Protocol 1 tlookup **Require:** The prover \mathcal{P} knows $S \in \mathbb{F}^D$. N, D are both powers of 2

such that N divides D. 1: **procedure** TLOOKUP-SETUP($T \in \mathbb{F}^N$)

return $[T] \leftarrow Commit(T; 0)$ 2: end procedure

procedure \mathcal{P} .TLOOKUP-PREP($S \in \mathbb{F}^D$, $T \in \mathbb{F}^N$) Compute $\mathbf{m} = \mathbf{m}(S, T)$ as (10) 5:

 $\mathcal{P} \to \mathcal{V} : [\![S]\!] \leftarrow \mathsf{Commit}(S)$ 6: $\mathcal{P} \to \mathcal{V} : \llbracket \mathbf{m} \rrbracket \leftarrow \mathsf{Commit}(\mathbf{m})$

end procedure procedure $\langle \mathcal{P}, \mathcal{V} \rangle$. Tlookup-Prove($[\![S]\!], [\![m]\!], [\![T]\!]$)

11: \mathcal{P} computes A, B as (11)

 $\mathcal{P} \to \mathcal{V} : [\![A]\!] \leftarrow \mathsf{Commit}(A), [\![B]\!] \leftarrow \mathsf{Commit}(B)$ 12:

 $\mathcal{V} \to \mathcal{P} : \beta \sim \mathbb{F}$ 10:

▶ No hiding required

 \mathcal{P} and \mathcal{V} run the sumcheck on (14), followed by the proofs 13: of evaluation on $[\![A]\!]$, $[\![B]\!]$, $[\![S]\!]$, $[\![m]\!]$ and $[\![T]\!]$.