在"条形码粘贴处"横贴 证号、姓名、考点名称、 考场号、座位号填写清楚。 条形码粘贴处 准考证号

考点名称

考场号

座位号

缺考信息点由

监考员填写 □

绝密★启用前

2016年10月高等教育自学考试全国统一命题考试

概率论与数理统计(二) 试卷

(课程代码 02197)

重要提示:

- 1.本试卷满分100分;考试时间150分钟。
- 2.选择题(包括单选题、多选题等),考生必须在答题卡上对应题号按要求填涂,答在 试卷上无效;错涂、多涂、少涂或未涂均无分。当试卷选择题指导语对作答位置要 求与本提示要求不一致时,以本提示为准。
- 3.非选择题,考生必须在试卷上使用黑色字迹的签字笔或钢笔按要求作答,否则不计分。
- 4.保持卷面清洁,不要折叠或弄破。

得分	评卷人	复查人

一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求 的,请将其代码填写在题后的括号内。错选、多选或未选 均无分。

- 1. 设A与B是两个随机事件,则P(A-B)=
 - A. P(A)
- B. P(B)
- C. P(A) P(B)
- D. P(A) P(AB)
- 2. 设随机变量 X 的分布律为 $\frac{X \mid -1 \quad 0 \quad 1 \quad 2}{P \mid 0.1 \quad 0.2 \quad 0.3 \quad 0.4}$, 则 $P\{-1 \le X < 1\} =$

- A. 0.1 B. 0.2 C. 0.3 D. 0.6
- 3. 设二维随机变量(X,Y)的分布律为

且X与Y相互独立,则下列结论正确的是

- A. a = 0.2, b = 0.2
- B. a = 0.3, b = 0.3
- C. a = 0.4, b = 0.2
- D. a = 0.2, b = 0.4

概率论与数理统计(二)试卷 第 1 页(共6页)

- 4. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} \frac{1}{16}, & 0 < x < 4, & 0 < y < 4, \\ 0, & \text{其他,} \end{cases}$
 - 则 $P{0 < X < 2, 0 < Y < 2} =$
- A. $\frac{1}{16}$ B. $\frac{1}{4}$ C. $\frac{9}{16}$ D. 1

- 5. 设随机变量 $X \sim N(0,9), Y \sim N(1,4)$, 且 X 与 Y相互独立,记Z = X Y,则 $Z \sim$
 - A. N(-1,5)

- B. N(1,5) C. N(-1,13) D. N(1,13)
- 6. 设随机变量 X 服从参数为 $\frac{1}{2}$ 的指数分布,则 D(X) =

 - A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. 2 D. 4
- 7. 设随机变量 X 服从二项分布 B(10,0.6) , Y 服从均匀分布 U(0,2) ,则 E(X-2Y)=
 - A. 4
- B. 5 C. 8
- D. 10

- 8. 设(X,Y)为二维随机变量,且D(X)>0,D(Y)>0, ρ_{XY} 为X与Y的相关系数,则
 - Cov(X,Y) =
 - A. $\rho_{\pi} \cdot \sqrt{D(X)} \cdot \sqrt{D(Y)}$ B. $\rho_{\pi} \cdot D(X) \cdot D(Y)$
 - C. $E(X) \cdot E(Y)$
- D. $D(X) \cdot D(Y)$
- 9. 设总体 $X \sim N(0,1)$, x_1, x_2, \dots, x_5 为来自X 的样本,则 $\sum_{i=1}^{5} x_i^2 \sim$

 - A. N(0,5) B. $\chi^2(5)$ C. t(5) D. F(1,5)

- 10. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 未知. x_1, x_2, \cdots, x_n 为来自X的样本, \overline{x} 为样本均值, s为样本标准差.则 σ^2 的无偏估计量为

 - A. \overline{x} B. \overline{x}^2 C. s D. s^2

得分 评卷人 复查人

请在每小题的空格中填上正确答案。错填、不填均无分。 11. 设随机事件 A, B 互不相容, P(A) = 0.6 , P(B) = 0.4 ,则 $P(AB) = ______$

二、填空题(本大题共15小题,每小题2分,共30分)

- 12. 设随机事件 A, B 相互独立,且 P(A) = 0.5, P(B) = 0.6,则 $P(B|A) = _____$.
- 13. 已知 10 件产品中有 1 件次品,从中任取 2 件,则未取到次品的概率为_____.

概率论与数理统计(二)试卷 第 2 页(共 6 页)

- 14. 设随机变量 X 的分布律为 $\frac{X \mid 1 \mid 2 \mid 3 \mid 4}{P \mid a \mid 0.1 \mid 2a \mid 0.3}$, 则常数 a =______.
- 15. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1, \\ 0, & \text{其他,} \end{cases}$ 则当 $0 \le x \le 1$ 时, X 的分布函数

 $F(x) = \underline{\hspace{1cm}}$

- 16. 设随机变量 $X \sim N(0,1)$,则 $P\{-\infty < X < 0\} = _____$.
- 17. 设二维随机变量(X,Y)的分布律为

则 $P\{X+Y=2\}=$ _

18. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} \frac{1}{12}, & 0 < x < 6, & 0 < y < 2, \\ 0, & \text{其他,} \end{cases}$

为F(x,y),则 $F(3,2) = _____$

- 19. 设随机变量 X 的期望 E(X) = 4,随机变量 Y 的期望 E(Y) = 2,又 E(XY) = 12,则 $Cov(X,Y) = \underline{\hspace{1cm}}$
- 20. 设随机变量 X 服从参数为 2 的泊松分布,则 $E(X^2) = _____.$
- 22. 设随机变量 $X \sim B(100,0.8)$,应用中心极限定理可算得 $P\{76 < X < 84\} \approx _____.$ (附: $\Phi(1) = 0.8413$)
- 23. 设总体 $X \sim N(0,9)$, x_1, x_2, \dots, x_{20} 为来自X 的样本, \overline{x} 为样本均值,则 $D(\overline{x}) = \underline{\hspace{1cm}}$
- 24. 设总体X 服从均匀分布 $U(\theta,3\theta)$, x_1,x_2,\cdots,x_{00} 是来自X 的样本, \bar{x} 为样本均值, 则 θ 的矩估计 $\hat{\theta}$ = .
- 25. 设总体 X 的概率密度含有未知参数 θ , 且 $E(X) = 4\theta$, x_1, x_2, \dots, x_n 为来自 X 的样本, \bar{x} 为样本均值. 若 $c\bar{x}$ 为 θ 的无偏估计,则常数 c =______.

概率论与数理统计(二)试卷 第 3 页(共 6 页)

- 评卷人 复查人
- 三、计算题(本大题共2小题,每小题8分,共16分)
- 26. 设甲、乙、丙三个工厂生产同一种产品,由于各工厂规模与设备、技术的差异,三 个工厂产品数量比例为1:2:1,且产品次品率分别为1%,2%,3%.
 - 求: (1) 从该产品中任取 1 件, 其为次品的概率 p1;
 - (2) 在取出 1 件产品是次品的条件下,其为丙厂生产的概率 p_2 .

27. 设二维随机变量(X,Y)的概率密度为

 $f(x,y) = \begin{cases} e^{-2y}, & 0 \le x \le 2, y > 0, \\ 0, & \text{i.e.} \end{cases}$

求: (1) (X,Y) 的边缘概率密度; (2) $P\{X \le 1, Y \le 1\}$.

评卷人 复查人

五、应用题(10分)

30. 设某车间生产的零件长度 $X \sim N(\mu, \sigma^2)$ (单位: mm),现从生产出的一批零件中随机 抽取 25 件,测得零件长度的平均值 $\bar{x}=1970$,标准差s=100,如果 σ^2 未知,在显 著性水平 $\alpha = 0.05$ 下,能否认为该车间生产的零件的平均长度是 2020 mm? (附 $t_{0.025}(24) = 2.064$)

概率论与数理统计(二)试卷 第 6 页(共 6 页)

绝密★启用前

2016年10月高等教育自学考试全国统一命题考试

概率论与数理统计(二)试题答案及评分参考

(课程代码 02197)

一、单项选择题(本大题共10小题, 每小题2分, 共20分)

2. C

3. B

5. C

10. D

6. D 7. A 8. A 二、填空题(本大题共15小题,每小题2分,共30分)

11. 0

12. 0.6

14. 0.2

15. x^2 16. 0.5 17. 0.4

13. 0.8

19. 4 20. 6 21. 8 22. 0.6826

23. $\frac{9}{20}$ 24. $\frac{1}{200} \sum_{i=1}^{100} x_i$ $(\vec{x}_i = \frac{1}{2} \vec{x}_i)$ 25. $\frac{1}{4}$

三、计算题(本大题共2小题,每小题8分,共16分)

26. 解 设事件 B 表示"取出 1 件次品",

事件 4, 4, 4, 分别表示"取出的是由甲、乙、丙厂生产的产品",

 $P(A_1) = \frac{1}{4}, P(A_2) = \frac{1}{2}, P(A_3) = \frac{1}{4},$

 $P(B \mid A_1) = 1\%, P(B \mid A_2) = 2\%, P(B \mid A_3) = 3\%.$

(1) 由全概率公式得

则由题设知

 $p_1 = P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + P(A_3)P(B \mid A_3)$

$$=\frac{1}{4}\times1\%+\frac{1}{2}\times2\%+\frac{1}{4}\times3\%=0.02;$$

(2) 由贝叶斯公式得 $p_2 = P(A_3 \mid B) = \frac{P(A_3)P(B \mid A_3)}{P(B)} = 0.375.$ 8 分

概率论与数理统计(二)试题答案及评分参考 第1页(共2页)

27. 解 (1)(X,Y)关于 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \frac{1}{2}, & 0 \le x \le 2, \\ 0, & 其他, \end{cases}$$

(X,Y)关于Y的边缘概率密度为

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} 2e^{-2y}, & y > 0, \\ 0, & y \le 0; \end{cases}$$
4

(2) 由 $f(x,y) = f_X(x)f_Y(y)$ 知 X,Y 相互独立,

四、综合题(本大题共2小题,每小题12分,共24分)

28. 解 (1) X 的分布函数为

$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) dt$$

$$= \begin{cases} 0, & x < 2000, \\ 1 - \frac{2000}{x}, & x \ge 2000; \end{cases}$$
4 \(\frac{1}{x}\)

(2) 一个此型号电子元件工作超过 2500 小时的概率为

 $P\{X > 2500\} = 1 - F(2500) = 0.8;$ -----8分

(3) 一台仪器能正常工作 2500 小时以上的概率为

$$(P\{X > 2500\})^3 = 0.512.$$
12 $\(\frac{1}{2} \)$

29. **解** (1)
$$ext{d} \int_{-\infty}^{+\infty} f(x) dx = 1 ext{m} \int_{-1}^{1} 2c dx = 4c = 1$$
, **M** $C = \frac{1}{4}$;4 $ext{d}$

(3)
$$E(X^3) = \int_{-1}^1 \frac{1}{2} x^3 dx = 0$$
.12 $\frac{1}{2}$

五、应用题(10分)

30. 解 检验假设 H_0 : $\mu = 2020$, H_1 : $\mu \neq 2020$.

……2分

已知 n = 25, $\overline{x} = 1970$, s = 100, $t_{0.025}(24) = 2.064$,

在
$$H_0$$
 成立时, $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{1970 - 2020}{100 / \sqrt{25}} = -2.5$8 分

由于 $|t| > t_{0.025}(24)$, 故拒绝 H_0 ,

即不能认为该车间生产的零件的平均长度是 2020mm. ……10分

概率论与数理统计(二)试题答案及评分参考 第2页(共2页)

附件 2

广东省自学考试委员会委员推荐(确认)表

填报单位 (盖章):

姓名性别	NH PIL	班 夕	Ⅲ <i>秒(</i> + 字植字)	出生年月	联系电话	
	职务	职称(专家填写)	山土十月	办公电话	联系手机	
邱学青	男	副校长		1965. 12	87113806	
刘芳	男	继续教育学院 院长	教授	1964. 10	22236398	13602872076

注:请将重新推荐的人选(有关部、委、厅(局)等单位推荐现职领导一名,有关高校推荐现任校级领导和专家各一名)的基本情况填好附表并盖章后,于 2016 年 12 月 12 日之前函告或传真我办。