Weich 23. November 2010

Notizen zu Paper "Colloids in suspense" von Poon, Pusey und Lekkerkerker

Michael Kopp	

Perrin und Atomistik Jean Perrin (1907-13) beobachtet kleine ($\sim 1 \mu m$) Samen in Flüssigkeit und beweist Existenz von Atomen.

 $\rho \propto \exp(-mgh/kT)$

Thermische Bew. ist Grundlage von Diffusion und Brown'scher Bewegung

Kolloide simulieren Atome Zeigen selbes Verhalten

Besser untersuchbar

Exp. Parameter kontrollierbar

In Hart-Kugel-System Kritische Temperatur $T_C \sim 0$.

Verh. wie Atomsystem mit $T > T_C$. \Rightarrow keine flüssige Phase

Entropie führt zu Kristallisation

Kristallisation von harten Kugeln schon ab $\phi = 0.001$. Coulombkraft hat Reichweite $\sim 10a$.

Liquid Def: Bew sich wie Gas, füllt aebr nicht alles Volumen aus.

Benötigt Anziehung der Teilchen. Diesee muss hinreichend große Reichweite haben.

Sinkt r_C (maximale Reichweite des Potentials) dann auch $D(T_C, T_T)$. Ist $r_C^{attr} \leq r_c^{rep}/3$ dann $T_C = T_T$ und damit kein liquid mehr. Ist r_C^{attr} noch kleiner, dann kein gasförmig mehr.

Vorhersage: In Systemen ohne liquid wird Kristall-Kristall-Übergang auftreten. Simuliert durch entropische Kräfte an harten Kugeln.

liquid ist nur dann möglich, wenn Potential relativ langreichweiteig ist. FÜr harte Kugeln mit $V^{attr} \propto r^{-n}$ und $n > \sim 7$ gibt es kein liquid mehr. n=6 bei VDW reicht also gerade so aus.

Metastabil System braucht $\tau_R \sim a/v^{Brown} \propto a^3$ um in Gleichgewichtszustand überzugehen. Für $a \sim 1 \mu m \Rightarrow \tau_R \sim$ Stunden.

Für $\phi \in [0.545, 0.740]$ GG = Kristall. Für $\phi > \phi_g = 0.58$: Partikel sind nur eingesperrt, können sich aber noch bewegen. "Glas".

Experiment: Kollodie werden mit Laser bestrahlt, per PC wird Streulicht verfolgt. Fluktuation entspr. Brownscher Bewegung. Abfall der Fluktuationen $\sim \tau_R$. Für $\phi \geq 0.587$ fällt Flukt. nicht auf 0 ab \Rightarrow Teilchen werden eingepresst, können sich nicht mehr ganz frei bewegen: "Glas".

Gel Bei kurzreichweitigen attr. WW bilden sich Cluster, die nicht bel. groß werden können. Die Cluster bilden ein selbstorganisiertes Gel mit einer typisce Längenscala. Bestrahlt man das mit einem Laser erhält man einen Ring.

Das gel ist nicht stabil. Sollte eign. ausrkistallisieren, tut es nur, wenn Entropische Kräfte groß genug sind.

Gravitation Einfluss quantifizieren mit $p_e := \tau_p/\tau_s$. τ_p [τ_s] Gibt Zeit an, um Dist a ungerichtet [nach oben/unten] zurückzulegen. Für kugelf. Teilchen: $p_e = m_B g a/kT$ mit m_B buyant-Masse.

Erde: $p_e \ll 1$. Kristalle sinken wg. großer Dichte ab; Phasentrennung. Kritalle werden klein und kompakt, da sich nicht zu viele Kolloidteilchen anlagern können, weil sie durch Schwerkraftbew. weggespült werden.

Weltraum: Große Dendriten, da kein Wegspülen.

In Schwerkraft bilden sich Gleichgewicht mit $\varrho = \varrho_0 \exp(-mgh/kT)$.