PROJECT: RAINFALL PREDICTION ON WEATHER DATASET

IMPORTING NEEDED LIBRARIES

```
# Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

UPLOADING THE DATASET

<pre># Uploading The Dataset df = pd.read_csv("/content/weatherAUS.csv") df.head()</pre>								
Sunshi		Location	MinTemp	MaxTemp	Rainfall	Evapor	ation	
	8-12-01	Albury	13.4	22.9	0.6		NaN	
1 200	8-12-02	Albury	7.4	25.1	0.0		NaN	
	8-12-03	Albury	12.9	25.7	0.0		NaN	
	8-12-04	Albury	9.2	28.0	0.0		NaN	
	8-12-05	Albury	17.5	32.3	1.0		NaN	
NaN								
Wind	GustDir	WindGustS	peed Win	dDir9am	Humidi	ty3pm	Pressure9am	
0	W		44.0	W		22.0	1007.7	
1	WNW		44.0	NNW		25.0	1010.6	
2	WSW		46.0	W		30.0	1007.6	
3	NE		24.0	SE		16.0	1017.6	
4	W		41.0	ENE		33.0	1010.8	
		63 10	63 10	- -				
Pre RISK M	ssure3pm M \	Cloud9am	Cloud3	pm Temp9	am Temp3p	om Rain	loday	
0 0.0	1007.1	8.0	N	aN 16	5.9 21.	8	No	
1	1007.8	NaN	N	aN 17	'.2 24.	3	No	
	1007.8	NaN	N	aN 17	'.2 24.	3	No	

2 0.0	1008.7	NaN	2.0	21.0	23.2	No	
3 1.0	1012.8	NaN	NaN	18.1	26.5	No	
4 0.2	1006.0	7.0	8.0	17.8	29.7	No	
RainTomorrow							
0 1	No No						
2	No						
3	No						
4	No						
[5 rd	ows x 24 colum	nns]					

DATA PREPROCESSING

```
# Finding the Statistical Measures of the Dataset
df.describe()
              MinTemp
                              MaxTemp
                                             Rainfall
                                                         Evaporation
       141556,000000
                        141871.000000
                                        140787,000000
                                                        81350.000000
count
            12.186400
                            23.226784
                                             2.349974
                                                             5.469824
mean
std
             6.403283
                             7.117618
                                             8.465173
                                                             4.188537
            -8.500000
                            -4.800000
                                             0.000000
                                                            0.000000
min
25%
             7.600000
                            17.900000
                                             0.000000
                                                             2.600000
50%
            12.000000
                            22.600000
                                             0.00000
                                                             4.800000
75%
            16.800000
                            28.200000
                                             0.800000
                                                             7.400000
            33.900000
                            48.100000
                                           371.000000
                                                          145.000000
max
            Sunshine
                      WindGustSpeed
                                        WindSpeed9am
                                                        WindSpeed3pm
                      132923.000000
count
       74377.000000
                                       140845,000000
                                                       139563,000000
            7.624853
                           39.984292
                                           14.001988
                                                           18.637576
mean
            3.781525
                           13.588801
                                            8.893337
                                                            8.803345
std
            0.00000
                            6.000000
                                            0.00000
                                                            0.000000
min
25%
           4.900000
                           31.000000
                                            7.000000
                                                           13.000000
50%
           8.500000
                           39.000000
                                           13.000000
                                                            19.000000
75%
           10.600000
                           48.000000
                                           19.000000
                                                           24.000000
           14.500000
                          135.000000
                                          130.000000
                                                           87.000000
max
                                          Pressure9am
                                                          Pressure3pm
         Humidity9am
                          Humidity3pm
                                                                         /
                                                        128212.000000
count
       140419.000000
                        138583.000000
                                        128179.000000
            68.843810
mean
                            51.482606
                                          1017.653758
                                                          1015.258204
            19.051293
                            20.797772
                                             7.105476
                                                              7.036677
std
             0.00000
                             0.000000
                                           980.500000
                                                           977.100000
min
25%
            57.000000
                            37.000000
                                          1012.900000
                                                          1010.400000
                                          1017.600000
            70.000000
                            52.000000
                                                          1015.200000
50%
75%
           83.000000
                            66.000000
                                          1022.400000
                                                          1020.000000
                                                          1039,600000
max
           100.000000
                           100.000000
                                          1041.000000
```

	Cloud9am	Cloud3pm	Temp9am	Temp3pm			
RISK_MM							
		35099.000000	141289.000000	139467.000000			
142193.000		4 500167	16 007500	21 607225			
mean	4.437189	4.503167	16.987509	21.687235			
2.360682	2 007016	2 720622	C 402020	C 027504			
std	2.887016	2.720633	6.492838	6.937594			
8.477969 min	0.000000	0.000000	-7.200000	-5.40000			
0.000000	0.000000	0.00000	-7.200000	-3.400000			
25%	1.000000	2.000000	12.300000	16.600000			
0.000000	11000000	2100000	12130000	10100000			
50%	5.000000	5.000000	16.700000	21.100000			
0.000000							
75%	7.000000	7.000000	21.600000	26.400000			
0.800000							
max	9.000000	9.000000	40.200000	46.700000			
371.000000							
# Checking the Dimention of the Dataset df.shape							
(142193. 24)							

(142193, 24)

Checking the Data type of the Dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 142193 entries, 0 to 142192
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	Date	142193 non-null	object
1	Location	142193 non-null	object
2	MinTemp	141556 non-null	float64
3	MaxTemp	141871 non-null	float64
4	Rainfall	140787 non-null	float64
5	Evaporation	81350 non-null	float64
6	Sunshine	74377 non-null	float64
7	WindGustDir	132863 non-null	object
8	WindGustSpeed	132923 non-null	float64
9	WindDir9am	132180 non-null	object
10	WindDir3pm	138415 non-null	object
11	WindSpeed9am	140845 non-null	float64
12	WindSpeed3pm	139563 non-null	float64
13	Humidity9am	140419 non-null	float64
14	Humidity3pm	138583 non-null	float64
15	Pressure9am	128179 non-null	float64
16	Pressure3pm	128212 non-null	float64

```
17
     Cloud9am
                    88536 non-null
                                      float64
 18 Cloud3pm
                    85099 non-null
                                      float64
 19
    Temp9am
                    141289 non-null
                                      float64
 20
    Temp3pm
                    139467 non-null
                                      float64
21
     RainTodav
                    140787 non-null
                                      object
22
     RISK MM
                    142193 non-null
                                      float64
23
     RainTomorrow
                    142193 non-null
                                      object
dtypes: float64(17), object(7)
memory usage: 26.0+ MB
# Dropping the Less Important Features from the Dataset
df = df.drop(["Evaporation", "Sunshine", "Cloud9am", "Cloud3pm",
"Location", "Date"], axis=1)
df.head()
   MinTemp
           MaxTemp
                     Rainfall WindGustDir
                                            WindGustSpeed WindDir9am \
0
      13.4
               22.9
                          0.6
                                                     44.0
                                        W
                                                                   W
       7.4
               25.1
                                                     44.0
1
                          0.0
                                       WNW
                                                                  NNW
2
      12.9
               25.7
                          0.0
                                                     46.0
                                       WSW
                                                                   W
3
               28.0
                                                     24.0
       9.2
                          0.0
                                        NE
                                                                   SE
4
      17.5
               32.3
                          1.0
                                        W
                                                     41.0
                                                                 ENE
 WindDir3pm
              WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm \
0
         WNW
                      20.0
                                     24.0
                                                  71.0
                                                               22.0
         WSW
                       4.0
                                     22.0
                                                  44.0
                                                               25.0
1
2
         WSW
                      19.0
                                     26.0
                                                  38.0
                                                               30.0
3
           Ε
                      11.0
                                      9.0
                                                  45.0
                                                               16.0
4
          NW
                       7.0
                                     20.0
                                                  82.0
                                                               33.0
   Pressure9am Pressure3pm Temp9am Temp3pm RainToday
RainTomorrow
        1007.7
                     1007.1
                                 16.9
                                          21.8
                                                      No
                                                              0.0
No
                                          24.3
                                                              0.0
1
        1010.6
                     1007.8
                                17.2
                                                      No
No
        1007.6
                     1008.7
                                 21.0
                                          23.2
                                                              0.0
2
                                                      No
No
3
        1017.6
                     1012.8
                                 18.1
                                          26.5
                                                      No
                                                              1.0
No
4
                                 17.8
                                          29.7
                                                              0.2
        1010.8
                     1006.0
                                                      No
No
# Removing rows from the Dataset that contains missing values (NaN).
df = df.dropna(axis = 0)
df.shape
(112925, 18)
# Printing All the Columns from the Dataset
df.columns
```

LABEL ENCODING

```
# Using Label Encoding to change the Categorical Values to Numerical
Values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df["WindGustDir"] = le.fit transform(df["WindGustDir"])
df["WindDir9am"] = le.fit_transform(df["WindDir9am"])
df["WindDir3pm"] = le.fit transform(df["WindDir3pm"])
df["RainToday"] = le.fit_transform(df["RainToday"])
df["RainTomorrow"] = le.fit transform(df["RainTomorrow"])
# Dropping the column "RainTomorrow" from the Dataset and storing that
to new variable called "Y"
X = df.drop(['RainTomorrow'], axis = 1)
Y = df['RainTomorrow']
X.head()
            MaxTemp
                     Rainfall WindGustDir WindGustSpeed WindDir9am
   MinTemp
0
      13.4
               22.9
                          0.6
                                         13
                                                      44.0
                                                                     13
               25.1
       7.4
                          0.0
                                         14
                                                      44.0
                                                                      6
      12.9
               25.7
                           0.0
                                         15
                                                      46.0
                                                                     13
       9.2
                                                                      9
3
               28.0
                          0.0
                                          4
                                                      24.0
      17.5
               32.3
                           1.0
                                         13
                                                      41.0
                                                                      1
   WindDir3pm
               WindSpeed9am
                             WindSpeed3pm
                                            Humidity9am
                                                         Humidity3pm \
0
           14
                       20.0
                                      24.0
                                                   71.0
                                                                 22.0
           15
1
                        4.0
                                      22.0
                                                   44.0
                                                                 25.0
2
           15
                       19.0
                                      26.0
                                                   38.0
                                                                 30.0
3
            0
                                       9.0
                                                   45.0
                       11.0
                                                                 16.0
4
            7
                        7.0
                                      20.0
                                                   82.0
                                                                 33.0
                                                            RISK MM
   Pressure9am
                Pressure3pm
                             Temp9am
                                      Temp3pm
                                                RainToday
        1007.7
                     1007.1
                                 16.9
0
                                          21.8
                                                        0
                                                                0.0
1
        1010.6
                     1007.8
                                 17.2
                                          24.3
                                                        0
                                                                0.0
```

2	1007.6	1008.7	21.0	23.2	0	0.0
3	1017.6	1012.8	18.1	26.5	Θ	1.0
4	1010.8	1006.0	17.8	29.7	0	0.2

DATA STANDARDIZATION

```
#This Method Computes the Mean and Standard Deviation of each feature
in 'X' and then
# Performs Standardization by Centering and Scaling the features.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit transform(X)
array([[ 0.11756741, -0.10822071, -0.20666127, ..., -0.04787026,
        -0.53828059, -0.27310246],
       [-0.84180219, 0.20684494, -0.27640495, \ldots, 0.31776848,
        -0.53828059, -0.27310246],
       [ 0.03761995, 0.29277194, -0.27640495, ...,
                                                      0.15688743,
        -0.53828059, -0.27310246],
       [-1.44940294, 0.23548728, -0.27640495, ...,
                                                      0.34701958,
        -0.53828059, -0.27310246],
       [-1.16159206, 0.46462594, -0.27640495, ...,
                                                      0.58102838.
        -0.53828059, -0.27310246],
       [-0.77784422, 0.4789471, -0.27640495, ..., 0.56640283,
        -0.53828059, -0.2731024611)
standardized data = X
X = standardized data
Y = df['RainTomorrow']
print(X)
print(Y)
                          Rainfall WindGustDir WindGustSpeed
        MinTemp
                 MaxTemp
WindDir9am \
           13.4
                    22.9
                               0.6
                                              13
                                                           44.0
13
1
            7.4
                    25.1
                               0.0
                                              14
                                                           44.0
6
2
                                                           46.0
           12.9
                    25.7
                               0.0
                                              15
13
                                               4
                                                           24.0
3
            9.2
                    28.0
                               0.0
9
4
           17.5
                               1.0
                                                           41.0
                    32.3
                                              13
1
. . .
142188
            3.5
                               0.0
                                               0
                    21.8
                                                           31.0
2
```

142189	2.8	23.4 0.	0	0	31.0	
9 142190	3.6	25.3 0.	0	6	22.0	
9 142191	5.4	26.9 0.	0	3	37.0	
9 142192 10	7.8	27.0 0.	0	9	28.0	
	WindDir3pm	WindSpeed9am	WindSpee	d3pm Hum	idity9am	
Humidit	y3pm \ 14	20.0		24.0	71.0	
22.0	15	4.0		22.0	44.0	
25.0 2	15	19.0		26.0	38.0	
30.0 3	0	11.0		9.0	45.0	
16.0 4	7	7.0		20.0	82.0	
33.0						
 142188	0	15.0		13.0	59.0	
27.0 142189	1	13.0		11.0	51.0	
24.0 142190	3	13.0		9.0	56.0	
21.0 142191	14	9.0		9.0	53.0	
24.0 142192 24.0	3	13.0		7.0	51.0	
	Pressure9am	Pressure3pm	Temp9am	Temp3pm	RainToday	RISK_MM
0	1007.7	1007.1	16.9	21.8	0	0.0
1	1010.6	1007.8	17.2	24.3	0	0.0
2	1007.6	1008.7	21.0	23.2	0	0.0
3	1017.6	1012.8	18.1	26.5	0	1.0
4	1010.8	1006.0	17.8	29.7	0	0.2
142188	1024.7	1021.2	9.4	20.9	0	0.0

```
142189
             1024.6
                           1020.3
                                      10.1
                                               22.4
                                                              0
                                                                      0.0
142190
                                      10.9
                                               24.5
                                                              0
                                                                     0.0
             1023.5
                           1019.1
142191
             1021.0
                           1016.8
                                      12.5
                                               26.1
                                                                      0.0
                                                              0
142192
             1019.4
                           1016.5
                                      15.1
                                               26.0
                                                              0
                                                                      0.0
[112925 rows x 17 columns]
1
          0
2
          0
3
          0
4
          0
142188
          0
142189
          0
142190
          0
142191
          0
142192
Name: RainTomorrow, Length: 112925, dtype: int64
```

DATA VISUALIZATION

```
# Displaying the prediction, whether it will rain tomorrow or not
through Scatter Plot, considering "MaxTemp" and "MinTemp".
plt.figure(figsize = (8,8))
sns.scatterplot(x = 'MaxTemp', y = 'MinTemp', hue = 'RainTomorrow',
palette = 'inferno', data = df)

<Axes: xlabel='MaxTemp', ylabel='MinTemp'>
```



```
# Displaying the prediction, whether it will rain tomorrow or not
through Scatter Plot, considering "Humidity9am" and "Temp9am".
plt.figure(figsize = (8,8))
sns.scatterplot(x = 'Humidity9am', y = 'Temp9am', hue =
'RainTomorrow', palette = 'inferno', data = df)

<Axes: xlabel='Humidity9am', ylabel='Temp9am'>
```


HEATMAP

```
# Displaying the Correlations among dataset through Heatmap, to
compute the pairwise correlation between its columns.
corrmat = df.corr()
plt.figure(figsize=(20,20))
g=sns.heatmap(corrmat, annot=True)
```


TRAIN-TEST-SPLIT

```
# Splitting the Dataset into Training and Testing Dataset
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2, random_state=0)
```

from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score

DECISION TREE

```
# Taining the Model
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score
model 1 = DecisionTreeClassifier()
model 1.fit(X train, Y train)
DecisionTreeClassifier()
# Finding the Accuracy score of Training Data
X train prediction = model 1.predict(X train)
training data accuracy = accuracy score(X train prediction, Y train)
# Finding the Accuracy Score of Testing Data
X test prediction = model 1.predict(X test)
test data accuracy = accuracy score(X test prediction, Y test)
# Printing the Confusion Matrix, Classification Report, and Accuray
Score
print('Matrix', confusion matrix(Y test, X test prediction))
print('f1', classification report(\overline{Y} test, \overline{X} test prediction))
print('Accuracy', accuracy score(Y test, X test prediction))
Matrix [[17650
                   01
Γ
      0 493511
f1
                 precision recall f1-score
                                                  support
           0
                   1.00
                             1.00
                                        1.00
                                                 17650
           1
                                                  4935
                   1.00
                              1.00
                                        1.00
    accuracy
                                        1.00
                                                 22585
                                        1.00
                   1.00
                             1.00
                                                 22585
   macro avo
                              1.00
                                        1.00
                                                 22585
weighted avg
                   1.00
Accuracy 1.0
# Printing the Accuracy of Training Data and Test Data.
print('Accuracy on Training Data : ', training data accuracy)
print('Accuracy on Test Data : ', test_data_accuracy)
Accuracy on Training Data: 1.0
Accuracy on Test Data: 1.0
```

ARTIFICIAL NEURAL NETWORK

```
# Training the Model
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
```

```
model 2 = MLPClassifier()
model 2.fit(X train, Y train)
MLPClassifier()
# Finding the Accuracy score of Training Data
X train prediction = model 1.predict(X train)
training data accuracy = accuracy score(X train prediction, Y train)
# Finding the Accuracy Score of Testing Data
X test prediction = model 1.predict(X test)
test data accuracy = accuracy score(X test prediction, Y test)
# Printing the Confusion Matrix, Classification Report, and Accuray
Score
print('Matrix', confusion matrix(Y test, X test prediction))
print('f1', classification_report(Y_test, X_test_prediction))
print('Accuracy', accuracy_score(Y_test, X_test_prediction))
Matrix [[17650
                   01
Γ
      0 493511
f1
                 precision recall f1-score
                                                 support
                   1.00
                             1.00
                                       1.00
                                                17650
           1
                             1.00
                                                 4935
                   1.00
                                       1.00
                                       1.00
                                                22585
    accuracy
                                       1.00
                                                22585
                   1.00
                             1.00
   macro avq
weighted avg
                   1.00
                             1.00
                                       1.00
                                                22585
Accuracy 1.0
# Printing the Accuracy of Training Data and Test Data.
print('Accuracy on Training Data : ', training_data_accuracy)
print('Accuracy on Test Data : ' , accuracy_score(Y_test,
X test prediction))
Accuracy on Training Data: 1.0
Accuracy on Test Data: 1.0
```

RANDOM FOREST CLASSIFIER

```
# Training the Model
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
model_3 = DecisionTreeClassifier()
model_3.fit(X_train, Y_train)
DecisionTreeClassifier()
```

```
# Finding the Accuracy score of Training Data
X train prediction = model 1.predict(X train)
training data accuracy = accuracy score(X train prediction, Y train)
# Finding the Accuracy Score of Testing Data
X test prediction = model 1.predict(X test)
test data accuracy = accuracy score(X test prediction, Y test)
# Printing the Confusion Matrix, Classification Report, and Accuray
Score
print('Matrix', confusion matrix(Y test, X test prediction))
print('f1', classification_report(Y_test, X_test_prediction))
print('Accuracy', accuracy score(Y test, X test prediction))
Matrix [[17650
                01
      0 4935]]
[
f1
                 precision recall f1-score
                                                 support
           0
                   1.00
                             1.00
                                       1.00
                                                17650
           1
                   1.00
                             1.00
                                       1.00
                                                 4935
                                       1.00
                                                22585
    accuracy
                   1.00
                             1.00
                                       1.00
                                                22585
   macro avq
weighted avg
                   1.00
                             1.00
                                       1.00
                                                22585
Accuracy 1.0
# Printing the Accuracy of Training Data and Test Data.
print('Accuracy on Training Data : ', training_data_accuracy)
print('Accuracy on Test Data : ' , accuracy score(Y test,
X test prediction))
Accuracy on Training Data: 1.0
Accuracy on Test Data: 1.0
```

XGBOOST CLASSIFIER

```
interaction constraints=None, learning rate=None,
max bin=None,
              max cat threshold=None, max cat to onehot=None,
              max delta step=None, max depth=None, max leaves=None,
              min child weight=None, missing=nan,
monotone constraints=None,
              n estimators=100, n jobs=None, num parallel tree=None,
              predictor=None, random state=None, ...)
# Finding the Accuracy score of Training Data
X train prediction = model 1.predict(X train)
training data accuracy = accuracy score(X train prediction, Y train)
# Finding the Accuracy Score of Testing Data
X_test_prediction = model_1.predict(X_test)
test data accuracy = accuracy score(X test prediction, Y test)
# Printing the Confusion Matrix, Classification Report, and Accuray
Score
print('Matrix', confusion matrix(Y test, X test prediction))
print('f1', classification_report(Y_test, X_test_prediction))
print('Accuracy', accuracy score(Y test, X test prediction))
Matrix [[17650
                   01
      0 4935]]
f1
                 precision recall f1-score
                                                 support
           0
                   1.00
                             1.00
                                       1.00
                                                17650
                   1.00
                             1.00
                                       1.00
                                                 4935
                                       1.00
                                                22585
    accuracy
                   1.00
                             1.00
                                       1.00
   macro avg
                                                22585
weighted avg
                   1.00
                             1.00
                                       1.00
                                                22585
Accuracy 1.0
# Printing the Accuracy of Training Data and Test Data.
print('Accuracy on Training Data : ', training_data_accuracy)
print('Accuracy on Test Data : ' , accuracy_score(Y_test,
X test prediction))
Accuracy on Training Data: 1.0
Accuracy on Test Data: 1.0
```

BUILDING A PREDICTIVE MODEL

```
input_data =
(12.9,25.7,0.0,15,46.0,13,15,19.0,26.0,38.0,30.0,1007.6,1008.7,21.0,23
.2,0,0.0)
```

```
# Changing the input data to numpy array
input data as numpy array = np.asarray(input data)
# Reshape the array as we are predicting for one instance
input data reshaped = input data as numpy array.reshape(1, -1)
# Standardize the input data
std data = scaler.transform(input data reshaped)
print(std data)
prediction = xgb.predict(std data)
print(prediction)
if (prediction[0]==0):
   print("It will not rain Tomorrow")
else:
   print("It will rain Tomorrow")
1.26635166
  1.56864841 0.45789965 0.75750703 -1.55482757 -0.99521374 -
1.39718102
 -0.91249673  0.55672435  0.15688743  -0.53828059  -0.27310246]]
[0]
It will not rain Tomorrow
```