ICA3

September 19, 2024

0.1 ICA - Module 3

Alanna Hazlett

uwa6xv

September 18th, 2024 Assume the folling hash function: $h(K) = K \mod 13$

Insert the following keys into the hash tables below, using each conflict resolution method:

0.1.1 Linear Probing

Ε	E	41	E	E	18	44	59	32	22	31	73	Е
0	1	2	3	4	5	6	7	8	9	10	11	12

 $h_0(18) = 18 \mod 13 = 5$

 $h_0(41) = 41 \mod 13 = 2$

 $h_0(22) = 22 \mod 13 = 9$

 $h_0(44) = 44 \mod 13 = 5$ Collision at bucket 5

 $h_1(44) = (44 + 1) \mod 13 = 6$

 $h_0(59) = 59 \mod 13 = 7$

 $h_0(32) = 32 \mod 13 = 6$ Collision at bucket 6

 $h_1(32) = (32 + 1) \mod 13 = 7$ Collision at bucket 7

 $h_2(32) = (32 + 2) \mod 13 = 8$

 $h_0(31) = 31 \mod 13 = 5$ Collision at bucket 5

 $h_1(31) = (31 + 1) \mod 13 = 6$ Collision at bucket 6

 $h_2(31) = (31 + 2) \mod 13 = 7$ Collision at bucket 7

 $h_3(31) = (31 + 3) \mod 13 = 8$ Collision at bucket 8

 $h_4(31) = (31 + 4) \mod 13 = 9$ Collision at bucket 9

 $h_5(31) = (31 + 5) \mod 13 = 10$

 $h_0(73) = 73 \mod 13 = 8$ Collision at bucket 8

 $h_1(73) = (73 + 1) \mod 13 = 9$ Collision at bucket 9

 $h_2(73) = (73 + 2) \mod 13 = 10$ Collision at bucket 10

 $h_3(73) = (73 + 3) \mod 13 = 11$

0.1.2 Chaining

0	1	2	3	4	5	6	7	8	9	10	11	12
		41			18 44 31	32	59	73	22			

 $h_0(18) = 18 \mod 13 = 5$

 $h_0(41) = 41 \mod 13 = 2$

 $h_0(22) = 22 \mod 13 = 9$

 $h_0(44) = 44 \mod 13 = 5$ Collision add to list outside array

 $h_0(59) = 59 \mod 13 = 7$

 $h_0(32) = 32 \mod 13 = 6$

 $h_0(31) = 31 \mod 13 = 5$ Collision add to list outside array

 $h_0(73) = 73 \mod 13 = 8$

[]: