

Cloud Computing for Science

Part 3. Scaling Computation

The Cloud Data Center Evolution

- Early days: 2005
 - Very simple servers
 - Network outward facing poor interconnect
- 2008-2016
 - Software defined networks
 - Special InfiniBand sub networks
 - Many different server types
 - 2 cores to 32 cores to GPU accelerations
 - Efficiency experiments
 - Geothermal, wind, wave
 - Containerized server
- 2017
 - Azure FPGA accelerated mesh
 - Google Tensor Processing Unit
 - Facebook Open Compute Project
 - ARM based servers

Internet

Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

Azure and AWS Global Data Center Network

How to scale: Models of Parallelism

- Classic HPC
 - SPMD MPI programming
- Task Parallel
 - Also called "embarrassingly parallel"
- MapReduce
 - Hadoop style
- Graph Execution
 - Spark and streaming systems
- Microservices
 - Similar to actor model

Classic HPC

- AWS CloudFormation Cluster
 - Fill out CfnCluster template
 - Use aws command line to submit
 - Log into head node
- Azure create a slurm cluster
 - See Azure slurm tutorial

Deploy a slurm cluster

- 1. Fill in the 3 mandatory parameters public DNS name, a storage account to hold VM image, and admin user password.
- 2. Fill in other info and click "OK".

Using the cluster

Simply SSH to the master node and do a srun! The DNS name is *dnsName.location*.cloudapp.azure.com, for example, yidingslurm.westus.cloudapp.azure.com.

- Or use Azure Batch
 - Similar to AWS batch

Task Parallel and Map Reduce

- Task parallel model is great for solving problems that involve doing many independent computations.
- Map Reduce
 - Bulk Synchronous Parallel (BSP)
 - Map Task = an operation applied to blocks of data in parallel
 - Reduce Task- when maps are "done" reduce the results to a single result
- Examples of both later

The Hadoop- Yarn ecosystem

- Yarn is the name of a project containing many elements
- The runtime system is distributed
- Hadoop, Spark run in distributed mode
- Multiple clients can access the resource manager
- Jupyter and Zeppelin are interactive clients
- Master node Resource Client A Client B Manager Worker nodes Node Node Node Node Manager Manager Manager Manager Worker Worker Worker Worke Hadoop Distributed File System

- HDFS is the Hadoop File system
- Distributed over data node servers
- Files are blocked, distributed and replicated
- Files are write-once.

Azure HDInsight is a Yarm Environment

Graph Parallel and Microservices

Graph Parallel

- The data is in distributed arrays or streams.
- build a data flow graph of the algorithms functions.
- The graph is compiled into parallel operators that are applied to the distributed data structures.

Microservices

- Divide a computation into small, mostly stateless components that can be
 - Easily replicated for scale
 - Communicate with simple protocols
- Computation is as a swarm of communicating workers.

Graph computation example: Spark

- A simple map reduce: Compute $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{i^2}=\frac{\pi^2}{6}$ • For n = 10,000,000
- In Spark on Python is:

Spark Resilient Distributed Dataset (RDD)

More interesting example: k-means clustering

- The algorithm basics
 - n=1000000
 - Start with a vector P of n 2-d points and a vector kPoints of k random cluster centroids.
 - Iterate until kPoints don't move:
 - For each j in [0,k-1] pick q[j] from kPoints. Then find all the points p in P near q[j] and create the tuples (j, (p, 1) for p nearest to q[j])
 - For each j compute the centroid of all points "near" q[j] in kPoints" (j, (sum(p)/sum(1)))
 - Set q[j] to be the new centroid sum(p)/sum(1)

Section Summary

- The cloud data centers are designed to scale
 - Traditional HPC MPI programming is possible, but a Cray is better.
- The cloud is best at distributed scale, interactive computation
 - Spark in Yarn with Jupyter is a good example
- MapReduce and Graph models are well supported