### 제9강 (8장)

교락법과 일부실시법

- 8.1 교락법
- 8.2 일부실시법

제9강 교락법과 일부실시법

8.1 교락법

#### ◆ 기본개념

- 동일 조건에서 다 실험을 실시할 수 없는 경우
  - 예를 들어, 반씩 또는 1/4씩 나누어 실험을 실시하면 교락법
  - 예를 들어, 반만 또는 1/4만 실험을 실시하면 일부실시법 이런 경우 일부 효과들은 서로 교락된다.

Q. 어떻게 실험해야 파악하고자 하는 효과들이 서로 교락되지 않도록 할 수 있을까?



◆ 인수분해식을 이용한 블록화 (단독교락: 두 개의 블록으로 나눔)

$$I = A \qquad A = \frac{1}{4}(a-1)(b+1)(c+1) = \frac{1}{4}(a+ab+ac+abc-(1)-b-c-bc) \qquad (7.35)$$

$$I = AB \qquad AB = \frac{1}{4}(a-1)(b-1)(c+1) = \frac{1}{4}((1) + ab + c + abc - a - b - bc - ac) \qquad (7.38)$$

#### ◆ 인수분해식을 이용한 블록화 (이중교락: 4개의 블록으로 나누는 경우)

• I = ABC로 잡는 경우

(1) 
$$ABC = \frac{1}{8}(a-1)(b-1)(c-1)(d+1)$$
  
=  $\frac{1}{8}((a+b+c+ad+bd+cd+abc+abcd) - (1) - d - ab - ac - bc - abd - acd - bcd)$ 

또 다른 것으로 I = BCD를 잡는 경우

(2) 
$$BCD = \frac{1}{8}(a+1)(b-1)(c-1)(d-1)$$
  
=  $\frac{1}{8}(b+c+d+ab+ac+ad+bcd+abcd) - (1) - a - bc - bd - cd - abc - acd - abd)$ 

• (1)과 (2)에서 (+,+),(+,-),(-,+),(-,-)인 것들로 구분한다.



[그림 8-3] *ABC*와 *BCD*를 교락시킨 **2<sup>4</sup>**요인배치법

$$ABC$$
와  $BCD$ 가 교략요인이면  $ABC \times BCD = AB^2C^2D = AD$  도 교략요인임  $(2^n$ 요인배치법에서는  $A^2 = B^2 = C^2 = D^2 = 1$ 로 여김

◆ 교락의 종류

**완전교락**: 매 반복마다 블록과 교락되는 효과가 같음



〈그림 8-6〉 완전교락된 23요인배치법

◆ 교락의 종류

부분교락: 매 반복마다 블록과 교락되는 효과가 같지 않음

에 처음에는 ABC, 두 번째는 AC, 세 번째는 BC를 블록효과와 교락시키는 경우

반복 I 블<del>록</del>1 블<del>록</del>2

| abc | ab  |
|-----|-----|
| а   | ас  |
| b   | bc  |
| С   | (1) |

반복|| 블록1 블록2

| abc | ab |
|-----|----|
| ас  | bc |
| b   | а  |
| (1) | С  |

반복Ⅲ 블록1 블록2

| abc         | ab |  |
|-------------|----|--|
| bc          | ас |  |
| а           | b  |  |
| <b>(1</b> ) | С  |  |

〈그림 8-7〉 부분교락된 23요인배치법

스 그는 호 기 - 으 으 정보통계학과 **백재욱** 교수

제9강 교락법과 일부실시법

# 8.2 일부실시법



- =부분요인배치법
- =fractional factorial design





#### 정의대비(defining contrast)

어떤 요인이 블록(또는 어느 요인)과 교락되는지 표현하는 식 옆의 경우 I=ABC임 양변에 C를 곱하면 C=AB가 나옴

[그림 8-8] 두 블록 중 한 블록에서만 실험을 실시하는 일부실시법

 $\bullet$   $I = ABC \circ \circ \circ$ 

```
A의 효과? 어느 효과와 교락되어 있나? A=BC? …………(8.25)
B의 효과? 어느 효과와 교락되어 있나? B=AC? …………(8.26)
C의 효과는 AB의 효과와 교락되어 나타난다. C=AB? ……(8.27)
```



◆ 2<sup>5-2</sup> 기본개념

예

I=ABCDE & I=ABC => ABCDE\*ABC=DE도 정의대비 I=ABCDE=ABC=DE

- Q. 주효과 D가 어떤 것과 교락되는가?
- A. D=ABCE=ABCD=E 주효과 D와 주효과 E가 서로 교락됨!

#### 예제 8.3

온도(A), 습도(B), 압력(C), 진동(D) 네 요인이 제품의 강도에 미치는 영향을 조사하기 위한  $2^4$ 요인배치법에서 16회 실험이 너무 많아 정의대비 I=ABCD를 이용하여 2개의 블록으로 나누어 1/2번만 실험하는  $2^{4-1}$ 형 일부실시법을 적용한 결과가 다음과 같다. 이 경우 별명관계를 구하고 분산분석표를 작성하라.

$$(1) = 95.29$$
  $ab = 86.58$   $ac = 88.70$   $bc = 86.79$   $bd = 89.38$   $abcd = 89.57$ 

풀이

1) 별명관계(I=ABCD)

A=BCD, B=ACD, C=ABD, D=ABC, AB=CD, AC=BD, AD=BC ............................... (8.34))

〈표 8-6〉 변동의 계산(예이츠계산법)

| 처리조합        | 자료    | (1)    | (2)     | (3)     | (4)    | 요인변동               |
|-------------|-------|--------|---------|---------|--------|--------------------|
|             |       | (1)    | (4)     | (3)     | (4)    | $(4)^2/(2^{n-p}r)$ |
| (1)         | 95.29 | 95.29  | 181.87  | 357.36  | 723.11 | 65359              |
| a           |       | 86.58  | 175.49  | 365.75  | -0.51  | 0.033              |
| b           |       | 88.70  | 185.83  | -6.80   | -18.47 | 42.64              |
| аъ          | 86.58 | 86.79  | 179.92  | 6.29    | 0.47   | 0.03               |
| С           |       | 96.45  | -8.71   | -10.62  | -12.29 | 18.88              |
| ac          | 88.70 | 89.38  | 1.91    | -7.85   | 2.77   | 0.96               |
| bc          | 86.79 | 90.35  | 7.07    | 6.38    | 13.09  | 21.42              |
| a <u>bc</u> |       | 89.57  | -0.78   | -5.91   | 8.39   | 8.80               |
| đ           |       | -95.29 | -8.71   | -6.38   | 8.39   |                    |
| ad          | 96.45 | 86.58  | -1.91   | -5.91   | 13.09  |                    |
| <u>bd</u>   | 89.38 | 88.70  | -7.07   | 10.62   | 2.77   |                    |
| a <u>bd</u> |       | -86.79 | -0.78   | -7.85   | -12.29 |                    |
| <u>c.d</u>  | 90.35 | 96.45  | 181.87  | 6.80    | 0.47   |                    |
| a <u>cd</u> |       | -89.38 | -175.49 | 6.29    | -18.47 |                    |
| bcd         |       | -90.35 | -185.83 | -357.36 | -0.51  |                    |
| abcd        | 89.57 | 89.57  | 179.92  | 365.75  | 723.11 |                    |

⟨표 8-7⟩ 분산분석표

| 요인                        | 제곱합                    | 자유도            | 평균제곱  | $F_0$  |
|---------------------------|------------------------|----------------|-------|--------|
| A(또는 BCD)                 | 0.03                   | 1              | 0.03  | 0.06   |
| <i>B</i> (또는 <i>ACD</i> ) | 42.64                  | 1              | 42.64 | 86.14* |
| C(또는 ABD)                 | 18.88                  | 1              | 18.88 | 38.14* |
| D(또는 ABC)                 | 8.80                   | 1              | 8.80  | 17.78  |
| <i>AD</i> (또는 <i>BC</i> ) | 21.42                  | 1              | 21.42 | 43.27* |
| <i>AB</i> (또는 <i>CD</i> ) | $0.03)_{0.00}$         | $_{1}^{1}_{2}$ | 0.495 |        |
| <i>AC</i> (또는 <i>BD</i> ) | $0.03 \\ 0.96 $ $0.99$ | $1$ $j^2$      | 0.495 |        |
| Т                         |                        | 7              |       |        |

#### R 실습

gang <- c(95.29, NA, NA, 86.58, NA, 88.7, 86.79, NA, NA, 96.45, 89.38, NA, 90.35, NA, NA, 89.57)

 $\begin{array}{l} \operatorname{temp} < -\operatorname{c}(0,\,1,\,0,\,1,\,0,\,1,\,0,\,1,\,0,\,1,\,0,\,1,\,0,\,1) \\ \operatorname{humid} < -\operatorname{c}(0,\,0,\,1,\,1,\,0,\,0,\,1,\,1,\,0,\,0,\,1,\,1,\,0,\,0,\,1,\,1) \\ \operatorname{press} < -\operatorname{c}(0,\,0,\,0,\,0,\,1,\,1,\,1,\,1,\,1,\,0,\,0,\,0,\,0,\,1,\,1,\,1,\,1) \\ \operatorname{vib} < -\operatorname{c}(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,1,\,1,\,1,\,1,\,1,\,1,\,1) \\ \operatorname{gang.data} < -\operatorname{data.frame}(\operatorname{gang. temp. humid. press. vib)} \\ \operatorname{gang.data} \operatorname{stemp} < -\operatorname{factor}(\operatorname{gang.data} \operatorname{stemp. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"A0",\,"A1"})) \\ \operatorname{gang.data} \operatorname{shumid} < -\operatorname{factor}(\operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"C0",\,"C1"})) \\ \operatorname{gang.data} \operatorname{shumid} < -\operatorname{factor}(\operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"C0",\,"C1"})) \\ \operatorname{gang.data} \operatorname{shumid} < -\operatorname{factor}(\operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"C0",\,"C1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(0,\,1), \, \operatorname{labels} = \operatorname{c}(\operatorname{"D0",\,"D1"})) \\ \operatorname{gang.data} \operatorname{shumid. levels} = \operatorname{c}(\operatorname{Unlow} \operatorname{Unlow} \operatorname{Un$ 

|                                           | Df | Sum Sq | Mean Sq |
|-------------------------------------------|----|--------|---------|
| temp                                      | 1  | 0.03   | 0.03    |
| humid                                     | 1  | 42.64  | 42.64   |
| press                                     | 1  | 18.88  | 18.88   |
| vib                                       | 1  | 8.80   | 8.80    |
| temp:vib                                  | 1  | 21.42  | 21.42   |
| temp:humid                                | 1  | 0.03   | 0.03    |
| temp:press                                | 1  | 0.96   | 0.96    |
| 8 observations deleted due to missingness |    |        |         |

<u>anova <- aov(gang~temp+ humid+ press+ vib+ temp\*vib+ temp\*humid+ temp\*press, data=gang.data)</u> summary(anova)

### R 실습

new.gang.data = gang.data[which(gang.data\$gang>0),]
with(new.gang.data, interaction.plot(x.factor=temp, trace.factor=vib, response=gang,
fun=mean, type="b", legend=T, ylab="강도", main="Interaction Plot", pch=c(1,19)),
na.rm=TRUE)



# R 실습

```
par(bg=rgb(1,1,0.8), mfrow=c(2,2))
boxplot(gang~temp, data=new.gang.data, main="gangdo by temperature",
xlab="Temperature",ylab="gangdo")
boxplot(gang~humid, data=new.gang.data, main="gangdo by humidity",
xlab="humidity",ylab="gangdo")
boxplot(gang~press, data=new.gang.data, main="gangdo by pressure",
<u>xlab="pressure",ylab="gangdo")</u>
boxplot(gang~vib, data=new.gang.data, main="gangdo by vibration",
xlab="vibration",ylab="gangdo")
par(mfrow=c(1,1))
```

# R 실습



# 험계획과 응용

### 다음 시간 안내

제10강 (9장)

# 다구치 실험계획