

REGRESSÃO LOGÍSTICA CLASSIFICAÇÃO

Classificação

Email: Spam / Não Spam?

Transações Online: Fraudulenta (Sim / Não)?

Tumor: Maligno / Benigno ?

 $y \in \{0, 1\}$ 0: "Classe Negativa" (e.g., tumor benígno)

1: "Classe Positiva" (e.g., tumor malígno)

Limiar de saída do Classificador $h_{\theta}(x)$ em 0.5:

Se
$$h_{\theta}(x) \geq 0.5$$
 , predizer "y = 1"
 Se $h_{\theta}(x) < 0.5$, predizer "y = 0"

4

Classificação: y = 0 ou 1

Mas na regressão linear:

$$h_{\theta}(x)$$
 pode ser > 1 ou < 0

Então usar:

Regressão Logística: $0 \le h_{\theta}(x) \le 1$

Regressão Logística Representação

Modelo: Regressão Logística

$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Função Sigmoide ou Função Logística

Saída da Hipótese - Interpretação

 $h_{\theta}(x)$ = probabilidade da saída ser y = 1 para uma entrada x

Exemplo: se
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

O paciente tem 70% de chance de ter um tumor malígno

$$h_{\theta}(x) = P(y = 1 | x; \theta)$$
 "probabilidade de y = 1, dado x, parametrizado por θ "

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

Regressão Logística Fronteira de Decisão

Regressão Logística

$$h_{\theta}(x) = g(\theta^{T} x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suponha: predizer "y=1" se $h_{\theta}(x) \geq 0.5$

$$\theta^T X \ge 0 \rightarrow g(z) \ge 0.5$$
 $h_{\theta}(x) = g(\theta^T X)$

predizer "y = 0" se $h_{\theta}(x) < 0.5$

$$\theta^T X < 0 \rightarrow g(z) < 0.5$$

Fronteira de Decisão

Fazendo

Temos:

 $x_{1} + x_{2} = 3$

Predizer "y = 1" se $-3 + x_1 + x_2 \ge 0$ $x_1 + x_2 \ge 3$ Para y = 0 $x_1 + x_2 < 3$

Fronteiras de decisão Não-lineares

$$h_{\theta}(x) = g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}^{2} + \theta_{4}x_{2}^{2})$$

$$\theta = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$x \quad x_{1} \quad \text{Predizer"} y = 1\text{"se} -1 + x_{1}^{2} + x_{2}^{2} \geq 0$$

Regressão Logística Função Custo

$$= \frac{1}{1 + e^{-\theta^T x}}$$

Como escolher os parâmetros θ ?

Conjunto de Treinamento: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$ $\begin{array}{ll} \textbf{\textit{m}} \ \textbf{\textit{exemplos}} & x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix} & x_0 = 1, y \in \{0, 1\} \\ h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} & \end{array}$

$$\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

Função Custo

Regressão Linear: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regressão Logística - Função Custo

$$\operatorname{Se}_{\theta}(x), y) = \begin{cases} -1 \\ h_{\theta}(x) \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Custo=0 se $y=1, h_{\theta}(x)=1$

Mas quando $h_{\theta}(x) \rightarrow 0, Cost \rightarrow \infty$

Regressão Logística - Função Custo

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Regressão Logística -Função Custo Simplificada e Gradiente Descendente

Regressão Logística – Função Custo

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\text{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Observe: y = 0 \quad ou \quad y = 1 \quad Sempre$$

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

Regressão Logística - Função Custo

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Para ajustar os parâmetros θ , faça:

$$\min_{\theta} J(\theta)$$

Para predizer um novo valor de x:

Saída
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradiente Descendente

$$\begin{split} J(\theta) &= -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log \left(1-h_\theta(x^{(i)})\right)] \\ \min_\theta J(\theta) \\ \text{Repeat} \{ \\ \theta_j &:= \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \\ \} \\ &\qquad \qquad \left(\text{simultaneamente atualize todos os } \theta_j \right) \\ &\qquad \qquad \frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)} \end{split}$$

Gradiente Descendente

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

$$\min_{\theta} J(\theta)$$

$$\min_{ heta} J(heta)$$

Repeat { $\theta_j := \theta_j - \alpha \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneamente atualize todos os θ_i)

 $h_{\theta}(x) = \frac{1}{1 + \rho^{-\theta^T X}}$

Regressão Logística - Otimização Avançada

Algoritmo de otimização

Função Custo $J(\theta)$. Queremos $\min_{\theta} J(\theta)$.

Dado θ , Nós temos que computar

- $J(\theta)$
- $-\frac{\partial}{\partial \theta_i}J(\theta)$ (for $j=0,1,\ldots,n$)

Gradiente descendente:

 $\mathsf{Repeat}\, \{$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Algoritmo de otimização

Dado θ , temos que computar

- $J(\theta)$
- $\frac{\partial}{\partial \theta_i} J(\theta)$

(for j = 0, 1, ..., n)

Algoritmos de Otimização:

- Gradiente descendente
- Gradiente Conjugado
- BFGS
- L-BFGS

Vantagens:

- -Não precisa definir α manualmente
- -Usualmente mais rápido que o gradiente descendente.

Desvantagens:

- Mais complexo

Exemplo:

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$
 function [jVal, gradient] = costFunction(theta) jVal = (theta(1)-5)^2 + ... (theta(2)-5)^2; gradient = zeros(2,1); gradient(1) = 2*(theta(1)-5); gradient(2) = 2*(theta(2)-5);

options = optimset('GradObj', 'on', 'MaxIter', '100');

theta = $\begin{bmatrix} \sigma_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$ function [jVal, gradient] = costFunction(theta) jVal = [code to compute $J(\theta)$];

gradient(1) = [code to compute $\; \frac{\partial}{\partial \theta_0} J(\theta)$];

gradient(2) = [code to compute $\frac{\partial}{\partial \theta_1} J(\theta)$];

gradient(n+1) = [code to compute $\frac{\partial}{\partial \theta_n} J(\theta)$];

Regressão Logística Classificação Multi-classes: Um-vs-todos

Classificação Multiclasses

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Classificação Binária:

Classificação Multi-classe:

Um-vs-todos (One-vs-all)

Um-vs-todos (One-vs-all)

Treine o classificador regressão logística $h_{\theta}^{(i)}(x)$ para cada classe i para predizer a probablidade de y=i .

Para cada nova entrada \boldsymbol{x} , faça a predição e pegue a classe i que maximiza

$$\max_{i} h_{\theta}^{(i)}(x)$$