Reference Material – Unit 3

Note: You may not bring this reference to the exam on Tuesday. This is only for your practice exam, in case you've not made your own yet. However, I will give you the moments-of-inertia information here on Tuesday whenever you need it.

Hooke's law for elasticity: $F_{\text{elastic}} = -k\Delta x$

The work-energy theorem:

$$\frac{1}{2}mv_i^2 + W_{\rm all} = \frac{1}{2}mv_f^2$$

The work-energy theorem, using potential energy:

$$\frac{1}{2}mv_i^2 + PE_i + W_{other} = \frac{1}{2}mv_f^2 + PE_f$$

Kinetic energy of translation: $\frac{1}{2}mv^2$ Kinetic energy of rotation: $\frac{1}{2}I\omega^2$

Gravitational potential energy: mgy

Elastic potential energy: $\frac{1}{2}k(\Delta x)^2$, where Δx is the amount by which the spring is stretched or compressed

If an object rotates at angular velocity ω , a point at radius r moves at a speed $v_T = \omega r$.

Translation	Rotation		
Position \vec{s} Velocity \vec{v} Acceleration \vec{a}	Angle θ Angular velocity ω Angular acceleration α		
Kinematics: $\vec{s}(t)\frac{1}{2}\vec{a}t^2 + \vec{v}_0t + \vec{s}_0$	$\theta(t) = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0$		
Force \vec{F} Mass m Newton's second law $\vec{F} = m\vec{a}$	Torque τ Rotational inertia I Newton's second law for rotation $\tau = I\alpha$		
Kinetic energy $KE = \frac{1}{2}mv^2$ Work $W = \vec{F} \cdot \Delta \vec{s}$ Power $P = \vec{F} \cdot \vec{v}$	Kinetic energy $KE=\frac{1}{2}I\omega^2$ Work $W=\tau\Delta\theta$ Power $P=\tau\omega$		
Momentum $\vec{p} = m\vec{v}$	Angular momentum $L=I\omega$ (extended object) $L=mvr_{\perp} \text{ (point-like object)}$		

TABLE 12.2 Moments of inertia of objects with uniform density

Object and axis	Picture	I	Object and axis	Picture	I
Thin rod, about center		$\frac{1}{12}ML^2$	Cylinder or disk, about center	R	$\frac{1}{2}MR^2$
Thin rod, about end		$\frac{1}{3}ML^2$	Cylindrical hoop, about center	R	MR^2
Plane or slab, about center	la l	$\frac{1}{12}Ma^2$	Solid sphere, about diameter	R	$\frac{2}{5}MR^2$
Plane or slab, about edge	a	$\frac{1}{3}Ma^2$	Spherical shell, about diameter	R	$\frac{2}{3}MR^2$