Review on Probability

통계적 기계학습(Statistical Machine Learning), 2025 1st semester

Probability Spaces

A probability space is a triple (Ω, \mathcal{F}, P) where Ω is a set of "outcomes," \mathcal{F} is a set of "events," and $P : \mathcal{F} \to [0, 1]$ is a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection \mathcal{F} of subsets of Ω is called σ -algebra (or field) if

- (i) if $A \in \mathcal{F}$ then $\Omega \backslash A \in \mathcal{F}$, and
- (ii) if $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Example. $\mathcal{F} = \{\phi, \Omega\}$ trivial σ -field

$$\mathcal{F} = 2^{\Omega} = \{A | A \subset \Omega\} : \text{power set} \Longrightarrow \sigma - \text{field}$$

Without P, (Ω, \mathcal{F}) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ -algebra \mathcal{F} , a function $\mu: \mathcal{F} \to [0, \infty]$ is a measure if

- (i) $\mu(A) \geq \mu(\phi) = 0$ for all $A \in \mathcal{F}$, and
- (iii) For $A_1, A_2, \dots \in \mathcal{F}$ with $A_i \cap A_j = \phi$ for any $i \neq j$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Definition. (1) $\mu(\Omega) < \infty$ \Longrightarrow finite measure

- (2) $\mu(\Omega) = 1 \Longrightarrow \text{probability measure}$
- (3) \exists a partition A_1, A_2, \cdots with $\bigcup_{i=1}^{\infty} A_i = \Omega$ and $\mu(A_i) < \infty \Longrightarrow \sigma$ -finite measure

Theorem ([1, Theorem 1.1.4]). Let μ be a measure on (Ω, \mathcal{F}) .

(i) Monotonicity. If $A \subset B$ then $\mu(A) \leq \mu(B)$.

(ii) Subadditivity. If $A \subset \bigcup_{i=1}^{\infty} A_i$ then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

(iii) Continuity from below. $A_n \uparrow A$ (i.e. $A_1 \subset A_2 \subset \cdots$ and $A = \bigcup_{i=1}^{\infty} A_i$) then $\mu(A_i) \uparrow \mu(A)$. (iv) Continuity from above. $A_n \downarrow A$ (i.e. $A_1 \supset A_2 \supset \cdots$ and $A = \bigcap_{i=1}^{\infty} A_i$) with $\mu(A_1) < \infty$ then $\mu(A_i) \downarrow \mu(A)$.

Definition. Let \mathcal{A} be a class of subsets of Ω . Then $\sigma(\mathcal{A})$ denotes the smallest σ -algebra that contains \mathcal{A} .

For any any \mathcal{A} , such $\sigma(\mathcal{A})$ exists and is unique: [1, Exercise 1.1.1].

Definition. Borel σ -field on \mathbb{R}^d , denoted by \mathcal{R}^d , is the smallest σ -field containing all open sets.

Theorem ([1, Theorem 1.1.2]). There is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$\mu((a,b]) = b - a.$$

Such measure is called Lebesgue measure.

Example ([1, Example 1.1.3]). Product space

 $(\Omega_i, \mathcal{F}_i, \mathcal{P}_i)$: sequence of probability spaces

Let
$$\Omega = \Omega_1 \times \cdots \times \Omega_n = \{(\omega_1, \cdots, \omega_n) | \omega_i \in \Omega_i\}$$

 $\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$ =the σ -field generated by $A_1 \times \cdots \times A_n$, where $A_i \in \mathcal{F}_i$

$$P = P_1 \times \cdots \times P_n$$
 (i.e. $P(A_1 \times \cdots \times A_n) = P_1(A_1) \cdots P_n(A_n)$

Distribution and Random Variables

Definition. Let (Ω, \mathcal{F}) and (S, \mathcal{S}) are measurable spaces. A mapping $X : \Omega \to S$ is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) if

for all
$$B \in \mathcal{S}$$
, $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F}$.

If $(S, S) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 1_A of a set $A \in \mathcal{F}$:

$$1_A(\omega) = \begin{cases} 1 & \omega \in A, \\ 0 & \omega \notin A. \end{cases}$$

If X is a random variable, then X induces a probability measure on \mathbb{R} .

Definition. The probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined as $\mu(A) = P(X \in A)$ for all $A \in \mathcal{B}(\mathbb{R})$ is called the distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F(x) of a random variable X is defined as $F(x) = P(X \le x)$.

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:

- (i) F is nondecreasing.
- (ii) $\lim_{n\to\infty} F(x) = 1$, $\lim_{n\to-\infty} F(x) = 0$.
- (iii) F is right continuous. i.e. $\lim_{y\downarrow x} F(y) = F(x)$.
- (iv) $P(X < x) = F(x-) = \lim_{y \uparrow x} F(x)$.
- (v) P(X = x) = F(x) F(x-).

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of some random variable. That is, there exists a triple (Ω, \mathcal{F}, P) and a random variable X such that $F(x) = P(X \le x)$.

Theorem. If F satisfies (i) (ii) (iii), then \exists ! probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for all a < b, $\mu((a,b]) = F(b) - F(a)$

Definition. If X and Y induce the same distribution μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we say X and Y are equal in distribution. We write

$$X \stackrel{d}{=} Y$$
.

Definition. When the distribution function $F(x) = P(X \le x)$ has the form $F(x) = \int_{-\infty}^{x} f(y) dy$, then we say X has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([1, Theorem 1.3.2]). If $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $f : (S, \mathcal{S}) \to (T, \mathcal{T})$ are measurable maps, then f(X) is measurable.

Theorem. $f:(S,S)\to (T,T)$ and suppose $S=\sigma(open\ sets),\ \mathcal{T}=\sigma(open\ sets).$ Then, if f is continuous then f is measurable.

Theorem ([1, Theorem 1.3.3]). If X_1, \dots, X_n are random variables and $f: (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \dots, X_n)$ is a random variable.

Theorem ([1, Theorem 1.3.4]). If X_1, \dots, X_n are random variables then $X_1 + \dots + X_n$ is a random variable.

Remark. If X, Y are random variables, then

$$cX$$
 (c is scalar), $X \pm Y$, XY , $\sin(X)$, X^2 , \cdots ,

are all random variables.

Theorem ([1, Theorem 1.3.5]). $\inf_{n} X_n$, $\sup_{n} X_n$, $\lim_{n} \sup_{n} X_n$, $\lim_{n} \inf_{n} X_n$ are random variables.

Integration

Let μ be a σ -finite measure on (Ω, \mathcal{F}) .

Definition. For any predicate $Q(\omega)$ defined on Ω , we say Q is true $(\mu-)$ almost everywhere (or a.e.) if $\mu(\{\omega: Q(\omega) \ is \ false\}) = 0$

Step 1.

Definition. φ is a simple function if $\varphi(\omega) = \sum_{i=1}^{n} a_i 1_{A_i}$ with $A_i \in \mathcal{F}$ If φ is a simple function and $\varphi \geq 0$, we let

$$\int \varphi d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$$

Step 2.

Definition. If f is measurable and $f \geq 0$ then we let

$$\int f d\mu = \sup \{ \int h d\mu : \ 0 \le h \le f \ and \ h \ simple \}$$

Step 3.

Definition. We say measurable f is integrable if $\int |f| d\mu < \infty$

let
$$f^+(x) := f(x) \vee 0$$
, $f^-(x) := (-f)(x) \vee 0$ where $a \vee b = \max(a, b)$

We define the integral of f by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

we can also define $\int f d\mu$ if $\int f^+ d\mu = \infty$ and $\int f^- d\mu < \infty$, or $\int f^+ d\mu < \infty$ and $\int f^- d\mu = \infty$

Theorem. (1.4.7) Suppose f and g are integrable.

(i) If
$$f \ge 0$$
 a.e. then $\int f d\mu \ge 0$

(ii)
$$\forall a \in \mathbb{R}, \ \int afd\mu = a \int fd\mu$$

(iii)
$$\int f + g d\mu = \int f d\mu + \int g d\mu$$

(iv) If
$$g \leq f$$
 a.e. then $\int g d\mu \leq \int f d\mu$

(v) If
$$g = f$$
 a.e. then $\int g d\mu = \int f d\mu$

$$(vi) \mid \int f d\mu \mid \leq \int |f| d\mu$$

Independence

Definition. Let (Ω, \mathcal{F}, P) be probability space. Two events $A, B \in \mathcal{F}$ are independent if

$$P(A \cap B) = P(A) \times P(B)$$

Two random variables X and Y are independent if

$$\forall C, D \in \mathcal{R}, \ P(X \in C, \ Y \in D) = P(X \in C)P(Y \in D)$$

Two σ -fields \mathcal{F}_1 and $\mathcal{F}_2(\subset \mathcal{F})$ are independent if

 $\forall A \in \mathcal{F}_1, \ \forall B \in \mathcal{F}_2, A \text{ and } B \text{ are independent.}$

Remark. An infinite collection of objects (σ -fields, random variables, or sets) is said to be independent if every finite subcollection is.

Definition. σ -fields $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent if

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i), \ \forall A_i \in \mathcal{F}_i$$

random variables X_1, \cdots, X_n are independent if

P(
$$\bigcap_{i=1}^{n} \{X_i \in B_i\}$$
) = $\prod_{i=1}^{n} P(X_i \in B_i)$, $\forall B_i \in \mathcal{R}$

Sets A_1, \dots, A_n are independent if

$$P(\bigcap_{i\in I} A_i) = \prod_{i\in I} P(A_i)$$
 for all $I\subset \{1,\cdots,n\}$

Remark. the definition of independent events is not enough to assume pairwise independent, which is $P(A_i \cap A_j) = P(A_i)P(A_j)$, $i \neq j$. It is clear that independent events are pairwise independent, but converse is not true.

Example. Let X_1, X_2, X_3 be independent random variables with $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$

Let $A_1 = \{X_2 = X_3\}$, $A_2 = \{X_3 = X_1\}$ and $A_3 = \{X_1 = X_2\}$. These events are pairwise independent but not independent.

Weak laws of large numbers

Various modes of convergence

 $\{X_n\}$ and X are random variables defined on (Ω, \mathcal{F}, P)

Definition. $X_n \to X$ almost surely (a.s.) (with probability 1(w.p. 1), almost everywhere (a.e.)) if $P\{\omega: X_n(\omega) \to X(\omega)\} = 1$

Equivalent definition :
$$\forall \epsilon, \lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| \le \epsilon \ \forall n \ge m\} = 1$$
 or $\forall \epsilon, \lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| > \epsilon \ \forall n \ge m\} = 0$

Definition. $X_n \to X$ in probability (in pr, \xrightarrow{p}) if $\lim_{n \to \infty} P\{|X_n - X| > \epsilon\} = 0$

Theorem. $X_n \to X$ a.s. $\Longrightarrow X_n \stackrel{p}{\longrightarrow} X$

Remark. $X_n \xrightarrow{p} X \not\Rightarrow X_n \to X$ a.s.

Definition.
$$X_n \to X$$
 in L_p , $0 if $\lim_{n \to \infty} E(|X_n - X|^p) = 0$ provided $E|X_n|^p < \infty$, $E|X|^p < \infty$.$

Theorem. $X_n \to X$ in $L_p \implies X_n \stackrel{p}{\longrightarrow} X$

Theorem. (Chebyshev inequality)

$$P(|X| \ge \epsilon) \le \frac{E|X|^p}{\epsilon^p}$$

Remark. $X_n \stackrel{p}{\longrightarrow} X \not\Rightarrow X_n \to X$ in L_p

Example.
$$\Omega = [0, 1], \ \mathcal{F} = \mathcal{B}[0, 1], \ P = Unif[0, 1]$$

 $X(\omega) = 0, \ X_n(\omega) = nI(0 \le \omega \le \frac{1}{n})$
Then $P\{|X_n(\omega) - X(\omega)| > \epsilon\} = P\{0 \le \omega \le \frac{1}{n}\} = \frac{1}{n} \to 0$
But $E|X_n - X| = E|X_n| = 1$

Theorem. $X_n \stackrel{p}{\longrightarrow} X$ and there exists a random variables Z s.t. $|X_n| \leq Z$ and $E|Z|^p < \infty$

Then
$$X_n \to X$$
 in L_p .

Remark. If
$$E|X|<\infty$$
, then
$$\lim_{n\to\infty}\int_{A_n}|X|dP\to 0 \text{ whenever } P(A_n)\to 0$$

2..2.1. L_2 weak law

Theorem ([1, Theorem 2.2.3]). Let X_1, X_2, \cdots be uncorrelated random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$

Let
$$S_n = \sum_{i=1}^n X_i$$
. Then $\frac{S_n}{n} \to \mu$ in L_2 and so in pr.

Theorem ([1, Theorem 2.2.9]). Weak law of large numbers

Let X_1, X_2, \cdots be i.i.d. random variables with $E|X_i| < \infty$.

Let
$$S_n = X_1 + \cdots + X_n$$
 and let $\mu = EX_1$.

Then
$$\frac{S_n}{n} \to \mu$$
 in pr.

Weak Convergence

Definition. A sequence of distribution function F_n converges weakly to a limit F $(F_n \Rightarrow F, F_n \xrightarrow{w} F)$ if $F_n(y) \to F(y) \forall y$ that are continuity points of F.

Definition. A sequence of random variables $\{X_n\}$ converges weakly or converges in distribution to a limit X $(X_n \Rightarrow X, X_n \xrightarrow{w} X, X_n \xrightarrow{d} X)$

If the distribution function F_n of X_n converges weakly to the distribution of X.

Example ([1, Example 3.2.1]). Let X_1, X_2, \cdots be iid with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$.

Let
$$S_n = X_1 + \cdots + X_n$$
.

Then
$$F_n(y) = P(S_n/\sqrt{n} \le y) \to \int_{-\infty}^y \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \ \forall y$$

That is,
$$F_n \Rightarrow N(0,1)$$

Example ([1, Example 3.2.3]). Let $X \sim F$ and $X_n = X + \frac{1}{n}$ Then $F_n(x) = P(X_n \le x) = F(x - \frac{1}{n}) \to F(x - 1)$ Hence $F_n(x) \to F(x)$ only when F(x) = F(x - 1)(i.e. x is a continuity point of F) so $X_n \to X$

Example ([1, Example 3.2.4]).
$$X_p \sim Geo(p)$$
 (i.e. $P(X_p \ge m) = (1-p)^{m-1}$)
Then $P(X_p > \frac{x}{p}) = (1-p)^{\frac{x}{p}} \to e^{-x}$ as $p \to 0$

Central Limit Theorem

Theorem ([1, Theorem 3.4.1]). Let X_1, X_2, \cdots be iid with $EX_i = \mu$ and $Var(X_i) = \sigma^2 > 0$. If $S_n = X_1 + \cdots + X_n$, then $(S_n - n\mu)/(\sqrt{n}\sigma) \xrightarrow{d} N(0, 1)$

Theorem ([1, Theorem 3.4.9]). Berry-Essen theorem

Let
$$X_1, X_2, \cdots$$
 be i.i.d. with $EX_i = 0$, $EX_i^2 = \sigma^2$ and $E|X_1|^3 = \rho < \infty$
Let $F_n(x)$ be the distribution function of $(X_1 + \cdots + X_n)/(\sigma\sqrt{n})$ and $\Phi(x)$ be the standard normal distribution.
Then $\sup_x |F_n(x) - \Phi(x)| \le 3\rho/(\sigma^3\sqrt{n})$

Stochastic Order Notation

The classical order notation should be familiar to you already.

- 1. We say that a sequence $a_n = o(1)$ if $a_n \to 0$ as $n \to \infty$. Similarly, $a_n = o(b_n)$ if $a_n/b_n = o(1)$.
- 2. We say that a sequence $a_n = O(1)$ if the sequence is eventually bounded, i.e. for all n large, $|a_n| \le C$ for some constant $C \ge 0$. Similarly, $a_n = O(b_n)$ if $a_n/b_n = O(1)$.
- 3. If $a_n = O(b_n)$ and $b_n = O(a_n)$ then we use either $a_n = \Theta(b_n)$ or $a_n \times b_n$.

When we are dealing with random variables we use stochastic order notation.

1. We say that $X_n = o_P(1)$ if for every $\epsilon > 0$, as $n \to \infty$

$$\mathbb{P}\left(|X_n| \ge \epsilon\right) \to 0,$$

i.e. X_n converges to zero in probability.

2. We say that $X_n = O_P(1)$ if for every $\epsilon > 0$ there is a finite $C(\epsilon) > 0$ such that, for all n large enough:

$$\mathbb{P}\left(|X_n| \ge C(\epsilon)\right) \le \epsilon.$$

The typical use case: suppose we have X_1, \ldots, X_n which are i.i.d. and have finite variance, and we define:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- 1. $\hat{\mu} \mu = o_P(1)$ (Weak Law of Large Number)
- 2. $\hat{\mu} \mu = O_P(1/\sqrt{n})$ (Central Limit Theorem)

As with the classical order notation, we can do some simple "calculus" with stochastic order notation and observe that for instance: $o_P(1) + O_P(1) = O_P(1)$, $o_P(1)O_P(1) = o_P(1)$ and so on.

References

[1] Rick Durrett. Probability: theory and examples, volume 31 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.