Gymnázium Evolution Jižní Město

Jakýsi úvod do matematické analýzy

Áďula vod Klepáčů

28. května 2024

Předmluva

Matematická analýza je věda o reálných číslech; tuším ovšem, že kolegové analytici mě za ono nedůstojně zjednodušující tvrzení rádi mít příliš nebudou. Snad mohou nicméně souhlasit, že v jejím jádru je pojem *nekonečna*. Nikoli nutně ve smyslu čísla, jež převyšuje všechna ostatní, ale spíše myšlenky, jež zaštiťuje přirozené jevy jako *okamžitá změna*, *blížení* či *kontinuum*.

O zrod matematické analýzy, jež zvláště v zámoří sluje též *kalkulus*, se bez pochyb podělili (nezávisle na sobě) Sir Isaac Newton a Gottfried Wilhelm Leibniz v 17. století po Kristu. Sir Isaac Newton se tou dobou zajímal o dráhy vesmírných těles a učinil dvě zásadní pozorování – zemská tíže působí na objekty zrychlením a zrychlení je *velikost okamžité změny* rychlosti. Potřeboval tedy metodu, jak onu velikost spočítat. Vynález takové metody po přirozeném zobecnění vede ihned na teorii tzv. *limit*, které právě tvoří srdce kalkulu. Pozoruhodné je, že Gottfried Leibniz, nejsa fyzik, dospěl ke stejným výsledkům zpytem geometrických vlastností křivek. V jistém přirozeném smyslu, který se zavazujeme rozkrýt, jsou totiž tečny *limitami* křivek. Ve sledu těchto rozdílů v přístupu obou vědců se v teoretické matematice dodnes, s mírnými úpravami, používá při studiu limit značení Leibnizovo, zatímco ve fyzice a diferenciální geometrii spíše Newtonovo.

Následující text je shrnutím – lingvistickým, vizuálním a didaktickým pozlacením – teorie limit. Hloubka i šíře této teorie ovšem přesáhla původní očekávání a kalkulus se stal součástí nespočtu matematických (samozřejmě i fyzikálních) odvětví bádání. První kapitola je věnována osvěžení nutných pojmů k pochopení textu. Pokračují pojednání o limitách posloupností a reálných číslech, limitách součtů, limitách funkcí a, konečně, derivacích. Tento sled není volen náhodně, nýbrž, kterak bude vidno, znalost předšedších kapitol je nutná k porozumění příchozích.

Jelikož se jedná o text průběžně doplňovaný a upravovaný, autor vyzývá čtenáře, by četli okem kritickým a myslí čistou, poskytovali připomínky a návrhy ke zlepšení.

Obsah

1 Elementární funkce									7																		
	1.1	Exponenciála a logaritmus																									7

Kapitola 1

Elementární funkce

Tato kapitola se nachází v pracovní verzi. Neočekávejte obrázky, naopak očekávejte chyby a podivné formulace.

Jisté speciální funkce v matematické analýze si vysloužily přízvisko *elementární*. Původ jejich speciality je ryze fyzikální. Jsou to funkce, jejich prostřednictvím fyzikové modelují mnoho přírodních jevů a pojmů – růst, vlnění, proud, gravitaci, úhel . . .

Ježto fyzikální model světa radno ponechati do textů menší náročnosti, soustředit se budeme pouze na prezentaci těchto funkcí a důkazy jejich základních vlastností.

Všechny elementární funkce definujeme jako součty nekonečných řad. V tomto textu jsme se nezabývali pramnoho konvergencí řad s libovolnými členy. Všechna tvrzení, která tímto směrem budeme vyžadovat, zformulujeme, ač nedokážeme.

1.1 Exponenciála a logaritmus

První na seznamu je exponenciála – funkce spojitého růstu. Toto pojmenování ještě níže odůvodníme. Nyní přikročíme k definici. Pro stručnost zápisu, budeme v následujícím textu používat konvenci, že $0^0=1$.

Definice 1.1.1 (Exponenciála)

Pro $x \in \mathbb{R}$ definujeme

$$\exp x \coloneqq \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Jak jsme čtenáře vystříhali, musíme nyní na krátkou chvíli odbočit k číselným řadám, abychom uměli v obec dokázat, že právě definovaná exponenciála je skutečně reálnou funkcí.

Definice 1.1.2 (Absolutní konvergence řady)

Af $\sum_{n=0}^{\infty} a_n$ je číselná řada, kde $a_n \in \mathbb{R}$. Řekneme, že $\sum_{n=0}^{\infty} a_n$ absolutně konverguje, když konverguje řada $\sum_{n=0}^{\infty} |a_n|$.

Lemma 1.1.3

Každá absolutně konvergentní řada je konvergentní.

Důkaz. Ať je $\varepsilon>0$ dáno. Předpokládejme, že $\sum_{n=0}^{\infty}|a_n|$ konverguje. Nalezneme $n_0\in\mathbb{N}$ takové, že pro $m\geq n\geq n_0$ platí

$$\left|\sum_{k=n}^{m}|a_k|\right|=\sum_{k=n}^{m}|a_k|<\varepsilon.$$

Potom ale z trojúhelníkové nerovnosti platí

$$\left| \sum_{k=n}^{m} a_k \right| \le \sum_{k=n}^{m} |a_k| < \varepsilon,$$

čili $\sum_{n=0}^{\infty} a_n$ konverguje.

Definice 1.1.4 (Cauchyho součin řad)

Ať $\sum_{n=0}^{\infty} a_n$ a $\sum_{n=0}^{\infty} b_n$ jsou číselné řady. Jejich *Cauchyho součinem* myslíme číselnou řadu

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{n-k} b_k.$$

Věta 1.1.5 (Mertensova)

 $At\sum_{n=0}^{\infty}a_n,\sum_{n=0}^{\infty}b_n$ jsou konvergentní číselné řady, přičemž $\sum_{n=0}^{\infty}a_n$ je navíc absolutně konvergentní. Potom $\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_{n-k}b_k$ konverguje a platí

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{n-k} b_k.$$

Věta 1.1.6 (Vlastnosti exponenciály)

Funkce exp je dobře definována a platí

(E1)
$$\exp(x + y) = \exp x \cdot \exp y$$
;

(E2)
$$\lim_{x\to 0} \frac{\exp x - 1}{x} = 0.$$

Důκaz. Dobrá definovanost zde znamená, že řada $\sum_{n=0}^{\infty} x_n/n!$ konverguje pro každé $x \in \mathbb{R}$. Ukážeme, že konverguje absolutně. Je-li x=0, pak řada konverguje zřejmě. Volme tedy $x \in \mathbb{R}$

 $\mathbb{R} \setminus \{0\}$. Potom

$$\lim_{n\to\infty} \frac{\left|\frac{x^{n+1}}{(n+1)!}\right|}{\left|\frac{x^n}{n!}\right|} = \lim_{n\to\infty} \frac{|x|}{n+1} = 0,$$

čili podle věty ?? řada $\sum_{n=0}^{\infty} |x^n|/n!$ konverguje, což znamená, že konverguje i $\sum_{n=0}^{\infty} x^n/n!$.

Dokážeme vlastnost (E1). Počítáme

$$\exp(x+y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^n \binom{n}{k} \frac{x^{n-k}y^k}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{n!}{(n-k)!k!} \frac{x^{n-k}y^k}{n!}$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{x^{n-k}}{(n-k)!} \frac{y^k}{k!}.$$

Všimněme si, že poslední řada je Cauchyho součinem řad $\sum_{n=0}^{\infty} x^n/n!$ a $\sum_{n=0}^{\infty} y^n/n!$. Protože jsou obě tyto řady (podle výše dokázaného) absolutně konvergentní, platí z Mertensovy věty

$$\exp(x+y) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^{n-k}}{(n-k)!} \frac{y^k}{k!} = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{y^n}{n!}\right) = \exp x \cdot \exp y.$$

Nyní vlastnost (E2). Pro $x \in (-1, 1)$ odhadujme

$$\left| \frac{\exp x - 1}{x} - 1 \right| = \left| \frac{\exp x - 1 - x}{x} \right| = \frac{1}{|x|} \left| \sum_{n=0}^{\infty} \frac{x^n}{n!} - x - 1 \right| = \frac{1}{|x|} \left| \sum_{n=2}^{\infty} \frac{x^n}{n!} \right|$$
$$= |x| \left| \sum_{n=2}^{\infty} \frac{x^{n-2}}{n!} \right| \le |x| \left| \sum_{n=2}^{\infty} \frac{1}{n!} \right| = c \cdot |x|,$$

kde c>0 je hodnota součtu řady $\sum_{n=0}^{\infty}1/n!$, která zjevně konverguje (například díky nerovnosti $1/n!\leq 1/n^2$). Jelikož $\lim_{x\to 0}c\cdot|x|=0$, plyne odtud ihned, že

$$\lim_{x \to 0} \left| \frac{\exp x - 1}{x} - 1 \right| = 0,$$

z čehož zase

$$\lim_{x \to 0} \frac{\exp x - 1}{x} = 1.$$

Tím je důkaz završen.

Ihned si odvodíme další vlastnosti exponenciály plynoucí z (E1) a (E2). Postupně dokážeme, že pro každé $x \in \mathbb{R}$ platí následující.

- (E3) $\exp 0 = 1$;
- (E4) $\exp' x = \exp x$;
- (E5) $\exp(-x) = 1/\exp(x)$;
- (E6) $\exp x > 0$;
- (E7) exp je spojitá na \mathbb{R} ;

- (E8) exp je rostoucí na \mathbb{R} ;
- (E9) $\lim_{x\to\infty} \exp x = \infty$ a $\lim_{x\to-\infty} \exp x = 0$;
- (E10) im $\exp = (0, \infty)$.

Z (E1) platí $\exp(0 + x) = \exp 0 \cdot \exp x$. Protože zřejmě existuje $x \in \mathbb{R}$, pro něž $\exp x \neq 0$, plyne odtud $\exp 0 = 1$, tj. vlastnost (E3).

Pro důkaz (E4) počítáme

$$\lim_{h \to 0} \frac{\exp(x+h) - \exp h}{h} = \lim_{h \to 0} \frac{\exp h \cdot \exp x - \exp h}{h} = \lim_{h \to 0} \frac{(\exp h - 1) \exp x}{h}$$
$$= \exp x \cdot \lim_{h \to 0} \frac{\exp h - 1}{h} = \exp x \cdot 1 = \exp x,$$

kde jsme v červené rovnosti použili vlastnost (E1) a v modré zas vlastnost (E2).

Pokračujeme vlastností (E5). Z (E1) máme

$$\exp(x + (-x)) = \exp x \cdot \exp(-x).$$

Protože z (E3) je $\exp(x + (-x)) = \exp 0 = 1$, dostáváme

$$1 = \exp x \cdot \exp(-x),$$

čili

$$\exp(-x) = \frac{1}{\exp x}.$$

Ježto má řada $\sum_{n=0}^{\infty} x^n/n!$ zjevně kladný součet pro x>0, plyne (E6) přímo z právě dokázané (E5).

Vlastnost (E7) je okamžitým důsledkem vlastnosti (E4), díky níž má exp konečnou derivaci na \mathbb{R} , a tudíž je podle lemmatu ?? tamže spojitá.

Vlastnost (E8) je důsledkem vlastností (E4) a (E6), neboť funkce majíc na intervalu (v tomto případě celém \mathbb{R}) kladnou derivaci, je na tomto intervalu – podle důsledku ?? – rostoucí.

Platí $\exp 1 = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} > 1$, čili z vlastnosti (E1) plyne, že exp není shora omezená, neboť $\exp(x+1) = \exp x \cdot \exp 1 > \exp x$ pro každé $x \in \mathbb{R}$. To spolu s vlastnostmi (E7) a (E8) dává $\lim_{x\to\infty} \exp x = \infty$. Dále, použitím (E5),

$$\lim_{x \to -\infty} \exp x = \lim_{x \to \infty} \exp(-x) = \lim_{x \to \infty} \frac{1}{\exp x} = 0,$$

což dokazuje (E9).

Konečně, vlastnost (E10) plyne z (E9) a Bolzanovy věty.