Spring, 2016

Project 2 Report

Sabbir Ahmed Teaching assistant: Ahmed Shahin

1. Project description:

The goal of this project is to design and implement a finite state machine through combinational and sequential circuits. With one 1-bit input corresponding to 25 ¢ or 10 ¢, the machine is to behave similarly to a vending machine dispensing an output after an amount of 70 ¢ or higher has been accumulated, except when the excess is either 5 ¢ or 15 ¢, in which case a change of 5 ¢ will also be outputted leaving the remaining as credit for the next simulation.

2. Process:

a. State diagram:

The following state diagram was derived from the description:

State diagram for a vending machine finite state machine with outputs y0, y1

The states were verified by an executable Python script, vending_machine_fsm.py attached to the report in the src directory. The script is written in Python 2.7 syntax.

Usage:

Systems with a python2 compiler as default:

python vending_machine_fsm.py

python2.x vending_machine_fsm.py

Systems with a newer Python compiler:

The script generates the following outputs:

```
Switch = 0
A 0000 -> D 0010 (0, 0)
C 0011 -> H 0110 (0, 0)
 0001 -> F 0101 (0, 0)
 0100 -> J 1101
D 0010 -> I 1100
                 (0.
G 0111 -> L 1110
                 (0,
 0101 -> K 1111
                 (0,
 1100 -> A 0000
H 0110 -> A 0000
 1111 -> B 0001 (1,
J 1101 -> B 0001 (1,
  1110 -> C 0011
```

```
A 0000 -> B 0001 (0, 0)

C 0011 -> E 0100 (0, 0)

B 0001 -> C 0011 (0, 0)

E 0100 -> G 0111 (0, 0)

D 0010 -> F 0101 (0, 0)

G 0111 -> I 1100 (0, 0)

F 0101 -> H 0110 (0, 0)

I 1100 -> K 1111 (0, 0)

H 0110 -> J 1101 (0, 0)

K 1111 -> A 0000 (1, 0)

J 1101 -> L 1110 (0, 0)

L 1110 -> A 0000 (1, 1)
```

12 states with their corresponding code assignments

b. Functions:

The script was also used to determine the minterms for each of the Boolean functions for the 4 flip flops and 2 outputs:

```
Default don't cares: [8, 9, 11, 10, 24, 25, 27, 26]
J0 [2, 4, 5, 7, 22, 23]
J0_D [12, 13, 14, 15, 28, 29, 30, 31]
J1 [1, 2, 3, 18, 19]
J1_D [4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31]
J2 [0, 5, 17, 20, 21, 28, 29]
J2_D [2, 3, 6, 7, 14, 15, 18, 19, 22, 23, 30, 31]
J3 [4, 14, 16, 18, 20, 22, 28]
J3_D [1, 3, 5, 7, 13, 15, 17, 19, 21, 23, 29, 31]
K0 [12, 13, 14, 15, 30, 31]
KO_D [0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23]
K1 [6, 12, 13, 14, 15, 30, 31]
K1_D [0, 1, 2, 3, 16, 17, 18, 19]
K2 [2, 6, 15, 18, 19, 22, 23, 30, 31]
K2_D [0, 1, 4, 5, 12, 13, 16, 17, 20, 21, 28, 29]
K3 [3, 7, 19, 21, 23, 29, 31]
K3_D [0, 2, 4, 6, 12, 14, 16, 18, 20, 22, 28, 30]
z0 [6, 12, 13, 14, 15, 30, 31]
z1 [12, 15, 30]
```

Minterms for all the functions generated by simulating the state machine (variables with '_D' represent don't cares)

The minterms were then used to reduce functions through use of Karnaugh maps:

$\overline{D}.\overline{E}$ $\overline{D}.E$ $D.E$ $D.\overline{E}$	$\overline{D}.\overline{E}$ $\overline{D}.E$ $D.E$ $D.\overline{E}$
$\overline{A}.\overline{B}.\overline{C}$ 0 0 0 1	$\overline{A}.\overline{B}.\overline{C}$ x x x x
$\overline{A}.\overline{B}.C$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$	$\overline{A}.\overline{B}.C$ x x x x
$\overline{A}.B.C$ x x x	A.B.C 1 1 1 1
$\overline{A}.B.\overline{C}$ x x x x	$\overline{A}.B.\overline{C}$ x x x x
$A.\overline{B.C}$ 0 0 0 0	A.B.C x x x x
$A.\overline{B}.C$ 0 0 1 1	$A.\overline{B}.C$ x x x
A.B.C x x x x	A.B.C 0 0 1 1
$A.B.\overline{C} x x x x$	$A.B.\overline{C} x x x x$
$j0 = \bar{A}C\bar{D} + \bar{A}CE + ACD + \bar{A}CD\bar{E}$	$k0 = \bar{A} + D$

	$\overline{D}.\overline{E}$	D.E	D.E	$D.\overline{E}$
$\overline{A}.\overline{B}.\overline{C}$	0	1	1	1
$\overline{A}.\overline{B}.C$	X	X	x	X
A.B.C	X	X	x	X
$\overline{A}.B.\overline{C}$	X	X	x	x
A.B.C	0	0	1	1
$A.\overline{B}.C$	X	X	x	X
A.B.C	X	X	x	X
$A.B.\overline{C}$	X	X	x	x

$$j1 = \bar{A}E + D$$

	D.E	D.E	D.E	D.E
$\overline{A}.\overline{B}.\overline{C}$	1	0	X	X
$\overline{A}.\overline{B}.C$	0	1	X	X
A.B.C	0	0	X	X
A.B.C	x	X	X	X
A.B.C	0	1	Х	Х
$A.\overline{B}.C$	1	0	X	X
A.B.C	1	1	X	X
$A.B.\overline{C}$	X	x	X	X

$$j2 = AE + AC + \bar{A}\bar{C}\bar{E} + \bar{B}CE$$

	$\overline{D}.\overline{E}$	$\overline{\mathrm{D}}.\mathrm{E}$	D.E	$D.\overline{E}$
$\overline{A}.\overline{B}.\overline{C}$	0	X	X	0
$\overline{A}.\overline{B}.C$	1	X	X	0
$\overline{A}.B.C$	0	X	X	1
$\overline{A}.B.\overline{C}$	X	X	x	X
A.B.C	1	х	Х	1
$A.\overline{B}.C$	1	X	X	1
A.B.C	1	X	X	0
A.B.C	x	x	X	X

$$j3 = A\overline{B} + A\overline{D} + \overline{B}C\overline{D} + \overline{A}BD$$

$$k1 = \bar{A}B + BD + \bar{A}D\bar{E}$$

	$\overline{D}.\overline{E}$	$\overline{\mathbf{D}}.\mathbf{E}$	D.E	$D.\overline{E}$
$\overline{A}.\overline{B}.\overline{C}$	X	X	0	1
$\overline{A}.\overline{B}.C$	x	x	0	1
A.B.C	X	X	1	0
A.B.C	X	x	x	X
A.B.C	х	X	1	1
$A.\overline{B}.C$	X	X	1	1
A.B.C	X	X	1	1
A.B.C	x	x	X	x

$$k2 = A + \bar{B}\bar{E} + BE$$

	$\overline{D}.\overline{E}$	D.E	D.E	D.Ē
$\overline{A}.\overline{B}.\overline{C}$	X	0	1	X
$\overline{A}.\overline{B}.C$	X	0	1	x
A.B.C	X	0	0	X
$\overline{A}.B.\overline{C}$	X	X	X	X
A.B.C	Х	0	1	X
$A.\overline{B}.C$	X	1	1	X
A.B.C	x	1	1	X
$A.B.\overline{C}$	X	X	X	X

$$k3 = \overline{B}D + AC$$

	$\overline{D}.\overline{E}$	$\overline{\mathrm{D}}.\mathrm{E}$	D.E	$D.\overline{E}$
$\overline{A}.\overline{B}.\overline{C}$	0	0	0	0
$\overline{A}.\overline{B}.C$	0	0	0	1
A.B.C	1	1	1	1
$\overline{A}.B.\overline{C}$	X	X	x	X
A.B.C	0	0	0	0
$A.\overline{B}.C$	0	0	0	0
A.B.C	0	0	1	1
$A.B.\overline{C}$	X	X	x	x

$$y0 = \bar{A}B + BD + \bar{A}\bar{C}D\bar{E}$$

	$\overline{D}.\overline{E}$	D.E	D.E	$D.\overline{E}$
$\overline{A}.\overline{B}.\overline{C}$	0	0	0	0
$\overline{A}.\overline{B}.C$	0	0	0	0
$\overline{A}.B.C$	1	0	1	0
$\overline{A}.B.\overline{C}$	x	X	x	X
A.B.C	0	0	0	0
$A.\overline{B}.C$	0	0	0	0
A.B.C	0	0	0	1
$A.B.\overline{C}$	X	X	X	x

y1 = $\bar{A}B\bar{D}\bar{E} + \bar{A}BDE + \bar{A}BD\bar{E}$

c. Design:

After several Boolean function manipulation, a design for the circuit was realized. Since the number of flip flops can be found by computing $\lceil \log_2(states) \rceil$, 4 JK flip flops were used. A decoder was used as well to generate 4 3-bit minterms that were used multiple times. The following schematic was designed and used as the working blueprint during the implementation:

Circuit design of the vending machine finite state machine

d. Verification:

The logic of the entire circuit was verified using Verilog. Several testbenches have been included along with a makefile for convenience. The scripts were compiled using Icarus Verilog (iverilog) successfully, and neverilog on GL, where it showed occasional runtime errors.

Usage:

Testbench for JK flip flop module:

Testbench for the machine with inputs of only 0:

Testbench for the machine with inputs of only 1:

Testbench for the machine with inputs of both 0 and 1:

3. Conclusion:

After the designing processes were completed, the circuit was constructed on a breadboard, and the logic above was verified again. Due to possible pin mapping errors and/or flawed logic, the state machine was not able to be implemented correctly and debugging the entire machine was not possible.