

NETCOMPANY

Workshop - Maskinlæring

VERSJON 1 0

FORFATTER

Henrik Bøhler Ole Kristian Stumpf Petter Fagerlund Asla Øvstein Kvamme Rer

Hva skal vi gå gjennom?

- Del 1
 - i. Introduksjon til maskinlæring
 - ii. Bruksområder
 - iii. Nevrale nettverk

- Del 2
 - i. Oppgaver

Artificial Intelligence (AI)

Simulert menneskelig intelligens

- Lære
- Resonere
- Løse problemer
- Prosessere informasjon

Artificial intelligence

Anything you can do, AI can do better. So how will it change the workplace?

http://learnmore.economist.com/story/57a849c338ba0ee26d98a68d

Hva er maskinlæring?

Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed

- Arthur Samuel (1959)

Hva er maskinlæring?

- Implementasjon av Al
- Algoritmer som lærer
- Ofte store mengder data mer jo bedre!
 - Finne m
 ønster
 - Predikere det ukjente basert på det kjente

Hvilke problemer kan maskinlæring løse?

Automatisk søknadsvurdering

Supervised - klassifisering

Hva er forholdet mellom kvadratmeter og pris på bolig?

Supervised - regresjon

Kvadratmeter

Musikkanbefaling

Unsupervised - clustering

Annonser

Reinforcement learning

Netcompany og maskinlæring

@ marketoonist.com

https://marketoonist.com/wp-content/uploads/2014/04/140414b.correlation.jpg

Læringsprosessen

- Kan være hva som helst
- Setter f
 øringer for alle videre steg

- Kvadratmeter
- Byggeår
- Beliggenhet
- Hagegnomer
- Antall takstein

Kvadratmeter

Byggeår

Beliggenhet

Eksempel nr	Feature 1 (m^2)	Feature 2 (byggeår)	Feature 3 (beliggenhet)	Resultat (over 3M)
1	100	1960	Kjelsås	False
2	120	2001	Majorstuen	True
3	90	1970	Smestad	False

- Formatere
 - Er datasettet i ønsket format? (matrise/tabell)
- Rense
 - Mangler det features i enkelte rader?
- Skalere
 - Har de forskjellige featurene ulik skala?
- Balansere
 - Er det få eksempler av én klasse?

- Vil man sjeldent lage selv
 - kNN, SVM, NN, AdaBoost ...
- Har gjerne en overordnet forståelse for dem
- Må gjerne tunes gjennom parametre
- Prøver ofte flere
- Er lette å bruke

- Selve resultatet
- Tar uklassifiserte eksempler som input og klassifiserer dem

Feature 1 (m^2)	Feature 2 (byggeår)	Feature 3 (lokasjon)	Resultat (over 3M)	.——→ ML-model -	Resultat (over 3M)
100	1960	Kjelsås	???	WE Model	True

Testsettet:

Feature 1 Feature 2 Feature 3 Resultat Klassifisert Var faktisk (m^2) (lokasjon) (over 3M) (byggeår) som 100 1960 **False** Kjelsås **True** ML-model 2001 120 Majorstuen **True** True 90 1970 **False Smestad False** ---

$$accuracy = \frac{\#riktige\ prediksjoner}{\#prediksjoner}$$

Sann klasse	Klasse 1	30	5	
	Klasse 2	3	33	
		Klasse 1	Klasse 2	
	Predikert klasse			

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

Viktig konsept: overfitting

- Lærer om støyen i datasettet
- Klarer ikke å generalisere
- Lærer treningsdata for godt
- Er derfor vi må trene på en del av datasettet og teste på et annet

Nevrale nettverk

Nevrale nettverk

HOW A DEEP NEURAL NETWORK SEES

Oppgaver

Datasettet

- 70,000 håndskrevne tall
- Delt opp i 60,000 treningsbilder og 10,000 testbilder
- Hvert bilde er på 28x28 piksler
- Ti klasser (0 9)
- data = array[antall bilder][høyde][bredde]

Oppgaver

- Oppgave 1: Flat ut og normaliser bildene
- Oppgave 2: Bygg nettverket
- Oppgave 3: Tren og test nettverket
- Oppgave 4: Test selv
- Oppgave 5: Al app

Oppgave 1 - Flat ut og normaliser bildene

Oppgave 2 - Bygg nettverket

Oppgave 3 – Tren og test nettverket

Oppgave 4 – Test selv

Oppgave 5 – Al app

