Notes on Linear Sorting

Geoffrey Matthews May 9, 2016

Comparison sorts

- The only operation that may be used to gain information about a sequence is comparisons between pairs of elements.
- All sorts seen so far are comparison sorts:
 - insertion sort
 - merge sort
 - quicksort
 - heapsort

Lower bounds for comparison sorts

- $\Omega(n)$ to examine all the input
- All sorts seen so far are $\Omega(n \lg n)$
- We will show that all comparison sorts must be $\Omega(n \lg n)$

Decision tree

- Abstraction of any comparison sort
- Represents comparisons made by
 - a specific sorting algorithm
 - on inputs of a given size
- Abstracts away everything else: control and data movement.
- We're counting *only* comparisons.

Insertion sort on three elements

- Internal nodes labeled by comparisons (original positions).
- Leaf nodes labeled by permutation of order from original.
- Number of leaves $\geq n!$.

For any comparison sort

- 1 tree for each n
- View the tree as if the algorithm splits in two at each node.
- The tree models all possible execution traces.

What is the longest path from root to leaf?

• Depends on the algorithm.

• Insertion sort: $\Theta(n^2)$

• Merge sort: $\Theta(n \lg n)$

Lemma: any binary tree of height h has $\leq 2^h$ leaves.

- $\ell = \#$ of leaves
- h = height
- then $\ell \leq 2^h$

Proof by induction on h:

Base: h = 0. Tree is just one node, which is a leaf. $1 \le 2^h$.

Inductive step: Assume true for h-1. Extend tree with as many new leaves as possible. Each leaf becomes the parent of two new leaves.

of leaves for
$$h = 2(\# \text{ of leaves for } h - 1)$$

 $\leq 2(2^{h-1})$
 $= 2^h$

Theorem: any decision tree that sorts n elements has height $\Omega(n\lg n)$

- $\bullet \ \ell \geq n!$
- $n! \le \ell \le 2^h$
- $h \ge \lg(n!)$
- Sterling's approximation: $n! > (n/e)^n$
- Therefore:

$$h \ge \lg(n!)$$

$$\ge \lg(n/e)^n$$

$$= n \lg(n/e)$$

$$= n \lg n - n \lg e$$

$$= \Omega(n \lg n)$$

Sorting in linear time

• Impossible with any comparison sort.

• Counting sort

- Key assumption: numbers to be sorted are integers in $\{0, \ldots, k\}$.

Input: A[1..n] where $A[j] \in \{0, ..., k\}$

Output: B[1..n], sorted.

Auxiliary storage: C[0..k]

Counting sort example

Counting-Sort
$$(A, B, n, k)$$

- 1 let C[0..k] be a new array
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n
- 5 C[A[j]] = C[A[j]] + 1
- 6 **for** i = 1 **to** k
- 7 C[i] = C[i] + C[i-1]
- 8 for j = n downto 1
- 9 B[C[A[j]]] = A[j]

10
$$C[A[j]] = C[A[j]] - 1$$

A:
$$2_1 | 5_1 | 3_1 | 0_1 | 2_2 | 3_2 | 0_2 | 3_3$$

After second **for** loop:

After third **for** loop:

Counting sort example

COUNTING-SORT
$$(A, B, n, k)$$

1 let $C[0..k]$ be a new array

2 **for** $i = 0$ **to** k

3 $C[i] = 0$

4 **for** $j = 1$ **to** n

5 $C[A[j]] = C[A[j]] + 1$

6 **for** $i = 1$ **to** k

7 $C[i] = C[i] + C[i - 1]$

8 **for** $j = n$ **downto** 1

9 $B[C[A[j]]] = A[j]$

10 $C[A[j]] = C[A[j]] - 1$

A:
$$\boxed{2_1 \ | \ 5_1 \ | \ 3_1 \ | \ 0_1 \ | \ 2_2 \ | \ 3_2 \ | \ 0_2 \ | \ 3_3}$$

							3_3	
B:		0_{2}					3_3	
		0_{2}				3_2	3_3	
		0_{2}		2_2		3_{2}	3_3	
	0_1	0_2		2_2		3_{2}	3_3	
	0_1	0_2		2_2	3_1	3_{2}	3_3	
	0_1	0_{2}		2_2	31	32	3_3	$\overline{5_1}$
	0_1	0_2	2_1	$\overline{2}_2$	3_1	3_2	3_3	5_1

Counting sort is **stable**:

• Keys with the same value appear in the same order in output as in input.

Counting sort analysis

COUNTING-SORT
$$(A, B, n, k)$$

1 let $C[0..k]$ be a new array

2 **for** $i = 0$ **to** k

3 $C[i] = 0$

4 **for** $j = 1$ **to** n

5 $C[A[j]] = C[A[j]] + 1$

6 **for** $i = 1$ **to** k

7 $C[i] = C[i] + C[i - 1]$

8 **for** $j = n$ **downto** 1

9 $B[C[A[j]]] = A[j]$

10 $C[A[j]] = C[A[j]] - 1$

- $\bullet \Theta(n+k)$
 - which is $\Theta(n)$ if k = O(n).
- \bullet How big a k is practical?
 - -32-bit values? No.
 - -16-bit? Probably not.
 - -8-bit? Maybe, depending on n.
 - -4-bit? Unless n is really small.

• Counting sort will be used in radix sort.

Radix sort example

329	720		720		329
457	355		329		355
657	436		436		436
839	 457	jj)))•	839	jjjp-	457
436	657		355		657
720	329		457		720
355	839		657		839

Radix sort

- IBM in early 20th century.
- Punch card sorting machines only sorted on one column.
- Humans would reload the cards and change the column.
- Human-machine cyborg algorithm!

Key idea:

Sort *least* significant digits first.

Radix sort

Radix-Sort(A,d)

- 1 for i = 1 to d
- 2 use a stable sort to sort A on digit i

Radix sort correctness

- Induction on number of passes.
- Assume digits $1, \ldots, i-1$ are sorted.
- Show that a stable sort on i leaves $1, \ldots, i-1$ sorted:
 - If 2 digits in position i are different,
 - * ordering by i is correct and positions $1, \ldots, i-1$ are irrelevant.
 - If 2 digits in position i are equal,
 - * numbers are already sorted by inductive hypothesis. Stable sort leaves them that way.

Radix sort analysis

Assume we use counting sort on each digit.

- $\Theta(n+k)$ per digit
- \bullet d digits
- $\Theta(d(n+k))$ total
- If k = O(n), time $= \Theta(dn)$.

Radix sort: How to break each key into digits?

- \bullet *n* words
- b bits/word
- Break into r-bit digits. $d = \lceil b/r \rceil$
- Use counting sort, $k = 2^r 1$. Example: 32-bit words, 8-bit digits.

$$b = 32$$
 $r = 8$ $d = \lceil 32/8 \rceil = 4$ $k = 2^8 - 1 = 255$

• Time = $\Theta\left(\frac{b}{r}(n+2^r)\right)$

How to choose r?

- Time = $\Theta\left(\frac{b}{r}(n+2^r)\right)$
- Balance b/r and $n+2^r$.
- Choosing $r \approx \lg n$ gives

$$\Theta\left(\frac{b}{\lg n}(n+n)\right) = \Theta(bn/\lg n)$$

- If we choose $r < \lg n$ then $b/r > b/\lg n$ and $n + 2^r$ doesn't improve.
- If we choose $r > \lg n$ then $n + 2^r$ term gets big.
- Sort 2^{16} 32-bit numbers, use $r = \lg 2^{16} = 16$ bits. $\lceil b/r \rceil = 2$ passes.

Compare radix to merge and quick

- 1 million (2^{20}) 32-bit integers.
- Radix sort: $\lceil 32/20 \rceil = 2$ passes.
- Merge/quick: $\lg n = 20$ passes.
- Each radix "pass" is 2 passes:
 - one to take census
 - one to move data

How does radix sort violate the $\Omega(n \lg n)$ speed limit?

- Counting sort allows us to gain information about keys
 - other than by directly comparing 2 keys.
- Used keys as array indices,
 - thus getting far more information out of each key.
 - branching factor of the decision tree is k