ITAM

Departamento de Estadística

Inferencia Estadística
– Laboratorio #7 Estimador de Máxima Verosimilitud y Convergencia

- 1. Define el estimador de máxima verosimilitud, explique la intuición detrás de este y enliste algunas ventajas y desventajas de su uso.
- 2. Sea $X_1,...,X_n$ una m.a. $\Gamma(\alpha,\beta)$. Encuentra el EMV si α es conocido.
- 3. Sea $X_1, ..., X_n$ una m.a. con distribución $f(x|\theta) = \theta x^{-2}, 0 < \theta \le x < \infty$, si $X_{(1)}$ es un estadístico suficiente para θ , encuentre el EMV para θ .
- 4. Sea $X_1,...,X_n$ una m.a. con distribución $f(x|\theta)=\theta x^{\theta-1},\ 0\leq x\leq 1,\ 0<\theta<\infty$. Encuentre el EMV para θ y que pasa con la varianza si $n\to\infty$.
- 5. Enuncie los tipo de convergencia y explique la intuición detrás de cada una.
- 6. Demuestre que si $X_n \stackrel{c.s}{\to} X$ entonces, $aX_n + b \stackrel{c.s}{\to} aX + b$
- 7. Sean X_n una secuencia de v.a.'s tal que $F_{X_n} = 1 (1 \frac{1}{n})^{nx}$, $x \ge 0$ demuestre que $X_n \stackrel{d}{\to} Exp(1)$.
- 8. Sea X una v.a. y $X_n = X + Y_n$ donde $\mathbb{E}(Y_n) = \frac{1}{n}$, $var(Y_n) = \frac{\sigma^2}{n}$ donde $\sigma > 0$. Demuestre que $X_n \stackrel{p}{\to} X$.
- 9. Sea $X_n \sim Unif(0, \frac{1}{n})$. Demuestre que $X_n \stackrel{m^k}{\to} 0$ para todo $r \geq 1$
- 10. (DIFÍCIL) Una propiedad importante de los EMV's es la
 invarianza. Eso es, si $\hat{\theta}$ es el EMV de θ , entonces para cualquier función $\tau(\theta)$ el EMV de $\tau(\theta)$ es $\tau(\hat{\theta})$