Introduction à la logique

Benjamin Wack (benjamin.wack@univ-grenoble-alpes.fr)

Notes de cours par Stéphane Devismes Pascal Lafourcade Michel Lévy

Université Grenoble Alpes

Janvier 2025

Organisation

12 semaines

- Cours magistral : 1h30 par semaine
- ► TD : 2 × 1h30 = 3h par semaine (sauf la première semaine)
- Projet en autonomie

Ressources

- Poly, sujets de projet
- ➤ Quizz
- Annales

https://moodle.caseine.org/course/view.php?id=1271

Évaluation

Evaluations

- ► Contrôle continu : interros 10%, partiel 20% et projet 30%
- ► Examen: 40%

Projet par groupes de 3 (ou 4).

- ▶ Phase 1 : Modélisation d'un problème en logique (avec interface logicielle)
- ► Phase 2 : Utilisation d'un solveur SAT pour résoudre ce problème
- Optionnel : Programmation d'un solveur SAT

Exemples de problèmes : coloration de graphe, grilles de type Sudoku...

B. Wack (UGA) Introduction à la logique Janvier 2025

Plan

Introduction à la Logique

Logique propositionnelle

Syntaxe des formules

Sens des formules (sémantique)

Conclusion

Logique

Définitions

- La logique précise ce qu'est un raisonnement correct, indépendemment du domaine d'application.
- ► Un raisonnement est un moyen d'obtenir une conclusion à partir d'hypothèses données.
- Un raisonnement correct ne dit rien sur la vérité des hypothèses, il dit seulement que de la vérité des hypothèses, on peut déduire la vérité de la conclusion.

Applications

- Hardware (portes logiques)
- Vérification et correction des programmes, sécurité :
 - prouveurs COQ, PVS, Prover9, MACE, ...
 - applications industrielles (Meteor, Airbus...)
- ► Intelligence artificielle :
 - système expert (MyCin), ontologie
- ► **Programmation** : Prolog
 - ▶ intelligence artificielle
 - traitement de la langue
- Vérification de preuves mathématiques

Exemples de raisonnements

Exemple I

- ► Hypothèse I : Tous les hommes sont mortels
- ► Hypothèse II : Socrate est un homme
- Conclusion : Socrate est mortel

Exemple II

- Hypothèse I : Tout ce qui est rare est cher
- ► Hypothèse II : Un cheval bon marché est rare
- ► Conclusion : Un cheval bon marché est cher!

Ajout d'une hypothèse

Exemple III

- ► Hypothèse I : Tout ce qui est rare est cher
- ► Hypothèse II : Un cheval bon marché est rare
- Hypothèse III : Tout ce qui est bon marché n'est pas cher
- Conclusion : Hypothèses contradictoires ! Car :
 - ► Hypothèse I + hypothèse II : Un cheval bon marché est cher
 - ► Hypothèse III : Un cheval bon marché n'est pas cher

Objectifs du cours

- Modéliser et formaliser un problème décrit en langage naturel.
- ► Comprendre un raisonnement présenté sous forme symbolique, en particulier être capable de déterminer s'il est correct.
- Démontrer, c'est-à-dire construire un raisonnement correct utilisant les règles et/ou les algorithmes de la logique propositionnelle et du premier ordre.
- ► Écrire une preuve rigoureuse, en particulier par récurrence.

Plan du Semestre

AUJOURD'HUI

- ► Logique propositionnelle
- ► Résolution propositionnelle
- ► Déduction naturelle propositionnelle

PARTIEL

- Logique du premier ordre
- Base de la démonstration automatique (« résolution au premier ordre »)
- Déduction naturelle au premier ordre

EXAMEN

Notion de logique formelle

Idée déjà formulée par Leibniz (voire par les Stoïciens) : pour systématiser le raisonnement, il faut formaliser : les énoncés puis le raisonnement lui-même.

George Boole (1854) suit une approche calculatoire :

- traduire les énoncés par des expressions algébriques
- leur appliquer des règles de calcul qui traduisent le raisonnement humain
- ► et réinterpréter le résultat

Logique propositionnelle

Définition

La logique propositionnelle est la logique sans quantificateurs.

Seules opérations logiques considérées :

- ► ¬ (négation)
- ► ∧ (conjonction "et")
- ► ∨ (disjonction "ou")
- ightharpoonup \Rightarrow (implication)
- ► ⇔ (équivalence)

Janvier 2025

Exemple: Raisonnement formel

Hypothèses:

- ► (H1): Si Pierre est grand, alors Jean n'est pas le fils de Pierre
- ► (H2) : Si Pierre n'est pas grand, alors Jean est le fils de Pierre
- ► (H3) : Si Jean est le fils de Pierre alors Marie est la soeur de Jean

Conclusion (C): Marie est la soeur de Jean ou Pierre est grand.

- ▶ p : "Pierre est grand"
- ▶ j : "Jean est le fils de Pierre"
- ► m : "Marie est la soeur de Jean"

- \blacktriangleright (H1): $p \Rightarrow \neg j$
- $(H2): \neg p \Rightarrow i$
- ► (H3) : *j* ⇒ *m*

15 / 46

ightharpoonup (C): $m \lor p$

Il s'agira de montrer que $H1 \wedge H2 \wedge H3 \Rightarrow C$:

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

est vraie quelque soit la valeur de vérité des propositions p, j, m.

Vocabulaire du langage

- Les variables (propositionnelles) : par exemple x, y_1
- ► Les connecteurs : \neg , \lor , \land , \Rightarrow , \Leftrightarrow

Quels sont les meilleurs Pokémon?

Une formule pour les caractériser :

Electricite ∨ Feu ∧ Legendaire

Janvier 2025

18 / 46

Ambiguïté qu'on peut lever avec :

- des parenthèses
- des priorités

Vocabulaire du langage (2è essai)

- Les variables (propositionnelles) : par exemple x, y_1
- ► Les connecteurs : \neg , \lor , \land , \Rightarrow , \Leftrightarrow
- Les parenthèses
- On ajoute aussi deux constantes : ⊤ (vrai) et ⊥ (faux)

Formule (stricte)

Définition 1.1.1

Une formule stricte est définie de manière inductive par :

- ▶ ⊤ et ⊥ sont des formules strictes.
- Une variable est une formule stricte.
- ▶ Si A est une formule stricte alors $\neg A$ est une formule stricte.
- ▶ Si A et B sont des formules strictes et si \circ est un des connecteurs binaires $\lor, \land, \Rightarrow, \Leftrightarrow$ alors $(A \circ B)$ est une formule stricte.

Exemple 1.1.2

 $(a \lor (\neg b \land c))$ est une formule stricte, mais pas $a \lor (\neg b \land c)$, ni $(a \lor (\neg (b) \land c))$.

Arbre

Exemple 1.1.3

La structure de la formule $(a \lor (\neg b \land c))$ est mise en évidence par l'arbre suivant :

Exercice

$$((p \land \neg (p \lor q)) \land \neg r)$$

Taille d'une formule

Définition 1.1.10

La taille d'une formule A, notée |A|, est définie inductivement par :

- ▶ $|\top| = 0$ et $|\bot| = 0$.
- ► Si A est une variable alors |A| = 0.
- $ightharpoonup |\neg A| = 1 + |A|.$
- $|(A \circ B)| = |A| + |B| + 1.$

Exemple 1.1.11

$$|(a \lor (\neg b \land c))| =$$

3.

Formule à priorité

Définition 1.1.14

Comme pour les formules strictes mais :

- si A et B sont des formules à priorité alors A ∘ B est une formule à priorité,
- ▶ si A est une formule à priorité alors (A) est une formule à priorité.

En bref : on est libre de placer les parenthèses comme on le souhaite.

Exemple 1.1.15

 $a \lor \neg b \land c$ est une formule à priorité mais pas une formule stricte.

Règles de priorité

Définition 1.1.16

Par ordre de priorités décroissantes : \neg , \land , \lor , \Rightarrow et \Leftrightarrow .

Associativité à gauche

Pour deux connecteurs identiques $A \circ B \circ C = (A \circ B) \circ C$

sauf pour l'implication : $A \Rightarrow B \Rightarrow C = A \Rightarrow (B \Rightarrow C)$

Exemples de formules à priorité

Exemple 1.1.17

 $ightharpoonup a \wedge b \wedge c$ est l'abréviation de

$$((a \wedge b) \wedge c)$$

 $ightharpoonup a \wedge b \vee c$ est l'abréviation de

$$((a \land b) \lor c)$$

 $ightharpoonup a \lor b \land c$ est l'abréviation de

$$(a \lor (b \land c))$$

Que penser de ces affirmations?

- Si un bus passe devant le cinéma alors il passe devant le café.
- ► Si un bus passe devant le café alors il est passé devant la mairie.
- Si un bus passe devant l'hôpital et devant l'école alors il passe devant la poste.

Assignation d'une formule

Définition 1.2.1

Une assignation est une fonction qui associe chaque variable à une valeur dans $\{0,1\}$.

 $[A]_v$ dénote la valeur de la formule A dans l'assignation v.

Exemple : Soit v une assignation telle que v(x) = 0 et v(y) = 1.

Appliquer $v \ge x \lor y$ s'écrit $[x \lor y]_v$.

$$[x \lor y]_v = 0 \lor 1 = 1$$

Conclusion : $x \lor y$ est vraie pour l'assignation v.

Valeur d'une formule

Définition 1.2.2

Soient A, B des formules, x une variable et v une assignation.

- $ightharpoonup [x]_v = v(x)$
- ightharpoonup $[\top]_v = 1$, $[\bot]_v = 0$

- $\blacktriangleright \ [A \land B]_v = \min\{[A]_v, [B]_v\}$
- ► $[A \Leftrightarrow B]_v = 1$ quand $[A]_v = [B]_v$, dans les autres cas 0
- \blacktriangleright $[A \Rightarrow B]_v = 0$ quand $[A]_v = 1$ et $[B]_v = 0$, dans les autres cas 1

Table de vérité

Définition 1.2.3

Une table de vérité donne la valeur d'une formule pour **chaque** choix de valeurs des variables de *A*.

- une ligne de la table de vérité = une assignation
- ► une colonne = toutes les valeurs d'une formule.

Tables de base

On associe à chaque formule une valeur: 0 (faux) ou 1 (vrai). La constante \top vaut 1 et la constante \bot vaut 0.

Table 1.1 (table de vérité des connecteurs)

X	у	$\neg \chi$	$x \lor y$	$x \wedge y$	$x \Rightarrow y$	$x \Leftrightarrow y$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Exemple:

Exemple 1.2.4

Donner la table de vérité des formules suivantes.

X	У	$x \Rightarrow y$	$\neg x$	$\neg x \lor y$	$(x \Rightarrow y) \Leftrightarrow (\neg x \lor y)$	$x \vee \neg y$
0	0	1	1	1	1	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	1	1	0	1	1	1

Formules équivalentes

Définition 1.2.5

Deux formules A et B sont équivalentes (noté $A \equiv B$ ou simplement A = B) si elles ont la même valeur pour toute assignation.

Exemple 1.2.6

$$x \Rightarrow y \equiv \neg x \lor y$$

Remarque:

Le connecteur logique \Leftrightarrow ne signifie pas $A \equiv B$.

Validité, tautologie (1/2)

Définition 1.2.8

- ▶ Une formule est valide si elle a la valeur 1 pour toute assignation.
- ► Aussi appelée une tautologie.
- Noté $\models A$.

Exemple 1.2.9

- $(x \Rightarrow y) \Leftrightarrow (\neg x \lor y) \text{ est valide};$
- $ightharpoonup x \Rightarrow y$ n'est pas valide car

elle est fausse pour x = 1 et y = 0.

Validité, tautologie (2/2)

Propriété 1.2.10

Les formules A et B sont équivalentes ($A \equiv B$) si et seulement si

la formule $A \Leftrightarrow B$ est valide.

Cf table de vérité de ⇔.

Modèle d'une formule

Définition 1.2.11

Une assignation v qui donne la valeur 1 à une formule est un modèle de cette formule.

On dit aussi que v satisfait A ou v rend A vraie.

Exemple 1.2.12

Un modèle de $x \Rightarrow y$ est :

$$x = 1, y = 1$$
 (il y en a d'autres).

Par contre x = 1, y = 0 n'est pas un modèle de $x \Rightarrow y$.

Modèle d'un ensemble de formules

Définition 1.2.13

v est un modèle de l'ensemble $\{A_1, \ldots, A_n\}$ si et seulement si elle est un modèle de chacune de ces formules.

Exemple 1.2.14

Un modèle de $\{a \Rightarrow b, b \Rightarrow c\}$ est :

$$a = 0, b = 0$$
 (et c quelconque).

Propriété d'un modèle d'un ensemble de formules

Propriété 1.2.15

v est un modèle de $\{A_1, \ldots, A_n\}$ si et seulement si v est un modèle de $A_1 \wedge \ldots \wedge A_n$.

Exemple 1.2.16

L'ensemble de formules $\{a \Rightarrow b, b \Rightarrow c\}$ et la formule $(a \Rightarrow b) \land (b \Rightarrow c)$ ont les mêmes modèles.

Contre-modèle

Définition 1.2.17

Une assignation v qui donne la valeur 0 à A est un contre-modèle de A.

On dit que v ne satisfait pas A ou que v rend la formule fausse.

Exemple 1.2.18

Un contre-modèle de $x \Rightarrow y$ est :

$$x = 1, y = 0.$$

Formule satisfaisable

Définition 1.2.20

Un (ensemble de) formule(s) est satisfaisable s'il admet un modèle.

Définition 1.2.21

Un (ensemble de) formule(s) est insatisfaisable s'il n'est pas satisfaisable.

Exemple 1.2.22

 $x \land \neg x$ est insatisfaisable, mais $x \Rightarrow y$ est satisfaisable.

Attention

satisfaisable = 1 modèle ou plus insatisfaisable = 0 modèle valide = 0 contre-modèle invalide = 1 contre-modèle ou plus

Aujourd'hui

- Pourquoi définir et utiliser la logique formelle?
- ► Formules de logique propositionnelle :
 - ► 1 variable = 1 proposition (une information) vraie ou fausse
 - ► 5 connecteurs pour articuler ces propositions
- Sens des formules :
 - assignation = choix d'une valeur de vérité pour chaque variable
 - une formule peut être vraie pour 0, 1, plusieurs ou toutes les assignations

La prochaine fois

Exercice : étudier "Pierre, Jean et Marie" à l'aide des tables de vérité.

- ► Équivalences remarquables
- Substitutions et remplacements
- Formes normales