2022 미래차 충전인프라구축운영 전문인력 양성교육 전기차 충전기 빅데이터 심화

Python 프로그래밍

2022,11

Python 소개

Python 이란? / Anaconda 소개 및 설치 / Jupyter Notebook 소개 / Spyder 소개 / 사용자 패키지 소개 / 패키지 설치

Python 이란?

- (1991년) 귀도 반 로섬(Guido van Rossum)[프로그래머] 이 발표한 고급 프로그래밍 언어
 - 플랫폼 독립적
 - 인터프린터(Interpreter)식
 - 객체지향적(Object oriented)
 - 동적 타이핑(Dynamically typed) 대화형 언어 실행 시간에 자료형을 검사 ←→ 정적 타이핑: 컴파일 시점과 같이 실행 전 시 점에 타입이 올바른지를 체크

🦆 python

Anaconda 소개 및 설치

- Anaconda?
 - Continuum Analytics에서 개발된 무료 배포판
 - 콘솔판과 GUI판 함께 제공
 - Python을 포함해 수학, 과학, 시각화 등에 필요한 거의 모든 패 키지들(Numpy, IPython, Matplotlib 등)이 한번에 설치
- •다운로드
 - https://www.anaconda.com/download/

2022 미래차 충전인프라구축운영 전문인력 양성교육

Anaconda 소개 및 설치

• 설치 - 2GB 이상의 디스크 여유 공간

- Step1 Welcome to Anaconda3 2022.10(64-bit) Setup
- · Step2 License Agrement
- · Step3 Select Installation Type
- · Step4 Choose Install Location
- · Step5 Advanced Installation Options
- · Step6 Installation Complete

Anaconda 소개 및 설치

Jupyter Notebook 소개

- Anaconda설치 시 함께 서치되는 프로그램들 중 하나로 Python을 프로그래밍 하는데 필요한 도구들을 제공하는 무 료 통합개발환경(IDE)
- Jupyter Notebook 실행

2022 미래차 충전인프라구축운영 전문인력 양성교육

Jupyter Notebook 소개

Jupyter Notebook 소개 - Help

Spyder 소개

- •Spyder(Scientific PYthon Development EnviRonment)는 Anaconda 설치시 함께 설치되는 프로 그램 중 하나로 Python으로 프로그래밍 하는데 필요한 도 구들을 제공하는 무료 통합개발환경(IDE)
- Spyder 실행

뫪

사용 패키지 소개 - Numpy

- Numpy Numerical Python의 약자
- •고성능 과학 계산용 패키지
- Matrix와 Vector와 같은 Array 연산을 할 때 사용하며 표준 라 이브러리 처럼 사용
- 발음 [넘파이][넘피/늄파]
- •특징
 - 일반 List에 비해 빠르고, 메모리를 효율적으로 사용
 - 반복문 없이 데이터 배열에 대한 처리를 지원하여 빠르고 편리
 - 선형대수와 관련된 다양한 기능을 제공
 - C, C++, 포트란 등의 언어와 통합이 가능

2022 미래차 충전인프라구축운영 전문인력 양성교육

사용 패키지 소개 - Pandas

- Python 데이터 분석을 효율적으로 하기 위한 <mark>데이터 분석</mark> 라이 브러리(오픈 소스(BSD 라이센스)로 공개)
- 데이터를 <mark>읽어</mark> 들이거나 <mark>총 계산량을 표시, 그래프화</mark> 등 데이터 분석이나 기계 학습에 필요한 작업을 간단히 실행
- 주요한 코드는 Cpython 또는 C로 작성되어 있으므로, Python 만으로 데이터를 분석할 때와 비교하면 더욱 고속의 처리가 가능
- Python 머신 러닝에 필수 데이터 분석(데이터 사이언스)는 기 계학습을 실행하기 위한 <mark>전처리</mark>(데이터 읽어들이기, 클리닝, 결측 값의 보완, 정규화 등)이 작업 전체의 8~9할을 차지

사용 패키지 소개 - Matplotlib

- Python에서 그래프를 그릴 수 있는 라이브러리
- •자료를 차트(Chart)나 플롯(Plot, 선형 도표, 산점도, 막대 도표, 히스토그램 등)으로 시각화(Visualization)하는 패키 지
- •특징
 - 표준 플롯을 쉽게 그릴 수 있을 뿐만 아니라 복잡한 플롯과 세부 적인 변경도 자유로운 유연한 라이브러리
 - Numpy 및 Pandas(Series, DataFrame)가 제공하는 자료들 과도 잘 연동

2022 미래차 충전인프라구축운영 전문인력 양성교육

사용 패키지 소개 - StatsModels

- 통계 분석을 위한 Python 패키지
- 통계(Statistics)
 - 각종 검정(test) 기능
 - 커널 밀도 추정
 - Generalized Mothod of Moments
- 회귀분석(Linear Regression)
 - 선형 모형(Linear Model)
 - 일반화 선형 모형(Generalized Linear Model)
 - 강인 선형 모형(Robust Linear Model)
 - 선형 혼합 효과 모형(Linear Mixed Effects Model)
 - ANOVA(Analysis of Variance)
 - Discrete Dependent Variable(Logistic Regression 포함)
- 시계열 분석(Time Series Analysis)
 - ARMA / ARIMA Process
 - Vector ARIMA Process
- 관련 사이트: http://www.statsmodels.org

패키지 설치(1/4)

•명령 프롬프트(cmd)창을 통한 설치

```
| Defaulting to user installation betades normal site—packages is not writeable | Defaulting to user installation betades normal site—packages is not writeable | Defaulting to user installation betades normal site—packages is not writeable | Defaulting to user installation betades normal site—packages is not writeable | Defaulting to user installation betades normal site—packages (0.13.2) | Requirement already satisfied: numpy>=1.17 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from Stats\(\pi\)bodels) (1.21.5) | Requirement already satisfied: pandas>=0.25 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from Stats\(\pi\)bodels) (1.9.1) | Requirement already satisfied: packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from Stats\(\pi\)bodels) (0.5.2) | Requirement already satisfied: packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from Stats\(\pi\)bodels) (2.1.3) | Requirement already satisfied: packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging>=21.3)—Stats\(\pi\)bodels) (30.9) | Requirement already satisfied: packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging>=21.3)—Stats\(\pi\)bodels) (2.0.2) | All Ello Packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging>=21.3)—Stats\(\pi\)bodels) (2.0.2) | All Ello Packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging>=21.3)—Stats\(\pi\)bodels) (2.0.2) | All Ello Packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging>=21.3)—Stats\(\pi\)bodels) (2.0.2) | All Ello Packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging)=21.3)—Stats\(\pi\)bodels) (2.0.2) | All Ello Packaging>=21.3 in c:\(\pi\)programdata\(\pi\)anaconda3\(\pi\)lib\(\pi\)site—packages (from packaging)=2
```


패키지 설치 (2/4)

• Jupyter를 통한 설치

2022 미래차 충전인프라구축운영 전문인력 양성교육

패키지 설치 (3/4)

• Anaconda Navigator를 통한 설치

패키지 설치 (4/4)

• Anaconda Navigator를 통한 설치

Python 프로그래밍

자료형 / 제어문(연산자) / 함수

2022 미래차 충전인프라구축운영 전문인력 양성교육

자료형(Data Type) - 변수

- 변수(Variable), 부울(Bool), 숫자(Numeric), 문자(String), 리스트(List), 딕셔너리(Dictionary), 튜플(Tuple)
- 변수(Variable)
 - 데이터를 담는 메모리 공간, 이름 지정
 - 변수에 부울, 숫자, 문자, 목록, 이미지 등을 담을 수 있음
 - Python은 코드가 실행될 때 변수의 자료형을 판단하는 동적 형식 언어(Dynamic typed language)임

자료형(Data Type) - 부울 / 숫자

- 부울
 - 논리 자료형

TRUE(1) or FALSE(0)

- 참(True) 또는 거짓(False)을 표현
- 숫자의 대소나 논리연산을 통한 결과로 참과 거짓을 출력
- 프로그램의 흐름을 제어할 때 사용
- 숫자
 - 정수, 실수, 복소수
 - 정수(int): 음의 정수, 0, 양의 정수
 - 실수(float): 소수점을 표현하는 방식 중 하나인 부동 소수형을 제공
 - 복소수(complex): 실수와 허수의 합으로 이루어진 수(단, i → j)
 - 숫자형을 이용한 기본적인 사칙연산과 math 모듈을 이용해 파이, 자연상수, 팩토리어, 라디안, 삼각함수, 로그 등을 계산 가능

2022 미래차 충전인프라구축운영 전문인력 양성교육

자료형(Data Type) - 문자

- •텍스트를 다루는 자료형
- •작은 따옴표('text') 또는 큰 따옴표("text")의 쌍으로 텍스 트를 감싸서 표현
- 여러 줄로 이루어진 문자열은 작은 따옴표 3개("strings ") 또는 큰 따옴표 3개(""strings"")의 쌍으로 텍스트를 감싸 서 표현
- 숫자와 문자는 int(), float(), compex(), str() 등의 함수를 이용해 형태를 변경
- •문자열을 합칠 때에는 +연산자 사용

자료형(Data Type) - 리스트

- 데이터의 목록을 다루는 자료형
- 리스트 안에는 어떤 데이터든 담을 수 있으며, 리스트 안의 개별 데이터를 요소(Element)라 함
- 리스트를 만들 때 대괄호 [와] 사이에 데이터 또는 변수 목록을 입력하며, 각 데이터는 콤마(,)로 구분
- 리스트 안에 있는 개별 데이터를 참조할 때는 리스트의 이름 뒤에 대괄호를 붙이고 대괄호 사이에 참조하고자 하는 첨자(index)를 입력
- 리스트를 결합할 때 + 연산자 사용

['기상청', 2017, '파이팅']

2022 미래차 충전인프라구축운영 전문인력 양성교육

자료형(Data Type) - 딕셔너리

- <mark>키(Key)-값(Value)의 쌍</mark>으로 구성, 첨자는 키라하고, 이 키가 가리키는 데이 터를 일컬어 값(Value)라 함
- 리스트처럼 첨자를 이용해서 요소에 접근, 변경 가능
- 리스트는 데이터를 저장할 요소의 위치를 <mark>인덱스</mark>를 사용하는 반면, 딕셔너리 는 키 데이터를 그대로 사용
- 딕셔너리를 만들 때는 중괄화 { 와 }을 이용
- 새로운 키-값을 입력하거나 그 안에 있는 요소를 참조할 때는 리스트처럼 대 괄호 [와]를 이용

{'key': 'value'}

자료형(Data Type) - 튜플

- 튜플 'N개의 요소로 된 집합'
- 리스트는 변경 가능, 튜플은 변경 불가능
- 튜플은 만드는 방법은 괄호 (와)를 이용해 만들거나 괄호를 생략해 만들 수 있음
- 리스트와 동일한 방식의 더하기 / 곱하기 연산 존재
- 튜플은 변형이 불가능한 자료형으로서 제공하는 메소드는 index() 와 count() 두개뿐

('기상청', 2017, '파이팅')

2022 미래차 충전인프라구축운영 전문인력 양성교육

연산자

• 논리연산자

연산자	설명
not(!)	피연산자 <mark>부정</mark> 한 결과를 True/False로 반환
and(&)	두 피연산자 간의 <mark>논리곱</mark> 결과를 반환
or()	두 피연산자 간의 <mark>논리합</mark> 결과를 반환

• 비교연산자

연산자	연산자
==	!=
>	>=
<	<=

제어문

•if 제어문

if 조건 : (들여쓰기) 실행문

[예제]

• 조건에 맞는 경우 프로그램이 수행되도록 할 수 있음

```
if 조건 :
    수행할 코드 1
else :
    수행할 코드 2
```

```
[ 구조 ]

if 조건1 :
    수행할 코드 1
elif 조건2 :
    수행할 코드 2
else :
    수행할 코드 3
```

```
alarm = "강우"
If alarm == "강우":
    print("우산을 챙기세요")
else:
    print("좋은 하루 되세요!")
```

```
[ 예제 ]

RN_DAY = 10

If RN_DAY >= 20:
    print("폭우경보")

elif RN_DAY >= 10:
    print("폭우주의보")

else:
    print("정상")
```


2022 미래차 충전인프라구축운영 전문인력 양성교육

제어문

• while: 조건이 참인 동안 코드를 반복 수행

```
[ 구조 ]
while 조건 :
수행할 코드
```

```
i = 0
while i < 10:
print i
i = i + 1
```

•for: 순서열의 끝에 도달할 때까지 반복 수행

(

```
[ 구조 ]
for 반복변수 in 순서열 :
수행할 코드
```

```
[ 예세 ]

for i in [1, 2, 3] :
    print (i)

for i in range(0, 10, 2) :
    print (i)
```


2022 미래차 충전인프라구축운영 전문인력 양성교육

제어문

• 반복문 제어하기

continue / break

- continue
- 특정 조건에서만 코드 실행없이 다음 반복 으로 넘어갈 때 사용

```
num = 0
while num < 10:
    num += 1
    if num == 5:
        continue
    print(num)</pre>
```

- break
- 특정 조건에서만 반복문을 중단할 때 사용

```
num = 0
while 1:
    print(num)
    if num == 10:
        break
    num += 1
```


함수(Function)

• 정의 / 호출 / 반환 과정

```
• 정의(Define) [구조] * 함수 정의의 기본 구조 def 함수명(매개변수 목록) : 수행할 코드 return 결과
```

```
[예제]

def hello():
    print("hello world")
```

• 호출(Call)과 반환(Return) 과정

```
[원리]

value = abs(-5)

agar 값 반환

[예제]

value = abs(-5)

result = num * -1
else:
result = num

return result
```


데이터 다루기

데이터 로드 / 데이터 생성 / 데이터 접근 / 데이터 변환 / 데이터 저장

2022 미래차 충전인프라구축운영 전문인력 양성교육

데이터 로드

- 데이터를 불러올 때 Pandas 패키지 이용
- Pandas 데이터 로드(Load) 함수

·	
Pandas 함수	설명
read_csv()	쉼표(,)로 구분된 파일 읽기
read_excel()	Excel 파일 읽기
read_table()	탭(₩t)으로 구분된 파일 읽기
read fwf()	구분자가 없는 파일 읽기

• csv 파일 불러오기

데이터 로드

• Pandas를 이용해 데이터 로드 시 옵션 키워드

옵션 종류	설명
sep / dilimiter	구분자를 지정
header	header를 컬럼이름으로 지정
index_col	index로 사용할 컬럼을 지정
encoding	파일의 인코딩을 지정 (한글 !!!)

• 파일 불러올 때 index 지정하기

[구조]

import pandas as pd 데이터명 = pd.read_csv('파일경로/파일명.csv', index_col='컬럼명or컬럼번호')

[**예세**] * 첫번째 컬럼을 index로 기정하는 경우 import pandas as pd mydata = pd.read_csv('C:/Users/user/Desktop/ex ample/mydata.csv', index_col='0')

· .txt 파일 불러오기 (구분자가 | 로 되어 있는 경우)

[구조]

import pandas as pd 데이터명 = pd.read_csv('파일경로/파일명.csv', sep='구분자')

import pandas as pd mydata =

pd.read_csv('C:/Users/user/Desktop/ex ample/mydata.csv', sep='|')

2022 미래차 충전인프라구축운영 전문인력 양성교육

데이터 로드

• 기타 옵션

옵션 종류	설명						
skiprows	읽지 않을 row 번호 list를 지정						
na_values	NA로 인식할 값 list를 지정						
comment	주석으로 분류할 문자열을 지정						
paste_date	날짜로 구분할 컬럼 list를 지정						
date_parser	날짜 변환 시 사용할 함수 지정						
converters	컬럼을 읽어올 때 적용할 함수 지정						
nrows	몇 번째 줄까지 읽을 것인지 지정						
skipfooter	무시할 파일의 마지막 줄 수를 지정						

데이터 생성

- 생성한 데이터를 DataFrame형식으로 반환
- 데이터 생성(dictionary 사용해 입력하여 생성)

(

2022 미래차 충전인프라구축운영 전문인력 양성교육

데이터 접근

• 접근하는 방법 - [] 활용

코드	설명			
mydata.columns	데이터가 보유한 변수명을 확인			
mydata.x1 mydata['x1']	변수열(columns)을 선택			
mydata.ix[1] mydata.ix['row2']	특정행(row)을 선택			
del mydata['x1']	변수를 삭제			
mydata.rename(columns= {'x1':'new_name'}, inplace=True)	변수명을 변경			

```
[에제]

import pandas as pd

# x1번수를 선택해 상위 행보기

mydata['x1'].head()

# x1번수의 두번째 행부터 4번째 행까지 보기

mydata[1:5]['x1']

# x1번수명을 item1번수명으로 번경

mydata.rename(columns={'x1':'item1'}, inplace=\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\textstyre{\
```


2022 미래차 충전인프라구축운영 전문인력 양성교육

데이터 변환

내장함수	설명							
int()	base 진법의 수를 10진 정수형으로 변환							
long()	base 진법의 수를 10진 Long 정수형으로 변환							
float()	수를 실수형으로 변환							
complex()	복소수를 만듦							
str()	객체를 출력할 수 있는 문자열 그 자체로만 변환							
repr()	객체를 출력 가능하고 eval함수의 입력으로 쓰일 수 있는 문자열로 반환							
eval()	문자열로 된 파이썬 식을 실행							
tuple()	튜플로 변환							
list()	리스트로 변환							
set()	리스트나 튜플 등을 세트로 변환							
dict()	사전 객체를 생성							
fronzenset()	변경이 불가능한 세트로 변환							
chr()	코드 값을 문자로 변환							
unichr()	유니코드 값을 유니코드 문자로 변환							
ord()	문자의 코드값을 구함							
hex()	10진수에서 16진수로 변환							
oct()	10진수에서 8진수로 변환							

데이터 저장

• DataFrame형식으로 변환하여 pandas 패키지의 DataFrame.to_포맷(csv, excel, json) 함수를 사용해 파일로 저장

함수	설명
to_csv	csv 파일로 저장
to_excel	excel 파일로 저장
to_json	json 파일로 저장

• 데이터 저장

[구조]

import pandas as pd 데이터명.to_csv('파일을 저장할 경로/파일명.csv', 옵션)

[예제]

import pandas as pd

mydata.to_csv('C:/Users/user/Desktop/
example/mydata.csv',
...: sep=',', # 武 구분자
...: na_rep='NaN') # 결측값 표기 방법

데이터 탐색과 시각화

개요 / 히스토그램 / 기술통계 분석 / 상자도표(Box plot) / 상관관계 분석 / 산점도 (Scatter plot) / 기타

2022 미래차 충전인프라구축운영 전문인력 양성교육

개요

- 데이터 분석을 위해 히스토그램, 기술통계, 상자도표, 상관분석, 산점도 등을 적용 하여 정보를 확인
- 데이터 탐색 과정은 데이터의 신뢰성, 필요한 데이터의 정제의 정도, 모형 구축 시 활용에 적합한 변수 탐색 등을 알 수 있게 하고 전처리 과정과 함께 매우 중요한 부 분
- 히스토그램(Histogram)
 - 표로 되어 있는 도수 분포를 시각적으로 나타냄
 - [가로축] 속성값(계급, 범주 등), [세로축] 빈도(frequency)
- 기술통계 분석
 - [기술통계] 측정이나 실험에서 수집한 자료의 정리, 표현, 요약, 해석 등을 통해 자료의 특성을 규명하는 통계적 방법
 - 자료의 특성을 표현하는 지료로 대푯값(평균값, 중앙값, 최빈값), 산포도(분산, 표준편차, 범위, 사분위수, 평균편차, 표준오차, 변이계속) 왜도 및 첨도 있음

개요

- 상자 도표(box plot)
 - 5개의 통계(최소값, 첫 번째 사분위수, 중앙값, 두 번째 사분위수, 최대값)을 시작적으로 나타 냄
 - 변수가 가진 값의 분포와 함께 이상치가 표시되어 있어 자료의 중심과 흩어진 정도를 살펴 볼수 있음
- 상관관계 분석
 - 두 개의 변수 간 어떤 선형적 관계를 가지고 있고, 그 관계의 강도는 어떠한지를 분석하는 방법
 - 상관분석으로 도출되는 상관계수는 -1부터 1사이의 값을 가짐
 - + 부호인 경우는 정적 상관관계(positive relationship, x가 커질수록 y도 커짐)를 나타냄
 - -부호인 경우는 부적 상관관계(negative relationship, x가 커질수록 y도 커짐)를 나타냄
 - 상관계수의 절대값이 1에 가까울 수록 관련성이 깊은 것

2022 미래차 충전인프라구축운영 전문인력 양성교육

개요

- 산점도(Scatter plot)
 - 주어진 데이터를 점으로 표현하여 시각적으로 나타냄
 - 데이터의 실제값들의 분포를 파악하는데 유용

히스토그램(Histogram)

- 히스토그램 출력하기 위해 보통 matplotlib 패키지 이용
- matplotlib을 기반으로 하는 파이썬 시각화 라이브러리인 seaborn을 이용하여 가독성 이 좋은 디자인 표/그래프를 출력
- matplotlib를 이용한 히스토그램

2022 미래차 충전인프라구축운영 전문인력 양성교육

히스토그램(Histogram)

• seaborn를 이용한 히스토그램

import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(가로 길이,세로 길이)) sns.distplot(데이터명.변수명) [예시]

import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10,5))
sns.distplot(mydata.HM_AVG, kde =
False) # kde: 가우시안 확률밀도 여부

[예시의 결과: 평균 상대습도(HM_AVG)]

기술통계 분석

• 데이터의 기본적인 통계량은 numpy, pandas, scipy 패키지를 이용해 출력

• numpy를 이용한 기술통계 분석

2022 미래차 충전인프라구축운영 전문인력 양성교육

기술통계 분석

• pandas를 이용한 기술통계 분석

[예시]

import pandas as pd s = pd.DataFrame(mydata)s.describe()

• SciPy를 이용한 기술통계 분석

[예시]

import scipy as sp sp.stats.describe(mydata)

뫪

Box Plot

- matplotlib 패키지 중 pyplot 모듈 이용
- matplotlib를 이용한 Box plot

상관관계 분석

- numpy패키지와 pandas패키지 활용
- numpy를 이용한 상관분석

```
[ 구조 ]
import numpy as np
np.corrcoef(변수명1,변수명2)
```

```
import numpy as np
a=np.array([1,2,3,4,5])
b=np.array([3,2,3,1,2])
np.corrcoef(a,b)
```

[예시의 결과]

```
array([[ 1. , -0.56694671],
[-0.56694671, 1. ]])
```


상관관계 분석

• pandas를 이용한 상관분석

[구조]
import pandas as pd
데이터명.corr(method='pearson')

import pandas as pd
mydata=pd.read_csv('mydata.csv')

X = mydata.iloc[:,1:4] # 두번쎄~
세번째 컬럼 선택

X.corr(method='pearson')

[예시의 결과]

CA_TOT HM_AVG RN_DAY
CA_TOT 1.000000 0.665570 0.595266
HM_AVG 0.665570 1.000000 0.614174
RN_DAY 0.595266 0.614174 1.000000

Scatter plot

• matplotlib 패키지의 pyplot 모듈 활용

• matplotlib를 이용한 Scatter plot

[구조]
import matplotlib.pyplot as plt
plt.scatter('x축 변수명', 'y축 변수명', 옵션)

[oil] import matplotlib.pyplot as plt

mydata=pd.read_csv('mydata.csv')
plt.scatter(mydata['RN_DAY'],
mydata['CA_TOT'],color='b', marker='o')
plt.xlabel('RN_DAY')
plt.ylabel('CA_TOT')

2022 미래차 충전인프라구축운영 전문인력 양성교육

산점도 옵션	설명									
label	그래프 레이블을 입력									
size	도형의 크기를 입력									
alpha	도형 색상의 투명도를 입력(0: 투명, 1:불투명)									
color	그래프를 이용할 색상 입력									
marker	표시할 도형 종류 입력									
	'.' 'o' '^' 'x' 'D' 'P' '*' '+									
	점	점 워 삼각형 엑스형 다이아몬드 오각형 별 덧셈모양								

2022 미래차 충전인프라구축운영 전문인력 양성교육

기타

• 상위 또는 하위 행 선택해 출력하기

```
import pandas as pd
               # 상위 행 보기
mydata.head()
               # 하위 행 보기
mydata.tail()
```

• 결측값 처리

[구조]

```
import pandas as pd
mydata.fillna(999) # 데이터에서 결측값은 999로 치환
               # 데이터의 결측값 제외
mydata.dropna()
               # 데이터에서 결측인지
mydata.isnull()
mydata.notnull()
               # 데이터에서 결측이 아닌지
```


기타

• 데이터 타입 변환

[구조]

```
# 데이터 타입 변환
데이터명["변수명"]=데이터명["변수명
" ].astype('변환할 타입')
```

• 선형, 누적, 바 그래프

```
데이터명.변수명.plot.line() # 선형
데이터명.변수명.plot.bar() # 바
데이터명.변수명.plot.density() # 누적
```


[예시]

```
# target 변수를 string 타입으로 변환
mydata["target"]=mydata["target"].asty
pe('category')
#데이터 타입보기
mydata.dtypes
```

[예시]

```
mydata.x1.plot.line()
mydata.x1.plot.bar()
mydata.x1.plot.density()
```


기타

 (구조)

 import pandas as pd

 pd.concat([데이터명1, 데이터명2],axis=0)

 • 열병합
 [구조]

 import pandas as pd
 pd.concat([데이터명1, 데이터명2],axis=1)

 • 데이터병합
 [구조]

 import pandas as pd

 import pandas as pd

pd.merge(왼쪽 위치 데이터명, 오른쪽

위치 데이터명, on='고유키',how="left")

#how 옵션 종류: left, right, outer, inner

[예시]

import pandas as pd
pd.concat([mydata1, mydata2],axis=0)

[예시]

import pandas as pd
pd.concat([mydata1,mydata2],axis=1)

[예시]

import pandas as pd pd.merge(mydata1, mydata2, on='key',how="left")

2022 미래차 충전인프라구축운영 전문인력 양성교육

기타

• 특정 조건에 따른 데이터 변환

[구조]

```
import numpy as np
import pandas as pd
데이터명["생성할 컬럼명"] =
np.where(데이터명[ ' 참조
컬럼명']==조건 값, 'True일 경우 값',
'False일 경우 값')
```

[예시]

import numpy as np

mydata.target.unique()
mydata["new"] =
np.where(mydata['target']==0.0, 'up',
'down')
mydata.head()

분석 알고리즘 맛보기

알고리즘 선정 / 예측: 단순선형회귀 / 분류: k-최근접 이웃

알고리즘 선정

- 분석을 위한 기계학습 알고리즘
 - 지도학습(Supervised learning): 회귀(Regression)과 분류(Classification)
 - 비지도학습(Unsupervised learing)
- 분석 목적, 데이터 고려
 - 목적값(Target value)을 예측하거나 예견하려고 한다면 지도학습방법 검토, 그렇지 않다면 비지도학습방법 검토
 - [지도학습방법] 목적 값이 수치(Number)로 나타나길 원한다면 <mark>회귀</mark>를 검토, 'Yes/No', '그룹1/그룹2/그룹3'등과 같이 이산적인 값이라면 <mark>분류</mark>를 검토
 - [비지도학습방법] 가지고 있는 데이터가 각각의 무리에 알맞은 어느 정도의 수치인지 를 평가하려 한다면 <mark>밀도 추정 알고리즘</mark> 검토, 어떤 이산적인 무리에 알맞은지 알아보 고자 한다면 군집화 알고리즘을 검토
 - 보유한 데이터의 특성 파악 우선-속성이 명목형/연속형인지, Null값이 존재하는지, Outlier가 있는지 등에 따라서 적용 가능한 알고리즘의 폭을 줄일 수 있음

용어

- •전운량?
 - •대기 중 구름양을 측정해 0~10사이의 실수 값으로 표현된 수치
- 일조?
 - 하루 중 햇볕이 구름이나 안개 따위에 가려지지 안니하고 실제로 내리쬐는 시간을 말함

2022 미래차 충전인프라구축운영 전문인력 양성교육

예측: 단순선형회귀

- 회귀분석-수치형 목적 값을 예측하기 위함
 - (장점)결과를 해석하기가 쉽고 계산 비용이 적음
 - (단점)비선형 데이터를 모델링하기에 적합하지 않음
- 회귀 방정식과 회귀 가중치
 - 전운량에 따른 일조를 예측할 때 독립변수인 전운량을 x_1 로, 종속변수인 일조를 y로 하였을 때, 아래와 같은 방정식(회귀 방정식)으로 정의

$$y = \beta_0 + \beta_1 * x_1 + \varepsilon$$
 y : 종속변수 관측치 β_0 절편 $\widehat{y} = \beta_0 + \beta_1 * x_1$ y : 종속변수 관측치 β_0 절편 β_1 회귀가중치 β_0 조건 β_1 회귀가중치 β_1 기가중치 β_1 기가주지 β_1 기가주지

• (회귀분석)회귀 가중치를 찾는 과정, 일단 모수(절편, 회귀 가중치)를 찾게 되면 새로운 독립변수(x_1)가 주어졌을 때 종속변수 값(\hat{y})을 예측

예측: 단순선형회귀

- Python을 활용한 분석
 - 청주지역에서 2015년에 일 단위로 측정된 ASOS 예제 데이터를 활용해 일평균전운량에 따른 하루의 일조 합계 시간을 예측
 - 설치된 Spyder를 실행해 스크립트 편집 창에 아래의 코드를 붙여 넣고 전체 실행

```
### 패키지 북러오기
                                                                                                ### 회귀분석 결과 요약
import pandas as pd
                                                                                                print(result.summary())
import statsmodels.formula.api as sm
import matplotlib.pyplot as plt
                                                                                                ### 세부 분석 결과 확인
                                                                                               print('< Parameters > \text{\params}', result.params)
### 예제 테이터 로드
                                                                                                                                                 # 회귀계수에 대한 P-value 출력
                                                                                               print('< Prob (Parameters) > \text{\psi}n', result.pvalues)
mydata = pd.read_csv('E:/data_regression.csv') # 데이터 위치 지정
                                                                                                print('< Adj. R-squaured > \n', result.rsquared_adj) #조정된 R-squared 출력
print(mydata.head())
                                                                                                print('< Prob (F-statistic) > \text{\psi}n', result.f_pvalue)
                                                                                                                                                 # 모형의 적합도 출력
                                                                                                ### 그래프 그리기
mydata.loc[mydata['SS_DAY'] == -9]
                                               # 20150520 일조합 결측치(-9) 확인
                                                                                               fig, ax = plt.subplots(figsize=(8, 5))
mydata.loc[(mydata['SS_DAY'] != -9) & (mydata['CA_TOT'] == 0.5)] # 20150520을 제외한
                                                                                               plt.ylabel('SS_DAY', size=12)
plt.xlabel('CA_TOT', size=12)
mydata.loc[mydata['SS_DAY'] == -9, 'SS_DAY'] = 10.7 # 일조합 결측치에 평균값 10.7 입력
                                                                                                ax.plot(mydata.CA_TOT.values, mydata.SS_DAY.values, 'o', label='Data')
                                                                                               ax.plot(mydata.CA_TOT.values, result.fittedvalues, 'b-', label='Regression')
### 단순선형회귀 모델링
                                                                                               ax.legend(loc='best')
result = sm.ols(formula='SS_DAY ~ CA_TOT', data=mydata).fit()
```


예측: 단순선형회귀

• 분석결과

• 분석결과 해석

• 〈 Parameters 〉에는 회귀모형의 절편과 기울기가 제시되어 있습니다. 위 결과를 식으로 표현하면 다음과 같습니다.

$$\hat{Y} = 12.22 - 1.90X$$

 \hat{Y} : 일조합(시간), X: 일평균전운량

- 〈 Prob (Parameters) 〉에는 각 모수(절편, 기울기)의 통계적 유의확률이 제시되어 있으며, 일반적으로 0.05 이하일 경우, 모수가 유의미한 것으로 해석합니다.
- 〈 Adj. R-squared 〉에는 회귀모형의 결정계수가 제시되어 있습니다. 결정계수는 모형의 설명력을 뜻하며, 위 모형의 설명력은 67.27%입니다.
- 〈 Prob (F-statistic) 〉에는 모형의 F검정의 유의확률이 제시되어 있습니다. 이 유의확률 역시 0.05 이하일 경우 모형이 유의미한 것을 의미합니다.

분류: k-최근접 이웃

- k-최근접 이웃(k-NN; k-nearest Neighbors) 분류기는 목적 대상(종속변수)의 범두를 활용 변수(독립변수)의 유사성에 기반해 범주를 지정하는 분류 알고리즘
 - (장점) 이상치(outlier)에 대해 둔감하고 데이터에 대한 가정이 없으며, 높은 정확도를 가짐
 - (단점)계산 비용이 크고 많은 메모리 공간을 요구
- 전운량과 습도를 이용해 비(또는 눈)이 온 날 예측
 - 기상청에서 제공하는 종관기상관측장비(ASOS)데이터를 활용해 일평균전운량 (CA_TOT)과 일평균상대습도(HM_AVG)를 이용해 비(혹은 눈)이 온 날(일 강수량 (RN_DAT) > 0 mm)을 예측

2022 미래차 충전인프라구축운영 전문인력 양성교육

분류: k-최근접 이웃

- k-최근접 이웃
 - 새로운 데이터가 주어졌을 때 학습한 데이터 가운데 가장 가까운 k개 이웃 정보를 이용하여 새로운 종속변수가 어떤 결과 값을 갖을지 예측
 - 선형 회귀분석과 같은 예측모형처럼 종속변수의 예측값을 추정하는 것이 아니라 분류하는 정보에 기반에 종속변수가 타겟에 속할 확률을 산출
 - 전운량과 상대습도에 따른 비 온 날을 분류하는 것을 예로 들어보면
 - 새로운 상대습도와 전운량 정보가 주어졌을 때, 기존의 분류 학습 데이터와 이웃한 1개의 정보만 반영하면 주황색으로 예측
 - 그러나 이웃한 3개의 정보를 반영하게 되면 주황색일 확률은 33.3%, 녹색일 확률은 66.6%

분류: k-최근접 이웃

- Python을 활용한 분석
 - 서울지역에서 2015년에 일 단위로 측정된 ASOS 예제 데이터를 활용해 일평균전운량과 평균 상대습도에 따른 비(또는 눈)이 온 날을 예측
 - 설치된 Spyder를 실행해 스크립트 편집창에 아래의 코드 전체 실행

```
### 폐키지 불리오기
import numpy as np
from sklearn import neighbors # skleam 은 scikit-learn 의 출임말 입니다. 아나콘다에서 패키지
설치 시 scikit-learn 으로 검색합니다.
import pandas as pd
from matpletlib import colors as c
from sklearn.metrics import classification_report

### 에제 데이터 로드
mydata = pd.read_csv(Eydata_kNN.csv) # 데이터 위치에서 데이터 불리오기
print(mydata.head())
#로드 데이터 함전
mydatal.oc(mydata['RN_DAY] <= 0, 'RN_DAY] = 0 # 강수량 0mm 이하(감축 포함)에 0 압력
mydatal.oc(mydata['RN_DAY] > 0, 'RN_DAY] = 1 # 강수량 0mm 조과에 1 압력
mydata['RN_DAY] = mydata['RN_DAY] = 0, 'RN_DAY] = 1 # 강수량 0mm 조과에 1 압력
mydata['RN_DAY] = mydata['RN_DAY] = 9, 'CA_TOT] = 0 # 전문항 결축제(-9)에 0 압력
mydatal.oc(mydata['RM_DAY] = -9, 'CA_TOT] = 0 # 전문항 결축제(-9)에 0 압력
mydatal.oc(mydata['RM_DAY] = -9, 'CA_TOT] = 0 # 전문항 결축제(-9)에 0 압력
```

```
### 중속변수 독립변수 설정
X = mydata.iloc(;2:4) # 세번째 컬링(CA_TOT)와 내번째 컬링(HM_AVG)을 독립변수로 설정
y = data[RN_DAY] # 이분형으로 변환한 강수량 변수를 중속변수로 설정
### k-최근접 이웃 모델링
kNN = neighbors.KNeighborsClassifier()
kNN.fit(X, y)
Z = kNN.predict(X) # 예측값 산출
### k-최근접 결과
target_names = ['0', '1']
print(classification_report(y, Z, target_names=target_names))
```


2022 미래차 충전인프라구축운영 전문인력 양성교육

분류: k-최근접 이웃

- Python을 활용한 분석
 - 서울지역에서 2015년에 일 단위로 측정된 ASOS 예제 데이터를 활용해 일평균전운량과 평균 상대습도에 따른 비(또는 눈)이 온 날을 예측
 - 설치된 Spyder를 실행해 스크립트 편집창에 아래의 코드 전체 실행

```
# 도표 눈금(의사결정 경계를 얼마나 촘촘하게 할 것인지) 설정
plot_step = 0.02
                                                                                                         # 독립변수 시각화
                                                                                                        plt.scatter(X['CA\_TOT'],\ X['HM\_AVG'],\ c=y,\ cmap=plt.cm.Set3,\ edgecolor='k')
x_min, x_max = X['CA_TOT'].min() - 1, X['CA_TOT'].max() + 1
                                                                                                         pl.xlabel('CA TOT')
y_min, y_max = X['HM_AVG'].min() - 1, X['HM_AVG'].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),np.arange(y_min, y_max, plot_step))
                                                                                                        pl.ylabel('HM_AVG')
Z = kNN.predict(np.c_[xx.ravel(), yy.ravel()])
                                                                                                         # 축이를 및 도표명
Z = Z.reshape(xx.shape)
                                                                                                        pl.xlim(xx.min(), xx.max())
                                                                                                        pl.ylim(yy.min(), yy.max())
 # kNN의 결과를 반영해 색상 입히기
                                                                                                         pl.xticks(())
pl.figure(1, figsize=(8, 6))
                                                                                                        pl.yticks(())
pl.set_cmap(pl.cm.Paired)
                                                                                                        plt.title('Decision Boundary')
cMap = c.ListedColormap([ ' powderblue ' , ' ivory ' ])
pl.pcolormesh(xx, yy, Z,cmap=cMap)
```


분류: k-최근접 이웃

• 분석 결과

		,	,			
	precision	recall	f1-score	support		
0	0.96	0.99	0.97	254		
1	0.97	0.90	0.93	111		
avg / total	0.96	0.96	0.96	365		٥
					HM_AVG	89 89 89 89 89 89 89 89 89 89 89 89 89 8

2022 미래차 충전인프라구축운영 전문인력 양성교육

분류: k-최근접 이웃

• 분석결과 해석

• kNN.fit(X, y) 를 실행하면 모형의 옵션 구성 결과가 출력됩니다. 모형의 옵션은 값을 지정하여 고정할 수 있습니다. n_neighbors 옵션 예시는 아래와 같습니다(k=3일 때).

kNN = neighbors.KNeighborsClassifier(n_neighbors=3) kNN.fit(X,y)

- 분석 결과표에서 정밀도(precision)란 타겟이 1일 경우, 모형에서 예측한 발생(1) 사건 중 실제 발생(1) 사건의 비율을 뜻합니다. 위 모형의 평균 정밀도는 96%입니다.
- 분석 결과표에서 재현율(recall)이란 타겟이 1일 경우, 실제 발생(1) 사건 중 모형이 예측한 발생(1) 사건의 비율을 뜻합니다. 위 모형의 평균 재현율은 96% 입니다.
- 분석 결과표에서 f1 점수는 정밀도와 재현율 두 지수를 종합해 계산한 결과로 그 식은 아래와 같습니다.

$$F1 = 2 \times \frac{88 \times 10^{-3}}{80 \times 10^{-3}} \times \frac{10^{-3}}{10^{-3}} \times$$

f1 점수는 1에 가까울 수록 좋으며 위의 f1 점수는 0.96 입니다.

• 미래의 사건을 예측하는 모형을 구축하기 위해선 독립변수와 종속변수 간 시간 간격을 조정, 변수 추가 등 여러 데이터 분석 방법을 적용 할 수 있습니다.

참고

- •기상기후 빅데이터 분석 플랫폼 날씨마루
 - https://bd.kma.go.kr/kma2020/dta/reqst/dtaReqstInf o.do?menuCd=F030102000&pageNum=4
- •최소자승법
 - https://bkshin.tistory.com/entry/DATA-17-Regression

