METHODS FOR MULTI-VARIATE DATA (STA437)

Introduction

0.0.1 About this course

These are rudimentary notes for STA437/2005 that contain more technical part of the lecture that will be presented in class on blackboard. Some multivariate methods will be presented on slides and so not treated in detail here.

Traditionally multivariate statistics is taught with a lot of focus on the multivariate normal distribution and the underlying statistical inference. I will be more brief on this part trying to get some basic overview of more modern methods for analyzing multivariate data.

My idea for this course is to mix two styles: (i) give a deeper theoretical insight into the underlying linear algebra and canonical multivariate distributions/models, (ii) give some taste for modern state-of-the art methods. For this reason, the lecture will be mostly given on blackboard but occasionally I will present some slides to give a more high-level overview of more recent material. The tutorials will also mix theory and practical considerations.

o.o.2 Prerequisites

To understand better what you are expected to know, note that one of the prerequisites for STA437 is STA302. A prerequisite for STA302 is MAT223 or MAT224 or MAT240. Students should have knowledge of linear algebra from these courses and its applications to linear models from STA302.

Multivariate statistics very heavily relies on matrix algebra and, more generally, on linear algebra. I will try to briefly recall some key facts when we need them but there will be no time to discuss these results in detail so they are assumed. Please make sure you have all the right background. There are no shortcuts here. The more you understand linear algebra, the more successful you will be in understanding this course and many other data analysis methods you will encounter in the future. The material gathered in Appendix A of ¹ should be more than enough. For deeper understanding check, for example, Chapter I in ² or Jason Siefken's course book for MAT223.

¹ Kanti V Mardia, John T Kent, and Charles C Taylor. *Multivariate analysis*, volume 88. John Wiley & Sons, 2024 ² Gilbert Strang. *Linear Algebra* and *Learning from Data*. Wellesley-Cambridge Press, Wellesley, MA, 2019. ISBN 9780692196380

0.0.3 Complementary courses

There are several courses that are complementary to STA437/STA2005. For example, it is natural to discuss some classification algorithms in the context of multivariate statistics. However, this is covered in detail in STA314 so we will mostly omit this here. Some important examples are k-means, hierarchical clustering, and linear discriminant analysis³. Another related course, STA414/2104, focuses on unsupervised learning and we recommend students to take this course to get a full picture where the methods we learn here can be applied.

³ We will talk about Gaussian mixtures, which give access to classification methods that, in a sense, generalize both k-means and LDA.

0.0.4 Computational statistics

Although the lecture focuses on theory and methods, the computational aspect of this course is critical for building and verifying the correct intuition. Occasionally, we provide R code for your convenience. If you are not fluent in R , I recommend using AI to generate complementary code or to translate it into Python or Julia.

To report typos/mistakes, write me: piotr.zwiernik@utoronto.ca

I would like to thank Luis Sierra Muntané for his help with improving the notes.

Last update: January 19, 2025

Contents

Ĺ	Preliminaries 9
	1.1 Basic Linear Algebra 9
	1.2 Random vectors and matrices 13
	1.3 Sample Quantities 16
	1.4 Exercises 20
2	Multivariate Normal Distribution 25
	2.1 Definition and basic properties 25
	2.2 Linear Transformation and Marginal Distribution 28
	2.3 Conditional Distribution and Conditional independence 29
	2.4 Estimation of Parameters 32
	2.5 Hotelling's T ² Distribution* 34
	2.6 Gaussian Processes in Multivariate Statistics 37
	2.7 Exercises 42
3	Non-normal distributions 45
	3.1 Elliptical distributions 45
	3.2 Copula models 48
	3.3 Gaussian mixture 53
	3.4 Exercises 60

4	Principal Component Analysis 63
	4.1 Principal components 64
	4.2 Simple graphics for PCA 66
	4.3 PCA and affine approximating subspaces 67
	4.4 Principal Component Regression (PCR) and Probabilistic PCA (PPCA) 69
	4.5 PCA and matrix completion 71
	4.6 Appendix: Covariance matrix estimation in high dimensions 72
5	Some Other Dimension Reduction Methods 77
	5.1 Multidimensional Scaling (MDS) 77
	5.2 Laplacian Eigenmaps (Spectral Embedding) 79
	5.3 Uniform Manifold Approximation and Projection (UMAP) 83
	5.4 Autoencoders 87
	5.5 Exercises 87
6	Canonical Correlation Analysis 89
	6.1 Population CCA 89
	6.2 Sample CCA 91
	6.3 Practical Considerations and Applications 91
	6.4 Interpretation and Visualization of CCA Results 92
	6.5 Example: Real Data Analysis in R 93
7	Graphical Models 95
	7.1 Introduction 95
	7.2 Graphs and Conditional Independence 96
	7.3 Gaussian Graphical Models 97
	7.4 Log-linear Graphical Models 106
	7.5 Exercises 114

- Factor analysis and Independent Component Analysis 8 115
 - 8.1 Motivating examples 115
 - 8.2 Definitions 117
 - 8.3 Model Implications and identifiability 118
 - 8.4 Fitting FA and ICA
 - 8.5 Choosing the Number of Latent Components 124
- *Introduction to Tensor Methods* 127 9

Preliminaries

We start by recalling basic notation and facts. This part of the lecture notes is quite fast-paced because we refresh material that should be known from earlier courses. Please fill out all the details.

1.1 Basic Linear Algebra

We use standard notations such as \mathbb{R}^m to denote the set of all m-dimensional real vectors $\mathbf{x} = (x_1, \dots, x_m)$ and $\mathbb{R}^{n \times m}$ to denote the set of all $n \times m$ real matrices $A = (A_{ij})$. All vectors in \mathbb{R}^m are treated as column vectors, that is, we take $\mathbb{R}^m = \mathbb{R}^{m \times 1}$.

Recall that a matrix $A \in \mathbb{R}^{n \times m}$ represents a linear function from \mathbb{R}^m to \mathbb{R}^n . For every $\mathbf{x} \in \mathbb{R}^m$, the vector $A\mathbf{x}$ lies in \mathbb{R}^n . Checking that the function $f(\mathbf{x}) = A\mathbf{x}$ is linear should be straightforward¹.

¹ Make sure you see why.

1.1.1 Matrix-Vector Multiplication Ax

Let $\mathbf{x} \in \mathbb{R}^m$ be a vector, with $\mathbf{x} = (x_1, \dots, x_m)$, and let $A \in \mathbb{R}^{n \times m}$ be a matrix. Recall that the matrix-vector product $A\mathbf{x}$ is defined by the rule:

$$(A\mathbf{x})_i = \sum_{j=1}^m A_{ij} x_j,$$

which states that the *i*-th entry of the vector $A\mathbf{x} \in \mathbb{R}^n$ is the inner product of the *i*-th row of A with the vector \mathbf{x} .

An important alternative interpretation of Ax is that it is a linear combination of the columns of A with coefficients given by the entries of x:

$$A\mathbf{x} = x_1 \mathbf{a}_1 + \dots + x_m \mathbf{a}_m, \tag{1.1}$$

where $\mathbf{a}_j \in \mathbb{R}^m$ denotes the *j*-th column of *A*.

← Exercise 1.4.5

Example 1.1.1. In the least squares problem from linear regression, we have a data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ with rows $\mathbf{x}_1, \dots, \mathbf{x}_n$ and a vector of observations $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$. The least squares estimator $\hat{\beta} \in \mathbb{R}^p$ minimizes

Recall that $||x|| = \sqrt{x^{\top}x}$ is the Euclidean distance.

where $X\beta$ represents the prediction. The interpretation of $X\beta$ as a linear combination of the columns of X helps us understand that the least squares problem finds the point in the column space of X that is closest to y.

Example 1.1.2. Let $e_1, \ldots, e_m \in \mathbb{R}^m$ be the canonical unit basis. We have $Ae_i = a_i$ for $i = 1, \ldots, m$ and so A maps the canonical unit basis of \mathbb{R}^m to a_1, \ldots, a_m . If m = n and the columns of A are linearly independent, the vectors a_1, \ldots, a_m also form a basis of \mathbb{R}^m and so A represents a change of basis.

1.1.2 Rank-One Matrix $\mathbf{x}\mathbf{y}^{\top}$

A **rank-one matrix** is formed by the outer product of two vectors. Specifically, if $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$, the outer product $\mathbf{x}\mathbf{y}^{\top} \in \mathbb{R}^{n \times m}$ is defined as:

$$A = \mathbf{x}\mathbf{y}^{\top}$$
 with $A_{ij} = x_iy_j$ for all $i = 1, ..., n, j = 1, ..., m$.

The resulting matrix has rank² at most one because all rows (or columns) of the matrix are scalar multiples of each other.

1.1.3 Matrix Multiplication AB

Matrix multiplication extends the concept of matrix-vector multiplication to two matrices. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times p}$. The product $AB \in \mathbb{R}^{n \times p}$ is defined by the rule:

$$(AB)_{ik} = \sum_{j=1}^m A_{ij}B_{jk},$$

which means that the (i,k)-th entry of AB is the inner product of the i-th row of A with the k-the column of B.

Alternatively, we can view matrix multiplication as a sum of rankone matrices. Let $\mathbf{a}_1, \dots, \mathbf{a}_m$ be the columns of A and $\mathbf{b}_1, \dots, \mathbf{b}_m$ be the rows of B. Then:

$$AB = \sum_{j=1}^{m} \mathbf{a}_j \mathbf{b}_j^{\top}, \tag{1.2}$$

which expresses AB as the sum of rank-one matrices formed from the columns of A and the rows of B.

Example 1.1.3. Suppose $\mathbf{X} \in \mathbb{R}^{n \times p}$ is a data matrix with rows $\mathbf{x}_1, \dots, \mathbf{x}_n$. Then the matrix $\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}$ can be written as:

$$\frac{1}{n}\mathbf{X}^{\top}\mathbf{X} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}.$$

² Recall that the rank of *A* is the number of linearly independent rows (or equiv. columns).

← Exercise 1.4.8

This matrix will play an important role in this course. Note that if the rows of X are independent and identically distributed (i.i.d.) samples from some distribution with mean zero and covariance matrix $\Sigma = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^{\top}]$, then by the law of large numbers, we have:

$$\frac{1}{n}\mathbf{X}^{\top}\mathbf{X} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\top} \xrightarrow{p} \Sigma \quad as \quad n \to \infty.$$

Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is one of the most important linear algebra tools in this course. It decomposes any matrix into a product of three matrices: two orthogonal matrices and a diagonal matrix.

Denote by O(m) the set of orthogonal $m \times m$ matrices:

$$O(m) = \{ U \in \mathbb{R}^{m \times m} : UU^{\top} = I_m \}.$$

An orthogonal matrix has the property that its rows (and columns) form an orthonormal basis for \mathbb{R}^m . Note that if $U \in O(m)$ then $det(U) = \pm 1$, which follows from multiplicativity of the determinant and the fact that $det(I_m) = 1$. An orthogonal matrix U is called a rotation matrix if det(U) = 1 but this terminology is often used for all orthogonal matrices.

Theorem 1.1.4 (Singular Value Decomposition). Let $A \in \mathbb{R}^{n \times m}$ with $n \geq m$. Then there exist orthogonal matrices $U \in O(n)$ and $V \in O(m)$ such that:

$$A = UDV^{\top}$$
,

where $D \in \mathbb{R}^{n \times m}$ is a "diagonal" matrix with non-negative entries on the diagonal:

The values $\sigma_1, \ldots, \sigma_m$ are called the **singular values** of A. The singular values are always uniquely defined.

Denote the columns of U by u_1, \ldots, u_n and the columns of V by v_1, \ldots, v_m . Note that, by any $i = 1, \ldots, m$,

$$Av_i = UDe_i = \sigma_i Ue_i = \sigma_i u_i$$

and so each v_i is transformed into a scaled version of u_i , i = 1, ..., m. We refer to v_i 's are right singular vectors and to u_i 's as the left singular vectors.

Here \xrightarrow{p} denotes convergence in distribution. You know the definition for scalar random variables: $X_n \stackrel{p}{\to} X$ if, for all $\epsilon > 0$, $\mathbb{P}(|X_n - X| > \epsilon) \to 0$. In other words, $|X_n - X| \stackrel{p}{\to} 0$. Now, given a sequence of random vectors (X_n) we say it converges in probability if $||X_n - X|| \stackrel{p}{\to} 0$, where $||\cdot||$ is the Euclidean distance. Similarly, for a sequence of random matrices (S_n) , we have $S_n \stackrel{p}{\to} S$ if $||S_n - S||_F \stackrel{p}{\to} 0$, where $\|\cdot\|_F$ is the Frobenius norm.

Defining equation $UU^{\top} = I_m$ implies that $U^{-1} = U^{\top}$ and so $U^{\top}U = I_m$ too.

³ The case $n \leq m$ can be treated analo-

 $\mathbf{0}_n \in \mathbb{R}^n$ is the zero vector and $\mathbf{1}_n \in \mathbb{R}^n$ is the vector of ones.

The singular value decomposition expresses A as a sum of rankone matrices:

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \dots + \sigma_m \mathbf{u}_m \mathbf{v}_m^\top.$$

1.1.5 Spectrum of a symmetric matrix

Let $A \in \mathbb{R}^{m \times m}$ be a square matrix. A non-zero vector $\mathbf{v} \in \mathbb{R}^m$ is called an **eigenvector** of A if there exists a scalar $\lambda \in \mathbb{R}$ such that:

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{1.3}$$

In this case, λ is called an **eigenvalue** of A corresponding to the eigenvector \mathbf{v} .

The matrix A has at most m eigenvalues (counting multiplicities). The eigenvalues are the real roots of the characteristic polynomial $\det(A - \lambda I_m)$.⁴

Denote by \mathbb{S}^m the set of all $m \times m$ symmetric matrices.

Lemma 1.1.5. If $A \in \mathbb{S}^m$, then all its eigenvalues are always real, and the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Since $A \in \mathbb{S}^m$, it is symmetric, so $A = A^{\top}$. Suppose $A\mathbf{v} = \lambda \mathbf{v}$, where $\lambda = a + ib$ with $a, b \in \mathbb{R}$ (i.e., assume for the sake of contradiction that λ could be complex). Recall that the standard inner product in \mathbb{C}^m is $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^m x_i \bar{y}_i$, where \bar{y} is the complex conjugate of y (if y = a + bi then $\bar{y} = a - bi$). If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ then $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y}$ and so

$$\mathbf{v}^{\top} A \mathbf{v} = \langle v, A v \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \| \mathbf{v} \|^2.$$

But, by the symmetry of A,

$$\mathbf{v}^{\top} A \mathbf{v} = (A \mathbf{v})^{\top} \mathbf{v} = \langle A \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \lambda \|\mathbf{v}\|^2.$$

This implies

$$\lambda \|\mathbf{v}\|^2 = \overline{\lambda} \|\mathbf{v}\|^2.$$

Since $\|\mathbf{v}\|^2 \neq 0$, it follows that $\lambda = \overline{\lambda}$, which implies that $\lambda \in \mathbb{R}$. Therefore, all eigenvalues of A are real.

Now, for the orthogonality of eigenvectors corresponding to distinct eigenvalues, let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors corresponding to distinct eigenvalues λ_1 and λ_2 of A. Then

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$
 and $A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2$.

Taking the inner product of the first equation with \mathbf{v}_2 and the second with \mathbf{v}_1 , we get

$$\mathbf{v}_2^{\top} A \mathbf{v}_1 = \lambda_1 \mathbf{v}_2^{\top} \mathbf{v}_1$$
 and $\mathbf{v}_1^{\top} A \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^{\top} \mathbf{v}_2$.

Note that $\mathbf{u}_{m+1}, \dots, \mathbf{u}_n$ do not feature here so they are pretty much irrelevant.

Think about a geometric meaning of this equation.

← Exercise 1.4.7

⁴ We can extend this definition to complex eigenvalues and eigenvectors. The fundamental theorem of algebra tells us that the characteristic polynomial always has *m* complex roots (counting with multiplicities). This is not so important for our course.

$$\mathbb{S}^m = \{ A \in \mathbb{R}^{m \times m} : A = A^\top \}$$

Since *A* is symmetric, $\mathbf{v}_2^{\top} A \mathbf{v}_1 = \mathbf{v}_1^{\top} A \mathbf{v}_2$. Therefore,

$$\lambda_1 \mathbf{v}_2^\top \mathbf{v}_1 = \lambda_2 \mathbf{v}_1^\top \mathbf{v}_2.$$

Since $\lambda_1 \neq \lambda_2$, it must be that $\mathbf{v}_1^\top \mathbf{v}_2 = 0$, so \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. This completes the proof.

This directly gives the following fundamental result.

Theorem 1.1.6 (Spectral Theorem for Symmetric Matrices). *If* $A \in \mathbb{S}^m$, then there exists an orthogonal matrix $U \in O(m)$ and a diagonal matrix $\Lambda \in \mathbb{R}^{m \times m}$ such that:

$$A = U\Lambda U^{\top}$$

where the diagonal entries of Λ , denoted by $\lambda_1, \ldots, \lambda_m$, are the eigenvalues of A. The columns of U, denoted by $\mathbf{u}_1, \dots, \mathbf{u}_m$, are the corresponding eigenvectors of A, i.e.,

$$A\mathbf{u}_i = \lambda_i \mathbf{u}_i$$
 for all $i = 1, \dots, m$.

The spectral theorem provides a full diagonalization of a symmetric matrix, allowing us to express it as a sum of projections onto its eigenvectors:

$$A = \sum_{i=1}^{m} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}.$$

Each term in this sum is a rank-one matrix corresponding to an eigenvalue and its associated eigenvector.

Positive definite matrices and quadratic forms

Every symmetric matrix $A \in \mathbb{S}^p$ defines a quadratic form

$$q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} = \sum_{i,j=1}^{p} A_{ij} x_i x_j.$$

By definition, *A* is called **positive semi-definite (PSD)** if $q(\mathbf{x}) \geq 0$ for all x. If the inequality is strict for all non-zero x, then A is **positive definite (PD)**. The set of PD matrices is denoted by \mathbb{S}^m_+ and the set of PSD matrices is denoted by $\overline{\mathbb{S}}_{+}^{m}$.

Random vectors and matrices 1.2

This section covers the fundamental concepts of random vectors, random matrices, and their associated mean and covariance structures.

Question: In what sense is the matrix $\mathbf{u}_i \mathbf{u}_i^{\top}$ a projection matrix?

Notation $\overline{\mathbb{S}}_{+}^{m}$ suggests that the set of PSD matrices is the Euclidean closure of the set of PD matrices, which is indeed true.

← Exercise 1.4.15

1.2.1 Mean and Covariance

Let $X = (X_1, ..., X_m) \in \mathbb{R}^m$ be a random vector with a probability density function $f(\mathbf{x})$. The expectation (or mean) of a scalar-valued function g(X) is defined as:

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}^m} g(\mathbf{x}) f(\mathbf{x}) \, d\mathbf{x}.$$

We assume that all necessary integrals converge, ensuring that the expectation is finite.

Now, consider a random vector $X = (X_1, ..., X_m) \in \mathbb{R}^m$ or a random matrix $S = (S_{ij}) \in \mathbb{R}^{n \times m}$. When we refer to $\mathbb{E}[X]$ or $\mathbb{E}[S]$, we mean that the expectation is applied element-wise:

$$\mathbb{E}[X] = (\mathbb{E}[X_i])_{i=1}^m, \quad \mathbb{E}[S] = (\mathbb{E}[S_{ii}])_{i,i}.$$

We denote the mean vector of $X \in \mathbb{R}^m$ as:

$$\mu = \mathbb{E}[X] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_m]) = (\mu_1, \dots, \mu_m).$$

The covariance matrix of X, denoted by Σ , is defined as:

$$\Sigma = \operatorname{var}(X) = \mathbb{E}[(X - \mu)(X - \mu)^{\top}].$$

The diagonal elements of Σ represent the variances of the individual components of X:

$$\Sigma_{jj} = \mathbb{E}[(X_j - \mu_j)^2] = \operatorname{var}(X_j),$$

while the off-diagonal elements represent the covariances between the components:

$$\Sigma_{jk} = \mathbb{E}[(X_j - \mu_j)(X_k - \mu_k)] = \text{cov}(X_j, X_k).$$

Recall from Section 1.1.6 the definition of PSD matrices. The covariance matrix Σ is always positive semi-definite. Indeed, for any vector $\mathbf{u} \in \mathbb{R}^m$, we have:

$$\mathbf{u}^{\top} \operatorname{var}(X) \mathbf{u} = \sum_{i,j} u_i u_j \mathbb{E}(X_i - \mu_i)(X_j - \mu_j) = \mathbb{E}[\sum_i u_i (X_i - \mu_i) \sum_j u_j (X_j - \mu_j)] = \mathbb{E}(u^{\top} (X - \mu_i))^2,$$

which is always nonnegative. The covariance matrix Σ is positive definite unless there is a linear combination of the components of X that is degenerate.

Example 1.2.1. Consider a covariance matrix $\Sigma \in \mathbb{S}^m$. Since covariance matrices are symmetric and positive semi-definite, they admit a spectral decomposition:

$$\Sigma = U\Lambda U^{\top}$$
,

where $\Lambda = diag(\lambda_1, ..., \lambda_m)$ contains the eigenvalues (which are non-negative). This decomposition is useful in multivariate statistics, for example, when performing **Principal Component Analysis (PCA)**.

For discrete distributions we can take *f* to be the probability mass function and replace integration with summation.

More generally, for two random vectors $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$, the covariance matrix between X and Y is given by:

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])^{\top}] \in \mathbb{R}^{p \times q}.$$

In particular, the variance of *X* is just the covariance of *X* with itself: var(X) = cov(X, X).

1.2.2 Linearity of Expectation and Bilinearity of Covariance

The following properties of expectation are straightforward but important. They can be verified by checking each coordinate:

Lemma 1.2.2. Let $X \in \mathbb{R}^m$ be a random vector, and $S \in \mathbb{R}^{p \times q}$ be a random matrix. Let $\mathbf{b} \in \mathbb{R}^n$ be a vector and let $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{q \times m}$ be matrices. Then

$$\mathbb{E}[AX + \mathbf{b}] = A\mathbb{E}[X] + \mathbf{b}.$$

Moreover,

$$\mathbb{E}[ASB] = A\mathbb{E}[S]B.$$

Proof. For the first equality, we check it on each coordinate. The *i*-th entry on the left is

$$\mathbb{E}(\sum_{j=1}^m A_{ij}X_j + b_i) = \sum_{j=1}^m A_{ij}\mathbb{E}(X_j) + b_i,$$

which is the same as the *i*-th entry of $A\mathbb{E}[X] + b$ on the right. For the second equality, we see that the (i, j)-th entry of the matrix on the left is

$$\mathbb{E}\left[\sum_{k,l} A_{ik} S_{k,l} B_{l,j}\right] = \sum_{k,l} A_{ik} \mathbb{E}\left[S_{k,l}\right] B_{l,j}$$

with the same conclusion as before.

Lemma 1.2.3. Consider random vectors $X \in \mathbb{R}^p$, $Y \in \mathbb{R}^q$. Then

1.
$$cov(X,Y) = cov(Y,X)^{\top}$$
 (symmetry).

2.
$$cov(X + X', Y) = cov(X, Y) + cov(X', Y)$$
 (additivity).

Moreover, for any matrices $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{m \times q}$

$$cov(AX, BY) = A cov(X, Y)B^{\top}$$

and

$$var(AX) = A var(X)A^{\top}.$$

Exercise 1.2.4. Prove this lemma. Hint: Use the definition of the covariance and Lemma 1.2.2.

1.3 Sample Quantities

We now turn to the sample analogs of the mean and covariance matrix, which are important when working with observed data. Suppose we observe an i.i.d. sample $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^m$. We collect these observed vectors into a data matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$, where each row corresponds to one observation.

Two sample statistics are particularly important: the sample mean and the sample covariance matrix.

1.3.1 Sample Mean

The sample mean vector is defined as:

$$\bar{\mathbf{x}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i = \frac{1}{n} \mathbf{X}^{\top} \mathbf{1}_n,$$

where $\mathbf{1}_n$ is the vector of all ones in \mathbb{R}^n . This vector summarizes the central location of the sample.

1.3.2 Sample Covariance Matrix

The sample covariance matrix is an estimator of the population covariance matrix. It measures the variability and linear relationships between the components of the random vector across the sample. It is defined as:

$$S_n = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}_n) (\mathbf{x}_i - \bar{\mathbf{x}}_n)^\top.$$
 (1.4)

We define the centering matrix as the matrix

$$H = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top}.$$

The matrix H is symmetric, idempotent ($H^2 = H$), and projects any vector in \mathbb{R}^n onto the space orthogonal to the vector $\mathbf{1}_n$. This matrix is used to remove the effect of the sample mean from the data and it gives us a useful alternative formulation of S_n .

← Exercise 1.4.24

Lemma 1.3.1. The sample covariance matrix can be written as:

$$S_n = \frac{1}{n} \mathbf{X}^\top H \mathbf{X}.$$

Proof. The rows of the matrix

$$\mathbf{X} - \mathbf{1}_n \bar{\mathbf{x}}_n^{\top} = \mathbf{X} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top} \mathbf{X} = H \mathbf{X}$$

are precisely $\mathbf{x}_i - \bar{\mathbf{x}}_n$. Using Subsection 1.1.3, we see that S_n defined in (1.4) has a matrix representation $\frac{1}{n}\mathbf{X}^{\top}H^{\top}H\mathbf{X}$, which concludes the proof by the fact that H is symmetric and idempotent.

Exercise 1.3.2. Show that the kernel of H is the span of $\mathbf{1}_n$. Conclude that rank(H) = n - 1.

In statistical software like R, the function scale(X, center = TRUE, scale = FALSE) can be used to center the data matrix \mathbf{X} by subtracting the column means.

Properties of Sample Statistics

Now, suppose that the sample $x_1, \ldots, x_n \in \mathbb{R}^m$ comes from a population with the same distribution as the random vector $X \in \mathbb{R}^m$. As before, we collect the sample as rows in the data matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$. Suppose that $\mathbb{E}[X] = \mu$ and $\text{var}(X) = \Sigma$ are the population mean and covariance, respectively.

We now examine some properties of the sample statistics.

Lemma 1.3.3. The sample mean $\bar{\mathbf{x}}_n$ is an unbiased estimator of the population mean:

$$\mathbb{E}[\bar{\mathbf{x}}_n] = \mu.$$

Proof. By the linearity of expectation:

$$\mathbb{E}[\bar{\mathbf{x}}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \mathbf{x}_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[\mathbf{x}_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu.$$

Next, we compute the variance of the sample mean.

Lemma 1.3.4. The variance of the sample mean is:

$$\operatorname{var}(\bar{\mathbf{x}}_n) = \frac{1}{n} \Sigma.$$

Proof. Since the components of the sample are i.i.d., we can apply the bilinearity of covariance:

$$\operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\right) = \operatorname{cov}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}, \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\right) = \frac{1}{n^{2}}\sum_{i,j}\operatorname{cov}(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{cov}(\mathbf{x}_{i}, \mathbf{x}_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}(\mathbf{x}_{i}) = \frac{1}{n^{2}}\cdot n\Sigma = \frac{1}{n}\Sigma$$

These two lemmas show that $\bar{\mathbf{x}}_n$ is a decent estimator of μ and its distribution quickly concentrates around μ . To show one version of this concentration phenomenon, recall the most basic probabilistic inequality.

Recall that the rank of a matrix is the maximal number of linearly independent row/columns.

Note that $cov(\mathbf{x}_i, \mathbf{x}_j) = 0$ by indepen-

← Exercise 1.4.25

Lemma 1.3.5 (Markov inequality). *If* Z *is a non-negative random variable, then*

$$\mathbb{P}(Z \ge t) \le \frac{\mathbb{E}Z}{t}.$$

Proof. We have⁵

$$t\mathbb{P}(Z \ge t) = \mathbb{E}[t\mathbb{1}(Z \ge t)] \le \mathbb{E}[Z\mathbb{1}(Z \ge t)] \le \mathbb{E}Z,$$

where the last inequality follows because $Z \ge 0$.

Proposition 1.3.6. The sample mean satisfies the following concentration inequality

$$\mathbb{P}(\|\overline{\mathbf{x}}_n - \mu\| \ge t) \le \frac{\operatorname{tr}(\Sigma)}{nt^2}.$$

Proof. Consider $Y = \|\overline{\mathbf{x}}_n - \mu\|$ so that

$$Y^2 = \|\overline{\mathbf{x}}_n - \mu\|^2 = (\overline{\mathbf{x}}_n - \mu)^\top (\overline{\mathbf{x}}_n - \mu) = \operatorname{tr}((\overline{\mathbf{x}}_n - \mu)(\overline{\mathbf{x}}_n - \mu)^\top).$$

We have

$$\mathbb{E} Y^2 \ = \ \text{tr}(\mathbb{E}((\overline{\boldsymbol{x}}_n - \boldsymbol{\mu})(\overline{\boldsymbol{x}}_n - \boldsymbol{\mu})^\top)) \ = \ \text{tr}(\text{var}(\overline{\boldsymbol{x}}_n)) \ = \ \frac{1}{n}\text{tr}(\boldsymbol{\Sigma}).$$

Thus, using the Markov inequality, we get

$$\mathbb{P}(\|\overline{\mathbf{x}}_n - \mu\| \ge t) = \mathbb{P}(Y^2 \ge t^2) \le \frac{\operatorname{tr}(\Sigma)}{nt^2}.$$

This is only a very simple concentration bound which works under minimal assumptions. Much sharper bounds can be found if the distribution of the sample is more structured.

Finally, we consider the bias of the sample covariance matrix.

Lemma 1.3.7. The sample covariance matrix S_n is a biased estimator of the population covariance matrix Σ . Its expectation is:

$$\mathbb{E}[S_n] = \frac{n-1}{n} \Sigma.$$

Proof. Expanding S_n in terms of $\mathbf{x}_i - \mu$ and $\bar{\mathbf{x}}_n - \mu$, we get

$$S_n = \frac{1}{n} \sum_{i=1}^n \left((\mathbf{x}_i - \boldsymbol{\mu}) - (\bar{\mathbf{x}}_n - \boldsymbol{\mu}) \right) \left((\mathbf{x}_i - \boldsymbol{\mu}) - (\bar{\mathbf{x}}_n - \boldsymbol{\mu}) \right)^\top.$$

Expanding this expression, we find:

$$S_n = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^\top - (\bar{\mathbf{x}}_n - \mu) (\bar{\mathbf{x}}_n - \mu)^\top.$$

Taking expectations, we get

$$\mathbb{E}[S_n] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[(\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})^\top] - \mathbb{E}[(\bar{\mathbf{x}}_n - \boldsymbol{\mu})(\bar{\mathbf{x}}_n - \boldsymbol{\mu})^\top].$$

⁵ We use the fact that $\mathbb{E}1\{X \in A\} = \mathbb{P}(X \in A)$

We use the fact that $\mathbb{R} = \mathbb{R}^{1 \times 1}$ and so $(\overline{\mathbf{x}}_n - \mu)^{\top} (\overline{\mathbf{x}}_n - \mu) = \operatorname{tr}((\overline{\mathbf{x}}_n - \mu)^{\top} (\overline{\mathbf{x}}_n - \mu))$. Moreover $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ whenever AB and BA are both well defined.

Since $\mathbb{E}[(\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^\top] = \Sigma$ and $\mathbb{E}[(\bar{\mathbf{x}}_n - \mu)(\bar{\mathbf{x}}_n - \mu)^\top] = \frac{\Sigma}{n}$, we have

$$\mathbb{E}[S_n] = \Sigma - \frac{1}{n}\Sigma = \frac{n-1}{n}\Sigma.$$

Simplifying, we find

$$\mathbb{E}[S_n] = \frac{n}{n-1}\Sigma - \frac{\Sigma}{n-1} = \frac{n-1}{n}\Sigma.$$

This result shows that S_n is a biased estimator of Σ with $\mathbb{E}(S_n \Sigma$) = $-\frac{1}{n}\Sigma$, which is asymptotically negligible.

1.3.4 Correlation and Sample Correlation

In many cases, it is useful to measure the linear relationship between the components of a random vector using the correlation rather than the covariance. The correlation matrix normalizes the covariance matrix so that all diagonal elements are equal to 1.

If Σ is a covariance matrix, we define the diagonal matrix $D_{\Sigma} =$ $\operatorname{diag}(\Sigma_{11},\ldots,\Sigma_{mm})$. The **correlation matrix** R is given by:

$$R = D_{\Sigma}^{-1/2} \Sigma D_{\Sigma}^{-1/2}.$$

The elements of *R* are:

$$R_{ij} = egin{cases} 1 & ext{if } i = j, \ rac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}} & ext{if } i
eq j. \end{cases}$$

The correlation matrix measures the strength of the linear relationship between pairs of variables, with R_{ij} taking values in the range [-1,1]. The value $R_{ij} = 1$ indicates perfect positive correlation, while $R_{ij} = -1$ indicates perfect negative correlation.

The **sample correlation matrix** is defined in the same way as the population correlation matrix, but using the sample covariance matrix S_n instead of Σ . That is, the sample correlation matrix \widehat{R} is given by:

$$\widehat{R} = D_{S_n}^{-1/2} S_n D_{S_n}^{-1/2},$$

where D_{S_n} is the diagonal matrix of the variances of the components in the sample.

The correlation matrix is often preferred over the covariance matrix when the variables have different units or scales, as it provides a dimensionless measure of linear dependence.

← Exercise 1.4.26

1.4 Exercises

In this section we provide some additional exercises that will help you to refresh the basic concepts and practice the new ones.

Exercise 1.4.1. Consider a matrix $A \in \mathbb{R}^{3\times 3}$ and a vector $\mathbf{x} = (1,2,3) \in \mathbb{R}^3$. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}.$$

Compute $A\mathbf{x}$ using both interpretations of matrix-vector multiplication: (i) by taking inner products of rows with \mathbf{x} , and (ii) as a linear combination of the columns of A.

Exercise 1.4.2. Let $\mathbf{x} = (1,2,3) \in \mathbb{R}^3$ and $\mathbf{y} = (4,5,6) \in \mathbb{R}^3$. Compute the matrix $\mathbf{x}\mathbf{y}^{\top}$. Argue why this matrix has rank one. Compute $\operatorname{tr}(\mathbf{x}\mathbf{y}^{\top})$ and $\mathbf{x}^{\top}\mathbf{y}$. Is it a coincidence that these two numbers are equal?

Exercise 1.4.3. Suppose $A = \mathbf{u}\mathbf{v}^{\top}$ is a rank-one matrix where $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$. Show that for any vector $\mathbf{x} \in \mathbb{R}^m$, the vector $A\mathbf{x}$ is a scalar multiple of \mathbf{u} . What does this imply about the image of A?

Exercise 1.4.4. Let $A \in \mathbb{R}^{3 \times 2}$ be the matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 4 & 0 \end{pmatrix}.$$

Compute the singular value decomposition (SVD) of A by finding orthogonal matrices U and V, and a diagonal matrix D such that $A = UDV^{T}$. (Also try to do it in R/Python.)

Exercise 1.4.5. Prove (1.1) by showing that the *i*-th entry of both expressions for $A\mathbf{x}$ is the same. Specifically, verify that the equality holds for each coordinate i = 1, ..., n.

Exercise 1.4.6. Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{x} \in \mathbb{R}^m$. Suppose A represents a linear transformation, and \mathbf{x} is a unit vector ($\|\mathbf{x}\| = 1$). Explain the geometric meaning of the vector $A\mathbf{x}$.

- a) What can you say about Ax if A is orthogonal? (here m = n)
- b) What if A is a diagonal matrix with positive entries?

Exercise 1.4.7. Show that eigenvalues defined in (1.3) can be equivalently characterized as the roots of the characteristic polynomial $\det(A - \lambda I_m)$.

Exercise 1.4.8. Prove (1.2) by expanding both sides of the equation and verifying that the (i,k)-th entries match for each i and k.

Exercise 1.4.9. Let $A \in \mathbb{S}^2$ be the matrix

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}.$$

Compute the eigenvalues and eigenvectors of A by solving the characteristic equation and verify the spectral theorem by expressing A as $A = U\Lambda U^{\top}$, where U is an orthogonal matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues.

Exercise 1.4.10. Let $A \in \mathbb{R}^{n \times m}$. Express the singular values of AA^{\top} and $A^{\top}A$ in terms of the singular values of A.

Exercise 1.4.11. Let $A \in \mathbb{S}^m$ be a symmetric matrix with eigenvalues $\lambda_1,\ldots,\lambda_m$.

- a) Show that the largest eigenvalue of A can be characterized as $\lambda_{max} =$ $\max_{\mathbf{x}:\|\mathbf{x}\|=1} \mathbf{x}^{\top} A \mathbf{x}.$
- b) Using this, prove that $\lambda_{max} \geq \frac{1}{m} tr(A)$.

Exercise 1.4.12. Prove that the covariance matrix Σ is always positive semi-definite. Specifically, show that for any non-zero vector $\mathbf{u} \in \mathbb{R}^m$, $\mathbf{u}^{\top} \Sigma \mathbf{u} \geq 0$. Explain why this result implies that all eigenvalues of a covariance matrix are non-negative.

Exercise 1.4.13. Suppose you have the following data points in \mathbb{R}^2 : (1,2),(2,4),(3,6). Compute the sample mean vector and the sample covariance matrix for this dataset.

Exercise 1.4.14. *Consider the matrix*

$$A \in \mathbb{R}^{5 \times 5} : A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \end{pmatrix}.$$

Use the singular value decomposition (SVD) to find a rank-2 approximation of A. Express this approximation as a sum of two rank-one matrices.

Exercise 1.4.15. Show that $A \in \mathbb{S}^m$ is positive definite if and only if all its eigenvalues are strictly positive. Hint: You can use Theorem 1.1.6.

Exercise 1.4.16. Let $A \in \mathbb{S}^m_+$ be a symmetric positive definite matrix with eigenvalues $\lambda_1, \ldots, \lambda_m$.

- a) Prove that adding a small perturbation ϵI (where I is the identity matrix and $\epsilon > 0$) to A preserves positive definiteness.
- b) How do the eigenvalues of $A + \epsilon I$ relate to those of A?

Exercise 1.4.17. An antisymmetric matrix is a square matrix whose transpose equals its negative (i.e., $A^{\top} = -A$). Let $A \in \mathbb{R}^{m \times m}$ be an antisymmetric matrix, show that

- $I_m A$ and $I_m + A$ are nonsingular matrices
- $(I_m A)^{-1}(I_m + A)$ is an orthogonal matrix.

Exercise 1.4.18. Suppose $A, B \in \mathbb{S}_{+}^{m}$. Show that (i) $A + B \in \mathbb{S}_{+}^{m}$, (ii) for every a, b > 0, $B(aA + bB)^{-1}A \in \mathbb{S}_{+}^{m}$.

Exercise 1.4.19. Prove that the eigenvalues of an idempotent matrix are either 0 or 1.

Exercise 1.4.20. Show that $\mathbf{X} \in \mathbb{R}^{n \times m}$ is such that $\mathbf{X}^{\top}\mathbf{X}$ is invertible, then the eigenvalues of $\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ are either 0 or 1.

Exercise 1.4.21. Consider the power series for the real exponential function, given by

$$e^x = \sum_{k>0} \frac{x^k}{k!}$$
.

For a symmetric matrix $A \in \mathbb{S}^m$, we want to apply the same idea to compute " e^{A} " as

$$e^A := \sum_{k>0} \frac{A^k}{k!} = I_m + A + \frac{A^2}{2!} + \cdots$$

- 1. Use the spectral decomposition of A to find a simple expression for A^k in terms of the spectral decomposition of A.
- 2. Use the previous point to come up with a simple simple expression for e^A in terms of the spectral decomposition of A.
- 3. Compute e^A for

$$A = \begin{bmatrix} 2.2 & 0.4 \\ 0.4 & 2.8 \end{bmatrix}.$$

Exercise 1.4.22. Show that if the eigenvalues of a symmetric matrix $A \in \mathbb{S}^m$ are $\lambda_1, \ldots, \lambda_m$, then for any $k \in \mathbb{N}$, the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_m^k$. If A is invertible (i.e., all $\lambda_i \neq 0$), the same result holds for all integer powers $k \in \mathbb{Z}$.

Exercise 1.4.23. Let $X \in \mathbb{R}^{n \times m}$. Show that the matrix $X^{\top}X$ has rank less than or equal to n. Conclude that it cannot be PD if n < m.

Exercise 1.4.24. Show that the matrix $H = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top}$ is symmetric, idempotent $(H^2 = H)$, and projects any vector in \mathbb{R}^n onto the space orthogonal to the vector $\mathbf{1}_n$.

Exercise 1.4.25. The mean squared error (MSE) of the sample mean is defined as MSE = $\mathbb{E} \|\bar{x}_n - \mu\|^2$. Show that if we allow the underlying dimension m grow together with n then the MSE may not be negligible.

Exercise 1.4.26. Prove that the correlation matrix R satisfies $R_{ij} \in [-1,1]$ for all i, j. Hint: One idea is to use the fact that R is positive semidefinite.

Exercise 1.4.27. *Show that if* Y = aX + b *then* $corr(X, Y) = \pm 1$.

Exercise 1.4.28. Consider the random vector $X = (X_1, X_2, X_3, X_4)$ with the following covariance matrix

$$\Sigma = \begin{bmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix}.$$

Let the random vector $Y = (Y_1, Y_2, Y_3)$ be

$$Y_1 = X_1 - X_2$$
, $Y_2 = X_1 + X_2 - 2X_3$, $Y_3 = X_1 + X_2 + X_3 - 3X_4$.

- (a) Compute var(Y).
- (b) Which components of Y are uncorrelated?

Exercise 1.4.29. Let $X \in \mathbb{R}^m$ be a random vector with mean vector μ and covariance matrix Σ , also let $A \in \mathbb{R}^{m \times m}$ be a fixed matrix. Prove that

$$\mathbb{E}(X^{\top}AX) = \operatorname{tr}(A\Sigma) + \mu^{\top}A\mu.$$

Multivariate Normal Distribution

Multivariate normal distribution is the most important distribution in multivariate statistics. Here we give a relatively streamlined treatment. If you are interested in more details, see Chapter 4 in ¹.

2.1 Definition and basic properties

The multivariate normal distribution is fundamental in multivariate statistics due to several key reasons:

- 1. It is highly tractable: closed under linear transformations, conditioning, and marginalization.
- 2. It provides a good approximation for sample distributions via the Central Limit Theorem.
- 3. It frequently arises naturally in the modelling of physical phenomena. See, for example, the work of Gauß in the context of measurement errors, the work of Einstein on Brownian motion, Galton board, and many other examples.

As a result, the multivariate Gaussian distribution appears in many generative models, such as (Bayesian) linear regression, Gaussian Mixture Models, Probabilistic Principal Component Analysis (PPCA), Factor Analysis, Linear Dynamical Systems, Gaussian Processes, Gaussian Conditional Random Fields, autoencoders, etc.

2.1.1 Recall Univariate Gaussian

Recall that $X \sim N(\mu, \sigma^2)$ has the density

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}, \quad x \in \mathbb{R}.$$

If $X \sim N(\mu, \sigma^2)$ then $\mathbb{E}X = \mu$ and $\text{var}(X) = \sigma^2$. If $X_j \sim N(\mu_j, \sigma_j^2)$ for $j = 1, \dots, m$ are independent, then the vector

If $X_j \sim N(\mu_j, \sigma_j^2)$ for j = 1, ..., m are independent, then the vector $X = (X_1, ..., X_m)$ has the density² for $\mathbf{x} = (x_1, ..., x_m)$

¹ Kanti V Mardia, John T Kent, and Charles C Taylor. *Multivariate analysis*, volume 88. John Wiley & Sons, 2024

² Recall that if *X* has independent entries then its density is the product of densities of the individual entries.

$$f_X(\mathbf{x}) \ = \ \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2}\frac{(x_j-\mu_j)^2}{\sigma_j^2}} \ = \ \frac{1}{(2\pi)^{m/2}} (\det(\Sigma))^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\mu)^\top \Sigma^{-1}(\mathbf{x}-\mu)}, \qquad \mathbf{x} \in \mathbb{R}^m,$$

where $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_m^2)$. Here we used the fact that the determinant of a diagonal matrix is simply the products of its diagonal entries.

2.1.2 Definition of Multivariate Normal

The vector $X = (X_1, ..., X_m)$ is said to have a multivariate normal distribution with mean vector $\mu \in \mathbb{R}^m$ and covariance matrix $\Sigma \in \mathbb{S}_+^m$ if it has the density

$$f_X(\mathbf{x}) = \frac{1}{(2\pi)^{m/2}} (\det(\Sigma))^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)}.$$
 (2.1)

We denote this distribution by $N_m(\mu, \Sigma)$. The random vector $Z \sim N_m(\mathbf{0}, I_m)$ is called standard normal and its density if

$$\phi(z) = \frac{1}{(2\pi)^{m/2}} e^{-\frac{1}{2}||z||^2}.$$

It is extremely useful to think about any multivariate normal distribution as an affine transformation of the standard normal distribution.

Proposition 2.1.1. *If* $Z \sim N_m(\mathbf{0}, I_m)$ *then* $X = \mu + \Sigma^{1/2}Z \sim N_m(\mu, \Sigma)$.

Proof. Recall the formula for the change of variables: If Z is a random vector with density p_z and X = G(Z), with G bijective and differentiable, then the density of X is

$$p_x(\mathbf{x}) = p_z(G^{-1}(\mathbf{x})) | \det \nabla G^{-1}|.$$

We apply this in our situation, where $G(z) = \mu + \Sigma^{1/2}z$ and $G^{-1}(\mathbf{x}) = \Sigma^{-1/2}(\mathbf{x} - \mu)$. In this case $\nabla G^{-1} = \Sigma^{-1/2}$ and so

$$p_x(\mathbf{x}) = \phi(\Sigma^{-1/2}(\mathbf{x} - \mu))(\det \Sigma)^{-1/2},$$

which gives exactly the formula in (2.1).

It is easy to check that if $X \sim N_m(\mu, \Sigma)$ then

$$\mathbb{E}X = \mu$$
 and $\operatorname{var}(X) = \Sigma$.

This could be derived by computing the corresponding integrals, e.g. $\mathbb{E}X = \int_{\mathbb{R}^m} \mathbf{x} f_X(\mathbf{x}) d\mathbf{x}$. However, working with Gaussian distributions we should get accustomed to more algebraic proofs. For example, show first that if $Z \sim N_m(\mathbf{0}, I_m)$ then $\mathbb{E}Z = \mathbf{0}$ and $\mathrm{var}(Z) = I_m$, which can be directly inferred from the univariate result and by independence of the components of Z. To conclude the general result, we can then use Lemma 1.2.2, Lemma 1.2.3, and Proposition 2.1.1.

Note that $||z||^2 = z^\top z$.

← Exercise 2.7.2

Figure 2.1: Contour plot of the twodimensional density of the Gaussian distribution with mean (0,0) and correlation $\rho=0.6$.

2.1.3 Geometric Interpretation

The contours of the density f_X in (2.1) are ellipsoids³ (c.f. Figure 2.1.2) defined by the set of points x such that

$$(\mathbf{x} - \mathbf{u})^{\top} \Sigma^{-1} (\mathbf{x} - \mathbf{u}) = c^2.$$

To see this explicitly, consider the spectral decomposition $\Sigma = U\Lambda U^{\top}$ so that $\Sigma^{-1} = U\Lambda^{-1}U^{\top}$. Define a new variable $\mathbf{y} = U^{\top}(\mathbf{x} - \mu)$ (an affine change of coordinates by translation and rotation), and then:

$$(\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu) = \mathbf{y}^{\top} \Lambda^{-1} \mathbf{y} = \sum_{i=1}^{m} \frac{y_j^2}{\lambda_j}.$$

Hence, the contours are ellipses aligned with the eigenvectors of Σ , with axis lengths proportional to the square roots of the eigenvalues of Σ .

Mahalanobis Distance 2.1.4

Fix a covariance matrix Σ . An important concept in multivariate normal theory is the Mahalanobis distance

$$\|\mathbf{x} - \mathbf{y}\|_{\Sigma} = \sqrt{(\mathbf{x} - \mathbf{y})^{\top} \Sigma^{-1} (\mathbf{x} - \mathbf{y})}.$$

This distance takes into account the covariance structure of the data.

Proposition 2.1.2. If
$$X \sim N_m(\mu, \Sigma)$$
, then $(X - \mu)^T \Sigma^{-1} (X - \mu) \sim \chi_m^2$.

We leave the proof as an exercise.

Characteristic Function

If *X* is a random variable then the characteristic function of *X* is a function defined by $\phi_X(s) = \mathbb{E}e^{isX}$, where *i* is the imaginary unit $(i^2 = -1)$. For a random vector $X = (X_1, \dots, X_m)$ in \mathbb{R}^m we define the characteristic function as

$$\phi_X(\mathbf{t}) = \mathbb{E}e^{i\mathbf{t}^{\top}X}, \quad \text{where } \mathbf{t} = (t_1, \dots, t_m).$$

One of the important properties of characteristic functions is that they define the underlying probability distribution uniquely.

Recall that the characteristic function of $Z \sim N(0,1)$ is:

$$\phi_Z(s) := \mathbb{E}[e^{isZ}] = e^{-s^2/2}.$$

From this, we can derive the characteristic function for $X = \mu + \sigma Z \sim$ $N(\mu, \sigma^2)$:

$$\phi_X(s) = \mathbb{E}[e^{isX}] = e^{is\mu - \sigma^2 s^2/2}.$$
 (2.2)

³ Recall that an ellipsoid in \mathbb{R}^m is a quadratic surface which, for fixed $\lambda_1, \ldots, \lambda_m, c$, is defined by the equation

$$\frac{y_1^2}{\lambda_1} + \dots + \frac{y_m^2}{\lambda_m} = c^2.$$

If $\Sigma = I_m$, we recover the Euclidean distance.

Recall that χ_m^2 has stochastic representation $Z_1^2 + \ldots + Z_m^2$, where Z_i are i.i.d. N(0,1).

← Exercise 2.7.13

For the multivariate case, let $Z = (Z_1, ..., Z_m) \sim N_m(\mathbf{0}, I_m)$. Then:

$$\phi_Z(\mathbf{t}) = \mathbb{E}[e^{i\mathbf{t}^{\top}Z}] = \prod_{j=1}^m \mathbb{E}e^{it_jZ_j} = \prod_{j=1}^m e^{-\frac{1}{2}t_j^2} = e^{-\frac{1}{2}\|\mathbf{t}\|^2}.$$

Thus, for $X = \mu + \Sigma^{1/2}Z$, we get:

$$\phi_X(\mathbf{t}) = \mathbb{E}e^{i\mathbf{t}^{\top}(\mu + \Sigma^{1/2}Z)} = e^{i\mathbf{t}^{\top}\mu}\mathbb{E}e^{i(\Sigma^{1/2}\mathbf{t})^{\top}Z} = e^{i\mathbf{t}^{\top}\mu}\phi_Z(\Sigma^{1/2}\mathbf{t}) = e^{i\mathbf{t}^{\top}\mu - \frac{1}{2}\mathbf{t}^{\top}\Sigma\mathbf{t}},$$
(2.3)

which gives the formula for the characteristic function of the multivariate normal distribution for general μ and Σ .

2.1.6 Alternative Characterization of the Gaussian distribution

The characteristic function provides an alternative characterization of the multivariate normal distribution. Specifically, we say that $X \sim N_m(\mu, \Sigma)$ if, for every $\mathbf{u} \in \mathbb{R}^m$, the linear combination $\mathbf{u}^\top X \sim N(\mathbf{u}^\top \mu, \mathbf{u}^\top \Sigma \mathbf{u})$.

To prove that this defines the same distribution, let $\phi_X(\mathbf{t})$ denote the characteristic function of the vector X. Since $\mathbf{u}^\top X \sim N(\mathbf{u}^\top \mu, \mathbf{u}^\top \Sigma \mathbf{u})$, by (2.2), for any $\mathbf{u} \in \mathbb{R}^m$, we have:

$$\phi_{\mathbf{u}^{\top}X}(s) = e^{is(\mathbf{u}^{\top}\mu) - \frac{1}{2}(\mathbf{u}^{\top}\Sigma\mathbf{u})s^2}.$$

On the other hand,

This is the crucial observation here.

$$\phi_{\mathbf{u}^{\top}X}(s) = \mathbb{E}[e^{is\mathbf{u}^{\top}X}] = \phi_X(s\mathbf{u}).$$

Comparing these two expressions, we conclude that $\phi_X(\mathbf{t}) = e^{i\mathbf{t}^\top \mu - \frac{1}{2}\mathbf{t}^\top \Sigma \mathbf{t}}$ as in (2.3), which proves the claim.

2.2 Linear Transformation and Marginal Distribution

By Proposition 2.1.1, if $Z \sim N_m(\mathbf{0}, I_m)$ then $\mu + \Sigma^{1/2} Z \sim N_m(\mu, \Sigma)$. In this section, we generalize this result. More generally, for any matrix $A \in \mathbb{R}^{p \times m}$ and vector $b \in \mathbb{R}^p$, if $X \sim N_m(\mu, \Sigma)$, then the linear transformation AX + b is distributed as:

$$AX + b \sim N_p(A\mu + b, A\Sigma A^{\top}).$$
 (2.4)

This again follows easily by using the characteristic function. Let Y = AX + b then

$$\phi_Y(\mathbf{s}) = \mathbb{E}e^{i\mathbf{s}^\top (AX+b)} = e^{i\mathbf{s}^\top b}\phi_X(A^\top \mathbf{s}) = e^{i\mathbf{s}^\top (A\mu+b) - \frac{1}{2}\mathbf{s}^\top A\Sigma A^\top \mathbf{s}},$$

which is the characteristic function of the Gaussian distribution with mean $A\mu + b$ and covariance $A\Sigma A^{\top}$.

Consider now a subvector $X' = (X_1, ..., X_p)$ of the vector X = $(X_1, \ldots, X_p, \ldots, X_m)$ with p < m. We have X' = AX where A = $[I_p|\mathbf{0}_{p imes(m-p)}]\in\mathbb{R}^{p imes m}$, where $\mathbf{0}_{p imes(m-p)}$ denotes the matrix of zeros with p rows and m - p columns. Using (2.4), we get that X' has Gaussian distribution with mean $\mu' = A\mu$ and covariance $\Sigma' =$ $A\Sigma A^{\top}$. Note that $\mu' = (\mu_1, \dots, \mu_p)$ and Σ' is the submatrix of Σ corresponding to rows/columns in $\{1, \ldots, p\}$.

More generally, for any subset $I \subseteq \{1, ..., p\}$ denote by $X_I =$ $(X_i)_{i \in I}$ the subvector of X with coordinates indexed by I. Similarly, by $\Sigma_{I,I}$ denote the submatrix of Σ with rows/columns in I. We get the following result.

Proposition 2.2.1. *Suppose* $X \sim N_m(\mu, \Sigma)$ *and let* $I \subseteq \{1, ..., m\}$ *. Then* the distribution of X_I is Gaussian with mean μ_I and covariance $\Sigma_{I,I}$.

We now discuss an important result regarding independence. Recall that if $X_i \perp \!\!\! \perp X_j$ then $cov(X_i, X_j) = 0$. The reverse conclusion is typically not true but it is true for multivariate Gaussian distributions. Indeed, suppose $X \sim N_m(\mu, \Sigma)$ and suppose that $\Sigma_{ij} = 0$ for some i, j. By Proposition 2.2.1, the marginal distribution of (X_i, X_i) is Gaussian with mean (μ_i, μ_i) and covariance

$$\Sigma_{I,I} \; = \; egin{bmatrix} \Sigma_{ii} & 0 \ 0 & \Sigma_{jj} \end{bmatrix}.$$

Since $\Sigma_{I,I}$ is diagonal, so is its inverse, and so the joint density of (X_i, X_j) factorizes, showing that $X_i \perp \!\!\! \perp X_j$. Indeed, this density is simply

$$f_{ij}(x_i, x_j) = \frac{1}{2\pi \sqrt{\sum_{ii} \sum_{ji}}} e^{-\frac{1}{2\sum_{ii}} (x_i - \mu_i)^2 - \frac{1}{2\sum_{jj}} (x_j - \mu_j)^2} = \left(\frac{1}{\sqrt{2\pi \sum_{ii}}} e^{-\frac{1}{2\sum_{ii}} (x_i - \mu_i)^2}\right) \left(\frac{1}{\sqrt{2\pi \sum_{jj}}} e^{-\frac{1}{2\sum_{jj}} (x_j - \mu_j)^2}\right).$$

More generally, we have the following result:

Lemma 2.2.2. Suppose $X \sim N_m(\mu, \Sigma)$. Then $AX \perp \!\!\! \perp BX$ if and only if $A\Sigma B^{\top} = 0.$

The proof is left as an exercise.

← Exercise 2.7.16

Conditional Distribution and Conditional independence

In the previous section we saw that Gaussian distributions are closed under taking margins. In this section we show that they are also closed under conditioning. We then discuss conditional independence in Gaussian distributions.

← Exercise 2.7.15

2.3.1 Conditional distribution

Suppose $X \sim N_m(\mu, \Sigma)$. Split $X = (X_A, X_B)$ into a p-dimensional subvector X_A and a (m-p)-dimensional subvector X_B . This induces corresponding splits in the mean vector $\mu = (\mu_A, \mu_B)$ and the covariance matrix:

$$\Sigma = egin{bmatrix} \Sigma_{A,A} & \Sigma_{A,B} \ \Sigma_{B,A} & \Sigma_{B,B} \end{bmatrix}.$$

Theorem 2.3.1. The marginal distribution of X_A is Gaussian with mean μ_A and covariance $\Sigma_{A,A}$. The conditional distribution of $X_B|X_A=x_A$ is Gaussian with mean:

$$\mathbb{E}(X_B \mid X_A = x_A) = \mu_B + \Sigma_{B,A} \Sigma_{A,A}^{-1} (x_A - \mu_A),$$

and covariance:

$$\operatorname{var}(X_B|X_A = x_A) = \Sigma_{B,B} - \Sigma_{B,A} \Sigma_{A,A}^{-1} \Sigma_{A,B}.$$

Proof. The first part was proved in Proposition 2.2.1. For the second part, define the new variable $X_{B\cdot A}:=X_B-\Sigma_{B,A}\Sigma_{A,A}^{-1}X_A$, which is Gaussian as an affine function of a Gaussian vector. Computing the expectation and the covariance matrix, it can be shown that

$$X_{B\cdot A} \sim N_{m-p}(\mu_B - \Sigma_{B,A}\Sigma_{A,A}^{-1}\mu_A, \Sigma_{B,B} - \Sigma_{B,A}\Sigma_{A,A}^{-1}\Sigma_{A,B}).$$

Note that

$$cov(X_{B\cdot A}, X_A) = cov(X_B, X_A) - \Sigma_{B,A} \Sigma_{A,A}^{-1} \Sigma_{A,A} = \Sigma_{B,A} - \Sigma_{B,A} = 0$$

and so $X_{B\cdot A} \perp \!\!\! \perp X_A$. Thus, we can decompose X_B as a sum of two independent terms

$$X_B = X_{B \cdot A} + \Sigma_{21} \Sigma_{11}^{-1} X_A.$$

In particular, given $X_A = x_A$, the conditional distribution of X_B is Gaussian with mean and covariance as stated in the theorem.

2.3.2 Conditional Independence

Let $A = \{i, j\}$ and consider splitting the vector X into X_A and X_B , where $B = \{1, ..., m\} \setminus A$. By Theorem 2.3.1, the conditional covariance matrix of X_A given X_B is:

$$\Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA} \in \mathbb{S}^2_+.$$

The variables X_i and X_j are conditionally independent given the variables in X_B if and only if the conditional covariance matrix has a zero off-diagonal entry. Equivalently, we have $\Sigma_{ij} = \Sigma_{iB} \Sigma_{BB}^{-1} \Sigma_{Bj}$. This leads to several useful equivalent conditions:

For example, $X = (X_1, X_2, X_3, X_4)$, $A = \{1,3\}$, $B = \{2,4\}$ so that $X_A = (X_1, X_3)$ and $X_B = (X_2, X_4)$.

Proposition 2.3.2. *Suppose* $X \sim N(0, \Sigma)$. *Fix* $i, j \in \{1, ..., m\}$ *and let* $B = \{1, ..., m\} \setminus \{i, j\}$. The following conditions are equivalent:

- (i) $X_i \perp \!\!\!\perp X_i | X_B$,
- (ii) $\Sigma_{ij} = \Sigma_{iB}\Sigma_{BB}^{-1}\Sigma_{Bj}$,
- (iii) $K_{ij} = 0$, where $K = \Sigma^{-1}$ is the precision matrix.
- (iv) The linear regression coefficient vector $\beta_{i \cdot B \cup \{j\}} = \sum_{i, B \cup \{j\}} \sum_{B \cup \{i\}, B \cup \{j\}}^{-1}$ has a zero entry in the j-th index.

We are not going to prove this in class but the proof is relatively elementary with a bit of annoying bookkeeping. We provide it for your convenience.

Proof. The equivalence of (i) and (ii) is clear from the discussion above. For the other implications we rely on standard formulas for block matrices. To show equivalence with (iii) we use the formula for the inverse of a block matrix that we develop independently in Section 2.3.3. From the formula it follows that

$$K_{A,A} = (\Sigma_{A,A} - \Sigma_{A,B} \Sigma_{B,B}^{-1} \Sigma_{B,A})^{-1}.$$
 (2.5)

We have (ii) if and only if $\Sigma_{A,A} - \Sigma_{A,B} \Sigma_{B,B}^{-1} \Sigma_{B,A}$ is diagonal. By (2.5), this is equivalent to $K_{A,A}$ being diagonal, which is equivalent to (iii). For the equivalence between (iii) and (iv) use Proposition 2.3.3 again to conclude that

$$K_{i,B\cup\{j\}} = -K_{ii}\Sigma_{i,B\cup\{j\}}(\Sigma_{B\cup\{j\},B\cup\{j\}})^{-1}.$$

Since $K_{ii} > 0$, then $K_{ij} = 0$ if and only if the j-th entry of $\Sigma_{i,B \cup \{j\}} \Sigma_{B \cup \{j\},B \cup \{j\}}^{-1}$ is zero.

The relationship between conditional independence and zeros in the precision matrix *K* is fundamental in **Gaussian graphical models**, which we will cover later in this course; see Chapter 7.

Partitioned Inverse* 2.3.3

Let $X \sim N(0, \Sigma)$ and consider the partition of X into two subvectors X_A and X_B . Set

$$K = \Sigma^{-1} = \begin{bmatrix} K_{A,A} & K_{A,B} \\ K_{B,A} & K_{B,B} \end{bmatrix},$$

where *K* is the precision matrix.

Proposition 2.3.3. We have the following formulas for the blocks of the *precision matrix in terms of the blocks of* Σ *:*

$$K_{A,A} = (\Sigma_{A,A} - \Sigma_{A,B} \Sigma_{B,B}^{-1} \Sigma_{B,A})^{-1},$$

$$K_{A,B} = -K_{A,A} \Sigma_{A,B} \Sigma_{B,B}^{-1},$$

$$K_{B,B} = \Sigma_{B,B}^{-1} + \Sigma_{B,B}^{-1} \Sigma_{B,A} K_{A,A} \Sigma_{A,B} \Sigma_{B,B}^{-1}$$

Proof. We verify that these formulas satisfy $\Sigma K = I_m$. For instance, consider multiplying the first block row of Σ by the first block column of *K*:

$$\Sigma_{A,A}K_{A,A} + \Sigma_{A,B}K_{B,A} = \Sigma_{A,A}K_{A,A} - \Sigma_{A,B}\Sigma_{B,B}^{-1}\Sigma_{B,A}K_{A,A} = (\Sigma_{A,A} - \Sigma_{A,B}\Sigma_{B,B}^{-1}\Sigma_{B,A})K_{A,A} = I.$$

Similarly, multiplying the first block row of Σ by the second block column of K gives:

$$\Sigma_{A,A}K_{A,B} + \Sigma_{A,B}K_{B,B} = -\Sigma_{A,A}K_{A,A}\Sigma_{A,B}\Sigma_{B,B}^{-1} + \Sigma_{A,B}\Sigma_{B,B}^{-1} + \Sigma_{A,B}\Sigma_{B,B}^{-1}\Sigma_{B,A}K_{A,A}\Sigma_{A,B}\Sigma_{B,B}^{-1}$$

$$= -(\Sigma_{A,A} - \Sigma_{A,B}\Sigma_{B,B}^{-1}\Sigma_{B,A})K_{A,A}\Sigma_{A,B}\Sigma_{B,B}^{-1} + \Sigma_{A,B}\Sigma_{B,B}^{-1}$$

$$= 0.$$

The remaining cases can be checked similarly.

This partitioned inverse result is useful in various scenarios, such as Gaussian graphical models and Bayesian networks. We already saw an application in the previous subsection.

Estimation of Parameters

Suppose we have data $\mathbf{X} \in \mathbb{R}^{n \times m}$, where the rows $\mathbf{x}_i \in \mathbb{R}^m$ are i.i.d. samples from $N_m(\mu, \Sigma)$. A natural way to estimate μ and Σ is through the Maximum Likelihood Estimator (MLE). In this section, we show that the MLEs $\widehat{\mu}$ and $\widehat{\Sigma}$ satisfy:

$$\widehat{\mu} = \bar{\mathbf{x}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i,$$

and

$$\widehat{\Sigma} = S_n = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}_n) (\mathbf{x}_i - \bar{\mathbf{x}}_n)^{\top}.$$

The Likelihood Function

Let $f(\mathbf{x})$ denote the density of $N_m(\mu, \Sigma)$ as given in (2.1). After taking logs, we get

$$\log f(\mathbf{x}) = -\frac{m}{2}\log(2\pi) + \frac{1}{2}\log\det(\Sigma^{-1}) - \frac{1}{2}(\mathbf{x} - \mu)^{\top}\Sigma^{-1}(\mathbf{x} - \mu).$$

The log-likelihood of the data $x_1, ..., x_n$ is:

$$\ell(\mu, \Sigma) = \sum_{i=1}^{n} \log f(\mathbf{x}_i) = \operatorname{const} + \frac{n}{2} \log \det(\Sigma^{-1}) - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^{\top} \Sigma^{-1} (\mathbf{x}_i - \mu).$$

2.4.2 Optimize over u

Using basic calculus, the derivative of the log-likelihood with respect to μ is:4

$$\nabla_{\mu}\ell(\mu,\Sigma) = \Sigma^{-1}\left(\sum_{i=1}^{n} \mathbf{x}_{i} - n\mu\right).$$

Setting this equal to zero gives the MLE for μ :

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i = \bar{\mathbf{x}}_n.$$

We get this result irrespective of what Σ is as the only thing we used is that Σ is invertible⁵.

2.4.3 Optimize over Σ

Knowing that $\hat{\mu} = \bar{\mathbf{x}}_n$, we now optimize $\ell(\bar{\mathbf{x}}_n, \Sigma)$ over Σ . For this, we first rewrite $\ell(\bar{\mathbf{x}}_n, \Sigma)$ in a suitable form. It is convenient to list the following useful observation.

Useful observation: We know that the trace satisfies tr(AB) = tr(BA)whenever both multiplications are well defined. In particular, for any two $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ we have

$$\mathbf{x}^{\top}\mathbf{y} = \operatorname{tr}(\mathbf{x}^{\top}\mathbf{y}) = \operatorname{tr}(\mathbf{y}\mathbf{x}^{\top}),$$

where $\mathbf{y}\mathbf{x}^{\top} \in \mathbb{R}^{m \times m}$. Using this, we get

$$\begin{split} \ell(\bar{\mathbf{x}}_n, \Sigma) &= \operatorname{const} + \frac{n}{2} \log \det(\Sigma^{-1}) - \frac{1}{2} \sum_{i=1}^{n} \operatorname{tr}((\mathbf{x}_i - \bar{\mathbf{x}}_n)(\mathbf{x}_i - \bar{\mathbf{x}}_n)^{\top} \Sigma^{-1}) \\ &= \operatorname{const} + \frac{n}{2} \log \det(\Sigma^{-1}) - \frac{n}{2} \operatorname{tr}(\frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}_n)(\mathbf{x}_i - \bar{\mathbf{x}}_n)^{\top} \Sigma^{-1}) \\ &= \operatorname{const} + \frac{n}{2} \log \det(\Sigma^{-1}) - \frac{n}{2} \operatorname{tr}(S_n \Sigma^{-1}), \end{split}$$

where $S_n = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}_n) (\mathbf{x}_i - \bar{\mathbf{x}}_n)^{\top}$ is the sample covariance

To optimize $\ell(\widehat{\mu}, \Sigma)$ over Σ , we rewrite the log-likelihood in terms of $K = \Sigma^{-1}$:

$$\ell(\widehat{\mu}, K) = \text{const} + \frac{n}{2} \log \det(K) - \frac{n}{2} \text{tr}(S_n K). \tag{2.6}$$

We are not going to show this formally here but this function is a strictly concave function of $K = \Sigma^{-1}$. In particular, every local maximum is a global maximum and if a global optimum exists, it

Useful observation: Another useful observation is that for any two $A, B \in \mathbb{S}^m$

$$\operatorname{tr}(AB) = \sum_{i,j=1}^{m} A_{ij} B_{ij}.$$

⁴ Verify that
$$\nabla_{\mathbf{y}}(\mathbf{b}^{\top}\mathbf{y}) = \mathbf{b}$$
 and $\nabla_{\mathbf{y}}\mathbf{y}^{\top}K\mathbf{y} = 2K\mathbf{y}$.
 \leftarrow Exercise 2.7.19

 5 Recall that $\ker(A) = \{\mathbf{x} : A\mathbf{x} = \mathbf{0}\}$ and A is invertible if and only if ker(A) =**{0**}.

This can be checked easily directly as $\operatorname{tr}(\mathbf{x}\mathbf{y}^{\top}) = \sum_{i} (\mathbf{x}\mathbf{y}^{\top})_{ii} = \sum_{i} x_{i} y_{i} = \mathbf{x}^{\top} \mathbf{y}.$

Note that the trace is a linear function: tr(aA + bB) = a tr(A) + b tr(B).

In particular, this defines an inner product on S^m , which is called the trace inner product⁶.

Using this, we easily check that $\nabla_K \operatorname{tr}(S_n K) = S_n$. It can be also shown that $\nabla_K \log \det(K) = K^{-1} = \Sigma$; for a formal derivation check p. 641 here. Thus, taking the derivative of $\ell(\bar{\mathbf{x}}_n, K)$ with respect to K and setting it equal to zero gives the MLE for Σ : $\widehat{\Sigma} = S_n$ as long as S_n is positive definite. In the case when n < m, the matrix S_n cannot be positive definite⁷ and so the MLE does not exist.

2.4.4 Independence of $\bar{\mathbf{x}}_n$ and S_n

If $\mathbf{x}_1, \dots, \mathbf{x}_n$ is a sample from $N(\mu, \Sigma)$ then $\bar{\mathbf{x}}_n \sim N(\mu, \frac{1}{n}\Sigma)$ and the sample covariance matrix S_n is another random quantity of interest.

Proposition 2.4.1. In the Gaussian sample, the sample mean $\bar{\mathbf{x}}_n = \frac{1}{n}\mathbf{X}^{\top}\mathbf{1}_n$ and the sample covariance $S_n = \frac{1}{n}\mathbf{X}^{\top}H\mathbf{X}$ are independent.

Proof. Since $S_n = \frac{1}{n} \mathbf{X}^\top H \mathbf{X} = \frac{1}{n} (H \mathbf{X})^\top (H \mathbf{X})$, it is enough to show that $\bar{\mathbf{x}}_n$ is independent of $H \mathbf{X}$. Since both $\bar{\mathbf{x}}_n$ and $H \mathbf{X}$ have Gaussian distributions, independence can be checked by computing the covariance. Since the k-th row of $H \mathbf{X}$ is $\mathbf{x}_k - \bar{\mathbf{x}}_n$ we check

$$\operatorname{cov}(\bar{\mathbf{x}}_n, \mathbf{x}_k - \bar{\mathbf{x}}_n) = \operatorname{cov}(\bar{\mathbf{x}}_n, \mathbf{x}_k) - \operatorname{var}(\bar{\mathbf{x}}_n) = \frac{1}{n} \operatorname{var}(\mathbf{x}_k) - \frac{1}{n} \Sigma = 0.$$

⁶ In the literature it is common to denote $\langle A, B \rangle := \operatorname{tr}(AB)$. More generally, if $A, B \in \mathbb{R}^{n \times m}$ then $\operatorname{tr}(AB^{\top})$ also defines an inner product.

 ${}^{7}S_{n} = \frac{1}{n}\mathbf{X}^{\top}H\mathbf{X}$ has rank at most n and n < m.

Recall
$$H = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top} \in \overline{\mathbb{S}}_+^m$$
 and $H^2 = H$

2.5 Hotelling's T² Distribution*

Hotelling's T^2 distribution is a multivariate extension of the univariate Student's t-distribution. It is particularly useful in testing hypotheses about the mean in a single population or equality of means in two multivariate populations.

2.5.1 Testing equality of means in two univariate populations

Recall that if you have a pair of samples x_i , $i=1,\ldots,n$ from $N(\mu_x,\sigma^2)$ and y_i , $i=1,\ldots,m$ from $N(\mu_y,\sigma^2)$ then we can test $H_0:\mu_x=\mu_y$ using the two-sample t-test. To see this, define

$$S = \frac{1}{n+m-2} \left[\sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{j=1}^{m} (y_j - \bar{y})^2 \right] = \frac{n-1}{n+m-2} S_1 + \frac{m-1}{n+m-2} S_2$$

to be the pooled sample variance estimator of σ^2 . Define the test statistic

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{S(\frac{1}{n} + \frac{1}{m})}}.$$
 (2.7)

To analyze its distribution, we first formulate the following lemma.

Note that we assume that the variance in both distributions is the same.

Lemma 2.5.1. If x_1, \ldots, x_n is a random sample from $N(\mu, \sigma^2)$ then $\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2 \sim \chi_{n-1}^2$

Proof. Recall that $H = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n$ is a symmetric PSD matrix satisfying $H^2 = H$. Let $\mathbf{x} = (x_1, \dots, x_n)$ and recall that $H\mathbf{x}$ has entries $x_i - \bar{x}$. It follows that $\sum_{i=1}^n (x_i - \bar{x})^2 = \mathbf{x}^\top H \mathbf{x}$. Let $H = U \Lambda U^\top$. Since H is a projection matrix, $\Lambda = \Lambda^2$ and so the diagonal entries of Λ are either 0 or 1. Since rank(H) = n - 1 it follows that $\Lambda_{11} = 0$ and $\Lambda_{ii} = 1$ for i = 2, ..., n-1. Define $\mathbf{z} = U^{\top} \mathbf{x}$. Since $\mathbf{x} \sim N_n(\mu \mathbf{1}, \sigma^2 I_n)$, it follows that $\mathbf{z} \sim N_n(\mu U^{\top} \mathbf{1}, \sigma^2 I_n)$. Moreover, $U^{\top} \mathbf{1} = \sqrt{n} \mathbf{e}_1$, where $\mathbf{e}_1 = (1,0,\ldots,0)$. Denote $\mathbf{z}_{n-1} = (z_2,\ldots,z_n)$ obtained from \mathbf{z} by dropping the first coordinate. Then, in particular,

As many proofs in multivariate statistics, this one combines some basic results in linear algebra with properties of the Gaussian distribution.

$$\frac{1}{\sigma}\mathbf{z}_{n-1} \sim N_{n-1}(\mathbf{0}, I_{n-1}).$$

We have

$$\frac{1}{\sigma^2} \mathbf{x}^{\top} H \mathbf{x} = \frac{1}{\sigma^2} \mathbf{z}^{\top} \Lambda \mathbf{z} = \frac{1}{\sigma^2} \mathbf{z}_{n-1}^{\top} \mathbf{z}_{n-1}$$

and we already noted that $\mathbf{z}_{n-1}^{\top}\mathbf{z}_{n-1} \sim \chi_{n-1}^2$.

Proposition 2.5.2. *Under H*₀, the statistic t, defined in (2.7), has t-Student distribution with n + m - 2 degrees of freedom.

Proof. Recall that t-student distribution with *r* degrees of freedom has stochastic representation

$$t_r = \frac{U}{\sqrt{V/r}}$$
 with $U \sim N(0,1)$, $V \sim \chi_r^2$, $U \perp \!\!\! \perp V$.

Recall that $\bar{x} \sim N(\mu_x, \sigma^2/n)$, $\bar{y} \sim N(\mu_y, \sigma^2/m)$ and so, by independence, under H_0

$$\bar{x} - \bar{y} \sim N(0, \sigma^2(\frac{1}{n} + \frac{1}{m}))$$
 and so $U := \frac{\bar{x} - \bar{y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1).$

Define $V = \frac{n+m-2}{\sigma^2}S$ and note that

$$t = \frac{\frac{\bar{x} - \bar{y}}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{1}{\sigma^2} S}} = \frac{U}{\sqrt{\frac{V}{m+n-2}}}.$$

We have

$$V = \frac{n+m-2}{\sigma^2}S = \frac{n-1}{\sigma^2}S_1 + \frac{m-1}{\sigma^2}S_2.$$

By Lemma 2.5.1, $\frac{n-1}{\sigma^2}S_1 \sim \chi^2_{n-1}$ and $\frac{m-1}{\sigma^2}S_2 \sim \chi^2_{m-1}$. Moreover, both these random variables are independent. It follows that $V \sim \chi^2_{m+n-2}$, which concludes the proof.

 $U \perp \!\!\! \perp V$ denotes independence of U, V

2.5.2 Hotelling distribution

The Hotelling distribution describes the behavior of Hotelling's T^2 -statistic, a key tool in multivariate hypothesis testing. It generalizes the Student's t-distribution to the multivariate case and is commonly used to test hypotheses about the mean vector of a multivariate normal population.

Although we do not derive the Hotelling's distributions from the first principles here, we link it to another standard distribution called the **F-distribution**. Recall that if $X_1 \sim \chi_{d_1}^2$ and $X_2 \sim \chi_{d_2}^2$ are two independent chi-squared random variables, then the random variable: $F_{d_1,d_2} = \frac{(X_1/d_1)}{(X_2/d_2)}$ follows an F-distribution with d_1 and d_2 degrees of freedom.

The Hotelling's $T^2(d_1, d_2)$ is a simple rescaling of the F-distribution.

Definition 2.5.3. The Hotelling's distribution $T^2(d_1, d_2)$ satisfies

$$T^2(d_1, d_2) = \frac{d_1 d_2}{d_2 - d_1 + 1} F_{d_1, d_2 - d_1 + 1}.$$

Given a sample $\mathbf{x}_1, \dots, \mathbf{x}_n$ from $N_m(\mu, \Sigma)$ with $n \ge m$ (so that S_n is invertible) define the following statistics:⁸

$$D^2 = (n-1)(\bar{\mathbf{x}}_n - \mu)^{\top} \mathbf{S}_n^{-1}(\bar{\mathbf{x}}_n - \mu),$$

Remark 2.5.4. *Note that* D^2 *is invariant under nonsingular linear transformations* $\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$.

Theorem 2.5.5. *We have* $D^2 \sim T^2(p, n-1)$.

We omit the proof. If you are interested in details, check Corollary 4.5.6 in 9 .

2.5.3 Multivariate Test for Equality of Means

Consider now a sample $\mathbf{x}_1, \dots, \mathbf{x}_n$ from $N_p(\mu_x, \Sigma)$ and a sample $\mathbf{y}_1, \dots, \mathbf{y}_m$ from $N_p(\mu_y, \Sigma)$. We can extend the ideas from the univariate case to define a multivariate test. Let

$$S = \frac{1}{n+m-2} \left[nS_x + mS_y \right],$$

where S_x and S_y are the sample covariance matrices for the two samples¹⁰. Define the test statistic:

$$D^2 = (\bar{\mathbf{x}}_n - \bar{\mathbf{y}}_m)^{\top} S^{-1} (\bar{\mathbf{x}}_n - \bar{\mathbf{y}}_m).$$

Theorem 2.5.6. *Under H*₀ : $\mu_x = \mu_y$, we have

$$\frac{nm}{n+m}D^2 \sim T^2(p, n+m-2).$$

Figure 2.2: The density of F_{d_1,d_2} for different combinations of d_1,d_2 .

⁸ Recall that $(\bar{x}_n - \mu) \perp \!\!\! \perp S_n$.

⁹ Kanti V Mardia, John T Kent, and Charles C Taylor. Multivariate analysis, volume 88. John Wiley & Sons, 2024

¹⁰ Note that *S* is an unbiased estimate of Σ .

For details, if you are interested, see Theorem 4.6.1 in ¹¹.

In practice, we can implement this test in R using the function HotellingsT2(X, Y) in the package ICSNP. Note that the assumption of equal covariance matrices for the two populations can sometimes be problematic, but when the assumption approximately holds, this multivariate test is often more powerful than performing a series of univariate tests.

11 Kanti V Mardia, John T Kent, and Charles C Taylor. Multivariate analysis, volume 88. John Wiley & Sons, 2024

Gaussian Processes in Multivariate Statistics 2.6

Gaussian Processes (GPs) are a powerful tool in statistics and machine learning for modeling continuous, multivariate data. A Gaussian Process is a generalization of the Gaussian distribution over a finite set of points to a distribution over functions. In this section we give only basic definitions and some practical examples. We omit many important computational aspects. Our goal is simply to illustrate that very basic results on the multivariate normal distribution, lead to powerful techniques.

Definition of a Gaussian Process

A Gaussian Process on the set *T* can be defined as follows:

Definition 2.6.1. A Gaussian Process on a set T is a collection of random variables $X_T := (X_t)_{t \in T}$ such that for any $n \in \mathbb{N}$ and any collection of points t_1, \ldots, t_n in T, the vector $(X_{t_1}, \ldots, X_{t_n})$ has a multivariate normal distribution.

Effectively a Gaussian process X_T is defined by specifying the **mean function** $m: T \to \mathbb{R}$ such that $m(t) = \mathbb{E}X_t$ and the kernel function $k : T \times T \to \mathbb{R}$ such that $k(t, t') = \text{cov}(X_t, X_{t'})$.

Although *T* can be pretty much arbitrary, we will assume that it is a metric space; often $T = \mathbb{R}^m$.

The kernel function must be symmetric (k(t,t') = k(t',t)) and it satisfies that for all $n \in \mathbb{N}$ and all $t_1, \ldots, t_n \in T$ the matrix $\Sigma \in \mathbb{S}^n$ defined by $\Sigma_{ij} = k(t_i, t_j)$ is positive definite. Such functions are very well studied in mathematics and their theory is very rich.

The choice of the kernel function k(t, t') plays a crucial role in determining the properties of functions sampled from the GP, such as smoothness and periodicity. Typically the kernel functions $k(\mathbf{x}, \mathbf{x}')$ considered are decreasing functions of the distance ||x - x'|| between x and x'. Roughly speaking, if the kernel function is such that the correlations between points drops slowly with the distance, the realizations of the corresponding Gaussian process will be relatively smooth.

Popular choices include the squared exponential kernel and the Matérn kernel. If $T \subseteq \mathbb{R}^m$ then the exponential kernel is defined as

$$k_{\mathrm{E}}(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left(-\frac{1}{\ell} \|\mathbf{x} - \mathbf{x}'\|\right)$$
,

The exponential kernel generates functions that are not differentiable. This makes it suitable for modeling rough or jagged processes.

Matérn kernel is defined as

$$k_{\mathrm{M}}(\mathbf{x}, \mathbf{x}') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)^{\nu} K_{\nu} \left(\sqrt{2\nu} \frac{\|\mathbf{x} - \mathbf{x}'\|}{\ell} \right),$$

where $\nu > 0$ controls the smoothness of the kernel, $\ell > 0$ is the length scale, controlling the distance over which points are correlated, $\sigma^2 > 0$ is the signal variance, K_{ν} is the modified Bessel function of the second kind of order ν , and $\Gamma(\cdot)$ is the gamma function.

2.6.2 Example: Gaussian Processes for Spatial Data in R

Gaussian Processes are commonly applied in spatial statistics to model observations that are correlated across geographic locations. In this example, we use Gaussian Processes to model temperature data observed at various locations, capturing spatial dependencies across the region.

Suppose we observe temperatures across a grid of spatial locations. We can model the temperature at any given location as a sample from a Gaussian Process with a spatial covariance structure, such as the exponential or Matérn kernel, which are popular choices for spatial modeling.

In this code:

• We set up a grid of $100^2 = 10,000$ locations over $[0,1]^2$.

Figure 2.3: The exponential kernel as a function of $r = \|\mathbf{x} - \mathbf{x}'\|$ for different values of ℓ and $\sigma = 1$.

Figure 2.4: The Matérn kernel as a function of $r = \|\mathbf{x} - \mathbf{x}'\|$ for different choices of the hyperparameters.

Figure 2.5: Simulated Gaussian Process on a 2D grid with the exponential kernel

• We generate spatially correlated temperature data with an exponential covariance function.

In simpler terms, the grid defined points $x_{ij} \in [0,1]^2$ for i,j =1,...,100. Now a big covariance matrix can be constructed whose entries correspond to the covariance between the sites \mathbf{x}_{ii} and \mathbf{x}_{kl} . Now we generate a single distribution from this big 10000-dimensional Gaussian distribution. The resulting simulated temperature distribution is given in Figure 2.5.

Remark 2.6.2. Handling a large Gaussian distribution as described above can be computationally costly, so in practice, the sample is generated entry by entry by leveraging the properties of Gaussian distributions in a smart way.

Next, we use Gaussian Processes to make predictions about the temperature at unobserved locations by fitting a GP model to our simulated data.

On a high level this is quite straightforward.

- 1. Add to the earlier grid any additional points you would like to include in the predictions.
- 2. Using the kernel function, compute the joint distribution of the training and test data.
- 3. Then, using the standard formulas, compute the conditional distribution of the test data given the training data (this is all Gaussian!).

The conditional mean gives you predictions and conditional covariance helps you quantify uncertainty.

In practice, you would also like to learn hyperparameters of the kernel function. This could be done using the maximum likelihood approach. For computational reasons often working with Gaussian Processes, we rely on Bayesian statistics. There are some standard packages to make this more convenient. Consider for example the following code.

```
library(spBayes)
# Fit a Gaussian Process model with the correct covariance model
fit <- spLM(temp ~ 1,</pre>
           coords = as.matrix(locs),
            starting = list("phi" = 1, "sigma.sq" = 1, "tau.sq" = 0.1),
            tuning = list("phi" = 0.1, "sigma.sq" = 0.1, "tau.sq" = 0.1),
            priors = list("phi.Unif" = c(0.01, 1),
                          "sigma.sq.IG" = c(2, 1),
                          "tau.sq.IG" = c(2, 1)),
            cov.model = "exponential", # Specify the covariance model
            n.samples = 1000)
```

In this step:

- We fit a Gaussian Process model to the spatial temperature data using the spLM function from the spBayes package.
- We make predictions at a set of new locations and visualize the GP-based temperature predictions.

2.6.3 Example: Nonparametric regression using GPs*

In machine learning, Gaussian Processes are often used for nonparametric regression. This is outside of scope of this class so we provide this example only to complete the picture but it can be safely omitted.

Consider the following code. Here, unlike in the previous example, we code all relevant formulas from scratch.

```
# Load required libraries
library(MASS) # For multivariate normal sampling
library(ggplot2) # For fancy plotting
# Define a squared exponential (RBF) kernel
rbf_kernel <- function(x, y, length_scale = 1, sigma_f = 1) {</pre>
  sigma_f^2 * exp(-0.5 * (outer(x, y, "-")^2) / length_scale^2)
# Generate training data from noisy sine function
set.seed(42)
n_train <- 10
x_{train} \leftarrow seq(0, 10, length.out = n_train)
y_train <- sin(x_train) + rnorm(n_train, sd = sqrt(0.1))</pre>
# Define test points where predictions are needed
x_{\text{test}} \leftarrow \text{seq}(0, 10, \text{length.out} = 100)
# Compute covariance matrices
length_scale <- 1 # Length scale of the RBF kernel</pre>
sigma_n <- sqrt(0.1) # Noise variance</pre>
K <- rbf_kernel(x_train, x_train, length_scale, sigma_f) + diag(sigma_n^2,</pre>
K_s <- rbf_kernel(x_train, x_test, length_scale, sigma_f)</pre>
K_ss <- rbf_kernel(x_test, x_test, length_scale, sigma_f)</pre>
# Predictive mean and covariance
```

```
K_inv <- solve(K)</pre>
mu_s <- t(K_s) %*% K_inv %*% y_train # Transpose K_s for predictive mean
cov_s <- K_ss - t(K_s) %*% K_inv %*% K_s # Correct covariance calculation
# Sample from the posterior predictive distribution
n samples <- 5
y_samples <- mvrnorm(n_samples, mu_s, cov_s)</pre>
# Create a data frame for the test points and GP predictions
qp_data <- data.frame(x = x_test,GP_Mean = as.vector(mu_s),True_Function =</pre>
\rightarrow sin(x_test))
# Add the GP samples to the data frame
gp\_samples\_df <- data.frame(x = rep(x\_test, times = n\_samples), Sample =

→ factor(rep(1:n_samples, each = length(x_test))), Value =
→ as.vector(t(y_samples)))
# Create a data frame for the training points
train_data <- data.frame(x = x_train, y = y_train)</pre>
# Plot using ggplot2
aaplot() +
 # True function
 geom_line(data = gp_data, aes(x = x, y = True_Function),
            color = "black", linetype = "dashed", size = 1, alpha = 0.7) +
  # GP mean
  geom\_line(data = gp\_data, aes(x = x, y = GP\_Mean),
            color = "lightpink2", size = 1.2) +
  # GP samples
  geom_line(data = gp_samples_df, aes(x = x, y = Value, group = Sample),
           color = "springgreen3", alpha = 0.5) +
 # Training points
  geom_point(data = train_data, aes(x = x, y = y),
            color = "blue", size = 2) +
 # Labels and theme
  labs(title = "Gaussian Process Regression",
      x = "x", y = "f(x)") +
  theme_minimal(base_size = 14) +
  theme(legend.position = "none")
```

This code first defines a grid of n = 10 equally spaced points x_1, \ldots, x_n in the interval [0, 10]. For each of these points, we generate an observation $y_i \sim N(f(x_i), \sigma^2)$ with $\sigma^2 = 0.1$. These are the blue dots in Figure 2.6. These are our noisy observations from the function $f(x) = \sin(x)$ (the dashed line).

Having the training data, the test data and a fixed kernel function (here the Gaussian kernel) we can compute the covariance matrix in the underlying Gaussian process (over all the point). Then we can sample from the conditional distribution¹² of the test data given the training data. Doing it multiple times gives us the greenish curves in Figure 2.6. We can also compute the conditional mean and also plot it. This is the pink curve.

12 All the relevant formulas already appeared earlier!

unction (black dashed), GP mean (red), GP samples (green), Training points (blue)

Figure 2.6: Illustration for GPs applied

2.7 Exercises

Exercise 2.7.1. Given $X \sim N_m(\mu, \Sigma)$, show that $X - \mu$ has the same distribution as $\Sigma^{1/2}Z$, where $Z \sim N_m(0, I_m)$.

Exercise 2.7.2. Suppose we want to generate a sample of n observations from $N_m(0,\Sigma)$. Using R or Python, write a code that does it by sampling independently a bunch of univariate N(0,1) variables and transforming them approprietly.

Exercise 2.7.3. Consider two random vectors $X \sim N_m(\mu_X, \Sigma_X)$ and $Y \sim N_q(\mu_Y, \Sigma_Y)$. Show that if X and Y are independent, the joint distribution of (X, Y) is multivariate normal with mean (μ_X, μ_Y) and block diagonal covariance matrix.

Exercise 2.7.4. Let $X_1, X_2 \sim N_m(\mu, \Sigma)$ and define $Y = X_1 + X_2$. Find the distribution of Y.

Exercise 2.7.5. Derive the formula for the covariance matrix of the residuals when performing a linear regression on a multivariate normal sample.

Exercise 2.7.6. Let $X \sim N_m(\mu, \Sigma)$. Use the spectral decomposition of Σ to transform X into independent standard normal variables.

Exercise 2.7.7. Let $X \sim N_m(\mu, \Sigma)$ and suppose that Σ is singular (i.e., Σ is not invertible). Prove that in this case, X lies on a subspace of \mathbb{R}^m . What is the dimension of this subspace?

Exercise 2.7.8. Let $X \sim N_m(0, \sigma^2 I_m)$ and let U be any orthogonal matrix. Show that the distribution X is the same as the distribution of UX. Would the answer be the same if the mean of X was not zero?

Exercise 2.7.9. Let $X_1, X_2 \sim N_m(\mu, \Sigma)$ be independent. Consider the random vector $Z = X_1 + X_2$. Prove that the covariance matrix of Z is 2Σ .

Exercise 2.7.10. Suppose $X \sim N_m(\mu, \Sigma)$. Show that the linear regression coefficients of X_1 on X_2, \ldots, X_m can be expressed in terms of the blocks of the covariance matrix Σ . What is the relationship between these coefficients and conditional variances?

Exercise 2.7.11. Suppose $X \sim N_m(\mu, \Sigma)$. Show that the correlation matrix $\Sigma_{corr} = D^{-1/2} \Sigma D^{-1/2}$, where D is the diagonal matrix of variances, is also positive semidefinite. What does this tell us about the structure of correlation matrices?

Exercise 2.7.12. Prove that the determinant of the covariance matrix Σ for a multivariate normal distribution $N_m(\mu, \Sigma)$ is related to the volume of the ellipsoid corresponding to the 1-standard deviation contour of the distribution. Derive the explicit formula for this volume.

Exercise 2.7.13. *Prove Proposition 2.1.2.* Hint: Let $Z = \Sigma^{-1/2}(X - \mu)$. Show that $Z \sim N_m(\mathbf{0}, I_m)$ and use the fact that the sum of the squares of independent standard normal variables has a chi-squared distribution.

Exercise 2.7.14. Let $X \sim N_m(\mu, \Sigma)$ and $Y \sim N_q(\nu, \Lambda)$ be independent random vectors. Show that the joint distribution of (X,Y) is $N_{p+q}((\mu,\nu),\Sigma\oplus\Lambda)$, where \oplus denotes the block diagonal operation.

Exercise 2.7.15. Complete all the details of the proof of Proposition 2.2.1.

Exercise 2.7.16. Prove Lemma 2.2.2.

Exercise 2.7.17. Suppose $X_1, X_2 \sim N_m(0, \Sigma)$ are independent and Y = $X_1 - X_2$. Derive the distribution of Y. How does the covariance structure of Y compare to that of X_1 and X_2 individually?

Exercise 2.7.18. Let $X \sim N_m(\mu, \Sigma)$. Show that for any $a \in \mathbb{R}^m$, the probability $\mathbb{P}(a^{\top}X > c)$ depends on both $a^{\top}\mu$ and $a^{\top}\Sigma a$. Derive a formula for this probability.

Exercise 2.7.19. Consider the functions $f,g:\mathbb{R}^n\to\mathbb{R}$ given by $f(\mathbf{x})=$ $a^{\top}\mathbf{x}$ and $g(\mathbf{x}) = \mathbf{x}^{\top}A\mathbf{x}$ for $a \in \mathbb{R}^n$ and $A \in \mathbb{S}^n$. Show that $\nabla f(\mathbf{x}) = a$ and $\nabla g(\mathbf{x}) = 2A\mathbf{x}$.

Non-normal distributions

Multivariate Gaussian is obviously not the only distribution widely considered to model multivariate continuous data. In this chapter, we provide a very brief treatment of some of the key ideas involving distributions beyond the multivariate normal.

3.1 Elliptical distributions

3.1.1 Spherical distributions

Recall that O(m) denotes the group^{1,2} of $m \times m$ orthogonal matrices, that is, $U \in \mathbb{R}^{m \times m}$ such that $U^{\top}U = I_m$. A random vector $X \in \mathbb{R}^m$ is said to have a *spherical distribution* if for any $U \in O(m)$, the random vector X is equal in distribution to UX, i.e.,

$$X \stackrel{d}{=} UX \quad \forall U \in O(m).$$

One example of a spherical distribution is the standard normal distribution $Z \sim N_m(0, I_m)$. More generally, if $Z \sim N_m(0, I_m)$ and $\tau > 0$ is a positive random variable independent of Z, then³

$$X = \frac{1}{\sqrt{\tau}}Z$$

has a spherical distribution. To see this, let $U \in O(m)$. Then

$$UX = \frac{1}{\sqrt{\tau}}UZ \stackrel{d}{=} \frac{1}{\sqrt{\tau}}Z = X,$$

since $UZ \stackrel{d}{=} Z$ and $UZ \perp \!\!\! \perp \tau$. Therefore, X has the same distribution as UX, satisfying the definition of spherical symmetry.

Moment structure: The spherical symmetry implies that the mean of *X* must be zero and the covariance matrix must be proportional to the identity matrix, i.e.,

$$\mathbb{E}(X) = 0$$
, $\operatorname{var}(X) = cI_m$

for some constant $c \ge 0$. In the case of $X = \frac{1}{\sqrt{\tau}}Z$ with $Z \sim N(0, I_m)$, we have $var(X) = \mathbb{E}[\tau^{-1}]I_m$.

¹ The set O(m) is a group because $U, V \in O(m)$ then $UV^{-1} \in O(m)$. Check it!
² Note that if $U \in O(m)$ then $|\det(U)| = 1$.

 3 This is sometimes called the common variance model. Note that the entries of *Z* are independent. Although the entries of *X* will be uncorrelated (can you show it?), they will not be independent.

← Exercise 3.4.1

← Exercise 3.4.2

3.1.2 Independence of ||X|| and X/||X||

An important property of spherical distributions is the *independence* of the norm of X, denoted $||X|| := \sqrt{X^\top X}$, and the direction of X, represented by the unit vector X/||X||. To see this, note that for any $U \in O(m)$,

$$\frac{X}{\|X\|} \stackrel{d}{=} \frac{UX}{\|UX\|} = \frac{UX}{\|X\|} = U\frac{X}{\|X\|}.$$

Thus, $\frac{X}{\|X\|}$ is invariant under orthogonal transformations, meaning it must have a rotationally symmetric distribution. The only rotationally symmetric distribution on the unit sphere is the uniform distribution. Therefore, $\frac{X}{\|X\|}$ has a uniform distribution on the unit sphere in \mathbb{R}^m , independent of the length $\|X\|$.

3.1.3 Formal argument using polar coordinates*

To formally show that ||X|| and X/||X|| are independent, we use a change of coordinates to *polar coordinates*.

Polar coordinates: In \mathbb{R}^2 , polar coordinates are given by:

$$x_1 = r\cos(\theta), \quad x_2 = r\sin(\theta), \quad r > 0, \quad 0 \le \theta < 2\pi.$$

This generalizes to \mathbb{R}^m with the transformation:

$$\mathbf{x} = r\mathbf{u}(\boldsymbol{\theta}),$$

where $\theta = (\theta_1, \dots, \theta_{m-1})$ are the angular coordinates, and $r = ||\mathbf{x}||$ is the radial coordinate. Specifically, for $i = 1, \dots, m$ we have⁴:

⁴ Check that $\|\mathbf{x}\| = r$.

$$u_i(\boldsymbol{\theta}) = \cos(\theta_i) \prod_{i=0}^{i-1} \sin(\theta_i), \quad \sin(\theta_0) = 1, \quad \cos(\theta_m) = 1.$$

The angles θ_i are constrained by:

$$0 \le \theta_j \le \pi$$
, $j = 1, ..., m - 2$, $0 \le \theta_{m-1} < 2\pi$.

Recall that for a function $f: \mathbb{R}^n \to \mathbb{R}^m$, its Jacobian at $\mathbf{x} \in \mathbb{R}^n$, if exists, is the matrix $Jf(\mathbf{x})$ of the partial derivatives $Jf(\mathbf{x}) = \left[\frac{\partial f_i}{\partial x_j}\right] \in \mathbb{R}^{m \times n}$. The determinant of the Jacobian matrix of the polar coordinates transformation $\mathbf{x} = r\mathbf{u}(\boldsymbol{\theta})$ is

$$J(r, \theta) = r^{m-1} \prod_{i=2}^{m-1} \sin^{m-i}(\theta_{i-1}).$$

The reason why we care about this determinant is that it appears in the change of variables formula. **Independence of radial and angular components:** Suppose *X* has a density $f(\mathbf{x})$ that only depends on $\|\mathbf{x}\|$, i.e., $f(\mathbf{x}) = g(\|\mathbf{x}\|^2)$ for some function g. When changing variables to polar coordinates, we find:

$$f(\mathbf{x})d\mathbf{x} = g(r^2)r^{m-1}dr \prod_{i=2}^{m-1} \sin^{m-i}(\theta_{i-1})d\theta.$$

Thus, we see that the density separates into a product of a radial component $g(r^2)r^{m-1}dr$ and an angular component, showing that $||\mathbf{x}||$ and x/||x|| are independent.

3.1.4 Elliptical distributions as affine transformations of spherical distributions

An elliptical distribution is a generalization of the multivariate normal distribution. A random vector $X \in \mathbb{R}^m$ is said to have an elliptical distribution, denoted $X \sim E(\mu, \Sigma)$, if X can be written as:

$$X = \mu + \Sigma^{1/2} Z,$$

where Z is a spherical random vector (e.g., standard normal) and $\Sigma^{1/2}$ is the square root of a positive semi-definite matrix Σ . This form includes the multivariate normal as a special case; recall Proposition 2.1.1.

Why do we care? The main reason is that elliptical distributions allow us to model distributions that look similar to multivariate normal but have much heavier tails. This makes it suitable to model extreme events or data with outliers, which are common in many real-world applications such as finance, insurance, and environmental studies. For example, in finance, the heavy tails of elliptical distributions can capture the higher likelihood of extreme losses or gains compared to the Gaussian model. By maintaining properties like symmetry and linear correlation structures, elliptical distributions strike a balance between flexibility and mathematical tractability, making them a valuable tool for robust modelling in high-dimensional settings.

Scale mixture of normals 3.1.5

A key example of elliptical distributions is the scale mixture of normals, which admits the stochastic representation:

$$X = \mu + \frac{1}{\sqrt{\tau}} \Sigma^{1/2} Z,$$

where $Z \sim N_m(0, I_m)$ and $\tau > 0$ is a random variable independent of Z. This framework captures several important distributions:

• If $\tau \equiv 1$, we recover the multivariate normal distribution.

- If $\tau \sim \frac{1}{k}\chi_k^2$, then *X* follows a multivariate *t*-distribution with *k* degrees of freedom.
- If k = 1, we obtain the multivariate Cauchy distribution.
- If $\tau \sim \text{Exp}(1)$, we get the multivariate Laplace distribution.

Note that X may be a complicated distribution but conditionally on τ , X is simply Gaussian. Thus, many efficient approaches to working with scale mixture of normals, use this structure.

3.1.6 Covariance and correlation matrix

Note that in elliptical distributions, Σ is called the *scale matrix* and does not directly represent the covariance of X. However, it holds that:

$$Var(X) = c\Sigma$$

for some constant c>0. Therefore, the correlation structure of X is governed by Σ , even though the exact covariance requires calculating c.

3.2 Copula models

A copula is a statistical tool that allows us to model the dependence structure between random variables separately from their marginal distributions. This is especially useful when modeling multivariate data where the marginal distributions are not Gaussian.⁵

Definition 3.2.1. A copula function (or simply a copula) is a multivariate distribution function with uniform marginals. A copula function in m dimensions is typically written $C(\mathbf{u})$, $\mathbf{u} = (u_1, \dots, u_m)$.

3.2.1 Sklar's theorem

The foundation of copula theory is *Sklar's Theorem*.

Theorem 3.2.2 (Sklar, 1959). Given a continuous random vector $X = (X_1, ..., X_m)$ with joint c.d.f. F and marginal c.d.f.s $F_1, ..., F_m$, there exists a unique copula C such that for all $\mathbf{x} = (x_1, ..., x_m)$

$$F(x_1,...,x_m) = C(F_1(x_1),...,F_m(x_m)).$$
 (3.1)

Conversly, for any given one-dimensional c.d.f.s F_1, \ldots, F_m and a copula C, (3.1) defines an m-variate c.d.f. F with marginal c.d.f.s F_1, \ldots, F_m .

The copula $C: [0,1]^m \to [0,1]$ captures the dependence between the components of **X**, while the marginal distributions F_1, \ldots, F_m describe the behavior of each component independently.

Figure 3.1: Examples of 1-d densities that are generalized by the scale mixture of normals. Note that the tails are generally heavier than for the Gaussian distribution.

⁵ Recall that the CDF of the uniform U(0,1) distribution is F(u) = u and so $C : [0,1]^m \to [0,1]$ must satisfy $C(u_1,1,\ldots,1) = u_1$.

To understand Sklar's theorem, consider the case when m = 1. Here C(u) = u for $u \in [0,1]$ and the CDF of X is indeed C(F(x)) =F(x). Note also that, if X is a univariate continuous random variable with c.d.f. F^6 then $F(X) \sim U(0,1)$. Indeed,

$$\mathbb{P}(F(X) \le u) = \mathbb{P}(X \le F^{-1}(u)) = F(F^{-1}(u)) = u.$$

Let now $X = (X_1, ..., X_m)$ be a random vector with c.d.f.

$$F(x_1,...,x_m) = \mathbb{P}(X_1 \le x_1,...,X_m \le x_m).$$

Set $U_i = F_i(X_i)$. Then $U = (U_1, ..., U_m)$ has marginal uniform distributions with c.d.f.

$$\mathbb{P}(U_1 \le u_1, \dots, U_m \le u_m) = \mathbb{P}(X_1 \le F_1^{-1}(u_1), \dots, X_m \le F_m^{-1}(u_m))
= F(F_1^{-1}(u_1), \dots, F_m^{-1}(u_m))
=: C(\mathbf{u}).$$
(3.2)

Note that C defined here is the same as C in (3.1) and Sklar's theorem states that such *C* is defined uniquely.

3.2.2 Invariance under monotone transformations

Suppose that $Y_i = f_i(X_i)$, where each f_i is a strictly increasing (and so invertible) transformation. It is important to note that *X* and *Y* define the same copula. Indeed, let *F*, *G* be the CDFs of *X* and *Y* respectively with individual CDFs denotes as F_i , G_i . In the light of (3.2), it is enough to show that

$$F(F_1^{-1}(u_1),...,F_m^{-1}(u_m)) = G(G_1^{-1}(u_1),...,G_m^{-1}(u_m))$$

Now note that

$$G_i(y_i) = \mathbb{P}(Y_i \le y_i) = \mathbb{P}(X_i \le f_i^{-1}(y_i)) = F_i(f_i^{-1}(y_i)),$$

which shows that $G_i = F_i \circ f_i^{-1}$, or equivalently, $G_i^{-1} = f_i \circ F_i^{-1}$. Similarly,

$$G(y_1,...,y_m) = F(f_1^{-1}(y_1),...,f_m^{-1}(y_m))$$

Using these two equations we get that

$$G(G_1^{-1}(u_1),\ldots,G_m^{-1}(u_m)) \ = \ F(f_1^{-1}(G_1^{-1}(u_1)),\ldots,f_m^{-1}(G_m^{-1}(u_m))) \ = \ F(F_1^{-1}(u_1),\ldots,F_m^{-1}(u_m))$$

as claimed.

3.2.3 Density of a copula

The p.d.f. $c(\mathbf{u})$ of a copula $C(\mathbf{u})$ is obtained by differentiation. We

Recall that for a continuous distribution with CDF $F(x_1, ..., x_m)$, its density $f(x_1,\ldots,x_m)$ is given by

$$f(x_1,\ldots,x_m) = \frac{\partial^m}{\partial x_1\cdots\partial x_m}F(x_1,\ldots,x_m).$$

⁶ If *X* is continuous then *F* is strictly increasing almost surely.

have

$$c(\mathbf{u}) = \frac{\partial^m C(\mathbf{u})}{\partial u_1 \cdots \partial u_m}.$$

Using the fact that $C(\mathbf{u}) = F(F_1^{-1}(u_1), \dots, F_m^{-1}(u_m))$ and the chain rule, we have

$$c(\mathbf{u}) = \frac{f(\mathbf{x})}{\prod_{i=1}^{m} f_i(x_i)}.$$
 (3.3)

3.2.4 Gaussian copula

The *Gaussian copula* is derived from the multivariate normal distribution. Suppose $\mathbf{X} \sim N_m(\mu, \Sigma)$ is a normal random vector. Since a copula is unchanged if comonents undergo a monotone transformation, w.l.o.g. we may assume $\mu_i = 0$ and $\Sigma_{ii} = 1$ for all i so that the marginal distributions are standard normal. The CDF of N(0,1) is denoted by $\Phi(\mathbf{x})$.

Using formula in (3.3) the corresponding density is

$$c(u; \Sigma) = \det(\Sigma)^{-1/2} \exp\{-\frac{1}{2}x^{\top}(\Sigma^{-1} - I_m)x\}, \text{ where } x_i = \Phi^{-1}(u_i).$$
(3.4)

The most popular choice for Σ is the equicorrelation matrix $\Sigma = (1-\rho)I_m + \rho \mathbf{1}\mathbf{1}^\top$, where $-\frac{1}{m-1} \le \rho \le 1$. For this choice $\det(\Sigma) = (1-\rho)^{m-1}(1+(m-1)\rho)$. So for example the density of a two-dimensional Gaussian copula is

$$c(\mathbf{u};\rho) = \frac{1}{\sqrt{1-\rho^2}} \exp\left\{-\frac{\rho^2(x_1^2+x_2^2)-2\rho x_1 x_2}{2(1-\rho^2)}\right\}.$$
 (3.5)

3.2.5 Archimedean copula*

In addition to Gaussian copulas, there are other families of copulas, such as *Archimedean copulas*, which are popular in applications due to their simplicity. An Archimedean copula is defined using a generator function $\phi:(0,1)\to[0,\infty)$ that is strictly decreasing and convex with $\phi(0^+)=\infty$ and $\phi(1^-)=0$. Set $\psi=\phi^{-1}$, which is monotone decreasing on $(0,\infty$ with $\psi(0^+)=1$ and $\phi(\infty^-)=0$. Assume that ψ is completely monotone function, that is, suppose that ψ is infinitely differentiable, and that the derivatives alternate in sign: $(-1)^k \psi^{(k)}(v)>0$ for all $0< v<\infty$, $k\geq 1$.

The *m*-variate Archimedean copula generated by ϕ is given by:

$$C(u_1,\ldots,u_m)=\psi\left(\phi(u_1)+\cdots+\phi(u_m)\right).$$

It can be shown that C defines a valid CDF with PDF

$$c(u) = \psi^{(m)}(v) \prod_{i=1}^{m} \phi'(u_i), \text{ where } v_i = \phi(u_i), \ v = v_1 + \ldots + v_m.$$

Some well-known Archimedean copulas include:

← Exercise 3.4.3

- Clayton copula: $\phi(t) = \frac{1}{\theta}(t^{-\theta} 1)$ for $\theta > 0$.
- **Gumbel copula:** $\varphi(t) = (-\log t)^{\theta}$ for $\theta \ge 1$.
- Frank copula: $\varphi(t) = -\log\left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$ for $\theta \neq 0$.

3.2.6 Example

Just to illustrate how this can be used. We use copulas to model the dependence structure of returns of five random stocks. First plot their correlation structure.

```
library(quantmod)
library(copula)
library(PerformanceAnalytics)
# Define stock tickers and date range
tickers <- c("AAPL", "MSFT", "AMZN", "GOOG", "TSLA")
start_date <- "2020-01-01"
end_date <- "2023-01-01"
# Download adjusted closing prices
getSymbols(tickers, from = start_date, to = end_date, src = "yahoo")
prices <- do.call(merge, lapply(tickers, function(x) Ad(get(x))))</pre>
# Calculate daily log returns
returns <- na.omit(ROC(prices, type = "continuous"))</pre>
colnames(returns) <- tickers</pre>
# Plot the returns
chart.Correlation(returns, histogram = TRUE, pch = 19)
```


We fit a Gaussian copula to the multivariate log returns. First, convert returns to pseudo-observations by mapping to the unit interval [0, 1], as required by copula models.

```
# Convert to pseudo-observations
u <- pobs(as.matrix(returns))</pre>
# Fit a Gaussian copula
cop_model <- normalCopula(dim = ncol(returns)) # Gaussian copula</pre>
fit <- fitCopula(cop_model, u, method = "ml") # Maximum likelihood</pre>
# Extract fitted parameters (correlation matrix)
rho_matrix <- getSigma(fit@copula)</pre>
print("Fitted correlation matrix:")
print(rho_matrix)
```

The correlation matrix looks very simple but remember that we still have the marginal distributions, which adds additional flexibility. We can now simulate new returns based on the fitted copula model and the original marginal distributions.

```
# Simulate from the fitted Gaussian copula
simulated_copula <- rCopula(nrow(returns), fit@copula)</pre>
```

```
> print(rho_matrix)
    [, 1]
           [,2] [,3] [,4] [,5]
[1,] 1.000 0.655 0.655 0.655 0.655
[2,] 0.655 1.000 0.655 0.655 0.655
[3,] 0.655 0.655 1.000 0.655 0.655
[4,] 0.655 0.655 0.655 1.000 0.655
[5,] 0.655 0.655 0.655 0.655 1.000
```

```
# Transform copula samples to the original marginals
simulated_returns <- data.frame(</pre>
 AAPL = qnorm(simulated_copula[,1], mean = mean(returns$AAPL), sd =

→ sd(returns$AAPL)).

 MSFT = qnorm(simulated_copula[,2], mean = mean(returns$MSFT), sd =
  AMZN = qnorm(simulated_copula[,3], mean = mean(returns$AMZN), sd =

    sd(returns$AMZN)),
 GOOG = qnorm(simulated_copula[,4], mean = mean(returns$GOOG), sd =

→ sd(returns$G00G)),
 TSLA = qnorm(simulated_copula[,5], mean = mean(returns$TSLA), sd =

    sd(returns$TSLA)))

# Compare empirical and simulated correlations
empirical_corr <- cor(returns)</pre>
simulated_corr <- cor(simulated_returns)</pre>
cat("Empirical Correlation Matrix:\n")
print(empirical_corr)
cat("\nSimulated Correlation Matrix:\n")
print(simulated_corr)
# Scatterplot matrix of simulated returns
pairs(simulated_returns, main = "Simulated Returns (Gaussian Copula)", pch
\Rightarrow = 19, col = rgb(0, 0, 1, 0.5))
# Overlaid density plots for one stock (e.g., AAPL)
plot(density(returns$AAPL), col = "blue", main =
→ "Density of AAPL Returns: Empirical vs Simulated", lwd = 2)
lines(density(simulated_returns$AAPL), col = "red", lwd = 2)
legend("topright", legend = c("Empirical", "Simulated"), col = c("blue",
\rightarrow "red"), lwd = 2)
```

3.2.7 Applications of copula models

Copulas have a wide range of applications, especially in fields where understanding the dependence between random variables is crucial. Some important applications include:

- Finance and risk management: In finance, copulas are used to model the joint behavior of asset returns or risk factors. They are particularly useful for modeling tail dependencies, which refer to the joint likelihood of extreme losses or gains. The Gaussian copula, for instance, was famously used in pricing collateralized debt obligations (CDOs), although the limitations of copulas in capturing extreme co-movements were highlighted during the financial crisis of 2007-2008.
- Insurance and actuarial science: In insurance, copulas allow actuaries to model dependencies between different types of claims, such as health claims and life insurance claims. By understanding the joint risk, insurers can set more appropriate premiums and reserves for correlated risks.

- Environmental sciences: Copulas are used to model the dependence structure between extreme environmental events, such as floods or droughts. This is important for designing infrastructure that can withstand correlated extreme events. For instance, the joint probability of high rainfall and river overflow can be better understood with copulas, leading to more informed decisions in flood risk management.
- Multivariate survival analysis: In medical statistics and survival analysis, copulas are used to model the time until the occurrence of multiple types of events (such as death, disease relapse, or recovery) that may be dependent on each other. Archimedean copulas are particularly popular in this context due to their tractability.

Gaussian mixture

A Gaussian Mixture Model (GMM) is a probabilistic model that assumes the data is generated from a mixture of several Gaussian distributions, each with its own parameters. Formally, a random vector $X \in \mathbb{R}^m$ is said to follow a GMM if its density function is a weighted sum of multivariate Gaussian densities:

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}_m(\mathbf{x}; \mu_k, \Sigma_k), \tag{3.6}$$

where $\pi_k \geq 0$ are the mixture weights such that $\sum_{k=1}^K \pi_k = 1$, and $\mathcal{N}_m(\mathbf{x}; \mu_k, \Sigma_k)$ denotes the multivariate normal density with mean $\mu_k \in \mathbb{R}^m$ and covariance matrix $\Sigma_k \in \mathbb{S}_+^m$.

Figure 3.3 provides two simple examples of 2D and 3D datasets that are generated from mixtures of two Gaussian components.

Remark 3.3.1. At this point it is not clear how to handle such a complicated distribution efficiently. For example, given fixed parameters values,

← Exercise 3.4.4

how can we generate samples? We will see in Section 3.3.2 that this model admits a simple latent variable representation, which can be exploited in various ways.

← Exercise 3.4.5

3.3.1 Why use Gaussian mixtures?

Gaussian mixtures offer several advantages:

- **Flexibility:** They can model complex distributions by combining simple Gaussian components. A GMM can approximate almost any continuous probability distribution by increasing the number of components *K*.
- Multimodality: GMMs are particularly useful for modeling data with multiple modes (clusters), where each Gaussian component models one mode.
- Easily interpretable: Each Gaussian component has an intuitive interpretation (mean, covariance, weight). It is a natural model if the population comes from different sub-populations.

Gaussian mixtures form a popular model based clustering method. In this context, for simplicity, we often assume $\Sigma_k = \Sigma$ for k = 1, ..., K.

3.3.2 Gaussian Mixture as a latent variable model

Let $Z \in \{1,...,K\}$ be a discrete random variable such that $\mathbb{P}(Z = k) = \pi_k$ for k = 1,...,K. Moreover, suppose that the conditional distribution of X given Z = k is $N_m(\mu_k, \Sigma_k)$. Then the marginal distribution of X is the same as given in (3.6) (check!)

Remark 3.3.2. Many popular probabilistic machine learning methods model data distribution p(x) from a joint p(x,z), which is specified by setting the marginal distribution p(z) of a latent variable and the conditional p(x|z). Models of that form lead to many highly tractable exact and approximate estimation procedures.

3.3.3 *Likelihood inference for GMMs*

Suppose we have data $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^m$ from the Gaussian mixture model. Fitting a GMM to a dataset involves estimating the parameters $\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$, which by default is done by maximizing the log-likelihood function

$$\ell(\theta) = \sum_{i=1}^{n} \log f(\mathbf{x}_i) = \sum_{i=1}^{n} \log(\sum_{k=1}^{K} \pi_k N_m(\mathbf{x}_i; \mu_k, \Sigma_k)).$$

The likelihood function for GMMs is a complicated multimodal function of the parameters θ and maximizing it directly may be hard. In fact it is not even bounded! However, we can use the latent representation of the GMM to perform the Expectation-Maximization (EM) algorithm.

Remark 3.3.3. *Note that we assume that K is fixed throughout the whole* analysis. In practice, K is not always known. In this case, learning K is a separate task, which we do not discuss here in detail.

Expectation-Maximization (EM) Algorithm

Suppose we have data x_1, \ldots, x_n with distribution $f_X(x;\theta)$. The goal is to estimate the parameter θ that maximizes the likelihood. In cases where some variables are not directly observed, we can model the observed data as being the marginal distribution of a larger joint distribution. Specifically, we assume that the data X is generated from a latent model, where (X, Z) are jointly distributed, and Z represents unobserved (latent) variables.

The EM algorithm is particularly useful when the marginal likelihood of *X* is difficult to compute, but the complete data likelihood (i.e., the joint likelihood of *X* and *Z*) is easier to work with. Consider the compolete data $(x_1, z_1), \ldots, (x_n, z_n)$, where we observe only x_1, \ldots, x_n as before. Assume that the joint model depends on the parameter vector θ .

The algorithm iteratively estimates θ by alternating between two

(o) Initialize θ^0 , a reasonable initial guess for the parameter.

(E-step) Compute the expected value of the complete data loglikelihood ℓ_F

$$\ell_F(\theta) = \sum_{i=1}^n \log f(x_i, z_i; \theta)$$

with respect to the posterior distribution of the latent variables Z, given the observed data X and the current parameter estimate θ^0 . This gives the function:

$$Q(\theta;\theta_0) = \mathbb{E}_{Z|X,\theta^0}[\ell_F(\theta)|\mathbf{X},\theta^0] = \sum_{i=1}^n \mathbb{E}_{Z|X,\theta^0}[\log f(\mathbf{x}_i,Z;\theta)|X = \mathbf{x}_i,\theta^0].$$

(M-step) Maximize the expected complete log-likelihood with respect to θ :

$$\theta^1 = \arg \max_{\theta} Q(\theta; \theta_0).$$

Update $\theta^0 \leftarrow \theta^1$ and repeat until convergence.

Under mild conditions, it can be shown that each iteration of the EM algorithm increases the observed data log-likelihood. Specifically, after each E-step and M-step, the likelihood satisfies the inequality:

$$\ell(\theta^{t+1}) \ge \ell(\theta^t)$$
.

This property ensures that the algorithm makes progress toward maximizing the likelihood at every step.

While the EM algorithm is guaranteed to increase the likelihood at each step, it may not necessarily converge to the global maximum. Instead, the algorithm converges to a **local maximum** of the likelihood function. Convergence can be understood through the following results:

- 1. Monotonicity: The likelihood function increases monotonically at each step of the algorithm. This is guaranteed by the fact that the E-step constructs a lower bound on the likelihood that is maximized in the M-step.
- 2. Local Convergence: Under mild regularity conditions (e.g., the likelihood is smooth), the sequence of parameter estimates θ^t generated by the EM algorithm converges to a stationary point of the likelihood function. However, this stationary point might be a local maximum, a saddle point, or (rarely) a local minimum.
- 3. Global Convergence: The EM algorithm does not guarantee global convergence, meaning that different initializations may lead to different local optima. For this reason, it is common to try several random initializations to increase the chances of finding a global maximum.

3.3.5 EM Algorithm for Gaussian Mixture Models (GMM)

The complete data log-likelihood for GMMs is given by:

$$\ell_F(\theta) = \sum_{i=1}^n \sum_{k=1}^K \mathbb{1}(\mathbf{z}_i = k) \left[\log \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k) + \log \pi_k \right].$$

Here, $\mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)$ is the Gaussian probability density function for component k with mean μ_k and covariance matrix Σ_k .

E-step

In the E-step, we compute the expected value of the complete data log-likelihood, given the current parameter estimates $\theta^0 = \{\pi_k^0, \mu_k^0, \Sigma_k^0\}$. Specifically,

$$Q(\theta; \theta_0) = \sum_{i=1}^n \sum_{k=1}^k \mathbb{E}_{Z|X,\theta_0}[\mathbb{1}(Z=k)|X=\mathbf{x}_i, \theta_0] \left[\log \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k) + \log \pi_k\right]$$
$$= \sum_{i=1}^n \sum_{k=1}^k \mathbb{P}(\mathbf{z}_i = k|X=\mathbf{x}_i, \theta_0) \left[\log \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k) + \log \pi_k\right]$$

we compute the posterior probabilities, or the responsibilities, that each point x_i belongs to component k:

$$w_{ik} = \mathbb{P}(\mathbf{z}_i = k | \mathbf{x}_i, \theta^0) = \frac{\pi_k^0 \mathcal{N}(\mathbf{x}_i; \mu_k^0, \Sigma_k^0)}{\sum_{l=1}^K \pi_l^0 \mathcal{N}(\mathbf{x}_i; \mu_l^0, \Sigma_l^0)}.$$

Using these responsibilities, the expected complete log-likelihood is:

$$Q(\theta; \theta_0) = \sum_{i=1}^{n} \sum_{k=1}^{K} w_{ik} \left[\log \mathcal{N}(\mathbf{x}_i; \mu_k, \Sigma_k) + \log \pi_k \right].$$

M-step

In the M-step, we maximize $Q(\theta; \theta_0)$ with respect to the parameters $\theta = \{\pi_k, \mu_k, \Sigma_k\}$. This leads to the following updates:

$$\pi_k = \frac{1}{n} \sum_{i=1}^n w_{ik},$$

$$\mu_k = \frac{\sum_{i=1}^n w_{ik} \mathbf{x}_i}{\sum_{i=1}^n w_{ik}},$$

$$\Sigma_k = \frac{\sum_{i=1}^n w_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^\top}{\sum_{i=1}^n w_{ik}}.$$

Deriving the updates for π_k and μ_k is relatively straightforward. The update on Σ_k requires either some persistence or some experience with calculus of matrix-functions. We live this as an exercise.

These updates have intuitive interpretations: $\hat{\mu}_k$ is the weighted average of the data points assigned to component k, where the weights are the posterior probabilities w_{ik} ; $\hat{\Sigma}_k$ is the weighted covariance matrix of the points assigned to component k; $\hat{\pi}_k$ is the proportion of points assigned to component k.

The EM algorithm iterates between the E-step and M-step until convergence, at which point the log-likelihood no longer increases significantly.

Example: EM Algorithm for Gaussian Mixture Models (GMM)

Problem Setup Suppose we have a dataset where each observation is drawn from a mixture of two Gaussian distributions. The goal is to estimate the parameters (means, covariances, and mixing proportions) of these Gaussian components using the Expectation-Maximization (EM) algorithm.

Assume the data consists of *n* points in 2D, where each observation x_i comes from one of two Gaussian distributions. Let π_k represent the mixing proportion of the k-th Gaussian component, μ_k the mean vector, and Σ_k the covariance matrix for component k, with k = 1, 2. The dataset is a mixture of these distributions with some overlap.

Data Simulation We can generate a 2D dataset from two Gaussian

distributions, one with

$$\mu_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \qquad \Sigma_1 = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

and the other with

$$\mu_1 = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$$
, $\Sigma_1 = \begin{bmatrix} 1 & -0.3 \\ -0.3 & 1 \end{bmatrix}$

The mixing parameter is $\pi_1 = 0.4 = 1 - \pi_2$. We use the following R code:

```
set.seed(123)
n <- 300 # number of points
pi_true <- c(0.4, 0.6) # true mixing proportions</pre>
mu\_true <- list(c(2, 2), c(7, 7)) # true means
sigma_true \leftarrow list(matrix(c(1, 0.5, 0.5, 1), 2), matrix(c(1, -0.3, -0.3, -0.3, -0.3))
# Sample labels from a multinomial distribution
z <- rbinom(n, size = 1, prob = pi_true[2])</pre>
x \leftarrow matrix(0, nrow = n, ncol = 2)
# Generate points from the two Gaussians
for (i in 1:n) {
  if (z[i] == 0) {
    x[i, ] <- MASS::mvrnorm(1, mu_true[[1]], sigma_true[[1]])</pre>
  } else {x[i, ] <- MASS::mvrnorm(1, mu_true[[2]], sigma_true[[2]])}</pre>
# Plotting the data points with color corresponding to the group
plot(x, col = z + 1, pch = 19, main =

    Generated Data from a Gaussian Mixture",xlab = "X1", ylab = "X2")

legend("topright", legend = c("Group 1", "Group 2"), col = c(1, 2), pch =
→ 19)
```

This code generates a dataset from two Gaussian distributions with different means and covariances.

EM Algorithm for GMMs Now we apply the EM algorithm to estimate the parameters of the Gaussian mixture model. The following R code implements the EM algorithm:

```
# Function to calculate Gaussian density
dGaussian <- function(x, mu, sigma) {exp(-0.5 * t(x - mu) %*% solve(sigma)

→ %*% (x - mu)) / sqrt(det(2 * pi * sigma))}

# Initial estimates
K <- 2 # number of components
pi_hat <- c(0.5, 0.5) # initial guess for mixing proportions
mu_hat <- list(c(0, 0), c(1, -1)) # initial guess for means
sigma_hat <- list(diag(2), diag(2)) # initial guess for covariances

# Modified EM algorithm to extract responsibilities at specific iterations
em_gmm_with_responsibilities <- function(x, K, pi_hat, mu_hat, sigma_hat,

→ steps_to_plot, max_iter = 100, tol = 1e-4) {
```


Figure 3.2: This is how the data looks like when we color points by group assigment. In practice, this group assigment is not observed.

Step 30

```
n < - nrow(x)
  d <- ncol(x)
  log_likelihoods <- numeric(max_iter)</pre>
  responsibility_snapshots <- list()</pre>
  for (iter in 1:max_iter) {
   # E-step: Compute the responsibilities
    gamma <- matrix(0, n, K)</pre>
    for (i in 1:n) {
      for (k in 1:K) {
        gamma[i, k] <- pi_hat[k] * dGaussian(x[i, ], mu_hat[[k]],</pre>
         \hookrightarrow sigma_hat[[k]])
      }
      gamma[i, ] <- gamma[i, ] / sum(gamma[i, ]) # Normalize</pre>
    # Save responsibilities if requested
    if (iter %in% steps_to_plot) {
      responsibility_snapshots[[as.character(iter)]] <- gamma</pre>
    # M-step: Update parameters
    N_k <- colSums(gamma)
    pi_hat <- N_k / n
    for (k in 1:K) {
      \label{eq:muhat} \mbox{\tt mu\_hat[[k]]} \mbox{\tt <-} \mbox{\tt colSums}(\mbox{\tt gamma[, k]} \mbox{\tt * x)} \mbox{\tt / N\_k[k]}
      sigma_hat[[k]] <- matrix(0, d, d)</pre>
      for (i in 1:n) {
        \rightarrow \quad mu\_hat[[k]]) \ \text{$**$ $t(x[i, ] - mu\_hat[[k]])$}
      sigma_hat[[k]] <- sigma_hat[[k]] / N_k[k]
    }
    # Log-likelihood computation
    log_likelihood <- 0</pre>
    for (i in 1:n) {
      temp <- 0
      for (k in 1:K) {
        temp <- temp + pi_hat[k] * dGaussian(x[i, ], mu_hat[[k]],</pre>
         \hookrightarrow sigma_hat[[k]])
      log_likelihood <- log_likelihood + log(temp)</pre>
    log_likelihoods[iter] <- log_likelihood</pre>
    # Check for convergence
    if (iter > 1 && abs(log_likelihoods[iter] - log_likelihoods[iter - 1])
      log_likelihoods <- log_likelihoods[1:iter]</pre>
      break
   }
 }
 list(pi = pi_hat, mu = mu_hat, sigma = sigma_hat, log_likelihood =
  → log_likelihoods, responsibilities = responsibility_snapshots)
# Run the EM algorithm and save responsibilities after specific steps
```

```
steps_to_plot <- c(1, 2, 30)
result <- em_gmm_with_responsibilities(x, K, pi_hat, mu_hat, sigma_hat,

    steps_to_plot)

# Plotting responsibilities
par(mfrow = c(3, 1))
for (step in steps_to_plot) {
 gamma <- result$responsibilities[[as.character(step)]]</pre>
 colors <- rgb(gamma[, 1], 0, gamma[, 2], alpha = 0.6) # Red for

→ component 1, Blue for component 2

 plot(x, col = colors, pch = 19, main = paste("Step", step), xlab = "X1",
   \rightarrow ylab = "X2")
par(mfrow = c(1, 1))
# Plot log-likelihood progression
plot(result$log_likelihood, type = "o", main =
   "Log-Likelihood Progression", xlab = "Iteration", ylab =
   "Log-Likelihood")
```

When playing around with this simulation you can pay closer attention to the following problems:

- Are the estimated values of the parameters close to the true value?
- It this model identifiable?
- In this simulation we chose K = 2 both in simulations and in the estimation step. In practice we do not know K so we may want to check a bunch of different values. Think how this could be done but in an ad hoc and formal way.

Exercises 3.4

Exercise 3.4.1. Show that if X has spherical distribution, then $\mathbb{E}X = 0$ and $var(X) = cI_m$ for some $c \ge 0$.

Exercise 3.4.2. Suppose $X = \frac{1}{\sqrt{\tau}}Z$ with $Z \sim N(0, I_m)$ with $Z \perp \!\!\! \perp \tau$. Show that $var(X) = \mathbb{E}[\tau^{-1}]I_m$.

Exercise 3.4.3. *Verify* (3.4) *that gives the density of the Gaussian copula* model. Then check also (3.5).

Exercise 3.4.4. Equation (3.6) provides the density of the Gaussian mixture model. Verify this function indeed integrates to 1.

Exercise 3.4.5. Propose an algorithm to generate samples from this model for fixed values of all parameters. Hint: Check Section 3.3.2.

Exercise 3.4.6. Let $X \sim N_m(0,\Sigma)$. Show that $\Sigma^{-1/2}X$ has a spherical distribution. Explain why this property supports the use of spherical distributions as a generalization of the multivariate normal.

Exercise 3.4.7. Suppose $X \sim E(\mu, \Sigma)$, an elliptical distribution. Show that any linear transformation AX + b, where $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, is also elliptically distributed.

Exercise 3.4.8. Prove that if $X \sim E(0, \Sigma)$, then the correlation structure of *X* is determined by Σ . Explain why Σ is called the scale matrix rather than the covariance matrix.

Exercise 3.4.9. Let $X = \frac{1}{\sqrt{\tau}}Z$, where $Z \sim N_m(0, I_m)$ and $\tau \sim \chi_k^2/k$. Show that X follows a multivariate t-distribution with k degrees of freedom.

Exercise 3.4.10. Derive the cumulative distribution function (CDF) of the univariate Laplace distribution as a special case of the multivariate Laplace distribution within the scale mixture of normals framework.

Exercise 3.4.11. Let $X \sim N_m(0, \Sigma)$ and Y = AX, where $A \in \mathbb{R}^{n \times m}$. Show that Y also has a Gaussian distribution and derive its mean and covariance.

Exercise 3.4.12. Consider the polar coordinates transformation for $X \in$ \mathbb{R}^3 . Write the explicit transformation formulas and compute the Jacobian determinant for this case.

Exercise 3.4.13. Simulate data from a two-component Gaussian mixture model in \mathbb{R}^2 . Fit a GMM to the data using the EM algorithm and compare the estimated parameters to the true values. Interpret the results.

Exercise 3.4.14. Prove that the Gaussian copula density in Equation (3.4) satisfies the property of being a valid probability density function by verifying that it integrates to 1.

Exercise 3.4.15. Let $Z = (Z_1, Z_2) \sim N_2(0, \Sigma)$ with correlation ρ . Derive the Gaussian copula density in the bivariate case and explain how ρ governs the dependence structure.

Exercise 3.4.16. Using Sklar's theorem, show how a Gaussian copula can be used to model the joint distribution of $X_1 \sim Exp(1)$ and $X_2 \sim Exp(1)$. Simulate data from this model and compute empirical and theoretical correlations.

Exercise 3.4.17. Derive the relationship between the density of a multivariate elliptical distribution $E(\mu, \Sigma)$ and its associated spherical distribution.

Exercise 3.4.18. Simulate data from a Clayton copula and compare its tail dependence properties to a Gaussian copula. Discuss the implications for modeling extreme events.

Exercise 3.4.19. Let $X \sim N_m(0, \Sigma)$. Compute $\mathbb{E}[\|X\|^2]$ and interpret this result in the context of spherical and elliptical distributions.

Exercise 3.4.20. Consider a multivariate t-distribution with k degrees of freedom. Derive its marginal distribution for a single component X_i , and compute its mean and variance.

4

Principal Component Analysis

The primary challenge in multivariate statistics is managing a large number of variables, potentially in the millions. One approach is to model these variables directly using high-dimensional statistical techniques. Alternatively, dimensionality reduction methods can be applied to derive a smaller set of variables that capture the most significant relationships in the data. These derived variables often serve as effective substitutes for the original data.

This chapter provides a comprehensive introduction to Principal Component Analysis (PCA). While the lecture slides illustrate simple examples of how PCA can project a multivariate dataset onto two dimensions for visualization and insight, the following sections carefully develop the underlying theory. For a nice motivating example see Figure 4.1 taken from the paper¹.

¹ Novembre et al, Genes mirror geography within Europe, Nature, 2009

Figure 4.1: Principal Component Analysis (PCA) applied to genetic data from individuals across Europe, illustrating how the first two principal components mirror the geographical distribution of populations. Each point represents an individual, color-coded by their country of origin, with clusters forming a map-like structure of Europe.

4.1 Principal components

We start with the following problem. Given a random p-vector $X \sim (\mu, \Sigma)$ find a scalar random variable $Z = u^{\top}X$ with the largest variance. This is not well defined if we allow $u \in \mathbb{R}^p$. Thus, we constrain to $u \in \mathbb{R}^p$ such that ||u|| = 1. We say that u is a unit vector. Unit vectors define directions.

Recall $var(u^{T}X) = u^{T}\Sigma u$. Thus we solve a constrained problem

maximize
$$u^{\top} \Sigma u$$
 subject to $u^{\top} u = 1$.

Since we optimize a continuous function over a compact set, this optimum must be attained. We encode the constraint ||u|| = 1 as $||u||^2 = u^\top u = 1$ to avoid dealing with square roots.

The Lagrangian is

$$L = u^{\top} \Sigma u - \lambda (u^{\top} u - 1)$$

and every optimum of the original problem must be a stationary point of the Lagrangian. We get

$$\nabla_{u}L = 2\Sigma u - 2\lambda u.$$

This shows that every stationary point of L must correspond to an eigenvector of Σ with λ being the corresponding eigenvalue. If u is such an eigenvector then the value of the original function is

$$u^{\top} \Sigma u = \lambda u^{\top} u = \lambda.$$

Thus, the stationary point of L that gives the maximal value of the original function is the eigenvector corresponding to the maximal eigenvalue of Σ (which will be always strictly positive).

Suppose that we have now identified u_1 as the first principal direction and λ_1 as the corresponding variance.

We can now look for other linear combinations uncorrelated with $u_1^{\top}X$ with maximum variance. The uncorrelation condition is

$$0 = \operatorname{cov}(u_1 X, u X) = u_1^{\top} \Sigma u = \lambda_1 u_1^{\top} u.$$

Since $\lambda_1 > 0$, equivalently $u_1^\top u = 0$. This amount to solving

maximize
$$u^{\top} \Sigma u$$
 subject to $u^{\top} u = 1$ and $u_1^{\top} u = 0$.

Here the Lagrangian is

$$L = u^{\top} \Sigma u - \lambda (u^{\top} u - 1) - \nu u_1^{\top} u.$$

The stationary points satisfy $\Sigma u - \lambda u = \frac{\nu}{2}u_1$. If $\nu \neq 0$ we get a contradiction with $u^{\top}u_1 = 0^2$ and so $\nu = 0$. But in this case, we

We write $X \sim (\mu, \Sigma)$ to denote that $\mathbb{E}X = \mu$ and $\text{var}(X) = \Sigma$.

² Multiplying by u_1^{\top} from the left, we get $u_1^{\top}\Sigma u - \lambda u_1^{\top}u = \nu/2$, or equivalently, $(\lambda_1 - \lambda)u_1^{\top}u = \nu/2$.

easily show that u_2 has to be the eigenvector of Σ corresponding to the second largest eigenvalue λ_2 . And we can continue in this way obtaining *m* random variables $Z_1 = u_1^{\perp} X, \ldots, Z_m = u_m^{\perp} X$. By construction, the variables Z_i are uncorrelated and they are ordered by the size of their variance.

Recall the spectral theorem in Section 1.1.5, which states that we can decompose $\Sigma = U\Lambda U^{\top}$, where U is an orthogonal matrix and Λ is diagonal with positive diagonal entries. The *columns* of U are eigenvectors and the diagonal entries of Λ are the corresponding eigenvalues. If the entries of Λ are in decreasing order, the columns of *U* are the subsequent principal directions.

4.1.1 Principal components for observed data

Suppose we have samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$. Write them as rows in a data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$. We then standardize the data so that each column has mean zero and variance one³. Denote the normalized data matrix by $\tilde{\mathbf{X}}$.

We can then compute the sample covariance matrix $S_n = \frac{1}{n} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}$ and proceed exactly as above replacing Σ with S_n . We again write the spectral decomposition $S_n = U\Lambda U^{\top}$, where *U* is the matrix of loadings.

We can now use it to project the data to a *d*-dimensional subspace with d < p. Let u_1, \ldots, u_d be the first d principal directions (the first dcolumns of *U*). The **scores** are the images of the centered data points $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$ in the coordinate system defined by the *d* loadings. These are the points, y_1, \ldots, y_n given by

$$\mathbf{y}_j = (\mathbf{u}_1^{\top} \mathbf{x}_j, \dots, \mathbf{u}_d^{\top} \mathbf{x}_j).$$

In other words, $\mathbf{Y} \in \mathbb{R}^{n \times d}$ with rows $\mathbf{y}_1, \dots, \mathbf{y}_n$ is obtained by taking the first d columns of $\tilde{X}U$.

Correlation structure

Suppose that *U* is the matrix of principal directions, that is, $\Sigma =$ $U\Lambda U^{\top}$. Assume that $X \in \mathbb{R}^p$ is centered. Let $Z = U^{\top}X \in \mathbb{R}^p$ then $var(Z) = U^{\top} \Sigma U = \Lambda.$

The covariance between *X* and *Z* is

$$\mathrm{cov}(X,Z) = \mathbb{E} X Z^\top \ = \ \mathbb{E}(XX^\top U) \ = \ \Sigma U \ = \ U \Lambda.$$

Consequently, the covariance between X_i and Z_i is $\lambda_i U_{ij}$. Now X_i and Z_i have variances σ_{ii} and λ_i , respectively, and so their correlation is ρ_{ij} with

$$\rho_{ij} = \frac{\lambda_j U_{ij}}{\sqrt{\Sigma_{ii}\lambda_j}} = U_{ij} \sqrt{\frac{\lambda_j}{\Sigma_{ii}}}.$$

³ In practice we normalize data so that $S_{jj} = 1$ for $j = 1, \dots, p$. To see why this is important perform a simple experiment: Take any preferred dataset and multiply one of the observed variables by a large number (e.g. by 1000 when changing units from kilograms to grams). See how this affects the results.

We may say that the proportion of variation of X_i "explained" by Z_i is ρ_{ii}^2 . More precisely, suppose $\Sigma_{ii} = 1$ for all i. Then,

$$\sum_{j=1}^{m} \rho_{ij}^{2} = \sum_{j=1}^{m} \lambda_{j} u_{ij}^{2}, \qquad \sum_{j=1}^{m} \rho_{ij}^{2} = \lambda_{j} \sum_{j=1}^{m} u_{ij}^{2} = \lambda_{j}$$

of the variation in X_i . The denominator of this expression represents the variation explained in X_i that is to be explained, and the numerator gives the amount explained by the set G.

4.2 Simple graphics for PCA

4.2.1 Scree plot and fraction of variance exlpained

Suppose $S_n = U\Lambda U^{\top}$ is the spectral decomposition. The diagonal entries S_{jj} of S_n are the sample variances of each of the variables. On the other hand the diagonal entries λ_j of Λ are the variances of the principal components. Note that

$$\operatorname{tr}(S_n) = \operatorname{tr}(U\Lambda U^{\top}) = \operatorname{tr}(\Lambda U^{\top}U) = \operatorname{tr}(\Lambda).$$

It follows that

$$S_{11} + \cdots + S_{pp} = \lambda_1 + \cdots + \lambda_m$$

and so the total variance is preserved by PCA.

Often, most of the variance is explained by a small number of principal components. The following facts should also be useful.

Proposition 4.2.1. Suppose we regress each variable X_j on PC_1 and compute the R_j^2 for that regression. If X_j are standardized to have variance equal to one, then $\sum_{j=1}^p R_j^2 = \lambda_1$. If we regress on the first k principal components, then $\sum_j R_j^2 = \sum_{j=1}^k \lambda_j$.

In R simply run princomp(data,cor=TRUE)

Note that $S_{ii} = \text{var}(e_i^\top X)$ and so $\lambda_1 \geq \max_i(S_{ii})$.

If we regress Y on Z_1,\ldots,Z_k then the corresponding coefficient of determination (aka R^2) is $R^2=1-\frac{\|\mathbf{y}-\widehat{\mathbf{y}}\|^2}{\|\mathbf{y}-\widehat{\mathbf{y}}\|^2}$, where $\widehat{\mathbf{y}}=\mathbf{X}\widehat{\boldsymbol{\beta}}$ is the vector of predicted values and $\bar{\mathbf{y}}=\frac{1}{n}\mathbf{y}^{\top}\mathbf{1}_n$.

Figure 4.2: An example of the Scree plot. Here the first three components capture most of the variance. If $\Sigma_{ii}=1$ for all i, then $\frac{\lambda_i}{m}100\%$ is the percentage of the variance explained by the i-th component.

4.2.2 *Biplot*

In the slides we presented a number of biplots. What is this? A PCA biplot is a graphical representation that shows both the observations (data points) and the principal components' directions (loadings) in a single plot. It provides insight into how the original variables contribute to the principal components and how the observations relate to each other in the space of the principal components.

The idea is simple. We compute the first two principal directions $u_1, u_2 \in \mathbb{R}^p$ and each observation in the dataset is projected onto the principal components. These projections are called scores. They are computed as $(u_1^{\top} x_i, u_2^{\top} x_i)$ for i = 1, ..., n. This is our 2-dimensional dataset.

The loadings represent the contribution of each original variable to the principal components. Loadings are the coefficients of the linear combinations that define each principal component. Concretely, these are obtained from the first two rows of the loading matrix *U*. In a biplot, these are typically shown as arrows or vectors, indicating the direction and strength of each variable's influence on the principal components.

Figure 4.3: An example of a biplot with scores as blue dots and loadings as brick-red arrows.

PCA and affine approximating subspaces

As before let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be the data matrix representing n points \mathbf{x}_i in \mathbb{R}^p . Every r dimensional affine subspace of \mathbb{R}^p can be written as $\mu + \text{range}(W)$ for some $\mu \in \mathbb{R}^p$ and $W \in \mathbb{R}^{p \times r}$ with full column rank. Thus, every point in this subspace can be written as $\mu + Wz$ for some $z \in \mathbb{R}^r$. The goal is to find an affine subspace of dimension $\leq r$ that minimizes the sum of squared distances between the points x_i and their projections onto this subspace. That is, we aim to solve the following optimization problem⁴:

$$\text{minimize} \sum_{i=1}^n \|\mathbf{x}_i - (\mu + W\mathbf{z}_i)\|^2 \qquad \text{subject to } \mu \in \mathbb{R}^p, W \in \mathbb{R}^{p \times r}, \mathbf{z}_i \in \mathbb{R}^r.$$

Note that without loss of generality we can also assume that $\sum_{i=1}^{n} z_i = \mathbf{0}$. This corresponds to changing (μ, W) to $(\mu - W(\sum_i z_i), W)$, which defines the same affine subspace.

4.3.1 Reformulating the problem

Note that each summand in the objective function can be written as

$$||x_i - \mu||^2 - 2\langle x_i - \mu, Wz_i \rangle + ||Wz_i||^2$$

It is then straightforward to first optimize over μ getting

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} (x_i - W z_i) = \bar{x}.$$

Define the centered data matrix $\tilde{\mathbf{X}} = \mathbf{X} - \mathbf{1}_n \bar{\mathbf{x}}^\top$, where $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$ is the sample mean, and $\mathbf{1}_n$ is a vector of ones of length n. After centering, the problem becomes:

$$\text{minimize } \sum_{i=1}^n \|\tilde{\mathbf{x}}_i - W \mathbf{z}_i\|^2 \qquad \text{subject to } W \in \mathbb{R}^{p \times r}, \mathbf{z}_i \in \mathbb{R}^r.$$

This can be written in matrix form as:

minimize
$$\|\tilde{\mathbf{X}} - \mathbf{Z}W^{\top}\|_F^2$$
 subject to $W \in \mathbb{R}^{p \times r}$, $\mathbf{Z} \in \mathbb{R}^{n \times r}$, (4.1)

where $\tilde{\mathbf{X}} \in \mathbb{R}^{n \times p}$ is the centered data matrix, and $\|\cdot\|_F$ denotes the Frobenius norm⁵.

4.3.2 Singular value decomposition (SVD) approach

Since the matrices Z and W in (4.1) are unrestricted, equivalently $ZW^{\top} \in \mathbb{R}^{n \times p}$ has rank $\leq r$. The solution to (4.1) can be obtained via the singular value decomposition (SVD) of the data matrix. Recall that the SVD of \tilde{X} is:

$$\tilde{\mathbf{X}} = U \Lambda V^{\top}$$
.

where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{p \times p}$ are orthogonal matrices, and $\Lambda \in \mathbb{R}^{n \times p}$ is a diagonal matrix containing the singular values.

 4 To show this reduction, you may first optimize over μ

Here we used the fact that $\sum_i z_i = \mathbf{0}$.

⁵ The space $\mathbb{R}^{n \times p}$ admits a natural inner product $\langle A, B \rangle = \operatorname{tr}(AB^{\top})$. The Frobenius norm is the induced norm: $\|A\|_F = \sqrt{\langle A, A \rangle} = \sqrt{\sum_{i,j} A_{ij}^2}$

Theorem 4.3.1 (Eckart-Young Theorem). *Given* $\mathbf{X} \in \mathbb{R}^{n \times p}$ *with SVD* $\mathbf{X} = UDV^{\top}$ and the problem: minimize $\|\mathbf{X} - M\|_F$ subject to rank $(M) \leq$ r, the solution is given by $\widehat{M} = UD_rV^{\top}$, where D_r is obtained from D by removing all but the first r diagonal entries.

For a proof and a more detailed discussion, see Section I.9 in ⁶. In consequence, the best rank-r approximation to $\tilde{\mathbf{X}}$ is given by truncating the SVD to the first *r* singular values. That is, the optimal affine subspace is spanned by the first r columns of V, and the corresponding projected points are obtained by multiplying these directions by the singular values:

$$\tilde{\mathbf{X}}_r = U \Lambda_r V^{\top}$$
.

Connection to PCA 4.3.3

This procedure shows that PCA is equivalent to finding the best affine subspace that approximates the data in the least squares sense. The principal components V_r represent the directions of maximum variance in the data, and the singular values Λ_r represent the amount of variance explained by each principal component.

In other words, PCA projects the data onto a lower-dimensional affine subspace in such a way that the variance of the projected data is maximized, and the reconstruction error (in terms of squared distances) is minimized. This gives a direct geometric interpretation of PCA as finding the best-fitting affine subspace for the data.

Principal Component Regression (PCR) and Probabilistic PCA (PPCA)

4.4.1 Principal Component Regression

In some cases, PCA can be used as a preprocessing step in regression to reduce the dimensionality of the data and remove multicollinearity. By using the first few principal components as predictors in the regression model, we can obtain more stable estimates of the regression coefficients and improve the interpretability of the model.

For example, suppose we have a dataset with p variables and we perform PCA to extract the first *k* principal components. We can then fit a regression model using these *k* components as predictors:

$$\widehat{Y} = \alpha + \beta_1 Z_1 + \beta_2 Z_2 + \dots + \beta_k Z_k,$$

where Z_1, Z_2, \dots, Z_k are the first k principal components. This is known as principal component regression (PCR), and it is often used when the number of predictors is large relative to the number of observations.

⁶ Gilbert Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, Wellesley, MA, 2019. ISBN 9780692196380

4.4.2 Probabilistic PCA

There is a related generative model in which we model a random vector *X* through the linear relation

$$X = \mu + WZ + \varepsilon$$
, $Z \sim N_r(0, I_r)$, $\varepsilon \sim N_m(0, \sigma^2 I_m)$, $Z \perp \!\!\! \perp \varepsilon$.

To have a concrete example, suppose r=1, m=2, $\mu=(0,0)$, and $W=(1,\frac{1}{2})$. Sampling Z from N(0,1) produces blue points in Figure 4.4.2. Additionally, sampling $\varepsilon \sim N_2(0,I_2)$ and adding to the corresponding blue points, gives the red points, which are the samples from the underlying PPCA model.

It is not hard to see that X|Z is Gaussian and so X is also marginally Gaussian with mean μ and covariance $\sigma^2 I_m + WW^\top$. It turns out that this model admits closed form formula for the MLE, which mimics the PCA solution.

We now describe the MLE for a random sample $\mathbf{x}_1,\ldots,\mathbf{x}_n$ from the PPCA model. Let S_n be the sample covariance matrix with spectral decomposition $S_n = U\overline{\Lambda}U^{\top}$, where the eigenvalues in $\overline{\Lambda}$ are $\overline{\lambda}_1 \geq \cdots \geq \overline{\lambda}_m$. Let $U_r \in \mathbb{R}^{m \times r}$ be the submatrix of U obtained by taking the first r columns (corresponding to the largest eigenvalues) and let $\overline{\Lambda}_r \in \mathbb{R}^{r \times r}$ be the submatrix of $\overline{\Lambda}$ obtained by taking the first r rows and columns.

Theorem 4.4.1. With the notation as above, the MLE in the PPCA model satisfies

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i},$$

$$\widehat{\sigma}^{2} = \frac{1}{m-r} \sum_{i=r+1}^{m} \bar{\lambda}_{i}$$

$$\widehat{W} = U_{r} (\overline{\Lambda}_{r} - \widehat{\sigma}^{2} I_{r})^{\frac{1}{2}} O_{r}$$

for any orthogonal matrix Q.

Proof. First note that $\Sigma = WW^{\top} + \sigma^2 I_m$ if and only if the eigenvalues satisfy

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r \ge \lambda_{r+1} = \dots = \lambda_m.$$
 (4.2)

Thus PPCA constraints only the spectrum of Σ and the constraints are linear. The Von Neumann's trace inequality states that

$$\operatorname{tr}(S_n K) \geq \sum_{i=1}^m \frac{\bar{\lambda}_i}{\lambda_i}$$

with equality if and only if K and S_n share the eigenvectors. This implies that the log-likelihood satisfies

$$\log \det(K) - \operatorname{tr}(S_n K) \leq -\sum_{i=1}^m \log(\lambda_i) - \sum_{i=1}^m \frac{\bar{\lambda}_i}{\lambda_i}$$
(4.3)

with equality if and only if S_n and K share eigenvectors. Thus, the MLE $\widehat{\Sigma}$ is of the form $\widehat{\Sigma} = U \widehat{\Lambda} U^{\top}$. The eigenvalues λ_i are chosen so that the right-hand side of (4.3) is maximized subject to the constraints in (4.2). The result follows by solving the corresponding Lagrangian.

PCA and matrix completion

Suppose that now $\mathbf{X} \in \mathbb{R}^{n \times p}$ contains some missing data denoted as NA. We would like to be able to:

- 1. Estimate the missing entries.
- 2. Compute the PCA in presence of missing data.

We saw in Theorem 4.3.1 that SVD(r) solves

minimize
$$\|\mathbf{X} - M\|_F^2$$
 subject to rank $(M) \le r$.

Let $\Omega \in \{0,1\}^{n \times p}$ be such that $\Omega_{ij} = 0$ if the corresponding entry of **X** is NA and $\Omega_{ij} = 1$ otherwise. Let $\Omega \circ \mathbf{X}$ be the Hadamard (entrywise) product:

$$(\Omega \circ \mathbf{X})_{ij} = \Omega_{ij}\mathbf{X}_{ij} = \begin{cases} 0 & \text{if } \mathbf{X}_{ij} = \mathbf{N}\mathbf{A} \\ \mathbf{X}_{ij} & \text{otherwise.} \end{cases}$$

Using this mask, we can frame the optimization problem for estimating missing entries and performing PCA as:

minimize
$$\|\Omega \circ (\mathbf{X} - M)\|_F^2$$
 subject to rank $(M) \le r$.

This problem is more challenging because the missing entries make it non-trivial to directly solve for M. Unlike the standard PCA formulation, this problem does not have an explicit solution, and we solve it iteratively using algorithms like hardimpute.

Denote $\lambda_i(A)$ to be the eigenvalues of $A \in \mathbb{S}^m$ (in the decreasing order). The Von Neumann's trace inequality actually states that $tr(AB) \leq \sum_{i=1}^{m} \lambda(A_i)\lambda_i(B)$ with equality if and only if A and B share eigenvectors. Applying it to A and -B we conclude that $\operatorname{tr}(AB) \geq \sum_{i=1}^{m} \lambda(A_i) \lambda_{m-i+1}(B)$ (note that $\lambda_1(-B) = -\lambda_m(B)$ and so on). We are applying this last inequality for $A = S_n$ and $B = K = \Sigma^{-1}$.

4.5.1 Hardimpute algorithm

The hardimpute algorithm iteratively solves the matrix completion problem by alternating between two steps:

- 1. Filling in missing entries of the matrix using the current estimate M^{j-1} .
- 2. Low-rank approximation: Updating M^{j} by projecting onto the space of rank-r matrices.

This is the algorithm:

- 1. Initialize $M^0 = \mathbf{0}_{n \times p}$.
- 2. Loop over $j = 1, 2, \dots$ until convergence
 - $\mathbf{X}^* = \Omega \circ \mathbf{X} + (\mathbf{1}_{n \times p} \Omega) \circ M^{j-1}$
 - $M^j = \arg\min_{M: rk(M) \le r} ||X^* M||_F^2$.

It is important to note that, in this algorithm, the objective function $\|\Omega \circ (\mathbf{X} - M)\|_F^2$ decreases monotonically with each iteration because (i) the imputation step does not increase the objective and (ii) the low-rank projection step minimizes the Frobenius norm for a given \mathbf{X}^* . Consequently, this algorithm is a descent algorithm and so it converges to a stationary point.

Since the objective is not convex, we have no guarantee that the solution is a global optimum. In practice however it works extremely well; see softImpute. Here the name softimpute refers to an alternative approach, which uses a nuclear norm penalty (convex relaxation of the rank constraint) instead of the hard rank constraint. softimpute solves:

minimize
$$\|\Omega \circ (\mathbf{X} - M)\|_F^2 + \lambda \|M\|_*$$
,

where $||M||_*$ is the nuclear norm (sum of singular values). This convex formulation guarantees convergence to a global minimum, though it may produce a biased solution for low-rank matrices.

4.6 Appendix: Covariance matrix estimation in high dimensions

In PCA we use the sample covariance matrix S_n as a natural estimator of the population covariance matrix Σ . We note however that this is only a good estimator when n is much larger than m. Otherwise, we may need to use an alternative estimator. In this section we very briefly overview some of the existing techniques.

4.6.1 Motivating alternative estimators

As noted in Section 1.3.3, the sample covariance matrix is a natural estimator due to its small bias, which diminishes rapidly as n increases. Furthermore, it can be shown to be asymptotically Gaussian under the assumption that the underlying dimension p remains fixed. However, this asymptotic analysis becomes inadequate in scenarios where n is not significantly larger than p, as the standard assumptions no longer hold.

For concreteness, suppose that we measure quality of this estimator by analyzing the distance $||S_n - \Sigma||$ in the operator norm

$$||S_n - \Sigma|| := \max_{\|u\|=1} ||(S_n - \Sigma)u||.$$

Under mild moment conditions, an argument based on the classical law of large numbers can be used to show that the difference $||S_n||$ Σ converges to zero in probability as $n \to \infty$. Consequently, S_n is a consistent estimator of the population covariance Σ in the classical setting.

What happens when we also allow p to tend to infinity? To make this question a bit more formal, consider sequences of problems (S_n, Σ) indexed by the pair (n, p), and suppose that we allow both nand *p* grow with their ratio remaining fixed, say $p/n = \gamma \in (0,1)$. In Figure 4.4 we plot the results of simulations for the case when $\Sigma = I_m$ with each $\mathbf{x}_i \sim N(\mathbf{0}, I_m)$.

Using n samples we compute S_n and compute its eigenvalues. They should be all nonnegative and actually positive if $n \geq p$. We then construct a histogram for these eigenvalues. Since in our simulations n is large (we take n = 1000), classical theory suggests, all eigenvalues should be close to 1 as S_n should be close to I_p . But this is not what we observe. It actually seems that the eigenvalues follow a distribution that is well spread out; cf. Figure 4.4.

This situation has been well studied in random matrix theory. The underlying eigenvalue distribution is called the Marchenko-Pastur law. Define $\lambda_{\min} = (1 - \sqrt{\gamma})^2$ and $\lambda_{\max} = (1 + \sqrt{\gamma})^2$ then the law admits density

$$f_{\mathrm{MP}}(\lambda) \ = \ \frac{1}{2\pi\gamma\lambda}\sqrt{(\lambda_{\mathrm{max}}-\lambda)(\lambda-\lambda_{\mathrm{min}})} \qquad \mathrm{for} \ \lambda_{\mathrm{min}} \le \lambda \le \lambda_{\mathrm{max}}.$$

If you want to play around with this, this is R code that produces one of the plots in Figure 4.4.

```
# Load necessary libraries
library(MASS)
library(ggplot2)
# Simulation parameters
```


Figure 4.4: The histogram of eigenvalues and the corresponding Marchenko-Pastur law for n = 1000 and p = 200(equiv. $\gamma = 0.2$) on the top, p = 500(equiv. $\gamma = 0.5$) in the bottom.

```
n_sim <- 100  # Number of simulations
# Function to compute eigenvalues of the sample covariance matrix
compute_eigenvalues <- function(n, p) {</pre>
  data <- mvrnorm(n = n, mu = rep(0, p), Sigma = diag(p)) sample_cov <-

→ cov(data) # Compute sample covariance matrix
  eigen(sample_cov)$values # Return eigenvalues
}
# Perform simulations
set.seed(42) # For reproducibility
eigenvalues_list <- replicate(n_sim, compute_eigenvalues(n, p), simplify =</pre>

→ FALSE)

all_eigenvalues <- unlist(eigenvalues_list)</pre>
# Parameters for the Marchenko-Pastur density
gamma <- p / n # Aspect ratio
lambda_min <- (1 - sqrt(gamma))^2 # Lower bound of the MP support</pre>
lambda_max <- (1 + sqrt(gamma))^2 # Upper bound of the MP support</pre>
# Marchenko-Pastur density function
mp_density <- function(lambda, gamma) {</pre>
  if (lambda >= lambda_min && lambda <= lambda_max) {</pre>
   return((1 / (2 * pi * gamma)) * sqrt((lambda_max - lambda) * (lambda -
    → lambda_min)) / lambda)
  } else {return(0)}
# Generate MP density values
lambda_seg <- seg(lambda_min, lambda_max, length.out = 500)</pre>
mp_values <- sapply(lambda_seq, mp_density, gamma = gamma)</pre>
# Plot normalized histogram and MP density
ggplot(data = data.frame(eigenvalue = all_eigenvalues), aes(x =
→ eigenvalue)) +
  geom_histogram(aes(y = ..density..), bins = 50, color = "black", fill =
  \rightarrow "skyblue", alpha = 0.5) +
  geom_line(data = data.frame(lambda = lambda_seq, density = mp_values),
  → aes(x = lambda, y = density), color = "deepskyblue4", size = 1.2) +
  labs(title =
  → "Comparison of Eigenvalue Histogram and Marchenko-Pastur Density",
   x = "Eigenvalue",y = "Density") + theme_minimal()
```

The Marchenko-Pastur law is an asymptotic result, albeit with a non-classical flavor, as it allows both the sample size n and the dimension p to diverge simultaneously. Similar to classical asymptotics, it provides an approximation for the distribution of eigenvalues even when n and p are finite. When p is not negligible relative to n, this approximation significantly outperforms the classical one.

4.6.2 *Review of alternative estimators*

If the covariance matrix has some special structure, incorporating this structure in the estimation procedures can greatly help in highdimensional scenarios. Regularization introduces constraints or

penalties to improve the stability and accuracy of covariance estimates. Key approaches include:

Linear shrinkage. The linear shrinkage estimator is given by:

$$\widehat{\Sigma}_{\text{ridge}} = (1 - \lambda)S_n + \lambda I_m,$$

where $\lambda \in [0,1]$ is the shrinkage parameter. Choosing λ appropriately (e.g., via cross-validation) balances bias and variance, ensuring better performance in high-dimensional settings.

The intuition behind shrinking toward the identity matrix arises from several considerations. First, as we already noted, in highdimensional settings where $p \approx n$ or p > n, the sample covariance matrix S_n is often unstable, highly variable, or even singular (noninvertible). Adding λI_p stabilizes the estimate by ensuring that Σ_{ridge} is well-conditioned and invertible. Second, the shrinkage estimator introduces bias by pulling S_n toward I_p , but it reduces variance, which can dominate in high dimensions. A well-chosen λ balances this trade-off, leading to improved estimation accuracy for the covariance matrix.

Shrinking toward I_p corresponds to assuming, in part, that the covariance structure is close to isotropic (equal variance in all directions) unless there is sufficient evidence in the data to suggest otherwise. In cases where the data are strongly anisotropic (variances and correlations differ widely across directions), the assumption of isotropy embedded in I_p may lead to excessive bias. Shrinking toward a more informed matrix may yield better performance.

Graphical Lasso (Sparse Precision Matrix Estimation). For many high-dimensional datasets, it is reasonable to assume that variables are conditionally independent given others. This sparsity assumption is leveraged by estimating the precision matrix $\Theta = \Sigma^{-1}$ using the graphical lasso:

$$\widehat{\Theta} = \arg\min_{\Theta \succ 0} \left\{ \operatorname{tr}(\widehat{\Sigma}\Theta) - \log \det(\Theta) + \lambda \|\Theta\|_1 \right\},$$

where $\|\Theta\|_1 = \sum_{i,j} |\Theta_{ij}|$ promotes sparsity. The resulting estimate $\widehat{\Theta}$ can be inverted to approximate Σ . We discuss this estimator in much more detail in Chapter 7.

Factor Models. In many applications, the data can be modeled as having a low-rank structure plus noise. A covariance matrix in such settings can be decomposed as:

$$\Sigma = LL^{\top} + \Psi$$
,

where $L \in \mathbb{R}^{p \times r}$ ($r \ll p$) is a low-rank factor matrix, and Ψ is a diagonal matrix capturing idiosyncratic variances. Estimation could proceed by minimizing reconstruction error:

$$\min_{L,\Psi} \|S_n - LL^\top - \Psi\|_F^2.$$

We discuss the closely related Factor Analysis model in Chapter 8.

Thresholding-Based Methods. A simple and effective approach for high-dimensional covariance estimation is to threshold small entries in S_n , which helps reduce noise and enforce sparsity. For a given threshold $\tau > 0$, the thresholded covariance estimate is:

$$\widehat{\Sigma}_{\text{thresh}} = \left[(S_n)_{ij} \cdot \mathbb{I}(|(S_n)_{ij}| > \tau) \right]_{i,i}.$$

Thresholding methods rely on the assumption that most entries in the covariance matrix are small or zero, which is common in many applications.

Banding and Tapering for Structured Covariance Matrices

For structured data, such as time series or spatial data, covariance matrices often exhibit banded or tapering structures, where correlations decay with distance. It is them natural to impose this structure in the estimation process.

Tyler's scatter estimator

This estimator came from the robust statistics and it assumes that the data come from an elliptical distribution centred at the origin. The objective is to estimate the scale matrix Σ .⁷

Let **x** be a random vector from this distribution, and set $\mathbf{y} = \Sigma^{-1/2}\mathbf{x}$. Then **y** has an isotropic distribution, so that $\mathbf{y}/\|\mathbf{y}\|$ has a uniform distribution on the unit sphere in \mathbb{R}^m . Hence

$$\mathbb{E}\left[\frac{1}{\|\mathbf{y}\|^2}\mathbf{y}\mathbf{y}^{\top}\right] = \mathbb{E}\left[\frac{1}{\mathbf{x}^{\top}\Sigma^{-1}\mathbf{x}}\Sigma^{-1/2}\mathbf{x}\mathbf{x}^{\top}\Sigma^{-1/2}\right] = \frac{1}{m}I_{m},$$

or equivalently,

$$\mathbb{E}\left[\frac{1}{\mathbf{x}^{\top}\Sigma^{-1}\mathbf{x}}\mathbf{x}\mathbf{x}^{\top}\right] = \frac{1}{m}\Sigma.$$

The sample version of this equation is given by

$$\sum_{i} \frac{1}{\mathbf{x}_{i}^{\top} \Sigma^{-1} \mathbf{x}_{i}} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} = \frac{n}{m} \Sigma. \tag{4.4}$$

Under mild conditions on the data (e.g. $n \ge m$ and no linear dependence in the data), it turns out that (4.4) has a unique solution $\widehat{\Sigma}$, say, defined up to a scalar multiple.

⁷ Recall from Section 3.1.6 that the covariance matrix in the elliptical distribution is a multiple of the scale matrix Σ , var(X) = $c\Sigma$ for some c > 0.

Some Other Dimension Reduction Methods

Dimensionality reduction techniques beyond PCA are often necessary when the underlying data structure is nonlinear or when variance-based methods like PCA do not capture enough of the essential relationships in the data. The goal of this chapter is to show what are the possible ways to handle non-linearity with preserving some of the computational advantages of linear methods. We do it by introducing two state-of-the-art techniques: Uniform Manifold Approximation and Projection (UMAP) and Autoencoders.

This part of the lecture will be presented on slides and will be relatively high-level.

5.1 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a statistical technique used to represent data points in a lower-dimensional space while preserving their pairwise distances as faithfully as possible.

5.1.1 Problem Setup

Given n objects, let $\Delta = [\delta_{ij}]$ be an $n \times n$ dissimilarity matrix. A dissimilarity matrix is simply a symmetric matrix with zero diagonal entries and nonnegative off-diagonal entries. Its entry δ_{ij} represents the dissimilarity between objects i and j. In our setting the objects will be the data points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ and δ_{ij} will be their mutual distances but this setting is much more general.

The goal of MDS is to find a configuration of points $\{y_1, y_2, ..., y_n\}$ in a d-dimensional space $(d \ll n)$ such that:

$$d_{ij} = \|\mathbf{y}_i - \mathbf{y}_j\| \approx \delta_{ij}.$$

5.1.2 Classical MDS Solution

Classical MDS assumes the dissimilarities δ_{ij} are Euclidean distances, $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$. Let $D \odot D = [\delta_{ij}^2]$ be the matrix of squared dissimi-

larities (Hadamard product of D with itself). Note that the entries of $\mathbf{X}\mathbf{X}^{\top}$ satisfy $(\mathbf{X}\mathbf{X}^{\top})_{i,j} = \mathbf{x}_i^{\top}\mathbf{x}_j$ and $\|\mathbf{x}_i - \mathbf{x}_j\|^2 = (\mathbf{X}\mathbf{X}^{\top})_{i,i} + (\mathbf{X}\mathbf{X}^{\top})_{j,j} - (\mathbf{X}\mathbf{X}^{\top})_{i,j}$ $2(\mathbf{X}\mathbf{X}^{\top})_{i,i}$. Thus,

$$D \odot D = \operatorname{diag}(\mathbf{X}\mathbf{X}^{\top})\mathbf{1}\mathbf{1}^{\top} + \mathbf{1}\mathbf{1}^{\top}\operatorname{diag}(\mathbf{X}\mathbf{X}^{\top}) - 2\mathbf{X}\mathbf{X}^{\top}.$$

Recall that the centering matrix $H = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$ satisfies $H \mathbf{1} = \mathbf{0}$ and

 $B := -\frac{1}{2}H(D \odot D)H = H\mathbf{X}(H\mathbf{X})^{\top} = \tilde{\mathbf{X}}\tilde{\mathbf{X}}^{\top}.$

A natural way to get a lower dimensional embedding of the centered data $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$ in a d dimensional space in a way that approximately preserves the mutual distances is by approximating the matrix Bwith a *d* rank matrix $\mathbf{Y}\mathbf{Y}^{\top}$ with $\mathbf{Y} \in \mathbb{R}^{n \times d}$. We already saw in Theorem 4.3.1 how to solve this problem.

As suggested by Theorem 4.3.1, we first perform eigenvalue decomposition: $B = V\Lambda V^{\top}$, or equivalently, singular value decomposition of HX. Then, we select the top d eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_d$ (assumed positive) and their corresponding eigenvectors u_1, u_2, \dots, u_d . The $n \times d$ configuration matrix is:

$$\mathbf{Y}=U_d\Lambda_d^{1/2},$$

where U_d contains the top d eigenvectors, and $\Lambda_d^{1/2}$ is the diagonal matrix of the square roots of the top *d* eigenvalues.

Duality between classic MDS and PCA

The solution for MDS was given by d principal eigenvectors of B = $HX(HX)^{\top} \in \mathbb{S}^n$. On the other hand, the principal directions in PCA were defined as the d principal eigenvectors of $(H\mathbf{X})^{\top}H\mathbf{X} = \mathbf{X}^{\top}H\mathbf{X} =$ $\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}} \in \mathbb{S}^p$.

Suppose $n \leq p$. Let $u_i \in \mathbb{R}^p$ denote the i-th principal component loading vector, where $||u_i|| = 1$. Thus, we have $(H\mathbf{X})^{\top}H\mathbf{X} = U\Lambda U^{\top}$, where $U = [u_1, ..., u_p]$ and $\Lambda \in \mathbb{S}^p$ is the diagonal matrix with the corresponding eigenvalues. By the singular value decomposition we have, $H\mathbf{X} = V\tilde{\Lambda}^{1/2}U^{\top}$ for some $V \in O(n)$. Here $\tilde{\Lambda} \in \mathbb{R}^{n \times p}$ is a matrix such that $(\tilde{\Lambda}^{1/2})_{ii} = \sqrt{\lambda_i}$ for i = 1, ..., p and all the other entries are zero. Thus,

$$H\mathbf{X}(H\mathbf{X})^{\top} = V \begin{bmatrix} \Lambda & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} V^{\top}.$$

Recall from Section 4.1.1 that the scores in PCA after taking the first *d* principal directions is given by the first d columns of $H\tilde{X}U = V\tilde{\Lambda}^{1/2}$. In other words, we get the following result.

Theorem 5.1.1. The classical MDS problem is equivalent to the PCA problem.

5.1.4 Non-linearity and MDS

In the previous section, we demonstrated that classical MDS yields the same solution as PCA. However, MDS possesses a broader applicability. For instance, the dissimilarities can be calculated using non-Euclidean distances between x_i 's, or they may not necessarily represent distances.

Laplacian Eigenmaps (Spectral Embedding)

Laplacian Eigenmaps, also known as spectral embedding, is a nonlinear dimensionality reduction technique that constructs lowdimensional representations of data while preserving local geometric structure. It is widely used in manifold learning and graph-based machine learning.

5.2.1 Problem Setup

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be data points in a high-dimensional space \mathbb{R}^p . The goal is to map these points into a low-dimensional space \mathbb{R}^d $(d \ll p)$ such that local proximity relationships in the original space are preserved.

We start by constructing a weighted graph G = (V, E, W), where:

- $V = \{1, 2, ..., n\}$ represents the data points.
- E represents edges between points based on some notion of proximity (e.g., k-nearest neighbors or ϵ -neighborhoods).
- W is the weight matrix, where W_{ij} represents the similarity between points x_i and x_j .

Two common methods to define W are:

• Binary Weights:

$$W_{ij} = \begin{cases} 1, & \text{if } \mathbf{x}_j \text{ is a neighbor of } \mathbf{x}_i, \\ 0, & \text{otherwise.} \end{cases}$$

• Heat Kernel:

$$W_{ij} = \begin{cases} \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right), & \text{if } \mathbf{x}_j \text{ is a neighbor of } \mathbf{x}_i, \\ 0, & \text{otherwise.} \end{cases}$$

Here, $\sigma > 0$ controls the scale of the similarity.

5.2.2 Graph Laplacian

To compute the Laplacian Eigenmaps, we first define the graph Laplacian, which captures the structure of the graph.

The degree matrix D is a diagonal matrix where $D_{ii} = \sum_{j=1}^{n} W_{ij}$ represents the degree of vertex i. The **graph Laplacian** is defined by

← Exercise 5.5.2

$$L := D - W. \tag{5.1}$$

The normalized graph Laplacian is

$$L_{\rm N} = D^{-1/2} L D^{-1/2}.$$

5.2.3 Objective Function

Laplacian Eigenmaps minimize an objective that preserves local distances by penalizing large differences between embeddings of connected points. Let $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^d$ be the embedding coordinates of the points and let $\mathbf{Y} \in \mathbb{R}^{n \times d}$ be the corresponding data matrix. The objective is:

minimize
$$\frac{1}{2} \sum_{i,j} W_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

with respect to $\mathbf{Y} \in \mathbb{R}^{n \times d}$. The interpretation here is clear. If the weight W_{ij} is high, that is when \mathbf{x}_i and \mathbf{x}_j are close, it enforces \mathbf{y}_i and \mathbf{y}_i to be close too.

To efficiently deal with this objective function, we formulate the following result.

Lemma 5.2.1. We have
$$\frac{1}{2} \sum_{i,j} W_{ij} || \mathbf{y}_i - \mathbf{y}_j ||^2 = \text{tr}(L\mathbf{Y}\mathbf{Y}^\top)$$
.

Proof. First note that $(\mathbf{Y}\mathbf{Y}^{\top})_{i,j} = \mathbf{y}_i^{\top}\mathbf{y}_j$ and that the diagonal entries of $\mathbf{1}\mathbf{1}^{\top}W$ and $W\mathbf{1}\mathbf{1}^{\top}$ are in both cases equal to the diagonal entries of D^1 . Also, directly by definition, $W\mathbf{1} = D\mathbf{1}$. We also easily verify that the matrix

¹ Indeed, $(\mathbf{1}\mathbf{1}^{\top}W)_{i,i} = e_i^{\top}\mathbf{1}\mathbf{1}^{\top}We_i = \mathbf{1}^{\top}We_i$ and $(W\mathbf{1}\mathbf{1}^{\top})_{i,i} = e_i^{\top}W\mathbf{1}^{\top}e_i = e_i^{\top}W\mathbf{1}$. Both quantities are equal because W is symmetric.

$$E = \operatorname{diag}(\mathbf{Y}\mathbf{Y}^{\top})\mathbf{1}\mathbf{1}^{\top} + \mathbf{1}\mathbf{1}^{\top}\operatorname{diag}(\mathbf{Y}\mathbf{Y}^{\top}) - 2\mathbf{Y}\mathbf{Y}^{\top}$$

has entries $E_{ij} = \|\mathbf{y}_i - \mathbf{y}_j\|^2$ and so

$$\begin{split} \frac{1}{2} \sum_{i,j} W_{ij} \| \mathbf{y}_i - \mathbf{y}_j \|^2 &= \frac{1}{2} \operatorname{tr}(WE) \\ &= \frac{1}{2} \operatorname{tr}(W \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top) \mathbf{1} \mathbf{1}^\top) + \frac{1}{2} \operatorname{tr}(W \mathbf{1} \mathbf{1}^\top \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top)) - \operatorname{tr}(W \mathbf{Y} \mathbf{Y}^\top) \\ &= \frac{1}{2} \operatorname{tr}(\mathbf{1} \mathbf{1}^\top W \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top)) + \frac{1}{2} \operatorname{tr}(W \mathbf{1} \mathbf{1}^\top \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top)) - \operatorname{tr}(W \mathbf{Y} \mathbf{Y}^\top) \\ &= \frac{1}{2} \operatorname{tr}(D \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top)) + \frac{1}{2} \operatorname{tr}(D \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top)) - \operatorname{tr}(W \mathbf{Y} \mathbf{Y}^\top) \\ &= \operatorname{tr}(D \operatorname{diag}(\mathbf{Y} \mathbf{Y}^\top)) - \operatorname{tr}(W \mathbf{Y} \mathbf{Y}^\top) = \operatorname{tr}(L \mathbf{Y} \mathbf{Y}^\top). \end{split}$$

To avoid trivial solutions (e.g., Y = 0), we impose:

- Orthogonality constraint: $\mathbf{Y}^{\top}D\mathbf{Y} = I_d$.
- Centering constraint (optional): $\mathbf{Y}^{\top}D\mathbf{1} = 0$.

The optimization problem becomes:

minimize
$$\operatorname{tr}(\mathbf{Y}^{\top}L\mathbf{Y})$$
 subject to $\mathbf{Y}^{\top}D\mathbf{Y} = I$.

Denoting $\tilde{\mathbf{Y}} = D^{1/2}\mathbf{Y}$ we equivalently get to minimize

$$\operatorname{tr}(\tilde{\mathbf{Y}}D^{-1/2}LD^{-1/2}\tilde{\mathbf{Y}}^{\top}) = \operatorname{tr}(\tilde{\mathbf{Y}}L_{\mathbf{N}}\tilde{\mathbf{Y}}^{\top})$$

subject to the constraint that the columns of $\tilde{\mathbf{Y}}$ are orthonormal. When discussing PCA we already argued that this problem is equivalent to finding the d + 1

This is solved by finding the first d + 1 eigenvectors of the eigenproblem:

$$L_{\mathbf{N}}\mathbf{v} = \lambda D\mathbf{v}$$

where λ are the eigenvalues, and \mathbf{v} are the corresponding eigenvectors. We can stuck these vectors as columns of \tilde{Y} . Note that the first column is always D1 and so it can be discarded. The remaining d columns give us the desired embedding.

5.2.4 Example: Twisted curve

To have a simple illustration of this method, consider data that align along a twisted curve as depicted in Figure 5.1. The following code takes the corresponding data (blue points on the curve) and feeds them both to PCA and Laplacian eigenmap method.

```
# Load libraries
library(Rdimtools)
library(ggplot2)
library(scatterplot3d)
library(gridExtra)
# Generate twisted curve data
set.seed(123)
n <- 1000
t <- 1.5 * pi * (1 + 2 * runif(n)) # Angle
x \leftarrow t * cos(t)
y \leftarrow t * sin(t)
z <- 100*t # Add height to the roll
twisted <- data.frame(x = x, y = y, z = z)
# Plot 3D twisted curve
scatterplot3d(twisted$x, twisted$y, twisted$z, color = 'blue',
              main = "Twisted curve", xlab = "x", ylab = "y", zlab = "z")
# Convert twisted curve data to matrix
twisted_matrix <- as.matrix(twisted)</pre>
```


Figure 5.1: Twisted curve in 3D.

```
# Apply PCA
pca_result <- prcomp(twisted_matrix, center = TRUE, scale. = TRUE)</pre>
pca_2d <- as.data.frame(pca_result$x[, 1:2]) # Select first 2 principal</pre>
colnames(pca_2d) <- c("PC1", "PC2")</pre>
# Apply Laplacian Eigenmaps
lapeig_result <- do.lapeig(twisted_matrix, ndim = 2, type =</pre>
lapeig_2d <- as.data.frame(lapeig_result$Y)</pre>
colnames(lapeig_2d) <- c("LE1", "LE2")</pre>
# Plot PCA result
p1 \leftarrow ggplot(pca_2d, aes(x = PC1, y = PC2, color = z)) +
  geom_point() +
  labs(title = "PCA Projection",
       x = "Principal Component 1", y = "Principal Component 2") +
  theme_minimal()
# Plot Laplacian Eigenmaps result
p2 <- ggplot(lapeiq_2d, aes(x = LE1, y = LE2, color = z)) +
  geom_point() +
  labs(title = "Eigenmaps Projection",
      x = "Laplacian Dimension 1", y = "Laplacian Dimension 2") +
  theme_minimal()
# Display plots side by side using gridExtra
grid.arrange(p1, p2, ncol = 2)
```

As observed in Figure 5.2 the principal directions chosen by PCA project the data so that points that are very far away from each other get glued together. On the other hand the nonlinear embedding defined by the eigenmap separated all the points. In other words, the method is able to learn the underlying manifold and propose an embedding that preserves the geometry.

Remark 5.2.2. *I did not provide any explanation behind the Laplacian* eigenmap method. This story is however very beautiful and I recommend you to read about this if you have the necessary background. On a very high level: The Laplace operator Δ is a second-order differential operator in \mathbb{R}^p . For each twice differentiable function it is defined by

$$\Delta f = \sum_{i=1}^{p} \frac{\partial^2 f}{\partial x_i^2}.$$

The spectrum of the Laplace operator consists of all eigenvalues $\lambda \in \mathbb{R}$ for which there is a corresponding eigenfunction f with $\Delta f = \lambda f$. This is known as the Helmholtz equation. If Ω is a bounded domain in \mathbb{R}^p , then the eigenfunctions of the Laplacian are an orthonormal basis for the Hilbert space $L^2(\Omega)$.

Now, more generally, on a smooth Riemannian manifold \mathcal{M} , the Laplace-Beltrami operator $\Delta_{\mathcal{M}}$ is a differential operator that generalizes the Laplacian from Euclidean space. Eigenfunctions of $\Delta_{\mathcal{M}}$ (solutions to $\Delta_{\mathcal{M}} f = \lambda f$)

Figure 5.2: PCA and Laplacian eigenmap projections of the twisted curve data. The coloring corresponds to the value of the z-axis.

reveal the intrinsic geometry of the manifold. When we do not have explicit access to the manifold M, we work with a discrete approximation using a graph constructed from the data points $\{x_i\} \subset \mathcal{M}$. The graph Laplacian acts as a discrete version of the Laplace-Beltrami operator. As the number of data points increases and the graph becomes finer, L converges to Δ_M under certain conditions. In particular, the eigenvectors of L approximate the eigenfunctions of $\Delta_{\mathcal{M}}$.

Properties and Interpretations

- Connection to Manifold Learning: Laplacian Eigenmaps approximate the low-dimensional manifold structure by using the eigenfunctions of the graph Laplacian as basis functions.
- Locality: The weights W_{ij} ensure that only local relationships are preserved, making Laplacian Eigenmaps suitable for nonlinear structures.
- **Spectral Clustering:** The eigenvectors of the Laplacian are also used in spectral clustering, where they define clusters in the data.
- Dimensionality Reduction: Laplacian Eigenmaps is a form of nonlinear dimensionality reduction, complementing methods like PCA that are linear.

In what follows we discuss a refinement of this method and give some examples.

Uniform Manifold Approximation and Projection (UMAP)

One of the limitations of PCA is that it works well only when the first 2-3 principal components account for most of the variability in the data. UMAP is a powerful dimensionality reduction technique designed to handle nonlinear structures in high-dimensional datasets and preserve more complex relationships than PCA. It is much more flexible and retains some of PCA's speed and scalability. The exposition here is based on the excellent tutorial.² The original UMAP paper provides additional details but is mathematically involved (you may need to know some basics of category theory).

5.3.1 Key idea

Consider data $x_1, ..., x_n$ in \mathbb{R}^p , where \mathbb{R}^p can be very big. Like for eigenmaps, the key idea of UMAP and many similar methods is to embed the data points into a much lower dimensional subspace \mathbb{R}^{d} , say $\mathbf{y}_i = \text{UMAP}(\mathbf{x}_i)$ so that two points \mathbf{y}_i and \mathbf{y}_i are close to each other if and only if the corresponding x_i , x_i are close to each other.

² Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Uniform manifold approximation and projection (umap) and its variants: tutorial and survey. arXiv:2109.02508, 2021

5.3.2 Example: Applying UMAP to the Iris Dataset

The Iris dataset is a classic example in multivariate statistics. It consists of 150 observations of iris flowers, with four continuous features (sepal length, sepal width, petal length, petal width) and a categorical label (species).

A linear method like PCA can give some separation between species in the first two principal components, but this separation is not always very distinct. UMAP, on the other hand, attempts to preserve both local and global structures of the data in a low-dimensional embedding. As a result, UMAP often produces a more visually separable and intuitively meaningful representation.

The following code compares the performance of both PCA and UMAP on the Iris dataset.

```
# Load necessary libraries
library(umap)
# Load the Iris data
data(iris)
iris_data <- iris[, 1:4]</pre>
                                 # numeric features
iris_labels <- iris$Species</pre>
                              # species labels
set.seed(123)
#### IIMAP ####
umap_result <- umap(iris_data)</pre>
# UMAP Plot
plot(umap_result$layout, col = as.integer(iris_labels), pch = 19, xlab =
→ "UMAP1", ylab = "UMAP2", main = "UMAP Projection of the Iris Dataset")
legend("topright", legend = levels(iris_labels), col = 1:3, pch = 19)
#### PCA ####
pca_result <- prcomp(iris_data, scale. = TRUE)</pre>
pca_scores <- pca_result$x</pre>
# PCA Plot using the first two principal components
plot(pca_scores[, 1], pca_scores[, 2], col = as.integer(iris_labels), pch
\Rightarrow = 19, xlab = "PC1", ylab = "PC2", main =
→ "PCA Projection of the Iris Dataset")
legend("topright", legend = levels(iris_labels), col = 1:3, pch = 19)
```

In the resulting plots, we see that observations from the same species form relatively distinct clusters. Compared to a simple PCA plot, these groups may be more compact and better separated. This suggests that UMAP can capture nonlinear relationships and subtle differences between classes that PCA might not.

5.3.3 High-level description of the algorithm

The UMAP algorithm performs dimensionality reduction in three key steps:

- 1. construction of a k-nearest neighbor (kNN) graph,
- 2. initialization using spectral embedding,
- 3. optimization via stochastic gradient descent (SGD) to minimize a carefully designed cost function.

Below, we provide mathematical details for each step.

5.3.4 Step 1: Data Graph in the Input Space

Consider a training dataset $\mathbf{X} \in \mathbb{R}^{n \times p}$, where n is the sample size and p is the dimensionality. We first construct a k-Nearest Neighbors (kNN) graph for this dataset, with k = 15 by default. More precisely, we construct a graph such that each node, represented by a data point x_i , is connected to another point x_i if x_i is among the k closest neighbors of x_i . Here the distance is arbitrary but we often use the Euclidean distance. For each data point x_i , let \mathcal{N}_i denote its set of knearest neighbors.

We further refine this procedure as follows. For each pair of points \mathbf{x}_i and its neighbor $\mathbf{x}_i \in \mathcal{N}_i$, we compute the probability $p_{i|i} \in (0,1)$ that x_i selects x_i as a neighbor:

$$p_{j|i} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\| - \rho_i}{\sigma_i}\right),\tag{5.2}$$

where ρ_i is the distance from \mathbf{x}_i to its nearest neighbour³, and σ_i is a scaling factor computed such that the total similarity to neighbours is normalized:

$$\sum_{j=1}^{n} p_{j|i} = \log_2(k).$$

This is a directional similarity measure, but we symmetrize it to ensure symmetry between points:

$$p_{ij} = p_{i|i} + p_{i|j} - p_{i|i}p_{i|j}. (5.3)$$

5.3.5 Data Graph in the Embedding Space

UMAP aims to create a lower-dimensional embedding $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n] \in$ $\mathbb{R}^{n \times d}$ of the original data $\mathbf{X} \in \mathbb{R}^{n \times p}$, where $d \ll p$. The similarity between two points in this embedding space is measured as:

$$q_{ij} = \frac{1}{1 + a\|\mathbf{y}_i - \mathbf{y}_j\|^{2b}},$$
 (5.4)

where a > 0 and b > 0 are hyperparameters typically set to $a \approx 1.929$ and $b \approx 0.7915$.

← Exercise 5.5.3

³ So that the closest point in \mathcal{N}_i becomes a neighbor with proabbility 1

← Exercise 5.5.4

We still need to explain better how the embeddeding y_1, \ldots, y_n is defined. The goal of UMAP is to make the data graph in the low-dimensional embedding space as similar as possible to the graph in the input space. This is achieved by minimizing the fuzzy cross-entropy cost:

$$c_1 = \sum_{i \neq j} \left(p_{ij} \log \frac{p_{ij}}{q_{ij}} + (1 - p_{ij}) \log \frac{1 - p_{ij}}{1 - q_{ij}} \right). \tag{5.5}$$

This cost function has two terms: the attractive force (first term), which brings neighbors closer in the embedding, and the repulsive force (second term), which pushes non-neighbor points apart. Minimizing this function ensures that points that are neighbors in the input space are also neighbors in the embedding space.

← Exercise 5.5.7

5.3.6 Step 2: Initialization using the spectral embedding

UMAP initializes the embedding $y_1, ..., y_n$ in a low-dimensional space using a Laplacian eigenmap discussed in Section 5.2. The spectral embedding step ensures that the initial positions of points in the low-dimensional space approximate the global structure of the graph, reducing the computational burden on the subsequent optimization phase.

5.3.7 Step 3: Training Algorithm

To refine the initial embedding, UMAP minimizes a cost function that balances attraction and repulsion between points in the embedding space. The cost function is:

$$c_1 = \sum_{(i,j) \in E} w_{ij} \log \left(\frac{1}{1 + \|\boldsymbol{y}_i - \boldsymbol{y}_j\|^2} \right) + (1 - w_{ij}) \log \left(1 - \frac{1}{1 + \|\boldsymbol{y}_i - \boldsymbol{y}_j\|^2} \right),$$

where $\|y_i - y_j\|$ is the Euclidean distance in the low-dimensional space.

The first term promotes the attraction of neighbors, while the second term ensures that non-neighbors are repelled, spreading out points in the embedding.

UMAP employs stochastic gradient descent (SGD) to optimize c_1 . Unlike traditional gradient descent, which updates all points simultaneously, SGD: 1. Samples pairs of points (y_i, y_j) randomly in mini-batches. 2. Updates y_i and y_j incrementally based on the gradient of c_1 with respect to their positions.

SGD is preferred over regular gradient descent due to:

1. Scalability: It handles large datasets efficiently by working on smaller subsets of data at a time.

2. Convergence Properties: The randomness in SGD helps avoid getting stuck in poor local minima, which is critical for highdimensional, non-convex problems like UMAP.

Autoencoders 5.4

An autoencoder is a type of artificial neural network used to learn efficient codings of data. It is an unsupervised learning technique that learns a low-dimensional representation (encoding) for a dataset, typically for the purpose of dimensionality reduction. In the lecture slides, we will provide basic introduction to neural networks and autoencoders.

Structure of Autoencoders

Autoencoders consist of two main parts:

- Encoder: The encoder is a neural network that maps the input data $\mathbf{X} \in \mathbb{R}^{n \times d}$ to a lower-dimensional representation $\mathbf{Z} \in \mathbb{R}^{n \times p}$, where p < d.
- Decoder: The decoder is another neural network that reconstructs the original data from the encoded representation **Z**.

The goal of training an autoencoder is to minimize the reconstruction error, typically measured as the mean squared error (MSE) between the input and the reconstructed output:

$$L(\mathbf{X}, \widehat{\mathbf{X}}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \widehat{\mathbf{x}}_i\|^2.$$
 (5.6)

Here, $\hat{\mathbf{X}}$ is the output of the decoder, which attempts to reproduce the input data from the low-dimensional encoding Z.

Unlike PCA, which assumes linearity, autoencoders can capture complex, nonlinear relationships in the data due to the use of nonlinear activation functions in the hidden layers. This makes autoencoders a flexible and powerful tool for dimensionality reduction, especially for high-dimensional and complex datasets, such as images or text data.

Autoencoders are widely used in tasks such as anomaly detection, data denoising, and generative modeling (e.g., variational autoencoders).

Exercises

Exercise 5.5.1. Suppose $C \in \overline{\mathbb{S}}^n$. Show that $C_{ii} + C_{jj} - 2C_{ij} \geq 0$. Show that the distances $d_{ij}^2 = C_{ii} + C_{jj} - 2C_{ij}$ satisfy the triangle inequality.

Exercise 5.5.2. Show that the graph Laplacian matrix L in (5.1) is positive definite and it has at least one zero eigenvalue.

Exercise 5.5.3. Show that p_{i_i} defined in (5.2) lies in the interval (0,1).

Exercise 5.5.4. *Show that* p_{ij} *defined in* (5.3) *is nonnegative.*

Exercise 5.5.5. Let p, q be two probability distributions over some space \mathcal{X} . Define the Kullback-Leibler divergence $\mathrm{KL}(p,q) = \mathbb{E}_p \log \frac{p(X)}{q(X)}$. Show that $\mathrm{KL}(p,q) \geq 0$ and it is equal to zero if and only if p, q define the same distribution. Hint: Use the Jensen's inequality.

Exercise 5.5.6. Suppose $X_i \sim \text{Bern}(p_i)$ and $Y_j \sim \text{Bern}(q_j)$ are all independent. Show that the Kullback-Leibler divergence between the distribution p of $X = (X_1, \ldots, X_m)$ and the distribution q of $Y = (Y_1, \ldots, Y_m)$ is given by the formula

$$KL(p,q) = \sum_{i=1}^{m} \left(p_i \log \frac{p_i}{q_i} + (1-p_i) \log \frac{1-p_i}{1-q_i} \right).$$

Exercise 5.5.7. Show that the expression in (5.5) is always nonegative and it is equal to zero if and only if $p_{ij} = q_{ij}$ for all $i \neq j$.

Canonical Correlation Analysis

In this chapter, we consider two datasets $X \in \mathbb{R}^{n \times p}$ and $Y \in \mathbb{R}^{n \times q}$ that represent observations of vectors $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$, respectively. The goal is to find non-zero linear combinations $a^T X$ and $b^T Y$ with the largest possible correlation. Canonical Correlation Analysis (CCA) addresses this problem by finding pairs of linear combinations from each dataset that are maximally correlated. **Example 6.0.1.** Consider two datasets where X contains variables related to physical characteristics (height, weight, etc.), and Y contains variables related to exercise performance (running speed, weightlifting capacity, etc.). CCA can identify combinations of variables in X that are most strongly associated with combinations of variables in Y, such as finding that a linear combination of height and weight is strongly correlated with a linear combination of running speed and weightlifting capacity.

6.1 Population CCA

6.1.1 Principal Correlation Vectors

Let $\Sigma_{11} = \text{var}(X)$, $\Sigma_{22} = \text{var}(Y)$, and $\Sigma_{12} = \text{cov}(X, Y)$. The correlation between $a^{\top}X$ and $b^{\top}Y$ is given by

$$\rho(a,b) := \frac{a^{\top} \Sigma_{12} b}{\sqrt{a^{\top} \Sigma_{11} a b^{\top} \Sigma_{22} b}}.$$

This expression can be challenging to optimize directly. To simplify, we reparametrize the problem using $\alpha = \Sigma_{11}^{1/2}a$ and $\beta = \Sigma_{22}^{1/2}b$. This transforms the correlation expression into

$$\rho(\alpha, \beta) = \frac{\alpha^{\top} \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2} \beta}{\|\alpha\| \|\beta\|} = \frac{\alpha^{\top} M \beta}{\|\alpha\| \|\beta\|} = \left(\frac{\alpha}{\|\alpha\|}\right)^{\top} M \left(\frac{\beta}{\|\beta\|}\right),$$

where we define the matrix

$$M = \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$$
.

To maximize the correlation, we now solve the following optimization problem:

$$\max_{\alpha,\beta} \alpha^{\top} M \beta \quad \text{subject to} \quad \alpha^{\top} \alpha = \beta^{\top} \beta = 1.$$

The Lagrangian for this constrained optimization is given by:

$$L = 2\boldsymbol{\alpha}^{\top} M \boldsymbol{\beta} - \lambda (\boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - 1) - \lambda' (\boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 1).$$

At a stationary point, we get the following system of equations:

$$M\boldsymbol{\beta} = \lambda \boldsymbol{\alpha}$$
 and $M^{\top} \boldsymbol{\alpha} = \lambda' \boldsymbol{\beta}$.

By computing $\alpha^{\top}M\beta$ from both expressions, we conclude that $\lambda = \lambda'$. From this, it follows that

$$M^{\top}M\boldsymbol{\beta} = \lambda^2\boldsymbol{\beta}$$
 and $MM^{\top}\boldsymbol{\alpha} = \lambda^2\boldsymbol{\alpha}$.

Thus, the optimal α is the eigenvector of MM^{\top} corresponding to the largest eigenvalue, and the optimal β is the eigenvector of $M^{\top}M$ corresponding to the same eigenvalue.

Remark 6.1.1. If we decompose M using the Singular Value Decomposition (SVD), $M = U\Lambda V^{\top}$, where U and V are orthogonal matrices and Λ is diagonal, then $MM^{\top} = U\Lambda^2 U^{\top}$ and $M^{\top}M = V\Lambda^2 V^{\top}$. The eigenvectors of MM^{\top} are the left singular vectors of M, and the eigenvectors of $M^{\top}M$ are the right singular vectors of M. The singular values are the canonical correlations.

6.1.2 First r Principal Correlation Vectors

As in PCA, we can recursively find more canonical correlation directions after obtaining the first one. Let a_1 , b_1 be the first pair of canonical correlation vectors. To find the next pair (a_2, b_2) , we solve the following constrained problem:

$$\max_{\alpha, \beta} \alpha^\top M \beta$$
 subject to $\|\alpha\| = \|\beta\| = 1$ and $\alpha^\top \alpha_1 = \beta^\top \beta_1 = 0$.

The solution corresponds to the second largest singular values and their corresponding left and right singular vectors. Repeating this process provides the subsequent pairs $a_3, b_3, \ldots, a_r, b_r$.

6.1.3 Correlations Between Canonical Correlation Variables

Let $\eta_1 = a_1^\top X$ and $\phi_1 = b_1^\top Y$ be the first pair of canonical correlation variables. The covariance between η_1 and ϕ_1 is given by

$$\operatorname{cov}(\eta_1, \phi_1) = \boldsymbol{a}_1^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{b}_1 = \boldsymbol{\alpha}_1^{\top} M \boldsymbol{\beta}_1 = \lambda_1,$$

where λ_1 is the largest canonical correlation.

Theorem 6.1.2. Let $\eta_i = \mathbf{a}_i^{\top} X$ and $\phi_i = \mathbf{b}_i^{\top} Y$ for i = 1, ..., r be the first r canonical correlation variables. The covariance matrix of $\eta = (\eta_1, \dots, \eta_r)$ and $\phi = (\phi_1, \dots, \phi_r)$ is block-diagonal:

$$\operatorname{var}\left(\begin{bmatrix} \boldsymbol{\eta} \\ \boldsymbol{\phi} \end{bmatrix}\right) = \begin{bmatrix} I_r & \Lambda_r \\ \Lambda_r & I_r \end{bmatrix},$$

where $\Lambda_r = diag(\lambda_1, \dots, \lambda_r)$ contains the first r canonical correlations. Hence, the variables η_1, \ldots, η_r and ϕ_1, \ldots, ϕ_r are uncorrelated across different pairs but correlated within each pair.

Sample CCA 6.2

In practice, we do not know the population covariance matrices $\Sigma_{11}, \Sigma_{22}, \Sigma_{12}$. Instead, we estimate them from data. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{Y} \in \mathbb{R}^{n \times q}$ represent the two datasets, and let S_{11} , S_{22} , S_{12} denote the sample covariance matrices of X and Y^1 . As long as S_{11} and S_{22} are invertible, we can apply the same procedure as for the population case, using the sample estimates².

The sample CCA maximizes the sample correlation between linear combinations of *X* and *Y*:

$$\widehat{\rho}(a,b) = \frac{a^{\top} S_{12} b}{\sqrt{a^{\top} S_{11} a b^{\top} S_{22} b}}.$$

The sample canonical correlation vectors can be found by solving the generalized eigenvalue problem for the matrix

$$\widehat{M} = S_{11}^{-1/2} S_{12} S_{22}^{-1/2}.$$

Practical Considerations and Applications

6.3.1 Data Preprocessing

Before applying CCA, both datasets **X** and **Y** should be centered to ensure that the covariance matrices reflect the relationships between the variables, not the differences in their means. If the variables have different scales, it may also be necessary to standardize them to have unit variance.

6.3.2 Applications

CCA is widely used in fields where two sets of related data are collected, such as:

• Neuroscience: Relating brain activity to behavior or stimuli data, CCA can find the strongest correlations between neural signals (e.g., EEG or fMRI data) and observed behaviors.

- ¹ Note that in this setting we need joint observations of X and Y. If such joint observations are not available (e.g. these variables come from different domains and so cannot be observed jointly) we need to employ other techniques that assume some latent joint structure.
- ² Recall from Section 4.6 that there may be better ways to estimate the underlying covariance matrix. This is especially important in high-dimensional situa-

- **Genomics**: In genetics, one dataset might contain gene expression levels, and the other might contain phenotypic traits. CCA can help identify which linear combinations of genes are most strongly associated with combinations of traits.
- Marketing: CCA can be used to relate consumer survey data (e.g., preferences, opinions) to purchasing behavior data. By identifying canonical correlations, businesses can understand how different groups of opinions are linked to purchasing patterns.
- Multimodal Data Fusion: In cases where multiple types of data (e.g., image data and text data) are collected for the same observations, CCA can be used to find the strongest relationships between these different types of data, helping in the integration and interpretation of multimodal datasets.
- Economics and Finance: CCA is used to explore the relationships between different economic indicators (such as inflation, unemployment) and financial metrics (such as stock prices, interest rates). This can help in understanding how economic factors jointly influence financial markets.

Interpretation and Visualization of CCA Results

After obtaining the canonical correlation vectors, it is important to interpret the results and visualize the relationships between the canonical variables. Some common approaches to interpreting and visualizing CCA results include:

6.4.1 Biplots

Biplots can be used to visualize the relationships between the original variables and the canonical variables. In a CCA biplot, the canonical variables η_1, η_2, \ldots are plotted against each other, and the original variables are represented as vectors in the plot. The length and direction of each vector indicate the strength and direction of the relationship between the original variable and the canonical variables.

6.4.2 Canonical Correlation Scores

The canonical correlation scores η_1, η_2, \ldots for X and ϕ_1, ϕ_2, \ldots for Y can be plotted to visualize how the observations are related in the reduced canonical space. Observations that are close to each other in this space are highly correlated with respect to the canonical variables.

6.4.3 Heatmaps of Canonical Correlations

Heatmaps can be used to visualize the correlation structure between the canonical variables η_i and ϕ_i . The canonical correlation matrix $\Lambda_r = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_r)$ can be plotted as a heatmap, with darker colors representing stronger correlations.

Example: Real Data Analysis in R

To demonstrate Canonical Correlation Analysis, we will use the mtcars dataset, which contains various automobile attributes. We will split the dataset into two groups of variables:

- Group 1 (X); Variables related to performance: mpg (Miles per gallon), hp (Gross horsepower), drat (Rear axle ratio).
- Group 2 (Y); Variables related to design: wt (Weight (1000 lbs), qsec (1/4 mile time), gear (Number of forward gears).

Our goal is to identify pairs of canonical variables that capture the strongest relationships between these two groups of variables.

6.5.1 Step-by-Step Analysis

Step 1: Load and Preprocess Data

We load the mtcars dataset and split it into two groups of variables. All variables are standardized to ensure comparability.

```
#Load necessary library and data
library(CCA)
data(mtcars)
#Group 1: Performance-related variables
X <- mtcars[, c('mpg', 'hp', 'drat')]</pre>
#Group 2: Design-related variables
Y <- mtcars[, c('wt', 'qsec', 'gear')]
#Standardize the datasets
X <- scale(X)</pre>
Y <- scale(Y)
```

Step 2: Perform Canonical Correlation Analysis

We use the cancor function in R to compute the canonical correlations and the corresponding canonical variables.

```
# Perform CCA
cca_result <- cancor(X, Y)</pre>
#Print the canonical correlations
print(cca_result$cor)
```

The canonical correlations are the correlations between the canonical variables derived from the two datasets. For this dataset, the values are: 0.94, 0.75, 0.22, indicating a strong relationship between the first pair of canonical variables.

Step 3: Extract Canonical Variables

The canonical variables for *X* and *Y* can be computed using the canonical weights.

```
# Extract canonical weights
x_weights <- cca_result$xcoef
y_weights <- cca_result$ycoef</pre>
# Create a data frame for weights
weights <- data.frame(</pre>
 Variable = c(colnames(X), colnames(Y)),
 Canonical1 = c(x_weights[, 1], y_weights[, 1]),
  Canonical2 = c(x_weights[, 2], y_weights[, 2]),
  Canonical3 = c(x_weights[, 3], y_weights[, 3]))
# Compute canonical scores
x_scores <- as.matrix(X) %*% x_weights</pre>
y_scores <- as.matrix(Y) %*% y_weights</pre>
# Create a data frame for visualization
scores_df <- data.frame(</pre>
  Canonical_X1 = x_scores[, 1],
  Canonical_Y1 = y_scores[, 1],
  Canonical_X2 = x_scores[, 2],
  Canonical_Y2 = y_scores[, 2])
```

Now we can plot scatter plots for the first two canonical variables in both groups.

```
library(ggplot2)
# Scatterplot for the first pair of canonical variables
ggplot(scores_df, aes(x = Canonical_X1, y = Canonical_Y1)) +
 geom_point(color = "blue", size = 3, alpha = 0.7) +
  geom_smooth(method = "lm", color = "red", linetype = "dashed") +
   title = "Canonical Variables: First Pair",
   x = "Canonical Variable 1 (X group)",
   y = "Canonical Variable 1 (Y group)") + theme_minimal()
# Scatterplot for the second pair of canonical variables
ggplot(scores_df, aes(x = Canonical_X2, y = Canonical_Y2)) +
 geom_point(color = "green", size = 3, alpha = 0.7) +
  geom_smooth(method = "lm", color = "red", linetype = "dashed") +
   title = "Canonical Variables: Second Pair",
   x = "Canonical Variable 2 (X group)",
```

The plots above shows the relationship between the first pair and the second pair of canonical variables. A strong linear relationship is evident, reflecting the high canonical correlation of 0.94 and 0.75.

7

Graphical Models

If you are interested in more details of this beautiful theory, see ¹. 7.1 *Introduction*

Graphical models are an important tool for representing and analyzing the relationships between variables in multivariate data. They combine ideas from graph theory and probability to describe how variables depend on each other. These models provide a clear and structured way to understand complex systems, making them very useful in modern statistics and data science.

Let $X = (X_1, ..., X_m)$ be a random vector. A graphical model for X consists of a graph G = (V, E), where $V := \{1, ..., m\}$ is a set of nodes representing the random variables, and E is a set of edges. If there is an edge between two nodes i and j, we write $ij \in E$. In graphical models, if $ij \notin E$, X_i and X_j are conditionally independent given some other variables. This way of showing how variables depend on each other is helpful for tasks like prediction, testing hypotheses, and choosing the right model.

Graphical models are used in many areas of science and industry. In genetics and biology, they help uncover how genes interact and how biological processes work. In finance and economics, they help understand how different financial factors affect each other and how risks spread through a system. Graphical models also form the basis of many machine learning methods².

There are three main types of graphical models. Undirected graphical models, also called Markov random fields, represent relationships where the direction does not matter. Directed graphical models, or Bayesian networks, show relationships with a specific direction, often representing cause-and-effect. Mixed graphical models combine both directed and undirected edges to describe more complex relationships. Each type of model is suited to different kinds of problems.

In this chapter, we will focus on undirected graphical models

¹ Steffen L. Lauritzen. *Graphical Models*, volume 17 of *Oxford Statistical Science Series*. Clarendon Press, Oxford, 1996. ISBN 978-0-19-852219-5

² STA₄₁₄ treats these models in great detail

because they are easier to understand and widely used. Directed and mixed models will be mentioned briefly, but we leave a deeper discussion of these models for more advanced studies.

7.2 Graphs and Conditional Independence

A graph G = (V, E) consists of a set of nodes $V = \{1, ..., m\}$ and edges E. Nodes represent random variables, and edges represent direct dependencies or associations between the variables. A simple example with m = 5 is given in Figure 7.2. This will be the running example in this chapter.

Graphs can be represented in multiple ways. An **adjacency matrix** is a square matrix A where $A_{ij} = 1$ if there is an edge between nodes i and j, and $A_{ij} = 0$ otherwise. For example, for the graph in Figure 7.2, the adjacency matrix is

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}.$$

Another way to represent a graph is by listing for each node the set of all its neighbors. In our running example: $\mathcal{N}_1 = \{2,3,4\}$, $\mathcal{N}_2 = \{1,3\}$, $\mathcal{N}_3 = \{1,2,5\}$, $\mathcal{N}_4 = \{1,5\}$, and $\mathcal{N}_5 = \{3,4\}$.

A **clique** is a subset of nodes in an undirected graph where every pair of nodes is connected by an edge. A maximal clique is a clique that is maximal with respect to inclusion (no other clique strictly containing it).

A path is a sequence of nodes connected by edges. A cycle is a path that starts and ends at the same node.

Separation in graphs is a crucial concept for us. We say that two subsets $A, B \subseteq V$ are **separated** from each other by a subset $C \subseteq V$ if every path between any node $i \in A$ and $j \in B$ necessarily contains a node in C; we write $A \perp_G B | C$. For example, in Figure 7.2, $A = \{2\}$ is separated from $B = \{4,5\}$ by $C = \{1,3\}$. However, $C' = \{1\}$ does not separate A from B.

7.2.1 Graph factorization

An important defining concept in graphical models is that of **factorization with respect to** G. Let G be an undirected graph with nodes $V = \{1, ..., m\}$ and maximal cliques $C_1, ..., C_k$. For any $C \subseteq V$, \mathbf{x}_C denotes a subvector of \mathbf{x} , $\mathbf{x}_C = (x_i)_{i \in C}$.

We say that density³ f(x) of X factorizes according to G if

Figure 7.1: A simple graph with five nodes and six edges.

In the running example, the maximal cliques are $\{1,2,3\}$, $\{1,4\}$, $\{3,5\}$, $\{4,5\}$. On the other hand, $\{1,3\}$ is a clique but it is not maximal.

³ When we say "density" we mean the density function for continuous distributions or the probability mass function for discrete distributions.

$$f(\mathbf{x}) = \prod_{C \in \mathcal{C}} \phi_C(\mathbf{x}_C)$$
 for all $\mathbf{x} \in \mathcal{X}$, (7.1)

where $\phi_C(\mathbf{x}_C) \geq 0.4$ For the graph in Figure 7.2,

$$f(x_1, x_2, x_3, x_4, x_5) = \phi_{123}(x_1, x_2, x_3)\phi_{14}(x_1, x_4)\phi_{35}(x_3, x_5)\phi_{45}(x_4, x_5).$$

We define the graphical model M(G) as the set of all distributions on \mathcal{X} that factorize with respect to G.

Conditional Independence and Graph Separation

Conditional independence and separation are the core ideas linking graphs to probabilistic models. In undirected graphs, conditional independence is determined by the concept of graphical separation called the **Global Markov Property**: If a set of nodes *C* separates *A* from *B* in the graph, then $X_A \perp \!\!\! \perp X_B | X_C$. For example, in the graph in Figure 7.2, $X_2 \perp \{X_4, X_5\} | \{X_1, X_2\}.$

The most fundamental result of graphical models that links the Global Markov property with factorization is the Hammersley-Clifford theorem.

Theorem 7.2.1 (Hammersley-Clifford theorem). Let f > 0 be a density function for $X = (X_1, ..., X_m)$. Then the following are equivalent:

- (F) f factorizes according to G = (V, E).
- (G) $X_A \perp \!\!\!\perp X_B | X_C$ whenever C separates A and B in G.
- (P) $X_i \perp \!\!\!\perp X_i | X_{V \setminus \{i,i\}}$ for all $ij \notin E.5$

By the Hammersley-Clifford theorem, graphical models could be equivalently defined by specific conditional independences.⁶

In what follows, we discuss two most important versions of undirected graphical models. One for Gaussian distributions and the other for finite discrete distributions.

Gaussian Graphical Models 7.3

Gaussian Graphical Models (GGMs) describe the conditional independence structure of multivariate normal distributions. They are widely used in statistics, machine learning, and computational biology due to their interpretability and mathematical tractability.

7.3.1 Definition and Properties

We already learned about the multivariate normal distributions, and many of its properties will become essential here in this chapter. In

⁴ This is a notion of simplicity, which states that the distribution can be glued in a specific way from simpler pieces.

← Exercise 7.5.1

- ⁵ (P) is called the Pairwise Markov Property.
- ⁶ For simplicity, in this lecture, we work only with positive distributions for which the Hammersley-Clifford theorem applies.

98

particular, recall Proposition 2.3.2, which states that $K_{ij}=0$ if and only if $X_i \perp \!\!\! \perp X_j | X_{V \setminus \{i,j\}}$. By the Hammersley-Clifford theorem⁷, this is equivalent to density factorization with respect to the graph that represents the support of the inverse covariance matrix $K=\Sigma^{-1}$, namely the graph G given by

$$(i,j) \notin E \iff K_{ij} = 0.$$

Moreover, by the Global Markov Property, we get a way of reading from the graph other more complicated conditional independences. Slightly abusing notation, we write

$$M(G) = \{ \Sigma \in \mathbb{S}^m : \Sigma_{ij}^{-1} = 0 \text{ if } ij \notin E \}.$$

In other words, we associate the Gaussian graphical model over G with the family of covariance matrices for distributions in M(G). The graphical model makes no restrictions on the mean vector.

7.3.2 Estimation with fixed G

Given n i.i.d. samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^m$ consider the sample covariance matrix S_n as defined in (1.4). Throughout we assume that the sample comes from $N(\mu, \Sigma)$, $\Sigma \in M(G)$. A natural way to estimate parameters in a Gaussian graphical model M(G) is by maximizing the log-likelihood function. This results in a consistent and asymptotically normal estimator by standard results.

Note that the mean μ is unrestricted in this model and so, by the same argument as in Section 2.4.1, the maximum likelihood estimator of μ is equal to the sample average; $\hat{\mu} = \bar{\mathbf{x}}_n$. Thus, expressed in terms of $K = \Sigma^{-1}$, the log-likelihood function takes a simpler form (as in (2.6)):

$$\ell(\bar{\mathbf{x}}, K) = \text{const} + \frac{n}{2}(\log \det(K) - \operatorname{tr}(S_n K)).$$

Denote $f(K) = -\log \det(K) + \operatorname{tr}(S_n K)$ so that maximizing $\ell(\bar{\mathbf{x}}, K)$ is equivalent to minimizing f(K). We noted already in Section 2.4.1 that f is a strictly convex function of K. Define the linear subspace

$$\mathcal{V}(G) = \{ K \in \mathbb{S}^m : K_{ij} = 0 \text{ if } ij \notin E \}.$$

With this notation optimizing the log-likelihood for a Gaussian graphical model results in being equivalent to minimizing f(K) a convex optimization problem; $\min f(K)$ subject to $K \in \mathcal{V}(G) \cap \mathbb{S}^m_+$. This problem does not have a closed form solution in general⁹ so we solve it using numerical methods.

Some of the most efficient methods use the dual formulation of the maximum likelihood problem.

⁷ Note that the Gaussian density is always positive so this theorem applies.

← Exercise 7.5.2

⁸ Intersection of two convex sets is convex. Moreover, S_+^m is convex directly by definition.

⁹ It does if and only if *G* is **decomposable**. See Lauritzen 1996 for details.

Proposition 7.3.1. The maximum likelihood estimator $\hat{\Sigma}$, if it exists, is the unique maximizer of $\log \det \Sigma$ subject to $\Sigma_{ii} = (S_n)_{ii}$ for all $i \in V$ and $\Sigma_{ij} = (S_n)_{ij}$ for all $ij \in E$.

The idea of the following proof sketch applies to a wide range of related problems in multivariate statistics. Thus, it is beneficial to follow it closely.

Proof Sketch. We can extend f to whole S^m by setting $f(K) = +\infty$ if $K \notin \mathbb{S}^m_+$. Minimizing this extended f over \mathbb{S}^m is equivalent to minimizing f over \mathbb{S}^m_+ . Consider the orthogonal complement ¹⁰

$$\mathcal{W}(G) \ := \ \mathcal{V}(G)^\perp \ = \ \{K \in \mathbb{S}^m : K_{ii} = 0 \text{ for all } i \text{ and } K_{ij} = 0 \text{ for } ij \in E\}.$$

Observe that

$$\sup_{\Lambda \in \mathcal{W}(G)} f(K) + \operatorname{tr}(\Lambda K) = \begin{cases} f(K) & \text{if } K \in \mathcal{V}(G), \\ +\infty & \text{otherwise.} \end{cases}$$

Indeed, if $K \in \mathcal{V}(G)$ then $\operatorname{tr}(\Lambda K) = 0$ and so $f(K) + \operatorname{tr}(\Lambda K) = f(K)$. On the other hand, if $K \notin \mathcal{V}(G)$, there exists $\Lambda \in \mathcal{W}(G)$ such that $\operatorname{tr}(\Lambda K) > 0$. Taking $t\Lambda$ with $t \to \infty$ shows that $\sup_{\Lambda \in \mathcal{W}(G)} f(K) +$ $\operatorname{tr}(\Lambda K) = +\infty$. This all implies that

$$\inf_{K \in S^m} f(K) = \inf_{K \in S^m} \sup_{\Lambda \in \mathcal{W}(G)} f(K) + \operatorname{tr}(\Lambda K).$$

By the minimax theorem from convex analysis¹¹, which we are not going to prove here, we have

$$\inf_{K \in \mathbb{S}^m} \sup_{\Lambda \in \mathcal{W}(G)} f(K) + \operatorname{tr}(\Lambda K) = \sup_{\Lambda \in \mathcal{W}(G)} \inf_{K \in \mathbb{S}^m} f(K) + \operatorname{tr}(\Lambda K).$$

The latter expression is easy to handle since

$$\inf_{K\in\mathbb{S}^m} f(K) + \operatorname{tr}(\Lambda K) = \inf_{K\in\mathbb{S}^m} -\log\det(K) + \operatorname{tr}((S_n + \Lambda)K) = -\log\det((S_n + \Lambda)^{-1}) + m,$$

where the last equality comes from the fact that minimizing the middle expression is equivalent to maximizing the (unrestricted) Gaussian log-likelihood with sample covariance matrix $S_n + \Lambda$. We get that

$$\inf_{K \in \mathbb{S}^m} f(K) = \sup_{\Lambda \in \mathcal{W}(G)} \log \det(S_n + \Lambda) + m,$$

which gives the desired conclusion.

Matrix completion

Proposition 7.3.1 implies that the MLE $\hat{\Sigma}$ has the same diagonal as the sample covariance matrix S_n . The same applies to all entries corresponding to the edges of G. Thus, it remains to fill in the remaining entries so that the determinant is maximally possible.

10 If a finite dimensional linear subspace is defined by vanishing of some of the coordinates then its complement is defined by vanishing of the remaining coordinates.

11 This is the only informal step of this proof sketch.

In the example of Figure 7.2, if S is the sample covariance matrix then the MLE is of the form

$$\widehat{\Sigma} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & * \\ S_{12} & S_{22} & S_{23} & * & * \\ S_{13} & S_{23} & S_{33} & * & S_{35} \\ S_{14} & * & * & S_{44} & S_{45} \\ * & * & S_{35} & S_{45} & S_{55} \end{bmatrix}$$

Denote $\Sigma_{i, i} \in \mathbb{S}^{m-1}_+$ the submatrix of Σ obtained by removing the *i*-th row/columns. Let $\Sigma_{i,i} \in \mathbb{R}^{m-1}$ be the *i*-th column of Σ with the *i*-th entry removed. Note that by fixing the *i*-th row/column, we can write

$$\det(\Sigma) = \det(\Sigma_{\setminus i, \setminus i})(\Sigma_{ii} - \Sigma_{i, \setminus i}\Sigma_{\setminus i, \setminus i}^{-1}\Sigma_{\setminus i, i}).$$

Suppose we want to optimize the determinant with respect to y := $\Sigma_{i,i}$ only. Since $\det(\Sigma_{i,i}) > 0$, equivalently, we minimize $y^{\top} \Sigma_{i,i}^{-1} y$. Since $\Sigma_{i,i}$ is positive definite¹², the global optimum of this quadratic form is y = 0. But in our case $y = \sum_{i,j}$ must satisfy $\sum_{ij} = (S_n)_{ij}$ for $j-i \in E$. Nevertheless, this is a simple quadratic problem with linear constraints for which there are very efficient algorithms and implementations.

We can now imagine an iterative procedure, where we update Σ row by row. This is an example of block coordinate descent. Although we are not going to prove this formally, since the original function log det Σ is strictly concave, this is guaranteed to converge to the global optimum.

Challenges in High-Dimensional Settings

Let us reiterate what we already mentioned earlier in these notes. Estimating the covariance is hard! Estimating the inverse covariance matrix is even harder. Consider a trivial scenario of a well-behaved 5×5 covariance matrix in the model M(G) over the graph in Figure 7.2 as in the code below.

```
library (MASS)
Sigma <- solve(matrix(c(1, 0.3, 0.4, 0.5, 0,
                   0.3, 1, 0.2, 0, 0,
                   0.4, 0.2, 1, 0, 0.4,
                   0.5, 0, 0, 1, 0.5,
                   0, 0, 0.4, 0.5, 1), nrow = 5))
set.seed(123)
X10 <- mvrnorm(10,c(0,0,0,0,0),Sigma);</pre>
S10 < - cov(X10)
X100 <- mvrnorm(100,c(0,0,0,0,0),Sigma)
S100 < - cov(X100)
X1000 \leftarrow mvrnorm(1000, c(0, 0, 0, 0, 0), Sigma)
S1000 <- cov(X1000)
round(solve(Sigma),2)
round(solve(S10),2)
round(solve(S100),2)
round(solve(S1000),2)
```

The following output shows that only for very large sample sizes the inverse of the sample covariance matrix becomes a decent estimation of the inverse covariance matrix.

```
> round(solve(Sigma),2)
    [,1] [,2] [,3] [,4] [,5]
```

12 Every principal submatrix of a positive definite matrix is positive definite.

The true inverse covariance matrix is

$$K = \begin{bmatrix} 1 & 0.3 & 0.4 & 0.5 & 0 \\ 0.3 & 1 & 0.2 & 0 & 0 \\ 0.4 & 0.2 & 1 & 0 & 0.4 \\ 0.5 & 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0.4 & 0.5 & 1 \end{bmatrix}$$

and

$$\Sigma = \begin{bmatrix} 3.62 & -0.63 & -2.29 & -3.02 & 2.43 \\ -0.63 & 1.16 & 0.13 & 0.45 & -0.28 \\ -2.29 & 0.13 & 2.79 & 2.27 & -2.25 \\ -3.02 & 0.45 & 2.27 & 3.95 & -2.89 \\ 2.43 & -0.28 & -2.25 & -2.89 & 3.34 \end{bmatrix}$$

```
[1,] 1.0 0.3 0.4 0.5 0.0
[2,] 0.3 1.0 0.2 0.0 0.0
[3,] 0.4 0.2 1.0 0.0 0.4
[4,] 0.5 0.0 0.0 1.0 0.5
[5,] 0.0 0.0 0.4 0.5 1.0
> round(solve(S10),2)
     [,1] [,2] [,3] [,4] [,5]
[1,] 1.29 0.12 0.30 0.28 -0.52
[2,] 0.12 6.28 2.21 -3.70 -3.63
[3,] 0.30 2.21 1.62 -1.44 -0.63
[4,] 0.28 -3.70 -1.44 3.63 3.28
[5,] -0.52 -3.63 -0.63 3.28 5.06
> round(solve(S100),2)
    [,1] [,2] [,3] [,4] [,5]
[1,] 1.07 0.31 0.57 0.53 0.08
[2,] 0.31 1.01 0.19 0.02 0.10
[3,] 0.57 0.19 1.28 0.10 0.53
[4,] 0.53 0.02 0.10 1.14 0.59
[5,] 0.08 0.10 0.53 0.59 1.06
> round(solve(S1000),2)
    [,1] [,2] [,3] [,4] [,5]
[1.] 1.05 0.30 0.44 0.54 0.04
[2,] 0.30 1.00 0.16 0.02 -0.05
[3,] 0.44 0.16 1.02 0.02 0.42
[4,] 0.54 0.02 0.02 1.03 0.53
[5,] 0.04 -0.05 0.42 0.53 1.02
```

For this reason, whenever the problem has some structure, it is important to exploit it. In this chapter we will show how to use the fact that the true inverse covariance matrix has some zeros. We will go back to this example in the next section to illustrate how graphical model constraints can help.

The problem with estimating the inverse covariance matrix becomes particularly profound in higher-dimensional scenarios. We noted already in Section 4.6 that if the underlying dimension is not negligible with respect to n, the classical asymptotic results may not be very accurate. For this reason, in modern applications, we use estimators that rely on some form of regularization. We will discuss in Section 7.3.7 a form of regularization that allows us to learn the underlying graph G.

Appendix: Likelihood Ratio Test

Hypothesis Testing in multivariate statistics offer comes with many issues related with high-dimensionality of the problems. Likelihood Ratio Test provides a rather general approach that can be used in a variety of situations and which, under some regularity conditions comes with asymptotic statistical guarantees.

I assume that you are familiar with the likelihood ratio procedure from univariate statistics. Consider a parametric model with parameter space Θ . Given $\Theta_0 \subseteq \Theta$ we consider the null hypothesis $H_0: \theta \in \Theta_0$. Given the log-likelihood function $\ell_n(\theta) = \sum_i \log f(\mathbf{x}_i)$. The likelihood ratio statistics is then defined as

 Λ_n

7.3.6 Structure learning (aka model selection)

In practice, the graph *G* is rarely known. In this case, the focus is on learning/selecting a suitable graph based on the observed data. In this section we briefly discuss some classic approaches to model selection.

Likelihood Ratio Test. A classical approach to determine the structure of G is to test a candidate graph G_0 (the null model $M(G_0)$) against its supergraph G (the alternative model M(G)) using the likelihood ratio test.

Suppose $X \sim N_m(\mu, \Sigma)$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be a random sample from this distribution. Let $G_0 = (V, E_0)$ be a graph of interest and G = (V, E) be any graph containing it $(E_0 \subseteq E)$. Based on the observed data we would like to test

$$H_0: \Sigma \in M(G_0)$$
 against $H_1: \Sigma \in M(G)$.

Let $\ell(\bar{x}_n, K)$ be as defined in (2.6). Let \widehat{K} be the MLE of the concentration matrix under the model M(G) and let \widehat{K}_0 be the the MLE under the submodel $M(G_0)$. The likelihood ratio statistic is defined as:

$$\Lambda_n := 2(\ell(\bar{\mathbf{x}}_n, \widehat{K}) - \ell(\bar{\mathbf{x}}_n, \widehat{K}_0)).$$

Proposition 7.3.2. *If* $G_0 = (V, E_0)$ *is a subgraph of* G = (V, E) *, and* $v = |E \setminus E_0|$ *, then under the null hypothesis that* $M(G_0)$ *is the true model:*

$$\Lambda_n \stackrel{d}{\rightarrow} \chi_{\nu}^2$$
.

This result allows us to test whether the additional edges in G significantly improve the model fit, by comparing Λ_n to the critical value of the χ^2_{ν} distribution:

 \leftarrow Exercise 7.5.3

- 1. Compute Λ_n based on the data.
- 2. Compute p-value as $P = \mathbb{P}(\chi_{\nu}^2 \ge \Lambda_n)$.
- 3. If *P* is small, say less then 0.05, reject the null hypothesis.

We illustrate the process using a small simulated dataset. Suppose we observe data from a multivariate normal distribution, and we wish to select a Gaussian graphical model that explains the dependencies among the variables. In this code, the true covariance matrix generating the data lies in the model defined by the graph in Figure 7.2. We will test this model against the unrestricted Gaussian model defined by the complete graph.

← Exercise 7.5.5

```
library(ggm)
# Generate synthetic data for illustration
set.seed(123)
n <- 100 # Sample size
p <- 5  # Number of variables</pre>
# Simulate data from a multivariate normal distribution
Sigma <- solve(matrix(c(1, 0.3, 0.4, 0.5, 0,
                  0.3, 1, 0.2, 0, 0,
                  0.4, 0.2, 1, 0, 0.4,
                  0.5, 0, 0, 1, 0.5,
                  0, 0, 0.4, 0.5, 1), nrow = 5))
data <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma)
# Define two competing graphs (GO: subgraph, G: full graph)
GO \leftarrow matrix(c(0, 1, 1, 1, 0,
               1, 0, 1, 0, 0,
               1, 1, 0, 0, 1,
               1, 0, 0, 0, 1,
               0, 0, 1, 1, 0), nrow = 5, byrow = TRUE)
G <- matrix(1, nrow = 5, ncol = 5) # Full graph (fully connected)
diag(G) <- 0</pre>
# Assign variable names
var_names <- c("X1", "X2", "X3", "X4", "X5")</pre>
colnames(data) <-colnames(G0) <-colnames(G) <-rownames(G0)</pre>
S <- cov(data)
# Fit models under G0 and G
Shat0 <- fitConGraph(G0,S, nrow(data))$Shat</pre>
Shat <- fitConGraph(G,S, nrow(data))$Shat</pre>
Khat0 <- solve(Shat0)</pre>
Khat <- solve(Shat)</pre>
# Likelihood Ratio Test
logLik_G0 \leftarrow (n/2)*(log(det(Khat0))-sum(Khat0*S))
logLik_G <- (n/2)*(log(det(Khat))-sum(Khat*S))
LRT_stat <- 2 * (logLik_G - logLik_G0)</pre>
df <- (sum(G) - sum(G0))/2 # Difference in number of edges
p_value <- pchisq(LRT_stat, df = df, lower.tail = FALSE)</pre>
cat("Likelihood Ratio Test Statistic:", LRT_stat, "\n")
cat("Degrees of Freedom:", df, "\n")
cat("p-value:", p_value, "\n")
```

The corresponding p-value¹³ of the likelihood ratio test is 0.294, this is not super conclusive but we have no enough evidence to reject the null hypothesis.

Remark 7.3.3. We note in passing that the estimator of the inverse covari-

¹³ Recall that the p-value is the probability (under the null) that Λ_n is greater than what was observed in the data. Very small values provide evidence against H_0 .

ance matrix under the true graph in Figure 7.2 is

This is a slightly more accurate estimator of the real inverse covariance matrix than the one given by the inverse of the sample covariance matrix in Section 7.3.4.

Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). An alternative approach to model selection is based on information criteria, which balance the goodness of fit and model complexity. The dimension of the model M(G) is simply the number of nodes m plus the number of edges E; dim M(G) = m + |E|. AIC is defined as:

AIC =
$$-2\ell(\bar{\mathbf{x}}_n, \widehat{K}) + 2 \cdot \dim M(G)$$

and BIC is defined as:

BIC =
$$-2\ell(\bar{\mathbf{x}}_n, \hat{K}) + \log(n) \cdot \dim M(G)$$
.

The model with the smallest AIC/BIC value is selected. Unlike hypothesis testing, information criteria provide a way to compare nonnested models directly.

The number of possible undirected graphs on m nodes is $2^{\binom{m}{2}}$ and so it grows exponentially, making exhaustive search computationally infeasible for even moderate m. A stepwise procedure offers a practical alternative:

- 1. Start with the complete graph or a simpler initial model.
- 2. Iteratively add or remove edges:
 - Evaluate all models obtained by adding or removing one edge.
 - Select the model with the smallest AIC/BIC.
- 3. Stop when no improvement in AIC/BIC is observed.

This greedy approach does not guarantee the globally optimal model, but it is computationally efficient.

The package gRim offers an implementation of such a stepwise procedure in R. Consider the following code.

```
library(gRim)
library(qgraph)
sat.model <- cmod(~.^.,data=data);</pre>
```

← Exercise 7.5.4

Note that the "aic" criterion in the code refers in fact to the BIC as $k = \log(n)$.

```
test.model <-

→ stepwise(sat.model,details=1,criterion="aic",type="unrestricted",k=log()
# plot(test.carc) or using the qgraph package
Sigma.hat <- solve(test.model$fitinfo$K)</pre>
qgraph::qgraph(Sigma.hat,graph="pcor")
```

We used here the package ggraph only to plot the underlying partial correlation graph. We will mention this package again when discussing high-dimensional scenarios.

Graphical LASSO 7.3.7

In high-dimensional scenarios, stepwise procedures described above are impractical and we often use other approaches based on regularization techniques.

The graphical LASSO estimates sparse precision matrices by solving the optimization problem:

$$\widehat{K} = \arg \max_{K \in \mathbb{S}_{+}^{m}} \left\{ \log \det(K) - \operatorname{tr}(S_{n}K) - \lambda \|K\|_{1,\text{off}} \right\}, \tag{7.2}$$

where $\lambda > 0$ is a fix penalty parameter and

$$||K||_{1,\text{off}} := \sum_{i \neq j} |K_{ij}|.$$

In other words the graphical LASSO estimator is obtained by penalizing the log-likelihood function with a term that penalizes the off-diagonal entries to be too large effectively pushing some of them to be zero. This is in the same spirit as the LASSO approach in linear regression, hence the name.

An efficient algorithm to find \hat{K} follows exactly the same lines as the block coordinate descent algorithm for maximizing the loglikelihood function. First we formulate a variational form of $||K||_{1,off}$. Noting that $|x| = \sup_{-1 < y < 1} xy$ we get

$$\lambda \| K \|_{1,\text{off}} = \lambda \sum_{i \neq j} \sup_{1 \leq \Lambda_{ij} \leq 1} \Lambda_{ij} K_{ij} = \sup_{\Lambda} \operatorname{tr}(\Lambda K),$$

where the supremum is taken over all $\Lambda \in \mathbb{S}^m$ with zeros on the diagonal and off-diagonal entries in $[-\lambda, \lambda]$.

This allows to rewrite the main function in (7.2) as

$$\sup_{\Lambda} \Big\{ \log \det(K) - \operatorname{tr}((S_n + \Lambda)K) \Big\}.$$

Proceeding as in the proof of Proposition 7.3.1, we get that the dual problem is to maximize log det Σ subject to $\Sigma_{ii} = (S_n)_{ii}$ for i = $1,\ldots,m$ and $|\Sigma_{ij}-(S_n)_{ij}|\leq \lambda$.

We can again solve this problem using the same block coordinate descent approach.

Figure 7.2: The selected model is close to the true graph. Only the edge 2-3 is missing.

- 1. Set $\Sigma = S_n$.
- 2. For each $i=1,\ldots,m$, set $\Sigma_{i,i}$ and $\Sigma_{i,i}$ to be equal to \widehat{y} , which is the minimizer of $y^{\top}(\Sigma_{i,i})^{-1}y$ subject to $y_j=(S_n)_{ij}$ for all j such that $ij \in E$.
- 3. Check a convergence criterion (pick one you like in advance). If it is not satisfied, go back to Step 2. Otherwise stop.

Here is an example of applying the graphical LASSO in R using the glasso package:

```
library(glasso)

# Simulated data
set.seed(123)
n <- 100
p <- 10
X <- matrix(rnorm(n * p), nrow = n, ncol = p)

# Sample covariance matrix
S <- cov(X)

# Apply graphical LASSO
lambda <- 0.1
fit <- glasso(S, rho = lambda)

# Extract precision matrix
precision_matrix <- fit$wi
print(precision_matrix)</pre>
```

Remark 7.3.4. *Many packages, like glasso, penalize in* (7.2) *not only the off-diagonal entries of K but also the diagonal entries. This however introduces an unnecessary bias.*

7.4 Log-linear Graphical Models

In this lecture course, we have largely ignored discrete variables. We try to partly fix this in this section by discussing discrete graphical models.

7.4.1 Introduction

Log-linear graphical models describe the dependence structure of discrete random variables using a graph-based factorization of the joint probability distribution. Discrete data arise naturally in many real-world settings, making their analysis essential in applied statistics and data science. Here are a few explicit examples of scenarios where finite discrete data are relevant:

- Genetics: In genetics, categorical variables often represent genotypes (e.g., AA, Aa, aa) or the presence or absence of certain genetic mutations. For example, a study investigating the relationship between multiple genetic variants and a disease status might use a log-linear model to analyze these interactions.
- Market Basket Analysis: In retail analytics, log-linear models are applied to understand the co-occurrence patterns of items in shopping baskets. Each variable represents whether a customer bought a specific item (e.g., milk, bread, eggs), and the observed data are counts of item combinations.
- Survey Data: Social science surveys frequently collect categorical responses to questions, such as political preferences (e.g., liberal, conservative) or education levels (e.g., high school, college, graduate school). Log-linear models can analyze the relationships between these variables, adjusting for potential confounding factors.

Notation 7.4.2

Let $X = (X_1, ..., X_m)$ be a vector of discrete random variables, where each X_i takes values in a finite set \mathcal{X}_i . Without loss of generality, label the states as $\mathcal{X}_i = \{0, 1, \dots, r_i - 1\}$ for some $r_i \geq 2$. The joint distribution of X is represented by a probability mass function $f(\mathbf{x}) = P(X = \mathbf{x}) \text{ for } \mathbf{x} = (x_1, \dots, x_m) \in \mathcal{X}_1 \times \dots \times \mathcal{X}_m =: \mathcal{X}.$

Suppose now we observe a random sample $x_1, ..., x_n$ from this distribution. The likelihood is

$$\prod_{i=1}^n f(\mathbf{x}_i) = \prod_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^{n(\mathbf{x})},$$

where $n(\mathbf{x})$ denotes the number of times the state \mathbf{x} was observed in the sample. The collection of these counts n = (n(x)) is called the contingency table. The contingency table is an $r_1 \times \cdots \times r_m$ array, where the (x_1, \ldots, x_m) -th entry $n(x_1, \ldots, x_m)$ represents the number of times the configuration (x_1, \ldots, x_m) is observed in the data. The total sample size n satisfies:

$$n = \sum_{\mathbf{x} \in \mathcal{X}} n(\mathbf{x}).$$

If m = 2 and X_1, X_2 are binary variables taking values in $\{0, 1\}$, the contingency table might look like this:

$$\begin{array}{c|cccc} & X_2 = 0 & X_2 = 1 \\ \hline X_1 = 0 & n(0,0) & n(0,1) \\ X_1 = 1 & n(1,0) & n(1,1) \end{array},$$

where n(0,0) records the number of observations where $(X_1, X_2) =$ (0,0), n(0,1) records the number where $(X_1, X_2) = (0,1)$, and so on.

Example 7.4.1. To make this concrete, consider a contingency table summarizing the relationship between smoking status (Smoker, Non-Smoker) and disease status (Disease, No Disease). The observed data might look like this:

	Disease	No Disease
Smoker	50	200
Non-Smoker	30	300

This table indicates that 50 smokers were observed to have the disease, while 30 non-smokers were observed to have the disease, and so on. The total sample size is n = 580.

For m > 2, the contingency table becomes a multidimensional array. For example, if m = 3 and each X_i is binary, the contingency table is a $2 \times 2 \times 2$ cube, with entries $n(x_1, x_2, x_3)$ representing the frequencies of each configuration (x_1, x_2, x_3) .

Example 7.4.2. Suppose a dataset summarizes the co-occurrence of purchases of Milk, Bread, and Eggs. A contingency table is a $2 \times 2 \times 2$ array where the entry (0,0,0) gives the number of clients that bought none of the three products, (0,1,1) entry gives the number of clients that bought both Bread and Eggs etc

The joint probability of the observed contingency table is

$$\mathbb{P}(n(\mathbf{x}): \mathbf{x} \in \mathcal{X}) = \frac{n!}{\prod_{\mathbf{x} \in \mathcal{X}} n(\mathbf{x})!} \prod_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^{n(\mathbf{x})},$$

which differs from the likelihood by a multinomial coefficient which is just a constant.

If we do not restrict the probabilities in any way (except requiring that they are non-negative and sum to unity), then it is easily shown that the maximum likelihood estimates are given by $\widehat{f}(\mathbf{x}) = n(\mathbf{x})/n$ for $\mathbf{x} \in \mathcal{X}$. The unrestricted model is known as the saturated model. In most substantive contexts, it is of interest to restrict the probabilities further to obtain parsimony and to identify or exploit structural information.

We need a little more notation. The expected cell counts are written $m(\mathbf{x}) = nf(\mathbf{x})$ for $\mathbf{x} \in \mathcal{X}$, and the fitted values as $\widehat{m}(\mathbf{x}) = n\widehat{f}(\mathbf{x})$. We need to work with marginal tables and to do this must first define marginal cells. For a subset of variables $C \subseteq V$, we define marginal counts as:

$$n(\mathbf{x}_{C}) = \sum_{\mathbf{y} \in \mathcal{X}: \mathbf{y}_{C} = \mathbf{x}_{C}} n(\mathbf{x}).$$

We use the analogous notation for $f(\mathbf{x}_C)$, $m(\mathbf{x}_C)$ etc.

Recall $V = \{1, ..., m\}.$

Discrete Graphical Models through Factorization

Let \mathcal{C} be the set of (maximal) cliques of the graph G. For each $C \in \mathcal{C}$, consider the set $\mathcal{X}_C = \prod_{i \in C} \mathcal{X}_i$, and let $\theta_C : \mathcal{X}_C \to \mathbb{R}$. ¹⁴ The joint probability mass function $f(\mathbf{x}) = P(X = \mathbf{x})$ of a log-linear model corresponding to *G* is expressed as:

$$f(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \exp \left(\sum_{C \in \mathcal{C}} \theta_C(\mathbf{x}_C) \right),$$
 (7.3)

where $Z(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} \exp(\sum_{C \in \mathcal{C}} \theta_C(\mathbf{x}_C))$ is the normalizing constant and $\theta = (\theta_C)_{C \in \mathcal{C}}$ represents the collection of clique-specific parameters.

Example 7.4.3. Consider m = 3, where X_1, X_2, X_3 are binary variables taking values in $\{0,1\}$. Suppose the underlying graph G is a chain $\stackrel{1}{\bullet} - \stackrel{2}{\bullet} \stackrel{3}{\bullet}$. The cliques of G are $\mathcal{C} = \{\{1,2\},\{2,3\}\}$. The joint probability mass function can be written as:

$$f(x_1, x_2, x_3; \theta) = \frac{1}{Z(\theta)} \exp(\theta_{12}(x_1, x_2) + \theta_{23}(x_2, x_3)),$$

where $\theta_{12}(x_1, x_2)$ captures the interaction between X_1 and X_2 , and $\theta_{23}(x_2, x_3)$ captures the interaction between X_2 and X_3 . Both θ_{12} and θ_{23} are encoded as vectors in \mathbb{R}^4 :

$$\theta_{12} = \begin{bmatrix} \theta_{12}(0,0) \\ \theta_{12}(0,1) \\ \theta_{12}(1,0) \\ \theta_{12}(1,1) \end{bmatrix}, \qquad \theta_{23} = \begin{bmatrix} \theta_{23}(0,0) \\ \theta_{23}(0,1) \\ \theta_{23}(1,0) \\ \theta_{23}(1,1) \end{bmatrix}$$

so effectively we have 8 parameters¹⁵.

The normalizing constant $Z(\theta)$ ensures that the probabilities sum to 1:

$$Z(\theta) = \sum_{x_1, x_2, x_3 \in \{0,1\}} \exp(\theta_{12}(x_1, x_2) + \theta_{23}(x_2, x_3)).$$

The formula in (7.3) is equivalent to f factorizing with respect to G, as defined in Equation $(7.1)^{16}$. By the Hammersley-Clifford theorem, the corresponding distributions satisfy the global, local, and pairwise Markov properties.

This equivalence between the graph structure and conditional independence makes log-linear models highly interpretable.

Working with Log-Linear Models in R 7.4.4

To work with log-linear models, the R package MASS provides functions such as loglm, which can fit log-linear models to contingency tables.

¹⁴ Since $d_C := |\mathcal{X}_C|$ is finite, we can represent θ_C as a vector in \mathbb{R}^{d_C} .

¹⁵ We note in passing that these parameters are of no direct interest. In fact the model has only dimension 5 and so this parametrization leads to lack of identifiability.

¹⁶ Clearly, if (7.3) holds then f factorizes so it remains to show that if f > 0factorizes then it can be always written as (7.3).

For example, suppose we have a contingency table for three binary variables X_1, X_2, X_3 as in Example 7.4.2. We could fit a model with the chain structure $\stackrel{1}{\bullet} - \stackrel{2}{\bullet} - \stackrel{3}{\bullet}$. Here is how to fit the model in R:

The output looks like this.

```
Formula:
\simX1 * X2 + X2 * X3
attr(, "variables")
list(X1, X2, X3)
attr(, "factors")
  X1 X2 X3 X1:X2 X2:X3
X1 1 0 0 1 0
X2 0 1 0 1
                    1
X3 0 0 1 0 1
attr(, "term.labels")
[1] "X1" "X2" "X3" "X1:X2" "X2:X3"
attr(, "order")
[1] 1 1 1 2 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 0
attr(,".Environment")
<environment: R_GlobalEnv>
Statistics:
                     X^2 df P(> X^2)
Likelihood Ratio 0.5906840 2 0.7442770
            0.5844156 2 0.7466134
```

The p-values in this code refer to the test of this model with respect to the saturated model.

7.4.5 The Log-Likelihood Function

Suppose we have observed data points $x_1, ..., x_n$, where each x_i takes values in the discrete space \mathcal{X} . For a fixed graph G, the goal is to

maximize the log-likelihood function

$$\ell(\theta) = \sum_{i=1}^{n} \log f(\mathbf{x}_i; \theta) = \sum_{i=1}^{n} \sum_{C \in \mathcal{C}} \theta_C((\mathbf{x}_i)_C) - n \log Z(\theta),$$

where $f(\mathbf{x}; \theta)$ is the joint probability mass function parameterized by θ , and $Z(\theta)$ is the normalizing constant ensuring $f(\mathbf{x};\theta)$ sums to 1 over all configurations of x.

The notation here may seem dense, so let us break it down step by step. In the above expression, the double summation over i and C can be reordered because both ranges are finite:

$$\sum_{i=1}^n \sum_{C \in \mathcal{C}} \theta_C((\mathbf{x}_i)_C) = \sum_{C \in \mathcal{C}} \sum_{i=1}^n \theta_C((\mathbf{x}_i)_C).$$

For a fixed clique $C \in \mathcal{C}$, the term $\sum_{i=1}^{n} \theta_{C}((\mathbf{x}_{i})_{C})$ can be simplified by grouping terms according to $\mathbf{x}_C \in \mathcal{X}_C$

$$\sum_{i=1}^{n} \theta_{C}((\mathbf{x}_{i})_{C}) = \sum_{\mathbf{x}_{C} \in \mathcal{X}_{C}} n_{C}(\mathbf{x}_{C})\theta_{C}(\mathbf{x}_{C}).$$

Substituting this back into the log-likelihood function gives:

$$\ell(\theta) = \sum_{C \in \mathcal{C}} \sum_{\mathbf{x}_C \in \mathcal{X}_C} n_C(\mathbf{x}_C) \theta_C(\mathbf{x}_C) - n \log Z(\theta).$$

Fitting Log-linear Models: Iterative Proportional Scaling (IPS)

The parameter vectors $\theta_C \in \mathbb{R}^{|\mathcal{X}_C|}$ in log-linear models can be estimated using a simple iterative procedure. For simplicity of exposition, we present a dual algorithm, called Iterative Proportional Scaling, that tries to estimate the expectations $m(\mathbf{x})$ for $\mathbf{x} \in \mathcal{X}$.

Let C be the set of maximal cliques of the graph G. The corresponding marginal tables $n_C(\mathbf{x}_C)$ are a set of sufficient statistics. The maximum likelihood estimate is obtained by equating the sufficient statistics with their expectations $m_C(\mathbf{x}_C)$.

Initially the $m(\mathbf{x})$ are set to some constant, say $m(\mathbf{x}) = 1$ for all $\mathbf{x} \in \mathcal{X}$. One iteration consists of updating for each $C \in \mathcal{C}$

$$m(\mathbf{x}) \leftarrow m(\mathbf{x}) \frac{n_C(\mathbf{x}_C)}{m_C(\mathbf{x}_C)} \quad \forall \mathbf{x} \in \mathcal{X}.$$

Iteration continues until convergence which happens when $m_C(\mathbf{x}_C) =$ $n_C(\mathbf{x}_C)$ for all C and x. The algorithm is always theoretically convergent with the limiting value being the maximum likelihood estimate under the model $\{\widehat{m}(\mathbf{x})\}_{\mathbf{x}\in\mathcal{X}}$, although these may not all have $\widehat{m}(\mathbf{x}) > 0$ for all cells \mathbf{x} and thus may not admit a logarithmic expansion.

7.4.7

The Ising Model

The dimensionality of log-linear models does not scale well with the number of variables and their number of values. For this reason, it is important to consider simpler models for discrete data that retain computational feasibility while capturing essential dependencies. One prominent example is the Ising model.

The Ising model is a special case of a log-linear graphical model that is widely used in statistics, machine learning, and physics. It models binary variables with pairwise interactions.

Consider a random vector $X = (X_1, ..., X_m)$, where each $X_i \in \{-1, 1\}$. Fix a graph G = (V, E). The probability mass function is given by:

$$f(\mathbf{x}) = \mathbb{P}(X = \mathbf{x}) \propto \exp\left(\sum_{i \in V} \theta_i x_i + \sum_{(i,j) \in E} \theta_{ij} x_i x_j\right),$$

where θ_i are node potentials representing individual variable effects, and θ_{ij} are edge potentials representing pairwise interactions between variables. The normalization constant, or partition function, $Z(\theta)$, is:

$$Z(\theta) = \sum_{x \in \{-1,1\}^m} \exp\left(\sum_{i \in V} \theta_i x_i + \sum_{(i,j) \in E} \theta_{ij} x_i x_j\right).$$

Applications. The Ising model is highly versatile and is widely applied in different domains:

- **Network Analysis:** Social networks where binary variables X_i represent the presence or absence of a specific behavior or trait for individual i, and θ_{ij} encodes the strength of the interaction between individuals i and j.
- **Spatial Statistics:** Modeling dependencies in spatial data, such as image segmentation, where X_i represents the label of pixel i (e.g., foreground or background) and θ_{ij} captures the similarity between neighboring pixels.
- **Statistical Physics:** Originally proposed to model ferromagnetic materials, where X_i represents the spin of an electron, and θ_{ij} models the coupling between spins.
- Genetics: Modeling binary genetic traits with pairwise dependencies between genes.

Statistical Estimation and Inference. Consider a random sample $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$. Maximum likelihood is teh canonical method to esti-

mate the parameters θ_i and θ_{ii} . The log-likelihood is

$$\ell(\theta) = \sum_{k=1}^{n} \left(\sum_{i \in V} \theta_i x_i^{(k)} + \sum_{(i,j) \in E} \theta_{ij} x_i^{(k)} x_j^{(k)} \right) - n \log Z(\theta),$$

The log-likelihood can be maximized using iterative procedures like IPS described above.

The presence of $Z(\theta)$ makes exact inference and parameter estimation computationally challenging for large graphs. Indeed, computing $Z(\theta)$ requires performing a sum over w^m terms, which is often computationally prohibitive. This motivates other estimation methods.

Pseudo-Likelihood Methods: To avoid the computational burden of $Z(\theta)$, one can replace the likelihood with the pseudo-likelihood:

$$\ell_{\text{pseudo}}(\theta) = \sum_{k=1}^{n} \sum_{i \in V} \log P(X_i = x_i^{(k)} \mid X_{-i}),$$

where X_{-i} denotes all variables except X_i . This approximation significantly reduces computational cost while providing reasonably accurate parameter estimates.

Regularization: Sparse Ising models can be estimated using penalized pseudo-likelihood, incorporating ℓ_1 -penalties on the edge parameters θ_{ii} .

Below is a simple example of fitting an Ising model using the qgraph package in R.

```
# Install and load necessary packages
install.packages("qgraph")
library(qgraph)
# Generate synthetic binary data
set.seed(123)
n <- 100 # Number of observations
p <- 5  # Number of variables</pre>
data <- matrix(sample(c(-1, 1), n * p, replace = TRUE), nrow = n)</pre>
# Fit Ising model using pseudo-likelihood
fit <- IsingFit(data, plot = TRUE)</pre>
# Display estimated node and edge parameters
fit$thresholds # Node potentials
fit$weights
             # Edge potentials
```

This code generates synthetic data, fits an Ising model using pseudo-likelihood, and plots the resulting graph. The output includes estimated node and edge parameters, which can be interpreted in the context of the problem domain.

7.5 Exercises

Exercise 7.5.1. Consider all binary distributions that factorize $f(x_1, x_2, x_3) = \phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)$ for $(x_1, x_2, x_3) \in \{0, 1\}^3$. Prove the Hammerley-Clifford theorem in this very special case.

Exercise 7.5.2. Show that the set \mathbb{S}^m_+ is convex. Also, show that intersection of two convex sets must be also convex.

Exercise 7.5.3. Verify by simulations that the likelihood ratio statistics has the reported asymptotic distribution χ_4^2 in the leading example of Section 7.3.6.

Exercise 7.5.4. Suppose we compare a graph G with G_0 obtained from G by removing a single edge. What difference in likelihood is needed so that the AIC/BIC criteria prefer the bigger model?

Exercise 7.5.5. Consider the code on estimating the inverse covariance matrix for the simple graphical model in Figure 7.2, where the true inverse covariance matrix is

$$K = \begin{bmatrix} 1 & 0.3 & 0.4 & 0.5 & 0 \\ 0.3 & 1 & 0.2 & 0 & 0 \\ 0.4 & 0.2 & 1 & 0 & 0.4 \\ 0.5 & 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0.4 & 0.5 & 1 \end{bmatrix}.$$

Using simulations, study the performance of the MLE of K under M(G) compared to the full graph as provided in the code in Section 7.3.4.

Factor analysis and Independent Component Analysis

Factor Analysis (FA) and Independent Component Analysis (ICA) are two foundational methods for understanding dependencies and uncovering latent structures in multivariate data. FA models the dependence between observed variables by assuming that their variation can be largely attributed to a few common latent factors. ICA, on the other hand, seeks to decompose observed signals into statistically independent components, making it particularly useful in applications like blind-source separation. Both methods share conceptual connections with Probabilistic Principal Component Analysis (PCA), discussed in Section 4.4.2. In this chapter, we motivate and explore these models, highlighting their theoretical foundations, practical applications, and relationships to modern multivariate analysis techniques.

8.1 Motivating examples

In this section we provide some examples to build some intuition behind factor analysis and related models. In all this examples, latent representations of the data have an intuitive interpretation and allow to significantly reduce the underlying dimensionality.

8.1.1 FA: Motivating Examples

Example 8.1.1 (Capital Asset Pricing Model (CAPM)). In finance, the Capital Asset Pricing Model (CAPM) provides a foundational framework for understanding stock returns. Suppose we observe the returns of m stocks denoted by X_1, X_2, \ldots, X_m . According to CAPM, the returns of individual stocks can largely be explained by their sensitivity to a single common factor, often referred to as the market return. This is mathematically represented as:

$$X_i = \mu_i + w_i Z + \varepsilon_i, \quad i = 1, \ldots, m,$$

where Z is the market return (common factor), w_i is the sensitivity (or loading) of stock i to the market, μ_i is the mean return of stock i, and ε_i is

the idiosyncratic error, assumed to be uncorrelated across stocks.

As we will see in this chapter, FA generalizes CAPM by allowing for multiple latent factors that jointly explain the dependence structure of stock returns. For instance, additional factors could account for sector-specific trends or macroeconomic variables like interest rates or inflation.

The origins of FA can be traced back to early studies on human intelligence. We now present this classical example.

Example 8.1.2 (Human Intelligence and Pearson's Work). In the early 20th century, Charles Spearman and Karl Pearson investigated relationships between scores on different cognitive tasks. Spearman hypothesized the existence of a single general intelligence factor (Z) that underlies performance in various tests, such as mathematics, verbal reasoning, and spatial visualization; we denote these tasks by (X_1, \ldots, X_m) . This relationship can be expressed as:

$$X_i = \mu_i + w_i Z + \varepsilon_i, \quad i = 1, \ldots, m,$$

where X_i represents the score on the i-th test, Z is the general intelligence factor, w_i is the loading of test i on Z, and ε_i represents unique abilities or measurement noise.

Later studies expanded the model to include multiple latent factors representing specific abilities like memory, language, or reasoning. FA formalizes these models, enabling researchers to estimate the latent factors and their relationships with observed variables.

The next example links to recommender systems and the famous Netflix challenge. This is not directly related to the Factor Analysis model discussed here but it uses similar principles.

Example 8.1.3 (Recommender systems). Recommender systems deal with a large user-item interaction matrix, where rows correspond to users, columns correspond to items (e.g., movies, books, or products), and entries represent interactions such as ratings, purchases, or clicks. However, the observed data is often sparse, with many missing entries.

It is typically assumed that the observed interactions (e.g., user ratings) are influenced by a small number of underlying latent factors:

- Latent user preferences: Each user has a set of preferences or tastes, such as a liking for action movies, romantic comedies, or documentaries.
- Latent item attributes: Each item can be described by its attributes, like genre, production quality, or popularity.

We then model the interaction X_{ij} (e.g., the rating of user i for item j) as a linear combination of:

$$X_{ij} = \boldsymbol{z}_i^{\top} \boldsymbol{\lambda}_j + \boldsymbol{\epsilon}_{ij},$$

where z_i is the latent vector for user i, λ_i is the latent vector for item j, ε_{ii} captures noise or unique factors not explained by the latent structure. Such a latent model may provide massive dimensionality reduction making the model computationally efficient. By estimating the latent factors z_i and λ_i , the model predicts missing entries in the matrix (e.g., whether a user will like an unwatched movie).

ICA: Motivating Examples

Independent Component Analysis (ICA) aims to separate observed signals into independent components. Here are two motivating examples that highlight its importance:

Example 8.1.4 (Cocktail Party Problem). Consider the classic cocktail party problem, where multiple people are speaking simultaneously, and you have several microphones placed around the room. Each microphone captures a mixture of the voices due to overlapping sound waves. We model this as:

$$X = WZ$$
.

where X is the observed mixed signal (from the microphones), Z is the vector of independent source signals (e.g., individual voices), W is the mixing matrix describing how the source signals combine. The goal of ICA is to recover the (unobserved) independent signals Z and the mixing matrix W using only the observed mixed signals Z, without prior knowledge of W or Ζ.

Example 8.1.5 (Biomedical Signal Processing (EEG/MEG Data)). *In* neuroscience, ICA is widely used to analyze data from electroencephalography (EEG) or magnetoencephalography (MEG), which record electrical or magnetic activity in the brain. The observed signals are mixtures of:

- Neural signals originating from different brain regions.
- Artifacts, such as eye movements, muscle activity, or electrical interference.

ICA helps disentangle these sources by assuming that the neural and artifact signals are statistically independent. This enables researchers to isolate brain activity and remove unwanted artifacts, significantly improving the interpretability of the data.

8.2 Definitions

In factor analysis (FA), the idea is to explain the correlations among a set of *m* observed variables by introducing a set of *r* unobserved latent variables, or factors, where $r \leq m$. The FA model for a random vector $X \in \mathbb{R}^m$ assumes that each observed variable can be expressed as a linear combination of these common factors, plus a unique error term. Specifically, the FA model can be written as:

$$X = \mu + WZ + \varepsilon, \tag{8.1}$$

where $Z \in \mathbb{R}^r$ is the vector of common factors (latent variables), assumed to follow a standard normal distribution $Z \sim N_r(0, I_r)$, $W \in \mathbb{R}^{m \times r}$ is the factor loading matrix, which relates the common factors Z to the observed variables X, and $\varepsilon \in \mathbb{R}^m$ is the vector of unique factors (specific errors) with $\varepsilon \sim N_m(0, \Psi)$, where Ψ is a diagonal matrix. We assume $Z \perp \!\!\! \perp \varepsilon$.

The factor loadings in W represent the relationship between each observed variable and the common factors Z. The unique variances in Ψ represent the variance in each observed variable that is not explained by the common factors. If an entry of Ψ is small, it means that the corresponding variable is well explained by the common factors. The interpretation of W is less clear and we will discuss this in more detail in Section .

Note that this model is almost exactly the same as the Probabilstic PCA model in Section 4.4.2 with the only difference that in PCA $\Psi = \sigma^2 I_m$ for some σ^2 . One important consequence of simpler assumptions of PPCA is that the model results in closed formulas for the MLE. In the case of FA, maximizing the likelihood function requires the EM algorithm or some other numerical scheme.

The Incependent Component Analysis model assumes a very similar stochastic representation¹

$$X = \mu + WZ$$
,

which effectively corresponds to the FA model with $\varepsilon \equiv 0$ ($\Psi = \mathbf{0}_{m \times m}$). Here however the main difference is that typically it is assumed that r = m with W invertible and also that $Z \sim (0, I_r)$ with independent components but not necessarily jointly Gaussian. We will comment more on that in a second.

8.3 Model Implications and identifiability

8.3.1 The covariance matrix

Since X is an affine ombination of Gaussian vectors, it is Gaussian itself. It is clear that $\mathbb{E}X = \mu$. Moreover, the covariance matrix Σ of the observed data X can be derived from the model as follows:

$$\Sigma = \operatorname{var}(WZ + \varepsilon)$$

$$= W \operatorname{var}(Z)W^{\top} + \operatorname{var}(\varepsilon)$$

$$= WW^{\top} + \Psi.$$
(8.2)

 $^{^{\}text{I}}$ In practice, both before applying ICA and FA, the data are centered. So, with no loss of generality, we could assume $\mu=0$ throughout.

Thus, the model imposes the constraint that the covariance matrix Σ can be decomposed into two parts: a low-rank² matrix WW^{\top} , which captures the shared variance among the variables due to the common factors, and a diagonal matrix Ψ that captures the unique variances of each observed variable (i.e., the variance not explained by the common factors).

² Note that rank(WW^{\top}) < r.

8.3.2 Lack of identifiability

Note that for any orthogonal matrix $U \in \mathcal{O}(r)$ it holds that $WW^{\top} =$ $WU(WU)^{\top}$. Thus, in the factor analysis model the parameters (W, Ψ) lead to the same observed distribution as the parameters (WU, Ψ) for any $U \in \mathcal{O}(r)$. We say that the model is not identifiable.

This deficiency also shows that we should be very careful trying to interpret the estimated loading matrix because there are infinitely many loading matrices that explain the data equally well.

There are several approaches to pick the canonical loading matrix from the set of all equivalent ones. Usually this is resolved by rotating the factor loadings to satisfy an arbitrary constraint such as

$$W^{\top}\Psi^{-1}W$$
 is diagonal, (8.3)

where the diagonal elements are written in decreasing order.

The varimax method of orthogonal rotation is another way to get a unique W, proposed by Kaiser in 1958. Its rationale is to provide axes with a few large loadings and as many near-zero loadings as possible. This is accomplished by an iterative maximization of a quadratic function of the loadings.

Let $W \in \mathbb{R}^{m \times r}$ be a matrix of unrotated loadings. This could be, for example, the output of the maximum likelihood estimation procedure. Let $U \in \mathcal{O}(r)$ leading to the rotated loading matrix WU. We choose *U* using the varimax criterion that maximizes the sum of variances of the squared loadings within each column of the loading matrix, where each row is properly normalized.

More concretely, let $M \in \mathbb{R}^{m \times r}$ be the matrix with entries

$$M_{ij} = \frac{(WU)_{ij}^2}{\sum_{k=1}^r (WU)_{ij}^2}.$$

Note that the entries of *M* are nonnegative and , by definition, $M\mathbf{1}_r = \mathbf{1}_m$. In other words, M is a stochastic matrix³. In the varimax approach, we choose *U* by **maximizing** $||M - \frac{1}{m} \mathbf{1}_m \mathbf{1}_m^\top M||_F^2$, the Frobenius distance from M to the matrix $\frac{1}{m} \mathbf{1}_m \mathbf{1}_m^{\top} M$.

To understand this better, note that this distance is zero if and only if $H_m M = \mathbf{0}$, where $H_m = I_m - \frac{1}{m} \mathbf{1}_m \mathbf{1}_m$ is the centering matrix. In other words, each column of M is constant. By maximizing the

³ A stochastic matrix is a nonnegative matrix whose rows all sum to 1.

distance over *U* we obtain *M* such that in each column there are a few big entries and the remaining entries are negligible.

The varimax rotation is implemented in the base package in R.

```
# Example data: unrotated factor loadings
loadings <- matrix(c(0.7, 0.3, 0.2, -0.5, 0.8, 0.4), nrow = 3)
# Apply varimax rotation
rotated <- varimax(loadings)</pre>
# View rotated loadings
print(rotated$loadings)
```

8.3.3 Identifiability via Non-Gaussianity

An alternative and more robust approach to establish the identifiability of the matrix W in factor analysis and independent component analysis (ICA) relies on the assumption of non-Gaussianity of the underlying components. This approach circumvents some of the limitations of classical methods by leveraging properties unique to Gaussian and non-Gaussian distributions. We not describe it in more details.

One way to understand the issue of non-identifiability in the Gaussian setting is to observe that, if $Z \sim N_r(0, I_r)$, then for any orthogonal matrix $U \in \mathcal{O}(r)$, the transformed vector UZ has the same distribution as Z. In particular, the entries of UZ remain independent, regardless of the choice of *U*. This invariance to orthogonal transformations is a special property of Gaussian distributions, which does not generally hold for non-Gaussian random vectors.

To formalize this, we cite a result by Kac that highlights the uniqueness of the Gaussian distribution in maintaining independence under orthogonal transformations:

Theorem 8.3.1 (Kac). If $Z = (Z_1, Z_2)$ is a random vector such that $Z_1 \perp \!\!\!\perp Z_2$ and $(UZ)_1 \perp \!\!\!\perp (UZ)_2$ for some orthogonal matrix $U \in \mathcal{O}(2)$ with all entries non-zero, then Z follows a Gaussian distribution.

Example 8.3.2. For a simpler illustration of this result consider two independent variables (Z_1, Z_2) distributed uniformly on [0,1]. Their joint samples are depicted on the top in Figure 8.1. Rotating these data by 45 degrees, results in the bottom picture. We can think of it as a sample of the vector (Y_1, Y_2) , which is a rotation of (Z_1, Z_2) . From the picture it should be clear that Y₁ and Y₂ cannot be independent as the support of Y₁ depends on Y₂ and vice versa.

Theorem 8.3.1 can be generalized to higher dimensions in a suitable sense, illustrating that Gaussian distributions are uniquely char-

If $U \in \mathcal{O}(2)$ has a zero, it must be one of the eight matrices of the form 0 $\lceil +1 \rceil$ 0 +1 ± 1 ± 1

Figure 8.1: Rotating data coming from two independent variables breaks independence.

acterized by their invariance under orthogonal transformations that preserve independence. In other words, if Z is non-Gaussian

In the context of ICA, this property of Gaussian distributions is exploited to establish identifiability of the mixing matrix:

Theorem 8.3.3 (Comon). If $\mathbb{E}Z = 0$, $var(Z) = I_r$, the components of Z are independent, and at most one of them is Gaussian, then the mixing matrix W can be identified up to permutations of its columns and sign changes.

The assumption of non-Gaussianity also allows for other estimation techniques. In the Gaussian distributions the whole information about the distribution is contained in the mean vector μ and the covariance matrix Σ . In general, higher order moments can also be exploited. We briefly explain this in the next section.

Fitting FA and ICA 8.4

Several methods exist for fitting the Factor Analysis (FA) and Independent Component Analysis (ICA) models. One of the most common approaches for FA is maximum likelihood estimation, where we aim to find the parameters Λ and Ψ that maximize the likelihood of the observed data given the factor analysis model. For ICA, maximum likelihood is often replaced by the method of moments, which leverages higher-order statistics.

8.4.1 Maximum Likelihood Estimation for FA

Maximum likelihood estimation in FA aims to find parameters W (the factor loading matrix) and Ψ (the diagonal covariance of unique variances) that best explain the observed covariance structure in (8.2).

Jöreskog's method simplifies the maximum likelihood estimation by providing an analytic update for the loading matrix W and iteratively optimizing over Ψ . The key idea is to iteratively: (1) Update W using an analytic formula. (2) Numerically optimize Ψ.

Theorem 8.4.1. Let Ψ be fixed, and let $\widetilde{S}_n = \Psi^{-1/2} S_n \Psi^{-1/2}$. Using the spectral decomposition, write

$$\widetilde{S}_n = U \widetilde{\Lambda} U^{\top}.$$

Then, the values of W that maximize the likelihood function are of the form

$$\widehat{W} = U_r \Theta Q$$
 for any $Q \in \mathcal{O}(m)$,

where U_r is obtained from the first r columns of U (corresponding to the largest eigenvalues) and Θ is a diagonal matrix with i-th entry equal to $\sqrt{\max\{0,\widetilde{\Lambda}_{ii}-1\}}$.

Proof Sketch. We have

$$\Sigma = \Psi + WW^{\top} = \Psi^{1/2}(I_m + \widetilde{W}\widetilde{W}^{\top})\Psi^{1/2}.$$

If Ψ is fixed then maximizing the log-likelihood function $\log \det \Sigma^{-1} - \operatorname{tr}(S_n \Sigma^{-1})$ is equivalent to maximizing

$$\log \det(I_m + \widetilde{W}\widetilde{W}^\top)^{-1} - \operatorname{tr}(\widetilde{S}_n(I_m + \widetilde{W}\widetilde{W}^\top)^{-1}).$$

The rest of the proof is essentially the same as the proof of Theorem 4.4.1 with the additional restriction that $\sigma^2 = 1$.

We now describe this method in detail:

Initialization: Start with an initial guess for $\Psi^{(0)}$, typically the diagonal elements of the sample covariance matrix $\hat{\Sigma}$.

Update W: For a fixed Ψ , update the loading matrix W analytically by solving:

$$W = \Sigma V^{-1/2} U_q,$$

where $V = \Psi + WW^{\top}$ is the fitted covariance matrix, and U_r consists of the eigenvectors corresponding to the r largest eigenvalues of $\mathbf{V}^{-1/2}\Sigma\mathbf{V}^{-1/2}$.

8.4.2 Method of Moments for FA and ICA

Another approach to fitting FA and ICA models is the method of moments, which leverages statistical moments of the data.

In general the method of moments refers to estimating procedures where the population moments can be explicitly expressed as functions of the model parameters $m(\theta)$. Then we try to solve $\widehat{m}=m(\theta)$, where \widehat{m} refers to the corresponding vector of sample moments. Of course, in general there is no guarantee that such equation has a solution or that this solution is unique so typically additional theoretical analysis is required. When there is no solution, a decent alternative is given by minimizing $\|\widehat{m}-m(\theta)\|$.

In FA, the covariance structure of the observed data X is modeled as in (8.2). The method of moments matches the sample covariance matrix S_n to its theoretical counterpart Σ . The estimation involves solving:

minimize
$$||S_n - (\Lambda \Lambda^\top + \Psi)||_F^2$$
.

However, this approach should not be preferred over the MLE presented in the previous section.

The method of moments approach is particularly effective for ICA, where the assumption of non-Gaussianity enables us to exploit higher-order moments such as skewness and kurtosis. The assumption of non-Gaussianity ensures that *W* is identifiable up to scaling and permutation.

One example of this algorithm is the JADE algorithm that takes a look at the fourth cumulant of the data. Since X = WZ and W is invertible, we have Z = AX with $A = W^{-1}$. By independence of the components of *Z* the $m \times m \times m \times m$ table *M* that contains all 4-th order cumulants of Z is diagonal. Moreover, by multilinearity of cumulants, its (i, j, k, l)-th (assuming i, j, k, l are not equal) entry satisfies

$$0 = \operatorname{cum}(Z_i, Z_j, Z_k, Z_l) = \sum_{i',j',k',l'=1}^{m} A_{ii'} A_{jj'} A_{kk'} A_{ll'} \operatorname{cum}(X_{i'}, X_{j'}, X_{k'}, X_{l'}).$$

This gives quartic equations in the entries of A that we solve by replacing the array of cumulants of X by its sample estimator. This is essentially what the JADE algorithm does. The following code presents some simple illustration.

```
library(JADE)
# Generate synthetic data
set.seed(123) # For reproducibility
n <- 1000 # Number of samples
# Create two independent components
Z1 \leftarrow runif(n, -1, 1) # Uniform distribution

Z2 \leftarrow rt(n, df = 5) # t-distribution with 5 degrees of freedom
Z <- cbind(Z1/sd(Z1), Z2/sd(Z2)) # Combine into a matrix
# Create a mixing matrix
W \leftarrow matrix(c(2, -1, 1, 2), nrow = 2)
# Generate mixed signals
X <- Z %*% t(W)
                             # Mixed signals: observed data
# Apply the JADE algorithm
ica_result <- JADE(X, n.comp = 2)</pre>
# Check the estimated W (mixing matrix)
print(ica_result$A)
```

Note that in the code below we have

$$W = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $\widehat{W} = \begin{bmatrix} 0.74 & 2.10 \\ 2.11 & -0.76 \end{bmatrix}$.

The matrices do not look that similar. However, W can be identified only up to permuting columns and swapping their signs so we should compare W with permuted \widehat{W} where the two columns are swapped.

Interpretation: The original independent components Z and the estimated components from FastICA align closely (up to scaling and permutation), demonstrating the effectiveness of the method of moments in ICA.

8.5 Choosing the Number of Latent Components

A critical step in factor analysis is determining the number of latent components r, which represent the dimensionality of the latent space. Selecting r appropriately is essential to balance model complexity and explainability while avoiding underfitting or overfitting. Several methods exist to guide this choice, including eigenvalue-based criteria, information-theoretic approaches, parallel analysis, and likelihood ratio tests.

The main idea is to exploit the nice representation of the covariance matrix Σ in the FA model; c.f (8.2)

Eigenvalue-Based Criteria. In factor analysis, the covariance structure of the observed data X is modeled as (8.2). Since Σ is not known, we need to rely on its estimator – for example the sample covariance matrix S_n . The eigenvalues of S_n reflect the total variance explained by each dimension. The goal is to retain the first r components that explain the majority of the variance.

Kaiser's Criterion suggests retaining all components with eigenvalues greater than 1. This criterion assumes that components explaining less variance than a single variable (unit variance) are not meaningful:

Retain components where
$$\lambda_i > 1$$
,

where λ_i are the eigenvalues of S_n .

A scree plot is another heuristic tool where the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$ are plotted in descending order. The "elbow point," where the slope of the curve flattens, indicates the optimal number of components r. Mathematically:

$$r = \arg\min_{k} \frac{\lambda_k}{\lambda_{k-1}} \text{ for } k \ge 2,$$

where the largest change in slope suggests the cutoff.

Information-Theoretic Criteria. Information-theoretic approaches such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are commonly used to balance model fit and complexity. The AIC is defined as:

$$AIC = -2 \cdot \log \mathcal{L} + 2 \cdot df,$$

where \mathcal{L} is the likelihood of the model and df = $mr - \frac{r(r-1)}{2}$ is the number of free parameters. The BIC penalizes model complexity more heavily and is given by:

$$BIC = -2 \cdot \log \mathcal{L} + \log(n) \cdot df$$

where n is the sample size. The optimal number of factors is the value of r that minimizes either AIC or BIC.

Parallel Analysis. This method compares the eigenvalues of the sample covariance matrix S_n to those obtained from randomly generated datasets of the same dimensions. Components are retained where the observed eigenvalues λ_i exceed the eigenvalues obtained from random data:

$$r = \max\{i : \lambda_i > \lambda_i^{\text{random}}\}.$$

The procedure involves generating random datasets, computing eigenvalues for each, and comparing these to the observed eigenvalues.

Likelihood Ratio Test for Nested Models. The likelihood ratio test compares models with r and r + 1 factors. The null hypothesis is that the *r*-factor model fits the data as well as the r + 1-factor model:

$$H_0: \Sigma_r = \Sigma_{r+1}.$$

The test statistic is:

$$\chi^2 = n \cdot (\log \det(\hat{\Sigma}_{r+1}) - \log \det(\hat{\Sigma}_r))$$
,

where χ^2 is asymptotically distributed with degrees of freedom:

$$df = (m-r) - (m - (r+1)).$$

The null hypothesis is rejected if χ^2 exceeds the critical value $\chi^2_{\alpha,df'}$ indicating that the additional factor improves the model.