

Práctico 2 - Resultados de ejercicios

Ejercicio 1

Parte a: $R_T = 8,49k\Omega = 8490\Omega$

Parte b: $R_T = 12, 1_\Omega$ Parte c: $R_T = 31, 8_k\Omega$ Parte d: $R_T = 2158\Omega$

Ejercicio 2

Lectura en el caso a: $= R_T = 10 + 33 + 56 = 99 \Omega$

Lectura en el caso a: $=R_T=7,52k\Omega$

Ejercicio 3

Lectura en el caso a: $R = 18k\Omega$ Lectura en el caso b: $R_1 = 12k\Omega$

El circuito esta formado por la serie de 4 resistencias con valores 24, 12, 43 y 24 k Ω

Ejercicio 4

Parte a: $R_T = 40\Omega$

Parte b: I = 1,8 A

Parte c:

 $V_{R1} = R_1 * I = 10\Omega * 1,8A = 18V$

 $V_{R2} = R_2 * I = 12\Omega * 1,8A = 21,6V$

 $V_{R3} = R_3 * I = 18\Omega * 1,8A = 32,4V$

Parte d: P = 72 V * 1,8 A = 129,6 W

Parte e: P = 58,32 W

Ejercicio 5

a: E = 88V b: E = 63V

Ejercicio 6

Determinar cantidades desconocidas

a: $R = 21\Omega$ E = 24V

b: $R_1 = 2\Omega$ E = 90,5V

Ejercicio 7

$$V_1 = 14V$$
 $V_2 = 18V$

Ejercicio 8

- a: Realizamos el divisor con una resistencia de valor R= 80Ω en serie con la lámpara de 8 V - 50 mA
- b: La potencia minima es de 0,25 W

Ejercicio 9

 $R_T = 12\Omega$ b: $R_T = 10.8\Omega$ c: $R_T = 3k\Omega$

Ejercicio 10

 $R = 2403\Omega$ b: $R_1 = 24k\Omega$ a:

Ejercicio 11

- Corrientes en cada rama $I_1 = 6A$ $I_2 = 2A$ $I_3 = 0.5A$ a:
- $R_{\scriptscriptstyle T}=2{,}11764\Omega$ c: d: $I_{\scriptscriptstyle T}=8{,}5A$ e: Se verifica el resultado b:

Ejercicio 12

- E = 20VParte a: $R_2 = 10 \Omega$ Parte b:
- Parte c: $I_1 = 2A$ I = 9AP = 180WParte d: Parte d: P = 180WParte f: $P = P_2 = 40W$
- Parte g: 180W = (100 + 40 + 40)W

Ejercicio 13

- V = 48VParte a: Parte b:
- $I_2 = 2,66mA$ $I_f = 22,66mA$ Parte c: Parte d: P = 0.192W

Ejercicio 14

Corrientes: $I_f = 14mA$ $I_2 = 4mA$

Ejercicio 15

Cantidades calculadas: Parte a: $R_1=5\Omega$ $R_2=10\Omega$ Parte b: E=12V $I_2=1,33A$ $R_3=12\Omega$

 $I_3 = 1A$ I = 4,33A $R_T = 2,7692\Omega$

Ejercicio 16

Corrientes:

 $I_1 = 3,27A$ $I_2 = 1,63A$ $I_3 = 1,09A$