2012年上海市普通高中学业水平考试	2
数学试卷	2
2013年上海市普通高等学校春季招生考试	7
2014年上海市普通高等学校春季招生统一考试	19
(暨上海市普通高中学业水平考试)	19
数学试卷	19
参考答案	29
2015年上海市春季高考数学试卷(学业水平考试)	34
参考答案	39
2016年上海市春季高考数学试卷	40
参考答案与试题解析	44
2017 年上海市春季高考数学试卷	59
参考答案与试题解析	62

2012 年上海市普通高中学业水平考试 数学试卷

- 一、填空题: (本答题满分36分)
- 1. 已知集合 $A = \{1,2\}$, $B = \{2,a\}$. 若 $A \cup B = \{1,2,3\}$, 则 $a = \underline{\hspace{1cm}}$.
- 2. 函数 $f(x) = \sqrt{1-x^2}$ 的定义域为_____.
- 3. 满足不等式 $\frac{x}{x+1} < 0$ 的 x 的取值范围是_____.
- 4. 若球的体积为 36π ,则球的半径为 .
- 5. 若直线 2x + my + 2 = 0 与直线 4x + 6y 1 = 0 平行,则 $m = ____.$
- 6. 若向量 \vec{a} 与 \vec{b} 的夹角为 60° , $|\vec{a}| = 2$, $|\vec{b}| = 1$,则 $\vec{a} \cdot \vec{b} =$ _____.
- 7. 在 \triangle ABC 中,角 A、 B、 C 所对的边长分别为 a、 b、 c . 若 $A=45^\circ$, $C=30^\circ$, $c=\sqrt{2}$, 则 a=_____.
- 8. 若无穷等比数列 $\{a_n\}$ $(n \in N^*)$ 的首项为1、公比为 $\frac{1}{3}$,则该数列各项的和为_____.
- 9. 在 $\left(x + \frac{1}{x}\right)^{6}$ 的二项展开式中,常数项的值为______.
- 10. 若 $1+\sqrt{2}i$ (i为虚数单位)是关于x的方程 $x^2+mx+3=0$ 的根,则实数m=_____.
- 11. 执行右图所示算法,输出的结果是_____.
- 12. 已知圆 O_n : $x^2 + y^2 = \frac{1}{n^2} (n \in N^*)$ 与圆C: $(x-1)^2 + y^2 = 1$. 设圆 O_n 与y 轴正半轴的交点为 R_n ,圆 O_n 与圆C在x轴上方的交点为 Q_n ,直线 R_nQ_n 交x轴于点 P_n . 当n趋向于无穷大时,点 P_n 无限趋近于定点P,定点P的横坐标为______.

) 上 大 田	(木十 晒 港 八	26	1
<u> </u>	匹拌赵:	(本大题满分	30	汀ノ

13. 若矩阵
$$\begin{pmatrix} a & -1 \\ 2 & b \end{pmatrix}$$
 是线性方程组 $\begin{cases} x-y=3 \\ 2x-y=1 \end{cases}$,的系数矩阵,则().

$$A . a = 1, b = -1;$$

$$B . a = 1, b = 1;$$

$$B . a = 1, b = 1;$$
 $C . a = -1, b = 1;$

$$D . a = -1, b = -1.$$

14. 函数
$$f(x) = 2^x + 1$$
 的反函数是 ().

$$A \cdot f^{-1}(x) = \log_2 x + 1$$
;

A.
$$f^{-1}(x) = \log_2 x + 1$$
; B. $f^{-1}(x) = \log_x 2 + 1$; C. $f^{-1}(x) = \log_2 (x - 1)$;

$$D \cdot f^{-1}(x) = \log_2 x - 1 \cdot$$

15. 抛物线
$$y^2 = 4x$$
 的焦点到其准线的距离是 ().

16. 某校高一、高二、高三分别有学生 400 名、300 名、300 名. 为了解他们课外活动情况, 用分层抽样的方法从中抽取 50 名学生进行调查,应抽取高二学生人数为(

C.20;

D. 15.

17. 函数
$$f(x) = x^3 + 2x$$
 ().

A. 是奇函数且为增函数;

B. 是偶函数且为增函数;

C. 是奇函数且为减函数;

D. 是偶函数且为减函数.

18. 已知扇形的圆心角为 $\frac{\pi}{3}$,半径为 3,该扇形的面积为(

$$A . 3\pi$$
;

$$B \cdot \frac{3\pi}{2}$$
;

C . π ;

$$D. \frac{\pi}{2}.$$

19. 函数 $f(x) = \sin x + \sqrt{3} \cos x + 1$ 的最大值是 ().

$$A \cdot -1$$
;

C.3;

$$D \cdot 2 + \sqrt{3}$$
.

20. 函数 $y = \frac{1}{2^{|x|}}$ 的大致图象是(

21. 若椭圆 $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 与x轴正半轴、y轴正半轴的交点分别为A、B,则直线AB的方 程为().

$$A . x+2y-4=0 ; B . x-2y-4=0 ; C . x-2y+4=0 ;$$

$$B \cdot x - 2y - 4 = 0$$
:

$$C \cdot x - 2v + 4 = 0$$

$$D . x + 2y + 4 = 0.$$

- 22. 设 l_1 、 l_2 是空间两条直线. " l_1 、 l_2 没有公共点"是" l_1 、 l_2 为异面直线"的(
- A. 充分但非必要条件; B. 必要但非充分条件; C. 充分必要条件; D. 既非 充分又非必要条件.
- 23. 从 17 名男同学和 21 名女同学中随机抽取 3 名,组成环保志愿者小组,这个小组中必有 男同学的概率(精确到0.001)为(

D.0.842.

- 24. 实数 $a \ b$ 满足 ab > 0 且 $a \ne b$,由 $a \ b$ 、 $\frac{a+b}{2}$ 、 \sqrt{ab} 按一定顺序构成的数列(
- A. 可能是等差数列,也可能是等比数列; B. 可能是等差数列,但不可能是 等比数列:
- C. 不可能是筹差数列,但可能是等比数列; D. 不可能是等差数列,也不可能 是等比数列.
- 三、解答题: (本大题满分48分).
- 25. (本题满分 7 分)

已知
$$\cos \alpha = \frac{\sqrt{3}}{3}$$
, 化简并求值: $\left(1 + \tan^2 2\alpha\right) \left[\cos\left(2\alpha + \frac{\pi}{3}\right) + \cos\left(2\alpha - \frac{\pi}{3}\right)\right]$.

26. (本题满分7分)

如图所示,正四棱柱 $ABCD - A_lB_lC_lD_l$ 的底面边长为 2,表面积为 32,求异面直

线 DA_1 与 B_1C_1 所成角的大小(结果用反三角函数值表示).

27. (本题满分7分)

已知等比数列 $\{a_n\}$ $(n \in N^*)$ 满足 $a_1 = 2$, $a_4 = 54$, 等差数列 $\{b_n\}$ $(n \in N^*)$ 满足 $b_1 = a_1$, $b_3 = a_2$. 求数列 $\{b_n\}$ 的前 n 项和 S_n .

- 28. (本题满分 13 分) 本题共有 2 个小题,第 1 小题满分 5 分,第 2 小题满分 8 分. 己知双曲线 C 的两个焦点分别为 $F_1\left(-\sqrt{3},0\right)$ 、 $F_2\left(\sqrt{3},0\right)$,渐近线方程为 $y=\pm\sqrt{2}x$.
- (1) 求双曲线C的方程;
- (2) 若过点 $F_1\left(-\sqrt{3},0\right)$ 的直线 l 与双曲线 C 的左支有两个交点,且点 $M\left(0,1\right)$ 到 l 的距离小于 1,求直线 l 的倾斜角的范围.
- 29. (本题满分 14 分) 本题共有 2 个小题,第 1 小题满分 5 分,第 2 小题满分 9 分. 设函数 f(x)、 g(x) 有相同的定义域 D. 对任意 $x \in D$,过点 (x,0) 并垂直于 x 轴的直线与 f(x)、 g(x) 的图像分别交于点 A、 B, 向量 \overrightarrow{OA} 、 \overrightarrow{OB} 满足 $\overrightarrow{OA} \perp \overrightarrow{OB}$ (O 为坐标原点).
- (1) 若 f(x) = -x+1, $x \in (1, \infty)$, 求 g(x) 的解析式, 并作出其大致图像;
- (2) 若 $f(x) = \begin{cases} \log_2 x 6, & x \in [2, 4], \\ -x^2 + 6x + 3, & x \in (4, 6], \end{cases}$ 求 g(x)的最大值和最小值.

简易版答案:

一、填空题

- 1. 3;
- 2. [-1,1]; 3. (-1,0); 4. 3; 5. 3;
- 6. 1;

- 7. 2;
- 8. $\frac{3}{2}$; 9. 20; 10. -2; 11. 31;

- 12. 4;

二、选择题

- 13. A;
- 14. C; 20. C;
- 15. B; 21. A;
- 16. D; 22. B;
- 17. A; 23. D;
- 18. B; 24. D;

- 19. C; 三、解答题
- 25. -3;
- 26. $\arctan \frac{3}{2}$;
- 27. $n \cdot (n+1)$;
- 28. (1) $x^2 \frac{y^2}{2} = 1$;
 - (2) $(\arctan \sqrt{2}, \arctan \sqrt{3})$;
- 29. (1) $g(x) = \frac{x^2}{x-1}$, (x > 1), 图略(NIKE 函数,最低点是(2,4),分别以直线x = 1和

直线 y = x + 1 为渐近线);

(2)
$$g(x)_{\text{max}} = 4$$
, $g(x)_{\text{min}} = -12$

2013 年上海市普通高等学校春季招生考试

数 学 试 卷

— .	填空题(本大题满分	36 分)	本大题共有	12 题,	要求直接填写结果,	每题填
	对得3分,	否则一律征	导0分				

1. 函数 $y = \log_2(x+2)$ 的定义域是	1.	函数 $v = \log_{\bullet}$	(x+2)	的定义域是	
-------------------------------	----	-------------------------	-------	-------	--

2. 方程
$$2^x = 8$$
 的解是

3. 抛物线
$$y^2 = 8x$$
 的准线方程是______

4. 函数
$$y = 2 \sin x$$
 的最小正周期是_____

5. 己知向量
$$\vec{a} = (1, k)$$
, $\vec{b} = (9, k-6)$ 。若 $\vec{a} / / \vec{b}$,则实数 $k =$ ______

6. 函数
$$y = 4\sin x + 3\cos x$$
 的最大值是_____

7. 复数
$$2+3i$$
 (i 是虚数单位)的模是_____

8. 在
$$\triangle ABC$$
 中,角 A 、 B 、 C 所对边长分别为 a 、 b 、 c ,若 $a=5$, $b=8$, $B=60^{\circ}$,则 $b=$ ____

9. 在如图所示的正方体
$$ABCD - A_iB_iC_iD_i$$
 中,异面直线 A_iB 与 B_iC 所成角的大小为_____

10. 从 4 名男同学和 6 名女同学中随机选取 3 人参加某社团活动,选出的 3 人中男女同学都有的概率为______(结果用数值表示)。

11. 若等差数列的前 6 项和为 23, 前 9 项和为 57, 则数列的前 n 项和 $S_n = ______$ 。

12. 36 的所有正约数之和可按如下方法得到:因为 $36=2^2\times 3^2$,所以 36 的所有正约数之和

为 $(1+3+3^2)+(2+2\times3+2\times3^2)+(2^2+2^2\times3+2^2\times3^2)=(1+2+2^2)(1+3+3^2)=91$ 参照上述方法,可求得 2000 的所有正约数之和为_____

二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分

- 13. 展开式为 ad-bc 的行列式是 ()

- 14. 设 $f^{-1}(x)$ 为函数 $f(x) = \sqrt{x}$ 的反函数,下列结论正确的是()
- (A) $f^{-1}(2) = 2$

(B) $f^{-1}(2) = 4$

(C) $f^{-1}(4) = 2$

- (D) $f^{-1}(4) = 4$
- 15. 直线 2x-3y+1=0 的一个方向向量是 ()
- (A) (2, -3) (B) (2, 3) (C) (-3, 2)

- (D) (3, 2)

16. 函数 $f(x) = x^{-\frac{1}{2}}$ 的大致图像是()

- 17. 如果a < b < 0,那么下列不等式成立的是()
- (A) $\frac{1}{a} < \frac{1}{h}$

- (B) $ab < b^2$ (C) $-ab < -a^2$ (D) $-\frac{1}{a} < -\frac{1}{b}$
- 18. 若复数 z_1 、 z_2 满足 $z_1=z_2$,则 z_1 、 z_2 在复数平面上对应的点 Z_1 、 Z_2 ()
- (A) 关于 x 轴对称
- (B) 关于 y 轴对称
- (C) 关于原点对称
- (D) 关于直线 y = x 对称
- 19. $(1+x)^{10}$ 的二项展开式中的一项是 ()
- (A) 45x
- (B) $90x^2$ (C) $120x^3$ (D) $252x^4$
- 20. 既是偶函数又在区间 $(0,\pi)$ 上单调递减的函数是(
- (A) $y = \sin x$ (B) $y = \cos x$ (C) $y = \sin 2x$ (D) $y = \cos 2x$

- 21. 若两个球的表面积之比为1:4,则这两个球的体积之比为()
- (B) 1:4
- (C) 1:8
- 22. 设全集U = R,下列集合运算结果为R的是()
- (A) $Z \bigcup \delta_{\mu} N$ (B) $N \cap \delta_{\mu} N$ (C) $\Re (\mu \varnothing)$ (D) $\delta_{\mu} \{0\}$

- 23. 已知 a、b、 $c \in R$, " $b^2 4ac < 0$ " 是"函数 $f(x) = ax^2 + bx + c$ 的图像恒在x轴上方" 的()
- (A) 充分非必要条件 (B) 必要非充分条件

(C) 充要条件

- (D) 既非充分又非必要条件
- 24. 已知 A、B 为平面内两定点,过该平面内动点 M 作直线 AB 的垂线,垂足为 N. 若

 $\overrightarrow{MN}^2 = \lambda \overrightarrow{AN} \cdot \overrightarrow{NB}$,其中 λ 为常数,则动点 M 的轨迹不可能是()

- (B) 椭圆
- (C) 抛物线
- (D) 双曲线
- 三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要 的步骤
- 25. (本题满分7分)

如图,在正三棱锥 $ABC - A_1B_1C_1$ 中, $AA_1 = 6$,异面直线 BC_1 与 AA_1 所成角的大小为 $\frac{\pi}{6}$, 求该三棱柱的体积。

26. (本题满分7分)

如图,某校有一块形如直角三角形 ABC 的空地,其中 $\angle B$ 为直角, AB 长 40 米, BC 长 50 米,现欲在此空地上建造一间健身房,其占地形状为矩形,且 B 为矩形的一个顶点,求该健身房的最大占地面积。

27. (本题满分8分)

已知数列 $\{a_n\}$ 的前 n 项和为 $S_n=-n^2+n$,数列 $\{b_n\}$ 满足 $b_n=2^{a_n}$,求 $\lim_{n\to\infty}(b_1+b_2+\cdots+b_n)$ 。

28. (本题满分 13 分) 本题共有 2 个小题,第 1 小题满分 4 分,第 2 小题满分 9 分

已知椭圆C的两个焦点分别为 $F_1(-1,0)$ 、 $F_2(1,0)$,短轴的两个端点分别为 B_1 、 B_2

- (1) 若 $\Delta F_1 B_1 B_2$ 为等边三角形,求椭圆C的方程;
- (2)若椭圆C的短轴长为2,过点 F_2 的直线l与椭圆C相交于P、Q两点,且 $\overrightarrow{F_1P} \perp \overrightarrow{F_1Q}$,求直线l的方程。

29. (本题满分 12 分) 本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 6 分

已知抛物线 $C: y^2 = 4x$ 的焦点为F。

- (1) 点 A、P 满足 $\overrightarrow{AP} = -2\overrightarrow{FA}$ 。当点 A 在抛物线 C 上运动时,求动点 P 的轨迹方程;
- (2) 在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由。

30. (本题满分 13 分) 本题共有 2 个小题,第一小题满分 4 分,第二小题满分 9 分

在平面直角坐标系 xOy 中,点 A 在 y 轴正半轴上,点 P_n 在 x 轴上,其横坐标为 x_n ,且 $\{x_n\}$ 是首项为 1、公比为 2 的等比数列,记 $\angle P_nAP_{n+1}=\theta_n$, $n\in N^*$ 。

- (1) 若 $\theta_3 = \arctan \frac{1}{3}$, 求点 A 的坐标;
- (2) 若点 A 的坐标为 $(0,8\sqrt{2})$, 求 θ_n 的最大值及相应 n 的值。

31. (本题满分 18 分) 本题共有 3 个小题,第 1 小题满分 5 分,第 2 小题满分 7 分,第 3 小题满分 6 分

已知真命题: "函数 y = f(x) 的图像关于点 P(a, b) 成中心对称图形"的充要条件为"函数 y = f(x+a) - b 是奇函数"。

- (1) 将函数 $g(x) = x^3 3x^2$ 的图像向左平移 1 个单位,再向上平移 2 个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数 g(x) 图像对称中心的坐标;
- (2) 求函数 $h(x) = \log_2 \frac{2x}{4-x}$ 图像对称中心的坐标;
- (3) 已知命题: "函数 y = f(x) 的图像关于某直线成轴对称图像"的充要条件为"存在实数 a 和 b,使得函数 y = f(x+a) b 是偶函数"。判断该命题的真假。如果是真命题,请给予证明: 如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明)。

2013年上海市普通高等学校春季招生考试

数学试卷

参考答案

一. (第1至12题)每一题正确的给3分,否则一律得0分

1.
$$(-2, +\infty)$$

3.
$$x = -2$$

4.
$$2\pi$$

1.
$$(-2, +\infty)$$
 2. 3 3. $x = -2$ 4. 2π 5. $-\frac{3}{4}$ 6. 5

7.
$$\sqrt{13}$$

9.
$$\frac{\pi}{3}$$

10.
$$\frac{4}{5}$$

7.
$$\sqrt{13}$$
 8. 7 9. $\frac{\pi}{3}$ 10. $\frac{4}{5}$ 11. $\frac{5}{6}n^2 - \frac{7}{6}n$ 12. 4836

二. (第13至24题)每一题正确的给3分,否则一律得0分

13. B 14. B 15. D 16. A 17. D 18. A 19. C 20. B 21. C 22. A 23. D 24. C

三. (第25至31题)

25. [解]因为 CC₁ AA₁.

所以 $\angle BC_1C$ 为异面直线 BC_1 与 AA_1 . 所成的角,即 $\angle BC_1C = \frac{\pi}{6}$ 。

在Rt $\triangle BC_1C$ 中, $BC = CC_1 \cdot \tan \angle BC_1C = 6 \times \frac{\sqrt{3}}{3} = 2\sqrt{3}$,

从而
$$S_{\Delta ABC}=rac{\sqrt{3}}{4}BC^2=3\sqrt{3}$$
 ,

因此该三棱柱的体积为 $V = S_{MRC} \cdot AA_1 = 3\sqrt{3} \cdot 6 = 18\sqrt{3}$.

26. [解]如图,设矩形为EBFP,FP长为x米,其中0 < x < 40,

健身房占地面积为y平方米。因为 $\Delta CFP \sim \Delta CBA$,

以
$$\frac{FP}{BA} = \frac{CF}{CB}$$
, $\frac{x}{40} = \frac{50 - BF}{50}$, 求得 $BF = 50 - \frac{5}{4}x$,

从而
$$y = BF \cdot FP = (50 - \frac{5}{4}x)x = -\frac{5}{4}x^2 + 50x = -\frac{5}{4}(x - 20)^2 + 500 \le 500$$
,

当且仅当x = 20时,等号成立。

答: 该健身房的最大占地面积为500平方米。

且
$$a_1 = s_1 = 0$$
, 所以 $a_n = -2n + 2$ 。

因为 $b_n = 2^{-2n+2} = (\frac{1}{4})^{n-1}$,所以数列 $\{b_n\}$ 是首项为1、公比为 $\frac{1}{4}$ 的无穷等比数列。

故
$$\lim_{n\to\infty} (b_1 + b_2 + \dots + b_n) = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$$
。

28. [解] (1) 设椭圆 C 的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 。

根据题意知
$$\begin{cases} a = 2b \\ a^2 - b^2 = 1 \end{cases}$$
, 解得 $a^2 = \frac{4}{3}$, $b^2 = \frac{1}{3}$

故椭圆
$$C$$
 的方程为 $\frac{x^2}{\frac{4}{3}} + \frac{y^2}{\frac{1}{3}} = 1$ 。

(2) 容易求得椭圆 C 的方程为 $\frac{x^2}{2} + y^2 = 1$.

当直线l的斜率不存在时,其方程为x=1,不符合题意;

当直线l的斜率存在时,设直线l的方程为y = k(x-1)。

由
$$\begin{cases} y = k(x-1) \\ \frac{x^2}{2} + y^2 = 1 \end{cases}$$
 得 $(2k^2 + 1)x^2 - 4k^2x + 2(k^2 - 1) = 0$ 。

设 $P(x_1, y_1), Q(x_2, y_2)$,则

$$x_1 + x_2 = \frac{4k^2}{2k^2 + 1}, x_1x_2 = \frac{2(k^2 - 1)}{2k^2 + 1}, \overrightarrow{F_1P} = (x_1 + 1, y_1), \overrightarrow{F_1Q} = (x_2 + 1, y_2)$$

因为
$$\overrightarrow{F_1P} \perp \overrightarrow{F_1Q}$$
,所以 $\overrightarrow{F_1P} \cdot \overrightarrow{F_1Q} = 0$,即

$$(x_1+1)(x_2+1) + y_1y_2 = x_1x_2 + (x_1+x_2) + 1 + k^2(x_1-1)(x_2-1)$$

$$= (k^2+1)x_1x_2 - (k^2-1)(x_1+x_2) + k^2 + 1$$

$$= \frac{7k^2-1}{2k^2+1} = 0,$$

解得
$$k^2 = \frac{1}{7}$$
, 即 $k = \pm \frac{\sqrt{7}}{7}$ 。

故直线 l 的方程为 $x + \sqrt{7}v - 1 = 0$ 或 $x - \sqrt{7}v - 1 = 0$.

29. (1) 。设动点 P 的坐标为 (x,y) ,点 A 的坐标为 (x_A,y_A) ,则 $\overrightarrow{AP}=(x-x_A,y-y_A)$,

因为F的坐标为(1,0),所以 $\overrightarrow{FA} = (x_A - 1, y_A)$,

由
$$\overrightarrow{AP} = -2\overrightarrow{FA}$$
 得 $(x - x_A, y - y_A) = -2(x_A - 1, y_A)$ 。

即
$$\begin{cases} x - x_A = -2(x_A - 1) \\ y - y_A = -2y_A \end{cases}$$
解得
$$\begin{cases} x_A = 2 - x \\ y_A = -y \end{cases}$$

代入 $y^2 = 4x$, 得到动点 P 的轨迹 方程为 $y^2 = 8 - 4x$ 。

(2) 设点Q的坐标为(t, 0).点Q关于直线v = 2x的对称点为Q'(x, y),

则
$$\begin{cases} \frac{y}{x-t} = -\frac{1}{2} \\ \frac{y}{2} = x+t \end{cases}$$
解得
$$\begin{cases} x = -\frac{3}{5}t \\ y = \frac{4}{5}t \end{cases}$$

若 Q' 在 C 上,将 Q' 的坐标代入 $y^2=4x$,得 $4t^2+15t=0$,即 t=0 或 $t=-\frac{15}{4}$ 。 所以存在满足题意的点 Q ,其坐标为 (0,0) 和 $(-\frac{15}{4},0)$ 。

30. [解] (1) 设 A(0,t), 根据题意, $x_n = 2^{n-1}$ 。由 $\theta_3 = \arctan \frac{1}{3}$, 知 $\tan \theta_3 = \frac{1}{3}$,

$$\overline{\text{mi}} \tan \theta_3 = \tan(\angle OAP_4 - \angle OAP_3) = \frac{\frac{x_4}{t} - \frac{x_3}{t}}{1 + \frac{x_4}{t} \cdot \frac{x_3}{t}} = \frac{t(x_4 - x_3)}{t^2 + x_4 \cdot x_3} = \frac{4t}{t^2 + 32},$$

所以
$$\frac{4t}{t^2+32} = \frac{1}{3}$$
,解得 $t = 4$ 或 $t = 8$ 。

故点 A 的坐标为(0,4) 或(0,8)。

(2) 由题意,点 P_n 的坐标为 $(2^{n-1}, 0)$, $\tan \angle OAP_n = \frac{2^{n-1}}{8\sqrt{2}}$ 。

$$\tan \theta_n = \tan(\angle OAP_{n+1} - \angle OAP_n) = \frac{\frac{2^n}{8\sqrt{2}} - \frac{2^{n-1}}{8\sqrt{2}}}{1 + \frac{2^n}{8\sqrt{2}} \cdot \frac{2^{n-1}}{8\sqrt{2}}} = \frac{2^{n-1}}{8\sqrt{2} + \frac{2^{2n-1}}{8\sqrt{2}}} = \frac{1}{\frac{16\sqrt{2}}{2^n} + \frac{2^n}{8\sqrt{2}}} \circ$$

因为
$$\frac{16\sqrt{2}}{2^n} + \frac{2^n}{8\sqrt{2}} \ge 2\sqrt{2}$$
,所以 $\tan \theta_n \le \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$,

当且仅当
$$\frac{16\sqrt{2}}{2^n} = \frac{2^n}{8\sqrt{2}}$$
, 即 $n = 4$ 时等号成立。

易知
$$0 < \theta_n < \frac{\pi}{2}$$
, $y = \tan x$ 在 $(0, \frac{\pi}{2})$ 上为增函数,

因此,当n=4时, θ_n 最大,其最大值为 $\arctan \frac{\sqrt{2}}{4}$ 。

3.1. (1) 平移后图像对应的函数解析式为 $y = (x+1)^3 - 3(x+1)^2 + 2$,

整理得 $v = x^3 - 3x$,

由于函数 $v = x^3 - 3x$ 是奇函数,

由题设真命题知,函数g(x)图像对称中心的坐标是(1,-2)。

(2) 设 $h(x) = \log_2 \frac{2x}{4-x}$ 的对称中心为 P(a,b), 由题设知函数 h(x+a)-b 是奇函数。

设
$$f(x) = h(x+a) - b$$
, 则 $f(x) = \log_2 \frac{2(x+a)}{4 - (x+a)} - b$, 即 $f(x) = \log_2 \frac{2x + 2a}{4 - a - x} - b$ 。

由不等式 $\frac{2x+2a}{4-a-x} > 0$ 的解集关于原点对称,得a=2。

此时
$$f(x) = \log_2 \frac{2(x+2)}{2-x} - b, x \in (-2, 2)$$
。

任取 $x \in (-2,2)$, 由 f(-x) + f(x) = 0, 得 b = 1,

所以函数 $h(x) = \log_2 \frac{2x}{4-x}$ 图像对称中心的坐标是 (2,1) 。

(3) 此命题是假命题。

举反例说明:函数 f(x) = x 的图像关于直线 y = -x 成轴对称图像,但是对任意实数 a 和 b ,

函数 v = f(x+a)-b, 即 v = x+a-b 总不是偶函数。

修改后的真命题:

"函数 y = f(x) 的图像关于直线 x = a 成轴对称图像"的充要条件是"函数 y = f(x + a) 是偶函数"。

2014 年上海市普通高等学校春季招生统一考试 (暨上海市普通高中学业水平考试) 数学试券

考生注意:

1. 本试卷两考合一,春季高考=学业水平考+附加题;

春季高考, 共32 道试题, 满分150分. 考试时间120分钟

(学业水平考, 共 29 道试题, 满分 120 分. 考试时间 90 分钟;

其中第 30-32 题为附加题,满分 30 分. 考试时间 30 分钟).

2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)

在答题纸上,在试卷上作答一律不得分.

3. 答卷前, 务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号, 并将核对后的条形码

贴在指定位置上,在答题纸反面清楚地填写姓名.

一、填空题(本大题共有 12 题 , 满分 36 分)考生应在答题纸相应编号的空格内直接填写 结果 , 每个空格

填对得 3 分, 否则一律得零分.

- 1. 若4^x = 16,则 x = ____.
- 2. 计算: i(1+i)= (i为虚数单位).
- 3.1、1、2、2、5这五个数的中位数是_____.
- 4. 若函数 $f(x) = x^3 + a$ 为奇函数,则实数 $a = _____$.
- 5.点O(0,0)到直线x+y-4=0的距离是_____.
- 6. 函数 $y = \frac{1}{x+1}$ 的反函数为_____.

7.已知等差数列 $\left\{a_{n}\right\}$ 的首项为 1 ,公差为 2 ,则该数列的前 n 项和 $S_{n}=$
8.已知 $\cos \alpha = \frac{1}{3}$,则 $\cos 2\alpha = $
9.已知 a 、 b \in R^+ 。若 a $+$ b $=$ 1 ,则 ab 的最大值是 .
10 . 在 10 件产品中,有 3 件次品,从中随机取出 5 件,则恰含 1 件次品的概率是(结
果用数值表示) .
11 . 某货船在 O 处看灯塔 M 在北偏东 30° 方向 ,它以每小时 18 海里的速度向正北方向航
行 , 经过 40 分
钟到达 B 处 ,看到灯塔 M 在北偏东 75° 方向 ,此时货船到灯塔 M 的距离为海
里.
12. 已知函数 $f(x) = \frac{x-2}{x-1}$ 与 $g(x) = mx + 1 - m$ 的图像相交于 $A \subset B$ 两点.若动点 P 满足

二、选择题(本大题共有 12 题,满分 36 分)每题有且只有一个正确答案,考生应在答题

将代表答案的小方格涂黑,选对得3分,否则一律得零分.

13. 两条异面直线所成的角的范围是()

则 P 的轨迹方程为

 $\left|\overrightarrow{PA} + \overrightarrow{PB}\right| = 2$,

纸相应编号上,

$$(A) (0, \frac{\pi}{2})$$
; $(B) (0, \frac{\pi}{2}]$; $(C) [0, \frac{\pi}{2})$; $(D) [0, \frac{\pi}{2}]$

14.复数2+i(i为虚数单位)的共轭复数为()

(A)
$$2-i$$
; (B) $-2+i$; (C) $-2-i$; (D) $1+2i$

15. 右图是下列函数中某个函数的部分图像,则该函数是()

(A)
$$y = \sin x$$
; (B) $y = \sin 2x$; (C) $y = \cos x$; (D) $y = \cos 2x$

16. 在 $(x+1)^4$ 的二项展开式中, x^2 项的系数为()

(A) 6;	(B) 4;	(C) 2;	(D) 1	
17. 下列函数中	,在 R 上为增函	函数的是()	
$(A) y = x^2 ;$	$(B) \ y = x \ ;$	$(C) y = \sin^2 \theta$	nx; (1	$D) y = x^3$
18. $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$	$\begin{vmatrix} \sin \theta \\ \sin \theta \end{vmatrix} = ($)		
$(A)\cos 2\theta$;	$(B)\sin 2\theta$; (C) 1;	(<i>D</i>) –1	
19.设 x_0 为函数	$f(x) = 2^x + x$	-2 的零点,贝	$\mathbb{I} x_0 \in ($)
(A) (-2,-1);	(B) (-1,0)	; $(C)(0,1)$); (D)	(1,2)
20 . 若 a > b , d	$c \in R$,则下列	不等式中恒成立	立的是 ()
$(A)\frac{1}{a} < \frac{1}{b} \;;$	$(B) a^2 > b$	2 ; (C) $a c$	>b c ;	$(D) \frac{a}{c^2 + 1} > \frac{b}{c^2 + 1}$
21. 若两个球的	体积之比为8:2	27 ,则它们的	表面积之比	沩()
(A) 2:3	(B) 4:9	(C) 8:	27	(D) $2\sqrt{2}:3\sqrt{3}$
22 . 已知数列{ <i>a</i>	$\{a_n\}$ 是以 q 为公比	比的等比数列。	. 若 <i>b_n</i> = -2	$(a_n$, 则数列 $\{b_n\}$ 是 (

23 . 若点P的坐标为(a,b) , 曲线C的方程为F(x,y)=0 , 则 "F(a,b)=0" 是 "点P在 曲线C上"的()

(A)以q为公比的等比数列; (B)以-q为公比的等比数列;

(C)以 2q 为公比的等比数列; (D)以 -2q 为公比的等比数列

(A) 充分非必要条件; (B) 必要非充分条件; (C) 充分必要条件; (D) 既非充分又非必要条件

24. 如图, 在底面半径和高均为1的圆锥中, $AB \ \ CD$ 是底面圆O的两条互相垂直的直径, E是

母线 PB 的中点 .已知过 CD 与 E 的平面与圆锥侧面的交线是以 E 为顶点的抛物线的-部分,

则该抛物线的焦点到圆锥顶点P的距离为(

- (*A*) 1

- (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{\sqrt{6}}{2}$ (D) $\frac{\sqrt{10}}{4}$

- 三、解答题(本大题共有8题,满分78分)解答下列各题必须在答题纸相应编号的规定区 域内写出必要的步骤.
- 25.(本题满分7分)

已知不等式 $\frac{x-2}{x+1}$ <0的解集为 A, 函数 $y = \lg(x-1)$ 的定义域为集合 B, 求 $A \cap B$.

26.(本题满分7分)

已知函数 $f(x) = x^2 - 4x + a, x \in [-3,3]$. 若 f(1) = 2 , 求 y = f(x) 的最大值和最小值.

27.(本题满分8分)

如图 , 在体积为 $\frac{1}{3}$ 的三棱锥 P-ABC 中 , PA 与平面 ABC 垂直 , AP=AB=1 ,

$$\angle BAC = \frac{\pi}{2}$$
,

 $E \setminus F$ 分别是 $PB \setminus AB$ 的中点.求异面直线 EF 与 PC 所成的角的大小(结果用反三角函数值表示).

28.(本题满分13分)本题共有2个小题,第1小题满分4分,第2小题满分9分.

已知椭圆 $C: \frac{x^2}{a^2} + y^2 = 1(a > 1)$ 的左焦点为F,上顶点为B.

- (1) 若直线 FB 的一个方向向量为 $(1, \frac{\sqrt{3}}{3})$, 求实数 a 的值 ;
- (2) 若 $a=\sqrt{2}$,直线 l:y=kx-2 与椭圆 C 相交于 M 、 N 两点,且 $\overrightarrow{FM}\cdot\overrightarrow{FN}=3$,求实数 k 的值 .

29.(本题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.

已知数列 $\left\{a_n\right\}$ 满足 $a_n>0$,双曲线 $C_n: \frac{x^2}{a_n} - \frac{y^2}{a_{n+1}} = \mathbf{1}(n \in N^*)$.

- (1) 若 $a_{\scriptscriptstyle 1}=1, a_{\scriptscriptstyle 2}=2$,双曲线 $C_{\scriptscriptstyle n}$ 的焦距为 $2c_{\scriptscriptstyle n}$, $c_{\scriptscriptstyle n}=\sqrt{4n-1}$, 求 $\left\{a_{\scriptscriptstyle n}\right\}$ 的通项公式;
- (2)如图 , 在双曲线 C_n 的右支上取点 $P_n(x_{P_n},n)$, 过 P_n 作 y 轴的垂线 , 在第一象限内交 C_n

的

渐近线于点 Q_n ,联结 OP_n ,记 ΔOP_nQ_n 的面积为 S_n .若 $\lim_{n\to\infty}a_n=2$,求 $\lim_{n\to\infty}S_n$.

(关于数列极限的运算 ,还可参考如下性质 :若 $\lim_{n\to\infty}u_n=A(u_n\geq 0)$,则 $\lim_{n\to\infty}\sqrt{u_n}=\sqrt{A}$)

30.(本题满分8分)

已知直角三角形 ABC 的两直角边 $AC \setminus BC$ 的边长分别为 b,a ,如图 ,过 AC 边的 n 等分点 A_i

作 AC 边的垂线 d_i ,过 BC 边的 n 等分点 B_i 和顶点 A 作直线 l_i ,记 d_i 与 l_i 的交点为 $P_i(i=1,2,\cdots,n-1)~.$

31.(本题满分8分)

某人造卫星在地球赤道平面绕地球飞行,甲、乙两个监测点分别位于赤道上东经 131° 和 147°, 在某时刻

测得甲监测点到卫星的距离为 1537.45 千米, 乙监测点到卫星的距离为 887.64 千米。假设地球赤道是一个半径

为 6378 千米的圆,求此时卫星所在位置的高度(结果精确到 0.01 千米)和经度(结果精确到 0.01°).

32.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.

如果存在非零常数 c ,对于函数 y=f(x) 定义域 R 上的任意 x ,都有 f(x+c)>f(x) 成立 ,

那么称函数为 "Z函数".

- (1) 求证:若 $y = f(x)(x \in R)$ 是单调函数,则它是"Z函数";
- (2) 若函数 $g(x) = ax^3 + bx^2$ 时 "Z 函数", 求实数 a,b 满足的条件.

参考答案

一、填空题(第1题至第12题)

1, 2 2, -1+i 3, 2 4, 0 5, $2\sqrt{2}$ 6, $y = \frac{1}{r} - 1$

7, n^2 8, $-\frac{7}{9}$ 9, $\frac{1}{4}$ 10, $\frac{5}{12}$ 11, $6\sqrt{2}$

 $(x-1)^2 + (y-1)^2 = 1$

二、选择题(第13题至第24题)

13, B 14, A 15, B 16, A 17, D 18, C

19, C 20, D 21, *B* 22, *A* 23, C

24, D

三、解答题 (第25题至第29题)

25、解: $\frac{x-2}{x-1}$ <0的解集是 A = (-1,2) ;由x-1>0,得x>1 ,即 $B = (1,+\infty)$;因此 ,

 $A \cap B = (1,2)$.

26、解:由f(1) = 1 - 4 + a = 2,得a = 5, $f(x) = x^2 - 4x + 5 = (x - 2)^2 + 1$,

因为当 $x \in [-3,2]$ 时, f(x)单调递减;当 $x \in [2,3]$ 时, f(x)单调递增;

由于 f(-3) = 26, f(2) = 1, f(3) = 2 ,所以当 $x \in [-3,3]$ 时, $f(x)_{\text{max}} = 26$,

 $f(x)_{\min} = 1$.

27、 \mathbf{M} : $\mathbf{H} : \mathbf{H} V = \frac{1}{3} S_{\Delta ABC} \cdot |PA| = \frac{1}{3} \times \frac{1}{2} \times 1 \times |AC| \times 1 = \frac{1}{3}, \ \#|AC| = 2$

因为 EF // PA ,所以异面直线 EF 与 PC 所成的角为 $\angle APC$,

由直角三角形 PAC ,则 $tan \angle APC = 2$,异面直线 EF 与 PC 所成角为 arctan 2 .

28、解:(1) 易知 $B(0,1), F(-\sqrt{a^2-1},0)$, 所以 $\overrightarrow{FB} = (\sqrt{a^2-1},1)$

又因为 $(1,\frac{\sqrt{3}}{3})$ 是直线FB的一个方向向量,所以 $\frac{\sqrt{3}}{3} \times \sqrt{a^2-1} = 1$,因为a > 1,所以

a=2.

(2)由
$$a = \sqrt{2}$$
,知 $F(-1,0)$,联立
$$\begin{cases} y = kx - 2 \\ \frac{x^2}{2} + y^2 = 1 \end{cases}$$
 得 $(1 + 2k^2)x^2 - 8kx + 6 = 0$.

设
$$M(x_1, y_1), N(x_2, y_2)$$
 , 则 $\overrightarrow{FM} = (x_1 + 1, y_1), \overrightarrow{FN} = (x_2 + 1, y_2)$

$$x_1 + x_2 = \frac{8k}{1 + 2k^2}, x_1x_2 = \frac{6}{1 + 2k^2}$$

$$\overrightarrow{FM} \cdot \overrightarrow{FN} = (x_1 + 1)(x_2 + 1) + y_1 y_2 = (x_1 + 1)(x_2 + 1) + (kx_1 - 2)(kx_2 - 2)$$
$$= (1 + k^2)x_1 x_2 + (1 - 2k)(x_1 + x_2) + 5 = \frac{8k + 11}{1 + 2k^2} = 3$$

解得
$$k=2$$
 或 $k=-\frac{2}{3}$, 又因为 $\Delta>0$, 故 $k=2$.

29、(1) 由题意 ,
$$a_n + a_{n+1} = 4n - 1$$
 则 $a_{n+1} + a_{n+2} = 4n + 3$; 两式相减得: $a_{n+2} - a_n = 4n + 3$

所以
$$\{a_{2k-1}\}$$
 是以 1 为首项 , 4 为公差的等差数列 , 得 $a_{2k-1}=1+4(k-1)=4k-3$;

$$\{a_{2k}\}$$
 是以 2 为首项 , 4 为公差的等差数列 , 得 $a_{2k}=2+4(k-1)=4k-2$;

所以
$$a_n = \begin{cases} 2n-1, n = 2k-1 \\ 2n-2, n = 2k \end{cases} (k \in N^*).$$

(2) 由题意,则
$$\frac{x_{p_n}^2}{a_n} - \frac{n^2}{a_{n+1}} = 1$$
,所以 $x_{p_n} = \sqrt{\frac{a_n}{a_{n+1}}} n^2 + a_n$

双曲线的渐近线
$$l_{\mathit{OQ}_n}: y = \sqrt{\frac{a_{n+1}}{a_n}} x$$
 ,所以 $x_{\mathit{Q}_n} = \sqrt{\frac{a_n}{a_{n+1}}} n$

$$\lim_{n\to\infty} S_n = \frac{1}{2} \times \lim_{n\to\infty} \frac{\lim_{n\to\infty} a_n}{\sqrt{\lim_{n\to\infty} a_n} + \lim_{n\to\infty} a_n \times \lim_{n\to\infty} \frac{1}{n^2} + \sqrt{\lim_{n\to\infty} a_n}} = \frac{1}{2} \ ,$$

$$\text{FFLL} \lim_{n \to \infty} S_n = \frac{1}{2} \lim_{n \to \infty} n \left(\sqrt{\frac{a_n}{a_{n+1}}} n^2 + a_n - \sqrt{\frac{a_n}{a_{n+1}}} n \right) = \frac{1}{2} \lim_{n \to \infty} \frac{n a_n}{\sqrt{\frac{a_n}{a_{n+1}}} n^2 + a_n} + \sqrt{\frac{a_n}{a_{n+1}}} n$$

$$=\frac{1}{2}\lim_{n\to\infty}\frac{a_n}{\sqrt{\frac{a_n}{a_{n+1}}+\frac{a_n}{n^2}}+\sqrt{\frac{a_n}{a_{n+1}}}}=\frac{1}{2}\times\lim_{n\to\infty}\frac{\lim\limits_{n\to\infty}a_n}{\sqrt{\frac{\lim\limits_{n\to\infty}a_n}{\lim\limits_{n\to\infty}a_n}+\lim\limits_{n\to\infty}a_n\times\lim\limits_{n\to\infty}\frac{1}{n^2}}+\sqrt{\frac{\lim\limits_{n\to\infty}a_n}{\lim\limits_{n\to\infty}a_{n+1}}}}=\frac{1}{2};$$
 Figure
$$\lim_{n\to\infty}S_n=\frac{1}{2}.$$

30、解:以 A 为坐标原点,AC方向为 x 轴,过 A 作 AC 的垂线为 y 轴建立直角坐标系;

则
$$A_i(\frac{i}{n}b,0)$$
 , $B_i(b,\frac{i}{n}a)$, $1 \le i \le n-1$ $(i \in N^*)$; $\therefore l_i$: $y = \frac{ai}{bn}x$, d_i : $x = \frac{i}{n}b$;
$$\begin{cases} y = \frac{ai}{bn}x \\ x = \frac{i}{n}b \end{cases} \Rightarrow P_i(\frac{i}{n}b,\frac{i^2}{n^2}a) \Rightarrow y = \frac{a}{b^2}x^2 \quad \therefore$$
 存在满足条件的圆锥曲线(抛物线 $y = \frac{a}{b^2}x$).

31、解:如图,建立赤道截面平面图,其中O为球心,A、B分别为甲、乙监测点,C为卫星所在位置,

D 为卫星在地赤道上的投影 (由于题目中未说明 C 的位置 ,且 AC > BC ,故有以下三种情况) .

易得
$$|OA| = |OB| = |OD| = 6378$$
 , $\angle AOB = 16^{\circ}$, $|AC| = 1537.45$, $|BC| = 887.64$

•:

在

 ΔAOB

中

$$|AB| = \sqrt{|OA|^2 + |OB|^2 - 2|OA||OB| \cdot \cos \angle AOB} \approx 1775.292 > |AC| > |BC|$$
;

∴ 在 $\triangle ABC$ 中 , $\angle ACB$ 最大 , 即 $\angle BAC$ 、 $\angle BAC = 30^{\circ}$ 都是锐角 , 所以选择第三张图 ;

$$\therefore \cos \angle BAC = \frac{\left|AB\right|^2 + \left|AC\right|^2 - \left|BC\right|^2}{2\left|AB\right|\left|AC\right|} \approx \frac{\sqrt{3}}{2} \Rightarrow \angle BAC \approx 30.000^\circ \Rightarrow \angle OAC \approx 112.000^\circ ;$$

$$\therefore 在 \Delta AOC 中 , |OC| = \sqrt{|AC|^2 + |AO|^2 - 2|AC||AO| \cdot \cos \angle OAC} \approx 7098.543 ;$$

∴
$$h = |OC| - |OD| \approx 720.543$$
 , 即卫星高度为 $720.54km$;

又::在
$$\Delta BOC$$
中, $\cos \angle BOC = \frac{\left|OB\right|^2 + \left|OC\right|^2 - \left|BC\right|^2}{2\left|OB\right|\left|OC\right|} \approx 0.997 \Rightarrow \angle BOC \approx 4.415^{\circ}$;

∴ 147°-4.415°≈142.58°∴即卫星位于赤道上东经142.58°.

32、解:

(1)[证明]

- ① 当函数 y = f(x) 是单调递增函数时,则 f(x+1) > f(x) 对任意 x 恒成立;
 - \therefore 存在非零常数 c=1 , 使得对任意 x 都有 f(x+c) > f(x) 成立 ;

$$\therefore y = f(x)$$
是 " Z 函数";

- ② 当函数 y = f(x) 是单调递减函数时,则 f(x-1) > f(x) 对任意 x 恒成立;
 - ∴ 存在非零常数 c = -1 , 使得对任意 x 都有 f(x+c) > f(x) 成立 ;
 - $\therefore y = f(x)$ 是 "Z函数";
- (2) 由题意,若函数 $g(x) = ax^3 + bx^2$ 是 "Z 函数",则存在非零常数 c ,对于定义域 R 上 的任意 x ,

都有g(x+c) > g(x)恒成立,即 $a(x+c)^3 + b(x+c)^2 > ax^3 + bx^2$;

化简后,得 $3acx^2 + (3ac^2 + 2bc)x + (ac^3 + bc^2) > 0$ 恒成立;

$$\operatorname{col} \left\{ \begin{aligned} &3ac > 0 \\ &\Delta = (3ac^2 + 2bc)^2 - 4 \cdot 3ac(ac^3 + bc^2) < 0 \end{aligned} \right.$$

化简后,得
$$\begin{cases} a > 0 \\ c > \frac{2\sqrt{3}}{3} \cdot \frac{|b|}{a} \ge 0 \end{cases}$$

$$\begin{cases} a < 0 \\ c < -\frac{2\sqrt{3}}{3} \cdot \frac{|b|}{a} \le 0 \end{cases}$$

$$\therefore$$
只需满足条件 $\begin{cases} a \neq 0 \\ b \in R \end{cases}$.

2015 年上海市春季高考数学试卷(学业水平考试)

2015.1

一. 填空题(本大题共12题,每题3分,共36分)

- 1. 设全集为 $U = \{1, 2, 3\}$, $A = \{1, 2\}$,若集合则 $C_U A =$ _____;
- 2. 计算: $\frac{1+i}{i} = _____;$ (其中i为虚数单位)
- 3. 函数 $y = \sin(2x + \frac{\pi}{4})$ 的最小正周期为_____;
- 4. 计算: $\lim_{n\to\infty} \frac{n^2-3}{2n^2+n} = ____;$
- 5. 以(2.6) 为圆心, 1为半径的圆的标准方程为;
- 6. 已知向量 $\vec{a} = (1,3)$, $\vec{b} = (m,-1)$,若 $\vec{a} \perp \vec{b}$,则 $m = ______$;
- 7. 函数 $y = x^2 2x + 4$, $x \in [0,2]$ 的值域为 ;
- 8. 若线性方程组的增广矩阵为 $\begin{pmatrix} a & 0 & 2 \\ 0 & 1 & b \end{pmatrix}$, 解为 $\begin{cases} x = 2 \\ v = 1 \end{cases}$, 则 a + b =_____;
- 9. 方程 $\lg(2x+1) + \lg x = 1$ 的解集为_____;
- 10. 在 $(x+\frac{1}{x^2})^9$ 的二项展开式中,常数项的值为_____;
- 11. 用数字组成无重复数字的三位数,其中奇数的个数为____;(结果用数值表示)
- 12. 已知点 A(1,0),直线 l: x=-1,两个动圆均过点 A 且与 l 相切,其圆心分别为 C_1 、 C_2 , 若动点M满足 $2\overline{C_2M} = \overline{C_2C_1} + \overline{C_2A}$,则M的轨迹方程为______;

二. 选择题(本大题共12题,每题3分,共36分)

13. 若a < 0 < b,则下列不等式恒成立的是(

A.
$$\frac{1}{a} > \frac{1}{b}$$
 B. $-a > b$ C. $a^2 > b^2$ D. $a^3 < b^3$;

B.
$$-a > b$$

C.
$$a^2 > b^2$$

D.
$$a^3 < b^3$$

14. 函数
$$y = x^2 (x \ge 1)$$
 的反函数为 ()

A.
$$y = \sqrt{x} \ (x \ge 1)$$

B.
$$y = \sqrt{-x} \ (x \le -1)$$

$$C. \quad y = \sqrt{x} \ (x \ge 0)$$

$$D. \quad y = \sqrt{-x} \ (x \le 0)$$

- 15. 不等式 $\frac{2-3x}{x-1} > 0$ 的解集为 (
- A. $(-\infty, \frac{3}{4})$ B. $(-\infty, \frac{2}{2})$ C. $(-\infty, \frac{2}{2}) \cup (1, +\infty)$ D. $(\frac{2}{2}, 1)$
- 16. 下列函数中,是奇函数且在(0,+∞)上单调递增的为(

- A. $v = x^2$ B. $v = x^{\frac{1}{3}}$ C. $y = x^{-1}$ D. $y = x^{-\frac{1}{2}}$
- 17. 直线 3x-4y-5=0 的倾斜角为 (

- A. $\arctan \frac{3}{4}$ B. $\pi \arctan \frac{3}{4}$ C. $\arctan \frac{4}{3}$ D. $\pi \arctan \frac{4}{3}$
- 18. 底面半径为1, 母线长为2的圆锥的体积为(

- A. 2π B. $\sqrt{3}\pi$ C. $\frac{2\pi}{3}$ D. $\frac{\sqrt{3}\pi}{3}$
- 19. 以(-3,0)和(3,0)为焦点,长轴长为8的椭圆方程为(
- A. $\frac{x^2}{16} + \frac{y^2}{25} = 1$ B. $\frac{x^2}{16} + \frac{y^2}{7} = 1$ C. $\frac{x^2}{25} + \frac{y^2}{16} = 1$ D. $\frac{x^2}{7} + \frac{y^2}{16} = 1$
- 20. 在复平面上,满足|z-1| = |z+i| (i为虚数单位)的复数 z 对应的点的轨迹为(
- B. 圆
- C. 线段
- 21. 若无穷等差数列 $\{a_n\}$ 的首项 $a_1>0$,公差d<0, $\{a_n\}$ 的前n项和为 S_n ,则(
 - A. S_n 单调递减
- B. S_n 单调递增
- C. S_n 有最大值
- D. S_n 有最小值
- 22. 已知a > 0, b > 0, 若a + b = 4, 则()
 - A. $a^2 + b^2$ 有最小值
- B. \sqrt{ab} 有最小值
- C. $\frac{1}{a} + \frac{1}{h}$ 有最大值 D. $\frac{1}{\sqrt{a} + \sqrt{h}}$ 有最大值
- 23. 组合数 $C_n^m + 2C_n^{m-1} + C_n^{m-2} (n \ge m \ge 2, m, n \in N^*)$ 恒等于 (

 - A. C_{n+2}^m B. C_{n+2}^{m+1} C. C_{n+1}^m D. C_{n+1}^{m+1}
- 24. 设集合 $P_1 = \{x \mid x^2 + ax + 1 > 0\}$, $P_2 = \{x \mid x^2 + ax + 2 > 0\}$, $Q_1 = \{x \mid x^2 + x + b > 0\}$,
 - $Q_2 = \{x \mid x^2 + 2x + b > 0\}$, 其中 $a, b \in R$, 下列说法正确的是(
 - A.对任意a, P_1 是 P_2 的子集; 对任意的b, Q_1 不是 Q_2 的子集
 - B. 对任意a, P_1 是 P_2 的子集; 存在b, 使得 Q_1 是 Q_2 的子集
 - C. 存在 a, 使得 P_1 不是 P_2 的子集; 对任意的 b, Q_1 不是 Q_2 的子集

D. 存在a, 使得 P_1 不是 P_2 的子集; 存在b, 使得 Q_1 是 Q_2 的子集

三. 解答题(本大题共5题,共8+8+8+12+12=48分)

25. 如图,在正四棱柱中 $ABCD-A_1B_1C_1D_1$, AB=1, D_1B 和平面 ABCD 所成的角的大 小为 $\arctan\frac{3\sqrt{2}}{4}$,求该四棱柱的表面积;

26. 已知 a 为实数,函数 $f(x) = \frac{x^2 + ax + 4}{x}$ 是奇函数,求 f(x) 在 $(0, +\infty)$ 上的最小值及取 到最小值时所对应的 x 的值;

27. 某船在海平面 A 处测得灯塔 B 在北偏东 30° 方向,与 A 相距 6.0 海里,船由 A 向正北方向航行 8.1 海里到达 C 处,这时灯塔 B 与船相距多少海里(精确到 0.1 海里)? B 在船的什么方向(精确到 1°)?

28. 已知点 F_1 、 F_2 依次为双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a,b>0) 的左右焦点, $\left|F_1F_2\right| = 6$, $B_1(0,-b)$, $B_2(0,b)$;

- (1) 若 $a=\sqrt{5}$,以 $\vec{d}=(3,-4)$ 为方向向量的直线 l 经过 B_1 ,求 F_2 到 l 的距离;
- (2) 若双曲线 C 上存在点 P ,使得 $\overrightarrow{PB_1} \cdot \overrightarrow{PB_2} = -2$,求实数 b 的取值范围;

29. ī	已知函数 $f(x) = 2^{x-2} $	$-2 \mid (x \in \mathbf{R}) :$
(1))解不等式 $f(x) < 2$;	

(2) 数列 $\{a_n\}$ 满足 $a_n = f(n)$ $(n \in \mathbb{N}^*)$, S_n 为 $\{a_n\}$ 的前 n 项和,对任意的 $n \geq 4$,不等式 $S_n + \frac{1}{2} \geq ka_n$ 恒成立,求实数 k 的取值范围;

附加题

	. 1/4	并巡(十八四)	そろ感,母感ろ	$\mathcal{D}_{\mathbf{y}}$				
1.	对于	千集合 A 、 B ,	" A ≠ B " 是 '	" $A \cap B \not\subseteq A \setminus$	JB"的()		
	A.	充分非必要条件	件 B	. 必要非充分	条件			
	C.	充要条件	D	. 既非充分也	非必要条何	牛		
2.	对于	F任意实数 a、	$b, (a-b)^2 \ge$	kab 均成立,	则实数 k	的取值范围	是()
	A.	{-4,0}	B. [-4,0]	C. (−∞,	,0]	D. (−∞,-	-4]U[0,-	+∞)
3.	已知	田数列 $\{a_n\}$ 满足	$a_n + a_{n+4} = a_n$	$a_{n+1} + a_{n+3} (n \in$	N^*),那么	么()		
	A.	$\{a_n\}$ 是等差数	列	B. $\{a_{2n}\}$,} 是等差	数列		
	C.	{a _{2n} } 是等差	数列	D. $\{a_3\}$,,,} 是等差	数列		

- 二. 填空题(本大题共3题,每题3分,共9分)
- 5. 已知圆心为 O,半径为 1 的圆上有三点 A、B、C,若 $7\overrightarrow{OA}+5\overrightarrow{OB}+8\overrightarrow{OC}=\vec{0}$,则 $|\overrightarrow{BC}|=\underline{\qquad};$

6. 函数 f(x) 与 g(x) 的图像拼成如图所示的"Z"字形 折线段 ABOCD,不含 A(0,1), B(1,1), O(0,0), C(-1,-1), D(0,-1) 五个点,若 f(x) 的图像关于 原点对称的图形即为 g(x) 的图像,则其中一个函数 的解析式可以为______;

三. 解答题 (本大题 12 分)

- 7. 对于函数 f(x)、g(x),若存在函数 h(x),使得 $f(x) = g(x) \cdot h(x)$,则称 f(x) 是 g(x) 的 " h(x) 关联函数"
- (1) 已知 $f(x) = \sin x$, $g(x) = \cos x$,是否存在定义域为 \mathbf{R} 的函数 h(x),使得 f(x) 是 g(x) 的 " h(x) 关联函数"?若存在,写出 h(x) 的解析式;若不存在,说明理由;
- (2) 已知函数 f(x)、 g(x) 的定义域为 $[1,+\infty)$, 当 $x \in [n,n+1)$ $(n \in \mathbb{N}^*)$ 时, $f(x) = 2^{n-1}\sin\frac{x}{n}-1$,若存在函数 $h_1(x)$ 及 $h_2(x)$,使得 f(x) 是 g(x) 的 " $h_1(x)$ 关联函数",且 g(x) 是 f(x) 的 " $h_2(x)$ 关联函数",求方程 g(x) = 0 的解;

参考答案

一. 填空题

1. $\{3\}$; 2. 1-i; 3. π ; 4. 0.5;

5. $(x-2)^2 + (y-6)^2 = 1$; 6. 3; 7. [3,4]; 8. 2;

9. $\{2\}$; 10. 84; 11. 320; 12. $y^2 = 2x - 1$;

二. 选择题

13. D;

14. A;

15. D;

16. B;

17. A;

18. D;

19. B;

20. D;

21. C;

22. A;

23. A;

24. A;

三. 解答题

25. 8;

26. a = 0, x = 2, $f_{\min}(x) = 4$;

27. $BC \approx 4.2$ 海里, 南偏东 46° ;

28. (1) d = 3.6; (2) $b \ge \frac{\sqrt{22}}{2}$;

29. (1) x < 4; (2) $k \le \frac{25}{14}$;

附加题

1. C; 2. B; 3. D;

4. $2\sqrt{2}$; 5. $\sqrt{3}$; 6. $f(x) = \begin{cases} x, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$;

7. (1) 不存在,定义域不为 R; (2) $x = \frac{\pi}{2}$;

2016 年上海市春季高考数学试卷

一.填空题(本大题共 12 题,每题 3 分,共 36 分)
1. 复数 3+4i(i 为虚数单位)的实部是
2. 若 log ₂ (x+1) =3,则 x=
3. 直线 y=x - 1 与 直线 y=2 的夹角为
4. 函数 y=√x - 2的定义域为
1 -35
1 - 3 5 5. 三阶行列式 4 0 0中,元素 5 的代数余子式的值为 -1 2 1
-1 2 1
6. 函数 $f(x) = \frac{1}{x} + \epsilon$ 的反函数的图象经过点 (2, 1),则实数 $a = 2$.
7. 在△ABC 中,若 A=30°,B=45°,BC=√6,则 AC=
8. 4个人排成一排照相,不同排列方式的种数为(结果用数值表示).
9. 无穷等比数列 $\{a_n\}$ 的首项为 2,公比为 $\frac{1}{3}$,则 $\{a_n\}$ 的各项的和为
10. 若 $2+i$ (i 为虚数单位)是关于 x 的实系数一元二次方程 $x^2+ax+5=0$ 的一个虚根,则
a=
11. 函数 y=x ² - 2x+1 在区间[0, m]上的最小值为 0,最大值为 1,则实数 m 的取值范围是
定 12. 在平面直角坐标系 xOy 中,点 A,B 是圆 x²+y² - 6x+5=0 上的两个动点,且满足 AB =2√ʒ,
则 $ OA+OB $ 的最小值为
ONTOD DAK 1 E.73
二.选择题(本大题共 12 题,每题 3 分,共 36 分)
13. 若 sinα > 0,且 tanα < 0,则角α的终边位于()
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
14. 半径为1的球的表面积为()
A. π B. $\frac{4}{3}\pi$ C. 2π D. 4π
15. 在($1+x$) 6 的二项展开式中, x^2 项的系数为()
A. 2 B. 6 C. 15 D. 20
16. 幂函数 y=x ⁻² 的大致图象是()

- A. 1 B. 2 C. (1, 0) D. (0, 2)
- 18. 设直线 1 与平面α平行,直线 m 在平面α上,那么()
- A. 直线1平行于直线 m B. 直线1与直线 m 异面
- C. 直线1与直线 m 没有公共点 D. 直线1与直线 m 不垂直
- 19. 在用数学归纳法证明等式 $1+2+3+...+2n=2n^2+n$ ($n\in N^*$) 的第(ii)步中,假设 n=k 时原等式成立,那么在 n=k+1 时需要证明的等式为(
- A. 1+2+3+...+2k+2 (k+1) =2 k^2+k+2 (k+1) ²+ (k+1)
- B. $1+2+3+...+2k+2 (k+1) = 2 (k+1)^{2} + (k+1)$
- C. $1+2+3+...+2k+2k+1+2(k+1)=2k^2+k+2(k+1)^2+(k+1)$
- D. $1+2+3+...+2k+2k+1+2(k+1) = 2(k+1)^{2}+(k+1)$
- 20. 关于双曲线 $\frac{\mathbf{x}^2}{16} \frac{\mathbf{y}^2}{4} = 1$ 与 $\frac{\mathbf{y}^2}{16} \frac{\mathbf{x}^2}{4} = 1$ 的焦距和渐近线,下列说法正确的是()
- A. 焦距相等, 渐近线相同 B. 焦距相等, 渐近线不相同
- C. 焦距不相等,渐近线相同 D. 焦距不相等,渐近线不相同
- 21. 设函数 y=f(x) 的定义域为 R,则"f(0)=0"是"函数 f(x) 为奇函数"的(
- A. 充分而不必要条件 B. 必要而不充分条件
- C. 充分必要条件 D. 既不充分也不必要条件
- 22. 下列关于实数 a, b 的不等式中, 不恒成立的是()
- A. $a^2+b^2 \ge 2ab$ B. $a^2+b^2 \ge -2ab$ C. $(\frac{a+b}{2})^2 > ab$ D. $(\frac{a+b}{2})^2 > -ab$
- 23. 设单位向量 e_1 与 e_2 既不平行也不垂直,对非零向量 $\mathbf{a}=\mathbf{x}_1e_1+\mathbf{y}_1e_2$ 、 $\mathbf{b}=\mathbf{x}_2e_1+\mathbf{y}_2e_2$ 有结论:
- ①若 x_1y_2 x_2y_1 =0,则 $a \parallel \vec{t}$;
- ②若 $x_1x_2+y_1y_2=0$,则 $a \perp \hat{t}$.

关于以上两个结论,正确的判断是()

A. (1)成立, (2)不成立 B. (1)不成立, (2)成立

C. ①成立, ②成立 D. ①不成立, ②不成立

24. 对于椭圆
$$C_{(a,b)}$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a,b) > 0$, $a \neq b$). 若点 (x_0,y_0) 满足 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$.则

称该点在椭圆 $C_{(a, b)}$ 内,在平面直角坐标系中,若点 A 在过点(2,1)的任意椭圆 $C_{(a, b)}$ 内或椭圆 $C_{(a, b)}$ 上,则满足条件的点 A 构成的图形为(

A. 三角形及其内部 B. 矩形及其内部

C. 圆及其内部 D. 椭圆及其内部

三.解答题(本大题共5题,共8+8+8+12+12=48分)

25. 如图,已知正三棱柱 ABC - $A_1B_1C_1$ 的体积为 $9\sqrt{3}$,底面边长为 3,求异面直线 BC_1 与 AC 所成的角的大小.

26. 已知函数 $f(x)=\sin x+\sqrt{3}\cos x$,求 f(x) 的最小正周期及最大值,并指出 f(x) 取得最大值时 x 的值.

27. 如图, 汽车前灯反射镜与轴截面的交线是抛物线的一部分, 灯口所在的圆面与反射镜的轴垂直, 灯泡位于抛物线的焦点 F 处. 已知灯口直径是 24cm, 灯深 10cm, 求灯泡与反射镜的顶点 O 的距离.

28. 已知数列{a_n}是公差为 2 的等差数列.

(1) a₁, a₃, a₄ 成等比数列, 求 a₁ 的值;

(2) 设 a_1 = - 19,数列 $\{a_n\}$ 的前 n 项和为 S_n . 数列 $\{b_n\}$ 满足 b_1 =1, b_{n+1} - b_n = $(\frac{1}{2})^n$,记

 $c_n = S_n + 2^{n-1} \cdot b_r$ $(n \in N^*)$,求数列 $\{c_n\}$ 的最小项 c_{n_0} (即 $c_{n_0} \le c_r$ 对任意 $n \in N^*$ 成立).

29. 对于函数 f(x), g(x), 记集合 $D_{f>g} = \{x | f(x) > g(x)\}$.

(2) 设 $f_1(x) = x - 1$, $f_2(x) = (\frac{1}{3})^x + a \cdot 3^x + 1$, h(x) = 0, 如果 $D_{f_1} > h \cup D_{f_2} > h = R$. 求实数 a 的取值范围.

二卷一.选择题:

30. 若函数 $f(x) = \sin(x+\phi)$ 是偶函数,则 ϕ 的一个值是()

A. 0 B.
$$\frac{\pi}{2}$$
 C. π D. 2π

31. 在复平面上,满足|z-1|=4的复数 z的所对应的轨迹是()

A. 两个点 B. 一条线段 C. 两条直线 D. 一个圆

32. 已知函数 y=f(x)的图象是折线 ABCDE,如图,其中 A(1,2),B(2,1),C(3,

2),D (4, 1),E (5, 2),若直线 y=kx+b 与 y=f (x) 的图象恰有四个不同的公共点,则 k 的取值范围是()

A. $(-1, 0) \cup (0, 1)$ B. $(-\frac{1}{3}, \frac{1}{3})$ C. (0, 1] D. $[0, \frac{1}{3}]$

二.填空题:

33. 椭圆
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
的长半轴的长为_____.

34. 已知圆锥的母线长为 10, 母线与轴的夹角为 30°, 则该圆锥的侧面积为

35. 小明用数列 $\{a_n\}$ 记录某地区 2015 年 12 月份 31 天中每天是否下过雨,方法为: 当第 k 天下过雨时,记 a_k =1,当第 k 天没下过雨时,记 a_k = - 1($1 \le k \le 31$),他用数列 $\{b_n\}$ 记录该地区该月每天气象台预报是否有雨,方法为: 当预报第 k 天有雨时,记 b_n =1,当预报第 k 天没有雨时,记 b_n = - 1 记录完毕后,小明计算出 $a_1b_1+a_2b_2+a_3b_3+...+a_{31}b_{31}=25$,那么该月气象台预报准确的总天数为_______.

三.解答题:

36. 对于数列 $\{a_n\}$ 与 $\{b_n\}$,若对数列 $\{c_n\}$ 的每一项 c_n ,均有 $c_k=a_k$ 或 $c_k=b_k$,则称数列 $\{c_n\}$ 是 $\{a_n\}$ 与 $\{b_n\}$ 的一个"并数列".

(1) 设数列 $\{a_n\}$ 与 $\{b_n\}$ 的前三项分别为 a_1 =1, a_2 =3, a_3 =5, b_1 =1, b_2 =2, b_3 =3,若 $\{c_n\}$ 是 $\{a_n\}$ 与 $\{b_n\}$ 一个"并数列"求所有可能的有序数组(c_1 , c_2 , c_3);

(2) 已知数列 $\{a_n\}$, $\{c_n\}$ 均为等差数列, $\{a_n\}$ 的公差为 1,首项为正整数 t; $\{c_n\}$ 的前 10 项和为 - 30,前 20 项的和为 - 260,若存在唯一的数列 $\{b_n\}$,使得 $\{c_n\}$ 是 $\{a_n\}$ 与 $\{b_n\}$ 的一个"并数列",求 t 的值所构成的集合.

2016年上海市春季高考数学试卷

参考答案与试题解析

一.填空题(本大题共12题,每题3分,共36分)

1. 复数 3+4i(i 为虚数单位)的实部是 3 .

【考点】复数的基本概念.

【分析】根据复数的定义判断即可.

【解答】解: 复数 3+4i(i 为虚数单位)的实部是 3, 故答案为: 3.

2. 若 log₂ (x+1) =3,则 x=__7_.

【考点】对数的运算性质: 函数的零点.

【分析】直接利用对数运算法则化简求解即可.

【解答】解: $\log_2(x+1) = 3$,可得 x+1=8,解得 x=7. 故答案为: 7.

3. 直线 y=x - 1 与直线 y=2 的夹角为_____.

【考点】两直线的夹角与到角问题.

【分析】由题意可得直线的斜率,可得倾斜角,进而可得直线的夹角.

【解答】解: : 直线 y=x-1 的斜率为 1, 故倾斜角为 $\frac{\pi}{4}$,

又::直线 y=2 的倾斜角为 0,

故直线 y=x-1 与直线 y=2 的夹角为 $\frac{\pi}{4}$,

故答案为: $\frac{\pi}{4}$.

4. 函数 y=√x - 2的定义域为 [2, +∞).

【考点】函数的定义域及其求法.

【分析】直接由根式内部的代数式大于等于0求解即可.

【解答】解: 由 x - 2≥0 得, x≥2.

::原函数的定义域为[2,+∞).

故答案为[2, +∞).

【考点】高阶矩阵.

【分析】根据余子式的定义可知,在行列式中划去第1行第3列后所余下的2阶行列式带上符号(-1)^{i+j},求出其表达式的值即可.

【解答】解:元素 5 的代数余子式为: $(-1)^{1+3}$ | 4 0 = $(4\times2+1\times0)$ = 8.

::元素 5 的代数余子式的值为 8.

故答案为: 8.

6. 函数 $f(x) = \frac{1}{x} + \epsilon$ 的反函数的图象经过点 (2, 1), 则实数 a = 1.

【考点】反函数.

【分析】由于函数 $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x}} + \epsilon$ 的反函数的图象经过点(2, 1),可得函数 $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x}} + \epsilon$ 的图象经过点(1, 2),即可得出.

【解答】解: ::函数 $f(x) = \frac{1}{x} + \epsilon$ 的反函数的图象经过点(2, 1),

∴函数 $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x}} + \varepsilon$ 的图象经过点 (1, 2),

$$\therefore 2 = \frac{1}{1} + a$$
,解得 a=1.

故答案为: 1.

7. 在△ABC 中,若 A=30°,B=45°, BC=√€,则 AC=<u>2√</u>3.

【考点】余弦定理;正弦定理.

【分析】利用正弦定理即可计算求解.

【解答】解: ::A=30°, B=45°, BC=√6,

∴由正弦定理
$$\frac{BC}{\sin A} = \frac{AC}{\sin B}$$
, 可得: $AC = \frac{BC \sin B}{\sin A} = \frac{\sqrt{6} \times \frac{\sqrt{2}}{2}}{\frac{1}{2}} = 2\sqrt{3}$.

故答案为: 2√3.

8.4个人排成一排照相,不同排列方式的种数为 24 (结果用数值表示).

【考点】计数原理的应用.

【分析】根据题意,由排列数公式直接计算即可.

【解答】解: 4个人排成一排照相,不同排列方式的种数为 A_4^4 =24 种,故答案为: 24.

9. 无穷等比数列 $\{a_n\}$ 的首项为 2,公比为 $\frac{1}{3}$,则 $\{a_n\}$ 的各项的和为 $\frac{3}{3}$.

45

【考点】等比数列的前 n 项和.

【分析】 $\{a_n\}$ 的各项的和 $=\frac{a_1}{1-a}$,即可得出.

【解答】解: $\{a_n\}$ 的各项的和为: $\frac{a_1}{1-q} = \frac{2}{1-\frac{1}{3}} = 3$.

故答案为: 3.

10. 若 2+i(i 为虚数单位)是关于 x 的实系数一元二次方程 $x^2+ax+5=0$ 的一个虚根,则 a=-4 .

【考点】复数代数形式的混合运算.

【分析】2+i(i 为虚数单位)是关于 x 的实系数一元二次方程 $x^2+ax+5=0$ 的一个虚根,则 2-i(i 为虚数单位)也是关于 x 的实系数一元二次方程 $x^2+ax+5=0$ 的一个虚根,再利用根与系数的关系即可得出.

【解答】解: ::2+i (i 为虚数单位) 是关于 x 的实系数一元二次方程 $x^2+ax+5=0$ 的一个虚根,::2-i (i 为虚数单位) 也是关于 x 的实系数一元二次方程 $x^2+ax+5=0$ 的一个虚根,

::2+i+(2-i)=-a,

解得 a= - 4.

则 a= - 4.

故答案为: - 4.

11. 函数 $y=x^2 - 2x+1$ 在区间[0, m]上的最小值为 0,最大值为 1,则实数 m 的取值范围是_[1,2]_.

【考点】二次函数在闭区间上的最值.

【解答】解: ::f(x) = $x^2 - 2x + 1 = (x - 1)^2$,

::对称轴 x=1,

 $\therefore f(1) = 0,$

f(2) = 1, f(0) = 1,

 $::f(x)=x^2-2x+2$ 在区间[0, m]上的最大值为 1,最小值为 0,

∴1≤m≤2,

故答案为: 1≤m≤2.

12. 在平面直角坐标系 xOy 中,点 A,B 是圆 x^2+y^2 - 6x+5=0 上的两个动点,且满足 $|AB|=2\sqrt{3}$,则 |OA+OB| 的最小值为_4_.

【考点】直线与圆的位置关系;向量的三角形法则.

【分析】本题可利用 AB 中点 M 去研究,先通过坐标关系,将 |OA+OB| 转化为OM,用根据 AB=2 $\sqrt{2}$,得到 M 点的轨迹,由图形的几何特征,求出OM模的最小值,得到本题答案. 【解答】解: 设 A (x_1, y_1) ,B (x_2, y_2) ,AB 中点 M (x', y').

$$vx' = \frac{x_1 + x_2}{2}, y' = \frac{y_1 + y_2}{2},$$

 $\overrightarrow{: 0A + 0F} = (x_1 + x_2, y_1 + y_2) = 2\overrightarrow{0M},$

∴ (x - 3) $^{2}+v^{2}=4$,圆心 C (3, 0),半径 CA=2.

::点 A, B 在圆 C 上, AB=2√3,

∴
$$CA^2 - CM^2 = (\frac{1}{2}AB)^{-2}$$
,

即 CM=1.

点 M 在以 C 为圆心, 半径 r=1 的圆上.

- ∴OM≥OC r=3 1=2.
- $|\overrightarrow{OM}| \ge 2$, $|\overrightarrow{OA} + \overrightarrow{OB}| \ge 4$,
- : | OA+OB | 的最小值为 4.

故答案为: 4.

二.选择题(本大题共12题,每题3分,共36分)

13. 若 $\sin \alpha > 0$,且 $\tan \alpha < 0$,则角 α 的终边位于()

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

【考点】象限角、轴线角.

【分析】由 $\sin\alpha>0$,则角 α 的终边位于一二象限,由 $\tan\alpha<0$,则角 α 的终边位于二四象限,两者结合即可解决问题.

【解答】解: $:\sin\alpha>0$,则角 α 的终边位于一二象限,

- $: \pm \tan \alpha < 0$,
- ::角α的终边位于二四象限,
- ::角α的终边位于第二象限.

故选择 B.

14. 半径为1的球的表面积为()

A. π B.
$$\frac{4}{3}$$
 πC. 2π D. 4π

【考点】球的体积和表面积.

【分析】利用球的表面积公式 $S=4\pi R^2$ 解答即可求得答案.

【解答】解: 半径为 1 的球的表面积为 $4\pi \times 1^2 = 4\pi$,

故选: D.

15. 在 (1+x) ⁶的二项展开式中, x^2 项的系数为 (

A. 2 B. 6 C. 15 D. 20

【考点】二项式系数的性质.

【分析】根据二项展开式的通项公式求出展开式的特定项即可.

【解答】解:(1+x)⁶的二项展开式中,通项公式为:

$$T_{r+1} = C_6^r \cdot 1^{6-r} \cdot x^r$$

令 r=2, 得展开式中 x²的系数为:

$$C_6^2 = 15.$$

故选: C.

16. 幂函数 $y=x^{-2}$ 的大致图象是 ()

【考点】函数的图象.

【分析】利用负指数幂的定义转换函数,根据函数定义域,利用排除法得出选项.

【解答】解: 幂函数 $y=x^{-2}=\frac{1}{x^2}$,定义域为 $(-\infty, 0) \cup (0, +\infty)$,

可排除 A, B;

值域为(0,+∞)可排除 D,

故选: C.

17. 已知向量a=(1, 0),b=(1, 2),则向量b=(1, 2),则向量b=(1, 2),则向量b=(1, 2),则向量b=(1, 2)

B. 2 C. (1, 0) D. (0, 2)

【考点】平面向量数量积的运算.

【分析】求出 $\frac{1}{a}$, 代入向量的投影公式计算. 【解答】解: $\frac{1}{a}$, $\frac{1}{b}$ =1, $\frac{1}{b}$ = $\sqrt{5}$,

::向量 $_{c}$ 在向量 $_{c}$ 方向上的投影 $_{c}$ =1.

故选: A.

18. 设直线 1 与平面α平行,直线 m 在平面α上,那么()

A. 直线1平行于直线 m B. 直线1与直线 m 异面

C. 直线1与直线 m 没有公共点 D. 直线1与直线 m 不垂直

【考点】空间中直线与直线之间的位置关系.

【分析】由已知中直线 1 与平面 α 平行,直线 m 在平面 α 上,可得直线 1 与直线 m 异面或平 行,进而得到答案.

【解答】解: ::直线 1 与平面 α 平行,直线 m 在平面 α 上,

::直线1与直线 m 异面或平行,

即直线1与直线 m 没有公共点,

故选: C.

19. 在用数学归纳法证明等式 $1+2+3+...+2n=2n^2+n$ ($n\in N^*$) 的第(ii)步中,假设 n=k 时原等式成立,那么在 n=k+1 时需要证明的等式为(

A. 1+2+3+...+2k+2 (k+1) = $2k^2+k+2$ (k+1) 2+ (k+1)

B. $1+2+3+...+2k+2 (k+1) = 2 (k+1)^{2} + (k+1)$

C. $1+2+3+...+2k+2k+1+2(k+1)=2k^2+k+2(k+1)^2+(k+1)$

D. $1+2+3+...+2k+2k+1+2(k+1)=2(k+1)^2+(k+1)$

【考点】数学归纳法.

【分析】由数学归纳法可知 n=k 时, $1+2+3+...+2k=2k^2+k$,到 n=k+1 时,左端为 1+2+3+...+2k+2k+1+2 (k+1),从而可得答案.

【解答】解::用数学归纳法证明等式 $1+2+3+...+2n=2n^2+n$ 时,

当 n=1 左边所得的项是 1+2;

假设 n=k 时, 命题成立, 1+2+3+...+2k=2k²+k,

则当 n=k+1 时,左端为 1+2+3+...+2k+2k+1+2 (k+1),

::从"k→k+1"需增添的项是 2k+1+2 (k+1),

 $1+2+3+...+2k+2k+1+2(k+1)=2(k+1)^2+(k+1)$.

故选: D.

20. 关于双曲线
$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$
与 $\frac{y^2}{16} - \frac{x^2}{4} = 1$ 的焦距和渐近线,下列说法正确的是(

A. 焦距相等, 渐近线相同 B. 焦距相等, 渐近线不相同

C. 焦距不相等, 渐近线相同 D. 焦距不相等, 渐近线不相同

【考点】双曲线的简单性质,

【分析】分别求得双曲线的焦点的位置,求得焦点坐标和渐近线方程,即可判断它们焦距相等,但渐近线不同.

【解答】解: 双曲线
$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$
的焦点在 x 轴上,

可得焦点为 $(\pm\sqrt{16+4}, 0)$, 即为 $(\pm2\sqrt{5}, 0)$,

渐近线方程为 $y=\pm \frac{1}{2}x$;

$$\frac{y^2}{16} - \frac{x^2}{4} = 1$$
的焦点在 y 轴上,

可得焦点为 $(0, \pm 2\sqrt{5})$,渐近线方程为 $y=\pm 2x$. 可得两双曲线具有相等的焦距,但渐近线不同. 故选: B.

- 21. 设函数 y=f(x) 的定义域为 R,则"f(0)=0"是"函数 f(x) 为奇函数"的(
- A. 充分而不必要条件 B. 必要而不充分条件
- C. 充分必要条件 D. 既不充分也不必要条件

【考点】必要条件、充分条件与充要条件的判断.

【分析】函数 y=f(x) 的定义域为 R,若函数 f(x) 为奇函数,则 f(0)=0,反之不成立,例如 $f(x)=x^2$.即可判断出结论.

【解答】解:函数 y=f(x) 的定义域为 R,若函数 f(x) 为奇函数,则 f(0)=0,反之不成立,例如 $f(x)=x^2$.

:"f(0) = 0"是"函数 f(x) 为奇函数"的必要不充分条件. 故选: B.

22. 下列关于实数 a, b 的不等式中, 不恒成立的是()

A.
$$a^2+b^2 \ge 2ab$$
 B. $a^2+b^2 \ge -2ab$ C. $(\frac{a+b}{2})^2 \ge ab$ D. $(\frac{a+b}{2})^2 \ge -ab$

【考点】不等式的基本性质.

【分析】根据级别不等式的性质分别判断即可.

【解答】解: 对于 A: a²+b² - 2ab= (a - b) ²≥0, 故 A 恒成立;

对于 B: a²+b²+2ab= (a+b) ²≥0, 故 B 恒成立;

对于 C:
$$\left(\frac{a+b}{2}\right)^2$$
 - $ab=\left(\frac{a-b}{2}\right)^2 \ge 0$, 故 C 恒成立; D 不恒成立;

故选: D.

- 23. 设单位向量 e_1 与 e_2 既不平行也不垂直,对非零向量 $\mathbf{a} = \mathbf{x}_1 e_1 + \mathbf{y}_1 e_2$ 、 $\mathbf{b} = \mathbf{x}_2 e_1 + \mathbf{y}_2 e_2$ 有结论:
- ①若 x₁y₂ x₂y₁=0, 则 a // b;
- ②若 x₁x₂+y₁y₂=0,则 a | 元.

关于以上两个结论,正确的判断是()

- A. ①成立, ②不成立 B. ①不成立, ②成立
- C. ①成立, ②成立 D. ①不成立, ②不成立

【考点】向量的线性运算性质及几何意义.

【分析】①假设存在实数 λ 使得 $_{\varepsilon}^{-}$ λ $_{\varepsilon}^{-}$,则 $_{x_{1}e_{1}+y_{1}e_{2}=\lambda}$ $(x_{2}e_{1}+y_{2}e_{2})$,由于向量 e_{1}

与 e_2 既不平行也不垂直,可得 $x_1=\lambda x_2$, $y_1=\lambda y_2$,即可判断出结论.

②若
$$x_1x_2+y_1y_2=0$$
, 则 $\overrightarrow{a} \cdot \overrightarrow{t} = (x_1 \overrightarrow{e_1} + y_1 \overrightarrow{e_2}) \cdot (x_2 \overrightarrow{e_1} + y_2 \overrightarrow{e_2}) = x_1x_2+y_1y_2+ (x_2y_1+x_1y_2)$

$$e_1 \cdot e_2 = (x_2y_1 + x_1y_2) \cdot e_1 \cdot e_2$$
,无法得到 $a \cdot b = 0$,因此 $a \perp b$ 不一定正确.

【解答】解: ①假设存在实数 λ 使得 $\stackrel{\rightarrow}{\varepsilon} = \lambda \stackrel{\rightarrow}{k}$,则 $\mathbf{x}_1 e_1 + \mathbf{y}_1 e_2 = \lambda \left(\mathbf{x}_2 e_1 + \mathbf{y}_2 e_2 \right)$,::向量 e_1

与 e_2 既不平行也不垂直, $:: x_1 = \lambda x_2, y_1 = \lambda y_2,$

②若 $x_1x_2+y_1y_2=0$,

则 $\overrightarrow{a} \cdot \overrightarrow{b} = (x_1 e_1 + y_1 e_2) \cdot (x_2 e_1 + y_2 e_2) = x_1 x_2 + y_1 y_2 + (x_2 y_1 + x_1 y_2) e_1 \cdot e_2 = (x_2 y_1 + x_1 y_2)$ $\overrightarrow{e_1} \cdot \overrightarrow{e_2} = (x_2 y_1 + x_1 y_2)$ $\overrightarrow{e_1} \cdot \overrightarrow{e_2} = (x_2 y_1 + x_1 y_2)$ 故选: A.

24. 对于椭圆
$$C_{(a,b)}$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a, b>0, a≠b). 若点(x₀,y₀)满足 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$.则

称该点在椭圆 $C_{(a, b)}$ 内,在平面直角坐标系中,若点 A 在过点(2,1)的任意椭圆 $C_{(a, b)}$ 内或椭圆 $C_{(a, b)}$ 上,则满足条件的点 A 构成的图形为(

A. 三角形及其内部 B. 矩形及其内部

C. 圆及其内部 D. 椭圆及其内部

【考点】椭圆的简单性质.

【分析】点 $A(x_0, y_0)$ 在过点 P(2, 1) 的任意椭圆 $C_{(a,b)}$ 内或椭圆 $C_{(a,b)}$ 上,可得 $\frac{4}{a^2} + \frac{1}{b^2} = 1$,

$$\frac{\mathbf{x}_0^2}{\mathbf{a}^2} + \frac{\mathbf{y}_0^2}{\mathbf{b}^2} \le 1$$
. 由椭圆的对称性可知: 点 B (- 2, 1), 点 C (- 2, -1), 点 D (2, -1),

都在任意椭圆上,即可得出.

【解答】解:设点 $A(x_0, y_0)$ 在过点 P(2, 1) 的任意椭圆 $C_{(a, b)}$ 内或椭圆 $C_{(a, b)}$ 上,

$$\operatorname{Sign} \frac{4}{a^2} + \frac{1}{b^2} = 1, \quad \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} \le 1.$$

$$\therefore \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} \le \frac{4}{a^2} + \frac{1}{b^2} = 1,$$

由椭圆的对称性可知: 点 B (- 2, 1), 点 C (- 2, -1), 点 D (2, -1), 都在任意椭圆上,

可知:满足条件的点 A 构成的图形为矩形 PBCD 及其内部.

故选: B.

三.解答题(本大题共5题,共8+8+8+12+12=48分)

25. 如图,已知正三棱柱 ABC - $A_1B_1C_1$ 的体积为 $9\sqrt{3}$,底面边长为 3,求异面直线 BC₁ 与 AC 所成的角的大小.

【考点】异面直线及其所成的角.

【分析】由正三棱柱 ABC - $A_1B_1C_1$ 的体积求出高,由 A_1C_1 与 AC 平行,得 $\angle BC_1A_1$ 是异面直线 BC_1 与 AC 所成的角,由此利用余弦定理能求出异面直线 BC_1 与 AC 所成的角的大小.

【解答】解: :正三棱柱 ABC - $A_1B_1C_1$ 的体积为 $9\sqrt{2}$,底面边长为 3,

∴V=sh=
$$\frac{\sqrt{3}}{4}$$
 × 3²× h=9 $\sqrt{3}$, 解得 h=4,

 $::A_1C_1$ 与 AC 平行, $::\angle BC_1A_1$ 是异面直线 BC_1 与 AC 所成的角,

在 $\triangle A_1BC_1$ 中, A_1C_1 =3, BC_1 = BA_1 =5,

$$\triangle \cos \angle BC_{1}A_{1} = \frac{BC_{1}^{2} + A_{1}C_{1}^{2} - BA_{1}^{2}}{2BC_{1} \cdot A_{1}C_{1}} = \frac{3}{10}.$$

$$\therefore \angle BC_1A_1 = \arccos \frac{3}{10}$$
.

::异面直线 BC_1 与 AC 所成的角的大小为 $\arccos \frac{3}{10}$.

26. 已知函数 $f(x)=\sin x+\sqrt{3}\cos x$,求 f(x) 的最小正周期及最大值,并指出 f(x) 取得最大值时 x 的值.

【考点】两角和与差的正弦函数;正弦函数的图象.

【分析】由条件利用两角和的正弦公式化简 f(x) 的解析式,再利用正弦函数的周期性和最大值,得出结论.

【解答】解:
$$: f(x) = \sin x + \sqrt{3} \cos x = 2 \sin (x + \frac{\pi}{3})$$
, ::函数的周期为 T=2 π ,

函数的最大值为 2,且函数取得最大值时, $x+\frac{\pi}{3}=2k\pi+\frac{\pi}{2}$,即 $x=2k\pi+\frac{\pi}{6}$, $k\in Z$.

27. 如图, 汽车前灯反射镜与轴截面的交线是抛物线的一部分, 灯口所在的圆面与反射镜的轴垂直, 灯泡位于抛物线的焦点 F 处. 已知灯口直径是 24cm, 灯深 10cm, 求灯泡与反射镜的顶点 O 的距离.

【考点】抛物线的简单性质.

【分析】先设出抛物线的标准方程 $y^2=2px$ (p>0),点 (10,12) 代入抛物线方程求得 p,

进而求得 $\frac{p}{2}$,即灯泡与反光镜的顶点的距离.

【解答】解:建立平面直角坐标系,以O为坐标原点,水平方向为x轴,竖直方向为y轴,如图所示:

则: 设抛物线方程为 $y^2=2px$ (p>0),点(10,12)在抛物线 $y^2=2px$ 上, \therefore 144=2 $p\times$ 10.

$$\therefore \frac{p}{2} = 3.6.$$

::灯泡与反射镜的顶点 O 的距离 3.6cm.

28. 已知数列{a_n}是公差为 2 的等差数列.

(1) a₁, a₃, a₄ 成等比数列,求 a₁ 的值;

(2) 设 a_1 = - 19,数列 $\{a_n\}$ 的前 n 项和为 S_n .数列 $\{b_n\}$ 满足 b_1 =1, b_{n+1} - b_n = $(\frac{1}{2})^n$,记

 $c_n = S_n + 2^{n-1} \bullet b_r$ $(n \in N^*)$,求数列 $\{c_n\}$ 的最小项 c_{n_0} (即 $c_{n_0} \le c_r$ 对任意 $n \in N^*$ 成立).

【考点】等差数列的前 n 项和; 等比数列的通项公式.

【分析】(1)利用等差数列通项公式和等比数列性质能求出首项 a₁ 的值.

(2)由已知利用累加法能求出 $b_n=2-(\frac{1}{2})^{n-1}$. 从而能求出 $c_n-c_{n-1}=2n-19+2^n$,由此能求出数列 $\{c_n\}$ 的最小项.

【解答】解: (1):数列 $\{a_n\}$ 是公差为2的等差数列. a_1 , a_3 , a_4 成等比数列,

$$(a_1+2d)^2=a_1(a_1+3d).$$

解得 d=2, a₁= - 8

$$(2) \ b_n \!\!=\!\! b_1 \!\!+\! \ (b_2 - b_1) \ + \ (b_3 - b_2) \ + \!\! ... \!\!+\! \ (b_n - b_{n-1})$$

$$=1+\frac{1}{2}+(\frac{1}{2})^2+\cdots+(\frac{1}{2})^{n-1}$$

$$=\frac{1-(\frac{1}{2})^n}{1-\frac{1}{2}}$$

$$=2 - (\frac{1}{2})^{n-1}$$
.

$$S_n = -19n + \frac{n(n-1)}{2} \cdot 2 = n^2 - 20n,$$

$$c_n = S_n + 2^{n-1} \cdot b_n = n^2 - 20n + 2^{n-1} \cdot (2 - (\frac{1}{2})^{n-1}) = n^2 - 20n + 2^n - 1$$

$$c_{n+1} - c_n = (n+1)^2 - 20(n+1) + 2^{n+1} - 1 - (n^2 - 20n + 2^n - 1)$$

 $=2n - 19 + 2^n$

由题意 n≥9, 上式大于零, 即 c₉<c₁₀<...<c_n,

进一步, 2n+2n 是关于 n 的增函数,

 $2\times 4+2^4=24>19$, $2\times 3+2^3=14<19$,

 $c_1>c_2>c_3>c_4<c_5<...< c_9<c_{10}<...< c_n$

$$..(c)_{max} = c_{n_0} = c_4 = -49.$$

- 29. 对于函数 f(x), g(x), 记集合 $D_{f>g}=\{x|f(x)>g(x)\}$.
- (1) 设 f (x) =2|x|, g (x) =x+3, 求 $D_{f>g}$;
- (2) 设 $f_1(x) = x 1$, $f_2(x) = (\frac{1}{3})^x + a \cdot 3^x + 1$, h(x) = 0, 如果 $D_{f_1} > h \cup D_{f_2} > h = R$. 求实数 a 的取值范围.

【考点】其他不等式的解法;集合的表示法.

【分析】(1)直接根据新定义解不等式即可,

(2) 方法一:由题意可得则 $(\frac{1}{3})^{x}$ +a • 3^{x} + 1 > 0 在 R 上恒成立,分类讨论,即可求出 a 的取值范围,

方法二: 够造函数,求出函数的最值,即可求出 a 的取值范围.

【解答】解: (1) 由 2|x|>x+3,得 $D_{f>g}=\{x|x<-1$ 或 $x>3\}$;

(2) 方法一:
$$D_{\mathbf{f}_1} >_h = \{x \mid x-1 > 0\} = \{x \mid x > 1\}, D_{\mathbf{f}_2} >_h = \{x \mid (\frac{1}{3})^x +_{a \cdot 3} x + 1 > 0\},$$

$$\oplus D_{f_1} > h \cup D_{f_2} > h = RD_{f_2} > h = R, 或 D_{f_2} > h = (-\infty, m), (其中m > 1)D_{f_2} > h = F,$$

则 $(\frac{1}{3})^{x} + a \cdot 3^{x} + 1 > 0$ 在 R 上恒成立,

$$\diamondsuit (\frac{1}{3})^{x} = t \in (0, +\infty), \ a > -t^{2} - t, \ y_{1} = -t^{2} - t = -(t + \frac{1}{2})^{2} + \frac{1}{4} \le 0,$$

:a≥0 时成立.

对于
$$D_{f_2} > h^{=} (-\infty, m), (其中m > 1)$$

以下只讨论 a<0 的情况

对于
$$(\frac{1}{3})^{x}+a\cdot 3^{x}+1>0$$
,

$$(\frac{1}{3})^{x}=t>0$$
, $t^{2}+t+a>0$, $m \neq t < \frac{-1-\sqrt{1-4a}}{2}$ $\neq t > \frac{-1+\sqrt{1-4a}}{2}$, $(a<0)$

又 t>0,所以 t>
$$\frac{-1+\sqrt{1-4a}}{2}$$
即 $(\frac{1}{3})^x$ > $\frac{-1+\sqrt{1-4a}}{2}$ ⇒ x < $\log_{\frac{1}{3}}\frac{-1+\sqrt{1-4a}}{2}$,

..m=log_{$$\frac{1}{3}$$} $\frac{-1+\sqrt{1-4a}}{2}$ >1= $\frac{\log_{\frac{1}{3}} \frac{1}{3}}{3}$ \Rightarrow a> $-\frac{4}{9}$

综上所述: $a > -\frac{4}{9}$

方法二 (2)
$$D_{f_1} > h^{=\{x \mid x-1>0\} = \{x \mid x>1\}}, D_{f_2} > h^{=\{x \mid (\frac{1}{3})\}} + a \cdot 3^{x+1} > 0\},$$

由
$$D_{\mathbf{f}_1}$$
>h $\cup D_{\mathbf{f}_2}$ >h=R $D_{\mathbf{f}_2}$ >h=R, 或 $D_{\mathbf{f}_2}$ >h=(-∞, m), (其中m>1)_{a≥0}. 显然

$$\left(\frac{1}{3}\right)^{x}+a\cdot 3^{x}+1>0$$
恒成立,

即 $x \in Ra < 0$ 时, $(\frac{1}{3})^{x} + a \cdot 3^{x} + 1 > 0$,在 $x \le 1$ 上恒成立

$$\Rightarrow (\frac{1}{3})^{x}=t$$
, $(t \ge \frac{1}{3})$, $a \ge -t^{2}-t$, $y_1 = -t^{2}-t = -(t+\frac{1}{2})^{2}+\frac{1}{4}$

所以
$$(y_1)_{\text{max}} = -\frac{4}{9}$$
, $0 > a > -\frac{4}{9}$

综上所述:
$$a > -\frac{4}{9}$$
.

二卷一.选择题:

30. 若函数 $f(x) = \sin(x+\phi)$ 是偶函数,则 ϕ 的一个值是()

A. 0 B.
$$\frac{\pi}{2}$$
 C. π D. 2π

【考点】正弦函数的图象.

【分析】由函数的奇偶性可得ф的取值范围,结合选项验证可得.

【解答】解::函数 $f(x) = \sin(x+\phi)$ 是偶函数,

 \therefore (-x+ ϕ) =x+ ϕ +2k π 或 -x+ ϕ +x+ ϕ = π +2k π , k \in Z,

当 (- x+φ) =x+φ+2kπ时, 可得 x= - kπ, 不满足函数定义;

当 - $x+\phi+x+\phi=\pi+2k\pi$ 时, $\phi=k\pi+\frac{\pi}{2}$, $k\in Z$,

结合选项可得 B 为正确答案.

故选: B.

31. 在复平面上,满足|z-1|=4的复数 z 的所对应的轨迹是()

A. 两个点 B. 一条线段 C. 两条直线 D. 一个圆

【考点】复数的代数表示法及其几何意义.

【分析】设 z=x+yi,得到|x+yi - 1|= $\sqrt{(x-1)^2+y^2}$ =4,从而求出其运动轨迹.

【解答】解:设 z=x+yi,

则|x+yi - 1|=
$$\sqrt{(x-1)^2+y^2}$$
=4,

$$x (x - 1)^{2} + y^{2} = 16$$

::运动轨迹是圆,

故选: D.

32. 已知函数 y=f(x) 的图象是折线 ABCDE,如图,其中 A(1, 2),B(2, 1),C(3, 2),D(4, 1),E(5, 2),若直线 y=kx+b 与 y=f(x) 的图象恰有四个不同的公共点,则 k 的取值范围是(

A.
$$(-1, 0) \cup (0, 1)$$
 B. $(-\frac{1}{3}, \frac{1}{3})$ C. $(0, 1]$ D. $[0, \frac{1}{3}]$

【考点】函数的图象.

【分析】根据图象使用特殊值验证,使用排除法得出答案.

【解答】解; 当 k=0, 1 < b < 2 时,显然直线 y=b 与 f(x) 图象交于四点,故 k 可以取 0, 排除 A, C;

作直线 BE, 则 $k_{BE} = \frac{2-1}{5-2} = \frac{1}{3}$, 直线 BE 与 f (x) 图象交于三点,

平行移动直线 BD 可发现直线与 f(x) 图象最多交于三点,

即直线 $y=\frac{1}{3}x+b$ 与 f(x) 图象最多交于三点, $:k\neq \frac{1}{3}$. 排除 D.

故选 B.

二.填空题:

33. 椭圆
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
的长半轴的长为__5_.

【考点】椭圆的简单性质.

【分析】利用椭圆性质求解.

【解答】解: 椭圆
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
中,

a=5,

::椭圆的长半轴长 a=5.

故答案为:5.

34. 已知圆锥的母线长为 10, 母线与轴的夹角为 30°, 则该圆锥的侧面积为 50π .

【考点】旋转体(圆柱、圆锥、圆台).

【分析】根据勾股定理得出圆锥的底面半径,代入侧面积公式计算.

【解答】解::圆锥的母线长为10,母线与轴的夹角为30°,

- ::圆锥的底面半径为5,
- ::圆锥的侧面积为π×5×10=50π.

故答案为: 50π.

35. 小明用数列 $\{a_n\}$ 记录某地区 2015 年 12 月份 31 天中每天是否下过雨,方法为: 当第 k 天下过雨时,记 a_k =1,当第 k 天没下过雨时,记 a_k =-1(1 \leq k \leq 31),他用数列 $\{b_n\}$ 记录该地区该月每天气象台预报是否有雨,方法为: 当预报第 k 天有雨时,记 b_n =1,当预报第 k 天没有雨时,记 b_n =-1 记录完毕后,小明计算出 $a_1b_1+a_2b_2+a_3b_3+...+a_{31}b_{31}$ =25,那么该月气象台预报准确的总天数为 28 .

【考点】数列的应用.

【分析】由题意,气象台预报准确时 $a_kb_k=1$,不准确时 $a_kb_k=-1$,根据 $a_1b_1+a_2b_2+a_3b_3+...+a_{31}b_{31}=25=28-3$,即可得出结论.

【解答】解:由题意,气象台预报准确时 $a_kb_k=1$,不准确时 $a_kb_k=-1$,

 $a_1b_1+a_2b_2+a_3b_3+...+a_{31}b_{31}=25=28-3$,

::该月气象台预报准确的总天数为28.

故答案为: 28.

三.解答题:

36. 对于数列 $\{a_n\}$ 与 $\{b_n\}$,若对数列 $\{c_n\}$ 的每一项 c_n ,均有 $c_k=a_k$ 或 $c_k=b_k$,则称数列 $\{c_n\}$ 是 $\{a_n\}$ 与 $\{b_n\}$ 的一个"并数列".

- (1) 设数列 $\{a_n\}$ 与 $\{b_n\}$ 的前三项分别为 $\{a_1=1, a_2=3, a_3=5, b_1=1, b_2=2, b_3=3, 若<math>\{c_n\}$ 是 $\{a_n\}$ 与 $\{b_n\}$ 一个"并数列"求所有可能的有序数组($\{c_1, c_2, c_3\}$);
- (2) 已知数列 $\{a_n\}$, $\{c_n\}$ 均为等差数列, $\{a_n\}$ 的公差为 1,首项为正整数 t; $\{c_n\}$ 的前 10 项和为 30,前 20 项的和为 260,若存在唯一的数列 $\{b_n\}$,使得 $\{c_n\}$ 是 $\{a_n\}$ 与 $\{b_n\}$ 的一个"并数列",求 t 的值所构成的集合.

【考点】数列的求和;数列的应用.

【分析】(1)利用"并数列"的定义即可得出.

(2) 利用等差数列的通项公式及其前 n 项和公式可得 a_n , 公差 d, c_n , 通过分类讨论即可得出.

【解答】解: (1) (1, 2, 3), (1, 2, 5), (1, 3, 3), (1, 3, 5);

(2) $a_n = t + n - 1$,

设 $\{c_n\}$ 的前 10 项和为 T_n , T_{10} = - 30, T_{20} = - 260,得 d= - 2, c_1 =6,所以 c_n =8 - 2n; c_k = a_k 或 c_k = b_k . 当 c_k = a_k 时,8 - 2k=t+k - 1,t=9 - 3k \in N*,k \in N*,

∴k=1, t=6; 或 k=2, t=3,

所以 k≥3. k∈N*时, $c_k=b_k$,

::数列 $\{b_n\}$ 唯一,所以只要 b_1 , b_2 唯一确定即可.

显然, t=6, 或 t=3 时, b_1 , b_2 不唯一,

t∈N* \pm 1, t \neq 6,

即{t|t∈N*且t≠3, t≠6}

2017年上海市春季高考数学试卷

- 一. 填空题 (本大题共 12 题, 满分 48 分, 第 1~6 题每题 4 分, 第 7~12 题 每题 5 分)
- 1. 设集合 A={1, 2, 3}, 集合 B={3, 4}, 则 AUB=___.
- 2. 不等式 | x 1 | < 3 的解集为____.
- 3. 若复数 z 满足 2 1=3+6i (i 是虚数单位),则 z=___.
- 4. 若 $\cos \alpha = \frac{1}{3}$, 则 $\sin(\alpha \frac{\pi}{2}) = ____$.
- 5. 若关于 x、y 的方程组 $\begin{cases} x+2y=4 \\ 3x+ay=6 \end{cases}$ 无解,则实数 a=____.
- 6. 若等差数列 {a_n} 的前 5 项的和为 25, 则 a_i+a_i=____.
- 7. 若 P、Q 是圆 x²+y² 2x+4y+4=0 上的动点,则 |PQ|的最大值为____.
- 8. 已知数列 $\{a_n\}$ 的通项公式为 $a_n=3^r$,则 $\lim_{n\to\infty}\frac{a_1+a_2+a_3+\cdots+a_n}{a_n}=$ ____.
- 9. 若 $(x+\frac{2}{x})^n$ 的二项展开式的各项系数之和为 729,则该展开式中常数项的值为____.
- 10. 设椭圆 $\frac{x^2}{2}$ + y^2 =1的左、右焦点分别为 F_1 、 F_2 , 点 P 在该椭圆上,则使得 \triangle F_1F_2P 是等腰三角形的点 P 的个数是 .
- 11. 设 a_1 、 a_2 、…、 a_6 为 1、2、3、4、5、6的一个排列,则满足 $|a_1 a_2| + |a_3 a_4| + |a_5 a_6| = 3$ 的不同排列的个数为_____.
- 12. 设 a、b∈R, 若函数 $f(x)=x+\frac{a}{x}+b$ 在区间(1, 2)上有两个不同的零点,则 f (1) 的取值范围为____.
 - 二. 选择题 (本大题共 4 题, 每题 5 分, 共 20 分)
- 13. 函数 $f(x) = (x-1)^2$ 的单调递增区间是()
- A. $[0, +\infty)$ B. $[1, +\infty)$ C. $(-\infty, 0]$ D. $(-\infty, 1]$
- 14. 设 a∈R, "a>0" 是 " $\frac{1}{a}$ >ℂ" 的 ()条件.
- A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分也非必要
- 15. 过正方体中心的平面截正方体所得的截面中,不可能的图形是()

A. 三角形 B. 长方形 C. 对角线不相等的菱形 D. 六边形

16. 如图所示,正八边形 $A_1A_2A_3A_4A_5A_6A_7A_8$ 的边长为 2,若 P 为该正八边形边上的动点,则 $\overline{A_1A_3}^{\bullet}$ $\overline{A_1P}$ 的取值范围为 ()

A. $[0, 8+6\sqrt{2}]$ **B.** $[-2\sqrt{2}, 8+6\sqrt{2}]$ **C** $[-8-6\sqrt{2}, 2\sqrt{2}]$ **D.** $[-8-6\sqrt{2}, 8+6\sqrt{2}]$

三. 解答题 (本大题共5题, 共14+14+14+16+18=76分)

17. (12分)如图, 长方体 ABCD - A,B,C,D,中, AB=BC=2, AA,=3;

(1) 求四棱锥 A, - ABCD 的体积; (2) 求异面直线 A,C 与 DD, 所成角的大小.

18. (12 分)设 $a \in R$,函数 $f(x) = \frac{2^x + a}{2^x + 1}$; (1)求 a 的值,使得 f(x) 为奇函

数; (2) 若 $f(x) < \frac{a+2}{2}$ 对任意 $x \in R$ 成立,求 a 的取值范围.

19. (12分)某景区欲建造两条圆形观景步道 M_1 、 M_2 (宽度忽略不计),如图所示,已知 $AB \perp AC$,AB=AC=AD=60(单位:米),要求圆 M_1 与 AB、AD分别相切于点 B、D,圆 M_2 与 AC、AD分别相切于点 C、D;

(1) 若∠BAD=60°, 求圆 M₁、M₂的半径(结果精确到 0.1 米)

(2) 若观景步道 M,与 M₂的造价分别为每米 0.8 千元与每米 0.9 千元,如何设计圆 M,、M₂的大小,使总造价最低?最低总造价是多少? (结果精确到 0.1 千元)

20. (12 分)已知双曲线 $\Gamma: x^2 - \frac{y^2}{b^2} = 1$ (b>0),直线 I: y=kx+m (km ≠ 0),

I 与Γ交于 P、Q 两点, P'为 P 关于 y 轴的对称点, 直线 P'Q 与 y 轴交于点 N (0, n); (1) 若点 (2, 0) 是 Γ 的一个焦点, 求 Γ 的渐近线方程;

- (2) 若 b=1, 点 P 的坐标为 (-1, 0), 且 $\overline{NP'} = \frac{3}{2} \overline{P'}$ ζ , 求 k 的值;
- (3) 若 m=2, 求 n 关于 b 的表达式。
- 21. (12 分)已知函数 f (x) = $\log_2 \frac{1+x}{1-x}$; (1)解方程 f (x) =1;
 - (2) 设 x∈ (-1, 1), a∈ (1, +∞), 证明: $\frac{ax-1}{a-x}$ ∈ (-1, 1), 且 f ($\frac{ax-1}{a-x}$)

-f(x)=-f(
$$\frac{1}{a}$$
); (3) 设数列{x_n}中, x₁∈ (-1, 1), x_{n+1}= (-1) $\frac{3x_n-1}{3-x_n}$,

 $n∈N^*$, 求 x_1 的取值范围, 使得 $x_3≥x_n$ 对任意 $n∈N^*$ 成立.

2017年上海市春季高考数学试卷 参考答案与试题解析

- 一. 填空题 (本大题共 12 题, 满分 48 分, 第 1~6 题每题 4 分, 第 7~12 题每题 5 分)
- 1. 设集合 A={1, 2, 3}, 集合 B={3, 4}, 则 AUB=__{1, 2, 3, 4}__.
- 2. 不等式 | x-1 | <3 的解集为 (-2, 4) .
- 3. 若复数 z 满足 2 1=3+6i (i 是虚数单位),则 z= 2-3i.
- 4. 若 $\cos \alpha = \frac{1}{3}$, 则 $\sin(\alpha \frac{\pi}{2}) = \frac{1}{3}$.
- 5. 若关于 x、y 的方程组 $\begin{cases} x+2y=4 \\ 3x+ay=6 \end{cases}$ 无解,则实数 a= 6.
- 6. 若等差数列 $\{a_n\}$ 的前 5 项的和为 25,则 $a_1+a_5=10$.
- 7. 若 P、Q 是圆 $x^2+y^2-2x+4y+4=0$ 上的动点,则 |PQ| 的最大值为 2.
- 8. 已知数列 $\{a_n\}$ 的通项公式为 $a_n = 3^r$,则 $\lim_{n \to \infty} \frac{a_1 + a_2 + a_3 + \dots + a_n}{a_n} = \frac{3}{2}$.
- 9. 若 $(x+\frac{2}{x})^n$ 的二项展开式的各项系数之和为 729,则该展开式中常数项的值为 160_.
- 10. 设椭圆 $\frac{x^2}{2}$ + y^2 =1的左、右焦点分别为 F_1 、 F_2 , 点 P 在该椭圆上,则使得 \triangle F_1F_2P 是等腰三角形的点 P 的个数是 6.
- 11. 设 a_1 、 a_2 、…、 a_6 为 1、2、3、4、5、6的一个排列,则满足 $|a_1 a_2| + |a_3 a_4| + |a_5 a_6| = 3$ 的不同排列的个数为__48__.
- 12. 设 a、b∈R, 若函数 $f(x)=x+\frac{a}{x}+b$ 在区间(1, 2)上有两个不同的零点,则 f (1) 的取值范围为 (0, 1) .

解:函数 $f(x)=x+\frac{a}{x}+b$ 在区间(1, 2)上有两个不同的零点,

即方程 x²+bx+a=0 在区间(1, 2)上两个不相等的实根,

$$\Rightarrow \begin{cases} 1 < \frac{b}{2} < 2 \\ b^{2} - 4a > 0 \Rightarrow \begin{cases} -4 < b < -2 \\ b^{2} > 4a \\ 1 + a + b > 0 \\ 4 + 2b + a > 0 \end{cases},$$

如图画出数对 (a, b) 所表示的区域,目标函数 z=f (1) — a+b+1 ... z 的最小值为 z=a+b+1 过点 (1, -2) 时,z 的最大值为 z=a+b+1 过点 (4, -4) 时... f (1) 的取值范围为 (0, 1) 故答案为: (0, 1)

二. 选择题(本大题共4题, 每题5分, 共20分)

13. 函数 $f(x) = (x-1)^2$ 的单调递增区间是(B)

A. $[0, +\infty)$ B. $[1, +\infty)$ C. $(-\infty, 0]$ D. $(-\infty, 1]$

14. 设 a∈R, "a>0" 是 " $\frac{1}{3}$ >ℂ" 的 (C)条件.

A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分也非必要

15. 过正方体中心的平面截正方体所得的截面中,不可能的图形是(A)

A. 三角形 B. 长方形 C. 对角线不相等的菱形 D. 六边形

16. 如图所示,正八边形 $A_1A_2A_3A_4A_5A_6A_7A_6$ 的边长为 2,若 P 为该正八边形边上的动点,则 $\overline{A_1A_3}$ * $\overline{A_1P}$ 的取值范围为(B)

A. $[0, 8+6\sqrt{2}]$ **B.** $[-2\sqrt{2}, 8+6\sqrt{2}]$

c. $[-8-6\sqrt{2}, 2\sqrt{2}]$ **d.** $[-8-6\sqrt{2}, 8+6\sqrt{2}]$

解:由题意,正八边形 A1A2A3A4A5A6A7A8的每一个内角为 135°,

$$\mathbb{A} ||\overline{A_1 A_2}| = |\overline{A_1 A_8}| = 2, \quad |\overline{A_1 A_3}| = |\overline{A_1 A_7}| = 2\sqrt{2+\sqrt{2}}, \quad |\overline{A_1 A_4}| = |\overline{A_1 A_6}| = 2+\sqrt{2},$$

$$|\overline{A_1 A_5}| = \sqrt{4+2\sqrt{2}}.$$

再由正弦函数的单调性及值域可得,当 P 与 A_8 重合时, $\overline{A_1 A_3} \cdot \overline{A_1 P}$ 最小为 $2 \times 2\sqrt{2+\sqrt{2}} \times \cos 112.5^\circ = 2 \times 2\sqrt{2+\sqrt{2}} \times (\frac{\sqrt{2-\sqrt{2}}}{2}) = -2\sqrt{2}.$

结合选项可得 $\overline{A_1 A_3} \cdot \overline{A_1 P}$ 的取值范围为 $[-2\sqrt{2}, 8+6\sqrt{2}]$.

三. 解答题 (本大题共5题, 共14+14+14+16+18=76分)

17. (12 分)长方体 ABCD - A,B,C,D,中, AB=BC=2, AA,=3;

(1) 求四棱锥 A_1 - ABCD 的体积; (2) 求异面直线 A_1 C 与 DD_1 所成角的大小.

解: (1): 长方体 ABCD - A₁B₁C₁D₁中, AB=BC=2, AA₁=3,

∴四棱锥 A₁ - ABCD 的体积:

 $\mathbf{V}_{\mathbf{A}_1-\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D}} = \frac{1}{3} \mathbf{S}_{\mathbf{A}\mathbf{B}\mathbf{T}\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D}} \times \mathbf{A} \mathbf{A}_1 = \frac{1}{3} \times \mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{D} \times \mathbf{A} \mathbf{A}_1 = \frac{1}{3} \times 2 \times 2 \times 3 = \mathbf{4}.$

(2) : DD₁ // CC₁, ∴ ∠A₁ CC₁ 是异面直线 A₁ C 与 DD₁ 所成角 (或所成角的补角),

: tan
$$\angle A_1CC_1 = \frac{A_1C_1}{CC_1} = \frac{\sqrt{2^2 + 2^2}}{3} = \frac{2\sqrt{2}}{3}$$
,

 $\therefore \angle A_1 CC_1 = \arctan \frac{2\sqrt{2}}{3}$. ∴异面直线 $A_1C \subseteq DD_1$ 所成角的大小为 $\arctan \frac{2\sqrt{2}}{3}$;

18. (12分)设 $a \in R$, 函数 $f(x) = \frac{2^x + a}{2^x + 1}$; (1) 求 a 的值,使得 f(x) 为奇函

数; (2) 若 $f(x) < \frac{a+2}{2}$ 对任意 $x \in R$ 成立, 求 a 的取值范围.

解: (1) 由 f (x) 的定义域为 R, 且 f (x) 为奇函数, 可得 f (0) =0,

即有 $\frac{1+a}{2}$ =0,解得 a= -1.

则 f (x) =
$$\frac{2^{x}-1}{2^{x}+1}$$
, f (-x) = $\frac{2^{-x}-1}{2^{-x}+1} = \frac{1-2^{x}}{1+2^{x}} = -f(x)$, 则 a= -1 满足題意;

(2) $f(x) < \frac{a+2}{2}$ 对任意 $x \in R$ 成立,

即为
$$\frac{2^{x}+a}{2^{x}+1}$$
< $\frac{a+2}{2}$ 恒成立,等价为 $\frac{a-1}{2^{x}+1}$ < $\frac{a}{2}$,

即有 2 (a-1) <a (2*+1),

当 a=0 时, -1<0 恒成立;

当 a>0 时, $\frac{2(a-1)}{3}$ <2x+1,

由 $2^{x}+1>1$,可得 $\frac{2(a-1)}{a} \le 1$,解得 $0 < a \le 2$;

当 a < 0 时, $\frac{2(a-1)}{a}$ > 2*+1 不恒成立. 综上可得, a 的取值范围是[0, 2].

- 19. (12分)某景区欲建造两条圆形观景步道 M_1 、 M_2 (宽度忽略不计),如图所示,已知 $AB \perp AC$,AB=AC=AD=60(单位:米),要求圆 M_1 与 AB、AD分别相切于点 B、D,圆 M_2 与 AC、AD分别相切于点 C、D;
 - (1) 若∠BAD=60°, 求圆 M₁、M₂的半径(结果精确到 0.1 米)
- (2) 若观景步道 M₁ 与 M₂的造价分别为每米 0.8 千元与每米 0.9 千元,如何设计圆 M₁、M₂的大小,使总造价最低?最低总造价是多少?(结果精确到 0.1 千元)

解: (1) M₁ 半径=60tan30° ≈34.6, M₂ 半径=60tan15° ≈16.1;

(2) 设∠BAD=2α,则总造价 y=0.8•2π•60tanα+0.9•2π•60tan(45° - α),设 1+tanα=x,则 y=12π•(8x+ $\frac{18}{3}$ -17)≥84π,

当且仅当 $x=\frac{3}{2}$, $tan α = \frac{1}{2}$ 时,取等号,

∴M₁ 半径 30, M₂ 半径 20, 造价 42.0 千元.

20. (12 分)已知双曲线 $\Gamma: x^2 - \frac{y^2}{h^2} = 1$ (b>0),直线 I: y=kx+m(km≠0),

I与Γ交于P、Q两点, P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,

- n); (1) 若点 (2, 0) 是Γ的一个焦点, 求Γ的渐近线方程;
 - (2) 若 b=1, 点 P 的坐标为 (-1, 0), 且 $P' = \frac{3}{2}P'$ C, 求 k 的值;
 - (3) 若 m=2, 求 n 关于 b 的表达式.

解: (1) : 双曲线 Γ : $x^2 - \frac{y^2}{b^2} = 1$ (b>0), 点 (2, 0) 是 Γ 的一个焦点,

 \therefore c=2, a=1, \therefore b²=c² - a²=4 - 1=3,

∴ Γ 的标准方程为: $x^2 - \frac{y^2}{3} = 1$, Γ 的渐近线方程为 $y = \pm \sqrt{3} x$.

(2) ∵b=1, ∴双曲线 Г为: x²-y²=1, P(-1,0), P'(1,0),

 $: \overline{NP}' = \frac{3}{2} \overline{P'} Q$, 设 Q (x_2, y_2) , 则有定比分点坐标公式, 得:

$$\begin{cases} 1 = \frac{0 + \frac{3}{2} x_2}{1 + \frac{3}{2}} \\ 1 = \frac{1 + \frac{3}{2}}{1 + \frac{3}{2}}, & \text{if } x_2 = \frac{5}{3}, & \text{if } x_2^2 - y_2^2 = 1, & \text{if } y_2 = \pm \frac{4}{3}, \\ 0 = \frac{1 + \frac{3}{2} y_2}{1 + \frac{3}{2}} \end{cases}$$

:
$$k = \frac{y_2 - 0}{x_2 + 1} = \pm \frac{1}{2}$$
.

(3) 设 P (x_1, y_1) , Q (x_2, y_2) , $k_{pq}=k_0$,

则
$$P'(-x_1, y_1), 1_{PQ}=k_0x+n$$
,

由
$$\begin{cases} y=kx+2 \\ x^2-\frac{y^2}{b^2}=1 \end{cases}$$
, 得 (b^2-k^2) $x^2-4kx-4-b^2=0$,

$$x_1 + x_2 = \frac{4k}{b^2 - k^2}, \quad x_1 x_2 = \frac{-4 - b^2}{b^2 - k^2},$$

由
$$\begin{cases} y=k_0 x+n \\ x^2 - \frac{y^2}{b^2} = 1 \end{cases}$$
, 得($b^2-k_0^2$) $x^2-2k_0 nx-n^2-b^2=0$,

$$-\mathbf{x}_1+\mathbf{x}_2=\frac{2\mathbf{k}_0\mathbf{n}}{\mathbf{b}^2-\mathbf{k}_0^2}, -\mathbf{x}_1\mathbf{x}_2=\frac{-\mathbf{n}^2-\mathbf{b}^2}{\mathbf{b}^2-\mathbf{k}_0^2},$$

$$\therefore x_1x_2 = \frac{-4-b^2}{b^2-k^2} = \frac{n^2+b^2}{b^2-k_0^2}, \quad \text{pp} \frac{b^2-k_0^2}{b^2-k^2}, \quad \text{pp} \frac{b^2-k_0^2}{b^2-k^2} = \frac{n^2+b^2}{-4-b^2},$$

$$\frac{\frac{k}{k_0} = \frac{\frac{y_2 - y_1}{x_2 - x_1}}{\frac{y_2 - y_1}{x_2 + x_1}} = \frac{x_1 + x_2 - 2k}{x_2 - x_1 - k_0 n} \cdot \frac{b^2 - k_0^2 - 2k}{b^2 - k^2} \cdot \frac{n^2 + b^2}{k_0 n} \cdot \frac{n^2 + b^2}{-4 - b^2},$$

化简,得
$$2n^2+n$$
 ($4+b^2$) $+2b^2=0$, $n=-2$ 或 $n=\frac{b^2}{-2}$,

当 n=-2, 由
$$\frac{b^2-k_0^2}{b^2-k^2} = \frac{n^2+b^2}{-4-b^2}$$
, 得 $2b^2=k^2+k_0^2$,

由
$$\begin{cases} y=k_0x-2 \\ y=kx+2 \end{cases}$$
,得 $\begin{cases} x=\frac{4}{k_0-k} \\ y=\frac{2k+2k_0}{k_0-k} \end{cases}$

即Q(
$$\frac{4}{k_0-k}$$
, $\frac{2k+2k_0}{k_0-k}$), 代入 $x^2 - \frac{y^2}{b^2}$ =1, 化简, 得:

$$b^2 - (4+kk_0)b^2 + 4kk_0 = C$$
, 解得 $b^2 = 4$ 或 $b^2 = kk_0$,

当 $b^2=4$ 时,满足 $n=\frac{b^2}{-2}$,

当 $b^2 = kk_0$ 时,由 $2b^2 = k^2 + k_0^2$,得 $k = k_0$ (舍去),综上,得 $n = \frac{b^2}{-2}$.

- 21. (12 分) 已知函数 f (x) = $\log_2 \frac{1+x}{1-x}$;
- (1) 解方程 f (x) =1;
- (2) 设 x ∈ (-1, 1), a ∈ (1, +∞), 证明: $\frac{ax-1}{a-x}$ ∈ (-1, 1), 且 f ($\frac{ax-1}{a-x}$)
 f (x) = f ($\frac{1}{a}$);
- (3) 设数列{x_n}中, x₁∈ (-1, 1), x_{n+1}= (-1) ⁿ⁺¹ (3x_n-1)/(3-x_n, n∈N*, 求 x₁ 的取值范围,使得 x₃≥x_n对任意 n∈N*成立.

解: (1) : f(x) = $\log_2 \frac{1+x}{1-x}$ = 1, : $\frac{1+x}{1-x}$ = 2, 解得 $x = \frac{1}{3}$;

(2) $\Leftrightarrow g(x) = \frac{ax-1}{ax-1}$,

$$g(x) = -a + \frac{1-a^2}{x-a}$$

∵a∈ (1, +∞), ∴g (x) 在 (-1, 1) 上是增函数,

$$\mathbb{Z} g (-1) = \frac{-a-1}{a+1} = -1, g (1) = \frac{a-1}{a-1} = 1,$$

: f (x) - f (
$$\frac{1}{a}$$
) = $\log_2 \frac{1+x}{1-x} - \log_2 \frac{1+\frac{1}{a}}{1-\frac{1}{a}} = \log_2 \frac{1+x}{1-x} - \log_2 \frac{a+1}{a-1}$

=
$$\log_2 \left(\frac{1+x}{1-x} \cdot \frac{a-1}{a+1} \right) = \log_2 \frac{ax+a-x-1}{a-x-ax+1}$$
,

$$f(\frac{ax-1}{a-x}) = log_2 \frac{1 + \frac{ax-1}{a-x}}{1 - \frac{ax-1}{a-x}} = log_2 \frac{a-x+ax-1}{a-x-ax+1}.$$

(3) ∵f(x) 的定义域为(-1, 1),

$$f(-x) = \log_2 \frac{1-x}{1+x} = -\log_2 \frac{1+x}{1-x} = -f(x)$$
, ∴ $f(x)$ 是奇函数.

$$\mathbf{x}_{n+1} = (-1)^{n+1} \frac{3 \mathbf{x}_{n} - 1}{3 - \mathbf{x}_{n}}, \quad \mathbf{x}_{n+1} = \begin{cases} \frac{3 \mathbf{x}_{n} - 1}{3 - \mathbf{x}_{n}}, & \text{n为奇数} \\ \frac{3 \mathbf{x}_{n} - 1}{3 - \mathbf{x}_{n}}, & \text{n为偶数} \end{cases}.$$

①当 n 为奇数时, f
$$(x_{n+1})$$
 = f $(\frac{3x_n-1}{3-x_n})$ = f (x_n) - f $(\frac{1}{3})$ = f (x_n) - 1,

∴f
$$(x_{n+1}) = f(x_n) - 1;$$

②当 n 为偶数时, f
$$(x_{n+1})$$
 = f $(-\frac{3x_n-1}{3-x_n})$ = -f $(\frac{3x_n-1}{3-x_n})$ = 1 - f (x_n) ,

:
$$f(x_{n+1}) = 1 - f(x_n)$$
.

$$f(x_2) = f(x_1) - 1$$
, $f(x_3) = 1 - f(x_2) = 2 - f(x_1)$,

$$f(x_4) = f(x_3) - 1 = 1 - f(x_1)$$
, $f(x_5) = 1 - f(x_4) = f(x_1)$,

$$f(x_n) = f(x_n) - 1 = f(x_n) - 1, \dots : f(x_n) = f(x_{n+1}), n \in \mathbb{N}^+$$

设
$$h(x) = \frac{1+x}{1-x} = -1 - \frac{2}{x-1}$$

∴h (x) 在 (-1, 1) 上是增函数,

∴f (x) =
$$\log_2 \frac{1+x}{1-x}$$
 = $\log_2 h$ (x) 在 (-1, 1) 上是增函数.

 $:: x_3 \ge x_n$ 对任意 $n \in N^*$ 成立, $:: f(x_3) \ge f(x_n)$ 恒成立,

$$\begin{split} & : \begin{cases} f(x_3) \geqslant f(x_1) \\ f(x_3) \geqslant f(x_2), & \text{pp} \\ f(x_3) \geqslant f(x_4) \end{cases} \\ & = \begin{cases} 2 - f(x_1) \geqslant f(x_1) \\ 2 - f(x_1) \geqslant f(x_1) - 1, \\ 2 - f(x_1) \geqslant 1 - f(x_1) \end{cases} \end{aligned}$$

解得: $f(x_1) \leq 1$, $p \log_2 \frac{1+x_1}{1-x_1} \leq 1$, $\therefore 0 < \frac{1+x_1}{1-x_1} \leq 2$, 解得: $-1 < x_1 \leq \frac{1}{3}$.