Algebra 2

 $Luka\ Horjak\ (lukahorjak@student.uni-lj.si)$

5. november 2021

Kazalo Luka Horjak

Kazalo

Uvod			3
1	Osn	ovne algebrske strukture	4
	1.1	Linearne operacije	4
	1.2	Polgrupe in monoidi	5
	1.3	Grupe	6
	1.4	Kolobarji in polja	7
	1.5	Vektorski prostori in algebre	8
	1.6	Podstrukture	9
	1.7	Generatorji	11
	1.8	Direktni produkti in vsote	12
2	Prir	neri grup in kolobarjev	13
	2.1	Cela števila	13
St	varn	o kazalo	14

2 Primeri grup in kolobarjev

2.1 Cela števila

Izrek 2.1.1 (Osnovni izrek o deljenju). Naj bo $m \in \mathbb{Z}$ in $n \in \mathbb{N}$. Potem obstajata taki enolični števili q in r, za kateri je

$$m = qn + r$$
 in $0 \le r < n$.

Dokaz. Naj bo

$$S = \{ k \in \mathbb{Z} \mid kn \le m \} .$$

S je navzgor omejena, zato ima največji element q, ki ustreza zgornjim pogojem. \square

Posledica 2.1.1.1. Podmnožica H aditivne grupe \mathbb{Z} je podgrupa natanko tedaj, ko je H oblike $n\mathbb{Z}$ za $n \in \mathbb{N}_0$.

Dokaz. $n\mathbb{Z}$ je očitno grupa za vsak n, opazimo pa, da najmanjši naravni element H deli vse ostale.

Definicija 2.1.2. $d \in \mathbb{N}$ je največji skupni delitelj celih števil m in n, če $d \mid n$, $d \mid m$ in vsak skupni delitelj m in n deli tudi d. Označimo $d = \gcd(m, n)$.

Trditev 2.1.3. Naj bo G aditivna grupa in $H, K \leq G$. Potem je tudi

$$H+K=\{h+k\ |\ h\in H\wedge k\in K\}$$

podgrupa G.

Dokaz. The proof is obvious and need not be mentioned.

Posledica 2.1.3.1. Za vse pare celih števil m in n, ki nista obe 0, obstaja enoličen največji skupni delitelj, ki je oblike

$$d = mx + ny$$

za neka $x, y \in \mathbb{Z}$.

Dokaz. Grupa $n\mathbb{Z} + m\mathbb{Z}$ je grupa oblike $d\mathbb{Z}$.

Definicija 2.1.4. Če je gcd(m, n) = 1 pravimo, da sta si m in n tuji.

Lema 2.1.5 (Evklid). Naj bo $p \in \mathbb{P}$ in $m, n \in \mathbb{Z}$. Potem velja

$$p \mid m \cdot n \implies p \mid n \vee p \mid m$$
.

Dokaz. Če $p \nmid m$, je gcd(p, m) = 1, zato obstajata taka x in y, da je

$$px + my = 1.$$

Sledi, da je

$$p \cdot \left(nx + \frac{mn}{p} \right) = n.$$

Stvarno kazalo

```
C
Cela števila
Največji skupni delitelj, 13
Tujost, 13

I
Izrek
Evklidova lema, 13
Osnovni izrek o deljenju, 13
```