Topología

Hugo Del Castillo Mola

3 de noviembre de 2022

Índice general

ı	Topología General	2
1.	Espacios Topológicos Arbitrarios	3
	1.1. Espacios Topológicos	3
	1.2. Entornos	8
	1.3. Bases	13
	1.4. Subespacios	15
	1.5. Funciones continuas	16
	1.6. Espacio Producto	19
	1.7. Espacio Cociente	22
	1.8. Espacio Suma	25
2.	Propiedades de Separación	27
	2.1. Espacio Regular	31
	2.2. Espacio Completamente Regular	
	2.3. Espacios Normales	
3.	Propiedades Numerabilidad	42
	3.1. Axiomas Numerabilidad	42
	3.2. Separable	
	3.3. Lindelöf	
4.	Espacios Compactos	53
5.	Conexión	69

Parte I Topología General

Capítulo 1

Espacios Topológicos Arbitrarios

1.1. Espacios Topológicos

Definición 1.1 (Topología). Se llama topología sobre un conjunto X a $\forall \tau \subset \mathcal{P}(X)$ que verifique:

(G1)
$$\emptyset, X \in \mathcal{T}$$
.

(G2)
$$\forall A_1, A_2 \in \mathcal{T} \Rightarrow A_1 \cap A_2 \in \mathcal{T}$$

(G3)
$$\forall \{A_j\}_{j\in J} \subset \mathcal{T} \Rightarrow \bigcup_{j\in J} A_j \in \mathcal{T}$$

Observación. Al par (X, \mathcal{T}) se denomina espacio topológico y los elementos de X son puntos del espacio topológico.

Ejemplo. (I) Sea X un conjunto, entonces $\mathcal{P}(X) = \mathcal{T}_D$ es una topología y se llama topología discreta.

- (II) La colección $\mathcal{T} = \{X, \emptyset\}$ es también una topología y la llamamos topología trivial.
- (III) Sea (X,d) un espacio métrico y sea $\mathcal{T}_d = \{U \subset X : \forall x \in U, \epsilon > 0 : B_\epsilon \subset U\}$ es una topología y la llamamos topología inducida por la métrica d.

Observación. Toda métrica induce un espacio topológico pero no todo espacio topológico es inducido por una métrica.

Definición 1.2 (Espacio Metrizable). Sea (X, \mathcal{T}) e.t., decimos que es un espacio matizable si d métrica sobre X tal que $\mathcal{T} = \mathcal{T}_d$.

Definición 1.3 (Conjunto Abierto). Sea (X, \mathcal{T}) espacio topológico, decimos que $U \subset X$ es un conjunto abierto si $U \in \mathcal{T}$.

Observación. Si U es un conjunto abierto, entonces $X \setminus U$ es un conjunto cerrado.

Observación. Existen conjuntos que son abiertos y cerrados simultáneamente. Y existen conjuntos que no son ni abiertos ni cerrados.

Ejemplo. Sea el espacio topológico $(\mathbb{R}, \mathcal{T}_u)$ entonces S = (0, 1]) no es ni abierto ni cerrado.

Ejemplo. Sea el espacio topológico (X, \mathcal{T}_d) donde $\mathcal{T}_d = \mathcal{P}(X)$ entonces $\forall S \subset X$, S es abierto y cerrado simultáneamente.

Definición 1.4 (Comparación de Topologías). Sean \mathcal{T} y \mathcal{T}' dos topologías sobre un conjunto $X \neq \emptyset$. Si $\mathcal{T} \subset \mathcal{T}'$ se dice que \mathcal{T}' es más fina (más fuerte) que \mathcal{T} . También podemos decir que \mathcal{T} es menos fina que \mathcal{T}' .

Notación. Sea (X, \mathcal{T}) e.t., $\mathcal{C}_{\mathcal{T}} = \{C \subset X : C \text{ es cerrado en } (X, \mathcal{T})\}.$

Proposición 1.1 (Dualidad conjuntos abiertos y cerrados). Sea \mathcal{F} es la familia de conjuntos cerrados de un espacio topológico (X, \mathcal{F}) .

- (F1) \emptyset , X son cerrados.
- (F2) $\forall C_1, C_2 \text{ cerrados} \Rightarrow C_1 \cup C_2 \text{ es cerrado.}$
- (F3) $\forall \{C_j\}_{j\in J} \text{ cerrados} \Rightarrow \bigcap_{j\in J} C_j \text{ es cerrado.}$

Recíprocamente, si $X \neq \emptyset$, $\mathcal{F} \subset \mathcal{P}(X)$ y \mathcal{F} cumple (i, ii, iii) entonces la colección de los miembros complementarios a \mathcal{F} es una topología sobre X en donde la familia de cerrados es \mathcal{F} .

Observación. Este resultado muestra la relación entre las nociones de conjuntos abiertos y cerrados. Cualquier resultado sobre conjuntos abiertos en un espacio topológico se convierte en uno sobre cerrados al remplazar **abierto** por **cerrado** $y \cup por \cap$.

Definición 1.5 (Adherencia). Sea (X, \mathcal{T}) e.t. y $S \subset X$ se llama adherencia de S en (X, \mathcal{T}) al conjunto

$$\overline{S} = \bigcap \{C \subset X : C \text{ es cerrado y } S \subset C\}$$

Observación. \overline{S} es cerrado, $S \subset \overline{S}$ y \overline{S} es el menor cerrado que contiene a S.

Lema 1.0.1. Si $A \subset B$, entonces $\overline{A} \subset \overline{B}$.

Demostración. Como $B \subset \overline{B}$, $A \subset B \Rightarrow A \subset \overline{B}$ y por ser \overline{B} cerrado, se tiene que $\overline{A} \subset \overline{B}$.

Proposición 1.2 (Propiedades Adherencia). Sea (X, \mathcal{T}) e.t. entonces

- (K1) $\overline{\emptyset} = \emptyset$,
- (K2) $\forall S \subset X, S \subset \overline{S}$,
- (K3) $\forall S \subset X, \overline{\overline{S}} = S$,
- (K4) $\forall A, B \subset X, \overline{A \cup B} = \overline{A} \cup \overline{B}$,
- (K5) $\forall C \subset X$, C es cerrado $\Leftrightarrow C = \overline{C}$.

Demostración. (iv) Sea (X, \mathcal{T}) espacio topológico. Dado que $A \cup B \subset \overline{A \cup B}$ se tiene que $\overline{A \cup B} \subset \overline{A \cup B}$. Por otro lado, $A \subset A \cup B$ y $B \subset A \cup B$ entonces $\overline{A} \subset \overline{A \cup B}$ y $\overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Teorema 1.1. Sea $X \neq \emptyset$ y $\varphi : \mathcal{P}(X) \to \mathcal{P}(X) : S \mapsto \varphi(S) \equiv \overline{S}$ tal que φ cumple las 4 propiedades anteriores. Entonces, existe una única topología \mathcal{F} sobre X tal que $\forall S \subset X, \varphi(S)$ es la adherencia de S en (X, \mathcal{F}) .

Demostración. Sea $\mathcal{F} = \{F \subset X : \overline{F} = F\} \subset \mathcal{P}(X)$. Queremos ver que se cumplen las propiedades de Prop.1.1.(i, ii, iii).

(I) Por Prop.1.2(i, ii).

- (II) Por Prop.1.2(iv), sean $F_1, F_2 \in \mathcal{F}$. Entonces, $\overline{F_1 \cup F_2} = \overline{F_1} \cup \overline{F_2} = F_1 \cup F_2 \Rightarrow F_1 \cup F_2 \in \mathcal{F}$.
- (III) Si $F\subset G$ por Prop.1.2(iv) $\overline{G}=\overline{F}\cup(\overline{G\setminus F})\Rightarrow \overline{F}\subset \overline{G}$ Ahora, sean $F_j\in\mathcal{F}, \forall j\in J$ Entonces, $\bigcap_{j\in J}F_j\subset F_j, \forall j\in J\Rightarrow \overline{\bigcap_{j\in J}F_j}\subset \overline{F_j}, \forall j\in J$ y por tanto, $\overline{\bigcap_{j\in J}F_j}\subset \bigcap_{j\in J}\overline{F_j}=\bigcap_{j\in J}F_j$ y por Prop.1.2(ii) se tiene que $\overline{\bigcap_{j\in J}F_j}=\bigcap_{j\in J}F_j$, esto es, $\bigcap_{j\in J}F_j\in\mathcal{F}$.

Por tanto, \mathcal{F} es la familia de cerrados de algún e.t. (X,\mathcal{T}) . Falta por ver que la adherencia es la operación φ . Dado que $\overline{\overline{S}} = \overline{S}$ se tiene que $\overline{S} \in \mathcal{F}$ y por Prop.1.2(ii) $S \subset \overline{S}$. Si $C \in \mathcal{F}$ tal que $S \subset C$ entonces $\overline{S} \subset \overline{C} = C \Rightarrow \overline{S}$ es el elemento de \mathcal{F} más pequeño que contiene a S.

Observación. A la operación anterior se le llama operación de clausura de Kuratowski.

Definición 1.6 (Interior). Sea (X, \mathcal{T}) e.t., $S \subset X$ se llama interior de S en (X, \mathcal{T}) al conjunto

$$\mathring{S} = \bigcup \{A \subset X \text{ abierto y } A \subset S\}.$$

Observación. \mathring{S} es abierto de \mathcal{T} , $\mathring{S} \subset S$ y es el mayor abierto contenido en S.

Proposición 1.3 (Propideades interior). content

Proposición 1.4. Sea (X, \mathcal{T}) e.t., $S \subset X$. Enotnces:

- (I) $X \setminus \overline{S} = (X \stackrel{\circ}{\setminus} S)$.
- (II) $X \setminus \mathring{S} = \overline{X \setminus S}$.

Observación. $\overline{S^c} = \mathring{S}^c$.

Demostración. (I) $X \setminus \bigcap_{C \in \mathcal{F}: S \subset C} C = \bigcup_{C \in \mathcal{F}: S \subset C} X \setminus C = \bigcup_{G \in \mathcal{T}: G \subset X \setminus S} G = (X \mathring{\setminus} S)$

(II)
$$X \setminus \mathring{S} = X \setminus \bigcup_{G \in \mathcal{T}: G \subset S} G = \bigcap_{G \in \mathcal{T}: G \subset S} (X \setminus G) = \bigcap_{C \in \mathcal{F}: X \setminus S \subset C} C = \bigcap_{G \in \mathcal{T}: G \subset S} G = \bigcap_{G \in \mathcal{T}: G \subset G} G$$

$$\overline{X \setminus S}$$

Definición 1.7 (Frontera). Sea (X, \mathcal{T}) e.t., $S \subset X$. Se llama frontera de S en (X, \mathcal{T}) a

$$Fr(S) = \overline{S} \cap \overline{(X \setminus S)}$$

Observación. Fr(S) es cerrado

Observación. $Fr(S) = Fr(X \setminus S)$

Observación. $Fr(S) \not\subset S$

Proposición 1.5. Sea (X, \mathcal{T}) e.t., $S \subset X$. Entonces:

(I)
$$\overline{S} = S \cup Fr(S)$$

(II)
$$\mathring{S} = S \setminus Fr(S) = S \setminus (Fr(S) \cap S)$$

(III)
$$X = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(S)$$

(IV)
$$Fr(S) = \overline{S} \setminus \mathring{S}$$

Demostración. (I)

$$S \cup Fr(S) = S \cup \left(\overline{S} \cap \overline{X \setminus S}\right) =$$
$$= (S \cup \overline{S}) \cap (S \cup \overline{X \setminus S}) = \overline{S}$$

(II)
$$S \setminus Fr(S) = S \setminus (\overline{S} \cap \overline{X \setminus S}) =$$
$$= (S \setminus \overline{S}) \cup (S \setminus \overline{X \setminus S}) = \emptyset \cup (S \cap (X \setminus \overline{X \setminus S})) =$$
$$= (S \cap (X \setminus (X \setminus \mathring{S}))) = (S \cap \mathring{S}) = \mathring{S}$$

(III)
$$X = \mathring{S} \cup (X \setminus \mathring{S}) = \mathring{S} \cup \overline{X \setminus S} = \\ = \mathring{S} \cup \left[(X \setminus S) \cup Fr(X \setminus S) \right] = \\ = \mathring{S} \cup \left[(X \mathring{\setminus} S) \cup \left(Fr(X \setminus S) \cap (X \setminus S) \right) \cup Fr(X \setminus S) \right] = \\ = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(X \setminus S) = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(S)$$

(IV)
$$Fr(S) = \overline{S} \cap \overline{(X \setminus S)} = \overline{S} \cap (X \setminus \mathring{S})$$

Definición 1.8. Sea (X,\mathcal{T}) e.t., $S\subset X$ se dice que es denso en (X,\mathcal{T}) si $\overline{S}=X$

1.2. Entornos

Definición 1.9. Sea (X, \mathcal{T}) e.t., $x \in X$, $V \subset X$. Se dice que V es un entorno de x en (X, \mathcal{T}) si $\exists A \in \mathcal{T} : x \in A \subset V$.

Definición 1.10. Sea (X, \mathcal{T}) e.t., $x \in X$, $\mathcal{V}(x)$ es la colección de todos los entornos de x y se llama sistema de entornos de x en (X, \mathcal{T}) .

Observación. Si (X, \mathcal{T}) e.t., $x \in X$, $V \subset X$ entonces V es entorno de $x \Leftrightarrow x \in \mathring{V}$.

Notación. U^x, V^x entornos de x.

Proposición 1.6. Sea (X, \mathcal{T}) e.t., $\mathcal{V}(x)$ tiene las siguiente propiedades:

- (N1) $\forall U \in \mathcal{V}(x) \Rightarrow x \in U$.
- (N2) $\forall U, V \in \mathcal{V}(x) \Rightarrow U \cap V \in \mathcal{V}(x)$.
- (N3) $\forall U \in \mathcal{V}(x), \exists V \in \mathcal{V}(x)$ tal que $\forall y \in V, U \in \mathcal{V}(y)$.
- (N4) $\forall U \in \mathcal{V}(x)$, $\exists V \subset X : U \subset V \Rightarrow V \in \mathcal{V}(x)$.

Demostración. (I) Trivial, a partir de la definición.

- (II) $x \in \mathring{U}, x \in \mathring{V} \Rightarrow x \in \mathring{U} \cap \mathring{V} \subset U \cap V \Rightarrow U \cap V \in \mathcal{V}(x)$.
- (III) Sean $U \in \mathcal{V}(x), V = \mathring{U}$ como $x \in \mathring{U} = V \Rightarrow \forall y \in V \in \mathcal{T}$ y $V \subset U \Rightarrow U \in \mathcal{V}(y).$
- (IV) $U \in \mathcal{V}(x), U \subset V \Rightarrow x \in \mathring{U} \subset \mathring{V} \Rightarrow V \in \mathcal{V}(x).$

Proposición 1.7. Sea $X \neq \emptyset$, $\forall x \in X : \mathcal{V}(x) \subset \mathcal{P}(x)$ que cumple (N1, N2, N3, N4) anteriores, entonces $\exists ! \mathcal{T}$ sobre $X : \forall x \in X, \mathcal{V}(x)$ es el sistema de entornos de x en (X, \mathcal{T}) .

Demostración. Sea $\mathcal{T} = \{G \subset X : \forall x \in G, G \in \mathcal{V}(x)\}$. Vemos que \mathcal{T} es una topología:

- (I) Prop1.6.(N1) $X \in \mathcal{V}(x) \Rightarrow X \in \mathcal{T}$
- (II) $\forall G_1, G_2 \in \mathcal{T}, x \in G_1 \cap G_2 \Rightarrow G_1, G_2 \in \mathcal{V}(x), Prop.1.6.(N2) \Rightarrow G_1 \cap G_2 \in \mathcal{V}(x).$
- (III) $\forall \{G_j\}_{j\in J} \subset \mathcal{T}, x \in \bigcup_{j\in J} G_j \Rightarrow \exists j_0 \in J : G_{j_0} \in \mathcal{V}(x), Prop.1.6.(N4) \Rightarrow \bigcup_{j\in J} G_j \in \mathcal{V}(x) \Rightarrow \bigcup_{j\in J} G_j \in T$
- $\Rightarrow \mathcal{T}$ es topolgía.

Vemos ahora que S es entorno de $x \Leftrightarrow S \in \mathcal{V}(x)$.

- (\Rightarrow) S entorno de x en $(X, \mathcal{T}) \Rightarrow \exists G \in \mathcal{T} : x \in G \subset S \Rightarrow G \in \mathcal{V}(x)$ Prop.1.6.(iv) $\Rightarrow S \in \mathcal{V}(x)$.
- (\Leftarrow) $S \in \mathcal{V}(x)$. Sea $U \subset S$ ACABAR

Falta ver que T es única.

Definición 1.11 (Base de Entorno). Sea $x \in X$, $\mathcal{B}(x) \subset \mathcal{V}(x)$. Se dice que $\mathcal{B}(x)$ es una base de un entorno de x en (X,\mathcal{T}) si $\forall U \in \mathcal{V}(x), \exists B \in \mathcal{B}(x) : B \subset U$.

Observación. De la definición de base queda determinado un entorno como $\mathcal{V}(x) = \{U \subset X : \exists B \in \mathcal{B}(x) : B \subset U\}$

Ejemplo. $\forall (X, \mathcal{T})$ e.t. $\mathcal{V}(x)$ es una base de entornos de x.

Ejemplo. Sea $(X, \mathcal{T}_D), \mathcal{T}_D = \mathcal{P}(x), \forall x \in X$ entonces $\mathcal{B}(x) = \{\{x\}\}$ es base de entornos de x.

Ejemplo. Sea (X, \mathcal{T}) metrizable. $\mathcal{T} = \mathcal{T}_d$, d métrica tal que $\forall x \in X, \mathcal{B}(x) = \{B_{\epsilon}(x) : \epsilon > 0\}$ entonces $\mathcal{B}(x)$ es base de entornos de x.

Ejemplo. $\forall (X, \mathcal{T})$ e.t., $\mathcal{B}(x) = \{\mathring{U} : U \in \mathcal{V}(x)\}$ es base de entornos de x.

Ejemplo. Sea $(\mathbb{R}, \mathcal{T}_u)$: $\forall x \in \mathbb{R}, \mathcal{B}(x) = \{[x - \epsilon, x + \epsilon] : \epsilon > 0\}$ entonces $\mathcal{B}(x)$ es base de entornos de x.

Proposición 1.8 (Propiedades de Bases de Entornos). Sea (X, \mathcal{T}) e.t. y $\mathcal{B}(x)$ una base de entornos de x en (X, \mathcal{T}) , $\forall x \in \mathcal{T}$. Entonces:

- (V1) $B \in \mathcal{B}(x) \Rightarrow x \in B$.
- (V2) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2.$
- (V3) $B_1 \in \mathcal{B}(x) \Rightarrow \exists B_2 \in \mathcal{B}(x) : \forall y \in B_2, \exists B \in \mathcal{B}(y) \text{ tal que } B \subset B_1.$

Demostración. (V1) $\mathcal{B}(x) \subset \mathcal{V}(x), B \in \mathcal{B}(x) \Rightarrow x \in B$.

- (V2) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow B_1 \cap B_2 \in \mathcal{B}(x) \subset \mathcal{V}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2.$
- (V3) $B_1 \in \mathcal{B}(x) \subset \mathcal{V}(x)$ Prop.1.6.(iii) $\Rightarrow \exists U \in \mathcal{V}(x)$ tal que $\forall y \in U, B_1 \in \mathcal{B}(y) \Rightarrow \exists B_2 \in \mathcal{B}(x) : B_2 \subset U$ tal que $\forall y \in B_2, B_1 \in \mathcal{V}(y) \Rightarrow \exists B \in \mathcal{B}(y) : B \subset B_1$.

Proposición 1.9. Sea $X \neq \emptyset$, $\mathcal{B}: X \mapsto \mathcal{P}(\mathcal{P}(x))$ cumpliendo (i, ii, iii) anteriores, entonces se define una topología en X en la que $\mathcal{B}(x)$ es una base de entornos de $x, \forall x \in X$.

Demostración. *Sea* $\forall x \in X$,

$$\mathcal{V}(x) = \{ U \subset X : \exists B \subset U \text{ para algún } B \in \mathcal{B}(x) \}$$

tal que $\mathcal{B}(x) \subset \mathcal{V}(x)$ tiene las propiedades V1, V2, V3. Veamos que $\mathcal{V}(x)$ tiene las propiedades N1, N2, N3, N4.

- (N1) $\forall U \in \mathcal{V}(x), \exists B \subset U : B \in \mathcal{B}(x) \Rightarrow x \in B \subset U \Rightarrow x \in U.$
- (N2) $U_1, U_2 \in \mathcal{V}(x) \Rightarrow \exists B_1, B_2 \in \mathcal{B}(x) : B_1 \subset U_1, B_2 \subset U_2 \text{ y (V2)}$ $\Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2. \text{ Entonces, } U_1 \cap U_2 \in \mathcal{V}(x).$
- (N3) $U \in \mathcal{V}(x) \Rightarrow \exists B \subset U : B \in \mathcal{B}(x)$, (V3) $\Rightarrow \exists B_0 \in \mathcal{B}(x) : \forall y \in B_0, \exists B_y \in \mathcal{B}(y) : B_y \subset B$. Entonces $B \in \mathcal{V}(y), \forall y \in B_0 \Rightarrow U \in \mathcal{V}(y), \forall y \in B_0$.
- (N4) $U \in \mathcal{V}(x), V \subset X : U \subset V \Rightarrow \exists B \in \mathcal{B}(x) : B \subset U \subset V \Rightarrow V \in \mathcal{V}(x)$.

Entonces, V(x) es un sitema de entornos de $x, \forall x \in X$ y $\forall x \in X$, $\mathcal{B}(x)$ es una base de entornos de x en la topología resultante en X.

Definición 1.12 (Bases de Entronos Equivalentes). Sea $X \neq \emptyset$. Si una topología sobre X está definida por dos bases de entornos, se dice que las bases son equivalentes.

Proposición 1.10. Sea $X \neq \emptyset$. Dos bases de entornos de x, $\mathcal{B}_1(x)$, $\mathcal{B}_2(x)$ de X son equivalentes si y solo si $\forall x \in X, \forall i \in \{1,2\}, \forall B \in \mathcal{B}_i(x), \exists B_j \in \mathcal{B}_i(x) : B_j \subset B_i, \forall j \in \{1,2\}, j \neq i.$

Proposición 1.11 (Caracterización bases equivalentes). Sean $\mathcal{B}_1(x)$, $\mathcal{B}_2(x)$ dos bases de entornos de x en (X, \mathcal{T}) , estas son equivalentes $\Leftrightarrow \forall x \in X, \forall i \in \{1,2\}, \forall B_i \in \mathcal{B}_i(x), \exists B_j \in \mathcal{B}_j(x), j \in \{1,2\}, j \neq i : B_j \subset B_i$.

Demostración. (\Rightarrow) $\forall i \in \{1,2\}, \forall B_i \in \mathcal{B}(x) \subset \mathcal{V}(x) \Rightarrow \exists B_j \in \mathcal{B}(x), \forall j \in \{1,2\}, j \neq i.$

(⇐) ACABAR

Definición 1.13. Sea (X, \mathcal{T}) e.t. $S \subset X, x \in X$.

- (I) Se dice que x es un puto interior de S en (X, \mathcal{T}) si $\exists \mathcal{U}^x : \mathcal{U}^x \subset S$.
- (II) Se dice que x es un punto adherente de S en (X, \mathcal{T}) si $\forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset$.
- (III) Se dice que x es un punto de acumulación si $\forall \mathcal{U}^x$, $\mathcal{U}^x \setminus \{x\} \cap S \neq \emptyset$.
- (IV) Se dice que x es un punto de frontera si $\forall \mathcal{U}^x$, $\mathcal{U}^x \cap S \neq \emptyset$, $\mathcal{U}^x \cap (X \setminus S) \neq \emptyset$.
- (v) Se dice que x es punto aislado si $\exists \mathcal{U}^x$ tal que $\mathcal{U}^x \cap S = \{x\}$.

Definición 1.14. El conjunto de puntos de acumulación se llama conjunto derivado y se denota S'.

Proposición 1.12. Sea (X, \mathcal{T}) e.t. Entonces,

- (I) $A \subset X$ es abierto de $(X, \mathcal{T}) \Leftrightarrow \forall x \in A, \exists \mathcal{U}^x : \mathcal{U}^x \subset A$.
- (II) $C \subset X$ es cerrado $\Leftrightarrow \forall x \notin C, \exists \mathcal{U}^x : \mathcal{U}^x \cap C = \emptyset$.
- (III) $S \subset X$, $\mathring{S} = \{x \in X : \exists \mathcal{U}^x, \mathcal{U}^x \subset S\}.$
- (IV) $S \subset X, \overline{S} = \{x \in X : \forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset\}.$
- (v) $S \subset X$, $Fr(S) = \{x \in X : \forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset, \mathcal{U}^x \cap (X \setminus S) \neq \emptyset\}$.

Demostración. (I) Es la propiedad V1.

- (II) C es cerrado $\Leftrightarrow X \setminus C \in \mathcal{T} \Leftrightarrow \forall x \in X \setminus C, \exists \mathcal{U}^x : \mathcal{U}^x \subset X \setminus C \Rightarrow X \setminus C$ es abierto.
- (III) Sigue de (iv) aplicando las leyes de De Morgan.
- (IV) $X \setminus \overline{S} = (X \ \hat{\ } S) = \{x \in X : \exists \mathcal{U}^x, \mathcal{U}^x \subset X \setminus S\}$ cuyo complementario es $\overline{S} = \{x \in X : \forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset\}.$
- (v) $Fr(S) = \overline{S} \cap \overline{X \setminus S}$

Observación. En la proposición anterior se pueden usar bases en lugar de sistemas de entornos.

Corolario 1.1.1. Sea (X, \mathcal{T}) e.t., $S \subset X$ entonces

- (I) $\overline{S} = \{x \in X : x \text{ es punto adherente de } S\}.$
- (II) $\mathring{S} = \{x \in X : x \text{ es punto interior de } S\}.$
- (III) $Fr(S) = \{x \in X : x \text{ es punto frontera de } S\}.$

Proposición 1.13. Sea (X, \mathcal{T}) e.t. $E \subset X$. Entonces E es denso en $(X, \mathcal{T}) \Leftrightarrow \forall U \in \mathcal{T} \setminus \{\emptyset\}, U \cap E \neq \emptyset$.

- **Demostración.** (\Rightarrow) Suponemos que E es denso, es decir, $\overline{E} = X$. Entonces, $\forall U \in \mathcal{T} \setminus \{\emptyset\}$, U es abierto $\Rightarrow \forall x \in \mathring{U} = U \Rightarrow U$ es entorno de x en (X,\mathcal{T}) . Y como x es punto adherente de $E \Rightarrow U \cap F \neq \emptyset$.
- (\Leftarrow) $\forall x \in X, \forall \mathcal{U}^x$ entorno de $x \Rightarrow \mathring{\mathcal{U}}^x \subset \mathcal{U}^x \subset X \Rightarrow \mathring{\mathcal{U}}^x \in \mathcal{T} \setminus \{\emptyset\}$ y por la hipótesis $\mathring{\mathcal{U}}^x \cap E \subset \mathcal{U}^x \cap E \neq \emptyset \Rightarrow x$ punto adherente de E, $x \in \overline{E} \Rightarrow X \subset \overline{E}$.

1.3. Bases

Definición 1.15 (Base). Sea (X, \mathcal{T}) e.t., $\mathcal{B} \subset \mathcal{T}$. Se dice que \mathcal{B} es base de \mathcal{T} si $\forall A \in \mathcal{T}, \exists \mathcal{B}_A \subset \mathcal{B} : A = \bigcup_{B \in \mathcal{B}_A} B$. Y se dice que \mathcal{T} está engendrada por \mathcal{B} .

Observación. $\mathcal{B} \subset \mathcal{T}$ tal que $\mathcal{T} = \{\bigcup_{B \in \mathcal{B}_A} B : \mathcal{B}_A \subset \mathcal{B}\}.$

Observación. $\mathcal{B} \subset \mathcal{T}$ es una base de $X \Leftrightarrow \forall A \in \mathcal{T}, \forall x \in A \Rightarrow \exists B \in \mathcal{B} : x \in B \subset A$.

Ejemplo. (I) $(\mathbb{R}, \mathcal{T}_u), \mathcal{B} = \{(a, b) : a < b\}$ es base de \mathcal{T}_u .

- (II) $(X, \mathcal{T}_u), \mathcal{B} = \{\{x\} : x \in X\}$ es base de \mathcal{T}_u .
- (III) (X, \mathcal{T}) metrizble, \mathcal{T}_d topología inducida por d. Entonces $\mathcal{B} = \{B_{\epsilon}(x) : x \in X, \epsilon > 0\}$ es base de \mathcal{T}_d .

Proposición 1.14. Sea (X, \mathcal{T}) e.t., $\mathcal{B} \subset \mathcal{T}$ entonces, \mathcal{B} es base de $\mathcal{T} \Leftrightarrow \forall x \in X, \mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$ es base de entornos de x en (X, \mathcal{T}) .

Observación. La única diferencia entre bases y bases de entornos es que las bases no tinen por que consister de conjuntos abiertos.

- **Demostración.** (\Rightarrow) Suponemos que \mathcal{B} es base de X, $x \in X$ y $\mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$. Sea $U \in \mathcal{B}_x$ entonces $U \in \mathcal{B} \subset \mathcal{T} : x \in U = \mathring{U} \Rightarrow U$ es un entorno de x. Sea $U \in \mathcal{V}(x)$, entonces $x \in \mathring{U} \in \mathcal{T}$ donde $\mathcal{T} = \{\bigcup_{B \in \mathcal{B}_U} B : \mathcal{B}_U \subset \mathcal{B}\}$, es decir, \mathring{U} es la unión de elementos de \mathcal{B} entonces $\exists B \in \mathcal{B} : x \in B \subset \mathring{U}$. Por tanto, $\forall U \in \mathcal{V}(x), \exists B \in \mathcal{B}_x : B \subset U \Rightarrow \mathcal{B}_x$ es base de entronos de x.
- (\Leftarrow) Suponesmos que \mathcal{B}_x es una base de entornos de x, $\forall x \in X$ y $\mathcal{B} = \bigcup_{x \in X} \mathcal{B}_x$. Entonces, $\forall A \in \mathcal{T}, \forall x \in A, \exists B_x \in \mathcal{B} : x \in B_x \subset A \Rightarrow$

 $A = \bigcup \{B_x : x \in A\} \Rightarrow \mathcal{B} \text{ es base para } X.$

Teorema 1.2. Sea $X \neq \emptyset$, $\mathcal{B} \subset \mathcal{P}(X)$. Entonces, \mathcal{B} es base de una topología \mathcal{T} en $X \Leftrightarrow$

- (I) $X = \bigcup_{B \in \mathcal{B}} B$.
- (II) $\forall B_1, B_2 \in \mathcal{B}, \ p \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \mathcal{B} : p \in B_3 \subset B_1 \cap B_2.$

Demostración. (I) (\Rightarrow) $\mathcal{T} = \{ \bigcup_{B \in \mathcal{B}'} B : \mathcal{B}' \in \mathcal{B} \}, X \in \mathcal{T} \Rightarrow \exists \mathcal{B}_0 \in \mathcal{B} : X = \bigcup_{B \in \mathcal{B}_0} B.$

- (II) (\Rightarrow) A partir de la definición de base. ($B_1 \cap B_2 \in \mathcal{B} \subset \mathcal{T} \Rightarrow \exists B_3 \in \mathcal{B}: B_3 \subset B_1 \cap B_2$).
- (\Leftarrow) Suponemos que $X = \bigcup_{B \in \mathcal{B}} B$ donde $\mathcal{B} = \{K \subset X : K \text{ cumple las propiedades (i), (ii)} \}.$ Sea $\mathcal{T} = \{\bigcup_{B \in \mathcal{B}'} B : \mathcal{B}' \subset \mathcal{B}\}$. Entonces,
 - (G1) $\emptyset = \bigcup_{B \in \emptyset} B \in \mathcal{T} \ \ y \ X \in \mathcal{T}.$
 - (G2) $\left(\bigcup_{B\in\mathcal{B}_1}B\right)\cap\left(\bigcup_{B'\in\mathcal{B}_2}B'\right)=\bigcup_{B\in\mathcal{B}_1,B'\in\mathcal{B}_2}B\cap B'$, por (ii) \Rightarrow la intersección de dos elementos de \mathcal{B} es una unión de elementos de \mathcal{B} .
 - (G3) $\{A_j\}_{j\in J} = \{\bigcup_{B\in\mathcal{B}_i} B : j\in J\} \subset \mathcal{T} \Rightarrow \bigcup_{j\in J} A_j \in \mathcal{T}.$

Definición 1.16 (Subbase). Sea (X, \mathcal{T}) e.t. $\mathcal{S} \subset \mathcal{T}$. Se dice que \mathcal{S} es una subbase de \mathcal{T} si la familia de todas las intersecciónes finitas de \mathcal{S} es una base de \mathcal{T} .

Observación. $S \subset T$, $B = \{ \bigcap_{S \in S'} S : S' \subset S \text{ es finito} \}$ es base de T.

Proposición 1.15. Sea $X \neq \emptyset$, $S \subset \mathcal{P}(X)$. Entonces, S es una subbase de alguna topolpgía sobre $X \Leftrightarrow \bigcup_{S \subset S} S = X$.

Demostración. (\Rightarrow) Sea $\mathcal{S} \subset \mathcal{T}$ una subbase de $\mathcal{T} \Rightarrow \{\bigcap_{S \in \mathcal{S}'} S : \mathcal{S}' \subset \mathcal{S}\} = \mathcal{B}$ es base de $\mathcal{T} \Rightarrow \forall B \in \mathcal{B}, \exists S_B \in \mathcal{S} : B \subset S_B \Rightarrow \bigcup_{B \in \mathcal{B}} B = X \subset \bigcup_{B \in \mathcal{B}} S_B \subset \bigcup_{S \in \mathcal{S}} S \subset X \Rightarrow \bigcup_{S \in \mathcal{S}} = X.$

 (\Leftarrow) Sea $\mathcal{B} = \{\bigcap_{S \in \mathcal{S}'} \mathcal{S}' \subset \mathcal{S}' \subset \mathcal{S}\}.$

(i)
$$\bigcap_{S \in \mathcal{S}} S = X \Rightarrow \bigcup_{B \in \mathcal{B}} = X$$
.

(ii)
$$\left(\bigcap_{S\in\mathcal{S}_1}S\right)\cap\left(\bigcap_{S'\in\mathcal{S}_2}S'\right)\bigcap_{S\in\mathcal{S}_1,S'\in\mathcal{S}_2}(S'\cap S)\subset\mathcal{B}.$$

1.4. Subespacios

Definición 1.17 (Subespacio). Sea (X, \mathcal{T}) e.t., $S \subset X$. Se llama topología relativa a S a

$$\mathcal{T}|_{S} = \{ A \cap S : A \in \mathcal{T} \}$$

y el par $(S, \mathcal{T}|_S)$ se llama subespacio topológico.

Proposición 1.16 (Propiedades Subespacio). Sea (X,\mathcal{T}) e.t., $S\subset X$. Entonces,

- (1) $C \subset S, C \in \mathcal{T}|_S \Leftrightarrow \exists A \in \mathcal{T} : A \cap S = C.$
- (II) $C \subset S$, C cerrado en $(S, \mathcal{T}|_S) \Leftrightarrow \exists F$ cerrado en $(X, \mathcal{T}) : C = F \cap S$.
- (III) $\forall C \subset S, \overline{C}^S = S \cap \overline{C}^X$.
- (IV) $\forall x \in S, \mathcal{V}^x \subset S$ es un entorno de x en $(S, \mathcal{T}|_S) \Leftrightarrow \exists \mathcal{U}^x$ entorno de x en (X, \mathcal{T}) tal que $\mathcal{U}^x \cap S = \mathcal{V}^x$.
- (v) \mathcal{B} base de $T \Rightarrow \mathcal{B}_S = \{B \cap S : B \in \mathcal{B}\}$ es base de $(S, \mathcal{T}|_S)$.

Demostración. (I) Definición de subespacio.

- (II) Sigue de (i).
- (III) Sigue de (ii) y la definición de clausura de C como la intersección de todos los conjunto cerrados que contienen E.
- (IV) Sigue de (i) y la definición de entorno de x como un conjunto que contiene un subconjunto abierto que contiene a x.
- (v) ACABAR

Observación. Sea $S \subset X, C \subset S$ entonces no necesariamente $int(C)_S \neq int(C)_X \cap S$. Por ejemplo, $(\mathbb{R}^2, \mathcal{T}_u), S = C = \{0\} \times \mathbb{R}$.

Definición 1.18. Sea (P) una propiedad de e.t. Se dice que P es propiedad hereditaria si dado e.t. que cumple P todos sus subespacios cumplen P.

1.5. Funciones continuas

Definición 1.19 (Función continua). Sean (X, \mathcal{T}) , (X', \mathcal{T}') dos e.t. $y f: X \to X'$ una aplicación. Se dice que $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es una aplicación continua en $a \in X$ si $\forall \mathcal{V}^{f(a)}$ entorno de f(a) en (X', \mathcal{T}') , $\exists \mathcal{U}^a$ entorno de a en $(X, \mathcal{T}): f(\mathcal{U}^a) \subset \mathcal{V}^{f(a)}$.

Observación. Se dice que f es continua si lo es $\forall a \in X$.

Teorema 1.3. Sean (X, \mathcal{T}) , (X', \mathcal{T}') dos e.t. y $f: X \to X'$ una aplicación. Entonces, son equivalentes:

- (I) $\forall A' \in \mathcal{T}', f^{-1}(A') \in \mathcal{T}$
- (II) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es aplicación continua.
- (III) $\forall C \subset X, f(\overline{C}^X) \subset (\overline{f(C)})^{X'}.$
- (IV) $\forall C' \subset X, \overline{f^{-1}(C')}^X \subset f^{-1}(\overline{C'}^{X'}).$
- (v) $\forall F'$ cerrado de (X', \mathcal{T}') , $f^{-1}(F')$ es cerrado de (X, \mathcal{T}) .

Demostración. $(i \Rightarrow ii)$ Sea $a \in X$, $\mathcal{V}^{f(a)}$ entorno de f(a) en $(X',\mathcal{T}') \Rightarrow \mathcal{V}^{\mathring{f}(a)}$, $f(a) \in \mathcal{V}^{\mathring{f}(a)}$. Ahora, por (i), tenemos $a \in f^{-1}(\mathcal{V}^{\mathring{f}(a)}) \in \mathcal{T}$. Sea $f^{-1}(\mathcal{V}^{\mathring{f}(a)}) = \mathcal{U}^a$. Entonces, $f(\mathcal{U}^a) = f(f^{-1}(\mathcal{V}^{\mathring{f}(a)})) \subset \mathring{\mathcal{V}}^{f(a)} \subset \mathcal{V}^{f(a)} \Rightarrow f$ es continua.

 $\begin{array}{l} \mbox{\it (ii} \Rightarrow iii) \mbox{\it Sea} \ C \subset X, a \in \overline{C}^X, \mathcal{V}^{f(a)} \mbox{\it entorno de} \ f(a) \mbox{\it en} \ (X', \mathcal{T}'). \\ \mbox{\it Entonces, por (ii),} \ \exists \mathcal{U}^a \mbox{\it entorno de} \ a \mbox{\it en} \ (X, \mathcal{T}) \mbox{\it tal que} \ f(\mathcal{U}^a) \subset \\ \mathcal{V}^{f(a)} \Rightarrow \mathcal{U}^a \cap C \neq \emptyset \Rightarrow a \in \mathcal{U}^a \cap C \Rightarrow f(a) \in f(\mathcal{U}^a) \cap f(C) \subset \\ \mathcal{V}^{f(a)} \cap f(C) \Rightarrow f(a) \in \overline{f(C)}^{X'}. \end{array}$

$$\frac{\textit{(iii} \Rightarrow \textit{iv})}{f(f^{-1}(C'))}^{X'} \subset X' \Rightarrow f'(C') \subset X' \text{ y por (iii) } f(\overline{f^{-1}(C')})^{X} \subset \overline{f'^{X'}} \Rightarrow \overline{f^{-1}(C')}^{X} \subset f^{-1}(\overline{C'}^{X'}).$$

$$(\textit{iv} \Rightarrow \textit{v}) \, F' \, \textit{cerrado} \, \textit{de} \, (X', \mathcal{T}') \Rightarrow \overline{f^{-1}(C')}^X \subset f^{-1}(\overline{F'}^{X'}) = f^{-1}(F') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado$$

 $f^{-1}(F')$ es cerrado en (X, \mathcal{T}) .

$$(v \Rightarrow i) \ A' \in \mathcal{T}' \Rightarrow X' \setminus A' \ \text{cerrado de} \ (X', \mathcal{T}') \Rightarrow f^{-1}(X' \setminus A)$$
 cerrado de $(X, \mathcal{T}) \Leftrightarrow X \setminus f^{-1}(X' \setminus A') \in \mathcal{T}. \ Y \ x \notin f^{-1}(X' \setminus A') \Leftrightarrow f(x) \notin X' \setminus A' \Leftrightarrow f(x) \in A' \Leftrightarrow x \in f^{-1}(A') \Rightarrow X \setminus f^{-1}(X' \setminus A').$

Observación. $\forall (X, \mathcal{T})$ e.t. la aplicación $1_X : (X, \mathcal{T}) \to (X, \mathcal{T})$ es continua. **Observación.** $\forall (X, \mathcal{T}), (X', \mathcal{T}')$ e.t. $\forall x_0' \in X'$ la aplicación constante con $c_{x_0'} : (X, \mathcal{T}) \to (X', \mathcal{T}')$ es constante.

Proposición 1.17. Sea $(X,\mathcal{T}),(X',\mathcal{T}'),(X'',\mathcal{T}'')$ e.t., $f:(X,\mathcal{T}) \to (X',\mathcal{T}')$ aplicación continua, $f':(X',\mathcal{T}') \to (X'',\mathcal{T}'')$ aplicación continua. Entonces, $(f'\circ f):(X,\mathcal{T}) \to (X'',\mathcal{T}'')$ es continua.

Demostración.
$$\forall A'' \in \mathcal{T}'' \Rightarrow f^{-1}(A'') \in \mathcal{T}' \Rightarrow f^{-1}(f^{-1}(A'')) \in \mathcal{T} \ y \ (f' \circ f)^{-1}(A'') = f^{-1}(f^{-1}(A'')).$$

Proposición 1.18. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua. Entoces, $f|_S: (S, \mathcal{T}|_S) \to (X', \mathcal{T}')$ es aplicación continua.

Demostración. $\forall A' \in \mathcal{T}', (f|_S)^{-1}(A') = f^{-1}(A') \cap S \in \mathcal{T}|_S.$

Proposición 1.19. Sea $(X,\mathcal{T}),(X',\mathcal{T}')$ e.t., $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ continua, $S\subset X$. Entonces, $f:(X,\mathcal{T})\to (f(X),\mathcal{T}'|_{f(X)})$ es aplicación continua.

Demostración. $\forall G' \in \mathcal{T}'|_S \Rightarrow \exists A' \in \mathcal{T}' : G' = A' \cap f(X) \Rightarrow f^{-1}(G') = f^{-1}(A' \cap f(X)) = f^{-1}(A') \in \mathcal{T}.$

Proposición 1.20. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: X \to X'$ aplicación. Si F_1, F_2 son cerrados de (X, \mathcal{T}) tal que $X = F_1 \cap F_2$ y $f|_{F_i}: (F_i, \mathcal{T}_{F_i}) \to (X', \mathcal{T}')$ es continua. Entonces, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es aplicación continua.

Demostración. $\forall F'$ cerrado de (X', \mathcal{T}') , $f^{-1}(F') = f^{-1}(F') \cap X = f^{-1}(F') \cap (F_1 \cup F_2) = (f^{-1}(F') \cap F_1) \cup (f^{-1}(F') \cap F_2)$ donde $(f^{-1}(F') \cap F_1) = f^{-1}|_{F_1}(F')$ cerrado en F_1 y $(f^{-1}(F') \cap F_2) = f^{-1}|_{F_2}(F')$ cerrado en $F_2 \Rightarrow f^{-1}(F')$ cerrado en (X, \mathcal{T}) .

Definición 1.20 (Espacio Homeomorfo). Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t. $f: X \to X'$ aplicación. Se dice que $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es homeomorfismo si f es biyectiva y f^{-1} es continua. En este caso, se dice que (X, \mathcal{T}) es homeomorfo a (X', \mathcal{T}') .

Observación. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: X \to X'$ biyectiva. Entonces, f es homeomorfismo si y solo si $A \in \mathcal{T} \Leftrightarrow f(A) \in \mathcal{T}'$.

Definición 1.21 (Invariante Topológico). Sea (P) una propiedad de e.t.. Se dice que (P) es un invariante topológico si para todo e.t. que cumpla (P) todos los e.t. homeomorfos cumplen (P).

Definición 1.22 (Aplicación Abierta). Sean
$$(X, \mathcal{T}), (X', \mathcal{T}')$$
 e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$. Entonces, f es aplicación abierta si $\forall A \in \mathcal{T}, f(A) \in \mathcal{T}'$

Observación. Una aplicación es cerrada si $\forall C$ cerrado de (X, \mathcal{T}) , f(C) cerrado de (X', \mathcal{T}') .

Observación. No hay ninguna implicación entre aplicación continua, aplicación abiera y aplicación cerrada.

Proposición 1.21. Sean $(X, \mathcal{T}), (X', \mathcal{T}'), f: X \to X'$ aplicaciones biyectivas. Entonces, son equivalentes:

- (1) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es homeomorfismo.
- (II) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación continua y abierta.
- (III) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación continua y cerrada.

Demostración.

(i \Rightarrow ii) f homeomorfismo $\Rightarrow \exists f^{-1}$ aplicación continua $\Rightarrow \forall A \in \mathcal{T}, ((f^{-1})^{-1}(A) \in \mathcal{T}'$ donde $((f^{-1})^{-1}(A) = f(A) \Rightarrow f$ aplicación abierta.

(ii \Rightarrow i) f abierta y continua $\Rightarrow \forall A \in \mathcal{T}, f(A) \in \mathcal{T}'$ donde $f(A) = ((f^{-1})^{-1}(A) \Rightarrow f^{-1}$ aplicación continua. (i \Leftrightarrow iii) es análoga.

1.6. Espacio Producto

Nota. Queremos construir nuevos espacios topológicos de los ya existentes. Nos gustaria que ocurriera como los subespacios topológicos, si f es una función continua en un espacio topológico, también lo sea en el subespacio.

Dados X,Y, $X\times Y=\{(x,y):x\in X,y\in Y\}$. Si consideramos $(X,\mathcal{T}),(X',\mathcal{T}')$ queremos ver que topología debemos usar para que poder trabajar con funciones. Si consideramos la topología $\mathcal{T}\times\mathcal{T}'\subset\mathcal{P}(X\times X!^{\mathfrak{t}})$ podemos ver que la unión de conjuntos de $\mathcal{T}\times\mathcal{T}'$ no pertenece a $\mathcal{T}\times\mathcal{T}'$. Entonces, eligimos la topología producto como la topología genereada por la base $\mathcal{T}\times\mathcal{T}'$,

$$\{W \subset X \times Y : \forall (x,y) \in W, \exists U \times V \in \mathcal{T} \times \mathcal{T}' : (x,y) \in U \times V \subset W\}$$

Definición 1.23 (Producto Cartesiano). Sea $\{X_j\}_{j\in J}\neq\emptyset$ familia de conjuntos no vacios. Se llama producto castesiano de $\{X_j\}_{j\in J}$ a

$$\prod_{j \in J} X_j = \{x: J \to \bigcup_{j \in J} X_j \text{ aplicación } : x_j \in X_j, \forall j \in J\}$$

Observación. $\forall j \in J, p_{j_0} : \prod_{j \in J} X_j \to X_{j_0} : x \mapsto x_{j_0}$ se llama proyección. **Observación.** Si $X_j = X, \forall j \in J$ entonces $\prod_{j \in J} X_j = X^J = \{x : J \to X, x \text{ aplicación }\}.$

Definición 1.24 (Axioma Elección). $\forall \{B_{\lambda}\}_{{\lambda}\in\Lambda}\neq\emptyset$ familia de conjuntos no vacios disjuntos dos a dos. Entonces, $\exists A\subset\bigcup_{{\lambda}\in\Lambda}B_{\lambda}:A\cap B_{\lambda}$ tiene un solo elemento.

Definición 1.25 (Topología Producto). Sea $\{(X_j, \mathcal{T}_{j \in J})\}_{j \in J}$ familia de e.t.. Se llama topología producto a la topología sobre $\prod_{j \in J} X_j$ generada por subbase

$$\mathcal{S} = \{ p_j^{-1}(U_j) : U_j \in \mathcal{T}_j, \forall j \in J \}$$

Esta topología se denota $\prod_{i \in J} \mathcal{T}_i$

Observación. $S_{\beta} = \{\pi_{\beta}^{-1}(U_{\beta}) : U_{\beta} \in \mathcal{T}_{\beta}\} \Rightarrow S = \bigcup_{\beta \in J} S_{\beta}$ es subbase de la topología producto.

Observación. Podemos escribir $B = \pi_{\beta_1}^{-1}(U_{\beta}) \cap \cdots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})$

Observación. El producto de abiertos no es neceseariamente abierto.

Observación. La base engendrada por S es

$$\mathcal{B} = \left\{ \bigcap_{j \in J} p_j^{-1}(U_j) : U_j \in \mathcal{T}_j, F \in \mathcal{P}(J) \right\}$$

$$= \big\{ \prod_{j \in J} A_j : A_j \in \mathcal{T}_j, \forall j \in J, A_j = X_j : \forall j \in J \setminus F \text{ no es finito } \big\}.$$

Observación. Si J es finito, entonces $\mathcal{B} = \{ \prod_{j \in J} A_j : A_j \in \mathcal{T}_j, \forall j \in J \}.$

Observación. El producto espacios discretos no es neceseariamente discreto.

Observación. $\mathcal{B} = \{\prod_{j \in J} B_j : B_j \in \mathcal{T}_j\}.$

Observación. Si \mathcal{B}_j es base de (X_j, \mathcal{T}_j) , entonces $\mathcal{B} = \{\prod_{j \in J} B_j : B_j \in \mathcal{B}_j\}$ es base de $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$.

Proposición 1.22. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia finita de e.t.. Entonces, $\forall j_0 \in J$,

$$p_{j_0}: (\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \to (X_{j_0}, \mathcal{T}_{j_0})$$

es aplicación abierta y continua.

Demostración. $\forall A \in \prod_{j \in J} A_j, A = \bigcup_{\lambda \in \Lambda} B_\lambda : B_\lambda \in \mathcal{B} \text{ donde } \mathcal{B} \text{ es subbase de } \prod_{j \in J} \mathcal{T}_j, \ B_\lambda = \{\prod_{j \in J} U_{\lambda j} : U_{\lambda j} \in \mathcal{T}_j, U_{\lambda j} = X_j, \forall j \in J \setminus F : F \text{ finito } \}. \text{ Entonces, } p_{j_0}(A) = p_{j_0}(\bigcup_{\lambda \in \Lambda} B_\lambda) = \bigcup_{\lambda \in \Lambda} p_{j_0}(B_\lambda) = \bigcup_{\lambda \in \Lambda} U_{\lambda j} \in \mathcal{T}_j \Rightarrow \text{abierto.}$

Proposición 1.23. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacia de e.t.. Entonces, la topología producto es la más débil sobre $\prod_{j \in J} X_j$ que hace continuas a todas las proyecciones.

Demostración. Sea \mathcal{T} topología sobre $\prod_{j\in J} X_j$ tal que $p_{j_0}: (\prod_{j\in J} X_j, \mathcal{T}) \to (X_{j_0}, \mathcal{T}_{j_0})$ es una proyección continua. Entonces, $\forall j_0 \in J: U_{j_0} \in \mathcal{T}_{j_0}$ se tiene $p_0^{-1}(U_{j_0}) \in \mathcal{T} \Leftrightarrow \mathcal{S} \subset \mathcal{T}$ es subbase de $\prod_{j\in J} \mathcal{T}_j \Rightarrow \prod_{j\in J} \mathcal{T}_j \subset \mathcal{T}$.

Proposición 1.24 (Propiedad Universal Topología Porducto). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia $\neq \emptyset$ e.t., $f: X \to \prod_{j \in J} X_j$ aplicación. Entonces, $f: (X, \mathcal{T}) \to (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ continua $\Leftrightarrow (p_j \circ f): (X, \mathcal{T}) \to (X_j, \mathcal{T}_j)$ continua.

Demostración. (⇒) La composición de aplicaciones continuas es continua.

(\Leftarrow) $\forall j \in J$, $(p_j \circ f)^{-1}(U_j) \in \mathcal{T}$, $\forall U_j \in \mathcal{T}_j \Rightarrow (p_j \circ f)^{-1}(U_j) = f^{-1}(p_j^{-1}(U_j)) = f^{-1}(S) \in \mathcal{T}$, $\forall S \in \mathcal{S} = \{p_j^{-1}(U_j) : U_j \in \mathcal{T}_j, \forall j \in J\}$. Entonces, $(p_j \circ f)^{-1}$ y p_j continuas $\Rightarrow f$ continua.

Proposición 1.25. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia e.t., $\sigma: J \to J$ aplicación biyectiva. Entonces, (X_j, \mathcal{T}_j) y $(X_{\sigma(j)}, \mathcal{T}_{\sigma(j)})$ son homeomorfos.

Demostración. Sea $\alpha(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)\to (\prod_{j\in J}X_{\sigma(j)},\prod_{j\in J}\mathcal{T}_{\sigma(j)}): (x_j)_{j\in J}\mapsto \alpha((x_j)_{j\in J})=(x_{\sigma(j)})_{j\in J},\ \alpha\ \text{es biyectiva}.$

- (I) $(p_j \circ \alpha) = p_{\sigma(j)}$ son continuas (Propiedad Universal).
- (II) $(p_j \circ \alpha)^{-1} = p_{\sigma(j)}^{-1}$ continua α^{-1} continua.
- \Rightarrow homeomorfa.

Observación. El producto de homeomorfismos es homeomorfismo.

Definición 1.26. Sea (P) una propiedad de e.t.. Se dice que (P) es multiplicativa si para toda familia e.t. cada una cumpliendo (P), su producto topológico cumple (P).

Proposición 1.26. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia \neq de e.t., (X, \mathcal{T}) e.t., $\forall j \in J$, $f_j: X \to X_j$ aplicación. Entonces, $(f_j)_{j \in J}: (X, \mathcal{T}) \to (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ $x \mapsto (f_j)_{j \in J}(x) = (f_j(x))_{j \in J}$ es continua $\Leftrightarrow f_j: (X, \mathcal{T}) \to (X_j, \mathcal{T}_j)$ es con-

Demostración. $\forall j_0 \in J, (p_{j_0} \circ (f_j)_{j \in J}) = f_{j_0}$

- (⇒) composición de aplicaciones continuas es continua.
- (⇐) por la propiedad universal de la topología producto.

Observación. El producto de funciones continuas es una función continua.

Proposición 1.27. Sean
$$\{(X_j,\mathcal{T}_j)\}_{j\in J}$$
, $\{(X_j',\mathcal{T}_j')\}_{j\in J}$, $\forall j\in J$, $f_j:X_j\to X_j'$ aplicación continua. Entonces, $\prod_{j\in J}f_j:(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)\to(\prod_{j\in J}X_j',\prod_{j\in J}\mathcal{T}_j)$ $(x_j)_{j\in J}\mapsto(\prod_{j\in J}f_j)((x_j)_{j\in J})=(f_j(x_j))$ aplicación continua.

VER DIBUJO(Revisar abierta o continua)

Demostración. $\forall j_0 \in J, (p'_{j_0} \circ (\prod_{j \in J} f_j)) = (f_{j_0} \circ p_{j_0}).$

- (⇒) Propiedad Universal de Topología Porducto.
- $(\Leftarrow) \ \forall G'_{j_0} \in \mathcal{T}'_{j_0} \ como \ \prod_{j \in J} f_j \ continua, \ entonces \ (p_{j_0} \circ (\prod f_j))^{-1}(G_{j_0}) \in \\ \prod_{j \in J} \mathcal{T}_j \ es \ abierto \ y \ donde \ (p_{j_0} \circ (\prod f_j))^{-1}(G_{j_0}) = (f_{j_0} \circ p_{j_0})^{-1}(G'_{j_0}) = \\ p_{j_0}^{-1}(f_{j_0}^{-1}(G_{j_0})). \ Por \ ser \ p_{j_0} \ aplicación \ abierta \ y \ suprayectiva \ p_{j_0}(p_{j_0}^{-1}(f_{j_0}^{-1}(G_{j_0}))) = \\ f_{j_0}^{-1}((G'_{j_0})) \in \mathcal{T}_{j_0} \ .$

1.7. Espacio Cociente

Nota. La topología cociente es una construcción que formaliza la idea de "pegar". Decimos que $\mathcal R$ es una relación de equivalencia en un conjunto X si es reflexiva, simétrica y transitiva. Una relación $\mathcal R$ en X parte X en clases de eqivalencia, denotadas $[x], \forall x \in X$.

La idea principal es, dado un espacio topológico (X,\mathcal{T}) queremos describir como se pegan las cosas juntas en (X,\mathcal{T}) mediante la definición de una relación de equivalencia. Dos puntos x_1, x_2 están relacionados si $x_1\mathcal{R}x_2$, se podría decir que x_1, x_2 se pegan entre si. Entonces, definimos una topología en el conjunto de clases de equivalencia X/\mathcal{R} que conserve la topología en X para aquellos puntos que no están relacionados y que "pegueçorrectamente.

Definición 1.27 (Topología Cociente). Sea (X, \mathcal{T}) e.t., $Y \neq \emptyset, f : X \rightarrow Y$. Se llama topología cociente inducida por f a $\mathcal{T}_f = \{G \subset Y : f^{-1}(G) \in \mathcal{T}\}$. El par (X, \mathcal{T}_f) se llama espacio topológico cociente inducido por f.

Definición 1.28 (Identificación). Sea (X, \mathcal{T}) , (X', \mathcal{T}') e.t., $f: X \to X'$ suprayectiva. Se dice que $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es identificación si \mathcal{T}' es topología cociente inducida por f.

Observación. f es continua.

Proposición 1.28. Sea (X, \mathcal{T}) e.t., $Y \neq \emptyset$, $f: X \to Y$ aplicación continua. La topología cociente inducida por f es la más fina de las topologías sobre Y que hacen continuas a f.

Demostración. Sea S topología sobre Y tal que $f:(X,\mathcal{T})\to (Y,S)$ es continua. Entonces, $\forall A\in \mathcal{S}, f^{-1}(A)\in \mathcal{T} \Rightarrow \forall A\in \mathcal{S}, A\in \mathcal{T}_f\Leftrightarrow \mathcal{S}\subset \mathcal{T}_f$.

Proposición 1.29 (Propiedad Universal Topología Cociente). Sea (X, \mathcal{T}) e.t., (Z, \mathcal{S}) e.t., $f: X \to Y$, $g: Y \to Z$ aplicaciones. Entonces, $g: (Y, \mathcal{T}_f) \to (Z, \mathcal{S})$ es continua $\Leftrightarrow f: (X, \mathcal{T}) \to (Y, \mathcal{T}_f)$ es continua.

Demostración. (\Rightarrow) *Trivial.*

(\Leftarrow) $\forall A \in \mathcal{S}, (g \circ f)^{-1}(A) \in \mathcal{T} \Rightarrow f^{-1}(g^{-1}(A)) \in \mathcal{T} \Rightarrow \forall A \in \mathcal{S}, g^{-1}(A) \in \mathcal{T}_f \Rightarrow g \text{ continua}.$

Proposición 1.30. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$, e.t., $f: X \to X'$ aplicación. Si $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva, continua y abierta (resp. cerrada). Entonces, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es identificación.

Demostración. \mathcal{T}_f es la topología más fina que hace continua a $f \Rightarrow \mathcal{T}' \subset \mathcal{T}_f$. Sea $\forall A \in \mathcal{T}_f \Leftrightarrow f^{-1}(A) \in \mathcal{T}$ con f abierta $\Rightarrow f(f^{-1}(A)) = A \in \mathcal{T}'$ abierto $\Rightarrow \forall A \in \mathcal{T}_f, A \in \mathcal{T}' \Rightarrow \mathcal{T}_f \subset \mathcal{T}'$. Entonces, $\mathcal{T}_f = \mathcal{T}'$.

Observación. Las identificaciones no son necesariamente abierta o cerradas.

Definición 1.29. Sea (X, \mathcal{T}) e.t., \mathcal{R} relación de equivalencia en X, p: $X \to X/\mathcal{R}$ proyección canónica. Se llama e.t. cociente de (X, \mathcal{T}) respecto a \mathcal{R} a $(X/\mathcal{R}, \mathcal{T}/\mathcal{R})$ donde \mathcal{T}/\mathcal{R} es topología cociente inducida por p.

Proposición 1.31. Sean $(X, \mathcal{T}), (X', \mathcal{T}'), (X'', \mathcal{T}'')$ e.t., $f:(X, \mathcal{T}) \to (X', \mathcal{T}')$ identificación, $f':(X', \mathcal{T}') \to (X'', \mathcal{T}'')$ identificación. Entonces, $(f' \circ f)$ es identificación.

REVISAR DEM

Demostración. Sea $(f' \circ f): X \to X''$ suprayectiva. Entonces, $A'' \in \mathcal{T}'', (f' identficación \Rightarrow \mathcal{T}'' = \mathcal{T}_f) \Leftrightarrow f'^{-1}(A'') \in \mathcal{T}' \Leftrightarrow (\mathcal{T}' = \mathcal{T}_f) f^{-1}(f'^{-1}(A'')) = (f' \circ f)^{-1}(A'') \in \mathcal{T} \Rightarrow \mathcal{T}'' = \mathcal{T}_{(f' \circ f)}$

Proposición 1.32. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ identificación. Entonces,

- (I) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es abierta $\Leftrightarrow \forall A\in\mathcal{T}, f^{-1}(f(A))\in\mathcal{T}$.
- (II) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ cerrada $\Leftrightarrow \forall C$ cerrado $(X,\mathcal{T}),\ f^{-1}(f(C))$ cerrado de $(X,\mathcal{T}).$

Demostración.

(1) (
$$\Rightarrow$$
) $\forall A \in \mathcal{T} \Rightarrow f(A) \in \mathcal{T}' \Rightarrow f^{-1}(f(A)) \in \mathcal{T}$.
(\Leftarrow) $\forall \in \mathcal{T}, f^{-1}(f(A)) \in \mathcal{T}, f \text{ identificación } \Rightarrow f(f^{-1}(f(A))) = f(A) \in \mathcal{T}_f = \mathcal{T}' \Rightarrow f \text{ aplicación abierta.}$

Proposición 1.33. Sea $(X,\mathcal{T}), (X',\mathcal{T}'), (X'',\mathcal{T}''), (X''',\mathcal{T}'''), f:(X,\mathcal{T}) \to (X',\mathcal{T}')$ identificación, $f':(X'',\mathcal{T}'') \to (X''',\mathcal{T}''')$ identificación, $g:X \to X''$ aplicación tal que $\forall x_1,x_2 \in X, f(x_1) = f(x_2) \Rightarrow (f' \circ g)(x_1) = (f' \circ g)(x_2)$. Entonces,

- (I) $\exists \overline{g}: X' \to X'''$ aplicación tal que $(\overline{g} \circ f) = (f' \circ g)$
- (II) Si $g:(X,\mathcal{T})\to (X'',\mathcal{T}'')$ continua $\Rightarrow \overline{g}$ continua.

REVISAR

Demostración.

- (I) $\overline{g}: X' \to X''': x' \mapsto \overline{g}(x'_0) = f'(g(x)), \ \forall x \in f^{-1}(X') \Rightarrow f(x) = x' \Rightarrow \overline{g}(f(x)) = (f' \circ \overline{g})(x), \ \forall x \in X \Leftrightarrow (\overline{g} \circ f) = (f' \circ g).$
- (II) $(\overline{g} \circ f) = (f' \circ g)$, $(g \text{ continua } \Rightarrow (f' \circ g) \text{ continua })$. Entonces, (Propiedad Universal Topología Cociente) $\Rightarrow \overline{g}$ continua.

Proposición 1.34. Sea $(X,\mathcal{T}),(X',\mathcal{T}')$ e.t., $f:X\to X'$ aplicación suprayectiva, R_f relación de equivalencia tal que $x_1,x_2\in X,x_1R_fx_2\Leftrightarrow (\text{ def. })f(x_1)=f(x_2).$ Entonces, $\exists \alpha:(X,\mathcal{T})\to (X',\mathcal{T}')$ homeomorfa tal que $(\alpha\circ f)=p\Leftrightarrow f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es identificación.

Demostración. (\Rightarrow) $(\alpha \circ f) = p \Rightarrow f = (\alpha^{-1} \circ p) \Rightarrow f$ identificación.

(\Leftarrow) Sea $\alpha: X \to X'/\mathcal{R}_f: x \mapsto \alpha(x') = [x]: x \in f^{-1}(X')$. Esta bien definida ya que, si $x_1, x_2 \in f^{-1}(x) \Rightarrow f(x_1) = f(x_2) \Leftrightarrow x_1\mathcal{R}_f \Leftrightarrow [x_1] = [x_2]$. Sea $\varphi: X/\mathcal{R}_f \to X'/\mathcal{R}_f: [x] \mapsto \varphi/[x] = f(x)$. Está bien definida ya que, si $[x_1] = [x_2] \Leftrightarrow x_1\mathcal{R}x_2 \Leftrightarrow f(x_1) = f(x_2)$. Entonces, $(\varphi \circ \alpha = 1_{X'}, \alpha \circ \varphi = 1_{\mathcal{R}_f}) \Rightarrow \alpha$ inyectiva y $\alpha^{-1} = \varphi$. Por tanto, $\alpha(f(f(x)) = \alpha(x') = [x]p(x), \forall x \in X \Rightarrow \alpha \circ f = p$ continua $\Rightarrow \alpha$ continua.

1.8. Espacio Suma

Definición 1.30 (Topología Suma). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$, familia $\neq \emptyset$ de e.t.,

$$\sum_{j \in J} X_j = \bigcup_{j \in J} X_j \times \{j\}$$

su unión disjunta. Se llama topología suma a

$$\sum_{i \in J} \mathcal{T}_k = \left\{ G \subset \sum_{i \in J} X_k : j_k^{-1}(G) \in \mathcal{T}_k, \forall k \in J \right\}$$

El par $(\sum_{k\in J} X_k, \sum_{k\in J} T_k)$ se llama espacio topológico suma.

Observación. $\forall k_0 \in J$, $j_{k_0}: (X_{k_0}, \mathcal{T}_{k_0}) \to (X_{k_0} \times \{k_0\}, \sum_{k \in J} \mathcal{T}_k / (X_{k_0} \times \{k_0\})): x \mapsto (x, k_0)$ es homomorfismo $j_{k_0}^{-1}(x, k_0) = x = p_1(x, k_0)$

Observación. $\forall c \subset \sum_{k \in J} X_k, j_{k_0}^{-1}(c) = p(C \cap (X_{k_0} \times \{k_0\})).$

Proposición 1.35. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia $\neq \emptyset$ e.t.. Entonces, la topología suma es la más fina de las topologías sobre $\sum_{k \in J} X_k$ que hacen continua todas las inclusiones.

Demostración. Sea $\mathcal T$ topología sobre $\sum_{j\in J} X_k$ tal que

$$\forall k_0 \in J, j_{k_0}(X_{k_0}, \mathcal{T}_{k_0}) \hookrightarrow (\sum_{k \in J} X_k, \mathcal{T})$$

 $k_0 \in J, \forall A \in \mathcal{T}, j_0^{-1}(A) \in \mathcal{T}_{k_0} \Rightarrow \forall A \in \mathcal{T}, A \in \sum_{k \in J} \mathcal{T}_k \Rightarrow \mathcal{T} \subset \sum_{k \in J} \mathcal{T}_k.$

Proposición 1.36 (Propiedad Universal Universal Topología Suma). Sea $\{(X_j,\mathcal{T}_j)\}_{j\in J},\ (X,\mathcal{T})\ e.t.,\ f: (\sum_{k\in J}X_k,\sum_{k\in J}\mathcal{T}_k)\to (X,\mathcal{T})\ aplicación$ continua $\Leftrightarrow \forall k_0\in J, f\circ j_{k_0}: (X_{k_0},\mathcal{T}_{k_0})\to (X,\mathcal{T})\ es\ continua.$

Demostración. (\Rightarrow) *Trivial*

(\Leftarrow) $\forall k_0 \in J, f \circ j_{k_0}$ continua $\Rightarrow \forall A \in \mathcal{T}, \forall k_0 \in J, (f \circ j_k)^{-1}(A) = j_{k_0}^{-1}(f^{-1}(A)) \in \mathcal{T}_{k_0} \Rightarrow f^{-1}(A) \in \sum_{k \in J} \mathcal{T}_k \Rightarrow f$ continua.

Definición 1.31. Sea (P) propiedad de e.t.. Se dice que es aditiva si para toda familia de e.t. cada uno cumpliendo (P), la suma cumple (P).

Capítulo 2

Propiedades de Separación

```
Definición 2.1 (T_0). Sea (X, \mathcal{T}) e.t.. Se dice que es T_0 si \forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}^x : y \notin \mathcal{U}^x ó \exists \mathcal{U}^y : x \notin \mathcal{U}^y.
```

Ejemplo. Sea \mathcal{R} una relación en X tal que $x\mathcal{R}y \Leftrightarrow \overline{\{x\}} = \overline{\{y\}}$. Entonces, \mathcal{R} es una relación de equivalencia en X y el espacio cociente resultante $(X/R, \mathcal{T}/R)$ es T_0 .

Observación. Los subespacios o espacios productos genereados a partir de espacios T_0 son también T_0 , pero los espacios cocientes no lo son necesariamente.

Definición 2.2 (
$$T_1$$
). Sea (X, \mathcal{T}) e.t.. Se dice que es T_1 si $\forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}^x : y \notin \mathcal{U}^x, \exists \mathcal{U}^y : x \notin \mathcal{U}^y.$

Observación. (X, \mathcal{T}) es T_1 si y solo si $\forall x, y \in X : x \neq y$ existe un entorno de cada uno que no contiene al otro.

Observación. $T_1 \Rightarrow T_0$

Observación. $T_0 \not\Rightarrow T_1$, ej.: $X = \{a, b\}$, $\mathcal{T} = \{\emptyset, X, \{a\}\}$ es T_0 , no T_1

Proposición 2.1. Sea (X, \mathcal{T}) e.t. son equivalentes

- (I) (X, \mathcal{T}) es T_1 ,
- (II) $\forall x \in X, \{x\}$ es cerrado de (X, \mathcal{T}) ,
- (III) $\forall E \subset X, E = \bigcap_{G \in \mathcal{T}: E \subset G} G$.

Demostración.

- $(a\Rightarrow b)$ Sea (X,\mathcal{T}) e.t. $T_1,x\in X$ entonces, $\forall y\neq x,\exists \mathcal{U}^y:\mathcal{U}^y\subset X\setminus\{x\}\Rightarrow X\setminus\{x\}\in\mathcal{T}\Rightarrow\{x\}$ es cerrado de (X,\mathcal{T}) .
 - (I) $A \subset X \Rightarrow A = \bigcap_{x \in X \setminus A} X \setminus \{x\} \Rightarrow A \subset \bigcap_{G \in \mathcal{T}_{A \subset G}} G \subset \bigcap_{x \in X \setminus A} (X \setminus \{x\}) = A.$
 - (II) $\forall x, y \in X : x \neq y$, $\{x\} = \bigcap_{G \in \mathcal{T}: \{x\} \subseteq G} G \Rightarrow \exists \mathcal{G}^x \in \mathcal{T} : y \in \mathcal{G}^x \Rightarrow T_1$.

Definición 2.3 (T_2) . Sea (X, \mathcal{T}) e.t.. Se dice que es T_2 ó de Hausdorff si $\forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}^x : x \in \mathcal{U}^x, \exists \mathcal{U}^y : y \in \mathcal{U}^y$ tal que $\mathcal{U}^x \cap \mathcal{U}^y = \emptyset$.

Observación. $T_2 \Rightarrow T_1$.

Proposición 2.2. Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es T_2 si y solo si $\Delta = \{(x, x) \in X \times X\}$ es cerrado en $(X, \mathcal{T}) \times (X, \mathcal{T})$.

Demostración. Probamos que $\Delta^c \in \mathcal{T}$.

- $(\Rightarrow) \ \forall (x,y) \in (X \times X) \setminus \Delta, \ x \neq y \Rightarrow \exists \mathcal{U}^x, \mathcal{U}^y : \mathcal{U}^x \cap \mathcal{U}^y = \emptyset \Rightarrow. \ \mathsf{i}\mathcal{U}^x \times \mathcal{U}^y \\ \textit{entorno de } (x,y) : \mathcal{U}^x \times \mathcal{U}^y \subset (X \times X) \setminus \Delta? \ \mathsf{Si} \ \exists (z,z) \in \mathcal{U}^x \times \mathcal{U}^y \Rightarrow \\ z \in \mathcal{U}^x \cap \mathcal{U}^y = \emptyset \ \textit{es absurdo. Entonces, } (X \times X) \setminus \Delta \in \mathcal{T} \times \mathcal{T} \Leftrightarrow \Delta \\ \textit{es cerrado de } (X \times X, \mathcal{T} \times \mathcal{T}).$
- (\(\infty\) $\forall x, y \in X, x \neq y \Rightarrow (x, y) \in (X \times X) \setminus \Delta \in \mathcal{T} \times \mathcal{T} \Rightarrow \exists \mathcal{U}^x, \mathcal{U}^y : \mathcal{U}^x \times \mathcal{U}^y \subset (X \times X) \setminus \Delta \Rightarrow \mathcal{U}^x \cap \mathcal{U}^y = \emptyset$. En caso contrario, $\exists z \in \mathcal{U}^x \cap \mathcal{U}^y \Rightarrow (z, z) \in \mathcal{U}^x \times \mathcal{U}^y$ es absurdo. Entonces, (X, \mathcal{T}) es T_2 .

Corolario 2.0.1. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f:(X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicación. Entonces, $G_f = \{(x, f(x)) : x \in X\}$ es cerrado en $(X \times Y, \mathcal{T} \times \mathcal{S})$.

Demostración. Y es $T_2 \Rightarrow \Delta_Y$ es cerrado en $Y \times Y$, f continua $\Rightarrow f \times 1_Y$: $(X, \mathcal{T}) \times (Y, \mathcal{S}) \rightarrow (Y, \mathcal{S}) \times (Y, \mathcal{S})$ continua $\Rightarrow (f \times 1_Y)^{-1}(\Delta_Y) = \{(x, y) \in X \times Y : f(x) = y\}$ es cerrado.

Proposición 2.3. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ continua. Entonces, $E = \{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}$ es cerrado en $(X \times X, \mathcal{T} \times \mathcal{T})$

Demostración. $\forall (x_1,x_2) \subset (X\times X)\setminus E, \ f(x_1)\neq f(x_2)\Rightarrow \exists \mathcal{V}^{f(x_i)}, i\in\{1,2\}$ entorno de x_i , por ser Y T_2 . Como f es continua $\Rightarrow f^{-1}(\mathcal{V}^{f(x_i)})$ entorno de $x_i\Rightarrow f^{-1}(\mathcal{V}^{f(x_1)})\times f^{-1}(\mathcal{V}^{f(x_i)})$ entorno de (x_1,x_2) en $(X\times X,\mathcal{T}\times\mathcal{T}).$ Veamos que $f^{-1}(\mathcal{V}^{f(x_1)})\times f^{-1}(\mathcal{V}^{f(x_i)})\subset (X\times X)\setminus E.$ Si $(z_1,z_2)\in E, (z_1,z_2)\in f^{-1}(\mathcal{V}^{f(x_1)})\times f^{-1}(\mathcal{V}^{f(x_2)})\Rightarrow f(z_1)=f(z_2)$ donde $f(z_1)\in \mathcal{V}^{f(x_1)}$ y $f(z_2)\in \mathcal{V}^{f(x_2)}$ que es absurdo.

Proposición 2.4. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicación suparyectiva y abierta. Si (X, \mathcal{T}) es T_2 entonces, (Y, \mathcal{S}) es T_2 .

Demostración. $\forall y_1,y_2 \in Y: y_1 \neq y_2 \Rightarrow (f \ supra) \ \exists x_i \in X, i \in \{1,2\}: f(x_i) = y_i \Rightarrow (x_1,x_2) \in (X \times X) \setminus E \Rightarrow (hip.) \ \exists \mathcal{U}^{x_i}, i \in \{1,2\}: \mathcal{U}^{x_1} \times \mathcal{U}^{x_2} \subset (X \times X) \setminus E \Rightarrow (f \ ab.) \ f(\mathcal{U}^{x_i}), i \in \{1,2\} \ entorno \ de \ y_i. \ \textit{LSon disjuntos? Si} \ \exists z \in f(\mathcal{U}^{x_1}) \cap f(\mathcal{U}^{x_2}) \Rightarrow z = f(t_i): t_i \in \mathcal{U}^{x_i}, i \in \{1,2\} \Rightarrow (t_1,t_2) \in E \ \textit{y} \ (t_1,t_2) \in (\mathcal{U}^{x_1} \times \mathcal{U}^{x_2}) \ \textit{que es absurdo.}$

Proposición 2.5. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f, g: (X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicaciones continuas. Entonces, $\{x \in X : f(x) = g(x)\}$ es cerrado en (X, \mathcal{T}) .

Demostración. Sea $f \times g : (X, \mathcal{T}) \to (Y, \mathcal{S}) \times (Y, \mathcal{S})$ continua. Entonces, Y es $T_2 \Leftrightarrow \Delta_Y$ es cerrado $\Rightarrow (f \times g)^{-1}(\Delta_Y)$ cerrado en (X, \mathcal{T}) donde $(f \times g)^{-1}(\Delta_Y) = \{x \in X : f(x) = g(x)\}.$

Corolario 2.0.2. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f, g: (X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicación continua. Si $\exists D$ denso en (X, \mathcal{T}) tal que $f|_D = g|_D \Rightarrow f = g$.

Demostración. $f|_D = g|_D \Rightarrow D \subset \{x \in X : f(x) = g(x)\} = \mathcal{C} \Rightarrow \overline{D} \subset \overline{\mathcal{C}} = \mathcal{C} \text{ donde } \overline{D} = X \Rightarrow X = \mathcal{C} \Leftrightarrow f = g.$

Observación. T_0, T_1, T_2 son invariantes topológicos.

Proposición 2.6. Todo subespacio de e.t. T_2 es T_2 .

Demostración. Sea (X, \mathcal{T}) T_2 , $E \subset X$. Entonces, $\forall x_1, x_2 \in E \subset X$: $x_1 \neq x_2 \Rightarrow \exists \mathcal{U}^{x_1}, \mathcal{U}^{x_2}$ entornos de x_1 , x_2 en (X, \mathcal{T}) disjuntos $\Rightarrow \mathcal{U}^{x_1} \cap E$, $\mathcal{U}^{x_2} \cap E$ entorno en $(E, \mathcal{T}|_E)$ disjuntos.

Proposición 2.7. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\sum_{j \in J} X_j, \sum_{j \in J} \mathcal{T}_j)$ es $T_2 \Leftrightarrow (X_j, \mathcal{T}_j)$ es T_2 , $\forall j \in J$.

- $\begin{array}{l} \textbf{Demostración.} \quad (\Rightarrow) \ \forall j \in J, \forall (a_j)_{j \in J} \in \sum_{j \in J} X_j, \{(x_j)_{j \in J} \in \sum_{j \in J} X_j : \\ x_j = a_j, \forall j \in J \backslash \{0\}\} \subset \sum_{j \in J} X_j \text{ es homeomorfo a } X_{j_0} \times \{(a_j)_{j \in J \backslash 0}\} \\ \text{que es homeomorfoa a } X_{j_0} \times \sum_{j \in J \backslash \{0\}} \{a_j\}. \end{array}$
- $(\Leftarrow) \ \forall x,y \in \sum_{j\in J} X_j : x \neq y, \ \text{entonces se dan dos posibilidades. Si} \\ \exists j_1,j_2 \in J : x \in X_{j_1} \times \{j_1\}, y \in X_{j_2} \times \{j_2\}, \ \text{entonces} \ (\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \\ \text{es } T_2. \ Y \text{si} \ \exists ! j_0 \in J : x,y \in X_{j_0} \times \{j_0\} \ \text{homeomorfo a} \ X_{j_0} \ \text{que es} \ T_2 \Rightarrow \\ p_1(x),p_1(y) \in X_{j_0} \Rightarrow \exists \mathcal{U}^x : p_1(x) \in \S^x, \exists \mathcal{U}^y : p_1(y) \in \mathcal{U}^y \ \text{abiertos de} \\ \sum_{j\in J} \mathcal{T}_j \Rightarrow \mathcal{U}^x \times \{j_0\}, \mathcal{U}^y \times \{j_0\} \ \text{en} \ (\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k) \Rightarrow \ \text{es } T_2.$

Proposición 2.8. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es $T_2 \Leftrightarrow (X_j, \mathcal{T}_j)$ es T_2 , $j \in J$.

- **Demostración.** (\Rightarrow) Sea $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j)$ espacio T_2 . Entonces, $\forall j\in J$, $b_j\in X_j\Rightarrow$ el subespacio $\mathcal{S}_j=\{x\in \prod_{j\in J} X_j: x_{j_0}=b_{j_0}, \forall j\neq j_0\}$ es T_2 y es homeomorfo a X_j bajo la restricción de \mathcal{S}_j a la proyeción $p_j\Rightarrow X_j$ es $T_2, \forall j\in J$.
- (\Leftarrow) Sea (X_j, \mathcal{T}_j) e.t. T_2 , $\forall j \in J$. Entonces, $\forall x, y \in \prod_{j \in J} X_j : x \neq y \Rightarrow \exists j_0 \in J : x_{j_0} \neq y_{j_0} \Rightarrow \exists \mathcal{U}_{j_0}^x, \mathcal{U}_{j_0}^y$ entornos disjuntos de x_{j_0} e y_{j_0} en $(X_{j_0}, \mathcal{T}_{j_0}) \Rightarrow p_{j_0^{-1}(\mathcal{U}_{j_0}^x)}, p_{j_0^{-1}(\mathcal{U}_{j_0}^y)}$ entornos disjuntos de x e y en

$$(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \Rightarrow (\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \text{ es } T_2.$$

Observación. El cociente de un e.t. T_2 no es necesariamente T_2 .

2.1. Espacio Regular

Definición 2.4 (Espacio Regular). Sea (X, \mathcal{T}) e.t. Diremos que es regular si $\forall C$ cerrado de (X, \mathcal{T}) , $\forall x \in X : x \notin C, \exists U, V \in \mathcal{T}$ disjuntos tal que $x \in U, C \subset V$. Diremos que es T_3 si es regular y T_0 .

Observación. Regular y $T_0 \Leftrightarrow$ regular y $T_1 \Leftrightarrow$ regular y T_2 .

Demostración. (\Rightarrow) (X, \mathcal{T}) regular y $T_0 \Rightarrow \forall x, y \in X : x \neq y$, $\exists \mathcal{U}^x \in \mathcal{T} : y \in \mathcal{U}^x \Rightarrow X \setminus \mathcal{U}^x$ es cerrado $\Rightarrow \exists V_i \in \mathcal{T}, i \in \{1, 2\}$ disjuntos tal que $x \in V_1, y \in X \setminus \mathcal{U}^x \subset V_2 \Rightarrow \text{es } T_2$.

(⇐) Trivial.

Observación. $T_3 \Rightarrow T_2$.

Observación. Regular $\not\Rightarrow T_0$.

Proposición 2.9. Sea (X, \mathcal{T}) e.t.. Entonces, son equivalentes

- (I) (X, \mathcal{T}) regular
- (II) $\forall x \in X : \forall U \in \mathcal{T} : x \in U, \exists V \in \mathcal{T} : x \in V \subset \overline{V} \subset U.$
- (III) $\forall x \in X, \exists \mathcal{B}$ base de entornos de x cerrados en (X, \mathcal{T}) .

Demostración.

- ($i \Rightarrow ii$) $x \in U \in \mathcal{T} \Rightarrow x \notin X \setminus U$ cerrado $\Rightarrow \exists V_i \in \mathcal{T}, i \in \{1, 2\} : X \setminus U \subset V_2 \Rightarrow V_1 \subset X \setminus V_2$ cerrado $\Rightarrow \overline{V_1} \subset X \setminus V_2 \Rightarrow x \in V_1 \subset \overline{V_1}X \setminus V_2 \subset U$.
- (ii) \Rightarrow iii) $\forall x \in X, \{\overline{V} : V \in \mathcal{T}, x \in V\}$ es base de entornos cerrados $\Rightarrow \forall \mathcal{U}^x, x \in \mathcal{U}^x \Rightarrow \exists V \in \mathcal{T} : x \in V \subset \overline{V} \subset \mathring{U}^x \subset \mathcal{U}^x$.
- ($iii \Rightarrow i$) $x \notin C$ cerrado $\Rightarrow x \in X \setminus C \in \mathcal{T} \Rightarrow \exists V$ entorno cerrado de $x: V \subset X \setminus C \Rightarrow x \in \mathring{V} \in \mathcal{T} \ y \ C \subset X \setminus V$ disjuntos.

Observación. La regularidad (y ser T_3) son invariantes topológicos.

Proposición 2.10. Todo subespacio de uno regular (T_3) es regular (T_3) .

Demostración. (X,\mathcal{T}) regular $E\subset X, \forall C$ cerrado de $(E,\mathcal{T}|_E)$, $\forall x\in E: x\not\in C\Rightarrow \exists F$ cerrado de (X,\mathcal{T}) tal que $C=F\cap E\Rightarrow x\not\in F\Rightarrow \exists U,V\in T$ disjuntos tal que $x\in U,F\subset V\Rightarrow U\cap E,V\cap E\in \mathcal{T}|_E$ disjuntos tal que $x\in U\cap E,C\subset V\cap E$.

Proposición 2.11. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es regular $(T_3) \Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es regular (T_3) .

Demostración. (\Rightarrow) *Trivial*

(\Leftarrow) $\forall x=(x_j)_{j\in J}\in \prod_{j\in J}X_j$, $\forall \mathcal{U}^x$ entorno de $x\Rightarrow\exists B\subset\mathcal{B}$ base de $\prod_{j\in J}\mathcal{T}_j$ tal que $x\in B\subset\mathcal{U}^x, B=\bigcap_{k=1}^n p_{j_k}^{-1}(U_{j_k})$ donde $U_{j_k}\in\mathcal{T}_{j_k}$. Entonces, $x\in B\Rightarrow x_{j_k}\in U_{j_k}, \forall k\in\{1,\cdots,n\}\Rightarrow\exists\mathcal{V}^{x_{j_k}}$ entorno cerrado de $x_{j_k}, \forall k\in\{1,\cdots,n\}$ tal que $\mathcal{V}^{x_{j_k}}\subset U_{j_k}\Rightarrow\bigcap_{k=1}^n p_{j_k}^{-1}(\mathcal{V}^{x_{j_k}})\subset B\subset\mathcal{U}^x$ entorno cerrado de x, que es la caracterización antrior de regular.

Proposición 2.12. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es regular $(T_3) \Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ regular (T_3) .

Demostración. (\Rightarrow) $\forall j_0 \in J, X_{j_0}$ es homeomorfo a $X_{j_0} \times \{j_0\} \subset \sum_{i \in J} X_i$.

 $(\Leftarrow) \ \forall x \in \sum_{j \in J} X_j \Rightarrow (\text{ por ser unión disjunta }) \exists ! j_0 \in J : x \in X_{j_0} \times \{x_{j_0}\} \text{ que es homeomorfo a } X_{j_0}.$

Observación. El coiente e.t. T_3 no es necesariamente regular. **Ejemplo.** pg. 50

2.2. Espacio Completamente Regular

Definición 2.5 (Completamente Regular). Sea (X, \mathcal{T}) e.t.. Diremos que (X, \mathcal{T}) es completamente regular si $\forall x \in X, \forall C$ cerrado de (X, \mathcal{T}) , $x \notin \mathcal{T}$

 $C, \exists f: (X, \mathcal{T}) \to [0, 1]$ continua, $f(x) = 0, f(C) = \{1\}$. Diremos que es T_{3a} si es completamente regular y T_1

Observación. (X, \mathcal{T}) es completamente regular $\Leftrightarrow \forall C$ cerrado, $\forall x \notin C, \exists g : (X, \mathcal{T}) \to [0, 1]$ continua tal que $f(x) = 1, g(C) = \{C\}.$

Observación. *completamente regular* ⇒ *regular.*

Observación. $T_3 \not\Rightarrow T_{3a}$.

Proposición 2.13. Sea (X, \mathcal{T}) e.t. metrizable. Entonces, (X, \mathcal{T}) es T_{3a} .

Demostración. (X, \mathcal{T}) es T_2 y $\exists d$ métrica tal que $\mathcal{T} = \mathcal{T}_d$. Entonces, $\forall C$ cerrado de \mathcal{T} , $\forall x \in X : x \notin C \Rightarrow d(x, C) > 0$. Sea $g : (X, \mathcal{T}) \to \mathbb{R} : z \mapsto g(z) = \frac{d(z,C)}{d(x,C)} \Rightarrow g$ es continua y

$$g = \begin{cases} 1, & \text{si } z = x, \\ \{0\}, & \text{si } z = C \end{cases}$$

la imagen de g es un subconjunto de las semirectas derechas. Sea f: $(X,\mathcal{T}) \to [0,1]: z \mapsto f(z) = \min\{g(z),1\}$ entonces,

$$f = \begin{cases} 1, & \text{si } z = x, \\ \{0\} & \text{si } z = C \end{cases}$$

 $\Rightarrow (X, \mathcal{T}) \text{ es } \mathcal{T}_{3a}$.

Observación. Ser completamente regular (T_{3a}) es un invariante topológico.

Proposición 2.14. Todo subespacio de un espacio completamente regular (T_{3a}) es completamente regular (T_{3a}) .

Demostración. Sea (X, \mathcal{T}) completamente regular, $E \subset X$, $E \neq \emptyset$. Entonces, $\forall C$ cerrado de $(E, \mathcal{T}|_E)$, $\forall x \in E : x \notin C \Rightarrow \exists F \neq \emptyset$ cerrado de $(X, \mathcal{T}) : C = F \cap E \Rightarrow f : (X, \mathcal{T}) \rightarrow [0, 1]$ tal que

$$f(x) = \begin{cases} 0, \text{ si } x \in X, \\ \{1\} \text{ si } x = F \end{cases}$$

 $\Rightarrow f|_E: (E, \mathcal{T}|_E) \rightarrow [0, 1]$ es continua tal que

$$f|_E = \begin{cases} 0, \text{ si } x \in X, \\ \{1\} \text{ si } x = C \end{cases}$$

 \Rightarrow completamente regular.

Proposición 2.15. Sea $\{(X_j, \mathcal{T}_j)\}_{j\in J}$ familia de e.t.. Entonces, $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j)$ es completamente regular (T_{3a}) si y solo si (X_j, \mathcal{T}_j) es completamente regular $(T_{3a}), \forall j\in J$.

Demostración. (\Rightarrow) *Trivial.*

 $(\Leftarrow) \ \forall C \ \textit{cerrado de} \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j), \ \forall x = (x_j)_{j \in J} \in \prod_{j \in J} x_j \setminus C \in \prod_{j \in J} \mathcal{T}_j \ \Rightarrow \ \exists B \in \mathcal{B} \ \textit{base de} \ \prod_{j \in J} \mathcal{T}_j \ \textit{tal que} \ x \in B \subset \prod_{j \in J} X_j \setminus C, B = \bigcap_{k=1}^{\infty} p_{j_k}^{-1}(U_{j_k}), U_{j_k} \in \mathcal{T}_{j_k}, \forall k \in \{1, \cdots, n\}. \ \textit{(hip.)} \ \Rightarrow \ \forall k \in \{1, \cdots, n\}, \ \exists f_k : (X_{j_k}, \mathcal{T}_{j_k}) \rightarrow [0, 1] \ \textit{continua} \ \Rightarrow f_k(x_{j_k}) = 0, f_k(X_{j_k} \setminus U_{j_k}) = \{1\}. \ \textit{Sea} \ f : (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \rightarrow [0, 1] \ \textit{tal que} \ \forall z \in \prod_{j \in J} X_j, f(z) := \max \left\{\right\} \ \textit{es continua dado que el máximo de funciones continuas es continuo} \ \Rightarrow f(x) = 0 \ \textit{y si} \ \forall z \in C \ \Rightarrow \in B \ \Rightarrow_o \in \{1, \cdots, n\} : z_{j_{k_0}} \not\in U_{j_{k_0}} \ \Rightarrow f_{k_0}(z_{j_{k_0}}) = 1 \ \Rightarrow f(z) = 1 \ \Rightarrow f(C) = \{1\}.$

Proposición 2.16. Sea $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ familia de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es completamente regular (T_{3a}) si y solo si (X_j, \mathcal{T}_j) es completamente regular $(T_{3a}), \forall j \in J$.

Demostración. pág. 54

Observación. El cociente de e.t. es T_{3a} no es completamente regular.

2.3. Espacios Normales

Definición 2.6 (Normal). Sea (X, \mathcal{T}) e.t.. Decimos que es normal si $\forall C_1, C_2$ cerrados disjuntos $\exists G_i, i \in \{1, 2\}$ abiertos disjuntos tal que $C_i \subset G_i$. Deci-

Proposición 2.17. Todo e.t. metrizable es T_4 .

Demostración. (X, \mathcal{T}) e.t. metrizable $\Rightarrow \exists d$ métrica de (X, \mathcal{T}) tal que $\mathcal{T} = \mathcal{T}_d \Rightarrow \mathcal{T}$ es T_2 . Entonces, $\forall C_1, C_2$ cerrados disjuntos de (X, \mathcal{T}) se pueden dar dos caos

- Si $C_1 = \emptyset$, sea $G_1 = \emptyset$, $G_2 = X$. Entonces, (X, \mathcal{T}) es T_4 .
- Si $C_1, C_2 \neq \emptyset \Rightarrow \forall x \in C_1, \exists \epsilon_x > 0 : B_{\epsilon_x}(x) \cap C_2 = \emptyset \text{ y } \forall y \in C_2, \exists \delta_y : B_{\delta_y}(y) \cap C_1 = \emptyset \Rightarrow C_1 \subset \bigcup_{x \in C_1} B_{\epsilon_{\frac{x}{3}}}(x) := G_1 \in \mathcal{T} \text{ y}$ $C_1 \subset \bigcup_{x \in C_2} B_{\delta_{\frac{y}{3}}}(y) := G_2 \in \mathcal{T}. \text{ En caso contrario, } \exists z \in G_1 \cap G_2 \Rightarrow \exists x_0 \in C_1 : z \in B_{\epsilon_{\frac{x_0}{3}}}(x_0) \text{ y } \exists y_0 \in C_1 : z \in B_{\delta_{\frac{y_0}{3}}}(y_0). \text{ Suponemos que}$ $\delta_{y_0} \leq \epsilon_{x_0}, \text{ entonces } d(x_0, y_0) \leq d(x_0, z) + d(z, y_0) <= \frac{\epsilon_{x_0}}{3} + \frac{\delta_{y_0}}{3} \leq \frac{\epsilon_{x_0}}{3} + \frac{\delta_{y_0}}{3} + \frac{\delta_{y_0}}{3} \leq \frac{\delta_{y_0}}{3} + \frac{\delta_{y_0}}{$

Proposición 2.18. Sea (X, \mathcal{T}) e.t.. Entonces, son equivalentes

- (I) (X, \mathcal{T}) es normal.
- (II) $\forall C$ cerrado, $\forall U \in \mathcal{T} : C \subset U, \exists V \in \mathcal{T} : C \subset V \subset \overline{V} \subset U$.
- (III) $\forall C_1, C_2$ cerrados disjuntos, $\exists G_1 \in \mathcal{T} : C_1 \subset G_1 : \overline{G_1} \cap C_2 = \emptyset$.
- (IV) $\forall C_1, C_2$ cerrados disjuntos $\exists G_i \in \mathcal{T} : \overline{G_1} \cap \overline{G_2} = \emptyset$ y $C_i \subset G_i, i \in \{1, 2\}$

Demostración.

- $\begin{array}{ll} (a\Rightarrow b) \;\; \textit{Sea}\; C \subset U \in \mathcal{T}: C \;\textit{y}\; X \setminus U \;\textit{son cerrados disjuntos. Entonces,} \; (X,\mathcal{T}) \\ \;\; \textit{normal} \; \Rightarrow \; \exists V_i, i \in \{1,2\} \;\; \textit{disjuntos tal que}\; C \subset V_1 \;\textit{y}\; X \setminus U \subseteq V_2 \\ \;\; \textit{disjuntos} \; \Rightarrow V_1 \subset X \setminus V_2 \Rightarrow \overline{V_1} \subset X \setminus V_2 \;\textit{cerrado} \; \Rightarrow C \subset V_1 \subset \overline{V_1} \subset X \setminus V_2 \subset U. \end{array}$
- $\begin{array}{ccc} (b \Rightarrow c) & C_1, C_2 \text{ cerrados disjuntos} \Rightarrow C_1 \subset X \setminus C_2 \in \mathcal{T} \Rightarrow \exists G_1 \in \mathcal{T} : C_1 \subset G_1 \subset \overline{G_1} \subset X \setminus G_2 \Rightarrow \overline{G_1} \cap C_2 = \emptyset. \end{array}$
- $(c\Rightarrow d) \ \forall C_1,C_2 \ \textit{cerrados disjuntos} \Rightarrow \exists G_1 \in \mathcal{T}:C_1 \subset G_1,\overline{G_1} \cap C_2 = \emptyset \ \textit{y} \\ \exists G_2 \in \mathcal{T}:C_2 \subset G_2:\overline{G_2} \cap \overline{C_2} = \emptyset.$

Lema 2.0.1 (Jones). Sea (X, \mathcal{T}) e.t.. Si $\exists D$ denso en (X, \mathcal{T}) , E cerrado en (X, \mathcal{T}) tal que $(E, \mathcal{T}|_E)$ es discreto y $\operatorname{card}(E) \geq 2^{\operatorname{card}(D)}$. Entonces, (X, \mathcal{T}) no es normal.

Demostración. Sea (X,\mathcal{T}) normal, $\forall C \subset E,C$ y E son disjuntos y cerrados en $(E,\mathcal{T}|_E)$ y en (X,\mathcal{T}) que es normal. Entonces, $\exists U_C,V_C \in \mathcal{T}: C \subset U_C, E \setminus C \subset V_C$. Ahora, sea $f:\mathcal{P}(E) \to \mathcal{P}(D): c \mapsto f(c) = U_C \cap D$ aplicación. Veamos que f es inyectiva, $\forall C_1,C_2 \in \mathcal{P}(E):C_1 \neq C_2 \Rightarrow \exists x \in C_1: x \notin C_2 \Rightarrow C_i \subset U_{C_i}, E \setminus C_i \subset V_{C_i}, i \in \{1,2\} \Rightarrow x \in U_{C_1} \cap V_{C_2} \in \mathcal{T} \Rightarrow (D \text{ denso}) y \in U_{C_1} \cap V_{C_2} \cap D \neq \emptyset \Rightarrow$

$$\begin{cases} y \in U_{C_1} \cap D = f(C_1) \\ y \notin U_{C_2} \cap D = f(C_2) \end{cases}$$

 $\Rightarrow f(C_1) \neq f(C_2) \Rightarrow \operatorname{card}(E) < \operatorname{card}(P(E)) \leq \operatorname{card}(P(D)) = 2^{\operatorname{card}(D)}$

Proposición 2.19. Sea (X, \mathcal{T}) e.t. normal (T_4) , $E \subset X$, E cerrado en (X, \mathcal{T}) . Entonces, $(E, \mathcal{T}|_E)$ es normal (T_4) .

Demostración. $\forall C_1, C_2$ cerrados disjuntos en $(E, \mathcal{T}|_E)$. Entonces, C_1, C_2 cerrados disjuntos de (X, \mathcal{T}) que es normal $\Rightarrow \exists U_i \in \mathcal{T}$ disjuntos tal que $C_i \subset U_i, i \in \{1, 2\} \Rightarrow U_i \cap E \in \mathcal{T}|_E$ disjuntos tal que $C_i \subset U_i \cap E, i \in \{1, 2\}$.

Observación. El producto de e.t. normales no es necesariamente normal.

Proposición 2.20. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es normal $(T_4) \Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es normal (T_4) .

Demostración. (\Rightarrow) $\forall j_0 \in J, X_{j_0} \simeq X_{j_0} \times \{j_0\} \subset \sum_{j \in J} X_j$ es cerrado.

 $(\Leftarrow) \ \forall C_1, C_2 \ \text{cerrados disjuntos de} \ (\textstyle \sum_{k \in J} X_k, \textstyle \sum_{k \in J} \mathcal{T}_k) \Rightarrow \forall k \in J, j_k^{-1}(C_1), j_k^{-1}(C_2)$ cerrados disjuntos de (X_k, \mathcal{T}_k) que es normal $\Rightarrow \forall j \in J, \exists U_{k,1}, U_{k,2} \in \mathcal{T}_k$ disjuntos tal que $j_k^{-1}(C_i) \subset U_{k,i} \in \mathcal{T}_k, i \in \{1,2\}.$ Entonces, $U_1 = \bigcup_{k \in J} U_{k,1} \times \{k\}, \bigcup_{k \in J} U_{k,1} \times \{k\} \in \sum_{k \in J} \mathcal{T}_k$ son abiertos dis-

juntos y $C_1 \subset U_1, C_2 \subset U_2$.

Proposición 2.21. Sea (X, \mathcal{T}) , (Y, \mathcal{S}) e.t. tal que (X, \mathcal{T}) es normal, $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ suprayectiva, continua y cerrada. Entonces, (Y, \mathcal{S}) es normal (T_4) .

Demostración. $\forall C_1, C_2$ cerrado disjunto $(Y, \mathcal{T}) \Rightarrow f^{-1}(C_1), f^{-1}(C_2)$ cerrados disjuntos de $(X, \mathcal{T}) \Rightarrow \exists U_i \in \mathcal{T}$ disjuntos tal que $f^{-1}(C_i) \subset U_i, i \in \{1, 2\} \Rightarrow (f \text{ cerrada })V_i = Y \setminus f(X \setminus U_i) \in \mathcal{S}, i \in \{1, 2\}$

$$\Rightarrow V_1 \cap V_2 = (Y \setminus f(X \setminus U_1)) \cap (Y \setminus f(X \setminus U_2))$$

$$= (Y \setminus (f(X \setminus U_1) \cup f(X \setminus U_2)))$$

$$= Y \setminus f(X \setminus U_1 \cup X \setminus U_2)$$

$$= Y \setminus f(X \setminus (U_1 \cap U_2))$$

$$Y \setminus f(X) = Y \setminus Y = \emptyset$$

 \Rightarrow disjuntos.

 $iC_i \subset X \setminus f(X \setminus U_i)? \forall y \in C_i \Rightarrow f^{-1}(y) \subset f^{-1}(C_i) \subset U_i \Rightarrow X \setminus U_i \subset X \setminus f^{-1}(y) \Rightarrow f(X \setminus U_i) \subset f(X \setminus f^{-1}(y)) \Rightarrow z \in Y \setminus f(X \setminus f^{-1}(y)) \subset Y \setminus f(X \setminus U_i) = V_i \Rightarrow z \notin f(X \setminus f^{-1}(y)) \Rightarrow z = f(x') : x' \in X \setminus f^{-1}(y) \Rightarrow x' \in f^{-1}(y) \Rightarrow f(x') = y \Rightarrow z = y \Rightarrow \forall y \in C_i, y \in V_i.$

Para ver que es T_4 : (X, \mathcal{T}) es T_4 , $\forall y \in Y, \exists x \in X, f(x) = y \Rightarrow (T_1) \{x\}$ cerrado $(X, \mathcal{T}) \Rightarrow (f \text{ cerrada }) f(\{x\})$ es cerrado en (Y, \mathcal{S}) y $f(\{x\}) = \{y\}$.

Lema 2.0.2 (Urysohn). Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) normal $\Leftrightarrow \forall C_1, C_2$ cerrado disjunto, $\exists f : (X, \mathcal{T}) \to [0, 1]$ continua tal que $f(C_1) = \{0\}, f(C_2) = \{1\}.$

Demostración. (⇒) Sea

$$J = \bigcup_{n \in \mathbb{N} \cup \{0\}} J_n, \ J_n = \{ \frac{k}{2^n} : k \in \{0, 1, \dots, 2^n\} \}$$

Entonces, $\forall r \in J, \exists M_r \subset X \text{ tal que}$

a)
$$M_0 = C_1, M_1 = X \setminus C_2$$

b)
$$\forall r, r' \in J, r < r' \Rightarrow \overline{M}_r \subset \mathring{M}_r$$

Hacemos la demostración por inducción.

Sea
$$n=0 \Rightarrow J_0=\{0,1\} \Rightarrow M_0=C_1, M_1=X\setminus C_2 \Rightarrow \overline{M_0}=\overline{C_1}=C_1\subset X\setminus C_2=M_1=M_1.$$

Suponemos que es cierto para m=p. Veamos que se cumple para m=p+1.

Si m=p+1, entonces $\forall r\in J, r=\frac{k}{2^{p+1}}$. Distinguimos k par e impar.

- Si k par, entonces $k=2k', k'\in\mathbb{Z}^+\Rightarrow r=\frac{2k'}{2^{p+1}}=\frac{k'}{2^p}\in J_p\Rightarrow \exists U_r \text{ tal que cumple }(a)\text{ y }(b).$
- Si k es impar $\Rightarrow s = \frac{k-1}{2^{p+1}}, t = \frac{k+1}{2^{p+1}} \in J_p \Rightarrow \exists M_s, M_t$ tal que cumplen (a) y (b) dado que $s < t, \overline{M}_s \subset \mathring{M}_t$ y como (X, \mathcal{T}) es normal $\Rightarrow \exists M_r \in \mathcal{T} : \overline{M}_s \subset M_r \subset \overline{M}_r \subset \mathring{M}_t$.

Sea $f: X \to [0,1]$ tal que

$$f(x) = \begin{cases} \inf\{r \in J : x \in \overline{M}_r\}, \text{ si } x \not\in C_2 \ (\Leftrightarrow x \in M_1) \\ 1, \text{ si } x \in C_2 \end{cases}$$

entonces, $f(C_2) = \{1\}$ por definición. Y $\forall x \in C_1 = M_0 = \overline{M}_0$ cerrado $\Rightarrow f(x) = 0 \Rightarrow f(C_1) = \{0\}$

Veamos que f es continua

- $\begin{array}{c} \blacksquare \quad \underline{Si \ 0 < f(x) < 1} \ , \ J \ denso \ en \ [0,1] \Rightarrow \forall z \in [0,1], \forall \delta > 0, \exists m_0 \in \mathbb{N} : \ \frac{1}{2^{m_0}} < \delta \Rightarrow \frac{k_0}{2^{m_0}} \in (z-\delta,z+\delta). \ \textit{Entonces}, \ \exists t,s \in J : \ f(x_0) \epsilon < t < f(x_0) < s < f(x_0) + \epsilon. \end{array}$
 - Si $t < f(x_0) \Rightarrow x_0 \notin \overline{M}_t ($ si $x_0 \in \overline{M}_t \Rightarrow \forall j \in J : t < j, x_0 \in \mathring{M}_j \subset \overline{M}_j \rightarrow f(x_0) \leq t).$

• Si $t(x_0) < s \Rightarrow x_0 \in \mathring{M}_s \ (\underline{f}(x_0) = \inf\{r \in J : x_0 \in \overline{M}_r\} < s \Rightarrow \exists j \in J : j < s, x_0 \in \overline{M}_j \subset \mathring{M}_s)$

 $\Rightarrow x \in (X \setminus \overline{M}_t \cap \mathring{M}_s) \in \mathcal{T} \text{ donde } X \setminus \overline{M}_t = V^{x_0}.$

 $x \in V^{x_0} \Rightarrow$

- $\begin{array}{l} \bullet \; \mathit{Si} \; x \not \in \overline{M}_t \Rightarrow f(x) \geq t \; (\; \mathit{Si} \; \mathit{no} \; , f(x) < t, f(x) = \inf \{ r \in J : \; x \in \overline{M}_r \} \; \Rightarrow \; \exists j \in J : \; j < t, x \in \overline{M}_j \; \subset \; \mathring{M}_t \; \subset \; \overline{M}_t \; \mathit{absurdo} \;) \\ \end{array}$
- Si $x \in \mathring{M}_s \subset \overline{M}_s \Rightarrow f(x) < s$

Entonces, $f(V^{x_0}) \subset [t,s] \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$

- $\begin{array}{l} \blacksquare \quad \underline{Si\; f(x_0)=1}, \, \forall \epsilon > 0, \exists t \in J: f(x_0) \epsilon = 1 \epsilon < t < f(x_0) = \\ \hline 1. \; \textit{Entonces}, \; t < f(x_0) \rightarrow x_0 \not \in \overline{M}_t \Rightarrow x_0 \in X \setminus \overline{M}_t = V^{x_0}. \\ \textit{Por tanto}, \, \forall x \in V^{x_0} \Rightarrow x \not \in \overline{M}_t \Rightarrow f(x) \geq t. \; \textit{Por tanto} \; , \\ f(V^{x_0}) \subset [t,1] \subset (f(x_0) \epsilon, f(x_0) + \epsilon) = (1 \epsilon, 1). \end{array}$
- $\underline{Si\ f(x_0)=1}$, entonces $\forall \epsilon>0, \exists s\in J: 0=f(x_0)< s< f(x_0)+\epsilon=\epsilon$ donde $f(x_0)< s\Rightarrow x_0\in \mathring{M}_s=V^{x_0}\in \mathcal{T}$. Por tanto, $\forall x\in V^{x_0}, x\in \mathring{M}_s\subset \overline{M}\subset_s\Rightarrow f(x)\leq s\Rightarrow f(V^{x_0})\subset [0,s]\subset [0,\epsilon]=[f(x_0),f(x_0)+\epsilon).$
- $(\Leftarrow) \ \forall C_1, C_2 \ cerradps \ disjuntos.$
 - Si $C_1 = \emptyset$. Tomamos $M_1 = \emptyset$, $M_2 = X$,
 - Si $C_1, C_2 \neq \emptyset \Rightarrow \exists f : (X, \mathcal{T}) \rightarrow [0, 1]$ con tinua tal que $f(C_1) = \{0\}, f(C_2) = \{1\} \Rightarrow f^{-1}([0, \frac{1}{2})), f^{-1}((\frac{1}{2}, 1]) \in \mathcal{T}$ disjuntos, donde $C_1 \subset f^{-1}([0, \frac{1}{2})), C_2 \subset f^{-1}((\frac{1}{2}, 1]) \in \mathcal{T}$.

Corolario 2.0.3. T_4 es más fuerte que T_{3a} , $T_4 \Rightarrow T_{3a}$.

Observación. *Metrizable* $\Rightarrow T_4, T_{3a}, T_3, T_2, T_1, T_0$.

Observación. $T_3 \not\Rightarrow T_4$, T_{3a} es multiplicativa y T_4 no.

Teorema 2.1 (de Extension de Tietze). Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es normal $\Leftrightarrow \forall C \neq \emptyset$ cerrado, $\forall f: (C, \mathcal{T}|_C) \rightarrow [-1, 1]$ aplicación continua, $\exists F: (X, \mathcal{T}) \rightarrow [-1, 1]$ continua tal que $F|_C = f$.

Observación. Cualquier aplicación continua de C a [a,b] puede extenderse a una aplicación continua de X a [a,b].

Demostración. (\Rightarrow) Supongamos C cerrado de (X, \mathcal{T}) , $f: A \to [-1, 1]$. Sea

$$A_1 = \left\{ x \in C : f(x) \ge \frac{1}{3} \right\}, \ B_1 = \left\{ x \in C : f(x) \le -\frac{1}{3} \right\}$$

Entonces, A_1 y B_1 son cerrados disjuntos en (X,\mathcal{T}) que es normal. Por el Lema de Uryshon $\Rightarrow \exists f_1: X \to [-\frac{1}{3}, \frac{1}{3}]$ tal que $f_1(A_1) = \frac{1}{3}$, $f_1(B_1) = -\frac{1}{3}$. Por tanto, $\forall \in C, |f(x) - f_1(x)| \leq \frac{2}{3}$.

De la misma forma, sea $g_1=f-f_1|_C:(C,\mathcal{T}|_C)\to[-\frac{2}{3},\frac{2}{3}]$ continua y

$$A_2 = \left\{ x \in C : f(x) \ge \frac{2}{9} \right\}, \ B_2 = \left\{ x \in C : f(x) \le -\frac{2}{9} \right\}$$

Por el Lemma de Uryshon $\Rightarrow \exists f_2: (X,\mathcal{T}) \to [-\frac{2}{9},\frac{2}{9}]$ tal que $f_2(A_2) = \{\frac{2}{9}\}$ y $f_2(B_2) = \{-\frac{2}{9}\}$. Evidentemente, $\forall x \in C|g_1(x) - f_2(x)| \leq (\frac{2}{3})^2$.

Continuando el proceso, $\exists \{f_n\}_{n\in\mathbb{N}}, f_n: (X,\mathcal{T}) \to [-1,1]$ funciones continuas en C tal que $\forall x \in X, |f_n(x)| \leq \left(\frac{2}{3}\right)^n$. Entonces,

$$\left| f - \sum_{k=1}^{n} f_k \right| \le \left(\frac{2}{3}\right)^n$$

Por el criterio de Wieistrass $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente $\Rightarrow f_n \xrightarrow{n\to\infty} F \Rightarrow F$ continua $\Rightarrow F|_C = f$.

(\Leftarrow) $\forall C_1, C_2$ cerrados disjuntos, entonces $C_1 \cup C_2$ es cerrado en (X, \mathcal{T}) y la función $f: C_1 \cap C_2 \to [-1, 1]$ definida por $f(C_1) = \{-1\}, f(C_2) = \{1\}$ es continua en $C_1 \cap C_2$. Entonces, la extensión de f a todo X será la función de Uryshon para C_1 y $C_2 \Rightarrow (X, \mathcal{T})$ es normal.

Proposición 2.22 (Variantes del Teorema de Tietze). Sea (X, \mathcal{T}) e.t., $\forall s > 0$. Entonces, son equivalentes

- (I) (X, \mathcal{T}) es normal
- (II) $\forall C \neq \emptyset$ cerrado $, \forall f: (C, \mathcal{T}|_C) \rightarrow (-s, s)$ continua, $\exists \overline{f}: (X, \mathcal{T}) \rightarrow (-s, s)$ tal que $\overline{f}|_C = f$.

(III) $\forall C \neq \emptyset$ cerrado, $\forall g : (C, \mathcal{T}|_C) \rightarrow (\mathbb{R}, \mathcal{T}_u)$ continua, $\exists \hat{g} : (X, \mathcal{T}) \rightarrow \mathbb{R}$ continua tal que $\hat{g}|_C = g$.

Demostración. $[i) \Rightarrow ii)$ Dado que (-s,s) es abierto y $(-s,s) \subset [-s,s]$, el teorema de Tietze $\Rightarrow \exists F : (X,\mathcal{T}) \rightarrow [-s,s]$ continua tal que $F|_C = f$.

- Si $F(X) \subset (-s,s)$ hemos terminado.
- Si $F(X) \not\subset (-s,s) (\Leftrightarrow F^{-1}(\{s,-s\}) = C_1 \neq \emptyset C, C_1 \text{ disjuntos }).$ Entonces, por el Lema de Uryshon $\Rightarrow \exists h: (X,\mathcal{T}) \to [0,1]$ continua tal que $h(C_1) = \{0\}, h(C) = \{1\}.$ Sea $\hat{f} = F(x) \cdot h(x), \forall x \in X.$ Entonces, \hat{f} es continua y $\hat{f}(x) \subset (-s,s) \Rightarrow \hat{f}|_C = f$

 $[ii)\Rightarrow iii)$ Sea $g:(C,\mathcal{T}|_C)\to\mathbb{R}$ continua, $\exists h:\mathbb{R}\to(-s,s)\simeq f=h\circ g:(C,\mathcal{T}|_C)\to(-s,s)$ continua. Por $ii)\Rightarrow\exists\hat{f}:(X,\mathcal{T})\to(-s,s)$ continua tal que $\hat{f}|_C=f$. Sea $\hat{g}=h^{-1}\circ\hat{f}:(X,\mathcal{T})\to\mathbb{R}$ continua $\Rightarrow\hat{g}|_C=h^{-1}\circ f=h\circ(h^{-1}\circ g)=g$. Y como $\mathbb{R}\simeq(\mathbb{R},\mathcal{T}_u)$, tenemos el resultado requerido.

 $(iii) \Rightarrow i) \forall C_1, C_2 \text{ cerrados disjuntos}$

- Si $C_1 = \emptyset$, hemos terminado.
- Si $C_1, C_2 \neq \emptyset \Rightarrow C_1 \cup C_2 \neq \emptyset$ cerrado de (X, \mathcal{T}) . Sea $g: (C_1 \cup C_2, \mathcal{T}|_{C_1 \cup C_2}) \rightarrow \mathbb{R}$ tal que $g(C_1) = \{-1\}, g(C_2) = \{1\}$, entonces g es continua y por la hipótesis se puede extender, es decirm $\exists \hat{g}: (X, \mathcal{T}) \rightarrow \mathbb{R}$ continua tal que $\hat{g}|_{C_1 \cup C_2} = g \Rightarrow \hat{g}^{-1}((\leftarrow, 0)), \hat{g}^{-1}((0, \rightarrow)) \in \mathcal{T}$ donde $C_1 \subset \hat{g}^{-1}((\leftarrow, 0)), C_2 \subset \hat{g}^{-1}((0, \rightarrow))$ abiertos disjuntos $\Rightarrow (X, \mathcal{T})$ es normal.

Capítulo 3

Propiedades Numerabilidad

3.1. Axiomas Numerabilidad

Definición 3.1 (Numerable). Sea X conjunto, X es numerable si $\operatorname{card}(X) \leq \mathcal{X}_0 = \operatorname{card}(\mathbb{N})$.

Definición 3.2 (Primer Axioma de Numerabilidad). Sea (X, \mathcal{T}) e.t.. Se dice que verifica el primer axioma de numerabilidad si $\forall x \in X, \exists \mathcal{B}(x)$ base de entornos de x en (X, \mathcal{T}) numerable.

Ejemplo. $\forall X$ conjunto, $(X, \mathcal{T}_D), \mathcal{B}(x) = \{\{x\}\}, \forall x \in X \text{ es finito} \Rightarrow \text{numerable} \Rightarrow 1 \text{ axioma}.$

Ejemplo. $\forall X$ conjunto $(X, \mathcal{T}), \mathcal{V}(x) = \{x\} = \mathcal{B}(x), \forall x \in X.$

Ejemplo. Si (X, \mathcal{T}) metrizable, $\mathcal{T} = \mathcal{T}_d, \forall x \in X, \mathcal{B}(x) = \{B_{\frac{1}{n}}^x : n \in \mathbb{N}\}.$

Definición 3.3 (Segundo Axioma). Sea (X, \mathcal{T}) e.t.. Se dice que verifica el segundo axioma de numerabilidad si $\exists \mathcal{B}$ base de \mathcal{T} , numerable.

Ejemplo. $\forall X$ conjunto, $(X, \mathcal{T}), \mathcal{T} = \{X, \emptyset\}.$

Ejemplo. Si $(\mathbb{R}^n, \mathcal{T}_u), \mathcal{B} = \{B_{\frac{1}{n}}(x) : n \in \mathbb{N}\}$

Observación. 2^{Q} axioma $\Rightarrow 1^{Q}$ axioma.

Observación. 1^{Q} axioma $\Rightarrow 2^{Q}$ axioma.

Sea X conjunto tal que $\operatorname{card}(X) > \mathcal{X}_0 \Rightarrow (X, \mathcal{T}_d)$ es $\mathbf{1}^{\mathbf{Q}}$ axioma pero no segundo. Dado que $\forall x \in X, \{x\} \in \mathcal{T}_d \Rightarrow \forall \mathcal{B}$ base de $\mathcal{T}_d, \forall x \in X, \exists B_x \subset \mathcal{B} : B_x \subset \{x\} \Rightarrow \mathcal{X}_0 < \operatorname{card}(X) = \operatorname{card}(\{B_x : x \in X\}) \leq \operatorname{card}((\mathcal{B})).$

Proposición 3.1. El 1° y 2° axioma de numerabilidad son propiedades hereditarias.

Demostración.

- (I) (X, \mathcal{T}) 1º axioma, $E \subset X$. $\forall x \in E \Rightarrow \exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\}$ base de entornos de x en $(X, \mathcal{T}) \Rightarrow \mathcal{B}(x) = \{B_n^x \cap E : n \in \mathbb{N}\}$ es base de entornos de x en $(E, \mathcal{T}|_E)$.
- (II) (X, \mathcal{T}) $2^{\mathbf{Q}}$ axioma, $E \subset X \Rightarrow \exists \mathcal{B} = \{B_n : n \in \mathbb{N}\}$ base de $\mathcal{T} \Rightarrow \mathcal{B}' = \{B_n \cap E : n \in \mathbb{N}\}$ es base de $\mathcal{T}|_E$.

Proposición 3.2. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t. $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación suprayectiva, abierta y continua, Si (X, \mathcal{T}) es $1^{\mathcal{Q}}$ axioma ($2^{\mathcal{Q}}$ axioma), también lo es (X', \mathcal{T}') .

Demostración. [a) $\forall x' \in X' \xrightarrow{fsupra} \exists x \in X : f(x) = x'$. Por hipótesis $\exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\}$ es base de entornos de x numerable $\Rightarrow \mathcal{B}'(x) = \{f(B_n^x) : n \in \mathbb{N}\} \subset \mathcal{V}(x)$ es numerable. Veamos que es base de entornos de x'. $\forall V^{x'}$ entorno de x' en $(X', \mathcal{T}') \xrightarrow{fcont.} f^{-1}(V^{x'})$ entorno de x' $\Rightarrow \exists n_0 \in \mathbb{N} : B_{n_0}^x \subset f^{-1}(V^{x'}) \Rightarrow f(B_{n_0}^x) \subset f(f^{-1}(V^{x'})) = V^{x'}$ donde $f(B_{n_0}^{x'}) \in \mathcal{B}(x)$.

Corolario 3.0.1. 1° , 2° axioma son invariantes topológicos.

Proposición 3.3. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ $1^{\mathcal{Q}}$ axioma $(2^{\mathcal{Q}}$ axioma) $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es $1^{\mathcal{Q}}$ axioma $(2^{\mathcal{Q}}$ axioma) y $K = \{j \in J : \mathcal{T}_j \text{ no es trivial }\}$ es no numerable.

Demostración. $a)\Rightarrow Sea\left(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j\right)$ $1^{\mathcal{Q}}$ axioma. Entonces, $\forall j\in J, p_{j_0}:\left(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j\right)\to (X_{j_0},\mathcal{T}_{j_0})$ es suprayectiva, continua y abierta $\Rightarrow (X_{j_0},\mathcal{T}_{j_0})$ es $1^{\mathcal{Q}}$ axioma. Por hipótesis, $\forall a=(a_j)_{j\in J},\exists \mathcal{B}(a)=\{B_n^a:n\in\mathbb{N}\}$ numerable $\Rightarrow \forall j\in J, H_n=\{p_j(B_n^a):n\in\mathbb{N}\}$ es base de entornos de $a_j,\ \forall n\in\mathbb{N},\{j\in J:p_j(B_n^a)\neq X_j\}$ dado que $\prod U_j\subset B_n^a:U_j\in\mathcal{T}_j$ y $U_j=X_j,\forall j\in J\setminus F:F$ finito $\Rightarrow \forall j\in J\setminus F,p_j(B_n^a)=X_j.$ Entonces, H_n es finito $\Rightarrow H=\bigcup_{n\in\mathbb{N}}H_n$ es numerable. Falta ver que K es numerable, veamos que $K\subset H.\ \forall j\in J\Rightarrow \mathcal{T}_j\neq \{\emptyset,X_j\}\Rightarrow \exists n_0\in\mathbb{N}:p_j(B_{n_0}^a)\neq X_j\Rightarrow j\in H_{n_0}\subset H.$

 $b)\Rightarrow \forall j_0\in J, p_{j_0}: (\prod_{j\in J}X_j, \prod_{j\in J}\mathcal{T}_j)\rightarrow (X_{j_0},\mathcal{T}_{j_0})$ suprayectiva, continua y abierta $\Rightarrow (X_{j_0},\mathcal{T}_{j_0})$ es $2^{\mathcal{Q}}$ axioma. Y $2^{\mathcal{Q}}$ axioma $\Rightarrow 1^{\mathcal{Q}}$ axioma $\Rightarrow K$ numerable.

 $igl[a] \Leftarrow igl[extit{Sea } K ext{ numerable. } orall a = (a_j)_{j \in J} \in \prod_{j \in J} X_j, ext{ por hipótesis, } orall j \in J, \exists \mathcal{B}(a_j) = \{B_n^{a_j} : n \in \mathbb{N}\} \setminus \{X_j\} ext{ base numerable de } a_j. ext{ Sea } \mathcal{B}(a) = \{\prod_{j \in J} A_j = X_j, ijJ \setminus F : F ext{ finito y } A_j \in \mathcal{B}(a_j), j \in F \} ext{ es base de entornos de } a. ext{ Luego } \operatorname{card}(\mathcal{B}(a)) = \operatorname{card}(\mathcal{P}_F(K)) \Rightarrow \text{ numerable.}$

b) \Leftarrow $\forall j \in J, \exists \mathcal{B}_j = \{B_n : n \in \mathbb{N}\} \{X_j\}. \text{ Sea } \mathcal{B} = \{\prod_{j \in J} A_j : A_j = X_j, \forall j \in J \setminus F, F \text{ finito }, A_j \in \mathcal{B}_j, j \in F\} \Rightarrow \operatorname{card}(\mathcal{B}) = \operatorname{card}(\mathcal{P}_F(K)) \Rightarrow \text{numerable.}$

Proposición 3.4. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ $1^{\underline{o}}$ axioma $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es $1^{\underline{o}}$ axioma

Demostración.

- $(\Rightarrow) \ \forall j_0 \in J, X_{j_0} \simeq X_j \times \{j_0\} \subset \sum_{j=0} X_j \ \textit{ACABAR}$
- $(\Leftarrow) \ \forall x \in \sum_{j \in J} \Rightarrow \exists ! j_0 \in J : x \in X_{j_0} \times \{j_0\} \simeq X_{j_0}. \ \textit{Por hipótesis,} \ \exists \mathcal{B} \ \textit{base entornos de } p_1(x) \ \textit{en} \ (X_{j_0}, \mathcal{T}_{j_0}) \Rightarrow \exists \ \textit{base de entornos de } x \ \textit{en} \ X_{j_0} \times \{j_0\} \ \textit{y en} \ (\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k).$

Proposición 3.5. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ $2^{\underline{o}}$ axioma $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es $1^{\underline{o}}$ axioma y \mathcal{T} es numerable.

Demostración.

- $(\Leftarrow) \ \forall k \in J, \exists \mathcal{B}_k \ \text{base numerable de } \mathcal{T}_k \Rightarrow \{B \times \{k\} : B \in \mathcal{B}_k\} \ \text{base de entornos de } \mathcal{T}_k \Rightarrow \mathcal{B} = \bigcup_{k \in J} \{B \times \{k\} : B \in \mathcal{B}_k\} \ \text{es numerable y es base de } \sum_{j \in J} \mathcal{T}_j.$

Observación. Si (X, \mathcal{T}) e.t. $1^{\underline{o}}$ axioma entonces, $\forall x \in X, \exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\}: B_{n+1}^x \subset B_n^x, \forall n \in \mathbb{N}.$

<u>Dem:</u> $\forall x \in X, \exists \{V_n^x : n \in \mathbb{N}\}$ base de entornos numerable.

$$B_1^x = V_1^x$$

$$B_2^x = V_1^x \cap V_2^x$$

$$B_3^x = V_1^x \cap V_2^x \cap V_3^x$$

$$B_n^x = \bigcap_{k=1}^n V_k^x$$

entonces $B_n^x \subset V_n^x$ y $B_{n+1}^x \subset B_n^x$

Definición 3.4 (Sucesión Convergente). Sea (X, \mathcal{T}) e.t., $(x_n)_{n \in \mathbb{N}} \subset X$. Entonces, $(x_n)_{n \in \mathbb{N}} \to x \in X \Leftrightarrow \forall \mathcal{U}^x$ entorno de x in (X, \mathcal{T}) , $\exists n_0 \in \mathbb{N} : x_n \in \mathcal{U}^x, \forall n \geq n_0$.

Proposición 3.6. Sea (X, \mathcal{T}) e.t. $1^{\underline{o}}$ axioma. Entonces,

- (I) $M \subset X, x \in X \Rightarrow x \in \overline{M} \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \subset M : (x_n)_{n \in \mathbb{N}} \xrightarrow{n \to \infty} x.$
- (II) $M \subset X, x \in X \Rightarrow x \in M' \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \subset M \setminus \{x\} : \{x_n\}_{n \in \mathbb{N}} \xrightarrow{n \to \infty} x$.
- (III) $M \subset X, M$ cerrado en $(X, \mathcal{T}) \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \subset M \Rightarrow \lim_{n \in \mathbb{N}} (x_n)_{n \in \mathbb{N}} \subset M$.
- (IV) (X', \mathcal{T}') e.t., $f: X \to X', x \in X, f$ continua en $x \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \subset \mathcal{T}$

 $M: (x_n)_{n\in\mathbb{N}} \to x \Rightarrow (f(x_n))_{n\in\mathbb{N}} \to f(x).$

Demostración. (I)

(II)

- $(\Rightarrow) \ x \in \overline{M} \ \ \mathbf{y} \ \exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\} : B_{n+1}^x \subset B_n^x. \ \ \mathsf{Entonces}, \\ \forall n \in \mathbb{N}, x_n \in B_n^x \cap M \neq \emptyset \Rightarrow (x_n)_{n \in \mathbb{N}} \subset M : (x_n)_{n \in \mathbb{N}} \to x.$
- $(\Leftarrow) \ \forall \mathcal{U}^x, \exists n_0 \in \mathbb{N} : x_n \in \mathcal{U}^x \ \textit{donde} \ x_n \in M, \forall n \geq n_0 \Rightarrow x_n \in M \cap \mathcal{U}^x \neq \emptyset.$

(III)

- $(\Rightarrow) \ x \in M' \Rightarrow \forall n \in \mathbb{N}, B_n^x \setminus \{x\} \cap M \neq \emptyset \Rightarrow (x_n)_{n \in \mathbb{N}} \subset M \setminus \{x\}.$
- (⇐) Análogo.
- (IV) M cerrado $\Leftrightarrow \overline{M} = M \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \subset M \Rightarrow \lim_{n \in \mathbb{N}} (x_n)_{n \in \mathbb{N}} \in M$.

(v)

- $(\Rightarrow) \ f \ \textit{cont en} \ x \ \textit{y} \ (x_n)_{n \in \mathbb{N}} \to x \Rightarrow \forall V^{f(x)}, \exists U^x : f(U^x) \subset V^{f(x)} \Rightarrow \exists n_0 \in \mathbb{N} : x_n \in U^x, \forall n \geq n_0 \Rightarrow \exists n_0 \in \mathbb{N} : f(x_n) \in f(U^x) \subset V^{f(x)}, \forall n \geq n_0 \Rightarrow (f(x_n))_{n \in \mathbb{N}} \to f(x).$
- $(\Leftarrow) \ \textit{Si f no es continua, entonces} \ \exists V^{f(x)} : \forall U^x, f(U^x) \not\subset V^{f(x)} \Rightarrow \\ \forall n \in \mathbb{N}, f(B^x_n) \not\subset V^{f(x)} \Rightarrow \forall n \in \mathbb{N}, \exists x_n \in B^x_n : f(x_n) \not\in V^{f(x)}. \\ \textit{Ahora,} \ B^x_{n+1} \subset B^x_n, \forall n \in \mathbb{N} \Rightarrow (x_n)_{n \in \mathbb{N}} \to x \ \textit{y} \ (f(x_n))_{n \in \mathbb{N}} \not\to f(x).$

3.2. Separable

Definición 3.5 (Separable). Sea (X, \mathcal{T}) e.t.. Se dice que es separable si $\exists D$ denso numerable en (X, \mathcal{T}) .

Proposición 3.7. Todo 2^{Q} axioma es separable.

Demostración. $\exists \mathcal{B} = \{B_n : n \in \mathbb{N}\}$ base numerable de T. Podemos suponer que $\mathcal{B} \neq \emptyset$. Entonces, $\forall n \in \mathbb{N}, \exists x_n \in B_n$ de manera que $\{x_n : n \in \mathbb{N}, \exists x_n \in B_n\}$

 \mathbb{N} = D es numerable. Además, $\forall U \in \mathcal{T} \setminus \{\emptyset\}, \exists n_0 \in \mathbb{N} : B_{n_0} \in \mathcal{B} : x_{n_0} \in B_{n_0} \subset U \text{ y } U \cap D \neq \emptyset \Rightarrow D \text{ es denso.}$

Observación. La sepraración no es hederitaria.

Demostración. content

Proposición 3.8. Sea (X, \mathcal{T}) e.t. separable, $G \in \mathcal{T} \setminus \{\emptyset\}$. Entonces, $(G, \mathcal{T}|_G)$ es seprable.

Demostración. $\exists D$ denso numera en $(X, \mathcal{T}) \Rightarrow G \cap D \neq \emptyset$. Como D es numerable $\Rightarrow G$ numerable. Ahora, $\forall U \in \mathcal{T}|_G \setminus \{\emptyset\} \Rightarrow U \subset G \in \mathcal{T} \setminus \{\emptyset\} \Rightarrow U \cap D \neq \emptyset$ donde $U \cap D = U \cap (D \cap G) \Rightarrow G \cap D$ denso en $(G, \mathcal{T}|_G)$.

Proposición 3.9. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva y continua. Si (X, \mathcal{T}) es separable, entonces también lo es (X', \mathcal{T}') .

Demostración. $\exists D$ denso numerable en $(X, \mathcal{T}) \Rightarrow \overline{D} = X \Rightarrow f(\overline{D}) \subset \overline{f(D)}$ donde $f(\overline{D}) = f(X) \Rightarrow f(X) \subset \overline{f(D)} \Rightarrow f(X) = \overline{f(D)} \Rightarrow f(D)$ denso y numerable.

Proposición 3.10. Sean $\{(X_j, \mathcal{T}_j)\}_{j\in J}$ familia no vacia de e.t. T_2 y $\operatorname{card} X_j \geq 2, \forall j \in J$. Entonces, $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j)$ es separable $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es separable y $\operatorname{card} J \leq 2^{\mathcal{X}_0}$.

Demostración.

 $(\Rightarrow) \ \forall j \in J, p_j \ continua \ y \ suprayectiva \Rightarrow (X_j, \mathcal{T}_j) \ separable \ \forall j \in J.$ Luego, $\forall j \in J, \exists U_j, V_j \in \mathcal{T}_j \setminus \{\emptyset\} : U_j \cap V_j = \emptyset \ de \ manera \ que$ $p_j^{-1}(U_j) \in \prod_{j \in J} \mathcal{T}_j \ no \ vac\'o \ y \ \exists D \ denso \ en \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \Rightarrow$ $D \cap p_j^{-1}(U_j) = D \cap D_j \neq \emptyset. \ Sea$

$$F: J \to \mathcal{P}(D): j \mapsto D_j$$
.

Veamos que F es inyectiva. $\forall j, j' \in J : j \neq j', p_j^{-1}(U_j) \cap p_{j'}^{-1}(V_j) \neq \emptyset$ por ser p_j aplicación abierta. Entonces, $D \cap p_j^{-1}(U_j) \cap (p_{j'})^{-1}(V_j) \neq \emptyset$.

(*⇐*) *Sea*

$$D = \{P_{J_1,\dots,J_k}^{n_1,\dots,n_k}, k \in \mathbb{N}, n_1,\dots,n_k \in \mathbb{N},$$

 J_1, \dots, J_k segmento de extremos racionales disjuntos contenido en [0,1]

Entonces, $D \subset \prod_{j \in J} X_j$ y D es numerable. Por tanto, $\forall U \in \prod_{j \in J} \mathcal{T}_j \setminus \{\emptyset\}, \exists B \in \mathcal{B}: B \subset U \text{ tal que } B = \bigcap_{i=1}^m p_{ji}^{-1}(U_{ji}) \text{ donde } U_{ji} \in \mathcal{T}_{ji} \setminus \{\emptyset\}, \forall i \in \{1, \cdots, m\}. \text{ Por tanto, } \forall i \in \{1, \cdots, m\}, D_{j_i} \cap U_{j_i} = d_{j_i n_i} \neq \emptyset, j_1, \cdots, j_m \in [0, 1]. \text{ Entonces, } P_{J_1, \cdots, J_k}^{n_1, \cdots, n_k} \text{ in } D \text{ y} \forall i \in \{1, \cdots, m\}, p_{ji}(P_{J_1, \cdots, J_k}^{n_1, \cdots, n_k}) = d_{j_i n_i} \in U_{i_j} \Rightarrow P_{J_1, \cdots, J_k}^{n_1, \cdots, n_k} \in D, B \Rightarrow D \cap B \neq \emptyset \Rightarrow D \cap U \neq \emptyset.$

Proposición 3.11. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{j \in J} X_j, \sum_{j \in J} \mathcal{T}_j)$ separable $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es separable y J es numerable.

Demostración.

- (\Rightarrow) Por hipótesis, D denso numerable en $(\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k) \Rightarrow \forall k \in J, (X_k \times \{k\}) \cap D \neq \emptyset$. Sea $z_k \in (X_k \times \{k\}) \cap D$, entonces $\{z_k : k \in J\} \subset D$ es conjunto de puntos distintos. Podemos usar una aplicación injectiva de $\{z_k : k \in J\}$ a J para ver que $\operatorname{card} J \leq \operatorname{card} D \leq \mathcal{X}_0$.
- $(\Leftarrow) \ \forall k \in J, \exists D_k \ denso \ numerable \ en \ (X_k, \mathcal{T}_k). \ Sea \ D = \bigcup_{k \in J} mbD_k \times \{k\} \ es \ numerable \ por \ ser \ unión \ de \ conjuntos \ numerables \ y \ es \ subespacio \ del \ espacio \ suma \Rightarrow \ es \ denso \ en \ (\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k).$

3.3. Lindelöf

Definición 3.6 (Recubrimiento). Sea (X, \mathcal{T}) e.t., $\mathcal{U} \subset \mathcal{P}(X)$. Se dice que \mathcal{U} es un recubrimiento de X si $\bigcup_{U \in \mathcal{U}} U = X$. Si $\forall U \in \mathcal{U}, U \in \mathcal{T}$, entonces \mathcal{U} es un recubrimiento abierto.

Definición 3.7 (Subrecubrimiento). Sea $(X, \mathcal{T}), \mathcal{U}$ recubrimiento de X, $\mathcal{V} \subset \mathcal{U}$. Se dice que \mathcal{V} es un subrecubrimiento si \mathcal{V} también es un recubrimiento de X.

Observación. Puede ser que V = U.

Definición 3.8 (Lindelöf). Sea (X, \mathcal{T}) e.t. es Lindelöf si $\forall \mathcal{U}$ recubrimiento abierto de X, $\exists \mathcal{V}$ subrecubrimiento numerable de \mathcal{U} .

Proposición 3.12. Todo e.t. 2º axioma es de Lindelöf.

Demostración. Sea (X,\mathcal{T}) $2^{\mathbb{Q}}$ axioma $\Rightarrow \exists \mathcal{B}$ base numerable de \mathcal{T} . Entonces, $\forall \mathcal{U}$ recubrimiento abierto de $(X,\mathcal{T}) \Rightarrow \forall \mathcal{U} \in \mathcal{U}, \forall x \in \mathcal{U}, \exists B_{\mathcal{U}}^x \in \mathcal{B}: x \in B_{\mathcal{U}}^x \subset \mathcal{U}$. Sea $\mathcal{C} = \{B_{\mathcal{U}}^x: x \in \mathcal{U} \in \mathcal{U}\} \subset \mathcal{B} \Rightarrow \mathcal{C}$ numerable y \mathcal{C} recubre a X pero no es subrecubrimiento. Luego, $\forall Bim\mathcal{C}, \exists \mathcal{U}_B \in \mathcal{U}: B \subset \mathcal{U}_B \Rightarrow \mathcal{V} = \{\mathcal{U}_B: B \in \mathcal{C}\} \subset \mathcal{U}$ es numerable y recubre a $X \Rightarrow \mathcal{V}$ es subrecubrimiento de $\mathcal{U} \Rightarrow$ es (X,\mathcal{T}) es Lindelöf.

Observación. Lindelöf no es hereditaria.

Ejemplo. VER EJEMPLO

Proposición 3.13. Todo subespacio cerrado de un e.t. Lindelöf es Lindelöf.

Demostración. Sea (X,\mathcal{T}) , Lindelöf, E cerrado no vación de (X,\mathcal{T}) . Entonces, $\forall \mathcal{U}$ recubrimiento abierto de $(E,\mathcal{T}|_E)$, $\mathcal{U}=\{U_j:j\in J\}\Rightarrow \forall j\in J,\exists V_j\in\mathcal{T}:U_j=V_j\cap E.$ Luego, $\mathcal{U}'=\{V_j:j\in J\}\cup\{X\setminus E\}$ es recubrimiento abierto de $(X,\mathcal{T})\Rightarrow\exists \mathcal{V}'=\{V_{jn}:n\in\mathbb{N}\}\cup\{X\setminus E\}$ es sub recubrimiento de $\mathcal{U}'\Rightarrow\mathcal{V}=\{U_{jn}:n\in\mathbb{N}\}$ es subrecubrimiento de \mathcal{U} .

Proposición 3.14. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) Lindelöf, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación continua suprayectiva. Entonces, (X', \mathcal{T}') es Lindelöf.

Demostración. $\forall \mathcal{U}' = \{U'_j : j \in J\}$ recubrimiento abierto de (X', \mathcal{T}') . Entonces, $\mathcal{U} = \{f^{-1}(U'_{jn}) : n \in \mathbb{N}\}$ es recubrimiento abierto de (X, \mathcal{T}) . Por ser (X, \mathcal{T}) Lindelöf $\Rightarrow \exists \mathcal{V} = \{f^{-1}(U'_{jn}) : n \in \mathbb{N}\}$ subrecubrimiento numerable de $\mathcal{U} \xrightarrow{f \text{ supra.}} \mathcal{V}' = \{U'_{jn} : n \in \mathbb{N}\}'$ subrecubrimiento numerable de \mathcal{U}' .

Observación. El producto de dos e.t. de Lindelöf no es Lindelöf. **Ejemplo.** VER EJEMPLO

Proposición 3.15. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{j \in J} X_j, \sum_{k \in J} \mathcal{T}_k)$ es Lindelöf $\Leftrightarrow (X_j, \mathcal{T}_j)$ es Lindeöf $\forall j \in J$ y J es numerable.

Demostración.

- $(\Rightarrow) \ \forall k \in J, X_k \simeq X_k \times \{k\} \subset \sum_{j \in J} X_j \ y \ dado \ que \ Lindelöf \ se \ conserva \ por \ aplicaciones \ continuas \Rightarrow \ Lindelöf \ es \ invariante, \ tenemos \ que \ (X_k, \mathcal{T}_k) \ es \ Lindelöf, \ \forall k \in J. \ Como \ \{X_k \times \{k\} : k \in J\} \ es \ recubrimiento \ de \ (\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k) \ por \ conjuntos \ disjuntos \ doa \ a \ dos \ \Rightarrow J \ numerable. \ REVISAR.$
- (\Leftarrow) Sea \mathcal{U} recubrimiento abierto de $(\sum_{k\in J}X_k,\sum_{k\in J}\mathcal{T}_k)$. Entonces, $\forall k\in J, \{U\cap(X_k\times\{k\}):U\in\mathcal{U}\}=\mathcal{U}_k$ recubrimiento abierto de $X_k\times\{k\}\simeq(X_k,\mathcal{T}_k)$. Por tanto $\forall k\in J,\exists\mathcal{V}_k$ subrecubrimiento numerable de \mathcal{U}_k . Sea $\mathcal{V}=\bigcup_{k\in J}\{U:U\cap(X_k\times\{k\})\in\mathcal{V}_k\}\subset\mathcal{U}\Rightarrow\mathcal{V}$ es subrecubrimiento numerable de $\mathcal{U}\Rightarrow(\sum_{k\in J}X_k,\sum_{k\in J}\mathcal{T}_k)$ es Lindelöf.

Proposición 3.16. Todo e.t. Lindelöf y regular es normal.

Demostración. Sea (X, \mathcal{T}) e.t. Lindelöf y regular. Entonces, $\forall C_1, C_2$ cerrados de (X, \mathcal{T})

- Si $C_1 = \emptyset$, entonces $U_1 = \emptyset$, $U_2 = X$.
- Si $C_1, C_2 \neq \emptyset$, entonces

$$\begin{cases} \forall x \in C_1, \exists V^x \in \mathcal{T} : \overline{V}^x \cap C_2 = \emptyset \Rightarrow C_1 \subset \bigcup_{x \in C_1} V^x \\ \forall y \in C_2, \exists U^y \in \mathcal{T} : \overline{U}^y \cap C_1 = \emptyset \Rightarrow C_2 \subset \bigcup_{y \in C_2} U^y \end{cases}$$

Dado que todo espacio cerrado de un e.t. Lindelöf es Lindelöf, entonces

$$\begin{cases} \exists \{V^{x_n}: n \in \mathbb{N}\}: C_1 \subset \bigcup_{n \in \mathbb{N}} V^{x_n} \text{ subfamilia numerable} \\ \exists \{U^{y_n}: n \in \mathbb{N}\}: C_2 \subset \bigcup_{n \in \mathbb{N}} U^{y_n} \text{ subfamilia numerable} \end{cases}$$

Ahora, sean

$$A_1 = V^{x_1}, \quad B_1 = U^{y_1} \setminus \overline{A_1}$$
$$A_2 = V^{x_2} \setminus \overline{B_1}, \quad B_2 = U^{y_2} \setminus \overline{A_1 \cup A_2}$$

$$A_3 = V^{x_3} \setminus \overline{B_1 \cup B_2}, \quad B_3 = U^{y_3} \setminus \overline{A_1 \cup A_2 \cup A_3}$$
 ...

son recubrimietos abiertos de T. Sean

$$G_1 = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{T}, \quad G_2 = \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{T}.$$

Veamos que $C_i \subset G_i, \forall i \in \mathbb{N} \text{ y } G_1 \cap G_2 = \emptyset.$

Veamos que G_1 y G_2 son disjuntos.

$$G_1 \cap G_2 = \emptyset$$
 Si $\exists z \in G_1 \cap G_2$, entonces

$$\begin{cases} \exists n_0 \in \mathbb{N} : z \in A_{n_0} \Rightarrow z \notin B_n, \forall n < n_0 \\ \exists m_0 \in \mathbb{N} : z \in B_{m_0} \Rightarrow z \notin A_m, \forall m \le m_0 \end{cases}$$

pero $z \in A_{n_0} \Rightarrow n_0 > m_0$ y $z \in B_{m_0} \Rightarrow m_0 \geq n_0$ es absurdo.

Teorema 3.1. Sea (X, \mathcal{T}) e.t. metrizable. Entonces, son equivalentes

- (I) (X, \mathcal{T}) es 2^{Q} axioma,
- (II) (X, \mathcal{T}) es Lindelöf,
- (III) (X, \mathcal{T}) es separable.

Demostración. Sea (X, \mathcal{T}) tal que $\mathcal{T} = \mathcal{T}_d$.

 $b\Rightarrow a$ Como (X,\mathcal{T}) Lindelöf, entonces $\forall \mathcal{U}$ recubrimiento abierto de \mathcal{U} , $\exists \mathcal{V}$ subrecubrimiento numerable de \mathcal{U} . Por tanto, $\forall n\in\mathbb{N}$,

$$\mathcal{U}_n = \{B_{\frac{1}{n}}(x) : x \in X\}$$

es un recubrimiento abierto de (X, \mathcal{T}) . Luego, $\forall n \in \mathbb{N}, \exists \mathcal{V}_n \subset \mathcal{U}_n : \mathcal{V}_n$

es subrecubrimiento numerable de \mathcal{U}_n . Entonces, $\bigcup_{n\in\mathbb{N}}\mathcal{V}_n\equiv\mathcal{B}\subset\mathcal{T}$.

Veamos que \mathcal{B} es base de \mathcal{T} . $\forall W \in \mathcal{T}, \forall x \in W \Rightarrow \exists m \in \mathbb{N} : B_{\frac{1}{m}}(x) \subset W$ entonces, \mathcal{V}_{2m} es recubrimiento abierto de $(X,\mathcal{T}) \Rightarrow \exists y \in X : x \in B_{\frac{1}{2m}}(y) \in \mathcal{V}_{2m}$.

Ahora, $x\in B_{\frac{1}{2m}}(y)\subset B_{\frac{1}{m}}(x)\subset W$. Entonces, $\mathcal B$ es base de $\mathcal T$. Para ver esto, $\forall z\in B_{\frac{1}{2m}}(x), d(z,x)\leq d(z,y)+d(y,x)\leq \frac{1}{2m}+\frac{1}{2m}=\frac{1}{m}\Rightarrow B_{\frac{1}{2m}}(y)\subset B_{\frac{1}{m}}(x)\Rightarrow \mathcal B$ es base de $\mathcal T$.

 $c\Rightarrow a$ (X,\mathcal{T}) separable $\Rightarrow\exists D=\{d_n:n\in\mathbb{N}\}$ numerable y denso en $(X,\mathcal{T}).$ Sea $\mathcal{B}=\{B_{\frac{1}{m}}(d_n):n,m\in\mathbb{N}\}\subset\mathcal{T}$ es colección de abiertos numerable $\Rightarrow\mathcal{B}$ es numerable.

Veamos que \mathcal{B} es base de \mathcal{T} .

$$\forall W \in \mathcal{T}, \forall x \in W \Rightarrow \exists m \in \mathbb{N} : B_{\frac{1}{m}}(x) \subset W.$$

Por ser D denso y $B_{\frac{1}{2m}}(x)$ abierto. Entonces,

$$\forall z \in B_{\frac{1}{2m}}(d_n), d(z, x) \le d(z, d_n) + d(x, d_n) \le \frac{1}{2m} + \frac{1}{2m} = \frac{1}{m}$$

entonces, $B_{\frac{1}{2m}}(y) \subset B_{\frac{1}{m}}(x) \Rightarrow \mathcal{B}$ es base de \mathcal{T} .

Capítulo 4

Espacios Compactos

Definición 4.1 (Compacto). Sea (X, \mathcal{T}) e.t.. Se dice que (X, \mathcal{T}) es compacto si $\forall \mathcal{U}$ recubrimiento abierto de (X, \mathcal{T}) , $\exists \mathcal{V}$ sub recubrimiento finito suyo.

Observación. *Compacto* ⇒ *Lindelöf.*

Observación. *Lindelöf ⇒ Compacto.*

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es de Lindelöf pero no es compacto.

Observación. La compacidad se conserva por aplicaciones continuas (imagen directa).

Proposición 4.1. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) compacto, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva y continua. Entonces, (X', \mathcal{T}') es compacto.

Demostración. $\forall \mathcal{U}' = \{U'_j: j \in J\} \xrightarrow{f \text{ cont.}} \mathcal{U} = \{f^{-1}(U'_j)\} \text{ es recubrimiento abierto de } (X, \mathcal{T}).$ Entonces, $\mathcal{V} = \{f^{-1}(U'_{j_1}), \cdots, f^{-1}(U'_{j_n})\} \xrightarrow{f \text{ supra.}} \mathcal{V}' = \{U'_{j_1}, \cdots, U'_{j_n}\} \text{ es subrecubrimiento finito de } \mathcal{U}.$

Corolario 4.0.1. La compacidad es invariante topológico.

Proposición 4.2. Sea (X, \mathcal{T}) e.t. compacto, $E \neq \emptyset \subset X$ cerrado de (X, \mathcal{T}) . Entonces, $(E, \mathcal{T}|_E)$ es compacto.

Demostración. $\forall \mathcal{U} = \{U_j : j \in J\}$ recubrimiento abierto de $(E, \mathcal{T}|_E) \Rightarrow \forall j \in J, \exists V_j \in \mathcal{T} : U_j = V_j \cap E \Rightarrow \mathcal{U}' = \{V_j : j \in J\} \cup \{X \setminus E\}$ recubrimiento abierto de $(X, \mathcal{T}) \xrightarrow{hip.} \exists \mathcal{V}' = \{V_{j_1}, \cdots, V_{j_n}\} \cup \{X \setminus E\}$ subrecubrimiento finito de $\mathcal{U}' \Rightarrow \mathcal{V} = \{U_j, \cdots, U_{j_n}\}$ subrecubrimiento finito de \mathcal{U} .

Proposición 4.3. Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es compacto $\Leftrightarrow \forall \mathcal{C} = \{C_j\}_{j \in J}$ familia de cerrados de (X, \mathcal{T}) con la propiedad de intersección finita (todas las intersecciónes de subfamilias de \mathcal{C} son no vacías), se tiene que $\bigcap_{j \in J} C_j \neq \emptyset$.

Demostración.

 (\Rightarrow) Supongamos que $\exists \mathcal{C} = \{C_j\}_{j \in J}$ familia de cerrados con la p.i,f, tal que $\bigcap_{i \in J} C_i = \emptyset$. Entonces,

$${X \setminus C_j}_{j \in J} \subset \mathcal{T}$$

es recubrimiento abierto de (X, \mathcal{T}) y no tiene subrecubrimiento finito. Por tanto, (X, \mathcal{T}) no es compacto.

(\Leftarrow) Supongamos que (X,\mathcal{T}) no es compacto. Entonces, $\mathcal{U}=\{U_j\}_{j\in J}$ recubrimiento abierto de (X,\mathcal{T}) tal que $\not \exists$ subrecubrimiento finito. Luego, $\{X\setminus U_j:j\in J\}$ es familia de cerrados con la p.i.f tal que $\bigcap_{j\in J}(X\setminus U_j)=\emptyset$, es una contradicción.

Proposición 4.4. Sea (X, \mathcal{T}) T_2 , $E \subset X : (E, \mathcal{T}|_E)$ es compacto. Entonces, E es cerrado de (X, \mathcal{T}) .

Observación. No confundir. Todo subconjunto cerrado de un espacio compacto es compacto, y un subconjunto compacto de un espacio T_2 es cerrado.

Observación. Si $C \subset X$ es compacto, entonces $\forall K$ subfamilia arbitraria the subconjuntos abiertos $C \subset \bigcup_{G \in K} G$, $\exists F \subset K$ subfamilia finita $C \subset \bigcup_{G \in F} G$.

Demostración. Sea $E \subset X$. Entonces, como X es T_2 , $\forall x \in X \setminus E, \forall y \in E, \exists U_u^x, \exists U^y \in \mathcal{T}$ disjuntos. La colección

$$\{U^y:y\in E\}$$

es un recubrimiento abierto de E, entonces E compacto $\Rightarrow \exists y_1, \dots y_n \in E$ tal que $\{U^{y_1}, \dots, U^{y_n}\}$ es un subrecubrimiento finito de E. Por tanto,

$$E \subset \bigcup_{i=1}^{n} U^{y_i} \equiv G \in \mathcal{T}$$

que es disjunto de

$$x \in U_{y_1}^x \cap \dots \cap U_{y_2}^x \equiv V^x$$

ya que $\forall z \in U^y_{i_0}, z \notin U^x_{u_0} \Rightarrow z \notin V^x$. Entonces,

$$V^x \cap G = \emptyset \Rightarrow V^x \cap E = \emptyset \Leftrightarrow V^x \subset X \setminus E \in \mathcal{T}$$

si y solo si E es cerrado de (X, \mathcal{T}) .

Observación. La compacidad ni es propiedad hereditaria.

Ejemplo. $([0,1], \mathcal{T}_u|_{[0,1]})$ pero $((0,1), \mathcal{T}_u|_{(0,1)})$ no es compacto.

Proposición 4.5. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) compacto, (X', \mathcal{T}') T_2 , $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua. Entonces, f es apicación cerrada.

Demostración. $\forall E \subset X : E \neq \emptyset$ es cerrado, entonces $(E, \mathcal{T}|_E)$ es cerrado $\xrightarrow{f \text{ cont.}} (f(E), \mathcal{T}'|_{f(E)})$ es compacto en (X', \mathcal{T}') que es $T_2 \Rightarrow (f(E), \mathcal{T}'|_{f(E)})$ es cerrado de (X', \mathcal{T}') .

Demostración. $\forall E \subset X$ cerrado $\Rightarrow (E, \mathcal{T}|_E)$ es cerrado y por ser (X, \mathcal{T}) compacto, entonces $(E, \mathcal{T}|_E)$ es compacto. Ahora, $f|_E : (E, \mathcal{T}|_E) \to (f(E), \mathcal{T}|_{f(E)})$ es suprayectiva y continua, y (X, \mathcal{T}) compacto $\Rightarrow (f(E), \mathcal{T}|_{f(E)})$ es compacto en (X', \mathcal{T}') . Como (X', \mathcal{T}') es T_2 , entonces $(f(E), \mathcal{T}|_{f(E)})$ es cerrado de (X', \mathcal{T}') .

Proposición 4.6. Sea (X, \mathcal{T}) e.t. $T_2, C_1, C_2 \subset X$ disjuntos tal que $(C_i, \mathcal{T}|_{C_i})$ compacto, $\forall i \in \{1, 2\}$. Entonces, $\exists G_i \in \mathcal{T}, i \in \{1, 2\}$ disjuntos tal que $C_i \subset G_i$.

Demostración. Por ser (X,\mathcal{T}) T_2 tenemos que $\forall x \in C_1, \forall y \in C_2, \exists U_y^x, \exists U_x^y \in \mathcal{T}$ disjuntos. Consideramos $x \in C_1$ entonces $\{U_x^y: y \in C_2\}$ es un recubrimiento abierto de $(C_2,\mathcal{T}|_{C_2}) \Rightarrow \exists y_1,\cdots,y_n \in C_2: \{U_x^{y_1},\cdots,U_x^{y_n}\}$ es subrecubrimiento finito de $(C_1,\mathcal{T}|_{C_1})$ tal que

$$C_2 \subset \bigcap_{i=1}^n U_x^{y_i} \equiv A_x$$

es disjunto de

$$x \in U_{y_1}^x \cap \dots \cap U_{y_n}^x \equiv V^x \in \mathcal{T}$$

Como $C_1 \subset \bigcup_{x \in C_1} V^x$ es recubrimiento abierto de $(C_1, \mathcal{T}|_{C_1})$, entonces $\exists x_1, \cdots, x_m \in C_1 : \{V^{x_1, \cdots, V^{x_n}}\}$ es subrecubrimiento finito tal que

$$C_1 \subset \bigcup_{j=1}^m V^{x_j} \equiv G_1 \in \mathcal{T}.$$

Entonces, para

$$C_2 \subset A_{x_1} \cap \cdots \cap A_{x_m} \equiv G_2 \in \mathcal{T}$$

tenemos que $G_1 \cap G_2 = \emptyset$.

Corolario 4.0.2. Todo e.t. compacto y T_2 es T_4 .

Proposición 4.7. Sea (X, \mathcal{T}) e.t. regular, $C_1, C_2 \subset X$ disjuntos tal que $(C_1, \mathcal{T}|_{C_1})$ es compacto y $(C_2, \mathcal{T}|_{C_2})$ es cerrado. Entonces, $\exists G_i \in \mathcal{T}, i \in \{1, 2\}$ disjuntos tal que $C_i \subset G_i$.

Demostración. Suponemos que $C_2 \neq \emptyset$. Entonces, por regularidad $\forall x \in C_1, \exists U^x, \exists U_x \in \mathcal{T}$ disjuntos tal que $x \in U^x, C_2 \subset U_x$. Entonces, $\{U^x : x \in C_1\}$ es recubrimiento abierto de $(C_1, \mathcal{T}|_{C_1})$ tal que

$$C_1 \subset \bigcup_{x \in C_1} U^x$$

entonces, $\exists x_1, \cdots, x_n$ tal que

$$\{U^{x_1},\cdots U^{x_n}\}$$

es subrecubrimiento finito de $(C_1, \mathcal{T}|_{C_1})$ y

$$C_1 \subset \bigcap_{i=1}^n U^{x_i}$$

Ahora,

$$C_2 \subset U_{x_1} \cap \cdots \cap U_{x_n} \equiv G_2 \in \mathcal{T}$$

entonces, $G_1 \cap G_2 = \emptyset$.

POSIBLE ERROR: en las demostraciones anteriores ponemos como recubrimiento y subrecubrimientos finitos cuando la compacidad es relativa a un subconjunto de X, es decir, serían familias y subfamilias finitas, y no rcubrimientos y subrecubrimientos finitos.

Proposición 4.8. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e,t, $A \subset X, B \subset Y : (A, \mathcal{T}|_A)$ es compacto y $(B, \mathcal{S}|_B)$ es compacto, $W \in \mathcal{T} \times \mathcal{S} : A \times B \subset W$. Entonces, $\exists U \in \mathcal{T}, \exists V \in \mathcal{S} : A \times B \subset U \times V \subset W$.

Demostración. $\forall (x,y) \in A \times B \subset W \in \mathcal{T} \times \mathcal{S} \Rightarrow \exists U_y^x \in \mathcal{T}, \exists V_x^y \in \mathcal{S} : U_y^x \times V_x^y \subset W$. Ahora, $\forall y \in B \subset Y$,

$$A \subset \bigcup_{x \in A} U_y^x$$

donde A es compacto. Por tanto, $\exists x_1, \dots, x_n \in A$ tal que

$$A \subset \bigcup_{i=1}^{n} U_y^{x_i} \equiv G_y \in \mathcal{T}.$$

Luego,

$$y \in V_{x_1}^y \cap \dots \cap V_{x_n}^y \equiv V^y \in \mathcal{S}$$

entonces, $G_y \times V^y \subset W$ (ya que $\forall (z,t) \in G_y \times V^x, z \in U_y^{x_{i_0}}, t \in V_{x_{i_0}}^y \Rightarrow (z,t) \in U^{x_{i_0}} \times V_{x_{i_0}}^y \subset W$). Ahora,

$$B \subset \bigcup_{y \in B} V^y$$

entonces, $\exists y_1, \cdots, y_n \in B$ tal que

$$B \subset \bigcup_{j=1}^{n} V^{y_j} \equiv V \in \mathcal{S}$$

donde B es compacto. Por tanto, $\exists y_1, \cdots, y_m \in B$ tal que

$$B \subset \bigcup_{j=1} V^{y_j} \equiv V \in \mathcal{S}.$$

Luego,

$$A \subset G_{u_1} \cap \cdots \cap G_{u_m} \equiv U \in \mathcal{T}$$

Hemos visto que $A \times B \subset U \times V$. Veamos que $U \times V \subset W$. Sea $(z,t) \in U \times V, z \in U, t \in V \Rightarrow \exists j_0 : z \in V^{y_{j_0}} \text{ y } G_{y_{j_0}} \Rightarrow V^{y_{j_0}} \times G_{y_{j_0}} \subset W$.

Teorema 4.1 (de Tychonoff). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es compacto si y solo si (X_j, \mathcal{T}_j) es compacto $\forall j \in J$.

Proposición 4.9. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es compacto si y solo si $\forall j \in J, (X_j, \mathcal{T}_j)$ es compacto y J es finito.

Demostración.

- $(\Rightarrow) \ \forall k \in J, X_k \simeq X_k \times \{k\} \subset \sum_{j \in J} X_j \ \text{donde} \ X_k \times \{k\}. \ \text{Como la compacidad es invariante topológico, tenemos que} \ (X_k, \mathcal{T}_k) \ \text{es compacto} \ \forall k. \ \text{Veamos que} \ J \ \text{es finito}. \ \text{Sea} \ \mathcal{U} = \{X_k \times \{k\} : k \in J\} \ \text{entonces, } \mathcal{U} \ \text{es recubrimiento abierto de} \ (\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k) \ \text{por conjuntos disjuntos dos a dos. Por tanto, } J \ \text{es finito}.$
- (\Leftarrow) $\forall \mathcal{U}$ recubrimiento abierto de $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$, $\forall k \in J, \mathcal{U}_k = \{U \cap (X_k \times \{k\}) : U \in \mathcal{U}\}$ es recubrimiento abierto de $X_k \times \{k\} \simeq X_k \Rightarrow \exists \mathcal{V}_k \subset \mathcal{U}_k : \mathcal{V}_k$ es subrecubrimiento finito de \mathcal{U}_k .
 - Sea $\mathcal{V} = \bigcup_{k \in J} \{U \in \mathcal{U} : U \cap (X_k \times \{k\}) \in \mathcal{V}_k\}$. Entonces \mathcal{V} es subrecubrimiento finito de \mathcal{U} . Por tanto, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es compacto.

Lema 4.1.1 (del número ρ de Lebesgue). Sea (X, \mathcal{T}) e.t. compacto y metrizable, $\mathcal{U} = \{U_j\}_{j \in J}$ recubrimiento abierto de (X, \mathcal{T}) . Entonces, $\exists \rho > 0 : \forall x \in X, B_{\rho}(x) \subset U_{j_x} \in \mathcal{U}$.

Demostración. (X, \mathcal{T}) compacto $\Rightarrow \exists \mathcal{U}' \subset \mathcal{U} : \mathcal{U}' = \{U_1, \cdots, U_n\}'$ es un subrecubrimiento finito de \mathcal{U} . Ahora,

$$\forall x \in X, \exists i_x \in \{1, \cdots, n\} : x \in U_{i_x} \in \mathcal{U}' \subset \mathcal{U}$$

$$\Rightarrow x \notin X \setminus U_{i_x}$$

Definimos, $\forall i \in \{1, \dots, n\}, f_i : X \to \mathbb{R}$ tal que

$$f_i(x) = d(x, X \setminus U_i)$$

entonces, f_i es continua. Sea $f: X \to \mathbb{R}$ tal que

$$f(x) = max\{f_i(x) : i \in \{1, \dots, n\}\}$$

entonces, f es continua. Por ser f máximo de f_i tenemos que

$$\forall x \in X, f(x) \ge f_i(x) = d(x, X \setminus U_{i_x}) > 0$$

Por tanto, $f(X) \subset (0, \to)$ donde f(X) es compacto por ser X compacto y f continua. Como f continua \Rightarrow tiene un valor mínimo. Entoces,

$$\exists \rho > 0 : f(x) > \rho, \forall x \in X$$

Veamos que ρ es el número de Lebesgue. Dado que f(x) es máximo, entonces $\exists i \in \{1, \dots, n\}$ tal que

$$f(x) = f_i(x) = d(x, X \setminus U_i)$$

Consideramos, $\forall y \in B_{\rho}(x)$. Entonces,

$$\rho < d(x, X \setminus U_i) < d(x, y) + d(y, X \setminus U_i) < \rho + d(y, X \setminus U_i)$$

por tanto, $d(y, X \setminus U_i) > 0 \Leftrightarrow y \in U_i \Rightarrow B_{\rho}(x) \subset U \in \mathcal{U}$.

Definición 4.2 (Compacidad Local). Sea (X, \mathcal{T}) e.t.. Diremos que es localmente compacto si $\forall x \in X, \exists \mathcal{B}(x)$ base de entornos de x en (X, \mathcal{T}) formada

por compactos.

Observación. Es equivalente que alguno de los elementos de la base sea compacto y que lo sean todos si el espacio es Hausdorff.

Observación. *Localmente compacto ⇒ compacto.*

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es localmente compacto pero no es compacto-

Observación. *Compacto ⇒ localmente compacto.*

Ejemplo. $X = \mathbb{Q} \cup \{r\} : r \notin \mathbb{Q}$, $\mathcal{T} = \mathcal{T}_u|_{\mathbb{Q}} \cup \{X\}$. Entonces (X, \mathcal{T}) es compacto pero no hay base formada por compactos.

Observación. Localmente compacto y $T_2 \Rightarrow$ regular.

Proposición 4.10. Sea (X, \mathcal{T}) e.t. T_2 . Entonces, (X, \mathcal{T}) es localmente compacto $\Leftrightarrow \forall x \in X$ existe algún entorno de x compacto en (X, \mathcal{T}) .

Demostración.

- (\Rightarrow) Por la definición de localmente compacto, existe una base de entornos de x formada por compactos.
- $(\Leftarrow) \ \forall x \in X, \exists C^x \ entorno \ compacto \ de \ x \ en \ (X, \mathcal{T}). Sea \ \forall U \ entorno \ de \ x \ en \ (X, \mathcal{T}). \ Entonces,$

$$U \cap C^x = V$$

es entorno abierto de x en (X,\mathcal{T}) . Ahora, $\overline{V}\subset \overline{C}^x=C^x$ donde C^x es compacto en (X,\mathcal{T}) . Entoces, $(\overline{V},\mathcal{T}|_{\overline{V}})$ es subespacio compacto de (X,\mathcal{T}) $T_2\Rightarrow (\overline{V},\mathcal{T}|_{\overline{V}})$ es T_4 . En particular, $(\overline{V},\mathcal{T}|_{\overline{V}})$ es regular.

Ahora, V es entorno abierto de x en \overline{V} . Por regularidad, $\exists W \in \mathcal{T}: x \in W$ tal que

$$W \cap \overline{V} \subset \overline{W} \cap \overline{V} \subset V \subset U$$

donde $x \in W \cap V \in \mathcal{T}$ y $\overline{W} \cap \overline{V}$ es compacto. Entonces, $\overline{W} \cap \overline{V}$ es entorno compacto de x en (X, \mathcal{T}) .

Corolario 4.1.1. Todo e.t. compacto y T_2 es localmente compacto.

Observación. La compacidad local no es hereditaria.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es localmente compacto pero $(\mathbb{Q}, \mathcal{T}|_{\mathbb{Q}})$ no lo es.

Proposición 4.11. Sea (X, \mathcal{T}) e.t. localmente compacto.

- (I) $\forall U \in \mathcal{T} \setminus \{\emptyset\}$, entonces $(U, \mathcal{T}|_U)$ es localmente compacto.
- (II) $\forall F \neq \emptyset$ cerrado de (X, \mathcal{T}) , entonces $(F, \mathcal{T}|_F)$ es localmente compacto.

Demostración.

- (I) $\forall U \in \mathcal{T} \setminus \{\emptyset\}, \forall x \in U, \forall V^x \text{ entorno abierto de } x \text{ en } (U, \mathcal{T}|_U) \text{ subespacio abierto. Entonces, } V^x \text{ es entorno abierto de } x \text{ en } \mathcal{T} \Rightarrow \exists C^x \text{ entorno compacto de } x \text{ en } (X, \mathcal{T}) \text{ tal que } C^x \subset V^x \subset U.$
- (II) $\forall F \neq \emptyset$ cerrado de (X, \mathcal{T}) , $\forall x \in F, \forall V^x$ entorno de x en $(F, \mathcal{T}|_F)$. Entonces, $\exists U^x$ entorno de x en (X, \mathcal{T}) tal que $V^x = U^x \cap F$. Ahora, por hipótesis, $\exists C^x$ entorno compacto de x en (X, \mathcal{T}) tal que $C^x \subset U^x \Rightarrow C^x \cap F \subset U^x \cap F = V^x$ entorno compacto de x en $(F, \mathcal{T}|_F)$.

Proposición 4.12. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) localmente compacto, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva, continua y abierta. Entonces, (X', \mathcal{T}') es localmente compacto.

Demostración. $\forall x' \in X', \forall V^{x'}$ entorno de x' en (X', \mathcal{T}') dado que f es suprayectiva, tenemos que $f^{-1}(x') \neq \emptyset$ y $f^{-1}(V^{x'})$ es entorno de $\forall x \in f^{-1}(x')$. Ahora, por hipótesis, $\exists C^x$ entorno compacto de x en (X, \mathcal{T}) tal que $C^x \subset f^{-1}(V^{x'}) \xrightarrow{f \text{ cont. ab.}} f(C^x) \subset V^{x'}$, donde $f(C^x)$ es entorno compacto de x'. Por tanto, (X', \mathcal{T}') es localmente compacto.

Corolario 4.1.2. La compacidad local es invariante topológico.

Proposición 4.13. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es localmente compacto $\Leftrightarrow \forall j \in J \ (X_j, \mathcal{T}_j)$ es localmente compacto $y \ \forall j \in J \ \setminus F, F$ finito, (X_j, \mathcal{T}_j) compacto.

Demostración.

(\Rightarrow) Para la primera parte, $\forall j \in J, p_j$ suprayectiva continua y abierta \Rightarrow por la proposición anterior, (X_j, \mathcal{T}_j) es localmente compacto. Veamos la segunda parte. Consideramos $\forall x = (x_j)_{j \in J} \in \prod_{j \in J} X_j, \exists C^x$ entorno compacto de x en $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$. Entonces, $\exists B \in \mathcal{B}$ base de $\prod_{j \in J} \mathcal{T}_j$ tal que $x \in B \subset C^x$. Este B es de la forma

$$B = \bigcap_{k=1}^{n} p_{j_k}^{-1}(U_{j_k}) : U_{j_k} \in \mathcal{T}_{j_k}, \quad \forall k \in \{1, \dots, n\}$$

donde los $x \in U_{j_k}$ son entornos de x_{j_k} . Por tanto, $p_j(B) \subset p_j(C^x)$. Ahora, sea $F_0 = \{j_1, \cdots, j_n\} \subset J$, F_0 es finito y

$$\forall j_0 \in J \setminus F_0, \quad p_{j_0}(B) = X_{j_0} \subset p_{j_0}(C^x) \subset X_{j_0}$$
$$\Rightarrow p_{j_0}(C^x) = X_{j_0}$$

Entonces, X_{j_0} es compacto. Por tanto, $\forall j \in J \setminus F_0, (X_j, \mathcal{T}_j)$ es compacto.

 $(\Leftarrow) \ \forall (x_j)_{j\in J} \in \prod_{j\in J} X_j$, entonces $\forall U^x$ entorno de x en $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j), \in \mathcal{B}$ base de $\prod_{j\in J} \mathcal{T}_j$ tal que $x\in B\subset U^x$. Este B es de la forma

$$B = \bigcap_{k=1}^{n} p_{j_k}^{-1}(U_{j_k}) : U_{j_k} \in \mathcal{T}_{j_k}, \quad \forall k \in \{1, \dots, n\}$$

donde los $x \in U_{j_k}$ son entornos de x_{j_k} . Por tanto, $p_j(B) \subset p_j(U^x)$. Ahora, sea $F_0 = \{j_1, \cdots, j_n\} \subset J$, F_0 es finito. Ahora, $F_0 \cup F = H \subset J$ es finito y $\forall j \in H$

- Si $j \in F_0 \Rightarrow \exists k \in \{1, \cdots, n\} : j = j_k \in F_0 \Rightarrow \exists V^{x_j}$ entorno compacto de $x_{j_k}, V^{x_{j_k}} \subset U^{x_{j_k}}$.
- Si $j \in F \Rightarrow \exists V^{x_j}$ entorno compacto tal que $V^{x_j} \subset X_j$.

Entonces, $\bigcap_{j\in H}p_j^{-1}(V^{x_j})$ es entorno de x y $\bigcap_{j\in H}p_j^{-1}(V^{x_j})\subset B\subset U^x$. Además,

$$\bigcap_{j \in H} p_j^{-1}(V^{x_j}) \simeq \prod_{j \in H} V^{x_j} \times \prod_{j \in J \setminus H} X_j$$

pero $J\setminus H=(J\setminus F_0)\cap (J\setminus F)\subset J\setminus F$. Entonce, $\prod_{j\in J\setminus H}X_j$ es compacto. Como $\prod_{j\in H}V^{x_j}$ es compacto, entonces $\prod_{j\in H}V^{x_j}\times\prod_{j\in J\setminus H}X_j$ es un entorno compacto de x_j en $(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)$. Por tanto, $(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)$ es localmente compacto.

REVISAR TEO Tychonoff

Proposición 4.14. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es localmente compacto $\Leftrightarrow (X_j, \mathcal{T}_j)$ es localmente compacto, $\forall j \in J$.

Demostración.

- $(\Rightarrow) \ \forall k \in J, X_k \simeq X_k \times \{k\} \subset \sum_{j \in J} X_j \Rightarrow (X_j, \mathcal{T}_j) \ \textit{localmente compacto.}$
- (\Leftarrow) $\forall x \in \sum_{j \in J} X_j \Rightarrow \exists ! j_0 \in J : x \in X_{j_0} \times \{j_0\} \simeq X_{j_0}$. Por hipótesis, $p_1(x)$ tiene una base de entornos compactos en $(X_{j_0}, \mathcal{T}_{j_0})$. Ahora, p_1 es continua. Entonces, por imagen inversa, x tiene base de entornos compactos en $X_{j_0} \times \{j_0\}$. Por tanto, la suma de las bases es base de entornos compactos en $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$.

Teorema 4.2 (de Baire). Sea (X, \mathcal{T}) e.t. localmente compacto y T_2 , $\{A_j\}_{j\in J}$ familia numerable de abiertos densos de (X, \mathcal{T}) . Entonces, $\bigcap_{n\in\mathbb{N}}A_n$ es denso.

Demostración. Como A_n es denso en (X, \mathcal{T}) , entonces $\forall U \in \mathcal{T} \setminus \{\emptyset\}, U \cap A_1 \neq \emptyset$ donde $U \cap A_1 \in \mathcal{T} \times \mathcal{T}$. Por ser (X, \mathcal{T}) localmente compacto y T_2 , $\exists B_1 \in \mathcal{T} : x_1 \in B_1, \overline{B_1} \subset U \cap A_1$ con $\overline{B_1}$ compacto.

Veamos esta última implicación. $x \in G \in \mathcal{T}, (X, \mathcal{T})$ l.c. $T_2 \Rightarrow \exists C^x$ entorno compacto de x tal que $x \in C^x \subset G$. Entonces, $x \in \mathring{C}^x$ y por ser (X, \mathcal{T}) regular, tenemos que $\exists V^x \in \mathcal{T} : x \in V^x \subset \overline{V}^x \subset \mathring{C}^x \subset G$ donde \overline{V}^x es compacto.

Ahora, $B_1 \in \mathcal{T} \setminus \{\emptyset\}$ y A_2 denso $\Rightarrow A_2 \cap B_1 \neq \emptyset \Rightarrow x_2 \in A_2 \cap B_1$. Entonces, $\exists B_2 \in \mathcal{T} : \overline{B_2} \subset A_2 \cap B_1$ con $\overline{B_2}$ compacto. Repitiendo el proceso, $\exists \{B_n\}_{n \in \mathbb{N}} \subset \mathcal{T} : \overline{B_n}$ es compacto, $\overline{B_{n+1}} \subset B_n, \forall n \in \mathbb{N}$ y $\overline{B_1} \subset U, B_n \subset A_n, \forall n \in \mathbb{N}$. Entonces, la colección de adherencias es familia de

cerrados con la propiedad de intersección finita y $\{B_n\}_{n\in\mathbb{N}}\subset \overline{B_1}$ entonces

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} \overline{B}_n \subset \left(\bigcap_{n \in \mathbb{N}} A_n\right) \cap U$$

Por tanto, $\bigcap_{n\in\mathbb{N}} A_n$ es denso en (X,\mathcal{T}) .

Observación. La hipótesis de que la familia se numerable y de abiertos es esencial.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es l.c y T_2 . Sea, $\forall x \in \mathbb{R}, A_x = \mathbb{R} \setminus \{x\} \in \mathcal{T}_u$ denso. Entonces, $\{A_x\}_{x \in \mathbb{R}}$ no es numerable y $\bigcap_{x \in \mathbb{R}} A_x = \bigcap_{x \in \mathbb{R}} (\mathbb{R} \setminus \{x\}) = \mathbb{R} \setminus \mathbb{R} = \emptyset$.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u), A_1 = \mathbb{Q}, A_2 = \mathbb{R} \setminus \mathbb{Q}$ son densos y $A_1 \cap A_2 = \emptyset$ ya que np spn abiertos no se cumple el teorema de Baire.

Definición 4.3 (Inversión topológica). Sea $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t.. Decimos que (X, \mathcal{T}) está sumergido en (Y, \mathcal{S}) si $\exists f: (X, \mathcal{T}) \to (f(X), \mathcal{S}|_{f(X)})$ homeomorfismo. En este caso, f es inversión topológica de (X, \mathcal{T}) en (Y, \mathcal{S}) .

Definición 4.4 (Compactación). Sea (X, \mathcal{T}) e.t.. Se llama compactación de X a todo par (K, f) tal que K es compacto y f inversión topológica de X en K tal que f(X) es denso.

Ejemplo. $((0,1), \mathcal{T}_u|_{(0,1)})$ entonces ([0,1),j) es compactación.

Definición 4.5 (Compactación T_2). Si (X, \mathcal{T}) e.t., (K, f) compactación de X. Se dice que (K, f) es compactación T_2 si K es T_2 .

Se dice que (K,f) es compactación por un solo punto"si $K\setminus f(X)$ es un punto.

Definición 4.6 (Equivalencia Topológica). Sea (X, \mathcal{T}) e.t. $(K_1, f_1), (K_2, f_2)$ dos compactaciones de X. Se dice que son topológicamente equivalentes si $\exists g: K_1 \to K_2$ homeomorfismo tal que $g \circ f_1 = f_2$

Observación. es relación de equivalencia.

Definición 4.7. Sea (X, \mathcal{T}) e.t., $(K_1, f_1), (T_2, f_2)$ dos compactaciones de X. Decimos que $(K_1, f_1) \geq (K_2, f_2)$ si $\exists g: K_1 \rightarrow K_2$ suprayectiva y continua tal que $g \circ f_1 = f_2$.

Observación. Es una relación reflexiva y transitiva.

Proposición 4.15. Sea (X,\mathcal{T}) e.t. $(K_1,f_1),(K_2,f_2)$ compactaciones T_2 tal que $(K_1,f_1)\geq (K_2,f_2)$ y $(K_2,f_2)\geq (K_1,f_1)$. Entonces, (K_1,f_1) y (K_2,f_2) son topológicamente equivalentes.

Demostración. Por hipótesis,

$$\exists g_1: K_1
ightarrow K_2$$
 supra. cont. tal que $g_1 \circ f_1 = f_2$

$$\exists g_2: K_1 \rightarrow K_2$$
 supra. cont. tal que $g_2 \circ f_1 = f_2$

entonces,

$$g_2 \circ g_1: K_1 \to K_2$$
 cont., T_2

Por tanto,

$$(g_2 \circ g_1)|_{f_1(X)} = 1_{f_1(X)}$$

Por ser f inversión topológica con f(X) denso

$$\overline{f(X)} = K_1$$

entonces,

$$g_2 \circ g_1 = 1_{K_1}$$

$$g_1 \circ g_2 = 1_{K_2}$$

Por tanto, g_1 es biyectiva y $g_1^{-1} = g_2 \Rightarrow g_1$, y g_2 es biyectiva y $g_2^{-1} = g_1 \Rightarrow g_2$. Entonces, g_1 y g_2 son homeomorfismos.

Teorema 4.3 (Alessandroff). Sea (X, \mathcal{T}) e.t. no compacto, $\omega \notin X$,

$$X^* = X \cup \{\omega\},\$$

 $\mathcal{T}^* = \mathcal{T} \cup \{U \subset X^* : \omega \in U \text{ y } X \setminus U \text{ es compactación y cerrado } \},$

Entonces, \mathcal{T}^* es topología sobre X^* , (X^*,\mathcal{T}^*) es compacto y X es denso en (X^*,\mathcal{T}^*) .

Demostración.

- (I) Veamos que T* es topología.
 - a) $\emptyset \in \mathcal{T}, \mathcal{T} \subset \mathcal{T}^* \Rightarrow \emptyset \in \mathcal{T}^*$ y X^* pertenenece a la segunda familia $\Rightarrow X^* \in \mathcal{T}^*$.
 - b) $\forall U_1, U_2 \in \mathcal{T}^*$
 - $\forall U_i \in \mathcal{T}, i \in \{1, 2\} \Rightarrow U_1 \cap U_2 \in \mathcal{T} \subset \mathcal{T}^*$.
 - $\forall U_i : \omega \in U_i, X \setminus U_i$ compacto y cerrado $\forall i \in \{1, 2\} \Rightarrow w \in U_1 \cap U_2, X \setminus (U_1 \cap U_2) = (X \setminus U_1) \cup (X \setminus U_2)$ que es compacto y cerrado en (X^*, \mathcal{T}^*) .
 - $\forall U_1 \in \mathcal{T}, \omega \in U_2, X \setminus U_2$ compacto cerrado. Como $X \setminus U_2$ es compacto y cerrado $\to X \setminus (U_2 \cap X) = X \setminus U_2$, entonces $U_2 \cap X \in \mathcal{T} \Rightarrow U_1 \cap U_2 = U_1 \cap (U_2 \cap X) \in \mathcal{T} \subset \mathcal{T}^*$.
 - c) $\forall \{U_j\}_{j\in J} \subset \mathcal{T}^*$
 - $\forall \{U_j\}_{j\in J} \subset \mathcal{T} \Rightarrow \bigcap_{j\in J} U_j \in \mathcal{T} \subset \mathcal{T}^*.$
 - $\forall j \in J, \omega \in U_j, X \setminus U_j$ compacto y cerrado, entoces $\omega \in \bigcup_{j \in J} U_j, X \setminus (\bigcup_{j \in J} U_j) = \bigcap_{j \in J} (X \setminus U_j)$ cerrado en $X \setminus U_{j_0}$ compacto $\Rightarrow X \setminus (\bigcup_{j \in J} U_j)$ cerrado y compacto.
 - El terces caso se reduce a $U_1 \in \mathcal{T}, \omega \in U_2, X \setminus U_2$ compacto y cerrado $\Rightarrow \omega \in U_1 \cup U_2$ y $X \setminus (U_1 \cup U_2) = (X \setminus U_1) \cap (X \setminus U_2)$ cerrado y compacto.
- (II) $\mathcal{T}^*|_X = \mathcal{T}$
 - $(\Rightarrow) \ \forall U \in \mathcal{T}^*$

$$\left\{ \begin{array}{l} \textit{si } U \in \mathcal{T}, U \subset X \Rightarrow U \cap X = U \in \mathcal{T} \\ \textit{si } \omega \in U, X \setminus U \textit{ compacto y cerrado } \Rightarrow U \cap X \in \mathcal{T} \end{array} \right.$$

 (\Leftarrow) $\forall \mathcal{U}$ recubrimiento abierto de (X^*, \mathcal{T}^*) , $\exists U_0 \in \mathcal{U} : \omega \in U_0 \Rightarrow X^* \setminus U_0 = X \setminus U_0$ compacto y cerrado en (X, \mathcal{T}) , por ser compactación. Entonces, $\exists U_1, \cdots, U_n$ sub familia finita tal que

$$\bigcap_{i=1}^n \supset X \setminus U_0$$

Ahora, considramos

$$\mathcal{V} = \{U_0\} \cup \{U_1, \cdots, U_n\} \subset \mathcal{U}$$

que es un subrecubrimiento finito. Por tanto, $\mathcal V$ es compacto.

- (III) Veamos que X es denso en X^* . $\forall U \in \mathcal{T}^* \setminus \{\emptyset\}$
 - $U \in \mathcal{T} \Rightarrow U \cap X = U \neq \emptyset$.
 - $U \ni \omega, X \setminus U$ cerrado y compacto en (X, \mathcal{T}) . Como $X \setminus U = X \setminus (U \cap X)$, entonces $U \cap X = \emptyset$. En caso contrario X es compacto, que es absurdo.

Definición 4.8 (Compactación Alexandrof). Sea (X, \mathcal{T}) e.t. no compacto. Se llama compactación de Alexandrof a $((X^*, \mathcal{T}^*), j)$.

Observación. Es una compactación por un solo punto.

Proposición 4.16. Sea (X, \mathcal{T}) e.t. no compacto. Entonces,

- (I) (X, \mathcal{T}) admite alguna compactación T_2 por un solo punto $\Leftrightarrow (X, \mathcal{T})$ es localmente compacto y T_2 .
- (II) Si(X, T) es localmente compacto y T_2 . Entonces, Todas las compactaciones T_2 por un punto son topológicamente equivalentes.

Observación. En la segunda parte de la proposición la equivalencia no depende del punto.

Demostración. (I)

 $(\Rightarrow) \exists ((X', \mathcal{T}'), f) \text{ compactación } T_2 \text{ por un punto de } (X, \mathcal{T}), \text{ enton-ces}$

$$X' \setminus f(X) = \{x_0'\} \Leftrightarrow X' \setminus \{x_0'\} = f(X).$$

Como $((X',\mathcal{T}'),f)$ compactación $T_2\Rightarrow (X',\mathcal{T}')$ es localmente compacto y $T_2\Rightarrow (X',\mathcal{T}')$ es $T_1\Rightarrow \{x'_0\}$ es cerrado en (X',\mathcal{T}') . Por tanto, $X'\setminus \{x'_0\}$ es abierto $\Rightarrow f(X)$ es abierto (f homeomorfismo) $\Rightarrow f$ abierta. Entonces, f(X) localmente compacto.

 (\Leftarrow) (X,\mathcal{T}) no compacto, localmente compacto y T_2 . Veamos que (X,\mathcal{T}) admite una compactación T_2 por un solo punto. En particular, admite una compactación de Alezandrof T_2 .

 $\forall w \notin X, X^* = X \cup \{w\}, ((X^*, \mathcal{T}^*), j)$ es compactación de Alexandrof. Ahora, $\forall x \in X, (X, \mathcal{T})$ localmente compacto y $T_2 \Rightarrow \exists U^x$ entorno compacto y cerrado en (X, \mathcal{T}) . Consideramos,

$$X^* \setminus U^x = W$$

entonces, $w \in W, X \setminus W = X \setminus (W \cap X) = U^x$. Como U^x es compacto y cerrado $\Rightarrow w \in W \in \mathcal{T}^*$ y $U^x \cap W = \emptyset$ disjuntos $\Rightarrow (X^*, \mathcal{T}^*)$ es T_2 .

(II) (X, \mathcal{T}) localmente compacto T_2 . Sean $((X_1', \mathcal{T}_1'), f_1)$, $((X_2', \mathcal{T}_2'), f_2)$ compactaciones T_2 en un solo punto de (X, \mathcal{T}) . Entonces, por ser compactaciones por un solo punto

$$X_1' \setminus f_1(X) = \{x_1'\} X_2' \setminus f_2(X) = \{x_2'\}$$

Buscamos un homeomorfismo que complete el diagrama. Sea $h: X_1' \to X_2'$ definido por

$$h(z) = \begin{cases} f_2(f_1^{-1}(z)), \text{ si } z \in f_1(X) \\ x_2', \text{ si } z = x_1 \end{cases}$$

h así definida es aplicación abierta y cierra el diagrama, $h \circ f_1 = f_2$. Veamos que h es aplicación abierta. $\forall G' \in \mathcal{T}'_1$

- Si $G' \not\ni x_1' \Rightarrow h(G') = (f_2 \circ f_1^{-1})(G') \in \mathcal{T}_2'|_{f_2(X)} \Rightarrow h(G') \in \mathcal{T}_2'.$
- Si $G' \ni x_1' \Leftrightarrow X_1' \setminus G' \not\ni x_1' \Rightarrow h(X_1' \setminus G') = (f_2 \circ f_1^{-1})(X_1' \setminus G')$ es compacto en (X_2', \mathcal{T}_2') , ya que $(X_1' \setminus G')$ es compacto y $f_2 \circ f_1^{-1}$ es continua. Como, $X_1' \setminus G'$ es cerrado $h(X_1' \setminus G')$ es compacto en (X_2', \mathcal{T}_2') T_2 y h es continua, entonces $h(X_1' \setminus G')$ es cerrado. Por tanto, $X_2' \setminus h(X_1' \setminus G') = h(G') \in \mathcal{T}_2'$ (no necesariamente inmedianto ver los contenidos por puntos) $\Rightarrow h(G') \in \mathcal{T}_2'$.

Igual que hemos cogido $h: X_1' \to X_2'$ lo podíamos haber hecho $h: X_2' \to X_1'$. Por tanto, h^{-1} es continua $\Rightarrow h$ es homeomorfismo.

Ejemplo. $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ es compactación de Alexandrof.

Capítulo 5

Conexión

Definición 5.1 (Conexo). Sea (X, \mathcal{T}) e.t.. Se dice que es conexo si $\not\exists C_i \neq \emptyset, i \in \{1, 2\}$ cerrado, disjuntos de (X, \mathcal{T}) tal que $X = C_1 \cap C_2$.

Observación. (X, \mathcal{T}) conexo $\Leftrightarrow \exists A_i \in \mathcal{T} \setminus \{\emptyset\}, i \in \{1, 2\}$ disjuntos tal que $X = A_1 \cup A_2 \Leftrightarrow \exists C \neq \emptyset \subset X : C \in \mathcal{T}$ y cerrado simultaneamente.

Observación. La conexión no es hereditaria.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ conexo y $[0,1] \cup (2,3)$ no lo es.

Proposición 5.1. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t. tal que (X, \mathcal{T}) conexo, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua y suprayectiva. Entonces, (X', \mathcal{T}') conexo.

Observación. Se puede omitir suprayectiva.

Demostración. Supongamos que no sucede. Entonces, $\exists A_i \in \mathcal{T} \setminus \{\emptyset\}, i \in \{1,2\}$ disjuntos tal que $X' = A_1 \cup A_2 \Rightarrow f^{-1}(A_i') \in \mathcal{T} \setminus \{\emptyset\}, i \in \{1,2\}$ disjuntos. Por tanto, $X = f^{-1}(A_1') \cup f^{-1}(A_2') \Rightarrow (X,\mathcal{T})$ no es conexo, que es absurdo.

Corolario 5.0.1. La conexión es invariante topológico.

Proposición 5.2. Sea (X, \mathcal{T}) e.t., $\{X_j\}_{j\in J}\subset \mathcal{P}(X)$ tal que $\bigcup_{j\in J}X_j=X$ donde $(X_j, \mathcal{T}|_{X_j})$ es conexo $\forall j\in J$ y $\bigcap_{j\in J}X_j\neq\emptyset$. Entoces, (X,\mathcal{T}) es conexo.

Demostración. Si (X,\mathcal{T}) no conexo $\Rightarrow \exists C_i \neq \emptyset, i \in \{1,2\}$ disjuntos tal que $X = C_1 \cap C_2$. Por otra parte, $\bigcap_{j \in J} X_j \neq \emptyset \Rightarrow \exists x \in \bigcap_{j \in J} X_j \Rightarrow \exists i_0 \in J: x \in C_{i_0}$. Suponemos que $x \in C_1$. Ahora, $C_2 \neq \emptyset$ corta a algún $X_j \Rightarrow \exists j_0 \in J: C_2 \cap X_{j_0} \equiv F_2 \neq \emptyset$. Entonces, $x \in C_1 \cap X_{j_0} \equiv F_1 \neq \emptyset \Rightarrow F_i, i \in \{1,2\}$ cerrados de $(X_{j_0}, \mathcal{T}|_{X_{j_0}X_{j_0}})$ y $F_i \subset C_i, i \in \{1,2\}$ disjuntos $\Rightarrow F_i, i \in \{1,2\}$ disjuntos. Por tanto,

$$F_1 \cup F_2 = (C_1 \cap X_{j_0}) \cup (C_2 \cap X_{j_0})$$
$$= (C_1 \cup C_2) \cap X_{j_0} = X \cap X_{j_0} = X_{j_0},$$

entonces, $(X_{j_0}, \mathcal{T}|_{X_{j_0}})$ es conexo.

Ejemplo. $\mathbb{R}^n = \bigcup_{x \in \mathbb{R}^n, x \neq 0} [x], \bigcap_{x \in \mathbb{R}. x \neq 0} [x] = \{0\} \neq \emptyset \text{ y } [x] \simeq \mathbb{R} \text{ conexo.}$

Proposición 5.3. Sea (X, \mathcal{T}) e.t., $\{X_n\}_{n \in \mathbb{N}} : \bigcup_{n \in \mathbb{N}} X_n = X, (X_n, \mathcal{T}|_{X_n})$ es conexo $\forall n \in \mathbb{N}$, $X_n \cap X_{n+1} \neq \emptyset$. Entonces, (X, \mathcal{T}) es conexo.

Demostración. $\forall m \in \mathbb{N}, C_m = X_1 \cup \cdots \cup X_m$. Si $m = 1, C_1 = X_1$ conexo. Supongamos que se cumple para m = p y veamos que también se cumple para m = p + 1. En este caso,

$$C_{p+1} = X_1 \cup \dots \cup X_p \cup X_{p+1}$$

donde X_{p+1} es conexo y $X_1 \cup \cdots \cup X_p = C_p$ es conexo por la hipótesis de induccción. Además, $X_p \cap X_{p+1} \neq \emptyset \Rightarrow C_p \cap X_{p+1} \neq \emptyset$. Entonces, por la Prop. 5.2. C_{p+1} es conexo y por inducción C_m es conexo $\forall m \in \mathbb{N}$. Aplicando otra vez la Prop. 5.2. tenemos que $X = \bigcup_{m \in \mathbb{N}} C_m$ con C_m conexo y $\bigcap_{m \in \mathbb{N}} C_m = C_1 = X_1 \neq \emptyset$ conexo. Por tanto, (X, \mathcal{T}) .

Proposición 5.4. Sea (X, \mathcal{T}) e.t., $E \subset X$ tal que $(E, \mathcal{T}|_E)$ es conexo, $C \subset X, E \subset C \subset \overline{E}$. Entonces, $(C, \mathcal{T}|_C)$ es conexo.

Demostración. Si C no es conexo, entonces $\exists F_1, F_2$ cerrados de $(C, \mathcal{T}|_C)$ disjuntos tal que $C = F_1 \cup F_2 \Rightarrow F_1, F_2 \in \mathcal{T}|_C$. Ahora, $E \subset C \Rightarrow \forall x \in E \subset C, x \in F_1$ o $x \in F_2$. Supongamos que $x \in F_1$, entonces $\exists U \in \mathcal{T} : x \in F_1 = U \cap C$ y $x \in \overline{E} \Rightarrow U \cap E \neq \emptyset$. Como $E \subset C \Rightarrow U \cap E \cap C \neq \emptyset$ donde $U \cap C = F_1$, entonce $F_1 \cap E \equiv H_1 \neq \emptyset$. Análogamente, $F_2 \cap E \equiv H_2 \neq \emptyset$. Por tanto, H_1, H_2 son cerrados de $(E, \mathcal{T}|_E)$ tal que $H_1 \cap H_2 = \emptyset$

y $F_1 \cup F_2 = C \Rightarrow H_1 \cup H_2 = E$ que es absurdo ya que E era conexo por hipótesis.

Proposición 5.5. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ conexo $\Leftrightarrow (X_j, \mathcal{T}_j)$ conexo $\forall j \in J$.

Demostración.

- (\Rightarrow) Trivial.
- $(\Leftarrow) \ \forall x \in \prod_{j \in J} X_j, x = (x_j)_{j \in J}. \ \textit{Sea} \ E \ \textit{la unión de todos los espacios conexos del producto} \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \ \textit{que continen a} \ x. \ \textit{Entonces,} \ E \ \textit{es conexo por la Prop. 5.2..} \ \textit{Además, es el mayor espacio conexon que contiene a} \ x. \ \textit{Queremos ver que} \ E \ \textit{es denso.} \ \forall U \in \prod_{j \in J} \mathcal{T}_j \setminus \{\emptyset\} \ \Rightarrow \ \exists B \in \mathcal{B} \ \textit{base tal que} \ B \subset U, B = \bigcap_{k=1}^n p_{j_k}^{-1}(U_{j_k}), U_{j_k} \in \mathcal{T}_{j_k}, \forall k = 1, \cdots, n \Rightarrow \exists b_k \in U_{j_k}, \forall k \in \{1, \cdots, n\}. \ \textit{Sea}$

$$E_1 = \{(z_j)_{j \in J} \in \prod_{j \in J} X_j : z_j = x_j, \forall j \in J \setminus \{j_1\}\} \simeq X_{j_1} \times \{(x_j)_{j \in J \setminus \{j_1\}}\}$$

$$E_2 = \{(z_j)_{j \in J} \in \prod_{i \in J} X_j : z_{j_1} = b_1, z_j = x_j, \forall j \in J \setminus \{j_1, j_2\}\} \simeq \{b_1\} \times X_{j_2} \times \{(x_j)_{j \in J \setminus \{j_1, j_2\}}\}$$

donde $E_1 \simeq X_{j_1}$ conexo y $X_{j_2} \simeq E_2$ conexo. Repitiendo el proceso tenemos que

$$E_n = \{(z_j)_{j \in J} \in \prod_{j \in J} X_j : z_{j_k} = b_k, \forall k \in \{1, \dots, j_{n-1}\},\$$

$$z_j = x_j, \forall j \in J \setminus \{j_1, \cdots, j_n\}\} \simeq \{b_1, \cdots, b_{n-1}\} \times X_{j_n} \times \{(x_j)_{j \in J \setminus \{j_1, \cdots, j_{n-1}\}}\}$$

de manera que $E_n \simeq X_{j_n}$ conexo. Haciedo uso de la Prop. 5.3. para

$$F = \bigcup_{k=1}^{n} E_k \text{ conexo}$$

Ahora, $E_1 \subset F$ conexo donde E es la unión de todos los espacios conexos del producto que contienen a $x \Rightarrow F \subset E$. Sea $y = (y_j)_{j \in J}$

con $y_{j_k} = b_k, \forall k \in \{1, \dots, n\}$ y $y_j = x_j, \forall j \in J \setminus \{j_1, \dots, j_n\}$. Entonces, $y \in E_n \subset F$ y $y \in B \subset U \Rightarrow U caoF \neq \emptyset \Rightarrow U \cap E \neq \emptyset \Rightarrow E$ es denso $\Leftrightarrow \overline{E} = \prod_{j \in J} X_j, E$ es conexo $\Rightarrow \overline{E}$ conexo $\Rightarrow \prod_{j \in J} X_j$ conexo.

Observación. $\forall (X, \mathcal{T}), (X', \mathcal{T}')$ e.t. conexos, $(X + X', \mathcal{T}\mathcal{T}')$ no es conexo.

Definición 5.2. Sea (X, \mathcal{T}) e.t., $x \in X$. Se llama componente conexa de x, a la unión de todos los subespacios conexos de (X, \mathcal{T}) que contienen a x.

Notación. C_x componente conexa de x.

Observación. Si (X, \mathcal{T}) e.t., $x \in X, C_x$ es el mayor subespacio conexo de (X, \mathcal{T}) que contien a x.

Observación. $\forall x, y \in X$, es $C_x = C_y$ o $C_x \cap C_y = \neq$.

Demostración. Si $C_x \cap C_y \neq \emptyset \Rightarrow C_x \cup C_y \ni y \subset C_x, \subset C_y \Rightarrow C_x = C_y$.

Proposición 5.6. Si (X, \mathcal{T}) e.t., todas sus componentes son cerras.

Demostración. $\forall x \in X, C_x$ componente $\Rightarrow \overline{C_x}$ conexa y $x \in \overline{C_x} \Rightarrow \overline{C_x \subset C_x} \Rightarrow \overline{C_x} = C_x$ cerrado.

Observación. Las componentes de un e.t. no son necesariamente abiertas. **Ejemplo.** $(\mathbb{Q}, \mathcal{T}_u|_{\mathbb{Q}})$

Definición 5.3. Sea (X, \mathcal{T}) e.t.. Se dice que (X, \mathcal{T}) es localmente conexo si $\forall x \in X$ existe alguna base de entornos conexos.

Observación. *localmente conexo* \Rightarrow *conexo.*

Ejemplo. $((0,1) \cup (2,5))$

Observación. *Conexo ⇒ localmente conexo.*

Ejemplo. $X = [0,1] \times \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\} \cup (\{0,1\} \times \mathbb{R}); \mathcal{T}_u$

Observación. La conexión local no es hereditaria. Se puede ver por el ejemplo anterior.