PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL ESCOLA POLITÉCNICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

TREINAMENTO OTIMIZADO, AVALIAÇÃO E INSTRUMENTAÇÃO DE LLMS: UMA ABORDAGEM INTEGRADA PARA AMBIENTES COM RECURSOS COMPUTACIONAIS LIMITADOS

Lucas Treviso Bandeira Vermon João de Aguiar Neto

Proposta de Trabalho de Conclusão apresentada como requisito parcial à obtenção do grau de Bacharel em Ciência da Computação na Pontifícia Universidade Católica do Rio Grande do Sul.

Orientador(a): Cesar Augusto Fonticielha De Rose

Porto Alegre 2025

1. INTRODUÇÃO

O rápido avanço da inteligência artificial tem transformado diversas áreas do conhecimento, impulsionado especialmente pelo desempenho excepcional dos modelos de linguagem de larga escala (LLMs) em uma variedade de tarefas – como evidenciado pelos trabalhos de Brown et al. [1] e Touvron et al. [2], que demonstram a capacidade desses modelos de realizar inferência eficaz mesmo com poucos exemplos de treinamento. No entanto, a implementação desses sistemas enfrenta desafios significativos, decorrentes do elevado número de parâmetros e da necessidade de conjuntos de dados extensos, o que se traduz em alta demanda por memória e processamento. Adicionalmente, a execução e o ajuste fino (fine-tuning) desses modelos costumam requerer infraestruturas robustas, equipadas com GPUs de alto desempenho, limitando seu acesso a usuários e aplicações que dispõem apenas de hardware modesto.

Em paralelo ao desenvolvimento dos chamados Foundation Models, a comunidade científica tem buscado métodos eficientes para adaptar esses modelos a tarefas específicas, de forma a ajustar suas estruturas linguísticas, padrões e relações conceituais sem incorrer nos altos custos computacionais de um ajuste completo. Nesse contexto, técnicas como a quantização [3] e o Low-Rank Adaptation (LoRA) [4] emergem como estratégias promissoras, pois reduzem os requisitos computacionais e possibilitam a execução de LLMs em hardware convencional.

Apesar dos avanços recentes, persiste uma lacuna na literatura quanto à aplicação prática dessas técnicas em ambientes com recursos computacionais limitados. A complexidade inerente à implantação de sistemas de aprendizado de máquina em larga escala revela desafios técnicos e operacionais — como a necessidade de configurações específicas, o gerenciamento de feedbacks e a dependência de dados externos — que podem resultar em custos elevados a longo prazo [5]. Tal cenário evidencia a necessidade de uma abordagem integrada que combine ajuste fino e monitoramento de desempenho, facilitando a adaptação e a operação de LLMs com a utilização ótima dos recursos em hardware restrito.

Além das limitações de infraestrutura, outra motivação relevante para a realização de treinamento e ajuste fino localmente diz respeito à segurança e à confidencialidade dos dados utilizados. Em muitos cenários, como aplicações médicas, jurídicas ou corporativas, os dados são sensíveis e não podem ser compartilhados com serviços externos ou armazenados em nuvem sem comprometer requisitos éticos ou

regulatórios. A possibilidade de executar o treinamento localmente, mesmo em máquinas modestas, representa uma vantagem significativa nesse contexto, pois permite preservar a privacidade das informações, reduzir a exposição a riscos de vazamento e manter o controle total sobre o fluxo de dados durante o processo de ajuste dos modelos.

Diante disso, o presente projeto propõe o desenvolvimento de uma ferramenta integrada que una técnicas de fine-tuning a módulos de infraestrutura e monitoramento de desempenho, viabilizando a execução local de LLMs em ambientes com recursos limitados. Especificamente, o objetivo é adaptar estratégias de ajuste fino para modelos compactos e implementar módulos de instrumentação capazes de monitorar, em tempo real, o uso da infraestrutura, permitindo a identificação precoce de regressões no desempenho e gargalos operacionais [6].

Este estudo apresenta, inicialmente, uma revisão abrangente da literatura sobre estratégias de otimização para o ajuste fino de LLMs em ambientes restritos e a instrumentação do processo (Seção 2). Em seguida, detalha a proposta metodológica para o desenvolvimento da ferramenta integrada, que visa não apenas aprimorar o desempenho dos modelos, mas também contribuir para a democratização do acesso à tecnologia em contextos de hardware limitado (Seção 3). Após, o trabalho apresenta um cronograma das etapas previstas, abrangendo desde a revisão bibliográfica até o desenvolvimento prático da solução (Seção 4). Por fim, são discutidos os recursos a serem utilizados durante o projeto para desenvolvimento e teste da proposta (Seção 5).

2. FUNDAMENTAÇÃO TEÓRICA

Os modelos de linguagem de larga escala (LLMs) têm avançado rapidamente e transformado diversas áreas. Pesquisas recentes destacam suas capacidades excepcionais de compreensão, geração e raciocínio de linguagem natural, o que levou a avanços em diversas tarefas como resumo de documentos [7], reformulação de texto [8] e resposta a perguntas [9]. Esses progressos tiveram forte impacto, viabilizando ferramentas amplamente usadas (por exemplo, assistentes de código como o Copilot e agentes conversacionais como o ChatGPT) e gerando um efeito transformador.

Pesquisas recentes têm mapeado as diversas aplicações dos LLMs – como evidenciado pelo trabalho de Kumar, P [10] – que abrangem a geração de texto, imagens, assistência para codificação e aplicações em bioinformática. Dessa forma, a literatura atual confirma que esses modelos alcançaram resultados de ponta em múltiplos domínios, porém, apesar de seu sucesso, a execução e o ajuste fino dos LLMs apresentam desafios computacionais significativos.

Modelos com dezenas ou centenas de bilhões de parâmetros demandam uma quantidade substancial de memória de GPU para a inferência, além de requererem um volume massivo de dados para o pré-treinamento (RAM e VRAM) [11]. Nesse cenário, destaca-se o exemplo citado por Edward J. Hu et al. [3], que evidencia o custo computacional proibitivo do fine-tuning completo, especialmente em modelos de escala como o GPT-3, com seus 175 bilhões de parâmetros, que requerem grandes datacenters equipados com inúmeras GPUs de altíssima capacidade.

Mesmo em cenários onde o ajuste fino completo dos LLMs é dispensável, a inferência desses modelos em hardware convencional continua sendo problemática. De acordo com Dettmers et al. [11], é comum que os LLMs não caibam na memória das GPUs, o que dificulta sua utilização por pesquisadores, usuários comuns e aplicações em geral. Por outro lado, Zheng et al. [12] propõem uma revisão dos LLMs na borda (Edge LLMs) e destacam desafios relevantes para pesquisas que envolvem hardware limitado, como o aumento da latência devido ao baixo throughput em CPUs ou GPUs modestas. Assim, a literatura atual evidencia que as elevadas exigências de GPU, memória e dados constituem barreiras significativas para a implementação local de LLMs.

Diante desses desafios, diversas técnicas otimizadas para a adaptação de modelos emergiram como soluções viáveis, ganhando destaque na literatura. Entre as principais estratégias exploradas para o presente projeto, destacam-se a quantização de pesos (redução da precisão numérica) e a Low-Rank Adaptation (LoRA). A quantização, por sua vez, tem como objetivo diminuir o tamanho do modelo e a carga computacional necessária sem comprometer significativamente seu desempenho, possibilitando a execução de modelos de larga escala em hardware menos especializado. Um exemplo seria o método LLM.int8, que consegue rodar um modelo de 175B parâmetros em 8 bits sem perda de acurácia, cortando pela metade a memória de inferência necessária [11].

A outra estratégia explorada para otimização de LLMs é o método LoRA, proposto por Hu et al. [4], que congela os pesos originais do LLM e treina apenas matrizes de menor dimensão (low-rank) inseridas em cada camada, reduzindo significativamente o número de parâmetros ajustados em comparação com um ajuste completo.

Ambas as técnicas de otimização podem ser combinadas para maximizar a adaptação dos LLMs a ambientes com hardware convencional, conforme explorado por Dettmers et al. [13] ao apresentar o método QLoRA. Esse método híbrido utiliza quantização em 4 bits e LoRA simultaneamente, possibilitando o fine-tuning de um modelo com 65B parâmetros em uma única GPU de 48GB sem perda de desempenho em relação à precisão original do modelo. Assim, conseguimos inferir que métodos de

quantização e Low-Rank Adaptation são abordagens que podem viabilizar a adaptação e inferência de LLMs em cenários com recursos limitados.

Além das estratégias de otimização apresentadas, a utilização de ferramentas de monitoramento é fundamental para o sucesso no ajuste e inferência de LLMs em ambientes com recursos limitados. Nesse contexto, a ferramenta MLflow destaca-se como uma plataforma open-source robusta para o gerenciamento do ciclo de vida de experimentos em machine learning, permitindo o rastreamento de hiperparâmetros, métricas de desempenho e o versionamento de modelos. Assim, é uma ferramenta que pode ser explorada no contexto de hardware convencional para contribuir na identificação de gargalos e regressões e melhorar a reprodutibilidade dos experimentos.

Diante do exposto, embora os modelos de linguagem de larga escala tenham transformado diversas áreas e demonstrado capacidades excepcionais, sua aplicação em ambientes com recursos computacionais limitados continua sendo um grande desafio. Técnicas de otimização emergem como estratégias promissoras para reduzir os requisitos computacionais sem comprometer a performance dos modelos e, paralelamente, a integração de ferramentas de monitoramento, como o MLflow, torna-se indispensável para rastrear experimentos e gerenciar o ciclo de vida dos modelos.

Assim, o resultado da análise exploratória da literatura converge para a necessidade de uma abordagem integrada que combine essas técnicas de otimização com soluções robustas de instrumentação, reforçando a viabilidade de se adaptar LLMs para execução local em hardware convencional. De forma mais específica, deve-se buscar viabilizar a instrumentação e o monitoramento local com baixo overhead, ou seja, com comprometimento mínimo dos recursos para não gerar sobrecarga durante tarefas de ajuste parcial e inferência.

3. PROPOSTA

Este projeto busca desenvolver uma ferramenta integrada que combine instrumentação, otimização e ajuste fino de modelos de linguagem (LLMs) para ambientes com recursos computacionais restritos — caracterizados pelo uso exclusivo de CPUs, GPUs de consumo doméstico e memória RAM limitada. Ao democratizar o acesso às tecnologias de inteligência artificial, a proposta fundamenta-se na aplicação de técnicas avançadas, como o ajuste fino via LoRA, a modelos compactos exemplificados pelas versões "tiny" ou "baby" do Llama. Dessa forma, a solução não só viabiliza a execução local de LLMs em hardware modesto, mas também garante a privacidade e segurança dos dados processados, contribuindo para uma adoção mais ampla e sustentável dessas tecnologias.

Para alcançar esses objetivos, o projeto integrará práticas de MLOps com estratégias de monitoramento e instrumentação em tempo real, permitindo a análise detalhada da utilização de CPU, gerenciamento da memória e identificação de eventuais gargalos computacionais. Técnicas de paralelização, quantização e balanceamento de carga serão incorporadas para maximizar o desempenho mesmo em plataformas desprovidas de GPUs especializadas para tarefas de machine learning.

Além disso, a plataforma oferecerá suporte para visualização e ajuste fino dos modelos, possibilitando aos usuários realizarem análises que inferirão a melhor configuração para suas máquinas, de acordo com as especificidades do hardware disponível. Com foco em sistemas com restrições computacionais, o ambiente não só permite a implementação eficiente de modelos compactos, mas também fornece insights estratégicos que otimizam a alocação de recursos.

4. CRONOGRAMA

O cronograma proposto detalha as principais atividades a serem realizadas ao longo de nove meses em 2025, conforme ilustrado na Tabela 1. As etapas foram organizadas de forma sequencial, garantindo a conclusão de cada fase dentro dos prazos estabelecidos e atendendo às dependências entre as tarefas, o que viabiliza o desenvolvimento integral da metodologia e a análise aprofundada dos resultados.

Atividades Abr Mar Mai Jun Jul Ago Set Out Nov Dez Revisão da Literatura Escrita da proposta Estudo de ferramentas Desenvolvimento Análise de resultados Produção textual

Tabela 1 – Cronograma

5. RECURSOS A SEREM UTILIZADOS

Para o desenvolvimento da proposta, serão utilizadas bibliotecas consolidadas do ecossistema Python voltadas ao treinamento, ajuste e instrumentação de modelos de linguagem. Essas ferramentas serão selecionadas com base em sua compatibilidade com técnicas de otimização leve e sua facilidade de integração em diferentes ambientes. Em relação à infraestrutura, os testes e implementações serão realizados em computadores

com e sem GPU dedicada, sendo os dispositivos sem GPU (apenas CPUs tradicionais) caracterizados por configurações modestas quando comparados a servidores ou máquinas de alto desempenho.

A escolha de ambientes com diversas configurações de hardware busca simular diferentes cenários de uso, refletindo tanto contextos com recursos limitados quanto ambientes um pouco mais robustos, possibilitando a avaliação da versatilidade e da eficiência da ferramenta desenvolvida. Também, para fins de comparação e análise de desempenho, poderá ser utilizado o Laboratório de Alto Desempenho (LAD) da PUCRS, permitindo observar diferenças na execução entre ambientes restritos e sistemas com maior capacidade computacional.

6. CONSIDERAÇÕES FINAIS

Ao propor uma ferramenta capaz de viabilizar o uso local de modelos de linguagem em ambientes com recursos computacionais limitados, este trabalho busca ampliar o acesso às tecnologias de inteligência artificial e fomentar a autonomia no desenvolvimento de soluções baseadas em LLMs. A adaptação de estratégias de ajuste fino e o monitoramento em tempo real da infraestrutura contribui para tornar esses sistemas mais acessíveis, sustentáveis e alinhados às restrições técnicas enfrentadas por muitos usuários e instituições. A implementação local também reforça aspectos importantes como a privacidade e o controle sobre os dados processados, promovendo uma IA mais segura e ética. Além disso, serão conduzidas análises aprofundadas sobre as ferramentas existentes que viabilizam o ajuste e a execução de LLMs em hardware limitado, bem como estudos para avaliar a eficácia da solução proposta em cenários reais de uso, permitindo a identificação de seus benefícios, limitações e potenciais melhorias.

REFERÊNCIAS

- [1] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Foundation and Fine-Tuned Chat Models, 2023.
- [2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are Few-Shot Learners, 2020.
- [3] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference, 2017.
- [4] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, 2021.
- [5] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Dennison. Hidden Technical Debt in Machine Learning Systems, 2018.
- [6] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction, 2017.
- [7] Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan. An Empirical Survey on Long Document Summarization: Datasets, Models, and Metrics, 2022.
- [8] Huiyuan Lai and Malvina Nissim. A Survey on Automatic Generation of Figurative Language: From Rule-Based Systems to Large Language Models, 2024.
- [9] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pretrain, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing, 2023.
- [10] Kumar, P. Large language models (LLMs): survey, technical frameworks, and future challenges, 2024.
- [11] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, 2022.
- [12] Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A Review on Edge Large Language Models: Design, Execution, and Applications, 2025.
- [13] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetuning of Quantized LLMs, 2023.