# 11. Determine $\lambda$ cut set from the given fuzzy set

| SU-04<br>SC-03 | Si= {x   Ms(x) > +} raisoni EDUCATION                                                                                                                                                                                                                                  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.11)          | $S_1 = \begin{cases} 0 + 0.8 + 0.88 + 1 + 1.0 \\ 0 + 20 + 40 + 60 & 30 + 100 \end{cases}$                                                                                                                                                                              |
| toops          | $S_2 = \begin{cases} 0 + 0.45 + 0.6 + 0.86 + 0.95 + 1.0 \\ 0 + 20 + 40 & 60 & 80 & 100 \end{cases}$                                                                                                                                                                    |
| 100            | USINS2 (x) = min (Usi(x), Usz(x))                                                                                                                                                                                                                                      |
| nob n          | For x=0: Usins2(0) = min (0,0) = 0. 1  for x=20: Usins2(20) = min (0.85,0.45) = 0.45  for x=40: Usins2(40) = min (0.65,0.6) = 0.6  for x=60: Usins2(60) = min (0.85,0.86) = 0.85  for x=80: Usins2(80) = min (0.1,0.95) = 0.95  for x=100: Usins2(100) = min (1,1) = 1 |
|                | PrusH => Sinsz = { 0 + 0.45 + 0.6 + 0.85 + 0.95 + 1<br>1 0 20 40 60 80 100}<br>=> (Sinsz) 1 = { 000, 40, 60, 80, 100}<br>(D Si)Sz > max of membership value y Each Element                                                                                             |
| 2 001          | $U_{S_1}U_{S_2}(x) = Max(U_{S_1}(x), U_{S_2}(x))$ $\Rightarrow for x = 0 = 0$ $for x = 20 = 0.65$ $for x = 40 = 0.65$ $for x = 60 = 0.86$ $= 0.65 + 0.65 + 0.86 + 1 + 1$ $= 0.86 + 0.86 + 0.86 + 1 + 1$ $= 0.86 + 0.86 + 0.86 + 0.86 + 1 + 1$                          |
|                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                  |

(8) 
$$S_1^{\sim} = \mathcal{U}_S(x) = 1 - \mathcal{U}_S(x)$$
 (2) (2)  $\mathcal{Y}_S^{\sim} + \mathcal{Y}_S^{\circ}$  and Procedure  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.65}{40} + \frac{1-0.75}{60} + \frac{1-1}{100}\}$ 

$$S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{0.35}{40} + \frac{0.15}{60} + \frac{1-1}{30} + \frac{1-1}{100}\}$$

$$\Rightarrow (S_1^{\sim})_A = \{0, 20\}$$
(1)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.86}{60} + \frac{1-1}{30}\}$ 
(1)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.65}{40} + \frac{1-1}{60}\}$ 
(2)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.86}{40} + \frac{1-1}{100}\}$ 
(2)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.35}{40} + \frac{1-1}{60}\}$ 
(3)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.35}{40} + \frac{1-1}{60}\}$ 
(3)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.5}{40} + \frac{1-1}{60}\}$ 
(4)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.86}{60} + \frac{1-1}{30}\}$ 
(5)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.5}{60} + \frac{1-0.86}{60} + \frac{1-1}{30}\}$ 
(5)  $S_1^{\sim} = \{\frac{1-0}{0} + \frac{1-0.5}{20} + \frac{1-0.5}{60} + \frac{1-0.86}{60} + \frac{1-1}{30}\}$ 

# 12. Define fuzzification and defuzzification. List the different methods of membership value of assignment. in detail

- Fuzzification and defuzzification are two fundamental processes in fuzzy logic systems.
- These processes help in converting crisp values to fuzzy values and vice versa, enabling the implementation of fuzzy inference systems in real-world applications.

# 1. Fuzzification

**Definition:** 

• Fuzzification is the process of converting a crisp (precise) numerical value into a fuzzy value, represented

by membership functions in a fuzzy set.

• It allows the system to handle uncertainty and vagueness in real-world problems.

**Steps in Fuzzification:** 

1. Identify Input Variables: Determine the crisp input values from sensors or user inputs.

2. **Define Universe of Discourse:** Establish the range of values for the input variable.

3. Select Membership Functions: Assign appropriate membership functions (triangular, trapezoidal,

Gaussian, etc.).

4. Compute Membership Degree: Determine the degree of belonging of the input value to different fuzzy

sets.

**Example of Fuzzification:** 

Consider a temperature control system where the input temperature is 30°C. The fuzzy sets can be defined as:

• **Cold:**  $\mu(30) = 0.2$ 

• Warm:  $\mu(30) = 0.7$ 

• **Hot:**  $\mu(30) = 0.1$ 

Here, the crisp value (30°C) is converted into fuzzy values using membership functions.

2. Defuzzification

**Definition:** 

• Defuzzification is the process of converting fuzzy values back into a crisp value to obtain a final output in a

decision-making system.

• This is necessary to make practical, real-world decisions.

**Steps in Defuzzification:** 

1. **Obtain Fuzzy Output:** Apply fuzzy inference rules to get the fuzzy output.

2. Apply a Defuzzification Method: Use an appropriate defuzzification technique to convert the fuzzy output

into a crisp value.

## **Example of Defuzzification:**

In a fuzzy temperature control system, if the fuzzy output suggests:

• Low Fan Speed:  $\mu = 0.3$ 

• Medium Fan Speed:  $\mu = 0.6$ 

• High Fan Speed:  $\mu = 0.1$ 

A defuzzification method, such as the Centroid Method, is applied to calculate the final crisp fan speed.

# 3. Different Methods of Membership Value Assignment

Membership values in a fuzzy system define how much an element belongs to a fuzzy set. There are various ways to assign these values:

# (i) Intuition-Based Assignment

- Membership values are assigned based on expert knowledge and human intuition.
- Example: In an air conditioning system, a temperature of 30°C can intuitively belong 70% to warm and 30% to hot.

# (ii) Statistical Methods

- Data-driven methods are used to determine membership values from historical data.
- Example: If a survey reveals that most people feel comfortable at 25°C, the membership function for "Comfortable" can be statistically adjusted.

# (iii) Learning-Based Methods

- Machine learning techniques like neural networks or clustering (e.g., Fuzzy C-Means) are used to learn membership values from data.
- Example: A fuzzy classifier trained on customer purchase data can assign membership values for "High Spending" and "Low Spending" customers.

# (iv) Expert Systems

• Experts define the membership values based on domain knowledge and experience.

• Example: In a medical diagnosis system, doctors define fuzzy sets like "High Blood Pressure" based on patient records.

# (v) Histogram-Based Methods

- Membership functions are constructed based on frequency distributions of collected data.
- Example: If a dataset of student grades shows that most students score between **40-60**, the fuzzy set "Average Score" can be defined accordingly.

#### 13. Methods of Defuzzification

- Defuzzification is the process of converting a fuzzy output into a single crisp value in a fuzzy logic system.
- There are several methods to achieve this, depending on the application and required accuracy.

Below are the most commonly used defuzzification methods:

### 1. Centroid Method (Center of Gravity - COG)

- **Definition:** It finds the center of area under the fuzzy set curve.
- Formula: are the output values and in improvement in its improvement of the interest of the improvement of
- Example:

If a fuzzy set has values:

```
(10,0.3)(10, 0.3)(10,0.3)
(20,0.6)(20, 0.6)(20,0.6)
(30,0.9)(30, 0.9)(30,0.9)
```

then the centroid method calculates a weighted average of these values.

- **Pros:** Provides a smooth and balanced result.
- Cons: Computationally expensive.

# 2. Mean of Maximum (MOM)

- **Definition:** It takes the average of all values that have the highest membership degree.
- Formula:

#### • Example:

If the highest membership degree is **0.9**, and the corresponding values are **20 and 30**, then:

$$Z*=20+30/2=25$$

- **Pros:** Simple and easy to compute.
- Cons: Can give multiple outputs if there are multiple max values.

# 3. Bisector of Area (BOA)

- **Definition:** It finds the vertical line that divides the fuzzy set into two equal areas.
- Example:

If a fuzzy set has two peaks at 20 and 30, the bisector might be at 25.

- **Pros:** Useful when a balanced decision is needed.
- Cons: Computationally complex.

# 14,15. Features of Membership Function

# **Definition**

- A **membership function (MF)** in fuzzy logic defines the degree to which a given input belongs to a fuzzy set.
- It is a mathematical representation that maps each input value to a membership value between **0** and **1**.

# **Characteristics of Membership Functions**

A membership function must satisfy the following conditions:

- 1. Range: The membership value should always be between **0** and **1**.
- 2. **Boundary Values:** At least one element should have a membership value of 1 (fully belonging to the set).
- 3. Continuity: The function can be continuous or discrete, depending on the application.

# **Key Features of Membership Functions**

# 1. Shape of the Membership Function

- Different shapes of membership functions can be used, such as:
  - Triangular
  - Trapezoidal
  - Gaussian
  - o Sigmoidal
  - Bell-shaped
- The choice of shape depends on the problem requirements.

# 2. Membership Value (Degree of Membership)

- The function assigns a value between **0** and **1** to represent the degree of belonging.
- Example: If **Temperature = 30°C**, the membership values might be:

• **Cold:** 0.2

• Warm: 0.7

• **Hot:** 0.1

# 3. Universality (Support and Core)

- **Support:** The range where the membership function is nonzero.
- Core: The region where the membership function has a value of 1.

#### 4. Normalization

• A membership function is **normalized** if at least one element has a membership value of 1.

#### 5. Fuzziness

• It helps in handling **uncertainty** by allowing gradual transition between membership levels.

# **Types of Membership Functions**

Below are common types of membership functions with their mathematical representations:









# **Applications of Membership Functions**

- Fuzzy Control Systems: Air conditioning, washing machines.
- Medical Diagnosis: Assigning disease risk levels.
- Robotics: Navigation and obstacle avoidance.
- Artificial Intelligence: Decision-making in expert systems.

# 16. Using your own intuition and definition of universe of discourse, plot fuzzy membership functions for "weights of people." in detail

# Fuzzy Membership Functions for "Weights of People"

# 1. Understanding Universe of Discourse

The **universe of discourse** is the complete range of values a variable can take. For "weights of people," we define the universe of discourse as:

$$U=[30,150] \text{ kgU} = [30, 150] \text{ kg}$$

This range represents a reasonable spread of human weights, from very light (30 kg) to very heavy (150 kg).

# 2. Defining Fuzzy Sets

We divide weight into five fuzzy categories:

- Very Light (VL)
- Light (L)
- Medium (M)
- Heavy (H)
- Very Heavy (VH)

Each category is defined by a **membership function** that assigns a weight value a degree of belonging.

# 3. Membership Functions and Equations

We use trapezoidal and triangular membership functions for simplicity.

```
People weight 30-45 kg belong
to this Category
Trapezoidal function is used

Uve (x) = \[
\begin{align*}
\text{super}
\text{Trapezoidal function is used}
\end{align*}
   People blw 40-60 kg Mh(x) = \begin{cases} \frac{x-40}{10}, & 40 \le x \le 50 \end{cases}
Triangular function Mh(x) = \begin{cases} \frac{x-40}{10}, & 50 \le x \le 60 \end{cases}
      9 Medium (M)
 d) Heavy (H)
→ People blw 75-110 kg M_H(x) = \begin{cases} \frac{x-7s}{10}, & 7s < x < 8s \end{cases}

Triangular function \frac{110-z}{2s}, & 8s < x < 110 \end{cases}
 e) Very Heavy → abovil00

| Trapezoidal font | MUM [x] = { x-100 , 100 ≤ x ≤ 120
```

# 5. Interpretation

- If a person weighs 42 kg, they belong mostly to "Light" but slightly to "Very Light".
- If someone weighs 90 kg, they are mostly "Heavy" but slightly "Very Heavy".
- Overlapping regions ensure smooth transitions between weight categories.

# 17. Illustrate Max membership principle and centroid method of defuzzification with suitable diagram.

Defuzzification is the process of converting a fuzzy set into a **crisp (precise) value**. Two important methods used for defuzzification are:

- 1. Max Membership Principle (MM)
- 2. Centroid Method (COG Center of Gravity)

Let's explore both methods with examples and diagrams.

# 1. Max Membership Principle (MM)

## **Definition**

- Also known as **Maximum Criterion** or **Height Method**.
- The **crisp output** is the value that has the **highest degree of membership** in the fuzzy set.
- If multiple values have the same maximum membership, any of them can be chosen arbitrarily or the average can be taken.

#### Formula

 $x = arg max \mu A(x)$ 

where  $\mathbf{x}*$  is the defuzzified output, and  $\mu \mathbf{A}(\mathbf{x})$  is the membership function.

# **Example**

Suppose a fuzzy output set represents the temperature of a system:

| Temperature (°C) | 20  | 30  | 40  | 50  | 60  |
|------------------|-----|-----|-----|-----|-----|
| Membership (μ)   | 0.2 | 0.5 | 0.9 | 0.7 | 0.3 |

• The maximum membership value is **0.9**, occurring at **40°C**.

• So, defuzzified output =  $40^{\circ}$ C.

Result: 40°C (Max Membership)

### **Advantages**

- Simple and fast
- ✓ Works well if there is a single maximum point

## **Disadvantages**

- X Not suitable for complex distributions
- X Ignores the shape of the membership function



Result: 40°C (Max Membership)

# 2. Centroid Method (COG - Center of Gravity)

#### **Definition**

• The most widely used and accurate defuzzification method.

- Computes the **center of mass** of the fuzzy region.
- It considers all membership values and balances them like a seesaw.

#### **Formula**

 $x = \sum xi \cdot \mu A(xi) / \sum \mu A(xi)$ 

where:

- x\*= Defuzzified value
- xi= Discrete values of the universe
- $\mu$ A(xi)= Corresponding membership values

### **Example**

Consider the same fuzzy set:

| Temperature (°C) | 20  | 30  | 40  | 50  | 60  |
|------------------|-----|-----|-----|-----|-----|
| Membership (μ)   | 0.2 | 0.5 | 0.9 | 0.7 | 0.3 |

Result: 41.54°C (Center of Gravity)

# **Advantages**

- Uses all available data
- ✓ More accurate than Max Membership

# Disadvantages

- X Computationally complex
- X More time-consuming

# 18. Center of Largest Area (CoLA) and First of Maxima (FoM) Defuzzification Methods

Defuzzification is the process of obtaining a **crisp** value from a fuzzy set. Two popular methods for defuzzification are:

- 1. Center of Largest Area (CoLA)
- 2. First of Maxima (FoM)

# 1. Center of Largest Area (CoLA) Method

#### **Definition**

- In CoLA, the fuzzy set is divided into multiple sub-areas.
- The largest area among the fuzzy subsets is identified.
- The defuzzified output is the **centroid** of that largest area.

#### **Formula**

If the fuzzy set is divided into regions A1,A2,A3,..., we calculate:

where:

- x\*= Defuzzified output (centroid of the largest area)
- xi= Discrete values of the universe of discourse
- μA(xi)= Membership values of correspondingxix\_ixi

### **Example**

Consider a fuzzy set representing **room temperature preferences** with the following values:

| Temperature (°C) | 20  | 30  | 40  | 50  | 60  |
|------------------|-----|-----|-----|-----|-----|
| Membership (μ)   | 0.2 | 0.6 | 0.9 | 0.9 | 0.5 |

- The largest area is between 30°C to 50°C.
- The centroid of this region is calculated.

$$x*=(30\times0.6)+(40\times0.9)+(50\times0.9) / 0.6+0.9+0.9$$
 
$$x*=18+36+452.4=992.4=41.25^{\circ}Cx^{*} = \frac{18+36+45}{2.4} = \frac{99}{2.4} = 41.25^{\circ}Cx^{*} = \frac{18+36+45}{2.4} = 41.25^{\circ}Cx^{*} =$$

# 20. llustration of Intuition and Inference of Fuzzification

# 1. Introduction to Fuzzification

Fuzzification is the process of transforming **crisp input values** into **fuzzy values** by mapping them into **fuzzy sets** using membership functions. It helps in dealing with uncertainty and imprecise data in real-world applications like **control systems**, **decision-making**, **and artificial intelligence**.

# **Example of Fuzzification**

Suppose we want to classify **temperature** into three categories:

- Cold
- Warm
- Hot

A crisp temperature value (e.g., 30°C) does not explicitly fall into any one of these categories—it could be slightly warm or moderately hot. Fuzzification assigns degrees of membership to each category.

# 2. Intuition of Fuzzification

In classical (crisp) logic, a value either belongs to a set or does not (binary: 0 or 1). However, in fuzzy logic, a value partially belongs to multiple sets.

# **Real-World Example: Weather Perception**

Imagine asking three different people if 30°C is hot:

- 1. **Person A** (from a cold country) says, "30°C is **very hot**."
- 2. **Person B** (from a temperate region) says, "30°C is **moderate**."
- 3. **Person** C (from a desert) says, "30°C is **cool**."

This **subjective perception** of temperature motivates **fuzzification**, which assigns **partial degrees of truth** to different sets.

# 3. Membership Function for Fuzzification

A membership function (MF) assigns a degree of membership μ\muμ(ranging from 0 to 1) to each value.

For temperature classification, a triangular membership function can be defined as:

# **Membership Functions for Temperature**

 $\label{eq:cold} $$ \operatorname{Cold}(T)=\{1,T\leq 1020-T10,10\leq T\leq 200,T\geq 20\setminus \{Cold\}(T)=\left\{cases\}\right. \text{ $T \leq 10$ ($10$), & $T \leq 20\setminus \{Cold\}(T)=\left\{cases\}\right. $$$ 

At  $T = 30^{\circ}C$ :

- Cold membership  $\mu=0$ \mu =  $0\mu=0$
- Warm membership  $\mu$ =0.5\mu = 0.5 $\mu$ =0.5
- **Hot** membership  $\mu$ =0.5\mu = 0.5 $\mu$ =0.5

This means 30°C is equally warm and hot in fuzzy logic.

# 4. Inference of Fuzzification

Once data is **fuzzified**, we use it in a **fuzzy inference system (FIS)** to make decisions. The two major inference methods are:

# a) Mamdani Fuzzy Inference Method

- Uses fuzzy **IF-THEN rules** to infer results.
- Example rule:
  - IF temperature is hot THEN fan speed is high.
  - IF temperature is warm THEN fan speed is medium.

#### Example Rule Application for $T = 30^{\circ}C$ :

- Warm:  $0.5 \rightarrow \text{Fan speed} = \text{Medium } (50\%)$
- Hot:  $0.5 \rightarrow \text{Fan speed} = \text{High } (75\%)$
- **Final speed** = weighted average of both.

# b) Sugeno Fuzzy Inference Method

- Instead of outputting a fuzzy value, it generates a crisp number.
- Example:

- IF temperature is hot, THEN fan speed =  $1.2 \times T + 10$
- IF temperature is warm, THEN fan speed =  $0.8 \times T + 5$

For T = 30°C, the inferred speed would be:

 $(0.5 \times (1.2 \times 30 + 10)) + (0.5 \times (0.8 \times 30 + 5)) 0.5 + 0.5 \times (0.5 \times 30 + 10)) + (0.5 \times$