PRML과 부수적인 자료들을 공부하여 간단히 정리하였습니다.

bg

observed variable와 latent variable에 대한 joint distribution을 정의한다고 해보자. 이 때 observed variable에 대한 확률 분포를 구하고 싶은 경우 latent variable의 marginalization을 진행하면 된다. 이 의미는 복잡한 형태의 분포를 가진 observed variable에 대한 분포를 다룰 때.

좀 더 다루기 쉬운 observed variable와 latent variable의 joint distribution을 이용할 수 있다는 것이다. 즉, latent variable을 도입함으로서 복잡한 분포 모델을 좀 더 쉬운 형태의 분포들의 조합으로 변경할 수 있다.

- 여기서는 K-mean, Gaussian mixture model, EM algorithm 에 대해 공부할 것이다.
- discrete latent variable의 경우에 해당한다. (continuous latent는 12장에서 공부한다)

9.1 K-means Clustering

• D 차원의 데이터가 N개 있다

우리는 이 데이터들을 K개의 cluster로 분류하고자 한다.

- 각 cluster의 중심점을 μ_k 라고 하자.
- $r_{nk} \in \{0,1\}$: data가 k cluster에 속하면 1, 나머지는 0
- object function (distortion measure 라고 부른다):

$$J = \sum_{n=1}^N \sum_{k=1}^K r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

각 cluster에 속하는 data들과 중심점의 거리를 더한식이다.

- 우리는 이 식을 최소화하는 $r_{nk}, \pmb{\mu}_k$ 를 iterative 하게 찾으면 된다.
 - \circ 먼저, μ_k 의 초깃값을 설정한다.
 - \circ 그리고 r_{nk} 에 대해 object function을 최소화 한다. (E-step)
 - \circ 다음 r_{nk} 를 고정하고 object function을 μ_k 에 대해 최소화 한다. (M-step)
 - o converge할때까지 반복한다. 단, global이 아닌 local minimum으로 converge할수 있다.
- r_{nk} 의 경우 쉽게 말해 데이터가 각 k개의 중심점들 중에 가장 가까운 k 에 1의 값을 가진다.
- $m{\mu}_k$ 의 경우 J에서 quadratic 형태이므로 미분하여 그 값을 구한다. J를 미분하면 $m{\mu}_k = rac{\sum r_{nk} \mathbf{x}_n}{\sum r_{nk}}$ 의 값을 가지고 이는 해당 k cluster에 속하는 data들의 평균값을 의미한다.
 - 그래서 K-means 알고리즘이라고 불린다.

K-means 알고리즘의 몇 가지 특징을 살펴보자.

- 유클리디안 기법을 사용하기 때문에 각 변수별로 scale을 맞출 필요가 있다.
- 모든 data별로 거리를 계산하기 때문에 속도가 느릴 수 있고 이를 해결하기 위한 논문이 많이 나와 있다.(tree, sequential update...)
- cluster 갯수를 직접 정해야 한다. Bayesian 접근법으로 문제를 해결할 수 있다.
- Hard clustering이다. 확률적인 접근이 없다.
- data와 중심점을 유클리디안으로 계산하기 때문에 categorical 변수에는 적합하지 않고 outlier에 취약하다.
- 이에 대해 data point간의 dissimilarity를 다르게 계산(유클리디안 거리이외의 다른 방법)하는 *K-medoids* 알고리즘이 있다. (써봤는데 그닥 좋은지 모르겠다)

9.2 Mixtures of Gaussians

PRML 2장에서는 GMM을 Gaussian component의 linear 조합으로 생각했지만 이번에는 latent variable의 개념을 추가해서 이해 해보자.

- Gaussian mixture distribution
 - \circ π_k 는 weight의 역할을 하며 multinomial distribution에서의 확률이고

 \circ 뒤의 mixture component N은 multivariate gaussian distribution이다.

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k N(\mathbf{x}|oldsymbol{\mu}_k, \Sigma_k)$$

 ${f z}$ 는 discrete latent variable이다. K 차원의 binary random variable이며 하나의 원소만 1을 가지며 나머지는 0을 갖는다. $z_k \in$ $\{1,0\}$ 인 것이다. 이는 multinomial distribution의 확률변수라는 것을 알 수 있다.

· marginal distribution of z

$$p(z_k=1)=\pi_k$$

- $0 \le \pi_k \le 1$ $\sum_{k=1}^{K} \pi_k = 1$

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$$

· conditional distribution of x

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K N(\mathbf{x}|oldsymbol{\mu}_k, \Sigma_k)^{z_k}$$

위의 식들을 이용하여 우리는 처음에 보았던 Gaussian mixture distribution을 구할 수 있다

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^K \pi_k N(\mathbf{x}|oldsymbol{\mu}_k, \Sigma_k)$$

- Conditional probability of z given x
 - o it can be viewd as the responsibility the component k takes for 'explaning' the observation x
 - o posterior 로 이해할 수 있다.

$$\gamma(z_{nk}) = p(z_k = 1 | \mathbf{x}_n) = rac{p(z_k = 1)p(\mathbf{x}_n | z_k = 1)}{\sum_{j=1}^K p(z_j = 1)p(\mathbf{x}_n | z_j = 1)} = rac{\pi_k N(\mathbf{x}_n | oldsymbol{\mu}_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_n | oldsymbol{\mu}_j, \Sigma_j)}$$

9.2.1 Maximum likelihood

- N * D data set X
- N * K latent matrix Z
- · Log likelihood

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^N \ln\{\sum_{k=1}^K \pi_k N(\mathbf{x}_n|oldsymbol{\mu}_k,\Sigma_k)\}$$

이를 maximize 하려고 하는데 문제가 생긴다.

- log안에 summation이 있어서 미분을 하여 closed form의 형태로 구할 수 없다.
- sigularity : 특정 점이 어떠한 평균값과 같은 값을 가지고 그 분포의 분산이 0으로 가면 그 점에서의 확률값이 무한으로 가고 logL도 무한으로 간다.
- identifiability: K! 개의 같은 solution이 생긴다.

9.2.2 EM for Gaussian mixtures

log likelihood 를 각 parameter (μ, Σ, π) 에 대해 미분하면

$$egin{aligned} 0 &= -\sum_{n=1}^N rac{\pi_k N(\mathbf{x}_n | oldsymbol{\mu}_k, \Sigma_k)}{\Sigma_j \pi_j N(\mathbf{x}_n | oldsymbol{\mu}_j, \Sigma_j)} \Sigma_k (\mathbf{x}_n - oldsymbol{\mu}_k) \ oldsymbol{\mu}_k &= rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \end{aligned}$$

- 평균이 각 data에 posterior 가중치로서 곱해져 구해진다.
- ullet where $N_k = \sum_{n=1}^N \gamma(z_{nk})$

$$\Sigma_k = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - oldsymbol{\mu}_k) (\mathbf{x}_n - oldsymbol{\mu}_k)^T$$

mixing coefficient π 는 제약식이 있기에 Lagrange로 풀면

$$egin{aligned} & \ln p(\mathbf{X}|\pi,\mu,\Sigma) + \lambda \left(\sum_{k=1}^K \pi_k - 1
ight) \ & 0 = \sum_{n=1}^N rac{N(\mathbf{x}_n|oldsymbol{\mu}_k,\Sigma_k)}{\sum_j \pi_j N(\mathbf{x}_n|oldsymbol{\mu}_j,\Sigma_j)} + \lambda \ & \pi_k = rac{N_k}{N} \end{aligned}$$

k-means보다 많은 iteration을 해야되기 때문에 초기값을 k-means를 통해 정하면 좋다. 또한 EM을 통해 구한 값이 local maximum일 수도 있다.

- EM for GM 정리
- 1. 초깃값을 설정한다.
- 2. E-step : $\gamma(z_{nk})$ 구하기

$$\gamma(z_{nk}) = rac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_j \pi_j N(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

3. M-step : 주어진 responsibility로 μ, Σ, π 구하기

$$egin{align} \mu_k^{new} &= rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \ \Sigma_k^{new} &= rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T \ \pi_k^{new} &= rac{N_k}{N} \ N_k &= \sum_{n=1}^N \gamma(z_{nk}) \ \end{array}$$

4. log likelihood 구해서 converge할 때까지 반복

$$\ln p(\mathbf{X}|\mu, \Sigma, \pi) = \sum_{n=1}^{N} \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)
ight\}$$

9.3 An Alternative view of EM

 $\ln p(\mathbf{X}/\pi,\mu,\Sigma)$ 에서 위의 식을 보면 log 안에 있는 summation(intergral) 때문에 maximum likelihood solution을 구하기 어렵다. 이를 해결하기 위해 latent variable을 추가하여 사용한다. maximization of complete-data log likelihood function은 상대적으

로 쉽다고 가정하자. 하지만 latent variable 때문에 complete log likelihood를 그대로 이용하기 어렵고 대신에 Expectation을 취해서(posterior distribution for latent variable을 통해) 이를 최대로 만드는 parameter를 구하고 반복한다.

- E-step
 - \circ 현재 우리가 알고 있는 parameter $heta^{old}$ 를 이용하여 latent variable의 posterior $p(\mathbf{Z}/\mathbf{X}, heta^{old})$ 를 구한다.
 - 이를 이용하여 expectation of the complete-data log likelihood를 구한다.

$$Q(heta, heta^{old}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, heta^{old}) \ln p(\mathbf{X}, \mathbf{Z}| heta)$$

- M-step
 - \circ 이 식을 최대화하는 θ^{new} 를 구한다.

$$heta^{new} = rg \max_{ heta} Q(heta, heta^{old})$$

9.3.1 Gaussian mixture revisited

위에서 설명한 대로 GM을 모델링해보자.

· complete likelihood

$$p(\mathbf{X},\mathbf{Z}|\mu,\Sigma,\pi) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} N(\mathbf{x}_n|\mu_k,\Sigma_k)^{z_{nk}}$$

· posterior of latent Z

$$egin{array}{ll} \circ \ p(\mathbf{z}) &= \prod_{k=1}^K \pi^{z_k} \ \circ \ p(\mathbf{x}/\mathbf{z}) &= \prod_{k=1}^K N(\mathbf{x}/\mu_k, \Sigma_k)^{z_k} \end{array}$$

$$p(\mathbf{Z}|\mathbf{X}, \mu, \Sigma, \pi) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)]^{z_{nk}}$$

이를 이용하여 expectation of complete-data likelihood function을 구해보자.

• $E[z_{nk}] = rac{\sum z_{nk} [\pi_k N(\mathbf{x}_n/\mu_k, \Sigma_k)]^{z_{nk}}}{\sum [\pi_k N(\mathbf{x}_n/\mu_k, \Sigma_k)]^{z_{nj}}} = rac{\pi_k N(\mathbf{x}_n/\mu_k, \Sigma_k)}{\sum^K, \; \pi_i N(\mathbf{x}_n/\mu_i, \Sigma_i)} = \gamma(z_{nk})$

$$\begin{split} E_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\theta)] &= E_{\mathbf{Z}}[\sum_{n} \ln p(\mathbf{x}_{n}, \mathbf{z}_{n}|\theta)] = \sum_{n} E_{\mathbf{Z}}[\ln p(\mathbf{x}_{n}, \mathbf{z}_{n}|\theta)] \\ &= \sum_{n=1}^{N} E_{\mathbf{Z}}[\ln(p(\mathbf{z}_{n})p(\mathbf{x}_{n}|\mathbf{z}_{n}, \theta))] = \sum_{n=1}^{N} E_{\mathbf{Z}}[\ln[\prod_{k=1}^{K} (\pi_{k}N(\mathbf{x}_{n}|\mu_{k}, \Sigma_{k}))^{z_{nk}}]] \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} E_{z}[(z_{nk}) \ln(\pi_{k}N(\mathbf{x}|\mu_{k}, \Sigma_{k}))] = \sum_{n=1}^{N} \sum_{k=1}^{K} E_{z}[z_{nk}] \ln(\pi_{k}N(\mathbf{x}_{n}|\mu_{k}, \Sigma_{k})) \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \{\ln \pi_{k} + \ln N(\mathbf{x}_{n}|\mu_{k}, \Sigma_{k})\} \end{split}$$

$$\sum_{j=1}^{n} (ij)^{n}$$

이제 차례대로 E-step, M-step을 진행하면 된다.

9.3.2 Relation to K-means

k-means를 GM의 특별한 케이스라고 생각할 수 있다. covariance matrices를 추정해야되는 것이 아니라 고정된 ϵI 라고 생각하고 이 값이 0으로 가는 경우 이는 k-means와 같은 결과를 낸다.

· responsibility

$$\gamma(z_{nk}) = \frac{\pi_k \exp\{-\|\mathbf{x}_n - \mu_k\|^2 / 2\epsilon\}}{\sum_j \pi_j \exp\{-\|\mathbf{x}_n - \mu_j\|^2 / 2\epsilon\}}$$

위의 식에서 ϵ 이 0으로 간다고 가정하자.

- $\|\mathbf{x}_n \mu_k\|^2$ 값이 가장 작은 cluster를 k라고 하자.
- k 이외의 $\exp\{-\|\mathbf{x}_n-\mu_j\|^2/2\epsilon\}$ 값들은 더 빠르게 0으로 수렴한다. (exponentially)
- 즉, $\gamma(z_{nk})$ 값이 k에서만 1이고 나머지는 0의 값을 가지는 것이다. (binary indicator)
- $\gamma(z_{nk})$ 이 이전의 K-means에서 봤던 γ_{nk} 이 되는 것이다.

이제 ϵ 이 0으로 간다고 가정하고 expected complete-data log likelihood 값을 보면

$$E_{\mathbf{Z}}[\ln p(\mathbf{X},\mathbf{Z}|\mu,\Sigma,\pi)]
ightarrow -rac{1}{2}\sum_{n=1}^{N}\sum_{k=1}^{K}r_{nk}\|\mathbf{x}_{n}-\mu_{k}\|^{2}+const$$

expected complete-data log likelihood를 최대화하는 것은 결국 K-means에서 object function을 최소화하는 것과 같아졌다. wow!

9.3.3 Mixtures of Bernoulli distribution

latent class analysis의 예시이다. (구제적인 내용은 skip)

9.3.4 EM for Bayesian linear regression

w를 marginalization했었는데 이를 latent variable로 취급하고 EM algorithm을 사용하는 예시이다. (구체적인 내용은 skip)

9.4 The EM Algorithom in General

우리의 목표는 maximize the likelihood function that is given by $p(X/\theta)=\sum_Z p(X,Z/\theta)$ 이다. (Z는 discrete, continuous 다 가능 intergral로 바꾸면 됨) 하지만 이를 바로 optimization하기는 힘들지만 complete likelihood function 를 optimization하는 것이 더 간단하자고 가정하자. 그러면 우리는 아래와 같은 decomposition을 생각할 수 있다. (임의의 q(Z)는 pdf라고 생각할 수 있다 defined over the latent variables)

• log likelihood는

$$\ln p(\mathbf{X}| heta) = \ln \sum_z q(\mathbf{Z}) rac{p(\mathbf{X},\mathbf{Z}| heta)}{q(\mathbf{Z})}$$

by Jansen's inequality

$$\ln p(\mathbf{X}| heta) \geq \sum_{\mathbf{x}} q(\mathbf{Z}) \ln rac{p(\mathbf{X},\mathbf{Z}/ heta)}{q(\mathbf{Z})} = L(heta,q)$$

여기서 $L(\theta,q)$ 는 \log likelihood function의 Lower Bound 라고 할 수 있으며 우리는 이를 최대한 높여서 \log likelihood를 최대 화하고자 한다. 그런데 지금 q(Z)에 대해 optimization를 할 수 없는 상황(임의의 q를 구할만한 정보가 없음)이고 이를 위해 추가적인 접근법이 필요하다.

$$L(\theta, q) = \sum_{z} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}$$

$$= \sum_{z} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \theta)p(\mathbf{X}|\theta)}{q(\mathbf{Z})}$$

$$= \sum_{z} \{q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \theta)}{q(\mathbf{Z})} + q(\mathbf{Z}) \ln p(\mathbf{X}|\theta)\}$$

$$= \ln p(\mathbf{X}|\theta) + \sum_{z} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \theta)}{q(\mathbf{Z})}$$

$$= \ln p(\mathbf{X}|\theta) - \sum_{z} q(\mathbf{Z}) \ln \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \theta)}$$

여기서 first term은 log likelihood이고 second term이 KL-divergence이다.

$$KL(q||p) = -\sum_{\mathbf{z}} q(\mathbf{Z}) \ln\{rac{p(\mathbf{Z}|\mathbf{X}, heta)}{q(\mathbf{Z})}\} = \sum_{\mathbf{z}} q(\mathbf{Z}) \ln\{rac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, heta)}\} \geq 0$$

KL-divergence는 항상 0이상의 값을 가지기 때문에 **Lower Bound를 최대화하기 위해서는 KL 을 0 의 값을 갖게 해야한다.** 여기서 우리는 q(Z)에 대한 정보를 찾을 수 있다. 즉, t 시점에서 $q(Z^t)=p(Z/X,\theta^t)$ 로 하면 된다. 이를 통해 우리는 다시 $\theta^{t+1}=argmaxQ(\theta,q^t)$ 를 하여 계속 iterative하게 반복하여 MLE parameter(with latent variable)의 값을 구할 수 있다.

E-step

- \circ lower bound L 은 $heta^{old}$ 는 고정한채로 q(Z)에 대해 최대화한다.
- \circ 하지만 $\ln p(X/\theta)$ 는 q(Z)와 상관이 없기 때문에 Lower Bound의 최대값은 KL값이 0을 가져야한다.
- \circ KL = 0 을 위해서는 $q(Z)=p(Z/X, heta^{old})$ (posterior)의 조건을 만족해야한다.
- 그러면 lower bound랑 log likelihood가 같아진다. (Lower Bound가 최대화되며)

M-step

- \circ 위의 과정에 따라 q(Z)는 posterior로 fixed 되고 L을 최대화하는 새로운 θ^{new} 를 구한다.
- 이 새로운 값 때문에 KL은 non zero가 되고 log likelihood는 lower bound보다 더 큰 값을 가진다.
- o converge할 때까지 iterative하게 반복한다.

또 다른 표현으로는

$$egin{aligned} L(q, heta) &= \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, heta^{old}) \ln p(\mathbf{X}, \mathbf{Z}| heta) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, heta^{old}) \ln p(\mathbf{Z}|\mathbf{X}, heta^{old}) \\ &= Q(heta, heta^{old}) + const \end{aligned}$$

- 첫번째 항이 expectation of the complete-data log likelihood
 - ∘ joint distribution이 exponential family인 경우, log를 취했을 때 쉽게 maximize할 수 있다.
- ullet 두번째 항은 heta에 independent하기에 const

따라서 lower bound를 높이는 것이 expectation of the complete-data log likelihood를 최대화하는 것 이다.

한줄결론 : observed log likelihood를 최대화하는 parameter(MLE)를 구하고 싶다. latent variable에 대한 posterior distribution으로 E[complete log likelihood]를 최대로 하게 만드는 heta를 구하면 된다.

+ EM for MAP

• monk의 유투브를 보고 간단히 정리

MLE를 구하는 과정과 거의 비슷하다. 단지 prior만 추가될뿐이다!

E-step

$$R(\theta, \theta_{t-1}) = E_{\theta_{t-1}}[\ln p(\mathbf{X}, \mathbf{Z}|\theta)|\mathbf{X} = \mathbf{x}] + \ln p(\theta)$$

• M-step

$$\theta_t = argmaxR(\theta, \theta_{t-1})$$