(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 20.02.2002 Bulletin 2002/08
- (21) Application number: 01115472.1
- (22) Date of filing: 27.06.2001

(51) Int CI.7: **G01N 33/18**, A01K 67/027, C07K 14/46, C12N 15/12, A61K 49/00

- (84) Designated Contracting States:
- AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE TR
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 17.08.2000 JP 2000247729
- (71) Applicant: President of Hiroshima University Higashihiroshima-shi, Hiroshima 739-8511 (JP)
- (72) Inventor: Yamashita, Ichiro Higashihiroshima-shi, Hiroshima-ken (JP)
- (74) Representative: Winter, Brandl, Fürniss, Hübner, Röss, Kaiser, Polte Partnerschaft Patent- und Rechtsanwaltskanzlei Alois-Steinecker-Strasse 22 85354 Freising (DE)

(54) High estrogen-sensitive medaka fish

(57) (1) Transgenic medaka fish into which a polynucleotide having the nucleotide sequence from 211 to 1935 position represented by Sequence ID No: 1 is introduced, (2) A method of producing medaka fish having one or more thrombi, comprising the step of raising the transgenic medaka fish described in (1) in the presence of estrogen, (3) Medaka fish having one or more thrombi

produced by the method described in (2), and (4) A method of testing an estrogen-like acting substance, comprising the steps of raising the transgenic medaka fish described in (1) in test water, and observing whether or not one or more thrombi are formed in the medaka fish after the raising step.

Description

30

35

40

[0001] The present invention relates to high estrogen-sensitive medaka fish, and more specifically, to transgenic medaka fish having a medaka-derived estrogen receptor gene introduced.

[0002] The transgenic medaka fish of the present invention can be used to detect an estrogen-like endocrine disrupting chemicals, and also used as an experimental animal for elucidating development mechanism of thrombosis and as bioassay system for developing a therapeutic agent of thrombosis.

[0003] Recently, the effects of chemical substances present in the environment upon endocrine system of an organism have been intensively studied, and have attracted a high interest increasingly. Since many chemical substances having endocrine disrupting activity upon an organism exhibit estrogen-like action, most of studies are directed to estrogen which is a female hormone.

[0004] Pollution of rivers with such estrogen-like chemical substances has constituted a social problem on a global scale. To detect the estrogen-like chemical substances from a river in the present invention, we tried the use of medaka fish which has excellent features as an experimental animal. However, the medaka fish cannot be used as an aquatic animal for testing environmental water, since it is not sensitive even to an extremely small amount of estrogen. This problem was found for the first time by the present inventor in the course of making the present invention.

[0005] The present invention was made to overcome the aforementioned problem. An object of the present invention is to provide transgenic medaka fish having sensitivity to a very small amount of estrogen. Another object of the present invention is to provide a method of producing medaka fish having one or more thrombi by using the transgenic medaka fish, and to provide the medaka fish having one or more thrombi produced by the method. A further object of the present invention is to provide a method of testing an estrogen-like acting substance by using the transgenic medaka fish.

[0006] To attain the aforementioned objects, the present inventor have succeeded in preparing transgenic medaka fish having a medaka-derived estrogen receptor gene introduced, namely, high estrogen-sensitive medaka fish. The present invention was made based upon such achievement.

[0007] To be more specific, the present invention was achieved by the means described below.

- (1) A polynucleotide having a nucleotide sequence represented by Sequence ID No: 1.
- (2) A polynucleotide comprising the nucleotide sequence from 211 to 1935 position represented by Sequence ID No: 1.
- (3) A protein having an amino acid sequence encoded by the polynucleotide described in (2).
- (4) A recombinant vector containing the polynucleotide described in (1) or (2).
- (5) Transgenic medaka fish into which the polynucleotide described in (1) or (2) is introduced.
- (6) A method of producing medaka fish having one or more thrombi, comprising the step of raising the transgenic medaka fish described in (5) in the presence of estrogen.
- (7) Medaka fish having one or more thrombi, which is obtained by raising the transgenic medaka fish described in (5) in the presence of estrogen.
- (8) A method of testing an estrogen-like action in test water, comprising the steps of:

raising the transgenic medaka fish described in (5) in the test water; and observing whether or not one or more thrombi are formed in the medaka fish after the raising step.

- (9) The method described in (8), wherein the test water is water taken from environment.
- (10) The method described in (8), wherein the test water is water having a test substance added.

45 [0008] This summary of the invention does not necessarily describe all necessary features so that the invention may also be a sub-combination of these described features.

[0009] Now, the present invention will be explained in detail.

[0010] In the present invention, the medaka fish to be used in cloning an estrogen receptor gene and the medaka fish to be used in introducing the cloned gene are not particularly limited, as long as they belong to a species Oryzias latipes. The medaka fish actually used in the present invention were obtained from the BioScience Center, Nagoya University. The obtained medaka fish were grown while feeding Tetramin (Tetra) in an amount of about 1-10 mg/day. [0011] It should be noted that fertilized eggs of the medaka fish cannot be deposited, because a technology for resuming the development of a freeze-stored egg, as the need arises, has not yet been established. Therefore, the medaka fish used in the present invention are now raised under control of the present inventor with responsibility. As described in the above, the medaka fish to be used in the present invention are not limited to those raised by the present inventor, and any medaka fish may be used in the present invention.

{Cloning of Medaka-derived estrogen receptor gene}

[0012] The medaka-derived estrogen receptor gene of the present invention is cloned from liver cDNA library of adult medaka fish. More specifically, the medaka-derived estrogen receptor cDNA is cloned by preparing a probe based on a nucleotide sequence of a human-derived estrogen receptor gene and screening the above cDNA library by use of the probe.

[0013] The nucleotide sequence of the cloned estrogen receptor cDNA is determined, and the amino acid sequence predicted from the nucleotide sequence is determined. The nucleotide sequence of the medaka-derived estrogen receptor cDNA and the amino acid sequence are shown by Sequence ID No: 1 in the Sequence Listing.

[0014] In the present invention, the nucleotide sequence for expressing medaka estrogen receptor may have arbitrary length, as long as it comprises at least a coding region (i.e., the nucleotide sequence from 211 to 1935 position represented by Sequence ID No: 1). Furthermore, in the present invention, the amino acid sequence of the medaka estrogen receptor may also have deletion, addition and/or substitution of one or several amino acids in the amino acid sequence represented by Sequence ID No: 1, as long as it has the same function as the protein consisting of the amino acid sequence represented by Sequence ID No: 1.

{Preparation of Recombinant vector}

[0015] The medaka-derived estrogen receptor cDNA cloned by the aforementioned method is introduced into a vector. The introduction of the cDNA into a vector can be performed in accordance with a known genetic engineering process. In this manner, it is possible to prepare a recombinant vector into which the medaka-derived estrogen receptor gene is inserted.

[0016] The vector to be used in the present invention is not particularly limited, as long as it can express the protein encoded by a foreign gene inserted therein. In the present invention, it is preferable to use a plasmid having a promoter sequence and a poly (A) signal sequence, as a vector. For example, as described later in examples, a new plasmid vector is constructed by purifying each DNA fragment from another plasmid containing a DNA fragment of a medaka actin promoter and from another plasmid containing a DNA fragment of a SV40 poly (A) signal, and the resultant plasmid vector may be used.

30 {Preparation of Transgenic medaka fish}

[0017] The recombinant vector prepared as mentioned above is transferred into a nucleus of a medaka fertilized egg, thereby preparing transgenic medaka fish capable of expressing the estrogen receptor gene in an excessive amount. As the medaka fertilized egg to be transformed in the present invention, an embryo at a single-cell stage or a two-cell stage within one hour after fertilization is preferable. The recombinant vector can be transferred into the fertilized egg by means of a known microinjection procedure.

[0018] The fertilized eggs which have been subjected to the gene transfer operation are preferably hatched in a medaka physiological saline solution (7.5 g/L NaCl, 0.2 g/L KCL, 0.2 g/L CaCl₂, 0.02 g/L NaHCO₃) at 25-28°C. The hatched medaka fish are raised for about 4 months until they become adult fish.

[0019] From the adult fish, the fish actually having the gene introduced are screened by the following method. A DNA is first extracted from the adult fish. Then, from the extracted DNA, the estrogen receptor gene is amplified by a PCR, and the amplified DNA fragment is subjected to electrophoresis. The estrogen receptor gene inherently present in the chromosome of wild medaka fish has intron, whereas the estrogen receptor gene introduced into the medaka fish herein is a cDNA having no intron. Therefore, two types of estrogen receptor genes can be distinguished by electrophoresis on the basis of the difference of the size of DNA bands. By such procedure, it is possible to screen the medaka fish having the gene successfully introduced. However, it is not clear whether or not the estrogen receptor gene is introduced into the chromosome of a germ cell (sperm or egg) of the medaka fish screened in this step.

[0020] Subsequently, the medaka fish having the estrogen receptor gene introduced into the chromosome of a germ cell are screened by the following method. The medaka fish which has been confirmed to have the gene introduced by the aforementioned method is crossed with wild medaka fish, thereby obtaining offspring. If the medaka fish inheriting the estrogen receptor gene introduced is identified among the offspring, its parent turns out to be desired medaka fish having the estrogen receptor gene introduced in the chromosome of a germ cell. Whether or not the medaka offspring inherits the introduced gene can be identified, in the same way, by electrophoresis on the basis of the difference of the size of DNA bands between the introduced gene and the inherent gene.

[0021] The screened medaka fish having the estrogen receptor gene introduced in the chromosome can inherit the gene from generation to generation. Such medaka fish corresponds to a desired transgenic medaka fish of the present invention.

[0022] The expression of the estrogen receptor gene in the transgenic medaka fish of the present invention was

checked by RT-PCR, and it was confirmed that the estrogen receptor gene was actually expressed. On the other hand, the expression of the estrogen receptor gene was rarely detected in wild medaka fish. As described above, the transgenic medaka fish of the present invention has a large number of estrogen receptors by the expression of the introduced gene. For this reason, the transgenic medaka fish of the present invention shows sensitivity even to a very small amount of estrogen.

{Preparation of Medaka fish having one or more thrombi}

[0023] In the present invention, it was found that the medaka fish having one or more thrombi can be prepared, even if the transgenic medaka fish of the present invention is raised in the presence of estrogen whose concentration is lower than that capable of inducing the formation of a thrombus in wild medaka fish.

[0024] As the transgenic medaka fish to be used for the formation of a thrombus, it is preferable to employ an embryo within 12-24 hours after fertilization, because the formation of a thrombus in the embryo can be easily observed under a dissecting microscope. To form a thrombus in the transgenic medaka fish of the present invention, it is sufficient to contain estrogen in the concentration of 10-20 ng/L, preferably 100-200 ng/L, in the environment for raising medaka fish. It is noted that wild medaka fish require estrogen in the concentration of 4 mg/L or more in order to form a thrombus. As the term of raising the medaka fish in the presence of estrogen, a period of three to four days is necessary for the formation of a thrombus. The growth conditions may be the same as those generally employed for raising medaka fish. [0025] It is possible to confirm the formation of a thrombus under a dissecting microscope.

[0026] The medaka fish having one or more thrombi prepared in this manner is useful for studying therapy of thrombosis.

{Method of testing an Estrogen-like acting substance}

[0027] The presence or absence of the estrogen-like acting substance can be detected by growing the transgenic medaka fish of the present invention in test water to be checked for the estrogen-like action and then observing whether or not a thrombus is formed in the medaka fish.

[0028] As the transgenic medaka fish to be used in order to detect an estrogen-like acting substance, an embryo within 12-24 hours after fertilization is preferable because it is easily observed under a dissecting microscope.

[0029] The "test water" used herein may be either water collected from the environment (river etc.), which may perhaps contain an estrogen-like acting substance, or water added a chemical substance, which may perhaps act like estrogen, as a test substance. When the former water taken from the environment is used, it is possible to detect the presence or absence of the estrogen-like acting substance in the environmental water. When the latter water added a test substance is used, the estrogen-like action of the test substance can be checked.

[0030] When the test substance is added to the test water, it is preferable to set a concentration thereof at 10 ng/L to 1 mg/L. As the period for raising the medaka fish in the test water, 3-6 days are appropriate. The growth conditions may be the same as those usually raising medaka fish.

[0031] It is possible to observe the formation of a thrombus under a dissecting microscope.

[0032] In fact, an estrogen-like acting chemical substance is known to have an endocrine disrupting action even in an extremely small amount. Therefore, the transgenic high estrogen-sensitive medaka fish of the present invention is very useful in both the aforementioned tests of the environmental water and the test substance.

[Examples]

50

5 [0033] Now, examples of the present invention will be explained.

Cloning of Medaka-derived estrogen receptor cDNA

1. Construction of liver cDNA library of Medaka

[0034] Total RNA (10 mg) was obtained from 20 livers of female adult medaka fish by use of RNeasy Maxi Kit (QIA-GEN #75162) in accordance with the attached protocol. Then, mRNA (100 μ g) was isolated from the obtained total RNA by using Oligotex TM-dT30<Super> (TaKaRa w9021B) in accordance with the attached protocol. Using the isolated mRNA, cDNA (about 10 μ g) was synthesized by a cDNA Synthesis Kit (STRATAGENE SC200401) in accordance with the attached protocol. The synthesized cDNA (1 μ g) was ligated with λ ZAPII (STRATAGENE SC237211) (1 μ g) by using Ligation High (STRATAGENE LGK-101) in accordance with the attached protocol. The total amount of the reaction solution is packaged by using Gigapack III Packaging Extracts (STRATAGENE SC200202) in accordance with the attached protocol. In this manner, a cDNA library constituted of about one million phages was prepared.

2. Screening

,.,

30

35

40

45

50

55

[0035] Plasmid pOR8 (about 1 μg) having a human-derived estrogen receptor cDNA (Nature, Vol. 320, pages 134-139, 1986) was digested with a restriction enzyme EcoRl, and then the total amount containing the digested fragments was subjected to electrophoresis on 1.0% agarose gel. After the gel was stained with ethidium bromide, a piece of the gel containing an estrogen receptor cDNA fragment (about 2.1 kb) was excised out, while the size of the DNA fragment was checked on a UV transilluminator. From the gel piece, the estrogen receptor cDNA fragment was purified by using Ultrafree-MC (Millipore) in accordance with the attached protocol. Using the purified cDNA fragment as a probe, the aforementioned cDNA library was screened by the method described in "Molecular cloning - a laboratory manual" (Second edition, J. Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, Pages 2,108-2,125, 1989). In this manner, a recombinant phage having a Medaka estrogen receptor cDNA was isolated. From the isolated phage, plasmid pMER having the Medaka estrogen receptor cDNA was obtained by using an Ex-Assist™ helper phage (STRATAGENE SC237211) in accordance with the attached protocol.

3. Determination of Nucleotide Sequence

[0036] The nucleotide sequence was analyzed by a Dye Terminator Cycle Sequencing method using an Applied Biosystems 373A DNA Autosequencer. As a result of the nucleotide sequence analysis, it was found that the obtained cDNA encodes a protein consisting of 620 amino acids, and that the amino acid sequence of the protein has a high homology with those of estrogen receptors of human and other vertebrates. Therefore, it is conceivable that the cDNA encodes Medaka estrogen receptor.

Preparation of Plasmid pOL22 to be injected in Medaka fertilized eggs

- [0037] To express the above isolated Medaka estrogen receptor cDNA in a cell of medaka fish, a promoter derived from a medaka β-actin gene was ligated to the upstream of the 5' end of the cDNA, and an SV40 virus-derived poly (A) addition signal was ligated to the downstream of the 3' end of the cDNA. Plasmid pOL22 having such chimera gene was prepared by the following method.
 - 1. Plasmid pOBA-109 (about 1 μ g) (Molecular Marine Biology and Biotechnology, Vol. 3, pages 192-199, 1994) having a medaka β -actin promoter was digested with two types of restriction enzymes of SphI (TOYOBO) and PstI (TOYOBO) in accordance with the attached protocol. After the reaction solution was treated at 70°C for 10 minutes, the total amount of the solution was further treated with Klenow polymerase (TOYOBO) (2 μ L) in accordance with the attached protocol. Thereafter, the reaction solution was treated at 70°C for 10 minutes, and then the total amount of the solution was subjected to electrophoresis on 1.0% agarose gel. As a result, a gel piece containing about 3.5 kb of a medaka β -actin promoter DNA fragment was excised out. From the excised gel piece, the medaka β -actin promoter DNA fragment was purified by using Ultrafree-MC (Millipore) in accordance with the attached protocol.
 - 2. Plasmid pS65T-C1 (about 1 μg) (Clontech) having the SV40 poly (A) signal was digested with two types of restriction enzymes of Asel (TOYOBO) and Nhel (TOYOBO) in accordance with the attached protocol. After the reaction solution was treated at 70°C for 10 minutes, the total amount of the solution was further treated with Klenow polymerase (TOYOBO) (2 μL) in accordance with the attached protocol. Thereafter, the reaction solution was treated at 70°C for 10 minutes, Bacterial alkaline phosphatase (TOYOBO) (2 μL) was added thereto, and the resultant solution was mixed and reacted at 60°C for 2 hours. The total amount of the reaction solution was subjected to electrophoresis on 1.0% agarose gel, and a gel piece containing about 4.1 kb of the SV40 poly (A) signal DNA fragment was excised out. From the gel piece, the SV40 poly (A) signal DNA fragment was purified by using Ultrafree-MC (Millipore) in accordance with the attached protocol.
 - 3. Two DNA fragments purified in the above (5 μ L for each) each containing 0.1 μ g of DNA were mixed with 10 μ L of solution I (TaKaRa) of DNA Ligation System Ver. 2, and the mixture was incubated at 16°C for about 12 hours. In this manner, the two DNA fragments were ligated to each other. Using the resultant reaction solution (10 μ L), E. coli DH5 α (TaKaRa, #9057) was transformed. From the obtained transformants, a plasmid was isolated by using NucleoBond Plasmid Kit (Clontech #K3001-1). The isolated plasmid was designated as pOL21.
 - 4. Plasmid pOL21 (about 1 μ g) was digested with a restriction enzyme Sall (TOYOBO) in accordance with the attached protocol. After the reaction solution was treated at 70°C for 10 minutes, the total amount of the solution was further treated with Klenow polymerase (TOYOBO) (2 μ L) in accordance with the attached protocol. Thereafter, the reaction solution was treated at 70°C for 10 minutes, Bacterial alkaline phosphatase (TOYOBO) (2 μ L) was added thereto, and the resultant solution was mixed and reacted at 60°C for 2 hours. The total amount of the reaction solution was subjected to electrophoresis on 1.0% agarose gel, and a gel piece containing about 7.1 kb

of a DNA fragment was excised out. From the gel piece, the DNA fragment was purified by using Ultrafree-MC (Millipore) in accordance with the attached protocol.

5. To amplify the medaka estrogen receptor cDNA, a reaction solution (50 μL) for PCR was prepared, in accordance with the attached protocol, by using plasmid pMER (10 ng) as a template; 25 pmole of Primer 1 (5'-TCGGTGA-CATGTACCCTGAA-3') (Sequence ID No: 2) and 25 pmole of Primer 2 (5'-CTGTGTGCTCAGTCTTGAAG-3') (Sequence ID No: 3); and KOD polymerase (TOYOBO) (1 μL). PCR was performed by repeating 25 cycles of the following program: 98°C for 15 seconds, 65°C for 2 seconds, and 74°C for 30 seconds. After the reaction, the reaction solution containing the PCR product was stored at 4°C. An aliquot (5 μL) of the reaction solution containing the PCR product was stored at 4°C. An aliquot (5 μL) of the reaction solution containing the PCR product is about the same as that of a desired product (1.8 kb). From the remaining reaction solution, the amplified DNA fragment was purified by using SUPRECTM-02 (TaKaRa) in accordance with the attached protocol. The total amount of the purified DNA fragment was phosphated with 2 μL of T4 kinase (TOYOBO) in accordance with the attached protocol. After the reaction, the resultant solution was treated at 70°C for 10 minutes.

15

5

10

[0038] The DNA fragments (0.1 μ g for each) finally obtained in the above steps 4 and 5 were ligated by using DNA Ligation System Ver.2 (TaKaRa) in accordance with the attached protocol. Using the resultant reaction solution (10 μ L), E. coli DH5 α (TaKaRa #9057) was transformed. From the obtained transformants, a plasmid was isolated by using NucleoBond Plasmid Kit (Clontech #K3001-1). The isolated plasmid was designated as pOL22.

20

Method of Preparing Transgenic Medaka Fish

[0039] 1. About 500 of the medaka-fertilized eggs either at a single-cell stage or a two-cell stage were taken within one hour after fertilization, and stored at 6°C until DNA injection. About 100 pL of DNA solution (containing 10 μg of plasmid pOL 22 per 1 mL) was injected into the cytoplasm of the fertilized egg by using a glass tube with a sharp end under a dissecting microscope. Thereafter, the fertilized eggs were divided into groups each consisting of 50 eggs. 50 eggs of each group were incubated at 25°C in 40 mL of medaka physiological saline solution (containing 7.5 g of NaCl, 0.2 g of CaCl₂, and 0.02 g of NaHCO₃ per liter) until they were hatched. As a result, about half of eggs were hatched. The hatched eggs were transferred to a water tank, and raised by feeding with Tetramin (Tetra) for about 4 months until they became adult fish. More specifically, the amount of Tetramin per day was set so as not to leave, and it was fed by dividing into three times in a day. As a result, about 50 medaka fish survived until they became adult fish.

[0040] Half of each caudal fin from the survived adult fish was cut off with scissors. DNA (20 μ L) was extracted separately from each of the cut caudal fins by using a DNA extraction kit ISOHAIR (WAKO) in accordance with the attached protocol. A reaction solution (100 μ L) for PCR was prepared, in accordance with the attached protocol, by using the extracted DNA (1 μ L); two types of primers F1 (5'-CTTCCGTGTGCTCAAACTCA-3' (Sequence ID No: 4)) and R1 (5'-GTAGGAGGTCATAAAGAGGG-3' (Sequence ID No: 5)) (50 pmole for each); and Ex Taq (TaKaRa Ex Taq RR001B) (1 μ L). After initial denaturing at 94°C for 2 minutes, PCR was performed by repeating 30 cycles of the following program: 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 90 seconds. Finally, the resultant solution was reacted at 72°C for 6 minutes, and then it was stored at 4°C. An aliquot (10 μ L) of the PCR solution containing the PCR product was subjected to electrophoresis on 1% agarose gel. In the case of medaka fish having no chimera gene injected, about 1 kb of DNA band was detected, which was derived from amplification of estrogen receptor gene inherently present in the chromosome of wild medaka fish. In contrast, in the case of medaka fish having a chimera gene injected, a 320 bp of DNA band derived from the chimera gene was detected in addition to the above about 1 kb of band. As a result, eight medaka fish with the chimera gene were obtained.

[0041] 3. Eight medaka fish with the chimera gene were individually crossed with wild medaka fish. From each parent medaka fish, one hundred offspring were raised until they became adult fish. DNA (20 μ L) was extracted from each caudal fin of these offspring by use of a DNA extraction kit ISOHAIR (WAKO) in accordance with the attached protocol. A reaction solution (100 μ L) for PCR was prepared, in accordance with the attached protocol, by using the extracted DNA (1 μ L); two types of primers (5'-CTTCCGTGTGCTCAAACTCA-3') (Sequence ID No: 4) and (5'-GTAGGAGGT-CATAAAGAGGG-3') (Sequence ID No: 5) (50 pmole for each); and Ex Taq (TaKaRa Ex Tag RR001B) (1 μ L). After initial denaturing at 94°C for 2 minutes, PCR was performed by repeating 30 cycles of the following program: 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 90 seconds. Finally, the resultant solution was reacted at 72°C for 6 minutes, and then it was stored at 4°C. An aliquot (10 μ L) of the PCR solution containing the PCR product was subjected to electrophoresis on 1% agarose gel. The offspring medaka fish having a 320 bp of DNA band derived from the chimera gene was identified as transgenic medaka fish. As a result, only two of original eight medaka fish actually transferred the chimera gene into their offspring. Therefore, two strains of transgenic medaka fish (designated as strains A and C) were obtained. The number of the transgenic medaka fish obtained herein was small. However, these transgenic

medaka fish were crossed with wild medaka fish, and thereby more than about 100 transgenic medaka fish have been maintained for each strain. In both strains of the transgenic medaka fish, about half of offspring obtained by crossing with wild medaka fish have the chimera gene. From this, it was found that either one of two homologous chromosomes had the chimera gene.

Expression of Chimera Gene in Transgenic Medaka Fish

5

40

50

55

[0042] The fact that the strains A and C of the transgenic medaka fish produce a mRNA encoding estrogen receptor in a larger amount than wild medaka fish, was demonstrated by the following method. RNA (30 µL) was extracted from about 30 fertilized eggs which were obtained by crossing the transgenic medaka with wild medaka fish and about 30 fertilized eggs which were obtained by mutual mating between wild medaka fish, by use of an RNeasy Mini Kit (QIAGEN) in accordance with the attached protocol. Then, a reaction solution (50 μL) for RT-PCR was prepared by using the extracted RNA (1 µL); three types of primers (50 pmole for each): F1 (Sequence ID No: 4), R1 (Sequence ID No: 5) mentioned above, and R2 (5'-GAGGGACTTTGTTCTTGCAC-3') (Sequence ID No: 6); and Ready-To-Go RT-PCR Beads (Amersham Pharmacia Biotech #27-9267-01) in accordance with the attached protocol. After performing initial reactions at 42°C for 30 minutes and 95°C for 5 minutes, RT-PCR was performed by repeating the 30 cycles of the following program: 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 90 seconds. After completion of the reaction, the reaction solution was stored at 4°C. An aliquot (10 μL) of the RT-PCR solution was subjected to electrophoresis on 1% agarose gel. Thereafter, DNA on the gel was transferred onto a membrane in accordance with the method described in "Molecular cloning - a laboratory manual" (Second edition, J. Sambrook, E. F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, Pages 9.31-9.62, 1989). Then, Southern Hybridization was performed by using an EcoRI-Sall fragment (354 bp) of the estrogen receptor cDNA as a probe. A clear band of about 300 bp was detected in the fertilized eggs derived from the strains A and C of the transgenic medaka fish. Since the band from the strain C was nearly twice as dense as that from the strain A, it is conceivable that the strain C of the transgenic medaka fish produce the mRNA encoding estrogen receptor in an larger amount than the strain A of the transgenic medaka fish. However, no band was detected in the fertilized eggs derived from the wild medaka fish. From this fact, it is conceivable that the expression amount of the estrogen receptor mRNA is significantly low in the fertilized eggs from the wild medaka fish.

Formation of Thrombus by Estrogen in Transgenic Medaka Fish

[0043] Medaka physiological saline solutions (40 mL for each) containing 17β -estradiol in an amount of 2 ng/L, 20 ng/L, 20 ng/L, 2 µg/L, 1 mg/L, and 4 mg/L were supplied in culture plates, respectively. Three sets were prepared for each concentration. About 30 fertilized eggs (W) of 12-hours after fertilization which were obtained by mutual mating between wild medaka fish, were placed in the first set of culture plates. About 30 fertilized eggs (A) of 12-hours after fertilization which were obtained by crossing the strain A of the transgenic medaka fish with wild medaka fish, were placed in the second set of culture plates. About 30 fertilized eggs (C) of 12-hours after fertilization which were obtained by crossing the strain C of the transgenic medaka fish with wild medaka fish, were placed in the third set of culture plates. After the culture plates were incubated at 25°C for 3 days, medaka embryos were checked under dissecting microscope with respect to formation of a thrombus.

[0044] In almost 100% of the fertilized eggs (W), one or more thrombi were formed at the concentration of 4 mg/L of 17β-estradiol, but were not observed at the concentration of less than 4 mg/L. 1%, 3%, 8%, 49%, 55%, and 100% of the fertilized eggs (A) caused the formation of the thrombi at the concentrations of 2 ng/L, 20 ng/L, 20 ng/L, 2 μg/L, 1 mg/L, and 4 mg/L of 17β-estradiol, respectively. 19%, 41%, 75%, 73%, 60%, and 100% of the fertilized eggs (C) caused the formation of the thrombi at the same concentrations as mentioned above, respectively. It was therefore demonstrated that the estrogen sensitivities of fertilized eggs (A) and (C) are thousand times and hundred thousand times as high as that of the wild medaka fish, respectively.

{Effect of the present invention}

[0045] As described in the foregoing, the transgenic medaka fish of the present invention is high sensitive to an extremely low amount of estrogen, compared to non-transgenic medaka fish (i.e., wild medaka fish). Therefore, the transgenic medaka fish of the present invention is very useful as a novel aquatic animal whereby a very small amount of estrogen-like acting substance present in the environment can be detected quickly, easily, continuously, and inexpensively. By use of such a novel aquatic animal, it is possible to detect water pollution of rivers with an estrogen-like acting substance which is a social problem.

[0046] Also, if the fertilized eggs of the transgenic medaka fish of the present invention are raised in estrogen-containing water, it is possible to observe the formation of thrombus in a blood vessel. Therefore, the transgenic medaka

fish of the present invention is useful as an experimental animal for elucidating the development mechanism of thrombosis caused by intake of estrogen due to the use of oral contraceptive and hormonotherapy in human. The animals conventionally used in thrombosis studies are rats and rabbits. However, they are expensive as experimental animal. In addition, the formation of a thrombus must be checked by injecting an angiographic agent followed by using a specific device. In contrast, the medaka fish used in the present invention has advantages of inexpensiveness and easiness. More specifically, since its fertilized egg is transparent, the thrombus can be observed easily and continuously under a dissecting microscope. Moreover, it is easy to prepare a sample for its biochemical analysis.

[0047] Furthermore, the transgenic medaka fish of the present invention can be used as a model animal for bioassay system of thrombosis, when a therapeutic agent of thrombosis is developed. Although the therapeutic agent of thrombosis has been developed based on administration by injection up to now, the use of the medaka fish of the present invention makes it possible to screen an oral therapeutic agent of thrombosis on a large scale.

SEQUENCE LISTING

5	<110> The President of Hiroshima University
10	<120> High estrogen-sensitive medaka fish.
15	<130> A000003885
20	<150> JP/2000-247729 <151> 2000-8-17
25	<160> 6
30	<170> PatentIn Ver. 2.0
	<210> 1
35	<211> 2764 <212> DNA
40	<213> Oryzias latipes
	<220>
45	<221> CDS
	<222> (211) (1935)
50	<400> 1
	gtotogotgo tagatgootg toaggoaggo agagaggaag cagooogtgt tgogoagcac 60
55	

	atct	gagg	gat g	gatto	atga	g ta	6869	द्वदव	g ago	Togg	tgc	agal	cagg	gca	gctgt	tegga	120
5	ccag	cact	ca ,	gated	:8888	ıT C	gcco	:agc	: too	tcag	gagc	tgga	agaco	ct ·	etecc	cacct	180
10							· T 21 414	77 (7s)		. 196				. 23	c co.	905	234
	agec	. (. ((igu (.ccg	gacc		LUBE	, c g a c								g ggr	231
15									1	l			9	5			
20															gac		282
	Ser		Gly	Yal	Ala	Ala		Asp	Phe	Leu	Glu		Thr	Tyr	Asp	Tyr	
		10					15					20					
25	gcc	gcc	ccc	asc	cct	ged	aug	۵Cl	ccc	ctt	tac	age	cág	TCC	agc	acc	330
															Ser		
30	25					30					35					40	
35															Kss		378
	Gly	Tyr	Tyr	Ser	Alz 45	۲ro),eu	Glu	Thr	Asn 50	Gly	Pro	Pro	Ser	Clu 55	Gly	
40					43					30				1	,,		
	agt	ctg	cag	tcc	clg	ggc	agt	ggg	rcg	acg	agc	cct	ctg	glg	ııt	gtg	426
45	Ser	Leu	Gln	Ser	Leu	Cly	Ser	Gly	Pro	Thr	Sor	Pro	Leu	Val	Phe	٧±١	
43				60					65					70			
50															cac		474
	Pro	Ser	Ser 75		Arg	Leu	Sei	Pro 80	Phe	Met	HIS	Pro	Pro 85	Ser	His	nıs	
55			1.3					au					33				

	tat	ctg	gaa	acc	act	tcc	acg	ccc	gtt	tac	aga	tcc	agc	cac	cag	gga	522
5	Tyr	Leu	Glu	Thr	Thr	Ser	Thr	Pro	Val	Tyr	Arg	Ser	Ser	His	Gln	Gly	
		90					95					100					
40																	
10	gcc	tcc	agg	gag	gac	cag	tgc	ggc	tcc	cgg	gag	gac	acg	tgc	agc	ctg	570
	Ala	Ser	Arg	Glu	Asp	Gln	Cys	Gly	Ser	Arg	Glu	Asp	Thr	Cys	Ser	Leu	
15	105					110					115					120	
20	ggg	gag	tta	ggc	gcc	gga	gcc	ggg	gct	ggg	ggg	ttt	gag	atg	gcc	aaa	618
20	Gly	Glu	Leu	Gly	Ala	Gly	Ala	Gly	Ala	Gly	Gly	Phe	Glu	Met	Ala	Lys	
					125					130					135		
25																	
	gac	acg	cgt	ttc	tgc	gcc	gtg	tgc	agc	gac	tac	gcc	tct	ggg	tac	cac	666
30	Asp	Thr	Arg	Phe	Cys	Ala	Val	Cys	Ser	Asp	Tyr	Ala	Ser	Gly	Tyr	His	
				140					145					150			
35	tat	ggg	gtg	tgg	tct	tgt	gag	ggc	tgc	aag	gcc	ttc	ttc	aag	agg	agc	714
	Tyr	Gly		Trp	Ser	Cys	Glu		Cys	Lys	Ala	Phe		Lys	Arg	Ser	
40			155					160					165				
													3				5.00
					aat												762
45	lle		Gly	His	Asn	Asp		Met	Cys	Pro	Ala		Asn	Gin	Lys	lhr	
		170					175					180					
50												1-1					. 010
					cgg												810
		Asp	Arg	Asn	Arg		Lys	5er	Cys	Gin		Lys	Arg	Leu	Arg		
55	185					190					195					200	

	tgt	tac	gaa	gtg	gga	atg	atg	aaa	ggc	ggt	gtg	cgc	aag	gac	cgc	att	858
5	Cys	Tyr	Glu	Val	Gly	Met	Met	Lys	Gly	Gly	Val	Arg	Lys	Asp	Arg	Ile	
					205					210					215		
10																	
10	cgc	att	tta	cgg	cgt	gac	aaa	cgg	cgg	aca	ggc	gtt	ggt	gat	gga	gac	906
	Arg	Ile	Leu	Arg	Arg	Asp	Lys	Arg	Arg	Thr	Gly	Val	Gly	Asp	Gly	Asp	
15				220					225					230			
20	aag	gtt	gta	aag	ggt	cag	gag	cat	aaa	acg	gtg	cat	tat	gat	gga	agg	954
	Lys	Val	Val	Lys	Gly	Gln	Glu	His	Lys	Thr	Val	His	Tyr	Asp	Gly	Arg	
			235					240					245				
25																	
	aaa	cgc	agc	agc	aca	gga	aga	ctg	1002								
30	Lys	Arg	Ser	Ser	Thr	Gly	Gly	Gly	Gly	Gly	Gly		Gly	Gly	Arg	Leu	
		250					255					260					
35		gtg															1050
•		Val	Thr	Ser	Ile		Pro	Glu	Gln	Val		Leu	Leu	Leu	Gln	-	
40	265					270					275					280	
													1				1000
		gag															1098
45	Ala	Glu	Pro	Pro		Leu	Lys	Ser	Arg		Lys	Leu	5er	Arg		lyr	
					285					290					295		
50			~ * -			_*-		_*.				a.t			25-	** 0.5	1146
		gag															1146
	ınr	Glu	Val		Met	Met	Ihr	Leu		lhr	5er	Met	Ala		Lys	GIU	
55				300					305					310			

	ctg	gtc	cac	atg	atc	gcc	tgg	gcc	aag	aag	ctc	cca	ggt	ttt	ctg	cag	1194
5	Leu	Val	His	Met	Ile	Ala	Trp	Ala	Lys	Lys	Leu	Pro	Gly	Phe	Leu	Gln	
			315					320					325				
10	ctg	tcc	ctg	cac	gat	cag	gtg	ctg	ctg	ctg	gag	agc	tcg	tgg	ctg	gag	1242
	Leu	Ser	Leu	His	Asp	Gln	Val	Leu	Leu	Leu	Glu	Ser	Ser	Trp	Leu	Glu	
15		330					335					340					
	gtg	ctc	atg	atc	ggc	ctc	att	tgg	agg	tcc	atc	cac	tgt	ccc	ggg	aag	1290
20	Val	Leu	Met	Ile	Gly	Leu	Ile	Trp	Arg	Ser		His	Cys	Pro	Gly	Lys	
	345					350					355					360	
25																*	1220
				gca													1338
30	Leu	116	rne	Ala	365	ASP	Leu	TIG	Leu	370	MIR	ASII	Glu	GLY	375	Cys	
					300					510					0.0		
	gtg	gaa	ggc	atg	acg	gag	atc	ttc	gac	atg	ctg	ctg	gcc	act	gct	tcc	1386
35				Met													
				380					385					390			
40													2				
	cgc	t tc	cgt	gtg	ctc	aaa	ctc	aaa	cct	gag	gaa	ttc	gtc	tgc	ctc	aaa	1434
45	Arg	Phe	Arg	Val	Leu	Lys	Leu	Lys	Pro	Glu	Glu	Phe	Val	Cys	Leu	Lys	
40			395					400					405				
50	gct	att	att	tta	ctc	aac	tcc	ggt	gct	ttt	tct	ttc	tgc	acc	ggc	acc	1482
	Ala	Ile	Ile	Leu	Leu	Asn	Ser	Gly	Ala	Phe	Ser	Phe	Cys	Thr	Gly	Thr	
55		410					415					420					

	atg	gag	cca	ctt	cac	aac	agc	gcg	gcg	gtt	cag	agc	atg	ctg	gac	acc	1530
5	Met	Glu	Pro	Leu	His	Asn	Ser	Ala	Ala	Val	Gln	Ser	Met	Leu	Asp	Thr	
·	425					430					435					440	
10	atc	aca	gac	gca	ctc	att	cat	tac	atc	agt	cag	tcg	ggt	tac	ttg	gcc	1578
	Ile	Thr	Asp	Ala	Leu	Ile	His	Tyr	Ile	Ser	Gln	Ser	Gly	Tyr	Leu	Ala	
15					445					450					455		
	cag	gag	cag	gcg	aga	cgg	cag	gcc	cag	ctg	ctc	ctg	ctg	ctc	tcc	cac	1626
20	Gln	Glu	Gln	Ala	Arg	Arg	Gln	Ala	Gln	Leu	Leu	Leu	Leu		Ser	His	
				460					465					470			
25																	
		-											_		atg		1674
30	116	Arg	н1s 475	мет	ser	ASN	Lys	480	met	GIU	HIS	Leu	485	Ser	Met	Lys	
30			410					400					400				
	tgc	aag	aac	aaa	gtc	cct	ctt	tat	gac	ctc	cta	ctg	gag	atg	ctc	gat	1722
35															Leu		
		490					495					500					
40													3				
	gcc	cac	cgc	ctg	cac	cac	ccc	gtc	aga	gca	ccc	cag	tcc	ttg	tcc	caa	1770
	Ala	His	Arg	Leu	His	His	Pro	Val	Arg	Ala	Pro	Gln	Ser	Leu	Ser	Gln	
45	505					510					515					520	
50	gtc	gac	aga	gac	cct	ccc	tcc	acc	agc	agc	ggc	ggg	ggt	gga	atc	gct	1818
	Val	Asp	Arg	Asp	Pro	Pro	Ser	Thr	Ser	Ser	Gly	Gly	Gly	Gly	Ile	Ala	
5.E					525					530					535		
55																	

	ccc ggt tot ata toa goa tot oga ggo aga ato gag agt ccg ago aga 1866
5	Pro Gly Ser Ile Ser Ala Ser Arg Gly Arg Ile Glu Ser Pro Ser Arg
	540 545 550
10	gge ccc ttt gct ccc agt gtc ctt cag tat gga ggg tcg cgt cct gac 1914
	Gly Pro Phe Ala Pro Ser Val Leu Gln Tyr Gly Gly Ser Arg Pro Asp
15	555 560 565
	tgc acc ccg gcc ctt caa gac tgagcacaca gtccaaggcc ctttttttgt 1965
20	Cys Thr Pro Ala Leu Gln Asp
	570 575
25	9005
	ggctcaaggg ttcaggttgg gacaaggtga tgcttgattt aattttaaga attatttata 2025
30	aataagagtg gcgctgagag gagaagctcc cacaatgaac tgcctctgct tggtccagct 2085
	and and a population by the second and a second a second and a second
	titgtgcagt cactitaatc tgcttatatt catctccttt gtaaacctga gcgtctcttt 2145
35	
	ageagettit tittgetete caaacageat giggiagatt giaaggitge gieceatgag 2205
40	i e
	ttctggtgat ttcaagaaaa tgagcagcta atgttttctg taaccgtctt gacccaagtg 2265
45	cactteetet tggattaaag gggetaatgg geattatttt gtetettgta catatgggat 2325
50	ggctaagaat aatgagagta attgtcagat tttgtgtaga acttacccac aaatgcaatt 2385
55	ttaaaataag atttaaaaac aaaagaggca agatcaaacc tgagagcact gaagacacgc 2445

	tgtagaaagc tgggtaaatt tgttatccac gtctatctct ggaaaggact ttgttctc	tg 2505
5	tgcctgcage tcatttactc tgaacttgct acttgttgaa catttgtgca cttgtccg	tg 2565
10	tttttctagc actgtagctt atgaacgctg agaaagaatc taatgctttg atgcacag	at 2625
15	ttgccttgta ttgtacatct cagccacaaa cgtacttttc gtccacaagt tgactgac	tg 2685
20	caccitgati aaatigicia aaagiicati taaaigiiga attoigigaa aatiaaaa	ag 2745
	gcaatteetg tttetattt	2764
25		
	<210> 2	
30	<211> 20	
	<212> DNA	
35	<213> Artificial Sequence	
	⟨220⟩	
40	<pre><223> Primer for medaka estrogen receptor gene ,</pre>	
	<400> 2	
45	teggtgacat gtaccetgaa	20
50		
	<210> 3	
	<211> 20	
55	<212> DNA	

	<213> Artificial Sequence	
5		
	<220>	
	<223> Primer for medaka estrogen receptor gene	
10		
	<400> 3	
15	ctgtgtgctc agtcttgaag	20
20	<210> 4	
	<211> 20	
25	<212> DNA	
23	<213> Artificial Sequence	
30	<220>	
	<223> Primer for medaka estrogen receptor gene	
35	< 4 00> 4	
	cttccgtgtg ctcaaactca	20
40		
	<210> 5	
45	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
50		
	⟨220⟩	
55	<223> Primer for medaka estrogen receptor gene	
		

		<400> 5	
5		gtaggaggtc ataaagaggg	20
10		<210> 6	
		<211> 20	
		<212> DNA	
15		<213> Artificial Sequence	
2 0		⟨220⟩	
		<223> Primer for medaka estrogen receptor gene	
25		<400> 6	
		gagggacttt gttcttgcac	20
30			
35	Cla	ims	
00	1.	A polynucleotide having a nucleotide sequence represented by Sequence ID No: 1.	
	2.	A polynucleotide comprising the nucleotide sequence from 211 to 1935 position represented	d by Sequence ID No: 1.
40	3 .	A protein having an amino acid sequence encoded by the polynucleotide according to cla	im 2.
	4.	A recombinant vector containing the polynucleotide according to claim 1 or 2.	
45	5.	Transgenic medaka fish into which the polynucleotide according to claim 1 or 2 is introduc	ced.
45	6.	A method of producing medaka fish having one or more thrombi, comprising the step of medaka fish according to claim 5 in the presence of estrogen.	f raising the transgenic
50	7.	Medaka fish having one or more thrombi, which is obtained by raising the transgenic medalim 5 in the presence of estrogen.	edaka fish according to
	8.	A method of testing an estrogen-like action in test water, comprising the steps of:	
55		raising the transgenic medaka fish according to claim 5 in the test water; and observing whether or not one or more thrombi are formed in the medaka fish after the	e raising step.

9. The method according to claim 8, characterized in that the test water is water taken from environment.

10. The method according to claim 8, characterized in that the test water is water having a test substance added.

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

EUROPEAN SEARCH REPORT

Application Number

EP 01 11 5472

Category	Citation of document with inc of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (INLCL7)
x	of genomic and complan estrogen receptor Oryzias latipes" ZOOLOGICAL SCIENCE,	Cloning and expression ementary DNAs encoding in the medaka fish, 2000 (2000-07), pages	1-4	G01N33/18 A01K67/027 C07K14/46 C12N15/12 A61K49/00
A	* the whole document		5-10	
X	JP 2000 201688 A (SU 25 July 2000 (2000-0 SeqIdNo1-4 -& DATABASE GENESEC EBI Hinxton U.K.; Accession Number: AA 5 January 2001 (2001 SUMIMOTO CHEM CO LTD Oryzias lapites oest encoding DNA SEQ ID XP002181483 99.678% identity (99 1863 nt overlap (76- SeqIdNo.1 * abstract * -& DATABASE GENESEC EBI Hinxton U.K.; Accession Number: AA 5 January 2001 (2001 SUMIMOTO CHEM CO LTD Oryzias lapites oest encoding DNA SEQ ID XP002181484 99.653% identity (99 1728 nt overlap (211 SeqIdno.1 * abstract *	A92175, -01-05) : "JP2000201688: rogen receptor NO: 4" 2.678% ungapped) in 1938:1-1863) with A92174, -01-05) : "JP2000201688: rogen receptor NO: 2" 2.653% ungapped) in -1938:1-1728) with	1-4	TECHNICAL FIELDS SEARCHED (INLCLT) GO1N AO1K CO7K C12N A61K
	Place of search	Date of completion of the search		Exammer
	THE HAGUE	29 October 2001	Lon	noy, 0
X : parti Y : parti docu A : tech	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same calegory noticed background -written disclosure	T theory or principle E: earlier patent doc after the fitting date er D: document clied in L document cited fo 8: member of the sa	urnerst, but publice the application rother reasons	ished on, or

20

EUROPEAN SEARCH REPORT

Application Number

EP 01 11 5472

Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (INLC.17)
X	2764 nt overlap (1- SeqIdNo.1	-04-23) zias sp. mRNA for complete cds." 9.964% ungapped) in	1-4	
x	* abstract * -& DATABASE SWALL EBI Hinxton U.K.; Acession Number: P5 1 October 1996 (199 OKADA H ET AL: "Ory Receptor" XP002181486 * abstract *		1-4	
A	VECTOR FOR TRANSGEN MOLECULAR MARINE BI BIOTECHNOLOGY, XX,	XX, gust 1994 (1994-08-01),	5-10	TECHNICAL FIELDS SEARCHED (Int.C1.7)
A A	behavior of Japanes latipes) exposed to ENVIRONMENTAL TOXIC vol. 18, no. 11, No pages 2587-2594, XP US 5 903 305 A (YAM	4-tert-octylphenol" OLOGY AND CHEMISTRY, vember 1999 (1999-11), OO1030944 AMOTO TAKAHIRO)		
	11 May 1999 (1999-0	5-11) -/		
	The present search report has I	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	29 October 2001	Lon	noy, O
X.part Y:part docu A. tech O non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot inhom of the same category nological background written disclosure mediate document	T libeory or principle E earlier patient door after the filing dat ther D document cited in L document cited & miember of the se document	cument, but public en the application or other reasons	shed on or

EPO FORW 1503 33

EUROPEAN SEARCH REPORT

Application Number EP 01 11 5472

Category	Citation of document with indication of relevant passages	n, where appropriate,	Relevant to daim	CLASSIFICATION OF THE APPLICATION (Int.C.17)
Р,А	WO 00 49150 A (HE JIANG) (SG); LAM TOONG JIN (SG) 24 August 2000 (2000-08-	; YAN TIE (SG); G)		
P. A	PATENT ABSTRACTS OF JAPA vol. 2000, no. 22, 9 March 2001 (2001-03-09 & JP 2001 122899 A (SUM) 8 May 2001 (2001-05-08) * abstract *))		
				TECHNICAL FIELDS SEARCHED (IRR.CI.7)
	The present search report has been dra	awn up for all claims	-	
	THE HAGUE	Date of completion of the search 29 October 2001	Lon	noy, 0
X:part Y:part doci A:tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if tombined with another unent of the same category inological background —written disclosure	T: theory or princip E: earlier patent di after the filing di D: document cited L: document cited	le underlying the locument, but publicate in the application	invention shed on, or

22

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 01 11 5472

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-10-2001

	Patent document cited in search report	!	Publication date		Patent family member(s)	Publication date
JP	2000201688	A	25-07-2000	NONE		
US	5903305	A	11-05-1999	JP	9229924 A	05-09-1997
WO	0049150	Α	24-08-2000	WO	0049150 A1	24-08-2000
JP	2001122899	Α	08-05-2001	NONE		

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82