Regresión Lineal con Múltiples Variables de Salida

Regresión Lineal - Versiones

Regresión Lineal Simple

- 1 variable de entrada
- 1 variable de salida
- Modelo
 - f(x) = m x + b

Regresión Lineal

- o **m** variables de entrada
- 1 variable de salida
- Modelo
 - f(x)=x[1] w[1] +x[2] w[2]+...+x[m] w[m] + b

Regresión Lineal Múltiple

- o **m** variables de entrada
- k variables de salida

Regresión Lineal Múltiple - Motivación

- Predecir M valores
 - o a partir de N valores
- Transformar un vector en otro
 - Vector de flotantes
 - codificación universal
- Puede usarse para
 - Predecir la posición de un objeto
 - a partir de una imagen
 - Generar un texto
 - A partir de un sonido
 - Generar una imagen
 - A partir de un vector de características
 - o Etc...

Estudio	Edad	Promed io	N1	N2
2	24	4	7	7.2
5	22	3	4.5	5.2
7	25	4	6.3	6
9	20	7	5.4	4.4
10	19	4	8.2	9.5
11	20	3	7.2	8.1
13,4	21	5	5,5	10
14	20	3	3	4.3

Regresión Lineal Múltiple - Aplicaciones

- Predecir la posición de un cartel
 - vector de 4 valores: (x,y,alto,ancho)
- A partir de una imagen
 - vector de dimensiones: ancho*alto*colores

X	У	alto	ancho
300	200	50	400

Regresión Lineal Múltiple - Aplicaciones

P ₁	p ₂	p ₃	p ₄
4	3	2	6

Diccionario

Palabra	Código
hola	1
curso	2
buen	3
que	4
la	5
che	6
el	7

- Generar un texto
 - vector de P dimensiones
- A partir de un sonido
 - vector de t dimensiones

que buen curso che

Regresión Lineal Múltiple - Aplicaciones

- Generar una imagen
- A partir de un vector de características

Perro	Gato	Exterior
1	0	0

Perro	Gato	Exterior
1	0	1

Perro	Gato	Exterior
0	1	0

Perro	Gato	Exterior
1	1	0

Regresión Lineal Múltiple - Problema

Predecir una variable

Estudio	Edad	Promedio	Nota
2	24	4	7
5	22	3	4.5
7	25	4	6.3
9	20	7	5.4
10	19	4	8.2
11	20	3	7.2
13,4	21	5	5,5
14	20	3	3

Predecir múltiples variables

Estudio	Edad	Promed io	N1	N2
2	24	4	7	7.2
5	22	3	4.5	5.2
7	25	4	6.3	6
9	20	7	5.4	4.4
10	19	4	8.2	9.5
11	20	3	7.2	8.1
13,4	21	5	5,5	10
14	20	3	3	4.3

Regresión Lineal Múltiple - Versión Simple

Dos salidas → Dos modelos

Estudio	Edad	Promedio	N1	
2	24	4	7	
5	22	3	4.5	
7	25	4	6.3	
9	20	7	5.4	
10	19	4	8.2	
11	20	3	7.2	
13,4	21	5	5,5	
14	20	3	3	
Modelo para N1				

Estudio	Edad	Promedio	N2	
2	24	4	7.2	
5	22	3	5.2	
7	25	4	6	
9	20	7	4.4	
10	19	4	9.5	
11	20	3	8.1	
13,4	21	5	10	
14	20	3	4.3	
Modelo para N2				

Regresión Lineal Múltiple - Versión Simple

Modelo para N1 Entrada

X: 3 números

Parámetros

W1: 3 números

B1: 1 número

Salida

N1: 1 número

Modelo para N2

Entrada

X: 3 números

Parámetros

W2: 3 números

B2: 1 número

Salida

N2: 1 número

Fórmula del modelo para N1

```
N1(X) = (X[1] * W1[1] + X[2] * W1[2] + X[3] * W1[3])+B1
```

 $= X \cdot W1 + B1$

En Python

$$N1 = np.dot(W1,X) + B1$$

X. W es el producto punto o escalar.

def dot(X,W):

```
p=0
for i in range(3):
   p=p+(X[i]*W[i])
return p
```

Fórmula del modelo para N2

$$N2(X) = (X[1] * W2[1] + X[2] * W2[2] + X[3] * W2[3])+B2$$

= X . W2 + B2

En Python

```
N2 = np.dot(W2,X) + B2
```

Regresión Lineal Múltiple - Versión Simple

Si tenemos 100 clases? Hay una forma más eficiente

Regresión Lineal Múltiple - Modelo

Combinamos N1 y N2 en un solo modelo Una "sola" salida Vector de 2 números Modelo N X: [3, 10, 9] N: [8.5, 7.2][X.W1+B1, X.W2+B2] **N1** N2

Regresión Lineal Múltiple - Modelo

Combinamos los parámetros en:

- Matriz W de 3x2
- Vector B de 2x1

X: [3, 10, 9]

Regresión Lineal Múltiple - Cálculo

- W1 [1, 2, 3]'
- B1 -46

- W2 [4, 5, 6]'
- B2 -108

Multiplicación de matrices

Regresión Lineal Múltiple - Tamaños

Tamaños de vectores y matrices

Recursos para repasar operaciones vectoriales

- Producto punto o escalar entre dos vectores: <u>https://www.youtube.com/watch?v=N5f7pYTNcFM</u>
- Multiplicación de un vector por un escalar:
 https://es.khanacademy.org/math/algebra-home/alg-vectors/alg-scalar-multiplication/v/understanding-multiplying-vectors-by-scalars
- Multiplicación de una matriz por un escalar: <u>https://www.youtube.com/watch?v=-ArUqjhQIBM</u>
- Producto de una matriz y un vector <u>https://www.youtube.com/watch?v=2Gdy1xRnqjk</u>
- Producto de una matriz y otra matriz

 https://www.youtube.com/watch?v=Tjrm3HsqBXE
 https://es.khanacademy.org/math/linear-algebra/matrix-transformations/composition-of-transformations/v/linear-algebra-matrix-product-examples

Regresión Lineal Múltiple - Función de Error E

$$E_i(\mathbf{W},\mathbf{B}) = (y_i[1]-f(x_i)[1])^2 + (y_i[2]-f(x_i)[2])^2 = ||y_i-f(x_i)||^2$$

return error

Regresión Lineal Múltiple - Función de Error E

- $E_i(\mathbf{W}, \mathbf{B}) = (y_i[1] f(x_i)[1])^2 + (y_i[2] f(x_i)[2])^2 = ||y_i f(x_i)||^2$
 - Distancia euclídea al cuadrado
 - Entre $f(x_i)$ e y_i

Regresión Lineal Múltiple - Función de Error E.

$$E_{i}(\mathbf{W},\mathbf{B}) = (y_{i}[1]-f(x_{i})[1])^{2} + (y_{i}[2]-f(x_{i})[2])^{2} = ||y_{i}-f(x_{i})||^{2}$$

$$f(x_{i})=[4,8]$$

$$y_{i}[2]-f(x_{i})[2]$$

$$y_{i}=[6,7]$$

$$y_{i}=[6,7]$$

- E_i = Distancia Euclídea al cuadrado = ||y_i-f(x_i)||²
 ¿Por qué no ||y_i-f(x_i)|| = sqrt[(y_i[1]-f(x_i)[1])² + (y_i[2]-f(x_i)[2])²]?
 sqrt es función monótona creciente
 - - Misma solución

Regresión Lineal Múltiple - Función de Error E

```
X = (Estudio, Edad, Promedio) E(W,B) = 1/n \Sigma_i^n E_i(W,B)

Y_verdadero = (N1,N2)

Y_prediccion = (P1,P2)
```

Estudi o	Edad	Prome dio	N1	N2	P1	P2	E
2	24	4	7	7.2	16	44	1435.24
5	22	3	4.5	5.2	12	40	1267.29
7	25	4	6.3	6	23	69	4247.89
9	20	7	5.4	4.4	24	70	4649.32
10	19	4	8.2	9.5	14	51	1755.89
11	20	3	7.2	8.1	14	54	2153.05
13.4	21	5	5.5	10	24.4	80.6	5341.57
14	20	3	3	4.3	17	66	4002.89

```
def error_cuadratico_medio(x,y,w,b):
    n = x.shape[0] # o y.shape[0]
    error=0
    for i in range(n):
        P = x[i,:]*w+b #prediccion
        N = y[i,:] #verdadero
        error += error_cuadratico(P,N)
    return error/n
```

```
def error_cuadratico(y_pred,y_verdadero):
    error=0
    c=len(y_pred) # o len(y_verdadero)
    for i in range(c):
        error+=(y_pred[i]-y_verdadero[i])**2
    return error
```

Regresión Lineal Múltiple - Resumen

Resumen

- Predecir N valores
- Transformar un vector en otro
 - Vector de entrada x de dimension N
 - Vector de salida y de dimension M
 - Matriz de pesos W, de dimension NxM
 - Vector de bias B, de dimensión M
- Descenso de gradiente
 - Sumar errores cuadráticos de cada salida.
 - Error sigue siendo convexo (solución única).
- ¿Es más potente que Regresión Lineal Simple?
 - No, sigue siendo un modelo lineal.

Estudio	Edad	Promed io	N1	N2
2	24	4	7	7.2
5	22	3	4.5	5.2
7	25	4	6.3	6
9	20	7	5.4	4.4
10	19	4	8.2	9.5
11	20	3	7.2	8.1
13.4	21	5	5.5	10
14	20	3	3	4.3