РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ СИСТЕМЫ УПРАВЛЕНИЯ СТЕНДОМ ИСПЫТАТЕЛЬНЫМ ГИДРОБАРИЧЕСКИМ

Симоновский Даниил, группа 5130901/10101 Руководитель - Лавров Алексей Александрович

АКТУАЛЬНОСТЬ

- Необходимость тестировать оборудование, работающее под высоким давлением.
- Отсутствие автоматизированных решений на территории СПб.
- Избыточность существующих решений на рынке
- Работа выполняется для компании АО «НПО «Прибор».

ЧТО ТАКОЕ СИГ

Гидробак

Система кранов

ЧТО ТАКОЕ СИГ

Щит управления

Удаленное рабочее место оператора

ЦЕЛИ

Целью выпускной квалификационной работы является:

- Разработка программного обеспечения для управления СИГ.
- Разработка дублирующего интерфейса оператора.
- Разработка программы для визуализации процесса испытаний по сохраненным данным.

СХЕМА ПОДКЛЮЧЕНИЙ СИГ

ИНТЕРФЕЙС СРЕДЫ ПРОГРАММИРОВАНИЯ СПЗ10

ЭКРАНЫ

ЦИКЛИЧЕСКИЙ РЕЖИМ

СТАТИЧЕСКИЙ РЕЖИМ

КОД ПР200

КОД ПР200. РУЧНОЙ РЕЖИМ

КОД ПР200. ЦИКЛИЧЕСКИЙ РЕЖИМ

КОД ПР200. ЦИКЛИЧЕСКИЙ РЕЖИМ

КОД ПР200. СТАТИЧЕСКИЙ РЕЖИМ

КОД ПР200. СТАТИЧЕСКИЙ РЕЖИМ

КОД УДАЛЁННОГО РАБОЧЕГО МЕСТА ОПЕРАТОРА

App

- + __init__(): none
- + on_close(): none
- + _plots_upd(): none
- + _write_registers_callback(request): none
- + _show_frame(cont): none
- + _center_window(): none
- + _update_kgs1(): none
- + _update_kgs2(): none

ModbusSlave

- + __init__(): none
- + start(): none
- + stop(): none
- + set_callback(functional_code, callback): none
- + _auto_detect_port(timeout): bool
- + _rtu_loop(): none
- + _get_expected_rtu_length(data): none
- + _calculate_crc(data): bytes
- + _process_request(request): bytearray
- + _write_multiple_registers(slave_id, pdu): bytearray
- + _write_single_registers(slave_id, pdu): bytearray
- + _read_holding_registers(slave_id, pdu): bytearray
- + _exception_response(slave_id, function_code, exception_code): bytearray

ПРОГРАММА ДЛЯ ОТРИСОВКИ ГРАФИКОВ

SIGPlotterApp

- + __init__: none
- + _configure_window: none
- + _init_fonts: none
- + _init_styles: none
- + build ui: none
- + _create_logo_section: none
- + _create_subtittle: none
- + _create_name_entry: none
- + _create_file_selector: none
- + _create_plot_button: none
- + _on_browse: none
- + _on_plot: none

ПРОГРАММА ДЛЯ ОТРИСОВКИ ГРАФИКОВ

выводы

В результате выполнения выпускной квалификационной работы было разработано программное обеспечение для СИГ, а также дополнительное приложение, для отрисовки графиков.

Разработка была внедрена в работу в АО «НПО «Прибор»

АКТ ВНЕДРЕНИЯ

Настоящий акт составлен о том, что результат выпускной квалификационной работы студента СПБПУ «Санкт-Петербургский политехнический университет Петра Великого» группы 5130901/10101 очной формы обучения Симоновского Д. Л. на тему «Разработка программного обеспечения для системы управления стендом испытательным гидробарическим» внедрен в стенд испытательный гидробарический. Результат выпускной квалификационной работы предоставил возможность эффективного управления стендом в автоматическом режиме, существенно сократив участие человека в процессе проведения испытаний, увеличив безопасность и скорость работы установки.

ТЕСТ ЦИКЛИЧЕСКИЕ ИСПЫТАНИЯ

ТЕСТ ЦИКЛИЧЕСКИЕ ИСПЫТАНИЯ

ТЕСТ СТАТИЧЕСКИЕ ИСПЫТАНИЯ

ТЕСТ СТАТИЧЕСКИЕ ИСПЫТАНИЯ

→ Давление в гидробаке (ПД100) Д2 → Давление в гидробаке (ПД100) Д1

ПР200 ФУНКЦИОНАЛЬНАЯ СХЕМА

МАЛЫЙ НАСОС

ПНЕВМОГИДРАВЛИЧЕСКАЯ СХЕМА СИГ

ВЫБОР РЕЖИМА

Выбор режима

Статический режим

Циклический режим

Ручной режим

Функциональная область Архивирование на USB

РУЧНОЙ РЕЖИМ

ЦИКЛИЧЕСКИЙ РЕЖИМ

выбор режима Циклический	режим запуск режима
Давление конечное	00.0 МПа
Скорость набора давления	00.0 МПа/мин
Время выдержки	000 мин
Количество циклов:	000
Сброс циклов:	Сбросить

ЦИКЛИЧЕСКИЙ РЕЖИМ

СТАТИЧЕСКИЙ РЕЖИМ

выбор режима Статический	режим запуск режима
Давление конечное	00.0 МПа
Давление промежуточное	00.0 МПа
Скорость набора давления	00.0 МПа/мин
Время выдержки 1	000 мин
Время выдержки 2	000 МИН

СТАТИЧЕСКИЙ РЕЖИМ

ПОДСЧЕТ СКОРОСТИ ФИЛЬТР САВИЦКОГО-ГОЛЕЯ

Общий вид:
$$\hat{y}_i$$

$$\hat{y}_i = \sum_{j=-M}^M c_j y_{i+j},$$

Общий вид: $\hat{y}_i = \sum_{i=-M}^{M} c_j y_{i+j}$, \hat{y}_i – значение или оценка производной;

 y_{i+j} – значения измеренной величины;

 c_i – коэффициенты фильтра.

Для получения 1 производной и аппроксимации 1 степени:

$$c_j^{(1)} = \frac{j}{h \sum_{j=-M}^{M} j^2} = \frac{j}{h * \frac{2M(M+1)(2M+1)}{6}}$$

В проекте M = 4, h=200 ms.

П-РЕГУЛЯТОР С СИГМА АДАПТАЦИЕЙ

Скорость от процента ПЧВ на пустом баке: y = 0.02865982 * x

Формула П-регултора: $u[k] = K_{\Pi}e[k]$

Подстройка (сигма адаптация): $K_{\Pi}[k+1] = K_{\Pi}[k] + \gamma e[k] - \sigma K_{\Pi}[k]$

γ – скорость (коэффициент) адаптации;

 σ – коэффициент утечки, ограничивающий рост $K_{\Pi}[k]$.