STATS200 class notes

Erich Trieschman

2021 Fall quarter

Contents

1	Rev	view: Combinatorics and probability			
	1.1	Calculus cheat sheet			
		1.1.1 Logs			
		1.1.2 Derivatives			
		1.1.3 Integrals			
		1.1.4 Infinite series and sums			
	1.2	Events and sets			
	1.3	Probability			
		1.3.1 Conditional probability			
		1.3.2 Independence			
		independence			
2	Ran	ndom variables and common distribution functions			
	2.1	Discrete distribution functions			
		2.1.1 Bernoulli			
		2.1.2 Binomial distribution			
		2.1.3 Geometric distribution			
		2.1.4 Negative binomial			
		2.1.5 Poisson distribution			
	2.2	Continuous distribution functions			
		2.2.1 Uniform distribution			
		2.2.2 Normal distribution			
		2.2.3 Exponential distribution			
		2.2.4 Gamma distribution			
		2.2.5 Cauchy distribution			
		2.2.6 Beta distribution			
		2.2.0 Deta distribution			
3	Joint, marginal, and conditional distributions				
	3.1	Joint distributions			
		3.1.1 Distribution of sums of independent random variables			
		3.1.2 Expectation of joint distributions			
	3.2	Marginal distributions			
	3.3	Conditional distributions			
4	Exp	pected variables			
	4.1	Expected value			
	4.2	Variance			
	4.3	Covariance			
	4.4	Correlation			
	4.5	Key theorems			
		4.5.1 Iterated expectation			
		4.5.2 Variance decomposition			
		4.5.3 Cauchy-Schwartz inequality			
		4.5.4 Jensen inequality			
		4.5.5 Markov inequality			

	4.6	4.5.6 Chebyshev inequality	11
5	Conv 5.1 (5.2 (5.3 (5.4 I 5.5 (ergence and limit theorems Convergence in probability Convergence in L_p Convergence in distribution 5.3.1 Convergence in probability \Longrightarrow convergence in distribution 5.3.2 Slutsky's theorem 5.3.3 Student's t distribution (example use case of Slutsky)	11 11 12 12 12 12 13
6	6.1 M 6.2 M 6.3 M 6.4 H 6.5 H 6.6 H 6.7 G 6.8 H	Mean Squared Error Method of Moments estimator Maximum likelihood estimator Fisher Information 3.4.1 Properties of Fischer Information 3.4.2 The "Big" theorem: Asymptotic distribution using Fischer Information Bayes estimator	15 16 16 17 17 17
7	7.1 I 7.2 I 7.3 U		17
8	8.1	ysis of categorical data Chi-Square Test	

1 Review: Combinatorics and probability

1.1 Calculus cheat sheet

1.1.1 Logs

- $log_b(M*N) = Lob_bM + log_bN$
- $log_b(\frac{M}{N}) = log_b M log_b N$
- $log_b(M^k) = klog_bM$
- $e^n e^m = e^{n+m}$

1.1.2 Derivatives

- $\bullet \ (x^n)' = nx^{n-1}$
- $\bullet \ (e^x)' = e^x$
- $\bullet \ (e^{u(x)})' = u'(x)e^x$

- $(log_e(x))' = (lnx)' = \frac{1}{x}$
- (f(g(x)))' = f'(g(x))g'(x)

1.1.3 Integrals

• TODO: Integration by parts

1.1.4 Infinite series and sums

- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} a^n$ for |x| < 1
- $ln(1+x) = 1 x + \frac{x^2}{2} \frac{x^3}{3} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n}$
- $(1+\frac{a}{n})^n \longrightarrow e^a$

1.2 Events and sets

Set operations follow commutative, associative, and distributive laws:

- Commutative: $E \cup F = F \cup E$ and $E \cap F = F \cap E$ (also written EF = FE)
- Associative: $(E \cup F) \cup G = E \cup (f \cup G)$ and $(E \cap F) \cap G = E \cap (F \cap G)$
- Distributive: $(E \cup F) \cap G = (E \cap G) \cup (F \cap G) = E \cap G \cup F \cap G$ and $E \cap F \cup G = (E \cup G) \cap (F \cup G) = E \cup G \cap F \cup G$

DeMorgan's Laws relate the complement of a union to the intersection of complements:

- $\bullet \ (\cup_{i=1}^n E_i)^c = \cap_{i=1}^n E_i^c$
- $\bullet \ (\cap_{i=1}^n E_i)^c = \cup_{i=1}^n E_i^c$

1.3 Probability

A **probability space** is defined by a triple of objects (S, \mathcal{E}, P) :

- \bullet S: Sample space
- \mathcal{E} : Set of possible events within the sample space. Set of events are assumed to be θ -field (below)
- \bullet P: Probability for each event

A θ -field is a collection of subsets $\mathcal{E} \subset S$ that satisfy

- $0 \in \mathcal{E}$
- $E \in \mathcal{E} \Rightarrow E^C \in \mathcal{E}$
- $E_i \in \mathcal{E}$ for $1, 2, \ldots \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{E}$

Basic probability properties

- $P(A^C) = 1 P(A)$
- P(0) = 0
- $A \subset B \longrightarrow P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

The **law of total probability** relates marginal probabilities to conditional probabilities. For a partition, E_1, E_2, \ldots of set, S, where a partition implies i) E_i, E_j are pairwise disjoint and ii) $\bigcup_{i=1}^{\infty} E_i = S$, then

$$P(A) = \sum_{i=1}^{\infty} P(A \cap E_i) = \sum_{i=1}^{\infty} P(A \mid E_i) P(E_i)$$

The continuity of probability measures state

(i)
$$E_1 \subset E_2 \subset \dots$$
 Let $E_{\infty} = \cup_i E_i$, then $P(E_n) \longrightarrow P(E_{\infty})$ as $n \longrightarrow \infty$

(ii)
$$E_1 \supset E_2 \supset \dots$$
 Let $E_{\infty} = \cap_i E_i$, then $P(E_n) \longrightarrow P(E_{\infty})$ as $n \longrightarrow \infty$

1.3.1 Conditional probability

The conditional probability is the probability of one event occurring, given the other event occurring. A reframing of conditional probability (see formula below) is the probability of both events occurring, divided by the marginal probability of one of the events occurring.

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_y(y)}$$

Bayes Theorem leverages conditional probabilities of measured events to glean conditional probabilities of unmeasured events:

$$P(E_i \mid B) = \frac{P(B \mid E_i)P(E_i)}{\sum_{i=1}^{\infty} P(B \mid E_j)P(E_j)} = \frac{P(B \mid E_i)P(E_i)}{P(B)}$$

Where E_1, E_2, \ldots form a partition of the sample space.

1.3.2 Independence

Events A and B are independent if $P(A \cap B) = P(A)P(B)$

It is possible for events to be pairwise independent, but not mutually independent. For example, toss a pair of dice and let D_1 be the number for die 1 and D_2 be the number for die 2. Define $E_i = \{D_i \leq 2\}$. And define $E_3 = \{3 \leq \max(D_1, D_2) \leq 4\}$. These events are pairwise independent, but $P(E_1 \cap E_2 \cap E_3) = 0$, so they are not mutually independent.

2 Random variables and common distribution functions

Random variables are functions connecting a sample space to real numbers. They are formally defined as

$$\{\omega \in S : X(\omega) \le t\} \in \mathcal{E}$$

For example, if coin tosses produce a sample space of {Heads, Tails}, a random variable can be the number of heads.

2.1 Discrete distribution functions

2.1.1 Bernoulli

Probability mass function (Bernouli(p)): Random variable X takes the value 1 with probability p and the value 0 with probability 1-p

$$p(x) = p^x (1-p)^{1-x}, x \in \{0,1\}$$

Expected value: pVariance: p(1-p)

2.1.2 Binomial distribution

Probability mass function (Bin(n,p)): For random variable X, the number of successes in n trials, the probability of observing j successes where each success has probability p is

$$P(X=j) = \binom{n}{j} p^j (1-p)^{n-j}$$

Expected value: npVariance: np(1-p)

2.1.3 Geometric distribution

Probability mass function (Geom(p)): For random variable X, the number of trials until the first success (included) with probability p is

 $P(X = j) = (1 - p)^{j-1}p$

Expected value: $\frac{1}{p}$ Variance: $\frac{1-p}{p}$

2.1.4 Negative binomial

Probability mass function (NB(r, p)): For random variable X, the number of successes, k before a specified number of failures, r, with probability of success p is

$$P(X = k) = \binom{k+r-1}{k} (1-p)^r p^k$$

Expected value: $\frac{pr}{1-p}$ Variance: $\frac{pr}{(1-p)^2}$

2.1.5 Poisson distribution

Probability mass function ($Pois(\lambda)$): For random variable, X, the number of events, k, occurring in a fixed interval of time or space if these events occur with a known constant mean rate, λ

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Expected value: λ Variance: λ

2.2 Continuous distribution functions

2.2.1 Uniform distribution

Unif(a,b): The distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds.[1] The bounds are defined by the parameters, a and b, which are the minimum and maximum values

$$pdf: f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

$$cdf: F(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b]; \\ 1 & \text{for } x > b \end{cases}$$

Expected value: $\frac{1}{2}(a+b)$ Variance: $\frac{1}{12}(b-a)^2$

2.2.2 Normal distribution

 $N(\mu, \sigma)$

$$pdf: f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$cdf: F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt$$

Expected value: μ Variance: σ^2

2.2.3 Exponential distribution

 $Exp(\lambda)$: the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution.

$$pdf: f(x) = \lambda e^{-\lambda x}$$

 $cdf: F(x) = 1 - e^{-\lambda x}$

Expected value: $\frac{1}{\lambda}$ Variance: $\frac{1}{\lambda^2}$

2.2.4 Gamma distribution

 $Gamma(\alpha, \lambda)$: a two-parameter family of continuous probability distributions.

$$pdf: f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \text{, where } \Gamma(\alpha) = (\alpha-1)! \text{ for any positive integer, } \alpha df: F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \lambda x), \text{ where } \gamma(\alpha, x) = \int_0^x t^{\alpha-1} e^{-t} dt$$

Expected value: $\frac{\alpha}{\lambda}$ Variance: $\frac{\alpha}{\lambda^2}$

2.2.5 Cauchy distribution

Cauchy(t, s): The Cauchy distribution is often used in statistics as the canonical example of a "pathological" distribution since both its expected value and its variance are undefined

$$pdf: f(x) = \frac{1}{s\pi(1+(x-t)/s)^2}$$
, where s is the scale parameter and t is the location parameter $cdf: \frac{1}{\pi}\arctan\left(\frac{x-t}{s}\right) + \frac{1}{2}$

Expected value: DNE

Variance: DNE

2.2.6 Beta distribution

 $Beta(\alpha, \beta)$: a family of continuous probability distributions defined on the interval [0, 1] parameterized by two positive shape parameters that appear as exponents of the random variable and control the shape of the distribution.

$$pdf: f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$$
, where $x \in [0,1]$, and $\Gamma(k) = (k-1)!$ for any positive integer k

Expected value: $\frac{\alpha}{\alpha+\beta}$ Variance: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

3 Joint, marginal, and conditional distributions

3.1 Joint distributions

The cumulative density function (cdf) and probability mass function (pmf) satisfy respectively

cdf:
$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_i \le x_1,...,X_n \le x_n)$$

pmf: $f_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$

The joint density function f then satisfies, for $E \subset \mathbb{R}^n$,

$$P((X_1, \dots, X_n) \in E) = \int \dots \int_E f_{X_1, \dots, X_n} dx_1 \dots dx_n$$

When random variables are independent, the joint cdf and pmf satisfy respectively

cdf:
$$P(X_1 \le x_1, ..., X_n \le x_n) = P(X_1 \le x_1) ... P(X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$$

pmf:
$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) ... P(X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$

3.1.1 Distribution of sums of independent random variables

The following combination of marginal distributions is called a **convolution**. If X and Y have densities, the cdf of X + Y is

$$\begin{split} F_{X+Y}(t) &= P(X+Y \leq t) \\ &= P(X \leq t-y) \\ &= \int_{-\infty}^{\infty} P(X \leq t-y \mid Y=y) f_x(y) dy, \text{ to get marginal distribution} \\ &= \int_{-\infty}^{\infty} F_x(t-y) f_x(y) dy, \text{ since } X,Y \text{ independent} \end{split}$$

Likewise, the density of the sum is

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} f_x(t-y) f_x(y) dy$$

And similarly for discrete random variables

$$p_{X+Y}(t) = \sum_{x=-\infty}^{\infty} p_Y(t-y)p_X(y)$$

3.1.2 Expectation of joint distributions

For X, Y joint distribution, $f_{X,Y}(x,y)$, or probability mass function, p(x,y)

pmf:
$$E[g(X,Y)] = \sum_{s} g(X(s),Y(s))p(s)$$

$$= \sum_{x} \sum_{y} g(x,y) \sum_{s:X(s)=x,Y(s)=y} p(s)$$

$$= \sum_{x} \sum_{y} g(x,y)p(x,y)$$

pdf:
$$E[g(X,Y)] = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x,y)f(x,y)dxdy$$

3.2 Marginal distributions

Marginal density functions or marginal probability mass functions are obtained by integrating or summing out the other variables

$$pmf: f_Y(y) = \sum_x y P(Y = y \mid x) pdf:$$
 $f_Y(y) = \int_a^b f(x, y) dx$, where $x \in [a, b]$

3.3 Conditional distributions

Reminder:

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_y(y)}$$
 and $f_{X|Y}(x \mid y) = \frac{f_{X,Y(x,y)}}{f_X(x)}$

We can use conditional probabilities to restate the law of total probability:

$$P(E) = \int_{-\infty}^{\infty} P(E \mid X = x) f(x) dx$$

4 Expected variables

4.1 Expected value

$$E(X) = \sum_{x} x P(X = x)$$

Which can also be written as

$$E(X) = \sum_{x \in S} X(s)p(s)$$
, where $p(s)$ is the probability that element $s \in S$ occurs:

Proof:

$$E(X) = \sum_{i} x_{i} P(X = x_{i}), \text{ for } E_{i} = \{X = x_{i}\} = \{s \in S : X(s) = x_{i}\}$$

$$= \sum_{i} x_{i} \sum_{s \in E_{i}} p(s) = \sum_{i} \sum_{s \in E_{i}} x_{i} p(s)$$

$$= \sum_{i} \sum_{s \in E_{i}} X(s) p(s) = \sum_{s \in S} x_{i} p(s)$$

This equation structure helps proof several properties of the expected value:

• $E(g(X)) = \sum_{i} g(x_i) p_X(x_i)$, assuming $g(x_i) = y_i$

Proof:

$$\sum_{i} g(x_{i})p_{X}(x_{i}) = \sum_{j} \sum_{i:g(x_{i})=y_{j}} g(x_{i})p_{X}(x_{i}) = \sum_{j} \sum_{i:g(x_{i})=y_{j}} y_{j}p_{X}(x_{i})$$

$$= \sum_{j} y_{j} \sum_{i:g(x_{i})=y_{j}} p_{X}(x_{i}) = \sum_{j} y_{j}P(g(X) = x_{i})$$

$$= E(g(X))$$

 \bullet E(aX + b) = aE(X) + b

$$E(aX+b) = \sum_{s \in S} (aX(s)+b)p(s) = a\sum_{s \in S} X(s)p(s) + \sum_{s \in S} bp(s) = aE(X) + b$$

• E(X + Y) = E(X) + E(Y)

$$E(X+Y) = \sum_{s \in S} (X(s) + Y(s))p(s) = \sum_{s \in S} X(s)p(s) + \sum_{s \in S} Y(s)p(s) = E(X) + E(Y)$$

4.2 Variance

$$Var(X) = E((X - E(X)))^{2}) = \sigma^{2}$$
$$SD = \sqrt{Var(X)} = \sqrt{\sigma^{2}} = \sigma$$

Several properties of variance follow from linearity of expectation:

(i)
$$Var(X) = E(X^2) - \mu^2$$

 $Var(X) = E((X - \mu)^2) = E(X^2 - 2X\mu + \mu^2) = E(X^2 - 2\mu X + \mu^2)$
 $Var(X) = E(X^2) - 2\mu^2 + \mu^2 = E(X^2) - \mu^2$

(ii)
$$Var(aX + b) = a^2Var(X)$$

 $Var(aX + b) = E((aX + b)^2) - E(aX + b)^2 = E(a^2X^2 + 2abX + b^2) - (aE(X) + b)^2$
 $Var(aX + b) = a^2E(X^2) + 2abE(X) + b^2 - a^2E(X)^2 - 2abE(X) - b^2 = a^2E(X^2) - a^2E(X)^2 = a^2(E(X^2) - E(X)^2)$

$$(iii) \ Var(X+Y) = Var(X) + Var(Y) \ \text{for} \ X,Y \ \text{independent}$$

$$Var(X+Y) = E((X+Y)^2) - E(X+Y)^2 = E(X^2) + 2E(XY) + E(Y^2) - E(X^2) - 2E(X)E(Y) - E(Y)^2$$

$$Var(X+Y) = E(X^2) - E(X)^2 + E(Y^2) - E(Y)^2, \ \text{since} \ E(XY) = 0 \ \text{(by independence)} \ \text{and} \ E(X) = E(Y) = 0 \ \text{(WLOG)}$$

$$Var(X+Y) = Var(X) + Var(Y)$$

4.3 Covariance

$$Cov(X, Y) = E((X - E(X)(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Several properties of covariance follow from linearity of expectation

(i)
$$Cov(X, X) = Var(X)$$
:
 $Cov(X, X) = E[(X - E(X)(X - E(X))] = E[(X - E(X))^2] = Var(X)$

(ii)
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
:
 $Cov(X,Y) = E[(X - E(X)(Y - E(Y))] = E(XY - E(Y)X - E(X)Y + E(X)E(Y))$
 $Cov(X,Y) = E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y) = E(XY) - E(X)E(Y)$

(iii) if X, Y independent, then Cov(X, Y = 0)

(iv)
$$Cov(aX, bY) = abCov(X, Y)$$
:
 $Cov(aX, bY) = E(abXY) - E(aX)E(bY) = ab(E(XY) - E(X)E(Y)) = abCov(X, Y)$

$$\begin{aligned} &(v) \; Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z) : \\ &Cov(X,Y+Z) = E(X(Y+Z)) - E(X)E(Y+Z) \\ &Cov(X,Y+Z) = E(XY) + E(XZ) - E(X)E(Y) - E(X)E(Z) = Cov(X,Y) + Cov(X,Z) \end{aligned}$$

$$(vi)\ Cov(U,V) = \sum_i \sum_j b_i d_j Cov(X_i,Y_j), \ \text{with} \ U = a + \sum_i b_i X_i \ \text{and} \ V = c + \sum_j d_j Y_j:$$

$$\begin{split} (vii)\ Var(X+Y) &= Var(X) + Var(Y) + 2Cov(X,Y): \\ Var(X+Y) &= Cov(X+Y,X+Y) = Cov(U,V), \text{ for } U=V=X+Y \\ Var(X+Y) &= Cov(U,V) = Cov(X,X) + Cov(X,Y) + Cov(Y,Y) + Cov(Y,X), \text{ using } vi \\ Var(X+Y) &= Var(X) + Var(Y) + 2Cov(X,Y) \end{split}$$

4.4 Correlation

$$\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

4.5 Key theorems

4.5.1 Iterated expectation

Law of iterated expectation: $E(E(Y \mid X)) = E(Y)$ Proof:

$$E(Y \mid X) = \sum_{y} y \frac{f_{X,Y}(X,y)}{f_{X}(X)}$$

$$E(E(Y \mid X)) = \sum_{x} \sum_{y} \left(y \frac{f_{X,Y}(x,y)}{f_{X}(x)} \right) f_{X}(x) = \sum_{x} \sum_{y} y f_{X,Y}(x,y) = \sum_{y} y f_{Y}(y) = E(Y)$$

4.5.2 Variance decomposition

Variance decomposition formula: $Var(Y) = E(Var(Y \mid X)) + Var(E(Y \mid X))$

4.5.3 Cauchy-Schwartz inequality

Cauchy-Schwartz inequality: $E(UV)^2 \le E(U^2)E(V^2)$, with equality if P(cU=U)=1 for some constant, c Proof:

let
$$h(t) = E((tU - V)^2) \ge 0$$

 $h(t) = t^2 E(U^2) - 2t E(UV) + E(V^2)$, a quadradic equation $h(t) \ge 0 \Rightarrow \text{discriminant} \le 0$
 $\Rightarrow 4E(UV)^2 - 4E(U^2)E(V^2) \le 0$
 $\Rightarrow E(UV)^2 \le E(U^2)E(V^2)$

4.5.4 Jensen inequality

Jensen inequality: $E(g(x)) \ge g(E(x))$ for g(x) convex **Proof:**

Let
$$E(X)=\mu$$
, and $L(X)$ a line s.t. $L(\mu)=g(E(x))$:
$$g(X)\geq L(X) \text{ for all } X$$

$$E(g(X))\geq E(L(X))=L(E(X))=g(E(X))$$

4.5.5 Markov inequality

Markov inequality: For $X \geq 0$, $P(X \geq t) \leq \frac{E(X)}{t} \ \forall t > 0$ Proof:

Let
$$y = \begin{cases} 1 & X \ge t \\ 0 & \text{otherwise} \end{cases}$$

Then $tY \le X$ since $\begin{cases} X \ge t & t*1 \le X \\ X < t & t*0 < X \end{cases}$
 $tY \le X \Longrightarrow E(tY) \le E(X) \Longrightarrow tP(X \ge t) \le E(X)) \Longrightarrow P(X \ge t) \le \frac{E(X)}{t}$

4.5.6 Chebyshev inequality

Chebyshev inequality: $P(|X - E(X)| \ge t) \le \frac{Var(X)}{t^2} \ \forall t > 0$ Proof:

$$\begin{split} &P(|X-E(X)| \geq t) = P((X-E(X))^2 \geq t^2) \\ &P((X-E(X))^2 \geq t^2) \leq \frac{E((X-E(X))^2)}{t^2}, \text{ by Markov inequality} \\ &P((X-E(X))^2 \geq t^2) \leq \frac{Var(X)}{t^2} \end{split}$$

4.6 Moment generating function

The moment generating function of a random variable X is defined as

$$M_X(t) = \mathbb{E}[e^{tX}] = \sum_{n=0}^{\infty} \frac{\mathbb{E}[X^n]}{n!} t^n \leftarrow \text{power series}$$

Notice its called a moment generating function because each derivative of this function can generate a new moment of X at t = 0:

$$M_X^{(n)}(0) = \mathbb{E}[X^n]$$

4.6.1 Common MGF derivations

- $Y = a + bX \Longrightarrow M_Y = e^{at}M_X(bt)$
- $Z = X + Y, X \perp Y \Longrightarrow M_Z = M_Y M_X = E(e^t X) E(e^t Y)$

5 Convergence and limit theorems

5.1 Convergence in probability

A sequence of random variables, X_n , converges in probability, $X_n \stackrel{p}{\longrightarrow} X$ when

$$P(|X_n - X| > \epsilon) \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

Consistent estimator: An estimator, $T_n = T_n(X_1, ..., X_n)$, which converges in probability to $g(\theta)$, a function of the model parameter

Additional properties of convergence in probability

- if $X_n \xrightarrow{p} X$ and $a_n \xrightarrow{p} a$ then $a_n X_n \xrightarrow{p} aX$
- if $X_n \stackrel{p}{\longrightarrow} X$ and $A_n \stackrel{p}{\longrightarrow} A$ then $A_n X_n \stackrel{p}{\longrightarrow} AX$
- if $X_n \xrightarrow{p} X$, $A_n \xrightarrow{p} A$, and $B_n \xrightarrow{p} B$ then $A_n X_n + B_n \xrightarrow{p} AX + B$
- if $X_n \xrightarrow{p} X$ and g a continuous function then $g(X_n) \xrightarrow{p} g(X)$ (continuous mapping theorem)

5.2 Convergence in L_p

See https://en.wikipedia.org/wiki/Lp_space for more information (not much covered in class). Convergence in L_p is stronger than convergence in probability. Counter example to convergence in probability \Longrightarrow convergence in L_p :

Let
$$X_n = \begin{cases} n & \frac{1}{n} \\ 0 & 1 - \frac{1}{n} \end{cases}$$

$$X_n \stackrel{p}{\longrightarrow} 0: \ P(|X_n - 0| \ge \epsilon) = P(X_n = n) = 1/n \longrightarrow 0 \text{ as } n \longrightarrow 0$$
but $E(X_n) = n\frac{1}{n} + 0(1 - \frac{1}{n}) = 1 \Longrightarrow \text{ no convergence in } L_p$

5.3 Convergence in distribution

A sequence of random vectors, X_n , converges in distribution to a random vector, $X_n \xrightarrow{d} X$ when

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$
 at all continuity points in F_X

- Convergence in distribution **does not** imply convergence in probability unless convergence in distribution is to a single point
- if $X_n \xrightarrow{d} X$ and g a continuous function then $g(X_n) \xrightarrow{d} g(X)$ (continuous mapping theorem)

5.3.1 Convergence in probability \implies convergence in distribution

Let X have cdf, F, with t a continuity point of F

$$P(X_n \le a) \le P(X \le a + \epsilon) + P(|X_n - X| > \epsilon) \text{ by lemma}$$

$$P(X \le a - \epsilon) - P(|X_n - X| > \epsilon) \le P(X \le a) \le P(X \le a + \epsilon) + P(|X_n - X| > \epsilon)$$

$$F_X(a - \epsilon) \le \lim_{n \to \infty} P(X_n \le a) \le F_X(a + \epsilon), \text{ where } F_X(a) = P(X \le a)$$

$$\implies \lim_{n \to \infty} P(X \le a) = P(X \le a) \Longrightarrow \{X_n\} \xrightarrow{d} X$$

5.3.2 Slutsky's theorem

 $A_n X_n + B_n \xrightarrow{d} aX + b$ if

- $\{X_n\}$ sequence with $X_n \stackrel{d}{\longrightarrow} X$
- $\{A_n\}$ sequence with $A_n \stackrel{d}{\longrightarrow} A$
- $\{B_n\}$ sequence with $B_n \stackrel{d}{\longrightarrow} b$

5.3.3 Student's t distribution (example use case of Slutsky)

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\hat{\sigma}} \xrightarrow{d} N(0, 1):$$

$$\begin{split} \frac{\sqrt{n}(\bar{X}_n - \mu)}{\hat{\sigma}} &= \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \frac{\sigma}{\hat{\sigma}} \\ \text{And we know } \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1) \\ &\quad \text{and } \frac{\sigma}{\hat{\sigma}} \xrightarrow{p} 1 \text{ since } \hat{\sigma} \xrightarrow{p} \sigma \\ \text{So, by Slutsky's theorem } \frac{\sqrt{n}(\bar{X}_n - \mu)}{\hat{\sigma}} \xrightarrow{d} N(0, 1) * 1 \end{split}$$

This RHS term is referred to as the t-statistic, which follows a Stuent's t distribution with n-1 degrees of freedom. In practice, if the sample is reasonably sized, it won't make a difference using the Normal distribution instead of the Student's t distribution.

5.4 Law of large numbers

For X_1, X_2, \ldots, X_n a sequence of i.i.d. random variables with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$, $\overline{X}_n = \frac{1}{n} \sum_{I=1}^n X_I$, then for any $\epsilon > 0$

$$P(|\overline{X}_n - \mu| > \epsilon) \longrightarrow 0 \text{ as } n \to \infty$$

Proof:

First find $\mathbb{E}(\overline{X}_n)$ and $Var(\overline{X}_n)$

$$\mathbb{E}(\overline{X}_n) = \frac{1}{n} \sum_{I=1}^n \mathbb{E}(X_i) = \mu$$

$$Var(\overline{X}_n) = \frac{1}{n^2} \sum_{I=1}^n Var(X_i) = \frac{\sigma^2}{n}, \text{ since } X_i \text{ independent}$$

The desired result now follows immediately from Chebyshev's inequality, which states

$$P(|\overline{X}_n - \mu| > \epsilon) \le \frac{Var(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty$$

5.5 Central limit theorem

Most useful form of CLT, which can be used for approximate methods:

$$\sqrt{n} \frac{(\overline{X}_n - \mu)}{\sigma} \longrightarrow N(0, 1)$$
$$\sqrt{n} (\overline{X}_n - \mu) \longrightarrow N(0, \sigma^2)$$

More formal definition and proof: For $X_1, X_2, ..., X_n$ a sequence of i.i.d. random variables with $E(X_i) = 0$, $Var(X_i) = \sigma^2$, and the common cumulative distribution function F and moment-generating function M defined in a neighborhood of zero. Then

For
$$S_n = \sum_{i=1}^n X_i$$

$$\lim_{n \to \infty} P(\frac{S_n}{\sigma \sqrt{n}} \le x) = \Phi(x)$$

Proof: Let $Z_n = \frac{S_n}{\sigma\sqrt{n}}$. We show the MGF of Z_n tends to the MGF of the standard normal distribution. Since S_n is a sum of independent random variables,

$$M_{S_n}(t) = [M(t)]^n \text{ and } M_{Z_n}(t) = [M(\frac{t}{\sigma\sqrt{n}})]^n$$
 Reminder: Taylor series expansion of $M(s) = M(0) + sM'(0) + \frac{1}{2}sM''(0) + \epsilon_s$
$$M(\frac{t}{\sigma\sqrt{n}}) = 1 + \frac{1}{2}\sigma^2(\frac{t}{\sigma\sqrt{n}})^2 + \epsilon_n \text{ with } E(X) = M'(0) = 0, Var(X) = M''(0) = \sigma^2$$

$$M_{Z_n}(t) = (1 + \frac{t^2}{2n} + \epsilon_n)^n$$

$$M_{Z_n}(t) \longrightarrow e^{\frac{t^2}{2}} \text{ as } n \longrightarrow \infty, \text{ by the infinite series convergence to } e^a$$

Since $e^{\frac{t^2}{2}}$ is the MGF of the standard normal distribution, we have proven the central limit theorem.

5.6 Delta method

If g is a differentiable function at μ

$$\sqrt{n}(g(\bar{X}_n) - g(\mu)) \stackrel{d}{\longrightarrow} N(0, g'(\mu)^2 \sigma^2)$$

Proof

For general g and assuming $E(\bar{X}_n) = \mu$: $g(\bar{X}_n) \approx g(\mu) + g'(\mu)(\bar{X}_n - \mu) + \frac{1}{2}g''(\mu)(\bar{X}_n - \mu)^2 + \epsilon \text{ (Taylor approximation of } g(\mu))$

$$g(\bar{X}_n) \approx g(\mu) + g'(\mu)(\bar{X}_n - \mu) + \frac{1}{2}g''(\mu)(\bar{X}_n - \mu)^2 + \epsilon \text{ (Taylor approximation of } g(\bar{X}_n) - g(\mu) \approx g'(\mu)(\bar{X}_n - \mu) + \epsilon$$

$$\sqrt{n}(g(\bar{X}_n) - g(\mu)) \approx g'(\mu)\sqrt{n}(\bar{X}_n - \mu) + \epsilon \text{ and we know}$$

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$$

$$g'(\mu)\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, g'(\mu)^2 \sigma(2))$$
So $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \xrightarrow{d} N(0, g'(\mu)^2 \sigma(2))$

Note: if we find that $g'(\mu) = 0$, then repeat this process with the second derivative, $g''(\mu)$. The end result is a formula that converges in distribution to a scaling of a random variable, Z^2 which follows a χ_1^2 distribution.

6 Estimation

The following section provides an overview of methods for estimating population parameters, θ , using functions of the data ("estimators"), $T(X_1, \ldots, X_n)$

6.1 Mean Squared Error

The Mean Squared Error (MSE) can be used to evaluate our estimators.

$$MSE(T, \theta) = E_{\theta}[(T - g(\theta))^{2}]$$

$$= E_{\theta}(T^{2}) - 2g(\theta)E_{\theta}(T) + g(\theta)^{2}$$

$$= Var_{\theta}(T) + E_{\theta}(T)^{2} + 2g(\theta)E_{\theta}(T) + g(\theta)^{2}$$

$$= Var_{\theta}(T) + (E_{\theta}(T) - g(\theta))^{2}$$

$$= Var_{\theta}(T) + Bias_{\theta}^{2}(T), \text{ where } Bias_{\theta}(T) = E_{\theta}(T) - g(\theta)$$

6.2 Method of Moments estimator

To generate a method of moments estimator

• Calculate a moment using the moment generating function of the assumed distribution. Any moment, k, can be used, but lower moments will typically lead to an estimator distribution with lower variance

$$E(X^k) = g(\theta)$$

• Invert this expression to create an expression for the parameter(s) in terms of the moment

$$g^{-1}(E(X^k)) = \theta \Longrightarrow f(E(X^k)) = \theta$$
, where $f(x) = g^{-1}(x)$

• Insert the sample moment into this expression, thus obtaining estimates of the parameters in terms of data

$$\hat{\theta} = f(\frac{1}{n} \sum X_i^k)$$
, by LNN $\frac{1}{n} \sum X_i^k \stackrel{p}{\longrightarrow} E(X^k)$

• Use the delta method to determine what the method of moments estimator converges to in distribution

$$\sqrt{n}(f(\frac{1}{n}\sum X_i^k) - \theta) \stackrel{d}{\longrightarrow} N(0, f'(E(X_i^k))^2 Var(X_i^k)^2)$$

Methods of moment estimators are not uniquely determined, nor must they exist. The motivation for subsequent estimators is to help us pick the estimator with the smallest possible variance.

6.3 Maximum likelihood estimator

The **maximum likelihood estimator** constructs an estimator, $\hat{\theta}_{MLE}$, that maximizes the likelihood function with respect to θ .

The likelihood function, $L(\theta)$ is the joint density or probability mass function, $f(X, \theta)$ evaluated at the data, $\{X_i, \ldots, X_n\}$. Assuming the data is i.i.d.:

$$L(\theta) = \prod_{i=1}^{n} f(X_i, \theta)$$

The typical method to generate a maximum likelihood estimator

• Construct the likelihood function

$$L(\theta) = \prod_{i=1}^{n} f(X_i, \theta)$$

• Take the log of the likelihood function (usually leading to a function that is easier to derive)

$$log(L(\theta)) = l(\theta) = \sum_{i=1}^{n} log(f(X_i, \theta))$$

• Take the derivative of the log-likelihood function with respect to θ

$$\frac{d}{d\theta}l(\theta) = \sum_{i=1}^{n} \frac{d}{d\theta}log(f(X_i, \theta))$$

• Find critical points of this function and determine that one is a maximum

$$0 = \sum_{i=1}^{n} \frac{d}{d\theta} log(f(X_i, \hat{\theta}))$$
$$0 = \sum_{i=1}^{n} \frac{d^2}{d\theta^2} log(f(X_i, \hat{\theta})), \text{ checking if } \hat{\theta} < 0$$

See next section on **Fischer Information** for guidance on the asymptotic distribution of the maximum likelihood estimator

6.4 Fisher Information

The **information** that data, X, contains about parameter, θ is defined by

$$I(\theta) = E_{\theta} \left[\left(\frac{d}{d\theta} log(f(X, \theta)) \right)^{2} \right]$$

- Fisher Information assumes differentability and existence of the second moment
- $\frac{d}{d\theta}log(f(X,\theta))$ is called the **score** function

6.4.1 Properties of Fischer Information

$$(i) E_{\theta} \left[\left(\frac{d}{d\theta} log(f(X,\theta)) \right) \right] = 0:$$

$$E_{\theta} \left[\left(\frac{d}{d\theta} log(f(X,\theta)) \right) \right] = \int \frac{d}{d\theta} log(f(x,\theta)) f(x,\theta) dx = \int \frac{f'(x,\theta)}{f(x,\theta)} f(x,\theta) dx = \int f'(x,\theta) dx$$

$$E_{\theta} \left[\left(\frac{d}{d\theta} log(f(X,\theta)) \right) \right] = \frac{d}{d\theta} \int f(x,\theta) dx = \frac{d}{d\theta} * 1 = 0$$

$$(ii) \ I(\theta) = Var\left(\frac{d}{d\theta}log(f(X,\theta))\right):$$

$$Var\left(\frac{d}{d\theta}log(f(X,\theta))\right) = E_{\theta}\left[\left(\frac{d}{d\theta}log(f(X,\theta))\right)^{2}\right] - E_{\theta}\left[\left(\frac{d}{d\theta}log(f(X,\theta))\right)\right]^{2}$$

$$Var\left(\frac{d}{d\theta}log(f(X,\theta))\right) = I(\theta) - 0^{2} = I(\theta)$$

$$\begin{split} (iii) \ I(\theta) &= -E_{\theta} \left[\frac{d^2}{d\theta^2} log(f(X,\theta)) \right] \\ &\frac{d}{d\theta} log(f(x,\theta)) = \frac{f'(x,\theta)}{f(x,\theta)} \Longrightarrow \frac{d^2}{d\theta^2} log(f(x,\theta)) = \frac{f(x,\theta)f''(x,\theta) - f'(x,\theta)^2}{f(x,\theta)^2} \\ &E \left[\frac{d^2}{d\theta^2} log(f(x,\theta)) \right] = \int \frac{f(x,\theta)f''(x,\theta) - f'(x,\theta)^2}{f(x,\theta)^2} f(x,\theta) dx = \int f''(x,\theta) - I(\theta) \\ &E \left[\frac{d^2}{d\theta^2} log(f(x,\theta)) \right] = -I(\theta), \text{ since } \int \frac{d^2}{d\theta^2} f(x,\theta) = \frac{d^2}{d\theta^2} * 1 = 0 \end{split}$$

(iv) $I_{X,Y}(\theta) = I_X(\theta) + I_Y(\theta)$ for X, Y independent **Corrolary:** $I_n(\theta) = nI_1(\theta)$ for X_1, \dots, X_n i.i.d with $I_1(\theta)$ the Information based on one data **Note:** Information increases with larger sample!

(v) Cramer-Rau-Fisher Inequality: $Var(T(X)) \geq \frac{g'(\theta)^2}{I(\theta)}$ for $E(T(X)) = g(\theta)$ $Cov[T(X), \frac{d}{d\theta}log(f(X, \theta))] = E[T(X)\frac{d}{d\theta}log(f(X, \theta))]$, using property 1 $Cov[T(X), \frac{d}{d\theta}log(f(X, \theta))] = \int T(x)f'(x, \theta)dx = \frac{d}{d\theta}\int T(x)f(x, \theta)dx = \frac{d}{d\theta}E(T(X)) = \frac{d}{d\theta}g(\theta) = g'(\theta)$ $g'(\theta)^2 \leq Var(T(X))Var\left(\frac{d}{d\theta}log(f(X, \theta))\right) = Var(T(X))I(\theta)$ by correlation inequality: $\rho^2 \leq 1$ $Var(T(X)) \geq \frac{g'(\theta)^2}{I(\theta)}$

6.4.2 The "Big" theorem: Asymptotic distribution using Fischer Information

Under regularity assumptions, the maximum likelihood estimator (or any other reasonable estimator), $\hat{\theta}$ of θ satisfies

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N\left(0, \frac{1}{I(\theta)}\right)$$

Sketch of proof:

$$L(\theta) = \prod_{i=1}^{n} f(X_i, \theta)$$

$$l(\theta) = \log(L(\theta)) = \sum_{i=1}^{n} \log(f(X_i, \theta))$$

MLE solves $l'(\hat{\theta}) = 0$, with $l'(\theta) \approx l'(\theta_0) + (\hat{\theta} - \theta_0)l''(\theta_0)$

(full proof requires showing the error in this approx. is small)

$$\begin{split} 0 &= l'(\theta_0) + (\hat{\theta} - \theta_0)l''(\theta_0) \Longrightarrow \hat{\theta} - \theta_0 = \frac{l'(\theta_0)}{l''(\theta_0)} \\ &\Longrightarrow \sqrt{n}(\hat{\theta} - \theta_0) = \sqrt{n}\frac{l'(\theta_0)}{l''(\theta_0)} = \frac{l'(\theta_0)}{\sqrt{n}} \div \frac{l''(\theta_0)}{n} \\ &\frac{l''(\theta_0)}{n} = \frac{\sum \frac{d^2}{d\theta^2}log(f(X,\theta))}{n} \overset{p}{\longrightarrow} -E_{\theta} \left[\frac{d^2}{d\theta^2}log(f(X,\theta))\right] = I(\theta) \\ &\frac{l'(\theta_0)}{\sqrt{n}} = \frac{\sum \frac{d}{d\theta}log(f(X,\theta))}{\sqrt{n}} \overset{d}{\longrightarrow} N(0,I(\theta)) \\ &\frac{l'(\theta_0)}{\sqrt{n}} \div \frac{l''(\theta_0)}{n} \overset{d}{\longrightarrow} N\left(0,\frac{I(\theta)}{I(\theta)^2}\right) = N\left(0,\frac{1}{I(\theta)}\right), \text{ by Slutsky's theorem} \end{split}$$

- 6.5 Bayes estimator
- 6.6 Key theorems
- 6.7 Consistency
- 6.8 Efficiency
- 6.9 Sufficiency

7 Hypothesis testing

- 7.1 Likelihood ratio
- 7.2 Neyman-Pearson lemma
- 7.3 Uniformly Most Powerful tests
- 7.4 Confidence intervals
- 8 Analysis of categorical data
- 8.1 Chi-Square Test
- 8.2 Fisher's Exact Test