Oscar H. Mata.

I this project analyzed the Alzheimer Disease dataset. Yet I focused on the variables Heart_Disease and physical_inactivity in the states of Michigan, Wisconsin, Minnesota, North Dakota, Montana, and Washington.

TEST OF NORMALITY

First, I checked whether **Heart_Disease** was normally distributed.

proc univariate data=Alzheimer_filtered;

var Heart_Disease;

histogram / normal;

qqplot / normal(mu=est sigma=est);

The QQ plot reveals a data that does not follow a straight line. On the other hand, the histogram shows some skewness to the right. These outcomes indicate that Heart_Disease might not be normally distributed. However, this conclusion needs to be supported by further tests.

Since the QQ plot and histogram are not a 100% reliable tool to check normality of the variables, I used Shapiro Wilks test to confirm my assumptions.

Hypothesis:

H0: The data are normally distributed.

H1: The data are not normally distributed.

We reject H0 if p<0.05.

proc univariate data=Alzheimer_filtered normal;

var Heart_Disease;

run;

The SAS System							
The UNIVARIATE Procedure Variable: Heart_Disease							
Tests for Normality							
Test	St	atistic	p Value				
Shapiro-Wilk	w	0.964855	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.09598	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.672434	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	3.720663	Pr > A-Sq	<0.0050			

I calculated p-value=0.0001 for the variable Heart_Disease, which is less than alpha=0.05. Thus, I can reject H0. I can conclude that Heart_Disease is not normally distributed.

Secondly, I examined whether the variable **physical_inactivity** follows a normal distribution.

proc univariate data=Alzheimer_filtered;

var physical_inactivity;

histogram / normal;

qqplot / normal(mu=est sigma=est);

run;

The QQ plot reveals that the data points are largely aligned with the straight line, with deviations primarily at the lower end. Additionally, the histogram displays a bell-shaped curve. Collectively, these graphical representations suggest that the variable physical_inactivity may approximate a normal distribution.

As before, next I used the Shapiro Wilks test to confirm my assumptions.

proc univariate data=Alzheimer filtered normal;

var physical inactivity;

The SAS System

The UNIVARIATE Procedure Variable: physical_inactivity

Tests for Normality								
Test	St	atistic	p Value					
Shapiro-Wilk	W	0.991223	Pr < W	0.0205				
Kolmogorov-Smirnov	D	0.057069	Pr > D	<0.0100				
Cramer-von Mises	W-Sq	0.20887	Pr > W-Sq	<0.0050				
Anderson-Darling	A-Sq	1.162052	Pr > A-Sq	<0.0050				

I calculated p-value=0.0205 for the variable physical_inactivity, which is less than alpha=0.05. Thus, I can reject H0. I can conclude that physical_inactivity is not normally distributed.

After checking for individual normality, I checked for bivariate normality.

proc princomp std out=pcresult;

var Heart_Disease physical_inactivity;

run;

data mahal;set pcresult;dist2=uss(of prin1-prin2);

run;

proc sort;by dist2;run;data Alzheimer_filtered;set mahal;

prb=(_n_ -.5)/390;chiquant=cinv(prb,2);

run;

proc gplot;plot dist2*chiquant;

The graphic displays the data in a predominantly straight line, suggesting an apparent normality in the data. It is also noteworthy to observe the presence of outliers at the upper right extreme.

DATA TRANSFORMATION

Given that the variables are not normally distributed, a **Box-Cox** transformation is deemed appropriate. By utilizing the **proc transreg** code, I was able to determine the power or powers (lambda values) that rendered the two variables approximately normal.

```
proc transreg;
```

model boxcox(Heart Disease) = identity(q);

run;

proc transreg;

model boxcox(physical inactivity) = identity(q);

For the variable **Heart_Disease**, the optimal lambda is 0. Thus, a log tranformation is approapriate. Furthermore, for **physical_inactivity** the optimal lambda is 0.25. In this case the approapriate equation to transform the data is x**0.25-1/0.25

```
data Alzheimer_filtered;
    set Alzheimer_filtered;
    Heart_Disease = log(Heart_Disease);
run;

data Alzheimer_filtered;
    set Alzheimer_filtered;
    physical_inactivity = (physical_inactivity**(0.25)-1)/(0.25);
run;
```

The SAS System

The UNIVARIATE Procedure Variable: Heart_Disease

The SAS System

The UNIVARIATE Procedure Variable: physical inactivity

Tests for Normality						
Test	St	atistic	p Value			
Shapiro-Wilk	W	0.996449	Pr < W	0.5428		
Kolmogorov-Smirnov	D	0.039912	Pr > D	0.1335		
Cramer-von Mises	W-Sq	0.069867	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.427939	Pr > A-Sq	>0.2500		

Tests for Normality							
Test	Sta	atistic	p Value				
Shapiro-Wilk	W	0.997275	Pr < W	0.7695			
Kolmogorov-Smirnov	D	0.036777	Pr > D	>0.1500			
Cramer-von Mises	W-Sq	0.069926	Pr > W-Sq	>0.2500			
Anderson-Darling	A-Sq	0.378017	Pr > A-Sq	>0.2500			

Following the transformation, I assessed the normality of the variables using the Shapiro-Wilk test. I calculated p-value=0.5428 for the variable Heart_Disease, which is greater than alpha=0.05. Thus, I cannot reject H0. I can conclude that Heart_Disease is normally distributed after the transformation. Additionally, I calculated p-value=0.7695 for the variable physical_inactivity, which is greater than alpha=0.05. Thus, I cannot reject H0. I can conclude that physical_inactivity is normally distributed after the transformation.

MANOVA TEST

Since the variables of interest are normally distributed after the transformation, I will compute a MANOVA test to check if there are differences between states regarding heart disease and physical inactivity.

Hypotheses:

 $H0: \mu 1 = \mu 2 = \mu 3 = \mu 4$

H1: at least one is different

We reject H0 if p<0.05

Proc glm data=Alzheimer filtered;

class State;

model physical inactivity Heart Disease=State;

means State/tukey;

MANOVA h=state/printh;

Run;

I calculated p-value=0.0001 which is less than α = 0.05, so I can reject H0. I conclude that there is sufficient evidence to establish there is a difference in the means of Heart_Disease and physical inactivity in at least one of the states.

The next question is, which states are different?

Com		nificant at the 0.0 licated by ***.)5 level are						
State Comparison	Difference Between Means	Simultaneous 9							
MI - ND	0.16932	0.05228	0.28635	***					
MI - WI	0.24886	0.14166	0.35605	***	WA - MT	0.05110	-0.08772	0.18992	
MI - WA	0.27311	0.14390	0.40233	***	VVA - IVI I	0.05110	-0.00112	0.10992	
MI - MT	0.32421	0.20911	0.43932	***	WA - MN	0.21497	0.08670	0.34324	***
MI - MN	0.48808	0.38596	0.59021	***	MT - MI	-0.32421	-0.43932	-0.20911	***
ND - MI	-0.16932	-0.28635	-0.05228	***	MT ND	0.45400	0.00045	0.00724	***
ND - WI	0.07954	-0.04093	0.20001		MT - ND	-0.15490	-0.28245	-0.02734	
ND - WA	0.10380	-0.03663	0.24422		MT - WI	-0.07536	-0.19395	0.04324	
ND - MT	0.15490	0.02734	0.28245	***	MT - WA	-0.05110	-0.18992	0.08772	
ND - MN	0.31877	0.20279	0.43475	***					
WI - MI	-0.24886	-0.35605	-0.14166	***	MT - MN	0.16387	0.04984	0.27790	***
WI - ND	-0.07954	-0.20001	0.04093		MN - MI	-0.48808	-0.59021	-0.38596	***
WI - WA	0.02426	-0.10808	0.15660		MN - ND	-0.31877	-0.43475	-0.20279	***
WI - MT	0.07536	-0.04324	0.19395		MIN - MD	-0.31077	-0.43475	-0.20219	
WI - MN	0.23923	0.13318	0.34527	***	MN - WI	-0.23923	-0.34527	-0.13318	***
WA - MI	-0.27311	-0.40233	-0.14390	***	MN - WA	-0.21497	-0.34324	-0.08670	***
WA - ND	-0.10380	-0.24422	0.03663						***
WA - WI	-0.02426	-0.15660	0.10808		MN - MT	-0.16387	-0.27790	-0.04984	×××

Heart Disease differences

Michigan (MI) shows a statistically significant higher mean compared to North Dakota (ND), Wisconsin (WI), Washington (WA), Montana (MT), and Minnesota (MN). The differences and their respective confidence intervals all exclude zero and are marked with "***", indicating significant differences.

North Dakota's (ND) mean is different than Michigan (MI) and Minnesota (MN)

Wisconsin (WI) is significantly different than MI and higher than MN.

Washington (WA) is significantly lower than MI and higher than MN, with no significant differences when compared to ND, WI, and MT.

Montana (MT) is significantly lower than MI and higher than MN.

Minnesota (MN) has a significantly lower mean compared to all other states mentioned (MI, ND, WI, WA, MT).

PCA Scores for Alzheimer The GLM Procedure Tukey's Studentized Range (HSD) Test for physical_inactivity

Com		nificant at the 0.05 licated by ***.	level are						
State Comparison	Difference Between Means	Simultaneous 95 Limi							
ND - MT	0.25797	0.12260	0.39333	***	WI - MT	-0.26436	-0.39022	-0.13850	*
ND - MI	0.38259	0.25839	0.50679	***	WI - MI	-0.13974	-0.25350	-0.02598	*
ND - WI	0.52233	0.39448	0.65017	***	WI - MN	0.11577	0.00324	0.22831	*
ND - MN	0.63810	0.51502	0.76118	***	WI - WA	0 19320	0.05276	0.33364	*
ND - WA	0.71553	0.56650	0.86455	***	MN - ND	-0.63810	-0.76118	-0.51502	
MT - ND	-0.25797	-0.39333	-0.12260	***					H
MT - MI	0.12462	0.00247	0.24678	***	MN - MT	-0.38013	-0.50115	-0.25912	*
MT - WI	0.26436	0.13850	0.39022	***	MN - MI	-0.25551	-0.36389	-0.14713	3
MT - MN	0.38013	0.25912	0.50115	***	MN - WI	-0.11577	-0.22831	-0.00324	,
MT - WA	0.45756	0.31024	0.60488	***	MN - WA	0.07743	-0.05869	0.21355	Γ
MI - ND	-0.38259	-0.50679	-0.25839	***	WA - ND	-0.71553	-0.86455	-0.56650	*
MI - MT	-0.12462	-0.24678	-0.00247	***	WA - MT	-0.45756	-0.60488	-0.31024	*
MI - WI	0.13974	0.02598	0.25350	***	WA - MI	-0.33294	-0 47007	-0.19580	,
MI - MN	0.25551	0.14713	0.36389	***					H
MI - WA	0.33294	0.19580	0.47007	***	WA - WI	-0.19320	-0.33364	-0.05276	,
WI - ND	-0.52233	-0.65017	-0.39448	***	WA - MN	-0.07743	-0.21355	0.05869	

Physical Inactivity Differences

ND shows a significantly higher mean compared to MT, MI, WI, MN, and WA. The positive differences range from 0.25797 (ND vs. MT) to 0.71553 (ND vs. WA).

MT has a higher mean compared to MI, WI, MN, and WA, with differences ranging from 0.12462 (MT vs. MI) to 0.45756 (MT vs. WA).

MI has a lower mean compared to ND and a slightly higher mean compared to MT, WI, MN, and WA. The smallest significant difference is against MT (0.12462) and the largest against WA (0.33294).

WI shows lower means compared to ND, MT, and MI, and a higher mean compared to MN and WA.

MN has significantly lower means compared to ND, MT, MI, and WI, with differences indicating that MN is at the lower end for physical inactivity being compared.

WA consistently shows lower means compared to ND, MT, MI, WI, and is insignificantly higher than MN, suggesting WA generally ranks lowest for physical inactivity among these states.

The following MANOVA (Multivariate Analysis of Variance) table considers the combined effect of Heart_Disease and physical_inanctivity. MANOVA is specifically designed to test differences across states on more than one dependent variable simultaneously, unlike univariate ANOVA which tests for differences on a single dependent variable.

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall State Effect H = Type III SSCP Matrix for State E = Error SSCP Matrix								
S=2 M=1 N=190.5								
Statistic	Value	F Value	Num DF	Den DF	Pr > F			
Wilks' Lambda	0.36971201	49.38	10	766	<.0001			
Pillai's Trace	0.77741308	48.84	10	768	<.0001			
Hotelling-Lawley Trace	1.30686290	49.97	10	571.76	<.0001			
Roy's Greatest Root	0.82380618	63.27	5	384	<.0001			
NOTE: F Statistic for Roy's Greatest Root is an upper bound.								
NOTE: F Statistic for Wilks' Lambda is exact.								

Based on the one-way MANOVA, we can reject the null hypothesis that there is not a difference between means for Heart_Disease and physical_inactivity across the chosen states. I calculated the p-values=.0001, which is less than alpha=0.05.

PRINCIPAL FACTOR ANALYSIS (FA)

Next, I computed a FA for data reduction and to identify the underlying factors or hidden variables that explain the correlations among our variables. I searched for variables with high loadings, where typically absolute values greater than 0.5 are considered significant.

proc factor data=Alzheimer_filtered method=principal priors=smc n=2 rotate=promax
score out=FA_Alzheimer_filtered;

var physical_inactivity Heart_Disease sixtyfiveandup Smoking_Rate Diabetes Cancer Mercury_TPY Lead_TPY Glyphosates NATA_Cancer_11;

where State = 'MN';

PCA Scores for Alzheimer

The FACTOR Procedure Initial Factor Method: Principal Factors

igenvalues of the Reduced Correlation Matrix: Total = 4.94398983 Average = 0.49439898								
	Eigenvalue	Difference	Proportion	Cumulative				
1	3.31140317	2.08639853	0.6698	0.669				
2	1.22500464	0.51692743	0.2478	0.917				
3	0.70807721	0.33085773	0.1432	1.060				
4	0.37721949	0.36408784	0.0763	1.137				
5	0.01313165	0.04802185	0.0027	1.139				
6	03489020	0.05252051	-0.0071	1.132				
7	08741071	0.05348177	-0.0177	1.115				
8	14089248	0.05498552	-0.0285	1.086				
9	19587800	0.03589694	-0.0396	1.046				
10	23177494		-0.0469	1.000				

Rotated Factor Pattern						
	Factor1	Factor2				
physical_inactivity	-0.64614	0.40497				
Heart_Disease	-0.54488	0.24920				
sixtyfiveandup	-0.68518	0.17996				
Smoking_Rate	-0.37048	0.59512				
Diabetes	-0.03892	0.54828				
Cancer	0.07337	0.49360				
Mercury_TPY	0.55134	0.34024				
Lead_TPY	0.79187	0.10296				
Glyphosates	-0.44910	-0.21605				
NATA_Cancer_11	0.83137	-0.23350				

The Eigenvalues of the Reduced Correlation Matrix Table reveal that the first factor is very strong; its eigenvalue of approximately 3.3 accounts for a significant proportion of the variance—67%. The second factor, with an eigenvalue of approximately 1.22, is much smaller, contributing less to the variance explanation. Factor 2 adds 24%, totaling 92% of the variance explained. The results suggest that Factor 1 and Factor 2 combined summarize much of the information contained in the ten measurements.

The Rotated Factor Pattern Table of the Principal Factor reveals that Mercury_TPY (0.77), Lead_TPY (0.79), and NATA_Cancer_11(0.83) have a strong relationship with Factor 1. Conversely smoking_rate (0.595) and Diabetes (0.548) are linked to Factor 2. In summary, FA's results indicate that Factor 1 is associated with **Toxicities and their risk of getting cancer**, whereas Factor 2 relates to lifestyle **and chronic disease**.

PRINCIPAL COMPONENT ANALYSIS (PCA)

The next step involves conducting a Principal Component Analysis (PCA) to reduce the number of variables by creating new ones that capture essential information from the dataset. I have utilized all the variables selected by our team, focusing specifically on the state of Minnesota.

proc factor data=Alzheimer_filtered method=prin priors=one n=3 rotate=varimax score
out=PCA Alzheimer filtered;

var physical_inactivity Heart_Disease sixtyfiveandup Smoking_Rate Diabetes Cancer Mercury_TPY Lead_TPY Glyphosates NATA_Cancer_11;

where State = 'MN';

run;

	The SAS System The FACTOR Procedure Initial Factor Method: Principal Components Prior Communality Estimates: ONE							
	Eigenvalues of the Correlation Matrix: Total = 10 Average = 1							
	Eigenvalue	Difference	Proportion	Cumulative				
1	3.72098745	1.89184945	0.3721	0.3721				
2	1.82913800	0.65936586	0.1829	0.5550				
3	1.16977213	0.25900890	0.1170	0.6720				
4	0.91076323	0.22769780	0.0911	0.7631				
5	0.68306543	0.12686107	0.0683	0.8314				
6	0.55620436	0.18647154	0.0556	0.8870				
7	0.36973283	0.03092597	0.0370	0.9240				
8	0.33880685	0.05951434	0.0339	0.9578				
9	0.27929251	0.13705531	0.0279	0.9858				
10	0.14223720		0.0142	1.0000				

Rotated Factor Pattern							
	Factor1	Factor2	Factor3				
physical_inactivity	0.58522	-0.39554	0.40367				
Heart_Disease	0.78760	-0.00376	0.05737				
sixtyfiveandup	0.84689	-0.10931	-0.02992				
Smoking_Rate	0.48181	-0.06224	0.63385				
Diabetes	-0.05599	-0.15174	0.80942				
Cancer	0.04255	0.22238	0.68950				
Mercury_TPY	-0.01885	0.91509	0.08712				
Lead_TPY	-0.38630	0.80526	-0.06225				
Glyphosates	0.41085	-0.32885	-0.36031				
NATA_Cancer_11	-0.83249	0.31962	-0.09856				

The Eigenvalues of the Correlation Matrix Table reveal that the first factor is strong; its eigenvalue of approximately 3.7 accounts for a 37% proportion of the variance. The second factor, with an eigenvalue of approximately 1.8, is much smaller, contributing less to the variance explanation. Factor 2 adds 18%, totaling 55% of the variance explained. Moreover, Factor 3 has an approximate eigenvalue equal to 1.2, thus contributing 12% to the variance explanation. The results suggest that Factor 1, Factor 2, and Factor 3 combined summarize much of the information contained in the ten measurements (67% of the variance explained).

Next, I conducted an orthogonal rotation of the 3 factors in order to make the factor structure easier to understand. I searched for variables with high loadings, where typically absolute values greater than 0.5 are considered significant. The Rotated Factor Pattern Table of the Principal Factor reveals that physical_inactivity (0.58), Heart_Disease (0.79), age 65 and up (0.85), and NATA_Cancer (-0.83) have a strong relationship with Factor 1.

Based on the previous results Factor 1 seems to grab elements related to **General Health Conditions** impacted by lifestyle and age. It includes aspects of diseases and conditions prevalent in elderly populations and inactive lifestyle in Minnesota. On the other hand, the strong negative loading in NATA_Cancer suggests an inverse relationship with the general health conditions captured by Factor 1. The negative association infers that in counties with worse general health conditions (more heart disease and physical inactivity), the values of NATA_Cancer_11 are low. This negative relationship needs further analysis.

On the other hand, Factor 2 appears to relate to **Toxicities**, with strong loadings on mercury (0.91) and lead toxicity (0.80) variables. Factor 3 is primarily connected with health conditions directly impacted by specific behavioral factors like smoking (0.63), and **Chronic Conditions** like diabetes (0.80) and cancer (0.70), which might also correlate with lifestyle choices.

```
proc univariate data=PCA_Alzheimer_filtered;
    var Factor1;
    run;
proc univariate data=PCA_Alzheimer_filtered;
    var Factor2;
    run;
proc univariate data=PCA_Alzheimer_filtered;
    var Factor3;
    run;
```

The SAS System

The UNIVARIATE Procedure
Variable: Factor1

The SAS System

The UNIVARIATE Procedure Variable: Factor2

The SAS System

The UNIVARIATE Procedure
Variable: Factor3

Extreme Observations							
Lowe	st	Highest					
Value	Obs	Value	Obs				
-2.37390	77	1.31629	9				
-2.16609	86	1.51825	17				
-2.16519	83	1.82034	87				
-2.02955	84	1.82738	20				
-1.97338	81	1.85286	68				

Extreme Observations				
Lowest		Highest		
Value	Obs	Value	Obs	
-1.195070	75	1.93283	83	
-1.090751	52	2.06148	85	
-0.915780	82	2.11638	86	
-0.891395	73	2.17600	53	
-0.846694	71	7.19279	67	

Extreme Observations					
Lowest		Highest			
Value	Obs	Value	Obs		
-1.64206	85	1.70591	12		
-1.46838	36	1.75464	18		
-1.46057	62	2.06288	38		
-1.44228	81	2.20085	16		
-1.41515	17	3.93288	45		

After examining the three relevant factors of the PCA, I looked for unusual counties in Minnesota. For instance, Table 1 points out that observation 83, which is Ramsey County is associated with low levels of heart disease and physical inactivity (Factor 1 General Health Conditions). One of the reasons could be that its population is mainly young. Yet, considering that NATA_Cancer_11 has a negative loading on this factor, counties with extreme negative scores (-2.166) on Factor 1 might also have higher NATA_Cancer_11 values, suggesting potentially higher estimated risks of cancer from air toxins. Moreover, Ramsey County also appears on Factor 2 extreme observations associated with Toxicities. The county scored high (1.932) on levels of mercury and lead toxicity. On the other hand, Mahnomen County which is extreme observation 45 appears on the Factor 3 extreme observations table with a score of 3.93 indicating that it is linked to chronic conditions like diabetes and cancer, and in a lower-level behavioral factors like smoking.