# Optimizing Data Quality in Real-Time, Time Series ETL Pipelines Using Monte Carlo Methods and Machine Learning

#### Robert W. Bakyayita

Uganda Martyrs University Nkozi Faculty of Science Department of Computer Science and Information Systems MSc. Information Systems

July 2025

## Outline

- Background
- 2 Problem Statement
- Research Objectives
- 4 Methodology
- 6 Key Findings
- 6 Contributions
- Conclusion and Future Work
- References

## Background

Real-time ETL pipelines are critical for processing time-sensitive data in many industries. However, ensuring data quality is challenging due to the high velocity, volume, and variability inherent in time series data streams.

- Traditional batch-based data cleaning methods are often inadequate for real-time requirements.
- Monte Carlo methods offer a powerful way to model uncertainty in data.
- Machine learning techniques provide adaptive capabilities to detect and correct anomalies.
- Combining both approaches enables automated, probabilistic, and adaptive data quality control.

### Problem Statement

- There is a lack of adaptive frameworks specifically designed for managing data quality in real-time time series pipelines.
- Despite its potential, Markov Chain Monte Carlo (MCMC) methods remain underutilized in streaming data contexts (Brooks et al., 2011).
- Machine learning techniques for learning from historical error patterns are not widely integrated into real-time data quality solutions.
- There is an absence of standardized benchmarks and metrics to evaluate data quality in real-time ETL pipelines.

## Research Objectives

- Develop an MCMC-based module to simulate realistic data corruptions and correct quality issues in real-time.
- Integrate machine learning models that learn from past anomaly corrections to improve prediction accuracy.
- Design and implement a prototype real-time ETL pipeline combining MCMC and ML techniques for data cleaning.
- Evaluate the system's effectiveness using established time series anomaly detection metrics and benchmarks.

## Methodology

- **Tools:** Python, Nifi, InfluxDB, Grafana, Scikit-learn, TensorFlow, PyMC3.
- Approach:
  - Data ingestion using Nifi.
  - Anomaly injection and simulation using MCMC.
  - ML-based prediction module trained on previous anomalies.
  - Observe the property of the second second

## **Key Findings**

- MCMC helps detect and fix errors in time series data.
- Using past errors improves prediction accuracy.
- Combining methods is more reliable than simple rules.
- Current data quality metrics need improvement.

### Contributions

- Developed a flexible, containerized system using MCMC and ML for real-time data pipelines.
- Proposed a method for detecting and fixing anomalies in streaming data.
- Tested the system with simulated sensor data.
- Advanced research on data quality in streaming environments.

## Simulation Results (1/2)



## (a) Normal Data



(b) Corrupted Data

# Simulation Results (2/2)



## (c) MCMC Output



(d) ML Correction



### Conclusion and Future Work

#### **Conclusion:**

- Demonstrated a practical application of MCMC and ML in enhancing time series data quality.
- Proposed a framework suitable for real-time ETL environments.

#### **Future Work:**

- Incorporate federated learning for decentralized anomaly detection.
- Expand evaluation to real industrial data streams.
- Develop standard benchmarking suite for real-time ETL pipelines.

### References I

- Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural networks. In *Proceedings of the 32nd International Conference on Machine Learning*.
- Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011). *Handbook of Markov Chain Monte Carlo*. CRC Press.
- Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. *Journal of Machine Learning Research*, 15:1593–1623.
- Robert, C. P. and Casella, G. (2013). *Monte Carlo Statistical Methods*. Springer.