# pangeosubsea sounding out risk

## The Sub-Bottom Imager™

New 3D Sub-Bottom Investigation Tool For ROV Deployment

6th BIANNUAL NRC-IOT
WORKSHOP ON UNDERWATER VEHICLE
TECHNOLOGY

Gary J. Dinn, P.Eng., Vice President



### **Our Company**

- Technology development and service delivery company specializing in acoustic solutions to mitigate risk.
- Providing answer products that create unique value for our clients.
- Established in January 2006
- Equity Investment
  - Energy Ventures 2006
  - Lime Rock Partners 2009
  - Chevron Technology Ventures 2009
- ISO 9001: 2008 registered
- Academic Partnerships

# energy ventures ?











#### PanGeo Subsea Global Offices

Aberdeen, Scotland
Global Operations & O&G Sales

Stavanger, Norway
Norway Operations

Aarhus, Denmark
Offshore Renewable Sales
Centre of Innovation

Team of scientists, engineers and operations specialists



**Sub-Bottom Imager** 

**Acoustic Corer** 

**Acoustic Zoom** 



Interrogates to 5 m



Interrogates to 60 m



Interrogates 6000 m



#### Sub-Bottom Imager™



**ROV** Mounted

3D Volumetric images

5M wide x 5M deep swath below seafloor

#### **Applications**

- Pre-engineering surveys
- Out-of-straightness / integrity surveys
- Pipeline/cable surveys
- UXO detection
- Archeology



# Pipe/Cable Inspection – Current Technologies

| Conventional sidescan      | Sub-bottom profiler | Magnetometer           | 3D Sub-Bottom Imager       |
|----------------------------|---------------------|------------------------|----------------------------|
| sonar & multi-beam         | Edgetech,           | Innovatum, TSS         | PanGeo Subsea              |
| Tritech, Kongsberg,        | Kongsberg, Ixsea,   |                        |                            |
| Ulvertech etc.             | Innomar etc.        |                        |                            |
| Positional information but | Sub-seabed but      | Field measurement,     | Sub-seabed, 3D image,      |
| surface features only –    | single 2D line, low | inferred position      | full swathe, able to track |
| no buried pipe imaging.    | resolution, no      | requires pipe details. | buried pipe. Accurate      |
| Can only track exposed     | positional          | Less accurate burial.  | depth of burial. Non-      |
| pipe.                      | information, cannot | Metallic only. Weak in | metallic target imaging.   |
|                            | remain over pipe.   | areas of high debris.  |                            |





## **Sub-Bottom Imager Sonar Design Considerations**

## SBI top-level sonar design parameters

- Pipelines/cables, 10-100 cm O.D.
- 5 m swath to a depth of 5 m
- Depth of coverage with 5 cm accuracy
- Sonar operable from standard work-class ROV
- 0.5 2 knot survey speed

## Fusion of two sonar approaches

- Parametric pencil beam TOF
- LFM chirp transmit, near field beam forming & SAS processing



## Sub-Bottom Imager™ - Focusing method

- LFM chirp transmit, with near field beam forming
- SAS processing in the along-track direction
- Parametric source operates independently for QA and precision top-of-pipe measurement





## SBI – ROV Payload with Folding Array

- Array folds for launch/recovery
- 5 x 8 channel hydrophone arrays
- 1 x Parametric: 190 kHz primary with 15 – 30 kHz secondary
- 3 x HF chirp projectors: 4.5 –14 kHz
- INS IXSEA PHINS or similar c/w
   DVL

| 3.5 m (2.6m with outside arrays folded) |
|-----------------------------------------|
|-----------------------------------------|

| General Specifications             |           |            |  |  |  |
|------------------------------------|-----------|------------|--|--|--|
| Item                               | Weight in | Weight in  |  |  |  |
|                                    | Air (Kg)  | Water (Kg) |  |  |  |
| Hydrophone Array excl Frame        | 90        | 15         |  |  |  |
| Acoustic Projectors                | 15        | 5          |  |  |  |
| Subsea Electronic Bottles and Rack | 250       | 27         |  |  |  |
| INS/DVL                            | 65        | 53         |  |  |  |
| Skid                               | 150       | 88         |  |  |  |
| TOTAL                              | 570       | 188        |  |  |  |

| Power/Comms requirements from ROV      |  |
|----------------------------------------|--|
| 120v AC, 50/60Hz, 5 amps               |  |
| 2 x 100Mb Ethernet or 1 x 1GB Ethernet |  |
| I x hydraulic JIC4 port                |  |





## **SBI Inertial Navigation System**

## **INS Test Program**

Completed at Institute for Ocean Technology (IOT)

## Scope of Work

- To quantify rotational and translational jitter
- Assess Doppler Velocity Log (DVL) gains
- Implement and confirm INS data integration





### **SBI Inertial Navigation System**

sounding out risk



IOT 200m tow tank

CDL MiniPos/NAV T16 - INS/DVL

#### Test Plan Highlights:

- Motion reference from tow carriage
- Assess focus quality with INS reference
- Determine gains from DVL

#### Conclusions:

 Desired image quality requires T24 or equivalent INS (IXSEA PHINS)





#### SBI – Real-Time Data Processing

#### Core signal processing steps are

- Digital band limit filtering
- Matched (correlation) filtering
- SAS rendering

#### Our Approach

- Multi-core computer image rendering implementation needs 360X speedup
- Redesign core signal processing steps for processing on GPU (NVIDIA + CUDA operating system)
- Multiple Tesla Fermi card implementation being employed
- Theoretical Tesla speed up factor 960X
- Achieved speedup approximately 600X





## **SBI Commercial Prototype Demonstrations**

## Fall 2009 Pipeline Survey

## March 2010 NorNed Cable Survey





# **Asgard and Hedrun Line Crossing**





## **SBI Survey NorNed Cable**

sounding out risk

NorNed at KP506: SBI Survey 3&4

NorNed Fault Location at KP71: SBI Survey 1&2





#### Survey of NorNed Buried Cable for Statnett

sounding out risk

#### 13cm diameter cable buried 0.8m



- 450 kV HVDC Cable
- Outer serving: 4mm polypropylene
- Reinforcement: 2 layers, galvanized steel wire armour
- Conductor: Twin-core copper wires
- Dimension: 217mm x 136mm
- Weight in air: 84kg/m







#### Forecast European Offshore Wind Installations

sounding out risk





Forecast Offshore Turbine Installations
Source: Douglas-Westwood

- Over 500 turbines p.a. to be installed 2017-30
- Peak of around 900 turbines per year
- Massive requirements for manufacturing and installation

Lots of Cables to Survey!

**HVDC** Supergrid for Europe



## Capital Investment and Support

#### **Capital Investment**



energy ventures



## **Joint Industry Partnerships**







## **Commercialization Support**







Atlantic Canada **Opportunities** Agency

Agence de promotion économique du Canada atlantique



## Research Support





