Lecture 2: Undirected Models

Probabilistic Graphical Models, Koller and Friedman:

Chap 4, 7, and 8

 Markov Nets, Max Cliques, Factors, Hammersley-Clifford, Log-Linear Models, Exponential Family, Sufficient Statistics, Entropy, K-L Divergence, I & M Projections.

Factorization

 $P(a,b,c,d) \propto \phi 1(a,b) \phi 2(b,c) \phi 3(c,d) \phi 4(d,a)$

- $\propto [\phi 1(a,b) \phi 2(b,c)] [\phi 3(c,d) \phi 4(d,a)]$
- \propto F(b, a,c) G(d, a,c)
- which implies D ⊥ B | A,C

• The normalization constant is the 'partition function' Z.

• $Z=\Sigma_{abcd}$ ϕ 1(a,b) ϕ 2(b,c) ϕ 3(c,d) ϕ 4(d,a)

Blocking is much simpler to see

 If we observed the shaded the two separated unshaded subgraphs are conditionally independent. (Markov blanket= neighbors)

Cliques and Maximal Cliques

Blue is a maximal clique.

Edges describe interaction

 Markov nets correspond to a distribution that can be factored by including a 'factor' for all (maximal) cliques.

Factorization of Markov Nets

- One factor per maximal clique.
- Factors must be non-negative
- The joint:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

Example Boltzman distribution with Energy terms

$$\psi_C(\mathbf{x}_C) = \exp\left\{-E(\mathbf{x}_C)\right\}$$

Image De-noising

De-noised on right

Filter View of a PGM

- Let $\mathcal{U}I$ denote the distributions that can pass ie. those that satisfy all conditional independence statements, $\mathcal{I}(G)$
- Let \mathcal{UF} denote the distributions with factorization over cliques
- Hammersley-Clifford says for MRF: UI = UF (except if some P=0)
- Similar result for DAG, for example Theorem 3.1:
 which says Graph → Factorization for BN

Directed vs. Undirected Graphs

Moralizing (child → married)

$$p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$

Directed vs. Undirected Graphs

$$A \perp \!\!\!\perp B \mid \emptyset$$
 $A \perp \!\!\!\!\perp B \mid C$

Why Factor Graphs

- Consider $p(d, b, c) = 1/Z \varphi(d, b) \varphi(b, c) \varphi(c, d)$
- What is the corresponding Markov network (graphical representation)?
- A MRF with three nodes pairwise connected?
- But that also represents
- $p(d, b, c) = 1/Z \varphi(d, b, c)$

Factor Graph can be specific

Factor Graphs

Given a function

$$f(x_1,\ldots,x_n)=\prod_i \psi_i(\chi_i);$$

- ullet the factor graph has a factor node for each factor, $\psi_{\mathsf{i}}(\pmb{\chi}_{\mathsf{i}})$.
- and a variable node for each variable, x_j .
- When used to represent a distribution

$$p(x_1,...,x_n) = (1/Z) \prod_i \psi_i(X_i),$$

• a normalization constant, Z, is assumed.

Bi-partite Graph

- A bi-partite graph has every edge connecting nodes from each of two disjoint sets.
- A factor graph is a bi-partite graph where the sets of nodes are variable nodes and factor nodes.

Factor Graph vs MRF

- The set of independences (I maps) that can be represented by both types is the same.
- Factor graphs are able to represent additional factorization beyond the I-map, ie factorizations are not generating more independences.

Log-Linear Models

- Factor graphs are more explicit, but still require bulky tables for all the factor values
- Can use features to capture patterns that we'd like reflected in clique potentials:
- $P(X_1,...,X_N) = \phi_1(D_1) \phi_2(D_2) ... \phi_K(D_K)$
- Define $\phi_i(D_i) = \exp(-w_i f_i(D_i))$
 - $f_i(D_i)$ tell us something indicative about some random variables, (yes w_i f_i is basically the 'energy')
- So $P(X_1,...,X_N) = \exp(-w_1 f_1(D_1))... \exp(-w_k f_k(D_k))$
- $-\log(P(X_1,...,X_N)) = = \sum w_i f_i(D_i)$

Gaussian Network Models

$$P\Phi(X_1,...,X_N) = \exp(-w_1 f_1(D_1))... \exp(-w_k f_k(D_k))$$

- For Gaussians these would have all features as quadratic in the ' X_i '. These might be 'sensor measurements'.
- The multivariant Gaussian distribution:

$$p(\mathbf{x}) = [(2\pi)^n |\Sigma|]^{-1/2} \exp[(-1/2)(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)]$$

- 'Information Matrix', $\Omega = \Sigma^{-1}$.
- The Covariance matrix, Σ , must be nonnegative .

Gaussian Network Models

 \mathbf{x} and \mathbf{y} are Gaussian vector variables and A, B and C are matricies.

$$p(\mathbf{x}, \mathbf{y}) = G\left(\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}, \begin{pmatrix} \mu_{\mathbf{x}} \\ \mu_{\mathbf{y}} \end{pmatrix}, \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}\right)$$

$$p(\mathbf{y}) = \int_{-\infty}^{\infty} p(\mathbf{x}, \mathbf{y}) d\mathbf{x} = G(\mathbf{y}, \mu_y, B)$$

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x},\mathbf{y})/p(\mathbf{y}) = G(\mathbf{x},\mu_x + CB^{-1}(\mathbf{y} - \mu_y), A - CB^{-1}C^T)$$

Notice that this general Gaussian as a graph is fully connected so the graph is not very helpful. But sometimes the Gaussian model can have a simple graph which can be helpful.

Gaussian Network Models

$$N(\mu, \Sigma) = [(2\pi)^n |\Sigma|]^{-1/2} \exp[(-1/2)(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)]$$

- So called 'linear Gaussian' (BN) models lead to a multivariant Gaussian (MRF) model.
- Linear Gaussian BN has each node y with parents x with conditional pdf's as Gaussians:
 - P(y | x) ~ N(β_0 + β^T x, σ^2)
- Product of two Gaussians is a Gaussian.
 - Its own 'Conjugate prior' (a later lecture)

Exponential Family

$$A(\chi) \exp \{ \langle t(\theta), \tau(\chi) \rangle \} / Z(\theta)$$

- Features are replaced by 'sufficient statistic' functions, $\tau(\chi)$, from the random variable space to a 'feature space'
- The w_i generalize to 'natural parameter' functions, $t(\theta)$, from a parameter space to the feature space
- Some sort of inner product between them.
- Add an 'axillary measure', $A(\chi)$, that multiplies each exponential term.

Projections - Entropy

Entropy:

$$H_{P}(\chi) = -E_{P}[\ln P(\chi)]$$

Relative Entropy:

$$D(P \parallel Q) = E_P[\ln (P(\chi) / Q(\chi))]$$
$$= -H_p(\chi) - E_P[\ln Q(\chi)] >= 0$$

 Called the Kullback-Leibler divergence (distance) but not symmetric.

Projections - I and M

I -Projection of P to Q

$$Q^{I} = arg min_{o} D(Q \parallel P)$$

Focus more on peaks in P.

- M -Projection of P to Q $Q^{M} = arg min_{o} D(P \parallel Q)$
 - Focus more on spread of P.

Notice Q is also being restricted to a given family

Projections – Q is Exponential

- $Q_{\theta}(\chi) = A(\chi) \exp \{ \langle t(\theta), \tau(\chi) \rangle \} / Z(\theta)$
- If we find parameters, θ , such that:

$$E_{Q_{\theta}}[\tau(\chi)] = E_{P}[\tau(\chi)]$$

then Q_{θ} is the M – Projection of P .

 This is what leads to the moment matching method and the name M projection.

SLAM Factor Graph

Conditional Random Field CRF

- A CRF works like a MRF only we interpret the factorization as being a conditional probability instead of a joint
- P(Y | X) instead of P(Y,X)
- Remember P(Y | X) = P(Y,X) / P(X)
- And if X is observed we sort of get the same answer in many cases however we interpret the factorization.

Conditional Random Field CRF

- P(Y | X) instead of P(X,Y)
- Y is called the target variables
- X is called the observed variables
- $P(Y \mid X) = (1/Z(X)) \widetilde{P}(X,Y)$
- $\widetilde{P}(X,Y) = \prod_{i=1...m} \phi_i(D_i)$
- $Z(X) = \Sigma_{Y} \widetilde{P}(X,Y)$

 So our Denoising example using a MRF can be done by interpreting it as a CRF.

Tutorial 3: MRF-Graph Cuts

- Here the X_i are a hidden segment label.
- So foreground vs background.
- y_i are the observed image pixel value.
- So we want a to find the MAP,
 maximum a posteori, estimate x given y.
- Uses an exponential model for $\phi(x, y) \propto \exp(-E(x,y))$
- The 'Gibbs Energy', E, Has terms for each type of edge above.
- The 'prior' is $U(x_i, y_i)$ and is given by (log of) a histogram over a user provided background/foreground regions.
- The smoothness term $V(x_i, x_j)$ is a constant for neighboring pixels with different labels.
- Or in a more refined model it is given a dependence on the y values (so add which edges to the graph above?)

Tutorial 3: MRF-Graph Cuts

- Uses an exponential model for $\phi(x, y) \propto \exp(-E(x,y))$
- MAP is same as minimize E with respect to labels x
- Cleverly this can be transformed to a Graph Cut or Max Flow problem that is easy.
- It is also solved using loopy message passing.