首都圏方言アクセントの読み上げ調査

一制約ベースモデルによる分析一

り ぼくとう 李 墨彤 ribokuto@gmail.com

大阪大学大学院

PAIK 2018 年 12 月 22 日 大阪大学

先行研究:Ito & Mester (2016)

- 外来語の優勢なアクセント型についての分析
- 対象となる外来語の音韻・形態構造¹(合計 23 種)

構造	語例	構造	語例
(L')	ド・レ・ミ	(L 'L)	パリ
(L 'L)L	バナナ	(H')L	ブーケ
(L L)(L L)	アメリカ	(H)(L L)	テーブル
L(H ')L	ケチャップ	(L L)(L 'L)L	クリスマス
(LL)(LL)(L'L)L	アナクロニズム	(H)L(L 'L)L	ジャーナリズム
$(\mathbf{H})(\mathbf{L}')H$	ランデブー	L(L 'L)H	アレルギー
L(H)(L L)	リハーサル	(H ')H	シャンプー
(H ')	パン	(L ')H	プリン
(L 'L)H	ドラゴン	(L L)L(L 'L)L	メトロポリス
$(\mathbf{H})(\mathbf{H}')L$	コンコース	L(H ')H	カレンダー
(LL)+(H)	パソコン	(L L)+(L)	ファミマ
$(\mathbf{H})+(\mathbf{H})$	ジーパン		

-1-

 $^{^1}L$: 軽音節 | H:重音節 | ():フット | ':アクセント核 | 太字:フットヘッド | +:語彙素境界

Ito & Mester (2016)が提案したランキング² MT LEXFT NOLAPSE MINWDACC RIGHTMOST Nonfin (σ) **WSP FTBIN** InitFt Nonfin(Ft')**W**D**A**CC

Parse-σ

²各制約の定義は付録 1 を参照

• LLLL の平板型の生成

	INITFT	NoLapse	Nonfin(Ft')	RIGHTMOST	WDACC	Parse-o
/amerika/ ► a. ⁰ [(ame)(rika)]		! !	! !		*	
b. ⁴ [(áme)(rika)]		 		*!		
c. ² [(ame)(ríka)]		!	*!			
d. ⁴ [(áme)rika]		*!				**
e. ³ [a(méri)ka]	*!	 	 			**

先行研究:李(2017)

- 李(2017): 漢語+外来語の優勢なアクセント型についての分析
- 対象となる漢語の音韻・形態構造(計 12 種³; 1~4 モーラの単純語)

構造	語例	構造	語例	構造	語例
(L ')	可	(L 'L)	悪	(H)#(H)	安心
(H')	運	(L ')#L	所持	(H)#(L L)	完結
(L 'L)#L	確保	(L)#(L L)	可決	(L L)#(H)	錯乱
(H ')#L	謳歌	(L)#(H)	火災	(L L)#(L L)	血圧

³外来語の構造を含めて 32 種になる。#:形態素境界

李(2017)が提案したランキング⁴

⁴各制約の定義は付録 1 を参照

各階層における表記

制約ベースモデル: Stochastic OT

- ランキングは離散的ではなく、連続的である
- Eval が評価ノイズを与え、各制約の値を一時的に変化させる⁵
- 図例:制約の値の変化 (Boersma & Hayes 2001)
 - a. Common result: $C_2 \gg C_3$

b. Rare result: $C_3 \gg C_2$

-7-

⁵値の変化は正規分布 (Mean = ranking value, SD = evaluation noise) に従う

学習アルゴリズム: Gradual Learning Algorithm (GLA)

- Stochastic OT に基づく学習アルゴリズム (Boersma 1997, 1999; Boersma & Hayes 2001)
- 昇格と降格の両方を取り入れている⁶

			制約 1	制約 2	制約3	制約4
			100→99	96 ←95	90→ 89	86 ←85
a.	rg	候補 1		← *	*	←*
b.	✓	候補2	* →		<i>*</i> ** →	

⁶降格と昇格の程度 (値の変動幅) は plasticity というパラメータに基づく

解析アルゴリズム: Expected Interpretive Parsing (EIP)

EIP for GLA (Jarosz 2013)

Require: Initialised Stochastic Grammar G₀

Parse $\sim P(\text{parse} \mid G_i, d)^7$

 $G_{i+1} \leftarrow \text{Update}(G_i, \text{Parse}, \text{Output})$

```
1: for d in D do

2: Sample G' \sim G_i

3: Input \leftarrow uf(d)

4: Output \leftarrow Optimise<sub>G'</sub>(Input)

5: if overt(Output) \neq d then
```

9: end for

6:

^{8:} **end if**

⁷リサンプリングの最大回数は 1000 回に設定されている

• EIP のフローチャート

読み上げ調査

- 架空語
 - 調査語の例:ジーハ、デーヘモ
 - 場面設定:珍しい植物を友達に説明する
 - 構造:LL、LLL、HL、LH、LLLL、HLL、LHL、LLH、HH、LLLLL、HLLL、LHLL、LHLL、LLHL、LLH、HLH、HLH、LHH(17種)
- ② 親密度の低い漢語
 - 調査語の例:曲浦、鬱勃
 - 場面設定:なじみのない漢語を友達に説明する
 - 構造:L#L、LL#L、L#LL、H#L、L#H、LL#LL、H#LL、LL#H、H#H (9種)
- 外来語複合語短縮形
 - 調査語の例:グラピ(グランドピアノ)、ソラパネ(ソーラーパネル)
 - 場面設定:なじみのない略語を読み上げる
 - 構造:LL+L、L+LL、H+L、LL+LL、H+LL、LL+H、H+H(7種)
- ▲ 四字漢語の二字短縮形
 - 動査語の例:着履(着信履歴)、特貿(特恵貿易)
 - 場面設定:なじみのない略語を読み上げる
 - 構造:L-L、LL-L、L-LL、H-L、L-H、LL-LL、H-LL、LL-H、H-H(9 種)
- 各構造の具体的な割合を学習データとする(付録2を参照)

ジェネレーター

- 各 UF に対して、フット情報とアクセント情報を含む SF の候補を生成する
- 1フットは最大2音節を含むとする(3音節を含むフットは生成しない)
- 例: |HLL| の場合(合計34個のSFを作る)
 GEN(|HLL|) = /(H')(L)(L)/、/(H)(L')(L)/、/(H)(L)(L')/、/(H)(L)(L)/、/(H)(L)/、/(H)(L)/、/(H)(LL)/、/(H)(LL)/、/(H)(LL)/、/(H)(LL)/、/(H)(LL)/、/(H)(LL)/、/(H)(L)/、/(HL)(L)/、/(HL)(L)/、/(HL)(L)/、/(HL)(L)/、/(HL)(L)/、/(HL)(L)/、/(HL)(L)/、/H(L)(L)/、/H(L)(L)/、/H(L)(L)/、/H(L)(L)/、/H(L)(L)/、/H(L)(L)/、/H(L)/、/H(L)/、/H(L)/、/HL)/、/HLL/

シミュレーション1

- ソフト: Praat (Boersma & Weenink 2018)
- 学習データ:付録2を参照
- 制約:李(2017)で使用された14個の制約
- パラメータの設定

OTGrammar & Distributions: Learn from partial outputs (eip)					
Column number:	1				
Evaluation noise:	2.0				
Update rule:	Symmetric all				
Initial plasticity:	1.0				
Replications per plasticity:	100000				
Plasticity decrement:	0.1				
Number of plasticities:	4				
Rel. plasticity spreading:	0				
	Honour local rankings				
Number of chews:	1				
Store history every:	0				
Help Standards	Cancel Apply OK				

結果

- 相関 ⁸: n = 20, Mean = 0.854, SD = 0.002
- 平均絶対誤差(MAE)⁹: n = 20, Mean = 0.132, SD = 0.001
- 誤差の大きい構造(相関 = 0.858、MAE = 0.129 のモデルから抽出):

OF	UF	目標データの割合	産出データの割合	誤差
[L'L#L]	LL#L	86.76%	11.62%	-75.14%
[LL#L]	LL#L	11.76%	85.37%	73.61%

• Input =|LL#L| のときの産出:

	UF	OF	SF	割合
1	LL#L	[L'L#L]	/(L ')(L #L)/	11.49%
2	LL#L	[LL'#L]	/(L)(L '#L)/	2.72%
3	LL#L	[LL#L]	/(L)(L #L)/	78.69%
4	LL#L	[L'L#L]	/(L 'L)#L/	0.14%
5	LL#L	[LL'#L]	/L(L '#L)/	0.28%
6	LL#L	[LL#L]	/L(L #L)/	6.69%

⁸ピアソンの積率相関係数

 $^{^9}$ MAE $=\frac{1}{n}\sum_{t=1}^n|e_t|$ (例:x=(1,3,5)、y=(6,4,2) の場合、x と y の MAE は $\frac{|1-6|+|3-4|+|5-2|}{3}=3$)

シミュレーション2

(σ#σ) のようなフットの生成を抑制する制約: NoCROSS

フットは形態的境界を超えて分析しない。1 個の $(\sigma \# \sigma)$ 、 $(\sigma + \sigma)$ 、 $(\sigma + \sigma)$ に対して、違反印を1つ付ける

● 相関:n = 20, Mean = 0.913, SD = 0.06

平均絶対誤差: n = 20, Mean = 0.110, SD = 0.026

● 誤差の大きい構造(相関 = 0.934、MAE = 0.100 のモデルから抽出):

OF	UF	目標データの割合	産出データの割合	誤差
[LHLL]	LHLL	0.00%	67.91%	67.91%
[LH'LL]	LHLL	80.65%	27.23%	-53.42%

● Input = |LHLL| のときの産出(上位 5 つのみ提示):

-	UF	OF	SF	割合
1	LHLL	[LHLL]	/L(H)(L L)/	41.38%
2	LHLL	[LH'LL]	/L(H ')LL/	25.63%
3	LHLL	[LHLL]	/(L)(H)(LL)/	24.38%
4	LHLL	[LHL'L]	/(L)(H)(L')L/	2.81%
5	LHLL	[LHLL]	/(L H)(L L)/	2.15%

韻律語に関する制約群

PRWdBinMax : Prosodic Word Binarity (Max)

韻律語の分析は最大二項的である。三項以上の分析は違反となる(外来語短縮の最大性条件(Ito 1990):5モーラ以上の語は不適格)

(L)(H)(LL) と (L)(H):(LL) の構造をそれぞれ示す。: は音韻語境界。

 MINPRWD: Minimal Prosodic Word 韻律語は最小限に音節を2つ含む(外来語短縮の最小性条件(Ito 1990): a. 1モーラ語は不適格;
 b. 1音節語は不適格)

(適格例:(L)(H):(LL);違反例:(L):(H)(LL))

- PREACC: Pre-Accenting 音韻的複合語の後部要素が2モーラ以下の場合、韻律語境界直前の音節にアクセント核を置く (適格例:(L)(H'):(LL);違反例:(L)(H):(LL))
- POSTACC: Post-Accenting 音韻的複合語の後部要素が3モーラ以上の場合、韻律語境界直後の音節にアクセント核を置く (適格例: (LL):(L'L)L;違反例: (LL'):(LLL))

ジェネレーターの再構築

- すべての架空語の UF に対して、音韻語境界が入る SF の候補を生成
- 例: |HLL| の場合(合計 88 個の SF を作る)

/(H)(L')L/、/(H)(L)L/、/(H')(LL)/、/(H)(L'L)/、/(H)(LL')/、/(H)(LL)/、/(H')L(L)/、/ /(H)L(L')/、/(H)L(L)/、/(H')LL/、/(H)LL/、/(H'L)(L)/、/(HL')(L)/、/(HL)(L')/、 /(HL)(L)/, /(H'L)L/, /(HL)L/, /(HL)L/, /H(L)(L)/, /H(L)(L)/, /H(L)(L)/, /H(L')L/, /H(L)L/, /H(L'L)/, /H(LL')/, /H(LL)/, /HL(L')/, /HL(L)/, /HLL/, /H:(LL)/, /H:(L')L/, /H:(L)L/, /H:(L')(L)/, /H:(L)(L')/, /H:(L)(L)/, /H(L'):L/, $/H(\mathbf{L}):L/$, $/H(\mathbf{L}'):(\mathbf{L})/$, $/H(\mathbf{L}):(\mathbf{L}')/$, $/H(\mathbf{L}):(\mathbf{L})/$, $/(H^{\prime}L):L/$, $/(H\mathbf{L}'):L/$, $/(H\mathbf{L}):L/$, /(H'L):(L)/、/(HL'):(L)/、/(HL):(L')/、/(HL):(L)/、/(H')L:L/、/(H)L:L/、/(H')L:(L)/、 /(H)L:(L')/, /(H)L:(L)/, /(H'):LL/, /(H):LL/, /(H'):L(L)/, /(H):L(L')/, /(H):L(L')/, /(H'):(LL)/、/(H):(L'L)/、/(H):(LL')/、/(H):(LL)/、/(H'):(L)L/、/(H):(L')L/、 /(H)(L'):L/, /(H)(L):L/, /(H')(L):(L)/, /(H)(L'):(L)/, /(H)(L):(L')/, /(H)(L):(L)/

シミュレーション3

- ジェネレーターを再構築して、PRWDBINMAX、MINPRWD、PREACC、POSTACC を追加
- 相関:n = 20, Mean = 0.981, SD = 0.001
- 平均絶対誤差:n = 20, Mean = 0.051, SD = 0.004
- 誤差が相対的に大きい構造(相関 = 0.983、MAE = 0.045 のモデルから抽出):

OF	UF	目標データの割合	産出データの割合	誤差
[LL+L] [LL-L]	LL+L LL-L	97.50% 55.71%	74.31% 74.05%	-23.19% 18.33%
[ĽL+L] [ĽL-L]	LL+L LL-L	2.50% 44.29%	25.16% 25.40%	22.66% -18.89%
[H+L]	H+L	80.00% 47.12%	64.61% 64.46%	-15.39% 17.34%
[H-L] [H'+L]	H-L H+L	20.00%	35.36%	15.36%
[H'-L]	H-L	52.88%	35.51%	-17.37%

調査語の例:

LL+L: ショトカ(ショートカット); LL-L: 着履(着信履歴) H+L: ジンエ(ジンジャーエール); H-L: 民企(民間企業)

形態・音韻制約:Truncated Morpheme Foot

T-MorFt: Truncated Morpheme Foot

短縮された形態素はフットに分析される。分析されないと違反となる(違反例:($\mathbf{L}'\mathbf{L}$)+ \mathbf{L} ;違反しない例:($\mathbf{L}'\mathbf{L}$)- \mathbf{L}))

シミュレーション4

● T-MorFT を追加

● 相関:n = 20, Mean = 0.988, SD = 0.001

平均絶対誤差: n = 20, Mean = 0.041, SD = 0.002

● 平均絶対誤差の一番小さいモデル(相関 = 0.988、MAE = 0.037)のランキング:

制約	値	制約	値
$NonFin(\mathbf{L})$	188.871	NonFin(Ft')	177.213
T-MorFt	186.41	$NonFin(\sigma)$	177.135
Lexft	183.286	Rightmost	176.904
NoCross	183.096	InitFt	176.675
MT	182.325	FTBIN	175.618
MorFt	180.478	Parse- σ	172.581
MinWdAcc	179.95	NoLapse	171.82
PostAcc	178.863	WdAcc	170.537
PrWdBinMax	178.448	WSP	112.777
Preacc	178.357	MinPrWd	69.914

まとめ

- 5 モーラ語を音韻的複合語として分析した結果、LHLL に観察される②型の生成を 説明できる([LH'LL] の誤差: -0.28%)
- 1 つの OF に対する SF は複数可能

	UF	OF	SF	産出データの割合
1	LHLL	[LH'LL]	/(L)(H '):LL/	43.90%
2	LHLL	[LH'LL]	/L(H '):LL/	29.70%
3	LHLL	[LHL'L]	/(L)(H)(L'):L/	14.06%
4	LHLL	[LH'LL]	/(L)(H'):(LL)/	4.86%
5	LHLL	[LH'LL]	/L(H '):(L L)/	2.28%
6	LHLL	[LHLL]	/(L)(H):(LL)/	1.26%
7	LHLL	[LHLL]	/(L)(H)(LL)/	1.12%
8	LHLL	[LHLL]	/(L):(H)(L L)/	0.77%

- 形態・音韻制約群(T-MorFt \gg LexFt \gg MorFt)を利用することによって、外来語短縮形 \gg 4 字漢語短縮形 \gg 2 字漢語という0型生起の割合の順番を説明できる
- NonFin(L) が上位に位置することで、..#L]、..+L]、..-L] に観察される①型の生成を説明できる

問題点

- アドホックな制約(PREACC¹⁰ と POSTACC)が使用されている
- 架空語の 5 モーラ語に対して、音韻的複合語という分析の可能性(おそらく 1 形態素として分析されていると考えられるが、形態分析が不明瞭なため、 $Lx \approx PR$ (形態的カテゴリーの構成素は音韻語に対応する、Prince & Smolensky 1993/2004)のような形態・音韻制約によるサポートがない)
- SF の分析には直感に反するものが存在する (例:以下のような、フットが語彙素境界を跨ぐ分析。 $NonFin(\mathbf{L})$ に違反しないためだと考えられる。NoCross について再検討する必要)

	UF	OF	SF	産出データの割合
1	LL+L	[LL+L]	/(L)(L +L)/	58.04%
2	LL+L	[LL+L]	/L(L +L)/	29.87%
3	LL+L	[L'L+L]	/(L 'L)+L/	9.19%
4	LL+L	[LL+L]	/(L L)+(L)/	1.41%

• 誤差の相対的に大きい構造がまだ存在している

	OF	UF	目標データの割合	産出データの割合	誤差
1	[HLL]	HLL	63.93%	85.22%	-21.28%
2	[HĽLL]	HLLL	77.97%	98.21%	-20.24%
3	[HLL'L]	HLLL	18.64%	0.01%	18.63%

¹⁰preaccentuation に対して、Ito & Mester (2018)ではより普遍的な制約群に基づいた分析がなされている

参考文献

- Boersma, Paul (1997) "How we learn variation, optionality, and probability," in *Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam*, Vol. 21, pp. 43–58, Amsterdam.
- Boersma, Paul (1999) "Optimality-theoretic learning in the Praat program," in IFA proceedings, Vol. 23, pp. 17–35.
- Boersma, Paul & Bruce Hayes (2001) "Empirical Tests of the Gradual Learning Algorithm," *Linguistic inquiry*, Vol. 32, No. 1, pp. 45–86.
- Boersma, Paul & David Weenink (2018) "Praat: doing phonetics by computer [Computer program]. Version 6.0.43," URL: http://www.praat.org.
- Ito, Junko (1990) "Prosodic minimality in Japanese," CLS: Papers from the Parasession on the Syllable in Phonetics and Phonology, Vol. 26, No. 2, pp. 213–239.
- Ito, Junko & Armin Mester (2016) "Unaccentedness in Japanese," Linguistic Inquiry, Vol. 47, No. 3, pp. 471–526.
- Ito, Junko & Armin Mester (2018) "Tonal alignment and preaccentuation," Journal of Japanese Linguistics, Vol. 34, No. 2, pp. 195–222.
- Jarosz, Gaja (2013) "Learning with hidden structure in Optimality Theory and Harmonic Grammar: beyond Robust Interpretive Parsing," *Phonology*, Vol. 30, No. 1, pp. 27–71.
- Prince, Alan & Paul Smolensky (1993/2004) Optimality Theory: Constraint interaction in generative grammar, Malden, MA & Oxford, UK: Blackwell.
- 李墨彤(2017)「日本語漢語の優勢なアクセント型の分布 —外来語と比較して—」、『音韻研究』、第 20 号、11-20 頁、

付録1:制約の定義

制約	定義	違反例						
MorFT ¹	Every lexical morpheme (i.e., full content	「表記」:(H′)#L						
	morpheme, not grammatical formative) min-							
	imally projects its own foot.							
LEXFT ²	Every lexeme minimally projects its own foot.	「テレカ」:(L 'L)+L						
	Violated by unfooted lexemes.							
$NonFin(L)^3$	Word-final light syllables are not footheads.	「患者」:(H)#(L)						
	Violated when a word-final light syllable is a							
	foothead: $*L$)] $_{\omega}$.							
MT	Feet are (H), (LL), and (L). Violated by iambs:	「ブーケ」:(H ′L)						
	(LL), (LH), (HL), (HH), and trochees of more							
	than 2μ: (L H), (H L), (H H)							
NonFin(σ)	Word-final syllables are not footheads. Vio-	「安心」:(H)#(H)						
	lated when a word-final syllable is a foothead:							
	(H) _{PrWd} , (L) _{PrWd} , etc.							
NoLapse	Syllables are maximally parsed into feet. Vio-	「アクセス」:(L ′L)LL						
	lated by two consecutive unparsed syllables.							
MINWDACC	A minimal prosodic word contains a promi-	「差」:(L)						
	nence peak. Violated when ω_{min} does not							
	contain a prominence (peak=primary stress or							
	pitch accent, in Japanese: High* Low)							

¹Itô & Mester (2016) で使用された LEXFT と同じである。

 $^{^2}$ Itô & Mester (2016) で使用された LexFT のドメインを語彙素に変更したものである。

³李(2016) で提案された制約である。

制約	定義	違反例
RIGHTMOST	* Ft'Ft] _w Violated by any foot following	「アクセス」: (L 'L)(LL)
	the head foot within the prosodic word. This	
	is the End Rule (Final) of Prince 1983, in a ver-	
	sion modeled on the foot-based restatement in	
	McCarthy 2003:111.	
WSP	Heavy syllables are footheads. Violated when	「プリン」:(L ′)H
	a heavy syllable is not a foothead: *.H., *(HX),	
	*(XH)	
FTBIN	Feet are minimally binary at some level of	「プリン」:(L ′)H
	analysis (mora, syllable). Violated by unary	
	feet.	
InitFt	A prosodic word begins with a foot (Itô	「スキー」:L(H ′)
	and Mester 1992:31, McCarthy and Prince	
	1993:81). Violated by any prosodic word	
	whose left edge is aligned not with the left	
	edge of a foot, but of an unfooted σ .	
NonFin(Ft')	* Ft'] $_{\omega}$ Violated by any head foot that is	「スキー」:L(H ′)
	final in its PrWd (Prince and Smolensky	
	1993(2004):45) —"final" in the sense that the	
	right edge of Ft' coincides with the right edge	
	of PrWd.	
WDACC	A prosodic word contains a prominence peak.	「アルバム」:(L L)(L L)
	Violated by prosodic words not having a	
	prominence peak (peak=primary stress or	
	pitch accent, in Japanese: High* Low).	
 Parse-σ	All syllables are parsed into feet (Prince and	「ダンス」:(H ′)L
	Smolensky 1993(2004):*62). Violated by un-	
	footed syllables.	

付録2:各構造における目標データと産出データの割合

	架空語					外来語短縮形			二字漢語				四字漢語の二字短縮形						
OF	UF	目標データ	産出データ	OF	UF	目標データ	産出データ	OF	UF	目標データ	産出データ	OF	UF	目標データ	産出データ	OF	UF	目標データ	産出データ
[H'H]	ĮННĮ	91.8%	94.8%	[LH'LL]	JLHLLI	80.6%	80.9%	[H'+H]	[H+H]	1.4%	1.1%	[H'#H]	[H#H]	4.3%	12.7%	[H-H']	[H-H]	0.0%	0.8%
[H'L]	[HL]	96.8%	100.0%	[LH]	LH	3.2%	21.1%	[H'+L]	H+L	20.0%	13.6%	[H'#L]	H#L	89.2%	90.5%	[H-H]	[H-H]	100.0%	97.3%
[H'LH]	[HLH]	42.6%	27.8%	[LHH']	[LHH]	1.6%	0.0%	[H'+LL]	H+LL	2.6%	1.0%	[H'#LL]	H#LL	0.0%	1.0%	[H-L']	H-L	0.0%	0.0%
[H'LL]	[HLL]	29.5%	13.3%	[LHH]	LHH	1.6%	1.0%	[H+H']	H+H	0.0%	0.8%	[H#H']	H#H	0.9%	0.8%	[H-L'L]	H-LL	0.0%	2.9%
[H'LLL]	[HLLL]	3.4%	0.0%	[LHL'L]	LHLL	19.4%	14.5%	[H+H]	H+H	98.6%	98.0%	[H#H]	H#H	94.8%	86.5%	[H-L]	H-L	47.1%	44.1%
[HH']	JHHJ	0.0%	0.0%	[LHL]	LHL	0.0%	0.0%	[H+L']	H+L	0.0%	0.0%	[H#L']	H#L	0.0%	0.0%	[H-LL]	[H-LL]	96.4%	96.0%
[HH'L]	JHHLJ	100.0%	100.0%	[LHLL]	LHLL	0.0%	4.6%	[H+L'L]	H+LL	0.0%	3.0%	[H#L'L]	H#LL	0.0%	3.0%	[H'-H]	H-H	0.0%	1.9%
[HH]	[HH]	8.2%	5.1%	[LL'H]	LLH	13.3%	0.0%	[H+L]	H+L	80.0%	86.3%	[H#L]	H#L	10.8%	9.5%	[H'-L]	H-L	52.9%	55.9%
[HHL]	[HHL]	0.0%	0.0%	[LL'HL]	LLHL	0.0%	0.0%	[H+LL]	H+LL	97.4%	96.1%	[H#LL]	H#LL	100.0%	96.0%	[H'-LL]	H-LL	3.6%	1.1%
[HL'H]	[HLH]	54.1%	69.7%	[LL'L]	LLL	3.2%	0.1%	[L'+LL]	L+LL	5.7%	1.4%	[L'#H]	L#H	28.6%	12.1%	[L-H']	L-H	0.0%	0.8%
[HL'L]	[HLL]	6.6%	1.5%	[LL'LH]	[LLLH]	35.5%	26.5%	[L'L+H]	LL+H	0.0%	1.2%	[L'#L]	L#L	98.3%	96.9%	[L-H]	L-H	100.0%	97.3%
[HL'LL]	[HLLL]	78.0%	98.2%	[LL'LL]	LLLL	6.5%	0.8%	[L'L+L]	LL+L	2.5%	9.9%	[L'#LL]	L#LL	3.2%	1.3%	[L-L']	L-L	0.0%	0.2%
[HL]	JHLJ	3.2%	0.0%	[LL]	LL	1.6%	3.2%	[L'L+LL]	LL+LL	0.0%	1.0%	[L'L#H]	LL#H	0.0%	12.6%	[L-L'L]	L-LL	0.0%	2.9%
[HLH']	[HLH]	1.6%	0.0%	[LLH']	LLH	0.0%	0.0%	[L+L'L]	L+LL	0.0%	2.9%	[L'L#L]	LL#L	86.8%	82.2%	[L-L]	L-L	8.6%	9.3%
[HLH]	[HLH]	1.6%	2.5%	[LLH'L]	LLHL	100.0%	100.0%	[L+LL]	L+LL	94.3%	95.7%	[L'L#LL]	LL#LL	0.0%	1.0%	[L-LL]	L-LL	98.4%	95.7%
[HLL'L]	[HLLL]	18.6%	0.0%	[LLH]	LLH	6.7%	5.3%	[LL'+H]	LL+H	3.8%	0.0%	[L#H']	L#H	0.0%	0.7%	[L'-H]	L-H	0.0%	1.9%
[HLL]	[HLL]	63.9%	85.2%	[LLHL]	LLHL	0.0%	0.0%	[LL'+L]	LL+L	0.0%	0.8%	[L#H]	L#H	71.4%	87.2%	[L'-L]	L-L	91.4%	90.5%
[HLLL]	[HLLL]	0.0%	1.8%	[LLL'H]	[LLLH]	61.3%	54.0%	[LL+H']	LL+H	0.0%	0.8%	[L#L']	L#L	0.0%	0.0%	[L'-LL]	L-LL	1.6%	1.4%
[L'H]	LH	93.5%	78.7%	[LLL'L]	LLLL	3.2%	0.9%	[LL+H]	LL+H	96.2%	98.0%	[L#L'L]	L#LL	0.0%	2.9%	[L'L-H]	LL-H	0.0%	1.9%
[L'L]	LL	95.2%	96.8%	[LLL'LL]	LLLLL	98.4%	98.2%	[LL+L']	LL+L	0.0%	0.0%	[L#L]	L#L	1.7%	3.0%	[L'L-L]	LL-L	44.3%	44.2%
[L'LH]	LLH	80.0%	94.7%	[LLL]	LLL	9.5%	13.3%	[LL+L'L]	LL+LL	0.0%	2.8%	[L#LL]	L#LL	96.8%	95.8%	[L'L-LL]	LL-LL	0.0%	1.0%
[L'LL]	LLL	87.3%	86.6%	[LLLH']	[LLLH]	0.0%	0.0%	[LL+L]	LL+L	97.5%	89.3%	[LL'#H]	LL#H	0.0%	0.0%	[LL-H']	LL-H	0.0%	0.8%
[L'LLH]	LLLH	0.0%	17.7%	[LLLH]	ILLLHI	3.2%	1.9%	[LL+LL]	LL+LL	100.0%	96.2%	[LL'#L]	LL#L	0.0%	0.2%	[LL-H]	LL-H	98.2%	97.2%
[L'LLL]	LLLL	1.6%	13.2%	[LLLL'L]	LLLLL	0.0%	0.0%					[LL#H']	LL#H	1.3%	0.8%	[LL-L']	LL-L	0.0%	0.0%
[LH']	LH	3.2%	0.2%	[LLLL]	LLLL	88.7%	85.1%					[LL#H]	LL#H	98.7%	86.6%	[LL-L'L]	LL-LL	0.0%	2.9%
[LH'H]	[LHH]	96.8%	99.0%	[LLLLL]	LLLLL	1.6%	1.8%					[LL#L']	LL#L	0.0%	0.0%	[LL-L]	LL-L	55.7%	55.3%
[LH'L]	LHL	100.0%	100.0%									[LL#L'L]	LL#LL	0.0%	3.0%	[LL-LL]	LL-LL	98.0%	96.1%
												[LL#L]	LL#L	11.8%	17.6%	[LL'-H]	LL-H	1.8%	0.0%
												[LL#LL]	LL#LL	100.0%	96.1%	[LL'-L]	LL-L	0.0%	0.5%
																[LL'-LL]	LL-LL	2.0%	0.0%