It is clear that conversely any monic polynomial $F(x) \in R[x]$ satisfying condition (24) is an inimal polynomial for A.

THEOREM 7. Assume that (24) holds and that G(x) is a monic polynomial in R[x] such that is a minimal polynomial of the matrix A. Then the following conditions are equivalent

- (a) The ring R[x] contains a unique minimal polynomial for the matrix A.
- (b) deg F(x) = deg G(x).
- (c) Ann(A) is a principal ideal.

<u>Proof.</u> It is clear that $\overline{G}(x)|\overline{F}(x)$. Therefore, if (a) holds but (b) is false, then leg $\overline{G}(x) < \deg F(x)$. Therefore, it we choose a nonzero element $\pi \in J$ with $\pi \cdot J = 0$ we obtain hat $\pi G(A) = 0$ and $\overline{F}(x) + \pi G(x)$ is a minimal polynomial for A different from $\overline{F}(x)$.

Assume that condition (b) holds. It is clear by (24) that (c) is equivalent to the condition Ann(A) = (F(x)). Assume that (c) does not hold. Then there exists a polynomial $L(x) \in \text{Ann}(A) \cap J[x]$ such that deg $L(x) < \deg G(x)$. If necessary, we may of course multiply the polynomial L(x) by a suitable element $\pi \in J$, and thus we may assume that L(x) is a non-ero polynomial with coefficients from the ideal (0:J). This ideal can be considered as a inite-dimensional space over the field R. Let π_1, \ldots, π_t be a basis of this space. Then the polynomial L(x) can be represented in the form $L(x) = L_1(x)\pi_1 + \ldots + L_t(x)\pi_t$, where degree $L_1(x) < \deg G(x)$ for i = 1, t and for at least one $L_1(x) = 0$, contrary to the definition of $L_1(x) \ne 0$. Then it follows from L(A) = 0 that $L_1(A) = 0$, contrary to the definition of $L_1(x) \ne 0$. Thus (b) implies (c).

If (c) holds we have obviously Ann(A) = (F(x)) and thus (a). This concludes the proof f Theorem 7.

Remark. The equivalence of conditions (a) and (c) of Theorem 7 in the case of R being principal ideal ring was noted in [8, Theorem II.4]. However, in the proof of this results is made twice of the following erroneous assertion: if $J(R) = \pi R$ and there exists $U(x) = \pi R$ such that $U(A) = \pi^S R_m$ then there exists $V(x) \in R[x]$ such that $U(A) = \pi^S V(A)$. This does

ot hold for example if $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \in (\mathbb{Z}/4)_8$ and $U(x) = x^2$.

THEOREM 8. A matrix $A \in R_m$ is polynomially determined if and only if the following conitions hold:

- (a) Ann(A) is a principal ideal;
- (b) if two elementary divisors of the matrix $x\overline{E} \overline{A}$ are not relatively prime, they are qual.

If these conditions hold, all Fitting invariants of xE - A are principal ideals, and if nn(A) = (F(x)) and the decomposition of F(x) into primary pairwise relatively prime factors s of the form $F(x) = F_1(x) \cdot ... \cdot F_t(x)$, then

$$A \approx \text{Diag}(S(F_1), ..., S(F_1), S(F_2), ..., S(F_t)).$$

<u>Proof.</u> By Theorem 2 it is clear that it suffices to consider the case that $\chi_A(x)$ is a rimary polynomial; this will be assumed in what follows. Assume that (a) and (b) hold and hat F(x) is a minimal polynomial for A. Then we have by Theorem 7 that Ann(A) = (F(x)), (x) is the minimal polynomial of \overline{A} , and by (b) all_elementary divisors of the matrix xF = A qual F(x). If the decomposition of the module $M(\overline{A})$ into a direct sum of cyclic modules is $\overline{A} = A$.

$$M(\bar{A}) = (\bar{\alpha}_1) \dotplus ... \dotplus (\bar{\alpha}_k), \qquad ()$$

then if $deg \ \overline{F}(x) = r$ we have $dim \overline{R}(\overline{\alpha_i}) = r$ and $\overline{\alpha_i}$, $\overline{A\alpha_i}$, ..., $\overline{A^{r-1}\alpha_i}$ is a basis of the vector pace (α_i) over \overline{R} for i=1, r. Let α_i be an inverse image of $\overline{\alpha_i}$ in $R^{(m)}$. The system of $\overline{\alpha_i}$, $A\alpha_i$, ..., $A^{r-1}\alpha_i$ is then clearly free over R, and since $F(A)\alpha_i = 0$ the vector $A^{r-1}\alpha_i$ is a linear combination of these vectors. Therefore, the cyclic submodule (α_i) , generated α_i in M(A) is a free R-module of dimension r, $(\alpha_i) = R\alpha_i + RA\alpha_i + \ldots + RA^{r-1}\alpha_i$ and by α_i in $M(A) = (\alpha_i) + \ldots + (\alpha_k)$ and $A \sim Diag(S(F), \ldots, S(F))$. Since these considerations are obviously valid for any matrix $B \in R_m$ for which Ann(B) = (F(x)) and $\overline{B} \sim \overline{A}$, we find $A \sim A$ and therefore A is polynomially determined.