Verilog 搭建流水线 CPU 设计报告

一、 数据通路设计

1.PC

(1)接口定义

信号名称	方向	描述
reset	I	PC 复位至 0x00003000
NPC[31:0]	I	下一个 PC 值(下一个时钟上升沿的时候要写入 PC 寄
		存器的值)
PC[31:0]	О	PC 输出

(2) PC 功能定义

序号	功能名称	描述
1	复位	当 reset 有效时,PC 寄存器被赋值为
		0x00003000
2	输出指令地址	在时钟上升沿的时候更新 PC

2.ADD4 模块

(1)接口定义

信号名		方	描述
	向		
PC[31: 0]	I		当前 PC 值
PC4[31: 0]	O		=PC+4
(2) 功能定义	Z		
			LILVE

序号	功能名称	描述
1	输出 PC+4	纯组合逻辑. 永远输出 PC4=PC+4

3. IM 模块

(1)接口定义

信号名	方向	描述
clk,reset	I	时钟,复位信号

PC[31:0]	I	要读取的指令的地址
instr[31:0]	O	从 IM 中取出来的 32 位指令

(2) 功能定义

序号	功能名称	描述
1	取指令	根据输入的 PC 值输出相应位置的指令

4、RF

GRF 由 32 个寄存器构成(其中 0 号寄存器恒为 0)。首先计算 RegA、RegB、RegD 信号的值,再进行读或写操作:读操作时,将编号为 RegA、RegB 的两个寄存器的值读出到 busA、busB。写操作时,在 RegWr 信号为 1 时,将 dataWr 写入 RegD 编号对应的寄存器中。

表格 1 GRF 端口说明

端口名	方向	说明
IR_D[31:0]	Ι	D级指令,用来提取 rs,rt
R3[4:0]	I	待写入寄存器的编号
RFIn[31:0]	I	待写入寄存器的数据
RegWr	I	寄存器写使能信号
		0: 不写入 1: 写入
clk	I	时钟信号
reset	I	复位信号
PC4[31:0]	I	PC+4 值,\$display 时-4 后使用
RFOut1[31:0]	О	读出数据 1(\$rs 的值)
RFOut2[31:0]	O	读出数据 2(\$rt 的值)

表格 2 GRF 功能定义

序号	功能名称	功能描述
1	读寄存器	将编号为R1的寄存器中的数据输出到RFOUt1端口;
		将编号为 R2 的寄存器中的数据输出到 RFOut2 端口

2 写寄存器 RegWr=1 时,在时钟上升沿将 RFIn 写入到编号为 R3 的寄存器中;写入寄存器时进行输出操作

5、EXT (扩展器)

EXT 根据 ExtOp 对 16 位立即数 imm16 进行各类扩展。

表格 3 EXT端口说明

端口名	方向	说明
IR_D[31:0]	I	D 级指令,用来提取 16 位立即数 imm16
ExtOp[1:0]	I	进行何种扩展的选择信号。
		00: 无符号扩展
		01: 有符号扩展
		10: 加载到高 16 位, 低 16 位补 0
		11: (未定义)
ExtOut[31:0]	O	扩展后的数据。

表格 4 EXT 功能定义

序号	功能名称	功能描述
1	无符号扩展	ExtOp=00 时,对 imm16 进行无符号扩展并输出到
		ExtOut。
2	有符号扩展	ExtOp=01 时,对 imm16 进行有符号扩展并输出到
		ExtOut。
3	后补 16 位 0	ExtOp=10 时,将 imm16 加载到高 16 位,在低 16 位补
		0,并输出到 ExtOut。

6.CMP 模块

(1) 模块接口

信号名称	方	描述
	向	

CMPIn1[31: 0] I 第一个操作数

CMPIn2[31: 0] I 第二个操作数

BrType[2: 0] I Br 指令类型,比较方式选择

BrTrue O 比较结果,用于是否做 br 跳转的判断

(2) 功能定义

序号	功能名称	描述(C 为 BrType;A,B 为
		CMPIn1,CMPIn2)
1	==(BrType=000)	C=(A==B)
2	!=(BrType=001)	C=(A!=B)
3	A>B(BrType=010)	C=(A>B)
4	$A \le B(BrType=011)$	$C=(A\leq B)$
5	A <b(brtype=100)< td=""><td>C=(A < B)</td></b(brtype=100)<>	C=(A < B)
6	A>=0(BrType=101)	C=(A>=0)

7.NPC 模块

(1)接口定义(计算下一个 PC 的值,纯组合逻辑)

信号名	方向	描述		
PC4[31: 0]	I	当前 PC 值		
IR_D[31: 0]	I	D级指令,用于提取 imm16 和 imm26		
BrTrue	I	从 CMP 块得到的是否满足 br 指令跳转条件的信号		
jPC[31:0]	O	j 指令的下一个 PC		
brPC[31:0]	O	br 指令的下一个 PC		
(2) NPC 功能完义				

(2)NPC 功能定义

序号	功能名称	描述
1	计算 brPC	BrTrue=0 时,brPC=PC4+4
		BrTrue=1 时, brPC=PC4+sign_extend(offset 00)
2	计算 jPC	jrPC= PC4[31:28] imm26 00

8、ALU(算术逻辑单元)

ALU 由何种算数逻辑组成。根据 ALUctr 对 ALUin1 和 ALUin2 进行加、减、或、相等比较等操作并输出。

表格 5 ALU 端口说明

端口名	方向	说明			
ALUIn1[31:0]	I	第一个待操作数。			
ALUIn2[31:0]	I	第二个待操作数。			
ALUOp[2:0]	I	进行何种运算的选择信号。			
		00: ALUIn1+ALUIn2			
		01: ALUIn1-ALUIn2			
		10: ALUIn1 ALUIn2			
		11: ALUIn2 << ALUIn1[4:0]			
ALUOut[31:0]	O	运算后的结果。			

表格 6 ALU 功能定义

序号	功能名称	功能描述
1	加 (无溢出)	ALUOut=ALUin1 + ALUin2
2	减 (无溢出)	ALUOut=ALUin1 - ALUin2
3	或	ALUOut=ALUin1 ALUin2
4	移位	ALUOut=ALUIn2 << ALUIn1[4:0]

9、DM(数据存储器)

表格 7 DM 端口说明

端口名	方向	说明
DMAddr[31:0]	I	DM 中的读出/写入地址,即 ALU 的输出端 ALUOut
DMIn[31:0]	I	待写入 DM 的数据,即 GRF 的输出端 RFOut2
MemWr	I	将 DMdata 写入 DM 的写使能信号。
		0: 不写入 1: 写入
clk	I	时钟信号
reset	I	复位信号

PC4[31:0] I PC4 值, \$display 时-4 后使用

DMOut[31:0] O DM 输出数据

表格 8 DM 功能定义

序号	功能名称	功能描述
1	读出	DMOut=DM 中 DMAddr 地址中的数据。
2	写入	MemWr=1 时,将 DMIn 写入 DM 的 DMaddr 地址中。

10、电路图总览

二、 Controller (控制器)设计

1、基本描述

Controller 根据指令中的 opcode 段和 funct 段,先利用与门确定该指令类型,再利用或门确定各控制信号。

端口名 方向 说明

instr[31:0]	I	指令	
ALUSrc1	O		
ALUSrc2	O		
MemWr	O		
RegWr	O		
ExtOp[1:0]	O		控制信号
ALUOp[2:0]	O		说明见 Excel
NPCsel[1:0]	O		
RegDst[1:0]	O		
MemtoReg[1:0]	O		
BrType	O		
calr	O		指令类型
cali	O		说明见 Excel
br	O		
load	O		
store	O		
jal	O		
jr	O		
jalr	O		

序号	功能名称	功能描述
1	译码	将 instr 根据上表所述进行译码

- 2、控制信号真值表(见 Excel)
- 3、控制信号含义(见 Excel)
- 三、 测试 CPU
- 1、 指令功能测试(instruction function)

期待输出:

- \$ 8 <= ffff0000
- \$ 9 <= 00000001
- \$10 <= 00000064
- \$ 8 <= ffffffff
- \$11 <= 00000000
- \$12 <= fffffffe
- \$13 <= 00000065
- \$14 <= fffffffe
- \$15 <= 00000000
- \$16 <= 00000063
- *00000000 <= 00000000
- *00000004 <= fffffffe
- \$17 <= 00000000
- \$18 <= fffffffe
- \$ 8 <= ffff0000
- \$ 9 <= 0000001
- \$10 <= 00000064
- \$11 <= 00000001
- \$ 8 <= ffffffff
- \$ 8 <= 00000000
- \$10 <= 00000065
- \$10 <= 00000066
- \$ 8 <= 00000001
- \$31 <= 000030ac
- \$12 <= 00000032
- \$13 <= 00000033
- \$12 <= 00000033
- \$10 <= 00000067

实际输出:

- \$ 8 <= ffff0000
- \$ 9 <= 00000001
- \$10 <= 00000064
- \$ 8 <= ffffffff
- \$11 <= 00000000
- \$12 <= fffffffe
- \$13 <= 00000065
- \$14 <= fffffffe
- \$15 <= 00000000
- \$16 <= 00000063
- *00000000 <= 00000000
- *00000004 <= fffffffe
- \$17 <= 00000000
- \$18 <= fffffffe
- \$ 8 <= ffff0000
- \$ 9 <= 00000001
- \$10 <= 00000064
- \$11 <= 00000001
- \$ 8 <= ffffffff
- \$ 8 <= 00000000
- \$10 <= 00000065
- \$10 <= 00000066
- \$ 8 <= 00000001
- \$31 <= 000030ac
- \$12 <= 00000032
- \$13 <= 00000033
- \$12 <= 00000033
- \$10 <= 00000067

2、 暂停测试(stall)

期待输出:

- \$ 1 <= 00001234
- \$ 2 <= 00001234
- *00000000 <= 00001234
- \$ 1 <= 00005678
- \$ 2 <= 00005678
- *00000004 <= 00005678
- \$ 1 <= 00001234
- \$ 2 <= 00001234
- *00000008 <= 00001234
- \$ 1 <= 00005678
- \$ 2 <= 00005678
- *000000c <= 00005678
- \$ 1 <= 00000000
- \$ 1 <= 00001234
- \$ 2 <= 00001234
- \$ 0 <= 00005678
- \$ 1 <= 00640000
- \$ 1 <= 00005678
- \$ 2 <= 00005678
- \$ 1 <= 00000008
- *00000008 <= 00000008
- \$ 2 <= 00000008
- \$ 1 <= 00000008
- \$ 1 <= 00000010
- *00000010 <= 00000010
- \$ 2 <= 00000010
- *00000010 <= 00000010
- \$31 <= 000030a4
- \$ 1 <= 00000014

- \$ 1 <= 000030b8
- *00000008 <= 000030b8
- \$ 2 <= 000030b8
- \$31 <= 000030c4
- \$ 1 <= 0000000c
- \$ 1 <= 000030d0
- \$31 <= 000030dc
- \$ 1 <= 00000010
- \$ 1 <= 000030ec
- \$ 2 <= 000030ec
- \$31 <= 000030f8
- \$ 1 <= 00000018
- \$ 1 <= 00003110
- *00000008 <= 00003110
- \$ 2 <= 00003110
- \$31 <= 0000311c
- \$ 1 <= 0000000c
- \$ 1 <= 00003128
- \$ 2 <= 0000312c
- \$ 1 <= 00000010
- \$ 2 <= 0000313c
- \$ 1 <= 0000313c
- \$ 2 <= 00003140
- \$ 1 <= 00000014
- \$ 2 <= 00003154
- *00000008 <= 00003154
- \$ 1 <= 00003154
- \$ 2 <= 00003158
- \$ 1 <= 00000018
- \$ 2 <= 00003170

```
*00000008 <= 00003170
```

- \$ 1 <= 00003170
- \$ 2 <= 00003174
- \$ 1 <= 00001234
- \$ 0 <= 00001234
- *00000000 <= 00003174
- \$ 1 <= 00005678
- \$ 2 <= 00000000
- \$ 0 <= 00005678
- *00000004 <= 00000000
- \$ 1 <= 00000000
- \$ 0 <= 00003174
- *00000008 <= 00000000
- \$ 1 <= 00000000
- \$ 0 <= 00000000
- *000000c <= 00000000
- \$ 1 <= 00000000
- \$ 0 <= 00003174
- \$ 2 <= 00000000
- \$ 0 <= 00000000
- \$ 1 <= 00640000
- \$ 0 <= 00000000
- \$ 2 <= 00000000
- \$ 0 <= 00000008
- *00000008 <= 00000000
- \$ 0 <= 00000000
- \$ 0 <= 00003174
- \$ 0 <= 00640000
- *00000010 <= 00000000
- \$ 0 <= 00000000

*00000000 <= 00000000

实际输出:

- \$ 1 <= 00001234
- \$ 2 <= 00001234
- *00000000 <= 00001234
- \$ 1 <= 00005678
- \$ 2 <= 00005678
- *00000004 <= 00005678
- \$ 1 <= 00001234
- \$ 2 <= 00001234
- *00000008 <= 00001234
- \$ 1 <= 00005678
- \$ 2 <= 00005678
- *000000c <= 00005678
- \$ 1 <= 00000000
- \$ 1 <= 00001234
- \$ 2 <= 00001234
- \$ 0 <= 00005678
- \$ 1 <= 00640000
- \$ 1 <= 00005678
- \$ 2 <= 00005678
- \$ 1 <= 00000008
- *00000008 <= 00000008
- \$ 2 <= 00000008
- \$ 1 <= 00000008
- \$ 1 <= 00000010
- *0000010 <= 00000010
- \$ 2 <= 00000010
- *00000010 <= 00000010
- \$31 <= 000030a4

- \$ 1 <= 00000014
- \$ 1 <= 000030b8

*00000008 <= 000030b8

- \$ 2 <= 000030b8
- \$31 <= 000030c4
- \$ 1 <= 0000000c
- \$ 1 <= 000030d0
- \$31 <= 000030dc
- \$ 1 <= 00000010
- \$ 1 <= 000030ec
- \$ 2 <= 000030ec
- \$31 <= 000030f8
- \$ 1 <= 00000018
- \$ 1 <= 00003110

*00000008 <= 00003110

- \$ 2 <= 00003110
- \$31 <= 0000311c
- \$ 1 <= 0000000c
- \$ 1 <= 00003128
- \$ 2 <= 0000312c
- \$ 1 <= 00000010
- \$ 2 <= 0000313c
- \$ 1 <= 0000313c
- \$ 2 <= 00003140
- \$ 1 <= 00000014
- \$ 2 <= 00003154

*00000008 <= 00003154

- \$ 1 <= 00003154
- \$ 2 <= 00003158
- \$ 1 <= 00000018

- \$ 2 <= 00003170
- *00000008 <= 00003170
- \$ 1 <= 00003170
- \$ 2 <= 00003174
- \$ 1 <= 00001234
- \$ 0 <= 00001234
- *00000000 <= 00003174
- \$ 1 <= 00005678
- \$ 2 <= 00000000
- \$ 0 <= 00005678
- *00000004 <= 00000000
- \$ 1 <= 00000000
- \$ 0 <= 00003174
- *00000008 <= 00000000
- \$ 1 <= 00000000
- *000000c <= 00000000
- \$ 1 <= 00000000
- \$ 0 <= 00003174
- \$ 2 <= 00000000
- \$ 1 <= 00640000
- \$ 2 <= 00000000
- \$ 0 <= 00000008
- *00000008 <= 00000000
- \$ 0 <= 00003174
- \$ 0 <= 00640000
- *00000010 <= 00000000
- *00000000 <= 00000000

3、 转发测试 1-5(forwarding)

期待输出:

- \$ 4 <= 00000004
- \$ 5 <= 00000005
- \$ 6 <= 00000006
- *00000000 <= 00000005
- *00000004 <= 00000004
- *00000008 <= 00000006
- \$ 5 <= 00000005
- \$ 5 <= 0000000a
- \$ 5 <= 00000005
- \$ 7 <= 00000001
- \$ 5 <= 0000000a
- \$ 5 <= 00000005
- \$ 7 <= 00000003
- \$ 8 <= 00000003
- \$ 5 <= 0000000a
- \$ 5 <= 00000005
- \$ 5 <= 0000000a
- \$ 5 <= 00000014
- \$ 5 <= 00000028
- \$10 <= 00000004
- \$10 <= ffffffdc
- \$10 <= 00000004
- \$11 <= 0000000b
- \$10 <= 00000000
- \$10 <= 00000004
- \$11 <= 0000000f
- \$11 <= 0000000f
- \$10 <= 00000000
- \$10 <= 00000004
- \$11 <= 00000000

- \$11 <= 00000000
- \$11 <= 00000000
- \$12 <= 00000005
- \$12 <= 00000005
- \$12 <= 00000004
- \$13 <= 0000000d
- \$12 <= 00000004
- \$12 <= 00000006
- \$13 <= 0000000d
- \$13 <= 0000000f
- \$12 <= 00000006
- \$12 <= 00000006
- \$12 <= 00000006
- \$12 <= 00000006
- \$12 <= 00000006
- \$14 <= 00000005
- *00000000 <= 00000005
- \$14 <= 00000004
- \$15 <= 00000005
- *00000004 <= 00000004
- \$14 <= 00000006
- \$15 <= 00000007
- \$15 <= 00000007
- *00000008 <= 00000006
- \$16 <= 00000004
- \$17 <= 00000005
- \$18 <= 00000006
- \$19 <= 00000004
- \$16 <= 00000004
- \$16 <= 00000004

- \$16 <= 00000004
- \$16 <= 00000004
- \$31 <= 00003100
- \$25 <= 00000019
- \$31 <= 000030fc
- *000000c <= 000030fc
- \$31 <= 000030fc
- \$25 <= 00000019
- \$26 <= 0000001a
- \$27 <= 0000001b
- \$31 <= 00003134
- \$25 <= 00000019
- \$31 <= 00003130
- *000000c <= 00003130
- \$31 <= 00003130
- \$25 <= 00000019
- \$26 <= 0000001a
- \$27 <= 0000001b
- \$31 <= 00003168
- \$25 <= 00000019
- \$31 <= 00003164
- *000000c <= 00003164
- \$31 <= 00003164
- \$25 <= 00000019
- \$26 <= 0000001a
- \$27 <= 0000001b
- \$20 <= 00000005
- \$21 <= 00000004
- \$23 <= 00000017
- \$24 <= 00000018

- \$25 <= 00000019
- \$20 <= 00000005
- \$21 <= 00000004
- \$23 <= 00000017
- \$24 <= 00000018
- \$25 <= 00000019

实际输出:

- \$ 4 <= 00000004
- \$ 5 <= 00000005
- \$ 6 <= 00000006
- *00000000 <= 00000005
- *00000004 <= 00000004
- *00000008 <= 00000006
- \$ 5 <= 00000005
- \$ 5 <= 0000000a
- \$ 5 <= 00000005
- \$ 7 <= 0000001
- \$ 5 <= 0000000a
- \$ 5 <= 00000005
- \$ 7 <= 00000003
- \$ 8 <= 00000003
- \$ 5 <= 0000000a
- \$ 5 <= 00000005
- \$ 5 <= 0000000a
- \$ 5 <= 00000014
- \$ 5 <= 00000028
- \$10 <= 00000004
- \$10 <= fffffdc
- \$10 <= 00000004
- \$11 <= 0000000b

- \$10 <= 00000000
- \$10 <= 00000004
- \$11 <= 0000000f
- \$11 <= 0000000f
- \$10 <= 00000000
- \$10 <= 00000004
- \$11 <= 00000000
- \$11 <= 00000000
- \$11 <= 00000000
- \$12 <= 00000005
- \$12 <= 00000005
- \$12 <= 00000004
- \$13 <= 0000000d
- \$12 <= 00000004
- \$12 <= 00000006
- \$13 <= 0000000d
- \$13 <= 0000000f
- \$12 <= 00000006
- \$12 <= 00000006
- \$12 <= 00000006
- \$12 <= 00000006
- \$12 <= 00000006
- \$14 <= 00000005
- *00000000 <= 00000005
- \$14 <= 00000004
- \$15 <= 00000005
- *00000004 <= 00000004
- \$14 <= 00000006
- \$15 <= 00000007
- \$15 <= 00000007

```
*00000008 <= 00000006
```

- \$16 <= 00000004
- \$17 <= 00000005
- \$18 <= 00000006
- \$19 <= 00000004
- \$16 <= 00000004
- \$16 <= 00000004
- \$16 <= 00000004
- \$16 <= 00000004
- \$31 <= 00003100
- \$25 <= 00000019
- \$31 <= 000030fc
- *000000c <= 000030fc
- \$31 <= 000030fc
- \$25 <= 00000019
- \$26 <= 0000001a
- \$27 <= 0000001b
- \$31 <= 00003134
- \$25 <= 00000019
- \$31 <= 00003130
- *000000c <= 00003130
- \$31 <= 00003130
- \$25 <= 00000019
- \$26 <= 0000001a
- \$27 <= 0000001b
- \$31 <= 00003168
- \$25 <= 00000019
- \$31 <= 00003164
- *000000c <= 00003164
- \$31 <= 00003164

\$25 <= 00000019

\$26 <= 0000001a

\$27 <= 0000001b

\$20 <= 00000005

\$21 <= 00000004

\$23 <= 00000017

\$24 <= 00000018

\$25 <= 00000019

\$20 <= 00000005

\$21 <= 00000004

\$23 <= 00000017

\$24 <= 00000018

\$25 <= 00000019

四、思考题

1、在本实验中你遇到了哪些不同指令组合产生的冲突?你又是如何解决的?相应的测试样例是什么样的?请有条理的罗列出来。(非常重要)

暂停

类型	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
R 型	LD-E-RS	1w	D	RS	lw \$4,0(\$5) addu \$4,\$4,\$5
	LD-E-RT	1w	D	RT	1w \$4, 0 (\$5) addu \$4, \$5, \$4
I型	LD-E-RS	1w	D	RS	lw \$4,0(\$5) ori \$5,\$4,0xffff
LD 型	LD-E-RS	1w	D	RS	1w \$4,0(\$5) 1w \$3,4(\$4)
ST 型	LD-E-RS	1w	D	RS	1w \$4,0(\$5) sw \$3,4(\$4)
JR	R-E-RS	addu	D	RS	addu \$4,\$4,\$5 jr \$4
	I-E-RS	ori	D	RS	ori \$4,0xffff jr \$4

	LD-E-RS	1w	D	RS	lw \$4,0(\$5) jr \$4
	LD-M-RS	1w	D	RS	1w \$4,0(\$5) nop jr \$4
B型	R-E-RS	addu	D	RS	addu \$4, \$4, \$5 beq \$4, \$5, loop
	I-E-RS	ori	D	RS	ori \$4,0xffff beq \$4,\$5,loop
	LD-E-RS	1w	D	RS	1w \$4,0(\$5) beq \$4,\$5,1oop
	LD-M-RS	1w	D	RS	1w \$4,0(\$5) nop beq \$4,\$5,100p
	R-E-RT	addu	D	RT	addu \$4, \$4, \$5 beq \$5, \$4, loop
	I-E-RT	ori	D	RT	ori \$4,0xffff beq \$5,\$4,1oop
	LD-E-RT	1w	D	RT	1w \$4,0(\$5) beq \$5,\$4,1oop
	LD-M-RT	1w	D	RT	1w \$4,0(\$5) nop beq \$5,\$4,100p

转发

类型	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
R 型					addu \$4, \$4, \$5
(以	R-W-RS	addu	D	RS	nop
addu	K W KS	auuu	D	KS	nop
为例)					addu \$4, \$4, \$5
					ori \$4,\$5,0xffff
	I-W-RS	ori	D	RS	nop
	I " KS	011	D	NO	nop
					addu \$4,\$4,\$5
					1w \$4,0(\$5)
	LD-W-RS	-W-RS lw	D	RS	nop
	LD " NO		D		nop
					addu \$4,\$4,\$5
	JAL-W-RS	JAL-W-RS jal D	RS	jal loop	
	JILL II NO	Jai	D	NO	nop

				nop
				addu \$1, \$31, \$1
				addu \$4, \$4, \$5
R-W-RT	addu	D	RT	nop
			***	nop
				addu \$4, \$5,\$4
				ori \$4,\$5,0xffff
I-W-RT	ori	D	RT	nop
1 " 1(1	011	D	KI	nop
				addu \$4, \$5, \$4
				lw \$4,0(\$5)
ID W DT	1	D	DT	nop
LD-W-RT	1w	D	RT	nop
				addu \$4, \$5, \$4
				jal loop
				nop
JAL-W-RT	jal	D	RT	nop
				addu \$1, \$1, \$31
				addu \$4, \$4, \$5
				nop
R-W-RS	addu	Е	RS	addu \$4, \$4, \$5
				nop
				ori \$4,\$5,0xffff
				nop
I-W-RS	ori	Е	RS	addu \$4, \$4, \$5
				nop
				1w \$4,0(\$5)
LD-W-RS	1w	Е	RS	nop
				addu \$4, \$4, \$5
				nop
				jal loop
JAL-W-RS	jal	Е	RS	nop
				addu \$1,\$31,\$1
				nop
				addu \$4, \$4, \$5
R-M-RS	addu	E	RS	addu \$4, \$4, \$5
				nop
				ori \$4,\$5,0xffff
I-M-RS	ori	Е	RS	addu \$4, \$4, \$5
				nop
				jal loop
JAL-M-RS	jal	Е	RS	addu \$1,\$31,\$1
				nop
R-W-RT	addu	Е	RT	addu \$4, \$4, \$5

					200
					nop addu \$4, \$5,\$4
					nop
					ori \$4,\$5,0xffff
	I-W-RT	ori	Е	RT	nop
					addu \$4, \$5, \$4
					nop
					1w \$4,0(\$5)
	LD-W-RT	1w	E	RT	nop
	ED W KI	1	<u>D</u>	***	addu \$4, \$5, \$4
					nop
					jal loop
	TAI W DT	:1	T.	DT	nop
	JAL-W-RT	jal	Е	RT	addu \$1, \$1, \$31
					nop
					addu \$4, \$4, \$5
	R-M-RT	addu	Е	RT	addu \$4, \$5, \$4
					nop
					ori \$4,\$5,0xffff
	I-M-RT	ori	E	RT	addu \$4, \$5, \$4
	I WI ICI	011	D	KI	nop
					jal loop
	JAL-M-RT	jal	E	RT	addu \$1, \$1, \$31
	JAL M KI	Jai	L	KI	nop
I 型					addu \$4, \$4, \$5
(以					nop
ori 为	R-W-RS	addu	D	RS	
例)					nop
רניפר					ori \$4,\$4,0xffff
					ori \$4,\$5,0xffff
	I-W-RS	ori	D	RS	nop
					nop
					ori \$4, \$4, 0x0000
					lw \$4,0(\$5)
	LD-W-RS	1w	D	RS	nop
					nop
					ori \$4,\$4,0xffff
					jal loop
	JAL-W-RS	jal	D	RS	nop
	JIII II IIO	Jui	D	NO.	nop
					ori \$1,\$31,0xffff
			Е	RS	addu \$4, \$4, \$5
	R-W-RS	addu			nop
	K-M-K2	audu	Ľ	К	ori \$4,\$4,0xffff
					nop
					T

	I-W-RS	ori	E	RS	ori \$4, \$5, 0xffff nop ori \$4, \$4, 0x0f0f nop
	LD-W-RS	1w	E	RS	<pre>lw \$4,0(\$5) nop ori \$4,\$4,0xffff nop</pre>
	JAL-W-RS	jal	E	RS	jal loop nop ori \$1,\$31,0xffff nop
	R-M-RS	addu	E	RS	addu \$4, \$4, \$5 ori \$4, \$4, 0xffff nop
	I-M-RS	ori	E	RS	ori \$4,\$5,0xffff ori \$4,\$4,0xf0f0 nop
	JAL-M-RS	jal	E	RS	jal loop ori \$1,\$31,0xfff0 nop
LD 型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop lw \$5, 0 (\$4)
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop lw \$5,0(\$4)
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop 1w \$5,0(\$4)
	JAL-W-RS	jal	D	RS	jal loop nop nop lw \$5,0(\$31)
	R-W-RS	addu	Е	RS	addu \$4, \$4, \$5 nop lw \$5, 0 (\$4) nop
	I-W-RS	ori	E	RS	ori \$4, \$5, 0xffff nop lw \$5, 0(\$4)

					nop
	LD-W-RS	1w	E	RS	1w \$4,0(\$5) nop 1w \$5,0(\$4) nop
	JAL-W-RS	jal	E	RS	jal loop nop lw \$5,0(\$31) nop
	R-M-RS	addu	E	RS	addu \$4, \$4, \$5 lw \$5, 0 (\$4) nop
	I-M-RS	ori	E	RS	ori \$4,\$5,0xffff lw \$5,0(\$4) nop
	JAL-M-RS	jal	E	RS	jal loop lw \$5,0(\$31) nop
ST 型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop sw \$5, 0(\$4)
	I-W-RS	ori	D	RS	ori \$4, \$5, 0xffff nop nop sw \$5, 0(\$4)
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop sw \$5,0(\$4)
	JAL-W-RS	jal	D	RS	jal loop nop nop sw \$5,0(\$31)
	R-W-RT	addu	D	RT	addu \$4, \$4, \$5 nop nop sw \$4, 0(\$5)
	I-W-RT	ori	D	RT	ori \$4, \$5, 0xffff nop nop sw \$4, 0(\$5)
	LD-W-RT	1w	D	RT	1w \$4,0(\$5) nop

					non
					nop sw \$4,0(\$6)
					jal loop
	JAL-W-RT	jal	D	RT	nop
					nop
					sw \$31,0(\$5)
					addu \$4, \$4, \$5
	D W DC	. 11	E	DC	nop
	R-W-RS	addu	E	RS	sw \$5,0(\$4)
					nop
					ori \$4,\$5,0xffff
					nop
	I-W-RS	ori	Е	RS	sw \$5,0(\$4)
					nop
					lw \$4,0(\$5)
	LD-W-RS	1w	Е	RS	nop
	ED " Its	1"	, ,	1.0	sw \$5,0(\$4)
					nop
				RS	jal loop
			_		nop
	JAL-W-RS	jal	Е		sw \$5,0(\$31)
					nop
					addu \$4, \$4, \$5
		addu	Е	RT	
	R-W-RT				nop
					sw \$4,0(\$5)
					nop
			E	RT	ori \$4,\$5,0xffff
	I-W-RT	ori			nop
	1 " 1(1	OII	L	ICI	sw \$4,0(\$5)
					nop
					1w \$4,0(\$5)
	1 D W DM	1	F.	P.W.	nop
	LD-W-RT	1w	E	RT	sw \$4,0(\$6)
					nop
					jal loop
					nop
	JAL-W-RT	jal	jal E	RT	
					sw \$31,0(\$5)
					nop
	R-W-RT addu			addu \$4, \$4, \$5	
		M	RT	sw \$4,0(\$5)	
		addu	M	K1	nop
					nop
	T W DT)(DT	ori \$4,\$5,0xffff
	I-W-RT	ori	M	RT	sw \$4,0(\$5)

					nop
					nop
					1w \$4,0(\$5)
	LD-W-RT	$1\mathrm{w}$	M	RT	sw \$4,0(\$6)
	ED W KI	1"	141	KI	nop
					nop
					jal loop
					sw \$31,0(\$5)
	JAL-W-RT	jal	M	RT	nop
					nop
					addu \$4, \$4, \$5
	D M DC	addu	E	RS	sw \$5,0(\$4)
	R-M-RS	addu	Е	KS	
					nop
					ori \$4,\$4,\$5
	I-M-RS	ori	Е	RS	sw \$5,0(\$4)
					nop
					jal loop
	JAL-M-RS	jal	Е	RS	sw \$5,0(\$31)
					nop
					addu \$4, \$4, \$5
	R-W-RS		D	RS	nop
JR		addu			nop
					jr \$4
				RS	ori \$4,\$5,0xffff
	I-W-RS	ori	D		nop
					nop
					jr \$4
					1w \$4,0(\$5)
	ID W DC	1	D	DC	nop
	LD-W-RS	1w	D	RS	nop
					jr \$4
					jal loop
					nop
	JAL-W-RS	jal	D	RS	nop
					jr \$31
	D. M. DC	. 11	D	DC	addu \$4, \$4, \$5
	R-M-RS	addu	D	RS	nop
					jr \$4
			ori \$4,\$5,0xffff		
	I-M-RS	ori	D	RS	nop
					jr \$4
					jal loop
	JAL-M-RS	jal	D	RS	nop
					jr \$31
					J- 7°*

行为未 定义	JAL-E-RS	jal	D	RS	jal loop jr \$31
B型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop beq \$4, \$3, loop
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop beq \$4,\$3,100p
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop beq \$4,\$3,100p
	JAL-W-RS	jal	D	RS	jal loop nop nop beq \$31,\$3,loop
	R-W-RT	addu	D	RT	addu \$4, \$4, \$5 nop nop beq \$3, \$4, loop
	I-W-RT	ori	D	RT	ori \$4,\$5,0xffff nop nop beq \$3,\$4,loop
	LD-W-RT	1w	D	RT	1w \$4,0(\$5) nop nop beq \$3,\$4,100p
	JAL-W-RT	jal	D	RT	jal loop nop nop beq \$3,\$31,loop
	R-M-RS	addu	D	RS	addu \$4, \$4, \$5 nop beq \$4, \$3, loop
	I-M-RS	ori	D	RS	ori \$4,\$5,0xffff nop beq \$4,\$3,1oop
	JAL-M-RS	jal	D	RS	jal loop nop beq \$31,\$3,loop
	R-M-RT	addu	D	RT	addu \$4, \$4, \$5

					nop beq \$3, \$4, 100p
	I-M-RT	ori	D	RT	ori \$4,\$5,0xffff nop beq \$3,\$4,1oop
	JAL-M-RT	jal	D	RT	jal loop nop beq \$3,\$31,loop
行为未	JAL-E-RS	jal	D	RS	jal 100p beq \$31, \$3, 100p
定义	JAL-E-RT	jal	D	RT	jal loop beq \$3,\$31,loop

```
附: 比对程序(C)
#include<stdio.h>
#include<string.h>
char a[100];
char b[100];
int main(){
    FILE *fp1=fopen("mips.txt","r");
    FILE *fp2=fopen("verilog.txt","r");
    //freopen("res.txt","w+",stdout);
    while((fscanf(fp1,"%s",a))!=EOF){
        fscanf(fp2,"%s",b);
        if(strcmp(a,b)==0)printf("right:r:%s w:%s\n",b,a);
        else {printf("wrong:r:%s w:%s\n",b,a);break;}
    }
    return 0;
}
```