PMH8 - SPECTRAL THEORY AND PDES

ANDREW TULLOCH

Contents

1.	Preliminaries	2
2.	Introduction to Functional Analysis	2
3.	Linear Operators on Hilbert Spaces	6
4.	Generalised Derivatives	8
5.	Sobolev Spaces	11
6.	Convolutions and Approximations	12
7.	Fourier Transforms and Weak Derivatives	14
8.	Poincaré Inequality and Applications	17
9.	Compactness in Sobolev Spaces	23
10.	Further Properties of $\dot{W}^{1,2}(\Omega)$	30
11.	Applications to Nonlinear Equations	36
12.	Variational Methods	36
13.	Fixed Point Methods	41
14.	Other Types of Problems	44
15	Various Other Results	45

1. Preliminaries

In general, we cannot solve arbitrary PDEs. We generally seek to prove **existence** of solutions and various **properties** of these solutions.

Assessment Schedule:

- (i) Assignments 2 or 3 (40%)
- (ii) Exam (60%)

References

- (i) M. Protter and Weinberger Maximum Principle ...
- (ii) M. Renardy Elliptic PDEs
- (iii) A. Friedman Elliptic PDEs
- (iv) F. John *PDEs*

2. Introduction to Functional Analysis

Definition 2.1 (Quotient space). If M is a closed subspace of a normed vector space E, then we define another normed space E/M, the **quotient space**. Elements of E/M are of the form $\{u+m \mid m \in M\}$ where $u \in E$.

We now define the vector space operations. Define $(u_1 + M) + (u_2 + M) = (u_1 + u_2) + M$. If $\lambda \in \mathbb{K}$, define $\lambda(u + M) = \lambda u + M$. These operations make E/M a vector space.

Exercise 2.2. Show these operations are well defined.

Definition 2.3 (Normed quotient space). Define

$$||u + M|| = \inf_{m \in M} ||u + m||.$$

If $u \notin M$, ||u + M|| > 0. This is because if there exists $(m_n) \in M$ with $||u + m_n|| \to 0$, then $m_n \to -u$, and so $-u \in M$, which implies $u \in M$.

We can also show that $\|\lambda u + M\| = |\lambda| \|u + m\|$, and

$$||(u_1 + u_2) + M|| \le ||u_1 + M|| + ||u_2 + M||.$$

With this norm, E/M is a normed space.

Exercise 2.4. Check the triangle and scaling inequalities.

Lemma 2.5. Define an operator P by

$$P: \quad E \to E/M$$

 $x \mapsto x + M$

Then P is linear and bounded.

Proof.

$$||Px|| = ||x + M|| = \inf_{m \in M} ||x + M|| \le ||x||$$

Hence $||Px|| \le ||x||$ and so P is bounded with $||P|| \le 1$.

Theorem 2.6. If E is a Banach space, then so is E/M, where M is a closed subspace of E.

Theorem 2.7. If M is a closed subspace of a normed space E and $z \in E \setminus M$, there exists $f \in E'$ such that f(m) = 0 for all $m \in M$, and $f(z) \neq 0$.

Proof. z + M is not zero in E/M, and so by the Hahn-Banach theorem, there exists $h \in (E/M)'$ such that $h(z + M) \neq 0$. Then define $f : E \to \mathbb{K}$ by f(x) = h(Px) where $P : E \to E/M$ is the projection operator defined previously.

As f is the composition of two continuous maps, we have that $f \in E'$. Now, not that f(m) = 0 if $m \in M$, as m + M is the zero coset. If $z \in E \setminus M$, then $f(z) = h(z + M) \neq 0$ by definition. \square

Theorem 2.8. If $T \in \mathcal{L}(X,Y)$ and IM T is closed, then

IM
$$T = \{ y \in Y \mid f(y) = 0 \text{ for all } f \in \text{Ker } T' \}$$

Remark.

- (i) In fact, if Im T is not closed, the above theorem holds with $\overline{\text{Im }T}$.
- (ii) This gives a solution to the inverse problem, i.e. given $y \in Y$, does there exists $x \in X$ such that Tx = y.

Definition 2.9 (Dual mapping). Let $T \in \mathcal{L}(X,Y)$. Define the dual mapping $T' \in \mathcal{L}(Y',X')$ with (T'f)(x) = f(Tx) for all $f \in Y'$.

Proof of Theorem 2.8. Let A = R(T), if $z \in A$ there exists $f \in Y'$ such that f(y) = 0 for all $y \in A$ and $f(z) \neq 0$. Let $B = \{y \in Y \mid f(y) = 0 \forall f \in N(T')\}$.

Hence

$$f(y) = 0 \forall y \in A$$
$$f(Tx) = 0 \forall x \in X$$
$$(T'f)(x) = 0 \forall x \in X$$

so that T'f = 0, and so $f \in N(T')$. But $f(z) \neq 0$, so $z \notin B$, and so $B \subseteq A$.

If $v \in R(T)$, then v = Tx. If $f \in N(T')$, then f(v) = f(Tx) = (T'f)(x) = 0, and so $v \in B$. Hence $A \subseteq B$.

Remark. If H is a Hilbert space, and $T \in \mathcal{L}(H)$, then

$$\langle Tx, y \rangle = \langle x, T^*y \rangle \quad \forall x, y \in H$$

where T^* is the adjoint. NOte that $T^* = J^{-1}T'J$ where $J: H \to H'$ and T' is the conjugate operator. In this case, if R(T) is closed, then

$$R(T) = \{ x \in H \mid \langle x, y \rangle = 0 \quad \forall y \in N(T^{\star}) \}.$$

Remark. When is R(T) closed?

- (i) If $\lambda \neq 0$ and $K \in \mathcal{K}(X)$, $\lambda I K$ has closed range.
- (ii) If $K \in \mathcal{K}(X)$, R(K) is closed if and only if R(K) is finite dimensional.
- (iii) If $N(T) = \{0\}$, X, Y are Banach spaces, and $T \in \mathcal{L}(X, Y)$, then R(T) is closed if and only if there exists c > 0 such that $||Tx|| \ge c||x||$ for all $x \in X$. Note that if R(T) is closed, it is a Banach space.

Corollary (Corollary to Theorem 2.8). If X and Y are Banach spaces and $T \in \mathcal{L}(X,Y)$, then T is invertible if and only if KER $T = \{0\}$, KER $T' = \{0\}$ and IM T is closed.

Note that the open mapping theorems shows that T is invertible if and only if IM T = Y and KER $T = \{0\}$.

Proof. If Im T is closed, then by Theorem 2.8,

Im
$$T = Y \iff \text{Ker } T' = \{0\},\$$

as Im $T = \{ y \in Y \mid f(y) = 0 \text{ for all } f \in \text{Ker } T' \}.$

In a Hilbert space \mathcal{H} , if $T \in \mathcal{L}(\mathcal{H})$, then $T^* = J^{-1}T'J$ where $J : \mathcal{H} \to \mathcal{H}'$ is an isomorphism of Hilbert spaces.

Definition 2.10 (Weak convergence). Let (x_n) be a sequence in X. We say that $x_n \rightharpoonup x$ weakly if $f(x_n) \to f(x)$ for all $f \in X'$.

Lemma 2.11. If $x_n \to x$ in the usual sense, then $x_n \rightharpoonup x$ weakly.

Lemma 2.12. If $x_n \rightharpoonup x$ weakly, then $\{x_n\}$ is bounded. Furthermore, $||x|| \leq \liminf_{n \to \infty} ||x_n||$.

Proof. By Hahn-Banach, there exists $f \in X'$ such that ||f|| = 1 and f(x) = ||x||. So $||x|| = f(x) = \lim_{n \to \infty} f(x_n) = \lim\inf_{n \to \infty} f(x_n)$. But

$$||f(x_n)|| \le ||f|| ||x_n|| \le ||x_n||$$

as ||f|| = 1. So

$$||x|| \le \liminf_{n \to \infty} ||x_n||$$

Exercise 2.13. If (x_n) is bounded, then $x_n \to x$ weakly if and only if $f(x_n) \to f(x)$ as $n \to \infty$ for all functions in a dense subset of X'.

In fact, if (x_n) is bounded, we only need prove that if $f(x_n) \to f(x)$ for a subset M of X', then $f(x_n) \to f(x)$ for all finite linear combinations of elements of M.

Example 2.14. Let $1 , and consider the Banach space <math>\ell^p$. Then let $e_n = (0, 0, 0, \ldots, 1, \ldots)$. Then $\|e_n\|_p = 1$ and $e_n \to 0$ weakly in ℓ^p as $n \to \infty$. Let $(\ell^p)' = \ell^{p'}$ where $\frac{1}{p} + \frac{1}{p'} = 1$. If fact, every $f \in (\ell^p)'$ can be uniquely written as

$$f(x) = \sum_{i=1}^{\infty} x_i y_i$$

where $(y_i) \in \ell^{p'}$. In $\ell^{p'}$, the set of finite linear combinations of the e_n are dense in $\ell^{p'}$, since we can approximate (x_n) by $(x_1, x_2, \ldots, x_m, 0, 0, \ldots)$, which is a finite linear combination of the (e_n) .

Hence a **bounded** sequence in ℓ^p , say $x^1 = (x_1^1, x_2^1, \dots), x^2 = (x_1^2, x_1^2, \dots)$ converges weakly if and only if $e_i(x^n) = x_i^n$ converges as $n \to \infty$ for each i.

In particular, $e_i \rightharpoonup 0$ weakly in ℓ^p .

Theorem 2.15. If $x_n \to x$ weakly in X and $T \in \mathcal{L}(X)$, then $Tx_n \to Tx$ weakly in X. Note that this is **not true** for continuous non-linear maps.

Proof. Let $f \in X'$. Then

$$f(Lx_n) = (L'f)(x_n) \rightharpoonup (L'f)(x) = f(Lx)$$

weakly as $x_n \to x$ weakly and (L'f) is a bounded linear operator.

Definition 2.16 (Bidual). Let X be a normed vector space. Then X' is a Banach space. The dual of the dual space, (X')' = X'' is known as the **bidual** of X.

There is a natural map

$$c: X \to X''$$

 $x \mapsto \hat{x}$

of X into X", defined as follows. Let $\hat{x}(f) = f(x)$ for all $f \in X'$. Then we can see that \hat{x} is a linear mapping, and we must show that it is a bounded map from X' to \mathbb{R} .

We have

$$\|\hat{x}\| = \sup_{\|f\| \le 1} |\hat{x}(f)| = \sup_{\|f\| \le 1} |f(x)| \le \sup_{\|f\| \le 1} \|f\| \|x\| \le \|x\|.$$

Thus $\|\hat{x}\| \leq \|x\|$. (By Hahn-Banach, we can show $\|\hat{x}\| = \|x\|$.)

Exercise 2.17. Show that KER $c = \{0\}$.

Thus c is a bounded linear map with a zero null-space.

Definition 2.18 (Reflexive). A Banach space is refexive if this map of X onto X'' is bijective.

Example 2.19.

- (i) Finite dimensional spaces are reflexive (as the bidual has the same dimension as the base space).
- (ii) ℓ^p, L^p are reflexive if 1 , and are not reflexive otherwise.
- (iii) Hilbert spaces \mathcal{H} are reflexive.
- (iv) $\mathcal{C}(\Omega)$, the set of continuous operators on a compact set in \mathbb{R}^n .

Theorem 2.20 (Compactness property). A Banach space X is reflexive if and only if every bounded sequence in X has a subsequence that converges weakly in X.

Remark (Closeness property). If C is a closed and convex subset of a Banach space X, and x_n is a sequence in C with $x_n \rightharpoonup y \in X$ weakly, then $y \in C$.

Proof. Uses the geometric version of the Hahn-Banach theorem.

Theorem 2.21 (Geometric Hahn-Banach). If C is a closed and convex subset in X and $z \notin C$, there exists $f \in X'$ and $m \in \mathbb{R}$, such that $f(x) \leq m$ for all $x \in C$ and f(z) > m.

If $y \notin C$, there exists $f \in X'$ and $m \in \mathbb{R}$ such that $f(x) \leq m$ for all $x \in C$ and f(y) > m. But as $f(x_n) \leq m$ and $f(x_n) \to f(y)$ (by weak convergence), we must have $f(y) \leq m$. Thus we achieve our required result, $y \in C$.

3. Linear Operators on Hilbert Spaces

Theorem 3.1 (Lax-Milgram theorem). If $T \in \mathcal{L}(\mathcal{H})$ and there exists $\mu > 0$ such that $Re \langle Tx, x \rangle \ge \mu \|x\|^2$ for all $x \in \mathcal{H}$, then T is invertible.

Proof. If suffices to prove that KER $T = \{0\}$, IM T is closed, and KER $T^* = \{0\}$, by a corollary to Theorem 2.8.

By Cauchy-Swartz, we have

$$\mu \|x\|^2 \le \operatorname{Re} \langle Tx, x \rangle \le |\langle Tx, x \rangle| \le \|Tx\| \|x\|.$$

If $x \neq 0$, then $\mu ||x|| \leq ||Tx||$, so KER $T = \{0\}$.

Secondly, $||Tx|| \ge \mu ||x||$ for $\mu > 0$ implies IM T is closed.

Exercise 3.2. Prove this proposition.

Then finally, we have

$$\operatorname{Re}\langle Tx, x \rangle = \operatorname{Re}\langle x, T^{\star}x \rangle \le |\langle x, T^{\star}x \rangle| \le ||x|| ||T^{\star}x||$$

by Cauchy-Swartz. So

$$\mu \|x\|^2 \le \|x\| \|T^*x\|$$

and so $\mu ||x|| \le ||T^*x||$ and so Ker $T^* = \{0\}$.

Definition 3.3 (Coercive). T is coercive if there exists $\mu > 0$ such that $\operatorname{Re} \langle Tx, x \rangle \ge \mu \|x\|^2$.

Definition 3.4 (Spectral radius). Let X be a complex Banach space. If $T \in \mathcal{L}(X)$, then we can define the spectral radius r(T) by the formula

$$r(T) = \limsup_{n \to \infty} ||T^n||^{1/n}.$$

Theorem 3.5. We have

$$r(T) = \sup\{|\lambda| \mid \lambda \in \sigma(T)\}.$$

Note that $r(T) \leq ||T||$.

Theorem 3.6. If $T \in \mathcal{L}(\mathcal{H})$ and T is a self-adjoint operator then r(T) = ||T||.

Proof. We have

$$||T||^2 = ||T^*T|| = ||T^2||,$$

since for any linear operator T, we have

$$||T||^2 = ||T^*T||.$$

Then by induction, we have

$$r(T) = \limsup_{n \to \infty} \|T^{2^n}\|^{1/2^n} = \|T\|$$

Theorem 3.7 (Raleigh-Rety algorithm). If $T \in \mathcal{L}(\mathcal{H})$ is self-adjoint, then

$$\sup \sigma(T) = \sup \{ \langle Tx, x \rangle \mid ||x|| = 1 \}$$

$$\inf \sigma(T) = \inf \{ \langle Tx, x \rangle \mid ||x|| = 1 \}$$

Proof. If suffices to prove the first statement (and then apply to -T). We first show $\sup \sigma(T) \le \sup \{\langle Tx, x \rangle \mid ||x|| = 1\} \equiv \mu$.

If $\lambda > \mu$, then

$$\lambda ||x||^2 - \langle Tx, x \rangle \ge \lambda - \mu > 0$$

if ||x|| = 1. Hence

$$\lambda - \mu \le \langle (\lambda I - T)x, x \rangle \quad ||x|| = 1$$

$$\leq \|(\lambda I - T)x\| \|x\|$$

$$\Rightarrow \|(\lambda I - T)\|x\| \ge (\lambda - \mu)\|x\|$$

and hence KER $\lambda I - T = \{0\}$, and as IM $\lambda I - T$ is closed by Exercise 3.8, we have that $\lambda I - T$ is invertible. Thus $\sup \sigma(T) \ge \sup \{\langle Tx, x \rangle \mid ||x|| = 1\}$.

Consequently, it suffices to assume $\sigma(T)$ is non-negative (replace T with T+rI). Then if $\mu \in \sigma(T_1)$ with T_1 self-adjoint, then there exists a sequence x_n with $||x_n|| = 1$ such that

$$||T_1x_n - \mu x_n|| \to 0$$

as $n \to \infty$. Existence of such a sequence is proven as if $||T_1x - \mu x|| \ge \alpha ||x||$, then $\mu \notin \sigma(T_1)$.

Thus

$$\langle T_1 x_n, x_n \rangle \to \mu$$

$$\langle T_1 x_n, x_n \rangle = \underbrace{\langle (T_1 - \mu I) x_n, x_n \rangle}_{\to 0} + \underbrace{\mu \langle x_n, x_n \rangle}_{\mu}.$$

Thus

$$\sup\{\langle Tx, x\rangle \mid ||x|| = 1\} \ge \sup \sigma(T).$$

Exercise 3.8. If $||Tx|| \ge m||x||$ for all x, then IM T is closed.

4. Generalised Derivatives

Definition 4.1 $(L^1_{loc}(\Omega))$. Let $\Omega \subset \mathbb{R}^n$ be open. Then $u \in L^1_{loc}(\Omega)$ if u is measurable and $u|_K \in L^1(K)$ for every compact $K \subseteq \Omega$.

Definition 4.2 (Generalised derivative). We say $u \in L^1_{loc}(\Omega)$ has a (weak) generalised j-th partial derivative if there exists $g \in L^1_{loc}(\Omega)$ such that

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_i} = -\int_{\Omega} g \phi \tag{4.1}$$

for all $\phi \in C_c^{\infty}(\Omega)$.

Note that g is defined only up to sets of measure zero.

Note. The motivation comes from the integration by parts formula, where if u is $C^1(\Omega)$, then

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_i} = -\int_{\Omega} \frac{\partial u}{\partial x_i} \phi$$

for all $\phi \in C_c^1(\Omega)$ by integration by parts. Thus we can write $g = \frac{\partial u}{\partial x_j}$.

Lemma 4.3. The function g, if it exists, is unique (up to sets of measure zero).

Proof. If g_1, g_2 both satisfy (4.1), then

$$-\int_{\Omega} u \frac{\partial \phi}{\partial x_i} = \int_{\Omega} g_1 \phi = \int_{\Omega} g_2 \phi$$

for all $\phi \in C_c^{\infty}(\Omega)$. Thus

$$\int_{\Omega} (g_1 - g_2)\phi = 0 \tag{*}$$

for all $\phi \in C_c^{\infty}(\Omega)$.

Suppose B is a ball with $\overline{B} \subseteq \Omega$. Then

$$(g_1 - g_2)|_B \in L^1(B).$$

Since (\star) holds for all $\phi \in C_c^{\infty}(B)$, consider the measurable function

$$\operatorname{sgn}(g_1 - g_2) = \begin{cases} 1 & (g_1 - g_2)(x) \ge 0 \\ -1 & (g_1 - g_2)(x) < 0. \end{cases}$$

We assume that there exists $(\phi_n) \in C_c^{\infty}(B)$ such that ϕ_n are uniformly bounded and $\phi_n(x) \to \operatorname{sgn}(g_1 - g_2)$ almost everywhere. This can be justified by Young's inequality, where if

$$f_n(x) = \int_B \psi_n(x - y) f(y) \, dy$$

then $||f_n||_{\infty} \leq ||\psi_n|| ||f||_{\infty}$, so our approximating function f_n are uniformly bounded.

Then

$$0 = \int_{\Omega} (g_1 - g_2)\phi_n \to \int_{B} (g_1 - g_2)\operatorname{sgn}(g_1 - g_2) = \int_{B} |g_1 - g_2|$$

as $n \to \infty$ by the dominate convergence theorem.

Thus $g_1 - g_2 = 0$ almost everywhere on B. By the Lindeloff property (Lemma 4.4), Ω is a countable union of balls, and so we can extend this result to the result,

$$g_1 - g_2 = 0$$

almost everywhere on ϕ .

Lemma 4.4 (Lindeloff property). A separable metric space, such as \mathbb{R}^n , any open set is a countable union of open balls.

Remark.

- (i) If g is the generalised j-th partial derivative of u on Ω and $\Omega_1 \subset \Omega$ is open, then $g|_{\Omega_1}$ is the j-th generalised partial derivative of $u|_{\Omega_1}$.
- (ii) Assume $A \subseteq \Omega$, u has a generalised j-th partial derivative on Ω , A is open, and u is C^1 on A. Then the generalised j-the partial derivative of u is equal to the classical partial derivative almost everywhere on A.

Example 4.5. Consider the function

$$u(x,y) = \begin{cases} 1 & y \ge 0 \\ 0 & y < 0 \end{cases}$$

If the generalised derivative $\frac{\partial u}{\partial x}$ exists, it must be zero when y > 0 and when y < 0. It turns out that $\frac{\partial u}{\partial x}$ exists but $\frac{\partial u}{\partial y}$ does not.

Example 4.6. $f: \mathbb{R} \to \mathbb{R}$ define by f(x) = |x| has a generalised derivative g defined by

$$g(x) = \begin{cases} 1 & x > 0 \\ -1 & x > 0 \end{cases}$$

Note that f is C^1 if $x \neq 0$ so if the generalised derivative exists it must be equal to g.

Example 4.7. If B_1 is the open unit ball in \mathbb{R}^2 and

$$f(x) = \begin{cases} \ln(x^2 + y^2) & (x, y) \neq (0, 0) \end{cases}$$

- thus $f(x) = 2 \ln r$ in polar coordinates.

Then

$$\frac{\partial u}{\partial x} = \frac{2x}{x^2 + y^2}$$
$$\frac{\partial u}{\partial y} = \frac{2y}{x^2 + y^2}$$

are the generalised partial derivatives on \mathbb{R}^2 .

Definition 4.8 (Generalised derivative). We say that $u \in L^1_{loc}(\Omega)$ has a generalised derivative on Ω if all the generalised partial derivatives $\frac{\partial u}{\partial x_j}$ exist for $1 \leq j \leq n$ (where Ω is an open set in \mathbb{R}^n).

Remark.

- (i) If u_1 and u_2 have generalised derivatives on Ω and C_1, C_2 are constant, then $C_1u_1 + C_2u_2$ has a generalised derivative on Ω , given by the appropriate linear combination.
- (ii) If u has a generalised derivative on Ω and $\Psi \in C^{\infty}(\Omega)$, then $u\Psi$ has a generalised derivative on Ω and

$$\frac{\partial}{\partial x_j}(u\Psi) = \frac{\partial u}{\partial x_j}\Psi + u\frac{\partial \Psi}{\partial x_j}$$

Lemma 4.9. If u_k has a generalised derivative on Ω and $u_k \to u$ in $L^1_{loc}(\Omega)$ as $k \to \infty$ and if $\frac{\partial u_k}{\partial x_l} \to g_l$ in $L^1_{loc}(\Omega)$ then u has a generalised derivative on Ω and

$$\frac{\partial u}{\partial x_l} = g_l.$$

Proof.

$$\int_{\Omega} u_k \frac{\partial \phi}{\partial x_j} = -\int_{\Omega} \frac{\partial u}{\partial x_j} \phi \tag{*}$$

if $\phi \in C_c^{\infty}(\Omega)$. Fix ϕ and choose K compact so the support of ϕ is contained in K. Then $u_k \frac{\partial \phi}{\partial x_j} \to u \frac{\partial \phi}{\partial x_j}$ in L^1 on K.

Then letting $k \to \infty$ in (\star) we obtain

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_j} = -\int_{\Omega} g_j \phi.$$

Remark. If $g_j \in L^p(\Omega)$ and $g_j \to g$ in $L^p(\Omega), (1 \le p \le \infty)$, then $g_j \to g$ in $L^1_{loc}(\Omega)$.

Proof. If K is compact, then

$$\int_{K} (g_j - g) \le \|g_j - g\|_{p,K}^{\frac{1}{p}} \|1\|_{p',K}^{1/p'}$$

by Hölder's inequality.

5. Sobolev Spaces

Definition 5.1 (Sobolev spaces). If $1 \le p \le \infty$ and Ω is open in \mathbb{R}^n , then the space

$$W^{1,p}(\Omega) = \{ u \in L^p(\Omega) \mid \underbrace{\frac{\partial u}{\partial x_i} \in L^p(\Omega)}_{\text{generalised derivatives}} \text{ for } 1 \le i \le n \}$$

equipped with the norm

$$||u||_{1,p} = ||u||_p + \sum_{i=1}^n ||\frac{\partial u}{\partial x_i}||_p$$

is a Banach space. We call $W^{1,p}$ a Sobolev space.

It is a linear space by linearity of the generalised derivatives. Similarly, the triangle inequality holds as all components of the norm $\|\cdot\|_{1,p}$ satisfy the triangle inequality. It can be shown that $W^{1,p}\subseteq L^p(\Omega)^{N+1}$ and $W^{1,p}$ is a closed subspace, which shows that $W^{1,p}$ is Banach, being the closed subspace of a Banach space.

Proposition 5.2. $W^{1,p}$ is a Banach space. In fact, $W^{1,p}$ is a closed subspace of $L^p(\Omega)^{n+1}$.

Proof. Consider the map

$$(u_j, \frac{\partial u_j}{\partial x_1}, \dots, \frac{\partial u_j}{\partial x_n}) \to (w_0, w_1, \dots, w_n)$$

If $u_j \to w_0 \in L^p(\Omega)$, then $\frac{\partial u_j}{\partial x_1} \to w_1$ in $L^p(\Omega)$ which implies that $\frac{\partial u_j}{\partial x_1} \to w_1$ in $L^1_{loc}(\Omega)$. By Lemma 4.9, $\frac{\partial w_0}{\partial x_1}$ exists on Ω and equals w^1 . Similarly, $\frac{\partial w_0}{\partial x_l}$ exists and equals w_l . Then since $w_0 \in W^{1,p}(\Omega)$ and $\frac{\partial w_0}{\partial x_l} = w_l$ the closure property holds. Hence we have a Banach space.

Note. Recall that all norms on a finite dimensional vector space are equivalent. For example,

$$\left(\|u\|_p^p + \sum_{j=1}^n \left\| \frac{\partial u}{\partial x_j} \right\|_p^p \right)^{1/p} \right)$$

and

$$||u||_p + \left(\sum_{j=1}^n ||\frac{\partial u}{\partial x_j}||_p^p\right)^{1/p}$$

are equivalent.

Definition 5.3 (Higher Sobolev spaces). We have

$$W^{2,p}(\Omega) = \{ u \in L^p(\Omega) \mid \frac{\partial u}{\partial x_i}, \frac{\partial u}{\partial x_i x_j} \in L^p(\Omega) \text{ for } 1 \le i \le n, 1 \le j \le n \}$$

Definition 5.4. $\dot{W}^{1,p}(\Omega)$ is the closure of $C_c^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$ in the norm $\|\cdot\|_{1,p}$. In general, $\dot{W}^{1,p}(\Omega) \subseteq W^{1,p}(\Omega)$.

Proposition 5.5. $\dot{W}^{1,p}(\mathbb{R}^n) = W^{1,p}(\mathbb{R}^n)$.

Proposition 5.6. $\dot{W}^{1,2}(\Omega), W^{1,2}(\Omega)$ are Hilbert spaces under the inner product $\langle \cdot, \cdot \rangle$ defined by

$$\langle u, v \rangle = (u, v) + \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i} \right)$$

where $(u, v) = \int_{\Omega} u(x) \overline{v(x)} dx$.

6. Convolutions and Approximations

Recall that there exists $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\phi(x) > 0$ if ||x|| < 1 and $\phi(x) = 0$ if $||x|| \ge 1$. We can assume that $\int_{\mathbb{R}^n} \phi = 1$.

If $f \in L^p_{loc}(\mathbb{R}^n)$ and $1 \leq p < \infty$, we define $T_{\epsilon}f$ by

$$(T_{\epsilon}f)(x) = \epsilon^{-N} \int \phi\left(\frac{x-y}{\epsilon}\right) f(y) dy = \phi_{\epsilon} \star f$$

where $\phi_{\epsilon} = \epsilon^{-N} \phi\left(\frac{x}{\epsilon}\right)$.

Proposition 6.1. If $f \in L^p(\mathbb{R}^n)$ where $1 \leq p < \infty$, then

$$T_{\epsilon}f \to f$$

in $L^p(\mathbb{R}^n)$ as $\epsilon \to 0$.

Lemma 6.2. If f has support in a compact set K, then $T_e f$ has support in $\{x \in \mathbb{R}^n \mid d(x,K) \leq \epsilon\}$.

Lemma 6.3. By Proposition 6.1, if $f \in L^p(\mathbb{R}^n)$, there exists $\epsilon_l \to 0$ such that $T_{\epsilon_l}f \to f$ almost everywhere as $l \to \infty$.

Lemma 6.4.

$$||T_{\epsilon}f||_{\infty} \le ||f||_{\infty}$$

if $f \in L^{\infty}(\mathbb{R}^n)$.

Proof. If $-1 \le f \le 1$ on \mathbb{R}^n , then as

$$T_{\epsilon}(-1) \le T_{\epsilon}f \le T_{\epsilon}1$$

that is,

$$-1 \le T_{\epsilon} f(x) \le 1 \quad \forall x$$

then since $T_{\epsilon}f$ is linear we have

$$||T_{\epsilon}f||_{\infty} \leq ||f||_{\infty}$$

if $f \in L^{\infty}(\mathbb{R}^n)$.

Proposition 6.5. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{1,2}(\mathbb{R}^n)$ that is, if $f \in W^{1,2}(\mathbb{R}^n)$, there exists $(f_n) \in C_c^{\infty}(\mathbb{R}^n)$ such that $||f - f_n||_{1,2} \to 0$ as $n \to \infty$.

Note that this is non-trivial as if Ω is bounded the corresponding result is false.

Proof. Let $f \in W^{1,2}(\mathbb{R}^n)$ and $\delta > 0$. By a previous exercise, there exists $\tilde{f} \in W^{1,2}(\mathbb{R}^n)$ of compact support such that

$$||f - \tilde{f}|| \le \frac{\delta}{2}.$$

Hence it suffices to find $f_n \in C_c^{\infty}(\mathbb{R}^n)$ such that $||f_n - \tilde{f}||_{1,2} \to 0$ as $n \to \infty$ (as this would imply $||f_n - f|| \le \delta$ for large enough n).

We prove that $T_{\epsilon}\tilde{f} \in W^{1,2}(\mathbb{R}^n)$ and $T_{\epsilon}\tilde{f} \to \tilde{f}$ in $W^{1,2}(\mathbb{R}^n)$ as $\epsilon \to 0$. Recall that $T_{\epsilon}\tilde{f} \in C^{\infty}(\mathbb{R}^n)$. Suppose that $T_{\epsilon}\tilde{f} \subseteq B(\epsilon)\{\operatorname{supp}(\tilde{f})\} = \{x \in \mathbb{R}^n \mid d(x,\operatorname{supp}(\tilde{f})) \le \epsilon\}$. Recall that $T_{\epsilon}\tilde{f} \to \tilde{f}$ in $L^2(\mathbb{R}^n)$ as $\epsilon \to 0$ from MATH 3969.

We thus need to prove

$$\frac{\partial}{\partial x_l} T_{\epsilon} \tilde{f} = T_{\epsilon} \underbrace{\left(\frac{\partial \tilde{f}}{\partial x_l}\right)}_{\text{generalised derivative}} \tag{6.1}$$

If we prove that

$$\frac{\partial}{\partial x_l} \left(T_{\epsilon} \tilde{f} \right) = T_{\epsilon} \left(\frac{\partial \tilde{f}}{\partial x_l} \right) \to \frac{\partial \tilde{f}}{\partial x_l}$$

in $L^2(\mathbb{R}^n)$.

We have

$$\frac{\partial}{\partial x_l} T_{\epsilon} \tilde{f}(x) = \frac{\partial}{\partial x_l} \left(\epsilon^{-n} \int \phi \left(\frac{x - y}{\epsilon} \right) \tilde{f}(y) \, dy \right)$$
$$= \epsilon^{-n} \int \frac{\partial}{\partial x_l} \phi \left(\frac{x - y}{\epsilon} \right) \tilde{f}(y) \, dy$$
$$= e^{-n} \int -\frac{\partial}{\partial y_l} \phi \left(\frac{x - y}{\epsilon} \right) \tilde{f}(y) \, dy$$

where we use the fact that

$$\frac{\partial}{\partial x_l}g(x-y) = -\frac{\partial}{\partial y_l}g(x-y).$$

Continuing, we obtain

$$\begin{split} \frac{\partial}{\partial x_l} T_{\epsilon} \tilde{f}(x) &= -\epsilon^{-n} \int \frac{\partial}{\partial y_l} \left(\phi \left(\frac{x - y}{\epsilon} \right) \right) \tilde{f}(y) \, dy \\ &= \epsilon^{-n} \int \phi \left(\frac{x - y}{\epsilon} \right) \frac{\partial}{\partial y_l} \tilde{f}(y) \, dy \\ &= T_{\epsilon} \left(\frac{\partial \tilde{f}}{\partial y_l} \right) \end{split} \tag{*}$$

as $\phi\left(\frac{x-y}{\epsilon}\right)$ is a smooth function of compact support. Thus the generalised derivative exists as $\tilde{f} \in W^{1,2}(\mathbb{R}^n)$, and so the manipulation in (\star) is justified.

7. Fourier Transforms and Weak Derivatives

Definition 7.1 (Fourier transform). If $f \in L^1(\mathbb{R}^n)$, $\lambda \in \mathbb{R}^n$, then the Fourier transform \hat{f} of f is defined by

$$\hat{f}(\lambda) = \int_{\mathbb{R}^n} f(t)e^{i\lambda t} dt. \tag{7.1}$$

Theorem 7.2. The map $f \mapsto \hat{f}$ is a bijection on $L^2(\mathbb{R}^n)$.

Theorem 7.3 (Parseval's theorem). If $f \in L^2(\mathbb{R}^n)$, then $(2\pi)^n ||f||_2^2 = ||\hat{f}||_2^2$. This can be generalised slightly to if $f, g \in L^2(\mathbb{R}^n)$, then

$$(2\pi)^n \langle f, g \rangle = \left\langle \hat{f}, \hat{g} \right\rangle = \int_{\mathbb{R}^n} \hat{f}(x) \overline{\hat{g}(x)} \, dx$$

Theorem 7.4. If $f \in L^2(\mathbb{R}^n)$, the following are equivalent:

- (i) $f \in W^{1,2}(\mathbb{R}^n)$,
- (ii) $-i\lambda_j \hat{f}(\lambda) \in L^2(\mathbb{R}^n)$ for $1 \le j \le n$,
- (iii) $1 + |\lambda| \hat{f}(\lambda) \in L^2(\mathbb{R}^n)$.

If any of these hold, the generalised derivative $\frac{\partial f}{\partial x_j}$ exists and $\frac{\partial \hat{f}}{\partial x_j}(\lambda) = -i\lambda_j \hat{f}(\lambda)$ for $1 \leq j \leq n$.

Proof. (ii) \iff (iii) $|\lambda_j \hat{f}(\lambda)| \le |\lambda| |\hat{f}(\lambda)|$ and hence (ii) \iff (iii).

 $(i) \Rightarrow (ii)$ The only thing left to prove is that

$$\frac{\partial \hat{f}}{\partial x_j}(\lambda) = -i\lambda_j \hat{f}(\lambda)$$

for $f \in W^{1,2}(\mathbb{R}^n)$. We have

$$\begin{split} f \in W^{1,2}(\mathbb{R}^n) &\Rightarrow \frac{\partial f}{\partial x_j} \in L^2(\mathbb{R}^n) \\ &\Rightarrow \frac{\partial \hat{f}}{\partial x_j}(\lambda) \in L^2(\mathbb{R}^n) \end{split}$$

so to prove the previous result we choose $f_n \in C_c^{\infty}(\mathbb{R}^n)$ such that $||f_n - f||_{1,2} \to 0$ as $n \to \infty$. Since

$$\frac{\partial \hat{f}_n}{\partial x_j}(\lambda) = -i\lambda_j \hat{f}_n(\lambda),$$

and $f_n \to f$ in $W^{1,2}(\Omega)$, we have

$$\Rightarrow f_n \to f \text{ in } L^2(\mathbb{R}^n)$$

$$\Rightarrow \hat{f}_n \to \hat{f} \text{ in } L^2(\mathbb{R}^n)$$

$$\Rightarrow \hat{f}_n(\lambda) \to \hat{f}(\lambda) \text{ a.e. (taking subsequences)}$$

$$\Rightarrow \frac{\partial f_n}{\partial x_j} \to \frac{\partial f}{\partial x_j} \text{ in } L^2(\mathbb{R}^n)$$

$$\Rightarrow \frac{\partial \hat{f}_n}{\partial x_j} \to \frac{\partial \hat{u}}{\partial x_j} \text{ in } L^2(\mathbb{R}^n)$$

$$\Rightarrow -i\lambda_j \hat{f}_n(\lambda) \to \frac{\partial \hat{f}}{\partial x_j}(\lambda) \text{ in } L^2(\mathbb{R}^n)$$

$$\Rightarrow \frac{\partial \hat{f}}{\partial x_j}(\lambda) = -i\lambda_j \hat{f}(\lambda) \text{ a.e.}$$

 $(ii) \Rightarrow (i)$ As $-i\lambda_j \hat{f}(\lambda) \in L^2(\mathbb{R}^n)$, and so there exists $g_j \in L^2(\mathbb{R}^n)$ such that

$$\hat{g}_j = -i\lambda_j \hat{f}(\lambda).$$

Thus we have

$$(2\pi)^n \left(f, \frac{\partial \phi}{\partial x_j} \right) = \left(\hat{f}, \frac{\partial \hat{\phi}}{\partial x_j} \right) \quad \phi \in C_c^{\infty}(\mathbb{R}^n)$$

$$= \int_{\mathbb{R}^n} \hat{f}(\lambda) \overline{-i\lambda_j \hat{\phi}(\lambda)}$$

$$= \int_{\mathbb{R}^n} \hat{f}(\lambda) i\lambda_j \overline{\hat{\phi}(\lambda)}$$

$$= \int_{\mathbb{R}^n} i\lambda_j \hat{u}(\lambda) \overline{\hat{\phi}(\lambda)}$$

$$= \int_{\mathbb{R}^n} \hat{g}_j \overline{\hat{\phi}(\lambda)}$$

$$= -(2\pi)^n (g_j, \phi)$$

$$\Rightarrow \int_{\mathbb{R}^n} f \frac{\partial \phi}{\partial x_j} = -\int g_j \phi$$

and so g_j is the j-th generalised derivative of f and $g_j \in L^2(\mathbb{R}^n)$, thus $f \in W^{1,2}(\mathbb{R}^n)$ \square Remark. As a consequence,

$$u \in W^{2,2}(\mathbb{R}^n) \iff (1+|\lambda|^2) \, \hat{u}(\lambda) \in L^2(\mathbb{R}^n)$$

and a similar result can be obtained for $W^{k,2}(\mathbb{R}^n)$. This follows from the fact that

$$C_2 \le \frac{1+|\lambda|^2}{(1+|\lambda|)^2} \le C_1$$

on \mathbb{R}^n where $C_1, C_2 > 0$.

Example 7.5. Consider the PDE

$$-\Delta u + u = f \tag{7.2}$$

on \mathbb{R}^n , where $f \in L^2(\mathbb{R})$ and we look for $u \in W^{2,2}(\mathbb{R}^n)$. Taking Fourier transformations, we have

$$\frac{\partial^2 u}{\partial x_j \partial x_k} = (-i\lambda_k)(-i\lambda_j)\hat{u}(\lambda)$$

$$= -\lambda_k \lambda_j \hat{u}(\lambda)$$

$$-\left(-\sum_{k=1}^n \lambda_k^2\right) \hat{u}(\lambda) + \hat{u}(\lambda) = \hat{f}(\lambda)$$

$$\left(1 + |\lambda|^2\right) \hat{u}(\lambda) = \hat{f}(\lambda).$$

So

$$\hat{u}(\lambda) = \frac{\hat{f}(\lambda)}{1 + |\lambda|^2}$$

and $u \in W^{2,2}(\mathbb{R}^n)$ (since $(1+|\lambda|^2)\hat{u}(\lambda) = \hat{f}(\lambda) \in L^2(\mathbb{R}^n)$. This is the unique solution in $W^{2,2}$.

Example 7.6. Consider a slightly modified version of (7.2)

$$-\Delta u = f$$

we obtain $\hat{u}(\lambda) = \frac{\hat{f}(\lambda)}{|\lambda|^2}$ and this is not well defined for λ near zero.

Example 7.7. Considering the equation (7.2), we take $u \in W^{1,2}(\mathbb{R}^n)$ such that

$$\int (\nabla u \nabla \phi + u \phi) = \int f \phi \quad \forall \phi \in C_c^{\infty}(\mathbb{R}^n). \tag{*}$$

If this holds, it follows that $\phi \in W^{1,2}(\mathbb{R}^n)$. By Parseval's theorem, we have

$$\int \sum_{j} -i\lambda_{j} \hat{u}(\lambda) \overline{-i\lambda_{j} \hat{\phi}(\lambda)} + \int \hat{u}(\lambda) \overline{\hat{\phi}(\lambda)} = \int \hat{f}(\lambda) \overline{\hat{\phi}(\lambda)}$$

and this is solved by

$$\hat{u}(\lambda) = \frac{\hat{f}(\lambda)}{1 + |\lambda|^2}$$

Note that (\star) has at most one solution in $W^{1,2}(\mathbb{R}^n)$. If u_1, u_2 are solutions then we have

$$\int \nabla u_1 \nabla \phi + u_1 \phi = \int f \phi \quad \forall \phi \in W^{1,2}(\mathbb{R}^n).$$
$$\int \nabla u_2 \nabla \phi + u_2 \phi = \int f \phi.$$

Subtracting these obtains

$$\int \nabla u_1 - u_2 \nabla \phi + (u_1 - u_2 \phi) = 0.$$

Letting $\phi = u_1 - u_2 \in W^{1,2}(\mathbb{R}^n)$, we have

$$\int \underbrace{\nabla (u_1 - u_2) \nabla u_1 - u_2}_{>0} + \underbrace{(u_1 - u_2)^2}_{>0} = 0.$$

8. Poincaré Inequality and Applications

Lemma 8.1. If $v \in C^1(\mathbb{R})$, $a \neq b$ and v(a) = v(b) = 0, then

$$\int_{a}^{b} v^{2}(t) dt \le (b - a)^{2} \int_{a}^{b} (v'(t))^{2} dt.$$
(8.1)

Proof. We have $v(x) = v(a) + \int_a^x v'(t) dt = \int_a^x v'(t) dt$ for a < x < b. So

$$|v(x)| \le \left| \int_a^x v'(t) dt \right|$$

$$\le \int_a^b |v'(t)| dt$$

$$\le (b-a)^{1/2} \left(\int_a^b (v'(t))^2 dt \right)^{1/2}.$$

Squaring and integrating from a to b, we obtain our result

$$\int_{a}^{b} v^{2}(t) dt \le (b - a)^{2} \int_{a}^{b} (v'(t))^{2} dt.$$

Theorem 8.2 (Poincaré inequality). If Ω is a domain in \mathbb{R}^n with $\Omega \subseteq C$ where C is a cube of side d, then

$$||w||_{2,\Omega} \le d||\nabla w||_{2,\Omega} \tag{8.2}$$

for $w \in \dot{W}^{1,2}(\Omega)$.

Remark. Recall that $W^{1,2}(\Omega) \subset W^{1,2}(\Omega)$ if Ω is a bounded domain. Note that the identity function $1 \in W^{1,2}(\Omega)$ does not satisfy this inequality.

Proof. First assume $u \in C_c^{\infty}(\Omega)$. We can extend u to \tilde{u} in $C_c^{\infty}(C)$ by defining $\tilde{u}(x) = 0$ if $x \in C \setminus \Omega$. Assume $C = [a, b]^n$. Then (identifying u with \tilde{u}),

$$\int_{a}^{b} u(x_1, \dots, x_n)^2 dx_1 \le (b - a)^2 \int_{a}^{b} \left(\frac{\partial u}{\partial x_1}\right)^2 dx_1$$

by Lemma 8.1. Integrating over the entire n-cube, we then have

$$\int_{a}^{b} \dots \int_{a}^{b} u(x_{1}, \dots, x_{n})^{2} dx_{1} \dots dx_{n} \leq (b - a)^{2} \int_{a}^{b} \dots \int_{a}^{b} \left(\frac{\partial u}{\partial x_{1}}\right)^{2} dx_{1} \dots dx_{n}$$
$$\leq (b - a)^{2} \int_{C} |\nabla u|^{2}$$

as $|\nabla u|^2 = \sum_{i=1}^n \left(\frac{\partial u}{\partial x_i}\right)^2$. As u is zero on $C \setminus \Omega$ we have the result

$$\int_{\Omega} u^2 \le d^2 \int_{\Omega} |\nabla u|^2 \tag{*}$$

for $u \in C_c^{\infty}(\Omega)$.

Now, if $u \in \dot{W}^{1,2}(\Omega)$, there exists $u_n \in C_c^{\infty}(\Omega)$ such that $||u_n - u||_{1,2} \to 0$ as $n \to \infty$. For each n, we then have

$$\int_{\Omega} u_n^2 \le d^2 \int_{\Omega} |\nabla u_n|^2$$

by (\star) . Taking the limit, we obtain our required result,

$$\int_{\Omega} u^2 \le d^2 \int_{\Omega} |\nabla u|^2.$$

Intuitively, $\dot{W}^{1,2}(\Omega)$ is the set of functions in $W^{1,2}(\Omega)$ vanishing on $\partial\Omega$. If Ω is a domain with a smooth boundary, then it can be proven there is a map T, known as the trace map,

$$T: W^{1,2}(\Omega) \to L^2(\partial\Omega)$$

such that $\dot{W}^{1,2}(\Omega) = \text{Ker } T$. The key difficulty in the proof is showing the inequality

$$\int_{\partial\Omega} (v|_{\partial\Omega})^2 \le K ||v||_{1,2}^2$$

if $v \in W^{1,2}(\Omega)$. By the Poincaré inequality, we can use $\|\nabla u\|_2$ as a norm on $\dot{W}^{1,2}(\Omega)$ if Ω is abounded domain. This is equivalent to $\|u\|_2 + \|\nabla u\|_2$.

Note that this norm is induced by the scalar product (assuming real u, v)

$$\langle u, v \rangle = \int_{\Omega} \nabla u \nabla v = \sum_{j=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_j}$$

Proposition 8.3. Consider the equation

$$-\Delta u = f \tag{8.3}$$

in Ω , with boundary conditions u = 0 on $\partial\Omega$ and $f \in L^2(\Omega)$. If Ω is bounded, then this has a unique weak solution in $\dot{W}^{1,2}(\Omega)$.

That is, there exists a unique $u \in \dot{W}^{1,2}(\Omega)$ such that

$$\int_{\Omega} -\Delta u \phi = \int_{\Omega} \nabla u \cdot \nabla \phi = \int_{\Omega} f \phi$$

for all $\phi \in C_c^{\infty}(\Omega)$. This equation follows from multiplying by a smooth function ϕ and integrating by parts.

Proof. Let $\langle u,v\rangle=\int_{\Omega}\nabla u\nabla v$ is a scalar product on $\dot{W}^{1,2}(\Omega)$ generalising the norm. The map $\phi\mapsto\int_{\Omega}f\phi$ is linear in ϕ . Our equation then reduces to

$$\langle u, \phi \rangle = (f, \phi)$$

where the right hand side is the L^2 inner product. Then we have

$$|(f,\phi)| \le ||f||_2 ||\phi||_2$$

 $\le C||f||_2 ||\nabla \phi||_2$ by Poincaré inequality

and so (f, ϕ) is a bounded linear functional on $\dot{W}^{1,2}(\Omega)$.

So $(f, \phi) = \langle F, \phi \rangle$ where $F \in \dot{W}^{1,2}(\Omega)$ by the Reisz representation theorem. Thus setting u = F we obtain our solution.

Uniqueness is clear from $\langle u - F, \phi \rangle = 0 \Rightarrow u - F = 0$.

Note. Consider looking for a solution $u \in C^2(\Omega) \wedge C(\overline{\Omega})$ for the equation

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

with $f \in L^2(\Omega)$.

We can prove existence of a weak solution quite generally. If $a(u, v) : \mathcal{H} \oplus \mathcal{H} \to k$ which is linear in v for fixed u and linear in u for fixed v (bilinear) and there exists K such that

$$|a(u,v)| \le K||u|||v||,$$

then we can write $a(u, v) = \langle Lu, v \rangle$ where $L : \mathcal{H} \to \mathcal{H}$ is bounded and linear.

If a is of this class on on $\dot{W}^{1,2}(\Omega)$ and $f \in L^2(\Omega)$, then the equation

$$a(u,v) = (f,v) \tag{*}$$

for all $v \in \dot{W}^{1,2}(\Omega)$ can be written as

$$\langle Lu, v \rangle = \langle F, v \rangle$$

where $L: \dot{W}^{1,2}(\Omega) \to \dot{W}^{1,2}(\Omega)$ is bounded linear. Thus Lu = F. Thus the equation is uniquely soluble if L is invertible. By the Lax-Milgram result (Theorem 3.1), L is invertible if

$$\operatorname{Re}\langle Lu, u \rangle \ge c \|u\|_{1,2}^2 \tag{**}$$

on $\dot{W}^{1,2}(\Omega)$ where c > 0. Thus (\star) has a unique solution if $(\star\star)$ holds and $\langle Lu, v \rangle$ is bilinear and bounded on $\dot{W}^{1,2}(\Omega)$. Notice that $(\star\star)$ can be written as $\operatorname{Re}a(u,u) \geq c\|u\|_{1,2}^2$.

Recall that the equation

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

with $f \in L^2(\Omega)$. has a unique weak solution if Ω is bounded. We prove that $u \in W^{2,2}_{loc}(\Omega)$. To prove thius, suppose that $x_0 \in \Omega$ and choose $\phi \in C_c^{\infty}(\Omega)$ and that $\phi = 1$ in a neighbourhood of x_0 . We prove that $u\phi$ is the weak solution of the problem

$$-\Delta(u\phi) + (u\phi) = w \tag{(***)}$$

on \mathbb{R}^n where

$$w = \underbrace{f\phi - 2\nabla u\nabla\phi - u\Delta\phi + u\phi}_{L^2(\mathbb{R}^n)}$$

But the solution of $(\star \star \star)$ is $W^{2,2}(\mathbb{R}^n)$, which can be derived by Fourier transforms.

We now seek to prove $(\star \star \star)$. Choose $\psi \in C_c^{\infty}(\mathbb{R}^n)$. Then

$$\int \nabla(u\phi) \cdot \nabla\psi = \int (\psi \nabla u + u \nabla \phi) \cdot \nabla\psi$$

$$= \int u \nabla \phi \cdot \nabla \psi + \int \phi \nabla u \cdot \nabla\psi$$
(†)

and similarly,

$$\begin{split} \int \nabla u \cdot \nabla (\phi \psi) &= \int \nabla u \cdot (\nabla \phi) \psi + \int \nabla u (\nabla \psi) \nabla \phi \\ &= \int_{\Omega} (f \phi \psi) \\ &= \int f \phi \psi \end{split}$$

and so

$$\int \nabla u \cdot (\nabla \phi) \psi = \int f \phi \psi - \int \nabla u \cdot (\nabla \psi) \phi \tag{\ddagger}$$

Then we have

$$\int \nabla(u\phi) \cdot \nabla\psi = \int u(\nabla\phi) \cdot \nabla\psi + \int \phi \nabla u \cdot \nabla\psi \qquad \text{by (†)}$$

$$= \int u\nabla\phi \cdot \nabla\psi + \int f\phi\psi - \int \nabla u \cdot (\nabla\phi)\psi \qquad \text{by (‡)}$$

$$= -\int \psi\nabla(u\nabla\phi) + \int f\phi\psi - \int \nabla u \cdot (\nabla\phi)\psi$$

$$= -\int \psi (\nabla u \cdot \nabla\phi + u\Delta\phi) + \int f\phi\psi - \int \nabla u \cdot (\nabla\phi)\psi$$

$$= \int (f\phi)\psi - 2(\nabla u \cdot \nabla\phi) - u(\Delta\phi)\psi.$$

So

$$\int (\nabla (u\phi) \cdot \nabla \psi + u\phi\psi) = \int (f\phi\psi - (2\nabla u \cdot \nabla \phi)\psi - u(\Delta\phi)\psi + u\phi\psi).$$

Hence $u\phi$ is a weak solution on \mathbb{R}^n of $-\Delta z + z = w$. We can use similar arguments to show that $f \in W^{k,2}(\Omega)$, which then implies that $u \in W^{k+2,2}_{loc}(\Omega)$.

It can be show that if $u \in L^p(\Omega)$ and $-\Delta u + u = f$ in Ω , then $u \in W^{2,p}_{loc}(\Omega)$.

Now, consider the weak solutions of

$$-\frac{\partial}{\partial x_l}(a_{ij}(x)\frac{\partial u}{\partial x_j}) + b_l \frac{\partial u}{\partial x_l} + cu = f.$$
(8.4)

on Ω , with $u \in \dot{W}^{1,2}(\Omega)$. We implicitly use the repeated index summation convention.

We seek to find u such that

$$\int_{\Omega} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial \phi}{\partial x_l} \right) + \int_{\Omega} b_l \frac{\partial u}{\partial x_l} \phi + \int_{C} cu\phi = \int_{\Omega} f\phi$$

for all $\phi \in \dot{W}^{1,2}(\Omega)$. The left hand side is a bilinear operator $A(u,\phi)$ where

$$A: \dot{W}^{1,2}(\Omega) \times \dot{W}^{1,2}(\Omega) \to \mathbb{R}$$

is bounded if $a_{ij}, b_j, c \in L^{\infty}(\Omega)$ and hence are bounded on Ω . In this case, there is a generalised theorem that

$$A(u, \phi) = \langle Lu, \phi \rangle$$

where L is a bounded linear map $\dot{W}^{1,2}(\Omega) \to W^{1,2}(\Omega)$. Then our equation becomes

$$\langle Lu, \phi \rangle = \int_{\Omega} f \phi = \langle F, \phi \rangle$$

by the Reisz representation theorem. That is, Lu = f. Then our problem has a unique solution if L is invertible. By Lax-Milgram (Theorem 3.1), this is true if

$$A(u, u) \ge c ||u||_{1,2}^2$$
.

We now seek to find assumptions such that A satisfies these conditions. We assume that there exists $c_1 > 0$ such that

$$\langle a_{ij}(x)\eta_i, \eta_j \rangle \ge c_1 |\eta|^2 \tag{\dagger\dagger}$$

for all $\eta \in \mathbb{R}^n, x \in \Omega$.

Consider the operator

$$A(u,v) = \int_{\Omega} a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + \int_{\Omega} b_l \frac{\partial u}{\partial x_l} v + \int_{\Omega} cuv.$$

To bound the second term, we have have

$$\begin{split} \left| \int_{\Omega} b_{l} \frac{\partial u}{\partial x_{l}} |v| \right| &\leq \int_{\Omega} |b_{l}| \left| \frac{\partial u}{\partial x_{l}} \right| |v| \\ &\leq K \int \left| \frac{\partial u}{\partial x_{l}} \right| |v| \\ &\leq K \left\| \left| \frac{\partial u}{\partial x_{l}} \right\|_{2} \|v\|_{2} & \text{by Cauchy-Swartz} \\ &\leq K \left(\epsilon \left\| \frac{\partial u}{\partial x_{l}} \right\|_{2}^{2} + \frac{1}{\epsilon} \|v\|_{2}^{2} \right) & \text{by the inequality } |st| \leq \epsilon s^{2} + \frac{t^{2}}{\epsilon} \end{split}$$

Other terms are similar but easier to bound. Thus we have a bounded bilinear map. With the above assumptions, we have

$$A(u, u) = \underbrace{\int_{\Omega} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}}_{>\mu \int_{\Omega} |\nabla u|^2} + \int_{\Omega} b_l u \frac{\partial u}{\partial x_l} + \int_{\Omega} cu^2$$

Estimating the final term, we have

$$\int cu^2 \ge \inf c \|u\|_2^2.$$

The first term is bounded by the assumption $(\dagger\dagger)$.

Coercivity is then given, $A(u,u) \ge \alpha ||u||_{1,2}^2$ for $\alpha > 0$ if $b_l = 0$ and $\inf c \ge 0$. If $b_l = 0$ and Ω is bounded, then $\inf c \ge 0$ is sufficient.

If b_l does not vanish on Ω , then we have the estimate

$$A(u, u) \ge \mu \|\nabla u\|_2^2 - K\left(\epsilon \|\nabla u\|_2^2 + \frac{1}{\epsilon} \|u\|_2^2\right) + \inf c\|u\|_2^2.$$

Choose ϵ such that $K\epsilon < \mu$ and $\inf c > \frac{K}{\epsilon}$. Then we get

$$A(u, u) \ge \tilde{c} (\|\nabla u\|_2^2 + \|u\|_2^2),$$

and we obtain coercivity.

Lemma 8.4. If $A(u,v) = \int_{\Omega} fv$ for all $v \in \dot{W}^{1,2}(\Omega)$, then there is a unique weak solution in $\dot{W}^{1,2}(\Omega)$ if A is bounded and bilinear, A is coercive, and $f \in L^2(\Omega)$.

9. Compactness in Sobolev Spaces

Theorem 9.1. If Ω is bounded and open in \mathbb{R}^n the natural inclusion $i: \dot{W}^{1,2}(\Omega) \to L^2(\Omega)$ is compact. That is, bounded sets in $\dot{W}^{1,2}(\Omega)$ are contained in a compact set of $L^2(\Omega)$.

Remark. The theorem does not hold for $\Omega = \mathbb{R}^n$, but true for $W^{1,2}(\Omega)$ under minor assumptions on $\partial\Omega$. There is a similar result for $\dot{W}^{1,p}(\Omega)$ for 1 .

Lemma 9.2. For ϵ sufficiently small,

$$\left| \left(\hat{\phi}(\epsilon s) - 1 \right) \right| \le r\sqrt{1 - |s|^2} \tag{9.1}$$

on \mathbb{R}^n .

Proof. We have $\hat{\phi}(0) - = 1$, $\hat{\phi}$ is continuous and bounded, and so $|\hat{\phi}(s)| \leq K$ on \mathbb{R}^n . So

$$\left| \hat{\phi}(\epsilon s) - 1 \right| \le K + 1 \le r\sqrt{1 + |s|^2}$$

if

$$|s|^2 \ge \underbrace{\left(\frac{K+1}{r}\right)^2 - 1}_{u^2}.$$

And so this is true if $|s| \ge \mu$ (uniformly in ϵ). Thus (9.1) holds if $|s| \ge \mu$.

If $|s| \le \mu$, ϵs is small, and so $\left| \hat{\phi}(\epsilon s) - 1 \right|$ is close to $\hat{\phi}(0) - 1 = 0$. Note that $\left| \hat{\phi}(\epsilon s) - 1 \right| \le r$ if ϵ is small and $|s| \le \mu$. Hence

$$\left| \hat{\phi}(\epsilon s) - 1 \right| \le r\sqrt{1 + |s|^2}$$

if $|s| \leq \mu$ and ϵ is small. Hence (9.1) holds and our lemma is proven.

Lemma 9.3. Given r > 0, there exists $\epsilon_0 > 0$ such that $||T_{\epsilon}u - u|| \le r||u||_{1,2}$ if $0 < \epsilon \le \epsilon_0$ and $u \in \dot{W}^{1,2}(\Omega)$.

Proof. We choose a cube C such that $\overline{\Omega} \subset \text{Int } C$. Notice that $\dot{W}^{1,2}(\Omega)$ can be extended to $\dot{W}^{1,2}(C)$ by letting u = 0 on $C \setminus \Omega$.

Choose $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\phi \geq 0$, $\int \phi = 1$, and ϕ even. Let

$$T_{\epsilon}u = \epsilon^{-n} \int_{\Omega} \phi\left(\frac{x-y}{\epsilon}\right) u(y) dy = \phi_{\epsilon} \star u$$

where $\phi_{\epsilon}(x) = \epsilon^{-n} \phi\left(\frac{x}{\epsilon}\right)$.

Taking Fourier transforms, we have

$$\hat{\phi}_{\epsilon}(S) = \int_{\mathbb{R}^n} e^{its} \phi_{\epsilon}(t) dt$$

$$= \epsilon^{-n} \int e^{its} \phi\left(\frac{t}{\epsilon}\right) dt$$

$$= \hat{\phi}(\epsilon s).$$

Then estimating $||T_{\epsilon}u - u||_2^2$ by Fourier transforms, we have

$$A = ||T_{\epsilon}u - u||_{2}^{2} = (2\pi)^{-n} ||T_{\epsilon}\hat{u} - u||_{2}^{2}$$
$$= ||T_{\epsilon}\hat{u} - \hat{u}||_{2}^{2}.$$

But $\hat{T_{\epsilon}u} = \hat{\phi}_{\epsilon}\hat{u} = \hat{\phi}(\epsilon s)\hat{u}(s)$, and so

$$A = (2\pi)^{-n} \int \left| \left(\left(\hat{\phi}(\epsilon s) - 1 \right) \hat{u}(s) \right)^2 \right| ds$$

From Lemma 9.2, we have

$$A \le (2\pi)^{-n} \int r^2 (1 - |s|^2)^2 |\hat{u}(s)|^2 ds$$
$$\le r^2 (2\pi)^{-n} \int (1 + |s|^2) |\hat{u}(s)|^2 ds$$
$$= r^2 ||u||_{1,2}^2$$

using the definition of the $||u||_{1,2}^2$ as $||u||_2^2 + ||\nabla u||_2^2$.

Hence
$$||T_{\epsilon}u - u||_2^2 \le r^2 ||u||_{1,2}^2$$
.

Definition 9.4 (Finite ϵ -net). A finite set $\{a_i\}_{i=1}^n$ in a metric space Y is a finite ϵ -net if $Y \subseteq \bigcup_{i=1}^n B_{\epsilon}(a_i)$.

Theorem 9.5. A closed net Y in a compact metric space is compact if and only if it has a finite ϵ -net for every $\epsilon > 0$.

Definition 9.6 (Precompact). A subset T in a complete metric space is said to be precompact if \overline{T} is compact.

T is precompact if and only if T has a finite ϵ net for every $\epsilon > 0$.

Proof of Theorem 9.1. It suffices to show that for any $\delta > 0$, the set

$$\{u \in \dot{W}^{1,2}(\Omega) \mid ||u||_{1,2} \le 1\}$$

lies in a compact set of $L^2(\Omega)$ and hence it suffices to prove if $\delta > 0$ it has a finite δ -net in $L^2(\Omega)$. Recall that

$$||T_{\epsilon}u - u|| \le \frac{1}{2}\delta$$

if $u \in \dot{W}^{1,2}(\Omega)$, $||u||_{1,2} \le 1$ by Lemma 9.3. Thus it suffices to get a finite $\frac{\delta}{2}$ -net in $L^2(\Omega)$ for

$$\{T_{\epsilon}u \,|\, \|u\|_{1,2}\}$$

for ϵ small.

There are C^1 function on \mathbb{R}^n , and so

$$(T_{\epsilon}u)'(x) = \epsilon^{-n-1} \int \phi'\left(\frac{x-y}{\epsilon}\right) u(y) \, dy. \tag{*}$$

It suffices to prove for a fixed ϵ ,

$$\{T_{\epsilon}u \mid ||u||_{1,2} \leq 1\}$$

is precompact in C(C) (the set of continuous functions on the cube C.)

The map $i: C(C) \to L^2(C)$ is continuous and so maps compact sets to compact sets. For fixed ϵ , $|(T_{\epsilon}u)'(x)| \le K$ if $||u||_{1,2} \le 1$, as

$$|T'(u)(x)| \le K \int |u(y)| dy \le K ||u||_1$$

 $\le K_1 ||u||_2$
 $\le K_1 ||u||_{1,2}$
 $< K_1.$

On C,

$$|T_{\epsilon}u(x_1) - T_{\epsilon}u(x_2)| \le \sup |(T_{\epsilon}u)'(x)||x_1 - x_2|$$

 $\le K_1|x_1 - x_2|$

for any $x_1, x_2 \in C$. So $T_{\epsilon}u$ is uniformly bounded. This shows that $\{T_{\epsilon}u \mid ||u||_{1,2} \leq 1\}$ is equicontinuous, in the sense that given $\mu > 0$, there exists $\tau > 0$ such that $||T_{\epsilon}u(x_1) - T_{\epsilon}(x_2)|| \leq \mu$ if $||x_1 - x_2|| \leq \tau$ for all u such that $||u||_{1,2} \leq 1$.

Lemma 9.7 (Anzela-Anscoli). A bounded set in C(C) is precompact if and only if it is equicontinuous.

Proof. See Simmond's book on Modern Analysis.

Applying Anzela-Anscoli to our set $\{T_{\epsilon}u \mid ||u||_{1,2} \leq 1\}$ then proves that it is precompact in C(C). As a set that is precompact in C(C) is precompact in $L^2(C)$, our theorem is proven.

Remark. There are similar results for $i: \dot{W}^{1,p}(\Omega) \to L^p(\Omega)$ if $1 if <math>\Omega$ is bounded open.

Recall that $\dot{W}^{1,2}(\Omega) \to L^2(\Omega)$ is compact if Ω is bounded. Consider the equation

$$-\Delta u = \lambda u + f \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial \Omega$$
(9.2)

with Ω a **bounded** domain in \mathbb{R}^n .

For a weak solution, we seek to find $u \in \dot{W}^{1,2}(\Omega)$ such that

$$\int \nabla u \cdot \nabla v = \lambda \int uv + \int fv$$

for all $v \in \dot{W}^{1,2}(\Omega)$. This is equivalent to asking that

$$\langle u, v \rangle = \lambda \langle Bu, v \rangle + \langle F, v \rangle$$
 (*)

where $\langle Bu, v \rangle = (u, v)$ is a bounded bilinear form on $\dot{W}^{1,2}(\Omega)$ and $\int fv = \langle F, v \rangle$. Note that (\star) is equivalent to

$$u = \lambda B u + F \tag{**}$$

whern $u \in \dot{W}^{1,2}(\Omega)$.

Recall that

$$|\langle Bu, v \rangle| = \left| \int uv \right|$$

$$\leq ||u||_2 ||v||_2$$

$$\leq C||\nabla u||_2 ||\nabla v||_2$$

by Poincaré. Moreover, B is compact, as Ω is bounded. This is true as supposing that u_n is a bounded sequence in $\dot{W}^{1,2}(\Omega)$. Then $\{u_n\}$ has a convergent subsequence in $\dot{W}^{1,2}(\Omega)$. But by Theorem 9.1, $\{u_n\}$ has a subsequence which converges in $L^2(\Omega)$. Restricting now to the subsequence,

for any u_n, u_m , we have

$$||Bu_{n} - Bu_{m}||_{1,2} = \sup_{\|v\|_{1,2} \le 1} |\langle Bu_{n} - Bu_{m}, v \rangle|$$

$$= \sup_{\|v\|_{1,2} \le 1} |\langle B(u_{n} - u_{m}), v \rangle|$$

$$\leq \sup_{\|v\|_{1,2} \le 1} |(u_{n} - u_{m}, v)|$$

$$\leq \sup_{\|v\|_{1,2} \le 1} ||u_{n} - u_{m}||_{2} \underbrace{\|v\|_{2}}_{< C||v||_{1,2}}$$

by convergence in $L^2(\Omega)$, Cauchy-Swartz and the Poincaré inequality.

So $||Bu_n - Bu_m||_{1,2} \to 0$ as $n, m \to \infty$, and so $\{Bu_n\}$ converges in $\dot{W}^{1,2}(\Omega)$ as required. B is also self adjoint as $\langle Bu, v \rangle = \int uv$.

Theorem 9.8. The problem $u = \lambda Bu$ on $\dot{W}^{1,2}(\Omega)$ has an infinite sequence of eigenvalues $\{\lambda_n\}$ which are all real and $\lambda_n > 0$ and $\lambda_n \to \infty$ as $n \to \infty$. Moreover, $I - \lambda B$ is invertible if $\lambda \neq \lambda_n$ for all n.

Proof.

- (i) The eigenvalues are all real as B is self-adjoint.
- (ii) Note that the null-space of B is $\{0\}$, since

$$\langle Bu, u \rangle = (u, u) = \int_{\Omega} u^2 > 0$$

if $u \neq 0$.

Hence

$$u = \lambda Bu \iff \underbrace{\langle u, u \rangle}_{>0} = \langle \lambda Bu, u \rangle$$
$$= \lambda \langle Bu, u \rangle$$
$$= \lambda \underbrace{\int_{>0} u^2}_{>0}$$

and so all eigenvalues are greater than zero.

(iii) The smallest eigenvalue is $\inf_{u\neq 0} \frac{\int |\nabla u|^2}{\int u^2}$. By Theorem 3.7, for any operator T we have

$$\sup \sigma(T) = \sup_{\|x\|=1} \langle Tx, x \rangle$$

$$= \sup_{\|x\neq 0\|} \frac{\langle Tx, x \rangle}{\langle x, x \rangle}$$

$$\inf \sigma(B) = \inf_{x\neq 0} \frac{\langle x, x \rangle}{\langle Bx, x \rangle}$$

$$= \inf_{u\neq 0} \frac{\langle u, u \rangle}{\langle Bu, u \rangle}$$

$$= \inf_{u\neq 0} \frac{\int |\nabla u|^2}{\int u^2}.$$

(iv) If $\lambda \neq \lambda_n$, (9.2) has a unique weak solution for all $f \in L^2(\Omega)$. If $\lambda = \lambda_n$, (9.2) has a solution if and only if $(f, \phi_n) = 0$ for all eigenfunctions ϕ_n corresponding to $\lambda = \lambda_n$.

Recall from Theorem 2.8, Tx = y has a solution if and only if f(y) = 0 for all $f \in \text{Ker } T'$. Note that the this is satisfied if and only if $\langle F, \phi_n \rangle = (f, \phi_l) = 0$ for all eigenfunctions ϕ_n .

(v) The set of eigenfunctions are an orthogonal basis for $L^2(\Omega)$ and $\dot{W}^{1,2}(\Omega)$.

This is true for any compact self-adjoint operator.

Consider the equation

$$-\Delta u = \lambda u + f \quad \text{in } \Omega \tag{9.3}$$

$$u = 0$$
 on $\partial \Omega$

(9.4)

with $u \in \dot{W}^{1,2}(\Omega)$ and $f \in L^2(\Omega)$.

Consider the equation

$$\frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + b_i \frac{\partial u}{\partial x_l} + cu = \lambda u + f \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial \Omega$$

with Ω bounded. We can apply the previous theory to this case (modulo some complications.)

Let f = 0. Then if $\tilde{\lambda}$ is the least eigenvalue of (9.3) then there is a non-negative eigenfunction of (9.3) corresponding to $\lambda = \tilde{\lambda}$.

Theorem 9.9. Recall that

$$\tilde{\lambda} = \inf_{\substack{u \in \dot{W}^{1,2}(\Omega) \\ u \neq 0}} \frac{\int |\nabla u|^2}{\int u^2}$$

$$\tag{9.5}$$

If $\tilde{u} \in \dot{W}^{1,2}(\Omega)$ achieves this minimum, then

$$-\Delta \tilde{u} = \tilde{\lambda} \tilde{u}.$$

Proof. Consider test functions of the form $\tilde{u} + \epsilon \phi$ where $\phi \in \dot{W}^{1,2}(\Omega)$. Then

$$\frac{\int \left|\nabla(\tilde{u} + \epsilon\phi)\right|^2}{\int (\tilde{u} + \epsilon\phi)^2} \ge \tilde{\lambda}.$$

and

$$\left. \frac{d}{d\epsilon} \left. \frac{\int |\nabla(\tilde{u} + \epsilon \phi)|^2}{\int (\tilde{u} + \epsilon \phi)^2} \right|_{\epsilon = 1} = 0.$$

This implies that

$$\int \nabla u \tilde{\nabla} \phi - \tilde{\lambda} \tilde{u} \phi = 0$$

As this is true for all $\phi \in \dot{W}^{1,2}(\Omega)$, we have that \tilde{u} is a weak solution of (9.3) for $\lambda = \tilde{\lambda}$ and f = 0.

Lemma 9.10. If \tilde{u} is an eigenfunction corresponding to $\tilde{\lambda}$ then $|\tilde{u}|$ is in $\dot{W}^{1,2}(\Omega)$ and $|\tilde{u}|$ is a minimiser of (9.5), and hence, as in Lemma 9.9, $|\tilde{u}|$ is also an eigenfunction corresponding to $\tilde{\lambda}$.

Proof. Recall that

$$|\tilde{u}|(x) = \begin{cases} \tilde{u}(x) & \tilde{u} \ge 0\\ -\tilde{u}(x) & \tilde{u}(x) < 0 \end{cases}$$

By the next section,

$$\frac{\partial}{\partial x_i} |\tilde{u}|(x) = \begin{cases} \frac{\partial \tilde{u}}{\partial x_i} & \tilde{u}(x) \ge 0\\ -\frac{\partial \tilde{u}}{\partial x_i} & \tilde{u}(x) < 0 \end{cases}$$

Then

$$\left| \frac{\partial}{\partial x_i} |\tilde{u}|(x) \right| = \left| \frac{\partial \tilde{u}}{\partial x_i} \right|$$

and so

$$\frac{\int \left(\nabla |\tilde{u}|\right)^2}{\int |\tilde{u}|^2} = \frac{\int |\nabla \tilde{u}|^2}{\int \tilde{u}^2} = \tilde{\lambda}.$$

Theorem 9.11. If $f \in L^2(\Omega)$ is non-negative and

$$-\Delta u = f \quad in \ \Omega$$
$$u = 0 \quad on \ \partial \Omega$$

for $u \in \dot{W}^{1,2}(\Omega)$, then $u \geq 0$ on $\partial \Omega$.

Proof. Consider u^- as a test function in the definition of the weak solution

$$u^{-}(x) = \begin{cases} 0 & u(x) \ge 0 \\ u(x) & u(x) < 0. \end{cases}$$

and

$$\frac{\partial}{\partial x_i} u^-(x) = \begin{cases} 0 & u(x) \ge 0\\ \frac{\partial u}{\partial x_i} & u(x) < 0. \end{cases}$$

Since

$$\int \nabla u \cdot \nabla \phi = \int f \phi$$

letting $\phi = u^-$, we have

$$\underbrace{\int f u^{-}}_{\leq 0} = \int \nabla u \nabla u^{-} = \underbrace{\int \left| \nabla u^{-} \right|^{2}}_{\leq 0}$$

Thus $\nabla u^- = 0$ and so $u^- = 0$ by Poincaré inequality (Theorem 8.2).

10. Further Properties of $\dot{W}^{1,2}(\Omega)$

Theorem 10.1. If $u \in \dot{W}^{1,2}(\Omega)$ where Ω is bounded and open then $u^+ \in \dot{W}^{1,2}(\Omega)$ and

$$\frac{\partial}{\partial x_i} u^+ = \begin{cases} \frac{\partial u}{\partial x_i} & u(x) > 0\\ 0 & u(x) \le 0 \end{cases}$$

Proof. If $f \in C^1(\Omega)$, f(0) = 0, and f' is bounded on \mathbb{R} , then $f(u) \in \dot{W}^{1,2}(\Omega)$ and $\frac{\partial}{\partial x_i} f(u) =$ $f'(u)\frac{\partial u}{\partial x_i}$ if $u \in C_c^{\infty}(\Omega)$ by the chain rule. If $u \in \dot{W}^{1,2}(\Omega)$, choose $u_n \in C_c^{\infty}(\Omega)$ so $u_n \to u$ in $\dot{W}^{1,2}(\Omega)$ as $n \to \infty$. Then

$$-\int f(u_n)\frac{\partial \phi}{\partial x_l} = \int f'(u_n)\frac{\partial u_n}{\partial x_i}\phi$$

Since $u_n \to u$ and $\frac{\partial u_n}{\partial x_i} \to \frac{\partial u}{\partial x_i}$ in L^2 , taking subsequences gives

$$-\int f(u)\frac{\partial \phi}{\partial x_i} = \int f'(u)\frac{\partial u}{\partial x_i}\phi \qquad \Box.$$

This can be shown as $|f(0)-f(t)| \leq K|s-t|$ by the mean value theorem, and so $|f(u_n(x))-f(t)| \leq K|s-t|$ $|f(u(x))| \le K|u_n(x) - u(x)|$. On the left hand side, it suffices to show that $f(u_n) \to f(u)$ in $L^1(\Omega)$, then we use the dominated convergence theorem. We have

$$||f(u_n(x)) - f(u(x))||_1 < K||u_n - u||$$

On the right hand side, we have L^2 convergence if we prove that each term $(\frac{\partial u_n}{\partial x_i}, f'(u_n)\phi)$ converges in $L^2(\Omega)$, We have

$$\frac{\partial u_n}{\partial x_i} \to \frac{\partial u}{\partial x_i}$$

by a lemma of generalised derivatives, and

$$f'(u_n)\phi \to f'(u)\phi$$

since they are both uniformly bounded and converge pointwise.

More explicitly, we have

$$\int f(u) \frac{\partial \phi}{\partial x_l} - \int f(u_n) \frac{\partial \phi}{\partial x_l} = \int (f(u_n) - f(u)) \frac{\partial \phi}{\partial x_i}$$

$$\leq \underbrace{\|f(u) - f(u_n)\|_2}_{0} \left\| \frac{\partial \phi}{\partial x_i} \right\|_2$$

Now, consider the function $f_{\epsilon}(y)$ given by

$$f_{\epsilon}(y) = \begin{cases} \sqrt{y^2 + \epsilon^2} & y \ge 0\\ 0 & y < 0. \end{cases}$$

Then $f_{\epsilon} \in C^1$, $f'_{\epsilon}(y) = \frac{y}{\sqrt{y^2 + \epsilon^2}}$, and $|f'_{\epsilon}(y)| \leq 1$.

If $u \in \dot{W}^{1,2}(\Omega)$, then

$$-\int f_{\epsilon}(u)\frac{\partial \phi}{\partial x_{i}} = \int f'_{\epsilon}(u)\frac{\partial u}{\partial x_{i}}\phi$$

by the previous step.

Note that $f_{\epsilon}(y) \to y^+$ uniformly in \mathbb{R} as $\epsilon \to 0$, and hence converges in L^2 . Thus

$$\int f_{\epsilon}(u)\phi = \int u^{+}\phi.$$

Next, note that $f'_{\epsilon}(y)$ is uniformly bounded and converges pointwise and in $L^2(\Omega)$ to $\mathbf{1}_{y>0}$. Thus by Cauchy-Swartz,

$$\int f'_{\epsilon}(u) \frac{\partial u}{\partial x_i} \phi \to \int \mathbf{1}_{u>0} \frac{\partial u}{\partial x_i} \phi.$$

Hence

$$\int u^{+} \frac{\partial \phi}{\partial x_{l}} = \int \mathbf{1}_{u>0} \frac{\partial u}{\partial x_{i}} \phi$$

and so $\frac{\partial u^+}{\partial x_i}$ exists and is $\mathbf{1}_{u>0} \frac{\partial u}{\partial x_i}$.

Remark. This tells us that $\frac{\partial u^+}{\partial x_i} = 0$ a.e. where u = 0, and also that $\frac{\partial u^-}{\partial x_i} = -\mathbf{1}_{u<0} \frac{\partial u}{\partial x_i}$.

Remark. If $u \in W^{1,2}(\Omega)$ m then $u^+ \in W^{1,2}(\Omega)$ with the same formula for $\frac{\partial u}{\partial x}$.

If N=1 and $\dot{W}^{1,2}([a,b])$ then there exists \tilde{u} such that $\tilde{u}=u$ almost everywhere and $\tilde{u}\in C[a,b]$.

If N=2 and $u\in \dot{W}^{1,2}(\Omega),\,u\in L^p(\Omega)$ for all $p\geq 1.$

If $N \geq 3$ and $u \in \dot{W}^{1,2}(\Omega)$, then $u \in L^{2^*}(\Omega)$ where $2^* = \frac{2N}{N-2}$.

Exercise 10.2. If $u \in \dot{W}^{1,2}(\Omega)$ and a > 0, then

$$(u-a)^+ \in \dot{W}^{1,2}(\Omega).$$

Remark. In general, if F is Lipschitz on \mathbb{R} with F(0) = 0 and $u \in \dot{W}^{1,2}(\Omega)$, then

$$F(u) \in \dot{W}^{1,2}(\Omega).$$

Theorem 10.3. If n = 1 and $u \in \dot{W}^{1,2}(\Omega)$, then $u \in C(\overline{\Omega})$ and u = 0 on $\partial\Omega$ (assuming Ω is bounded and open). More precisely, there exists K > 0 such that if $u \in \dot{W}^{1,2}(\Omega)$ there exists $v \in C(\Omega)$ such that v = 0 on $\partial\Omega$, v = u almost everywhere, and $\|v\|_{\infty} \leq K\|u\|_{1,2}$.

This is true for $\dot{W}^{1,p}(\Omega)$ if n=1 and p>1.

Proof. We prove for $\Omega = (a, b)$, as any open set in \mathbb{R} is a countable union of disjoint intervals. We prove that there exists K > 0 such that if $u \in C_c^{\infty}((a, b))$, then

$$||u||_{\infty} \le K||u||_{1,2}.\tag{*}$$

This will be sufficient to prove the theorem. To show this, suppose that $w \in \dot{W}^{1,2}(\Omega)$ and $u_n \in C_c^{\infty}((a,b))$ such that $u_n \to w$ in $\dot{W}^{1,2}([a,b])$ as $n \to \infty$, then

$$||u_n - u_m||_{\infty} \le K||u_n - u_m||_{1,2}$$
 by (\star)
 $\le K(||u_n - w||_{1,2} + ||u_m - w||_{1,2})$
 $\to 0$

as $m, n \to \infty$. Hence $\sup_{x \in [a,b]} |u_n(x) - u_m(x)| \to 0$ as $m, n \to \infty$, and so $\{u_n\}$ is Cauchy in C([a,b]). Hence there exists $v \in C([a,b])$ such that $u_n \to v$ uniformly as $n \to \infty$ and v(a) = v(b) = 0. Since $u_n \to w$ in $L^2([a,b])$ as $n \to \infty$, then $u_n(x) \to w(x)$ almost everywhere as $n \to \infty$, and so v = w almost everywhere, with w continuous and w(a) = w(b) = 0.

So we have

$$||u_n||_{\infty} \le K||u_n||_{1,2}$$

 $||v||_{\infty} \le K||v||_{1,2}$

and this is what we need. It suffices to prove (\star) for $u \in C_c^{\infty}((a,b))$. Let $x,y \in (a,b)$, with x < y. Then

$$u(x) - u(y) = \int_{a}^{y} u'(t) dt$$

So

$$|u(x) - u(y)| \le \left| \int_x^y u'(t) \, dt \right|$$

$$\le \left(\int_x^y dt \right)^{1/2} \left(\int_x^y |u'(t)|^2 \, dt \right)^{1/2}$$

$$\le (y - x)^{1/2} \left(\int_a^b |u'(t)|^2 \, dt \right)^{1/2}$$

$$\le (b - a)^{1/2} ||\nabla u||_2$$

Theorem 10.4. If n > 2 and Ω is bounded and open, there exists C depending only on n such that if $u \in \dot{W}^{1,2}(\Omega)$ hen $u \in L^{2^*}(\Omega)$ and $||u||_{2^*} \leq C||\nabla u||_{1,2}$. Here $2^* = \frac{2n}{n-2}$.

Remark. There is a similar theorem for $\dot{W}^{1,2}(\Omega)$ if $1 \leq p < n$. Here $p^* = \frac{np}{n-p}$.

Remark. $u \in L^2(\Omega)$ and $u \in L^{2^*}(\Omega)$ implies that $u \in L^q(\Omega)$ for all $2 \le q \le 2^*$ by Hölder's inequality.

Proof of Theorem 10.4. It suffices to assume that $u \in C_c^{\infty}(\Omega)$.

Step 1.

Lemma 10.5. If $u \in \dot{W}^{1,1}(\Omega)$, then $||u||_{1^*} \leq ||\nabla u||_1$, where $\mathbf{1}^* = \frac{n}{n-1}$.

Proof. By Hölder, we have

$$\int |g_1| \times |g_2| \dots |g_{n-1}| \le \left(\int |g_1|^{n-1} \right)^{\frac{1}{n-1}} \dots \left(\int |g_{n-1}|^{n-1} \right)^{\frac{1}{n-1}}$$
$$\left(\int |g_1| \times |g_2| \dots |g_{n-1}| \right)^{n-1} \le \prod_{i=1}^{n-1} \left(\int |g_i|^{n-1} \right) \text{ by induction.}$$

For $f \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$f(x_1,\ldots,x_n) = \int_{-\infty}^{x_i} \frac{\partial f}{\partial x_i}(x_1,\ldots,x_{i-1},t_i,x_{i+1},\ldots,x_n) dt_i$$

Then we can estimate |f| by

$$|f(x_1, \dots, x_n)| \le \int_{-\infty}^{x_i} \left| \frac{\partial f}{\partial x_i}(x_1, \dots, x_{i-1}, t_i, x_{i+1}, \dots, x_n) \right| dt_i$$

$$\le \int_{-\infty}^{\infty} |\nabla f(x_1, \dots, x_{i-1}, t_i, x_{i+1}, \dots, x_n)| dt_i$$

and so

$$|f|^n \le \prod_{i=1}^n \int_{-\infty}^{\infty} |\nabla f(x_1, \dots, x_{i-1}, t_i, x_{i+1}, \dots, x_n)| dt_i$$

Then taking the (n-1)-th root, we obtain

$$|f|^{1^*} \le \prod_{i=1}^n \left(\int_{-\infty}^{\infty} |\nabla f(x_1, \dots, x_{i-1}, t_i, x_{i+1}, \dots, x_n)| dt_i \right)^{\frac{1}{n-1}}.$$

Now, integrating in x_1 , we have

$$\int |f|^{1^*} dx_1 \le \left(\int_{-\infty}^{\infty} |\nabla f| dt_1 \right)^{\frac{1}{n-1}} \prod_{i=2}^n \left(\int |\nabla f(x_1, \dots, x_{i-1}, t_i, x_{i+1}, \dots, x_n)| dt_i dx_1 \right)^{\frac{1}{n-1}}$$

Now integrating in x_2 , we have

$$\int |\nabla f|^{1^{\star}} dx_1 dt_2 \leq \left(\iint |\nabla f| dt_1 dx_2 \right)^{\frac{1}{n-1}} \left(\iint |\nabla f| dt_1 dx_2 \right)^{\frac{1}{n-1}} \left(\prod_{i=3}^n \iint |\nabla f| dx_1 dx_2 dt_i \right)^{\frac{1}{n-1}}$$

By induction, we obtain

$$\int |f|^{1^{\star}} dx_1 \dots dx_n \le \left(\prod_{i=1}^n \int |\nabla f| dx_1 \dots dx_n \right)^{\frac{1}{n-1}}$$
$$\le \left(\int |\nabla f| dx_1 \dots dx_n \right)^{\frac{n}{n-1}}$$

and taking $\frac{n-1}{n}$ -th roots obtains the required result.

We can also show

- (i) If p > n, then $\dot{W}^{1,p}(\Omega) \subseteq C(\overline{\Omega})$ and $||u||_{\infty} \leq C||\nabla u||_{p}$.
- (ii) If $n \leq 3$, function in $W^{2,2}(\Omega)$ are continuous on the interior.
- (iii) If $u \in W^{1,2}(\Omega)$ and $u(x) \to 0$ as $x \to \partial \Omega$, then $u \in \dot{W}^{1,2}(\Omega)$.

Step 2.

Complete the proof. As before, we construct $u \in C_c^{\infty}(\mathbb{R}^n)$. Applying **Step 1.** to $|u|^{\gamma}$ where $\gamma > 1$ and γ is to be chosen, then

$$\left(\int (|u|^{\gamma})^{\frac{n}{n-1}}\right)^{\frac{n-1}{n}} \leq \|\gamma|u|^{\gamma-1}(\nabla u)\|_{1}$$

$$\leq \gamma \||u|^{\gamma-1}\nabla u\|_{1}$$

$$\leq \gamma \left(\int u^{(\gamma-1)\cdot\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \left(\int |\nabla u|^{p}\right)^{1/p} \quad \text{by H\"older}$$

Then choosing γ such that $\gamma \frac{n}{n-1} = (\gamma - 1) \frac{p}{p-1} = p^*$, we have

$$\left(\int |u|^{p^{\star}}\right)^{\frac{n-1}{n}} \leq \gamma \left(|u|^{p^{\star}}\right)^{\frac{p-1}{p}} \left(\int |\nabla u|^{p}\right)^{\frac{1}{p}}$$

Then dividing both sides by $\left(\int |u|^{p^*}\right)^{\frac{p-1}{p}}$, we have

$$\left(\int |u|^{p^{\star}}\right)^{\frac{1}{p^{\star}}} \le C(\gamma) \left(\int |\nabla u|^{p}\right)^{\frac{1}{p}}$$

Lemma 10.6. Consider the differential equation

$$\nabla u = f \quad on \ \Omega$$
$$u = 0 \quad on \ \partial \Omega$$

with Ω bounded. This has a weak solution in $\dot{W}^{1,2}(\Omega)$. We claim that any classical solution is also a weak solution.

Consider a classical solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then a classical solution (if it exists) is a weak solution $u \in \dot{W}^{1,2}(\Omega)$ and

$$\int \nabla u \cdot \nabla \phi = \int f \phi$$

for all $\phi \in C_c^{\infty}(\Omega)$. If u is smooth and ϕ has compact support, then

$$\int \nabla u \cdot \nabla \phi = -\int \Delta u \phi = \int f \phi$$

if $\nabla u = f$.

We need to check $\nabla u \in L^2(\Omega)$ and $u \in \dot{W}^{1,2}(\Omega)$. Consider the function $(u-a)^+ \in W^{1,2}(\Omega)$ if a > 0 that vanishes near $\partial \Omega$. Then $u - a \in W^{1,2}(\Omega)$ and so $(u-a)^+ \in W^{1,2}(\Omega)$ on compact sets, as

$$\frac{\partial}{\partial x_i}(u-a)^+ = \frac{\partial u}{\partial x_i} \mathbf{1}_{\{u>a\}}.$$

Then $(u-a)^+ \in \dot{W}^{1,2}(\Omega)$ (by an exercise.)

Using $(u-a)^+$ as a text function, we have

$$\int \nabla u \cdot \nabla (u - a)^{+} = \int f(u - a)^{+}$$

$$\leq \leq ||f||_{2} ||(u - a)^{+}||_{2} \quad \text{by Cauchy-Swartz}$$

$$= K$$

but

$$\int \nabla u \cdot \nabla (u - a)^{+} = \int |\nabla u|^{2} \mathbf{1}_{\{u > a\}} \le K$$

$$\to \int_{u \ge 0} |\nabla u|^{2}$$

by monotone convergence theorem as $a \to 0$, and so $u^+ \in L^2$. Similarly, $\nabla u^- \in L^2(\Omega)$, and so $\nabla u \in L^2(\Omega)$.

11. Applications to Nonlinear Equations

Consider the differential equation

$$-\Delta u = g(u) \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

where $g: \mathbb{R} \to \mathbb{R}$ is continuous - so $-\Delta u(x) = g(u(x))$.

We look for weak solutions, that is $u \in \dot{W}^{1,2}(\Omega)$ satisfying

$$\int \nabla u \cdot \nabla \phi = \int g(u)\phi \quad \text{for all } \phi \in C_c^{\infty}(\Omega).$$
(11.1)

12. Variational Methods

Assume that Ω is bounded and g is continuous and satisfies

$$|g(y)| \le K_1|y| + K_2$$

on \mathbb{R} , and if G' = g we assume that there exists $\mu < \lambda_1$ such that 1

$$G(y) \le \frac{1}{2}\mu y^2$$

for |y| large. Equivalently, $G(y) \leq \frac{1}{2}\mu y^2 + K_3$.

Consider the energy function $E: \dot{W}^{1,2}(\Omega) \to \mathbb{R}$ defined by

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla u \right|^2 - G(u) \right). \tag{12.1}$$

We prove that there exists $w \in \dot{W}^{1,2}(\Omega)$ such that

$$E(u) \ge E(w)$$

for all $u \in \dot{W}^{1,2}(\Omega)$ and that such a w is a weak solution of our equation.

$$-\Delta u = \lambda u \quad \text{on } \Omega.$$
$$u = 0 \quad \text{on } \Omega.$$

Indeed,

$$\lambda_1 = \inf \frac{\int |\nabla u|^2}{\int u^2}.$$

 $^{^1\}mathrm{Here},\,\lambda_1$ is the minimal eigenvalue of the eigenvalue equation

Step 1. We prove that there exists $C_1 > 0$ such that $E(u) \geq -C_1$ for all $u \in \dot{W}^{1,2}(\Omega)$. From (11.1), we have

$$E(u) \ge \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - \frac{1}{2} \mu u^2 - K_3 \right)$$

$$\ge \frac{1}{2} \underbrace{\int \left(|\nabla u|^2 - \mu u^2 \right)}_{\ge 0} - \tilde{K}_3$$

$$\ge -\tilde{K}_3$$

$$\equiv \gamma.$$

$$(\star\star)$$

since $\lambda_1 = \inf \frac{\int |\nabla u|^2}{\int u^2}$ and so $\int |\nabla u|^2 \ge \lambda_1 \int u^2$. Hence

$$\int (|\nabla u|^2 - \mu u^2) \ge (\lambda_1 - \mu) \int u^2 \ge 0.$$

We get a little more,

$$E(u) \ge (\lambda_1 - \mu) \left(\int u^2 \right) - K_3$$

so if $E(u) \leq K_4$, we have that $\int u^2$ is bounded. Thus by $(\star\star)$,

$$\int |\nabla u|^2$$

is bounded. Thus if

$$E(u_n) \to \inf \left\{ E(u) \mid u \in \dot{W}^{1,2}(\Omega) \right\},$$

then $\{u_n\}$ is bounded in $\dot{W}^{1,2}(\Omega)$.

Lemma 12.1. The sequence $\{u_n\}$ has a subsequence which converges weakly to $w \in \dot{W}^{1,2}(\Omega)$ and w is a minimiser of E.

Proof. Recall from §3 that every bounded sequence in a Hilbert space \mathcal{H} has a subsequence which converges weakly. Thus our sequence $\{u_n\}$ has a subsequence that converges weakly to w.

We now need only show that w is a minimiser of E. Let $u_n \rightharpoonup w$ in $\dot{W}^{1,2}(\Omega)$. Let $i: \dot{W}^{1,2}(\Omega) \to L^2(\Omega)$ be the inclusion mapping. Then i is a bounded linear operator, and

$$i(u_n) \rightharpoonup i(w)$$

in $L^2(\Omega)$. That is, $u_n \to w$ in $L^2(\Omega)$. Since bounded sets in $\dot{W}^{1,2}(\Omega)$ are precompact sets in $L^2(\Omega)$, we can choose a subsequence such that $u_n \to w$ (strongly) in $L^2(\Omega)$. Hence the weak convergence in $\dot{W}^{1,2}(\Omega)$ can be "converted" into strong convergence in $L^2(\Omega)$.

We now need to show that w minimises E and w is a solution to our equation. We need to show that $E(u_n) \to E(w) = \gamma$. Recall that in a Banach space, if $u_n \rightharpoonup u$ weakly, then

$$||u|| \le ||\liminf_{n \to \infty} ||u_n||.$$

Now, we then have

$$||w||_{1,2} \le \liminf_{n \to \infty} ||u_n||_{1,2}$$

Taking squares, we obtain

$$\|\nabla w\|_2^2 \leq \liminf_{n \to \infty} \|\nabla u_n\|_2^2$$
.

We also need to prove that

$$\int G(u_n) \to \int G(w) \quad \text{as } n \to \infty$$
 $(\star \star \star)$

Then we can show that

$$E(u_n) = \frac{1}{2} \int |\nabla u_n|^2 - \int G(u_n) \to \gamma$$

and hence

$$E(w) = \frac{1}{2} \int |\nabla w|^2 - \int G(w) \le \gamma.$$

But $E(w) \ge \gamma$, and so $E(w) = \gamma$, that is, w is a minimiser.

It thus remains to prove $(\star \star \star)$. Since $u_n \to w$ in $L^2(\Omega)$, we can show that $u_n \to w$ a.e by taking subsequences. By a result in analysis (Ergerov's theorem), there exists sets V_k of arbitrarily small measure such that

$$u_n(x) \to w(x)$$

uniformly on $\Omega \setminus V_k$ as $n \to \infty$, again taking subsequences. We know that w is bounded off a set of small measure and hence we can find a set Z of small measure so $u_n \to w$ uniformly on $\Omega \setminus Z$ and w is bounded on $\Omega \setminus Z$. This implies that

$$G(u_n) \to G(w)$$

uniformly on $\Omega \setminus Z$ the fact that a continuous function on \mathbb{R} is uniformly continuous on bounded sets. Hence,

$$\int_{\Omega \setminus Z} G(u_n) \to \int_{\Omega \setminus Z} G(w).$$

We now prove $\int_Z G(u_n)$, $\int_Z G(w)$ are uniformly small in Z if Z has small measure. We have

$$\int_{Z} G(u_n) \le \int_{Z} \left(\frac{1}{2}\mu u_n^2 + K_3\right)$$
$$\le \frac{1}{2}\mu \int_{Z} u_n^2 + K_3 m(Z)$$

where m(Z) is the measure of Z.

Since u_n is bounded in $\dot{W}^{1,2}(\Omega)$, by Sobolev's embedding theorem, we can show that $||u_n||_{p^*}$ is bounded for $p^* > 2$. So the first term is less than or equal to $\frac{1}{2}\mu||u_n||_{2,Z}^2$. Since

$$\int_{Z} u_n^2 \le \left(\int_{Z} \left(|u_n|^2\right)^q\right)^{\frac{1}{q}} \left(\int_{Z} 1^q\right)^{\frac{1}{q'}}$$

for q, q' Hölder pairs, so letting $p^* = 2q$ for q > 1, we have

$$\int_{Z} u_{n}^{2} \leq \left(\int_{Z} |u_{n}|^{p^{\star}}\right)^{\frac{1}{q}} (m(Z)^{\frac{1}{q'}})$$

$$\leq (\|u_{n}\|_{p^{\star}})^{\frac{p^{\star}}{2}} (m(Z))^{\frac{1}{q'}}$$

as required.

Recall that since w is a minimizer, we have

$$E(w + t\phi) \ge E(w) \quad \forall \phi \in C_c^{\infty}(\Omega) \quad \forall t$$

$$\frac{d}{dt}E(w + t\phi)\Big|_{t=0} = 0$$

if it exists. We will now prove that the derivative exists and equals

$$\int_{\Omega} \nabla w \cdot \nabla \phi - g(w)\phi.$$

In this case,

$$\int \nabla w \cdot \nabla \phi = g(w)\phi \quad \forall \phi \in C_c^{\infty}(\Omega),$$

and so $-\Delta w = g(w)$.

We have

$$E(w+t\phi) = \frac{1}{2} \int_{\Omega} \nabla(w+t\phi) \cdot \nabla(w+t\phi) - \int_{\Omega} G(w+t\phi)$$
$$= \frac{1}{2} \int_{\Omega} |\nabla w|^2 + 2t \nabla w \cdot \nabla \phi + t^2 |\nabla \phi|^2 - \int G(w+t\phi).$$

Therefore

$$\frac{d}{dt}E(w+t\phi) = \int_{\Omega} \nabla w \cdot \nabla \phi + t \int_{\Omega} |\nabla \phi|^2 - \frac{d}{dt} \int G(w+t\phi)$$
$$\frac{d}{dt}E(w+t\phi)|_{t=0} = \int_{\Omega} \nabla w \cdot \nabla \phi - \frac{d}{dt} \int G(w+t\phi).$$

We thus need only prove that

$$\frac{d}{dt}(\int G(w+t\phi))|_{t=0} = \int g(w)\phi.$$

Now

$$\frac{\int G(w+t\phi) - G(w)}{t} = \int G'(w+\theta(x)t\phi(x))\phi(x)$$

where $0 \le \theta(x) \le 1$. We need to prove (remembering G' = g), that

$$\int G'(w + \theta(x)t\phi(x))\phi(x) \to \int g(w)\phi(x)$$

Choose a set T so that $\mu(\Omega - T)$ is small and w, ϕ are bounded on T. Then

$$g(w + t\theta(x)\phi(x)) \rightarrow g(w(x))\phi(x)$$

uniformly on T as $t \to 0$ as g is uniformly continuous on bounded sets. We need only prove that

$$\int_{\Omega \setminus T} g(w + t\theta(x)\phi(x))\phi(x)$$

is small for all t small.

.... CBF finishing this.

Remark.

- (i) If g(0) = 0, our minimum may be u(x) = 0.
- (ii) If g(0) = 0 and $g'(0) > \lambda$, 0 may not be the minimum and we must have a non-trivial solution. We only need to find $z \in \dot{W}^{1,2}(\Omega)$ with E(Z) < 0. We choose $z = t\phi$, where t is small and positive and ϕ_1 is the eigenfunctino corresponding to λ_1 . Then

$$G(s) = \frac{1}{2}g'(0)s^2 + m(s),$$

where $\frac{m(s)}{s^2} \to 0$ as $s \to 0$. Then

$$E(t\phi_1) = \frac{1}{2}t^2(\lambda_1 - g'(0)) \int_{\Omega} \phi_1^2 + o(t^2) < 0$$

if t is small.

13. Fixed Point Methods

Theorem 13.1 (Brower). B^n is the closed ball in \mathbb{R}^n and $f:B^n\to B^n$ is continuous then there exists $x\in B^n$ such that f(x)=x.

Definition 13.2 (Completely continuous). $A: E \to E$ is completely continuous (cc) if A is continuous and if D is bounded in E, then A(D) is compact in E.

Lemma 13.3. If E is an infinite dimensional Banach space hen $I: E \to E$ is not cc.

If A is linear, $A: E \to E$, then A is cc if and only if A is compact.

(Shauder). If D is closed, bounded and convex in a Banach space E and A: D \rightarrow E is cc and $A(D) \subseteq D$, then there exists $x \in D$ such that A(x) = x (fixed point).

Example 13.4 (Example of fixed point methods). Let $g : \mathbb{R} \to \mathbb{R}$ be continuous and $\frac{g(y)}{y} \to \tau$ as $|y| \to \infty$ where τ is not an eigenvalue of

$$-\Delta u = \lambda u \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

We prove the problem

$$-\Delta u = g(u) \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

has a weak solution

$$g(y) = \tau y + h(y)$$

where $\frac{h(y)}{y} \to 0$ as $|y| \to \infty$.

Note that if such a solution exists, then we have

$$-\Delta u = \tau u + h(u)$$

$$(\Rightarrow) \qquad (-\Delta - \tau I)u = h(u)$$

$$(\Rightarrow) \qquad u = (-\Delta - \tau I)^{-1} h(u) \equiv H(u).$$

Proof. For simplicity, assume $\tau = 0$. We prove that for large M, H maps the set $Z = \{u \in L^2(\Omega) \mid ||u||_2 \leq M\}$ into itself and is cc.

If we do this then by the Schauder theorem, we can show that H has a fixed point which is our solution.

Aside. Consider

$$-\Delta u = f(x) \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Then a weak solution satisfies $u \in \dot{W}^{1,2}(\Omega)$ and

$$\int_{\Omega} \nabla u \cdot \nabla \phi = \int_{\Omega} f \phi \qquad \forall \phi \in \dot{W}^{1,2}(\Omega).$$
bounded linear functional on $\dot{W}^{1,2}(\Omega)$ if $f \in L^{2}(\Omega)$

Thus

$$\langle u, \phi \rangle = \langle F, \phi \rangle$$

and so our solution is u = F.

If $n \geq 3$, and if $f \in L^{\frac{2n}{n+2}}(\Omega)$ with Ω bounded, then it suffices to prove $\int_{\Omega} f \phi$ is a bounded linear functional on $\dot{W}^{1,2}(\Omega)$. We have

$$\left| \int f \phi \right| \leq \|f\|_{\frac{2n}{n+2}} \|\phi\|_{\frac{2n}{n-2}} \quad \text{by H\"older}$$

 $\leq K \|\|_{\frac{2n}{n+2}} \|\nabla \phi\|_2$ by Sobolev embedding

and so

$$\|\nabla u\|_2^2 = \int |\nabla u|^2 \le C\|f\|_{\frac{2n}{n+2}} \|\nabla u\|_2$$

and hence

$$\|\nabla u\|_2 \le C\|f\|_{\frac{2n}{n+2}}$$

Proof of example. We now show that H has the desired properties. Let $\epsilon > 0$. Then there exists K > 0 such that

$$|h(y)| \leq \epsilon |y| + K$$

So we have

$$||h(u)||_2 \le ||\epsilon|u| + K||_2$$

 $\le ||\epsilon u||_2 + ||K||_2$
 $\le \epsilon ||u||_2 + Km(\Omega)^{1/2}.$ (*)

Then we have

$$||H(u)||_{2} = ||(-\Delta^{-1})h(u)||$$

$$\leq K_{1}||h(u)||_{2}$$

$$\leq K_{1}\left(\epsilon||u||_{2} + Km(\Omega)^{1/2}\right)$$

$$\leq \frac{1}{2}||u||_{2} + \underbrace{K_{2}}_{=K_{1}Km(\Omega)^{1/2}} \text{ letting } \epsilon = \frac{1}{2K_{1}}$$

Then H maps the set $Z=\{u\in L^2(\Omega)\,|\,\|u\|_2\leq 2K_2\}$ into itself (that is, $H(Z)\subseteq Z$.)

Secondly, the image under H of this ball lies in a compact set in $L^2(\Omega)$. It suffices to prove H of this set lies in a bounded set in $\dot{W}^{1,2}(\Omega)$ and then use the result that the inclusion mapping $i: \dot{W}^{1,2}(\Omega) \to L^2(\Omega)$ is compact.

This is easy since $\{h(u) \mid u \in Z\}$ lies in a bounded set in $L^2(\Omega)$ by (\star) and $(-\Delta)^{-1}$ maps bounded sets in $L^2(\Omega)$ to bounded sets in $\dot{W}^{1,2}(\Omega)$.

Finally, H is continuous. We prove that the map $u \to h(u)$ is continuous and $L^2(\Omega) \to L^{\frac{2n}{n+2}}(\Omega)$. This suffices since $H = (-\Delta)^{-1} \circ h$.

Suppose that $u_n \to u$ in $L^2(\Omega)$. As before, there exists T a set such that $\Omega - T$ has small measure such that u is bounded on T and $u_n \to u$ uniformly on T. Hence $h(u_n) \to h(u)$ uniformly on T and so

$$\int_{T} |h(u_n) - h(u)|^{\frac{2n}{n+2}} \to 0.$$

We now need only prove

$$\begin{split} &\int_{\Omega \, \backslash \, T} |h(u_m) - h(u)|^{\frac{2n}{n+2}} \quad \text{is small for large } m \\ &= \|h(u_m) - h(u)\|_{\frac{2n}{n+2},\Omega \, \backslash \, T} \\ &\leq \|h(u_m) - h(u)\|_{2,\Omega \, \backslash \, T}^{\alpha} \left(\int_{\Omega \, \backslash \, T} 1\right)^{\beta} \quad \text{by H\"older} \end{split}$$

where $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. We need only then bound

$$||h(u_m) - h(u)||_{2,\Omega \setminus T} \le ||h(u_m)||_2 + ||h(u)||_2$$

 $\le K_1 \text{ by } (\star).$

This result can also be shown using the result that if $u \in L^1(\Omega)$, Ω bounded, then given $\epsilon > 0$ there exists $\delta > 0$ such that

$$\int_{A} |u| \le \epsilon$$

if $m(A) \leq \delta$.

Consider the equation

$$-\Delta u = g(u, \nabla u) \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega.$$

This has a weak solution if g is continuous and bounded on $\mathbb{R} \times \mathbb{R}^n$ and Ω is bounded (by Schauder). It is possible to show that this equation is a mapping of

$$\{u \in \dot{W}^{1,2}(\Omega) \mid ||u||_{1,2} \le K\}$$

into itself. We need to show that this mapping is compact, as above.

Lemma 13.5 (Schauder). If A is a Banach

- (i) $A: E \times [0,1] \to E$ is completely continuous, and
- (ii) A(x,1) = L where L is linear and I L is invertible, and
- (iii) if x = A(x,t) where $0 \le t \le 1$, then $||x|| \le M$,

then the equation x = A(x, 0) has a solution.

14. Other Types of Problems

If Ω is a bounded domain with smooth boundary, and consider the equation

$$\frac{\partial u}{\partial t} = \Delta u \quad \text{on } \Omega$$
$$u(x,t) = 0 \quad \text{if } x \in \partial \Omega$$

with $u(x,0) = u_0(x) \in L^2(\Omega)$ given.

Suppose ϕ_i are the weak eigenfunctions of $-\Delta$ for the Dirichlet Boundary condition u(x,t) = 0 for $x \in \partial\Omega$. Then $\|\phi_i\|_2 = 1$ and they form a complete orthonormal basis for $L^2(\Omega)$. Then we can write

$$u(x,0) = \sum_{i=1}^{\infty} c_i \phi_i(x)$$

where $\sum c_i^2 < \infty$.

The solution can be then be uniquely written as

$$u(x,t) = \sum_{i=1}^{\infty} c_i e^{-\lambda_i t} \phi_i(x)$$

We can trivially see that

$$||u(x,t) - u(x,0)||_2 \to 0$$

as

$$||u(x,t) - u(x,0)||_2^2 = \left\| \sum_i c_i \left(e^{-\lambda_i t} - 1 \right) \phi_i(x) \right\|_2^2$$
$$= \sum_i c_i^2 \left(e^{-\lambda_i t} - 1 \right)^2 \to 0.$$

Note that $u_0 \in L^2$, but $u(x,t) \in C^{\infty}$ for all t > 0.

Consider now the differential equation

$$\frac{\partial u}{\partial t} = -\Delta u \quad \text{on } \Omega$$

$$u(x,t) = 0 \quad \text{if } x \in \partial \Omega$$

for $t \ge 0$. This is equivalent to running the heat equation backwards in time. Formally, the solution is

$$\sum c_i e^{\lambda_i t} \phi_i(x)$$

for $t \geq 0$, which does not converge in L^2 .

It can be shown that there is at most one solution. This is an *ill-posed* problem.

15. Various Other Results

Theorem 15.1. Eigenfunctions of a compact self-adjoint operator form a complete set

Theorem 15.2. The inverse of the Laplacian is a compact, self-adjoint operator.

Comments on the exam.

- (i) Asked some definitions.
- (ii) Asked some simple proofs.
- (iii) Asked some problem questions, possibly similar to assignments.
- (iv) Look at the assignments for questions.