

BLG 231E - Digital Circuits

Assignment 5 Solution

1. Since the output Z depends only on the state variables and, the circuit is designed using the Moore model.

Input of Q₁:

Т	_ X		
Q_1Q	0 ^	0	1
	00	0	0
	01	1	1
	10	0	0
	11	1	1

Inputs of Qo:

· v		
0	0	1
00	00	10
01	10	01
10	10	01
11	01	11
	01	00 00 01 10 10 10

State/output table:

$Q_1^+Q_0^+_{V}$							
Q_1Q	0	0	1	Ζ			
	00	00	01	0			
	01	11	10	1			
	10	11	10	1			
	11	00	00	0			

2. For the State $Q_1Q_0 = 11$ and X=1: T=1 because T is connected to Q_0 . JK=11 because 1+1+1=11 (binary addition).

Since T=1, Q_1 will toggle. Hence, $Q_1^+=0$. Since JK=1, Q_0 will also toggle. Hence, $Q_0^+=0$. Therefore $Q_1^+Q_0^+=00$.

3. State diagram:

