Digital Electronic Circuits Section 1 (EE, IE)

Lecture 9

Minimization and Propagation Delay

B.C: Redundant P.I. Its inclusion increases cost 'unnecessarily'.

In this, effect of propagation delay in logic gates is not considered.

Propagation Delay in Logic Gate

Prop. Delay: TTL ≈ 10 ns CMOS ≈ 50 ns (depends on load; also, supply voltage for CMOS)

Glitches and Hazards in Logic Circuit

- Glitches are undesired positive or negative going pulse in a digital logic circuit.
- Glitch occurs due to finite propagation delay of logic gates and occurs for specific combinations of input (not for other combinations)
- Glitch is transient in nature and has short duration (≈ ns).
- A logic circuit has Hazard if there is a potential for glitch.
- A circuit with hazard may generate glitch depending on input combination.

Example of Glitch

$$Y = A'.C + A.B$$

Consider,
$$B = 1$$
, $C = 1$

Then,
$$Y = A'.1 + 1.A$$

= $A' + A$
= 1

i.e.
$$Y = 1$$
, always
for $B = 1$, $C = 1$
as per Boolean Algebra

$$B = 1, C = 1, A : 1 \rightarrow 0$$

Glitch occurs: Due to propagation delay of NOT gate, both AND Gates have 0 in one of the inputs for a short duration.

Glitch: B = 1, C = 1, $A : 1 \to 0$

No Glitch: B = 1, C = 1, $A : 0 \rightarrow 1$

Static 1 Hazard

In Static 1 Hazard, output should remain static at 1 according to Boolean Logic but glitch occurs under certain conditions.

$$\tau_1$$
 = NOT gate delay τ_2 = OR gate delay

Detecting Static 1 Hazard

- Two logically adjacent cells with output 1 in K-Map not covered by a common product term.
- Boolean expression produces (A + A') for certain condition.

$$Y = B'.C + A.B$$

$$AC = 11, Y = B + B'$$

Glitch, *ABC* : 111 → 101

$$Y = B'.C + B.C'$$

No Hazard for one variable changing

$$Y = B.C + A.C'.D'$$

$$ABD = 110, Y = C + C'$$

Glitch: Static 1 Hazard

ABCD : 1110 → 1100

Covering Static 1 Hazard

$$Y = A'.C + A.B + B.C$$

Hazard-free circuit

$$AB$$
 $\begin{bmatrix} 00 & 01 & 11 & 10 \\ 00 & 0 & 0 & 0 & 0 \\ 01 & 0 & 0 & 1 & 1 \\ 11 & 1 & 0 & 1 & 1 \\ 10 & 1 & 0 & 0 & 0 \end{bmatrix}$

$$Y = B.C + A.C'.D' + A.B.D'$$

Hazard-free by covering with common product term (redundant in SOP minimization)

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Technical documents from http://www.ti.com accessed on Oct. 08, 2018