Cours d'Électronique: Les transistors

A. Arciniegas F. Boucher V. Gauthier N. Wilkie-Chancellier A. Bouzzit

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

Généralités

Transistor bipolaire BJT

Transistor MOSFET

Généralités

Transistor = transfer resistor

Transistor = transfer resistor

Deux modes d'utilisation des transistors :

Transistor = transfer resistor

Deux modes d'utilisation des transistors :

Analogique

 Briques de base des circuits intégrés analogiques (dont l'amplificateur opérationnel) ou des amplificateurs à composants discrets:

Transistor = transfer resistor

Deux modes d'utilisation des transistors :

Analogique

- Briques de base des circuits intégrés analogiques (dont l'amplificateur opérationnel) ou des amplificateurs à composants discrets :
 - générateur et miroir de courant
 - amplificateurs différentiels
 - amplificateurs en courant ou en tension

Transistor = transfer resistor

Deux modes d'utilisation des transistors :

Analogique

- Briques de base des circuits intégrés analogiques (dont l'amplificateur opérationnel) ou des amplificateurs à composants discrets :
 - générateur et miroir de courant
 - amplificateurs différentiels
 - amplificateurs en courant ou en tension
- Fonctions du traitement analogique du signal :

Transistor = transfer resistor

Deux modes d'utilisation des transistors :

Analogique

- Briques de base des circuits intégrés analogiques (dont l'amplificateur opérationnel) ou des amplificateurs à composants discrets:
 - générateur et miroir de courant
 - amplificateurs différentiels
 - amplificateurs en courant ou en tension
- Fonctions du traitement analogique du signal :
 - linéaires: addition, soustraction et multiplication...
 - non-linéaires: conversion exponentielle, logarithmique...

Transistor = transfer resistor

Deux modes d'utilisation des transistors :

Analogique

- Briques de base des circuits intégrés analogiques (dont l'amplificateur opérationnel) ou des amplificateurs à composants discrets:
 - générateur et miroir de courant
 - amplificateurs différentiels
 - amplificateurs en courant ou en tension
- Fonctions du traitement analogique du signal :
 - linéaires: addition, soustraction et multiplication...
 - non-linéaires: conversion exponentielle, logarithmique...

« Tout ou rien » ou commutation

- Circuits intégrés numériques, circuits de commande divers.
- Alimentation à découpage, onduleurs.
- Amplification numérique.

Deux grandes familles :

Deux grandes familles :

• Transistor bipolaire (BJT)

Deux grandes familles :

- Transistor bipolaire (BJT)
- Transistor à effet de champ (dont le MOSFET)

Transistor bipolaire BJT

BJT: Bipolar Junction Transistor

BJT: Bipolar Junction Transistor

Deux types:

PNPNPN

BJT: Bipolar Junction Transistor

Deux types:

PNPNPN

Structure d'un transistor NPN (d'après A. Malvino).

BJT: Bipolar Junction Transistor

Deux types:

- PNP
- NPN

Structure d'un transistor NPN (d'après A. Malvino).

Trois zones dopées:

- émetteur
- base (faiblement)
- collecteur

Régions du transistor avant diffusion (d'après A. Malvino).

Régions du transistor avant diffusion (d'après A. Malvino).

Régions du transistor après diffusion (d'après A. Malvino).

Régions du transistor avant diffusion (d'après A. Malvino).

Régions du transistor après diffusion (d'après A. Malvino).

Modèle équivalent (d'après A. Malvino).

Transistor polarisé (d'après A. Malvino).

Rôles:

- Émetteur : injecter ses électrons libres dans la base.
- Base : transmettre les électrons injectés par l'émetteur au collecteur.
- Collecteur : collecter la plus grande partie des électrons de la base.

Transistor polarisé (d'après A. Malvino).

À l'instant où la polarisation directe est appliquée sur la diode émetteur, les électrons ne sont pas encore entrés dans la base.

Transistor polarisé (d'après A. Malvino).

L'émetteur injecte des électrons libres dans la base (d'après A. Malvino).

Si $V_{BB} > V_{BE}$, les électrons de l'émetteur passent dans la base (**courant** I_E).

Si $V_{BB} > V_{BF}$, les électrons de l'émetteur passent dans la base (**courant** I_E).

base (d'après A. Malvino).

Seul un petit nombre d'électrons libres se recombinent avec des trous dans la base.

Transistor polarisé (d'après A. Malvino).

L'émetteur injecte des électrons libres dans la base (d'après A. Malvino).

Si $V_{BB} > V_{BE}$, les électrons de l'émetteur passent dans la base (**courant** I_E).

Seul un petit nombre d'électrons libres se recombinent avec des trous dans la base.

Un **courant** I_B circule à travers R_B car la diode émetteur est passante.

Transistor polarisé (d'après A. Malvino).

L'émetteur injecte des électrons libres dans la base (d'après A. Malvino).

Les électrons libres de la base vont dans le collecteur. (d'après A. Malvino).

Presque tous les électrons de l'émetteur vont dans le collecteur.

Transistor polarisé (d'après A. Malvino).

L'émetteur injecte des électrons libres dans la base (d'après A. Malvino).

Les électrons libres de la base vont dans le collecteur. (d'après A. Malvino).

Presque tous les électrons de l'émetteur vont dans le collecteur.

Une fois arrivés, ils ressentent l'attraction de la tension V_{CC} .

Transistor polarisé (d'après A. Malvino).

L'émetteur injecte des électrons libres dans la base (d'après A. Malvino).

Les électrons libres de la base vont dans le collecteur. (d'après A. Malvino).

Presque tous les électrons de l'émetteur vont dans le collecteur.

Une fois arrivés, ils ressentent l'attraction de la tension V_{CC} .

lls traversent le collecteur et la résistance R_C pour atteindre le pôle positif de l'alimentation V_{CC} (courant I_C).

Transistor polarisé (d'après A. Malvino).

L'émetteur injecte des électrons libres dans la base (d'après A. Malvino).

Les électrons libres de la base vont dans le collecteur. (d'après A. Malvino).

Résumé

Polarisation directe de la diode émetteur :

- ullet Circulation des courants I_E et I_B .
- Traversée des électrons de l'émetteur vers le collecteur en raison de la minceur et faible dopage de la base \rightarrow circulation du courant I_C .

Symbole graphique du transistor NPN.

En appliquant la loi de Kirchhoff à la jonction :

$$\mathit{I}_E = \mathit{I}_B + \mathit{I}_C$$

Symbole graphique du transistor NPN.

En appliquant la loi de Kirchhoff à la jonction :

$$I_E = I_B + I_C$$

Symbole graphique du transistor NPN.

Relations entre courants

•
$$I_C \approx I_E \rightarrow \alpha = \frac{I_C}{I_E} \approx 1$$

En appliquant la loi de Kirchhoff à la jonction :

$$I_E = I_B + I_C$$

Symbole graphique du transistor NPN.

Relations entre courants

•
$$I_C \approx I_E \rightarrow \alpha = \frac{I_C}{I_E} \approx 1$$

•
$$I_B \ll I_C \rightarrow \beta = \frac{I_C}{I_B}$$
, $100 < \beta < 300$

En appliquant la loi de Kirchhoff à la jonction :

$$I_E = I_B + I_C$$

Symbole graphique du transistor NPN.

Relations entre courants

- $I_C \approx I_E \rightarrow \alpha = \frac{I_C}{I_F} \approx 1$
- $I_B \ll I_C \rightarrow \beta = \frac{I_C}{I_B}$, $100 < \beta < 300$

 β est le gain en courant

Caractéristiques

Le transistor BJT est un composant **non-linéaire**.

Zones et modes de fonctionnement

2 jonctions \rightarrow 4 modes de fonctionnement :

Mode	Jonction BE	Jonction BC	Comportement
Amplificateur	Passante	Bloquée	Amplificateur de courant quasi-linéaire
Amplificateur dégradé	Bloquée	Passante	Amplificateur de courant quasi-linéaire, mode inversé et aux caractéristiques dé- gradées
Bloqué	Bloquée	Bloquée	Interrupteur ouvert
Saturé	Passante	Passante	Interrupteur fermé

Modèle électrique en mode amplificateur de courant

Transistor MOSFET

MOSFET: Metal Oxide Semiconductor Field Effect Transistor

MOSFET: Metal Oxide Semiconductor Field Effect Transistor

Deux types:

- Canal P
- Canal N

MOSFET: Metal Oxide Semiconductor Field Effect Transistor

Deux types:

- Canal P
- Canal N

Deux "modes" de fabrication :

- D-MOSFET ou à appauvrissement (applications en amplification RF)
- E-MOSFET ou à enrichissement (applications en commutation numérique)

MOSFET: Metal Oxide Semiconductor Field Effect Transistor

Deux types:

- Canal P
- Canal N

Deux "modes" de fabrication :

- D-MOSFET ou à appauvrissement (applications en amplification RF)
- E-MOSFET ou à enrichissement (applications en commutation numérique)

Structure d'un MOSFET à appauvrissement (d'après A. Malvino).

Structure d'un MOSFET à enrichissement (d'après A. Malvino).

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul ; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul ; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V _{BE} , I _B	V_{GS} , I _G = 0
Sortie	V _{CE} , I _C	V _{DS} , I _D

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V _{BE} , I _B	V_{GS} , I _G = 0
Sortie	V _{CE} , I _C	V _{DS} , I_D

Principe

Polarisation d'un MOSFET à enrichissement (d'après A. Malvino).

• $I_D > 0$ si $V_{GS} > 0$

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V_{BE} , I_{B} V_{GS} , $I_{G} = 0$	
Sortie	V _{CE} , I _C	V _{DS} , I_D

Principe

- $I_D > 0$ si $V_{GS} > 0$
- Attraction des électrons libres dans la région P vers la grille.

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V_{BE} , I_B V_{GS} , $I_G = 0$	
Sortie	V _{CE} , I _C V _{DS} , I _D	

Principe

- $I_D > 0$ si $V_{GS} > 0$
- Attraction des électrons libres dans la région P vers la grille.
- Recombinaison des électrons libres avec les trous au voisinage du SiO₂.

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V_{BE} , I_B V_{GS} , $I_G = 0$	
Sortie	V _{CE} , I _C V _{DS} , I _D	

Principe

- $I_D > 0$ si $V_{GS} > 0$
- Attraction des électrons libres dans la région P vers la grille.
- Recombinaison des électrons libres avec les trous au voisinage du SiO₂.
- Si $V_{GS} \gg$ 0, les trous près du SiO_2 sont comblés.

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V_{BE} , I_B V_{GS} , $I_G = 0$	
Sortie	V _{CE} , I _C V _{DS} , I _D	

Principe

- $I_D > 0$ si $V_{GS} > 0$
- Attraction des électrons libres dans la région P vers la grille.
- Recombinaison des électrons libres avec les trous au voisinage du SiO₂.
- Si $V_{GS} \gg$ 0, les trous près du SiO_2 sont comblés.
- Enfin, attraction des électrons présents dans les régions n+ → création du canal.

Concept fondamental: Quand la tension grille est nulle, le courant drain est nul; pour cette raison, un E-MOSFET est *normalement* « off » (off: non conducteur).

Transistors BJT et MOSFET

Paramètres	BJT	MOSFET
Entrée	V _{BE} , I _B	V_{GS} , $I_G = 0$
Sortie	V _{CE} , I _C	V _{DS} , I _D

Principe

Polarisation d'un MOSFET à enrichissement (d'après A. Malvino).

En conclusion, si V_{GS} est supérieure à une **tension de seuil** $V_{GS(th)}$, le canal est crée et l'E-MOSFET est « on » (on : conducteur)

Symbole graphique du transistor E-MOSFET à canal N.

Courbes caractéristiques de l'E-MOSFET (d'après A. Malvino).

Symbole graphique du transistor E-MOSFET à canal N.

Courbes caractéristiques de l'E-MOSFET (d'après A. Malvino).

- $V_{GS} < V_{GS(th)}$: transistor bloqué, $I_D = 0$.
- ullet $V_{GS} \geq V_{GS(th)}$: transistor passant, $I_D > 0$.

Symbole graphique du transistor E-MOSFET à canal N.

Courbes caractéristiques de l'E-MOSFET (d'après A. Malvino).

- $V_{GS} < V_{GS(th)}$: transistor bloqué, $I_D = 0$.
- $V_{GS} \ge V_{GS(th)}$: transistor passant, $I_D > 0$.

Le transistor MOSFET est un composant **non-linéaire**.

Symbole graphique du transistor E-MOSFET à canal N.

Courbes caractéristiques de l'E-MOSFET (d'après A. Malvino).

Remarques sur la zone passante

Dans la région ohmique, le transistor est équivalent à une résistance $R_{DS(on)}$ (donnée constructeur),

- $P_{DS(on)} = \frac{V_{DS(on)}}{I_{D(on)}}$
- $0 \le V_{DS} \le V_{GS} V_{GS(th)}$
- $lacktriangleq I_D < K_n (V_{GS} V_{GS(th)})^2$, avec K_n le paramètre de transconductance liée à la fabrication.

Symbole graphique du transistor E-MOSFET à canal N.

Courbes caractéristiques de l'E-MOSFET (d'après A. Malvino).

Remarques sur la zone passante

Dans la région ohmique, le transistor est équivalent à une résistance $R_{DS(on)}$ (donnée constructeur),

- $P_{DS(on)} = \frac{V_{DS(on)}}{I_{D(on)}}$
- $0 \le V_{DS} \le V_{GS} V_{GS(th)}$
- $I_D < K_n (V_{GS} V_{GS(th)})^2$, avec K_n le paramètre de transconductance liée à la fabrication.

Dans la région active ou de saturation,

- $V_{DS} \geq V_{GS} V_{GS(th)}$
- $I_D = K_n (V_{GS} V_{GS(th)})^2$

<u>Définitions</u>

• Commutation : Passage brusque, pour un élément actif, de l'état bloqué à l'état saturé, ou inversement.

Définitions

- Commutation : Passage brusque, pour un élément actif, de l'état bloqué à l'état saturé, ou inversement.
- Électronique de commutation : applications en électro-technique et électronique numérique.

Définitions

- Commutation : Passage brusque, pour un élément actif, de l'état bloqué à l'état saturé, ou inversement.
- Électronique de commutation : applications en électro-technique et électronique numérique.

Exemple: Commutation avec une charge résistive

- $V_{CC} = 5 \text{ V}$
- $0 \le V_E \le 5 \text{ V}$
- $V_{GS(th)} = 2 \text{ V}$

Définitions

- Commutation: Passage brusque, pour un élément actif, de l'état bloqué à l'état saturé, ou inversement.
- Électronique de commutation : applications en électro-technique et électronique numérique.

Exemple: Commutation avec une charge résistive

- $V_{CC} = 5 \text{ V}$
- $0 < V_F < 5 V$
- $V_{GS(th)} = 2 \text{ V}$
- \bullet Pour $V_E=0$ V, nous remplaçons le MOSFET par son schéma équivalent bloqué car $V_E < V_{GS(th)}.$

Définitions

- Commutation : Passage brusque, pour un élément actif, de l'état bloqué à l'état saturé, ou inversement.
- Électronique de commutation : applications en électro-technique et électronique numérique.

Exemple: Commutation avec une charge résistive

- $V_{CC} = 5 \text{ V}$
- $0 \le V_E \le 5 \text{ V}$
- $V_{GS(th)} = 2 \text{ V}$
- Pour $V_E=0$ V, nous remplaçons le MOSFET par son schéma équivalent bloqué car $V_E < V_{GS(th)}$.
- Loi de mailles à la sortie : $V_S = V_{DS} = V_{CC}$ car $I_D = 0$.

Définitions

- Commutation : Passage brusque, pour un élément actif, de l'état bloqué à l'état saturé, ou inversement.
- Électronique de commutation : applications en électro-technique et électronique numérique.

Exemple: Commutation avec une charge résistive

- $V_{CC} = 5 \text{ V}$
- $0 \le V_E \le 5 \text{ V}$
- $V_{GS(th)} = 2 \text{ V}$
- Pour $V_E=0$ V, nous remplaçons le MOSFET par son schéma équivalent bloqué car $V_E < V_{GS(th)}.$
- Loi de mailles à la sortie : $V_S = V_{DS} = V_{CC}$ car $I_D = 0$.
- Pour $V_E=5$ V, $V_{GS}>V_{GS(th)}$, donc le transistor est passant, $I_D\neq 0$ et $V_S\approx 0$ à condition que $R\gg R_{DS}$ (si zone ohmique).

Inverseur logique CMOS

v _{in}	V _{GSN}	V _{GSP}	NMOS	PMOS	v _{out}
0	0	$-V_{DD}$	bloqué	passant	V _{DD}
V_{DD}	V _{DD}	0	passant	bloqué	0