問題:二項分布の期待値と分散を求めよ:10年後の同窓会までに70歳男性仲良し3人組は何人死亡するか?

二項分布(全3名, 死亡率0.3)

「解法1]表の値を元にして定義通りに計算:

$$E[x] = p(0) 0 + p(1) 1 + p(2) 2 + p(3) 3$$

= (0.343, +0.441, +0.189, +0.027) \cdot (0, 1, 2, 3)
= 0.9

$$V[x] = E[(x - E[x])^{2}]$$

$$= p(0) (0 - 0.9)^{2} + p(1)(1 - 0.9)^{2}$$

$$+ p(2)(2 - 0.9)^{2} + p(3)(3 - 0.9)^{2}$$

$$= 0.63$$

死亡数 x	0	1	2	3
確率 p	0.343	0.441	0.189	0.027

$$= {}_{3}C_{0}(0.7)^{0}(0.3)^{3}$$

問題: 二項分布の期待値と分散を求めよ: 10年後の同窓会までに70歳男性仲良し3人組は何人死亡するか?

= 0.63

二項分布(全3名, 死亡率0.3)

死亡数 x	0	1	2	3
確率 p	0.343	0.441	0.189	0.027

「解法2] コイン投げ3回とみなして計算:

$$x = y_1 + y_2 + y_3$$
 (ここでi番目の人が死亡したら $y_i = 1$)

$$E[x] = E[y_1 + y_2 + y_3]$$

= $E[y_1] + E[y_2] + E[y_3]$: 内積なの
= 3×0.3 で
= 0.9

$$V[x] = E[(x - E[x])^{2}]$$

$$= E[(y_{1} + y_{2} + y_{3} - E[y_{1} + y_{2} + y_{3}])^{2}]$$

$$= E[(y_{1} - E[y_{1}] + y_{2} - E[y_{2}] + y_{3} - E[y_{3}])^{2}]$$

$$= E[(y_{1} - E[y_{1}])^{2}] + E[(y_{2} - E[y_{2}])^{2}]$$

$$+ E[(y_{3} - E[y_{3}])^{2}] + E[2(y_{1} - E[y_{1}])(y_{2} - E[y_{2}])] + .$$

$$= V[y_{1}] + V[y_{2}] + V[y_{3}]_{(\Delta \mp L)} = 0 \quad \exists x \in \mathbb{R}^{1} \to \mathbb{R$$

問題:二項分布の期待値と分散を求めよ:10年後の同窓会までに70歳男性仲良し3人組は何人死亡するか?

二項分布(全3名, 死亡率0.3)

死亡数 x	0	1	2	3
確率 p	0.343	0.441	0.189	0.027

「解法2] 補足:ベルヌーイ分布の期待値と分散

$$x = y_1 + y_2 + y_3$$
 (ここでi番目の人が死亡したら $y_i = 1$) $E[y] = 1 \times 0.3 + 0 \times 0.7$ $= 0.3$

$$V[y] = E[(y - E[y])^2]$$

 $= E[y^2 - 2yE[y] + E[y]^2]$
 $= E[y^2] - 2E[yE[y]] + E[E[y]^2]$
 $= E[y^2] - 2E[y]E[y] + E[y]^2$
 $= E[y^2] - E[y]^2$ (公式)
 $= E[y] - E[y]^2$: 二値変数では $y^2 = y$
 $= E[y](1 - E[y])$
 $= 0.3 \times 0.7$

問題:二項分布の期待値と分散を求めよ:10年後の同窓会までに70歳男性仲良し3人組は何人死亡するか?

二項分布(全3名, 死亡率0.3)

死亡数 x	0	1	2	3
確率 p	0.343	0.441	0.189	0.027

[解法3] 次で定義するモーメント母関数 $\hat{f}(\xi)$ を利用: