EVALUASI MANDIRI OPTIMISASI MATAKULIAH OPTIMISASI MENGENALI FUNGSI KENDALA

Disusun oleh: SHARA ALYA GIFANI MUHYISUNAH G1D021038

Dosen Pengampu: Ir. Novalio Daratha S.T., M.Sc., Ph.D.

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BENGKULU 2024 Nama : SHARA ALYA GIFANI MUHYISUNAH

NPM : G1D021038 Matakuliah : Optimisasi

Fungsi kendala dalam optimisasi adalah persamaan atau ketidaksamaan yang membatasi nilai-nilai yang dapat diambil oleh peubah keputusan dalam suatu masalah. Fungsi kendala memastikan bahwa solusi yang dihasilkan sah dan sesuai dengan batasan-batasan yang ada dalam masalah tersebut.

Ciri-Ciri Fungsi Kendala:

- 1. Mengatur Ruang Solusi: Fungsi kendala mendefinisikan batasan atau ruang solusi yang mungkin.
- 2. Bentuk Matematika:
 - o Bisa berupa persamaan (=).
 - \circ Bisa berupa pertidaksamaan (≤ atau ≥).
- 3. Berhubungan dengan Sumber Daya atau Batasan Sistem: Fungsi kendala biasanya mencerminkan batasan fisik, waktu, biaya, atau kapasitas.

Jenis-Jenis Kendala:

- 1. Kendala Persamaan (Kendala Kesetaraan):
 - o Bentuk: g(x1,x2,...,xn)=0
 - o Contoh: Total produksi harus tepat 100 unit.
 - $x_1+x_2=100$

Misalnya, jika kita ingin menghasilkan total 100 unit produk dari dua mesin, kita bisa menulis kendala sebagai:

- o Jumlah produksi mesin 1+Jumlah produksi mesin 2=100
- 2. Kendala Pertidaksamaan (Kendala Ketimpangan):
 - o Bentuk: $g(x_1,x_2,...,x_n) \le 0$ atau $g(x_1,x_2,...,x_n) \ge 0$
 - o Contoh: Penggunaan bahan baku tidak boleh melebihi kapasitas.
 - $x1+x2 \le K$ (di mana K adalah kapasitas maksimum)

Misalnya, Jika kita memiliki batasan kapasitas bahan baku maksimum 200 unit, kendala bisa ditulis sebagai:

o Bahan baku mesin 1+Bahan baku mesin 2<200

3. Kendala Non-Negatif:

- Keputusan yang diambil tidak boleh bernilai negatif.
- o Contoh: $x1 \ge 0$, $x2 \ge 0$

Misalnya, Jika kita tidak boleh menghasilkan produk dalam jumlah negatif, maka kendala bisa ditulis sebagai:

- o Jumlah produksi mesin 1≥0
- o Jumlah produksi mesin 2≥0

CONTOH

Kasus: Sebuah perusahaan ingin mengirim barang dari dua pabrik ke tiga toko. Biaya pengiriman per unit barang dari masing-masing pabrik ke toko adalah sebagai berikut:

	Toko 1	Toko 2	Toko 3
Pabrik 1	\$5	\$7	\$9
Pabrik 2	\$6	\$5	\$4

- Kapasitas Pabrik 1: 120 unit.
- Kapasitas Pabrik 2: 180 unit.
- Permintaan Toko 1: 90 unit, Toko 2: 130 unit, Toko 3: 70 unit.

Tujuan: Meminimalkan biaya pengiriman.

Model Matematika:

1. Peubah Keputusan:

- o y11,y12,y13y_{11}, y_{12}, y_{13}: Barang dari Pabrik 1 ke Toko 1, 2, dan 3.
- o y21,y22,y23y_{21}, y_{22}, y_{23}: Barang dari Pabrik 2 ke Toko 1, 2, dan 3.

2. Fungsi Objektif (Minimization):

 \circ Z=5y11+7y12+9y13+6y21+5y22+4y23

Di mana Z adalah total biaya pengiriman.

3. Kendala:

- o Kapasitas Pabrik, Setiap pabrik memiliki batasan kapasitas yang tidak boleh dilampaui. Pabrik 1: y11+y12+y13≤120
- o Kapasitas Pabrik, Setiap pabrik memiliki batasan kapasitas yang tidak boleh dilampaui. Pabrik 2: y21+y22+y23≤180

- o Permintaan Toko, Setiap toko memiliki permintaan tertentu yang harus dipenuhi. Toko 1: y11+y21=90
- o Permintaan Toko, Setiap toko memiliki permintaan tertentu yang harus dipenuhi. Toko 2: y12+y22=130
- o Permintaan Toko, Setiap toko memiliki permintaan tertentu yang harus dipenuhi. Toko 3: y13+y23=70
- o Non-Negatif, jumlah barang yang dikirim tidak boleh negative. Kendala non-negatif: Semua yij≥0