

WHAT IS CLAIMED IS:

1. A method of allocating bandwidth to data traffic flows for transfer through a network device, comprising:
allocating bandwidth to a committed data traffic flow
5 based on a guaranteed data transfer rate and a queue size of the committed data traffic flow in the network device; and
allocating bandwidth to uncommitted data traffic flows using a weighted maximum/minimum process.

10 2. The method of claim 1, wherein the weighted maximum/minimum process allocates bandwidth to the uncommitted data traffic flows in proportion to weights associated with the uncommitted data traffic flows.

15 3. The method of claim 2, wherein the weighted maximum/minimum process increases bandwidth to the uncommitted data traffic flows in accordance with the weights associated with the uncommitted data traffic flows until at least one of the uncommitted data traffic flows reaches a
20 maximum bandwidth allocation.

4. The method of claim 3, wherein the weighted maximum/minimum process allocates remaining bandwidth to remaining uncommitted data traffic flows based on weights associated with the remaining uncommitted data traffic flows.

5

5. The method of claim 1, wherein the bandwidth comprises data cell slots.

6. The method of claim 1, wherein the bandwidth is allocated to the data traffic flows in discrete time intervals.

7. A method of allocating bandwidth to data flows passing through a network device, each of the data flows having an associated weight, comprising:

increasing an amount of bandwidth to the data flows in proportion to the weights of the data flows until one port through the network device reaches a maximum value;

freezing the amounts of bandwidth allocated to the data flows in the one port; and

increasing the amount of bandwidth to remaining data flows passing through the network device in proportion to the weights of the remaining data flows.

8. The method of claim 7, further comprising:
increasing the amount of bandwidth to the remaining data
flows until another port through the network device reaches a
5 maximum value;

freezing the amounts of bandwidth allocated to the data
flows in the other port; and

increasing the amount of bandwidth to remaining data
flows passing through the network device in proportion to the
10 weights of the remaining data flows.

9. The method of claim 7, further comprising assigning
one or more of the data flows a minimum bandwidth, wherein
the amount of bandwidth allocated to the one or more data
15 flows is increased relative to the minimum bandwidth.

10. The method of claim 7, wherein the bandwidth is
allocated to the data flows in discrete time intervals.

20 11. A method of allocating bandwidth to data flows
passing through a network device, comprising:
allocating a predetermined amount of bandwidth to one or
more of the data flows; and

distributing remaining bandwidth to remaining data flows.

12. The method of claim 11, wherein the remaining
5 bandwidth is distributed to the remaining data flows using a
weighted maximum/minimum process.

13. The method of claim 12, wherein the weighted
maximum/minimum process comprises:

10 increasing an amount of bandwidth to the remaining data
flows in proportion to weights associated with the remaining
data flows until one port through the network device reaches
a maximum value.

15 14. The method of claim 13, wherein the weighted
maximum/minimum process further comprises:

freezing the amounts of bandwidth allocated to the
remaining data flows in the one port; and

increasing the amount of bandwidth to still remaining
20 data flows passing through the network device in proportion
to weights of the still remaining data flows.

15. A method of allocating bandwidth to data flows passing through a network device, comprising:
determining a character of the data flows; and
allocating bandwidth to the data flows in accordance
5 with the character of the data flows;
wherein the bandwidth is allocated to data flows according to which data flows have a highest probability of using the bandwidth.

10 16. The method of claim 15, wherein the character of the data flows includes peak cell rate, likelihood of bursts, and/or average cell rate.

15 17. A method of allocating bandwidth to data flows passing through a network device, comprising:
allocating the bandwidth using a weighted maximum/minimum process.

20 18. The method of claim 17, wherein the weighted maximum/minimum process comprises:
assigning weights to the data flows; and
allocating the bandwidth to the data flows according to the weights.

19. The method of claim 18, wherein allocating the bandwidth according to the weights comprises:

increasing an amount of bandwidth allocated to each data flow in proportion to a weight assigned to the data flow; and
5 freezing the amount of bandwidth allocated to a data flow when either (i) an input port or an output port of the network device reaches a maximum utilization, or (ii) the data flow reaches a maximum bandwidth.

10 20. The method of claim 19, further comprising:

increasing an amount of bandwidth to remaining data flows passing through the network device until either (i) another input port or output port of the network device
15 reaches a maximum utilization, or (ii) one of the remaining data flows reaches a maximum bandwidth;

freezing an amount of bandwidth allocated to the remaining data flow that has reached a maximum bandwidth or to the remaining data flow passing through an input or output
20 port reached that has reached a maximum utilization; and

increasing the amount of bandwidth to still remaining data flows passing through the network device in proportion to weights associated with the remaining data flows.

21. The method of claim 20, wherein, after all of the data flows passing through the network device are frozen, the method further comprises:

5 distributing remaining bandwidth at an output port to data flows passing through the output port.

22. The method of claim 20, wherein, after all of the data flows passing through the network device are frozen, the method further comprises:

10 distributing remaining bandwidth at an output port to data flows passing through the output port in proportion to weights of the data flows passing through the output port.

15 23. The method of claim 20, wherein, after all of the data flows passing through the network device are frozen, the method further comprises:

20 distributing remaining bandwidth at an output port to data flows passing through the output port according to which data flows have a highest probability of using the bandwidth.

24. The method of claim 17, wherein the bandwidth is allocated in discrete time intervals.

25. A method of allocating bandwidth to data flows through a network device, comprising:

allocating bandwidth to the data flows using a weighted
5 max/min process;

wherein an amount of bandwidth allocated to data flows passing through an input port of the network device is greater than an amount of data that can pass through the input port of the network device.

10

26. A method of allocating bandwidth to data flows passing through a network device, comprising:

allocating bandwidth to data flows passing through input ports of the network device using a weighted max/min process.

15

27. The method of claim 26, wherein allocating the bandwidth comprises:

increasing bandwidth allocated to data flows passing through each input port in proportion to a weight assigned to
20 the data flow passing through the input port; and

freezing an amount of bandwidth allocated to a data flow passing through an input port when either (i) the input port

reaches a maximum utilization, or (ii) the data flow reaches a maximum bandwidth.

28. The method of claim 27, further comprising:

5 continuing to increase the bandwidth allocated to non-frozen data flows in proportion to weights of the data flows until an amount of bandwidth is frozen at all of the data flows.

10 29. A method of allocating bandwidth to data flows through a network device, comprising:

allocating bandwidth to the data flows passing through output ports of the network device using a weighted max/min process.

15 30. The method of claim 29, wherein allocating the bandwidth comprises:

increasing an amount of bandwidth allocated to data flows passing through each output port in proportion to a weight assigned to a data flow passing through an output port; and

freezing the amount of bandwidth allocated to the data flow passing through the output port when either (i) the

output port reaches a maximum utilization, or (ii) the data flow reaches a maximum bandwidth.

31. The method of claim 30, further comprising:

5 continuing to increase the amount of bandwidth allocated to non-frozen data flows in proportion to weights of the data flows until the amount of bandwidth allocated to all data flows is frozen.

10 32. The method of claim 31, wherein maximum values assigned to each data flow are based on the bandwidth allocations.

15 33. The method of claim 30, wherein, after the amount of bandwidth assigned to all output ports is frozen, the method further comprises:

distributing remaining bandwidth at an output port to data flows passing through the output port.

20 34. The method of claim 30, wherein, after the amount of bandwidth assigned to all output ports is frozen, the method further comprises:

distributing remaining bandwidth at an output port to data flows passing through the output port in proportion to weights of the data flows.

5 35. The method of claim 30, wherein after all of the data flows passing through the network device are frozen, the method further comprises:

distributing remaining bandwidth at an output port to data flows passing through the output port according to which data flows have a highest probability of using the bandwidth.

10 36. The method of claim 26, wherein the bandwidth is allocated in discrete time intervals.

15 37. The method of claim 26, further comprising:

allocating bandwidth to committed data traffic based on a guaranteed data transfer rate.

20 38. The method of claim 37, wherein bandwidth is allocated to the committed data traffic in response to a request for bandwidth such that any request that is less than or equal to the guaranteed data transfer rate is granted.

39. The method of claim 26, wherein:

the bandwidth is allocated to uncommitted data traffic and, for committed data traffic, bandwidth is allocated based on a guaranteed transfer rate; and

5 remaining bandwidth, not allocated to the committed data traffic, is allocated to the uncommitted data traffic.

40. The method of claim 19, further comprising:

allocating a predetermined amount of bandwidth to one or
10 more of the data flows; and
distributing remaining bandwidth to non-frozen remaining
data flows by:

increasing an amount of bandwidth allocated to each
remaining data flow in proportion to a weight assigned
15 to the remaining data flow; and

freezing the amount of bandwidth allocated to a
remaining data flow when either (i) an input port or an
output port of the network device reaches a maximum
utilization, or (ii) the remaining data flow reaches a
20 maximum bandwidth.

41. The method of claim 37, wherein bandwidth is
allocated to the committed data traffic in response to a

request for bandwidth such that any request that is greater than the guaranteed data transfer rate is granted at the guaranteed rate.

5 42. An apparatus for allocating bandwidth to data traffic flows through the apparatus, the apparatus comprising circuitry which:

allocates bandwidth to a committed data traffic flow based on a guaranteed data transfer rate and a queue size of
10 the committed data traffic flow in the apparatus; and

allocates bandwidth to uncommitted data traffic flows using a weighted maximum/minimum process.

15 43. The apparatus of claim 41, wherein the weighted maximum/minimum process allocates bandwidth to the uncommitted data traffic flows in proportion to weights associated with the uncommitted data traffic flows.

20 44. The apparatus of claim 43, wherein the weighted maximum/minimum process increases bandwidth to the uncommitted data traffic flows in accordance with the weights associated with the uncommitted data traffic flows until at

least one of the uncommitted data traffic flows reaches a maximum bandwidth allocation.

45. The apparatus of claim 44, wherein the weighted
5 maximum/minimum process allocates remaining bandwidth to remaining uncommitted data traffic flows based on weights associated with the remaining uncommitted data traffic flows.

46. The apparatus of claim 42, wherein the bandwidth
10 comprises data cell slots.

47. The apparatus of claim 42, wherein the bandwidth is allocated to the data traffic flows in discrete time intervals.

15
48. An apparatus for allocating bandwidth to data flows passing through the apparatus, each of the data flows having an associated weight, the apparatus comprising circuitry which:

20 increases an amount of bandwidth to the data flows in proportion to the weights of the data flows until one port through the apparatus reaches a maximum value;

(Redacted)

freezes the amounts of bandwidth allocated to the data flows in the one port; and

increases the amount of bandwidth to remaining data flows passing through the apparatus in proportion to the
5 weights of the remaining data flows.

(Redacted)

49. The apparatus of claim 48, wherein the circuitry:

increases the amount of bandwidth to the remaining data flows until another port through the apparatus reaches a
10 maximum value;

freezes the amounts of bandwidth allocated to the data flows in the other port; and

increases the amount of bandwidth to remaining data flows passing through the apparatus in proportion to the
15 weights of the remaining data flows.

(Redacted)

50. The apparatus of claim 48, wherein the circuitry assigns one or more of the data flows a minimum bandwidth, wherein the amount of bandwidth allocated to the one or more
20 data flows is increased relative to the minimum bandwidth.

(Redacted)

51. The apparatus of claim 48, wherein the bandwidth is allocated to the data flows in discrete time intervals.

52. An apparatus for allocating bandwidth to data flows passing through the apparatus, the apparatus comprising circuitry which:

5 allocates a predetermined amount of bandwidth to one or more of the data flows; and
distributes remaining bandwidth to remaining data flows.

53. The apparatus of claim 52, wherein the remaining bandwidth is distributed to the remaining data flows using a weighted maximum/minimum process.

54. The apparatus of claim 52, wherein the weighted maximum/minimum process comprises:

15 increasing an amount of bandwidth to the remaining data flows in proportion to weights associated with the remaining data flows until one port through the apparatus reaches a maximum value.

20 55. The apparatus of claim 53, wherein the weighted maximum/minimum process further comprises:

freezing the amounts of bandwidth allocated to the remaining data flows in the one port; and

increasing the amount of bandwidth to still remaining data flows passing through the apparatus in proportion to weights of the still remaining data flows.

5 56. A apparatus for allocating bandwidth to data flows passing through the apparatus, the apparatus comprising circuitry which:

determines a character of the data flows; and
allocates bandwidth to the data flows in accordance with
10 the character of the data flows;
wherein the bandwidth is allocated to data flows according to which data flows have a highest probability of using the bandwidth.

15 57. The apparatus of claim 56, wherein the character of the data flows includes peak cell rate, likelihood of bursts, and/or average cell rate.

58. An for allocating bandwidth to data flows passing
20 through the apparatus, the apparatus comprising circuitry which:

allocates the bandwidth using a weighted maximum/minimum process.

DOCKET NUMBER

59. The apparatus of claim 58, wherein the weighted maximum/minimum process comprises:

assigning weights to the data flows; and

5 allocating the bandwidth to the data flows according to the weights.

60. The apparatus of claim 59, wherein allocating the bandwidth according to the weights comprises:

10 increasing an amount of bandwidth allocated to each data flow in proportion to a weight assigned to the data flow; and freezing the amount of bandwidth allocated to a data flow when either (i) an input port or an output port of the apparatus reaches a maximum utilization, or (ii) the data flow reaches a maximum bandwidth.

15
20 61. The apparatus of claim 60, wherein the circuitry: increases an amount of bandwidth to remaining data flows passing through the apparatus until either (i) another input port or output port of the apparatus reaches a maximum utilization, or (ii) one of the remaining data flows reaches a maximum bandwidth;

freezes an amount of bandwidth allocated to the remaining data flow that has reached a maximum bandwidth or to the remaining data flow passing through an input or output port reached that has reached a maximum utilization; and

5 increases the amount of bandwidth to still remaining data flows passing through the apparatus in proportion to weights associated with the remaining data flows.

62. The apparatus of claim 61, wherein, after all of
10 the data flows passing through the apparatus are frozen, the circuitry distributes remaining bandwidth at an output port to data flows passing through the output port.

63. The apparatus of claim 61, wherein, after all of
15 the data flows passing through the apparatus are frozen, the circuitry distributes remaining bandwidth at an output port to data flows passing through the output port in proportion to weights of the data flows passing through the output port.

20 64. The apparatus of claim 61, wherein, after all of the data flows passing through the apparatus are frozen, the circuitry distributes remaining bandwidth at an output port to data flows passing through the output port according to

which data flows have a highest probability of using the bandwidth.

65. The apparatus of claim 58, wherein the bandwidth is
5 allocated in discrete time intervals.

66. An apparatus for allocating bandwidth to data flows through the apparatus, the apparatus comprising circuitry which:

10 allocates bandwidth to the data flows using a weighted max/min process;

wherein an amount of bandwidth allocated to data flows passing through an input port of the apparatus is greater than an amount of data that can pass through the input port 15 of the apparatus.

67. An apparatus for allocating bandwidth to data flows passing through the apparatus, the apparatus comprising circuitry which:

20 allocates bandwidth to data flows passing through input ports of the apparatus using a weighted max/min process.

68. The apparatus of claim 67, wherein allocating the bandwidth comprises:

increasing bandwidth allocated to data flows passing through each input port in proportion to a weight assigned to
5 the data flow passing through the input port; and

freezing an amount of bandwidth allocated to a data flow passing through an input port when either (i) the input port reaches a maximum utilization, or (ii) the data flow reaches a maximum bandwidth.

SEARCHED INDEXED
SERIALIZED FILED
10
15

69. The apparatus of claim 68, wherein the circuitry:

continues to increase the bandwidth allocated to non-frozen data flows in proportion to weights of the data flows until an amount of bandwidth is frozen at all of the data flows.

70. An apparatus for allocating bandwidth to data flows through the apparatus, the apparatus comprising circuitry which:

20 allocates bandwidth to the data flows passing through output ports of the apparatus using a weighted max/min process.

71. The apparatus of claim 70, wherein allocating the bandwidth comprises:

increasing an amount of bandwidth allocated to data flows passing through each output port in proportion to a
5 weight assigned to a data flow passing through an output port; and

freezing the amount of bandwidth allocated to the data flow passing through the output port when either (i) the output port reaches a maximum utilization, or (ii) the data flow reaches a maximum bandwidth.

10
11
12
13
14
15
16
17
18
19
20

72. The apparatus of claim 71, wherein the circuitry:

continues to increase the amount of bandwidth allocated to non-frozen data flows in proportion to weights of the data flows until the amount of bandwidth allocated to all data flows is frozen.

20

73. The apparatus of claim 72, wherein maximum values assigned to each data flow are based on the bandwidth allocations.

74. The apparatus of claim 71, wherein, after the amount of bandwidth assigned to all output ports is frozen,

the apparatus distributes remaining bandwidth at an output port to data flows passing through the output port.

75. The apparatus of claim 71, wherein, after the
5 amount of bandwidth assigned to all output ports is frozen,
the apparatus distributes remaining bandwidth at an output port to data flows passing through the output port in proportion to weights of the data flows.

10 76. The apparatus of claim 71, wherein after all of the data flows passing through the apparatus are frozen, the apparatus distributes remaining bandwidth at an output port to data flows passing through the output port according to which data flows have a highest probability of using the
15 bandwidth.

77. The apparatus of claim 26, wherein the bandwidth is allocated in discrete time intervals.

20 78. The apparatus of claim 70, wherein the circuitry:
allocates bandwidth to committed data traffic based on a guaranteed data transfer rate.

79. The apparatus of claim 78, wherein bandwidth is allocated to the committed data traffic in response to a request for bandwidth such that any request that is less than or equal to the guaranteed data transfer rate is granted.

5

80. The apparatus of claim 70, wherein:
the bandwidth is allocated to uncommitted data traffic and, for committed data traffic, bandwidth is allocated based on a guaranteed transfer rate; and
remaining bandwidth, not allocated to the committed data traffic, is allocated to the uncommitted data traffic.

RECORDED
10
15
20

81. The apparatus of claim 60, wherein the circuitry:
allocates a predetermined amount of bandwidth to one or more of the data flows; and
distributes remaining bandwidth to non-frozen remaining data flows by:
increasing an amount of bandwidth allocated to each remaining data flow in proportion to a weight assigned to the remaining data flow; and
freezing the amount of bandwidth allocated to a remaining data flow when either (i) an input port or an output port of the apparatus reaches a maximum

utilization, or (ii) the remaining data flow reaches a maximum bandwidth.

82. The apparatus of claim 78, wherein bandwidth is
5 allocated to the committed data traffic in response to a request for bandwidth such that any request that is greater than the guaranteed data transfer rate is granted at the guaranteed rate.

10 83. A method of transferring data traffic flows through a network device, comprising
transferring a committed data traffic flow through the network device using a guaranteed bandwidth;
determining an amount of bandwidth that was used during
15 a previous data traffic flow transfer; and
allocating bandwidth in the network device to uncommitted data traffic flows based on the amount of bandwidth that was used during the previous data traffic flow transfer.

20 84. The method of claim 83, wherein allocating comprises:

determining a difference between the amount of bandwidth
that was used during the previous data traffic flow transfer
and an amount of available bandwidth; and

allocating the difference in bandwidth to the
5 uncommitted data traffic flows.

85. An apparatus for transferring data traffic flows
through the apparatus, the apparatus comprising circuitry
which:

10 transfers a committed data traffic flow through the
apparatus using a guaranteed bandwidth;

determines an amount of bandwidth that was used during a
previous data traffic flow transfer; and

allocates bandwidth in the apparatus to uncommitted data
15 traffic flows based on the amount of bandwidth that was used
during the previous data traffic flow transfer.

86. The apparatus of claim 85, wherein allocating
comprises:

20 determining a difference between the amount of bandwidth
that was used during the previous data traffic flow transfer
and an amount of available bandwidth; and

allocating the difference in bandwidth to the uncommitted data traffic flows.

21.126

86. The apparatus of any of claims 42, 48, 52, 56, 58,
5 66, 67, 70 and 85, wherein the circuitry comprises:

a memory which stores a computer program; and
a processor which executes the computer program.

87. The apparatus of any of claims 42, 48, 52, 56, 58,
10 66, 67, 70 and 85, wherein the circuitry comprises discrete hardware elements and/or programmable logic.

88. A computer program stored on a computer-readable medium for allocating bandwidth to data traffic flows for transfer through a network device, the computer program comprising instructions that cause a computer to:

allocate bandwidth to a committed data traffic flow based on a guaranteed data transfer rate and a queue size of the committed data traffic flow in the network device; and
20 allocate bandwidth to uncommitted data traffic flows using a weighted maximum/minimum process.

89. A computer program stored on a computer-readable medium for allocating bandwidth to data flows passing through a network device, each of the data flows having an associated weight, the computer program comprising instructions that
5 cause a computer to:

increase an amount of bandwidth to the data flows in proportion to the weights of the data flows until one port through the network device reaches a maximum value;

freeze the amounts of bandwidth allocated to the data flows in the one port; and

increase the amount of bandwidth to remaining data flows passing through the network device in proportion to the weights of the remaining data flows.

15 90. A computer program stored on a computer-readable medium for allocating bandwidth to data flows passing through a network device, the computer program comprising instructions that cause the computer to:

allocate a predetermined amount of bandwidth to one or
20 more of the data flows; and

distribute remaining bandwidth to remaining data flows.

91. A computer program stored on a computer-readable medium for allocating bandwidth to data flows passing through a network device, the computer program comprising instructions that cause the computer to:

- 5 determine a character of the data flows; and
 allocate bandwidth to the data flows in accordance with
the character of the data flows;
 wherein the bandwidth is allocated to data flows
according to which data flows have a highest probability of
10 using the bandwidth.

92. A computer program stored on a computer-readable medium for allocating bandwidth to data flows passing through a network device, the computer program comprising instructions that cause the computer to:

15 allocate the bandwidth using a weighted maximum/minimum process.

93. A computer program stored on a computer-readable medium for allocating bandwidth to data flows through a network device, the computer program comprising instructions that cause the computer to:

allocate bandwidth to the data flows using a weighted max/min process;

wherein an amount of bandwidth allocated to data flows passing through an input port of the network device is
5 greater than an amount of data that can pass through the input port of the network device.

94. A computer program stored on a computer-readable medium for allocating bandwidth to data flows passing through a network device, the computer program comprising
10 instructions that cause the computer to:

allocate bandwidth to data flows passing through input ports of the network device using a weighted max/min process.

15 95. A computer program stored on a computer-readable medium for allocating bandwidth to data flows through a network device, the computer program comprising instructions that cause the computer to:

allocate bandwidth to the data flows passing through
20 output ports of the network device using a weighted max/min process.

96. A computer program stored on a computer-readable medium for transferring data traffic flows through a network device, the computer program comprising instructions that cause a computer to:

- 5 transfer a committed data traffic flow through the network device using a guaranteed bandwidth;
- determine an amount of bandwidth that was used during a previous data traffic flow transfer; and
- allocate bandwidth in the network device to uncommitted data traffic flows based on the amount of bandwidth that was used during the previous data traffic flow transfer.

DRAFT - Not Final