INFRARED ILLUMINATOR AND OPTICAL AMPLIFYING MEDIUM

Patent number: JP2003283028
Publication date: 2003-10-03

Inventor: KISHIMOTO SHOICHI; SAKAGUCHI KOICHI; TSUDA

MASAHIRO; NAKAGAKI SHIGEKI; YOSHII NARIKAZU;

FUJIMOTO YASUSHI; NAKATSUKA MASAHIRO

Applicant: NIPPON SHEET GLASS CO LTD;; NAKATSUKA

MASAHIRO;; FUJIMOTO YASUSHI

Classification:

- international: H01S3/17; C03C3/085; C03C3/087; C03C3/091;

C03C3/093; C03C4/12

- european:

Application number: JP20020373468 20021225

Priority number(s): JP20020011508 20020121; JP20020373468 20021225

Report a data error here

Abstract of JP2003283028

<P>PROBLEM TO BE SOLVED: To obtain a glass material that emits light or displays function of optical amplification in an infrared wavelength zone, especially in the wide wavelength range that is used for optical communication without containing rare earths and is stable. <P>SOLUTION: A light emitting glass body or optical amplifying medium comprises a glass composition having a bismuth oxide, silicon dioxide, aluminum oxide and bivalent metal oxide as essential constituents and presenting fluorescence in an infrared wavelength zone by the irradiation of excitation light. This glass composition is heat-treated to form crystallized glass, and thereby, thermal stability is further improved. The wavelength of excitation light is in the range of 400 nm to 850 nm, and the wavelength at which the intensity of fluorescence becomes a maximum is in the range of 1000 nm to 1600 nm. The optical amplifying medium has the gain of amplification in at least a part of wavelength zone in the wavelength range of 1000 nm to 1400 nm. <P>COPYRIGHT: (C)2004,JPO

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-283028 (P2003-283028A)

(43)公開日 平成15年10月3日(2003.10.3)

(51) Int.Cl.7	識別記号	FΙ			•	テーマコード(参考)
H01S 3/17		H01S	3/17			4G062
C 0 3 C 3/085		C 0 3 C	3/085			5 F O 7 2
3/087			3/087			
3/091			3/091			
3/093			3/093			
·	審査請求	未請求請求	頁の数12	OL	(全 13 頁)	最終頁に続く
(21)出願番号	特顧2002-373468(P2002-373468)	(71)出願人	0000040	08		
			日本板品	育子株:	式会社	
(22)出顧日	平成14年12月25日(2002.12.25)		大阪府プ	大阪市!	中央区北浜四	订目7番28号
		(71)出願人	5961538	18		
(31)優先権主張番号	特願2002-11508(P2002-11508)		中塚 🏻	E大		
(32)優先日	平成14年1月21日(2002.1.21)		奈良県生	上胸市	碌ケ丘1425−	·78
(33)優先権主張国	日本 (JP)	(71)出願人	5020226	34		
			藤本 第	胄		
			大阪府家	发木市.	島2-14-39	3 島千歳ハイツ
			202			
		(74)代理人	1000690	84		
			弁理士	大野	精市	
						最終頁に続く

(54) 【発明の名称】 赤外発光体および光増幅媒体

(57)【要約】

【課題】 赤外波長域、とくに光通信に用いられる広い 波長範囲で発光、あるいは光増幅機能を示す希土類を含まず、かつ安定なガラス材料を得る。

【解決手段】 本発明の発光ガラス体または光増幅媒体は、ビスマスの酸化物、二酸化ケイ素、酸化アルミニウムおよび2価金属酸化物を必須成分とし、励起光の照射により赤外波長域で蛍光を呈するガラス組成物からなる。このガラス組成物を熱処理して結晶化ガラスとすることにより、さらに熱的安定性が改善される。励起光の波長は、400nmから850nmの範囲で、蛍光の強度が最大になる波長は1000nmから1600nmの範囲にある。光増幅媒体としては、波長範囲1000~1400nmの少なくとも一部の波長領域で増幅利得を有する。

【特許請求の範囲】

【請求項1】ビスマスの酸化物、二酸化ケイ素(SiO ,) および酸化アルミニウム (A 1, O,) および2 価金 属酸化物を必須成分とし、励起光の照射により赤外波長 域で蛍光を呈するガラス組成物からなることを特徴とす る赤外発光体または光増幅媒体。

【請求項2】前記2価金属酸化物が、少なくともMg O、CaO、SrO、BaO、ZnOの何れか1つであ る請求項1 に記載の赤外発光体または光増幅媒体。

【請求項3】前記励起光の波長が、400 n m から85 10 0 n mの範囲であることを特徴とする請求項1または2 に記載の赤外発光体または光増幅媒体。

【請求項4】前記励起光の波長が、400nmから60 0 n mの範囲にあることを特徴とする請求項3に記載の 赤外発光体または光増幅媒体。

【請求項5】前記励起光の波長が、650nmから75 0 n mの範囲にあることを特徴とする請求項3に記載の 赤外発光体または光増幅媒体。

【請求項6】前記蛍光の強度が最大になる波長が100 0 n mから1600 n mの範囲にあることを特徴とする 請求項3、4または5に記載の赤外発光体または光増幅 媒体。

【請求項7】前記蛍光の強度の波長に対する半値全幅が 150nm以上400nm以下であることを特徴とする 請求項6に記載の赤外発光体または光増幅媒体。

【請求項8】波長範囲1000~1600mmの少なく とも一部の波長領域で増幅利得を有する請求項1ないし 7に記載の光増幅媒体。

【請求項9】波長範囲1000~1400nmの少なく とも一部の波長領域で増幅利得を有する請求項8に記載 30 の光増幅媒体。

【請求項10】前記ガラス組成物において、酸化物の組 成が、含有率の単位をモル%として、下記で示される範 四ルケムり

囲んめり、	
S i O ₂	55~80
Al ₂ O ₃	5~25
Li ₂ O	0~15
Na,O	0 ~ 5
K₁O	0 ~ 5
MgO	0~40
CaO	0~30
SrO	0 ~ 5
ВаО	0~ 5
ZnO	0~25
TiO,	0~10
ZrO2	0~ 5
B,O,	0~10

かつ、2 価金属酸化物の含有率の終和

MgO+CaO+SrO+BaO+ZnO

が、0.1~40モル%の範囲にあり、かつ、ビスマス 50 【特許文献1】特開平11-317561号公報

の酸化物のBi,O, に換算した含有率が、0.01~5 モル%の範囲にあることを特徴とする請求項1または2 に記載の赤外発光体または光増幅媒体。

【請求項11】前記ガラス組成物において、酸化物とし てLi₂Oを含むことを特徴とする請求項10に記載の 赤外発光体または光増幅媒体。

【請求項12】請求項10または11に記載のガラス組 成物を母ガラスとする透明結晶化ガラスからなる赤外発 光体または光増幅媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、光通信分野で利 用される赤外波長域での発光体および光増幅媒体に関 し、とくにガラス材料を用いた赤外発光体および光増幅 媒体に関する。

[0002]

【従来の技術】従来、赤外域で蛍光を呈するガラス材料 として、希土類、例えばNd(ネオジム)、Er(エル ビウム)やPr(プラセオジム)などのイオンを添加し 20 たガラスや結晶化ガラスがよく知られている。これらの ガラスを用いたレーザ発光や光増幅については、199 0年代頃を中心に精力的に研究開発が行なわれた。その 結果、ガラスレーザやエルビウムドープ光ファイバ増幅 器に代表されるように、実際に大出力レーザ応用や光通 信など種々の分野で利用されている。

【0003】希土類のイオンを添加したガラス材料の発 光は、希土類イオンの4f電子の輻射遷移によって生じ る。4 f 電子は外殻電子によって効果的に遮蔽されてい るため、発光が得られる波長域が狭い傾向を有する。と の傾向は、光増幅に応用する場合に、増幅ができる波長 **範囲が狭くなり、レーザとして用いた場合にはレーザ発** 振が可能な波長範囲が狭くなる。との特性は、利用でき る波長範囲が限定されるという重大な欠点となる。

【0004】この波長範囲を広げるため、例えば特許文 献1または特許文献2などで開示されているガラス組成 物が提案されている。これらの組成物は、Bi,O,を多 量(例えば20モル%以上)に含み、さらにEェを発光 元素として含み、利用できる波長範囲が80 n m以上と 広いことが特徴である。

40 【0005】また、例えば特許文献3、特許文献4およ び特許文献5にそれぞれ開示されているガラス組成物が 提案されている。この組成物は、希土類を用いないこと を特徴とし、CrまたはNiを発光元素として含有して いる。発光の波長幅が広いことが特徴である。

【0006】さらに特許文献6に開示されているBiド ープ石英ガラスが提案されている。この組成物は、Bi がゼオライト中にクラスタ化されていることを特徴と し、発光の波長幅が広いことを特徴としている。

[0007]

【特許文献2】特開2001-213636号公報 【特許文献3】特開平6-296058号公報 【特許文献4】特開2000-53442号公報 【特許文献5】特開2000-302477号公報 【特許文献6】特開平11-29334号公報 [8000]

【発明が解決しようとする課題】しかし、上記Biを多 量に含むガラス組成物は、発光の起源がErであるた め、発光波長範囲を広げることができるが、100nm ることは困難である。さらに、それらの組成物は屈折率 が約2と非常に高く、通常光通信で用いられている石英 ガラス製光ファイバとの接続時に界面での反射などの問 題が生じやすい、という欠点がある。

【0009】また、上記Crを含むガラス組成物は、A 1,0,を主成分とし、その組成にガラス形成能力のある 成分がまったく含まれていないか、あるいは少量(20 モル%以下) しか含まれていない。したがって、このガ ラス組成物はガラス形成能力が低く、ガラスの融解時ま たは成型時に極めて失透しやすいという大きな欠点があ

【0010】上記Niを含むガラス組成物は、組成物中 にNi・イオン、Ni・イオンを含む微細結晶、あるい は6配位構造をとるNiイオン、のいずれか一つまたは それら複数を含有させることが必要で、同時に金属Ni の微粒子が析出する。したがって、このガラス組成物は 金属Niの析出による失透、あるいは透明性の喪失が起 とりやすいという欠点がある。

【0011】さらに、Biがクラスタ化されている石英 ガラスは、Biがクラスタ化、つまり互いに極めて近接 30 しているため、近接Bi間でのエネルギーの失活が起こ りやすく、光増幅の効率が低い。また、この石英ガラス はゾルゲル法を用い、ゲルを乾燥してガラス化するた め、乾燥時の収縮・焼結時のクラックなどの発生が甚だ しく、大型のガラス、あるいは光ファイバを安定的に製 造することが困難という大きな欠点がある。

【0012】したがって光通信分野で使用される波長の うち、現状ではNd、Er、Prといった希土類元素で カバーできる波長範囲の光増幅媒体しかなく、これ以外 の広い波長域では伝送損失を光増幅によって補償できな 40 いため、光通信用の波長として利用しにくいという問題 があった。

【0013】本発明は、このような従来技術における問 題点に着目してなされたものであり、その目的とすると ころは、赤外波長域、とくに光通信に用いられる広い波 長範囲で発光、あるいは光増幅機能を示す安定なガラス 材料を提供することにある。

[0014]

【課題を解決するための手段】本発明の発光ガラス体ま たは光増幅媒体は、ビスマスの酸化物、二酸化ケイ素

(SiO₁) および酸化アルミニウム (Al₁O₁) およ び2価金属酸化物を必須成分とし、励起光の照射により 赤外波長域で蛍光を呈するガラス組成物からなる。上記 の2価金属酸化物は、少なくともMgO、CaO、Sr O、BaO、ZnOの何れか1つであることが望まし 61

【0015】励起光の波長は、400nmから850n mの範囲であるが、400 n mから600 n mおよび6 50nmから750nmの2つの範囲がとくに好まし 程度が限度であり、それ以上に広い波長範囲で発光させ(10)い。とのとき蛍光の強度が最大になる波長は1000n mから1600mmの範囲にある。また、蛍光の強度の 波長に対する半値幅は150nm以上400nm以下で

> 【0016】光増幅媒体としては、波長範囲1000~ 1600 n mの少なくとも一部の波長領域で増幅利得を 有する。とくに波長範囲1000~1400nmの少な くとも一部の波長領域で増幅利得を有することが好まし

【0017】上記のガラス組成物は、酸化物の組成が、 含有率の単位をモル%として、下記で示される範囲にあ るととが望ましい。

S i O _z	55~80
A 1 2 O 3	5~25
Li ₂ O	0~15
Na,O	o∼ 5
K₂O	0 ~ 5
MgO	$0 \sim 40$
CaO	0~30
SrO	0 ~ 5
ВаО	0 ~ 5
ZnO	$0 \sim 25$
T i O ₂	0~10
ZrO2	0 ~ 5
B,O,	0~10

これに加えて、2価金属酸化物の含有率の総和 MgO+CaO+SrO+BaO+ZnO

が、0.1~40モル%の範囲にあり、かつ、ビスマス の酸化物のBi、〇, に換算した含有率が、0.01~5 モル%の範囲にあることが望ましい。さらに酸化物とし てLi,Oを含むことがとくに望ましい。上記ガラス組 成物を母ガラスとする透明結晶化ガラスを形成でき、と れを本発明の赤外発光体または光増幅媒体に適用でき

[0018]

【発明の実施の形態】以下、この発明の実施の形態につ いて詳細に説明する。本発明の赤外域の広い波長範囲で 発光、あるいは光増幅機能を示すガラス材料はBiを含 有するガラスおよびその結晶化ガラスである。発明者ら が見いだしたそのガラス組成物はBi,O,およびSiO 50 1、A 1, O, 2 価金属酸化物を必須成分とし、安定に

ガラス組成物を得ることができ、またそのガラス組成物 を母ガラスとする透明結晶化ガラスを得ることができ

【0019】さらに、より容易に赤外発光を生じさせ、 光増幅機能を起こさせるためには、本発明のガラス組成 物および結晶化ガラスには、酸化マグネシウム(Mg O)、酸化カルシウム(CaO)、酸化ストロンチウム (SrO)、酸化バリウム(BaO)、酸化亜鉛(乙n O)から選ばれる1種類または2種類以上の2価金属酸 化物が含まれることが好ましく、さらに酸化リチウム (Li,O)を同時に含むことがより好ましい。

【0020】本発明のガラス組成物および結晶化ガラス は、赤外域における発光が、波長1000nmから16 00 nmに極めて広い範囲に及び、しかも強い発光強度 と長い蛍光寿命を示した。これは光増幅機能やレーザ機 能の発現に好ましい。

【0021】また、本発明のガラス組成物および結晶化 ガラスは、光透過スペクトルの3つの波長範囲、450 ~550nm、660~750nmのうちのいずれかの 範囲に光吸収ピークをもち、また450~550 nmの 20 範囲の光吸収ピークの波長において、光吸収の吸光係数 のベースラインのそれに対する比が0.1以上であるた め、光励起が容易であるという効果が得られる。

【0022】本発明のガラス組成物については、上記の 透過スペクトルのほか、光増幅特性の基礎となる蛍光ス ベクトル、蛍光寿命を評価し、さらに光増幅特性および 発光特性を評価した。そのほか、基本的な特性として、 屈折率、熱膨張係数、ガラス転移点および屈伏点を測定 した。主な測定、評価方法を以下に説明する。

【0023】(光透過・吸収スペクトル)試料ガラスを 30 切断し、20mm×30mm×厚さ3mmの平行平板に なるように表面を鏡面研磨し板状試料を作製した。市販 の分光光度計を用い、板状試料の光透過スペクトルを波 長290~2500mmの範囲で測定した。同時に光透 過スペクトルの波長450~550nm、650~75 0 n mのそれぞれの範囲に光吸収ピークが現れているか どうかを観察した。

【0024】また、光透過スペクトルを、モル吸光係数 に換算して(つまり、ビスマスの酸化物をBi₂O₃に換 算し、Bi,O,を1モル%含み、光路長が1cmである 40 2を通過するように、信号光30は反射させるように構 ときの吸光係数に換算した)光吸収スペクトルを求め、 光吸収ピークの両側に接線を引いてベースラインとし、 光吸収ピークのベースラインに対する吸収係数の比を求 めた。

【0025】(蛍光スペクトル)蛍光スペクトルは上記 と同じ板状試料を用い、市販の分光蛍光光度計により測 定した。 励起光の波長は、500nm、700nmお よび近赤外域の833nmの3種類とし、それぞれの励 起波長の下で、蛍光の発光の波長は800mm~160 0 n mの範囲について測定した。 なお、測定時の試料

温度は室温である。 測定された蛍光スペクトルに現れ た発光ピーク波長、および発光強度がピーク値の半分以 上になる波長幅(以下半値全幅と呼ぶ)、および発光ビ ーク波長における発光強度を求めた。発光強度は任意単 位ではあるが、試料形状および測定時の試料の設置位置 を同一としているため、強度の比較が可能である。

【0026】(蛍光寿命)蛍光寿命も上記と同じ板状試 料を用いて分光蛍光光度計により測定した。波長500 nmのパルス光によって励起し、波長1140nmでの 発光の時間的減衰を測定した。その減衰曲線に対して指 10 数関数をフィッティングすることにより蛍光寿命を算出 した。

【0027】(光増幅特性)光増幅特性の測定装置を図 1 に示す。光増幅のエネルギー源となる励起光の波長は 532nm、増幅すべき信号光の波長は1064nmお よび1314nmの2種類を用いた。基本的な構成は、 励起光と信号光とを試料ガラス中で空間的に重ね、試料 ガラスを透過してきた信号光の強度の変化を測定するも のである。

【0028】波長532nmの励起光20の光源26に は半導体レーザ (LD) 励起Nd-YAG緑色レーザか 5の連続光を用いた。励起光は焦点距離300mmの凸 レンズ52で集光し、試料ガラス10の厚み方向中央部 に焦点位置62がくるように調整した。

【0029】一方信号光30は、波長が1064nmの 場合には、励起光源26とは別の半導体レーザ励起Nd -YAGレーザを光源36とし、パルス幅数nsのパル ス光を用いた。波長が1314nmの場合には、その波 長の半導体レーザからの連続光を用いた。信号光30 は、励起光20とは逆方向から試料ガラス10に入射す るようにし、焦点距離500mmまたは1000mmの 凸レンズ54で集光して試料ガラス10の厚み方向中央 部に焦点位置がくるように調整した。両レンズ52、5 4の焦点距離の組み合わせは、信号光ビームが通過する 空間が励起光ビームが通過する空間内に十分含まれるよ うに選択した。

【0030】また、信号光30と励起光20の合波・分 波は、反射鏡72、74を利用して行った。基本的な光 学系は、図1に示すように励起光20は反射鏡74、7 成した。

【0031】信号光波長が1064nmの場合は、信号 光の反射鏡として、通常の透明な板ガラスを用いた。透 明な板ガラスの場合、表面で数%の反射が生じるので、 それを利用した。光源(Nd-YAGレーザ)36から 出た波長1064nmの信号光30は、反射鏡72で一 部が反射され、試料ガラス10中に入射され、これを透 過した信号光32、すなわち増幅された信号光は反射鏡 74でその一部が反射され、レンズ56を介して光検出 50 系80に導かれる。

【0032】2枚の反射鏡72、74における波長10 64 n mの光の反射率は高くはないが、信号光30はパ ルス光であり、その尖頭値が非常に大きい(レーザの出 射位置でメガワットクラス)のため、測定は容易であ る。なお、励起光20は反射鏡74をほとんど損失なく 通過して試料ガラス10に達する。試料で光増幅に寄与 しなかった励起光22は、反射鏡72に達するが、この 反射鏡での反射量はわずかであるので、信号光光源36 に悪影響を与えることはない。

【0033】信号光波長が1064nmの場合の光検出 10 系80の詳細を図2に示す。遮光カバー88で覆った光 検出系80に導かれた信号光32を、可視光カットフィ ルタ82を通し、さらに波長1064nmの光のみ通過 する干渉フィルタ84を用いて信号光成分以外の光を除 去する。信号光は光検出器86で光信号強度に対応した 電気信号92に変換され、オシロスコープ90上に表示 される。光検出器86としてはSi系フォトダイオード を使用することができる。

【0034】信号光の波長が1314mmの場合は、反 射鏡72、74として、波長1314nmに対して高反 20 射率をもつ誘電体多層膜を用いた。波長1314nmの LDから出射された信号光30は、反射鏡72で反射さ れ、試料ガラス10中に入射される。光増幅された信号 光32は反射鏡74で反射されて光検出系80に導かれ る。励起光20は反射鏡74をほとんど損失なく通過し て試料ガラス10に達する。 試料で光増幅に寄与しなか った励起光22は、反射鏡72に達し、わずかに反射さ れる。この反射光が信号光光源30に入射するのを防ぐ ため、波長532nmに対して高反射率をもつように構 成した誘電体多層膜(図示しない)を挿入した。

【0035】信号光波長が1314mmの場合の光検出 系80の詳細を図3に示す。光検出系80に導かれた信 号光32は、焦点距離の長い(1000mm)のレンズ 58でピンホール83上に集光される。ピンホールを通 すことで信号光以外の方向に進む成分、すなわちASE 光および散乱光成分を除去できる。さらに分光プリズム 55を通過させることにより、波長532nmの励起光 成分を除去し、信号光成分のみを光検出器86に入射す る。光信号はそれに対応した電気信号92に変換され、 オシロスコープ90上に表示される。光検出器86とし 40 てはGe系フォトダイオードを使用することができる。 【0036】図1に示した光学系では、励起光20の進 行方向と信号光30の進行方向とが逆向きであるが、こ れに限定されるものではなく、例えば両方の光の進行方 向を一致させてもよい。

【0037】上述の光学系を用いた光増幅の測定は以下 のようにして行った。試料ガラス10を平行平板になる ように両面を鏡面研磨しブロック状試料を作製した。試 料ガラスの厚みは、励起光の波長、例えば波長523 n mにおいて、透過率が約95%になる厚みとした。との 50 ラインのそれに対する比が0.1以上であった。図5は

試料ガラス10を図1の位置にセットし、信号光30と 励起光20とが試料中でよく重なるように調整を行っ

【0038】まず、信号光30を試料ガラス10に照射 し、試料ガラスを透過してきた信号光32の強度をオシ ロスコープ90で測定する。つぎに、信号光30の照射 を続けたまま、励起光20を試料ガラス10に照射し、 同様に信号光32の強度をオシロスコープ90で測定し た。信号光だけを照射したときと、信号光と励起光とを 同時に照射したときの、透過信号光の強度を比較すると とにより、光増幅現象を確認することができる。以下、 実施例および比較例により、この発明をさらに詳細に説

【0039】(実施例1~23)表1、表2に示した各 組成成分の含有率となるように、通常のガラス原料であ るシリカ、アルミナ、炭酸リチウム、炭酸ナトリウム、 炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭 酸ストロンチウム、炭酸バリウム、チタニア、ジルコニ ア、酸化ホウ素、および三酸化ビスマスなどを用いてバ ッチを調合した。

【0040】なお、三酸化ビスマスの不要な還元の防止 と、ガラスの清澄を目的として、MgO成分の一部を試 薬として市販されている硫酸マグネシウム(MgS O.) に振り替え、またガラス組成にNa, Oが含まれて いる場合は、Na、O成分の一部を硫酸ナトリウム(ボ ウ硝、Na,SO,) に振り替えて導入した。振り替えた 硫酸マグネシウムや硫酸ナトリウムの量は、三酸化ビス マスに対するモル比で1/20とした。

【0041】調合したバッチを白金ルツボを用いて16 00℃で18時間保持し、その後鉄板上に流し出した。 流し出したガラス熔融液は10数秒で固化し、このガラ スを電気炉中で800℃、30分保持した後、炉の電源 を切り、室温まで放冷して試料ガラスとした。

【0042】つぎに、上記試料ガラスを用いて色調、透 過スペクトル、蛍光スペクトル、蛍光寿命、屈折率、熱 膨張係数、ガラス転移点および屈伏点を以下のように測 定し、結果を表1、表2に示した。

【0043】実施例1~23のガラスは、表1、表2に 示すように、何れも目視観察において赤色ないし赤褐色 を示した。これらの試料ガラスは、図4亿示すように、 波長450nm~550nm、および650~750n mの範囲に光吸収ピークを示した。図4は実施例1およ び4の例を示しているが、実施例1~23のいずれも同 様な特性を示した。

【0044】図5は光透過スペクトルから求めた光吸収 ピークの例を示している。図示するようにベースライン を引き、光吸収ピークのベースラインに対する吸収係数 の比の求めた。波長450~550nmの範囲にある光 吸収ピークの波長において、光吸収の吸光係数のベース

10

実施例7および11について示したが、表1、表2に示すように、実施例1~23はほぼ同様の特性を示した。【0045】実施例1~23のすべてのガラスにおいて、表1、表2に示すように赤外域での蛍光が観測された。図6には実施例10の蛍光スペクトルを示す。波長500nm、700nm、833nmの各波長の光照射による励起によって、波長1000~1600nmに及ぶ波長範囲の極めて広い発光が得られている。

【0046】さらに、発光半値全幅については、実施例15のガラスを833nmの波長の光で励起した場合、本実施例中最大の波長幅349nmが得られた。その他全ての実施例においても波長幅150nm以上であり、本発明のガラスは広い波長範囲で強く発光していると言える。

【0047】算出した蛍光寿命の値も表1、表2 に同時 に示した。実施例18 では蛍光寿命は 508μ s に達する長寿命を示し、その他の実施例1、3、4、7、9、10、12~22 において、 200μ s 以上の長い蛍光寿命が得られている。すなわち、本発明のガラスは効率よく赤外域で発光していることが分かる。

【0048】さらに、本発明のガラスの光増幅特性を測定した。図7は実施例10のガラスに対して、波長1064nmの信号光のみを照射した場合と、波長1064nmの信号光に加えて532nmのレーザ光を重ねて照射した場合について、それぞれ観測された透過光強度を示している。信号光だけを照射したときに比べ、波長532nmの光を同時に照射したときの方が、透過光強度が明らかに増加しており、光増幅の効果を確認することができる。

【0050】また、このガラスの発光が最大になる発光 被長は約1140nmであり、1064nmと同じ発光 強度になる波長は約1350nmであるため、少なくとも1064nmから1350nmにわたる波長範囲のな 40かで、250nm以上の波長範囲で光増幅を行なわせる ことが可能である。これ以外の実施例1~23についても同様の結果を得た。

【0051】(実施例24)実施例24は、結晶化ガラスの例である。その製法と特性について以下に説明する。実施例11のガラスに対して、780℃に設定した電気炉の中で1時間保持し、その後、電気炉内の温度を5℃/分で昇温して850℃にまで上げてさらに1時間保持し、炉の電源を切り室温まで冷却する処理を施したものである。

【0052】上記の熱処理によって、試料ガラスは変形することなく、また色調も熱処理前とほとんど変化しなかった。しかし、熱処理後のガラスのガラス転移点および屈伏点を測定すると、熱膨張曲線には室温から1000℃までの間に変曲点や極大値がみられなかった。 このことから熱処理によって結晶化ガラスが得られ、さらにこの結晶化ガラスは耐熱性に優れるものであることが分かる。

10

【0053】この実施例24の結晶化ガラスに対しても、上記の各測定を行ない、その結果を同じく表2に記載した。表2に見られるように、 波長450nm~550nm、および650~750nmの各々の範囲に光吸収ピークを示した。また500nm、700nm、833nmの各波長の光照射による励起によって、波長1000~1600nmに及ぶ極めて広い波長範囲の発光が得られ、 しかも蛍光寿命も203μsと長く、高効率で赤外発光および光増幅の効果を得た。

【0054】(比較例1~4)表3に示した組成となるように、実施例と同様の方法で試料ガラスを作製した。 20 ただし、比較例4では、調合したバッチを白金ルツボを用いて1450℃で4時間保持し、その後鉄板上に流し出した。このガラスを電気炉中、550℃で30分保持した後、炉の電源を切り、室温まで放冷して徐冷し試料ガラスとした。

【0055】これらの試料ガラスを用いて、実施例と同様に色調、透過スペクトル、蛍光スペクトルを測定し、表3にその結果を示した。比較例1および2では、流し出した後、徐冷して得た固化物は、表面につやがなく、内部まで完全に失透しており、ガラスが得られなかった。 比較例3は、得られた試料ガラスは濃褐色を示し、その透過スペクトルには光吸収ビークが観察されず、波長400nmから850nmの何れの波長の光を照射しても赤外域での発光は観察されなかった。 比較例4は、一般的なソーダライムガラスであるが、得られた試料ガラスは無色透明で、その透過スペクトルにも光吸収ビークは観察されず、波長400nmから850nmの何れの波長の光を照射しても赤外域での発光は観察されなかった。

【0056】以下に実施例、比較例から得られる組成の限定理由を説明する。まず、ビスマスの酸化物は本発明のガラス組成物が発光ないし光増幅を呈するための必須成分である。ビスマスの酸化物は、三酸化ビスマス(Bi,O,)であることが好ましい。その含有量が0.01モル%未満の場合は、ビスマスの酸化物による赤外発光の強度が弱くなりすぎてしまう。

【0057】一方5モル%を越える場合は、光透過スペクトルに波長450~550nmの範囲に光吸収ビークが現れなくなり、赤外発光が発現しなくなる。つまり、50 ビスマスの酸化物を三酸化ビスマス(Bi,O₁)に換算

した含有量で示して、0.01~5モル%であるのが好 ましく、さらには0.01~3モル%であることがより 好ましい。

【0058】また、ガラスを溶融する途中でピスマス酸 化物の一部が還元された場合、そのガラス組成物は赤外 域で発光しなくなり、また濃褐色ないし黒色を呈するよ うになる。しかも白金あるいは白金系合金製の溶融容器 (ルツボなど) が侵食される可能性があるため、ガラス 原料の一部には、金属硫酸塩や金属硝酸塩など、酸化性 や金属硝酸塩などとして用いるべき原料の量は、モル比 で表示して、ビスマス酸化物の1/20以上であること が好ましい。

【0059】SiO1は、ガラスの網目構造を構成する 必須成分である。SiO,の含有率が高くなるにしたが い、ガラス組成物および結晶化ガラスはより強く赤外発 光を示すようになるが、同時にガラス融液の粘度が高く なり、ガラス組成物の製造が困難になる。また、SiO 2の含有率が低いと、ガラス組成物および結晶化ガラス の赤外発光強度が低下し、さらにSiO,の含有率が低 くなると、ガラス製造時に失透が発生し、ガラス組成物 および結晶化ガラスを得ることができなくなる。したが って、SiO₂の含有率は55~80モル%であること が好ましく、さらに60~75モル%の範囲がより好適 である。

【0060】AI、O、は、ビスマスの酸化物がガラス組 成物および結晶化ガラス中において赤外発光を呈するた めに必須の成分である。 その含有量が5モル%未満の 場合は、この効果が現れない。一方、Al,O,の含有率 が高くなるにしたがい、ガラス組成物および結晶化ガラ スの赤外発光強度は強くなるが、含有量が25モル%を 超えるとバッチをいくら加熱しても熔解し切れなくなる など、溶解性が悪化する。また、バッチが完全に熔解し た場合でも、冷却固化の際に極めて失透し易くなり、ガ ラス形成が困難となる。 したがって、A 1, O, の含有 率は5~25モル%である必要があり、5~20モル% が好ましく、さらには10~20モル%がより好適であ る。なお、「バッチ」とは、各組成成分が所定の含有率 になるようにガラス原料を調合したものをいう。

【0061】2価金属酸化物RO(RO=MgO+Ca 40 る。 O+SrO+BaO+ZnO) は、ガラスの溶解性を向 上させるために必須の成分である。 ROを全く含まな い場合は、ガラス融液の粘性が極めて高くなり、均質な ガラスを得ることが困難になり、またバッチの熔融が遅 く溶解性が劣化する。ROを少なくとも0.1モル%添 加すれば、上記のROの好ましい効果を得ることができ る。

【0062】一方、ROの含有量の増加に伴い、ガラス の均質化は容易になるが、含有量が40モル%を越える と、まずガラス組成物が濃褐色を示し、波長450~5 50 にバッチの熔解性を高める任意の成分である。 また、

50 n m の範囲に光吸収ピークが観察されなくなり、同 時に赤外発光が得られなくなる。またガラス熔融液の粘 度が必要以上に低下し、冷却固化の際に失透が起こりガ ラスが形成されなくなる。したがって、ROの含有量は 0.1~40モル%である必要があり、0.1~35モ ル%がより好ましく、さらに0.2~30モル%の範囲 がより好適である。

【0063】さらに、ROの原料の一部に硫酸塩(RS O.) や硝酸塩(R(NO,),) など、酸化性の高い原 の高い原料を用いることが好ましい。なお、金属硫酸塩 10 料を用いることが好ましい。これは、これら酸化性の高 い原料を用いると、バッチの溶解途中やガラス融液の溶 融中に酸化性の高い化合物を発生し、ビスマスの酸化物 が不必要に還元されるのを防ぐことができるという優れ た効果を発揮する。なお、上記原料は、溶解途中または 溶融中に一部が分解されることで清澄剤としての効果も

> 【0064】ROのうち、MgOは、ガラス中において 網目修飾酸化物としてはたらく最も重要な必須の成分で ある。MgOバッチの熔融を速め熔解性を高める成分で 20 ある。Mg Oの含有率が高いほどこれらの機能がよく発 揮されるが、一定値を越えると、まずガラス組成物が濃 褐色を示し、波長450~550nmの範囲に光吸収ピ ークが観察されなくなるようになり、それと同時に赤外 発光強度が激減し、発光しなくなる。それを越えて含有 量が大きくなるとガラス熔融液の粘度が必要以上に低下 し、冷却固化の際に失透が起こりガラスが形成されなく なる。したがって、MgOの含有率は、O.1~40モ ル%である必要があり、0.1~35モル%がより好ま しく、0.1~30モル%がさらに好適である。

【0065】CaOは、MgOと同様にバッチの熔解性 を高める成分であるが、任意の成分である。また、ガラ スの耐失透性を高める性能においてはMgOより優れる 成分である。 しかし、CaOの含有量が大きくなりす ぎると、ガラスは濃褐色を示すようになり、波長450 ~550nmの範囲に光吸収ピークが観察されなり、同 時に赤外発光を示さなくなる。そのため、CaOの含有 率が決定され、0~30モル%である必要があり、0~ 20モル%が好ましく、0~18モル%の範囲がよりに 好ましく、さらには0~10モル%がもっとも好適であ

【0066】SrOは、MgOやCaOと同様にバッチ の熔解性を髙める任意の成分である。SrOは少量(例 えば0.1モル%)でも含有されれば、ガラスの耐失透 性を大幅に改善することができる。しかし、SrOはビ スマス含有ガラスの赤外発光強度を急激に低下をさせる はたらきが強く、組成物が赤色ないし赤褐色と赤外発光 を示すSr〇の含有量の範囲は狭い。そのため、SrO の含有率が決定され、0~5モル%である必要がある。 【0067】BaOは、MgOやCaO、SrOと同様

BaOは他の2価金属酸化物よりも屈折率を高める効果 が高い。ガラスは屈折率が高い方が、表面の光沢が強 く、本発明の赤色ないし赤褐色の効果を高めることがで きる。したがって、本発明のガラス組成物にはBaOを 含有させることが好ましい。しかし、BaOはビスマス 含有ガラスの赤外発光強度を急激に低下をさせるはたら きが強く、組成物が赤色ないし赤褐色と赤外発光を示す BaOの含有量の範囲は狭い。そのため、BaOの含有

率が決定され、0~5モル%である必要がある。

【0068】 ZnOもまたバッチの熔解性を高める任意 10 の成分である。ZnOはCaO、SrO、BaOと比べ て、ビスマス含有ガラスを赤色ないし赤褐色に呈色させ る効果が高い好ましい成分である。また、ZnOはMg 〇と比べて、ガラスの屈折率を高めることはたらきが強 い。ZnOの含有率が高いほどこれらの機能がよく発揮 されるが、一定値を越えると、まずガラス組成物が濃褐 色を示し、波長450~550nmの範囲に光吸収ピー クが観察されなくなるようになり、さらに含有量が大き くなると、ガラスは分相して乳濁し、透明なガラスが得 られなくなる。したがって、ZnOの含有率は、0~2 5モル%である必要があり、0.1~20モル%がより 好ましく、0.1~18モル%の範囲がさらに好適であ

【0069】Li,Oは、ガラス中において網目修飾酸 化物としてはたらく重要な任意の成分である。Li2O は、とくに熔解温度を下げて熔解性を高める成分でもあ るとともに、ガラスの屈折率を高めることができる成分 でもある。また、適量の添加は光吸収強度を増進し、赤 外発光強度を高める効果がある。上記の目的には、L i , Oの含有量は多いほどよいが、一定値を越えると、ま ずガラス組成物が濃褐色を示し、波長450~550n mの範囲に光吸収ピークが観察されなくなるようにな り、同時に赤外発光強度が激減する。それを越えて含有 量が大きくなるとガラス熔融液の粘度が必要以上に低下 し、冷却固化の際に失透が起こりガラスが形成されなく なる。したがって、Li,Oの含有率は、0~15モル %である必要があり、0~12モル%がより好ましい。 【0070】Na、Oは、溶融温度を下げるとともに、 液相温度を下げる効果があり、ガラスの失透を抑えると とができる成分である。しかし、NalOはピスマス含 有ガラスを濃褐色に呈色させ赤外発光を弱める働きが強 いため、多量の含有は好ましくない。したがって、Na ,Oの好ましい含有率の範囲は0~5モル%であり、よ り好ましくは0~2モル%である。

【0071】K,Oは、液相温度を下げる効果があり、 ガラスの失透を抑えることができる成分である。しか し、K、Oは比較的少量の添加で、ビスマス含有ガラス の赤外発光を弱め、組成物を濃褐色に呈色させるはたら きが強いため、多量の含有は好ましくない。したがっ て、K,Oの好ましい含有率の範囲は0~5モル%であ

り、より好ましくは0~2モル%である。

【0072】さらに、上記Li,O、Na,O、K,Oで 示されるアルカリ金属Mの酸化物の原料の一部に硫酸塩 (M, SO,) や硝酸塩 (MNO,) など、酸化性の高い 原料を用いることが好ましい。これは、これら酸化性の 高い原料を用いると、バッチの溶解途中やガラス融液の 溶融中に酸化性の高い化合物を発生し、ビスマスの酸化 物が不必要に還元されるのを防ぐことができるという優 れた効果を発揮する。なお、上記原料は、溶解途中また は溶融中に一部が分解されることで清澄剤としての効果 も期待される。また、とくに硫酸塩はバッチの溶解初期 に先に融解し、バッチ中のSiO,の融解を助けるはた らきがあり、ガラスの溶解性を高めることができる。 【0073】TiO,は、ガラス組成物の屈折率を高め るとともに、ビスマスの酸化物の赤外発光を助ける任意 の成分である。前述したBaOは、ビスマス含有ガラス の赤外発光強度を低下させるはたらきが強いが、TiO ,は逆に赤外発光強度を高める効果があるため、BaO よりも好ましい成分である。しかし、TiOzは、乳白 色のガラスに比較的多量に含まれることから判るよう に、ガラスを乳濁させる機能(副作用)がある。そのた め、その含有率は10モル%以下である必要がある。し たがって、TiOzの含有率は、0~10モル%である 必要があり、0~5モル%の範囲がより好ましい。 【0074】ZrO,は、TiO,と同様にガラス組成物 の屈折率を高めるとともに、ビスマスの酸化物の赤外発 光を助ける任意の成分である。 しかし、Zr〇、は、結 晶化ガラスの核生成剤として用いられることが示すよう に、ガラスの結晶化を促し、またガラス組成物の密度を 30 高める機能(副作用)を備える。したがって、不必要な 結晶化(失透)と密度の上昇とを避けるため、乙r〇、 の含有率は5モル%以下である必要がある。したがっ て、ZrO2の含有率は0~5モル%である必要があ

【0075】B、O、は、任意の成分であるが、ガラス融 液の粘性を下げ、ガラスの均質化に役立つ成分である。 との効果は、特にSiO,やAl,O,が多量に含まれて いる場合に顕著である。ただし、B,O,の含有量が多量 になると、ガラスは分相し、乳濁する傾向が高くなる。 40 したがって、B,O,の含有率は0~10モル%である必 要がある。

り、0~3モル%が好ましい。

【0076】これらの成分以外に、屈折率の制御、温度 粘性特性の制御、失透の抑制などを目的として、Y O, La,O, Ta,O, Nb,O, GeO, In, 〇、などの成分が合計で5モル%を上限として含有され ていてもよい。さらに、上記成分以外に、熔解時の清 澄、ビスマスの酸化物の還元の防止などを目的として、 As, O, Sb, O, SO, SnO, Fe, O, Cl またはFなどの成分が合計で1モル%を上限として含有 50 されていてもよい。

【0077】なお、産業上利用し得るガラス原料に徴量不純物として含まれる他の成分が混入する場合もある。 これら不純物の合計含有率が1モル%未満の場合は、ガラス組成物の物性に及ぶ影響は小さく、実質上問題とならない。

【0078】以上より、本発明の発光体または光増幅媒体は、現在光通信で主に用いられている波長領域の一つである1310nm帯で有効に利用できる。これに加え、これまで適切な光増幅材料が報告されていないた *

*め、光通信で利用することのできなかった、1100~1300nmの範囲の波長で動作する新たな光増幅媒体を提供することができる。また図4に示すように、1000nmから1600nmにわたる蛍光スペクトルの広がりから、極めて広い波長範囲で動作する光増幅器が実現できる。

16

[0079]

【表1】

程度(moth)													
50		1	2	3	4	5	в	7	8	9	10	11	12
14.9 13.9 14.1 15.4 15.5 15.3 13.9 10.1 12.9 14.9 13.8 14.5		60.2	70.4	71.3	57.8	67.7	67.7	64.4	67.9	68.3	73.2	70.8	73.3
1.5.0 8.9 8.8 0 0 0 0 0 0 0 0 0									10.1	12.0	14.9	13.8	14.9
15												8.0	-
(AgC)												0.0	
(A) 9.8 3.0 3.0 15.5 0.1 3.9 14.0 1.0 14.9 0.1 0.5 8.1 0.2 0.0 0 0 0 0 0 1.5 5 0 0 0 5.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								- 31					- 0
## 20			_				-						
************************************	M _z O												_
107	CaO	ĺ			_								
107	\$r0	ĺ	_		_	_							
107	BaO												
17.0	по												
3Q- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ZrO _z	1,0	1.0		_			_	-			_	
300	ZnO	C											.0
3.0 3.0 3.0 15.5 15.6 15.5 14.6 11.6 14.9 0.1 2.7 9.1 がプスの色頂 赤 非 赤 康 帝 帝 帝 李 本 神祖色 李陽色 京 赤 章 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 神 神 神 神 神 神 神 神 神	B ₂ O ₃												
がフスの色図 赤 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿 寿	Bi ₂ O ₃												
77.人の日報	RO	9.9	3.0										
450~550mの範囲 おり あり かり	ガラスの色質	7	*	毒	#	A	*	穿視色	孝青色	弄	_#	128	<u> </u>
(データー・スプクの比 1.0) 0.14 0.44 1.47 1.50 1.80 0.30 0.59 0.90 1.53 1.01 1.4	光吸収ピークの有無												
150	450~550nmの 初 費	あり	89	あり	あり								
### (150 mm) (150 m	ピークとベースラインの比												
無比一つ波長 / mm 1151 1168 1164 1170 1160 1130 1151 1110 1123 1163 1140 112	650~750nmの範囲	あり	あり	あり	あり	3.9	あり	89	359	209	<u> </u>	207	<i>8</i> 99
表末十分度 / m 1151 1150 1170 1170 1170 1270 230 278 2250 218 224 250 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	世光スペクトル 500nm励起素	•											
無法と目標 / fm	発光ピーク波長 / nm	1151	1186	1164									
無元ピーフ速長 / mm 1103 1110 1108 1110 1100 1100 1100 1100	免充半位福 / nm	288	287	289	270	290	230	276	220	216	284	250	224
無元ピーフ速長 / mm 1103 1110 1108 1110 1100 1100 1100 1100	□ 700nm用起映												
独先半載幅 / nm 152 192 190 200 180 170 184 100 172 192 180 17 日 833mの設定的 1250 1262 1252 1250 1250 1250 1250 1252 1255 1260 124 発光ピーク液を / nm 322 305 329 280 310 310 321 330 318 320 300 300 320 285 267 48 48 48 48 48 48 48 4		1103	1110	1108	1110	1100	1100	1100	1100				1095
周 833nm最配約 景式に一方液是 / nm 1250 1269 1262 1250 1250 1250 1250 1252 1255 1260 124 景式に一方液是 / nm 322 305 329 280 310 310 321 330 318 320 300 30 電光率命 / μ a 296 - 271 259 214 - 348 314 - 39 国折率 1.548 1.541 1.538 1.555 - 1.537 1.524 - 1.52 アンベ敷 61 58 61 60 - 61 61 - 61 - 57 大学校 14 43 42 - 30 41 - 2 ガラス板保険 / 10 ⁻¹⁶ ℃ 38 41 43 42 - 30 41 - 2											100	180	172
無光ビーク液是 / pm 1250 1269 1262 1250 1250 1250 1250 1250 1250 1250 125		182	192	190	200	190	170	184	100	172	182		
発光半敏幅 / nm 322 305 379 280 310 310 321 230 318 320 300 30 電光素度 / μ = 296 - 271 259 - - 214 - 30 30 30 銀子業 / 1.549 1.541 1.538 - - - 1.555 - 1.537 1.524 - 1.52 - - 1.537 1.524 - 1.52 - - 1.537 - - 1.52 - - 1.52 - - 1.52 - - 1.52 -	E Ston DED	182	192	190	200	190	170	184	100	172	182		
登売寿命 / μe 299 - 271 259 214 - 348 314 - 39 屈折率 1.548 1.541 1.538 1.555 - 1.537 1.524 - 1.52 アプベ政 61 58 61 60 - 61 61 - 5 お野孫保政 / 10 ²⁶ で1 38 44 43 42 - 30 41 - 2 ガラス味辞食 / 70 718 690 680 702 - 740 713 - 80	岡 833nm及記時 毎年ビーク学長 / nm												1244
限折率 1.548 1.541 1.538 1.555 - 1.537 1.524 - 1.52 アンベ政 61 58 51 60 - 61 61 - 5 経酵源保険 / 10 ⁻⁷⁶ C ⁻¹ 38 41 42 42 - 30 41 - 2 ガラス味味食 / 10 ⁻⁷⁶ C ⁻¹ 718 690 680 702 - 740 713 - 80	発光に一ク家長 / nm	1250	1269	1262	1250	1290	1250	1267	1250	1232	1255	1260	
15 15 15 15 15 15 15 15	発売ビーク液是 / nm 発売単値幅 / nm	1250	1269	1262 329	1250 280	1290 310	1250	1257 321	1250	1232 318	1255 320	1 <u>26</u> 0	1244
接鞭張領数 / 10 ⁻⁷⁶ C ⁻¹ 38 41 43 42 - 30 41 - 2 ガラス転移点 / C 718 690 680 702 - 740 713 - 90	発売ビーク液是 / nm 発売単値幅 / nm 蛍光寿命 / μ s	1250 322 299	1269	1262 329 271	1250 280 259	1280 310	1250 310	1257 321 214	1250 230	1232 318 348	1255 320 314	1 <u>260</u> 300	1244 304 392
ガラス転移点/で 718 690 680 702 - 740 713 - 80	発売ビーク液是 / nm 発売単値幅 / nm 蛍光寿命 / μs 図折率	1250 322 299 1.548	1269 305 - 1.541	1262 329 271 1.538	1250 280 259	1290 310	1250 310 -	1267 321 214 1.555	1250	1232 318 348 1,537	1255 320 314 1.524	1280 300	1244 304 392 1,529
// / / / / / / / / / / / / / / / / / /	発光ビーク家長 / pm 発光半値幅 / pm 蛍光寿命 / μs 屈折事 アッベ数	1250 322 299 1.548 61	1269 305 - 1.541 68	1262 329 271 1.538 61	1250 280 259 -	1290 310 -	1250 310 - -	1287 321 214 1.556 60	1250 230 - -	1232 318 348 1,537 61	1255 320 314 1.524 61	1 <u>260</u> 300 	1244 304
	先先ピーク家品 / pm	1250 322 299 1.548 61 38	1269 305 1.541 58 41	1252 329 271 1.538 61 43	1250 280 259 -	1290 310 - -	1250 310 - - -	1257 321 214 1.555 60 42	1250 230 - - -	1232 318 348 1.537 61 30	1255 320 314 1.524 61 41	1250 300	1244 304 392 1,529

[0080]

【表2】

17												18
実施研 組成(moffi)	13	14	15	15	17	18	19	20	21	22	23	18
SiO ₂	73.3	64.4	61,4	79.2	97.3	73.8	73.7	75.6	72.3	64.0	61.8	70.6
ALO:	14.9	13.9	11.9	8.9	20.8	15.0	15.0	7.6	10.6	19.2	21.9	13.6
цo	5.0	O	0	5.0	5.0	10.0	10.0	5.0	5.0	5.0	5.0	8.0
Na-O	- 0	- 0	- 0	0	- 0	0.0	0.0	0.0	6.0	8	0.0	0.9
Na _z O K _Z O	1	0	- 0		0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
M _e O	5.0	19.8	24.8	5.0	5.0	0.1	0,1	9.8	9.9	9.0	10.0	0.5
C+O	0	o	c	0	0	O		٥	0	0	Ç	0
SrQ	0	ō	0	C	C	0	0	٥	Q	0	0	0
BaO .	o	o	0	C	0	G	ò	٥	0	0	0	1,1
TiOz	0	P	0	C	C	0	0	٥	0	9	٥	2.3
ZrO,	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1
Zn0	0	0	0	a	C	٥	0		0	0	0	1.1
B ₂ O ₂	0	0	0	0	G	0	0		C	٥	0	0
Bi _t O ₁	1.0	1.0	1.0	1.0	1.0	0.1	E	19	1.0	1.0	0.3	먑
RO	5.0	19.8	24.8	5.0	5.0	0.1	0.1	9.9	9.9	9.9	10.0	2.7
ガラスの色質	盡	泰	#	*	큤	亦	赤	亲	办	#	*	#
先吸収ピークの有無						1 1						
450~550nmの範囲	ð	ay	89	あり		2019	<u></u>	854	3 9	89	25.9	19
	1.84	0.99	0.73	1,15	1.39	0.10	0.61	0.08	0.67	1.08	0.39	1.01
450~550nmの範囲					1.39					_		
450~550mmの範囲 ピークとペースラインの比	1.84 254	0.99	0.73	1,15 89	1.39 35.4	0.10 254	0.61 254)	0.08 & Y	0.67 25.9	1.08 254	0, 59 26.9	1.01 354
450~550nmの範囲 ヒークとペーステインの比 650~750nmの範囲	1.84 254	0.99 851) 1133	0.73 854)	1,15 あり 1161	1.39 35.49 1143	0.10 254 1113	0.81 264) 1131	0.08 35 9 1158	0.67 359 1153	1,08 254 1148	0,39 259 1125	1.01 \$54 1170
450~550nmの範囲 t'-クとペー入ラインの比 650~750nmの範囲 費売スペ・外科 500nm品配	1.84 254	0.99 85.1J	0.73 854	1,15 89	1.39 35.4	0.10 254	0.61 254)	0.08 35 9 1158	0.67 25.9	1.08 254	0, 59 26.9	1.01 35.1J
450〜550nmの範囲 ビーナトペーステインの比 650〜750nmの範囲 費光スペケル 500nm品配 売光ビーク攻長 / nm	1.84 254 1145	0.99 851) 1133	0.73 \$19 1143 243	1,15 あり 1161	1.39 35.9 1143 261	0.10 25-9 1113 187	0.61 259 1131 258	0.08 25-9 1158 269	0.67 2549 1153 284	1,08 25-9 1148 278	0,39 25.9 1125 226	1.01 35.9 1170 290
450~550nmの範囲 ドーケン・ステレの比 550~750nmの範囲 費先入・外島 500nm放起 免だビーフ波及ノ nm 発光手復程ノ nm	1.84 25.9 1145 285	0.99 851) 1133	0.73 354 1143 243	1,15 あり 1161 280	1.39 35.9 1143 261	0.10 85-9 1113 187	0.61 35-9 1131 258	0.08 35.9 1158 259	0.67 354 1153 284 1082	1,06 25.9 1148 278	0,39 25.9 1125 226	1.01 354 1170 290
450~550nmの範囲 ピーナー・ステルの比 550~750nmの範囲 豊光ル・ケト 500nm品配 元光ビーク窓長 / mm 最先半棟程 / mm 同 700nm 励起時	1.84 25 y 1145 265	0.99 251 1133 233	0.73 \$19 1143 243	1,15 あり 1161 280	1.39 35.9 1143 261	0.10 25-9 1113 187	0.61 259 1131 258	0.08 35 9 1158 259	0.67 2549 1153 284	1,08 25-9 1148 278	0,39 25.9 1125 226	1.01 35.9 1170 290
450-550nmの展開 ビーたペースブインの比 550-750nmの電開 豊光スペケト 500nm品配子 売光ビー/溶長/mm 最先手値程/mm 同 700nm品配伸 売光ビー/液長/nm 乗光ビー/液長/nm 乗光ビー/液長/nm	1.84 25.9 1145 285	0.99 251 1133 233 1093 180	0.73 254 1143 243 1095 187	1,15 289 1161 280 1111 184	1.39 35.9 1143 261 1100 181	0.10 35.9 1113 187 1102 157	0.81 254 1131 258 1106 184	0.08 35 9 1158 269 1111 175	0.67 354) 1153 284 1082 175	1,06 25-9 1148 278 1100	0,39 25 y 1125 226 1097 171	1.01 353 1170 290 1120 210
450~550nmの展開 ビットペースオイルの比 550~750nmの気間 費夫スペケル 550nm協定 乗北ビーツ液長/rm 現北土体質/rm 月 750nm助起時 乗北ビープ液長/nm 乗北ビープ液長/nm 用 833nm励起時 乗光ビープ液長/nm 異 834mm配割	1.84 3-9 1145 265 1103 179	0.99 851 1133 233 1093 180	0.73 854 1143 243 1095 187	1,15 290 1161 290 1111 184	1.39 \$29 1143 261 1100 181	0.10 35.9 1113 187 1102 157	0.61 3549 1131 258 1106 164	0.08 35 9 1158 289 1111 175	0.67 354) 1153 284 1082 175	1,06 25-9 1148 278 1100 188	0.39 25 y 1125 226 1097 171	1.01 \$5 ¹ / ₂ 1170 290 1120 210
450-550mmの展開 ビーンペースブルの比 550-750mmの範囲 貴先が分か。500mm協定を 売比ビーク第名/mm 周 700mm助起伸 売比ビーク数名/mm 勇光半値短/mm 勇光半位位/mm 勇光半位位/mm 勇光半位位/mm 勇光半位位/mm 勇光半位位/mm 勇光半位位/mm 勇光半位位/mm	1.84 2.9 1145 285 1103 179	0.99 854 1133 233 1093 180 1255 328	0.73 3549 1143 243 1095 187 1265 349	1,15 89 1161 290 1111 184 1259 314	1143 261 1100 181 1250 224	0.10 354 1113 187 1102 157	0,61 2549 1131 258 1106 164 1240 294	0.08 359 1158 269 1111 175 1288 364	0.67 284 1153 284 1082 175 1252 353	1,08 254 1148 278 1100 188 1249 355	0,39 25 y 1125 226 1097 171	1.01 354 1170 290 1120 210
450-550nmの展開 ピーシャースフ化の比 550-750nmの電開 豊井ハウル 500nm品配 乗北ビーン容長/mm 男先生後程/mm 同 700mm品配申 乗北ビーン容長/mm ラ光半値程/mm 同 559mm品配申 乗光ビーン容長/nm ラ光半値程/mm ラ光半値程/mm ラ光半値程/mm ラ光半値程/mm ラ光半値程/mm ラ光半値程/mm ラ光半値程/mm	1.84 259 1145 285 1103 179 1249 304 304	0.99 8-9 1133 233 1093 180 1255 328 335	0.73 8-9 1143 243 1095 187 1265 349 258	1,15 284 1161 280 1111 184 1259 314 344	1143 261 1100 181 1250 224 382	0.10 35-9 1113 187 1102 157 - - 508	0,61 254 1131 258 1106 164 1240 294 376	0.08 35-9 1158 289 1111 175 1288 364 316	0.67 264 1153 284 1082 175 1252 353 289	1,08 254 1148 278 1100 188 1249 355 279	0,39 25 9 1125 226 1097 171 1235 410	1.01 35 ¹ y 1170 290 1120 210 1270 280 203
450-950mmの展開 ビーとペースプレの比 550-750mmの範囲 豊光心があ 500mm協定 売比ビー228人 mm 局 700mm助起伸 売比ニー228人 nm 勇光半値低 / nm 勇光半値低 / nm 勇光半値低 / nm 勇光半位低 / nm	1.84 289 1145 285 1103 179 1249 304 304 1.530	0.99 8-9 1133 233 1093 180 1255 328 335 1.549	0.73 8-9 1143 243 1095 187 1265 349 256 1.555	1,15 289 1161 280 1181 184 1259 314 344 1,615	1.39 854 1143 261 1100 181 1250 224 382 1.542	0.10 35-9 1113 187 1102 157 - - 508 1.514	0.61 30-9 1131 258 1106 164 1240 394 376 1,515	0.08 35.9 1158 259 1111 175 1268 364 316 1.523	0.67 36-9 11.53 28-4 10.82 1.75 12.52 3.53 289 1.533	1,08 254 1148 278 1100 188 1249 355 279	0,39 25 9 1125 226 1097 171 1235 410 - 1,550	1.01 354 1170 290 1120 210 1270 280 203
450-#580mmの展開 ピーとかースオピロ比 550-#350mmの範囲 豊光ル・かh 500mm品が 患比ビークな名/mm 最先生性個/mm 同 700mm助起的 患比ビークな及/mm 身先半性個/mm 局 833mm励起的 果比ビークな長/nm 勇光学性の/mm 勇光学性の/mm 勇光学性の/mm 勇光学性の/mm 勇光学性の/mm 勇光学性の/mm 勇光学性の/mm 勇光学性の/mm	1.84 265 1145 265 1103 179 1249 304 304 1.530 80	0.99 & 9 1133 233 1093 180 1255 328 335 1.549 57	0.73 \$99 1143 243 1095 187 1265 349 258 1.565 50	1,15 284 1161 280 1111 184 1259 314 344	1143 261 1100 181 1250 224 382	0.10 35-9 1113 187 1102 157 - - 508	9,61 2549 1131 258 1106 164 1240 294 376 1,515	0.08 35 9 1158 289 1111 175 1288 364 316 1.523 69	0.67 854 1153 284 1082 175 1252 353 289 1.533	1,08 254 1148 278 1100 188 1249 355 279 1,534	0.59 8-9 1125 226 1097 171 1235 410 - 1.550 54	1.01 354 1170 290 210 210 220 280 203
450-550nmの展開 ピーと・ステレの比 550-750nmの範囲 豊光ルウル 500nm協定を 現状ピーン容長/mm 男先生機関/mm 同 700mm協定を 現状ピーン容長/mm 同 700mm協定的 現状ピーン容長/mm 男光生域及/mm 同 253mm協定的 現状ピーンな長/nm 男光半値関/nm 異光半値関/nm 最光率の限/nm また一)な長/nm 最光率を関/nm 最光率を 現状ピーンな長/nm 最光率を 現状ピーンな長/nm 最光率を 現状ピーンな長/nm 最光率を 現状ピーンなら/nm 最光率を 現状ピーンなら/nm 最光率を 現状ピーンなら/nm 最光率を 現状ピーンなら/nm 最光率を 現状ピーンなら/nm 最光率を 現状ピーンなら/nm 最光率を 現状ピーンなら/nm また。 また。 また。 また。 また。 また。 また。 また。	1.84 289 1145 285 1103 179 1249 304 304 1.530 80	0.99 & 9 1133 233 1093 180 1255 328 335 1.549 57 32	0.73 \$99 1143 243 1095 187 1265 349 258 1.555 59 36	1,15 289 1161 280 1181 184 1259 314 344 1,615	1.39 3.99 1143 261 1100 181 1250 224 382 1.542 58	0.10 35-9 1113 187 1102 157 - - 508 1.514 58	9,61 2549 1131 258 1106 164 1240 294 376 1,516 58	0.08 35 9 1158 269 1111 175 1288 364 316 1.523 69	0.67 354 1153 284 1082 175 1252 353 289 1.533 58	1,08 254 1148 278 1100 188 1249 355 279 1,534 64	0,59 85 y 1125 226 1097 171 1235 410 - 1,550 54	1.01 #5 ¹ J 1170 290 210 210 220 203
450-550mmの展開 ビーンと・スス化の比 550-750mmの範囲 豊光ル・分か 500mm協定 売比ビーンな名/mm 最先生性を(/mm 同 700mm助起的 売出ニン数名/mm 勇光半性を(/mm 同 833mm励起的 乗光ビーン数名/mm 勇光単性の(/mm 勇光単性の(/mm 勇光単性の(/mm 勇光単位の(/mm 勇光単位の(/mm 勇光単位の(/mm 勇光単位の(/mm 勇光単位の(/mm 勇光単位の(/mm 勇光単位の(/mm 東光ビーン数名//mm 勇光単位の(/mm 東光ビーン数名//mm 勇光単位の(/mm 東光ビーン数名//mm 東光ビーン数名//mm 東光ビーン数名//mm 東光ビーン数名//mm 東光ビーン数名//mm 東光ビーン数名//mm 東光ビーン数名//mm 東光ビーン数名//mm 東北ビーン数 東北ビーン数名//mm 東北ビーン数名//mm 東北ビーン数名//mm 東北ビーン数 東北ビーン数名//mm 東北ビーン数名//mm 東北ビーン数 東北ビーン数名//mm 東北ビーン数と 東北ビーン数と 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン数 東北ビーン 東 東北ビーン 東 東 東 東 東 東 東 東 東 東 東 東 東	1.84 265 1145 265 1103 179 1249 304 304 1.530 80	0.99 & 9 1133 233 1093 180 1255 328 335 1.549 57	0.73 \$99 1143 243 1095 187 1265 349 258 1.565 50	1,15 289 1181 280 1181 184 1259 314 344 1,615 59	1.39 854 1143 261 1100 181 1250 224 382 1.542	0.10 35-9 1113 187 1102 157 - - 508 1.514 58	9,61 2549 1131 258 1106 164 1240 294 376 1,515	0.08 35 9 1156 269 1111 175 1268 364 316 1.522 69 35	0.67 854 1153 284 1082 175 1252 353 289 1.533	1,08 254 1148 278 1100 188 1249 255 279 1,534 64 28	0.59 8-9 1125 226 1097 171 1235 410 - 1.550 54	1.01 354 1170 290 210 210 220 280 203

[0081]

【表3】

比較例 組成(mol%)	1	2	3	4
SiO ₂	64.4	64.4	66.5	70.4
Al ₂ O₃ Li ₂ O	11.9	12.9	4.9	2.3
Li₂O	19.8	9.9	0	0
Na ₂ O	0	0	8.8	13
K ₂ O	0	0	2.8	0
MgO	3.0	6.9	3.9	6
CaO	0	0	8,7	8
SrO	0	0	1.7	0
BaO	0	0	0.2	0
TiO ₂	0	0	0	0
ZrO ₂	0	5.0	2.2	0
Bi ₂ O ₃	1.0	1.0	0.3	0.3
ガラス	失选	失透	ガラス化	ガラス化
ガラスの色調	-	-	焦茶	透明なし
光吸収ピーク	_	-	なし	なし

[0082]

【発明の効果】本発明の発光体または光増幅媒体は、安 定なガラス材料によって構成されるため、現在光通信で 主に用いられている波長領域の一つである1310nm 40 52、54、56、58 凸レンズ 帯で有効に利用できる。これに加え、蛍光スペクトルの 広がりから、さらに極めて広い波長範囲で動作する光増 幅器が実現できる。

【図面の簡単な説明】

【図1】 光増幅特性評価用光学系を示す概略図であ

【図2】 光増幅特性評価用光学系における1100 n m帯用光検出系を示す図である。

【図3】 光増幅特性評価用光学系における1300n m帯用光検出系を示す図である。

【図4】 本発明の実施例における光透過スペクトルを 示す図である。

【図5】 本発明の実施例における光吸収スペクトルを 示す図である。

【図6】 本発明の実施例における蛍光スペクトルを示 す図である。

30 【図7】 本発明の実施例における光増幅特性の一例を 示す図である。

【図8】 本発明の実施例における光増幅特性の他の例 を示す図である。

【符号の説明】

- 10 試料ガラス
- 20 励起光
- 26 励起光源
- 30 信号光
- 36 信号光源
- 55 プリズム
- 72、74 反射鏡
- 80 光検出系
- 82、84 フィルタ
- 83 ピンホール
- 86 光検出器
- 90 オシロスコープ

フロントページの続き

(51) Int.C1.'

識別記号

C 0 3 C 4/12

FI

テマコード (参考)

C 0 3 C 4/12

(72)発明者 岸本 正一

大阪市中央区北浜4丁目7番28号 日本板 硝子株式会社内

(72)発明者 坂口 浩一

大阪市中央区北浜4丁目7番28号 日本板 硝子株式会社内

(72)発明者 津田 正宏

大阪市中央区北浜4丁目7番28号 日本板 硝子株式会社内

(72)発明者 中垣 茂樹

大阪市中央区北浜4丁目7番28号 日本板

硝子株式会社内

ب باروري

Fターム(参考) 4G062 AA04 AA11 BB01 BB06 CC10 (72)発明者 吉井 成和 大阪市中央区北浜4丁目7番28号 日本板 DA06 DA07 DB03 DB04 DC01 硝子株式会社内 DC02 DC03 DD01 DE01 DE02 DE03 DE04 DF01 EA01 EA02 (72)発明者 藤本 靖 大阪府茨木市島2-14-39 島千歳ハイツ EA03 EA04 EA10 EB01 EB02 EB03 EC01 EC02 EC03 ED01 (72)発明者 中塚 正大 ED02 ED03 ED04 ED05 EE01 奈良県生駒市緑ヶ丘1425-78 EE02 EE03 EE04 EF01 EF02 EF03 EG01 EG02 EG03 FA01 FA10 FB01 FB02 FB03 FC01 FC02 FC03 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA02 GA03 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM04 NN19 NN21

YY17

5F072 AB07 AK03 JJ05 JJ20 KK09 KK15 KK26 PP10 RR01 SS06