1. Es sei $f(x,y) = \begin{cases} \frac{x \cdot y}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$.

Wie verhält sich f(x,y) für $(x,y) \rightarrow (0,0)$?

Man kann sich auf verschiedenen Wegen in der x-y-Ebene der Stelle (0,0) nähern.

b. Wir nähern uns der Stelle (0,0) auf Geraden der Gleichung $y=m\cdot x$ für beliebige Steigungen $m\in\mathbb{R}$.

2. Es sei $f(x,y) = \begin{cases} \frac{x^2 \cdot y}{x^4 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$

Wie verhält sich f(x,y) für $(x,y) \rightarrow (0,0)$?

Man kann sich auf verschiedenen Wegen in der x-y-Ebene der Stelle (0,0) nähern.

- a. Wir nähern uns der Stelle (0,0) auf der y-Achse, d.h. es ist x=0.
- b. Wir nähern uns der Stelle (0,0) auf Geraden der Gleichung $y=m\cdot x$ für beliebige Steigungen $m\in\mathbb{R}$.
- c. Wir nähern uns der Stelle (0,0) auf Parabeln der Gleichung $y=a\cdot x^2$ mit $a\neq 0$.
- 3. Es sei $f(x,y) = \ln(x \cdot e^y y \cdot e^x)$, $g(x,y) = \frac{x \cdot y}{x^2 y^2}$, $h(x,y,z) = (x \cdot y + z)^{y \cdot z}$.

Bestimmen Sie die ersten partiellen Ableitungen $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$, $g_x = \frac{\partial g}{\partial x}$, $g_y = \frac{\partial g}{\partial y}$, $h_x = \frac{\partial h}{\partial x}$,

$$h_y = \frac{\partial h}{\partial y}, h_z = \frac{\partial h}{\partial z}.$$

- 4. a. Es sei $f(x,y) = x + x \cdot e^y$. Bestimmen Sie die Gleichung der Tangentialebene T im Kurvenpunkt P(1/0/2). Nennen Sie einen Normalenvektor \vec{n} von T.
 - b. Es sei $f(x,y) = \frac{xy}{1-y}$. Bestimmen Sie die Gleichung der Tangentialebene T im Kurvenpunkt P(1/2/-2).

Nennen Sie einen Normalenvektor n von T.

5. a. Es sei $f(x,y) = x^2 \cdot y$ und P(2/1/4) ein Punkt des Schaubilds.

Bestimmen Sie in P die beiden partiellen Ableitungen, die Gleichung der Tangentialebene T und einen ihrer Normalenvektoren \vec{n} .

Bestimmen Sie in P für die Richtung $\vec{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ die Gleichung der Tangente t, die Richtungsableitung und

den Steigungswinkel $\,\alpha$.

Es geht nun um den größten Anstieg im Punkt P. Bestimmen Sie den zwei- und den dreidimensionalen Richtungsvektor und den maximalen Steigungswinkel α_{max} .

Bestimmen Sie jeweils für allgemeines x, y mit Hilfe von $\lim_{h\to 0}$ die ersten Ableitungen in den drei Richtun-

gen
$$\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

b. Es sei $f(x,y) = x \cdot \sqrt{y}$ und $P(1/2/\sqrt{2})$ ein Punkt des Schaubilds.

Bestimmen Sie in P die beiden partiellen Ableitungen, die Gleichung der Tangentialebene T, einen ihrer Normalenvektoren \vec{n} , die Gleichung der Tangente t und die Ableitung in Richtung $\vec{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ samt Stei-

gungswinkel α .

Bestimmen Sie für den größten Anstieg in P den zwei- und den dreidimensionalen Richtungsvektor und den maximalen Steigungswinkel α_{max} .

Bestimmen Sie für allgemeines x, y mit Hilfe von $\lim_{h\to 0}$ die erste Ableitung in Richtung $\vec{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

c. Es sei $f(x,y) = x \cdot \ln(x \cdot y^2)$ und P(1/-1/0) ein Punkt des Schaubilds. Bestimmen Sie in P die beiden partiellen Ableitungen, die Gleichung der Tangentialebene T, einen ihrer Normalenvektoren \vec{n} , die Gleichung der Tangente t und die Ableitung in Richtung $\vec{a} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$ samt Steigungswinkel α .

Bestimmen Sie für den größten Anstieg in P den zwei- und den dreidimensionalen Richtungsvektor und den maximalen Steigungswinkel α_{max} .

- d. Es sei $f(x,y,z) = 2x^2yz + 3xyz^3$ und P(-1/2/1/-2) ein Punkt des Schaubilds. Bestimmen Sie in P die partiellen Ableitungen und die Ableitung in Richtung $\vec{a} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$.
- 6. Es sei x die nachgefragte Menge eines Gutes, das zum Preis p angeboten wird. x = x(p) ist eine Funktion von p. $\varepsilon_{x,p}(p) = x'(p) \cdot \frac{p}{x(p)}$ gibt näherungsweise an, um wieviel % sich die nachgefragte Menge x ändert, wenn der Preis p um 1% steigt. $\varepsilon_{x,p}(p)$ heißt **Preiselastizität der Nachfrage**.

Gegeben ist die Funktion $p(x) = \frac{400}{x+5} - 8$.

- a, Bestimmen Sie die Funktion x = x(p) und die Preiselastizität $\varepsilon_{x,p}(p)$ der Nachfrage.
- b. Es sei $x_1 = 5$ und $x_2 = 35$. Bestimmen Sie jeweils $\varepsilon_{x,p}(p)$.
- c. Für welchen Preis p und welche Menge x gilt $\varepsilon_{x,p}(p) = -1$?
- 7. Es sei x die nachgefragte Menge eines Gutes, das zum Preis p angeboten wird. x=x(p) ist eine Funktion von
 - p. Es gelte p(x) = 24 2x. Die Kostenfunktion für die Gesamtmenge x sei $K(x) = 0, 2x^2 + 2x + 5$.
 - a. Bestimmen Sie x so, dass der Gewinn G maximal wird.
 - b. Wie groß ist die Preiselastizität $\varepsilon_{x,p}(p)$ im Gewinnmaximum?
- 8. a. Es sei $f(x,y) = 2x \cdot y^2$.

Bestimmen Sie allgemein das totale Differenzial $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ und die relative Änderung $\frac{df}{f}$.

Es gilt f(3|2) = 24. Bestimmen Sie df, $\frac{df}{f}$ und $\Delta f = f(x_{neu} | y_{neu}) - f(x_{alt} | y_{alt})$, wenn x um 1% vergrößert und zugleich y um 2% verkleinert wird.

Bestimmen Sie die partiellen Elastizitäten $\epsilon_{f,x}(x,y) = f_x(x,y) \cdot \frac{x}{f(x,y)} \quad \text{und} \quad \epsilon_{f,y}(x,y) = f_y(x,y) \cdot \frac{y}{f(x,y)}$ an der Stelle (3/2).

b. Es sei $f(x,y) = 2x^2 + y^3$.

Bestimmen Sie allgemein das totale Differenzial $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ und die relative Änderung $\frac{df}{f}$.

Es gilt $\,f(1\,|\,2)\,=\,10\,$. Bestimmen Sie $\,df\,$ und $\,\Delta f\,$, wenn x um 2% und zugleich y um 1% vergrößert wird.

Bestimmen Sie die partiellen Elastizitäten $\epsilon_{f,x}(x,y) = f_x(x,y) \cdot \frac{x}{f(x,y)}$ und $\epsilon_{f,y}(x,y) = f_y(x,y) \cdot \frac{y}{f(x,y)}$ an der Stelle (1|2).

9. Es sei $f(x,y) = x^3 + 2y^3 - 5xy$.

f(x, y) = 0 kann als implizit gegebene Kurve interpretiert werden; siehe linkes Schaubild.

Andererseits kann f(x,y) = 0 als Höhenlinie z = 0von z = f(x, y) interpretiert werden; siehe rechtes Schaubild.

Der Punkt P(2|1|0) liegt auf dieser Höhenlinie.

Bestimmen Sie die Ableitung y' der Kurve f(x,y) = 0 im Punkt (2|1) durch implizite Differenziation.

Bestimmen Sie die Gleichung der Tangente t im Punkt (2|1).

Bestimmen Sie den Gradienten von z = f(x, y) im Punkt P.

Zeigen Sie, dass der Gradient senkrecht auf der Tangente t steht.

Bestimmen Sie die Gleichung der Tangentialebene T an das Schaubild im Punkt P.

10. Gegeben ist die Produktionsfunktion f(x, y). Untersuchen Sie auf Homogenität und bestimmen Sie gegebenenfalls den Homogenitätsgrad.

$$a. \quad f\left(x,y\right) = \left(a \cdot x^{\alpha} + b \cdot y^{\alpha}\right)^{1/\alpha} \ \ \text{für} \ \ x>0 \ , \ \ a,b>0 \ \ \text{und} \ \ \alpha \neq 0 \ .$$

b.
$$f(x, y) = 2x^2 \cdot y^3 + 3x^3 \cdot y$$
 für $x, y \in \mathbb{R}$.

$$c. \quad f(x,y) = x \cdot y \cdot \ln \left(\frac{x^2 + 2x \cdot y + 3y^2}{5x \cdot y} \right) \quad \text{für} \quad x,y > 0 \; . \qquad \qquad d. \quad f(x,y) = \frac{y}{x} \quad \text{für} \quad x,y \in \mathbb{R} \quad \text{und} \quad x \neq 0 \; .$$

d.
$$f(x,y) = \frac{y}{x}$$
 für $x,y \in \mathbb{R}$ und $x \neq 0$

11. Es sei f eine homogene Funktion vom Grad λ. Zeigen Sie allgemein, dass die beiden partiellen Ableitungen $f_x(x,y)$ und $f_y(x,y)$ homogen vom Grad $\lambda-1$ sind.

Prüfen Sie dies für die Funktion $f(x,y) = \left(a \cdot x^{\alpha} + b \cdot y^{\alpha}\right)^{1/\alpha}$ für x,y > 0, a,b > 0 und $\alpha \neq 0$ von Aufgabe 8a. und für $g(x, y) = 2x^2 \cdot y^3 + 3x^4 \cdot y$, $x, y \in \mathbb{R}$.

12. Bestimmen Sie jeweils allgemein $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial v}$, $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, $f_{yy} = \frac{\partial^2 f}{\partial v^2}$, $f_{xy} = \frac{\partial^2 f}{\partial x \partial v}$, $f_{yx} = \frac{\partial^2 f}{\partial v \partial x}$.

a.
$$f(x,y) = \sqrt{2x^2 - xy^2}$$
 b. $f(x,y) = \ln(1 + x^2y)$

13. Es sei
$$f(x,y) = \begin{cases} x \cdot y \cdot \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$
. Zeigen Sie, dass $f(x,y)$ in ganz \mathbb{R}^2 stetig ist.

14. Untersuchen Sie jeweils auf relative Extremwerte. Untersuchen Sie dabei die Definitheit der Hesse-Matrix H einmal über die Determinanten der Hauptuntermatrizen und einmal mit Hilfe der Eigenwerte von H.

a.
$$f(x, y) = x + y + \frac{1}{x \cdot y}$$

b.
$$f(x,y) = x^3 - 3x \cdot y + y^3$$

a.
$$f(x,y) = x + y + \frac{1}{x \cdot y}$$
 b. $f(x,y) = x^3 - 3x \cdot y + y^3$ c. $f(x,y) = 16xy - \left(\frac{1}{2}x + y\right)^4$

15. a. Es sei $f(x,y) = e^{-x^2-y^2}$. Untersuchen Sie das Schaubild von f auf Extrempunkte unter der Bedingung 2x-y-1=0.

 α . Lösen Sie die Bedingung nach y auf und setzen Sie das Ergebnis in f(x,y) ein, so dass f nur noch eine Variable enthält.

β. Verwenden Sie die Lagrangesche Multiplikatorregel.

b. Es sei f(x,y)=2x-y+1. Untersuchen Sie das Schaubild von f auf Extrempunkte unter der Bedingung $x^2+y^2=5$ mit Hilfe der Lagrangeschen Multiplikatorregel.

c. Es sei $f(x,y)=e^{x\cdot y}$. Untersuchen Sie das Schaubild von f auf Extrempunkte unter der Bedingung $x^2+y^2=2$ mit Hilfe der Lagrangeschen Multiplikatorregel.

d. Es sei f(x,y) = y-x. Untersuchen Sie das Schaubild von f auf Extrempunkte unter der Bedingung $x^2 \cdot y - x \cdot y^2 + 16 = 0$ mit Hilfe der Lagrangeschen Multiplikatorregel.

e. Es sei $f(x,y,z) = x^2 + y^2 + z^2$. Untersuchen Sie das Schaubild von f auf Extrempunkte unter der Bedingung x+2y+z=6 mit Hilfe der Lagrangeschen Multiplikatorregel. Anschaulich bedeutet die Nebenbedingung gerade die Tangentialebene an die Kugel f.

- f. Es sei $f(x,y,z) = x^2 + y^2 z^2 + 1$. Untersuchen Sie das Schaubild von f auf Extrempunkte unter der Bedingung x + 2y + z = 4 mit Hilfe der Lagrangeschen Multiplikatorregel.
- g. Für die Fertigung eines Produktes X (Menge x) werden zwei Produktionsfaktoren A (Menge a) und B (Menge b) eingesetzt. Die zugehörige Produktionsfunktion ist $x = f(a,b) = 10 \frac{1}{a} \frac{1}{b}$. Der Gewinn des Unternehmens ergibt sich aus der Funktion G(x,a,b) = 9x a 4b. Bestimmen Sie a und b so, dass der Gewinn am größten wird. Verwenden Sie die Lagrangesche Multiplikatorregel.
- 16. Bestimmen Sie das Minimum von $u = f(x,y,z) = x^2 + y^2 + z^2$ unter den beiden Bedingungen $\phi_1(x,y,z) = x + y 1 = 0$ und $\phi_2(x,y,z) = y + z 2 = 0$ einmal nach Lagrange und einmal mit der Substitution x = 1 y und z = 2 y.
- 17. Die Taylorreihe für eine Funktion f(x,y) mit zwei Variablen um die Stelle (a/b) lautet $f(x,y) = f(a,b) + f_x(a,b) \cdot (x-a) + f_y(a,b) \cdot (y-b) + f_x(a,b) \cdot (x-a) + f_y(a,b) \cdot (y-b) + \frac{1}{2!} f_{xx}(a,b) \cdot (x-a)^2 + f_{xy}(a,b) \cdot (x-a) \cdot (y-b) + \frac{1}{2!} f_{yy}(a,b) \cdot (y-b)^2 + \frac{1}{3! \cdot 0!} f_{xxx}(a,b) \cdot (x-a)^3 + \frac{1}{2! \cdot 1!} f_{xxy}(a,b) \cdot (x-a)^2 \cdot (y-b) + \frac{1}{1! \cdot 2!} f_{xyy}(a,b) \cdot (x-a) \cdot (y-b)^2 + \frac{1}{0! \cdot 3!} f_{yyy}(a,b) \cdot (y-b)^3 + \dots$

Entwickeln Sie $f(x,y) = \sqrt{2x+y}$ um den Punkt (1/2) bis zur 3. Ordnung.

18. Wie lautet die Taylorreihe für eine Funktion f(x, y, z) mit drei Variablen um die Stelle (a/b/c)?