Case-Study zur Arbeitslosigkeit in Deutschland

Organisatorische Hinweise

- Viele Deadlines
- Ungewohntes Format (sehr technisch)
- **◆** Github, RStudio, R
- **◆** Arbeitsschritte mit Github (3. Problem Set von Github herunterladen und lösen)

Dies ist alles neu und das ist uns bewusst!

Warum das Ganze?

- Durch die Deadlines sollten Sie sich mit dem Stoff auseinandersetzen
- lacktriangle Github, R, RStudio und RMarkdown müssen Sie in den Projekten nutzen ightarrow Üben mit RTutor
- lacktriangle Visualisierung, Interpretation und Präsentation in den Projekten gefragt ightarrow Üben mit der Case-Study

Recap letzte Vorlesungseinheit

- ◆ Verschiedene Arten einen Datensatz einzulesen
 - ◆ readr, readxl, haven...
- ◆ Variablenbezeichnungen stehen nicht zwangsläufig in erster Spalte
- **★** Es gibt oft und viele NAs in echten Daten
 - **★** Konsistenzchecks wichtig
- **◆** Datensätze sind nicht immer in der Form das wir diese direkt Einlesen können
 - ♣ Aus verschiedenen Quellen einlesen, z.B. über eine for-Schleife
 - **◆** Umformen, da die Daten im wide-Format vorliegen -> pivot_longer
- **★** Es ist wichtig sich selbst ein Bild von den Daten zu machen

Analyse der Daten

Deskriptive vs. induktive Statistik

- **◆** Deskriptive Statistik (beschreibende Statistik) ist beschreibend (wer hätte es gedacht)
- **★** Induktive (auch schließende) Statistik versucht aus der Stichprobe auf die Grundgesamtheit zu schließen
- ★ Keine Unterscheidung in der Formel
- Keine Unterscheidung in dem Datensatz der verwendet wird

Worin genau besteht der Unterschied zwischen der deskriptiven und der induktiven Statistik?

Deskriptive Statistik

- ★ Beschreibung des Datensatzes
 - **★ Beispiel:** Daten von der Agentur für Arbeit über die Arbeitslosenquote in den Landkreisen
- ★ Mehrere Arten denkbar
 - **+** Tabellenform
 - ◆ Visualisierung mittels Schaubildern

Sie wollen etwas über ihren aktuellen Datensatz lernen

Induktive Statistik

- **◆** Interesse gilt nicht dem Datensatz selbst, sondern der Population
 - ◆ Sie haben keine Vollerhebung durchgeführt, sondern nur eine (zufällige) Stichprobe der Population gezogen
- **★ Beispiel:** Mikrozensus, d.h. eine Befragung von zufällig ausgewählten Haushalten in Deutschland
- → Sie wollen aus der Stichprobe schätzen, wie sich die beobachtete Größe in der Population verhält
- **★** Es gibt viele Arten der induktiven Statistik. Die zwei häufigsten:
 - **◆** Vorhersage
 - **★** Erkennen kausaler Zusammenhänge

In die induktive Statistik tauchen wir nächstes Semester tiefer ein.

Deskriptive Statistik

Univariate deskriptive Statistik

- **★** Eine Variable wird dargestellt:
 - ◆ Verteilung
 - **★** Mittelwert
 - ◆ Standardabweichung
 - **★** Median
 - **+** Quantile
- **◆** Überblick verschaffen, Eigenschaften der Variablen aufzeigen

Univariate deskriptive Statistik

- **◆** Darstellung über eine Tabelle
 - ★ Median, Mittelwert, Standardabweichung und Quantile
- **◆** Darstellung über einen Boxplot
 - ★ Median, Inter-Quartile-Range (ICR), Ausreißer
- ◆ Darstellung über ein Histogram
 - ◆ Verteilung mit Anzahl an Beobachtungen
- ◆ Darstellung über einen Kerndichteschätzer
 - ◆ Verteilung mit Dichte

Univariate deskriptive Statistik (Boxplot)

Bivariate deskriptive Statistik

Darstellung von Zusammenhängen zweier Variablen

- ★ Korrelation zweier Variablen
- **◆** Wenn sich eine Variable verändert, wie verändert sich die andere Variable?

Darstellung als:

- Streudiagramm
- **★** Korrelationskoeffizient (meist innerhalb eines Korrelationsmatrix)

Wie sieht die deskriptive Statistik in der Praxis aus?

Zweiter Teil der Case Study

Eingelesene Daten deskriptiv untersuchen

- **◆ Erster Schritt: Deskriptive Tabellen mit** kableExtra und gt
- **★** Zweiter Schritt: Grafiken mit ggplot2

Ziele des zweiten Teils der Case Study:

- **◆** Daten visualisieren und Zusämmenhänge grafisch veranschaulichen
- Deskriptive Analysen mittels Korrelationstabellen und deskriptiven Tabellen anfertigen
- → Das Verständnis wie Sie ihre Informationen zu bestimmten Fragestellungen möglichst effektiv aufbereiten
- **★** Interaktive Grafiken erstellen

Im dritten RTutor Problem Set werden Sie Visualisierung zu einzelnen Ländern auf europäischer Ebene.

Daten und Pakete laden

Wir laden die aus Teil 1 erstellten Datensätze:

```
library(tidyverse)
library(skimr)
library(sf)
library(viridis)
library(plotly)
library(kableExtra)
library(gt)
```

```
# Daten einlesen
#einkommen <- readRDS("../case-study/data/einkommen.rds")
bundesland <- readRDS("../case-study/data/bundesland.rds")
landkreise <- readRDS("../case-study/data/landkreise.rds")
bip_zeitreihe <- readRDS("../case-study/data/bip_zeitreihe.rds")
gemeinden <- readRDS("../case-study/data/gemeinden.rds")
gesamtdaten <- readRDS("../case-study/data/gesamtdaten.rds")
schulden_bereinigt <- readRDS("../case-study/data/schulden_bereinigt.rds")</pre>
```

Deskriptive Analysen

Arbeitslosenquote berechnen

Zuerst: Überblick über die Daten gewinnen

- ➡ Wie viele Landkreise haben wir in den Daten?
- ★ Wie ist die Verteilung der Schulden, Arbeitsenquote und des BIP?

Hierzu müssen wir erst noch die Arbeitslosenquote berechnen:

 $Arbeitslosen quote = Erwerbslose/(Erwerbst\"{a}tige + Erwerbslose)$

```
# Zuerst wollen wir uns noch die Arbeitslosenquote pro Landkreis berechnen
gesamtdaten <- gesamtdaten %>%
  mutate(alo_quote = (total_alo / (erw+total_alo))*100)
```

Quick and dirty(einfacher Tibble Datensatz): Einen Blick auf die Anzahl an Erwerbstätigen und Einwohnern in Deutschland werfen.

```
# Wie viele Erwerbstätige und Einwohner (ohne Berlin, Hamburg, Bremen und Bremerhaven) hat Deutschland?
gesamtdaten %>%
summarise(total_erw = sum(erw, na.rm=TRUE), total_einwohner = sum(Einwohner, na.rm=TRUE))
```

- **★** 41,5 Mio. Erwerbstätige und 76,9 Mio Einwohner in Deutschland
- **★** Folgende Stadtstaaten sind nicht in unseren Berechnungen enthalten:
 - + Hamburg (1,8 Mio.)
 - **+** Berlin (3,87 Mio.)
 - ♣ Bremen (0.6 Mio.)
 - **◆** Bremerhaven (0.1 Mio.)

Etwas besser mit skimr Daten veranschaulichen

```
# Anschließend wollen wir eine Summary Statistic für alle Variablen ausgeben lassen
# Entfernen der Histogramme, damit alles auch schön in PDF gedruckt werden kann
gesamtdaten %>%
   select(alo_quote, Schulden_pro_kopf_lk, bip_pro_kopf, landkreis_name) %>%
   skim_without_charts() %>%
   summary()
```

Data summary

Name Piped data

Number of rows 400

Number of columns 4

Column type frequency:

character 1

numeric 3

Group variables None

★ 400 individuelle Beobachtungen in unserem Datensatz.

Hierbei handelt es sich um alle Landkreise und kreisfreien Städte in Deutschland.

Stimmen diese Angaben?

- In Deutschland gibt es <u>294 Landkreise</u>)
- ◆ Weiterhin gibt es in Deutschland 106 kreisfreie Städte

(Quelle: Wikipedia)

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace landkreis_name 0 1 3 32 0 378 0

◆ Nur 378 unterschiedliche Landkreis Namen in unserem Datensatz mit 400 unterschiedlichen Beobachtungen (Regionalschlüsseln).

Woher kommt dies?

- ◆ Stadt München ist eine Beobachtung
- ★ Landkreis München eine weitere Beobachtung

Beide haben unterschiedliche Regionalschlüssel. D.h. der "landkreis_name" ist der gleiche, jedoch ist der Regionalschlüssel ein anderer.

Nun möchten wir uns noch die einzelnen Variablen aus dem Datensatz näher anschauen:

Variable type: numeric

skim_variable	n_missing compl	ete_rate	mean	sd	р0	p25	p50	p75	p10
alo_quote	2	1.00	5.28	2.07	1.81	3.66	5.00	6.62	14.4
Schulden_pro_kopf_lk	4	0.99	2919.82	2272.31	218.94	1462.92	2255.53	3460.74	16678.0
bip_pro_kopf	2	1.00	40241.49	16714.37	17553.39	30303.58	36497.09	43846.03	158749.0
Einwohner	4	0.99	194292.28	151587.20	34029.00	103573.25	155842.00	237861.25	1487560.0

- **★** Fehlende Beobachtungen für Schulden pro Kopf: vier Landkreise
- **★** Fehlende Beobachtung für Einwohner: *vier* Landkreise
- **★** Fehlende Beobachtungen für BIP pro Kopf: zwei Landkreise
- **★** Fehlende Beobachtungen für die Arbeitslosenquote: zwei Landkreise

```
gesamtdaten %>%
  filter(is.na(Einwohner)) %>%
  select(landkreis_name)
```

```
## # A tibble: 4 × 1
##   landkreis_name
##   <chr>
## 1 Hamburg
## 2 Bremen
## 3 Bremerhaven
## 4 Berlin
```

Wir können diese Landkreise nicht mit in unsere Analyse mit einbeziehen auf Grund der fehlenden Informationen zu Einwohnern!

Beschreibung der Tabelle

Variable type: numeric

skim_variable	n_missing comple	te_rate	mean	sd	р0	p25	p50	p75	p100
alo_quote	2	1.00	5.28	2.07	1.81	3.66	5.00	6.62	14.47
Schulden_pro_kopf_lk	4	0.99	2919.82	2272.31	218.94	1462.92	2255.53	3460.74	16678.07
bip_pro_kopf	2	1.00	40241.49	16714.37	17553.39	30303.58	36497.09	43846.03	158749.09

Bitte beschreiben Sie die Tabelle in ihren eigenen Worten!

Gehen Sie hierbei bitte auf eine Variable (alo_quote, Schulden_pro_Kopf_lk, bip_pro_kopf) und einen der folgenden Punkte ein:

- Mittelwert
- Standardabweichung
- **★** Median

Arbeitslosenquote

Mittelwert: 5,28 Prozent

- **★** Sehr hoch
- Jedoch SGB II und SGB III
- ★ Konsistenzcheck auf <u>Statista</u> zeigt eine Arbeitslosenquote von 5,7% für 2021
- **★ Jedoch:** Wir haben nicht Berlin und Hamburg in den Daten

Standardabweichung: 2,07

- Sehr hohe Streuung
- **◆** Deutliche regionale Unterschiede
- **★** Ist in Prozentpunkten

Median: 5,00 Prozent

- **◆** Nahe am Mittelwert
- **◆** Deutet darauf hin das es wenige Landkreise mit sehr extremen Ausreißern gibt

Verschuldung pro Kopf

Mittelwert: 2920€

◆ Moderat von der Höhe her

Standardabweichung: 2272€

◆ Sehr hohe Streuung

→ Deutliche regionale Unterschiede

Median: 2256€

★ Weiter weg vom Mittelwert

◆ Deutet darauf hin das es einzelne Landkreise mit sehr extremen Ausreißern gibt

BIP pro Kopf

Mittelwert: 40241€

- **◆** Insgesamt recht hoch
- Starker Wirtschaftsstandort Deutschland

Standardabweichung: 16714€

- Sehr hohe Streuung
- **★** Deutliche regionale Unterschiede
- **★** Könnte von einzelnen Landkreisen getrieben werden

Median: 36497€

- ★ Weiter weg vom Mittelwert
- → Deutet darauf hin das es einzelne Landkreise mit sehr extremen Ausreißern gibt

Es gibt deutliche Unterschiede in der Arbeitslosenquote über die Bundesländer hinweg!

Wir betrachten:

- Querschnittsdaten aus 2021
- Alle Landkreise
- **◆** Für einige Landkreise haben wir keine Informationen (sogenannte "Missing values" -> n_missing)

Was wollen wir?

Die regionale Verteilung der Arbeitslosenquote in Deutschland im Jahr 2021 näher betrachten.

Zuerst aggregieren wir die Daten auf Bundeslandebene:

```
bula_data <- gesamtdaten %>%
  group_by( bundesland_name ) %>%
  summarise(mean_alo = mean(alo_quote), sd_alo = sd(alo_quote), median_alo = median(alo_quote)) %>%
  ungroup()
```

##	# ;	A tibble: 16 × 4			
##		bundesland_name	mean_alo	sd_alo	median_alo
##		<chr></chr>		<dbl></dbl>	
##	1	Baden-Württemberg	3.80	0.795	3.73
##	2	Bayern	3.31	0.746	3.23
##	3	Berlin	NA	NA	NA
##	4	Brandenburg	6.73	1.50	7.03
##	5	Bremen	9.43	2.32	9.43
##	6	Hamburg	NA	NA	NA
##	7	Hessen	5.11	1.38	5.18
##	8	Mecklenburg-Vorpommern	7.55	1.18	7.67
##	9	Niedersachsen	5.86	1.73	5.90
##	10	Nordrhein-Westfalen	7.14	2.46	6.85
##	11	Rheinland-Pfalz	5.53	1.53	5.39
##	12	Saarland	6.08	1.82	5.75
##	13	Sachsen	5.80	0.893	5.58
##	14	Sachsen-Anhalt	7.70	1.33	7.47
##	15	Schleswig-Holstein	5.92	0.915	5.95
##	16	Thüringen	6.10	1.36	5.57

Anschließend wollen wir uns eine ansprechende und informative deskriptive Tabelle erstellen:

##	# 7	A tibble: 14 × 4			
##		bundesland_name	mean_alo	sd_alo	median
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<
##	1	Bayern	3.31	0.746	
##	2	Baden-Württemberg	3.80	0.795	
##	3	Hessen	5.11	1.38	
##	4	Rheinland-Pfalz	5.53	1.53	
##	5	Sachsen	5.80	0.893	
##	6	Niedersachsen	5.86	1.73	
##	7	Schleswig-Holstein	5.92	0.915	
##	8	Saarland	6.08	1.82	
##	9	Thüringen	6.10	1.36	
##	10	Brandenburg	6.73	1.50	
##	11	Nordrhein-Westfalen	7.14	2.46	
##	12	Mecklenburg-Vorpommern	7.55	1.18	
##	13	Sachsen-Anhalt	7.70	1.33	
##	14	Bremen	9.43	2.32	

	Albeitsloseliquote				
Bundesland	Mittelwert	Std.	Mediar		
Bayern	3.31	0.75	3.23		
Baden-Württemberg	3.80	0.80	3.73		
Hessen	5.11	1.38	5.18		
Rheinland-Pfalz	5.53	1.53	5.39		
Sachsen	5.80	0.89	5.58		
Niedersachsen	5.86	1.73	5.90		
Schleswig-Holstein	5.92	0.92	5.9		
Saarland	6.08	1.82	5.7		
Thüringen	6.10	1.36	5.5 ⁻		
Brandenburg	6.73	1.50	7.03		
Nordrhein-Westfalen	7.14	2.46	6.8		
Mecklenburg-Vorpommern	7.55	1.18	7.6		
Sachsen-Anhalt	7.70	1.33	7.4		
Bremen	9.43	2.32	9.4		

Wir haben keine Informationen zu Berlin und Hamburg, weshalb sie nicht in der Tabelle aufgeführt wurden.

¹ Die ostdeutschen Bundesländer sind grau hinterlegt.

Arbeitslosenquote

Die Darstellung mit dem Paket kableExtra ist deutlich ansprechender als nur einen Tibble zu zeigen!

Folgender Code wurde hier verwendet, welchen wir in der nächsten Folie Schritt für Schritt durchgehen werden:

```
bula data %>%
 arrange ( mean alo ) %>%
 filter(!is.na(mean alo)) %>%
 kbl(col.names = c("Bundesland",
                    "Mittelwert",
                    "Std.",
                    "Median"), digits = 2) %>%
 kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
 kable paper(full width = F) %>%
  row spec(c(5,7,9,10,12,13), bold = T, color = "white", background = "#BBBBBB") %>%
 add header above(c(" " = 1, "Arbeitslosenquote" = 3), align = "c") %>%
  footnote (general = "Wir haben keine Informationen zu Berlin und Hamburg, weshalb sie nicht in der Tabelle a
           general title = "Bitte beachten: ",
           number = "Die ostdeutschen Bundesländer sind grau hinterlegt.")
```

Arbeitslosenquo	te
Arbeitslosenquo	te

Bundesland	Mittelwert	Std.	Median
Bayern	3.31	0.75	3.23
Baden-Württemberg	3.80	0.80	3.73
Hessen	5.11	1.38	5.18
Rheinland-Pfalz	5.53	1.53	5.39
Sachsen	5.80	0.89	5.58
Niedersachsen	5.86	1.73	5.90
Schleswig-Holstein	5.92	0.92	5.95
Saarland	6.08	1.82	5.75
Thüringen	6.10	1.36	5.57
Brandenburg	6.73	1.50	7.03
Nordrhein-Westfalen	7.14	2.46	6.85
Mecklenburg-Vorpommern	7.55	1.18	7.67
Sachsen-Anhalt	7.70	1.33	7.47
Bremen	9.43	2.32	9.43
Ditto hosphton:			

Bitte beachten:

Wir haben keine Informationen zu Berlin und Hamburg, weshalb sie nicht in der Tabelle aufgeführt wurden.

¹ Die ostdeutschen Bundesländer sind grau hinterlegt.

Was lernen wir aus der deskriptiven Tabelle?

- **★** Landkreise im Süden Deutschlands haben durchschnittlich eine sehr niedrige Arbeitslosenquote (<4%)
- **★** Landkreise in den ostdeutschen Bundesländern leiden unter hohen Arbeitslosenquoten (>8%)
- **★** Standardabweichung bei allen Bundesländern vergleichbar
 - **★** Es gibt hier vermutlich keine großen Ausreißer bei den Arbeitslosenquoten in den Landkreisen
- **★** Median liegt recht nahe am Mittelwert für die Bundesländern

Sehr große Unterschiede in den durchschnittlichen Arbeitslosenquoten zwischen Landkreisen in Ost- und Westdeutschland!

Die Arbeitslosenquote zwischen Ost- und Westdeutschland

Wir wollen uns eine neue Variable "ost", bzw. "ost_name" generieren. Anschließend können wir uns die Arbeitslosigkeit für Ost- und Westdeutschland anschauen.

```
gesamtdaten <- gesamtdaten %>%
  mutate( ost = as.factor(ifelse(bundesland_name %in% c("Brandenburg", "Mecklenburg-Vorpommern", "Sachsen", 'ost_name = ifelse(ost == 1, "Ostdeutschland", "Westdeutschland"))
```

gesamtdaten %>%

```
## # A tibble: 400 × 14
                                                      bundesland bundesland name
     Regionalschluessel total_alo landkreis_name
##
     <chr>
                            <dbl> <chr>
                                                      <chr>
                                                                 <chr>
## 1 01001
                            4369. Flensburg
                                                      01
                                                                 Schleswig-Holst
## 2 01002
                           11097. Kiel
                                                                 Schleswig-Holst
                                                      01
## 3 01003
                            9347. Lübeck
                                                      01
                                                                 Schleswig-Holst
## 4 01004
                            3771. Neumünster
                                                                 Schleswig-Holst
                                                      01
## 5 01051
                            4143. Dithmarschen
                                                      01
                                                                 Schleswig-Holst
## 6 01053
                            5603. Herzogtum Lauenburg 01
                                                                 Schleswig-Holst
## 7 01054
                            4699 Nordfriesland
                                                      01
                                                                 Schleswig-Holst
## 8 01055
                            5371 Ostholstein
                                                      01
                                                                 Schleswig-Holst
## 9 01056
                            9371. Pinneberg
                                                      01
                                                                 Schleswig-Holst
## 10 01057
                            2854. Plön
                                                                 Schleswig-Holst
                                                      01
## # i 390 more rows
## # i 9 more variables: Schulden pro kopf lk <dbl>, Einwohner <dbl>,
      Schulden_gesamt <dbl>, bip <dbl>, bip_pro_kopf <dbl>, erw <dbl>,
      alo_quote <dbl>, ost <fct>, ost_name <chr>
## #
```

Die Arbeitslosenquote zwischen Ost- und Westdeutschland

```
qesamtdaten %>%
 group by (ost name) %>%
  summarise (mean alo = mean (alo quote, na.rm = T), sd alo = sd(alo quote, na.rm = T), min alo = min (alo quote
 ungroup() %>%
 kbl(col.names = c("Bundesland",
                    "Mittelwert",
                    "Std.",
                    "Minimum",
                    "P25",
                    "Median",
                    "P75",
                    "Maximum"), digits = 2) %>%
 kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
 kable paper(full width = F) %>%
 add header above(c(" " = 1, "Arbeitslosenquote" = 7), align = "c") %>%
 footnote (general = "Wir haben keine Informationen zu Berlin und Hamburg, weshalb sie nicht in der Berechnur
           general title = "Bitte beachten: ")
```

```
gesamtdaten %>%
 group_by(ost_name) %>%
 summarise(mean_alo = mean(alo_quote, na.rm = T), s
 ungroup() %>%
 kbl(col.names = c("Bundesland",
                    "Mittelwert",
                    "Std.",
                    "Minimum",
                    "P25",
                    "Median",
                    "P75",
                   "Maximum"), digits = 2) %>%
 kable_styling(bootstrap_options = c("striped", "ho
  kable_paper(full_width = F) %>%
 add_header_above(c(" " = 1, "Arbeitslosenquote" =
  footnote(general = "Wir haben keine Informationen
          general_title = "Bitte beachten: ")
```

Arbeitslosenquote

Bundesland	Mittelwert	Std.	Minimum	P25	Median	P75	Maximum
Ostdeutschland	6.65	1.46	4.19	5.44	6.63	7.60	10.98
Westdeutschland	4.96	2.07	1.81	3.45	4.33	6.27	14.47

Bitte beachten:

Wir haben keine Informationen zu Berlin und Hamburg, weshalb sie nicht in der Berechnung enthalten sind.

Die Arbeitslosenquote zwischen Ost- und Westdeutschland

Große Unterschiede werden sichtbar:

- → Mittelwert über 1,5 Prozentpunkte niedriger in den Landkreisen der westdeutschen Bundesländer
- **◆** Die Standardabweichung ist in Westdeutschland deutlich höher als in Ostdeutschland
- ◆ Der Median der ostdeutschen Landkreise liegt nahe dem Mittelwert dieser Landkreise. Der Median in den westdeutschen Landkreisen liegt jedoch deutlich unter deren Mittelwert
- **★** Im **25% Quantil** in den **ostdeutschen Landkreisen** ist die Arbeitslosenquote bei **5,44%**
- **★** Bei den westdeutschen Landkreisen ist das 75% Quantil bei einer Arbeitslosenquote von 6,27%!

Arbeitslosenquote, BIP pro Kopf und Schulden pro Kopf

```
qesamtdaten %>%
 group by (bundesland name) %>%
  summarise (mean alo = mean (alo quote), sd alo = sd (alo quote), mean bip kopf = mean (bip pro kopf), sd bip ko
 ungroup() -> bula data all
bula data all %>%
 arrange ( mean alo ) %>%
 filter(!is.na(mean schulden kopf)) %>%
 kbl(col.names = c("Bundesland", "Mittelwert", "Std.", "Mittelwert", "Std.", "Mittelwert", "Std."), digits = 2,
      caption = "Deskriptive Tabelle komplett") %>%
 kable styling(bootstrap options = c("striped", "hover", "condensed", "responsive")) %>%
 kable paper(full width = F) %>%
 row spec(c(5,7,9,10,12,13), bold = T, color = "white", background = "#BBBBBB") %>%
  add header above(c(" " = 1, "Arbeitslosenquote" = 2, "BIP pro Kopf" = 2, "Schulden pro Kopf" = 2), align =
  footnote (general = "Wir haben keine Informationen zu Berlin, Hamburg und Bremen bzgl. ihrer Schulden pro Ko
          general title = "Bitte beachten: ",
           number = "Die ostdeutschen Bundesländer sind grau hinterlegt.")
```

```
gesamtdaten %>%
 group_by( bundesland_name ) %>%
 summarise(mean alo = mean(alo quote), sd alo = sd(
 ungroup() -> bula_data_all
bula data all %>%
 arrange( mean_alo ) %>%
 filter(!is.na(mean_schulden_kopf)) %>%
 kbl(col.names = c("Bundesland", "Mittelwert", "Std.
     caption = "Deskriptive Tabelle komplett") %>%
 kable_styling(bootstrap_options = c("striped", "ho
               font size = 9) %>%
 kable_paper(full_width = F) %>%
 row\_spec(c(5,7,9,10,12,13), bold = T, color = "wh
 add_header_above(c(" " = 1, "Arbeitslosenquote" =
  footnote(general = "Wir haben keine Informationen
          general_title = "Bitte beachten: ",
          number = "Die ostdeutschen Bundesländer s
```

Deskriptive Tabelle komplett

Arbeitslosend	quote	BIP pro	Kopf	Schulden pro Kopf	
Mittelwert	Std.	Mittelwert	Std.	Mittelwert	Std.
3.31	0.75	46406.88	20301.64	2098.78	1524.02
3.80	0.80	47186.49	13467.27	2944.47	2287.43
5.11	1.38	43132.29	17906.49	3708.42	3336.00
5.53	1.53	38134.60	17557.18	3166.35	3657.82
5.80	0.89	31943.24	5389.00	2278.76	734.65
5.86	1.73	38128.10	21920.77	2394.06	1873.50
5.92	0.92	36412.39	8320.48	3003.42	1403.58
6.08	1.82	34172.16	8197.88	5220.69	1246.74
6.10	1.36	30304.08	6108.02	2702.98	592.37
6.73	1.50	32524.72	6472.87	2506.85	1333.10
7.14	2.46	39209.31	11811.28	4287.31	2506.46
7.55	1.18	31891.43	6650.10	3695.52	1634.25
7.70	1.33	30805.55	4641.38	2834.85	1448.58
	Mittelwert 3.31 3.80 5.11 5.53 5.80 5.86 5.92 6.08 6.10 6.73 7.14 7.55	3.31 0.75 3.80 0.80 5.11 1.38 5.53 1.53 5.80 0.89 5.86 1.73 5.92 0.92 6.08 1.82 6.10 1.36 6.73 1.50 7.14 2.46 7.55 1.18	Mittelwert Std. Mittelwert 3.31 0.75 46406.88 3.80 0.80 47186.49 5.11 1.38 43132.29 5.53 1.53 38134.60 5.80 0.89 31943.24 5.86 1.73 38128.10 5.92 0.92 36412.39 6.08 1.82 34172.16 6.10 1.36 30304.08 6.73 1.50 32524.72 7.14 2.46 39209.31 7.55 1.18 31891.43	Mittelwert Std. Mittelwert Std. 3.31 0.75 46406.88 20301.64 3.80 0.80 47186.49 13467.27 5.11 1.38 43132.29 17906.49 5.53 1.53 38134.60 17557.18 5.80 0.89 31943.24 5389.00 5.86 1.73 38128.10 21920.77 5.92 0.92 36412.39 8320.48 6.08 1.82 34172.16 8197.88 6.10 1.36 30304.08 6108.02 6.73 1.50 32524.72 6472.87 7.14 2.46 39209.31 11811.28 7.55 1.18 31891.43 6650.10	Mittelwert Std. Mittelwert Std. Mittelwert 3.31 0.75 46406.88 20301.64 2098.78 3.80 0.80 47186.49 13467.27 2944.47 5.11 1.38 43132.29 17906.49 3708.42 5.53 1.53 38134.60 17557.18 3166.35 5.80 0.89 31943.24 5389.00 2278.76 5.86 1.73 38128.10 21920.77 2394.06 5.92 0.92 36412.39 8320.48 3003.42 6.08 1.82 34172.16 8197.88 5220.69 6.10 1.36 30304.08 6108.02 2702.98 6.73 1.50 32524.72 6472.87 2506.85 7.14 2.46 39209.31 11811.28 4287.31 7.55 1.18 31891.43 6650.10 3695.52

Bitte beachten:

Wir haben keine Informationen zu Berlin, Hamburg und Bremen bzgl. ihrer Schulden pro Kopf, weshalb sie nicht in der Tabelle aufgeführt wurden.

¹ Die ostdeutschen Bundesländer sind grau hinterlegt.

Arbeitslosenquote, BIP pro Kopf und Schulden pro Kopf

- **★** Landkreise in Bundesländer mit niedrigen Arbeitslosenquoten haben durchschnittlich ein hohes BIP pro Kopf
- ◆ Ostdeutsche Landkreise haben im Durchschnitt ein BIP pro Kopf < 33000€</p>
- ◆ Westdeutsche Landkreise haben im Durchschnitt ein BIP pro Kopf > 33000€
- **★** Kein klares Bild der Landkreise hinsichtlich der Schulden pro Kopf

Allein durch Mittelwert und Standardabweichung können wir bereits sehr viel über regionale Unterschiede lernen.

Entwicklung des BIP

Auch zeitliche Entwicklungen können in einer Tabelle dargestellt werden

Als Beispiel sollten Sie sich die Tabelle zur Entwicklung des BIP pro Kopf in der Case-Study anschauen

Datenvisualisierung

Arbeitslosenquote

Das Auge verarbeitet Informationen deutlich schneller und intuitiver wenn diese in einer Grafik präsentiert werden, anstatt in Tabellenform.

Daher ist es wichtig Grafiken in den desktiptiven Analysen mit einzubeziehen

Daten: Querschnittsdaten zur Arbeitslosigkeit in den Landkreisen aus dem Jahr 2021

Die folgende Grafik sollte enthalten:

- **Zeige alle Daten**: Jeder Landkreis wird durch einen Punkt in der Grafik repräsentiert
- **★** Boxplot der Arbeitslosigkeit wird über die Punktewolke gelegt

```
gesamtdaten %>%
  select(alo_quote, landkreis_name, bundesland_name,
  mutate(baden_wuerttemberg = as.factor(ifelse(bunde
  ggplot(aes(x = ost_name, y=alo_quote)) +
  geom_jitter(aes(color = ifelse(baden_wuerttemberg
  scale_color_identity() +
  geom_boxplot(alpha = 0.1) +
  theme_minimal() +
  labs(title = "Arbeitslosenquote in Deutschland",
       subtitle = "Eine Beobachtung repräsentiert ei
       x = "",
       y = "Arbeitslosenquote",
       caption = "Quelle: Daten der Agentur für Arbe
```

Arbeitslosenquote in Deutschland

Eine Beobachtung repräsentiert einen Landkreis, Baden-Württemberg rot eingefärb

Quelle: Daten der Agentur für Arbeit aus dem Jahr 2021

Arbeitslosenquote

Beschreiben Sie das gezeigte Schaubild

Arbeitslosenquote in Deutschland

Eine Beobachtung repräsentiert einen Landkreis, Baden-Württemberg rot eingefärt

Quelle: Daten der Agentur für Arbeit aus dem Jahr 2021

Arbeitslosenquote

Beschreibung des Schaubilds:

- → Rote Datenpunkte Baden-Württemberg, fast alle unter dem Median in Westdeutschland
- Median in Westdeutschland deutlich geringer als in Ostdeutschland
- ◆ 75% Quantil in Westdeutschland entspricht (fast) 25% Quantil in Ostdeutschland
- → Alle Landkreise unter 15% Arbeitslosenquote; Verglichen mit den europäischen Daten sehr gut

Bruttoinlandsprodukt pro Kopf

Es gibt deutliche regionale Unterschiede zwischen den Landkreisen. Doch ist dies auch beim BIP pro Kopf der Fall? Und war das schon immer so?

Wir betrachten das BIP pro Kopf über die Zeit für ost- und westdeutsche Landkreise!

Hier können wir sehen:

- ◆ ob es auch regionale Unterschiede im BIP pro Kopf gibt
- ◆ ob die regionalen Unterschiede schon längere Zeit bestehen
- ◆ ob die regionalen Unterschiede sich vergrößern oder verkleinern

Bruttoinlandsprodukt pro Kopf

Das Bruttoinlandsprodukt stellt die wichtigste gesamtwirtschaftliche Kenngröße dar. Falls das BIP in einem Landkreis hoch ist könnte dies unter anderem daran liegen, dass

- ➡ viele Personen in diesem Landkreis erwerbstätig sind,
- ◆ oder das die Erwerbstätigen in Branchen mit hoher Produktivität arbeiten.

Falls der erste Punkt zutrifft sollte ein hohes BIP pro Kopf (berechnet als BIP pro **Einwohner**) tendenziell auch mit einer niedrigeren Arbeitslosenquote einhergehen.

Beschreiben und interpretieren Sie das gezeigte Schaubild.

```
options(scipen = 5)
bip zeitreihe namen %>%
 filter( Jahr >= 2000 ) %>%
 group_by(ost_name, Jahr) %>%
 mutate( durchschnitt = mean(bip_pro_kopf),
         ulm = ifelse(landkreis_name == "Ulm", bip_
 ggplot() +
 geom_line(aes(x = Jahr, y = bip_pro_kopf, group =
 geom line(aes(x = Jahr, y = durchschnitt, group =
 geom\_line(aes(x = Jahr, y = ulm, group = Regionals)
 scale_y_continuous(trans = "log10") +
 theme_minimal() +
 facet wrap(ost name ~ .) +
 theme(legend.position = "none") +
 labs(title = "Ein Vergleich des BIP pro Kopf von o
       subtitle = "Durchschnittswerte in Dunkelblau,
      caption = "Quelle: Daten der Statistischen Äm
      x = "Jahr",
      y = "BIP pro Kopf")
```

Ein Vergleich des BIP pro Kopf von ost- und westdeutschen Landl Durchschnittswerte in Dunkelblau, Ulm in Dunkelgrün

Quelle: Daten der Statistischen Ämter der Länder und des Bundes.

Bruttoinlandsprodukt pro Kopf

Beschreibung:

- **★** Logarithmische Skalierung der y-Achse
- **◆** Das Niveau des BIP pro Kopf ist in den ostdeutschen Landkreisen deutlich niedriger als in den westdeutschen.
- **◆** Stadtkreis Ulm hat ein sehr hohes BIP pro Kopf, auch im Zeitablauf
- Das BIP Pro Kopf nimmt im Zeitablauf in den ostdeutschen Landkreisen zu, doch erreicht es mit durchschnittlich 31384€ den Wert, welchen die westdeutschen Landkreise durchschnittlich in 2008 hatten!
- ♣ In 2008/2009 gibt es überall einen Einbruch beim BIP pro Kopf, jedoch scheint dieser in den ostdeutschen Bundesländern nicht so stark gewesen zu sein

Interpretation:

- ♣ Eine Wachstumsprozess im BIP pro Kopf findet in allen Landkreisen statt, jedoch gibt es für die ostdeutschen Landkreise, welche deutlich niedriger gestartet sind, keinen erkennbaren Anpassungsprozess in Form eines schnelleren Wachstums
- ➡ Wir sehen auch keinen Anpassungsprozess der Landkreise in Westdeutschland
- + Fraglich ist, ob wir hier mit einem Anpassungsprozess von strukturschwachen Landkreisen überhaupt rechnen sollten

Bruttoinlandsprodukt pro Kopf

Daten ab 1992 vorhanden, d.h. wir können auch weiter zuück gehen:

- **★** Allerdings: Keine Daten zu allen Landkreisen, daher Vorsicht!
- ➡ Hier sehen wir einen Anpassungsprozess in den 1990er Jahren
- ♣ Anpassung verlangsamt sich, ab 2010 praktisch parallel

Ein Vergleich des BIP pro Kopf von ost- und westdeutschen Landk Zeitreihe ab 1992 bis 2021

Quelle: Daten der Statistischen Ämter der Länder und des Bundes.

Wachstum des BIP pro Kopf

Paneldaten beim BIP pro Kopf vorhanden, d.h. wir können:

- **◆** Das **Wachstum** des BIP pro Kopf
- + Für alle Landkreise in Deutschland
- **★** Seit 2000 bis 2021

berechnen und visualisieren.

Können wir einen Anpassungsprozess über die Wachstumsraten des BIP pro Kopf feststellen?

```
bip zeitreihe namen %>%
 group by (Regionalschluessel) %>%
 arrange (Regionalschluessel, Jahr) %>%
 mutate( bip_pro_kopf_wachstum = 100*(bip_pro_kopf
 ungroup() %>%
 group_by(ost_name, Jahr) %>%
 mutate( durchschnitt = mean(bip pro kopf wachstum,
 ungroup() -> bip_wachstum
bip wachstum %>%
 filter( Jahr >= 2000 ) %>%
 ggplot() +
 geom_line(aes(x = Jahr, y = bip_pro_kopf_wachstum,
 geom_line(aes(x = Jahr, y = durchschnitt, group =
 scale color manual(values = c("#D55E00", "#0072B2"
 theme minimal() +
 labs(color = "Durchschnitt der Landkreise",
      title = "Die Wachstumsrate des BIP pro Kopf v
      caption = "Quelle: Daten der Statistischen Äm
      x = "Jahr",
      y = "Veränderung des BIP pro Kopf") +
  theme(legend.position = "none") +
 geom text (aes (x=2000, y=40, label = "-- Durchschni
 geom text (aes (x=2000, y=35, label = "-- Durchschni
```

Die Wachstumsrate des BIP pro Kopf von ost- und westdeutschen Landkreisen

Quelle: Daten der Statistischen Ämter der Länder und des Bundes.

Wachstum des BIP pro Kopf

Beschreibung:

- ➡ Im Durchschnitt sehr ähnliche Wachstumsraten.
- **★** Immer wieder vereinzelt sehr hohe Wachstumsraten pro Landkreis
 - ➡ Hängt vermutlich mit großen Projekten auf Landkreisebene zusammen
- ◆ Der Einbruch in der Finanzkrise ist sowohl bei ost- als auch westdeutschen Landkreisen zu sehen

Interpretation:

- **★** Es findet keine Anpassung des BIP pro Kopf über die Zeit statt
- → Die Gelder durch den Soli-Ausgleich führen nicht zu der (erhofften) starken Aufholjagd
- Ostdeutsche Landkreise haben sich stark entwickelt
 - → Diese Etwicklung sollte jedoch nicht absolut, sondern relativ zu westdeutschen Landkreisen betrachtet werden

Es ist kein Anpassungsprozess ersichtlich, dafür sind die Wachstumsraten zu ähnlich.

Bruttoinlandsprodukt pro Kopf

Bisherige Grafiken:

- ♣ Punktewolke + Boxplot zeigt die Verteilung
- Liniendiagramm zeigt die Entwicklung

Alternative Darstellungen der Verteilung:

- ★ Historgamm (nächste Folie)
- ★ Kerndichteschätzer (siehe ausführliche Case-Study)

Alternative Darstellung der Entwicklung:

- **◆** Small multiples (siehe ausführliche Case-Study)
- **◆** Slopechart (siehe z.B. <u>Data Vizualisation von Claus Wilke</u> mit <u>Code hier</u>)

```
gesamtdaten %>%
  group_by(ost_name) %>%
  summarise(durchschnitt = mean(bip_pro_kopf, na.rm
  ungroup() -> mittel

ggplot(gesamtdaten, aes(x = bip_pro_kopf)) +
  geom_histogram(data = filter(gesamtdaten, bip_pro_
  geom_vline(data = mittel, aes(xintercept = durchsc
  facet_grid(ost_name~.) +
  theme_bw() +
  labs(title = "Verteilung des BIP pro Kopf für Ost-
        subtitle = "Beobachtungen auf Landkreisebene
        x = "BIP pro Kopf",
        y = "Anzahl an Beobachtungen")
```

Verteilung des BIP pro Kopf für Ost- und Westdeutschland Beobachtungen auf Landkreisebene in 2021

Verteilung des BIP pro Kopf in 2021

Verteilung des BIP pro Kopf für Ost- und Westdeutschland Beobachtungen auf Landkreisebene in 2021

Verteilung des BIP pro Kopf in 2021

Das Histogramm bestätigen das Bild des Boxplots:

- Deutliche Unterschiede zwischen ost- und westdeutschend Landkreisen in 2021
- **◆** Deutlich mehr Ausreißer nach oben bei westdeutschen Landkreisen
- ◆ Verteilung ist f\u00fcr ostdeutsche Landkreise enger um den Mittelwert f\u00fcr das BIP pro Kopf von 31384€
- → Mittelwert und Median für westdeutsche Landkreise liegt deutlich weiter auseinander und zeigt, dass es hier mehr Ausreißer in den Daten gibt

Verschuldung der einzelnen Landkreise

Verschuldung

Warum könnte die Verschuldung des öffentlichen Haushalts ein Indikator für eine hohe Arbeitslosenquote sein?

Darstellung der Verschuldung der Landkreise mittels einer Deutschlandkarte.

Beschreiben und interpretieren Sie die folgende Grafik.

```
ggplot(
# Datensatz
 data = schulden_landkreise_anteil
 geom_sf(
   mapping = aes(
     fill = fct_relevel(anteil_schulden, ">10%", af 54%-
   ) ,
   color = "white",
   size = 0.1
 ) +
# Viridis Farbschema
 scale fill viridis d(
   option = "inferno",
   name = "Anteil der Schulden\nam BIP",
   alpha = 0.8, # Deckkraft der Füllung
   begin = 0.1,
   end = 0.9,
   direction = -1,
   guide = guide_legend(reverse = T)) +
# etwas dickere Linien für Bundeslandgrenzen
 geom_sf(
   data = bundesland,
   fill = "transparent",
   color = "black",
   size = 0.5
 ) +
# Titel
 labs(x = NULL,
      y = NULL,
      title = "Wie verschuldet sind die deutschen L
      subtitle = "Öffentliche Schulden im Vergleich
```

Wie verschuldet sind die deutschen Landkreise? Öffentliche Schulden im Vergleich zum BIP in 2021

Wie verschuldet sind die deutschen Landkreise? Öffentliche Schulden im Vergleich zum BIP in 2021

Verschuldung

Beschreibung:

- ◆ Niedgrige Verschuldung im Verhältnis zum BIP: Baden-Württemberg, Bayern, Sachsen und Niedersachsen
- ◆ Mittlere Verschuldung: Rheinland-Pfalz, Brandenburg, Hessen, Schleswig-Holstein
- + Hohe Verschuldung: Sachsen-Anhalt, Thüringen, Nordrhein-Westfalen, Saarland, Mecklenburg-Vorpommern

Interpretation:

- ◆ Strukturschwache Landkreise sind vermehrt in Ostdeutschland zu finden, allerdings scheint es eher ein Nord/Süd Gefälle als ein Ost/West Gefälle zu geben
- ◆ Die ehemalige Herzkammer der deutschen Industrie, das Ruhrgebiet, leidet unter dem Strukturwandel hin zu erneuerbaren Energien
 - **★** Es fallen hier wichtige Steuereinnahmen für die öffentliche Hand weg

Vergleich der Arbeitslosenquote und Verschuldung

Vergleich der Arbeitslosenquote und Verschuldung

- **★** Tendenziell sind die Landkreise mit höheren Schulden auch die mit einer höheren Arbeitslosenquote
- ★ Verschuldung könnte ein erklärender Faktor für die Arbeitslosenquote sein
- **◆** Grafisch ist der Zusammenhang jedoch nicht eindeutig verifizierbar
 - ◆ Um Zusammenhänge deutlich zu machen müssen wir uns der bivariaten deskriptiven Statistik bemühen, insbesondere Streudiagrammen und Korrelationsmatrizen

Karten sind eine schöne Art geografisch unterschiedliche Informationen darzustellen, allerdings ist das Auge schlecht darin Farbverläufe zu unterschieden!

Bei Karten immer eine sehr kontrastreiche Farbpalette verwenden!

Bivariate deskriptive Analyse

Die Korrelation

Bisher: Univariate Analyse, d.h. nur eine Variable

Jetzt: Bivariate Analyse, d.h. Zusammenhang zwischen **zwei** Variablen untersuchen

Hierzu nutzen wir die Korrelation der Variablen!

Der Korrelationskoeffizient für zwei Variablen $(x_1, y_1), \ldots, (x_n, y_n)$ ist definiert als:

$$ho = rac{1}{n} \sum_{i=1}^n \left(rac{x_i - \mu_x}{\sigma_x}
ight) \left(rac{y_i - \mu_y}{\sigma_y}
ight)$$

mit μ_x, μ_y als Mittelwerte von x_1, \ldots, x_n und $y_1, \ldots, y_n, \sigma_x, \sigma_y$ sind die Standardabweichungen von diesem Mittelwert. ρ wird üblicherweise genutzt um den Korrelationskoeffizienten zu bezeichnen.

Wie hängt die Arbeitslosenquote in den einzelnen Landkreisen mit deren BIP-pro-Kopf-Wachstum zusammen?

Korrelation zwischen Arbeitslosenquote und BIP-pro-Kopf-Wachstum

Wir können uns die oben beschriebene Formel bzgl. des Zusammenhangs von zwei Variablen immer auch grafisch verdeutlichen

- Wir haben zwei Dimensionen
 - **◆** Variable x: BIP-pro-Kopf-Wachstum
 - ◆ Variable y: Arbeitslosenquote

Im Streudiagramm können wir Variable x auf der x-Achse und Variable y auf der y-Achse abtragen

```
gesamtdaten %>%
  ggplot(aes(x = bip_pro_kopf_wachstum, y = alo_quot
  geom_point() +
  labs( x = "Wachstum des BIP %",
        y = "Arbeitslosenquote in %",
        title = "Korrelation des BIP-Wachstums und d
  theme_minimal()
```


Korrelation zwischen Arbeitslosenquote und BIP-Wachstum

- **★** Es fallen die Ausreißer ins Auge (+40% und -4%)
 - ◆ Vorheriges Jahr hohes/niedriges BIP, dadurch jetzt niedriges/hohes BIP-Wachstum
 - **★** Corona war beides mal der Auslöser (Mainz und Wolfsburg die betroffenen Landkreise)
- **◆** Insgesamt scheint der Zusammenhang jetzt nicht so stark zu sein
 - ♣ Punktewolke deutet auf einen leicht negativen Zusammenhang hin

Korrelationskoeffizient:

```
cor(gesamtdaten$alo_quote,
    gesamtdaten$bip_pro_kopf_wachstum,
    use = "pairwise.complete.obs")
```

```
## [1] 0.02804881
```

Nun sollten wir noch die Korrelation zwischen Arbeitslosenquote und Verschuldung anschauen!

Korrelation zwischen Arbeitslosenquote und Verschuldung

Hier ist der positive Zusammenhang zwischen Verschuldung (x-Achse) und Arbeitslosenquote (y-Achse) deutlicher

Korrelationskoeffizient zeigt mit rho = 0.60 auch einen starken Zusammenhang

rho Beschreibung (nährungsweise)

+/- 0.1-0.3 Schwacher

+/- 0.3-0.5 Mittel

+/- 0.5-0.8 Stark

+/- 0.8-0.9 Sehr stark

Wir sehen eine positive Korrelation zwischen der Verschuldung von Landkreisen und deren Arbeitslosenquoten.

Interpretation der Korrelation

- **★** Hat an sich keine intuitive quantitative Interpretation
- **★** Ist eine univariate Repräsentation des Zusammenhangs zweier Variablen
- ★ Kann dabei helfen stark korrelierte Variablen im Datensatz aufzuzeigen
 - ◆ Dies ist für eine spätere lineare Regression wichtig
 - Stichwort Multikollinearität

Im nächsten Semester beschäftigen wir uns mit der linearen Regression, hier können die Koeffizienten direkt interpretiert werden.

Zusammenfassung und Ausblick

Dieses Semester: Deskriptiven Statistik

Nächstes Semester: Induktive Statistik, insbesondere durch lineare Regressionen

Was haben wir bisher gelernt?

- Daten in R einlesen
- ♣ Diese Daten kompakt mittels Tabellen und Grafiken beschreiben
- → Den Zusammenhang einzelner Variablen untersuchen

Übungsaufgaben

Im ersten Teil der Case Study hatten Sie sich noch die durchschnittlichen Einkommen auf Landkreisebene in R eingelesen. Nun sollten Sie diese Tabelle deskriptiv analysieren:

- ♣ Erstellen Sie eine deskriptive Tabelle, welche das Einkommen für das Jahr 2021 darstellt. Wie ist hier die Verteilung der Einkommen?
 - **★** Beschreiben Sie Mittelwert, Standardabweichung, sowie Median
- ★ Erstellen Sie ein Liniendiagramm zu der Entwicklung des Einkommensniveaus in den einzelnen Landkreisen seit 2000.
 Sie können sich hierbei an dem Diagramm zum BIP pro Kopf orientieren.
 - Hinweis: Mergen Sie zu dem Datensatz "Einkommen" zuerst noch die Information zu "Landkreis_name, Bundesland_name und ost_name" hinzu (siehe auch hierzu <u>diesen Abschnitt</u>)
- ◆ Erstellen Sie eine Karte zum Einkommensniveau der einzelnen Landkreise. Sie können sich hierbei an der Karte zur Verschuldung orientieren.
- **◆** Erstellen Sie eine Korrelationstablle zwischen Arbeitslosenquote, Anteil Schulden, BIP pro Kopf und Einkommen. Sie können sich hierbei an der <u>Tabelle der Korrleationen aus diesem Abschnitt</u> orientieren.