Connected Components

$$X_k = (X_{k-1} \oplus B) \cap A$$
 $k = 1,2,3,...$
terminates when $X_k = X_{k-1}$

- X_0 =1 corresponds to one of the pixels on the component Y. Note that one of the pixel locations on the component must be known.
- Consecutive dilations and their intersection with A, yields all elements of component Y.

Hit or Miss Transformation

Used to extract pixels with specific neighbourhood configurations from an image

- Set A has subsets X, Y, Z
- W is a window enclosing X
- W-X is the local background of X
- Erode A by X
- Erode A^c by W-X

Hit or Miss Transform

Hit - or - Miss transform is given as

$$A \circledast B = (A \ominus X) \cap \left[A^c \ominus (W - X) \right]$$

where A = Set in which we want to find the location of object XB = Set composed of X and its background W

 $B = (X, \omega - X)$

Hit or Miss Transform

We can also write Hit-or-Miss transform as

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

where $B_1 = Object$ and $B_2 = background$

Hit or Miss Transform

We can also write Hit - or - Miss transform as

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

where $B_1 = Object$ and $B_2 = background$

Hit or Miss Transform

Hit or Miss Transform

- A background is necessary to detect disjoint sets
- When we only aim to detect certain patterns within a set, a background is not required, and simple erosion is sufficient

Convex Hull

$$X_k^i = (X_{k-1} \otimes B^i) \cup A, \ i = 1, 2, 3, 4, \ k = 1, 2, \dots, X_0^i = A$$

Now let $D^i=X^i_{\mathrm{conv}}$, where "conv" indicates convergence in the sense that $X^i_k=X^i_{k-1}$. Then the convex hull of A is

$$C(A) = \bigcup_{i=1}^4 D^i$$

