Рассмотрим передаточную функцию: $K(x)\frac{1}{(1+\tau_{p1}x)(1+\tau_{p2}x)} = \frac{1}{1+(\tau_{p1}+\tau_{p2})x+\tau_{p1}\tau_{p2}x^2}$

Введем обозначения: $a = \tau_{p1} + \tau_{p2} \ b = \tau_{p1} \tau_{p2}$

Рассмотрим первое условие теоремы:

$$Re(\varkappa K(ix) - K(ix)^* \varepsilon K(ix) - [K(ix) - ix]^* \tau [K(ix) + ix]) \ge \delta$$

Подставим, рассматриваемую передаточную функцию в условие теоремы:

$$K(ix) = \frac{1}{1+ax+bx^2} = \frac{1-bx^2-iax}{(1-bx^2)^2+a^2x^2}$$

$$K(ix)^*K(ix) = \frac{1}{(1-bx^2)^2 + a^2x^2} \frac{\tau b^2x^6 + (\tau a^2 - 2*\tau*b)x^4 + (\varkappa*b + \tau)x^2 + (\varkappa - \varepsilon - \tau)}{(1-bx^2)^2 + a^2x^2} \ge \delta$$

В результате преобразований условие теоремы принимает следующий вид: $\tau b^{2} t^{3} + (\tau a^{2} - 2\tau b - \delta b^{2}) t^{2} + (\varkappa b + \tau - \delta a^{2} + 2\delta b) t + (\varkappa - \varepsilon - \tau - \delta) \ge 0$

$$\Gamma$$
де $t=x^2$

Второе условие теоремы имеет вид:

$$4\varepsilon\delta > \nu^2\varkappa^2$$

$$\frac{4\varepsilon\delta}{\varkappa^2} > \nu^2$$

Хотим найти $\max \nu$. Для этого будем искать максимум $\frac{4\varepsilon\delta}{\kappa^2}$

1. Очевидно, что $\varkappa - \varepsilon - \tau - \delta \ge 0$

2. Так как $\varkappa-\varepsilon-\tau-\delta\geq 0$, то $\varepsilon\leq \varkappa-\tau-\delta$. Для максимизации функции $\frac{4\varepsilon\delta}{\varkappa^2}$ возьмем $\varepsilon=\varkappa-\tau-\delta$ Тогда первое условие теоремы принимает вид: $\tau b^2t^2+(\tau a^2-2\tau b-\delta b^2)t+(\varkappa b+\tau-\delta a^2+2\delta b)\geq 0$

$$\tau b^2 t^2 + (\tau a^2 - 2\tau b - \delta b^2)t + (\varkappa b + \tau - \delta a^2 + 2\delta b) > 0$$

И будем искать максимум следующей функции: $\frac{4\varepsilon\delta}{\varkappa^2}=\frac{4(\varkappa-\tau-\delta)\delta}{\varkappa^2}=4\frac{\delta}{\varkappa}-4\frac{\delta}{\varkappa}\frac{\tau}{\varkappa} 4\frac{\delta^2}{\nu^2} = 4z - 4z_1z - 4z^2,$

где
$$z_1 = \frac{\tau}{\varkappa}, z = \frac{\delta}{\varkappa}$$

Опустим константу, так как она не влияет на максимизацию функции. Будем рассматривать $f(z) = z - z_1 z - z^2$, как функцию от z с параметром z_1 .

Очевидно, что максимум этой функции достигается при $z_{max} = \frac{1-z_1}{2}$ и $f(z_{max}) =$

Для того, что бы выполнялось первое условие теоремы возможны 2 случая: отрицательный дискриминант или оба корня меньше 0.

Рассмотрим дискриминант:

$$D = (\tau a^2 - 2\tau b - \delta b^2)^2 - 4\tau b^2 (\varkappa b + \tau - \delta a^2 + 2\delta b)$$

Pазделим на $\varkappa^2 > 0$

$$\begin{array}{l} \frac{D}{\varkappa^2} = (\frac{\tau}{\varkappa}a^2 - 2\frac{\tau}{\varkappa}b - \frac{\delta}{\varkappa}b^2)^2 - 4\frac{\tau}{\varkappa}b^2(b + \frac{\tau}{\varkappa} - \frac{\delta}{\varkappa}a^2 + 2\frac{\delta}{\varkappa}b) = (z_1a^2 - 2z_1b - zb^2)^2 - 4z_1b^2(b + z_1 - za^2 + 2zb) = (z_1a^2 - 2z_1b - \frac{1-z_1}{2}b^2)^2 - 4z_1b^2(b + z_1 - \frac{1-z_1}{2}a^2 + 1 - z_1b) = z_1^2(-4b^2 - 2a^2b^2 + 4b^3 + (a^2 - 2b + \frac{b^2}{2})^2) - z_1(\frac{b^4}{2} + 2b^3 - a^2b^2 + 4b^2) + \frac{b^4}{4} \end{array}$$

Множество допустимых значений z_1 состоит из тех z_1 для которых: D<0 или $D\geq 0$ и $x_2<0$, где x_2 наибольший корень. Рассмотрим $D_1=(\frac{b^4}{2}+2b^3-a^2b^2+4b^2)^2-b^4(-4b^2-2a^2b^2+4b^3+(a^2-2b+\frac{b^2}{2})^2)$. Реализуется случаи:

$$2.1\ D_1 < 0$$
 и $(-4b^2 - 2a^2b^2 + 4b^3 + (a^2 - 2b + \frac{b^2}{2})^2) > 0$ Пусть $\varkappa = 1$, тогда $D \ge 0$, значит $M = \max_{\frac{(\tau a^2 - 2\tau b - \delta b^2) + \sqrt{D(z_1)}}{2\tau b^2} \le 0} |1 - z_1|$ $f_{max} = \frac{(1-M)^2}{4}$

$$2.2\ D_1 \geq 0\ \text{и}\ (-4b^2-2a^2b^2+4b^3+(a^2-2b+\frac{b^2}{2})^2)>0$$
 Пусть $\varkappa=1$, тогда корни уравнения $D=0$ будут $d_{1,2}=\frac{(\frac{b^4}{2}+2b^3-a^2b^2+4b^2)\pm\sqrt{D_1}}{2(-4b^2-2a^2b^2+4b^3+(a^2-2b+\frac{b^2}{2})^2)}$ При $z_1\in (d_1,d_2)\ D<0$, значит $M_1=\max_{z_1\in (d_1,d_2)}|1-z_1|$ При $z_1\in (-\inf,d_1]\cup [d_2,+\inf)\ D\geq 0$, значит $M_2=\max_{\frac{(\tau a^2-2\tau b-\delta b^2)+\sqrt{D(z_1)}}{2\tau b^2}\leq 0}|1-z_1|$ $M=\max\{M_1,M_2\}$ $f_{max}=\frac{(1-M)^2}{4}$

