1. Независимые события

Определение 1. Два случайных события называют **независимыми**, если наступление одного из них не изменит вероятности наступления другого. В противном случае события называют **зависимыми**.

Теорема 1. Вероятность совместного появления двух независимых событий (вероятность произведения) равна произведению вероятностей¹.

Следствие. Если A_1,A_2,A_3,\cdots,A_n — попарно независимые события, то вероятность появления хотя бы одного события равна $P(A)=1-P(\overline{A_1})\cdot P(\overline{A_2})\cdot P(\overline{A_3})\cdot \cdots \cdot P(\overline{A_n})$ \square

Задача 1. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение.

$$P(A \cdot B) = P(A) \cdot P(B) = 0,52 \cdot 0,3 = 0,156$$

Задача 2. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Решение.

$$P(A) = 0.8^3 \cdot (1 - 0.8)^2 \approx 0.02$$

2. Независимые события

Определение 2. Условной вероятностью $P_A(B)$ называют вероятность события B, вычисленную в предположении, что событие A уже произошло.

¹Теорема обобщается на любое число попарно независимых событий

Теорема 2. Вероятность совместного появления двух **зависимых** событий (вероятность произведения) равна произведению вероятности одного из них на условную вероятность второго, вычисленную в предположении, что первое событие уже произошло.

$$P(A \cdot B) = P(A) \cdot P_A(B) = P(B) \cdot P_B(A)$$

Задача 3. В урне 6 шаров: 2 белых и 4 черных. Без возвращения на удачу выбирают два шара. Найдите вероятность того, что они оба белые.

Решение.

$$\frac{2}{6} \cdot \frac{1}{5} = \frac{1}{15} \approx 0,07$$