Name:				
	Hanliang Jiang			
Netid:				
	hj33			

CS 441 - HW1: Instance-based Methods

Complete the sections below. You do not need to fill out the checklist.

Total I	Points Available	[]/145
1.	Retrieval, K-means, 1-NN on MNIST	
	a. Retrieval	[]/5
	b. K-means	[]/15
	c. 1-NN	[]/10
2.	Make it fast	
	a. K-means plot	[]/15
	b. 1-NN error plots	[]/8
	c. 1-NN time plots	[]/7
	d. Most confused label	[]/5
3.	Temperature Regression	
	a. RMSE Tables	[]/20
4.	4. Conceptual questions	
5.	Stretch Goals	
	 a. Evaluate effect of K for MNIST 	[]/15
	 b. Evaluate effect of K for Temp Reg. 	[]/15
	c. Compare Kmeans more iterations vs. restarts	[]/15

1. Retrieval, K-means, 1-NN on MNIST

a. What index is returned for x_test[1]?

28882

b. Paste the display of clusters after the 1st and 10th iteration for K=30.

c. Error rate for first 100 test samples, using first 10,000 training samples (x.x)

8.0%

2. Make it fast

a. KMeans plot of RMSE vs iterations for K=10, 30, 100

b. Nearest neighbor error vs training size plot

c. Nearest neighbor time vs training size plot

d. What label is most commonly confused with '2'?

3. Temperature Regression

a. Table of RMSE for KNN with K=5 (x.xx)

	KNN (K=5)		
Original Features	3.249		
Normalized Features	2.977		

4. Test your understanding

Fill in the letter corresponding to the answer. If you're not sure, you can sometimes run small experiments to check.

1. Is K-means guaranteed to decrease RMSE between nearest cluster and samples at each iteration until convergence?

	b				
2. If you increase K, is K-means e.a. Guaranteedb. Expected but not guararc. Not expected		uaranteed	to achieve I	ower RMSI	Ξ?
 3. In K-NN regression, for training be predicted for any query? a. Min(y) b. Mean(y) c. Can't be determined 	labels y, wh	at is the low	vest target v	value that c	an possibly
 Would you expect the "training or classification? Training error is Higher Lower It's problem-dependent 		-			N for
5. Would you expect the test error regression?a. Higherb. Lowerc. It's problem-dependent	for 1-NN to	be higher o	or lower than	n for 3-NN 1	for
5. Stretch Goals (optional)a. Select best K parameter for K-NN MNIST classification in K=1, 3, 5, 11, 25. (x.xx)					
Validation Set Performance	K=1	K=3	K=5	K=11	K=25
validation out i chomianoc	1'` '		5		

a. Yesb. No

|--|

Best K:

3

Test % error (x.xx)

2.959%

b. Select best K parameter for K-NN temperature regression in K=1, 3, 5, 11, 25. (x.xx)

Validation Set RMSE	K=1	K=3	K=5	K=11	K=25
Original Features	5.99	5.07	4.81	4.635	4.48
Normalized Features	4.96	4.08	3.78	3.629	3.54

Best Setting (K, feature type):

K=25, Original Features

Test RMSE (x.xx)

3.04

c. Kmeans, MNIST: compare average and standard deviation RMSE based on number of iterations and number of restarts

(4 digit precision)

K=30	RMSE avg	RMSE std
20 iterations, 1 restart	5.819	0.00
4 iterations, 5 restarts	5.775	0.00
50 iterations, 1 restart	5.789	0.00
10 iterations, 5 restarts	5.769	0.00

Acknowledgments / Attribution

List any outside sources for code or ideas or "None". None