湖南大学课程考试

试

卷

专业班级

___年__月__日 考 试 用

湖南大学课程考试试卷

题 号		1	111	四	五	六	七		总分
应得分	10	18	20	14	16	14	8		100
实得分									
评卷人									

一、求下列极限(每小题5分,共10分)

1.
$$\lim_{n\to\infty} [\sqrt{n^2+4n+5}-(n-1)].$$

装订线(题目不得超过此线

$$2 \cdot \lim_{x \to 0} \frac{\int_0^{2x} \tan(x^2) \mathrm{d}x}{x^3}.$$

二、求下列导数 (每小题 6 分, 共 18 分)

3、 设
$$y = \ln^3(x^3)$$
, 求 y' .

· 学 中: 4、设函数 y=y(x)由参数方程 $\begin{cases} x=\ln t + t^2 \\ y=2t^3+3t \end{cases}$ 所确定,求 $\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=1}$ 和 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}|_{x=1}$.

5、设函数 y=y(x)由方程 $e^{xy}+y^3-5x=0$ 所确定,求 $\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=0}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}|_{x=0}$.

三、计算下列积分 (每小题 5 分, 共 20 分) 6、 $\int \frac{x+1}{3x^2+5} dx$.

装订线 (题目不得超过此线)

$$7. \int_0^4 \cos(\sqrt{x} - 1) \mathrm{d}x.$$

8、设
$$a$$
为常数, $\int_0^1 x |x-a| dx$.

9、已知 f(x)的一个原函数为 $(1+\sin x)\ln x$,求 $\int x f'(x) dx$.

四、求解微分方程(共 14 分).
10、(6 分)
$$y' + y \cos x = e^{-\sin x}$$
, $y|_{x=\frac{\pi}{2}} = 1$.

11、(8 分)
$$y'' - 6y' + 9y = e^{2x}(x+1)$$

五、讨论题(共16分).

12、(10 分) 讨论函数 $f(x) = \int_0^x \frac{3x}{x^2 - x + 1} dx$ 的增减性、凸性,并求其极值.

装订线 (题目不得超过此线)

13、(6 分) 在区间[0, 1]上验证罗尔(Rolle)中值定理对函数 $f(x) = \sqrt[3]{x} + \sqrt[3]{1-x}$ 的正确性.

<u> </u>	六、	应用题	(每题7分,	共14分
----------	----	-----	--------	------

14、已知一立体,以长半轴 a=10cm、短半轴 b=5cm 的椭圆为底,而垂直于长轴的 截面均为等边三角形,求其体积.

15、一底为 8cm、高为 6cm 的等腰三角形膜片,铅直地沉没于水中,顶在上,底在下且与水面平行,而顶在水下 3cm 深处,试求膜片一面所受的压力.(水的密度为 $\gamma=1.0\times10^3 kg/m^3$)

七、证明题(8分)

设有区间[a, b]上的正值连续函数 f(x),曲线 y=f(x)与直线 x=a, x=b, y=0 围成一曲边梯形,任取 $t\in(a,b)$,则直线 x=t 便将该曲边梯形分成左右两部分,其面积分别记为 A(t)和 B(t). (1)试证至少存在一点 $t_0\in(a,b)$,使 $A(t_0)=B(t_0)$; (2)试证存在唯一的一点 $t_1\in(a,b)$,使得 $\frac{A(t_1)}{B(t_1)}=\frac{2013}{2014}$.

装订线 (题目不得超过此线)