Aufgabe 1: Grundwissen

- (a) Geben Sie zwei verschiedene Möglichkeiten der formalen Verifikation an.
 - 1. Möglichkeit: formale Verifikation mittels *vollständiger Induktion* (eignet sich bei *rekursiven* Programmen).
 - 2. Möglichkeit: formale Verifikation mittels *wp-Kalkül* oder *Hoare-Kalkül* (eignet sich bei *iterativen* Programmen).
- (b) Erläutern Sie den Unterschied von partieller und totaler Korrektheit.
 - partielle Korrektheit:

Das Programm verhält sich spezifikationsgemäß, *falls* es terminiert.

- totale Korrektheit:

Das Programm verhält sich spezifikationsgemäß und es terminiert immer.

(c) Gegeben sei die Anweisungssequenz *A*. Sei *P* die Vorbedingung und *Q* die Nachbedingung dieser Sequenz. Erläutern Sie, wie man die (partielle) Korrektheit dieses Programmes nachweisen kann.

Vorgehen Horare-Kalkül wp-Kalkül Wenn die Vorbedingung P zutrifft, gilt nach der Ausführung der Anweisungssequenz P die Nachbedingung P.

- (d) Gegeben sei nun folgendes Programm:
- 1 A_1
 2 while(b):
- 3 A_2
- 4 A_3

wobei A_1 , A_2 , A_3 Anweisungssequenzen sind. Sei P die Vorbedingung und Q die Nachbedingung des Programms. Die Schleifeninvariante der while-Schleife wird mit I bezeichnet. Erläutern Sie, wie man die (partielle) Korrektheit dieses Programmes nachweisen kann.

Vorgehen	Horare-Kalkül	wp-Kalkül
Die Invariante <i>I</i> gilt vor	${P}A_1{I}$	$P \Rightarrow wp(A_1, I)$
Schleifeneintritt.		
<i>I</i> ist invariant, d. h. <i>I</i> gilt	${I \wedge b}A_2{I}$	$I \wedge b \Rightarrow wp(A_2, I)$
nach jedem		_
Schleifendurchlauf.		
Die Nachbedingung Q	${I \wedge \neg b}A_3{Q}$	$I \wedge \neg b \Rightarrow wp(A_3, I)$
wird erfüllt.		•

(e) Beschreiben Sie, welche Vorraussetzungen eine Terminierungsfunktion erfüllen muss, damit die totale Korrektheit gezeigt werden kann.