Math 245A Nakul Khambhati

Homework 7 (due: Mo, Dec. 4)

Problem 1*: a) Since we are working with $\mathcal{P}(\mathbb{N})$ every function $f: \mathbb{N} \to \mathbb{C}$ is integrable as for all $B \subset \mathbb{C}$ we have $f^{-1}(B) \subset \mathbb{N}$ so it is in $\mathcal{P}(\mathbb{N})$. If an arbitrary f preimages all subsets of \mathbb{C} to measurable sets, it certainly preimages measurable sets to measurable and is therefore measure.

I claim that f is integrable if and only if

$$\sum_{n=1}^{\infty} |f(n)| < \infty.$$

To prove integrability we need to show that $\int |f| d\mu < \infty$ so it suffices to show that

$$\int |f|d\mu = \sum_{n=1}^{\infty} |f(n)|.$$

To this end, define

$$g_n = \sum_{i=1}^n |f(i)| \mathbb{1}_{\{i\}}.$$

It is clear that $g_n \nearrow |f|$ and each g_n is simple therefore measurable and has finite integral. By the monotone convergence theorem, it follows that

$$\int |f| d\mu = \int \left(\lim_{n \to \infty} g_n\right) d\mu = \lim_{n \to \infty} \int g_n d\mu = \lim_{n \to \infty} \sum_{i=1}^n |f(i)| = \sum_{n=1}^\infty |f(n)|$$

as required.

b) A complex valued function f has integral equal to

$$\int Re(f) + i \int Im(f).$$

and each of these can be split further into the positive negative parts as

$$\int Re(f)^{+} - \int Re(f)^{-} + i \int Im(f)^{+} - i \int Im(f)^{-}.$$

From part a) we can rewrite positive integrals as sums so we get

$$\sum_{n=1}^{\infty} Re(f)^{+} - \sum_{n=1}^{\infty} Re(f)^{-} + i \sum_{n=1}^{\infty} Im(f)^{+} - i \sum_{n=1}^{\infty} Im(f)^{-}.$$

c) For $n \ge 2$ consider the functions $f_n : \mathbb{N} \to \mathbb{C}$ such that $f_n(k) = k^{-n}$ for $k \ge 2$ and $f_n(1) = 0$. Then from part b)

$$\int f_n d\mu = \sum_{k=2}^{\infty} k^{-n}.$$

They are all measurable from part a) and are dominated by $g = f_2(k) = k^{-2}$. The function g has finite integral as

$$\sum_{k=1}^{\infty} k^{-2} = \frac{\pi^2}{6} < \infty.$$

Also, the pointwise limit of f_n exists and is 0 as for $k \ge 2$, $\lim_{n\to\infty} k^{-n} = 0$. By Lebesgue Dominated Convergence it follows that

$$\lim_{n \to \infty} \sum_{k=2}^{\infty} k^{-n} = \lim_{n \to \infty} \int f_n d\mu = \int \left(\lim_{n \to \infty} f_n\right) d\mu = \int 0 d\mu = 0$$

as required.

Problem 3*: Let (X, \mathcal{A}, μ) be a measure space.

a) By definition of the infimum, each of the sets

$$A_n := \{ x \in X : |f(x)| > ||f||_{\infty} + 1/n \}$$

has measure zero. Then the set $A = \bigcup_{n \in \mathbb{N}} A_n$ also has measure 0 by countable subadditivity or continuity from below. In fact

$$A = \{x \in X : |f(x)| > ||f||_{\infty}\}$$

and so the infimum is achieved as a minimum for $\lambda = \|f\|_{\infty}$. Since f is measurable, all A_n are measurable as they are preimages of Borel (in fact open) sets and so A is measurable. By definition, $|f(x)| \leq \|f\|_{\infty}$ on A^c and since $\mu(A) = 0$ this means that $|f(x)| \leq \|f\|_{\infty}$ a.e.

b) For measurable functions $f, g: X \to \mathbb{C}$ we write $f \sim g$ if f = g a.e.

First we show that addition and scalar mulitplication are well defined i.e. To show that [f] + [g] = [f+g] is well-defined, let $f \sim f'$ and $g \sim g'$. We need to show that $f+g \sim f'+g'$. By assumption, there exist null sets N and M such that f=f' on N^c and g=g' on M^c . It is clear that f+g=f'+g' on $(N\cup M)^c$ and $N\cup M$ has measure zero by finite subadditivity so f+g=f'+g' a.e. which means that $f+g\sim f'+g'$ as required. Similarly we need to show that c[f]=[cf]. We show that if $f\sim f'$ then $cf\sim cf'$. Let $f\sim f'$ so f=f' on N^c where $\mu(N)=0$. Then clearly cf=cf' on N^c so $cf\sim cf'$.

Next we simultaneously show that L^{∞} is a vector space and $||f||_{\infty}$ is a norm on this space.

(1) Let $f, g \in L^{\infty}$. We will show that $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty} < \infty$ so in particular $f + g \in L^{\infty}$ which shows triangle inequality for the norm and closure under addition for the vector space. For all $x \in X$ it is true that

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

where the first inequality is just the triangle inequality for absolute value and the second inequality is from part a). From this it follows that

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty} < \infty$$

(2) Let $f \in L^{\infty}$ and $c \in \mathbb{C}$. We show that $||cf||_{\infty} = |c|||f||_{\infty} < \infty$ so $cf \in L^{\infty}$ which shows that the norm is absolutely homgenous and the vector space is closed under scalar multiplication.

$$\begin{aligned} \|cf\|_{\infty} &= \inf\{\lambda : \mu\{cf > \lambda\} = 0\} \\ &= \inf\{|c|\lambda : \mu\{cf > |c|\lambda\} = 0\} \\ &= |c|\inf\{\lambda : \mu\{f > \lambda\} = 0\} \\ &= |c|\|f\|_{\infty}. \end{aligned}$$

(3) It is clear from the definition that $||f||_{\infty} \ge 0$ so we show that $||f||_{\infty} = 0$ implies that f = 0 a.e. From part a) this means that

$$0 \le |f(x)| \le ||f||_{\infty} = 0$$
 a.e.

so
$$f = 0$$
 a.e.

c) Show that L^{∞} with this norm is complete: if $\{f_n\}$ is a Cauchy sequence in L^{∞} , then there exists a function $f \in L^{\infty}$ such that $||f_n - f||_{\infty} \to 0$ as $n \to \infty$.

First we will show that $||f_n - f||_{\infty} \to 0$ if and only if there exists a measurable set E with $\mu(E) = 0$ and $f_n \to f$ uniformly on E^c . Assume that the LHS is true. Then for any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for $n \ge N$

$$|f_n(x) - f(x)| \le ||f_n - f||_{\infty} < \epsilon \quad a.e.$$

Let M_n denote $||f_n - f||_{\infty}$ and set

$$A_n = \{ x \in X : |f_n(x) - f(x)| > M_n \}$$

so that $\mu(A_n) = 0$. Setting $E = \bigcup_{n \ge N} A_n$ gives us what is required. Clearly $\mu(E) = 0$ by countably subadditivity and on E^c we have

$$|f_n(x) - f(x)| \le ||f_n - f||_{\infty} < \epsilon \quad \forall n \ge N$$

so $f_n \to f$ uniformly on E^c . Conversely, assume there exists E such that $\mu(E) = 0$ and $f_n \to f$ uniformly on E^c . Then for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for $n \ge N$ and on E^c

$$|f_n(x) - f(x)| < \epsilon$$

which means that it holds almost everywhere. Then, by definition, $||f_n - f|| < \epsilon$.

We now proceed with the proof. Let $\{f_n\}_{n\in\mathbb{N}}$ be Cauchy in L^{∞} so for each $\epsilon>0$ there exists $N\in\mathbb{N}$ such that

$$\forall m, n \geqslant N \quad ||f_m - f_n||_{\infty} < \epsilon.$$

For each $m, n \in \mathbb{N}$ define

$$E_{m,n} = \{ x \in X : |f_m(x) - f_n(x) > ||f_m - f_n||_{\infty} | \}$$

so that $\mu(E_{m,n}) = 0$. Taking $E = \bigcup_{m,n \in \mathbb{N}} E_{m,n}$ we get that $\mu(E) = 0$ by countable subadditivity and

$$E^{c} = \{x \in X : \forall m, n \in \mathbb{N} | f_{m}(x) - f_{n}(x) | \leq ||f_{m} - f_{n}||_{\infty} \}.$$

Note that on E^c and for $m, n \ge N$

$$|f_m(x) - f_n(x)| \le ||f_n - f_m||_{\infty} < \epsilon$$

so on E^c , $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy in \mathbb{C} and by completeness, it's pointwise limit exists call it f(x) and is measurable. Recall that

$$|f_m(x) - f_n(x)| < \epsilon$$

and taking $n \to \infty$ we get

$$|f_m(x) - f(x)| \leqslant \epsilon$$

so for $m \ge N$

$$||f_m(x) - f(x)||_{\infty} \le \epsilon$$

which shows that $f_m \to f$ in L^{∞} . Finally, by the triangle inequality for $m \ge N$

$$||f||_{\infty} \le ||f_m||_{\infty} + ||f_m - f||_{\infty} \le ||f_m||_{\infty} + \epsilon < \infty$$

so $f \in L^{\infty}$.

Problem 4*: a) Let $1 \le p < r < q < \infty$ and let $f \in L^p \cap L^q$ so $||f||_p < \infty$ and $||f||_q < \infty$. We want to show that $||f||_r < \infty$.

$$||f||_r = \left(\int |f|^r\right)^{1/r}$$
$$= \left(\int |f|^{\lambda r} |f|^{(1-\lambda)r}\right)^{1/r}$$

where $\lambda \in [0, 1]$ is such that

$$\frac{\lambda r}{p} + \frac{(1-\lambda)r}{q} = 1$$

so we can apply Holder's inequality to get

$$||f||_r \le (||f^{\lambda r}||_p \cdot ||f^{(1-\lambda)r}||_q)^{1/r}$$

$$\le ||f||_p^{\lambda} \cdot ||f||_q^{1-\lambda} < \infty$$

as required.

For $q = \infty$ we simply write

$$\int |f|^r = \int |f|^p |f|^{r-p} \leqslant \|f\|_{\infty}^{r-p} \int |f|^p < \infty$$

so $f \in L^p \cap L^\infty \Rightarrow f \in L^r$.

b) Let $f \in L^q$ where $q < \infty$. We will write f^p as $\mathbb{1}_X \cdot f^p$ and apply Holder's inequality with

$$\frac{q-p}{q} + \frac{p}{q} = 1.$$

This gives us

$$\|\mathbb{1}_X \cdot f^p\| \le \|\mathbb{1}_X\|_{\frac{q}{q-p}} \cdot \|f^p\|_{q/p}$$

which can be rewritten as

$$\int f^p d\mu \leqslant \mu(X)^{\frac{q-p}{q}} \left(\int f^q \right)^{p/q}.$$

Taking the p^{th} root on both sides gives us

$$||f||_p \leqslant \mu(X)^{\frac{q-p}{pq}} ||f||_q < \infty$$

as $f \in L^p$ and $\mu(X) < \infty$ so $f \in L^p$.

We again deal with $q = \infty$ separately. Assume $||f||_{\infty} < \infty$. Recall from 3a that

$$|f(x)| \le ||f||_{\infty}$$
 a.e.

so we write

$$\int |f|^p d\mu \leqslant ||f||_{\infty}^p \int d\mu = ||f||_{\infty} \mu(X) < \infty.$$

c) Consider the Lebesgue σ -algebra and Lebesgue measure on $[1, \infty]$ induced by the Lebesgue measure on \mathbb{R} . Denote $f_p(x) = x^{-1/p}$. We show that it belongs to $L^q \setminus L^p$ given p < q. First we show that $f_p \in L^q$ i.e. $\int f^q d\mu < \infty$. By the equivalence of the Riemann and Lebesgue integral we get

$$\int f_p^q d\mu = \int x^{-q/p} d\mu = \int_1^\infty x^{-q/p} dx = \frac{p}{q-p} < \infty$$

assuming that p < q. On the other hand $f \notin L^p$ as $\int_1^\infty \frac{1}{x} dx = \infty$. In more detail, using the Monotone Convergence Theorem and equivalence of Riemann and Lebesgue integrals

$$\int f^p d\mu = \int \frac{1}{x} d\mu = \int \lim_{n \to \infty} \left(\frac{1}{x} \cdot \mathbb{1}_{[1,n]} \right) d\mu = \lim_{n \to \infty} \int \frac{1}{x} \cdot \mathbb{1}_{[1,n]} d\mu$$
$$= \lim_{n \to \infty} \int_1^n \frac{1}{x} dx = \lim_{n \to \infty} \ln(n) = \infty.$$

Problem 5*: Let \mathcal{I} denote the set of all intervals (a, b) on \mathbb{R} with rational endpoints i.e. a < b and $a, b \in \mathbb{Q}$. This set is countable. Now consider the vector

space V over \mathbb{Q} generated by $\mathbb{1}_I$, $I \in \mathcal{I}$. In other words, elements of V are linear combinations of characteristic functions on intervals in \mathcal{I} with rational scalars. This set is also countable and I claim that it is dense in $L^p(\mathbb{R})$. Let $f \in L^p(\mathbb{R})$ and recall that $C_c(\mathbb{R})$ the set of condtinuous functions with compact support is dense in $L^p(\mathbb{R})$. Let $\epsilon > 0$. Then there exists $f_1 \in C_c(\mathbb{R})$ with $||f - f_1||_p < \epsilon/2$. Since f_1 is bounded, let $I \in \mathcal{I}$ be such that it contains the support of f_1 . For any $\delta > 0$ we can pick $f_2 \in V$ such that $||f_2 - f_1||_{\infty} < \delta$ which follows from density of rationals and continuity of f_1 . This is done as follows: by continuity of f_1 we can choose a partition of $I = I_1 \cup \ldots \cup I_n$ such that the oscillation of f_1 on each of the subintervals $\sup_{I_i} f - \inf_{I_i} f < \delta$. Then pick $q_i \in (\sup_{I_i} f, \inf_{I_i}) \cap \mathbb{Q}$ and define $f_2 = \sum_{i=1}^n q_i \mathbb{1}_{I_i} \in V$. By construction, it is clear that in each interval I_i , the distance between q_i and f_1 is less than δ so $||f_1 - f_2||_{\infty} < \delta$. We can set δ such that $|I|^{1/p}\delta < \epsilon/2$ Then

$$||f_1 - f_2||_p = \left(\int_I |f_1 - f_2|^p\right)^{1/p}$$

$$\leq \left(\int_I ||f_1 - f_2||_{\infty}^p\right)^{1/p}$$

$$\leq |I|^{1/p} \cdot ||f_1 - f_2||_{\infty}$$

$$\leq |I|^{1/p} \delta < \epsilon/2.$$

Finally, from the triangle inequality in $L^p(\mathbb{R})$ it follows that $||f - f_2|| \leq ||f - f_1|| + ||f_1 - f_2|| < \epsilon/2 + \epsilon/2 = \epsilon$ so V is a countable dense subset and $L^p(\mathbb{R})$ is separable.