Reglerdimensionierung mittels Phasengangmethode

Fachbericht

7. Mai 2015

Studiengang EIT

> Modul Projekt 2

Team

Auftraggeber Peter Niklaus

Fachcoaches Peter Niklaus, Richard Gut, Pascal Buchschacher, Anita Gertiser

Autoren Anita Rosenberger, Benjamin Müller, Manuel Suter, Florian Alber, Raphael Frey

Version TEST

Inhaltsverzeichnis

0.1	View	7
0.2	Controller	7
0.3	Model	7
0.4	Benutzungs-Beispiel (Use-Case)	7

Versionsgeschichte

04.05.2015: Version 0.01 06.05.2015: Version 0.02

Abstract

Die Aufgabe eines geschlossenen Regelkreises ist es der Fehler zwischen Soll- und Ist-Wert möglichst klein zu halten. Um dies zu gewährleisten wird der Regler dimensioniert. Die Aufgabe des Tools ist, der PI und den PID-T1 richtig zu dimensionieren.

Vermutlich zu knapp (fragen

Die Anforderung an die Eingabe sind die numerischen Werte von einer vorliegenden und ausgemessenen Schrittantwort. Das Ziel der Ausgabe sind sowohl die numerischen Regelwerte der Phasengangmethode und der Faustformeln sowie die Plots der Schrittantworten.

Die Berechungen wurden in Matlab durchgeführt und in das Model-View-Controller-Plattern übertragen. Als Basis dient die Klasse Calc, welche die Grundrechenfunktionen von Matlab beinhaltet.

Ein benutzerfreundliches Tool um in der Praxis die Reglerwerte einzustellen. Das Neue an dieser Lösung ist, dass die Phasengangmethode in ein Berechungstool integriert ist.

Das Tool ist in der Regeldimensionierung einsetzbar. Das Verbesserungspotential liegt in der Optimierung der Rechengeschwindigkeit.

Aufgabenstellung

Einleitung

Im Rahmen dieses Projektes soll ein Tool entwickelt werden, welches einen PI- respektive einen PID-Regler mittels der von Prof. Jakob Zellweger entwickelten Phasengangmethode dimensioniert. Zum Vergleich soll der entsprechende Regler ebenfalls mittels verschiedenen Faustformeln ausgelegt werden. Die Phasengangmethode ist ein graphisches Werkzeug, das normalerweise mit Stift und Papier durchgeführt wird. Folglicherweise ist seine Ausführung zeitaufwändig, speziell wenn verschiedene Szenarien mit unterschiedlichen Parameterwerten durchgespielt werden sollen. Ein Tool zur Automatisierung dieses Prozesses ist bisher nicht verfügbar; unsere Software soll diese Marktlücke füllen.

referenz script Zellweger

Das Tool soll ausgehend von drei Parametern aus der Schrittantwort der Strecke (Verstärkung K_s , Anstiegszeit T_g , Verzögerungszeit T_u) mittels der Phasengangmethode möglichst ideale Regelparameter berechnen sowie die Schrittantwort des darauf basierenden geschlossenen Regelkreises graphisch darstellen. Die Benutzeroberfläche der Software soll intuitiv sein, sodass sich auch mit dem Thema nicht eingehend vertraute Regelungstechniker einfach zurechtfinden.

Die erforderlichen Algorithmen wurden eigenständig zuerst in Matlab als Prototypen implementiert und anschliessend vollständig in Javakonvertiert. Auch die graphische Benutzeroberfläche baut ganz auf Java. Um optimale Wartbarkeit, Übersichtlichkeit und Modularität des Codes zu gewährleisten, ist die Software gemäss Model-View-Controllern-Pattern aufgebaut.

mehr/ander Inhalt?

Nach der Berechung in Matlab wurde klar, dass die Berechnung durch die hohe Rechenleistung sehr schnell durchgeführt werden kann und somit eine Dimensionierung des geschlossenen Regelkreises anhand dieser Methode von Herrn Zellweger möglich ist.

Das Projekt gliederte sich primär in zwei Teile. In einer ersten Phase wurden die theoretischen Grundlagen erarbeitet, darauf aufbauend bestand die zweite Phase vor allem aus der Implementierung der Software. Der vorliegende Bericht entspricht in seinem Aufbau diesem Verlauf und beschreibt die erarbeitete Theorie und die entwickelte Software.

Grundlagen

0.1 View 7

Software

Leserführung, Kontext und Top-Down Beschreibung der Gesamtsoftware gemäss Dokument Richard Gut. Verweis auf Klassendiagramm.

0.1 View

Leserführung View. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

0.2 Controller

Leserführung Controller. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

0.3 Model

Leserführung Controller. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

0.4 Benutzungs-Beispiel (Use-Case)

Leserführung Use-Case. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

Tests

Schlussfolgerungen

Ehrlichkeitserklärung

Mit der Unterschrift bestätigt der Unterzeichnende (Projektleiterin), dass das Dokument selbst geschrieben worden ist und alle Quellen sauber und korrekt deklariert worden sind.

Anita Rosenberger:			
Ort, Datum:	, .		
	X		