<u>Área personal</u> / Mis cursos / <u>Grado</u> / <u>Ingeniería en Petróleos</u> / <u>Cursos 2022</u> / <u>Mecánica Aplicada-2022</u>

/ UNIDAD 2: ARBOLES Y EJES - CINEMATICA DEL CUERPO RIGIDO / 2 Trabajo practico MR CINEMATICA CUERPO RIGIDO 2022 Parte-B

Comenzado el	domingo, 18 de septiembre de 2022, 12:35
Estado	Finalizado
Finalizado en	domingo, 18 de septiembre de 2022, 12:38
Tiempo	2 minutos 10 segundos
empleado	
Puntos	5,00/5,00
Calificación	10,00 de 10,00 (100 %)
Comentario -	CUESTIONARIO APROBADO PARA ACCEDER AL EXAMEN PARCIAL (sujeto a revisión de procedimientos de cálculo)

Información

Cinemática del Cuerpo Rígido - ACELERACIÓN

La corredera B está en un desplazamiento hacia la derecha con la velocidad y aceleración que se muestran en la figura.

Pregunta **1**Correcta
Se puntúa 1,00 sobre 1,00

Calcular la aceleración angular de la rueda en este instante.

Escriba la magnitud de resultado solicitado en el campo inferior, y seleccione la unidad adecuada.

Respuesta: 0,231 ✓ rad/s^2

Cinemática del Cuerpo Rígido - ACELERACIÓN

En el instante que se muestra en la figura, las cremalleras tienen las velocidades y aceleraciones indicadas.

Pregunta 2	
Correcta	
Se puntúa 1,00 sobre 1,00	

Determinar la aceleración del **punto A** en el instante mostrado.

Escriba el valor DE LA MAGNITUD DE LA ACELERACIÓN en el campo inferior, y seleccione la unidad adecuada.

Respuesta:	0,5	~	pie/s^2	
	0,3	•	pie/3 Z	

Pregunta **3**Correcta

Se puntúa 1,00 sobre 1,00

Determinar la aceleración del **punto B** en el instante mostrado.

Escriba el valor DE LA MAGNITUD DE LA ACELERACIÓN en el campo inferior, y seleccione la unidad adecuada.

Respuesta: 63,55 ✓ pie/s^2

Cinemática del Cuerpo Rígido- Aceleración de Coriolis

El sistema de coordenadas x-y está fijo al cuerpo con respecto a la barra. El ángulo θ (en radianes) está dado como una función del tiempo por θ = $(0,16\ t)\ rad$. La coordenada x del collarín A (en pies) está dada en función del tiempo por $x=(1,2+0,018\ t^2)\ m$.

Pregunta **4**Correcta
Se puntúa 1,00 sobre 1,00

Determinar la velocidad del collarín en t = 5 s respecto a un marco de referencia no giratorio con su origen en B. Escriba el valor DE LA **MAGNITUD DE LA VELOCIDAD** en el campo inferior, y seleccione la unidad adecuada.

Pregunta **5**Correcta
Se puntúa 1,00 sobre 1,00

Determinar la aceleración del collarín en t = 5 s respecto a un marco de referencia no giratorio con su origen en B. Escriba el valor DE LA **MAGNITUD DE LA ACELERACIÓN** en el campo inferior, y seleccione la unidad adecuada.

Respuesta: 0,0579 **✓** m/s^2

Pregunta 6			
Finalizado			
Sin calificar			

Escanear /fotografiar los procedimientos de calculo del los ítems anteriores, incluyendo las tablas y o gráficas utilizadas con las respectivas indicaciones de procesos para extrar los parámetros; y agregarlo como archivo **pdf**.

а

03-TP2-P2-MR-CINEMÁTICA DEL CUERPO RÍGIDO-BORQUEZ-13567.pdf

■ 2_Trabajo practico MR_CINEMATICA_CUERPO_RIGIDO_2022_Parte-A

Ir a...

1-ACOPLAMIENTOS PERMANENTES: Presentación Teórica-2022 >