Semantic Analysis

Word sense

Lexeme \rightarrow set of words, same fundamental meaning (run, runs, ran \rightarrow lexeme RUN)

Lemma → Lexeme you'd put in a lexicon

One lemma → multiple lexemes (word senses)

Homonymy

Same pronunciation/spelling, different meaning

Polysemy

Two senses of a lemma are semantically linked.

Synonymy

When two senses of two different lemmas are (nearly) identical.

If can substitute word A with word B without changing the meaning of the sentence, A & B are synonymous.

Antonymy

Opposite of synonyms. A & B are opposites.

Hyponymy

More specific (car \rightarrow vehicle, mango \rightarrow fruit).

Hyponym is the lower word in the word tree.

Hypernymy

Less specific (furniture \rightarrow chair, fruit \rightarrow mango).

Hypernym is the upper word in the word tree.

WordNet

Website. Three databases: nouns, verbs, adjectives + adverbs.

Each lemma has synset, a set of one or more senses.

Simplified Lesk algorithm

Given word in a context + number of senses for word.

Textual overlap of non-stopwords between context and sense → score of sense.

Word similarity

How similar is word A to word B? Synonym is boolean relation, want numeric representation.

Distributional hypothesis

Distance between two word senses by finding words with similar distributions in a corpus.

Represent words as vectors.

Co-occurrence matrix

		context words						
		crown	throne	reign	Sweden	match	goal	play
target words	queen	4	1	1	2	0	0	O
	king	3	2	1	3	1	0	O
	soccer	1	0	0	4	3	4	2
	hockey	0	1	0	1	2	1	1

Simulate the Simplified Lesk algorithm

Count non-stopword similarities between context and senses, take highest count.

Compute the path length-based similarity of two words

similarity = (word1, word2) \rightarrow return 1 / (1 + pathlength(word1, word2));

pathlength = number of edges in shortest path between word1 and word2.

pathlength = Basically count the number of words you meet along the way minus the original word.

Derive a co-occurrence matrix from a document collection

Each cell → number of documents in which target word (row) co-occurs with context word (col).