ЗАДАЧИ ПО АНАЛИТИЧНА ГЕОМЕТРИЯ

I ЧАСТ: Афинни операции с вектори

1 зад. В четириъгълника ABCD точките M и N са средите съответно на страните AD и CB.

Да се докаже, че
$$\overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{CD} \right)$$

2 зад. В четириъгълника ABCD точките M и N са средите съответно на диагоналите AC и DB.

Да се докаже, че
$$\overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{CD} \right)$$
.

3 зад. Нека точките K, L, M и N са средите съответно на страните BC, CD, DE и EA на петоъгълника ABCDE, а точките P и Q са средите съответно на отсечките KM и LN. Докажете, че $\overrightarrow{QP} = \frac{1}{4}\overrightarrow{AB}$.

4 зад. В успоредника ABCD точките M и N са средите съответно на страните BC и CD. Точката P е такава, че AMPN е успоредник. Докажете, че точката P принадлежи на правата AC.

5 зад. В триъгълник \overrightarrow{ABC} \overrightarrow{CM} е медиана. Нека точките \overrightarrow{P} и \overrightarrow{Q} са такива, че $\overrightarrow{CP} = \frac{3}{4} \overrightarrow{CM}$ и $\overrightarrow{CQ} = \frac{3}{5} \overrightarrow{CB}$. Докажете, че точките \overrightarrow{A} , \overrightarrow{P} и \overrightarrow{Q} са колинеарни.

6 зад. В четириъгълника ABCD точката P е средата на страната AB, а точката Q е средата на страната CD. Нека точките M и N са такива, че AMQD и NBCQ са успоредници. Докажете, че точката P е средата на отсечката MN .

7 зад. ABCD е произволен четириъгълник, в който точка M е средата на AB, точка K е средата на CD, точка CD е средата на CD на

II ЧАСТ: Линейна зависимост и независимост на вектори.

- 1 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Върху страните AC и BC са нанесени съответно точките M и N така, че CM:MA = 2:3 и CN:NB = 2:3.
 - а) Да се изразят векторите \overrightarrow{AN} , \overrightarrow{BM} , \overrightarrow{MN} и \overrightarrow{AB} чрез \overrightarrow{a} и \overrightarrow{b} . Да се покаже, че правите MN и AB са успоредни;
 - b) Да се докаже, че правите AN и BM имат точно една обща точка.
- 2 зад. Даден е успоредник *ABCD*, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$, а точката P е от страната BC такава, че BP:PC = 3:1.
 - а) Да се изразят векторите $\overrightarrow{OC}, \overrightarrow{OB}, \overrightarrow{OP}$ чрез \vec{a} и \vec{b} :
 - b) Ако точката Q е от страната AD такава, че AQ:QD = 1:3, да се докаже, че точките P, Q и O са колинеарни.

- 3 зад. Даден е успоредник ABCD, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$. Точките P и Q са определени от равенствата: $\overrightarrow{DP} = \frac{1}{3}$. \overrightarrow{DC} и $\overrightarrow{QB} = \frac{1}{3}$. \overrightarrow{AB} .
 - а) Да се изразят векторите \overrightarrow{PQ} и \overrightarrow{OQ} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се докаже, че точките P, Q и O са колинеарни;
 - с) Да се докаже подточка b), ако $\overrightarrow{DP} = \frac{1}{n}.\overrightarrow{DC}$ и $\overrightarrow{QB} = \frac{1}{n}.\overrightarrow{AB}, n \in \mathbb{R}^+.$
- 4 зад. Даден е успоредник *ABCD*, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$. Точките M и N са медицентровете съответно на триъгълник ABD и триъгълник ABC.
 - а) Да се изразят векторите $\overrightarrow{AN}, \overrightarrow{BM}, \overrightarrow{MN}$ и \overrightarrow{AB} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се покаже, че правите MN и AB са успоредни.
- 5 зад. Даден е тетраедър *OABC*, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките A_1 , C_1 и O_1 са медицентровете съответно на триъгълниците: *BOC*, *AOB* и *ABC*.
 - а) Да се изразят медианите на тетраедъра $\overrightarrow{AA_1},\overrightarrow{CC_1},\overrightarrow{OO_1}$ чрез \vec{a} , \vec{b} и \vec{c} ;
 - b) Да се докаже, че векторите $\overrightarrow{AA_1}$ и $\overrightarrow{CC_1}$ са линейно независими;
 - с) Да се докаже, че векторите $\overrightarrow{AA_1}$, $\overrightarrow{CC_1}$ и \overrightarrow{AC} са линейно зависими, т.е. четирите точки A, C, A_1 и C_1 лежат в една равнина. От двете подусловия b) и c) следва, че двете прави AA_1 и CC_1 се пресичат в единствена точка M;
 - d) Да се докаже, че намерената по-горе точка M лежи и на третата медиана OO_1 и да се намерят отношенията, в които т. M дели всяка от медианите.
- 5 зад. Даден е тетраедър *OABC*, за който $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ и $\overrightarrow{OC} = \overrightarrow{c}$. Точките M, N, P и Q са медицентровете съответно на триъгълниците: AOB, BOC, ABC и AOC. Да се докаже, че следните прави са две по две успоредни: MN и AC, MQ и BC, QN и AB, MP и OC, NP и OA, PQ и OB.

III ЧАСТ: Скаларно произведение на два вектора

- 1 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 1, |\vec{b}| = 2, \sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Дадени са точките F и D, съответно от страните AB и CB на триъгълника, такива че: AF:FB = 1:3 и CD:DB = 1:3.
 - а) Да се изразят векторите $\overrightarrow{\mathit{CF}}$ и $\overrightarrow{\mathit{AD}}$ чрез \vec{a} и \vec{b} ;
 - b) Да се намерят дължините на векторите \overrightarrow{CF} и \overrightarrow{AD} ;
 - c) Да се намери косинусът на ъгъла между векторите \overrightarrow{CF} и \overrightarrow{AD} .

- 2 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 2, |\vec{b}| = 3, \sphericalangle(\vec{a}, \vec{b}) = \gamma$. Медианите AA_1 и BB_1 на триъгълника са взаимно перпендикулярни. Да се определи $\cos \gamma$. Упътване: Да се изразят векторите $\overrightarrow{AA_1}$ и $\overrightarrow{BB_1}$ чрез \vec{a} и \vec{b} , и да се пресметне скаларното им произведение.
- 3 зад. Даден е триъгълник *ABC*, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 3, |\vec{b}| = \sqrt{2}, \sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{4}$. Отсечката *CH* е височина в триъгълника, т. $H \in AB$. Да се изрази вектора \overrightarrow{CH} чрез \vec{a} и \vec{b} .
- 4 зад. Даден е тетраедър *OABC*, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Нека $|\vec{a}| = 2$, $|\vec{b}| = 2$, $|\vec{c}| = 1$ и трите вектора са два по два перпендикулярни. Построена е височината *OH* на тетраедъра, т. $H \in (ABC)$ и $OH \perp (ABC)$. Да се изрази вектора \overrightarrow{CH} чрез \vec{a} , \vec{b} и \vec{c} .
- 5 зад. Спрямо ОКС K = Oxy са дадени точките: A(2, -1), B(-1, 0) и C(2, 3). Да се докаже, че трите точки образуват триъгълник. Да се намерят:
 - а) Координатите на медицентъра M на триъгълник ABC и разстоянието от т.M до върха C;
 - b) Координатите на петите на трите височини на триъгълника, спуснати от върховете A, B и C.
- 6 зад. Спрямо ОКС K = Oxyz са дадени точките: A(1,-1,2), B(2,1,1), C(1,1,2)и D(-3,2,-1). Да се докаже, че четирите точки не лежат в една равнина. Да се намерят:
 - а) Да се намерят дължините на страните на триъгълник АВС;
 - b) Косинусите на ъглите на триъгълник *ABC*;
 - c) Координатите на медицентъра G на триъгълник **ABD** и дължината на вектора $\overline{\mathcal{CG}}$;
 - d) Координатите на точката H: $\tau.H \in (ABC)$ и $DH \perp (ABC)$.

IV ЧАСТ: Векторно и смесено произведение на вектори

- 1 зад. Спрямо ОКС K = Oxyz са дадени векторите $\vec{a}(1,0,2)$, $\vec{b}(2,-1,3)$ и $\vec{c}(1,-1,0)$. Да се намерят координатите на неизвестния вектор \vec{x} от уравненията: $\left(\vec{a}\vec{b}\vec{x}\right)=1$, $\left(\vec{b}\vec{c}\vec{x}\right)=2$, $\left(\vec{c}\vec{a}\vec{x}\right)=0$.
- 2 зад. Дадени са векторите \vec{a} и \vec{b} . Нека $|\vec{a}|=3$, $|\vec{b}|=2$, $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$. Да се определи неизвестния вектор \vec{p} от равенствата : $(\vec{a}\vec{p})=-18$, $(\vec{b}\vec{p})=12$, $(\vec{a}\vec{b}\vec{p})=-12$.

3 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} . Нека $|\vec{a}|=\left|\vec{b}\right|=|\vec{c}|=1$ и

$$\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}, \sphericalangle(\vec{a}, \vec{c}) = \frac{\pi}{3}, \sphericalangle(\vec{c}, \vec{b}) = \frac{\pi}{3}.$$

- a) Да се пресметне смесеното произведение $(\vec{a}\vec{b}\vec{c})$ и да се докаже, че трите вектора са линейно независими;
- b) Нека OABC е тетраедър като: $\overrightarrow{OA}=(\vec{c}+\vec{b}), \ \overrightarrow{OB}=(\vec{c}+\vec{a})$ и $\overrightarrow{OC}=(\vec{a}+\vec{b})$. Да се намери обема на тетраедъра OABC.
- 4 зад. Дадени са векторите \vec{a} и \vec{b} . Нека $|\vec{a}|=2, |\vec{b}|=1, \sphericalangle(\vec{a},\vec{b})=\frac{2\pi}{3}$. В триъгълника *ОАВ* $\overrightarrow{OA}=(\vec{a}\times\vec{b})\times\vec{a}$, а $\overrightarrow{OB}=\vec{b}\times(\vec{a}\times\vec{b})$.
 - а) Да се намерят периметъра и лицето на триъгълника;
 - b) Ако т.M е медицентърът на триъгълник OAB, да се изрази вектора \overrightarrow{OM} чрез \vec{a} и \vec{b} , и да се пресметне дължината му.
- 5 зад. Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}|=|\vec{b}|=1$, $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{3}$.

Нека $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = (\vec{a} \times \vec{b})$, $\overrightarrow{OC} = \vec{b} \times (\vec{a} \times \vec{b})$. Да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} са линейно независими и да се намери обема на тетраедъра *OABC*.

6 зад. Спрямо ОКС K = Oxyz са дадени точките: A(5, -2, 1), B(1, 1, -2), C(1, 0, 5) и D(1, 1, 1).

- а) Да се намери лицето на триъгълник АВС;
- b) Да се намери обема на тетраедъра *ABCD*.

7 зад. Спрямо ОКС K = Oxy в равнината са дадени точките: A(1,-1), B(-3,2), C(5,1). Да се намери лицето на триъгълник ABC.

ЗАДАЧИ ОТ ИЗПИТНИ ТЕМИ - І част

- 1 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}| = 2$, $|\vec{b}| = 1$, $|\vec{c}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{c}) = \sphericalangle(\vec{c}, \vec{b}) = \frac{\pi}{2}$. Нека $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Нека т.Н е петата на височината през върха О на тетраедъра OABC. Да се изрази вектора \overrightarrow{OH} като линейна комбинация на \vec{a} , \vec{b} и \vec{c} , и да се намери дължината му.
- 2 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}|=1$, $|\vec{b}|=1$, $|\vec{c}|=2$, $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$, $\sphericalangle(\vec{c},\vec{b})=\frac{\pi}{2}$. Нека OABC е тетраедър, за който $\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OB}=\vec{b}$ и $\overrightarrow{OC}=\vec{c}$.
 - а) Да се намери обема на тетраедъра ОАВС;
 - b) Нека точките M, N и P принадлежат съответно на отсечките AB, BC и CA като AM:MB = BN:NC = CP:PA = 1:2. Да се изразят векторите \overrightarrow{MN} , \overrightarrow{NP} и \overrightarrow{MP} като линейни комбинации на \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} . Да се пресметне соѕ $\blacktriangleleft NMP$;
 - с) Нека точката G е медицентърът на ΔABC . Да се докаже, че т.G е медицентърът и на ΔMNP .
- 3 зад. Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}|=|\vec{b}|=\frac{1}{\sqrt{2}}$ и $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$. Нека $\overrightarrow{OA}=2\vec{a}-\vec{b}$, $\overrightarrow{OB}=\vec{a}+\vec{b}$, $\overrightarrow{OC}=\vec{a}\times\vec{b}$.
 - а) Да се намери обема на тетраедъра ОАВС;
 - b) Ако точките A_1 , B_1 и O_1 са средите на страните на триъгълник OAB, да се намерят обиколката и лицето на триъгълник $A_1B_1O_1$.
- 4 зад. Дадени са векторите $\overrightarrow{CA} = \vec{a} \times (\vec{b} \times \vec{a}), \overrightarrow{CB} = \vec{a} + \vec{b}, \overrightarrow{CD} = \vec{a} \times \vec{b}$, като $|\vec{a}| = 1, |\vec{b}| = 2,$ $\angle (\vec{a}, \vec{b}) = \frac{\pi}{3}$.
 - а) Нека точка H е петата на височината на Δ ABC, спусната от върха A към страната BC. Да се изрази \overrightarrow{AH} като линейна комбинация на \overrightarrow{a} и \overrightarrow{b} . Да се намери дължината на \overrightarrow{AH} .
 - b) Да се намерят лицето на триъгълник *ABC* и обема на тетраедъра *ABCD*.
- 5 зад. Дадени са векторите \vec{a} и \vec{b} като $|\vec{a}|=1, \ |\vec{b}|=2, \sphericalangle(\vec{a}, \ \vec{b}\)=\alpha.$ $\overrightarrow{CA}=\vec{a}\times(\vec{b}\times\vec{a}), \ \overrightarrow{CB}=\vec{b}, \ \overrightarrow{CD}=\vec{a}\times\vec{b}.$
 - а) Нека точката \vec{H} е петата на височината през върха \vec{A} на триъгълник \vec{ABC} . Да се изрази векторът \vec{AH} като линейна комбинация на \vec{a} и \vec{b} . Да се намери $\vec{A}(\vec{a}, \vec{b})$, ако $|\vec{AH}| = 1$.
 - b) При каква стойност на ъгъла α векторите \overrightarrow{CA} , \overrightarrow{CB} и \overrightarrow{CD} са линейно независими?
 - c) При $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{6}$, да се намери обема на тетраедъра *ABCD*.
- 6 зад. Дадени са векторите \vec{a} и \vec{b} като $|\vec{a}| = 2$, $|\vec{b}| = 3$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Даден е успоредника ABCD, за който $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$. Нека точката M е средата на страната AB, а точките N, P и Q са медицентровете съответно на ΔAMD , ΔMCB и ΔCDM .
 - а) Да се изразят векторите \overrightarrow{NQ} , \overrightarrow{QP} и \overrightarrow{PN} чрез \vec{a} и \vec{b} и да се докаже, че правите PN и CD са успоредни;
 - b) Да се намерят лицето и обиколката на ΔNPQ ;
 - с) Ако $\overrightarrow{AS} = \vec{a} \times \vec{b}$, да се намери обема на паралелепипеда с ръбове \overrightarrow{AB} , \overrightarrow{AD} и \overrightarrow{AS} .

- 7 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките M, N и P са медицентровете съответно на триъгълниците: AOB, BOC и AOC.
 - а) Да се изразят векторите \overrightarrow{MN} , \overrightarrow{NP} и \overrightarrow{PM} като линейни комбинации на \vec{a} , \vec{b} и \vec{c} ;
 - b) Да се докаже, че следните прави са две по две успоредни: MN и AC, PM и BC, NP и AB:
 - с) Ако $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ и $\sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$, да се намери периметъра на триъгълник MNP.

Задачи върху скаларно, векторно и смесено произведение на вектори.

- 1. В шестоъгълника $A_1A_2A_3A_4A_5A_6$ точките B_1,B_2,B_3,B_4,B_5 и B_6 са среди съответно на страните $A_1A_2,A_2A_3,A_3A_4,A_4A_5,A_5A_6$ и A_6A_1 . Докажете, че триъгълниците $B_1B_3B_5$ и $B_2B_4B_6$ имат общ медицентър.
- 2. Даден е успоредник ABCD , за който $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, точката $O = AC \cap BD$, а точките M и N са медицентровете съответно на $\triangle AOD$ и $\triangle AOB$.
 - а. Да се изразят векторите \overrightarrow{AM} , \overrightarrow{AN} , \overrightarrow{MN} и \overrightarrow{DB} чрез \vec{a} и \vec{b} .
 - b. Да се докаже, че векторите \overrightarrow{MN} и \overrightarrow{DB} са колинеарни.
- 3. Дадени са векторите \vec{a} и \vec{b} и нека $\overrightarrow{d_1} = (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{a}$ и $\overrightarrow{d_2} = b$. Да се докаже, че векторите $\overrightarrow{d_1}$ и $\overrightarrow{d_2}$ са колинеарни тогава и само тогава, когато a и b са ортогонални или колинеарни.
- 4. Нека a и b са вектори в пространството.
 - а. Да се докаже, че векторите $a \times b$ и $((a \times b) \times b) \times b$ са колинеарни.
 - b. Нека векторите a и b са единични и $\sphericalangle(a,b)=\frac{2\pi}{3}$, а точките O , P , Q , R са такива, че $\overrightarrow{OP}=(a\times b)\times b$, $\overrightarrow{OQ}=a\times b$, $\overrightarrow{OR}=b$. Да се намери обемът на тетраедъра OPQR
- 5. Дадени са векторите \vec{a} , \vec{b} , \vec{c} , такива че $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$, $\measuredangle(\vec{a}, \vec{b}) = \measuredangle(\vec{b}, \vec{c}) = \frac{\pi}{3}$, $\measuredangle(\vec{a}, \vec{c}) = \frac{\pi}{2}$ и тройката $(\vec{a}, \vec{b}, \vec{c})$ е положително ориентирана. Нека:

$$\overrightarrow{OA} = (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), \quad \overrightarrow{OB} = (\vec{a} \times \vec{b}) \times \vec{c} + \vec{a}, \quad \overrightarrow{OC} = \vec{a} \times \vec{b}.$$

- а. Да се намери дължината на медианата през върха $\it O$ в триъгълника $\it OBC$.
- b. Да се намери обема на тетраедъра OABC .
- 6. Дадени са векторите \vec{a} , \vec{b} , \vec{c} , такива че $|\vec{a}| = |\vec{b}| = 1$, $|\vec{c}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \measuredangle(\vec{a}, \vec{c}) = \frac{\pi}{3}$, $\sphericalangle(\vec{b}, \vec{c}) = \frac{\pi}{2}$ и тройката $(\vec{a}, \vec{b}, \vec{c})$ е положително ориентирана. Нека

$$\overrightarrow{OA} = (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), \quad \overrightarrow{OB} = (\vec{a} \times \vec{b}) \times \vec{b}, \quad \overrightarrow{OC} = \vec{a} \times \vec{b}.$$

- а. Да се провери дали векторите $\overrightarrow{O\!A}$ и $\overrightarrow{O\!C}$ са колинеарни.
- b. Да се намери обема на паралелепипеда определен от векторите $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$.

- 7. В пространството са дадени векторите a и b , за които |a|=2 , |b|=1 , $\sphericalangle(a,b)=\frac{\pi}{3}$. Нека точките O , A ,
 - B , C са такива, че $\overrightarrow{OA} = (b \times a) \times b$, $\overrightarrow{OB} = 2a + b$, $\overrightarrow{OC} = b \times a$.
 - а. Да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} са некомпланарни.
 - b. Да се намери обемът на паралелепипеда с ръбове \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} .
- 8. В пространството са дадени векторите a и b , за които |a|=1, |b|=2 , $<\!\!<(a,b)=\frac{2\pi}{3}$. Нека точките O , A ,
 - B , C са такива, че $\overrightarrow{OA} = (a \times b) \times a$, $\overrightarrow{OB} = 2b a$, $\overrightarrow{OC} = a \times b$.
 - а. Да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} са некомпланарни.
 - b. Да се намери обемът на паралелепипеда с ръбове \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} .
- 9. В пространството са дадени векторите \vec{a} и \vec{b} и точките A , B , C и O , за които

$$|\vec{a}| = \sqrt{2}, \quad |\vec{b}| = 2, \quad \not \prec (\vec{a}, \vec{b}) = \frac{\pi}{4}, \qquad \overrightarrow{OA} = (\vec{a} \times \vec{b}) \times \vec{b}, \quad \overrightarrow{OB} = \vec{a} \times \vec{b}, \quad \overrightarrow{OC} = \vec{b} + \vec{a}.$$

- b. Да се намери лицето на $\triangle OAC$.
- 10. Спрямо афинна координатна система в пространството точките A , B , C , D имат координати A(1,-1,2) B(2,1,1) , C(1,1,2) , D(-3,2,-1) .
 - а. Да се докаже, че четирите точки не лежат в една равнина.
 - b. $\,$ Ако координатната система е ортонормирана, да се намери лицето на триъгълника $\,$ ABC
- 11. Нека a и b са два неколинеарни единични вектора и точките O, A, B, C са такива, че $\overrightarrow{OA} = b$, $\overrightarrow{OB} = (a \times b) \times (a + b)$, $\overrightarrow{OC} = [(a \times b) \times a] \times [(a \times b) \times b]$.
 - а. Да се намери ъгълът $\sphericalangle(a,b)$ така, че векторът a да бъде колинеарен с медианата през върха B на триъгълника OAB .
 - b. Ако $\sphericalangle(a,b)=\frac{\pi}{2}$, да се намери обемът на тетраедъра OABC .
- 12. Спрямо ОКС в пространството са дадени точките A(0,2,4), B(1,0,2), C(-4,2,1), D(-3,0,-3)
 - а. Да се намерят координатите на петата H на височината през върха C в ${\vartriangle}ABC$.
 - b. Да се намери обема на тетраедъра ABCD
- 13. Спрямо афинна координатна система в пространството са дадени точките

$$A(0,2,-2), \quad B(-1,3,0), \quad C(-2,0,-2), \quad D(-4,3,3).$$

- а. Да се докаже, че точките A , B , C , D лежат в една равнина.
- b. Да се докаже, че правите AC и BD се пресичат в една точка.