FINE-TUNING GPT-2 TO GENERATE RESEARCH PA-PER ABSTRACTS

Chris Liu & Yiyun Zheng

University of California, Santa Cruz 1156 High Street Santa Cruz, CA 95064 {yliu298, yzheng63}@ucsc.edu

1 Introduction

GPT-2 is a Transformer with 1.5B parameters trained on approximately 40 billion tokens of text, which was obtained by scraping all outbound links from Reddit with at least three upvotes (Radford et al., 2019). We fine-tuned GPT-2 on a subset of the arXiv Archive dataset (Geiger, 2019). Our goal is to 1) observe how well GPT-2 would learn the language structure of the abstruse text and to what extent it can replicate it, 2) see if the model could extract the domain-specific knowledge without a dedicated extracting system, and 3) test if the model can have creativity based on the knowledge it acquired during training.

2 ARXIV DATASET

We selected a subset of the arXiv Archive dataset (Geiger, 2019) as the training and evaluation data to fine-tune GPT-2. The original arXiv Archive dataset contains a full archive of metadata about papers on arxiv.org, from the start of the site in 1993 to the end of 2019. Our subset includes all the paper titles (query) and abstracts (context) under the Artificial Intelligence (cs.AI), Machine Learning (cs.LG), Computation and Language (cs.CL), and Computer Vision and Pattern Recognition (cs.CV) categories. We provide the information ¹ of the sub-dataset and the distribution of the training and evaluation dataset as follows. The Byte Pair Encoding (BPE) tokens count is the number of tokens after performing BPE operations (Sennrich et al., 2015) in the particular set of data.

Split	Count	Percentage (%)	BPE Tokens Count
Train	90,000	90.11	20,834,012
Valid	4,940	4.95	1,195,056
Test	4,940	4.95	1,218,754
Total	99,880	100.00%	23,247,822

Table 1: The distribution of training, validation, and testing splits.

2.1 ADDING SPECIAL TOKENS

The original dataset is in the format of a tab-separated value, so we wrote a simple preprocessing script to convert it into a text file format, which is the input file type (a document) of the GPT-2 model. An example of a paper's title and its abstract is shown below. We introduce three types of tokens for every instance in the dataset: start-of-text token, separation token, and end-of-text token.

¹We fixed the data information because there was a bug in the previous data preprocessing script, and it gave the wrong data statistics.

<|startoftext|> Attention Is All You Need <|sep|> The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism.

. . .

We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. <|endoftext|>

Figure 1: An example of a paper's title and its abstract. < |CL| > is a normal token, whereas < |sep| > and < |endoftext| > are special tokens. The shown text is from Vaswani et al. (2017).

Start-of-text token: The start-of-text token < | start-of-text | > simply indicates the start of a sequence, and it is followed by a title of a paper. Start-of-text tokens will not be tokenized by the BPE tokenier.

Separation token: A separation token < | sep | > separate query and context in an input sequence (a title-abstract pair). It will be treated as a special token and not be tokenized by the BPE operation.

End-of-text token: Similar to the start-of-text token, an end-of-text token < | endoftext | > indicates the end of a title-abstract pair. The model will also treat it as a special token, which is ignored by the BPE operation.

2.2 SORTING AND DEDUPLICATION

Other than adding the special tokens, we sort all titles and abstracts by their submission date. By sorting all abstract by dates, we are to examine GPT-2's ability to use learned terminologies when it is prompted with paper titles from the "future." For example, if GPT-2 saw the term "BERT" in the training data, we would test if it can use its "knowledge" of BERT if we give it a new title with the term BERT.

Since we are using paper titles and abstracts from four categories, and there may exist many cross-category papers, we deduplicate the dataset by using the unique arXiv IDs attached with each paper (e.g., the arXiv ID of Vaswani et al. (2017) is 1706.03762).

2.3 TRAIN/VALIDATION/TEST SPLIT

We split the dataset into three parts with a ratio of 9:0.5:0.5. The resulting dataset contains 90,000 training examples, 4,940 validation examples, and 4,940 testing examples. Since GPT-2 is a language model pre-trained using document-level texts, we write all sequences to three files train.txt, valid.txt, test.txt. The training data roughly includes all paper titles and abstracts from April 1993 to September 2019, and the validation and test data contain the rest of the papers by 2020.

3 METHODOLOGY

3.1 Why Not GANs

We chose to use a language model (LM) instead of a generative adversarial network (GAN) because language models are generally superior to GANs in both text quality and diversity. A known problem with existing language GANs' (Guo et al., 2018; Dey et al., 2018; Yu et al., 2016; Che et al., 2017; Chen et al., 2018) poor sample quality is the exposure bias - a type of inconsistency during training

and inference. The phenomenon happens when GANs look at the ground truth tokens during training but only relies on the previously generated tokens during inference (Caccia et al., 2018). Moreover, LMs are proven to be easier to train, cross-validate, and use less compute.

3.2 Model

Transformer is one of the most significant advances in recent years. A Transformer model uses the attention mechanism, supports parallelization, and obliterates recurrence (Vaswani et al., 2017). With parallelization, the Transformer model runs faster on modern GPUs, and is more shallow and thus easier to optimize without the nature of being recurrent. The combination of the three properties is the key that makes Transformer so successful today. In our case, GPT-2 is a Transformer with 1.5B parameters trained on approximately 40 billion tokens of text, which was obtained by scraping all outbound links from Reddit with at least three upvotes (Radford et al., 2019).

Due to the risk of being abused, OpenAI released neither the training nor the fine-tuning code of GPT-2, so we used the model implementation from HuggingFace's Transformers (Wolf et al., 2019) and the official examples ² as a starting point of the training code. There are five GPT-2 model sizes, each with a different number of parameters: distill (82M), small (117M), medium (345M), large (774M), and extra-large (1558M). Based on our estimation, the 82M, 117M, and 345M model can be fine-tuned with a single 16GB memory GPU, while the 774M model requires more than 16GB memory. However, fine-tuning the 1558M model is not a part of this project, but it will be in our future work when we have access to multi-GPU machines.

3.3 GENERATION

The decoding strategy is a key step in language model generation because the generation quality and diversity are largely affected by the sampled probability distribution. A common decoding strategy is maximization-based decoding, including beam search (Freitag & Al-Onaizan, 2017), top-k sampling (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019), and temperature sampling (Ackley et al., 1985). However, a problem with these sampling methods is that the unreliable tail of the sampling distribution will have a large number of candidates with a very low probability that they as a whole can be over-represented.

We used Nucleus Sampling, which keeps the vast majority of probability mass in the "nucleus" and only samples from the top-p portion of the (dynamic) probability mass (Holtzman et al., 2019). Given a distribution $\mathcal{P}\left(x|x_{1:i-1}\right)$, we define the top-p portion of the vocabulary $V^{(p)}\subset V$ as the smallest set of vocabulary such that

$$\sum_{x \in V^{(p)}} P(x|x_{1:i-1}) \ge p \tag{1}$$

Let $p' = \sum_{x \in V^{(p)}} P(x|x_{1:i-1})$. Before the next word is sampled, we rescale the original distribution as follows, and the next word is then sampled from this new distribution.

$$P'(x|x_{1:i-1}) = \begin{cases} P(x|x_{1:i-1})/p' & \text{if } x \in V^{(p)} \\ 0 & \text{otherwise} \end{cases}$$
 (2)

In other words, because we only choose from the smallest possible set of words whose cumulative probability exceeds the probability p, we can make sure that the unlikely words are truncated from the tail and not to be over-represented during the whole decoding procedure.

While comparing the generation quality of different decoding strategies is beyond the scope of this project, we will experiment with it in future work.

4 EXPERIMENT

4.1 Training

Below are the default hyperparameters. Note that the learning rate of the 345M and 774M models are lower because they tend to overfit easily.

²https://github.com/huggingface/transformers/tree/master/examples/language-modeling

Model	Block Size	Batch Size	Grad Accum	LR	Epochs
82M	512	1	1	5e-5	5
117M	512	1	1	5e-5	5
345M	512	1	1	2e-5	5
774M	512	1	1	1e-5	5

Table 2: The parameter setting of fine-tuning GPT-2 of different sizes. Block size is the input sequence length after tokenization, and the training dataset will be truncated in block of this size for training. Gradient accumulation step is the number of updates steps to accumulate before performing a backward/update pass. Other than the parameter setting in the table, all models are trained with their default hyperparameters.

4.2 Hyperparameters

Due to the size of the model and the high cost of computing, we were not able to perform a hyperparameter search over all sets of hyperparameters. In all the hyperparameter tuning experiments below, we used DistilGPT-2 with 82M parameters to save time and cost. The default setting uses 1 gradient accumulation, 512 block size, 0 weight decay, 5 epochs, 1 batch size, and it is labeled as "82M*."

4.2.1 Gradient Accumulation

We could only fit the 774M model in a 16GB GPU with two gradient accumulation steps during the initial experiments. We experimented with different step values on DistilGPT-2. We found that using a large gradient accumulation step can hurt the performance, especially the perplexity scores, which almost increases linearly after doubling the accumulation step every trial.

With a larger gradient accumulation step, while it can help reduce the memory usage and allow the model to train at a larger batch size, the weights of the model will not update until the next step. And because it sums the gradients of several backward operations before performing a step of gradient descent, the loss will be averaged by the number of accumulation steps, leading to a weaker backpropagation of the error signal.

Model	Grad Accum	Train Loss	Valid Loss	Train PPL	Valid PPL
82M*	1	3.0095	3.0871	20.2781	21.9143
82M	2	3.0758	3.1319	21.6677	22.9174
82M	4	3.1434	3.182	23.1828	24.0938
82M	8	3.2081	3.2336	24.7326	25.372

Table 3: A large gradient accumulation is harmful to model performance.

4.2.2 BLOCK SIZE

Compared to gradient accumulation step, block size has a more significant impact on the model performance. A possible reason is that the encoder window size of GPT-2 is 512, and while it is fine to use a sequence length less than 512, the original sequence is divided into smaller truncks and thus becomes less "informative."

Model	Block Size	Train Loss	Valid Loss	Train PPL	Valid PPL
82M*	512	3.0095	3.0871	20.2781	21.9143
82M	256	3.0016	3.1042	20.1196	22.2923
82M	128	3.3092	3.1783	20.8875	24.0068
82M	64	3.1322	3.3147	22.924	27.5139
82M	32	3.2962	3.5234	27.0104	33.8991

Table 4: A small block size is extremely harmful to the model performance.

4.2.3 WEIGHT DECAY

The weight decay rate has a positive effect on all metrics, but it is trivial in our case. So we decided not to use it when training the large model.

Model	Weight Decay	Train Loss	Valid Loss	Train PPL	Valid PPL
82M*	0	3.0095	3.0871	20.2781	21.9143
82M	0.01	3.0089	3.0867	20.2649	21.9037
82M	0.01	3.0035	3.0826	20.1554	21.8151

Table 5: Weight decay slightly increases both losses and perplexities.

4.2.4 EPOCHS

Even if we trained the model 7 epochs, the model still did not converge. But we will still use epochs of 5 to lower the training cost.

Model	Epochs	Train Loss	Valid Loss	Train PPL	Valid PPL
82M	3	3.1033	3.151	22.2714	23.3595
82M	4	3.0516	3.1144	21.1488	22.5199
82M*	5	3.0095	3.0871	20.2781	21.9143
82M	6	2.9745	3.0659	19.5802	21.4529
82M	7	2.9438	3.0488	18.9873	21.089

Table 6: The distilled model stil did not converge after 7 epochs.

4.2.5 BATCH SIZE

Using a smaller batch size also increases the metrics, but at the cost of doubling or even tripling the training time. Our 774M model uses batch size = 1.

Model	Batch Size	Train Loss	Valid Loss	Train PPL	Valid PPL
82M*	8	3.0095	3.0871	20.2781	21.9143
82M	4	2.947	3.0503	19.0482	21.1207
82M	2	2.8876	3.0222	17.9502	20.5368
82M	1	2.8397	3.0118	17.1101	20.3245

Table 7: Models trained with a smaller batch size have lower losses and perplexity scores.

4.2.6 OPTIMIZER

I use the default AdamW optimizer introduced in Loshchilov & Hutter (2017). Essentially, AdamW is an Adam optimizer (Kingma & Ba, 2014) with the implementation of weight decay regularization, which decouples the weight decay from the optimization steps taken with respect to the loss function. This implementation improves Adam's generalization performance.

4.3 EVALUATION

4.3.1 Perplexity Scores and Losses

Model	Train Loss	Valid Loss	Test Loss	Train PPL	Valid PPL	Test PPL
82M	2.8394	3.0111	2.9996	17.1063	20.3107	20.0768
117M	2.6216	2.8779	2.8686	13.7579	17.7773	17.6126
345M	2.2768	2.7907	2.7825	11.818	16.2921	16.1589
774M	2.2614	2.7126	2.7041	9.5962	15.0679	14.9413

Table 8: Evaluation results of the four models.

Above are the training and validation losses and perplexity scores of the GPT-2 models. It can be observed that the difference between the validation losses of the 345M model and the 774M model is trivial compared to the gap between the other models. Overall, the changes in perplexity scores are consistent, where there is only 1 perplexity difference between the 117M, 345M, and the 774M model. However, it is proven that the 774M generates coherent and diverse text in general, whereas smaller models tend to make more grammatical mistakes.

Since the comparison between models of different sizes is not the goal of this project, we will only use the 774M model to generate paper abstracts. Other models are expected to perform worse.

4.4 USAGE OF DOMAIN KNOWLEDGE

We can observe that the generated abstracts have domain-specific terms related to words in the given titles almost all the time. An exception of this is that if the particular title lacks information or terms related to topics like machine learning, the model may not be able to "recover" the semantics of the title. However, the proper usage of domain knowledge is not in our expectation.

4.5 GENERATION QUALITY ABSTRACTS

We randomly selected 20 research paper titles not in the training set and let the fine-tuned model generate the abstract. We found that the model learned the general structure of an abstract well, but can still fail in some particular cases. Because of GPT-2's auto-regressive nature and the uncontrolled generation task, we do not expect the similarity between the original abstract and the generated abstract.

4.5.1 STRUCTURE

The GPT-2 model does not have prior knowledge of abstract because it was pre-trained using Reddit outbound links. The fine-tuned model learned the structure of an abstract well, and most of the time, it first introduces the field, describes the central problem, discusses what the paper is doing, and what the contributions are. This ability is not affected by the prompt.

4.5.2 ABBREVIATIONS

The fine-tuned model can learn the abbreviations of terminologies and uses them frequently. It uses terms such as CNN, RL, MLP, NAS even though they do not appear in the title. Moreover, it seems to find that it needs to use the full term in the first occurrence and only the abbreviations in the later usage.

4.5.3 LATEX SYNTAX

The model also learns simple LATEX syntax and sometimes generates them in the abstract. For example, it learned the superscript expression and used in \$NAS^\text{T}\$ and \$80^{200}\$. This also implies its strong ability to learn a certain syntax completely different from English. We will be continuing study its capability of generating LATEX and will test if the model can learn computer code in the future.

4.6 FAILURE OF CAPTURING KEY TERMS

Even though the model is pretty good at generating coherent abstracts, it fails to capture the key terms, and this happens very often. Many research paper titles follow the format "abbreviation name: full name," such as "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" (Devlin et al., 2018). We found that the model does not tend to use the term "BERT" in the abstract, which is rarely the case in real abstracts. We suspect that it is because of the repetition penalty, but tweaking the penalty value does not mitigate this problem.

5 CHALLENGES AND FUTURE WORKS

The only challenge we faced in the project was computing cost. Initially, we could not find a single GPU with more than 16GB memory on Google Cloud, Microsoft Azure, and Amazon Web Services. We ended up using Paperspace, who has an easy-to-use Jupyter Notebook environment and Nvidia P6000 GPU with 24GB memory. The cost of training two 774M models is about \$100.

In the future, I will continue working on this project on my own and explore the possibility of using GPT-2 to write Python code.

6 CONCLUSION AND BROADER IMPACT

In this project, we 1) observed how well GPT-2 could mimic the research paper abstract in a human-like level, 2) saw that the model can use domain-related terms to construct the abstracts, and 3) found that the model did "create its own story" based on the title.

While our fine-tuned GPT-2 can generate a human-style abstract, we do not expect people to use it to write for them. First, GPT-2 is good but not good enough in terms of generation. Second, GPT-2 does not truly understand domain knowledge or even language at all. We believe that fine-tuning is a convenient way of discovering the weaknesses of transfer learning and see where we can improve and how to improve them.

7 Contributions

I and Yiyun own approximately 55-60% and 40-45% contribution to the project, respectively.

REFERENCES

- David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann machines. *Cognitive science*, 9(1):147–169, 1985.
- Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent Charlin. Language gans falling short. *arXiv preprint arXiv:1811.02549*, 2018.
- Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial networks. *arXiv preprint arXiv:1702.07983*, 2017.
- Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, and Lawrence Carin. Adversarial text generation via feature-mover's distance. In *Advances in Neural Information Processing Systems*, pp. 4666–4677, 2018.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
- Rahul Dey, Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Rankgan: A maximum margin ranking gan for generating faces. *arXiv preprint arXiv:1812.08196*, 2018.
- Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. *arXiv* preprint *arXiv*:1805.04833, 2018.
- Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. *arXiv* preprint arXiv:1702.01806, 2017.
- R. Stuart Geiger. ArXiV Archive: A tidy and complete archive of metadata for papers on arxiv.org, 1993-2019, January 2019. URL https://doi.org/10.5281/zenodo.2533436.
- Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via adversarial training with leaked information. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.
- Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning to write with cooperative discriminators. *arXiv preprint arXiv:1805.06087*, 2018.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. *arXiv preprint arXiv:1904.09751*, 2019.
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAI Blog*, 1(8):9, 2019.
- Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. *arXiv preprint arXiv:1508.07909*, 2015.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information processing systems*, pp. 5998–6008, 2017.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R'emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface's transformers: State-of-the-art natural language processing. *ArXiv*, abs/1910.03771, 2019.
- Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Sequence generative adversarial nets with policy gradient. corr abs/1609.05473 (2016). *arXiv preprint arXiv:1609.05473*, 2016.

A GENERATED ABSTRACTS Prompt A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play Generation A major goal of reinforcement learning is to devise algorithms that learn to act effectively in unknown, stochastic environments. When agents learn to play, they sometimes outperform or dominate the best expert. This recent phenomenon is also called "play by play." Since then, computer chess programs and one-shot computer Go programs have led to several exciting advances in the domain of reinforcement learning. Nevertheless, the evaluation of reinforcement algorithms is still hampered by computational complexity: prior approaches take a long time to learn a good policy in many different state-space configurations and are not practical for lifelong learning. A recently proposed algorithm in the domain of reinforcement learning has significantly reduced the

.....

prior algorithms, even when the number of states is much larger.

time and complexity required to learn a good policy from small-to-medium-sized instances. In this paper, we present and evaluate the self-play algorithm. The self-play algorithm offers an algorithm for learning in environments with very few informative actions. Self-play is also applicable to sparse rewards, as when dealing with stochastic environments, and can be combined with either search or reinforcement learning approaches. We introduce a new version of the self-play algorithm that trades off the cost of self-play and the number of actions per time step. This new algorithm obtains a 12X speedup over the prior algorithms. In most settings, the new algorithm is faster to learn than the

Prompt Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning

Generation Meta reinforcement learning (RL) has shown promising results in a range of complex environments and has shown a great potential to improve over task-specific policies. However, making RL methods truly generalizable requires complex environments where a meta-policy to learn in various environments can easily be created. This would be a significant step towards application of RL to more complex real-world problems. The aim of this work is to create a benchmark environment for multi-task and meta RL. Our benchmark is specifically designed for experiments with a mixture of real and synthetic environments. We make the benchmark available on GitHub. We provide the benchmark along with various experimental setups, evaluations on the number of received rewards and the quality of learned policies. Furthermore, we create a thorough evaluation of five state-of-the-art meta RL methods: the meta-learner based encoder-decoder, the meta-learner based variational inference, the meta-learners based policy gradient methods, the meta-learners based imitation learning and the meta-learners based policy imitation methods. These methods are selected to be compared in a novel benchmark to create a fair benchmark. Experiments are carried out on the proposed benchmark to demonstrate the strong suitability and overall effectiveness of the benchmark. We highlight the performance of each method in a short context for further research.

......

Prompt Negated LAMA: Birds cannot fly

Generation A recent work had shown that it is possible to evaluate whether a certain birds can fly. However, no results were presented for this task when the birds were represented as an artificial artificial neural network (ANN). In this work, we propose a simple and effective method for evaluation of birds. The method is based on negating input neurons which may be directly connected to the ANN. We evaluate our method on several benchmark datasets and show that it is able to evaluate whether a bird can fly.

.....

Prompt Acme: A Research Framework for Distributed Reinforcement Learning

Generation Many real-world domains require performing complex tasks collaboratively to achieve certain goals. Among these tasks, distributed reinforcement learning (RL) is an emerging research direction which exploits the fact that many local agents interact with each other to achieve the common goal. In this paper, we describe a framework, Acme, for the coordination of RL agents, where agents are trained jointly using data-driven cooperative learning algorithms. At the core of the framework is the idea that agents should learn to optimally coordinate their actions towards shared goals, using distributed agents and cooperative learning algorithms to achieve the shared task. The core notion of the framework is that agents are supervised to optimize their actions to ensure that their interactions with the environment align with the global goal. Further, we discuss how the communication component can be used to share information among agents and co-learn global and local policies to achieve the shared task. We show how Acme can be used to address a range of problems in many domains including a robot reaching a goal or a mobile robot learning to pick up a tablet. Experimental results on diverse real-world domains show the effectiveness of the framework.

.....

Prompt Language Models are Few-Shot Learners

Generation Recently proposed methods for language model training have shown excellent performance in recognizing new language. The important challenge is to effectively harness the knowledge acquired from previous domains to represent new languages. Previous work has relied on re-training a language model for each new domain. We show in this paper that this approach is sub-optimal. First, it requires building a new language model from scratch each time new data are available for a new domain, i.e., using more samples in the initial training data and fewer in the later updating data. Second, it depends on the average of all language models available in previous domains. This strategy will be sub-optimal for language modeling by nature. We propose a domain adaptive strategy that simply trades off between three different types of feature generation: (i) the original features associated with the current and target domains, (ii) features learned from previous domains, and (iii) auxiliary features derived from the model's prediction and other available data. We demonstrate our approach by evaluating on three different language modeling tasks: news article classification, sentiment analysis, and link prediction. For each task, we compare our approach with and without domain adaptation. The experiments show that domain adaptation reduces the average number of training samples required in the later updating step, resulting in better performance for the three tasks. For the two languages considered, news article classification and sentiment analysis, our approach provides a 5% relative improvement in both tasks over no adaptation.

Prompt YOLOv4: Optimal Speed and Accuracy of Object Detection

Generation Object detection is a fundamental component of many high-end computer vision systems. With a majority of deep learning approaches for object detection being faster than the state-of-the-art classical methods such as YOLO, YOLOv3 and SSD, the increasing efficiency of image recognition and inference is potentially a driving force behind a larger field of research and discovery. In this paper, we present a state-of-the-art deep learning approach to object detection called YOLOv4, which is an extension of YOLO that greatly improves the speed and accuracy of the currently leading state-of-the-art approaches. Our main contributions are (i) a novel variant that reduces the number of convolutions by a factor of 42x and gives rise to 3.75x speed-ups over YOLO, (ii) a fast, accurate, and memory efficient ReLU implementation of YOLOv4, and (iii) a novel ReLU network called Weighted ReLU to perform object detection. In addition, we propose a new way to regularize YOLOv4 by designing a learned weight matrix that is inherently paired with the convolution filters of YOLO, while keeping the memory consumption high. We conduct extensive experiments on COCO object detection benchmark, and show that the standard VGG-16 architec-

ture can reduce the standard parameter count by a factor of 2.5x while achieving a state-of-the-art single model performance. Code has been made available.

.....

Prompt Jukebox: A Generative Model for Music

Generation Jukebox is an open source music generation system with a flexible spatial and temporal distribution of musical content. Generating a full music track from a single sampled note takes a high-dimensional signal representation, such as acoustic sound, into consideration, yielding a more compact latent space. The structure of jukebox is inspired by the brain: the perceptual representation of musical information is a compact, spatio-temporal manifold, where the input to the generator is a note played by a human musical instrument. To ensure a global encoding of music, the jukebox architecture encodes musical items into a compact, low-dimensional latent space. The encoder performs a stochastic generation of note vectors, taking into account their continuous nature. The encoder is initialized with a sliding window, by sampling the same note at each time step. The generator is a convolutional neural network (CNN), which learns the local spatial distributions of the features in the latent space. The three output units of the jukebox, the generator, and the encoder, are connected by a multilayer perceptron (MLP), which learns to combine spatial and temporal representations of the note vectors. The encoder is trained end-to-end using a maximum a posteriori (MAP) objective. In a preliminary evaluation, we showed that the jukebox algorithm successfully generates music tracks in a low-dimensional space that is close to the neural representation of the music.

.....

Prompt End-to-End Object Detection with Transformers

Generation Object detection methods, such as Faster R-CNN, are an important component of computer vision systems for many applications. However, they can be time-consuming and challenging to learn. In this work we propose a neural network architecture that can predict all possible object detections using only a single model and achieves state-of-the-art performance on four benchmark datasets. This model combines a convolutional encoder with a recurrent fully-connected layer to allow it to predict predictions at every pixel on an image. At each prediction time, the convolutional encoder predicts the object type and pointwise overlap mask in all pixels. At the bottom of the model, we have added a fully-connected layer that allows us to output the object mask as a linear combination of the type and overlap mask. We also propose a fixed parameter training scheme that makes the whole network very efficient to train and can be combined with any Faster R-CNN-based object detector. We compare our results with other recent state-of-the-art techniques and show that our method obtains the highest detection accuracy, the most efficient training time, and the fastest training time.

Prompt Backpropagation and the brain

Generation One of the most surprising and most prominent successes of deep learning has been obtained through backpropagation: a purely neural model (not any computer program) is able to reproduce the inputs and outputs of a highly optimized human brain. Even this remarkable result raises a number of profound questions, since one assumes that an entire brain is essential for computations that cannot be performed by a single neural circuit. However, it has recently been demonstrated that it is possible to build a machine that can learn to communicate, that can process natural images, and that can play the instrument. Is it possible to build a separate machine that learns the properties of its brain? If so, what would it look like? The answer to these questions would have many implications. For instance, could it be that the properties of the brain are in fact entirely characteristics of the brain, and that they do not emerge as a by-product of the computations that the brain performs? Or could it be that the properties of the brain emerged as a byproduct of the computations that the brain performs? We present an approach to answer these questions using backpropagation, where the brain is viewed as the supervisor that computes what other brains should do. The idea is that each brain

component (e.g., cortex) acts as a brainfixed, and the supervisor maps its own circuit parameters to the other brain components. In effect, the teacher brainfixed provides the other brainfixed with information on the states of the other brainfixed. In this work, the learning process of the brain is seen as learning parameters of a two-stage backward algorithm. The key insight is that the teacher brainfixed is not a special kind of network: it is a special kind of fixed- length algorithm. In this model, the learning takes place not in a "top-down" manner, but in a bottom-up manner. It is demonstrated that the backward algorithm can solve many types of tasks that appear in experimentally observed brain computations.

.....

Prompt REALM: Retrieval-Augmented Language Model Pre-Training

Generation Recently, multi-agent neural network (MANN) has been able to outperform baseline models. MANN is a multi-agent convolutional neural network that extends standard convolutional neural network (CNN) to have multiple classifiers, among which a multi-agent retrieval model (MAR) has been applied. MAR aims to retrieve relevant documents in an unsupervised manner by proposing model weights which act as priors to the samples. Therefore, two key challenges are presented in MAR: generating annotated documents and identifying the top 10 documents to create a representative set of reference samples. However, to obtain effective documents for MAR, it is difficult to obtain training data due to privacy concerns of neural networks. In this work, we present the domain adaptation (DA) technique to train MAR. Specifically, given a new domain, D remains relevant to existing domain by simulating the same D process for each new domain. Moreover, we propose a real-valued representation (RVRE) as the prior on the encoder state of the language model, which leads to high-quality samples for MAR. Experiments on ten different datasets show the effectiveness of the proposed method. The source code of this paper can be found at https://github.com/lidzgao/realM.

.....

Prompt EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Generation This paper presents EfficientNet, a novel approach to scaling CNNs for modern mobile applications. EfficientNet explicitly quantizes the network, eliminating redundancies and increasing computation efficiency with negligible loss in accuracy. We evaluate EfficientNet with an array of commonly used network architectures and show that EfficientNet can achieve almost as many convolutional layers as a baseline model and order of magnitude more energy-efficient. In addition, we introduce a measurement to quantify the tradeoff between model size and accuracy, and experimentally show that large models lead to low accuracy, while small models are more accurate with only a small drop in energy-efficiency. Our analysis shows that the optimizer needs to be tuned carefully to achieve a good tradeoff between accuracy and energy efficiency, but this optimization can be automated via EfficientNet.

Prompt Deep Double Descent: Where Bigger Models and More Data Hurt

Generation Standard deep learning models used in machine vision suffer from increasing memory usage, significantly speeding up convergence and making it harder to use. In this work, we use domain randomization to improve the efficiency of the gradient descent in deep models used in vision. Domain randomization adds perturbations to the image domain so the learning of the intermediate features can occur faster. To implement domain randomization we use a scaled double descent. By randomly changing the architecture, gradient descent can be applied much more efficiently. We perform experiments on the NYU Depth Dataset and compare our proposed Double-Domain Randomizer with a standard deep double-gradient descent. By comparing the image domain and gradient domain, we can validate the potential benefit of domain randomization. To better understand how domain randomization affects deep models, we use the excellent work of Siamese networks to benchmark them with several datasets. Our results show that with domain randomization, training deep models on datasets with large number of classes can help to reduce the complexity of their architectures.

......

Prompt Neural Architecture Search without Training

Generation Neural architecture search (NAS) is a practical and powerful technique to explore large neural network architectures with limited, sparse hyper-parameter optimization. However, it requires extensive optimization effort and manual efforts for tens of thousands or millions of candidate neural networks, which restrict its use to a few applications. On the other hand, despite its potential in large scale optimization, NAS remains a relatively unexplored area, especially for its accuracy potential. We present a novel search methodology, Neural Architecture Search without Training (NAS^T), to search neural network architectures without manual efforts. NAS^T searches large-scale neural networks by a Bayesian optimization technique using a unique neural network architecture classifier to estimate the probability of each neural network being a specific network architecture. We show that NAS^T can achieve approximately 100 times, 20²⁰⁰ times, more efficiency by replacing manual optimization efforts with our neural network architecture classifier without training for small-scale datasets, and approximately 100 times, 80²⁰⁰ times, more efficiency by replacing manual optimization efforts with our neural network architecture classifier with ten million examples and online regularization methods. NAS^T can also achieve approximately 40¹⁰⁰ times, 20^{300} times, more efficiency by replacing manual efforts with our neural network architecture classifier with 100-times fewer examples and adaptive hyper-parameter tuning.

.....

Prompt Lite Transformer with Long-Short Range Attention

Generation Recent neural machine translation (NMT) has shown tremendous success in many language pairs, but the performance still degrades on low-resource languages such as Chinese and Japanese, where the main bottleneck is the low-resource-compared-to-high-resource problem. To address the problem, many neural MT techniques use an attention mechanism, which is a special operation which focuses on improving translation quality by decoding words at the attention's intermediate layer. To the best of our knowledge, however, there have been very few studies that investigate the potential of a long-short range attention (LSTA) as a component to NMT, while LSTA models have an inherent advantage of encoding more detailed information for better downstream translation. In this paper, we first investigate the usefulness of an LSTA model in an NMT setup, and then conduct experiments with two sentence-level systems. Experimental results show that an LSTA model based on LSTAs obtains notable improvements over the baseline translation models, especially for rare terms. Moreover, LSTAs help improve the translation quality of pre-trained word-level models and of a new sequence-level NMT model.

Prompt PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization

Generation Contextual, syntactic and semantic information are complementary for abstractive summarization, and have proven effective in past works. However, very few recent studies consider the joint representation of these three different sources of information for effective summarization. To bridge the gap, we propose PEGASUS, a novel framework for pre-training with gap-sentence-based extracted content representations for effective abstractive summarization. Specifically, given a set of source sentences to be extracted from the document, we build a deep generative model to combine the word-level extractions of the source sentences with the learned source sentence representations. Our method is able to fully utilize the semantic and syntactic information available in the documents without any pretraining and is also end-to-end trainable. Extensive experiments on several benchmark datasets show that our method significantly outperforms the state-of-the-art methods in terms of ROUGE score, average ROUGE, and extra ROUGE. In addition, we also provide quantitative analysis to show that our pre-training process is effective for semantic representation.

......

Prompt DeepFaceLab: A simple, flexible and extensible face swapping framework

Generation Face swapping is an effective tool to improve the performance of face recognition by simply swapping the original face image with a hallucinated face. Despite the recent advances in face swapping, existing face swapping frameworks are not specific to a specific recognition task. In this paper, we propose DeepFaceLab, a simple, extensible and extensible face swapping framework. It consists of a frame extraction module and a face swapping module. The frame extraction module extracts key features of the face images based on the geometric similarity and scales them to the image level to form a frame. A morphing module is used to extend the displacement of features for face swapping. Experimental results demonstrate that the proposed model outperforms the existing state-of-the-art face swapping framework.

.....

Prompt Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Generation We introduce a variant of a pipeline structure known as a filter-transformer (FT). Similar to the traditional version of a transformer, the FT is a combinatorial expression over a set of intermediate output sequences whose minimal means of length are dictated by the input sequence. Instead of the output sequence, the FT acts on its input sequence only once, and implicitly models its inverse; the resulting network is also associated with an additional output segmentation layer. By iteratively introducing more layer types to the FT, we can progressively trim the input sequence into a sparse set of intermediate outputs and a fully-separated linear transformation layer. In our experiments, we examine the performance of the FT on three popular sequence-to-sequence tasks (word similarity, slot filling and question generation), and observe a significant increase in the resulting model size, over both the traditional transducers as well as a number of fast language processing neural networks.

Prompt FastBERT: a Self-distilling BERT with Adaptive Inference Time

Generation BERT has demonstrated state-of-the-art performance on numerous tasks such as language modeling, image captioning and machine translation. However, BERT requires a large amount of annotation effort in order to reach its full potential, which hinders its broad application in areas where large amounts of training data are available (e.g., wide-vocabulary language modeling) or when large models are prohibitively expensive to manually construct (e.g., knowledge base completion). To alleviate these issues, we introduce FastBERT, a Self-distilling BERT that demonstrates a strong transferability by making heavy use of pre-trained BERT on high-resource language modeling tasks and fine-tuning it for low-resource downstream tasks, such as knowledge base completion. To evaluate the efficacy of FastBERT, we conduct extensive experiments on the standard downstream task of knowledge base completion on a recently released language modeling benchmark and demonstrate that our proposed method consistently outperforms previous state-of-the-art methods and the baseline with only a small fraction of the annotation effort. In particular, we report a large increase in downstream BERT accuracy of 20.1% without any explicit form of BERT distillation. We further show that for both N-best lists and narrow-estimating benchmarks, FastBERT can achieve the same performance as previously reported models, and is capable of training models which are several orders of magnitude faster than BERT on many datasets.

Prompt Knowledge Guided Text Retrieval and Reading for Open Domain Question Answering

Generation Question Answering has come a long way since it was first introduced. Most of the existing approaches assume that question data is stored in the same knowledge-base as the training data. However, as an open domain problem, the assumption is violated in many situations, since it

is unlikely that the question data is available in the external knowledge-base. In this paper, we propose a novel approach for Knowledge Guided Text Retrieval and Reading (KGTR) to learn the link between knowledge-base data and question data. The proposed method simultaneously extracts the knowledge-base relation and the question relation. To do so, we develop a knowledge-based Deep Recurrent Neural Network (HRNN), which simultaneously learns the relation and the question relation. With a new joint LSTM framework, our method achieves a new state-of-the-art performance on both the open-domain CQA Dataset and the reasoning part of DUC-2007 QA Shared Task.

.....

Prompt Big Transfer (BiT): General Visual Representation Learning

Generation Generative models are often used to solve vision problems in real-world settings. They learn a simple but effective visual representation of the input data, which can then be used to generate data similar to the input image. Transfer learning is a method in which a network trained on one task can be transferred to a second network for learning a more complex task. In the literature, different transfer learning methods have been proposed and also discussed in various contexts. However, most of these methods use hand-crafted features that are extracted from the dataset, and these features are used to rank the prediction confidence of the model in order to choose which task to learn from. Therefore, the learned representations are not applicable to real-world tasks. This paper addresses the problem of learning a representation for visual content with a generative network. We do this by using some transfer learning methods on top of the learned features that were learned using the original model. The pre-trained feature vector is then used to rank a fixed number of categories from the pre-trained representation. We evaluate the proposed method on three different data sets, and show that the proposed method gives a significant improvement over the standard baseline methods.

......