Изменение цветовой палитры изображения

Студент: Кононенко С.,

ИУ7-53Б

Руководитель: Оленев А. А.

Цели и задачи

Цель работы: разработать программу для изменения светлых цветов цветовой палитры изображения на темные, путем инвертирования или частичной замены светлых цветов.

Задачи работы:

- проанализировать существующие цветовые модели и модели контраста, чтобы выбрать подходящие для решения задачи;
- проанализировать алгоритмы наивной инверсии и изменения цветов компонентов изображения на основе анализа цветовой карты;
- спроектировать и реализовать алгоритм изменения цветов компонентов изображения на основе анализа цветовой карты;
- провести сравнение контрастности полученного изображения после применения алгоритмов наивной инверсии и изменения цветов компонентов изображения на основе анализа цветовой карты.

Темный режим

Цветовая схема, в которой используются светлый текст, значки и элементы графического интерфейса пользователя на темном фоне

Цветовые модели

Модель	Оценка близости цветов	Прямая конвертация из RGB	Нативная поддержк а в CSS
RGB	-	+	+
CIELab	-	-	-
LCH	+	-	-
HSL	+	+	+
HSLuv	+	+	-

HSLuv

Модели контраста

Cw	0.67	
Cm	0.5	
CmW	0.63	

$$C_W = \frac{L_H - L_L}{L_H}, \qquad 0 \le C_W \le 1,$$

Вебер

$$C_M = \frac{L_H - L_L}{L_H + L_L}, \qquad 0 \le C_M \le 1,$$

Микельсон

$$C_m W = \frac{L_H - L_L}{L_H + 0.05},$$

Вебер-Хон

$$CR = \frac{L1 + 0.05}{L2 + 0.05},$$

Примеры работы

Результаты исследования

Веб-страница	_		Анализ цветовой карты	
Бео-страница	СЯ-СТ	СМЕЖ	СЯ-СТ	СМЕЖ
WineChecker	21:1	21:1	13.92:1	13.92:1
InK	21:1	3.74:1	13.92:1	3.26:1
BLOGger	1.61:1	1.34:1	13:92:1	3.26:1

CЯ-CT - контрастность самого яркого к самому темному цветам **СМЕЖ** - минимальная контрастность смежных элементов

Исследования проводились на разработанных страницах для курсового проекта. Каждая страница отличается от других составом элементов и цветовой палитрой.

Результаты исследования

Результаты исследования

Минимальная контрастность, отраженная на приведенной диаграмме, была получена для представленных выше комбинаций цветов

Выводы и недостатки

Выводы:

- наивная инверсия может давать требуемые по контрастности значения, но полученные цвета могут выходить за понимание темной темы;
- изменение цветов на основе анализа цветовой карты позволяет добиться нужной контрастности в любом случае, а также сохранить визуальную целостность страницы и не выходить за рамки понимания темной темы.

Недостатки:

• алгоритм не учитывает цвета, на которых стоит делать акцент, чтобы оставить их без изменений, так как для каждой страницы такие элементы уникальны, а алгоритм ничего не знает о смысловой структуре страницы.

Спасибо за внимание

Связаться со мной можно в Telegram: @hackfeed Или по почте: hackfeed@yandex.ru