Mathematical analysis 2

Chapter 4: Sequences and Series of functions

Part 1: Sequences of functions

R. KECHKAR

2023/2024

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

definition of sequence of functions

Let E be a non empty set of \mathbb{R} and $\mathscr{F}(E,\mathbb{R})$ the set of all functions from E to \mathbb{R} that is

$$\mathscr{F}(E,\mathbb{R}) = \{ f \mid f : E \to \mathbb{R} \}$$

Definition

• We call sequence of function all mapping from \mathbb{N} to $\mathscr{F}(E,\mathbb{R})$:

$$\begin{array}{ccc}
f: \mathbb{N} & \longrightarrow & \mathscr{F}(E, \mathbb{R}) \\
n & \longmapsto & f_n
\end{array}$$

• A sequence of functions id denoted by $(f_n)_n$.

Remark

It is important that all the functions f_n are defined on the same set E. For example, one cannot consider the functions $f_n: x \longmapsto \ln(x-n)$ as a sequence of functions because each f_n is defined on $]n, +\infty[$ and $E = \bigcap n \in \mathbb{N}]n, +\infty[= \emptyset]$

Generalities

Example.

•
$$f_n(x) = x^n \text{ on }]0,1[.$$

•
$$f_n(x) = \cos(nx)$$
 on \mathbb{R} .

•
$$f_n(x) = \begin{cases} 2n^2x & \text{if} \quad 0 \le x \le 1/(2n) \\ 2n^2(1/n - x) & \text{if} \quad 1/(2n) < x < 1/n \\ 0 & \text{if} \quad 1/n \le x \le 1 \end{cases}$$

•
$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$
 on \mathbb{R} .

- Generalities
- Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

Definition

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions defined on E.

- We say that the sequence of functions $(f_n)_{n\in\mathbb{N}}$ converges pointwise at $x_0 \in E$ if the numerical sequence $(f_n(x_0))_{n \in \mathbb{N}}$ is convergent.
- 2 We say that the sequence $(f_n)_{n\in\mathbb{N}}$ converges pointwise to a function f on $I \subseteq E$ if for every fixed $x \in I$, the numerical sequence $(f_n(x))_n$ converges to f(x), i.e., $\forall x \in I, \lim_{n \to +\infty} f_n(x) = f(x),$ which means. $\forall x \in I, \forall \epsilon > 0, \exists N_{x,\epsilon}, \forall n \ge N_{x,\epsilon} \Rightarrow |f_n(x) - f(x)| < \epsilon.$

Remark

The integer N in this definition depends on both the choice of ϵ and the point $x \in I$.

Example 1: Determine the pointwise limit of the sequence of functions (f_n) defined by

$$\forall n \in \mathbb{N}, f_n(x) = \frac{x}{1 + nx}, E = [0, 1].$$

We have:

- Case 1: If x = 0, $\lim_{n \to +\infty} f_n(0) = \lim_{n \to +\infty} 0 = 0$.
- Case 2: If $x \in (0,1]$, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x}{1+nx} = 0$.

Thus,
$$f_n \xrightarrow{\text{Simp}} f$$
 on E with $f(x) = 0$.

Example 5.2. Suppose that $f_n:(0,1)\to\mathbb{R}$ is defined by $f_n(x)=\frac{n}{nx+1}$. Then, since $x\neq 0$,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n}{x + \frac{1}{n}} = \frac{1}{x}.$$

So $f_n \to f$ pointwise, where $f: (0,1) \to \mathbb{R}$ is given by $f(x) = \frac{1}{x}$. We have $|f_n(x)| < n$ for all $x \in (0,1)$, so each f_n is bounded on (0,1). However, their pointwise limit f is not bounded. Therefore, pointwise convergence does not, in general, preserve boundedness.

Example 2: Study the pointwise convergence of the sequence of functions (f_n) where

$$\forall n \in \mathbb{N}, f_n(x) = \frac{nx}{1 + nx}, E = [0, 1].$$

Evaluating:

- Case 1: If x = 0, $\lim_{n \to +\infty} f_n(0) = \lim_{n \to +\infty} 0 = 0$.
- Case 2: If $x \in (0,1]$, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{1+nx} = \lim_{n \to +\infty} \frac{nx}{nx} = 1$.

Consequently,
$$f_n \xrightarrow{\text{Simp}} f$$
 on E with $f(x) = \begin{cases} 1 & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0 \end{cases}$.

Note that all functions f_n are continuous on E, but the limit function f is not.

Example 3: Consider the sequence of functions

$$\forall n \ge 1, f_n(x) = \left(x^2 + \frac{1}{n^2}\right)^{\frac{1}{2}}, \quad E = \mathbb{R}$$

For
$$\forall x \in \mathbb{R}$$
, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \left(x^2 + \frac{1}{n^2}\right)^{\frac{1}{2}} = |x|$.

Hence, $f_n \xrightarrow{\text{Simp}} f$ on E where f(x) = |x|.

It's evident that all functions f_n are differentiable on E, but the limit function f is not.

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

Definition

Suppose that (f_n) is a sequence of functions $f_n : A \to \mathbb{R}$ and $f : A \to \mathbb{R}$. Then $f_n \to f$ uniformly on A if, for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that n > N implies that $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$.

Since $(\forall x \in I, |f_n(x) - f(x)| < \epsilon) \iff \sup_{x \in I} |f_n(x) - f(x)| < \epsilon$, the previous definition is thus equivalent to: $\forall \epsilon > 0, \exists N, \forall n \ge N \Rightarrow \sup_{x \in I} |f_n(x) - f(x)| < \epsilon$.

In other words: f is a uniform limit of the sequence $(f_n)_n$ on I if the sequence of terms $\sup_{x \in I} |f_n(x) - f(x)|$ tends to 0 as n tends to infinity. Therefore, we have the following proposition:

Proposition (Necessary and Sufficient Condition)

Let $(f_n)_n$ be a sequence of functions defined on E. The sequence $(f_n)_n$ converges uniformly to a function f on $I \subseteq E$ if and only if $\lim_{n \to +\infty} ||f_n - f|| = \lim_{n \to +\infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$.

Example.

Study the pointwise and uniform convergence of the sequence of functions $(f_n)_n$ where $\forall n \geq 0, f_n(x) = \frac{x}{(1+x^2)^n}, E = \mathbb{R}^+.$

Pointwise convergence:

- If x = 0, $\lim_{n \to +\infty} f_n(0) = \lim_{n \to +\infty} 0 = 0$.
- If $x \in \mathbb{R}^+$.

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x}{(1+x^2)^n} = \lim_{n \to +\infty} xe^{n\log(1+x^2)} = 0.$$

Thus,
$$f_n \xrightarrow{\text{Simp}} f$$
 on E with $f(x) = 0$.

Uniform convergence: Verify if $\lim_{n \to +\infty} ||f_n - f|| = 0$:

Calculate $\sup_{x \in \mathbb{R}^+} |f_n(x) - 0| = \sup_{x \in \mathbb{D}^+} \left| \frac{x}{(1+x^2)^n} \right| = \sup_{x \in \mathbb{D}^+} \frac{x}{(1+x^2)^n}$. We just need to study the variation of

 f_n :

For $\forall x \in \mathbb{R}^+$, $f'_n(x) = \frac{1 - (2n - 1)x^2}{(1 + x^2)^{n+1}}$. f'_n vanishes at $x = \frac{1}{\sqrt{2n - 1}}$. The table of variation of f_n is as follows:

Then we deduce that:
$$\sup_{x \in \mathbb{R}^+} |f_n(x) - 0| = f_n \left(\frac{1}{\sqrt{2n-1}} \right) = \frac{1}{\sqrt{2n-1}} = \frac{1}{\sqrt{2n-1}} \cdot \left(1 - \frac{1}{2n} \right)^n.$$

But,
$$\lim_{n \to +\infty} \left(1 - \frac{1}{2n}\right)^n = \lim_{n \to +\infty} e^{n\log\left(1 - \frac{1}{2n}\right)} = e^{-\frac{1}{2}}.$$

Thus,
$$\lim_{n \to +\infty} \frac{1}{\sqrt{2n-1}} \cdot \left(1 - \frac{1}{2n}\right)^n = 0.$$

We conclude that: $f_n \xrightarrow{\text{Unif}} f$ on \mathbb{R}^+ .

The sequence $(v_n)_n$ where $v_n = \sup_{x \in I} |f_n(x) - f(x)|$ being a sequence with positive terms, a sufficient condition for it to converge to 0 is that the sequence $(v_n)_n$ be bounded by a sequence that converges to 0. Consequently, we have the following result:

Proposition (Sufficient condition for uniform convergence)

For a sequence of functions $(f_n)_n$ converging uniformly on I to a function f, it suffices that there exists a numerical sequence $(u_n)_n$ such that:

$$\forall x \in I, \forall n \ge n_0, |f_n(x) - f(x)| \le u_n \quad and \quad \lim_{n \to +\infty} u_n = 0.$$

Example.

Study the pointwise and uniform convergence of the sequence of functions $(f_n)_n$ on [0,1] defined as $f_n(x) = \frac{ne^{-x} + x^2}{n+x}$.

For all
$$x \in [0, 1]$$
, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{ne^{-x} + x^2}{n + x} = e^{-x}$. Hence, $f_n \xrightarrow{\text{Simp}} f$ on $[0, 1]$ with $f(x) = e^{-x}$.

For uniform convergence: For all $x \in I$ and $n \ge 1$,

$$|f_n(x) - f(x)| = \left| \frac{ne^{-x} + x^2}{n+x} - e^{-x} \right| = |x| \left| \frac{x - e^{-x}}{n+x} \right| \le |x| + \frac{e^{-x}}{n+x} \le \frac{2}{n},$$

and $\lim_{n \to +\infty} \frac{2}{n} = 0$. Hence, $\lim_{n \to +\infty} ||f_n - f|| = 0$, and thus $f_n \xrightarrow{\text{Unif}} f$ on [0, 1].

Proposition (Necessary condition 1)

Let $(f_n)_n$ be a sequence of functions defined on E. Then, $f_n \xrightarrow{Unif} f$ on $I \subseteq E$ implies $f_n \xrightarrow{Pointwise} f$ on $I \subseteq E$.

Proposition (Necessary condition 2)

Let $(f_n)_n$ be a sequence of functions defined on E. If $f_n \xrightarrow{Unif} f$ on $I \subseteq E$, then for any sequence $(x_n)_n$ of points in I converging to $x \in I$,

$$\lim_{n \to +\infty} f_n(x_n) - f(x_n) = 0.$$

Remark

By contraposition, from the previous proposition, if there exists a sequence $(x_n)_n \in I$ converging to $x \in I$ such that $\lim_{n \to +\infty} f_n(x_n) - f(x_n) \neq 0$, then $f_n \to Uniff$ on I.

Example.

Study the pointwise and uniform convergence of the sequence of functions $(f_n)_n$ on E = [0,1] defined as $f_n(x) = \frac{nx}{1+n^3x^3}$.

Pointwise convergence:

- If x = 0, $f_n(0) = 0$, so $\lim_{n \to +\infty} f_n(0) = 0$.
- For all $x \in (0,1)$, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{1 + n^3 x^3} = \lim_{n \to +\infty} \frac{1}{n^2 x^2} = 0$.

Thus, $f_n \xrightarrow{\text{Pointwise}} f$ on [0, 1] with f(x) = 0.

Uniform convergence: For all $n \in \mathbb{N}^*$, $x_n = \frac{1}{n} \in [0, 1]$ and $\lim_{n \to +\infty} x_n = 0 \in [0, 1]$. As

 $\lim_{n \to +\infty} \left(f_n\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) \right) = \frac{1}{2} \neq 0, \text{ hence } \sup_{x \in E} |f_n(x) - f(x)| \ge \frac{1}{2} \to 0 \text{ as } n \to +\infty. \text{ Therefore,}$ $f_n \to f \text{ Unif on } [0, 1].$

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

Uniform convergence and differentiation
Uniform convergence and integration

Boundedness

Theorem

Suppose that $f_n : E \to \mathbb{R}$ is bounded on E for every $n \in \mathbb{N}$, and $f_n \to f$ uniformly on E. Then $f : E \to \mathbb{R}$ is bounded on E.

Example.

The sequence of functions $f_n: (0,1) \to \mathbb{R}$ defined by $f_n(x) = \frac{n}{nx+1}$, cannot converge uniformly on (0,1) since each f_n is bounded on (0,1), but their pointwise limit $f(x) = \frac{1}{x}$ is not.

- 1 Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

Uniform convergence and continuity

Theorem

Let (f_n) be a sequence of functions defined on $I \subseteq \mathbb{R}$. If:

- All functions f_n are continuous at $a \in I$.
- ② The sequence of functions (f_n) converges uniformly on I to a function f.

Then f is continuous at a, and $\lim_{x\to a} \lim_{n\to +\infty} f_n(x) = \lim_{n\to +\infty} \lim_{x\to a} f_n(x)$.

Corollary

Let (f_n) be a sequence of functions defined on $I \subseteq \mathbb{R}$. If:

- **1** All functions f_n are continuous on I.
- ② The sequence of functions (f_n) converges uniformly on I to a function f.

Then f is continuous on I.

Uniform convergence and continuity

Remark

By contraposition, from the previous Corollary, we deduce: If all f_n are continuous on I and the limit f_n is not continuous on I, then $f_n \rightarrow f$ Unif on I.

Example.

Consider the sequence of functions $(f_n)_n$ defined by $f_n(x) = \frac{1}{1+nx}$ on $E=\mathbb{R}^+$.

Pointwise convergence: We have $f_n \xrightarrow{\text{Pointwise}} f$ on \mathbb{R}^+ with

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R}_*^+ \\ 1 & \text{if } x = 0 \end{cases}.$$

Uniform convergence: All f_n are continuous on \mathbb{R}^+ , however, f is not continuous on \mathbb{R}^+ . Hence, (f_n) is not uniformly convergent to f on \mathbb{R}^+ .

Boundedness
Uniform convergence and continuity
Uniform convergence and differentiation
Uniform convergence and integration

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

Uniform convergence and differentiation

Theorem

Let $(f_n)_n$ be a sequence of functions defined on $E \subseteq \mathbb{R}$. If:

- All f_n are of class C^1 on E.
- ② $\exists x_0 \in I$ such that the numerical sequence $(f_n(x_0))_n$ is convergent.
- **1** The sequence of derivative functions $(f'_n)_n$ converges uniformly on E to a function g.

Then:

- **1** The sequence of functions $(f_n)_n$ converges uniformly on E to f.
- ② f is of class C^1 on E, and we have $(\lim_{n\to+\infty} f_n(x))' = \lim_{n\to+\infty} f_n'(x)$,

Boundedness
Uniform convergence and continuity
Uniform convergence and differentiation
Uniform convergence and integration

- Generalities
- 2 Pointwise convergence and uniform convergence of sequences of functions
 - Pointwise convergence
 - Uniform convergence
- 3 Properties of uniform convergence
 - Boundedness
 - Uniform convergence and continuity
 - Uniform convergence and differentiation
 - Uniform convergence and integration

Uniform convergence and integration

Theorem

Let $(f_n)_n$ be a sequence of functions defined on I = [a,b]. If:

- All f_n are integrable on [a,b].
- **1** The sequence $(f_n)_n$ is uniformly convergent on [a,b] towards f.

Then, the function f is integrable on [a,b], and we have

$$\lim_{n \to +\infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to +\infty} f_n(x) \, dx = \int_a^b f(x) \, dx.$$