

(19)日本特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-311440

(P2002-311440A)

(43)公開日 平成14年10月23日 (2002.10.23)

(51)Int.Cl.
G 02 F 1/1339
G 09 F 9/00

識別記号
505
343

F I
C 02 F 1/1339
C 09 F 9/00

テ-マ-ト(参考)
S 05 2 H 08 9
3 4 3 Z 5 G 4 3 5

審査請求 有 請求項の数10 O.L (全 11 頁)

(21)出願番号 特願2001-118361(P2001-118361)
(22)出願日 平成13年4月17日(2001.4.17)

(71)出願人 000233077
株式会社 日立インダストライズ
東京都足立区中川四丁目13番17号
(72)発明者 今泉 淳
茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内
(74)代理人 100059269
弁理士 秋本 正実

最終頁に続く

(54)【発明の名称】 基板貼り合わせ方法及びその装置

(57)【要約】

【課題】 確実且つ短時間で基板を貼り合せること
【解決手段】 少なくとも何れか一方に接着剤37を設けた二枚の基板33, 34を真空チャンバ15内に対向して配設し、その真空チャンバ15内を所定の圧になるまで徐々に排気した後、急速に排気して真空状態にする。そして、各基板33, 34を機械的に加圧貼り合わせし、この加圧貼り合わせの後、真空状態の真空チャンバ15内が所定の圧になると急速にガスを導入する。そして、真空チャンバ15内がその所定圧になると急速にガスを導入して真空チャンバ15内を大気圧にすること。

【図1】

【特許請求の範囲】

【請求項1】 少なくとも何れか一方に接着剤を設け且つ対向して配設した貼り合わせ対象物たる二枚の基板を、真空状態の真空チャンバ内で位置合わせを行った後、加圧して貼り合わせを行う基板貼り合わせ方法であって、

前記真空チャンバ内に前記各基板を搬入した後、前記真空チャンバ内が所定の圧になるまで徐々に排気する第一排気工程と、

この第一排気工程にて前記所定圧になると急速に排気して前記真空チャンバ内を真空状態にする第二排気工程と、

を有することを特徴とした基板貼り合わせ方法。

【請求項2】 前記各基板を真空状態で機械的に加圧貼り合わせする加圧工程と、

この加圧工程の後、前記真空状態の真空チャンバ内が所定の圧になるまで徐々にガスを導入する第一ガス導入工程と、

この第一ガス導入工程にて前記所定圧になると急速にガスを導入して前記真空チャンバ内を大気圧にする第二ガス導入工程と、

を有することを特徴とした請求項1に記載の基板貼り合わせ方法。

【請求項3】 少なくとも何れか一方に接着剤を設け且つ対向して配設した貼り合わせ対象物たる二枚の基板を、真空状態の真空チャンバ内で位置合わせを行った後、加圧して貼り合わせを行う基板貼り合わせ方法であって、

前記各基板を真空状態で機械的に加圧貼り合わせする加圧工程と、

この加圧工程の後、前記真空状態の真空チャンバ内が所定の圧になるまで徐々にガスを導入する第一ガス導入工程と、

この第一ガス導入工程にて前記所定圧になると急速にガスを導入して前記真空チャンバ内を大気圧にする第二ガス導入工程と、

を有することを特徴とした基板貼り合わせ方法。

【請求項4】 貼り合わせ対象物たる二枚の基板を内部で加圧して貼り合わせを行う真空チャンバと、該真空チャンバ内に配設し且つ前記各基板の内の一方の基板を保持する当該基板の面に対して水平方向に移動自在なテーブルと、前記真空チャンバ内に配設し且つ前記一方の基板に対向させて前記各基板の内の他方の基板を保持する当該基板の面に対して垂直方向に移動自在な加圧板とを有する基板貼り合わせ装置であって、

前記真空チャンバに、その内部を真空にするガス排気手段を備え、

このガス排気手段に、前記真空チャンバ内のガスの排気速度を変更する排気速度可変手段を設けることを特徴とした基板貼り合わせ装置。

【請求項5】 前記排気速度可変手段は、前記真空チャンバ内が所定の圧になるまで徐々に排気を行う第一排気機構と、前記所定圧になると急速に排気を行う第二排気機構とを有することを特徴とした請求項4に記載の基板貼り合わせ装置。

【請求項6】 前記真空チャンバに、真空状態の当該真空チャンバ内を大気圧にする為のガス導入手段を備え、このガス導入手段に、前記真空チャンバ内へのガスの導入速度を変更する導入速度可変手段を設けることを特徴とした請求項4又は5に記載の基板貼り合わせ装置。

【請求項7】 貼り合わせ対象物たる二枚の基板を内部で加圧して貼り合わせを行う真空チャンバと、該真空チャンバ内に配設し且つ前記各基板の内の一方の基板を保持する当該基板の面に対して水平方向に移動自在なテーブルと、前記真空チャンバ内に配設し且つ前記一方の基板に対向させて前記各基板の内の他方の基板を保持する当該基板の面に対して垂直方向に移動自在な加圧板とを有する基板貼り合わせ装置であって、

前記真空チャンバに、真空状態の当該真空チャンバ内を大気圧にする為のガス導入手段を備え、

このガス導入手段に、前記真空チャンバ内へのガスの導入速度を変更する導入速度可変手段を設けることを特徴とした基板貼り合わせ装置。

【請求項8】 前記導入速度可変手段は、前記真空チャンバ内が所定の圧になるまで徐々にガスを導入する第一ガス導入機構と、前記所定圧になると急速にガスを導入する第二ガス導入機構とを有することを特徴とした請求項6又は7に記載の基板貼り合わせ装置。

【請求項9】 前記第一ガス導入機構は、前記真空チャンバ内に連通する配管と、該配管内を閉塞自在な弁とを有し、

前記第二ガス導入機構は、前記真空チャンバ内を大気開放する大気開放弁を有することを特徴とした請求項8に記載の基板貼り合わせ装置。

【請求項10】 前記真空チャンバ内の圧が所定の圧を超えると前記大気開放弁が開放するように、該大気開放弁に予め力を掛けおくことを特徴とした請求項9に記載の基板貼り合わせ装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、二つの基板を貼り合わせる際に加圧力を有効に掛けることができる基板貼り合わせ方法及びその装置に関する。

【0002】

【従来の技術】 液晶表示パネルの製造には、透明電極や薄膜トランジスタアレイが設けられた二枚のガラス基板を、基板の周縁部に口字状に設けたシール剤や基板の外周部の適宜な位置に塗布した接着剤で数 μm （例えば2 μm ）程度の極めて接近した間隔をもって貼り合わせ（以下、その貼り合わせ後の基板を「セル」とい

う。）、その各基板とシール材若しくは接着剤で形成される空間に液晶を封止するという工程がある。

【0003】従来、その液晶の封止を行う際の基板貼り合わせ方法としては、注入口を設けないようにシール剤をクローズしたパターン（口字形）に描画した一方の基板上に液晶を滴下しておく。そして、真空チャンバ内にて他方の基板を一方の基板の上方に配置し、真空状態でその他の基板と一方の基板との間隔を狭めて加圧して上下の基板を貼り合わせる、という特開2000-284295号公報に開示された方法がある。

【0004】具体的にこの特開2000-284295号公報に開示された基板貼り合わせ方法は、真空チャンバ内に配設された加圧板の下面に上記一方の基板を保持し、且つ同じく真空チャンバ内にその加圧板と対向して配設されたテーブル上に上記他方の基板を保持する。そして、真空チャンバ内を減圧して真空状態にし、加圧板とテーブルとの間隔を狭めることによって、各基板を加圧して貼り合わせる、というものである。

【0005】

【発明が解決しようとする課題】しかしながら、上記従来例に開示された基板貼り合わせ方法にあっては、真空チャンバ内を真空状態にする際に、その真空チャンバ内から排気されるガスの流れによって各基板に暴れが発生し、加圧板やテーブルに保持された各基板の位置ずれや割れ等の破損が生じる虞がある、という不都合があった。

【0006】また、急激に減圧される為、真空チャンバ内の大気中の水分が、更には真空チャンバ内の壁面、基板膜面や液晶等に付着した水分が凍結してしまい、そのままではセルに悪影響を与える虞がある、という不都合があった。ここで、そのセルへの悪影響を回避する為には、例えば凍結した水分が気化されるまで待つ等の停滞時間を要し、基板貼り合わせ工程に時間がかかってしまう、という不都合があった。

【0007】更に、その基板貼り合わせ方法にあっては加圧板で各基板に圧力を加えて貼り合わせを行っているが、その加圧板の押圧力だけでは上下の基板を所望の間に貼り合わせることができない場合がある、という不都合があった。例えば小さな基板の場合は機械的に加圧する加圧板のみで所望の加圧力を得ることができるが、基板が大きくなると加圧力が不足してしまい、シール剤が有効に押し潰されないので、所望の間隔で各基板を貼り合わせことができない。そして、このようにシール剤が有効に押し潰されないと、各基板とシール剤との接触面積が小さくなり接着状態が不完全なものとなってしまう、更には液晶がシール剤の枠内に広がらないのでその枠内に大きな真空空間部ができてしまう、という不都合があった。

【0008】本発明は、かかる従来例の有する不都合を改善し、第一に各基板の暴れや水分の凍結の発生を防止

することができ、これにより確実且つ短時間で貼り合せを完了させることができる。第二に貼り合わせ後の各基板の間隔を正確に位置合わせすることができ、これにより確実且つ短時間で貼り合せを完了させることができる基板貼り合わせ方法及びその装置を提供することを、その目的とする。

【0009】

【課題を解決するための手段】上記第一の目的を達成する為、請求項1記載の発明では、少なくとも何れか一方に接着剤を設け且つ対向して配設した貼り合わせ対象物たる二枚の基板を、真空状態の真空チャンバ内で位置合わせを行った後、加圧して貼り合わせを行う基板貼り合わせ方法において、真空チャンバ内に各基板を搬入した後、その真空チャンバ内が所定の圧になるまで徐々に排気する第一排気工程と、この第一排気工程にて所定圧になると急速に排気して真空チャンバ内を真空状態にする第二排気工程とを有している。

【0010】ここで、請求項2記載の発明では、上記第二の目的を達成する為、前述した請求項1記載の基板貼り合わせ方法において、各基板を真空状態で機械的に加圧貼り合わせする加圧工程と、この加圧工程の後、真空状態の真空チャンバ内が所定の圧になるまで徐々にガスを導入する第一ガス導入工程と、この第一ガス導入工程にてその所定圧になると急速にガスを導入して真空チャンバ内を大気圧にする第二ガス導入工程とを有している。

【0011】上記第二の目的を達成する為、請求項3記載の発明では、少なくとも何れか一方に接着剤を設け且つ対向して配設した貼り合わせ対象物たる二枚の基板を、真空状態の真空チャンバ内で位置合わせを行った後、加圧して貼り合わせを行う基板貼り合わせ方法において、各基板を真空状態で機械的に加圧貼り合わせする加圧工程と、この加圧工程の後、真空状態の真空チャンバ内が所定の圧になるまで徐々にガスを導入する第一ガス導入工程と、この第一ガス導入工程にてその所定圧になると急速にガスを導入して真空チャンバ内を大気圧にする第二ガス導入工程とを有している。

【0012】上記第一の目的を達成する為、請求項4記載の発明では、貼り合わせ対象物たる二枚の基板を内部で加圧して貼り合わせを行う真空チャンバと、この真空チャンバ内に配設し且つ各基板の内の一方の基板を保持する当該基板の面に対して水平方向に移動自在なテーブルと、真空チャンバ内に配設し且つ一方の基板に対向させて各基板の内の他方の基板を保持する当該基板の面に対して垂直方向に移動自在な加圧板とを有する基板貼り合わせ装置において、真空チャンバにその内部を真空にする為のガス排気手段を備え、このガス排気手段に真空チャンバ内のガスの排気速度を変更する排気速度可変手段を設けている。

【0013】ここで、請求項5記載の発明では、前述し

た請求項4記載の基板貼り合わせ装置において、排気速度可変手段が、真空チャンバ内が所定の圧になるまで徐々に排気を行う第一排気機構と、その所定圧になると急速に排気を行う第二排気機構とを有している。

【0014】また、請求項6記載の発明では、上記第二の目的を達成する為、前述した請求項4又は5記載の基板貼り合わせ装置において、真空チャンバに真空状態の当該真空チャンバ内を大気圧にする為のガス導入手段を備え、このガス導入手段に真空チャンバ内へのガスの導入速度を変更する導入速度可変手段を設けている。

【0015】上記第二の目的を達成する為、請求項7記載の発明では、貼り合わせ対象物たる二枚の基板を内部で加圧して貼り合わせを行う真空チャンバと、この真空チャンバ内に配設し且つ各基板の内の一方の基板を保持する当該基板の面に対して水平方向に移動自在なテーブルと、真空チャンバ内に配設し且つ一方の基板に対向させて各基板の内の他方の基板を保持する当該基板の面に対して垂直方向に移動自在な加圧板とを有する基板貼り合わせ装置において、真空チャンバに真空状態の当該真空チャンバ内を大気圧にする為のガス導入手段を備え、このガス導入手段に真空チャンバ内へのガスの導入速度を変更する導入速度可変手段を設けている。

【0016】ここで、請求項8記載の発明では、前述した請求項6又は7記載の基板貼り合わせ装置において、導入速度可変手段は、真空チャンバ内が所定の圧になるまで徐々にガスを導入する第一ガス導入機構と、その所定圧になると急速にガスを導入する第二ガス導入機構とを有している。

【0017】また、請求項9記載の発明では、前述した請求項8記載の基板貼り合わせ装置において、第一ガス導入機構は、真空チャンバ内に連通する配管と、この配管内を閉塞自在な弁とを有している。そして、第二ガス導入機構は、真空チャンバ内を大気開放する大気開放弁とを有している。

【0018】更に又、請求項10記載の発明では、前述した請求項9記載の基板貼り合わせ装置において、真空チャンバ内の圧が所定の圧を超えると大気開放弁が開放するよう、この大気開放弁に予め力を掛けている。

【0019】

【発明の実施の形態】〔第一実施形態〕本発明に係る基板貼り合わせ装置の第一実施形態について図1からに図3に基づいて説明する。

【0020】〔基板貼り合わせ装置の構成〕この基板貼り合わせ装置は、図1に示すように大きく分類すれば、貼り合わせ対象物たる二つの基板33, 34(以下、後述するテーブル9に載置保持する基板33を「下基板33」と、後述する加圧板16に保持する基板34を「上基板34」という。)の位置決めを行うXYθステージ部S1と、各基板33, 34の貼り合わせ動作を行う基板貼り合わせ部S2と、後述する各基板33, 34の一

次加圧を行うZ軸移動ステージ部S3とから構成されており、その各部S1, S2, S3が架台1上に順次配置されている。ここで、XYθステージ部S1は架台1上に載置保持され、基板貼り合わせ部S2は架台1上に立設された例えば四つの支柱を備えた第一フレーム2に支持され、Z軸移動ステージ部S3は架台1上に立設された例えば四つの支柱を備えた第二フレーム3に支持される。以下、これら各部S1, S2, S3について詳述する。

【0021】[XYθステージ部] XYθステージ部S1は、架台1上に配設されたXステージ4aと、このXステージ4a上に配設されたYステージ4bと、このYステージ4b上に配設されたθステージ4cとを有する。本実施形態のXステージ4aは、駆動モータ5によってYステージ4bとθステージ4cを左右方向(図1中のX軸方向)に移動できるよう構成される。また、Yステージ4bは、駆動モータ6によってθステージ4cを前後方向(図1中のY軸方向)に移動できるよう構成される。更に又、θステージ4cは、回転ペアリング7を介し駆動モータ8によってYステージ4bに対して図1に示すθ方向に回転するよう構成される。

【0022】ここで、θステージ4c上には、下基板33を載置保持するテーブル9が支持柱10を介して固定されている。また、Yステージ4bには、回転ペアリング13と真空シール14を介して支持柱10の下部側を被包するアーム11が配設されており、これにより支持柱10の回転に伴ってアーム11がつられて回転しないようになっている。更に又、そのアーム11と基板貼り合わせ部S2の後述する真空貼り合わせ室15との間に、アーム11上に一端を固定し且つ真空貼り合わせ室15の下部に他端を固定すると共に支持柱10に覆設する蛇腹状の弾性体から成る真空ベローズ12が配設されており、これにより貼り合わせ時における真空貼り合わせ室15内の真空状態を保持している。

【0023】尚、本実施形態にあっては支持柱10をテーブル9の略中央に一本配設しているが、必ずしもこれに限定するものではなく、例えばθステージ4cによるテーブル9の所定量(後述する位置合わせマークの位置ずれ量)を補正するだけの回転が可能であればその支持柱10を複数本設けてもよい。

【0024】[基板貼り合わせ部] 基板貼り合わせ部S2は、図1に示すように、真空下にて二枚の基板33, 34の貼り合わせを行う真空貼り合わせ室(真空チャンバ)15と、この真空貼り合わせ室15内に配設されたテーブル9と、同じく真空貼り合わせ室15内でテーブル9の上方に對向して配設された加圧板16とを有する。この場合、テーブル9には後述する接着剤37や液晶39が設けられた下基板33が載置保持され、加圧板16にはその下基板33に貼り合わせる上基板34が保持される。

【0025】上記真空貼り合わせ室15の側部には、各基板33、34を出入する為の第一開口部15aが設けられており、更にこの第一開口部15aを閉塞するゲートバルブ17が備えられている。ここで、このゲートバルブ17は、シリンドラ17Aによって上下方向(図1中のZ軸方向)に移動自在に構成される。

【0026】更に、真空貼り合わせ室15の下部には真空貼り合わせ室15内を真空排氣する為の第一及び第二の排氣管20a、20bが配設されており、これら各排氣管20a、20bは、図示しない切換バルブを介して真空ポンプに接続される。ここで、第一排氣管20aは、第二排氣管20bに比べて細いものが用いられ、例えば各々断面略円形の排氣管の場合、第一排氣管20aの径を1とすると、太い方の第二排氣管20bは約10~100倍程度の径のものが用いられる。この場合、第一排氣管20aの径は、この第一排氣管20aから後述するが如く真空貼り合わせ室15内を真空排氣する際に、ガスの流れによって基板33、34の暴れ、下基板33上の液晶の飛散や減圧による水分の凍結が発生しない速度となるように設定する。例えばその径の設定の際には、種々の径の配管にて予め実験し、その実験結果に基づいて定めた径の第一排氣管20aを配設する。

【0027】また、真空貼り合わせ室15内のテーブル9側には、下基板33を図示しない移載機から受け取る、若しくはセルを取り出す為に使用される複数の昇降ピン35が立設される。この昇降ピン35は、その一端(図1中の下端)にシリンドラ36が配設されており、このシリンドラ36によってテーブル9に形成した貫通孔の中を上下方向に移動できるよう構成されている。

【0028】更に又、真空貼り合わせ室15の上部にはその真空貼り合わせ室15内の真空状態を大気に戻す為の配管21と、真空貼り合わせ室15内にガス(空気)を導入する若しくは遮断する為に配管21の途中に備えた弁22とが配設される。ここで、配管21には図示しない圧力源(例えばポンプ)が接続されており、これにより真空貼り合わせ室15内へのガスの導入速度を制御することができる。尚、その圧力源は、必ずしも配設されてなくてもよい。

【0029】また、真空貼り合わせ室15の側面(前述したゲートバルブ17が備えられた側とは反対側)にはその真空貼り合わせ室15に形成された略円形の第二開口部15bを閉塞する板状体から成る大気開放弁23と、この大気開放弁23を第二開口部15bから離間させるシリンドラ24とが配設される。このように、大気開放弁23を設け、この大気開放弁23を第二開口部15bから離間させることによって、真空貼り合わせ室15内を急速に大気圧に戻すことができる。ここで、前述した配管21に断面略円形のものを用いた場合は、その配管21の径を1とすると、第二開口部15bの口径は5以上にすることが望ましい。

【0030】更に、真空貼り合わせ室15の上部には加圧板16に形成された図示しないマーク認識用孔を通して上下の各基板33、34の位置合わせマークを観測する為の窓25が複数設けられる。ここで、その位置合わせマークの観測には図1に示す認識用カメラ26が用いられ、この認識用カメラ26によって各基板33、34の位置合わせマークのずれを測定する。

【0031】続いて、テーブル9には、静電気又は真空吸着によって下基板33を吸着する為の図示しない静電吸着用電極と複数の真空吸着孔9aとが設けられている。

【0032】その静電吸着用電極は、本実施形態にあっては略矩形の平板電極であり、テーブル9の上面の両端側に形成された二つの略矩形の凹部に各々嵌着される。また、その静電吸着用電極は、その表面(テーブル9の上面側)が誘電体で覆われており、この誘電体の正面がテーブル9の上面と面一になるよう設けられる。このようにテーブル9に配設された静電吸着用電極は、夫々正負の直流電源に適宜なスイッチを介して接続されている。これが為、各静電吸着用電極に正或いは負の電圧が印加されると、上記誘電体の正面に負或いは正の電荷が誘起される。そして、その電荷によって下基板34に形成されている透明電極膜との間に発生するクーロン力で下基板34がテーブル9に静電吸着される。ここで、各静電吸着用電極に印加する電圧は、同極でもよいし、夫々異なる双極でもよい。

【0033】尚、基板貼り合わせ室15内が大気の場合は、前述した真空吸着孔9aによる吸引吸着を行った方がよい。その理由は、静電吸着を行う場合、下基板34とテーブル9の間に空気層があると、静電気による放電現象が発生して下基板34やテーブル9を損傷してしまう。これが為、例えば下基板34をテーブル9に最初に密着保持するときは周囲が大気下にあるので、先ず吸引吸着を行い、減圧室内を減圧していく放電現象が発生しない程度まで減圧されてから静電吸着を行うことが望ましい。

【0034】次に、各真空吸着孔9aは、配管18を介して基板貼り合わせ室15の外部に配設した図示しない吸着バルブに接続され、この吸着バルブを経由して図示しない真空ポンプに接続されている。この場合、その配管18の途中には真空吸着解除用のバルブを介して大気開放する為のバイパス配管が設けられており、その真空吸着解除用バルブを大気開放することによって吸着状態を強制的に解除している。このように構成されたテーブル9は、前述したが如く支持柱10を介して6ステージ4c上に固定される。

【0035】また、加圧板16には、テーブル9と同様に上基板34を吸着する為の静電吸着用電極と複数の真空吸着孔16aとが設けられている。ここで、後述するが如く加圧板16にて上基板34を吸引吸着している状

態で基板貼り合わせ室15内を減圧していくと、その吸着力が小さくなり上基板34が落下する虞がある。これが為、基板貼り合わせ室15内には、加圧板16の僅か下の位置で上基板34を受け止める図示しない基板保持爪が設けられている。この基板保持爪は、例えば上基板34の対角位置たる二つの角部に対応して配設されており、基板貼り合わせ室15の上部から下方に向けて延設したシャフトで釣り下げ保持される。

【0036】具体的には、図示しないが、基板貼り合わせ室15の上部に形成された貫通孔にシャフトが挿通されており、このシャフトがその軸中心で回転し且つ上下移動できるように構成されている。この場合、基板貼り合わせ室15内が真空漏れを起こさないようにシャフトに真空シールが覆設されている。上記回転はシャフトの端部に接続された図示しない回転アクチュエータによって、上下移動は同様にシャフトの端部に接続された図示しない昇降アクチュエータによって行われる。このようにシャフトを回転又は上下移動させることによって、各基板33、34の貼り合わせを行ない、下基板33上に滴下された液晶剤を各基板33、34の正面の広がり方向に拡張させる際に邪魔にならぬよう基板保持爪を退避させることができる。

【0037】上記各真空吸着孔16aは、配管19を介して基板貼り合わせ室15の外部に配設した図示しない吸着バルブに接続され、この吸着バルブを経由して図示しない真空ポンプに接続されている。この場合、その配管18の途中にはテーブル9と同様に真空吸着解除用のバルブを介して大気開放する為のバイパス配管が設けられており、その真空吸着解除用バルブを大気開放することによって吸着状態を強制的に解除している。このように構成された加圧板16は、複数の支持柱27を介してZ軸移動ステージ部S3の後述する移動ベース29に吊り下げ固定されている。

【0038】ここで、真空貼り合わせ室15と移動ベース29との間には、真空貼り合わせ室15上に一端を固定し且つ移動ベース29の下部に他端を固定すると共に支持柱27に覆設する蛇腹状の弾性体から成る真空ベルーズ28が配設されており、これにより貼り合わせ時ににおける真空貼り合わせ室15内の真空状態を保持している。

【0039】[Z軸移動ステージ部] Z軸移動ステージ部S3は、加圧板16を吊り下げ保持する移動ベース29と、その両端に配設されたリニアガイド30と、このリニアガイド30と係合し且つフレーム3に設けられた上下方向(図1に示すZ軸方向)のレール3aと、そのZ軸方向の出力軸を備えた電動モータ32と、一端が移動ベース29側に係合し且つ他端が電動モータ32の出力軸側に係合するボールネジ31とを有する。このようにZ軸移動ステージ部S3を構成することによって、駆動させた電動モータ32で移動ベース29をレールに沿

って上下方向に移動させ、加圧板16を上下移動させることができる。

【0040】[基板貼り合わせ装置の動作] 次に、本実施形態の基板貼り合わせ装置の動作を説明する。ここでは貼り合わせ対象物たる基板として液晶パネル用の基板を用いた場合について例示する。

【0041】予め、貼り合わせる二枚の基板の何れか一方には、その各基板を貼り合わせた際に液晶を決められた枠内に閉じ込め封入する為、枠状に接着剤を一筆書きで塗布しておき、その枠内に液晶を所定量滴下しておく。この液晶が滴下された基板を下基板33とする。

【0042】先ず、真空貼り合わせ室15の外部に配設された図示しない移載機のハンドを用いて、膜面を下方に向かって上基板34の周縁部を下側から吸引吸着する。そして、真空貼り合わせ室15の第一開口部15aに備えたゲートバルブ17を開け、その第一開口部15aから移載機のハンドを真空貼り合わせ室15内に挿入し、電動モータ32を駆動して下降させた加圧板16を上基板34に押し付ける。しかし後、ハンドの吸引吸着を解除し、真空ポンプを作動させて吸引吸着孔16aで上基板34を加圧板16に真空吸着する。この上基板34の吸着が終了すると、ハンドを真空貼り合わせ室15外に退避させる。

【0043】続いて、各昇降ピン35の先端がテーブル9の上面から突出するようにシリング36を作動させ各昇降ピン35を上昇させておく。そして、液晶を滴下した面を上にした下基板33の周縁部を移載機のハンドで下側から吸引吸着し、そのハンドを真空貼り合わせ室15内に挿入して下基板33を各昇降ピン35上に移載する。この下基板33の移載が終了すると、ハンドを真空貼り合わせ室15外に退避させてゲートバルブ17を閉じる。しかし後、各昇降ピン35を下降させて下基板33をテーブル9上に載置し、真空ポンプを作動させて吸引吸着孔9aで下基板33をテーブル9に真空吸着する。

【0044】以上の如きテーブル9と加圧板16への各基板33、34の吸着が終了すると、第一排気管20a側のバルブを開放して真空貼り合わせ室15内のガスを徐々に排気する。具体的には、本実施形態にあっては装置の初期状態にて第一及び第二の排気管20a、20bが切換バルブによって双方共閉じられた状態に設定されており、各基板33、34の吸着が終了すると、第一排気管20a側を開放し且つ第二排気管20b側を閉じた状態になるよう切換バルブを切り換えて真空貼り合わせ室15内のガスを徐々に排気する。この場合、前述したが如き径に設定した第一排気管20aを用いて低速排気しているので、ガスの流れによる基板33、34の暴れ、下基板33上の液晶の飛散や減圧による水分の凍結が発生を防止することができる。

【0045】統いて、第一排気管20aによる排気によ

って真空貼り合わせ室15内が所定の圧になったときに、具体的には図示しない圧力計にて測定した真空貼り合わせ室15内の気圧が排気速度を上げても基板暴れ、液晶飛散や水分凍結が発生しない圧力になったとき（例えば、真空吸着力で吸着している上基板34が加圧板16から離れない程度の圧まで減圧したとき）に、第一排気管20aのバルブを閉じる。

【0046】そして、第二排気管20bのバルブを開放し、各基板33、34を貼り合わせる為の圧力（本実施形態にあっては約 5×10^{-3} Torr）まで真空貼り合わせ室15内を急速に減圧する。ここで、その圧力下では上基板33の真空吸着力よりも真空貼り合わせ室15内の気圧の方が低くなっているので、その上基板33が加圧板16から離れてしまう。しかしながら、加圧板16の下面側には前述した基板保持爪が具備されており、前述した回転アクチュエータや昇降アクチュエータによって基板保持爪を動かして上基板33が保持されているので、その上基板33は加圧板16から離間しない。

【0047】上述したが如く真空貼り合わせ室15内の減圧が終了すると、真空中でも各基板33、34をテーブル9と加圧板16に各々吸着できるように、そのテーブル9及び加圧板16の静電吸着電極に電圧を印加して各基板33、34を静電吸着する。しかし後、電動モータ32を駆動して移動ベース29を下降させ、上基板34を下基板33に接近させる。そして、認識用カメラ26を用いて各基板33、34に設けた位置合わせマークを観測して基板33、34間の位置ずれを測定し、この測定値に基づきXステージ4a、Yステージ4b並びにθステージ4cの動作制御を行ってテーブル9を水平移動させ、下基板33と上基板34との高精度な位置合わせを行う。

【0048】その位置合わせが終了すると、移動ベース29を更に下降させ、上基板34が接着剤を押し潰して一次加圧を行う。この一次加圧の後、加圧板16の静電吸着電極の印加電圧を切断し、電動モータ32を駆動して加圧板16を上昇させる。

【0049】ここで、この一次加圧後の各基板33、34の状態を図2に示す。この場合の基板33、34間の間隔は約 $15 \mu\text{m}$ 程度であり、まだ所望の間隔になっていない。これが為、接着剤37の潰れ量が少なく、その接着剤37における各基板33、34との接触面積が小さい（接触部長さ38が短い）ので接着状態が不完全である。更には、接着剤37の枠内の液晶39が広がらず、その液晶39間に大きな真空空間部40ができるいる。

【0050】このような各基板33、34の状態は、前述した従来例に示す加圧板16の加圧力が不足する場合に相当する。かかる場合に所望の加圧力を印加する為には、装置自体を大きくして大きな加圧力を印加できるようにしてよい。しかしながら、装置が大型化してしま

うので、装置全体を再構築しなければならず費用がかかりてしまう。

【0051】ここで、真空貼り合わせ室15内の圧力を真空状態から大気圧へと変化させると、基板33、34間の空間部分（前述した真空空間部40）は真空状態である為、各基板33、34には略均一にその外部から大きな圧力が加わる。例えば各基板33、34の大きさが $1200\text{mm} \times 1000\text{mm}$ の場合は、その基板33、34間の空間部分が真空状態のときに大気圧を加えると 121.6kN の力を掛けることができる。これが為、本実施形態にあっては以下の如く二次加圧を行い、既存の装置の大きさのまま適正な基板間隔である $5\mu\text{m}$ 以下好ましくは $4\mu\text{m}$ 以下の間隔にする。

【0052】前述したが如く一次加圧終了後に真空貼り合わせ室15内を真空状態から大気圧へと圧力を変化させると、各基板33、34には略均一に圧力を加えることができる。しかしながら、急激に大気圧に戻した場合は、前述したが如く接着剤37がまだ十分に潰れていない為、ガスがその接着剤37を破って真空空間部40に入り込み、不良品の液晶基板が出来てしまう。これが為、本実施形態にあっては、一次加圧終了後に細い配管21の弁22を開放し、その配管21に接続した圧力源から加圧されたガスを真空貼り合わせ室15内に導入することで、徐々に大気圧に戻す。このように真空貼り合わせ室15内を徐々に大気圧に戻していくと、各基板33、34には徐々に圧力が加わり、接着剤37が徐々に潰れていく。そしてこれにより、接着剤37と各基板33、34との接触面積も徐々に拡大する。このようにして真空空間部40の内圧と真空貼り合わせ室15内の圧力との差を徐々に大きくするので、導入されたガスが接着剤37を破って真空空間部40内に入り込むことはない。

【0053】この状態の各基板33、34を図3に示す。この図3に示す基板33、34間の間隔は約 $10\mu\text{m}$ 程度になっている。ここで、接着剤37は、前述したが如く真空貼り合わせ室15内にガスを導入すると、図2から図3に近い形状に潰れることで流動が起り、チクソトロビ一性によって粘度が低下する。本実施形態にあってはこの接着剤37の粘度が低下した状態で、急速に真空貼り合わせ室15内を大気圧に戻す為の大気開放弁23を開放して更に各基板33、34に加圧力を加える。具体的には、真空貼り合わせ室15内に設けた圧力計が所定圧を超えたことを検出したときに弁22を閉じ、且つシリング24を作動させて大気開放弁23を開放することによって、各基板33、34に加圧力が加わり貼り合わせが終了する。例えばその所定圧としては、導入されたガスが接着剤37を破って真空空間部40内に入り込むことがなくなったときの圧力を予め実験等で検出しておき、その圧力を設定しておけばよい。

【0054】このように急速に真空貼り合わせ室15内

を大気圧に戻すことによって、接着剤37の接触面積が各基板33, 34に対して広がりシール性が向上するので、基板33, 34間にガスが接着剤37を破って入り込むことがなくなる。また、接着剤37はその粘度が低下している為に速やかに潰れ、且つ液晶39も加圧されて潰れて広がるので、各基板33, 34の貼り合わせ時間が短くなる。

【0055】以上示したが如く貼り合わせが終了し、更には真空貼り合わせ室15内の圧力が大気圧になると、ゲートバルブ17を開ける。そして、テーブル9の静電吸着電極の印加電圧を遮断し、且つ真空吸着孔9aにおける吸引を解除した後、各昇降ピン35を上昇させてセルをテーブル9上から押し上げる。しかし後、移載機のハンドを第一開口部15aからセルの下部（セルとテーブル9の間）に挿入し、そのハンド上にセルを移載して真空貼り合わせ室15外に搬出する。

【0056】ここで、前述した大気開放弁23を動かすシリンダ24は、真空貼り合わせ室15内の圧力が大気圧になったときにも大気開放弁23を開放するように設定しておく。これにより、前述した所定圧時に弁22を閉じ忘れても、真空貼り合わせ室15内の圧力が大気圧になると自動的に大気開放弁23が開放されるので、真空貼り合わせ室15内の圧力が大気圧以上に上昇しないように制御できる。そしてこれが為、セルの精度低下を招かず且つ作業の安全性を確保することができる。

【0057】尚、本実施形態にあっては太さの異なる第一及び第二の排気管20a, 20bを切換バルブによって切り換えて排気経路を変更し、これにより排気速度を制御しているが、必ずしもその方法に限定するものではなく、例えば本実施形態の如く二つの排気管20a, 20bを設けずに一つの排気管のみで構成してこの排気管に真空ポンプを接続し、この真空ポンプを制御して排気速度を制御してもよい。この場合、排気管は、太い方の管径（即ち本実施形態の第二排気管20bの管径）にすることが望ましい。

【0058】続いて、前述した二次加圧の変形例を説明する。この場合は、前述した二次加圧と異なり、予めシリンダ24に大気開放弁23を開く方向の力を掛けておく。その力とは、真空貼り合わせ室15内が真空状態になっているときに大気開放弁23が第二開口部15bを閉塞し続ける（真空貼り合わせ室15内の真空状態を保ち続ける）程度の小さな力である。具体的には、シリンダ24に予め掛けた大気開放弁23を開く方向の力を、真空状態の真空貼り合わせ室15内から大気開放弁23に掛かる引張力よりも小さくする。

【0059】以上の如き状態で弁22を開放し、配管21に接続された圧力源を駆動して真空貼り合わせ室15内にガスを徐々に導入する。ガスが導入され続けて真空貼り合わせ室15内の真空度が小さくなり、大気開放弁23を開放しようする前述したシリンダ24に予め掛け

た力に比べて引張力の方が小さくなると、大気開放弁23が自動的に開放されて真空貼り合わせ室15内の圧力が急速に大気圧に戻る。このように、予め大気開放弁23に開放方向の力を加えておくことによって、真空貼り合わせ室15内が大気圧を超える圧力になることはなく、これによりセルの精度低下を招かずに作業の安全性を確保できる。即ち、その大気開放弁23を安全弁として作用させることもできる。尚、本実施形態にあっても、必ずしも圧力源を設げともよい。

【0060】続いて、二次加圧の他の変形例を説明する。本変形例は、上記変形例と異なり、予めシリンダ24に大気開放弁23を閉じる方向の力を掛けておく。その力とは、真空貼り合わせ室15内の圧力が大気圧よりも大きくなったときに、その圧力が掛かるまで大気開放弁23が閉じた状態を保つ力である。この場合のシリンダ24に掛けた力は、各基板33, 34の大きさによって決定され、この各基板33, 34の貼り合わせに要する加圧力が大きい程、大きな力が掛けられる。

【0061】以上の如く予めシリンダ24に力を掛けた状態で弁22を開放し、配管21に接続された圧力源を駆動して真空貼り合わせ室15内に徐々にガスを導入する。このガスは、真空貼り合わせ室15内の圧力が大気圧を超えるまで、具体的にはシリンダ24に予め設定した力を超えるまで導入され、その力を超えると大気開放弁23が開放されて真空貼り合わせ室15内が大気圧に戻される。このように、予めシリンダ24に大気開放弁23を閉じる方向の力を掛けておくことによって、各基板33, 34が大きい為その貼り合わせに大きな加圧力を必要とする場合でも、シリンダ24に設定する力を調整することで、各基板33, 34の貼り合わせに必要な力を均等に加えることができる。

【0062】上記各変形例にあっては、以上示したが如く加圧力を掛けた貼り合わせが終了し、更には真空貼り合わせ室15内の圧力が大気圧になると、弁22を閉じ、ゲートバルブ17を開ける。そして、テーブル9の静電吸着電極の印加電圧を遮断し、真空吸着孔9aにおける吸引を解除した後、各昇降ピン35を上昇させてセルをテーブル9上から押し上げる。しかし後、移載機のハンドを第一開口部15aからセルの下部（セルとテーブル9の間）に挿入し、そのハンド上にセルを移載して真空貼り合わせ室15外に搬出する。

【0063】〔第二実施形態〕次に、本発明に係る基板貼り合わせ装置の第二実施形態について図4に基づいて説明する。

【0064】この基板貼り合わせ装置は、前述した第一実施形態の装置とは以下の点で異なり、他はその第一実施形態と同様に構成される。具体的には、第一実施形態ではゲートバルブ17と大気開放弁23とを別個独立して設けたが、本実施形態にあってはその大気開放弁23をゲートバルブ17と兼用して設けている。以下にその

構成について詳述する。

【0065】第一実施形態のゲートバルブ17と大気開放弁23とを兼用した本実施形態の構成は、真空貼り合わせ室15の第一開口部15aを閉塞する例えば上下方向に移動自在なゲートバルブ41と、このゲートバルブ41の閉塞面と反対側の面から立設した複数のシャフト42と、これら各シャフト42を立設した面に配設され且つゲートバルブ41を第一開口部15aから離間方向(図4に示すX方向)に移動自在なシリンド44と、各シャフト42毎に覆設されたそのシャフト42を軸方向に滑動するリニアガイド43を備えた例えば断面略し字状のアーム45と、このアーム45に固定されたゲートバルブ41の上下方向の移動動作を行うシリンド46とを有する。ここで、本実施形態の真空貼り合わせ室15には第一実施形態の真空貼り合わせ室15に示した第二開口部15bは形成されない。

【0066】このように構成された本実施形態の装置の各基板33、34の貼り合わせ動作は、前述した第一実施形態におけるゲートバルブ17と大気開放弁23に係る動作が異なるのみで、他の動作はその第一実施形態と同様である。ここで、本実施形態における動作の相異点のみを以下に説明する。

【0067】先ず、各基板33、34を真空貼り合わせ室15内に搬入する場合やセルを真空貼り合わせ室15内から搬出する場合は、シリンド46を作動させてゲートバルブ41をシリンド44やアーム45と共に上下移動させる。続いて、二次加圧時に真空貼り合わせ室15内の圧力を急速に大気圧に戻す場合は、シリンド44を作動させてゲートバルブ41を真空貼り合わせ室15から離間させ、第一開口部15aを開放することによって真空貼り合わせ室15内に大気を導入して行われる。ここで、前述した第一実施形態の各変形例の如くシリンド44に予め力を掛けておき、その変形例と同様にゲートバルブ41を動作させてもよい。

【0068】このように、前述した第一実施形態の大気開放弁23の機能をゲートバルブ41に持たせることによって、部品点数を削減することができ、更には装置の小型化をも図ることができる。また、装置の組み立ても容易に行うことができる。

【0069】

【発明の効果】本発明に係る基板貼り合わせ方法及びその装置は、真空チャンバ内に二枚の基板を搬入した後、その真空チャンバ内が所定の圧になるまで徐々に排気する。そして、所定圧になった際に急速に排気して真空チャンバ内を真空状態にすることによって、各基板の暴れや水分の凍結の発生を防止することができ、これにより確実且つ短時間で貼り合せを完了させることができる。

【0070】また、各基板を機械的に加圧貼り合わせし、その後、真空状態の真空チャンバ内が所定の圧になるまで徐々にガスを導入する。そして、所定圧になった際に急速にガスを導入して真空チャンバ内を大気圧にすることによって、貼り合わせた各基板の間隔を正確に位置合わせすることができ、これにより確実且つ短時間で貼り合せを完了させることができ、という従来にない優れた基板貼り合わせ方法及びその装置を得ることが可能となる。

【図面の簡単な説明】

【図1】本発明に係る基板貼り合わせ装置の第一実施形態の構成を示す部分断面図である。

【図2】本実施形態における一次加圧後の各基板を示す説明図である。

【図3】本実施形態における二次加圧時の大気解放前の各基板を示す説明図である。

【図4】本発明に係る基板貼り合わせ装置の第二実施形態の構成を示す部分断面図である。

【符号の説明】

9 テーブル

15 真空貼り合わせ室(真空チャンバ)

16 加圧板

20a 第一排気管(排気速度可変手段の第二排気機構)

20b 第二排気管(排気速度可変手段の第一排気機構)

21 配管(導入速度可変手段の第一ガス導入機構)

22 弁(導入速度可変手段の第一ガス導入機構)

23 大気開放弁(導入速度可変手段の第二ガス導入機構)

33, 34 基板

37 接着剤

【図1】

【図1】

【図2】

【図2】

【図4】

【図4】

【図3】

【図3】

フロントページの続き

(72)発明者 中山 幸徳

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(72)発明者 八幡 晃

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(11) 02-311440 (P2002-311440A)

(72)発明者 齋藤 正行

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(72)発明者 平井 明

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

Fターム(参考) 2H089 NA49 NA60

5G435 AA17 BB12 EE33 KK05 KK10