

Inference

Message Passing

Properties of BP Algorithm

Calibration

$$\beta_1(A,B) = \psi_1(A,B) \times \delta_{4\to 1}(A) \times \delta_{2\to 1}(B)$$

· Cluster beliefs:

$$\beta_i(\boldsymbol{C}_i) = \underline{\psi_i} \times \prod_{k \in \mathcal{N}_i} \delta_{k \to i}$$

• A cluster graph is calibrated if every pair of adjacent clusters $C_{i,C_{j}}$ agree on their sepset $S_{i,j}$

$$\sum_{m{C}_i-m{S}_{i,j}}eta_i(m{C}_i) = \sum_{m{C}_j-m{S}_{i,j}}eta_j(m{C}_j)$$
 Sope Signary

Convergence ⇒ Calibration

$$\begin{array}{c} \bullet \quad \pmb{Convergence:} \quad \delta_{i \rightarrow j}(S_{i,j}) = \delta_{i \rightarrow j}'(S_{i,j}) & \beta_i(C_i) = \psi_i \times \prod_{k \in \mathcal{N}_i} \delta_{k \rightarrow i} \\ \delta_{i \rightarrow j}'(S_{i,j}) = \sum_{\substack{C_i - S_{i,j} \\ N_j \rightarrow i}} \left(\psi_i \times \prod_{\substack{k \in (\mathcal{N}_i - \{j\}) \\ N_j \rightarrow i}} \delta_{k \rightarrow i} \right) = \sum_{\substack{C_i - S_{i,j} \\ N_j \rightarrow i}} \frac{\beta_i(C_i)}{\delta_{j \rightarrow i}(S_{i,j})} = \delta_{i \rightarrow j} \\ \delta_{j \rightarrow i}(S_{i,j}) \delta_{i \rightarrow j}(S_{i,j}) = \sum_{\substack{C_i - S_{i,j} \\ C_i - S_{i,j}}} \beta_i(C_i) \\ \delta_{j \rightarrow i}(S_{i,j}) \delta_{i \rightarrow j}(S_{i,j}) = \sum_{\substack{C_j - S_{i,j} \\ N_j \rightarrow i}} \beta_j(C_j) \end{array}$$

Reparameterization

Sepset marginals:

Sepset marginals:
$$\mu_{i,j}(S_{i,j}) = \delta_{j \to i}\delta_{i \to j} = \sum_{\substack{C_j - S_{i,j} \\ \beta_i(C_i)}} \beta_j(C_j)$$

$$\downarrow \psi_1 \times \delta_{j \to 1} \times \delta_{$$

Reparameterization

Sepset marginals:

$$egin{align} & rac{\prod_{i}eta_{i}}{\prod_{i,j}\mu_{i,j}} = rac{\prod_{i}\psi_{i}\prod_{j\in\mathcal{N}_{i}}\delta_{j
ightarrow i}}{\prod_{i,j}\delta_{i
ightarrow j}} \ & = \prod_{i}\psi_{i} = ilde{P}_{\Phi}(X_{1},\ldots,X_{n}) \ & = \sum_{i}\psi_{i} = ilde{P}_{\Phi}(X_{1}$$

$$\mu_{i,j}(S_{i,j}) = \delta_{j o i}\delta_{i o j} = \sum_{\substack{C_j - S_{i,j} \\ \beta_i(C_i) = \psi_i \times \prod_{k \in \mathcal{N}_i} \delta_{k o i}}} \beta_i(C_j)$$

And the second of the

Summary

- At convergence of BP, cluster graph beliefs are calibrated:
 - beliefs at adjacent clusters agree on sepsets
- Cluster graph beliefs are an alternative, calibrated parameterization of the original unnormalized density
 - No information is lost by message passing

Inference

Message Passing

Clique Tree
Algorithm &
Correctness

Message Passing in Trees

Correctness

$$\beta_{3}(C,D) = \psi_{3} \times \delta_{2\rightarrow 3} \times \delta_{4\rightarrow 3}$$

$$= \psi_{3} \times \left(\sum_{B} \psi_{2} \times \delta_{1\rightarrow 2}\right) \times \sum_{E} \psi_{4}$$

$$= \psi_{3} \times \left(\sum_{B} \psi_{2} \times \sum_{A\rightarrow 3}\right) \times \sum_{E} \psi_{4}$$

$$= \psi_{3} \times \left(\sum_{B} \psi_{2} \times \sum_{A\rightarrow 3}\right) \times \sum_{B} \psi_{4}$$

$$= \psi_{3} \times \left(\sum_{A\rightarrow 3} \psi_{2} \times \sum_{A\rightarrow 3}\right) \times \sum_{A\rightarrow 3} \psi_{4}$$

$$= \psi_{3} \times \left(\sum_{A\rightarrow 3} \psi_{2} \times \sum_{A\rightarrow 3}\right) \times \sum_{A\rightarrow 3} \psi_{4}$$

$$= \psi_{3} \times \left(\sum_{A\rightarrow 3} \psi_{2} \times \sum_{A\rightarrow 3}\right) \times \sum_{A\rightarrow 3} \psi_{4}$$

$$= \psi_{3} \times \left(\sum_{A\rightarrow 3} \psi_{2} \times \sum_{A\rightarrow 3}\right) \times \sum_{A\rightarrow 3} \psi_{4}$$

Daphne Koller

Clique Tree

- Undirected tree such that:
 - nodes are clusters $C_i \subseteq \{X_1,...,X_n\}$
 - edge between C_i and C_j associated with sepset $S_{i,j} = C_i \cap C_j$

Family Preservation

- Given set of factors Φ , we assign each ϕ_k^* to a cluster $\mathbf{C}_{\alpha(k)}$ s.t. $\mathrm{Scope}[\phi_k] \subseteq \mathbf{C}_{\alpha(k)}$
- For each factor $\phi_k \in \Phi$, there exists a cluster C_i s.t. Scope $[\phi_k] \subseteq C_i$,

Running Intersection Property $\begin{array}{c} \textbf{For each pair of clusters } \textbf{\textit{C}}_i, \textbf{\textit{C}}_j \text{ and variable} \\ \textbf{\textit{X}} \in \textbf{\textit{C}}_i \cap \textbf{\textit{C}}_j \text{ there exists a unique path} \\ \text{between } \textbf{\textit{C}}_i \text{ and } \textbf{\textit{C}}_j \text{ for which all clusters and} \\ \text{sepsets contain } \textbf{\textit{X}} \end{array}$

Running Intersection Property

• For each pair of clusters C_i , C_j and variable $X \in C_i \cap C_j$, in the unique path between C_i and C_j , all clusters and sepsets contain X

More Complex Clique Tree

Clique Tree Message Passing

RIP -> Clique Tree Correctness

- If X is eliminated when we pass the message $C_i \rightarrow C_j$
- Then X does not appear in the C_i side of the tree

Clique Tree Correctness

Summary

- Belief propagation can be run over a treestructured cluster graph
- In this case, computation is a variant of variable elimination
- Resulting beliefs are guaranteed to be correct marginals

Inference

Message Passing

Clique Tree
Algorithm:
Computation

Message Passing in Trees

Convergence of Message Passing

- Once C_i receives a final message from all neighbors except C_j , then $\delta_{i \to j}$ is also final (will never change)
- · Messages from leaves are immediately final

Convergence of Message Passing

- · Can pass messages from leaves inward
- If messages are passed in the right order, only need to pass 2(K-1) messages

Message Passing Order I

Message Passing Order II

Message Passing Order III

Answering Queries

- Posterior distribution queries on variables that appear together in clique
 - Sum out irrelevant variables from any clique containing those variables
- Introducing new evidence Z=z and querying X
 - If X appears in clique with Z herenet.) infrance
 - Multiply clique that contains X and Z with indicator function 1(Z=z)
 - Sum out irrelevant variables and renormalize

And More Queries

- Introducing new evidence Z=z and querying X if X does not share a clique with Z
 - Multiply 1(Z=z) into some clique containing Z reduction of the
 - Propagate messages along path to clique containing X

Daphne Koller

Summary

- In clique tree with K cliques, if messages are passed starting at leaves, 2(K-1) messages suffice to compute all beliefs
- Can compute marginals over all variables at only twice the cost of variable elimination
- By storing messages, inference can be reused in incremental queries

Inference

Message Passing

Clique Tree & Independence

RIP and Independence

- For an edge (i,j) in T, let:
 - $-W_{(i,j)}$ all variables that appear only on C_i side of T_i $W_{(j,i)}$ all variables that appear only on C_j side Variables on both sides are in the sepset $S_{i,j}$

· Theorem: T satisfies RIP if and only if, for every (i,j) $P_{\Phi} \models (oldsymbol{W}_{<(i,j)} \perp oldsymbol{W}_{<(j,i)} \mid oldsymbol{S}_{i,j})$

RIP and Independence

$$P_{\bullet} = \{\{G_{\bullet}, D\}_{\bullet} \cup \{J_{\bullet}, J_{\bullet}, H\} \} \{G_{\bullet}, S_{\bullet}\} \} \{G_{\bullet}, S_{\bullet}\} \{G_{\bullet}, G_{\bullet}\} \{$$

RIP and Independence

• Theorem: T satisfies RIP if and only if, for every edge (i,j) $P_{\Phi} \models (W_{<(i,j)} \perp W_{<(j,i)} \mid S_{i,j})$

Implications

• Each sepset needs to separate graph into two conditionally independent parts

Summary

- Correctness of clique tree inference relies on running intersection property
- Running intersection property implies separation in original distribution
- Implies minimal complexity incurred by any clique tree:
 - Related to minimal induced width of graph

Inference

Message Passing

Clique Tree and VE

Variable Elimination & Clique Trees

Variable elimination

- Each step creates a factor λ_i through factor product
- A variable is eliminated in λ_{i} to generate new factor τ_{i}
- $-\tau_i$ is used in computing other factors λ_i

· Clique tree view

- Intermediate factors λ_i are cliques
- $-\tau_i$ are "messages" generated by clique λ_i and transmitted to another clique λ_i

Clique Tree from VE

- VE defines a graph
 - Cluster $\underline{\textbf{C}_i}$ for each factor λ_i used in the computation
 - Draw edge C_i – C_j if the factor generated from λ_i is used in the computation of λ_i

Example

•
$$\tau_1(D) = \sum_C \phi_C(C)\phi_D(C,D)$$

$$H: \left(\tau_4(G,J) = \sum_{H} \phi_H(H,G,J)\right)$$

• **6**:
$$\tau_5(J,L,S) = \sum_G \phi_L(L,G)\tau_3(G,S)\tau_4(G,J)$$

•
$$T: (\tau_3(G,S)) = \sum_{I} \phi_I(I) \phi_S(S,I) \tau_2(G,I)$$
 • $S: \tau_6(J,L) = \sum_{S} \phi(J,L,S) \tau_5(J,L,S)$

Remove redundant cliques:

those whose scope is a subset of adjacent clique's scope

Properties of Tree

- VE process induces a tree
 In VE, each intermediate factor is used only once
 - Hence, each cluster "passes" a factor (message) to exactly one other cluster leves cluster has at next one
- Tree is family preserving:
 Each of the original factors must be used in some elimination step
 - And therefore contained in scope of associated

Properties of Tree

- · Tree obeys running intersection property
 - If $X \in C_i$ and $X \in C_j$ then X is in each cluster in the (unique) path between C_i and C_j

Running Intersection Property

 Theorem: If T is a tree of clusters induced by VE, then T obeys RIP

Summary

- A run of variable elimination implicitly defines a correct clique tree
 - We can "simulate" a run of VE to define cliques and connections between them
- Cost of variable elimination is ~ the same as passing messages in one direction in tree
- Clique trees use dynamic programming (storing messages) to compute marginals over all variables at only twice the cost of VE

Inference

Message Passing

BP in Practice

Misconception Revisited

Nonconvergent BP Run

Different Variants of BP

Synchronous BP:

all messages are updated in parallel

Different Variants of BP

Asynchronous BP:

Messages are updated one at a time

Observations

- Convergence is a local property:
 - some messages converge soon
 - others may never converge
- Synchronous BP converges considerably worse than asynchronous
- Message passing order makes a difference to extent and rate of convergence

Informed Message Scheduling

- Tree reparameterization (TRP)

Informed Message Scheduling

- Tree reparameterization (TRP)
 - Pick a tree and pass messages to calibrate

- Residual belief propagation (RBP)
 - Pass messages between two clusters whose beliefs over the sepset disagree the most

Smoothing (Damping) Messages

$$\underline{\delta_{i \to j}} \leftarrow \sum_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \psi_i \prod_{k \neq j} \delta_{k \to i}$$

$$\delta_{i \to j} \leftarrow \lambda \left(\sum_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \psi_i \prod_{k \neq j} \delta_{k \to i} \right) + (1 - \lambda) \underline{\delta_{i \to j}^{\text{old}}}$$
 • Dampens oscillations in messages

Summary

- To achieve BP convergence, two main tricks
 - Damping
 - Intelligent message ordering
- Convergence doesn't guarantee correctness
- Bad cases for BP both convergence & accuracy:
 - Strong potentials pulling in different directions
 - Tight loops
- Some new algorithms have better convergence:
 - Optimization-based view to inference

Inference

Message Passing

Loopy BP and Message
Decoding

Message Coding & Decoding

Noisy Channel

Channel Capacity

Binary 50.1 Construction of the symmetric channel 10.1 10.9

Binary erasure channel

capacity = 0.531

capacity = 0.9

Shannon's Theorem

How close to C can we get?

Signal to noise ratio (dB)

Turbocodes (May 1993)

NEAR SHANNON LIMIT ERROR - CORRECTING CODING AND DECODING: TURBO-CODES (1)

Claude Berrou, Alain Glavieux and Punya Thitimajshima

Claude Berrou, Integrated Circuits for Telecommunication Laboratory

Alain Glavieux and Punya Thitimajshima, Digital Communication Laboratory

Ecole Nationale Supérieure des Télécommunications de Bretagne, France

(1) Patents N° 9105279 (France), N° 92460011.7 (Europe), N° 07/870,483 (USA)

How close to C can we get?

Turbocodes: The Idea

Iterations of Turbo Decoding

Low-Density Parity Checking Codes

Decoding as Loopy BP

Turbo-Codes & LDPCs

- 3G and 4G mobile telephony standards
- · Mobile television system from Qualcomm
- Digital video broadcasting
- Satellite communication systems
- New NASA missions (e.g., Mars Orbiter)
- · Wireless metropolitan network standard

Summary

- Loopy BP rediscovered by coding practitioners
- Understanding turbocodes as loopy BP led to development of many new and better codes
 - Current codes coming closer and closer to Shannon limit
- Resurgence of interest in BP led to much deeper understanding of approximate inference in graphical models
 - Many new algorithms