Basic Electronic circuits Filters using Op-Amps

1. Design a Low pass filter circuit having unity gain with $~f_{H}{=}15.9 KHz.$ R = $1 K\Omega$ and C =0.01 $\mu F.$

Fig 8.1: Low Pass Filter Circuit.

Fig 8.2 Model Graph for Low pass filter

$$f_H = \frac{1}{2\pi RC} = \frac{1}{2\pi * 1K * 0.01\mu} = 15.91 \text{KHz}$$

Frequency (Hz)	Vin(v)	Vout(V)	Voltage Gain In dB (20 $\log_{10} \frac{Vo}{Vi}$)
100			
200			
500			
1K			
1.5K			
2K			
5K			
10K			
12K			
15K			
20K			
50K			
100K			

2. Design a High Pass filter circuit having unity gain with $f_L = 1.59 KHz$. R = 1K Ω and C =0.1 μF

Fig 8.3: High Pass Filter Circuit.

Fig 8.4: Model Graph for High pass filter

$$f_L = \frac{1}{2\pi RC} = \frac{1}{2\pi * 1K * 0.1\mu} = 1.591 \text{KHz}$$

Frequency (Hz)	Vin(v)	Vout(V)	Voltage Gain In dB	$20\log_{10}\frac{Vo}{Vi}$
100				
200				
500				
1K				
1.5K				
2K				
5K				
10K				
12K				
15K				
20K				
50K				
100K				

3. Design a Band Pass filter circuit having unity gain with f_L =1.59K Hz and f_H = 15.9KHz.

Fig 8.5: Band Pass Filter Circuit.

$$fc_1 = \frac{1}{2\pi RC}$$
 $fc_2 = \frac{1}{2\pi R'C'}$ Voltage Gain = $-\frac{R'}{R}$

Fig 8.6: Model graph for Band Pass Filter

Frequency (Hz)	Vin(v)	Vout(V)	Voltage Gain In dB $20 \log_{10} \frac{Vo}{Vi}$
100			
200			
500			
1K			
1.5K			
2K			
5K			
10K			
12K			
15K			
20K			
50K			
100K			