Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2020

Operatory działające na ciągi

$$\langle a_n \rangle = (a_0, a_1, a_2, \dots, a_n, \dots)$$

operator przesunięcia:
$$E < a_n > = < a_{n+1} > = (a_1, a_2, \dots, a_n, \dots)$$

$$E^2 < a_n > = E(E < a_n >) = (a_2, a_3, \ldots)$$

Operatory działające na ciągi

$$\langle a_n \rangle = (a_0, a_1, a_2, \dots, a_n, \dots)$$

$$< a_n > + < b_n > = < a_n + b_n > = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots)$$

$$c < a_n > = < ca_n > = (ca_0, ca_1, ca_2, ..., ca_n, ...)$$

Operator O jest anihilatorem ciągu $< a_n >$, jeśli $O < a_n > = < 0 > = (0, 0, ..., 0, ...)$.

Operator mnożenia przez 0 jest trywialnym anihilatorem każdego ciągu, dlatego nie jest traktowany jako anihilator.

Jaki operator anihiluje ciąg $<\pi>=(\pi,\pi,\pi,\ldots)$?

Jaki operator anihiluje ciąg $<\pi>=(\pi,\pi,\pi,\ldots)$?

$$E-1$$

Jaki operator anihiluje ciąg $<2^n>=(1,2,4,8,\ldots,2^n,\ldots)$?

Jaki operator anihiluje ciąg $<2^n>=(1,2,4,8,\ldots,2^n,\ldots)$?

$$E-2$$

Jaki operator anihiluje ciąg $<\pi 2^n>=(\pi,2\pi,4\pi,8\pi,\ldots,2^n\pi,\ldots)$?

Jakie ciągi anihiluje operator E-2?

Jakie ciągi anihiluje operator E-a?

Jakie ciągi anihiluje operator E - a?

 $< \alpha a^n >$ dla dowolnego $\alpha \in R$

Jaki operator anihiluje ciąg $< 2^n + 3^n > = (2, 5, 13, ..., 2^n + 3^n, ...)$?

Jaki operator anihiluje ciąg $< 2^n + 3^n > = (2, 5, 13, ..., 2^n + 3^n, ...)$?

Operator E-2 własciwie nie zmienia ciągu 3^n , tzn $(E-2) < 3^n > = < \alpha 3^n >$ dla pewnego $\alpha \neq 0$.

Jaki operator anihiluje ciąg $< 2^n + 3^n > = (2, 5, 13, ..., 2^n + 3^n, ...)$?

$$(E-2)(E-3)$$

Jaki operator anihiluje ciąg $< n2^n >$?

Jaki operator anihiluje ciąg $< n2^n >$?

$$(E-2)^2$$

Jakie ciągi anihiluje operator $(E-2)^2$?

Jakie ciągi anihiluje operator $(E-2)^2$?

$$<(\alpha n+\beta)2^n>$$

Jakie ciągi anihiluje operator $(E-2)^k$?

Jakie ciągi anihiluje operator $(E-2)^k$?

$$<(\alpha_{k-1}n^{k-1}+\alpha_{k-2}n^{k-2}+\dots\alpha_{1}n+\alpha_{0})2^{n}>=<2^{n}\sum_{i=0}^{k-1}\alpha_{i}n^{i}>$$

Jakie ciągi anihiluje operator $(E-c)^k$?

Jakie ciągi anihiluje operator $(E-c)^k$?

$$<(\alpha_{k-1}n^{k-1}+\alpha_{k-2}n^{k-2}+\ldots\alpha_{1}n+\alpha_{0})c^{n}>=< c^{n}\sum_{i=0}^{k-1}\alpha_{i}n^{i}>$$

Zastosowanie anihilatora

Znając anihilator ciągu $< a_n >$, znamy $< a_n >$.

Jeśli wiemy co anihiluje (zeruje/sprowadza do zera) ciąg $\langle a_n \rangle$, wiemy, jaką postać ma $\langle a_n \rangle$.

Ciąg a_n

- $a_0 = \pi$,
- $a_n = 7a_{n-1} \text{ dla } n \ge 1.$

Czym zanihilować $< a_n >$?

Ciąg a_n

•
$$a_0 = \pi$$
,

• $a_n = 7a_{n-1} \text{ dla } n \ge 1.$

$$E < a_n > = < a_1, a_2, a_3, \dots > = < 7a_0, 7a_1, 7a_2, \dots > = 7 < a_n >$$

Ciąg an

- $a_0 = \pi$,
- $a_n = 7a_{n-1} \text{ dla } n \ge 1.$

 $E < a_n > = < a_1, a_2, a_3, \dots > = < 7a_0, 7a_1, 7a_2, \dots > = 7 < a_n >$. W takim razie E - 7 jest anihilatorem $< a_n >$.

Ciąg a_n

- $a_0 = \pi$,
- $a_n = 7a_{n-1}$ dla $n \ge 1$.

W takim razie E-7 jest anihilatorem $< a_n >$.

$$< a_n > = < \alpha 7^n >$$

Ciąg an

- $a_0 = \pi$,
- $a_n = 7a_{n-1} \text{ dla } n \ge 1.$

W takim razie E - 7 jest anihilatorem $< a_n >$.

$$< a_n > = < \alpha 7^n >$$

Aby obliczyć α , rozwiązujemy równanie $\alpha 7^0 = a_0 = \pi$. Zatem $\alpha = \pi$.

- $F_0 = 0$,
- $F_1 = 1$,
- $F_n = F_{n-1} + F_{n-2}$ dla n > 1.

Jaki operator ahihiluje $\langle F_n \rangle$?

- $F_0 = 0$.
- $F_1 = 1$,
- $F_n = F_{n-1} + F_{n-2}$ dla n > 1.

Jaki operator ahihiluje $< F_n >$?

$$E^2 < F_n > = < F_{n+2} > = (F_2, F_3, ...) = (F_0 + F_1, F_1 + F_2, F_2 + F_3, ...) = (F_0, F_1, ...) + (F_1, F_2, ...) = < F_n > + E < F_n >$$

- $F_0 = 0$,
- $F_1 = 1$.
- $F_n = F_{n-1} + F_{n-2}$ dla n > 1.

Jaki operator ahihiluje $\langle F_n \rangle$? $E^2 < F_n > = < F_n > + E < F_n > = (1 + E) < F_n >$

Zatem
$$E^2 - E - 1$$
 anihiluje $\langle F_n \rangle$.

$$E^2 - E - 1$$
 anihiluje $< F_n >$.
 $E^2 - E - 1 = (E - \frac{1 - \sqrt{5}}{2})(E - \frac{1 + \sqrt{5}}{2})$

$$F_n = \alpha (\frac{1-\sqrt{5}}{2})^n + \beta (\frac{1+\sqrt{5}}{2})^n$$

Aby obliczyć α, β rozwiązujemy układ równań:

$$F_0 = 0 = \alpha + \beta$$

$$F_1 = 1 = \alpha \frac{1 - \sqrt{5}}{2} + \beta \frac{1 + \sqrt{5}}{2}$$

Ciąg a_n

- $a_0 = 0$,
- $a_1 = 1$,
- $a_n = 4a_{n-1} 4a_{n-2} + n2^n$ dla n > 1.

Jaki jest anihilator $\langle a_n \rangle$?

Ciąg a_n

- $a_0 = 0$,
- $a_1 = 1$,
- $a_n = \sqrt{a_{n-1}^2 + a_{n-2}^2} \text{ dla } n > 1.$