2017 TSTST #2

Tristan Shin

24 Jun 2017

Ana and Banana are playing a game. First Ana picks a word, which is defined to be a nonempty sequence of capital English letters. (The word does not need to be a valid English word.) Then Banana picks a nonnegative integer k and challenges Ana to supply a word with exactly k subsequences which are equal to Ana's word. Ana wins if she is able to supply such a word, otherwise she loses.

For example, if Ana picks the word "TST", and Banana chooses k = 4, then Ana can supply the word "TSTST" which has 4 subsequences which are equal to Ana's word.

Which words can Ana pick so that she wins no matter what value of k Banana chooses?

(The subsequences of a string of length n are the 2^n strings which are formed by deleting some of its characters, possibly all or none, while preserving the order of the remaining characters.)

Some notation:

- Addition with words will mean concatenation (so if ω_1 and ω_2 are words, then $\omega_1 + \omega_2$ represents the word with ω_1 followed by ω_2)
- Scalar multiplication by a nonnegative integer will mean repeating the word (so if ω_1 is a word, then $3\omega_1 = \omega_1 + \omega_1 + \omega_1$)
- Magnitude of a word denotes length (so if ω_1 is a word, then $|\omega_1|$ denotes the number of letters in ω_1)

Let \mathcal{S} be the set of words ω such that for any letter ℓ in ω , either one of the neighbors of ℓ is the same letter as ℓ . For example, AABB is in \mathcal{S} , but not TSSAL, MOP, A, or TSTST.

The answer is any word <u>not</u> in S.

Let ω be a word not in \mathcal{S} . Then we can write

$$\omega = \omega_1 + \ell + \omega_2, |\ell| = 1$$

where neither neighbor of ℓ is the same letter as ℓ . Let the letter in ℓ be \mathcal{L} . Then if Banana chooses k = n, then Ana can give

$$\omega_1 \underbrace{\mathcal{LL} \dots \mathcal{L}}_{n} \omega_2.$$

In order to preserve ω , no letters in ω_1 and ω_2 can be removed. Thus, we must remove n-1 letters from the n \mathcal{L} 's. There are $\binom{n}{n-1}=n$ ways to do this. All of them bring back ω , so this works.

2017 TSTST #2 Tristan Shin

Now, let ω be a word in \mathcal{S} . We will prove that it is impossible that Ana can win k=2. Assume that Ana can supply a word ω' when Ana chooses k=2.

Let \mathcal{C} be the set of letters in ω . Clearly, ω is a substring of ω' , so we can say that we are expanding on ω (and adding letters to ω) in order to form ω' . Picking any letter which is not in \mathcal{C} to add to ω does not help nor hurt, as it must be deleted in any formation of ω . Thus, we may assume that ω' consists only of letters in \mathcal{C} .

Let

$$\omega = a_1 \ell_1 + a_2 \ell_2 + \ldots + a_k \ell_k$$

for some letters $\ell_1, \ell_2, \dots, \ell_k$ and positive integers a_1, a_2, \dots, a_k . Let the " ℓ_i block" represent the block of $a_i \ell_i$'s inside ω .

Assume that we add a letter $\mathcal{L} \in \mathcal{C}$ to ω in order to form ω' . Let $\mathcal{L} = \ell_M$ for some index M. I claim that one of the following occurs:

1) \mathcal{L} is deleted in any formation of ω from ω' , in which case \mathcal{L} is useless and we can ignore it. 2) \mathcal{L} is a neighbor to the ℓ_M block.

Assume that \mathcal{L} is successful in forming a ω from ω' , so it is not deleted. Furthermore assume that \mathcal{L} is not a neighbor to the ℓ_M block. We can assume that \mathcal{L} is to the left of the ℓ_M block, otherwise we can flip over the word. Let the letter immediately to the left of \mathcal{L} be ℓ_K , K < M. Then if K + 1 < M, there must exist the subsequence

$$\phi = a_{K+1}\ell_{K+1} + a_{K+2}\ell_{K+2} + \ldots + a_{M-1}\ell_{M-1}$$

to the left of \mathcal{L} in ω' in order for \mathcal{L} to be useful. We must also append the remainder of the ℓ_K block to the right of \mathcal{L} before ϕ in order for \mathcal{L} to be useful. Either way, we must[hide=*]We might add on more letters, but this can only increase the number of subsequences of ω' that are equal to ω as we can just delete them to get this word.[/hide] have something in the form

$$\omega_1 + \mathcal{L} + \omega_2 + a_M \ell_M + \omega_3$$

where

$$\omega_1 + a_M \ell_M + \omega_3 = \omega.$$

Then we must delete all of ω_2 and 1 of the ℓ_M 's. But there are

$$a_M + 1 > 3$$

of them, so there are at least 3 subsequences of ω' that are equal to ω , contradiction. Thus, either 1 or 2 occurs.

If 1 occurs, then \mathcal{L} does not matter and we might as well have deleted it to begin with without affecting the number of subsequences of ω' that are equal to ω .

If 2 occurs, then there are at least

$$a_M + 1 > 3$$

ways to remove a ℓ_M , so there are at least 3 subsequences of ω' that are equal to ω , contradiction.

2017 TSTST #2 Tristan Shin

Thus, we cannot place any letter into ω to build ω' . Thus, $\omega' = \omega$. But there is only one subsequence of ω that is equal to ω , so k = 2 still loses, contardiction.

Thus, ω' does not exist and thus if ω is in \mathcal{S} , then Ana loses on k=2.

Thus, Ana can pick any word <u>not</u> in S to win no matter what value of k Banana chooses, and picking any word in S fails.