Übungsblatt 1

Grundlagen

{Theoretische Informatik}@AIN3

Prof. Dr. Barbara Staehle

Wintersemester 2021/2022

HTWG Konstanz

|Mengen, Funktionen und Relationen|

AUFGABE 1.1 3 PUNKTE

Bringen Sie die folgenden Mengen in die aufzählende Form (geben Sie also deren Elemente an).

a)
$$A = \{x \in \mathbb{N} \mid x < 7\}$$

b)
$$B = \{x \in \mathbb{N} \mid x < 17\}$$

c)
$$C = \{x \in \mathbb{N} \mid x \text{ ist eine Primzahl } \}$$

d)
$$D = \{x \in \mathbb{N} \mid \neg(-2 \le x \le 3)\}$$

e)
$$E = \{x \in \mathbb{N}_0 \mid -23 \le x < 3\}$$

f)
$$F = \{x \mid x \mod 3 = 0 \land x < 20 \land x \in \mathbb{N}\}\$$

g)
$$G = \{x \mid x \text{ ist eine dreistellige Bitfolge}\}$$

h)
$$H = \{x \mid x \text{ ist eine beliebige Kombination aller Kleinbuchstaben der Länge 2} \}$$

i)
$$I = \{x \mid x \text{ ist eine Fakultät der HTWG Konstanz}\}$$

AUFGABE 1.2 3 PUNKTE

Geben Seien die Mengen M_1, \ldots, M_5 . Geben Sie jeweils die Potenzmengen, sowie deren Größe an:

a)
$$M_1 = \{1\}$$

b)
$$M_2 = \{0, 1\}$$

c)
$$M_3 = \{a, b, c, ..., z\}$$

d)
$$M_4 = \emptyset$$

e)
$$M_5 = \{\emptyset\}$$

f)
$$M_6 = \mathbb{N}$$

AUFGABE 1.3 2 PUNKTE

Sei $X = \{a, b\}$ und $Y = \{1, 2, 3\}$. Bestimmen Sie folgende Produktmengen:

- a) $X \times Y$
- b) $Y \times X$
- c) X^3

AUFGABE 1.4 2 PUNKTE

Welche der folgenden Funktionen sind injektiv, surjektiv, oder bijektiv? Begründen Sie Ihre Entscheidung.

- a) $f: \mathbb{Z} \to \mathbb{Z}, z \mapsto z^2$
- b) $g: \mathbb{N} \to \mathbb{N}, n \mapsto 5n$
- c) $h: \mathbb{R} \to \mathbb{R}, r \mapsto 5r$
- d) $j: \mathbb{N} \to \{0, 1\}, n \mapsto n \mod 2$ (j(n) ist also Rest von n bei der Division durch 2)

AUFGABE 1.5 2 PUNKTE

Für ein Zugangssystem werden drei verschiedene Algorithmen für die Erstellung des Nutzernamens (in Kleinbuchstaben) vorgeschlagen:

- (a) erste 3 Buchstaben des Nachnamens
- (b) beliebige Kombination der ersten 3 Buchstaben des Nachnamens
- (c) beliebige Kombination von 3 beliebigen Buchstaben des Nachnamens

Ihre Aufgaben:

- a) Geben Sie für alle Schemata gültige Nutzernamen (wenn möglich mind. 3) für Nutzer "Eiglsperger" an.
- b) Handelt es sich hierbei jeweils um Funktionen oder um Relationen? Begründen Sie Ihre Meinung!
- c) Welches Schema erlaubt die problemlose Integration der größten Menge von Nutzern?

Logik

AUFGABE 1.6 WAHR ODER FALSCH?

Prüfen Sie für jede der folgenden Aussagen, ob sie wahr oder falsch ist.

TEILAUFGABE 1.6.1 3 PUNKTE

- a) Wenn 4 < 3 dann ist 5 eine Primzahl
- b) Wenn 4 < 3 dann ist 4 eine Primzahl
- c) Wenn 4 > 3 dann ist 5 eine Primzahl
- d) Wenn 4 > 3 dann ist 4 eine Primzahl
- e) 5 > 9 genau dann, wenn 3 > 4
- f) 3 < 4 oder 3 = 4
- g) Entweder 5 > 9 oder 3 > 4
- h) Entweder gilt nicht 5 > 9 oder es gilt 3 > 4
- i) Der Esel ist ein Schaf genau dann, wenn das Pferd ein Vogel ist.

TEILAUFGABE 1.6.2 4 PUNKTE

- a) Wenn der Elefant ein Schmetterling ist, dann hat der Kreis drei Ecken.
- b) Wenn der Elefant kein Schmetterling ist, dann hat der Kreis drei Ecken.
- c) Der Elefant ist ein Schmetterling genau dann, wenn das Pferd ein Huhn ist.
- d) Entweder ist 5 durch 3 teilbar oder 1 < 12.
- e) 5 ist durch 3 teilbar oder 1 < 12.
- f) 5 ist nicht durch 3 teilbar oder 1 < 12.
- g) 12 < 1 ist falsch.
- h) Es ist falsch, dass 12 < 1 falsch ist.

AUFGABE 1.7 2 PUNKTE

Seien h und f die Aussagen h: "Die Webseite ist barrierefrei." f: "Die Webseite hat ein gültiges Zertifikat.". Formulieren Sie die folgenden Sätze als zusammengesetzte logische Aussagen:

- a) Die Webseite ist barrierefrei und hat ein gültiges Zertifikat.
- b) Die Webseite ist nicht barrierefrei, aber die Webseite hat ein gültiges Zertifikat.
- c) Wenn die Webseite ein gültiges Zertifikat hat, dann ist sie auch barrierefrei.
- d) Die Webseite hat entweder ein gültiges Zertifikat oder sie ist barrierefrei.

AUFGABE 1.8 2 PUNKTE

Seien p und q die Aussagen "Die Datenbank ist schnell" und "Die Datenbank ist inkonsistent". Formulieren Sie jede der untenstehenden logischen Aussagen als einen deutschen Satz.

- a) $p \land \neg q$
- b) $p \oplus q$
- c) $p \Rightarrow \neg q$
- d) $\neg q \Rightarrow p$

AUFGABE 1.9 2 PUNKTE

Verneinen Sie:

- a) $A: \forall y: y \leq 2$
- b) $B : \exists z : z 3 = 1$
- c) *C* : Alle Fische sind Freunde.
- d) D: Es gibt mindestens einen Pinguin der nicht lächelt oder nicht winkt.

AUFGABE 1.10 2 PUNKTE

Seien P(x): "x studiert WIN" und Q(x): "x hat die AIN-SPO gelesen" für $x \in S = \{x \mid x \text{ studiert an der HTWG}\}$. Drücken Sie die folgenden Sätze mit Hilfe von Quantoren als logische Aussageform aus. Verwenden Sie als Domäne für Ihre Quantoren die Menge S.

- a) Es gibt mindestens einen Studierenden an der HTWG, der WIN studiert oder die AIN-SPO gelesen hat
- b) Es gibt mindestens einen Studierenden an der HTWG, der die AIN-SPO nicht gelesen hat und nicht WIN studiert.
- c) Jeder Studierende der HTWG studiert entweder WIN oder hat die AIN-SPO gelesen.
- d) Für alle Studierenden der HTWG gilt: wenn der Studierende WIN studiert, dann hat er die AIN-SPO gelesen.

AUFGABE 1.11 3 PUNKTE

Sei L(x, y) die Aussageform "x liebt y" für x und y jeweils beliebige Menschen der Menge M aller Menschen. Verwenden Sie Quantoren um folgende Sätze als logische Aussagen zu formulieren:

- a) Jeder liebt Angela.
- b) Jeder liebt irgendjemanden.
- c) Es gibt irgendjemanden, der von allen geliebt wird.
- d) Niemand liebt jeden.

- e) Es gibt jemanden, den Lydia nicht liebt.
- f) Jeder liebt sich selbst.
- g) Es gibt jemanden, der niemanden liebt außer sich selbst.

AUFGABE 1.12

Folgendes sei gegeben:

- m: beliebiger Mensch aus der Menge aller AIN-Studierenden M
- p: beliebige Programmiersprache aus der Menge aller Programmiersprachen P
- Aussageform K(m, p): "m kann in p programmieren"
- Aussageform L(m, p): "m liebt p" (kurz für "m liebt es in p zu programmieren")
- Alice, Bob und Charlie: AIN-Studierende, also Menschen aus *M*.

TEILAUFGABE 1.12.1 3 PUNKTE

Formulieren Sie die folgenden logischen Aussagen in Ihren eigenen Worten als deutsche Sätze:

- a) $K(Alice, Java) \oplus L(Alice, Scala)$
- b) $\forall_{m \in \{Alice, Bob, Charlie\}} L(m, Python)$
- c) $\forall_{m \in M} \exists_{p \in P} K(m, p)$
- d) $\exists_{p \in P} \ \forall_{m \in M} \ K(m, p)$
- e) $\exists_{p \in P} \exists_{m \in M} L(m, p)$
- f) $\forall_{p \in P} \ \forall_{m \in M} \ L(m, p)$

TEILAUFGABE 1.12.2 3 PUNKTE

Formulieren Sie folgende Sätze als zusammengesetzte logische Aussagen (mit Quantoren bei Bedarf).

- a) Alle AIN-Studierenden können entweder in Java oder in Scala programmieren, oder in beiden Sprachen.
- b) Es gibt keinen AIN-Studierenden, der C# liebt.
- c) Bob kann in Scala programmieren, wenn er nicht in Java programmieren kann.
- d) Es gibt mindestens eine Programmiersprache, die von allen AIN-Studierenden gekonnt und geliebt wird.
- e) Für alle AIN-Studierenden existiert mindestens eine Programmiersprache, die sie weder können noch lieben.
- f) Für keinen AIN-Studierenden existiert mindestens eine Programmiersprache, die sie/er weder kann noch liebt.