Homework Assignment 6 Due Friday, March 6

- 1. There is an absolute value on the complex numbers given by $||a+bi|| = \sqrt{a^2 + b^2}$, where we use $||\cdot||$ rather than $|\cdot|$ so not confuse notation with order of a group element. Let $\mathbb{S}^1 = \{z \in \mathbb{C} : ||z|| = 1\}$. This is called the *circle group*.
 - (a) Show that $||\cdot||: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ is a homomorphism.

Proof. We must show that for $z, w \in \mathbb{C}^{\times}$, we have $||z|| \cdot ||w|| = ||zw||$. Let z = a + bi and w = c + di. Then

$$zw = (a+bi)(c+di) = ac - bd + (ad+bc)i$$

Then we compute:

$$||z|| \cdot ||w|| = \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$$

= $\sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2}$

and

$$||zw|| = \sqrt{(ac - bd)^2 + (ad + bc)^2}$$

$$= \sqrt{a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2}$$

$$= \sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2},$$

and observe that they are equal.

(b) Show that the circle group is a normal subgroup of the multiplicative group \mathbb{C}^{\times} .

Proof. By definition we have:

$$\ker(||\cdot||) = \{z \in \mathbb{C}^{\times} : ||z|| = 1\} = \mathbb{S}^{1},$$

so that the circle group is the kernel of a homomorphism and is therefore a normal subgroup (recall we proved in class that normal subgroups are precisely the kernels of homoromorphisms, a source for this result is Dummit and Foote proposition 3.1.7). \Box

(c) Draw the graph of the circle group in the complex plane. Justify your answer.

Proof. The point in the complex plane corresponding to z = x + iy is the point (x, y). So $||z|| = \sqrt{x^2 + y^2} = 1$ is precisely saying that the point lies on the circle of radius 1.

(d) Show that $\varphi : \mathbb{R} \to \mathbb{S}^1$ defined by the rule $\varphi(x) = e^{2\pi ix}$ is a surjective homomorphism (where the binary operation on \mathbb{R} is addition).

Proof. To see this is a homomorphism notice that:

$$\varphi(x+y) = e^{2\pi i(x+y)} = e^{2\pi ix + 2\pi iy} = e^{2\pi ix}e^{2\pi iy} = \varphi(x)\varphi(y).$$

To see that this lands in \mathbb{S}^1 we recall that:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
,

so that:

$$||e^{i\theta}|| = ||\cos\theta + i\sin\theta|| = \sqrt{\cos^2\theta + \sin^2\theta} = 1.$$

Also notice that $e^{i\theta}$ is therefore the point on \mathbb{S}^1 making an angle of θ with the x-axis. In particular, if z is any point on \mathbb{S}^1 , we can measure its angle θ with the x-axis. Letting $r = \theta/2\pi$ we have

$$\varphi(r) = e^{2\pi i\theta/2\pi} = e^{i\theta} = z,$$

so that φ is surjective.

For completeness, we include the proof of the identity we use (although I do not expect you to prove it).

Lemma 1. $e^{i\theta} = \cos \theta + i \sin \theta$

Proof. The Taylor expansion of the left hand side at 0 follows:

$$e^{i\theta} = \left(1 + (i\theta) + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \cdots\right).$$

We also taylor expand the righthand side of the equation term by term:

$$\cos \theta = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots\right)$$

and,

$$i\sin\theta = i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots\right).$$

Since $i^2 = -1$ first is clearly the sum of the second two.

This has the following famous corollary that is hard to skip at this point. It is derived by letting $\theta = \pi$ in the lemma above.

Corollary 1. $e^{i\pi} + 1 = 0$.

(e) Deduce that the additive quotient group \mathbb{R}/\mathbb{Z} is isomorphic to \mathbb{S}^1

Proof. By the first isomorphism theorem, it suffices to show that the kernel of φ from part (d) is precisely \mathbb{Z} . But we should notice that $e^{i\theta}=1$ if and only if the angle θ goes along the positive x axis, that is if θ is a multiple of 2π (you could also deduce this noticing that $\sin \theta = 0$ and $\cos \theta = 1$). Thus $\varphi(r) = 1$ precisely when $2\pi r$ is a multiple of 2π , that is precisely when r is an integer, so we win.

- 2. A root of unity ξ is a complex number such that $\xi^n = 1$ for some positive integer n. The set of roots of unity is often denoted by μ .
 - (a) ± 1 are roots of unity. Give 3 more examples of roots of unity.

Proof. Notice that $i^4 = (i^2)^2 = (-1)^2 = 1$ so that i is a root of unity, and similary so is -i. Finally, consider $\omega = e^{2\pi i/3}$. Notice that by the lemma this is the complex number $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Then $\omega^3 = e^{2\pi i} = 1$.

(b) Show that if ξ is a root of unity, then $||\xi|| = 1$.

Proof. Since ξ is a root of unity we have $\xi^n = 1$ for some positive integer n. Since $||\cdot||$ is a homomorphism we therefore have:

$$||\xi||^n = ||\xi^n|| = ||1|| = 1.$$

Therefore $||\xi||$ is a positive real number whose *n*th power is 1. The only such number is 1.

(c) Show that $\mu = (\mathbb{S}^1)^{\text{tors}}$ (recall the definition from HW 4 Problem 2(b)). Deduce that μ is a subgroup of \mathbb{S}^1 .

Proof. Suppose $\xi \in \mu$. Then from part (b) we have that $\xi \in \mathbb{S}^1$, but also since $\xi^n = 1$ we have that the order of ξ is less than n, and in particular finite. Thus ξ is a torsion element of \mathbb{S}^1 . Since ξ was arbitrary, we have $\mu \subseteq (\mathbb{S}^1)^{\text{tors}}$. Conversely, if z is a torsion element of the circle, it has finite order $n < \infty$. Then in particular $z^n = 1$ so that z is a root of unity. This show $(\mathbb{S}^1)^{\text{tors}} \subseteq \mu$ so that they are equal.

Since \mathbb{S}^1 is abelian (its group operation is complex multiplication which is commutative), the torsion subset is a subgroup, so that $\mu \leq \mathbb{S}^1$.

- 3. Consider the additive group quotient \mathbb{Q}/\mathbb{Z} .
 - (a) Show that every coset of \mathbb{Z} in \mathbb{Q} has exactly one representative $q \in \mathbb{Q}$ in the range $0 \le q < 1$.

Proof. For $a \in \mathbb{Q}$ its coset is $a + \mathbb{Z} = \{a + n : n \in \mathbb{Z}\}$. We know that $m \le a < m + 1$ for some integer m, so that $0 \le a - m < 1$. But also $a - m \in a + \mathbb{Z}$, so we have exhibited a coset representative in the range $0 \le q < 1$ and therefore there must be at least one.

To show there is at most 1, suppose that $q, q' \in a + \mathbb{Z}$ with $0 \le q \le q' < 1$. Then $q' - q \in \mathbb{Z}$, but also $0 \le q' - q < 1$, so that q' - q = 0.

(Note that in the last paragraph we used that if q, q' represent the same coset, their difference must be in the subgroup. We showed this in class, for a reference see Dummit and Foote Proposition 3.1.4).

(b) Show that every element of \mathbb{Q}/\mathbb{Z} has finite order, but that there are elements of arbitrary large order.

Proof. Pick an element of \mathbb{Q}/\mathbb{Z} , and represent it as $a+\mathbb{Z}$. Then a=m/n for some $m,n\in \mathbb{Z}$. Thus $n\cdot (a+\mathbb{Z})=na+\mathbb{Z}=m+\mathbb{Z}$, but as $m\in \mathbb{Z}$ this means that it is the trivial coset \mathbb{Z} . In particular, $a+\mathbb{Z}$ has order $\leq n < \infty$.

To exhibit an element of arbitrarily large order we fix any large integer N. We must exhibit a coset of order N. I claim $1/N + \mathbb{Z}$ works. Indeed, for m > 0 we have $m \cdot (1/N + \mathbb{Z})$ is the trivial coset if and only if m/N is an integer, if and only if N/m. Therefore the order of $1/N + \mathbb{Z}$ is precisely N.

(c) Show that $\mathbb{Q}/\mathbb{Z} = (\mathbb{R}/\mathbb{Z})^{\text{tors}}$. Conclude that $\mathbb{Q}/\mathbb{Z} \cong \mu$.

Proof. Let $\iota: \mathbb{Q} \to \mathbb{R}$ be the homomorhism given by including \mathbb{Q} as a subgroup of \mathbb{R} , and let $\pi: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the natural projection. Then $\pi \circ \iota: \mathbb{Q} \to \mathbb{R}/\mathbb{Z}$ is a homomorphism with kernel \mathbb{Z} . Thus by the first isomorphism theorem it induces an injective map $\mathbb{Q}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, which is the obvious map $a + \mathbb{Z} \mapsto a + \mathbb{Z}$. This identifies \mathbb{Q}/\mathbb{Z} as a subgroup of \mathbb{R}/\mathbb{Z} consisting of cosets with representatives in \mathbb{Q} . Part (b) immediately implies that $\mathbb{Q}/\mathbb{Z} \subseteq (\mathbb{R}/\mathbb{Z})^{\mathrm{tors}}$. To show the reverse inclusion, suppose $a + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ is a torsion coset. Thus it has a multiple which is the trivial coset. Equivalently, a multiple of a must be an integer. But this implies $a \in \mathbb{Q}$, so that $a + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$, and therefore $(\mathbb{R}/\mathbb{Z})^{\mathrm{tors}} \subseteq \mathbb{Q}/\mathbb{Z}$, so they are equal.

The second statement follows immediately from the following lemma.

Lemma 2. Let $\varphi: G \to H$ be an isomorphism. Then φ restricts to a bijection $G^{\text{tors}} \to H^{\text{tors}}$, which is an isomorphism if G is abelian.

Proof. In HW3 Problem 1(e) we showed $|\varphi(g)| = |g|$, so that if $g \in G^{\text{tors}}$, its image $\varphi(g)$ is in H^{tors} . The same can be said for φ^{-1} . So the restriction $\varphi: G^{\text{tors}} \to H^{\text{tors}}$ has inver φ^{-1} so is a bijection. If G is abelian, so is H, and φ restricts to a bijective homomorphism between the subgroups G^{tors} and H^{tors} .

With this in hand, we see that the ismomorphism $\mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ restricts to an isomorphism between their torsion subgroups, which are \mathbb{Q}/\mathbb{Z} and μ respectively.

- 4. Let $N \subseteq G$ be a normal subgroup of a group G. Let $\pi: G \to G/N$ be the natural projection.
 - (a) Let $H \leq G/N$. Show that the preimage $\pi^{-1}(H)$ is a subgroup of G containing N.

Proof. The preimage
$$\pi^{-1}(H)=\{g\in G:\pi(g)\in H\}$$
. If $a,b\in\pi^{-1}(H)$, then
$$\pi(ab^{-1})=\pi(a)\pi(b)^{-1}\in H,$$

so that $ab^{-1} \in \pi^{-1}(H)$. Therefore by the subgroup criterion, we see $\pi^{-1}(H) \leq G$. To see that it contains N, notice that for each $n \in N$ we have $\pi(n) = 1 \in H$, so $n \in \pi^{-1}(H)$. \square

(b) Let $H \leq G$. Show that its image $\pi(H)$ is a subgroup of G/N.

Proof. Suppose $x, y \in \pi(H)$, so that $x = \pi(a)$ and $y = \pi(b)$. Then

$$xy^{-1} = \pi(a)\pi(b)^{-1} = \pi(ab^{-1}) \in \pi(H).$$

Thus by the subgroup criterion $\pi(H) < G/H$.

(c) These constructions do not give a bijection between subgroups of G and subgroups of G/N. Give an example showing why.

Proof. This construction will always map all subgroups of N to the trivial subgroup $1 \leq G/N$. So for example, let $G = \mathbb{Z}$, $N = 2\mathbb{Z}$, and $H = 4\mathbb{Z} \leq N$, so that $\pi : \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is the projection. Then $\pi(N) = \pi(H) = \{\overline{0}\}$, so that the identification $H \mapsto \pi(H)$ is not injective. In fact, as the following exercise shows, this is the only kind of thing that can go wrong.

(d) If we restrict our attention to certain subgroups of G we do get a bijection. Indeed, show that there is a bijection:

$$\left\{ \begin{array}{l} \text{Subgroups } H \leq G \\ \text{such that } N \leq H \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{l} \text{Subgroups} \\ \overline{H} \leq G/N \end{array} \right\}$$

Proof. In the righthand direction we have $\varphi: H \mapsto \pi(H)$. In the reverse direction we have $\psi: \overline{H} \mapsto \pi^{-1}(\overline{H})$. We showed these are well defined functions in parts (a) and (b), so it remains to show they are inverses to each other.

First notice that

$$\varphi \circ \psi(\overline{H}) = \pi(\pi^{-1}(\overline{H})) = \{\pi(h) : h \in \pi^{-1}(\overline{H})\} \subseteq H.$$

To show the reverse incusion, fix some $\overline{h} \in \overline{H}$, there is some $h \in G$ usch that $\pi(h) = \overline{h}$ (since the natural projection to the quotient is always surjective). But then certainly $h \in \pi^{-1}(H)$ so that $\overline{h} = \pi(h) \in \pi(\pi^{-1}(\overline{H}))$. Thus we have show that $\varphi \circ \psi$ is the identity. In the other direction, notice that

$$\psi \circ \varphi(H) = \pi^{-1}\pi(H)$$

$$= \{g \in G : \pi(g) \in \pi(H)\}$$

$$= \{g \in G : \pi(g) = \pi(h) \text{ for some } h \in H.\}$$

$$\supseteq H.$$

To show the reverse inclusion, fix some $g \in G$ and suppose that $\pi(g) = \pi(h)$ for some $h \in H$. Then $\pi(hg^{-1}) = \pi(g)\pi(h)^{-1} = 1$, so that $gh^{-1} \in N$. But since we assumed $N \leq H$ we have $gh^{-1} \in H$. Multiplying on the right by h and we conclude $g \in H$. Thus $\pi^{-1}\pi(H) = H$, and so $\psi \circ \varphi$ is the identity as well. In particular, they are inverses to eachother, and induce the diesired bijection.

- 5. Let G be a group and Z(G) its center.
 - (a) Show that Z(G) is a normal subgroup.

Proof. Fix $z \in Z(G)$ and $g \in G$. It suffices to show $gzg^{-1} \in Z(G)$. But everything in G commutes with everything in Z(G), so $gzg^{-1} = gg^{-1}z = z \in Z(G)$, so we are done. \square

(b) Show that if G/Z(G) is cyclic, then G is abelian.

Proof. If G/Z(G) is cyclic then we can fix a generator: $G/Z(G) = \langle xZ(G) \rangle$. Then the cosets $x^iZ(G)$ for $i \in \mathbb{Z}$ form a partition of G. In particular, fix $a, b \in G$. Then $a = x^iz$ and $b = x^jw$ for $z, w \in Z(G)$. Therefore we can leverage that we can free commute with z and w, and x^i and x^j commute with eachother to conclude that

$$ab = x^i z y^j w = z x^i x^j w = z x^j x^i w = x^j z w x^i = x^j w z x^i = x^j w x^i z = ba.$$

Thus a and b commute, but since they were arbitrary we conclude that G is abelian. \Box

(c) Let p and q be prime numbers (not necessarily distinct), and G a group of order pq. Show that if G is not abelian, than $Z(G) = \{1\}$.

Proof. Since G is not abelian then $Z(G) \neq G$. If $Z(G) \neq 1$ then by Lagrange's theorem, Z(G) has either order p or q. Assume without loss of generality that it has order q. Then |G/Z(G)| = |G|/|Z(G)| = q, so that G/Z(G) has prime order and therefore must be cyclic (we proved this in class, for a reference see Dummit and Foote Corollary 3.2.10). But then by part (b) G must be abelian, a contradiction. Therefore Z(G) must be 1. \square

- 6. Let G be a group. Let $[G,G] = \langle x^{-1}y^{-1}xy|x,y \in G \rangle$.
 - (a) Show that [G, G] is a normal subgroup of G.

Proof. Notice that [G,G] is not the set of elements of the form $x^{-1}y^{-1}xy$, it is the subgroup *generated* by elements of that form. So we need not show it is a subgroup. Lets first prove a lemma.

Lemma 3. Let H be a group and consider a subset S. To see that $\langle S \rangle$ is normal it suffices to show $hsh^{-1} \in \langle S \rangle$ for all $h \in H$ and $s \in S$.

Proof. An arbitrary element in $\langle S \rangle$ looks like $s = s_1 s_2 \cdots s_n$ for s_i or s_i^{-1} in S. Then by assumption $q s_i q^{-1} \in \langle S \rangle$, so that:

$$gsg^{-1} = g(s_1s_2\cdots s_n)g^{-1} = (gs_1g^{-1})(gs_2g^{-1})\cdots(gs_ng^{-1}) \in \langle S \rangle.$$

Therefore for g and a commutator $x^{-1}y^{-1}xy$, we notice:

$$g(x^{-1}y^{-1}xy)g^{-1} = gx^{-1}(g^{-1}g)y^{-1}(g^{-1}g)x(g^{-1}g)yg^{-1} = (gxg^{-1})^{-1}(gyg^{-1})^{-1}(gxg^{-1})(gyg^{-1}),$$

is also a commutator. Therefore the subgroup is normal.

We concluded the proof above, but there is a slightly slicker way to see this, following from the next lemma.

Lemma 4. Let $\varphi: H \to K$ is a homomorphism of groups. Then the image of a commutator is a commutator.

Proof. This is immediate, as
$$\varphi(x^{-1}y^{-1}xy) = \varphi(x)^{-1}\varphi(y)^{-1}\varphi(x)\varphi(y)$$
.

Then we need only notice that for every $g \in G$, the conjugation map $\varphi_g : G \to G$ given by $\varphi_g(x) = gxg^{-1}$ is a homomorphism. Indeed,

$$\varphi_g(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = \varphi_g(x)\varphi_g(y).$$

Then we immediatly conclude that conjugating a commutator gives a commutator. \Box

(b) Show that G/[G,G] is abelian.

Proof. We must show that the cosets xy[G,G] and yx[G,G] are equal. But $x^{-1}y^{-1}xy \in [G,G]$ so that

$$xy = yx(x^{-1}y^{-1}xy) \in yx[G, G].$$

Since the cosets form a partition, we are done.

[G,G] is called the *commutator subgroup* of G, and G/[G,G] is called the *abelianization* of G, denoted G^{ab} . The rest of this exercise explains why.

(c) Let $\varphi: G \to H$ be a homomorphism with H abelian. Show $[G, G] \subseteq \ker \varphi$.

Proof. It suffices to show that every element $x^{-1}y^{-1}xy \in G$ is in the kernel of φ . But then:

$$\varphi(x^{-1}y^{-1}xy) = \varphi(x)^{-1}\varphi(y)^{-1}\varphi(x)\varphi(y) = \varphi(x)\varphi(x)^{-1}\varphi(y)^{-1}\varphi(y)1,$$

as H is abelian. (Notice we also just showed that the commutator subgroup of an abelian group is always the trivial subgroup).

(d) Denote the natural projection to the quotient group by $\pi: G \to G^{ab}$. Prove that φ induces a unique homomorphism $\tilde{\varphi}: G^{ab} \to H$ such that $\pi \circ \tilde{\varphi} = \varphi$.

Proof. Since the kernel of φ contains the commutator subroup, this follows directly from the factorization lemma we proved in class. Since it isn't directly stated in the book we include it here for completeness.

Lemma 5 (Factorization Lemma). Let $N \subseteq G$ be a normal subgroup, and $\varphi : G \to H$ a homomorphism. If $N \leq \ker \varphi$, then there is a unique homomorphism $G/N \to H$ making the following diagram commute:

Proof. If the diagram commutes, then we must have $\tilde{\varphi}(gN) = \tilde{\varphi}(\pi(g)) = \varphi(g)$, proving uniqueness. Therefore it suffices to show that the rule $\tilde{\varphi}(gN) = \varphi(g)$ is well defined if $N \leq \ker \varphi$. Suppose $g' \in gN$. Then $g'g^{-1} \in N$ so that $\varphi(g'g^{-1}) = 1$. Thus $\varphi(g') = \varphi(g)$ and so $\tilde{\varphi}$ is well defined.

(e) Conclude that for H an abelian group there is a bijection:

$$\left\{ \text{ Homomorphisms } \varphi: G \to H \ \right\} \Longleftrightarrow \left\{ \text{ Homomorphisms } \tilde{\varphi}: G^{\mathrm{ab}} \to H \ \right\}$$

Proof. In the righthand direction we define a function Φ which takes a map $\varphi: G \to H$ to the unique map $\tilde{\varphi}$ from part (d). In the other direction define Ψ which takes a map $\tilde{\varphi}$ to the composition $\varphi = \tilde{\varphi} \circ \pi$:

$$G \xrightarrow{\pi} G^{ab} \xrightarrow{\tilde{\varphi}} H.$$

We must prove these processes are inverses to each other. But this is obvious. $\Psi \circ \Phi(\varphi) = \tilde{\varphi} \circ \pi = \varphi$ by definition, and $\Phi \circ \Psi(\tilde{\varphi}) = \Phi(\tilde{\varphi} \circ \pi) = \tilde{\varphi}$ by the uniqueness of $\tilde{\varphi}$.

We make a remark that this is a sort of *universal property*, in that G^{ab} is the universal abelianization of G. I won't get into precisely what this means at the moment, but it can be understood via the slogan: Maps from G to abelian things are the same as maps from G^{ab} to abelian things.

- 7. Let's now compute D_{2n}^{ab} . We should begin computing $xyx^{-1}y^{-1}$. There are 3 cases.
 - (a) Compute $x^{-1}y^{-1}xy$ in each of the following 3 cases.
 - (i) x, y both reflections. So $x = sr^i$ and $y = sr^j$. Recall that reflections always have order 2.

Proof. Since reflections always have order two, we have $x^{-1} = x$ and $y^{-1} = y$. That is:

$$x^{-1}y^{-1}xy = (sr^{i})(sr^{j})(sr^{i})(sr^{j}) = r^{j-i}r^{j-i} = r^{2(j-i)}$$

As i and j vary we collect all even powers of r.

(ii) x a reflection and y not a reflection. So $x = sr^i$ and $y = r^j$.

Proof. In this case $x^{-1} = x$, but that is not true for y. We computeL

$$x^{-1}y^{-1}xy = (sr^i)(r^{-j})(sr^i)(r^j) = (sr^{i-j})(sr^{i+j}) = r^{2j},$$

and as above we collect precisely the even powers of r.

(iii) Neither x nor y are reflections. So $x = r^i$ and $y = r^j$.

Proof. Here x and y commute so their commutator is 1.

(b) Prove that $[D_{2n}, D_{2n}] = \langle r^2 \rangle$. If n is odd, there is another generator. What is it?

Proof. We saw in part (a) that the commutators of D_{2n} are precisely the even powers of r, proving the first statement. If n is odd, then (n+1)/2 is an integer and we can compute

$$(r^2)^{(n+1)/2} = r^{n+1} = r,$$

so that in fact the commutator subgroup is $\langle r \rangle$.

(c) Now prove that D_{2n}^{ab} is either V_4 or Z_2 depending on whether n is odd or even. Note that since this is so small we should interpret this as suggesting that D_{2n} is far from abelian.

Proof. Note that:

$$|D_{2n}^{ab}| = |D_{2n}/|[D_{2n}, D_{2n}]| = |D_{2n}|/|[D_{2n}, D_{2n}]|.$$

If n is odd, then $|[D_{2n}, D_{2n}]| = n$ which is half the order of D_{2n} . Thus $|D_{2n}^{ab}| = 2$, and so it must be Z_2 .

If n is even then $|[D_{2n}, D_{2n}]| = n/2$, a quarter of the order of D_{2n} , and so $|D_{2n}^{ab}| = 4$ so it must be Z_4 or V_4 . To see it is V_4 we must show every element has order 2. The cosets are represented by r, s, and sr. The latter two have order two already in D_{2n} , so it remains to show that the coset represented by r does too, but its square is r^2 which generates the commutator subgroup. Since every element of D_{2n}^{ab} has order 2, it must be the group V_4 .

Bonus In Problem 1 we could have gone in a different direction after part (a). If you're interested, compose the complex absolute value with the log map to construct an isomorphism between $\mathbb{C}^{\times}/\mathbb{S}^1$ and the additive group \mathbb{R} . Describe in words the \mathbb{S}^1 cosets and how they correspond to elements of \mathbb{R} (hint, it looks like a target!). I can't promise many extra points for this, but I do think it's a fun exercise.

Proof. We have the composition as \mathbb{S}^1 is the kernel of the absolute value map, we have an isomorphmism between $\mathbb{C}^{\times}/\mathbb{S}^1$ and the image of the absolute value map. Notice that $||a+bi|| = \sqrt{a^2 + b^2}$ is always a positive real number. Conversely, if $r \in \mathbb{R}$ then viewing it as a complex number r + 0i we have ||r|| = r, so that the image of the absolute value map is precisely $R_{>0}$. In particular, the first isomorphism theorem tells us $\mathbb{C}^{\times}/\mathbb{S}^1 \cong \mathbb{R}_{>0}$ where the binary operation on the latter is multiplication. But recall from class that $\log : (\mathbb{R}_{>0}, \times) \to (\mathbb{R}, +)$ is an isomorphism, so that in fact $\mathbb{C}^{\times}/\mathbb{S}^1 \cong R$.

The fibers of this map are easier to understand before taking log. Indeed, $||\cdot||^{-1}(r)$ is precisely the circle of radius r centered at 0 in the complex plane. So the cosets are precisely the circles, and the relationship to the positive real numbers is the circle of radius r corresponds to r.