PLP - 28

TOPIC 28—EQUIVALENCE RELATIONS & CLASSES

Demirbaş & Rechnitzer

EQUIVALENCE RELATIONS

EQUIVALENCE RELATIONS

Important class of relations are those that are similar to "="

DEFINITION:

Let R be a relation on the set A.

We call R an equivalence relation when it is reflexive, symmetric and transitive.

Examples

- "has same parity as"
- "is congruent to"
- "has same birthday as"

Weaker than equality — can be equivalent without being equal

PICTURES

Let $A=\{0,1,2,\ldots,10\}$ and consider congruence modulo 4.

And similarly with "has the same parity as"

Notice that elements of A fall into connected subsets — equivalence classes

EQUIVALENCE CLASSES

DEFINITION:

Let R be an equivalence relation on A.

The equivalence class of $x \in A$ (with respect to R) is

$$[x] = \{a \in A : a R x\}$$

In our congruent modulo 4 example

$$egin{aligned} [0] &= \{0,4,8\} = [4] = [8] & [1] &= \{1,5,9\} = [5] = [9] \ [2] &= \{2,6,10\} = [6] = [10] & [3] = \{3,7\} = [7] \end{aligned}$$

NO EQUIVALENCE CLASS IS EMPTY

LEMMA:

Let R be an equivalence relation on A.

For any $a \in A$, $a \in [a]$

PROOF.

Assume R is an equivalence relation on A, and let $a \in A$.

Since R is reflexive, we know that a R a. Hence (by definition), $a \in [a]$ as required.

EQUALITY OF EQUIVALENCE CLASSES

THEOREM:

Suppose R is an equivalence relation on A, and let $a,b\in A$. Then

$$[a] = [b] \iff a R b$$

Scratch work

- Have to prove both directions
- ullet Assume [a]=[b], then we need to show $a\mathrel{R} b$
- ullet We know (from above lemma) that $a\in [a]$, so $a\in [b]$
- ullet Definition of $[b]=\{x\in A\ :\ x\mathrel{R} b\}$, so $a\mathrel{R} b$

CONTINUING

$$[a] = [b] \iff a R b$$

Scratch work continued

- Now assume that $a \mathrel{R} b$. We need to show $[a] \subseteq [b]$ and $[b] \subseteq [a]$
- So let $x \in [a]$, which tells us that $x \mathrel{R} a$
- ullet We know that R is transitive, so

$$(x R a) \wedge (a R b) \implies (x R b)$$

so
$$x \in [b]$$

ullet The other inclusion is similar, but we use symmetry of R to get $b \mathrel{R} a$.

PROOF

PROOF.

We prove each implication in turn

- Assume $a\ R\ b$. We prove that $[a]\subseteq [b]$ and leave the other inclusion to the reader. Let $x\in [a]$, so that $x\ R\ a$. Since R is transitive, and $a\ R\ b$, we know that $x\ R\ b$. Hence $x\in [b]$ as required. The other inclusion is similar, but also uses symmetry of R.
- Now assume that [a]=[b]. By the lemma above, we know that $a\in [a]$, and so $a\in [b]$. By definition of the equivalence class of b, this tells us that $a\ R\ b$.

P(N) = 20, 213, 21,23, 3

P(N)-{0}= { 213, 81,23, 81,2,33....}

