Foreign Safe Asset Demand and the Dollar Exchange Rate Jiang, Krishnamurthy, & Lustig (2021, JF)

International MacroFin Reading Group

Presented by Xiangyu DING dingdxy@connect.hku.hk

January 18, 2023

Overview

- Background: What Explain Exchange Rate?
 - CIP Deviation & the Disconnection Puzzle
 - Stylized Facts of CIP Deviation and Treasury Basis
- 2 Jiang et al. (2021): CIP Deviations Predicts Exchange Rate
 - Overview: Mechanisms & Contributions
 - Theory & Testable Implications
 - Empirical Evidence
 - VAR Analysis
- 3 Discussion: What Can Be Done Based on Jiang et al. (2021)

Covered Interest Rate Parity (CIP) Deviation

- CIP deviation [Literature Review: Du & Schreger, (2022)]
 - LIBOR (after GFC) ⇔ Bank's constraints: Ivashina et al. (2015), Du et al. (2018a), Fang & Liu (2021), etc.
 - Sovereign bond: Du et al. (2018b), Engel & Wu (2018), Jiang et al. (2021), etc.

$$x_t \equiv y_t^{\$} + (f_t^1 - s_t) - y_t^{*} \tag{1}$$

- When the dollar is strong, CIP deviations are wide (Advijev et al., 2019; Jiang et al., 2021)
- Exchange Rate Disconnection Puzzle (Meese & Rogoff, 1983):
 - The exchange rate does not fluctuate with fundamentals;
 - The exchange rate is **more volatile** than macroeconomic aggregates.

4 D > 4 A > 4 B > 4 B > B 900

Stylized Facts of CIP Deviation and Treasury Basis

Figure: 1 Year U.S. LIBOR and Treasury Bases: $Mean(x_t^{Treas}) = -22bp$

Stylized Facts of CIP Deviation and Treasury Basis

Figure: USD Strong when CIP Deviation High (Avdjiev et al. 2019)

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ - り Q (^)

- Background: What Explain Exchange Rate?
 - CIP Deviation & the Disconnection Puzzle
 - Stylized Facts of CIP Deviation and Treasury Basis
- Jiang et al. (2021): CIP Deviations Predicts Exchange Rate
 - Overview: Mechanisms & Contributions
 - Theory & Testable Implications
 - Empirical Evidence
 - VAR Analysis
- 3 Discussion: What Can Be Done Based on Jiang et al. (2021)

Key Insight

- Key insight: Treasury bonds bring convenience yields:
 - Two potential sources:
 - Convenience of treasury: Liquidity & collateralizability, etc.
 - Convenience of dollar: Absolute certainty in dollar payment (safety)
 - Consequence: Pricing premium ⇔ Low Required Return:

$$\underbrace{\mathbb{E}_{t}\left(\textit{M}_{t+1}\textit{X}_{t+1}\right)}_{\textit{Fundamental}}\underbrace{e^{\lambda_{t}}}_{\textit{Premium}} = \textit{P}_{t} \quad \Leftrightarrow \quad \mathbb{E}_{t}\left(\textit{M}_{t+1}\textit{R}_{t+1}\right) = e^{-\lambda_{t}}$$

- Caveat: Interpretation of 'safety':
 - "Not the same as the risk premium of a standard asset pricing model; it reflects a deviation due to clientele demand" (Krishnamurthy & Vissing-Jorgensen, 2011)

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Research Question, Mechanism and Contributions

- Research Question: How does treasury CIP deviation link to exchange rate fluctuation?
- Mechanism and Contributions:
 - 1. CIP deviation x_t^{Treas} measures convenience yields fluctuations (a new way to interpret CIP deviation);
 - 2. Convenience yields increase cause dollar appreciate (partially solve disconnection puzzle by introducing new noise to exchange rate):

$$\underbrace{x_{t}^{\mathsf{Treas}} \uparrow \Rightarrow^{imply}}_{\textit{measurement}} \underbrace{\lambda_{t} \uparrow \Rightarrow^{\mathit{cause}} \$ \mathit{Demand} \uparrow \Rightarrow^{\mathit{cause}} s_{t} \uparrow \& \ \mathbb{E}_{t} \left[s_{t+1} \right] \downarrow}_{\textit{causality}}$$

Model Setup: How Foreign Invest in Default-free Bond?

- Strategy 1: Unhedged investment in US treasury
 - 1 to $\frac{1}{S_t}$ USD, invest to $\frac{1}{S_t}e^{y_t^s}$ USD, back to $\frac{S_{t+1}}{S_t}e^{y_t^s}$ local currency
 - Best convenience: Liquidity of treasury + Fixed USD payment
- Strategy 2: Unhedged investment in foreign default-free bond
 - 1 invest to $e^{y_t^*}$ local currency
 - Worst convenience: No liquidity of treasury + Unfixed USD payment
- Strategy 3: Forward-hedged investment in foreign default-free bond
 - 1 invest to $e^{y_t^*}$ local currency, using forward to get fixed dollar payment $\frac{1}{F_t^1}e^{y_t^*}$ USD, and convert back to $\frac{S_{t+1}}{F_t^1}e^{y_t^*}$ local currency
 - Middle convenience: No liquidity of treasury + Fixed USD payment

Asset Pricing Implication

• Law of one price $\Rightarrow \exists M_{t+1}^*$ (not unique unless market complete):

$$\mathbb{E}_t\left(M_{t+1}^* \frac{S_{t+1}}{S_t} e^{y_t^s}\right) = e^{-\lambda_t^{s,*}}$$
(2)

$$\mathbb{E}_{t}\left(M_{t+1}^{*}e^{y_{t}^{*}}\right) = e^{-\lambda_{t}^{*,*}} \tag{3}$$

$$\mathbb{E}_{t}\left(M_{t+1}^{*}\frac{S_{t+1}}{F_{t}^{1}}e^{y_{t}^{*}}\right) = e^{-\left[\lambda_{t}^{*,*} + \beta^{*}\left(\lambda_{t}^{5,*} - \lambda_{t}^{*,*}\right)\right]}$$
(4)

- $\lambda_t^{\$,*}$: Log convenience yield of foreign on unhedged treasury
- $\lambda_t^{*,*}$: Log convenience yield of foreign on unhedged foreign bond
- $\beta^* \in [0,1]$: Share of convenience comes from fixed USD payment

$$0 \le \lambda_t^{*,*} \le \lambda_t^{*,*} + \beta^* \left(\lambda_t^{\$,*} - \lambda_t^{*,*} \right) \le \lambda_t^{\$,*} \tag{5}$$

<ロト <個 > ∢ 重 > ∢ 重 > 、 重 ・ 少 Q (

Asset Pricing Implication

- Assumption: $M_{t+1}^{\$}$ and S_{t+1} are jointly log-normal
 - Combine (2) (3): Convenience yield cause exchange rate changes

$$\mathbb{E}_{t}\left[\Delta s_{t+1}\right] + \left(y_{t}^{\$} - y_{t}^{*}\right) = rp_{t}^{*} - \left(\lambda_{t}^{\$,*} - \lambda_{t}^{*,*}\right) \tag{6}$$

$$rp_t^\$ \equiv : -\cot_t\left(m_{t+1}^*, \Delta s_{t+1}\right) - \frac{1}{2}\operatorname{var}_t\left[\Delta s_{t+1}\right]$$

• Combine (2) (4): CIP deviation measures convenience yield

$$x_t^{\mathsf{Treas}} \equiv y_t^{\$} + (f_t^1 - s_t) - y_t^* = -(1 - \beta^*) \left(\lambda_t^{\$,*} - \lambda_t^{*,*}\right)$$
 (7)

• Cancel out the blue part and iterate forward, we get proposition 1

Testable Implication of the Model

Proposition 1

(a). The level of the nominal exchange can be written as

$$s_{t} = \underbrace{-\mathbb{E}_{t} \sum_{\tau=0}^{\infty} \frac{x_{t+\tau}^{\mathsf{Treas}}}{1-\beta^{*}}}_{\mathsf{Treasury Basis}} + \mathbb{E}_{t} \sum_{\tau=0}^{\infty} \left(y_{t+\tau}^{\$} - y_{t+\tau}^{*}\right) - \underbrace{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} r p_{t+\tau}^{*}}_{\mathsf{Risk Premium}} + \mathbb{E}_{t} \left[\lim_{T \to \infty} s_{t+T}\right] \tag{8}$$

(b). The expected log excess return of a long position in Treasury is increasing in the risk premium and the Treasury basis

$$\mathbb{E}_t \left[\Delta s_{t+1} \right] + \left(y_t^{\$} - y_t^{*} \right) = \frac{1}{1 - \beta^*} \mathbf{x}_t^{\mathsf{Treas}} + r p_t^{*} \tag{9}$$

→ロト→団ト→ミト→ミト ミ のQで

Testable Implication of the Model

Proposition 1 (Continued)

(c). The change in the nominal exchange rate can be decomposed as

$$\Delta s_{t+1} = (\mathbb{E}_{t+1} - \mathbb{E}_t) s_{t+1} + \mathbb{E}_t [\Delta s_{t+1}]$$
(10)

where the innovation is given by

$$(\mathbb{E}_{t+1} - \mathbb{E}_{t}) \, s_{t+1} = -\left(\mathbb{E}_{t+1} - \mathbb{E}_{t}\right) \sum_{\tau=1}^{\infty} \frac{x_{t+\tau}^{\mathsf{Treas}}}{1 - \beta^{*}} + \left(\mathbb{E}_{t+1} - \mathbb{E}_{t}\right) \sum_{\tau=1}^{\infty} \left(y_{t+\tau}^{\$} - y_{t+\tau}^{*}\right)$$

$$\mathsf{Treasury \ Basis \ Innovation}$$

$$-\left(\mathbb{E}_{t+1} - \mathbb{E}_{t}\right) \sum_{\tau=1}^{\infty} r p_{t+\tau}^{*} + \left(\mathbb{E}_{t+1} - \mathbb{E}_{t}\right) \lim_{T \to \infty} s_{t+T}.$$

$$\mathsf{Risk \ Premium \ Innovation}$$

$$(11)$$

Test Proposition 1(c): Treasury Basis and Exchange Rate

• **Assumption:** Process of treasury basis x^{Treas} is AR(1):

$$\mathbf{x}_{t}^{\mathsf{Treas}} - \mu_{\mathsf{x}} = \phi_{\mathsf{a}} \left(\mathbf{x}_{t-1}^{\mathsf{Treas}} - \mu_{\mathsf{x}} \right) + \varepsilon_{t}$$
 (12)

• The innovation is therefore:

$$(\mathbb{E}_{t} - \mathbb{E}_{t-1}) s_{t} = -\frac{(\mathbb{E}_{t} - \mathbb{E}_{t-1}) x_{t}^{\mathsf{Treas}}}{(1 - \phi_{a}) (1 - \beta^{*})} + (\mathbb{E}_{t-1} - \mathbb{E}_{t-1}) \sum_{\tau=0}^{\infty} \left(y_{t+\tau}^{\$} - y_{t+\tau}^{*} \right) - (\mathbb{E}_{t} - \mathbb{E}_{t-1}) \sum_{\tau=0}^{\infty} r p_{t+\tau}^{*} + (\mathbb{E}_{t} - \mathbb{E}_{t-1}) \lim_{T \to \infty} s_{t+T}$$

$$(13)$$

Test Proposition 1(c): Treasury Basis and Exchange Rate

- Two step regression Approach:
 - Step 1: Calculate innovation on annualized treasury basis each quarter : $\bar{x}_t^{\mathsf{Treas}}$ (bar denote cross-sectional average of non-US G10 Countries)

$$\bar{x}_t^{\mathsf{Treas}} - \bar{x}_{t-1}^{\mathsf{Treas}} \ \mapsto^{\mathit{OLS}} \bar{x}_{t-1}^{\mathsf{Treas}}, \ (y_{t-1}^{\$} - \bar{y}_{t-1}^{*}). \quad \mathsf{Residual} \equiv \Delta \bar{x}_t^{\mathsf{Treas}} \quad (14)$$

• Step 2: Regress contemporary log exchange rate change $\Delta \bar{s}_t \equiv \bar{s}_t - \bar{s}_{t-1}$ on innovation on treasury basis : $\bar{x}_t^{\mathsf{Treas}}$

$$\Delta \bar{s}_t \equiv \bar{s}_t - \bar{s}_{t-1} \mapsto^{OLS} \Delta \bar{x}_t^{\mathsf{Treas}}, \mathsf{Controls} \left[\Delta (y^{\$} - \bar{y}^{*}), \mathsf{VIX} \right]$$
 (15)

- Interpretation:
 - Estimated beta of $\Delta \bar{\mathbf{x}}_t^{\mathsf{Treas}}$ on Step 2 should be $-\frac{1}{(1-\phi_s)(1-\beta^*)}$
 - ϕ_a can be estimated using AR(1) model \Rightarrow A estimation of β^*
 - ??: Can we get consistent estimation without control on $rp_{t+\tau}^*$?

Test Proposition 1(c): Treasury Basis and Exchange Rate

	1988Q1-2017Q2					1988Q1-2007Q4		2008Q1 - 2017Q2	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\Delta \overline{x}^{Treas}$	-10.20***		-10.23***		-9.81***	-8.48***		-14.93***	
	(2.09)		(1.98)		(1.73)	(2.62)		(3.20)	
$\Delta \bar{x}^{Libor}$		-2.85					4.63		-13.51***
		(3.09)					(4.22)		(4.05)
Lag $\Delta \overline{x}^{Treas}$			-6.92***		-6.47***				
J			(1.97)		(1.73)				
$\Delta(y^{\$} - \bar{y}^{*})$				3.76***	3.57***				
				(0.71)	(0.60)				
Observations	117	117	116	117	116	80	80	37	37
\mathbb{R}^2	0.17	0.01	0.25	0.20	0.43	0.12	0.02	0.38	0.24

Figure: Table III: $\Delta \bar{s}_t \equiv \bar{s}_t - \bar{s}_{t-1} \mapsto {}^{\sf OLS} \Delta \bar{x}_t^{\sf Treas}$, Controls

Test Proposition 1(c): 4 Main Findings

- Proposition 1(c) supported: 10 bp decreases in treasury basis associate with 1.02% simultaneously appreciate in USD
- Source of Convenience Yield: Given that $\hat{\phi}_a = (0.47)^4$, $\hat{\beta}^* = 0.90$ $\Rightarrow 90\%$ of convenience yield comes from dollar dominance and 10% comes from treasury (Why? Who invest in dollar?)
- Convenience Yield Estimation: Given that average treasury basis $\hat{\mu}_{x^{\text{Treas}}} = -22 \text{bp}$, convenience gap $\lambda_t^{\$,*} \lambda_t^{*,*} = -\frac{\hat{\mu}_{x^{\text{Treas}}}}{1-\hat{\beta}^*} = 2.2\%$. [Very large comparing to Krishnamurthy & Vissing-Jorgensen's (2012) 0.75% treasury-AAA corporate bond convenience yield gap.]
- ullet Solution to Disconnection Puzzle: High R^2 after adding $\Delta ar{x}^{\mathsf{Treas}}$.

<ロト < 回 > < 巨 > < 巨 > 、 巨 ・ りへ()

Test Proposition 1(c): Robustness on Identification

• Alternative Identification:

 Assume long-run exchange rate stationary, the authors use foreign investment records to show that:

$$\lambda^{\$,*} - \lambda^{*,*} = -\left(R^{\$,*} - R^{*,*}\right) = 4.66\% - 2.77\% = 1.89\%$$
 (16)

- **Term structure of Treasury basis**: Longer-term Treasury-G10 basis and use the first two principle component.
- **IV**: Unexpected monetary policy shock as IV and estimate that $\hat{\beta}^*_{IV} = 0.91$

Unexp $R_t^{\text{US}} \uparrow \Rightarrow \text{BS of US bank} \downarrow \Rightarrow \text{US Safe Deposit} \downarrow \Rightarrow \lambda_t^{\$,*} \uparrow$

Term structure of Treasury basis

	1991Q2-2017Q2				1991Q2-2007Q4		2008Q1-2017Q2		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\Delta PC1$	-9.29***		-8.19***		-5.13***	-7.92**	-4.39*	-7.18**	-3.47
$\Delta PC2$	(2.06)	7.69***	(2.13) $4.76*$		(1.75) 7.09***	(3.10) 3.27	(2.44) 5.91**	(3.51) 8.61	(3.19) 9.09*
$\Delta(y^{\$} - \bar{y}^{*})$		(2.70)	(2.65)	4.86*** (0.66)	(2.14) 4.60*** (0.60)	(3.25)	(2.52) 4.34*** (0.64)	(5.82)	(5.01) 10.57*** (2.94)
Observations \mathbb{R}^2	104 0.17	104 0.07	104 0.19	105 0.35	104 0.49	67 0.11	67 0.48	37 0.38	37 0.56

Figure: Table V: $\Delta \bar{s}_t \equiv \bar{s}_t - \bar{s}_{t-1} \mapsto {}^{OLS} \Delta PC1 \text{(level)}, \quad \Delta PC2 \text{(slope)}$

IV: Unexpected Monetary Policy Shock

	Panel A: First Stage	
	(1)	(2)
Monetary Policy Shock	-0.58** (0.25)	-0.58^{**} (0.25)
Observations \mathbb{R}^2	96 0.05	96 0.05
	Panel A: Second Stage	
	(1)	(2)
$\Delta \overline{x}^{Treas}$	-13.93*** (2.71)	-11.98^{***} (2.89)
$\Delta(y^{\$} - \bar{y}^{*})$	0.71 (0.55)	1.00* (0.57)
ΔVIX		0.08* (0.05)
Observations \mathbb{R}^2	96 0.25	96 0.27

Figure: Table VI: $\Delta \bar{s}_t \equiv \bar{s}_t - \bar{s}_{t-1} \mapsto$ IV \bar{x}_t^{Treas} (IV: Unexp R_t^{US}), Controls

Test Proposition 1(b): Predictability of Exchange Rates

• Proposition 1(3): Dollar expected to depreciated later if convenience yield increase $(x_t^{\mathsf{Treas}} \downarrow)$:

$$\mathbb{E}_{t}\left[\Delta s_{t+1}\right] \downarrow + \left(y_{t}^{\$} - y_{t}^{*}\right) = \frac{1}{1 - \beta^{*}} \downarrow x_{t}^{\mathsf{Treas}} + rp_{t}^{*} \tag{17}$$

• The author conduct the following regression:

$$rx_{t\to t+k} = \alpha^k + \beta_x^k \bar{x}_{t-1}^{\text{Treas}} + \beta_y^k \underbrace{\left(y_{t\to t+k}^{\$} - \bar{y}_{t\to t+k}^{*}\right)}_{\text{measurement of rp (??)}} + \epsilon_{t+k}^k \tag{18}$$

• Annualized log excess return is defined as: $rx_{t \to t+k} \equiv \frac{4}{k} \left(\Delta s_{t \to t+k} + y_{t \to t+k}^{\$} - \bar{y}_{t \to t+k}^{*} \right)$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Test Proposition 1(b): Predictability of Exchange Rates

	Panel A	A: 1988Q1–2017Q2	2	
	(1) Three Months	(2) One Year	(3) Two Years	(4) Three Years
$\text{Lag } \overline{x}^{Treas}$	-1.46 (5.89)	4.15 (6.42)	4.41 (3.19)	4.44* (2.30)
$y_{t\to t+k}^{\$} - \overline{y}_{t\to t+k}^{*}$	0.47 (0.92)	0.83 (1.04)	1.72 (1.13)	1.59 (1.02)
Observations \mathbb{R}^2	117 0.004	117 0.03	117 0.13	$115 \\ 0.14$

Figure: Table VIII: $rx_{t \to t+k} \mapsto {}^{\text{OLS}} \bar{x}_{t-1}^{\text{Treas}}, (y_{t \to t+k}^{\$} - \bar{y}_{t \to t+k}^{*})$

VAR Analysis

- Quarter VAR(1) is chose based on BIC:
 - Variable order: 1. Basis x^{Treas} , Real interest rate difference $i_{t-1} = y_{t-1}^{\$} \pi_t^{\text{US}} y_{t-1}^{*} + \pi_t^{*}$, Log of the real exchange rate q_t $\mathbf{z}_t = \mathbf{\Gamma}_0 + \mathbf{\Gamma}_1 \mathbf{z}_{t-1} + \mathbf{a}_t, \quad \mathbf{z}_t' = \begin{bmatrix} x_t & i_t & q_t \end{bmatrix}$ (19)
- Annual $0.2\% \uparrow$ in x^{Treas} (quarterly 0.1% in dynamic response figure):
 - ullet \Rightarrow 3% depreciate in USD next two quarter (consistent with Table III)
 - \Rightarrow Long USD $rx_t = q_t q_{t-1} + i_{t-1}$ suffers loss in two quaters, and higher than average over the next 15 to 18 quarters (consistent with Table VIII)

VAR Analysis

Figure: Dynamic Response to Treasury Basis Shocks

Discussion 1: How Much can We Trust the Estimation?

- $\lambda_t^{\$,*}-\lambda_t^{*,*}=-rac{\hat{\mu}_{\mathsf{X}}\,\mathsf{Treas}}{1-\hat{eta}^*}=2.2\%$ is very large (it shocks me)
- How much can we trust the estimation?
 - Robustness on estimation method: OLS and VAR:
 - Robustness on (key) assumption: log-normality, AR(1) basis, etc;
 - Robustness on interpretation: Is fight to USD really due to convenience ("client demand") but not default risk that can be hedged by CDS?

$$x_t^{\mathsf{Treas, CDS Adj}} \equiv \left(y_t^{\$} - cds_t^{\$}\right) + \left(f_t^1 - s_t\right) - \left(y_t^* - cds_t^*\right) \tag{20}$$

Discussion 1: CDS Adjusted Basis

Figure: CDS Adjusted Basis (Figure IA.3) and Unadjusted Basis (Figure 1)

Discussion 2: What Prevent Investment in Foreign?

- Why foreign, mutual fund, pension does not invest in foreign bond?
 - Author's answer: 90% USD dominance in global financial market
 - Does the convenience yield exist in other assets (i.e. corporate bond)?
 - The long-term treasury basis after GFC (Du & Schreger, 2022):
 - 1. Disconnect with LIBOR basis;
 - 2. Largely diminished and even become negative.

Discussion 2: What Prevent Investment in Foreign?

U.S. Treasury Securities Holders by Type

4□ > 4□ > 4 = > 4 = > = 90

Reference

- Avdjiev, S., Du, W., Koch, C., Shin, H. S. (2019). The dollar, bank leverage, and deviations from covered interest parity. American Economic Review: Insights, 1(2), 193-208.
- De Grauwe, P., Rovira Kaltwasser, P. (2012). The exchange rate in a behavioral finance framework. Handbook of exchange rates, 111-132.
- Du, W., Tepper, A., Verdelhan, A. (2018a). Deviations from covered interest rate parity. The Journal of Finance, 73(3), 915-957.
- Du, W., Im, J., Schreger, J. (2018b). The us treasury premium. Journal of International Economics, 112, 167-181.
- Du, W., Schreger, J. (2022). Cip deviations, the dollar, and frictions in international capital markets. Handbook of International Economics, V6, 147-197.
- Engel, C., Wu, S. P. Y. (2018). Liquidity and exchange rates: An empirical investigation (No. w25397). National Bureau of Economic Research.
- Fang, X., Liu, Y. (2021). Volatility, intermediaries, and exchange rates. Journal of Financial Economics, 141(1), 217-233.
- Ivashina, V., Scharfstein, D. S., Stein, J. C. (2015). Dollar funding and the lending behavior of global banks. The Quarterly Journal of Economics, 130(3), 1241-1281.
- Jiang, Z., Krishnamurthy, A., Lustig, H. (2021). Foreign safe asset demand and the dollar exchange rate. The Journal
 of Finance, 76(3), 1049-1089.
- Krishnamurthy, A., Vissing-Jorgensen, A. (2011). The effects of quantitative easing on interest rates: channels and implications for policy (No. w17555). National Bureau of Economic Research.
- Krishnamurthy, A., Vissing-Jorgensen, A. (2012). The aggregate demand for treasury debt. Journal of Political Economy, 120(2), 233-267.
- Meese, R. A., Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample?. Journal
 of international economics. 14(1-2), 3-24.

Thanks for listening! Wish You Happy New Year!