COGNOME:

NOME:

MATRICOLA:

DATA: 12 luglio 2023

Calculus 1 - Test

Scrivere nella tabella sottostante la lettera corrispondente alla risposta a ciascuna domanda. Tenere presente che le risposte esatte valgono 3 punti, quelle sbagliate -1 punto, mentre le domande senza risposta valgono 0 punti. Ciascun quesito ha una e una sola risposta corretta.

1	2	3	4	5	6	7	8	9	10

- 1. Sia $E \subseteq \mathbb{R}$ un insieme non vuoto. Se E è limitato inferiormente, allora:
 - (a) il minimo di E esiste e coincide con l'estremo inferiore di E.
 - (b) il minimo di *E* esiste ed è finito.
 - (c) l'insieme dei minoranti di E non è vuoto.
 - (d) nessuna delle precedenti.
- 2. Quale fra i seguenti enunciati è vero?
 - (a) Il grafico di una funzione pari è simmetrico rispetto all'asse delle ascisse.
 - (b) Il grafico di una funzione pari è simmetrico rispetto all'asse delle ordinate.
 - (c) Il grafico di una funzione dispari è simmetrico rispetto all'asse delle ascisse.
 - (d) Il grafico di una funzione dispari è simmetrico rispetto all'asse delle ordinate.
- **3.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione suriettiva. Allora:
 - (a) ogni retta orizzontale interseca il grafico di f in uno e un solo punto.
 - (b) ogni retta orizzontale interseca il grafico di f in al più un punto.
 - (c) ogni retta orizzontale interseca il grafico di f in almeno un punto.
 - (d) nessuna delle precedenti.
- **4.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione tale che $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$. Allora
 - (a) per ogni $\varepsilon > 0$ esiste M > 0 tale che per ogni x > M si ha $|f(x) \ell| < \varepsilon$.
 - (b) per ogni $\varepsilon > 0$ esiste M > 0 tale che per ogni $x \in \mathbb{R}$ con $0 < |x \ell| < \epsilon$ si ha f(x) > M.
 - (c) per ogni M > 0 esiste $\varepsilon > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x \ell| < \epsilon$ si ha f(x) > M.
 - (d) per ogni M > 0 esiste $\varepsilon > 0$ tale che per ogni x > M si ha $|f(x) \ell| < \varepsilon$.
- **5.** Sia $f: \mathbb{R} \to \mathbb{R}$ tale che $\lim_{x \to 0} \frac{f(x)}{x} = \ell \in \mathbb{R}$. Allora
 - (a) $\lim_{x\to 0} f(x) = 0$.
 - (b) $\lim_{x\to 0} f(x) = \ell$.
 - (c) f è continua in 0.
 - (d) nessuna delle precedenti.

- **6.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = -\infty$ e $\lim_{x \to +\infty} f(x) = +\infty$. Allora:
 - (a) f è crescente.
 - (b) f è suriettiva.
 - (c) f è iniettiva.
 - (d) nessuna delle precedenti.
- 7. Sia $f:(a,b)\to\mathbb{R}$ una funzione derivabile. Allora:
 - (a) se $f'(x_0) = 0$ per un $x_0 \in (a, b)$, allora x_0 è un massimo o un minimo locale di f in (a, b).
 - (b) se $x_0 \in (a, b)$ è un massimo o un minimo locale di f in (a, b), allora $f'(x_0) = 0$.
 - (c) f ammette un massimo e un minimo in (a, b).
 - (d) f è continua in [a, b].
- 8. Quale delle seguenti affermazioni è vera?
 - (a) Una funzione continua in un punto x_0 è derivabile in x_0 .
 - (b) Una funzione continua in un intervallo (a, b) è derivabile in (a, b).
 - (c) Una funzione derivabile in un intervallo (a, b) è continua in (a, b).
 - (d) Una funzione derivabile in un punto x_0 può non essere continua in x_0 .
- **9.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua. La scrittura $\int f(x) dx$ denota:
 - (a) l'unica primitiva di f.
 - (b) l'area della regione compresa tra il grafico di f e l'asse delle ascisse.
 - (c) l'insieme di tutte le funzioni la cui derivata è f.
 - (d) l'insieme di tutte le funzioni ottenute da f aggiungendo una costante.
- **10.** Sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Se $\int_a^b f(x)\,dx>0$, allora:
 - (a) $f(x) \ge 0$ per ogni $x \in [a, b]$.
 - (b) f(x) > 0 per ogni $x \in [a, b]$.
 - (c) per ogni primitiva F di f in [a, b], $F(b) \ge F(a)$.
 - (d) per ogni primitiva F di f in [a, b], F(b) > F(a).