class	reading	before class	in class	beSocratic
5	Ch 2 pp.53-55	 What is a constant? what is a function? What happens to the energy of a photon of light as the frequency increases? What about as the wavelength increases? Why were the phenomena of diffraction and interference used as evidence that light is a wave? The wavelengths of X-rays are about 10⁻¹⁰ m while the wavelengths of radiowaves are about 10 m. What other factors can you calculate about these two types of radiation? What factors are the same, what are different. 	 Why is it difficult to detect "cold blooded" animals using infrared detectors? Why do we not need to worry about radiowaves but need to minimize our exposure to X- rays? (should you worry about your cell phone?) 	wavelength, frequency, energy uncertainty
6	Ch 2 pp.56-61	 If the intensity of a beam of light is related to the number of photons passing per second, how would you explain intensity using the model of light as a wave? What would change, what would stay the same? How does the wavelength of a particle change as the mass increases? Planck's constant is h = 6.626 x 10⁻³⁴ J.s. What are the implications for particles of macroscopic size? (1 J = the kinetic energy of a two-kilogram mass moving at the speed of one meter per second) 	 Draw a picture of what you imagine is happening during the photoelectric effect. Is the energy required to eject an electron the same for every metal? why or why not. What would be the wavelength of the world record holder for the 100m sprint?hat assumptions do you have to make to answer this question? 	Photoelectric effect atomic electron structure

class	reading	before class	in class	beSocratic
7	Ch 2 pp.61-65	 Provide a short answer for why no new elements with atomic numbers below 92 are possible. Isotopes of the same element are very similar chemical, what does that imply about what determines chemical behavior? Why were atomic masses compared to hydrogen? How might you determine the atomic weight of an element experimentally? Why aren't the atomic weights in Mendeleev's Periodic Table whole numbers? Why would you expect that different isotopes of the same element differ in stability? 	 Why do you think there were no noble gases in Mendeleev's Periodic Table? You discover a new element - how would you know where would it go in the periodic table? 	periodic table
8	Ch 2 pp.65-73	 What factors govern the size of an atom? list all that you can. Which factors are the most important? If each electron is identified by a unique (that is, different) set of quantum numbers, is it possible to recognize different electrons as different (once they are ejected from the atom)? How do you think the presence of the 1s orbital influences the shape of the 2s orbital, etc. 	Why are Helium atoms smaller than Hydrogen atoms? •	atomic size