Is batman somewhere?

Augusta Mukam, Fred Dagang

December, 2021

First we get the data.

```
data_path = "bats.csv"
mydata = read.table(file = data_path, sep=";", skip=3, header= T)
mydata
```

##		Species	Diet	Clade	BOW	BRW	AUD	MOB
##	1	Rousettus aegyptiacus	1	I	136.30	2070.00	9.88	105.77
##	2	Epomops franqueti	1	I	120.00	2210.00	10.44	107.80
##	3	Eonycteris spelaea	1	I	58.70	1310.00	5.48	67.00
##	4	Cynopterus sphinx	1	I	48.30	1184.33	4.77	65.27
##	5	Dobsonia praedatrix	1	I	184.00	3028.00	7.09	213.43
##	6	Eidolon helvum	1	I	262.00	4290.00	12.77	208.70
##	7	Pteropus vampyrus	1	I	1014.00	9121.00	16.93	243.54
##	8	Macroglossus miniumus	1	I	14.60	561.00	2.40	30.05
##	9	Syconycteris australis	1	I	14.70	570.00	2.13	31.40
##	10	Nyctimene albiventer	1	I	29.70	825.00	4.56	68.93
##	11	Rhinolophus landeri	2	I	6.30	208.00	4.88	4.83
##	12	Hipposideros commersoni	2	I	101.90	750.00	8.79	9.50
##	13	Aselliscus stoiczkanus	2	I	4.90	150.00	2.72	1.88
##	14	Triaenops persicus	2	I	13.70	271.00	4.07	5.22
##	15	Megaderma spasma	3	I	22.60	644.00	10.56	14.25
##	16	Macroderma gigas	3	I	119.80	1704.00	22.36	21.60
##	17	Cardioderma cor	3	I	26.00	670.00	10.81	8.07
##	18	Lavia frons	3	I	23.40	644.00	10.92	4.35
##	19	Nycteris thebaica	3	I	8.90	323.00	5.79	3.65
##	20	Rhinopoma hardwickei	3	I	12.90	275.00	5.20	7.48
##	21	Craseonycteris thonglongyai	3	I	2.56	87.00	1.84	0.66
##	22	Desmodus rotundus	4	II	36.30	999.00	9.77	33.00
##	23	Diphylla ecaudata	4	II	30.90	798.00	8.30	36.20
##	24	Brachyphylla cavernarum	1	II	44.50	1196.00	8.63	42.20
##	25	Lionycteris spurrelli	1	II	9.90	393.00	3.71	10.30
##	26	Glossophaga soricina	1	II	10.60	414.00	3.74	12.20
##	27	Leptonycteris curasoae	1	II	24.50	610.00	5.57	18.60
##	28	Anoura geofroyi	1	II	16.00	586.00	5.20	14.15
##	29	Phylloderma stenops	1	II	46.10	1338.00	10.20	87.40
##	30	Phyllostomus haustatus	1	II	90.10	1517.00	12.74	34.33
##	31	Mimon crenulatum	1	II	11.80	326.00	5.92	7.30
##	32	Trachops cirrhosus	1	II	36.90	1003.00	16.34	23.50
##	33	Tonatia bidens	1	II	27.67	684.67		17.96
##	34	Vampyrum spectrum	1	II		2587.00	27.60	92.00
##	35	Micronycteris brachyotis	1	II	8.98	319.00	4.19	13.85
##	36	Carollia perspicillata	1	II	17.80	546.00	5.27	23.55

```
## 37
              Rhinophlylla pumilio
                                          1
                                               ΙI
                                                     8.90
                                                           356.00 4.57
                                                                          18.80
## 38
                    Sturnira lilium
                                          1
                                               TT
                                                    20.20
                                                           618.00
                                                                   4.77
                                                                          30.77
## 39
                Artibeus lituratus
                                                                    7.21
                                                                          34.38
                                               II
                                                    41.00 1016.00
## 40
                                                           612.00
                Uroderma bilobatum
                                               II
                                                    16.20
                                                                   5.98
                                                                          28.70
                                          1
## 41
                Vampyrops vittatus
                                          1
                                               II
                                                    22.60
                                                           791.00 11.56
                                                                          29.22
## 42
               Chiroderma villosum
                                          1
                                               ΙI
                                                    26.10
                                                           814.00
                                                                   7.95
                                                                          28.75
## 43
               Pteronotus parnelli
                                          2
                                                    20.20
                                                           543.00
                                                                   5.52
                                                                           7.98
                                               II
## 44
                                                                           6.66
             Mormoops megalophylla
                                          3
                                                    15.70
                                                           386.00 4.19
                                               ΙI
## 45
              Noctilio albiventris
                                          3
                                              III
                                                    32.70
                                                           597.00 11.59
                                                                          13.54
## 46
             Natalus tumidirostris
                                          3
                                               ΙV
                                                     6.90
                                                           245.00
                                                                           3.58
                                                                    3.28
## 47
                Furipterus horrens
                                          3
                                               ΙV
                                                     3.43
                                                           127.00
                                                                    2.78
                                                                           1.37
## 48
                                          3
                                                                          10.26
                      Molossus ater
                                               IV
                                                    33.60
                                                           526.00
                                                                    7.07
## 49
                                          3
                Tadarida condylura
                                               IV
                                                    20.27
                                                           367.78
                                                                   4.94
                                                                           9.75
## 50
                                          3
                                               IV
                                                    19.35
                                                           301.00
                                                                   5.38
                                                                           6.93
                 Molossops abrasus
## 51
              Otomops martiensseni
                                          3
                                               ΙV
                                                    41.50
                                                           756.00 11.41
                                                                          14.30
## 52
             Cheiromeles torquatus
                                          3
                                               IV
                                                   167.00 1362.00 13.20
                                                                          40.50
## 53
               Saccopteryx leptura
                                          3
                                               ΙV
                                                     7.80
                                                           228.00
                                                                    3.48
                                                                           1.49
## 54
                  Cyttarops alecto
                                          3
                                               IV
                                                     5.30
                                                           175.00
                                                                    3.51
                                                                           0.74
              Cormura brevirostris
## 55
                                          3
                                               IV
                                                     8.20
                                                           219.00
                                                                   4.37
                                                                           2.28
## 56
             Peropteryx trinitatus
                                          3
                                               ΙV
                                                     5.00
                                                           149.50
                                                                    2.81
                                                                           1.47
## 57
              Rhynchonycteris naso
                                          3
                                               IV
                                                     3.80
                                                           118.00
                                                                    2.34
                                                                           0.91
## 58
             Emballonura monticola
                                          3
                                               IV
                                                     5.30
                                                           166.00
                                                                    3.16
                                                                           1.30
## 59
                                         3
                                                                    4.08
                      Coleura afra
                                               ΙV
                                                    11.50
                                                           257.00
                                                                           3.98
             Taphozous saccolaimus
## 60
                                          3
                                               IV
                                                    43.00
                                                           671.00
                                                                    9.65
                                                                          10.92
## 61
                Kerivoula papilosa
                                          3
                                               IV
                                                     5.73
                                                           209.67
                                                                    4.47
                                                                           2.52
## 62
                      Myotis myotis
                                          3
                                               ΙV
                                                     7.00
                                                           190.00
                                                                    7.50
                                                                           5.23
## 63
                Miniopterus medius
                                          3
                                               ΙV
                                                    11.71
                                                           271.22
                                                                   4.77
                                                                           5.31
##
         HIP
## 1
     125.97
## 2
      159.80
## 3
       97.70
## 4
       95.40
## 5
      233.30
## 6
      258.10
## 7
      331.29
## 8
       52.95
## 9
       53.10
## 10
      81.40
## 11
       20.89
## 12
       27.68
## 13
       11.60
## 14
      17.40
## 15
       35.85
## 16
       68.90
## 17
       32.30
## 18
       25.80
## 19
       21.65
## 20
       20.95
## 21
        4.80
## 22
       42.40
## 23
       41.00
## 24
       78.80
## 25
       29.50
## 26 35.00
```

```
## 27
       44.95
## 28
       41.40
       91.70
## 30
       65.60
## 31
       18.20
## 32
       50.60
## 33
       28.30
## 34 110.40
## 35
       17.10
## 36
       40.75
## 37
       30.30
## 38
       49.73
##
  39
       54.90
## 40
       42.70
## 41
       52.46
## 42
       47.58
## 43
       22.23
## 44
       27.50
## 45
       36.00
## 46
       27.10
## 47
        9.46
## 48
       20.13
       18.60
## 49
## 50
       15.87
## 51
       30.60
## 52
       61.20
## 53
        9.21
## 54
        7.96
## 55
       11.20
## 56
        7.54
## 57
        5.48
## 58
        8.93
## 59
       12.40
## 60
       26.38
## 61
       19.02
## 62
       16.24
       17.28
## 63
```

1. Study of the relationship between brain weight and body mass

Because, BRW and BOW variable s don't have the same order of magnitude, we divide the column of BRW by 1000.

```
mydata$BRW <- mydata$BRW/1000
phyto = mydata[(mydata$Diet == 1),]
plot(phyto)</pre>
```


Then We can plot a figure showing the dependence of body mass and brain weight.

```
library(ggplot2)
ggplot(mydata, aes(x=BOW,y=BRW)) +
  geom_point() +
  #geom_line() +
  ggtitle("Brain weight and body mass") +
  xlab("Body mass ") +
  ylab("Brain weight")
```

Brain weight and body mass

Then we obtain the mathematical form of the model based on a simple regression model.

```
reg1 = lm(BRW~BOW, data = phyto)
summary(reg1)
```

```
##
## Call:
## lm(formula = BRW ~ BOW, data = phyto)
##
## Residuals:
                      Median
##
       Min
                 1Q
                                   3Q
                                           Max
  -0.62832 -0.23394 -0.06574 0.15826
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6234469
                        0.0814762
                                     7.652 3.14e-08 ***
## BOW
              0.0089999 0.0003972 22.659 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3969 on 27 degrees of freedom
## Multiple R-squared:
                        0.95, Adjusted R-squared: 0.9482
## F-statistic: 513.4 on 1 and 27 DF, p-value: < 2.2e-16
```

The estimate of the intercept is 0.6234. The coefficient of determination is alpha1 = 0.0089. BRW = alpha1 * BOW + intercept

The H0 hypothesis is : alpha1 = intercept = 0. So we reject it. Brain weight depends strongly on body mass.

Now we analyse the variance.

```
anova(reg1)
```

We can see the MSM, MSE, Degree of freedom. The sum of residual squares is MSE = 4.254Now we plot the graph of the residuals.

```
plot(reg1$fitted.values, reg1$residuals, xlab = "Predicted", ylab = "Residuals")
```


It appears to this graph one very distant point.

plot(reg1,4)

which(phyto\$BRW>8)

[1] 7

So we have one individual point. We redo the analysis by removing this point.

```
phytobis = phyto[which(phyto$BRW < 8),]</pre>
reg2 = lm(BRW ~ BOW, data = phytobis)
summary(reg2)
##
## Call:
## lm(formula = BRW ~ BOW, data = phytobis)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
  -0.26976 -0.09333 0.00873 0.11293
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3465452 0.0354920
                                      9.764 3.48e-10 ***
                         0.0004285
                                    33.860 < 2e-16 ***
## BOW
              0.0145099
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1418 on 26 degrees of freedom
## Multiple R-squared: 0.9778, Adjusted R-squared: 0.977
## F-statistic: 1147 on 1 and 26 DF, p-value: < 2.2e-16
par(mfcol = c(2,2))
plot(reg1)
```


Discussion:

2. Study of the contribution to the total weight od each part of the brain

```
library(corrplot)
## corrplot 0.92 loaded
phytoNum = phyto[, c(4:8)]
mat.cor = cor(phytoNum)
corrplot(mat.cor, type = "upper")
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,8,9,11,12,13,14 \longrightarrow row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,8,9,11,12,13,14 --> row.names NOT used
                                                       표
BOW
                                                                  0.8
                                                                 0.6
           BRW
                                                                 0.4
                                                                  0.2
                       AUD
                                                                  0
                                                                  -0.2
                                 MOB
                                                                  -0.4
                                                                 -0.6
                                              HIP
                                                                  -0.8
cor.test(phyto$BRW, phyto$HIP)
##
##
  Pearson's product-moment correlation
##
## data: phyto$BRW and phyto$HIP
## t = 12.91, df = 27, p-value = 4.574e-13
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
```

0.8502663 0.9658107

```
## sample estimates:
##
         cor
## 0.9276811
BRW variable depend on HIP variable.
cor.test(phyto$BRW, phyto$MOB)
##
##
   Pearson's product-moment correlation
##
## data: phyto$BRW and phyto$MOB
## t = 9.7964, df = 27, p-value = 2.203e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7644185 0.9442114
## sample estimates:
         cor
## 0.8834215
BRW variable depend on MOB variable.
cor.test(phyto$BRW, phyto$AUD)
##
##
   Pearson's product-moment correlation
##
## data: phyto$BRW and phyto$AUD
## t = 3.2338, df = 27, p-value = 0.003215
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2007495 0.7497021
## sample estimates:
##
         cor
## 0.5283792
BRW variable doesn't depend enough on AUD variable.
Now we run some multiple regression model.
regm = lm(BRW~AUD+MOB+HIP, data = phytobis)
summary(regm)
##
## Call:
## lm(formula = BRW ~ AUD + MOB + HIP, data = phytobis)
## Residuals:
##
        Min
                  1Q
                      Median
                                    3Q
## -0.26855 -0.06884 0.00988 0.06166 0.37534
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.312692  0.076628 -4.081  0.00043 ***
## AUD
               0.047989 0.006067
                                     7.910 3.85e-08 ***
## MOB
               -0.002444
                         0.003257 -0.750 0.46034
## HIP
               0.015981
                           0.002960 5.399 1.52e-05 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1585 on 24 degrees of freedom
## Multiple R-squared: 0.9744, Adjusted R-squared: 0.9712
## F-statistic: 304.5 on 3 and 24 DF, p-value: < 2.2e-16</pre>
```

The estimate of the intercept is -0.3126. The coefficients of determination are alpha1 = 0.048, alpha2 = -0.0024 and alpha3 = 0.016.

```
BRW = alpha1 * AUD + alpha2 * MOB + alpha3 * HIP + intercept
```

The H0 hypothesis is: alpha1 = alpha2 = alpha3 = intercept = 0. So we reject it. Brain weight (BRW) depends strongly on the volume of the auditory part of the brain (AUD) and the hippocampus (HIP). But it doesn't depend a lot on the volume of the olfactory zone (MOB). So we can remove the variable MOB in the model.

Now we analyse the variance.

```
anova(regm)
```

+ AUD

1

1.9101 7.1124 -32.758

```
## Analysis of Variance Table
##
## Response: BRW
##
             Df Sum Sq Mean Sq F value
                                           Pr(>F)
## AUD
              1 6.8171 6.8171 271.210 1.397e-14 ***
## MOB
              1 15.4094 15.4094 613.040 < 2.2e-16 ***
## HIP
              1
                0.7327 0.7327
                                 29.148 1.519e-05 ***
## Residuals 24 0.6033 0.0251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
reg0 = lm(BRW ~ 1, data = phyto)
step(reg0, scope=BRW~AUD + MOB + HIP, discretion = "forward")
## Start: AIC=33.23
## BRW ~ 1
##
          Df Sum of Sq
                                  AIC
##
                          RSS
## + HIP
           1
                73.273 11.869 -21.906
## + MOB
                66.448 18.694
           1
                              -8.733
## + AUD
           1
                23.770 61.372 25.740
## <none>
                       85.142 33.234
##
## Step: AIC=-21.91
## BRW ~ HIP
##
##
          Df Sum of Sq
                          RSS
                                  AIC
## + MOB
           1
                 2.847
                        9.023 -27.860
## + AUD
                 2.014 9.856 -25.298
           1
                       11.869 -21.906
## <none>
## - HIP
                73.273 85.142 33.234
           1
##
## Step: AIC=-27.86
## BRW ~ HIP + MOB
##
          Df Sum of Sq
                           RSS
                                   AIC
```

```
9.0225 -27.860
## <none>
## - MOB
           1
                2.8469 11.8695 -21.906
## - HIP
                9.6718 18.6944 -8.733
           1
##
## Step: AIC=-32.76
## BRW ~ HIP + MOB + AUD
##
          Df Sum of Sq
                           RSS
                                    AIC
## <none>
                         7.1124 -32.758
## - AUD
                1.9101 9.0225 -27.860
           1
## - MOB
           1
                2.7433 9.8557 -25.298
## - HIP
                8.7453 15.8577 -11.506
           1
##
## Call:
## lm(formula = BRW ~ HIP + MOB + AUD, data = phyto)
## Coefficients:
  (Intercept)
                        HIP
                                      MOB
                                                   AUD
      -1.00395
                    0.04435
                                 -0.02924
                                               0.05282
##
```

The purpose of this test is

3. Link between volume of the auditory part and diet.

Now we do the regression analysis.

```
lm = lm(AUD~Diet_F, data = mydata)
anova(lm)
## Analysis of Variance Table
##
## Response: AUD
##
             \mathtt{Df}
                 Sum Sq Mean Sq F value Pr(>F)
## Diet_F
              3
                  66.07 22.023 0.9293 0.4323
## Residuals 59 1398.26 23.699
```

So we can conclude that auditory brain volume (AUD) and diet (Diet) are not really linked.