Image Formation

• The two parts of the image formation process

The geometry of image formation which determines where in the image plane the projection of a point in the scene will be located.

The <u>physics of light</u> which determines the brightness of a point in the image plane as a function of illumination and surface properties.

A simple model

- The scene is illuminated by a single source.
- The scene reflects radiation towards the camera.
- The camera senses it via chemicals on film.

• Camera Geometry

- The simplest device to form an image of a 3D scene on a 2D surface is the "pinhole" camera.
- Rays of light pass through a "pinhole" and form an inverted image of the object on the image plane.

• Camera Optics

- In practice, the aperture must be larger to admit more light.
- Lens are placed in the aperture to <u>focus</u> the bundle of rays from each scene point onto the corresponding point in the image plane.

• Diffraction and Pinhole Optics

- If we use a wide pinhole, light from the source spreads across the image (i.e., not properly focused), making it blurry.
- If we narrow the pinhole, only a small amount of light is let in.
 - * the image sharpness is limited by diffraction.
 - * when light passes through a small aperture, it does not travel in a straight line.
 - * it is scattered in many direction (this is a quantum effect).
- In general, the aim of using lens is to duplicate the pinhole geometry without resorting to undesirable small apertures.

• Human Vision

- At high light levels, pupil (aperture) is small and blurring is due to diffraction.
- At low light levels, pupil is open and blurring is due to lens imperfections.

• CCD Cameras

- An array of tiny solid state cells convert light energy into electrical charge.
- Manufactured on chips typically measuring about 1cm x 1cm (for a 512x512 array, each element has a real width of roughly 0.001 cm).
- The output of a CCD array is a continuous electric signal (*video signal*) which is generated by scanning the photo-sensors in a given order (e.g., line by line) and reading out their voltages.

• Frame grabber

- The video signal is sent to an electronic device called the frame grabber.
- The frame grabber digitizes the signal into a 2D, rectangular array $N \times M$ of integer values, stored in the *frame buffer*.

CCD array and frame buffer

- In a CCD camera, the *physical image plane* is the CCD array of *nxm* rectangular grid of photo-sensors.
- The *pixel image plane* (frame buffer) is an array of NxM integer values (pixels).
- The position of the same point on the image plane will be different if measured in CCD elements (x, y) or image pixels (x_{im}, y_{im}) .
- In general, $n \neq N$ and $m \neq M$; assuming that the origin in both cases is the upper left corner we have:

$$x_{im} = \frac{N}{n} x \qquad \qquad y_{im} = \frac{M}{m} y$$

where (x_{im}, y_{im}) are the coordinates of the point in the pixel plane and (x, y) are the coordinates of the point in the CCD plane.

- In general, it is convenient to assume that the CCD elements are always in one-to-one correspondence with the image pixels.
- Units in each case:

 (x_{im}, y_{im}) is measured in pixels

(x, y) is measured, e.g., in millimeters.

Reference Frames

- Five reference frames are needed for general problems in 3D scene analysis.

• Object Coordinate Frame

- This is a 3D coordinate system: x_b , y_b , z_b
- It is used to model ideal objects in both computer graphics and computer vision.
- It is needed to inspect an object (e.g., to check if a particular hole is in proper position relative to other holes)
- The coordinates of 3D point B, e.g., relative to the object reference frame are $(x_b,\,0,\,z_b)$
- Object coordinates do not change regardless how the object is placed in the scene.

Notation:
$$(X_o, Y_o, Z_o)^T$$

World Coordinate Frame

- This is a 3D coordinate system: x_w , y_w , z_w
- The scene consists of object models that have been placed (rotated and translated) into the scene, yielding object coordinates in the world coordinate system.
- It is needed to relate objects in 3D (e.g., the image sensor tells the robot where to to pick up to bolt and in which hole to insert it).

Notation:
$$(X_w, Y_w, Z_w)^T$$

• Camera Coordinate Frame

- This is a 3D coordinate system $(x_c, y_c, z_c \text{ axes})$
- Its purpose is to represent objects with respect to the location of the camera.

Notation:
$$(X_c, Y_c, Z_c)^T$$

• Image Plane Coordinate Frame (CCD plane)

- This is a 2D coordinate system $(x_f, y_f \text{ axes})$
- Describes the coordinates of 3D points projected on the image plane.
- The projection of A, e.g., is point a whose both coordinates are negative.

Notation:
$$(x, y)^T$$

• Pixel Coordinate Frame

- This is a 2D coordinate system (r, c axes)
- Each pixel in this frame has an integer pixel coordinates.
- Point A, e.g., gets projected to image point (a_r, a_c) where a_r and a_c are integer row and column.

Notation:
$$(x_{im}, y_{im})^T$$

• Transformations between frames

