$day 91\hbox{-} 92\hbox{-} drug\hbox{-} classification$

January 25, 2024

Day
91-92 Drug Classification w/ various model By: Loga Aswin

Importing Libraries

```
[42]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Datasets:

```
[43]: df=pd.read_csv("/content/drug200.csv") df
```

[43]:		Age	Sex	BP	Cholesterol	Na_to_K	Drug
	0	23	F	HIGH	HIGH	25.355	DrugY
	1	47	M	LOW	HIGH	13.093	drugC
	2	47	M	LOW	HIGH	10.114	drugC
	3	28	F	NORMAL	HIGH	7.798	drugX
	4	61	F	LOW	HIGH	18.043	DrugY
				•••	•••	•••	
	195	56	F	LOW	HIGH	11.567	${\tt drugC}$
	196	16	M	LOW	HIGH	12.006	drugC
	197	52	M	NORMAL	HIGH	9.894	drugX
	198	23	M	NORMAL	NORMAL	14.020	drugX
	199	40	F	LOW	NORMAL	11.349	drugX

[200 rows x 6 columns]

checking null in dataset:

[44]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object

```
3
          Cholesterol 200 non-null
                                         object
      4
                                         float64
          Na_to_K
                        200 non-null
          Drug
                        200 non-null
                                         object
     dtypes: float64(1), int64(1), object(4)
     memory usage: 9.5+ KB
     Initial Dataset Exploration
     Categorical Variables:
[45]: df.Drug.value_counts()
[45]: DrugY
               91
      drugX
               54
               23
      drugA
      drugC
               16
      drugB
               16
      Name: Drug, dtype: int64
     From Result, DrugY has more amount than other types of drugs...
[46]: df.Sex.value counts()
[46]: M
           104
            96
      Name: Sex, dtype: int64
     The distribution of patient gender is balanced.
[47]: df.BP.value_counts()
[47]: HIGH
                 77
      LOW
                 64
      NORMAL
                 59
      Name: BP, dtype: int64
     distribution of blood pressure level is balanced.
[48]: df.Cholesterol.value_counts()
[48]: HIGH
                 103
                 97
      NORMAL
      Name: Cholesterol, dtype: int64
     ** The distribution of cholesterol level is balanced.**
     Numerical Variables
[49]: df.describe()
```

2

BP

200 non-null

object

```
[49]:
                  Age
                         Na_to_K
     count 200.000000 200.000000
     mean
            44.315000 16.084485
     std
            16.544315
                        7.223956
     min
            15.000000
                       6.269000
     25%
            31.000000 10.445500
     50%
            45.000000 13.936500
     75%
            58.000000 19.380000
            74.000000 38.247000
     max
```

EDA

1. Drug Type Distribution

```
[50]: sns.set_theme(style="darkgrid")
    sns.countplot(y="Drug", data=df, palette="flare")
    plt.ylabel('Drug Type')
    plt.xlabel('Total')
    plt.show()
```

<ipython-input-50-33cdc98d61e5>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(y="Drug", data=df, palette="flare")

2. Gender Distribution

```
[51]: sns.set_theme(style="darkgrid")
sns.countplot(x="Sex", data=df, palette="rocket")
plt.xlabel('Gender (F=Female, M=Male)')
plt.ylabel('Total')
plt.show()
```

<ipython-input-51-dfca3589a375>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x="Sex", data=df, palette="rocket")

3. Blood Pressure Distribution

```
[52]: sns.set_theme(style="darkgrid")
sns.countplot(y="BP", data=df, palette="crest")
plt.ylabel('Blood Pressure')
plt.xlabel('Total')
plt.show()
```

<ipython-input-52-4cad95c4e78a>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(y="BP", data=df, palette="crest")

4. Cholesterol Distribution

```
[53]: sns.set_theme(style="darkgrid")
sns.countplot(x="Cholesterol", data=df, palette="magma")
plt.xlabel('Blood Pressure')
plt.ylabel('Total')
plt.show()
```

<ipython-input-53-5875d239b51c>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x="Cholesterol", data=df, palette="magma")

5. Gender Distribution based on Drug Type

```
[54]: pd.crosstab(df.Sex,df.Drug).plot(kind="bar",figsize=(12,5))
    plt.title('Gender distribution based on Drug type')
    plt.xlabel('Gender')
    plt.xticks(rotation=0)
    plt.ylabel('Frequency')
    plt.show()
```


6. Blood Pressure Distribution based on Cholesetrol

```
[55]: pd.crosstab(df.BP,df.Cholesterol).plot(kind="bar",figsize=(15,6))
    plt.title('Blood Pressure distribution based on Cholesterol')
    plt.xlabel('Blood Pressure')
    plt.xticks(rotation=0)
    plt.ylabel('Frequency')
    plt.show()
```


7. Sodium to Potassium Distribution based on Gender and Age

```
[56]: plt.scatter(x=df.Age[df.Sex=='F'], y=df.Na_to_K[(df.Sex=='F')], c="Green")
plt.scatter(x=df.Age[df.Sex=='M'], y=df.Na_to_K[(df.Sex=='M')], c="yellow")
```

```
plt.legend(["Female", "Male"])
plt.xlabel("Age")
plt.ylabel("Na_to_K")
plt.show()
```


Dataset Preparation

Data Binning

Age

Now, the age will be divided into 7 age categories:

Below 20, 20 - 29, 30 - 39, 40 - 49, 50 - 59, 60 - 69, Above 70.

```
[57]: bin_age = [0, 19, 29, 39, 49, 59, 69, 80]
category_age = ['<20s', '20s', '30s', '40s', '50s', '60s', '>60s']
df['Age_binned'] = pd.cut(df['Age'], bins=bin_age, labels=category_age)
df = df.drop(['Age'], axis = 1)
```

Na_to_K

Now, the chemical ratio will be divided into 4 categories:

```
Below 10, 10 - 20, 20 - 30, Above 30.
```

```
[58]: NatoK = [0, 9, 19, 29, 50]
category_NatoK = ['<10', '10-20', '20-30', '>30']
df['Na_to_K_binned'] = pd.cut(df['Na_to_K'], bins=NatoK, labels=category_NatoK)
df = df.drop(['Na_to_K'], axis = 1)
```

Splitting the dataset

```
[59]: from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report
```

```
[60]: X = df.drop(["Drug"], axis=1)
y = df["Drug"]

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,__
arandom_state = 0)
```

Feature Engineering(one-hot encoding)

```
[61]: X_train = pd.get_dummies(X_train)
X_test = pd.get_dummies(X_test)
```

```
[62]: X_train.head()
```

[62]:	Sex_F	Sex_M	BP_HIGH	BP_LOW	BP_NORMAL	Cholesterol_HIGH	\
131	0	1	0	1	0	0	
96	1	0	0	1	0	1	
181	1	0	0	0	1	1	
19	1	0	1	0	0	0	
153	1	0	0	1	0	0	

	Cholesterol_NORMAL	Age_binned_<20s	Age_binned_20s	Age_binned_30s	\
131	1	0	0	0	
96	0	0	0	0	
181	0	0	0	0	
19	1	0	0	1	
153	1	0	0	0	

```
Age_binned_40s Age_binned_50s Age_binned_60s Age_binned_>60s \
131
                  0
                                                                     0
                  0
                                                   0
96
                                   1
                                                                     0
181
                  0
                                   1
                                                   0
                                                                     0
                  0
19
                                   0
                                                   0
                                                                     0
153
                  0
```

 $\label{lem:na_to_K_binned_10-20} $$Na_to_K_binned_10-20 $$Na_to_K_binned_20-30 $$\ $$\ $$$

```
0
      96
                             0
                                                     0
                                                                             0
      181
                             0
                                                     1
                                                                             1
      19
      153
                                                     1
           Na_to_K_binned_>30
      131
      96
                              1
      181
                             0
      19
                             0
      153
[63]: X_test.head()
           Sex_F
                   Sex_M BP_HIGH BP_LOW BP_NORMAL Cholesterol_HIGH \
[63]:
      18
                0
                       1
                                 0
                                         1
                                                     0
                                                                         1
                       0
      170
                1
                                 0
                                         0
                                                     1
                                                                         1
      107
                0
                       1
                                 0
                                         1
                                                     0
                                                                         1
                0
                       1
                                         0
                                                                         0
      98
                                 1
                                                     0
                                         0
      177
           Cholesterol_NORMAL Age_binned_<20s Age_binned_20s Age_binned_30s \
      18
                             0
                                                0
                                                                 1
      170
                             0
                                                0
                                                                 1
                                                                                  0
      107
                             0
                                                0
                                                                 0
                                                                                  0
                                                0
      98
                                                                                  0
      177
           Age_binned_40s Age_binned_50s Age_binned_60s Age_binned_>60s
      18
                         0
                                          0
                                                            0
                                                                              0
      170
                         0
                                          0
                                                            0
                                                                              0
      107
                         1
                                          0
                                                            0
                                                                              0
      98
                         0
                                          0
                                                            0
                                                                              0
      177
                         0
                                          0
                                                            0
                                                                              0
           Na_to_K_binned_<10 Na_to_K_binned_10-20 Na_to_K_binned_20-30 \</pre>
      18
                              1
                                                                             0
                                                     0
      170
                             0
                                                     1
                                                                             0
      107
                                                     0
                             0
                                                                             1
      98
                             0
                                                     0
                                                                             0
      177
           Na_to_K_binned_>30
      18
                              0
      170
                             0
      107
                             0
```

```
98 1
177 0
```

SMOTE Technique: Since the number of 'DrugY' is more than other types of drugs, oversampling is carried out to avoid overfitting.

```
[64]: from imblearn.over_sampling import SMOTE
X_train, y_train = SMOTE().fit_resample(X_train, y_train)
```

```
[65]: sns.set_theme(style="darkgrid")
sns.countplot(y=y_train, data=df, palette="mako_r")
plt.ylabel('Drug Type')
plt.xlabel('Total')
plt.show()
```

<ipython-input-65-241dde5c9a3a>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(y=y_train, data=df, palette="mako_r")

the distribtion of drug type are now balanced Models

1. Logistic Regression

```
[66]: from sklearn.linear_model import LogisticRegression
  model = LogisticRegression(solver='liblinear', max_iter=5000)
  model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
  LRAcc = accuracy_score(y_pred,y_test)
  print('Logistic Regression accuracy is: {:.2f}%'.format(LRAcc*100))
```

	precision	recall	f1-score	support
DrugY	0.88	0.70	0.78	30
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.79	0.83	0.81	18
accuracy			0.80	60
macro avg	0.76	0.91	0.82	60
weighted avg	0.82	0.80	0.80	60

```
[[21 2 1 2 4]

[ 0 5 0 0 0]

[ 0 0 3 0 0]

[ 0 0 0 4 0]

[ 3 0 0 0 15]]
```

Logistic Regression accuracy is: 80.00%

2. K Neighbours

```
[67]: from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=20)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```

```
from sklearn.metrics import accuracy_score
KNAcc = accuracy_score(y_pred,y_test)
print('K Neighbours accuracy is: {:.2f}%'.format(KNAcc*100))
```

```
precision
                         recall f1-score
                                            support
      DrugY
                           0.63
                                     0.73
                  0.86
                                                 30
                           0.80
      drugA
                  0.40
                                     0.53
                                                  5
      drugB
                  0.50
                           0.67
                                     0.57
                                                  3
      drugC
                  0.33
                           0.50
                                     0.40
                                                  4
                  0.83
      drugX
                           0.83
                                     0.83
                                                 18
                                     0.70
                                                 60
   accuracy
                  0.59
                                     0.61
                                                 60
  macro avg
                           0.69
weighted avg
                  0.76
                           0.70
                                     0.72
                                                 60
[[19 3 1 4 3]
 [0 4 1 0 0]
 [0 1 2 0 0]
 [2 0 0 2 0]
 [1 2 0 0 15]]
```

K Neighbours accuracy is: 70.00%

3. Support Vector Machine (SVM)

```
[68]: from sklearn.svm import SVC
      model = SVC(kernel='linear', max_iter=251)
      model.fit(X_train, y_train)
      y_pred = model.predict(X_test)
      print(classification_report(y_test, y_pred))
      print(confusion_matrix(y_test, y_pred))
      from sklearn.metrics import accuracy_score
      SVCAcc = accuracy_score(y_pred,y_test)
      print('SVC accuracy is: {:.2f}%'.format(SVCAcc*100))
```

	precision	recall	f1-score	support
DrugY	0.85	0.77	0.81	30
drugA	1.00	0.20	0.33	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	1.00	0.90	18
accuracy			0.82	60

```
0.79
                                      0.74
                  0.82
                                                  60
  macro avg
weighted avg
                  0.84
                            0.82
                                      0.80
                                                  60
[[23 0 1 2 4]
 Γ4 1 0 0 O]
[0 0 3 0 0]
 [0 \ 0 \ 0 \ 4 \ 0]
 [0 0 0 0 18]]
SVC accuracy is: 81.67%
/usr/local/lib/python3.10/dist-packages/sklearn/svm/_base.py:299:
ConvergenceWarning: Solver terminated early (max_iter=251). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
```

4. Naive Bayes (Categorical NB):

```
[69]: from sklearn.naive_bayes import CategoricalNB
  model = CategoricalNB()
  model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
  print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
  NBAcc1 = accuracy_score(y_pred,y_test)
  print('Naive Bayes accuracy is: {:.2f}%'.format(NBAcc1*100))
```

	precision	recall	f1-score	support
DrugY	0.83	0.67	0.74	30
drugA	0.62	1.00	0.77	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.78	0.78	0.78	18
accuracy			0.77	60
macro avg	0.73	0.89	0.79	60
weighted avg	0.78	0.77	0.76	60
[[20 3 1 2	_			

[0 5 0 0 0] [0 0 3 0 0] [0 0 0 4 0] [4 0 0 0 14]]

Naive Bayes accuracy is: 76.67%

5. Naive Bayes (Gaussian NB):

```
[70]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
NBAcc2 = accuracy_score(y_pred,y_test)
print('Gaussian Naive Bayes accuracy is: {:.2f}%'.format(NBAcc2*100))
```

		preci	sion	re	call	f1-s	score	support
Dru	ıgY		0.64		0.90		0.75	30
dru	ıgA		1.00		0.20		0.33	5
dru	ıgB		0.75		1.00		0.86	3
dru	ıgC		0.67		1.00		0.80	4
dru	ıgX		1.00		0.39		0.56	18
accura	су						0.70	60
macro a		0.81		0.70		0.66	60	
weighted a		0.79		0.70		0.67	60	
[[27 0 1	. 2	0]						
[4 1 0	0	0]						
[0 0 3	3 0	70						

[4 1 0 0 0] [0 0 3 0 0] [0 0 0 4 0] [11 0 0 0 7]]

Gaussian Naive Bayes accuracy is: 70.00%

6. Decision Tree:

```
[71]: from sklearn.tree import DecisionTreeClassifier
  model = DecisionTreeClassifier(max_leaf_nodes=20)
  model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
DTAcc = accuracy_score(y_pred,y_test)
  print('Decision Tree accuracy is: {:.2f}%'.format(DTAcc*100))
```

				prec	ision	1	reca	11	f1-s	core	support
	D:	rug	Y		1.00)	0.	60	(0.75	30
	d:	rug	Α		0.50)	1.	00	(0.67	5
	d:	rug	В		0.75	5	1.	00	(0.86	3
	d:	rug	С		0.67	7	1.	00	(0.80	4
	d:	rug	X		0.82	2	1.	00	(0.90	18
a	.ccu	rac	У						(0.80	60
ma	macro avg				0.75		0.	92	(0.79	60
weighted avg		g	0.87		0.	80	(0.80	60		
[[18	5	1	2	4]							
[0	5	0	0	0]							
0]	0	3	0	0]							
0]	0	0	4	0]							
0]	0	0	0	18]]							
Decision		Tr	ee	accui	racy	is:	80.0	0%			

7. Random Forest:

```
[72]: from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(max_leaf_nodes=30)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
RFAcc = accuracy_score(y_pred,y_test)
print('Random Forest accuracy is: {:.2f}%'.format(RFAcc*100))
```

	precision	recall	f1-score	support
DrugY drugA	1.00 0.62	0.67 1.00	0.80 0.77	30 5
drugB drugC	0.75 0.67	1.00	0.86	3 4
drugX	0.82	1.00	0.90	18
accuracy macro avg weighted avg	0.77 0.88	0.93 0.83	0.83 0.83 0.83	60 60

[[20 3 1 2 4]

```
[0 5 0 0 0]
      [ 0 0
              3 0 0]
      [0 \ 0 \ 0 \ 4 \ 0]
      [000018]]
     Random Forest accuracy is: 83.33%
     Model Comparison
[73]: compare = pd.DataFrame({'Model': ['Logistic Regression', 'K Neighbors', 'SVM', __
       →'Categorical NB', 'Gaussian NB', 'Decision Tree', 'Random Forest'],
                              'Accuracy': [LRAcc*100, KNAcc*100, SVCAcc*100, L
      →NBAcc1*100, NBAcc2*100, DTAcc*100, RFAcc*100]})
     compare.sort_values(by='Accuracy', ascending=False)
[73]:
                      Model
                              Accuracy
              Random Forest 83.333333
     6
     2
                        SVM
                             81.666667
        Logistic Regression
                             80.000000
     0
     5
              Decision Tree
                             80.000000
     3
             Categorical NB
                             76.666667
                K Neighbors
     1
                             70.000000
     4
                Gaussian NB 70.000000
[84]: compare.plot(x='Model', y='Accuracy', kind='bar', color='orange')
```


From the comparison plot, among the 7 ML models, Random Forest had achieved the highest accuracy of 83.33%.