序数理论拾遗:基数

Def. 称 X 与 Y 等势若且仅若存在双射 $X \rightarrow Y$.

Def. 定义等势类为集合依双射构成等价类之商空间, 记 |X| 为 X 的等势类. 记偏序关系 $X \leq Y$ 若且仅若存在单射 $X \rightarrow Y$.

Thm. (Schröder-Bernstein) X 与 Y 等势若且仅若 $|X| \le |Y|$ 且 $|Y| \le |X|$.

Proof. 取 $f: X \to Y \ni g: Y \to X$ 为单射.不妨设 g 为自然嵌入,则

$$\cdots f(f(Y)) \subset f(f(X)) \subset f(Y) \subset f(X) \subset Y \subset X.$$

记 X(Y) 在 f 的 k 次复合下的像为 X_k 与 Y_k , 则

$$\phi:X o Y, x\mapsto egin{cases} f(x) & x\in \cup_{n\geq 1}(X_n\setminus Y_n),\ x & ext{else}. \end{cases}$$

为良定义的双射.

Venn 图下 $X\setminus Y$ 为最外环, $Y\setminus f(X)$ 为此外环, 以此类推. 则 ϕ 在偶数环上恒同, 在奇数环上为向内缩进 2.

Ex1 证明 $|X| + |Y| = |X \dot{\cup} Y|$, $|X| \cdot |Y| = |X \times Y|$, $|X^Y| = |X|^{|Y|}$.

Thm (Cantor) 对任意集合总有 $|\mathcal{P}(X)| > |X|$.

Proof. 反之, 若存在满射 $\phi: X \to \mathcal{P}(X)$, 则

$$X_0 := \{x \in X \mid x
otin \phi(x)\}$$

不在 ϕ 像集中. 矛盾.

Def. 称序数 α 为基数若且仅若对任意 $\beta < \alpha$ 都有 $|\beta| < |\alpha|$.

Lemma. S 为基数构成的集合,则 $\sup S$ 为基数.

Proof. S 非极限序数之情形显然. 反之, 若存在 $\alpha \in S$ 使得 $|\alpha| = |\sup S|$, 则存在 $\beta \in S$ 使得 $\beta > \alpha$. 因此 $|\alpha| \le |\beta| \le |\sup S|$, 进而 $|\alpha| = |\beta|$, 与 β 为序数矛盾!

Def. 采用超穷递归定义

- 无穷基数 $\aleph_0 := \omega$,
- $\aleph_{\alpha+1}$ 为大于 \aleph_{α} 之后继基数,即大于 \aleph_{α} 之最小基数,
- 特别地 α 为极限序数时, 定义 $\aleph_{\alpha} := \sup_{\beta < \alpha} \alpha_{\beta}$.

Ex2 证明 $|\mathbb{R}| = 2^{\aleph_0}$. 连续统假设认为 $\aleph_1 := 2^{\aleph_0}$, 业已证明连续统假设独立于 ZFC 公理.

Thm. \mathbf{On}^2 上存在典范良序 \leq 使得 $(\mathbf{On}^2_{\leq (0,\alpha)}) = (\alpha \times \alpha, \leq)$.

Proof. 定义 $(\alpha_1, \alpha_2) \leq (\beta_1, \beta_2)$ 当且仅当

$$(\max_{i=1,2}\alpha_i<\max_{j=1,2}\beta_j)\vee[(\max_{i=1,2}\alpha_i=\max_{j=1,2}\beta_j)\wedge(\min_{i=1,2}\alpha_i\leq\min_{j=1,2}\beta_j)].$$

Thm. $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$, 即 $|X| \geq \omega$ 时总有 $|X \times X| = |X|$.

Proof. 考虑 \mathbf{On}^2 上的典范良序, 记 α 为使得 $\aleph_{\alpha} \cdot \aleph_{\alpha} > \aleph_{\alpha}$ 之最小序数, 由数学分析知 $\aleph_{\alpha} > \aleph_{0}$ (可数的可数并仍可数). 不妨记存在同构 $f: \beta \xrightarrow{\sim} (\aleph_{\alpha} \times \aleph_{\alpha}, \leq)$, 则 $\beta > \aleph_{\alpha}$.

若存在 $\gamma < \alpha$ 使得 $f(\aleph_{\alpha}) \subset \aleph_{\gamma} \times \aleph_{\gamma}$, 则 $\aleph_{\alpha} = \aleph_{\gamma} \cdot \aleph_{\gamma} = \aleph_{\gamma}$ 矛盾. 反之, 若 $(\aleph_{<\alpha} \times \aleph_{<\alpha}, \leq) \subset f(\aleph_{\alpha})$, 则不论 α 为后继序数抑或极限序数时都有矛盾.

Col. (Ex4) 对任意基数 $2 \le \gamma \le \lambda \ge \omega$, 总有 $\lambda + \gamma = \lambda \cdot \gamma = \max\{\lambda, \gamma\}$, $\gamma^{\lambda} = 2^{\lambda}$.

Thm. (König's lemma) 对指标集 I, 基数 $\gamma_i < \lambda_i$ 恒成立, 则 $\sum_{i \in I} \gamma_i < \prod_{i \in I} \lambda_i$.

Proof. 显然存在自然的嵌入 $\sum_{i \in I} \{i\} \times \gamma_i \to \prod_{i \in I} \lambda_i$. 若等号成立, 下证明其矛盾.

若存在 $\cup_i F_i = \prod_{i \in I} E_i$ ($|F_i| = \gamma_i$, $|E_i| = \lambda_i$), 记 p_i 为 E 到 E_i 之投影, 则

$$G_i := p_i(F_i) \subsetneq E_i, \quad i \in I.$$

从而 $(\prod_{i\in I} E_i) \setminus (\cup_i F_i)$ 中包含 $\prod_{i\in I} (E_i \setminus G_i)$, 矛盾.

作为特例, $|I| < 2^{|I|}$.

Another König's lemma

Def. 称偏序集 (P, \leq) 为树若且仅若存在极小元 (树根) **0**, 同时任意下区间 [0, u] 关于 \leq 为链 (即良序集).

Def. 记 $h(u) := |[\mathbf{0}, u]|$ 为树的高度, 第 α 层 $L_{\alpha} := \{u \in P \mid h(u) = n\}$, 后继项 $u_{+1} := \{v \in P \mid u < v, h(u) + 1 = h(v)\}$, 其中 α 为序数.

Def. 称 T 有限分岔若且仅若 $\forall u \in P, 0 \leq |u_{+1}| < \omega$.

Def. 称子偏序 $\{P',<\}\subset P$ 为一根枝条若且仅若 P' 由一串接连的后继项组成.

Thm. (König's lemma*) P 为有无穷的有限分岔树, 且对任意 $u \in P$ 都有 $h(u) < \infty$. 则存在长为无穷的枝条.

Proof. 取 $t_n \in L_n \subset P$ 满足 $t_1 \leq t_2 \leq \cdots \leq t_n$, 且 $|\{s \mid s \geq t_n\}| \geq \omega$.

Ex3 利用以上定义证明: 对任意顶点集可数的图 G, 若每个子图的染色数不超过 k, 则 G 的染色数不超过 k.

Def. 取 κ 为基数. 称 P 为 κ -Aronszajn 树, 若且仅若 P 高度为 κ , 且一切 $u \in P$ 的分岔数, 所有枝条的长度, 以及一层中元素的数量均小于 κ . 通常将 \aleph_1 -Aronszajn 树简称作 Aronszajn 树.

Cor. 不存在 \aleph_0 -Aronszajn 树. 若 P 的高度为 \aleph_0 , 分叉数与每一层元素数量有限 ($\leq \aleph_0$), 则 根据 König's lemma*, 总是存在长度为 \aleph_0 的枝条.

Thm. 存在 \aleph_1 -Aronszajn 树.

Proof. 构造如下:

- 1. 取 $\mathbb{Q}_{>0}$ 中紧子集全体为 P, 定义 $x \leq y$ 若且仅若 $x \subset y$ 且 $y \setminus x$ 中元素大于 x 中一切元素. 记 $L_0 = \{\emptyset\}$.
- 2. 对任意 $\alpha < \aleph_1$, 定义 $L_{\alpha+1}$ 之全体为形如 $x\dot{\cup}\{q\}$ 的集合, 其中 $x\in L_\alpha$, q 大于 x 中一切元素. 若 α 为极限序数, 定义 L_α 为元素形如 $L_{<\alpha}$ 中某条极大枝条中元素之并.
- 3. 根据构造, 任意点处的分岔数量为 ℵ₀.
- 4. 显然对任意 $\alpha < \aleph_1$, 总有 $|L_{\alpha}| = \aleph_0$. 因为

- a. $\alpha = 0$ 时显然.
- b. $\alpha = \beta + 1$ 为后继序数时, $|L_{\alpha}| \leq |L_{\beta}| \cdot |\mathbb{Q}| = \aleph_0$.
- c. α 为极限序数时, $\forall x \in P_{\alpha}$, 考虑包含 x 且上界为 $q \in \mathbb{Q}_{>0}$ 的枝条, 则 L_{α} 中包含至多可数个可数集, 故 $|L_{\alpha}| = \aleph_{0}$.
- 5. 兹有断言: L 中不存在不可数长的枝条. 反之, 设其为 $b_0 b_1 b_2 \cdots$, 则 $\forall i < \aleph_1$, 存在 $x_i \in b_{i+1} \setminus b_i$ 使得 x_i 比 b_i 中元素严格大, 故 $\{x_i\}_{0 \le i < \aleph_1}$ 为 $\mathbb{Q}_{>0}$ 中不可数的单调递增数列 (此处更宜称作网), 故矛盾!

Thm. ℵ₂-Aronszajn 树之存在性在 ZFC 公理中不可判.

Proof. 该论断涉及基数之弱紧性等概念, 此处从略.