Decidable Languages

Recall that:

A language L is Turing-Acceptable if there is a Turing machine M that accepts L

Also known as: Turing-Recognizable or Recursively-enumerable languages

For any string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \longrightarrow M$$
 halts in a non-accept state or loops forever

Definition:

A language L is decidable if there is a Turing machine (decider) M which accepts L and halts on every input string

Also known as recursive languages

For any string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \implies M$$
 halts in a non-accept state

Every decidable language is Turing-Acceptable

Sometimes, it is convenient to have Turing machines with single accept and reject states

These are the only halting states

That result to possible halting configurations

We can convert any Turing machine to have single accept and reject states

Old machine

Multiple accept states

New machine

One accept state

Do the following for each possible halting state:

Old machine

Multiple reject states

New machine

For all tape symbols \mathcal{X} not used for read in the other transitions of q_i

One reject state

For a decidable language L:

For each input string, the computation halts in the accept or reject state

For a Turing-Acceptable language L:

It is possible that for some input string the machine enters an infinite loop Problem: Is number x prime?

Corresponding language:

$$PRIMES = \{1, 2, 3, 5, 7, ...\}$$

We will show it is decidable

Decider for PRIMES:
On input number X:

Divide x with all possible numbers between 2 and \sqrt{x}

If any of them divides X

Then reject

Else accept

the decider for the language solves the corresponding problem

Decider for PRIMES

Theorem:

If a language L is decidable, then its complement \overline{L} is decidable too

Proof:

Build a Turing machine M' that accepts \overline{L} and halts on every input string (M') is decider for \overline{L}

Transform accept state to reject and vice-versa

MM' q'_{reject} q_{accept} q_{accept}' q_{reject}

Turing Machine M'

On each input string w do:

- 1. Let M be the decider for L
- 2. Run M with input string w If M accepts then reject If M rejects then accept

Accepts \overline{L} and halts on every input string

Undecidable Languages

An undecidable language has no decider: each Turing machine that accepts L does not halt on some input string

We will show that:

There is a language which is Turing-Acceptable and undecidable

We will prove that there is a language L:

- \overline{L} is not Turing-acceptable (not accepted by any Turing Machine)
- \cdot L is Turing-acceptable

Therefore, L is undecidable

Non Turing-Acceptable \overline{L}

A Language which is not Turing Acceptable

Consider alphabet $\{a\}$

```
Strings of \{a\}^+:
a, aa, aaa, aaaa, ...
a^1 a^2 a^3 a^4 ...
```

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

(There is an enumerator that generates them)

Each machine accepts some language over $\{a\}$

$$M_1, M_2, M_3, M_4, \dots$$

$$\downarrow L(M_1), L(M_2), L(M_3), L(M_4), \dots$$

Note that it is possible to have

$$L(M_i) = L(M_j)$$
 for $i \neq j$

Since, a language could be accepted by more than one Turing machine

Example language accepted by $\,M_{i}\,$

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Binary representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	• • •
$L(M_i)$	0	1	0	1	0	1	0	• • •

Example of binary representations

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists of the 1's in the diagonal

Consider the language \overline{L}

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

$$L = \{a^i : a^i \in L(M_i)\}$$

 \overline{L} consists of the 0's in the diagonal

Theorem:

Language \overline{L} is not Turing-Acceptable

Proof:

Assume for contradiction that

 \overline{L} is Turing-Acceptable

There must exist some machine M_k that accepts $\overline{L}: L(M_k)=\overline{L}$

Question: $M_k = M_1$?

 $L(M_k) = \overline{L}$

Question: $M_k = M_2$?

 $L(M_k) = \overline{L}$

Question: $M_k = M_3$?

 $L(M_k) = \overline{L}$

Similarly:
$$M_k \neq M_i$$
 for any i

Because either:

$$a^i \in L(M_k)$$

or

$$a^i \notin L(M_k)$$

$$a^i \notin L(M_i)$$

 $a^i \in L(M_i)$

the machine ${\cal M}_k$ cannot exist

L is not Turing-Acceptable

Non Turing-Acceptable

A Language which is Turing-Acceptable and Undecidable

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is Turing-Acceptable

There is a Turing machine that accepts L

Each machine that accepts L doesn't halt on some input string

Theorem: The language

$$L = \{a^i : a^i \in L(M_i)\}$$
 Is Turing-Acceptable

Proof: We will give a Turing Machine that accepts $\,L\,$

Turing Machine that accepts LFor any input string W

- Compute i, for which $w = a^i$
- \cdot Find Turing machine \boldsymbol{M}_i (using the enumerator for Turing Machines)
- Simulate M_i on input a^i
- If M_i accepts, then accept w

End of Proof

Observation:

Turing-Acceptable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not Turing-acceptable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

(Thus, \overline{L} is undecidable)

Non Turing-Acceptable T Turing-Acceptable [Decidable

Theorem:
$$L = \{a^i : a^i \in L(M_i)\}$$
 is undecidable

Proof: If L is decidable the complement of a decidable language is decidable. Then \overline{L} is decidable

However, \overline{L} is not Turing-Acceptable! Contradiction!!!

Not Turing-Acceptable T Turing-Acceptable Decidable