## Testing Techniques 2021 - 2022Tentamen

January 24, 2022

## 1 Model-Based Testing

Consider the labelled transition systems  $q_1$ ,  $q_2$ ,  $q_3$ , and  $q_4$  in Fig. 1. These systems model queues with input ?in and outputs !out and !full.



Figure 1: Four models of queues.

System  $q_1$  represents an unbounded queue; the dotted lines at the bottom of  $q_1$  are meant to indicate that there are infinitely many states, and that there is no bound on the number of ?in actions that can be performed after each other. System  $q_2$  is also an unbounded queue, but it is a

lossy queue: every second input may get lost. Queues  $q_3$  and  $q_4$  are bounded queues with capacity three, the difference being that  $q_4$  gives an explicit message when the queue is full.

a. Which of the systems  $q_1, q_2, q_3, q_4$  are input-enabled? Why?

Answer

For  $q_1$ ,  $q_2$ , and  $q_4$  all inputs, i.e., ?in, are enabled in all states:

for 
$$i = 1, 2, 4, \forall q \in Q_i, \forall a \in \{?in\} : q \stackrel{a}{\Longrightarrow} .$$

For  $q_3$  this is not the case: in the lowest state input ?in is not enabled.

```
So, q_1, q_2, and q_4 are input-enabled; q_3 is not.
```

b. Consider **ioco** as implementation relation:

```
i ioco s \iff_{def} \forall \sigma \in Straces(s) : out(i \text{ after } \sigma) \subseteq out(s \text{ after } \sigma)
```

Take  $q_3$  as specification and  $q_4$  as implementation. Is  $q_4$  an **ioco**-correct implementation of  $q_3$ , i.e., does  $q_4$  **ioco**  $q_3$  hold? Explain.

Answer

We have that  $q_4$  **ioco**  $q_3$  holds. The only difference between  $q_4$  and  $q_3$  is that input ?in is not specified in the lowest state of  $q_3$  whereas it is enabled in the lowest state of  $q_4$ . This is allowed according to **ioco**, since ?in·?in·?in·?in  $\notin Straces(q_3)$ , so any behaviour after this trace is allowed.

c. Can an unbounded queue correctly implement a bounded queue specification, i.e., does  $q_1$  ioco  $q_3$  hold? And if the queue is lossy: does  $q_2$  ioco  $q_3$  hold? Explain.

Answer

 $q_1$  ioco  $q_3$  holds, because, like above,  $q_1$  allows input ?in where it is under-specified in  $q_3$ , which is ioco-conforming.

```
q_2 io¢o q_3: take \sigma = ?in \cdot ?in \cdot !out \in Straces(q_3),
then out(q_2 after \sigma) = \{!out, \delta\} \not\subseteq \{!out\} = out(q_3 after \sigma).
```

d. Compare the two unbounded queues: does  $q_1$  ioco  $q_2$  or  $q_2$  ioco  $q_1$  hold?

Answer

 $q_1$  ioco  $q_2$  holds, because, if  $out(q_1 \text{ after } \sigma) \neq \emptyset$ , then  $q_2 \stackrel{\sigma}{\Longrightarrow}$  and whatever output  $q_1$  can do after  $\sigma$ ,  $q_2$  can do, too.

```
q_2 io¢o q_1: take \sigma = ?in \cdot ?in \cdot !out \in Straces(q_1), then out(q_2 \text{ after } \sigma) = \{!out, \delta\} \not\subseteq \{!out\} = out(q_1 \text{ after } \sigma).
```

e. Now compare the two unbounded queues for implementation relation **uioco**:

$$\begin{array}{lll} \textit{Utraces}(s) & =_{\text{def}} & \{ \ \sigma \in \textit{Straces}(s) \ | \ \forall \sigma_1, \sigma_2 \in L^*_{\delta}, \ a \in L_I : \\ & \sigma = \sigma_1 \cdot a \cdot \sigma_2 \text{ implies not } s \text{ after } \sigma_1 \text{ refuses } \{a\} \ \} \\ & i \text{ uioco } s & \iff_{\text{def}} & \forall \sigma \in \textit{Utraces}(s) : \ \textit{out}(i \text{ after } \sigma) \subseteq \textit{out}(s \text{ after } \sigma) \end{array}$$

What differs with respect to the previous question? Does  $q_1$  uioco  $q_2$  or  $q_2$  uioco  $q_1$  hold?

Answer

 $q_1$  ioco  $q_2$  and ioco  $\subseteq$  uioco, so  $q_1$  uioco  $q_2$ .

Since  $q_1$  is deterministic, we have that  $Straces(q_1) = Utraces(q_1)$ :

let  $\sigma \in Straces(q_1)$ , such that  $\sigma = \sigma_1 \cdot a \cdot \sigma_2$ , then  $\exists q' : q_1 \stackrel{\sigma_1}{\Longrightarrow} q' \stackrel{a}{\Longrightarrow}$ . Since  $q_1$  is deterministic, we have that  $q_1 \stackrel{\sigma_1}{\Longrightarrow} q'$  and  $q_1 \stackrel{\sigma_1}{\Longrightarrow} q''$  implies q' = q''. So, not  $\exists q'' : q_1 \stackrel{\sigma_1}{\Longrightarrow} q''$  and  $\forall \mu \in \{a, \tau\} : q'' \stackrel{\mu}{\longrightarrow} , so \text{ not } s \text{ after } \sigma_1 \text{ refuses } \{a\}$ . It follows that  $\sigma \in Straces(q_1)$  implies  $\sigma \in Utraces(q_1)$ , and **ioco** and **uioco** are the same for  $q_1$  as specification, and consequently,  $q_2 \text{ uioco} q_1$ .



Figure 2: Test case  $t_1$  for queue systems.

f. Fig. 2 gives a test case  $t_1$ . From which of the models  $q_1$  and  $q_2$  can this test case be generated using the **ioco**-test generation algorithm?

## Answer

Test case  $t_1$  can be generated fom  $q_1$ , but not from  $q_2$ : after three times an ?in-action,  $q_2$  can be in the second, third, or fourth state (from the top, i.e., from the initial state). This means that only one !out action is guaranteed, and that after the first !out, quiescence may occur. In test case  $t_1$  this means that the second and third  $\theta$ -transition should lead to a pass-state, i.e.,  $t_1$  should be such that  $t_1$  after ?in·?in·!out = {pass} and  $t_1$  after ?in·?in·!out·!out = {pass}, in order to be generated by the ioco-test generation algorithm.

g. Give the test runs and determine the verdict of executing the test case  $t_1$  on  $q_2$ .

| Answer              |                                                                  |                                    |
|---------------------|------------------------------------------------------------------|------------------------------------|
| $t_1 \mid \mid q_2$ | $\xrightarrow{?in\cdot!out}$                                     | $\mathbf{pass} \mid \mid q_2^0$    |
| $t_1 \mid \mid q_2$ | $\xrightarrow{?in\cdot?in\cdot!out}$                             | $\mathbf{pass} \mid \mid q_2^1$    |
| $(t_1 \mid\mid q_2$ | $\xrightarrow{?in\cdot?in\cdot!out}$                             | $\mathbf{pass} \mid\mid q_2^0 \ )$ |
| $t_1 \mid \mid q_2$ | $\xrightarrow{?in\cdot?in\cdot?in\cdot!out\cdot\theta}$          | $\mathbf{fail} \mid \mid q_2^0$    |
| $t_1 \mid \mid q_2$ | $\xrightarrow{?in\cdot?in\cdot?in\cdot!out\cdot!out\cdot\theta}$ | fail $\parallel q_2^0$             |
| $t_1 \mid \mid q_2$ | $\xrightarrow{?in\cdot?in\cdot?in\cdot!out\cdot!out\cdot!out}$   | $\mathbf{pass} \mid\mid q_2^0$     |

3

There are passing and failing test runs, so  $q_2$  fails  $t_1$ . (which is consistent with the previous question: if  $t_1$  could have been generated from  $q_2$  then the input-enabled process  $q_2$  should have passed its own test case).

h. Is test case  $t_1$  sound for specification  $q_1$  with respect to implementation relation ioco? And is it sound for  $q_2$  with respect to ioco? Explain.

Answer

Soundness:  $\forall i \in \mathcal{IOTS}(L_I, L_U) : i \text{ ioco } s \text{ implies } i \text{ passes } t$ 

Test case  $t_1$  is sound for specification  $q_1$ :  $t_1$  can be generated from  $q_1$  using the **ioco**-test generation algorithm, which generates only sound test cases (Theorem 2.1 of the *MBT with LTS* paper).

Test case  $t_1$  is not sound for  $q_2$ :

 $q_2$  ioco  $q_2$ , since  $q_2 \in \mathcal{IOTS}$  (see a.) and ioco is reflexive on  $\mathcal{IOTS}$  (Proposition 2.4 of the MBT with LTS paper). Yet, according to g.,  $q_2$  fails  $t_1$ , so  $t_1$  is not sound for  $q_2$ .

## 2 Labelled Transition Systems

Consider the processes  $P_1$ ,  $P_2$ , and  $P_3$ , which are represented as labelled transition systems in Figure 3 with labelset  $L = \{a, b, c, d\}$ .



Figure 3:

- a. Argue informally whether you consider the following pairs of processes to be equivalent or not, i.e., describe test experiments or observations that can distinguish the processes, or argue why they cannot be distinguished:
  - 1.  $P_1$  and  $P_2$

Answer

Try to do  $a \cdot b \cdot d$ :  $P_1$  may refuse this trace, whereas  $P_2$  always allows it, so they are not equivalent.

2.  $P_2$  and  $P_3$ 

Answer

Try to do  $a \cdot b \cdot c$ :  $P_2$  always allows this trace, whereas  $P_3$  may refuse it, so they are not equivalent.

3.  $P_1$  and  $P_3$ 

Answer

Try to do  $a \cdot b \cdot d$ :  $P_1$  may refuse this trace, whereas  $P_3$  always allows it, so they are not equivalent.

b. Consider testing equivalence, that is, perform a trace of actions  $\sigma$  and see which actions can then be refused. Formally:

 $p \approx_{te} q \iff_{\text{def}} \forall \sigma \in L^*, \ \forall A \subseteq L: \ p \text{ after } \sigma \text{ refuses } A \text{ iff } q \text{ after } \sigma \text{ refuses } A$ 

with p after  $\sigma$  refuses  $A \iff_{\text{def}} \exists p': p \stackrel{\sigma}{\Longrightarrow} p' \text{ and } \forall a \in A \cup \{\tau\}: p' \stackrel{a}{\longrightarrow} b$ .

Which of the following pairs of processes are  $\approx_{te}$ ? Why?

1.  $P_1$  and  $P_2$ 

Answer

Not testing equivalent:  $P_1$  after  $a \cdot b$  refuses  $\{d\}$ , not  $P_2$  after  $a \cdot b$  refuses  $\{d\}$ .

2.  $P_2$  and  $P_3$ 

Answer

Not testing equivalent: not  $P_2$  after  $a \cdot b$  refuses  $\{c\}$ ,  $P_3$  after  $a \cdot b$  refuses  $\{c\}$ .

3.  $P_1$  and  $P_3$ 

Answer Not testing equivalent:  $P_1$  after  $a \cdot b$  refuses  $\{d\}$ , not  $P_3$  after  $a \cdot b$  refuses  $\{d\}$ .

- c. Now consider the processes as input-output transition systems with  $L_I = \{a\}$  and  $L_U = \{b, c, d\}$  and completed with self-loops in order to make them input-complete. Which of the following pairs of processes are **ioco**-related?
  - 1.  $P_1$  ioco  $P_2$

Answer

 $P_1$  ioco  $P_2$  holds:

```
\begin{array}{l} out(\,P_1\ {\bf after}\ \epsilon\,) = out(\,P_2\ {\bf after}\ \epsilon\,) = out(\,P_3\ {\bf after}\ \epsilon\,) = \{\delta\},\\ out(\,P_1\ {\bf after}\ a\,) = out(\,P_2\ {\bf after}\ a\,) = out(\,P_3\ {\bf after}\ a\,) = \{b\},\\ out(\,P_1\ {\bf after}\ a\cdot b\,) = out(\,P_2\ {\bf after}\ a\cdot b\,) = out(\,P_3\ {\bf after}\ a\cdot b\,) = \{c,d\},\\ out(\,P_1\ {\bf after}\ a\cdot b\cdot c\,) = out(\,P_2\ {\bf after}\ a\cdot b\cdot c\,) = out(\,P_3\ {\bf after}\ a\cdot b\cdot c\,) = \{\delta\},\\ out(\,P_1\ {\bf after}\ a\cdot b\cdot d\,) = out(\,P_2\ {\bf after}\ a\cdot b\cdot d\,) = out(\,P_3\ {\bf after}\ a\cdot b\cdot d\,) = \{\delta\}. \end{array}
```

2.  $P_2$  ioco  $P_3$ 

Answer

 $P_2$  ioco  $P_3$  holds: see above.

3.  $P_3$  ioco  $P_1$ 

Answer

 $P_3$  ioco  $P_1$  holds: see above.