Symbols & Logical Syntax in \LaTeX

Lewis Britton

Greek & Hebrew Letters

Alphabetical Characters

A, α	\Alpha, \alpha	I, ι	\Iota, \iota	Ρ, ρ, ρ	\Rho, \rho, \varrho
B, β	\Beta, \beta	Κ, κ, κ	\Kappa, \kappa, \varkappa	Σ , σ , ς	\Sigma, \sigma, \varsigma
Γ , γ	\Gamma, \gamma	Λ, λ	\Lambda, \lambda	T, τ	\Tau, \tau
Δ , δ	\Delta, \delta	Μ, μ	\Mu, \mu	Υ , v	\Upsilon, \upsilon
E, ϵ , ε	\Epsilon, \epsilon, \varepsilon	Ν, ν	\Nu, \nu	Φ, ϕ, φ	\Phi, \phi, \varphi
Z, ζ	\Zeta, \zeta	Ξ, ξ	\Xi, \xi	Χ, χ,	\Chi, \chi
H, η	\Eta, \eta	О, о	\Omicron, \omicron	Ψ, ψ	\Psi, \psi
Θ , θ , ϑ	\Theta, \theta, \vartheta	Π, π, ϖ	\Pi, \pi, \varpi	Ω, ω	\Omega, \omega

Miscellaneous Characters & Punctuation

F	\digamma	C	\complement	\Im	\Im	Ð	\Game	£	\pounds		
×	\aleph	ℓ	\ell	R	\Re	F	\Finv	\$	\\$,	,
コ	\beth	ð	\eth	Ω	\mbox{mho}	∂	\partial	§	\S	٠, ,	·, ,
٦	\daleth	ħ	\hbar	80	\wp	TM	\trademark	!	!	", "	", " or "
ב	\gimel	ħ	\hslash	k	\Bbbk	(R), (R)	\textregistered, \circledR	?	?	., ;	\colon or :, ;

Basic Math Mode Syntax

	XY	Z xyz	XYZ\ xyz \mathbb{XYZ}	XYZ xyz		XYZ xyz XYI 193	<pre>\mathit{XYZ\ xyz} \mathfrak{XYZ\ xyz}</pre>	XYZ xyz	<pre>\mathbf{XYZ\ xyz} \mathtt{XYZ\ xyz}</pre>
xyz		xyz			Math spacing	$ \sin x \cos y $	\sin x\cos y		Operator spacing
x y z		x\ y\	z		Extended spacing	a b c d	ab\mspace{3mu}c\t	chinspace d	3mu ('thin') space
$a\ b\ c\ d$		a\:b\n	nspace{4mu}c\med	lspace d	4mu ('medium') space	a b c d	a\;b\mspace{5mu}c\t	hickspace d	5mu ('thick') space
a b c	d	a	i b\mspace{18mu}	-c d	18mu ('quad') space	abad	a\!b\mspace{-3mu}c\	negthinspace	Neg. 3mu ('thin') space
. 1		. \ . 1	(C				

Math Accents & Constructs

\hat{x}	\hat{x}		\check{x}	\tilde{x}	\tilde{x}	x x	\acute{x}	ì	\grave{x}
\dot{x}	\dot{x}	\ddot{x}	\ddot{x}	$reve{x}$	\breve{x}	\bar{x}	\bar{x}	\vec{x}	\vec{x}
\widehat{xyz}	\widehat{xyz}	\widetilde{xyz}	\widetilde{xyz}	$\frac{abc}{xyz}$	\frac{abc}{xyz}	f, f'	f, f\prime	\sqrt{x}	\sqrt{x}
$\sqrt[n]{x}$	\sqrt[n]{x}	\overline{xyz}	\overline{xyz}	$\frac{xyz}{}$	\underline{xyz}	\widehat{xyz}	\overbrace{xyz}	xyz	\underbrace{xyz}
\overrightarrow{xyz}	\overrightarrow{xyz}	$\frac{\overleftarrow{xyz}}{}$	\overleftarrow{xyz}	\overleftrightarrow{xyz}	\overleftrightarrow{xyz}	$\frac{xyz}{abc}$	\xleftarrow[abc]{xyz}	xyz abc	\xrightarrow[abc]{:
$\sum_{y=0}^{x} \sum_{k=0}^{j} $	$\left(x^{x}_{y^{x}}_{k^{j}}\right) $	\sum_{K}	\overset{K}{\sum}	$\sum_{l=-1}$	\sunderset{k=1}{\sum}				

Binary Relations

Note that you can produce according negations by either adding the \not command as a prefix or ordinarily by preceding the commands with 'n'. For example, \not = or \not = turns = to \neq .

<	<	>	>	=	=	€	\in	€	\ni or \owns
\leq	$\leq or \leq o$	≥	\geq or \ge	=	\equiv	-	\vdash	-	\dashv
«	\11	>>	\gg	÷	\doteq		\mid		\parallel
\prec	\prec	>	\succ	~	\sim	$\overline{}$	\smile		\frown
\preceq	\preceq	≥	\succeq	\simeq	\simeq				
\subset	\subset	\supset	\supset	\approx	\approx	=	\models	1	\perp
\subseteq	\subseteq	⊇	\supseteq	\cong	\cong	\asymp	$\agnumber \agnumber \agn$	\propto	\propto
	\sqsubset		\sqsupset	M	Join	≠	\neq	A	\forall
	\sqsubseteq		\sqsupseteq	\bowtie	\bowtie	∉	\notin	,	\prime

Binary Operators

+	+	_	-	V	\lor or \vee	_ ^	\land or \	\wedge	⊲	\lhd	\triangleright	\rhd	†	\dagger
\pm	\pm	Ŧ	\mp	\oplus	\oplus	Θ	\ominus		⊴	\unline	⊵	\unrhd	‡	\ddagger
×	\times		\cdot	0	\odot	0	\oslash		•	\bullet	0	\circ	¶	\ P
÷	\div	\	\setminus	\otimes	\otimes	0	\bigcirc		*	\ast	*	\star		
\cup	\cup	\cap	\cap	Δ	\bigtriangleup	∇	\bigtriangledown		♦	\diamond	₹	\wr	c	
\sqcup	\sqcup	П	\sqcap	⊲	\triangleleft	▷	\triangleright		П	\aggreen	₩	\uplus		
∑ \sum ∏ \prod ∐ \copr			od	∫ \int ∩ ∮ \oint ∪ ∫∫ \iint ⊕	\b:	igcup	⊗ \big	goplus gotime godot	s \	igvee bigwed bigsqd	~			

Delimiters

Note that you can produce according relatively sized symbols by preceding the commands with $\left(\frac{abc}{xyz}\right)$ For example, $\left(\frac{abc}{xyz}\right)$ turns $\left(\frac{abc}{xyz}\right)$ to $\left(\frac{abc}{xyz}\right)$. Sometimes commands can be preceded with '1' or 'r' e.g., $\left(\frac{abc}{xyz}\right)$. Thus, giving the $\left(\frac{abc}{xyz}\right)$ to $\left(\frac{abc}{xyz}\right)$.

(([\lbrack or [(\langle	[\lfloor	Г	\ulcorner	↑	\uparrow
))]	\rbrack or]	>	\rangle	[\lceil	٦	\urcorner	↓	\downarrow
	\vert or	{	\lbrace or $\{$	Γ	\lceil	/	/	L	\llcorner	1	\Uparrow
	\Vert or \	}	\rbrace or \}	1	\lfloor	\	\backslash	_	\rcorner	↓	\Downarrow

Arrows

	\leftarrow	\leftarrow or \gets			\rightar	\rightarrow or \to			\Leftarrow			\Rightarrow	\Rightarrow		·ow
	←	\longlefta	arrow	\longrightarrow	\longrig	htarro	W	⇐=	\Longleftarrow			\implies	\Longrightarrow		
	\leftrightarrow	\leftrightarrow			\longla@	\longlaeftrightarrow			\Leftrightarrow			\iff	\Longleftrightarrow		
	↑ \uparrow			↓	\downarr	\downarrow			\Uparrow			↓	\Downarrow		
	‡	\updownar	\mapsto	\mapsto		1 Updown			wnarrow		\longmapsto	\lon	gmaps	to	
	← \hookleftarrow				\hookrig	htarro	W	. ←⇒							
	/\nearrow		>	\searrow	\searrow			\swarrow			K	\nwarrow			
												•			
←	\dashlef	tarrow	→	\dashrig	htarrow		\leftleftarrows		S	\Rightarrow	\rightroghtarrows		ows	\leftrightarrows	\leftrightarrows
⊭	\Lleftar:	row	⇒	\Rrighta	rrow	cow \upup		arrows	↓↓ \downdo			ownarrows		\rightleftharpoons	\rightleftarrows
1	\upharpo	onleft	1	\upharpo	onright	1	downharpoonleft			l l	\downharpoonright			\leftrightharpoons	\leftrightharpoons
«	\twohead	leftarrow		\twohead	rightarrow	←	\lefta	arrowtail		\rightarrow	\righta	rrowtail	.	\rightleftharpoons	\rightleftharpoons
ń	\Lsh		\Rsh		↔	\loopa	arrowleft		↔	\loopar	rowright	;			
\sim	\curvearrowleft \rightarrow\c		\curvear	curvearrowright		\circlearrowleft		ft	Ö	\circle	\circlearrowright				
\sim	\leadsto		\rightsq	ghtsquigarrow		\leftrightsquigarrow		garrow		\multimap					