Math 202A — UCB, Fall 2016 — William Guss Problem Set 14, dueeeeeeeeeeeeeeeeeeeeeeeee

(14.1) (Folland problem 4.65) Let U be an open subset of \mathbb{C} , and let $\{f_n\}$ be a sequence of holomorphic functions on U. If $\{f_n\}$ is uniformly bounded on compact subset of U, there is a subsequence that converges uniformly to a holomorphic function on compact subset of U.

Proof. If U is an open subset of \mathbb{C} and $\{f_n\}$ is uniformly bounded on compact subset of U, then for any compact of U, say K, $f_n|_K$ is holomorphic. Additionally, since \mathbb{C} is a second countable LCH space with the open ball topology, $f_n|_K$ is holomorphic on countably many fully connected precompacts, and therefore is analytic there. To lastly characterize f_n , uniform boundeness on K is equivalen to the existence of a real number M so that for all n, $|f_n(k)| \leq M$ when $k \in K$. Therefore $f_n|_K \not\to g$ where g is singular on any K.

Now for any compact $K \subset U$ that is without loss of generality fully connected, and for any $x \in K$. The analycity of f_n for all n lets us consider

$$f_n(x) - f_m(x) = \frac{1}{2\pi i} \int_{C_R(x)} \frac{f_n(y) - f_m(y)}{y - x} dy$$
$$|f_n(x) - f_m(x)| \le \frac{1}{2\pi} \int_{C_R(x)} \left| \frac{f_n(y) - f_m(y)}{y - x} \right| dy \le \frac{M4\pi R^2}{2\pi R}$$

By the unform boundedness of the sequence and the moduli bound of the function |y-x|. Therefore given $\epsilon > 0$ There is a $R = \epsilon/6M$ so that for all $n, m, |f_n(x) - f_m(x)| \le \epsilon/3$. Now by f_1 continous on K take $\delta = \min(R, \delta_1)$ so that δ_1 is the radius of the domain $C_{\delta_1}(x)$ on which f_1 takes values near x of moduli difference less than $\epsilon/3$. Then when $y \in C_{\delta}(x)$ for any m

$$|f_m(x) - f_m(y)| \le |f_m(x) - f_1(x) + f_1(x) - f_1(y) + f_1(y) - f_m(y)|$$

$$\le |f_m(x) - f_1(x)| + |f_1(x) - f_1(y)| + |f_1(y) - f_1(y)|$$

$$< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon \quad :)$$

Therefore f_n is equicontinuous on any compact. Returning to a more general setting, we can place $x, y \in U$ arbitrarily becasue \mathbb{C} is an LCH space, we can find a compact ball around x anywhere in U and then proceed with the proof. Therefore f_n is econtinuous on U.

Then by the Arzela-Ascoli Theorem II, there is an $f \in C(U)$ so that some subsequence of $\{f_n\}$ converges to f uniformly on compact sets. Then from compelx analysis, uniform convergence of analytic functions preserves analycity and so f is analytic.

(14.2) (Folland problem 4.63) Let $K \in C([0,1] \times [0,1])$. For $f \in C([0,1], \text{ let } Tf(x) = \int_0^1 K(x,y)f(y) \, dy$. Then $Tf \in C([0,1])$, and $\{Tf : \|f\|_u \le 1\}$ is precompact on C([0,1]).

Proof. We will use A-A Thoerem 1 to show that $\mathcal{F} = \{Tf : ||f||_u \leq 1\}$ is precompact. In order to do, we must first show that $Tf \in C([0,1])$ for any $f \in C([0,1])$ and furthermore that \mathcal{F} is pointwise bounded, and equicontinuous.

To assert the first claim, we will show that T is a bounded linear operator between $T: C([0,1]) \to C([0,1])$ and then use a basic theorem of functional analysis to assert its continuity. First since $[0,1]^2$ is compact in the box topology (and the product topology by Tychnov) as a subset of a Hausforff space, it is closed and bounded. Additionally K is then bounded by M_K . Additionally every $f \in C([0,1])$ is bounded in absolute value by $M_f \geq ||f||_u$. Therefore $||Tf||_u \leq M_K ||f_u||$ and so T is a bounded

operator. Next for any $f, g \in C([0,1]), T(f+g) = \int K_x(f+g) dy = \int K_x f dy + \int K_x g dy = Tf + Tg$ so the operator is bounded. Lastly we need show continuity of Tf on [0,1].

By uniformy continuity of f on x, given any ϵ , there is a δ so that $|x-y| < \delta$ implies $|T[f](x) - T[f](y)| \le ||T|||f(x) - f(y)| \le ||T||\epsilon$. Therefore let $\delta' = \min\{\delta, \epsilon/||T||\}$ and Tf is continuous. Therefore $T: C([0,1])) \to C([0,1])$ is a bounded linear operator and on the topology of uniform convergence T is continuous.

Next we need show taht \mathcal{F} is equicontinuous. For any $Tf \in \mathcal{F}$ we know that $||f||_u \leq 1$ and therefore $||Tf||_u = ||T|| ||f||_u$. Let any ϵ be given and fix $Tf \in \mathcal{F}$, by uniform continuity of Tf for all $\epsilon > 0$ there is a δ with for any $x, y \in [0, 1]$ and $|x - y| < \delta$, then $|Tf(x) - Tf(y)| < \epsilon/3$. Furthermore $||Tf - Tg||_u \leq ||T|| ||f - g||_u$. In particular $|Tf(x) - Tg(x)| = |\int K(x, y)(f(y) - g(y)) \ dy | \leq ||g - y||_u \int |K(x, y)| \ dy$. Now by the continuity of K(x, y) we have that

$$||g - y||_u \int_{[0,1]} |K(x,y)| dy = ||g - y||_u F(x) \in C([0,1])$$

Fix a particular $Tf \in \mathcal{F}$ and let δ be its continuity constant around x for $\epsilon/3$. Then take $\delta' = \min\{\delta, \gamma\}$ where γ is the continuity constant of F around x for $\epsilon/3$; that is the γ so that $|x - y| < \gamma$ implies $|F(x) - F(y)| < \epsilon/3$. Then when $|x - y| < \delta'$ we have that

$$\begin{split} |Tg(x) - fg(y)| &\leq |Tg(x) - Tf(x) + Tf(x) - Tf(y) + Tf(y) - Tg(y)| \\ &\leq |Tg(x) - Tf(x)| + |Tf(x) - Tg(y)| + |Tg(y) - Tf(y)| \\ &< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon \quad :) \end{split}$$

Then \mathcal{F} is precompact on C([0,1]).

In hindsight, proving continuity of T was pretty useless, lol.

(14.3) (Folland problem 4.66) Show that $1 - \sum_{1}^{\infty} c_n t^n$ is the maclaurin series for $(1-t)^{1/2}$ on compacta of (-1,1).

Proof. First recall that

$$c_n = \frac{1}{n!} \prod_{m=1}^{n} \frac{2m-3}{2}.$$

Then if we compute the series

$$1 + \sum_{n=1}^{\infty} c_n t^n = 1 + \left(-\frac{1}{2}\right) \sum_{n=1}^{\infty} \frac{t^n}{n!} \prod_{m=1}^{n-1} \frac{2m-1}{2}.$$

The difference of any two partial of the absolute series when $j \leq k$ is just

$$\begin{split} \left|1+\sum_{n=1}^{k}|c_nt^n|-1-\sum_{n=1}^{j}|c_nt^n|\right| &= \left|\left(-\frac{1}{2}\right)\sum_{n=1}^{k}\frac{|t^n|}{n!}\prod_{m=1}^{n-1}\frac{2m-1}{2}-\left(-\frac{1}{2}\right)\sum_{n=1}^{j}\frac{|t^n|}{n!}\prod_{m=1}^{n-1}\frac{2m-1}{2}\right| \\ &= \frac{1}{2}\left|\left(\sum_{n=j}^{k}\frac{|t^n|}{n!}\prod_{m=1}^{n-1}\frac{2m-1}{2}\right)\right| \\ &= \frac{1}{2}\left|\prod_{m=1}^{j-2}\frac{2m-1}{2}\left|\sum_{n=j}^{k}\frac{|t^n|}{n!}\prod_{m=j-1}^{n-1}\frac{2m-1}{2}\right| \\ &\leq \frac{1}{2}\left|\prod_{m=1}^{j-2}\frac{2m-1}{2}\right|\sum_{n=j}^{k}\frac{1}{n!}\prod_{m=j-1}^{n-1}\frac{2m-1}{2}; \quad |t|<1 \\ &= \frac{1}{2^{j-1}}(j-2)!!\sum_{n=j}^{k}\frac{(n-1)!!}{(j-1)!!\cdot n!2^{n-j}} \cdot !! \text{ is the double factorial} \\ &\leq \frac{2^{j/2}(j/2)!}{2^{j-1}}\sum_{n=j}^{k}\frac{2^{\frac{n-1}{2}}((n-1)/2)!}{n!2^{n-j}} \\ &\leq \frac{1}{2^{(j-2)/2}\prod_{j/2}^{j}n}\sum_{n=j}^{k}\frac{2^{\frac{2j-n-1}{2}}((n-1)/2)!j}{n!} \\ &\leq \sum_{n=j}^{k}\frac{(j/2)!(((j+n)-1)/2)!}{2^{n/2}(j+n)!} \leq \sum_{n=j}^{k}\frac{((n-1)/2)!}{2^{n/2}\prod_{j/2}^{n}m} \\ &\leq \frac{1}{2^{j/2}}\sum_{n=j}^{k}\frac{((n-1)/2)!}{2^{(n-j)/2}\prod_{j/2}^{n}m} \to 0 \quad j,k\to\infty. \end{split}$$

Therefore the series is uniformly convergent when $t \leq 1$, and so on compact subsets of (-1,1) the uniform convergence of $1 + \sum_{n=1}^{\infty} c_n t^n$ yields¹ that if $f(t) = 1 + \sum_{n=1}^{\infty} c_n t^n$ then $f'(t) = \sum_{n=1}^{\infty} n c_n t^{n-1}$.

¹Undergraduate real analysis.

Since $f'(t) = \sum_{n=1}^{\infty} nc_n t^{n-1}$ then

$$-2(1-t)f'(t) = 2(t-1)\sum_{n=1}^{\infty} nc_n t^{n-1} = 2\sum_{n=1}^{\infty} nc_n t^n - 2\sum_{n=1}^{\infty} nc_n t^{n-1}$$

$$= 2\sum_{n=1}^{\infty} nc_n (t^n - t^{n-1})$$

$$= 2(-(-1/2))t^0 + 2c_1 t - 2c_2 t + 4c_2 t^2 - 6c_3 t^2 + \cdots$$

$$= 1 + \sum_{n=1}^{\infty} 2(c_n - (n+1)c_{n+1})t^n$$

$$= 1 + \sum_{n=1}^{\infty} t^n 2\left(\frac{1}{n!} \prod_{m=1}^n \frac{2m-3}{2} - \frac{n+1}{(n+1)!} \prod_{m=1}^n \frac{2m-3}{2}\right)$$

$$= 1 + \sum_{n=1}^{\infty} \frac{t^n}{n!} 2\prod_{m=1}^n \frac{2m-3}{2} \left(1 - \frac{1}{2}\right)$$

$$= f(t).$$

Therefore f'(t) = -2(1-t)f'(t). Now multiplying by $(1-t)^{-1/2}f(t)$ we take the derivitive thereof and get $((1-t)^{-1/2}f(t))' = (1/2)(1-t)^{-3/2}f(t) + (1-t)^{-1/2}f'(t)$. Therefore $((1-t)^{-1/2}f(t))' = -(1-t)^{-3/2}(1-t)f(t) + (1-t)^{-1/2}f'(t) = 0$. So $(1-t)^{-1/2}f(t)$ is constant. Finally f(0) = 1 and thus $f(t) = (1-t)^{1/2}$. This completes the proof.

(14.4) Let X, Y be compact Hausdorff spaces. Show that the algebra generated by all products of functions $(x, y) \mapsto f(x)g(y)$, where $f \in C(X)$ and $g \in C(Y)$ is dense in $C(X \times Y)$.

Proof. Let \mathcal{A} be the set of functions mentioned in the problem. Clearly \mathcal{A} is a subalgebra since it is by definition the minimal family closed under multiplication and addition containing all $p \in C(X \times Y)$ such that $p = (x, y) \mapsto f(x)g(y)$ for some $g \in C(Y), f \in C(X)$. We need to show that this algebra sepeartes points. Take any distinct $(x, y), (w, z) \in X \times Y$. Since X, Y are compact Hausdorff spaces, they are normal and so by Urhysohn's lemma the following functions exist. Let $f \in C(X)$ so that f(x) = 1, f(w) = 0. Let $g \in C(Y)$ so that g(y) = 1 and g(z) = 0. Additionally let $h \in C(X)$ so that h(x) = 0, h(w) = 1 and $h(x) \in C(X)$ so that $h(x) = 0, h(x) \in C(X)$ and $h(x) \in C(X)$ so that $h(x) \in C(X)$ and $h(x) \in C(X)$ so that $h(x) \in C(X)$ so that $h(x) \in C(X)$ so that $h(x) \in C(X)$ and $h(x) \in C(X)$ so that $h(x) \in C(X)$

Since multiplication is a continuous operator on \mathbb{C}^2 it follows that all $p \in G$ where G is the generating family of \mathcal{A} are continuous, and continuous functions on $X \times Y$ are closed under algebraic operations (pointwise multiplication and addition). Additionally \mathcal{A} is closed under conjugation since the generating family is closed under c.c. $\overline{fg} = \overline{fg}$ where $\overline{f} \in C(X), \overline{g} \in C(Y)$. Lastly the non-zero constant map is in both C(X) and C(Y) so it is also in \mathcal{A}^2 so by the Complex Stone-Weierstrass Theorem we have $cl(\mathcal{A}) = C(X \times Y)$.

(14.5) let $X = [0,1]^A$ where $A \neq \emptyset$. Show that algebra generated by all coordinate maps $\pi_{\alpha} : X \to [0,1]$ together with the constant function 1 is dense in C(X).

²This is a proof that \mathcal{A} saitisifies the second condition of the theorem.

Proof. Let \mathcal{A} be the subalgebra described in the statement of the problem. The generating set of coordinate maps are continuous. We need show that \mathcal{A} separates points. Take any $x,y\in X$, distinct. Then $x=\prod_{\alpha\in A}x_{\alpha}\neq y=\prod_{\alpha\in A}y_{\alpha}$. Therefore there must be a $\alpha\in A$ so that $\pi_{\alpha}(x)=x_{\alpha}\neq y_{\alpha}=\pi_{\alpha}(y)$. So for every pair of distinct points $x,y\in X$ there is an α such that π_{α} separates x,y in $[0,1]\subset\mathbb{C}$. Therefore \mathcal{A} separates points. Next if $\overline{\pi_{\alpha}}=Re(\pi_{\alpha})-iIm(\pi_{\alpha})=Re(\pi_{\alpha})=\pi_{\alpha}$. Therefore \mathcal{A} is generated by a family which is closed under complex conjugation and so \mathcal{A} is closed under complex conjugation. Lastly since the constant map 1 is in \mathcal{A} it cannot be a subset of $\{f\in C(X): f(x_0)=0\}$. Therefore by the Stone-Weierstrass theorem $cl(\mathcal{A})=C(X)$. This completes the proof.