```
from google.colab import drive
```

```
drive.mount("/content/gdrive")
```

!pwd # show current path

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call d: /content/gdrive/My Drive/ClasesMachineLearning

## %cd "/content/gdrive/MyDrive/ClasesMachineLearning"

!ls # show current directory

/content/gdrive/MyDrive/ClasesMachineLearning

brain\_stroke.csv MR2.ipynb Valhalla23.csv

ChallengeSemana2.ipynb Semana3.ipynb wine.data iris.data Ses03\_Practice.ipynb wine.names

```
import numpy as np
from random import randrange
import matplotlib.pyplot as plt
import math
import pandas as pd
import seaborn as sn
```

df = pd.read\_csv('brain\_stroke.csv') # Leer dataset
df.head()

|   | gender | age  | hypertension | heart_disease | ever_married | work_type     | Residence_ |
|---|--------|------|--------------|---------------|--------------|---------------|------------|
| 0 | Male   | 67.0 | 0            | 1             | Yes          | Private       |            |
| 1 | Male   | 80.0 | 0            | 1             | Yes          | Private       |            |
| 2 | Female | 49.0 | 0            | 0             | Yes          | Private       |            |
| 3 | Female | 79.0 | 1            | 0             | Yes          | Self-employed |            |
| 4 | Male   | 81.0 | 0            | 0             | Yes          | Private       |            |

```
df['gender'] = df['gender'].map({'Male':0,'Female':1}) #Transformamos la información c
df['ever_married'] = df['ever_married'].map({'Yes':0,'No':1}) # Hacemos lo mismo con ]
fSmoked = []
nSmoked = []
smokes = []
```

```
unknown = []
for i in df.values:
  if i[9] == "formerly smoked":
    fSmoked.append(1)
  else:
    fSmoked.append(0)
  if i[9] == "never smoked":
    nSmoked.append(1)
  else:
   nSmoked.append(0)
  if i[9] == "smokes":
    smokes.append(1)
  else:
    smokes.append(0)
  if i[9] == "Unknown":
    unknown.append(1)
  else:
    unknown.append(0)
df['fSmoked'] = fSmoked
df['nSmoked'] = nSmoked
df['smokes'] = smokes
df['sUnknown'] = unknown
#Transformamos las variables de fumador en variables dummy con 1 y 0 cada una
df.head()
```

|   | gender | age  | hypertension | heart_disease | ever_married | work_type         | Residence_t |
|---|--------|------|--------------|---------------|--------------|-------------------|-------------|
| 0 | 0      | 67.0 | 0            | 1             | 0            | Private           | Ur          |
| 1 | 0      | 80.0 | 0            | 1             | 0            | Private           | R           |
| 2 | 1      | 49.0 | 0            | 0             | 0            | Private           | Ur          |
| 3 | 1      | 79.0 | 1            | 0             | 0            | Self-<br>employed | R           |
| 4 | 0      | 81.0 | 0            | 0             | 0            | Private           | Ur          |



```
sn.set(rc = {'figure.figsize':(25,16)})
sn.heatmap(df.corr(), annot=True, cmap= 'YlGnBu') # Revisar correlación de variables p
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7feba58b2a10>

| gender            | 1       | 0.027 | -0.021 | -0.086 | -0.029 | -0.056 | 0.012 |
|-------------------|---------|-------|--------|--------|--------|--------|-------|
| age               | 0.027   | 1     | 0.28   | 0.26   | -0.68  | 0.24   | 0.37  |
| hypertension      | -0.021  | 0.28  | 1      | 0.11   | -0.16  | 0.17   | 0.16  |
| heart_disease     | -0.086  | 0.26  | 0.11   | 1      | -0.11  | 0.17   | 0.061 |
| ever_married      | -0.029  | -0.68 | -0.16  | -0.11  | 1      | -0.15  | -0.37 |
| avg_glucose_level | -0.056  | 0.24  | 0.17   | 0.17   | -0.15  | 1      | 0.19  |
| bmi               | 0.012   | 0.37  | 0.16   | 0.061  | -0.37  | 0.19   | 1     |
| stroke            | -0.0089 | 0.25  | 0.13   | 0.13   | -0.11  | 0.13   | 0.057 |
|                   |         |       |        |        |        |        |       |

df = df.drop(["work\_type", "smoking\_status"], axis=1)
df['Residence\_type'] = df['Residence\_type'].map({'Rural':0,'Urban':1})
df.head() # Eliminamos algunas columnas y cambiamos el tipo de residencia a 1 y 0

|   | gender | age  | hypertension | heart_disease | ever_married | Residence_type | avg_gl |
|---|--------|------|--------------|---------------|--------------|----------------|--------|
| 0 | 0      | 67.0 | 0            | 1             | 0            | 1              |        |
| 1 | 0      | 80.0 | 0            | 1             | 0            | 0              |        |
| 2 | 1      | 49.0 | 0            | 0             | 0            | 1              |        |
| 3 | 1      | 79.0 | 1            | 0             | 0            | 0              |        |
| 4 | 0      | 81.0 | 0            | 0             | 0            | 1              |        |

```
sn.set(rc = {'figure.figsize':(25,16)})
```

sn.heatmap(df.corr(), annot=True, cmap= 'YlGnBu') #Visualizamos la correlación de las
<matplotlib.axes.\_subplots.AxesSubplot at 0x7feba5923c50>

| gender            | 1       | 0.027 | -0.021  | -0.086 | -0.029  | 0.0043  | -0.056 |  |
|-------------------|---------|-------|---------|--------|---------|---------|--------|--|
| age               | 0.027   | 1     | 0.28    | 0.26   | -0.68   | 0.017   | 0.24   |  |
| hypertension      | -0.021  | 0.28  | 1       | 0.11   | -0.16   | -0.0048 | 0.17   |  |
| heart_disease     | -0.086  | 0.26  | 0.11    | 1      | -0.11   | 0.0021  | 0.17   |  |
| ever_married      | -0.029  | -0.68 | -0.16   | -0.11  | 1       | -0.0082 | -0.15  |  |
| Residence_type    | 0.0043  | 0.017 | -0.0048 | 0.0021 | -0.0082 | 1       | 0.0013 |  |
| avg_glucose_level | -0.056  | 0.24  | 0.17    | 0.17   | -0.15   | 0.0013  | 1      |  |
| bmi               | 0.012   | 0.37  | 0.16    | 0.061  | -0.37   | 0.013   | 0.19   |  |
| stroke            | -0.0089 | 0.25  | 0.13    | 0.13   | -0.11   | 0.016   | 0.13   |  |
| fSmoked           | -0.045  | 0.24  | 0.057   | 0.068  | -0.17   | 0.0098  | 0.067  |  |
| nSmoked           | 0.1     | 0.12  | 0.065   | -0.023 | -0.1    | -0.027  | 0.025  |  |
| smokes            | -0.013  | 0.071 | 0.031   | 0.044  | -0.11   | 0.03    | 0.018  |  |

df = df.drop(["gender", "Residence\_type", "avg\_glucose\_level", "nSmoked", "smokes", "sUnkr
df.head() #Eliminamos todas las variables que no influyen en nuestro resultado

|  |   | age  | hypertension | heart_disease | stroke | 1 |  |
|--|---|------|--------------|---------------|--------|---|--|
|  | 0 | 67.0 | 0            | 1             | 1      |   |  |
|  | 1 | 80.0 | 0            | 1             | 1      |   |  |

sn.set(rc = {'figure.figsize':(10,5)})
sn.heatmap(df.corr(), annot=True, cmap= 'YlGnBu') # Visualizamos solo las variables ut

<matplotlib.axes.\_subplots.AxesSubplot at 0x7feba553b7d0>



```
df_x = df.drop(["stroke"],axis=1).values
df_y = df["stroke"].values
print(len(df_x)) #Separamos nuestra información de entrada y salida de nuestro modelo
4981
```

```
train_y = []
train_x = []
validate_y = []
validate_x = []
for i in range(0,4000):
    value = randrange(0,len(df_y))
    train_y.append(df_y[value])
    train_x.append(df_x[value])
    df_y = np.concatenate((df_y[:value],df_y[value+1:]))
    df_x = np.concatenate((df_x[:value],df_x[value+1:]))
validate_y = df_y
validate_x = df_x
#Aleatoriamente tomamos 4000 valores de nuestros datos para entrenar y dejamos los oti
#Aleatoriamente tomamos 4000 valores de nuestros datos para entrenar y dejamos los oti
```

```
h = lambda x, theta: theta[0]+theta[1]*x[0]+theta[2]*x[1]+theta[3]*x[2]

j_i = lambda x, y, theta: (y - h(x, theta))**2 #Creamos nuestra función h y nuestra funci
```

```
theta = [1,1,1,1,1] #Cambia dependiendo del orden del modelo (1 theta para cada dimens
alpha = 0.01
n = len(train y)
print(theta) #Realizamos 1000 iteraciones con un alpha de 0.01
for idx in range(1000):
  acumDelta0 = []
  acumDelta1 = []
  acumDelta2 = []
  acumDelta3 = []
  for x_i, y_i in zip(train_x,train_y):
    acumDelta0.append(h(x_i,theta)-y_i)
    acumDeltal.append((h(x i,theta)-y i)*x i[0])
    acumDelta2.append((h(x_i,theta)-y_i)*x_i[1])
    acumDelta3.append((h(x_i,theta)-y_i)*x_i[2])
  sJt0 = sum(acumDelta0)
  sJt1 = sum(acumDelta1)
  sJt1 = sum(acumDelta2)
  sJt1 = sum(acumDelta3)
  theta[0] = theta[0] - (alpha/n)*sJt0
  theta[1] = theta[1] - ((alpha/n)*sJt1)
  theta[2] = theta[2] - ((alpha/n)*sJt1)
  theta[3] = theta[3] - ((alpha/n)*sJt1)
print(theta)
    [1, 1, 1, 1, 1]
    [-0.5733452394969707, 0.011214290464904483, 0.011214290464904483, 0.011214290464904483]
n train = len(train y)
n_validate = len(validate_y)
#Validación
acumDelta = []
for x i, y i in zip(validate x, validate y):
    acumDelta.append(j i(x i,y i,theta))
sDelta = sum(acumDelta)
j validate = 1/(2*n validate)*sDelta
print(j validate)
#Trainingg
acumDelta = []
for x i, y i in zip(train x, train y):
    acumDelta.append(j_i(x_i,y_i,theta))
sDelta = sum(acumDelta)
j train = 1/(2*n train)*sDelta
print(j train)
```

```
print(theta)
#Obtenemos el error el cual es muy pequeño
    0.05256122803219075
    0.05138047805995558
    print(df)
               hypertension heart disease
           age
                                          stroke
    0
          67.0
          80.0
    1
                          0
                                        1
                                                1
    2
          49.0
                          0
                                        0
                                                1
    3
          79.0
                          1
                                        0
                                                1
          81.0
                                                1
    . . .
          . . .
    4976
          41.0
                          0
                                        0
    4977
          40.0
                          0
                                        0
                                                0
    4978
         45.0
                          1
                                        0
                                                0
    4979
          40.0
                          0
                                        0
                                                0
    4980 80.0
                          1
                                                0
    [4981 rows x 4 columns]
def predict(x,expected):
 res = h(x, theta)
 exp = 0
 if res<0.5:
   exp = 0
 else:
   exp = 1
 if exp == expected:
   return 1
 else:
   return 0
#Creamos una función que de acuerdo al resultado de nuestro modelo pueda predecir un 1
#Y retornar si el modelo predijo bien o no, si predice bien retorna 1 y si predice mal
#Para redondear, ya que queremos resultados de 1 y 0, si el valor es menor a 0.5, asur
valid y = validate y
valid x = validate x
good = 0
bad = 0
1 = 981
for i in range(0,100):
 n = randrange(0,1)
 if predict(valid x[n],valid y[n]) == 1:
```

qood+=1

```
else:
    bad+=1
valid_x = np.concatenate((valid_x[:n],valid_x[n+1:]))
valid_y = np.concatenate((valid_y[:n],valid_y[n+1:]))
l-=1
print(good,bad)
# Aleatoriamente seleccionamos 100 valores de nuestra muestra de validación y los mete
# veces predice correctamente y cuantas se equivoca

97 3
```





## Productos de pago de Colab - Cancelar contratos

✓ 0 s completado a las 15:39

