LCM12864-14图形点阵液晶显示模块

规格书

版本号: V 1.0

2013.9.20

客户确认:

目录

- 一: 主要技术参数和性能
- 二: 外型尺寸图
 - 1. 主要外型尺寸
 - 2. 点阵尺寸
 - 3. 模块外型尺寸
- 三: 硬件电路图
- 四: 模块与单片机接口示意图
- 五: 引脚定义
- 六: 电气参数
 - 1. 极限参数 电气极限参数 环境极限参数
 - 2. 电气特性 直流特性 交流特性
- 七: 光电参数
- 八: 使用注意事项

一: 主要技术参数和性能

1. 电源: VDD=+3.3V±5%,自带 DC-DC 变换电路,可用软件调节对比度.

2. 显示内容: 128 (列) X64 (行)

3. 驱动方式: 1/64 DUTY, 1/9 BIAS

4. 显示模式: FSTN,正显灰屏/STN,负显蓝屏

5. 背光特性: 白色 LED 侧背光, DC+3.3V驱动。

6. 控制芯片: ST7565R

7. 参观视角: 6 点

8. 工作温度: -20℃--+70℃

9. 存储温度: -30℃--+80℃

10. 与 MCU 接口时序: INTEL 8080 (可通过 PCB 板上的跳线设置为 6800 时序)

11. 与 MCU 通讯方式: 8 位并口

二: 外型尺寸图

1. 主要外型尺寸:

项目	标准尺寸	单位
模块体积	54.0 X 50.0 X 7.0T	MM
视窗尺寸	44.0 X 29.0	MM
点阵数	128 X 64	DOTS
点间距	0.32 X 0.39	MM
点大小	0.29 X 0.36	MM

2. 点阵尺寸:

3. 模块外型尺寸:

三: 硬件结构图

四: 模块与单片机接口示意图

五: 引脚定义

引脚号	符号	电 平	功 能
1	DB_0	H/L	
2	DB_1	H/L	
3	DB_2	H/L	
4	DB_3	H/L	数据端口
5	DB_4	H/L	女人3/白 ²/m □
6	DB_5	H/L	
7	DB_6	H/L	
8	DB_7	H/L	
9	VDD	3.3V	模块逻辑电源输入端
10	VSS	0V	逻辑电源地
11	LEDA	3.3V	LED 背光电源正端
12	/CS	L	芯片选通断,低电平有效
13	/RES	L	复位信号,低电平有效
14	A0	H/L	命令数据选通端, H: 数据, L:命令
15	/WR	L	80 时序作为写信号,68 时序作为读/写信好
16	/RD	L	80 时序作为读信号, 68 时序作为使能信号

六: 电气参数

1. 极限参数

1.1 电气极限参数

参数	符号	条件	最小值	最大值	单位
逻辑电压	Vdd - Vss	-	-0.3	7. 0	V
LCD 驱动电压	VO – VSS	-	0	20.0	V
输入电压	Vi	-	-0.3	Vdd +0.3	V

1.2 环境极限参数

参数	符号	条件	最小值	最大值	单位
工作温度	Topr	-Normal temp.	-20	70	deg C
存储温度	Ttsg	version-	-30	80	deg C
Humidity	RH	no ondensation	_	95	%
Endurance		Ta<=40 deg			
振动压力	-	100-300Hz, X/Y/Z	_	4.9m/ss	_
		directions, 1 hour		0.5g	
震动	_	10 mS X/Y/Z		29.4m/ss	_
		direction 1 time		3. 0g	
		each			

2. 电气特性

2.1 直流特性

电气特性 at Ta=25 deg C, Vdd = 3.3V + /-5%

参数	符号	条件	最小值	典型	最大值	单位
逻辑电压	Vdd-Vss	_	3.0	3. 3	3.3	V
LCD 驱动电压	V0-VSS	Vdd = 3.3V	_	9.0	_	V
输入电压	V-ih	"H" level	2.2	_	Vdd	V
(forD/I,	V-i1	"L" level	0	_	0. 6	V
DB0-7, RD, /E)	V-11	L level	U		0.0	V
逻辑电流	Icc	_	_	8	9. 2	mA
LCD 驱动电流	Io	_	0. 15	0. 22	0. 27	mA

2.2 交流特性

(1) 8080 时序特性

(VDD=3.3V, TA=25℃)

参数	信号	符号	最小值	典型值	最大值	单位
Address hold time		Тан8	0	-	-	ns
Address setup time	A0	TAS8	0	-	-	ns
System cycle time		TCYC8	240	-	-	ns
Control L pulse width (WR)	WR	TCCLW	80	-		ns
Control L pulse width (RD)	RD	TCCLR	140	-		ns
Control H pulse width (WR)	WR	TCCHW	80	-	-	ns
Control H pulse width (RD)	RD	TCCHR	80	-	-	ns
WRITE Data set-up time	D0	TDS8	40	-	-	ns
WRITE Data hold time		TDH8	0	-	-	ns
READ access time	D7	TACC8	-	-	70	ns
READ Output disable time		Тсн8	5.0	-	50	ns

- 1. The input signal rise time and fall time (Tr, Tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (Tr+Tf) ≤ (TCYC8-TCCLW-TCCHW) for (Tr+Tf) ≤ (TCYC8-TCCLR-TCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD as the reference.
- 3. TCCLW and TCCLR are specified as the overlap between /CS1 being "L" (CS2= "H") and /WRand /RD being at the "L" level.

(2) 6800 时序特性

(VDD=3.3V, TA=25℃)

参数	信号	符号	最小值	典型值	最大值	单位
Address hold time		Тан6	0	-	-	ns
Address setup time	A0	TAS6	0	-	=	ns
System cycle time		TCYC6	240	-	1	ns
Control L pulse width (WR)	WR	TCCLW	80	-		ns
Control L pulse width (RD)	RD	TCCLR	140	-		ns
Control H pulse width (WR)	WR	TCCHW	80	-	1	ns
Control H pulse width (RD)	RD	TCCHR	80	-	-	ns
WRITE Data set-up time	D0	TDS6	40	-	•	ns
WRITE Data hold time		TDH6	0	-	-	ns
READ access time	D7	TACC6	-	-	70	ns
READ Output disable time		Тсн6	5.0	-	50	ns

- 1. The input signal rise time and fall time (Tr, Tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (Tr+Tf) ≤ (TCYC6-TEWLW-TEWHW) for (Tr+Tf) ≤ (TCYC6-TEWLR-TEWHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD as the reference.
- 3.TEWLW and TEWLR are specified as the overlap between /CS1 being "L" (CS2="H") and E.

- (3) 串行接口时序
 - 1. The input signal rise time and fall time (Tr, Tf) is specified at 15 ns or less.
 - 2. All timing is specified using 20% and 80% of VDD as the reference.

(VDD=3.3V, TA=25°C)

Parameter	Signal	Symbol	Min	Тур	Max	Unit	Condition
Serial clock cycle		TSCYC	50			ns	
Serial clock H pulse width	SCL	Tshw	25	***		ns	
Serial clock L pulse width		Tslw	25			ns	
Address setup time	A0	TSAS	20			ns	
Address hold time	16 75-76	TSAH	10		222	ns	
Data set-up time	SI	Tsps	20			ns	
Data hole time	28 78	TSDH	10		2 3	ns	
/CS serial clock time	CS	Tcss	20			ns	
/CS serial clock time		TCSH	40			ns	

七: 光电特性

项目	符号	条件	最小值	典型值	最大值	单位	参考.
对比度	CR	25℃		12			备注1
上升时间	tr	25℃		160	240	ms	备注2
下降时间	tf	25℃		100	150	ms	备注 2
参观视角	θ 1- θ 2	25℃			60	DEG	备注 3
<i>多州</i> 北州	Ø1, Ø2	20 C	-40		40	DEG	番任 3
帧频率	Ff	25℃		70		Hz	备注 2

备注(1): 对比率是由以下条件决定的:

CR= 选择情况的亮度 非选择情况的亮度

- (a). 温度-----25C
- (b). 帧频率-----64Hz

- (c). 参观视角------ θ =0, Ø=0
- (d). 操作电压---3.3V

备注(2): 响应时间的定义:

条件:

- (a). 温度-----25C
- (b). 帧频率----64Hz
- (c). 参观视角------ θ =0, Ø=0
- (d). 操作电压---3.3V

备注(3): 视角定义:

TOP-BOTTOM DIRECTION

RIGHT-LEFT DIRECTION

八: 指令说明

1. 指令表

Command Code												
Command	A0	RD	W R	D7	D6	D5	D4	‡ D	3 D	2 D1	D0	Function
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	Dis	play	star	t ad	dres	s	Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	Pa	age	addr	ess	Sets the display RAM page address
(4) Column address set	0	1	0	0	0	0	1	Мо	st si	gnifi	cant	Sets the most significant 4 bits of
upper bit Column address set	0	1	0	0	0	0	0				lress icant	the display RAM column address. Sets the least significant 4 bits of
lower bit								col	umn	add	Iress	the display RAM column address.
(5) Status read	0	0	1		Sta	atus		0	0	0	0	Reads the status data
(6) Display data write	1	1	0				Wr	ite d	ata			Writes to the display RAM
(7) Display data read	1	0	1				Re	ad d	ata			Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9, 1: 1/7
												Column address increment
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0	0	*	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1		erat	ing	Select internal power supply operating mode
(17) V5voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0		sisto	or	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1 *	0 *			0 1 valu		troni	ic	Set the V5output voltage electronic volume register
(19) Static indicator ON/OFF Static indicator register set	0	1	0	1 *	0 *	1	0	1	1	11	0 0 Mode	0: OFF, 1: ON Set the flashing mode
(20) Power saver												Display OFF and display all points ON compound command
(21) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(22) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

2. 基本指令详解

(1) Display ON/OFF

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	1	0	1	0	1	1	1	1	显示开
										0	显示关

当同时执行"**Display All Points ON**(命令 10)"和"**Display OFF**"命令时,模块进入省电模式,详细情况,参考"**Power Save**"里的说明。复位时为 display off

(2) Display Start line Set

本命令用 来指定显示 RAM 的行地址(line address)

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
					\downarrow						
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

本模块的行扫描方向是从 0,63,62 一直到 2,1 逐渐减小的,当设定起始行后,从起始行开始的8 行是 PAGE0,当行地址到 1 之后,自动转到第 0,63.....,一般情况下,本命令设置为 0X40,通过有规律的改变起始行,可以实现上下滚屏,但要注意在滚屏结束后,将原先设定的起始行重新设定。

(3) Page Address Set

通过页地址(page address)和列地址(column address)共同来确定数据在显示 RAM 中的位置。系统 复位后,页地址默认为 0。参看图 4-1 液晶点阵结构图。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
					\downarrow						
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

(4) Column Address Set

本命令用来确定显示 RAM 的列地址(Column Address).地址分成两部分(高四位和低四位)写入. RAM 每访问一次,列地址自动加一,一直到 131,因此用户可以连续写入或者读出数据. 模块来说,共 128 列,剩余的四列不显示,当数据写到第 131 列后,列地址自动返回到 0,而且页地址也不会自动增加.

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0	

(5) Status Read

(3) Status	Kau
BUSY	当 BUSY=1 时,表示正在处理数据或正在复位!此时模块将不接收任何数据知
	道 BUSY=0;如果时序能够满足要求,可以不用进行状态检查。
ADC	ADC 表示列地址和端地址驱动器的关系: 0: 反状态 (列地址 131-nSEG n) 1: 正常状态 (列地址 nSEG n) (ADC 命令 转换状态,对于本模块来说,ADC 必须设置为 1,详细情况参照命令 8)
ON/OFF	表示显示的状态 0:显示开 1:显示关 命令 1,示开/关命令用来切换显示状态.
/RESET	/reset 用来表示当前是否在复位过程中。 0: 工作状态 1: 正在复位

(6) Display Data Write

本命令将要显示的内容写入显示 RAM。因为列地址(column address)在数据写入后自动加 1,因 此用户可以连续向显示 RAM 写入数据。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0				Write	data			

(7) Display Data Read

本命令从显示 RAM 中读取数据。可以连续读出数据。在串行模式下,本命令无效。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1				Read	data			

(8) ADC Select (Segment Driver Direction Select)

本命令能够使显示 RAM 的列地址和段驱动的输出反向。相当于左右反转。当 ADC 为正常时,列地址从左到右为 0-127,当 ADC 为反向时,列地址从左到右为 131-4。模块正向安装时 ADC 应当设置成正常模式。复位后默认为正常状态。本命令和命令 15 的作用主要是当模块安装反向时,调节显示起始位置: 当正向安装时,ADC: 0xa0,Common Output Mode Select: 0xc8,此时行范围为 0、63、……2、1,列范围是 0-127。当反向安装时,ADC: 0xa1,Common Output Mode Select:

0xc0,此时行范围从上到下是 0、63······2、1(相对于反向安装后的方向而言),列范围是从左到右4-131(相对于反向安装后的方向而言)。本部分的模块结构图中的说明是针对正向安装模块而言的!

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	1	0	1	0	0	0	0	0	正常 反向

(9) Display Normal/Reverse

本命令可以在不重新向显示 RAM 写数据的情况下,使显示 RAM 中的数据取反,从而实现显示反白的效果。 复位后默认为正常显示。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	1	0	1	0	0	1	1	0 1	正常显示 反白显示

(10) Display All Points ON/OFF

本命令用来实现全屏显示,不管显示 RAM 中的数据是什么。显示 RAM 中的数据在命令执行后被立即改写,执行本命令后,将一直是全屏显示状态,不能改写显示 RAM 里面的数据。本命令的优先级高于"Display Normal/Reverse"命令。复位后为 Normal mode

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	1	0	1	0	0	1	0	0	Normal mode
										1	Dislay all points on

(11) LCD Bias Set

本命令设置 LCD 的偏压比,本模块中,偏压固定为 1/9.复位后即为 1/9 偏压。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	1	0	1	0	0	0	1	0	1/9 bias 1/7 bias

(12) Read/Modify/Write

命令和 "END"命令是成对使用的。当本命令执行后,读取显示 RAM 中的数据时,列地址 (columnaddress)不变,仅写入数据时才使列地址自动加一,这种方式将维持到"END"命令执行以后。当"END"命令执行后,列地址将回到 Read/Modify/Write命令执行时的列地址。当在某个特定区域内有循环变化的数据时,可以用这个功能用来降低用户 MPU 的负担。例如有一个光标。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

注意: 在本模式下除 column address set 命令不能使用外,其他命令均可以使用。

(13) END

本命令用来结束 read/modify/write 模式,列地址(Column address)返回到进read/modify/write模式时的值。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

(14) RESET

本命令初始化:显示起使行,列地址,页地址,ADC 内部分压电阻比等。read/modify/write 和 test 模式被释放。但是不会影响显示 RAM 中的数据。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

系统上电时,必须在/RESET 脚上加一个复位信号。才能进行其它的操作。

(15) Common Output Mode Select

当命令 15: "Common Output Mode Select"选择 normal 时,模块的下端为第 0 行,往上依次为 63、62······2、1; 当"Common Output Mode Select"选择 reverse 时,模块的上端为第 0 行,往下是 63、62······2、1; 因此当模块正向安装时应当设置命令 15 为 reverse 状态。本命令的作用是在模块安装方向反向时,与命令 8 一起来调换显示起始位置,参看命令 8。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	1	1	0	0	0 1	*	*	*	Normal:C1—C63C0 Reverse:C0—C63—C1

(16) Power Controller Set

本命令用来设置开关内部电路的电源。本模块中应设置成 0X2F;

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Function
0	1	0	0	0	1	0	1	0			Booster circuit: OFF Booster circuit: ON
									0		Voltage regulator circuit:OFF Voltage regulator circuit: ON
										0	Voltage follower circuit: OFF Voltage follower circuit: ON

(17) Vo Voltage Regulator Internal Resistor Ration Set

本命令用来设置内部分压电阻的值,以给 LCD 产生合适的驱动电压。作用是用来调节 LCD 的显示对比度。对本模块来说,在3.3V电压模式下,选择 0X24 是比较合适的。实际相当于粗调对比度,与命令 18 一起调节显示效果。命令 18 相当于细调对比度。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	0	0	1	0	0	0	0	0	Small
								0	0	1	
								0	1	0	\downarrow
								\downarrow	\downarrow	\downarrow	
								1	1	0	
								1	1	1	Large

(18) The Electronic Volume (Double Byte Command)

本命令用来调节 LCD 的亮度。这是一个双字节命令,一个进入 Electronic Volume Mode 的命令 0X81,紧接着写入设定值。两个命令必须按先后顺序依次写入。相当于细调对比度。

18-1 The Electronic Volume Mode Set

本命令执行以后,Electronic Volume Register Set 命令允许使用。其他任何命令无效。Electronic Volume Register Set 执行完毕后,The Electronic Volume Mode Set 失效。

A0	E(RD)	R/W(WR)	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

八:检测标准

8.1 检测样品的条件

玻璃应该在 40W 以内的白灯下检测,目测的距离应该在 30cm 以内。 检测样品的方向应该是在以法线为中心的 45 度以内。

8.2 应用区域的定义

A Zone: 有效显示区域

B Zone: 铁框和有效显示区域之间的距离

C Zone: 铁框边距离

A Zone + B Zone=有效的参观区域

8.3 标准

序列	参数									
		圆点								
		Zone	可接受的数值							
		DIMENSION(MM)	A	В	С					
		D≤0.1	*	*	*					
		0. 1 <d≤0. 2<="" td=""><td>5</td><td>5</td><td>*</td></d≤0.>	5	5	*					
		0. 2 <d≤0. 3<="" td=""><td>0</td><td>1</td><td>*</td></d≤0.>	0	1	*					
		0. 3 <d< td=""><td>0</td><td>0</td><td>*</td></d<>	0	0	*					
		D=(长+宽)/2 * 不考虑								
1	黑点和白点, 脏点	长点								
		Zone	Accep	otable Nu	umber					
		X (mm) Y (mm)	A	В	С					
		- 0.02≥W	*	*	*					
		2. 0≥L 0. 03≥W	3	3	*					
		1. 0≥L 0. 04≥W	1	2	*					
		1. 0≥L 0. 05≥W	0	2	*					
		- 0.05 <w< td=""><td colspan="4">Not acceptable</td></w<>	Not acceptable							
		X: 长 Y: 宽 * 不考虑								
		Zone		接受数值						
		Dimension(mm)	A	В	С					
	气泡 (玻璃和偏光片 之间)	D≤0.1	*	*	*					
2		0. 1 <d≤0. 2<="" td=""><td>5</td><td>5</td><td>*</td></d≤0.>	5	5	*					
		0. 2⟨D≤0. 3	0	1	*					
		0.3 <d< td=""><td>0</td><td>0</td><td>*</td></d<>	0	0	*					
		*: 不考虑								
		(1) 点形状(缺点)								
3	不规格的点	0.15 >								
		(2)点形状(多点)								

		不能和旁边的点阵相连. (3) 针孔 (X+Y)/2<0.2mm (小于 0.1mm 是不考虑的)
4		根据实际情况而定.
5	偏光片脏点	如果脏点是在 LCD 的表面,则不能算是不合格品.
6	玻璃彩虹	按照实际的情况而定.