

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY, PRAYAGRAJ

Subject Code: BAS 203

Subject: Engineering Mathematics II

Course: B.Tech.

SEMESTER: II

SECOND SESSIONAL EXAMINATION, EVEN SEMESTER, (2024-2025)

Common To All

Time -1:30 hrs. 1. Attempt any FIVE questions.

Maximum Marks - 30

	- dwellong.			
QN	QUESTION	Marke	T 00	
a.	Find the Laplace transform of $t e^{-2t} \cos 3t$.	Marks	CO	BL
ь.		2	CO2	L2
b.	Evaluate $L\left[\frac{1}{2a} t \sin at\right]$	2	CO2	LI
с.	Find the Laplace transform of $\int_0^t \frac{\sin t}{t} dt$	2	CO2	
		2	CO2	L2
d.	Evaluate $L^{-1}\left[\log\left(\frac{s+6}{s+2}\right)\right]$	2	CO2	Lt
e.	Find the Inverse Laplace transform of $\frac{1}{s(s^2+1)}$			
ſ.		2	CO2	L2
I.	Find $f(t)$ if $L[f(t)]$ is given by $\frac{e^{-2s}}{s-3}$.	2	CO2	L2

2. Attempt any ONE of the following.

Q N	QUESTION			
a.	Using Laplace transform, evaluate $\int_0^\infty \frac{\cos at - \cos bt}{dt} dt$.	Marks	CO	BL
4.	56 e ac.	્રિક્	CO2	L3
b.	Use convolution theorem to evaluate $L^{-1}\left\{\frac{p}{(p^2+4)^2}\right\}$.	· ·		
	Using Laplace transform, find the solution of the initial value problem:	(5)	CO2	L4
c.	$\frac{d^2y}{dt^2} + 9y = 6\cos 3t; y(0) = 2, y'(0) = 0,$	(5)	CO2	L3
			. ,	

3. Attempt any FIVE questions.

QN	QUESTION			
a,	Write down the Fourier series expansion formula for $x \in [0,2\pi]$.	Marks	CO	BL
b.		2	CO3	L2
υ.	Find the constant term if the function $f(x) = \pi - x$ is expanded in Fourier series defined in $(0, 2\pi)$.	2.	CO3	L2
c.	Find the Fourier constant a_1 of $f(x) = x^2$, $-\pi \le x \le \pi$.		003	LZ
d.		2_	CO3	L2
	If $f(x) = 1$ is expanded in a Fourier sine series in $(0, \pi)$, then find the value of b_0	2.	CO3	7.
£.	For an even function defined in the interval $(0, 2p)$, write down the Fourier series,	1 2		LI
1.	if $f(x) = x \sin x$ in $(-\pi, \pi)$, then find b_n .	1 2	CO3	L2
		1 12	CO3	(I 1

4. Attempt any ONE of the following.

QN	Find the Fourier series to represent the function $f(x) = \frac{1}{4}(\pi - x)^2$ in the interval $0 \ll x \le 2\pi$. Hence	Marks	СО	BL
а.	obtain the following relations $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$	5	CO3	L3
b.	Obtain a Fourier series to represent the function $f(x) = x $, $-\pi < x < \pi$ and hence deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{5^2} + \cdots$	5	CO3	L4
c.	Find half range Fourier sine series of $f(x) = \begin{cases} x & 0 < x < \pi \\ \pi - x & \pi < x < 2\pi \end{cases}$	5	CO3	L3

Bloom's Taxonomy Level (BL) :-Remember (L1), Understanding (L2),

Apply (L3),

Analyze (L4),

Evaluating (L5), Creating (L6)