Chapitre 3: Tests Non Paramétriques

Un test statistique est un mécanisme qui permet de trancher entre deux hypothèses à la vue des résultats d'un échantillon. Il y a deux types de tests : paramétriques et non paramétriques. Le principal atout des tests non paramétriques est d'être à distribution free (libre), il n'est pas nécessaire de faire des hypothèses sur la forme des distributions.

Soit P l'ensemble deslois possibles pour une v.a. X. Supposons que P ne dépend pas d'un paramètre (distribution free). La distribution F_X sous H_0 et/ou H_1 n'est pas spécifiée. Un test NP dans ce cas est de type:

$$H_0: F_X \sim Normale ?$$

Dans la suite, nous considérons deux v.a X et Y de lois F_X et F_Y resp. Soient $(X_1, ..., X_n)$, $(Y_1, ..., Y_m)$ deux échantillons issus de X et de Y resp. On cherche à tester

$$H_0: F_X = F_Y \quad \text{contre} \quad H_1: F_X \neq F_Y.$$
 (1)

I) Tests basés sur les rangs

1.1. Test de Wilcoxon

La majorité des tests non paramétriques reposent sur les rangs des observations. L'idée est substituer aux valeurs leur numéro dans l'ensemble des données. On étudie deux populations P_1, P_2 de deux variables qui représentent le même caractère quantitatif de loi continue. Elles sont notées : X dans P_1 et Y dans P_2 . On veut copmarer (étudier l'homogénéité) les distributions de X et deY:

 $\left\{ \begin{array}{l} H_0: les \ deux \ \'{e} chantillons \ appartiennent \ \grave{a} \ la \ m\^{e}me \ population \\ H_1: les \ deux \ \'{e} chantillons \ sont \ de \ deux \ populations \ diff\'{e}rents \end{array} \right.$

Notons N = n + m la taille de l'échantillon global $(X_1, ..., X_n, Y_1, ..., Y_m)$.

Le test de **Wilcoxon** (1945), consiste à ranger les observations $(X_1, ..., X_n, Y_1, ..., Y_m)$ par ordre croissant, il y'a donc N! = (n + m)! ordres possibles. Notons par $R(X_i)$ le rang de X_i (i = 1, ..., n), le nombre possible de façons de placer les X est:

$$\mathbb{C}_n^N = \frac{(n+m)!}{n!m!}.$$

Soit la statistique de Wilcoxon des sommes des rangs :

$$W_X = \sum_{i=1}^{n} R(X_i) = \sum_{k=1}^{N} k \delta_k,$$

avec

$$\delta_k = \begin{cases} 1, & \text{si } X_i \text{ est en } k - i \grave{e} me \text{ position} \\ 0, & \text{sinon} \end{cases}$$

Alors.

$$E(W_X) = E(\delta_k) \sum_{k=1}^{N} k = \frac{n}{m} \frac{m(N+1)}{2} = \frac{n(N+1)}{2}$$
 et $Var(W_X) = \frac{nm(N+1)}{12}$.

1.2. Approximation par une loi normale

Lorsque les échantillons atteignent une taille suffisamment élevès $(n_1 > 8 \text{ et } n_2 > 8)$, la loi de la statistique U converge vers la loi normale de moyenne E(W) et de variance V(W). Sous $H_0(F_X = F_Y)$, nous pouvons donc définir la statistique centrée réduite

$$Z = \frac{W - n(N+1)/2}{\sqrt{nm(N+1)/12}} \sim N(0,1)$$

La région critique du test au niveau de signification α est $|Z| > z_{1-\frac{\alpha}{2}}$, où $z_{1-\frac{\alpha}{2}}$ est le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi normale centrée réduite.

Remarque: Traitement des ex-aequos (principe des rangs moyens) Quand on trouve des ex-aequons dans les valeurs, deux approches sont possibles. La méthode des rangs aléatoires attribue aléatoirement les rangs aux observations confondues. Dans ce cas, aucune modification des tables et lois asyptotiques existantes n'est pas nécessaire. Cependant, la puissance du test est faible que celle la méthode de traitement des ex-aequons. C'est pour cela la méthode des rangs moyens procède de la manière suivante : les observations possèdent des valeurs identiques se voient attribuer la moyenne de leurs rangs. Cette approche est plus puissantes que la précédente.

1.3. Test de Mann-Whitney

La procudure du Mann-Whitney (1947) est:

- 1. Classer toutes les observations par ordre croissant.
- 2. Affecter son rang à chaque observation.
- 3. Calculer W la somme des rangs d'un échantillon (en général celui de plus petite taille).
- 4. Calculer les statistiques U:

$$U_X = W_X - \frac{n(n+1)}{2}, \quad U_Y = W_Y - \frac{m(m+1)}{2}, \quad U = \min(U_X, U_Y)$$

Lorsque l'hypothèse nulle est vraie, l'éspérance et la variance de U s'écrivent

$$E(U) = \frac{nm}{2}, \quad Var(U) = \frac{nm(N+1)}{12}.$$
 (2)

Exemple : Considérons deux groupes X, Y de n = 15 enfants où les effets des maladies est "absent", et celui où les effets des maladies est "présent" avec m = 12. On chercher à tester l'hypothèse d'homogéniété des deux groupes ?

	_			1
groupes	valeurs	rang brut	rang moyen	
absent	6	1	1.5	
present	6	2	1.5	
absent	7	3	5	
absent	7	4	5	
absent	7	5	5	
absent	7	6	5	
absent	7	7	5	
absent	8	8	9.5	
absent	8	9	9.5	absent
present	8	10	9.5	n = 15
present	8	11	9.5	$W_X = \sum R(X_i) = 170.5$
absent	9	12	12	
absent	10	13	16	
absent	10	14	16	present
absent	10	15	16	m = 12
absent	10	16	16	$W_Y = \sum R(X_i) = 207.5$
present	10	17	16	
present	10	18	16	
present	10	19	16	
present	11	20	20.5	
present	11	21	20.5	
absent	12	22	24.5	
absent	12	23	24.5	
present	12	24	24.5	
present	12	25	24.5	
present	12	26	24.5	
present	12	27	24.5	

On remarque que les observations ont été triées selon les valeurs croissantes. Un numéro global sert à repérer les individus. Il correspond aux rangs bruts. Il ne tient pas comte des ex-aequons puis, dans un deuxième temps, pour les observations ayant des valeurs identiques, nous attribuons la moyenne des rangs associés. Par exemple, les deux premières plus petites observations presentent la même valeur $x_1 = x_2 = 6$, nous leur attribuons le rang moyen = 1.5, pour les observations $x_3 = ... = x_7 = 7$, nous produisons le rang = 5, etc...

La somme et la moyenne des rangs conditionnellement aux groupe sont calculées:

$$U_X = 50.5, \quad U_Y = 129.5, \quad U = \min(U_X, U_Y) = 50.5$$

Sous $H_0(F_X = Fy)$:

$$\frac{U - nm/2}{\sqrt{nm(N+1)/12}} = \frac{50.5 - 90}{\sqrt{420}} = 1.93 < z_{1-\frac{\alpha}{2}} = z_{1-\frac{0.05}{2}} = z_{0.975} = 1.96.$$

alors on acceptte H_0 , (donc $F_X = F_Y$). On peut conclure que les deux groupes ont la même distribution.

1.4. Une autre version du test de Mann et Whitney

Le principe du test consiste à déterminer le nombre de couples (X_i, Y_j) pour les quelles $X_i \neq Y_j$.

• Le test statistique de Mann-Whitney est défini par

$$U_{n,m} = \sum_{i=1}^{n} \sum_{j=1}^{m} 1_{(X_i > Y_j)}.$$

L'espérance et la variance de $U_{n,m}$ s'écrivent :

$$E(U_{n,m}) = \frac{nm}{2}, \quad Var(U_{n,m}) = \frac{nm(N+1)}{12}.$$

Sous $H_0(F_X = Fy)$:

$$\frac{U_{n,m} - nm/2}{\sqrt{nm(N+1)/12}} \sim N(0,1).$$

Exemple. Disposons de deux échantillons (mâle et femelles) de souris des cactus (peromyscus eremicus), dont on a mesuré le poids (en g) chez l'individu adulte:

échantillon femelle
$$(n = 6): X = 24, 30, 30, 30, 38, 40$$

échantillon $male(m = 4): Y = 20, 24, 26, 28$

On veut tester si le poids des mâles et femelles sont les mêmes ou non? Les hypothèses du test sont:

$$\left\{ \begin{array}{l} H_0: \textit{m\^{a}les et femelles ont le m\^{e}me poids.} \\ H_1: \textit{m\^{a}les et femelles ont des poids diff\'erents.} \end{array} \right.$$

Pour plus de robustesse, on utilise le test de Mann-Whitney suivant la manière dont on calcul les rangs pour chaque échantillon. Ensuite, classant les couples X, Y:

$$Z = 20, 24, 24, 26, 28, 30, 30, 30, 38, 40$$

puis on calcule $U_{n,m}$:

$$U_{n,m} = 1 + 4 + 4 + 4 + 4 + 4 + 4 = 25.$$

Sous $H_0(F_X = Fy)$:

$$U = \frac{U_{n,m} - nm/2}{\sqrt{nm(N+1)/12}} = \frac{25 - 6(4)/2}{\sqrt{6 \times 4(10+1)/12}} = 2.77 > z_{0.975} = 1.96.$$

Alors, on rejètte H_0 , (donc $F_X \neq F_Y$) et en conclu que les poids des mâles et des femelles ne sont plus les mêmes.

1.5. Test de la médiane

Le problème (1) est équivalant au test de la médiane qui consiste à déterminer le nombre de variable X qui sont strictement superieurs (>) à la médiane de (X,Y). Soit la statistique

$$M_{n,m} = \frac{1}{n} \sum_{j=1}^{n} 1_{\left(R(X_j) > \frac{N+1}{2}\right)}.$$

telle que $R(X_j)$ est le rang de la $j^{\grave{e}me}$ observation de X.

* Sous H_0 et si N = 2k (pair):

$$E\left(M_{n,m}\right) = \frac{1}{2}, \quad Var\left(M_{n,m}\right) = \frac{n}{4m\left(N-1\right)}.$$

* Sous H_0 et si N = 2k + 1 (impair):

$$E(M_{n,m}) = \frac{N-1}{2N}, \quad Var(M_{n,m}) = \frac{n(N+1)}{2mN^2}.$$

Remarque: Sous H_0 , la loi de $M_{n,m}$ est hypergeométrique, donc asymptotiquement normale (quand $\min(n,m) \to \infty$).

1.6. Test d'échelle

Supposons maintenant que $\forall x \in R : F_Y(x) = F_X\left(\frac{x}{\sigma}\right), \quad \sigma \in R^*$. Le problème (1) devient un test d'échelle :

$$H_0: \sigma = 1$$
 contre $H_1: \sigma \neq 1$.

Soient

$$A_{(1)} = \frac{1}{N}, \quad A_{(2)} = \frac{1}{N} + \frac{1}{N-1}, ..., A_{(k)} = \frac{1}{N} + \frac{1}{N-1} + ... + \frac{1}{N-k+1}, \quad \ \ k = 1, ..., n$$

Le test d'échelle est défini par la statistique:

$$S = \sum_{j=1}^{n} A_{(R(X_j))}.$$

Sous $H_0: S$ suit une loi normale $N(\mu, \sigma^2)$,

$$\mu = E(S) = n$$
 et $\sigma^2 = Var(S) = \frac{nm}{N-1} \left(1 - \frac{1}{N} \sum_{h=1}^{N} \frac{1}{h} \right)$.

Exemple: Appliquer le test d'échelle aux données de l'exemple précident de souris des cactus.

II) Tests basés sur la distribution

Dans cette partie, trois types de tests basés sur les distributions (théorique et empirique) sont rencontrés :

- Test d'ajustement (Adéquation),
- Test d'homogénéité,
- Test d'indépendance.

2.1. Test et distance de Pearson - Khi deux

Soit $X_1, ..., X_n$, un éhantillon de X de loi P à valeurs dans un ensemble $O \in \mathbb{R}$, et soit $\{O_1, ..., O_m\}$ une partition de O, telle que:

$$O = \bigcup_{k=1}^{m} O_k, \quad O_j \cap O_k = \phi, \quad j \neq k$$

On définit le nombre N_k de X_i appartenant à O_k par:

$$N_k = \sum_{i=1}^{N} 1_{(X_i \in O_k)} \quad \forall k = 1, ..., m$$

Soient $p_1,...,p_m$, les probabilités pour les quelles : $p_k = P(X_i \in O_k)$. Alors, le veteur $(N_1,...,N_m)$ suit une loi multinomiale $M(n,p_1,...,p_m)$:

$$P(N_1 = n_1, ..., N_m = n_m) = \frac{n!}{n_1! ... n_m!} p_1^{n_1} ... p_m^{n_m}.$$

Posons aussi P_n la loi empirique estimant P sur la base de l'échantillon $(X_1,...,X_n)$ par :

$$P_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$$

où δ_* est la masse de Dirac.

Définition: La distane de Khi-2 (Pearson, 1900) entre P et P_n est

$$Q = D(P, P_n) = \sum_{k=1}^{m} \frac{(N_n - nP_k)^2}{nP_k}, \quad avec \quad Q \sim \chi^2_{(m-1)} \quad quand \quad n \to \infty.$$

2.1.1. Test d'ajustement (adéquation) du khi-deux

À partir de l'échantion $X = (X_1, ..., X_n)$ on peut vérifié la qualité d'ajustement à une distribution théorique spécifiée par l'hypothèse nulle H_0 . Posons P_0 une loi donnée et considérons le problème du test :

$$\left\{ \begin{array}{l} H_0: (P=P_0) \\ H_1: (P\neq P_0) \end{array} \right., \qquad \text{où } P_0(\theta_k) = P_{0k}.$$

Intuitivement, si les X_i suivent la loi P_0 , la distance de khi-2 $D(P_n, P_0)$ entre P_n et P_0 sera petite (Q décroit vers 0), par ailleurs on sait que si les X_i suivent la loi P_0 , alors $D(P_n, P_0)$ suit asymptotiquement une loi du χ^2 à (m-1) degrés de liberté.

• La statistique de khi-2 définie par :

$$Q = D(P_n, P_0) = \frac{\sum (N_k - np_{0k})^2}{np_{0k}}.$$
(3)

 \bullet La région critique : on rejette H_0 si

$$Q > \chi^2_{(m-1)}(1-\alpha) = q_{\alpha}.$$

Remarque: Pour tester $H_0(P=P_{0,\theta})$, où $P_{0,\theta}$ est une famille de loi $(\theta \in \mathbb{R}^+)$, alors H_0 est rejetté si $Q > \chi^2_{(m-r-1)}(1-\alpha) = q_{\alpha r}$.

Exercice: Soient n=20 observations d'une varaiable aléatoire X de loi inconnue P:

$$-4.2$$
, -1.6 , -1.6 , -1.3 , -0.5 , -0.2 , -0.1 , 0.2 , 0.3 0.7 , 0.9 , 1.6 , 1.9 , 2.4 , 2.5 , 2.5 , 2.6 , 2.9 , 3.0 , 3.4

Notons $\{O_1, ..., O_4\}$ la partition de R, telle que:

$$O_1 = [-\infty, -0.6], \quad O_2 = [-0.6, 0.6], \quad O_1 = [0.6, 2.5] \quad \text{et} \quad O_1 = [2.5, \infty).$$

Tester en utilisant le test de khi-deux l'hypothèse de normalité de $X: H_0: P \sim N(\mu, \sigma^2)$.

2.1.2. Test de khi-deux d'indépendance

Ce test est utilisé pour étudier sur un même échantillon de taille n la liaison entre deux variables quantitatives. Soient X, Y deux variables qualitatives telle que X est à valeur dans $\{a_1, ..., a_m\}$ et Y à valeur dans $\{b_1, ..., b_n\}$. Sous H_0 , la distribution de X devrait être indépendante de celle de Y. Par contre, si la distribution de X est liée à celle de Y, on rejette H_0 au profit de H_1 , les deux variables X et Y sont liées. Ainsi, on cherche à tester :

 $\left\{ \begin{array}{l} H_0: \mbox{ Les variables } X,Y \mbox{ sont indépendantes} \\ H_1: \mbox{ Les variables sont liées} \end{array} \right.$

• La statistique de khi-deux d'indépendance est :

$$Q_{ind} = \sum_{i=1}^{m} \sum_{j=1}^{l} \frac{\left(\frac{N_{i*}*N_{*j}}{n} - N_{ij}\right)^{2}}{\frac{N_{i*}*N_{*j}}{n}},$$
(4)

 N_{i*} : Nombre de X de valeurs a_i (i = 1, ..., m).

 N_{*j} : Nombre de Y de valeurs b_j (j = 1, ..., k).

 N_{ij} : Nombre de (X,Y) de valeurs (a_i,b_j) .

• La région critique :pour un risque de première espèce α , on rejette H_0 si

$$Q_{ind} > \chi^2_{(m-1)(p-1)}(1-\alpha).$$

Autrement dit, si la valeur de la statistique de test χ^2 est supérieur à la valeur du seuil $\chi^2_{(m-1)(p-1)}(1-\alpha)$ alors on rejette l'hypothèse nulle, il existe donc une liaison significatif entre X, Y.

Exemple: On veux savoir est-ce que il y a une liaison entre les notes des étudiants et leurs sexe (fille, garçon). On prend les notes de 69 étudiants selon les classes (moyennes) de sexe (fille, garçon) avec un risque $\alpha = 0.05$.

notes	[0, 9[[9, 15[[15, 20[
F	25	14	15
G	8	5	7

Sous R, on utilisons les commandes associées, pour (k=2, m=3)

> A = matrix(c(25, 14, 15, 8, 5, 7), nrow = 2, byrow = T)

> chisq.test(A) p.value

[1] 0.8225567

p - valeur = 0.8225567

On observons q'aucun "warning message" n'apparait, alors les conditions d'applications du test sont vérifiées, comme p-valeur>0.05, on ne rejette pas H_0 . Les données ne nous permettent pas de rejetter l'indépendane entre les notes et le sexe.

2.1.3. Test du khi-deux d'homogénéité

Le test du khi-deux peut utilisé aussi dans le cadre de la comparesion entre les lois (disributions) de deux échantillons indépendantes. Considérons un couple de v.a (Y, Z) à valeurs dans $\{a_1, ..., a_m\}$. Soient $Y_1, ..., Y_{n_1}, Z_1, ..., Z_{n_2}$ deux éhantillons de Y et Z respectivement. On cherche à tester l'homogénéité des lois de Y et Z:

$$\left\{ \begin{array}{l} H_0: Y \ et \ Z \ \text{ont la même loi}. \\ H_1: Y \ et \ Z \ \text{de loi différente}. \end{array} \right.$$

et on dispose de l'observation : $u = (y_1, ..., y_{n_1}, z_1, ..., z_{n_2})$ de $U = (Y_1, ..., Y_{n_1}, Z_1, ..., Z_{n_2})$.

• Statistique de test est :

$$\mathbf{Q}_{\mathrm{hom}} \! = \! \sum_{k=1}^{m} \! \mathbf{n}_{1} \frac{\left(\frac{N_{k} + M_{k}}{n_{1} + n_{2}} - \frac{N_{k}}{n_{1}}\right)^{2}}{\frac{N_{k} + M_{k}}{n_{1} + n_{2}}} \! + \! \mathbf{n}_{2} \frac{\left(\frac{N_{k} + M_{k}}{n_{1} + n_{2}} - \frac{M_{k}}{n_{2}}\right)^{2}}{\frac{N_{k} + M_{k}}{n_{1} + n_{2}}}$$

telle que :

 N_k : le nombre d'éléments de $\{Y_1, ..., Y_{n_1}\}$ qui prennent la valeur a_k .

 M_k : le nombre d'éléments de $\{Z_1,...,Z_{n_2}\}$ qui prennent la valeur a_k .

• On rejette H_0 si la valeur de $Q_{\text{hom}} > s$ où le choix de la valeur critique s, sous H_0 , Q_{hom} asymptotiquement une loi χ^2 de (m-1) dégré de liberté. Donc s srea choisie telle que $P(k \ge s)$, avec $k \sim \chi^2(m-1)$.

2.2. Test et distance de Kolmogorov-Smirnov

L'idée du test est de comparer la fonction de disribution empirique à la foncction de répartition. Soit $X_1, ..., X_n$ un n-échantillon d'une va X de loi P absolument continue par rapport à la mesure de Lebesgue sur $(\mathbb{R}, \mathbf{B}(\mathbb{R}))$ inconnue. On note F_n la distribution empirique associée à X.

·Le théorème de Glivento - Gantelli donne :

$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \underset{n \to +\infty}{\longrightarrow} 0 \quad Ps.$$
 (5)

· la statistique de K-S est défini par la distance en norme infinie de la fonction de répartition empirique F_n , et la fonction de répartition F:

$$KS = D_{KS}(P, P_0) = \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|.$$
 (6)

Proposition: Si $(x_{(1)},...,x_{(n)})$ est la statistique d'ordre associée à l'échantillon X alors :

$$D_{KS}(P, P_n) = \max_{1 \le i \le n} \max \left\{ \left| F(x_{(i)}) - \frac{i}{n} \right|, \left| F(x_{(i)}) - \frac{i-1}{n} \right| \right\}.$$

On rejette H_0 si $\sqrt{n}D_{KS} > d_{n,\alpha}$, où $d_{n,\alpha}$ est le quantile théorique lu à partir la table de Kolmogorov-Smirnov.

Exemple: On souhaite étudier le temps X (en mois) mais par 10 étudiants (diplomés) pour obtenir un emplois. On prend 3.5, 16, 18, 14, 26, 17.5, 12, 22.5, 36, 10. On cherche à tester $H_0(X \sim Exp(\lambda = 1/5))$ avec un risque $\alpha = 0.05$.

Sous R, on utilisons la commande ks.test du package'starts' comme suit :

X < -c(3.5, 16, 18, 14, 26, 17.5, 12, 22.5, 36, 10)

ks.test(X, "ppois", lambda = 1/5)

 $One-sample\ Kolmogorov-Smirnov\ test$

data: X

D = 0.88248, p - value = 3.442e - 07

 $alternative\ hypothes\ is: two-sided$

p - value = 0.003

Comme la p-valeur est inférieure à la valeur de α , alors on peut rejetter l'hypothèse nulle, c'est à dire accepter H_1 . Danc la distribution observée ne suive pas la loi expononsielle de paramètre 1/5 au risque 5%.

2.2.1. Test de Lilliefors

Ce test est une variante du test de Kolmogorov-Smirnov, sous l'hypothèse de normalité (à chercher à tester $H_0: P \sim Gaussienne$), où les paramètres μ, σ de la loi sont estimés à partir des données.

• La statistique du test est :

$$L_n = \sqrt{n} \max_{1 \le i \le n} \max \left\{ \left| F_0\left(\frac{x_{(i)} - \overline{x}}{S_x}\right) - \frac{i}{n} \right|, \left| F_0\left(\frac{x_{(i)} - \overline{x}}{S_x}\right) - \frac{i - 1}{n} \right| \right\}$$

où \overline{x} est la moyenne empirique et S_x est l'écart type empirique.

• On rejette H_0 si $L_n > D_{crit}$ (D_{crit} la valeur critique de test Lilliefors).

Sous R, après avoir charger le package de la fonction lillie.test de library (nortest), on peut utiliser la p-value pour conclur l'acceptation de H_0 comme suit :

> lillie.test(rnorm(100, mean = 5, sd = 3))

```
lillie fors (kolmogorov – smirnov) normality.test data : rnorm(100, mean = 5, sd = 3)

D = 0.0646, p - value = 0.3841.

p - value = 0.3841 > 0.05, donc H_0 est acceptée (P \sim N(5, 9)).
```

2.2.2. Test de Komogorov-Smirnov d'homogénéité

L'objetif de ce test est si l'on veut tester si les deux échantillons peuvent provenir de la même population. En d'autre terme **tester l'identiquité de deux distributions empiriques** à partir de deux v a indépendantes X et Y de tailles n_1, n_2 respectivements et de lois inconnues et consédirons F_1 , F_2 étant leurs fontions de répartitions et F_{1n_1} , F_{2n_2} leurs fonctions de répartitions empiriques :

$$F_{1_n} = \frac{1}{n} \sum_{i=1}^{n} 1_{(x_{(i)} \le t)}, \qquad F_{2_m} = \frac{1}{m} \sum_{i=1}^{m} 1_{(y_{(i)} \le t)}$$

On cherche à tester $H_0: F_1(x) = F_2(x)$ contre $H_1: F_1(x) \neq F_2(x)$. La distance de **K-S** d'homogénéité est :

$$D_{n,m} = \sqrt{\frac{nm}{n+m}} \sup |F_{1_n}(t) - F_{2_m}(t)|$$

Le test de \mathbf{K} - \mathbf{S} d'homogénéité repose sur l'écart maximum entre les fonctions de répartitions empiriques.

• On rejette H_0 si $D_{n,m} > s_{KS}$.