FIRST SEMESTER, 2020-2021 Course Handout (Part II)

17-08-2020

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : MATH F311

Course Title : INTRODUCTION TO TOPOLOGY

Instructor-in-Charge : SHARAN GOPAL

Name of other Instructor: Deepika

Scope and Objective of the Course: A general objective is to introduce the students to concepts of logical thinking in abstract terms using formal and axiomatic methods and to lay the foundations for further studies in abstract mathematics. Specifically, this course on topology is aimed at making the students familiar with most of the basic topological concepts that are used in almost every branch of advanced mathematics courses.

Text Book: Munkres, J.R.: Topology, PHI (Second Edition), 2000

Reference Books:

- 1. John L. Kelley, General topology., van Nostrand. Reprinted (1976) by Springer- Verlag
- 2. L. A. Steen and J. A. Seebach, Counterexamples in topology, Springer, 1978.

Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1	To give the overview of the course and give the broad perspective of the course	Overview of the course	-
2-3	To make the students understand the definition of topological spaces and the how it generalizes the concept of metric spaces	Topological Spaces; Examples	12
4	To study the concept of basis and understand how it generates a topology	Basis and subbasis	13

5	To study the topology which is defined using an order relation on a set	The order Topology	14
6	To study the subspace topology	Subspaces & Subspace Topology	16
7	To study the product topology for product of finitely many topological spaces	Finite Products	15
8 – 10	To study the topological properties of subsets of a topological space	Closed sets, closure and Interior of a set, limit points, Hausdorff spaces	17
11 – 13	To study the continuous functions and homeomorphisms on a topological space	Continuous functions; homeomorphisms	18
14 – 15	To study the two different concepts of product topology on arbitrary product of topological spaces and understand why do we prefer product topology to box topology	Product Topology and Box Topology	19
16 – 19	To study the metrizable topological spaces and their properties	The Metric topology	20- 21
20 – 22	To study the quotient topology and understand how this concept is connected with geometry	The Quotient topology	22
23 – 25	To study the concept of connectedness for a topological space and understand how a topological space can be broken into pieces that are connected	Connected Spaces, Components and Local connectedness	23- 25
26 – 28	To study the various notions of compactness in a topological space	Compact Spaces	26- 28
29 – 30	To study the notion of local compactness	Locally Compact spaces	29
31 – 33	To study the countability axioms and understand how countability axioms are well behaved with respect to the operations of taking subspaces or countable products	Countability axioms	30
34 – 36	To study the separations axioms and their properties	Separation axioms	31
37 – 38	To study the normal topological spaces	Normal spaces; Urysohn's lemma	32-33
39 – 40	To study a theorem that gives us conditions under which a topological space is metrizable	Urysohn Metrization Theorem	34

41 – 42	To study the arbitrary product	Tychonoff's Theorem	37
	of compact spaces		

Evaluation Scheme:

EC No	Evaluation Component	Duration	Weightag e	Date, Time	Nature of Component
1.	Test 1	30 min	15 %	September 10 – September 20 (During scheduled class hour)	Open Book
2.	Assignment 1	To be announced	10%		Open Book
3.	Test 2	30 min	15 %	October 09 – October 20 (During scheduled class hour)	Open Book
4.	Test 3	30 min	15 %	November 10 – November 20 (During scheduled class hour)	Open Book
5.	Assignment 2	To be announced	10%	To be announced	Open Book
6.	Comprehensive Examination	120	35%	To be announced	Open Book

Make-up Policy: Make-up will be given only for very genuine cases and prior permission has to be obtained from the IC.

Consultation hours: To be announced in the class.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable

Notices: The notices concerning this course will be displayed on the CMS site only.

Instructor-in-charge MATH F311