# Digital Image Processing

Week-01

#### **Contents**

- Course Introduction
- Image Processing Examples
- Image Formation
- Digitization of Images
- Image Resolution

### Intro & Affiliations

#### Muhammad Usman Akram, PhD Computer Engineering

Email: usman.akram@ceme.nust.edu.pk

Contact: 03336913921

#### Asad Mansoor Khan, PhD Computer Engineering

Email: <u>asad.mansoor@ceme.nust.edu.pk</u>

Contact: 0332 5416093







biomisa.org

#### **Text Book & References:**

- Rafael C. Gonzalez and Richard E. Woods, *Digital Image Processing*, 4rd Edition, 2018 (available from local market)
- Rafael C. Gonzalez and Richard E. Woods, *Digital Image Processing using MATLAB*, 3<sup>rd</sup> Edition, 2020 (available from local market) (available from local market)
- Class slides & selected research papers to be shared by the instructor





### Course Information

#### Course Material

 Lectures slides, assignments (computer/written), solutions to problems, projects, and announcements will be uploaded on LMS.

# **Grading Policy**

| Exam:           | 1 Mid and 1 Final                                             |     |                                    |     |  |
|-----------------|---------------------------------------------------------------|-----|------------------------------------|-----|--|
| Home work:      | 3 graded Problem Based Learning                               |     |                                    |     |  |
| Lab reports:    | 13-14 reports, 01 open Lab, 01 Lab Final, home tasks          |     |                                    |     |  |
| Design reports: | 1 Design report and 1 presentations based on Semester Project |     |                                    |     |  |
| Quizzes:        | 6-8 Quizzes                                                   |     |                                    |     |  |
|                 | Theory (67%)                                                  |     | Lab (33%)                          |     |  |
|                 | Mid term                                                      | 30% | Lab Work/Tasks<br>(Every week) 45% |     |  |
| Grading:        |                                                               |     | Open Lab                           | 10% |  |
|                 | Quizzes:                                                      | 10% | Lab Final                          | 10% |  |
|                 | Assignments                                                   | 10% | Home Tasks                         | 05% |  |
|                 | Final Exam                                                    | 50% | Final Project                      | 30% |  |



- Introduction to Image processing (Chapter 1, 2)
- Image processing Fundamentals (Chapter-2)
- Image Enhancement (Spatial & Frequency Domain) (Chapter 3, 4)
- Color Processing (Chapter 6)
- Morphological operations (Chapter 9)
- Segmentation (Chapter 10, Online material, David Forsyth)
- Texture analysis (Chapter 11, Online material, David Forsyth)
- Image representation and description (Chapter 11)
- Introduction to Machine Learning and Convolutional Neural Networks (Chapter 12 & Stanford course on CNN, Online Resources)

### Lab Breakdown

Texture Analysis – Statistical descriptors, GLCM, Spectral features (Assignment-3: Feature Extraction

| Lab 01        | Installation & Introduction to Python and OpenCV, Basic Image Processing                                                   |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>Lab 02</b> | Connected Component Analysis (Assignment-1: Using Connect Component for Image Analysis)                                    |
| Lab 03        | Transformation Operations                                                                                                  |
| Lab 04        | Histogram Equalization and Spatial Filtering                                                                               |
| Lab 05        | Spatial Filtering and Its Applications (Assignment-2 Use of filtering, edge detection and segmentation for image analysis) |
| Lab 06        | Edge Detection and Segmentation                                                                                            |
| <b>Lab 07</b> | Spatial filtering and segmentation on the go (edge computing)                                                              |
| Lab 08        | Open Lab ( <b>Project Assignment</b> )                                                                                     |

Morphological Operations (Seminar on using GitHub and Co-Lab)

Color Processing & Clustering

Image Classification using CNN

Computer Vision using Edge computing – I

Computer Vision using Edge computing – II

Lab Final (**Project Presentation and Submission**)

Frequency Analysis

and classification)

**Lab 09** 

**Lab** 10

**Lab** 11

**Lab 12** 

**Lab** 13

**Lab 14** 

**Lab** 15

**Lab 16** 

# Course Learning Outcome

| Course Learning Outcome (CLOs) |                                                                                                                                                                    |       | Learning<br>Level | Assessments                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|----------------------------|
| CLO 1                          | Understanding the fundamentals and basic concepts of image processing related to image enhancement, filtering and segmentation etc                                 | PLO 1 | C2                | Q1, Q2, Mid,<br>Final      |
| CLO 2                          | Performing different mathematical transformations, histogram based operations and filtering concepts for solving image enhancement and feature extraction problems | PLO 2 | C3                | Q3, Q4, Mid,<br>Final      |
| CLO 3                          | Combining the concepts of image processing with machine learning to analyze and design decision support systems for image processing based applications            | PLO 3 | C4                | Q6, Mid, Final             |
| CLO 4                          | Learning the <b>use of Python and OpenCV</b> to implement basic image processing algorithms and to solve real life and open ended problems                         | PLO 5 | P4                | Open Labs,<br>Project, PBL |

### **CODE OF ETHICS**

- All students must come to class on time
- Students should remain attentive during class and avoid use of Mobile phone, Laptops or any gadgets
- Obedience to all laws, discipline code, rules and community norms
- Respect peers, faculty and staff through actions and speech
- Bring writing material and books
- Class participation is encouraged

### **Policies**

- No extensions in assignment deadlines.
- Quizzes will be unannounced.
- Exams will be OPEN book
- No Attendance and marking of lab tasks if late more than 15 min
- Never cheat.
  - "Better fail NOW or else will fail somewhere LATER in life"
- Plagiarism will also have strict penalties.





## Image Processing & Machine Vision

- From Image Processing to Machine Vision:
  - low, mid and high-level processes

#### **Low Level Process**

Input: Image

Output: Image

Examples: Noise

removal, image

sharpening

**Image Processing** 

# **Example: Low Level Processing**



Original Hazy Image



Haze Removed Image

## Image Processing & Machine Vision

- From Image Processing to Machine Vision:
  - low, mid and high-level processes

| Low Level Process            | Mid Level Process               |  |
|------------------------------|---------------------------------|--|
| Input: Image Output: Image   | Input: Image Output: Attributes |  |
| Examples: Noise              | Examples: Object                |  |
| removal, image<br>sharpening | recognition, segmentation       |  |

**Image Processing** 

# Example: Mid Level Processing





## Image Processing & Machine Vision

- From Image Processing to Machine Vision:
  - low, mid and high-level processes

| Low Level Process            | Mid Level Process               | High Level Process                            |  |
|------------------------------|---------------------------------|-----------------------------------------------|--|
| Input: Image Output: Image   | Input: Image Output: Attributes | Input: Attributes/Image Output: Understanding |  |
| Examples: Noise              | Examples: Object                | Examples: Scene                               |  |
| removal, image<br>sharpening | recognition, segmentation       | understanding, autonomous navigation          |  |
|                              |                                 |                                               |  |

Image Processing Machine Vision

17

## Example: High Level Processing



## Image Processing & Machine Vision

From Image Processing to Machine Vision:



## Why Image Processing?

Images and video are everywhere!







Movies, news, sports















Surveillance and security



Medical and scientific images

### **Summary of Applications**

| Problem Domain                 | Application                      | Input Pattern                 | Output Class                        |
|--------------------------------|----------------------------------|-------------------------------|-------------------------------------|
| Document Image<br>Analysis     | Optical Character<br>Recognition | Document Image                | Characters/words                    |
| Document<br>Classification     | Internet search                  | Text Document                 | Semantic categories                 |
| Document<br>Classification     | Junk mail filtering              | Email                         | Junk/Non-Junk                       |
| Multimedia retrieval           | Internet search                  | Video clip                    | Video genres                        |
| Speech Recognition             | Telephone directory assistance   | Speech waveform               | Spoken words                        |
| Natural Language<br>Processing | Information extraction           | Sentence                      | Parts of Speech                     |
| Biometric Recognition          | Personal identification          | Face, finger print, Iris      | Authorized users for access control |
| Medical                        | Computer aided diagnosis         | Microscopic Image             | Healthy/cancerous cell              |
| Military                       | Automatic target recognition     | Infrared image                | Target type                         |
| Industrial automation          | Fruit sorting                    | Images taken on conveyor belt | Grade of quality                    |
| Bioinformatics                 | Sequence analysis                | DNA sequence                  | Known types of genes                |

## **Image Sources**

#### Electromagnetic (EM) band imaging

- Gamma ray band images
- X-ray band images
- Ultra violet band images
- Visual light and infra-red images
- Images based on micro waves or radio

#### Non-EM band imaging

- Acoustic and ultrasonic images
- Electron microscopy
- Computer generated images (synthetic)



# Light & EM Spectrum

#### EM Waves

- A stream of mass less particles each travelling in a wave like pattern, moving at the speed of light and contains a certain bundle of energy
- The electromagnetic spectrum is split up in to bands according to the energy per photon



# Light & EM Spectrum



#### Chart of the Electromagnetic Spectrum



## Examples: Imaging other Modalities

#### Sound

- Geological Applications Oil and Gas Exploration
- Medicine Ultrasound Imaging

### Synthetic Images

Computer generated



A synthetic image





















## **Digital Image Processing**

**Fundamentals** 

#### **IMAGE FORMATION MODEL**

- Image refers to a 2d light-intensity function, f(x, y)
- The amplitude of f at spatial coordinates (x, y) gives the intensity (brightness) of the image at that point.
- Light is a form of energy thus f(x, y) must be nonzero and finite.

$$0 < f(x, y) < \infty.$$

### **IMAGE FORMATION MODEL**

- The function f(x, y) may be characterized by two components:
  - The amount of source light incident on the scene being viewed ⇒ illumination.
  - —The amount of light reflected by the objects in the scene ⇒ reflectance.

$$f(x, y) = i(x, y)r(x, y)$$

$$0 < i(x, y) < \infty$$

## Human Eye Vs Digital Camera





## Image Acquisition



a c d e

**FIGURE 2.15** An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

### Sampling:

Digitization of the spatial coordinates (x,y)

#### Quantization:

 Digitization in amplitude (also known as gray level quantization)

#### Quantization

- 8 bit quantization: 2<sup>8</sup> =256 gray levels (0: black, 255: white)
- 1 bit quantization: 2 gray levels (0: black, 1: white) binary

#### Sampling

- Commonly used number of samples (resolution)
  - Digital still cameras: 640x480, 1024x1024, 4064 x 2704
  - Digital video cameras: 640x480 at 30 frames/second (fps)

 Digital Image is an approximation of a real world scene





a b c d

#### FIGURE 2.16

Generating a digital image.

(a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization.

(c) Sampling and

- (c) Sampling and quantization.
- (d) Digital scan line.

## **Image Formation**

 Digital Image is an approximation of a real world scene



## **Image Formation**

 Digital Image is an approximation of a real world scene



#### **GRAY LEVEL**

- WE CALL THE INTENSITY OF A MONOCHROME IMAGE F AT COORDINATE (x, y) THE GRAY LEVEL (L) OF THE IMAGE AT THAT POINT.
- Thus, I lies in the range

$$L_{\min} \le \ell \le L_{\max}$$

- $L_{min}$  is positive and  $L_{max}$  is finite.
- Gray scale =  $[L_{min}, L_{max}]$
- Common practice, shift the interval to [0,L]: 0 = black, L-1 = white

## Digital Image Representation

- Image Size
  - Number of bits required to store an image

$$b = M \times N \times k$$

- Image having  $2^k$  intensity levels
  - *k* bit image
  - 256 intensity levels 8 bit image

## **Image Size**

**TABLE 2.1** Number of storage bits for various values of N and k.

| N/k  | 1(L=2)     | 2(L=4)      | 3(L = 8)    | 4(L=16)     | 5(L=32)     | 6(L = 64)   | 7(L = 128)  | 8(L=256)    |
|------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 32   | 1,024      | 2,048       | 3,072       | 4,096       | 5,120       | 6,144       | 7,168       | 8,192       |
| 64   | 4,096      | 8,192       | 12,288      | 16,384      | 20,480      | 24,576      | 28,672      | 32,768      |
| 128  | 16,384     | 32,768      | 49,152      | 65,536      | 81,920      | 98,304      | 114,688     | 131,072     |
| 256  | 65,536     | 131,072     | 196,608     | 262,144     | 327,680     | 393,216     | 458,752     | 524,288     |
| 512  | 262,144    | 524,288     | 786,432     | 1,048,576   | 1,310,720   | 1,572,864   | 1,835,008   | 2,097,152   |
| 1024 | 1,048,576  | 2,097,152   | 3,145,728   | 4,194,304   | 5,242,880   | 6,291,456   | 7,340,032   | 8,388,608   |
| 2048 | 4,194,304  | 8,388,608   | 12,582,912  | 16,777,216  | 20,971,520  | 25,165,824  | 29,369,128  | 33,554,432  |
| 4096 | 16,777,216 | 33,554,432  | 50,331,648  | 67,108,864  | 83,886,080  | 100,663,296 | 117,440,512 | 134,217,728 |
| 8192 | 67,108,864 | 134,217,728 | 201,326,592 | 268,435,456 | 335,544,320 | 402,653,184 | 469,762,048 | 536,870,912 |

## Digital Image

a grid of squares, each of which contains a single color

each square is called a pixel (for *picture element*)







## Digital Image

- A set of pixels (picture elements, pels)
- Pixel means
  - pixel coordinate
  - pixel value
  - or both
- Both coordinates and value are discrete

## Example

640 x 480 8-bit image



### **Pixels**







Pixel Location: p = (r, c)

Pixel Value: I(p) = I(r, c)

Pixel: [p, I(p)]

### **Pixels**

Pixel: [p, I(p)]







$$p = (r,c)$$
  
=  $(\text{row } \#, \text{ col } \#)$   
=  $(272, 277)$ 

$$I(p) = \begin{bmatrix} \text{red} \\ \text{green} \\ \text{blue} \end{bmatrix} = \begin{bmatrix} 12 \\ 43 \\ 61 \end{bmatrix}$$

#### **DIGITAL IMAGE REPRESENTATION**



#### PIXEL VALUES IN HIGHLIGHTED

|                | $\alpha$ | - | • • |
|----------------|----------|---|-----|
| DF             |          |   | N   |
| <b>1</b> 1 1 1 | T        |   |     |

| 99  | 71  | 61  | 51  | 49  | 40  | 35  | 53  | 86  | 99  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 93  | 74  | 53  | 56  | 48  | 46  | 48  | 72  | 85  | 102 |
| 101 | 69  | 57  | 53  | 54  | 52  | 64  | 82  | 88  | 101 |
| 107 | 82  | 64  | 63  | 59  | 60  | 81  | 90  | 93  | 100 |
| 114 | 93  | 76  | 69  | 72  | 85  | 94  | 99  | 95  | 99  |
| 117 | 108 | 94  | 92  | 97  | 101 | 100 | 108 | 105 | 99  |
| 116 | 114 | 109 | 106 | 105 | 108 | 108 | 102 | 107 | 110 |
| 115 | 113 | 109 | 114 | 111 | 111 | 113 | 108 | 111 | 115 |
| 110 | 113 | 111 | 109 | 106 | 108 | 110 | 115 | 120 | 122 |
| 103 | 107 | 106 | 108 | 109 | 114 | 120 | 124 | 124 | 132 |
|     |     |     |     |     |     |     |     |     |     |

**CAMERA** 



**DIGITIZER** 



A set of number in 2D grid

Samples the analog data and digitizes it.

## What is a Digital Image? (cont...)

- Common image formats include:
  - 1 sample per point (B&W or Grayscale)
  - 3 samples per point (Red, Green, and Blue)





•For most of this course we will focus on grey-scale images

## Digital Image

Color images have 3 values per pixel; monochrome images have 1 value per pixel.

a grid of squares, each of which contains a single color 206 194
128 100
9 14
184 140
95 97
12 11

red intensity
blue intensity
blue intensity
blue intensity
98 75

each square is called a pixel (for *picture element*)

intensity

# **Colored Images**



| Color name | RGB triplet     | Color |  |  |
|------------|-----------------|-------|--|--|
| Red        | (255, 0, 0)     |       |  |  |
| Lime       | (0, 255, 0)     |       |  |  |
| Blue       | (0, 0, 255)     |       |  |  |
| White      | (255, 255, 255) |       |  |  |
| Black      | (0, 0, 0)       |       |  |  |
| Gray       | (128, 128, 128) |       |  |  |
| Fuchsia    | (255, 0, 255)   |       |  |  |
| Yellow     | (255, 255, 0)   |       |  |  |
| Aqua       | (0, 255, 255)   |       |  |  |
| Silver     | (192, 192, 192) |       |  |  |
| Maroon     | (128, 0, 0)     |       |  |  |
| Olive      | (128, 128, 0)   |       |  |  |
| Green      | (0, 128, 0)     |       |  |  |
| Teal       | (0, 128, 128)   |       |  |  |
| Navy       | (0, 0, 128)     |       |  |  |
| Purple     | (128, 0, 128)   |       |  |  |

## Pixel Size



## **Spatial & Gray Level Resolution**

# **Spatial Resolution**



63

# **Spatial Resolution**



## Intensity Level Resolution

- Intensity level resolution refers to the number of intensity levels used to represent the image
  - The more intensity levels used, the finer the level of detail in an image
  - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

## Intensity Level Resolution

| Number of Bits | Number of Intensity<br>Levels | Examples           |  |  |
|----------------|-------------------------------|--------------------|--|--|
| 1              | 2                             | 0, 1               |  |  |
| 2              | 4                             | 00, 01, 10, 11     |  |  |
| 4              | 16                            | 0000, 0101, 1111   |  |  |
| 8              | 256                           | 00110011, 01010101 |  |  |
| 16             | 65,536                        | 1010101010101010   |  |  |

## Intensity Level Resolution



# Intensity Level Resolution er pixel) 128 grey levels (7 bpp) 64 grey levels (6 bpp) 32 grey levels (5 bpp)



## Resolution: How much is enough?

- How many samples and gray levels are required for a good approximation?
  - Quality of an image depends on number of pixels and graylevel number
  - The more these parameters are increased, the closer the digitized array approximates the original image
  - But: Storage & processing requirements increase rapidly as a function of N, M, and k

## Resolution: How much is enough?

 Depends on what is in the image and what you would like to do with it





## Today's Learning Outcomes

- Major Sub Domains of Image Processing
  - Enhancement
  - Segmentation
  - Localization
  - Classification
- Digital Images & Pixels
- Image Resolution
  - Spatial Resolution
  - Intensity Resolution

### What's Next

- Image Processing Fundamentals
  - Pixel Neighbors
  - Connected Component Analysis
  - Basic Operations

# Readings from Book (3<sup>rd</sup> Edn.)

- Chapter 1
- Chapter 2

Read topics from 2.2 to 2.4 from book



## Acknowledgements

- Statistical Pattern Recognition: A Review A.K Jain et al., PAMI (22) 2000
- Pattern Recognition and Analysis Course A.K. Jain, MSU
- Pattern Classification" by Duda et al., John Wiley & Sons.
- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2018
- Machine Vision: Automated Visual Inspection and Robot Vision", David Vernon, Prentice Hall, 1991
- www.eu.aibo.com/
- Advances in Human Computer Interaction, Shane Pinder, InTech, Austria, October 2008