

SuperFS: 高速硬件时代的文件系统

陆游游 清华大学

提纲

十 背景

二 文件系统数据部分

三 文件系统元数据部分

四总结

存储性能成为瓶颈

口 超级计算步入千万核时代,存储墙问题日益严峻

超算步入千万核时代, 对存储并发需求高

存储发展远远落后计算发展

- ■全机规模的"神图"应用每次需要半小时以上读入超过200TB数据
- ■大地震模拟应用每次需要半小时以上写出超过120TB的数据

存储性能成为瓶颈

□存储-计算的需求同时变高

□ 存储-计算的性能差异越来越大

^[1] Li, Mu, et al. "Scaling distributed machine learning with the parameter server." OSDI. 2014.

^[2] Ken Brock. "Building Efficient Deep Learning Accelerators from the Foundation Up"

国际现状

■ 国际超级计算机TOP500排行榜前10名机器均采用Lustre或IBM Spectrum Scale分布式文件系统

Fugaku

Summit

Sierra

神威·太湖之光 · L·u·S·t·r·e·

Perlmutter - U-S-t-r-e-

Selene

天河2号

JEWELS Booster Module

HPC5

Frontera

-l-u-s-t-r-e-

研究现状—现有存储架构及主要问题

口存储架构繁冗,难以高效支持千万核超算

- •神图全机应用1048.6万个计算核心
- 对应224个存储和I/O服务器, 带宽288GB/s
- •最高带宽仅70GB/s, I/O时间超过半小时

I/O路径过长

317

重浪费硬

性能

口元数据管理低效,难以支持千亿级文件

口 I/O干扰严重,难以支持大规模高并发访问

口 软件开销大,难以发挥非易失存储硬件效能

	传统磁盘	闪存SSD	非易失内存
延迟	~1ms	~10us	~100ns
带宽	80MB/s	~3GB/s	>40GB/s

硬件性能 显著提升

软件未能 充分发挥

提纲

十二 背景

二 文件系统数据部分

三 文件系统元数据部分

四总结

数据(1):用户态直访 -减少操作系统的额外开

销

操作	FS 用时	VFS 用时	Syscall 用时
stat	$0.01 \mu s_{/0\%}$	$0.32 \mu s_{/80\%}$	0.08µs _{/20%}
read	1.01µs _{/73%}	$0.18 \mu s_{/13\%}$	$0.21 \mu s_{/14\%}$

[1] Youmin Chen, Youyou Lu, etc. "Scalable Persistent Memory File System with Kernel-Userspace Collaboration", FAST 2021

数据(2):数据零拷贝-减少拷贝与序列化的开

- 降低数据路径拷贝与序列化开销
 - □ 分布式文件系统中冗余拷贝影响性能
 - □ 参数零序列化,减少序列化次数
 - □ 引用传递,减少应用层拷贝次数

数据(3):可扩展的数据通路-大规模下性能上得去

- □连接代理机制
- □ NUMA感知的进程分配与代理转发
- □减少物理连接数量

[1] Youmin Chen, Youyou Lu, etc. "Scalable RDMA RPC on Reliable Connection with Efficient Resource Sharing", EuroSys 2019

提纲

十 背景

二 文件系统数据部分

三 文件系统元数据部分

四总结

元数据(1):扁平化目录树存储-减少逻辑依赖关

■ 核心思想

系

- □ 削弱目录树依赖关系
- □ 扁平化组织结构
- 目录项组织
 - □ 消除目录项数据块
 - □ 目录项与其关联inode 共同放置

削弱元数据依赖关系 适应键值存储结构

扁平化目录树存储机制

元数据(2):并行路径解析 - 加速元数据访问性

■ 预测目录元数据ID实现并行路径解析

能

并行路径解析

可预测目录ID

- 利用哈希生成目录ID
- 利用版本号处理冲突

并行路径解析过程

- 预测目录ID
- 并行路径解析
 - □ 进行权限检查
 - □ 验证预测ID正确性

并行路径解析

可预测目录ID

- 利用哈希生成目录ID
- 利用版本号处理冲突

并行路径解析过程

- 预测目录ID
- 并行路径解析
 - □ 进行权限检查
 - □ 验证预测ID正确性
- 循环直至完成

元数据(3):单机性能优化-挖掘单节点效率

□ 挖掘单机性能

- □ NUMA管理
- □ 顺序更新
- □ 并发控制

提纲

背景 背景

二 文件系统数据部分

三 文件系统元数据部分

四总结

高性能文件系统SuperFS

- □ IO500是超算领域存储系统的评测
- □ 2022年11月 SC超算大会上获得10节点元数据第一名

2022年11月10500

□ 我们用5台服务器

		INFORMATION									10500	10500	
#	CUSTOM EQUATION	SYSTEM	INSTITUTION	STORAGE VENDOR	FILESYSTEM TYPE	CLIENT	CLIENT TOTAL PROCS	DS NODES	DS STORAGE DEVICES	DS VOLATILE MEMORY CAPACITY	SCORE	BW	MD
0	169,515.95	SuperStore	Tsinghua Storage Research Group	Tsinghua Storage Research Group	SuperFS	10	1200	5	8	153.6 TiB	5,517.73	179.60	169,515.95
2	106,042.93	ParaStor	Sugon Cloud Storage Laboratory	Sugon	ParaStor	10	2560	80	12	3 PiB	8,726.42	718.11	106,042.93
3	88,491.65	StarStor	SuPro Storteck	SuPro Storteck	StarStor	10	2560	80	10	3 PiB	6,751.75	515.15	88,491.65
4	60,119.50	Shanhe	National Supercomputing Center in Jinan	PDSL	flashfs	10	2560				3,534.42	207.79	60,119.50
5	34,777.27	Pengcheng Cloudbrain-II on Atlas 900	Pengcheng Laboratory	Pengcheng	MadFS	10	1800	50			2,595.89	193.77	34,777.27
6	18,235.71	Athena	Huawei HPDA Lab	Huawei	OceanFS	10	1720	80	800		2,395.03	314.56	18,235.71
0	17,224.05	HPC-OCI	Cloudam HPC on OCI	Cloudam	BurstFS	10	720	30	1	114 TIB	1,285.21	95.90	17,224.05
8	16,664.88	OceanStor Pacific	Olympus Lab	Huawei	OceanFS	10	1720	40	400		2,298.69	317.07	16,664.88
9	9,827.09	Kongming	BPFS Lab		BPFS	10	800	35	280		972.60	96.26	9,827.09
10	8,671.65	Endeavour	Intel	Intel	DAOS	10	1440	40	8		1,859.56	398.77	8,671.65

2023年5月IO500

SuperFS部署于智算中心(鹏城云脑II) 获得了IO500全球第一

INFORMATION

Certificate 10500 Performance Certification This Certificate is awarded to: Pengcheng Laboratory (Cloudbrain-II)

with SuperFS from Tsinghua University #1 in the IO500 Research Overall Score

https://io500.org/list/ISC23/io500

#1	BOF	INSTITUTION	SYSTEM	STORAGE VENDOR	FILE SYSTEM TYPE	E CLIENT NODES	TOTAL CLIENT PROC.	SCORE †	BW	MD
	DOF	INSTITUTION	SYSTEM	STORAGE VENDOR	FILE STSTEM I TPE			SCORE	(GIB/S)	(KIOP/S)
0	ISC23	Pengcheng Laboratory	Pengcheng Cloudbrain-II on Atlas 900	Pengcheng Laboratory and Tsinghua University	SuperFS	300	36,000	210,254.98	4,847.48	9,119,612.35
2	ISC23	JNIST and HUST PDSL	Cheeloo-1 with OceanStor Pacific	Huawei	OceanFS2	10	9,600	137,100.02	2,439.37	7,705,448.04
3	SC22	Argonne National Laboratory	Aurora Storage	Intel	DAOS	260	27,040	20,694.50	6,048.69	70,802.51
0	SC22	Sugon Cloud Storage Laboratory	ParaStor	Sugon	ParaStor	10	2,560	8,726.42	718.11	106,042.93
5	SC22	SuPro Storteck	StarStor	SuPro Storteck	StarStor	10	2,560	6,751.75	515.15	88,491.65

总结

■ 数据 驱动了 信息技术的发展。高性能计算、大数据处理、人工智能均 离不开数据存储与处理。

- □ 在大规模超算/智算中心里,数据存取性能影响很大。其中,数据存取 所面临的挑战主要有两个:
 - 大规模场景下的可扩展性
 - 高性能硬件上的软件效率
- □ SuperFS是高性能硬件上新一代存储系统的探索。我们可以而且有必要去做。

谢谢

陆游游

清华大学计算机系

luyouyou@tsinghua.edu.cn

http://storage.cs.tsinghua.edu.cn/~lu

软件面临更大的挑战: 软件效率问题

硬件慢,软件复杂 ms scale

硬件快,软件高效 10-100us scale

- □ 软件直管闪存[1]
 - 以高效架构与软件 挖掘闪存的潜力
- □ 网络互连内存[2]
 - 以高效架构与软件 挖掘NVM的潜力

- [1] Youyou Lu, Jiwu Shu, Weimin Zheng, Extending the lifetime of flash-based storage through reducing write amplification from file systems. In **FAST 2013**.
- [2] Youyou Lu, Jiwu Shu, etc., Octopus: an RDMA-enabled Distributed Persistent Memory File System. In USENIX ATC 2017

臃肿的软件栈无法发挥新硬件性能

□新型硬件延迟低

	SSD	持久性 内存	RDMA
延迟	~10µs	~100ns	$\sim 1 \mu s$
带宽	5GB/s	>40GB/s	200Gbps

□ 软件系统难以发挥SSD硬件性能

臃肿的软件栈无法发挥新硬件性能

□新型硬件延迟低

	SSD	持久性 内存	RDMA
延迟	~10µs	~100ns	$\sim 1 \mu s$
带宽	5GB/s	>40GB/s	200Gbps

□ 软件系统难以发挥内存性能

NUMA感知元数据组织

- 将目录元数据拆分为两部分
 - □ 访问元数据:与目录树访问相关
 - □ 内容元数据:与子节点更新相关
- 将相关的元数据置于相同NUMA节点
 - □ 访问元数据与父目录,内容元数据与子文件

传统方法:文件创建/删除 无法保证NUMA局部性

本方法:文件创建/删除 保证NUMA局部性

InfiniFS: An Efficient Metadata Service for Large-Scale Distributed Filesystems SingularFS: A Billion-Scale Distributed File System Using a Single Metadata Server

高并发共享元数据更新

将竞争元数据更新临界区缩短至单次原子操作

共享目录下文件创建 (删除) 操作间并发控制

- 1. 获取目标inode的写锁和父目录的读锁
- 2. 并行插入 (删除) 元数据键值对
- 3. 利用单次原子操作更新父目录元数据

共享文件写操作间并发控制

- 1. 并行写入数据区段
- 2. 利用单次原子操作更新 文件元数据

16B CAS

操作: 线程1创建/A/B, 线程2并发创建/A/C

SingularFS: A Billion-Scale Distributed File System Using a Single Metadata Server

低开销崩溃一致性保证

■ 利用元数据依赖关系减少崩溃一致性开销

将大部分元数据操作转换为无事务依赖的KV操作

inode创建

- 写入目标inode元数据同时附带 写入其创建时间 (btime)
 - □ 崩溃检测: 父目录ctime < max(子inode的btime)
 - □ 崩溃恢复: 父目录ctime = mtime = max(子inode的btime)
- 更新父目录的ctime和mtime为目标inode的创建时间 (btime)

操作: $t_0 = 5$ 时创建/A/B

并行元数据查找

Find操作性能受限于数据结构竞争

拆分元数据实现服务端并行查找

SingularFS: A Billion-Scale Distributed File System Using a Single Metadata Server

乐观元数据缓存

元数据缓存一致性维护开销大

元数据服务器端乐观处理缓存失效

InfiniFS: An Efficient Metadata Service for Large-Scale Distributed Filesystems