Errata zum Lehrbuch "Verkehrsdynamik und -simulation"

Martin Treiber und Arne Kesting

Oktober 2017

Hinweis: In der folgenden Liste werden nur inhaltliche, nicht aber rein sprachliche Fehler aufgelistet.

• Kap. 3.1, Seite 14, Gleichung (3.3): Im letzten Term wurden Zähler und Nenner vertauscht, daher nun korrekterweise

$$T_{\alpha} = \Delta t_{\alpha} - \frac{l_{\alpha - 1}}{v_{\alpha - 1}}.$$

- Kap. 6.1, Seite 51: In den 1990er, nicht 1930er Jahren führte eine gesteigerte Rechenleistung ... zu verstärkten Aktivitäten [auf dem Gebiet der Verkehrsdynamik].
- Kap. 8.4, Seite 92, Gleichung (8.21): In dieser Formel muss ρ_{max} durch Q_{max} ersetzt werden.
- Kap. 8.5, Seite 110: In Gleichung (8.45) wurde nach dem ersten Gleichheitszeichen die Verteilungsfunktion F_N mit der Dichtefunktion f_N der Normalverteilung vertauscht. Die Gleichung lautet

$$g(x,t) = f_N^{(\mu,\sigma^2)}(x) = \frac{1}{\sqrt{4\pi Dt}} \exp\left[-\frac{(x-\tilde{c}t)^2}{4Dt}\right].$$

- Kap. 9.4.2, Seite 125: Der Verkehrsdruck ist nicht durch θ_0 sondern durch $\rho\theta_0$ gegeben [drei Zeilen unter Formel (9.17)].
- Kap. 9.4.3, GKT-Formel (9.22): Das Argument des Boltzmannfaktors ist falsch: Es gilt

$$B\left(\frac{V-V_a}{\sqrt{2}\sigma_V}\right)$$

anstelle von

$$B\left(\frac{V-V_a}{\sigma_V}\right)$$
.

- Kap. 10.5, Abb. 10.3: Die verwendete OV-Funktion ist durch Gleichung (10.18), nicht durch (10.19) gegeben.
- Kap. 10.5, Formel (10.20): Auf de rechten Seite wurden $v_{\alpha}(t)$ und $v_{\alpha-1}(t)$ vertauscht.
- Kap. 10.6, Abb. 10.5: Die verwendete OV-Funktion ist ebenfalls durch Gleichung (10.18), nicht durch (10.19) gegeben.
- Kap. 11.1, Seite 155 zwischen den Gleichungen (11.2) und (11.3): "je schneller dieses fährt" \Rightarrow "je langsamer dieses fährt"
- Kap. 12.3, Seite 177 zwischen den Gleichungen (12.5) und (12.6): Die Time-to-Collision ist inkorrekt definiert. In der Formel im Text muss es lauten $\tau_{\rm TTC} = s/\Delta v$, nicht $\tau_{\rm TTC} = \Delta v/s$. Die Formel (12.5) ist korrekt.
- Kap. 12.5, S. 181 Mitte, Formel (12.16): In der Definition der summierten Lücke $s_{\alpha\beta}$ geht die Summe von j=0 bis $\alpha-\beta-1$, nicht bis $\beta-1$:

$$s_{\alpha\beta} = \sum_{j=0}^{\alpha-\beta-1} s_{\alpha-j}$$

- Kap. 12.5, S. 182 Mitte: Die Ungenauigkeit bei der Schätzung der relativen Annäherungsrate (inverse TTC) ist $0.01 \, \mathrm{s}^{-1}$, nicht $0.01 \, \mathrm{s}$.
- Kap. 14.3.4, Seite 203 vor Formel (14.9): Der Text ist etwas ungenau und ohne Berücksichtigung der Einheiten formuliert. Der präzisierte Text zwischen den Gleichungen (14.8) und (14.9) lautet "Da sowohl T als auch τ in der Größenordnung von 1s liegen (vgl. Tabelle 10.1) und die Beschleunigungen b_{safe} und Δa von der Größenordnung 1 m/s² bzw. kleiner sind (Table 14.1), sind alle Beiträge, welche das Produkt τT enthalten, von der Größenordnung 1 m oder kleiner und damit gegenüber den Lücken s_{α} , \hat{s}_{α} und \hat{s}_{hz} vernachlässigbar. Im Ergebnis bekommt man die Bedingungen."
- Seite 204, Formel (14.11): Das Anreizkriterium für das Full Velocity Difference Modell lautet

$$\hat{s}_{\alpha} > s_{e} (v_{opt}(s_{\alpha}) + \tau \Delta a + \gamma \tau (v_{v} - v_{vz}))$$

- Kap. 15, Seite 218, Formel (15.11): Die Ableitungen der Beschleunigungsfunktion sind partielle, nicht totale Ableitungen, also $\frac{\partial a_{\text{mic}}}{\partial s}$ statt $\frac{da_{\text{mic}}}{ds}$ usw.
- Kap. 15.4, Seite 228, dritte Gleichung im Text: $q_1 = -iV_e p_0 + i\rho_e V'_e p_0$ anstelle von $q_1 = -iV_e p_0 + i\rho_e V'_e$.
- Kap. 15.4, Seite 232, Formel (15.67): Der Reaktionszeit- bzw. Folgezeitparameter ist durch T anstelle von T_r gegeben. Ferner wurde die Geschwindigkeit des Führungsfahrzeugs irrtümlich mit v_p anstelle von v_l bezeichnet.

• Kap. 15.4, Seite 232, Formel (15.68): Die partielle Ableitung a_{v_l} ist durch

$$a_{v_l} = \frac{v_e}{T(bT + v_e)}$$

anstelle von $a_{v_l} = \frac{v_e}{bT + v_e}$ gegeben.

• Kap. 15.5, S. 235, Formel (15.76): Die Formel lautet

$$\tilde{U}(x,t) \propto \exp\left[\mathrm{i}(k_0 \sup physx - \omega_0 t)\right] \exp\left[\left(\sigma_0 - \frac{\left(v_g - \frac{x}{t}\right)^2}{2\left(\mathrm{i}\omega_{kk} - \sigma_{kk}\right)}\right)t\right].$$

- Kap. 17.1, Seite 261: Der Stau auf der A8-Ost ist in Abb. 17.1b, nicht 17.1a gezeigt.
- Aufgabe 15.8, S.274: In Teilaufgabe 2 sollen nicht $n_1(t)$ und $n_2(t)$ sondern $N_1(t)$ und $N_2(t)$ bestimmt werden.
- Kap. 19.6, Seite 281: In der zweiten Gleichung von (19.9) fehlt ein Faktor von 2π , so dass für den effektiven Mitteldruck bei Viertaktmotoren gilt

$$\bar{p} = \frac{4\pi M}{V_{\rm zyl}}.$$

- S. 282, Bildunterschrift von Abb. 19.2: 11 Liter/kWh statt 11 kg/kWh.
- Kap. 20.5, Bildunterschrift zu Abb. 20.6, S.298: Es handelt sich um größere Einfahrten, nicht Ausfahrten.
- Kap. 20.7, S. 299: In den Gln (20.3) und (20.4) steht a_0^2 im Nenner, nicht a_0 .
- Kap. 20.7, S. 300: Ersetze "die Konstante \dot{C} " durch "die Konstante \dot{C}_0 ".
- S. 318, Lösung der Aufgabe 8.4 Die Lösung ist zwar näherungsweise, aber nicht exakt korrekt. Die richtige Lösung lautet

$$\tau_{\rm tot} = \frac{1}{2} \rho_{\rm max} \tau^2 \; \frac{c_{\rm up} c_{\rm cong}}{c_{\rm up} - c_{\rm cong}}$$

mit

$$c_{\mathrm{up}} = \frac{Q_{\mathrm{in}}}{Q_{\mathrm{in}}/V_0 - \rho_{\mathrm{max}}}, \quad c_{\mathrm{cong}} = -\frac{1}{\rho_{\mathrm{max}}T}.$$

- S. 321, Lösung der Aufgabe 8.5, Teilaufgabe 4 Es handelt sich um die stromabwärtige, nicht stromaufwärtige Staufront.
- S. 346, Lösung der Aufgabe 13.3, erste Formel Ersetze $V_e'(0)$ durch $Q_e'(0)$ und $V_e'(\rho_{\text{max}})$ durch $Q_e'(\rho_{\text{max}})$

- S. 353 und S.354, Lösungen der Aufgaben 15.8 und 18:2 Die Bilder zu dne beiden Lösungen wurden vertauscht.
- S. 358, Lösung der Aufgabe 19.6: Der Integrand in der ersten eckigen Klammer hat einen falschen Luftwiderstandsbeitrag: $\frac{1}{2}c_w\rho_LAa^3t^3$ statt $\frac{1}{2}c_w\rho_LAa^2t^2$. (Die nächsten Formeln sind wieder richtig.)