PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-124297

(43)Date of publication of application: 26.04.2002

(51)Int.CI.

H01M 10/40

(21)Application number: 2000-313549

(71)Applicant: UBE IND LTD

(22)Date of filing:

13.10.2000

(72)Inventor: HAMAMOTO SHUNICHI

ABE KOJI

YUGUCHI MOTOI **USHIGOE YOSHIHIRO MATSUMORI YASUO**

(54) NONAQUEOUS ELECTROLYTIC SOLUTION AND LITHIUM SECONDARY BATTERY **USING IT**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having excellent battery characteristics such as a cycle characteristic, electric capacity and a shelf life characteristic of the battery and having good wettability.

SOLUTION: This lithium secondary battery is characterized in that in an electrolytic solution prepared Riby dissolving an electrolyte in a nonaqueous solvent, at least one kind out of alkyne derivatives expressed by following general formula (I) is contained in the electrolytic solution. In the formula, R1, R2 and R3 are each independently a 1-12C alkyl group, a 3-6C cycloalkyl group, a 6-12C aryl group, a 7-12C aralkyl group or a hydrogen atom. R2 and R3 may form 3-6C cycloalkyle group by being mutually bonded. Here, (n) is an integer of 1 or 2. In the formula, X is a sulfoxide group, a sulfo group or an oxalyl group, Y is a 1-12C alkyl group, alkenyl group or alkynyl group, a 3-6C cycloalkyl group, a 6-12C aryl group or a 7-12C aralkyl group.

$$S_1 - C = C - (C -)^{-}C - X - C - X \qquad (I)$$

LEGAL STATUS

[Date of request for examination]

28.02.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

e) e)

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-124297

(P2002-124297A) (43)公開日 平成14年4月26日(2002.4.26)

(51) Int. Cl. '

識別記号

FΙ

テーマコート' (参考)

H01M 10/40

H01M 10/40

A 5H029

審査請求 未請求 請求項の数2 OL (全9頁)

(21)出願番号 特願2000-313549(P2000-313549)

(22)出願日

平成12年10月13日(2000.10.13)

(71)出願人 000000206

宇部興産株式会社

山口県宇部市大字小串1978番地の96

(72)発明者 浜本 俊一

山口県宇部市大字小串1978番地の10 宇部

興産株式会社宇部ケミカル工場内

(72)発明者 安部 浩司

山口県宇部市大字小串1978番地の10 宇部

興産株式会社宇部ケミカル工場内

(72) 発明者 湯口 基

山口県宇部市大字小串1978番地の10 宇部

興産株式会社宇部ケミカル工場内

最終頁に続く

(54) 【発明の名称】非水電解液およびそれを用いたリチウム二次電池

(57)【要約】

【課題】 電池のサイクル特性、電気容量、保存特性などの電池特性に優れ、かつ濡れ性が良好なリチウム二次電池を提供するものである。

【解決手段】 非水溶媒に電解質が溶解されている電解液において、該電解液中に下記一般式(I)、

【化1】

$$R^{1} - C = C - \begin{pmatrix} C - \end{pmatrix}_{\pi} O - X - O - Y \qquad (I)$$

$$R^{3}$$

$$Y : - \begin{pmatrix} C - \\ C - \end{pmatrix}_{\pi} O - X - O - Y \qquad (I)$$

(式中、R'、R² およびR³ は、それぞれ独立して炭素数1~12のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、または水素原子を示す。また、R² とR³

は、互いに結合して炭素数3~6のシクロアルキル基を形成していても良い。ただし、nは1または2の整数を示す。式中、Xはスルホキシド基、スルホン基、オギザリル基を示し、Yは、炭素数1~12のアルキル基、アルケニル基、アルキニル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基または炭素数7~12のアラルキル基を示す。)で表されるアルキン誘導体のうち少なくとも1種が含有されていることを特徴とするリチウム二次電池用電解液に関する。

【特許請求の範囲】

【請求項1】 非水溶媒に電解質が溶解されている電解 液において、該電解液中に下記一般式(1)、

【化1】

$$R^{1} - C = C - \left(C - \frac{1}{N} O - X - O - Y\right)$$
 (I)

$$x: \begin{picture}(20,10) \put(0,0){\line(1,0){10}} \put$$

(式中、R¹、R²およびR³は、それぞれ独立して炭素数1~12のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、または水素原子を示す。また、R²とR³は、互いに結合して炭素数3~6のシクロアルキル基を形成していても良い。ただし、nは1または2の整数を示す。式中、Xはスルホキシド基、スルホン基、オギザ 20リル基を示し、Yは、炭素数1~12のアルキル基、アルケニル基、アルキニル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基または炭素数7~12のアラルキル基を示す。)で表されるアルキン誘導体のうち少なくとも1種が含有されていることを特徴とするリチウム二次電池用電解液。

【請求項2】 正極、負極および非水溶媒に電解質が溶解されている電解液からなるリチウム二次電池において、該電解液中に下記一般式(I)、

【化2】

$$R^{1} - C = C - \left(C - \frac{1}{n}O - X - O - Y\right) \qquad (I)$$

(式中、R'、R²およびR³は、それぞれ独立して炭素数1~12のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、または水素原子を示す。また、R²とR³は、互いに結合して炭素数3~6のシクロアルキル基を形成していても良い。ただし、nは1または2の整数を示す。式中、Xはスルホキシド基、スルホン基、オギザリル基を示し、Yは、炭素数1~12のアルキル基、アルケニル基、アルキニル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基または炭素数7~12のアラルキル基を示す。)で表されるアルキン誘導

体のうち少なくとも1種が含有されていることを特徴と するリチウム二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性にも優れたリチウム二次電池を提供することができる新規なリチウム二次電池用電解液、およびそれを用いたリチウム二次電池に関する。

[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液および負極から構成されており、特に、LiCoO₂などのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用電解液の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などのカーボネート類が好適に使用されている。

[0003]

【発明が解決しようとする課題】しかしながら、電池の サイクル特性および電気容量などの電池特性について、 さらに優れた特性を有する二次電池が求められている。 正極活物質として、例えば、LiCoO2、LiMn2O ↓、LiNiO₂などを用いたリチウム二次電池は、充電 時に非水電解液中の溶媒が局部的に一部酸化分解し、該 30 分解物が電池の望ましい電気化学的反応を阻害するため に電池性能の低下を生じる。これは、正極材料と非水電 解液との界面における溶媒の電気化学的酸化に起因する ものと思われる。また、負極活物質として例えば天然黒 鉛や人造黒鉛などの髙結晶化した炭素材料を用いたリチ ウム二次電池は、炭素負極材料の剥離が観察され、現象 の程度によって容量が不可逆となることがある。この剥 離は、電解液中の溶媒が充電時に分解することにより起 こるものであり、炭素負極材料と電解液との界面におけ る溶媒の電気化学的還元に起因するものである。中で も、融点が低くて誘電率の高いPCを用いた電解液は低 温においても高い電気伝導を有するが、黒鉛負極を用い る場合にはPCの分解が起こって、リチウム二次電池用 には使用できないという問題点があった。また、ECも 充放電を繰り返す間に一部分解が起こり、電池性能の低 下が起こる。このため、電池のサイクル特性および電気 容量などの電池特性は必ずしも満足なものではないのが 現状である。

ルケニル基、アルキニル基、炭素数3~6のシクロアル 【0004】本発明は、前記のようなリチウム二次電池 キル基、炭素数6~12のアリール基または炭素数7~ 用電解液に関する課題を解決し、電池のサイクル特性に 12のアラルキル基を示す。)で表されるアルキン誘導 50 優れ、さらに電気容量や充電状態での保存特性などの電 池特性にも優れたリチウム二次電池を構成することができるリチウム二次電池用の電解液、およびそれを用いた リチウム二次電池を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明は、非水溶媒に電解質が溶解されている電解液において、該電解液中に下記一般式(I)、

[0006]

【化3】

$$R^{1} - C = C - \left(C - \frac{1}{n} O - X - O - Y\right)$$
 (I)

【0007】(式中、R'、R'*およびR'*は、それぞれ独立して炭素数1~12のアルキル基、炭素数3~6の20シクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、または水素原子を示す。また、R'*とR'*は、互いに結合して炭素数3~6のシクロアルキル基を形成していても良い。ただし、nは1または2の整数を示す。式中、Xはスルホキシド基、スルホン基、オギザリル基を示し、Yは、炭素数1~12のアルキル基、アルケニル基、アルキニル基、炭素数3~6のシクロアルキル基、アルキニル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基または炭素数7~12のアラルキル基を示す。)で表されるアルキン誘導体のうち少なくとも1種が含有されている30ことを特徴とするリチウム二次電池用電解液に関する。

【0008】また、本発明は、正極、負極および非水溶 媒に電解質が溶解されている電解液からなるリチウム二 次電池において、該電解液中に下記一般式(I)、

[0009]

【化4】

$$R^{1} - C = C - \left(C - \frac{1}{C}\right)_{n} O - X - O - Y \qquad (I)$$

【0010】(式中、R'、R'およびR'は、それぞれ かル基のような炭素数3~6のシクロアルキル基でもよ 独立して炭素数1~12のアルキル基、炭素数3~6の い。また、フェニル基、pートリル基のような炭素数6 シクロアルキル基、炭素数6~12のアリール基、炭素 ~12のアリール基、またはベンジル基、フェネチル基 数7~12のアラルキル基、または水素原子を示す。ま た、R'とR'は、互いに結合して炭素数3~6のシクロ 50 でもよい。また、Yは、メチル基、エチル基、プロピル

アルキル基を形成していても良い。ただし、nは1または2の整数を示す。式中、Xはスルホキシド基、スルホン基、オギザリル基を示し、Yは、炭素数1~12のアルキル基、アルケニル基、アルキニル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基または炭素数7~12のアラルキル基を示す。)で表されるアルキン誘導体のうち少なくとも1種が含有されていることを特徴とするリチウム二次電池に関する。

【0011】電解液中に含有される前記アルキン誘導体は、充電時に炭素負極表面で、電解液中の有機溶媒より先に還元分解して、該分解物の一部は、天然黒鉛や人造黒鉛などの高結晶化した活性な炭素負極表面に不働態皮膜を形成することにより、電解液中の有機溶媒の還元分解を未然に防ぐと推定される。さらに、該分解物の一部は、正極材料表面の電位が過度に高くなった微少な過電圧部分において、電解液中の有機溶媒より先に酸化分解して、電解液中の有機溶媒の酸化分解を未然に防ぐと推定される。これにより、電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考えら20れる。

[0012]

【発明の実施の形態】非水溶媒に電解質が溶解されてい る電解液に含有される前記一般式(I)で表されるアル キン誘導体において、R'、R'およびR'は、それぞれ 独立してメチル基、エチル基、プロピル基、ブチル基、 ペンチル基、ヘキシル基のような炭素数1~12のアル キル基が好ましい。アルキル基はイソプロピル基、イソ ブチル基のような分枝アルキル基でもよい。また、シク ロプロピル基、シクロヘキシル基のような炭素数3~6 のシクロアルキル基でもよい。また、フェニル基、p-トリル基のような炭素数6~12のアリール基、または ベンジル基、フェネチル基のような炭素数 7~12のア ラルキル基を含有するものでもよい。また、R²とR ³は、互いに結合して2~5個のエチレン鎖で結合した シクロプロピル基、シクロブチル基、シクロペンチル 基、シクロヘキシル基のような炭素数3~6のシクロア ルキル基を形成していても良い。ただし、nは1または 2の整数を示す。

【0013】また、前記一般式(I)で表されるアルキン誘導体におけるXはスルホキシド基、スルホン基、オギザリル基が好ましい。また、Yは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1~12のアルキル基が好ましい。アルキル基でもよい。また、シクロプロピル基、シクロヘキシル基のような炭素数3~6のシクロアルキル基でもよい。また、フェニル基、pートリル基のような炭素数6~12のアリール基、またはベンジル基、フェネチル基のような炭素数7~12のアラルキル基を含有するものでもよい。また、Yは、メチル基、エチル基、プロピル

基、ブチル基、ペンチル基、ヘキシル基のような炭素数 1~12のアルキル基、ビニル基、アリル基のような炭 案数2~12のアルケニル基、2-プロピニル基や3-ブチニル基、1-メチル-2-プロピニル基のような炭 素数3~12のアルキニル基であっても良い。また、Y は、一般式(I)においてXを中心として対称化合物と なるようなR'、R'、R'を有するアルキニル基であっ

ても良い。 【0014】前記一般式(I)で表されるアルキン誘導 体の具体例として、例えば、Xがスルホキシド基の場 合、ジ(2-プロピニル) サルファイト [R¹=R²=R ³=水素原子、Y=2-プロピニル基、n=1〕、ジ (1-メチル-2-プロピニル) サルファイト [R¹= 水素原子、R²=メチル基、R³=水素原子、Y=1-メ チルー2-プロピニル基、n=1]、ジ(2-ブチニ ル) サルファイト [R¹=メチル基、R²=R³=水素原 子、Y=2-プチニル基、n=1]、ジ(3-プチニ ル) サルファイト [R'=R'=R'=水素原子、Y=3 ープチニル基、n=2]、ジ(2-ペンチニル)サルフ ァイト [R¹=エチル基、R²=R³=水素原子、Y=2 ーペンチニル基、n=1]、ジ(1-メチル-2-ブチ ニル) サルファイト [R'=R'=メチル基、R'=水素 原子、Y=1-メチル-2-ブチニル基、n=1]、ジ (1, 1-ジメチルー2-プロピニル) サルファイト $[R'=水素原子、R^2=R^3=メチル基、Y=1, 1-$ ジメチルー2-プロピニル基、n=1]、ジ(1, 1-ジエチル-2-プロピニル) サルファイト [R'=水素 原子、 $R^2 = R^3 = x$ チル基、Y = 1, 1 - ジェチル - 2ープロピニル基、n=1]、ジ(1-エチルー1-メチ ルー2-プロピニル) サルファイト [R¹=水素原子、 $R^2 = x$ チル基、 $R^3 = x$ チル基、Y = 1 - xチルー1 -メチルー2-プロピニル基、n=1]、ジ(1-イソブ チルー1-メチルー2-プロピニル) サルファイト (R ¹=水素原子、R²=イソブチル基、R³=メチル基、Y = 1 - イソプチル- 1 - メチル-プロピニル基、n = 1]、ジ(1, 1-ジメチル-2-プチニル) サルファ イト $[R'=R^2=R^3=メチル基、Y=1, 1-ジメチ$ $\nu-2-$ ブチニル基、n=1]、ジ (1-エチニルシク ロヘキシル)サルファイト〔R¹=水素原子、R²とR³ が結合=ペンタメチレン基、Y=1-エチニルシクロへ 40 ペンタメチレン基、Y=1-エチニルシクロヘキシル キシル基、n=1)、ジ(1-メチル-1-フェニル-2-プロピニル) サルファイト (R¹=水素原子、R²= フェニル基、R³=メチル基、Y=1-メチル-1-フ ェニルー2ープロピニル基、n=1]、ジ(1, 1ージ フェニル-2-プロピニル) サルファイト [R'=水素 原子、 $R^2 = R^3 = フェニル基、Y=1, 1-ジフェニル$ -2-プロピニル基、n=1]、メチル 2-プロピニ ルサルファイト [R'=R'=R'=水素原子、Y=メチ ル基、n=1]、メチル 1-メチル-2-プロピニル サルファイト [R'=水素原子、R'=メチル基、R'=

水素原子、Y=メチル基、n=1]、エチル 2-プロ ピニルサルファイト [R'=R'=R'=水素原子、Y= エチル基、n=1]、フェニル 2-プロピニルサルフ ァイト〔R¹=R²=R³=水案原子、Y=フェニル基、 n=1]、シクロヘキシル2-プロピニルサルファイト [R'=R'=R'=水素原子、Y=シクロヘキシル基、 n=1〕などが挙げられる。ただし、本発明はこれらの 化合物に何ら限定されるものではない。

【0015】前記一般式(I)で表されるアルキン誘導 体の具体例として、例えば、Xがスルホン基の場合、ジ (2-プロピニル) サルフェート $(R'=R'=R'=\pi)$ 素原子、Y=2-プロピニル基、n=1]、ジ(1-メ チルー2-プロピニル) サルフェート [R¹=水素原 子、R²=メチル基、R³=水素原子、Y=1-メチルー 2-プロピニル基、n=1]、ジ (2-ブチニル) サル フェート〔R¹=メチル基、R²=R³=水素原子、Y= 2-ブチニル基、n=1]、ジ(3-ブチニル)サルフ ェート [R¹=R²=R³=水素原子、Y=3ープチニル 基、n=2]、ジ (2-ペンチニル) サルフェート [R '=エチル基、R'=R'=水素原子、Y=2-ペンチニ ル基、n=1]、ジ(1-メチル-2-ブチニル)サル フェート [R'=R'=メチル基、R'=水素原子、Y= 1-メチル-2-プチニル基、n=1]、ジ(1, 1-ジメチルー2-プロピニル) サルフェート [R'=水素 原子、 $R^2 = R^3 = メチル基、Y=1, 1-ジメチル-2$ ープロピニル基、n=1]、ジ(1,1-ジエチル-2 ープロピニル) サルフェート [R'=水素原子、R2=R ³=エチル基、Y=1,1-ジエチル-2-プロピニル 基、n=1〕、ジ(1-エチル-1-メチル-2-プロ ピニル) サルフェート (R'=水素原子、R'=エチル 基、R³=メチル基、Y=1-エチル-1-メチル-2 ープロピニル基、n=1]、ジ(1-イソプチルー1-メチルー2-プロピニル) サルフェート [R'=水素原 子、R²=イソブチル基、R³=メチル基、Y=1-イソ プチルー1ーメチルー2ープロピニル基、n=1]、ジ (1, 1-ジメチル-2-ブチニル) サルフェート [R ¹=R²=R³=メチル基、Y=1, 1ージメチルー2ー ブチニル基、 n=1]、ジ(1-エチニルシクロヘキシ ル)サルフェート〔R'=水素原子、R2とR3が結合= 基、n=1]、ジ(1-メチル-1-フェニル-2-プ ロピニル)サルフェート [R'=水素原子、R'=フェニ ル基、R³=メチル基、Y=1-メチル-1-フェニル -2-プロピニル基、n=1]、ジ(1, 1-ジフェニ ルー2-プロピニル) サルフェート [R'=水素原子、 $R^2 = R^3 = フェニル基、Y = 1, 1 - ジフェニルー2 -$ プロピニル基、n=1]、メチル 2-プロピニルサル フェート $[R'=R^2=R^3=$ 水素原子、Y=メチル基、 n=1]、メチル 1-メチル-2-プロピニルサルフ 50 ェート [R'=水素原子、R'=メチル基、R'=水素原

【0016】前記一般式(I)で表されるアルキン誘導 体の具体例として、例えば、Xがオギザリル基の場合、 ジ $(2 - \mathcal{I} \cap \mathcal{I} \cap$ 水素原子、Y=2-プロピニル基、n=1]、ジ(1-メチルー2-プロピニル) オギザレート [R'=水素原 子、R²=メチル基、R³=水素原子、Y=1-メチルー 2-プロピニル基、n=1]、ジ(2-ブチニル) オギ ザレート [R'=メチル基、R'=R'=水素原子、Y= 2-ブチニル基、n=1]、ジ(3-ブチニル) オギザ レート[R'=R'=R'=k] 本素原子、Y=3-J チニル 基、n=2]、ジ(2-ペンチニル)オギザレート[R 「ニエチル基、R²=R³=水素原子、Y=2-ペンチニ ル基、n=1]、ジ(1-メチル-2-ブチニル) オギ ザレート [R¹=R²=メチル基、R³=水素原子、Y= 1-メチル-2-ブチニル基、n=1]、ジ(1, 1-ジメチルー2-プロピニル)オギザレート [R'=水素 原子、R²=R³=メチル基、Y=1, 1-ジメチル-2 -プロピニル基、n=1]、ジ(1, 1-ジエチル-2 ープロピニル) オギザレート [R'=水素原子、R2=R ³=エチル基、Y=1, 1-ジエチルー2-プロピニル 基、n=1)、ジ(1-xチル-1-メチル-2-プロ ピニル) オギザレート [R'=水素原子、R'=エチル 基、R³=メチル基、Y=1-エチル-1-メチル-2 ープロピニル基、n=1]、ジ(1-イソブチル-1-メチルー2-プロピニル) オギザレート [R'=水素原 子、R²=イソプチル基、R³=メチル基、Y=1-イソ プチルー1-メチルー2-プロピニル基、n=1]、ジ (1, 1-ジメチル-2-ブチニル) オギザレート [R '=R'=R'=メチル基、Y=1, 1ージメチルー2ー ブチニル基、n=1]、ジ(1-エチニルシクロヘキシ ル)オギザレート〔R'=水素原子、R'とR'が結合= ペンタメチレン基、Y=1-エチニルシクロヘキシル 基、n=1]、ジ(1-メチル-1-フェニル-2-プ ロピニル) オギザレート [R'=水素原子、R'=フェニ ル基、R³=メチル基、Y=1-メチル-1-フェニル -2-プロピニル基、n=1]、ジ(1, 1-ジフェニ ルー2-プロピニル) オギザレート [R'=水素原子、 $R^2 = R^3 = フェニル基、Y = 1, 1 - ジフェニルー2 -$ プロピニル基、n=1]、メチル 2-プロピニルオギ ザレート [R'=R'=R'=水素原子、Y=メチル基、 n=1]、メチル 1-メチル-2-プロピニルオギザ レート [R'=水素原子、R'=メチル基、R'=水素原

【0017】前記アルキン誘導体において、前記一般式(I)で表されるアルキン誘導体の含有量は、過度に多いと、電解液の電導度などが変わり電池性能が低下することがあり、また、過度に少ないと、十分な皮膜が形成されず、期待した電池特性が得られないので、電解液の重量に対して0.01~20重量%、特に0.1~10重量%の範囲が好ましい。

【0018】本発明で使用される非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類や、γープチロラクトンなどのラクトン類、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン、2ーメチルテトラヒドロフラン、1,2ージメトキシエタン、1,2ージオトキシエタン、1,2ージプトキシエタン、1,2ージオトキシエタン、1,2ージプトキシエタンなどのエーテル類、アセトニトリルなどのニトリル類、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸オクチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。

【0019】これらの非水溶媒は、1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。 非水溶媒の組み合わせは特に限定されないが、例えば、 環状カーボネート類と鎖状カーボネート類との組み合わ せ、環状カーボネート類とラクトン類との組み合わせ、 環状カーボネート類3種類と鎖状カーボネート類との組 み合わせなど種々の組み合わせが挙げられる。

【0020】本発明で使用される電解質としては、例えば、LiPF。、LiBF。、LiClO。、LiN(SO2CF。)2、LiC(SO2CF。)2、LiC(SO2UF。)3、LiPF。(CF。)3、LiPF。(CF。)3、LiPF。(CF。)3、LiPF。(CF。)4、LiPF。(CF。)5、LiPF。(iso-C3F。)4とが挙げられる。これらの電解質は、1種類で使用してもよく、2種類以上組み合わせて使用してもよい。これら電解質は、前記の非水溶媒に通常0.1~3M、好ましくは0.5~1.5Mの濃度で溶解されて使用される。

【0021】本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質を溶解し、前記式(I)で表されるアルキン誘導体のうち少なくとも1種50を溶解することにより得られる。

【0022】本発明の非水電解液は、二次電池の構成部材、特にリチウム二次電池の構成部材として好適に使用される。二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。

【0023】例えば、正極活物質としてはコバルト、マ ンガン、ニッケル、クロム、鉄およびバナジウムからな る群から選ばれる少なくとも1種類の金属とリチウムと の複合金属酸化物が使用される。このような複合金属酸 化物としては、例えば、LiCoO2、LiMn2O4、 $L i N i O_2$, $L i C O_{1-1} N i O_2$ (0. 0.1 < x < 0.001) などが挙げられる。また、LiCoO₂とLiMn₂ O₄ \ LiCoO₂ \ LiNiO₂ \ LiMn₂O₄ \ Li NiO₂のように適当に混ぜ合わせて使用しても良い。 【0024】正極は、前記の正極活物質をアセチレンプ ラック、カーボンブラックなどの導電剤、ポリテトラフ ルオロエチレン (PTFE)、ポリフッ化ビニリデン (PVDF)、スチレンとブタジエンの共重合体(SB R)、アクリロニトリルとブタジエンの共重合体(NB R)、カルボキシメチルセルロース (CMC) などの結 20 着剤および溶剤と混練して正極合剤とした後、この正極 材料を集電体としてのアルミニウム箔やステンレス製の ラス板に塗布して、乾燥、加圧成型後、50℃~250 ℃程度の温度で2時間程度真空下で加熱処理することに より作製される。

【0025】負極活物質としては、リチウム金属やリチウム合金、またはリチウムを吸蔵・放出可能な炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕、または複合スズ酸化物などの物質が使用される。特に、格子面(002)の面間隔(dooz)が0.335~0.340nm(ナノメータ)である黒鉛型結晶構造を有する炭素材料を使用することが好ましい。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用される。

【0026】リチウム二次電池の構造は特に限定されるものではなく、単層又は複層の正極、負極、セパレータを有するコイン型電池やポリマー電池、さらに、ロール状の正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。

[0027]

【実施例】次に、実施例および比較例を挙げて、本発明 を具体的に説明する。

実施例1

[電解液の調製] PC/DMC(容量比)= 3/7の非水溶媒を調製し、これに $LiPF_0$ を1Mの濃度になるように溶解して電解液を調製した後、さらにアルキン誘導体としてジ(2-プロピニル)サルファイト [一般式(I)中、 $R'=R^2=R^3=$ 水素原子、X=スルホキシド基、Y=2-プロピニル基、n=1] を電解液に対して0.5重量%となるように加えた。

【0028】〔リチウム二次電池の作製および電池特性 10 の測定) LiCoO₂ (正極活物質) を80重量%、ア セチレンブラック(導電剤)を10重量%、ポリフッ化 ビニリデン(結着剤)を10重量%の割合で混合し、こ れに1-メチル-2-ピロリドンを加えてスラリー状に してアルミ箔上に塗布した。その後、これを乾燥し、加 圧成形して正極を調製した。人造黒鉛(負極活物質)を 90重量%、ポリフッ化ビニリデン(結着剤)を10重 量%の割合で混合し、これに1-メチル-2-ピロリド ンを加えてスラリー状にして銅箔上に塗布した。その 後、これを乾燥し、加圧成形して負極を調製した。そし て、ポリプロピレン微多孔性フィルムのセパレータを用 い、上記の電解液を注入してコイン電池(直径20m m、厚さ3.2mm)を作製した。このコイン電池を用 いて、室温 (20℃) 下、0.8mAの定電流で4.2 Vまで充電した後、終止電圧4.2 Vとして定電圧下に 合計5時間充電した。次に0.8mAの定電流下、終止 電圧2. 7 Vまで放電し、この充放電を繰り返した。初 期放電容量は、1M LiPF₆+PC/EC/DEC (容量比) = 5/25/70を電解液として用いた場合 (比較例2) と比較してその相対容量として算出し、 0.98であった。50サイクル後の電池特性を測定し たところ、初期放電容量を100%としたときの放電容 量維持率は90.1%であった。また、低温特性も良好 であった。コイン電池の作製条件および電池特性を表 1

【0029】実施例2

に示す。

ジ(2-プロピニル)サルファイトを電解液に対して2 重量%使用したほかは実施例1と同様にコイン電池を作 製し、電池特性を測定したところ、初期放電容量の相対 容量は0.97であり、50サイクル後の電池特性を測 2012年ところ、放電容量維持率は90.7%であった。 また、低温特性も良好であった。コイン電池の作製条件 および電池特性を表1に示す。

【0030】実施例3

ジ(2-プロピニル)サルファイトを電解液に対して5 重量%使用したほかは実施例1と同様にコイン電池を作 製し、電池特性を測定したところ、初期放電容量の相対 容量は0.96であり、50サイクル後の電池特性を測 定したところ、放電容量維持率は90.5%であった。 また、低温特性も良好であった。コイン電池の作製条件 50 および電池特性を表1に示す。

【0031】実施例4

アルキン誘導体としてメチル $2-プロピニルサルフェート [一般式 (I) 中、<math>R'=R^2=R^3=$ 本素原子、Y= メチル基、n=1] を電解液に対して 2 重量%使用したほかは実施例 1 と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は 0.9 7であり、5 0 サイクル後の電池特性を測定したところ、放電容量維持率は 8 9.8%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表 1 に示す。

11

【0032】実施例5

アルキン誘導体としてジ(2-プロピニル)オギザレート [-般式(I) 中、 $R'=R^2=R^3=$ 水素原子、X=オギザリル基、Y=2-プロピニル基、<math>n=1] を電解液に対して 2 重量%使用したほかは実施例 1 と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は 0 . 9 7 であり、 5 0 サイクル後の電池特性を測定したところ、放電容量維持率は 9 0 . 2 %であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表 1 に示す。

【0033】比較例1

PC/DMC(容量比) = 3/7の非水溶媒を調製し、これにLiPF。を1Mの濃度になるように溶解した。このときアルキン誘導体は全く添加しなかった。この電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、充放電しないことが分った。コイン電池の作製条件および電池特性を表1に示す。

【0034】実施例6

PC/EC/DEC (容量比) = 5/25/70の非水 30 溶媒を調製し、これにLiPF。を1Mの濃度になるよ うに溶解して電解液を調製した後、さらにアルキン誘導 体としてジ(1-メチル-2-プロピニル)サルファイ ト〔一般式(I)中、R¹=水素原子、R²=メチル基、 R³=水素原子、X=スルホキシド基、Y=1-メチル -2-プロピニル基、n=1]を電解液に対して2重量 %となるように加えた。この電解液を使用して実施例1 と同様にコイン電池を作製し、電池特性を測定したとこ ろ、初期放電容量は、1M LiPF。+PC/EC/ DEC (容量比) = 5/25/70を電解液として用い 40 た場合(比較例2)と比較してその相対容量として算出 し、1.02であった。50サイクル後の電池特性を測 定したところ、初期放電容量を100%としたときの放 電容量維持率は92.2%であった。コイン電池の作製 条件および電池特性を表1に示す。

【0035】実施例7

アルキン誘導体としてメチル 2-プロピニルサルファイト [一般式 (I) 中、R'=R²=R³=水素原子、X=スルホキシド基、Y=メチル基、n=1] を電解液に対して2重量%使用したほかは実施例6と同様にコイン 50

電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.02であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.8%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。

【0036】実施例8

アルキン誘導体としてジ(1ーメチルー2ープロピニル)オギザレート〔一般式(I)中、R'=水素原子、R²=メチル基、R³=水素原子、X=オギザリル基、Y 10 =1ーメチルー2ープロピニル基、n=1〕を電解液に対して2重量%使用したほかは実施例6と同様にコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.02であり、50サイクル後の電池特性を測定したところ、放電容量維持率は91.9%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。

【0037】実施例9

【0038】実施例10

正極活物質として、 $LiCoO_2$ に代えて $LiMn_2O_4$ を使用し、アルキン誘導体としてジ(2-プロピニル)サルファイトを2重量%使用したほかは実施例6と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は0.83であり、50 サイクル後の電池特性を測定したところ、放電容量維持率は93.1%であった。コイン電池の作製条件および電池特性を表1に示す。

【0039】実施例11

正極活物質として、 $LiCoO_2$ に代えて $LiCoo._2N$ $io._8O_2$ を使用し、アルキン誘導体としてジ(2-プロピニル)サルファイトを電解液に対して2 重量%使用したほかは実施例6と同様に電解液を調製してコイン電池を作製し、電池特性を測定したところ、初期放電容量の相対容量は1.19であり、50 サイクル後の電池特性を測定したところ、放電容量維持率は90.5%であった。コイン電池の作製条件および電池特性を表1に示す。

【0040】実施例12

負極活物質として、人造黒鉛に代えて天然黒鉛を使用し、アルキン誘導体としてジ(2-プロピニル)サルファイトを電解液に対して2重量%使用したほかは実施例6と同様に電解液を調製してコイン電池を作製し、電池

特性を測定したところ、初期放電容量の相対容量は1. 02であり、50サイクル後の電池特性を測定したとこ ろ、放電容量維持率は93.2%であった。コイン電池 の作製条件および電池特性を表1に示す。

【0041】比較例2

PC/EC/DEC (容量比) = 5/25/70の非水 溶媒を調製し、これにLiPF。を1Mの濃度になるよ

うに溶解した。このときアルキン誘導体は全く添加しな かった。この電解液を使用して実施例6と同様にコイン 電池を作製し、電池特性を測定したところ、放電容量維 持率は81.8%であった。コイン電池の作製条件およ び電池特性を表1に示す。

[0042]

【表1】

	I I' & I IVIO / WE CE IC A SIA				133.1		
	正楏	負種	化合物	添加 量 wt%	電解液組成 (容量比)	初期放電料 電子 (相対 値)	50サイクル 放置維持 車%
実施例 1	LiCoO ₂	选人 役果	ジ(2-プロピニル)サル ファイト	0. 5	1M LiPF ₆ PC/DMC=3/7	0. 98	90. 1
実施例 2	LiCoO ₂	造 人 具 組	ジ(2-プロピニル) サル ファイト	2	1M LiPF ₆ PC/DMC=3/7	0. 97	90. 7
実施例 3	LiCoO ₂	人造	ジ(2-プロピニル) サル ファイト	5	1M LiPF₀ PC/DMC=3/7	0. 96	90. 5
実施例 4	LiCoO₂	人造 黒鉛	メチル 2-プロピニル サルフェート	2	1M LiPF ₀ PC/DMC=3/7	0. 97	89. 8
実施例 5	LiCoO₂	人造	ジ(2-プロピニル)オギ ザレート	2	1M LiPF ₆ PC/DMC=3/7	0. 97	90. 2
比較例	LiCoO₂	人造 黒鉛	なし	0	1M LiPF₀ PC/DMC=3/7	o	充放電 しない
奥施例	LiCoO₂	人造	ジ(1-メチル-2-プロピ ニル)サルファイト	2	1M LiPF ₆ PC/EC/DEC=5/25/70	1. 02	92. 2
実施例 7	LiCœO₂	抱鉛 人無	メチル 2-プロピニル サルファイト	2	1M LiPF ₆ PC/EC/DEC=5/25/70	1. 02	91.8
実施例 8	LiCoO₂	人造	ジ(1-メチル-2-プロピ ニル)オギザレート	2	1M LiPF ₆ PC/EC/DEC=5/25/70	1. 02	91. 9
実施例 9	LiCaO₂	人造	メチル 2-プロピニル オギザレート	2	1M LiPF ₆ PC/EC/DEC=5/25/70	1. 03	91. 1
実施例 1 0	Lillin ₂ 0 ₄	人造 異鉛	ジ(2-プロピニル) サル ファイト	2	1M LiPF ₆ PC/EC/DEC=5/25/70	0. 83	93. 1
夹施例 1 1	LiCo _{0.2} Ni _{0.8} O ₂	人造	ジ(2-プロピニル)サル ファイト	2	1M LiPF ₆ PG/EC/DEC=5/25/70	1. 19	90. 5
実施例 1 2	LiCoO ₂	天然	ジ(2-プロピニル) サル ファイト	2	1M LiPF ₆ PG/EC/DEC=5/25/70	1. 02	93. 2
比較例 2	LiCoO ₂	人造 與與	なし	0	1M LiPF ₆ PC/EC/DEC=5/25/70	1	81.8

【0043】なお、本発明は記載の実施例に限定され ず、発明の趣旨から容易に類推可能な様々な組み合わせ 40 【0044】 が可能である。特に、上記実施例の溶媒の組み合わせは 限定されるものではない。更には、上記実施例はコイン 電池に関するものであるが、本発明は円筒形、角柱形の

電池にも適用される。

【発明の効果】本発明によれば、広い温度範囲でのサイ クル特性や電気容量、更には保存特性などの電池特性に 優れたリチウム二次電池を提供することができる。

フロントページの続き

(72)発明者 牛越 由浩

山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内

(72) 発明者 松森 保男

山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内

F ターム(参考) 5H029 AJ03 AJ04 AJ05 AJ07 AK03 AL03 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 CJ08 EJ11 HJ02

-5-- --5--