Obtendo Concorrência Mínima através de Ciclos Maximais sob a Dinâmica de Escalonamento por Reversão de Arestas

Carlos Eduardo Marciano

Orientadores: Felipe M. G. França & Luidi G. Simonetti

Universidade Federal do Rio de Janeiro

Defesa de Monografia

cemarciano@poli.ufrj.br Web: carloseduardov8.github.io

14 de março de 2019

ntrodução SER Concorrência Mínima Aplicação Musical Conclusão

Roteiro

- 1 Introdução
- 2 SER
- 3 Concorrência Mínima
- 4 Aplicação Musical
- 5 Conclusão

O Jantar dos Filósofos:

em 1965 para ilustrar

proposto por Edsger Dijkstra

Motivação

- deadlocks, starvation e condições de corrida. Variante com dois estados possíveis: "comendo"
- (consumindo recursos) ou "com fome" (pronto para comer).

Figura 1: O Jantar dos Filósofos [1].

Grafo de Recursos

- Nós codificam processos a serem escalonados.
- Arestas representam recursos compartilhados entre dois nós.
- Como escalonar nós a fim de garantir justiça e prevenir problemas clássicos de escalonamento?

Figura 2: Grafo de recursos para o Jantar dos Filósofos.

Escalonamento por Reversão de Arestas (SER) [2]

- Solução distribuída para sistemas de alta carga restringidos pela vizinhança.
- Orientação acíclica: sumidouros operam ao mesmo tempo e revertem suas arestas, formando novos sumidouros.
- Justiça: nós operam um mesmo número de vezes dentro de um período.

Figura 3: DAG representando o Jantar dos Filósofos.

Exemplo *SER*

Figura 4: Grafo de recursos orientado (sup.) e período induzido pelo algoritmo (inf.).

Aplicações

(a) Cruzamentos [3].

(c) Combate ao incêndio por robôs autônomos [5].

Figura 5: Aplicações com SER.

trodução SER Concorrência Mínima Aplicação Musical Conclusão

Definições

Definição: Ciclo Simples

Para G=(V,E), um ciclo simples $\kappa\subseteq V$ é um conjunto de vértices que formam a sequência $i_0,i_1,...,i_{|\kappa|-1},i_0$. Define-se K como o conjunto de todos os ciclos simples de G.

Definições

Definição: Ciclo Simples

Para G=(V,E), um ciclo simples $\kappa\subseteq V$ é um conjunto de vértices que formam a sequência $i_0,i_1,...,i_{|\kappa|-1},i_0$. Define-se K como o conjunto de todos os ciclos simples de G.

Definição: Orientação Acíclica

Uma orientação acíclica de G é uma função $\omega: E \to V$ tal que nenhum ciclo κ da forma $i_0, i_1, ..., i_{|\kappa|-1}, i_0$ existe para o qual $\omega(i_0, i_1) = i_1$, $\omega(i_1, i_2) = i_2$, ..., $\omega(i_{|\kappa|-1}, i_0) = i_0$. Seja Ω o conjunto de todas as orientações acíclicas de G.

trodução SER Concorrência Mínima Aplicação Musical Conclusão

Definições

Definição: Ciclo Simples

Para G=(V,E), um ciclo simples $\kappa\subseteq V$ é um conjunto de vértices que formam a sequência $i_0,i_1,...,i_{|\kappa|-1},i_0$. Define-se K como o conjunto de todos os ciclos simples de G.

Definição: Orientação Acíclica

Uma orientação acíclica de G é uma função $\omega: E \to V$ tal que nenhum ciclo κ da forma $i_0, i_1, ..., i_{|\kappa|-1}, i_0$ existe para o qual $\omega(i_0, i_1) = i_1, \ \omega(i_1, i_2) = i_2, \ ..., \ \omega(i_{|\kappa|-1}, i_0) = i_0$. Seja Ω o conjunto de todas as orientações acíclicas de G.

Definição: Sentido de Orientação

Definimos como $n_{cw}(\kappa, \omega)$ o número de arestas no ciclo κ orientadas por ω no sentido horário, e $n_{ccw}(\kappa, \omega)$ como as orientadas no sentido anti-horário.

Concorrência

Definição: Concorrência (1)

Seja m o número de vezes que cada nó opera em um período do algoritmo SER. Seja p o comprimento de um período, medido em orientações. Para G=(V,E), definimos concorrência como uma função $\gamma:\Omega\to {\rm I\!R}$ tal que:

$$\gamma(\omega) = \frac{m}{\rho} \tag{1}$$

Definicão: Concorrência (1

Seja m o número de vezes que cada nó opera em um período do algoritmo SER. Seja p o comprimento de um período, medido em orientações. Para G=(V,E), definimos concorrência como uma função $\gamma:\Omega\to \mathbb{R}$ tal que:

$$\gamma(\omega) = \frac{m}{p} \tag{1}$$

Definição: Concorrência (2)

Alternativamente, para G = (V, E), definimos concorrência como:

$$\gamma(\omega) = \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\}$$
 (2)

Exemplo SER (reprise)

Figura 6: Concorrência: $\gamma(\omega) = m/p$; ou $\gamma(\omega) = \min_{\kappa \in K} \Big\{ \frac{\min\{n_{\mathrm{cw}}(\kappa,\omega), n_{\mathrm{ccw}}(\kappa,\omega)\}}{|\kappa|} \Big\}$.

ntrodução SER **Concorrência Mínima** Aplicação Musical Conclusão

Roteiro

- 1 Introdução
- 2 SER
- 3 Concorrência Mínima
- 4 Aplicação Musical
- 5 Conclusão

■ NP-Completo [6]: Minimizar $\gamma(\omega)$ sobre todo o conjunto Ω :

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$
 (3)

■ NP-Completo [6]: Minimizar $\gamma(\omega)$ sobre todo o conjunto Ω :

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$
 (3)

Lema 1

$$\gamma^* = \min_{\kappa \in \mathit{K}} \left\{ \tfrac{1}{|\kappa|} \right\}$$

■ NP-Completo [6]: Minimizar $\gamma(\omega)$ sobre todo o conjunto Ω :

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$
(3)

Lema 1

$$\gamma^* = \min_{\kappa \in K} \left\{ \frac{1}{|\kappa|} \right\}$$

Demonstração

Relembre a definição de concorrência: $\gamma(\omega) = \min_{\kappa \in K} \left\{ \frac{\min\{n_{cw}(\kappa,\omega), n_{ccw}(\kappa,\omega)\}}{|\kappa|} \right\}$. Para um dado ω' , seja κ' o ciclo escolhido pelo minimizador da definição de concorrência. Seja $x = min\{n_{cw}(\kappa', \omega'), n_{ccw}(\kappa', \omega')\}$. Logo, temos $\gamma(\omega) = x/|\kappa'|$.

■ NP-Completo [6]: Minimizar $\gamma(\omega)$ sobre todo o conjunto Ω :

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$
 (3)

Lema 1

$$\gamma^* = \min_{\kappa \in K} \left\{ \frac{1}{|\kappa|} \right\}$$

Demonstração

Porém, para qualquer ciclo $\kappa \in K$, é possível orientar κ com algum $\omega \in \Omega$ de forma que $n_{cw}(\kappa,\omega)=1$ e $n_{ccw}(\kappa,\omega)=|\kappa|-1$, ou vice-versa. Logo, se ω' , aplicado a κ' , não produziu o valor x=1, haverá outra orientação $\omega \in \Omega$ que produzirá $\gamma(\omega)=1/|\kappa'|$.

■ NP-Completo [6]: Minimizar $\gamma(\omega)$ sobre todo o conjunto Ω :

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$
(3)

Lema 1

$$\gamma^* = \min_{\kappa \in K} \left\{ \frac{1}{|\kappa|} \right\}$$

Demonstração

Suponha que $\gamma*$, a concorrência mínima de G, seja menor que $1/|\kappa'|$. Se isto for verdade, deverá existir um ciclo κ^* que, sob alguma orientação $\omega*$, produzirá $1/|\kappa^*| < 1/|\kappa'|$. Logo, encontrar γ^* tornou-se um problema de minimização sobre todo $\kappa \in K$.

■ Resta encontrar ω^* tal que $\gamma^* = \gamma(\omega^*)$.

■ Resta encontrar ω^* tal que $\gamma^* = \gamma(\omega^*)$.

Teorema 1

Dado qualquer ciclo maximal $\kappa^* \in K$ como entrada, existe um algoritmo de complexidade linear para encontrar uma orientação $\omega^* \in \Omega$ tal que $\gamma(\omega^*)$ é mínimo para todo $\omega \in \Omega$.

■ Resta encontrar ω^* tal que $\gamma^* = \gamma(\omega^*)$.

Teorema 1

Dado qualquer ciclo maximal $\kappa^* \in K$ como entrada, existe um algoritmo de complexidade linear para encontrar uma orientação $\omega^* \in \Omega$ tal que $\gamma(\omega^*)$ é mínimo para todo $\omega \in \Omega$.

Demonstração

Pela prova do Lemma 1, para atingir γ^* , deve-se orientar κ^* tal que $n_{cw}(\kappa^*, \omega^*) = 1$ e $n_{ccw}(\kappa^*, \omega^*) = |\kappa^*| - 1$ (ou vice-versa). Isto pode ser realizado em tempo linear ao percorrermos o ciclo κ^* e atribuirmos um número de identificação crescente $1, ..., |\kappa^*|$ para cada vértice visitado, resultando em uma ordenação topológica do ciclo. Por fim, orienta-se as arestas no sentido dos vértices de maior identificador, cumprindo o requisito.

■ Resta encontrar ω^* tal que $\gamma^* = \gamma(\omega^*)$.

Teorema 1

Dado qualquer ciclo maximal $\kappa^* \in K$ como entrada, existe um algoritmo de complexidade linear para encontrar uma orientação $\omega^* \in \Omega$ tal que $\gamma(\omega^*)$ é mínimo para todo $\omega \in \Omega$.

Demonstração

Resta orientar os demais vértices de G tal que ω^* sempre será de fato acíclica. Seja $S=V-\kappa^*$ o conjunto dos vértices restantes de G. Atribui-se um número de identificação crescente $|\kappa^*|+1,...,|V|$ para cada vértice em S, e então orienta-se todas as arestas de G na direção dos vértices com maior identificador. Por absurdo, se ω^* possuir ciclos, existirá um caminho direcionado $i_0,i_1,...,i_0$. No entanto, como $id[i_0]>id[i_1]$, é impossível retornar a i_0 após a partida, para qualquer $i_0\in V$. Portanto, nenhum ciclo será formado.

Concorrência Mínima

Viabilidade Computacional

■ Implementação do modelo para o Simple Cycle Problem [7]:

Nós	Arestas	p	$ \kappa^* $	Conc. Mín.	Tempo CPU (s)
200	392	0.01	183	1/183	1
200	3826	0.1	200	1/200	2
1000	1912	0.002	882	1/882	169
1000	19912	0.02	1000	1/1000	552
1000	180151	0.2	-	-	> 3600
2000	4079	0.001	1807	1/1807	874
2000	40034	0.01	2000	1/2000	3599
2000	380147	0.1	-	-	> 3600
2000	1999000	1	-	-	> 3600

Tabela 1: Experimentos para encontrar a concorrência mínima de grafos circulantes gerados aleatoriamente.

ntrodução SER Concorrência Mínima **Aplicação Musical** Conclusão

Roteiro

- 1 Introdução
- 2 SER
- 3 Concorrência Mínima
- 4 Aplicação Musical
- 5 Conclusão

trodução SER Concorrência Mínima **Aplicação Musical** Conclusão

Contexto Musical

(a) Buddy Rich, jazz.

(b) Joe Bonamassa, blues,

Figura 7: Virtuosos (Creative Commons).

- A geração de melodias por computador tem sido estudada desde a década de 50 [8].
- Duas abordagens: explícita (em que as regras de composição são especificadas por humanos) e implícita [9].
- <u>Música ocidental:</u> tem como característica o contraponto (ou polifonia), com múltiplas vozes melódicas [10].

Frases Musicais

■ Em *blues, jazz* e *rock*, é comum existir uma dinâmica de "pergunta e resposta" com frases musicais.

Figura 8: Tablaturas de frases musicais [11].

Montando Faixas de Máxima Duração

- Gostaríamos que nosso modelo capturasse as seguintes restrições:
 - Uma frase consequente apenas pode ser tocada após uma antecedente, formando um lick;
 - Apenas frases do mesmo tipo (antecedente ou consequente) podem tocar ao mesmo tempo;

- Frases de diferentes intensidades (e.g. número de notas) podem não soar bem juntas;
- A composição final deve ser um loop, incluir todas as frases e ser de máxima duração.

Figura 9: Exemplo de modelagem.

Conclusão

- Contribuições: estratégia computacional para a obtenção de concorrência mínima e nova proposta para a criação de faixas musicais.
- Padrão MIDI: faixas com duração de horas e potencial fonte de inspiração para artistas.
- Trabalhos futuros: elaboração de um modelo computacional para a obtenção de concorrência máxima sob SER.

(a) Concorrência máxima.

(b) Concorrência mínima.

Figura 10: Concorrências extremas.

ntrodução SER Concorrência Mínima Aplicação Musical Conclusão

Agradecimentos

Obrigado!

Perguntas & Respostas

Bibliografia I

- TANENBAUM, A. S., Modern Operating Systems.
 3rd ed., pp. 143–165.
 Upper Saddle River, NJ. USA: Pearson Prentice Hall, 2007.
- [2] BARBOSA, V. C., GAFNI, E., "Concurrency in heavily loaded neighborhood-constrained systems", ACM Trans. on Program. Lang. and Syst., v. 11, no. 4, pp. 562–584, 1989.
- [3] CARVALHO, D., PROTTI, F., DE GREGORIO, M., et al., "A Novel Distributed Scheduling Algorithm for Resource Sharing Under Near-Heavy Load", Lecture Notes in Computer Science, v. 3544, pp. 431–442, 2004.
- [4] LENGERKE, O., ACUÑA, H. G., DUTRA, M. S., et al., "Distributed control of job-shop systems via edge reversal dynamics for automated guided vehicles", 1st International Conference on Intelligent Systems and Applications, pp. 25–30, 2012.
- [5] ALVES, D. S. F., SOARES, E. E., STRACHAN, G. C., et al., A Swarm Robotics Approach to Decontamination. In: Mobile Ad Hoc Robots and Wireless Robotic Systems: Design and Implementation. 1st ed., pp. 107–122.
 - Hershey, PA, USA: IGI Publishing Hershey, 2012.
- [6] ARANTES JR, G. M., Trilhas, Otimização de Concorrência e Inicialização Probabilística em Sistemas sob Reversão de Arestas, Ph.D. Thesis, Prog. de Eng. de Sist. e Comp., Univ. Fed. do Rio de Janeiro, 2006.

Bibliografia II

- [7] LUCENA, A., DA CUNHA, A. S., SIMONETTI, L., "A New Formulation and Computational Results for the Simple Cycle Problem". Electronic Notes in Discrete Mathematics, v. 44, no. 5, pp. 83-88, 2013.
- [8] NIERHAUS, G., Algorithmic Composition: Paradigms of Automated Music Generation. Springer-Verlag: Vienna, Austria, 2009.
- SHAN, M.-K., CHIU, S.-C., "Algorithmic compositions based on discovered musical [9] patterns", Multimedia Tools and Applications, v. 46, n. 1, pp. 1–23, Jan. 2010.
- [10] SCHMIDT-JONES, C., Understanding Basic Music Theory. OpenStax CNX: Houston, TX, USA, 2007.
- [11] BELL, J., 144 Blues Guitar Licks. JamString: East Midlands, UK, 2015, mobile application, Version 15,41942290.