AVL TREES

BALANCED TREES

- linked lists: quite easy to implement
 Stores lots of pointers
 O(N) search operation time complexity
- binary search trees: we came to to conclusion that O(N) searh complexity can be reduced to O(logN) time complexity

 But if the tree is unbalanced: these operations will become slower and slower
- balanced binary trees: AVL trees or red-black trees
 They are guaranteed to be balanced
 Why is it good? O(logN) is guaranteed !!!

Construct a BST from a sorted array [1,2,3,4]

Conclusion: if we construct a binary search tree from a sorted array, we end up with a linked list !!!

O(logN) reduced to O(N)

AVL TREES

BALANCED TREES

- The running time of BST operations depends on the height of the binary search tree: we should keep the tree balanced in order to get the best performance
- Thats why AVL trees came to be
- 1962: invented by two russian computer scientist
- In an AVL tree, the heights of the two child subtrees of any node differ by at most one
- Another solution to the problem is a red-black trees
- AVL trees are faster than red-black trees because they are more rigidly balanced BUT needs more work
- Operating systems relies heavily on these data structures !!!

- Most of the operations are the same as we have seen for binary search trees
- Every node can have at most 2 children: the leftChild is smaller, the rightChild is greater than the parent node
- ► The insertion operation is the same BUT on every insertion we have to check whether the tree is unbalanced or not
- Deletion operation is the same
- Maximum / minimum finding operations are the same as well !!!

The minimum value in the tree: 5

The maximum value in the tree: 50

Binary search trees

	Average case	Worst case
Space		
Insert		
Delete		
Search		

Balanced trees

	Average case	Worst case
Space		O(n)
Insert		O(log n)
Delete		O(log n)
Search	O(log n)	O(log n)

AVL TREES

BALANCED TREES

We can use recursion to calculate it:

height = max(leftChild.height(),rightChild.height())+1 !!!

The leaf nodes have NULL children: we consider the height to be -1 for NULLs !!!

AVL algorithm uses heights of nodes, we want the heights as small as possible: we store the height parameters → if it gets high, we fix it

We can use recursion to calculate it: height = max(leftChild.height(),rightChild.height())+1 !!!

All subtrees height parameter does not differ more than 1 !!!

We can use recursion to calculate it: height = max(leftChild.height(),rightChild.height())+1 !!!

We can use recursion to calculate it: height = max(leftChild.height(),rightChild.height())+1 !!!

- ► AVL tree requires the heights of left and right child of every node to differ at most +1 or -1 !!!
- height(leftSubtree) height(rightSubtree) | < 1</pre>
- So for a balanced tree the height is in the range [-1;+1]
- We can maintain this property in O(logN) time which is quite fast !!!
- Insertion:
 - ▶ 1.) a simple BST insertion according to the keys
 - 2.) fix the AVL property on each insertion from insertion upward
- There may be several violations of AVL property from the inserted node up to the root!!!
- We have to check them all

The new root node is the **B**, which was the left child of **D** before the rotation !!!

BEGIN rotateRight(Node node)

Node tempLeftNode = node.getLeftNode()
Node t = tempLeftNode.getRightNode()

tempLeftNode.setRightNode(node) node.setLeftNode(t)

node.updateheight() tempLeftNode.updateHeight()

END

The difference of height parameters is more than 1 !!! (actually it is 2) ~ so we make rotation to the left

The new root node is the **D**, which was the right child of **B** before the rotation !!!

BEGIN rotateLeft(Node node)

Node tempRightNode = node.getRightNode() Node t = tempRightNode.getLeftNode()

tempRightNode.setLeftNode(node) node.setRightNode(t)

node.updateheight() tempRightNode.updateHeight()

END

IMPORTANT: these nodes may have left and right children but it does not matter // we do not modify the pointers for them !!!

IMPORTANT: these nodes may have left and right children but it does not matter // we do not modify the pointers for them !!!

We have to make a right rotation on the node F

AVL TREES

BALANCED TREES

Important: to be able to write algorithm for calculating the height, we consider null pointers (when a node have no left child for example) to be of height -1 !!!

height = max(leftChild.height(),rightChild.height())+1

height = max(leftChild.height(),rightChild.height())+1

Problem: right child height is -1, left child height is +1 !!!

We have to make rotations // NULL objects have height -1 !!!

height = max(leftChild.height(),rightChild.height())+1

height = max(leftChild.height(),rightChild.height())+1

height = max(leftChild.height(),rightChild.height())+1

height = max(leftChild.height(),rightChild.height())+1

height = max(leftChild.height(),rightChild.height())+1

Rotations

- Four types of unbalanced situations
 - LL: doubly left heavy situation...we have to make a right rotation
 - LR: we have to make a left and a right rotation
 - RL: we have to make a right and left rotation
 - RR: we have to make a left rotation

balancedTree.insert(10);

balancedTree.insert(20);

balancedTree.insert(30);

The difference between the height parameters is greater than 1 → rotations are needed !!!

balancedTree.insert(40);

balancedTree.insert(50);

The difference between the height parameters is greater than 1 → rotations are needed !!!

balancedTree.insert(60);

balancedTree.insert(60);

The difference between the height parameters is greater than 1 → rotations are needed !!!

AVL TREES

REMOVE

Delete: soft delete → we do not remove the node from the BST we just mark that it has been removed ~ not so efficient solution

Delete: soft delete → we do not remove the node from the BST we just mark that it has been removed ~ not so efficient solution

In the main **three** possible cases:

- 1.) The node we want to get rid of is a leaf node
- 2.) The node we want to get rid of has a single child
- 3.) The node we want to get rid of has 2 children

Delete: 1.) We want to get rid of a leaf node: very simple, we just have to remove it (set it to null whatever)

Delete: 1.) We want to get rid of a leaf node: very simple, we just have to remove it (set it to null whatever)

Delete: 1.) We want to get rid of a leaf node: very simple, we just have to remove it (set it to null whatever)

Delete: 1.) We want to get rid of a leaf node: very simple, we just have to remove it (set it to null whatever)

Delete: 1.) We want to get rid of a leaf node: very simple, we just have to remove it (set it to null whatever)

Delete: 1.) We want to get rid of a leaf node: very simple, we just have to remove it (set it to null whatever)

binarySearhTree.remove(5);

Complexity: we have to find the item itself + we have to delete it or set it to NULL

~ O(logN) find operation + O(1) deletion = O(logN) !!!

Delete: 2.) We want to get rid of a node that has a single child, we just have to update the references

Delete: 2.) We want to get rid of a node that has a single child, we just have to update the references

Delete: 2.) We want to get rid of a node that has a single child, we just have to update the references

Delete: 2.) We want to get rid of a node that has a single child, we just have to update the references

Delete: 2.) We want to get rid of a node that has a single child, we just have to update the references

Delete: 2.) We want to get rid of a node that has a single child, we just have to update the references

binarySearhTree.remove(1);

Complexity: first we have to find the item we want to get rid of and we have to update the references

~ set parent's pointer point to it's grandchild directly

O(logN) find operation + O(1) update references = O(logN) !!!

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

Delete: 3.) We want to get rid of a node that has two children

We look for the predecessor and swap the two nodes !!!

Delete: 3.) We want to get rid of a node that has two children

We look for the predecessor and swap the two nodes !!!

We end up at a case 1.) situation: we just have to set it to NULL

Delete: 3.) We want to get rid of a node that has two children

We look for the predecessor and swap the two nodes !!!

We end up at a case 1.) situation: we just have to set it to NULL

Delete: 3.) We want to get rid of a node that has two children

Another solution → we look for the successor and swap the two nodes !!!

Delete: 3.) We want to get rid of a node that has two children

Another solution → we look for the successor and swap the two nodes !!!

Delete: 3.) We want to get rid of a node that has two children

Another solution → we look for the successor and swap the two nodes !!!

This becomes the Case 2.) situation, we just have to update the references

Delete: 3.) We want to get rid of a node that has two children

Another solution → we look for the successor and swap the two nodes !!!

This becomes the Case 2.) situation, we just have to update the references

Delete: 3.) We want to get rid of a node that has two children

Complexity: O(logN)

Conclusion

- It is basically the same as we have seen for simple binary search tree node deletion
- ▶ BUT there is a problem
- When we remove a node → it may get unbalanced because of that given node is no more in the tree

AVL TREES

BALANCED TREES

AVL sort

- We can use this data structure to sort items
- We just have to insert the N items we want to sort
- ► We have to make an in-order traversal → it is going to yield the numerical or alphabetical ordering !!!

Insertion: O(N*logN)

In-order traversal: O(N)

Overall complexity: O(N*logN)

Applications

- Databases when deletions or insertions are not so frequent, but have to make a lot of look-ups
- Look-up tables usually implemented with the help of hashtables BUT AVL trees support more operations in the main
- We can sort with the help of AVL trees !!!
- // red-black trees are a bit more popular because for AVL trees we have to make several rotations ~ a bit slower