Ch.15 Knowing what to believe

November 17, 2023

A Poker Game

Bayes-Nash Equilibrium

A Poker Game

- ► A deck of cards containing only the king, queen and jack of hearts.
- Before the deal, A and B must put an ante of \$1 into a pot.
- ▶ The top card is then dealt to A and the second card to B.
- A moves first, and he decides whether to check or raise.
 - Check: They show their cards and the player with a larger card takes away \$2 in the pot.
 - Raise: A puts another \$1 into the pot. B has then to decide whether to fold or to call
 - Fold: Game over. A takes away \$3 in the pot. A wins \$1, and B loses \$1.
 - Call: B puts another \$1 into the pot, and then they compare their cars. The player with a larger card take away \$4 in the pot.
- Each player is risk-neutral.

Types

- ► Should A raise?
 - ► It depends on A's card.
- ► If A raises, should B call?
 - From B's point of view, A has 3 different personalities: A_K , A_Q and A_J . Or, A has 3 types.
 - lacksquare A_K maximizes his expected payoff without caring about A_J 's payoff.
 - ▶ B has to calculate the probability distribution of the opponent's type.
 - This distribution depends on B's cards.
 - B has 3 types as well.

Incomplete Information

- Information is complete when everything needed to specify a game is common knowledge among the players, including the preferences and beliefs of the other players.
- ► In the poker game, a player's type is unknown to his opponent.

Formulation of a Game with Incomplete Information

- ▶ Consider a game with n players. Let t_i denote the type of player i.
- ▶ The joint probability $p(t_1,...,t_n)$ is common knowledge.
- ▶ Player i knows his own type t_i . He uses Bayes rule to calcualte the posterior probability about t_{-i} is $p_i(t_{-i}|t_i)$.
- ▶ Player i is payoff is $\pi^i(a_1,...,a_n;t_1,...,t_n)$ where a_j is player j's action including a mixed strategy.

Bayes-Nash Equilibrium

- ► A BNE is $\{a_i^*(t_i)\}_{i=1}^n$, where $\forall i, \forall t_i$, $a_i^*(t_i) \max \sum_{t_{-i}} p_i(t_{-i}|t_i) \pi^i(a_1^*(t_1),...,a_i,...a_n^*(t_n);t_1,...,t_n)$.
- For the Poker game, we need to specify what A_K , A_Q , A_J , B_K , B_O and B_J will do.

BNE in the Poker Game

 $A_K \Rightarrow egin{pmatrix} \mathsf{raise} & B \left\{ egin{array}{ll} Q & ? \ J & \mathsf{fold} & +1 \end{array}
ight.$

$$A_Q \Rightarrow \qquad \text{raise} \qquad B \left\{ \begin{array}{ll} K & \text{call} & -2 \\ J & \text{fold} & +1 \end{array} \right.$$

$$\text{check} \qquad B \left\{ \begin{array}{ll} K & -1 \\ J & +1 \end{array} \right.$$

$$\begin{array}{cccc} A_J \Rightarrow & \text{raise} & B \left\{ \begin{array}{ccc} K & \text{call} & -2 \\ Q & ? & \\ & -1 & \end{array} \right. \end{array}$$
 check

▶ What will A_J and B_Q do?

What will A_J and B_Q do?

▶ Suppose B_Q folds w.p.1.

$$A_J \Rightarrow \quad \text{raise} \quad B \left\{ \begin{array}{ll} K & \text{call} & -2 \\ \\ Q & \text{fold} & +1 \end{array} \right.$$

$$\text{check} \qquad \qquad -1$$

$$0.5*(-2) + 0.5*1 = -0.5 > -1$$
, A_J raises.

- When A raises, if B_Q folds, B_Q loses \$1. If B_Q calls, B_Q 's payoff = 0.5(-2)+0.5(2)=0. B_Q calls!
- ▶ Suppose B_Q calls w.p.1. If A_J raises, he'll lose \$2. So, A_i checks.
 - ▶ When A raises, B_Q should fold.
- ▶ B_Q calls with probability c.
- ▶ Similarly, A_J raises with probability r.

A_J 's Mixed Strategy

- $ightharpoonup A_J$ raises with probability r.
- ▶ For B_Q , the probability that A raises is: 0.5 * 1 + 0.5 * r.
- For B_Q , when A raises, the probability that it's raised by A_K (A_J) is 1/(1+r) (r/(1+r)).
- ightharpoonup r is chosen to make B_Q indifferent between calling and folding.
- If B_Q calls, his expected payoff is (-2)/(1+r)+2r/(1+r)=-1. r=1/3.

B_Q 's Mixed Strategy

- $ightharpoonup B_Q$ calls with probability c.
- ightharpoonup c is chosen to make A_J indifferent between raising and checking.
- $lackbox{ }A_J$ raises, his expected payoff is

$$(-2) * (0.5 + 0.5c) + 1 * 0.5(1 - c) = -1. c = 1/3.$$