Geometria Computacional Fecho Convexo II

Claudio Esperança Paulo Roma Cavalcanti

Marcha de Jarvis (Gift Wrapping)

- Análogo ao algoritmo de ordenação "Selection Sort"
 - A cada passo, escolhe o menor dos valores e acrescenta à coleção ordenada
 - Analogamente, deseja-se obter a cada passo o próximo ponto do fecho convexo (em ordem anti-horária)
 - Se $p_{i-1}p_i$ é a última aresta acrescentada, o próximo vértice p_{i+1} é aquele que maximiza o ângulo $p_{i-1}p_i$ p_{i+1}
 - Durante a iniciação assume-se p_1 = ponto com menor coordenada y e p_0 um ponto com coordenada x = ∞

Marcha de Jarvis (Gift Wrapping)

Marcha de Jarvis (Gift Wrapping)

Marcha de Jarvis - Complexidade

- Claramente, escolher o próximo vértice é O(n)
- Se o fecho convexo tem *h* vértices, então, o algoritmo tem complexidade *O* (*nh*)
 - No pior caso, $n \approx h$ e o algoritmo tem complexidade $O(n^2)$, pior, portanto que o algoritmo de Graham
 - No melhor caso, *h* é *o*(log *n*), isto é, assintoticamente menor que log *n*, o que o torna melhor que o algoritmo de Graham

Algoritmo Sensível à Saída

- Um algoritmo ótimo deveria rodar em O (n log h)
 - Comporta-se como marcha de Jarvis para saídas pequenas
 - Comporta-se como a varredura de Graham para saídas grandes (≈ número total de pontos)
- Kirkpatrick e Seidel desenvolveram um algoritmo $O(n \log h)$ em 1986
 - Muito complicado
- Em 1996, Chan apresenta um algoritmo ótimo relativamente simples
 - Combina marcha de Jarvis e varredura de Graham!

Algoritmo de Chan

- Idéia geral
 - Divide-se os n pontos em grupos contendo não mais que m pontos
 - $r = \lceil n/m \rceil$ grupos no total
 - Computa-se o fecho convexo de cada grupo usando varredura de Graham
 - Computa-se o fecho convexo geral aplicando-se a marcha de Jarvis sobre os fechos dos grupos
 - É necessário empregar um algoritmo para obter a tangente entre um ponto e um polígono com *m* lados em tempo *O* (log *m*)

- São dados um polígono convexo com m vértices $p_0, p_1 ... p_{m-1}$ (circulação anti-horária) e um ponto q fora do polígono
- Deseja-se obter uma semi-reta que passa por q e é tangente ao polígono num ponto t de tal forma que qualquer vértice p_i do polígono é tal que *orientação* $(q,t,p_i) \neq$ horária

- Assumimos que os vértices $p_0, p_1 \dots p_{m-1}$ estão armazenados num array e que os índices são tomados módulo m
- O algoritmo funciona à semelhança do algoritmo de busca binária
- A cada passo examina-se um vértice p_j sabendo que o vértice t procurado está entre p_j e p_{j+a-1} ou entre p_{j-b+1} e p_j ou
 - Inicialmente, a = b = m

- p_{j} é classificado examinando seus vizinhos p_{j+1} e p_{j-1}
- 1º caso: $orientação~(q,~p_j,~p_{j+1}) \neq horária~e~orientação~(q,~p_j,~p_{j-1}) \neq horária$
 - Algoritmo termina com $t = p_i$

- 2º caso: orientação $(q, p_j, p_{j+1}) \neq$ horária e orientação $(q, p_j, p_{j-1}) =$ horária
 - lacktriangle t está entre $p_{j\text{-}b\text{+}1}$ e p_j

- 3º caso: orientação (q, p_j, p_{j+1}) = horária e orientação $(q, p_j, p_{j-1}) \neq$ horária
 - lacktriangle t está entre p_j e p_{j+a-1}

- 4º caso: orientação (q, p_j, p_{j+1}) = horária e orientação (q, p_j, p_{j-1}) = horária
 - Se orientação $(q, p_j, p_{j+a-1}) \neq \text{horária}$
 - Então t está entre p_i e p_{i+a-1}
 - ullet Senão t está entre $p_{j\text{-}b\text{+}1}$ e p_j

- Sempre que se opta por um intervalo, este é partido em dois semi-intervalos e o vértice do meio é testado a seguir
- Pode-se ver que este processo tem no máximo log₂
 m iterações
- Como cada teste é *O* (1), o algoritmo tem complexidade de pior caso *O* (log *m*)

Algoritmo de Chan (Fecho Parcial)

Dados um conjunto P com n pontos e um valor m < n:

- 1. Divide-se P em $r = \lceil n/m \rceil$ grupos $P_1 \dots P_r$, cada um contendo não mais que m pontos
- 2. Para i = 1 até r fazer
 - a) Computar Fecho (P_i) usando Graham
- 3. Seja p_0 = ($-\infty$, 0) e p_1 = ponto de P com menor coordenada y
- 4. Para k = 1 até m fazer
 - a) Para i = 1 até r fazer
 - Computar o ponto q_i de P_i que maximiza o ângulo $\angle p_{k-1}p_kq_i$
 - b) Fazer p_{k+1} = ponto $q \in \{q_1 \dots q_r\}$ que maximiza o ângulo $\angle p_{k-1}p_kq$
 - c) Se $p_{k+1} = p_1$ então retornar $\langle p_1 \dots p_k \rangle$
- 5. Retornar "*m* muito pequeno!"

Algoritmo de Chan

Complexidade do Algoritmo de Chan

- No passo 2 computamos r fechos de conjuntos com m pontos: O (r m log m)
- No passo 4 temos:
 - Em 4a computamos *r* tangentes de conjuntos com *m* pontos: *O* (*r* log *m*)
 - Em 4b computamos uma etapa da marcha de Jarvis, a um custo de O(r)
 - Como o passo 4 tem *m* iterações, o custo total é
 O (*r m* log *m*)
- Portanto, o algoritmo tem complexidade $O(r m \log m) = O(n \log m)$
- Se pudermos adivinhar um valor de m tal que $m \approx h$, poderemos assegurar complexidade $O(n \log h)$

Adivinhando o valor de h

- $1^{\underline{a}}$ idéia: tentar m = 1, 2, 3, etc
 - Converge muito lentamente
- 2ª idéia: usar busca binária
 - Converge rápido, mas se usarmos um valor muito alto de m (n/2, por exemplo) teremos complexidade O (n log n)
- $3^{\underline{a}}$ idéia: iniciar com m pequeno e incrementar muito rapidamente
 - Dependência de *m* está no termo log
 - Se chamarmos a rotina com $m = h^c$ para alguma constante c, teremos complexidade $O(n \log h)$
 - Solução: $m = 2^k$, para $k = 2^1$, 2^2 , 2^3 , etc

Algoritmo de Chan

Para t = 1, 2, ... fazer

- 1. $k \leftarrow 2^t$
- 2. $m \leftarrow \min(2^k, n)$
- 3. Chamar Fecho Parcial (*P*, *m*)
- 4. Se resultado ≠ "m pequeno demais" retornar
- Quantas iterações?
 - O algoritmo termina quando $t = \lceil \lg \lg h \rceil$
 - Cada iteração leva tempo $O(n \log 2^{2^t}) = O(n 2^t)$

$$\sum_{t=1}^{\lg\lg h} n \ 2^t = n \sum_{t=1}^{\lg\lg h} 2^t \le n \ 2^{1+\lg\lg h} = 2n \lg h \in O(n \log h)$$

Tempo Ótimo

- Um problema relacionado consiste em verificar se o fecho de um dado conjunto com *n* pontos tem *h* vértices
 - Prova-se que este problema é resolvido em $\Omega(n \log h)$
 - O problema do fecho convexo, que garantidamente é mais complexo que este, não pode portanto ser resolvido em menos que *O*(*n* log *h*)

Número esperado de vértices no fecho

 Para pontos distribuídos uniformemente em um quadrado de lado unitário, prova-se que o número <u>esperado</u> de pontos no fecho é O (log n)

• Prova:

- Todo ponto do fecho é máximo para alguma das 4 orientações do quadrado
 - (Nem todo ponto máximo é do fecho)
- Prova-se que o número esperado de pontos máximos é O (log n)

Número esperado de vértices no fecho

Número esperado de vértices no fecho

- Ordena-se os pontos em ordem decrescente de x: $p_1, p_2, \dots p_n$
- Se o ponto p_i é máximo, então sua coordenada y
 é ≥ que a coordenada y de p₁, p₂, ... p_i
 - Como a distribuição é uniforme, a chance de isso acontecer é 1/i
 - Temos então como a soma das expectativas:

$$E_n = \sum_{i=1}^n \frac{1}{i} \cong \ln n = O(\log n)$$

