Advanced Calculus

 $\mathbb{C}\mathrm{ason}\ \mathbb{K}\mathrm{onzer}$

December 6, 2021

1

The velocity field of a fluid with density $\rho = 400 \frac{kg}{m^3}$ is given by $\mathbf{F}(x,y,z) = \langle 1-x, -y, -z-1 \rangle \frac{m}{s}$. Let T be the polyhedral region with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1). S is the boundary of T.

Compute $\iint_S \rho \mathbf{F} \cdot \mathbf{n} \ dA$ by both using the divergence theorem and directly by considering the flux on each face.

First we will first solve via the divergence theorem.

- We know by the divergence theorem that $\rho \iint_S \mathbf{F} \cdot \mathbf{n} \, dA = \rho \iiint_T \nabla \cdot \mathbf{F} \, dV$
- We will first solve for $\nabla \cdot \mathbf{F}$.

$$\nabla \cdot \mathbf{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle 1 - x, -y, -z - 1 \right\rangle \frac{m}{s} = \left[(1 - x)_x + (-y)_y + (-1 - z)_z \right] \frac{m}{s} = \left[-1 - 1 - 1 \right] \frac{m}{s}$$

$$\nabla \cdot \mathbf{F} = -3 \frac{m}{s}$$

- The volume the region T is $V = \frac{1}{6}m^3$.
- We can now put everything together ...

$$\rho \cdot \nabla \cdot \mathbf{F} \cdot V = 400 \ \frac{kg}{m^3} \cdot -3s^{-1} \cdot \frac{1}{6}m^3 = -200 \frac{kg}{s}$$

The region is a sink with 200kg flowing in per second.

Second we will first solve by considering the flux through each face of T.

• Consider the face with verticies (0,0,0), (1,0,0), (0,1,0).

The unit normal vector at this point is strictly in the z direction.

$$\mathbf{n} = \langle 0, 0, -1 \rangle$$

$$\mathbf{F} \cdot \mathbf{n} = \langle 1 - x, -y, -z - 1 \rangle \cdot \langle 0, 0, -1 \rangle = z + 1$$

Across this face z is a constant of $0 : \mathbf{F} \cdot \mathbf{n} = 1$

This face is a triangle with area $\frac{1}{2}m^2$

The flux through this face is $\rho \iint_{C} \mathbf{F} \cdot \mathbf{n} \, dA = 400 \frac{kg}{s} \cdot 1 \frac{m}{s} \cdot \frac{1}{2} m^2 = 200 \frac{kg}{s}$

• Consider the face with verticies (0,0,0), (1,0,0), (0,0,1).

The unit normal vector at this point is strictly in the z direction.

$$\mathbf{n} = \langle 0, -1, 0 \rangle$$

$$\mathbf{F} \cdot \mathbf{n} = \langle 1 - x, -y, -z - 1 \rangle \cdot \langle 0, -1, 0 \rangle = y$$

Across this face y is a constant of $0 : \mathbf{F} \cdot \mathbf{n} = 0$

This face is a triangle with area $\frac{1}{2}m^2$

The flux through this face is $\rho \iint_S \mathbf{F} \cdot \mathbf{n} \, dA = 400 \frac{kg}{s} \cdot 0 \frac{m}{s} \cdot \frac{1}{2} m^2 = 0 \frac{kg}{s}$

• Consider the face with verticies (0,0,0),(0,1,0),(0,0,1).

The unit normal vector at this point is strictly in the z direction.

$$\mathbf{n} = \langle -1, 0, 0 \rangle$$

$$\mathbf{F} \cdot \mathbf{n} = \langle 1 - x, -y, -z - 1 \rangle \cdot \langle 0, 0, -1 \rangle = x - 1$$

Across this face x is a constant of $0 : \mathbf{F} \cdot \mathbf{n} = -1$

This face is a triangle with area $\frac{1}{2}m^2$

The flux through this face is $\rho \iint_S \mathbf{F} \cdot \mathbf{n} \, dA = 400 \frac{kg}{s} \cdot -1 \frac{m}{s} \cdot \frac{1}{2} m^2 = -200 \frac{kg}{s}$

• Consider the face with verticies (1,0,0), (0,1,0), (0,0,1).

The unit normal vector at this point is equal in the x, y, and z direction.

$$\mathbf{n} = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$$

$$\mathbf{F} \cdot \mathbf{n} = \langle 1-x, -y, -z-1 \rangle \cdot \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle = \frac{1}{\sqrt{3}} \left[1-x+-y+-z-1 \right] = \frac{1}{\sqrt{3}} \left[-x+-y+-z \right]$$

Across this face x + y + z is a constant of $1 : \mathbf{F} \cdot \mathbf{n} = -\frac{1}{\sqrt{3}} \frac{m}{s}$

This face is a triangle with area $\frac{\sqrt{3}}{2}m^2$

The flux through this face is $\rho \iint\limits_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \, dA = 400 \frac{kg}{m^3} \cdot -\frac{1}{\sqrt{3}} \frac{m}{s} \cdot \frac{\sqrt{3}}{2} m^2 = -200 \frac{kg}{s}$

• Last we can find the flux through this surface by summing the flux through each face.

flux =
$$\left[200 + 0 - 200 - 200\right] \frac{kg}{s} = -200 \frac{kg}{s}$$

As we oriented the normals directed out of the surface, the negative sign in the flux indicates flow into the surface.

Again we find that the region is a sink with 200kg flowing in per second.

Let f(x) = -x for 0 < x < 1. Find the Fourier series for an **odd** periodic extension of f, listing the first 4 non-zero terms. Then, find the general solution to the ODE y'' + y = f(x).

First we will solve for the Fourier series.

• We know the form of a Fourier series is $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\pi x/L) + b_n \sin(n\pi x/L)$.

Here L=1 and the function is treated as odd, we now have $f(x)=\sum_{n=1}^{\infty}b_n\sin(n\pi x)$.

• We also know $b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) dx$.

Here
$$b_n = 2 \int_0^1 -x \sin(n\pi x) dx$$
.

• We can solve the itergral to simplify b_n .

$$b_n = \frac{\pi n \cos(\pi n) - \sin(\pi n)}{\pi^2 n^2}$$

Furthermore; $\sin(\pi n)$ is 0 for all integer multiples of n. Thus ...

$$b_n = \frac{\cos(\pi n)}{\pi n}.$$

• The Fourier series of f is then $f(x) = \sum_{n=1}^{\infty} \frac{\cos(\pi n)}{\pi n} \sin(n\pi x)$.

The first 4 terms are $-\frac{\sin(\pi x)}{\pi}$, $\frac{\sin(2\pi x)}{2\pi}$, $-\frac{\sin(3\pi x)}{3\pi}$, $\frac{\sin(4\pi x)}{4\pi}$.

Second we will solve the ODE.

• To solve the ODE, we must first solve for a homogeneous solution ; $y_h \mid y'' + y = 0$.

$$h^2 + 1 = 0$$
; $h^2 = -1$; $h = \pm i$.
 $y_h = c_1 cos(x) + c_2 sin(x)$.

• Second, we must solve for a particular solution ; $y_p \mid y'' + y = f(x)$.

$$y = B \sin(n\pi x)$$
; $y' = Bn\pi \cos(n\pi x)$; $y'' = -Bn^2\pi^2 \sin(n\pi x)$.

• We can now substitute into the original equation.

$$-Bn^{2}\pi^{2}\sin(n\pi x) + B\sin(n\pi x) = \frac{\cos(\pi n)}{\pi n}\sin(n\pi x).$$

$$B(1 - n^{2}\pi^{2}) = \frac{\cos(\pi n)}{\pi n} \; ; \; B = \frac{\cos(\pi n)}{\pi n(1 - n^{2}\pi^{2})}; \text{ We can notice here that } \cos(n\pi) = (-1)^{n}.$$

$$B = \frac{(-1)^{n}}{n\pi - n^{3}\pi^{3}}.$$

• From here we can solve for the particular solution $y_p = \sum_{n=1}^{\infty} B \sin(n\pi x)$.

$$y_p = \sum_{n=1}^{\infty} \frac{(-1)^n \sin(n\pi x)}{n\pi - n^3 \pi^3}.$$

• Combining the homogeneous and particular solution, we have the general solution $y = y_h + y_p$.

$$y = c_1 cos(x) + c_2 sin(x) + \sum_{n=1}^{\infty} \frac{(-1)^n sin(n\pi x)}{n\pi - n^3 \pi^3}.$$

Use the Fourier sine transform to derive the solution formula for the heat equation $u_t = c^2 u_{xx}$ on the half-infinite bar $(0 \le x < \infty)$ with Dirichlet boundary condition u(0,t) = a, for some constant a, and initial condition u(x,0) = f(x).

First transfrom the PDE to an ODE by the Fourier sine transform.

•
$$\mathcal{F}_s\{u_t\} = \mathcal{F}_s\{c^2 u_{tt}\}.$$

$$\dot{\hat{u}}_s = c^2 \left[-w^2 \hat{u}_s + \sqrt{\frac{2}{\pi}} w u(0, t) \right]$$

$$\dot{\hat{u}}_s = -w^2 c^2 \hat{u}_s + a w c^2 \sqrt{\frac{2}{\pi}}$$

$$\dot{\hat{u}}_s + w^2 c^2 \hat{u}_s = a w c^2 \sqrt{\frac{2}{\pi}}$$

• Solve for the homogeneous solution $(\hat{u}_s)_h \mid \dot{\hat{u}} + w^2 c^2 \hat{u}_s = 0$

$$\lambda = -w^2 c^2$$

$$(\hat{u}_s)_h = \kappa(w) e^{\lambda t}$$

$$(\hat{u}_s)_h(w,0) = \mathcal{F}_s \{ u(x,0) \} = \mathcal{F}_s \{ f(x) \} = \hat{f}_s(w)$$

$$(\hat{u}_s)_h = \hat{f}_s(w) e^{-w^2 c^2 t}$$

• Solve for the particular solution $(\hat{u}_s)_p \mid \dot{\hat{u}} + w^2 c^2 \hat{u}_s = awc^2 \sqrt{\frac{2}{\pi}}$

$$(\hat{u}_s)_p = \kappa(w)$$

$$(\hat{u}_s)_p = 0$$

$$0 + w^2 c^2 \kappa(w) = awc^2 \sqrt{\frac{2}{\pi}}$$

$$\kappa(w) = \frac{awc^2 \sqrt{\frac{2}{\pi}}}{w^2 c^2} = \frac{a}{w} \sqrt{\frac{2}{\pi}}$$

$$(\hat{u}_s)_p = \frac{a}{w} \sqrt{\frac{2}{\pi}}$$

• Combining the homogeneous and particular solution, we have the general solution $\hat{u}_s = (\hat{u}_s)_h + (\hat{u}_s)_p$.

$$\hat{u}_s = \hat{f}_s e^{-w^2 c^2 t} + \frac{a}{w} \sqrt{\frac{2}{\pi}}$$

• We know the form of
$$\hat{f}_s(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(p) \sin(wp) dp$$

$$\hat{u}_s(w,t) = \sqrt{\frac{2}{\pi}} \left[\int_0^\infty f(p) \sin(wp) dp \right] e^{-w^2 c^2 t} + \frac{a}{w} \sqrt{\frac{2}{\pi}}$$

$$\hat{u}_s(w,t) = \sqrt{\frac{2}{\pi}} \left[e^{-w^2 c^2 t} \int_0^\infty f(p) \sin(wp) dp + \frac{a}{w} \right]$$

• We can now transfer back into
$$u(x,t)$$
 as $u(x,t) = \mathcal{F}_s^{-1}\{\hat{u}_s(w,t)\}$; $f(x) = \mathcal{F}_s^{-1}\{f(w)\} = \sqrt{\frac{2}{\pi}} \int_0^\infty f(w) \sin(wx) dw$

$$u(x,t) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \left[\sqrt{\frac{2}{\pi}} \left[e^{-w^2 c^2 t} \int_{0}^{\infty} f(p) \sin(wp) dp + \frac{a}{w} \right] \right] \sin(wx) dw$$

$$u(x,t) = \frac{2}{\pi} \int_{0}^{\infty} \left[\left[e^{-w^{2}c^{2}t} \int_{0}^{\infty} f(p) \sin(wp) dp + \frac{a}{w} \right] \right] \sin(wx) dw$$

4

Once the temperature in an object reaches a steady state, the heat equation becomes the Laplace equation. Use separation of variables to derive the steady-state solution to the heat equation on the rectangle $R = [0,1] \times [0,1]$ with the following Dirichlet boundary conditions: u = 0 on the left and right sides; u = f(x) on the bottom; u = g(x) on the top. That is, solve $u_{xx} + u_{yy} = 0$ subject to u(0,y) = u(1,y) = 0, u(x,0) = f(x), and u(x,1) = g(x). You may assume the separation constant is negative: F''/F = -k, for k > 0. Finally, plot u(x,y) when $f(x) = \sin(\pi x)$ and $g(x) = \sin(3\pi x)$.

First we will use separation of variable to obtain 2 ODEs.

• Assume u(x,y) = F(x)G(y) solve for the partial derivates ...

$$u_x = F'G$$

$$u_{xx} = F''G$$

$$u_u = FG'$$

$$u_{uu} = FG''$$

• Substitute into the know equation $u_{xx} + u_{yy} = 0$.

$$F''G + FG'' = 0$$

$$F''G = -FG''$$

$$\frac{F''}{F} = -\frac{G''}{G} = -k$$

$$F'' = -kF : G'' = kG$$

• Solve the ODEs...

$$\lambda_f^2 = -k \; ; \; \lambda_g^2 = k$$

$$\lambda_f = \pm i\sqrt{k} \; ; \; \lambda_a = \pm \sqrt{k}$$

$$F(x) = A_f \cos(x\sqrt{k}) + B_f \sin(x\sqrt{k}) \; ; \; G(y) = A_g e^{y\sqrt{k}} + B_g e^{-y\sqrt{k}}$$

• Inspect the initial conditions . . .

$$u(0,y) = 0 \Rightarrow F(0)G(y) = 0 \Rightarrow F(0) = 0$$

$$u(1,y) = 0 \Rightarrow F(1)G(y) = 0 \Rightarrow F(1) = 0$$

$$u(x,0) = f(x) \Rightarrow F(x)G(0) = f(x)$$

$$u(x,1) = g(x) \Rightarrow F(x)G(1) = g(x)$$

• Use the initial conditions to simplify F and G.

$$F(0) = A_f \cos(0) + B_f \sin(0) = A_f = 0 \Rightarrow F(x) = B_f \sin(x\sqrt{k})$$

$$F(1) = B_f \sin(\sqrt{k}) = 0 \Rightarrow \sqrt{k_n} = n\pi \Rightarrow F_n(x) = B_{f_n} \sin(n\pi x)$$

$$G(0) = A_g + B_g = f(x)$$

$$G(1) = A_g e^{n\pi} + B_g e^{-n\pi} = g(x)$$

$$G_n(y) = A_{g_n} e^{yn\pi} + B_{g_n} e^{-yn\pi}$$

• Find the form of u.

$$u_n(x,y) = F_n(x)G_n(y) = B_{f_n}\sin(n\pi x) \Big[A_{g_n}e^{yn\pi} + B_{g_n}e^{-yn\pi} \Big]$$

$$u_n(x,y) = \sin(n\pi x) \Big[A_ne^{yn\pi} + B_ne^{-yn\pi} \Big]$$

$$u(x,y) = \sum_{n=1}^{\infty} \sin(n\pi x) \Big[A_ne^{yn\pi} + B_ne^{-yn\pi} \Big]$$

• Use the initial conditions to find the constants A_n and B_n .

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} \sin(n\pi x) \left[A_n + B_n \right]$$

$$A_n + B_n = 2 \int_0^1 f(x) \sin(n\pi x) dx$$

$$A_n = 2 \int_0^1 f(x) \sin(n\pi x) dx - B_n$$

$$u(x,1) = g(x) = \sum_{n=1}^{\infty} \sin(n\pi x) \left[A_n e^{n\pi} + B_n e^{-n\pi} \right]$$

$$A_n e^{n\pi} + B_n e^{-n\pi} = 2 \int_0^1 g(x) \sin(n\pi x) dx$$

$$2 \int_0^1 f(x) \sin(n\pi x) e^{n\pi} dx - B_n e^{n\pi} + B_n e^{-n\pi} = 2 \int_0^1 g(x) \sin(n\pi x) dx$$

$$B_n \left[e^{-n\pi} - e^{n\pi} \right] = 2 \int_0^1 g(x) \sin(n\pi x) dx - 2 \int_0^1 f(x) \sin(n\pi x) e^{n\pi} dx$$

$$B_n = \frac{2 \int_0^1 [g(x) - f(x) e^{n\pi}] \sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}}$$

$$A_n = 2 \int_0^1 f(x) \sin(n\pi x) dx - \frac{2 \int_0^1 [g(x) - f(x) e^{n\pi}] \sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}}$$

$$A_n = \frac{2\int_0^1 [f(x)[e^{-n\pi} - e^{n\pi}] - g(x) - f(x)e^{n\pi}]\sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}}$$
$$A_n = \frac{2\int_0^1 [f(x)e^{-n\pi} - 2f(x)e^{n\pi} - g(x)]\sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}}$$

• Substitue A_n and B_n into u(x,t).

$$u(x,y) = \sum_{n=1}^{\infty} \sin(n\pi x) \left[\frac{2e^{yn\pi} \int_{0}^{1} [f(x)e^{-n\pi} - 2f(x)e^{n\pi} - g(x)] \sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}} + \frac{2e^{-yn\pi} \int_{0}^{1} [g(x) - f(x)e^{n\pi}] \sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}} \right]$$

$$u(x,y) = 2\sum_{n=1}^{\infty} \sin(n\pi x) \left[\frac{e^{yn\pi} \int_{0}^{1} [f(x)e^{-n\pi} - 2f(x)e^{n\pi} - g(x)] \sin(n\pi x) dx + e^{-yn\pi} \int_{0}^{1} [g(x) - f(x)e^{n\pi}] \sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}} \right]$$

• Solving for u(x, y) when $f(x) = \sin(\pi x)$ and $g(x) = \sin(3\pi x) \dots$

$$B_{n} = \frac{2\int_{0}^{1} [\sin(3\pi x) - \sin(\pi x)e^{n\pi}] \sin(n\pi x) dx}{e^{-n\pi} - e^{n\pi}} = \frac{2\left(\frac{3}{9\pi - \pi n^{2}} + \frac{e^{n\pi}}{\pi(n^{2} - 1)}\right) \sin(\pi n)}{e^{-n\pi} - e^{n\pi}}$$

$$A_{n} = 2\int_{0}^{1} \sin(\pi x) \sin(n\pi x) dx - B_{n} = \frac{2\sin(\pi n)}{\pi - \pi n^{2}} - B_{n} = 2\sin(n\pi) \left[\frac{1}{\pi - \pi n^{2}} - \frac{\left(\frac{3}{9\pi - \pi n^{2}} + \frac{e^{n\pi}}{\pi(n^{2} - 1)}\right)}{e^{-n\pi} - e^{n\pi}}\right]$$

$$A_{n} = 2\sin(n\pi) \left[\frac{(\pi - \pi n^{2}) - \left(\frac{3}{9\pi - \pi n^{2}} + \frac{e^{\pi n}}{\pi(n^{2} - 1)}\right)}{\pi(1 - n^{2})(e^{-n\pi} - e^{n\pi})}\right]$$

$$u(x, y) = \sum_{n=1}^{\infty} \sin(n\pi x) \left[A_{n}e^{yn\pi} + B_{n}e^{-yn\pi}\right]$$

Let u(x,t) be the solution to $u_{tt} = 16u_{xx}$ for $0 \le x \le 2$ and $t \ge 0$, where: u(0,t) = 0, u(2,t) = 0, and u(x,0) = f(x) = 1 - |x-1| for $0 \le x \le 2$. Use D'Alembert's solution to find u(1,0.1) and u(1,0.6). Be careful to consider that D'Alembert's solution uses the odd periodic extension of f(x).

First consider the form of the f(x) extended as an odd function.

Second we can evaluate given the D'Alembert's solution : 2u(x,t) = f(x-ct) + f(x+ct).

- Note that from the equation given, $c^2 = 16$, Thus c = 4.
- Evaluate u(1, 0.1).

$$2u(1,0.1) = f(1-4(0.1)) + f(1+4(0.1)) = f(1-0.4) + f(1+0.4)$$

$$2u(1,0.1) = f(0.6) + f(1.4) = 0.6 + 0.6 = 2(0.6)$$

$$u(1,0.1) = 0.6$$

• Evaluate u(1, 0.6).

$$2u(1,0.6) = f(1-4(0.6)) + f(1+4(0.6)) = f(1-2.4) + f(1+2.4)$$

$$2u(1,0.6) = 0.6 - 0.6 = 0$$

$$u(1, 0.6) = 0$$

Find the general solution of $u_{xx} - 3u_{xy} + 2u_{yy} = 0$ using the the method of characteristics: let v = y + 2x and w = y + x; define U(v, w) to be U(v, w) = U(y + 2x, y + x) = u(x, y); derive and solve a PDE for U(v, w); convert back to u(x, y). Use your solution to provide a non-trivial example of a solution.

Solve for u.

• We will classify based on the characteristic classifier; $4AC - B^2$.

$$A = 1$$
; $B = -3$; $C = 2$

$$4AC - B^2 = 4(1)(2) - (-3)^2 = 8 - 9 = -1$$

The PDE is Hyperbolic. \Rightarrow Target $U_{vw} = 0$.

• Solve for x and y in terms of u and v.

$$v - w = y + 2x - (y + x) = y + 2x - y - x$$

$$x = v - w$$

$$y = v - 2x = v - 2(v - w) = v - 2v + 2w$$

$$y = 2w - v$$

• Solve for the partials of x and y with respect to v and w.

$$x_v = 1$$

$$x_w = -1$$

$$y_v = -1$$

$$y_w = 2$$

• Solve for the partials of U.

$$U_v = U_x x_v + U_y y_v = U_x - U_y$$

$$U_{vv} = (U_x - U_y)_x x_v + (U_x - U_y)_y y_v = (U_x - U_y)_x - (U_x - U_y)_y = U_{xx} - U_{yx} - U_{xy} + U_{yy} = U_{xx} - 2U_{xy} + U_{yy}$$

$$U_{vw} = (U_x - U_y)_x x_w + (U_x - U_y)_y y_w = 2(U_x - U_y)_y - (U_x - U_y)_x = 2U_{xy} - 2U_{yy} - U_{xx} + U_{yx} = -U_{xx} + 3U_{xy} - 2U_{yy}$$

$$U_w = U_x x_w + U_y y_w = 2U_y - U_x$$

$$U_{ww} = (2U_y - U_x)_x x_w + (2U_y - U_x)_y y_w = 2(2U_y - U_x)_y - (2U_y - U_x)_x = 4U_{yy} - U_{xy} - 2U_{yx} - U_{xx} = -U_{xx} - 3U_{xy} + 4U_{yy} - 2U_{yx} - 2U_{yy} -$$

• At this point we leverage the form of the PDE.

$$-U_{vw} = u_{xx} - 3u_{xy} + 2u_{yy} = 0 = U_{vw}$$

ullet Integrate to get back to U

$$U_v = \phi(v)$$

$$U(v, w) = v\phi(v) + \psi(w)$$

• Substitue v = y + 2x; w = y + x into U to obtain u.

$$U(y + 2x, y + x) = (y + 2x)\phi(y + 2x) + \psi(y + x)$$

$$u(x,y) = y\phi(y+2x) + 2x\phi(y+2x) + \psi(y+x)$$

Find a non-trivial example of u.

• $u(x,y) = y\sin(y+2x) + 2x\sin(y+2x) - (y+x)^2$.

