Разработка механизма определения аномалий в данных

Студент 4 курса, 592 гр.: Каразеев А. А.

Научный руководитель: Дайняк А. Б.

Цель работы

- Объектом исследования являются методы для экстраполяции временных рядов и поиска выбросов в данных, а также способы их реализации и области применения.
- Предметом исследования является анализ существующих алгоритмов для обработки данных.
- Методы исследования анализ предметной области, анализ реализованных методов, написание программного кода и извлечение полезной информации из данных.

Поставленные задачи

- Изучение уже созданных алгоритмов для поиска аномалий в данных. Поиск датасетов.
- Анализ эффективности алгоритмов на релевантных данных.
- Программная реализация алгоритмов с использованием языка программирования Python.
- Встраивание алгоритмов в сервис для обработки данных.

Рассматриваемые алгоритмы

- k-Nearest Neighbors (k-NN) метод k-ближайших соседей.
- Principal Component Analysis (PCA) метод главных компонент.
- One-Class Support Vector Machines (OCSVM) одноклассовый метод опорных векторов.
- Local Outlier Factor (LOF) метод локального уровеня выброса.
- Histogram-Based Outlier Score (HBOS) оценка выбросов на основе гистограммы.
- Isolation Forest (IFOREST) метод изолируещего леса.

Используемые датасеты

- Arrhythmia определение наличия аритмии по данным ЭКГ.
- Breast Cancer определение типа опухоли молочной железы: доброкачественная или злокачественная.
- Glass идентификация типа стекла, оставленного на месте преступления.
- **lonosphere** рассматриваются характеристики радаров, которые используется в анализе ионосферы: необходимо определить является радар "плохим" или "хорошим".
- Letter Recognition по описанию изображения определить присутствует ли буква из английского алфавита или нет.
- Mammography детектирование микрокальцинатов по данным маммографии.
- MNIST научиться различать изображения рукописных цифр 6 и 0.
- Satellite определение типа почвы по спутниковым снимкам.

Используемые датасеты

Таблица 1 — Статистика по данным из рассматриваемых датасетов.

Датасет	Кол-во объектов	Размерность	Процент выбросов
arrhythmia	452	274	14.60
breastw	683	9	34.99
glass	214	9	4.21
ionosphere	351	33	35.90
letter	1600	32	6.25
mammography	11183	6	2.33
mnist	7603	100	9.21
satellite	6435	36	31.64

Код доступен по адресу: https://github.com/akarazeev/Bachelor

Используемые датасеты

Таблица 2 — Значения ROC для рассматриваемых алгоритмов на данных.

Датасет	KNN	PCA	OCSVM	LOF	HBOS	IFOREST
arrhythmia	0.7555	0.7794	0.7825	0.7672	0.7831	0.7849
breastw	0.9908	0.9608	0.9649	0.4574	0.9764	0.9872
glass	0.8558	0.7308	0.8077	0.6538	0.7500	0.7212
ionosphere	0.9460	0.8115	0.8684	0.9023	0.6190	0.8632
letter	0.8660	0.5119	0.5985	0.8530	0.5532	0.5770
mammography	0.8346	0.9039	0.8911	0.6806	0.8506	0.8680
mnist	0.8322	0.8493	0.8487	0.6727	0.5607	0.7942
satellite	0.6795	0.5601	0.6274	0.5567	0.7464	0.7008

Код доступен по адресу: https://github.com/akarazeev/Bachelor

Представление объектов из датасетов после понижения размерности с помощью 20 - алгоритма t-SNE

Результаты обучения алгоритмов

Результаты обучения алгоритмов

Датасет: breastw, ROC: 0.9908 Алгоритм: k-Nearest Neighbors

Результаты обучения алгоритмов

Датасет: satellite, ROC: 0.761 Алгоритм: Histogram-Based Outlier Detection

Сервис

Сервис доступен по адресу: http://bit.ly/anomd19

Сервис

Сервис

Сервис доступен по адресу: http://bit.ly/anomd19

Результаты проделанной работы

- Проанализированы актуальные алгоритмы для поиска аномалий в данных.
- Продемонстрированы релевантные данные и даны оценки качества рассмотренных алгоритмов на них.
- Предложен и представлен вариант сервиса, объединяющий в себе алгоритмы для анализа данных.
- Описаны правила работы с построенным сервисом.
- Была обнаружена и исправлена ошибка в библиотеке PyOD (PR #108 https://github.com/yzhao062/pyod/pull/108).
- Сервис доступен по адресу: http://bit.ly/anomd19.
- Код доступен по адресу: https://github.com/akarazeev/Bachelor.