Aprendizagem Automática Aula Prática

Métricas de Distância Classificadores Baseados em Distâncias

G. Marques

- Métricas de Distâncias
- Classificadores Baseados em Distâncias
 - Classificador de distância ao centroide
 - Classificador dos k-vizinhos mais próximos

- Para os humanos, o conceito de distância está intrinsecamente relacionado com a percepção do espaço Euclideano tridimensional, e traduz o grau de proximidade entre objetos, pontos, etc. Do ponto de vista matemático, distância é conceito mais geral e abstrato, que abrange não só a distância Euclideana, bem como um grande número de outras mediadas (métricas).
- Para uma função D(x,y), com x, y ∈ R^d ser uma métrica de distância entre os vectores d-dimensionais x e y, necessita de satisfazer as seguintes quatro propriedades:

1. Não-Negatividade: $\mathcal{D}(\mathbf{x}, \mathbf{y}) \ge 0$

2. Identidade: $\mathcal{D}(\mathbf{x}, \mathbf{y}) = 0$ se e só se $\mathbf{x} = \mathbf{y}$

3. Simetria: $\mathcal{D}(\mathbf{x}, \mathbf{y}) = \mathcal{D}(\mathbf{y}, \mathbf{x})$

4. Designaldade Triangular: $\mathcal{D}(\mathbf{x}, \mathbf{y}) \leq \mathcal{D}(\mathbf{x}, \mathbf{z}) + \mathcal{D}(\mathbf{z}, \mathbf{y})$ com $\mathbf{z} \in \mathbb{R}^d$

- Algumas métricas de distância habitualmente usadas no contexto de aprendizagem automática (para vectores $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$).
 - Distância Euclideana:

$$\mathcal{D}_{\ell_2}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \left(\sum_{k=1}^{d} (x_k - y_k)^2\right)^{\frac{1}{2}}$$

Distância Cityblock:

$$\mathcal{D}_{\ell_1}(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sum_{k=1}^d |x_k - y_k|$$

Distância de cosseno:

$$\mathcal{D}_{\cos}(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\sum_{k=1}^{d} x_k y_k}{(\sum_{k=1}^{d} x_k^2)^{\frac{1}{2}} (\sum_{k=1}^{d} y_k^2)^{\frac{1}{2}}} = 1 - \cos(\theta)$$

 θ : ângulo formado pelos dois vectores

- Métricas de distância são uma ferramenta essencial para diversos tópicos de aprendizagem automática, entre os quais técnicas de regressão, classificação, modelos probabilísticos, e métodos de agrupamentos.
- Matrizes de distância:
 - ▶ Dado um conjunto de N vectores, $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, com $\mathbf{x} \in \mathbb{R}^d$, a matriz de distâncias é uma matriz quadrada de $N \times N$ em que cada elemento (linha i, coluna j) é a distância, $\mathcal{D}(\mathbf{x}_i, \mathbf{x}_j)$, entre os vectores \mathbf{x}_i e \mathbf{x}_j .
 - Em classificação, a matriz de distâncias dos pontos ordenados por classe permite ter uma percepção visual da separabilidade entre classes.
 - A matriz de distâncias permite igualmente ter uma ideia geral de qual métrica de distância e/ou qual tipo de pré-processamento de dados pode ser mais adequados.

Exemplo com dados sintéticos APDistancias001data.p

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=2000)
- Probabilidades a priori: $p(\varpi_1) = 0.45, p(\varpi_2) = 0.35, p(\varpi_1) = 0.20$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

$$\mu_1 = \begin{bmatrix} 1.1 \\ 0.0 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} -0.9 \\ 1.0 \end{bmatrix}, \quad \mu_3 = \begin{bmatrix} -0.9 \\ -1.7 \end{bmatrix}$$

$$\Sigma_i = \begin{bmatrix} \sigma_i^2 & 0 \\ 0 & \sigma_i^2 \end{bmatrix} \text{com } \sigma_{1,2,3} = [0.3, 0.2, 0.1]$$

Exemplo dígitos MNIST

Dados disponibilizados:

- Ficheiro "pickle" MNIST_small.p
- Dados de treino:
 - train0, train1, ..., train9 Matrizes de 784×1000 com dígitos de treino
- Dados de teste
 - test0, test1, ..., test9
 Matrizes de 784×500 com dígitos de teste
- Cada dígito é uma imagem em tons de cinzento (uint8) de 28×28 pixeis, representados vectorialmente: vectores de 784=28² dimensões. As primeiras 28 correspondem aos pixeis da 1ª coluna, as segundas 28 dimensões aos da 2ª coluna, e por aí em diante.

Exemplo dígitos MNIST

ISEL-Engenharia Informática e Multimédia

- Selecionados os 200 primeiros exemplos de cada dígito de treino
- Nº total de pontos: N=2000
- Dados em "bruto": vectores de 784×1

Em Python usar módulo scipy.spatial.distance:

```
# x - matriz de dígitos (784×2000)
>>> import scipy.spatial.distance as spd
# usar 'euclidean', 'cityblock', e'cosine'
>>> D=spd.squareform(spd.pdist(X.T,'euclidean'))
```

Várias técnicas de classificação são direta ou indiretamente baseadas em medidas de distância. Dois dos métodos de classificação mais simples são:

- Classificador de distância ao centroide:
 - Este método classifica uma nova observação (novo vector) baseado na distâncias às médias (centroides) das classes no conjunto de treino. A classe atribuída é a do centroide que estiver mais próximo do vector.
- Classificador do *k* vizinhos mais próximos (*k*-NN):
 - Este método classifica uma nova observação baseado nas classes dos k vizinhos mais próximos do conjunto de treino. A classe atribuída por votação classe maioritária nos k vizinhos.

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N = 3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

$$\begin{split} & \boldsymbol{\mu}_1 = \begin{bmatrix} -2 \\ +2 \end{bmatrix}, & \boldsymbol{\mu}_2 = \begin{bmatrix} +2 \\ -2 \end{bmatrix}, & \boldsymbol{\mu}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \boldsymbol{\Sigma}_1 = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix} & \boldsymbol{\Sigma}_2 = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix} & \boldsymbol{\Sigma}_3 = \begin{bmatrix} 3 & 0 \\ 0 & \frac{1}{10} \end{bmatrix} \end{split}$$

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Distância Euclideana:

• Para um conjunto \mathcal{X} , a distância Euclideana dum vector \mathbf{x} à média é:

$$\mathcal{D}_{\ell_2}(\mathbf{x}, \mu_{\mathbf{x}}) = \sqrt{(\mathbf{x} - \mu_{\mathbf{x}})^{\top}(\mathbf{x} - \mu_{\mathbf{x}})} = \sqrt{(x_1 - \mu_{x_1})^2 + \ldots + (x_d - \mu_{x_d})^2}$$

Classificação:

★ Calcular
$$\mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_i) = \sqrt{(\mathbf{x} - \boldsymbol{\mu}_i)^{\top}(\mathbf{x} - \boldsymbol{\mu}_i)}$$
, para $i = 1, 2, 3$

$$\star$$
 $\mathbf{x} \in \hat{\varpi}_j$, se $\mathcal{D}_{\ell_2}(\mathbf{x}, \mu_j) \leq \mathcal{D}_{\ell_2}(\mathbf{x}, \mu_j)$

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Distância Euclideana:

• Para um conjunto \mathcal{X} , a distância Euclideana dum vector \mathbf{x} à média é:

$$\mathcal{D}_{\ell_2}(\mathbf{X}, \boldsymbol{\mu_{\mathbf{X}}}) = \sqrt{(\mathbf{X} - \boldsymbol{\mu_{\mathbf{X}}})^{\top} (\mathbf{X} - \boldsymbol{\mu_{\mathbf{X}}})} = \sqrt{(x_1 - \mu_{x_1})^2 + \ldots + (x_d - \mu_{x_d})^2}$$

- Em Python: (ex: cálculo das distâncias à classe ω₁)
 # x matriz com pontos (2×3000), m1= μ₁ (2×1)
 - >>> Xn=X-m1
 - >>> D1=np.sqrt (np.sum(Xn*Xn,axis=0)) #D1, array de (3000,)

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Distância Euclideana:

• Para um conjunto \mathcal{X} , a distância Euclideana dum vector \mathbf{x} à média é:

$$\mathcal{D}_{\ell_2}(\mathbf{X}, \boldsymbol{\mu}_{\mathbf{X}}) = \sqrt{(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})^{\top} (\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})} = \sqrt{(x_1 - \mu_{x_1})^2 + \ldots + (x_d - \mu_{x_d})^2}$$

- Construir matriz de distâncias a todas as classes e ver qual a menor
 - >>> Dtotal=np.vstack((D1,D2,D3))#Dtotal, matriz de 3×3000
 - >>> estClass=np.argmin(Dtotal,axis=0)

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Classificação:

- Distância Euclideana: \mathcal{D}_{ℓ_2}
- $\mathbf{x} \in \hat{\varpi}_j$ se $\mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_j) \leq \mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_i), i, j = 1, 2, 3$

Resultados:

$$P = \begin{bmatrix} 1000 & 0 & 0 \\ 0 & 997 & 3 \\ 111 & 148 & 741 \end{bmatrix} \quad \text{Prob.Erro} = \frac{262}{3000}$$

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Distância de Mahalanobis:

- Para um conjunto $\mathcal X$ com média $\mu_{\mathbf x}$ e matriz de convariância $\Sigma_{\mathbf x}$, a distância de Mahalanobis dum vector $\mathbf x$ ao conjunto é: $\mathcal D_{\mathcal M}(\mathbf x,\mu_{\mathbf x})=\sqrt{(\mathbf x-\mu_{\mathbf x})^{\top}\Sigma_{\mathbf x}^{-1}(\mathbf x-\mu_{\mathbf x})}$
- Classificação:
 - ★ Calcular $\mathcal{D}_{\mathcal{M}}(\mathbf{x}, \boldsymbol{\mu}_i) = \sqrt{(\mathbf{x} \boldsymbol{\mu}_i)^{\mathsf{T}} \Sigma_i^{-1} (\mathbf{x} \boldsymbol{\mu}_i)}$, para i = 1, 2, 3
 - \star $\mathbf{x} \in \hat{\varpi}_j$, se $\mathcal{D}_{\mathcal{M}}(\mathbf{x}, \mu_i) \leq \mathcal{D}_{\mathcal{M}}(\mathbf{x}, \mu_i)$

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N=3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Distância de Mahalanobis:

- Para um conjunto $\mathcal X$ com média $\mu_{\mathbf x}$ e matriz de convariância $\Sigma_{\mathbf x}$, a distância de Mahalanobis dum vector $\mathbf x$ ao conjunto é: $\mathcal D_{\mathcal M}(\mathbf x,\mu_{\mathbf x})=\sqrt{(\mathbf x-\mu_{\mathbf x})^{\top}\Sigma_{\mathbf x}^{-1}(\mathbf x-\mu_{\mathbf x})}$
- Em Python: (ex: cálculo das distâncias à classe ϖ_1)

```
# X matriz com pontos (2×3000), SI1= \Sigma_1^{-1} (2×2), m1= \mu_1 (2×1)
```

- >>> Xn=X-m1
- >>> D1=np.sqrt(np.sum(Xn*np.dot(SI1,Xn),axis=0))

Classificador de Distância ao Centroide Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$. (Nº total de pontos: N = 3000)
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

Classificação:

- ullet Distância de Mahalanobis: $\mathcal{D}_{\mathcal{M}}$
- $\mathbf{x} \in \hat{\varpi}_i$, se $\mathcal{D}_{\mathcal{M}}(\mathbf{x}, \mu_i) \leq \mathcal{D}_{\mathcal{M}}(\mathbf{x}, \mu_i)$, i, j = 1, 2, 3

Resultados:

$$P = \begin{bmatrix} 992 & 0 & 8 \\ 0 & 991 & 9 \\ 2 & 3 & 995 \end{bmatrix} \quad \text{Prob.Erro} = \frac{22}{3000}$$

Classificador de Distância ao Centroide

Dados Reais: Iris Dataset

Comandos:

```
Importar dados de scikit-learn
   >>> from sklearn import datasets
   Carregar os dados do dataset "Iris"
   (íris são plantas com flor, vulgarmente designadas por lírios)
   >>> Iris=datasets.load_iris()
   Iris: variável do tipo dictionary, com vários campos:
   >>> Iris.keys() # ver os campos do dicionário
   ['target_names', 'data', 'target', 'DESCR', 'feature_names']
Dados - X é um np.array de (150,4):
   >>> X=Tris.data
Classe dos dados - trueClass é um np.array de (150,):
   >>> trueClass=Iris.target
```

Classificador de Distância ao Centroide

Dados Reais: Iris Dataset

Variável X é uma matriz de 150 × 4 (transpor matriz para ficar d × N)

```
>>> X=X.T
```

Calcular os centroides (médias das classes):

```
>>> m0=np.mean(X[:,trueClass==0],axis=1) # array de (4,)
>>> m1=np.mean(X[:,trueClass==1],axis=1)
>>> m2=np.mean(X[:,trueClass==2],axis=1)
```

Calcular calcular distâncias das 3 médias a todos os pontos:

```
>>> X0=X-m0[:,np.newaxis] #m0, agora com dim. (4,1)
>>> D0=np.sqrt(np.sum(X0*X0,axis=0)) . . .
```

Construir matriz de distâncias (3 x 150)

```
>>> Dtotal=np.vstack((D0,D1,D2))
```

Classificar:

```
>>> estClass=np.argmin(Dtotal,axis=0)
```

Classificador de Distância ao Centroide

Dados Reais: Iris Dataset

Resultados:

$$P = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 46 & 4 \\ 0 & 7 & 43 \end{bmatrix}$$
Prob. Total de Erro= $\frac{11}{150} \approx 7.33\%$

2 primeiras dimensões dos dados (erros - pts cinza)

Atenção:Modelo e avaliação estimados com todo o conjunto de dados. Para ter uma medida fidedigna do desempenho, é necessário avaliar o classificador com dados que não foram usados para estimar o modelo. Neste caso, devido à simplicidade do modelo (a classificação é feita com distâncias a 3 médias), a estimativa do desempenho não é tão enviesada como em outros classificadores mais complexos.

Classificador de Distância ao Centroide Dígitos manuscritos

- Conjunto de dígitos manuscritos (10 classes).
 - Nº de pontos treino: 1000 pts por classe
 - Nº de pontos teste: 500 pts por classe

Classificação: Distância Euclideana

Matriz de confusão -**Dados de treino**:

r873	0	8	9	2	62	25	6	14	1 7
0	976	3	0	0	14	0	2	3	2
14	80	763	28	28	10	25	13	32	7
6	39	27	762	2	69	10	20	39	26
1	24	7	0	813	5	16	5	8	121
27	65	6	163	24	646	22	5	16	26
16	50	22	0	20	23	866	0	3	0
8	55	6	0	27	3	1	836	7	57
8	67	16	87	13	47	12	4	710	36
L 17	21	9	14	74	8	3	46	15	793

Probabilidade Total de Erro= $\frac{1962}{10000} \approx 19.62\%$

Classificador de Distância ao Centroide Dígitos manuscritos

- Conjunto de dígitos manuscritos (10 classes).
 - Nº de pontos treino: 1000 pts por classe
 - Nº de pontos teste: 500 pts por classe

Classificação: Distância Euclideana

Matriz de confusão -Dados de teste:

r421	0	5	0	0	50	16	0	7	1 7
0	477	1	4	0	13	3	0	2	0
8	70	331	32	9	2	7	15	24	2
2	16	3	393	1	46	4	12	16	7
0	10	2	0	389	4	13	1	4	77
8	16	2	89	17	322	10	9	11	16
10	22	21	0	36	33	377	0	1	0
1	51	9	1	15	2	0	387	4	30
5	25	4	66	8	30	7	7	322	26
L 4	12	8	9	63	10	1	10	3	380

Probabilidade Total de Erro= $\frac{1201}{5000} \approx 24.02\%$

Classificador de Distância ao Centroide Dígitos manuscritos

- Conjunto de dígitos manuscritos (10 classes).
 - Nº de pontos treino: 1000 pts por classe
 - Nº de pontos teste: 500 pts por classe

Classificação: Distância de Mahalanobis

Matriz de confusão -Dados de treino:

г 995	0	1	4	0	0	0	0	0	0 7	
0	847	24	3	9	0	0	1	114	2	
0	0	986	12	0	0	0	0	2	0	
0	0	2	994	0	0	0	0	3	1	
0	0	0	40	957	0	0	0	1	2	
1	0	0	213	0	783	0	0	3	0	
0	0	0	115	0	4	875	0	6	0	
0	0	1	4	1	0	0	988	6	0	
0	0	1	49	0	0	0	0	950	0	
Lo	0	0	4	2	0	0	2	10	982	

Probabilidade Total de Erro= $\frac{643}{10000} \approx 6.43\%$

Classificador de Distância ao Centroide Dígitos manuscritos

- Conjunto de dígitos manuscritos (10 classes).
 - Nº de pontos treino: 1000 pts por classe
 - Nº de pontos teste: 500 pts por classe

Classificação: Distância de Mahalanobis

Matriz de	conf	usão	-Dados	de	teste:	
г457	0	25	5	2	0	

r457	0	25	5	2	0	2	0	9	0 7	
0	385	26	2	7	0	3	0	77	0	
11	0	458	9	4	1	1	2	14	0	
3	0	46	415	3	1	0	3	27	2	
5	0	38	18	411	0	1	3	16	8	
17	0	22	149	12	218	1	1	79	1	
19	0	41	55	16	13	336	0	20	0	
3	0	42	20	39	0	0	358	19	19	
10	0	40	57	7	6	1	4	374	1	
Lз	0	14	11	70	0	0	9	31	362	

Probabilidade Total de Erro= $\frac{1226}{5000} \approx 24.52\%$

Classificador dos k-Vizinhos Mais Próximos (k-NN)

- k-NN é um classificador não-paramétrico.
- Não existe fase de treino para este classificador.
- A classificação é baseada nos exemplos de treino. A classe atribuída a um dado objecto (ponto/vector não classificado) é a classe maioritária entre os k-vizinhos mais próximos do objecto.
- O valor óptimo para k é dependente do problema. Valores pequenos de k dão origem a zonas e fronteiras de decisão irregulares (efeito de sobre-aprendizagem). Valores muitos elevados podem resultar em regiões e fronteiras de decisão demasiado regulares.

Exemplo tirado da página de Burton DeWilde

(http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/)

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Em Python usando *k*-NN implementado em scikit-learn (versão 0.18.1)

Comandos:

```
Importar classificador de vizinho mais próximo de scikit-learn
>>> from sklearn.neighbors import KNeighborsClassifier
```

Instanciar classificador k-NN com k = 5

>>> kNN=KNeighborsClassifier(n_neighbors=5,weights='uniform')

Treino:

- >>> kNN.fit(trainData,trainClasses) # dados de treino
 - trainData: dados de treino, matriz N×d (N nº de exemplos, d dimensão)
 - trainClasses: N índices das classes (números inteiros)

Classificar:

- >>> resultados=kNN.predict(testData)
 - testData: dados de teste, matriz $M \times d$ (M nº de exemplos, d dimensão)
 - resultados: M estimativas dos índices das classes

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Em Python usando *k*-NN implementado em scikit-learn (versão 0.18.1)

- Ver parametros da função KNeighborsClassifier:
 n_neighbors, weights, algorithm, leaf_size, metric, e outros.
- Ver métodos associado a KNeighborsClassifier:

```
kNN.fit()
kNN.predict()
kNN.predict_proba()
kNN.score()
kNN.kneighbors()
kNN.kneighbors_graph()
kNN.get_params()
kNN.set_params()
```

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN)

Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$.
 - Nº de pontos treino: 100 pts por classe
 - Nº de pontos teste: 500 pts por classe
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

$$\begin{bmatrix} 495 & 0 & 5 \\ 0 & 500 & 0 \\ 4 & 8 & 488 \end{bmatrix} \quad \text{Prob.Erro} = \frac{17}{1500}$$

Classificador dos k-Vizinhos Mais Próximos (k-NN)

Dados Sintéticos (APDistancias002data.p)

- \mathcal{X} , conjunto de pontos 2D dividido em três classes $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$.
 - Nº de pontos treino: 100 pts por classe
 - Nº de pontos teste: 500 pts por classe
- Probabilidades a priori: $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

$$\begin{bmatrix} 498 & 0 & 2 \\ 0 & 499 & 1 \\ 3 & 4 & 493 \end{bmatrix} \quad \text{Prob.Erro} = \frac{10}{1500}$$

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Dígitos Manuscritos

- \bullet \mathcal{X} , conjunto de dígitos dados em bruto (d = 784).
 - Nº de pontos treino: 1000 pts por classe
 Nº de pontos teste: 500 pts por classe

Classificação (k = 1):

Matriz de Confusão:

Г496	0	1	0	0	1	2	0	0	0]
0	495	1	2	0	0	2	0	0	0
7	11	452	7	1	0	3	18	1	0
0	1	1	461	1	13	2	9	7	5
0	5	0	0	460	0	3	2	1	29
3	3	0	13	2	466	3	2	3	5
8	3	0	0	3	4	481	0	1	0
0	22	3	2	4	1	0	456	0	12
5	3	6	27	4	16	6	7	421	5
<u></u> 3	6	1	6	12	3	1	11	2	455

Prob.Erro =
$$\frac{357}{5000}$$
 = 7.140%

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Dígitos Manuscritos

- \bullet \mathcal{X} , conjunto de dígitos dados em bruto (d = 784).
 - Nº de pontos treino: 1000 pts por classe
 Nº de pontos teste: 500 pts por classe

Classificação (k = 5):

Matriz de Confusão:

Г494	0	0	0	0	1	5	0	0	0]
0	495	2	2	0	0	1	0	0	0
9	16	439	6	0	0	6	21	3	0
1	3	3	465	1	7	2	8	7	3
0	4	1	0	462	0	5	1	0	27
3	4	0	12	6	461	5	1	3	5
9	5	0	0	4	1	481	0	0	0
0	31	1	1	5	1	0	445	0	16
8	4	7	22	4	16	5	7	418	9
L 4	7	2	8	11	2	1	12	2	451

Prob.Erro =
$$\frac{389}{5000}$$
 = 7.780%