Simplifying Radicals

Warm Up: Simplify the following radicals.

(1) $\sqrt{75}$

(2) $\sqrt{20a^2}$

(3) $\sqrt{121a^7b^4}$

11a3b2 Va

Parts of a radical

x, the radicand, is a real number n, the index is a positive integer greater than zero

RADICALS THAT ARE SIMPLIFIED HAVE:

- No fractions left under the radical.
- No perfect power factors in the radicand, x.
- No exponents in the radicand, greater than the index, n.
- No radicals appearing in the denominator of a fractional answer.

Perfect Power Factors

perfect squares 4, 9, 16, 25, 36, ... x^2 , x^4 , x^6 , x^8 , ... x^2y^2 , x^2y^4 , $16x^6y^8$, ... powers are "even" perfect cubes \pm 8, 27, 64, 125, ... x^3 , x^6 , x^9 , x^{12} , ... x^3y^3 , x^3y^6 , $27x^6y^9$, ... powers are "multiples of 3"

Exercise #1: Simplify

(a)
$$\frac{1}{4}\sqrt{48x^2y^4z^6}$$

 $\frac{1}{4}\sqrt{16\cdot 3\cdot \cancel{2}^2\cdot \cancel{2}^4} \overset{6}{\cancel{2}^6}$
 $\frac{1}{4}\cdot 16\times y^2z^3\sqrt{3}$
 $4xy^2z^3\sqrt{3}$

(b)
$$\sqrt{\frac{x^2}{9y^8}}$$

$$\frac{x}{3y^4}$$

(c)
$$-\sqrt{x}\underline{y}^{10}z^{5}$$

 $-\sqrt{x}\underline{y}^{10}\underline{z}^{4}\underline{z}$
 $-\sqrt{5}z^{2}\sqrt{x}z$

(d)
$$\sqrt[3]{-8x^6}$$
 $-2x^2$

(e)
$$\sqrt[3]{128a^{16}b^{6}}$$

 $\sqrt[3]{64 \cdot 2a^{15} \cdot a \cdot b^{6}}$
 $\sqrt[4]{a^{5}b^{2}} \sqrt[3]{2a}$

Challenge Question:
$$\sqrt[5]{224r^7}$$

$$s \sqrt{32 \cdot 7 \cdot 1} \cdot 1$$

Simplifying Radicals Practice

Exercise #1: Find the value of each:

(a)
$$\sqrt{25}$$

5

2

(c)
$$3\sqrt{36}$$

3.6

18

(d)
$$\sqrt{\frac{9}{16}}$$

34

(e)
$$\sqrt[3]{\frac{8}{27}}$$

3/3

(f)
$$\sqrt{100x^2y^2}$$

lOxy

(g)
$$\sqrt{x^6 v^{10}}$$

 $\chi^3 \gamma^5$

(h)
$$\sqrt[3]{-64}$$

-4

Exercise #2: Write each expression in simplest radical form.

Simplest Radical Form means that the radical is written so that no perfect power factor remains in the radicand.

(a)
$$\sqrt{24}$$

256

(b)
$$\frac{1}{2}\sqrt{900x}$$

$$\frac{1}{2} \cdot 30\sqrt{x}$$

(c)
$$\sqrt{z^3}$$

Exercise #3: Write each expression in simplest radical form.

(a)
$$2\sqrt{45}$$

(b)
$$\sqrt[3]{16}$$

(c)
$$\sqrt{75x^3y^2}$$

(d)
$$\sqrt{98k}$$

(e)
$$3\sqrt{18a^3b^4}$$

(f)
$$\sqrt[3]{-8y^4}$$

(g)
$$\sqrt[3]{\frac{a^6b^9}{-64}}$$

(h) Challenge:
$$\sqrt[5]{-243x^6y^{12}}$$