STAT401 – Multivariate Statistical Analysis 2024 Spring

Dimensionality Reduction and Reconstruction of Digit Data

Presenter: Minseo Yoon

(cooki0615@korea.ac.kr)

Introduction

Digit Data (Handwritten)

Introduction

- Digit Data (Handwritten)
 - Name: MNIST
 - 70,000 images
 - 28 x 28 resolution
 - Gray scale (each pixel: 0 ~ 1)

Motivation

Why do we need to conduct PCA on digit data?

Motivation

Why do we need to conduct PCA on digit data?

Motivation

- Why do we need to conduct PCA on digit data?
 - There are too many unnecessary pixels!
 - In our words, there are too many redundant features.

Methodology

- How do we conduct PCA on this data?
 - We have not dealt with image data.
 - This may seem to be more complex than tabular data.
 - But, very simple!

Methodology

- How do we conduct PCA on this data?
 - Just vectorize the matrix-like image data.
 - Then we can simply look at the image as data with 784 variables.

Methodology

- How do we reconstruct the original data using PCA?
 - By Eckart-Young Theorem (Low-rank approximation), we can obtain the best-approximated data only with k principal components.

$$egin{aligned} \Sigma &= U \Lambda U' \ X_P &= X U_k \ X_R &= X_P U_K' = X U_k U_k' pprox X \ \min_{\mathrm{rank}(X_R) = k} ||X - X_R||_F = \sum_{i=k+1}^{28 imes 28} \lambda_i \end{aligned}$$

Result and Analysis

 The 2nd, 3rd, and 4th rows represent the results obtained by retaining 70%, 80%, and 90% of the total variations, respectively.

Result and Analysis

Analysis of the first components

```
Top-left 4x4 component:
[[ 5.26572512e-20 -5.55111512e-17 -5.55111512e-17 0.00000000e+00]
 [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [ 0.0000000e+00 0.0000000e+00 1.96615753e-06
 [0,0000000e+00 0,0000000e+00 2,56757368e-06 7,83497352e-06]
Top-right 4x4 component:
[ 0,0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [8.82496594e-06 3.65876221e-06 0.00000000e+00 0.0000000e+00]
 [1.35708909e-05 1.38381967e-06 -3.22083306e-06 0.00000000e+00]
Bottom-left 4x4 component:
[[ 0.0000000e+00 0.0000000e+00 4.14579037e-06 1.60971199e-05]
 [ 0.0000000e+00 0.0000000e+00 5.25692968e-07 -7.54683342e-06]
 [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.89068983e-07]
 Bottom-right 4x4 component:
[[2.75321633e-05 -3.81759275e-06 -2.19428242e-06 0.00000000e+00]
 [ 1.71774789e-05 -7.70769860e-07 -1.59475012e-06 0.00000000e+00]
 [6.46282701e-07 -7.60609540e-07 0.00000000e+00 0.0000000e+00]
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
```


Result and Analysis

- Interpretation of the first three components
 - 1st PC
 - Contrasts right diagonal shape with left diagonal shape
 - 2nd PC
 - Contrasts vertical shape with horizontal shape (maybe)
 - 3rd PC
 - There seems to be hardly any meaning

Future work

- Cluster Analysis
- Discriminant Analysis

The principal components are often used as input for another analysis such as multiple regression and cluster analysis.

