Leaving the group

view edit history attach print logour

THEOS

People
Research
Mentoring
Seminars
Publications
Conferences
Quasiamore
Opening
Teaching
Tutorials
Projects

Contacts and directions

MARVEL

MARVEL Website What is MARVEL? MARVEL Lectures MARVEL Seminars Openings

Leaving The Group

Backups

Before you leave, you must make two backups of your workstation.

You should already possess one HDD that you have been using for regular backups (see the group's backup policy); ask Edward Linscott for a second HDD for the second backup.

Leave one HDD with Edward and take the other one with you when you leave.

Leaving your office

- . Clean and empty your desk, drawer and bookshelf
- Return any equipment you might have borrowed from the lab for remote working.
- · Leave the drawer key in the keyhole
- · Return your office key to the secretaries

Ongoing access

Ask to frihe for an extension of your EPFL account; typically 6 months should suffice (ask Nicola the specific amount of time depending on your future plans and the status of your current projects). The extension needs to be justified, a typical reason is "completion of a publication".

If you require ongoing access to your THEOS workstation after you leave, discuss this with the group's IT managers.

$$egin{aligned} E_U &= \sum_{l\sigma mm'} rac{U^l}{2} \left(n_{mm'}^{l\sigma} (\delta_{m'm} - n_{m'm}^{l\sigma})
ight) \ E_J &= \sum_{l\sigma} rac{J^l}{2} \left(n_{mm'}^{l\sigma} n_{m'm}^{l-\sigma} - 2 \delta_{\sigma\sigma_{\min}} \delta_{mm'} n_{m'm}^{l\sigma}
ight) \end{aligned}$$

(0.1)

(0.2)

Rethinking inter-spin corrections: He^{x+}

Figure:
$$E_U(n^{\uparrow}, n^{\downarrow})$$

$$\frac{\partial^2 E_U}{\partial n^{\uparrow 2}}\Big|_{n^{\downarrow}} = -U$$
 (red) (0.3a)
$$\frac{\partial^2 E_U}{\partial n^{\downarrow 2}}\Big|_{n^{\uparrow}} = -U$$
 (green) (0.3b)

$$\frac{\partial^2 E_U}{\partial n^2}\Big|_{\mu} = -\frac{U}{2}$$
 (blue) (0.3c)
$$\frac{\partial^2 E_U}{\partial \mu^2}\Big|_{\mu} = -\frac{U}{2}$$
 (black)

$$\left. \frac{\partial^2 E_J}{\partial n^2} \right|_{II} = \frac{J}{2} \tag{0.4a}$$

$$\left. \frac{\partial^2 E_J}{\partial \mu^2} \right|_n = -\frac{J}{2}$$
 for $\mu \neq 0$ (0.4b)

$$\left. \frac{\partial^2 E_J}{\partial n^{\uparrow 2}} \right|_{n^\downarrow} = 0 \tag{0.4c}$$

$$\frac{|^2E_J|}{|n|^{1/2}}\bigg|_{n^{\uparrow}} = 0 \tag{0.4d}$$

Figure: $E_J(n^{\uparrow}, n^{\downarrow})$

The combined correction

$$U_{\rm eff} = U - J$$
:

$$\left. rac{\partial^2}{\partial n^2} \right|_{\mu} (E_{U_{\mathrm{eff}}} + E_J) = -rac{U-2J}{2}$$

$$\left| \frac{\partial^2}{\partial u^2} \right| \; (E_{U_{\rm eff}} + E_J) = -\frac{U}{2} \qquad \text{for } \mu \neq 0$$

$$\left. \frac{\partial^2}{\partial n^{\uparrow 2}} \right|_{\mathcal{U}_{\text{eff}}} (E_{U_{\text{eff}}} + E_J) = -(U - J) \qquad \text{for } \mu \neq 0$$

$$\frac{\partial^2}{\partial n^{\downarrow 2}}\Big|_{\hat{\sigma}} (E_{U_{\text{eff}}} + E_J) = -(U - J)$$
 for $\mu \neq 0$

$$U_{\text{eff}} = U$$
:

$$\frac{\partial^2}{\partial n^2}\Big|_{U}(E_U+E_J)=-\frac{U-J}{2}$$

$$\frac{\partial^2}{\partial \mu^2}\bigg|_{p} (E_U + E_J) = -\frac{U + J}{2}$$
 for $\mu \neq 0$

$$\frac{\partial^2}{\partial n^{\uparrow 2}}\Big|_{n^{\downarrow}} (E_U + E_J) = -U \qquad \text{for } \mu \neq 0$$

$$\left. \frac{\partial^2}{\partial n^{\downarrow 2}} \right|_{z=0} (E_U + E_J) = -U \qquad \text{for } \mu \neq 0$$

(0.7)

(8.0)

Rethinking inter-spin corrections

Observations on conventional DFT + U and DFT + U + J

 $E_U = \sum_{l\sigma mm'} rac{U^l}{2} \left(n_{mm'}^{l\sigma} (\delta_{m'm} - n_{m'm}^{l\sigma})
ight)$

 $E_{J} = \sum \frac{J^{l}}{2} \left(n_{mm'}^{l\sigma} n_{m'm}^{l-\sigma} - 2\delta_{\sigma\sigma_{\min}} \delta_{mm'} n_{m'm}^{l\sigma} \right)$

lots of inter-dependence

 minority J term is important Principles for designing a new correction

- 1. vanishing at integer occupancies
- decouple our treatment of SIE and SCE
 - 3. different *U* correction for each spin channel

$$E_{1}(\lbrace U^{\sigma}\rbrace, \lbrace n^{\sigma}\rbrace) = \sum_{\sigma} \frac{U^{\sigma}}{2} \left(n^{\uparrow} + n^{\downarrow} - 1 \right) \times \begin{cases} -n^{\sigma} & n < 1 \\ 1 - n^{\sigma} & n > 1 \end{cases}$$
 (0.9)

(a)
$$U^{\uparrow} = U^{\downarrow}$$

(b)
$$U^{\uparrow} = U^{\downarrow}/2$$

Correction to SIE

- 1. it is zero for integer numbers of electrons
- 2. the curvature with respect to n^{σ} is entirely controlled by U^{σ} , i.e.

$$\left. \frac{\partial^2 E_1}{\partial n^{\sigma^2}} \right|_{n^{-\sigma}} = -U^{\sigma} \tag{0.10}$$

3. the curvature with respect to μ is *untouched* by this correction

$$\left. \frac{\partial^2 E_1}{\partial \mu^2} \right|_{p} = 0 \tag{0.11}$$

which would imply that this correction will selectively address SIE and not SCE

4. the curvature with respect to the total occupancy $n = n^{\uparrow} + n^{\downarrow}$ is given by the average

$$\left. \frac{\partial^2 E_1}{\partial n^2} \right|_{u} = -\frac{U^{\uparrow} + U^{\downarrow}}{2} \tag{0.12}$$

The resulting potential from this energy correction is given by $\hat{v}_1^{\sigma} = v_1^{\sigma}(n_i^{\uparrow}, n_i^{\downarrow})|i\rangle\langle i|$ where

$$v_1^{\sigma}(n^{\uparrow}, n^{\downarrow}) = \begin{cases} U^{\sigma}\left(\frac{1}{2} - n^{\sigma}\right) + \left(1 - n^{-\sigma}\right) \frac{U^{\uparrow} + U^{\downarrow}}{2} & n > 1\\ U^{\sigma}\left(\frac{1}{2} - n^{\sigma}\right) - n^{-\sigma} \frac{U^{\uparrow} + U^{\downarrow}}{2} & n < 1 \end{cases}$$
(0.13)

Figure: my proposed potential correction $v_1^{\uparrow}(\{U^{\sigma}\},\{n^{\sigma}\})$ for addressing SIE, with $U^{\downarrow}=2U^{\uparrow}$

$$E_2(K, \{n^{\sigma}\}) = \begin{cases} -Kn^{\uparrow}n^{\downarrow} & n < 1\\ -K(1 - n^{\uparrow})(1 - n^{\downarrow}) & n > 1 \end{cases}$$
 (0.14)

Figure: My proposed second correction, $E_2(K, \{n^{\sigma}\})$ for addressing SCE, with K=1

Correction to SCE

This second energy correction term possesses the following important properties:

- 1. it is zero for integer numbers of electrons (the four corners of fig. 10)
- 2. the curvature with respect to μ is controlled by the parameter K

$$\left. \frac{\partial^2 \mathsf{E}_2}{\partial \mu^2} \right|_n = \frac{K}{2} \tag{0.15}$$

3. the curvature with respect to n^{σ} is zero

$$\left. \frac{\partial^2 E_2}{\partial n^{\sigma^2}} \right|_{n^{-\sigma}} = 0 \tag{0.16}$$

However, by fulfilling these three properties it necessarily possesses one undesirable property: namely, the curvature with respect to the total occupancy $n=n^{\uparrow}+n^{\downarrow}$ is given by

$$\left. \frac{\partial^2 E_2}{\partial n^2} \right| = -\frac{K}{2} \tag{0.17}$$

(0.18)

The combined correction

Determining U^{σ} and K via spin-resolved LR

$$\frac{\partial^2}{\partial n^{\sigma^2}} (E_1 + E_2) \bigg|_{n=\sigma} = -U^{\sigma} \tag{0.19}$$

and thus it follows that we should set $U^{\sigma} = U^{\sigma\sigma}$. Meanwhile, the mixed derivatives

$$\frac{\partial}{\partial n^{\sigma}} \left[\left. \frac{\partial}{\partial n^{-\sigma}} \left(E_1 + E_2 \right) \right|_{n^{\sigma}} \right] \Big|_{n^{-\sigma}} = -\frac{U^{\uparrow} + U^{\downarrow} + K}{2} \tag{0.20}$$

and thus by equating the LHS with $-\frac{1}{2}(U^{\uparrow\downarrow} + U^{\downarrow\uparrow})$ it follows that $K = -U^{\uparrow\uparrow} + U^{\uparrow\downarrow} + U^{\downarrow\uparrow} - U^{\downarrow\downarrow}$

Rethinking inter-spin corrections

My new functional

$$E_1(\lbrace U^{\sigma}\rbrace, \lbrace n^{\sigma}\rbrace) = \sum_{\sigma} \frac{U^{\sigma}}{2} \left(n^{\uparrow} + n^{\downarrow} - 1 \right) \times \begin{cases} -n^{\sigma} & n < 1 \\ 1 - n^{\sigma} & n > 1 \end{cases}$$
 (0.21)

$$E_2(K, \{n^{\sigma}\}) = \begin{cases} -Kn^{\uparrow}n^{\downarrow} & n < 1\\ -K(1 - n^{\uparrow})(1 - n^{\downarrow}) & n > 1 \end{cases}$$
 (0.22)

$$v^{\sigma}(n^{\uparrow}, n^{\downarrow}) = \begin{cases} U^{\sigma}\left(\frac{1}{2} - n^{\sigma}\right) + \left(1 - n^{-\sigma}\right)\left(\frac{U^{\uparrow} + U^{\downarrow}}{2} + K\right) & n > 1\\ U^{\sigma}\left(\frac{1}{2} - n^{\sigma}\right) - n^{-\sigma}\left(\frac{U^{\uparrow} + U^{\downarrow}}{2} + K\right) & n < 1 \end{cases}$$
(0.23)

Open questions:

- does this fix total energies?
- is the discontinuity at n = 1 a problem?
- how best to generalise to multiple orbitals?
- what is the effect of orbital relaxation?

Acknowledgements

Andrew Burgess

David O'Regan

paper available at PRB 107, L121115 (2023) | slides available at O github/elinscott

SPARE SLIDES