

①

Classifiers algorithms :-

• ① - K-nearest neighbor

(nonparametric Statistics)

• Probability of belonging to

• ② - Bayes decision Theory

• Probability of belonging to

- يفرض وجود الماء معروف (x) انتهي كذا

$$\text{Prior} \mid \omega_i \leftarrow P(\omega_i) = \frac{N_i}{N}$$

- على العنصر الموجود في class (N_i)

- على كل العناصر الموجودة في classes (N)

• Likelihood $\leftarrow P(x|\omega_i), i=1,2$
 The class-conditional probability density
 function (PDF).

القانون هو واضح بمثال (نزل مع الحاضر)

$$P(\omega_i|x) = \frac{P(x|\omega_i) * P(\omega_i)}{P(x)}, i=1,2$$

• Posterior $\leftarrow P(\omega_i|x)$.
 - احتمالية ان (x) تأتي لـ ω_i .
 - هنرى نفس القانون هو نفس ($i=1,2$).
 - $P(x)$ ذاته كل حجمه يكتب معه هماز في decision

(2)

if $P(w_1|x) > P(w_2|x)$

$\therefore x \in w_1$

if $P(w_2|x) > P(w_1|x)$

$\therefore x \in w_2$

- في حالة uniform Priors $P(w_1) = P(w_2)$ - ①

- decision قشت هستائی في ال $P(x)$ - ②

. $P(w_1) = P(w_2)$ المعاشرة في خارج فقط إذا كانت

$$P(x|w_1) \geq P(x|w_2)$$

في قرار يوضح رطبة ال slides في ال المحاضرة

feature extraction algorithms

① PCA Principal Component analysis. (PCA)

② Linear Discriminant Analysis (LDA)

③ Scale Invariant Feature Transform. (SIFT).

⇒ PCA

(Spatial domain $\xrightarrow{\text{projection}}$ Eign Domain)

. operations in the eign domain easier × 11

. (eign space) ↪

The Component of eign space is
Principal Component (PC), consists
of eign vectors.

→ eign vector selection ← data reduction × 12
reduction data

③

* The Implementation of The algorithm are:-

1) تحويل المدخلات (objects) في DataBase إلى Raw vectors

• column vector

$$\xrightarrow{\text{DataBase}} \xrightarrow{\text{(Image vector)}} \mathbf{X} = \begin{bmatrix} \square & \square & \square & \square & \dots \end{bmatrix}$$

$$\mathbf{X} = [x_1, x_2, x_3, \dots]^T$$

2) حساب وتحريك mean (مقدار وتحريك المقدار) $\mathbf{x} \rightarrow \text{mean}$

• تحريك المقدار إلىZero mean

$$\mathbf{x}' = \mathbf{x} - \text{mean}$$

3) حساب Covariance matrix (covariance)

• covariance

• 2 Random values

• x_i random value \times x_j random value

if (Covariance) > 0 (+)

(علاقة طردية) if there is a relationship between two values

if (Covariance) < 0 (-)

(علاقة تنازلي) if there is a negative relationship between two values

if (Covariance) $= 0$

there is no relationship between two values

$$\Sigma = \sum_N (x_i - \text{mean})(x_i - \text{mean})^T$$

$$\text{mean} = (\frac{1}{N}) \sum_N x_i$$

٤) بعد كده هيحصل على الـ Eigen vector of Covariance Matrix

بعد كده هيحصل على الـ Eigen value Selection مع الكبار المهمين وبجعل $K=7$ هم يمثلون الـ Principle Component ، لأنها تحتوي على أكبر كم من المعلومات عن القيمة الأخرى .

- classes selection عدد الأصناف يعتمد على عدد

Eigen vectors في 100 فلتر \Leftrightarrow 100 class كل وحدة

$$K=100$$

Transformation matrix $W (K \times 1)$

eigen domain \rightarrow spatial domain \approx اى فلتر

eigen space $\leftarrow Y = (W^T \cdot X)$ \rightarrow Image vector.

[eigenvectors of S]
corresponding to K largest eigen values

بعد ما ندخل العوامل بـ eigen space . نعمققارنة والستوف
هنتي أوي classifier class

Example - slide 40 \rightarrow 44