

SEQUENCE LISTING

<110> S. Israeli et al.

<120> PROSTATE-SPECIFIC MEMBRANE ANTIGEN

<130> 1769/41426-AA/JPW/SHS

<160> 38

<170> PatentIn version 3.1

1
211> 2653
<212> DNA
<213> human

1
ctcaaaaagggg gccggatttc ttctcctgg aggcatgt tgcctctc tctcgctcg
60

attggttcag tgcactctag aaacactgct gtggtgaga aactggaccc caggtctgga
120

gcaattcca gcctgcaggg ctgataagcg aggcattagt gagattgaga gagactttac
180

cccgccgtgg tggttggagg ggcgcgagta gagcagcagc acaggcgccg gtcccgagg
240

cccggtctcg ctgcgcggca gatgtggaaat ctccttcacg aaaccgactc ggctgtggcc
300

accgcgcgcc gcccgcgtg gctgtgcgtt gggcgctgg tgctggcggtt tggcttctt
360

ctcctcggt tcctttcggt gtggttataa attcctcca atgaagctac taacattact
420

ccaaaggata atatgaaagc atttttggat gaattgaaag ctgagaacat caagaagttc
480

ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt tcagcttgca
540

aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat
600

gatgtcctgt tgcctaccc aaataagact catcccaact acatctcaat aattaatgaa
660

gatggaaatg agattttcaa cacatcatta tttgaaccac ctccctccagg atatgaaaat
720

gttccggata ttgtaccacc tttcagtgc ttctctcctc aaggaatgcc agagggcgat
780

cstagtgatg ttaactatgc acgaactgaa gacttctta aattggaacg ggacatgaaa
840

atcaattgct ctggaaaaat tgtaattgcc agatatggg aagtttcag aggaaataag
900

gttaaaaatg cccagctggc aggggccaaa ggagtcattc tctactccga ccctgctgac
960

tacttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtggtgtc
1020

cagcgtggaa atatcctaaa tctgaatggt gcaggagacc ctctcacacc agttacca
1080

gcaaataaatgatgcttatag gcgtggaaatt gcagaggctg ttggctttcc aagtattcct
1140

gttcatccaa ttggatacta tgcacacag aagctcctag aaaaaatggg tggctcagca
1200

ccaccagata gcagctggag aggaagtctc aaagtgcct acaatgttgg acctggctt
1260

actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca
1320

agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt
1380

ctggggaggtc accgggactc atgggtgtt ggtggatttg accctcagag tggagcagct
1440

gttggttcatg aaattgtgag gagctttgga acactgaaaa aggaagggtg gagacctaga
1500

agaacaattt tgtttgcag ctgggatgca gaagaatttg gtcttcttgg ttctactgag
1560

tgggcagagg agaattcaag actccttcaa gagcgtggcg tggcttatat taatgctgac
1620

tcatctatacg aaggaaacta cactctgaga gttgattgta caccgctgat gtacagctg
1680

gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gctttgaagg caaatctctt
1740

tatgaaagtt ggactaaaaa aagtccccc ccagagttca gtggcatgcc caggataagc
1800

aaattggat ctggaaatga ttttgaggtg ttcttccaac gacttggaat tgcttcaggc
1860

agagcacggt atactaaaaa ttggaaaca aacaaattca gcggctatcc actgtatcac
1920

agtgtctatg aaacatatga gttggtgaa aagtttatg atccaatgtt taaatatcac
1980

ctcactgtgg cccaggttcg aggagggatg gtgttgagc tagccattc catagtgc
2040

cctttgatt gtcgagatta tggtgttagtt ttaagaaagt atgctgacaa aatctacagt
2100

atttctatga aacatccaca ggaatgaag acatacagt tatcatttga ttcactttt
2160

tctgcagtaa agaattttac agaaattgct tccaaaggta gtgagagact ccaggactt
2220

gacaaaagca acccaatagt attaagaatg atgaatgatc aactcatgtt tctggaaaga
2280

gcatttattg atccattagg gttaccagac aggccctttt ataggcatgt catctatgt
2340

ccaaggcagcc acaacaagta tgcaggggag tcattccag gaatttatga tgctctgtt
2400

gatattgaaa gcaaagtgga cccttccaag gctggggag aagtgaagag acagattat
2460

gttgcaggct tcacagtgca ggcagctgca gagacttga gtgaagttagc ctaagaggat
2520

tcttttagaga atccgtattg aatttgtgtg gtatgtcact cagaaagaat cgtaatgggt
2580

atattgataa attttaaat tggtatattt gaaataaagt tgaatattat atataaaaaa
2640

aaaaaaaaaaa aaa
2653

<210> 2
<211> 750
<212> PRT
<213> human

<400> 2

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg
1 5 10 15

Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe
20 25 30

Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu
35 40 45

Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu
50 55 60

Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile
65 70 75 80

Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile
85 90 95

Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His
100 105 110

Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile
115 120 125

Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe
 130 135 140
 Glu Pro Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro
 145 150 155 160
 Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr
 165 170 175
 Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met
 180 185 190
 Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val
 195 200 205
 Phe Arg Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly
 210 215 220
 Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys
 225 230 235 240
 Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Val Gln Arg Gly
 245 250 255
 Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro Gly Tyr
 260 265 270
 Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val Gly
 275 280 285
 Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr Asp Ala Gln Lys
 290 295 300
 Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg
 305 310 315 320

Gly Ser Leu Lys Val Pro Tyr Asn Val Gly Pro Gly Phe Thr Gly Asn
 325 330 335
 Phe Ser Thr Gln Lys Val Lys Met His Ile His Ser Thr Asn Glu Val
 340 345 350
 Thr Arg Ile Tyr Asn Val Ile Gly Thr Leu Arg Gly Ala Val Glu Pro
 355 360 365
 Asp Arg Tyr Val Ile Leu Gly Gly His Arg Asp Ser Trp Val Phe Gly
 370 375 380
 Gly Ile Asp Pro Gln Ser Gly Ala Ala Val Val His Glu Ile Val Arg
 385 390 395 400
 Ser Phe Gly Thr Leu Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile
 405 410 415
 Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr
 420 425 430
 Glu Trp Ala Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala
 435 440 445
 Tyr Ile Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val
 450 455 460
 Asp Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu
 465 470 475 480
 Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu Ser
 485 490 495
 Trp Thr Lys Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro Arg Ile
 500 505 510

Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe Gln Arg Leu
 515 520 525
 Lys Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn Trp Glu Thr Asn
 530 535 540
 Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val Tyr Glu Thr Tyr Glu
 545 550 555 560
 Leu Val Glu Lys Phe Tyr Asp Pro Met Phe Lys Tyr His Leu Thr Val
 565 570 575
 Ala Gln Val Arg Gly Gly Met Val Phe Glu Leu Ala Asn Ser Ile Val
 580 585 590
 Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala
 595 600 605
 Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr
 610 615 620
 Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr
 625 630 635 640
 Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser
 645 650 655
 Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu
 660 665 670 675
 Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
 675 680 685
 His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser
 690 695 700

Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
705 710 715 720

Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala
725 730 735

Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala
740 745 750

<210> 3

<211> 8

<212> PRT

<213> human

<400> 3

Ser Leu Tyr Glu Ser Trp Thr Lys
1 5

<210> 4

<211> 15

<212> PRT

<213> human

<220>

<221> misc.

<222> (1)..(15)

<223> x=unknown

51
5
5

<220>

<221> MISC_FEATURE

<222> (1)..(15)

<223> x=unknnown

<400> 4

Ser Tyr Pro Asp Gly Xaa Xaa Leu Pro Gly Gly Gly Val Gln Arg
1 5 10 15

<210> 5

<211> 7
<212> PRT
<213> human

<400> 5

Phe Tyr Asp Pro Met Phe Lys
1 5

<210> 6
<211> 9
<212> PRT
<213> human

<400> 6

Ile Tyr Asn Val Ile Gly Thr Leu Lys
1 5

<210> 7
<211> 22
<212> PRT
<213> human

<220>
<221> misc
<222> (1)..(22)
<223> x=unknown

labeled
<220>
<221> MISC_FEATURE
<222> (1)..(22)
<223> x=unknown

<400> 7

Phe Leu Tyr Xaa Xaa Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln
1 5 10 15

Asn Phe Gln Leu Ala Lys
20

<210> 8
<211> 17
<212> PRT
<213> human

<400> 8
Gly Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Asp Val
1 5 10 15
Lys

<210> 9
<211> 17
<212> PRT
<213> human

<400> 9
Pro Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val
1 5 10 15
Lys

<210> 10
<211> 15
<212> PRT
<213> human

<400> 10
Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
1 5 10 15
Lys

<210> 11
<211> 19
<212> PRT
<213> human

<400> 11

Tyr Ala Gly Glu Ser Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile
1 5 10 15

Glu Ser Lys

<210> 12
<211> 22
<212> PRF
<213> human

<220>
<221> misc.
<222> (1)..(22)
<223> x=unknown

<220>
<221> MISC_FEATURE
<222> (1)..(22)
<223> x=unknown

<400> 12

Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Xaa Xaa Gly
1 5 10 15

Ser Thr Glu Glu Ala Glu
20

cont
J1
<210> 13
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(16)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(16)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(16)
<223> n=unknown

<400> 13
ttytaygayc cnatgtt
17

<210> 14
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc
<222> (1)..(16)
<223> n=unknown

sub
<220>
<221> misc_feature
<222> (1)..(16)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(16)
<223> n=unknown

<400> 14
aacatngggt crtaraa
17

<210> 15
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

<400> 15
athtayaayg tnathgg
17

*Sub J1
Cont*
<210> 16
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<220>
<221> misc_feature

<222> (1)..(17)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

<400> 16
ccdatnacrt trtadat
17

<210> 17
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

full J1
<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

Cont
<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

<400> 17
ccngcngayt aytttgt
17

<210> 18
<211> 17

<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)...(17)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)...(17)
<223> n=unknown

<400> 18
gcraartart ncgcngg
17

<210> 19
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer

bulk
5'
end
<220>
<221> misc.
<222> (1)...(20)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)...(20)
<223> n=unknown

<400> 19
acngarcarca ayttycarct
20

<210> 20
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(20)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(20)
<223>

<220>
<221> misc_feature
<222> (18)..(18)
<223> n=unknown

<400> 20
agytgraart tytgvtcngt
20

5'
3'
End
<210> 21
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 21
garcaraayt tycarct
17

<210> 22
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 22
agytgraart tytgytc
17

<210> 23
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (9)..(9)
<223> n=unknown

<400> 23
tgggaygcng argarttygg
20

July 31
<210> 24
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(20)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(20)
<223> n=unknown

<400> 24
ccraaytcyt cngcrtccca
20

<210> 25
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

<400> 25
tgggaygcng argartt
17

part 1
<210> 26
<211> 17
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc.
<222> (1)..(17)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(17)
<223> n=unknown

<400> 26
aaytcytcng crtccca
17

<210> 27
<211> 780
<212> DNA
<213> chicken

<220>
<221> misc.
<222> (1)..(780)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(780)
<223> n=unknown

<400> 27
tacacttatac ccattcgac atgcccacct tggaactgga gacccttaca ccccaggctt
60
cccttcgttc aaccacaccc annngttcc accagttgaa tcttcaggac taccccacat
120
tgctgttcag accatctcta gcagtgcagc agccaggctg ttcagcaaaa tggatggaga
180
cacatgctct ganagnngtt ggaaaggtgc gatccannnt tcctgtaagg tnngacnnaa
240
caaagcagga gannnngcca gantaatggt gaaacttagat gtgaacaatt ccatgaaaga
300
caggaagatt ctgaacatct tcggtgctat ccagggattt gaagaacctg atcggtatgt
360
tgtgattgga gcccagagag actcctgggg cccaggagtg gctaaagctg gcactggaac
420
tgctatattg ttggaacttg cccgtgtgat ctcagacata gtgaaaaacg agggctacaa
480

accgaggcga agcatcatct ttgctagctg gagtgccagga gactacggag ctgtgggtgc
540

tactgaatgg ctggaggggt actctgccat gctgcattgcc aaagcttca cttacatcan
600

ngcttggatg ctccagtccct gggagcaagc catgtcaaga tttctgccag ccccttgctg
660

tatatgctgc tggggagtat tatgaagggg gtgaagaatc cagcagcagt ctcagagagc
720

nnnncttat aacagacttg gcccagactg ggtaaaagca gttgttcctc ttggcctgga
780

<210> 28

<211> 660

<212> DNA

<213> rat

<220>

<221> misc.

<222> (1)..(660)

<223> n=unknown

<220>

<221> misc_feature

<222> (1)..(660)

<223> n=unknown

<400> 28

tgcagaaaaag ctattcaaaa acatggagg aaactgtccct cctagttgga atatagattc
60

ctcatgttaag ctggaacctt cacagaatca aaatgtgaag ctcactgtga acaatgtact
120

gaaagaaaaca agaataactta acatcttgg cgtttattaaa ggctatgagg aaccagaccg
180

ctacattgtta gttaggagccc agagagacgc ttggggccct ggtngttgcg aagtccagtg
240

tgggaacagg tcttnctgtt gaaacttgcc caagtattct cagatatgat ttcaaaagat

300

ggat tagac ccagcaggag tattatctt gccagctgga ctgcaggaga ctatggagct
360

gttggtccga ctgagtggct ggaggggtac cttcatctt tgcataaaa gnnngtttc
420

acttacatta atnctggata aagtgcgtcct gggtaactagc aacttcaagg tttctgccag
480

ccccctatta tataactta tgggaagat aatgcaggan ncgtaaagca tccgannnn
540

nnnttgatgg aaaatatcta tatcgaaaca gtaattggat tagaaaaatt gaggaacttt
600

ccttggacaa tgctgcattc cctttcttg catattcagg aatcccagca gtttctttct
660

<210> 29
<211> 540
<212> DNA
<213> human

<220>
<221> misc.
<222> (1)..(540)
<223> n=unknown

<220>
<221> misc_feature
<222> (1)..(540)
<223> n=unknown

<400> 29
tatggaagga gactgtccct ctgactggaa aacagactct acatgttagga tggtaacctc
60

agaaagcaag aatgtgaagc tcactgtgag caatgtgctg aaagagataa aaattcttaa
120

catctttgga gttattaaag gctttgtaga accagatcac tatgtttag ttggggccca
180

gagagatgca tggggccctg gagctgcaaa atcncggtgt aggcacagct ctccatttg
240

aacttgcaca gatgttctca gatatggtct taaaagatgg gtttcagccc agcagaagca
300

ttagttgc cagttggagt gctggagact ttggatcggt tggtgccact gaatggctag
360

agggataacct ttcgtcnccct gcatttaaag gcttcactt atattaatct ggataaagcg
420

gttcttggta ccagcaactt caaggttct gccagccac tggtgtatac gcttatttag
480

aaaacaatgc aaaatgtcaa gcatccggtt actggcaat ttctatatca ggacagcaac
540

<210> 30

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 30

acggagcaaa actttcagct tgcaaag

27

<210> 31

<211> 9

<212> PRT

<213> artificial sequence

<220>

<223> primer

<400> 31

Thr Glu Gln Asn Phe Gln Leu Ala Lys

1 5

<210> 32

<211> 36

<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 32
ctcttcggca tcccgcttg caaacaaaat tgttct
36

<210> 33
<211> 36
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 33
agaacaattt tgtttgcaag ctgggatgcc aaggag
36

<210> 34
<211> 12
<212> PRT
<213> artificial sequence

<220>
<223> primer

<400> 34

Arg Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu
1 5 10

<210> 35
<211> 6
<212> PRT
<213> human

<400> 35

Asp Glu Leu Lys Ala Glu
1 5

<210> 36
<211> 6
<212> PRT
<213> human

<400> 36

Asn Glu Asp Gly Asn Glu
1 5

<210> 37
<211> 6
<212> PRT
<213> human

<400> 37

Lys Ser Pro Asp Glu Gly
1 5

<210> 38
<211> 17
<212> PRT
<213> human

<400> 38

Ala Gly Ala Leu Val Leu Ala Gly Gly Phe Phe Leu Leu Gly Phe Leu
1 5 10 15

Phe