Gradient Descent

Review: Gradient Descent

 In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\nabla L(\theta) = \begin{bmatrix} \frac{\partial L(\theta_1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2)}{\partial \theta_2} \end{bmatrix}$$

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^0)}{\partial \theta_2} \\ \frac{\partial L(\theta_2^0)}{\partial \theta_2} \end{bmatrix}$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\begin{bmatrix} \theta_2^2 \end{bmatrix} \begin{bmatrix} \theta_1^1 \end{bmatrix} \begin{bmatrix} \frac{\partial L(\theta_1^1)}{\partial \theta_2} \\ \frac{\partial L(\theta_2^0)}{\partial \theta_2} \end{bmatrix}$$

$$\begin{vmatrix} \theta_1^2 \\ \theta_2^2 \end{vmatrix} = \begin{vmatrix} \theta_1^1 \\ \theta_2^1 \end{vmatrix} - \eta \begin{vmatrix} \frac{\partial L(\theta_1^1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2^1)}{\partial \theta_2} \end{vmatrix} \implies \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Review: Gradient Descent

Gradient Descent Tip 1: Tuning your learning rates

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

Adaptive Learning Rates —— Adagrad

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \qquad \qquad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 $w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$ σ^t : root mean square of the previous derivatives of parameter w

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t \qquad \qquad |\text{First derivative}|$$

Use first derivative to estimate second derivative

Gradient Descent Tip 2: Stochastic Gradient Descent

Make the training faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2}$$
 Loss is the summation over all training examples

- Gradient Descent $heta^i = heta^{i-1} \eta
 abla Lig(heta^{i-1}ig)$
- Stochastic Gradient Descent

Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \quad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n}\left(\theta^{i-1}\right)$$

Loss for only one example

Gradient Descent

Tip 3: Feature Scaling

Feature Scaling

Gradient Descent Theory

Multivariable Taylor Series

$$h(x, y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

+ something related to $(x-x_0)^2$ and $(y-y_0)^2 +$

When x and y is close to x_0 and y_0

$$h(x, y) \approx h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

Gradient descent – two variables

Red Circle: (If the radius is small)

$$L(\theta) \approx s + u(\underline{\theta_1 - a}) + v(\underline{\theta_2 - b})$$

$$\Delta \theta_1 \qquad \Delta \theta_2$$

Find θ_1 and θ_2 in the red circle **minimizing** L(θ)

$$\frac{\left(\underline{\theta_1} - a\right)^2 + \left(\underline{\theta_2} - b\right)^2 \le d^2}{\Delta \theta_1}$$

$$\Delta \theta_2$$

To minimize $L(\theta)$

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \qquad \qquad \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is *small enough*, in the red circle

Find θ_1 and θ_2 yielding the smallest value of $L(\theta)$ in the circle

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix}$$
 This is gradient descent.

Not satisfied if the red circle (learning rate) is not small enough You can consider the second order term, e.g. Newton's method.