

Apprentissage supervisé

Deux grandes familles d'applications

Classification : la cible est un indice de classe $t ∈ \{1, ..., K\}$

• Exemple : reconnaissance de caractères

 $\checkmark\ \vec{x}\ :$ vecteur des intensités de tous les pixels de l'image

✓ t: identité du caractère

Régression : la cible est un nombre réel $t \in \mathbb{R}$

• Exemple : prédiction de la valeur d'une action à la bourse

✓ x̄: vecteur contenant l'information sur l'activité économique de la journée

✓ t: valeur d'une action à la bourse le lendemain

4

4

Apprentissage supervisé avec CNN

5

Supervisé vs non supervisé

Apprentissage supervisé : il y a une cible

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Apprentissage non-supervisé : la cible n'est pas fournie

$$D = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N\}$$

Apprentissage non supervisé

Souvent, l'apprentissage non-supervisé inclut un (ou des) variables latentes.

Variable latente: variable aléatoire non observée mais sous-jacente à la distribution des données

Ex: clustering = retrouver la variable latente "cluster"

o

Pourquoi une variable latente?

Plus facile de représenter $p(\vec{x}, y)$, $p(\vec{x} | y)$, p(y) que $p(\vec{x})$

Plus d'info au tableau.

L'apprentissage non-supervisé par réseaux de neurones s'appuie sur 2 propriétés

Comment utiliser un réseau de neurones pour apprendre la configuration sous-jacente de données non étiquetées?


```
Autoencodeur jouet de MNIST
      class autoencoder (nn.Module):
          def __init__(self):
               super(autoencoder, self).__init__()
               self.encoder = nn.Sequential(
                  nn.Linear(28 * 28, 128), nn.ReLU(True),
                   nn.Linear(128, 64), nn.ReLU(True),
                                                               Espace latent 2D
              nn.Linear(64, 12), nn.ReLU(True),
nn.Linear(12, (2))
self.decoder = nn.Sequential(
                   nn.Linear(2, 12), nn.ReLU(True),
                   nn.Linear(12, 64), nn.ReLU(True),
                   nn.Linear(64, 128), nn.ReLU(True),
                   nn.Linear(128, 28 * 28))
           def forward(self, x):
              z = self.encoder(x)
               x_prime = self.decoder(z)
               return x_prime
```

26

```
Autoencodeur jouet de MNIST
           class autoencoder (nn.Module):
               def __init__(self):
                  super(autoencoder, self).__init__()
                   self.encoder = nn.Sequential(
                    nn.Linear(28 * 28, 128), nn.ReLU(True),
                    nn.Linear(128, 64), nn.ReLU(True),
                    nn.Linear(64, 12), nn.ReLU(True),
                      nn.Linear(12, 2))
symétrie
                self.decoder = nn.Sequential(
                      nn.Linear(2, 12), nn.ReLU(True),
                    nn.Linear(12, 64), nn.ReLU(True),
                    nn.Linear(64, 128), nn.ReLU(True),
                     nn.Linear(128, 28 * 28))
               def forward(self, x):
                   z = self.encoder(x)
                   x_prime = self.decoder(z)
                   return x_prime
```


Au lieu d'apprendre à reproduire un signal d'entrée...

Apprendre à reproduire une distribution $p(\vec{z})$ connue de sorte qu'un point échantillonné et décodé de cette distribution correspond à un signal reconstruit valable


```
Autoencodeur variationnel jouet MNIST: d=32 dim

class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()

    self.encoder = nn.Sequential(
        nn.Linear(28 * 28, 128), nn.ReLU(True),
        nn.Linear(128, 64), nn.ReLU(True),
        nn.Linear(128, 64), nn.ReLU(True),
        nn.Linear(32, 64), nn.ReLU(True),
        nn.Linear(42, 28 * 28))

def reparameterize(self, nn.ReLU(True),
        nn.Linear(128, 28 * 28))

def reparameterize(self, mu, logvar):
    std = torch.exp(0.5*logvar)
    eps = torch.randn_like(std)
    return mu + eps*std

def forward(self, x):
    enc x = self.encoder(x)
    mu = enc.x(:, :32]
    logvar = stats[:, 32:]
    z = self.reparameterize(mu, logvar)
    return self.decoder(z), mu, logvar)
```

```
Autoencodeur variationnel jouet MNIST: d=32 dim

\begin{array}{c} \text{def } \underset{12 \text{ = nn.MSELoss}()}{\text{def } \underset{12 \text{ = nn.MSELoss}()}{\text{ (recon.x., x)}}} \\ \text{KLD} = -0.5 * \text{torch.sum}(1 + \text{logvar - mu.pow}(2) - \text{logvar.exp}()) \\ \text{return KLD} + \text{self.lambda*L2} \\ \\ Loss = \frac{1}{2} \sum_{i=1}^{d} \left(1 + \log \left(\sigma_{i}^{2}\right) - \mu_{i}^{2} - \sigma_{i}^{2}\right) - \lambda \left\|\vec{x} - \vec{x}'\right\|^{2} \end{array}
```


Plusieurs tutoriels, VAE

- https://ijdykeman.github.io/ml/2016/12/21/cvae.html
- https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
- https://towardsdatascience.com/deep-latent-variable-models-unravel-hidden-structures-a5df0fd32ae2
- C. Doersch, Tutorial on Variational Autoencoders, arXiv:1606.05908

73

GAN

Generative Adversarial Nets

74

On voudrait générer des images \vec{x} en échantillonnant $P(\vec{x})$

=> **TROP DIFFICILE** car $P(\vec{x})$ trop complexe

Comme précédemment, pour simplifier le problème, on pourrait introduire une variable latente \vec{z} et ainsi modéliser

$$P(\vec{x}, \vec{z}) = P(\vec{x} \mid \vec{z})P(\vec{z})$$

Modèle génératif Distribution *a priori*

76

Comme pour les VAE, on utilisera une **distribution** *a priori* facile à échantillonner : une **gaussienne**!

$$P(\vec{z}) = N(\vec{z}; 0, 1)$$

77

Comment estimer $P(\vec{x} \mid \vec{z})$?

À l'aide d'un réseau de neurones car ce sont d'excellentes machines pour estimer des probabilités conditionnelles

Rappel, entropie croisée pour une régression logistique binaire:

$$L_{D} = \frac{1}{N} \sum_{i} -t_{i} \ln(y(\vec{x}_{i})) - (1 - t_{i}) \ln(1 - y(\vec{x}_{i}))$$

Le réseau discriminateur est représenté par la lettre D

$$L_{D} = \frac{1}{N} \sum_{i} -t_{i} \ln \left(D(\vec{x}_{i}) \right) - \left(1 - t_{i} \right) \ln \left(1 - D(\vec{x}_{i}) \right)$$

Rappel: Espérance mathématique et approximation Monte Carlo $IE[x] = \int xp(x)dx$ $IE[f(x)] = \int f(x)p(x)dx$

Rappel: Espérance mathématique et approximation Monte Carlo

$$IE[x] = \int xp(x)dx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} x_i \quad \text{où } x_i \sim p(x)$$
approximation
$$\text{Monte Carlo}$$

94

Rappel: Espérance mathématique et estimateur Monte Carlo

$$L_D = -\underbrace{\frac{1}{N_{reel}} \sum_{i} \ln \left(D\left(\vec{x}_i\right)\right)}_{\text{Perte images réelles}} - \underbrace{\frac{1}{N_{syn}} \sum_{j} \ln \left(1 - D\left(G\left(\vec{z}_j\right)\right)\right)}_{\text{Perte images synthétiques}}$$

$$L_D = -IE_{\vec{x} \sim P_{\text{red}}} \left[\ln \left(D(\vec{x}) \right) \right] - IE_{\vec{z} \sim P_{\vec{z}}} \left[\ln \left(1 - D(G(\vec{z})) \right) \right]$$

(Loss de GAN dans la littérature)

95

Objectif du discriminateur

Paramètres du discriminateur

$$(\widehat{W_D}) = \arg \min_{\widehat{W_D}} - IE_{\widehat{x} \sim P_{red}} \left[\ln \left(D(\widehat{x}) \right) \right] - IE_{\widehat{z} \sim P_{z}} \left[\ln \left(1 - D(G(\widehat{z})) \right) \right]$$

Ou encore, de façon équivalente (mult par -1)

$$W_{D} = \arg\max_{W_{D}} \; IE_{\vec{x} \sim P_{red}} \left[\ln \left(D\left(\vec{x} \right) \right) \right] + IE_{\vec{z} \sim P_{z}} \left[\ln \left(1 - D\left(G\left(\vec{z} \right) \right) \right) \right]$$

bien	discriminateur: distinguer les images réelles des images synthétiques $= \arg \max_{W_D} IE_{\vec{x} \sim P_{out}} \left[\ln(D(\vec{x})) \right] + IE_{\vec{z} \sim P_z} \left[\ln(1 - D(G(\vec{z}))) \right]$
	générateur : uire des images synthétiques indistinguables des images réelles $W_G = \arg\min_{W_G} IE_{\bar{z}-P_z} \left[\ln \left(1 - D(G(\bar{z})) \right) \right]$
	"a -

« Two player » mini-max game

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

100

« Two player » mini-max game

Discriminateur veux D(x) = 1 pour les vrais données

Discriminateur veux D(G(x)) = 0 pour les données synthétiques

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{x}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

Générateur veux D(G(x)) = 1 pour les données synthétiques

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

101

NOTE

dans les faits, on ne minimise pas cette loss

$$W_G = \arg\min_{w} \mathcal{F}_{P_z} \left[\ln \left(1 - D(G(\vec{z})) \right) \right]$$

on maximise plutôt celle-ci

$$W_G = \arg \max_{W_G} \; IE_{\vec{z} \sim P_z} \left[\ln \left(D \left(G \left(\vec{z} \right) \right) \right) \right]$$

 $\begin{aligned} & & \text{Ian Goodfellow et al. , "Generative Adversarial Nets", NIPS 2014} \end{aligned}$ $& & \text{for } k \text{ steps } \mathbf{do} \\ & & \bullet \text{ Sample minibatch of } m \text{ noise samples } \{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)}\} \text{ from noise prior } p_g(\boldsymbol{z}). \\ & \bullet \text{ Sample minibatch of } m \text{ examples } \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\} \text{ from data generating distribution } p_{\text{data}}(\boldsymbol{x}). \\ & \bullet \text{ Update the } \underline{\text{discriminator by ascending its stochastic gradient:} \\ & & & \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(\boldsymbol{x}^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(\boldsymbol{z}^{(i)}))) \right] \end{aligned}$ $& & \text{end for} \\ & \bullet \text{ Sample minibatch of } m \text{ noise samples } \{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)}\} \text{ from noise prior } p_g(\boldsymbol{z}). \\ & \bullet \text{ Update the } \underline{\text{generator by ascending its stochastic gradient (improved objective):} \\ & & & \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(\boldsymbol{z}^{(i)}))) \end{aligned}$

Deep Convolution Generative Adversarial Net (DCGAN)

Recommandations discriminateur

- Conv stride>1 au lieu des couches de pooling
- ReLU partout sauf en sortie : tanh

Recommandations générateur

- Conv transpose au lieu de upsampling
- LeakyReLU partout

Autre recommandations

- · BatchNorm partout
- Pas de FC, juste des conv

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

106

Deep Convolution Generative Adversarial Net (DCGAN)

Recommandations discriminateur

· (

https://github.com/soumith/ganhacks

- Rec
- · Luny reele puriour

Autre recommandations

- · BatchNorm partout
- Pas de FC, juste des conv

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

107

Deep Convolution Generative Adversarial Net (DCGAN)

110

Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:

 - o disparition des gradients
 o effondrement des modes
 o on ne peut générer d'images à haute résolution
- Plusieurs solutions proposées:

 Wasserstein GAN (utilise "earth mover distance")

 Least Squares GAN (utilise distance d'erreur quadratique)

 Progressive GAN

Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:
 o disparition des gradients

 - effondrement des modes
 on ne peut générer d'images à haute résolution

Si le discriminateur apprend trop vite, le générateur sera systématiquement battu, et n'apprendra rien

112

Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:

 - o disparition des gradients
 effondrement des modes
 o on ne peut générer d'images à haute résolution

Le générateur peut apprendre à toujours générer la même image et ainsi battre le discriminateur

113

Problèmes d'instabilité Si discriminateur et générateur et n'apprennent pas ensemble: Epoch 21 Le gén

https://datascience.stackexchange.com/questions/29 485/gan-discriminator-converging-to-one-output

Style GAN

Entraînement progressif comme pour progressive GAN

133

134

Défi avec les GAN

Soit un GAN entraîné sur MNIST, si je décode 10 vecteurs latents pris au hasard, j'aurai les images de 10 caractères aléatoires.

	_
Code pytorch pour plus de 30 modèles	
de GANs	
https://github.com/eriklindernoren/PyTorch-GAN	
intpos guidoscon estandenio lena y resent estas	
145	
Belle vidéo sur les GANs montrant	
comment on peut manipuler l'espace latent et comment certains les utilise	
pour produire des « deep fake »	
https://www.youtube.com/watch?v=dCKbRCUyop8	