rand onn walk 12 diffusion Last time. / PL PR ~~~ (Spreads out d'Afrisian T / cg position
A;
T = 1
<a href="

Ensemble average many copies of system, awaye over all of thun (A) = 1 ZA; E N capies emil Coul (341 System has stated with prob Pd

Random walk length M
States:
$$x = \xi - \alpha M$$
, ..., O , ..., $\alpha M \xi$
will see with prob(i.a)
ie $(\xi - M, M)$
 $d_M = \alpha \sum_{i=1}^{N} M_i = \alpha (N_1 - N_-)$
 $= \alpha (2N_1 - M)$
 $(d_M)^{N/2}$

Binomial Distribution Prob of n "successes" in m "trials" with prob of success = P ~ Z out comes $P(n,m) = \binom{m}{n} p^n (i-p)^{m-n}$ (key print) binonial coeff — M! (m-n)! $\langle u_s \rangle = mb(1-b)$

 $\langle d_m \rangle = \langle a(2N_+ - M) \rangle$ = 2a(<N+> - <4>) = 2a((N+) - M) - MP+ = 2a(MP+ - M/2) = 2aM(P+ - 1/2) (a) + b) = (a) + (b) = a(x) + ba, b constants, X is a random vor.

Note: $\langle A \rangle_{\text{time}} = \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{i=1}^{\tau} A_i$ long tracectory くみ>= よろAi N things to average

 $\langle A \rangle_{\text{evenble}} = \sum_{n \in States} A_n P_n$

Example:
$$n=2$$
 — Eq $p=2$ Probo of state $p=2$ Comple dist. Bolzmann $p=2$ $p=$

Statistics Reminder

Mean
$$\langle x \rangle = \mu = \frac{1}{N} \sum_{i=1}^{N} X_i$$
 $Var(x) = \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 = \langle (x - \mu^2) \rangle$
 σ is standard deviation

 $\langle (x - \mu)^2 \rangle = \langle (x^2 - 2x\mu + \mu^2) \rangle$

$$= \langle x_{5} \rangle - h_{5} = \langle x_{5} \rangle - \langle x \rangle_{5}$$

$$= \langle x_{5} \rangle - 3h \langle x \rangle + h_{5}$$

$$= \langle x_{5} \rangle - 3h \langle x \rangle + h_{5}$$

$$V_{0}(x) = \langle (x-\mu)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$
 $V_{0}(x) \ge 0$
 $V_{0}(x) \ge 0$

$$\langle x^2 \rangle \geq \langle x \rangle^2$$

Var
$$(d) = \langle d_m^2 \rangle^2 \langle d_m \rangle^2$$

$$= \alpha^2 \left[4M p (1-p) \right]$$

$$= \alpha^2 M$$
if $p = \frac{1}{2}$

$$\sigma = root mean caused disp = 0$$

$$= \alpha M$$

Distributions of samples 16 random walk Xi from coin flips 1) produces samples Xi >> Xi+1 Coin flip Could get Xi -> Xi+1 Other rules Molecular dynamics "rule "newtons Cognitions

Prob
$$x \in (a_1b) = \int_a^b P(x) dx$$

Prob $x \in (a_1b) = \int_a^b P(x) dx$

Normalized $\int_a^{\infty} P(x) dx = 1$ all possible $\int_a^{\infty} P(x) dx = 1$ all possible $\int_a^{\infty} P(x) dx = 1$

$$\langle A \rangle = \int_{-\infty}^{\infty} A(x)P(x) dx$$

 $\langle x \rangle = \mu = \int_{-\infty}^{\infty} xP(x) dx$
 $\langle x \rangle = \langle x \rangle = \int_{-\infty}^{\infty} (x - \mu)^2 P(x) dx$
 $\langle x \rangle = \langle x^2 \rangle - \langle x \rangle^2$
 $\langle x \rangle = \langle x^2 \rangle - \langle x \rangle^2$
 $\langle x \rangle = \langle x^2 \rangle - \langle x \rangle^2$
 $\langle x \rangle = \langle x^2 \rangle - \langle x \rangle^2$

Eg: Bolzmann P(E) = e-E/ter (P(E) 16 = 1 1 - E/kgT de = 1 =) Z = J-e/kst de

 $P(e) = \frac{-\varepsilon/k_sT}{\int e^{-\varepsilon/k_sT} d\varepsilon}$

Eg 3: Gaussian, normal dist

$$(x7=M)^{2}$$

$$\langle e^{x} \rangle \stackrel{?}{=} e^{\langle x \rangle}$$

$$\langle e^$$

$$\langle e^{\times} \rangle = \sum_{n=0}^{\infty} \langle \chi_{n}^{n} \rangle$$

$$C(x) = \frac{20}{2} < \frac{x}{x}$$

Next time measmements Nouves for ki MN= Nisix; ~0.53, 6,68, - 171... MN > M distribution N gets big classical mechanics also