CS120: Intro. to Algorithms and their Limitations	Anshu & Hesterberg
Lecture 13: Matchings	
Harvard SEAS - Fall 2023	2023-10-19

1 Announcements

- Three extra late days for everyone.
- Final exam can replace midterm for purposes of getting to a satisfactory grade.
- Embedded EthiCS Module on Thursday. You are expected to attend; there will be material on ps6 building on the module.
- Please fill out midterm survey (comes with pset 4 survey).

Recommended Reading: Cormen-Leiserson-Rivest-Stein, Sec. 25.1.

2 Loose ends from lecture 12

Theorem 2.1. If the input intervals are sorted by then we have that GreedyIntervalScheduling(x) will find an optimal solution to IntervalScheduling-Optimization, and can be implemented in time $O(n \log n)$.

Proof.

3 Definitions

Motivating Problem: Kidney Exchange. Collection of patients (who need a kidney) and donors (willing to donate a kidney). Each donor can only donate one kidney (they need their other one to survive!) and only to certain patients (due to blood type and HLA type compatibilities). This is a large-scale real-world problem, in which algorithms like what we will cover play a significant role. There nearly 100,000 patients currently on the kidney waiting list in the US, with a little over 25,000 donations happening per year, and patients spending an average of about 3.6 years on the waiting list.

How many patients can we give kidneys to?

Q: How to formulate graph-theoretically?

Definition 3.1. For a graph G = (V, E), a matching in G is a subset $M \subseteq E$ such that every vertex $v \in V$ is incident to at most one edge in M. Equivalently, no two edges in M share an endpoint.

Input : A graph G = (V, E)

Output: A matching $M \subseteq E$ in G of maximum size

Computational Problem Maximum Matching

Additional considerations in real-life kidney exchange (to be discussed more in Embedded EthiCS Module on Thurs!):

¹Saying a vertex v is *incident* to an edge e is another way of saying v is an endpoint of e. It is more symmetric, in that we would also say that e is incident to v.

4 Matching vs. Independent Sets

This section will not be covered in lecture, and is optional (but recommended) material.

Maximum Matching can be viewed as a special case of the Independent Set problem we studied last time, i.e. there is an efficient reduction from Maximum Matching to Independent Set:

Unfortunately, the fastest known algorithm for Independent Set runs in time approximately $O(1.2^n)$. However, as we saw last time for IntervalScheduling-Optimization, special cases of IndependentSet can be solved more quickly. Matching is another example!

5 Maximum Matching Algorithm

Like in a greedy strategy, we will try to grow our matching M on step at a time, building a sequence $M_0 = \emptyset, M_1, M_2, \ldots$, with $|M_k| = k$. However, to get M_k from M_{k-1} we will sometimes do more sophisticated operations than just adding an edge.

Definition 5.1. Let G = (V, E) be a graph, and M be a matching in G. Then:

- 1. An alternating walk W in G with respect to M is
- 2. An augmenting path P in G with respect to M is

Let's see why augmenting paths are useful.

Lemma 5.2. Given a graph G = (V, E), a matching M, and an augmenting path P with respect to M, we can construct a matching M' with |M'| = |M| + 1 in time O(n).

Proof.

Example:

This suggests a natural algorithm for maximum matching: repeatedly try to find an augmenting path and use it to grow our matching. We will be able to make this idea work in *bipartite* graphs, like the donor–patient graphs in kidney exchange.

Definition 5.3. A graph G = (V, E) is bipartite if it is 2-colorable. That is, there is a partition of vertices $V = V_0 \cup V_1$ (with $V_0 \cap V_1 = \emptyset$) such that all edges in E have one endpoint in V_0 and one endpoint in V_1 .

```
1 MaxMatchingAugPaths (G)
Input : A bipartite graph G = (V, E)
Output : A maximum-size matching M \subseteq E
2 Remove isolated vertices from G;
3 Let V_0, V_1 be the bipartition (i.e. 2-coloring) of V;
4 M = \emptyset;
5 repeat
6 | Let U be the vertices unmatched by M, U_0 = V_0 \cap U, U_1 = V_1 \cap U;
7 | Try to find an augmenting path P that starts in U_0 and ends in U_1;
8 | if P \neq \bot then augment M using P via Lemma 5.2;
9 until P = \bot;
10 return M
```

How do we know that augmenting paths always exist and how can we find them efficiently?

Theorem 5.4 (Berge's Theorem). Let G = (V, E) be a graph, and $M \subseteq E$ be a matching. If (and only if) M is not a maximum-size matching, then G has an augmenting path with respect to M.

Lemma 5.5. Let $G = (V_0 \cup V_1, E)$ be bipartite and let M be a matching in G that is not of maximum size. Let U be the vertices that are not matched by M, and $U_0 = V_0 \cap U$ and $U_1 = V_1 \cap U$. Then:

- 1. G has an alternating walk with respect to M that starts in U_0 and ends in U_1 .
- 2. Every shortest alternating walk from U_0 to U_1 is an augmenting path.

Before proving these lemmas, let's see how they suffice for us to analyze the correctness and runtime of Algorithm 10.

Theorem 5.6. Maximum Matching can be solved in time O(mn) on bipartite graphs with m edges and n vertices.

Proof.