Prova Facoltativa di Comunicazioni Numeriche - Parte I - Fila A

4 Aprile 2013

Es. 1 - Sia dato il segnale $x(t) = \sum_{n} rect\left(\frac{t - \frac{2}{B}n}{\frac{1}{2B}}\right)$ in ingresso al sistema in Fig. 1, dove $h(t) = Bsinc^2(Bt)$. Calcolare: a) la espressione analitica di y(t), b) P_y e c) E_y .

Es. 2 - Si consideri il sistema in Fig. 2 e siano dati il segnale in ingresso $x(t) = 2\text{sinc}(2Bt)\cos\left(2\pi Bt + \frac{\pi}{3}\right)$ e la funzione interpolatrice p(t) = Bsinc(Bt). Si calcolino quindi: a) la espressione analitica del segnale y(t) in uscita all'interpolatore, b) E_y e c) P_y .

Es. 3 - Si consideri il sistema in Fig. 3 come la cascata di due sistemi, definiti dalle trasformazioni T_1 e T_2 , dove T_1 rappresenta la trasformazione di un sistema lineare con risposta impulsiva $h\left(t\right)=\delta\left(t-t_1\right)$ e $T_2\left[\cdot\right]=\int_a^t f\left(\alpha\right)d\alpha$, con $f\left(t\right)$ segnale in ingresso a T_2 e con $a,t_1>0$ $(a,t_1\in\mathcal{R})$. Considerando il sistema T composto dalla cascata di T_1 e T_2 , si verifichi se tale sistema e': a) lineare, b) causale, c) stazionario e d) con memoria.

- Es. 4 Definire e dimostrare il Teorema di Parseval per segnali periodici.
- Es. 5 Si dimostri che per un SLS, il segnale in uscita e' scrivibile come la convoluzione del segnale di ingresso con la risposta impulsiva del sistema.