MODELOS FUNDAMENTALES

Contenido

- Introducción
- Modelos Físicos:
 - 3 generaciones de SD:
 - 1G: Temprana,
 - 2G Internet-Escala,
 - 3G Contemporaneos
- Modelos Arquitectónicos
 - Tipos de arquitecturas
 - Cliente Servidor
 - Clientes y un servidor, Multiples Servidores, Servicios proxy con chachés, Modelo Peer.
- Modelos Fundamentales descripción formal
 - Interacción, fallos y seguridad.

Introducción

- Descripción formal de las propiedades que son comunes en todos los modelos arquitectónicos
- Todos los modelos arquitectónicos se componen de procesos que se comunican unos con otros mediante el envío de mensajes en una red de computadoras
- En un SD los modelos capturan;
 - Interacción: Los modelos interactúan por pasos de mensajes entre procesos: comunicación (flujo de información) y coordinación (sincronización y ordenamiento)
 - Refleja: retrasos, dificultad de mantener la misma noción de tiempo.
 - Fallo: de software o de red, procesos.
 - Seguridad: Tanto de agentes internos como externo.
 - Modos en los que se pueda tener ataques
 - Amenazas a procesos y canales de comunicación

Modelo de Interacción

El cálculo ocurre en los procesos (varios)

- Interacción por pasos de mensajes, resultando en:
 - Comunicación (flujo de información)
 - Coordinación entre procesos (sincronización y orden de actividades)
- La forma en que se produce el paso de mensajes entre los procesos restringe los modos de interacción:
 - Retrasos, precisión y tiempo.

Modelo de Interacción: Comunicación

Prestaciones del canal de comunicación

- Problemas:
 - Latencia: retardo entre envío y recepción de mensajes.
 - Tiempo de acceso a la red (ej. Retardos de transmisión Ethernet – red muy cargada)
 - Tiempo para que el primer bit viaje desde la interfaz de la red transmisora hasta la interfaz de la red receptora
 - Tiempo procesado dentro del proceso de envío y recepción.
 - Ancho de banda: cantidad de información transmitidas por unidad de tiempo.
 - Fluctuación: variación en el tiempo para entregar una serie de mensajes.

Modelo de Interacción: Comunicación

- En base al modelo de comunicación aparecen dos familias de sistemas:
 - SDs Síncronos
 - Comunicación síncrona: Envío y recepción de mensajes se realiza de forma simultanea
 - El el tiempo para ejecutar cada paso de un proceso tiene establecidos limites inferiores y superiores
 - Los tiempo de entrega de mensajes tienen limites establecidos
 - Cada proceso tiene un reloj que deriva rangos en tiempo real con límites establecidos.
 - SDs Asíncrono (sin limite)
 - Comunicación asíncrona: El envío no requiere que el receptor este esperando
 - Tiempos de ejecución de procesos, respuesta muy variable
 - Tiempo de entrega de mensajes: retardos imprevisibles en la transmisión.
 - Tasa de movimiento del reloj arbitraria.

Modelo de Interacción: Sincronización y Tiempo

- Ordenamiento de eventos
 - En muchas aplicaciones de SD es interesante conocer si un evento (enviar o recibir mensaje) en un proceso ocurrió antes, después o concurrentemente con otro evento en algún otro proceso.
 - La ejecución de un sistema debe ser descrita en términos de eventos y su orden, a pesar de la falta de relojes precisos

Modelo de Interacción: Sincronizació y Tiempo

- Consecuencia básica en un sistema asíncrono, eventos pueden observarse desordenados con respecto a su generación.
- Ejemplo: Intercambio de mails con usuarios X,Y,Z,A
 - El usuario X envía un mensaje con el tema Reunión
 - Los usuarios Y y Z responden con un mensaje con el tema Re:Reunión

	Bandeja de entrada	
Elemento	Emisor	Asunto
23	Z	Re: Reunión
24	Χ	Reunión
25	Υ	Re: Reunión

- Si rompe la relación de causalidad
- Si los relojes de X, Y y Z pudieran sincronizarse, se observará la secuencia ordenada.

Modelo de Fallo

- Falla por omisión
 - Del proceso: caída del proceso
 - Detección de timeouts
 - La caída es de tipo fail-stop si otro proceso puede detectar con certeza que el proceso a caído
 - De comunicación (canal): el mensaje no ha sido entregado (pérdida de mensajes)
 - Posibles causas:
 - Error de transmisión de la red
 - Sobrecarga del buffer de recepción de mensajes.

Modelo de Fallo

Falla por omisión

Modelo de fallo

- Fallas arbitrarias (bizantino)
 - Proceso: omite pasos esperados del proceso o lleva a cabo no deseados
 - Canal de comunicación: sin entrega, corrupción y duplicidad

Modelo de Seguridad

 La seguridad en un SD puede lograrse asegurando los procesos y los canales para sus interacciones y protegiendo los objetos que se encapsulan contra el acceso no autorizado

Protección de Objetos

- El servidor administra un conjunto de objetos en beneficio de los usuarios
 - Los derechos de acceso especifican a quién se le permite realizar ciertas operaciones. Leer o escribir su estado.
- El servidor es el responsable de verificar la identidad del Principal tras cada invocación y comprobar que dispone de los suficientes derechos de acceso como para realizar la acción requerida, rechazando aquellas que no dispongan.

El Enemigo

- Para modelar amenazas de seguridad, el enemigo es capaz de enviar cualquier mensaje a cualquier proceso
- Las amenazas de un enemigo potencial: procesos, canales de comunicación y denegación de servicios

Amenazas a los Procesos

- Acceso indebido a los recursos
- Ataques a la integridad de los procesos
- Suplantación de los principales interlocutores
- Falsificación de servicios
- Falsificación de peticiones

Amenaza a los canales

- Acceso indebido al canal
- Captura de mensajes
- Reenvío de mensajes
- Eliminación de mensajes
- Modificación de mensajes

Criptografía

- Criptografía de clase secreta y pública
 - Encriptación para preservar la privacidad
 - Firmas para preservar la autenticidad
 - Autenticación para preservar la identidad
 - Firma digital para preservar la legalidad
- Ejemplos de servicios seguros:
 - Correo electrónico
 - Pagos por internet