Тема 4. Выбросы, пропуски, корреляции

df["столбец"].apply(функция)

df.groupby('категория')["столбец"].mean()

категориальные

КОЛИЧЕСТ-ВЕННЫЕ

Меры центральной тенденции

Меры вариативности

мода

количество уникальных категорий

мода, медиана, среднее стандартное отклонение, дисперсия, квартили

от гистограмм к ящикам с усами

Термины:

- квартиль
- межквартильный размах (интервал)

не путаем с просто размахом (макс - мин)

зачем??

Термины:

• выброс - отличается от распределения, выделяется (*слишком* маленькое / большое значение)

Задача из НЭ, А6 (более новые)

- 1. Выбросы оказывают сильное влияние на среднее значение переменной 2
- 2. По данной выборке можно построить линию регрессии
- 3. В данных, скорее всего, нет выбросов
- 4. Выбросы оказывают сильное влияние на среднее значение переменной 1

Задача из НЭ, А6 (более новые)

- 1. Выбросы оказывают малое влияние на среднее значение переменной 1
- 2. По этой выборке нельзя построить линию регрессии
- 3. В выборке имеется как минимум 1 выброс
- 4. Выбросы оказывают большое влияние на медиану переменной 2

Все на питоне:

df['столбец']

.min()
.max()
.mean()
.mode()
.median()
.std()
.var()

Только для генеральной совокупности! .std(ddof=0)
.var(ddof=0)

Это редкий случай, в условии задачи напишут обязательно, "если вы имеете дело с генеральной совокупностью"....

"игрушечный" датасет

"игрушечный" датасет

"игрушечный" датасет

Palmer Penguins Bill Length

Palmer Archipelago is a group of islands off the northwestern coast of the Antarctic Peninsula. The histograms show that females has shorter bills than males in every species

Распределение длин плавников 50 вид Adelie Chinstrap 40 Gentoo Количество пингвинов 10 170 180 200 220 190 230 Длина плавника (мм)

гистограммы: распределение

ящики с усами: распределение + выбросы (!)

df.describe()

df.describe()

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	
count	342.000000	342.000000	342.000000	342.000000	
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.459584	1.974793	14.061714	801.954536	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.225000	15.600000	190.000000	3550.000000	
50 %	44.450000	17.300000	197.000000	4050.000000	
75 %	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	

df.describe()

Какие переменные перед нами (категориальные / количественные, меры среднего / вариативности?)

df.describe()

bicc_congen_	prcc_debcii_iiiii	i crbbei _ ceilg cii_iiiii	body_mass_g	
342.000000	342.000000	342.000000	342.000000	количество
43.921930	17.151170	200.915205	4201.754386	среднее
5.459584	1.974793	14.061714	801.954536	станд.отклонение
32.100000	13.100000	172.000000	2700.000000	минимум
39.225000	15.600000	190.000000	3550.000000	1 квартиль
44.450000	17.300000	197.000000	4050.000000	медиана (=2 квартиль)
48.500000	18.700000	213.000000	4750.000000	3 квартиль
59.600000	21.500000	231.000000	6300.000000	максимум (=4 квартиль)
	342.000000 43.921930 5.459584 32.100000 39.225000 44.450000 48.500000	342.000000 342.000000 43.921930 17.151170 5.459584 1.974793 32.100000 13.100000 39.225000 15.600000 44.450000 17.300000 48.500000 18.700000	342.000000 342.000000 43.921930 17.151170 200.915205 5.459584 1.974793 14.061714 32.100000 13.100000 172.000000 39.225000 15.600000 190.000000 44.450000 17.300000 197.000000 48.500000 18.700000 213.000000	342.000000 342.000000 342.000000 342.000000 43.921930 17.151170 200.915205 4201.754386 5.459584 1.974793 14.061714 801.954536 32.100000 13.100000 172.000000 2700.000000 39.225000 15.600000 190.000000 3550.000000 44.450000 17.300000 197.000000 4050.000000 48.500000 18.700000 213.000000 4750.000000

df.describe()

СКОРее всего, не понадобится, но в 1 задании демоверсии есть

так ищем квартили (25%, 50%, 75%)

df.describe()['столбец']['25%']

или так (для продвинутых)):

import numpy as np np.quantile(df['столбец'], 0.25)

df[['species', 'island', 'sex']].describe()

	species	island	sex	
count	344	344	333	
unique	3	3	2	
top	Adelie	Biscoe	MALE	
freq	152	168	168	

меры среднего и вариативности категориальных переменных

df.describe(include='all')

меры среднего И вариативности категориальных И количественных переменных

		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	
со	unt	344	344	342.000000	342.000000	342.000000	342.000000	333	
uni	ique	3	3	NaN	NaN	NaN	NaN	2	
to	ор	Adelie	Biscoe	NaN	NaN	NaN	NaN	MALE	
fr	eq	152	168	NaN	NaN	NaN	NaN	168	
me	ean	NaN	NaN	43.921930	17.151170	200.915205	4201.754386	NaN	
s	std	NaN	NaN	5.459584	1.974793	14.061714	801.954536	NaN	
m	nin	NaN	NaN	32.100000	13.100000	172.000000	2700.000000	NaN	
2!	5%	NaN	NaN	39.225000	15.600000	190.000000	3550.000000	NaN	
50	0%	NaN	NaN	44.450000	17.300000	197.000000	4050.000000	NaN	
7!	5%	NaN	NaN	48.500000	18.700000	213.000000	4750.000000	NaN	
m	nax	NaN	NaN	59.600000	21.500000	231.000000	6300.000000	NaN	

Важные последние замечания:

в describe():

- HET дисперсии, но .std() ** 2
- .std() и .var() считаются к выборке (БЕЗ ddof=0)

О2 2 слова о выборках

Проблемы с выборками

Журнал Literary Digest проводил опросы общественного мнения перед выборами президента в 1920, 1924, 1928, 1932, а также и в 1936 году, и каждый раз прогноз, составленный на основе опроса, оказывался верным

Разосланы 10 млн анкет:

подписчикам журнала; людям, выбранным по телефонным книгам; по спискам регистрации автомобилей.

Около 2,5 млн анкет заполнены:

57 % –за республиканца Альфа Лэндона, 40 % –за демократа Франклина Рузвельта.

Задача из НЭ, А5 / А10

Мы хотим узнать, какой средний уровень образования у **совершеннолетних женщин в России**. Из вариантов ниже выберите тот, в котором не происходит гарантированного смещения выборки:

- 1. Было опрошено такое количество женщин из каждого региона, которое соответствует доле женщин, проживающих в этом регионе согласно переписи населения.
- 2. Опрос был проведен посредством социальных сетей для их пользователей.
- 3. Были опрошены жительницы всех городов с населением более 300 000 человек.
- 4. Были опрошены только работающие женщины.

Задача из НЭ, А5 / А10

Аналитик Алексей занимается исследованием рынка кофеен. Какая из собранных им выборок будет **более репрезентативной**, чем другие?

- 1. Данные о дневных продажах кофеен разных брендов, собранные по разным городам в разные дни
- 2. Данные о дневных продажах кофеен города Москва, собранные в разные дни
- 3. Данные о дневных продажах кофеен одного бренда, собранные в разные дни
- 4. Данные о продажах кофеен разных брендов, собранные по разным городам и в один день

В реальном мире в выборки закладывают интервал доверия (напр., 95%)

Что означает доверительный интервал?

Если мы берем интервал ошибок или доверительные границы с уровнем доверия 95%, то это означает, что на указанном интервале истинное значение содержится с вероятностью 95%. Однако когда мы говорим, что в пределах доверительного интервала находится истинное значение, то здесь смысл следующий: если мы будем повторять случайные выборки одного и того же размера достаточно большое количество раз и независимо друг от друга, то в 95% случаев истинное значение будет попадать в доверительный интервал. Несмотря на то что на практике такое

Несмотря на правильные подсчеты, значение реальной средней численности населения все-таки не попало в одну из 20 выборок, у каждой из которых доверительный интервал равнялся 95%.

распространенное ошибочное толкование не может кардинально сказаться на принятии решений, то, что даже ученые неправильно понимают смысл доверительных интервалов, показывает, насколько сложно корректно интерпретировать изображения, в которых отражается неопределенность.

С3
Пропуски NaN

Удаляем пропуски

Радикально)

По столбцу

df.dropna()

df['столбец'].dropna()

Ho! это опять аналог, "покажи, что будет"... df.dropna(inplace=True) df = df.dropna()

Заполняем пропуски

По столбцу

df['столбец'].fillna(0)

my_median = df['столбец'].median() df['столбец'].fillna(my_median)

df['столбец'].fillna(0, inplace=True)

О4 Корреляции

Измерение силы связи между двумя количественными переменными

import numpy as np np.corrcoef(X, Y)

df.corr()

2 списка (вектора*)

таблица

-1 и 1 сильная0 отсутствует

В прошлогоднем НЭ (связь здесь равна 0)

Ограничения

1) можно измерить силу ТОЛЬКО линейной связи

2) связь != причина

Безумные корреляции ★

Нашел серию графиков, которые смешно иллюстрируют разницу между корреляцией данных и причинно-следственной связью.

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

tylervigen.com

Задача из НЭ, А10

- 1. Между переменными X и Y существует сильная положительная линейная взаимосвязь
- 2. Между переменными X и Y существует сильная отрицательная линейная взаимосвязь
- 3. Между переменными X и Y существует сильная положительная нелинейная взаимосвязь
- 4. Между переменными X и Y существует сильная отрицательная нелинейная взаимосвязь

Задача из НЭ, А11

Одно из чисел ниже — коэффициент корреляции между этими двумя переменными. Выберите это число:

- 0.92
- 0.61
- -0.80
- -0.05

Задача из НЭ, АП

Мы провели исследование и выявили, что у сотрудников компании уровень удовлетворенности трудом коррелирует с их продуктивностью на работе, коэффициент равен 0.81. Какие выводы можно точно сделать из этого наблюдения?

- 1. Удовлетворенность собственным трудом напрямую влияет на продуктивность.
- 2. Продуктивность на работе влияет на удовлетворенность собственным трудом.
- 3. Между удовлетворенностью работой и продуктивностью слабая прямая взаимосвязь.
- 4. Если у сотрудника повышается продуктивность, то, скорее всего, повысится и удовлетворенность работой.

Задача из НЭ, АП

Никогда не выбираем:

А (напрямую / косвенно) влияет на В (или В на А?) А является причиной В Между А и В нелинейная связь (корреляция ее вообще не чувствует!)

Всегда выбираем:

Между А и В сильная / слабая положительная / отрицательная связь Когда А возрастает, В скорее всего возрастает (убывает)

Задача из НЭ, А11

Всегда выбираем:

- Между А и В сильная / слабая положительная / отрицательная связь
- Когда А возрастает, В скорее всего возрастает (убывает)

часть Вис

Остальные задачи на практику: рассчитайте корреляцию

Вектор (бонусик))

Это как список, но данные должны быть одного типа

import numpy as np np.array([1, 2, 3, 4, 5, 6])

Результат: [1 2 3 4 5 6]

зачем??

Вектор

$$[1, 2, 3] + [4, 5, 6] == [1, 2, 3, 4, 5, 6]$$

pd.Series тоже вектор

