Информатика в 57 школе, 9«М», 10«Д» Жадные алгоритмы

17 сентября 2022 г.

На занятиях разобрали несколько стандартных задач:

1. Максимальное количество попарно непересекающихся отрезков. Дано множество из n отрезков $[l_1, r_1], [l_2, r_2], \ldots, [l_n, r_n]$ на прямой. Необходимо из этих отрезков выбрать как можно большее количество так, чтобы все выбранные отрезки попарно не пересекались.

Идея решения. Будем пытаться идти по отрезкам «слева направо» и среди ещё не выбранных отрезков каким-то образом выбирать оптимальный. Поймём, как именно стоит производить выбор оптимального отрезка и что значит «слева направо», когда речь идёт об отрезках.

Рассмотрим произвольный набор из заданных отрезков, в котором любые два не пересекаются. В этом наборе рассмотрим отрезок с самым левым правым концом, обозначим его за s.

Утверждение. Пусть отрезок s' не лежит в рассмотренном наборе и правая граница отрезка s' левее правой границы отрезка s, то есть $r_{s'} < r_s$ Тогда отрезок s в наборе можно заменить на s' и после такого изменения набор останется корректным, то есть никакие два отрезка по-прежнему не будут пересекаться.

Доказательство. Поскольку s — отрезок из набора с самым левым правым концом, то для любого отрезка i из набора выполнено

$$r_s' \le r_s \le r_i. \tag{1}$$

Тогда, если какой-то отрезок i из набора пересекается с отрезком s', то это возможно только при $l_i \leq r_{s'} \leq r_i$. Но, в таком случае, по неравенству (1) отрезок i пересекается и с отрезком s, так как $l_i \leq r_{s'} \leq r_s \leq r_i$. По предположению, набор был корректным, поэтому описанное выше возможно только при i = s. Значит, при замене s на s' набор останется корректным. \square

Таким образом, мы показали, что в любом корректном наборе отрезок с самой левой правой границей можно заменить на отрезок с самой левой правой границей среди *всех* доступных отрезков. Отсюда сразу вытекает алгоритм построения наибольшего по размеру корректного набора:

- 1. Среди всех отрезков выберем отрезок с самым левым правым концом. Добавим его в набор.
- 2. Уберём из рассмотрения все отрезки, которые пересекаются с добавленным.
- 3. Мы свели задачу к аналогичной, но уже с меньшим множеством доступных отрезков. Поэтому, если доступные отрезки ещё остались, то просто переходим к шагу 1. В противном случае оптимальный набор отрезков построен.

В таком виде данный алгоритм работает за время $O(n^2)$, где n — число заданных отрезков. Можно придумать алгоритм за $O(n \log n)$ на сортировку отрезков по правым концам плюс один проход по отсортированному массиву отрезков. Оставим это в качестве упражнения.

2. Мероприятия. Дан набор мероприятий, каждое из которых характеризуется временем начала a_i и временем окончания b_i . В каждый момент времени можно проводить не более одного мероприятия. Найти, какое наибольшее число мероприятий можно провести.

Идея решения. Поймите, что это та же самая задача, что и предыдущая.

3. Покрытие отрезка отрезками. Дан набор отрезков $S = \{[l_i, r_i] \mid i = 1, ..., n\}$ на прямой, а также отрезок [L, R]. Найдите минимальное по размеру подмножество S, объединение отрезков которого полностью содержит [L, R].

Идея решения. Рассмотрим точку L, выберем среди всех отрезков, содержащих L, отрезок с максимальной правой границей, пусть это отрезок $[l_i, r_i]$. Остальные отрезки, содержащие L, можно убрать из рассмотрения, так как их просто нет смысла включать в ответ. Задача свелась к аналогичной задаче для точки $r_i \geq L$ и меньшего числа доступных отрезков.

4. Покрытие множества отрезков точками. Дан набор отрезков $S = \{[l_i, r_i] \mid i = 1, \dots, n\}$ на прямой. Найдите минимальное количество точек, которое нужно отметить, чтобы каждый отрезок содержал хотя бы одну отмеченную точку.

Идея решения. Рассмотрим отрезок с самой левой правой границей (то есть с минимальным r_i). На этом отрезке должна быть отмечена какая-то точка. Заметим, что в качестве этой отмеченной точки оптимально выбрать его правую границу. Удалим из рассмотрения все отрезки, содержащие отмеченную точку. Мы свели задачу к аналогичной, но для меньшего числа отрезков.

- **5а.** Даны целые числа x и y. Над ними можно проводить два вида операций:
 - (1) Увеличить или уменьшить одно из чисел на 1.
 - (2) Увеличить или уменьшить оба числа на 1 (нельзя одно число увеличить на 1, а другое уменьшить на 1).

За какое минимальное число операций можно оба числе сделать равными нулю?

Идея решения. Рассмотрим случаи:

- (а) Числа x и y лежат по одну сторону от нуля. Тогда оптимально сначала сделать большее по модулю из чисел x, y равным меньшему по модулю с помощью операции (1), после чего сделать оба числа равными нулю с помощью операции (2). Это потребует $|x-y| + \min(|x|,|y|)$ действий.
- (b) Числа x и y лежат по разные стороны от нуля. Тогда оптимально сделать x и y равными нулю по отдельности с помощью операции (1), это потребует |x| + |y| действий.
- **5b.** Пусть в условиях предыдущей задачи сделать операцию (1) стоит $a \ge 0$ рублей, а сделать операцию (2) стоит $b \ge 0$ рублей. Найти минимальную стоимость того, чтобы сделать x и y равными нулю.

Идея решения. Заметим, что результат не зависит от порядка операций. Тогда можно считать, что сначала делаются все операции вида (1), потом все операции вида (2). Чтобы с

помощью операций вида (2) можно было сделать пару чисел равными нулю, перед применением операций (2) числа уже должны быть равны. Таким образом, с помощью операций вида (1) мы обязаны сделать числа равными. Пусть в результате операций вида (1) мы получили x=y=C. Это стоит $|C-x|\cdot a+|C-y|\cdot a$ рублей. Далее, операциями вида (2) мы делаем x=y=0 за $|C|\cdot b$ рублей. Таким образом, нам остаётся найти C, при котором значение выражения

$$f(C) := |C - x| \cdot a + |C - y| \cdot a + |C| \cdot b \tag{2}$$

минимально. Заметим, что f(C) — кусочно-линейная функция от C. Так как линейная функция на отрезке всегда достигает минимума в одном из концов отрезка, то для нахождения минимума f(C) достаточно рассмотреть точки $C=x,\,C=y$ и C=0. Таким образом, ответ на задачу равен $\min\Big(f(x),\,f(y),\,f(0)\Big)$.

Мораль задачи 5b. Вместо того, чтобы смотреть, что будет при разных вариантах того, как соотносятся значения a и b, мы поняли, как концептуально может быть устроен ответ и выяснили, что в итоге задача сводится к перебору конечного числа вариантов.

6. Футбольная команда. Для краткости сразу напишем математическую переформулировку задачи. Дан массив a из n неотрицательных чисел a_1, \ldots, a_n . Нужно найти подмножество $T \subseteq \{1, \ldots, n\}$, с максимальным значением $\sum_{i \in T} a_i$, такое что для любой тройки различных индексов $i, j, k \in T$ для чисел a_i, a_j и a_k выполнено неравенство треугольника: $a_i + a_j \geq a_k$.

Идея решения. Когда задача имеет вид «найдите максимальное значение данной функции на данном классе объектов» и класс объектов параметризуется довольно сложно, есть смысл попробовать зафиксировать какую-то информацию об объекте и попробовать уже с этим ограничением промаксимизировать данную функцию. Данная задача — как раз такой случай. Класс объектов, рассматриваемый в задаче — это множества $T \subseteq \{1, \ldots, n\}$, для которых выполняется неравенство треугольника в указанном выше смысле. А промаксимизировать нам надо $\sum_{i \in T} a_i$. Класс объектов, как мы видим, параметризуется не очень тривиально, поэтому можно попробовать зафиксировать какой-то параметр множества T. В данном случае это будет максимальный элемент среди a_i при $i \in T$. Этот выбор мотивирован тем, что при проверке неравенства треугольника для множества T достаточно проверить, что сумма двух минимальных элементов a_i и a_j при $i,j \in T$ не меньше максимального a_k при $k \in T$.

Без ограничения общности можно считать, что массив a отсортирован по возрастанию. Тогда можно фиксировать не максимальное значение a_i при $i \in T$, а максимальный индекс i при $i \in T$.

Утверждение. Зафиксируем максимальный индекс в множестве T, пусть он равен i. Тогда оптимальное множество T имеет вид отрезка $[l,\ l+1,\ l+2,\ \ldots,\ i-1,i]$ для некоторого l=l(i)< i.

Доказательство. Было разобрано на уроке, можно ещё раз его проделать самостоятельно в качестве упражнения.

Из данного утверждения легко сразу получить алгоритм решения задачи: переберём максимальный индекс i, для каждого i найдём с помощью цикла while значение l(i) и посчитаем сумму на отрезке $\mathbf{a}[\mathbf{l}(\mathbf{i}),\ \mathbf{l}(\mathbf{i})+1,\ \dots,\ \mathbf{i}-1,\mathbf{i}]$, попробуем обновить ответ этим значением.

Такой алгоритм работает за $O(n^2)$. Также на уроке было разобрано улучшение этого алгоритма с помощью бинарного поиска и префиксных сумм за $O(n \log n)$. В качестве домашнего упражнения предлагается придумать, как ускорить этот алгоритм до асимптотики O(n).