Nur die Aufgaben mit einem * werden korrigiert.

9.1. MC Fragen.

- (a) Sei $f(x) = \cos(\frac{1}{x})$. Wählen Sie die richtige Antwort.

 - $\Box \quad \lim_{x \to +\infty} f(x) = 1$
 - $\Box \quad \lim_{x \to +\infty} f(x) = +\infty$
 - \Box $\lim_{x\to+\infty} f(x)$ existiert nicht
- (b) Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ und nehmen Sie an, dass es $m \in \mathbb{R}$ und $r: D \to \mathbb{R}$ eine stetige Funktion gibt, so dass $r(x_0) = 0$ und

$$f(x) = f(x_0) + m(x - x_0) + r(x)(x - x_0),$$

wobei $x_0 \in D$ ein Häufungspunkt von D ist. Ist f in x_0 differenzierbar?

- □ Ja
- □ Nein
- □ Nicht genügend Informationen, um festzustellen.
- (c) Definiere für x > 0

$$f(x) := \liminf_{k \to \infty} \Big(\min\{x, x^{-1}\} \Big)^k.$$

Dann

- \square f ist stetig und differenzierbar
- \square f ist differenzierbar, aber nicht stetig
- \Box f ist stetig, aber nicht differenzierbar
- \Box f ist nicht stetig und nicht differenzierbar

*9.2. Link- und Rechtseitige Grenzwert. Bestimmen Sie die Link- und die Rechtseitige Grenzwerte von

$$f(x) = sign(x) \cdot cos^2(x)$$

in x = 0. Existiert $\lim_{x \to 0} f(x)$? Falls ja, bestimmen Sie diese Wert. Falls nein, erklären Sie warum. Ist f eine stetige Funktion?

*9.3. Ableitung I. Berechnen Sie die Ableitungen der folgenden Funktionen.

- (a) $f: (0, \pi/2) \to \mathbb{R}, f(x) = \ln(\tan(x)).$
- (b) $f:(0,\infty)\to\mathbb{R}, \qquad f(x):=x^{x^a}$, wobei $a\in\mathbb{R}$ eine feste Zahl ist.

Hinweis: Es könnte hilfreich sein, x^{x^a} als $x^{x^a} = e^{\ln x^{x^a}}$ zu schreiben.

9.4. Ableitung II.

(a) Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion, die in $x_0 \in R$ differenzierbar ist. Sei $n \in \mathbb{N}, n \geq 2$. Berechne

$$\lim_{h \to 0} \frac{f(x_0 + nh) - f(x_0 + (n-2)h)}{h}.$$

(b) Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heisst gerade (resp. ungerade), falls f(-x) = f(x) (resp. f(-x) = -f(x)) gilt für alle $x \in \mathbb{R}$.

Zeige: falls f auf ganz \mathbb{R} differenzierbar ist, dass gilt:

- (i) f gerade $\implies f'$ ungerade.
- (ii) f ungerade $\implies f'$ gerade.