Common Laplace Transforms and Properties

f(t)	$F(s) = \mathcal{L}\left\{f(t)\right\}$
1	$\frac{1}{s}$, $s > 0$
e^{at}	$\frac{1}{s-a}, \ s > a$
$t^n, \ n=1,2,\dots$	$\frac{n!}{s^{n+1}}, \ s > 0$
$\sin(bt)$	$\frac{b}{s^2 + b^2}, \ s > 0$
$\cos(bt)$	$\frac{s}{s^2 + b^2}, \ s > 0$
$e^{at}t^n, \ n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}, \ s > a$
$e^{at}\sin\left(bt\right)$	$\frac{b}{(s-a)^2+b^2}, \ s>a$
$e^{at}\cos\left(bt\right)$	$\frac{s-a}{(s-a)^2+b^2}, \ s>a$

Properties:

L.1 $\mathscr{L}\{cf(t)\} = c\mathscr{L}\{f(t)\}$, where c is a constant.

L.2
$$\mathcal{L}\{f_1(t) + f_2(t)\} = \mathcal{L}\{f_1(t)\} + \mathcal{L}\{f_2(t)\}$$

L.3 If $F(s) = \mathcal{L}\{f(t)\}\$ exists for all $s > \alpha$, then $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$ for all $s > \alpha + a$.

L.4 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then for all $s > \alpha$,

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^n \mathscr{L}\left\{f(t)\right\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

L.5 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n F}{ds^n}$ for all $s > \alpha$.

$$\int_{3}^{3} y'^{3} = c \int_{3}^{2} \{y(t)^{3} - c^{3} y(0) = c \int_{3}^{3} (s) - y(0)$$

$$\int_{3}^{2} \{y''^{3} = c^{3} \int_{3}^{2} \{y(t)^{3} - c^{3} y(0) - y'(0) = c^{3} \int_{3}^{3} (s) - y(0) - y'(0)$$

Section 6.2: Solving ODE's

Step 1 Take the Laplace transform of both sides. Refer to properties.

Step 2 Rearrange and group like terms to solve for $\mathcal{L}\{y(t)\} = Y(s)$

Step 3 Take the inverse Laplace transform and solve for $y(t) = \mathcal{L}^{-1}\{Y(x)\}$.

1. Solve the initial value problem using Laplace Transforms (not previous methods).

(a)
$$y'' - 2y' + 5y = 0$$
 with $y(0) = 2$ and $y'(0) = 4$.

$$\int_{S}^{S} y'' \cdot 3 - 2 \int_{S}^{S} y' \cdot 3 + 5 \int_{S}^{S} y \cdot 3 = \int_{S}^{S} 0 \cdot 3 = \int_{S}^{S} (s)^{2} - 3 \int_{S}^{S} (s)^{2} - 3 \int_{S}^{S} (s) - 3 \int_{S}^{S} (s)^{2} - 3 \int_{S}^{S} (s)^{2} - 3 \int_{S}^{S} (s)^{2} - 3 \int_{S}^{S} (s)^{2} + 4 + 5 \int_{S}^{S} (s)^{2} = 0$$
(3) Let $f(s) = 0$ using L.4.

$$s^2 \overline{Y} - 2s \overline{Y} + 5 \overline{Y} = 2s$$

$$Y(s)(s^2-2s+5)=2s$$

$$\mathcal{T}(s) = \frac{\partial s}{s^2 - 2s + 5}$$

	1 ()
$e^{at}\sin\left(bt\right)$	$\frac{b}{(s-a)^2 + b^2}, \ s > a$
$e^{at}\cos\left(bt\right)$	$\frac{s-a}{(s-a)^2+b^2}$, $s>a$

Take
$$\int_{-1}^{1} f_0 = \int_{-1}^{1} f_0 =$$

$$2e^{t}(os(2t)+e^{t}sin(2t)=\gamma(t)$$

(b)
$$y'' - y' - 2y = 0$$
 with $y(0) = -2$ and $y'(0) = 5$.

$$\begin{aligned}
& \left(\frac{1}{5}Y^{-1}\right)^{2} - \frac{1}{5}\left(\frac{1}{5}\right)^{2} + \frac{1}{5}\left(\frac{1}{5}\right)^{2} - \frac{1}{5}\left(\frac{1}{5}\right)^{2} + \frac{1}{5}\left(\frac{1}{5}\right)^{2} - \frac{1}{5}\left(\frac{1}{5}\right)^{2} + \frac{1}{5}\left(\frac{1}{5$$

(d) ty'' - ty' + y = 2 with y(0) = 2 and y'(0) = -1.

(e) y'' + ty' - y = 0 with y(0) = 0 and y'(0) = 3.