Mid Semester Examination 2021

Name of the Program: B.Tech

Semester: I

Name of the Course: Engineering Mathematics I

Course Code: TMA-101

Time: $1\frac{1}{2}$ Hour

Maximum Marks: 50

Note: (i) Answer all the questions by choosing any one of the sub questions.

(ii) Each question carries 10 marks.

Q1	(10 marks)	
(a)	Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	COI
	OR	
(b)	For what value of m and n the system of linear equations $x+y+z=6$, $x+2y+5z=10$ and $2x+3y+mz=n$ has (i) Infinite number of solution (ii) No solution	
Q2	(10 marks)	en inc. a
(a)	Write short notes on the following: (i) Cayley-Hamilton Theorem (ii) Algebraic and Geometric multiplicity (iii) Rank of matrix (iv) Unitary matrices (v) Orthogonal vectors	COI
	OR	
(b)	 (i) Show that the set of vectors X = [1,2,-3,4], Y = [3,-1,2,1], Z = [1,-5,8,-7] is linearly dependent. (ii) Consider matrix \[\begin{align*} 4 & 0 \ 2 & -4 \end{align*} \]. Is the matrix diagonalizable? If yes, find P such that P⁻¹AP = diag [4, -4]. 	
Q3	(10 marks)	
(a)	 (i) Show that the function f(x,y) = xy²/x² + y⁰, x ≠ 0, y ≠ 0 and f(0,0) = 0 is not continuous at (0,0) in (x, y). (ii) Find the first six terms of the expansion of the function e² sin y in a Taylor's series about (0,0). 	CO3
	OR	

(b)	(i) If $u = (x^2 + y^2 + z^2)^{-1/2}$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.	
	(ii) If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.	•
Q4	(10 marks)	
(a)	(i) If A is non-singular matrix show that $rank(AA^T) = rank(A)$. (ii) Find non-singular matrices P and Q such that PAQ is normal form where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.	COI
***************************************	OR	
(b)	Expresses the Hermitian matrix $A = \begin{bmatrix} 1 & -i & 1+i \\ i & 0 & 2-3i \\ 1-i & 2+3i & 2 \end{bmatrix}$ as $P+iQ$ where	
m. e	P is real symmetric and Q is real skew symmetric matrix. (10 marks)	Дуглугарация
Q5 (a)	If $y = (x^2 - 1)^n$, use Leibnitz's theorem to show $(1 - x^2)y_{n+2} - 2xy_{n+1} + n(n+1)y_n = 0$	CO3
	OR	
(b)	(i) Show that the sequence $\langle S_n \rangle = \frac{4n}{n+7n^{1/2}}$ has the limit 4. (i) Define Cauchy's root test, and test for convergence of the series whose n th terms is $\frac{n^{n^2}}{(n+1)^{n^2}}$.	