2018 Midterm Election: Voter Turnout Prediction

Team Korea(U22)

Jinju Park Donghwa Seo Boram Shim Dongseon You Tae Uk You

CONTENTS

1. Data Extraction

2. Data + Model Selection

3. Model Explanation

4. Prediction

5. Limitations

Theoretical Basis (Literature Review)

Variable	Operationalisation	Frequency		
Population size	Total population	13		
	Voting age population	10		
	Number registered voters	5		
Population concentration	% Population in metropolitan/	16		
©	urban area			
Population etability	Population per area	9		
Population stability	% Moved	17		
	% Homeowner (or tenant)	15		
	Population growth rate	5		
Population homogeneity	Interquartile difference in income	4		
	Herfindahl ethnic heterogeneity	4		
	Gini coefficient of income	3		
Lagged turnout	Turnout (one or more lags)	7		
	Turnout (average last 3 elections)	1		
Closeness	Difference vote share winner/loser	36		
	% Vote winner	5		
	Entropy	4		
	Ranney (1976) index	2		
	Predicted closeness	2		
Campaign expenditures	Expenditures per capita	9		
	Total expenditures	7		
	Expenditures as share of	4		
	legal maximum			

Geys, Benny. "Explaining voter turnout: A review of aggregate-level research." Electoral studies 25, no. 4 (2006): 637-663.

Demographic variables:

Age

- Income
- **Gender Education Level**
- Race

Election Day Temperature

OFFICE OF THE MINNESOTA SECRETARY OF STATE **STEVE SIMON**

Competitiveness

Actual Voter Turnouts

Variables Included

- Number of Actual Voter
- Age (18~29, 30~44, 45~54, 54 over)
- Average Temperature
- Competitiveness
- Congressional District
- Educational Level (Less than High School, High School, High School Graduate, Associate, Bachelor, and more)
- Gender (Male, Female)
- Income
- Race (White, Black, Asian, Hispanic, Other)
- Year (2006, 2008, 2010, 2012, 2014, 2016)

K-Fold Cross-Validation

- Specifically, the n observations (y1, x11,..,x1n), ..., (yn, xn1,...xnn) are randomly divided in K groups or folds approximately equal size.
- 6 years as row, 8 districts as columns->48 observations
- 48 obs with 10 folds -> each fold: 4~5 observations are validation datasets, rest of them are train datasets
- Random sampling and leave one out CV

year	actual voter turnsout	model (predicted/actual) PLS	ABS(value-1)	if(2014>2016,1,0)		
2014	229564	0.96981626	0.03018374	0		
2014	248549	1.020228204	0.020228204	0		
2014 273488 2014 246088		1.017266205	0.017266205	0		
		1.080331833	0.080331833			
2014	240709	1.07426353	0.07426353	0		
2014 240697		0.876913713	0.123086287	1		
2014	244791	0.924059708	0.075940292	0		
2014	268680	0.888349338	0.111650662	0		
		PCR				
2016	346854	1.222938758	0.222938758			
2016	384539	1.174476971	0.174476971			
2016	405198	1.151753217	0.151753217			
2016	370000	1.135786216	0.135786216			
2016	376895	1.197326046	0.197326046			
2016	376481	1.104859741	0.104859741			
2016	342584	1.189639621	0.189639621			
2016	365730	1.225801001	0.225801001			

- Get ratio between predicted and actual voter turnouts.

- If (2014 > 2016)

True: 1

False: 0

- Prediction accuracy higher when only midterm election data used

	MSE				
PCR	387.8501				
PLS	682.1454				
Decision tree	4289.543				
Prune	4531.051				
Bagging	1792.053				
Random Forest	1635.299				

PCR has the lowest MSE

PCR (Principal Component Regression)

- 24 explanatory variables may correlate with each other,
 so we use it to reduce dimension
- Selected PC components serve as explanatory variables to find relationship with the response
- Choose the number of PC with lower cross validation
 MSE

2018 Midterm Election Voter Turnout Prediction

District 1: 280,245

District 2: 288,797

District 3: 330,244

District 4: 296,466

District 5: 315,381

District 6: 291,445

District 7: 272,583

District 8: 293,737

Best Subset Selection

(Intercept)	white	other	hispanic	Age 30-44	Age 54+	Male Age 18-29	Male Age 30-44	LESSHIGH	ASSOCIATE	BACHNMORE	AVGTEMP
-2.71E+05	-4.01E-01	4.09E+00	-1.66E+00	3.35E+00	1.91E+00	1.54E+00	-5.95E+00	-1.60E+00	1.54E+00	3.12E-01	4.39E+03

- Selecting the best model with all possible predictors
- Selected 11 variables among 24 variables
- Temperature affects the most among variables

Limitations

- Data Availability e.g. campaign Spending
- Different Total Number of Each Variable
- Effects of Current President Favorability
- Redistriction of Minnesota Cong Districts in 2013
- Weather Data