Deutsch-Jozsa algorithm A short intro into dirty tricks of quantum computing

Adolf Středa

Quantum Lambda; March 20, 2019

Promises you would write in a project description

- Can solve every¹ problem, like, really fast.
- Breaks all² the asymmetric cryptography.
- Quantum computers will be more efficient³ and faster⁴.

¹Very specific problems I want money for.

²Mostly ones starting with "Let p, q be primes."

³Except staggering amount of ancilla bits.

⁴Yeah, sure...

Trick No. 1 – Linearity

- Complex vector space with inner product (Hilbert space)
- Inner product: $\langle u|v\rangle$ braket ($\langle u|$ bra, $|v\rangle$ ket)

Definition – inner product

Let $u, v, w \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ then $\langle | \rangle$ is called inner product iff

Inner product also defines a norm $||u|| = \sqrt{\langle u|u\rangle}$

Trick No. 1 – Linearity

- Qubit = element of \mathbb{C}^2 of a norm 1
- Every operator A is unitary (linear, $A^* = A^{-1}$, preserves norm)

Examples

Qubit
$$e^{i\gamma}(\alpha|0\rangle + \beta|1\rangle)$$
, $\alpha^2 + \beta^2 = 1$
 $|0\rangle = e_0$ and $|1\rangle = e_1$ canonical basis of \mathbb{C}^2

Trick No. 2 – Toffoli gate

Can provide reversible variant for every Boolean function.

Bigger system

To create bigger systems, we will need to use tensor product \otimes .

- $|a\rangle \otimes |b\rangle = |a\rangle |b\rangle = |ab\rangle$
- $\begin{array}{c|c} & \frac{|1\rangle+|0\rangle}{\sqrt{2}}\otimes\frac{|1\rangle+|0\rangle}{\sqrt{2}} = \frac{|1\rangle\,|1\rangle+|0\rangle\,|1\rangle+|1\rangle\,|0\rangle+|0\rangle\,|0\rangle}{2} \end{array}$

Trick No. 3 - Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

$$H |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} =: |+\rangle$$

$$H |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} =: |-\rangle$$

Intro

Trick No. 3 - Hadamard gate

- Rotates the canonical basis.
- $H|0\rangle$ sum of elements from the canonical basis
- Works similarly in higher dimensions.
- Used to obtain LK of all possible states.

Warning

Following slides may contain algebra and other explicit content.

- Question: Given $f: \mathbb{F}_2 \to \mathbb{F}_2$, decide whether f is constant or balanced.
- Non-quantum solution: run it twice
- Quantum solution: run once only
- We will want to (ab)use Hadamard gate together with linearity

- $|\psi_0\rangle = |01\rangle$
- Now observe that U_f is linear, i.e. we may apply it on each $|ab\rangle$ separately.

- lacksquare Application of U_f changes the "second coordinate" only.
- $U_f(\frac{1}{2} |00\rangle) = \frac{1}{2} |0\rangle |0 + f(0)\rangle$
- $|\psi_1\rangle = \frac{1}{2}(|00\rangle + |10\rangle |01\rangle |11\rangle)$
- $\begin{array}{c} \bullet \mid \psi_2 \rangle = \frac{1}{2} (\mid \hspace{-0.07cm} 0 \rangle \mid \hspace{-0.07cm} 0 \oplus f(0) \rangle + \mid \hspace{-0.07cm} 1 \rangle \mid \hspace{-0.07cm} 0 \oplus f(1) \rangle \\ \mid \hspace{-0.07cm} 0 \rangle \mid \hspace{-0.07cm} 1 \oplus f(0) \rangle \mid \hspace{-0.07cm} 1 \rangle \mid \hspace{-0.07cm} 1 \oplus f(1) \rangle) \end{array}$

- $\begin{array}{c} \bullet \quad |\psi_2\rangle = \frac{1}{2}(|0\rangle \ |0 \oplus f(0)\rangle + |1\rangle \ |0 \oplus f(1)\rangle \\ |0\rangle \ |1 \oplus f(0)\rangle |1\rangle \ |1 \oplus f(1)\rangle) \end{array}$
- $|\psi_2\rangle = \frac{1}{2}((-1)^{f(0)}|0\rangle(|0\rangle |1\rangle) + (-1)^{f(1)}|1\rangle(|0\rangle |1\rangle))$
- Forget second qubit: $\frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle)$

- Forget second qubit: $\frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle)$
- f balanced, i.e. $f(0) \neq f(1)$: one of minus vanishes
 - $|\psi_2\rangle = \pm |-\rangle |.\rangle$
- f constant, i.e. f(0) = f(1): both minuses either stay or both vanish
 - $|\psi_2\rangle = \pm |+\rangle |.\rangle$

- f balanced, i.e. $f(0) \neq f(1)$: $|\psi_2\rangle = \pm |-\rangle |.\rangle$
- lacksquare That is, after the application of H, we measure |1
 angle
- f constant, i.e. f(0) = f(1): $|\psi_2\rangle = \pm |+\rangle |.\rangle$
- That is, after the application of H, we measure $|0\rangle$

Trick No. 4 – aggregation

- While we were not able access specific outputs of *f* , we were able to aggregate them.
- This is a "standard" procedure we want to lump together desirable results (i.e. add their probabilities heightening the probability that we will measure them).
- What if we had more dimensions?

■ What's the difference? It's the same, isn't it?

- What's the difference? It's the same, isn't it?
- Oh right, you have got the picture in a better resolution.

- What's the difference? It's the same, isn't it?
- Oh right, you have got the picture in a better resolution.
- Exactly⁵!

⁵Only causing worse headache. Consult a doctor if it persists for more than 2 days.

- $|\psi_0\rangle = |0\dots 01\rangle$
- Hadamard trick: $|\psi_1\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^n-1} |x\rangle (|0\rangle |1\rangle)$
- $|\psi_2\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^n-1} |x\rangle \left(|f(x)\rangle |1 \oplus f(x)\rangle \right)$

$$|\psi_2\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^n-1} |x\rangle \left(|f(x)\rangle - |1 \oplus f(x)\rangle \right)$$

■ Again, restructure the second qubit $|\psi_2\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle (|0\rangle - |1\rangle)$

- $|\psi_2\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle (|0\rangle |1\rangle)$
- Let's ignore the last qubit and apply Hadamard transformation:

$$\frac{1}{2^n} \sum_{x=0}^{2^n-1} (-1)^{f(x)} \sum_{y=0}^{2^n-1} (-1)^{x,y} |y\rangle$$

- Probability of measuring $|0\rangle$: $|\frac{1}{2^n}\sum_{x=0}^{2^n-1}(-1)^{f(x)}|^2$
 - f balanced $\Rightarrow 0$
 - f constant $\Rightarrow 1$

Grover's algorithm

- Database lookup $(O(\sqrt{n}))$
- Usable also for pre-image search (hash functions, block ciphers)
- "Invert" the target ($|x\rangle\mapsto -|x\rangle$), inversion about average, rinse and repeat.

Grover's algorithm – 4-item example

Let the third item be our target.

$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

• Average is
$$\frac{1}{4}$$
 0, 0, $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1$, 0

■ |3⟩ will be measured with probability 1

Shor's algorithm

- Factorization
- Main idea calculate " $a^k \mod N$ " for many k at once; elements of the same order will lump together
- Quantum Fourier Transform hidden inside

 $Q\&A \\ \mbox{and an obligatory cliche picture}.$

