The Theoretical Minimum Quantum Mechanics - Solutions

L06E09

M. Bivert

May 1, 2023

Exercise 1. Prove that the four vectors $|sing\rangle$, $|T_1\rangle$, $|T_2\rangle$, and $|T_3\rangle$ are eigenvectors of $\boldsymbol{\sigma} \cdot \boldsymbol{\tau}$. What are their eigenvalues?

Recall the definition of those four vectors:

$$|\sin \rangle = \frac{1}{\sqrt{2}} (|ud\rangle - |du\rangle); \qquad |T_1\rangle = \frac{1}{\sqrt{2}} (|ud\rangle + |du\rangle)$$
$$|T_2\rangle = \frac{1}{\sqrt{2}} (|uu\rangle + |dd\rangle); \qquad |T_3\rangle = \frac{1}{\sqrt{2}} (|uu\rangle - |dd\rangle)$$

And the definition of $\sigma \cdot \tau$:

$$\boldsymbol{\sigma} \cdot \boldsymbol{\tau} = \sigma_x \tau_x + \sigma_y \tau_y + \sigma_z \tau_z$$

Again for this exercise, we won't need to explicitly use the Pauli matrices σ_i/τ_j . But actually, we won't even need the multiplication table either, as we've already done most of the work in earlier exercises. Indeed, if we want to prove that $|\Psi\rangle$ is an eigenvector for $\sigma \cdot \tau$, we expect to be able to carry some computation following this pattern:

$$\begin{aligned} (\boldsymbol{\sigma} \cdot \boldsymbol{\tau}) |\Psi\rangle &= & (\sigma_x \tau_x + \sigma_y \tau_y + \sigma_z \tau_z) |\Psi\rangle \\ &= & (\sigma_x \tau_x) |\Psi\rangle + (\sigma_y \tau_y) |\Psi\rangle + (\sigma_z \tau_z) |\Psi\rangle \\ &= & \dots \\ &= & \lambda_{\Psi} |\Psi\rangle \end{aligned}$$

But we know from the book that:

$$\sigma_x \tau_x |\sin g\rangle = \sigma_y \tau_y |\sin g\rangle = \sigma_z \tau_z |\sin g\rangle = -|\sin g\rangle$$

From L06E07 that

$$\begin{split} \sigma_x \tau_x |T_1\rangle &= & \frac{1}{\sqrt{2}}(|du\rangle + |ud\rangle) &=: & T_1; \\ \sigma_y \tau_y |T_1\rangle &= & \frac{1}{\sqrt{2}}(|du\rangle + |ud\rangle) &=: & T_1; \\ \sigma_z \tau_z |T_1\rangle &= & -\frac{1}{\sqrt{2}}(|du\rangle + |ud\rangle) &=: & -T_1; \end{split}$$

And from L06E08 that:

$$\begin{split} \sigma_x \tau_x | T_2 \rangle &= \quad \frac{1}{\sqrt{2}} (|uu\rangle + |dd\rangle) &=: \quad T_2; \quad \sigma_x \tau_x | T_3 \rangle &= \quad \frac{1}{\sqrt{2}} (|dd\rangle - |uu\rangle) =: \quad -T_3; \\ \sigma_y \tau_y | T_2 \rangle &= \quad -\frac{1}{\sqrt{2}} (|uu\rangle + |dd\rangle) &=: \quad -T_2; \quad \sigma_y \tau_y | T_3 \rangle &= \quad \frac{1}{\sqrt{2}} (|uu\rangle - |dd\rangle) =: \quad T_3; \\ \sigma_z \tau_z | T_2 \rangle &= \quad \frac{1}{\sqrt{2}} (|uu\rangle + |dd\rangle) &=: \quad T_2; \quad \sigma_z \tau_z | T_3 \rangle &= \quad \frac{1}{\sqrt{2}} (|uu\rangle - |dd\rangle) =: \quad T_3. \end{split}$$

It follows that:

$$\begin{aligned} &(\boldsymbol{\sigma}\cdot\boldsymbol{\tau})|\mathrm{sing}\rangle = & \sigma_x\tau_x)|\mathrm{sing}\rangle + (\sigma_y\tau_y)|\mathrm{sing}\rangle + (\sigma_z\tau_z)|\mathrm{sing}\rangle &= & \boxed{-3}|\mathrm{sing}\rangle \\ &(\boldsymbol{\sigma}\cdot\boldsymbol{\tau})|T_1\rangle = & \sigma_x\tau_x)|T_1\rangle + (\sigma_y\tau_y)|T_1\rangle + (\sigma_z\tau_z)|T_1\rangle &= & \boxed{+1}|T_1\rangle \\ &(\boldsymbol{\sigma}\cdot\boldsymbol{\tau})|T_2\rangle = & \sigma_x\tau_x)|T_2\rangle + (\sigma_y\tau_y)|T_2\rangle + (\sigma_z\tau_z)|T_2\rangle &= & \boxed{+1}|T_2\rangle \\ &(\boldsymbol{\sigma}\cdot\boldsymbol{\tau})|T_3\rangle = & \sigma_x\tau_x)|T_3\rangle + (\sigma_y\tau_y)|T_3\rangle + (\sigma_z\tau_z)|T_3\rangle &= & \boxed{+1}|T_3\rangle \end{aligned}$$

Hence, as foretold by the authors after this exercise, the triplets share a degenerate eigenvalue (+1), while the singlet is associated to a unique eigenvalue (-3), which justifies a posteriori their names.