DEEP LEARNING IN PYTHON

Outline

- Softmax: Going from binary classification to multi-class classification
- How to train a neural net: backpropagation
- XOR and Donut
 - o I'll prove to you that neural networks can automatically learn discriminating features
- Numpy: Build neural networks by hand
- TensorFlow: Plug-n-play script
- TensorFlow Playground: Visualize what a neural network is learning
- More projects:
 - Facial expression recognition

High-level view of ANY supervised learning problem

All models (logistic regression, k-nearest neighbor, Naive Bayes, SVM, decision tree, neural nets) have the same 2 functions:

train() - learn model params from the data

predict() - make accurate predictions using the params learned during training

Architecture

- one or more hidden layers
- every node in one layer is connected to every node in the next layer
- signals get transmitted from the input, to the hidden layer, to the output
- the output is aiming for a target

Neural networks are networks of neurons

- Logistic unit is a neuron (one is shown in red, can you spot the other 2?)
- A neural network is just layers of logistic regression units

Learning (Backpropagation)

- backpropagation
- the error gets "propagated" backwards
 - o V depends on error at Y
 - o W depends on error at Z
 - Same pattern if more layers
- the weights get updated based on this propagated error

Neural Networks (Feedforward)

w's are hard to see: W(i,j) goes from x(i) to z(j)

$$z_j = sigmoid(\sum_i (W_{ij}x_i) + b_j)$$

$$p(y|x) = sigmoid(\sum_{j} (v_j z_j) + c)$$

$$i = 1,2$$

 $J = 1,2,3$

Nonlinearities

 $Tanh(x) = (e^x - e^{-x}) / (e^x + e^{-x})$

Exercise: show relationship between tanh and sigmoid

Nonlinearities

relu(x) = max(0, x)

Rectifier Linear Unit

Example

One hidden layer, 2 hidden units

$$x = [0, 1]$$
 $W(1,1) = W(1,2) = W(2,1) = W(2,2) = 1$
 $v(1) = v(2) = 1$
 $b = c = 0$

Solution:

$$z(1) = sigmoid(0*1 + 1*1) = 0.731, z(2) = sigmoid(0*1 + 1*1) = 0.731$$

 $p(y|x) = sigmoid(0.731*1 + 0.731*1) = 0.812$

Later: How do we choose W, V, b, c so that our predictions are accurate?

Vector Notation

Numpy operations are more efficient than Python for loops

$$z_{j} = \text{sigmoid}(\sum_{i}(W_{ij}x_{i}) + b_{j}) \rightarrow z_{j} = \text{sigmoid}(W_{j}^{T}x + b_{j}) \rightarrow z = \text{sigmoid}(W^{T}x + b)$$

$$p(y|x) = sigmoid(\sum_{i}(v_{i}z_{i}) + c) \rightarrow p(y|x) = sigmoid(v^{T}z + c)$$

x is a D-dimensional vector (D=2 in the previous image)

z is an M-dimensional vector (M=3 in the previous image)

Matrix Notation

We usually want to consider more than one sample at a time.

It's even more efficient to process the multiple samples simultaneously

- X is an NxD matrix (N = number of samples)
- Z is an NxM matrix
- p(Y|X) (sometimes just called "Y") is an Nx1 matrix (for binary classification, which is what we're currently doing) (for K classes, it'll be NxK)
- W is DxM, b is Mxl, v is Mxl, c is a scalar (1x1)

Z = sigmoid(XW + b)

Y = sigmoid(Zv + c)

Binary classification

Examples:

- (humidity, ground is wet, month, location) \rightarrow (rain, no rain)
- (exercise frequency, age, BMI, nutrient intake) → (disease, no disease)

Yes / No

K Classes

Facebook Images (Advertising applications):

- Faces
- Cars
- Wedding dresses
- Environment

MNIST:

Digits between 0-9

Binary output with 2 output nodes

$$a_1 = w_1^T x \qquad \exp(a_1) > 0$$

$$a_2 = w_2^T x \qquad \exp(a_2) > 0$$

Binary output with 2 output nodes

$$a_1 = w_1^T x$$
 $W = [w_1 w_2] (D x 2)$

$$a_2 = w_2^T x$$

Softmax for K Classes

$$P(Y = k | X) = \exp(a_k) / Z$$

 $Z = \exp(a_1) + \exp(a_2) + ... + \exp(a_K)$
 $W = [w_1 w_2 ... w_K]$ (a D x K matrix)

Vectorized logistic regression with softmax:

$$A_{NxK} = X_{NxD}W_{DxK} \rightarrow Y_{NxK} = softmax(A_{NxK})$$

Sigmoid vs. Softmax

When are they equivalent?

$$p(Y=1 \mid X) = \exp(w_1^T x) / [\exp(w_1^T x) + \exp(w_0^T x)]$$

$$p(Y=0 \mid X) = \exp(w_0^T x) / [\exp(w_1^T x) + \exp(w_0^T x)]$$

Divide top and bottom of p(Y=1|X) by $exp(w_1^Tx)$

Sigmoid vs. Softmax

But if you are trying to build a more general classifier, one that can handle anything... then softmax is a safer choice because it works for K=2 AND K>2

Training a Neural Network

- To refresh your memory, there are 2 main functions in a ML model:
 - o train(X, Y)
 - o predict(X)
- Previous section covered prediction
- Input: data X, Output: probability the data belongs to each output category
- None of those predictions made sense because the weights were random
- In this section, we answer the question:
- "What should we set the weights to?"

The Main Concepts

- We very intuitively define something called the "cost"
- Like any good businessman, we desire to minimize the "cost"
- How?
- Falls into the domain of calculus calculus provides tools to find the min/max of a function
- We use a method called "gradient descent"
- Again, first presented in Logistic Regression, but I include a simple example in the Appendix

How do we define cost?

- For binary classification, exactly like how we calculate the likelihood of a coin toss
- Ex. We flip 2 heads, 3 tails
- Likelihood = p(H)p(H)p(T)p(T)p(T)
- We multiply because each toss is independent
- We can also say p = p(H), then:
- Likelihood = $p^{H}(1-p)^{T}$

Minimize or maximize?

- With likelihood, we want to find a "p" that maximizes the likelihood
- But we want to minimize "cost"
- So we take the negative log of the likelihood and call that the "cost"
- Negative log likelihood = -{ #H logp + #T log(1-p) }
- We call this the "cross-entropy cost function"

Cross-Entropy

 y_n = output of logistic regression or neural network

 t_n = actual target (0 or 1)

$$cost = J = -\sum_{n=1}^{N} t_n log(y_n) + (1 - t_n) log(1 - y_n)$$

- Recall: to find the best weights to minimize this cost, we use "gradient descent"
- We can also maximize the negative of this ("gradient ascent")

Cross Entropy for Multi-class Classification

- In this class, we want to handle any number of outputs
- Let's consider a die roll (6 faces, but let's call it K)
- $y_k = \text{probability of output being } k$
- t_k = 1 if we roll k, 0 otherwise
- N total die rolls, so $t_{n,k} = 1$ if we rolled k on the nth die roll
- Therefore, only ONE of the $t_{n,k}$ can be 1 for any particular n

$$\circ$$
 $t_{n,k}$ is thus an "indicator matrix" or "one-hot encoded" matrix of 1s and 0s

$$likelihood = \prod_{n=1}^{N} \prod_{k=1}^{K} y_{n,k}^{t_{n,k}}$$

Cross Entropy for Multi-class Classification

$$cost = J = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n,k} log y_{n,k}$$

How to minimize the cost

- Next, we'll see how we perform gradient descent on the new cost function and how to write it in code
- People underestimate the importance of this: "TensorFlow will already do it for us"
- You will see how later in the course
- Researchers spent decades trying to find this algorithm
- It's the "secret sauce" of neural networks
- Same thing will be used no matter how complex the architecture: convolutional nets, recurrent nets, autoencoders, etc.
- All with this one algorithm

TRAINING A NEURAL NETWORK

$$J = -\sum_{n} t_{n} l_{n} g_{y_{n}} + (1 - t_{n}) l_{n} g_{y_{n}} + (1$$

To TAL DERIVATIVES

$$f(x,y) \quad x(t) \quad y(t)$$

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$\frac{df}{dt} = \sum_{k} \frac{\partial f}{\partial x_{k}}$$

To TAL DEPIVATIVES

$$f(x,y) \quad x(t) \quad y(t)$$

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$\frac{df}{dt} = \sum_{k} \frac{\partial f}{\partial x_{k}} \frac{dx_{k}}{dt}$$

$$y_{k} = \frac{e^{a_{k}}}{\sum_{j} e^{a_{j}}} \qquad a_{k} = V_{k}^{T} Z$$

$$a_{k} = \sum_{m} V_{mk} Z_{m}$$

$$\frac{\partial y_{k'}}{\partial a_{k}} = y_{k'} (1 - y_{k}) \quad \text{if } k = k'$$

$$y_{k} = \frac{e^{a_{k}}}{\sum_{j} e^{a_{j}}} \qquad a_{k} = V_{k}^{T} Z$$

$$a_{k} = \sum_{m} V_{mk} Z_{m}$$

$$\frac{\partial y_{k'}}{\partial a_{k}} = \left(y_{k'}(1 - y_{k})\right) \quad \text{if } k = k'$$

$$-y_{k'} y_{k} \qquad \text{if } k \neq k'$$

$$\frac{\partial y_{k'}}{\partial a_{k}} = \begin{cases} y_{k'}(1 - y_{k}) & \text{if } k = k' \\ -y_{k'} y_{k} & \text{if } k \neq k' \end{cases}$$
Knonecker delta
$$\begin{cases} \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } j \end{cases}$$

$$\frac{\partial y_{ik}}{\partial a_{ik}} = y_{ik'}(s_{kk'} - y_{ik})$$

$$\frac{\partial a_k}{\partial V_{mk}} = Z_m$$

$$\frac{\partial a_k}{\partial V_{mk}} = Z_m$$

$$\frac{\partial J}{\partial V_{mk}} = \sum_{n} (E_k^n - y_k^n) Z_m^n$$

Combine:

$$\frac{\partial J}{\partial V_{nk}} = \sum_{n} (\xi_{k}^{n} - y_{k}^{n}) Z_{m}^{n}$$
 $\frac{\partial J}{\partial V_{nk}} = \sum_{n} \sum_{k} (\xi_{k}^{n} - y_{k}^{n}) V_{mk} Z_{m}^{n} (1 - Z_{m}^{n}) \chi_{d}^{n}$
 C_{k} is not on the left

"total derivative"

$$\frac{\partial J}{\partial W_{sk}^3} = (t_k - y_k) Z_s^3$$

$$\frac{\partial J}{\partial W_{rs}^2} = \sum_{k} (t_k - y_k) W_{sk}^3 Z_s^3 (1 - Z_s^3) Z_r^2$$

The Typical Approach

- $\delta^3(k) = y(k) t(k)$ = "error" at that node
- Why is this the error?
- Why not some other expression?
- $\Delta V(j,k) = z(j) \delta^3(k)$
- Then we say:
- $V(j,k) = V(j,k) \eta \Delta V(j,k)$
- Why?

The Typical Approach

- That's the opposite of what you should do!
- Basic facts:
- We want to maximize likelihood, or equivalently minimize negative log-likelihood
- We know gradient descent is a general all-purpose way to optimize anything
- We used it already:
- Logistic regression
- Quadratic (high school math!)
- Starting with this is the right approach
- The "delta" is useful, because we can define backpropagation recursively
- But the key is to expose the pattern yourself (using GD), and use substitution for delta

XOR

Probably the canonical problem used in transitioning from logistic regression to

neural nets

Sigmoid

$$\sigma(x) = 1 / (1 + \exp(-x))$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Sigmoid

$$\sigma(x) = 1 / (1 + \exp(-x))$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Hyperbolic Tangent

$$y = tanh(x) = (e^x - e^{-x}) / (e^x + e^{-x})$$

$$dy/dx = 1 - y^2$$

Exercise: find relationship between tanh(x) and sigmoid(x)

Rectifier Linear Unit (relu)

```
y = relu(x) = max(0, x)

dy/dx = 1 \text{ if } x > 0, 0 \text{ if } x < 0
```


Hyperparameters

- Things that have possibly seemed arbitrary
 - How did I choose the learning rate?
 - o How did I choose the regularization param?
 - How did I choose the number of hidden units / hidden layers?
 - o How did I choose between sigmoid/tanh/relu?
- These are hyperparameters

Hyperparameters

- No precise way to choose
- Makes people uncomfortable
 - Isn't science supposed to give us exact answers?
 - Exact: Try everything possible, choose the best → Infeasible
- Choose manually, requires experience

Practice

- Practice!
 - o People always ask, "how can I get better?" → By testing hyperparameter settings yourself!
 - o Don't wait for me, I'm just a video!
 - Will be different for different problems
 - Choose your problem → What are you interested in? (I can only make recommendations, not choose for you)
- This isn't grade school, don't depend on someone to give you homework
- Do you work somewhere? Do they have data? Use it!
- Ask question on the discussion board. That's why Udemy made it!

Cross-Validation

- General way to choose hyperparameters.
- E.g. We want to know if 4 vs 5 hidden units is better.
- Do cross-validation on both, choose the one with the best accuracy.
- "Best" could be defined as "statistically significantly better" if you're into stats

BUT

- We don't want to get "perfect" accuracy on our training data
- Data = signal + noise
- Want to fit to signal, not noise

Split up your data

Train - train on this data

Validation - validate on this data -- defined shortly

Test - try not to touch this data until the very end

K-Fold Cross-Validation

Split data into K parts, suppose K=5.

5 iterations.

Iteration 1: Train on parts 2-5, test on part 1

Iteration 2: Train on parts 1,3,4,5, test on part 2

Iteration 3: Train on parts 1,2,4,5, test on part 3

Etc...

Then: take mean and variance of classification rate.

Can do statistical test to compare (i.e. T-test), there are Scipy functions for these

K-Fold Cross-Validation

Split data into K parts, suppose K=5.

5 iterations.

Iteration 1: Train on parts 2-5, test on part 1

Iteration 2: Train on parts 1,3,4,5, test on part 2

Iteration 3: Train on parts 1,2,4,5, test on part 3

Etc...

Then: take mean and variance of classification rate.

Can do statistical test to compare (i.e. T-test), there are Scipy functions for these

In Code

```
def crossValidation(model, X, Y, K=5):
    X, Y = shuffle(X, Y)
    sz = len(Y) / K
    scores = []
    for k in xrange(K):
        xtr = np.concatenate([ X[:k*sz, :], X[(k*sz + sz):, :] ])
        ytr = np.concatenate([ Y[:k*sz], Y[(k*sz + sz):] ])
        xte = X[k*sz:(k*sz + sz), :]
        yte = Y[k*sz:(k*sz + sz)]

        model.fit(xtr, ytr)
        score = model.score(xte, yte)
        scores.append(score)
    return np.mean(scores), np.std(scores)
```

Hyperparameters

- Manually choosing the learning rate and regularization penalty
- It's a question I get often
- People are "uncomfortable" that there is a number you can't calculate, that you just need to find
- Isn't this science? Doesn't science give direct and concrete answers?
- Get used to it!

Learning rate

- We know so far: it's a "small number"
- You've seen some examples, so you have an idea of order of magnitude
- The right scale:
- If I've already tried 0.1, then I don't need to try 0.09, 0.08, 0.07, etc.
- (But you would have discovered that through experience!)
- Better to go down on log scale / factors of 10
- 10e-1, 10e-2, 10e-3, etc...
- I've used 10e-7 before

Too high or too low

- Too high → cost goes to infinity / NaN
- Neural network will continue to train as normal, multiplying NaNs as if they were actual numbers
- Cost converges too slowly → learning rate is too low
- Try increasing by factor of 10
- Problems?
- Try to turn off all modifications except for regular gradient descent (no regularization or anything else you've learned)
- Learning rate that's too high will mess things up, but learning rate that's too low won't
- If things still don't work, could be a problem with your code

Normalizing cost and regularization penalty

- In deep learning part 2 we discuss training a neural network in batches
- Learning rate will be sensitive to number of training points / batch size
- Because cost is sum of individual errors
- Just divide by N (batch size) to normalize it
- Same issue with number of parameters and regularization
- To make regularization penalty independent of number of parameters, divide by number of parameters

Normalizing cost and regularization penalty

- In deep learning part 2 we discuss training a neural network in batches
- Learning rate will be sensitive to number of training points / batch size
- Because cost is sum of individual errors
- Just divide by N (batch size) to normalize it
- Same issue with number of parameters and regularization
- To make regularization penalty independent of number of parameters, divide by number of parameters

Regularization too high

- In the past, I forgot to multiply my regularization penalty by the regularization parameter (effectively setting it to 1)
- For that particular problem, this was much too high
- So the error rate just hovered around random guessing
- Sometimes it's useful to just turn off regularization completely, and make learning rate very small
- Tells you if your model actually works or if there's a bug in your code

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

What you've learned

- full neural network, incorporating concepts we learned before, about logistic regression
- how to classify K classes using softmax
- how to derive the gradient for backpropagation
- practical issues: learning rate, regularization penalty, # hidden units, # hidden layers

What else?

A lot!

- convolutional neural networks
- Word2vec / Deep NLP (king man + woman = queen)
- LSTM
- more training methods:
 - o Restricted Boltzmann Machines, Autoencoders
 - Dropout, DropConnect
- Reinforcement learning

You know more than you think you know

- I made this extra lecture a few months after starting the course
- To show you how applicable this stuff is
- Common end goal: understand latest and greatest
 - Convolutional Neural Networks
 - Recurrent Neural Networks (LSTMs)

How does this class help?

Logistic Regression Review

- 2 functions for supervised machine learning: prediction and training
- Prediction: $y = \sigma(Wx)$
- Training: $W \leftarrow W \eta \partial J/\partial W$

Logistic Regression Review

- 2 functions for supervised machine learning: prediction and trainin
- Prediction: $y = \sigma(Wx)$
- Training: $W \leftarrow W \eta \partial J/\partial W$

Neural Networks (This Course)

- Prediction: $y = \sigma(W_1 \sigma(W_2 x))$
- Training: $W_i \leftarrow W_i \eta \partial J/\partial W_i$
- Can be arbitrarily deep, as you'll see

Convolutional Neural Networks

- Prediction: $y = \sigma(W_1 \sigma(W_2 * x))$
- Training: $W_i \leftarrow W_i \eta \partial J/\partial W_i$
- * = convolution

Recurrent Neural Networks

Prediction:

$$h(t) = \sigma(W_x x(t) + W_h h(t-1))$$

$$y(t) = \sigma(W_o h(t))$$

• Training: $W_i \leftarrow W_i - \eta \partial J/\partial W_i$

Autoencoders

- Instead of train(inputs=X, outputs=Y), just call train(inputs=X, outputs=X)
 - Auto = self
- Stacking autoencoders + logistic regression works very well
- You can do this with **JUST** the knowledge from this course

Moral of the story

- Knowing how to take the derivative of the cost function is critical
- (The rest is just creatively building the architecture / layout of the NN)
 - o You can even make up your own
 - This is what many researchers do, and they get published in scientific journals!
- Each of these just required one more simple step.
- This class will make the rest go from out-of-your-reach → easy

Exercises and How to get Good

- "Can you put up more exercises?"
- Machine learning models are for making predictions
 - What do you want to predict?
 - What are you interested in?
 - Hopefully you can answer that!
- Standard ML datasets / benchmarks:
 - MNIST
 - CIFAR
 - SVHN
 - Iris
 - Government data
 - Enron emails

Theoretical ML is very, very hard

- No magical homework questions
- "Calculate the force on a man standing in an elevator"
- Theoretical questions in ML are extremely difficult
- Focus on understanding the material
- Do by yourself, don't skip any steps:
 - o Derivative of sigmoid, hyperbolic tangent, softmax
 - Derivative of cost function wrt weights using softmax (requires much attention to detail)
 - Deliberately left it as an exercise in this course
 - Try dJ/dW on a very deep network, understand the recursive pattern
 - Vectorize the weight updates by hand so you can code them in Numpy

Predictive models are for data

- You choose what data to use it on, only you know what you are interested in
- Must practice
- Not just plug-and-chug
 - Need to pick right # hidden units, # hidden layers, learning rate, regularization, etc.
- Lots of time and waiting
- You will not get good just watching videos
 - o That is like trying to master tennis from a book
- If you come across an issue, ask on the discussion board (that's what it's for!)
- Observe cost as gradient descent progresses
- Cost blowing up → something is wrong

Data pre-processing

- What to do with outliers, what to do with missing data?
 - o Many techniques, do your own research not deep learning specific
- What about images, sounds, and sentences?
 - Images → flatten it to a vector
 - Sound → extract features / FFT
- Common methods of pre-processing:
 - Make the range 0..1
 - Standardize = subtract mean, divide by standard deviation
- Words
 - Bag of words / one-hot encoding (discussed in Linear Regression course and N
 - o TF-IDF
- Categorical variables: one-hot encoding

Data pre-processing

- What to do with outliers, what to do with missing data?
 - Many techniques, do your own research not deep learning specific
- What about images, sounds, and sentences?
 - Images → flatten it to a vector
 - Sound → extract features / FFT
- Common methods of pre-processing:
 - Make the range 0..1
 - Standardize = subtract mean, divide by standard deviation
- Words
 - Bag of words / one-hot encoding (discussed in Linear Regression course and NLP course)
 - o TF-IDF
- Categorical variables: one-hot encoding

Summary

- In each course, complexity will go up, hand-holding goes down
- At the beginning:
 - o More verbose code, math not rigorous
- Later:
 - Skip more steps
 - Tighten up code
- How to get good at anything:
 - Deep learning is a tool
 - Those who are good with their tools are the ones that use them all the time

Help with Softmax Derivative

- Hardest part of backpropagation derivation is softmax portion (derivative of softmax, + putting it back into the full derivative)
- Only watch this if you've spent a few days on your own first
- · No new skills if you already know differential calculus
- Main obstacle: you need to be very careful

Softmax

Definition of softmax:

$$y(k) = \frac{e^{a(k)}}{\sum\limits_{j=1}^{K} e^{a(j)}}$$

KEY: answer depends on whether you take derivative wrt a(k) or a(k'), for k' = k

Softmax

Definition of softmax:

$$y(k) = \frac{e^{a(k)}}{\sum\limits_{j=1}^{K} e^{a(j)}}$$

KEY: answer depends on whether you take derivative wrt a(k) or a(k'), for k' != kLet's do a(k) first

Softmax derivative

Product rule

$$\frac{dy(k)}{da(k)} = \frac{d(e^{a(k)})}{da(k)} \frac{1}{\sum_{j=1}^{K} e^{a(j)}} + \frac{d\left[\sum_{j=1}^{K} e^{a(j)}\right]^{-1}}{da(k)} e^{a(k)}$$

Softmax derivative

Solve individual derivatives

$$\frac{dy(k)}{da(k)} = \frac{e^{a(k)}}{\sum\limits_{j=1}^{K} e^{a(j)}} - \left[\sum_{j=1}^{K} e^{a(j)}\right]^{-2} e^{a(k)} e^{a(k)}$$

$$\frac{dy(k)}{da(k)} = y(k) - y(k)^2 = y(k)(1 - y(k))$$

Softmax derivative

Product rule

$$\frac{dy(k)}{da(k)} = \frac{d(e^{a(k)})}{da(k)} \frac{1}{\sum_{j=1}^{K} e^{a(j)}} + \frac{d\left[\sum_{j=1}^{K} e^{a(j)}\right]^{-1}}{da(k)} e^{a(k)}$$

Softmax derivative

Solve individual derivatives

$$\frac{dy(k)}{da(k)} = \frac{e^{a(k)}}{\sum_{j=1}^{K} e^{a(j)}} - \left[\sum_{j=1}^{K} e^{a(j)} \right]^{-2} e^{a(k)} e^{a(k)}$$

$$\frac{dy(k)}{da(k)} = y(k) - y(k)^2 = y(k)(1 - y(k))$$

Softmax Derivative

Wrt a(k'), for k' != k

$$\frac{dy(k)}{da(k')} = e^{a(k)} \frac{d\left[\sum\limits_{j=1}^{K} e^{a(j)}\right]^{-1}}{da(k')}$$

$$\frac{dy(k)}{da(k')} = e^{a(k)} \frac{d \left[\sum_{j=1}^{K} e^{a(j)} \right]^{-1}}{da(k')}$$

$$\frac{dy(k)}{da(k')} = e^{a(k)} (-1) \left[\sum_{j=1}^{K} e^{a(j)} \right]^{-2} e^{a(k')}$$

Softmax Derivative

Separate the 2 terms and simplify

$$\frac{dy(k)}{da(k')} = -\frac{e^{a(k)}}{\sum\limits_{j=1}^{K} e^{a(j)}} \frac{e^{a(k')}}{\sum\limits_{j=1}^{K} e^{a(j)}} = -y(k)y(k')$$

Softmax Derivative

Combine the 2 answers using delta function. 2 possibilities, only 1 is useful:

$$\frac{dy(k)}{da(k')} = y(k)(\delta(k, k') - y(k'))$$

$$\frac{dy(k)}{da(k')} = y(k')(\delta(k, k') - y(k))$$

$$\frac{dy(k)}{da(k')} = y(k')(\delta(k,k') - y(k))$$

Softmax Derivative

$$\sum_{k'=1}^{K} t_n(k') \frac{1}{y_n(k')} y_n(k') (\delta(k, k') - y_n(k))$$

$$\sum_{k'=1}^{K} t_n(k') (\delta(k, k') - y_n(k))$$

$$\sum_{k'=1}^K t_n(k')(\delta(k,k') - y_n(k))$$

We want k' on the outside so y(n, k') cancels. But how do we get rid of the k' and delta completely to get to the final answer?

$$t_n(k)-y_n(k)$$

Softmax Derivative

Split the summation

$$\sum_{k'=1}^{K} t_n(k') \delta(k, k') - \sum_{k'=1}^{K} t_n(k') y_n(k)$$

$$t_n(k) - \sum_{k'=1}^K t_n(k') y_n(k)$$

Softmax Derivative

Split the summation

$$\sum_{k'=1}^{K} t_n(k') \delta(k, k') - \sum_{k'=1}^{K} t_n(k') y_n(k)$$

$$t_n(k) - \sum_{k'=1}^K t_n(k') y_n(k)$$

Softmax Derivative

y(n, k) doesn't depend on k', so it can be brought outside the sum

$$t_n(k) - y_n(k) \sum_{k'=1}^{K} t_n(k')$$

Only 1 target over all classes can be 1, so sum over all classes is 1

$$t_n(k) - y_n(k)$$