ANÁLISE DE VARIÂNCIA

Distribuição e homogeneidade das variâncias e como resolver problemas de heterogeneidade

Julia Barra Netto-Ferreira

Modelo matemático: usa notação matemática para representar um processo.

Modelo matemático: usa notação matemática para representar um processo.

$$y = \mu + t$$
intercepto variável explanatória

Modelo matemático: usa notação matemática para representar um processo.

Modelo estatístico: é um tipo de modelo matemático que considera a variabilidade no processo. Portanto, qualquer modelo estatístico tem uma medida de incerteza associada a ele.

$$y = \mu + t + e$$

erro/ resíduo

Resposta = componente sistemático + componente aleatório

Resposta = componente sistemático + componente aleatório

Resposta: os resultados do nosso estudo.

Resposta = componente sistemático + componente aleatório

Resposta: os resultados do nosso estudo.

Componente sistemático: uma função matemática de uma ou mais variáveis explanatórias que representam as condições experimentais (variavel independente ou fator).

Resposta = componente sistemático + componente aleatório

Resposta: os resultados do nosso estudo.

Componente sistemático: uma função matemática de uma ou mais variáveis explanatórias que representam as condições experimentais (variavel independente ou fator).

Componente aleatório: variabilidade na resposta que não é explicada pelo componente sistemático (variação ambiental, diferença inerente ao indivíduo, erro na coleta de dados).

Resposta = tratamento + bloco + erro

Resposta = tratamento + bloco + erro

Tratamento: a maneira que os tratamentos são arranjados no experimento (ex: um fator, múltiplos fatores).

Resposta = tratamento + bloco + erro

Tratamento: a maneira que os tratamentos são arranjados no experimento (ex: um fator, múltiplos fatores).

Bloco: a maneira que a randomização dos dados é feita (design experimental).

Ex: inteiramente casualizado ou blocos casualizados.

Tanto a ANOVA ou regressão são modelo lineares onde predizemos os valores ajustados (do nosso modelo estatístico).

Tanto a ANOVA ou regressão são modelo lineares onde predizemos os valores ajustados (do nosso modelo estatístico).

Y = média + tratamento + (bloco) + erro

Tanto a ANOVA ou regressão são modelo lineares onde predizemos os valores ajustados (do nosso modelo estatístico).

Y = média + tratamento + (bloco) + erro

Valor ajustado = média + tratamento + (bloco)

Residuo = Y - Valor ajustado

A interpretação da ANOVA ou regressão se baseiam nos pressupostos do modelo linear que são:

A interpretação da ANOVA ou regressão se baseiam nos pressupostos do modelo linear que são:

Independência dos resíduos.

A interpretação da ANOVA ou regressão se baseiam nos pressupostos do modelo linear que são:

Independência dos resíduos.

Normalidade dos resíduos.

A interpretação da ANOVA ou regressão se baseiam nos pressupostos do modelo linear que são:

Independência dos resíduos.

Normalidade dos resíduos.

Os resíduos apresentam variância constante (homogeneidade das vriâncias).

1

Independência dos resíduos

O variabilidade de um erro é independente de outro.

Esse pressuposto geralmente é alcançado por randomização adequada.

Normalidade dos resíduos

Os resíduos assumem uma distribuição normal.

Pode ser difícil de testar se a amostra for pequena.
Pequenos desvios da normalidade não são um problema tão grande porque o teste F é bem robusto.

Heterogeneidade das variâncias

O quadrado médio do erro (ANOVA) assume que os dados vêm de uma população com mesma variância.

As violações
afetam a
sensibilidade do
teste F e, portanto,
a interpretação dos
resultados.

As violações
 afetam a
 sensibilidade do
 teste F e, portanto,
 a interpretação dos
 resultados.

Erro do tipo I ou II

As violações
afetam a
sensibilidade do
teste F e, portanto,
a interpretação dos
resultados.

Erro do tipo I ou II

Quando a hipótese nula é verdadeira e você a rejeita.

As violações
afetam a
sensibilidade do
teste F e, portanto,
a interpretação dos
resultados.

Erro do tipo I ou II

Quando a hipótese nula é verdadeira e você a rejeita.

 Indentificar se os pressupostos estão sendo atendidos.

As violações
afetam a
sensibilidade do
teste F e, portanto,
a interpretação dos
resultados.

Erro do tipo I ou II

Quando a hipótese nula é verdadeira e você a rejeita.

- Indentificar se os pressupostos estão sendo atendidos.
- Avaliar o impacto da violação.

As violações
 afetam a
 sensibilidade do
 teste F e, portanto,
 a interpretação dos
 resultados.

Erro do tipo I ou II

Quando a hipótese nula é verdadeira e você a rejeita.

- Indentificar se os pressupostos estão sendo atendidos.
- Avaliar o impacto da violação.
- Maneiras de atender aos pressupostos.

ESTIMANDO OS RESÍDUOS

Meta: Checar se estamos atendendo a normalidade.

ESTIMANDO OS RESÍDUOS

Meta: Checar se estamos atendendo a normalidade.

Resíduo:

$$\hat{e}_i = y_i - \hat{y}_i$$

 \longrightarrow

resíduo = observação - média

ESTIMANDO OS RESÍDUOS

Meta: Checar se estamos atendendo a normalidade.

Resíduo:

$$\hat{e}_i = y_i - \hat{y}_i$$

→

resíduo = observação - média

Resíduo padronizado:

$$\frac{r_i = \hat{e}_i}{S\hat{E}(\hat{e}_i)}$$

ANÁLISE VISUAL DOS PRESSUPOSTOS

Kozak & Piepho (2017)

DEPENDÊNCIA

INDEPENDÊNCIA

DISTRIBUIÇÃO NORMAL

DESVIOS DA NORMALIDADE

HETEROGÊNEO

HOMOGÊNEO

ADEQUADO

VARIÁVEIS INFLUENTES

COMO LIDAR SE OS MEU MODELO NÃO ATENDE AOS PRESSUPOSTOS?

COMO LIDAR SE OS MEU MODELO NÃO ATENDE AOS PRESSUPOSTOS?

HETEROGENEIDADE E NORMALIDADE

1

Transformação

Transformação

9 Análise não-paramétrica

Transformação

9 Análise não-paramétrica

2 Modelos generalizados

(Zuur et al., 2009; Goldstein, 2005)