COMP 551 - Assignment 1

Report

Q1.1 Pseudocode:

```
Define a function f (no# days):
Initialize four variables for different routine: R1, R2, R3, R4
for (some x in range(n):
                                          #n is the number of days
      generate a random number y between [0,1)
      #for probability [0.0, 0.1), increment
      #Playing sample points
      if (y = [0.0, 0.1)):
              increment R3
       #for probability [0.1, 0.3), increment
       #Movies sample points
      else if (y = [0.1, 0.3)):
              increment R1
       #for probability [0.3, 0.6), increment
       #Studying
      else if (y = [0.3, 0.6)):
              increment R4
       #for probability [0.6, 1.0), increment
       #COMP-551
      else:
              increment R2
```

return an array of [R1, R2, R3, R4] which are the sample points obtained from each activity for n days $\left[\frac{1}{2} \right]$

1.2. For n = 100:

Movies: 18 / 100 = 0.18

COMP-551: 38 / 100 = 0.38

Playing: 9 / 100 = 0.09

Studying: 35 / 100 = 0.35

For n = 1000

Movies: 185 / 1000 = 0.185

COMP-551: 392 / 1000 = 0.392

Playing: 106 / 1000 = 0.106

Studying: 317 / 1000 = 0.317

Comparison: As the sample points increase, the error decreases and therefore yields a better estimation.

Q2.1. a. MSE of Training Data: 6.474

MSE of Validation Data: 1422.692

b.

c. The model is overfitting because it is fitting too well with the training dataset instead of generalizing the general pattern. Due to this it does not fit well with the validation data set and hence yields high MSE.

2.2 a.

b. MSE for $\lambda = 0.0001$ for the test set is: 11.1802

c.

- **d.** The model is neither overfitting nor underfitting. It is well modelled along the points.
- **2.3** The degree of the source polynomial is 3

3.1 a MSE for Validation Set on 5000 epochs:

25.19355702

25.18647866

25.17944864

. . .

4.51871471

4.51750569

4.51629343

b

3.2 a

Step Size	MSE for 10 epochs
	5058.13567063
0.1	21776.13131168
	50262.96281889
	90618.14478577
	142725.81324745
	207228.85378308
	282735.17325151
	370448.89279453
	468484.3861287
	577697.46305834
	11.555188
0.01	114.43423706
	333.81284372
	673.57276139
	1128.07938641
	1699.46642411
	2385.40420006
	3185.97071892
	4106.40558325
	5121.06729019
0.001	18.57412605
	13.10417429
	8.82452395
	5.73886011
	3.81293147
	3.05458473
	3.46603625
	5.04595453
	7.80348673
	11.64639179
0.0001	24.49159363
	23.79125311
	23.09716063
	22.42292336
	21.76706304
	21.1153402
	20.48268796
	19.85628065
	19.23783974
	18.63309653
1e-05	25.12924933
	25.05733424
	24.98510392
	24.91303672
	24.84167885
	24.77013397
	24.69868087
	24.62734715
	24.55639693
	24.48557603

1.0000000000000002e-06	25.19339289
	25.18628812
	25.1790696
	25.17192623
	25.16476121
	25.15754917
	25.15043366
	25.14321502
	25.13604647
	25.12887617

b. MSE of Test Set for step-size: 0.001 for 10 epochs is:

24.89865077

24.87631008

24.85404494

24.83171244

24.80955342

24.78727809

24.76512965

24.74295877

24.72079929

24.69872422

3.3

- **4.1 a** No, because there might be outliers that will result increase the variance and bias, resulting in improper approximations.
 - **b** Using median
- **c** Using sample median gives a better approximation of the missing attributes. Since the median is not affected by the outliers, it does not affect the variance and yields better approximations than using the sample mean.
- **4.2** Parameters learnt using SGD from the training set:

```
1. w0 = 3.395e-05 w1 = 1.17515317e-05
```

$$2. \text{ } \text{w0} = 5.939 \text{e-} 05 \text{ } \text{w1} = 2.05708073 \text{e-} 05$$

$$3. \text{ wo} = 8.702 \text{e-} 05 \text{ w1} = 3.03282033 \text{e-} 05$$

4.3 a

b No because ridge regression minimizes all the predictor coefficient and estimates them towards zero, based on the size of the regularization hyperparameter λ . Although this reduces the MSE but does not contribute towards choosing the best feature.

 \mathbf{c}

d Performance with reduced features will result in better performance. This will eliminate the issue of dimensionality resulting in complex decision boundaries. It also reduces overfitting. Lesser features also imply fewer correlated variables which improves the learning algorithm.