## AI - FOUNDATION AND APPLICATION

Instructor: Assoc. Prof. Dr. Truong Ngoc Son

Chapter 5
Recurrent Neural Network

## Outline



#### Feed Forward Neural Network



This is our fully connected network. If  $x_1 x_n$ , n is very large and growing, this network would become too large. We now will input one  $x_i$  at a time, and re-use the same edge weights.

## Sequence model – Recurrent Neural Network

- Speech recognition
- Music generation
- Sentiment classification
- DNA sequence analysis
- Machine translate
- Video activity recognition
- Name entity recognition











## Types of Recurrent Neural Network







$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$
  
 $h^{(t)} = tanh(a^{(t)})$   
 $o^{(t)} = c + Vh^{(t)}$   
 $\hat{y}^{(t)} = softmax(o^{(t)})$ 



## Recurrent layer representation



$$h_t = f(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$
$$o_t = SoftMax(W_{ho}h_t + b_o)$$

## How does RNN reduce complexity?

Given function f: h',y=f(h,x)

h and h' are vectors with the same dimension



No matter how long the input/output sequence is, we only need one function f. If f's are different, then it becomes a feedforward NN. This may be treated as another compression from fully connected network.

## Deep RNN

$$h',y = f_1(h,x), g',z = f_2(g,y)$$



#### **Bidirectional RNN** $y,h=f_1(x,h)$ $z,g = f_2(g,x)$ $X^1$ $x^2$ $x^3$ $f_2$ $f_2$ $f_2$ $\mathsf{Z}^1$ $z^2$ $z^3$ $p=f_3(y,z)$ $h^0$ $h^1$ $h^2$ $x^2$

#### Problems with naive RNN

- When dealing with a time series, it tends to forget old information. When there is a distant relationship of unknown length, we wish to have a "memory" to it.
- Vanishing gradient problem.





The sigmoid layer outputs numbers between 0-1 determine how much each component should be let through. Pink X gate is point-wise multiplication.









$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

i<sub>t</sub> decides what componentis to be updated.C'<sub>t</sub> provides change contents

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Updating the cell state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Decide what part of the cell state to output

## RNN vs LSTM



#### Peephole LSTM





#### Naïve RNN vs LSTM



c changes slowly ct is ct-1 added by something

h changes faster ht and ht-1 can be very different



#### Information flow of LSTM



Information flow of LSTM



**Information flow of LSTM** 



Information flow of LSTM

## GRU – gated recurrent unit

(more compression)





$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

It combines the forget and input into a single update gate. It also merges the cell state and hidden state. This is simpler than LSTM. There are many other variants too.

X,\*: element-wise multiply

#### LSTM and GRU

 $h_{t-1}$ 

GRUs also takes  $x_t$  and  $h_{t-1}$  as inputs. They perform some calculations and then pass along  $h_t$ . What makes them different from LSTMs is that GRUs don't need the cell layer to pass values along. The calculations within each iteration insure that the  $h_t$  values being passed along either retain a high amount of old information or are jump-started with a high amount of new information.

# PYTHON CODE





