CAPTUM Y XAI: IDEA GENERAL

Todos los métodos de Captum buscan responder la **misma pregunta**:

"¿Qué tanto contribuye cada entrada (píxel, feature o token) al resultado del modelo?"

La diferencia entre métodos está en **cómo calculan esa "contribución"**. Algunos usan derivadas (gradientes), otros comparan activaciones con una referencia (*baseline*), y otros integran ambos enfoques.

Saliency Maps (Gradiente simple)

Intuición: mide cuánto cambia la salida si alteramos ligeramente el input.

Fórmula mental:

"Si muevo un píxel un poquito, ¿cuánto cambia la probabilidad de la clase?"

 \bigcirc Es como ver *la sensibilidad local* del modelo. Si el gradiente en una zona es alto \rightarrow el modelo "reacciona" fuerte ahí.

En imágenes: destaca los bordes o trazos donde el modelo es más sensible. Limitación: puede ser ruidoso o poco estable, porque depende de una sola derivada (sin promedio).

Integrated Gradients (IG)

Intuición: mide *la contribución acumulada* de cada input al pasar de una baseline (por ejemplo, imagen en negro) al input real.

Fórmula mental:

"¿Qué tanto se activa el modelo mientras voy pintando gradualmente la imagen desde cero hasta completa?"

 $\ensuremath{\widehat{\mathbf{y}}}$ Es como encender una imagen poco a poco y medir cómo sube la confianza del modelo.

La suma de los efectos por píxel da la **atribución total**.

- En imágenes: muestra zonas que **efectivamente construyen la evidencia** para la clase.
- Estable y teóricamente sólido (cumple propiedades como *completitud*).
- Requiere definir una buena baseline (lo "neutro").

DeepLIFT (Deep Learning Important FeaTures)

Intuición: compara cuánto cambia cada neurona (o input) respecto a una baseline, **no por gradiente sino por diferencia de activaciones**.

☐ Fórmula mental:

"¿Cuánto se activó este píxel comparado con lo que habría pasado si fuera neutro?"

Más robusto que los gradientes puros (no se anula en saturaciones). Usa una idea parecida a IG, pero computacionalmente más rápida. Se propaga *deltas* (cambios) capa por capa hacia atrás.

En imágenes: genera mapas más limpios y menos dependientes del ruido.

I En datos tabulares: útil cuando hay valores de referencia (ej. 0 o media).

Gradient SHAP

Intuición: combina SHAP values con gradientes.

En lugar de muestrear todas las combinaciones posibles como SHAP, estima el efecto de cada feature promediando gradientes con pequeñas perturbaciones.

Fórmula mental:

"Tomo varios puntos entre la baseline y el input, aplico ruido y gradientes, y promedio los efectos."

 \bigcirc Se parece a IG pero con *muestreo estocástico* \rightarrow más suave, más interpretable.

Resultado: heatmaps más suaves que Saliency, pero con mayor costo de cálculo.

Layer Attribution (Layer Grad-CAM, Layer IG, etc.)

Intuición: mide qué capas internas o filtros activan más la predicción.

☐ Fórmula mental:

"¿Qué parte de la red 'vio' la evidencia más fuerte para esta clase?"

© En CNNs: muestra qué regiones de una imagen activan los mapas de características internos.

ldeal para entender *qué "ve" cada capa* (útil para enseñanza o depuración de redes profundas).

COMPARATIVO INTUITIVO

Método	Idea central	Usa gradiente s	Usa baselin e	Resultados típicos	Analogía
Saliency	Sensibilidad inmediata	>	×	Ruidosos, pero rápidos	Termómetro instantáneo
Integrate d Gradients	Contribució n acumulada	Y	>	Suaves, interpretabl es	Encender imagen poco a poco
DeepLIFT	Diferencia de activaciones	×	>	Limpios y rápidos	Comparació n antes/despu és
Gradient SHAP	Gradientes promediad os	>	>	Suaves, estables	SHAP "con esteroides"
Layer Attributio n / Grad- CAM	Foco por capas	>	Opcion al	Mapas visuales	"Dónde mira el modelo"