SEHOON KIM

1929 Delaware, Berkeley, CA 94709

RESEARCH INTERESTS

Efficient Deep Learning, Model Compression, Hardware-Software Co-design, AI Systems

EDUCATION

University of California at Berkelev

Aug. 2020 - Present

Candidate for Ph.D. in Electrical Engineering and Computer Science

Seoul National University

Mar. 2015 - Feb. 2020

B.S. in Electrical and Computer Engineering

GPA: Overall **4.29/4.30**, Major **4.30/4.30**, Ranked **1st** in the class of 2020

Korea Science Academy of KAIST

Mar. 2011 - Feb. 2015

Math and science specialized high school

PUBLICATIONS and PREPRINTS

- Woosuk Kwon*, **Sehoon Kim***, Joseph Hassoun, Michael W. Mahoney, Kurt Keutzer, Amir Gholami, "A Fast Post-Training Pruning Framework for Transformers," Preprint (Under Review) [Paper] [Code]
- Sehoon Kim*, Sheng Shen*, David Thorsley*, Amir Gholami*, Woosuk Kwon, Joseph Hassoun, Kurt Keutzer, "Learned Token Pruning for Transformers," KDD 2022 [Paper] [Code]
- Sehoon Kim, Amir Gholami, Zhewei Yao, Nicholas Lee, Patrick Wang, Anirudda Nrusimha, Bohan Zhai, Tianren Gao, Michael W. Mahoney, Kurt Keutzer, "Integer-only Zero-shot Quantization for Efficient Speech Recognition," ICASSP 2022 [Paper] [Code]
- Shixing Yu*, Zhewei Yao*, Amir Gholami*, Zhen Dong*, **Sehoon Kim**, Michael W Mahoney, Kurt Keutzer, "Hessian-Aware Pruning and Optimal Neural Implant," WACV 2022 [Paper]
- Gyeong-In Yu, Saeed Amizadeh, **Sehoon Kim**, Artidoro Pagnoni, Ce Zhang, Byung-Gon Chun, Markus Weimer, Matteo Interlandi, "WindTunnel: Towards Differentiable ML Pipelines Beyond a Single Model," VLDB 2022 [Paper]
- Taebum Kim, Eunji Jeong, Geon-Woo Kim, Yunmo Koo, **Sehoon Kim**, Gyeong-In Yu, Byung-Gon Chun, "Terra: Imperative-Symbolic Co-Execution of Imperative Deep Learning Programs," NeurIPS 2021
- Sehoon Kim*, Amir Gholami*, Zhewei Yao*, Michael W. Mahoney, Kurt Keutzer, "I-BERT: Integer-only BERT Quantization," ICML 2021 (Oral) [Paper] [Code1] [Code2]

RESEARCH EXPERIENCES

Research Assistance, UC Berkeley

Aug. 2020 - Present

Advisor: Prof. Kurt Keutzer

• Learned Token Pruning for Transformers

- o Token pruning scheme for Transformers that detects and drops less important tokens for efficient inference
- \circ Proposed fully-automated algorithm for determining optimal token pruning configuration by introducing learnable binary mask for tokens
- \circ Achieved 2.1× FLOPs reduction and up to 2× throughput improvement on Haswell CPU and V100 GPU with less than 1% accuracy degradation from RoBERTa

• Integer-only Zero-shot Quantization for Efficient Speech Recognition

- o Integer-only quantization scheme for ASR models that does not require any training/validation data
- Proposed synthetic data generation method for speech signals that allows accurate calibration for quantization

 \circ Implemented on top of various ASR models and achieved 2.35× speedup of T4 GPU with less than 1% word-error-rate degradation

• I-BERT: Integer-only BERT Quantization

- o Integer-only quantization scheme for Transformers that performs entire inference with integer arithmetic
- Introduced efficient and accurate integer-only kernels for GELU, Softmax, and LayerNorm, based on approximation with 2nd-order polynomials
- \circ Implemented I-BERT on top of RoBERTa and achieved 4× speedup on T4 GPU compared to FP32 baseline without accuracy degradation on GLUE benchmarks
- Open-source Project: Collaborated with HuggingFace team to support I-BERT in official library

Undergraduate Research Intern, Software Platform Lab, SNU Advisor: Prof. Byung-Gon Chun

Mar. 2019 - May. 2020

Spring 2015

Advisor. 1 for. Dyung-Gon Chun

- Terra: Imperative-Symbolic Co-Execution of Imperative Deep Learning Programs
 - Framework that co-executes imperative DL programs and their optimized symbolic graph representations to achieve both flexibility of imperative programs and high-performance of symbolic programs.
- WindTunnel: Towards Differentiable ML Pipelines Beyond a Single Model
 - Framework that translates pre-trained classical machine learning models into equivalent neural networks to apply backpropagation for further improvement of model accuracy

Undergraduate Research Intern, High Performance Computer System Lab, SNU Sep. 2017 - Jun. 2018 Advisor: Prof. Jangwoo Kim

- Power and Delay Simulator for SRAM at Ultra-low Temperature
 - Tool that simulates delay, static power and dynamic power of SRAM architectures based on theoretically modeled physical characteristics of CMOS devices and wires at 77 K

HONORS and AWARDS

Doctoral Study Abroad Scholarship, Korea Foundation for Advanced Studies Full tuition, insurance, and living expenses (around 40 students selected nationally)	Up to five years from 2020
Kwanjeong Educational Foundation Scholarship, USD 10K per year	Spring 2017 - Fall 2018
Eminence Scholarship, Full Tuition, Seoul National University	Spring 2016 - Fall 2016
The Education and Research Foundation Scholarship, Full Tuition, Seoul Nat	ional University Fall 2015

SKILLS

Programming Languages Python, C/C++, Verilog, Java, MATLAB

DL Frameworks PyTorch, Tensorflow, Keras

Merit-based Scholarship, 10% Tuition, Seoul National University

HW Simulation Tools GEM5, CACTI

English Skill iBT: 114 (R29, L30, S26, W29), GRE: Verbal 158, Writing 4.5