MA439: Functional Analysis Tychonoff Spaces: 1, 2, 5, 7 pg. 51, Ben Mathes

Huan Q. Bui

Due: Wed, Oct 28, 2020

Exercise 1. $C(X) = \{f : X \to \mathbb{C} : f \text{ unif. cont., bdd}\}$ and uniform norm $||f|| = \sup_{x \in X} |f(x)|$. Consider $B(X) = \{f : X \to \mathbb{C}, \text{ bdd}\}$ Show that $C(X) \subseteq B(X)$ is closed, i.e. a uniform limit of unif. cont. fn is unif. cont.

Proof. This is the full generality. To make this easier, prove this example: consider a metric space (X,d) and $f_n: X \to \mathbb{C}$ bdd, unif. cont. fns. and $||f_n - f|| \to 0$ uniformly where $||h|| = \sup_{x \in \mathcal{X}} |h(x)|$. This implies that f is unif. cont.