2020 考研-数学-基础阶段 第二次测试卷(协议)解析

本试卷满分 100 分, 考试时间 30 分钟

一、解答题:请将正确答案及其解题过程写在题后的空白部分。

1、(本题满分 20 分) 计算
$$\lim_{x\to\infty} \left(\frac{\pi}{2} + \arctan x\right)^{\frac{1}{x}}$$
。

【答案】1。

【解析】
$$\lim_{x \to -\infty} \left(\frac{\pi}{2} + \arctan x \right)^{\frac{1}{x}} = e^{\lim_{x \to -\infty} \frac{1}{x} \ln \left(\frac{\pi}{2} + \arctan x \right)} = 1, \quad 其中,$$

$$\lim_{x \to -\infty} \frac{1}{x} \ln \left(\frac{\pi}{2} + \arctan x \right) = \lim_{x \to -\infty} \frac{\frac{1}{1+x^2}}{\frac{\pi}{2} + \arctan x} = \lim_{x \to -\infty} \frac{-2x}{1+x^2} = 0$$

序号	错误原因	学习建议	备注
22010	不清楚利用对数恒等式处理幂	讲义 25 页幂指函数的极限; 讲义	
1	指函数极限	25 页例 18 以及习题册 7 页 10 题;	
		注意体会如何利用对数恒等式将幂	
		指函数极限进行变形。	
22010	不清楚零乘以无穷类型的极限	讲义 24 页零乘以无穷型未定式;讲	
2	如何处理	义 24 页例 17(1)以及习题册第 6	
		页 8 (1); 注意体会求解零乘以无	
		穷类型的未定式的处理方法。	
22010	计算型错误	建议1、2。	
3			
22010	其他:		
4			

2、(本题满分 20 分) 计算
$$\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{x}{e^{x^2} - 1} \right)$$
。

【答案】 $\frac{1}{2}$ 。

【解析】
$$\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{x}{e^{x^2} - 1} \right) = \lim_{x\to 0} \frac{e^{x^2} - 1 - x \ln(x+1)}{(e^{x^2} - 1) \ln(1+x)} = \lim_{x\to 0} \frac{e^{x^2} - 1 - x \ln(x+1)}{x^3}$$

$$= \lim_{x \to 0} \frac{1 + x^2 - 1 - x\left(x - \frac{1}{2}x^2\right) + o(x^3)}{x^3} = \frac{1}{2}$$

序号	错误原因	学习建议	备注
22020	不清楚无穷减无穷类型的极限	讲义 24 页无穷减无穷型未定式;讲	
1	如何处理	义 24 页例 17 (2)、(3)、(4) 以及	
		习题册 6 页 8 (2)、(3); 注意体会	
		常见的三种无穷减无穷类型极限的	
		求解方法。	
22020	不清楚常见的等价无穷小替换	讲义 20 页等价无穷小替换; 讲义	
2	公式	20 页例 10 以及习题册 5 页 3 题、4	
		题、5 题;注意体会常用的八组等	
		价无穷小替换公式。	\
22020	不清楚常见的麦克劳林公式	讲义 27 页泰勒公式; 讲义 27 页例	
3		21;注意体会常见麦克劳林公式在	
		求极限中的应用。	
22020	计算型错误	建议1、2、3。	
4			
22020	其他;		
5			

3、(本题满分 20 分) 计算
$$\lim_{x\to\infty} \left(\cos\frac{1}{x} + \sin\frac{1}{x}\right)^x$$
。

【答案】e。

【解析】
$$\lim_{x \to \infty} \left(\cos \frac{1}{x} + \sin \frac{1}{x} \right)^x = e^{\lim_{x \to \infty} \left(\cos \frac{1}{x} + \sin \frac{1}{x} - 1 \right) x} = e^{\lim_{t \to 0} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to 0} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to 0} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \sin \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \cos \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} + \cos \frac{1}{t} - 1 \right) x} = e^{\lim_{t \to \infty} \left(\cos \frac{1}{t} - 1 \right) x} = e^{\lim_{t$$

序号	错误原因	学习建议	备注
22030	不清楚1的无穷次幂极限类型的	讲义 25 页幂指函数的极限; 讲义	
1	处理方法	25 页例 19 及习题册 7 页 10 (2);	
		注意体会如何利用总结的公式处理	

		1的无穷次幂的极限。
22030	不清楚利用倒代换简化所求极	讲义 24 页无穷减无穷型未定式; 讲
2	限	义 24 页例 17 (3)、习题册 6 页 8
		(2); 注意体会极限式中同时出现
		x 与其倒数时,可选择利用倒代换
		简化极限的计算。
22030	计算型错误	建议1、2。
3		
22030	其他;	
4		

4、(本题满分 20 分) 计算 $\lim_{x \to -\infty} x(\sqrt{x^2 + 2020} + x)$ 。

【答案】-1010。

【解析】
$$\lim_{x \to -\infty} x(\sqrt{x^2 + 2020} + x) = \lim_{x \to -\infty} \frac{2020x}{\sqrt{x^2 + 2020} - x} = -1010$$
。

序号	错误原因	学习建议	备注
22040	不清楚零乘以无穷类型的极限	讲义 24 页零乘以无穷与无穷减无	
1	如何处理	穷型未定式; 讲义 24 页例 17 (4)	
		以及习题册 6 页 8 (4); 注意体会	
		可以利用有理化的方法处理无穷减	
		无穷的极限。	1
22040	不清楚极限中"抓大头"的方法	讲义 18 页四则运算; 讲义 19 页例	
2		6、例7以及习题册5页第2题;注	
		意体会"抓大头"适合何种题型。	
22040	不清楚去根号时何时加负号	讲义 18 页四则运算; 讲义 19 页例	
3		6、例7以及习题册5页2题;注意	
		体会当极限过程趋近于负无穷时,	
		去根号要加负号。	
22040	计算型错误	建议 1、2、3。	
4			
22040	其他;		
5			

5、(本小题满分 20 分) 设
$$f(x) = \lim_{t \to +\infty} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^2 + e^{tx}}$$
,求 $f(x)$ 的间断点并判断其类型.

【答案】
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^2}, & x < 0 \le 1 \le x \ne -1 \\ 0, & x > 0 \end{cases}$$
, 函数 $f(x)$ 的可去间断点为 $x = 0$,

函数 f(x) 的跳跃间断点为x=-1。

$$\lim_{t \to +\infty} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^2 + e^{tx}} = \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^2}, \quad \text{i.i.} f(x) = \begin{cases} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^2}, & x < 0 \text{ i.i.} x \neq -1 \\ 0, & x > 0 \end{cases},$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^{2}} = \frac{\pi}{4} \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}}}{x^{2}} = 0 , \quad \lim_{x \to 0^{+}} f(x) = 0 , \quad \text{id}$$

 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$, 因此, x = 0 为函数 f(x) 的可去间断点;

$$\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^{2}} = -\frac{\pi}{2e}, \quad \lim_{x \to (-1)^{+}} f(x) = \lim_{x \to (-1)^{+}} \frac{e^{\frac{1}{x}} \arctan \frac{1}{1+x}}{x^{2}} = \frac{\pi}{2e},$$

因此, x = -1 为函数 f(x) 的跳跃间断点。

序号	错误原因	学习建议	备注
22050	不清楚如何求关于 t 的极限	讲义 34 页例 7。	
1			
22050	不清楚分段函数的极限	讲义 14 页例 3、例 4。	
2			
22050	不清楚间断点的分类	讲义 32 页间断点的分类; 讲义 32	
3		页例 4、例 5 以及习题册 28 页 10	
		题、11题;注意体会不同间断点类	

		型的判断。	
22050	计算型错误	建议1、2、3。	
4			
22050	其他;		
5			

