# Generalized Collision Rules in Interacting Particle Systems: Lyapunov Exponents and Measures of Chaos



Joseph Dinius & Joceline Lega Program in Applied Mathematics University of Arizona

#### Motivation

This poster presents the dynamics of generalized binary collisions and the associated results for quantitative measures of chaos reduction, relative to the elastic collision rule [Del96, Eck05], in interacting particle systems. These results lend credence to the idea that such generalized collisions can indeed lead to self-organization in these systems.

Dellago et. al proposed a method for computing the Lyapunov exponents of continuous-time systems that undergo elastic collisions [Del96]. We extend these results to the case of generalized binary collision rules between particles in two-dimensions. We present the computation of the Lyapunov spectra for these generalized collision rules, along with the associated modes.

# Highlights

| $\beta = 0$     | $ velocity\ swap\ (\mathbf{M} =  $  |
|-----------------|-------------------------------------|
|                 | $\mathbf{M}^{-1}$ )                 |
| $0 < \beta < 1$ | l not time-reversible               |
|                 | $(\mathbf{M} \neq \mathbf{M}^{-1})$ |
| $\beta = 1$     | elastic collision rule              |
|                 | $(\mathbf{M} = \mathbf{M}^{-1})$    |

Table 1: Description of dynamics for different  $\beta$ ; M is the collision rule; see "Dynamics in the Presence of a Generalized Collision" section.



Figure 1: Lyapunov spectra for various  $\beta$ . For  $0 < \beta < 1$ , spectra are asymmetric about the center-index, indicating the collision rule is not time-reversible.

- As  $\beta$  changes, so to do measures of intrinsic chaos within the system: the maximal Lyapunov exponent,  $\lambda_1$ , and the Kolmogorov-Sinai entropy per particle,  $h_{KS}/N$ .
- $\bullet$  Cumulative effect of collisions is different from elastic case. Even though all events happen locally in space, changing  $\beta$  has global effect on the dynamics.

# Visualization of a Binary Collision



Figure 2: Binary collision in forward- time. Disks j and k, each with diameter  $\sigma = \|\mathbf{q}\|_2$ , undergo a collision. The vectors  $\mathbf{p}_i^j$ ,  $\mathbf{p}_f^j$  represent the momenta of particle j before and after collision, respectively. At impact, each particle maintains a weighted portion of the component of its momentum that is normal to  $\mathbf{q}$ , the vector connecting the particles' centers, while a repulsive force (anti-)parallel to  $\mathbf{q}$  is applied to each particle such that (i) the particles move away from each other after collision and (ii) total kinetic energy is conserved.

## Dynamics in the Presence of a Generalized Collision

The dynamics for N particles of equal mass m and diameter  $\sigma$  moving on the 2-torus  $\mathbb{T}^2 = \{(x \bmod L_x, y \bmod L_y)^\top | L_x, L_y \in \mathbb{R}\}$  is represented by the state  $\Gamma$ . To compute Lyapunov exponents, we are interested in the dynamics of the perturbation vector  $\delta \Gamma$ ,

$$\mathbf{\Gamma} := \begin{pmatrix} \mathbf{Q} \\ \mathbf{P} \end{pmatrix} = \begin{pmatrix} \mathbf{q}^1 \\ \vdots \\ \mathbf{q}^N \\ \mathbf{p}^1 \\ \vdots \\ \mathbf{p}^N \end{pmatrix}, \quad \delta \mathbf{\Gamma} := \begin{pmatrix} \delta \mathbf{Q} \\ \delta \mathbf{P} \end{pmatrix} = \begin{pmatrix} \delta \mathbf{q}^1 \\ \vdots \\ \delta \mathbf{q}^N \\ \delta \mathbf{p}^1 \\ \vdots \\ \delta \mathbf{p}^N \end{pmatrix}$$

where  $\mathbf{q}^j \coloneqq (q^{1j} \ q^{2j})^{\top}$  and  $\mathbf{p}^j \coloneqq (p^{1j} \ p^{2j})^{\top}$  are the position and momentum of particle j, respectively, and  $\delta \mathbf{q}^j \coloneqq (\delta q^{1j} \ \delta q^{2j})^{\top}$  and  $\delta \mathbf{p}^j \coloneqq (\delta p^{1j} \ \delta p^{2j})^{\top}$  are the associated perturbations.  $\Gamma, \delta \Gamma$  are 4N-dimensional vectors. The dynamics are described by two alternating stages: free flight and collision.

- 1. Phase-space dynamics
- Free-flight: Motion absent an external force (continuous-time)

$$\frac{d\mathbf{\Gamma}(t)}{dt} = \mathbf{F}(\mathbf{\Gamma}(t)) = \begin{pmatrix} \frac{\mathbf{P}}{m} \\ \mathbf{0} \end{pmatrix},$$

• Collision: Instantaneous change in momenta of colliding particles (discrete-time). All particle positions and momenta of non-colliding particles are invariant under the collision transformation. The value  $\alpha$  ensures conservation of total kinetic energy at collision. The collision map,  $\mathbf{M}$ , takes the state before collision,  $\Gamma_i$ , to the final state  $\Gamma_f$ :

$$\mathbf{Q}_{f} = \mathbf{Q}_{i},$$

$$\mathbf{p}_{f}^{l} = \mathbf{p}_{i}^{l}, \quad l \neq j, k$$

$$\mathbf{p}_{f}^{j} = \beta \mathbf{p}_{i}^{j} + (1 - \beta) \mathbf{p}_{i}^{k} + \alpha d\mathbf{p},$$

$$\mathbf{p}_{f}^{k} = (1 - \beta) \mathbf{p}_{i}^{j} + \beta \mathbf{p}_{i}^{k} - \alpha d\mathbf{p},$$

$$\beta \in [0, 1], \quad \alpha = \frac{2\beta - 1}{2} + \frac{\sqrt{(2\beta - 1)^{2}(\mathbf{q} \cdot \mathbf{p})^{2} - 4\beta(\beta - 1)(\mathbf{p} \cdot \mathbf{p})\sigma}}{2|\mathbf{q} \cdot \mathbf{p}|}$$

 $d\mathbf{p} \coloneqq (\mathbf{q} \cdot \mathbf{p})\mathbf{q}/\sigma^2$ ;  $\mathbf{q} \coloneqq \mathbf{q}_i^k - \mathbf{q}_i^j$  and  $\mathbf{p} \coloneqq \mathbf{p}_i^k - \mathbf{p}_i^j$  are the relative position and momentum of particles j and k before collision. Terms due to the generalized collision rule that are not present in the elastic case are highlighted in red.

- 2. Linearized Dynamics of Perturbations
- Free-flight:

$$\frac{d(\delta \mathbf{\Gamma})}{dt} = J_{\mathbf{F}}(\mathbf{\Gamma})\delta \mathbf{\Gamma} = \begin{pmatrix} \frac{\delta \mathbf{P}}{m} \\ \mathbf{0} \end{pmatrix},$$

• Collision: Perturbations introduce a time offset  $(\delta \tau_c)$  between collision in the reference trajectory (at  $\tau_c$ ) and a perturbed trajectory (at  $\tau_c + \delta \tau_c$ ) [Del96]. Again assuming that particles j and k undergo collision ( $l \neq j, k$ ):

$$\begin{split} \delta \mathbf{q}_{f}^{i} &= \delta \mathbf{q}_{i}^{i}, \, \delta \mathbf{p}_{f}^{i} = \delta \mathbf{p}_{i}^{i}, \\ \delta \mathbf{q}_{f}^{j} &= \delta \mathbf{q}_{i}^{j} + \left[ (1 - \beta)\mathbf{p} + \frac{\alpha(\mathbf{q} \cdot \mathbf{p})\mathbf{q}}{\sigma^{2}} \right] \left( \frac{\delta \mathbf{q} \cdot \mathbf{q}}{\mathbf{p} \cdot \mathbf{q}} \right), \\ \delta \mathbf{q}_{f}^{k} &= \delta \mathbf{q}_{i}^{k} - \left[ (1 - \beta)\mathbf{p} + \frac{\alpha(\mathbf{q} \cdot \mathbf{p})\mathbf{q}}{\sigma^{2}} \right] \left( \frac{\delta \mathbf{q} \cdot \mathbf{q}}{\mathbf{p} \cdot \mathbf{q}} \right), \\ \delta \mathbf{p}_{f}^{j} &= \beta \delta \mathbf{p}_{i}^{j} + (1 - \beta)\delta \mathbf{p}_{i}^{k} + \left( \frac{\alpha}{\sigma^{2}} + \kappa |\mathbf{p}|^{2} \right) (\delta \mathbf{p} \cdot \mathbf{q} + \delta \mathbf{q}_{c} \cdot \mathbf{p}) \mathbf{q} \\ &+ \frac{\alpha}{\sigma^{2}} (\mathbf{q} \cdot \mathbf{p}) \delta \mathbf{q}_{c} - \kappa (\mathbf{q} \cdot \mathbf{p}) (\delta \mathbf{p} \cdot \mathbf{p}) \mathbf{q}, \\ \delta \mathbf{p}_{f}^{k} &= (1 - \beta)\delta \mathbf{p}_{i}^{j} + \beta \delta \mathbf{p}_{i}^{k} - \left( \frac{\alpha}{\sigma^{2}} + \kappa |\mathbf{p}|^{2} \right) (\delta \mathbf{p} \cdot \mathbf{q} + \delta \mathbf{q}_{c} \cdot \mathbf{p}) \mathbf{q} \\ &- \frac{\alpha}{\sigma^{2}} (\mathbf{q} \cdot \mathbf{p}) \delta \mathbf{q}_{c} + \kappa (\mathbf{q} \cdot \mathbf{p}) (\delta \mathbf{p} \cdot \mathbf{p}) \mathbf{q}, \\ \kappa &:= \frac{2\beta(\beta - 1)}{(\mathbf{q} \cdot \mathbf{p})^{2} (2(\alpha - \beta) + 1)}. \end{split}$$

In the above expressions,  $\delta \mathbf{p} = \delta \mathbf{p}_i^k - \delta \mathbf{p}_i^j$  and  $\delta \mathbf{q} = \delta \mathbf{q}_i^k - \delta \mathbf{q}_i^j$ . The offset between the reference trajectory relative position vector before collision,  $\mathbf{q}$ , and a perturbed trajectory relative position vector before collision,  $\mathbf{q} + \delta \mathbf{q}_c$ , is  $\delta \mathbf{q}_c := \delta \mathbf{q} + \mathbf{p}/m\delta \tau_c$ .

## Lyapunov Spectra and Modes



Figure 3: Left: Blown-up picture of Lyapunov spectra at density  $\rho = 0.5$ , aspect ratio A = 1 for  $\beta = 0, 0.2, 0.4, 0.5, 0.6, 0.8$  and 1. Step structure of spectra indicate the presence of "Lyapunov modes" associated with degenerate exponents for  $\beta > \approx 0.4$ . For  $0.2 < \beta < 0.4$  the step structure is diminished and degenerate exponents are no longer observed. Right: Picture of superposition of modes associated with index l such that  $0.494 < \frac{l}{4N} < 0.498$  for  $\beta = 0.4, 0.8$  and 1.0. The Lyapunov modes present for  $\beta < 1$  show breakdown of structure apparent in  $\beta = 1$  case (elastic collisions).

#### Measures of Chaos





Figure 4: Left: Maximal Lyapunov exponent,  $\lambda_1$ , for  $\beta = 0.25, 0.5, 0.75$ , and 1.0 as a function of volume density (packing fraction)  $\rho$  with aspect ratio A = 1. Right: Kolmogorov-Sinai entropy,  $h_{KS}/N = \sum_{\{l:\lambda_l>0\}} \lambda_l$ . As  $\rho$  increases, the maximal exponent is larger for smaller  $\beta$ , while the Kolmogorov-Sinai entropy shows the opposite trend.

#### Conclusions and Future Work

- Changing  $\beta$  changes the microscopic dynamics and affects macroscopic order (e.g. entropy is reduced)
- Generalized collision rule: (i) is not time-reversible (except for  $\beta = 0, 1$ ) and (ii) modes can no longer be specified entirely by position perturbations (some proportion of momentum perturbations needs to be considered).
- Further investigation is needed:
- Classify structure of Lyapunov modes. How is this structure related to the phase space dynamics?
- Since forward- and reverse-time dynamics are different, there should be some observable measure of the phase space dynamics that indicates whether or not the generalized collision rule induces self-organizing behavior. What are the appropriate measures to show this self-organization?

[Del96] Dellago, Ch., H.A. Posch, and W.G. Hoover. Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. *Phys. Rev. E*, 53(2):1485, 1996.

[Eck05] Eckmann, J.P., C. Forster, H.A. Posch, and E. Zabey. Lyapunov Modes in Hard-Disk Systems. *J. Stat. Phys.*, 118(5/6):813, 2005.

[Lega11] Lega, J. Collective Behaviors in Two-Dimensional Systems of Interacting Particles. *SIAM J. Applied Dynamical Systems*, 10(4):1213, 2011.