第二章 线性代数方程组的数值解法

1 引言和线性代数基础知识

例 1.1. $Ax = b \Rightarrow x = A^{-1}b$

高斯消元法复杂度太高 $O(n^3)$, 在 A 规模很大时, 时间消耗过于巨大。

1.1 线性空间

定义 1.1. 定义了加减和数乘的非空集合, 称为线性空间。

如 $R^n, C^n, R^{n \times m}(C^{n \times m}), C[a, b]$ (定义在 [a,b] 上的连续函数)。

1.2 内积

定义 1.2. 对于定义于数域 K(R or C) 上的线性空间 X,如果对于 $\forall u, v, w \in X$ 及 $\alpha \in K$, 满足:

- (u+v,w) = (u,w) + (v,w)
- $(\alpha u, v) = \alpha(u, v)$
- $(u,v) = \overline{(v,u)}$
- $(u,u) \ge 0$ $(u,u) = 0 \Leftrightarrow u = 0$

则称数 (u,v) 为 u 与 v 的内积,定义了内积的线性空间称为内积空间。

几种常见内积的定义:

Rⁿ 和 Cⁿ 上的内积:
 设 x, y ∈ Rⁿ, 则 Rⁿ 的内积可定义为:

$$(x,y) = \sum_{i=1}^{n} x_i y_i$$

若给定权系数 $w_i(i=1,2,\ldots,n)$, 则 R^n 上带权 $\{w_i\}$ 的内积可定义为:

$$(x,y) = \sum_{i=1}^{n} w_i x_i y_i$$

类似的,若 $x,y \in C^n$,则带权的内积:

$$(x,y) = \sum_{i=1}^{n} w_i x_i \overline{y_i}$$

• C[a,b] 上的内积:

定义 1.3. 若定义在 [a,b] 上的函数 $\rho(x)$ 满足:

- $-\rho(x) \ge 0, \forall x \in (a,b)$
- $-\int_a^b x^k \rho(x) dx, \exists$ 且有限 $(k=0,1,2,\dots)$
- 若对 [a,b] 上的非负连续函数 g(x) 有: $\int_a^b \rho(x)g(x)dx = 0, \, \text{则} \, g(x) \equiv 0$

就称 $\rho(x)$ 为 [a,b] 上的一个权函数。

设 $f,g\in C[a,b],\ \rho$ 是 [a,b] 上给定的权函数,则称: $(f,g)=\int_a^b\rho(x)f(x)g(x)dx$ 为 C[a,b] 上函数 f,g 的内积。

1.3 内积空间的几个性质

• (Cauchy-Schwarz 不等式): 设 X 为一个内积空间,则对 $\forall u,v \in X$ 有:

$$|(u,v)|^2 \le (u,u) \cdot (v,v)$$
 (1.1)

$$G = \begin{bmatrix} (u_1, u_1) & (u_2, u_1) & \dots & (u_n, u_1) \\ (u_1, u_2) & (u_2, u_2) & \dots & (u_n, u_2) \\ \vdots & \vdots & \ddots & \vdots \\ (u_1, u_n) & (u_2, u_n) & \dots & (u_n, u_n) \end{bmatrix}$$

则 G 非奇异的充要条件是 u_1, u_2, \ldots, u_n 线性无关

• (Gram-Schmidz 正交化方法): 若 $\{u_1, u_2, \ldots, u_n\}$ 是内积空间 X 中一个线性无关的序列,则可按下列公式:

$$\begin{cases} v_1 = u_1, \\ v_i = u_i - \sum_{k=1}^{i-1} \frac{(u_i, v_k)}{(v_k, v_k)} v_k, & i = 2, 3, \dots, n \end{cases}$$
 (1.2)

构造一个正交序列 $\{v_1, v_2, \dots, v_n\}$ 且满足: $(v_i, v_j) = 0, (i \neq j)$ 。

1.4 向量范数

例 1.2. 欧式范数或 2-范数:

$$||\mathbf{x}||_2 = \sqrt{(\mathbf{x}, \mathbf{x})} = \sqrt{\sum_{i=1}^n x_i^2}$$

定义 1.4. 设对 $\forall \mathbf{x} \in R^n(or\ C^n)$, 按一定的规则有一实值函数与之对应,记为 $||\mathbf{x}||$, 若满足:

- 正定性: $||\mathbf{x}|| \ge 0$ 且 $||\mathbf{x}|| = 0 \Leftrightarrow x = 0$
- 齐次性: $||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}||, \forall \alpha \in R(or\ C)$
- 三角不等式

$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||, \forall \mathbf{x}, \mathbf{y} \in R^n (or \ C^n)$$

$$\tag{1.3}$$

则称 $||\mathbf{x}||$ 为向量 \mathbf{x} 的范数,由(1.3)易证 $|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$ (自证)证明. 范数三角不等式减法形式:

不妨设: $||\mathbf{x}|| \ge ||\mathbf{y}||$,则:

$$\begin{aligned} &|||\mathbf{x}|| - ||\mathbf{y}||| \\ &= ||\mathbf{x}|| - ||\mathbf{y}|| \\ &= ||\mathbf{x} - \mathbf{y} + \mathbf{y}|| - ||\mathbf{y}|| \\ &\leq ||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y}|| - ||\mathbf{y}|| \\ &= ||\mathbf{x} - \mathbf{y}|| \end{aligned}$$

几种常见范数:

- $||\mathbf{x}||_{\infty} = \max \lim_{1 \le i \le n} |\mathbf{x}_i|, \infty$ -范数
- $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|, 1-\overline{n}$

•
$$||\mathbf{x}||_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}} = \sqrt{(x,x)}, \ 2-$$
范数

证明. 二范数三角不等式:

$$\begin{aligned} &||\mathbf{x} + \mathbf{y}||_{2} \\ &= (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y})^{\frac{1}{2}} \\ &= [(\mathbf{x}, \mathbf{x}) + 2(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y})]^{\frac{1}{2}} \\ &\leq [||\mathbf{x}||_{2}^{2} + 2||\mathbf{x}||_{2} \cdot ||\mathbf{y}||_{2} + ||\mathbf{y}||_{2}^{2}]^{\frac{1}{2}} \\ &= ||\mathbf{x}||_{2} + ||\mathbf{y}||_{2} \end{aligned}$$

例 1.3. 思考题: 对于任一种范数 $||\cdot||_{\lambda}$ 定义集合:

$$A = \{x | x \in R^3, ||x|| \le 1\}$$

试问当 $\lambda = 1, 2, \infty$ 时, A 代表什么样的图形?并画图

$$||x||_p = (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}}, p \in [1, \infty)$$
 (1.4)

1.5 向量范数的性质

连续性:

定理 1.1. 设给定 $A \in \mathbb{R}^{n \times n}$,则对 \mathbb{R}^n 上的每一种向量范数 $\|\cdot\|$, $x \in \mathbb{R}^n$, $\|Ax\|$ 都是 x 的分量 (x_1, x_2, \ldots, x_n) 的 n 元连续函数 $f(x_1, x_2, \ldots, x_n)$

• 等价性:

定义 1.5. 线性空间 X 上定义了两种范数 $||\cdot||_{\alpha}$ 和 $||\cdot||_{\beta}$,若 \exists 常数 $C_1, C_2 > 0$,使得

$$C_1 \cdot ||\mathbf{u}||_{\alpha} \le ||\mathbf{u}||_{\beta} \le C_2 \cdot ||\mathbf{u}||_{\alpha}, \forall \mathbf{u} \in X$$

则称 $||\cdot||_{\alpha}$ 和 $||\cdot||_{\beta}$ 是 X 上等价的范数。

• 传递性:

1.6 矩阵范数

定义 1.6. 如果对 $R^{n\times n}$ 上的任一矩阵 A, 对应一个实数 ||A||, 满足条件: $\forall A, B \in R^{n\times n}$ 和 $\alpha \in R$,

•
$$||A|| > 0$$
, $\mathbb{E}||A|| = 0 \Leftrightarrow A = 0$ (正定性)

•
$$||\alpha A|| = |\alpha| \cdot ||A||$$
 (齐次性)

•
$$||A + B|| \le ||A|| + ||B||$$
 (三角不等式)

•
$$||AB|| \le ||A|| \cdot ||B||$$
 (相容性)

则称 ||A|| 为矩阵 A 的范数

易证: $|||A|| - ||B||| \le ||A - B||$ (自证)

F-范数

$$||A||_F = \left[\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right]^{\frac{1}{2}}$$

性质 4 利用柯西不等式证明(和的平方 ≤ 平方的和)

定义 1.7. 对于 $R^{n\times n}$ 上给定的一种矩阵范数:

 $||\cdot||_{\beta},R^n$ 上规定的一种向量范数 $||\cdot||_{\alpha}$, 若有:

$$||A\mathbf{x}||_{\alpha} \le ||A||_{\beta} ||\mathbf{x}||_{\alpha}, \forall A \in R^{n \times n}, \mathbf{x} \in R^{n}$$

$$\tag{1.5}$$

成立,则称上述矩阵范数和向量范数是相容的。或:

$$||A||_{\beta} \stackrel{\sup}{=} \frac{||A\mathbf{x}||_{\alpha}}{||\mathbf{x}||_{\alpha}} \tag{1.6}$$

定理 1.3. 设 $A \in \mathbb{R}^{n \times n}$, $||\cdot||$ 是 \mathbb{R}^n 上的向量范数,则:

$$||A|| = \max_{||x||=1} ||Ax|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$
(1.7)

是一种矩阵范数, 称其为由向量范数诱导出的矩阵范数 (简称为诱导范数, 或从属范数, 自然范数), 且满足相容性条件。

证明. • 由定理1.1可知,||Ax|| 是 R^n 中有界闭集 $D = \{\mathbf{x} = (x_1, x_2, \dots, x_n)^T, ||x|| = 1\}$ 上的连续函数, $\therefore ||Ax||$ 在 D 上最大值存在, $\therefore (1.7)$ 中 $\max_{||x||=1} ||Ax||$ 的写法正确。

• 对于 $\forall x \neq 0$,

$$\therefore \frac{||Ax||}{||x||} = ||A \cdot \frac{x}{||x||}||, \mathbb{E}||\frac{x}{||x||}|| = 1$$

$$\therefore \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{x \neq 0} ||A \cdot \frac{x}{||x||}|| = \frac{|ety = \frac{x}{||x||}}{||y|| = 1} \max_{||y|| = 1} ||Ay|| = \frac{\text{id y } y \times x}{||x|| = 1} \max_{||x|| = 1} ||Ax||$$

- 正定性: 显然 ||A|| ≥ 0, 另外:
 若 A = 0, 则: ||A|| = max_{||x||=1} ||Ax|| = 0, 反之, 若 ||A|| = 0,
 i.e. 对 ∀ 非零向量 x 有:

$$||Ax|| = 0 \Rightarrow Ax = 0 \Rightarrow A = 0$$

- 齐次性: 对 $\forall \alpha \in R$, 有:

$$\begin{aligned} &||\alpha A|| \\ &= \max_{||x||=1} ||\alpha Ax|| \\ &= \max_{||x||=1} |\alpha|||Ax|| \\ &= |\alpha| \max_{||x||=1} ||Ax|| \\ &= |\alpha| \cdot ||A|| \end{aligned}$$

- 三角不等式: $\forall A, B \in \mathbb{R}^{n \times n}$, 有:

$$\begin{aligned} &||A+B|| \\ &= \max_{||x||=1} ||(A+B)x|| \\ &= \max_{||x||=1} ||Ax+Bx|| \\ &\leq \max_{||x||=1} (||Ax|| + ||Bx||) \\ &\leq ||A|| + ||B|| \end{aligned}$$

- 相容性: 由1.7显然有 $||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n$, ∴ $A, B \in \mathbb{R}^{n \times n}$, 有

$$\begin{split} ||AB|| \\ &= \max_{||x||=1} ||ABx|| \\ &= \max_{||x||=1} ||A(Bx)|| \\ &\leq \max_{||x||=1} ||A|| \cdot ||Bx|| \\ &\leq ||A|| \max_{||x||=1} ||Bx|| \\ &= ||A|| \cdot ||B|| \end{split}$$

综上所述,||A|| 是 $R^{n\times n}$ 上的一种矩阵范数。 由定义及 ||A|| 是 $R^{n\times n}$ 是一种范数,即可知其相容性条件成立。

注释:

- 对 ∀ 的从属范数, ||*I*|| = 1
- 矩阵的任一从属范数一定与所给定的向量范数相容,但相容未必具有从属关系。如: ||Ax||₂ ≤ ||A||_F · |||x||₂,但不具有从属关系。事实上,||I||_F = √n,另外,||I||_F = max_{x≠0} ||Ix||_{|x||} = 1 ∴||A||_F 与 ||x||₂ 没有关系。

定理 1.4. 设 $x \in R^n, A \in R^{n \times n}$, 则:

- $||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ (∞ -范数 or 行范数)
- $||A||_1 = \max_{||x||_1=1} ||Ax||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$ (1-范数 or 列范数)
- $||A||_2 = \max_{||x||_2=1} ||Ax||_2 = \sqrt{\lambda_{\max(A^TA)}}$ (2-范数 or 谱范数) 其中, $\lambda_{\max(A^TA)} = \rho(A^TA)(\rho$ 表示谱半径) 表示 A^TA 的最大特征值。 一般的, $\rho(A) = \max_{1 \le i \le n} |\lambda_i|$, λ_i 为 A 的特征值。
- 证明. 若 A = 0 时,显然成立,不妨设 $A \neq 0$ $\forall x \in \mathbb{R}^n$,且 $||x||_{\infty} = 1$,则:

$$||Ax||_{\infty} = \max_{1 \leq i \leq n} |\sum_{j=1}^n a_{ij}x_j| \leq \max_i \sum_{j=1}^n |a_{ij}||x_j| \leq \max_i \sum_{j=1}^n |a_{ij}| \stackrel{\mathrm{id}}{=\!\!\!=\!\!\!=} \mu$$

 $\therefore \max_{||x||_{\infty}=1} ||Ax||_{\infty} \le \mu$

事实上,假设第 i_0 行使 $\mu = \sum_{j=1} |a_{i_0j}|$ 成立,取 $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_n^{(0)})^T$,其中:

$$x_j^{(0)} = \begin{cases} 1, a_{i_0 j} \ge 0 \\ -1, a_{i_0 j} < 0 \end{cases} j = 1, 2, \dots, n$$

显然 $||x^{(0)}||_{\infty} = 1$ 且

$$\max_{||x||_{\infty}=1} ||Ax||_{\infty} \geq ||Ax^{(0)}||_{\infty} = \max_{i} |\sum_{j=1}^{n} a_{ij} x_{j}^{(0)}| \geq |\sum_{j=1}^{n} a_{i_0 j} x_{j}^{(0)}| = \sum_{j=1}^{n} |a_{i_0 j}| = \mu$$

 $\therefore \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \mu = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$

• :: $||Ax||_2^2 = (Ax, Ax) = x^T A^T Ax \ge 0, \forall x \in \mathbb{R}^n$

 $\therefore A^TA$ 为非负的对称实矩阵,其特征值均为非负的实数,不妨假设依

次排序为: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$

对应于一组规范的正交特征向量组 $\{u_1,\ldots,u_n\}$

对于 $\forall x \in \mathbb{R}^n$, 可表示为: $x = \sum_{i=1}^n \alpha_i u_i$

对于满足 $||x||_2 = 1$ 的任意 x 有:

$$||x||_2^2 = (x, x) = \sum_{i=1}^n \alpha_i^2 = 1$$

$$||Ax||_2^2 = (Ax, Ax) = x^T A^T Ax = (A^T Ax, x)$$

$$= (A^T A \sum_{i=1}^n \alpha_i u_i, \sum_{i=1}^n \alpha_i u_i)$$

$$= \left(\sum_{i=1}^{n} \alpha_i \lambda_i u_i, \sum_{i=1}^{n} \alpha_i u_i\right)$$

$$= \sum_{i=1}^{n} \lambda_i \alpha_i^2$$

$$\leq \lambda_1 \sum_{i=1}^n \alpha_i^2$$

$$=\lambda_1$$

$$\therefore \max_{||x||_2=1} ||Ax||_2 \le \sqrt{\lambda_1}$$

特别地, 若取 $x = u_1$, 则:

$$||Au_1||_2^2 = (A^T A u_1, u_1) = \lambda_1, : ||Au_1||_2 = \sqrt{\lambda_1}$$

$$\max_{||x||_2=1} ||Ax||_2 \ge ||Au_1||_2 = \sqrt{\lambda_1}$$

$$\therefore \max_{||x||_2=1} ||Ax||_2 = \sqrt{\lambda_1} = \sqrt{\lambda_{\max(A^T A)}}$$

推论(自证)若 $A\in R^{n\times n}$ 为对称阵,则 $||A||_2=\rho(A)$ $A^T=A\Rightarrow \lambda_{A^TA}=\lambda_A^2$

定理 1.5. 设 $||x||_{\alpha}$ 为 R^n 上任一种向量范数,从属于它的矩阵范数记为: $||A||_{\alpha}$,并设 $P \in R^{n \times n}$, $det(P) \neq 0$,则:

- R^n 到 R 的映射 $P: x \Rightarrow ||Px||_{\alpha}$ 定义了 R^n 上另一种向量范数,记为: $||x||_{P,\alpha} = ||Px||_{\alpha}$
- 从属向量范数 $||x||_{P,\alpha}$ 的矩阵范数为:

$$||A||_{P,\alpha} = ||PAP_{\alpha}^{-1}||$$

8

1.7 矩阵范数的性质

定理 1.6. • 设 $||\cdot||$ 为 $R^{n\times n}$ 上任一种 (从属或非从属) 的矩阵范数,则 对 $\forall A \in R^{n\times n}$,有:

$$\rho(A) \le ||A||$$

对 ∀A ∈ R^{n×n}, 及实数 ε > 0, 至少存在一种从属的矩阵范数 ||·||, 使
 得:

$$||A|| \le \rho(A) + \epsilon$$

证明. • 设 $x \neq 0, Ax = \lambda x$, 且 $|\lambda| = \rho(A)$, 则必存在向量 $y \in \mathbb{R}^n$, 使 得 $xy^T \neq 0$, 于是有:

$$\rho(A)||xy^T|| = ||\lambda xy^T|| = ||Axy^T|| \le ||A|| \cdot ||xy^T|| \Rightarrow \rho(A) \le ||A||$$

• 对 $\forall A \in \mathbb{R}^{n \times n}, \exists T \ s.t. \ TAT^{-1} = J$ 为 Jordan 标准形,其中 $J = diag(J_1, J_2, \ldots, J_s), \ J_i$ 为 Jordan 块:

$$J_i = \begin{bmatrix} \lambda_i & 1 & \ddots \\ & \lambda_i & 1 \\ \ddots & \ddots & \lambda_i \end{bmatrix}, i = 1, 2, \dots, s$$

任取 $\varepsilon > 0$, 并定义 $D_{\varepsilon} \in \mathbb{R}^{n \times n}$ 为:

$$D_{\varepsilon} = diag(1, \varepsilon, \dots, \varepsilon^{n-1})$$

易证, $D_{\varepsilon}^{-1}JD_{\varepsilon}$ 仍为块对角阵,且分块与 J 相同,即: $\tilde{J}=D_{\varepsilon}^{-1}JD_{\varepsilon}=diag(\overset{\sim}{J_1},\overset{\sim}{J_2},\ldots,\overset{\sim}{J_s})$ 其中:

$$\widetilde{J}_{i} = \begin{bmatrix} \lambda_{i} & \varepsilon & \ddots \\ & \lambda_{i} & \varepsilon \\ & \ddots & \ddots & \lambda_{i} \end{bmatrix}, i = 1, 2, \dots, s$$

$$\therefore ||\tilde{J}||_{\infty} = ||D_{\varepsilon}^{-1}JD_{\varepsilon}||_{\infty} \le \max_{i} |\lambda_{i}| + \varepsilon = \rho(A) + \varepsilon$$

而 $D_{\varepsilon}^{-1}T = P$ 为非异阵,由定理1.5可知: $||D_{\varepsilon}^{-1}Tx||_{\infty}$ 定义了 R^n 上的一种向量范数 $||x||_{P,\infty}$ 且从属于该向量范数的矩阵范数为:

$$||A|| = ||D_{\varepsilon}^{-1}TAT^{-1}D_{\varepsilon}||_{\infty} = ||D_{\varepsilon}^{-1}JD_{\varepsilon}||_{\infty} \le \rho(A) + \varepsilon$$

定理 1.7. 对于 $R^{n \times n}$ 的任意两种范数 $||\cdot||_{\alpha}$ 和 $||\cdot||_{\beta}$,存在常数 M 和 $m(M \ge m > 0)$ 使得:

$$m||A||_{\alpha} \leq ||A||_{\beta} \leq M||A||_{\alpha}, \forall A \in \mathbb{R}^{n \times n}$$

即 $R^{n\times n}$ 上所有矩阵范数是等价的。

定理 1.8. 设 $||\cdot||$ 是 $R^{n\times n}$ 上的算子范数,若 $||B|| \le 1$,则 $I \pm B$ 为非异阵,且 $||(I+B)^{-1}|| \le \frac{1}{1-||B||}$

证明. (反证法)

若 det(A) = 0 则 (I - B)x = 0 有非零解,i.e. ∃ $x_0 \neq 0$ 使 $Bx_0 = x_0 \Rightarrow \frac{||Bx_0||}{||x_0||} = 1$,而 $||B|| = \max_{x\neq 0} \frac{||Bx||}{||x||} \ge \frac{||Bx_0||}{||x_0||} = 1$,与已知矛盾。 ∴ (I - B) 是非异阵,同理可证 I + B 也为非异阵。

记 $D = (I - B)^{-1}$,则:

$$1 = ||I|| = ||D(I - B)|| = ||D - DB|| \ge ||D|| - ||DB|| \ge ||D|| - ||D|| \cdot ||B|| = ||D|| \cdot (1 - ||B||) \Rightarrow ||(I - B)^{-1}|| \le \frac{1}{1 - ||B||}$$

2 Gauss 消去法和矩阵的 LU 分解

设

$$Ax = b (2.1)$$

其中:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

且 $det(A) \neq 0$,记 $[A|b] = [A^{(1)}|b^{(1)}]$ 其中 $A^{(1)} = (a_{ij}^{(1)}), \ b^{(1)} = (b_i^{(1)})$

2.1 Gauss 消去法

2.1.1 消元过程

• 设 $a_{11}^{(1)} \neq 0$,并且选取 $a_{11}^{(1)}$ 作为主元,计算乘数 $l_{i1} = a_{i1}^{(1)}/a_{11}^{(1)}(i = 2, ..., n)$;用 $-l_{i1}$ 乘以第 1 行并加到第 i 行 (i = 2, 3, ..., n),则

$$[A^{(1)}|b^{(1)}] \Rightarrow [A^{(2)}|b^{(2)}]$$

$$[A^{(2)}|b^{(2)}] = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} & b_1^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} & b_2^{(2)} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} & b_n^{(2)} \end{bmatrix}$$

其中,

$$\begin{cases} a_{ij}^{(2)} = a_{ij}^{(1)} - l_{i1} a_{1j}^{(1)}, & i, j = 2, 3, \dots, n \\ b_i^{(2)} = b_i^{(1)} - l_{i1} b_i^{(1)}, & i = 2, 3, \dots, n \end{cases}$$

对应的方程 $A^{(2)}x = b^{(2)} \Leftrightarrow Ax = b$

• 假设消元过程已进行了 k-1 步,得到方程组 $A^{(k)}x = b^{(k)}$,其对应的增广矩阵为:

$$[A^{(k)}|b^{(k)}] = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & \dots & a_{1n}^{(1)} & b_1^{(1)} \\ & a_{22}^{(2)} & \ddots & & & \vdots \\ & & & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} & b_k^{(k)} \\ & & \vdots & \dots & \dots & \vdots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} & b_n^{(k)} \end{bmatrix}$$
(2.2)

设 $a_{kk}^{(k)} \neq 0$,并选 $a_{kk}^{(k)}$ 为主元素,计算 $l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}, i = k+1,\ldots,n$,分 别用 $-l_{ik}$ 乘以第 k 行并加到第 k+1 至第 n 行,则2.2式可变为:

$$[A^{(k+1)}|b^{(k+1)}] = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & \dots & a_{1n}^{(1)} & b_1^{(1)} \\ & \ddots & & & & & \vdots \\ & & a_{kk}^{(k)} & a_{k,k+1}^{(k)} & \dots & a_{kn}^{(k)} & b_k^{(k)} \\ & & & a_{k+1,k+1}^{(k+1)} & \dots & a_{k+1,n}^{(k+1)} & b_{k+1}^{(k+1)} \\ & & \vdots & & & \vdots \\ & & & a_{n,k+1}^{(k+1)} & \dots & a_{nn}^{(k+1)} & b_n^{(k+1)} \end{bmatrix}$$

其中,

$$\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik} a_{kj}^{(k)}, & i, j = k+1, \dots, n \\ b_i^{(k+1)} = b_i^{(k)} - l_{ik} b_k^{(k)}, & i = k+1, \dots, n \end{cases}$$

对应的方程组为 $A^{(k+1)}x = b^{(k+1)}$

• 继续这一过程且 $a_{ii}^{(i)} \neq 0, i = 1, 2, ..., n-1$ (称为主元), 直至所有主

对角线以下的元素消为 0, 即可得上三角方程组 $A^{(n)}x = b^{(n)}$

$$[A^{(n)}|b^{(n)}] = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} & b_1^{(1)} \\ a_{22}^{(2)} & \dots & a_{2n}^{(2)} & b_2^{(2)} \\ & & \ddots & \vdots & \vdots \\ & & & \ddots & \vdots & \vdots \\ & & & & a_{nn}^{(n)} & b_n^{(n)} \end{bmatrix}$$

2.1.2 回代过程

 $A^{(n)}x = b^{(n)}$ 的解即为 Ax = b 的解为:

$$\begin{cases} x_n = b_n^{(n)}/a_{nn}^{(n)} \\ x_k = (b_k^{(k)} - \sum_{j=k+1}^n a_{kj}^{(k)} x_j)/a_{kk}^{(k)}, & k = n-1, n-2, \dots, 1 \end{cases}$$

定理 2.1. $a_{ii}^{(i)} \neq 0 (i=1,2,\ldots,k)$ 的充要条件是 A 的顺序主子式 $D_i \neq 0, i=1,\ldots,k, k \leq n$

归纳法.:

• 充分性: 当 k=1 时,显然成立,假设定理对 k-1 成立. i.e. 由 $D_i \neq 0, (i=1,2,\ldots,k-1) \Rightarrow a_{ii}^{(i)} \neq 0, i=1,2,\ldots,k-1$ 证对 k 亦成立,i.e. 证 $D_i \neq 0, i=1,2,\ldots,k \Rightarrow a_{ii}^{(i)} \neq 0, i=1,2,\ldots,k$ 由归纳假设 $a_{ii}^{(i)} \neq 0, i=1,2,\ldots,k-1$ 于是 Gauss 消去法将 $A^{(1)} = A$ 化为 $A^{(k)}$,即

$$A^{(1)} \to A^{(k)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & \dots & a_{1n}^{(1)} \\ & a_{22}^{(2)} & \ddots & & & \\ & & & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & & \vdots & \dots & \dots \\ & & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{bmatrix}$$

由线性代数知识,消去过程中的行变换不影响 A 的顺序主子式的值。

$$D_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} = a_{11}^{(1)} a_{22}^{(2)} \cdots a_{kk}^{(k)} \neq 0$$
 (2.3)

由假设 $D_i \neq 0, i = 1, 2, \ldots, k,$ 由上式得,

$$a_{ii}^{(i)} \neq 0, i = 1, 2, \dots, k$$

• 必要条件: 由2.3式可证。

推论: 若 A 的顺序主子式 $D_i \neq 0, i=1,2,\ldots,n-1$, 则 $a_{11}^{(1)}=D_1, a_{ii}^{(i)}=D_i/D_{i-1}, i=2,3,\ldots,n$ (由2.3易知)

定理 2.2. 对于 Ax = b, 其中 A 非异阵, 若 A 的顺序主子式 $D_i \neq 0, i = 1, 2, ..., n-1$, 则可用 Gauss 消去法求出方程组的解。

定理 2.3. A 对称正定 $\Rightarrow a_{kk}^{(k)} > 0, k = 1, 2, ..., n$

定理 2.4. A 为严格对角占优阵 $\Rightarrow a_{kk}^{(k)} \neq 0, k = 1, 2, \dots, n$

定义 2.1 (严格对角占优阵).

$$|a_{kk}| > \sum_{j=1, j \neq k}^{n} |a_{kj}|, k = 1, 2, \dots, n$$

2.2 矩阵的 LU 分解

定义 2.2 (LU 分解). A = LU, L 为单位下三角矩阵, U 为上三角矩阵

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

第 k 步消元等价于用下列矩阵:

$$L_k = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & -l_{k+1,k} & 1 & & \\ & \vdots & & \ddots & \\ & -l_{nk} & & 1 \end{bmatrix}$$

左乘 $[A^{(k)}|b^{(k)}]$, i.e.

$$L_k[A^{(k)}|b^{(k)}] = [A^{(k+1)}|b^{(k+1)}]$$

第 n-1 步消元等价于用 L_{n-1} 左乘 $[A^{(n-1)}|b^{(n-1)}]$, i.e.

$$L_{n-1}[A^{(n-1)}|b^{(n-1)}] = [A^{(n)}|b^{(n)}]$$

因此经过 n-1 次消元后,即矩阵 $[A^{(n)}|b^{(n)}]$ 左乘 L_1,L_2,\ldots,L_{n-1} 有:

$$[A^{(n)}|b^{(n)}] = L_{n-1}[A^{(n-1)}|b^{(n-1)}] = \dots = L_{n-1}L_{n-2}\dots L_1[A^{(1)}|b^{(1)}]$$

$$\therefore U \triangleq A^{(n)} = L_{n-1}L_{n-2}\dots L_1A^{(1)}, b^{(n)} = L_{n-1}L_{n-2}\dots L_1b^{(1)}$$

$$\Rightarrow L_1^{-1}L_2^{-1}\dots L_{n-1}^{-1}U \triangleq LU(\text{Doolittle }$$
分解)

易证:

$$L_k^{-1} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & l_{k+1,k} & 1 & & \\ & \vdots & & \ddots & \\ & l_{nk} & 1 & & 1 \end{bmatrix}$$

$$\therefore L = L_1^{-1} L_2^{-1} \dots L_{n-1}^{-1} = \begin{bmatrix} 1 & & & & \\ l_{21} & \ddots & & & \\ l_{31} & l_{3,2} & 1 & & \\ \vdots & \vdots & & \ddots & \\ l_{n1} & l_{n2} & 1 & & 1 \end{bmatrix}, |A| \neq 0$$

定理 2.5 (LU 分解定理). 非奇异阵 $A \in R^{n \times n}$,若其顺序主子式 $D_i \neq 0$ ($i = 1, 2, \ldots, n-1$),则存在唯一的单位下三角阵 L 和上三角阵 U,使得 A = LU 反证法. 假设 A 的 LU 分解不唯一,i.e. $\exists A = L_1 U_1 = L_2 U_2 \Rightarrow U_1 = L_1^{-1} L_2 U_2 \Rightarrow U_1 U_2^{-1} = L_1^{-1} L_2 = I \Rightarrow L_1 = L_2, U_1 = U_2$

注释:

- 当 A 为奇异阵, 且 $D_i \neq 0 (i = 1, 2, ..., n 1)$ 时, 定理2.5仍成立。
- A 的 k 阶 (k = 1, ..., n) 顺序主子式

$$D_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} = a_{11}^{(1)} a_{22}^{(2)} \cdots a_{kk}^{(k)} = u_{11} u_{22} \cdots u_{kk}$$

• 若 A 的顺序主子式 $D_k \neq 0 (k=1,2,\ldots,n)$,则存在唯一的下三角阵 \tilde{L} 和单位上三角阵 \tilde{U} 使得:

$$A=\tilde{L}\tilde{U}$$

称为 Crout 分解。

定理 2.6 (LDU 分解定理). 设 $A \in \mathbb{R}^{n \times n}$, 则存在唯一的单位下、上 三角阵 L、U 及对角阵 D 使得 A = LDU 的充要条件是 A 的顺序主 子式 $D_k \neq 0, k = 1, 2, \dots, n-1$, $A = L\tilde{U}$, 而 $\tilde{U} = DU$

3 主元素消去法

3.1 列主元 Gauss 消去法

Gauss 消去过程:

$$A^{(k)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & \dots & a_{1n}^{(1)} \\ & a_{22}^{(2)} & & & \vdots \\ & & \ddots & & \vdots \\ & & & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & \vdots & \dots & \dots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{bmatrix}$$

需要列主元的两种情况:

- $\bullet \quad a_{kk}^{(kk)} = 0$
- $|a_{kk}^{(kk)}|$ 很小, $l_{ik} = \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}} > 1$ 会放大误差

3.1.1 消去过程

对 $k = 1, 2, \ldots, n-1$ 做:

• 选列主元:

$$|a_{i_k k}^{(k)}| = \max_{k \le i \le n} |a_{i k}^{(k)}|$$

- 若 $a_{i_k k}^{(k)} = 0$, 则停止计算 $(\because det(A) = 0)$, 否则:
- 若 $i_k \neq k$,则换行: $a_{kj}^{(k)} \leftrightarrow a_{i_k k}^{(k)}, \ b_k^{(k)} \leftrightarrow b_{i_k}^{(k)}$
- 消元: 对 i = k + 1, ..., n 做 (a) (c)

$$(a)l_{ik} = a_{ik}^{(k)}/a_{kk}^{(k)}$$

对 j = k + 1, ..., n 做 (b)

$$(b)a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik}a_{kj}^{(k)}, b_i^{(k+1)} = b_i^{(k)} - l_{ik}b_k^{(k)}$$

3.1.2 回代过程

- 若 $a_{nn}^{(n)} = 0$,则停止计算 (:: det(A) = 0),否则
- $x_n = b_n^{(n)}/a_{nn}^{(n)}$

$$x_i = (b_i^{(i)} - \sum_{j=i+1}^n a_{ij}^{(i)} x_j) / a_{ii}^{(i)}$$

3.2 完全选主元消去法

$$|a_{i_k j_k}^{(k)}| = \max_{\substack{k \le i \le n \\ k \le j \le n}} |a_{ij}^{(k)}|$$

4 直接分解法

定理 4.1. 若 A 为非奇异阵,则 \exists 排列阵 P(初等置换阵乘积),使得 PA = LU 其中 L 为单位下三角阵,U 为上三角阵 A = LU

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

4.1 Doolittle 分解法

假设 A 非异阵, 且 A = LU, i.e.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ l_{21} & 1 & & & \\ \dots & \dots & \ddots & & \\ l_{n1} & l_{n2} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ & u_{22} & \dots & u_{2n} \\ & & \ddots & \vdots \\ & & & u_{nn} \end{bmatrix}$$

对于 L 和 U, 由于 i < j 时, $l_{ij} = 0$, 当 $i > j, u_{ij} = 0$, 由 A = LU 可得:

$$a_{kj} = \sum_{r=1}^{n} 1 l_{kr} u_{rj} = \sum_{r=1}^{\min(k,j)} l_{kr} u_{kj}, k, j = 1, 2, \dots, n$$
 (4.1)

显然:

$$u_{1j} = a_{1j}, j = 1, 2, \dots, n$$
 (4.2)

当 j = 1 时,由??可得,

$$a_{k1} = l_{k1}u_{11} \Rightarrow l_{k1} = a_{k1}/u_{11}, k = 2, 3, \dots n$$
 (4.3)

假设 U 的第 1 行至第 k-1 行和 L 的第 1 列至第 k-1 列都已求出,则可计算 U 的第 k 行元素

$$\therefore a_{kj} = l_{kk} u_{kj} + \sum_{r=1}^{k-1} l_{kr} u_{rj}
\therefore u_{kj} = a_{kj} - \sum_{r=1}^{k-1} l_{kr} u_{rj}, j = k, k+1, \dots, n$$
(4.4)

$$\therefore a_{ik} = l_{ik} u_{kk} + \sum_{r=1}^{k-1} l_{ir} u_{rk} \therefore l_{ik} = (a_{ik} - \sum_{r=1}^{k-1} l_{ik} u_{rk}) / u_{kk}, i = k+1, \dots, n$$

$$(4.5)$$

利用 (??) (??) (??) (??) 将 A 分解为 LU, 这种分解方法称为 Doolittle 三角分解。

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases} \Rightarrow y_i = b_i - \sum_{r=1}^{i-1} l_{ir} y_r, i = 1, 2, \dots, n$$

$$(4.6)$$

 $i = 1 \text{ B}, \sum_{r=1}^{0} l_{ir} y_r = 0$

$$x_i = (y_i - \sum_{r=i+1}^n u_{ir} x_r) / u_{ii}, i = n, n-1, \dots, 1$$
(4.7)

首先用 (??) (??) (??) (??) 将 A 分解为 LU, 再用 (??) (??) 求出方程组的解, 称为 Doolitle 三角分析方法。

4.2 三对角方程组的追赶法

设有方程 Ax = d, 且 $D_i \neq 0, i = 1, 2, ..., n$ 其中:

$$A = \begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & c_{n-1} \\ & & & a_n & b_n \end{bmatrix}$$

设 A = LU, 易证:

∴ 由 A = LU 即可确定:

$$\begin{cases}
 u_1 = b_1 \\
 l_i = a_i/u_{i-1}, i = 2, 3, \dots, n \\
 u_i = b_i - l_i c_{i-1}, i = 2, 3, \dots, n
\end{cases}$$
(4.8)

$$LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases} \Rightarrow \begin{cases} y_1 = d_1 \\ y_i = d_i - l_i y_{i-1}, i = 2, 3, \dots, n \end{cases}$$

$$(4.9)$$

$$\begin{cases} x_n = y_n/u_n \\ x_i = (y_i - c_i x_{i+1})/u_i, i = n - 1, n - 2, \dots, 1 \end{cases}$$
 (4.10)

定理 4.2. 设三对角阵 A 满足对角占优条件, $|b_1| > |c_1| > 0, |b_n| > |a_n| > 0, |b_i| \ge |a_i| + |c_i|$ 则 A 非奇异,且 $y_i \ne 0, i = 1, 2, \ldots, n$ $0 < |\frac{c_i}{u_i}| < 1, i = 1, 2, \ldots, n-1, |b_i| - |a_i| < |u_i| < |b_i| + |a_i|, i = 2, 3, \ldots, n$

4.3 Cholesky 分解 (平方根) 法

对称: $A^T = A$; 正定: $\lambda_i > 0$, $D_i > 0$

假设 $det(A) \neq 0$, 且 $D_i \neq 0$, i = 1, 2, ..., n-1 则 A = LU 进一步:

$$U = \begin{bmatrix} u_{11} & & & & \\ & u_{22} & & & \\ & & \ddots & & \\ & & & u_{nn} \end{bmatrix} \begin{bmatrix} 1 & u_{12}/u_{11} & \dots & u_{1n}/u_{11} \\ & 1 & \dots & u_{2n}/u_{22} \\ & & & \ddots & \vdots \\ & & & 1 \end{bmatrix} = D\widetilde{U}$$

i.e. $A = LD\widetilde{U}$ 这就是 A 的 LDU 分解。

定理 4.3. (对称阵的三角分解定理) 设 $A \in \mathbb{R}^{n \times n}$, 且 A 的顺序主子式 $D_i \neq 0, i=1,2,\ldots,n$ 则 \exists 唯一单位下三角阵 L 和对角阵 D 使得 $A = LDL^T$

证明.
$$:: A = A^T = LD\widetilde{U} = \widetilde{U}^TDL^T \overset{\text{分解唯一性}}{\Rightarrow} L = \widetilde{U}^T \Rightarrow \widetilde{U} = L^T$$

$$:: A = LD\widetilde{U} = LDL^T \qquad \qquad \Box$$

定理 4.4. 设 $A \in \mathbb{R}^{n \times n}$, 且 A 对称正定,则 \exists 唯一的对角元素为正的下三角阵 L, 使得 $A = LL^T$, 由

$$A = LL^{T}, L = \begin{bmatrix} l_{11} & & & \\ l_{21} & l_{22} & & & \\ \vdots & \vdots & l_{33} & & \\ \vdots & \vdots & & \ddots & \\ l_{n1} & l_{n2} & \dots & \dots & l_{nn} \end{bmatrix}$$

$$a_{ij} = (\sum_{k=1}^{j} l_{ik} l_{jk}) = \sum_{k=1}^{j-1} l_{ik} l_{jk} + l_{ij} l_{jj}, i = j, j+1, \dots, n$$

 \Rightarrow

$$l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2, j = 1, 2, \dots, n}$$
(4.11)

$$l_{ij} = (a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}) / l_{jj}, i = j+1, \dots, n, j = 1, 2, \dots, n-1$$
 (4.12)

方程组的解:

$$y_i = (b_i - \sum_{k=1}^{i-1} l_{ik} y_k) / l_{ii}, i = 1, 2, \dots, n$$
 (4.13)

$$x_i = (y_i - \sum_{k=i+1}^n l_{ki} x_k) / l_{ii}, i = n, n-1, \dots, 1$$
(4.14)

证明. A 对称正定 $:: D_i = u_{11}u_{22} \dots u_{ii} > 0 :: u_{ii} > 0, i = 1, 2, \dots, n$ $:: D = D^{\frac{1}{2}}D^{\frac{1}{2}},$ 其中 $D^{\frac{1}{2}} = diag(\sqrt{u_{11}}, \sqrt{u_{22}}, \dots, \sqrt{u_{nn}})$ $:: A = LD^{\frac{1}{2}}D^{\frac{1}{2}}L^T = (LD^{\frac{1}{2}})(LD^{\frac{1}{2}})^T = \widetilde{L}\widetilde{L}^T$ 由 $A = LDL^T$ 的分解唯一性 $\Rightarrow A = \widetilde{L}\widetilde{L}^T$ 也是唯一的。

5 条件数和摄动理论初步

例 5.1.

$$\begin{cases} x_1 + x_2 = 2 \\ x_1 + 1.00001x_2 = 2 \end{cases} \Rightarrow x_1 = 2, x_2 = 0$$

若上式变为:

$$\begin{cases} x_1 + x_2 = 2 \\ x_1 + 1.00001x_2 = 2.00001 \end{cases} \Rightarrow x_1 = 1 = x_2$$

这就是病态方程组。

定义 5.1. 设 Ax = b, 当 A 和 b 有微小变化 ΔA 和 Δb 就引起解向量 x 的很大变化,称 A 为关于解方程组和矩阵求逆的病态矩阵。称相应的方程组为病态方程组,反之,若 ΔA 和 Δb 很小, Δx 也很小,就称 A 为良态矩阵和称 Ax = b 为良态方程组。

5.1 右端项 b 的摄动对解的影响

假设 $det(A) \neq 0$, b 有扰动 Δb , 则 Ax = b 的解也要产生摄动 Δx , i.e. 方程组 Ax = b 变成了 $A(x + \Delta x) = b + \Delta b \Rightarrow \Delta x = A^{-1}\Delta b \Rightarrow ||\Delta x|| \le$ $||A^{-1}|| \cdot ||\Delta b||$

5.2 A 的摄动对解的影响

设 $det(A) \neq 0$, A 有摄动 ΔA , 相应地由 $x \to x + \Delta x$, i.e. Ax = b, (A + a) $(\Delta A)(x + \Delta x) = b \Rightarrow (A + \Delta A)\Delta x = -\Delta Ax \Rightarrow A(I + A^{-1}\Delta A)\Delta x = -\Delta Ax$ 当 $||A^{-1}|| \cdot ||\Delta A|| < 1$ 时,由矩阵范数定理 $1.8(||(I\pm B)^{-1}|| \le \frac{1}{1-||B||}(||B|| < 1)$ 1)), 可知, $(I + A^{-1}\Delta A)^{-1}$ 存在

$$\therefore \Delta x = -(I + A^{-1}\Delta A)^{-1}A^{-1}\Delta Ax$$

定义 5.2. 对于非异阵 A, $||\cdot||$ 为一种矩阵的从属范数, 称数 $||A||\cdot||A^{-1}||$ 为 A 的条件数,记为 $cond(A) = ||A|| \cdot ||A^{-1}||$

常用条件数:

$$cond(A)_{\infty} = ||A||_{\infty} \cdot ||A^{-1}||_{\infty}$$
$$cond(A)_{2} = ||A||_{2}||A^{-1}||_{2} = \sqrt{\frac{\lambda_{\max}(A^{T}A)}{\lambda_{\min}(A^{T}A)}}$$

特别地当: $A^T = A$ 时, $cond(A)_2 = \frac{|\lambda_1|}{|\lambda_n|}$, 其中 λ_1 和 λ_n 分别为 A 的绝对 值最大和最小的特征值。

条件数性质:(运用线性代数知识证明)

- 1. cond(A) > 1, $cond(A) = cond(A^{-1})$
- 2. $cond(cA) = cond(A), \forall c \in R, c \neq 0$
- 3. 若矩阵 A 正交阵,则 $cond(A)_2 = 1$
- 4. 若 U 为正交阵,则 $cond(A)_2 = cond(AU)_2 = cond(UA)_2$

5. $cond(A) \ge \frac{|\lambda_1|}{|\lambda_n|}$,其中 λ_1, λ_n 分别为绝对值最大,最小的特征值。(证明: 定理1.6)

定理 5.1. 设 $Ax = b, det(A) \neq 0$, b 为非零向量且 Δb 和 ΔA 分别为 b 和 A 的扰动量,若 $||A^{-1}|| \cdot ||\Delta A|| < 1$ 则有事前误差估计式:

$$\frac{||\Delta x||}{||x||} \le \frac{cond(A)}{1 - cond(A) \frac{||\Delta A||}{||A||}} \left[\frac{||\Delta b||}{||b||} + \frac{||\Delta A||}{||A||} \right]$$
 (5.1)

例 5.2. 已知方程组 $\begin{cases} x_1+x_2=2\\ x_1+1.000001x_2=2 \end{cases}, \text{ 右端项 } b \text{ 有扰动 } \Delta b= \\ (0,10^{-5})^T, 求其系数矩阵 A 的条件数 <math>cond(A)_\infty$,说明 Δb 对解的影响,并分析其性态。

解:
$$:: A = \begin{bmatrix} 1 & 1 \\ 1 & 1+10^{-6} \end{bmatrix}, A^{-1} = \begin{bmatrix} 1+10^6 & -10^6 \\ -10^6 & 10^6 \end{bmatrix}$$

 $:: cond(A)_{\infty} = ||A||_{\infty} ||A^{-1}||_{\infty} = (2+10^{-6})(1+2\times10^6) > 4\times10^6$ 由于条件数很大,方程组病态, A 为病态矩阵。

右端项对解的影响: $\frac{||\Delta x||}{||x||} \leq cond(A) \frac{||\Delta b||}{||b||} = 2000\%$

定理 5.2. 设 $det(A) \neq 0$, x 和 \bar{x} 分别为 Ax = b 的准确解和近似解, $r = b - A\bar{x}$ 为残差。则:

$$\frac{1}{cond(A)} \frac{||r||}{||b||} \le \frac{||x - \bar{x}||}{||x||} \le cond(A) \frac{||r||}{||b||}$$
 (5.2)

称为事后误差估计式。

证明. $x = A^{-1}b, \bar{x} = A^{-1}(b-r)$ $x - \bar{x} = A^{-1}r$

$$\begin{split} \frac{1}{cond(A)} \frac{||r||}{||b||} &= \frac{||AA^{-1}r||}{||A|| \cdot ||A^{-1}|| \cdot ||b||} \\ &\leq \frac{||A||||A^{-1}r||}{||A|| \cdot ||A^{-1}|| \cdot ||b||} &= \frac{||A^{-1}r||}{||A^{-1}|| \cdot ||b||} \\ &\leq \frac{||x - \bar{x}||}{||x||} \\ &\leq \frac{||A^{-1}||||r||||A||}{||A^{-1}b||||A||} \leq cond(A) \frac{||r||}{||AA^{-1}b||} \\ &= cond(A) \frac{||r||}{||b||} \end{split}$$

6 迭代法的基本概念

6.1 迭代法的一般形式

对于方程:

$$Ax = b, det(A) \neq 0, b \in \mathbb{R}^n \tag{6.1}$$

将??转化为等价的方程组:

$$x = Bx + f, B \in R^{n \times n}, f \in R^n \tag{6.2}$$

由??可构造如下迭代公式:

$$x^{(k+1)} = Bx^{(k)} + f, k = 0, 1, 2, \dots$$
(6.3)

其中: B 称为迭代矩阵, f 为右端项, 给定 $x^{(0)}$ 则可利用??得向量序列: $\{x^{(k)}\}, x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}),$ 若 $x^{(k)}$ 收敛, i.e. $x^{(k)} \to x^*, k \to \infty$, 则有:

$$x^* = Bx^* + f$$

6.2 向量序列和矩阵序列的收敛性

定义 6.1. 设 $\{x^{(k)}\}$ 为 R^n 中的向量序列, $x^* \in R^n$, 若 $\lim_{k \to \infty} ||x^{(k)} - x^*|| = 0$, 其中 $||\cdot||$ 为向量范数,则称 $\{x^{(k)}\}$ 收敛于 x^* ,记为 $\lim_{k \to \infty} x^{(k)} = x^*$ 。

定理 6.1. R^n 中的 $\{x^{(k)}\}$ 收敛于 $x^* \in R^n$,当且仅当 $\lim_{k \to \infty} x_i^{(k)} = x_i^*, i = 1, 2, \ldots, n$ 。其中 $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)})^T, x^* = (x_1^*, x_2^*, \ldots, x_n^*)^T$

证明. 若 $\{x^{(k)}\}$ 收敛,则 $\lim_{k\to\infty}||x^{(k)}-x^*||=0$,又因为: $0\leq |x_i^{(k)}-x_k^*|\leq \max_{n\geq i\geq 1}|x_i^{(k)}-x_k^*|=||x^{(k)}-x^*||_\infty\to 0$

 $\lim_{k\to\infty} x^{(k)} = x^*$

反之,若 $\lim_{k\to\infty} x_i^{(k)} = x_i^*, i = 1,2,\ldots,n$,则可证: $\lim_{k\to\infty} ||x^{(k)} - x^*||_{\infty} = 0$ 又因为向量范数的等价性1.5,有 $||x^{(k)} - x^*|| \le C||x^{(k)} - x^*||_{\infty} \to 0$

定义 6.2. 定义了范数 $||\cdot||$ 的空间 $R^{n\times n}$ 中,若 $\exists A\in R^{n\times n}$,使 $\lim_{k\to\infty}||A^{(k)-A}||=0$,则称 $\{A^{(k)}\}$ 收敛于 A,记为: $\lim_{k\to\infty}A^{(k)}=A$

定理 6.2. 【自证】设 $A^{(k)} = (a_{ij}^{(k)})_n, (k = 1, 2, ..., \infty), A = (a_{ij})_n$ 为 $R^{n \times n}$ 中的矩阵,则 $\{A^{(k)}\}$ 收敛于 A 的充要条件为:

$$\lim_{k \to \infty} a_{ij}^{(k)} = a_{ij}$$

定理 6.3.

$$\lim_{k \to \infty} A^{(k)} = 0 \Leftrightarrow \lim_{k \to \infty} A^{(k)} x = 0, \forall x \in \mathbb{R}^n$$

证明. • 必要性: 对任一从属范数: $||A^{(k)}x|| \le ||A^{(k)}|||x|| \to 0$

• 充分性: 取 $x = e_j$,则由 $\lim_{k \to \infty} A^{(k)} e_j = 0$,可知 $A^{(k)}$ 的第 j 列为 0,当 j = 1, 2, ..., n 时,即可证明 $\lim_{k \to \infty} A^{(k)} = 0$

定理 6.4. 设 $B \in R^{n \times n}$ 则有下列三个命题等价:

- $\lim_{k\to\infty} B^k = 0$
- $\rho(B) < 1$
- 至少存在一种从属矩阵范数 ||·||, 使得 ||B|| < 1

证明. 逐个证明:

(1)->(2) 反证法: 假设 B 有一个特征值 λ 满足 $|\lambda| \geq 1$, 则有 $\lambda \neq 0$ 使得 $Bx = \lambda x \Rightarrow B^k x = \lambda B^{k-1} x = \lambda^k x$, $\therefore k - > \infty$, $B^k x \neq 0$ 根据 $(\lim_{k \to \infty} A^{(k)} = 0 \Leftrightarrow \lim_{k \to \infty} A^{(k)} x = 0, \forall x \in R^n)$ 得, $\lim_{k \to \infty} B^k \neq 0$ 与已 知矛盾, $\therefore \rho(B) < 1$

(2)->(3) 由定理1.6知,对 $\forall \varepsilon > 0, \exists ||\cdot||s.t.||B|| \le \rho(B) + \varepsilon \Rightarrow ||B|| < \rho(B) + 2\varepsilon, \therefore \rho(B) < 1, \text{choose } \varepsilon = \frac{1-\rho(B)}{2} > 0 \therefore ||B|| < \rho(B) + 2\varepsilon = \rho(B) + 2\frac{1-\rho(B)}{2} = 1$

(3)->(1) 由相容性条件可得: $||B^k-0|| \le ||B||^k$: $||B|| < 1 \Rightarrow \lim_{k\to\infty} ||B||^k = 0 \Rightarrow \lim_{k\to\infty} B^k = 0$

6.3 迭代方法的收敛性

 $x^{(k+1)} = Bx^{(k)} + f$,若收敛,则有 $x^* = Bx^* + f$,则 $e^{(k)} = x^{(k)} - x^* = Bx^{(k-1)} - Bx^* = \dots = B^k e^{(0)}, e^{(0)} = x^{(0)} - x^*$

定理 6.5. (重要)对于任意初值 $x^{(0)}$ 和右端项 f, 迭代方法 $x^{(k+1)} = Bx^{(k)} + f$ 收敛的**充要条件**是: $\rho(B) < 1$

证明. 由以上分析有: $e^{(k)}=x^{(k)}-x^*=B^ke^{(0)}$, 其中 $e^{(0)}$ 为与 k 无关的任意初始误差

.. 迭代法的收敛性等价于 $\{e^{(k)}\}$ 的收敛性。

而由 $e^{(0)}$ 的任意性,及定理6.3知: $\{e^{(k)}\}$ 的收敛性等价于 $\{B^k\}$ 的收敛性,

而 $\{B^k\}$ 的收敛性与 $\rho(B) < 1$ 等价

∴ 迭代法收敛 $\Leftrightarrow \rho(B) < 1$

$$x^{(k)} \to x^* \Leftrightarrow B^k e^{(0)} \to 0 \Leftrightarrow B^k \to 0 \Leftrightarrow \rho(B) < 1$$

定理 6.6. (充分条件) 对于 $x^{(k+1)} = Bx^{(k)} + f$, 若 $\exists ||\cdot||_{\lambda}, s.t.$ $||B||_{\lambda} < 1$ 则:

1. 迭代法收敛; i.e. $x^{(k)} \to x^*, k \to \infty$

2. $||x^{(k)} - x^*||_{\lambda} \le \frac{||B||_{\lambda}}{1 - ||B||_{\lambda}} ||x^{(k)} - x^{(k-1)}||_{\lambda}$

3. $||x^{(k)} - x^*||_{\lambda} \le \frac{||B||_{\lambda}^k}{1 - ||B||_{\lambda}} ||x^{(0)} - x^*||_{\lambda}$

证明. 1. $\rho(B) < ||B|| < 1$

- 2. $:: x^{(k)} x^* = B(x^{(k-1)} x^*) = B(x^{(k)} x^*) + B(x^{(k-1)} x^{(k)}) \Rightarrow$ $(I B)(x^{(k)} x^*) = B(x^{(k-1)} x^{(k)})$ $:: ||B|| < 1, :: \exists (I B)^{-1} :: x^{(k)} x^* = -(I B)^{-1} B(x^{(k)} x^{(k-1)})$ $:: ||x^{(k)} x^*||_{\lambda} \le ||(I B)^{-1}||_{\lambda} ||B||_{\lambda} ||x^{(k)} x^{(k-1)}||_{\lambda} \le \frac{||B||_{\lambda}}{1 ||B||_{\lambda}} ||x^{(k)} x^{(k-1)}||_{\lambda}$
- 3. :: $||x^{(k)}-x^{(k-1)}||_{\lambda} = ||B(x^{(k-1)}-x^{(k-2)})||_{\lambda} \le ||B||_{\lambda}|||x^{(k-1)}-x^{(k-2)}||_{\lambda} \le \cdots \le ||B||_{\lambda}^{k-1}||x^{(1)}-x^{(0)}||_{\lambda}$ 将上式代入 2 中,即可得到 3.

注释:

- 若仅仅是为了判断迭代算法的收敛性,则定理中的条件还可放宽为: \exists 某一种范数使得 $||B||_{\lambda} < 1$
- 方法的收敛性与右端项 f 无关
- 从定理可看出, $||B||_{\lambda}$ 不是很靠近 1,如果要求 $||x^{(k)} x^*||_{\lambda} < \varepsilon$,只需要使相邻两次的 $||x^{(k)} x^{(k-1)}||_{\lambda} < \varepsilon$ 即可
- 判断一种方法的迭代次数,用定理6.3.3 可以解析求出。

定义 6.3. (重要概念) 称 $R(B) = -ln(\rho(B))$ 为迭代法 $x^{(k+1)} = Bx^{(k)} + f$ 的渐进收敛率或渐进收敛速度。

7 Jacobi 方法和 GS 迭代法

7.1 J法

假设 $det(A) \neq 0, A = D - L - U$, 其中: $D = diag(a_{11}, a_{22}, \dots, a_{nn})$

$$L = \begin{bmatrix} 0 & & & & \\ -a_{21} & 0 & & & \\ \vdots & \vdots & \ddots & & \\ -a_{n1} & -a_{n2} & \dots & 0 \end{bmatrix}, U = \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ & \ddots & \dots & -a_{2n} \\ & & \ddots & \vdots \\ & & & 0 \end{bmatrix}$$

将 A = D - L - U 代入 Ax = b 则 $Dx = (L + U)x + b \Rightarrow x = D^{-1}[(L + U)x + b] = D^{-1}(L + U)x + D^{-1}b \Rightarrow B = D^{-1}(L + U), f = D^{-1}b$ 由此可得 J 法:

$$x^{(k+1)} = Bx + f$$

$$B = D^{-1}(L+U) = I - D^{-1}A$$

$$f = D^{-1}b$$
(7.1)

其分量形式:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right], j = 1, 2, \dots, n$$
 (7.2)

7.2 GS 方法

分量形式:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} \mathbf{x}_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right], j = 1, 2, \dots, n$$
 (7.3)

写成向量形式有:

$$x^{(k+1)} = D^{-1}(b + Lx^{(k+1)} + Ux^{(k)})$$

$$\Leftrightarrow (D - L)x^{(k+1)} = b + Ux^{(k)}$$

$$\Leftrightarrow x^{(k+1)} = (D - L)^{-1}Ux^{(k)} + (D - L)^{-1}b$$

$$= (I - (D - L)^{-1}A)x^{(k)} + (D - L)^{-1}b$$
(7.4)

例 7.1.

$$\begin{cases} 10x_1 - x_2 - 2x_3 = 72 \\ -x_1 + 10x_2 - 2x_3 = 83 \\ -x_1 - x_2 + 5x_3 = 42 \end{cases}$$

易知解 $x^* = (11, 12, 13)$

解: J法:

$$\begin{aligned} x_1^{(k+1)} &= \frac{1}{10} (72 + x_2^{(k)} + 2x_3^k) \\ x_2^{(k+1)} &= \frac{1}{10} (83 + x_1^{(k)} + 2x_3^{(k)}) \\ x_3^{(k+1)} &= \frac{1}{5} (42 + x_1^{(k)} + x_2^{(k)}) \end{aligned}$$

取 $x^{(0)}=(0,0,0)^T$ 则: $x^{(9)}=(10.9994,11.9994,12.9992)^T$,误差 $||x^{(9)}-x^*||_{\infty}=0.0008$

GS 法:

$$\begin{array}{l} x_1^{(k+1)} = \frac{1}{10}(72 + x_2^{(k)} + 2x_3^k) \\ x_2^{(k+1)} = \frac{1}{10}(83 + x_1^{(k+1)} + 2x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{5}(42 + x_1^{(k+1)} + x_2^{(k+1)}) \end{array}$$

取 $x^{(0)} = (0,0,0)^T$ 则: $||x^{(6)} - x^*||_{\infty} = 0.0001$, 显然 GS 法收敛好于 J 法。

7.3 J 法 GS 法的收敛性

收敛的充要条件: $\rho(B) < 1$, 充分条件: ||B|| < 1

定义 7.1.

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, i = 1, 2, \dots, n$$

称 A 为严格对角占优阵。

$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, i = 1, 2, \dots, n$$

且其中至少有一个不等式严格成立,则称 A 为弱对角占优阵。

定义 7.2. 设 $A \in R^{n \times n}$,若不能找到排列阵 P 使得 $P^TAP = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$ (其中 A_{11}, A_{22} 均为方阵) 成立,则称 A 为不可约的。

例 7.2.

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow 1-3$$
 行交换
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \rightarrow 1,3$$
 列交换
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

定理 7.1. 若 $A = (a_{ij})_n \in R^{n \times n}$ 为严格对角占优阵或不可约弱对角占优阵,则 $a_{ii} \neq 0, i = 1, 2, \ldots, n$,且 A 为非奇异阵。

定理 7.2. 若 A 为严格对角占优阵或不可约弱对角占优阵,则 $\forall x^{(0)}$, 方程 Ax=b 的 J 法和 GS 法均收敛。

反证法. (目标 $\rho(G)$ < 1)

设 G 有一个特征值 λ 满足 $|\lambda| \ge 1$, 则 $|\lambda I - (D-L)^{-1}U| = 0 \Rightarrow |I - \lambda^{-1}(D-L)^{-1}U| = 0 \Rightarrow |(D-L)^{-1}||D-L-\lambda^{-1}U| = 0$

 $\therefore a_{ii} \neq 0 \therefore |(D-L)^{-1}| \neq 0$,而 A = D - L - U 与 $D - L - \lambda^{-1}U$ 的 零元素与非零元素位置完全一样,所以 $D - L - \lambda^{-1}U$ 也是不可约的。

又 :: $|\lambda| \ge 1$, $D - L - \lambda^{-1}U$ 也是弱对角占优矩阵。根据定理7.1有 $|D - L - \lambda^{-1}U| \ne 0$,矛盾,证明 $\rho(B) < 1$ 。

定理 7.3. 设 A 对称,且 $a_{ii} > 0, i = 1, 2, ..., n$ 则 J 法收敛 $\Leftrightarrow A$ 及 2D - A 均正定。

证明. $: a_{ii} > 0, i = 1, 2, \dots, n$

 $D = D^{\frac{1}{2}}D^{\frac{1}{2}}$

而 $B=I-D^{-1}A=D^{-\frac{1}{2}}(I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}})D^{\frac{1}{2}}$,说明 B 与 $I-D^{-\frac{1}{2}}AD^{\frac{1}{2}}$ 相似。

• 必要性:

若 J 法收敛,则 $\rho(B)<1$ 。设 $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 的特征值 μ (实数) 则: $\lambda(B)=1-\mu, \therefore |1-\mu|<1\Rightarrow 0<\mu<2$

 $:: D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 正定 $:: \forall x \in R^n, (D^{-\frac{1}{2}}x)^TAD^{-\frac{1}{2}}x = x^TD^{-\frac{1}{2}}AD^{-\frac{1}{2}}x > 0$ A 正定。

$$\mathbb{Z} : \lambda(2I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}) = 2 - \mu \in (0, 2)$$

$$\therefore 2D - A$$
 正定。

- 充分性:
 - :: A正定
 - $: D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 正定
 - $\lambda (D^{-\frac{1}{2}}AD^{-\frac{1}{2}}) > 0$
 - $\lambda(B) < 1 \ (B = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}})$

定理 7.4. 设 A 对称正定,则方程 Ax = b 的 GS 法收敛。

例 7.3.

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 1 \\ 2x_1 + 2x_2 + x_3 = 1 \end{cases}$$

J法收敛, GS 法发散

$$\begin{cases} x_1 + 0.8x_2 + 0.8x_3 = 2.6 \\ 0.8x_1 + x_2 + 0.8x_3 = 2.6 \\ 0.8x_1 + 0.8x_2 + x_3 = 2.6 \end{cases}$$

GS 法收敛, J 法发散

例 7.4. 当 $a_{ii} > 0$, 且 $a_{ij} \le 0, i \ne j$ 时,可证下列四种情况只有一种成立。

1.
$$\rho(G) = \rho(B) = 0$$

2.
$$0 < \rho(G) < \rho(B) < 1$$

3.
$$\rho(G) = \rho(B) = 1$$

4.
$$1 < \rho(B) < \rho(G)$$

通常情况下,GS 方法好于J法,但不是所有情况。

8 超松弛迭代法

8.1 SOR 法构造

记 $\Delta x = (\Delta x_1, \Delta x_2, \dots, \Delta x_n)^T = x^{(k+1)} - x(k)$ 则 GS 法可写成: $x^{(k+1)} = x^{(k)} + \Delta x$ 其中 $\Delta x_i = \frac{1}{a_{ii}} [b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}] - x_i^{(k)}$ 引入参数 w,即可得 SOR 法:

$$x^{(k+1)} = x^{(k)} + w\Delta x$$

i.e.

$$x_i^{(k+1)} = (1-w)x_i^{(k)} + \frac{w}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right]$$
(8.1)

将 aii 乘到等号左边,写成向量形式:

$$\begin{split} Dx^{(k+1)} &= (1-w)Dx^{(k)} + w[b + Lx^{(k+1)} + Ux^{(k)}] \\ \Rightarrow x^{(k+1)} &= (D-wL)^{-1}[(1-w)D + wU]x^{(k)} + (D-wL)^{-1}wb \end{split}$$

令
$$L_w = (D-wL)^{-1}[(1-w)D+wU], f = (D-wL)wb$$
, 则有

$$x^{(k+1)} = L_w x^{(k)} + f (8.2)$$

例 8.1.

$$\begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$

精确解: $x^* = (3, 4, -5)^T$

 \mathbb{R} $w = 1(GS), x^{(7)} = (3.013411, 3.988824, -5.002794)^T$ $w = 1.2(SOR), x^{(7)} = (3.00049, 4.000258, -5.000348)^T$

定理 8.1. (SOR 法收敛的必要条件)

::SOR 法收敛,... $\rho(L_w) < 1$

设 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 L_w 的特征值,则 $|L_w| = |\prod_{i=1}^n \lambda_i| \le |\lambda_1| |\lambda_2| \dots |\lambda_n| \le [\rho(L_w)]^n < 1 \Rightarrow |L_w|^{\frac{1}{n}} \le \rho(L_w) < 1$ 而 $det(L_w) = det(D - wL)^{-1} det[(1 - w)D + wU] = detD^{-1} det[(1 - w)D] = (1 - w)^n, \dots |1 - w| < 1 \Rightarrow 0 < w < 2$

定理 8.2. 若 A 为对称正定阵,则 SOR 法收敛的充要条件为 0 < w < 2

定义 8.1. 若存在排列阵 P 使 $PAP^T=\begin{bmatrix}D_1&M_1\\M_2&D_2\end{bmatrix}$,其中 D_1,D_2 为对角阵,称 A 是 2-循环的。若矩阵 $\alpha D^{-1}L+\alpha^{-1}D^{-1}U$ 的特征值都与 α 无关,则 A 是相容次序矩阵。

定理 8.3. 设 $A \in R^{n \times n}$ 是 2-循环和相容次序的, $B = I - D^{-1}A$ 的特征值 全为实数,且 $\mu = \rho(B) < 1$,则:

$$\rho(L_w) = \begin{cases} \frac{[w\mu + \sqrt{w^2\mu^2 - 4(w-1)}]^2}{4}, 0 < w < w_{opt} \\ w - 1, w_{opt} \le w < 2 \end{cases}$$

其中, $\rho(w_{opt}) = \min \rho(L_w) = w_{opt} - 1, w_{opt} = \frac{2}{1+\sqrt{1-\mu^2}}$,称为最佳松弛因子,且当 $0 < 2 < w_{opt}$ 时, $\rho(L_w)$ 是 w 的单减函数,当 $w_{opt} \le w \le 2$ 时, $\rho(L_w)$ 是 w 的单增函数。

- 1. 当 w=1 时, $\rho(L_1) = \mu^2 = \rho(B)^2$, $R(L_w) = -ln\mu^2 = 2R(B)$,GS 法收敛速度为 J 法的 2 倍。
- 2. 显然 $\rho(L_w) \ge \rho(L_{w_{ont}}) = w_{opt} 1, w_{opt} \ge 1$

3.

定理 8.4. 设 A 是对称正定的三对角阵,则: $\rho(G)=\rho(B)^2<1$,且 $w_{opt}=\frac{2}{1+\sqrt{1-\rho(B)^2}}$

例 8.2.

$$Ax = b, A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$

显然 A 为对称正定三对角阵 (利用顺序主子式均大于 0 可以判断正定)

$$\therefore B = I - D^{-1}A = \begin{bmatrix} -\frac{3}{4} \\ -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \end{bmatrix}, \therefore \rho(B) = \sqrt{5/8} \approx 0.790 < 1, \rho(G) = \rho(B)^2 = 0.625$$

$$w_{opt} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24$$

8.2 块松弛迭代法

设
$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1N} \\ A_{21} & A_{22} & \dots & A_{2N} \\ \dots & & & & \\ A_{N1} & A_{N2} & \dots & A_{NN} \end{bmatrix}$$
 其中 A_{ii} 为 $n_i \times n_i$ 的非奇异方阵,

且 $n_1 + n_2 + \cdots + n_N = n$, 有

$$A_{ii}x_i^{(k+1)} = (1-w)A_{ii}x_i^{(k)} + w[b_i - \sum_{j=1}^{i-1} A_{ij}x_j^{(k+1)} - \sum_{j=i+1}^{n} A_{ij}x_j^{(k)}]$$
 (8.3)

其中 $x_i^{(k)}, b_i$ 均为 n_i 个分量的向量。

由 (??) 可得:

$$x^{(k+1)} = (D - wL)^{-1}[(1 - w)D + wU]x^{(k)} + w(D - wL)^{-1}b$$

其中
$$X = (x_1^T, x_2^T, \dots, x_N^T)^T, b = (b_1^T, b_2^T, \dots, b_N^T)^T$$

9 共轭梯度法

系数矩阵对称正定

若 Ax = b 其中 A > 0,则求解可转化为求下列二次函数:

$$\phi(x) = \frac{1}{2}x^T A x - x^T b = \frac{1}{2}(Ax, x) - (b, x)$$
(9.1)

的最小值点问题。

定理 9.1. 设 A 对称正定,则 x^* 为方程组的解的充要条件是 $\phi(x^*) = \min_{x \in R^n} \phi(x)$

证明. 定义如下函数:

$$F(x) = \frac{1}{2}(A^{-1}r, r) \ge 0$$

其中 r = b - Ax, 将 r 代入上式有:

$$F(x) = \phi(x) + \frac{1}{2}(A^{-1}b, b)$$

其中 $\phi(x) = \frac{1}{2}x^TAx - x^Tb = \frac{1}{2}(Ax, x) - (b, x) F(x)$ 最小值点 $\Leftrightarrow \phi(x)$ 最小值点 $\Rightarrow r = 0, i.e.Ax^* = b$

9.1 最速下降法

选取初值 $x^{(0)}$,则有: $-\nabla \phi(x) = -(\frac{\partial \phi}{\partial x_1}, \frac{\partial \phi}{\partial x_2}, \dots, \frac{\partial \phi}{\partial x_n})^T|_{x=x^{(0)}} = b - Ax^{(0)} = r^{(0)}$ 。可令 $\frac{d\phi(x^{(0)}+\alpha r^{(0)})}{d\alpha} = 0$,则可得 $\alpha = \frac{(r^{(0)},r^{(0)})}{(Ar^{(0)},r^{(0)})} = \alpha_0$,则 $x^{(1)} = x^{(0)} + \alpha_0 r^{(0)}$ 是使得 $\phi(x)$ 下降最快,并且使之达到最小值点的极值 点,然后再从 $x^{(1)}$ 出发,寻找一个使得 $\phi(x)$ 下降最快的方向 $x^{(1)}$ 和步长 $x^{(1)}$ 和野大 $x^{(1)}$ 和野大

$$r^{(k)} = b - Ax^{(k)}$$

$$\alpha_k = \frac{(r^{(k)}, r^{(k)})}{(Ar^{(k)}, r^{(k)})}$$

$$x^{(k+1)} = x^{(k)} + \alpha_k r^{(k)}$$
(9.2)

易证: $\phi(x^{(k+1)}) < \phi(x^{(k)}), |x^{(k+1)} - x^{(k)}| < \varepsilon$

9.2 共轭梯度法

对于 A>0 称满足 $(AP^{(i)},P^{(j)})=0, i\neq j$ 的向量组 $\{P^{(i)}\}$ 为 A 共轭向量组,如果按方向 $P^{(0)},P^{(1)},\dots,P^{(k-1)}$ 已进行了 k 次一维搜索,求得了 $x^{(k)}$,下一步求 $x^{(k+1)}$,则需要进行一维搜索使 $\phi(x^{(k)}+\alpha P^{(k)})$ 极小,则可 令 $\frac{d\phi(x^{(k)}+\alpha p^{(k)})}{d\alpha}=0$ ⇒ $\alpha_k=\frac{(r^{(k)},p^{(k)})}{(Ap^{(k)},p^{(k)})}$

由此可得: $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, r^{(k+1)} = b - Ax^{(k+1)} = r^{(k)} - \alpha_k AP^{(k)},$ 其中 $(AP^{(i)}, P^{(j)}) = 0, i \neq j, p^{(0)} = r^{(0)} = b - Ax^{(0)}$

按此方法有如下性质:

$$\begin{split} \phi(x^{(k+1)}) &= \min_{\alpha} \phi(x^{(k)} + \alpha p^{(k)}) \\ \phi(x^{(k+1)}) &= \min_{x \in \operatorname{span}\{p^{(0)}, p^{(1)}, \dots, p^{(k)}\}} \phi(x) \end{split}$$

开始时选取 $p^{(0)}=r^{(0)}$,然后选取 $p^{(k)}=r^{(k)}+\beta_{k-1}p^{(k-1)}$,其中 β_{k-1} 由 A-共轭性确定,i.e.,由 $(Ap^{(k)},p^{(k-1)})=0$ 确定为: $\beta_{k-1}=-\frac{(r^{(k)},Ap^{(k-1)})}{(p^{(k-1)},Ap^{(k-1)})}$

综上可得如下 CG 算法: 给定: $x^{(0)}, p^{(0)} = r^{(0)}, r^{(0)} = b - Ax^{(0)}$

$$\alpha_k = \frac{(r^{(k)}, r^{(k)})}{(Ap^{(k)}, p^{(k)})} \tag{9.3}$$

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \tag{9.4}$$

$$r^{(k+1)} = r^{(k)} - \alpha_k A p^{(k)} \tag{9.5}$$

$$\beta_k = \frac{(r^{(k+1)}, r^{(k+1)})}{(r^{(k)}, r^{(k)})} \tag{9.6}$$

$$p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)} \tag{9.7}$$