Inclass 19.1. (a) Show that in the 3D free particle problem in the Cartesian coordinate system, separation of variables can be achieved by writing the wavefunction as $\psi(x,y,z)=\phi_x(x)\phi_y(y)\phi_z(z) \text{ where } \phi_x,\phi_y,\phi_z \text{ are eigenfunctions of the energy}$ operators $\frac{\hat{p}_x^2}{2m},\frac{\hat{p}_y^2}{2m},\frac{\hat{p}_z^2}{2m}$, respectively, with eigenenergies E_x , E_y , E_z . (b) Determine $\psi(x,y,z)$.

 χ

Inclass 19.2. In the spherical coordinate system, the SE of the central field potential (V(r)) problem can be written as $\left(\frac{\hat{p}_r^2}{2m} + \frac{\hat{L}^2}{2mr^2}\right)\psi(r,\theta,\phi) = (E-V(r))\psi(r,\theta,\phi)$. Show that separation of variables can be achieved by assuming $\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$. [Hint: multiply the equation by $\frac{2mr^2}{\hbar^2}$.]

Inclass 19.3. Show that the separation of variables for

 $\hat{L}^2 Y(\theta, \phi) = \lambda \hbar^2 Y(\theta, \phi)$ is possible if we assume $Y(\theta, \phi) = \Theta(\theta) \Phi(\phi)$.

Recall: $\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \, \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2} \right]$. Multiply the equation by $\sin^2\theta$.

Inclass 19.4. Solve the eigenvalue problem: $\frac{\partial^2 \Phi}{\partial \phi^2} = -m^2 \Phi$

(Hint: the eigenfunction should be the same at ϕ and $\phi+2\pi$.)