γ KsKpi, γ KKpi0

Yang Yifan

August 14, 2018

1 / 35

$$\psi' \to \gamma \eta_c', \; \eta_c' \to KK\pi^0$$

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣りぐ

Initial Event Selection

Charged Tracks: nGood=2, nCharge=0

- $R_{vz} < 10$ cm
- $R_{v \times v} < 1$ cm
- $\cos \theta < 0.93$

Good Photons: nGam >= 3

- energy> 40 MeV
- time in [0,14] (*50 ns)
- At 20 degree from the extrapolation of a MDC track.

PID: 1 K+, 1 K-

- TOF, dE/dx
- $p(K) > p(\pi), p(K) > 0.001$

Yang Yifan

August 14, 2018

3 / 35

 γ KsKpi, γ KKpi0

Kinematic Fit

- 5c kinematic fit(p4, mpi0) to decide the choice of γ
- 4c kinematic fit(5C + unfix m(γ_{rad})) for mass representation

Kinematic Fit

• $\chi_{4c}^2 < 30$

π^0 mass requirement

 $m(\pi^0)$ in range [0.127,0.141].

$$\psi' \rightarrow \textit{Neutral} + J/\psi$$
, $J/\psi \rightarrow \mu\mu/\textit{KK}$ background

Require $M(\mu\mu) < 2.9$, where $M(\mu\mu)$ is calculated by assuming the two charged tracks as μ .

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018 7 / 35

$\psi' \rightarrow \omega KK$ background

Require M(3 γ) outside of [0.74, 0.82]. The remaining spectrum is fit to double gaussian.

$\pi^0 KK$ background shape

 f_{FSR} describe the difference of FSR ration in data/MC. Calculating from existing result:

$$f_{\gamma KK\pi^0} = 2 * f_{\gamma KK\pi\pi} - f_{\pi\pi\pi\pi} = 1.08 \pm 0.15$$
 (1)

Get the lineshape from the reweighted sum of the FSR and no-FSR events.

40 > 40 > 42 > 42 > 2 > 2 000

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018 9 / 35

$\pi^0\pi^0KK$ background (fake 5c mass)

Run $KK\pi\pi$ algorithm on data, re-weight the mass spectrum with the ratio of efficiency when $KK\pi^0\pi^0$ MC events try to pass the $\gamma KK\pi^0$ and $KK\pi\pi$ algorithms, to get the $KK\pi^0\pi^0$ contribution in $\gamma KK\pi$ Alg's result. The mass in $KK\pi\pi$ algorithm is calculated from a 5C kinematic fit (the best fit when missing 1 photon in $KK\pi^0\pi^0$ candidates) without chisquare

◆ロト ◆個ト ◆差ト ◆差ト を めるぐ

$\pi^0\pi^0KK$ background shape (fake 5c mass)

The $KK\pi\pi$ background is described with a Gaussian Function. To get its parameters, the χ_{ci} background are considered by using MC shape. Fit Result: mean=0.0 \pm 8.8, sigma=0.464 \pm 0.000

$\pi^0\pi^0KK$ background (mass transforming matrix)

Alternatively, get the matrix of (5c mass, 6c mass) from 10 mil. $\pi^0\pi^0KK$ MC events, and transform the hists accordingly.

Assuming χ_{c1} and χ_{c2} masses distribute in the same way.

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018 12 / 35

Continuum Background

Estimated from $42.6pb^{-1}$ data @ 3650 MeV.

13 / 35

Lineshape Description

- χ_{ci} : MC shape convolved with a gaussian
- $\eta_c(2S)$: $(BW(m) \times E_{\gamma}^3 \times dampingFunc) \otimes Gaussian$
- Damping Function: $\frac{E_0^2}{E_{\gamma}E_0+(E_{\gamma}-E_0)^2}$ (KEDR) or $exp(-E_{\gamma}^2/8\beta^2)$ (CLEO)
- Background Shapes: ωKK as double Gaussian, $KK\pi\pi$ as Gaussian, $KK\pi^0$ as re-weighted MC shape
- Continuum background not considered in fit.

14 / 35

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018

Resolution of Gauss

 χ_{c1} : width=13.08 MeV, chi_{c2} : width=13.32 MeV; with linear extrapolation, for η_c width=13.76 MeV

Fit Result

Left: KEDR damping function; Right: CLEO damping function.

Things that needs further checking:

- $\pi^0\pi^0KK$ lineshape parameters
- Continuum Background
- CLEO damping function

$$\psi' \to \gamma \eta_c', \; \eta_c' \to K_s K \pi$$

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018 18 / 35

Event Selection

Charged Tracks: nGood=4, nCharge=0

- $R_{vz} < 10$ cm
- $R_{vxv} < 1$ cm
- $cos\theta < 0.93$

Good Photons: nGam >= 1

- energy> 40 MeV
- time in [0,14] (*50 ns)
- At 20 degree from the extrapolation of a MDC track.

PID:

- TOF, dE/dx
- χ^2_{κ} , χ^2_{π} of each track saved for later cuts

χ^2 of PID

Secondary Vertex Fit

Secondary Vertex Fit for K_s

- decay length at least 0.5 cm
- mass within [-7 MeV, +7 MeV] around $m(K_s)$
- candidate with minimal $(\chi^2_{vtx} + \chi^2_{svtx})$ is chosen

Secondary Vertex Fit - K_s decay length

Secondary Vertex Fit - K_s Mass Window

23 / 35

Yang Yifan γ KsKpi, γ KKpi0

χ^2 of vertex fit and secondary vertex fit

Kinematic Fit

3C: 4 momentum, loosen γ mass.

Iterating over either track being K, and over γ candidates. Combination with minimal $(\chi^2_\pi + \chi^2_K + \chi^2_{kmfit})$ is chosen.

χ^2 of 3C

χ^2 total

August 14, 2018

27 / 35

Yang Yifan γ KsKpi, γ KKpi0

Background Composition

No.	decay chain	final states	iTopology	nEvt	nTot
0	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- \pi^+ \bar{K}^0, K_S \rightarrow \pi^+ \pi^-$	$\pi^-K^-\pi^+\pi^+\gamma$	3	1938	1938
1	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^{+}\pi^{-}K^{0}, K_{S} \rightarrow \pi^{+}\pi^{-}$	$\pi^-\pi^-\pi^+\gamma K^+$	1	1932	3870
2	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \mu^+ \mu^-$	$\mu^{+}\pi^{-}\mu^{-}\pi^{+}$	0	1772	5642
3	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow e^+ e^-$	$e^{+}\pi^{-}e^{-}\pi^{+}$	5	1209	6851
4	$\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow \bar{K}^0 K^+ \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^-\pi^-\pi^+\gamma K^+$	17	534	7385
5	$\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K^0 K^- \pi^+, K_S \rightarrow \pi^+ \pi^-$	$\pi^-K^-\pi^+\pi^+\gamma$	11	482	7867
6	$\psi' \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow K_S K_S, K_S \rightarrow \pi^+ \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^-\pi^-\pi^+\pi^+\gamma$	9	382	8249
7	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^{*+}K^{-}, K^{*+} \rightarrow K^{0}\pi^{+}, K_{S} \rightarrow \pi^{+}\pi^{-}$	$\pi^-K^-\pi^+\pi^+\gamma$	10	279	8528
8	$\psi' \rightarrow \gamma \gamma_{c1}, \gamma_{c1} \rightarrow K^{*-}K^+, K^{*-} \rightarrow \bar{K}^0\pi^-, K_S \rightarrow \pi^+\pi^-$	$\pi^-\pi^-\pi^+\gamma K^+$	14	257	8785
9	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^* \bar{K}^0, K^* \rightarrow K^+ \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^-\pi^-\pi^+\gamma K^+$	12	256	9041
10	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \bar{K}^* K^0, \bar{K}^* \rightarrow K^- \pi^+, K_S \rightarrow \pi^+ \pi^-$	$\pi^-K^-\pi^+\pi^+\gamma$	2	209	9250
11	$\psi' \rightarrow \gamma K_S K^+ \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^-\pi^-\pi^+\gamma K^+$	6	153	9403
12	$\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K_S K_S, K_S \rightarrow \pi^+ \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{+}\pi^{+}\gamma$	8	136	9539
13	$\psi' \to K_1^+ K^-, K_1^+ \to \rho^+ K^0, \rho^+ \to \pi^+ \pi^0, K_S \to \pi^+ \pi^-$	$\pi^{-}K^{-}\pi^{0}\pi^{+}\pi^{+}$	19	129	9668
14	$\psi' \to K_1^- K^+, K_1^- \to \rho^- \bar{K}^0, \rho^- \to \pi^- \pi^0, K_S \to \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}K^{+}$	15	128	9796
15	$\psi' \rightarrow \gamma K_S K^- \pi^+, K_S \rightarrow \pi^+ \pi^-$	$\pi^-K^-\pi^+\pi^+\gamma$	35	117	9913
16	$\psi' \rightarrow \bar{K}^*K^0, \bar{K}^* \rightarrow K^-\pi^+, K_S \rightarrow \pi^+\pi^-$	$\pi^{-}K^{-}\pi^{+}\pi^{+}$	28	105	10018
17	$\psi' \rightarrow K^*\bar{K}^0, K^* \rightarrow K^+\pi^-, K_S \rightarrow \pi^+\pi^-$	$\pi^{-}\pi^{-}\pi^{+}K^{+}$	25	98	10116
18	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0^- \pi^+, a_0^- \rightarrow K^0 K^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^-K^-\pi^+\pi^+\gamma$	38	77	10193
19	$\psi' \to K^+ \bar{K}^* \pi^-, \bar{K}^* \to \bar{K}^0 \pi^0, K_S \to \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}K^{+}$	20	54	10247
20	$\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0^+ \pi^-, a_0^+ \rightarrow \bar{K}^0 K^+, K_S \rightarrow \pi^+ \pi^-$	$\pi^-\pi^-\pi^+\gamma K^+$	23	52	10299
21	$\psi' \to K^-K^*\pi^+, K^* \to K^0\pi^0, K_S \to \pi^+\pi^-$	$\pi^{-}K^{-}\pi^{0}\pi^{+}\pi^{+}$	61	49	10348
22	$\psi' \rightarrow K_1^+ K^-, K_1^+ \rightarrow K_0^{*+} \pi^0, K_0^{*+} \rightarrow K^0 \pi^+, K_S \rightarrow \pi^+ \pi^-$	$\pi^- K^- \pi^0 \pi^+ \pi^+$	7	42	10390
23	$\psi' \rightarrow K_1^- K^+, K_1^- \rightarrow K_0^{*-} \pi^0, K_0^{*-} \rightarrow \bar{K}^0 \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}K^{+}$	53	39	10429
24	$\psi' \rightarrow \gamma \eta_c(2S), \eta_c(2S) \rightarrow K^-K^0\pi^+, K_S \rightarrow \pi^+\pi^-$	$\pi^-K^-\pi^+\pi^+\gamma$	66	30	10459
25	$\psi' \rightarrow \gamma \eta_c(2S), \eta_c(2S) \rightarrow K^+ \bar{K}^0 \pi^-, K_S \rightarrow \pi^+ \pi^-$	$\pi^-\pi^-\pi^+\gamma K^+$	108	28	10487
26	$\psi' \rightarrow K_1^- K^+, K_1^- \rightarrow \bar{K}_0^{*0} \pi^-, \bar{K}_0^{*0} \rightarrow \bar{K}^0 \pi^0, K_S \rightarrow \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}K^{+}$	13	23	10510
27	$\psi' \rightarrow K_1^+ K^-, K_1^+ \rightarrow K^{*+} \pi^0, K^{*+} \rightarrow K^0 \pi^+, K_S \rightarrow \pi^+ \pi^-$	$\pi^{-}K^{-}\pi^{0}\pi^{+}\pi^{+}$	65	21	10531
28 29	$\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K^{*+}K^{*-}, K^{*+} \rightarrow K^{0}\pi^{+}, K^{*-} \rightarrow K^{-}\pi^{0}, K_{S} \rightarrow \pi^{+}\pi^{-}$	$\pi^{-}K^{-}\pi^{0}\pi^{+}\pi^{+}\gamma$	52	21	10552
29	$\psi' \rightarrow K_1^+ K^-, K_1^+ \rightarrow K^* \pi^+, K^* \rightarrow K^0 \pi^0, K_S \rightarrow \pi^+ \pi^-$	$\pi^{-}K^{-}\pi^{0}\pi^{+}\pi^{+}$	64	21	10573

Table 1:

$\gamma K_s K_s$ Background

Require that the two tracks outside the best K_s candidate can't be a K_s candidate.

It's regarded as a K_s candidate if the other two tracks can pass a vertex fit and the invariant mass is in the range of [-10 MeV,+10 MeV] around $m(K_s)$.

The efficiency for $\gamma K_s K_s component$ without and with such a cut is 1.53% and 0.86%, while it's 18.1% and 18.0% for signal.

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018 29 / 35

J/ψ + Neutral Background

Require the largest recoil mass of $m(\pi\pi)$ of all π pairs to be smaller than 3.05 GeV.

$K_{s}K\pi$ Background

Study the process of $\psi' \to \gamma \chi_{c1}, \chi_{c1} \to K_s K \pi(\gamma_{FSR})$. To get the R_{data}/R_{mc} , where $R = \frac{N_{FSR}}{N_{rocce}}$.

$\gamma \gamma K_s K \pi$ Algorithm

- ngood=4, ncharge=0, nGam>=2
- PID $(dE/dx, TOF)(p, k, \pi)$ to get chisquare
- secondary vertex fit: $m(K_s)$ in [-15 MeV,+15 MeV]; the other two tracks shouldn't make K_{ϵ}
- kinematic fit: (4C for combination; 3c for mass, γ_{soft} with flexible mass)

$K_s K \pi$ Background - estimate R_{data}/R_{mc} $\chi_{4c}^2 < 50$, $\chi_{vtx}^2 < 30$, $\chi_{svtx}^2 < 30$, len > 0.5, veto $m(\gamma\gamma)$ in [0.1,0.155]

noFSR Events and FSR Events in boxes. Background events in data identified by truth info in Inclusive MC.

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018 32 / 35

$K_s K \pi$ Background - estimate R_{data}/R_{mc}

alternative cuts

$$\underline{\chi_{3c}^2 + \chi_{vtx}^2 + \chi_{svtx}^2 + \chi_{\pi}^2 + \chi_k^2 < 50, len > 0.5, \text{ veto } m(\gamma\gamma) \text{ in } [0.1, 0.155] \quad \chi_{4c}^2 + \chi_{vtx}^2 + \chi_{\pi}^2 + \chi_k^2 < 50, len > 0.5, \text{ veto } m(\gamma\gamma) \text{ in } [0.1, 0.155]$$

	I OIX	HOI OIL
12mc	150	1615
12mc bkg	74	43
09mc	47	446
09mc bkg	23	14
12data	175	1205
09data	57	347
χ_{c1} MC(09)	9932	199018

$$R_{mc,09} = 24/432, R_{mc,12} = 76/1575$$

ESD noESD

$$R_{data.09} = 34/333 = 0.102, R_{data.12} = 101/1162 = 0.0869$$

$$R_{sig} = 9932/199018 = 0.0499$$

$$R_{mc,09} = 21/38, R_{mc,12} = 61/180$$

$$R_{data,09} = 30/24 = 1.25$$
, $R_{data,12} = 86/112 = 0.768$

noFSR

$$R_{sig} = 8793/16848 = 0.522$$

The ratio is decided to be stable; uncertainty around 40%. n(FSR)/n(noFSR) = 7221/82298; taking $R_{data}/R_{mc} = 1.5$.

4 D > 4 D > 4 D > 4 D >

Yang Yifan γ KsKpi, γ KKpi0 August 14, 2018

Fit Result

Around 160 events in 2012 data.

