

Regression Models (Evaluating Numeric Prediction)

We have covered using the MSE

$$MSE = \frac{1}{m} \sum \left(f\left(\mathbf{X}^{(j)}; \boldsymbol{\theta}\right) - y^{(j)} \right)^{2}$$

as the cost function in our curve fitting example. Geometrically this is computed as follows*

^{*}Diagram (from *Real World Machine Learning*) shows the RMSE = $\sqrt{\text{MSE}}$

Common Cost Functions in Regression Models

Measure	Definition	Purpose/Advantage
Mean square error (MSE)	$\frac{(p_1-a_1)^2+\cdots+(p_m-a_m)^2}{m}$	Mathematically tractable but places greater emphasise on observations with large error
Root mean square error (RMSE)	$\sqrt{\frac{(p_1-a_1)^2+\cdots+(p_m-a_m)^2}{m}}$	Has same units as data
Mean absolute error (RMAE)	$\frac{ p_1-a_1 +\cdots+ p_m-a_m }{m}$	Does not overemphasise observa-
Relative square error (RSE)	$\frac{(p_1-a_1)^2+\cdots+(p_m-a_m)^2}{(p_1-\bar{a})^2+\cdots+(p_m-\bar{a})^2}$	tions with large error (as MSE does) Relative metric compares the
Root Relative square error (RRSE)	$\sqrt{\frac{(p_1-a_1)^2+\cdots+(p_m-a_m)^2}{(p_1-\bar{a})^2+\cdots+(p_m-\bar{a})^2}}$	rors in the predictions with er- rors in the simplest model pos- sible (a model just always pre-
Relative absolute error (RAE)	$\frac{ p_1-a_1 +\cdots+ p_m-a_m }{ p_1-\bar{a} +\cdots+ p_m-\bar{a} }$	dicting the average value of y)

where a_j is the actual value, p_j is the predicted value, m is the number of observations, and \bar{a} represents the mean of the a_j .

Assumptions of (Linear) Regression Model

- Multivariate normality each of the independent variables must be normally distributed.
 - Graphical: histograms, Q-Q plots,
 - Numerical: goodness of fit tests, e.g., the Kolmogorov-Smirnov test, ...
 - Fix: non-linear transformations such as log, power, Box-Cox, etc
- No or little **multicollinearity** independent variables should not be too highly correlated with each other.
 - Numerical: correlation matrix using Pearson?s bivariate correlation coefficient.
 - Fix: Centre the data, filter out some of the independent variables,
- No auto-correlation the residuals should be independent, and normally distributed.
 - Graphical: residual plot.
 - Numerical: Durbin-Watson test.
- homoscedasticity constant variance in residuals.
 - Graphical: residual plot.
 - : Fix: transform data or use non-linear model.

And, in addition, for linear regression

• **Linearity** — relationship between the independent variables and the dependent variable is linear.