Probability review II: Random variables, expectation, and variance

Topics we'll cover

- 1 What is a random variable?
- 2 Expected value
- 3 Variance and standard deviation

Random variables

Roll two dice. Let X be their sum.

outcome =
$$(1,1)$$
 \Rightarrow $X=2$
outcome = $(1,2)$ or $(2,1)$ \Rightarrow $X=3$

Probability space:

- Sample space: $\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}.$
- Each outcome equally likely.

Random variable X lies in $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

A **random variable (r.v.)** is a defined on a probability space. It is a mapping from Ω (outcomes) to \mathbb{R} (numbers). We'll use capital letters for r.v.'s.

The distribution of a random variable

Roll a die.

Define X = 1 if die is ≥ 3 , otherwise X = 0.

Expected value, or mean

Expected value of a random variable X:

$$\mathbb{E}(X) = \sum_{x} x \Pr(X = x).$$

Roll a die. Let X be the number observed. What is $\mathbb{E}(X)$?

Another example

A biased coin has heads probability p. Let X be 1 if heads, 0 if tails. What is $\mathbb{E}(X)$?

A property of expected values

How is the average of a set of numbers affected if:

- You double the numbers?
- You increase each number by 1?

Summary: Let X be any random variable. If V = aX + b (any constants a, b), then $\mathbb{E}(V) = a\mathbb{E}(X) + b$

Variance

Can summarize an r.v. X by its mean, μ . But this doesn't capture the **spread** of X:

A measure of spread: average distance from the mean, $\mathbb{E}(|X - \mu|)$?

- Variance: $var(X) = \mathbb{E}((X \mu)^2)$, where $\mu = \mathbb{E}(X)$
- Standard deviation $\sqrt{\text{var}(X)}$: Roughly, the average amount by which X differs from its mean.

Variance: example

Choose X uniformly at random from $\{1, 2, 3, 4, 5\}$.

Variance: properties

Variance: $var(X) = \mathbb{E}((X - \mu)^2)$, where $\mu = \mathbb{E}(X)$

- Variance is always ≥ 0
- How is the variance affected if:
 - You increase each number by 1?
 - You double each number?
- Summary: If V = aX + b then $var(V) = a^2 var(X)$

Alternative formula for variance

Variance: $var(X) = \mathbb{E}((X - \mu)^2)$, where $\mu = \mathbb{E}(X)$

Another way to write it: $\operatorname{var}(X) = \mathbb{E}(X^2) - \mu^2$

Example: Choose X uniformly at random from $\{1, 2, 3, 4, 5\}$.