Exponential Random Graph Models for Network Data

David Hunter

Department of Statistics Penn State University

Student Organized Seminar, March 17, 2006

Outline

- Statistical Models for Networks
 - What's a network?
 - What's an ERGM?
- Difficulties of fitting the ERGM
 - Why MLE is difficult
 - Change Statistics and Maximum Pseudolikelihood
- Favored Approach: Approximate MLE via MCMC
 - Law of Large Numbers to the Rescue
 - Obtaining samples via MCMC
 - A Numerical Example

Definition

- Edges can have directions and/or values...
 - ... but for now, we'll assume undirected, binary (either on or off) edges.
- Notation: A symmetric matrix x of 0's and 1's.

Definition

- Edges can have directions and/or values...
 - ... but for now, we'll assume undirected, binary (either on or off) edges.
- Notation: A symmetric matrix x of 0's and 1's.

Definition

- Edges can have directions and/or values...
 - ... but for now, we'll assume undirected, binary (either on or off) edges.
- Notation: A symmetric matrix x of 0's and 1's.

Definition

- Edges can have directions and/or values...
 - ... but for now, we'll assume undirected, binary (either on or off) edges.
- Notation: A symmetric matrix x of 0's and 1's.

Example Network: High School Friendship Data

School 10: 205 Students

- An edge indicates a mutual friendship.
- Colored labels give grade level, 7 through 12.
- Circles = female, squares = male, triangles = unknown.

Why study networks?

Many applications, including

- Epidemiology: Dynamics of disease spread
- Business: Viral marketing, word of mouth
- Telecommunications: WWW connectivity, phone calls
- Counterterrorism: Robustifying/attacking networks
- Political Science: Coalition formation dynamics
- ...

(It's a little embarrassing even to make such a list, because so many important items are missing.)

Why study networks?

Many applications, including

- Epidemiology: Dynamics of disease spread
- Business: Viral marketing, word of mouth
- Telecommunications: WWW connectivity, phone calls
- Counterterrorism: Robustifying/attacking networks
- Political Science: Coalition formation dynamics
- . . .

(It's a little embarrassing even to make such a list, because so many important items are missing.)

What is an ERGM?

Exponential Random Graph Model (ERGM)

$$P_{\theta}(X=x) \propto \exp\{\theta^t s(x)\}$$

or

$$P_{\theta}(X = x) = \frac{\exp\{\theta^t s(x)\}}{c(\theta)},$$

where

- X is a random network on n nodes (a matrix of 0's and 1's)
- \bullet θ is a vector of parameters
- s(x) is a known vector of graph statistics on x

Whence the name ERGM?

Exponential Family

Whenever the density of a random variable may be written

$$f(x) \propto \exp\{\theta^t s(x)\},$$

the family of all such random variables (for all possible θ) is called an exponential family.

- Since the random graphs in our model form an exponential family, we call the model an exponential random graph model.
- "ERGM" is easier to pronounce than "EFRGM"!

Whence the name ERGM?

Exponential Family

Whenever the density of a random variable may be written

$$f(x) \propto \exp\{\theta^t s(x)\},$$

the family of all such random variables (for all possible θ) is called an exponential family.

- Since the random graphs in our model form an exponential family, we call the model an exponential random graph model.
- "ERGM" is easier to pronounce than "EFRGM"!

Maximum Likelihood Estimation

The model:

$$P_{ heta}(X=x) = rac{\exp\{ heta^t s(x)\}}{c(heta)}, ext{ where } s(x^{ ext{obs}}) = 0$$

• It follows that $c(\theta)$ is a normalizing "constant":

$$c(\theta) = \sum_{\substack{\text{all possible} \\ \text{graphs } y}} \exp\{\theta^t s(y)\}.$$

• Replacing s(x) by $s(x) - s(x^{\text{obs}})$ leaves $P_{\theta}(X = x)$ unchanged; thus, we "recenter" s(x) so that $s(x^{\text{obs}}) = 0$

Maximum Likelihood Estimation

The model:

$$P_{ heta}(X = x) = rac{\exp\{ heta^t s(x)\}}{c(heta)}$$
, where $s(x^{ ext{obs}}) = 0$

• It follows that $c(\theta)$ is a normalizing "constant":

$$c(\theta) = \sum_{\substack{\text{all possible} \\ \text{graphs } y}} \exp\{\theta^t s(y)\}.$$

• Replacing s(x) by $s(x) - s(x^{\text{obs}})$ leaves $P_{\theta}(X = x)$ unchanged; thus, we "recenter" s(x) so that $s(x^{\text{obs}}) = 0$

Maximum Likelihood Estimation

The model:

$$P_{\theta}(X = x) = \frac{\exp\{\theta^t s(x)\}}{c(\theta)}$$
, where $s(x^{\text{obs}}) = 0$

• It follows that $c(\theta)$ is a normalizing "constant":

$$c(\theta) = \sum_{\substack{\text{all possible} \\ \text{graphs } y}} \exp\{\theta^t s(y)\}.$$

• Replacing s(x) by $s(x) - s(x^{\text{obs}})$ leaves $P_{\theta}(X = x)$ unchanged; thus, we "recenter" s(x) so that $s(x^{\text{obs}}) = 0$.

Why it is difficult to find the MLE

The model:

$$P_{ heta}(X=x) = rac{\exp\{ heta^t s(x)\}}{c(heta)}, ext{ where } s(x^{ ext{obs}}) = 0$$

The loglikelihood function is

$$\ell(\theta) = -\log c(\theta) = \log \sum_{\substack{\text{all possible} \\ \text{graphs } y}} \exp\{\theta^t s(y)\}.$$

• Merely evaluating (let alone maximizing) $\ell(\theta)$ is somewhat computationally burdensome. . .

Why it is difficult to find the MLE

The model:

$$P_{ heta}(X=x) = rac{\exp\{ heta^t s(x)\}}{c(heta)}, ext{ where } s(x^{ ext{obs}}) = 0$$

The loglikelihood function is

$$\ell(\theta) = -\log c(\theta) = \log \sum_{\substack{ ext{all possible} \ ext{graphs } y}} \exp\{\theta^t s(y)\}.$$

• Merely evaluating (let alone maximizing) $\ell(\theta)$ is somewhat computationally burdensome. . .

Why it is difficult to find the MLE

The model:

$$P_{\theta}(X = x) = \frac{\exp\{\theta^t s(x)\}}{c(\theta)}$$
, where $s(x^{\text{obs}}) = 0$

The loglikelihood function is

$$\ell(\theta) = -\log c(\theta) = \log \sum_{\substack{ ext{all possible} \\ ext{graphs } y}} \exp\{\theta^t s(y)\}.$$

• Merely evaluating (let alone maximizing) $\ell(\theta)$ is somewhat computationally burdensome. . .

How burdensome?

For this undirected, 34-node graph, computing $c(\theta)$ directly requires summation of

7,547,924,849,643,082,704,483,109,161,976,537,781,833,842,440,832,880,856,752,412,600,491,248,324,784,297,704,172,253,450,355,317,535,082,936,750,061,527,689,799,541,169,259,849,585,265,122,868,502,865,392,087,298,790,653,952

terms

How burdensome?

For this undirected, 34-node graph, computing $c(\theta)$ directly requires summation of

7,547,924,849,643,082,704,483, 109,161,976,537,781,833,842, 440,832,880,856,752,412,600, 491,248,324,784,297,704,172, 253,450,355,317,535,082,936, 750,061,527,689,799,541,169, 259,849,585,265,122,868,502, 865,392,087,298,790,653,952

terms.

- $x_{ij} = 0$ or 1, depending on whether there is an edge
- x_{ij}^c denotes the status of all pairs in x other than (i, j)
- x_{ij}^+ denotes the same network as x but with $x_{ij} = 1$
- x_{ij}^- denotes the same network as x but with $x_{ij} = 0$

Notation: For a network x and a pair (i, j) of nodes,

- $x_{ij} = 0$ or 1, depending on whether there is an edge
- x_{ij}^c denotes the status of all pairs in x other than (i,j)
- x_{ij}^+ denotes the same network as x but with $x_{ij} = 1$
- x_{ii}^- denotes the same network as x but with $x_{ij} = 0$

Conditional on $X_{ij}^c = x_{ij}^c$, X has only two possible states, depending on whether $X_{ii} = 0$ or $X_{ii} = 1$.

Notation: For a network x and a pair (i, j) of nodes,

- $x_{ij} = 0$ or 1, depending on whether there is an edge
- x_{ii}^c denotes the status of all pairs in x other than (i, j)
- x_{ii}^+ denotes the same network as x but with $x_{ij} = 1$
- x_{ii}^- denotes the same network as x but with $x_{ij} = 0$

Conditional on $X_{ij}^c = x_{ij}^c$, X has only two possible states, depending on whether $X_{ij} = 0$ or $X_{ij} = 1$.

Let's calculate the ratio of the two respective probabilities:

- $x_{ij} = 0$ or 1, depending on whether there is an edge
- x_{ij}^c denotes the status of all pairs in x other than (i,j)
- x_{ij}^+ denotes the same network as x but with $x_{ij} = 1$
- x_{ij}^- denotes the same network as x but with $x_{ij} = 0$

$$\frac{P(X_{ij} = 1 | X_{ij}^c = x_{ij}^c)}{P(X_{ij} = 0 | X_{ij}^c = x_{ij}^c)} = \frac{\exp\{\theta^t s(x_{ij}^+)\}}{\exp\{\theta^t s(x_{ij}^-)\}}$$

- $x_{ij} = 0$ or 1, depending on whether there is an edge
- x_{ii}^c denotes the status of all pairs in x other than (i, j)
- x_{ii}^+ denotes the same network as x but with $x_{ij} = 1$
- x_{ii}^- denotes the same network as x but with $x_{ij} = 0$

$$\frac{P(X_{ij} = 1 | X_{ij}^c = x_{ij}^c)}{P(X_{ij} = 0 | X_{ii}^c = x_{ii}^c)} = \exp\{\theta^t[s(x_{ij}^+) - s(x_{ij}^-)]\}$$

- $x_{ij} = 0$ or 1, depending on whether there is an edge
- x_{ii}^c denotes the status of all pairs in x other than (i, j)
- x_{ii}^+ denotes the same network as x but with $x_{ij} = 1$
- x_{ii}^- denotes the same network as x but with $x_{ij} = 0$

$$\log \frac{P(X_{ij} = 1 | X_{ij}^c = X_{ij}^c)}{P(X_{ij} = 0 | X_{ii}^c = X_{ii}^c)} = \theta^t[s(x_{ij}^+) - s(x_{ij}^-)]$$

Notation: For a network x and a pair (i, j) of nodes,

• $\Delta(s(x))_{ij}$ denotes the vector of change statistics,

$$\Delta(s(x))_{ij} = s(x_{ij}^+) - s(x_{ij}^-).$$

So $\Delta(s(x))_{ij}$ is the conditional log-odds of edge (i,j).

$$\log \frac{P(X_{ij} = 1 | X_{ij}^c = X_{ij}^c)}{P(X_{ij} = 0 | X_{ii}^c = X_{ii}^c)} = \theta^t \Delta(s(x))_{ij}$$

- What if we approximate the marginal $P(X_{ij} = 1)$ by the conditional $P(X_{ij} = 1 | X_{ii}^c = x_{ij}^c)$?
- Then the X_{ij} are independent with

$$\log \frac{P(X_{ij}=1)}{P(X_{ij}=0)} = \theta^t \Delta(s(x^{\text{obs}}))_{ij},$$

- Result: The maximum pseudolikelihood estimate.
- Unfortunately, little is known about the quality of MPL estimates.

- What if we approximate the marginal $P(X_{ij} = 1)$ by the conditional $P(X_{ij} = 1 | X_{ii}^c = X_{ii}^c)$?
- Then the X_{ij} are independent with

$$\log \frac{P(X_{ij}=1)}{P(X_{ij}=0)} = \theta^t \Delta(s(x^{\text{obs}}))_{ij},$$

- Result: The maximum pseudolikelihood estimate.
- Unfortunately, little is known about the quality of MPL estimates.

- What if we approximate the marginal $P(X_{ij} = 1)$ by the conditional $P(X_{ij} = 1 | X_{ii}^c = X_{ii}^c)$?
- Then the X_{ij} are independent with

$$\log \frac{P(X_{ij}=1)}{P(X_{ij}=0)} = \theta^t \Delta(s(x^{\text{obs}}))_{ij},$$

- Result: The maximum pseudolikelihood estimate.
- Unfortunately, little is known about the quality of MPL estimates.

- What if we approximate the marginal $P(X_{ij} = 1)$ by the conditional $P(X_{ij} = 1 | X_{ii}^c = X_{ii}^c)$?
- Then the Xii are independent with

$$\log \frac{P(X_{ij}=1)}{P(X_{ij}=0)} = \theta^t \Delta(s(x^{\text{obs}}))_{ij},$$

- Result: The maximum pseudolikelihood estimate.
- Unfortunately, little is known about the quality of MPL estimates.

MLE Revisited

- Remember, $c(\theta)$ is *really* hard to compute.
- However, suppose we fix θ_0 . A bit of algebra shows that

$$\mathbb{E}_{\theta_0}\left[\exp\left\{(\theta-\theta_0)^t s(X)\right\}\right] = \frac{c(\theta)}{c(\theta_0)}.$$

• Thus, $c(\theta)/c(\theta_0)$ is the expectation of a function of a random network, where the random behavior is governed by the known constant θ_0 .

MLE Revisited

- Remember, $c(\theta)$ is *really* hard to compute.
- However, suppose we fix θ_0 . A bit of algebra shows that

$$\operatorname{E}_{\theta_0}\left[\exp\left\{(\theta-\theta_0)^t s(X)\right\}\right] = \frac{c(\theta)}{c(\theta_0)}.$$

• Thus, $c(\theta)/c(\theta_0)$ is the expectation of a function of a random network, where the random behavior is governed by the known constant θ_0 .

MLE Revisited

- Remember, $c(\theta)$ is *really* hard to compute.
- However, suppose we fix θ_0 . A bit of algebra shows that

$$\operatorname{E}_{\theta_0}\left[\exp\left\{(\theta-\theta_0)^t s(X)\right\}\right] = \frac{c(\theta)}{c(\theta_0)}.$$

• Thus, $c(\theta)/c(\theta_0)$ is the expectation of a function of a random network, where the random behavior is governed by the known constant θ_0 .

Law of Large Numbers to the Rescue!

The LOLN suggests that we approximate an unknown population mean by a sample mean.

Thus,

$$c(\theta)/c(\theta_0) = \operatorname{E}_{\theta_0} \left(\exp\left\{ (\theta - \theta_0)^t s(X) \right\} \right) \ pprox \ \frac{1}{M} \sum_{i=1}^M \exp\left\{ (\theta - \theta_0)^t s(X^{(i)}) \right\},$$

where $X^{(1)}, X^{(2)}, \dots, X^{(M)}$ is a random sample of networks from the distribution defined by the ERGM with parameter θ_0 .

Law of Large Numbers to the Rescue!

The LOLN suggests that we approximate an unknown population mean by a sample mean.

Thus,

$$c(\theta)/c(\theta_0) = \operatorname{E}_{\theta_0}\left(\exp\left\{(\theta - \theta_0)^t s(X)\right\}\right)$$

 $\approx \frac{1}{M} \sum_{i=1}^{M} \exp\left\{(\theta - \theta_0)^t s(X^{(i)})\right\},$

where $X^{(1)}, X^{(2)}, \dots, X^{(M)}$ is a random sample of networks from the distribution defined by the ERGM with parameter θ_0 .

Using the LOLN approximation, we find

$$\ell(\theta) - \ell(\theta_0) = -\log \frac{c(\theta)}{c(\theta_0)}$$

$$= -\log \mathbb{E}_{\theta_0} \left(\exp \left\{ (\theta - \theta_0)^t s(X) \right\} \right)$$

$$\approx -\log \frac{1}{M} \sum_{i=1}^{M} \exp \left\{ (\theta - \theta_0)^t s(X^{(i)}) \right\}.$$

Using the LOLN approximation, we find

$$\ell(\theta) - \ell(\theta_0) = -\log \frac{c(\theta)}{c(\theta_0)}$$

$$= -\log E_{\theta_0} \left(\exp \left\{ (\theta - \theta_0)^t s(X) \right\} \right)$$

$$\approx -\log \frac{1}{M} \sum_{i=1}^{M} \exp \left\{ (\theta - \theta_0)^t s(X^{(i)}) \right\}.$$

Using the LOLN approximation, we find

$$\begin{split} \ell(\theta) - \ell(\theta_0) &= -\log \frac{c(\theta)}{c(\theta_0)} \\ &= -\log \operatorname{E}_{\theta_0} \left(\exp \left\{ (\theta - \theta_0)^t s(X) \right\} \right) \\ &\approx -\log \frac{1}{M} \sum_{i=1}^M \exp \left\{ (\theta - \theta_0)^t s(X^{(i)}) \right\}. \end{split}$$

Using the LOLN approximation, we find

$$\ell(\theta) - \ell(\theta_0) = -\log \frac{c(\theta)}{c(\theta_0)}$$

$$= -\log E_{\theta_0} \left(\exp \left\{ (\theta - \theta_0)^t s(X) \right\} \right)$$

$$\approx -\log \frac{1}{M} \sum_{i=1}^{M} \exp \left\{ (\theta - \theta_0)^t s(X^{(i)}) \right\}.$$

Obtaining samples via MCMC

MCMC Idea:

Simulate a discrete-time Markov chain whose stationary distribution is the distribution we want to sample from.

We'll discuss two common ways to run such a Markov chain:

- Gibbs sampling
- A Metropolis algorithm

Obtaining samples via MCMC

MCMC Idea:

Simulate a discrete-time Markov chain whose stationary distribution is the distribution we want to sample from.

We'll discuss two common ways to run such a Markov chain:

- Gibbs sampling
- A Metropolis algorithm

Gibbs sampling

- First, select a pair of nodes at random, say (i, j).
- Decide whether to set $X_{ij} = 0$ or $X_{ij} = 1$ at the next time step according to the conditional distribution of X_{ij} given the rest of the network (X_{ij}^c) .
- Based on an earlier calculation, we obtain

$$P_{\theta_0}(X_{ij} = 1 | X_{ij}^c = X_{ij}^c) = \frac{\exp\{\theta_0^t \Delta(s(x))_{ij}\}}{(1 + \exp\{\theta_0^t \Delta(s(x))_{ij}\})}.$$

Gibbs sampling

- First, select a pair of nodes at random, say (i, j).
- Decide whether to set $X_{ij} = 0$ or $X_{ij} = 1$ at the next time step according to the conditional distribution of X_{ij} given the rest of the network (X_{ij}^c) .
- Based on an earlier calculation, we obtain

$$P_{\theta_0}(X_{ij} = 1 | X_{ij}^c = X_{ij}^c) = \frac{\exp\{\theta_0^t \Delta(s(x))_{ij}\}}{(1 + \exp\{\theta_0^t \Delta(s(x))_{ij}\})}.$$

Gibbs sampling

- First, select a pair of nodes at random, say (i,j).
- Decide whether to set $X_{ij} = 0$ or $X_{ij} = 1$ at the next time step according to the conditional distribution of X_{ij} given the rest of the network (X_{ii}^c) .
- Based on an earlier calculation, we obtain

$$P_{\theta_0}(X_{ij} = 1 | X_{ij}^c = X_{ij}^c) = \frac{\exp\{\theta_0^t \Delta(s(x))_{ij}\}}{(1 + \exp\{\theta_0^t \Delta(s(x))_{ij}\})}.$$

- First, select a pair of nodes at random, say (i, j).
- Calculate the ratio

$$\pi = rac{P(X_{ij} ext{ changes}|X_{ij}^c = x_{ij}^c)}{P(X_{ij} ext{ does not change}|X_{ij}^c = x_{ij}^c)} = \exp\{\pm heta_0^t \Delta(s(x))_{ij}\}$$

- Accept the change of X_{ii} with probability min $\{1, \pi\}$.
- This scheme generally has better properties than Gibbs sampling.

- First, select a pair of nodes at random, say (i, j).
- Calculate the ratio

$$\pi = rac{P(X_{ij} ext{ changes} | X_{ij}^c = X_{ij}^c)}{P(X_{ij} ext{ does not change} | X_{ij}^c = X_{ij}^c)} = \exp\{\pm heta_0^t \Delta(s(x))_{ij}\}$$

- Accept the change of X_{ij} with probability min $\{1, \pi\}$.
- This scheme generally has better properties than Gibbs sampling.

- First, select a pair of nodes at random, say (i, j).
- Calculate the ratio

$$\pi = rac{P(X_{ij} ext{ changes} | X_{ij}^c = x_{ij}^c)}{P(X_{ij} ext{ does not change} | X_{ij}^c = x_{ij}^c)} = \exp\{\pm heta_0^t \Delta(s(x))_{ij}\}$$

- Accept the change of X_{ij} with probability min $\{1, \pi\}$.
- This scheme generally has better properties than Gibbs sampling.

- First, select a pair of nodes at random, say (i, j).
- Calculate the ratio

$$\pi = \frac{P(X_{ij} \text{ changes}|X_{ij}^c = x_{ij}^c)}{P(X_{ij} \text{ does not change}|X_{ij}^c = x_{ij}^c)}$$

$$= \exp\{\pm \theta_0^t \Delta(s(x))_{ij}\}$$

- Accept the change of X_{ii} with probability min $\{1, \pi\}$.
- This scheme generally has better properties than Gibbs sampling.

How should θ_0 be chosen?

- Theoretically, the estimated value of $\ell(\theta) \ell(\theta_0)$ converges to the true value as the size of the MCMC sample increases, regardless of the value of θ_0 .
- However, this convergence can be agonizingly slow, especially if θ_0 is not chosen close to the maximizer of the likelihood.
- A choice that sometimes works is the MPLE (maximum pseudolikelihood estimate)

How should θ_0 be chosen?

- Theoretically, the estimated value of $\ell(\theta) \ell(\theta_0)$ converges to the true value as the size of the MCMC sample increases, regardless of the value of θ_0 .
- However, this convergence can be agonizingly slow, especially if θ_0 is not chosen close to the maximizer of the likelihood.
- A choice that sometimes works is the MPLE (maximum pseudolikelihood estimate)

How should θ_0 be chosen?

- Theoretically, the estimated value of $\ell(\theta) \ell(\theta_0)$ converges to the true value as the size of the MCMC sample increases, regardless of the value of θ_0 .
- However, this convergence can be agonizingly slow, especially if θ_0 is not chosen close to the maximizer of the likelihood.
- A choice that sometimes works is the MPLE (maximum pseudolikelihood estimate)

A numerical example

Summary of output

Newton-Raphson iterations: 32 MCMC sample of size 10000

Monte Carlo MLE Results:

	tnetau	estimate	s.e.	p-value
match.grade	1.0706	1.4118	0.4988	0.0054
dmatch.sex.0	1.0383	1.4660	0.7482	0.0522
${\tt dmatch.sex.1}$	-0.9387	-0.7195	0.6767	0.2897
triangle	1.1864	1.0389	0.5750	0.0732
kstar1	9.3754	8.2408	5.3026	0.1226
kstar2	-8.1424	-7.5155	4.4219	0.0916
kstar3	5.2464	5.0092	3.3080	0.1324
kstar4	-2.4226	-2.4512	1.8068	0.1773

Log likelihood of g: -78.52976

Some Useful References

- Frank, O. and D. Strauss (1986), Markov graphs, JASA
- Geyer, C. J. and E. Thompson (1992), Constrained Monte Carlo maximum likelihood for dependent data, *J. Roy. Stat.* Soc. B
- Holland, P. W. and S. Leinhardt (1981), An exponential family of probability distributions for directed graphs, JASA
- Snijders, Tom A. B. (2002), Markov chain Monte Carlo estimation of exponential random graph models, *J. Soc.* Struct.
- Strauss, D. and M. Ikeda (1990), Pseudolikelihood estimation for social networks, JASA
- Wasserman, S. and P. Pattison (1996), Logit models and logistic regression for social networks: I. An introduction to Markov graphs and p*, Psychometrika