$12n_{0638} \ (K12n_{0638})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{14} - 3u^{13} + \dots + 2b - 2, \ 7u^{14} + 29u^{13} + \dots + 4a + 24, \ u^{15} + 5u^{14} + \dots + 18u + 4 \rangle \\ I_2^u &= \langle u^{10} + u^9 - u^8 + 4u^6 + 3u^5 - 2u^4 + 3u^2 + b + 2u, \ u^{10} + 3u^6 + u^5 + u^4 - u^3 + 2u^2 + a + 2u + 1, \\ u^{11} + u^{10} - u^9 - u^8 + 4u^7 + 4u^6 - 2u^5 - 3u^4 + 3u^3 + 4u^2 - 1 \rangle \\ I_3^u &= \langle b + 2, \ a + 1, \ u - 1 \rangle \\ I_4^u &= \langle a^3 + 2a^2 + 3b + a + 5, \ a^4 + a^3 + 2a^2 + 4a + 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 31 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{14} - 3u^{13} + \dots + 2b - 2, 7u^{14} + 29u^{13} + \dots + 4a + 24, u^{15} + 5u^{14} + \dots + 18u + 4 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{7}{4}u^{14} - \frac{29}{4}u^{13} + \dots - \frac{105}{4}u - 6 \\ \frac{1}{2}u^{14} + \frac{3}{2}u^{13} + \dots + \frac{11}{2}u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{14} - 2u^{13} + \dots - \frac{9}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{14} + \frac{3}{2}u^{13} + \dots + 4u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{14} - \frac{7}{2}u^{13} + \dots - 5u - \frac{1}{2} \\ \frac{1}{2}u^{14} + \frac{3}{2}u^{13} + \dots + 4u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ \frac{1}{2}u^{14} + \frac{3}{2}u^{13} + \dots + 4u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{5}{4}u^{14} + \frac{23}{4}u^{13} + \dots + \frac{79}{4}u + 6 \\ -\frac{1}{2}u^{14} - \frac{3}{2}u^{13} + \dots - \frac{9}{2}u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{14} - 2u^{13} + \dots - \frac{9}{2}u - \frac{3}{2} \\ \frac{1}{2}u^{14} + \frac{3}{2}u^{13} + \dots + 3u^{2} + \frac{3}{2}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-9u^{14} - 39u^{13} - 62u^{12} + 12u^{11} + 189u^{10} + 271u^9 + 58u^8 - 259u^7 - 277u^6 + 33u^5 + 223u^4 + 70u^3 - 138u^2 - 142u - 54$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{15} + 5u^{14} + \dots + 108u + 16$
c_2, c_7	$u^{15} + 5u^{14} + \dots + 18u + 4$
<i>c</i> 3	$u^{15} - 7u^{14} + \dots - 7974u + 2196$
c_4, c_6, c_{10}	$u^{15} - 3u^{14} + \dots + 2u + 1$
c_5, c_9, c_{12}	$u^{15} + 2u^{14} + \dots - 3u - 1$
c_{11}	$u^{15} + 8u^{14} + \dots + 26u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{15} + 11y^{14} + \dots + 4464y - 256$
c_2, c_7	$y^{15} - 5y^{14} + \dots + 108y - 16$
<i>c</i> ₃	$y^{15} - 89y^{14} + \dots + 102923820y - 4822416$
c_4, c_6, c_{10}	$y^{15} - 41y^{14} + \dots + 36y - 1$
c_5, c_9, c_{12}	$y^{15} - 28y^{14} + \dots - 11y - 1$
c_{11}	$y^{15} - 38y^{14} + \dots + 200y - 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.606388 + 0.721644I		
a = 1.39179 + 0.62558I	-0.178243 - 0.909766I	-10.00645 + 2.94587I
b = -0.960938 - 0.688802I		
u = -0.606388 - 0.721644I		
a = 1.39179 - 0.62558I	-0.178243 + 0.909766I	-10.00645 - 2.94587I
b = -0.960938 + 0.688802I		
u = 1.08047		
a = -0.675053	-5.54081	-14.3560
b = -1.51745		
u = 0.746431 + 0.514902I		
a = 0.082980 - 0.242831I	1.19505 - 1.99555I	-7.66777 + 5.97030I
b = 0.397865 - 0.145660I		
u = 0.746431 - 0.514902I		
a = 0.082980 + 0.242831I	1.19505 + 1.99555I	-7.66777 - 5.97030I
b = 0.397865 + 0.145660I		
u = -1.021710 + 0.661454I		
a = -0.06650 - 1.96813I	-1.39940 + 6.23344I	-10.94430 - 8.75401I
b = -1.33073 + 0.86334I		
u = -1.021710 - 0.661454I		
a = -0.06650 + 1.96813I	-1.39940 - 6.23344I	-10.94430 + 8.75401I
b = -1.33073 - 0.86334I		
u = -0.518806 + 1.107840I		
a = -1.210170 - 0.046109I	-10.31580 - 3.71425I	-10.43409 + 0.73580I
b = 1.78546 + 0.11853I		
u = -0.518806 - 1.107840I		
a = -1.210170 + 0.046109I	-10.31580 + 3.71425I	-10.43409 - 0.73580I
b = 1.78546 - 0.11853I		
u = -0.931933 + 0.895825I		
a = -0.466639 + 0.398594I	9.82516 + 3.30608I	-14.5483 - 3.5573I
b = 0.712541 + 0.015963I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.931933 - 0.895825I		
a = -0.466639 - 0.398594I	9.82516 - 3.30608I	-14.5483 + 3.5573I
b = 0.712541 - 0.015963I		
u = -1.21080 + 0.76031I		
a = -0.31276 + 1.60256I	-12.5061 + 10.4262I	-11.73103 - 4.47783I
b = 1.83309 - 0.17932I		
u = -1.21080 - 0.76031I		
a = -0.31276 - 1.60256I	-12.5061 - 10.4262I	-11.73103 + 4.47783I
b = 1.83309 + 0.17932I		
u = 1.46326		
a = 0.512604	-18.0985	-13.9500
b = 1.84763		
u = -0.457334		
a = 0.825053	-0.594889	-17.0300
b = -0.204761		

II.
$$I_2^u = \langle u^{10} + u^9 - u^8 + 4u^6 + 3u^5 - 2u^4 + 3u^2 + b + 2u, \ u^{10} + 3u^6 + u^5 + u^4 - u^3 + 2u^2 + a + 2u + 1, \ u^{11} + u^{10} + \dots + 4u^2 - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{10} - 3u^{6} - u^{5} - u^{4} + u^{3} - 2u^{2} - 2u - 1 \\ -u^{10} - u^{9} + u^{8} - 4u^{6} - 3u^{5} + 2u^{4} - 3u^{2} - 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{10} + 2u^{8} - 5u^{6} + 6u^{4} - 6u^{2} - u + 4 \\ u^{10} + u^{9} - u^{8} - u^{7} + 4u^{6} + 3u^{5} - 2u^{4} - 2u^{3} + 3u^{2} + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{10} - u^{9} + 3u^{8} + u^{7} - 9u^{6} - 3u^{5} + 8u^{4} + 2u^{3} - 9u^{2} - 3u + 4 \\ u^{10} + u^{9} - u^{8} - u^{7} + 4u^{6} + 3u^{5} - 2u^{4} - 2u^{3} + 3u^{2} + 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{10} - u^{9} + u^{8} - 7u^{6} - 3u^{5} + u^{4} + u^{3} - 5u^{2} - 3u \\ -u^{10} - u^{9} + u^{8} + u^{7} - 4u^{6} - 4u^{5} + 2u^{4} + 2u^{3} - 3u^{2} - 3u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{10} + 2u^{8} - 5u^{6} + 6u^{4} + u^{3} - 5u^{2} - u + 3 \\ u^{10} + u^{9} - u^{8} - u^{7} + 4u^{6} + 4u^{5} - 2u^{4} - 3u^{3} + 2u^{2} + 3u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^{10} + 2u^7 + 8u^6 2u^5 + u^3 + 10u^2 + u 10$

Crossings	u-Polynomials at each crossing
c_1	$u^{11} - 3u^{10} + \dots + 8u - 1$
c_2	$u^{11} - u^{10} - u^9 + u^8 + 4u^7 - 4u^6 - 2u^5 + 3u^4 + 3u^3 - 4u^2 + 1$
<i>c</i> ₃	$u^{11} - u^{10} + 7u^9 + u^8 - 2u^7 + 5u^6 + 39u^5 - 31u^4 + 12u^3 - u^2 - 2u + 1$
c_4, c_{10}	$u^{11} + 2u^{10} + 2u^9 + 2u^8 - u^7 - 3u^6 - u^5 + 2u^3 + 3u^2 + u + 1$
c_5, c_9	$u^{11} + u^{10} + 3u^9 + 2u^8 - u^6 - 3u^5 - u^4 + 2u^3 + 2u^2 + 2u + 1$
<i>c</i> ₆	$u^{11} - 2u^{10} + 2u^9 - 2u^8 - u^7 + 3u^6 - u^5 + 2u^3 - 3u^2 + u - 1$
c ₇	$u^{11} + u^{10} - u^9 - u^8 + 4u^7 + 4u^6 - 2u^5 - 3u^4 + 3u^3 + 4u^2 - 1$
c_8	$u^{11} + 3u^{10} + \dots + 8u + 1$
c_{11}	$u^{11} - 11u^{10} + \dots - 24u + 9$
c_{12}	$u^{11} - u^{10} + 3u^9 - 2u^8 + u^6 - 3u^5 + u^4 + 2u^3 - 2u^2 + 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{11} + 13y^{10} + \dots + 20y - 1$
c_2, c_7	$y^{11} - 3y^{10} + \dots + 8y - 1$
c_3	$y^{11} + 13y^{10} + \dots + 6y - 1$
c_4, c_6, c_{10}	$y^{11} - 6y^9 + 2y^8 + 13y^7 - 9y^6 - 15y^5 + 8y^4 + 8y^3 - 5y^2 - 5y - 1$
c_5, c_9, c_{12}	$y^{11} + 5y^{10} + 5y^9 - 8y^8 - 8y^7 + 15y^6 + 9y^5 - 13y^4 - 2y^3 + 6y^2 - 1$
c_{11}	$y^{11} - 23y^{10} + \dots - 324y - 81$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.859595 + 0.621070I		
a = 0.264591 - 0.511619I	5.06364 - 2.43633I	-9.98510 + 2.91167I
b = 1.184910 - 0.173635I		
u = 0.859595 - 0.621070I		
a = 0.264591 + 0.511619I	5.06364 + 2.43633I	-9.98510 - 2.91167I
b = 1.184910 + 0.173635I		
u = -0.715758 + 0.795244I		
a = 1.83523 - 0.23082I	-1.149260 + 0.247570I	-13.50982 - 0.73342I
b = -1.61321 - 0.43685I		
u = -0.715758 - 0.795244I		
a = 1.83523 + 0.23082I	-1.149260 - 0.247570I	-13.50982 + 0.73342I
b = -1.61321 + 0.43685I		
u = -0.791184 + 0.262463I		
a = -0.50598 + 1.77609I	3.12519 + 1.08690I	-6.47529 - 6.28285I
b = 0.389923 - 0.338442I		
u = -0.791184 - 0.262463I		
a = -0.50598 - 1.77609I	3.12519 - 1.08690I	-6.47529 + 6.28285I
b = 0.389923 + 0.338442I		
u = -1.006190 + 0.705559I		
a = 0.60734 - 2.06814I	-2.06494 + 5.42980I	-15.7370 - 3.3620I
b = -1.77582 + 0.58284I		
u = -1.006190 - 0.705559I		
a = 0.60734 + 2.06814I	-2.06494 - 5.42980I	-15.7370 + 3.3620I
b = -1.77582 - 0.58284I		
u = 0.925242 + 0.874685I		
a = -0.038280 + 0.149800I	10.30640 - 3.24156I	2.36799 + 1.55443I
b = -0.412394 + 0.056790I		
u = 0.925242 - 0.874685I		
a = -0.038280 - 0.149800I	10.30640 + 3.24156I	2.36799 - 1.55443I
b = -0.412394 - 0.056790I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.456590		
a = -2.32582	-4.24309	-7.32160
b = -1.54682		

III.
$$I_3^u = \langle b+2, a+1, u-1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \\ c_7, c_9, c_{10}$	u-1
c_2, c_3, c_6 c_8, c_{12}	u+1
c_{11}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{12}	y-1
c_{11}	y

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-6.57974	-24.0000
b = -2.00000		

IV.
$$I_4^u = \langle a^3 + 2a^2 + 3b + a + 5, \ a^4 + a^3 + 2a^2 + 4a + 1, \ u - 1 \rangle$$

a) Art colorings
$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -\frac{1}{3}a^3 - \frac{2}{3}a^2 - \frac{1}{3}a - \frac{5}{3} \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}a^3 - \frac{1}{3}a^2 + \frac{1}{3}a + \frac{2}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{3}a^3 - \frac{2}{3}a^2 - \frac{1}{3}a - \frac{2}{3} \\ \frac{1}{3}a^3 - \frac{1}{3}a^2 + \frac{1}{3}a + \frac{2}{3} \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} \frac{1}{3}a^3 + \frac{2}{3}a^2 + \frac{7}{3}a + \frac{5}{3} \\ a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{3}a^3 + \frac{2}{3}a^2 + \frac{1}{3}a + \frac{2}{3} \\ -\frac{2}{3}a^3 - \frac{1}{3}a^2 - \frac{2}{3}a - \frac{4}{3} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -14

Crossings	u-Polynomials at each crossing
c_1, c_8	$(u+1)^4$
c_2, c_3, c_7	$(u-1)^4$
c_4, c_6, c_{10}	$u^4 + u^3 - 2u - 1$
c_5, c_9, c_{12}	$u^4 - u^3 + 2u^2 - 4u + 1$
c_{11}	$(u^2 - u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	$(y-1)^4$
c_4, c_6, c_{10}	$y^4 - y^3 + 2y^2 - 4y + 1$
c_5, c_9, c_{12}	$y^4 + 3y^3 - 2y^2 - 12y + 1$
c_{11}	$(y^2 - 3y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.33107	-5.59278	-14.0000
b = -1.61803		
u = 1.00000		
a = 0.30902 + 1.58825I	2.30291	-14.0000
b = 0.618034		
u = 1.00000		
a = 0.30902 - 1.58825I	2.30291	-14.0000
b = 0.618034		
u = 1.00000		
a = -0.286961	-5.59278	-14.0000
b = -1.61803		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)(u+1)^4(u^{11}-3u^{10}+\cdots+8u-1)(u^{15}+5u^{14}+\cdots+108u+16) $
c_2	$(u-1)^{4}(u+1)$ $\cdot (u^{11} - u^{10} - u^{9} + u^{8} + 4u^{7} - 4u^{6} - 2u^{5} + 3u^{4} + 3u^{3} - 4u^{2} + 1)$ $\cdot (u^{15} + 5u^{14} + \dots + 18u + 4)$
c_3	$(u-1)^{4}(u+1)$ $\cdot (u^{11} - u^{10} + 7u^{9} + u^{8} - 2u^{7} + 5u^{6} + 39u^{5} - 31u^{4} + 12u^{3} - u^{2} - 2u + 1)$ $\cdot (u^{15} - 7u^{14} + \dots - 7974u + 2196)$
c_4, c_{10}	$(u-1)(u^{4} + u^{3} - 2u - 1)$ $\cdot (u^{11} + 2u^{10} + 2u^{9} + 2u^{8} - u^{7} - 3u^{6} - u^{5} + 2u^{3} + 3u^{2} + u + 1)$ $\cdot (u^{15} - 3u^{14} + \dots + 2u + 1)$
c_5, c_9	$(u-1)(u^4 - u^3 + 2u^2 - 4u + 1)$ $\cdot (u^{11} + u^{10} + 3u^9 + 2u^8 - u^6 - 3u^5 - u^4 + 2u^3 + 2u^2 + 2u + 1)$ $\cdot (u^{15} + 2u^{14} + \dots - 3u - 1)$
c_6	$(u+1)(u^4 + u^3 - 2u - 1)$ $\cdot (u^{11} - 2u^{10} + 2u^9 - 2u^8 - u^7 + 3u^6 - u^5 + 2u^3 - 3u^2 + u - 1)$ $\cdot (u^{15} - 3u^{14} + \dots + 2u + 1)$
<i>C</i> ₇	$(u-1)^{5}(u^{11} + u^{10} - u^{9} - u^{8} + 4u^{7} + 4u^{6} - 2u^{5} - 3u^{4} + 3u^{3} + 4u^{2} - 1)$ $\cdot (u^{15} + 5u^{14} + \dots + 18u + 4)$
<i>c</i> ₈	$((u+1)^5)(u^{11}+3u^{10}+\cdots+8u+1)(u^{15}+5u^{14}+\cdots+108u+16)$
c_{11}	$u(u^{2} - u - 1)^{2}(u^{11} - 11u^{10} + \dots - 24u + 9)$ $\cdot (u^{15} + 8u^{14} + \dots + 26u + 2)$
C ₁₂	$(u+1)(u^{4} - u^{3} + 2u^{2} - 4u + 1)$ $\cdot (u^{11} - u^{10} + 3u^{9} - 2u^{8} + u^{6} - 3u^{5} + u^{4} + 2u^{3} - 2u^{2} + 2u - 1)$ $\cdot (u^{15} + 2u^{14} + \dots - 3u - 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$((y-1)^5)(y^{11} + 13y^{10} + \dots + 20y - 1)$ $\cdot (y^{15} + 11y^{14} + \dots + 4464y - 256)$
c_2,c_7	$((y-1)^5)(y^{11}-3y^{10}+\cdots+8y-1)(y^{15}-5y^{14}+\cdots+108y-16)$
c_3	$((y-1)^5)(y^{11} + 13y^{10} + \dots + 6y - 1)$ $\cdot (y^{15} - 89y^{14} + \dots + 102923820y - 4822416)$
c_4, c_6, c_{10}	$(y-1)(y^4 - y^3 + 2y^2 - 4y + 1)$ $\cdot (y^{11} - 6y^9 + 2y^8 + 13y^7 - 9y^6 - 15y^5 + 8y^4 + 8y^3 - 5y^2 - 5y - 1)$ $\cdot (y^{15} - 41y^{14} + \dots + 36y - 1)$
c_5, c_9, c_{12}	$(y-1)(y^4 + 3y^3 - 2y^2 - 12y + 1)$ $\cdot (y^{11} + 5y^{10} + 5y^9 - 8y^8 - 8y^7 + 15y^6 + 9y^5 - 13y^4 - 2y^3 + 6y^2 - 1)$ $\cdot (y^{15} - 28y^{14} + \dots - 11y - 1)$
c_{11}	$y(y^{2} - 3y + 1)^{2}(y^{11} - 23y^{10} + \dots - 324y - 81)$ $\cdot (y^{15} - 38y^{14} + \dots + 200y - 4)$