

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. November 2001 (15.11.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/85662 A2

- (51) Internationale Patentklassifikation⁷: C07C 45/50, 253/30, 67/347
- (21) Internationales Aktenzeichen: PCT/EP01/05406
- (22) Internationales Anmeldedatum: 11. Mai 2001 (11.05.2001)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
100 23 470.4 12. Mai 2000 (12.05.2000) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): AHLERS, Wolfgang [DE/DE]; Brauereistrasse 3, 67549 Worms (DE). SLANY, Michael [DE/DE]; Römerstrasse 12, 67281 Kirchheim (DE).
- (74) Anwälte: KINZEBACH, Werner usw.; Ludwigsplatz 4, 67059 Ludwigshafen (DE).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING ALDEHYDES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON ALDEHYDEN

(57) Abstract: According to the inventive method for producing aldehydes, at least one compound with a vinyl or vinylidene group is reacted with carbon monoxide and hydrogen in the presence of a source of a metal of subgroup VIII and a bidentate diphosphine ligand, said bidentate diphosphine ligand being of general formula (I), wherein (A),

together with the phosphorus atom to which it is bonded, forms a 2-phospha-tricyclo [3.3.1.1.{3,7}] decyl radical, respectively, in which one or more non-adjacent carbon atoms are optionally replaced by oxygen atoms and which is optionally substituted, and wherein X represents a bridging chain with 1 to 10 atoms and the molar ratio of diphosphine-ligand to metal is at least 5. The method produces predominantly n-aldehydes.

(57) Zusammenfassung: Beschrieben wird ein Verfahren zur Herstellung von Aldehyden, bei dem man wenigstens eine Verbindung mit einer Vinyl- oder Vinylidengruppe in Gegenwart einer Quelle eines Metalls der VIII. Nebengruppe und eines zweizähnigen Diphosphin-Liganden mit Kohlenmonoxid und Wasserstoff umsetzt, wobei der Diphosphin-Ligand die allgemeine Formel (I) aufweist, worin (A) zusammen mit dem Phosphoratom, an das es gebunden ist, jeweils einen 2-Phospha-tricyclo [3.3.1.1.{3,7}] decylrest bildet, in dem gegebenenfalls ein oder mehrere nichtbenachbarte Kohlenstoffatome durch Sauerstoffatome ersetzt sind und der gegebenenfalls substituiert ist, und X für eine verbrückende Kette mit 1 bis 10 Atomen steht, und das molare Verhältnis von Diphosphin-Ligand zu Metall wenigstens 5 beträgt. Das Verfahren liefert überwiegend n-Aldehyde.

WO 01/85662 A2

Verfahren zur Herstellung von Aldehyden

Beschreibung

5

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Aldehyden, bei dem man wenigstens eine Verbindung mit einer Vinyl- oder Vinylidengruppe in Gegenwart einer Quelle eines Metalls der VIII. Nebengruppe und eines zweizähnigen Disphosphinliganden mit Kohlenmonoxid und Wasserstoff umsetzt.

Die Hydroformylierung oder Oxosynthese ist ein wichtiges großtechnisches Verfahren und dient der Herstellung von Aldehyden durch Umsetzung von ethylenisch ungesättigten Verbindungen mit Kohlenmonoxid und Wasserstoff. Die Reaktion selbst ist stark exotherm und läuft im Allgemeinen unter erhöhtem Druck und bei erhöhten Temperaturen in Gegenwart von Katalysatoren ab. Als Katalysatoren werden meist Metalle der VIII. Nebengruppe des Periodensystems, insbesondere Cobalt-, Rhodium-, Iridium-, Ruthenium, Palladium- oder Platinverbindungen bzw. -komplexe eingesetzt, die zur Aktivitäts- und/oder Selektivitätsbeeinflussung mit stickstoff- oder phosphorhaltigen Liganden modifiziert sein können.

Bei unsymmetrischen ethylenisch ungesättigten Verbindungen führen die beiden möglichen Orientierungen der Kohlenmonoxid-Anlagerung an die C-C-Doppelbindung zu unterschiedlichen Aldehyden. In der Regel wird daher ein Gemisch isomerer Aldehyde erhalten, wie dies nachstehend veranschaulicht ist.

30

35

Die Verbindung (1) wird häufig als n-Aldehyd, die Verbindung (2) als Iso-Aldehyd bezeichnet.

45

Aufgrund der im Allgemeinen wesentlich größeren technischen Bedeutung der n-Aldehyde gegenüber den Iso-Aldehyden wird eine Optimierung der Hydroformylierungskatalysatoren und -bedingungen zur Erzielung einer möglichst großen n-Selektivität, d. h. eines möglichst hohen Verhältnisses von n-Aldehyd zu Iso-Aldehyd in den Produktaldehyden, angestrebt.

Die WO 98/42717 beschreibt Carbonylierungsreaktionen in Gegenwart eines Carbonylierungskatalysators, der ein Diphosphin umfasst, wovon wenigstens ein Phosphoratom Bestandteil einer 2-Phosphatricyclo[3.3.1.1{3,7}]decylgruppe ist. Zu den beschriebenen Carbonylierungsreaktionen zählen auch Hydroformylierungen. Obgleich die WO 98/42717 angibt, dass zur Herstellung des dort beschriebenen Katalysatorsystems der Ligand relativ zum Metallkation im Allgemeinen im Überschuss eingesetzt wird, ist hinsichtlich der Ligandenmenge, die während der Carbonylierungsreaktion vorliegt, nichts gesagt. In den Hydroformylierungsbeispielen der WO 98/42717 werden molare Verhältnisse von Diphosphinligand zu Rhodiummetall von 1:1,2 (Beispiel 9), 1:1 (Beispiel 10) bzw. 1:2 (Beispiel 11) verwendet. Bei der Hydroformylierung von Propen wird ein etwa äquimolares Gemisch von Butanal und 2-Methylpropanal erhalten.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Aldehyden durch Hydroformylierung von Verbindungen mit wenigstens einer Vinyl- oder Vinylidengruppe anzugeben, das eine möglichst hohe n-Selektivität aufweist.

Erfnungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zur Herstellung von Aldehyden, bei dem man wenigstens eine Verbindung mit einer Vinyl- oder Vinylidengruppe in Gegenwart einer Quelle eines Metalls der VIII. Nebengruppe und eines zweizähnigen Diphosphin-Liganden mit Kohlenmonoxid und Wasserstoff umsetzt, wobei der Diphosphin-Ligand die allgemeine Formel I

35

40

aufweist, worin

A zusammen mit dem Phosphoratom, an das es gebunden ist, jeweils einen 2-Phosphatricyclo[3.3.1.1{3,7}]decylrest bildet, in dem gegebenenfalls ein oder mehrere nichtbenachbarte Kohlenstoffatome durch Sauerstoffatome ersetzt sind und der gegebenenfalls substituiert ist,

X für eine verbrückende Kette mit 1 bis 10 Atomen steht,

und das molare Verhältnis von Diphosphin-Ligand zu Metall wenigstens 5 beträgt.

Das molare Verhältnis von Disphospin-Ligand zu Metall beträgt erfindungsgemäß wenigstens 5, vorzugsweise wenigstens 8 und insbesondere beträgt es wenigstens etwa 10. Das molare Verhältnis ist im Allgemeinen kleiner als etwa 50, meistens kleiner als etwa 20.

Tricyclo[3.3.1.1{3,7}]decan ist auch unter dem Trivialnamen "Adamantan" bekannt. In dem 2-Phospha-tricyclo[3.3.1.1{3,7}]decylrest des erfindungsgemäßen verwendeten Liganden können ein oder mehrere nicht benachbarte Kohlenstoffatome, die vorzugsweise nicht in Nachbarstellung zum Phosphoratom stehen, durch Sauerstoffatome ersetzt sein. Vorzugsweise sind die Kohlenstoffatome in den Positionen 6, 9 und 10 durch Sauerstoffatome ersetzt.

Der 2-Phospha-tricyclo[3.3.1.1{3,7}]decylrest kann an einem oder mehreren seiner Kohlenstoffatome Substituenten tragen. Vorzugsweise tragen ein oder mehrere Kohlenstoffatome an den Positionen 1, 3, 5 und/oder 7, insbesondere alle Kohlenstoffe an den Positionen 1, 3, 5 und 7 Substituenten, die vorzugsweise identisch sind. Geeignete Substituenten sind z. B. Alkyl, Cycloalkyl, Halogenalkyl, Aryl oder Aralkyl. Die Kohlenstoffatome an den Positionen 4 und/oder 8 können einen oder zwei Substituenten, wie C₁-C₄-Alkyl oder Halogenatome, insbesondere Fluoratome, tragen.

Die beiden in dem erfindungsgemäß zu verwendenden Diphosphin-Liganden enthaltenen 2-Phospha-tricyclo[3.3.1.1{3,7}]decylreste können gleich oder unterschiedlich substituiert sein. Je nach Substitutionsmuster können die Diphosphine in Form von Diastereomeren vorliegen. In der Regel sind sowohl die Diastereomerengemische als auch die reinen Diastereomere für die erfindungsgemäßen Zwecke geeignet.

X steht für eine verbrückende Kette mit 1 bis 10 Atomen, vorzugsweise 2 bis 4 Atomen, insbesondere 3 Atomen. Vorzugsweise steht X für eine C₁- bis C₁₀-Alkylenbrücke, die eine, zwei, drei oder vier Doppelbindungen aufweisen kann und/oder durch ein, zwei oder drei nichtbenachbarte Heteroatome unterbrochen sein kann und/oder ein-, zwei- oder dreifach mit einem gesättigten oder ungesättigten 3- bis 7-gliedrigen Carbocyclus oder Heterocyclus anelliert sein kann.

Bei den anellierten ungesättigten Carbocyclen des Restes X handelt es sich bevorzugt um Benzol oder Naphthalin, insbesondere um Benzol. Anellierte Benzolringe sind vorzugsweise unsubstituiert oder weisen 1, 2 oder 3, insbesondere 1 oder 2 Substituenten auf,

die ausgewählt sind unter Alkyl, Alkoxy, Halogen, Halogenalkyl, Nitro, Carboxyl, Alkoxycarbonyl, und Cyano. Anellierte gesättigte Carbocyclen sind vorzugsweise Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl.

5

Wenn die Alkylenbrücke des Restes X durch Heteroatome unterbrochen ist, so sind diese bevorzugt ausgewählt unter Sauerstoff, Schwefel oder Stickstoff.

10 Bevorzugte Reste X sind ausgewählt unter

- $(CH_2)_x$ -

15

20

worin x für ganze Zahl von 1 bis 10, vorzugsweise 2 bis 4 steht,

25 Y für O, S, NR⁵ steht, wobei R⁵ für Alkyl, Cycloalkyl oder Aryl steht

oder Y für C₁-C₃-Alkylenbrücke steht, die eine Doppelbindung und/ oder einen Alkyl-, Cycloalkyl- oder Arylsubstituenten aufweisen kann,

30 oder Y für eine C₂-C₃-Alkylenbrücke steht, die durch O, S oder NR⁵ unterbrochen ist,

R¹, R², R³ und R⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Halogenalkyl, Aryl, Alkoxy, Aryloxy, Aralkyloxy, Halogen, Nitro, Alkoxycarbonyl oder Cyano stehen.

35

Besonders bevorzugt steht X für Propylen.

Vorzugsweise steht A zusammen mit dem Phosphoratom, an das es gebunden ist, für eine Gruppe der allgemeinen Formel II

40

45

worin die Reste R unabhängig voneinander für Alkyl, Cycloalkyl, Halogenalkyl, Aryl oder Aralkyl stehen.

Im Rahmen der vorliegenden Anmeldung bedeuten, soweit nicht anders angegeben, die Ausdrücke

"Alkyl" geradkettiges oder verzweigtes Alkyl, vorzugsweise C₁-C₂₀-Alkyl, insbesondere C₁-C₈-Alkyl, besonders bevorzugt C₁-C₄-Alkyl. Beispiele für Alkylgruppen sind insbesondere Methyl,

10 Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, s-Butyl, t-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trime-

15 thylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl;

20 "Cycloalkyl" vorzugsweise C₅-C₇-Cycloalkyl, wie Cyclopentyl, Cyclohexyl oder Cycloheptyl;

"Halogenalkyl" vorzugsweise C₁-C₄-Halogenalkyl, d. h. einen C₁-C₄-Alkylrest, der partiell oder vollständig durch Fluor, Chlor,

25 Brom und/oder Iod substituiert ist, wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2,2-Difluorethyl,

30 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl und

35 Nonafluorbutyl;

"Aryl" vorzugsweise C₆-C₁₆-Aryl, wie Phenyl, Tolyyl, Xylyl, Mesityl, Naphthyl, Anthracenyl, Phenantrenyl, Naphthacenyl; insbesondere Phenyl oder Naphthyl;

"Aralkyl" vorzugsweise C₇-C₂₀-Aralkyl, insbesondere Phenyl-C₁-C₄-alkyl, wie Benzyl oder Phenethyl;

"Alkoxy" vorzugsweise C₁-C₂₀-Alkoxy mit einer Alkylgruppe vorzugsweise wie vorstehend definiert;

5 "Cycloalkyloxy" vorzugsweise C₅-C₇-Cycloalkyloxy mit einer Cycloalkylgruppe vorzugsweise wie vorstehend definiert;

"Aryloxy" vorzugsweise C₇-C₁₆-Aryloxy mit einer Arylgruppe vorzugsweise wie vorstehend definiert;

10 "Aralkyloxy" vorzugsweise C₇-C₂₀-Aralkyloxy mit einer Aralkylgruppe vorzugsweise wie vorstehend definiert;

und "Halogen" Fluor, Chlor, Brom oder Iod, vorzugsweise Fluor oder Chlor;

15 Besonders bevorzugt stehen die Reste R unabhängig voneinander für C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl, insbesondere Methyl, t-Butyl, Trifluormethyl oder Phenyl.

20 Besonders bevorzugte Liganden sind unter 1,2-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl)-ethan, 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl)-propan und 1,6-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,tetramethyl-6,9,10-trioxa-tricyclo-[3.3.1.1{3,7}]decyl)-hexan ausgewählt.

Zur Herstellung der Diphosphin-Liganden der Formel I kann man z. B. eine Verbindung mit 2 primären Phosphingruppen mit einem 1,3-Diketon, z. B. 2,4-Pentandion oder substituierten 2,4-Pentandionen, wie Perfluor-2,4-pentandion oder 1,1,1,5,5,5-Hexafluoro-2,4-pentandion, unter Säurekatalyse umsetzen. Die Verbindungen der Formel I werden im Allgemeinen in hoher Reinheit erhalten und können ohne weitere Aufreinigung unmittelbar verwendet werden. Bezuglich geeigneter Reaktionsbedingungen wird auf J. Am. Chem. Soc. 1961, Vol. 83, 3279-3282 und Chem. Com. 1999 (10, 1901-902) sowie die WO 98/42717 verwiesen.

Im Allgemeinen werden unter Hydroformylierungsbedingungen aus den eingesetzten Katalysatoren oder Katalysatorvorstufen katalytisch 40 aktive Spezies der allgemeinen Formel H_xM_y(CO)_zL_q gebildet, worin M für ein Metall der VIII. Nebengruppe des Periodensystems, L für einen Liganden der allgemeinen Formel I und q, x, y, z für ganze Zahlen in Abhängigkeit von der Wertigkeit und Art des Metalls stehen. Die Komplexe können gewünschtenfalls zusätzlich weitere 45 Liganden aufweisen, die vorzugsweise ausgewählt sind unter Halogeniden, Aminen, Carboxylaten, Acetylacetonat, Aryl- und Alkylsulfonaten, Olefinen, Dienen, Cycloolefinen, Nitrilen, stick-

stoffhaltigen Heterocyclen, Aromaten und Heteroaromaten, Ethern, PF₃, sowie 1-, 2- und mehrzähnigen Phosphin-, Phospinit-, Phosphonit- und Phosphitliganden, die nicht der Formel I entsprechen.

- 5 Bei dem Metall der VIII. Nebengruppe handelt es sich vorzugsweise um Cobalt, Ruthenium, Rhodium, Nickel, Palladium, Platin, Osmium oder Iridium und insbesondere um Cobalt, Ruthenium, Iridium, Rhodium, Nickel, Palladium und Platin. Rhodium ist am meisten bevorzugt. Geeignete Quellen der genannten Metalle sind im Allgemeinen
10 deren Verbindungen, z. B. Salze, oder Komplexe.

Nach einer bevorzugten Ausführungsform werden die Hydroformylierungskatalysatoren *in situ* in dem für die Hydroformylierungsreaktion eingesetzten Reaktor hergestellt. Gewünschtenfalls können
15 die Ligand-Metall-Komplexe jedoch auch separat hergestellt und nach üblichen Verfahren isoliert werden. Zur *in-situ*-Herstellung kann man z. B. wenigstens einen Ligand der Formel I, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe, gegebenenfalls wenigstens einen weiteren Liganden und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel mit Kohlenmonoxid und Wasserstoff unter Hydroformylierungsbedingungen
20 umsetzen.

Geeignete Rhodiumverbindungen oder -komplexe sind z. B. Rhodium(II)- und Rhodium(III)-Salze, wie Rhodium(III)-chlorid, Rhodium(III)-nitrat, Rhodium(III)-Sulfat, Kaliumrhodiumsulfat, Rhodium(II)- bzw. Rhodium(III)carboxylate, wie Rhodium(II)- und Rhodium(III)-acetat, Rhodium(III)oxid, Salze der Rhodium(III)-säure, Trisammoniumhexachlorobrodat(III) usw. Weiterhin eignen sich Rhodiumkomplexe, wie Rhodiumbiscarbonylacetylacetonat, Acetylacetonatobisethylenrhodium(I) usw. Vorzugsweise werden Rhodiumbiscarbonylacetylacetonat, Rhodiumacetat oder Rhodiummethylhexanoat eingesetzt.

35 Ebenfalls geeignet sind Rutheniumsalze oder -verbindungen, geeignete Rutheniumsalze sind beispielsweise Ruthenium(III)-chlorid, Ruthenium(IV)-, Ruthenium(VI)- oder Ruthenium(VIII)oxid, Alkalisalze der Rutheniumsauerstoffsäuren wie K₂RuO₄ oder KRuO₄ oder Komplexverbindungen, wie RuHCl(CO)(PPh₃)₃. Auch können die Metall-
40 carbonyle des Rutheniums, wie Trisrutheniumdodecacarbonyl oder Hexarutheniumoctadecacarbonyl oder Mischformen, in denen CO teilweise durch Triorganophosphine ersetzt sind, wie Ru(CO)₃(PPh₃)₂ verwendet werden.

45 Geeignete Cobaltverbindungen sind beispielsweise Cobalt(II)-chlorid, Cobalt(II)-sulfat, Cobalt(II)-carbonat, Cobalt(II)-nitrat, deren Amin- oder Hydratkomplexe, Cobaltcarboxylate, wie Cobalt-

formiat, Cobaltacetat, Cobaltethylhexanoat, Cobaltnaphtanoat, sowie der Cobaltcaprolactamatkomplex. Auch hier können die Carbonylkomplexe des Cobalts wie Dicobaltoctacarbonyl, Tetracobaltdodecacarbonyl und Hexacobalthexadecacarbonyl eingesetzt werden.

5

Die genannten und weitere geeignete Verbindungen des Cobalts, Rhodiums, Rutheniums und Iridiums sind im Prinzip bekannt und in der Literatur hinreichend beschrieben oder sie können vom Fachmann analog zu den bereits bekannten Verbindungen hergestellt 10 werden.

Geeignete Aktivierungsmittel sind z. B. Brönstedsäuren, Lewissäuren, wie z. B. BF_3 , AlCl_3 , ZnCl_2 und Lewisbasen.

15 Als Substrat für das erfindungsgemäße Verfahren kommen prinzipiell alle Verbindungen in Betracht, welche eine oder mehrere Vinyl- oder Vinylidengruppen enthalten. Dazu zählen z. B. $\text{C}_3\text{-C}_{20}\text{-}\alpha\text{-Alkene}$, insbesondere lineare $\text{C}_3\text{-C}_{20}\text{-}\alpha\text{-Alkene}$, wie Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 20 1-Undecen, 1-Dodecen usw. Ein weiteres bevorzugtes Einsatzmaterial ist Isobuten.

Bevorzugte Einsatzmaterialien sind weiterhin ω -Nitrilo- $\text{C}_2\text{-C}_{20}$ -alkene, wie Acrylonitril und 4-Pentennitril; und ω -Alkyloxycarbonyl- $\text{C}_2\text{-C}_{20}$ -alkene, wie Acrylsäurealkylester und 4-Pentensäurealkylester. Geeignet sind weiterhin Vinylaromaten, wie Styrol oder Vinylpyridin.

Die Hydroformylierungsreaktion kann kontinuierlich, semikontinuierlich oder diskontinuierlich erfolgen. Geeignete Reaktoren sind dem Fachmann bekannt und werden z. B. in Ullmann's Enzyklopädie der technischen Chemie, Band 1, 3. Auflage, 1951, S. 743 ff. beschrieben.

35 Kohlenmonoxid und Wasserstoff werden üblicherweise in Form eines Gemisches, dem sogenannten Synthesegas, eingesetzt. Das molare Verhältnis von Kohlenmonoxid und Wasserstoff beträgt in der Regel etwa 5:95 bis 70:30, bevorzugt etwa 40:60 bis 60:40. Insbesondere wird ein molares Verhältnis von Kohlenmonoxid und Wasserstoff im 40 Bereich von etwa 1:1 eingesetzt.

Die Temperatur bei der Hydroformylierungsreaktion liegt im Allgemeinen in einem Bereich von etwa 80 bis 180°C, vorzugsweise etwa 100 bis 160°C. Die Reaktion wird in der Regel bei dem Partialdruck 45 des Reaktionsgases bei der gewählten Reaktionstemperatur durchgeführt. Im Allgemeinen liegt der Druck in einem Bereich von etwa 5 bis 200 bar, insbesondere 5 bis 30 bar. Die optimale Temperatur

und der optimale Druck sind von der eingesetzten ungesättigten Verbindung abhängig.

Die katalytisch aktiven Ligand-Metall-Komplexe lassen sich nach 5 üblichen, dem Fachmann bekannten Verfahren vom Austrag der Hydroformylierungsreaktion abtrennen und können im Allgemeinen, gegebenenfalls nach Aufarbeitung, erneut für die Hydroformylierung eingesetzt werden.

10 Bei der Hydroformylierung können Lösungsmittel mitverwendet werden, wie die hochsiedenden Folgereaktionsprodukte der Aldehyde, die bei der Hydroformylierung entstehen. Ebenfalls geeignete Lösungsmittel sind aromatische Kohlenwasserstoffe, wie Toluol und Xylol, aliphatische Kohlenwasserstoffe, Ether, wie 2,5,8-Trioxa-15 nonan, Diethylether und Anisol, Sulfone, wie Sulfolan, oder Ester, wie 3-Hydroxy-2,2,4-trimethylpentyl-1-isobutyrat (Texanol).

Durch das erfindungsgemäße Verfahren werden im Allgemeinen n-Se-20 lektivitäten von mehr als 80%, insbesondere von mehr als 90% erreicht. Die Erfindung wird durch die folgenden nicht einschränkenden Beispiele näher veranschaulicht:

Beispiele

25 Die Synthese der Liganden erfolgte gemäß der Beschreibung der WO 98/42717. Die Abkürzung "acac" steht für Acetylacetonat; L:M für das molare Verhältnis von Ligand zu Metall. Die in den Beispielen erhaltenen Reaktionsgemische wurden mittels Gaschromatographie (GIC) analysiert.

Vergleichsbeispiel 1

Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

35 0,9 mg Rh(CO)₂acac und 1,65 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M 1:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) be-40 gast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 94%, die Aldehydselektivität 11%, die Selektivität zu internen Olefinen 89%. Das molare Verhältnis von n-Nonanal zu Isononal betrug 45:55.

45

Vergleichsbeispiel 2

Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

- 5 0,9 mg Rh(CO)₂acac und 2,47 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M = 1,5:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 83%, die Aldehydselektivität 12%, die Selektivität zu internen Olefinen 88%. Das molare Verhältnis von n-Nonanal zu Isononanal betrug 43:57.

15 Vergleichsbeispiel 3

Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

- 0,9 mg Rh(CO)₂acac und 3,3 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M = 2:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 83%, die Aldehydselektivität 10%, die Selektivität zu internen Olefinen 90%. Das molare Verhältnis von n-Nonanal zu Isononanal betrug 44:56.

Vergleichsbeispiel 4

- 30 Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

- 0,9 mg Rh(CO)₂acac und 4,9 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M = 3:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 85%, die Aldehydselektivität 27%, die Selektivität zu internen Olefinen 73%. Das molare Verhältnis von n-Nonanal zu Isononanal betrug 72:28.

Vergleichsbeispiel 5

- Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

0,9 mg Rh(CO)₂acac und 6,6 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M = 4:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 85%, die Aldehydselektivität 25%, die Selektivität zu internen Olefinen 75%. Das molare Verhältnis von n-Nonanal zu Isononanal betrug 75:25.

10

Beispiel 6

Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

15 0,9 mg Rh(CO)₂acac und 8,2 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M = 5:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 100%, die Aldehydselektivität 69%, die Selektivität zu internen Olefinen 31%. Das molare Verhältnis von n-Nonanal zu Iso-nonanal betrug 97:3.

25 Beispiel 7

Hydroformylierung von 1-Octen mit 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan

0,9 mg Rh(CO)₂acac und 16,4 mg 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl-propan (60 ppm Rh, L:M = 10:1) wurden separat in insgesamt 3 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C bei 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100°C und 10 bar hydroformyliert. Der Umsatz betrug 80%, die Aldehydselektivität 95%. Das molare Verhältnis von n-Nonanal zu Isononanal betrug 97:3.

40 Die Beispiele zeigen, dass bei einem molaren Verhältnis von Ligand zu Metall von wenigstens 5 der Anteil des n-Aldehyds an den erhaltenen Aldehyden signifikant höher ist als bei geringeren Ligand-Metall-Verhältnissen.

Patentansprüche

1. Verfahren zur Herstellung von Aldehyden, bei dem man wenigstens eine Verbindung mit einer Vinyl- oder Vinylidengruppe in Gegenwart einer Quelle eines Metalls der VIII. Nebengruppe und eines zweizähnigen Diphosphin-Liganden mit Kohlenmonoxid und Wasserstoff umsetzt, wobei der Diphosphin-Ligand die allgemeine Formel I

10

(I)

15

aufweist, worin

A zusammen mit dem Phosphoratom, an das es gebunden ist, jeweils einen 2-Phospha-tricyclo[3.3.1.1{3,7}]decylrest bildet, in dem gegebenenfalls ein oder mehrere nichtbenachbarte Kohlenstoffatome durch Sauerstoffatome ersetzt sind und der gegebenenfalls substituiert ist, und

20

X für eine verbrückende Kette mit 1 bis 10 Atomen steht, und das molare Verhältnis von Diphosphin-Ligand zu Metall wenigstens 5 beträgt.

25

2. Verfahren nach Anspruch 1, wobei X für eine C₁-C₁₀-Alkylenbrücke steht, die eine, zwei, drei oder vier Doppelbindungen aufweisen kann und/oder durch ein, zwei oder drei nichtbenachbarte Heteroatome unterbrochen sein kann und/oder ein-, zwei- oder dreifach mit einem gesättigten oder ungesättigten 3- bis 7-gliedrigen Carbocyclus oder Heterocyclus anelliert sein kann.

30

3. Verfahren nach Anspruch 1 oder 2, wobei das molare Verhältnis von Disphosphin-Ligand zu Metall wenigstens 8 beträgt.

35

4. Verfahren nach Anspruch 2 oder 3, wobei A zusammen mit dem Phosphoratom, an das es gebunden ist, für eine Gruppe der allgemeinen Formel II

45

13

5

steht, worin die Reste

- 10 R unabhängig voneinander für Alkyl, Cycloalkyl, Halogenalkyl, Aryl oder Aralkyl stehen.
- 15 5. Verfahren nach Anspruch 4, wobei der Ligand unter 1,2-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl)-ethan, 1,3-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl)-propan und 1,6-P,P'-Di(2-phospha-1,3,5,7-tetramethyl-6,9,10-trioxa-tricyclo[3.3.1.1{3,7}]decyl)-hexan ausgewählt ist.
- 20 6. Verfahren nach einem der Ansprüche 1 bis 4, wobei X für eine Kette von drei Atomen steht.
- 25 7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Verbindung mit einer Vinyl- oder Vinylidengruppe unter C₃-C₂₀-α-Alkenen, Isobuten, ω-Nitrilo-C₂-C₂₀-alkenen und ω-Alkyloxycarbonyl-C₂-C₂₀-alkenen ausgewählt ist.
- 30 8. Verfahren nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Metall der VIII. Nebengruppe um Rhodium handelt.

35

40

45