WHAT WE CLAIM IS:

1. A yellow dye-forming coupler represented by
formula (I):

5

10

15

formula (I)

$$Q \bigvee_{N} \begin{matrix} R_1 & O & (R_2)_m \\ C & H & S - R_4 \end{matrix}$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $-N=C-N(R_1)-$; R_1 and R_2 each independently represents a substituent; R_4 represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 s may be the same or different, and the R_2 s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent; and when R_4 represents a primary alkyl group, R_1 represents $-(CH_2)_3O-R_{101}$ in which R_{101} is an alkyl group having 4 to 8 carbon atoms.

2. The yellow dye-forming coupler as claimed in claim 1, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)

5

10

15

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $-N=C-N(R_1)-$; R_1 and R_2 each independently represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 s may be the same or different, and the R_2 s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

3. The yellow dye-forming coupler as claimed in claim 1, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IB):

formula (IB)

5

$$Q_1$$
 N Q_2 N Q_1 N Q_2 Q_3 Q_4 Q_4 Q_5 Q_5

wherein Q₁ represents a group of nonmetallic atoms

that form a 5- to 7-membered ring in combination with the

-N=C-N((CH₂)₃O-R₁₀₁)-; R₁₀₁ represents an alkyl group

having 4 to 8 carbon atoms; R₂ represents a substituent;

R₄₂ represents a primary alkyl group; m represents an

integer of 0 to 4; when m is 2 or more, the multiple R₂s

may be the same or different, and the R₂s may bond each

other to form a ring; and X represents a hydrogen atom, or

a group capable of being split-off upon a coupling

reaction with an oxidized product of a developing agent.

4. A silver halide color photographic lightsensitive material comprising at least one yellow dyeforming coupler represented by formula (I) in at least one layer provided on a support:

formula (I)

5

wherein Q represents a group of nonmetallic atoms

10 that form a 5- to 7-membered ring in combination with the $-N=C-N(R_1)-;$ R_1 and R_2 each independently represents a

substituent; R_4 represents an alkyl group; m represents an

integer of 0 to 4; when m is 2 or more, the multiple R_2 s

may be the same or different, and the R_2 s may bond each

other to form a ring; and X represents a hydrogen atom, or

a group capable of being split-off upon a coupling

reaction with an oxidized product of a developing agent;

and when R_4 represents a primary alkyl group, R_1 represents $-(CH_2)_3O-R_{101}$ in which R_{101} is an alkyl group

having 4 to 8 carbon atoms.

5. The silver halide color photographic lightsensitive material as claimed in claim 4, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)

$$Q \bigvee_{N} \begin{matrix} R_1 & O \\ \vdots & \vdots \\ C - N \end{matrix} \begin{matrix} (R_2)_m \\ \vdots \\ S - R_{41} \end{matrix}$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R₁)-; R₁ and R₂ each independently represents a substituent; R₄₁ represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂s may be the same or different, and the R₂s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

- 6. The silver halide color photographic light-sensitive material as claimed in claim 5, wherein Q in formula (IA) is a group represented by $-C(-R11)=C(-R12)-SO_2-$ or $-C(-R11)=C(-R12)-CO_2-$, in which R11 and R12 are groups that bond with each other to form a 5- to 7-membered ring together with $-C=C_2-$, or they each independently represents a hydrogen atom or a substituent.
- 7. The silver halide color photographic lightsensitive material as claimed in claim 5, wherein the
 yellow dye-forming coupler represented by formula (IA) is
 a yellow dye-forming coupler represented by formula (IIA):

formula (IIA)

$$(R_3)_n$$
 $(R_2)_m$
 $(R_3)_n$
 $(R_2)_m$
 $(R_3)_m$

15

wherein R_1 and R_2 each independently represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or

more, the multiple R_2 s may be the same or different, and the R_2 s may bond each other to form a ring; R_3 represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R_3 s may be the same or different, and the R_3 s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

8. The silver halide color photographic lightsensitive material as claimed in claim 4, wherein the
yellow dye-forming coupler represented by formula (I) is a
yellow dye-forming coupler represented by formula (IB):

formula (IB)

15

$$Q_1$$
 N Q_2 N Q_2 N Q_3 Q_4 Q_2 Q_3 Q_4 Q_4 Q_5 Q_5

wherein ${\bf Q}_1$ represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the

-N=C-N((CH₂)₃O-R₁₀₁)-; R_{101} represents an alkyl group having 4 to 8 carbon atoms; R_2 represents a substituent; R_{42} represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 s may be the same or different, and the R_2 s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

5

- 9. The silver halide color photographic lightsensitive material as claimed in claim 8, wherein Q₁ in
 formula (IB) is a group represented by -C(-R11)=C(-R12)SO₂- or -C(-R11)=C(-R12)-CO-, in which R11 and R12 are
 groups that bond with each other to form a 5- to 7membered ring together with -C=C-, or they each
 independently represent a hydrogen atom or a substituent.
- 10. The silver halide color photographic lightsensitive material as claimed in claim 8, wherein the
 20 yellow dye-forming coupler represented by formula (IB) is
 a yellow dye-forming coupler represented by formula (IIB):

formula (IIB)

$$(R_3)n_{11}$$
 $(R_3)n_{11}$
 $(R_3)n_{11}$
 $(R_2)m$
 $(R_3)n_{11}$
 (R_3)

wherein R₁₀₁ represents an alkyl group having 4 to 8 carbon atoms; R₂ represents a substituent; R₄₂ represents

5 a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂s may be the same or different, and the R₂s may bond each other to form a ring; R₃ represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R₃s may be the

10 same or different, and the R₃s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

- 11. The silver halide color photographic light-sensitive material as claimed in claim 8, wherein R_2 in formula (IB) represents a t-butyl group.
 - 12. The silver halide color photographic light-

sensitive material as claimed in claim 4, wherein the amount of the yellow dye-forming coupler is 1×10^{-3} mole to 1 mole per mol of silver halide.

- 5 13. The silver halide color photographic lightsensitive material as claimed in claim 4, wherein an
 emulsion of the layer containing the yellow dye-forming
 coupler represented by formula (I) is a silver halide
 emulsion having silver chloride content of 90 mol% or more.
 - 14. The silver halide color photographic lightsensitive material as claimed in claim 13, wherein the silver halide emulsion is doped with an iridium complex.

10

15. The silver halide color photographic lightsensitive material as claimed in claim 4, wherein a
hydrophilic colloid layer is provided between the support
and a color-forming silver halide emulsion layer nearest
to the support.