Machine Learning Operations - MLOps Getting from Good to Great

Slide credit: Michal Maciejewski, PhD

Let's share our model with users aka let's put it into production!

What Has to Go Right?

What Can Go Wrong?

Concept and data drifts are one of the main challenges of production ML systems!

MLOps is about maintaining the trained <u>model performance</u>* in production.

The performance may degrade due to factors outside of our control so we ought to monitor the performance and if needed, roll out a new model to users.

ML Model = Data + Code

MLOps = ML Model + Software

- + Algorithm
- + Weights
- + Hyperparameters

- + Scripts
- + Libraries
- + Infrastructure
- + DevOps

MLOps = ML Model + Software

Good news: most of these components come as ready-to-use frameworks

MLOps Pipeline

Data Engineering

Reproducibility
Traceability

Data-driven ML

Exploratory Data Analysis

For structured data:

 schema as required tables, columns and datatypes

For unstructured data:

- resolution, image extension
- frequency, duration, audio codec

DataFrame.corr(method='pearson', min_periods=1, numeric_only=_NoDefault.no_default)

Compute pairwise correlation of columns, excluding NA/null values.

[source]

Data Processing Pipeline

Data Data Feature Data Ingestion Validation Engineering Cleaning I oad from file Schema check Filling NaNs Feature selection Load from db Audio/video file Filtering Feature crossover check Normalization

Standarization

Reproducibility

Keeping Track of Data Processing

- Version Input Data DVC framework
- Version Processing Script GitLab
- Version Computing Environment Docker

Import Libraries

To [1]: import platly_offline as pyo
for notebook mode to work in offline
pyo.init_notebook_mode()
import sys
sys_path.append('..')
form asgnuspi.geometry_CosThetaGeometry import CosThetaGeometry
form asgnuspi.eds_daptors.amys.hasysToolAdaptor import AnsysToolAdaptor

Analysis executed on 2021-05-26 10140125 Loaded MagNum API version 0.0.1 Loaded Tool Adapter version 0.0.1 for ANSYS 2021R1

Build Geometry

Plot Geometry

In [3]: geometry.build_blocks()
 geometry.plotly_blocks()

Notebook Good Practices

- Linear flow of execution
- Little amount of code
- Extract reusable code into a package
- Pre-commit for cleaning notebook before committing to a repository
- Set parameters on top so that notebook can be treated as a function (papermill and scrapbook packages)

It is OK, to do exploratory quick&dirty model development.

Once we start communicating the model outside, we need to clean it!

From Model-driven to Data-driven ML

	Model-driven ML	Data-driven ML
Fixed component	Dataset	Model Architecture
Variable component	Model Architecture	Dataset
Objective	High accuracy	Fairness, low bias
Explainability	Limited	Possible

Modelling

Training challenges
Rare events
Analyzing results

Selecting Data for Training

Dataset Training Validation 20%

Selecting Data for Training

Dataset Training Validation Test 15% 15%

Balancing Datasets

Consider a binary classification problem with a dataset composed of 200 entries. There are 160 negative examples (no failure) and 40 positive ones (failure).

	Training	Validation	Test
Expected:	75%	15%	10%
•	(120 + <mark>30</mark>)	(24+ <mark>6</mark>)	(16+ 4)

Validation Training Test 75% 15% 10% Random: (131 + 19)19+11) 10+10

Rare Events

There were 3130 healthy signals (Y=False) and 112 faulty ones (Y=True)

C. Obermair, Extension of Signal Monitoring Applications with Machine Learning, Master Thesis, TU Graz M. Brice, LHC tunnel Pictures during LS2, https://cds.cern.ch/images/CERN-PHOTO-201904-108-15

Rare Events

```
import pandas as pd

def run_prediction(signal: pd.DataFrame) → bool:
return False
```


Rare Events

		Ground truth	
		Y = True	Y = False
 	Y = True	0 true positive	0 false positive
Model	Y = False	112 false negative	3130 true negative

Avg accuracy =
$$\frac{TN}{TN + FN} = 97\%$$

Precision = $\frac{TP}{TP + FP} = \frac{0}{0}$

$$Recall = \frac{TP}{TP + FN} = \frac{0}{0 + 112} = 0$$

$$F1_{score} = \frac{2}{1/Precision + 1/Recall}$$

Data Augmentation

(c) 10 μm

New examples obtained by shifting the region left and right

New examples obtained by rotating/shifting/hiding

What else can we do?

When one of the values of Y is rare in the population, considerable resources in data collection can be saved by randomly selecting within categories of Y. [...]

The strategy is to select on Y by collecting observations (randomly or all those available) for which Y = 1 (the "cases") and a random selection of observations for which Y = 0 (the "controls").

We can also collect more data of particular class (if even possible).

Training Tracking

- 1. Pen & Paper
- 2. Spreadsheet
- 3. Dedicated framework
 - Weights and Biases
 - Neptune.ai
 - Tensorflow
 - ...

Error Analysis

#	Signal	Noise	Gap in signal	Bias	Wrong sampling
1	Magnet 1	X	X		
2	Magnet 2			X	X
3	Magnet 3	X	X		

Such analysis may reveal issues with labelling or rare classes in data.

For unstructured data, a cockpit could help in analysis.

Useful in monitoring of certain classes of inputs.

When you sort your dataset descending by loss you are guaranteed to find something unexpected, strange and helpful.

Deployment

Data Engineering

Degrees of automation Modes of deployment Reproducible environments

Degrees of Automation

Human inspection

Shadow mode

Human in the loop

Full Automation

Starting from Shadow mode we can collect more training data in production!

Modes of Deployment

- In Canary deployment there is a gradual switch between versions
- In Blue/green deployment there is an on/off switch between versions

Reproducible Environments

Docker Containers

Serverless compute

Monitoring

Useful metrics
Relevant frameworks

If you can't measure it, you can't improve it William Thomson, Lord Kelvin

Relevant Metrics

Model metrics

- Distribution of input features data/concept drift
- Missing/malformed values in the input
- Average output accuracy/classification distribution concept drift

Infrastructure metrics

- Logging errors
- Memory, CPU resources utilization
- Latency and jitter

Monitoring Matters

MLOps Pipeline with Tensorflow

TFX CONFIG

Experiments > XGBoost experiment

XGBoost run

Experiments

A Pune

• Artifacts

Executions

■ Documentation □

Github Repo □

<

MLOps Pipeline with Kubeflow

https://ml.cern.ch https://www.kubeflow.org/docs/started/

Conclusion

	Development ML	Production ML
Objective	High-accuracy model	Efficiency of the overall system
Dataset	Fixed	Evolving
Code quality	Secondary importance	Critical
Model training	Optimal tuning	Fast turn-arounds
Reproducibility	Secondary importance	Critical
Traceability	Secondary importance	Critical

Resources

Machine Learning Engineering for Production (MLOps) Specialization

