LCIF Etablissement de Moirans

ZI Centr'alp 170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tél.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

Rapport d'essai / Test report

N° 200901-5116CR-A2-R1-E

JDE: 90660

DELIVRE A / ISSUED TO

: LEM SA

Chemin des Aulx 8

CH-1228 PLAN-LES OUATES

GENEVE - SUISSE

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux normes :

Electromagnetic compatibility tests according to the standards:

FCC CFR 47 Part 15, Subpart C (chapter 15.247)

IC Radio Standards Specification: RSS-210

Matériel testé / Apparatus under test :

Produit / Product

Energy Meter Node (EMN)

Marque / Trade mark

Constructeur / Manufacturer

LEM

Type / Model

EMN 1000 W0 & EMN 500 D3-SP2

N° de série / serial number *

19047 *

FCC ID

UVJ-EMN-A2-L-24

IC number

6881A-EMNA2L24

Date des essais / Test date

: Du 23 au 27 février 2009 / February 23rd to 27th, 2009

Lieu d'essai / Test location

: BUREAU VERITAS LCIE SUD-EST

ZI Centr'Alp - 170 rue de Chatagnon

38430 MOIRANS - France

Test réalisé par / Test performed by : Laurent CHAPUS

Ce document comporte / Composition of document : 3 pages.

MOIRANS, LE 22 SEPTEMBRE 2009 / SEPTEMBER 22SD, 2009

Ecrit par / Written by Laurent CHAPUS

Approuvé par / Approved by,

Yannick SAVOIE

reproduction partielle ou toute insertion de résultats dans un texte document n'est autorisée que sous sa forme intégrale. Toute La reproduction de ce document n'est autorisée que sous sa forme intégrale. Voute reproduction partielle ou toute insertion de resultats dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCIF. Ce document résulte d'essais effectués sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à Jobjet essayé. Sauf indication contraire, la décision de conformité prend en

compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification. Pax 04 76 55 90 88

This document shall not be reproduced, except in full, without t he written approval of the LOE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

LCIE

33, av du Général Leclerc

Tél: +33 1 40 95 60 60

Société par Actions Simplifiée

BP 8

Fax: +33 1 40 95 86 56

au capital de 15 745 984 €

92266 Fontenay-aux-Roses cedex

contact@lcie.fr

RCS Nanterre B 408 363 174

www.lcie.fr

www.lcie.com

^{* :} information donnée par le client / information given by the customer

Page: 2 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

1.

TEST PROGRAM

FCC CFR 47, PART 15, Subpart C Standard:

ANSI C63-4 (2003).

Requirements for intentional radiator. Chapter 15.247 (Operation within the band 2400-2483.5 MHz) Digitally modulated radiators.

FCC Guidance "Measurement of Digital Transmission Systems operating under Section 15.247"

Standard: RSS-210 Issue 7 -Jun 2007 (Annex 8)

RSS-Gen Issue 2 - Jun 2007

TEST	Paragraph number (FCC Part 15.247)	Spec. (FCC Part 15.247)	RESULTS (comments)
Power line conducted emissions	101_01 (0.)		PASS
Minimum 6dB bandwidth	15.247 (a)(2)	Shall be at least 500kHz	PASS
Peak Output Power	15.247 (b) (3)	1W max.	PASS
Spurious emissions (Radiated)	15.247 (d)	Table 15.209 (a) Restricted bands	PASS
Peak Power Spectral Density			PASS

General conclusion:

Measures performed on samples of the product EMN 1000 W0 & EMN 500 D3-SP2, Sn: 19047, in configuration and description presented in this test report, show compliance levels with FCC CFR 47, Part 15 C, section 15.247 and related sections.

Measures performed on samples of the product EMN 1000 W0 & EMN 500 D3-SP2, Sn: 19047, in configuration and description presented in this test report, show compliance levels with IC standards RSS-Gen and RSS-210.

2. SYSTEM TEST CONFIGURATION

2.1. JUSTIFICATION

The system was configured for testing in a typical fashion (as a customer would normally use it). Product range covered by this test report:

Product type	Product description		Electrical Scheme xx			
		W0	W2	W3	W4	D3
EMN CT	EMN 20 xx	0	0	0	0	0
LIVIN C1	EMN 100 xx	0	0	0	0	0
	EMN 200 xx	0	0	0	0	0
EMN RT	EMN 500 xx	O	0	0	0	0
LIVIN IX I	EMN 1000 xx	0	0	0	0	0
	EMN 2000 xx	0	0	0	0	0
EMN CT SP2	EMN 100 xx -SP2					0
EMN RT SP2	EMN 500 xx -SP2					0
LIVIN KT SFZ	EMN 2000 xx -SP2					0
		0	= available			

example: EMN 100 D3-SP2

The equipment EMN 1000 W0 and EMN 500 D3-SP2 will be used for test, as representative of the range of product. Equipments listed above contain the 2.4GHz module: ZMN2430HPA (CIRONNET Inc.).

The model as above are identical to each other, except their model designation and probe dynamic range.

2.2. HARDWARE IDENTIFICATION

Equipment under test (EUT):

EMN 1000 W0 & EMN 500 D3-SP2

Serial number: 19047 FCC ID:UVJ-EMN-A2-L-24 IC: 6881A-EMNA2L24

Page: 3 / 33

Equipment information:

- Dimensions: 11cm x 5.5cm x 3.5cm

Frequency band : from 2400MHz to 2483.5MHz

- Number of channel: 15

- Channel separation: 5MHz (from 2405MHz to 2480MHz)

Antenna connector: noneIntegral antenna gain: 1dBi

- Nominal output power: 10dBm (10mW)

- Inboard 2.4GHz module: ZMN2430HPA (CIRONNET Inc.)

- Duty cycle: 10ms (max) on a period of 100ms

Input/output:

EMN 1000 WO

- 4x Terminals for primary voltage connection (N/L1/L2/L3)
- 3x Rogowski coil cables (1m cables, attached to equipment)

EMN 500 D3-SP2

- 4x Terminals for primary voltage connection (PE/L1/L2/L3)
- 1x DC power supply input (1.5m cable, attached to equipment)

Page: 4/33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

- 2x Rogowski coil cables (1m cables, attached to equipment)

Auxiliaries used for testing:

Trade Mark – Model Number (Serial number)	FCC ID	Description	Cable description
LEM EMN 1000 W0 * EMN 500 D3-SP2 (19047) *	UVJ-EMN-A2- L-24	Energy meter node	Power supply / voltage measurement: unshielded (1m) Current coil: coaxial
LEM EMN test platform	None	Energy meter node	DC power cable: unshielded (1m)
LEM MG-5424 Sn: 0307160163	D.O.C	Mesh Gate 2.4GHz (standalone gateway)	Power supply: unshielded Serial: shielded
TOSHIBA SATELITE S1410-704 (PS141E-04YCM-3V) sn: 13594938G with its power supply unit (PA3201U-1ACA SEB100P2-15.0)	D.O.C	Laptop Personal Computer	Power cable unshielded USB cable: shielded
USB232 U232-P9 Sn: 0701SP004661	D.O.C	USB to serial converter	USB: shielded
EGSTON N2EFSW3 DC: 0808	None	AC/DC power adapter (Used for SP2 model)	DC power cable: unshielded (1.4m)

^{*:} Equipment under test

2.3. EQUIPMENT MODIFICATIONS

None

2.4. EUT EXERCISE SOFTWARE

Standard equipments are provided with choose of the lowest, middle and highest channel with normal modulation.

Special modules are provided for test with:

- Permanent transmission with data transfer (modulation) on lowest, middle and highest channel.
- Permanent emission without modulation on lowest, middle and highest channel.

Special modules are used with an EMN test platform.

2.5. EUT CONFIGURATION

Tests are performed with frequency fixed to lowest, middle and highest channels.

2.6. SPECIAL ACCESSORIES

None

Page : 5 / 33

3. Power Lines Conducted Emissions (150kHz-30MHz)

3.1. CLIMATIC CONDITIONS

Date of test : February 27th, 2009 Test performed by : Laurent CHAPUS

Atmospheric pressure : 980mb Relative humidity : 35% Ambient temperature : 22℃

3.2. SET-UP

The product has been tested according to ANSI C63.4-(2003) and FCC Part 15 subpart C.

The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 subpart C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

3.3. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

3.4. MEASUREMENTS RESULTS

Mains terminals 110V/60Hz - EMN 1000 W0

Results: (PEAK detection)

Measure on N:graph Emc#1(see annex 1)Measure on L1:graph Emc#2(see annex 1)Measure on L2:graph Emc#3(see annex 1)Measure on L3:graph Emc#4(see annex 1)

RESULT: PASS

Page: 6 / 33

Mains terminals 110V/60Hz - EMN 500 D3-SP2

Results: (PEAK detection)

Measure on N of power supply adapter:graph Emc#5(see annex 1)Measure on L1 of power supply adapter:graph Emc#6(see annex 1)Measure on L1 (measure):graph Emc#7(see annex 1)Measure on L2 (measure):graph Emc#8(see annex 1)Measure on L3 (measure):graph Emc#9(see annex 1)

RESULT: PASS

Page: 7 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

4. MEASUREMENT OF RADIATED EMISSION (30MHz to 1GHz) – Unintentional Radiation

4.1. CLIMATIC CONDITIONS

Date of test : February 27th, 2009 Test performed by : Laurent CHAPUS

Atmospheric pressure : 980mb Relative humidity : 35% Ambient temperature : 22℃

4.2. SETUP FOR RADIATED EMISSIONS MEASUREMENT

The installation of EUT is identical for pre-characterization measures in a 3 meters full anechoic chamber and for measures on the 10 meters Open site.

The EUT is set on the non-conducting table of 80 cm height.

Pre-characterisation measurement:

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization.

During the measurement, the EUT is rotated on a 360° range (90° step)

The pre-characterization graphs are obtained in PEAK detection.

For frequency band 1GHz to 12.5GHz, a manual search is performed in the anechoic chamber in order to determine frequencies radiated by the EUT.

Characterization on 10 meters open site from 30MHz to 1GHz:

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart B. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart C, class B §15.209 limits.

Measurement bandwidth was 120kHz from 30 MHz to 1GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.4 (Precharacterization results).

4.3. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None.

Page: 8 / 33

4.4. MEASUREMENTS RESULTS

PRE-CHARACTERISATION MEASUREMENT: pre-scan measurement at 3m (PEAK detection)

EMN 1000-W0

Polarisation H: graph **Emr1#H** (30MHz-1GHz) (see annex 1) Polarisation V: graph **Emr1#V** (30MHz-1GHz) (see annex 1)

EMN 500 D3-SP2

Polarisation H: graph **Emr2#H** (30MHz-1GHz) (see annex 1) Polarisation V: graph **Emr2#V** (30MHz-1GHz) (see annex 1)

QUALIFICATION: Open Area Test Site measurement.

Frequency list has been created with anechoic chamber pre-scan results.

No	Frequency	Limit	Measure *	Margin	Angle	Pol	Ht	Correc.	Comments
	(MHz)	Quasi-Peak	Quasi-Peak	(Mes-Lim)	Table	Ant.	Ant.	factor	
		(dBµV/m)	(dBµV/m)	(dB)	(deg)		(cm)	(dB)	
	No unintentional radiation observed								

4.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of $52.5dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 is added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 $dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$

The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m.

Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

Page: 9 / 33

5. OCCUPIED BANDWIDTH

5.1. CLIMATIC CONDITIONS

Date of test : February 27th, 2009 Test performed by : Laurent CHAPUS

Atmospheric pressure : 980mb Relative humidity : 40% Ambient temperature : 20℃

5.2. SET-UP

The tested equipment is set to transmit operation with nominal modulation on lowest, middle and highest channel.

• Method of measurement

Radiated emission (no antenna connector)

5.3. MEASUREMENT DATA

Measured 6dB bandwidth on lower channel: 1.625MHz Measured 6dB bandwidth on middle channel: 1.600MHz Measured 6dB bandwidth on highest channel: 1.625MHz

Occupied bandwidth (lower channel)
RBW = 100kHz / VBW = 300kHz

Note: Markers are 6dB below the peak output power.

Page: 10 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

Occupied bandwidth (Mid channel)
RBW = 100kHz / VBW = 300kHz

Note: Markers are 6dB below the peak output power.

Occupied bandwidth (High channel)
RBW = 100kHz / VBW = 300kHz

Note: Markers are 6dB below the peak output power

RESULT: PASS

Limit: Minimum 6dB bandwidth shall be at least 500MHz

Page: 11 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

6. PEAK POWER OUTPUT

6.1. CLIMATIC CONDITIONS

Date of test : February 22th, 2009 Test performed by : Laurent CHAPUS

Atmospheric pressure : 980mb Relative humidity : 40% Ambient temperature : 20℃

6.2. SET-UP

The tested equipment is set to transmit operation with nominal modulation on lowest and highest channel. The RBW of the spectrum analyzer is set to 3MHz (greater than the 6dB bandwidth of the equipment). VBW = 3MHz.

• Method of measurement

Radiated emission (no possibility to add antenna connector to the PCB)

The procedure set forth in ANSI C63.4 were followed with respect to maximising the peak emission.

Antenna conducted measurements could not be performed on this device, therefore radiated tests were performed to show compliance with the peak output power limit according to the alternative test methods in the FCC KDB Publication N°558074 "Guidance on measurements for Digital Transmission Systems (47 CFR 15.247).

The power was calculated using the following equation:

 $P=(E \times D)^2/(30 \times G)$

Where G is the numerical gain of the transmitting antenna with reference to an isotropic radiator

D is the distance in meters from which the field strength was measured

E is the maximum field strength in V/m

6.3. MEASUREMENT DATA

Measurement result:

Measurements are performed in normal test conditions.

Integral antenna gain: 0dBi. (Worst case)

Detector PEAK

Low channel

Frequency (MHz)	Maximum field strength at 3m	Calculation of peak output power	Limit
	dBμV/m	(mW)	(mW)
2405	102.6	5.4	1000

Mid channel

Frequency (MHz)	Maximum field strength at 3m	Calculation of peak output power	Limit
	dBμV/m	(mW)	(mW)
2440	104.7	8.8	1000

High channel

Frequency (MHz)	Maximum field strength at 3m	Calculation of peak output power	Limit
	dBμV/m	(mW)	(mW)
2480	101.7	4.4	1000

Page: 12/33

6.4. BAND-EDGE COMPLIANCE

1- The lower band-edge compliance was determined using the marker-delta method in which the radio frequency power that is produced by the EUT is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

Lower band-edge compliance

Note: Peak marker is 2405.1 MHz

RESULT: at 2400MHz, the observed level is 38.3dB below the peak level → PASS (shall be greater than 20dBc)

Page: 13 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

2- The upper band-edge compliance was determined using the radiated mark-delta method. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field-strength of the band-edge emissions.

Upper band-edge compliance

Note: Upper marker is 2483.5 MHz

RESULT: Field strength at upper band-edge is 32.8dB below 101.7dB μ V/m = 68.9 dB μ V/m (Limit is 74dB μ V/m for peak value)

RESULT: Field strength at upper band-edge is 32.8dB below 81.7dB μ V/m = 48.9 dB μ V/m (Limit is 54dB μ V/m for average value)

Duty cycle correction factor: -20dB (Max transmission time is 10ms on a period of 100ms)

Page: 14/33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

7. Spurious Emissions (Radiated)

7.1. CLIMATIC CONDITIONS

Date of test : February 22th, 2009 Test performed by : Laurent CHAPUS

Atmospheric pressure : 980mb Relative humidity : 40% Ambient temperature : 20℃

7.2. TEST SETUP

The installation of EUT is identical for pre-characterization measurement in a 3 meters semi-anechoic chamber and for measures on a 3 meters Open site.

Equipment configuration and running mode:

- EUT is ON;
- EUT was transmitting continuously on low, mid and high channels, with normal modulation for spurious emissions measurement

The product has been tested according to ANSI C63.4(2003), FCC part 15 subpart C. Radiated Emission were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **3 meters** from the antenna.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Equipment was moved to position that maximized emission. (3 axis measurements)

Method of measurement

Radiated emission. No antenna connector on the tested equipment.

Frequency band investigated is 9kHz to 25GHz.

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with appropriate measuring antennas. The EUT is being rotated on 360° during the measurement.

Final measurements are performed on the 3-meters Open Area test Site.

Page: 15/33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

7.3. MEASUREMENT DATA

Measurement data: spurious emissions

EUT Configuration: Transmit at 2405MHz

No	Frequency	Measured field	Limit	Margin	Peak / Average	Comments
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)		
1	2405	102.6	-			Fundamental
2	4810	59.0	74.0	15.0	PK	Restricted band
	4810	45.0	54.0	9.0	AV	Restricted band
3	7215	45.2	82.6	37.4	PK	(Noise floor)
4	9620	41.0	82.6	41.6	PK	(Noise floor)
5	12025	43.2	74.0	30.8	PK	Restricted band (Noise floor)
	12025	23.2	54.0	30.8	AV	Restricted band (Noise floor)

EUT Configuration: Transmit at 2440MHz

No	Frequency	Measured field	Limit	Margin	Peak / Average	Comments
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)		
1	2440	104.7	-			Fundamental
2	4880	57.0	74.0	17.0	PK	Restricted band
	4880	43.0	54.0	11.0	AV	Restricted band
3	7320	45.0	74.0	29.0	PK	Restricted band (Noise floor)
	7320	25.0	54.0	29.0	AV	Restricted band (Noise floor)
4	9760	40.0	84.7	44.7	PK	(Noise floor)
5	12200	43.0	74.0	31.0	PK	Restricted band (Noise floor)
	12200	23.0	54.0	31.0	AV	Restricted band (Noise floor)

EUT Configuration: Transmit at 2480MHz

No	Frequency	Measured field	Limit	Margin	Peak / Average	Comments
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)		
1	2480	101.7	-			Fundamental
2	4960	58.0	74.0	16.0	PK	Restricted band
	4960	44.0	54.0	10.0	AV	Restricted band
3	7440	45.0	74.0	29.0	PK	Restricted band (Noise floor)
	7440	25.0	54.0	29.0	AV	Restricted band (Noise floor)
4	9920	40.0	84.7	44.7	PK	(Noise floor)
5	12400	43.0	74.0	31.0	PK	Restricted band (Noise floor)
	12400	23.0	54.0	31.0	AV	Restricted band (Noise floor)

Note 1: Peak measurement with 100 kHz RBW and VBW when frequency outside restricted bands.

Peak measurement with 1MHz RBW and VBW when frequency in restricted bands.

Note 2: Average measurement with 1MHz RBW and 10Hz VBW when frequency in restricted bands.

(The average emissions were further correcting for the duty cycle of the EUT)

-5116CR-A2-R1-E Page : 16 / 33

7.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of $52.5dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 $dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m.

Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

Page: 17/33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

8. PEAK POWER SPECTRAL DENSITY

8.1. CLIMATIC CONDITIONS

Date of test : February 22th, 2009 Test performed by : Laurent CHAPUS

Atmospheric pressure : 980mb Relative humidity : 40% Ambient temperature : 20℃

8.2. TEST SETUP

The peak power density was measured in accordance with the FCC publication "Guidance on Measurements for Digital Transmission Systems".

The emission peak within the passband was located and zoomed in.

The spectrum analyzer RBW was 3kHz and VBW was 10kHz.

A peak detector using the max hold function was utilized.

8.3. MEASUREMENT DATA

Low channel

Frequency	Peak Power spectral density	Limit
(MHz)	(dBm)	(dBm)
2405	-7.3	8.0

Mid channel

mia onamioi		
Frequency	Peak Power spectral	Limit
	density	
(MHz)	(dBm)	(dBm)
2440	-6.6	8.0

High channel

Peak Power spectral	Limit
density	
(dBm)	(dBm)
-10.0	8.0
	density (dBm)

Page: 18 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

9. TEST EQUIPMENT LIST

	N°LCIE	TYPE	COMPANY	REF	SN
RADIATED	EMISSION MEAS	SUREMENT (PRE-SCAN SEMI-ANECH	OIC CHAMBER #2)	•	
	A5329032VO	Absorption clamp	LUTHI	MDS21	2826
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	194.0100.50
X	A4049060VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	
	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	222033
X	A7186006VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447F	3113A07116
	A7085008VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	2944A06838
	A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	2944A08871
	A7085010VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
X	C2040146VO	Antenna Bi-Log XWing	TESEQ	CBL6144	25904
	C2042027VO	Antenna horn	EMCO	3115	6382
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	BBHA9170232
	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	690234
X	A5329045VO	Cable EMR (s-Anechoic chamber)			
Χ	A5329056VO	Cable Radiat EMI (Pre-amp/Analyzer)			
Χ	A5329057VO	Cable Radiat. EMI (Pre-amp/cage)			
	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	100131
Χ	A4060030VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
Χ	A3169050VO	Radiated emission comb generator	BARDET		PR17B
Χ	D3044015VO	Semi-Anechoic chamber #2	SIEPEL		
Χ	A4060029VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	
Χ	A4060028VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
Χ	F2000404VO	Turntable chamber	ETS Lingren	Model 2165	00085780
X	F2000393VO	Turntable controller chamber	ETS Lingren	Model 2066	
RADIATED		SUREMENT (OPEN AREA TEST SITE)			
	A4049059VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	2811A01134
	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	222033
Χ	A7102026VO	Amplifier 8-26GHz	ALDETEC	ALS01452	1
	A7102019VO	Amplifier 9 KHz – 1300 MHz	HEWLETT PACKARD	8447F Opt 64	3113A06394
Х	C2040050VO	Antenna biconic	EMCO	3104C	9401-4636
	C2040051VO	Antenna Bi-log	CHASE	CBL6111A	1628
Х	C2042027VO	Antenna horn	EMCO	3115	6382
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	BBHA9170232
Χ	C2040056VO	Antenna log-periodic	EMCO	3146	2178
	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	690234
Χ	F2000288VO	Antenna mast	EMCO	1050	
	C2040057VO	Antenna monopole	AH SYSTEM	SAS-551	181
X	A5329048VO	Cable EMR OATS	SUCOFLEX	106G	553
Χ	A5329185VO	Cable OATS	UTIFLEX		
	A5329188VO	Cable OATS (Mast at 10m)	UTIFLEX		
Χ	A5329076VO	Cable OATS (Mast at 3m)	UTIFLEX		
	A5329196VO	Cable OATS (Turntable)	UTIFLEX		
	A2640011VO	Measurement receiver 9kHz-30MHz	ROHDE ET SCHWARZ	ESH3	972079/117
X	A2642019	Measurement Receiver 20Hz – 8GHz		ESU8	100131
	A4060027VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	2837A00784
X	A3169050VO	Radiated emission comb generator	BARDET		PR17B
	A4060017VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	2732A04155
X	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	3409u00537
	A4060016VO	Spectrum analyzer 9kHz –1.8GHz	HEWLETT PACKARD	8591E	3536A00384
	A4060019VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	2816A16603
X	F2000403VO	Turntable	ETS LINDGREN	Model 2187	
Х	F2000286VO	Turntable / Antenna mast controller	ETS LINDGREN	Model 2066	
	D MEASUREME				
Х	A5329061VO	Cable Conduct. EMI			
	A5329060VO	Cable Conduct. EMI			
X	A3169049VO	Conducted emission comb generator	BARDET		CGPR12
	A4040015	Clickmeter	SCHAFFNER	DIA1512D	22338
	A5329037VO	Current injection probe	SCHAFFNER	CIP8213	52
	A1290017VO	Current probe	SCHAFFNER	CSP9160	1097
	A5329036VO	Direct Injection Module 100+50 Ohms	LCIE	MID01-100 ohms	
	A7156004VO	Direct Injection Module 100+50 Ohms	LUTHI	CR100A	221
	A5329042VO	Ferrite Tube	LUTHI	FTC 101	4485

Page: 19 / 33

	N°LCIE TYPE		COMPANY	REF	SN	
	A1092042VO	Ferrite Tube	LUTHI	FTC101	4763	
	C2320059VO	LISN	EMCO	3810/2SH	9511/1182	
	C2320068VO	LISN	EMCO	3825/2	9309/2122	
	C2320061VO	LISN	TELEMETER ELECTRONIC	NNB-2/16Z	98010	
Χ	C2320062VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	841223/008	
	C2320063VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	841223/007	
Χ	C2320123VO	LISN	RHODE ET SCHWARZ	ENV216	100037	
	A2640011VO	Measurement receiver 9kHz-30MHz	ROHDE ET SCHWARZ	ESH3	972079/117	
Χ	A2642019VO	Measurement Receiver 20Hz - 8GHz	ROHDE & SCHWARZ	ESU8	100131	
	C2320067VO	ISN 2 x 2 wires	RHODE ET SCHWARZ	ENY22	836727/015	
	C2320066VO	ISN 4 wires	RHODE ET SCHWARZ	ENY41	838119/023	
	C2320124VO	ISN 4 wires	TESEQ	T400A	24873	
	D3044016VO	Semi-Anechoic chamber #1	SIEPEL			
	D3044017VO	Semi-Anechoic chamber #3	SIEPEL			
	D3044015VO	Semi-Anechoic chamber #2	SIEPEL			
Х	D3044010VO	Faraday Cage	RAY PROOF		4854	
Х	A4049061VO	Transient limiter	HEWLETT PACKARD	11947A	3107A01596	
	A4089117VO	Voltage probe	LCIE			

Page: 20 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

10. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Page: 21 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

11. ANNEX 1 (GRAPHS)

COND	UCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#1	EMN 1000 W0
Voltage / Frequency	110V/60Hz	
Line/Port	Line 1 (L1)	
RBW:	9kHz	

Frequency	Measure Peak	Measure Average	Limit Average	Avg-Lim (Margin)	Measure Q-Peak	Limit QPeak	QP-Limit (Margin)	RESULTS
(MHz)	dΒμV	dΒμV	dΒμV	dB	dΒμV	dΒμV	dB	Pass/Fail
0.154	66.8	25.1	55.8	-30.6	57.0	65.8	-8.8	Р
0.194	63.9	21.1	53.9	-32.8	50.5	63.9	-13.4	Р
0.242	55.2	17.7	52.0	-34.4	45.9	62.0	-16.1	Р
0.290	39.1	4.6	50.5	-45.9	25.0	60.5	-35.5	Р

Page: 22 / 33

CON	DUCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#2	EMN 1000 W0
Voltage / Frequency	110V/60Hz	
Line/Port	Neutral (N)	
RBW:	9kHz	

Frequency	Measure Peak	Measure Average	Limit Average	Avg-Lim (Margin)	Measure Q-Peak	Limit QPeak	QP-Limit (Margin)	RESULTS
(MHz)	dΒμV	dΒμV	dΒμV	dB	dΒμV	dΒμV	dB	Pass/Fail
0.154	71.0	26.6	55.8	-29.2	59.7	65.8	-6.1	Р
0.194	67.9	21.6	53.9	-32.3	52.2	63.9	-11.7	Р
0.242	56.1	18.1	52.0	-33.9	47.0	62.0	-15.0	Р

Page: 23 / 33

COND	UCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#3	EMN 1000 W0
Voltage / Frequency	110V/60Hz	
Line/Port	Line 2 (L2)	
RBW:	9kHz	

Frequency	y Measure Peak			Avg-Lim (Margin)		Limit QPeak	QP-Limit (Margin)	RESULTS
(MHz)	dΒμV	dΒμV	dΒμV	dB	dΒμV	dΒμV	dB	Pass/Fail
0.150	32.1	17.2	56.0	-38.8	25.7	66.0	-40.3	P

Page: 24 / 33

CONE	DUCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#4	EMN 1000 W0
Voltage / Frequency	110V/60Hz	
Line/Port	Line 3 (L3)	
RBW:	9kHz	

Frequency	Measure Peak	Measure Average	Limit Average	Avg-Lim (Margin)	Measure Q-Peak	Limit QPeak	QP-Limit (Margin)	RESULTS
(MHz)	dΒμV	dΒμV	dΒμV	dB	dΒμV	dΒμV	dB	Pass/Fail
0.150	32.0	17.4	56.0	-38.6	26.2	66.0	-39.8	Р

Page: 25 / 33

COND	UCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#5	EMN 500 D3-SP2
Voltage / Frequency	110V/60Hz	Power supply adapter
Line/Port	Line 1 (L1)	
RBW:	9kHz	

Frequency	Measure Peak	Measure Average	Limit Average	Avg-Lim (Margin)	Measure Q-Peak	Limit QPeak	QP-Limit (Margin)	RESULTS
(MHz)	dΒμV	dΒμV	dΒμV	dB	dΒμV	dΒμV	dB	Pass/Fail
0.154	66.8	25.1	55.8	-30.6	57.0	65.8	-8.8	Р
0.194	63.9	21.1	53.9	-32.8	50.5	63.9	-13.4	Р
0.242	55.2	17.7	52.0	-34.4	45.9	62.0	-16.1	Р
0.290	39.1	4.6	50.5	-45.9	25.0	60.5	-35.5	Р

Page: 26 / 33

COND	OUCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#6	EMN 500 D3-SP2
Voltage / Frequency	110V/60Hz	Power supply adapter
Line/Port	Neutral (N)	
RBW:	9kHz	

Frequency	Measure Peak	Measure Average	Limit Average	Avg-Lim (Margin)	Measure Q-Peak	Limit QPeak	QP-Limit (Margin)	RESULTS
(MHz)	dΒμV	dΒμV	dΒμV	dB	dΒμV	dΒμV	dB	Pass/Fail
0.214	56.9	27.0	53.1	-26.1	49.0	63.1	-14.1	Р
0.366	50.4	39.6	48.5	-8.9	44.6	58.5	-13.9	Р
0.426	51.3	26.5	47.3	-20.9	45.1	57.3	-12.2	Р
0.638	44.8	23.1	46.0	-22.9	41.4	56.0	-14.6	Р
0.850	43.1	22.2	46.0	-23.8	39.6	56.0	-16.4	Р
1.478	44.3	21.8	46.0	-24.2	38.9	56.0	-17.1	Р

Page: 27 / 33

COND	UCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#7	EMN 500 D3-SP2
Voltage / Frequency	110V/60Hz	Measure terminal
Line/Port	Line 1 (L1)	
RBW:	9kHz	

Page: 28 / 33

COND	UCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#8	EMN 500 D3-SP2
Voltage / Frequency	110V/60Hz	Measure terminal
Line/Port	Line 2 (L2)	
RBW:	9kHz	

Page: 29 / 33

CONI	DUCTED EMISSIONS – AC MAINS	Test configuration:
Graph name:	Emc#9	EMN 500 D3-SP2
Voltage / Frequency	110V/60Hz	Measure terminal
Line/Port	Line 3 (L3)	
RBW:	9kHz	

Page: 30 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

		RADIA				NS	(30	MHz-1GHz)		Tes	t configu	ration	<u>:</u>				
Graph n				mr1#						EM	N 1000 W	0					
Antenna	a polarisa	tion		lorizo]							
Azimuth			0	$^{\circ} \rightarrow \overline{3}$	60°	90	°st	ep (maxhold)		- -							
RBW / \	/BW:		1	120kHz / 300kHz													
100 dBµV/m																	
																	1
																	_
						L.			_								
																	r/Vr
												MANN/MAN	MmMvin	MMMM	mfur	www	,w ·
	- while	m.M.M.m.m.	MMMM	Myrolow	www	myw	Mr.Jm	manyam/Myamana Jaman	AMANAMAN AND AND AND AND AND AND AND AND AND A	Mumh	MANAMAN MANAMAN	Andrew A. L. A.					
	WW.																
0 _	30MHz							Fréquence								_	GHz

Page: 31 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

	RADIAT	ΓED E	MIS	SIO	NS	(30	MHz-1GHz)		Test	t configu	ration	<u>:</u>					
Graph name:			Emr1#V							EMN 1000 W0							
Antenna polaris	sation	Ve	Vertical 0° → 360°/ 90°step (maxhold)														
Azimuth:		0°															
RBW / VBW:		12	120kHz / 300kHz								1						
100 dBµV/m																	
																_	
who who	mull man	MMMM	^~MM/M	My M	<u>~</u>	Monda	mmy howard ware laby live	www.	Www	and the same of th	gts_lbb_l/M·ren	and w	mmlm	www	~~^~	And the second	

Page: 32 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

		RADIA				NS	(30	MHz-1GHz)		Tes	t configu	ıration	:						
Graph n			Е	mr2#	ŧH.					EM	N 500 D3	-SP2							
Antenna	a polarisa	tion	Н	Horizontal															
Azimuth	1:		0	0° → 360°/ 90° step (maxhold)															
RBW / \	/BW:		12	120kHz / 300kHz															
100 dBμV/m																			
						•			_								_		
	Month	Mwww	, My Mar M M M	whym	MMM	And March	ww	my management of the horsest	paymad den y tol Marchand	Y-m-n-h	raght to be which down	mphyland	WY-VV-	v.M.M.w	mande	www	Mym)		

Page: 33 / 33

RAPPORT D'ESSAI / TEST REPORT N° 200901-5116CR-A2-R1-E

		RADIA				NS	(30	MHz-1GHz)		Test configuration:
Graph na				mr2#						EMN 500 D3-SP2
	polarisa	tion		ertic						
Azimuth:			0	° → 3	860°	90	°st	ep (maxhold)		
RBW / V	BW:		1:	20kH	z / 3	00k	ιHz			
100 BµV/m										
						•				
										Manual manager and manager and a second and
									0.1	at a way way way way way way a
	I. WWW	Mymyw	MANIM	Junhan	MMMM.	alu	Www.	mynnyllmandrahalm drahalla	home plans	W.W.W.
Ī	Mystykon, ,									
• †	B0MHz									