December 2009 Final Exam

- 1. Prove using induction that $\sum_{r=1}^{n} (-1)^r = \frac{(-1)^n 1}{2}$ for all integers $n \ge 1$.
- 2. Consider the polynomial $p(x) = 7x^{27} 34x^8 + 15x^2 x + 10$.
 - (a) List all the possible rational roots of p(x).
 - (b) Determine the number of positive and negative roots.
- 3. Let $p(x) = x^{2009} 3x^{1492} + 2$. Find the remainder when p(x) is divided by x + i.
- 4. Let $x_1 = 1 + i$ and $z_2 = -1 + i\sqrt{3}$.
 - (a) Express z_1 and z_2 in exponential form.
 - (b) Find the modulus and the principal value of the argument of $z = z_1^2 z_2$.
- 5. Given $L_1: \langle x, y, z \rangle = \langle 7, 1, 4 \rangle + s \langle 1, 1, 3 \rangle$ and $L_2: \langle x, y, z \rangle = \langle 3, 2, 0 \rangle + t \langle 2, -3, -2 \rangle$. Find the point of intersection of L_1 and L_2 .
- 6. Find $\sin \theta$ where θ is the angle between $\mathbf{u} = \langle 3, 0, -2 \rangle$ and $\mathbf{v} = \langle 1, 1, -1 \rangle$.
- 7. Given $L_1: \frac{x-1}{3} = \frac{y-2}{-2} = \frac{z-5}{4}$ and $\Pi: x+y+z=3$ Find the point of interesection of L_1 and Π .
- 8. Let $A = \begin{pmatrix} 1 & 0 \\ i & -i \end{pmatrix}$ Find (a) A^2 and (b) A^{-1} .
- 9. Find the value of k for which the following system is consistent:

$$3x - 2y = k$$
, $2x + y = 6$, $-x + 3y = 4$.

10. Find a such that the following vectors are linearly dependent:

$$\langle -1, 2, a \rangle$$
, $\langle 2, 7, 4 \rangle$, $\langle 3, 5, -2a \rangle$

- 11. Let $A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix}$ Find:
 - (a) |A|
 - (b) the element in the 2nd row and 3rd column of A^{-1} .

12. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ -3 & 4 & 2 \end{pmatrix}$$
 Find A^{-1} .

13. Let
$$A = \begin{pmatrix} 5 & 0 & -3 \\ -4 & 1 & 3 \\ 8 & 0 & -4 \end{pmatrix}$$
.

- (a) Find the characteristic equation of A.
- (b) Given that $\lambda = 1$ is one of the eigenvalues, find the other two.
- 14. Consider the transformation from $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T: v_1' = 2v_1 - v_2 + v_3, v_1 - 4v_3.$$

- (a) Write down the matrix corresponding to T.
- (b) Find the image of the vector (1, -6, 3) under T.
- (c) Find a non-zero vector \mathbf{v} such that $T(\mathbf{v}) = \mathbf{0}$.
- 15. Consider the symmetric matrix $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$. It is given that 3 and 0 are eigenvalues of A.
 - (a) Find an eigenvector **u** corresponding to the eigenvalue 3.
 - (b) Find an eigenvector \mathbf{v} corresponding to the eigenvalue 0.
 - (c) Find the angle between \mathbf{u} and \mathbf{v} .
 - (d) Find the remaining eigenvalue of A.