

Developing Edge with Kubernetes

Dejan Bosanac

Ted Ross

What is Edge Computing?

Edge is everything that's outside the cloud

Bring compute resources closer to the source

THERE ARE MANY EDGES

0000000

0000

00000

Why Edge?

WHAT IS EDGE COMPUTING?

EDGE many small sites

Better economies-of-scale and resource sharing efficiency

CORE few, large sites

Better bandwidth, latency, resiliency, data sovereignty

Centralize where you can, distribute where you must

How?

Challenges

- Infrastructure
 - How to manage resources (nodes and clusters) on the Edge?
- Control plane
 - How to manage workloads on the Edge?
- Data plane
 - How Edge sites communicate with the cloud and between themselves?

Infrastructure

- Resource constraints
- Network limitations
- Unattended operation
- Physical security

Challenges

Resources

- Limited number of nodes on the Edge
- No "bursting" to newly provisioned capacity like a public cloud or large datacenter
- Workloads typically have a wide range of priorities
- Need more emphasis on prioritization, triage

Network

- Network capacity can be limited, and variable
- Like resources, different workloads can have different network policies/priorities

Security

- Purity of images
- Secure delivery of secrets
- Unauthorized microservices
- Controlled access to resources
- Guaranteed remote shutdown

Microservices

- Deployment
- Resources
 - Pod priorities
- Communication
 - o VPN
 - VAN
- Security
 - Matching microservices to edge hardware
 - Unauthorized outbound

Toolkit

GitOps

- Configuration as a code
- Use the same management process for your app resources
 - YAML definitions
 - Secrets
- Same development workflow
 - Pull requests
 - Branches
 - Testing
- Service running in the cluster watching and applying changes

GitOps on the Edge

- Even more important for Edge environment
- OT people should be able just to kick off the process
- No external access to the cluster

GitOps tools

- GitOps Operator
 - Flux https://docs.fluxcd.io/en/stable/
- Creating resources
 - Helm https://helm.sh/
 - Fabrikate https://github.com/microsoft/fabrikate
- Storing secrets
 - Sealed Secrets https://github.com/bitnami-labs/sealed-secrets

Quarkus

- quarkus.io
- Cloud-native Java

Kubernetes prioritization toolkit

Prioritization

- Ranking of priority classes
- Input to pre-emption logic
- Applied to a pod, but acted on by node
- Different from resource based eviction

Quality of Service

- Three levels
 - Guaranteed
 - Burstable
 - Best Effort
- These are implicit from pod spec
- Is NOT considered for preemption
- IS considered in the case of eviction
- preemption != eviction

A word about networking...

- Hybrid cloud, microservice architecture, agile integration, etc.
 - Not client/server
 - Services/processes want to be deployable and addressable everywhere (north/south/east/west)
 - Edge computing Lots of private subnetworks

Application Layer Addressing

Application Layer Addressing

Implications of Application Addressing

Security

- Access control for addresses at the service/process/business resolution
- Locked-down network membership Mutual TLS for inter-site connections
- Cross-cluster applications not exposed via Kube networking
 - Public exposure limited to ingress
- Trusted and untrusted edges

Management

Metrics collected at business resolution

Skupper.io

Operational Ease

- Easy to deploy in a multi-cluster network
- No advanced networking (SDN, VPNs, Tunnels, Firewall rules, etc.)
- No need for elevated or admin privileges
- No problem with overlapping CIDR subnets or mixes of IPv4 and IPv6
- No single point of failure use redundant topology

Not just for messaging

- Proxy maps HTTP, TCP, UDP, etc. to AMQP
- http://skupper.io
 - Examples, demo-videos, etc.
 - New, emerging project

Usecases

Case - Highly available site

Case - Edge to Edge integration

Case - Edge to Edge integration

Case - Ingress Load Balancing with Locality

Case - HA producing

Demo

Takeaways

- Deployment considerations
- Service size and priorities
- Networking considerations

- K8s IoT Edge working group -<u>https://github.com/kubernetes/community/tree/master/wg-iot-edge</u>
- Thursday, November 21 4:25pm 5:55pm Intro + Deep Dive: Specialized Network Protocols for IoT+Edge with Kubernetes - https://sched.co/UakM

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- f facebook.com/redhatinc
- youtube.com/user/RedHatVideos
- twitter.com/RedHat

