Lycée Thiers

QUESTIONS BRÈVES - E

E1	Pour tout $(i, j) \in \{1, 2, 3\}^2$, si $i + j < 10$ alors $i + j \ge 3$	
E2	Pour tout $(i, j) \in \{1, 2, 3\}^2$, si $(ij < 2 \text{ ou } ij > 10)$ alors $i = j$	
E3	L'ensemble des solutions de l'inéquation $x^2 + 5x - 7 < 0$ est un intervalle	
E4	Si l'inéquation $x^2 + ax + b < 0$ ne possède aucune solution réelle, alors $a^2 \le 4b$	
E5	Les inéquations $x^5 < 1$ et $x^2 > 5$ n'ont aucune solution en commun	
E6	Si l'ensemble des solutions de l'inéquation $x^2 + ax + b \ge 0$ est non vide, alors il est infini	
E7	L'équation $x(x-1)(x-2)(x-3)(x-4) = 17$ ne possède aucune solution réelle	*
E8	Si $(a, b) \in \mathbb{R}^2$ vérifie $(a + b)(a^2 - ab + b^2) = (a - b)(a^2 + ab + b^2)$, alors $b = 0$	
E9	Si $q \in \mathbb{C} - \{-1\}$ et $n \in \mathbb{N}^*$, alors $\frac{1 - q^{2n}}{1 + q} = (1 - q) \sum_{k=0}^{n-1} (-1)^k (-q^2)^k$	
E10	Si $(p,q) \in \mathbb{Z}^2$ et $p > q$, alors $p \ge q - 1$	
E11	Si $a, b, c, d > 0$ sont tels que $a > b$ et $c > d$ alors $\frac{a}{d} > \frac{b}{c}$	
E12	Si $a, b, c, d \in \mathbb{R}$ sont tels que $a > b$ et $c > d$ alors $a - c > b - d$	
E13	Si $a, b, c, d > 0$ sont tels que $a > b$ et $c > d$ alors $a + \frac{1}{d} > b + \frac{1}{c}$	
E14	Si $a, b \in \mathbb{R}$ sont tels que $a^5 < b^5$, alors $a^3 < b^3$	
E15	Si $n \in \mathbb{N}$ vérifie $\forall (a, b) \in \mathbb{R}^2$, $a^n = b^n \Rightarrow a = b$, alors n est impair	

E16	Si $p, q \in \mathbb{N}$ vérifient $p \ge 2$ et $q \ge 2$, alors $pq \ge p + q$	
E17	l'ensemble des parties de {1,2,3} contient 9 éléments	
E18	l'ensemble des parties de cardinal 2 de {1, 2, 3, 4, 5, 6} contient moins de 20 éléments	
E19	si E est fini et si $a \in E$, alors il existe autant de parties de E contenant a que de parties de	
	E ne contenant pas a	
E20	si E est fini, alors il existe autant de parties de E de cardinal pair que de parties de E de	
	cardinal impair	
E21	si E, F, G sont finis, alors card $(E \cup F \cup G) \leq \operatorname{card}(E) + \operatorname{card}(F) + \operatorname{card}(G)$	*
E22	si $i_1, \dots, i_n \in \{1, \dots, n\}$ sont deux à deux distincts, alors $\sum_{k=1}^n i_k = \frac{n(n+1)}{2}$	