递归数列及函数增长—算法分析初步

离散数学教学组

排序算法-插入排序

遍历所有元素:

构造已排序的子序列将待排序元素插入子序列中的合适位置

插入排序的伪代码

```
INSERTION-SORT(A)
   for j = 2 to A.length
       key = A[j]
       // Insert A[j] into the sorted sequence A[1...j-1].
       i = j - 1
       while i > 0 and A[i] > key
           A[i+1] = A[i]
           i = i - 1
       A[i+1] = key
```

插入排序的时间复杂度

* 最坏情形下(用比较次数来衡量)

*
$$(2-1)+(3-1)+...+(n-1)=n(n-1)/2$$

- $* O(n^2)$
- * 最坏情形: 待排序元素完全逆序!
 - * 比如: 654321

算法的执行步骤数:算法分析初步

- * 算法的正确性 VS 算法的效率
- * 如何去评判一个算法的效率?
 - * 时间开销: steps
 - * 空间开销: memory
- * 算法的执行步骤数是主要手段
 - * 算法的执行步骤数不是简单的算法语句条数!

算法的执行步骤数

N	T(n)	
(数据集规模)	(算法执行步数)	
10	550	
50	63750	
100	505000	

算法执行步数随着数据规模的变化而变化不同的算法,变化的"剧烈程度"不同

引入一个数学工具 来刻画这种变化并 尝试判断其规律

算法执行步骤函数

- * 针对每个算法,可以定义该算法的执行步骤 函数 T:N->N:
 - * 数据规模->算法执行步骤数
- * 该函数
 - * 最坏情形/平均情形复杂度
 - * 基本代表一个算法的执行效率
 - *随着数据规模变化,考察该函数的"增长"速度

汉诺塔递归算法的性能分析

Towers of Hanoi

* How many moves are need to move all the disks to the third peg by moving only one at a time and never placing a disk on top of a smaller one.


```
T(1) = 1

T(n) = 2T(n-1) + 1
```

```
void hanoi(int n,char one, two, three)
// 将n个盘从one座借助two座,移到three座
{
    void move(char x, char y);
    if(n==1) then move(one,three);
    else {
        hanoi(n-1,one,three,two);
        move(one,three);
        hanoi(n-1,two,one,three);
    }
}
```

Solution of Towers of Hanoi

$$T(n) = 2T(n-1) + 1$$
 $2T(n-1) = 4T(n-2) + 2$
 $4T(n-2) = 8T(n-3) + 4$

......

 $T(n) = 2^{n-1}$
 $T(n) = 2^{n-1}$

Recurrence relations (递推关系)

* Examples

- ***** 4,7,10,13,16,.....
- * 1,1,2,3,5,8,13,21,34,... (a)

* Problem

- * Recurrence relation: the recursive formula
- * e.g: $f_n = f_{n-1} + f_{n-2}$, $f_1 = f_2 = 1$ for (a)
- * $f_1 = f_2 = 1$: initial condition

Example

- * Let $A = \{0,1\}$.
- * C_n: the number of strings of length n in A* that do not contain adjacent 0's

$$* C_3 = ?$$

$$* C_n = ?$$

*
$$C_n = C_{n-1} + C_{n-2}$$

Finding an explicit formula

- * Find an explicit formula for these sequences?
- * Backtracking
 - * E.g. 1:

*
$$a_n = a_{n-1} + 3$$
, $a_1 = 2$

=> recurrence relation

*
$$a_n = 2 + 3(n-1)$$

=> explicit formula

*
$$b_n = 2b_{n-1} + 1, b_1 = 7$$

*
$$b_n = 2^{n+2}-1$$

Linear Homogeneous Relation

$$a_n = r_1$$
 $a_{n-1} + r_2 a_{n-2} + \dots + r_m a_{n-k}$

is called linear homogeneous relation of degree k.

$$c_n = (-2)c_{n-1}$$

$$f_n = f_{n-1} + f_{n-2}$$

$$a_n = a_{n-1} + 3$$

$$g_n = g_{n-1}^2 + g_{n-2}$$

Characteristic Equation

* For a linear homogeneous recurrence relation of degree *k*

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_m a_{n-k}$$

the polynomial of degree k

$$x^{k} = r_{1}x^{k-1} + r_{2}x^{k-2} + \cdots + r_{k}$$

is called its characteristic equation.

* The characteristic equation of linear homogeneous recurrence relation of degree 2 is: $x^2 - r_1x - r_2 = 0$

Solution of Recurrence Relation

* If the characteristic equation $x^2 - r_1 x - r_2 = 0$ of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots s_1 and s_2 , then

$$a_n = us_1^n + vs_2^n$$

where *u* and *v* depend on the initial conditions, is the explicit formula for the sequence.

Solution of Recurrence Relation

* If the equation has a single root s, then,

$$a_n = us^n + vns^n$$

Solution of Recurrence Relation

*
$$c_n = 3c_{n-1} - 2c_{n-2}, c_1 = 5, c_2 = 3$$

* Characteristic equation:

*
$$x^2 = 3x - 2$$
;

* Get the root: 1,2

*
$$C_n = u*1^n + v*2^n$$

* We have equations:

$$* C1 = u+2v = 5$$

$$* C2 = u+4v = 3$$

* So:
$$C_n = 7-2^n \ (u = 7, v = -1)$$

Fibonacci Sequence

$$f_1 = 1$$
 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$

1, 1, 2, 3, 5, 8, 13, 21, 34,

Explicit formula for Fibonacci Sequence

The characteristic equation is x^2 -x-1=0, which has roots:

$$s_1 = \frac{1+\sqrt{5}}{2}$$
 and $s_2 = \frac{1-\sqrt{5}}{2}$

Note: (by initial conditions) $f_1 = us_1 + vs_2 = 1$ and $f_2 = us_1^2 + vs_2^2 = 1$

which results:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

函数的增长-算法分析初步

- *集合A上的关系R,令|A|=n
- * 求该关系的传递闭包算法有: S1算法,S2算法
- * 如何去判断哪个算法更好一些?
 - * 时间开销: steps
 - * T_{S1}函数; T_{S2}函数
 - * 如何比较时间开销?
 - *看谁"增长得快"!

函数增长

N	S1	S2
(数据集规模)	(算法执行步数)	(算法执行步数)
10	550	1250
50	63750	781250
100	505000	12500000

两个算法执行步数随着数据规模的变化而变化不同的算法,变化的"剧烈程度"不同

需要一种数学工具通过执行步骤函数的处理来反映 上述"剧烈程度"

函数的增长

- * 定义函数T:N(或R)→R:
 - * 数据规模->算法执行步骤数
- * 针对上述两个算法:
 - * $T_{S1}(n) = n^3/2 + n^2/2$ for algorithm S1
 - * $T_{S2}(n) = n^4/8$ for algorithm S2

函数的增长速度

- * 给定f和g是整数或实数集合到实数集合的函数
 - * 如果存在正常数 c 和k ,使得对于所有大于k的 x,都有 $|f(x)| \le C|g(x)|$
 - * 我们称:
 - * f 是 O(g)
 - * f 增长速度不高于g

实际上

- * 可以做如下判断:
 - * 函数f是O(g) if $\lim_{n\to\infty}[f(n)/g(n)]=c<\infty$
 - * if there exists constants $c \in N$ and $k \in N$ such that for all $n, f(n) \le cg(n)$
- * 例如: let $f(n)=n^2$, $g(n)=n\lg n$, 则:
 - * f 不是O(g),因为 $\lim_{n\to\infty} [f(n)/g(n)] = \lim_{n\to\infty} [n^2/n \lg n] = \lim_{n\to\infty} [n/\lg n] = \lim_{n\to\infty} [1/(1/n \ln 2)] = \infty$
 - * g 是O(f),因为 $\lim_{n\to\infty}[g(n)/f(n)]=0$

再例

- * let $f(n)=n^2$, $g(n)=7n^2+9n-1$
 - * $\lim_{n\to\infty} [f(n)/g(n)] = \lim_{n\to\infty} [n^2/(7n^2 + 9n 1)] = 1/7$
 - * 所以: f是O(g)
 - * $\lim_{n\to\infty} [g(n)/f(n)] = \lim_{n\to\infty} [(7n^2 + 9n 1)/n^2] = 7$
 - * 所以: g 是O(f)
- * 我们称: ƒ和g增长得一样快(同阶)

Ω和Θ

- * 给定f和g是整数或实数集合到实数集合的函数
 - * 如果存在正常数 c 和k ,使得对于所有大于k的 x,都有 $|f(x)| \ge C|g(x)|$
 - * 我们称:
 - *f 是 $\Omega(g)$
 - * f 增长速度不低于g
- * 如果f 既是O(g),又是 $\Omega(g)$,则称f是 $\Theta(g)$,即f和g是同阶的。

相对增长速度

给定函数g:

 Ω (g):functions that grow at least as fast as g

 Θ (g):functions that grow at the same rate as g

O(g):functions that grow no faster as g

Θ关系

- * n²/100+5n 是 O(3n⁴-5n²), 它是O(10n⁴)?
- * 3n⁴-5n² 和10n⁴增长得一样快
- * 实际上, n⁴ 是所有和3n⁴-5n²同阶的函数中的最简形式
- * $3n^4-5n^2$ 是 $\Theta(n^4)$ 的
- * 可以将Θ 看做一个等价关系

常见阶

* 一些常见的代表性阶

* $\Theta(1)$, $\Theta(n)$, $\Theta(n^2)$, $\Theta(n^3)$, $\Theta(\log(n))$, $\Theta(n\log(n))$, $\Theta(2^n)$

范例

* 从低到高排列

- * Θ(1000000)
- * $\Theta(n^{0.2})$
- * $\Theta(n+10^7)$
- * $\Theta(nlg(n))$
- * $\Theta(1000n^2-n)$
- * $\Theta(1.3^{n})$

教材和练习

```
* 教材:
```

```
* 3.1.3; 3.2; 3.3;
```

- ***** 7.1
- * 扩展阅读: 7.3
- * 练习:
 - * P142: 2; 12; 22; 38
 - * P349: 7; 14; 24; 36
 - * P360: 4(a,c,e,g)

Josephus's problem

- * Given n people, kth man will be executed.
- * Find the position to survive, J(n, k)

Josephus's problem

- * J(n, 2) is denoted by J(n)
- * //Thinking recursively

$$J(1) = 1$$

 $J(2n) = 2J(n) - 1$
 $J(2n+1) = 2J(n) + 1$
 $J(2m+l) = 2l+1$
 $J(2m+l) = 2l+1$