Controlli Automatici T Parte 2: Sistemi dinamici in forma di stato

Prof. Giuseppe Notarstefano

Department of Electrical, Electronic, and Information Engineering
Alma Mater Studiorum Università di Bologna
giuseppe.notarstefano@unibo.it

Queste slide sono ad uso interno del corso Controlli Automatici T dell'Università di Bologna a.a. 22/23.

Esempio di sistema di controllo: circuito elettrico

Legge delle tensioni

$$v_R(t) = v_G(t) - v_C(t)$$

Leggi del condensatore e del resistore

$$C\dot{v}_C(t) = i(t)$$

 $v_R(t) = Ri(t)$

Scrivendo in termini di $v_C(t)$ ("stato interno") e $v_G(t)$ ("ingresso di controllo")

$$\dot{v}_C(t) = \frac{1}{RC}(v_G(t) - v_C(t))$$

Sistemi continui II tempo t è una variabile reale, i.e., $t \in \mathbb{R}$

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato $y(t) = h(x(t), u(t), t)$ equazione (trasformazione) di uscita

NOTA:
$$\dot{x}(t) := \frac{d}{dt}x(t)$$

- $x(t) \in \mathbb{R}^n$ stato del sistema all'istante t
- $u(t) \in \mathbb{R}^m$ ingresso del sistema all'istante t
- $y(t) \in \mathbb{R}^p$ uscita del sistema all'istante t

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix} \qquad y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix}$$

Equazione di stato: equazione differenziale ordinaria (ODE) vettoriale del primo ordine

$$\dot{x}_1(t) = f_1(x(t), u(t), t)$$

$$\vdots$$

$$\dot{x}_n(t) = f_n(x(t), u(t), t)$$

- \mathbb{R}^n spazio di stato, n ordine del sistema
- $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ funzione di stato

Equazione di stato: equazione differenziale ordinaria (ODE) vettoriale del primo ordine

$$\dot{x}_{1}(t) = f_{1}\left(\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}, \begin{bmatrix} u_{1}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix}, t\right)$$

$$\vdots$$

$$\dot{x}_{n}(t) = f_{n}\left(\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}, \begin{bmatrix} u_{1}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix}, t\right)$$

- \mathbb{R}^n spazio di stato, n ordine del sistema
- $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ funzione di stato

Equazione di uscita: equazione algebrica

$$y_1(t) = h_1(x(t), u(t), t)$$

$$\vdots$$

$$y_p(t) = h_p(x(t), u(t), t)$$

 $h: \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R} \to \mathbb{R}^p$ funzione di uscita

Equazione di uscita: equazione algebrica

$$y_{1}(t) = h_{1}\left(\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}, \begin{bmatrix} u_{1}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix}, t\right)$$

$$\vdots$$

$$y_{p}(t) = h_{p}\left(\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}, \begin{bmatrix} u_{1}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix}, t\right)$$

 $h: \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R} \to \mathbb{R}^p$ funzione di uscita

- Se la soluzione x(t) a partire da un istante iniziale t_0 è univocamente determinata da $x(t_0)$ e $u(\tau)$, $\tau \ge t_0$, allora il sistema è detto causale.
- Sotto opportune ipotesi di regolarità della funzione f si dimostra esistenza e unicità della soluzione dell'equazione (differenziale) di stato (Teorema di Cauchy-Lipschitz)

Sistemi discreti II tempo t è una variabile intera, i.e., $t \in \mathbb{Z}$

$$x(t+1) = f(x(t), u(t), t)$$
 equazione di stato
$$y(t) = h(x(t), u(t), t)$$
 equazione (trasformazione) di uscita

NOTA: Equazione di stato: equazione alle differenze finite (FDE)

- $x(t) \in \mathbb{R}^n$ stato del sistema all'istante t
- $u(t) \in \mathbb{R}^m$ ingresso del sistema all'istante t
- $y(t) \in \mathbb{R}^p$ uscita del sistema all'istante t

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix} \qquad y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix}$$

Esempio: circuito elettrico

Legge delle tensioni

$$v_R(t) = v_G(t) - v_C(t)$$

Leggi del condensatore e del resistore

$$C\dot{v}_C(t) = i(t)$$

 $v_R(t) = Ri(t)$

Scrivendo in termini di $v_C(t)$ ("stato interno") e $v_G(t)$ ("ingresso di controllo")

$$\dot{v}_C(t) = \frac{1}{RC}(v_G(t) - v_C(t))$$

Esempio: circuito elettrico

Legge delle tensioni

$$v_R(t) = v_G(t) - v_C(t)$$

Leggi del condensatore e del resistore

$$C\dot{v}_C(t) = i(t)$$

 $v_R(t) = Ri(t)$

Definiamo $x := v_C$ (stato) e $u := v_G$ (ingresso). Supponiamo di misurare (sensore) $v_R(t)$, allora $y := v_R$

$$\dot{x}(t) = \frac{1}{RC}(u(t) - x(t))$$
$$y(t) = u(t) - x(t)$$

Esempio: carrello

Legge di Newton (z posizione centro di massa)

$$M\ddot{z} = -F_{\rm e} + F_{\rm m}$$

con M massa e $F_{\rm e}$ data da

$$F_{\rm e}(z(t),t) = k(t)z(t)$$

Equazione della dinamica

$$M\ddot{z}(t) = -k(t)z(t) + F_{\mathsf{m}}(t)$$

Definiamo $x_1 := z$ e $x_2 := \dot{z}$ (stato $x := [x_1 x_2]^T$) e $u := F_m$ (ingresso).

Esempio: carrello

Legge di Newton (z posizione centro di massa)

$$M\ddot{z} = -F_{\rm e} + F_{\rm m}$$

con M massa e $F_{\rm e}$ data da

$$F_{\rm e}(z(t),t) = k(t)z(t)$$

Definiamo $x_1 := z$ e $x_2 := \dot{z}$ (stato $x := [x_1 x_2]^T$) e $u := F_m$ (ingresso).

Supponiamo di misurare z(t) (sensore posizione), allora y:=z

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k(t)}{M}x_1(t) + \frac{1}{M}u(t)$$

$$y(t) = x_1(t)$$

Esempio: carrello

Legge di Newton (z posizione centro di massa)

$$M\ddot{z} = -F_{\rm e} + F_{\rm m}$$

con M massa e $F_{\rm e}$ data da

$$F_{\mathsf{e}}(z(t),t) = k(t)z(t)$$

Definiamo
$$x_1 := z$$
 e $x_2 := \dot{z}$ (stato $x := [x_1 \ x_2]^T$) e $u := F_m$ (ingresso).

Sia k(t)=k e consideriamo come uscita l'energia totale $E_T(t)=\frac{1}{2}(k\,z^2(t)+M\dot{z}^2(t))$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{1}{M}u(t)$$

$$y(t) = \frac{1}{2}(k(t)x_1^2(t) + Mx_2^2(t))$$

Esempio: auto in rettilineo

Legge di Newton (z posizione centro di massa)

$$M\ddot{z} = F_{\mathsf{drag}} + F_{\mathsf{m}}$$

con M massa e F_{drag} data da

$$F_{\mathsf{drag}} = -b\dot{z}$$

con b coefficiente d'attrito.

Equazione della dinamica

$$M\ddot{z}(t) = -b\dot{z}(t) + F_{\rm m}(t)$$

Definiamo $x_1 := z$ e $x_2 := \dot{z}$ (stato $x := [x_1 \ x_2]^T$) e $u := F_m$ (ingresso).

Esempio: auto in rettilineo

Legge di Newton (z posizione centro di massa)

$$M\ddot{z} = F_{\mathsf{drag}} + F_{\mathsf{m}}$$

con M massa e F_{drag} data da

$$F_{\mathsf{drag}} = -b\dot{z}$$

con b coefficiente d'attrito.

Definiamo $x_1 := z$ e $x_2 := \dot{z}$ (stato $x := [x_1 \, x_2]^T$) e $u := F_{\mathsf{m}}$ (ingresso). Supponiamo di misurare z(t) (sensore posizione), allora y := z

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{b}{M}x_2(t) + \frac{1}{M}u(t)$$

$$u(t) = x_1(t)$$

Esempio: auto in rettilineo

Legge di Newton (z posizione centro di massa)

$$M\ddot{z} = F_{\mathsf{drag}} + F_{\mathsf{m}}$$

con M massa e F_{drag} data da

$$F_{\mathsf{drag}} = -b\dot{z}$$

con b coefficiente d'attrito.

Definiamo $x_1 := z$ e $x_2 := \dot{z}$ (stato $x := [x_1 \ x_2]^T$) e $u := F_{\mathsf{m}}$ (ingresso). Supponiamo di misurare $\dot{z}(t)$ (sensore velocità), allora $y := \dot{z}$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{b}{M}x_2(t) + \frac{1}{M}u(t)$$

$$u(t) = x_2(t)$$

Esempio: cruise control

"Cruise control" (controllo velocità di crociera)

Equazione della dinamica

$$M\ddot{z}(t) = -b\dot{z}(t) + F_{\mathsf{m}}(t)$$

Interessati a controllare la velocità (non la posizione) allora consideriamo come stato solo la velocità. Definiamo $x := \dot{z}$ ($x \in \mathbb{R}$), $u := F_{\mathbf{m}}$.

Esempio: cruise control

"Cruise control" (controllo velocità di crociera)

Equazione della dinamica

$$M\ddot{z}(t) = -b\dot{z}(t) + F_{\rm m}(t)$$

Interessati a controllare la velocità (non la posizione) allora consideriamo come stato solo la velocità. Definiamo $x := \dot{z}$ ($x \in \mathbb{R}$), $u := F_{\mathbf{m}}$.

Supponiamo di misurare $\dot{z}(t)$ (sensore velocità), allora y:=x

$$\dot{x}(t) = -\frac{b}{M}x(t) + \frac{1}{M}u(t)$$
$$y(t) = x(t)$$

Esempio: pendolo

Equazione dei momenti

$$M\ell^2\ddot{\theta} = C_{\rm grav} + C_{\rm drag} + C_{\rm m}$$

con M massa e C_{grav} e C_{drag} date da

$$C_{\mathsf{grav}} = -Mg\ell\sin(\theta), \quad C_{\mathsf{drag}} = -b\dot{\theta}$$

con b coefficiente d'attrito.

Equazione della dinamica

$$\ddot{\theta}(t) = -\frac{g}{\ell}\sin(\theta(t)) - \frac{b}{M\ell^2}\dot{\theta}(t) + \frac{1}{M\ell^2}C_{\mathsf{m}}(t)$$

Definiamo
$$x_1 := \theta$$
 e $x_2 := \dot{\theta}$ (stato $x := [x_1 \ x_2]^T$) e $u := C_m$ (ingresso).

Esempio: pendolo

Equazione dei momenti

$$M\ell^2\ddot{\theta} = C_{\rm grav} + C_{\rm drag} + C_{\rm m}$$

con M massa e $C_{\sf grav}$ e $C_{\sf drag}$ date da

$$C_{\mathsf{grav}} = -Mg\ell\sin(\theta), \quad C_{\mathsf{drag}} = -b\dot{\theta}$$

con b coefficiente d'attrito.

Definiamo
$$x_1 := \theta$$
 e $x_2 := \dot{\theta}$ (stato $x := [x_1 \ x_2]^T$) e $u := C_m$ (ingresso). Supponiamo di misurare θ (sensore angolo), allora $y := \theta$

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -\frac{g}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t)
u(t) = x_1(t)$$

Esempio: pendolo

Equazione dei momenti

$$M\ell^2\ddot{\theta} = C_{\rm grav} + C_{\rm drag} + C_{\rm m}$$

con M massa e $C_{\sf grav}$ e $C_{\sf drag}$ date da

$$C_{\text{grav}} = -Mg\ell\sin(\theta), \quad C_{\text{drag}} = -b\dot{\theta}$$

con b coefficiente d'attrito.

Definiamo
$$x_1 := \theta$$
 e $x_2 := \dot{\theta}$ (stato $x := [x_1 \ x_2]^T$) e $u := C_{\mathsf{m}}$ (ingresso). Se misuriamo la posizione verticale, allora $y := -\ell \cos(\theta)$

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -\frac{g}{\ell}\sin(x_1(t)) - \frac{b}{M\ell^2}x_2(t) + \frac{1}{M\ell^2}u(t)
 u(t) = -\ell\cos(x_1(t))$$

Traiettoria (movimento) di un sistema

Traiettoria

Dato un istante iniziale t_0 e uno stato iniziale x_{t_0} , la funzione del tempo (x(t),u(t)), $t\geq t_0$, che soddisfa l'equazione di stato $\dot{x}(t)=f(x(t),u(t),t)$ si dice traiettoria (movimento) del sistema. In particolare, x(t) si dice traiettoria dello stato. Consistentemente, y(t) si dice traiettoria dell'uscita.

Nota: per sistemi senza ingresso (non forzati) la traiettoria (dello stato) x(t), $t \ge t_0$, è determinata solo dallo stato iniziale x_{t_0} .

Equilibrio di un sistema

Equilibrio per sistema $\dot{x}(t) = f(x(t), t)$ (sistema non forzato)

Dato un sistema (non forzato) $\dot{x}(t)=f(x(t),t)$, uno stato x_e si dice equilibrio del sistema se $x(t)=x_e$, $t\geq t_0$ è una traiettoria del sistema.

Coppia di equilibrio

Dato un sistema (forzato) $\dot{x}(t) = f(x(t), u(t), t)$, (x_e, u_e) si dice coppia di equilibrio del sistema se $(x(t), u(t)) = (x_e, u_e)$, $t \ge t_0$, è una traiettoria del sistema.

Proprietà per sistemi $\dot{x}(t) = f(x(t), u(t))$ (tempo invarianti continui)

Data una coppia di equilibrio (x_e, u_e) vale $f(x_e, u_e) = 0$.

Per sistemi non forzati, dato un equilibrio x_e vale $f(x_e) = 0$.

Esempio di traiettoria

Sistema LTI scalare: circuito RC con $u(t) = U \sin(\omega t)$

$$x(t) = e^{-\frac{t}{RC}}x(0) + \frac{U\omega RC}{1 + \omega^2 R^2 C^2}e^{-\frac{t}{RC}} + \frac{U}{\sqrt{1 + \omega^2 R^2 C^2}}\sin(\omega t - \gamma)$$

 $\operatorname{con} \gamma = \arctan(\omega RC).$

Esempio equilibrio (traiettoria costante nel tempo)

Pendolo (vedere testo)

Richiami di calcolo matriciale

- notazione (dimensioni, triangolare, diagonale, triangolare/diagonale a blocchi, matrice nulla, matrice identità, trasposta)
- \hat{A}_{ij} complemento algebrico dell'elemento a_{ij} : determinante della matrice ottenuta eliminando da A la riga i e la colonna j e moltiplicando per $(-1)^{i+j}$
- determinante di una matrice

$$\det(A) = \sum_{i=1}^{n} a_{ij} \hat{A}_{ij} = \sum_{j=1}^{n} a_{ij} \hat{A}_{ij}$$

Nota: determinante di una matrice 2×2 dato da $det(A) = a_{11}a_{22} - a_{21}a_{12}$.

• operazioni tra matrici (somma, prodotto, potenza, inversa)

Richiami di calcolo matriciale

• matrice aggiunta

$$\mathsf{adj}(A) = egin{bmatrix} \hat{A}_{11} & \cdots & \hat{A}_{n1} \\ & \ddots & \\ \hat{A}_{1n} & \cdots & \hat{A}_{nn} \end{bmatrix}$$

Nota: è la trasposta della matrice dei complementi algebrici.

• matrice inversa (matrice quadrata)

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

Richiami di calcolo matriciale

 autovalori e autovettori di una matrice Polinomio caratteristico:

$$\varphi(\lambda) = \det(\lambda I - A) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \ldots + \alpha_1\lambda + \alpha_0.$$

Le *n* radici λ_i dell'equazione caratteristica $\varphi(\lambda) = 0$ si dicono autovalori di *A*.

Nota: se A reale, allora $\varphi(\lambda)$ polinomio a coefficienti reali, allora radici reali o complesse coniugate.

Ad ogni autovalore λ_i di A si può associare un vettore v_i (non nullo) detto autovettore che soddisfa

$$Av_i = \lambda_i v_i$$
.

Classe generale, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato $y(t) = h(x(t), u(t), t)$ equazione di uscita.

Monovariabili (SISO) sotto classe di Multivariabili (MIMO) SISO (Single Input Single Output) se m=p=1 altrimenti MIMO.

Classe generale, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

$$\dot{x}(t) = f(x(t), u(t), t)$$

equazione di stato equazione di uscita.

y(t) = h(x(t), u(t), t)

Strettamente propri sotto classe di propri Strettamente propri se y = h(x(t), t).

Classe generale, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato $y(t) = h(x(t), u(t), t)$ equazione di uscita.

Non forzati sotto classe di forzati Sistemi non forzati

$$\dot{x}(t) = f(x(t), t)$$
$$y(t) = h(x(t), t)$$

Classe generale, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato $y(t) = h(x(t), u(t), t)$ equazione di uscita.

Tempo invarianti sotto classe di tempo varianti

Tempo invarianti se data una traiettoria $(x(t),u(t)),\ t\geq t_0$, con $x(t_0)=x_0$, per ogni $\Delta\in\mathbb{R}$, vale che per $x(t_0+\Delta)=x_0$ allora $(x_\Delta(t),u_\Delta(t))=(x(t-\Delta),u(t-\Delta))$ è una traiettoria.

Si può dimostrare che sistemi tempo invarianti sono del tipo

$$\dot{x}(t) = f(x(t), u(t)) \qquad x(0) = x_0$$

$$y(t) = h(x(t), u(t))$$

Nota: senza perdita di generalità possiamo scegliere $t_0 = 0$.

Classe generale,
$$x\in\mathbb{R}^n$$
, $u\in\mathbb{R}^m$, $y\in\mathbb{R}^p$
$$\dot{x}(t)=f(x(t),u(t),t)\qquad \text{equazione di stato}$$

Lineari sotto classe di non lineari

Sistemi lineari se le funzioni di stato e di uscita sono lineari in x e u.

y(t) = h(x(t), u(t), t)

$$\dot{x}_1(t) = a_{11}(t)x_1(t) + a_{12}(t)x_2(t) + \dots + a_{1n}(t)x_n(t) + b_{11}(t)u_1(t) + b_{12}(t)u_2(t) + \dots + b_{1m}(t)u_m(t)$$

$$\dot{x}_2(t) = a_{21}(t)x_1(t) + a_{22}(t)x_2(t) + \dots + a_{2n}(t)x_n(t) + b_{21}(t)u_1(t) + b_{22}(t)u_2(t) + \dots + b_{2m}(t)u_m(t)$$

$$\vdots$$

$$\dot{x}_n(t) = a_{n1}(t)x_1(t) + a_{n2}(t)x_2(t) + \dots + a_{nn}(t)x_n(t) + b_{n1}(t)u_1(t) + b_{n2}(t)u_2(t) + \dots + b_{nm}(t)u_m(t)$$

equazione di uscita.

Classe generale,
$$x\in\mathbb{R}^n$$
, $u\in\mathbb{R}^m$, $y\in\mathbb{R}^p$
$$\dot{x}(t)=f(x(t),u(t),t)\qquad\text{equazione di stato}$$

$$y(t)=h(x(t),u(t),t)\qquad\text{equazione di uscita}.$$

Lineari sotto classe di non lineari

Sistemi lineari se le funzioni di stato e di uscita sono lineari in x e u.

$$y_{1}(t) = c_{11}(t)x_{1}(t) + c_{12}(t)x_{2}(t) + \dots + c_{1n}(t)x_{n}(t)$$

$$+ d_{11}(t)u_{1}(t) + d_{12}(t)u_{2}(t) + \dots + d_{1m}(t)u_{m}(t)$$

$$y_{2}(t) = c_{21}(t)x_{1}(t) + c_{22}(t)x_{2}(t) + \dots + c_{2n}(t)x_{n}(t)$$

$$+ d_{21}(t)u_{1}(t) + d_{22}(t)u_{2}(t) + \dots + d_{2m}(t)u_{m}(t)$$

$$\vdots$$

$$y_{p}(t) = c_{p1}(t)x_{1}(t) + c_{p2}(t)x_{2}(t) + \dots + c_{pn}(t)x_{n}(t)$$

$$+ d_{p1}(t)u_{1}(t) + d_{p2}(t)u_{2}(t) + \dots + d_{pm}(t)u_{m}(t)$$

Classe generale, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato $y(t) = h(x(t), u(t), t)$ equazione di uscita.

Lineari sotto classe di non lineari

Sistemi lineari se le funzioni di stato e di uscita sono lineari in x e u.

$$A(t) = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & & & \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix} \qquad B(t) = \begin{bmatrix} b_{11}(t) & \dots & b_{1m}(t) \\ \vdots & & & \\ b_{n1}(t) & \dots & b_{nn}(t) \end{bmatrix}$$

$$C(t) = \begin{bmatrix} c_{11}(t) & \dots & c_{1n}(t) \\ \vdots & & & \\ c_{p1}(t) & \dots & c_{pn}(t) \end{bmatrix} \qquad D(t) = \begin{bmatrix} d_{11}(t) & \dots & d_{1m}(t) \\ \vdots & & & \\ d_{p1}(t) & \dots & d_{pm}(t) \end{bmatrix}$$

$$A(t) \in \mathbb{R}^{n \times n}$$
, $B(t) \in \mathbb{R}^{n \times m}$, $C(t) \in \mathbb{R}^{p \times n}$, $D(t) \in \mathbb{R}^{p \times m}$

Classe generale, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato $y(t) = h(x(t), u(t), t)$ equazione di uscita.

Lineari sotto classe di non lineari

Sistemi lineari se le funzioni di stato e di uscita sono lineari in x e u.

$$\begin{split} \dot{x}(t) &= A(t)x(t) + B(t)u(t) \\ y(t) &= C(t)x(t) + D(t)u(t) \end{split}$$

Classificazione (Riepilogo)

Monovariabili (SISO) ⊂ Multivariabili (MIMO)

SISO (Single Input Single Output) se m = p = 1.

Strettamente propri ⊂ propri

Strettamente propri se y = h(x(t), t).

Non forzati sotto classe di forzati

Sistemi non forzati

$$\dot{x}(t) = f(x(t), t)$$

$$y(t) = h(x(t), t)$$

Tempo invarianti ⊂ Tempo varianti

Sistemi tempo invarianti

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = h(x(t), u(t))$$

Lineari ⊂ non lineari

Sistemi lineari

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

Esempio: carrello

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -\frac{k(t)}{M}x_1(t) + \frac{1}{M}u(t)
y(t) = x_1(t)$$

$$f_1(x, u, t) = x_2$$

 $f_2(x, u, t) = -\frac{k(t)}{M}x_1 + \frac{1}{M}u$

- f_2 dipende esplicitamente da t attraverso k(t) quindi sistema tempo variante. Se $k(t) = \bar{k}$ per ogni t allora tempo invariante.
- f_1 e f_2 dipendono linearmente da x e u allora sistema lineare. (Se $k(t) = \bar{k}$ lineare tempo invariante.)

Esempio: carrello

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k(t)}{M}x_1(t) + \frac{1}{M}u(t)$$

$$y(t) = x_1(t)$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k(t)}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Sistemi Lineari Tempo Invarianti (LTI)

Sistema LTI se le funzioni di stato e uscita sono lineari in x e u (lineare) e non dipendono esplicitamente da t (tempo invariante).

Sistemi lineari tempo invarianti (LTI)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$ matrici costanti.

Sistemi lineari tempo invarianti SISO (LTI SISO)

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, $C \in \mathbb{R}^{1 \times n}$, $D \in \mathbb{R}^{1 \times 1}$, ovvero B è un vettore, C un vettore riga e D uno scalare.

Principio di sovrapposizione degli effetti

Sistema lineare (anche tempo variante)

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

Principio di sovrapposizione degli effetti

Sistema lineare (anche tempo variante)

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

Principio di sovrapposizione degli effetti

Sia $(x_a(t), u_a(t))$ traiettoria con $x_a(t_0) = x_{0a}$.

Sia $(x_b(t), u_b(t))$ traiettoria con $x_b(t_0) = x_{0b}$.

Allora $\forall \alpha, \beta \in \mathbb{R}$ dato lo stato iniziale $x_{ab}(t_0) = \alpha x_{0a} + \beta x_{0b}$, si ha che

$$(x_{ab}(t), u_{ab}(t)) = (\alpha x_a(t) + \beta x_b(t), \alpha u_a(t) + \beta u_b(t))$$

è traiettoria del sistema, (ovvero applicando come ingresso $u_{ab} = \alpha u_a(t) + \beta u_b(t)$ la traiettoria di stato è $x_{ab}(t) = \alpha x_a(t) + \beta x_b(t)$).

IMPORTANTE: NON vale per sistemi non lineari.

Sistema lineare (anche tempo variante)

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

Dimostrazione (mostrare che soddisfa l'equazione differenziale)

$$\frac{d}{dt}x_{ab}(t) = \alpha \dot{x}_a(t) + \beta \dot{x}_b(t)$$

$$= \alpha (A(t)x_a(t) + B(t)u_a(t)) + \beta (A(t)x_b(t) + B(t)u_b(t))$$

$$= A(t)(\alpha x_a(t) + \beta x_b(t)) + B(t)(\alpha u_a(t) + \beta u_b(t))$$

Per sistemi lineari sotto opportune ipotesi su A(t) e B(t) si può dimostrare che la soluzione è unica.

Nota: dimostrare che vale anche per l'uscita.

Sia $x_{\ell}(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_{\ell}(t_0) = x_0$ e $u_{\ell}(t) = 0$, $t \geq t_0$.

Sia $x_f(t)$, $t \ge t_0$, la traiettoria di stato ottenuta per $x_f(t_0) = 0$ e $u_f(t) = u(t)$, $t \ge t_0$.

Sia $x_{\ell}(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_{\ell}(t_0) = x_0$ e $u_{\ell}(t) = 0$, $t \geq t_0$.

Sia $x_f(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_f(t_0) = 0$ e $u_f(t) = u(t)$, $t \geq t_0$.

Applicando il principio di sovrapposizione degli effetti si ha che fissato lo stato iniziale $x(t_0)=x_0$ e applicando l'ingresso u(t), $t\geq t_0$, la traiettoria di stato è data da

$$x(t) = x_{\ell}(t) + x_f(t).$$

Sia $x_{\ell}(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_{\ell}(t_0) = x_0$ e $u_{\ell}(t) = 0$, $t \geq t_0$.

Sia $x_f(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_f(t_0) = 0$ e $u_f(t) = u(t)$, $t \geq t_0$.

Applicando il principio di sovrapposizione degli effetti si ha che fissato lo stato iniziale $x(t_0)=x_0$ e applicando l'ingresso u(t), $t\geq t_0$, la traiettoria di stato è data da

$$x(t) = x_{\ell}(t) + x_f(t).$$

Evoluzione libera: $x_{\ell}(t)$, $t \geq t_0$, tale che $x_{\ell}(t_0) = x_0$ e $u_{\ell}(t) = 0$, $t \geq t_0$. (uscita $y_{\ell}(t) = C(t)x_{\ell}(t)$)

Evoluzione forzata: $x_f(t)$, $t \geq t_0$, tale che $x_f(t_0) = 0$ e $u_f(t) = u(t)$, $t \geq t_0$. (uscita $y_f(t) = C(t)x_f(t) + D(t)u(t)$)

Sia $x_{\ell}(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_{\ell}(t_0) = x_0$ e $u_{\ell}(t) = 0$, $t \geq t_0$.

Sia $x_f(t)$, $t \geq t_0$, la traiettoria di stato ottenuta per $x_f(t_0) = 0$ e $u_f(t) = u(t)$, $t \geq t_0$.

Applicando il principio di sovrapposizione degli effetti si ha che fissato lo stato iniziale $x(t_0)=x_0$ e applicando l'ingresso u(t), $t\geq t_0$, la traiettoria di stato è data da

$$x(t) = x_{\ell}(t) + x_f(t).$$

Evoluzione libera: $x_{\ell}(t)$, $t \geq t_0$, tale che $x_{\ell}(t_0) = x_0$ e $u_{\ell}(t) = 0$, $t \geq t_0$. (uscita $y_{\ell}(t) = C(t)x_{\ell}(t)$)

Evoluzione forzata: $x_f(t)$, $t \ge t_0$, tale che $x_f(t_0) = 0$ e $u_f(t) = u(t)$, $t \ge t_0$. (uscita $y_f(t) = C(t)x_f(t) + D(t)u(t)$)

IMPORTANTE: NON vale per sistemi non lineari.

Traiettorie di un sistema LTI: esempio scalare

Sistema lineare tempo invariante (LTI) scalare $x \in \mathbb{R}$, $u \in \mathbb{R}$, $y \in \mathbb{R}$.

$$\dot{x}(t) = ax(t) + bu(t) \qquad x(0) = x_0$$

$$y(t) = cx(t) + du(t).$$

Evoluzione libera + evoluzione forzata (da Analisi Matematica soluzione omogenea + soluzione particolare)

$$x(t) = e^{at}x_0 + \int_0^t e^{a(t-\tau)}bu(\tau)d\tau$$

$$y(t) = ce^{at}x_0 + c\int_0^t e^{a(t-\tau)}bu(\tau)d\tau + du(t)$$

Funzione esponenziale

$$e^{at} = 1 + at + \frac{(at)^2}{2!} + \frac{(at)^3}{3!} + \dots$$

Traiettorie di un sistema LTI: caso generale

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

Evoluzione libera + evoluzione forzata

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

$$y(t) = Ce^{At}x_0 + C \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

Esponenziale di matrice

$$e^{At} := I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \dots$$

Proprietà della matrice esponenziale

Esponenziale e cambio di base
$$e^{TAT^{-1}t} = Te^{At}T^{-1}$$

Esponenziale di una matrice diagonale a blocchi

L'esponenziale di una matrice diagonale a blocchi è una matrice diagonale a blocchi in cui ogni blocco è l'esponenziale del blocco corrispondente della matrice di partenza.

Nota: esponenziale di una matrice diagonale $\Lambda = \mathrm{diag}\{\lambda_1,\dots,\lambda_n\}$ $e^{\Lambda t} = \mathrm{diag}\{e^{\lambda_1 t},\dots,e^{\lambda_n t}\}.$

Rappresentazioni equivalenti

Effettuiamo un cambio di base mediante una matrice T

$$\hat{x}(t) = Tx(t)$$

ed essendo T invertibile

$$x(t) = T^{-1}\hat{x}(t).$$

Sostituendo nell'equazione della dinamica si ottiene

$$\begin{split} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t) \qquad \hat{x}(0) = \hat{x}_0 \\ y(t) &= \hat{C}\hat{x}(t) + \hat{D}u(t). \end{split}$$

con

$$\hat{A}=TAT^{-1}$$
, $\hat{B}=TB$, $\hat{C}=CT^{-1}$ e $\hat{D}=D$.

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) \qquad x(0) = x_0 \\ y(t) &= Cx(t) + Du(t). \end{split}$$

Indichiamo con $\lambda_1, \ldots, \lambda_r$ gli $r \leq n$ autovalori (reali o complessi coniugati) distinti della matrice A, con molteplicità algebrica $n_1, \ldots, n_r \geq 0$ tali che $\sum_{i=1}^r n_i = n$.

Le componenti dell'evoluzione libera dello stato $x_\ell(t)$ si possono scrivere come

$$x_{\ell,j}(t) = \sum_{i=1}^{r} \sum_{q=1}^{h_i} \gamma_{jiq} t^{q-1} e^{\lambda_i t}, \qquad j = 1, \dots, n,$$

per opportuni valori di $h_i \leq n_i$, dove i coefficienti γ_{jiq} dipendono dallo stato iniziale x(0).

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) \qquad x(0) = x_0 \\ y(t) &= Cx(t) + Du(t). \end{split}$$

Indichiamo con $\lambda_1, \ldots, \lambda_r$ gli $r \leq n$ autovalori (reali o complessi coniugati) distinti della matrice A, con molteplicità algebrica $n_1, \ldots, n_r \geq 0$ tali che $\sum_{i=1}^r n_i = n$.

Le componenti dell'evoluzione libera dello stato $x_\ell(t)$ si possono scrivere come

$$x_{\ell,j}(t) = \sum_{i=1}^{r} \sum_{q=1}^{h_i} \gamma_{jiq} t^{q-1} e^{\lambda_i t}, \qquad j = 1, \dots, n,$$

per opportuni valori di $h_i \leq n_i$, dove i coefficienti γ_{jiq} dipendono dallo stato iniziale x(0).

IMPORTANTE

I termini $t^{q-1}e^{\lambda_i t}$ sono detti modi naturali del sistema.

L'evoluzione libera dello stato è combinazione lineare dei modi.

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) \qquad x(0) = x_0 \\ y(t) &= Cx(t) + Du(t). \end{split}$$

Indichiamo con $\lambda_1, \ldots, \lambda_r$ gli $r \leq n$ autovalori (reali o complessi coniugati) distinti della matrice A, con molteplicità algebrica $n_1, \ldots, n_r \geq 0$ tali che $\sum_{i=1}^r n_i = n$.

Le componenti dell'evoluzione libera dello stato $x_\ell(t)$ si possono scrivere come

$$x_{\ell,j}(t) = \sum_{i=1}^{r} \sum_{j=1}^{h_i} \gamma_{jiq} t^{q-1} e^{\lambda_i t}, \qquad j = 1, \dots, n,$$

per opportuni valori di $h_i \leq n_i$, dove i coefficienti γ_{jiq} dipendono dallo stato iniziale x(0).

Nota: Poiché l'uscita è lineare nello stato, anche l'evoluzione libera dell'uscita è combinazione lineare dei modi.

Forma reale dei modi di un sistema LTI

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

Se la matrice A è reale e $\lambda_i=\sigma_i+j\omega_i$ è un autovalore complesso, allora il suo complesso coniugato $\bar{\lambda}_i=\sigma_i-j\omega_i$ è anche autovalore di A.

Si dimostra che i coefficienti γ_{jiq} corrispondenti a λ_i e $\bar{\lambda}_i$ sono anch'essi complessi coniugati.

Si verifica quindi per calcolo diretto che le soluzioni $x_{\ell,j}(t)$ sono sempre reali e che i modi del sistema corrispondenti ad autovalori complessi coniugati $\lambda_i=\sigma_i+j\omega_i$ e $\bar{\lambda}_i$ sono del tipo

$$t^{q-1}e^{\sigma_i t}\cos(\omega_i t + \phi_i),$$

con opportuni valori della fase ϕ_i .

Forma reale dei modi di un sistema LTI

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

Caso particolare: supponiamo che le moltiplicità algebriche n_1, \ldots, n_r degli autovalori di A coincidano con le molteplicità geometriche (ad es. quando gli autovalori sono distinti).

Allora i coefficienti h_i sono tutti pari ad 1 e l'espressione dei modi si semplifica in

$$e^{\lambda_i t}$$
 per autovalori reali $e^{\sigma_i t}\cos(\omega_i t + \phi_i)$ per autovalori complessi coniugati

Modi naturali: autovalori reali semplici

•
$$e^{\lambda_i t}$$
, $\lambda_i > 0$

•
$$e^{\lambda_i t}$$
, $\lambda_i = 0$

•
$$e^{\lambda_i t}$$
, $\lambda_i < 0$

Modi naturali: autovalori complessi coniugati semplici

•
$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
, $\sigma_i > 0$

•
$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
, $\sigma_i < 0$

Modi naturali: molt. algebrica = molt. geometrica

Importante: se "molteplicità algebrica n_i " = "molteplicità geometrica" (anche se $n_i > 1$)

Modi naturali: autovalori reali con m.a. > m.g.

•
$$t^q e^{\lambda_i t}$$
, $\lambda_i > 0$

•
$$t^q e^{\lambda_i t}$$
, $\lambda_i = 0$

•
$$t^q e^{\lambda_i t}$$
, $\lambda_i < 0$

Modi naturali: autovalori complessi coniugati con m.a. > m.g.

• $t^q e^{\sigma_i t} \cos(\omega_i t + \phi_i)$, $\sigma_i > 0$

• $t^q e^{\sigma_i t} \cos(\omega_i t + \phi_i)$, $\sigma_i = 0$

• $t^q e^{\sigma_i t} \cos(\omega_i t + \phi_i), \ \sigma_i < 0$

Modi naturali: molt. algebrica > molt. geometrica

Se una matrice A ha autovalori tutti distinti $\lambda_1, \ldots, \lambda_n$, allora esistono n autovettori v_1, \ldots, v_n associati, i.e., $Av_i = \lambda_i v_i$.

In forma compatta

$$A\Big[v_1\mid \, \ldots \mid v_n\Big] = \Big[v_1\mid \, \ldots \mid v_n\Big] \mathrm{diag}\{\lambda_1,\ldots,\lambda_n\}$$

Autovettori v_1, \ldots, v_n sono linearmente indipendenti e costituiscono una base. Allora la matrice $T^{-1} = \begin{bmatrix} v_1 \mid \ldots \mid v_n \end{bmatrix}$ è invertibile.

Allora

$$\operatorname{diag}\{\lambda_1, \dots, \lambda_n\} = \begin{bmatrix} v_1 \mid \dots \mid v_n \end{bmatrix}^{-1} A \begin{bmatrix} v_1 \mid \dots \mid v_n \end{bmatrix}$$
$$= TAT^{-1}$$

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

IPOTESI: A diagonalizzabile, $A = T^{-1} \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}T = T^{-1}\Lambda T$

Allora effettuando un cambio di base mediante T

$$\begin{split} \dot{\hat{x}}(t) &= \Lambda \hat{x}(t) + TBu(t) & \hat{x}(0) = \hat{x}_0 \\ y(t) &= CT^{-1}\hat{x}(t) + Du(t). \end{split}$$

$$\begin{split} \dot{\hat{x}}(t) &= \Lambda \hat{x}(t) + TBu(t) & \hat{x}(0) = \hat{x}_0 \\ y(t) &= CT^{-1}\hat{x}(t) + Du(t). \end{split}$$

Usando le proprietà dell'esponenziale di una matrice diagonale

$$\hat{x}_{\ell}(t) = e^{\Lambda t} \hat{x}(0)$$

$$= \begin{bmatrix} e^{\lambda_1 t} & \dots & 0 \\ & \ddots & \\ 0 & \dots & e^{\lambda_n t} \end{bmatrix} \hat{x}(0) = \begin{bmatrix} e^{\lambda_1 t} \hat{x}_1(0) \\ \vdots \\ e^{\lambda_n t} \hat{x}_n(0) \end{bmatrix}$$

Nota: $y_{\ell}(t) = CT^{-1}\hat{x}_{\ell}(t)$.

 $e^{\lambda_1 t}, \dots, e^{\lambda_n t}$ modi naturali (reali o complessi)

$$\dot{\hat{x}}(t) = \Lambda \hat{x}(t) + TBu(t) \qquad \hat{x}(0) = \hat{x}_0$$
$$y(t) = CT^{-1}\hat{x}(t) + Du(t).$$

Nelle coordinate originali

$$x_{\ell}(t) = T^{-1}\hat{x}_{\ell}(t)$$

$$= T^{-1} \begin{bmatrix} e^{\lambda_1 t} & \dots & 0 \\ & \ddots & \\ 0 & \dots & e^{\lambda_n t} \end{bmatrix} Tx(0)$$

Nota: per ogni condizione iniziale $x(0) = x_0$, l'evoluzioni libera è sempre combinazione lineare dei modi naturali $e^{\lambda_1 t}, \dots, e^{\lambda_n t}$ (reali o complessi).

Autovalori reali

Se λ_i reale allora modo naturale $e^{\lambda_i t}$.

Autovalori complessi coniugati

Poiché A è una matrice reale, per ogni autovalore complesso $\lambda_i=\sigma_i+j\omega_i$ esiste il suo complesso coniugato $\bar{\lambda}_i=\sigma_i-j\omega_i$.

I termini associati, nella risposta $x_\ell(t)$, sommati danno luogo a termini reali del tipo

$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$

con opportuni valori di ϕ_i .

Forma di Jordan di una matrice

Per una generica A si può dimostrare che esiste sempre T tale che

$$J = TAT^{-1}$$

 μ autovalori distinti, $\lambda_1,\ldots,\lambda_{\mu}$, e n_i molteplicità (algebrica) di λ_i .

$$J = \operatorname{diag}\{J_1, \ldots, J_{\mu}\}$$

con J_i blocco di Jordan associato all'autovalore λ_i dato da

$$J_i = \mathsf{diag}\{J_{i1}, \dots, J_{i\nu_i}\}$$

con $J_{ih} \in \mathbb{R}^{\eta_{ih} \times \eta_{ih}}$ miniblocchi di Jordan dell'autovalore λ_i dati da

$$J_{ih} = \begin{bmatrix} \lambda_i & 1 & 0 & \dots & 0 \\ 0 & \lambda_i & 1 & \dots & 0 \\ \vdots & \dots & & & & \\ 0 & \dots & 0 & \lambda_i & 1 \\ 0 & \dots & 0 & \lambda_i \end{bmatrix}$$

dove $\sum_{h=1}^{\nu_i} \eta_{ih} = n_i$.

Esponenziale di un miniblocco

Dato

$$J_{ih} = \begin{bmatrix} \lambda_i & 1 & 0 & \dots & 0 \\ 0 & \lambda_i & 1 & \dots & 0 \\ \vdots & & & & \\ 0 & \dots & 0 & \lambda_i & 1 \\ 0 & \dots & 0 & \lambda_i \end{bmatrix}$$

Il suo esponenziale $e^{J_{ih}t}$ è dato da

$$e^{J_{ih}t} = e^{\lambda_i t} \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \dots & \frac{t^{\eta_{ih}-1}}{(\eta_{ih}-1)!} \\ 0 & 1 & t & \dots \\ \vdots & \dots & & & \\ 0 & \dots & 0 & 1 & t \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Nota: λ_i reale o complesso.

Autovalori reali

Se λ_i reale, tutti i miniblocchi associati avranno elementi del tipo

$$t^q e^{\lambda_i t}$$

con opportuni valori di q.

Autovalori complessi coniugati

Poiché A è una matrice reale, per ogni autovalore complesso $\lambda_i=\sigma_i+j\omega_i$ esiste il suo complesso coniugato $\bar{\lambda_i}=\sigma_i-j\omega_i$.

I miniblocchi associati possono essere riscritti in modo da avere solo elementi reali del tipo

$$t^q e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$

con opportuni valori di $q \in \phi_i$.

Sistema lineare tempo invariante (LTI) $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

Nota: A generica, $A = T^{-1}JT$, J forma di Jordan.

Allora effettuando un cambio di base mediante T

$$\dot{\hat{x}}(t) = J\hat{x}(t) + TBu(t) \qquad x(0) = x_0$$
$$y(t) = CT^{-1}\hat{x}(t) + Du(t).$$

$$\dot{\hat{x}}(t) = J\hat{x}(t) + TBu(t) \qquad x(0) = x_0$$

$$y(t) = CT^{-1}\hat{x}(t) + Du(t).$$

Usando le proprietà dell'esponenziale di una matrice di Jordan si ha

$$\hat{x}_{\ell}(t) = e^{Jt}\hat{x}(0)$$

$$y_{\ell}(t) = CT^{-1}e^{Jt}\hat{x}(0).$$

I modi naturali sono del tipo:

- $t^q e^{\lambda_i t}$ per λ_i autovalore reale
- $t^q e^{\sigma_i t} \cos(\omega_i t + \phi_i)$ per $\sigma_i \pm j\omega_i$ coppia di autovalori complessi coniugati.

$$\dot{\hat{x}}(t) = J\hat{x}(t) + TBu(t)$$
 $x(0) = x_0$
 $y(t) = CT^{-1}\hat{x}(t) + Du(t).$

Nelle coordinate originali

$$x_{\ell}(t) = T^{-1}\hat{x}_{\ell}(t)$$
$$= T^{-1}e^{Jt} T x(0)$$

Nota: per ogni condizione iniziale $x(0)=x_0$, l'evoluzioni libera è sempre combinazione lineare di modi naturali del tipo $t^q e^{\lambda_i t}$, per λ_i autovalore reale, e $t^q e^{\sigma_i t} \cos(\omega_i t + \phi_i)$ per $\sigma_i \pm j\omega_i$ coppia di autovalori complessi coniugati.

Consideriamo il seguente sistema LTI con $x \in \mathbb{R}^3$ e $u \in \mathbb{R}^3$

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & -1 \\ 2 & 1 & -3 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{B} u(t)$$

Mediante un cambio di coordinate usando la matrice $T = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$ e ponendo $\hat{x}(t) = Tx(t)$, il sistema si può riformulare come

$$\dot{\hat{x}}(t) = \underbrace{\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}}_{\hat{A} = TAT^{-1}} \hat{x}(t) + \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\hat{B} = TB} u(t)$$

Consideriamo il seguente sistema LTI con $x \in \mathbb{R}^3$ e $u \in \mathbb{R}^3$

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & -1 \\ 2 & 1 & -3 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{B} u(t)$$

Mediante un cambio di coordinate usando la matrice $T = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$ e ponendo $\hat{x}(t) = Tx(t)$, il sistema si può riformulare come

$$\dot{\hat{x}}(t) = \underbrace{\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}}_{\hat{A} = TAT^{-1}} \hat{x}(t) + \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\hat{B} = TB} u(t)$$

Autovalori di \hat{A} : -1, -2 con molteplicità algebrica 2, 1

Per calcolare l'evoluzione libera consideriamo la formula vista in precedenza

$$\hat{x}_{\ell}(t) = e^{\hat{A}t} \hat{x}_0$$

Calcoliamo l'esponenziale di matrice $e^{\hat{A}t}$ per $\hat{A} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$:

$$e^{\hat{A}t} = \sum_{k=0}^{\infty} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}^k \frac{t^k}{k!} = \begin{bmatrix} \sum_{k=0}^{\infty} \frac{(-1)^k t^k}{k!} & t \sum_{k=0}^{\infty} \frac{(-1)^k t^k}{k!} & 0 \\ 0 & \sum_{k=0}^{\infty} \frac{(-1)^k t^k}{k!} & 0 \\ 0 & 0 & \sum_{k=0}^{\infty} \frac{(-2)^k t^k}{k!} \end{bmatrix}$$

$$= \begin{bmatrix} e^{-t} & te^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-2t} \end{bmatrix}$$

Evoluzione libera dello stato:

$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-2t} \end{bmatrix} \hat{x}_{0}$$

Evoluzione libera dello stato:

$$\hat{x}_{\ell}(t) = \begin{vmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-2t} \end{vmatrix} \hat{x}_{0}$$

Esempio 1: condizione iniziale è $\hat{x}_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$. Allora

$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} \\ 0 \\ 0 \end{bmatrix}$$

Nelle coordinate originali:

$$x_{\ell}(t) = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{bmatrix}$$

Evoluzione libera dello stato:

$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-2t} \end{bmatrix} \hat{x}_{0}$$

Esempio 2: condizione iniziale è $\hat{x}_0 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. Allora

$$\hat{x}_{\ell}(t) = \begin{bmatrix} te^{-t} \\ e^{-t} \\ 0 \end{bmatrix}$$

Nelle coordinate originali:

$$x_{\ell}(t) = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{\ell} \hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} + te^{-t} \\ e^{-t} \\ e^{-t} + te^{-t} \end{bmatrix}$$

Evoluzione libera dello stato:

$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-2t} \end{bmatrix} \hat{x}_{0}$$

Esempio 3: condizione iniziale è $\hat{x}_0 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$. Allora

$$\hat{x}_{\ell}(t) = \begin{bmatrix} 0 \\ 0 \\ e^{-2t} \end{bmatrix}$$

Nelle coordinate originali:

$$x_{\ell}(t) = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{\hat{x}_{\ell}(t)} \hat{x}_{\ell}(t) = \begin{bmatrix} 0 \\ e^{-2t} \\ e^{-2t} \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Nota: consideriamo k costante, quindi sistema LTI.

Autovalori

$$\lambda_1=j\sqrt{rac{k}{M}}$$
, $\lambda_2=-j\sqrt{rac{k}{M}}$ immaginari puri

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Applichiamo un controllo $u = -hx_2$

$$\lambda_1 = -\frac{h}{2M} + \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}, \ \lambda_2 = -\frac{h}{2M} - \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}$$

Se $h^2 > 4Mk$ autovalori reali. Se $h^2 < 4Mk$ complessi coniugati.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Applichiamo un controllo $u = -hx_2$

Se $h^2=4Mk$, $\lambda_1=\lambda_2=-\frac{h}{2M}$, (molteplicità algebrica = 2). Si può mostrare che molteplicità geometrica = 1, quindi blocco di Jordan 2×2 .

$$J = TAT^{-1} = \begin{bmatrix} -\frac{h}{2M} & 1\\ 0 & -\frac{h}{2M} \end{bmatrix} \qquad e^{Jt} = e^{-\frac{h}{2M}t} \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}$$
$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-\frac{h}{2M}t} \hat{x}_{1}(0) + te^{-\frac{h}{2M}t} \hat{x}_{2}(0)\\ e^{-\frac{h}{2M}t} \hat{x}_{2}(0) \end{bmatrix}$$

Equilibrio: richiami

Equilibrio (sistema non forzato)

Dato un sistema non forzato

$$\dot{x}(t) = f(x(t), t),$$

uno stato x_e si dice equilibrio del sistema se $x(t) = x_e$, $t \ge t_0$, è una traiettoria del sistema.

Coppia di equilibrio

Dato un sistema forzato $\dot{x}(t)=f(x(t),u(t),t)$, (x_e,u_e) si dice coppia di equilibrio del sistema se $(x(t),u(t))=(x_e,u_e)$, $t\geq t_0$, è una traiettoria del sistema.

Proprietà (sistemi tempo invarianti continui)

Data una coppia di equilibrio (x_e, u_e) , vale che $f(x_e, u_e) = 0$.

Per sistemi non forzati, dato un equilibrio x_e , vale che $f(x_e) = 0$.

Stabilità interna

Ipotesi: Sistemi tempo-invarianti (si può generalizzare)

Stabilità (interna): conseguenze sulla traiettoria legate a incertezze sullo stato iniziale con ingressi fissi e noti.

Poichè l'ingresso è fissato, $u(t)=\bar{u}(t),\,t\geq0$, il sistema $\dot{x}(t)=f(x(t),\bar{u}(t))$ è non forzato.

Consideriamo quindi sistemi non forzati

$$\dot{x}(t) = f(x(t))$$

e sia x_e un equilibrio, ovvero $f(x_e) = 0$.

Stabilità interna: cosa accade se $x(0) = x_e + \Delta x_0$?

Stabilità interna: definizioni

$$\dot{x}(t) = f(x(t))$$
 x_e equilibrio, i.e., $f(x_e) = 0$

Equilibrio stabile Uno stato di equilibrio x_e si dice stabile se $\forall \epsilon > 0$, $\exists \delta > 0$ tale che $\forall x_0$ tale che $\|x_0 - x_e\| \le \delta$ allora risulti $\|x(t) - x_e\| \le \epsilon$ per tutti i $t \ge 0$.

Equilibrio instabile Uno stato di equilibrio x_e si dice instabile se non è stabile. (Esercizio: scrivere esplicitamente.)

Equilibrio attrattivo Uno stato di equilibrio x_e si dice attrattivo se $\exists \delta > 0$ tale che $\forall x_0$ tale che $\|x_0 - x_e\| \le \delta$ allora risulti $\lim_{t \to \infty} \|x(t) - x_e\| = 0$.

Equilibrio asintoticamente stabile Uno stato di equilibrio x_e si dice asintoticamente stabile se è stabile e attrattivo.

Stabilità interna: osservazioni

Stabilità locale: le definizioni date sottintendono la parola locale, ovvero la proprietà vale in un intorno dello stato di equilibrio x_e .

Stabilità globale: le proprietà di stabilità e asintotica stabilità sono globali se valgono per ogni $x \in \mathbb{R}^n$.

Stabilità di una traiettoria: le definizioni di stabilità si possono generalizzare a una traiettoria $\bar{x}(t),\,t\geq0.$ (Esercizio: riscriverle.)

Stabilità interna di sistemi LTI

Nei sistemi lineari x=0 è sempre un equilibrio (con u=0)

Per sistemi lineari si può mostrare che tutti gli equilibri e tutte le traiettorie hanno le stesse proprietà di stabilità (stesse di x=0). Per questo motivo si parla di stabilità del sistema.

Teorema Un sistema LTI è asintoticamente stabile se e solo se tutti gli autovalori hanno parte reale (strettamente) negativa (< 0).

Teorema Un sistema LTI è stabile se e solo se tutti gli autovalori hanno parte reale minore o uguale a zero e tutti gli autovalori a parte reale nulla hanno molteplicità geometrica uguale alla molteplicità algebrica (i miniblocchi di Jordan associati hanno dimensione uno).

Nota: si ha instabilità se almeno un autovalore ha parte reale positiva o se almeno un autovalore con parte reale nulla ha molt. algebrica > molt. geometrica.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Nota: consideriamo k costante, quindi sistema LTI.

Autovalori

$$\lambda_1=j\sqrt{rac{k}{M}}$$
, $\lambda_2=-j\sqrt{rac{k}{M}}$ immaginari puri, quindi sistema semplicemente stabile.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Applichiamo un controllo $u = -hx_2$

$$\lambda_1 = -\frac{h}{2M} + \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}, \ \lambda_2 = -\frac{h}{2M} - \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}$$

Se $h^2>4Mk$ autovalori reali. Se $h^2<4Mk$ complessi coniugati. Parte reale nulla in entrambi i casi, quindi sistema asintoticamente stabile.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Applichiamo un controllo $u = -hx_2$

Se $h^2=4Mk$, $\lambda_1=\lambda_2=-\frac{h}{2M}$, (molteplicità algebrica = 2). Si può mostrare che molteplicità geometrica = 1, quindi blocco di Jordan 2×2 .

$$J = TAT^{-1} = \begin{bmatrix} -\frac{h}{2M} & 1\\ 0 & -\frac{h}{2M} \end{bmatrix} \qquad e^{Jt} = e^{-\frac{h}{2M}t} \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}$$
$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-\frac{h}{2M}t} \hat{x}_{1}(0) + te^{-\frac{h}{2M}t} \hat{x}_{2}(0)\\ e^{-\frac{h}{2M}t} \hat{x}_{2}(0) \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Se $h^2=4Mk$, $\lambda_1=\lambda_2=-\frac{h}{2M}$, (molteplicità algebrica = 2). Si può mostrare che molteplicità geometrica = 1, quindi blocco di Jordan 2×2 .

$$J = TAT^{-1} = \begin{bmatrix} -\frac{h}{2M} & 1\\ 0 & -\frac{h}{2M} \end{bmatrix} \qquad e^{Jt} = e^{-\frac{h}{2M}t} \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}$$

Autovalori a parte reale negativa, quindi sistema asintoticamente stabile.

Linearizzazione di un sistema non lineare nell'intorno di un equilibrio

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = h(x(t), u(t))$$

Sia (x_e,u_e) una coppia di equilibrio, $f(x_e,u_e)=0$, consideriamo una traiettoria a partire da stato iniziale $x(0)=x_e+\Delta x_0$

$$x(t) = x_e + \Delta x(t)$$

$$u(t) = u_e + \Delta u(t)$$

 $\operatorname{con} y(t) = h(x_e, u_e) + \Delta y(t) = y_e + \Delta y(t).$

Essendo una traiettoria vale

$$\frac{d}{dt}(x_e + \Delta x(t)) = f(x_e + \Delta x(t), u_e + \Delta u(t))$$
$$y_e + \Delta y(t) = h(x_e + \Delta x(t), u_e + \Delta u(t))$$

Sviluppando in serie di Taylor (f e h suff. regolari) in (x_e, u_e)

$$\begin{split} \frac{d}{dt}(x_e + \Delta x(t)) &= f(x_e, u_e) + \frac{\partial}{\partial x} f(x, u) \Big|_{\substack{x = x_e \\ u = u_e}} \Delta x(t) + \\ & \frac{\partial}{\partial u} f(x, u) \Big|_{\substack{x = x_e \\ u = u_e}} \Delta u(t) + \text{term. ord. sup.} \\ y_e + \Delta y(t) &= h(x_e, u_e) + \frac{\partial}{\partial x} h(x, u) \Big|_{\substack{x = x_e \\ u = u_e}} \Delta x(t) + \\ & \frac{\partial}{\partial u} h(x, u) \Big|_{\substack{x = x_e \\ u = u_e}} \Delta u(t) + \text{term. ord. sup.} \end{split}$$

$$\dot{\Delta x}(t) = \frac{\partial}{\partial x} f(x,u) \Big|_{\substack{x=x_e \\ u=u_e}} \Delta x(t) + \frac{\partial}{\partial u} f(x,u) \Big|_{\substack{x=x_e \\ u=u_e}} \Delta u(t) + \text{term. ord. sup.}$$

$$\Delta y(t) = \frac{\partial}{\partial x} h(x,u) \Big|_{\substack{x=x_e \\ u=u_-}} \Delta x(t) + \frac{\partial}{\partial u} h(x,u) \Big|_{\substack{x=x_e \\ u=u_-}} \Delta u(t) + \text{term. ord. sup.}$$

$$\dot{\Delta x}(t) = A\Delta x(t) + B\Delta u(t) + {\rm term.~ord.~sup.} \qquad \Delta x(0) = \Delta x_0$$

 $\Delta y(t) = C \Delta x(t) + D \Delta u(t) + {\rm term.~ord.~sup.}$

$$\dot{\Delta x}(t)=A\Delta x(t)+B\Delta u(t)+$$
 term. ord. sup. $\Delta x(0)=\Delta x_0$
$$\Delta y(t)=C\Delta x(t)+D\Delta u(t)+$$
 term. ord. sup.

$$\dot{\Delta x}(t) \approx A\Delta x(t) + B\Delta u(t)$$

$$\Delta y(t) \approx C \Delta x(t) + D \Delta u(t)$$

$$\dot{\Delta x}(t) \approx A\Delta x(t) + B\Delta u(t)$$

$$\Delta y(t) \approx C\Delta x(t) + D\Delta u(t)$$

Sistema linearizzato

$$\dot{\delta x}(t) = A\delta x(t) + B\delta u(t)$$
$$\delta y(t) = C\delta x(t) + D\delta u(t)$$

Le trajettorie del sistema non lineare soddisfano

$$\begin{split} x(t) &= x_e + \Delta x(t) \approx x_e + \delta x(t) \\ u(t) &= u_e + \Delta u(t) = u_e + \delta u(t) \\ y(t) &= y_e + \Delta y(t) \approx y_e + \delta y(t). \end{split}$$

per variazioni "sufficientemente piccole".

Nota: $(\delta x(t), \delta u(t)), t \ge 0$, traiettoria del sistema linearizzato.

Stabilità e linearizzazione

Teorema

Dato un sistema non lineare tempo invariante, $\dot{x}(t) = f(x(t), u(t))$, sia (x_e, u_e) una coppia di equilibrio. Se il sistema linearizzato intorno ad (x_e, u_e) è asintoticamente stabile, allora l'equilibrio x_e , relativo all'ingresso u_e , è (localmente) asintoticamente stabile.

Teorema

Dato un sistema non lineare tempo invariante, $\dot{x}(t) = f(x(t), u(t))$, sia (x_e, u_e) una coppia di equilibrio. Se il sistema linearizzato intorno ad (x_e, u_e) ha almeno un autovalore a parte reale positiva, allora l'equilibrio x_e , relativo all'ingresso u_e , è instabile.

Nota: Non si può dire nulla in caso si abbiano solo autovalori a parte reale minore o uguale a zero con almeno un autovalore a parte reale nulla.

Esempio: pendolo

$$\begin{aligned} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t) \end{aligned}$$

- 1. $y(t) = x_1(t)$
- 2. $y(t) = -\ell \cos(x_1(t))$

Retroazione dallo stato (I)

Sistema lineare tempo invariante (LTI)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Supponendo di misurare l'intero stato, ovvero se y(t)=x(t), allora possiamo progettare

$$u(t) = Kx(t) + v(t)$$

con $K \in \mathbb{R}^{m \times n}$ una matrice di guadagni e v(t) un ulteriore ingresso per il sistema retroazionato

$$\dot{x}(t) = (A + BK)x(t) + Bv(t)$$

Se vogliamo il sistema in anello chiuso asintoticamente stabile allora dobbiamo progettare K tale che (A+BK) abbia autovalori tutti a parte reale negativa.

Retroazione dallo stato (I)

Sistema lineare tempo invariante (LTI)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Supponendo di misurare l'intero stato, ovvero se y(t)=x(t), allora possiamo progettare

$$u(t) = Kx(t) + v(t)$$

con $K \in \mathbb{R}^{m \times n}$ una matrice di guadagni e v(t) un ulteriore ingresso per il sistema retroazionato

$$\dot{x}(t) = (A + BK)x(t) + Bv(t)$$

Se vogliamo il sistema in anello chiuso asintoticamente stabile allora dobbiamo progettare K tale che (A+BK) abbia autovalori tutti a parte reale negativa.

Nota: a volte non esiste K che rende (A+BK) con autovalori tutti a parte reale negativa. Questo dipende dalla coppia (A,B) ed è legata alla proprietà di raggiungibilità.

Retroazione dallo stato (II)

Sistema lineare tempo invariante (LTI)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Se non è possibile misurare l'intero stato, ovvero se $y(t) \neq x(t)$, esistono tecniche per ricostruire lo stato a partire dalle misure.

In questi casi si considerano sistemi ausiliari chiamati osservatori che stimano lo stato del sistema. Se sia possibile o meno ricostruire lo stato dipende dalla proprietà di osservabilità.

Controllo nonlineare mediante linearizzazione (I)

Consideriamo il sistema nonlineare

$$\dot{x}(t) = f(x(t), u(t))$$

Linearizzazione intorno all'equilibrio (x_e, u_e) $(A_e = \frac{\partial}{\partial x} f(x, u) \Big|_{\substack{x = x_e \\ u = u_e}}, B_e = \frac{\partial}{\partial u} f(x, u) \Big|_{\substack{x = x_e \\ u = u_e}})$:

$$\dot{\delta x}(t) = A_e \delta x(t) + B_e \delta u(t)$$

Obiettivo: portare $\delta x(t)$ a zero, ovvero x(t) a x_e "in modo approssimato". Usando retroazione dallo stato $\delta u(t) = K\delta x(t) + \delta v(t)$ otteniamo il sistema in anello chiuso

$$\dot{\delta x}(t) = (A_e + B_e K)\delta x(t) + B_e \delta v(t)$$

Posso progettare K in modo che (A_e+B_eK) è asintoticamente stabile. Grazie ai teoremi sulla linearizzazione, $\delta x(t)$ convergerà a 0 (cioè x(t) convergerà effettivamente a x_e) se $\delta x(0)$ è in un intorno sufficientemente piccolo dell'origine (cioè x(0) è in un intorno sufficientemente piccolo di x_e).

Controllo nonlineare mediante linearizzazione (II)

Ricordiamo che $u(t)=u_e+\delta u(t)+\delta v(t)$ e $\delta x(t)\approx x(t)-x_e.$ Quindi

$$u_{\rm tmp}(t) = u_e + K \delta x(t) + \delta v(t) \approx u_e + K(x(t) - x_e) + \delta v(t)$$

Perciò la legge di controllo finale sarà

$$u(t) = u_e + K(x(t) - x_e) + \delta v(t)$$
 feedback (retroazione) per il sistema nonlineare

progettata sul sistema linearizzato

Controllo ottimo

Problema di ottimizzazione Linear Quadratic Regulation (LQR)

$$\begin{aligned} & \underset{x(\cdot), u(\cdot)}{\text{minimize}} & \int_0^{+\infty} \Big\{ x(\tau)^\top Q x(\tau) + u(\tau)^\top R u(\tau) \Big\} d\tau \\ & \text{subject to } & \dot{x}(t) = A x(t) + B u(t) \end{aligned}$$

dove con $x(\cdot), u(\cdot)$ si denotano le funzioni del tempo x e u

Soluzione del problema è un feedback dello stato del tipo u(t) = Kx(t)

La matrice K si può ricavare risolvendo l'equazione algebrica di Riccati:

$$A^{\top}P + PA - PBR^{-1}B^{\top}P + Q = 0$$
$$K = R^{-1}B^{\top}P$$

