Kawasaki Quantum Summer Camp 2025

量子テレポーテーション

Jul 30, 2025

沼田祈史 Kifumi Numata IBM Quantum

量子テレポーテーションとは何だと思いますか? (予想)

はじめに:

量子テレポーテーションとは? (予想例)

量子テレポーテーションとは?

量子テレポーテーションとは?

量子テレポーテーションとは?

地上と通信衛星間の量子テレポーテーションの例

出典: https://arxiv.org/ftp/arxiv/papers/1707/1707.00934.pdf

量子テレポーテーションのプロトコル

- **(1) 地球のアリスがある量子 Q (暗号) を持っています。**
- (2) 特別な関係にあるふたごの量子 (2) が地球と人工衛星の上にあります。 この2つ量子の関係は「量子もつれ」という関係です。

量子テレポーテーションのプロトコル

(3) 地球のアリスが地上の2つの量子に特殊な測定(もつれ測定)をします。 (量子もつれ状態にあるボブの量子の状態が瞬時に変わります。)

量子テレポーテーションのプロトコル

(4) アリスが測定結果をメールや電話でボブに送り、 ボブはもらった結果をもとに自分の量子を補正します。 ボブの量子がアリスの持っていた暗号に変化します!

IBMの量子コンピューター

ケルビン **約-273℃ (0.015K)の低温で量子状態を実現**

アリスからボブに暗号(量子状態)を送ります

考えましょう!

(1) 地球のアリスがある量子 Q (暗号) を持っています。

(2) 特別な関係にあるふたごの量子 (1) が地球と人工衛星の上にあります。 この2つ量子の関係は「量子もつれ」という関係です。

(3) 地球のアリスが地上の2つの量子に特殊な測定(もつれ測定)をします。 (量子もつれ状態にあるボブの量子の状態が瞬時に変わります。)

(4) アリスが測定結果をボブに送り、 ボブはもらった結果をもとに自分の量子を補正します。 ボブの量子がアリスの持っていた暗号に変化します!

JupyterHubでの実行

(1) Webブラウザー(Edge、Safari、Chrome、Firefoxなど)で https://54.178.57.208/にログイン。

(2) ユーザ名とパスワード(メールで配布)を 入力して、「Sign in」をクリック。

(3) この画面になったら成功です!

Kawasaki Campが終わった後、Qiskitを実行する場合

(1) Google Colabratory (https://colab.research.google.com/) を使う。 毎回、以下のコマンドを最初に実行する必要があります。

!pip install qiskit qiskit[visualization] qiskit-ibm-runtime qiskit-aer

!pip install qiskit-algorithms qiskit-nature scikit-learn

!pip install --prefer-binary pyscf

参照: https://quantum-tokyo.github.io/introduction/get_started/colab.html

(2) qBraid (https://www.qbraid.com) を使う。

参照: https://quantum-tokyo.github.io/introduction/get_started/qbraid.html

ハンズオンの資料

URL: ibm.biz/kwskgit

(補足) 量子テレポーテーションアルゴリズムの詳細

Qiskitではビットの並びが|q2 q1 q0>です
$$|\psi_0\rangle = |00\rangle \otimes (\alpha|0\rangle + \beta|1\rangle) \\ \text{AliceO持っている暗号} \\ |\psi_1\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|001\rangle + \beta|111\rangle) \\ |\psi_2\rangle = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + |11\rangle)|0\rangle + \beta(|01\rangle + |10\rangle)|1\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + |11\rangle)|0\rangle + |11\rangle)|0\rangle + |11\rangle)|1\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + |11\rangle)|00\rangle + |11\rangle)|10\rangle + |11\rangle)|10\rangle + |11\rangle)|10\rangle \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + \beta|1\rangle)|00\rangle + |11\rangle + |10\rangle)|10\rangle + |10\rangle)|10\rangle + |10\rangle)|10\rangle + |10\rangle)|11\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + \beta|1\rangle)|00\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |10\rangle)|11\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + \beta|1\rangle)|00\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |10\rangle)|11\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + \beta|1\rangle)|00\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |10\rangle)|11\rangle) \\ = \frac{1}{\sqrt{2}}(\alpha|00\rangle + \beta|1\rangle)|00\rangle + |10\rangle + |10\rangle)|10\rangle + |10\rangle + |1$$

