Breast Cancer Prediction from Cytopathology Data

소개

- The Breast Cancer (Wisconsin) Diagnosis dataset 은 세포핵의 30 가지 특성을 나타나는 특성치와 진단 데이터를 포함.
- 각각의 세포핵에 대해서 계산되어진 실수값을 갖는 10 가지 변수들
 - radius (중심에서 중심까지의 거리의 평균);
 - texture (그레이 스케일 값의 표준 편차);
 - perimeter(둘레);
 - area;
 - smoothness (반경 길이의 국부적 인 변화);
 - compactness (둘레 ^ 2 / area 1.0);
 - concavity (윤곽의 오목한 부분의 정도);
 - concave points (윤곽의 오목한 부분의 수);
 - symmetry;
 - fractal dimension ("해안선 근사"-1).
- 10 개의 변수에서 평균(mean), 표준오차(se), worst 또는 largest 3 가지를 계산해서 총 30 개의 특성치를 생성.
- 진단값을 위한 예측값들을 이해하기 위해서 특성들을 분석해보고, 여러 가지 다른 알고리즘으로 진단을 예측하는 모델 을 생성

준비물

- ggbiplot for representation of data grouped on category in the PCA transform components plane;
- ggplot2g for representation of data grouped on category in the plane defined by pairs of features;

```
#this Kernel uses ggbiplot from https://github.com/vqv/ggbiplot/
#
# ggscreeplot.r
```

```
#
  Copyright 2011 Vincent Q. Vu.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.
#' Screeplot for Principal Components
#' @param pcobj
                       an object returned by prcomp() or princomp()
                        the type of scree plot. 'pev' corresponds proportio
#' @param type
n of explained variance, i.e. the eigenvalues divided by the trace. 'cev' cor
responds to the cumulative proportion of explained variance, i.e. the partial
sum of the first k eigenvalues divided by the trace.
#' @export
#' @examples
#"
    data(wine)
#' wine.pca <- prcomp(wine, scale. = TRUE)</pre>
    print(ggscreeplot(wine.pca))
ggscreeplot <- function(pcobj, type = c('pev', 'cev'))</pre>
 type <- match.arg(type)</pre>
  d <- pcobj$sdev^2</pre>
  yvar <- switch(type,</pre>
                 pev = d / sum(d),
                 cev = cumsum(d) / sum(d))
  yvar.lab <- switch(type,</pre>
                     pev = 'proportion of explained variance',
                     cev = 'cumulative proportion of explained variance')
  df <- data.frame(PC = 1:length(d), yvar = yvar)</pre>
  ggplot(data = df, aes(x = PC, y = yvar)) +
    xlab('principal component number') + ylab(yvar.lab) +
```

```
geom_point() + geom_path()
}
#
#
  ggbiplot.r
#
#
  Copyright 2011 Vincent Q. Vu.
  This program is free software; you can redistribute it and/or
#
  modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation; either version 2
  of the License, or (at your option) any later version.
  This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.
#' Biplot for Principal Components using ggplot2
#'
#' @param pcobj
                          an object returned by prcomp() or princomp()
#' @param choices
                          which PCs to plot
#' @param scale
                          covariance biplot (scale = 1), form biplot (scale =
 0). When scale = 1, the inner product between the variables approximates the
 covariance and the distance between the points approximates the Mahalanobis
distance.
#' @param obs.scale
                          scale factor to apply to observations
#' @param var.scale
                          scale factor to apply to variables
#' @param pc.biplot
                         for compatibility with biplot.princomp()
                         optional factor variable indicating the groups that
#' @param groups
the observations belong to. If provided the points will be colored according
to groups
#' @param ellipse
                          draw a normal data ellipse for each group?
#' @param ellipse.prob
                          size of the ellipse in Normal probability
#' @param labels
                          optional vector of labels for the observations
#' @param labels.size
                          size of the text used for the labels
#' @param alpha
                          alpha transparency value for the points (0 = transp
arent, 1 = opaque)
                          draw a correlation circle? (only applies when prcom
#' @param circle
p was called with scale = TRUE and when var.scale = 1)
#' @param var.axes
                          draw arrows for the variables?
#' @param varname.size size of the text for variable names
#'@param varname.adjust adjustment factor the placement of the variable nam
```

```
es, >= 1 means farther from the arrow
#'@param varname.abbrev whether or not to abbreviate the variable names
#'
#' @return
                            a ggplot2 plot
#' @export
#' @examples
    data(wine)
#' wine.pca <- prcomp(wine, scale. = TRUE)</pre>
#' print(ggbiplot(wine.pca, obs.scale = 1, var.scale = 1, groups = wine.cla
ss, ellipse = TRUE, circle = TRUE))
ggbiplot <- function(pcobj, choices = 1:2, scale = 1, pc.biplot = TRUE,</pre>
                        obs.scale = 1 - scale, var.scale = scale,
                        groups = NULL, ellipse = FALSE, ellipse.prob = 0.68,
                        labels = NULL, labels.size = 3, alpha = 1,
                       var.axes = TRUE,
                        circle = FALSE, circle.prob = 0.69,
                        varname.size = 3, varname.adjust = 1.5,
                        varname.abbrev = FALSE, ...)
  library(ggplot2)
  library(plyr)
  library(scales)
  library(grid)
  stopifnot(length(choices) == 2)
  # Recover the SVD
 if(inherits(pcobj, 'prcomp')){
    nobs.factor <- sqrt(nrow(pcobj$x) - 1)</pre>
    d <- pcobj$sdev</pre>
    u \leftarrow sweep(pcobj\$x, 2, 1 / (d * nobs.factor), FUN = '*')
    v <- pcobj$rotation</pre>
  } else if(inherits(pcobj, 'princomp')) {
    nobs.factor <- sqrt(pcobj$n.obs)</pre>
    d <- pcobj$sdev</pre>
    u <- sweep(pcobj$scores, 2, 1 / (d * nobs.factor), FUN = '*')</pre>
    v <- pcobj$loadings</pre>
  } else if(inherits(pcobj, 'PCA')) {
    nobs.factor <- sqrt(nrow(pcobj$call$X))</pre>
    d <- unlist(sqrt(pcobj$eig)[1])</pre>
    u <- sweep(pcobj$ind$coord, 2, 1 / (d * nobs.factor), FUN = '*')</pre>
    v <- sweep(pcobj$var$coord,2,sqrt(pcobj$eig[1:ncol(pcobj$var$coord),1]),F</pre>
  } else if(inherits(pcobj, "lda")) {
      nobs.factor <- sqrt(pcobj$N)</pre>
      d <- pcobj$svd</pre>
      u <- predict(pcobj)$x/nobs.factor</pre>
      v <- pcobj$scaling</pre>
```

```
d.total <- sum(d^2)
} else {
  stop('Expected a object of class prcomp, princomp, PCA, or lda')
}
# Scores
choices <- pmin(choices, ncol(u))</pre>
df.u <- as.data.frame(sweep(u[,choices], 2, d[choices]^obs.scale, FUN='*'))</pre>
# Directions
v <- sweep(v, 2, d^var.scale, FUN='*')</pre>
df.v <- as.data.frame(v[, choices])</pre>
names(df.u) <- c('xvar', 'yvar')</pre>
names(df.v) <- names(df.u)</pre>
if(pc.biplot) {
  df.u <- df.u * nobs.factor</pre>
}
# Scale the radius of the correlation circle so that it corresponds to
# a data ellipse for the standardized PC scores
r <- sqrt(qchisq(circle.prob, df = 2)) * prod(colMeans(df.u^2))^(1/4)
# Scale directions
v.scale <- rowSums(v^2)</pre>
df.v <- r * df.v / sqrt(max(v.scale))</pre>
# Change the labels for the axes
if(obs.scale == 0) {
  u.axis.labs <- paste('standardized PC', choices, sep='')</pre>
} else {
  u.axis.labs <- paste('PC', choices, sep='')</pre>
}
# Append the proportion of explained variance to the axis labels
u.axis.labs <- paste(u.axis.labs,</pre>
                      sprintf('(%0.1f%% explained var.)',
                               100 * pcobj$sdev[choices]^2/sum(pcobj$sdev^2)))
# Score Labels
if(!is.null(labels)) {
  df.u$labels <- labels</pre>
}
# Grouping variable
if(!is.null(groups)) {
df.u$groups <- groups
```

```
}
# Variable Names
if(varname.abbrev) {
  df.v$varname <- abbreviate(rownames(v))</pre>
} else {
  df.v$varname <- rownames(v)</pre>
}
# Variables for text label placement
df.v$angle <- with(df.v, (180/pi) * atan(yvar / xvar))</pre>
df.v$hjust = with(df.v, (1 - varname.adjust * sign(xvar)) / 2)
# Base plot
g <- ggplot(data = df.u, aes(x = xvar, y = yvar)) +</pre>
        xlab(u.axis.labs[1]) + ylab(u.axis.labs[2]) + coord_equal()
if(var.axes) {
  # Draw circle
  if(circle)
    theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
    circle <- data.frame(xvar = r * cos(theta), yvar = r * sin(theta))</pre>
    g <- g + geom_path(data = circle, color = muted('white'),</pre>
                        size = 1/2, alpha = 1/3)
  }
  # Draw directions
  g <- g +
    geom_segment(data = df.v,
                  aes(x = 0, y = 0, xend = xvar, yend = yvar),
                  arrow = arrow(length = unit(1/2, 'picas')),
                  color = muted('red'))
}
# Draw either labels or points
if(!is.null(df.u$labels)) {
  if(!is.null(df.u$groups)) {
    g <- g + geom_text(aes(label = labels, color = groups),</pre>
                        size = labels.size)
  } else {
    g <- g + geom_text(aes(label = labels), size = labels.size)</pre>
} else {
  if(!is.null(df.u$groups)) {
    g <- g + geom_point(aes(color = groups), alpha = alpha)</pre>
  } else {
    g <- g + geom_point(alpha = alpha)</pre>
```

```
}
  }
  # Overlay a concentration ellipse if there are groups
  if(!is.null(df.u$groups) && ellipse) {
    theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
    circle <- cbind(cos(theta), sin(theta))</pre>
    ell <- ddply(df.u, 'groups', function(x) {
      if(nrow(x) \leftarrow 2) {
        return(NULL)
      }
      sigma <- var(cbind(x$xvar, x$yvar))</pre>
      mu <- c(mean(x$xvar), mean(x$yvar))</pre>
      ed <- sqrt(qchisq(ellipse.prob, df = 2))</pre>
      data.frame(sweep(circle %*% chol(sigma) * ed, 2, mu, FUN = '+'),
                  groups = x groups[1]
    })
    names(ell)[1:2] <- c('xvar', 'yvar')</pre>
    g <- g + geom_path(data = ell, aes(color = groups, group = groups))</pre>
  }
  # Label the variable axes
  if(var.axes) {
    g <- g +
    geom_text(data = df.v,
              aes(label = varname, x = xvar, y = yvar,
                   angle = angle, hjust = hjust),
               color = 'darkred', size = varname.size)
  }
  # Change the name of the Legend for groups
  # if(!is.null(groups)) {
    g <- g + scale_color_brewer(name = deparse(substitute(groups)),</pre>
                                    palette = 'Dark2')
  # }
  # TODO: Add a second set of axes
  return(g)
}
boxplot2g = function(x,y=NULL, groups = NULL, smooth = loess, smooth.args = 1
ist(span = 0.1), colv = NULL, alpha = 1, n = 360,...)
  prbs \leftarrow c(0.25,0.5,0.75)
  if(is.null(y)){
    stopifnot(ncol(x)==2)
```

```
data <- as.data.frame(x)</pre>
}else{
  data <- as.data.frame(cbind(x,y))</pre>
}
if(is.null(groups)){
  data$groups <- as.factor(0)</pre>
}else{
  data$groups <- as.factor(groups)</pre>
}
labs <- names(data)</pre>
names(data) <- c("x","y","groups")</pre>
DM <- data.matrix(data)</pre>
#require(ggplot2)
# initiate the smoother
if(is.logical(smooth)){
  do.smooth <- smooth
}else{
  do.smooth <- TRUE</pre>
if(do.smooth){
  poss.args <- names(formals(smooth))</pre>
  spec.args <- names(smooth.args)</pre>
  ind <- match(spec.args, poss.args)</pre>
  for(i in seq_along(ind)){
    formals(smooth)[ind[i]] <- smooth.args[[i]]</pre>
  if("span" %in% poss.args){
    formals(smooth)$span <- formals(smooth)$span/3</pre>
}else{
  smooth <- NULL
phi = seq(360/n, 360, 360/n)/180*pi
e1 <- new.env()
e1$vectors <- cbind(sin(phi),cos(phi))</pre>
ntv <- nlevels(data$groups)</pre>
if(is.null(colv)){
  #print(ntv)
  if(ntv == 1){
    colv = 1
```

```
}else{
      colv <- rainbow(ntv)</pre>
    }
  }
  e1$colv <- colv
  e1$lvls <- levels(data$groups)</pre>
  #colv <- colv[match(groups,levels(as.factor(data$groups)))]</pre>
  #e1$gp <- qplot(data$x, data$y, colour = data$groups)</pre>
  e1$gp <- ggplot(data=data,aes(x=x,y=y,colour=groups))+geom_point(alpha=alph</pre>
a)
  #print(formals(smooth))
  if(ntv == 1){
    groupbox2d(x=data,env=e1,prbs=prbs,smooth=smooth,do.smooth)
  }else{
    by(data,groups, groupbox2d, env= e1, prbs = prbs, smooth = smooth)
  }
  #e1$gp <- e1$gp + opts(legend.position = "none")</pre>
  return(e1$gp)
groupbox2d = function( x, env, prbs, past, smooth){
  grp <- x[1,3]
  colid <- match(grp, env$lvls)</pre>
  if(any(colid)){
    colv <- env$colv[]
  }else{
    colv <- env$col[1]</pre>
  }
  xs < -x[,1:2]
  mm <- apply(xs,2,mean)</pre>
  xs <- data.matrix(xs) - rep(mm,each=nrow(xs))</pre>
  S \leftarrow cov(xs)
  if (requireNamespace("MASS", quietly = TRUE)) {
    Sinv <- MASS::ginv(S)</pre>
    SSinv <- svd(Sinv)</pre>
    SSinv <- SSinv$u %*% diag(sqrt(SSinv$d))</pre>
    SS <- MASS::ginv(SSinv)</pre>
  }else{
    Sinv <- solve(S)
    SSinv <- svd(Sinv)
    SSinv <- SSinv$u %*% diag(sqrt(SSinv$d))</pre>
    SS <- solve(SSinv)</pre>
```

```
}
  xs <- xs %*% SSinv
  prj <- xs %*% t(env$vectors)</pre>
  qut <- t(apply(prj,2, function(z){</pre>
    quarts <- quantile(z, probs = prbs)</pre>
    iqr <- quarts[3]-quarts[1]</pre>
    w1 \leftarrow min(z[which(z >= quarts[1] - 1.5*iqr)])
    \#w2 \leftarrow \max(z[which(z \leftarrow quarts[3] + 1.5*iqr)])
    #return(c(w1,quarts,w2))
    return(c(w1,quarts))
  }))
  #print(formals(smooth))
  if( !is.null(smooth) ){
    n <- nrow(qut)</pre>
    qut <- apply(qut,2,function(z){</pre>
      x < -1:(3*n)
      z \leftarrow rep(z,3)
      ys <- predict(smooth(z~x))</pre>
      return(ys[(n+1):(2*n)])
    })
    #print(dim(qut))
  }
  ccBox <- env$vectors*qut[,2]
  md <- data.frame((env$vectors*qut[,3])%*%SS)</pre>
  md <- sapply(md, mean)+mm</pre>
  md[3] <- grp
  ccWsk <- env$vectors*qut[,1]</pre>
  ccc <- data.frame(rbind(ccBox,ccWsk) %*% SS + rep(mm,each=2*nrow(ccBox)))</pre>
  ccc$grp <- as.factor(rep(c("box","wsk"),each=nrow(ccBox)))</pre>
  ccc$groups <- factor(grp)</pre>
  md <- data.frame(md[1],md[2],grp)</pre>
  names(md) <- names(ccc)[-3]</pre>
  X1 <- NULL
  X2 <- NULL
  groups <- NULL
  #env$gp <- env$gp + geom_point(x=md[1],y=md[2],colour=md[3])</pre>
  env$gp <- env$gp + geom_point(data=md,aes(x=X1,y=X2, colour = groups),size=
5) + scale_colour_manual(values = colv)
```

```
env$gp <- env$gp + geom_path(data=ccc, aes(x=X1,y=X2,group=grp, colour = gr
oups), alpha = 1/8)
  env$gp <- env$gp + geom_polygon(data=ccc,aes(x=X1,y=X2,group=grp, colour =
groups, fill = groups), alpha = 1/8)
  env$gp <- env$gp + geom_point(data=md,aes(x=X1,y=X2),size=3,alpha=1,colour=
"white")
  env$gp <- env$gp + geom_point(data=md,aes(x=X1,y=X2),size=1,alpha=1)
  return( invisible(TRUE) )</pre>
```

데이터 읽기

```
setwd('D:/Work_Git/DeepMenia/part02/week1_180608')
raw.data <- read.csv("Breast_Cancer_Wisconsin_(Diagnostic)_Data_Set.csv")
print(sprintf("Number of data rows: %d",nrow(raw.data)))
## [1] "Number of data rows: 569"
print(sprintf("Number of data columns: %d",ncol(raw.data)))
## [1] "Number of data columns: 33"</pre>
```

데이터 탐색

```
summary(raw.data)
##
          id
                        diagnosis radius mean
                                                     texture mean
## Min.
                 8670
                        B:357
                                   Min.
                                          : 6.981
                                                    Min.
                                                           : 9.71
##
   1st Qu.:
               869218
                        M:212
                                   1st Qu.:11.700
                                                    1st Qu.:16.17
##
   Median :
               906024
                                                    Median :18.84
                                   Median :13.370
           : 30371831
## Mean
                                   Mean
                                          :14.127
                                                    Mean
                                                            :19.29
                                                    3rd Qu.:21.80
##
   3rd Qu.: 8813129
                                   3rd Qu.:15.780
##
           :911320502
   Max.
                                   Max.
                                          :28.110
                                                    Max.
                                                            :39.28
##
   perimeter_mean
                       area_mean
                                       smoothness_mean
                                                         compactness_mean
##
   Min.
           : 43.79
                     Min.
                             : 143.5
                                       Min.
                                              :0.05263
                                                          Min.
                                                                 :0.01938
   1st Ou.: 75.17
                     1st Qu.: 420.3
                                       1st Ou.:0.08637
                                                          1st Ou.:0.06492
##
   Median : 86.24
                     Median : 551.1
                                       Median :0.09587
                                                         Median :0.09263
   Mean
           : 91.97
                     Mean
                             : 654.9
                                       Mean
                                              :0.09636
                                                         Mean
                                                                 :0.10434
##
    3rd Qu.:104.10
                     3rd Qu.: 782.7
                                       3rd Qu.:0.10530
                                                          3rd Qu.:0.13040
##
   Max.
           :188.50
                     Max.
                             :2501.0
                                       Max.
                                              :0.16340
                                                         Max.
                                                                 :0.34540
##
   concavity mean
                      concave.points mean symmetry mean
   Min.
##
           :0.00000
                              :0.00000
                                                  :0.1060
                      Min.
                                           Min.
##
   1st Qu.:0.02956
                      1st Qu.:0.02031
                                           1st Qu.:0.1619
   Median :0.06154
                      Median :0.03350
                                           Median :0.1792
##
## Mean
           :0.08880
                      Mean
                              :0.04892
                                           Mean
                                                  :0.1812
##
    3rd Ou.:0.13070
                      3rd Ou.:0.07400
                                           3rd Ou.:0.1957
##
   Max.
           :0.42680
                      Max.
                              :0.20120
                                           Max.
                                                  :0.3040
   fractal dimension mean
                              radius se
                                               texture se
                                                                perimeter se
```

```
Min.
                                                                Min. : 0.757
##
           :0.04996
                            Min.
                                    :0.1115
                                              Min.
                                                      :0.3602
##
    1st Qu.:0.05770
                            1st Qu.:0.2324
                                              1st Qu.:0.8339
                                                                1st Qu.: 1.606
##
    Median :0.06154
                            Median :0.3242
                                              Median :1.1080
                                                                Median : 2.287
##
    Mean
           :0.06280
                            Mean
                                    :0.4052
                                              Mean
                                                      :1.2169
                                                                Mean
                                                                        : 2.866
    3rd Qu.:0.06612
##
                            3rd Qu.:0.4789
                                              3rd Qu.:1.4740
                                                                3rd Qu.: 3.357
                                    :2.8730
##
    Max.
                                                      :4.8850
                                                                Max.
           :0.09744
                            Max.
                                              Max.
                                                                        :21.980
                       smoothness_se
                                           compactness_se
##
       area se
                                                                concavity se
##
    Min.
           : 6.802
                       Min.
                              :0.001713
                                           Min.
                                                   :0.002252
                                                               Min.
                                                                       :0.00000
##
    1st Qu.: 17.850
                       1st Qu.:0.005169
                                           1st Qu.:0.013080
                                                               1st Qu.:0.01509
                                                               Median :0.02589
##
    Median : 24.530
                       Median :0.006380
                                           Median :0.020450
##
    Mean
           : 40.337
                       Mean
                              :0.007041
                                           Mean
                                                   :0.025478
                                                               Mean
                                                                       :0.03189
##
    3rd Qu.: 45.190
                       3rd Qu.:0.008146
                                           3rd Qu.:0.032450
                                                               3rd Qu.:0.04205
##
    Max.
           :542.200
                       Max.
                              :0.031130
                                           Max.
                                                   :0.135400
                                                               Max.
                                                                       :0.39600
##
    concave.points_se
                         symmetry_se
                                            fractal_dimension_se
##
    Min.
           :0.000000
                        Min.
                               :0.007882
                                            Min.
                                                    :0.0008948
##
    1st Qu.:0.007638
                        1st Qu.:0.015160
                                            1st Qu.:0.0022480
##
    Median :0.010930
                        Median :0.018730
                                            Median :0.0031870
##
    Mean
           :0.011796
                        Mean
                                :0.020542
                                            Mean
                                                    :0.0037949
##
    3rd Qu.:0.014710
                        3rd Qu.:0.023480
                                            3rd Qu.:0.0045580
##
    Max.
           :0.052790
                                :0.078950
                                            Max.
                        Max.
                                                    :0.0298400
##
     radius worst
                     texture worst
                                      perimeter worst
                                                          area worst
##
    Min.
           : 7.93
                     Min.
                            :12.02
                                      Min.
                                             : 50.41
                                                        Min.
                                                               : 185.2
##
    1st Qu.:13.01
                     1st Qu.:21.08
                                      1st Qu.: 84.11
                                                        1st Qu.: 515.3
##
    Median :14.97
                     Median :25.41
                                      Median : 97.66
                                                        Median : 686.5
##
    Mean
           :16.27
                     Mean
                            :25.68
                                      Mean
                                             :107.26
                                                        Mean
                                                               : 880.6
##
                                                        3rd Qu.:1084.0
    3rd Qu.:18.79
                     3rd Qu.:29.72
                                      3rd Qu.:125.40
##
    Max.
           :36.04
                     Max.
                            :49.54
                                      Max.
                                             :251.20
                                                        Max.
                                                                :4254.0
##
    smoothness worst
                       compactness_worst concavity_worst concave.points_worst
##
    Min.
           :0.07117
                              :0.02729
                                                  :0.0000
                       Min.
                                          Min.
                                                            Min.
                                                                    :0.00000
##
    1st Qu.:0.11660
                       1st Qu.:0.14720
                                          1st Qu.:0.1145
                                                            1st Qu.:0.06493
##
    Median :0.13130
                                                            Median :0.09993
                       Median :0.21190
                                          Median :0.2267
##
    Mean
           :0.13237
                       Mean
                               :0.25427
                                          Mean
                                                  :0.2722
                                                            Mean
                                                                    :0.11461
##
    3rd Qu.:0.14600
                       3rd Qu.:0.33910
                                          3rd Qu.:0.3829
                                                            3rd Qu.:0.16140
##
    Max.
           :0.22260
                       Max.
                              :1.05800
                                          Max.
                                                  :1.2520
                                                            Max.
                                                                    :0.29100
##
    symmetry worst
                      fractal dimension worst
                                                  Χ
           :0.1565
                                               Mode:logical
##
    Min.
                      Min.
                             :0.05504
##
    1st Qu.:0.2504
                                               NA's:569
                      1st Qu.:0.07146
##
    Median :0.2822
                      Median :0.08004
##
    Mean
           :0.2901
                      Mean
                             :0.08395
##
    3rd Qu.:0.3179
                      3rd Qu.:0.09208
##
    Max.
           :0.6638
                      Max.
                             :0.20750
```

 diagnosis 필드는 B (beningn) 또는 M (malignant) 값을 갖음. 이 카테고리별로 환자수를 확인

```
diagnostic <- plyr::count(raw.data$diagnosis)
print(sprintf("Malignant: %d | Benign: %d",diagnostic$freq[2],diagnostic$freq
[1]))</pre>
```

```
## [1] "Malignant: 212 | Benign: 357"
print(sprintf("Percent of malignant tumor: %.1f%", round(diagnostic$freq[2]/n
row(raw.data)*100,1)))
## [1] "Percent of malignant tumor: 37.3%"
```

Features plots

- id 와 diagnostic 필드는 제거
- NA 값이 많은 X 필드도 제거

```
newNames = c(
  "fractal_dimension_mean", "fractal_dimension_se", "fractal_dimension_worst
  "symmetry_mean", "symmetry_se", "symmetry_worst",
  "concave.points_mean", "concave.points_se", "concave.points_worst",
  "concavity_mean", "concavity_se", "concavity_worst",
  "compactness_mean", "compactness_se", "compactness_worst",
  "smoothness_mean", "smoothness_se", "smoothness_worst",
  "area_mean", "area_se", "area_worst",
  "perimeter_mean", "perimeter_se", "perimeter_worst",
"texture_mean", "texture_se", "texture_worst",
"radius_mean", "radius_se", "radius_worst"
bc.data = (raw.data[,newNames])
bc.diag = raw.data[,2]
Feature density
```

```
if( !require(caret) ) {
    install.packages('caret')
library(caret)
scales <- list(x=list(relation="free"),y=list(relation="free"), cex=0.6)</pre>
featurePlot(x=bc.data, y=bc.diag, plot="density", scales=scales,
            layout = c(3,10), auto.key = list(columns = 2), pch = "|")
```


- concave.points_worst, concavity_worst, perimeter_worst, area_mean, perimeter_mean 변수가 종양 여부를 잘 구분.
- symmetry_se, smoothness_se 변수는 종양 여부를 구분하지 못함.

Feature pairs

mean, se 및 worst 속성으로 그룹화된 Feature pairs 을 나타냅니다.

```
newNamesMean = c(
  "fractal_dimension_mean",
  "symmetry mean",
  "concave.points_mean",
  "concavity_mean",
  "compactness_mean",
  "smoothness_mean",
  "area_mean",
  "perimeter mean",
  "texture_mean" ,
  "radius mean"
bcM.data = (raw.data[,newNamesMean])
bcM.diag = raw.data[,2]
scales <- list(x=list(relation="free"), y=list(relation="free"), cex=0.4)</pre>
featurePlot(x=bcM.data, y=bcM.diag, plot="pairs",scales=scales,
         auto.key = list(columns = 2), pch=".")
```



```
newNamesSE = c(
    "fractal_dimension_se",
    "symmetry_se",
    "concave.points_se",
    "compactness_se",
    "smoothness_se",
    "area_se",
    "perimeter_se",
    "texture_se"
)

bcSE.data = (raw.data[,newNamesSE])
bcSE.diag = raw.data[,2]
```



```
newNamesW = c(
    "fractal_dimension_worst",
    "symmetry_worst",
    "concave.points_worst",
    "compactness_worst",
    "smoothness_worst",
    "area_worst",
    "perimeter_worst",
    "texture_worst",
    "radius_worst"
```


Pearson correlation

피어슨 상관을 조사

```
nc=ncol(raw.data)
df <- raw.data[,3:nc-1]</pre>
```


• 가장 높은 상관계수 are between:

- perimeter_mean and radius_worst;
- area_worst and radius_worst;
- perimeter_worst and radius_worst, perimeter_mean, area_worst, area_mean, radius_mean;
- texture_mean and texture_worst;

Highly correlated pairs

```
b1 <- boxplot2g(bc.data$radius worst, bc.data$perimeter mean, bc.diag, smooth
 = loess, NULL, NULL) +
  labs(title="Boxplot 2G for highly correlated features", subtitle = "Perimet
er mean vs. Radius worst", x="Radius worst", y="Perimeter mean") + theme_bw()
b2 <- boxplot2g(bc.data$area_worst, bc.data$radius_worst, bc.diag, smooth = 1
oess, NULL, NULL) +
  labs(title="Boxplot 2G for highly correlated features", subtitle = "Area wo
rst vs. Radius worst", x="Radius worst", y="Area worst") + theme bw()
b3 <- boxplot2g(bc.data$texture mean, bc.data$texture worst, bc.diag, smooth
= loess, NULL, NULL) +
  labs(title="Boxplot 2G for highly correlated features", subtitle = "Texture
 mean vs. Texture worst", x="Texture worst", y="Texture mean") + theme bw()
b4 <- boxplot2g(bc.data$area worst, bc.data$perimeter mean, bc.diag, smooth =
 loess, NULL, NULL) +
  labs(title="Boxplot 2G for highly correlated features", subtitle = "Perimet
er mean vs. Area worst", x="Area worst", y="Perimeter mean") + theme bw()
grid.arrange(b1, b2, b3, b4, ncol=2)
```


Boxplot 2G for highly correlated features

Boxplot 2G for highly correlated features

상관 관계가 있는 쌍중 일부가 종양의 양성 여부를 잘 구분하고 있음.

Inverse correlated pairs

```
b5 <- boxplot2g(bc.data$radius mean, bc.data$fractal dimension mean, bc.diag,
 smooth = loess, NULL, NULL) +
  labs(title="Boxplot 2G for inverse correlated feat.", subtitle = "Fractal d
imension mean vs. Radius mean", x="Radius mean", y="Fractal dimension mean")
+ theme bw()
b6 <- boxplot2g(bc.data$area mean, bc.data$fractal dimension mean, bc.diag, s
mooth = loess, NULL, NULL) +
  labs(title="Boxplot 2G for inverse correlated feat.", subtitle = "Fractal d
imension mean vs. Area mean", x="Area mean", y="Fractal dimension mean") + th
eme bw()
grid.arrange(b5, b6, ncol=2)
```

groups В M

2000

2500

Boxplot 2G for inverse correlated feat.

Low correlated pairs

b9 <- boxplot2g(bc.data\$fractal dimension worst, bc.data\$area se, bc.diag, sm ooth = loess, NULL, NULL) + labs(title="Boxplot 2G for low correlated features", subtitle = "Area SE vs. Fractal dimmension worst", x="Fractal dimmension worst", y="Area SE") + them e bw() b10 <- boxplot2g(bc.data\$fractal_dimension_worst, bc.data\$radius_se, bc.diag, smooth = loess, NULL, NULL) + labs(title="Boxplot 2G for low correlated features", subtitle = "Radius SE vs. Fractal dimmension worst", x="Fractal dimmension worst", y="Radius SE") + theme_bw()

```
b11 <- boxplot2g(bc.data$texture_mean, bc.data$smoothness_mean, bc.diag, smoo
th = loess, NULL, NULL) +
  labs(title="Boxplot 2G for low correlated features", subtitle = "Smoothness
 mean vs. Texture mean", x="Texture mean", y="Smoothness mean") + theme_bw()
b12 <- boxplot2g(bc.data$perimeter worst, bc.data$fractal dimension se, bc.di
ag, smooth = loess, NULL, NULL) +
  labs(title="Boxplot 2G for low correlated features", subtitle = "Fractal di
mmension SE vs. Perimeter worst", x="Perimeter worst", y="Fractal dimension S
E") + theme_bw()
```


- 낮은 상관관계인 변수라도 종양 여부를 구분하지 못하는 경우가 있는 것을 확인.(fractal_dimension_worst <-> area_se)
- 종양여부를 잘 구분하는 경우 (perimeter worst <-> fractal dimension se)

Principal Components Analysis (PCA) transform

diagnosis 과 X 컬럼은 제거

```
bc.pca <- prcomp(bc.data, center=TRUE, scale.=TRUE)</pre>
plot(bc.pca, type="1", main='')
```

```
grid(nx = 10, ny = 14)
title(main = "Principal components weight", sub = NULL, xlab = "Components")
box()
```

Principal components weight

- 2 개의 주성분을 평면에 투영
- 두 개의 elips 는 진단의 두 그룹인 B 와 M 의 분포에 대해 0.68 확률 경계를 보여줌.
- A circle superposed over the scatter plot data helps to evaluate the relative ratio between the features in the most important principal components plane.
- 화살표로 그어진 피처는 가장 높은 분산을 가진 피처.

```
ggbiplot(bc.pca, choices=1:2, obs.scale = 1, var.scale = 1, groups = bc.diag,
  ellipse = TRUE, circle = TRUE, varname.size = 3, ellipse.prob = 0.68, circl
e.prob = 0.69) +
  scale_color_discrete(name = 'Diagnosis (B: beningn, M: malignant)') + theme
  _bw() +
  labs(title = "Principal Component Analysis",
  subtitle = "1. Data distribution in the plan of PC1 and PC2\n2. Directions
  of components in the same plane") +
  theme(legend.direction = 'horizontal', legend.position = 'bottom')
```

Principal Component Analysis

- 1. Data distribution in the plan of PC1 and PC2 2. Directions of components in the same plane

Diagnosis (B: beningn, M: malignant) - B - M

- 앞의 2 개의 주성분이 전체 변화의 63.3%설명
- {PC3, PC4} 와 {PC5, PC6} 주성분에서 대해서 투영.

```
pc34<- ggbiplot(bc.pca, choices=3:4, obs.scale = 1, var.scale = 1, groups = b</pre>
c.diag,
        ellipse = TRUE, circle = TRUE, varname.size = 3, ellipse.prob = 0.68,
 circle.prob = 0.69) +
        scale_color_discrete(name = 'Diagnosis (B: beningn, M: malignant)') +
 theme_bw() +
        labs(title = "Principal Component Analysis",
        subtitle = "1. Data distribution in the plan of PC3 and PC4\n2. Direc
tions of components in the same plane") +
        theme(legend.direction = 'horizontal', legend.position = 'bottom')
pc56<- ggbiplot(bc.pca, choices=5:6, obs.scale = 1, var.scale = 1, groups = b</pre>
```

Principal Component Analysis

Data distribution in the plan of PC3 and PC4 Directions of components in the same plane

Principal Component Analysis

1. Data distribution in the plan of PC5 and PC6 2. Directions of components in the same plane

Diagnosis (B: beningn, M: malignant) - B - M

• 주성분 PC3-PC6 이 25.5% 변화를 설명.

Diagnosis (B: beningn, M: malignant) - B - M

PC3:PC6 주성분에서 유의미한 정렬을 관계되지 않음.

t-SNE transform

- PCA 는 선형 알고리즘이지만 t-SNE 는 비선형 차원 감소 알고리즘.
- 여러 기능이있는 데이터 요소의 유사성을 기반으로 관찰 된 클러스터를 식별하여 데이터의 패턴을 찾음.
- 클러스터링 알고리즘이 아니라 데이터 탐색 및 시각화 기술로 사용할 수있는 dimmensionality 감소 알고리즘.

```
library(Rtsne)
colors = rainbow(length(unique(bc.diag)))
names(colors) = unique(bc.diag)
```

```
tsne <- Rtsne(bc.data, dims = 2, perplexity=10, verbose=TRUE, max iter = 500)
## Read the 569 x 30 data matrix successfully!
## Using no dims = 2, perplexity = 10.000000, and theta = 0.500000
## Computing input similarities...
## Normalizing input...
## Building tree...
## - point 0 of 569
## Done in 0.05 seconds (sparsity = 0.064103)!
## Learning embedding...
## Iteration 50: error is 68.363539 (50 iterations in 0.22 seconds)
## Iteration 100: error is 58.906050 (50 iterations in 0.16 seconds)
## Iteration 150: error is 57.193580 (50 iterations in 0.21 seconds)
## Iteration 200: error is 56.521969 (50 iterations in 0.19 seconds)
## Iteration 250: error is 56.170191 (50 iterations in 0.19 seconds)
## Iteration 300: error is 0.741596 (50 iterations in 0.22 seconds)
## Iteration 350: error is 0.567157 (50 iterations in 0.22 seconds)
## Iteration 400: error is 0.534648 (50 iterations in 0.20 seconds)
## Iteration 450: error is 0.514638 (50 iterations in 0.17 seconds)
## Iteration 500: error is 0.505020 (50 iterations in 0.19 seconds)
## Fitting performed in 1.97 seconds.
plot(tsne$Y, t='n', main="t-Distributed Stochastic Neighbor Embedding (t-SNE)
     xlab="t-SNE 1st dimm.", ylab="t-SNE 2nd dimm.")
text(tsne$Y, labels=bc.diag, cex=0.5, col=colors[bc.diag])
```

t-Distributed Stochastic Neighbor Embedding (t-SN

Predictive models

- RandomForest (RF), Gradient Boosting Machine (GBM), Light Gradient Boosting Machine (lightGBM) and XGBoost : 4 가지 알고리즘 사용.
- lightGBM 은 설치를 못 함.

```
df <- raw.data[,2:32]
df$diagnosis = as.integer(factor(df$diagnosis))-1
nrows <- nrow(df)
set.seed(314)
indexT <- sample(1:nrow(df), 0.7 * nrows)

#separate train and validation set
trainset = df[indexT,]
testset = df[-indexT,]</pre>
n <- names(trainset)
```

Random Forest

Model using all features

• tree 개수를 500 으로 설정.

Warning in randomForest.default(m, y, ...): The response has five or fewer ## unique values. Are you sure you want to do regression?

• 에러와 tree 개수를 비교

```
plot(trainset.rf, main="Random Forest: MSE error vs. no of trees")
```

Random Forest: MSE error vs. no of trees

- IncNodePurity 와 % IncMSE 의 두 가지 방법으로 변수의 중요성을 시각화
- IncNodePurity 는 모든 트리에 대해 평균화 된 변수에 대한 분할에서 지니 인덱스로 측정 한 노드 불순물의 총 감소량.
- IncMSE 는 변수 j 가 치환되는 결과 (임의로 섞인 값)로 예측의 mse 가 증가량.

```
varimp <- data.frame(trainset.rf$importance)

vi1 <- ggplot(varimp, aes(x=reorder(rownames(varimp),IncNodePurity), y=IncN
odePurity)) +
    geom_bar(stat="identity", fill="tomato", colour="black") +
    coord_flip() + theme_bw(base_size = 8) +
    labs(title="Prediction using RandomForest with 500 trees", subtitle="Variab
le importance (IncNodePurity)", x="Variable", y="Variable importance (IncNode
Purity)")

vi2 <- ggplot(varimp, aes(x=reorder(rownames(varimp),X.IncMSE), y=X.IncMSE))
+</pre>
```

```
geom_bar(stat="identity", fill="lightblue", colour="black") +
  coord_flip() + theme_bw(base_size = 8) +
  labs(title="Prediction using RandomForest with 500 trees", subtitle="Variab
le importance (%IncMSE)", x="Variable", y="Variable importance (%IncMSE)")
grid.arrange(vi1, vi2, ncol=2)
```


- perimeter_worst, area_worst, concave.points_worst, radius_worst, concavity_mean, concavity_worst, area_se, concave.points_mean 가 중요한 변수
- 그들 대부분은 주요한 Principal Components 평면에서 상위 차원의 기능 목록에 있거나 주요한 Principal Component 인 PC1 과 정렬이 된 변수.

```
testset$predicted <- round(predict(trainset.rf ,testset),0)

plotConfusionMatrix <- function(testset, sSubtitle) {
    tst <- data.frame(testset$predicted, testset$diagnosis)
    opts <- c("Predicted", "True")
    names(tst) <- opts
    cf <- plyr::count(tst)
    cf[opts][cf[opts]==0] <- "Benign"
    cf[opts][cf[opts]==1] <- "Malignant"

ggplot(data = cf, mapping = aes(x = True, y = Predicted)) +
    labs(title = "Confusion matrix", subtitle = sSubtitle) +
    geom_tile(aes(fill = freq), colour = "grey") +
    geom_text(aes(label = sprintf("%1.0f", freq)), vjust = 1) +
    scale_fill_gradient(low = "gold", high = "tomato") +
    theme_bw() + theme(legend.position = "none")
}

plotConfusionMatrix(testset,"Prediction using RandomForest with 500 trees")</pre>
```

Confusion matrix

Prediction using RandomForest with 500 trees


```
print(sprintf("Area under curve (AUC) : %.3f",auc(testset$diagnosis, testset
$predicted)))
## [1] "Area under curve (AUC) : 0.957"
```

Model with reduced number of features

%IncMSE 값에 따라서 중요한 변수만 선택

```
apse = " + ")))
trainset.rf <- randomForest(rf.form,trainset_fl,ntree=500,importance=T)

## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?

#prediction
testset_fl$predicted <- round(predict(trainset.rf ,testset_fl),0)

plotConfusionMatrix(testset_fl,"Prediction using RandomForest with reduced fe
atures set")</pre>
```

Confusion matrix


```
print(sprintf("Area under curve (AUC) : %.3f",auc(testset_fl$diagnosis, tests
et_fl$predicted)))
## [1] "Area under curve (AUC) : 0.949"
print(sprintf("Area under curve (AUC) : %.3f",auc(testset_fl$diagnosis, tests
et_fl$predicted)))
## [1] "Area under curve (AUC) : 0.949"
```

- 변수 개수를 33 개에서 22 개로 줄임.
- 감소 된 특징 집합을 사용하면 진정한 양성 (TP) 수가 감소하고 거짓 음성 (FP) 수가 증가하는 반면 진정한 음성 및 위양성은 변하지 않습니다.

• AUC 는 민감도의 감소와 선택성의 변화로 인해 0.949 으로 감소

Gradient Boosting Machine (GBM)

• 5 fold Cross validation 을 사용.

- 가지 개수를 최적화하기 위해서 gbm.perf()함수 사용.
- This function returns the optimal number of trees for prediction. ## Using cv method...

```
0 100 200 300 400 500 Iteration
```

Confusion matrix

Prediction using GBM (314 trees)


```
print(sprintf("Area under curve (AUC) : %.3f",auc(testset$diagnosis, testset
$predicted)))
## [1] "Area under curve (AUC) : 0.970"
```

Light Gradient Boosting Machines (lightGBM)

• 생략

eXtreme Gradient Boost (XGBoost)

```
dMtrain <- xgb.DMatrix(as.matrix(trainset %>% select(-diagnosis)), label = tr
ainset$diagnosis)
dMtest <- xgb.DMatrix(as.matrix(testset %>% select(-diagnosis,-predicted)), l
abel = testset$diagnosis)
```

We set the XGBoost parameters for the model. We will use a binary logistic objective function. The evaluation metric will be AUC (Area under curve). We start with $\eta = 0.012$, subsample=0.8, max_depth=8, colsample_bytree=0.9 and min_child_weight=5.

- 5fold cross validation 사용.
- 5000 단계의 라운드수와 100 단계의 early stopping 기준을 갖음.
- 100 단계마다 부분 결과 출력.

```
nRounds <- 5000
earlyStoppingRound <- 100
printEveryN = 100
model xgb.cv <- xgb.cv(params=params,</pre>
                      data = dMtrain,
                      maximize = TRUE,
                      nfold = 5,
                      nrounds = nRounds,
                      nthread = 1,
                      early stopping round=earlyStoppingRound,
                      print_every_n=printEveryN)
## [1] train-auc:0.975069+0.001905 test-auc:0.938539+0.022705
## Multiple eval metrics are present. Will use test_auc for early stopping.
## Will train until test auc hasn't improved in 100 rounds.
##
## [101]
            train-auc:0.996977+0.000702 test-auc:0.988625+0.010420
            train-auc:0.998039+0.000626 test-auc:0.990007+0.010265
## [201]
## [301]
            train-auc:0.998606+0.000497 test-auc:0.991752+0.009836
## [401]
            train-auc:0.998815+0.000395 test-auc:0.992137+0.008454
## [501]
            train-auc:0.998982+0.000318 test-auc:0.992530+0.008792
            train-auc:0.999116+0.000219 test-auc:0.992801+0.008901
## [601]
## Stopping. Best iteration:
## [586]
           train-auc:0.999099+0.000237 test-auc:0.992801+0.008901
d <- model_xgb.cv$evaluation_log</pre>
n \leftarrow nrow(d)
v <- model_xgb.cv$best_iteration</pre>
df <- data.frame(x=rep(d$iter, 2), val=c(d$train_auc_mean, d$test_auc_mean),</pre>
                   set=rep(c("train", "test"), each=n))
ggplot(data = df, aes(x=x, y=val)) +
  geom_line(aes(colour=set)) +
  geom vline(xintercept=v) +
```

```
theme_bw() +
labs(title="AUC values for XGBoost with cross-validation", x="Iteration", y
="AUC values (train, test)")
```

AUC values for XGBoost with cross-validation

AUC: 0.99

```
model_xgb <- xgboost(params=params,</pre>
                      data = dMtrain,
                      maximize = TRUE,
                      nrounds = nRounds,
                      nthread = 1,
                      early_stopping_round=earlyStoppingRound,
                      print_every_n=printEveryN)
## [1] train-auc:0.979565
## Will train until train auc hasn't improved in 100 rounds.
##
## [101]
            train-auc:0.997079
## [201]
            train-auc:0.998053
## [301]
            train-auc:0.998666
            train-auc:0.999013
## [401]
            train-auc:0.999173
## [501]
## [601]
            train-auc:0.999333
            train-auc:0.999386
## [701]
## [801]
            train-auc:0.999440
## Stopping. Best iteration:
## [749] train-auc:0.999440
```

```
d <- model_xgb$evaluation_log
n <- nrow(d)
df <- data.frame(x=rep(d$iter), val=d$train_auc)
ggplot(data = df, aes(x=x, y=val)) +
   geom_line() +
   theme_bw() +
   labs(title="AUC values for XGBoost", x="Iteration", y="AUC values (train)")</pre>
```

AUC values for XGBoost

Let's use the model now to predict the test data:

```
testset$predicted <- round(predict(object = model_xgb ,newdata = dMtest),0)</pre>
```

Let's visualize the confusion matrix, to see how accurate are the results we obtained.

```
plotConfusionMatrix(testset, "Prediction using XGBoost")
```

Confusion matrix

Let's calculate as well the AUC for the prediction.

```
print(sprintf("Area under curve (AUC) : %.3f",auc(testset$diagnosis, testset
$predicted)))
## [1] "Area under curve (AUC) : 0.949"
```

결론

- feature analysis 으로 진단을 위한 좋은 예측 변수를 확인해봄.
- 주성분 분석을 통해서 concave.ponts_worst, concavity_mean, concavity_worst,
 perimeter_worst, area_worst 변수가 중요하다는 것을 파악.
- Random Forest, Gradient Boosting Machine (GBM), Light Gradient Boosting Machine (lightGBM) and XGBoost 4 가지 모델을 사용
- GBM, lightGBM and XGBoost 모델을 cross validation 을 사용해서 최적 모델 결정.