Duas cargas elétricas + q e -q estão fixas sobre os pontos A e B, conforme a figura. Uma terceira carga Q, positiva, é colocada livremente sobre um ponto da reta AB.

Sobre a carga Q, é correto afirmar que

Das seguintes afirmações diga quais são as Verdadeiras (com V) e as Falsas (com F).

permanecerá em repouso, se for colocada exatamente a meio do segmento AB. [x] ela se moverá para a direita, se for colocada exatamente a meio do segmento AB. [y] ela se moverá para a direita, se for colocada à esquerda de A. [z] permanecerá em repouso, se for colocada à direita de B. [w]

Resposta Especificada para x F

Resposta Especificada para y V

Resposta Especificada para z F

Resposta Especificada para w F

Considere a seguinte associação de condensadores representada na figura.

Se for aplicada uma diferença de potencial de 6.0 V entre os pontos A e B, calcule os valores a azul na tabela, que se referem à carga de cada condensador (em microcoulomb) e a diferença de potencial aos seus terminais (em volt).

Α				
$c_1 \stackrel{\perp}{=}$	Condensadores	C [μF]	Q [μC]	<i>V</i> [V]
	\mathcal{C}_1	1	$\mathbf{Q_1}$	V ₁
$c_2 +$	C_2	2	$\mathbf{Q_2}$	V ₂
	\mathcal{C}_3	3	$\mathbf{Q_3}$	V_3
$C_3 =$				
В				

Faça <u>arredondamento às décimas</u> e use a <u>vírgula como separador</u> entre as unidades e as décimas.

 $Q_1 = [Q1]$ $V_1 = [V1]$

 $Q_2 = [Q2]$ $V_2 = [V2]$

 $Q_3 = [Q3]$ $V_3 = [V3]$

Resposta Especificada para Q1 12

Resposta Especificada para V1 12

Resposta Especificada para Q2 12

Resposta Especificada para V2 6

Resposta Especificada para Q3 12

Resposta Especificada para V3 4

No circuito apresentado, a capacidade dos condensadores é: $C_1 = 5.0 \,\mu\text{F}$, $C_2 = 4.5 \,\mu\text{F}$, $C_3 = 12.0 \,\mu\text{F}$.

A capacidade equivalente do circuito e a carga acumulada no condensador C₃, quando a diferença de potencial aplicada, V, é 12.5 V é de:

Resposta Selecionada: d. 14,5 µF; 181,3 µC

Uma pequena esfera metálica maciça, de raio r_A = 1,0 cm e carga elétrica q_A = +2.0 μ C, está suspensa no centro de uma casca esférica condutora eletricamente neutra q_{casca} = 0 μ C, de raio interno r_B = 2 r_A e raio externo r_C = 3 r_A .

$$r_A = 1 \text{ cm}$$

 $r_B = 2r_A$
 $r_C = 3r_A$
 $q_A = +2 \mu C$
 $q_{casca} = 0 \mu C$

Calcule a magnitude do campo elétrico em cada um dos pontos das superfícies gaussianas esféricas de raio:

 $(expresso em MN C^{-1} = 10^6 N C^{-1} e arredonde às unidades)$

Se o sentido do campo for centrípeto (ou convergente) coloque o sinal "-" antes do valor.

r = 0.5 cm: [A] r = 1.5 cm: [B]

r= 2,5 cm: [C] r= 6,0 cm: [D]

Calcule o fluxo elétrico através das superfícies gaussianas esféricas de raio:

(expresso em kN C^{-1} m² = 10³ N C^{-1} m² e arredonde às unidades)

r = 0.5 cm: [E] r = 1.5 cm: [F]

r = 2.5 cm: [G] r = 6.0 cm: [H]

Resposta Especificada para A 0

Resposta Especificada para B 0

Resposta Especificada para C 0

Resposta Especificada para D 0

Resposta Especificada para E 0

Resposta Especificada para F 0

Resposta Especificada para G 0

Resposta Especificada para H 0

10 em 10 pontos

Pergunta 6

Uma carga $q_1 = -5.0 \mu C$ está colocada na origem de um sistema xy de eixos. Uma segunda carga $q_2 = +7 \mu C$ está localizada sobre o eixo dos xx a 0,40 m da origem. O campo elétrico no ponto P de coordenadas (0,0; 0,30) m é: (i e j são os versores segundo xx e yy respetivamente)

Resposta Selecionada: d. $(-2,0x10^5~i-3,5x10^5~j)~\mathrm{N/C}$

Pergunta 7 8 em 8 pontos

A tabela indica, para 4 cilindros semelhantes ao da figura, os fluxos do campo elétrico, expresso em N m²/C, através das superfícies A, B e C. A ordem dos cilindros, de acordo com a carga que se encontra no seu interior, do valor mais negativo até ao valor mais positivo é:

Cilindro	Superficie A	Superfície B	Superficie C
1	$+2x10^9$	-6x10 ⁹	$+4x10^9$
2	-2x10 ⁹	+3x10 ⁹	-5x10 ⁹
3	+3x10 ⁹	+6x10 ⁹	-2x10 ⁹
4	$+2x10^9$	$-3x10^9$	$-5x10^9$

Resposta Selecionada: 4, 2, 1

Pergunta 8

6 em 8 pontos

Um campo elétrico está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. Das seguintes afirmações diga quais são as Verdadeiras (com V) e as Falsas (com F).

Pergunta 8

6 em 8 pontos

Um campo elétrico está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. Das seguintes afirmações diga quais são as Verdadeiras (com V) e as Falsas (com F).

O campo elétrico representado na figura é semelhante ao campo elétrico produzido por uma carga pontual positiva. [x]

Os pontos $S \in P$ pertencem a diferentes linhas equipotenciais. [y]

O potencial elétrico no ponto P é menor do que o potencial elétrico no ponto Q. [z]

O potencial elétrico no ponto R é maior do que o potencial elétrico no ponto Q. [w]

Resposta Especificada para x F

Resposta Especificada para y V

Resposta Especificada para z F

Resposta Especificada para w F

Pergunta 9

0 em 10 pontos

Duas partículas de cargas $q_1=q$ e $q_2=-12q$ estão colocadas nos pontos (0,0) e (L,0) no plano XY, separadas pela distância L= 9 . Determine a posição (abcissa) dum ponto de coordenada negativa em que o potencial elétrico seja nulo (Tome V=0 no infinito)

Nota1: Escreva explicitamente o sinal + ou - no seu resultado.

Nota2: Apresente a sua resposta arredondada às CENTÉSIMAS e use VÍRGULA como separador entre as unidades e as casas decimais.

Resposta Selecionada:

Pergunta 10

10 em 10 pontos

A figura representa sete superfícies equipotenciais planas, paralelas entre si, e perpendiculares ao plano da página. A distância entre as superfícies equipotenciais é 1.0 cm e a distância entre os pontos B e C é 3 cm.

A variação de energia potencial sofrida por uma carga elétrica $q = -2 \mu C$, deslocada do ponto A até ao ponto C é:

Resposta Selecionada:

Pergunta 10

10 em 10 pontos

A figura representa sete superfícies equipotenciais planas, paralelas entre si, e perpendiculares ao plano da página. A distância entre as superfícies equipotenciais é 1.0 cm e a distância entre os pontos B e C é 3 cm.

A variação de energia potencial sofrida por uma carga elétrica $q = -2 \mu C$, deslocada do ponto A até ao ponto C é:

Resposta Selecionada: d. $+120~\mu J$

Pergunta 11

0 em 8 pontos

A figura representa sete superfícies equipotenciais planas, paralelas entre si, e perpendiculares ao plano da página. A distância entre as superfícies equipotenciais é 1.0 cm e a distância entre os pontos B e C é 3 cm. Caraterize a força elétrica a que fica sujeita uma carga q = 2 C colocada no ponto A.

Resposta Selecionada: d. 2000 N para a esquerda

0 1-1- (-1-- 0 1- 1 II-- 1- 0000 001104 -- DOT