

Project Title	Olympics Data Analysis
Tools	Python, ML, SQL, Excel
Domain	Data Analyst
Project Difficulties level	Beginner

Dataset : Dataset is available in the given link. You can download it at your convenience.

Click here to download data set

About Dataset

This dataset is a list of all the medal winners in the Summer Olympics from 1976 Montreal to 2008 Beijing. It includes each and every medal awarded within the period. This dataset is intended for beginners so that they can get a taste of advanced Excel functions which is perhaps one of the key skills required to be a great data scientist. I too got my hands dirty with the dataset and played with some advanced Excel functions. Further, this dataset can also be used for a predictive model as to which country is likely to fetch the highest number of gold in a particular sports category (just an example), etc.

Example: Olympics Data Analysis

Olympics Data Analysis Using Machine Learning

For a project based on Olympics data analysis, the primary focus will be on exploring and understanding the dataset, performing exploratory data analysis (EDA), and uncovering trends and insights related to athletes, countries, and sports over the years.

We'll use the following columns for our analysis:

- City: The city where the Olympics took place.
- Year: The year of the Olympics.
- **Sport**: The sport the event is categorized under.
- **Discipline**: A subcategory of the sport.
- **Event**: The specific event within a discipline.
- Athlete: The name of the athlete who participated.
- **Gender**: The gender of the athlete.
- **Country_Code**: The country code (abbreviation).
- Country: The full name of the country.
- Event_gender: The gender category of the event.
- Medal: The medal won (Gold, Silver, Bronze).

Objective

The primary goal is to:

- 1. Analyze the dataset to understand trends in medal distribution.
- 2. Identify the top-performing countries and athletes.
- 3. Study the gender distribution of events and medals.
- 4. Visualize the data using Python.

Steps:

1. Data Preparation:

- Import libraries.
- Load the dataset.
- o Clean the dataset (handling missing values, if any).

2. Exploratory Data Analysis (EDA):

- Summary statistics of the dataset.
- Plot and analyze trends of medals across years.
- Identify the top-performing athletes and countries.

3. Visualizing Key Insights:

- Visualize the distribution of medals by country, year, and sport.
- Analyze gender distribution in different sports/events.

4. Predictive Analysis:

 Train a machine learning model to predict whether an athlete will win a medal based on their country, sport, and other attributes.

Step-by-Step Code with Explanation

Step 1: Data Preparation

```
# Import necessary libraries
import pandas as pd
import numpy as np
```

```
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset (assume CSV format)
df = pd.read_csv('olympics_data.csv')
# Check the first few rows of the dataset
print(df.head())
# Summary of the dataset
print(df.info())
print(df.describe())
Step 2: Data Cleaning
Check for missing values and remove or impute them if necessary.
# Check for missing values
print(df.isnull().sum())
# Drop rows with missing values if any
df_cleaned = df.dropna()
# After cleaning, check the dataset again
print(df_cleaned.info())
```

Step 3: Exploratory Data Analysis (EDA)

3.1 Total Medal Count by Country

```
# Total medals won by each country
medals_by_country =
df_cleaned.groupby('Country')['Medal'].count().sort_values(asce
nding=False)

# Plotting the top 10 countries by medals
plt.figure(figsize=(10, 6))
medals_by_country.head(10).plot(kind='bar', color='gold')
plt.title("Top 10 Countries by Medal Count")
plt.xlabel("Country")
plt.ylabel("Total Medals")
plt.show()
```

3.2 Medals Won Over the Years

```
# Grouping by Year and counting the medals won
medals_over_years = df_cleaned.groupby('Year')['Medal'].count()

# Plotting the trend of medals won over the years
plt.figure(figsize=(10, 6))
plt.plot(medals_over_years.index, medals_over_years.values,
```

```
marker='o', linestyle='-', color='b')
plt.title("Total Medals Won Over the Years")
plt.xlabel("Year")
plt.ylabel("Total Medals")
plt.grid(True)
plt.show()
3.3 Gender Distribution in Events
# Gender distribution in events
gender_distribution = df_cleaned['Gender'].value_counts()
# Plotting gender distribution
plt.figure(figsize=(6, 4))
gender_distribution.plot(kind='pie', autopct='%1.1f%%',
colors=['#ff9999','#66b3ff'], explode=[0.05, 0])
plt.title("Gender Distribution in Olympics Events")
plt.ylabel('')
plt.show()
3.4 Top Athletes with Most Medals
# Group by Athlete and count the number of medals
athlete medal count
df_cleaned.groupby('Athlete')['Medal'].count().sort_values(asce
```

```
# Plotting the top 10 athletes with most medals
plt.figure(figsize=(10, 6))
athlete_medal_count.head(10).plot(kind='bar', color='silver')
plt.title("Top 10 Athletes by Medal Count")
plt.xlabel("Athlete")
plt.ylabel("Total Medals")
plt.show()
```

Step 4: Predictive Analysis (Machine Learning)

We will build a simple logistic regression model to predict whether an athlete will win a medal based on their country, sport, and other attributes.

4.1 Preprocessing for Machine Learning

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report

# Encode categorical variables using LabelEncoder
le = LabelEncoder()
df_cleaned['Country_Code'] =
```

```
le.fit_transform(df_cleaned['Country_Code'])
df_cleaned['Sport'] = le.fit_transform(df_cleaned['Sport'])
df_cleaned['Gender'] = le.fit_transform(df_cleaned['Gender'])
df_cleaned['Event_gender']
le.fit_transform(df_cleaned['Event_gender'])
df_cleaned['Medal'] = df_cleaned['Medal'].map({'Gold':
                                                             1,
'Silver': 1, 'Bronze': 1, np.nan: 0})
# Features and target
          df_cleaned[['Country_Code', 'Sport', 'Gender',
X
'Event_gender']]
y = df_cleaned['Medal']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X,
                                                             У,
test_size=0.3, random_state=42)
# Initialize and train a logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)
# Predict on the test data
y_pred = model.predict(X_test)
# Model evaluation
```

```
print("Accuracy Score:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Step 5: Conclusion and Insights

- **Top Performing Countries**: We identified which countries won the most medals.
- Top Athletes: We identified athletes who won the most medals.
- **Gender Participation**: The gender distribution in different sports events was explored.
- Trend of Medals Over Years: We visualized the trend of medal wins over the years.

The **logistic regression model** allowed us to predict whether an athlete would win a medal based on various attributes like country, sport, and gender.

This project can be extended by adding more sophisticated machine learning models (like decision trees or random forests), and further fine-tuning the models by including more features.

NOTE:

1. this project is only for your guidance, not exactly the same you have to create. Here I am trying to show the way or idea of what steps you can follow and how your projects look. Some projects are very advanced (because it will be made with the help of flask, nlp, advance ai, advance DL and some advanced things) which you can not understand.

2. You can make or analyze your project with yourself, with your idea, make it more creative from where we can get some information and understand about our business. make sure what overall things you have created all things you understand very well.

Example: You can get the basic idea how you can create a project from here Sample code and output

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g.
pd.read_csv)
import matplotlib.pyplot as plt
pd.options.display.max_rows = 4000
pd.options.display.max_columns= None
# Input data files are available in the read-only "../input/"
directory
# For example, running this (by clicking run or pressing
Shift+Enter) will list all files under the input directory
import os
```

```
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory
(/kaggle/working/) that gets preserved as output when you create
a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they
won't be saved outside of the current session
/kaggle/input/summer-olympics-medals/Summer-Olympic-medals-1976
-to-2008.csv
Lets start with loading the dataset and print few rows.
                                                           In [2]:
data =
pd.read_csv('/kaggle/input/summer-olympics-medals/Summer-Olympi
c-medals-1976-to-2008.csv', encoding = 'latin1')
data.head()
                                                           Out[2]:
```

	City	Ye ar	Spo rt	Disci pline	Event	Athlete	Ge nde r	Country _Code	Cou	Event_ gender	Me dal
0	Mon treal	19 76. 0	Aqu	Divin g	3m spring board	KÖHL ER, Christa	Wo me n	GDR	East Ger man y	W	Silv
1	Mon treal	19 76. 0	Aqu atics	Divin g	3m spring board	KOSE NKOV, Aleksa ndr	Me n	URS	Sovi et Unio n	М	Bro nze
2	Mon treal	19 76. 0	Aqu atics	Divin g	3m spring board	BOGG S, Philip Georg e	Me n	USA	Unit ed Stat es	M	Gol d
3	Mon treal	19 76.	Aqu atics	Divin g	3m spring	CAGN OTTO, Giorgio	Me n	ITA	Italy	M	Silv

		0			board	Franco					
4	Mon treal	19 76. 0	Aqu atics	Divin g	10m platfor m	WILSO N, Debor ah Keplar	Wo me n	USA	Unit ed Stat es	W	Bro nze

Lets first see if we can drop any column or not. See that, Gender and Event_gender. Lets see if these two actaully hold value or just duplicates.

We will do that first by looking at unique values.

```
In [3]:
print(data.Gender.unique())
print(data.Event_gender.unique())
```

```
['Women' 'Men' nan]
['W' 'M' 'X' nan]
```

Okay, we have an 'X' category for event gender. But since it is not an impacting factor neither there is not much to analyse, we can safe drop off 'Event_gender' column.

Also the Country code is of no much use since we have Country column.

Also the Year has to be in proper data type i.e., int. W

In [4]:

```
data= data.drop('Event_gender', axis = 1)
data= data.drop('Country_Code', axis = 1)
data.head()
```

Out[4]:

	City	Yea r	Spor t	Disci pline	Event	Athlete	Gen der	Country	Me dal
0	Mont real	197 6.0	Aqu atics	Divin g	3m springbo ard	KÖHLER, Christa	Wo men	East German y	Silv er
1	Mont real	197 6.0	Aqu atics	Divin g	3m springbo ard	KOSENKOV, Aleksandr	Men	Soviet Union	Bro nze
2	Mont	197	Aqu	Divin	3m springbo	BOGGS, Philip	Men	United	Gol

	real	6.0	atics	g	ard	George		States	d
	Mont real	197 6.0	Aqu atics	Divin g	3m springbo ard	CAGNOTTO, Giorgio Franco	Men	Italy	Silv er
4	Mont real	197 6.0	Aqu atics	Divin g	10m platform	WILSON, Deborah Keplar	Wo men	United States	Bro nze

Lets find null values and try to deal with them. Also, lets fix the data type of the columns.

```
In [5]:
print(data.isnull().sum())
data = data.dropna(how = 'all')
print(data.isnull().sum())
data = data.astype({'Year':'int'})
data.head()
```

```
City 117
Year 117
Sport 117
Discipline 117
Event 117
```

Athlete 117

Gender 117

Country 117

Medal 117

dtype: int64

City 0

Year 0

Sport 0

Discipline 0

Event 0

Athlete 0

Gender 0

Country 0

Medal 0

dtype: int64

Out[5]:

	City	Ye ar	Spor t	Disci pline	Event	Athlete	Gen der	Country	Med al
0	Mont real	19 76	Aqua tics	Divin g	3m springbo	KÖHLER, Christa	Wo men	East German	Silv er

					ard			у	
1	Mont real	19 76	Aqua tics	Divin g	3m springbo ard	KOSENKOV, Aleksandr	Men	Soviet Union	Bro nze
2	Mont real	19 76	Aqua tics	Divin g	3m springbo ard	BOGGS, Philip George	Men	United States	Gol d
3	Mont real	19 76	Aqua tics	Divin g	3m springbo ard	CAGNOTTO, Giorgio Franco	Men	Italy	Silv
4	Mont real	19 76	Aqua tics	Divin g	10m platform	WILSON, Deborah Keplar	Wo men	United States	Bro nze

Q1. Which city hosted maximum number of olympics

Logic: Focus on City and Year. Get unique Year. Print the data.

```
In [6]:
```

```
q1_data = data[["City", 'Year']]
q1_data = q1_data.drop_duplicates('Year')
```

q1_data

Out[6]:

	City	Ye ar
0	Montre al	19 76
142	Mosco w	19 80
280	Los Angele s	19 84
426 8	Seoul	19 88
581	Barcelo	19

4	na	92
751 9	Atlanta	19 96
937	Sydney	20
113 93	Athens	20 04
133 91	Beijing	20 08

Ans: So It seems like, since 1976 no city has hosteed Olympics twice.

Q2. Which city hosted most events.

logic: Focus on City.Find count of unique values.Print the count

```
In [7]:
q2_data = data['City'].value_counts()
q2_data.columns = ['City', 'Count']
plt.figure(figsize = (10,4))
```

```
q2_{data.plot.bar}(x = 'City', y = 'Count') # q2_data.plot(kind = 'bar', x = 'City', y = 'Count')
```

Out[7]:

<Axes: xlabel='City'>

Ans : Beijing has the hosted the biggest Olympics since 1976 till 2008. Followed by Sydney and Athens.

Q3. Understand the events themselves.

logic: Focus on Sport, Discipline and Event. Use groupby and see how many kinds and variations are there.

```
In [8]:

q3_data = data[['Sport', 'Discipline',
'Event']].drop_duplicates()
print("Total number of unique events are held so far are :
",len(q3_data))
q3_data

Total number of unique events are held so far are : 334
```

Out[8]:

	Sport	Discipl ine	Event
0	Aqua tics	Diving	3m springboard
4	Aqua tics	Diving	10m platform

12	Aqua tics	Swim ming	4x100m freestyle relay
13	Aqua tics	Swim	400m freestyle
15	Aqua tics	Swim	1500m freestyle
16	Aqua tics	Swim ming	400m individual medley
17	Aqua tics	Swim ming	4x100m medley relay
18	Aqua tics	Swim ming	800m freestyle
21	Aqua	Swim	200m

	tics	ming	backstroke
25	Aqua tics	Swim ming	200m freestyle
26	Aqua tics	Swim	100m butterfly
27	Aqua tics	Swim	100m backstroke
32	Aqua tics	Swim	4x200m freestyle relay
39	Aqua tics	Swim	200m breaststroke
46	Aqua tics	Swim ming	100m breaststroke

53	Aqua tics	Swim ming	200m butterfly		
84	Aqua tics	Swim	100m freestyle		
12	Aqua tics	Water polo	water polo		
15 9	Arch ery	Archer	individual FITA round		
16 5	Athle tics	Athleti cs	4x400m relay		
16 6	Athle tics	Athleti cs	4x100m relay		
16 7	Athle tics	Athleti cs	long jump		

17 0	Athle tics	Athleti cs	high jump
17 1	Athle tics	Athleti	100m hurdles
17 2	Athle tics	Athleti cs	400m
17 3	Athle tics	Athleti cs	5000m
17 4	Athle tics	Athleti cs	100m
17 6	Athle tics	Athleti cs	pentathlon
17 8	Athle tics	Athleti cs	200m

18 0	Athle tics	Athleti cs	hammer throw
18	Athle tics	Athleti cs	decathlon
18	Athle tics	Athleti cs	800m
19	Athle tics	Athleti cs	shot put
19 5	Athle tics	Athleti	3000m steeplechase
19 6	Athle tics	Athleti	1500m
19	Athle tics	Athleti	

```
q3_data = q3_data.groupby(['Sport'])['Sport'].size()
plt.figure(figsize = (10,4))
q3_data.plot.bar(x = 'Sport', y = 'Count')
```

Out[9]:

<Axes: xlabel='Sport'>

Ans. Sports with most events are Wrestling, Weightlifting and Judo. Total number of unique events are held: 334

Q4. Which Athlete has win most medal from given period?

```
In [10]:
q4_data =
data.groupby(['Athlete'])['Athlete'].count().reset_index(name =
'Count').sort_values(ascending = False , by = ['Count'])
q4_data = q4_data[:10]

In [11]:
q4_data.plot.bar(x = 'Athlete', y = 'Count')

Out[11]:
<Axes: xlabel='Athlete'>
```


Ans. So Michael Phelps won 16 mdeal durin 1976 to 2008. Clearly mindblowing record !!

Q5. Put some light on gender ratio in winning teams?

```
In [12]:
q5_data = data.groupby(['Gender'])['Gender'].count()
plt.figure(figsize = (12,2))
q5_data.plot.barh(x = 'Athlete', y = 'Count')
```

```
Out[12]:
<Axes: ylabel='Gender'>
  Women
Gender
   Men
                  2000
                               4000
                                             6000
                                                          8000
It seems that there are some events which are made only for male.
                                                               In [13]:
q5_data = data[['Event', 'Gender']]
q5_data = q5_data.groupby(['Event',
'Gender'])['Gender'].count()
q5_data
                                                               Out[13]:
                                              Gender
Event
+ 100kg (heavyweight)
                                              Men
                                                           16
+ 100kg (super heavyweight)
                                              Men
                                                           18
+ 105kg
                                              Men
                                                            9
+ 108kg, total (super heavyweight)
                                              Men
                                                            3
+ 110kg, total (super heavyweight)
                                              Men
                                                           15
```

+ 67 kg	Women	10
+ 72kg (heavyweight)	Women	8
+ 75kg	Women	9
+ 78kg (heavyweight)	Women	12
+ 80 kg	Men	10
+ 81kg (heavyweight)	Men	8
+ 91kg (super heavyweight)	Men	28
+ 93kg (heavyweight)	Men	4
+ 95kg (heavyweight)	Men	16
- 48 kg	Women	8
- 48kg	Women	7
- 48kg (extra-lightweight)	Women	12
- 48kg (light-flyweight)	Men	64
- 49 kg	Women	10
- 52kg, total (flyweight)	Men	15
- 54kg, total (flyweight)	Men	3
- 55kg	Men	14
- 56kg, total (bantamweight)		

Ans. So there is a huge difference in number of male winners and female winners implying number of sporting event for male are way more than for female¶

(This bust the myth of someone like me who thought that every sport has both male

and female version. But thats not true. Some are reserved for male and some are for female at various year.)

Q6. Which country has win most medal and how many in each year?

```
In [14]:
q6_data = data[['Year', 'Country', 'Medal']]
q6_data = q6_data.groupby(['Year', 'Country',
'Medal'])['Country'].count().reset_index(name = 'Count')
q6_data['Medal'] = pd.Categorical(q6_data['Medal'],
categories=['Gold', 'Silver', 'Bronze'], ordered=True)
q6_data = q6_data.sort_values(ascending = [True, True, True],
by = ['Year', 'Country', 'Medal'])
q6_data = q6_data.pivot( index = ['Year', 'Country'], columns =
['Medal'], values = ['Count']).reset_index()
q6_data = q6_data.replace(np.nan, 0)
q6_data['Sum'] = q6_data['Count', 'Bronze'] +
q6_data['Count','Gold'] + q6_data['Count','Silver']
q6_data = q6_data.sort_values(ascending = [True, False],by =
['Year', 'Sum'])
q6_data.columns = q6_data.columns.droplevel(0)
q6_data.columns = ['Year', 'Country', 'Gold', 'Silver',
'Bronze', 'Sum']
print(g6_data.Country.unique())
q6_data
```

```
['Soviet Union' 'East Germany' 'United States' 'West Germany'
'Poland'
'Hungary' 'Romania' 'Japan' 'Bulgaria' 'United Kingdom'
'Italy'
'New Zealand' 'Australia' 'Cuba' 'Canada' 'France'
'Yugoslavia'
'Korea, South' 'Pakistan' 'Czechoslovakia' 'Netherlands'
'Sweden'
 'Switzerland' 'Belgium' 'Denmark' 'Finland' 'Norway' 'Spain'
'Brazil'
 'Iran' 'Jamaica' 'Korea, North' 'Mexico' 'Portugal' 'Austria'
'Bermuda*'
'Mongolia' 'Puerto Rico*' 'Thailand' 'Trinidad and Tobago'
'Venezuela'
 'India' 'Zimbabwe' 'Greece' 'Ethiopia' 'Ireland' 'Tanzania'
'Guyana'
'Lebanon' 'Uganda' 'China' 'Nigeria' 'Kenya' 'Turkey'
'Algeria' 'Morocco'
'Cameroon' 'Colombia' "Cote d'Ivoire" 'Dominican Republic'
'Egypt'
 'Iceland' 'Peru' 'Syria' 'Taiwan' 'Zambia' 'Argentina'
'Indonesia'
'Chile' 'Costa Rica' 'Djibouti' 'Netherlands Antilles*'
```

```
'Philippines'
 'Senegal' 'Suriname' 'Virgin Islands*' 'Unified team'
'Germany' 'Croatia'
 'Ghana' 'Lithuania' 'Slovenia' 'Estonia'
 'Independent Olympic Participants (1992)' 'Latvia' 'South
Africa'
 'Israel' 'Malaysia' 'Namibia' 'Bahamas' 'Qatar' 'Russia'
'Ukraine'
 'Belarus' 'Czech Republic' 'Kazakhstan' 'Moldova' 'Slovakia'
'Armenia'
 'Georgia' 'Uzbekistan' 'Azerbaijan' 'Burundi' 'Ecuador' 'Hong
Kong*'
 'Mozambique' 'Tonga' 'Tunisia' 'Saudi Arabia' 'Barbados'
'Kuwait'
 'Kyrgyzstan' 'Macedonia' 'Sri Lanka' 'Uruguay' 'Vietnam'
'Paraguay'
 'Serbia' 'Eritrea' 'United Arab Emirates' 'Singapore'
'Tajikistan'
 'Afghanistan' 'Mauritius' 'Panama' 'Sudan' 'Togo']
                                                        Out[14]:
```

Ye	Country	Gol	Silv	Bro	Su
----	---------	-----	------	-----	----

	ar		d	er	nze	m
3	19 76	Soviet Union	113	93.	79.0	28 5.0
1 0	19 76	East Germany	99.	51. 0	42.0	19 2.0
3 7	19 76	United States	63. 0	56. 0	36.0	15 5.0
3 9	19 76	West	21.	24.	30.0	75. 0
2 6	19 76	Poland	18.	29.	26.0	73. 0
1 3	19 76	Hungary	14.	6.0	35.0	55. 0

2 9	19 76	Romania	4.0	28.	23.0	55. 0
1 7	19 76	Japan	25. 0	6.0	10.0	41.
5	19 76	Bulgaria	8.0	13.	18.0	39. 0
3 6	19 76	United Kingdom	6.0	15. 0	11.0	32. 0
1 5	19 76	Italy	2.0	25. 0	4.0	31. 0
2 3	19 76	New Zealand	17.	1.0	9.0	27. 0
0	19 76	Australia	0.0	16. 0	8.0	24. 0

7	19 76	Cuba	6.0	4.0	14.0	24. 0
6	19 76	Canada	0.0	8.0	12.0	20. 0
1 2	19 76	France	5.0	7.0	8.0	20. 0
4 0	19 76	Yugoslavi a	2.0	14. 0	3.0	19. 0
1 9	19 76	Korea, South	1.0	1.0	15.0	17. 0
2 5	19 76	Pakistan	0.0	0.0	16.0	16. 0
8	19 76	Czechosl ovakia	2.0	4.0	9.0	15. 0

2 2	19 76	Netherlan ds	0.0	2.0	13.0	15. 0
3 2	19 76	Sweden	9.0	1.0	0.0	10.
3	19 76	Switzerla nd	1.0	3.0	6.0	10.
2	19 76	Belgium	0.0	3.0	6.0	9.0
9	19 76	Denmark	3.0	0.0	5.0	8.0
1	19 76	Finland	4.0	2.0	0.0	6.0
2	19 76	Norway	2.0	4.0	0.0	6.0

	1	T			I	
3	19 76	Spain	0.0	6.0	0.0	6.0
4	19 76	Brazil	0.0	0.0	3.0	3.0
1 4	19 76	Iran	0.0	1.0	1.0	2.0
1 6	19 76	Jamaica	1.0	1.0	0.0	2.0
1 8	19 76	Korea, North	1.0	1.0	0.0	2.0
2 0	19 76	Mexico	1.0	0.0	1.0	2.0
2	19 76	Portugal	0.0	2.0	0.0	2.0

|--|

Ans. So I created an interactive solution here. Input the country name from above list. And check its performance over year.

Note: This may not resemble actual table tally because for eg., a gold in hockey is just one gold in table but here it is 16 gold because sixteen people got it. So it is more like how many people got a medal instead of how many gold medal a country got.

Q7. Can you tell me which country has dominated any particular sport?

```
Out[16]:
array(['Aquatics', 'Archery', 'Athletics', 'Badminton',
'Baseball',
```

```
'Basketball', 'Boxing', 'Canoe / Kayak', 'Cycling',
'Equestrian',
      'Fencing', 'Football', 'Gymnastics', 'Handball',
'Hockey', 'Judo',
       'Modern Pentathlon', 'Rowing', 'Sailing', 'Shooting',
'Softball',
       'Table Tennis', 'Taekwondo', 'Tennis', 'Triathlon',
'Volleyball',
       'Weightlifting', 'Wrestling'], dtype=object)
                                                      In [17]:
inp = 'Archery'
try:
   inp = input("Select a Sport from above list")
except:
   print("Input is interrupted")
temp = q7_data[q7_data['Sport'] == inp].head(3)
print(temp)
Input is interrupted
     Sport Country Count
56 Archery Korea, South 52
67 Archery United States 19
49 Archery
                    China
                              15
```

Ans. So Here we have an interactive way to see which country has dominated which sport. For e.g., Netherland and Australia dominated Hockey in the given period.

Note: This may not resemble actual table tally because for eg., a gold in hockey is just one gold in table but here it is 16 gold because sixteen people got it. So it is more like how many people got a medal instead of how many gold medal a country got.

Q8. Has any athlete changed his or her Event or Discipline or sport and still win the medal?

```
In [18]:
temp = data[['Athlete','Sport']].drop_duplicates()
temp = temp.groupby(['Athlete'])
for k,v in temp:
   if len(v['Sport'].tolist()) >1:
        print(k,v['Sport'].tolist())
```

```
('BELOVA, Irina',) ['Athletics', 'Gymnastics']
('CHEN, Jing',) ['Table Tennis', 'Volleyball']
('DIMITROV, Stefan',) ['Volleyball', 'Weightlifting']
('GAVRILOV, Yuri',) ['Football', 'Handball']
('GONZALEZ, Raul',) ['Athletics', 'Handball']
('KOLESNIKOV, Nikolai',) ['Athletics', 'Weightlifting']
('KOVACS, Istvan',) ['Wrestling', 'Boxing']
```

```
('KOVALENKO, Alexandre',) ['Athletics', 'Aquatics']
('KUZNETSOV, Mikhail',) ['Rowing', 'Canoe / Kayak']
('KUZNETSOV, Nikolai',) ['Rowing', 'Cycling']
('LEE, Eun Kyung',) ['Archery', 'Hockey']
('LI, Na',) ['Aquatics', 'Fencing']
('LI, Ting',) ['Aquatics', 'Tennis']
('OVCHINNIKOVA, Elena',) ['Volleyball', 'Aquatics']
('ROMERO, Rebecca',) ['Rowing', 'Cycling']
('THOMPSON, Richard',) ['Baseball', 'Athletics']
('TOMA, Sanda',) ['Rowing', 'Canoe / Kayak']
('WANG, Liping',) ['Football', 'Athletics']
('WELLS, Matthew',) ['Hockey', 'Rowing']
('YANG, Wei',) ['Badminton', 'Gymnastics']
('YOUNG, Tim',) ['Rowing', 'Baseball']
```

Ans. So there has been quite a few player who has changed the sport and still won a medal. Kudos to them !!

Note: Here two different person had same name. for eg., Yang Wei from Gymanstic and from Badminton are different player. From thr given data we cannot distinguish between them. So take it with a pinch of salt

Q9. (Follow up of Q6) Elaborate the result and dive into detials.(Pick any 5 country for this

```
q9_data = q6_data[['Year', 'Country',
'Sum']].groupby(['Year']).apply(lambda x : x.nlargest(5,'Sum'))
q9_data = q9_data.pivot( index = ['Year'], columns =
['Country'], values = ['Sum']).reset_index()
q9_data.columns = q9_data.columns.droplevel(0)
# q9_data.columns = ['Year', 'Country', 'Gold', 'Silver',
'Bronze', 'Sum']
q9_data = q9_data.rename(columns={ q9_data.columns[0]: "Year"
})
q9_data
\# temp =
q6_data.where(q6_data.Country.isin(q9_data.columns)).dropna()[["
Year", "Country", "Sum"]]
# temp
```

Out[19]:

С	Υ	Au	В	С	С	С	Ea	Ge	Н	It	K	P	Ro	R	S	U	U	W	Yu
ou	е	str	ul	an	h :	u	st	rm	un	а	0	ol	m	u	0	ni	ni	est	go
nt	а	ali	ga	ad	1	b	Ge	an	ga	ı	r	а	an	S	Vİ	fi	te	Ge	sla
ry	r	а	ria	а	n	а	rm	у	ry	у	е	n	ia	si	е	е	d	rm	via
					а		an				a,	d		а	t	d	S	an	

							у				S o ut h				U ni o n	te a m	ta te s	у	
0	1 9 7 6	N a N	N a N	N a N	N a N	N a N	19 2. 0	Na N	N a N	N a N	N a N	7 3. 0	Na N	N a N	2 8 5 . 0	N a N	1 5 5. 0	75 .0	Na N
1	1 9 8 0	N a N	94	N a N	N a N	N a N	26 0. 0	Na N	61	N a N	N a N	N a N	72 .0	N a N	4 4 2 . 0	N a N	N a N	Na N	Na N
2	1 9 8 4	N a N	N a N	86	N a N	N a N	Na N	Na N	N a N	N a N	N a N	N a N	10 6. 0	N a N	N a N	N a N	3 3 3. 0	15 7. 0	87. 0
3	1 9	N a	N a	N a	N a	N a	17 4.	Na	N a	N a	7 7.	N a	Na	N a	2 9	N a	1 9	11 3.	Na

	8	N	N	N	N	N	0	N	N	N	0	N	N	N	4 0	N	3.	0	N
4	1 9 9	N a N	N a N	N a N	8 3 . 0	7 1	Na N	19 8. 0	N a N	N a N	N a N	N a N	Na N	N a N	N a N	2 2 3. 0	2 2 4. 0	Na N	Na N
5	1 9 9 6	13 2. 0	N a N	N a N	1 1 0	N a N	Na N	12 4. 0	N a N	N a N	N a N	N a N	Na N	1 1 5. 0	N a N	N a N	2 6 0. 0	Na N	Na N
6	2 0 0	18 3. 0	N a N	N a N	7 9 . 0	N a N	Na N	11 9. 0	N a N	N a N	N a N	N a N	Na N	1 8 8. 0	N a N	N a N	2 4 8. 0	Na N	Na N
7	2 0 0	15 7. 0	N a N	N a N	N a N	N a N	Na N	14 9. 0	N a N	1 0 2	N a N	N a N	Na N	1 9 2.	N a N	N a N	2 6 4.	Na N	Na N

	4									0				0			0		
8	2 0 0 8	14 9. 0	N a N	N a N	1 8 4	N a N	Na N	10 1. 0	N a N	а	N a N	N a N	Na N	1 4 3. 0	N a N	N a N	3 1 5. 0	Na N	Na N

Out[20]:

C o u nt ry	Y e ar	Au str ali a	B ul ga ria	C a n a d a	C h i n a	C u b a	Ea st Ge rm an y	Ge rm an y	H un ga ry	It a I	K o r e a, S o ut h	P ol a n d	Ro m an ia	R u s si a	S o vi e t U ni o n	U ni fi e d te a m	U ni t e d S t a t e s	W est Ge rm an y	Yu go sla via
0	1 9 7 6.	24 .0	39	2 0. 0	0 . 0	2 4 . 0	19 2. 0	0.	55	3 1 . 0	1 7. 0	7 3. 0	55 .0	0.	2 8 5 . 0	0.	1 5 5 . 0	75 .0	19.
1	1 9 8 0. 0	12 .0	94	0.	0 . 0	2 0 . 0	26 0. 0	0.	61	3 7 . 0	0.	5 0. 0	72 .0	0.	4 4 2 . 0	0.	0 . 0	0.	57. 0

2	1 9 8 4. 0	50	0.	8 6. 0	7 6 . 0	0 . 0	0.	0.	0.	6 3 . 0	4 2. 0	0.	10 6. 0	0.	0 . 0	0.	3 3	15 7. 0	87.
3	1 9 8 8. 0	34 .0	41	2 1. 0	5 3 . 0	0 . 0	17 4. 0	0. 0	44 .0	2 9 . 0	7 7. 0	2 1. 0	51	0.	2 9 4	0.	1 9 3	11 3. 0	63. 0
4	1 9 9 2. 0	57 .0	17	4 4. 0	8 3 . 0	7 1 . 0	0.	19 8. 0	45 .0	4 6 . 0	4 9. 0	4 2. 0	53	0.	0 . 0	2 2 3. 0	2 2 4	0.	0.0
5	1 9 6. 0	13 2. 0	21	5 1. 0	1 1 0	5 7 . 0	0.	12 4. 0	43 .0	7 1	6 6. 0	2 1. 0	38 .0	1 1 5. 0	0 . 0	0.	2 6 0	0.	26. 0

6	2 0 0 0.	18 3. 0	13	3 1. 0	7 9 . 0	6 9 . 0	0.	11 9. 0	53	6 5 . 0	7 3. 0	2 4. 0	46 .0	1 8 8. 0	0 . 0	0.	2 4 8 . 0	0.	26. 0
7	2 0 0 4. 0	15 7. 0	17	1 7. 0	9 4 . 0	6 1 . 0	0. 0	14 9. 0	40 .0	1 0 2 . 0	5 2. 0	1 2. 0	39	1 9 2. 0	0 . 0	0.	2 6 4 . 0	0.	0.0
8	2 0 0 8. 0	14 9. 0	5. 0	3 4. 0	1 8 4	4 7 . 0	0.	10 1. 0	27	4 2 . 0	7 8. 0	2 0. 0	22 .0	1 4 3. 0	0 . 0	0.	3 1 5	0.	0.0

So these are the top 5 countries in each olympic game. Lets Combine Soviet Union + Unified Team +Russia and East Germany + West Germany + Germany.

Also lets drop Yugoslavia, Poland, South Korea, Italy, Hungary, Cuba, Canada, Bulgaria as they are only shown up once in top 5.

In [21]:

```
q9_data.Germany = q9_data.Germany + q9_data['East Germany'] +
q9_data['West Germany']
q9_data.Russia = q9_data['Soviet Union'] + q9_data.Russia +
q9_data['Unified team']
q9_data = q9_data.drop(['Yugoslavia','Poland','Korea,
South','Italy','Hungary','Cuba','Canada','Bulgaria','East
Germany', 'West Germany', 'Soviet Union', 'Unified team'], axis
= 1)
q9_data = q9_data.set_index('Year')
q9_data
```

Out[21]:

Cou	Austr	Chi na	Germ	Rom ania	Rus sia	United States
Year						
1976 .0	24.0	0.0	267.0	55.0	285. 0	155.0

1980	12.0	0.0	260.0	72.0	442. 0	0.0	
1984	50.0	76. 0	157.0	106.0	0.0	333.0	
1988	34.0	53. 0	287.0	51.0	294.	193.0	
1992	57.0	83.	198.0	53.0	223.	224.0	
1996	132.0	110	124.0	38.0	115. 0	260.0	
2000	183.0	79. 0	119.0	46.0	188.	248.0	
2004	157.0	94.	149.0	39.0	192. 0	264.0	

	2008	49.0	184	101.0	22.0	143. 0	315.0
--	------	------	-----	-------	------	-----------	-------

Lets plot line graph for this

```
In [22]: # q9\_data.plot(x = 'Year', y = q9\_data.columns[1:]) import seaborn as sns plt.figure(figsize=(15,8)) sns.lineplot(data = q9\_data)
```

Out[22]:

<Axes: xlabel='Year'>

Ans. We can clearly see some pattern here.

- Soviet Union(Russia here) dominated Olypics with decline over time except
 1982 where it boycotted entire olypics.
- US after boycotting 1980 olypics, rose up to be the dominating player here.
- Germany as a whole country inlcuding (west and east), saw continous decline over period of time.
- China and Australia has witnessed steady rise in their medal tally
- Romania has been same overpeiod with little decline.

Note: The number do not represent number of medal but the total people who won it. E.g., Winner in hockey gets one gold, but 16 people are given the medal. So here we are counting 16.

Any comments or suggestion or correction is most welcomed. Thank you very much.
The End.

Reference link