

Automatic String Replace by Examples

A. De Lorenzo, E. Medvet, A. Bartoli University of Trieste, Italy

Genetic and Evolutionary Computation Conference

Amsterdam, The Netherlands July 06-10, 2013

Text Search-and-Replace

Simple Example: Date Format Change

In practice

- Search-and-replace tasks must be described by hand
- Requires technically-savvy users
- Often difficult to debug

Wouldn't it be nice if...

 Search-and-Replace tasks could be described merely by a few examples?

Our work

- Completely AUTOMATIC
- No similar proposals
- Of course, with limitations / constraints...

How it works (in a nutshell)

 Identify a context where changes have to be confined (genetic programming)

```
Bartoli is ok @Bartoli

out of context

in context

...

...

...

...

Bartoli is ok @Baxxxx

...
```

- 2. Build the **replacement expression** r (deterministically)
- 3. Generate the **regular expression s** (genetic programming)

1. Identify a context where changes have to be confined

Phase 1: Remark

We do not require that the user specifies a context explicitly

```
...
Bartoli is ok @Bartoli
...

...
```

We need a way to identify a context automatically

1. Identify a context where changes have to be confined

Phase 1

1. Build an ancillary **example set** composed of:

Input strings

I like @GECCO13 conf RT @MaleLabTs New paper Bartoli is ok @Bartoli nothing new here

To-be-changed strings

CCO13
leLabTs
rtoli
(empty)

Constructed automatically from Input Strings + Desired Output Strings

2.) Generate a single regex extracting a superstring

---> the context

@GECCO13
@MaleLabTs
@Bartoli
(empty)

Regex Generation from Examples

- Build upon our GECCO 2012 work
 - Text extraction
 - Generate regex automatically from examples (with GP)
 - O Available online
 (http://regex.inginf.units.it/)
 - Regex extracts exactly what is specified (i.e., not a superstring)
- Key difference: fitness
- Promotes regexes with minimal distance between:
 - string extracted by the first capturing group of the candidate
 - to-be-changed string

Phase 2

- 1. For each example, build a replacement expression deterministically
 - O Identify:
 - context extracted from input string

07-14-1789

"corresponding" substring in the output string

"Play" with them (see the paper for details)

$$r_k = $2/$1/$3$$

2. Select the replacement expression that occurs most often

3. Generate the regex s

Based on examples and r

Phase 3

1. Take the examples of the overall task

```
today is 1-23-13 he left on 3-13-12 great 1-1-13 party!
```

```
today is 23/1/13
he left on 13/3/12
great 1/1/13 party!
```

- 2. Generate a regex based on these examples and r
- Multiobjective fitness (NSGA II)
 - Minimal difference in number of capturing groups
 - in the candidate
 - occurring in r
 - Minimal distance between
 - string generated by < candidate + r >
 - desired string

Experiments

- Tasks (500 with changes, 500 unchanged)
 - Full tweet anonymization
 - Partial IP anonymization
 - Date format change
 - Phone number change

- Experiments
 - Learning set: 20, 50, 100 (balanced)
 - 5-fold cross-validation
- Performance index: Count error rate

not available for learning

Salient Results

			/	/	
Task	Dataset			Overall	$(\epsilon_c \%)$
	$ T^t $	$ T^v $	$ T^e $	μ	
Twitter anonymization	10	10	980	5.5	
	25	25	950	3.1	
	50	50	900	2.0	
IP partial anonymization	10	10	980	0.5	
	25	25	950	0.0	
	50	50	900	0.0	
Date format change	10	10	980	60.0	
	25	25	950	0.0	
	50	50	980	0.0	
Phone number format change	10	10	980	52.4	
	25	25	950	8.2	
	50	50	900	6.6	

regex learning for mere extraction [4,11] a "difficult" dataset

- With only 25 positive examples:
 - perfect result for two tasks (on this dataset)
 - "very good" for the two other tasks
 (ok...of course...it depends on what we mean by "good"...)

Further experimental remarks

- "Many" solutions with "good" performance (not just lucky individuals)
- Relative performance in validation good predictor for relative performance in testing

 Execution time too high to devise interactive use (at least in the near future)

But at 1-2\$/hour is cheaper than a specialist?

Task	$ T^t + T^v $	Time (min)
Twitter anonymization	20 25 50	1 1 2
IP partial anonymization	20 25 50	12 33 43
Date format change	20 25 50	18 36 78
Phone number format change	20 25 50	35 80 132

Many open issues...of course...

- Remarkable and quite promising exercise (we believe)
- Keep in mind:
 - Results not human competitive (yet ?)
 - Execution time has to be improved

- Some key-but-unanswered questions:
 - How many examples are both "practical" and "adequate"?
 - How to realize whether the examples are "enough" and "adequate"?
 - How to characterize tasks that are just hopeless?

Thanks for your attention

http://machinelearning.inginf.units.it