REPUBLIQUE DE DJIBOUTI

جمهورية جيبوتي

Ministère de l'Enseignement Supérieur et de la Recherche

UNIVERSITE DE DJIBOUTI

Thème: Classification H2O

Master 2 Data Science

Encadré par :

M. Engelbert MEPHU NGUIFO

Réaliser par :

Ali HASSAN ALI Nouradine ABDI MAHAMOUD

Plan

- 1. INTRODUCTION DE H2O
- 2. PRESENTATION DE H2O
- 3. ARCHITECTURE DE H2O
- 4. INSTALLATION DE H2O SOUS PYTHON
- 5. PRESENTATION DES ALGORIHTMES
- 6. AVANTAGE DE H2O
- 7. QU'EST-CE QUE LE MACHINE LEARNING?
- 8. PRINCIPE DE BASE DE MACHINE LEARNING
- 9. METHODE DE SUPERVISE
- **10. H2O FLOW**
- 11. OBJECTIFS D'APPRENTISSAGE
- 12. AutoML
- 13. KNN POUR LE TRAITEMENT DE BIG DATA
- 14. CONCLUSION

1. INTRODUCTION DE H2O

- H2O est un logiciel basé sur Java pour la modélisation de données et le calcul général.
- Application open source rapide, évolutive pour machine / apprentissage profond.
- Grâce à la compression en mémoire, H2O gère des milliards de lignes de données en mémoire, même sur un petit cluster,
- la plate-forme H2O comprend des interfaces pour Python, R, Scala, Java, JSON et CoffeeScript / JavaScript, ainsi qu'une interface Web intégrée, Flow.
- H2O est conçu pour fonctionner en mode autonome, sur Hadoop ou dans un cluster Spark

2. PRESENTATION DE H2O

3. ARCHITECTURE DE H2O

3. ARCHITECTURE DE H2O

Importer des données à partir de plusieurs sources

3. ARCHITECTURE DE H2O

Moteur de calcul rapide, évolutif et distribué écrit en Java

3. ARCHITECTURE DE H2O

Interfaces multiples

3. ARCHITECTURE DE H2O

Exporter des modèles autonomes pour la production

4. INSTALLATION DE H2O SOUS PYTHON

• Le moyen le plus simple d'installer directement H2O consiste à utiliser un package Python. Pour charger un package H2O récent à partir de PyPI, exécutez:

Anaconda Prompt (Anaconda3)

(base) C:\Users\USER>pip installer h2o

5. PRESENTATIONS DES ALGORITHMES

Supervised Learning

Statistical

Analysis

- Generalized Linear Models: Binomial, Gaussian, Gamma, Poisson and Tweedie
- Naïve Bayes

Ensembles

- Distributed Random Forest: Classification or regression models
- Gradient Boosting Machine: Produces an ensemble of decision trees with increasing refined approximations

Deep Neural Networks

 Deep learning: Create multi-layer feed forward neural networks starting with an input layer followed by multiple layers of nonlinear transformations

Unsupervised Learning

Clustering

 K-means: Partitions observations into k clusters/groups of the same spatial size.
 Automatically detect optimal k

Dimensionality Reduction

- Principal Component Analysis: Linearly transforms correlated variables to independent components
- Generalized Low Rank Models: extend the idea of PCA to handle arbitrary data consisting of numerical, Boolean, categorical, and missing data

Anomaly Detection

 Autoencoders: Find outliers using a nonlinear dimensionality reduction using deep learning

6. AVANTAGE DE H2O

- Fondation pour le calcul d'algorithmes distribués en mémoire Trames de données distribuées et compression en colonnes.
- Tous les algorithmes sont distribués dans H2O: GBM, GLM, DRF, Deep Learning et plus. Itérations de réduction de map-reduce.
- Fonctionnalités «out-of-box» pour tous les algorithmes et interface uniforme dans tous les langages: R, Python, Java
- Conçu pour toutes les tailles d'ensembles de données, en particulier les données volumineuses
- Code Java hautement optimisé pour les exportations de modèles
- Expertise interne pour tous les algorithmes

7. QU'EST-CE QUE LE MACHINE LEARNING?

-- Arthur Samuel, 1959

8. PRINCIPE DE BASE DE MACHINE LEARNING

Apprendre à partir des données

Apprenez le modèle

9. METHODE DE SUPERVISE

Classification: Un client fera-t-il un achat? Oui ou non

H2O algos:

Penalized linear models
Naive Bayes
Random forest
Gradient increase
Neural networks
Stacked sets

10. H2O FLOW

- Démarrez et connectez-vous à un cluster H2O local depuis Python.
- Importez des données à partir de cadres de données Python, de fichiers locaux ou Web.
- Effectuer une transformation et une exploration de données de base.
- Former des modèles de classification à l'aide de divers algorithmes d'apprentissage H2Omachine.
- Évaluez les modèles et faites des prédictions.
- Améliorez les performances en optimisant et en empilant.

CLUSTER H20 LOCAL

Démarrer un cluster H2O local signifie en utilisant TOUTES les ressources du processeur

In [2]: #démarrage H2O h2o.init()

> Checking whether there is an H2O instance running at http://localhost:54321 not found. Attempting to start a local H2O server... ; Java HotSpot(TM) Client VM (build 25.45-b02, mixed mode)

C:\ProgramData\Anaconda3\lib\site-packages\h2o\backend\server.py:385: UserWarning: You have a 32-bit version of Java. H2O wor ks best with 64-bit Java.

Please download the latest 64-bit Java SE JDK from Oracle.

warn(" You have a 32-bit version of Java, H2O works best with 64-bit Java,\n"

Starting server from C:\ProgramData\Anaconda3\lib\site-packages\h2o\backend\bin\h2o.jar

Ice root: C:\Users\ADMINI~1\AppData\Local\Temp\tmpk3gp1b0m

JVM stdout: C:\Users\ADMINI~1\AppData\Local\Temp\tmpk3gp1b0m\h2o_Administrateur_started_from_python.out JVM stderr: C:\Users\ADMINI~1\AppData\Local\Temp\tmpk3gp1b0m\h2o_Administrateur_started_from_python.err

3.7.4 final

Server is running at http://127.0.0.1:54321

Connecting to H2O server at http://127.0.0.1:54321 ... successful.

H2O_cluster_uptime: 02 secs H2O_cluster_timezone: Europe/Paris H2O_data_parsing_timezone: UTC H2O_cluster_version: 3.32.0.2 H2O_cluster_version_age: 2 months and 11 days H2O_cluster_name: H2O_from_python_Administrateur_nasxk8 H2O_cluster_total_nodes: 1 H2O_cluster_free_memory: 247.5 Mb H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http://127.0.0.1:54321 H2O_internal_security: False Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4		
H2O_data_parsing_timezone: UTC	02 secs	H2O_cluster_uptime:
H2O_cluster_version: 3.32.0.2 H2O_cluster_version_age: 2 months and 11 days H2O_cluster_name: H2O_from_python_Administrateur_nasxk8 H2O_cluster_total_nodes: 1 H2O_cluster_total_cores: 0 H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http": null, "https": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	Europe/Paris	H2O_cluster_timezone:
H2O_cluster_version_age: 2 months and 11 days H2O_cluster_name: H2O_from_python_Administrateur_nasxk8 H2O_cluster_total_nodes: 1 H2O_cluster_free_memory: 247.5 Mb H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http:": null, "https": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	UTC	H2O_data_parsing_timezone:
H2O_cluster_name: H2O_from_python_Administrateur_nasxk8 H2O_cluster_total_nodes: 1 H2O_cluster_free_memory: 247.5 Mb H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http": null, "https": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	3.32.0.2	H2O_cluster_version:
H2O_cluster_total_nodes: 1 H2O_cluster_free_memory: 247.5 Mb H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http:": null, "https": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	2 months and 11 days	H2O_cluster_version_age:
H2O_cluster_free_memory: 247.5 Mb H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http:": null, "https:": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	H2O_from_python_Administrateur_nasxk8	H2O_cluster_name:
H2O_cluster_total_cores: 0 H2O_cluster_allowed_cores: 0 H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http": null, "https": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	1	H2O_cluster_total_nodes:
H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http:": null, "https:": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	247.5 Mb	H2O_cluster_free_memory:
H2O_cluster_status: accepting new members, healthy H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http:": null, "https:": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	0	H2O_cluster_total_cores:
H2O_connection_url: http://127.0.0.1:54321 H2O_connection_proxy: {"http": null, "https": null} H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	0	H2O_cluster_allowed_cores:
H2O_connection_proxy: {"http": null, "https": null} H2O_internal_security: False Amazon S3, Algos, AutoML, Core V3,	accepting new members, healthy	H2O_cluster_status:
H2O_internal_security: False H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	http://127.0.0.1:54321	H2O_connection_url:
H2O_API_Extensions: Amazon S3, Algos, AutoML, Core V3,	{"http": null, "https": null}	H2O_connection_proxy:
	False	H2O_internal_security:
		H2O_API_Extensions:

Python_version:

Informations du cluster

IMPORTATION DE DONNÉES DANS H2O

Direction des données

Prétraitement des données

In [3]: #changer le répertoire courant
import os
os.chdir("C:/Users/Administrateur/Documents/H20 ipynb")

In [4]: #chargement des données
 cardio = h2o.import_file("cardio.csv")

Parse progress: | 100%

Importer des données dans le cluster H2O

id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	18393	2	168	62	110	80	1	1	0	0	1	0
1	20228	1	156	85	140	90	3	1	0	0	1	1
2	18857	1	165	64	130	70	3	1	0	0	0	1
3	17623	2	169	82	150	100	1	1	0	0	1	1
4	17474	1	156	56	100	60	1	1	0	0	0	0
8	21914	1	151	67	120	80	2	2	0	0	0	0
9	22113	1	157	93	130	80	3	1	0	0	1	0
12	22584	2	178	95	130	90	3	3	0	0	1	1
13	17668	1	158	71	110	70	1	1	0	0	1	0
14	19834	1	164	68	110	60	1	1	0	0	0	0

Type de donnée

(70000, 13)

Dimension de donnée

Description de donnée

In [9]:	# Resume de donnée
	<pre>cardio.describe()</pre>

Rows:70000 Cols:13

	id	age	gender	height	weight	ap_hi	ap_lo	
type	int	int	int	int	real	int	int	
mins	0.0	10798.0	1.0	55.0	10.0	-150.0	-70.0	
mean	49972.41989999998	19468.86581428571	1.3495714285714273	164.35922857142862	74.20568999999999	128.81728571428567	96.63041428571428	1.36687
maxs	99999.0	23713.0	2.0	250.0	200.0	16020.0	11000.0	
sigma	28851.30232317291	2467.2516672414017	0.4768380155828637	8.210126364538034	14.395756678511377	154.01141945609132	188.4725302963903	0.68025
zeros	1	0	0	0	0	0	21	
missing	0	0	0	0	0	0	0	
0	0.0	18393.0	2.0	168.0	62.0	110.0	80.0	
1	1.0	20228.0	1.0	156.0	85.0	140.0	90.0	
2	2.0	18857.0	1.0	165.0	64.0	130.0	70.0	
3	3.0	17623.0	2.0	169.0	82.0	150.0	100.0	
4	4.0	17474.0	1.0	156.0	56.0	100.0	60.0	
5	8.0	21914.0	1.0	151.0	67.0	120.0	80.0	
6	9.0	22113.0	1.0	157.0	93.0	130.0	80.0	
7	12.0	22584.0	2.0	178.0	95.0	130.0	90.0	
8	13.0	17668.0	1.0	158.0	71.0	110.0	70.0	
9	14.0	19834.0	1.0	164.0	68.0	110.0	60.0	
4								+

Subdivision en échantillons d'apprentissage et de test

Diviser l'ensemble de données afin que nous puissions mesurer les performances,

MODÈLES DE CLASSIFICATION

Modèle 1 : Random forest

```
In [17]: #random forest
         from h2o.estimators import H2ORandomForestEstimator
In [18]: x = cardioTrain.col names[:-1]
Out[18]: ['id',
           'age',
           'gender',
           'height',
           'weight',
           'ap hi',
           'ap_lo',
           'cholesterol',
           'gluc',
           'smoke'.
           'alco',
           'active']
In [19]: y=cardio.col names[-1]
Out[19]: 'cardio'
In [20]:
         #instanciation
          rf = H2ORandomForestEstimator(seed=1, nfolds=5, model_id="rf",
               ntrees=200,
               max_depth=30,
               stopping rounds=2,
               stopping tolerance=0.01,
               score each iteration=True)
```


In [21]: #apprentissage
 rf.train(x=x, y=y, training_frame=cardioTrain)

drf Model Build progress: | 1000 | 10

In [22]: #evolution de l'apprentissage
 rf.plot()

In [23]: #résumé
 rf.summary()

Model Summary:

	number_of_trees	number_of_internal_trees	model_size_in_bytes	min_depth	max_depth	mean_depth	min_leaves	max_leaves	mean_leaves
0	29.0	29.0	4029837.0	30.0	30.0	30.0	10438.0	11578.0	11052.207

Out[23]:

Performance de classification-Matrice de confusion

MATRICE DE CONFUSION

Confusion Matrix

In [24]: #affichage rf.show()

> Model Details -----

H2ORandomForestEstimator : Distributed Random Forest

Model Key: rf

Model Summary:

number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves 29.0 29.0 4029837.0 30.0 30.0 30.0 10438.0 11578.0 11052.207

ModelMetricsBinomial: drf ** Reported on train data. **

MSE: 0.2036909877312715 RMSE: 0.4513213796523177 LogLoss: 1.0472604630956661

Mean Per-Class Error: 0.29515391831013504

AUC: 0.7605602495399105 AUCPR: 0.7447028114740423 Gini: 0.521120499079821

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.36365493542527855:

		0	1	Error	Rate
0	0	15236.0	12739.0	0.4554	(12739.0/27975.0)
1	1	5221.0	22811.0	0.1863	(5221.0/28032.0)
2	Total	20457.0	35550.0	0.3207	(17960.0/56007.0)

Résumé du modèle

VALIDATION CROISÉE

- → Technique to validate models/classifiers
- → Method to estimate how accurately the model generalizes to unseen data i.e., how well it performs/predicts
- → K-fold CV
 - » Most popular
 - » k is typically set to 10
 - » Every sample/record is used both in training and test sets

Cross-Validation Metrics Summary:

We will be a second	
300	To a

		mean	sd	cv_1_valid	cv_2_valid	cv_3_valid	cv_4_valid	cv_5_valid
0	accuracy	0.6965689	0.00500723	0.68885326	0.696102	0.7024347	0.6964141	0.6990405
1	auc	0.776263	0.004009069	0.7756584	0.7730693	0.77467716	0.77467036	0.78323966
2	aucpr	0.7597324	0.0045673577	0.7624629	0.7576347	0.7533	0.76004446	0.76522
3	err	0.3034311	0.00500723	0.31114677	0.30389795	0.29756528	0.3035859	0.30095956
4	err_count	3398.8	55.782616	3492.0	3407.0	3361.0	3378.0	3356.0
5	f0point5	0.6857879	0.0047237575	0.67857784	0.6858292	0.6918133	0.6867532	0.6859662
6	f1	0.72801626	0.004813609	0.72268105	0.72539693	0.72805244	0.72836924	0.73558146
7	f2	0.7758623	0.009927481	0.77291566	0.7698098	0.7682981	0.7753544	0.7929336
8	lift_top_group	1.7168936	0.034274522	1.7159022	1.7191662	1.6674864	1.7175714	1.7643415
9	logloss	0.6190586	0.011921326	0.61782265	0.6138325	0.6326343	0.6283477	0.602656
10	max_per_class_error	0.41858542	0.018358262	0.43287572	0.41042113	0.39257294	0.41845766	0.43859965
11	mcc	0.4039378	0.009937571	0.3893179	0.4013658	0.41261637	0.4025771	0.41381177
12	mean_per_class_accuracy	0.6964416	0.005059308	0.688799	0.69607353	0.702561	0.69586957	0.6989048
13	mean_per_class_error	0.3035584	0.005059308	0.31120095	0.30392647	0.29743895	0.30413043	0.3010952
14	mse	0.1934632	0.0018592428	0.19344145	0.19502705	0.19415678	0.19439487	0.19029588
15	pr_auc	0.7597324	0.0045673577	0.7624629	0.7576347	0.7533	0.76004446	0.76522
16	precision	0.66028196	0.0065765353	0.6520493	0.6617647	0.6695937	0.6615542	0.65644777
17	r2	0.2261432	0.007439009	0.22623402	0.21989174	0.22337154	0.22240287	0.23881578
18	recall	0.8114686	0.014946328	0.8104738	0.8025682	0.79769504	0.81019676	0.8364093
19	rmse	0.43984044	0.0021188757	0.4398198	0.44161868	0.44063225	0.44090235	0.43622914

Scoring History:

	timestamp	duration	number_of_trees	training_rmse	$training_logloss$	training_auc	training_pr_auc	training_lift	$training_classification_error$
0	2021-01-28 20:20:30	37.490 sec	0.0	NaN	NaN	NaN	NaN	NaN	NaN
1	2021-01-28 20:20:30	37.736 sec	1.0	0.595357	11.820245	0.639459	0.607521	1.280344	0.502930
2	2021-01-28 20:20:31	37.908 sec	2.0	0.582589	10.722862	0.646468	0.615802	1.299885	0.500783
3	2021-01-28 20:20:31	38.074 sec	3.0	0.567442	9.468607	0.655637	0.624506	1.325145	0.501488
4	2021-01-28 20:20:31	38.232 sec	4.0	0.553045	8.329476	0.665199	0.634159	1.349055	0.373494
5	2021-01-28 20:20:31	38.389 sec	5.0	0.540499	7.311625	0.673797	0.644044	1.377476	0.377739
6	2021-01-28 20:20:31	38.648 sec	6.0	0.528180	6.373432	0.683367	0.653458	1.403100	0.368252
7	2021-01-28 20:20:32	38.883 sec	7.0	0.518854	5.599549	0.689959	0.661036	1.427178	0.379031
8	2021-01-28 20:20:32	39.141 sec	8.0	0.509595	4.909078	0.697837	0.669048	1.449207	0.365118
9	2021-01-28 20:20:32	39.319 sec	9.0	0.500646	4.295484	0.706597	0.678693	1.476650	0.359882
10	2021-01-28 20:20:32	39.481 sec	10.0	0.493900	3.798060	0.712705	0.685384	1.496073	0.356660
11	2021-01-28 20:20:32	39.653 sec	11.0	0.488737	3.402248	0.717434	0.691288	1.514332	0.355083
12	2021-01-28 20:20:33	39.852 sec	12.0	0.484087	3.063719	0.722092	0.696603	1.530289	0.352601
13	2021-01-28 20:20:33	40.030 sec	13.0	0.479819	2.757080	0.726400	0.702362	1.548330	0.351775
14	2021-01-28 20:20:33	40.296 sec	14.0	0.476096	2.503598	0.730547	0.707242	1.563059	0.347842
15	2021-01-28 20:20:33	40.567 sec	15.0	0.472560	2.257751	0.734510	0.712770	1.583384	0.347303
16	2021-01-28 20:20:34	40.823 sec	16.0	0.469250	2.069434	0.738626	0.717696	1.599167	0.345253
17	2021-01-28 20:20:34	41.088 sec	17.0	0.466733	1.902069	0.741331	0.720765	1.608862	0.343442
18	2021-01-28 20:20:34	41.370 sec	18.0	0.464577	1.763658	0.743916	0.723345	1.615277	0.341257
19	2021-01-28 20:20:34	41.646 sec	19.0	0.462719	1.638882	0.745926	0.726268	1.628309	0.326548

	variable	relative_importance	scaled_importance	percentage
0	age	51419.511719	1.000000	0.200374
1	ap_hi	47065.410156	0.915322	0.183406
2	id	40776.289062	0.793012	0.158899
3	weight	35104.593750	0.682710	0.136797
4	height	31632.037109	0.615176	0.123265
5	ap_lo	25020.437500	0.486594	0.097501
6	cholesterol	10056.023438	0.195568	0.039187
7	gender	4304.793945	0.083719	0.016775
8	gluc	3964.414307	0.077099	0.015449
9	active	3127.366943	0.060821	0.012187
10	smoke	2423.509521	0.047132	0.009444
11	alco	1723.715454	0.033523	0.006717

In [27]: #evaluation

rf.model_performance(cardioTest)

ModelMetricsBinomial: drf ** Reported on test data. **

MSE: 0.1932603156185623 RMSE: 0.4396138255543862 LogLoss: 0.61689784771367

Mean Per-Class Error: 0.27953074494813557

AUC: 0.7759074822259334 AUCPR: 0.7604561529082023 Gini: 0.5518149644518668

Évaluer les performances du modèle à l'aide de l'ensemble de test

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.39063150461377766:

		0	1	Error	Rate
0	0	4245.0	2801.0	0.3975	(2801.0/7046.0)
1	1	1433.0	5514.0	0.2063	(1433.0/6947.0)
2	Total	5678.0	8315.0	0.3026	(4234.0/13993.0)


```
predict p0 p1

0 1 0.206897 0.793103

1 0 0.655172 0.344828

2 0 0.724138 0.275862

3 1 0.467884 0.532116

4 1 0.176012 0.823988

5 1 0.052874 0.947126

6 1 0.258621 0.741379

7 0 0.775862 0.224138

8 0 0.671182 0.328818

9 0 0.741379 0.258621
```

```
In [29]: #scikit-learn
    from sklearn import metrics
    #F1-score
    print(metrics.f1_score(cardioTest.as_data_frame()["cardio"],predRf.predict,pos_label=1))
```

0.7211862788773626

Modèle 2 : Gradient boosting

API pour d'autres algorithmes ML

Modèle 3 : Naive Bayes

Modèle 4 : Perceptron simple

In [50]: #apprentissage
 ps.train(x=x, y=y, training_frame=cardioTrain)

In [51]: #structure du réseau
ps.summary()

Status of Neuron Layers: predicting cardio, 2-class classification, bernoulli distribution, CrossEntropy loss, 26 weights/biase s, 4,6 KB, 39Â 295Â 113 training samples, mini-batch size 1

	layer	units	type	dropout	11	12	mean_rate	rate_rms	momentum	mean_weight	weight_rms	mean_bias	bias_rms
0	1	12	Input	0									
1	2	2	Softmax		0	0	0.00195111	0.00179441	0	-0.150255	1.86727	-0.111204	0.0887527

Out[51]:

12. AutoML

H20AutoML

L'outil H2OAutoML (Automatic Machine Learning) correspond au même état d'esprit. Mieux même, il prétend détecter pour nous le meilleur modèle possible.

Modèle 5 : H2OAutoML

In [56]: #chargement de la classe
 from h2o.automl import H2OAutoML

In [57]: #instanciation
 aml = H2OAutoML(seed=100,nfolds=5,max_runtime_secs=180)

In [58]: #lancement des calculs
 aml.train(x=x, y=y, training_frame=cardioTrain)

AutoML progress: |

20:23:05.31: AutoML: XGBoost is not available; skipping it.

20:23:27.531: GBM_1_AutoML_20210128_202305 [GBM def_1] failed: water.exceptions.H20ModelBuilderIllegalArgumentException: Illegal argument(s) for GBM model: GBM_1_AutoML_20210128_202305_cv_1. Details: ERRR on field: _ntrees: The tree model will not fit in the driver node's memory (770 B per tree x 10000 > 2,0 MB) - try decreasing ntrees and/or max_depth or increasing min_rows!

20:23:31.242: GBM_2_AutoML_20210128_202305 [GBM def_2] failed: water.exceptions.H2OModelBuilderIllegalArgumentException: Illegal argument(s) for GBM model: GBM_2_AutoML_20210128_202305_cv_1. Details: ERRR on field: _ntrees: The tree model will not fit in the driver node's memory (1,2 KB per tree x 10000 > 11,7 MB) - try decreasing ntrees and/or max_depth or increasing min_rows!

20:23:33.742: GBM_3_AutoML_20210128_202305 [GBM def_3] failed: water.exceptions.H2OModelBuilderIllegalArgumentException: Illegal argument(s) for GBM model: GBM_3_AutoML_20210128_202305_cv_1. Details: ERRR on field: _ntrees: The tree model will not fit in the driver node's memory (2,1 KB per tree x 10000 > 13,7 MB) - try decreasing ntrees and/or max_depth or increasing min_rows!

20:23:36.576: GBM_4_AutoML_20210128_202305 [GBM def_4] failed: water.exceptions.H2OModelBuilderIllegalArgumentException: Illega l argument(s) for GBM model: GBM_4_AutoML_20210128_202305_cv_1. Details: ERRR on field: _ntrees: The tree model will not fit in the driver node's memory (4,9 KB per tree x 10000 > 28,5 MB) - try decreasing ntrees and/or max_depth or increasing min_rows!

100%

In [59]: #récupérer le tableau des modèles
lb = aml.leaderboard

In [60]: #nombre de modèles
 print(lb.nrow) #35

5

In [61]: #afficher les modèles -- tri par défaut AUC pour le classement binaire
 result = lb.head(rows=lb.nrow).as_data_frame()
 result.loc[:,["model_id","auc"]]

Out[61]:

auc	model_id	
0.783956	StackedEnsemble_BestOfFamily_AutoML_20210128_202305	0
0.783908	StackedEnsemble_AllModels_AutoML_20210128_202305	1
0.765696	GBM_5_AutoML_20210128_202305	2
0.735211	DRF_1_AutoML_20210128_202305	3
0.712019	GLM_1_AutoML_20210128_202305	4

H,O.a

In [62]: #meilleur modèle aml.leader

Model Details

H2OStackedEnsembleEstimator : Stacked Ensemble

Model Key: StackedEnsemble BestOfFamily AutoML 20210128 202305

No model summary for this model

ModelMetricsBinomialGLM: stackedensemble

** Reported on train data. **

MSE: 0.15071948299201818 RMSE: 0.38822607201477105 LogLoss: 0.4751235241757313 Null degrees of freedom: 9939 Residual degrees of freedom: 9936 Null deviance: 13779.853592633595 Residual deviance: 9445.455660613537

AIC: 9453.455660613537 AUC: 0.8856432242227588 AUCPR: 0.8870851323966201 Gini: 0.7712864484455175

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.4635565176469616:

Rate	Error	1	0		
(1055.0/4989.0)	0.2115	1055.0	3934.0	0	0
(872.0/4951.0)	0.1761	4079.0	872.0	1	1
(1927.0/9940.0)	0.1939	5134.0	4806.0	Total	2

	metric	threshold	value	idx
0	max f1	0.463557	0.808924	219.0
1	max f2	0.289765	0.869052	311.0
2	max f0point5	0.580201	0.828292	164.0
3	max accuracy	0.482159	0.806942	210.0
4	max precision	0.919440	1.000000	0.0
5	max recall	0.122218	1.000000	394.0
6	max specificity	0.919440	1.000000	0.0
7	max absolute_mcc	0.500040	0.613947	202.0
8	max min_per_class_accuracy	0.476800	0.805171	212.0
9	max mean_per_class_accuracy	0.482159	0.806924	210.0
10	max tns	0.919440	4989.000000	0.0
11	max fns	0.919440	4943.000000	0.0
12	max fps	0.103505	4989.000000	399.0
13	max tps	0.122218	4951.000000	394.0
14	max tnr	0.919440	1.000000	0.0
15	max fnr	0.919440	0.998384	0.0
16	max fpr	0.103505	1.000000	399.0
17	max tpr	0.122218	1.000000	394.0


```
In [64]: #F1-score
    print(metrics.f1_score(cardioTest.as_data_frame()["cardio"],predAml.predict,pos_label=1))
```

0.7310084825636193

1 0.511398 0.488602

13. KNN POUR TRAITE LE BIG DATA

une nouvelle méthode kNN pour traiter le Big Data.

D'abord à un clustering de k-means pour séparer l'ensemble de données en plusieurs parties.

Processus d'apprentissage

Algorithme de LSC

Processus de test

Algorithme de LC-KNN

IMPLEMENTATION DE L'ALGORITHME DE LSC

Subdivision en échantillons d'apprentissage et de test

```
In [14]: #subdivision
cardioTrain,cardioTest = cardio.split_frame(ratios=[0.8],seed=1)

In [15]: #vérification train
cardioTrain.shape

Out[15]: (56007, 13)

In [16]: #vérification test
cardioTest.shape

Out[16]: (13993, 13)
```

IMPLEMENTATION DES ALGORITHMES

ALGORITHME DE LSC

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.metrics.pairwise import pairwise_distances
import scipy

def find p(X, start=1, end=10):
```



```
def find_p(X, start=1, end=10):
    min_size=[]
    number_of_clusters-[]
    for i in range(start,end+1):
        min_size.append(i)
        number_of_clusters.append(KMeans(n_clusters-i).fit(X).inertia_)
        _, ax=plt.subplots()

    ax.set(ylabel='Inertia', xlabel='Number of clusters', title='The elbow method')
    plt.xticks(np.arange(start,end, 1))
    plt.plot(min_size,number_of_clusters)
    plt.show()
```

```
def get Landmarks(X, p, method="random"):
    if method -- "random":
        N = len(X)
        perm- np.random.permutation(np.arange(N))
        print(perm)
        landmarks = X[perm[:p],:]
        return landmarks
    else:
        kmeans model=KMeans(n clusters=p).fit(X)
        return kmeans model.cluster centers
def gaussian kernel(dist mat, bandwidth):
    return np.exp(-dist mat / (2*bandwidth**2))
def compose Sparse ZHat Matrix(X, landmarks, bandwidth, r):
    dist mat-pairwise_distances(X,landmarks)
    sim mat-gaussian kernel(dist mat, bandwidth)
    Zhat = np.zeros(sim mat.shape)
    for i in range(Zhat.shape[0]):
        #may need j.sort.selectperm
        top Landmarks indices = np.argsort(-sim mat[i,:])[:r]
        top Landmarks coefs = sim mat[1,top Landmarks indices]
        top_Landmarks_coefs /= np.sum(top_Landmarks_coefs)
        Zhat[i, top Landmarks indices] = top Landmarks coefs
    #May be wrong
    diagm=np.sum(Zhat, axis=0)**(-1/2)
    return diagm*Zhat
def LSC Clustering(X, n_clusters, n landmarks, method, non_zero_landmark_weights, bandwidth):
    landmarks - get Landmarks(X, n landmarks, method)
    Zhat = compose Sparse ZHat Matrix(X, landmarks, bandwidth, non zero landmark weights)
    svd result = np.linalg.svd(Zhat, full matrices=False)[0]
    clustering result = KMeans(n clusters=n clusters).fit(svd result)
    return clustering result
```

14. CONCLUSION

