目录

第	一部	分 幂律分布 Power law distribution	2
1	幂律 越小	分布: 在随机变量中,越小的数值,出现的概率越大; 越大的数值,出现的概率则	2
2	性质		4
	2.1	尖峰肥尾	4
	2.2	无标度 – 分形效果	4
	2.3	幂律分布让 "均值 μ " 失去意义 \dots	4
	2.4	幂律分布中的"波动性 (方差 σ)" 失去意义	5
	2.5	符合"幂律分布"的事件, 其何时发生, 和发生的规模, 完全不可预测	5
	2.6	在"双对数坐标系"下,幂律分布表现为一条斜率为"幂指数的负数"的直线	5
		2.6.1 什么时候, 要使用到"对数"坐标系呢?	6
		26.2 直粉· 即	0

文件名

第一部分 幂律分布 Power law distribution

1 幂律分布: 在随机变量中, 越小的数值, 出现的概率越大; 越大的数值, 出现的概率则越小

幂律分布的 "概率 (密度) 函数 f(x)" 是: $f(x) = cx^{-\alpha-1}, \quad x \to \infty$ $\leftarrow \alpha$ 是参数.

幂律分布的 "互补累积分布函数 F(x)"(CCDF) 是: $P(X \ge x) = cx^{-\alpha}, \quad x \to \infty$

注意: CDF 和 CCDF 的区别:

累积函数 CDF (Cumulative Distribution Func-	$F_X(x) = P(X \le x)$		
tion)			
互补累计函数 CCDF (Complementary Cumu-	F(a) = P(x > a). 注意, 这里是大于号 (>)!		
lative Distribution Function)			

在统计学中,幂律 power law 表示的是两个量之间的函数关系: 其中一个量的相对变化, 会导致另一个量的相应"幂次比例"的变化,且与初值无关.

曲线的横坐标,代表随机变量的取值:纵坐标,代表发生的概率.

幂律分布曲线的含义非常明确:在随机变量中,越小的数值,出现的概率越大;越大的数值,出现的概率则越小.

→ 上面的图 b (高速公路网), 是泊松分布. 每个城市有数量相对均衡的高速公路, 不会出现连接上百条高速公路到同一个城市的; 也没有哪个城市一条高速公路都没有. 多数城市非常相似。

其直方图, 就呈现为一条钟形曲线(a 图). 这种相对均匀分布的属性, 即为"正态分布; 泊松分布". 是随机网络固有的性质.

泊松分布有一个明显的峰值,表明大多数节点所拥有的链接数,和节点拥有的"平均链接数"一样.在峰值的两侧,钟形曲线呈"指数级骤减",处于平均线之外的异常个体,几乎不存在.

 \rightarrow 图 d, 是航空交通网络. 大多数飞机场都很小,只有几个航班。同时,也有少量非常大的机场,这样的枢纽节点连接着上百个小机场。这种分布对应着 "幂律分布"(图 c).

"幂律分布"没有峰. 其直方图是不断递减的曲线,在线的两端可以无限逼近和延伸. 幂律最突出的特征是: 大量微小事件,和少数非常重大的事件,并存.

网络中, 新加入的节点, 是如何与原有的节点, 产生链接的?

如果新节点是"随机地"选择与其他节点进行连接,那么真实世界将符合"正态分布").

然而,在大多数真实网络中,新加入的节点,更倾向于与链接数高的节点相连,这个过程被称为"偏好连接"。这就会导致"超级枢纽节点"出现.

我们倾向于建立的连接,都不是普通的节点,而是"枢纽节点"。他们越出名,指向他们的链接就越多(广告效应,富者愈富,马太效应)。这些节点,就形成了网络中链接数较

2 性质

多的节点,成为枢纽。

- 如果是 70 亿人随机匹配约会对象,贝克汉姆可能永远也无法匹配到另一个影视巨星。
- "六度分隔理论",背后并不是指每个人都认识差不多数量的人,大家彼此均衡地组成人际网络,所以互相认识。而是极少数的超级社交达人 (起着中枢作用),将多个分割的人际网络岛屿,联系了起来.
- 投资公司 Horsley Bridge 在 1985 年到 2014 年间, 投资了 7000 家初创企业,其中仅占 5% 的一小部分投资,创造了其全部回报的 60%。
- 少数公司大获成功一发不可收拾, 大部分公司则历经挫折一败涂地。

2 性质

2.1 尖峰肥尾

- 尖峰: 说明有些 x 的值很小 (赚 1000 元/月), 但其数量规模大到超乎想象 (6 亿人).
- 肥尾: 说明很多极小概率事件 (世界首富), 依然有可能发生.

幂律分布,会让原本不会发生的极端事件发生.在数学上,这个叫"长尾",也叫肥尾、厚尾. 就是说:虽然极端数据出现的概率很低,但这个概率永远不会趋近于 0,永远不会小到可以忽略不计.

在"正态分布"里,数据非常集中于平均值附近,非常极端的数据几乎不可能出现.而在"幂律分布"里,再极端的数据都有出现的可能.

超大规模的自然灾害,虽然发生概率极低,但我们知道它一定会发生. **在幂律分布里,极端数据往往意味着极端事件.**

如果人的身高, 是符合"幂率分布"的话, 则就会有极少数"身高能长到数公里"的人存在.

2.2 无标度 - 分形效果

无标度,也叫"无尺度","尺度无关".意思是:在任何观测尺度下,"幂律分布"都呈现同样的分布特征.即,无论你从曲线上截取哪一段,是长是短,它都含有二八定律存在(虽然曲率不同).就相当于"分形"效果.

一般的分布,都会有个尺度范围,在这个范围内服从这个分布,超过这个尺度可能就不服从这种分布了。而"幂律分布"没有尺度的限制,不管截取任何一个部分,都仍然呈现幂律分布的特征.

比如,图书销量是服从"幂律分布"的:

- 最畅销那本书的销量, 在前 10 名销量中占的比例,
- 和前 10 名的销量, 在前 100 名的销量中占的比例,
- 和前 100 名, 在前 1000 名的总销量中占的比例,

大体都是相同的. 这就是"幂律分布"唯一的数学特征——无标度.

2.3 幂律分布让"均值 μ "失去意义

"正态分布"是一种均匀对称分布, 大多数数据都集中在"均值 μ "附近, 所以均值非常有用, 因为它代表大多数.

而"**幂律分布**"呢?它的数据变化幅度非常大,平均值毫无意义.比如个人收入,有穷人,也有富豪,把这两群人的资产平均(人均收入),毫无意义.

幂律分布中的"波动性 (方差 σ)"失去意义

幂律分布,随机变量波动的范围非常大,常用的"平均值"、"标准差"到这里都没用了.

2.5 符合"幂律分布"的事件,其何时发生,和发生的规模,完全不可预测

符合"幂律分布"的事件,必定发生大事件,但无法对其的发生进行预测.

- 如"沙堆模型": 随着沙堆高度的增加, 新添加的沙粒会带动沙堆表面其他沙粒滚落, 产生 "沙崩"。经过统计沙崩的规模和发生的频率,人们发现该事件服从"幂律分布"。但是,我们既 不知道在什么条件下,再放一粒沙子就会导致沙崩;也无法预测这粒沙子导致的沙崩规模,会 有多大。
- 同理, 我们对于幂律分布的事物, 比如各种自然灾害, 预报上基本还是束手无策。我们知道 大灾一定会来, 但我们不知道下一场大地震、下一场战争、下一次金融危机会什么时候发生, 以及会带来多大的损失.

你可能会说,不是有"二八法则"吗?我们抓重点,抓住重要的20%不就好了吗?但这是个 "存量思维",可以总结"过去",但无法预测"未来".虽然我们知道 80% 的生意来自于 20% 的客户,但你永远不知道下一个客户是属于重要的 20%,还是不重要的 80%。

2.6 在"双对数坐标系"下,幂律分布表现为一条斜率为"幂指数的负数"的直 线

自然界中大多数被识别的幂律的指数是这样的:平均值是明确的,但方差不是.这意味着它们 能够出现黑天鹅行为.

关于坐标系:

- (1) 算术坐标系统 (笛卡儿坐标): 横, 纵的刻度, 都是是等距的.
- (2) "对数" 坐标系统: 坐标轴是按照"相等的指数增长变化"表示的. 举例来说: 如果每 1cm 代表 10 的 1 次方增加,则坐标轴刻度的表示依次为: 1,10,100,1000,10000 ...

线性坐标

对数坐标

(3) "双对数" 坐标: 指两个坐标轴, 都是"对数坐标". 即假如对应于 x、y 轴,则两轴等刻度情况下,其值"以相应底数,成次方增长". (注意: 在各自坐标轴上的是"真数",不是求对数后的值.)

2.6.1 什么时候, 要使用到"对数"坐标系呢?

 \rightarrow 如果所研究的函数的 y 值, 和自变量 x, 在数值上均变化了几个数量级. 比如,已知 x 和 y 的数据为: x= 10, 20, 40, 60, 80, 100, 1000, 2000, 3000, 4000 y= 2, 14, 40, 60, 80, 100, 177, 181, 188, 200. 则, 在"直角坐标系"上,就很难作图. 而换用"对数坐标系",就能够画出来. \rightarrow 当需要变换某种"非线性关系"为"线性关系"时. (比如,"幂率分布"的概率函数 (幂函数) 图上.)

例

比如, $1 \le x \le 10000$, $y = lg(x^2)$ 这个函数,直接画图,会是这样:

$$\rightarrow$$
 x 是 10000 时, y 输出: $\lg (10000^2) = \underbrace{\log_{10} (10^4)^2}_{\text{即问:}10^7 = 10^8, \text{显然指数是8}} = 8$
 \rightarrow x 是 1000 时, y 输出: $\lg (1000^2) = \underbrace{\log_{10} (10^3)^2}_{\text{即问:}10^7 = 10^3, \text{显然指数是6}} = 6$

我们采用"对数坐标系": 让 x 采用"对数标度", y 轴仍保持"线性标度". 从这种图中就可以看出, 函数 $y = lg(x^2)$ 本质上是一个"线性函数":

例

摩尔定律说: 晶体管和其他电子元件的数量, 每2年会翻一番.

以年份作为 x 轴, 芯片中的晶体管数量作为 y 轴, 摩尔定律描述的曲线大概是这样的:

数据点呈"指数型"增长,需要我们用 $y = ce^{ax}$ 这样的"指数函数"去拟合. 然而实际上,手工计算你将得不到最佳拟合曲线,因为解方程会十分困难.

如果纵坐标取"对数坐标轴",会得到:

看上方的一系列点,它们呈现"线性增加"的趋势.

将 $y = ce^{ax}$ 两边, 同时取对数, 会得到:

$$\lg y = \lg(ce^{ax}) = \lg c + \lg e^{ax} = \lg c + ax \lg e = \lg c + (a \lg e)x$$

式子中有 a 和 $\lg(c)$ 两个未知数. 用"最小二乘法"可以得到最佳拟合直线,从而可以预测未来芯片中, 晶体管的数量.

例

八大行星到太阳的平均距离, 以及它们各自的公转周期, 由此算出角速度和向心加速度:

行星	平均距离 $R(10^6 km)$	公转周期(year)	角速度 $(year^{-1})$	角速度 $^2(year^{-2})$	加速度 $a(10^6 km imes year^{-2})$
水星	58	0.241	26.07	679.64	39419.12
金星	108	0.616	10.20	104.04	11236.32
地球	150	1.000	6.28	39.44	5916.00
火星	228	1.882	3.34	11.16	2544.48
木星	778	11.871	0.53	0.28	217.84
土星	1427	29.479	0.21	0.044	62.79
天王星	2870	84.381	0.075	0.00563	16.16
海王星	4497	164.910	0.038	0.00144	6.48

看第一列和最后一列,以平均距离 R 为 x 轴;加速度 a 为 y 轴,来绘制图像:

Y轴代表: 加速度a

当然现在,我们还看不出 x 和 v 的关系. 但是对两个坐标轴"取对数"后,图像就是:

X轴代表: 行星到太阳的平均距离 R

数据点落在了一条直线上! 该直线的斜率大约是 -2. 也就是说: 该直线的方程为:

$$\underbrace{\lg a}_y = \underbrace{-2}_{\text{斜率}k} \lg \underbrace{R}_x + \underbrace{\lg p}_{b,\text{即直线在y轴上的截距}}$$
 因此:

$$\lg a = -2\lg R + \lg p$$

$$\lg a = \lg(R)^{-2} + \lg p$$

$$\lg a = \lg(R^{-2} \cdot p)$$

$$\sharp \mathbb{P} a = R^{-2} \cdot p = \frac{p}{R^2}$$

或者说: $a\underbrace{\propto}_{\text{EkF}} \frac{1}{R^2}$

 \propto 这个符号是"正比于"的意思. 也就是说: 两个变量具备相同的递增递减性,并且近似于"线性关系". "正比"的字面含义就是两个变量是"1 次幂"的的关系,且"比值"为正的常数. 如果两个变量不是线性关系,数学上就一般不用"正比"来表达. 形如 Y=KX 的函数, 其中 K 为非零参数, Y 与 X 就叫"成正比".

2 性质

9

本例说明, 各行星的 "向心加速度 a", 和 "其到太阳距离 (R)" 的平方, 成反比! 即: $a=p\cdot \frac{1}{R^2}$

向心加速度, 是由万有引力引起的,因此推测引力 $F 与 R^2$ 成反比, 也是合理的 (事实也的确如此).

什么是 "真数 natural(number); antilogarithm"?

2.7 幂律分布可是我们对抗"熵增"的中间经过状态

水在变成冰的过程中,存在一个临界温度 — 在临界温度之前,水分子里原子的自旋,都是随机指向不同的方向的;可一旦到了临界温度,就会非常有序地指向同一个方向.

1982年诺贝尔物理学奖得主肯尼斯•威尔逊, 收集了很多临界态—"瞬间"的关键数据. 结果发现:每个指标都在临界态附近, 涌现出了幂律分布。我们知道, 无序是嫡值最大, 有序是嫡值最小. 这说明, 从无序到有序这个"减嫡"的过程, 和"幂律分布"有着相关关系。这可能意味着, 幂律分布是我们对抗"熵增"的经过状态.