PROJECT REPORT

Developing A Car Resale Value PredictionModel

UsingMachine Learning

Submitted By PNT2022TMID32311

Karthik N- 810019104028 Januson J-810019104023 Jefni A.K – 810019104027 Deshma A.N-810019104016

TABLE OF CONTENTS

1.	INTRO	DDUCTION	4
	a.	PROJECT_OVERVIEW	4
	b.	PURPOSE	4
2.	LITER	ATURE SURVEY	5
	a.	EXISTING PROBLEM	5
	b.	REFERENCES	5
	C.	PROBLEM_STATEMENT_DEFINITION	6
3.	IDEAT	TION AND PROPOSED SOLUTION	11
	a.	EMPATHY_MAP_CANVAS	11
	b.	IDEATION & amp; BRAINSTORMING	12
	c.	PROPOSED SOLUTION	16
	d.	PROBLEM_SOLUTIONFIT	18
4.	REQU	IREMENT ANALYSIS	19
	a.	FUNCTIONAL REQUIREMENTS	19
	b.	NON_FUNCTIONAL REQUIREMENTS	21
5.	PROJE	CCT DESIGN	22
		DATA_FLOW_DIAGRAM	
	b.	SOLUTION_&TECHNICAL ARCHITECTURE	22
6.	PROJE	CCT PLANNING AND SCHEDULING	23
	a.	SPRINT PLANNING AND ESTIMATION	23
	b.	SPRINT DELIVERY SCHEDULE	25
7.	CODIN	NG & SOLUTIONING	26

8 TESTING		31
8.1 TEST CASES		31
8.2 USER ACCEPTANCE TESTING		32
8.2.1 DEFECT ANALYSIS		32
8.2.2 TEST CASE ANALYSIS		33
9 RESULTS		34
9.1 PERFORMANCE METRICS		34
10 ADVANTAGES & DISADVANTAGES		35
ADVANTAGES		
DICADVANTACEC		35
DISADVANTAGES		35
11 CONCLUSION		36
		37
12 FUTURESCOPE		
APPENDIX		38
SOURCE CODE	38	
DEMO VIDEO	39	

CHAPTER-1 INTRODUCTION

a. PROJECT OVERVIEW

Determining whether the listed price of a used car is a challenging task, due to the many factors that drive a used vehicle's price on the market. The focus of this project is developing machine learning models that can accurately predict the price of a used car based on its features, in order to make informed purchases. We implement and evaluate various learning methods on a dataset consisting of the sale prices of different makes and models across cities.

b. PURPOSE

Deciding whether a used car is worth the posted price when you see listings online can be difficult. Several factors, including mileage, make, model, year, etc. can influence the actual worth of a car. From the perspective of a seller, it is also a dilemma to price a used car appropriately. Based on existing data, the aim is to use machine learning algorithms to develop models for predicting used car prices.

CHAPTER - 2

LITERATURE SURVEY

a. EXISTING PROBLEM

In the past year the world of automobiles has seen a drastic change with the semiconductor shortages after the pandemic, which led to spike in used car prices. Hence, there was fast change in car prices during this study which will affect the actual car pricing prediction future. As the current dataset will undervalue the cars in the market. Therefore, a model that is built on real time data can be best integrated into a mobile app for public use would be the idea solution.

b. REFERENCES

- 1.Predicting the Price of Used Cars using Machine Learning Techniques-Sameer Chand Pudaruth.
- 2. Car Price Prediction using Machine Learning Techniques- Enis gegic, Becir Isakovic, Dino Keco, Zerina Masetic, Jasmin Kevric.
- 3. Price Evaluation Model In Second Hand Car System Based On BP Neural Network Theory- Ning sun, Hongxi Bai, Yuxia Geng, Huizhu Shi.
- 4. Prediction of Car Price using Linear Regression- A. Rengarajan , Ravi Shastri.
 - 5. Vehicle Price Prediction System using Machine Learning Techniques-

Kanwal Noor, Sadaqat Jan.

6. New Model for Residual Value Prediction of the Used Car Based on BP

Neural Network and Nonlinear Curve Fit- Shen Gongqi, W. Yansong, Zhu Qiang.

7. Predicting the Price of Second-hand Cars using Artificial Neural

Networks - Saamiyah Peerun, Sameerchand Pudaruth Nushrah Henna Chummun.

8. Used Car Price Prediction using K-Nearest Neighbor Based Model-

K.Samruddhi Dr. R.Ashok Kumar.

9 Prediction of Prices for Used Car by Using Regression Models- Nitis

Monburinon, Prajak Chertchom, Thongchai Kaewkiriya, Suwat Rungpheung, Sabir

Buya, Pitchayakit Boonpou.

10. Used car price prediction using SVM - Gegic, Isakovic, Keco, Masetic,

& Kevric.

C. PROBLEM STATEMENT DEFINITION

Survey 1:

Author: Sameer Chand Pudaruth.

Predicting the Price of Used Cars using Machine Learning Techniques

This paper is predicting the price of used car using machine learning techniques. In

this paper, they investigate the application of supervised machine learning

techniques to predict the price of used cars in Mauritius. Different techniques like

naïve bayes and decision trees have been used to make the predictions. The

predictions are then evaluated and compared in order to find those which provide

the best performances. A seemingly easy problem turned out to be indeed very

difficult to resolve with high accuracy. All the four methods provided comparable

performance.

Survey 2:

Author: Enis gegic, Becir Isakovic, Dino Keco, Zerina Masetic, Jasmin Kevric

Car Price Prediction using Machine Learning Techniques

A car price prediction has been a high interest research area, as it requires

noticeable effort and knowledge of the field expert. Considerable number of

distinct attributes are examined for the reliable and accurate prediction. To build a

model for predicting the price of used cars in Bosnia and Herzegovina, we applied

three machine learning techniques (Artificial Neural Network, Support Vector

Machine and Random Forest). However, the mentioned techniques were applied to

work as an ensemble. The data used for the prediction was collected from the web

portal autopijaca.ba using web scraper that was written in PHP programming

language.

Respective performances of different algorithms were then compared to find one

that best suits the available data set. The final prediction model was integrated into

Java application. Furthermore, the model was evaluated using test data and the

accuracy of 87.38% was obtained.

Survey 3:

Author: Ning sun, Hongxi Bai, Yuxia Geng, Huizhu Shi.

Price Evaluation Model In Second Hand Car System Based On BP Neural

Network Theory

With the rapid growth of the number of private cars and the development of the

second-hand car market, second-hand cars have become the main choice when

people buy cars. The online second-hand car platform provides both buyers and

sellers the chance of online P2P

trade. In such systems, the accuracy of second-hand car price evaluation largely

determines whether the seller and the buyer can get more efficient trading

experience.

Survey 4:

Author: A. Rengarajan , Ravi Shastri.

Prediction of Car Price using Linear Regression

In this paper, we look at how supervised machine learning techniques can be used

to forecast car prices in India. Data from the online marketplace quikr was used to

make the predictions. The predictions were made using a variety of methods,

including multiple linear regression analysis, Random forest regressor and

Randomized search CV. The predictions are then analyzed and compared to

determine which ones provide the best results.

Survey 5:

Author: Kanwal Noor, Sadaqat Jan.

Vehicle Price Prediction System using Machine Learning Techniques

In this paper, they proposed a model to predict the price of the cars through

multiple linear regression method. Here system were able to achieve high level of

accuracy using Multiple linear regression models to predict the price of cars

collected from used cars website in Pakistan called Pak Wheels that totalled to

1699 records after pre-processing, and where able to achieve accuracy of 98%, this

was done after reducing the total amount of attributes using variable selection

technique to include significant attributes only and to reduce the complexity of the

model.

Survey 6:

Author: Shen Gongqi, W. Yansong, Zhu Qiang.

New Model for Residual Value Prediction of the Used Car Based on BP

Neural Network and Nonlinear Curve Fit

A comprehensive method combined by the BP neural network and nonlinear curve

fit was introduced for optimizing the model due to its flexible nonlinearity. Firstly,

6 some distribution curves of residual value of the used cars were analyzed in time

domain. Then, the BP neural network (NN) was established and used to extract the

feature of the distribution curves in various conditions. A set of schemed data was

used to train the NN and reached the training goal. Finally, the schemed data as

inputs and the NN outputs were organized for nonlinear curve fit. Conclusion was

drawn that the newly proposed model is feasible and accurate for residual value

prediction of the used cars with various conditions.

Survey 7:

Author: Saamiyah Peerun, Sameerchand Pudaruth Nushrah Henna Chummun.

Predicting the Price of Second-hand Cars using Artificial Neural Networks

The aim of this study is to assess whether it is possible to predict the price of

second-hand cars using artificial neural networks. Thus, data for 200 cars from

different sources was gathered and fed to four different machine learning

algorithms. We found that support vector machine regression produced slightly

better results than using a neural network or linear regression. However, some of

the predicted values are quite far away from the actual prices, especially for higher

priced cars.

Survey 8:

Author: K.Samruddhi , Dr. R.Ashok Kumar

Used Car Price Prediction using K-Nearest Neighbor Based Model

In this paper, a machine learning model is proposed to estimate the cost of the used

cars using the K-Nearest Neighbor algorithm. The model is trained with used cars

7 data for different trained and test ratios. Then the proposed model is cross-

validated using K fold method to examine the performance to avoid the over fit.

Survey 9:

Author: Nitis Monburinon, Prajak Chertchom, Thongchai Kaewkiriya, Suwat

Rungpheung, Sabir Buya, Pitchayakit Boonpou.

Prediction of Prices for Used Car by Using Regression Models

In this paper, the authors selected the data from the German ecommerce site. The

main goal of this work is to find a suitable predictive model to predict the used cars

price. They used different machine learning techniques for comparison and used

the mean absolute error(MAE) as the metric. They proposed that their model with

gradient boosted regression has a lower error with MAE value 0.28 and this gives

the higher performance where linear regression has the MAE value 0.55, random

forest with MAE value 0.35.

Survey 10:

Author: Gegic, Isakovic, Keco, Masetic, & Kevric.

Used car price prediction using SVM

In this paper, using data scrapped from a local Bosnian website for used cars

totalled at 797 car samples after pre-processing, and proposed using these methods:

Support Vector Machine, Random Forest and Artificial Neural network. Results

have shown using only one machine learning algorithm achieved results less than

50%, whereas after combing the algorithms with pre calcification of prices using

Random Forest, results with accuracies up to 87.38% was recorded.

CHAPTER 3

IDEATION AND PROPOSED SOLUTION

EMPATHY MAP CANVAS

- An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.
- It is a useful tool to helps teams better understand their users.
- Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

IDEATION & BRAINSTORMING

- Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving.
- Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

You can select a sticky note and hit the pencil [switch to sketch] icon to start drawing!

KARTHIK

Building model

Finding

insights

checking accuracy

creating

profile

checking car condition

list the no of available cars

JANUSON

provide feasible price for cars

collect dataset privacy policy formulation

creating user profiles Asking customer queries

verify

customer

details

collect the car details

JEFNI

Use large quantity of dataset

finding

efficient algorithm

pre process the data Building the UI to interact

finding the missed data

DESHMA

filling missed out details

fixed UI using flask Verify the dataset

list car company profile verification digitally

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

collect dataset

CHECKING CONSTRAINTS:

EXTRACTING FEATURES:

categorize the cars based on company		categorize the cars based on condition and mileage	categorize the cars based on users need
Build dat	a model		
finding		Puilding	performing

Building

data model

FINAL DELIVERABLE:

efficient

algorithm

provide	
feasible	Bu
price for	UI ·
cars	

Building the UI to interact fixed UI using flask

analysis using

regression

algorithm

providing best results according to user need

Finding

insights

checking

accuracy

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to besolved)	Sales prediction is the currentnumerous trend in which all the business companies thrive and it also aids the organization or concern in determining the future goals for it and its plan and procedure to achieve it. Resales of cars almost occupy a major part in every sales economy. In that regard various factors like registration year, engine condition, company servicerecord, spare partscondition, tyre condition, car body condition, kilometers covered, Interior look, color, mileage, number of owners, battery condition are taken into consideration beforebuying it alongwithengine condition and insurance. The prediction using the factors would suggest thefinal product to be brought. But these data may be inaccurate at times and there is a need for a proper algorithm that will provide a result witha good accuracy rate.
2.	Idea / Solution description	 The overall proposed idea is to predict the car resale value and show it to the required people. This idea can be implemented and could be presented to the customer. This involves two phases. One phase is collecting the dataset for training the car resale value prediction model. Testing the car resale value prediction model. The second phase involves creating a website (front end) for presenting the entire solution as a customized GUI so that this would be very useful for the user to utilize this solution

PROPOSED SOLUTIONFIT

CHAPTER 4

REQUIREMENT A NALYSIS

a. FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement	Sub Requirement (Story /
	(Epic)	Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through Linked
		IN.
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP.
FR-3	Users Profile	Personal details, Bank
		account, If customer
		interested
		to buy a car
FR-4	Gather information about the	Then get the registered
	vehicle	websites by customer collect
		information.
FR-5	Display the functionality of	Through the registered
	the	websites they collect
	vehicle	information about the
		vehicles.

b. NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	To create an UI makes as a
		user friendly, it makes a
		simple way to Understand
NFR-2	Security	Aware about fraudulent sites,
		it gives a fake
		information about the
		vehicle.
NFR-3	Reliability	Application must perform
		good and without failure
NFR-4	Performance	Website performance
		measures how quickly the
		pages of a website load and
		display in the web
		browser.
NFR-5	Availability	Website availability (also
		called website uptime) refers
		to the ability of the users to
		access and use a website or
		web service. A website's
		availability is typically
		communicated as a
		percentage for a given
		span of time.

NFR-6	Scalability	Application scalability is the
		ability of an application to
		handle a growing number of
		users and load, without
		compromising on
		performance and causing
		disruptions to user
		experience. To put it another
		way, scalability reflects the
		ability of the software to
		grow or change with the
		user's demands.

CHAPTER - 5

PROJECT DESIGN

DATA FLOW DIAGRAM

b. SOLUTION &TECHNICAL ARCHITECTURE

CHAPTER 6

PROJECT PLANNING AND SCHEDULING

a. SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requirem ent(Epic)	User Story Number	UserStory / Task	Priority
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, andconfirming my password.	High
Sprint-2	Confirmation	USN-2	As a user, I will receive confirmation email once I have registered for the application	High
Sprint-1	Registration	USN-3	As a user, I can register for the application through Facebook	High
Sprint-1	Registration	USN-4	As a user, I can register for the application through	Medium

			Gmail		
		******* -		1	
Sprint-2	Login	USN-5	As a user, I can log	High	
			into the application		
			by entering email		
			&password		
Sprint-3	Dashboard	USN-6	After logging into	Medium	
			the application, I		
			can view		
			different section		
			and view cars		
			model appropriate		
			time.		
Sprint-2	Login	USN-7	As an admin I can	High	
			login using		
			username and		
			password.		
Sprint-2	Training the	USN-8	As an admin I can	High	
	model		train the prediction		
			model through		
			various datasets		
Sprint-1	Providing user	USN-9	As an admin I can	High	
	friendly		provide specific		
	Interface		labels for specific		
			fields.		

Sprint-2	View options	USN-10	As a car owner I	Medium
			can choose the	
			sections and read	
			policies.	
Sprint-3	Data Entry	USN-11	As a car owner, I	High
			can provide data	
			about the car in	
			relevant fields.	
Sprint 4	Place order	USN-12	As a customer, I	High
			select the car	
			suitable to me from	
			the recommended	
			section and place	
			Order	
Sprint 4	Payment	USN-13	As a customer, pay	High
	gateway		for the price of the	
			car through	
			payment gateway.	
Sprint 5	Payment and	USN -14	As an admin,	High
	invoice		collected amount is	
			distributed to the	
			car owner and	
			invoice is provided	
			to both car	
			Owner and	
			customer.	

b. SPRINT DELIVERYSCHEDULE

Spri nt	Total Story Poin ts	Due	StartDa te	Sprint EndDa te (Planned)	Story PointsComplet ed (as onPlanned End Date)	Sprint Releas ed Date (Actual)
Sprin t1	2	3 Da ys	04 Nov 2022	07 Nov 2022	20	07 Nov 2022
Sprin t2	2	3 Da ys	07 Nov 2022	10 Nov 2022	20	10 Nov2022
Sprin t3	2 0	3 Days	10 Nov 2022	13 Nov 2022	20	13 Nov2022
Sprin t4	2	3 Days	13 Nov 2022	16 Nov 2022	20	16 Nov 2022

CHAPTER -7 CODING AND SOLUTION

Car.html

```
File Edit Selection View Go Terminal Help
                                                                                                                                           5 car.html X
    1 k!DOCTYPE html>
        <html lang="en" dir="ltr">
          <head>
            <meta charset="utf-8">
            <title>Car resale value </title>
link rel="stylesheet" href="../static/css/style.css">
           link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
          </head>
          <body>
            <section class="header">
             <nav>
               <a href="/"><img src="../static/Images/sang.png" width="100" height="100"></a>
              </nav>
                 <h1>Car resale value Predictor</h1>
                  Gest system to predict the amount of resale value based on the parameters provided by the user .
                 <a href="./predict_page" class="visit-btn ">Check price</a>
            </section>
          </body>
        </html>
```

Predict.html

Value.html

CHAPTER 8 TESTING

8.1 TEST CASES

Test	Feature	Component		Expected	Actual	Status
case ID			Scenario	Result	Result	
HP_TC_0 01	UI	Home Page	Elements in the home page	The Homepage must be displayed properly	Working as expected	PASS
BE_TC_0 01	Function al	Backend	all the routes	All the details of cars should display properly	Working as expected	PASS
RP_TC_001	UI	Result	Verify UI elements in the Result Page	The Result page must be display properly	Working as expected	PASS

a. USER ACCEPTANCE TESTING

i. DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	4	2	3	10
Duplicate	0	0	3	0	3
External	0	1	0	0	1
Fixed	1	3	2	6	12
Not Reproduced	0	0	0	0	0
Skipped	1	1	0	0	2
Won't Fix	1	0	0	0	1
Totals	4	9	7	9	29

ii. TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Model Evaluation	10	0	0	10
Client Application	20	0	0	20
Exception Reporting	2	0	0	2
Final Report Output	4	0	0	4

CHAPTER - 9 RESULTS

9.1 PERFORMANCE METRICS

1) Home Page

2) Data Entry Page

3) Car Resale Value Display Page

The Predicted Car Resale Value is
15578.736128175067

CHAPTER - 10 ADVANTAGES AND DISADVANTAGES

ADVANTAGES

1. Reduces manual

- 1. More accurate than average human
- 2. Capable of handlinga lot of data
- 3. Can be used anywhere from any device

DISADVANTAGES

- 4. Cannot handle complexdata
- 5. All the data must be in digital format
- 6. Requires a high performance server for faster predictions
- 7. Prone to occasional errors

CHAPTER 11 CONCLUSION

This project demonstrated a web application that uses machine learning to predict the car resale value for customers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as buying a second handed car in optimal best, sell the old cars in single place in best price and so on. There is so much room for improvement, which can be implemented in subsequent versions.

CHAPTER - 12

FUTURE SCOPE

For better performance, we plan to judiciously design deep learning network structures, use adaptive learning rates and train on clusters of data rather than the whole dataset. To correct for overfitting in Random Forest, different selections of features and number of trees will be tested to check for change in performance.

APPENDIX SOURCE CODE

MODEL CREATION

Integrateflask.py

```
- 🗗 X
integrate_flask.py - C:\Users\vrpra\Downloads\integrate_flask.py (3.8.2)
File Edit Format Run Options Window Help
# Import Libraries
import pandas as pd
import numpy as np
from flask import Flask, render_template, Response, request
import pickle
from sklearn.preprocessing import LabelEncoder
import requests
# NOTE: you must manually set API_KEY below using information retrieved from your IBM Cloud account.
API_KEY = "Qo9j8ni7qMJ8j1C8VFDRFHbuGRAhYWcT1kVqnYg1AGkE"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey":API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token response.json()["access token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask(__name__) #initiate flask app
def load model(file='../Result/resale model.sav'):#load the saved model
        return pickle.load(open(file, 'rb'))
@app.route('/')
def index():#main page
        return render template('car.html')
@app.route('/predict page')
def predict page(): #predicting page
        return render_template('value.html')
@app.route('/predict', methods=['GET','POST'])
        reg year = int(request.args.get('regyear'))
        powerps = float(request.args.get('powerps'))
        kms= float(request.args.get('kms'))
        reg_month = int(request.args.get('regmonth'))
        gearbox = request.args.get('geartype')
        damage = request.args.get('damage')
        model = request.args.get('model')
        brand = request.args.get('brand')
        fuel_type = request.args.get('fuelType')
        veh_type = request.args.get('vehicletype')
```

```
File Edit Format Run Options Window Help
```

```
rcdacar.arda.acr.
model = request.args.get('model')
brand = request.args.get('brand')
fuel_type = request.args.get('fuelType')
veh_type = request.args.get('vehicletype')
new_row = {'yearOfReg':reg_year, 'powerPS':powerps, 'kilometer':kms,
                        'monthOfRegistration':reg_month, 'gearbox':gearbox,
                       'notRepairedDamage':damage,
'model':model, 'brand':brand, 'fuelType':fuel_type,
                       'vehicletype':veh_type}
print(new_row)
'brand','notRepairedDamage'])
new df = new_df.append(new_row, ignore_index=True)
labels = ['gearbox','notRepairedDamage','model','brand','fuelType','vehicletype']
mapper = {}
for i in labels:
        mapper[i] = LabelEncoder()
        mapper[i].classes = np.load('../Result/'+str('classes'+i+'.npy'), allow_pickle=True)
        transform = mapper[i].fit_transform(new_df[i])
        new_df.loc[:,i+'_labels'] = pd.Series(transform, index=new_df.index)
labeled = new_df[['yearOfReg','powerPS','kilometer','monthOfRegistration'] + [x+'_labels' for x in labels]]
X = labeled.values.tolist()
print('\n\n', X)
\#predict = reg_model.predict(X)
# NOTE: manually define and pass the array(s) of values to be scored in the next line
payload scoring = {"input data": [{"fields": [['yearOfReg', 'powerPS', 'kilometer', 'monthOfRegistration', 'gearbox labels', 'notRepairedDamage labels', 'model
response scoring = requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/7f67cbed-6222-413b-9901-b2a72807ac82/predictions?version=2022-10-30', jso
predictions = response scoring.json()
print(response scoring.json())
predict = predictions['predictions'][0]['values'][0][0]
print("Final prediction :",predict)
```

```
- 🗗 X
integrate_flask.py - C:\Users\vrpra\Downloads\integrate_flask.py (3.8.2)
File Edit Format Run Options Window Help
                 new_row = {'yearOfReg':reg_year, 'powerPS':powerps, 'kilometer':kms,
                                                                    'monthOfRegistration':reg_month, 'gearbox':gearbox,
                                                                   'notRepairedDamage':damage,
                                                                    'model':model, 'brand':brand, 'fuelType':fuel_type,
                                                                    'vehicletype':veh type}
                 print(new_row)
                 new_df = pd.DataFrame(columns=['vehicletype','yearOfReg','gearbox',
                                  'powerPS','model','kilometer','monthOfRegistration','fuelType',
'brand','notRepairedDamage'])
                 new_df = new_df.append(new_row, ignore_index=True)
                 labels = ['gearbox','notRepairedDamage','model','brand','fuelType','vehicletype']
                 mapper = {}
                 for i in labels:
                                mapper[i] = LabelEncoder()
                                  mapper[i].classes = np.load('../Result/'+str('classes'+i+'.npy'), allow_pickle=True)
                                  transform = mapper[i].fit_transform(new_df[i])
                                  new_df.loc[:,i+'_labels'] = pd.Series(transform, index=new_df.index)
                 labeled = new df[['yearOfReg','powerPS','kilometer','monthOfRegistration'] + [x+' labels' for x in labels]]
                 print('\n\n', X)
                 #predict = reg_model.predict(X)
                 # NOTE: manually define and pass the array(s) of values to be scored in the next line
                 payload scoring = {"input data": [{"fields": [['yearOfReg', 'powerPS', 'kilometer', 'monthOfRegistration','gearbox labels', 'notRepairedDamage labels', 'model
                 \textbf{response\_scoring} = \textbf{requests.post} (\texttt{https://us-south.ml.cloud.ibm.com/ml/v4/deployments/7f67cbed-6222-413b-9901-b2a72807ac82/predictions?version=2022-10-30', jsouth.ml.cloud.ibm.com/ml/v4/deployments/7f67cbed-6222-413b-9901-b2a72807ac82/predictions?version=2022-10-30', jsouth.ml.cloud.ibm.com/ml/v4/deployments/7f67cbed-6222-413b-9901-b2a72807ac82/prediction=2022-10-30', jsouth.ml.cloud.ibm.com/ml/v4/deployments/7f67cbed-6222-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/prediction=2022-413b-9901-b2a72807ac82/pre
                 predictions = response_scoring.json()
                 print(response_scoring.json())
                 predict = predictions['predictions'][0]['values'][0][0]
                 print("Final prediction : ", predict)
                 return render_template('predict.html',predict=predict)
 if __name__ == ' __main__ ':
                 reg_model = load_model() #load the saved model
                 app.run(host='localhost', debug=True, threaded=False)
```

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-7140-1658848269