МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

Алгоритм Берлекэмпа

ЛАБОРАТОРНАЯ РАБОТА

студента 4 курса 431 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Серебрякова Алексея Владимировича

Научный руководитель		
доцент, к. п. н.		А. С. Гераськин
	полпись, лата	

Саратов 2022

ВА. Алгоритм Берлекэмпа (Berlekamp's Algorithm)

Bxod: Нормированный свободный от квадратов полином p(x) над GF(p), $\deg[p(x)] = n$.

Выход: Неприводимые сомножители полинома p(x) над GF(p).

- [Построение матрицы Q] Построить n x n-матрицу Q так, как описано в (В9). Как показано ниже, это можно сделать одним из двух способов в зависимости от того, насколько велико число p.
- 2. [Триангуляризация Q-I] Привести матрицу Q-I к треугольному виду, вычислив ее ранг n-r и найдя нуль-пространство матрицы Q-I, т.е. найти r линейно независимых векторов b_1, b_2, \ldots, b_r , таких, что $b_j[Q-I]=0$ для $1\leqslant j\leqslant r$. [Первый вектор всегда может быть выбран в виде $(1,0,\ldots,0)$, что представляет тривиальное решение $b_1(x)=1$ уравнения (B2). Приведение к треугольному виду может быть осуществлено так, как описано в разд. 5.3.3, или с использованием представленного ниже алгоритма NS.] В этой точке r- это число неприводимых сомножителей полинома p(x), поскольку решениями уравнения (B2) являются p^r полиномов, соответствующих векторам $a_1b_1+a_2b_2+\cdots+a_rb_r$ при любом выборе целых чисел $0\leqslant a_1,\ldots,a_r\leqslant p$. Поэтому, если r=1, то полином p(x) неприводим, и алгоритм заканчивает работу.
- 3. [Вычисление сомножителей] Пусть $b_2(x)$ полином, соответствующий вектору b_2 . Вычислим $\gcd[p(x),b_2(x)-s]$ для всех $s\in GF(p)$. В результате по теореме 6.2.15 получим нетривиальное разложение полинома p(x). Если с использованием $b_2(x)$ получено менее r сомножителей, вычислим $\gcd[w(x),b_k(x)-s]$ для всех $s\in GF(p)$ и всех сомножителей w(x), найденных к данному времени, для $k=3,4,\ldots,r$, пока

не найдем r сомножителей. Теорема 6.2.18 гарантирует, что таким образом мы найдем все сомножители полинома p(x). Если p мало, то вычисления на данном шаге весьма эффективны. Однако для больших p (например, p > 25) может быть предложен лучший способ, разбираемый ниже.

```
Пусть
\mathbf{Q} = \begin{bmatrix} \mathbf{r}_{0,0} & \mathbf{r}_{0,1} & \dots & \mathbf{r}_{0,n-1} \\ \mathbf{r}_{1,0} & \mathbf{r}_{1,1} & \dots & \mathbf{r}_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} 
(B9)
```

— матрица, строки которой образуют коэффициенты полиномовостатков $r_0(x), \ldots, r_{n-1}(x)$. (Замечание. Сначала выписываются коэффициенты меньших степеней x.) Тогда имеет место

```
ulseojz2@alseoj22-ms7a34 coding_teory]$ /bin/python /home/alse0722/Desktop/univer/coding_teory/fin/n18.py
    0 0 0 0 0 0 0 0 0
       0722@alse0722-ms7a34 coding_teory]$
import warnings
from sympy.polys.galoistools import gf monic
from sympy.polys.galoistools import gf_div
from sympy.polys.galoistools import gf_sub_mul
from sympy.polys.galoistools import gf_mul_ground
from sympy.polys.domains import ZZ
import numpy.core.numeric as NX
from numpy.lib.twodim_base import diag
from numpy.linalg import eigvals
from numpy.core import (hstack)
import numpy as np
def berlekamp():
  from numpy.polynomial import Polynomial as P
  import numpy as np
  from numpy.linalg import matrix rank
  import fractions
  p = np.array([1, 0, 1, 1, 1])
  p1 = np.array([1])
  p2 = np.array([1, 0, 0])
  p3 = np.array([1, 0, 0, 0, 0])
  p4 = np.array([1, 0, 0, 0, 0, 0, 0])
  print(p1)
  print(p2)
  print(p3)
  print(p4)
  print()
  a1 = np.absolute(np.polydiv(p1, p)[1])[::-1].tolist()
  a2 = np.absolute(np.polydiv(p2, p)[1])[::-1].tolist()
  a3 = np.absolute(np.polydiv(p3, p)[1])[::-1].tolist()
  a4 = np.absolute(np.polydiv(p4, p)[1])[::-1].tolist()
```

for i in range(len(a4)-len(a1)):

a1.append(0)