ÜBUNGSBLATT 2

Aufgabe 1. Sei $E \to X$ ein Vektorbündel vom Rang r auf einer algebraischen Varietät X welches lokal trivial auf der offenen Überdeckung $X = \bigcup_i U_i$ ist und durch die Kozykel

$$\psi_{ij}: U_i \cap U_j \longrightarrow \mathrm{GL}(r,\mathbb{C})$$

gegeben ist, d.h. diese erfüllen die Eigenschaft

$$\psi_{ij}(x) = \psi_{ji}(x)^{-1} \text{ und } \psi_{ij}(x)\psi_{jk}(x) = \psi_{ik}(x).$$

für alle $x \in U_i \cap U_j$ bzw. $x \in U_i \cap U_j \cap U_k$. Man zeige folgendes.

- (i) Die Kozykel des dualen Vektorbündels E^{\vee} sind durch $\left(\psi_{ij}^{t}\right)^{-1}$ gegeben. (ii) Die Kozykel der Determinante $\det(E) = \bigwedge^{r} E$ sind durch $\det(\psi_{ij})$ gegeben.

Aufgabe 2. Auf $\mathbb{P}^n \times \mathbb{C}^{n+1}$ definieren wir

$$\mathcal{O}(-1) := \{(l, z) \in \mathbb{P}^n \times \mathbb{C}^{n+1} \mid z \in l\}$$

Man versehe diese Menge mit der Struktur eines Geradenbündels $\pi: \mathcal{O}(-1) \to \mathbb{P}^n$ indem man eine Projektion π und stetige Trivialisierungen definiert. Man zeige anhand von Kozykeln, dass diese Trivialisierungen Koordinaten auf $\mathcal{O}(-1)$ definieren, d.h. man zeige dass die Kozykel reguläre Abbildungen sind.

Aufgabe 3. Sei X eine glatte algebraische Varietät, $Z \subset X$ eine abgeschlossene nicht notwendigerweise irreduzible Hyperfläche und $U := X \setminus Z$ die assoziierte offene Menge. Man zeige, dass eine kanonische exakte Sequenz

$$\mathbb{Z} \longrightarrow \operatorname{Cl}(X) \longrightarrow \operatorname{Cl}(U) \longrightarrow 0$$

existiert und folgere $Cl(\mathbb{P}^n) \cong \mathbb{Z}$.

Aufgabe 4. Sei X die glatte projektive Fläche gegeben durch $z_0z_1-z_2z_3=0$ im \mathbb{P}^3 und sei V die offene Menge in X definiert durch $z_3 \neq 0$. Man zeige:

- (i) Es ist $V \cong \mathbb{C}^2$ (und damit Pic(V) = 0).
- (ii) Das Komplement $X \setminus V = L_1 \cup L_2$ besteht aus zwei projektiven Geraden $L_1 \cong \mathbb{P}^1$ und $L_2 \cong \mathbb{P}^1$.
- (iii) Mit Aufgabe 3: Es ist $Pic(X) \cong \mathbb{Z}^2$ und die Erzeuger sind die zwei Geraden. Hinweis: Es darf benutzt werden, dass die L_i nicht linear äquivalent sind und $Pic(\mathbb{C} \times \mathbb{C})$ $M) \cong \operatorname{Pic}(M)$ für jede glatte Varietät M.