lecture 08 Rigid Body Motions

Katie DC

Sept. 24, 2019

Modern Robotics Ch. 3.1-3.2

Admin

- HW4 is the PF coding assignment!
- HW5 will be posted soon
- Reflection 1 is due Sunday 9/29 at midnight

Who was Benjamin Olinde Rodrigues?

- A mathematician who turned to finance for employment
 - PhD in math and became a banker
- His dissertation introduced the Rodrigues formula
 - Formerly known as the Ivory—Jacobi formula, as it was independently introduced by Olinde Rodrigues (1816), Sir James Ivory (1824) and Carl Gustav Jacobi (1827)

Frames of Reference

body frame origin p can be expressed: $P = P \times \hat{X}_s + P_7 \hat{Y}_s$ to describe the orientation of \(\) b\(\) we use \(\D \) to write: \(\)

F53 & body frame

Stixed reference frame

to express everything in terms of Es3, we need

$$P = \begin{bmatrix} p_x \\ p_y \end{bmatrix} * P = \begin{bmatrix} x_b & \hat{y}_b \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$\Rightarrow \text{ column vectors}$$

Changing frames

The pair (P,p), parametrerized by O, provide a description of post ori of 863 relative to Es3 for Ec3 relative to Es3, we write (R,r): $r = \begin{bmatrix} r_x \\ r_y \end{bmatrix}$, $R = \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix}$ $\cos \phi$ for ¿c3 in {b} coordinates: $g = \begin{bmatrix} q_x \\ q_y \end{bmatrix}, Q = \begin{bmatrix} \cos \psi \\ \sin \psi \end{bmatrix}$ $\cos \psi$

if we know (Q,q) + (P,p), we can compute & c3 relative to & s3:

Rigid Body Motions

• • •

Special Orthogonal Groups

SO(3), the group that represents all spatial rotation matrices, is the set of all 3×3 real matrices R that satisfy

- 1. $R^{\mathsf{T}}R = I$
- 2. $\det R = 1$
- Note that (2) implies that both (1) holds and that we obey the righthand rule

Similarly, SO(2), the group describes all planar rotation matrices, is the set of all 2×2 real matrices R, satisfying the same conditions.

Rotation Matrices

- We use the convention R_{ab} for the matrix whose **columns are** coordinates of the frame \boldsymbol{b} expressed in the frame \boldsymbol{a}
- We have the following laws:

$$R_{ab}R_{bc} = R_{ac}$$
 and $R_{ab}^{-1} = R_{ba}$

• If the vector p_a is the vector p expressed in frame a, then

$$R_{ba}p_a = p_b$$

• If we rotate a vector v around the $\widehat{\omega}$ axis by angle θ , we say $\mathrm{Rot}(\widehat{\omega},\theta)v$

• For a rotation about the x-axis:
$$\operatorname{Rot}(\widehat{\omega}, \theta)v = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}v$$

Rotations about the y and z axis follow

Frames in 3D

$$R_{b} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{c} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Recall the cross product

• The cross-product is defined as $a \times b = ||a|| ||b|| \sin \theta N$

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Angular Velocities

Angular Velocities in Reference Frame In fixed frame £53, R(t) is the rotation matrix that describes the orientation of the body w.r.t. £53 at £ let $\hat{x} = r_1(t)$, $\hat{y} = r_2(t)$, $\hat{z} = r_3(t)$ let ws = W = angular velocity in Es3

$$\dot{r}_{i} = \omega_{s} \times r_{i}, i = 1, 2, 3 \implies \dot{R} = \left[\omega_{s} \times r_{i}, \omega_{s} \times r_{z} \right]$$

let's simplify by eliminating cross-product somewmatrix.

for each w, define a unique skew-symmetric matrix

 $A = -A^{\tau}$, denoted so(3)

For each
$$w_1$$
 and w_2 w_3 w_4 w_5 w_6 w_6 w_7 w_8 w_8

Some useful properties and relations

Given any $\omega \in \mathbb{R}^3$ and $R \in SO(3)$, the following holds: $R[\omega]R^{\top} = [R\omega]$

Now recall: $[\omega_s] = \dot{R}R^{\mathsf{T}}$

If
$$R$$
 is R_{sb} , we have that $\omega_s = R\omega_b \Leftrightarrow \omega_b = R^\top \omega_s$
$$[\omega_b] = [R^\top \omega_s] = R^\top (\dot{R}R^\top)R = R^\top \dot{R} = R^{-1}\dot{R}$$

This gives us: $[\omega_s] = \dot{R}R^{\mathsf{T}}$ and $[\omega_s] = R^{\mathsf{T}}\dot{R}$

Exponential Coordinate Representation

- Instead representing orientation as a rotation matrix, we introduce a three parameter representation: **exponential coordinates.**
- Recall: $\widehat{\omega}$ rotation axis, θ angle of rotation
- Then $\widehat{\omega}\theta \in \mathbb{R}^3$ gives the exponential coordinate representation
- A new interpretation for a frame coincident with $\{s\}$:
 - A rotation for 1 second around $\widehat{\omega}$ at angular velocity θ , then the resulting frame is R
 - A rotation for θ seconds around $\widehat{\omega}$ at angular velocity 1, then the resulting frame is R

Review: Linear ODEs and the Matrix Exponential

eview: Linear ODEs and the Matrix Expo

$$x = A \times (+)$$
, $x(6) = x_6$ \longrightarrow soln: $x(+) = \underbrace{x^{At}}_{At} \times b$

matrix exponentian/exponentia function expansion: $e^{At} = I + At + \frac{1}{2}A^{2}t^{2} + \frac{1}{3!}A^{3}t^{3} + \cdots$

(2) If
$$A = PDP$$
, then $e^{A} = e^{B} = e^{A} = e^{A+B}$
(3) If $AB = BA$, then $e^{A} = e^{B} = e^{A} = e^{A+B}$

Exponential Coordinates of Rotations (1)

vector p(6) is rotated around to to p(6)

Recall: p= \widetilde{\text{P}} \times p= [\widetilde{\text{D}}] p

| diff en = 0 | p(0)

[$\hat{\omega}$] is skew-symmetric \rightarrow [$\hat{\omega}$]³ = -[$\hat{\omega}$] and [$\hat{\omega}$]⁴ = -[$\hat{\omega}$]² Note a few tricks: $\sin x = x \sim \frac{1}{3!} x^3 + \cdots$ and $\cos x = 1 - \frac{1}{2} x^2 + \cdots$ $L \rightarrow e^{[\tilde{\omega}]\Theta} = I + [\tilde{\omega}]\Theta + \frac{1}{2}[\tilde{\omega}]^{2} + \frac{1}{3}[\tilde{\omega}]^{3}\Theta^{3} + \cdots$ $= \frac{1}{1} + (\Theta - \Theta^{3}/3! + \cdots) [\widehat{\omega}] + (\Theta^{2} - \Theta^{4} + \cdots) [\widehat{\omega}]^{2}$ $= \frac{1}{1} + (\Theta - \Theta^{3}/3! + \cdots) [\widehat{\omega}] + (\Theta^{2} - \Theta^{4} + \cdots) [\widehat{\omega}]^{2}$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ $|\alpha|\sin\theta$ Rodrigues Formula sino

Matrix Logarithm

• Given rotation matrix R, we need to take the *logarithm* to find the exponential coordinates:

exp:
$$[\widehat{\omega}]\theta \in so(3) \rightarrow R \in SO(3)$$

log: $R \in SO(3) \rightarrow [\widehat{\omega}]\theta \in so(3)$

• If we expand Rodrigues formula:

$$Rot(\widehat{\omega}, \theta) = I + \sin \theta [\widehat{\omega}] + (1 - \cos \theta) [\widehat{\omega}]^2$$

$$\operatorname{Rot}(\widehat{\omega}, \theta) = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1 - c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1 - c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1 - c_{\theta}) \end{bmatrix}$$

Matrix Logarithm Method

- If we take the trace of the matrix, we can solve for θ :
 - $tr(R) := r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta$
- If we compute $R^{\top} R$, we get:

•
$$r_{32} - r_{23} = 2\hat{\omega}_1 \sin \theta$$

• $r_{13} - r_{31} = 2\hat{\omega}_2 \sin \theta$
• $r_{21} - r_{12} = 2\hat{\omega}_3 \sin \theta$
[$\hat{\omega}$] = $\frac{1}{2 \sin \theta} (R^{\mathsf{T}} - R)$

- But what if $\sin \theta = 0$? (called singularities)
 - If $\theta = 2k\pi$, we have rotated by 360 degrees
 - If $\theta = (2k+1)\pi$, then Rodrigues formula is $R = I + 2[\widehat{\omega}]^2$, which gives:

$$\widehat{\omega}_i = \pm \sqrt{\frac{r_{ii}+1}{2}}$$
 and $2\widehat{\omega}_i\widehat{\omega}_j = r_{ij}$ for $i \neq j$