

Obter as ferramentas certas

Desenvolvido por Ludor Engineering

Um conjunto de ferramentas de formadores para promover as competências do STEM, ao utilizar Aplicações para microcontroladores

Cofinanciado pelo Programa Erasmus+ da União Europeia

ojeto n.º 2019-1-RO01-KA202-063965

Este projeto foi financiado com o apoio da Comissão Europeia. O conteúdo reflete apenas a opinião dos autores e a Comissão não pode ser responsabilizada por qualquer utilização que possa ser feita a partir da informação nele contida.

Obter as ferramentas certas

Introdução

Ferramentas mecânicas

Ferramentas elétricas

Ferramentas diversas

Software

Matérias-primas

Síntese

Introdução

- As aplicações dos microcontroladores podem ser muito diferentes em termos de complexidade, componentes, tempo (tanto pode ser temporário como permanente), etc. Por conseguinte, as ferramentas e equipamentos necessários variam de caso para caso.
- Nesta secção iremos descrever algumas ferramentas e equipamentos normalmente utilizados pelos fabricantes em projetos que incluem microcontroladores.

Ferramentas mecânicas

Ferramentas mecânicas essenciais

- Chaves de fendas são necessários vários tipos, nomeadamente chave de fendas planas, chave de fendas estrela/Philips. Também são necessárias chaves de fendas quer pequenas quer de tamanho regular.
- O alicate de ponta é muito útil para manusear os pequenos componentes eletrónicos.

Ferramentas mecânicas essenciais

Tesouras, régua, caneta, lápis marcador, ferramentas de corte manual - todas são ferramentas básicas que qualquer fabricante deve ter por perto.

Ferramentas rotativas

• Muito versáteis - podem cortar, perfurar, limpar, lixar, gravar, polir, etc.

Broca

As brocas são muito úteis quando é necessário fazer furos ou ampliar furos já existentes.
Também podem girar parafusos para fixação.

Prensa de aperto

Ajuda a manter tanto as peças como materiais firmemente no lugar enquanto se trabalha com as mesmas, melhorando a precisão, qualidade e reduzindo os riscos de danos.

Ferramentas elétricas

Placa de montagem experimental e Fios de ponte

- Uma placa de montagem experimental é uma placa de plástico retangular, concebida para permitir a criação de circuitos sem a necessidade de soldadura.
- Os fios de ponte são fios utilizados ara a construção de circuitos numa placa montagem experimental.

Fonte de alimentação das placas de montagem experimental

■ São fontes de energia convenientes, fiáveis e fáceis de utilizar, úteis na maioria das aplicações de microcontroladores.

Circuitos sem solda

- As placas de montagem experimental e os fios de ponta são essenciais para a construção de circuitos que não requerem soldadura.
- Estes são uma excelente forma de começar a lidar com as aplicações de microcontroladores. As suas principais vantagens são:
 - Ajustabilidade permite modificações e depurações simples.
 - Flexibilidade os componentes podem ser facilmente rearranjados, adicionados, retirados, reutilizados.
 - Ideais para testar circuitos.
 - A melhor solução para protótipos temporários.

Ferramentas e materiais de soldadura

Úteis para realizar circuitos permanentes que requerem soldadura.

Multímetro

 Um multímetro é muito útil quando é necessário medir não só a tensão, bem como a corrente e resistência.

Adaptadores de energia

Uma forma conveniente de obter a energia necessária para as aplicações de microcontroladores.

Ferramentas diversas

Fios, fita adesiva

- São necessários diferentes calibres de fio o diâmetro de fio mais comum utilizado em aplicações de microcontroladores é o AWG 22 (0,65 mm de diâmetro). Alguns fios de maior diâmetro podem ser necessários em aplicações que envolvam uma corrente mais alta.
- Fita adesiva forte e fita adesiva isolante.

Pistola de cola quente

 Ferramenta muito útil que permite criar espaçadores, encher vazios, construir pontes, etc.

Paquímetro

Permite medições mais precisas das dimensões, diâmetros ou diferentes níveis de profundidade das peças.

Software

Software CAD

- O software CAD é muito útil para desenhar, imprimir em 3D e/ou simular uma aplicação de microcontrolador ou quando é necessário desenhar peças específicas para aplicações de microcontrolador. Estas peças podem então ser fabricadas através da impressão 3D, corte a laser, maquinação CNC, etc.
- Existem muitos softwares CAD disponíveis, alguns deles são gratuitos ou podem ser livremente utilizados para fins educativos (por exemplo, TinkerCAD, Google SketchUp, Blender)

CAD para a conceção de hardware eletrónico

 O Fritzing é um software open source muito útil para a conceção de aplicações de microcontroladores https://fritzing.org/home/

Programação de software

- O Arduino IDE (www.arduino.cc/en/main/software) é utilizado para escrever e carregar programas para placas compatíveis com o Arduino e outras placas de desenvolvimento.
- Raspbian (www.raspberrypi.org/downloads/) é o sistema operacional oficial para todos os modelos do Raspberry Pi e possui conjunto rico em ferramentas, incluindo algumas das linguagens de programação mais utilizadas.

Matérias-primas

Folhas metálicas, tubos de PVC, hastes roscadas

- As folhas de cartão ou metal fino, plástico e madeira podem ser utilizadas para fazer várias caixas, molduras, peças, etc., necessárias para aplicações de microcontroladores.
- Os tubos PVC e as hastes roscadas de PVC podem ser utilizados em várias estruturas.

Plástico moldável à mão

- É um plástico que pode ser moldado à mão quando quente, mas que se transforma num plástico forte quando arrefece.
- Permite a criação de peças plásticas sem a criação de moldes personalizados.
- Também é conhecido como Friendly Plastic, Instamorph, Polymorph, etc.

Fonte: *instamorph.com*

Hiperligações úteis

- Placa de Montagem Experimental para Principiantes https://learn.adafruit.com/breadboards-for-beginners
- Como Utilizar uma Placa de Montagem Experimental
- https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard
- O Melhor Software de Modelação 3d Gratuito https://www.easyrender.com/3drendering/best-free-3d-modeling-software
- Faça as Suas Próprias Peças Fritzing https://learn.sparkfun.com/tutorials/make-your-own-fritzing-parts/what-is-fritzing

Obter as ferramentas certas

Síntese do tema

Eis o que aprendemos:

- Ferramentas e capacidades de seleção de equipamento: Determinar o tipo de ferramentas ou equipamentos necessários para realizar um trabalho.
- Conhecimentos sobre ferramentas e materiais: Quais são as mais úteis, como podem ser utilizadas.
- Competências de seleção de software: Determinar o tipo de software necessário para uma aplicação de microcontrolador

