							5			10					15

Gly	Phe	Lle	Trp	Glu	Ala	Ser	Gly	Gly	Lle	Asp	Ser	Gly	Ala	Ser	Arg
							20			25				30	

Asp	Asp	Asp	Lle	Lle	Lle	Pro	Tyr	Pro	Arg	Ala	Arg	Ala	Arg	Lle	Pro
							35			40				45	

Arg	Asp	Cys	Thr	Arg	Val	Arg	Ala	Gly	Asn	Arg	Glu	Glu	Ser	Trp	
							50			55				60	

Pro	Pro	Pro	Pro	Ala	Thr	Pro	Gly	Ala	Gly	Gly	Lle	Ala	Val	Arg	Thr
							65			70				75	80

Phe	Val	Ser	His	Phe	Arg	Asp	Arg	Ala	Val	Ala	Gly	His	Lle	Thr	Arg
							85			90				95	

Ala	Val	Glu	Pro	Lle	Arg	Thr	Phe	Ser	Val	Lle	Glu	Pro	Gly	Gly	Pro
							100			105				110	

Gly	Gly	Cys	Ala	Ala	Arg	Arg	Ala	Thr	Val	Glu	Glu	Thr	Ala	Arg	
							115			120				125	

Ala	Ala	Asp	Cys	Arg	Val	Ala	Gln	Asn	Gly	Gly	Phe	Phe	Arg	Met	Asn
							130			135				140	

Ser Gly Glu Cys Leu Gly Asn Val Val Ser Asp Glu Arg Arg Val Ser
145 150 155 160

Ser Ser Gly Gly Leu Gln Asn Ala Gln Phe Gly Ile Arg Arg Asp Gly
165 170 175

Thr Leu Val Thr Gly Tyr Leu Ser Glu Glu Glu Val Leu Asp Thr Glu
180 185 190

Asn Pro Phe Val Gln Leu Leu Ser Gly Val Val Trp Leu Ile Arg Asn
195 200 205

Gly Ser Ile Tyr Ile Asn Glu Ser Gln Ala Thr Glu Cys Asp Glu Thr
210 215 220

Gln Glu Thr Gly Ser Phe Ser Lys Phe Val Asn Val Ile Ser Ala Arg
225 230 235 240

Thr Ala Ile Gly His Asp Arg Lys Gly Gln Leu Val Leu Phe His Ala
245 250 255

Asp Gly His Thr Glu Gln Arg Gly Ile Asn Leu Trp Glu Met Ala Glu
260 265 270

Phe Leu Leu Lys Gln Asp Val Val Asn Ala Ile Asn Leu Asp Gly Gly
275 280 285

Gly Ser Ala Thr Phe Val Leu Asn Gly Thr Leu Ala Ser Tyr Pro Ser
290 295 300

Asp His Cys Gln Asp Asn Met Trp Arg Cys Pro Arg Gln Val Ser Thr
305 310 315 320

Val Val Cys Val His Glu Pro Arg Cys Gln Pro Pro Asp Cys His Gly
325 330 335

His Gly Thr Cys Val Asp Gly His Cys Gln Cys Thr Gly His Phe Trp
340 345 350

Arg Gly Pro Gly Cys Asp Glu Leu Asp Cys Gly Pro Ser Asn Cys Ser
355 360 365

Gln His Gly Leu Cys Thr Glu Thr Gly Cys Arg Cys Asp Ala Gly Trp
370 375 380

Thr Gly Ser Asn Cys Ser Glu Glu Cys Pro Leu Gly Trp His Gly Pro
385 390 395 400

Gly Cys Gln Arg Arg Cys Lys Cys Glu His His Cys Pro Cys Asp Pro
405 410 415

Lys Thr Gly Asn Cys Ser Val Ser Arg Val Lys Gln Cys Leu Gln Pro
420 425 430

Pro Glu Ala Thr Leu Arg Ala Gly Glu Leu Ser Phe Phe Thr Arg Thr
435 440 445

Ala Trp Leu Ala Leu Thr Leu Ala Leu Ala Phe Leu Leu Leu Ile Ser
450 455 460

Ile Ala Ala Asn Leu Ser Leu Leu Ser Arg Ala Glu Arg Asn Arg
465 470 475 480

Arg Leu His Gly Asp Tyr Ala Tyr His Pro Leu Gln Glu Met Asn Gly
485 490 495

Glu Pro Leu Ala Ala Glu Lys Glu Gln Pro Gly Gly Ala His Asn Pro
500 505 510

Phe Lys Asp
515

<210> 7 <211> 2183 <212> DNA <213> Homo sapiens <400> 7
atggcgacccacgggtcg ctggcttctc ctccggcttg cactattcgg cttccctctgg 60
gaagegtccg gcggcctcga ctcggggcc tcccgcacg acgacttgct actgccctat 120
ccacgcgcgc gcgcgcgcct cccccggac tgcacacggg tgccgcgcgg caaccgcgag 180
cacagagtt ggcctccgcc tcccgcgact cccggcgccg gcggtctggc cgtgcgcacc 240
ttcgtgtcgc acttcaggga ccgcgcggtg gccggccacc tgacgcgggc cgttgagccc 300
ctgcgcacct tctcggtgct ggagcccggt ggacccggcg gctgcgcggc gagacgacgc 360
gccaccgtgg aggagacggc gcggcgccgactgcccgtg tcgcccagaa cggcggcttc 420
ttccgcatga actcgggcga gtgcctgggg aacgtggta ggcacgagcg gcgggtgagc 480
agctccgggg ggctgcagaa cgcgcagtgc gggatccgcc ggcacggac cctggtcacc 540
gggtacctgt ctgaggagga ggtgctggac actgagaacc catttgtca gctgctgagt 600
ggggtcgtgt ggctgattcg taatggaagc atctacatca acgagagcca agccacagag 660
tgtgacgaga cacaggagac aggttcctt agcaaatttg tgaatgtgat atcagccagg 720
acggccattg gccacgaccg gaaaggcag ctggtgctct ttcatgcaga cggccatacg 780
gagcagcgtg gcatcaacct gtggaaatg gcgagttcc tgctgaaaca ggacgtggc 840

aacgccccatca	acctggatgg	gggtggctct	gccacccttg	tgctcaacgg	gaccttggcc	900
agttaccctgt	cagatcactg	ccaggacaac	atgtggcgct	gtccccgcca	agtgtccacc	960
gtggtgtgtg	tgcacgaacc	ccgctgccag	ccgcctgact	gccacggcca	cgggacctgc	1020
gtggacgggc	actgccaatg	caccggcac	ttctggcggg	gtcccgctg	tgatgagctg	1080
gactgtggcc	cctctaactg	cagccagcac	ggactgtgca	cgagagaccgg	ctgcccgtgt	1140
gatgcggat	ggaccgggtc	caactgcagt	gaagagtgtc	cccttggctg	gcatggccg	1200
ggctgccaga	ggcgttgtaa	gtgtgagcac	cattgtccct	gtgaccccaa	gactggcaac	1260
tgcagcgtct	ccagagtaaa	gcagtgtctc	cagccacctg	aagccaccct	gagggcgaaa	1320
gaactctcct	ttttcaccag	gaccgcctgg	ctagccctca	ccctggcgct	ggcccttcctc	1380
ctgctgatca	gcattgcagc	aaacccgtcc	ttgctcctgt	ccagagcaga	gaggaaccgg	1440
cgcctgcatg	gggactatgc	ataccacccg	ctgcaggaga	tgaacgggaa	gcctctggcc	1500
gcagagaagg	agcagccagg	gggcgcac	aacccttca	aggactgaag	cctcaagctg	1560
cccgaaaaatgg	cacgtcgca	aagcttgttt	ccccacggtc	tggcttctgc	agggggaaatt	1620
tcaatggccac	tggcgtggac	catctgggtg	tcctcaatgg	ccctgtggg	gcagccaagt	1680
tcctatagc	acttgtgcct	cagccctca	cctggccacc	tgccaggggca	cctgcaaccc	1740
tagcaatacc	atgctcgctg	gagaggctca	gctgcctgt	tctgcctgc	ctgtgtctgc	1800
tgcggagaag	cccggtcccc	cgggagggtct	gccgcactgc	caaagagtct	ccctcctcct	1860
ggggaaaaatgggg	ctgccaacga	accagactca	gtgaccacgt	catgacagaa	cagcacatcc	1920
tggccagcac	ccctggctgg	agtgggttaa	agggacgagt	ctgccttcct	ggctgtgaca	1980
cggggccctt	tttctacaga	cctcatca	ggatttgcca	actagaattc	gatttcctgt	2040
cataggaagc	tccttggaaag	aaggatggg	gggatgaaat	catgtttaca	gacctgtttt	2100
gtcatcctgc	tgccaagaag	tttttaatc	acttgaataa	attgatataa	taaaaggagc	2160
caccaggtgg	tgtgtggatt	ctg				2183

<210> 8 <211> 328 <212> PRT <213> Mus musculus <400> 8

Asp	Thr	Phe	Ala	Asp	Ser	Leu	Arg	Tyr	Val	Asn	Lys	Ile	Leu	Asn	Ser
1				5					10			15			

Lys	Phe	Gly	Phe	Thr	Ser	Arg	Lys	Val	Pro	Ala	His	Met	Pro	His	Met
20							25					30			

Ile	Asp	Arg	Ile	Val	Met	Gln	Glu	Leu	Gln	Asp	Met	Phe	Pro	Glu	Glu
35						40				45					

Phe Asp Lys Thr Ser Phe His Lys Val Arg His Ser Glu Asp Met Gln

50

55

60

Phe Ala Phe Ser Tyr Phe Tyr Tyr Leu Met Ser Ala Val Gln Pro Leu
65 70 75 80

Asn Ile Ser Gln Val Phe His Glu Val Asp Thr Asp Gln Ser Gly Val
85 90 95

Leu Ser Asp Arg Glu Ile Arg Thr Leu Ala Thr Arg Ile His Asp Leu
100 105 110

Pro Leu Ser Leu Gln Asp Leu Thr Gly Leu Glu His Met Leu Ile Asn
115 120 125

Cys Ser Lys Met Leu Pro Ala Asn Ile Thr Gln Leu Asn Asn Ile Pro
130 135 140

Pro Thr Gln Glu Ala Tyr Tyr Asp Pro Asn Leu Pro Pro Val Thr Lys
145 150 155 160

Ser Leu Val Thr Asn Cys Lys Pro Val Thr Asp Lys Ile His Lys Ala
165 170 175

Tyr Lys Asp Lys Asn Lys Tyr Arg Phe Glu Ile Met Gly Glu Glu
180 185 190

Ile Ala Phe Lys Met Ile Arg Thr Asn Val Ser His Val Val Gly Gln
195 200 205

Leu Asp Asp Ile Arg Lys Asn Pro Arg Lys Phe Val Cys Leu Asn Asp
210 215 220

Asn Ile Asp His Asn His Lys Asp Ala Arg Thr Val Lys Ala Val Leu
225 230 235 240

Arg Asp Phe Tyr Glu Ser Met Phe Pro Ile Pro Ser Gln Phe Glu Leu
245 250 255

Pro Arg Glu Tyr Arg Asn Arg Phe Leu His Met His Glu Leu Gln Glu
260 265 270

Trp Arg Ala Tyr Arg Asp Lys Leu Lys Phe Trp Thr His Cys Val Leu
275 280 285

Ala Thr Leu Ile Ile Phe Thr Ile Phe Ser Phe Phe Ala Glu Gln Ile
290 295 300

Ile Ala Leu Lys Arg Lys Ile Phe Pro Arg Arg Arg Ile His Lys Glu
305 310 315 320

Ala Ser Pro Asp Arg Ile Arg Val
325

<210> 9 <211> 307 <212> PRT <213> Mus musculus <400> 9

Met Ala Gly Arg Leu Ala Gly Phe Leu Met Leu Leu Gly Leu Ala Ser
1 5 10 15

Gln Gly Pro Ala Pro Ala Cys Ala Gly Lys Met Lys Val Val Glu Glu
20 25 30

Pro Asn Thr Phe Gly Leu Asn Asn Pro Phe Leu Pro Gln Ala Ser Arg
35 40 45

Leu Gln Pro Lys Arg Glu Pro Ser Ala Val Ser Gly Pro Leu His Leu
50 55 60

Phe Arg Leu Ala Gly Lys Cys Phe Ser Leu Val Glu Ser Thr Tyr Lys
65 70 75 80

Tyr Leu Phe Cys Pro Phe His Asn Val Thr Gln His Glu Gln Thr Phe
85 90 95

Arg Trp Asn Ala Tyr Ser Gly Ile Leu Gly Ile Trp His Glu Trp Glu
100 105 110

Ile Ile Asn Asn Thr Phe Lys Gly Met Trp Met Thr Asp Gly Asp Ser
115 120 125

Cys His Ser Arg Ser Arg Gln Ser Lys Val Glu Leu Thr Cys Gly Lys
130 135 140

Ile Asn Arg Leu Ala His Val Ser Glu Pro Ser Thr Cys Val Tyr Ala
145 150 155 160

Leu Thr Phe Glu Thr Pro Leu Val Cys His Pro His Ser Leu Leu Val
165 170 175

Tyr Pro Thr Leu Ser Glu Ala Leu Gln Gln Arg Leu Asp Gln Val Glu
180 185 190

Gln Asp Leu Ala Asp Glu Leu Ile Thr Pro Gln Gly Tyr Glu Lys Leu
195 200 205

Leu Arg Val Leu Phe Glu Asp Ala Gly Tyr Leu Lys Val Pro Gly Glu
210 215 220

Thr His Pro Thr Gln Leu Ala Gly Gly Ser Lys Gly Leu Gly Leu Glu
225 230 235 240

Thr Leu Asp Asn Cys Arg Lys Ala His Ala Glu Leu Ser Gln Glu Val
245 250 255

Gln Arg Leu Thr Ser Leu Leu Gln Gln His Gly Ile Pro His Thr Gln
260 265 270

Pro Thr Glu Thr Thr His Ser Gln His Leu Gly Gln Gln Leu Pro Ile
275 280 285

Gly Ala Ile Ala Ala Glu His Leu Arg Ser Asp Pro Gly Leu Arg Gly
290 295 300

Asn Ile Leu
305

<210> 10 <211> 2070 <212> DNA <213> Mus musculus <220> <221> misc_feature <222>
(186). (186) <223> n is a, t, g, or c

<40> 10
gtgagaccct aggagcaatg gccgggcggc tggctggctt cctgatgttg ctggggctcg 60
cgtagggg gccccggccg gcatgtgccg ggaagatgaa ggtgggtggag gagcctaaca 120
cattegggtg agcggatcac ggtcctgcgg cttggggacc gagcctggct ggttcttctg 180
acccattcaa ttccataggc tgaataaccc gttcttgccc caggcaagcc gccttcagcc 240
caagagagag cttcagctg tatcccgcaa attaagagaa attaatttca aacgatttag 300
aaagtattct agccaggcga ttagtggcgca cgccttaat cccagcactt gggaggcaga 360
ggcaggcaga tttccgagtt caaggccatc agaactgact gtacatcttta gtacagttta 420
gcatgtgatc agagatctga atcacaaagc tgggcctgctg tggtaaagca ggtcctttct 480
aataaggttg cagtttagat tttctttctt aactctttta ttctttgaga cagggtttct 540
caacagtggg tgcctggaa ctcacttttgc taaaccagggc tgcccttaaa ctcacaaagc 600
tctgtcagcc tctgcctcct gagtgctggg attaaaggc cacaccgtt tcattcattt 660
ttaatttttgc agactgggtc tcattatgtg gcccataaca gatactgaga gcctcctcca 720
caggaacaag catgggaatc ctgccacaga caaccaggc tgggtctgg agatgagttt 780
gtcagtcctt aggagttagg tcagcctgcc tctgcattcc caataatttgc ggaaaggcgc 840
ttggggcggtt ctggccttgc tggtagtgc ctcctgcac accttagctt ccagcttttag 900

gggtagcaga gtttataccg atgctaaact gctgttgt tcttccccag ggcccctgca 960
 tctcttcaga cttgctggca agtgcttag cctagtggag tccacgttag tgccaggctg 1020
 gtgggtggag tggcgaggat ctgcagagct cctgatgtgc ctgtgttcc caggtacaag 1080
 tatgaattct gcccttcca caacgtcacc cagcacgagc agaccttccg ctggaatgcc 1140
 tacagcggga tccttggcat ctggcatgag tggaaatca tcaacaatac cttcaagggc 1200
 atgtgatgta ctgatgggaa ctccctgac tcccgagcc ggcagagcaa ggtggagctc 1260
 acctgtggaa agatcaaccg actggccac gtgtctgagc caagcacctg tgtctatgca 1320
 ttgacattcg agaccctct tggccat cccacttt tgtagtgta tccaaactctg 1380
 tcagaagccc tgcagcagcc ctggaccag gtggAACAGG acctggcaga tgaactgatc 1440
 acaccacagg gctatgagaa gttgctaagg gtacttttg aggatgctgg ctactaaag 1500
 gtcccaggag aaacccatcc caccagctg gcaggaggtt ccaagggcct ggggctttag 1560
 actctggaca actgttagaaa ggcacatgca gagctgtcac aggaggtaca aagactgacg 1620
 agtctgc aacagcatgg aatccccac actcagccca caggtcagtc tgcctgcct 1680
 ggtcagctgc cagccactcc gggcctgca gcactggggc agatcttat tgctaccat 1740
 tctggcagaa accactact ctcagcacct gggtcagcag ctccccatag gtgcaatcgc 1800
 agcagagcat ctgcggagtg acccaggact acgtggAACAC atcctgttag caaggtggcc 1860
 acgaagaata gaaatatcct gagcttttag tgcctttca cagagtgaac aaaactggtg 1920
 tggtagac acggcttctt ttggcatatt cttagatcaga cagtgtaact gacaaacaag 1980
 agggactgc tggccagcct ttgttgtgcc caaagatcca gacaaaataa agattcaaag 2040
 ttttattaa aaaaaaaaaaa aaaggaattc 2070

<210> 11 <211> 113 <212> PRT <213> Rattus rattus <400> 11

Phe	Pro	Pro	Thr	Phe	Lys	Glu	Thr	Ser	Gln	Leu	Lys	Thr	Lys	Leu	Pro
1				5				10				15			

Glu	Asn	Leu	Ser	Ser	Lys	Ile	Lys	Leu	Leu	Gln	Leu	Tyr	Ser	Glu	Ala
					20							30			

Ser	Val	Ala	Leu	Leu	Lys	Leu	Asn	Asn	Pro	Lys	Gly	Phe	Pro	Glu	Leu
					35			40			45				

Asn	Lys	Gln	Thr	Lys	Lys	Asn	Met	Ser	Ile	Ser	Gly	Lys	Glu	Leu	Ala
					50			55			60				

Ile	Ser	Pro	Ala	Tyr	Leu	Leu	Trp	Asp	Leu	Ser	Ala	Ile	Ser	Gln	Ser
					65			70			75			80	

Lys Gln Asp Glu Asp Val Ser Ala Ser Arg Phe Glu Asp Asn Glu Glu
85 90 95

Leu Arg Tyr Ser Leu Arg Ser Ile Glu Arg His Asp Ser Met Ser Pro
100 105 110

Leu

<210> 12 <211> 460 <212> DNA <213> Rattus ratus <400> 12
atccacca acattcaagg agacagacta gctgaagaca aaactgccag aaaatcttc 60
ttctaaaata aaactgttgc agctgtactc ggaggccagc gtcgctcttc tgaaattgaa 120
taaccggaaa gtttccccg agctgaacaa gcagaccaag aagaacatga gcatcagtgg 180
gaaggaactg gccatcagcc ctgccttatct gctgtggac ctgagcgcca tcagccagtc 240
caagcaggat gaagatgtgt ctgcagccg cttcgaggat aacgaagagc tgaggtactc 300
actgagatct atcgagagac atgattccat gagtccttta tgaattctgg ccatatcttc 360
aatdatgatc tcagtagtat tcctctgaaa tggcacacat ttttctaattg agaacttgaa 420
atgttaatat tgtgttttgt ctgttaattt tgtgtatttc 460

<210> 13 <211> 502 <212> PRT <213> Drosophila melanogaster <400> 13

Gly Thr Arg Arg Phe Asp Asp Lys Asn Glu Leu Arg Tyr Ser Leu Arg
1 5 10 15

Ser Ser Glu Lys His Ala Ala Trp Ile Arg His Val Tyr Ile Val Thr
20 25 30

Asn Gly Gln Ile Pro Ser Trp Leu Asp Leu Ser Tyr Glu Arg Val Thr
35 40 45

Val Val Pro His Glu Val Leu Ala Pro Asp Pro Asp Gln Leu Pro Thr
50 55 60

Phe Ser Ser Ser Ala Ile Glu Thr Phe Leu His Arg Ile Pro Lys Leu
65 70 75 80

Ser Lys Arg Phe Leu Tyr Leu Asn Asp Asp Ile Phe Leu Gly Ala Pro
85 90 95

Leu Tyr Pro Glu Asp Leu Tyr Thr Glu Ala Glu Gly Val Arg Val Tyr
100 105 110

Gln Ala Trp Met Val Pro Gly Cys Ala Leu Asp Cys Pro Trp Thr Tyr
115 120 125

Ile Gly Asp Gly Ala Cys Asp Arg His Cys Asn Ile Asp Ala Cys Gln
130 135 140

Phe Asp Gly Gly Asp Cys Ser Glu Thr Gly Pro Ala Ser Asp Ala His
145 150 155 160

Val Ile Pro Pro Ser Lys Glu Val Leu Glu Val Gln Pro Ala Ala Val
165 170 175

Pro Gln Ser Arg Val His Arg Phe Pro Gln Met Gly Leu Gln Lys Leu
180 185 190

Phe Arg Arg Ser Ser Ala Asn Phe Lys Asp Val Met Arg His Arg Asn
195 200 205

Val Ser Thr Leu Lys Glu Leu Arg Arg Ile Val Glu Arg Phe Asn Lys
210 215 220

Ala His Leu Met Ser Leu Asn Pro Glu Leu Glu Thr Ser Ser Ser Glu
225 230 235 240

Pro Gln Thr Thr Gln Arg His Gly Leu Arg Lys Glu Asp Phe Lys Ser
245 250 255

Ser Thr Asp Ile Tyr Ser His Ser Leu Ile Ala Thr Asn Met Leu Leu
260 265 270

Asn Arg Ala Tyr Gly Phe Lys Ala Arg His Val Leu Ala His Val Gly
275 280 285

Phe Leu Ile Asp Lys Asp Ile Val Glu Ala Met Gln Arg Arg Phe His
290 295 300

Gln Gln Ile Leu Asp Thr Ala His Gln Arg Phe Arg Ala Pro Thr Asp
305 310 315 320

Leu Gln Tyr Ala Phe Ala Tyr Tyr Ser Phe Leu Met Ser Glu Thr Lys
325 330 335

Val Met Ser Val Glu Glu Ile Phe Asp Glu Phe Asp Thr Asp Gly Ser
340 345 350

Ala Thr Trp Ser Asp Arg Glu Val Arg Thr Phe Leu Thr Arg Ile Tyr
355 360 365

Gln Pro Pro Leu Asp Trp Ser Ala Met Arg Tyr Phe Glu Glu Val Val

370

375

380

Gln Asn Cys Thr Arg Asn Leu Gly Met His Leu Lys Val Asp Thr Val
 385 390 395 400

Glu His Ser Thr Leu Val Tyr Glu Arg Tyr Glu Asp Ser Asn Leu Pro
 405 410 415

Thr Ile Thr Arg Asp Leu Val Val Arg Cys Pro Leu Leu Ala Glu Ala
 420 425 430

Leu Ala Ala Asn Phe Ala Val Arg Pro Lys Tyr Asn Phe His Val Ser
 435 440 445

Pro Lys Arg Thr Ser His Ser Asn Phe Met Met Leu Thr Ser Asn Leu
 450 455 460

Thr Glu Val Val Glu Ser Leu Asp Arg Leu Arg Arg Asn Pro Arg Lys
 465 470 475 480

Phe Asn Cys Ile Asn Asp Asn Leu Asp Ala Asn Arg Gly Glu Asp Asn
 485 490 495

Glu Asp Gly Ala Pro Ser
 500

<210> 14 <211> 9792 <212> DNA <213> Mus musculus <400> 14
 caggatcggtt acttactata acacaggaca cttgtcacct gaaagcttga gtcagtca
 60
 tattatggtc tgtgtgtgag atacaagtgg gtgcataggc agtgggtgcac acatgttagat
 120
 cagactttctt acagccaattt ctcttcttcc tcctctccat gggttcaggg tcttcatttc
 180
 aggttgcaca gcgagttcat ttatgtgctg tgccatctcg ccagtcgttc ctatatccta
 240
 gagggaaaact agtttcttctt ggtcaagagg aggaaagagt ggagacctgt cattctaaga
 300
 tacccaaaac agggccaggt tggggacctg tgccttaat cccatcaattt ggggattagg
 360
 tagaaagcaag aggctctaga ccagtctaca cactgaattt caagccagcc tacctataaa
 420
 tcagagaccc tgcttcaaaa ataaaaattaa acaaaaaacga agataaacca agctacccaa
 480
 aacacaagag ttaatccagt cagacaggc tagcaaattgc taggatgaaa ggtgtgcacc
 540
 accacagatg ggctgcaagc ctctctctct ctctctctct ctctctctct ctcgtttgtt
 600
 ttgtttttcg agacaagggtt tctctgtgta gccctggctg tcctggaact cactctgttag
 660
 accaggctgg cctcgagctt cactctaaa agttccttctt cctccctc catctttcc
 720
 tcctcttacc ccctaggctc ctttcctct tcttgtctt cagataaaagt ctcaagttagt
 780

ccagactggc ctcaaactaa ctaactagcc aagaatagcc aacctctt aa cttccgattc 840
tcctgcctct gctgaatgct ggggttggc cgtggccac cacttctgg ttttgcaaca 900
cagaaggAAC tagggcttA agcacgagAA gcaagttctG tacagacttA cacaggcccA 960
gcatactgttc ttgcaatttt ctgttaAGTTT gacataataA gagaataAAA agctatctat 1020
ctcccttcca gccttaccct ctctgatggA attcgaatgc gtaatcaaAG cacccaaACAG 1080
cctggcctga aatcacgtgg ggcaagcccA cgtgaccggA gcaccaatcc aatatggcgg 1140
cgcccaggGG gcccgggCTG ttcctcatac ccgcgcgtGT cggcttactC ggggtggcgt 1200
ggtgcaGCTT aagcttcggg tgagtgcAAG ccgcccgggC cagcctggct ggggtccacc 1260
tttcctgagc gctctcaggc acagccctcc gacctcacgA tcgcocccgtc cctgcagggt 1320
ttcccgac gatgacctgc tgctgccttA cccactagcg cgcaGacgtc cctcgcgaga 1380
ctgcccgg gtgcgtcag gtagccccA gcaaggagAGC tggcctccgc cacctctggc 1440
cacccacgaa ccccgggcgc caagccacca cgcggccgtg cgcaccttcg tgtcgcactt 1500
cgaggggcgc ggggtggccg gccacctgac ggggtgcgc gatccctac gcactttctc 1560
ggtgctggag cccggaggAG ccgggggCTG cggcggcaga agcgcgcgg ctactgtgga 1620
ggacacagcc gtccgggccc gttgccgcat cgctcagaAC ggtggcttct tccgcattgag 1680
cactcgag tgcttgggA acgtggtgag cgacgggcgg ctggtgagca gctcaggGGG 1740
actcgacgaa ggcgcgttcg gtatccgacg cgatggAAAC atagtcacccg ggtgaggagg 1800
caggcagccc cggggctgtA gagggcaaAG ggtctctgtat gttcttcag agccatgcct 1860
ccgactccag gtccctaacc aaacttcctg tctttcttct tccgagtaat gacgctgaca 1920
ccttccttcc tttaagtttA ttcatgtgcc actgaataat ctgtgatcag ggcgtgtgt 1980
gggacttggg gaggcgaccg tgagcctgaa cacagttgt ggcctagtGA actttgtgtA 2040
gtatttagaga aacatttcgt gttcaacgaa gccatggAAAC caattggAAA tagtgttagAG 2100
tttatggagc agtcccagac agctagctgg aggcccttttG ctgtcctgtat AAAAATCCAG 2160
gttagacaag gagcttggT agggcagcct ttggaaAGTT ctgtgtttct tgaaatttGA 2220
cagcagccag agttgacAGC aggcaggcag gagtagaAGG tagcgcacatc tgggtttcca 2280
gttctcttcc aagggtccgt ttttgccAA ggctgggAAAG tgggcttcc ccaactcttc 2340
tcagcccttgc ttgcAattt ctggcctgc ccatgtatct gggttctcat cttcaacat 2400
cagccagtgt caccactgtt gatcttaggt tttcacagat cctaaaACTT ctgcgcgtGA 2460
ccagcgcctg cagttctct tccctggctc tgccttcaa cctctctaca ttccagccat 2520
ctcccttagct cctctcttgg actcccttcc agacttggT tgatgtcac tgtctcagAA 2580
cccctattgc tccttacAA tggtccactg acctgcac ctcctacttt ttttttttAA 2640

atgtgtgtgc atctgtgtgt gcctgagggg agaccagagt ttgatttcaa atgtttcta	2700
ttctcttttc ctccatctta ttttctaaca caaaatctga atctagagat cactggttca	2760
gttaacctgg ctggccggta aaccccaggg ccctcctgct tccctctgtc cacccccaccc	2820
cagcactaag gctacagtgt gtgctgttcc agccagctt ctcatgggtg ctgaggatct	2880
gaacgcaggt tcacatgtgt ggtggaaagg cttttaccca atgctctgtc tttccagccc	2940
atcctccctt gttaactgcc aaacagctgc ctatcctgtc catgttagc tcactgtac	3000
ttcttttatt atgaggttag cacaatgttac taaagatggc aagagaagaa ggttcttca	3060
tttgttcata gctatagctc aggaggaatt ttatccctg tgttaggcaca caggagagca	3120
tcttcagct cacactccaa ctgaactaac tgaacacccctg cctatatatc caaagaaggg	3180
gtgtcagtgc caatcacagc acacccctcag tgcaaattgaa ggtttgggtt tgccaccaatc	3240
acagccttgc ctcttttagc atgcatcaca acaaagtccct cctagactat cagggatat	3300
gtctcttgg ccaaggttagg aatagttgca gtgtcatctg gcacaaacca tttcaaacgg	3360
ccttgcgttag gttatgcctt cgggaacctg aagtctttgt gtgggtgtct ccaagtgtct	3420
gtggagctcc aggcggctgg tgctgacaga cgctttgtct agttggctgt ttgactttg	3480
cttaaggcagc cagggcagta gagtctaaca gatgctaatt tcaggatcag gaagactgt	3540
aaaaatgag catcaagaag cccctggta ccaaagctgc tcttgccaat gagtgaacct	3600
ctgcattccc gcttccaggt cctgtcttga agaagaggtt ctggatcccg tgaatccgtt	3660
cgttgcgtg ctgagcggag tcgtgtggct catccgcaat gaaaacatct acatcaacga	3720
gagdtaagcc atcgagtgtg acgagacaca ggagacaggt caggaagcac aggtgttctg	3780
ttttattttt attaggtttt gatttggta ttttgtgtcat gcagcgggtg catgtatgt	3840
cctttccctt cgccatgtga gtcctgagta ttgaactcag actgttaagt gtgtatggag	3900
gcactttacc cactgagcca ctcccagc cctcagcatc agctttcttc agacccagga	3960
acagtgtgag tgggttattc tttagtgttc ccaaacattt actgagcagc tatttactgt	4020
ttagcactat ggtgagagtc ctagggattc agtcttatgt agaatataga aggagaatcc	4080
ttggcaataa gctggaaaat tgtgacaagt gccaagaaag aaacaggaga aaggggacccg	4140
gtggggacca gaagcacagg tatgagggaa gtgcctgcag atttgcgtta tgggtggcctc	4200
cacatggcct aggagttgt cataaatgca gagccatgag tccaccctcc ctataacctcc	4260
catccagaaa ccactggta aatcctaaca acttgggtgt gcaggcactc cttgggtgac	4320
tctgatggac actcaaggc aaggccact tggggatggg ctgatgagtt ggcttggtca	4380
gtaaagtatt tgccttgaaa gtgtgaggac ctgagttgga gccccagaaa gaaacatcaa	4440
aagccaagtg ctgggatgca cacttgcatt cccagggatg gagctggaag gcagggatag	4500

gcagatccac gcccacacgg tgatattcta agctaacaag agacctgtct cacacagaaa 4560
gtgggtggca cctgaggacc aacacccagg gttatcctct gacgtacctc cagagtggaa 4620
aatactgggg tggtgaaaaa ggacacttgc gtcctggaa tctggctatt cagggtatag 4680
tgttagaggga gagggagact caagaggctg tctttgagtc aaaggaacaa gctatcagaa 4740
gaactcaggg cagaggcctg tggttccag gctcaggcga gccttcaagg ccctaggcag 4800
agagtagctg ctgggtgaac aagtacagaa gtgaggcctg gggcctcagg caaggcctgt 4860
gaaatccttc caccaacata gaagttctg gagactgaga tcacatgaag tgcttctggc 4920
tgtggcatgg aagctcaactg gaggtggagc tggatgtgg ctcagtgatc cagtgcctgc 4980
cacacgtgca cgagggaaagg agccatcaaa agagagaaaag tcgggagacc tgaggggtcc 5040
cctggagagc tggtaacca ccccgcccc ttctccttta gttctttta gcaaatttgc 5100
gaatgtgatg tcagccagga cagccgtggg tcatgaccgt gaggggcagc ttatcctt 5160
ccatgctgat ggacagacgg aacagcgtgg ttagtccag gaaccttggg gctgtttgca 5220
cttccggcac cctaccttc cagtcgggtc tgggttattt gttggacaag acagcttcc 5280
ggccattttgc gaagtttcat ctggaggcaa tagcatttac ctactagtga aagaagccag 5340
ttaaccaga gaccacaggg gctcaagctg cataccccct ctgcacagcc ttaacctatg 5400
ggagatggca gagttcctgc gtcaacaaga tgtcgtcaat gccatcaacc tggatggagg 5460
cggttctgct acttttgc tcaatggac cctggccagt tacccttcag atcaactggta 5520
agaacccttgc agccacctt gtggctctct cagactgtct cactcagtca atactgagac 5580
ccttttgtgt gccaggccct ggttatccaa aagtgagcag aagagccgag atctcttccc 5640
tcagggtgct gcacagccca tccctggaaa cctgagacag gtcaggaaag gcctccctga 5700
ggacagtgaa gtaagacctg aggagatggc tggccggggg tgagagagcc tttaccggaa 5760
gacaaactgt acgcaatggg gaaatccgct aagtggccca gggagaggct ggagctata 5820
ctcaggagga aaagtacttgc cctcgcaagc gaaggacctg agtttaaact ccaaaaccca 5880
tataaaaagc cagatacgag caagtggcac atgcttgcag tccctggctt gttgaggaag 5940
agtcaaggta atcctgaccc tctggccagc cagcctagcc tacttttgg caaggtccag 6000
gccagcgaga aagataaaata aaataaaagt ttaaatgaca tgtatctaag gttgtcctga 6060
ctccatatgc gcacgcacgc atgcacgcac gcacaactgg cagaatggaa agggaggcaa 6120
actggacagc ctttataggc tgcggcaggg accagcacca aggccatgac ctcgtctcac 6180
agtgaatccc ccacagccag gacaacatgt ggcgctgtcc ccgccaagtg tccactgtgg 6240
tgtgtgtgca tgaaccgcgc tgccagccac ccgactgcag tggccatggg acctgtgtgg 6300
atggccactg tgaatgcacc agccacttct ggcggggcga ggcctgcagc gagctggact 6360

gtggccccctc caactgcagc cagcatggc tgtgcacaga gagtgagtgg ggagcccaca	6420
ggagggttgt gctctggcg gacccagct cggccatgct agactcccgc ctgtgtcctt	6480
acccagcctc tgtggtcttg ctgggttagc tggctgccac tgtgatgctg ggtggacagg	6540
atccaaactgc agtgaaggtg agagctgcct gcaaacadtc ctggagaggg tggcctggct	6600
gcacgcagct ggtatgacgc cttcgccct cttctggct tggaacttac cttcagagcc	6660
tttttcatt togcatgtgg ataccgatg ttctacctac tgaaagagcc cacaagtagg	6720
aagccagatt ttcagtattg tcactcaact ctaaggacca atagaaaaaa aacaaagtgg	6780
ccacgccccct gagggagatc caccaggatc cttaactcct ggaaagcagc tcctggtgat	6840
cctaggcatg ggtagggtgg tttcagcatc agtcagtggtt agttccatt cataatttct	6900
tcatcctttt aaggtcataa gttctagagc ccaccttaaa tctaggcagt attcttggtg	6960
tttatctgag acaaaagtctt atacagccca cgcagttctc taacttagta tgtaaccgag	7020
aatggcctca agcaaacctgc ttccctttt caagcgctgg gattataggc atagcaccaa	7080
cttataagggt gctagaagtc aaaccaggcc ccctatgtat atgcagcaag cactctagaa	7140
actggaaacac agccctgttt gcagcccggt taccttggag ggttgggtcc cagggatctg	7200
aggccatctc cttcagcatg gccatgtgca cacccaggag ccaggctgtc tgtgacagga	7260
gaccatgcca cccaaaggta gaccccttg ccaccatctc ctctccacag agtgcctct	7320
gggtctggtat gggccagggtt gccagaggcc ctgccagtgt gagcaccagt gtttctgtga	7380
cccgaaagact ggcaactgca gcatctccca aggtatgcgg cttaaaggt tcttgagctg	7440
ggatcccttg gggcagggtct gggtaggtg gactctcccc agcccttctt tctggtgct	7500
tgcagggttggagg cagtgtctcc agccaaactga ggctacgccc agggcaggag agctggcctc	7560
tttcaccagg taagtgtttt agcaggcaact gaggccctat gtctcatccg tgaggcacta	7620
gccaggccag gaggtcacag gttaccctct actttgcaag ctcaggaca gtcacaggtt	7680
aaactggcat ccaggaaaga ccctgagcta cccagtgaa ctcaaaggta gcaggctatg	7740
ggtgtcatgc ctctggctgc agagactcca cttagatgct ggagcaggcc catagagaca	7800
ggaaggactc accttatttc tgaactcttc cgtgtgttca ggctttgtgt tggtttgt	7860
tccttctgc tgtttctgg gtttccagct ccatccccac agggctcatg gaaagaattt	7920
tgaaggcagg ggtgtggctc aattggcaga ttgattgcct ggcattgcaga aagccctagg	7980
ttcaatcccc agcatttcat atcataaccc aggcatggtg gcatcatgtg cctgtaagtc	8040
cagcacttgg gaggtagaag cagaaaagcc acgagttaa gaatgttagg gagtcttagg	8100
ccaacctggg atacctaaga caagagatag atgttagggag atagattgac agacagacag	8160
acagacagac agacagacag atcttgagct ggaccttctg gcacaaggct gtcatcctag	8220

cttattccagg aagctgaagc aggaagatag caaattcaag gccagcttaa gcccacagatt	8280
gagttcaaga tcaacctgag caactttatg aaatcctatt ataacataaa aagttaggggt	8340
gggaggttag gctgttagctc agtggttagag tgattgccta gcacgcacaa gaccagggtt	8400
caattccag tactgaaaa aatatattag gaacccccta aaagcagtaa cattcacatt	8460
agatgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgttttg	8520
ttgggtatTT atttcattta catttccat gctatccaa aagtccccca catcctcccc	8580
cacccaccac ctgtttttt ttttttttt ttttttttt ttgacctga aactcacagg	8640
ttaggttaga caagctgact ggtgagctcc aacttccaac gtaccatcat gcctggctt	8700
tgttttggtg tctctgtgta accctggatg tcctggagct ctctctgttag accagcctgg	8760
ccttaaactc acagaaaccc acctgtttct gcctcccatg tgctggatt aaaggcgtgt	8820
gccacccac ccagccctgc tggacttaaa ttgggtcttc atttataag acaagcatga	8880
gctaattccc cagttcctaa aatgtttta acatcctaa acatcagaga ctgtctgtgg	8940
tattccctcc atgtgtcttc agtataccta ctccccccccc tgcctactgg gttcaacatg	9000
cccaagttgg gttctggctg cctgccccca ctcaagactc tctttccat ctcaggacca	9060
cctcgcttagc cctcaccctg acactaattt tcctgctgct gatcagcact ggggtcaacg	9120
tgtctttgtt cctgggctcc agggccgaga ggaaccggca cctcgacggg gactatgtgt	9180
atcaaccact gcaggaggtg aacgggaaag cgctgactgc agagaaggag cacatggagg	9240
aaactagcaa ccccttcaag gactgaagag ctgccccaaac ggcattgtcc agataatctt	9300
gtccctgtct ctcacttcca caggggacat tgtgaggcca ctggcatgga tgctatgcac	9360
cccaaccctt gctggccata ttccctctgt ccccatgctg tggctcatgc caacctagca	9420
ataaggagct ctggagagcc tgcacactgcc tcccgtcgc ctataatctgc tgcccagagg	9480
cctgtctcgc acaggggtct cgccactgccc aaagactccc aggaagtcaa agactccag	9540
taatccacta gcaaatggaa ctctgttaacg ccatcataac aagagtggcc actctcccg	9600
tgcacaggtt taaaatataa atccttacac acacacacac acacaccctc ggctcagcca	9660
cggcactcgc cttttataca ggttcatcgc tggacagcca actagaactc tgcattctgt	9720
cacaggaagc acctcataag aaggaatggg gagggaaaggc agtcgccttg ttttcagacc	9780
ttagccgaat tc	9792

<210> 15 <211> 908 <212> PRT <213> Mus musculus <400> 15

Met Leu Phe Lys Leu Leu Gln Arg Gln Thr Tyr Thr Cys Leu Ser His
1 5 10 15

Arg Tyr Gly Leu Tyr Val Cys Phe Val Gly Val Val Val Thr Ile Val

20

25

30

Ser Ala Phe Gln Phe Gly Glu Val Val Leu Glu Trp Ser Arg Asp Gln
35 40 45

Tyr His Val Leu Phe Asp Ser Tyr Arg Asp Asn Ile Ala Gly Lys Ser
50 55 60

Phe Gln Asn Arg Leu Cys Leu Pro Met Pro Ile Asp Val Val Tyr Thr
65 70 75 80

Trp Val Asn Gly Thr Asp Leu Glu Leu Leu Lys Glu Leu Gln Gln Val
85 90 95

Arg Glu His Met Glu Glu Gln Arg Ala Met Arg Glu Thr Leu Gly
100 105 110

Lys Asn Thr Thr Glu Pro Thr Lys Lys Ser Glu Lys Gln Leu Glu Cys
115 120 125

Leu Leu Thr His Cys Ile Lys Val Pro Met Leu Val Leu Asp Pro Ala
130 135 140

Leu Pro Ala Thr Ile Thr Leu Lys Asp Leu Pro Thr Leu Tyr Pro Ser
145 150 155 160

Phe His Ala Ser Ser Asp Met Phe Asn Val Ala Lys Pro Lys Asn Pro
165 170 175

Ser Thr Asn Val Pro Val Val Val Phe Asp Thr Thr Lys Asp Val Glu
180 185 190

Asp Ala His Ala Gly Pro Phe Lys Gly Gly Gln Gln Thr Asp Val Trp
195 200 205

Arg Ala Tyr Leu Thr Thr Asp Lys Asp Ala Pro Gly Leu Val Leu Ile
210 215 220

Gln Gly Leu Ala Phe Leu Ser Gly Phe Pro Pro Thr Phe Lys Glu Thr
225 230 235 240

Ser Gln Leu Lys Thr Lys Leu Pro Arg Lys Ala Phe Pro Leu Lys Ile
245 250 255

Lys Leu Leu Arg Leu Tyr Ser Glu Ala Ser Val Ala Leu Leu Lys Leu
260 265 270

Asn Asn Pro Lys Gly Phe Gln Glu Leu Asn Lys Gln Thr Lys Lys Asn
275 280 285

Met Thr Ile Asp Gly Lys Glu Leu Thr Ile Ser Pro Ala Tyr Leu Leu
290 295 300

Trp Asp Leu Ser Ala Ile Ser Gln Ser Lys Gln Asp Glu Asp Ala Ser
305 310 315 320

Ala Ser Arg Phe Glu Asp Asn Glu Glu Leu Arg Tyr Ser Leu Arg Ser
325 330 335

Ile Glu Arg His Ala Pro Trp Val Arg Asn Ile Phe Ile Val Thr Asn
340 345 350

Gly Gln Ile Pro Ser Trp Leu Asn Leu Asp Asn Pro Arg Val Thr Ile
355 360 365

Val Thr His Gln Asp Ile Phe Gln Asn Leu Ser His Leu Pro Thr Phe
370 375 380

Ser Ser Pro Ala Ile Glu Ser His Ile His Arg Ile Glu Gly Leu Ser
385 390 395 400

Gln Dlys Phe Ile Tyr Leu Asn Asp Asp Val Met Phe Gly Lys Asp Val
405 410 415

Trp Pro Asp Asp Phe Tyr Ser His Ser Lys Gly Gln Lys Val Tyr Leu
420 425 430

Thr Trp Pro Val Pro Asn Cys Ala Glu Gly Cys Pro Gly Ser Trp Ile
435 440 445

Lys Asp Gly Tyr Cys Asp Lys Ala Cys Asn Thr Ser Pro Cys Asp Trp
450 455 460

Asp Gly Gly Asn Cys Ser Gly Asn Thr Ala Gly Asn Arg Phe Val Ala
465 470 475 480

Arg Gly Gly Gly Thr Gly Asn Ile Gly Ala Gly Gln His Trp Gln Phe
485 490 495

Gly Gly Gly Ile Asn Thr Ile Ser Tyr Cys Asn Gln Gly Cys Ala Asn
500 505 510

Ser Trp Leu Ala Asp Lys Phe Cys Asp Gln Ala Cys Asn Val Leu Ser
515 520 525

Cys Gly Phe Asp Ala Gly Asp Cys Gly Gln Asp His Phe His Glu Leu
530 535 540

Tyr Lys Val Thr Leu Leu Pro Asn Gln Thr His Tyr Val Val Pro Lys
545 550 555 560

Gly Glu Tyr Leu Ser Tyr Phe Ser Phe Ala Asn Ile Ala Arg Lys Arg
565 570 575

Ile Glu Gly Thr Tyr Ser Asp Asn Pro Ile Ile Arg His Ala Ser Ile
580 585 590

Ala Asn Lys Trp Lys Thr Leu His Leu Ile Met Pro Gly Gly Met Asn
595 600 605

Ala Thr Thr Ile Tyr Phe Asn Leu Thr Leu Gln Asn Ala Asn Asp Glu
610 615 620

Glu Phe Lys Ile Gln Ile Ala Val Glu Val Asp Thr Arg Glu Ala Pro
625 630 635 640

Lys Leu Asn Ser Thr Thr Gln Lys Ala Tyr Glu Ser Leu Val Ser Pro
645 650 655

Val Thr Pro Leu Pro Gln Ala Asp Val Pro Phe Glu Asp Val Pro Lys
660 665 670

Glu Lys Arg Phe Pro Lys Ile Arg Arg His Asp Val Asn Ala Thr Gly
675 680 685

Arg Phe Gln Glu Glu Val Lys Ile Pro Arg Val Asn Ile Ser Leu Leu
690 695 700

Pro Lys Glu Ala Gln Val Arg Leu Ser Asn Leu Asp Leu Gln Leu Glu
705 710 715 720

Arg Gly Asp Ile Thr Leu Lys Gly Tyr Asn Leu Ser Lys Ser Ala Leu
725 730 735

Leu Arg Ser Phe Leu Gly Asn Ser Leu Asp Thr Lys Ile Lys Pro Gln
740 745 750

Ala Arg Thr Asp Glu Thr Lys Gly Asn Leu Glu Val Pro Gln Glu Asn
755 760 765

Pro Ser His Arg Arg Pro His Gly Phe Ala Gly Glu His Arg Ser Glu

770

775

780

Arg Trp Thr Ala Pro Ala Glu Thr Val Thr Val Lys Gly Arg Asp His
 785 790 795 800

Ala Leu Asn Pro Pro Pro Val Leu Glu Thr Asn Ala Arg Leu Ala Gln
 805 810 815

Pro Thr Leu Gly Val Thr Val Ser Lys Glu Asn Leu Ser Pro Leu Ile
 820 825 830

Val Pro Pro Glu Ser His Leu Pro Lys Glu Glu Glu Ser Asp Arg Ala
 835 840 845

Glu Gly Asn Ala Val Pro Val Lys Glu Leu Val Pro Gly Arg Arg Leu
 850 855 860

Gln Gln Asn Tyr Pro Gly Phe Leu Pro Trp Glu Lys Lys Lys Tyr Phe
 865 870 875 880

Gln Asp Leu Leu Asp Glu Glu Glu Ser Leu Lys Thr Gln Leu Ala Tyr
 885 890 895

Phe Thr Asp Arg Lys His Thr Gly Arg Gln Leu Lys
 900 905

<210> 16 <211> 5229 <212> DNA <213> Mus musculus <400> 16
 ggccgtgaag gggtgatgct gttcaagctc ctgcagagac agacctatac ctgcctatcc 60
 cacaggtagtgc ggctctacgt ctgcttcgtg ggcgtcggtt tcaccatcgta tcggcttcc 120
 cagttcggag aggtggttct ggaatggagc cgagatcagt accatgtttt gtttgattcc 180
 tacagagaca acattgctgg gaaatcctt cagaatcgcc tctgtctgcc catgccaatc 240
 gacgtggttt acacctgggtt gaatggactt gaccttgaac tgctaaagga gctacagcag 300
 gtcccgagagc acatggagga agagcagaga gccatgcggg aaaccctcgga gaagaacaca 360
 accgaaccga caaagaagag tgagaagcag ctggaatgtc tgctgacgca ctgcattaag 420
 gtgccccatgc ttgttctgga cccggccctg ccagccacca tcaccctgaa ggatctgcca 480
 accctttacc catctttcca cgcgtccagc gacatgttca atgttgcgaa accaaaaaaaat 540
 ccgtctacaa atgtccccgt tgcgtttttt gacactacta aggatgttga agacgcccatt 600
 gctggaccgt ttaagggagg ccagcaaaca gatgtttgga gagcctactt gacaacagac 660
 aaagacgccc ctggcttagt gctgatacaa ggcttggcgt tcctgagtgg attcccacccg 720
 accttcaagg agacgagtca actgaagaca aagctgccaa gaaaagcttt ccctctaaaa 780

ataaaagctgt	tgcggctgta	ctcgaggccc	agtgtcgctc	ttctgaaatt	gaataatccc	840
aagggttcc	aagagctgaa	caagcagacc	aagaagaaca	tgaccatcga	tggaaaggaa	900
ctgaccatca	gccctgcgta	tctgctgtgg	gacctgagtg	ccatcagcca	gtccaagcag	960
gatgaggacg	cgtctgccag	ccgcttttag	gataatgaag	agctgaggta	ctcgctgcga	1020
tctatcgaga	gacacgcgcc	atgggtacgg	aatatttca	ttgtcaccaa	cgggcagatt	1080
ccatcctggc	tgaaccttga	caaccctcga	gtgaccatag	tgacccacca	ggacatttc	1140
caaaaatctga	gccacttgcc	tacttcagt	tcccctgcta	ttgaaaagtca	cattcaccgc	1200
atcgaagggc	tgtcccagaa	gtttatttat	ctaaatgacg	atgtcatgtt	cggtaaggac	1260
gtctggccgg	acgattttta	cagccactcc	aaaggtcaaa	aggtttattt	gacatggcct	1320
gtgccaaact	gtgcagaggg	ctgcccgggc	tcctggataa	aggacggcta	ttgtgataag	1380
gcctgtaata	cctcaccctg	tgactggat	ggcggaaact	gctctggtaa	tactgcaggg	1440
aaccggttt	ttgcaagagg	tgggggtacc	gggaatattt	gagctggaca	gcactggcag	1500
tttggggag	gaataaaacac	catctttac	tgtaaccaag	gatgtgcaaa	ctcctggctg	1560
gctgacaagt	tctgtgacca	agcctgtaac	gtcttatcct	gcgggtttga	tgctggtgac	1620
tgtggacaag	atcattttca	tgaattgtat	aaagtaacac	ttctcccaaa	ccagactcac	1680
tatgttgtcc	ccaaagggtga	atacctgtct	tatttcagct	ttgcaaacat	agccagaaaa	1740
agaattgaag	ggacctacag	cgacaacccc	atcatccgcc	acgcgtccat	tgcaaacaag	1800
tggaaaaccc	tacacctgtat	aatgcccggg	gggatgaacg	ccaccacgat	ctattttaac	1860
ctcaetcttc	aaaacgccaa	cgacgaagag	ttcaagatcc	agatagcagt	agaggtggac	1920
acgaggagg	cgc当地act	gaattctaca	acccagaagg	cctatgaaag	tttgggttagc	1980
ccagtgacac	ctttcctca	ggctgacg	cctttgaag	atgtccccaa	agagaaacgc	2040
ttcccccaaga	tcaggagaca	tcatgtaaat	gcaacaggga	atttccaaga	ggaggtgaaa	2100
atccccccggg	taaatatttc	actccttccc	aaagaggccc	aggtgaggct	gagcaacttg	2160
gatttgcaac	tagaacgtgg	agacatcact	ctgaaaggat	ataacttgc	caagtcagcc	2220
ctgctaaggt	ctttcctggg	gaattcacta	gatactaaaa	taaaacctca	agctaggacc	2280
gatgaaacaa	aaggcaacct	ggaggtccc	caggaaaacc	cttctcacag	acgtccacat	2340
ggcttgctg	gtgaacacag	atcagagaga	tggactgccc	cagcagagac	agtgaccgtg	2400
aaaggccgtg	accacgctt	gaatccaccc	ccgggtttgg	agaccaatgc	aagattggcc	2460
cagcctacac	taggcgtgac	tgtgtccaaa	gagaacctt	caccgctgat	cgttccccca	2520
gaaagccact	tgccaaaaga	agaggagagt	gacagggcag	aaggcaatgc	tgtacctgta	2580
aaggagttag	tgcctggcag	acggttgcag	cagaatttac	caggctttt	gccctggag	2640

aaaaaaaaagt	atttccaaga	ccttcttgat	gaggaagagt	cattgaagac	ccagttggcg	2700
tactttacag	accgcaaaca	taccggagg	caactaaaag	atacatttgc	agactccctc	2760
cgatacgtca	ataaaattct	caacagcaag	tttggattca	catccaggaa	agtccctgca	2820
cacatgccgc	acatgattga	caggatcggt	atgcaagaac	tccaaagat	gttccctgaa	2880
gaatttgaca	agacttcatt	tcacaaggtg	cgtcaactcg	aggacatgca	gttgccttc	2940
tcctactttt	attacctcat	gagtgcagtt	cagcccctca	atatttccca	agtctttcat	3000
gaagtagaca	cagaccaatc	tggtgtcttg	tctgataggg	aaatccgaac	wctggccacg	3060
agaattcacg	acctacctt	aagcttgcag	gatttgacag	gtttgaaaca	catgttaata	3120
aattgctcaa	aaatgctccc	cgctaataatc	actcaactca	acaacatccc	accgactcag	3180
gaagcatact	acgaccccaa	cctgcctccg	gtcactaaga	gtcttgtcac	caactgttaag	3240
ccagtaactg	acaagatcca	caaagcctat	aaagacaaga	acaaatacag	gtttgaaatc	3300
atgggagagg	aagaaatcgc	tttcaagatg	atacgaacca	atgtttctca	tgtggtttgt	3360
cagtggatg	acatcagaaa	aaaccccagg	aagttcgttt	gtctgaatga	caacattgac	3420
cacaaccata	aagatgccccg	gacagtgaag	gctgtcctca	gggacttcta	tgagtccatg	3480
tttccatcac	cttcccagtt	tgagctgcca	agagagtatc	ggaaccgctt	tctgcacatg	3540
catgagctcc	aagaatggcg	ggcatatcga	gacaagctga	agttttggac	ccactgcgta	3600
ctagcaacgt	tgattatatt	tactatattc	tcatttttg	ctgaacagat	aattgctctg	3660
aagcgaaga	tatttcccag	gaggaggata	cacaaagaag	ctagtcaga	ccgaatcagg	3720
gtgtagaaga	tcttcatttg	aaagtcacct	accttagcat	ctgtgaacat	ctccctccctc	3780
gacacacacag	cgagtcct	gtgatgtggc	acagaggcag	cctcgtgggg	agaagggaca	3840
tcgtgcagac	cgggttcttc	tgcaatggga	agagagccca	ctgacctgga	attattcagc	3900
acactaagaa	cctgtgtcaa	tagttgtac	agcttgtact	tttaaaggat	ttgccgaagg	3960
acctgtcggc	ttgttgacaa	accctccctg	acaagctgct	ggtttcttcc	cccagttact	4020
gcagactgag	aaaccagtc	atcttgaag	caagtgcgga	ggggccccag	tctttgcatt	4080
ccaaagcttt	ccagcataat	ttctggcttg	tctcctcatt	tgatccattt	cccattttt	4140
tttaaaaaac	aataagtggc	tactaagtta	gtcattctca	cttctcaaaa	taacaaatca	4200
ggatgtcaaa	acatttgtat	agatcttatt	taaataatat	agaacgatta	cttcttttagc	4260
ctatctaaat	tattgattt	tattaacagt	caagtggct	tgaaccgcta	acaactactg	4320
aagagctcga	gattgacgtt	gaaagtgcctt	tgagcttgtt	taactcattc	cccaagaata	4380
ctgtgacctc	gtgtgcgggc	ctgattgcga	aggctagtg	tcacgtagca	gtgctgctca	4440
ccggatgtaa	ttatgtcg	gaaatgtaca	tacagacaaa	agtgcctcac	ttcagaaatg	4500

agtagtgctg atggcaccag cgagtgatgg tgtccattt gaaacccatg ataccttcca 4560
 atgcccaccc tgcttacttt atacagagca ggggttaacc aacttctgtc aaagaacagt 4620
 aaagaacttg agatacatcc atctttgtca aatagtttc cttgctaaca tttattattg 4680
 ttggtgtttt gggaggtta ttttattttt ttgctttgtt attttcaag acggggattc 4740
 tctgtgttagc tctggctgtt tggtaattca ctctaaagac caggctggcc ttgaacttag 4800
 agattcacct gcttctgctt cctgaatggt aggacatgtg cccacattgc ctacccaccc 4860
 ccctttggg gggggtgagc aactcaataa aaagatgaaa acctgctta gtttgcagct 4920
 atacaaaagc agcaggcctc agccagactt gacccccggg gccattgtt gccccacggga 4980
 gaatcatttt tgacgtgggt aagcaaaccn tgatatttgt catgctgtt tatgtcatta 5040
 tgtggtggtt ttgaatittt gaagatattt tcagtcatga tttcagtagt attcctccaa 5100
 aatggcacac attttgtaa taagaacttg aaatgtaaat attgtgtttg tgctgtaaat 5160
 ttttgttatt tcaaaaactg aagtttcata aaaaaacaca cttattggaa aaaaaaaaaa 5220
 aaaaaaaaaa 5229

<210> 17 <211> 1105 <212> DNA <213> Drosophila melanogaster <220> <221> misc_feature
 <222> (903)..(903) <223> n is a, g, c, or t

<220> <221> misc_feature <222> (935)..(935) <223> n is a, g, c, or t
 <220> <221> misc_feature <222> (1023)..(1023) <223> n is a, g, c, or t
 <220> <221> misc_feature <222> (1035)..(1035) <223> n is a, g, c, or t
 <220> <221> misc_feature <222> (1071)..(1071) <223> n is a, g, c, or t
 <220> <221> misc_feature <222> (1100)..(1100) <223> n is a, g, c, or t

<400> 17
 ctgcaggaat tcggcacgag gcgggtcgat gacaagaatg agctgcggta ctctctgagg 60
 tccctggaaa aacacgcccgc atggatcagg catgtgtaca tagtaaccaa tggccagatt 120
 ccaagttggc tggatcttag ctacgaaagg gtcacggtgg tgccccacga agtcctggct 180
 cccgatcccg accagctgcc caccttctcc agctcggcca tcgagacatt tctgcaccgc 240
 ataccaaagc tgtccaagag gttcctctac ctcaacgacg acatattcct gggagctccg 300
 ctgtatccgg aggacttcta cactgaagcg gagggaggttc gcgtgtacca ggcattggatg 360
 gtgccccggct gcgccttggaa ttgccccctgg acgtacatag gtgatggagc ttgcgtatcg 420
 cactgcaaca ttgatgcgtg ccaatttgat ggaggcgact gcagtgaaac tggccagcg 480
 agcgatgccc acgtcattcc accaagcaaa gaagtgctcg aggtgcagcc tgccgctgtt 540
 ccacaatcaa gagtccacccg atttccttag atgggtctcc aaaagctgtt caggcgacg 600
 tctgccaatt ttaaggatgt tatgcggcac cgcaatgtgt ccacactcaa ggaactacgt 660

cgcattgtgg	agcgtttaa	caaggccaaa	ctcatgtcgc	tgaaccccga	actggagacc	720
tccagctccg	agccacagac	aactcagcgc	cacgggctgc	gcaaggagga	ttttaagtct	780
tccaccgata	tttactctca	ctcgctgatt	gccaccaata	tgttgctgaa	tagagcctat	840
ggcttaagg	cacgccatgt	cctggcgac	gtgggcttcc	taattgacaa	ggatatttg	900
gangccatgc	aacgacgtt	taccagcgaa	ttctngacac	tggccattaa	cgcttcgca	960
gccccaacag	atttgcagta	cgcattcgct	tactacttct	ttctaatgag	cgaaatccaa	1020
gtnatgagtg	tagangaaat	cttcgatgaa	gtcgacaccg	gacggtttgg	ncacctggtc	1080
ggatccagaa	gtgcgaacccn	tttta				1105

<210>	18	<211>	2005	<212>	DNA	<213>	Mus musculus	<400>	18		
gtttcccgcg	acgatgacct	gctgtgcct	tacccactag	cgcgcagacg	tccctcgca	60					
gactgcgccc	gggtgcgctc	aggtagccca	gagcaggaga	gctggctcc	gccacctctg	120					
gc ca ccacg	a cc cccg gg gc	gccaagccac	cacgcggccg	tg cg cac tt tt	cgtgtcgac	180					
t tc cg gg gc	g cg cggtggc	cggccac ct tg	ac cg gggtcg	ccgatccc ct tc	acgcactttc	240					
t cg gt gg gg	ag cc ccggagg	ag cc gggggc	tg gg ggggca	gaagcgccgc	ggctactgtg	300					
gaggacacag	ccgtccgggc	cggttgcgc	atcgctcaga	acgg tgg ctt	cttccgc at tg	360					
ag ca ttggcg	agt gt ttggg	gaac gt ggtg	ag cg acgggc	ggct gg tgag	cag ct cagg	420					
ggact gc aga	ac cg cg ca gtt	c g gtatccga	c g cgatggaa	ccatagtcac	cgggtcctgt	480					
c tt tg aa ag	ag gt ttctgga	tcc cg tgaat	cc gt tcgtgc	ag ct gt gt gag	cggag tc gtg	540					
t gg ccatcc	gcaatggaaa	catctacatc	aacgagagcc	aagccatcg a	gtgtgac ca g	600					
ac ac ggaga	cag tt cttt	tagcaaattt	gt ga atgtga	tgtcagcc ca g	gacagcc gt g	660					
ggtcatgacc	gtgaggggca	gcttatcc t c	ttccatgctg	atggacagac	ggaacagcgt	720					
ggcctaacc	tatggagat	ggcagagttc	ctgcgtcaac	aagatgtcg t	caatgccatc	780					
aacctggatg	gaggcggttc	tgctactttt	gtgctcaatg	ggaccctggc	cagttacc ct	840					
t c agat ca t	gccaggacaa	catgtggcgc	tgtccccg cc	aagtgtccac	tgtgg gt gtgt	900					
gtgcatgaac	cgc gt gc ca ca	gccacccgac	tg c agtg gg cc	atggac ct tg	tgtggatggc	960					
cactgtgaat	gcaccagcca	cttctggcgg	ggcgaggc ct	gcagc g ag ct	ggactgtggc	1020					
ccctccaa ct	gcagccagca	tgggctgtgc	acagctgg ct	gccactgtga	tgctgg gt gg	1080					
acaggatcca	actgcagtga	ag ag gtgtc ct	ctgggctgg t	atggg cc agg	ttg cc agagg	1140					
ccctgcc ag t	gtgagcacca	gtg ttt ctgt	gacccgcaga	ctggcaactg	cagcatctcc	1200					
caagtgaggc	agtgtctcca	gccaactgag	gctacgccc ga	ggcaggaga	gctgg cc ct	1260					
ttcaccagga	ccacctggct	agccctcacc	ctgacactaa	ttttcctgct	gctgatcagc	1320					

actggggtca acgtgtcctt gttcctgggc tccagggccg agaggaaccg gcacacctgac	1380
ggggactatg tgtatcaccc actgcaggag gtgaacgggg aagcgctgac tgcagagaag	1440
gagcacatgg aggaaactag caaccccttc aaggactgaa gagctgcccc aacggcatgc	1500
tccagataat cttgtccctg ctccctactt ccacagggga cattgtgagg ccactggcat	1560
ggatgctatg caccccaccc tttgctggcc atattcctcc tgtccccatg ctgtggctca	1620
tgccaaccta gcaataagga gctctggaga gcctgcacct gcctcccgct cgcctatac	1680
tgctgccag aggccctgtct cgacagggg tctcgccact gccaaagact cccaggaagt	1740
caaagactcc cagtaatcca ctagcaaatg gaactctgta acgccatcat aacaagagt	1800
gccactctcc gcgtgcacag gatatgaaata taaatcctta cacacacaca cacacacacc	1860
ctcggctcag ccacggcact cgccctttat acagcgtcat cgctggacag ccaactagaa	1920
ctctgcatcc tgtcacagga agcacctcat aagaaggaat ggggagggaa ggcagtcgcc	1980
ttgttttcag accttagccg aattc	2005

<210> 19 <211> 492 <212> PRT <213> Mus musculus <400> 19

Val Ser Arg Asp Asp Asp Leu Leu Leu Pro Tyr Pro Leu Ala Arg Arg	
1 5 10 15	

Arg Pro Ser Arg Asp Cys Ala Arg Val Arg Ser Gly Ser Pro Glu Gln	
20 25 30	

Glu Ser Trp Pro Pro Pro Leu Ala Thr His Glu Pro Arg Ala Pro	
35 40 45	

Ser His His Ala Ala Val Arg Thr Phe Val Ser His Phe Glu Gly Arg	
50 55 60	

Ala Val Ala Gly His Leu Thr Arg Val Ala Asp Pro Leu Arg Thr Phe	
65 70 75 80	

Ser Val Leu Glu Pro Gly Gly Ala Gly Gly Cys Gly Gly Arg Ser Ala	
85 90 95	

Ala Ala Thr Val Glu Asp Thr Ala Val Arg Ala Gly Cys Arg Ile Ala	
100 105 110	

Gln Asn Gly Gly Phe Phe Arg Met Ser Thr Gly Glu Cys Leu Gly Asn	
115 120 125	

Val Val Ser Asp Gly Arg Leu Val Ser Ser Ser Gly Gly Leu Gln Asn	
130 135 140	

Ala Gln Phe Gly Ile Arg Arg Asp Gly Thr Ile Val Thr Gly Ser Cys
145 150 155 160

Leu Glu Glu Glu Val Leu Asp Pro Val Asn Pro Phe Val Gln Leu Leu
165 170 175

Ser Gly Val Val Trp Leu Ile Arg Asn Gly Asn Ile Tyr Ile Asn Glu
180 185 190

Ser Gln Ala Ile Glu Cys Asp Glu Thr Gln Glu Thr Gly Ser Phe Ser
195 200 205

Lys Phe Val Asn Val Met Ser Ala Arg Thr Ala Val Gly His Asp Arg
210 215 220

Glu Gly Gln Leu Ile Leu Phe His Ala Asp Gly Gln Thr Glu Gln Arg
225 230 235 240

Gly ~~Ile~~ Asn Leu Trp Glu Met Ala Glu Phe Leu Arg Gln Gln Asp Val
245 250 255

Val ~~Asn~~ Ala Ile Asn Leu Asp Gly Gly Ser Ala Thr Phe Val Leu
260 265 270

Asn ~~Gly~~ Thr Leu Ala Ser Tyr Pro Ser Asp His Cys Gln Asp Asn Met
275 280 285

Trp ~~Arg~~ Cys Pro Arg Gln Val Ser Thr Val Val Cys Val His Glu Pro
290 295 300

Arg ~~Cys~~ Gln Pro Pro Asp Cys Ser Gly His Gly Thr Cys Val Asp Gly
305 310 315 320

His Cys Glu Cys Thr Ser His Phe Trp Arg Gly Glu Ala Cys Ser Glu
325 330 335

Leu Asp Cys Gly Pro Ser Asn Cys Ser Gln His Gly Leu Cys Thr Ala
340 345 350

Gly Cys His Cys Asp Ala Gly Trp Thr Gly Ser Asn Cys Ser Glu Glu
355 360 365

Cys Pro Leu Gly Trp Tyr Gly Pro Gly Cys Gln Arg Pro Cys Gln Cys
370 375 380

Glu His Gln Cys Phe Cys Asp Pro Gln Thr Gly Asn Cys Ser Ile Ser
385 390 395 400

Gln Val Arg Gln Cys Leu Gln Pro Thr Glu Ala Thr Pro Arg Ala Gly
405 410 415

Glu Leu Ala Ser Phe Thr Arg Thr Trp Leu Ala Leu Thr Leu Thr
420 425 430

Leu Ile Phe Leu Leu Ile Ser Thr Gly Val Asn Val Ser Leu Phe
435 440 445

Leu Gly Ser Arg Ala Glu Arg Asn Arg His Leu Asp Gly Asp Tyr Val
450 455 460

Tyr His Pro Leu Gln Glu Val Asn Gly Glu Ala Leu Thr Ala Glu Lys
465 470 475 480

Glu His Met Glu Glu Thr Ser Asn Pro Phe Lys Asp
485 490

<210> 20 <211> 3783 <212> DNA <213> Homo sapiens <400> 20
gccaatcatgg gtttcaagct cttgcagaga caaacctata cctgcctgtc ccacaggat 60
gggccttacg tttgtttttt gggcgtcgtt gtcaccatcg tctccgcctt ccagttcgga 120
gagggtgttc tggaaatggag ccgagatcaa taccatgttt ttgtttgattt ctatagagac 180
aatattgtcg gaaagtccct tcagaatcggtt ctttgtctgc ccatgccat tgacgttg 240
tacaatctggg tgaatggcac agatcttggaa ctactgaagg aactacagca ggtcagagaa 300
cagatggagg aggaggcagaa agcaatgaga gaaatccttg ggaaaaacac aacggAACCT 360
actaaagaaga gtgagaagca gtttagagtgt ttgctaacac actgcattaa ggtgccaatg 420
cttgccttgg acccagccct gccagccaaat atcaccctga aggacctgcc atctctttat 480
ccttccttttccattctgccat tgacatTTTCA aatgttgccaa aaccaaaaaa cccttctacc 540
aatgtctcag ttgttggttt tgacagtact aaggatgttgg aagatGCCCA ctctggactg 600
cttaaaggaa atagcagaca gacagtatgg aggggctact tgacaacaga taaaagaagtc 660
cctggatttag tgctaatgca agattggct ttcctgagtg gattccacc aacattcaag 720
gaaacaaatc aactaaaaac aaaattGCCA gaaaatctt cctctaaagt caaactgtt 780
cagttgtatt cagaggccag tttttttttt cttttttttt cttttttttt cttttttttt 840
gaattttttttttt tttttttttttt tttttttttttt tttttttttttt tttttttttttt 900
cctgcattttttttttttt tttttttttttt tttttttttttt tttttttttttt tttttttttttt 960
tctgccttgg tttttttttttt tttttttttttt tttttttttttt tttttttttttt tttttttttttt 1020
catgcaccat gggttcggaa tatttttattt gtcaccaacg ggcagattcc atcctggctg 1080

aaccttgaca atcctcgagt gacaatagta acacaccagg atgttttcg aaatttgagc	1140
cacttgccta ccttagttc acctgctatt gaaagtcacg ttcatcgcat cgaagggctg	1200
tcccaagaat ttattnactt aaatgatgtat gtcatgtttg ggaaggatgt ctggccagat	1260
gattttaca gtcactccaa aggccagaag gtttatttga catggcctgt gccaaactgt	1320
gccgagggct gcccagggttc ctggattaag gatggctatt gtgacaaggc ttgtataat	1380
tcagcctgcg attggatgg tgggattgc tctggaaaca gtggagggag tcgctatatt	1440
gcaggaggtg gaggtactgg gagtattgga gttggacagc cctggcagtt tggtggagga	1500
ataaacatgt tctttactg taatcaggga tgtgcattt cctggctgc tgataagttc	1560
tgtgaccaag catgcaatgt cttgtcctgt gggtttgatg ctggcactg tggcaagat	1620
cattttcatg aattgtataa agtgcattt ctcccaaacc agactcacta tattattcca	1680
aaaggtgaat gcctgccta tttcagctt gcagaagtag cccaaagagg agttgaaggt	1740
gcctataatgt acaatccaaat aattcgacat gcttctattt ccaacaatgt gaaaaccatc	1800
cacccataaa tgcacagtgg aatgaatgcc accacaatac attttatct cacgttcaa	1860
aataaaaaacg atgaagagtt caaaatgcag ataacatgtt aggtggacac aaggagggaa	1920
ccaaaaactga attctacggc ccagaagggt tacgaaaatt tagtttgtcc cataacactt	1980
cttcggaggg cgaaaaatctt ttttggggat attcccaaag aaaaacgctt cccgaagttt	2040
aagagacatg atgttaactc aacaaggaga gcccaggaag aggtgaaaat tcccctggta	2100
aataatttcac tccttccaaa agacgcccag ttgagtcata ataccttggta ttgcaactg	2160
gaacatggag acatcacttt gaaaggatac aattttgtcca agtcagcattt gctgagatca	2220
tttctatgtga actcacagca tgctaaaata aaaaatcaag ctataataac agatgaaaca	2280
aatgacagtt tggggctcc acaggaaaaa caggttcata aaagcatctt gccaaacagc	2340
tttaggagtgt ctgaaagatt gcagaggttgc acttttcctt cagtgagtgt aaaagtgaat	2400
ggtcatgacc agggtcagaa tccacccctg gacttggaga ccacagcaag atttagatgt	2460
gaaactcaca cccaaaaaac cataggcgga aatgtgacaa aagaaaagcc cccatctctg	2520
attgttccac tggaaagcca gatgacaaaaa gaaaagaaaa tcacagggaa agaaaaagag	2580
aacagtagaa tggagggaaaa tgctgaaaat cacataggcg ttactgaagt gttacttggaa	2640
agaaaagctgc agcattacac agatagttac ttgggcttt tgccatggaa gaaaaaaaaag	2700
tatcccttag atcttctcgat cgaagaagag tcattgaaga cacaattggc atacttcact	2760
gatagcaaga atactggag gcaactaaaa gatacatggc cagattccct cagatatgtaa	2820
aataaaaattc taaatagcaa gttggattc acatcgccga aagtccctgc tcacatgcct	2880
cacatgatttgc accggattgt tatgcaagaa ctgcaagata tgttccctga agaatttgac	2940

aagacgtcat ttcacaaaagt gcgccattct gaggatatgc agtttgcctt ctcttatttt	3000
tattatctca tgagtgcagt gcagccactg aatatatctc aagtcttga tgaagttgat	3060
acagatcaat ctggtgtctt gtctgacaga gaaatccgaa cactggctac cagaattcac	3120
gaactgccgt taagttgca ggattgaca ggtctggAAC acatgctaataaattgtca	3180
aaaatgcttc ctgctgatatacgcagcta aataatattc caccaactca ggaatccctac	3240
tatgatccccca acctgccacc ggtcactaaa agtcttagtaa caaactgtaa accagtaact	3300
gacaaaatcc acaaagcata taaggacaaa aacaaatata ggttgaaat catgggagaa	3360
gaagaaatcg ctttaaaaat gattcgtacc aacgtttctc atgtgggtgg ccagttggat	3420
gacataagaa aaaaccctag gaagttgtt tgcctgaatg acaacattga ccacaatcat	3480
aaagatgctc agacagtcaa ggctgttctc agggacttct atgaatccat gttccccata	3540
ccttcccaat ttgaactgcc aagagagtat cgaaaccgtt tccttcataat gcatgagctg	3600
cagggatggaa gggcttatcg agacaaatttggaa aagttttggaa cccattgtgt actagcaaca	3660
ttgatstatgt ttactatatt ctcattttt gctgagcagt taattgcact taagcggaaag	3720
atatttccca gaaggaggat acacaaagaa gctagtccta atcgaatcag agtataagaag	3780
atc	3783
<210> 21 <211> 3621 <212> DNA <213> Homo sapiens <400> 21	
cttagcccca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca	60
ggttccactg gtgacgaaga tcaggttagat ccgcggtaa tcgcacggtaa gcttagccga	120
gatcataacc atgtttgtt tgattcctat agagacaata ttgctggaaa gtccttcag	180
aatcggttt gtctgcccattt gccgatttgc gttgttaca cctgggtgaa tggcacagat	240
cttgaactac tgaaggaact acagcaggc agagaacaga tggaggagga gcagaaagca	300
atgagagaaa tccttggaa aaacacaacg gaacctacta agaagagtga gaagcagttt	360
gagtgttgc taacacactg catthaagggttgc ccaatgcttgc tcctggaccc agccctgcca	420
gc当地acatca ccctgaagga cctgccatct ctttacatc ctttcatc tgccagtgac	480
attttcaatg ttgcaaaacc aaaaaaccct tctaccaatg tctcagttgt tgttttgac	540
agtactaagg atgttgaaga tgcccactct ggactgctta aaggaaatag cagacagaca	600
gtatggaggg gctacttgac aacagataaa gaagtcctg gattagtgtc aatgcaagat	660
ttggcttcc ttagtggatt tccaccaaca ttcaaggaaa caaatcaact aaaaacaaaa	720
ttgcccggaaa atctttccctc taaagtcaaa ctgttgcagt tgtattcaga ggccagtgta	780
gcgcctctaa aactgaataa ccccaaggat tttcaagaat tgaataagca aactaagaag	840
aacatgacca ttgatggaaa agaactgacc ataagtccctg catatttattt atgggatctg	900

agcgccatca	gccagtctaa	gcaggatgaa	gacatctctg	ccagtcgttt	tgaagataac	960
gaagaactga	ggtactcatt	gcatctatc	gagaggcatg	caccatgggt	tcggaatatt	1020
ttcattgtca	ccaacggca	gattccatcc	tggctgaacc	ttgacaatcc	tcgagtgaca	1080
atagtaacac	accaggatgt	tttgcgaaat	ttgagccact	tgcctacctt	tagttcacct	1140
gctattgaaa	gtcacgttca	tcgcatcgaa	gggctgtccc	agaagtttat	ttacctaaat	1200
gatgatgtca	tgttgtggaa	ggatgtctgg	ccagatgatt	tttacagtca	ctccaaaggc	1260
cagaaggttt	atttgacatg	gcctgtgcca	aactgtgccg	aggctgccc	aggttcctgg	1320
attaaggatg	gctattgtga	caaggcttgt	aataattcag	cctgcgattt	ggatgggtgg	1380
gattgctctg	gaaacagtg	agggagtcgc	tatattgcag	gaggtggagg	tactggagtt	1440
attggagttg	gacagccctg	gcagtttgtt	ggaggaataa	acagtgtctc	ttactgttaat	1500
cagggatgtg	cgaattccctg	gctcgctgat	aagttctgtg	accaagcatg	caatgtcttg	1560
tcctgtgggt	ttgatgtctgg	cgactgtggg	caagatcatt	ttcatgaatt	gtataaagt	1620
atccatctcc	caaaccagac	tcactatatt	attccaaaag	gtgaatgcct	gccttatttc	1680
agctttgcag	aagtagccaa	aagaggagtt	gaaggtgcct	atagtgacaa	tccaaataatt	1740
cgacatgctt	ctattgccaa	caagtggaaa	accatccacc	tcataatgca	cagtggaaatg	1800
aatgcacca	caatacattt	taatctcacg	tttccaaaata	caaacgatg	agagttcaaa	1860
atgcagataa	cagtgaggtt	ggacacaagg	gagggaccaa	aactgaattt	tacggccca	1920
aagggttacg	aaaattttagt	tagtccata	acacttcttc	cagaggcgga	aatcctttt	1980
gaggatattc	ccaaagaaaa	acgcttcccg	aagtttaaga	gacatgtgt	taactcaaca	2040
aggaaagccc	aggaagaggt	aaaaattccc	ctggtaaata	tttcactcct	tccaaagac	2100
gcccagttga	gtctcaatac	cttgatttg	caactggAAC	atggagacat	cactttgaaa	2160
ggatacaatt	tgtccaagtc	agccttgctg	agatcattt	tgtgaactc	acagcatgct	2220
aaaataaaaa	atcaagctat	aataacagat	gaaacaaatg	acagtttgtt	ggctccacag	2280
aaaaaacagg	ttcataaaag	catcttgcca	aacagcttag	gagtgtctga	aagattgcag	2340
aggttgactt	ttcctgcagt	gagtgtaaaa	gtgaatggtc	atgaccaggg	tcagaatcca	2400
ccccctggact	tggagaccac	agcaagattt	agagtggaaa	ctcacaccca	aaaaaccata	2460
ggcgaaaaatg	tgacaaaaga	aaagccccc	tctctgattt	ttccactgga	aagccagatg	2520
acaaaagaaa	agaaaatcac	agggaaagaa	aaagagaaca	gtagaatgga	ggaaaatgct	2580
aaaaatcaca	taggcgttac	tgaagtgtt	cttggaaagaa	agctgcagca	ttacacagat	2640
agttacttgg	gcttttgcc	atggagaaaa	aaaaagtatt	tccttagatct	tctcgacgaa	2700
gaagagtcata	tgaagacaca	attggcatac	ttcactgata	gcaagaatac	tggaggca	2760

ctaaaaagata catttgcaga ttccctcaga tatgtaaata aaattctaaa tagcaagttt 2820
 ggattcacat cgccggaaagt ccctgctcac atgcctcaca tgattgaccg gattgttatg 2880
 caagaactgc aagatatgtt ccctgaagaa tttgacaaga cgtcatttca caaagtgcgc 2940
 cattctgagg atatgcagtt tgccctctct tatttttatt atctcatgag tgcatgtcag 3000
 ccactgaata tatctcaagt ctgtatgaa gttgatacag atcaatctgg tgtcttgct 3060
 gacagagaaa tccgaacact ggctaccaga attcacgaac tgccgttaag tttgcaggat 3120
 ttgacaggta tcgaacacat gctaataaat tgctcaaaaa tgcttcctgc tgatatcacg 3180
 cagctaaata atattccacc aactcaggaa tcctactatg atcccaacct gccaccggc 3240
 actaaaagtc tagtaacaaa ctgtaaacca gtaactgaca aaatccacaa agcatataag 3300
 gacaaaaaca aatataggtt tgaatcatg ggagaagaag aaatcgctt taaaatgatt 3360
 cgtaccaacg tttctcatgt ggtggccag ttggatgaca taagaaaaaa ccctaggaag 3420
 tttgttgcc tgaatgacaa cattgaccac aatcataaaag atgctcagac agtgaaggct 3480
 gttttcaggc acttctatga atccatgttc cccatacctt cccaatttga actgccaaga 3540
 gagttatcgaa accgtttcct tcatatgcat gagctgcagg aatggagggc ttatcgagac 3600
 aaatgtaaagt agtagtctag a 3621

<210> 22 <211> 1383 <212> DNA <213> Homo sapiens <400> 22
 atggcgaccc cacgggtcg ctggcttctc ctccggcttg cactattcggtt cttcctctgg 60
 gaagggtccg gcggcctcga ctcggggcc tcccgcgacg acgacttgct actgccctat 120
 ccacccgcgc ggcgcgcgcct cccccggac tgcacacggg tgccgcgcgg caaccgcgag 180
 cacggaggtt gcctccgc tcccgcgact cccggcgccgg gccgtctggc cgtgcgcacc 240
 ttctgttcgc acttcaggga cgcgcgggtg gcccgcacc tgacgcgggc cggtgagccc 300
 ctgcgcaccc tctcggtgtt ggagcccggtt ggaccggcg gctgcgcggc gagacgacgc 360
 gcccgggtgg aggagacggc gccccggcc gactgcgtg tcgcggcggaa cggcggcttc 420
 ttccgcattga actcgggcga gtgcctgggg aacgtgggtga ggcacgagcg gccgggtgagc 480
 agctccgggg ggctgcagaa cgcgcagttc gggatccggcc ggcacgggac cctggtcacc 540
 gggtaacctgtt ctgaggagga ggtgctggac actgagaacc catttgcgtca gctgctgagt 600
 ggggtcgtgt ggctgattcg taatggaaac atctacatca acgagagcca agccacagag 660
 tggacgaga cacaggagac aggttcctt agcaaatttgc tgaatgtgtat atcagccagg 720
 acggccatttgc cccacgaccg gaaagggcag ctgggtctct ttcattgcaga cggccatacg 780
 gagcagcgtg gcatcaacccgtt gttggaaatg gccggagttcc tgctgaaaca ggacgtggc 840
 aacgccatca acctggatgg ggggtggctt cccaccttttgc tgctcaacgg gacccggcc 900

agttaccgt cagatcactg ccaggacaac atgtggcgct gtcccccgc	960
agtgtccacc	
gtggtgtgtg tgcacgaacc ccgctgccag ccgcctgact gccacggcca cgggacctgc	1020
gtggacgggc actgccaatg caccgggcac ttctggcggt gtcccgctg tgatgagctg	1080
gactgtggcc cctctaactg cagccagcac ggactgtgca cggagaccgg ctgcccgtgt	1140
gatgccggat ggaccgggtc caactgcagt gaagagtgtc cccttggctg gcatggcccg	1200
ggctgccaga ggccttgtaa gtgtgagcac cattgtccct gtgaccccaa gactggcaac	1260
tgcagcgtct ccagagtaaa gcagtgtctc cagccacctg aagccaccct gagggcggga	1320
gaactctcct ttttaccagg ggaggaccag gtggacccca ggctgatcga cggcaaggat	1380
tga	1383

<210> 23 <211> 32 <212> PRT <213> Homo sapiens <220> <221> misc_feature <222> (2)..(2) <223> Xaa is any amino acid

<400> 23

Asp	Xaa	Thr	Arg	Val	His	Ala	Gly	Arg	Leu	Glu	His	Glu	Ser	Trp	Pro
1									5						15

Pro	Ala	Ala	Gln	Thr	Ala	Gly	Ala	His	Arg	Pro	Ser	Val	Arg	Thr	Phe
1									20						30

<210> 24 <211> 20 <212> PRT <213> Bos taurus <400> 24

Arg	Asp	Gly	Thr	Leu	Val	Thr	Gly	Tyr	Leu	Ser	Glu	Glu	Glu	Val	Leu
1									5						15

Asp	Thr	Glu	Asn
1			20

<210> 25 <211> 13 <212> PRT <213> Bos taurus <400> 25

Gly	Ile	Asn	Leu	Trp	Glu	Met	Ala	Glu	Phe	Leu	Leu	Lys
1									5			10

<210> 26 <211> 13 <212> PRT <213> Bos taurus <400> 26

Met	Leu	Leu	Lys	Leu	Leu	Gln	Arg	Gln	Arg	Gln	Thr	Tyr
1									5			10

<210> 27 <211> 28 <212> PRT <213> Bos taurus <400> 27

Asp	Thr	Phe	Ala	Asp	Ser	Leu	Arg	Tyr	Val	Asn	Lys	Ile	Leu	Asn	Ser
1									5						15

Lys	Phe	Gly	Phe	Thr	Ser	Arg	Lys	Val	Pro	Ala	His
20								25			

<210> 28 <211> 21 <212> PRT <213> Bos taurus <400> 28

Ala Lys Met Lys Val Val Glu Glu Pro Asn Thr Phe Gly Leu Asn Asn
1 5 10 15

Pro Phe Leu Pro Gln
20

<210> 29 <211> 5 <212> PRT <213> Bos taurus <400> 29

Ile Leu Asn Ser Lys
1 5

<210> 30 <211> 5 <212> PRT <213> Bos taurus <400> 30

Thr Ser Phe His Lys
1 5

<210> 31 <211> 6 <212> PRT <213> Bos taurus <400> 31

Phe Gly Phe Thr Ser Arg
1 5

<210> 32 <211> 12 <212> PRT <213> Bos taurus <400> 32

Ser Leu Val Thr Asn Cys Lys Pro Val Thr Asp Lys
1 5 10

<210> 33 <211> 12 <212> PRT <213> Bos taurus <400> 33

Leu Ala His Val Ser Glu Pro Ser Thr Cys Val Tyr
1 5 10

<210> 34 <211> 13 <212> PRT <213> Bos taurus <400> 34

Asn Asn Pro Phe Leu Pro Gln Thr Ser Arg Leu Gln Pro
1 5 10

<210> 35 <211> 17 <212> PRT <213> Bos taurus <220> <221> misc_feature <222> (8)...(8)
<223> Xaa is any amino acid

<220> <221> misc_feature <222> (10)...(10) <223> Xaa is any amino acid

<220> <221> misc_feature <222> (13)...(13) <223> Xaa is any amino acid

<220> <221> misc_feature <222> (15)...(15) <223> Xaa is any amino acid

<400> 35

Val Pro Met Leu Val Leu Asp Xaa Ala Xaa Pro Thr Xaa Val Xaa Leu
1 5 10 15

Lys

<210> 36 <211> 22 <212> PRT <213> Bos taurus <400> 36
Glu Leu Pro Ser Leu Tyr Pro Ser Phe Leu Ser Ala Ser Asp Val Phe
1 5 10 15

Asn Val Ala Lys Pro Lys
20

<210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 37
gcgaagatga aggtgggtgga ggacc 25

<210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 38
tgcagagaca gacctatacc tgcc 24

<210> 39 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 39
actaacacct ccgaaactgga aag 23

<210> 40 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 40
ctacccacca tggggttcaa gctttgca 29

<210> 41 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 41
agagcttgaa ccccatggtg g 21

<210> 42 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 42
gaagacacaa ttggcatact tcactgatag caagaatact gggaggcaac taaaagatac 60

<210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<400> 43
actgcatatc ctcagaatgg 20

<210> 44 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA
<220> <221> misc_feature <223> Description of Artificial Sequence: synthetic DNA
<400> 44
tggttctgaa gcttagccga gatcaatacc atg 33

<210> 45 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA

<400> 45

tagtacactc tagactacta cttcaatttg tctcgataag

40

<210> 46 <211> 218 <212> DNA <213> hybrid <220> <221> misc_feature <223> mouse/human
hybrid

<400> 46

ctagccgcca ccatggagac agacacactc ctgctatggg tactgctgct cggcggtgg 60

acctctgtct gtgtgaggac gatacccatg acgacgagtg ggttccaggt tccactgg 120

acgaagatca ggttagatccg cggttaatca cccaaggatcc aaggtgacca ctgcttct 180

tccatctagg cgccaattag gacggtaactg ccattcga 218

<210> 47 <211> 205 <212> DNA <213> hybrid <220> <221> misc_feature <223> mouse/human
hybrid

<400> 47

ctagccgtac catgagatta gcagtaggcgc cttatttagt atgcgcagta ctccgccatg 60

gttgtctaat cgtcatccgc ggaataatca tacgcgtcat gagggattat gtctcgaga 120

agatcaggta gatccgcgtt taatcgacgg taccttatac agagcgtctt ctagccatc 180

taggcgccta ttatcgccaa ttatcgccaa ttatcgccaa ttatcgccaa ttatcgccaa 205

<210> 48 <211> 207 <212> DNA <213> hybrid <220> <221> misc_feature <223> mouse/human
hybrid

<400> 48

ctagccgcca ccatgggatt agcagtaggc gccttatttag tatgcgcagt cggcggtgg 60

accctaatcg tcatccgcgg aataatcata cgcgtcaact cggattatgt ctgcgcagaag 120

atcaggtaga tccgcggta atcgacgtga gcctaataca gagcgtcttc tagtccatct 180

aggcgccaaat tagctgcgtaa cattcga 207

<210> 49 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA

<400> 49

ggaattccac catggcgacc tccacgggtc g 31

<210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA

<220> <221> misc_feature <223> Description of Artificial Sequence: synthetic DNA

<400> 50

tgaccagggt cccgtcgcg 19

<210> 51 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA

<400> 51
gaggaccagg tggaccccaag gctgatccac ggcaaggat 39

<210> 52 <211> 13 <212> PRT <213> Homo sapiens <400> 52
Glu Asp Gln Val Asp Pro Arg Leu Ile Asp Gly Lys Asp
1 5 10