Math 6710 – Probability (3 pages)

Due: Thursday, October 25, 2012

Homework 9

Instructor: Nate Eldredge

Costandino Dufort Moraites

1,2,3,4,5

Problem 1. Let $\{X_n\}$ be an adapted process with state space (S, \mathcal{S}) . Fix a measurable $B \subset S$. In class we showed that the hitting time $\tau_B = \inf\{n \geq 0 : X_n \in B\}$ is a stopping time. Let $\tau_B^{(2)} = \inf\{n > \tau_B : X_n \in B\}$ be the *second* time that X_n hits B. Show that $\tau_B^{(2)}$ is also a stopping time. The same argument shows $\tau_B^{(n)}$ is a stopping time for all n.

Proof. We want to show $\tau_B^{(2)}$ is a stopping time, i.e. we want to show $\{\tau_B^{(2)} \leq n\} \in F_n$ for all n. But, we have:

$$\{\tau_B^{(2)} \le n\} = \bigcup_{i=0}^{n-1} \{\tau_B = i\} \cap (\{X_{i+1} \in B\} \cup \dots \cup \{X_n \in B\})$$

And we've already shown $\{\tau_B = i\} \in F_n$ for all $i \leq n$ because τ_B is a stopping time, and $\{X_i \in B\} \in F_n$ for all $i \leq n$ as $\{X_n\}$ is an adapted process, so we're done.

Problem 2. Suppose L, M are stopping times with $L \leq M$ and $A \in \mathcal{F}_L$ is an event. Set $N = L1_A + M1_{A^c}$. Show that N is a stopping time.

Proof. First we want a lemma. If $L \leq M$ then $F_L \subseteq F_M$.

Proof. We want to show if $A \cap \{L = n\} \in \mathcal{F}_n$ for all n then $A \cap \{M = n\} \in \mathcal{F}_n$ for all n. We do this by writing $A \cap \{M = n\}$ as a finite union of elements of \mathcal{F}_n , namely:

$$A \cap \{M = n\} = \bigcup_{i=0}^{m} A \cap \{L = i\} \cap \{M - L = n - i\}$$

Where $A \cap \{L = i\} \in \mathcal{F}_i$ for all $i \leq n$ hence is in \mathcal{F}_n as $\{\mathcal{F}_n\}$ is a filtration, and $\{M - L = n - i\}$ is the finite union of all events of the form $\{M = j\} \cap \{L = j - (n - i)\}$ which is a little awkward, but is certainly in \mathcal{F}_n as L, M are stopping times.

We want to show $\{N = n\} \in \mathcal{F}_n$ for all n. If $N(\omega) = n$ there are two possibilities, either $\omega \in A$ and $L(\omega) = n$ or $\omega \in A^c$ and $M(\omega) = n$, this is represented as:

$$\{N=n\} = (A \cap \{L=n\}) \cup (A^c \cap \{M=n\})$$

We have $A \in F_L$ so $A \cap \{L = n\} \in F_n$ by definition and $A^c \in F_M$ by the lemma so $A^c \cap \{M = n\} \in F_n$ as well and so $\{N = n\} \in F_n$, as it is an intersection of elements of F_n .

Problem 3. Show that if (X', Y') has the same joint distribution as (X, Y), then E[Y'|X'] = f(X') a.s. for the same function f gauranteed by the Doob-Dynkin lemma for X, Y.

Proof. The Doob-Dynkin lemma in the lecture notes was actually showing there exists an f so that f(X) = Y under the hypothesis that $Y \in \sigma(X)$. I am going to interpret the problem statement this way.

Certainly f(X') is $\sigma(X')$ measurable as f is measurable, so we need to show that $\int_A Y' d\mu = \int_A f(X') d\mu$ for all $A \in \sigma(X)$, in fact we have:

$$\int_{A} Y' d\mu = \int_{Y^{-1}(Y'(A))} Y d\mu = \int_{Y^{-1}(Y'(A))} f(X) d\mu = \int_{A} f(X') d\mu$$

where the first and last equalities follow because (X,Y) and (X',Y') have the same joint distribution so $P(Y \in Y'(A)) = P(Y' \in Y'(A))$ and similarly for f(X), f(X'). The middle equality holds by the Doob-Dynkin lemma which gave that f(X) = Y a.s.

Problem 4. Prove the conditional Markov inequality: if X is a nonnegative random variable and a > 0, and \mathcal{G} is a σ -field, then $P(X \ge a|\mathcal{G}) \le \frac{1}{a} E[X|\mathcal{G}]$, almost surely.

Proof. Theorem 5.1.2 in Durrett establishes linearity of conditional expectation and shows that if $X \leq Y$ then $E(X|\mathcal{F}) \leq E(Y|\mathcal{F})$. With these facts, the proof of the Markov inequality is basically the same as for normal expectation.

Namely, we notice that $a1_{\{X\geq a\}} \leq X$ as X is non-negative and for any ω , $a1_{\{X\geq a\}} \leq a$ with equality only achieved when $X(\omega) \geq a$. Then we have $E(a1_{\{X\geq a\}}|\mathcal{G}) \leq E(X|\mathcal{G})$ by Durrett theorem 5.1.2 and so $E(1_{\{X\geq a\}}|\mathcal{G}) \leq \frac{1}{a}E(X|\mathcal{G})$ by linearity of conditional expectation. Finally, $E(1_{\{X\geq a\}}|\mathcal{G}) = P(\{X\geq a\}|\mathcal{G})$ by definition so we have $P(\{X\geq a\}|\mathcal{G}) \leq \frac{1}{a}E[X|\mathcal{G}]$, as desired. \square

Problem 5. Suppose X is a nonnegative random variable which is not necessarily integrable, and let \mathcal{G} be a σ -field. Show that there exists a unique random variable Y with $Y \in G$ and for every $A \in \mathcal{G}$, E[Y;A] = E[X;A].

Proof. I think the trick is to go with the hint and hit it with the hammer known as the 'monotone convergence theorem'.

In particular let $X_m = X \wedge M$, and $Y_m = E(X_m | \mathcal{G})$. Then for all m and any A,

$$\int_{A} X_{m} d\mu = \int_{A} Y_{m} d\mu$$

and Y_m is \mathcal{G} measurable. We know X_m is monotone increasing to X so $\lim \int_A X_m d\mu = \int_A X d\mu$ by the monotone convergence theorem. By theorem 5.1.2 in Durrett, $Y_m = E(X_m | \mathcal{G}) \geq E(X_{m-1} | \mathcal{G}) = Y_{m-1}$ so Y_m is a monotone increasing sequence of random variables and the limit $Y = \lim Y_m$ makes sense. Again by monotone convergence we have

$$\int_A X d\mu = \lim \int_A Y_m d\mu = \int_A \lim Y_m d\mu = \int_A Y d\mu$$

So $\int AXd\mu = \int_A Yd\mu$ and Y is \mathcal{G} -measurable, as desired.

We know have constructed our desired Y. For uniqueness, there are two cases, either there exists some A so that $E[Y;A] = E[Y';A] \neq \infty$ or not. If there is no such A then $E[Y;A] = E[Y';A] = \infty$ for all A and $Y = Y' = \infty$ a.s. To see this, notice that if $|Y|, |Y'| \leq a$ for any $\infty > a > 0$ on any subset $A \in \mathcal{G}$ with $\mu(A) \neq 0$, then $\int_A Y d\mu \leq a < \infty$.

In the other case, we can use the same proof as in the lecture notes.

My notes for my presentation on October 25 in class.

I was asked to prove Durrett's Theorem 5.1.7 in class on October 25. I figured I would need to have my homework with me to hand in anyways, so I just put my notes here too.

Theorem 1. If $X \in \mathcal{F}$ and $E|Y|, E|XY| < \infty$, then:

$$E(XY|\mathcal{F}) = XE(Y|F)$$

Proof. By definition $E(Y|\mathcal{F}) \in \mathcal{F}$ and by assumption $X \in \mathcal{F}$ so to check E(XY|F) = XE(Y|F), we just need to check that for all $A \in \mathcal{F}$, E(XY;A) = E(X(E(Y|F));A). I think it's going to get a little ugly writing a bunch of nested E's so I am going to switch over to writing integrals where appropriate. Given $A \in \mathcal{F}$ we should the desired equality using the usual four-step procedure of indicator functions, simple functions, non-negative functions and then any integrable X. Showing the result for indicator functions is really the meat of it, then it's the usual programme. Say $X = 1_B$ an indicator function. We have $E(X(E(Y|\mathcal{F}));A) = \int_A 1_B E(Y|\mathcal{F}) dP$ and so:

$$\int_A 1_B E(Y|\mathcal{F}) dP = \int_{A \cap B} E(Y|\mathcal{F}) dP = \int_{A \cap B} Y dP = \int_A 1_B Y dP = E(XY;A)$$

The first equality holds because X is an indicator function and the second holds by the definition of $E(Y|\mathcal{F})$ and the fact that $A \cap B \in \mathcal{F}$ as $A, B \in \mathcal{F}$.

Conditional expectation is linear, so the result for simple X is the same. Next we may take simple X_n converging upwards to X and use the monotone convergence theorem to get the result for non-negative X. Finally, split X into its positive and negative parts and we get the result for arbitrary X.