개방법 근 구하기

이병옥 아주대 기계공학과

개요

- 개방법으로 근을 구하는 방법은 근이 존재하는 구간을 정할 필요가 없다. 근이 있을 것으로 추정하는 어떤 위치라도 초기 추정값으로 설정하여 근을 찾아 간다.
 - 단점은 구간법과 달리 근으로 항상 수렴하는 것은 아닌 점이다.
 - 장점으로서는 구간법에 비해 비교적 근을 찾는 속도가 빠르다.

• 주요 개방법

- Newton-Raphson 법 가장 널리 사용되며 수렴 속도가 매우 빠르다.
- secant 법 (앞에서 간단하게 소개하였으나 여기서는 다루지 않는다.)
- Brent 법 (생략함)

Newton-Raphson 법

- 간단하고 가장 빠른 방법이다.
 - 유일한 단점은 함수의 1차 도함수를 사용하므로 미분을 쉽게 할 수 있는 문제에서만 사용 가능
- Newton-Raphson 공식은 x 에 대한 f(x) 의 Taylor 시리즈 확장에서 유도될 수 있다.

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + O(x_{i+1} - x_i)^2$$

• 여기서 O(z) 는 "z 의 차수" 이다. x_{i+1} 이 f(x) = 0 의 근인 경우 위식은

$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i) + O(x_{i+1} - x_i)^2$$

• x_i 가 x_{i+1} 에 가깝다고 가정하면 위식의 마지막 항은 무시할 만큼 작아서 없앨 수 있고, x_{i+1} 에 대해 풀면 다음과 같은 Newton-Raphson 공식이 된다.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (4.3)

- 이 관계를 그래프로 나타내면 그림과 같다.
 - $x_{i+1} \in x$ 축과 접선의 교차점에 있다.
 - N-R 법에서는 다음의 수렴기준이 만족할 때가지 반복한다.

$$|x_{i+1}-x_i|<\varepsilon$$
 허용오차

Newton-Raphson 법의 오차

• N-R 법의 알고리즘은 다음과 같다.

 $x \leftarrow x + \Delta x$

$$f(x) = 0$$
 에 대한 초기 추정값을 선택한다. $|\Delta x| < \varepsilon$ 이 될 때까지 반복한다: $\Delta x = -f(x)/f'(x)$

• N-R 공식의 절단오차 E 는 다음과 같다.

$$E_{i+1} = -\frac{f''(x)}{2f'(x)}E_i^2$$

- 여기서 x 는 근이다. 이 수식은 2차적으로 수렴됨을 나타낸다. (2차는 이전 단계 2차의 제곱)
- 의미 있는 유효숫자의 수가 모든 반복에서 대략 두배가 된다.
- N-R 법은 근의 근처에서는 수렴속도가 빠르지만 넓은 영역에서는 그리 빠르지 않다. 이유는 접선이 항상 함수의 근사값인 것은 아니다. 이분법과 결합하면 거의 안전한 방법이 된다. (위의 그림참조)

newtonRaphson 프로그램

다음 안전한 버전의 프로그램은 계산할 근이 (a, b) 구간에 있다고 가정한다. 구간의 중간값을 초기 추정값으로 사용되며, 각 반복 후에 구간이 갱신된다. N-R 반복이 구간 내에 있지 않으면 무시되고 이분법으로 대체된다.

```
## module newtonRaphson
"" root = newtonRaphson(f,df,a,b,tol=1.0e-9).
  Finds a root of f(x) = 0 by combining the Newton-Raphson
  method with bisection. The root must be bracketed in (a,b).
  Calls user-supplied functions f(x) and its derivative df(x).
def newtonRaphson(f,df,a,b,tol=1.0e-9):
  import error
  from numpy import sign
  fa = f(a)
                       구간의 양끝점에 해가 있으면 종료
  if fa == 0.0: return a
  fb = f(b)
  if fb == 0.0: return b
                                구간 내에 해가 있는지 검사
  if sign(fa) == sign(fb): error.err('Root is not bracketed')
  x = 0.5*(a + b) 중간점을 초기값으로 설정
  for i in range(30): 최대 반복 횟수를 30으로 설정
    fx = f(x)
    if fx == 0.0: return x
```

```
# Tighten the brackets on the root 구간 축소
  if sign(fa) != sign(fx) : b = x
  else: a = x
  # Try a Newton-Raphson step N-R 법 적용
  dfx = df(x)
  # If division by zero, push x out of bounds
  try: dx = -fx/dfx
  except ZeroDivisionError: dx = b - a
 x = x + dx
  # If the result is outside the brackets, use bisection
  if (b - x)*(x - a) < 0.0:
                          근이 구간 밖에 있으면 이분법 적용
    dx = 0.5*(b - a)
    x = a + dx
  # Check for convergence
  if abs(dx) < tol*max(abs(b),1.0): return x
print('Too many iterations in Newton-Raphson')
```

Newton-Raphson 법으로 두 정수의 비율로 $\sqrt{2}$ 의 근사값을 연속으로 구하라.

[풀이] 이 문제는 $f(x) = x^2 - 2 = 0$ 의 근을 찾는 것과 같다. N-R 공식은 다음과 같다.

$$x \leftarrow x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - 2}{2x} = \frac{x^2 + 2}{2x}$$

x = 1 로 시작하여 연속 반복을 하면 다음과 같다.

$$x \leftarrow \frac{(1)^2 + 2}{2(1)} = \frac{3}{2}$$

$$x \leftarrow \frac{(3/2)^2 + 2}{2(3/2)} = \frac{17}{12}$$

$$x \leftarrow \frac{(17/12)^2 + 2}{2(17/12)} = \frac{577}{408} = 1.1414216$$

마지막 값은 실제 $\sqrt{2} = 1.1414214$ 에 매우 가깝다. 시작값에 따라 다른 비율을 만들어 낸다.

아래 함수에서 가장 작은 양의 근을 찾아라.

$$f(x) = x^4 - 6.4x^3 + 6.45x^2 + 20.538x - 31.752$$

[풀이] 함수의 그래프를 보면 가장 작은 양의 근이 x=2 근처에서 나타나고 이중근으로 보인다. 이분법과 Ridder 법에서는 근의 양쪽에서 부호가 바뀌는 것을 조사하여 근의 존재를 알아보기 때문에 이 경우에는 작동하지 않는다. N-R 법에서도 동일한 상황이 적용되지만 앞서 소개한 프로그램보다 이분법을 적용시키지 않은 순수한 N-R 법이 성공하지 못할 이유가 없으므로 활용하여 보기로 한다.

다음 프로그램을 실행한다. 실제 근의 값은 x = 2.1 이다.

예제 4.7 (continued)

```
## example4_8
def f(x): return x^{**4} - 6.4*x^{**3} + 6.45*x^{**2} + 20.538*x - 31.752
def df(x): return 4.0*x**3 - 19.2*x**2 + 12.9*x + 20.538
def newtonRaphson(x,tol=1.0e-9): 변형이 없는 Newton-Raphson 법
  for i in range(30):
    dx = -f(x)/df(x)
    x = x + dx
    if abs(dx) < tol: return x,i
  print (f'Too many iterations\n')
root,numIter = newtonRaphson(2.0) tol 입력이 없을 때는 기본값으로 설정
print(f'Root = {root}')
print(f'Number of iterations = {numIter}')
```

Root = 2.0999999786199406 Number of iterations = 22 하나의 다중 근 근처에서 N-R 법의 수렴이 반복 횟수가 많은 2차보다는 선형으로 나타난다. 식 (4.3)의 공식 을 다음 식으로 대체하면 다중 근에 대한 수렴 속도를 높일 수 있다.

$$x_{i+1} = x_i - m \frac{f(x_i)}{f'(x_i)}$$

m은 근의 다중성이다. (이 문제에서는 m=2) 프로그램을 변경하여 실행하여 보면 5번 만에 결과를 얻을 수 있다.

연립방정식

• 지금까지는 단일 방정식 f(x) = 0 의 근을 구하는 것이었다면, 이번에는 같은 문제의 n 차원에 대해 풀어보자.

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}$$

• 스칼라 표기법을 사용하면 다음과 같다.

$$f_1(x_1, x_2, ..., x_n) = 0$$

$$f_2(x_1, x_2, ..., x_n) = 0$$

$$\vdots$$

$$f_n(x_1, x_2, ..., x_n) = 0$$

• n 개의 비선형 방정식을 동시에 만족하는 근을 찾는 것으로 단일 방정식의 근을 찾는 것보다 훨씬 강력한 방법이다. 그러나, 문제는 신뢰할 만한 방법으로 근이 존재하는 구간을 찾을 수 없다는 것이다. 이런 경우 Newton-Raphson 법이 효과적이다. 적절한 시작점이 주어진다면 비선형 방정식에 잘 작동한다. 수렴 특성이 좋은 다른 많은 방법이 있지만 모두 Newton-Raphson 법의 변형이다.

연립방정식에 대한 Newton-Raphson 법 (1)

• 점 \mathbf{x} 에 대한 $f_i(\mathbf{x})$ 의 Taylor 시리즈 확장을 살펴 보자.

$$f_i(\mathbf{x} + \Delta \mathbf{x}) = f_i(\mathbf{x}) + \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} \Delta x_j + O(\Delta x^2)$$
 (4.5a)

• Δx^2 의 조건을 삭제하면 다음과 같이 쓸 수 있다.

$$\mathbf{f}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{x}) \Delta \mathbf{x} \qquad (4.5b)$$

• 여기서 $\mathbf{J}(\mathbf{x})$ 는 다음과 같은 편미분으로 구성된 자코비안(Jacobian) 행렬(크기 $n \times n$) 이다.

$$J_{ij} = \frac{\partial f_i}{\partial x_j}$$

- 식 (4.5b) 는 점 x 근처에서 벡터 값 함수 f 의 선형 근사값이다.
- x 가 f(x) = 0 의 해의 현재 근사값이라고 가정하면 $x + \Delta x$ 를 개선된 해로 하자. 보정값 Δx 를 찾기 위해 식 (4.5b) 에서 $f(x + \Delta x) = 0$ 으로 설정한다. 결과는 Δx 에 대한 연립방정식이다.

$$\mathbf{J}(\mathbf{x}) \, \Delta \mathbf{x} = -\mathbf{f}(\mathbf{x}) \tag{4.7}$$

연립방정식에 대한 Newton-Raphson 법 (2)

• 각각의 $\partial f_i/\partial x_j$ 의 분석적 도출은 어렵거나 비현실적일 수 있으므로 다음과 같이 유한한 차이를 가지는 근사값으로 컴퓨터가 계산하도록 하는 것이 바람직하다.

$$\frac{\partial f_i}{\partial x_i} \approx \frac{f_i \left(\mathbf{x} + \mathbf{e}_j h \right) - f_i(\mathbf{x})}{h} \tag{4.8}$$

- 여기서 h 는 작은 증분이고, \mathbf{e}_j 는 x_j 방향의 단위 벡터를 나타낸다. 이 공식은 차수 Δx^2 를 제거하고 $\Delta \mathbf{x} = \mathbf{e}_j h$ 를 설정한 후 식 (4.5a)에서 얻을 수 있다. Newton-Raphson 법이 자코비안 행렬의 오류에 대해 민감하지 않기 때문에 식 (4.8) 의 근사식을 사용하는데 문제가 없다. 이 근사식을 사용하면 컴퓨터 코드에 $\partial f_i/\partial x_j$ 표현식을 입력하는 것을 피할 수 있다.
- 비선형 연립방정식에 대한 Newton-Raphson 법의 알고리즘은 다음과 같다. 성공적인 해로의 수렴은 초기 추정값의 선택에 의존한다.
 - 벡터 x 의 근에 대한 추정값을 선택한다.
 - $|\Delta x| < \varepsilon$ 을 만족할 때까지 반복한다:
 - 식 (4.8) 에서 자코비안 행렬, **J**(**x**) 을 계산한다.
 - Δx 에 대해 $J(x) \Delta x = -f(x)$ 를 푼다.
 - x 값을 x + ∆x 로 변경한다.

newtonRaphson2 프로그램

비선형 연립방정식을 Newton-Raphson 법으로 푸는 프로그램이다. 자코비언은 근사식을 통해 계산한다. 식 (4.7) 의 동시 방정식은 피벗팅을 통한 가우스 소거법으로 해결한다. (자코비언 행렬 계산은 매번 루프내에서 실행하므로 이를 줄이기 위해 x 값이 충분히 근에 가까운 경우 자코비언을 한번만 실행하여 계산시간을 절약할 수 있도록 프로그램을 변경하는 것도 가능하다.)

```
## module newtonRaphson2
" soln = newtonRaphson2(f,x,tol=1.0e-9).
  Solves the simultaneous equations f(x) = 0 by
  the Newton-Raphson method using {x} as the initial
  guess. Note that {f} and {x} are vectors.
import numpy as np
from gaussPivot import *
import math
def newtonRaphson2(f,x,tol=1.0e-9):
  def jacobian(f,x): 근사식을 이용한 자코비언 행렬 계산
    h = 1.0e-4
    n = len(x)
   jac = np.zeros((n,n))
              주어진 모든 함수에 대해 계산 (벡터화)
    f0 = f(x)
```

```
for i in range(n):
                                \frac{\partial f_i}{\partial x_i} \approx \frac{f_i \left( \mathbf{x} + \mathbf{e}_j h \right) - f_i(\mathbf{x})}{h}
    temp = x[i]
    x[i] = temp + h
    f1 = f(x)
                          주어진 모든 함수에 대해 계산 (벡터화)
    x[i] = temp
    jac[:,i] = (f1 - f0)/h 하나의 열에서 행을 따라 계산
  return jac,f0
for i in range(30): 반복횟수를 30번으로 설정
  jac,f0 = jacobian(f,x)
                                                근사값의 크기로 판정
  if math.sqrt(np.dot(f0,f0)/len(x)) < tol: return x
  dx = gaussPivot(jac,-f0) 식 (4.7) 계산
  x = x + dx
  if math.sqrt(np.dot(dx,dx)) < tol*max(max(abs(x)),1.0):
     return x
                                  허용한계 내에 들어오면 종료
print(Too many iterations')
```

원 $x^2 + y^2 = 3$ 과 쌍곡선 xy = 1 의 교점을 구하라. [풀이] 이를 방정식으로 나타내면,

$$f_1(x, y) = x^2 + y^2 - 3 = 0$$

 $f_2(x, y) = xy - 1 = 0$

정의에 따른 Jacobian 행렬을 구하면,

$$\mathbf{J}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x & 2y \\ y & x \end{bmatrix}$$

따라서 Newton-Raphson 법과 관련된 선형방정식 $J(x) \Delta x = -f(x)$ 은 다음과 같다.

$$\begin{bmatrix} 2x & 2y \\ y & x \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -x^2 - y^2 + 3 \\ -xy + 1 \end{bmatrix}$$
 (c)

그래프를 살펴 보면 4개의 교점이 있다. 그러나 서로 대칭이므로 이 중 하나만 찾으면 다른 점은 쉽게 추론이 가능하다. 시작점으로서 x = 0.5, y = 1.5 를 선택한다.

첫번째 반복: 식 (c)에 x = 0.5, y = 1.5 를 대입하면,

예제 4.8 (continued)

$$\begin{bmatrix} 1.0 & 3.0 \\ 1.5 & 0.5 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.25 \end{bmatrix}$$

해는 $\Delta x = \Delta y = 0.125$ 이다. 따라서 개선된 교차점의 좌표는

$$x = 0.5 + 0.125 = 0.625$$
 $y = 1.5 + 0.125 = 1.625$

두번째 반복: x 와 y 의 최신 값을 사용하여 절차를 반복하면

$$\begin{bmatrix} 1.250 & 3.250 \\ 1.625 & 0.625 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -0.031250 \\ -0.015625 \end{bmatrix}$$

결과는 $\Delta x = \Delta y = -0.00694$ 따라서

$$x = 0.625 - 0.00694 = 0.61806$$
 $y = 1.625 - 0.00694 = 1.61806$

세번째 반복: 다시 최신 값을 사용하여 반복하면

$$\begin{bmatrix} 1.23612 & 3.23612 \\ 1.61806 & 0.61806 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -0.000116 \\ -0.000058 \end{bmatrix}$$

결과는 $\Delta x = \Delta y = -0.00003$ 따라서

$$x = 0.61806 - 0.00003 = 0.61803$$
 $y = 1.6180625 - 0.00003 = 1.61803$

5개의 유효숫자 내에서 변화가 없으므로, 교점의 좌표는 ±(0.61803,1.61803), ±(1.61803,0.61803)

예제 4.8 (continued)

대체 해

방정식이 몇 개만 있으면 미지수 중 하나를 제외하고 모두 제거가 가능하다. 그러면 단일 방정식을 얻어 더 쉽게 풀 수 있다. 이 문제는 방정식 중 두번째 방정식에서 다음 관계를 얻는다.

$$y = \frac{1}{x}$$

이 식을 첫번째 방정식에 대입하여 식을 변경하면,

$$x^2 + \frac{1}{x^2} - 3 = 0 \rightarrow x^4 - 3x^2 + 1 = 0$$

위의 2차 방정식의 해는 $x = \pm 0.61803, \pm 1.61803$ 이며 이는 앞서 구한 결과와 일치한다.

newtonRaphson 프로그램을 이용하여 아래 방정식의 해를 찾아라. 시작점은 (1, 1, 1) 로 하라.

$$\sin x + y^{2} + \ln z - 7 = 0$$
$$3x + 2^{y} - z^{3} + 1 = 0$$
$$x + y + z - 5 = 0$$

[풀이] 다음 프로그램을 실행한다.

```
## example4_10
import numpy as np
import math
from newtonRaphson2 import *
def f(x):
    f = np.zeros(len(x))
    f[0] = math.sin(x[0]) + x[1]**2 + math.log(x[2]) - 7.0
    f[1] = 3.0*x[0] + 2.0**x[1] - x[2]**3 + 1.0
    f[2] = x[0] + x[1] + x[2] - 5.0
    return f 함수 3개의 계산결과를 리스트로 만들어 반환
x = np.array([1.0, 1.0, 1.0])
print(newtonRaphson2(f,x))
```

[0.59905376 2.3959314 2.00501484]

(x, y, z) 결과