Министерство образования Новосибирской области ГБПОУ НСО «Новосибирский авиационный технический колледж имени Б.С.Галущака»

УТВЕРЖДАЮ	УТВЕРЖДАЮ	УТВЕРЖДАЮ			
Председатель цикловой	Председатель цикловой	Председатель цикловой			
комиссии по специальности	комиссии по специальности	комиссии по специальности			
09.02.07	09.02.07	09.02.07			
О.О.Чекушкина	О.О.Чекушкина	О.О.Чекушкина			
Протокол №	Протокол №	Протокол №			
«» 20г	« » 20 г	«»_ 20_ г			

Действия с комплексными числами

Методические указания к практическому занятию 5

Учебная дисциплина: Элементы высшей математики Модуль: EH.01.M.03 Основы теории комплексных чисел

Специальность: 09.02.07 Информационные системы и программирование

Разработал: Г.К.Болотова

1 Цели

- 1.1 В ходе выполнения работы студенты осваивают:
- 1.1.1 Общие компетенции:
- OК 1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам
- ОК 5 Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста
- 1.1.2 Формируют общие компетенции
- ЛР 4 Проявляющий и демонстрирующий уважение к людям труда, осознающий ценность собственного труда. Стремящийся к формированию в сетевой среде личностно и профессионального конструктивного «цифрового следа»
- ЛР 14 Демонстрирующий навыки анализа и интерпретации информации из различных источников с учетом нормативно-правовых норм
- ЛР 15 Демонстрирующий готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности
- 1.2 В результате выполнения работы студенты:
- 1.2.1 Осваивают умения пользоваться понятиями комплексных чисел:
 - определять степень мнимой единицы;
 - находить модуль и аргумент комплексного числа;
 - переходить от одной формы комплексного числа к другой;
 - решать квадратные уравнения с комплексными коэффициентами;
- выполнять действия с комплексными числами в алгебраической, тригонометричес-кой и показательной формах
- 1.2.2 Усваивают знания основ теории комплексных чисел:
 - определений:
 - мнимой единицы;
 - модуля и аргумента комплексного числа;
 - комплексного числа в алгебраической, тригонометрической и показательной формах;
 - правил действий с комплексными числами в алгебраической, тригонометрической и показательной формах

2 Дидактическое обеспечение

- 2.1 Индивидуальный вариант задания
- 2.2 Учебное пособие: Подольский, В.А. Сборник задач по математике: Учеб. пособие/Подольский В.А., Суходский А.М., Мироненко Е.С. 3-е изд., стер. М.: Высш.шк., 2005. 495 с.: ил
- 2.3 Методические рекомендации по выполнению работы
- 2.4 Таблица 1 «Базовые определения, понятия и формулы по теории комплексных чисел» (приложение A)
- 2.5 Таблица 2 «Значения углов основных тригонометрических функций» (приложение Б)
- 2.6 Образцы выполнения типовых заданий (приложение В)

3 Форма организации – индивидуальная

4 Инструктаж

- 4.1 Вариант задания выдается преподавателем с учетом уровней освоения студентами содержания модуля EH.01.M.03 «Основы теории комплексных чисел»
- 4.2 Время выполнения 90 мин

5 Порядок выполнения

- 5.1 Ознакомиться с содержанием задания
- 5.2 Ознакомиться с методическими рекомендациями по выполнению работы
- 5.3 Сделать анализ условия задачи, записать краткую постановку задачи
- 5.4 Выполнить решения, указывая последовательность выполняемых действий

6 Методические рекомендации

- 6.1 При выполнении заданий следует использовать:
- таблицу 1 «Базовые определения, понятия и формулы по теории комплексных чисел» (приложение А);
 - учебное пособия п.2.2: Глава 4,§1, № 4.3, §2,№ 4.34, 4.35
 - образцы выполнения типовых заданий 1,3,4 (приложение В)
- 7 **Форма отчета** задания выполняются в тетради для практических занятий и сдаются на проверку преподавателю

8 Критерии оценок

- 8.1 При контроле и оценки освоения базовых умений учитывается:
- правильность анализа поставленной задачи;
- технологичность выполнения последовательности действий;
- характер вычислительных ошибок;
- соответствие полученных результатов эталону правильного ответа
- 8.2 Оценка выполнения практических заданий:
- «Отлично» выполнен полный объём заданий в соответствии с п.8.1;
- «Хорошо» выполнен полный объем заданий в соответствии с п.8.1, но допущены ошибки вычислительного характера не более 2-х или в соответствии с п.8.1 выполнены три задания;
- «Удовлетворительно» в соответствии с п.8.1 выполнены три задания, но допущены ошибки вычислительного характера не более 2-х или в соответствии с п.8.1 выполнены два задания;
- «Неудовлетворительно» в соответствии с п.8.1выполнено менее 2-х заданий, студентом не реализованы цели данной работы

9 Содержание заданий

Задание 1 Запишите комплексные числа в алгебраической, тригонометрической и показательной формах

1.1	$z = \frac{2i^{10}}{\sqrt{3} - i}$	1.6	$z = \frac{\sqrt{3} + i^{33}}{1 + \sqrt{3}i^3}$	1.11	$z = \frac{4i^{10}}{-1 + \sqrt{3}i}$
1.2	$z = \frac{4i^{14}}{1 - \sqrt{3}i}$	1.7	$z = \frac{\sqrt{3} + i^{37}}{1 - \sqrt{3}i^3}$	1.12	$z = \frac{\sqrt{3} + i^{37}}{1 - \sqrt{3}i^3}$
1.3	$z = \frac{\sqrt{3} + i^{11}}{1 - \sqrt{3}i}$	1.8	$z = \frac{\sqrt{3} + i^{11}}{1 - \sqrt{3}i}$ $z = \frac{2i^{20}}{-\sqrt{3} - i}$	1.13	$z = \frac{\sqrt{3} + i^{33}}{1 + \sqrt{3}i^3}$
1.4	$z = \frac{1 - \sqrt{3}i}{1 - \sqrt{3}i}$ $z = \frac{4i^{37}}{1 + i\sqrt{3}}$	1.9	$z = \frac{2i^{20}}{-\sqrt{3}-i}$	1.14	$z = \frac{4i^{37}}{1 - i\sqrt{3}}$
1.5	$z = \frac{\sqrt{3} + i^{37}}{1 + \sqrt{3}i}$	1.10	$z = \frac{\sqrt{3} + i^{39}}{1 - \sqrt{3}i}$	1.15	$z = \frac{\sqrt{3} + i^{37}}{1 - \sqrt{3}i}$

Задание 2 Решите уравнение

2.1	$z^2 + (1+i)z + i = 0$	2.9	$z^2 + (3 - 2i)z + 5 - 5i = 0$
2.2	$z^2 - (2+i)z + 2i = 0$	2.10	$z^2 - (1+i)z + i = 0$
2.3	$2z^2 - (5-i)z + 3 + i = 0$	2.11	$z^2 - (2+i)z - 1 + 7i = 0$
2.4	$z^2 - (3+i)z + 3i = 0$	2.12	$3z^2 - (5-i)z + 4 = 0$
2.5	$z^2 + (2+i)z + 2i = 0$	2.13	$2z^2 + (5-i)z + 3 + i = 0$
2.6	$z^2 + (3+i)z + 3i = 0$	2.14	$z^2 - (3 - 2i)z + 5 - 5i = 0$
2.7	$z^2 + (2+i)z - 1 + 7i = 0$	2.15	$3z^2 + (-5+i)z + 4 = 0$
2.8	$z^2 + (2-i)z - 1 + 5i = 0$		

Задание 3 Выполните действия, результат запишите в алгебраической форме

$$3.1 \quad z = \frac{\left(1 + \sqrt{3}i\right)^4 \left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)}{4e^{i\frac{\pi}{3}}}$$

$$3.9 \quad z = \frac{\left(1 - \sqrt{3}i\right)^6 \left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)}{4e^{i\frac{\pi}{3}}}$$

$$3.2 \quad z = \frac{\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^4 \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}{2e^{i\pi}}$$

$$3.10 \quad z = \frac{\left(1 + \sqrt{3}i\right)^7 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)}{128e^{i\frac{7\pi}{3}}}$$

$$3.11 \quad z = \frac{\left(\sqrt{3} - i\right)^3 e^{\frac{\pi}{3}i}}{\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}}$$

$$3.11 \quad z = \frac{\left(1 - \sqrt{3}i\right)^6 \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)}{128e^{i\frac{7\pi}{6}}}$$

$$3.12 \quad z = \frac{\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^2 16e^{i\frac{\pi}{6}}}{\left(-1 + i\right)^6}$$

$$3.12 \quad z = \frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^4 \left(1 - \sqrt{3}i\right)}{4e^{i\frac{\pi}{2}}}$$

3.5	$z = \frac{\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)^2 e^{i\frac{\pi}{3}}}{\left(-\sqrt{3} + i\right)^4}$	3.13	$z = \frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^4 \left(1 - \sqrt{3}i\right)}{4e^{i\frac{\pi}{2}}}$
3.6	$z = \frac{16i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)}{e^{i\frac{\pi}{6}}\left(\sqrt{3} - i\right)^4}$	3.14	$z = \frac{16i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)}{e^{i\frac{\pi}{6}}\left(\sqrt{3} - i\right)^4}$
3.7	$4e^{i\frac{\pi}{2}}$	3.15	$z = \frac{\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^2 16e^{i\frac{\pi}{6}}}{\left(-1 + i\right)^6}$
3.8	$z = \frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^4 \left(1 - \sqrt{3}i\right)}{4e^{i\frac{\pi}{2}}}$		

Задание 4 Вычислите

4.1	$\sqrt[3]{-1+i\sqrt{3}}$	4.6	$\sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}$	4.11	$\sqrt[3]{-\frac{\sqrt{3}}{2} + \frac{1}{2}i}$
4.2	$\sqrt[3]{-\frac{1}{2} + \frac{\sqrt{3}}{2}i}$	4.7	$\sqrt[3]{1-\sqrt{3}}i$	4.12	$\sqrt[3]{\frac{1}{2} - \frac{\sqrt{3}}{2}}i$
4.3	$\sqrt[3]{\sqrt{3}-i}$	4.8	$\sqrt[3]{-\frac{1}{2}-\frac{\sqrt{3}}{2}}i$	4.13	$\sqrt[3]{-1+\sqrt{3}}i$
4.4	$\sqrt[3]{-\frac{\sqrt{3}}{2}-\frac{1}{2}i}$	4.9	$\sqrt[3]{-1+i}$	4.14	$\sqrt[3]{-\sqrt{3}-i}$
4.5	$\sqrt[3]{-1-\sqrt{3}}i$	4.10	$\sqrt[3]{-\sqrt{3}+i}$	4.15	$\sqrt[3]{-\frac{1}{2} - \frac{\sqrt{3}}{2}}i$

Приложение А Базовые определения, понятия, формулы по теории комплексных чисел

Таблица 1

1	Определение мнимой единицы	$i^2 = -1$
2	Алгебраическая форма КЧ	z = a + bi
3	Действия с КЧ в алгебра	ической форме
3.1	Сложение	$z = z_1 + z_2 = (a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$
3.2	Вычитание	$z = z_1 - z_2 = (a_1 + b_1 i) - (a_2 + b_2 i) = (a_1 - a_2) + (b_1 - b_2)i$
3.3	Умножение	$z = z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$
3.4	Деление	$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 + b_1 i)(a_2 - b_2 i)}{{a_2}^2 + {b_2}^2}$
3.5	Извлечение квадратного корня	$\sqrt{a+bi} = \pm \left(\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}} \pm i\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}}\right)$ "-", если $b < 0$ "+", если $b > 0$.
4	Модуль КЧ	$ z = \sqrt{a^2 + b^2}$
5	Аргумент КЧ	Аргумент комплексного числа $\varphi = \arg z$, если $z \neq 0$ определяется из формулы: $tg\varphi = \frac{b}{a}.$ Так как $-\pi < \arg z \leq \pi$, то из формулы $tg\varphi = \frac{b}{a}$ получаем, что $\arg z = arctg\frac{b}{a}$, если КЧ находится в 1 или 4 четвертях; $\arg z = arctg\frac{b}{a} + \pi$, если КЧ находится во 2 четверти; $\arg z = arctg\frac{b}{a} - \pi$, если КЧ находится в 3 четверти
6	Тригонометрическая форма КЧ	$z = r(\cos\varphi + i\sin\varphi)$
7	Действия с КЧ в тригоно	летрической форме
7.1	Умножение	$z_1 \cdot z_2 = r_1(\cos \varphi_1 + i \sin \varphi_1) \cdot r_2(\cos \varphi_2 + i \sin \varphi_2) =$
		$r_1 \cdot r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Окончание таблицы 1

OKUH.	чание таолицы 1	,
7.2	Деление	$\frac{z_1}{z_2} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1}{r_2}(\cos(\varphi_1 - \varphi_2) + \sin(\varphi_1 - \varphi_2))$
7.3	Возведение в <i>n</i> -ую степень	$z^n = r^n(\cos n\varphi + i\sin n\varphi)$
7.4	Извлечение корня <i>п</i> -степени	$\sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r} \cdot \left(\cos\frac{\varphi + 2\pi k}{n} + i \cdot \sin\frac{\varphi + 2\pi k}{n}\right), k \in \mathbb{N}$
8	Показательная форма КЧ	$z = re^{i\varphi}$
9	Действия с КЧ в показат	ельной форме
9.1	Умножение	$z_1 z_2 = r_1 e^{i\varphi_1} r_2 e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$
9.2	Деление	$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$
9.3	Возведение в <i>n</i> -ую степень	$z^n = r^n e^{in\varphi}$
9.4	Извлечение корня <i>п</i> - степени	$\sqrt[n]{re^{i\varphi}} = \sqrt[n]{re^{i(\frac{\phi+2\pi k}{n})}}$

Приложение Б Значения основных углов тригонометрических функций

Таблица 2

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
α	0_{0}	30^{0}	45°	60°	90°	180°
$Sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
Cosa	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tgα	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	1	0

Приложение В

Образцы выполнения заданий

Задание 1 Запишите комплексные числа в алгебраической, тригонометрической и

показательной формах
$$z = \frac{3i^{17}}{-1 - i\sqrt{3}}$$

1 Найдем КЧ в алгебраической форме:

$$z = \frac{3i^{17}}{-1 - i\sqrt{3}} = \left|i^{17}\right| = (i^{16})i = i\right| = \frac{3i}{-1 - i\sqrt{3}} = \frac{3i(-1 + i\sqrt{3})}{(-1 - i\sqrt{3})(-1 + i\sqrt{3})} = \frac{-3i - 3\sqrt{3}}{4} = -\frac{3\sqrt{3}}{4} - \frac{3}{4}i$$

2 Найдем модуль КЧ

$$|z| = \sqrt{\left(-\frac{3\sqrt{3}}{4}\right)^2 + \left(-\frac{3}{4}\right)^2} = \sqrt{\frac{27}{16} + \frac{9}{16}} = \sqrt{\frac{36}{16}} = \frac{6}{4} = \frac{3}{2}$$

3 Найдем аргумент КЧ

$$tg\varphi = rac{-rac{3}{4}}{-rac{3\sqrt{3}}{4}} = rac{1}{\sqrt{3}}$$
, т.к. КЧ находится в III четверти, то $\arg z = arctg \, rac{1}{\sqrt{3}} - \pi = rac{\pi}{6} - \pi = -rac{5\pi}{6}$

4 Запишем КЧ в тригонометрической форме:

$$z = \frac{3}{2}(\cos(-\frac{5\pi}{6}) + i\sin(-\frac{5\pi}{6})) = \frac{3}{2}(\cos\frac{5\pi}{6} - i\sin\frac{5\pi}{6})$$

5 Запишем КЧ в показательной форме:

$$z = \frac{3}{2}e^{-i\frac{5\pi}{6}}$$

Задание 3 Выполните действия, результат запишите в алгебраической форме

$$z = \frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^4 \left(1 - \sqrt{3}i\right)}{4e^{i\frac{\pi}{2}}}$$

Для выполнения данного задания необходимо выбрать форму КЧ, в которой будут выполняться действия.

Т.к. в четвертую степень КЧ возводиться в тригонометрической форме, каждое из чисел запишем в тригонометрической форме

9

$$1 \ z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

1.1 Найдем модуль КЧ

$$|z_1| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

Приложение В

(продолжение)

1.2 Найдем аргумент КЧ

$$tg\, \varphi = rac{\dfrac{\sqrt{3}}{2}}{-\dfrac{1}{2}} = -\sqrt{3}$$
 , т.к. КЧ располагается во второй четверти, то

$$\arg z = arctg(-\sqrt{3}) + \pi = -\frac{\pi}{3} + \pi = \frac{2\pi}{3}$$

1.3
$$z_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$$

Найдем

$$z_1^4 = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^4 = \cos\frac{8\pi}{3} + i\sin\frac{8\pi}{3} =$$

$$= \cos(2\pi + \frac{2\pi}{3}) + i\sin(2\pi + \frac{2\pi}{3}) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$$

2
$$z_2 = 1 - i\sqrt{3}$$

2.1 Найдем модуль КЧ

$$|z_2| = \sqrt{1+3} = 2$$

2.2 Найдем аргумент КЧ

$$tg\, \varphi = \frac{-\sqrt{3}}{1} = -\sqrt{3}$$
 , т.к. КЧ располагается в четвертой четверти, то

$$\arg z = arctg(-\sqrt{3}) = -\frac{\pi}{3}$$

2.3
$$z_2 = 2(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3}))$$

3
$$z_3 = 4e^{i\frac{\pi}{2}} = 4(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$$

Подставим полученные значения в исходное задание

$$z = \frac{(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}) \cdot 2\left(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3})\right)}{4(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})} = \frac{2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})}{4(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})} = \frac{1}{2}(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})) = \frac{1}{2}(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}))$$

$$=\frac{1}{2}(\cos\frac{\pi}{6}-i\sin\frac{\pi}{6})$$

Запишем полученный результат в алгебраической форме

$$z = \frac{1}{2}(\frac{\sqrt{3}}{2} - \frac{1}{2}i) = \frac{\sqrt{3}}{4} - \frac{1}{4}i$$

Приложение В

(окончание)

Задание 4 Вычислите $\sqrt[3]{-1+i}$

Запишем z = -1 + i в тригонометрической форме:

$$|z| = \sqrt{2}; \quad tg\,\varphi = -1, \quad \arg z = arctg(-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3\pi}{4}.$$

$$z = \sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$$

По формуле (7.4) имеем:

$$\sqrt[3]{\sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})} = \sqrt[3]{\sqrt{2}} \left(\cos\frac{\frac{3\pi}{4} + 2k\pi}{3} + i\sin\frac{\frac{3\pi}{4} + 2k\pi}{3}\right) = \sqrt[6]{2}(\cos(\frac{\pi}{4} + \frac{2\pi}{3}k) + i\sin(\frac{\pi}{4} + \frac{2\pi}{3}k), \quad k = 0,1,2.$$

При

$$k = 0; \quad z_0 = \sqrt[6]{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right);$$

$$k = 1; \quad z_1 = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{2\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{2\pi}{4} \right) \right) = \sqrt[6]{2} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right)$$

$$k = 2; \quad z_2 = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{4\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{4\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{19\pi}{12} \right) + i \sin \left(\frac{19\pi}{12} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right) = \sqrt[6]{2} \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi}{3} \right) \right)$$