제 2 문 (10점)

회귀모형

을 적합시킨 결과가 다음과 같다. (각 2점)

Analysis of Variance						
	Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model	2	1422.80	711.40	111.21	<.0001
	Error	10	63.97	6.40		
	Corrected Total	12	1486.77			
	Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
	Intercept	1	-65.02	15.07	-4.32	0.0015
	X1	1	2.37	0.17	13.86	<.0001

 $y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$

(1) 전체 관측치 수 *n*은 얼마인가?

X2

- (2) 반응변수(Y)의 분산에 대한 추정치는 얼마인가?
- (3) X_1 의 회귀계수 추정치인 2.37의 의미는 무엇인가?

1 0.43 0.07

5.77

0.0002

- (4) 각 설명변수에 대응되는 모수를 각각 β_0 , β_1 , β_2 라고 표시할 때 $H_0: \beta_1 = \beta_2 = 0$ 의 검정을 유의수준 5%에서 실시하라.
- (5) 첫 번째 관측치가 (120, 70, 50)으로 주어졌다. 이 관측치에 대한 잔차

(residual)를 계산하라. 단 자료는 $(Y_i, X_{1i}, X_{2i}), i=1,2,\cdots,n$ 으로 주어져 있다.