Proof that parallel sets do not exist

张志成 518030910439

2020年3月8日

1 Problem

Use AC or any of its equivalents to show that there do not exist parallel sets. (Two sets A and B are called parallel if neither $|A| \le |B|$ nor $|B| \le |A|$ holds.)

2 Proof

Under the assumption of the Well-order Principle, every set is well-ordered.

2.1 Initial Segment

First we introduce a definition of **initial segment** of set S. Define

$$S(\alpha) := \{b \in S | b \prec \alpha\}$$

S(a) is the strict lower closure of a. Thus S(a) is called an initial segment.

2.2 Lemma

We now prove that for two well-ordered sets A and B, one of the following must hold:

- (1). A is isomorphic to an initial segment of B.
- (2). B is isomorphic to an initial segment of A.

Without loss of generality, we prove (1) holds.

We use Transfinite Induction to define a mapping f from A to B to be: for any element $a \in A$,

$$f(\alpha) = \min\{b \in B \mid b \neq f(\alpha'), \alpha' \prec \alpha\}$$

2.3 Final Proof 3 REFERENCE

We can see that the mapping f is defined for all $a \in A$. Because otherwise there will be a smallest element a such that f(a) is not defined, due to the fact that A is well-ordered. Since $\forall a' \prec a$, f(a') is defined, by the definition of f, we can define f(a) for a.

Now we prove that $f(A) = \{f(\alpha) \mid \alpha \in A\}$ is an initial segment of B. Consider $f(\alpha) \in B$. For every $b \prec f(\alpha)$, the following must hold: $b = f(b') \in f(A)$ and $b' \prec \alpha$. Thus f(A) is a strict lower closure in B.

Since A is obviously isomorphic to f(A), we have established (1), namely A is isomorphic to an initial segment of B.

Finally, we complete the proof by asserting that (1) and (2) cannot both be true unless A = B We prove by contradiction. If both are true, then WLOG,

A is isomorphic to an initial segment of A. which is not possible unless the initial segment is A itself, then in this case A = B.

2.3 Final Proof

By the **Lemma** we just proved, for any two sets A and B, if A is isomorphic to an initial segment of B, then it means there is an injection between A and B, thus $|A| \le |B|$, or $|B| \le |A|$ vice versa.

Therefore, no parallel sets exist under AC.

2.4 About the assumption

Since AC, well-ordering principle, Zorn's Lemma, Tychonoff's Theorem are all equivalent to each other, taking any one of them as the assumption will be feasible. However, here I have taken an easy approach by directly assuming the Well-order principle.

3 Reference

1.

SV13

A. Shen and N.K. Vereshchagin. 集合论基础. 大学生数学图书馆. 高等教育出版社, 2013. 陈光还(译).