Information

Reading: Complexity: A Guided Tour, Chapter 3

Recap: Core disciplines of the science of complexity

Dynamics: The study of continually changing structure and behavior of systems

Information: The study of representation, symbols, and communication

Computation: The study of how systems process information and act on the results

Evolution: The study of how systems adapt to constantly changing environments

Information

Motivating questions:

- What are "order" and "disorder"?
- What are the laws governing these quantities?
- How do we define "information"?
- What is the "ontological status" of information
- How is information signaled between two entities?
- How is information processed to produce "meaning"?

Energy, Work, and Entropy

What is energy?

What is entropy?

What are the laws of thermodynamics?

• What is "the arrow of time"?

Maxwell's Demon

See Netlogo simulation

James Clerk Maxwell, 1831-1879

Szilard's solution

Leo Szilard, 1898-1964

Bennett and Landauer's solution

Rolf Landauer, 1927–1999

Charles Bennett, b. 1943

Entropy/Information in Statistical Mechanics

- What is "statistical mechanics"?
- Describe the concepts of "macrostate" and "microstate"

Ludwig Boltzmann, 1844-1906

Entropy/Information in Statistical Mechanics

- What is "statistical mechanics"?
- Describe the concepts of "macrostate" and "microstate".
- Combinatorics of a slot machine
 Possible fruits: apple, orange, cherry, pear, lemon
 - Microstates
 - Macrostates

Macrostate: "Three identical fruits"

– How many microstates?

Macrostate: "Exactly one lemon"

– How many microstates?

Macrostate: "At least 2 cherries"

— How many microstates?

Boltzmann's entropy, S

Aside: What is a "natural logarithm"?

Aside: What is a "natural logarithm"?

Examples from slot machine.

Aside: What is a "natural logarithm"?

Examples from slot machine.

Bolzmann entropy: the more microstates that give rise to a macrostate, the r probable that macrostate is. Thus high entropy = more probable macrostate.

Aside: What is a "natural logarithm"?

Examples from slot machine.

Bolzmann entropy: the more microstates that give rise to a macrostate, the r probable that macrostate is. Thus high entropy = more probable macrostate.

Second Law of Thermodynamics (à la Boltzmann):

Nature tends towards more probable macrostates

Boltzmann's entropy, S

What does this have to do with the "arrow of time"?

Quick review of logarithms

- log₁₀
- In
- log₂
- $\log_a b = \log_{10} b / \log_{10} a$

$$= \log_n b / \log_n a$$
 for any n

Shannon Information / Entropy

What were his motivations for defining/studying information?

What is a "message source"?

Claude Shannon, 1916-2001

Boltzmann Entropy

Shannon Information

$$S(state) = k \ln W$$

$$H(message source) = -\sum_{i=1}^{N} p_i \log_2 p_i$$

Measured in units defined by *k* (often "Joules per Kelvin")

Measured in "bits"

Message source has *N* "miscrostates" (or "messages", e.g., words).

 p_i is the probability of message i.

10

Messages: {Da}

Information Content

$$H(Nicky) = -\sum_{i} p_{i} \log_{2} p_{i}$$

Messages: {300 words}

Information Content

$$H(Jake) = -\sum_{i} p_{i} \log_{2} p_{i}$$

Netlogo Information-Content Lab

Go over Week 2 homework

Projects Schedule

- By Tuesday, October 18: Project "abstract" due
- By Thursday October 20: Feedback from me
- Week of October 24: Present project abstract to class
- Month of November: Time in class for help on projects
- December 9: Final paper due

Brainstorming on projects