Contents

1. Hidden subgroup problem	. 2
1.1. Review of Shor's algorithm	
1.2. Period finding	. 2
1.3. Analysis of QFT part of period finding algorithm	. 3
1.4. The hidden subgroup problem (HSP)	. 5
2. Quantum phase estimation (QPE)	10
3. Amplitude amplification	13

1. Hidden subgroup problem

1.1. Review of Shor's algorithm

Definition 1.1 The **factoring problem** is: given a positive integer N, find a non-trivial factor $(\neq 1, N)$ in time polynomial in n (i.e. O(poly(n))), where $n = O(\log N)$ is the length of the description of the problem input (memory/space used to store it).

Definition 1.2 An **efficient problem** is one that can be solved in polynomial time.

Remark 1.3 Clasically, the best known factoring algorithm runs in $e^{O(n^{1/3}(\log n)^{2/3})}$. Shor's algorithm (quantum) runs in $O(n^3)$ by converting factoring into period finding:

- Given input N, choose a < N which is coprime to N.
- Define $f: \mathbb{Z} \to \mathbb{Z}/N$, $f(x) = a^x \mod N$. f is periodic with period r (the order of $a \mod N$), i.e. f(x+r) = f(x) for all $x \in \mathbb{Z}$. Finding r allows us to factor N.

1.2. Period finding

Problem 1.4 (Periodicity Determination) Given an oracle for $f: \mathbb{Z}/M \to \mathbb{Z}/N$ with promises:

- f is periodic with period r < M (i.e. $\forall x \in \mathbb{Z}/M, f(x+r) = f(x)$),
- f is one-to-one in each period (i.e. $\forall 0 \le x < y < r, f(x) \ne f(y)$),

find r in time O(poly(m)), where $m = O(\log M)$.

Clasically, this requires takes time $O(\sqrt{M})$.

Definition 1.5 Let $f: \mathbb{Z}/M \to \mathbb{Z}/N$. Let H_M and H_N be quantum state spaces with orthonormal state bases $\{|i\rangle: i \in \mathbb{Z}/N\}$ and $\{|j\rangle: j \in \mathbb{Z}/M\}$. Define the unitary quantum oracle for f by U_f by

$$U_f|x\rangle|z\rangle=|x\rangle|z+f(x)\rangle.$$

The first register $|x\rangle$ is the **input register**, the last register $|z\rangle$ is the **output register**.

Definition 1.6 The quantum query complexity of an algorithm is the number of times it queries f (i.e. uses U_f).

Definition 1.7 The quantum Fourier transform over \mathbb{Z}/M is the unitary defined by its action on the computational basis:

$$U_{\mathrm{QFT}}|x\rangle = \frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} \omega^{xy} |y\rangle,$$

where $\omega = e^{2\pi i/M}$. Note that U_{QFT} requires only $O((\log M)^2)$ gates to implement, whereas a general unitary requires $O(4^n/n)$ elementary gates.

Lemma 1.8 Let $\alpha = e^{2\pi i y/M}$. Then

$$\sum_{j=0}^{k-1} \alpha^j = \begin{cases} \frac{1-\alpha^k}{1-\alpha} = 0 \text{ if } \alpha \neq 1 \text{ i.e. } M \nmid y \\ k & \text{if } \alpha = 1 \text{ i.e. } M \mid y \end{cases}$$

Lemma 1.9 (Boosting success probability) If a process succeeds with probability pon one trial, then

 $\Pr(\text{at least one success in } t \text{ trials}) = 1 - (1 - p)^t > 1 - \delta$

for
$$t = \frac{\log(1/d)}{p}$$
.

Theorem 1.10 (Co-primality Theorem) The number of integers less than r that are coprime to r is $O(r/\log\log r)$ for large r.

Algorithm 1.11 (Quantum Period Finding) Let $f: \mathbb{Z}/M \to \mathbb{Z}/N$ be periodic with period r < M and one-to-one in each period. Let $A = \frac{M}{r}$ be the number of periods. We work over the state space $H_M \otimes H_N$.

1. Construct the state $\frac{1}{\sqrt{M}} \sum_{i=0}^{M-1} |i\rangle |0\rangle$.

2. Query U_f on the state, giving $\frac{1}{\sqrt{M}} \sum_{i=0}^{M-1} |i\rangle |f(i)\rangle$.

- 3. Measure second register in computational basis, giving outcome $y \in \mathbb{Z}/N$, and input state collapses to $|\text{per}\rangle = \frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} |x_0 + jr\rangle$, where $f(x_0) = y$ and $0 \le x_0 < 1$ r. TODO: add diagram showing amplitudes for this state.
- 4. Apply the Quantum Fourier Transform to |per\):

$$\begin{split} \text{QFT}|\text{per}\rangle &= \frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} \frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} \omega^{(x_0+jr)y} |y\rangle \\ &= \frac{1}{\sqrt{MA}} \sum_{y=0}^{M-1} \omega^{x_0 y} \sum_{j=0}^{A-1} \omega^{jry} |y\rangle \\ &= \sqrt{\frac{A}{M}} \sum_{k=0}^{r-1} \omega^{x_0 kM/r} |kM/r\rangle \end{split}$$

Note now the outcomes and probabilities are independent of x_0 , so carry useful information about r. TODO add diagram showing amplitudes for this state.

- 5. Measure QFT|per \rangle , yielding outcome $c = k_0 M/r$ for some $0 \le k_0 < r$. So $\frac{c}{M} = \frac{k_0}{r}$. If k_0 is corpine to r, then the denominator r_0 of the simplified fraction $\frac{c}{M}$ is equal to r.
- 6. By the coprimality theorem, the probability that k_0 is coprime to r is $O(1/\log\log r)$.
- 7. To check if the computed value r_0 of r is correct, compute/query U_f to check if $f(0)=f(r_0)$ (this works since f is periodic and one-to-one in each period, and $r_0 \leq r$).
- 8. Repeat the previous steps $O(\log \log r) = O(\log \log M) = O(\log m)$ times. This obtains the correct value of r with high probability.

1.3. Analysis of QFT part of period finding algorithm

Notation 1.12 For $R = \{0, r, ..., (A-1)r\} \subseteq \mathbb{Z}/M$ (Ar = M), write $|R\rangle$ for the uniform superposition of all computational basis states in R:

$$|R\rangle = \frac{1}{\sqrt{A}} \sum_{k=0}^{A-1} |kr\rangle.$$

Definition 1.13 For each $x_0 \in \mathbb{Z}/M$, define the lienar map by its action on the computational basis states:

$$U(x_0): H_M \to H_M,$$

$$|k\rangle \mapsto |x_0 + k\rangle.$$

Definition 1.14 Note that since $(\mathbb{Z}/M,+)$ is abelian, all $U(x_i)$ commute: $U(x_1)U(x_2)=U(x_1+x_2)=U(x_2)U(x_1)$. Hence, they have a simultaneous basis of eigenvectors $\{|\chi_k\rangle:k\in\mathbb{Z}/M\}$, i.e. for all $k,x_0\in\mathbb{Z}/M$, $U(x_0)|\chi_k\rangle=w(x_0,k)|\chi_k\rangle$, where $|w(x_0,k)|=1$. The $|\chi_k\rangle$ are called **shift-invariant states** and form an orthonormal basis for H_M . The $|\chi_k\rangle$ are given explicitly by

$$|\chi_k\rangle = \frac{1}{\sqrt{M}} \sum_{\ell=0}^{M-1} e^{-2\pi i k\ell/M} |\ell\rangle.$$

Proposition 1.15 The explicit definition of the $|\chi_k\rangle$ indeed satisfies the property $\forall k, x_0 \in \mathbb{Z}/M$, $U(x_0)|\chi_k\rangle = w(x_0, k)|\chi_k\rangle$, and we have $w(x_0, k) = \omega^{kx_0}$, where $\omega = e^{2\pi i/M}$.

Proof (Hints). Straightforward.

Proof. We have that

$$\begin{split} U(x_0)|\chi_k\rangle &= \frac{1}{\sqrt{M}} \sum_{\ell=0}^{M-1} e^{-2\pi i k\ell/M} |x_0+\ell\rangle \\ &= \frac{1}{\sqrt{M}} \sum_{\tilde{l}=0}^{M-1} e^{-2\pi i \left(\tilde{l}-x_0\right)k/M} |\tilde{l}\rangle \\ &= e^{2\pi i k x_0/M} |\chi_k\rangle \\ &=: w(x_0,k)|\chi_k\rangle \end{split}$$

Remark 1.16 Let $U: H_M \to H_M$ be the unitary mapping the shift-invariant basis to the computational basis: $U: |\chi_k\rangle \mapsto |k\rangle$. The matrix representation of U^{-1} with respect to the computational basis has entries

$$\left(U^{-1}\right)_{jk} = \langle j|U^{-1}|k\rangle = \langle j|\chi_k\rangle = \frac{1}{\sqrt{M}}e^{-2\pi i jk/M}$$

So the matrix representation of U with respect to the same basis has entries $U_{kj} = \overline{(U^{-1})_{jk}} = \frac{1}{\sqrt{M}} e^{2\pi i jk/M}$. Hence, we have

$$U|k\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} e^{2\pi i jk/M} |j\rangle,$$

and so U is precisely the QFT mod M.

1.4. The hidden subgroup problem (HSP)

Problem 1.17 (Discrete Logarithm Problem (DLP) on \mathbb{Z}/p^{\times}) Let p be prime.

Input $g, x \in \mathbb{Z}/p^{\times}$.

Promise g is a generator of \mathbb{Z}/p^{\times} .

Task Find $\log_g x$, i.e. find $L \in \mathbb{Z}/(p-1)$ such that $x = g^L$.

Notation 1.18 Write [n] for $\{1, ..., n\}$. Write e.g. ij for the set $\{i, j\}$.

Definition 1.19 Let $\Gamma_1 = ([n], E_1)$ and $\Gamma_2 = ([n], E_2)$ be (undirected) graphs. Γ_1 and Γ_2 are **isomorphic** if there exists a permutation $\pi \in S_n$ such that for all $1 \le i, j < n, ij \in E$ iff $\pi(i)\pi(j) \in E$.

Definition 1.20 Let $\Gamma = ([n], E)$ be a graph. The **automorphism group** of Γ is

$$\operatorname{Aut}(\Gamma) = \{ \pi \in S_n : ij \in E \text{ iff } \pi(i)\pi(j) \in E \quad \forall i, j \in [n] \}.$$

 $\operatorname{Aut}(\Gamma)$ is a subgroup of S_n , and $\pi \in \operatorname{Aut}(\Gamma)$ iff π leaves Γ invariant as a labelled graph.

Definition 1.21 The **adjacency matrix** of a graph $\Gamma = (V, E)$ is the $n \times n$ matrix M_A defined by its entries:

$$\left(M_A\right)_{ij}\coloneqq \begin{cases} 1 & \text{if } ij\in E\\ 0 & \text{otherwise}. \end{cases}$$

Problem 1.22 (Graph Isomorphism Problem)

Input Adjacency matrices M_1 and M_2 of graphs $\Gamma_1 = ([n], E_1)$ and $\Gamma_2 = ([n], E_2)$.

Task Determine whether Γ_1 and Γ_2 are isomorphic.

Remark 1.23 The best known classical algorithm for solving the graph isomorphism problem has quasi-polynomial time complexity $n^{O((\log n)^2)}$.

Problem 1.24 (Hidden Subgroup Problem (HSP)) Let G be a finite group.

Input An oracle for a function $f: G \to X$.

Promise There is a subgroup K < G such that:

- 1. f is constant on the (left) cosets of K in G.
- 2. f takes a different value on each coset.

Task Determine K.

Remark 1.25

• To find K, we either find a generating set for K, or sample a uniformly random element from K.

• We want to determine K with high probability in $O(\text{poly} \log |G|)$ queries. Using O(|G|) queries is easy, as we just query all values f(g) and find the "level sets" (sets where f is constant).

Example 1.26 The following problems are special cases of HSP:

- The period finding problem: $G = \mathbb{Z}/M$, $K = \langle r \rangle = \{0, r, ..., (A-1)r\}$. The cosets are $x_0 + K = \{x_0, x_0 + r, ..., x_0 + (A-1)r\}$ for each $0 \le x_0 < r$.
- The DLP on $(\mathbb{Z}/p)^{\times}$: let $f: \mathbb{Z}/(p-1) \times \mathbb{Z}/(p-1) \to (\mathbb{Z}/p)^{\times}$ be defined by $f(a,b) = g^a x^{-b} = g^{a-Lb}$. $G = \mathbb{Z}/(p-1) \times \mathbb{Z}/(p-1)$, the hidden subgroup is $K = \{\lambda(L,1): \lambda \in \mathbb{Z}/(p-1)\}$. (Note that if we know K, we can pick any $(c,d) = (\lambda L, \lambda) \in G$ and compute $L = \frac{c}{d}$ to find L.)
- The graph isomorphism problem: $G = S_n$, hidden subgroup is $K = \operatorname{Aut}(G)$. Let $f_{\Gamma}: S_n \to X$ where X is set of adjacency matrices of labelled graphs on [n], defined by $f_{\Gamma}(\pi) = \pi(A)$. Note $|S_n| = |G| = n!$, so $\log |G| \approx n \log n$, so $O(\operatorname{poly} \log |G|) = O(\operatorname{poly} n)$.

Definition 1.27 An irreducible representation (irrep) of a finite abelian group G is a homomorphism $\chi: G \to \mathbb{C}^{\times}$.

Theorem 1.28

- Let $\chi: G \to \mathbb{C}^{\times}$ be an irrep. For all $g \in G$, $\chi(g)$ is a |G|-th root of unity.
- There are always exactly |G| distinct irreps. In particular, we can label each irrep uniquely by some $g \in G$.

Theorem 1.29 (Schur's Lemma) Let χ_i and χ_j be irreps of G. Then

$$\frac{1}{|G|} \sum_{g \in G} \chi_i(g) \overline{\chi_j}(g) = \delta_{ij}.$$

Example 1.30 $\chi_0: G \to \mathbb{C}^{\times}, \ \chi_0(g) = 1$ is the **trivial irrep**. Note that for any $\chi_i \neq \chi_0, \ \sum_{g \in G} \chi_i(g) = 0$ by Schur's lemma.

Definition 1.31 For finite abelian G, we define the **shift operators** on $H_{|G|}$ for each $k \in G$ by

$$U(k): H_{|G|} \to H_{|G|},$$
$$|g\rangle \mapsto |k+g\rangle.$$

Note that since G is abelian, the U(k) commute: U(k)U(l) = U(l)U(k) for all $k, l \in G$. Hence, they have simultaneous eigenstates, which gives an orthonormal basis for $H_{|G|}$.

Proposition 1.32 For each $k \in G$, consider the state

$$|\chi_k\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \overline{\chi_k(g)} |g\rangle.$$

The $|\chi_k\rangle$ are shift-invariant (invariant up to a phase under the action of all $U(g), g \in G$).

Proof (Hints). Straightforward.

Proof.

- Note that $\overline{\chi_k(g)} = \chi_k(-g)$.
- We have

$$\begin{split} U(g_0)|\chi_k\rangle &= \frac{1}{\sqrt{|G|}} \sum_{g \in G} \overline{\chi_k(g)} |g_0 + g\rangle \\ &= \frac{1}{\sqrt{|G|}} \sum_{g' \in G} \overline{\chi_k(g' - g_0)} |g'\rangle \\ &= \frac{1}{\sqrt{|G|}} \sum_{g' \in G} \overline{\chi_k(g')} \chi_k(g_0) |g'\rangle \\ &= \chi_k(g_0) |\chi_k\rangle. \end{split}$$

Definition 1.33 The quantum Fourier transform (QFT) on $H_{|G|}$ is the unitary implementing the change of basis from the shift-invariant states $\{|\chi_g\rangle:g\in G\}$ to the computational basis $\{|g\rangle:g\in G\}$.

Note that QFT⁻¹|g $\rangle = |\chi_g\rangle$. So $(QFT^{-1})_{kg} = \langle k|\chi_g\rangle = \frac{1}{\sqrt{|G|}}\overline{\chi_g(k)}$, so QFT_{kg} = $\frac{1}{\sqrt{|G|}}\chi_k(g)$. So the explicit form is

$$\mathrm{QFT}|g\rangle = \frac{1}{\sqrt{|G|}} \sum_{k \in G} \chi_k(g) |k\rangle.$$

Example 1.34

- For $G = \mathbb{Z}/M$, we can check that $\chi_a(b) = e^{2\pi i a b/M}$ are irreps. So the irreps of \mathbb{Z}/M are naturally labelled by $a \in \mathbb{Z}/M$ and this gives the usual QFT mod M as defined earlier.
- Similarly, for $G=\mathbb{Z}/(M_1)\times\cdots\times\mathbb{Z}/(M_r)$, $\chi_g(h)=e^{2\pi i(g_1h_1/M_1+\cdots+g_rh_r/M_r)}$ are the irreps.

Algorithm 1.35 (Quantum HSP solver for finite abelian G)

- We work in the state space $H_{|G|} \otimes H_{|X|}$.
- Prepare the state

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |0\rangle$$

• Query f on the state, giving

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$$

• Measure the output register, yielding a uniformly random value $f(g_0)$ from f(G). The state collapses to a **coset state**

$$|g_0 + K\rangle = \frac{1}{\sqrt{|K|}} \sum_{k \in K} |g_0 + k\rangle.$$

• Apply QFT mod |G|, and measure the input register, yielding some $g \in G$. We have $|K\rangle = \sum_{g \in G} a_g |\chi_g\rangle$, so $|g_0 + K\rangle = U(g_0)|K\rangle = \sum_{g \in G} a_g \chi_g(g_0)|\chi_g\rangle$. So applying QFT gives $\sum_{g \in G} a_g \chi_g(g_0)|g\rangle$, so probability of measuring outcome k is $|a_k \chi_k(g_0)|^2 = |a_k|^2$. Now

$$\begin{aligned} \operatorname{QFT}|K\rangle &= \frac{1}{\sqrt{|K|}} \sum_{k \in K} \operatorname{QFT}|k\rangle \\ &= \frac{1}{\sqrt{|G||K|}} \sum_{g \in G} \left(\sum_{k \in K} \chi_g(k) \right) |g\rangle \end{aligned}$$

Note that irreps of G restricted to K are irreps of K. The trivial irrep $\chi_0: G \to \mathbb{C}$ remains the trivial irrep χ_0 for K. But there may be other irreps that become the trivial irrep on restriction to K. Hence

$$\sum_{k \in K} \chi_g(k) = \begin{cases} |K| & \text{if } \chi_g|_K = \chi_0|_K \\ 0 & \text{otherwise} \end{cases}$$

Hence

$$\mathrm{QFT}|K\rangle = \sqrt{\frac{|K|}{|G|}} \sum_{\substack{g \in G \\ \chi_g|_K = \chi_0|_K}} |g\rangle$$

and measuring in the computational basis on this state yields random $g \in G$ such that $\forall k \in K, \chi_q(k) = 1$.

If K has generators $k_1,...,k_m$ (note that for an arbitrary group, we have $m=O(\log |G|)$), then we have a set of equations $\chi_g(k_i)=1$ for all $i\in [m]$. We can show that $O(\log |G|)$ such g are drawn uniformly at random, then with probability at least 2/3, we have enough equations to determine $k_1,...,k_m$.

Example 1.36 Let $G=\mathbb{Z}/M_1\times\cdots\times\mathbb{Z}/M_r$. The irreps are $\chi_g(h)=e^{2\pi i(g_1h_1/M_1+\cdots+g_rh_r/M_r)}$. For $k\in K,$ $\chi_g(k)=1$ iff $\frac{g_1k_1}{M_1}+\cdots+\frac{g_rk_r}{M_r}=0$ mod 1. This is a homogenous linear equation in k, and $O(\log|G|)$ independent such equations determine K as the nullspace.

Remark 1.37 We can implement QFT over abelian groups (and some non-abelian groups, including S_n) using circuits with $O((\log |G|)^2)$ elementary gates.

In the non-abelian case, we can still easily prepare coset states with one query to f. But the shift operators $U(g_0)$ no longer commute, so we don't have a (canonical) shift-invariant basis.

Definition 1.38 A *d*-dimensional unitary representation of a finite group G is a homomorphism

$$\chi: G \to U(d)$$

where U(d) is the group of $d \times d$ unitary matrices.

Definition 1.39 A d-dimensional unitary representation χ of G is **irreducible** if no non-trivial subspace of \mathbb{C}^d is invariant under the action of $\{\chi(g_1), ..., \chi(g_{|G|})\}$ (i.e. we cannot simultaneously block diagonalise all the $\chi(g)$ matrices by a basis change).

Definition 1.40 A set of irreps $\{\chi_1, ..., \chi_m\}$ is a **complete set of irreps** for every irrep χ of G, there exists $1 \leq i \leq m$ such that χ is unitarily equivalent to χ_i , i.e. for some $V \in U(d)$, $\forall g \in G, \chi(g) = V\chi_i(g)V^{\dagger}$.

Theorem 1.41 Let the dimensions of a complete set of irreps $\chi_1, ..., \chi_m$ be $d_1, ..., d_m$. Then $d_1^2 + \cdots + d_m^2 = |G|$.

Notation 1.42 Write $\chi_{i,jk}(g)$ for the (j,k)-th entry of the matrix $\chi_i(g)$.

Theorem 1.43 (Schur Orthogonality) Let $\chi_1,...,\chi_m$ be a complete set of irreps for G with respective dimensions $d_1,...,d_m$, and let $i\in[m],\,j,k\in[d_i]$. Then

$$\sum_{g \in G} \chi_{i,jk}(g) \overline{\chi_{i',j'k'}(g)} = |G| \delta_{ii'} \delta_{jj'} \delta_{kk'}.$$

Definition 1.44 The Fourier basis for a group G consists of

$$|\chi_{i,jk}\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \overline{\chi_{i,jk}(g)} |g\rangle$$

for each $i \in [n]$ and $j, k \in [d_i]$. Note that by Schur orthogonality, this is an orthonormal basis.

Remark 1.45 Note that these states are not shift invariant for every $U(g_0):|g\rangle \mapsto |g_0g\rangle$. So measurement of the coset state $|g_0K\rangle$ yields an output distribution that is not independent of g_0 .

Definition 1.46 The **Quantum Fourier transform** over $H_{|G|}$ is the unitary mapping the Fourier basis to the computational basis:

$$\mathrm{QFT}|\chi_{i,jk}\rangle=|i,jk\rangle.$$

 $|i,jk\rangle$ is a relabelling of the states $|g\rangle$ for $g\in G$ (note this is valid by Theorem 1.41).

Remark 1.47

- Measuring QFT $|g_0K\rangle$ does **not** give g_0 -independent outcomes. A complete measurement in the computational basis gives an outcome i, j, k.
- However, there is an incomplete measurement which projects into the d_i^2 dimensional subspaces

$$S_i = \operatorname{span}\{|\chi_{i,jk}\rangle : j, k \in [d_i]\}.$$

for each $i \in [n]$. Call this measurement operator M_{rep} . Note that this distinguishes only between the irreps.

- Measuring only the representation labels of QFT $|g_0K\rangle$ gives an outcome distribution of the i values that i independent of the random shift g_0 , since the χ_i are homomorphisms.
- Note this only gives partial information about K. If K is a normal subgroup, then in fact we can then determine K with $O(\log |G|)$ queries.

2. Quantum phase estimation (QPE)

Quantum phase estimation is a unifying algorithmic primitive, e.g. there is an alternative factoring algorithm based on QPE, and has many important applications in physics.

Problem 2.1 (Quantum Phase Estimation)

Input Unitary $U \in U(d)$ acting on \mathbb{C}^d ; state $|v_{\varphi}\rangle \in \mathbb{C}^d$; level of precision $n \in \mathbb{N}$. Promise $|v_{\varphi}\rangle$ is an eigenstate of U with phase (eigenvalue) $e^{2\pi i \varphi}$, $\varphi \in [0,1)$ (i.e. $U|v_{\varphi}\rangle = e^{2\pi i \varphi}|v_{\varphi}\rangle$).

Task Output an estimate $\tilde{\varphi}$ of φ , accurate to n binary bits of precision.

Remark 2.2 If U is given as a cirucit, we can implement the controlled-U operation, C-U, by controlling each elementary gate in the circuit of U.

If U is given as a black box, we need more information. Note that U is equivalent to $U' = e^{i\theta}U$ and $|\psi\rangle$ is equivalent to $e^{i\theta}|\psi\rangle$, but C-U is not equivalent to C-U'. Given an eigenstate $|\alpha\rangle$ with known phase $e^{i\alpha}$ (so $U|\alpha\rangle = e^{i\alpha}|\alpha\rangle$), we have $U'|\alpha\rangle = e^{i(\theta+\alpha)}|\alpha\rangle$. so U and U' can be distinguished using this additional information.

where $P(-\alpha) = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\alpha} \end{bmatrix}$. $\bullet - \times - \times$ denotes the controlled SWAP operation.

Definition 2.3 For a unitary U, the **generalised control** unitary C-U is defined linearly by

$$\forall x \in \{0,1\}^n, \quad C - U|x\rangle|\xi\rangle = |x\rangle U^x|\xi\rangle,$$

where U^x denotes U applied x times (e.g. $C-U|11\rangle|\xi\rangle = |11\rangle U^3|\xi\rangle$). Note that $C-U^k = (C-U)^k$. The following circuit implements C-U:

Algorithm 2.4 (Quantum Phase Estimation) Work over the space $(\mathbb{C}^2)^{\otimes n} \otimes \mathbb{C}^d$, where $(\mathbb{C}^2)^{\otimes n}$ is the *n*-qubit register, \mathbb{C}^d is the "qudit" register.

After $C-U^{2^{n-1}}$, the state is $\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}e^{2\pi i\varphi x}|x\rangle|v_{\varphi}\rangle$. We now discard the qudit register holding $|v_{\varphi}\rangle$. If φ had an exact n-bit expansion $0.i_1i_2...i_n=\frac{i_1...i_n}{2^n}=:\frac{\varphi_n}{2^n}$, then this is precisely $\operatorname{QFT}_{2^n}|\varphi_n\rangle$. After this, applying QFT^{-1} on the state $\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}e^{2\pi i\varphi x}|x\rangle$. We then measure the state, yielding outcome $y=y_{n-1}...y_0$. Our estimate of φ is $\tilde{\varphi}=\frac{y}{2^n}=\frac{y_{n-1}}{2}+\cdots+\frac{y_0}{2^n}$.

Lemma 2.5 For all $\alpha \in \mathbb{R}$,

- 1. If $|\alpha| \leq \pi$, then $|1 e^{i\alpha}| = 2|\sin(\alpha/2)| \geq \frac{2}{\pi}|\alpha|$ (graphically, this says the line $y = \frac{2}{\pi}\alpha$ lies below $2\sin(\alpha/2)$ for $0 \leq \alpha \leq \pi$).
- 2. If $\alpha \geq 0$, then $|1 e^{i\alpha}| \leq \alpha$ (graphically, this says that on the complex unit circle, the arc length α from 1 to $e^{i\alpha}$ is at least the chord length from 1 to $e^{i\alpha}$).

Theorem 2.6 (Phase Estimation Theorem) Let $\tilde{\varphi}$ be the estimate of φ from the quantum phase estimation algorithm. Then

- 1. $\Pr(\tilde{\varphi} \text{ is closest } n\text{-bit approximation of } \varphi) \geq \frac{4}{\pi^2} \approx 0.4.$
- 2. For all $\varepsilon > 0$, $\Pr(|\tilde{\varphi} \varphi| > \varepsilon) = O(\frac{1}{2^n \varepsilon})$. So for any desired accuracy ε , the probability of failure decays exponentially with the number of bits of precision (lines in the circuit).

Proof. Let $|A\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} e^{2\pi i \varphi x} |x\rangle$. Let $\delta(y) = \varphi - y/2^n = \varphi - \tilde{\varphi}$. Since $\mathrm{QFT}^{-1}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} e^{-2\pi i x y/2^n} |y\rangle$, we have

$$QFT^{-1}|A\rangle = \frac{1}{2^n} \sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} e^{2\pi i x \delta(y)} |y\rangle$$

so the probability of measuring outcome y is

$$p_y = \frac{1}{2^{2n}} \left| \frac{1 - e^{2^n 2\pi i \delta(y)}}{1 - e^{2\pi i \delta(y)}} \right|^2.$$

1. Let $\alpha = 2^n 2\pi \delta(a)$, where a is the closest n-bit approximation of φ . Note we can imagine the possible values of $\tilde{\varphi}$ as lying on the unit circle, spaced by angle $\frac{2\pi}{2^n}$. This gives a visual intuition to the fact that $|\delta(a)| \leq \frac{1}{2^{n+1}}$. Hence $|\alpha| \leq \pi$, and so by the above lemma,

$$\Pr(\tilde{\varphi} = a) \ge \frac{1}{2^{2n}} \left(\frac{2^{n+2} \delta(a)}{2\pi \delta(a)} \right)^2 = \frac{4}{\pi^2}.$$

2. Note that $|1 - e^{2^n 2\pi i \delta(y)}| \le 2$ by the triangle inequality. Let $B = \{y \in \{0,1\}^n : |\delta(y)| > \varepsilon\}$ denote the set of "bad" values of y. For all $y \in \{0,1\}^n$, we have $\delta(y) \in [-1,1]$. If $|\delta(y)| \le 1/2$, then, by the above lemma, we have $|1 - e^{2\pi i \delta(y)}| \ge 4|\delta(y)|$. If $\delta(y) > 1/2$, then $\delta(y) - 1 \in [-1/2, 1/2]$, so by the above lemma, $|1 - e^{2\pi i \delta(y)}| \ge 4|\delta(y) - 1|$ hence

$$p_y \le \frac{1}{2^{2n}} \left(\frac{2}{4\delta(y)}\right)^2 = \frac{1}{2^{2n+2}\delta(y)^2}.$$

Let $\delta^+ = \min\{\delta(y): y \in B, \delta(y) > 0\}$ be the smallest $\delta(y)$ such that $\delta(y) > \varepsilon$, and $\delta^- = \max\{\delta(y): y \in B: \delta(y) < 0\}$ be the largest $\delta(y)$ such that $\delta(y) < -\varepsilon$. For all $y \in B$, we have $\delta(y) = \delta^+ + k_y/2^n$ or $\delta(y) = \delta^- - k_y/2^n$ for some $k_y \in \mathbb{N}$, so $|\delta(y)| > \varepsilon + k_y/2^n$. Note that each $k \in \mathbb{N}$, $k = k_y$ for at most 2 values of $y \in B$. Hence,

$$\begin{split} \Pr(|\delta(y)| > \varepsilon) &= \Pr(y \in B) = \sum_{y \in B} p_y \\ &\leq \sum_{y \in B} \frac{1}{2^{2n+2} \left(\varepsilon + k_y/2^n\right)^2} \\ &< 2 \sum_{k=0}^{\infty} \frac{1}{2^{2n+2}} \frac{1}{\left(\varepsilon + k/2^n\right)^2} \\ &\leq \frac{1}{2^{2n+1} \varepsilon^2} + \sum_{k=1}^{\infty} \frac{1}{2^{2n+1}} \frac{1}{\left(\varepsilon + k/2^n\right)^2} \\ &= \frac{1}{2^{2n+1} \varepsilon^2} + \int_0^{\infty} \frac{1}{2^{2n+1}} \frac{1}{\left(\varepsilon + x/2^n\right)^2} \, \mathrm{d}x \\ &= \frac{1}{2^{2n+1} \varepsilon^2} + \int_{2^n}^{\infty} \frac{1}{2^n} \, \mathrm{d}u = \frac{1}{2^{2n+1} \varepsilon^2} + \frac{1}{2^{n+1} \varepsilon}. \end{split}$$

Remark 2.7 The QPE algorithm excluding the measurement is a unitary - call this unitary $U_{\rm PE}$. If we apply $U_{\rm PE}$ to an arbitrary state $|\psi\rangle = \sum_j c_j |v_j\rangle$ where $|v_j\rangle$ are the eigenstates of U with eigenvalue $e^{2\pi i \varphi_j}$, then we have

$$U_{ ext{PE}}|\psi
angle = \sum_{j} c_{j} | ilde{arphi}_{j}
angle |v_{j}
angle$$

If every φ_j has an exact n-bit representation, then this is exact. Otherwise, we have $|\tilde{\varphi}_j\rangle = \sqrt{1-\eta}|\tilde{\varphi}_1\rangle + \sqrt{\eta}|\tilde{\varphi}_0\rangle$, where $|\tilde{\varphi}_1\rangle$ is a superposition of all n-bit strings that are correct to the first n-bits of φ , and $|\tilde{\varphi}_0\rangle$ is a superposition of strings with the first n bits not all correct.

Remark 2.8 Complexity of QPE: we use $C-U, ..., C-U^{2^{n-1}}$, so the number of uses of C-U is $\approx 2^n$. So this initially looks like exponential time, but there are special cases of U where by repeated squaring, this can be implemented with poly(n) gates.

If we want to estimate φ accurate to m bits of precision with probability $1-\eta$, then by the phase estimation theorem with $\varepsilon = \frac{1}{2^m}$, we need $n = O(m + \log(1/\eta))$ lines. Note this is a modest, polynomial increase in the number of lines of the circuit for an exponential reduction in η .

3. Amplitude amplification

Amplitude amplification is an extension of the key insights in Grover's algorithm (TODO: read part II notes for Grover's).

$$\begin{split} |\alpha\rangle \in H_d \text{ defines a one-dimensional subspace } L_\alpha &= \operatorname{span}_{\mathbb{C}}\{|\alpha\rangle\} \text{ and a } (d-1)\text{-}\\ \operatorname{dimensional subspace } L_\alpha^\perp, \text{ the orthogonal complement of } L_\alpha. \text{ We define the operator } I_{|\alpha\rangle} &= I - 2|\alpha\rangle\langle\alpha|. \text{ This acts on } |\alpha\rangle \text{ as } I_{|\alpha\rangle}|\alpha\rangle = |\alpha\rangle - 2|\alpha\rangle = -|\alpha\rangle. \text{ For all } |\beta\rangle \in L_\alpha^\perp, \\ I_{|\alpha\rangle}|\beta\rangle &= |\beta\rangle, \text{ since } \langle\alpha|\beta\rangle = 0. \text{ Note } I_{|\alpha\rangle} \text{ is a reflection in the } (d-1)\text{-dimensional "mirror" } L_\alpha^\perp. \end{split}$$

For any unitary U, $UI_{|\alpha\rangle}U^{\dagger} = I_{U|\alpha\rangle}$.

Let $A\subseteq H_d$ be a k-dimensional subspace with orthonormal basis $\{|a_1\rangle,...,|a_k\rangle\}$. Define the projector onto A by $P_A=\sum_{i=1}^k|a_i\rangle\langle a_i|.$ P_A is independent of the orthonormal basis. Define $I_A=I-2P_A$, the reflection in the (d-k)-dimensional "mirror" A^\perp . For any $|\xi\rangle\in A$, $I_A|\xi\rangle=-|\xi\rangle$, and for any $|\chi\rangle\in A^\perp$, $I_A|\chi\rangle=|\chi\rangle$, since $P_A|\chi\rangle=0$.

Problem 3.1 (Unstructured Search)

Input An oracle for $f: \{0,1\}^n \to \{0,1\}$.

Promise There is a unique $x_0 \in \{0,1\}^n$ such that $f(x_0) = 1$.

Task Find x_0 .

Remark 3.2 The unstructured search problem is closely related to the complexity class NP and to Boolean satisfiability.

Theorem 3.3 (Grover) In the 2-dimensional subspace spanned by $|\psi\rangle$ and $|x_0\rangle$, the action of Q is a rotation by angle 2α , where $\sin(\alpha) = \frac{1}{\sqrt{2^n}} = \langle x_0 | \psi \rangle$.

Algorithm 3.4 (Grover's Algorithm) Let $N = 2^n$.

- 1. $I_{|x_0\rangle}:|x_0\rangle\mapsto -|x_0\rangle, \ |x\rangle\mapsto |x\rangle$ for $x\neq x_0$. Note that $U_f|x\rangle\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=(-1)^{f(x)}|x\rangle\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle).$
- 2. We introduce the Grover iteration operator $Q = -H^{\otimes n}I_{|0\rangle}H^{\otimes n}I_{|x_0\rangle}$. Note that $H^{\otimes n}I_{|0\rangle}H^{\otimes n} = I_{|\psi\rangle}$ where $|\psi\rangle = \frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle$. Implementing Q requires one query to f.
- 3. Prepare $|\psi\rangle = H^{\otimes n}|0\rangle$.
- 4. Apply Q^m to $|\psi\rangle$, where m is closest integer to $\frac{\arccos(1/\sqrt{N})}{2\arcsin(1/\sqrt{N})} = \frac{\theta}{2\alpha}$, where $\cos(\theta) = \langle x_0 | \psi \rangle = \frac{1}{\sqrt{N}}$. This rotates $|\psi\rangle$ to be close to $|x_0\rangle$ (within angle $\pm \alpha$ of $|x_0\rangle$).
- 5. Measure to get x_0 with probability $p = |\langle x_0 | Q^m | \psi \rangle|^2 = 1 \frac{1}{N}$. For large N, $\arccos\left(1/\sqrt{N}\right) \approx \frac{\pi}{2}$, and $\arcsin\left(1/\sqrt{N}\right) \approx 1/\sqrt{N}$. The number of iterations is $m = \frac{\pi}{4}\sqrt{N} = O\left(\sqrt{N}\right)$. So we need $O\left(\sqrt{N}\right)$ queries to U_f . In contrast, clasically we need $\Omega(N)$ queries to f to find x_0 with any desired constant probability. Note that $\Omega(N)$ queries are both necessary and sufficient.

Let G be a subspace (called the "good" subspace) of state space H. We call the subspace G^{\perp} the "bad" subspace. We have $H = G \oplus G^{\perp}$. For any state $\psi \in H$, there is a unique decomposition with real, positive coefficients $|\psi\rangle = \sin(\theta)|g\rangle + \cos(\theta)|b\rangle$, where $|g\rangle = P_G|\psi\rangle$ and $|b\rangle = P_{G^{\perp}}|\psi\rangle$.

Introduce the reflection operators that reflect $|\psi\rangle$ and $|g\rangle$. $I_{|\psi\rangle}=I-2|\psi\rangle\langle\psi|,\ I_G=I-2P_G.$ Define $Q=-I_{|\psi\rangle}I_G.$

Theorem 3.5 (Amplitude Amplification Theorem/2D-subspace Lemma) In the 2-dimensional subspace spanned by $|g\rangle$, $|\psi\rangle$ (orthonormal basis is $\{|g\rangle,|b\rangle\}$), Q is a rotation by angle 2θ , where $\sin(\theta) = \|P_G|\psi\rangle\|^2$, the length of the good projection of $|\psi\rangle$.

Remark 3.6 In the amplitude amplification process, the relative amplitudes of basis states inside $|g\rangle$ and $|b\rangle$ won't change. So amplitude amplification boosts the overall amplitude of $|g\rangle$ at the expense of the amplitude of $|b\rangle$.