

ML-BREAST-CANCER-CLASSIFIER

PRESENTATION

PRESENTED BY:

SABUHI GASIMZADA

SHAMIL HUSEYNOV

FARID AHMADZADEH

TELMAN MAMMADOV

ELGUN PASHAYEV

AYKHAN MOHSUMOV

INTRODUCTION

Objective

• To predict whether a tumor is benign or malignant using machine learning models.

Dataset:

- Source: Breast Cancer Wisconsin Dataset
- 569 samples, 32 columns (30 features, 1 target column, 1 ID column)
- Target: Diagnosis (Benign = 0, Malignant = 1)

Tools Used:

Python, Scikit-learn, Matplotlib, SHAP, SMOTE

DATA PREPROCESSING

Steps:

- 1. Removed irrelevant column: ID
- 2.Encoded categorical target variable: Benign (B) = 0, Malignant (M) = 1
- 3. Handled missing values: None were present.
- 4. Scaled numeric features using StandardScaler.
- 5. Balanced the dataset using SMOTE for minority class oversampling.

Dataset Overview:

- 30 features: Mean, Standard Error, Worst-case metrics.
- Diagnosis Distribution: Balanced after SMOTE.

FEATURE SELECTION

Techniques Applied:

- Recursive Feature Elimination (RFE):
 Selected top 10 features.
 - Examples: Perimeter Mean, Area Mean, Concavity Mean.
- Mutual Information Scores: Top features with highest predictive power.

Key Insight: Using fewer features can maintain or improve performance by reducing noise.

MODELS IMPLEMENTED

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

XGBoost

LightGBM

Neural Network (MLP)

Evaluation Metrics:

Accuracy
Precision, Recall, F1-score
ROC-AUC Score

LOGISTIC REGRESSION RESULTS

Hyperparameters Tuned:

- Regularization Strength (C): 0.1

 • Solver: liblinear

Performance:

- Accuracy: 0.99
- Precision: 0.99 (Benign), 1.00 (Malignant)
 • ROC-AUC: 0.985

Visualization:

- Confusion Matrix
- ROC Curve

DECISION TREE RESULTS

Hyperparameters Tuned:

- Max Depth: 4
- CCP Alpha: 0.01

Performance:

- Accuracy: 0.95
- Precision: 0.93 (Malignant)
- ROC-AUC: 0.94

Visualization:

- Confusion Matrix
- Feature Importance Bar Chart

RANDOM FOREST WITH SMOTE

Balanced Dataset: Applied SMOTE to address class imbalance.

Performance:

Accuracy: 0.98

Precision: 0.98

Recall: 0.97

Visualization:
Confusion Matrix
ROC Curve

HGBOOST AND LIGHTGBM RESULTS

Hyperparameters Tuned (XGBoost):

- Max Depth: 5
- Learning Rate: 0.1

Performance (XGBoost):

- Accuracy: 0.97
- ROC-AUC: 0.98

LightGBM:

• Similar performance, faster training.

Visualization:

- Confusion Matrix
- SHAP Summary Plot

NEURAL NETWORK RESULTS

ARCHITECTURE:

Hidden Layers: (128, 64, 32)
Activation: ReLU
Optimizer: Adam

PERFORMANCE:

Accuracy: 0.98 Precision: 0.98 Recall: 0.97

Neural Network Results:

Precision Recall F1-Score Support Class O (Benign) 0.98 0.98 108 0.98 Class 1 (Malignant) 0.97 0.97 0.97 63 Accuracy: 171 **Macro Average:** 0.97 0.97 0.97 171 Weighted Average: 0.98 0.98 0.98 171

COMPARATIVE ANALYSIS AND KEY TAKEAWAYS

Model	Accuracy	Precision	Recall	ROC-AUC
Logistic Regression	0.99	0.99	0.98	0.99
Decision Tree	0.95	0.94	0.93	0.94
Random Forest	0.98	0.98	0.97	0.98
XGBoost	0.97	0.97	0.96	0.98
LightGBM	0.97	0.97	0.96	0.97
Neural Network	0.98	0.98	0.97	0.98

Key Takeaways

- 1. Logistic Regression: Best for interpretability and simplicity.
- 2. Random Forest & XGBoost: Excellent balance of accuracy and robustness.
- 3. Neural Networks: Slightly better but computationally expensive.

Future Work:

- Explore more complex ensembles.
- Incorporate external datasets.

QUESTIONS AND ANSWERS

For questions or suggestions about the project, you can send feedback directly to the project itself from github and also via email.

https://github.com/s3bu7i/ML-Breast-Cancer-Classifier +994(50)8816613 sabuhi.gasimzada@gmail.com

