8. 机械振动(一)

班级	龙 绩
----	------------

1. 一物体做简谐运动,运动方程为 $x = A\cos(\omega t + \pi/4)$,在 t = T/4 时刻(T 为周期),物体的速

(A)
$$-\frac{\sqrt{2}}{2}A\omega$$
, $-\frac{\sqrt{2}}{2}A\omega^2$ (B) $-\frac{\sqrt{2}}{2}A\omega$, $\frac{\sqrt{2}}{2}A\omega^2$ (C) $\frac{\sqrt{2}}{2}A\omega$, $-\frac{\sqrt{2}}{2}A\omega^2$ (D) $\frac{\sqrt{2}}{2}A\omega$, $\frac{\sqrt{2}}{2}A\omega^2$

2. 质点做简谐运动, 其位移与时间的曲线如图所示。则该质点 做简谐运动的初相位为

$$(B) - \pi/3$$

$$(C) \pi/C$$

(A)
$$\pi/3$$
 (B) $-\pi/3$ (C) $\pi/6$ (D) $2\pi/3$

3. 一弹簧振子做简谐运动,当位移为振幅的一半时,其动能为 总能量的

(B)
$$1/2$$
 (C) $3/4$ (D) $\sqrt{2}/2$

]

4. 劲度系数分别为 k_1 和 k_2 的两个轻弹簧串接在一起,下面挂着质量为 m 的物体,构成一个垂 直悬挂的谐振子, 如图所示, 则该系统的振动周期为

(A)
$$T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{2k_1k_2}}$$
 (B) $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$

(B)
$$T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

(C)
$$T = 2\pi \sqrt{\frac{k_1 + k_2}{2mk_1k_2}}$$
 (D) $T = 2\pi \sqrt{\frac{2m}{k_1 + k_2}}$

(D)
$$T = 2\pi \sqrt{\frac{2m}{k_1 + k_2}}$$

5. 质点做简谐运动的位移和时间关系曲线如图所示,则其运动方程为__

图 8-2

图 8-3

- 6. 在两个相同的弹簧下各悬挂一物体,两物体的质量比为 4:1,则两者做简谐运动的周期之比为____。
- 7. 一放置在水平桌面上的弹簧振子,振幅 A = 0.1 m,周期 T = 2 s,当 t = 0 时,求以下各种情况的运动方程:(1)物体在平衡位置,向正方向运动;(2)物体在 x = 0.05 m 处并向负方向运动;(3)物体在负方向端点。

8. 一边长为a的正方形木块浮在水面上。设木块的密度为 ρ_ ,设水的密度为 ρ_* (不计水的 黏性阻力)。证明木块在水中做振幅较小的竖直自由运动是简谐运动,并求振动周期。

9. 一质点做简谐运动,其运动方程为 $x=0.20\cos(\pi t + \pi/3)(m)$,试用旋转矢量法求质点由初始状态时(t=0)运动到 x=-0.10 m 位置所需最短时间 Δt 。

10. 一弹簧振子做简谐运动, 振幅 A = 0.20 m, 求: (1) 物体动能和势能相等时的位置; (2) 物体位移为振幅一半时, 动能为总能量的多少?

9. 机械振动(二)

班:	班级	生名	_ 成绩
_			
1.	1. 两个振动方向、振幅、频率均相同的简谐运	动相遇叠加,测得是	某一时刻两个振动的位移都
	等于零,而运动方向相反。则表明两个振动	的	
	(A) 相位差 $\Delta \varphi = \pi$, 合振幅 $A' = 2A$		
	(B) 相位差 $\Delta \varphi = \pi$, 合振幅 $A' = 0$		
	(C) 相位差 $\Delta \varphi$ =0, 合振幅 A' =0		
	(D) 相位差 $\Delta \varphi = 0$,合振幅 $A' = \sqrt{2}A$		
			[]
2.	2. 把单摆小球从平衡位置向位移正方向拉开,位	使摆线与竖直方向成	і一微小角度 θ, 然后由静止
	释放,使其摆动。从放手时开始计时,若用	余弦函数表示运动力	方程,则该单摆振动的初相
	为		
	(A) π (B) 0 (C) π /	$(D) \theta$	
			[]
3.	3. 将频率为 ν _a = 400 Hz 的标准音叉和一待测频	率的音叉同时振动,	测得拍频为 2.0 Hz, 而将
	频率为 $\nu_{\scriptscriptstyle b}$ = 405 Hz 的标准音叉与待测音叉同	时振动时,测得拍频	频为 3.0 Hz, 则待测音叉的
	频率为		
	(A) 400 Hz (B) 398 Hz (C) 402	2 Hz (D) 40	08 Hz
			[]
1.	1. 某谐振子同时参与两个同方向的简谐运动,具		
	$x_1 = 3 \times 10^{-2} \cos(4\pi t + \pi/3) \text{ (m}$	70	
	当 φ =时合振动的振幅最大,其值	$A_{\text{max}} = \underline{\qquad}; \underline{\cong}$	$i\varphi = $ 时合振动的振
	幅最小,其值 A _{min} =。	<i>n</i> 1= N	di.
	x_1 两个同频率的简谐运动曲线如图所示,则 x_2		
),	5. 已知一质点做简谐运动曲线如图所示,由图7	引确定振于在 $t =$	s 时速度为零; 在t =
	s 时弹性势能最小。		
	x_1 x_2 x_3	x	
		Ĭ	\wedge
	0 / / / 7	0	$\frac{1}{2}$ $\frac{1}{2}$
	/ W \		
	1	l	

图 9-2

图 9-1

7. 一质点做简谐运动的方程为 $x=0.1\cos(3\pi t+2\pi/3)(m)$, 求:(1) 此振动的周期 T、振幅 A、初相 φ ; (2) 速度的最大值 v_{max} 和加速度的最大值 a_{max} 。

*8. 如图所示,质量为 $2.0 \times 10^{-2} kg$ 的子弹,以 $200 \text{ m} \cdot \text{s}^{-1}$ 的速度射入木块,并嵌在其中, 同时使弹簧压缩从而做简谐运动。已知木块的 质量为 4.98 kg; 弹簧的劲度系数为 5×10² N·m⁻¹, 若以弹簧原长时物体所在处 为坐标原点,向右为 x 轴正向,求简谐运动 方程。

图 9-3

9. 已知两同方向、同频率的简谐运动的运动方程分别为

$$x_1 = 0.06 \cos \left(2\pi t + \frac{\pi}{3}\right) (m), \quad x_2 = 0.08 \cos \left(2\pi t + \frac{5\pi}{6}\right) (m)$$

求它们合振动的振幅和初相。

10. 图中 a、b 表示两个同方向、同频率的简谐运动的 x - t 曲线, 问:它们合振动的振幅、初相、周期各为多少? x/cm↓

图 9-4

10. 机械波(一)

班组	吸	学号	姓名		责		•
1.	机械波的表达式为	$y = 0.03\cos[6\pi(t +$	$(0.01x) + \pi/3$	 n),则下列叙:	————— 述正确的是		
	(A) 其振幅为3 m		(B) 其周期カ	∮ 1/3 s			
	(C) 其波速为 10 r	n • s -1	(D) 波沿 x 轴	由正向传播			
						[]
2.	图中(a)表示 t=0	付的简谐波的波形图],波沿 x 轴正方	向传播。图(b)为一质点的	内振动	曲线
	图。则图(a)中所表 别为	ē示的 x = 0 处质点技	辰动的初相位与B	图(b)所表示的	的质点振动的	勺初相(位分
	(A) 均为 0	(B) 均为 π/2	(C) π/2与	$-\pi/2$ (D) $-\pi/2$	与 π/2	
		<i>y u u</i> (a)	x 0	(b)			
			图 10-1				
						[]
3.	波由一种介质进入	另一种介质时,其色	专播速度、频率和	波长:			
	(A) 都发生变化		(B) 波速和	波长变,频率ス	下变		
	(C) 波速和频率变	,波长不变	(D) 波速、	波长和频率都る	下变化		
						[]
4.	频率为 700 Hz 的波	z, 其波速为3500 r	m・s ⁻¹ ,相位差)	り2π/3 的两点	<i>y</i>		
	间距离为	m _o			-	<u>u</u>	
5.	如图所示, 一平面	简谐波沿 x 轴正向	传播,已知 P 点	的振动方程为	1	-	
	$y = A\cos(\omega t + \varphi_0),$	则波的表达式为		o	0	P	x
6.	在简谐波的波线上	, 相距 0.5 m 两点的	的振动相位差为 π	/6, 又知振动			

图 10-2

周期为 0.2 s,则波长为_____m,波速为_____m·s⁻¹。

7. 一横波沿绳子传播, 其波的表达式 $y = 0.05\cos(20\pi t - 3\pi x)$ (m), 求: (1) 此波的振幅、波速、频率和波长。(2) 绳子上各质点的最大振动速度。

8. 如图所示为一平面简谐波在 t=0 时刻的波形图。求: (1) 该波的波动表达式; (2) P 处质点的振动方程。

图 10-3

*9. 如图所示为一平面简谐波在 $\iota=0$ 时刻的波形图。波速 $u=50~\mathrm{m\cdot s^{-1}}$,求:波动方程。

图 10-4

10. 如图所示, 一平面简谐波在介质中以波速 $u = 30 \text{ m} \cdot \text{s}^{-1}$ 沿 x 轴正向传播, 已知 A 点的振动 方程为 $y = 3 \times 10^{-2} \cos 3\pi t \text{ (m)}$ 。求: (1) 以 A 点为坐标原点写出 波的表达式; (2) 以距 A 点为 B 所处的 B 点为坐标原点写出波的表达式。

图 10-5

11. 机械波(二)

班	級	_
1.	一平面简谐波在弹性介质中传播,某处介质质元在从最大位移处回到平衡位置的过程	—— 中:
	(A) 它的势能转换成动能	
	(B) 它的动能转换成势能	
	(C) 它从相邻的一段介质质元获得能量,其能量逐渐增加	
	(D) 它把自己的能量传给了相邻一段介质质元,其能量逐渐减小	
]
2.	下列关于两列波是相干波条件叙述正确的是	
	(A) 振动方向平行,相位差恒定,频率和振幅可以不同	
	(B) 频率相同,振动方向平行,相位差恒定	
	(C) 振幅和频率相同,相位差恒定,振动方向垂直	
	(D) 振幅、频率、振动方向均必须相同,相位差恒定	
		[]
3.	如图所示,两相干波源在 P 、 Q 两点处。它们发出的波频率均为 ν ,波长均为 λ ,振	幅分别
	为 A_1 和 A_2 ,初相位相同。设 $PQ = 5\lambda/2$, R 为 PQ 连线上一点,则 P Q	R
	自 $P \setminus Q$ 发出两列波在 R 处的相位差 $\Delta \varphi$ 和两列波在 R 处干涉时的	
	合振幅分别为 图 11 - 1	
	(A) $5\pi/2$, 0 (B) 5π , 0	
	(C) 5π , $ A_1 - A_2 $ (D) $5\pi/2$, $ A_2 - A_1 $	
		[]
4.	在波长为 λ 的驻波中,两个相邻波腹之间的距离为; 一波节两边质点振动	的相位
	差为。	
5.	一辆警车以 30 m·s ⁻¹ 的速度在公路上行驶。警笛的频率为 500 Hz,则对路旁静止的	观察者
	来说, 当警车驶近时听到的警笛声音频率为, 而当警车驶离时听到的声音	频率为
	。(设声波速度为 330 m·s ⁻¹)	
6.	一波源的功率为 100 W。若波源发出的是球面波,且不计介质对波的吸收,则在	距波源
	10.0 m 处, 波的能流密度为。	
7.	如图所示,两相干波源 S_1 和 S_2 相距 10 m, S_1 的相位比 S_2 超前	
	π , 这两个相干波在 S_1 、 S_2 的连线和延长线上传播时可看成振幅	!
	相等的平面余弦波,它们的波长都为 4 m 。试求在 $S_1 \setminus S_2$ 的连线 $\frac{10 \text{ m}}{}$	
	和延长线上因干涉而静止不动的点的位置。	
	图 11-2	

8. 如图所示,两相干波源 S_1 和 S_2 ,其振动方程分别为 $y_{10} = 0.1\cos 2\pi t \text{ (m)}$ 和 $y_{20} = 0.1\cos (2\pi t + \varphi) \text{ (m)}$,它们在 P 点相遇,已知波速 $u = 20 \text{ m} \cdot \text{s}^{-1}$, $r_1 = 40 \text{ m}$, $r_2 = 50 \text{ m}$ 。试求: (1) 两列波传到 P 点的相位差; (2) P 点质点振动加强时 φ 的取值。

*9. 设入射波的表达式为 $y_1 = A\cos\left[2\pi\left(\nu t + \frac{x}{\lambda}\right)\right]$ 。波在 x = 0 处发生反射,反射点为固定端。 求形成的驻波表达式。

10. 两飞机沿同一直线相向飞行, 甲的速度为 720 km·h⁻¹, 乙的速度为 1 080 km·h⁻¹, 甲发出一个频率为 1.0×10^3 Hz 的声波信号(设声波在空气中速度 u = 330 m·s⁻¹), 求它收到从乙反射回来的信号频率。