Projet math

D. Lienhardt

Novembre 2017 Version α

Pendule et chariot

6/8

Projet transversal

- modélisation : pendule pesant composé et repère non galiléen
- Résolution numérique d'équations différentielles non linéaires
 - Intégration numérique, Euler et RK4
 - convergence numérique (méthode de Newton-Raphson)
- Interpolation et extrapolation numérique
- production de code en langage C

7/8

Projet

- Programme de simulation en C du système chariot/pendule. Simuler c'est-à-dire Calculer l'évolution temporelle, du déplacement longitudinal du chariot (x) en cm, et de l'angle (theta) en degrés du pendule :
 - à partir d'une position statique initiale ($x = x_0, \dot{x} = 0$) pour un angle initial du pendule θ_0
 - Résultat sous forme de fichier (.csv) une ligne par unité de temps (pas de calcul) et trois colonnes par ligne temps, position (x) et angle (θ) pendule (séparateur de colonne \t)
- localisation, attention à bien respecter la localisation FRANCE: setlocale(LC NUMERIC."fr FR.UTF-8"):
- Intégration numérique minimale obligatoire : Euler
- Intégration souhaitée... (RK4)
- Un fichier unique pendule_xx.c où xx est le numéro individuel du groupe (01 à 43)

8 / 8

Feuille de route

Trois séances de quatre heures au cours desquelles, en plus du travail de fond sur le sujet principal, les points suivants seront abordés :

- Séance 1 Représentation des nombres (IEEE754), arrondis et subnormal (ou denormal) sur un exemple simple de librairie de calcul matriciel et modélisation du système chariot-pendule
- Séance 1 Intégration numérique sur un exemple simple (linéaire) du premier ordre (Euler et RK4), suite modélisation du système chariot-pendule
- Séance 3 Tests, corrections finales et remise du projet (conformité aux valeurs données)

Un compte-rendu par séance (quatre pages A4 manuscrites au maximum)