Càlcul de probabilitats

Probabilitat (axiomes)	$0 \le P(A)$	$P(\Omega) = 1$	$P(A \cup B) = P(A) + P(B)$ si A i B disjunts
Propietats	$P(\bar{A}) = 1 - P(A)$	$P(\phi) = 0$	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Probabilitat condicionada i d'una intersecció	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	$\frac{B}{B} \text{si } P(B) > 0$	$P(A \cap B) = P(B \mid A) \cdot P(A) = P(A \mid B) \cdot P(B)$
Fórmula de Bayes	$P(A \mid B) = \frac{P(B \mid A)}{P(B \mid B)}$)·P(A) B)	
Fórmula probabilitats totals (A ₁ ,A ₂ ,,A _i ,A _J és una partició del conjunt de resultats)	$P(B) = \sum_{j=1}^{J} P(B \mid A)$	$_{j})\cdot \mathrm{P}(\mathrm{A}_{\mathrm{j}})$	$P(A_i B) = \frac{P(B A_i) \cdot P(A_i)}{\sum_{j=1}^{J} P(B A_j) \cdot P(A_j)}$
Independència	$P(A \cap B) = P(A) F$	$P(B)$ $P(B \mid A) = P(B)$	$P(A \mid B) = P(A)$

Indicadors numèrics de variables aleatòries

	Definicions	Propietats
Esperança	$E(X) = \mu_X = \sum_{\forall k} k p_X(k)$ $E(X) = \mu_X = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$	(V.A.D.) • $E(X+Y) = E(X)+E(Y)$ • $E(a+b\cdot X) = a+b\cdot E(X)$
Variància	$V(X) = \sigma_X^2 = \sum_{\forall k} (k - E(X))^2 p_X(k)$ $V(X) = \sigma_X^2 = \int_{-\infty}^{+\infty} (x - E(X))^2 f_X(x) dx$	(V.A.D.) • $V(X) = E[X - E(X)]^2 = E(X^2) - (E(X))^2$ (V.A.C.) • $V(a+b\cdot X) = b^2\cdot V(X)$
Covariància i correlació	$Cov(X,Y) = \sum_{\forall x} \sum_{\forall y} (x - E(X))(y - E(Y)) p_{XY}(x,y)$ $Cov(X,Y) = \iint_{-\infty}^{\infty} (x - E(X)(y - E(Y)f_{X,Y}(x,y)) dx dy$ $\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$	(V.A.D.) • $Cov(X,Y) = E(X-E(X))(Y-E(Y)) = E(XY) - E(X)E(Y)$ • $Cov(a\cdot X,b\cdot Y) = a\cdot b\cdot Cov(X,Y)$ • $Cov(X,X) = V(X)$ • $E(X\cdot Y) = E(X)\cdot E(Y) + Cov(X,Y)$ • $E(X\cdot Y) = E(X)\cdot E(Y)$ (si X i Y són independents) • $V(X+Y) = V(X) + V(Y) + 2\cdot Cov(X,Y)$ • $V(X-Y) = V(X) + V(Y) - 2\cdot Cov(X,Y)$ • $V(X\pm Y) = V(X) + V(Y)$ (si X i Y són independents)

Distribucions de variables discretes i contínues

Distribució	Declaració	Funció de probabilitat o de densitat	Funció distribució $F_X(k) = \sum_{i <= k} P_X(i) 0$ $\int_{-\infty}^k f_X(x) dx$	Esperança E(X)	Variància _{V(X)}
Bernoulli	X~Bern(p)	$P_X(k) = \begin{cases} q & k = 0 \\ p & k = 1 \end{cases}$	$F_X(k) = \sum_{i <= k} P_X(i)$	p	$p \cdot q$
Binomial R:*binom(k,n,p)	X~B(<i>n</i> , <i>p</i>)	$P_X(k) = \binom{n}{k} \cdot p^k \cdot q^{n-k} k = 0,1,,n$	$F_{\boldsymbol{X}}(k) = \sum_{i <= k} P_{\boldsymbol{X}}(i) $ (taules)	$p \cdot n$	$p \cdot q \cdot n$
Poisson R:*pois(k,λ)	X~P(λ)	$P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!} k = 0,1,2,$	$F_X(k) = \sum_{i <= k} P_X(i) $ (taules)	λ	λ
Geomètrica R: *geom(k,p)	X~Geom(p)	$P_X(k) = p \cdot q^{k-1}, k = 1,2,$ $P_{X2}(k) = p \cdot q^k, k = 0,1,2,$ (R)	$F_X(k) = 1 - q^{k+1}$ $F_{X2}(k) = 1 - q^{k+1}$ (R)	1/p $E(X2)=q/p$	q/p^2
Binomial Negativa §	X~BN(<i>r</i> , <i>p</i>)	$P_X(k) = {k-1 \choose r-1} p^r \cdot q^{k-r}, \ k \ge r$	$F_X(k) = \sum_{i <= k} P_X(i)$	r/p	$q r/p^2$
Exponencial R:*exp(x,λ)	X~Exp(λ)	$f_X(x) = \lambda \cdot e^{-\lambda \cdot x} x > 0$	$F_X(x) = 1 - e^{-\lambda \cdot x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Uniforme R: *unif(k,a,b)	X~U(a,b)	$f_X(x) = \frac{1}{b-a} a < x < b$	$F_X(x) = \frac{x - a}{b - a}$	$\frac{(a+b)}{2}$	$(b-a)^2/12$
Normal R:*norm(k,μ,σ)	X~N(<i>μ</i> , <i>σ</i>)	$f_X(x) = \frac{1}{\sigma\sqrt{2\cdot\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$F_X(x) = ?$ (taules N(0,1))	μ	σ^2

* = d, p, q, r; 0 ; <math>q = 1 - p; n, r enter > 0; a, b, μ real; λ, σ real > 0; "~" segueix exactament; "≈" aproxima

 $X1 \sim N(\mu_1, \ \sigma^2_1) \quad X2 \sim N(\mu_2, \ \sigma^2_2) \quad X1, X2 \ independents \quad a, \ b \ escalars \quad X=aX1 + bX2 \sim N \ (\mu_X = a\mu_1 + b\mu_2 \ , \ \sigma^2_X = a^2\sigma^2_1 + b^2\sigma^2_2 + 2ab \ \rho_{XY}\sigma_1\sigma_2 \)$ $TCL: X_1, \dots, X_n \ i.i.d. \ (n \to \infty), \ amb \ E(X_i) = \mu \ i \ V(X_i) = \sigma^2 \ , \ llavors \qquad \frac{\sum_{i=1}^n X_i}{n} = \overline{X}_n \approx N(\mu, \sigma^2/n) \qquad (i \ també \ \sum_{i=1}^n X_i \approx N(n\mu, \sigma^2 n) \)$

[§] Igual que per el model Geomètric, R implementa la Binomial Negativa com a "nombre de <u>fracassos</u> fins al r-èssim èxit", enlloc del nombre d'<u>intents</u>: és a dir, X2 = X-r.