电力电子器件需要掌握的内容

	可控性	驱动信号	额定 电压、电流	工作频率	他和压降
二极管	不可控	无	最大	有高有低	4
晶闸管	半控	脉冲电流 (开通)	最大	最低	4
GTO	全控	正、负 脉冲电流	大	較低	#
BJT	全控	正电流	中	#	4
IGBT	全控	正电压	较大	较高	较小
MOSFET	全控	正电压	4	最高	大

通:

- 1. 所有器件的绘制
- 2. 所有器件的原理

二极管

PN结,空间电荷区,耗尽层

$$I=I_S(e^{V/V_T}-1)$$

额定电流的定义

与电流有效值的关系

反向恢复

结电容

BJT

饱和压降较低;

等效导通电阻为负温度系数;

原理: 电流带动

晶闸管SCR Thyristor

- A: 阳极(anode)
- K: 阴极(cathode)
- G: 门极(gate), 也称控制极

PNPN

原理: P变N

用双晶体管等效电路模型解释正反馈过程

$$I_A = rac{I_{c0} + lpha_2 I_g}{1 - (lpha_1 + lpha_2)}$$

导通方式

- 1. 门极触发导通
- 2. 光注入导通
- 3. 误导通
 - 1. 正向折转导通
 - 2. 高温导通
 - 3. 高电压变化率导通
- 1. 额定电压
- 2. 额定电流
- 3. 通态峰值电压降
- 4. 浪涌电流
- 5. 额定门极触发电流和触发电压
- 6. 维持电流
- 7. 掣住电流
- 8. 开通时间和关断时间

- 9. 断态电压临界上升率
 - 1. 会误导通du/dt过大会使SCR误导通
- 10. 开通电流临界上升率
 - 1. 会烧di/dt过大会局部过热而使SCR损坏

P-MOSFET (Power-MosFet)

IGBT

MOS上加P, 形成晶体管结构

●寄生晶闸管等效电路

但通态压降具有**正温度系数**

寄生晶闸管

- •导通时, lc过大, 使寄生晶体管导通, 成为晶闸管状态;
- •关断时,集射极电压上升过快,电容充电电流大,也可能晶闸管状态出现。
- □ Rbr上的电压过大,可使T2导通,使IGBT失去关断能力。

减小Rbr,减慢关断速度

- □集电极电流iC过大;
- □集电极电压过高;
- □关断速度过快