1 Vorübung 1

Scheinbare Helligkeitsformel gewichtet mit der Öffnung (der Lichtsammelfläche)

$$m_2 - m_1 = -2.5 \cdot \log \frac{\frac{F_2}{D_2^2}}{\frac{F_1}{D_1^2}}$$

$$\to m_2 = m_1 + 2.5 \cdot \log \frac{D_2^2}{D_1^2}$$

$$m_2 = m_1 + 5 \cdot \log \frac{D_2}{D_1}$$

$$m_2 = m_1 - 5 \cdot \log D_1 + 5 \cdot \log D_2$$

Einsetzen von $m_{Grenze,Auge} = 6.0$ Magnituden statt m_1 , Durchmesser Auge $D_{Auge} = 0.8cm$ statt D_1 , m_{Grenze} statt m_2 und Durchmesser D statt D_2 :

$$m_{Grenze} = m_{Grenze,Auge} - 5 \cdot \log D_{Auge} + 5 \cdot \log D$$

$$m_{Grenze} = 6.0 - (-0.5) + 5 \cdot \log D$$

$$m_{Grenze} = 6.5 + 5 \cdot \log D$$

1.1 Herleitung

1.2 Anwendung

Die Grenzmagnitude für das kleine Bamberger Teleskop mit Durchmesser $D=40\mathrm{cm}$

$$m_{Grenze}(40cm) = 6.5 + 5\log\frac{40cm}{cm}$$
$$= 14.5$$

Die Grenzmagnitude für das kleine Bamberger Teleskop mit Durchmesser $D=50\mathrm{cm}$

$$m_{Grenze}(50cm) = 6.5 + 5\log\frac{50cm}{cm}$$
$$= 15.0$$

2 Vorübung 2

2.1 Jupiter

Es gilt

$$B = f_{Teleskop} \cdot \varphi$$

Daraus Folgt für den Jupiter mit einem Winkeldurchmesser von 40" und der Brennweite $f_{Teleskop}=3.35m$ des 50cm Teleskops eine Bildgröße von

$$B_{Jupiter} = 3.36m \cdot 40$$
"
$$= 3,7cm$$

2.2 Seeing

Das mittlere Seeing in Bamberg beträgt $\sim 3"$ Damit ist die Ausdehnung auf der Brennebene

$$B_{Seeing} = 3.36m \cdot 3$$
"
$$= 2.79 \cdot 10^3 \mu m$$

3 Aufgabe 1

Fallunterscheidung

- Objekte mit Deklination > 90° φ liegen in der immer beobachtbaren Hemisphäre.
- Objekte mit Deklination $< -90^{\circ} + \varphi$ liegen unterhalb des Horizonts.
- Objekte mit Deklination von -90° bis $+90^{\circ}$:
 - Aktuelle Sternzeit ist $\theta + t$, wobei t die aktuelle Uhrzeit ist
 - Man kann Objekte $\sim \pm 4h$ um die aktuelle Sternzeit beobachten
 - Sichtbarkeit ist nur gegeben, wenn sich das Objekt zwischen $\sim 75min$ nach Sonnenuntergang und $\sim 75min$ vor Sonnenaufgang in einem beobachtbaren Bereich befindet