© 1989

МИКРОСКОПИЧЕСКИЕ РАСЧЕТЫ ИЗОТОПОВ ВОДОРОДА И ГЕЛИЯ

ГОРБАТОВ А. М., СКОПИЧ В. Л., НИКИШОВ П. Ю., ПЕНИОНЖКЕВИЧ Ю. Э. ¹⁾

КАЛИНИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

(Поступила в реданцию 22 февраля 1989 г.)

Методом угловых потенциальных функций с применением операторов парных корреляций рассчитаны все изотопы \hat{H} и \hat{H} и \hat{H} р-оболочки. Результаты свидетельствуют о ядерной нестабильности ${}^{9}\text{He}$ и ${}^{10}\text{He}$ и отсутствии резонансных состояний систем ${}^{7-9}\text{H}$.

1. Экспериментальные исследования сильно нейтроноизбыточных ядер легчайших элементов

Поиски и изучение повых пейтропоизбыточных ядер легких элементов имеют две основные цели: 1) выяснить существование границы устойчивости или нейтронных ядер; 2) исследовать свойства ядер вблизи границ стабильности, так как они могут сильно отличаться от известных. Несмотря на то что в области легчайших элементов экспериментаторы уже подошли к границам ядерной стабильности, говорить о том, что они достигнуты, рапо, поскольку нестабильных ядер обнаружено мало. Это объясняется тем, что эксперименты по поиску и изучению свойств квазистационарных и пестабильных ядерных систем значительно сложнее, чем эксперименты по прямому обнаружению нуклонно-устойчивых ядер.

Прогресс в этих исследованиях возник в последние годы в связи с появлением новых реакторов, а также ускорителей тяжелых ионов, обладающих большой интенсивностью пучков и высоким эпергетическим разрешепием. Был проведен ряд экспериментов по поиску связанных или квази-

стационарных состояний в изотопах Н и Не.

Проведенные экспериментальные исследования не обнаружили ни одного связанного изотопа H с $A \geqslant 4$ [1]. Между тем экспериментально показано существование квазистационарных состояний в системах, состоящих из одного протона и трех и ияти нейтронов (4H и 6H) [2, 3]. В работе [3] изучались нейтроноизбыточные изотопы 4-6H. Авторы не наблюдали событий, соответствующих связанным состояниям в этих изотопах.

Для ⁴Н обнаружено квазистационарное состояние с энергией $E=3,5\pm \pm 0,5$ МэВ (относительно нулевой энергии связи ³Н+n) и шириной $\Gamma \sim 1,0$ МэВ. Из полученных данных также следует возможное существование второго квазистационарного состояния в системе ⁴Н с $E\sim 5$ МэВ. В системе ⁵Н не было обнаружено квазистационарных состояний. Квазистационарные состояния в системе ⁶Н были пайдены в реакциях с тяжелыми ионами [2, 3].

В работе [2] было получено квазистационарное состояние с $E=2,7\pm0.4$ МэВ и $\Gamma=1,8\pm0.5$ МэВ. Анализ экспериментальных данных, проведенный в [3], подтвердил паличие квазистационарного состояния в системе ⁶Н при энергии 2,6 ±0.5 МэВ. Эксперименты по поиску квазистационарного состояния в системе ⁷Н [4] пе дали положительного результата.

ОИЯИ, Дубна.

Изотоп	Избыток массы, МэВ	Г, МэВ	Распад	E, MəB
⁵ He ⁶ He ⁷ He ⁸ He ⁹ He ¹⁰ He	11,39 17,597 26,11 31,548 40,81 49,4 *	0,6 0,16 .1	⁴ He+n ⁴ He+2n ⁶ He+n ⁶ He+2n ⁸ He+n ⁹ He+n ⁸ He+2n	-0,89 0,975 -0,441 2,137 -1,14 +0,92 * -1,66 *

^{*} Расчетные значения.

Исследованию изотопов Не посвящено большое число экспериментальных работ [1, 5], в которых однозначно показано, что ядра ⁵Не, ⁷Не и ⁹Не являются нестабильными. Были найдены квазистационарные состояния этих ядер и измерены энергии их распада, которые представлены в табл. 1.

Кроме этого в [5] были найдены квазистационарные состояния у изотопа 5 Не ($E=5,2\pm0,3$ МэВ, $\Gamma=2,0\pm0,5$ МэВ), 7 Не ($E=3,4\pm0,3$ МэВ, $\Gamma=-1,5\pm0,5$ МэВ), а также возбужденные состояния у ядра 8 Не ($E=1,3\pm0,3$; $2,6\pm0,3$ и $4,0\pm0,3$ МэВ). В работах [4, 5] было обнаружено квазистационарное состояние в 8 Не с $E=2,5\pm1,1$ МэВ.

Как следует из представленных экспериментальных данных, по мере увеличения числа нейтронов в изотопах Не увеличивается их стабильность (ядро ⁵Не не связано на 0,89 МэВ, а ⁷Не — всего лишь на 0,44 МэВ, еще сильнее увеличение стабильности нейтроноизбыточных ядер Не представляется для стабильных изотопов ⁶Не и ⁸Не). Эта тепденция получила название «гелиевой аномалии». Такая же тенденция обпаружена для изотопов Н с открытием квазистационарного состояния в ⁶Н. Экспериментальная экстраполяция в область более тяжелых пейтронных систем дает некий оптимизм для дальнейших исследований в этой области. Поэтому чрезвычайно важными для ответа па вопрос о стабильности тяжелых нейтронных систем Н и Не являются эксперименты по поиску ядер ⁷Н, ⁸Н и ¹⁰Не.

Большое значение для выработки программы исследований в этой области ядер имеют теоретические предсказания свойств пейтронных ядер.

2. Постановка задачи

Существование ряда интересных аномалий в поведении энергий связи тяжелых изотопов Н и Не и одновременно отсутствие полноты экспериментальной информации делает микроскопический расчет указанных систем чрезвычайно актуальным. В этой ситуации мы можем получить ценную информацию о составляющих NN-взаимодействия (особенно в триплетных изоспиновых состояниях), а также продемопстрировать предсказательную силу потенциальной модели. Недавние расчеты эпергий и ширин уровней квазистациопарных состояний изотопа 4Н с реалистическим потенциалом SSC_в [6] привели к хорошему согласию с экспериментом [7, 8]. Для систем с большим числом пуклонов ни один из известных вариаптов реалистических NN-сил не приводит к удовлетворительному описанию энергий связи стабильных ядер р-оболочки [9]. Поэтому в данной работе значительное место занимает восстаповление NN-потенциала с учетом ядерных данных. Эта задача рассматривается в разд. 4 на основе аппарата операторов парных корреляций [10, 11], а затем пайденный потенциал применяется в расчетах изотопов 5-10 Не (разд. 6) и 4-9 Н (разд. 7).

3. Основное приближение

В основу расчетов положим метод угловых потенциальных функций (УПФ) [12], первым этапом которого является построение гармоник минимальной степени $U_{\odot}^{\gamma} \equiv U^{(\gamma)}$, $K = K_{min}$ с определенными внешними квантовыми числами $J^{\pi}T$. Затем эти гармоники используются в качестве гене-

	$N_n = 1$	2	3	4	5	6	7	8
⊂ l	$0 \\ \frac{1}{1/2} \\ \cdot -\frac{1}{2}$	0	1	1	1	1	1	1
j		1/2	1/2	1/2	3/2	3/2	3/2	3/ ₂
j,		1/2	-1/2	1/2	-3/2	-1/2	1/2	3/ ₂

Таблица 3:

Возможные значения квантовых чисел $J^\pi T$ и кратность их вырождения n в приближении $K=K_{min}$

Ядро	$n(J^{T}T)$	Ядро	$n(J^{\mathcal{R}}T)$
4 H	1(2-1), 2(1-1), 1(0-1)	5He	$1(3/2^{-1}/2), 1(1/2^{-1}/2)$
5H	$2(\frac{5}{2} + \frac{3}{2}), 3(\frac{3}{2} + \frac{3}{2}), 3(\frac{1}{2} + \frac{3}{2})$	⁶ He	2(2+1), 1(1+1), 2(0+1)
⁶ H	$1(\overline{3}-2), 4(2-2), 4(1-2), 1(0-2)$	7He	$1(5/2^{-3/2}), 3(3/2^{-3/2}), 1(1/2^{-3/2}),$
7H	$2(5/2+5/2), \overline{3(3/2+5/2)}, 3(1/2+5/2)$	8He	2(2+2), 1(1+2), 2(0+2)
⁸ H	1(2-3), 2(1-3), 1(0-3)	9He	$1(3/2^{-5/2}), 1(1/2^{-5/2})$
9H	$1(\frac{1}{2} + \frac{7}{2})$	_¹0He	1(0+3)
			[대원 전환경 기계 기계 기계 전환]

Примечание. Подчеркнуты квантовые числа основного состояния.

раторов цепочек УПФ. Заметим, что расчет систем в основном ($K=K_{min}$) приближении не представляет самостоятельного интереса для реалистических NN-сил.

Построение $U^{(v)}$ проводилось в jj-связи с помощью техники повышающих операторов \hat{j}_+ , действующих на орбитали $\Phi_{lji_{\pi}\tau}$ с определенным значением орбитального момента l, полного j, его проекции j_z и изоспина τ . Нумерация N_n нейтронных $(\tau = -^1/_2)$ орбиталей устанавливалась по принципу возрастания значений нижних индексов (табл. 2). Нумерация N_p протонных состояний $(\tau = ^1/_2)$ получается простым смещением $N_p = N_n + 8$.

Структура $U^{(v)}$ дается выражением

$$U^{(v)} = \sum_{i} C_{i}^{(v)} \chi_{i}, \quad \langle U^{(v)} | U^{(v')} \rangle = \delta_{vv'}, \tag{1}$$

где $\{\chi_i\}$ — ортонормированные гармоники степени $K=K_{min}$, каждая из которых построена на определителе Слэтера с орбиталями табл. 2, а $C_i^{(v)}$ — численные коэффициенты.

Квантовые числа основного состояния устанавливались путем непосредственного расчета (в базисе УПФ) всех претендентов табл. 3. Энергетически выгодней оказались состояния с большим числом орбиталей $j=^3/_2$ в χ_i (благодаря спин-орбитальному взаимодействию), а при прочих равных условиях (в случае изотопов He) эпергетически выгодней состояние с меньшим моментом J.

В данной работе мы ограничимся рассмотрением основных состояний. Конкретная информация о структуре соответствующих $U^{(v)}$ содержится в табл. 4 и 5. С учетом вырождения квантовых чисел основное приближение записывается в виде

$$\Psi_{0} = \rho^{-(3A-4)/2} \sum_{\nu} \varphi_{0}^{(\nu)}(\rho) U^{(\nu)}. \tag{2}$$

Матричные элементы (м.э.) NN-потепциала \widehat{V} , входящие в систему динамических уравнений для неизвестных функций гиперрадиуса $\phi_0^{(v)}(\rho)$

$$\left\{-\frac{d^2}{d\rho^2} + \frac{\varkappa_0(\varkappa_0 + 1)}{\rho^2} + \langle U^{(v)} | \widehat{V} | U^{(v)} \rangle + \varepsilon_{ob}\right\} \varphi_0^{(v)}(\rho) =$$

$$= -\sum_{\mathbf{v}' \neq \mathbf{v}} \langle U^{(\mathbf{v})} | \widehat{\mathcal{V}} | U^{(\mathbf{v}')} \rangle \varphi_0^{(\mathbf{v}')} (\rho), \qquad (3)$$

имеют вил

$$\langle U^{(v)} | \hat{\mathcal{V}} | U^{(v')} \rangle = \sum \sum C_{xn}^{\mu\tau} a_{xn}^{\mu\tau} (\rho), \qquad (4)$$

тде

$$a_{xn}^{\mu\tau}(\rho) = \frac{\Gamma(N)}{\Gamma(n+3/2)\Gamma(N-3/2-n)} \int_{0}^{1} z^{n+1/2} (1-z)^{N-5/2-n} v_{x}^{\mu\tau}(\rho \sqrt{2z}) dz,$$
 (5)

 $v_x^{\mu\tau}(r)$ — радиальные части потенциала, $N=K_{min}+3(A-1)/2$. Численные коэффициенты $C_{xn}^{\mu\tau}$ приведены в табл. 6, 7.

Структура осповных состояний изотонов Н

⁴ H ₂ – i	⁵ H, ⁵ / ₂ + ³ / ₂	⁶ H, 2-2	⁷ H, ¹ / ₂ + ⁵ / ₂	8H, 0-3	⁹ H, ¹ / ₂ + ⁷ / ₂
X 1	. X1 X2	χ ₁	χ ₁	X1 X2	X 1
1 2 8 '10 '10 '4(1) = -\times \chi_1	$ \begin{array}{c cccc} 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $	$-\frac{\begin{vmatrix} 10 & 10 & 9 & 10 \end{vmatrix}}{U^{(1)} = \chi_1}$ $U^{(2)} = \chi_2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 2 3 4 5 5 6 6 7 7 8 8 10 9	1 2 3 4 5 6 7 8 10
		$U^{(3)} = \frac{\sqrt{2}}{2} (\chi_3 - \chi_4)$ $U^{(4)} = \frac{\sqrt{3}}{3} (\chi_3 + \chi_4 - \chi_5)$	$U^{(2)} = \frac{\sqrt{6}}{6} (\chi_1 - \sqrt{3} \chi_2 + \chi_3 - \chi_4)$	$ U^{(1)} = \frac{\sqrt{2}}{2} \times \times (\chi_1 - \chi_2) $	$U^{(1)} = \chi_1$

Примечание. Цифры в столбцах — номера орбиталей, входящих в определитель х;

Таблица 5

Таблица 4

Структура основных состояний изотопов Не *

⁵ He,	⁶ He, 0+1	⁷ He, ³ / ₂ - ³ / ₂	⁸ He, 0+ 2	⁹ He. 1/2-5/2	¹⁰ He, 0+ 3
χı	χ ₁ χ ₂ χ ₃	χ ₁	X1 X2 X3	χ,	X ı
8	$\begin{array}{c c} 3 & 5 & 6 \\ 4 & 8 & 7 \end{array}$	6 3 4 3 7 7 6 4 8 8 8 8	5 3 3 4 4 7 5 8 7	4 5 6 7 8	3 4 5 6 7
$U^{(1)} = \chi_1$	$U^{(1)} = \frac{\sqrt{2}}{2} (\chi_2 - \chi_3)$ $U^{(2)} = \chi_1$	$U^{(2)} = \frac{1/5}{5} (2\chi_2 -$	$U^{(1)} = \chi_1$ $U^{(2)} = \frac{\sqrt{2}}{2} (\chi_2 - \chi_3)$	$U^{(1)}=\chi_1$	$\frac{8}{U^{(1)}=\chi_1}$
		$U^{(3)} = \chi_4$			

^{*} Без указанных четырех орбиталей з-оболочки, общих для всех изотопов.

Коэффициенты $C_{xn}^{\mu au}$ матричного элемента основного приближения для изотопов Н

			5H	vie Cite				At C	W. Sala	6H		N. A.				7H			.8H		9H
хцт	n	11	12	22	11	12	13	14	22	23	24	33	34	44	11	12	22	11	12	22	11
c33	1 0 1	55 12 33 12 0 1 6	$ \begin{array}{r} -5\sqrt{2} \\ 12 \\ 12 \\ \sqrt{2} \\ 4 \end{array} $ $ 0 \\ \underline{\sqrt{2}} \\ 6 $	25 6 3 0 1 3	91 12 49 12 -1 2 5	$ \begin{array}{r} \frac{1}{3} \\ -5 \\ \hline 12 \\ \hline 1 \\ \hline 2 \\ \hline -5 \\ \hline 12 \end{array} $	$ \begin{array}{c c} \hline & \frac{1}{3} \\ & -\frac{1}{6} \\ & 0 \\ & -\frac{1}{6} \end{array} $	$ \begin{array}{c c} \hline & -\gamma \overline{6} \\ & 4 \\ & \overline{\gamma} \overline{6} \\ & 6 \\ & 0 \\ & \overline{\gamma} \overline{6} \\ & 12 \end{array} $	$ \begin{array}{r} 91 \\ \hline 12 \\ 49 \\ \hline 12 \\ -1 \\ \hline 2 \\ \hline 5 \\ \hline 6 \end{array} $	$ \begin{array}{c c} \hline $	$ \begin{array}{c} -\gamma \overline{6} \\ 4 \\ \underline{\sqrt{6}} \\ 6 \end{array} $ $ 0 \\ \underline{\sqrt{6}} \\ 12 $	$ \begin{array}{r} 91 \\ 12 \\ 23 \\ \hline 6 \\ 0 \\ 7 \\ \hline 12 \end{array} $	$ \begin{array}{r} -\sqrt{6} \\ 4 \\ \frac{\sqrt{6}}{6} \\ 0 \\ \frac{\sqrt{6}}{12} \end{array} $	$ \begin{array}{c c} $	$ \begin{array}{c c} $	$ \begin{array}{c} \frac{\sqrt{3}}{6} \\ -\sqrt{3} \\ \hline 6 \\ 0 \end{array} $	$ \begin{array}{r} \frac{41}{4} \\ \frac{11}{2} \\ -1 \\ \hline 2 \\ \hline -\frac{1}{2} $	$ \begin{array}{r} 46 \\ \hline 3 \\ 43 \\ \hline 6 \\ -1 \\ \hline 5 \\ \hline 2 \end{array} $	$ \frac{\sqrt{2}}{6} $ $ \frac{-\sqrt{2}}{6} $ $ 0 $	$ \begin{array}{r} \frac{91}{6} \\ \hline 6 \\ \hline 22 \\ \hline 3 \\ \hline -1 \\ \hline 5 \\ \hline 2 $	$\frac{81}{4}$ 9 $\frac{-3}{2}$ $\frac{15}{4}$
c31	0	$\frac{29}{12}$ $\frac{1}{12}$	$ \begin{array}{c} 6 \\ -\frac{\sqrt{2}}{12} \\ \hline \frac{\sqrt{2}}{12} \end{array} $	$\begin{array}{c c} 3 \\ \hline \frac{7}{3} \\ \hline \frac{1}{6} \end{array}$	$\frac{11}{4}$ $\frac{1}{4}$	0	0	$ \begin{array}{c c} 12 \\ -\sqrt{6} \\ \hline 12 \end{array} $ $ \begin{array}{c c} \frac{\sqrt{6}}{12} \\ \hline 12 \end{array} $	$\begin{array}{c c} & 11 \\ \hline & 4 \\ \hline & 4 \end{array}$	0	$ \begin{array}{c c} & 12 \\ & -\sqrt{6} \\ \hline & 12 \\ \hline & \frac{\sqrt{6}}{12} \end{array} $	$\begin{array}{c} 33 \\ \hline 12 \\ \\ \hline \end{array}$	$ \begin{array}{r} 12 \\ -7\sqrt{6} \\ 36 \end{array} $ $ \begin{array}{r} 7\sqrt{6} \\ 36 \end{array} $	53 18 1 1 18	$\begin{array}{c c} 3 \\ \hline \frac{1}{2} \end{array}$	$\frac{\sqrt{3}}{6}$ $\frac{-\sqrt{3}}{6}$	$\begin{array}{c c} 4 \\ \underline{11} \\ 4 \\ \underline{3} \\ 4 \end{array}$	$\begin{array}{c} 10 \\ \hline 3 \\ \hline \frac{2}{3} \end{array}$	$ \begin{array}{c} \frac{\sqrt{2}}{6} \\ -\frac{\sqrt{2}}{6} \end{array} $	19 6 5 6	15 4 3 4
t33.	.		$ \begin{array}{c} 12 \\ -7\sqrt{2} \\ \hline 30 \\ -\sqrt{2} \\ \hline 12 \end{array} $	$ \begin{array}{c c} 8 \\ \hline 15 \\ -2 \\ \hline 3 \end{array} $	$\begin{array}{c} \frac{7}{15} \\ \frac{14}{3} \end{array}$	$\begin{array}{c c} 2\\ \hline 3\\ \hline -1\\ \hline 3 \end{array}$	1 15 1 6	$ \begin{array}{c c} -\sqrt{6} \\ \hline 5 \end{array} $	$\begin{array}{ c c }\hline 7\\\hline 15\\\hline -13\\\hline 3\\\hline \end{array}$	1/15 1/6	-γ <u>6</u> 5	-38 15 -1 3	$ \begin{array}{c c} \underline{2\sqrt{6}} \\ 5 \\ \underline{-\sqrt{6}} \\ 36 \end{array} $	0 1 9	$\begin{bmatrix} \frac{4}{3} \\ \frac{19}{3} \end{bmatrix}$	$\frac{\sqrt{3}}{3}$ $\frac{-\sqrt{3}}{6}$	7	$\begin{array}{c} \underline{2} \\ \overline{3} \\ \underline{11} \\ \overline{3} \end{array}$	$ \begin{array}{c c} \hline $	$\begin{vmatrix} \frac{1}{3} \\ -\frac{13}{6} \end{vmatrix}$	0

Коэффициенты $C_{xx}^{\mu\tau}$ матричного элемента основного приближения для изотопов Пе

		ьне	Hills	⁶ Не			7 Не			*He		⁹ He	¹⁰He
хцт	n	11	11	22	12	11	22	12	11	22	12	11	iı
c 3 3	1	$\frac{9}{4}$	$\frac{29}{6}$	31 6	$\begin{bmatrix} -\sqrt{2} \\ 3 \end{bmatrix}$	103 12	109 12	$\frac{-5\sqrt{10}}{30}$	38 3	37 3	$\frac{\sqrt{2}}{3}$	$\frac{207}{12}$	$\frac{45}{2}$
c13	0	$\frac{15}{4}$	16 3	59 12	$\begin{array}{c c} 5\sqrt{2} \\ \hline 12 \end{array}$	73 12	$\frac{67}{12}$	5½10 60	$\frac{23}{3}$	97 12	$\frac{-5\sqrt{2}}{12}$	$\frac{37}{4}$	45 4
	1,	0	-1	$\frac{-1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-1}{2}$	$\frac{-1}{2}$	0	-1	$\frac{-3}{2}$	$\frac{\sqrt{2}}{2}$	-1.	$\frac{-3}{2}$
	2	0	$\frac{5}{6}$	5 12	$\frac{5\sqrt{2}}{12}$	<u>5</u>	1 3	5 1/10 60	<u>5</u> 3	25 12	$\frac{-5\sqrt{2}}{12}$	<u>5</u> 2	15 4
<i>c</i> 31	0	$\frac{15}{4}$	$\frac{9}{2}$	9 2	0	21 4	<u>21</u> 4	0	6	6	0	$\frac{27}{4}$	15 2
c11	1	1/4	1 2	1 2	0	3 4	3 4	0	1	1	0.	<u>5</u>	$\frac{3}{2}$
<i>t</i> 33	1	0.	$\frac{2}{3}$	<u>4</u>	$\frac{-2\sqrt{2}}{3}$	2 3	$\frac{-4}{3}$	$\frac{-5\sqrt{10}}{150}$	<u>4</u>	2 3	$\frac{2\sqrt{2}}{3}$	0	0
<i>LS</i> 33	1	$\frac{3}{2}$	<u>8</u> 3	$\frac{-20}{3}$	$\frac{\sqrt{2}}{3}$	<u>31</u> 6	$\frac{-1}{3}$	$\frac{-5\sqrt[4]{10}}{60}$	$\frac{22}{3}$	<u>-13</u>	$\frac{-\sqrt{2}}{3}$	4	0

Примечание. Цифры в шапке таблицы — значения уу'.

4. Потенциальные гармоники

Основные формулы для расчета ядер *p*-оболочки в базисе потенциальных гармоник (ПГ) опубликованы в работах [12, 13]. В дополнение к ним здесь получены формулы перекрытий с учетом спин-орбитальных ПГ

$$\langle U_{csi}^{33} | U_{LS,si}^{33} \rangle = C(s) g_{23}/2s, \quad \langle U_{LS,si}^{33} | U_{LS,si}^{33} \rangle = C(s) g_{24}/2s,$$

$$\langle U_{tso}^{33} | U_{LS,si}^{33} \rangle = C(s) g_{25}/2s, \quad \langle U_{tsi}^{33} | U_{LS,si}^{33} \rangle = C(s) g_{25}(s+5/2)/5s,$$
(6)

где C(s) дается формулой (П.2) из [13], g_i — численные коэффициенты (используются обозначения ПГ [14]). Существенным продвижением теории явилось установление однозначных связей между коэффициентами основного приближения $C_{xn}^{\mu\tau}$ (4) и билинейной инвариантной формы g_i [13]:

$$g_{1} = C_{c0}^{31}, \quad g_{2} = C_{c0}^{13}, \quad g_{3} = 2C_{c1}^{33}, \quad g_{4} = 2C_{c1}^{11},$$

$$g_{5} = 4C_{c2}^{31}, \quad g_{6} = 4C_{c2}^{13}, \quad g_{7} = -2C_{c1}^{31}, \quad g_{8} = -2C_{c1}^{13},$$

$$g_{9} = 5C_{t1}^{31}, \quad g_{10} = -5C_{t1}^{33}, \quad g_{11} = -14C_{t2}^{31}, \quad g_{23} = 2C_{LS1}^{33}.$$

$$(7)$$

Для рассматриваемых изотопов (нет протонов р-оболочки)

$$g_{15} = g_{17} = g_{18} = g_{19} = g_{20} = 0.$$
 (8)

Остальные да связаны с (7) соотношениями

$$g_{12} = g_9 + \frac{1}{2} g_{11}, \quad g_{13} = g_9, \quad g_{14} = 40 g_3 + 7 g_{10} - 45 g_{23},$$

$$g_{16} = 10 g_3 + g_{10}, \quad g_{21} = 10 g_7 + g_{13}, \quad g_{22} = 100 g_7 + 7 g_{13},$$

$$g_{24} = \frac{4}{3} g_3 + \frac{1}{6} g_{10} - \frac{1}{2} g_{23}, \quad g_{25} = \frac{5}{2} g_{23} - \frac{3}{2} g_{10}.$$
(9)

Подчеркнем, что именно равенства (7)-(9) в конечном счете и позволили нам включить в рассмотрение все изотопы H и He p-оболочки.

5. Операторы парных корреляций и обратиая задача

Высокая чувствительность ядерных дапных к деталям NN-взаимодействия, с одной стороны, и большая степень неоднозначности феноменологических потенциалов, восстановленных лишь по NN-рассеянию и свойствам дейтропа,— с другой, являются причиной постоянного интереса теоретиков к решению практической обратной задачи восстановления NN-силодновременно по двухчастичным и ядерным данным. Без продвижения в этом направлении невозможно делать сколько-нибудь надежные предсказания свойств таких экзотических систем, как тяжелых изотопов Н и Не. Для решения обратной задачи пужен не только надежный метод расчета многонуклонных систем с реалистическим NN-взаимодействием, но и принципиальная возможность ее разделения на последовательные слабо связанные этапы цикла

повторяемого небольшое число раз. В противном случае прохождение ядерной части цикла (10) будет сдерживаться возможностями современных ЭВМ.

В основе разделения задачи на два этапа (10) лежат два известных факта: 1) различные варианты реалистического NN-взаимодействия существенно отличаются между собой лишь на малых относительных расстояниях $r_0 \le 1$ Фм; 2) среднее расстояние между пуклонами ядра $\bar{r} \gg r_0$.

Практически разделение осуществляется с помощью техники операторов парных корреляций (ОПК) [10, 11]. В нулевом приближении радиальные части потенциала $v_x^{\mu\tau}(r)$ на отрезке $r = [0, r_0]$ заменяются на соответствующие константы перенормировки $E_x^{\mu\tau}$ ($\hat{V} \rightarrow \hat{V}_{cut}$, табл. 1 из [10]), которые в ядерной части цикла рассматриваются как свободные параметры уравнения

 $(\widehat{T} + \widehat{\mathcal{V}}_{eut})\widetilde{\Psi} = E\widetilde{\Psi}. \tag{11}$

После восстановления $E_x^{\mu\tau}$ по ядерным данным (путем многократного повторения прямой задачи (11)) найденные константы вносятся в уравнения для радиальных частей ОПК (см. (20) из [10]). После линеаризации эти уравнения принимают вид

$$\frac{\hbar^{2}}{2\mu}\chi_{1}''' = \chi_{1}(v_{c}^{31} - E_{c}^{31}) - 8\chi_{5}\left(v_{t}^{31} - E_{t}^{31}\frac{r^{2}}{r_{o}^{2}}\right),$$

$$\frac{\hbar^{2}}{2\mu}\left(\chi_{5}'' - \frac{6}{r^{2}}\chi_{5}\right) = -(\chi_{1} + 2\chi_{5})\left(v_{t}^{31} - E_{t}^{31}\frac{r^{2}}{r^{2}}\right) + \chi_{5}(v_{c}^{31} - E_{c}^{31});$$

$$\frac{\hbar^{2}}{2\mu}\chi_{3}'' = \chi_{3}(v_{c}^{33} - E_{c}^{33}) - 8\chi_{6}\left(v_{t}^{33} - E_{t}^{33}\frac{r^{2}}{r_{o}^{2}}\right),$$

$$\frac{\hbar^{2}}{2\mu}\left(\chi_{6}'' - \frac{6}{r^{2}}\chi_{6}\right) = -(\chi_{3} + 2\chi_{6})\left(v_{t}^{33} - E_{t}^{33}\frac{r^{2}}{r_{o}^{2}}\right) + \chi_{6}(v_{c}^{33} - E_{c}^{33});$$

$$\chi_{2}'' + (E_{c}^{13} - v_{c}^{13})\chi_{2} = 0, \quad \chi_{4}'' + (E_{c}^{11} - v_{c}^{11})\chi_{4} = 0$$
(12)

с граничными условиями (21)-(23) из [10]. На втором этапе — восстановлении $v_x^{\mu\tau}(r)$ по фазам NN-рассеяния и свойствам дейтрона — соотношения (12) рассматриваются как дополнительные условия на $v_x^{\mu\tau}(r)$ в области $r \in [0, r_0]$.

Во избежание недоразумений подчеркием, что бессмысление говорить о фазах NN-рассеяния применительно к перенормированному потенциалу V_{cut} , поскольку он есть просто продукт трансформации гамильтониана в методе ОПК (т. е. $E_x^{\mu\tau}$ ни в коей мере не являются новыми радиальными частями потенциала, уточненного по ядерным данным). Новые же радиальные части (в радиусе действия ОПК) как раз и должны быть подобраны (по фазам NN-рассеяния, дополненным системой (12)) так, чтобы обеспечить $E_x^{\mu\tau}$, определенные по ядерным данным.

			* P* 7			The substitute of the
	E_{c}^{31}	E_{c}^{13}	E_c^{11}	E.33	E_t^{31}	E 33
V _{cut} GPT [10]	-12,4 -6,94	-10,59 -10,59	133,64 133,64	97,5 4,2	-17,9 -22,09	11, 57 11,57

Таблица 9

Сравнение экспериментальных и теоретических эпергий связи опорных ядер (в МэВ)

4He	€Li	7Li	14 N	120	16O
ε _{теор} 28,0 ε _{эксп} 28,3	32,1	39,4	103,1	112,3	128,1
	32,0	39,2	104,7	112,0	127,6

При повторении цикла (10) решается уравнение

$$(T + \hat{\mathcal{V}}_{cut} + T_2^{(1)}) \tilde{\Psi} = E \tilde{\Psi}$$
 (13)

с пеэрмитовой составляющей $T_2^{(1)}$ (11) из [10], радиальные части которой определяются только что найденными $\chi_m(r)$, $m=1\div6$. Этапы цикла (10) слабо связаны именно потому, что $T_2^{(1)}$ вносит малые поправки в (13) (см. табл. 2 из [11]) к $E_x^{\mu\tau}$. Новые $E_x^{\mu\tau}$ вносятся в (1) и т. д.

В пастоящей работе копстанты $E_x^{\mu\tau}$ восстанавливались по энергиям связи стабильных ядер ⁴He, ^{6,7}Li, ¹⁴N, ^{15,16}O (уравнение (13) решалось методом [12, 13]). За основу был взят потенциал GPT [15], потому что он неплохо воспроизводит легкие ядра p-оболочки, а его недостаток (отсутствие насыщения) может быть устранен (по опыту работы [16]) усилением компоненты $v_c^{33}(r)$. Кроме того, он достаточно мягкий и радиальные части имеют простой аналитический вид, что спимает ряд нефизических трудностей.

Поиск $E_x^{\mu\tau}$ осуществлялся методом многомерного градиента. Восстановленные $E_x^{\mu\tau}$ приведены в табл. 8 (для сравнения указаны $E_x^{\mu\tau}$ потенциала GPT из табл. 1 в [10]). Как и ожидалось, наибольшее изменение претерпела константа E_c^{33} . Качество описания выбранной сетки ядер (с учетом кулоновской энергии протонов) демонстрирует табл. 9. Расхождение на величину \sim 1,5 МэВ теории с экспериментом для ядра ¹⁴N может быть устранено в дальнейшем нодключением LL- и $(LS)^2$ -сил (см. [14]), роль которых возрастает при удалении от дваждымагических ядер.

В данной работе мы ограничились однократным прохождением цикла (10). Следующие итерации не могут заметно изменить результат, поскольку вклад $T_2^{(1)}$ в эпергию связи составляет $\Delta \varepsilon \simeq -0.4A$ МэВ и слабо чувствителен к оболочечной структуре ядра ввиду короткодействия $\chi_m(r)$.

Интереспо, что восстановленный потенциал \hat{V}_{cut} (в отличие от исходного $\hat{V}_{cut}(GPT)$) удовлетворяет условиям пасыщения Калоджеро — Симонова [47]

Решение многочастичного уравнения (11) проводнлось в базисе $\Pi\Gamma$ с использованием приближений нотенциальной модели (Π -модели) [12], точность которых установлена в [11] на примере самого тяжелого ядра p-оболочки — 16 O (табл. 10). При анализе данных табл. 10 следует помнить, что в [9] приводились не зарядовые R_c , а материальные радиусы $R_m < R_c$. Как видно, для гамильтониана ($\hat{T} + \hat{V}_{cut} + \hat{V}_{kyn}$) точность Π -модели по энергии связи составляет $\sim 99\%$. Однако радиус оказывается более чувствительным в равной степени к недиагональным м.э. и оператору $T_2^{(1)}$, не учитываемым в Π -модели. Поэтому радиусы из табл. 11 могут увеличиваться на ~ 0.3 Фм при нереходе на более высокий уровень рас-

Иллюстрация точности приближений II-модели на примере ядра $^{16}{
m O}$ и потенциала GPT [15]

	40.77 第八	П-модель	and Albert		Базис ПГ	[11]	
	$\hat{T}+\hat{V}$ [9]	T+V+P _{(KVI} [111]	$\hat{T} + \hat{V}_{cut} + \hat{V}_{Kyn}$	$\hat{T}+\hat{V}+\hat{V}_{ ext{Kyll}}$	$\hat{T}+\hat{V}_{cut}+\hat{V}_{\mathrm{Kyn}}$	$\hat{T} + \hat{V}_{cut} + \hat{T}_2^{(1)} + \hat{V}_{KYJ}$	Экспери- мент
є́ _{св} , МэВ <i>R</i> _c , Фм	161,8 2,32	146,0 2,35	144,7 2,36	133,0 2,42	143,5 2,46	135,8 2,53	127,6 2,72

Таблица 11

Эпергии связи $\varepsilon_{\rm cn}$ и среднеквадратичные радиусы R_m основных состояний изотопов He

	⁵ He, ³ / ₂ - ¹ / ₂	6He, 0+1	⁷ He, ³ / ₂ - ⁸ / ₂	⁸ He, 0+ 2	⁹ He, ¹ / ₂ - ⁵ / ₂	¹⁰ Не, 0+3
€св, МэВ	27,3	29,4	28,9	31,4	28,3	28,1
є _{св} ,∕МэВ	27,4	29,3	28,8	31,4		
R_m , Φ_{M}	1,78	1,94	2,09	2,22	2,40	2,55

чета [11, 18, 19]. В целом потенциальная модель (уравнение Шредингера+реалистическое NN-взаимодействие) дает несколько заниженное значение R_c [11, 20] по сравнению с экспериментальным.

Следует отметить, что правильное описание есв стабильных ядер (табл. 9) с помощью вариаций $E_x^{\mu\tau}$ существенно повышает надежность предсказания есв мультинейтронных систем при условии, что все объекты рассчитываются в рамках одних и тех же приближений. В этой связи достаточно папомнить, что даже использование таких грубых моделей, как, например, модель оболочек или основное приближение $K=K_{min}$ (которые не могут и подступиться к расчету с реалистическим NN-взаимодействием), позволяет довольно удачно предсказывать энергию и спектры ядер потому, что относительное (от ядра к ядру, от уровня к уровню) поведение этих величин менее чувствительно к дефектам метода. Так, отвлеченное сравнение результатов расчета, например, ядра 16О с потенциалом GPT в приближении $K = K_{min}$ ($\hat{\epsilon}_{cs} = 62$ МэВ) и в П-модели ($\epsilon_{cs} = 162$ МэВ) [21], казалось бы, не оставляет пикаких надежд основному приближению предсказать энергию изотопа ¹⁰ Не. Тем не менее на уровне $\hat{K} = K_{min}$ в работе [22] предсказана нестабильность ¹⁰Не (є 210÷16 МэВ) с использованием мягкого центрального NN-потенциала, описывающего на том же уровне эпергии стабильных ядер ¹⁶О и ⁴⁰Са (разумеется, ценой отказа от описания данных NN-рассеяния).

Из табл. 8 видно, что вариации $E_x^{\mu\tau}$ пе выходят за рамки среднеквадратичного разброса $E_x^{\mu\tau}$ по широкому набору известных вариантов реалистических NN-потенциалов табл. 1 из [11]. Это гарантирует существование таких $v_x^{\mu\tau}(r)$ на отрезке $r \in [0, r_0]$, которые (вместе с $v_x^{\mu\tau}(r)$, $r > r_0$) описывают фазы NN-рассения в области нерелятивистских энергий и одновременно удовлетворяют уравнениям (12). То, что именно константу E_c^{33} пришлось увеличить примерно в \sim 20 раз, вполне закономерно: как видно из третьего столбца табл. 1 из [11], компонента $v_c^{33}(r)$ потенциала GPT практически отсутствует (ее вклад в ε_{cs} (¹⁶O) составляет всего порядка -4,6 МэВ, согласно табл. 2 из [21]), а коррекция E_c^{33} из табл. 8 придает новому потенциалу реалистическое свойство пасыщения. В целом

	4н, 2– 1	⁵ H, ⁵ / ₂ + ³ / ₂	⁶ H, 2−2	7H, 1/2+ 5/2	⁸ H, 1-3	⁰ H, ¹ / ₂ + ⁷ / ₂
є _{св} , МэВ є ^{эксп} , МэВ	5,80 5,8±0,6	2,48	2,14		Нет связи —	
Г, МэВ <i>R</i> m, Фм	1,3 2,2	6 2,9	3,3 2,9			

коррекция устраняет пересвязывание тяжелых ядер p-оболочки ^{16,15}O, ¹⁴N на величину ~10 МэВ, и только после этого имеет смысл переходить к анализу ситуации с тяжелыми изотопами ^{9,10}Не.

6. Изотопы Не

Результаты расчетов изотопов Не приведены в табл. 11. Полная сходимость разложения по ПГ достигается при $s=(K-K_{min})/2\simeq15$, что означает учет \sim 200 базисных функций в пространстве многомерных углов. В случае A=6 и 8 существуют две гармоники минимальной степени, генерирующие свои цепочки ПГ. Интерференция цепочек увеличивает энергию связи систем ⁶Не и ⁸Не на величину \sim 1,2 и \sim 2,1 МэВ соответственно. Согласно расчету, тяжелые изотопы ⁹Не и ¹⁰Не оказываются ядерно-

Согласно расчету, тяжелые изотопы ⁹Не и ¹⁹Не оказываются ядернонестабильными. Для вычисления времени жизни этих систем по отноше-

нию к нейтронным распадам

$$^{9}\text{He} \rightarrow ^{8}\text{He} + n,$$
 (14)

$$^{10}\text{He} \rightarrow ^{8}\text{He} + n + n \tag{15}$$

используем метод [8]. В случае бинарных распадов шприна уровня Г определяется выражением

$$\Gamma = (4\varepsilon/\gamma\eta) \left[1 - \eta/2 - (1 - \eta)^{\frac{1}{2}} \right] \sqrt{5/4A}, \tag{16}$$

где

$$n = \frac{8meR^2(^{A}He)}{\hbar^2(2l+3)^2}A\gamma, \quad \gamma = 1 - \frac{(A-1)R^2(^{A-1}He)}{AR^2(^{A}He)}$$

 ϵ —энергия ^AHe относительно порога—энергии фрагмента ^{A-1}He, m—масса нуклона, $R(^{A}\text{He})$ —радиус системы ^AHe, l—относительный орбитальный момент продуктов распада. В случае (14) ϵ =2,8 MəB, l=1, так что Γ =0,7 МэВ. Ввиду отсутствия кулоновского отталкивания между продуктами распада (15) ширина уровня 0⁺³ изотопа ¹⁰He вычисляется по той же формуле (16), где теперь нужно положить ϵ =3,0 МэВ, l=1,5. В результате получим Γ =0,7 МэВ. Следует отметить, что указание на возможность одновременного описания основных состояний ядер табл. 9 и 11 в рамках потенциальной модели с реалистическим NN-взаимодействием содержалось еще в работах [9, 12]. Например, аналоговое (для ⁶He с кулоновским сдвигом \sim 1 МэВ) состояние 0⁺¹ ядра ⁶Li с энергией возбуждения $\Delta\epsilon$ =3,56 МэВ хорошо описывается потенциалами GPT ($\Delta\epsilon$ =3,9 МэВ) и SSC_B ($\Delta\epsilon$ =4,1 МэВ) даже без перенормировок постоянных $E_x^{\mu\tau}$ (см. рис. 2 из [12]).

7. Изотопы Н

Результаты расчета энергии связи, ширины уровия и радиуса состояния указанных изотопов собраны в табл. 12. Интерференция четырех цепочек ПГ увеличивает ε_{cs} системы ⁶H на величину ~2,5 МэВ. Для других изотопов (кроме ⁹H) основное состояние с $K=K_{min}$ двукратно вырождено. Интерференция соответствующих двух цепочек ПГ дает дополнительнок энергии связи ~0,3-0,5 МэВ.

Прежде всего отметим, что коррекция NN-потенциала GPT привела к лучшему согласию с экспериментом для системы ⁴H, чем достигнутое ранее в [7] ($\varepsilon_{\rm cs}(GPT) = -3.8~{\rm MəB}, \varepsilon_{\rm cs}(SSC_{\rm B}) = -5.4~{\rm MəB}$).

Возможные каналы распада ${}^5{\rm H} \rightarrow {}^4{\rm H} + n$ и ${}^5{\rm H} \rightarrow {}^3{\rm H} + n + n$ характеризуются ширинами соответственно $\Gamma = 1{,}32$ и > 6 МэВ. Поэтому в системе ${}^5{\rm H}$ нет ярко выраженного квазистационарного состояния. Подчеркнем, что все ширины Г, рассчитанные по формуле (16), могут увеличиваться на $\sim 20\,\%$ в результате увеличения радиусов R_{m} при устранении приближений П-модели.

Вопреки ожиданиям уровень квазистационарного состояния ⁶Н имеет большую энергию возбуждения є=6,3 МэВ относительно порога развала $^6{
m H}
ightarrow ^3{
m H} + n + n + n$. Что касается тяжелых изотопов $^{7-9}{
m H}$, то они вообще далеки от связанных состояний в базисе ПГ, и в соответствии с уравнением (77) из [8] ($Z_{*\phi}=0$) отсутствуют и резонансные состояния этих систем.

Настоящую работу следует рассматривать как нервую попытку провести последовательный микроскопический расчет одновременно изотопов Н и Не. Полученные здесь результаты пи в коей мере не претен-

дуют на однозначность.

В дальнейшем для повышения падежности физических выводов о границе пдерной стабильности следует совершенствовать сам метод УПФ, как предлагается, например, в [23], и привлекать большую информацию о стабильных ядрах в цикле (10). Такой информацией могут стать данные о возбужденных состояниях ядер. Приведем результаты расчетов спектров ядер ⁶Не и ⁸Не с исходным потенциалом *GPT* (см. рисунок). Прежде всего отметим, что и расчет без коррекции потепциала воспроизводит увеличение эпергии связи при переходе от ⁶Не к ⁸Не. В ядре ⁶Не хорошо совпадают с экспериментальными параметры первого возбужденного уровия $(J^{\pi}=2^{+})$. В целом картины экспериментальных и расчетных спектров качественно согласуются для обоих ядер.

Литература

1. Aizenberg-Selove F. // Nucl. Phys. 1984. V. A413. P. 1.
2. Aaercanopos A. E. u op. // HD. 1984. T. 39. C. 513.
3. Belozyorov A. V. et al. // Nucl. Phys. 1986. V. A460. P. 352.
4. Seth K. // Proc. Fifth Int. Conf. «Nuclei far from stability». AIP, 1988. P. 324.

5. Белозеров А. В. и др. Препринт ОИЯИ E15-87-733. Дубна, 1987.

- 6. De Tourreil R., Sprung D. W. L. // Nucl. Phys. 1973. V. A201. P. 193. 7. Горбатов А. М. и др. // ЯФ. 1988. Т. 48. С. 1255.
- 8. Горбатов А. М., Скопич В. Л., Никишов П. Ю. // ЯФ. 1989. Т. 49. С. 144. 9. Горбатов А. М., Крылов Ю. Н., Соловей А. В. // ЯФ. 1980. Т. 32. С. 636. 10. Горбатов А. М. и др. // ЯФ. 1984. Т. 40. С. 364. 11. Горбатов А. М. и др. // ЯФ. 1984. Т. 40. С. 882.
- 12. Горбатов А. М., Крылов Ю. Н., Соловей А. В. // ЯФ. 1979. Т. 29. С. 866. 13. Горбатов А. М., Крылов Ю. Н., Соловей А. Б. // ЯФ. 1979. Т. 30. С. 1487. 14. Горбатов А. М. и др. // ЯФ. 1982. Т. 36. С. 1138. 15. Gogny D. et al.//Phys. Lett. 1970. V. 32B. P. 591.
- 16. Вазь А. И., Горбатов А. М., Демин В. Ф., Пасынков И. Г. // Письма в ЖЭТФ. 1970. Т. 12. С. 151.

- 17. Calogero F., Simonov Yu. A. // Nuovo Cim. 1969. V. 64B. P. 337.

- 17. Calogero F., Simonov Yu. A. // Nuovo Cim. 1969. V. 64B. P. 351.
 18. Горбатов А. М. и др. // ЯФ. 1988. Т. 48. С. 1255.
 19. Горбатов А. М. и др. // ЯФ. 1989. Т. 50. С. 347.
 20. Кйтте! Н., Lйhrmann К. Н., Zabolitzky J. G. // Phys. Rep. 1978. V. 36C. P. 1.
 21. Горбатов А. М., Крылов Ю. Н., Соловей А. Б. // ЯФ. 1979. Т. 30. С. 944.
 22. Базь А. И., Жуков М. В. // Проблемы современной ядерной физики: Сб. докл. на Втором проблемном симпозиуме по физике ядра. М.: Наука, 1971. С. 531.
 23. Горбатов А. М. // Тез. Докл. Междунар. семинара, Калинии, 1988 г. Калинин: КГУ,
- 1988. C. 76.

MICROSCOPIC CALCULATIONS FOR H AND He ISOTOPES

GORBATOV A. M., SKOPICII V. L., NIKISHOV P. Yu., PENIONZHKEVICH Yu. E.

Calculations for the H and He p-shell isotopes are carried out in the framework of the angular potential functions method making use of the pairing correlation operators. The results give evidence for nuclear instability of ⁹He and ¹⁰He and for the absence of resonance states in the 7-9H systems.