AN EXTENSION TO THE TANGENT SEQUENCE MARTINGALE INEQUALITY

STEPHEN MONTGOMERY-SMITH AND SHIH-CHI SHEN

ABSTRACT. For each $1 , there exists a positive constant <math>c_p$, depending only on p, such that the following holds. Let (d_k) , (e_k) be real-valued martingale difference sequences. If for for all bounded nonnegative predictable sequences (s_k) and all positive integers k we have

$$E[s_k \lor |e_k|] \le E[s_k \lor |d_k|]$$

then for all positive integers n we have

$$\left\| \sum_{k=1}^{n} e_k \right\|_p \le c_p \left\| \sum_{k=1}^{n} d_k \right\|_p.$$

1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space, and let (\mathcal{F}_k) be a filtration on (Ω, \mathcal{F}, P) . (We will suppose that $\mathcal{F}_0 = \{\emptyset, \Omega\}$.) If an adapted sequence (d_k) is a real-valued martingale difference sequence, Burkholder's inequality [2] shows that for any $1 that there exists a positive constant <math>c_p$ depending only on p such that such that for all $\varepsilon_k \in \{1, -1\}$ and all positive integers n

$$\left\| \sum_{k=1}^{n} \varepsilon_k d_k \right\|_{p} \le c_p \left\| \sum_{k=1}^{n} d_k \right\|_{p}.$$

More generally, if (v_k) is a predictable sequence bounded in absolute value by 1, then

$$\left\| \sum_{k=1}^{n} v_k d_k \right\|_p \le c_p \left\| \sum_{k=1}^{n} d_k \right\|_p.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 60G42; Secondary 15A51, 46B70.

Key words and phrases. Martingale inequalities, tangent sequences, decreasing rearrangement, K-functional, doubly stochastic matrices.

Both authors were supported in part by the NSF and the Research Board of the University of Missouri.

A different approach to this inequality was proposed by Kwapień and Woyczinski [8] (see also [9]). Two adapted sequence (f_k) and (g_k) are said to be tangent if for each $k \geq 1$, we have that the law of f_k conditionally on \mathcal{F}_{k-1} is the same as the law of g_k conditionally on \mathcal{F}_{k-1} , that is,

$$P(f_k < \lambda | \mathcal{F}_{k-1}) = P(g_k < \lambda | \mathcal{F}_{k-1})$$

for all real numbers λ . Answering a conjecture of Kwapień and Woyczinski [8], it was proved by Hitczenko [4] (see also [14]) that for $1 that there exists a positive constant <math>c_p$, depending only on p, such that if (d_k) and (e_k) are martingale difference sequences and (d_k) , (e_k) are tangent, then for all positive integers n

(1)
$$\left\| \sum_{k=1}^{n} e_k \right\|_p \le c_p \left\| \sum_{k=1}^{n} d_k \right\|_p.$$

The purpose of this paper is to provide a common generalization to these two results.

Theorem 1. For each $1 , there exists a positive constant <math>c_p$, depending only on p, such that the following holds. Let (d_k) , (e_k) be real-valued martingale difference sequences. If for for all bounded nonnegative predictable sequence (s_k) and all positive integers k we have

$$(2) E[s_k \vee |e_k|] \le E[s_k \vee |d_k|]$$

then for all positive integers n we have equation (1).

This is essentially equivalent to another result, which concerns martingales in a specific situation. We will consider the probability space $[0,1]^{\mathbf{N}}$ equipped with the product Lebesgue measure \mathcal{L} , and consider the filtration (\mathcal{L}_k) , where \mathcal{L}_k is the minimal σ -field for which the first k coordinate functions of $[0,1]^{\mathbf{N}}$ are measurable. Then two sequences (d_k) and (e_k) are tangent if

$$e_k(x_1,...,x_k) = d_k(x_1,...,x_{k-1},\phi_k(x_1,...,x_k))$$

where $(\phi_k : [0,1]^k \to [0,1])$ is a sequence of measurable functions such that $\phi_k(x_1,...,x_{k-1},\cdot)$ is a measure preserving map for almost all $x_1, ..., x_{k-1}$.

We will consider a more general situation. Suppose we have a sequence of linear operators $(T_k(x_1,...,x_{k-1}))$, depending measurably upon $(x_k) \in [0,1]^{\mathbf{N}}$, that are bounded operators on both $L_1[0,1]$ and $L_{\infty}[0,1]$ with norm 1. Then consider the condition

(3)
$$e_k(x_1, ..., x_{k-1}, \cdot) = [T_k(x_1, ..., x_{k-1})]d_k(x_1, ..., x_{k-1}, \cdot).$$

Theorem 2. For each $1 , there exists a positive constant <math>c_p$, depending only on p, such that the following holds. If (d_k) , (e_k) and (T_k) are as above satisfying (3), then for all positive integers n we have equation (1).

We will also need the following intermediate result. For any random variable f, let $f^{\#}$ be the decreasing rearrangement of |f|, that is,

$$f^{\#}(t) = \sup\{s \in \mathbf{R} : P(|f| < s) < t\}.$$

Theorem 3. For each $1 , there exists a positive constant <math>c_p$, depending only on p, such that the following holds. Let (d_k) , (e_k) be martingale difference sequences on $[0,1]^{\mathbf{N}}$ with respect to (\mathcal{L}_k) . Suppose that for each positive integer k

$$\int_0^t (e_k(x_1, ..., x_{k-1}, \cdot))^{\#}(s)ds \le \int_0^t (d_k(x_1, ..., x_{k-1}, \cdot))^{\#}(s)ds$$

for all $t \in [0,1]$ and almost all $x_1,...,x_{k-1}$. Then for all positive integers n we have equation (1).

2. The Discrete Type Case

In this section we will prove Theorems 2 and 3 in a special discrete situation, which we now describe. For any positive integer N, let Σ be the σ -field generated by the partition $\{[\frac{i-1}{N}, \frac{i}{N}]; i=1,2,...,N\}$. Define a filtration on $[0,1]^{\mathbb{N}}$ by (\mathcal{F}_k) by $\mathcal{F}_k = \mathcal{L}_{k-1} \times \Sigma$. Suppose (d_k) , (e_k) are (\mathcal{F}_k) -adapted. Then for each k and for each $x_1, ..., x_{k-1}$, we see that $d_k(x_1, ..., x_{k-1}, \cdot)$ and $e_k(x_1, ..., x_{k-1}, \cdot)$ are Σ -measurable simple functions on [0,1). Therefore d_k and e_k can be written as N-dimensional vectors and $T_k(x_1, ..., x_{k-1})$ can be represented by a $N \times N$ matrix, that is,

$$\begin{bmatrix} e_k(1) \\ e_k(2) \\ \vdots \\ e_k(N) \end{bmatrix} = \begin{bmatrix} a_k(1,1), & \dots & , a_k(1,N) \\ a_k(2,1), & \dots & , a_k(2,N) \\ \vdots & & & \vdots \\ a_k(N,1), & \dots & , a_k(N,N) \end{bmatrix} \begin{bmatrix} d_k(1) \\ d_k(2) \\ \vdots \\ d_k(N) \end{bmatrix}$$

where

$$d_k(i) = d_k(x_1, ..., x_{k-1}, i) = d_k(x_1, ..., x_k) \text{ if } x_k \in \left[\frac{i-1}{N}, \frac{i}{N}\right]$$

$$e_k(i) = e_k(x_1, ..., x_{k-1}, i) = e_k(x_1, ..., x_k) \text{ if } x_k \in \left[\frac{i-1}{N}, \frac{i}{N}\right]$$

$$T_k = T_k(x_1, ..., x_{k-1}) = \left[\left(a_k(x_1, ..., x_{k-1})\right)(i, j)\right]_{N \times N} = \left[a_k(i, j)\right]_{N \times N}$$

The condition of being martingale difference sequences implies that

$$\sum_{i=1}^{N} d_k(i) = \sum_{i=1}^{N} e_k(i) = 0$$

Theorem 4. Theorem 2 holds in the case that (d_k) and (e_k) are adapted to the filtration (\mathcal{F}_k) described above.

In this discrete case, the boundedness of $||T_k||_{L_1}$ and $||T_k||_{L_{\infty}}$ by 1 is equivalent to the condition that $\sum_{j=1}^N |a_k(i,j)| \leq 1$ for all i and $\sum_{i=1}^N |a_k(i,j)| \leq 1$ for all j. We claim that without loss of generality, we can assume that every row sum and column sum of T_k is 0, that is,

$$\sum_{j=1}^{N} a_k(i,j) = \sum_{i=1}^{N} a_k(i,j) = 0$$

for all i and j. Suppose the i^{th} row sum $\sum_{j=1}^{N} a_k(i,j) = R_k(i)$. Let T'_k be the liner operator defined by

$$T'_{k} = \left[a_{k}(i,j) - \frac{R_{k}(i)}{N} \right]_{N \times N}$$

It is clear that every row sum of T'_k is 0 and

$$(T'_k d_k)(i) = \sum_{j=1}^{N} \left(a_k(i,j) - \frac{R_k(i)}{N} \right) d_k(j)$$

$$= \sum_{j=1}^{N} a_k(i,j) d_k(j) - \frac{R_k(i)}{N} \sum_{j=1}^{N} d_k(j)$$

$$= e_k(i)$$

Now we can assume that every row sum of T_k is 0. Similarly suppose the j^{th} column sum $\sum_{i=1}^{N} a_k(i,j) = C_k(j)$. Let T_k'' be the linear operator defined by

$$T_k'' = \left[a_k(i,j) - \frac{C_k(j)}{N} \right]_{N \times N}$$

Again it is clear that every row sum and column sum of T''_k is 0 and

$$(T_k''d_k)(i) = \sum_{j=1}^N \left(a_k(i,j) - \frac{C_k(j)}{N} \right) d_k(j)$$

$$= \sum_{j=1}^N a_k(i,j) d_k(j) - \frac{1}{N} \sum_{j=1}^N C_k(j) d_k(j)$$

$$= e_k(i)$$

since

$$\sum_{i=1}^{N} e_k(i) = \sum_{j=1}^{N} C_k(j) d_k(j) = 0$$

After adjusting T_k , it is easy to check that the norms of T_k may be enlarged up to 4. Of course, we can pick up $T_k/4$ instead and absorb the 4 into the constant c_p .

A nonnegative real matrix is said to be *doubly stochastic* if each of its row and column sum is 1. A sub-doubly stochastic matrix means that each of its row and column sum is less than or equal to 1. Therefore we can change the assumption in Theorem 4 to be that: "for almost all $x_1, ..., x_{k-1}$, every row sum and column sum of the matrix from T_k is 0, and the matrix from $|T_k|$ is sub-doubly stochastic for each positive integer k"

One of the fundamental results in the theory of doubly stochastic matrices was introduced by Birkhoff (see for example [11, p. 117]).

Theorem 5. If M is a doubly stochastic matrix, then

$$M = \sum_{i=1}^{S} \theta_i P_i$$

where P_i are permutation matrices, and the θ_i are nonnegative numbers satisfying $\sum_{i=1}^{S} \theta_i = 1$.

Lemma 1. If M is a $n \times n$ sub-doubly stochastic matrix, then there exists a $2n \times 2n$ doubly stochastic matrix such that its upper left $n \times n$ sub-matrix is M.

Proof. Suppose that R(i) is the i^{th} row sum of M, C(j) is the j^{th} column sum and S is the sum of all entries. Let

$$A = \begin{bmatrix} \frac{1-R(1)}{n}, & \dots & , \frac{1-R(1)}{n} \\ \vdots & & \vdots \\ \frac{1-R(n)}{n}, & \dots & , \frac{1-R(n)}{n} \end{bmatrix}_{n \times n}$$

$$B = \begin{bmatrix} \frac{1-C(1)}{n}, & \dots & , \frac{1-C(n)}{n} \\ \vdots & & \vdots \\ \frac{1-C(1)}{n}, & \dots & , \frac{1-C(n)}{n} \end{bmatrix}_{n \times n}$$

$$C = \text{Diag} \begin{bmatrix} \frac{S}{n}, & \dots & , \frac{S}{n} \end{bmatrix}_{n \times n}$$

Then define

$$M' = \left[\begin{array}{cc} M & A \\ B & C \end{array} \right]_{2n \times 2n}$$

It is easy to check that M' is a doubly stochastic matrix.

Lemma 2. If M is a sub-doubly stochastic matrix, then there exists a sub-doubly stochastic matrix N such that M + N is doubly stochastic.

Proof. Let M' be the $2n \times 2n$ doubly stochastic matrix such that its upper left $n \times n$ sub-matrix is M. By Theorem 5,

$$M' = \sum_{i=1}^{S} \theta_i P_i'$$

where P'_i are $2n \times 2n$ permutation matrices and $\sum_{i=1}^{S} \theta_i = 1$. Suppose that P_i is the upper left $n \times n$ sub-permutation matrix of P'_i , then

$$M = \sum_{i=1}^{S} \theta_i P_i$$

Let Q_i be a $n \times n$ sub-permutation matrix such that $P_i + Q_i$ is a permutation matrix, say R_i . Define

$$N = \sum_{i=1}^{S} \theta_i Q_i$$

thus

$$M + N = \sum_{i=1}^{S} \theta_i R_i$$

which is a doubly stochastic matrix.

Theorem 6. Let M be an $n \times n$ matrix. If every row sum and column sum of M is 0 and |M| is sub-doubly stochastic, then

$$M = \sum_{i=1}^{S} \theta_i P_i$$

where P_i are permutation matrices, $\sum_{i=1}^{S} \theta_i = 0$ and $\sum_{i=1}^{S} |\theta_i| = 1$

Proof. Let

$$A = \frac{|M| + M}{2}$$
$$B = \frac{|M| - M}{2}$$

so A and B are nonnegative, and 2A and 2B are sub-doubly stochastic. By Lemma 2, there exists a sub-doubly stochastic matrix C such that 2(A+C) is a doubly stochastic. But A and B have the same row sums and column sums, and hence 2(B+C) is also a doubly stochastic. By applying Theorem 5, we have

$$2(A+C) = \sum_{i=1}^{m} \lambda_i Q_i$$

$$2(B+C) = \sum_{i=1}^{m'} \lambda_i' Q_i'$$

where Q_i , Q_i' are permutation matrices, and the λ_i , λ_i' are nonnegative numbers satisfying $\sum_{i=1}^{m} \lambda_i = \sum_{i=1}^{m'} \lambda_i' = 1$. Then the result follows because

$$M = (A + C) - (B + C) = \sum_{i=1}^{m} \frac{\lambda_i}{2} Q_i - \sum_{i=1}^{m'} \frac{\lambda'_i}{2} Q_i'$$

Proof of Theorem 4. From Theorem 6, we know that for each $k \geq 1$ and almost all $x_1, ..., x_{k-1}$

$$T_k(x_1, ..., x_{k-1}) = \sum_{i_k=1}^{S_k} \theta_{k, i_k}(x_1, ..., x_{k-1}) \cdot P_{k, i_k}(x_1, ..., x_{k-1})$$

where P_{k,i_k} are permutation matrices, $\sum_{i=1}^{S_k} \theta_{k,i_k} = 0$, and $\sum_{i=1}^{S_k} |\theta_{k,i_k}| = 1$. Let

(4)
$$h_{k,i_k}(x_1,...,x_{k-1},\cdot) = [P_{k,i_k}(x_1,...,x_{k-1})]d_k(x_1,...,x_{k-1},\cdot).$$

Then

$$e_k = \left[\sum_{i_k=1}^{S_k} \theta_{k,i_k} P_{k,i_k}\right] d_k$$
$$= \sum_{i_k=1}^{S_k} |\theta_{k,i_k}| \varepsilon_{k,i_k} h_{k,i_k}$$

where $\varepsilon_{k,i_k} = \operatorname{sgn}(\theta_{k,i_k})$.

Now we need to consider the probability space $\Omega_1 \times \Omega_2$, where $\Omega_1 = \Omega_2 = [0,1]^{\mathbf{N}}$. We consider all of the previous random variables considered as random variables on this new probability space, depending only upon the first coordinate ω_1 . We define a filtration (\mathcal{G}_k) where $\mathcal{G}_k = \mathcal{F}_k \otimes \mathcal{L}_{k+1}$.

We define a predictable sequence of random variables (I_k) so that for each $\omega_1 \in \Omega_1$, the random variable $I_k(\omega_1, \cdot)$ takes the value i with probability $|\theta_{k,i}(\omega_1)|$. Then we see that

$$e_k = E(\epsilon_{k,I_k} h_{k,I_k} | \mathcal{L} \otimes \{\emptyset, \Omega_2\}).$$

Hence, since conditional expectation is a contraction on L_p

$$\left\| \sum_{k=1}^n e_k \right\|_p \le \left\| \sum_{k=1}^n \epsilon_{k,I_k} h_{k,I_k} \right\|_p.$$

Now we see that (ϵ_{k,I_k}) is a predictable sequence bounded by 1. Hence by Burkholder's inequality, we see that

$$\left\| \sum_{k=1}^n \epsilon_{k,I_k} h_{k,I_k} \right\|_p \le c_p \left\| \sum_{k=1}^n h_{k,I_k} \right\|_p.$$

Next, observing (4), since P_{k,i_k} are permutation matrices, for each $k \ge 1$, $i_k = 1, 2, ..., S_k$, h_{k,i_k} is just an x_k -rearrangement of d_k . that is

$$h_{k,i_k}(x_1,...,x_{k-1},j) = d_k(x_1,...,x_{k-1},\pi_{k,i_k}(j))$$

for some permutation π_{k,i_k} . Thus for any sequence (i_k) we have that (h_{k,i_k}) and (d_k) are tangent sequences. But then we see that (h_{k,I_k}) and (d_k) are tangent sequences. Hence there exists a positive constant c_p such that

$$\left\| \sum_{k=1}^{n} h_{k,I_k} \right\|_{p} \le c_p \left\| \sum_{k=1}^{n} d_k \right\|_{p}.$$

The result follows.

Theorem 7. Theorem 3 holds in the case that (d_k) and (e_k) are adapted to the filtration (\mathcal{F}_k) described above.

This will follow immediately from the following well-known result [10, p. 124].

Theorem 8. $f = (f_1, f_2, ..., f_N), g = (g_1, g_2, ..., g_N)$ are N-dimensional real-valued vectors. $f^{\#} = (f_1^{\#}, f_2^{\#}, ..., f_N^{\#})$ is the decreasing rearrangement of $|f| = (|f_1|, |f_2|, ..., |f_N|)$. Then

$$\sum_{k=1}^{n} g_k^{\#} \le \sum_{k=1}^{n} f_k^{\#}$$

for all n = 1, 2, ..., N if and only if there exists a matrix $T = [a_{ij}]_{N \times N}$ such that Tf = g, $\sum_{i=1}^{N} |a_{ij}| \le 1$ and $\sum_{j=1}^{N} |a_{ij}| \le 1$.

3. The General Case

The following theorem was proved by Crowe, Zweibel and Rosenbloom [3].

Theorem 9. Suppose f, g are random variables on [0,1], then for $1 \le p \le \infty$,

$$||f^{\#} - g^{\#}||_{p} \le ||f - g||_{p}$$

Proof of Theorem 3. We will prove this theorem by using the discrete case. For each $k \geq 1$, we approximate d_k and e_k by functions $d'_k(x_k)$ and $e'_k(x_k)$ such that (d'_k) and (e'_k) are adapted to $(\mathcal{L}_{k-1} \times \Sigma)$, keep the martingale property, and

$$\int_0^t (e'_k(x_1, ..., x_{k-1}, \cdot))^{\#}(s)ds \le \int_0^t (d'_k(x_1, ..., x_{k-1}, \cdot))^{\#}(s)ds$$

for all $t \in [0, 1]$. Then we apply Theorem 7.

We set $\epsilon \in (0, 1/3)$ to be an arbitrarily small number. First we know that for the quantities to make sense that d_k and e_k are in L_p . Hence there exist simple functions

$$d_k'' = \sum_{i=1}^S \alpha_{k,i} \chi_{A_{k,i}}$$

$$e_k'' = \sum_{i=1}^S \beta_{k,i} \chi_{B_{k,i}}$$

such that $||d_k - d_k''||_p < \epsilon ||d_k||_1$ and $||e_k - e_k''||_p < \epsilon ||e_k||_1$. We may suppose without loss of generality that the sets $A_{k,i}$ and $B_{k,i}$ are cylinder sets in \mathcal{L}_k defined by rational numbers, that is, sets of the form $\{(x_i): x_1 \in (r_1, s_1), \ldots, x_k \in (r_k, s_k)\}$, where the r_i and s_i are rational numbers. Furthermore, we will suppose that $A_{k,i_1} \cap A_{k,i_2} = \emptyset$ and $B_{k,i_1} \cap B_{k,i_2} = \emptyset$ for $i_1 \neq i_2$.

Let N' be the least common denominator of all these rational numbers. For each $x_1,...,x_{k-1}$, since $d_k^{\#}$ is Reimann integrable as a function of x_k , there is a number $N_k = N_k(x_1, \ldots, x_{k-1})$ that is a multiple of N' and such that if $N \geq N_k$, and

(5)
$$\alpha_{k,i}^{"} = N \cdot \int_{\frac{i-1}{N}}^{\frac{i}{N}} d_k^{\#}$$

then

(6)
$$\left\| \sum_{i=1}^{N} \alpha_{k,i}^{"} \chi_{i} - d_{k}^{\#} \right\|_{p} < \epsilon \|d_{k}\|_{1}$$

and also the analogous statement holds for e_k . Note that in this case that

$$\int_{0}^{t} \sum_{i=1}^{N} \alpha_{k,i}^{"} \chi_{i} = \int_{0}^{t} d_{k}^{\#}$$

if $t = \frac{i}{N}$ for some i = 0, 1, 2, ..., N. Since N_k is measurable with respect to a finitely generated measure space, it follows that there exists a number N that is a multiple of N' that is larger than each N_k .

Now let us fix $x_1,...,x_{k-1}$, and regard the functions as functions of only one variable x_k on [0,1]. Similarly, define $A'_{k,i}$ and $B'_{k,i}$ as the set of $x_k \in [0,1]$ for which $(x_1,\ldots,x_k) \in A_{k,i}$ or $B_{k,i}$ respectively. Hence $\left[\frac{i-1}{N},\frac{i}{N}\right)$ is either contained in some $A'_{k,j}$ or disjoint to all $A'_{k,j}$. Let $\alpha'_{k,i} = \alpha_{k,j}$ if $\left[\frac{i-1}{N},\frac{i}{N}\right) \subset A'_{k,j}$ for some j, and $\alpha'_{k,i} = 0$ otherwise. Let $\chi_i = \chi_{\left[\frac{i-1}{N},\frac{i}{N}\right)}$. Thus

(7)
$$\left\| \sum_{i=1}^{N} \alpha'_{k,i} \chi_i - d_k \right\|_p \le \epsilon \|d_k\|_1$$

Now

$$\left(\sum_{i=1}^{N} \alpha'_{k,i} \chi_i\right)^{\#} = \sum_{i=1}^{N} \varepsilon_{\sigma(i)} \alpha'_{k,\sigma(i)} \chi_i$$

for some permutation σ , where $\varepsilon_j = \operatorname{sgn}(\alpha'_{k,j})$. By Theorem 9,

(8)
$$\left\| \sum_{i=1}^{N} \varepsilon_{\sigma(i)} \alpha'_{k,\sigma(i)} \chi_{i} - d_{k}^{\#} \right\|_{p} < \epsilon \|d_{k}\|_{1}$$

Define $\alpha''_{k,i}$ using equation (5), then by (8) and (6),

$$\left\| \sum_{i=1}^{N} \alpha_{k,i}^{"} \chi_i - \sum_{i=1}^{N} \varepsilon_{\sigma(i)} \alpha_{k,\sigma(i)}^{"} \chi_i \right\|_p < 2\epsilon \|d_k\|_1$$

By doing the reverse process of taking decreasing rearrangement of $|\sum_{i=1}^{N} \alpha'_{k,i} \chi_i|$, and setting

$$\hat{\alpha}_{k,i} = \varepsilon_{\sigma^{-1}(i)} \alpha_{k,\sigma^{-1}(i)}''$$

we have

(9)
$$\left\| \sum_{i=1}^{N} \hat{\alpha}_{k,i} \chi_i - \sum_{i=1}^{N} \alpha'_{k,i} \chi_i \right\|_p < 2\epsilon \|d_k\|_1$$

From (7) and (9),

$$\left\| \sum_{i=1}^{N} \hat{\alpha}_{k,i} \chi_i - d_k \right\|_{n} < 3\epsilon \|d_k\|_1$$

For $t = \frac{j}{N}$, j = 0, 1, 2, ..., N, it is clear that

$$\int_0^t \left(\sum_{j=1}^N \hat{\alpha}_{k,j} \chi_j \right)^\# = \int_0^t \sum_{j=1}^N \alpha''_{k,j} \chi_j = \int_0^t d_k^\#.$$

Furthermore, if we set

$$\zeta = E\left[\sum_{j=1}^{N} \hat{\alpha}_{k,j} \chi_{j}\right]$$

then $|\zeta| \leq 3\epsilon ||d_k||_1$. Thus we see that for $t = \frac{j}{N}$, j = 0, 1, 2, ..., N that

(10)
$$\int_{0}^{t} \left(\sum_{j=1}^{N} (\hat{\alpha}_{k,j} - \zeta) \chi_{j} \right)^{\#}$$

$$\leq \int_{0}^{t} \left(\sum_{j=1}^{N} (|\hat{\alpha}_{k,j}| + |\zeta|) \chi_{j} \right)^{\#}$$

$$\leq \int_{0}^{t} \left(\sum_{j=1}^{N} \hat{\alpha}_{k,j} \chi_{j} \right)^{\#} + 3\epsilon \|d_{k}\|_{1} \cdot t$$

$$\leq \int_{0}^{t} d_{k}^{\#} + 3\epsilon \|d_{k}\|_{1} \cdot t$$

$$\leq (1 + 3\epsilon) \int_{0}^{t} d_{k}^{\#}$$

and similarly

(11)
$$\int_0^t \left(\sum_{j=1}^N \left(\hat{\alpha}_{k,j} - \zeta \right) \chi_j \right)^{\#} \geq \int_0^t d_k^{\#} - 3\delta \|d_k\|_1 \cdot t$$

$$\geq (1 - 3\epsilon) \int_0^t d_k^{\#}$$

We can also perform this same construction for e_k , the analogues of $\hat{\alpha}_{k,i}$ and ζ being $\hat{\beta}_{k,i}$ and η . Thus, we are ready to define d'_k and e'_k . Let

$$d'_{k} = (1 + 3\epsilon) \sum_{j=1}^{N} (\hat{\alpha}_{k,i} - \zeta) \chi_{i}$$
$$e'_{k} = (1 - 3\epsilon) \sum_{j=1}^{N} (\hat{\beta}_{k,j} - \eta) \chi_{i}$$

It is clear that $E[d_k'] = E[e_k'] = 0$. Combining (10) and (11), we have for $t = \frac{j}{N}, j = 0, 1, 2, ..., N$

$$\int_0^t (e_k')^\# \le \int_0^t (d_k')^\#.$$

But then by linear interpolation, this follows for all $t \in [0, 1]$. By Theorem 7, there exist a positive constant c_p such that

$$\left\| \sum_{k=1}^{n} e_k' \right\|_p \le c_p \left\| \sum_{k=1}^{n} d_k' \right\|_p$$

Now an easy argument shows that $||d_k - d'_k||_p \to 0$ and $||e_k - e'_k||_p \to 0$ as $\epsilon \to 0$. The result follows.

Proof of Theorem 2. If f is a random variable on (Ω, \mathcal{F}, P) , $1 \leq p < \infty$, $0 \leq t \leq 1$, we define the K-functional by

$$K(t, f; L_p, L_{\infty}) = \inf_{f_0 + f_1 = f} \{ ||f_0||_p + t ||f_1||_{\infty} \}.$$

J. Peetre [13] has shown that

$$K(t, f; L_1, L_\infty) = \int_0^t f^{\#}(s) ds.$$

Hence it follows that if T is an operator on both $L_1([0,1])$ and $L_{\infty}([0,1])$ with norm bounded by 1, then for $t \geq 0$

$$\int_0^t (Tf)^{\#}(s)ds \le \int_0^t f^{\#}(s)ds.$$

Thus the result follows from Theorem 3.

Lemma 3. Let f and g are real-valued random variables on (Ω, \mathcal{F}, P) . Then

(12)
$$E[M \vee |g|] \le E[M \vee |f|]$$

for all nonnegative number M if and only if

$$\int_0^t g^{\#}(s)ds \le \int_0^t f^{\#}(s)ds$$

for all $t \in [0, 1]$.

Proof. Equation (12) is equivalent to $E\left[M\vee g^{\#}\right]\leq E\left[M\vee f^{\#}\right].$ For the "if" part, let

$$\alpha = \sup \left\{ t : f^{\#}(t) \ge M \right\}$$

$$\beta = \sup \left\{ t : g^{\#}(t) \ge M \right\}.$$

Then

$$E[M \vee f^{\#}] = \int_{0}^{\alpha} f^{\#} + (1 - \alpha)M$$

$$= \int_{0}^{\beta} f^{\#} + (1 - \beta)M + \int_{\beta}^{\alpha} (f^{\#} - M)$$

$$\geq \int_{0}^{\beta} g^{\#} + (1 - \beta)M + \int_{\beta}^{\alpha} (f^{\#} - M)$$

$$= E[M \vee g^{\#}] + \int_{\beta}^{\alpha} (f^{\#} - M).$$

If $\alpha \leq \beta$, then for all $x \in (\alpha, \beta)$ we have $f^{\#}(x) \leq M$, and if $\beta \leq \alpha$, then for all $x \in (\beta, \alpha)$ we have $f^{\#}(x) \geq M$. Either way, we see that $\int_{\beta}^{\alpha} (f^{\#} - M) \geq 0$, and the result follows.

To show the "only if", for any $\alpha \in [0, 1]$, let

$$M = f^{\#}(\alpha)$$
$$\beta = \inf \left\{ t : g^{\#}(t) \ge M \right\}.$$

Then

$$\int_{0}^{\alpha} g^{\#} = \int_{0}^{\beta} g^{\#} + \int_{\beta}^{\alpha} (g^{\#} - M) + M(1 - \beta) + M(\alpha - 1)$$

$$= E \left[M \vee g^{\#} \right] + M(\alpha - 1) + \int_{\beta}^{\alpha} (g^{\#} - M)$$

$$\leq E \left[M \vee f^{\#} \right] + M(\alpha - 1) + \int_{\beta}^{\alpha} (g^{\#} - M)$$

$$= \int_{0}^{\alpha} f^{\#} + \int_{\beta}^{\alpha} (g^{\#} - M).$$

Arguing as above, we see that $\int_{\beta}^{\alpha} (g^{\#} - M) \leq 0$, and again the result follows.

Given a random variable f and a sigma field \mathcal{G} , we will say that f is nowhere constant with respect to \mathcal{G} if P(f=g)=0 for every \mathcal{G} measurable function g. The following theorem [12] shows a concrete representation of a sequence of random variables.

Theorem 10. Let (f_n) be a sequence of random variables takeing values in a separable sigma filed (S, \mathcal{S}) . Then there exists a sequence of measurable functions $(g_n : [0,1]^n \to S)$ that has the same law as (f_n) . If further we have that f_{n+1} is nowhere constant with respect to $\sigma(f_1, ..., f_n)$ for all $n \geq 0$, then we may suppose that $\sigma(g_1, ..., g_n) = \mathcal{L}_n$ for all $n \geq 0$.

Proof of Theorem 1. First we claim that (2) is equivalent to

(13)
$$E[(M \vee |e_k|)|\mathcal{F}_{k-1}] \leq E[(M \vee |d_k|)|\mathcal{F}_{k-1}]$$

This is because for any $A_k \in \mathcal{F}_{k-1}$, $\lambda \geq 0$, $(\lambda \chi_{A_k} \vee M)$ is predictable, and hence

$$E[(\lambda \chi_{A_k} \vee M) \vee |e_k| - \lambda \chi_{A_k}] \leq E[(\lambda \chi_{A_k} \vee M) \vee |d_k| - \lambda \chi_{A_k}]$$

When λ intends to infinity, we obtain

$$E[(M \vee |e_k|)\chi_{A_k^c}] \leq E[(M \vee |d_k|)\chi_{A_k^c}]$$

which is equivalent to (13).

Consider the map $D_k = (d_k, e_k, f_k) : \Omega \times [0, 1]^{\mathbf{N}} \to \mathbf{R}^3$ by $(\omega, (x_k)) \mapsto (d_k(\omega), e_k(\omega), x_k)$. It is clear that D_k is nowhere constant with respect to $\sigma(D_1, D_2, ..., D_{k-1})$. Apply the previous theorem to get $\widetilde{D}_k = (\widetilde{d}_k, \widetilde{e}_k, \widetilde{f}_k) : [0, 1]^k \to \mathbf{R}^3$ such that (\widetilde{D}_k) has the same law as (D_k) and $\sigma(\widetilde{D}_1, \widetilde{D}_2, ..., \widetilde{D}_k) = \mathcal{L}_k$.

Next, we show that for almost every x_1, \ldots, x_{k-1} and $M \geq 0$ that

$$\int_0^1 M \vee |\widetilde{e}_k(x_1, \dots, x_k)| \, dx_k \le \int_0^1 M \vee |\widetilde{d}_k(x_1, \dots, x_k)| \, dx_k$$

which will follow from showing that for any bounded non-negative measurable function $\phi_k : [0,1]^{k-1} \to [0,\infty)$ that

$$E[\phi_k \vee |\widetilde{e}_k|] \le E[\phi_k \vee |\widetilde{d}_k|].$$

But then there exists a bounded Borel measurable function $\theta_k : \mathbf{R}^{3(k-1)} \to [0, \infty)$ such that $\phi = \theta(\widetilde{D}_1, \widetilde{D}_2, ..., \widetilde{D}_{k-1})$ almost everywhere in $[0, 1]^{k-1}$. Thus

$$\begin{split} \int_{[0,1]^k} \phi_k \vee |\widetilde{e}_k| &= \int_{[0,1]^k} \theta(\widetilde{D}_1, ..., \widetilde{D}_{k-1}) \vee |\widetilde{e}_k| \\ &= E[\theta(D_1, ..., D_{k-1}) \vee |e_k|] \\ &\leq E[\theta(D_1, ..., D_{k-1}) \vee |d_k|] \\ &= \int_{[0,1]^k} \theta(\widetilde{D}_1, ..., \widetilde{D}_{k-1}) \vee |\widetilde{d}_k| \\ &= \int_{[0,1]^k} \phi_k \vee |\widetilde{d}_k| \end{split}$$

Also to show that $E[\tilde{d}_k|\mathcal{L}_{k-1}] = E[\tilde{d}_k|\mathcal{L}_{k-1}] = 0$, it is sufficient to show that for any bounded measurable function $\phi_k : [0,1]^{k-1} \to \mathbf{R}$ that $E[\phi_k \tilde{d}_k] = E[\phi_k \tilde{d}_k] = 0$. Thus follows by a very similar argument to that above.

The result then follows from Lemma 3 and Theorem 3.

Acknowledgments. We would like to mention the help of Jim Reeds and David Boyd in obtaining the argument about doubly stochastic matrices and other useful remarks.

References

- 1. D. L. Burkholder, Distribution function inequalities for martingales. Ann. Probability 1 (1973), 19–42.
- 2. D. L. Burkholder, A geometrical characterization of banach spaces in which marti difference sequences are unconditional. Ann. Probability 9 (1981), 997–1011.
- 3. L. A. Crowe, J. A. Zweibel and P. C. Rosenbloom, *Rearrangements of functions*, Journal of functional analysis **66** (1986), 43291–438.
- 4. P. Hitczenko, Comparison of moments for tangent sequences of random variables. Probab. Theory Related Fields 78 (1988), 223–230.
- 5. P. Hitczenko, On a domination of sums of random variables by sums of conditionally independent ones. Ann. Probability 22 (1994), 453–468.
- P. Hitczenko and S. J. Montgomery-Smith, Tangent sequences in Orlicz and rearrangement invariant spaces. Math. Proc. Camb. Phil. Soc. 119 (1996), 91– 101.
- 7. P. Kree, Interpolation d'espaces qui ne sont mi normes, ni complets. Applications, Seminaire Lions-Schwartz, semestre 1964-1965, Secretariat Mathematatique, 11 rue Pierre Curie, Paris 5e.
- 8. S. Kwapień and W. A. Woyczynsi, Semimartingale integrals via decoupling inequalities and tangent processes. Case Western Reserve University, preprint, (1986).
- 9. S. Kwapień and W. A. Woyczynsi, Random series and stochastic integrals. Single and multiple. Birkhauser, Boston. (1996).
- J. Lindenstrauss ans L. Tzafriri, Classical Banach spaces II. Springer-Verlag. (1979).
- 11. H. Minc, Nonnegative matrices. Wiley Interscience. (1988).
- 12. S. J. Montgomery-Smith, Concrete representation of martingales. Electronic J. Probab. 3, (1998), paper 15
- 13. J. Peetre, Espaces d'interpolation, generalisations, applications. Rend. Sem. Mat. Fis. Milano **34** (1964), 83-92.
- 14. J. Zinn, Comparison of martingale difference sequences. Probability in Banach spaces, V (Medford, Mass., 1984), 453–457, Lecture Notes in Math., 1153, Springer, Berlin, 1985.

Department of Mathematics, University of Missouri, Columbia, Missouri $65211,\ \mathrm{USA}.$

 $E ext{-}mail\ address: stephen@math.missouri.edu} \ URL: \ http://www.math.missouri.edu/~stephen$

Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA.

E-mail address: mathgr75@math.missouri.edu