Syllabus (Current)

Arthur J. Redfern axr180074@utdallas.edu Oct 10, 2018

0 Outline

- 1 Logistics
- 2 Description
- 3 Plan
- 4 Grades

1 Logistics

Class: CS 6301.502.18F Special Topics in Computer Science –

Convolutional Neural Networks

Link: https://coursebook.utdallas.edu/search/searchresults/cs6301.502.18f

Location: Mon and Wed from 5:30 – 6:45 pm in FN 2.102

Office hrs: TBA TA: TBA

2 Description

Description: This course provides an introduction to convolutional neural networks (CNNs). The theory part of the course is motivated by the realization that many information extraction problems can be reduced to a classification or regression problem, neural networks are universal approximators and CNNs are an efficient neural network structure for multidimensional data. Network design and training methods are discussed along with software and hardware requirements for high performance CNN implementations. Theory and implementation are demonstrated and expanded on in the context of applications.

Outline: Background – linear algebra, calculus, probability

Theory – machine learning, convolutional neural networks

Implementation – hardware, software

Application – vision, speech, language, games

Objectives: Course learning objectives include:

- 1. Ability to understand, design and train convolutional neural networks
- 2. Ability to create software for mapping convolutional neural network designs to hardware
- 3. Ability to specify hardware for convolutional neural network optimized data movement and compute
- 4. Ability to evaluate convolutional neural network performance
- 5. Ability to apply convolutional neural networks to applications including vision, speech, language and games

References: No required book to purchase, links to open source materials will be provided.

3 Plan

01	Mon Aug 20	Introduction		
02	Wed Aug 22	Linear algebra		
03	Mon Aug 27	Linear algebra	HW1 assigned	
04	Wed Aug 29	Calculus		
00	Mon Sep 03	Labor Day		
05	Wed Sep 05	Calculus	HW2 assigned	HW1 due
06	Mon Sep 10	Probability		
07	Wed Sep 12	Probability		
80	Mon Sep 17	Algorithms / design	HW3 assigned	HW2 due
09	Wed Sep 19	Design		
10	Mon Sep 24	Design		HW3 due
11	Wed Sep 26	Theory test review		
12	Mon Oct 01	Theory test		
13	Wed Oct 03	Design	HW4 assigned	
14	Mon Oct 08	Training		
15	Wed Oct 10	Training	HW5 assigned	HW4 due
16	Mon Oct 15	Training		
17	Wed Oct 17	Implementation	Tool assigned	HW5 due
18	Mon Oct 22	Implementation		
19	Wed Oct 24	Implementation		
20	Mon Oct 29	Implementation		
21	Wed Oct 31	Vision	Project assigned	Tool due
22	Mon Nov 05	Vision		
23	Wed Nov 07	Speech		
24	Mon Nov 12	Speech		
25	Wed Nov 14	Language		

00 Mon Nov 19 Fall break
00 Wed Nov 21 Fall break
26 Mon Nov 26 Games
27 Wed Nov 28 Art
28 Mon Dec 03 Buffer
29 Wed Dec 05 Project
00 Mon Dec 10 Reading day

4 Grades

25% Theory test

25% Implementation tool

25% Project

25% Homework

No final exam