Study on the Cone Programming Reformulation of Active Noise Control Filter Design in the Frequency Domain

Yongjie Zhuang, Yangfan Liu

Ray W. Herrick Laboratories, 177 S. Russell Street, Purdue University, West Lafayette, IN 47907-2099

Introduction

- ☐ Multichannel active noise control (ANC) systems
 - Better performance when we need to create large-size quiet zone.
 - Applications:

Interior of Vehicles

Range Hood

Infant Incubator

Air Conditioner

Introduction

NEXT WWE

H. WAS CONTROL

TO 1015

S. AND ORDER

TO 2019

S. AND ORDER

TO 2019

S. AND ORDER

TO 2019

- ☐ Motivation of using frequency domain design
 - Easier to specify frequency dependent constraints.
 - Constraints in one frequency band will not affect performance of other bands.
 - Usually, better ANC performance.
 - Convenient to design sub-band filter structure
- ☐ Motivation of using cone programing
 - The computational complexity is usually significant for frequency domain design method.
 - In recent study of convex optimization, very efficient algorithms were developed for cone programing.
 - Many optimization problems can be converted to cone programing.
 - Potential to perform adaptive control in frequency domain with multiple constraints.

Active Noise Control System

(Non-adaptive control is considered in the current work)

- Disturbance enhancement
- Stability
- Robustness
- Filter response

Overview of Reformulation

Cost function:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{\rm H}] \quad \Longrightarrow \quad \text{Total energy of e cross all frequencies}$$

Constraints:

Enhancement: Normalized energy of e:

$$tr[E(f_k)E(f_k)^{\mathrm{H}}]D_e(f_k) \le A_e$$

Stability: Use Nyquist criterion:

$$\min\left(\operatorname{Re}\left(\lambda\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)\right) > -1$$

Robustness: $M-\Delta$ structure and small gain theory:

$$\max\left(\sigma\left(W_{x}(f_{k})\hat{G}_{s0}(f_{k})\right)\right)B(f_{k}) \leq 1$$

$$\left|W_{x_{i,j}}(f_k)\right| \le C(f_k)$$

Cost function: Total energy of e:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{\mathrm{H}}],$$

Constraints:

Enhancement:

$$tr[E(f_k)E(f_k)^H]D_e(f_k) \le A_e$$
 Normalized energy of e at each frequency

Stability: Use Nyquist criterion:

$$\min\left(\operatorname{Re}\left(\left.\lambda\left(W_{\boldsymbol{x}}(f_k)\widehat{G}_{\boldsymbol{s}\boldsymbol{0}}(f_k)\right)\right.\right)\right) > -1$$

Robustness: M- Δ structure and small gain theory:

$$\max \left(\sigma\left(W_{x}(f_{k})\hat{G}_{s0}(f_{k})\right)\right)B(f_{k}) \leq 1$$

$$\left|W_{x_{i,j}}(f_k)\right| \le C(f_k)$$

Cost function: Total energy of e:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{\mathrm{H}}],$$

Constraints:

Enhancement: Normalized energy of e:

$$tr[E(f_k)E(f_k)^{\mathrm{H}}]D_e(f_k) \le A_e$$

Stability:

$$\min\left(\operatorname{Re}\left(\lambda\left(W_{\chi}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)\right) > -1$$
 \Longrightarrow Nyquist criterion, on the right of -1 point

Robustness: $M-\Delta$ structure and small gain theory:

$$\max\left(\sigma\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)B(f_{k})\leq 1$$

$$\left|W_{x_{i,j}}(f_k)\right| \le C(f_k)$$

Cost function: Total energy of e:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{\mathrm{H}}],$$

Constraints:

Enhancement: Normalized energy of e:

$$tr[E(f_k)E(f_k)^{\mathrm{H}}]D_e(f_k) \le A_e$$

Stability: Use Nyquist criterion:

$$\min\left(\operatorname{Re}\left(\lambda\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)\right) > -1$$

Robustness:

$$\max \left(\sigma\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)B(f_{k}) \leq 1 \implies M-\Delta \text{ structure and small gain theory}$$

$$\left|W_{x_{i,j}}(f_k)\right| \le C(f_k)$$

Cost function: Total energy of e:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{\mathrm{H}}],$$

Constraints:

Enhancement: Normalized energy of e:

$$tr[E(f_k)E(f_k)^{\mathrm{H}}]D_e(f_k) \le A_e$$

Stability: Use Nyquist criterion:

$$\min\left(\operatorname{Re}\left(\lambda\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)\right) > -1$$

Robustness: M- Δ structure and small gain theory:

$$\max\left(\sigma\left(W_{x}(f_{k})\hat{G}_{s0}(f_{k})\right)\right)B(f_{k}) \leq 1$$

Filter response:

$$\left| W_{x_{i,j}}(f_k) \right| \le C(f_k)$$

The magnitude of frequency response

Modification

NEXT WAVE POSSIBLE TO THE POS

Original Problem

Cost function: Total energy of e:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{\mathrm{H}}],$$

Enhancement: Normalized energy of e:

$$tr[E(f_k)E(f_k)^{\mathrm{H}}]D_e(f_k) \le A_e$$

Stability: Use Nyquist criterion:

$$\min\left(\operatorname{Re}\left(\lambda\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)\right) > -1$$

Robustness: M- Δ structure and small gain theory:

$$\max\left(\sigma\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)B(f_{k}) \leq 1$$

Filter response: The magnitude of frequency response:

$$\left| W_{x_{i,j}}(f_k) \right| \le C(f_k)$$

Standard General Convex Problem

Cost function: $f_0(x)$

Constraints: $f_i(x) \le 0$, i = 1, 2, 3 ...

$$Ax = b$$

 $f_0(x)$ to be a convex function

 $f_i(x)$ to be a convex function

A, b to be a constant matrix and vector

Modification

Original Problem

General Convex Problem

Cost function:
$$w^{\mathrm{T}}\left(\sum_{k=k_1}^{k_2} A_J(f_k)\right)w + 2\mathrm{Re}\left(\sum_{k=k_1}^{k_2} b_J^{\mathrm{T}}(f_k)\right)w + \sum_{k=k_1}^{k_2} c_J(f_k)$$
 • Quadratic Convex • Hessian $A_J(f_k)$ positive semidefinite

Constraints:

Enhancement:
$$w^{\mathrm{T}} A_J(f_k) w + 2 \mathrm{Re} \left(b_J^{\mathrm{T}}(f_k) \right) w + c_J(f_k) - \frac{A_e}{D_e(f_k)} \le 0$$
 • Quadratic • Quadratic • Hessian $A_J(f_k)$ positive semidefinite

Robustness:
$$\max \left(\sigma\left(W_{x}(f_{k})\hat{G}_{s0}(f_{k})\right)\right)B(f_{k})-1\leq 0$$

Matrix norm Convex

Filter response: $||F_z(f_k)||_{W_{F_{i,j}}}||_2 - C(f_k) \le 0$

$$\max\left(\lambda\left(\frac{-W_{x}(f_{k})\widehat{G}_{s0}(f_{k}) + \left(-W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)^{H}}{2}\right)\right) - (1 - \epsilon_{s}) \leq 0 \implies \text{Easy to prove convexity by } \max\left(\lambda(A)\right) = \sup_{||x||_{2}=1} x^{T}Ax$$

Convex Problem

Cost function:

$$w^{\mathrm{T}}\left(\sum_{k=k_{1}}^{k_{2}}A_{J}(f_{k})\right)w + 2\mathrm{Re}\left(\sum_{k=k_{1}}^{k_{2}}b_{J}^{\mathrm{T}}(f_{k})\right)w + \sum_{k=k_{1}}^{k_{2}}c_{J}(f_{k})$$
 Quadratic

Constraints:

$$w^{\mathrm{T}} A_J(f_k) w + 2 \operatorname{Re} \left(b_J^{\mathrm{T}}(f_k) \right) w + c_J(f_k) - \frac{A_e}{D_e(f_k)} \le 0$$
 Quadratic

$$\max\left(\lambda\left(\frac{-W_{x}(f_{k})\hat{G}_{s0}(f_{k}) + \left(-W_{x}(f_{k})\hat{G}_{s0}(f_{k})\right)^{H}}{2}\right)\right) - (1 - \epsilon_{s}) \le 0$$
 Max Eigenvalue

$$\max \left(\sigma\left(W_x(f_k)\widehat{G}_{s0}(f_k)\right)\right)B(f_k)-1\leq 0$$
 Max Singular Value

$$||F_z(f_k) w_{F_{i,j}}||_2 - C(f_k) \le 0$$
 Vector Norm

Standard Cone Programming

Cost function: $c^{T}x$

Constraints: $x \in K_i$, i = 1, 2, 3 ...

$$Ax = b$$

to be a constant vector

 K_i to be a convex cone

A, b to be a constant matrix and vector

NEXT WAVE BROWNERSONS LANGEST B Z 20196 S 201060 C. 2

Convex Problem

Cone Programming

• Reformulate quadratic cost function

Cost function: $x^T A x + b^T x + c$

Cost function:

$$t_0 + b^{\mathrm{T}} x$$

Linear cost function

Constraints:

$$\|\sqrt{A} x\|_2 \le \sqrt{t_0 \, \tilde{t}_0}$$

Rotated second-order cone

• Reformulate quadratic constraints

Constraints: $x^T A x + b^T x + c \le 0$

Constraints: $t_1 + b^T x + c = 0$

 $\|\sqrt{A} x\|_2 \le \sqrt{t_1 \, \tilde{t}_1}$

$$\tilde{t}_1 = 1$$

• The vector norm itself meets second-order cone requirement

Convex Problem

Cone Programming

Reformulate eigenvalue constraints

Constraints:
$$\max \left(\lambda \left(\frac{A(x) + A(x)^H}{2}\right)\right) - \epsilon \le 0$$
 Each $A_{i,j}$ is the linearly related to x

Constraints:
$$-A(x) - A(x)^{H} + 2\epsilon I \ge 0$$

Positive semidefinite cone Each $A_{i,j}$ is the linearly related to x

Reformulate singular value constraints

Constraints:

$$\max(\sigma(A(x))) - \epsilon \le 0$$

Each $A_{i,j}$ is the linearly related to x

Constraints:
$$\begin{bmatrix} \epsilon I & A(x) \\ A(x)^H & \epsilon I \end{bmatrix} \geqslant 0$$

Positive semidefinite cone Each $A_{i,j}$ is the linearly related to x

Convex Problem

Cost function:

$$w^{\mathrm{T}}\left(\sum\nolimits_{k=k_{1}}^{k_{2}}A_{J}(f_{k})\right)w+2\mathrm{Re}\left(\sum\nolimits_{k=k_{1}}^{k_{2}}b_{J}^{\mathrm{T}}(f_{k})\right)w+\sum\nolimits_{k=k_{1}}^{k_{2}}c_{J}(f_{k})$$

Constraints:

$$w^{\mathrm{T}} A_{J}(f_{k}) w + 2 \operatorname{Re}(b_{J}^{\mathrm{T}}(f_{k})) w + c_{J}(f_{k}) - \frac{A_{e}}{D_{e}(f_{k})} \le 0$$

$$\max\left(\sigma\left(W_{x}(f_{k})\widehat{G}_{s0}(f_{k})\right)\right)B(f_{k})-1\leq0$$

$$||F_z(f_k) w_{F_{i,j}}||_2 - C(f_k) \le 0$$

Cone Programming

Cost function:
$$t_0 + 2 \operatorname{Re} \left(\sum_{k=k_1}^{k_2} b_J^{\mathrm{T}}(f_k) \right) w$$

Constraints:
$$||M_0 w||_2 \le \sqrt{t_0 \tilde{t}_0}$$
 , $\tilde{t}_0 = 1$

$$t_{1,k} + 2\operatorname{Re}(b_J^{\mathrm{T}}(f_k))w + c_J(f_k) - \frac{A_e}{D_e(k)} = 0$$

$$||M_{1,k} w||_2 \le \sqrt{t_{1,k} \ \tilde{t}_{1,k}} , \qquad \tilde{t}_{1,k} = 1$$

$$W_x(f_k)\hat{G}_{s0}(f_k) + \left(W_x(f_k)\hat{G}_{s0}(f_k)\right)^{\mathsf{H}} + 2(1-\epsilon_s) \geq 0$$

$$\begin{bmatrix} \frac{1}{B(k)}I_{N_s} & W_x(k)\hat{G}_{s0}(k) \\ \left(W_x(k)\hat{G}_{s0}(k)\right)^H & \frac{1}{B(k)}I_{N_s} \end{bmatrix} \geqslant 0$$

$$||F_z(f_k) w_{F_{i,j}}||_2 \le t_{3,k}$$
, $t_{3,k} = C(f_k)$

Results

Off-line Simulation based on experimental data

Experiment description:

- 2 reference microphones
- 2 control loudspeakers
- 2 error microphones
- sampling frequency is 8000 Hz

Red: Noise source

Yellow: Reference Microphones

Blue: Dummy, place for error microphone

Results

Table: Computation time for two problem sizes using different formulation-algorithm combinations

FIR length	cone programming + primal-dual interior-point	original formulation + sequential quadratic	cone programming + sequential quadratic
64	8.0 s	1790.4 s	1943.2 s
128	28.4 s	7504.9 s	5980.7 s

It is more **efficient**, if the filter design problem is reformulated to **cone programming** and solved by the **primal-dual interior-point method** (although the scale of the problem is much larger).

Results

Simulation of the attenuation performance for FIR length 128 using experimental data

Conclusions

- The ANC filter design problem can be modified and reformulated to a cone programming problem.
- The calculation using the primal-dual interior-point method for cone programming can be faster, compared with that using the commonly used sequential quadratic programming method.
- In the future, if the efficiency of this method can be further improved, it is possible to consider making this filter design problem adaptive.

Thank you!

