Master in Foundations of Data Science
Bayesian Statistics and Probabilistic Programming
Fall 2018-2019

Josep Fortiana

Wednesday, November 28, 2018

Universitat de Barcelona

Basic Metropolis algorithm

Metropolis-Hastings algorithm

Basic Metropolis algorithm

Setting

Statistical model with a parameter $\theta \in \Theta \subset \mathbb{R}^p$, *n* i.i.d. *d*-dimensional observations: $x = (x_1, \dots, x_n)$.

Likelihood: $f(x_i|\theta)$,

Prior pdf: $h(\theta)$.

Posterior pdf:

$$h_{x}(\theta) = \frac{\prod_{i=1}^{n} f(x_{i}|\theta) \cdot h(\theta)}{Z_{x}} = \frac{f(x,\theta)}{Z_{x}},$$

 Z_x is the normalization constant, marginal density of x, evaluated at the observed point.

Metropolis algorithm

We construct a sequence $\{\theta^{(t)}\}_{t\in\mathbb{N}}$ of points in Θ :

A trajectory of a Markov chain whose limit pdf is $h_x(\theta)$.

A step in the chain $\theta^{(t)} \to \theta^{(t+1)}$ is as follows:

Metropolis algorithm

1 Change proposal (Sample from a candidate generation pdf)

2 Acceptance-rejection

[1] Change proposal (Uniform)

Set a length scale $\Delta > 0$. Write $\theta = \theta^{(t)}$.

Generate $\theta' = u$, a random uniform vector in:

$$\prod_{j=1}^{p} (\theta_j - \Delta, \theta_j + \Delta), \qquad p = \dim(\theta),$$

that is $\theta'_i - \theta_i \sim \text{Unif}(-\Delta, \Delta)$, $1 \le j \le p$.

[1] Change proposal (General pdf)

A candidate generation pdf g, such that: $g(-\theta) = g(\theta)$.

Then
$$\theta' = \theta + u$$
, where $u \sim g$.

By analogy with the finite case, write:

$$k(\theta'|\theta) = g(\theta' - \theta)$$
. (Sort of "matrix")

Since q is a pdf,

$$\int_{\partial t} k(\theta'|\theta) d\theta' = 1.$$
 (A "stochastic matrix")

Notation: Transition kernel

The function of the two variables θ , θ' :

$$k(\theta'|\theta)$$

is the transition kernel.

Here "kernel" means "a function of two variables", sort of "matrix". Just as in "Kernel Learning".

Notation: Remark

Some books prefer:

$$k(\theta, \theta')$$
 (equivalent to our) $k(\theta'|\theta)$.

Our motivation is to keep analogy with the matrix and conditional density-oriented notation.

$$k_{ij} = P(transition to state j | current state is i).$$

(*j*-th entry in row *i*)

Metropolis algorithm - [2] Acceptance-rejection step

Generate a random indicator $I \sim Ber(p)$ with:

$$p = \min \left\{ 1, \frac{h_{\mathsf{X}}(\theta')}{h_{\mathsf{X}}(\theta)} \right\},$$

- If l=1, we accept the update: $\theta^{(t+1)}=\theta'$,
- If I = 0, we keep: $\theta^{(t+1)} = \theta$.

Intuitive explanation

A jump to θ' is proposed. Then:

- If the target distribution density at θ' is higher we go there.
- If it is lower we go there only conditionally, with a probability proportional to the decrease in density.

Intuitive explanation

We wander around the state space Θ , and we want to go more often, and spend more time, at regions where the probability density $h_x(\theta)$ is higher.

Hence, when on a high density area we try to stay, whereas when on a low density area, we move on, perchance we will improve.

No denominators

Since the target pdf appears only in the quotient:

$$\frac{h_{\mathsf{X}}(\theta')}{h_{\mathsf{X}}(\theta)}$$
,

 Z_x is NOT required. Only the joint pdf $f(x, \theta)$:

$$p = \min \left\{ 1, \frac{f(x, \theta')}{f(x, \theta)} \right\}.$$

Scale in candidate generation

 Δ in the uniform case, in general dispersion parameter(s) in the candidate generation pdf g.

Tradeoff between:

- Small Δ , high acceptance probability, slow displacement in Θ ,
- ullet Large Δ , a swift displacement, small acceptance probability.

Resulting Markov chain

In the continuous state space Θ .

Transition kernel ("matrix"):

$$P(\theta' \mid \theta) = k(\theta' \mid \theta) \cdot \min \left\{ 1, \frac{h_{x}(\theta')}{h_{x}(\theta)} \right\}$$

16 / 24

Detailed balance condition

Multiplying by $h_x(\theta)$,

$$h_{x}(\theta) \cdot P(\theta' \mid \theta) = k(\theta' \mid \theta) \cdot \min\{h_{x}(\theta), h_{x}(\theta')\},\$$

By the symmetry of $k(\theta'|\theta)$ this is equal to:

$$k(\theta \mid \theta') \cdot \min \{h_x(\theta'), h_x(\theta)\} = h_x(\theta') \cdot P(\theta \mid \theta').$$

Hence it is a *time-reversible* Markov chain.

The target pdf $h_{\times}(\theta)$ is the limit probability

Indeed:

$$\int_{\theta \in \Theta} h_{x}(\theta) \cdot P(\theta' \mid \theta) d\theta = \int_{\theta \in \Theta} h_{x}(\theta') \cdot P(\theta \mid \theta') d\theta$$

$$= h_{X}(\theta') \cdot \int_{\theta \in \Theta} P(\theta \mid \theta') d\theta = h_{X}(\theta').$$

Basic Metropolis algorithm

Metropolis-Hastings algorithm

References

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), *Equation of State Calculations by Fast Computing Machines*, J. Chemical Physics, Vol. 21, pp. 1087–1092.

Wilfred Keith Hastings (1970), Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57, 97-109.

Description

A generalization, with a non-symmetric candidate proposal kernel $k(\cdot | \cdot)$.

The acceptation rule is modified to compensate.

Now we accept $\theta^{(m+1)} = \theta'$ with probability:

$$\min \left\{ 1, \frac{h_{X}(\theta') \cdot k(\theta \mid \theta')}{h_{X}(\theta) \cdot k(\theta' \mid \theta)} \right\},\,$$

Description

The transition kernel is:

$$P(\theta' \mid \theta) = k(\theta' \mid \theta) \cdot \min \left\{ 1, \frac{h_{x}(\theta') \cdot k(\theta \mid \theta')}{h_{x}(\theta) \cdot k(\theta' \mid \theta)} \right\}.$$

Detailed balance condition

Multiplying by $h_X(\theta)$,

$$h_{x}(\theta) \cdot P(\theta' \mid \theta) = k(\theta' \mid \theta) \cdot \min \left\{ h_{x}(\theta), \frac{h_{x}(\theta') \cdot k(\theta \mid \theta')}{k(\theta' \mid \theta)} \right\}$$

$$= \min \left\{ h_{x}(\theta) \cdot k(\theta' \mid \theta), h_{x}(\theta') \cdot k(\theta \mid \theta') \right\}$$

$$= h_{x}(\theta') \cdot P(\theta \mid \theta'),$$

hence the chain is reversible with respect to $h_x(\theta)$, the stationary distribution.

Construction of $k(\cdot, \cdot)$

Based on a random walk.

From x, the *proposed* y is equal to x plus a random

$$z = y - x$$
,

generated following a pdf g.

$$k(x, y) = g(z) = g(y - x).$$

When g is a symmetric pdf, we recover the Metropolis algorithm, where $k(\cdot, \cdot)$ is a symmetric kernel.