Indian Institute of Technology Guwahati Department of Mathematics

MA 101 – MATHEMATICS-I

Date: 31 - Aug - 2015Tutorial Sheet-4 **Time:** 08:00 - 09:00

Linear Algebra

Topics Covered:

Linear transformations, determinants, Cramer's rule, eigenvalues-eigenvectors, similarity of matrices, diagonalization.

- 1. If a matrix A is *idempotent*, i.e. if $A^2 = A$, then find all possible values of det(A).
- 2. If a matrix A is *nilpotent*, i.e. if $A^n = 0$ for some $n \in \mathbb{N}$, then find all possible values of $\det(A)$.
- 3. For an $n \times n$ matrix A, show that

$$\det(adj(A)) = \det(A)^{n-1}.$$

4. Let A be a square matrix such that A can be partitioned as $A = \begin{bmatrix} P & | & Q \\ R & | & S \end{bmatrix}$, where P, Q, R and S are square matrices. Then is the following statement true:

$$\det(A) = \det(P) \det(S) - \det(Q) \det(R).$$

Justify your argument.

- 5. Prove that the range of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is equal the column space of its standard matrix
- 6. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then show that the eigenvalues of A are the solutions of the equation $\lambda^2 tr(A)\lambda + \det A = 0$, where tr(A) is the sum of the entries on the main diagonal of A.

Express the trace and determinant of A in terms of eigenvalues of A. Can you generalize this for an $n \times n$ matrix?

7. For each of the following matrix, compute the characteristic polynomial, eigenvalues, basis for the eigenspaces corresponding to each eigenvalue, algebraic and geometric multiplicity.

(a)
$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

$$(b) \begin{bmatrix} 3 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 & 3 \\ 2 & -2 & 2 \\ 3 & 0 & 1 \end{bmatrix}$$

- 8. Let A, B be square matrices. Then prove or disprove (using counter example) the following statements:
 - (a) If λ is an eigenvalue of A and μ is an eigenvalue of B, then $\lambda + \mu$ is an eigenvalue of A + B.
 - (b) If λ is an eigenvalue of A and μ is an eigenvalue of B, then $\lambda\mu$ is an eigenvalue of AB.
 - (c) If $v \in \mathbb{R}^n$ is such that $Av = \lambda v$ and $Bv = \mu v$, then $\lambda + \mu$ is an eigenvalue of A + B and $\lambda \mu$ is an eigenvalue of AB.
- 9. If $A \sim B$ then show that $A^T \sim B^T$.
- 10. In the following, check whether the matrices A and B are similar. If yes, find the matrix P such that B =

(a)
$$A = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$$
 and B is a diagonal matrix.

- 11. If A, B are similar matrices, then show that the geometric multiplicities of the eigenvalues of A and B are same.
- 12. If A is an $n \times n$ diagonalizable matrix whose eigenvalues are 0 & 1, then for each $k \in \mathbb{N}$, compute A^k .