

What is claimed is:

1. A $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound comprising an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm^{-3} or more.
2. A method for producing a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound comprising the steps of: preparing a raw material including calcium (Ca) and aluminum (Al) mixed with each other in an atomic equivalent ratio of 12 : 14; and reacting said raw material in a solid phase reaction at a sintering temperature ranging between 1200°C or more and less than 1415°C , under a dry oxidization atmosphere with an oxygen partial pressure of 10^4 Pa or more and a water-vapor partial pressure of 10^2 Pa or less.
- 15 3. A method as defined in claim 2, wherein said raw material includes a calcium component selected from the group consisting of calcium carbonate, calcium hydroxide and calcium oxide, and an aluminum component selected from the group consisting of aluminum oxide and aluminum hydroxide.
- 20 4. A method for releasing an active oxygen species clathrated in the $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound as defined in claim 1, characterized by subjecting said $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound to a heat treatment at a temperature of 1200°C or more under an atmosphere

with an oxygen partial pressure of less than 10^4 Pa or a water-vapor partial pressure of 10^2 Pa or more.

5. A method for quantitatively analyzing the O_2^- ion radical clathrated in the $12CaO \cdot 7Al_2O_3$ compound as defined in claim 1, characterized in that said O_2^- ion radical is analyzed based on a scattering intensity arising from said O_2^- ion radical around a Raman shift of 1128 cm^{-1} .
6. A method for quantitatively analyzing the O_2^- ion radical and O^- ion radical each clathrated in the $12CaO \cdot 7Al_2O_3$ compound as defined in claim 1, characterized in that said O_2^- ion radical and said O^- ion radical are analyzed based on a first electron spin resonance absorption intensity defined by $g_x = 2.00$, $g_y = 2.01$ and $g_z = 2.04$, and a second electron spin resonance absorption intensity defined by $g_x = g_y = 2.05$ and $g_z = 2.00$, respectively.
7. An oxidization catalyst comprising a $12CaO \cdot 7Al_2O_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm^{-3} or more.
8. An antibacterial agent comprising a $12CaO \cdot 7Al_2O_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm^{-3} or more.

9. An ion conductor comprising a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm^{-3} or more.
- 5 10. An electrode material for solid-oxide fuel cells, comprising a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm^{-3} or more.

10
0926262655024402