

planetmath.org

Math for the people, by the people.

Kripke semantics for intuitionistic propositional logic

 ${\bf Canonical\ name} \quad {\bf Kripke Semantics For Intuition is tic Propositional Logic}$

Date of creation 2013-03-22 19:33:19 Last modified on 2013-03-22 19:33:19

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 35

Author CWoo (3771)
Entry type Definition
Classification msc 03B55
Classification msc 03B20

 $Related\ topic \qquad Axiom System For Intuition is tic Logic$

A Kripe model for intuitionistic propositional logic PL_i is a triple $M := (W, \leq, V)$, where

- 1. W is a set, whose elements are called possible worlds,
- 2. \leq is a preorder on W,
- 3. V is a function that takes each wff (well-formed formula) A in PL_i to a subset V(A) of W, such that
 - if p is a propositional variable, V(p) is upper closed,
 - $V(A \wedge B) = V(A) \cap V(B)$,
 - $V(A \vee B) = V(A) \cup V(B)$,
 - $V(\neg A) = V(A)^{\#}$,
 - $V(A \to B) = (V(A) V(B))^{\#},$

where $S^{\#} := (\downarrow S)^c$, the complement of the lower closure of any $S \subseteq W$.

Remarks.

- If \bot were used as a primitive symbol instead of \neg , then we require that $V(\bot) = \varnothing$. Then introducing \neg by $\neg A := A \to \bot$, we get $V(\neg A) = V(A)^{\#}$.
- Some simple properties of #: for any subset S of W, $S^{\#}$ is upper closed. This means that for any wff A, V(A) is upper closed. Also, S and $S^{\#}$ are disjoint, which means that $V(A \land \neg A) = \emptyset$ for any A.

One can also define a satisfaction relation \models between W and the set L of wff's so that

$$\models_w A$$
 iff $w \in V(A)$

for any $w \in W$ and $A \in L$. It's easy to see that

- for any propositional variable p, if $\models_w p$ and $w \leq u$, then $\models_u p$,
- $\models_w A \land B \text{ iff } \models_w A \text{ and } \models_w B$,
- $\models_w A \lor B$ iff $\models_w A$ or $\models_w B$,
- $\models_w \neg A$ iff for all u such that $w \leq u$, we have $\not\models_u A$

• $\models_w A \to B$ iff for all u such that $w \le u$, we have $\models_u A$ implies $\models_u B$.

When $\models_w A$, we say that A is true at world w.

Remark. Since V(A) is upper closed, $\models_w A$ implies $\models_u A$ for any u such that $w \leq u$. Now suppose $w \leq u$ and $u \leq w$, then $\models_w A$ iff $\models_u A$. This shows that, as far as validity of formulas is concerned, we can take \leq to be a partial order in the definition above.

Some examples of Kripke models:

- 1. Let M_1 be the model consisting of $W = \{w, u\}, \leq = \{(w, w), (u, u), (w, u)\},$ with $V(p) = \{u\}$ and V(q) = W. Then $V(p)^{\#} = V(q)^{\#} = \varnothing$, and we have the following:
 - $\bullet \ V(p \vee \neg p) = \{u\}.$
 - $V(q \to p) = V(p)$, and $V(\neg p \to \neg q) = W$, so

$$V((\neg p \to \neg q) \to (q \to p)) = \{w\}^\# = \{u\}.$$

•
$$V(p \to q) = V(\neg q \to \neg p) = W$$
, so
$$V((\neg q \to \neg p) \to (p \to q)) = \varnothing^{\#} = W.$$

- $V((p \to q) \lor (q \to p)) = W$.
- In fact, for any wff's A, B, either $V(A) \subseteq V(B)$ or $V(B) \subseteq V(A)$, since \leq is linearly ordered, so that

$$V((A \to B) \lor (B \to A)) = V(A \to B) \cup V(B \to A) = W,$$

assuming $V(A) \subseteq V(B)$.

- 2. Let M_2 be the model consisting of $W = \{w, u, v\}, \le = \{(w, w), (u, u), (v, v), (w, u), (w, v)\},$ with $V(p) = \{u\}$ and $V(q) = \{v\}$. Then
 - $V(\neg p) = V(p)^{\#} = \{v\},$
 - $V(\neg \neg p) = V(\neg p)^{\#} = \{u\},\$
 - so $V(\neg p \lor \neg \neg p) = \{u, v\}.$
 - $V(p \to q) = V(p)^{\#} = \{v\},\$
 - $V(q \to p) = V(q)^{\#} = \{u\},\$

- so $V((p \rightarrow q) \lor (q \rightarrow p)) = \{u, v\}.$
- 3. Let M be an arbitrary model. Then
 - $V(A \wedge B \rightarrow A) = (V(A \wedge B) V(A))^{\#} = W$,
 - $V(A \to A \lor B) = (V(A) V(A \lor B))^{\#} = W,$
 - $V(A \to (B \to A)) = (V(A) V(B \to A))^{\#} = (V(A) (V(B) V(A))^{\#})^{\#} = W$. The last equation comes from the fact that for any upper set $S, S \subseteq S^{c\#}$.
 - Suppose $V(A) = V(A \to B) = W$. Then $\emptyset = \downarrow(V(A) V(B)) = \downarrow(V(B)^c)$. Since V(B) is upper, $V(B)^c$ is lower, so $\emptyset = \downarrow(V(B)^c) = V(B)^c$, or W = V(B). This shows that modus ponens preserves validity.
- 4. Let W be any set and $\leq = W^2$. Then for any wff A, either V(A) = W or $V(A) = \emptyset$. Therefore, $V(\neg \neg A) = V(A)$, and $V(\neg \neg A \to A) = W$.

The pair $\mathcal{F} := (W, \leq)$ in a Kripke model $M := (W, \leq, V)$ is also called a (Kripke) frame, and M is said to be a model based on the frame \mathcal{F} . The validity of a wff A at various levels can be found in the parent entry. Furthermore, A is valid (with respect to Krikpe semantics) for PL_i if it is valid in the class of all frames.

Based on the examples above, we see that

- 1. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$ is valid in M_1 , while $(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$ is not.
- 2. $(p \to q) \lor (q \to p)$ is valid in the class of linearly ordered frames, while it is not valid in M_2 , and neither is $\neg p \lor \neg \neg p$.
- 3. It is not hard to see that $\neg A \lor \neg \neg A$ is valid in any weakly connected frame, that is, for any $w \in W$, the set $\{u \mid w \leq u\}$ is linear.
- 4. Any wff in any of the schemas $A \wedge B \to A$, $A \to A \vee B$, or $A \to (B \to A)$ is valid in PL_i . See remark below for more detail.
- 5. Any theorem in the classical propositional logic is valid in any universal frame, that is, a frame with a universal relation.

Remark. It can be shown that every theorem of PL_i is valid. This is the soundness theorem of PL_i . Conversely, every valid wff is a theorem. This is known as the completeness theorem of PL_i . Furthermore, a wff valid in the class of finite frames is a theorem. This is the finite model property of PL_i .