

JetLearn's GCSE (9–1) Computer Science - 2 Mock Exam J277/01 Computational thinking, algorithms and programming - Algorithm

Time allowed: 1 hour 30 minutes

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.

INFORMATION

- The total marks for this paper is 80.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 16 pages.

ADVICE

• Read each question carefully before you start your answer.

Attempt all questions

1. A fast food restaurant offers half-price meals if the customer is a student or has a discount card.

The offer is not valid on Saturdays.

- (a) The restaurant needs an algorithm designed to help employees work out if a customer can have a half price meal or not. It should:
- input required data
- decide if the customer is entitled to a discount
- output the result of the calculation.

Design the algorithm using a flowchart.

LC1
 [∠]

(c) Each member of staff that works in the restaurant is given a Staff ID. This is calculated using the following algorithm.

```
01 surname = input("Enter surname")
02 year = input("Enter starting year")
03 staffID = surname + str(year)
04 while staffID.length < 10
05 staffID = staffID + "x"
06 endwhile
07 print("ID " + staffID)</pre>
```

Complete the following trace table for the given algorithm when the surname "Kofi" and the year 2021 are entered.

You may not need to use all rows in the table.

Line number	surname	year	staffID	Output
01	Kofi			
02		2021		

2.	A program stores the following list of positive and negative numbers. The numbers
	need sorting in ascending order using a merge sort.

45	12	-99	100	-13	0	17	-27

(a) The first step is to divide the list into individual lists of one number each. This has been done for you.

Complete the merge sort of the data by showing each step of the process.

45	12 -99	100	-13 0	17 -27

(b) Once the numbers are in order, a binary search can be run on the data.

Describe the steps a binary search will follow to look for a number in a sorted list.

[3]

3.

[4]
(c) A linear search could be used instead of a binary search.
Describe the steps a linear search would follow when searching for a number that is not in the given list.
[2]
Jack is writing a program to add up some numbers. His first attempt at the program
is shown.
<pre>a = input("Enter a number")</pre>
<pre>b = input("Enter a number")</pre>
<pre>c = input("Enter a number")</pre>
<pre>d = input("Enter a number")</pre>
e = input("Enter a number")
f = (a + b + c + d + e) print(f)

(a) Jack decides to improve his program. He wants to be able to input how many numbers to add together each time the algorithm runs, and also wants it to calculate and display the average of these numbers.

Write an algorithm to:

- ask the user to input the quantity of numbers they want to enter and read this value as input
- repeatedly take a number as input, until the quantity of numbers the user input has been entered

• calculate and output the total of these numbers
• calculate and output the average of these numbers.

4.

					•••••	
			•••••			
			•••••		•••••	[6]
(b) State the nam	ne of each of the f	following comput	ational [.]	thinking t	echr	niques.
Description				Techniqu	e	
Breaking a co	omplex problem	down into sr	naller			
Hiding or remove reduce the comp	ving irrelevant det olexity.	tails from a probl	em to			
						[2]
An insertion sor order.	t is used to put	the following w	ords in	to ascend	ling	alphabetical
pumpkin	flour	wall	house		wa	ll
(a) Tick (√) one insertion sort is t	box in each rov	w to identify wh	ether e	ach state	emer	nt about the
Statement				True (√)	False (√)
The list of word unsorted set.	ds is initially split	into a sorted set	and an			
The insertion so	ort uses a divide s	tage and then a d	conquer			

5.

The list of work sort can start.	ds must be in or	der before the ir	nsertion			
Each word is in one by one.	serted into the c	orrect place in th	e array,			
The insertion so appears twice.	ort will not work	because the word	d "wall"			
(b) The sorted lis	t of words is sho	wn below.				[5]
flour	house	pumpkin	wall		wal	l
Explain how a bi		ld be used to try	to find v	vhether t	he w	vord "house"
			••••••••••••			[4]
Taylor is writing	an algorithm to re	ecord the results	of an exp	periment.		
Taylor needs to initially starts at		a numeric value	which i	s added	to a	total which
Every time she er	nters a value, the	total is output.				
The algorithm re	peats until the to	tal is over 100.				

(a) Write an algorithm to implement Taylor's requirements.
[6
(b) For the next part of the experiment, Taylor needs to be able to enter 10 values and count how many of the values are over 50, outputting this value once all values
have been entered.
(i) Complete the following flowchart to implement this algorithm.

[5]

- (ii) Write a pseudocode algorithm that uses iteration to allow Taylor to:
- enter 10 values

• count how many values are over 50
 output the count of values over 50 after all 10 values are entered.
r
[5]
(c) Taylor used computational thinking techniques to develop the algorithms.
(c) raytor asea compatational anniang teeninques to develop the algorithms.
Give two computational thinking techniques that Taylor has used, describing how
they have been used.
they have been used.
1
1
2

studentr	names.		students ar		an array with	
(a) Desc	ribe the sto	eps that a	linear searcl	n would take	to find Anna in	studentnam
		students			g alphabetical	
	i sort.					
insertior Complet			gram to shov	v the stages	an insertion sor	t would take
insertion Complet complet Each rov	e the follo e this task.	nts one pa			an insertion sor .gorithm. You m	

					[5]
 Write an algor display the r take as input display the t suitable messa 	name of each s whether that total number o	student one at student is pre of present stud	esent or absent dents and nun	t nber of absent	t students in a

രി

7. A programmer creates an algorithm using a flow chart.

(a) Complete the table to give the output when each of the following set of values are input into the algorithm as X and Y.

Input value of X	Input value of Y	Output
15	10	
6	5	
2	3	
12	2	

(b) Write this algorithm using pseudocode.
[6]
[0]
ADDITIONAL ANSWER SPACE
If additional space is required, you should use the following lined page(s). The
question number(s) must be clearly shown in the margin(s).

