Exercise 5 (python code + text):

Consider a regression problem where both the independent and dependent quantities are scalars and are related via the following linear model

$$y = \theta_o \cdot x + \eta$$

where η follows the zero mean normal distribution with variance σ^2 and $\theta_o = 2$ (thus, the actual model is $y = 2 \cdot x + \eta$).

- (a) Generate d = 50 data set as follows:
 - Generate a set D_1 of N=30 data pairs (y_i',x_i) , where $y'=2\cdot x$.
 - Add zero mean and $\sigma^2=64$ variance Gaussian noise to the y_i ''s, resulting to y_i 's.

• The **observed** data pairs are (y_i, x_i) , i = 1, ..., 30, which constitute the data set D_1 .

Repeat the above procedure d=50 times in order to generate 50 different data sets.

- (b) Compute the LS linear **estimates** of θ_o based on $D_1, D_2, ..., D_d$ (thus, $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_d$ numbers/estimates will result).
- (c) Consider now the random variable $\hat{\theta}$ that models $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_d$ (that is, $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_d$ can be viewed as instances of the random variable $\hat{\theta}$)¹ and
 - (c1) compute the $MSE = E\left[\left(\widehat{\theta} \theta_o\right)^2\right]$ and
 - (c2) depict graphically the values $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_d$ and comment on how they are spread around θ_o .

<u>Hint:</u> For (c) approximate MSE as $MSE = \frac{1}{d} \sum_{i=1}^{d} (\hat{\theta}_i - \theta_o)^2$.