Homework 1 - End-to-end Speech Recognition

學號: R08942085 系級: 電信丙 姓名: 陳芃彣

學號:R08942086 系級:電信丙 姓名:趙達軒

學號:R07942091 系級:電信丙 姓名:許博閔

學號: R08945002 系級: 生醫電資 姓名: 陳玠妏

1. (2%) Train a seq2seq attention-based ASR model. Paste the learning curve and alignment plot from tensorboard. Report the CER/WER of dev set and kaggle score of testing set.

Learning Curve:

Alignment plot:

CER/WER of dev set:

======= Result o	of result/decode_e	xample_dev_out	out.csv =====	=====
Statics	Truth	Prediction	Abs. Diff.	۱
Avg. # of chars Avg. # of words	66.99 17.14	66.93 17.11	0.48 0.03	
Error Rate (%) Mear	n Std.	Min	/Max.	
Character			0/18.18 0/50.00	

Score of testing set:

Name	Submitted	Wait time	Execution time	Score
asr_v1.csv	just now	0 seconds	0 seconds	1.77600

2. (2%) Repeat 1. by training a joint CTC-attention ASR model (decoding with seq2seq decoder). Which model converges faster? Explain why.

Learning Curve: blut: ctc, red: att

Alignment plot:

CER/WER of dev set:

=======================================	Result of 3_	_dev.csv =====	-====		
Statics	1	Truth	Prediction	Abs. Diff.	1
Avg. # of ch		66.91 17.11	66.99 17.14	0.42 0.03	
Error Rate (%) Mean	Std.	Min.	/Max.	
Character Word	2.2535 7.6211	2.42 7.60	0.00 0.00	/20.00 /75.00	

Score of testing set:

alex_beam_process.csv 2 hours ago by r08942085

1.09600

在語音識別中,我們的數據集是音頻文件和其對應的文本,但通常音頻文件和文本很難再單詞的單位上對齊。因此需要在預處理操作時進行對齊,如果不使用對齊而直接訓練模型時,由於人的語速的不同,或者字符間距離的不同,會導致模型很難收斂。

CTC 引入了 blank,每個預測的分類對應的一整段語音中的一個 spike,其他不是 spike 的位置認為是 blank。對於一段語音,CTC 最後的輸出是 spike 的序列,並不關心每一個音素持續

了多長時間。

ASR 的過程是一幀 MFCC39 維向量進去,然後出一個 label。假設,"你好" 這個音訊共有 200 個 MFCC 特徵幀。這 200 個特徵幀對應著 200 個輸出結果,就結果空間而言,共有音素數目 ^200 種可能。

而 CTC 認為,計算目標函式的時候,上例中的 200 個 MFCC 特徵,得到的 200 個模型的結果,每個小結果都對應著所有音素上的一個概率分佈。然後計算所有能對映成"內一"厂幺"結果的音素路徑的概率值,讓這個值越大越好就行了。

但是這樣一來,計算量就非常的大,指數級的計算量。CTC 就使用了類似 HMM 中的向前向後算法來計算。發現進行反向傳播的時候,每一幀 MFCC 對應的結果的導數,都可以利用前一時刻的兩個狀態的結果直接求到。這樣一來,整體計算量就急劇萎縮成了 7*T*音素個數,因此更容易收斂。

3. (2%) Use the model in 2. to decode only in CTC (ctc_weight=1.0). Report the CER/WER of dev set and kaggle score of testing set. Which model performs better in 1. 2. 3.? Explain why.

CER/WER of dev set:

Statics	1	Truth	Prediction	Abs. Diff.	
Avg. # of chars	1.0	66.73	66.99	0.70	
Avg. # of words	i i	17.07	17.14	0.07	
5 5 6 600 1 11		1 61 1			
Error Rate (%) Mea	1	Std.	Min./	max.	
Character I 2 0	046	1 2 72		2F 00 I	
Character 2.98	540 5576	2.72 9.04	0.00/ 0.00/		

Score of testing set:

2.csv 1.62800

a few seconds ago by r08942085

add submission details

jointly trained encoder + seqtoseq decoder 成績比較好(第2題)

可能原因為純 CTC 解碼通過預測每個幀的輸出來識別語音,算法的實現基於假設每幀的解碼 保持彼此獨立,因而缺乏解碼過程中前後語音特徵之間的聯繫,比較依賴語言模型的修正。 4. (2%) Train an external language model. Use it to help the model in 1. to decode. Report the CER/WER of dev set and kaggle score of testing set.

CER/WER of dev set:

======= Result of	4_dev.csv =====	:=====		
Statics	Truth	Prediction	Abs. Diff.	T.
Avg. # of chars Avg. # of words	66.94 17.11	66.99 17.14	0.40 0.03	
Error Rate (%) Mean	Std.	Min./	Max.	
Character 1.9814 Word 6.5786		0.00/ 0.00/		

Score of testing set:

4.csv 9 minutes ago by r08942085

5. (2%) Try decoding the model in 4. with different beam size (e.g. 2, 5, 10, 20, 50). Which beam size is the best?

2 is the best

plus Im

beam size =2:

4.csv 9 minutes ago by r08942085 plus Im

beam size =5:

5_beam.csvjust now by r08942085

1.54800

beam size =20:

20_beam.csv3 minutes ago by r08942085

add submission details

plus Im beam_size=5

Bonus: (1%)