

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Tópicos de Mécanica Cuántica Guia 2

Enrique Valbuena Ordonez

Nombre: Giovanni Gamaliel López Padilla

Matricula: 1837522

1. Obtener la ecuación de Schrödinger y su forma compleja conjugada con las ecuaciones de Euler-Lagrange.

Se tiene que la ecuación de Schrödinger normal y compleja conjugada son las siguientes:

$$\frac{\partial \mathcal{L}}{\partial \psi^*} = \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi^*}{\partial x} \right)} \right). \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial \psi} = \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi}{\partial x} \right)} \right). \tag{2}$$

Y la densidad lagrangiana de Schrödinger es:

$$\mathcal{L}\left(\psi,\psi^*,\frac{\partial\psi}{\partial x},\frac{\partial\psi^*}{\partial x},\frac{\partial\psi}{\partial t},\frac{\partial\psi^*}{\partial t},x\right) = -\frac{\hbar^2}{2m}\frac{\partial\psi}{\partial x}\frac{\partial\psi^*}{\partial x} + i\hbar\left[\psi^*\frac{\partial\psi}{\partial t} - \psi\frac{\partial\psi^*}{\partial t}\right] - V(x)\psi\psi^*. \tag{3}$$

Para calcular la ecuación de Schrödinger usando 1 con 3, calculando la parte izquierda de la ecuación 1 se tiene lo siguiente:

$$\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi^*}{\partial x}\right)} = -\frac{\hbar^2}{2m} \frac{\partial \psi}{\partial x}$$
$$\frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi^*}{\partial x}\right)}\right) = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2}.$$

Calculando la parte derecha de la ecuación 1 se tiene lo siguiente:

$$\frac{\partial \mathcal{L}}{\partial \psi^*} = i\hbar \frac{\partial \psi}{\partial t} - V(x)\psi$$

por lo tanto, se obtiene lo siguiente:

$$i\hbar \frac{\partial \psi}{\partial t} - V(x)\psi = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \tag{4}$$

Para calcular la ecuación de Schrödinger usando 2 con 3, calculando la parte izquierda de la ecuación 2 se tiene lo siguiente:

$$\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi}{\partial x}\right)} = -\frac{\hbar^2}{2m} \frac{\partial \psi^*}{\partial x}$$
$$\frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi}{\partial x}\right)}\right) = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2}.$$

Calculando la parte derecha de la ecuación 1 se tiene lo siguiente:

$$\frac{\partial \mathcal{L}}{\partial \psi^*} = -i\hbar \frac{\partial \psi^*}{\partial t} - V(x)\psi^*$$

por lo tanto, se obtiene lo siguiente:

$$-i\hbar\frac{\partial\psi^*}{\partial t} - V(x)\psi^* = -\frac{\hbar^2}{2m}\frac{\partial^2\psi^*}{\partial x^2}$$
 (5)

Por lo tanto, la ecuación 4 y 5 son las ecuaciones de Schrödinger normal y compleja conjugada respectivamente.

2. Demostrar que la ecuación de Schrödinger es invariante ante el grupo de transformaciones globales U(1).

Se tiene que las transformaciones U(1) estan definidas como:

$$\psi' = U\psi \equiv e^{i\theta}\psi \tag{6}$$

$$\psi'^* = U\psi^* \equiv e^{-i\theta}\psi^* \tag{7}$$

tal que $\theta \varepsilon \mathcal{R}$, entonces realizando el calculo con con la ecuación 3, se tiene que:

$$\mathcal{L}\left(\psi',\psi'^{*},\frac{\partial\psi'}{\partial x},\frac{\partial\psi'^{*}}{\partial x},\frac{\partial\psi'^{*}}{\partial t},\frac{\partial\psi'^{*}}{\partial t},x\right) = -\frac{\hbar^{2}}{2m}\frac{\partial\psi'}{\partial x}\frac{\partial\psi'^{*}}{\partial x} + i\hbar\left[\psi'^{*}\frac{\partial\psi'}{\partial t} - \psi'\frac{\partial\psi'^{*}}{\partial t}\right] - V(x)\psi'\psi'^{*}$$

$$= \left(-\frac{\hbar^{2}}{2m}\frac{\partial\left(e^{i\theta}\right)\psi}{\partial x}\frac{\partial\left(e^{-i\theta}\right)\psi^{*}}{\partial x}\right) + i\hbar\left[\left(e^{-i\theta}\right)\psi^{*}\frac{\partial\left(e^{i\theta}\right)\psi}{\partial t} - \left(e^{i\theta}\right)\psi\frac{\partial\left(e^{-i\theta}\right)\psi^{*}}{\partial t}\right] - V(x)e^{i\theta}\psi\left(e^{-i\theta}\right)\psi^{*}$$

$$= (e^{i\theta})\left(e^{-i\theta}\right)\left(-\frac{\hbar^{2}}{2m}\frac{\partial\psi}{\partial x}\frac{\partial\psi^{*}}{\partial x}\right) + i\hbar\left[\left(e^{i\theta}\right)\left(e^{-i\theta}\right)\psi^{*}\frac{\partial\psi}{\partial t} - \left(e^{i\theta}\right)\left(e^{-i\theta}\right)\psi\frac{\partial\psi^{*}}{\partial t}\right] - V(x)\left(e^{i\theta}\right)\left(e^{-i\theta}\right)\psi\psi^{*} .$$

$$= -\frac{\hbar^{2}}{2m}\frac{\partial\psi}{\partial x}\frac{\partial\psi^{*}}{\partial x} + i\hbar\left[\psi^{*}\frac{\partial\psi}{\partial t} - \psi\frac{\partial\psi^{*}}{\partial t}\right] - V(x)\psi\psi^{*} .$$

$$= \mathcal{L}\left(\psi,\psi^{*},\frac{\partial\psi}{\partial x},\frac{\partial\psi^{*}}{\partial t},\frac{\partial\psi}{\partial t},\frac{\partial\psi^{*}}{\partial t},x\right)$$

Por lo tanto, el grupo de las transformaciones $\mathrm{U}(1)$ deja invariante a la ecuación de Schrödinger.

3. Calcular la lagrangiana de interacción de Schrödinger en términos del cuadrivector de potencial.

Se tiene que la lagrangiana de Schroödinger es la ecuación 3 y tomando en consideración que:

$$\partial_t \to \partial_t - igA_0$$

$$\partial_t^* \to \partial_t + igA_0$$

$$\nabla' \to \nabla - ig\vec{A}$$

$$\nabla'^* \to \nabla + iq\vec{A}$$

Esto para obtener los terminos de interacción dentro de la lagrangiana, introduciendo estos terminos en la ecuación 3, se obtiene lo siguiente:

$$\mathcal{L} = -\frac{\hbar^{2}}{2m} \left[\nabla' \psi \cdot \nabla' \psi^{*} \right] + i\hbar \left[\psi^{*} \partial'_{t} \psi - \psi \partial'_{t} \psi^{*} \right]$$

$$= -\frac{\hbar^{2}}{2m} \left[\left(\nabla - ig\vec{A} \right) \psi \cdot \left(\nabla + ig\vec{A} \right) \psi^{*} \right] + i\hbar \left[\psi^{*} \left(\partial_{t} - igA_{0} \right) \psi - \psi \left(\partial_{t} + igA_{0} \right) \psi^{*} \right]$$

$$= -\frac{\hbar^{2}}{2m} \nabla \psi \cdot \nabla \psi^{*} - \frac{\hbar^{2}}{2m} \left[\nabla \psi \cdot ig\vec{A}\psi^{*} - ig\vec{A}\psi \cdot \nabla \psi^{*} + g^{2}\vec{A}\psi \cdot \vec{A}\psi^{*} \right]$$

$$+ i\hbar \left[\psi^{*} \partial_{t} \psi - \psi \partial_{t} \psi^{*} - 2igA_{0} \psi \psi^{*} \right]$$

$$= -\frac{\hbar^{2}}{2m} \nabla \psi \cdot \nabla \psi^{*} + i\hbar \left[\psi^{*} \partial_{t} \psi - \psi \partial_{t} \psi^{*} \right]$$

$$- \frac{\hbar^{2}}{2m} \left[\nabla \psi \cdot ig\vec{A}\psi^{*} - ig\vec{A}\psi \cdot \nabla \psi^{*} + g^{2}\vec{A}\psi \cdot \vec{A}\psi^{*} \right] + 2\hbar gA_{0}\psi\psi^{*}$$

$$= \mathcal{L}_{f} - \frac{\hbar^{2}g}{2m} \left[\nabla \psi \cdot i\vec{A}\psi^{*} - i\vec{A}\psi \cdot \nabla \psi^{*} + g\vec{A}\psi \cdot \vec{A}\psi^{*} \right] + 2\hbar gA_{0}\psi\psi^{*}$$

$$= \mathcal{L}_{f} - \frac{\hbar^{2}}{2m} igA \cdot \left[\psi^{*}\nabla \psi - \psi\nabla \psi^{*} + \frac{1}{i}Ag\psi\psi^{*} \right] + 2g\hbar A_{0}\psi\psi^{*}$$

$$= \mathcal{L}_{f} + \hbar A \cdot \left[\frac{\hbar}{2mi} g \left(\psi^{*}\nabla \psi - \psi\nabla \psi^{*} \right) + \frac{\hbar}{2m} g^{2}A|\psi|^{2} \right] + \hbar gA_{0}|\psi|^{2}$$

$$= \mathcal{L}_{f} + g\hbar J^{\alpha}A_{\alpha}$$

por lo tanto la lagrangiana de interacción de Schrödinger en términos del cuadrivector del potencial es:

$$L_A = g\hbar J^{\alpha} A_{\alpha} \tag{8}$$

donde:

$$J^{\alpha} = \frac{\hbar}{2mi} \left[(\psi^* \nabla \psi - \psi \nabla \psi^*) - gA^{\alpha} |\psi|^2 \right]$$

Agregando el termino del lagrangiano de interacción con el campo electromagnético, el lagrangiano de interacción se transforma en lo siguiente:

$$\mathcal{L}_{i} = g\hbar J^{\alpha}A_{\alpha} + \Box A^{\mu}A_{\mu} - \frac{1}{4\mu_{0}}F_{\mu\nu}F^{\mu\nu} \tag{9}$$

4. Demostrar que la lagrangiana de interacción de Schrödinger es invariante ante transformaciones de norma

A partir de la ecuación 8 aplicaremos las transformaciones de norma, las cuales son las siguientes:

$$\psi \to \hat{G}\psi$$

$$\psi^* \to \hat{G}^*\psi^*$$

$$A_0 \to A_0 + \frac{1}{g}\partial_t \lambda$$

$$\vec{A} \to \vec{A} + \frac{1}{g}\nabla \lambda$$

por lo tanto, aplicando estas transformaciones en la ecuación 8 se obtiene lo siguiente:

$$\begin{split} \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\nabla - ig \left(\vec{A} + \frac{1}{g} \nabla \lambda \right) \right) \hat{G}\psi \left(\nabla + ig \left(\vec{A} + \frac{1}{g} \nabla \lambda \right) \right) \hat{G}^*\psi^* \right] \\ &+ i\hbar \left[\hat{G}^*\psi^* \left(\partial_t - ig \left(\vec{A} + \frac{1}{g} \nabla \lambda \right) + \frac{1}{g} \nabla \lambda \right) \hat{G}\psi - \hat{G}\psi \left(\partial_t + ig \left(\vec{A} + \frac{1}{g} \nabla \lambda \right) \right) \hat{G}^*\psi^* \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\nabla \left(\hat{G}\psi \right) - ig \left(\vec{A} + \frac{1}{g} \nabla \lambda \right) \hat{G}\psi \right) \left(\nabla \left(\hat{G}^*\psi^* \right) + ig \left(\vec{A} + \frac{1}{g} \nabla \lambda \right) \hat{G}^*\psi^* \right) \right] \\ &+ i\hbar \left[\hat{G}^*\psi^* \left(\partial_t \left[\hat{G}\psi \right] - ig \left(A_0 + \frac{1}{g} \partial_t \lambda \right) \hat{G}\psi \right) - \hat{G}\psi \left(\partial_t \left(\hat{G}^*\psi^* \right) + ig \left(A_0 + \frac{1}{g} \partial_t \lambda \right) \hat{G}^*\psi^* \right) \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\hat{G}\nabla\psi + \psi\nabla \hat{G} - ig\vec{A}\hat{G}\psi - i\nabla\lambda \hat{G}\psi \right) \left(\hat{G}^*\nabla\psi^* + \psi^*\nabla \hat{G}^* + ig\vec{A}\hat{G}^*\psi^* + i\nabla\lambda \hat{G}^*\psi^* \right) \right] \\ &+ i\hbar \left[\hat{G}^*\psi^* \left(\hat{G}\partial_t\psi + \psi\partial_t \hat{G} - igA_0 \hat{G}\psi - i\partial_t\lambda \hat{G}\psi - i\partial_t\lambda \hat{G}\psi \right) \right. \\ &- \hat{G}\psi \left(\hat{G}^*\partial_t\psi^* + \psi^*\partial_t \hat{G}^* + igA_0 \hat{G}^*\psi^* + i\partial_t\lambda \hat{G}^*\psi^* \right) \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\hat{G}\nabla\psi + i\hat{G}\psi\nabla\lambda - ig\vec{A}\hat{G}\psi - i\nabla\lambda \hat{G}\psi \right) \left(\hat{G}^*\nabla\psi^* - i\hat{G}^*\psi^*\nabla\lambda + ig\vec{A}\hat{G}^*\psi^* + i\nabla\lambda \hat{G}^*\psi^* \right) \right] \\ &+ i\hbar \left[\hat{G}^*\psi^* \left(\hat{G}\partial_t\psi + i\psi\hat{G}\partial_t\lambda - igA_0\hat{G}\psi - i\partial_t\lambda \hat{G}\psi - i\partial_t\lambda \hat{G}\psi \right) \right. \\ &- \hat{G}\psi \left(\hat{G}^*\partial_t\psi^* - i\hat{G}^*\psi^*\partial_t\lambda + igA_0\hat{G}^*\psi^* + i\partial_t\lambda \hat{G}^*\psi^* \right) \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\hat{G}\nabla\psi - ig\vec{A}\hat{G}\psi \right) \left(\hat{G}\nabla\psi^* + ig\vec{A}\hat{G}^*\psi^* \right) \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\hat{G}\nabla\psi - ig\vec{A}\hat{G}\psi \right) \left(\hat{G}\nabla\psi^* + ig\vec{A}\hat{G}^*\psi^* \right) \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\hat{G} \left(\nabla\psi - ig\vec{A}\psi \right) \hat{G}^* \left(\nabla\psi^* + ig\vec{A}\psi^* \right) \right] \\ i\hbar \left[\hat{G}^*\psi^*\hat{G}\partial_t\psi - i\hat{G}^*\psi^*gA_0\hat{G}\psi - \hat{G}\psi\hat{G}^*\partial_t\psi^* - i\hat{G}\psi gA_0\hat{G}^*\psi^* \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\nabla\psi - ig\vec{A}\psi \right) \left(\nabla\psi^* + ig\vec{A}\psi^* \right) \right] + i\hbar \left[\psi^*\partial_t\psi - i\psi^*gA_0\psi - \psi\partial_t\psi^* - i\psi gA_0\psi^* \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\nabla\psi - ig\vec{A}\psi \right) \left(\nabla\psi^* + ig\vec{A}\psi^* \right) \right] + i\hbar \left[\psi^*\partial_t\psi - i\psi^*gA_0\psi - \psi\partial_t\psi^* - i\psi gA_0\psi^* \right] \\ \mathcal{L} &= -\frac{\hbar^2}{2m} \left[\left(\nabla\psi - ig\vec{A}\psi \right) \left(\nabla\psi^* + ig\vec{A}\psi^* \right) \right] + i\hbar \left[\psi^*\partial_t\psi - i\psi^*gA_0\psi - \psi\partial_t\psi^* - i\psi gA_0\psi^* \right] \end{aligned}$$

por lo tanto:

$$\mathcal{L} = -\frac{\hbar^2}{2m} \left[\left(\nabla \psi - ig\vec{A}\psi \right) \left(\nabla \psi^* + ig\vec{A}\psi^* \right) \right] + i\hbar \left[\psi^* \left(\partial_t - igA_0 \right) \psi - \psi \left(\partial_t + igA_0 \right) \psi^* \right]$$
(10)

la cual se logra visualizar que tiene la misma forma que la ecuación 3, por lo tanto la lagrangiana de interacción de Schrödinger es invariante ante las transformaciones de norma.

5. Calcular la ecuación de Klein-Gordon (para la partícula libre) a partir de la relación energíamomento de Einstein y las definiciones de los operadores en mecánica cuántica.

A partir de la mecánica cuántica elemental conocemos la ecuación de Schrödinger:

$$\left[-\frac{\hbar^2}{2m_0} \nabla^2 + V(x) \right] \psi = i\hbar \frac{\partial \psi}{\partial t}$$
 (11)

la relación de la energía no relativista en forma de operdor corresponde a lo siguiente:

$$E = -\frac{\hat{p}^2}{2m_0} + V(x) \tag{12}$$

donde:

$$\hat{p} = i\hbar \nabla$$

$$\hat{E} = i\hbar \frac{\partial}{\partial t}$$

por lo que teniendo definidos los operadores de la energía y momento podemos obtener una ecuación para la onda relativista, es por ello que consideramos a las partículas libres de modo que su relación relativista es la siguiente:

$$p^{\mu}p_{\mu} = \frac{E^2}{c^2} - p \cdot p = m_0^2 c^2 \tag{13}$$

por lo tanto, la ecuación de Klein-Gordon para las partículas libres es:

$$p^{\mu}p_{\mu}\psi = m_0^2 c^2 \psi \tag{14}$$

tomando en cuenta que:

$$p^{\mu}p_{\mu} = -\hbar^{2} \frac{\partial}{\partial x_{\mu}} \frac{\partial}{\partial x^{\mu}} = -\hbar^{2} \left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} - \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) \right)$$
(15)

y renombrando a:

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) = \square$$

se tiene que:

$$p^{\mu}p_{\mu}=-\hbar^2\square$$

por lo tanto la ecuación 14 se escribe como:

$$p^{\mu}p_{\mu}\psi = m_0^2c^2\psi$$
$$-\hbar^2\Box\psi = m_0^2c^2\psi$$
$$\Box\psi = -\frac{m_0^2c^2}{\hbar^2}\psi$$
$$\left(\Box + \frac{m_0^2c^2}{\hbar^2}\right)\psi = 0$$

por lo tanto, la ecuación de Klein-Gordon es:

$$\left(\Box + \frac{m_0^2 c^2}{\hbar^2}\right)\psi = 0\tag{16}$$

6. Calcular las soluciones de la ecuación de Klein-Gordon (generalizada sin condiciones a la frontera).