

guestion 2:

と

No.

0

D

6

10

10

0

0

0

7

When we expand $K_{\beta}(x, z) = (1 + \beta x. z)^{3}$, we get:

KB(X,Z)=1+3(BX,Z)+3(BX,Z)2+(Bx,Z)

Since $X. Z = X_1 Z_1 + X_2 Z_2$ when $X_1 Z \in \mathbb{R}^2$, we can further simplify:

 $K\beta = 1 + 3\beta(x_1z_1 + x_2z_2) + 3\beta^2(x_1z_1 + x_2z_2)^2 + \beta^3(x_1z_1 + x_2z_2)^3$

= 1+3B(x121+x222)+3B2(x121+2x121x222+x22) +B3(x121+3x121x22+3x121x222+x222)

Therefore, we can get the feature map:

φ₅(·)= (1, √3βx, √3βx₂, √3βx₁², √3β√2x, x₂, √3βx₂², √β³x₃³, √β³√3x₁x₂², √3√β³ x₁³x₂, √β³x₂³)

= $(1, \sqrt{3}\beta x_1, \sqrt{3}\beta x_2, \sqrt{3}\beta x_1^2, \sqrt{6}\beta x_1 x_2, \sqrt{3}\beta x_2^2, \sqrt{3}\beta^3 x_1^2 x_2, \sqrt{3}\beta^3 x_1^2 x_2, \sqrt{\beta}^3 x_2^3)$

clearly, the feature map is very similar to the feature map of $K(X,Z)=(1+X,Z)^3$. However

Question 4:

- **4.1.(d)** Implemented feature extraction and generated training and testing sets
- **4.2.(b)** If class proportions aren't maintained across the folds, the training set can be a poor representation of the underlying distribution. By stratifying the folds, the training set becomes a better sample of the dataset and the test set accuracy can also be improved.

4.2.(d)

С	Accuracy	F1-score	AUROC
0.001	0.7089419539640778	0.8296828227419593	0.8105494821634063
0.01	0.7107437557658796	0.8305628004640422	0.8110783467587265
0.1	0.8060326761654195	0.875472682955829	0.8575527426160339
1.0	0.8146271113085273	0.8748648327495685	0.8712327387802071
10	0.8181827370986664	0.876562152886752	0.8695790180283852
100	0.8181827370986664	0.876562152886752	0.8695790180283852
Best C	10/100	10/100	1.0

The performance for accuracy and F1-score increase gradually until they reach a plateau at C = 10, where the performance metric stays the same. For AUROC, the performance metric increases until C = 1.0. It then decreases as C increases to 10, where it plateaus similar to the other metrics.

For the next few questions, I have assumed C = 10 as the best hyperparameter for the first two metrics.

4.3.(c)

С	Metric	Performance on test set
10	Accuracy	0.7428571428571429
10	F1-score	0.43749999999999994
1.0	AUROC	0.7405247813411079

The accuracy and AUROC measures were pretty similar with a value of \sim 0.74. However, the F1-score reduced drastically from the training to the test set.