Lecture No.6 Continuous Random Variables

Azeem Iqbal

University of Engineering and Technology, Lahore (Faisalabad Campus)

Continuous Random Variables

Continuous Random Variable has an uncountable image.

$$-S_X = (0, 1]$$

$$S_Y = R$$

Probability Density Function (PDF) of a Continuous Random Variable

• The Probability Density Function (pdf) of a continuous random variable, $f_X(x)$ is a continuous function of the $x \in S_X$.

Properties of PDF:

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) = 1$$

$$f_X(x) = 1$$

PDF of a Continuous Random Variable

Properties of pdf:

$$P(a \le x \le b)$$

$$= P(a \le x < b)$$

$$= P(a < x \le b)$$

$$= P(a < x \le b)$$

$$= P(a < x < b)$$

$$= \int_{a}^{b} f_{X}(x) dx$$

Cumulative Distribution Function (CDF) of a Continuous Random Variable

□ CDF of a continuous RV is computed by integrating the pdf

$$F_X = P(X \le t) = \int_{x=-\infty}^{t} f_X(x) dx$$

☐ Conversely, we also have:

$$f_X(x) = \frac{d}{dx} F_X(x)$$

Properties of the CDF

Properties of CDF:

$$\rightarrow$$
 $0 \le F_X(x) \le 1, -\infty < x < \infty$

$$\Rightarrow$$
 $a \le b$ \Rightarrow $F_X(a) \le F_X(b)$

$$\Rightarrow \lim_{x \to -\infty} F_X(x) = 0 \Rightarrow F(-\infty) = 0$$

$$\Rightarrow \lim_{x \to \infty} F_X(x) = 1 \Rightarrow F(\infty) = 1$$

Properties of the CDF

Properties of CDF:

$$\Rightarrow P(X = a) = P(a \le x \le a) = \int_{a}^{\infty} f_X(x) dx = 0$$

$$P(a \le x \le b) = P(a \le x < b) = P(a < x \le b)$$

$$= P(a < x \le b)$$

$$= F_X(b) - F_X(a)$$

Properties of the CDF

Practice Problem

Example

Let X denote the width in mm of metal pipes from an automated production line. If X has the probability density function $f(x) = 10e^{-10(x-5.5)}$ for $x \ge 5.5$, f(x) = 0 for x < 5.5.

Determine:

- (i) P(X < 5.7);
- (ii) P(X > 6);
- (iii) $P(5.6 < X \le 6)$.

Example

(i)

$$P(X < 5.7) = \int_{5.5}^{5.7} 10e^{-10(x-5.5)} dx$$
$$= -e^{-10(x-5.5)} \Big|_{5.5}^{5.7}$$
$$= 1 - e^{-2} = 0.865.$$

(ii)

$$P(X > 6) = \int_{6}^{\infty} 10e^{-10(x-5.5)} dx$$
$$= -e^{-10(x-5.5)} \Big|_{6}^{\infty}$$
$$= e^{-5} = 0.007.$$

(iii)

$$P(5.6 < X \le 6) = \int_{5.6}^{6} 10e^{-10(x-5.5)} dx$$
$$= -e^{-10(x-5.5)} \Big|_{5.6}^{6}$$
$$= e^{-1} - e^{-5} = 0.361.$$

Example

The random variable X measures the width in mm of metal pipes from an automated production line X has the probability density function $f(x) = 10e^{-10(x-5.5)}$ for $x \ge 5.5$, f(x) = 0 for x < 5.5. What is the cumulative distribution function of X?

For
$$x < 5.5$$
, $F(x) = 0$. For $x \ge 5.5$,

$$F(x) = \int_{5.5}^{x} 10e^{-10(t-5.5)} dt$$
$$= -e^{-10(t-5.5)} \Big|_{5.5}^{x}$$
$$= 1 - e^{-10(x-5.5)}.$$

Example

Let X denote the time in milliseconds for a chemical reaction to complete. The cumulative distribution function of X is

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-0.05x} & x \ge 0. \end{cases}$$

What is the probability density function of X? What is the probability that a reaction completes within 40 milliseconds?

The probability density function will be given by $\frac{dF(x)}{dx}$.

$$f(x) = \begin{cases} 0 & x < 0 \\ 0.05e^{-0.05x} & x \ge 0 \end{cases}$$

The probability that the reaction completes within 40 milliseconds is

$$P(X \le 40) = F(40) = 1 - e^{-2} = 0.865.$$

Expected Value of Continuous R.V.

☐ Expected value for Discrete RV

$$E[X] = \mu_X = \sum_{x \in S_X} x \cdot p_X(x)$$

Expected value for Continuous RV

$$E[X] = \mu_X = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

Variance of a Random Variable

☐ Variance for Discrete RV

$$Var[X] = \sigma_X^2 = \sum_{x \in S_X} (x - \mu_X)^2 \cdot p_X(x)$$

Variance for Continuous RV

$$Var[X] = \sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f_X(x) dx$$

Variance of a Random Variable

Practice Problem

Is the real valued function defined by

$$f(x) = \begin{cases} 2x^{-2} & \text{if } 1 < x < 2\\ 0 & \text{otherwise,} \end{cases}$$

a probability density function for some random variable X?

Practice Problem

For a valid pdf

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1 \quad f(x) = \begin{cases} 2x^{-2} & \text{if } 1 < x < 2 \\ 0 & \text{otherwise,} \end{cases}$$

$$\int_{1}^{2} 2x^{-2} dx = 1$$

Homework Problem

Is the real valued function defined by

$$f(x) = \begin{cases} 1 + |x| & \text{if } -1 < x < 1 \\ 0 & \text{otherwise,} \end{cases}$$

a probability density function for some random variable X?

Homework Problem

$$\int_{-1}^{1} (1+|x|)dx$$

This is not a Density Function

$$= \int_{-1}^{0} (1 + (-x)) dx + \int_{0}^{1} (1 + (x)) dx = 3$$

Homework Problem

What is the probability density function of the random variable whose cdf is

$$F(x) = \frac{1}{1 + e^{-x}}, \quad -\infty < x < \infty$$

The pdf of the random variable is given by

$$f(x) = \frac{d}{dx} F(x)$$

$$= \frac{d}{dx} \left(\frac{1}{1 + e^{-x}} \right)$$

$$= \frac{d}{dx} \left(1 + e^{-x} \right)^{-1}$$

$$= (-1) \left(1 + e^{-x} \right)^{-2} \frac{d}{dx} \left(1 + e^{-x} \right)$$

$$= \frac{e^{-x}}{(1 + e^{-x})^2}.$$