

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A TRADE-OFF STUDY OF TILT ROTOR AIRCRAFT VERSUS HELICOPTERS USING VASCOMP II AND HESCOMP

by

Thomas P. Walsh

March 1986

Thesis Advisor:

Max F. Platzer

Approved for public release; distribution is unlimited

SECURITY	CLASSIF	CATION O	F THIS	PAGE

SECURITY CLA	SSIFICATION O	F THIS PAGE	فسالا فرويا المسيكية بما				الأدام ميريس مجري بالأساس		
			REPORT DOCU	MENTATION	PAGE				
1a. REPORT S	ECURITY CLASS	SIFICATION		1b. RESTRICTIVE MARKINGS					
2a. SECURITY	CLASSIFICATIO	N AUTHORITY			AVAILABILITY OF				
2b. DECLASSII	2b. DECLASSIFICATION / DOWNGRADING SCHEDULE				for public re	elease; di:	stribution is		
4 PERFORMIN	NG ORGANIZAT	ION REPORT NUMB	ER(S)	5. MONITORING	ORGANIZATION RE	PORT NUMBER	(5)		
6a. NAME OF	PERFORMING	ORGANIZATION	6b OFFICE SYMBOL	7a. NAME OF M	ONITORING ORGAI	NIZATION			
Naval Postgraduate School			(If applicable) Code 67	Naval Pos	tgraduate Scl	1001			
6c. ADDRESS	(City, State, an	d ZIP Code)		7b. ADDRESS (C	ty, State, and ZIP (ode)			
Monterey	, Californ	nia 93943-5	100	Monterey,	California	93943-510	00		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (If applicable)			9. PROCUREMEN	IT INSTRUMENT IDE	NTIFICATION N	UMBER			
8c. ADDRESS (City, State, and	i ZIP Code)		10 SOURCE OF	FUNDING NUMBER				
				PROGRAM ELEMENT NO.	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO.		
11 TITLE (Inci	lude Security C	Classification)		<u> </u>	<u> </u>	<u></u>	<u> </u>		
A TRADE-0	OFF STUDY	OF TILT ROTO	R AIRCRAFT VERSU	S HELICOPTE	RS USING VASO	COMP II ANI	HESCOMP		
12 PERSONAL Walsh, Th						_			
13a TYPE OF Master's		13b TIME (OVERED TO	14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 1986 March + 218					
16 SUPPLEME	NTARY NOTA	TION		`					
17	COSATI	CODES	18 SUBJECT TERMS (Continue on revers	e if necessary and	identify by blo	ck number)		
FIELD	GROUP	SUB-GROUP	VASCOMP						
			HESCOMP						
ļ	<u></u>	L	TILT ROTOR						
			and identify by block i						
			ed wherein two v						
			istances where t helicopter. Tw						
HESCOMP)	developed	under contr	act for NASA Ame	s Research (Center by the	Boeing VE	ERTOL Company		
			performance. Pr						
independe	ent source	es. A sımpli	fied user's manu	al is includ	ded (with sam	mple data a	and program		
output) f	For VASCOM	MP II.use at	the Naval Postgr	aduate School	ol, Monterey,	Californi	ia.		
			<i>'</i>						
				٠					
· ·		ILITY OF ABSTRACT	007		CURITY CLASSIFICA	TON			
	F RESPONSIBLE	ED SAME AS	RPT DTIC USERS		ied (Include Area Code)	Tage OFFICE C	YMBOI		
	F. Platz			(408) 646	•	Code			
00.0000	473		OP advisor may be used us				عديد المراجعة المراجعة		

Approved for public release; distribution is unlimited.

A Trade-Off Study of Tilt Rotor Aircraft versus Helicopters
Using VASCOMP II and HESCOMP

by

Thomas P. Walsh Captain, United States Army B.S., Norwich University, 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March, 1986

10

17/

Author:	Thomas Tolling
	Thomas P. Walsh
Approved by:	wis F Platie
	Max F. Platzer, Thesis Advisor
	Mes F. Pluta
	Max F. Platzer, Chairman,
	Department of Aeronautics
	Mi Sopel
	John N. Dver, Dean of Science and Engineering

ABSTRACT

Trade-off studies were conducted wherein two versions of tilt rotor aircraft were examined to determine optimum mission distances where the tilt rotor designs were superior to a comparable contemporary (pure) helicopter. Two FORTRAN computer programs (VASCOMP II and HESCOMP) developed under contract for NASA Ames Research Center by the Boeing VERTOL Company were used to predict aircraft performance. Program results were validated using data from independent sources. A simplified user's manual is included (with sample data and program output) for VASCOMP II use at the Naval Postgraduate School, Monterey, California.

Accession For	
NTIS GRAZI	Ø
DTIC TAB	
Unannounced	
Justification	
By	
Distribution/	
Availability Co	des
Avail end/	or
Dist Special	
A .	
H'	
	1

TABLE OF CONTENTS

I.	INT	RODUCTION	8
II.	BACI	KGROUND	10
III.	PRO	BLEM DEFINITION	17
IV.	DES	CRIPTION OF AIRCRAFT	19
	A.	GENERAJ	19
	в.	BOEING VERTOL MODEL 107	19
	c.	44-PASSENGER TILT ROTOR	42
	r.	25-PASSENGER TILT ROTOR	61
v.	DES	CRIPTION OF EXPERIMENTS	82
VI.	RES	ULTS	85
vii.	DIS	CUSION AND CONCLUSIONS	98
APPEN	XIC	VASCOMP II USER'S MANUAL	101
LIST	OF R	EFERENCES	214
BIBLI	OGRA	PHY	215
INITI	AL D	ISTRIBUTION LIST	217

THE VALUE OF THE PROPERTY OF T

LIST OF TABLES

1.	BOEING VERTOL CH-46F DESCRIPTION	20
2.	COMPARISON OF ACTUAL CH-46F AND HESCOMP CH-46F	22
3.	BELL HELICOPTER TEXTRON 44-PASSENGER TILT ROTOR	42
4.	COMPARISON OF BHT AND VASCOMP II 44-PAX TILT ROTOR	43
5.	BELL/BOEING VERTOL 25-PASSENGER TILT ROTOR	61
6.	COMPARISON OF BELL/BOEING & VASCOMP TILT ROTOR	62

LIST OF FIGURES

1.	Fuel Required vs. Range	86
2.	Time Required vs. Range	81
3.	Pax-Mi/Lb-Fuel vs. Range	88
4.	Loiter Time vs. Mission Radius	9(
5.	Fuel Required vs. Loiter Time	91
6.	Hover Time vs. Mission Radius	92
7.	Fuel Required vs. Hover Time	93
8.	Fuel Required vs. Range	93
9.	Time Required vs. Range	96
10.	Pax-Mi/Lb-Fuel vs. Range	9:

ACKNOWL EDGEMENT

I wish to acknowledge the extensive assistance provided by Mr. Dennis Mar of the W.R. Church Computer Center. His technical expertise and his competence in sharing his knowledge in the areas of Multiple Virtual System procedures and magnetic tape usage at NPS proved invaluable during the conversion of VASCOMP II and HESCOMP from CDC FORTRAN to VS FORTRAN.

Sincere thanks to Professor M. F. Platzer for his support and guidance during the completion of the thesis research.

My appreciation is also extended to the many individuals who were excessively cooperative in providing information and material used for this research including: Mr. Tom Galloway, Mr. Cliff McKeithan, and Ms. Donna Diebert, all of NASA Ames Research Center; Mr. Hal Rosenstein of Boeing VERTOL Company; and Mr. Ron Reber of Bell Helicopter TEXTRON.

I. INTRODUCTION

New horizons have been opened for V/STOL aircraft as a result of the NASA/Army XV-15 Tilt Rotor Research Program and its successful demonstration of the tilt rotor concept.

Application of tilt rotor technology lends itself aptly to a myriad of military missions and also has significant potential for future performance in civil roles. It is plausible, for example, that tilt rotor aircraft could replace conventional fixed-wing turboprops and helicopters for both military and civilian missions within optimal range parameters. The limits of these "optimal" range missions can be approximated with the aid of aircraft sizing and performance computer programs.

Past studies [Rof. 1, 2] used computer generated data to make performance comparisons between tilt rotor aircraft designs and comparable contemporary aircraft. The results were then used to assist in evaluating the suitability of the roles selected for the potential tilt rotor designs. This thesis research was conducted using a similar approach. Data was generated for two potential tilt rotor designs using the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). Data was also generated for a contemporary rotary-wing aircraft using the Helicopter Sizing and Performance Computer Program (HESCOMP). Both programs were

developed under contract by the Boeing VERTOL Company for the National Aeronautics and Space Administration, Ames Research Center, Moffet Field, California.

VASCOMP II and HESCOMP are intentionally similar in program structure, program data requirements, and program output. This allows comparisons between the results of the two programs.

Application of VASCOMP II is appropriate for predicting sizing and performance data for aircraft that employ fixed wing surfaces to obtain lift in primary cruise flight. Use of HESCOMP is applicable for aircraft that use rotary wing surfaces to obtain lift in forward flight.

II. BACKGROUND

A. NASA/ARMY PROGRAM

In 1972. NASA and the United States Army sponsored the XV-15 Tilt Rotor Research Aircraft Program. The primary objective of the program was to demonstrate that dynamic stability problems, which plagued earlier tilt rotor designs, had been resolved. In 1973, Bell Helicopter TEXTRON won a minimum cost contract to build two flightworthy testbed tilt rotor research aircraft to be used during the flight test portion of this proof-of-concept program. On October 22, 1976, the first of the two prototypes (tail number N702) was rolled out of Bell's Arlington, Texas facility. This aircraft made its first hovering flight on May 3, 1977. It was then used for extensive wind tunnel studies which had to be completed, in accordance with the NASA/Army contract, prior to the release of the second prototype (N703) for full flight testing. The first full in-flight conversion from the helicopter mode to the airplane mode was performed aircraft N703 on July 24, 1979.

B. XV-15 DESIGN CHARACTERISTICS

The XV-15 is 42 feet long, has a H-tail, and utilizes a slightly forward swept, high-wing that is 32 feet wide. The design incorporates two three-bladed proprotors mounted on

wingtip nacelles, each rotor having a diameter of twenty-five (25) feet. Maximum takeoff gross weight for the aircraft is 13,000 lbs in the VTOL mode and 15,000 lbs in the STOL mode. Each wingtip nacelle houses a transmission and a 1550-shp Lycoming T-53 turboshaft engine that is modified (primarily the lubrication systems) for both horizontal and vertical operation. The nacelles, which can rotate through 95 degrees during conversion between helicopter and airplane modes, are positioned vertically for VTOL segments and rotated to the horizontal position, after takeoff, for airplane operations. The nacelles can be rotated five (5) degrees aft of vertical for rapid decelerations in the air, aft translations at a and for providing a responsive means of accelerating and decelerating the aircraft during ground operations. Conversion between the helicopter and airplane mode takes roughly 12-15 seconds and has proven, without exception, to be an uncomplicated, safe, and completely reliable procedure. Rotor RPM is reduced when in the airplane mode to provide greater propulsive efficiency. Maximum airspeed of the aircraft is 301 knots in forward flight, 35 knots in sideward flight, and 25 knots in rearward flight. As is typical with conventional tandem rotor helicopters, the XV-15 is not greatly affected by wind direction during hovering flight.

C. JOINT SERVICES OPERATIONAL TESTING

Military operational testing of the XV-15 began in 1982 to determine the suitability of tilt rotor aircraft to perform select military missions. Testing was conducted over an 18-month period and included US Army evaluations at Fort Huachuca, AZ to study the vulnerability of the aircraft in a ground threat environment; US Navy shipboard and downwash evaluations aboard the USS Tripoli and at Dallas NAS, TX respectively; and USMC mission-oriented flight tests at Yuma Proving Grounds, AZ.

D. JVX

order transfer than the expension of the property of the prope

The versatility of the XV-15 duickly convinced a study group that a tilt rotor aircraft could meet future mission requirements of the Army, Navy, Marine Corps, and Air Force. By the end of 1982, the Joint Services Advanced Vertical Lift Aircraft Development Program (JVX) had been formed. Through JVX, the services are attempting to procure approximately 1000 production model tilt rotor aircraft. In April 1982, a contract was awarded to the manufacturing team of Bell Helicopter TEXTRON and Boeing VERTOL to begin preliminary design work on the multimission, multiservice tilt rotor aircraft.

E. BELL-BOEING DESIGN

As a baseline aircraft, preliminary design studies are using the Bell-Boeing Model 901-X. The military designation

for the world's first production model tilt rotor V/STOL aircraft is the V-22 OSPREY. It will have a VTOL mission weight of 43,800 pounds, a STOL mission weight of 55,000 pounds, a cruise speed at maximum gross weight of 260 knots, and a service ceiling of over 30,000 feet. When loaded with 24 combat equipped troops, it will have a mission radius of 200 nautical miles and will be able to self-deploy worldwide. Flight controls will incorporate triple-channel fly-by-wire technology and the propulsion system will utilize a 6000 shp engine to be built by a yet-to-be-selected manufacturer. Bell is responsible for the lift/propulsion system to include wing, rctor, nacelle, and transmission. Boeing VERTOL is responsible for everything below the wing to include the all-composite fuselage and tail, the landing gear, and all subsystems. Boeing is also responsible for the aircraft's aerodynamics, performance, and handling qualities. Eight flying prototypes will be built with a "first flight" date scheduled for mid-1987. The first delivery, which will be to the Marine Corps, is currently sineduled for mid-1991.

F. TECHNOLOGY TRANSFER

For numerous reasons, all substantiated during the flight testing of the XV-15, tilt rotor aircraft could be rapidly integrated into the civilian aviation community. Examples of highly desirable features inherent to tilt rotor designs include:

1. High-speed cruise capability

ととと、これの人の人の人の人の一つないないとう。これになっている。これではないないと

- 2. Fuel efficiency in the airplane mode
- Vertical takeoff and landing capability
- 4. Low noise for passenger comfort/community acceptance
- Low vibration for passenger comfort/less maintenance

A tilt rotor design for use in the civilian sector can have both national and international impact. It could be particularly beneficial in applications where construction of large airport facilities is either impractical or impossible. For example, there is an abundant number of cases where small communities are dispersed over vast areas supported by a poor ground infrastructure. Alaska, Brazil, Indonesia, Canada, Japan, and the Carribean Basin are prime examples of areas which desperately need a resource with the high productivity potential of a tilt rotor aircraft.

Alaska dependence on aviation is significantly higher than any other state in the nation. Statistics [Ref. 5] show that Alaska has 16 times more aircraft and 8 times more pilots logging 15 times more flight hours per capita as compared to the rest of the United States. Accessibility to Alaska's natural resources (offshore oil, minerals, timber, fish, etc.) could be greatly enhanced using V/STOL aircraft with the versatility found in tilt rotor designs. As this state's economy grows, the need for additional conventional airports could be greatly reduced or eliminated through use of Y/STOL aircraft like the tilt rotor resulting in enormous savings in construction costs. Also, expenses associated with the removal of snow and ice from long runways (75% of

expenditures at community airports is allocated to this) could be substantially reduced. Canada and Japan, in many ways, have conditions similar to those found in Alaska.

Brazil, Indonesia, and the Carribean are examples of developing nations that could greatly enhance their efforts towards economic advancement through use of V/STOL aircraft which would permit industrial and agricultural growth without the necessity of having to build railroads, harbors, and/or airports to support expansion operations.

G. MISSION POTENTIAL

The VTOL capability of a tilt rotor aircraft coupled with its capacity for high cruise speeds makes it a fierce competitor for missions currently performed by conventional helicopters. Some of the military and civilian applications include:

- 1. Troop transport
- 2. Search and rescue
- 3. Reconnaissance/surveillance
- 4. Law enforcement
- 5. Medical evacuation
- 6. Public transportation
- 7. Corporate/executive transport
- 8. Offshore oil exploration and production

H. EXCESSIVE INITIAL COST

Although tilt rotor aircraft have advantages which may never be matched by conventional helicopters, it is not expected that rotary-wing aircraft will become totally obsolete. There are various parameters which, depending on

their value, could make use of helicopters more feasible than use of tilt rotor aircraft. One such parameter is cost. new aircraft design necessitates a development program which translates to high monetary expenditures. This fact could make acquisition of tilt rotor aircraft "cost prohibitive" to users requiring only a small quantity of aircraft, say, five or less. The percentage of businesses in the civilian market that would fit into this category is large enough to prevent a civilian development program until after the completion of comparable military development program. The danger of postponing a civilian program is that, in doing so, the United States may very well lose its competitive edge and allow foreign competitors to seize the initiative and capture the international market that is beginning to form for tilt rotor designs. The Soviet Union and France are currently working on their own tilt rotor aircraft. For an example of lost opportunities one has only to look as far as the Quiet Short-Haul Research Aircraft (OSRA) which underwent extensive study and development at NASA Ames Research Center, Moffett Field, California. This design was noted to have significant potential as a STOL transport but the lack of a military development program stalled the design at the research prototype stage. Recently, Japan announced the successful maiden flight of a commercial STOL aircraft, soon to be made available on the international market, which has an uncanny resemblance to the NASA Ames QSRA.

III. PROBLEM DEFINITION

A. GENERAL

Perhaps the most difficult decision that will face a potential user of tilt rotor technology is whether or not the vastly increased productivity available through tilt rotor aircraft designs justifies the substantially higher costs of initial acquisition. Clearly, features that would qualify a transport aircraft as "successful" include:

- 1. Low noise
- 2. Long range
- 3. Low vibration
- 4. High performance
- 5. Low operating costs
- 6. Low fuel consumption

Additionally, parameters such as the cost of acquiring real estate and the escalating costs of construction (for new airports), aggravation of air traffic congestion at existing airports, and the importance of time to the traveller, will play a major role in the decision making process of civilian communities, businesses, and individuals who might be considering the utilization of tilt rotor aircraft for their their aviation transportation requirements.

Trade-off studies provide a low risk, relatively low cost method of analyzing available options during any selection process. In the case of judging the suitability of a new aircraft design, computer programs, used for predicting

sizing and performance parameters, have become a vital tool used in the early stages of design work.

B. RESEARCH GOAL

The objective of this research was to make comparisons between the performance of a Boeing VERTOL Model 107 tandem rotor helicopter (military designation: CH-46F SEA KNIGHT) and the performance of comparable tilt rotor aircraft. Specifically, it was desired to use sizing and performance computer programs to predict values of "range" which would show the superiority of one aircraft type over the other.

C. RESEARCH PARAMETERS

THE REPORT OF THE PROPERTY AND DESCRIPTION OF THE PROPERTY OF

Parameters considered during this research included:

- 1. Fuel required versus distance
- 2. Time required versus distance
- 3. Passenger mile per pound of fuel versus distance

IV. DESCRIPTION OF AIRCRAFT

A. GENERAL

The aircraft studied during this thesis research project included the following:

- 1. Boeing VERTOL Model 107
- 2. 44-Passenger Tilt Rotor
- 3. 25-Passenger Tilt Rotor

All three aircraft are described in this chapter and the results of calibration runs are discussed. It should be noted that these particular aircraft were not selected for reasons related to their size or performance capabilities. Selection was based solely on the fact that these were the aircraft for which the greatest quantity of descriptive information was obtained during the period of research.

B. BOEING VERTOL MODEL 107

1. Description

There are numerous versions of this Boeing VERTOL product that first flew in 1958. The Model 107 II is the standard commercial version equipped with two 1,250 shp General Electric CT58 turboshaft engines. The military version of this aircraft is the CH/UH-46 SEA KNIGHT. There are several variations to the basic CH-46 to include the CH-46A, CH-46D, and the CH-46F. Typical differences between versions include uprated power plants, additional electronic

equipment, and cambered rotor blades. The CH-46F was used for all experiments discussed in this thesis. Reference 6 was used to obtain some of the more noteworthy specifications of the aircraft as shown below in Table 1.

TABLE 1

BOEING VERTOL CH-46F DESCRIPTION

Type: Engines: Rotors:	Twin-engined, transport he Two 1400 shp General Elect Two three-bladed rotors in	ric T58 shaft-turbines
Dimensions:		
Diameter	of main rotors:	51 ft 0 in
Length o	verall, blades turning:	84 ft 4 in
	f fuselage:	44 ft 10 in
		39.85 sq ft
Main rote	or disc area:	4,086 sq ft
Weights and	Loadings:	· ·
Weight e	mpty, equipped:	13,342 lb
Max take	off and landing weight:	23,000 lb
	loading:	5.63 psf
Performance:	•	-
Max perm	issable speed:	144 knots
Max crui	sing speed:	143 knots
Service		14,000 ft
Ranges (with	10% reserve fuel):	
At 20,80	0 lb (4,275 lb payload):	206 naut mi
At 23,00	0 lb (6,475 lb payload):	198 naut mi
Fuel Capacit	y:	
	configuration:	380 US gal
Accommodatio	n:	
Crew:		3 .
Passenge	rs:	25

Aircraft Calibration Using HESCOMP

Data for the CH-46F was obtained from NASA Ames Research Center. To insure the validity of results obtained using HESCOMP, calibration runs were made to match computer generated results with descriptive data from Table 1 above. There were several key parameters to be considered during the

experiments including: fuel, time, power, distance, such, emphasis was placed on calibrating the As items that would affect these key parameters. For example, to match the aircraft description in Table 1, the HESCOMP results had to depict an aircraft that could carry a payload of 4275 pounds for a distance of 206 nautical miles and, in use all available fuel except for a 10% reserve. Calibration was accomplished using the flexibility built into Many data locations are established to describe a component's weight or performance, as applicable. the data locations represent constants and some represent Data can be input based on actual multiplicative factors. values or the user can use the program, in some cases, to calculate approximate values. The values of component weights, for example, can be input based on known data or the program can calculate them based on weight trends of other in the same weight class. For the CH-46F, when the empty weight did not match data from Reference 6, the "Body Group Weight Factor" (location 2622), which varies fuselage weight, was manipulated until the desired empty weight was obtained. After consideration of the parameters it was not felt that this "fudge factor" being analyzed, impact on the results. This flexibility have any allows for convenient and very precise control of many of the parameters in the program. As can be noted below in Table 2, the calibrated aircraft description used for HESCOMP very nearly matches the performance specifications of the actual aircraft as described in reference 6.

TABLE 2

COMPARISON OF ACTUAL CH-46F AND HESCOMP CH-46F

	ACTUAL	٠.	HESCO	MP	% DIFFERENCE
Dimensions:					
Main rotor diameter:	51.000	ft	50.966	ft	0.067
Length overall:	84.333	ft	83.900	ft	0.513
Fuselage length:	44.833	ft	43.700	ft	2.528
Weights and Loading:					
Weight empty:	13,342	1b	13,342	1b	0.000
Operating weight:	14,055	1b	14,055	1b	0.000
Payload:	6,475	lb	6,475	1b	0.000
Fuel:	2,550	1b	2,550	1b	0.000
Gross weight:	23,000	1b	23,000	lb	0.000
Disc loading:	5.629	psf	5.637	psf	0.134
Ranges (normal power):		•		•	
At 20,800 lb:	206	nn	206	nm	0.000
At 23,000 lb:	198	nm	198	nm	0.000

3. Program Data

SEAR PRODUCE GREEKERS ASSESSED FOR SEARCH CONTROL OF THE SEARCH CO

The second of th

The program output that was generated by HESCOMP for the CH-46F calibration run is shown below on pages 23 - 41. Pages 23 - 26 show the "echo" of the input data file. Mission performance data begins on page 34. It can be seen that two missions were flown. The first mission was flown at the aircraft's maximum gross weight of 23,000 pounds. This was done to insure that the aircraft was sized properly by the program. The payload was reduced for the second mission which was flown at a gross weight of 20,800 pounds. The aircraft's maximum range (at normal power setting) was calibrated for this weight.

CALIBRATION
AMES
NASA
CH-46F
85
11/25/85
11/
DATE

Sector with the constant sections consisted by the contact with the contact of th

PAGE 1

HESCOMP

B-91 HELICOPTER SIZING & PERFORMANCE COMPUTER PROGRAM

R THIS CASE K = 5)	JT KONT AND	VAL4	2.000	0, 0000E+00 1,000	27.50	3.450	0.1200	0.0000E+00 1.000		1.000	0. ODOOE+00	
INPUT DECK FOR WITH LOC. (MAX)01	ENGINE CYCLE INPUT 666666 CARD IN FRONT	VAL3	1.000	0.0000E+00 3.000	1.625	0.0000E+00 0.6300 0.6900	0.7500E-01	143.0 1.500		2.000	1.105	
UCTION OF THE IN LUES STARTING WITH TO LOC. +0001 ING TO LOC. +0002 ING TO LOC. +0002 ING TO LOC. +0002		VAL2	1,000 0,0000E+00	0.0000E+00 200.0	0.6250	0.7800E-01 0.3400 0.6100	0, 2000	2.000	0.0000E+00	2.000	0.0000E+00	
NUMBER GIVEN ON INPUT SHEET SEQUENTIAL INPUT VALUES STARTING VARIABLE CORRESPONDING TO LOC: VARIABLE CORRESPONDING TO LOC: VARIABLE CORRESPONDING TO LOC: +OC	AUXILIARY ENGINES, AUXILIARY CAN BE CREATED BY PLACING A STANDARD ENGINE CYCLE	ILIARY ENGINES N BE CREATED B NDARD ENGINE CY	VAL1	0.0000E+00 4.000	0.0000E+00 200.0	7.250	2.000 0.2500 0.3000	-9.000	0.1200 0.9500E-01	0.7500	2800.	1.000
I S S S S S S S S S S S S S S S S S S S	IN USING AUXI LOCATIONS CAN BEHIND A STAN	VAL	000	200r 200r 200	7.17 8.00	0.3480 0.43500 0.54500 0.5000 0.5000 0.5000		707.	00. 00.	1.76	. 14.	
THE FOLLOWING "LOC." = LOCA "NUM" = NUMB "VAL = VALU "VALI = VALU "VALI = VALU "VALI = VALU "VALI = VALU	NOTE:	LOC. NUM	190	നയന	2220	14456 14566 1666 1456	7.:0 19:-0	-889 -1961	യ സ്ഥ	270	22	

143.0		. 0000 . 0000 . 0000 . 1000 . 1000 . 14	0.0000E+00 4.000 187.0	1.000	0. 0000E+00	950.0 8.000 1800. 0.0000E+00	0.3620E-01 0.78851 0.78851 1.1157 1.7488 2.238	32440000
0.0000E+00 i.400		00000000000000000000000000000000000000	α	0. 5000	7.000	00000	000000 000000 0000000000000000000000	20000000000000000000000000000000000000
2.000	1.300 0.1490E+07	6475. 34.55. 0.0000E+00 0.0000E+00 0.0000E+00	1.000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000E+00	000 000	.242 00494 00000		2200 24000 0.45000 0.19180 0.2730
0.0000E+00 1.105 0.1500	1.250 0.0000E+00	633 0.00000 0.284000 0.00000000 0.000000000000000000000	000	0.000 1.50000 0.000000000000000000000000	.0	MOUNT	00000 20000	
1.000 0.0000E+00 0.3200E-02 0.3200E-02	14.1.1.1.1.0.000.0000.00000000000000000	3.000 0.0000E+00 0.0000E+00 0.0000E+00	0.00000 0.000000 0.0000000000000000000	00000 E 00000 E 00000000000000000000000	0.0000E+00		00000000000000000000000000000000000000	18000 0.0000E+00 0.11500E-01 0.1800

PART PARTIES SERVICE SERVICES CONTRACTOR PARTIES CO

NO4 — NO4

0.4250 0.5170 0.6100 0.7800	00000000000000000000000000000000000000	1.393 0.8500E-02	0.9000E-02 0.1550E-01 1.364		2.000 2.000 2.000		0.0000E+00		
00.3488 00.54888 0.67180 0.67180 0.600 0.000	00000 4400000 640000000 640000000000000	0.6410	0.7000E-02 0.1200E-01 1.154		8.000 5.000 0.000	0.0000E+00 0.2500E-01	2.000 .0000E+0 1.000	000 1660 0	166
64000000 600000000000000000000000000000	00000 1112	0.4150	0.4000E-02 0.1150E-01 1.085 1.327		3,000 0,0000E+00 4,000	0.0000E+00 0.2500E-01	0000 0000 0000 0000		1991
64000000 44000004 73111.010	000000 111111 10000000000000000000000	9.00 .574 18.3	0.8200 0.0000E+00 0.1100E-01 1.518	ILE	888	0.0000E+00 0.2500E-01 1.105	.000 .000 .000	. 000 . 166	166
440000000	00000000000000000000000000000000000000	2. 2.00 7.7255 1.105	4 .042	MISSION PROF	8888	0.0000 0.2500E+00 0.2500E-01	2.000 .0000E+0 1.000		1.000
10000040 400000740	¹ 4000000000000000000000000000000000000	0000 11000	404040	FLIGHT	rv Orv	444 0014 0111 0444	~		777

	2.995 1977. 0.1000E+06
0.000000000000000000000000000000000000	0.0000E+00 0.8000E-01 1.000 0.0000E+00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000
	2581 2600 8850 1001 1001

DATE 11/25/85 CH-46F NASA AMES CALIBRATION

The second of the second of the second of

HESSOMP

B-91 PROGRAM HELICOPTER SIZING & PERFORMANCE COMPUT

TANDEM ROTOR - PURE HELICOPTER

		FT.		년년 · ·	ET.
		88 7.2.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	83.9 FT.	0.00 0.00	242.610 242.610 13.2 PERO 1411.
THIS RUN CONVERGED IN 1 ITERATION(S) GROSS WEIGHT = 23000. LB		LENGTH CABIN LENGTH EWD. ROTOR LOCATION AET ROTOR LOCATION WIDTH ROTOR GAP/STAGGER RATIO ROTOR OVERLAP/DIAMETER RATIO	CENGTH O	ASPECT RATIO WETTED AREA FRONTAL AREA HEIGHT MEAN CHORD TAPER RATIO ROOT THICKNESS/CHORD	ASPECT RATIO WETTED AREA HEIGHT MEAN CHORD
SIZE DATA	FUSELAGE	LE LC DELTAX1 DELTAX2 WF G/S (O/L/D)	OVERALL OPERATING LENGTH WING - NO WING USED FORWARD ROTOR PYLON	AR SEP FAEP HP1 CARREP LAMBDA FP (T/C)R	AFT ROTOR PYLUN AR SAP HP2 CBARAP

000 3000 0000		4.9 FT. 1.3 FT. 40.5 SQ. FT.	INDEPENDENT ENGINE USED	USED			.T4	693	` _E	•
AP TAPER RATIO ROOT THICKNESS/CHORD TIP THICKNESS/CHORD	NE NACELLE	LENGTH MEAN DIAMETER WETTED AREA (TOTAL-ALL ENGINES)	AUXILIARY INDEPENDENT ENGINE NACELLE - NO AUXILIARY	NUXILIARY PROPULSION) - NO PROPELLER		DIAMETER SOLIDITY 9.075			017	
LAMBDA AP (T/C)R	PRIMARY ENGINE	NZN	AUXILIARY IN	PROPELLER (AUXI	MAIN ROTOR	DMR SIGMR	WG/A CT/SIGMA	NO. BLADES THETA	Ω C C C C C C C C C C C C C C C C C C C	777 /

なるなり、そのためのなり、「他のないないと、これのいいという」「これのいいという」ではないないが、これのないのでは、これのないないと、これないないない。

_
Į OI
RAI
CALIBRATION
AMES
NASA
4
16E
CH-46F
/85
/25
11/25/85
DATE
Ã

က

PAGE

TORREST PROPERTY CONTRACTOR CONTR

μ
Σ
0
บ
ß
Ы
I

B-91
PROGRAM
COMPUTER P
PERFORMANCE
SIZING &
HELICOPTER

1080 800 500 500 500 500 500 500 500 500	633.35
FIXED USEFUL WCREW (3.) WSTU (0.) WCBAG WUE WOIL WSRV WH20 WEMER WCATER	WEUL
P GROUP 12577 12577 12557 12555.00 139 655.00 139 1.000 1000	2821.03
FIXED EQUIP WAPU WINSTR WHYD WELEC WAV WEUR WAC WAI	MEE

CALIBRATION
AMES
NASA
CH-46F
/85
11/25/85
DATE

CONTROL OF THE PROPERTY OF THE

4 PAGE

щ SCOM E H

B-91 & PERFORMANCE COMPUTER PROGRAM HELICOPTER SIZING

IGHT CCTORS	00 0 00000 00 0 00000 00 0 00000	1.000	1.000
F F F F F F F F F F F F F F F F F F F	K122 K132 K132 K1306 K198 H198 H198 H198 H198 H198 H198 H198 H	X X X X X X X X X X X X X X X X X X X	K 7=
	2638. 555. 5500. 2387. 2387. 0. 764. 0. 187. 286. 6261	0. 0. 2571.	653. 131. 71. 71. 0. 0.
3.000 .500	OTOR) OR) OUP IVE SYSTEM	& VIAIL 881.	
IN LBS LOAD FACTOR LOAD FACTOR	MAIN ROTOR GROUP MAIN ROTOR BLADE (PER ROTOR) BLADE FOLDING (PER ROTOR) SYSTEM AIN ROTOR DRIVE SYSTEM TAIL ROTOR DRIVE SYSTEM AUXILIARY PROPULSION DRIVE RY ENGINES ARY ENGINES ARY ENGINES ARY ENGINE SYSTEM AUXILIARY PROPULSION DRIVE ARY ENGINE SYSTEM	ROTOR PYLON N SWET BODY SWET PYLON	MET VI. IAIL ION SECTION NGINE SECTIO
		GROUP HOR. TAIL TAIL ROTOR AGE (INCL'S BASED (NG SEAR SOUNDSE GEAR MAIN GEAR ENGINE SECT PRIMARY ENGANTINE SECT AUXILIARY ENGANTE WEIGHT
T S	HOT ANATHUM TO THE TOTAL TOTAL TO THE TOTAL	r Hero	LANDING NO MA TOTAL EN PR STRUCTIR
W E I G H MLF ULF PROPULSION	WEEVERS SELL STANDARD SELL STANDARD SELL STANDARD SELL SELL SELL SELL SELL SELL SELL SEL	STRUCTURES WW WTG WHT WHR WAR	WLG WNG WNG WPES WAES DEL WST

MST	TOTAL STRUCTURE WEIGHT	3295	у.	
C C C C C C C C C C C C C C C C C C C	CONTROLS GROUP PRIMARY FLIGHT CONTROLS COCKPIT CONTROLS MAIN ROTOR CONTROLS MAIN ROTOR SYSTEMS CONTROLS FIXED WING CONTROLS TILT MECHANISM	965. 44. 483. 60.	*** 100 	000
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE	AUXILIARY FLIGHT CONTROLS AUX. PROPULSION ROTOR CONTROLS AUX. PROPULSION ROTOR SYS. CONTROLS	o oo	, XX 54 11 11	1.000
WMC DEL WEC WEC	MISCELLANEOUS CONTROLS CONTROL WEIGHT INCREMENT TOTAL CONTROL WEIGHT	ი. ი. 965.	}	
WFE	WEIGHT OF FIXED EQUIPMENT		2821.	•
WE	WEIGHT EMPTY		13342.	
WEUL	FIXED USEFUL LOAD		633.	
OWE	OPERATING WEIGHT EMPTY	•••	13975.	
WPL	PAYLOAD		6475.	
(WE)A	A FUEL		2550.	
æ	GROSS WF "HT		23000	

NASA AMES CALIBRATION CH-46F DATE 11/25/85

S PAGE

10110275

これに かいとうしゅうしょう ないしょうしょうしょうしょうしょう

E O လ လ H

B-91 HELICOPTER SIZING & PERFORMANCE COMPUTER PROGRAM

H **.** Ω ĸ 0 Н 0 æ

2.0000 ROTOR CYCLE NO. MAIN ROTOR SOLIDITY SIZED BY MANUEVER CONDITIONS

143.0 KTS 11 59.0 DEG., TEMP = 0.0 FT.,

100.0 PERCENT HOVER RPM ROTOR MANUEVER G*S = 1.500, CT/SIGMA

= 0.095

NASA AMES CALIBRATION CH-46F DATE 11/25/85

9 PAGE

H E S C O W

B-91 HELICOPTER SIZING & PERFORMANCE COMPUTER PROGRAM

DATA ROPULSION Д,

1.761 PRIMARY PROPULSION CYCLE NO. TURBOSHAFT ENGINE

2. ENGINES

H. P. 2800. MAX. STANDARD S. L. STATIC H. P.

ENGINE SIZE WAS FIXED BY INPUT

2800. MAIN ROTOR DRIVE SYSTEM RATING XMSN SIZED AT 100. PERCENT OF MAIN ROTOR HOVER POWER REQUIRED AT H =14000. FT, TEMP = 9.08 DEG. F., 0.0 PERCENT HOVER RPM

HESCOMP

B-91 HELICOPTER SIZING & PERFORMANCE COMPUTER PROGRAM

E F F

36, 800 SQ 1242, SQ 0, 029626		6000000 600000 600000 600000 600000
N A M I C S D A T A TOTAL BEFECTIVE FLATZLATE AREA TOTAL WETTED AREA MEAN SKIN FRICTION COEFF.	REAKDOWN IN SQFT WING FE FUSELAGE FE FORWARD(MAIN) ROTOR PYLON FE AFT ROTOR PYLON FE MAIN ROTOR HUB(S) FE TAIL ROTOR HUB FE VERTICAL TAIL FE HORIZONTAL TAIL FE PRIMARY ENGINE NACELLE FE AUX. INDEPENDENT CRUISE ENG. STRUT FE INCREMENTAL FE	NAMIC COEFFICIENT ING LIFT EFFICIENCY FACTOR FERTICAL TAIL LIFT EFFICIENCY FACTOR
A E R O D Y FE SWET CBARF	D R A G B EEN C B B EEN C B B B EEN C C C C C C C C C C C C C C C C C C	A E A A A A A A A A A A A A A A A A A A

DATE 11/25/85 CH-46F NASA AMES CALIBRATION

PAGE 8

HESCOMP

B-91 PERFORMANCE COMPUTER PROGRAM ય HELICOPTER SIZING

		TEMP DEG (F) 599.0		CŢ	CT . 0053 . 0053			78/01 11188/ 10088/ 78625:		
		AUX FUEL FLOW (LB/HR	HRS.	ВНР	2793. 2788.	igo ED ED	BHP	22222 87222 455672 25533 1651 1651 1651 1651		
MISSION PERFORMANCE DATA		AUX ENG PEHE		T T EM	. 63	RATING THE	ALFA D/L	2111111 2111111		
		AUX TURB TEMP (R)		THRUST TO WEIGHT	1.111	MAXIMUM ENGINE F THE FLIGHT PA	CT' OVER SIGMA			
		rot FUEL SEAR) 2533.		TOT FUEL FLOW	~		MUS	- maaaaa 000000		
	RATING	HE CLBETT	.017	EGE EGE	900		PRIM ENG PEHE			
		PRIM ENG PEHF 0.000	, HOVER, OR LAND AT PETF = 1.000 FOR O	ANG ANG	44	AH C	PRECOE	ненене		
	CROUND IDLE ENGINE	TERIM TERRE 950.		PRIM TURB TEMP	2000. 2000.	R/C MPONE		000000 0000000 00000000000000000000000		
		TAS (KT) 0.		FUEL WEIGHT ALT TAS (LB) (LB) (LB) (FT) (KT) (KT) 34. 22966.		TH MAXIMUM I	## ## ## ## ## ## ## ## ## ## ## ## ##			
		PRES ALT (FT) 0.					PRES ALT	4 00000		
	HRS. AT	WEIGHT (LB) 239994.				FT. WI	WEIGHT (LEB) 2229966. 2229918. 2228918. 228692. 22864.			
	0.025	FUEL USED (LB) 6.				5000. EAS)	EUS USSED 1082. 1388. 165.			
	FOR	RNG OO. OO.		RNG	00	TO (AND	RNG	04444 004474		
	TAXI	TIME (HRS) 0.005	TAKEOFF	TIME (HRS) (0.0425		CLIMB	I WE	00.00 00		

00000000000000000000000000000000000000			(H)					CT	. 0053
BHP	エエエユエエ らららら44	44		BHP	80000	880		ВНР	2795. 2790.
H-Z) Jananananan	चंचं		ことに	والبالبال	iriri			2 . 63
CT' OVER SIGMA	000000	.07	AT CONSTANT TAS	CT - OVER SIGMA	0000	000	HRS.	THRU	1:23
MU	addada	100		MU	ddd	1200		TOT FUEL FLOW	75.0 144.
Prim Eng Pehf	ထထထထထ လူလူလူလူလုလ	ထိထိ		PRIM ENG PEHF	4444	144	0.017	HGIM HE	000
PRACOUC	ненене	HH	MI.	PRACCOE	ឋាភាភាភាភាភា	FOR	교교교	HH	
저그氏	xമമമമമമമ ഹസസസസസ	88	00 N.	ᄷᄼᅩᅝᅝ	はアプレフト		PRIM TURB TEMP	400	
######################################		198	45	40000	NNN	= 1.	TAS (KTI) (O)		
RTI EHE	AA		, R =	RTI EFF	10000			PRES ALT (FT) 0.	
E C	722211 7222114 7225254 7215214 741514	1166 0930	O. FT.	E DI DI	-000 000 0000 0000 0000 0000 0000	0777	LAND	EIG	26739. 20711.
DO:	(日本) (日本)		 E	Dor Element	30111122 3704829		0	FUEL CNED 2261.	
	ق ٠٠٠٠٠٠٠٠	56. 78.	DESCEND TO	Z , Z	2000 2000 2000 2000	99998 9960 949	Ē	RNG (NMG) 1988.0	
IME	H			IME		TAKEOF	TIME (HRS)		
	FUEL FUEL PRES TEMP ENG ENG OVER ALEA SPEC IME RNG USED WEICHT ALT TAS TEMP CDE PEHF MU SIGMA DAL BHP RNG	TURB ENG ENG USED WEICHT ALT TAS TEMP CDE PEHF MU SIGMA D/L BHP RNG 125 (NM) (LB) (LB) (KT) (R) (R) (NM) (LB) (LB) (KT) (KT) (R) (R) (NM) (LB) (LB) (LB) (KT) (KT) (R) (R) (NM) (LB) (LB) (LB) (LB) (KT) (RT) (R) (NM) (LB) (LB) (LB) (LB) (KT) (RT) (R) (NM) (LB) (LB) (LB) (LB) (KT) (RT) (R) (NM) (LB) (LB) (LB) (LB) (LB) (NM) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB	FUEL WEICHT ALT TAS TEMP CDE PEHF MU SIGMA D/L BHP RNG (LB) (LB) (LB) (ET) (KT) (R) (RD PEHF MU SIGMA D/L BHP RNG (LB) (LB) (52 22835	FUEL WEICHT ALT TAS TEMP CDE PEHF MU SIGMA D/L BHP RNG (LB) (LB) (LB) (FT) (RT) (R) (R) (RD PEHF MU SIGMA D/L BHP RNG (LB) (LB) (FT) (RT) (RT) (RT) (RT) (RT) (RT) (RT) (R	FUEL WEICHT ALT TAS TURB ENG ENG MU SIGMA D/L BHP RNG (LB) (LB) (ET) (RT) (RT) (R) (RT) (RD) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB	FUEL WEICHT FRES TURB ENG ENG MU SIGMA DECT NUMBER CLEB ENG ENG ENG FEHF MU SIGMA DECT NUMBER CLEB ENG	FUEL WEICHT PRES TURB ENG ENG ALEA ALEA BHP RING (185)	THE RNG (USED WEICHT ALT) THE RNG (USED WEICHT	THE RNG USED WEICHT ALT TAS THE PRIM PRIM CT NOWER ALEA BLEA BREED BRICK

	TEMP DEG (F) 59.0
	AUX FUEL FLOW LB/HR)
	AUX ENG PEHF
	AUX TURB TEMP (R)
NG	TOT FUEL FLOW (LB/HR) 253.
NE RATING	PRIM ENG PEHF 0.000
ENGINE	TURB TEMP (R) 950.
IDLE	TAS (KT) O.
GROUND	PRES ALT (FT) 0.
HRS. AT	WEIGHT 20713.
0.025	FUEL USED 2288 2295.
FOR	RNG (NM) 198.0
TAXI	TIME (HRS) 1.802

RESERVE FUEL REQUIRED = 2294.82 TOTAL FUEL REQUIRED = 255.00

DATE 11/25/85 CH-45F NASA AMES CALIBRATION

ESCOMP

B-91 & PERFORMANCE COMPUTER PROGRAM HELICOPTER SIZING

					TENT DEG 590.0		CF	. 0053		5	1112422 1124222 10124466 101266
					AUX FUEL FLOEM (LB/HR)		BHP	2794. 2790.	G ED	BHP	22222 2226672 256821 2446 9
The					AUX ENG PEHE		COST FM	 63 	E RATING ATH SPEI		¹ 러러러러
FROGRAM					AUX TURB TEMP (R)		THRU: TO WEIGE	1.229	ENGINE GHT PAT	CT' OVER SIGMA	00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
			٠	<u></u>	TOT FUEL LBCEL 2553.	HRS.	TOT FUEL FLOW	1654. 1654.	LITARY E	MU	00000 74444 74444 74444 1884
	E DATA			RATING	PRIM ENG PEHF 0.000	0.017	PRIM ENG PEHE	0000:	ΞÖ	E PRIM	44444 600000
FENE ONWINGE	ERFORMANCE			ENGINE	TURB TURB TEMP (R) 9950. 0	FOR	PRIM TURB TEMP	44	IMUM R/C AT AL COMPONENT	LIM PRM	2000000 0000000 0000000000000000000000
	SREC	~i			HHH-	000	HHHA HHA	200 200 200	R	HHH.	~WWWWW *000000
	щ	LB	ELT FIT OO.	D IDLE	TARS OO.	i !	TAS	00	XIMUM TAL C	TAS	7770.00
א סאודק:	MISSION	2200	HT AP 000.	GROUND	PRES ALT (FT) 0.	AT PETF	PRES ALT (FT)	, , , ,	TH MAX	PRES	4 00000
TO WELL		REMOVE	EUEL WEIGH (LB) (LB) 23000 0. 20800	HRS. AT	WEIGHT (LB) 20800.	OR LAND A	IG	20794. 20766.	FT. WIT	DI C	22222222222222222222222222222222222222
100111111		OAD,	W 00	0.025	FUEL USED (LB) 6.	HOVER, O	FUEL USED (LB)	3	5000. EAS)	FUEL	2000 2000 2000 2000 2000 2000 2000 200
		PAYLOAD,	RANGI (NM) 00.0	FOR (8 000 000 000		RNG (NM)	00	TO (AND	RNG	00-1944 080848
		CHANGE	TIME (HRS) 0.000	TAXI	TIME (HRS) 0.058	TAKEOFF	IME HRS)	0.058 0.075	CLIMB ** TAS	IME	000000000000000000000000000000000000000

	SPEC RNG	20000 70000 711100	0.0000 0.0000 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004		လူနှ		200		CI	. 0053
	BHP	60000 60000 60000	22222 2222 2230 2230 2230 2230		внр	1778.	777		BHP	2799. 2793.
	HI-	7 7 -OHM4	いて ののの		ELIC ELIC	3111 30000 30000 4444	inini		T T FM	. 63
	CT' OVER SIGMA	0000	00000	IT TAS	CT OVER SIGMA	0000 0000 0000	000		THRUS TO WEIGH	1.380
	MU	ころろう	000000 000000	CONSTAN	MU	0000	ろろろ	HRS.	TOT FUEL FLOW	ロマママ
	PRIM ENG PEHE	ထထထထ		AT CO	PRIM ENG PEHE	0.707	200	.017	HUUH	000
	COCO		ннннн	MI.	PRM ENG CDE	րր ու		OR O.	A SIE	цц 90
ING	RDE!	ഷയയയ സസസ	1111888 88888 88888 88888 88888	00 N.	及 り 足 に	1775- 1738- 1738- 1738-	732	000 EC	PRIM TURB TEMP	200
INE RAT	4.	19286 14444	00000000000000000000000000000000000000	206.	45	10000 10000	000 777	= 1.0	TAS	
ENGIL	R.T.E.	-0000 -0000	000000 0000000000000000000000000000000	۳, ۱:	STE FIE	34000 30000 30000 30000	30	T PETF	PRES	4
NORMAL	Ď,	9000 9000 9000 9000	119958 119958 18979 1872 1897 1997 1997 1997 1997 1997 1997 1997	O. FT.	EIG	118725 1868725 18685 18685	8576 8536 8539	LAND AT	E E	18539. 18512.
E AT	चिचि	14400 JWO74	1217 14817 20107 2010		Dor Eren	222 222 222 222 232 232 232 232 232 232	975 775	ER, OR	E E E	2261. 2288.
CRUISE	RNG	2 4040 24040	100000 80000 4046 6046 60000	ND TO H	SS	10000 20000 20000 00000	000	FF, HOVER	Z	206.0 206.0
	IME	1000 1000 1000 1000	0	DESCEND	IME	1.6651 72851	. 799	TAKEOFF	IME	1.828 1.845

	TEMP DEG (F) 59.0		****
	AUX FUEL FLOW LB/HR)		****
	AUX ENG PEHE		****
	AUX TURB TEMP (R)		****
NG	TOT FUEL FLOW (LB/HR) 253.		****
HRS. AT GROUND IDLE ENGINE RATING	PRIM ENG PEHE 0.000	4.00 .000 .000 .000	*****
ENGI	TERIM THURB (R) 950.	2 2 525 655	****
HDLE	TAS (KT) 0.	RED ==	****
GROUND	PRES FIT O.	REÇUI REĞUI	****
ΑŢ	3. 3. 3.	FUEL FUEL FUEL	* * *
HKS.	WE 1 8 5 1 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	SION	****
0, 025	FUEL USED 2288. 2295.	MISK TOT	****
FOR	RNG (NM) 206.0 205.0		****
AXI	TIME HRS) 1.845		****

END OF SUCCESSFUL CASE

NASA AMES CALIBRATION CH-46F DATE 11/25/85

HESCOMP SUMMARY

	AUX. PROPELLER 0.000 0.000 0.000 0.000 0.000		WING 0.00 1.00 1.00
NUMBER OF ITERATION(S) 1	TAIL 0.00000000000000000000000000000000000	AUXILARY NONE NONE NONE NONE	HORIZONTAL TAIL 0.0 0.000 0.00
NUMBER OF	MAIN ROTOR 530.966 0.0055 0.0095 2800.000 2637.505 2.000	PRIMARY 1, 761 1400, 000 382, 200	VERTICAL TAIL 0.5 1.000 0.00
	ROTORS DIAMETER NO. OF BLADES SOLIDITY CT/SIGMA DISK LOADING TIP SPEED DRIVE SYS. RATING WEIGHT ROTOR CYCLE NO.	PROPULSION NUMBER OF ENGINES ENJINE CYCLE POWER PER ENGINE WEIGHT PER ENGINE	DIMENSIONS AREA ASPECT RATIO TAPER KATIO SPAN

	URE 3294.7 14.3 RATING 13975.2 60.8 SS 23000.0 100.0	WETTED AREA MEAN SKIN FRICTION 0.029626
	STRUCTURE OPERATI GROSS WING LO	36.800 625.000
1	27.2 27.58 151.1 28.2	E AREA
	6261.2 13341.8 25549.8 6475.0	: E AREA GHT/FLATPLATE
	WEIGHTS PROPULSION EMPTY FUEL PAYLOAD	AERODYNAMICS FLAT PLATE A GROSS WEIGHT

7.3

FUSELAGE WIDTH

43.7 83.9

FUSELAGE LENGTH OVERALL LENGTH

K
H
K
Ω
Z
0
0 I
_
н
S

		110.		112.
	=0.626 =109.9 =0.626	TIME=	=0.626 =113.7 =0.626	TIME=
	MERIT SPEED MERIT	2550.	MERIT SPEED MERIT	2550.
	FIG EAS FIG	FUEL=	FIG EAS	FUEI,=
SEG. DIST (NMI)	171.8 20.0	TOT	82	TOT
ALT. (FT)	00 0 00	FUEL= 255.	\$000 0000 0000 0000	FUEL= 255.
SEG. FUEL (LBS)	19021 19031 1904 1905 1904 1905 1905 1905	RSRV	19 20 20 20 20 20 20 20 20 20 20 20 20 20	RSRV
SEG. TIME (MIN)	94 440000000000000000000000000000000000	FUEL= 12295.	100.05	
SEG. WEIGHT START (LBS)	2222222 2222222 2222222 2222222 2222222	MSN W	8800000 557480 55766900	NM MSN FUEL=
	TAXI TOEF/LND CLIMB CRUISE DESCENT TOEF/LND	<u> </u>	CHG PYLD TAXI TOFF/LND CLIMB CRUISE DESCENT TOFF/LND	2

C. 44-PASSENGER TILT ROTOR

خالخة المصافح والمراج والمناجع المستواح والمنافئة والمنافع والمناف

Description

The first of the two tilt rotor designs used in this study is a civilian derivative of the V-22 OSPREY. This aircraft design was the subject of a study [Ref. 7] conducted by Bell Helicopter TEXTRON (BHT) wherein the 44-passenger tilt rotor was shown to be substantially more cost-effective (despite a higher acquisition cost) than the 44-passenger Boeing VERTOL 234LR. This tilt rotor design features two General Electric T64-717 engines that each produce 4855 shp. Reference 7 was used to compile the information in Table 3.

TABLE 3

BELL HELICOPTER TEXTRON 44-PASSENGER TILT ROTOR

Type:	Twin-engined, commercial	
Engines:	Two 4855 shp General Elect	tric T64 shaft-turbines
Rotors:	Two three-bladed rotors of	n wingtip nacelles
Dimensions:		
Diameter	of main rotors:	38 ft 0 in
Length o	verall:	60 ft 11 in
Length o	f fuselage:	60 ft 11 in
Wing span	n:	47 ft 10 in
Main rote	or disc area:	2,268 sa fit
Weights and	Loadings:	
Weight e	mpty, equipped:	26,676 lb
Max take	off and landing weight:	44,000 lb
Max disc	loading:	19.4 psf
Performance	•	-
Max perm	issable speed:	360 knots
_	sing speed:	300 knots
Service	ceiling:	34,000 ft
	reserve fuel)	
At 44,00	0 lb (9124 lb payload):	725 naut mi
Fuel Capacit	y:	
-	configuration:	1043 US gal
Accommodatio	n:	-
Crew:		4
Passenge	rs:	44

2. Aircraft Calibration Using VASCOMP II

Basic data for the 44-passenger tilt rotor was also obtained from NASA Ames Research Center. The similarity between VASCOMP II and HESCOMP permitted using an identical calibration technique as that described in paragraph IV B 2 above. Table 4 shows the comparisons between the aircraft as described in Ref. 7 and as portrayed through the VASCOMP II output results.

TABLE 4

COMPARISON OF BHT AND VASCOMP II 44-PAX TILT ROTOR

	BHT		VASCO	1P	% DIFFERENCE
Dimensions:					
Main rotor diameter:	38.000	ft	38.000	ft	0.000
Length overall:	60.917	ft	60.900	ft	0.028
Weights and Loading:					
Weight empty:	26,676	1b	26,676	1b	0.000
Operating weight:	27,876	1b	27,876	1b	0.000
Payload:	9,124	1b	9,124	1b	0.000
Fuel:	7,000	1b	7,000	1b	0.000
Gross weight	44,000	lb	44,000	1b	0.000
Ranges (normal power):					
At 43,676 lb:	725	nm	725	nm	0.000

3. Program Data

VASCOMP II output from the calibration run is shown on pages 44 - 60. It should be noted that the output closely parallels the format and sequence of output generated using HESCOMP. Due to the limited information available, only one mission was programmed. A maximum takeoff gross weight of 44,000 pounds was used for the mission to calibrate the aircraft's maximum range.

DATE 11/25/85 44 PASSENGER TILT ROTOR

ASCOMP II

PAGE

B-93 COMPUTER PROGRAM PERFORMANCE હ SIZING V/STOL AIRCRAFT CASE THIS 5 OF (MAX INPUT DECK FOR NUMBER GIVEN ON INPUT SHEET
SEQUENTIAL INPUT VALUES STARTING WITH LOC.
VARIABLE CORRESPONDING TO LOC. +0001
VARIABLE CORRESPONDING TO LOC. +0002
VARIABLE CORRESPONDING TO LOC. +0002
VARIABLE CORRESPONDING TO LOC. +0003 THE OF REPRODUCTION CARD BY CARD 4 IS FOLLOWING LCOC NCAC CARES CARES

VAL4	4.000 0.0000E+00 0.0000E+00	-6.500 0.1500			1.000		1.098
VAL3	1.000 1.000 0.0000E+00	100.0 37.40			1.000		0.0000E+00
VAL2	0.0000E+00 0.0000E+00 0.0000E+00	0.2230 1.000	0.8000E-01	0.1000	0.0000E+00 0.0000E+00 44.00 17.00	1.080	280.0
VAL1	0.0000E+00 0.0000E+00 0.0000E+00 0.6000E+	0.22.00 4.000000000000000000000000000000	50,25 0.0000E+00	34.00	50.50 0.0000E+00 0.0000E+00 32.02 9710.	0. 0000E+00	0,2000E+05 775.0 38.00
VAL	1.000 0.0000E+00 0.4400E+05 1.000 0.000E+05	NW	vО	1.55	ω . ODG	ŎĎ,	HOO .
LOC. NUM	๚๚๚ <i>๛</i> ๚ ๛ ๚գ๛സ ഹസംസഗ	9000r	ようこと	100c		00° 40°	2221 2233C

		0.3500				0. 9000E-02	236. 3					0.0000E+00 5000.
0.2500		o. 3000	9124.			O. 0000E+00	0. 5000		2.200			350.0 0.5600E+05 15.00
3.000		-1.000	1200. 9.885	458.0	40.00 1.000	O. 0000E+00	1,000	1.000	44.00	30.00	0.2330	0.0000E+00 0.1500E+00
67.00		6.280	4.000 0.0000E+00 6895. 338.0	1. 000 2. 668	624.9 17.00 1.500 1.000	0.9540E-02	0.3200 .3200 .4000	0,2705E-01 15,77	0.1200	1.000 500.0	2.500 0.0000E+00	1.100 0.0000E+00 3.000
130	102.0	000 000 000 000 000 000 000 000 000 00	00000 00000 . 7000	ພີ. ດ.4 ດເທ	1. 4000 1. 40000 1. 500000	1,64 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,4	4142 4143 4004 9400	33. 150. 150.		0.2500 0.0500E+00 1.000E+00 0.5000E-01	7555	ECONOMICS INPUT 0.0000E+00 3.620 0.0000E+00
44 -	lll-	⊣ ഹ-	1004m	ಗಣ್	-เข ด ดด-	-10C-1	പരകവം	10m	-4 -	וואטחו		น ญ4:เง
ONM	000	⊣რ(\circ	တထင			2222	വഗവ	יטטטע	#1722 04500 #27084		99 1675 1680 1684

0.1500	0.0000E+00	1200. 7.000 1900.	0.8000 0.295000 1.639100 1.011600 1.84115	1900.	0000000 00000000 0000000000000000000	0000 0000 0000 00010 0000 0000 0000 00	
12.00	2.000	0.0000E+00 1850. 1800.	0.6000 0.32000 1.000 1.188 1.740	1800.	0000000 0000000 0000000000000000000000	00000 00000 000000000000000000000000	400
0.0000E+00	0.2600 0.0000E+00	698.0 1820. 1600.	00.4000 .64000 .64000 .963000 .111500 .115000 .10000 .10000	1600.	000000 000000 41000 41.200 0000000000000000000000000000000	0000 0000	20 0 200 200
10.00	DATA 0.0000E+00 1.000 1.060	0.0000E+00 1745. 1400. 2200.	0.2000 0.33400 0.33400 0.9520 1.118 1.288 1.625	1400. 2200.	0000000 0000000 00000000000000000000	00000 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	000
5000. 2800.	1.500.1 1.000.00.00.00.00.00.00.00.00.00.00.00.0	00000 00000 00000	.08889 		00000000000000000000000000000000000000	.00000 00400000 00400000	000
20	നഗവം	-Խստա-	∙տտտտտտտտ	⊣ւՆ(⁄/₁	⊣տտտտտտտտտո	⊣ഹഹഹഹഹഹഹ	ലവ
1680 1694	0000 0000	NOOHH-	๛๛๛๛๛๛๛๛ ๚๛๛๛๛๛๛๛ ๚๛๛๛๛๛๛๛	2000 2000		 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1	500

0000 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	5.000 100.00 0.00	
0.5060 0.68860 0.9740 1.023	4.6 00 00	
0000 80 0000 00044 00004 00006 00006 00006 00006 00006		0.2500
000.50 0.9880 0.9450 1.023 1.5883	PROFILE 2.000 1.0000 0.225000E+00 0.7850 E+00 0.1667E-01 0.1667E-01	0.0000E+00
0. 680 0. 8880 0. 9740 1. 023 1. 158	ELIGHT 200 20000 30000 30000 60000	758 .00
സസസസസസ	NCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	-m-
20000000 20000000 20000440 2000004	してたじてしてしてしてしていくしてしてしてしてしてしてしてしてしてしているとのとのうをとくのあらいさのと今とものとうとてのかららのののもらららるのもらららののもららののもららののもらららるののものもの	⊣ m0

VASCOMP I

7

PAGE

ITER PROGRAM B-93 (SEFUL LOAD) 130.00 130.00 130.00 155.32 82.00 72.00 440.00 447.00	1200.15
PERFORMANCE COMPUMEREW (3.) WCBAG (1.) WCBAG (1.) WOIL WSRV WHZO WHZO WEMER	WEUL
EQUIP GROUP 338.00 338.00 338.00 458.47 458.00 3157.64 624.90	6079.95
V/STOL AI WAPU WINSTR WHYD WELEC WAC WEUR WAC WAC WAI	WFE

ROTOR
TILT
PASSENGER
44
/85
11/25/85
DATE

VASCOMP II

B-93	
R PROGRAM	
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER	1 ITERATION(S
FORMANCE	
NG & PER	THIS RUN CONVERGED IN
AET SIZI	S RUN CO
OL AIRCR	r A THI
V/ST(I Z E DATA
	2 I S

LB

44000.

GROSS WEIGHT =

SOET SOET	SOFT	FT DEG	LB/SQFT	SOFT	수는 는 보보 보	SOFT		4	FT FT SQFT	
60.9 97.2 1467.	5.55 440.0		0.000 0.000 0.000 0.000 0.000 0.000	ο.	0 3.15.0 4.15.0 4.05.0	1. 50 78. 6	10 2, 10 3,	.01	17.4 5.3 578.1	
LENGTH WIDTH WETTED AREA	ASPECT RATIO AREA SPAN	GEOM. MEAN CHORD OUARTER CHORD SWEEP TAPER RATIO	TIP THICKNESS WING LOADING MEAN CHORD / PROP. DIA.	ASPECT RATIO AREA SPAN	MEAN CHORD THICKNESS CHORD MOMENT ARM	ASPECT RATIO	SPAN MEAN CHORD THICKNESS / CHORD	VOLUME COEF.	LENGTH MEAN DIAMETER WETTED AREA	Camba Tab NOTS HIGOOD TRIT ON
FUSELAGE LP NP SF	A S W	CBARW LAMBDA C LAMBDA	AT/C/T WG/SW C BAR / D	•	CBARHT (T/C)HT ELTH VBARH	VERT. TAIL ARVT SVI	BVT CTARVT FLTC)VT	VBARV PRIMARY ENG. NACELL	LN DBARN SN FNC NAC	5

NO LIFT PROPULSION SELECTED

FT LB/SQFT	FT/SEC
38 0.11:0 19:10 0.130 0.00	7.000 7.000 7.500 7.500
DIAMETER SOLIDITY DISC LOADING THUST COEFF. / SOLIDITY	NO. OF BLADES/PROP BLADE CUTOUT / PAUIUS RATIO TIPSPEED
PROPELLER D SIGMA R/P WG/A CT/SIGMA	NO. BLADES SR VT

A S C O M P II

PAGE

B-93
PROGRAM
COMPUTER
PERFORMANCE
SIZING &
AIRCRAFT
V/STOL

K H 4 Ω Ö Z N Ø ρţ 闰 ပ Z 田 ß S 4 ρι

FIRST CLASS	, , , , , , , , , , , , , , , , , , ,	
		. 0
IST	zzz	
J.	4 264 44-1097	7 11 12
9	NO. OF FASS. NO. OF AISLES UNIT SEAT WIDTH SYA'I PITCH AISLE WIDTH	NITMED OF LAWATORIES

OURIST CLASS COURIST CLASS C	
## ** **	
EFF FFF	
HOUSE HOUS HOUSE HOUS HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUS HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUS HOUS HOUS HOUS HOUS HOUS HOUS HOUS	11. 4 22. 9 26. 9 FT.
NUMBER OF LAVATORIES GALLEY AREA CLOSET AREA CABIN DIAMETER BODY DIAMETER	NOSE SECTION LENGTH TAIL SECTION LENGTH CONST. DIA. LENGTH

CRITICAL

TOTAL FUSELAGE LENGTH 60.9 FT.

51

DATE 11/25/85

CALLE SECRETARY PROPERTY ASSESSMENT CONTRACTOR OF THE PROPERTY OF THE PROPERTY

	B-93		3. 2.263 4.500	23 100 100 100 100 100 100 100 100 100 10	1892. 475.	9292.	3478.	3591.	1396.	1835. 1835.	9888.	1510.	450.	396. 0.	2418.
DATE 11/25/85 44 PASSENGER TILT ROTOR V A S C O M P II	V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	WEIGHTS DATA IN LBS	EMLE MANEUVER LOAD FACTOR GLF GUST LOAD FACTOR ULF ULTIMATE LOAD FACTOR	STRUCTURES GROUP KB WW K9 WHT HOR. TAIL K10 WVT K11 WB FUSELAGE	K12 WLG LANDING GEAR K13 WLES LIFT ENGINE SECTION K14 WPES PRIMARY ENGINE SECTION SPACES(2) PRIMARY ENGINE ACOUSTIC TREAT.	DELTA WST STRUCTURE WEIGHT INCREMENT WST TOTAL STRUCTURE WEIGHT	K2 WR/P ROTOR SYSTEM WPRB (WT. OF HUB = 0.)	WE (WT. OF FOLD = 0.) K3 WDS DRIVE SYSTEM (WT. OF MAIN DRIVE = 0.)	VTRDS (WT. OF TAIL DRIVE = VED VED PRIMARY ENGINES VED PRIMARY ENGINES VED	K7 WPEI PRIMARY ENGINE INSTALLATION K21 WFS FUEL SYSTEM	DELIA WE TOTAL PROPULSION GROUP WEIGHT INCREMENT WE TOTAL PROPULSION GROUP WEIGHT GROUP FLIGHT	K15 WCC COCKPIT CONTROLS K16 WUC UPPER CONTROLS	KIS WEW FIXED WING CONTROLS KIS WESE SES	KŽÓ WIM DELTA WFC CONTROL WEIGHT INCREMENT	WEC TOTAL CONTROL WEIGHT

WFE	WEIGHT OF FIXED EQUIPMENT	6080.
٧E	WEIGHT EMPTY	26676.
WEUL	FIXED USEFUL LOAD	1200.
OWE	OPERATING WEIGHT EMPTY	27876.
WPL	PAYLOAD	9124.
(WE)A WE)W	FUEL	7000.
23	THUILD SO WELCHT	44000.

VASCOMP II

9

PAGE

いののでは、これのではないという。

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

PROPULSION DATA

PRIMARY PROPULSION CYCLE NO. 1.650

TURBOSHAFT ENGINE

ENGINES

BHP*P MAX. STANDARD S. L. STATIC H. P. 9710. H. P. POWER LOADING = 0.2207

ENGINE SIZE WAS FIXED BY INPUT

ACCESSORY HORSEPOWER EXTRACTED = 30.00 H.P.

NO LIFT ENGINE CYCLE SELECTED

PERCENT OF TOTAL PRIMARY ENGINE INSTALLED POWER STATIC H. P.), 100. O PERCENT HOVER NOW XMSN SIZED AT 100. (MAX. STANDARD S. L.

TRANSMISSION EFFICIENCY = 0.9700

VASCOMP I

B-	3252. SQFT 0.004249	00000000000000000000000000000000000000	0.59515 0.159515 0.139515	0.12091 0.16725 0.03140 0.91255 0.07419 4.85042 PER RADIAN 0.77362
STOL AIRCRAFT SIZI YNAMICS DA	WET TOTAL WETTED AREA BARE BARE MEAN SKIN FRICTION COEFF. RE A K D O W N. T. T. IN SQFT	FER FUNCTERS FE FE FEVE FE	ELTAFE INCREMENTALY NAMICOOEFF.	A3 A5 A6 A7 CL ALPHA 3-D LIFT SLOPE E OSWALD FACTOR

VASCOMP II

B-93 DATA V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM ы RMANC 0 R FI ы ρι z 0 H ഗ တ ΙΣ

D IDLE ENGINE RATING; TEMPERATURE = 59.0 DEG.F	RES TAS TEMP CODE OR LETE FT) (KT) (R) PEHF LETE O. 0. 1200. T 0.071 0.000	PETF = 1.000 LETF = 0.000 FOR 0.017 HRS. 0.0 FT/MIN TEMPERATURE = 59.0 DEG.F	LT TAS TEMP CODE OR LETE TO FW CT FT) (KT) (R) PEHF PEHF WEIGHT O. 709 0.1167 0. 1850. T 1.000 0.000 1.141 0.709 0.1167	MAXIMUM R/C AT MILITARY ENGINE RATING	TURB ENG PETF AACH DIV (FPM) (DEG) OOO 183. 1820. T 0.988 176.3 .266 .491 4052. 20.0 OOO 183. 1820. T 0.960 169.9 .281 .482 3252. 17.9 OOO 211. 1820. T 0.965 167.0 .336 .477 1950. 13.5 OOO 227. 1820. T 0.967 165.8 .370 .476 1176. 11.4	RATING TEMPERATURE = -12.3 DEG. F	TURB ENG PETF LT (KT) (R)
GROUND	APP FILE	AT P	MA MIE	WITH	#4 0000 #14 0000	INE	0000mFw
AT	WE I GHT (LB) 44000. 43374.	OR LAND CLIMB =	WEIGHT (LB) 43974. 43892.	FT. WI	WEIGHT 433892. 433792. 43551. 43551.	T ENG	WEIGHT (LB) 43403. 42748. 41898. 41053.
025 HRS	FUEL USED (LB) 26.	ER E 6F	FUEL USED (LB) 108.	.000	FUEL (USED) 108. 3208. 341. 597.	NORMAL	FUEL USED (LB) 12597. 2102. 2947.
FOR O. C	NN NN OO MO OO	E HOV	RN OCUM OO	TO 20	RN NS NS NS 134.89.90 314.89.50 317.5	: AT	(RNG 2000) 2000: 000000000000000000000000000000000
TAXI E	TIME (HKS) 0.025	TAKEOF	TIME (HRS) (-025) 0.042	CLIMB	HIMM O.0642 0.0622 0.121 1631	CRUISE	113 00.183 00.0995 0995

54 . 546 . 11993 . 848 58 . 548 . 12072 . 847 61 . 549 . 12133 . 845 64 . 550 . 12179 . 844	MACH DIV (FPM) (DEG) (DE	.017 HRS. E = 59.0 DEG. F	TO EM CT IGHT .328 0.709 0.1167 .331 0.709 0.1167	= 59.0 DEG. F			
X. SPEED	59-729 59	OO FOR O	LETE WEI	EMPERATURE	LETF 1 0.000		s. 00.
0.883 0.883 0.883 0.883 AT MAX	で の の の の の の の の の の の の の	0 19	PETE PETE 1.000	H	PETF OR PEHE 0.07		PRE ALTI 500
HHHH H E	CENC CODE THHHH	LETE	ENG CODE T	RATING	ENG CODE T		H~v.v.
1745. 1745. 1745. 00 N.	日子 とないない カインイン カインイン で で の の の の の の の の の の の の の の の の の	000 IN	TURB TEMP (R) 1850.	INE	TURB TEMP 1200.	FT.	WEIGH (LBS. 3759 3759
3441. 725.	2007 2007 2007 2001 2001 2001 2001	= 1. FT/M	TAS (KT) 0.	CE ENG	TAS (KT) 0.	000	<u>ი</u> ნ
20000 00000 00000 R 00000	PRES 2 000.	AT PETE 0.0	PRES (FIT) 0.	CROUND IDLE	PRES ALT (FT) 0.	TO 5(1 E C C C C C C C C C C C C C C C C C C
340215. 399381. 37952. 0. FT.	WEIGHT (LB) 37911. 37881. 37774.	R LAND A	WEIGHT (LB) 3/703.	S AT	WEIGHT 3/621.	ITUDE	ANGE N. M.) 725. 00 725. 00
1.288 400.0 3785. 1.582 500.0 4619. 2.099 6;7.8 6089. DESCEND TO H =	TIME RNG USED (LB) 2.099 677.8 6089 2.124 637.2 5119.2.204 711.9 6226.252 725.0 6297.	TAKEOFF HOVER OF	TIME RNG USED (HRS) (LB) (LB) (LB) (252 725.0 6297.	TAXI FOR 0.025 HR	TIME RNG USED (HRS) (NM) (LB) 2.269 725.0 6379.	TRANSFER ALT	TIME (1) (2.294 (1) (2.294

	FTTAP PROPE		* * * *
Ē	EUEL RATE 1794. 1779. 1769.		****
41.2 DEG.	MACH DIV . 4473 . 4688 . 668		****
41.	M A C		****
rure=	EA LUCTION		***
TEMPERATURE	PE	500	****
I	MANAMA DEG	04.87 95.12 00.00	****
FUEL	TURB 113880 113450 113457 113457	64 70 70 70	***
	H 110001 10024-11 1002-11	IRED IRED IRED	***
RESERVE	A VONCOON S COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	L REOU REOU	****
HRS. FOR	WEIGHT (LB) 373995.	ION FUE RVE FUE L FUE	*****
0.333	FUEL (LEB) 66405. 70003. 7000.	MISS RESE TOTA	****
FOR	RNG 7225 7225 7225 7255 7255 7255 7255		* * * *
LOITER	17.022 17.022 17.022 17.032 17.032 17.032 17.032 17.032		****

OF SUCCESSFUL CASE

END

PAGE

B-93 V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM S U M M A R Y

ITERATION NO.

004	1. .00. .00. .00. .00.	966	SEO.	0.0000
SA ING	ASPECT RATIO = 1/4 CHORD SWEEP = TAPER RATIO = ERISELACE WIDTH	VIL AREA GHT EMPTY	FT ENGINES	NUST/GRS WT
0 -	-W C	26.12:02:04:04:04:04:04:04:04:04:04:04:04:04:04:	25 25 4	o.
WEIGHT MARY ENGINES	OR BHP PASS. SS.	TAIL AREA WEIGHT	WETTED AREA	ING. THRUST

MISSION DATA

		=0.564	
		MACH NO.	
SEG. DIST (NMI)	ç	655 24.	
ALT. (FT)	00	20000.0	00
SEG. FUEL (LBS)	087 01.00 0.100	5492.3	200 201 201 201 201 201 201 201 201 201
SEG. TIME (MIN)	પ્ યુના યુ		у-i-i 700
	TOFF	CRUISE	TOFF/LND TAXI

D. 25-PASSENGER TILT ROTOR

1. Description

This tilt rotor design is, in actuality, the V-22 OSPREY that was discussed in Chapter II - BACKGROUND. It is described in reference 6 and reference 7. Both references were used to obtain the specifications listed in Table 5.

TABLE 5

BELL/BOEING VERTOL 25-PASSENGER TILT ROTOR

Type: Twin-engined, military tra	
Engines: Two 4855 shp General Elect	
Rotors: Two three-bladed rotors on	wingtip nacelles
Dimensions:	
Diameter of main rotors:	38 ft 0 in
Length overall:	56 ft 10 in
Length of fuselage:	56 ft 10 in
Wing span:	46 ft 6 in
Main rotor disc area:	2,268 sa ft
Weights and Loadings:	
Weight empty, equipped:	26,858 1b
Max takeoff and landing weight:	43,800 lb
Max disc loading:	19.300 psf
Performance:	
Max permissable speed:	360 knots
Max cruising speed:	300 knots
Service ceiling:	34,000 ft
Ranges (with reserve fuel):	
At 43,800 lb (10,000 lb payload):	400 naut mi
At 35,400 lb (1,600 lb payload):	920 naut mi
Fuel Capacity:	
Standard configuration:	1043 US gal
Accommodation:	•
Crew:	4
Passengers:	25

2. Aircraft Calibration Using VASCOMP II

Basic data for general dimensions, aerodynamics, and engine performance is identical to that used for the 44-passenger tilt rotor aircraft. Table 6 shows the values

for aircraft specifications as obtained from references 6 and 7 and as obtained using VASCOMP II.

TABLE 6
COMPARISON OF BELL/BOEING AND VASCOMP 25-PAX TILT ROTOR

	BELL/BOEING	VASCOMP	% DIFFERENCE
Dimensions:			
Main rotor diameter:	38.000 ft	38.000 ft	0.000
Length overall:	56.833 ft	56.600 ft	0.410
Weights and Loading:			
Weight empty:	26,858 lb	26,858 lb	0.000
Operating weight:	NOT SHOWN	29,268 1b	
Payload:	10,000 lb	10,000 lb	0.000
Fuel:	7,000 lb	7,000 lb	0.000
Gross weight:	43,800 lb	43,800 lb	0.000
Ranges (normal power):	•	• –	
At 43,800 lb:	400 nm	400+ nm	0.000
At 34,600 lb:	920 nm	920 nm	0.000

3. Program Data

The following pages are a reproduction of the input data used for VASCOMP and the output of the program for the calibration runs. Two missions were flown. The first mission was flown at a gross weight of 43,800 pounds to properly size the aircraft. This mission was based on the US Marine Corps requirement for the V-22, in the medium assault transport role, to have the capability to carry 2% troops plus equipment on a mission radius of 200 nautical miles. The second mission was representative of the US Navy requirement for the V-22, in the combat search and rescue role, to be able to fly a 460 nautical mile radius to rescue four people.

DATE 11/25/85 JVX - 25 PASSENGER TILT ROTOR

VASCOMP II

PAGE

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

CASE	
Ü	~
THIS	S
H	3 3
FOR	X
	LOC. (MAX
DECK	ப்
	ğ
INPUT	
INE	₩ 000 30H H
	<u> </u>
THE	Z +++
OF	SHEET NG TO LOC. NG TO LOC. +0001 NG TO LOC. +0002 NG TO LOC. +0003
REPRODUCTION	RACCOC HIL
TI	INPUT SHEE SPONDING TO SPONDING TO SPONDING TO SPONDING TO SPONDING TO
25	HULLING
ROI	N COCC
EP	D N N N N N N N N N N N N N N N N N N N
	NAXXX NAXXX NAMED IN INC.
CARD	Z 0000
	NUMBER GIVEN ON II E SEQUENTIAL INPUT R VARIABLE CORRESPOR VARIABLE VARIABLE CORRESPOR VARIABLE VARIABLE CORRESPOR VARIABLE VARIABLE CORRESPOR VARIABLE
BY	APBILL ABBILL BELLING
8	MAXXX MDHHHH
A CARD	200202 200202
	0 FFFFF 20000 FFRRRR
IS	HK HK O EMEMEN O EMEMEN
Š	OCATION OF THE PROPERTY OF T
IM(
FOLLOWING	E I I I I I I I I I I I I I I I I I I I
FO	=====
HE	VOALLY CAPLI
Ţ	=====

VAL4	4.000 0.0000E+00	0.0000E+00 3.000	-6.500 0.1500		1.000 0.1000E-05		1.098	
VAL3	1.000	0.0000E+00 300.0	100.0 36.40 0.8000E~01	0.1230	2. 000 4. 000		0.0000E+00 38.00	0.2500
VAL2	0, 0000 E+00 1,0000 E+00	0.0000E+00 260.0 1.023	0, 2230 1, 000 50, 255 1, 000	0.1000 0.0000±+00	6.00 000 000 000 000	1.060	260.0 19.30	3.000
VAL1	0,0000E+00 2,000E+00 0,000E+00	0.000E+00	0.2230 4.000 0.6000 0.000E+00	33.00 50.50	0: 0000E+00 37: 00 9710.	O. 0000E+00	0.2000E+05 775.0	67.00
VAL	000		1. 2000 1. 2000 1. 2000 2. 2000 2. 2000 2. 2000	3		.0.		してして、
LOC. NUM		4 ፡ወ4፡‹	111111- 200111: 30867-4	7000 000r	20000 2045	†90 100	2000 2000 2000 2000 2000 2000 2000 200	00:00 07:40

0.3500		15.00	0.1620E-01	180.0						0.0000E+00 5000. 0.1500	O. 0000E+00	1200. 7.000 1900.	0.8000
0.3000	0.1000E+05	0.3770E-01	0.2400E-01 0.0000E+00	0. 6000		2.200				350.0 0.5600E+U5 15.00 12.00	2.000	0.0000E+00 1850. 1800.	0.6000
-1.000	2410.	382. 88.5 1000E-	0. 1000E-04 0. 0000E+00	1.000	1.000	48.00	30.00			0.0000E+00 0.1500E+00 0.1500E+01 0.00E+01	0.2600 0.0000E+00	712.0 1820. 1600.	0.4000
2-1-0-4 0000 0000 0000	0.0000E+00 6280. 238.0	3. 230 1. 230 0. 1000E-04	0.1000E-04 0.1000E-01	0.8000 0.3200	0.1320	0.1200	1.000 500.0	2.500		0.0000E+00 3.0000E+00 10.000	: DATA 0.0000E+00 1.000 1.060	0.0000E+00 1745. 1400. 2200.	0.2000
.0000 .0000 .0000		100 100 100 100	. 1000E- 19.20 . 4323		27.00 130.00 180.00	61.00	0; 6000E+00 1;000E+00	2002	OMIC	3.6200 0.30000 0.1492 5000 2800.	T64 ENGINE 1. 5050E-01 1. 000	0.000 1122 1200 1200 1200 1200 1200 1200	000
44m	1014W	ა ი4	4550~		אמשר	141-	אמטרוי	-1-1-0	,-	เพ4เขพ2	നഗവം	- - - - - - - - - - - - - - - - - - -	-tΩ
	40000	σωσ	0000	NON	n n n	7010	7007 2007 2007			1680 1680 1680 1680 4690	2222 2222	10010 10010 101010	32

14440 · · · · · · · · · · · · · · · · · ·	1900.	000000 8122000 12224 1222000 1222000 000000000	0000 80000 000000 0000000 00000000 000000	0.000 0.500 0.600 0.0000 0.0000 0.0000	150	5,000 0,0000E+00 4,000 6,000
10000 · · · ·	1800.	0000000 0000000 000000000 000000000	0000. 0.000 0.000 0.0000 0000000 0000000	0.00 0.50 0.00 0.868 0.00 0.00 0.00 0.00 0.00 0.	15	4.0.00 0.000 0000 0000
0000 · · ·	1600.	0000000 4.12.0000 24.12.000 24.12.0000000000000000000000000000000000	00000 	24 20 20 20 20 20 20 20 20 20 20 20 20 20	. 15	15.93 0000 0000 0000
000 000 000 000 000 000 000 000 000 00	1400. 2200.	00000000000000000000000000000000000000	00000000000000000000000000000000000000	9000 9000 9740 9740 9740	. 15 . 15	PROFILE 2.000 1.000 2.000
OWHOOM90	0000	00000000000000000000000000000000000000	0 · · · · · · · · · · · · · · · · · · ·		15	FLIGHT MISSION 1:000 2:000 8:000 5:000 100.0
സസസസസഹ	in in	 	⊣ഹഹസസസസസസ	വവവവവവാ	വവ	സസസപ
	, 2000 2000	14444444444444444444444444444444444444	1444444444 00 140000000000 000	სოობის ეപപപരനെഎ	54 55	20044 72727

. 2500 . 7550 . 7850	0,0000E+0 1,000E+0 0,1667E-0	$\frac{1.10}{166}$							
. 2500 . 7850 . 7850	0.0000E+00 1.000 0.1667E-01	166							0.2500
2500 7550 7550		1000	71.000 000.000 000.000 000.000	7 000 000 0000	20.0 7.00.0 7.00	0000 00.00	. 7000 7000 7000 7000	0.1000 0.0000E+00 0.3330 0.7850 7000.	
2500 7550 7550	1.000 1.000 1.000	1.000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	78 000 000 000		0000 00 00 0000	000 000 000 000	0.1000 0.0000 0.3330 0.7850 3000.	7500

ALACKA PROGRAMMA PROVINCE PROV

DATE 11/25/85 JVX - 25 PASSENGER TILT ROTOR

では、これにはなるとは、これはないできないような

VASCOMP I

B-93
PROGRAM
COMPUTER
PERFORMANCE
SIZING &
AIRCRAFT
V/STOL

THIS RUN CONVERGED IN 1 ITERATION(S)

DATA

2 E

S I

GROSS WEIGHT = 43800. LB

FT SQFT SQFT	SO FF T	FT DEG	LB/SQFT	SOFT	(전 년 1년 년	SOFT	in ri fT 다	FT SXFT	
56. 6 6. 6 1026.	ю.	10000000000000000000000000000000000000	m. 10	\circ .	0, 15 36, 15 1, 26, 26 1, 20, 44	10 .	0 31,75 31,00 12,00 12,00	17. 15.	
LENGTH WIDTH WETTED AREA	ASPECT RATIO AREA SPAN	GEOM. MEAN CHORD OUARTER CHORD SWEEP TAPER RATIO	TIP THICKNESS WING LOADING MEAN CHORD / FROP. DIA.	ASPECT RATIO AREA SPAN	MEAN CHORD THICKNESS / CHORD MOMENT ARM VOLUME COEF.	ASPECT RATIO AREA SPAN	MEAN CHORD THICKNESS / CHORD MOMENT ARM	LENGTH MEAN DIAMETEK WETTED AREA	NO LIFT PROPULSION SELECTED
FUSELAGE LIF WE SP	2	CBARW LAMBDA C LAMBDA	WG/SW C BAR	RHT HT HT	حنسان	R R VI VI	BAR PLTCH PLTCH PLTCH	RIMARY ENG LN DBARN SN	LIET ENG. NACELLE

FŢ	LB/SOFT					こばい/ デュ
38.0	0. 109 19. 3	0.130	2.000	3.000	0.080	775
DIAMETER	SOLIDITY DISC LOADING	THRUST COEFF. / SOLIDITY	NO. OF PROPETLERS	OP	BLADE CUTOUT / RADIUS RATIO	
PROPELLER	SIGMA R/P	CT/SIGMA	Z.	NO. BLADES	SR	£/1

ROTOR
TILT
PASSENGER
25
ı
JVX
/85
/25/
11,
DATE

VASCOMP II

(C)

PAGE

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

PASSENGER SIZING DATA

FIRST CLASS	ziżi ocococo	SQ. FT. SG. FT. IN. *** TOURIST CLASS CRITICAL IN. *** TOURIST CLASS CRITICAL	FT. FT.
		00149 001756	
ISI	zzz H	7.	HM
TOURIST	NO. OF PASS. NO. ABREAST NO. OF AISLES UNIT SEAT WIDTH 20. SEAT PITCH AISLE WIDTH 37.	NUMBER OF LAVATORIES GALLEY AREA CLOSET AREA CABIN DIAMETER BODY DIAMETER	NOSE SECTION LENGTH TAIL SECTION LENGTH CONST. DIA. LENGTH

56.6 FT.

TOTAL FUSELAGE LENGTH

69

ΙΙ щ Σ Ċ ပ Ø 4 >

3

B-93		3. 000 4. 5096	2 2 3 4 4 4 6 6 6 7 6 7 6 7 6 7 6 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 339 4 28 50 50 60 60 60 60 60 60	90. 1271. 438. 710. 2509.
PROGRAM				TNE	
COMPUTER PROGRAM			WING HOR. TAIL VERT. TAIL FUSELAGE LANDING GEAR LIFT ENGINE SECTION PRIMARY ENGINE SECTION PRIMARY ENGINE ACOUSTIC TREAT. STRUCTURE WEIGHT	CON LATION IT INCREMENT	TN:
SIZING & PERFORMANCE		FACTOR FACTOR FACTOR	ECTION E SECTION E ACOUSTI GHT INCRE	RCTOR OR PROPURIVE SYSTEM LIFT ENGINES PRIMARY ENGINES LIFT ENGINE INSTALLATION PRIMARY ENGINE INSTALLATION FUEL SYSTEM PROPULSION GROUP WEIGHT INCRETOTAL PROPULSION GROUP WEIGHT	TROLS TROLS CONTROLS ISM GHT INCREMENT OL WEIGHT
NG & PER	LBS	MANEUVER LOAD GUST LOAD ULTIMATE LOAD	TAIL TAIL AGE NG GEAR ENGINE SI RY ENGIN TUYE WEIN	OR PROPEST ENGINES IN ENGINE E	COCKPIT CONTROLS UPPER CONTROLS HYDRAULICS FIXED WING CONTROS SAS TILT MECHANISM CONTROL WEIGHT IN
	A IN	MANET GUST ULTIN			GROUP COCKE UPPER HYDRER FIXED SAS TILT CONTR
V/STOL AIRCRAFT	DAT		ES GROUP WHT WHT WES WES WIES WIES WES A KST	WEEL WEEL WEEL WEEL WEEL WEEL	NTROLS CC CC CC CC SAS SAS FIN WFC
V/ST	GHTS	EMLE GLF ULF	STRUCTURES GROKEN WWW KN WHT WIN WAT WE WILL WE KIS WIES KIS WIES KIS WEES KIS WEES KIS WEES SPACES(2) DELTA WST WEIS WEES WEES WEES WEES WEES WEES WEES	2010 2010 2010 2010 2010 2010 2010 2010	FLIGHT CONTROL WITH CONTROL WIT
	田田		·		

WFE	WEIGHT OF FIXED EQUIPMENT	6280.
WE	WEIGHT EMPTY	26858.
WE'UL	FIXED USEFUL LOAD	2410.
OWE	OPERATING WEIGHT EMPTY	29268.
WPL	PAYLOAD	10000.
(WE)A	FUEL	4532. 4532.
MG.	GROSS WEIGHT	43800.

DATE 11/25/85 JVX - 25 PASSENGER TILT ROTOR

PAGE 5

ssial academ basesses becaused

ACCOUNT PRODUCT CONTROL CONTRO

VASCOMP II

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

PROPULSION DATA

PRIMARY PROPULSION CYCLE NO. 1.650

TURBOSHAFT ENGINE

ENGINES

BHP*P MAX. STANDARD S. L. STATIC H. P. 9710. H. P. POWER LOADING = 0.2217

ENGINE SIZE WAS FIXED BY INPUT

ACCESSORY HORSEPOWER EXTRACTED = 30.00 H.P.

NO LIFT ENGINE CYCLE SELECTED

XMSN SIZED AT 100. PERCENT OF TOTAL PRIMARY ENGINE INSTALLED POWER (MAX. STANDARD S. L. STATIC H.P.), 100. O PERCENT HOVER RPM

TRANSMISSION EFFICIENCY = 0.9700

ROTOR
TILT
PASSENGER
25
JVX -
/85
/25
11
DATE

9

PAGE

VASCOMP I

PROGRAM B-93	13.862 SOFT 2839. SOFT 0.004883	60000000000000000000000000000000000000	0. 59515 0. 12091 0. 16725 0. 03165 0. 07185 4. 85981 0. 79479
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	CODYNAMICSDATA FE TOTAL EFFECTIVE FLATPLATE AREA SWET TOTAL WETTED AREA CBARF MEAN SKIN FRICTION COEFF.	G B R E A K D O W N FEEW FEEVT VERT. FEHT FEEN FEELN FEELN LIETT DELTA FE INCRE	AND YNAMIC COEFF. AND AND AND AND CLIFT SLOPE E. SAMALD FACTOR
	ਲ ਬ	D R A	ম ন ম

ASCOMP I

Ö B-4 PROGRAM Z, Ω Y H 闰 Ö COM Z Æ, FORMANCE Σ K 0 E æ 团 国 ধ щ ING 3 N 0 SI S S AI Σ V/STOL

81			THETA (DEG) (DEG) -3:22 -3:32	Œ	1 166 166				
1067	10686 10692 10693		EFFE 1910. 1911.	DEG.	CT 08 0.11	DEG. F			
545	იაი 4444 იაბი		MACH DIV : 547 : 547	HRS. 59.0	EM 0.7	59.0			
66	000 000 000	_	MACH . 3999 . 3785	0.017	THRUST TO WEIGHT 1.2552	冠			
0.0	2000	SPEED	0000 0000 0000 0000	FOR ERATU	LETF W 0.000 W	ERATURE	LETF 0.000 0.000		• •
. 449 2	444 444 888 222	T MAX.	PE P	0.000 TEMP	PETE OOR 1.0000 0000	; TEMP	PETE OR PEHE 0.071		PRES. ALT. (FT) 3000
	000	. AT	<u>ප</u> පට	TE =	H ODE	LING	THE CODE		
	9000	N. MI	MM 0000	LEI	MA OO HE	RAT	щО		CHT S3. 839. 839.
49	444 9000	00	12227 12227 12227 12227 12227 12227	000 IIN	TURENT 1885 1855 1855	GINE	TURB TEMP (R) 1200	FT.	ELL ELL ELL ELL ELL ELL ELL ELL ELL ELL
9	225 266 1.1.1	400	TACKAS 2255 2555 1555 1555 1555 1555 1555 155	= 1. ET/M	TAS (KT) 0.	LE ENG	TAS (KT) 0.	000	, ,
00	0000	보, II	123 123 123 123 123 123 123 123 123 123	T PETE 0.0	PRES ALT (FT) 0.	UND IDLE	PRES ALT (FT) 0.	ന	FUEL USED 3961 3961
131	40847. 40379. 39973.	0. FT.	WEIGHT 399673 39962. 39950.	E LAND A'	WEICHT (LB) 39938. 39863.	S AT GROUND	WEIGHT (LB) 39863.	TITUDE TO	ANGE N. M. A 400. 00
48	2953. 3421. 3827.	II 	EUSED USED 38827 38838. 3850.	ER, O	FUEL USED (LB) 3862. 3937.	25 HR	FUEL USED (LB) 3937.	ER ALT	~ ~
50.	350.0 350.0 353.0	н от а	A	E HOV	RNG (NM) 400.00	OR 0.0	RNG (NM) 400.00	TRANSE	TIME (HRS)
00	1. 1944 1. 585 1. 552	DESCEND	TIME (HRS) 1.555 1.560 1.568	TAKEOF VERTIC	TIME (HRS) 1.594	TAXI E	TIME (HRS) 1.594		

48.3 DEG. F	MACH FUEL ETAP 248 469 1738 824 245 466 1739 824 243 466 1739 824 240 463 1715 824 240 463 1715 824	
ERATUR5=	EAS 330911155 300711553.13 00571150.13 1500.13 1500.44	
TEMPER	EOE	61.14 75.79 36.92
FUEL	11355 1355 1355 1355 1355 1355	39
ERVE F	11 10 10 10 10 10 10 10 10 10 10 10 10 1	UIRED UIRED UIRED
RES	8 (000000 000000000000000000000000000000	TTT RESOLUTION PRO
HRS. FOR	× × × × × × × × × × × × × × × × × × ×	ION FUE RVE FUE L
0.333	EUEU CNSEEU A 4 4 3 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	MISS TOTA
R FOR	X 4444 000000 0000000 000000	
LOITER	HING HING HING HING HING HING HING HING	

ď.
\overline{a}
꿑
ROTO
ž
_
H
-1
TILL
H
_
æ
PASSENGER
ပ
z
E
S
ΩÌ
K
щ
25
a
•
ي.
\sim
λX
•
S
Ø
1
/25/85
2
\
11/
~
DATE
ᅜ
Æ,
\sim

Ø

PAGE

A S C O M P I

93 Z. H 4 Ω COMPUTER 曰 O Z K Ξ œ 0 ĮΞį K PE Ή Æ 24 ZINC Z 0 ໝ S ß Σ V/STOL

LB

9200.

REMOVE

PAYLOAD

CHANGE

DEG. HRS. 59.0 0 59. 017 OOO FOR O. (TEMPERATURE TEMPERATURE 000 PRES FIT. 60. PETE OR PEHE O. 071 O. 071 ö RATING; 11 ENG LETE HH VEIGHT LBS.) 43800. 34600. TURB TEMP 1200. ENGINE = 1.000 FT/MIN TAS (KT) C.C. IDLE 00 FUEL USED (LBS) 0.0 PETE O.O PRES ALT (FT) 0. GROUND AT WEIGHT (LB) 34576. 11 RANGE (N.M.) 0.00 0.00 CLIMB = AT HRS 0 HOVER OF RATE OF FUEL USED (LB) 24. S 02 FIME HRS) 0000 033 CONT CONT COO ö FOR TAKEOFF TIME (HRS) (033 TAXI

22200000 02224 74480228 RATING ENGINE **04827788** 2888777 2844 7740 MILITARY , H000000000 ENG AT 118220 18220 18220 18220 18220 18220 18220 R/C 8888999888 7.0009887 HL WEIGHT 3346501. 3344788. 3344461. 344461. 344488. M 7000. CLIMB HE0000000

1156

oo

708 708

00

000

00

HH

THRUST TO WEIGHT 1.447

LETE

ENG

PETE OR PEHE 1.000 1.000

TURB TEMP (R) 1850.

> 138 (KH) 0.

PRES ALT (FT) 0.

WEIGHT (LB) 34576.

FUEL USED (LB) 999.

> OOM OOM OO

TIME (HRS) 0.058 0.075

20.0	رج. الق	ETAP	16	56	900	1-4-4	900	שעטע	اساساد	 9000 9000 9000		E H	34.4.	144	444	দি	E
4720.	4.0 DE	PECANGE	1386 1386 1395	1403	1441 4224 925	111444 1443 1864	1455 455 865 860 860	1441 1471 0117	444 4882 770	. 14974 . 14998 . 15002		SS	1000 1000	ად <u>დ</u> 046	1832 1832 1836	O DEG.	ช
. 504	e II	MACH S	539 539	25.44.00.00 04.40	541 540 101	544 1542 1551	244 444 864	სის #44 #ის	1444 1077	0000 1444 0040		MACH DIV	500	S S S S S S S S S S S S S S S S S S S	561	7 HRS. 59. (T FM
. 288	TEMP	MACH 1	371	371	370 367 267	, 687 687	367 367	0 0 0 0 0 0 0 0	3300 3700 3700 3700	00000 00000 0040	۵	MACH	44.	44°C		0.01 URE =	THRUST TO WEIGHT
167.1	TS	AS	ຕຸຕຸ	S S S S S S S S S S S S S S S S S S S	466	1 7 7 7 7	mer.	# #	44.	002	SPEE	EAS	000		25000	FOR IPERAT	LETE
0.961	O KNO		201 405 603	იი 44: მა	000 000 000	337	100 100 100 100	2000 144 004	これまり	7000 7000 7000 7000	T MAX.	HO FR	1000 1000	780	0.165	0.000 TEM	PETE OR PEHE
E	0		400	00	೦೮೦	000	000	000	000	AMAM MAMA	MI A	ENG			HHH	IIE =	CODE
1820.	WIND OF	URB EMS	307 700 700	371 369 969	ათი ადი	1000 1000 1000	で (2) (2) (3) (3) (4)	385 944 197	なさる	1000 1000 1000 1000 1000	00 N. N	URB EMP	いろろっ	ころろ	1270. 1270. 1270.	OOO LE	TURB F TEMP (R)
186.	HEAD!	₹ \$	ム44	44	നന്ദ	ാനന	ເນເນເ	റനന്	mma	0000 0000 0000	920.	45	41-1-4	စ်ထဲဝ	2557. 2554.	= 1. (FT/M)	TAS (KT)
7000.	HIIM C	ALIE ELE	100 200	000						777	ب اا	XIII SELE	75 6000 6000 6000 7000		00	T PETE 0.0	PRES ALT (FT)
. 34408.	RANGE SPEEI	Da Da	4460 407	3371 33371 3361	2000 2000 2000 2000 2000	,000 ,000 ,000 ,000 ,000	3022	2000 2000 2000 2000 2000 2000 2000 200	9000 8000 8000 8000 8000	28542 28547 28213 81893	O. F.T.	() to	222 200 1111 2011 2011 2011	28012 2815 145 145	28131. 28118. 28106.	OR LAND A: CLIMB =	WEIGHT (LB)
192	EST R	田田田田	50E	2382 2382 238	200 240 255	645 993 993	M M M M M M M	366 706 706	382 382 482	6053 6387 6411	li m	DOP 可可	444 4424 4424	1444 546	6469 6469 64989 6494	ER E ÓF	FUEL USED (LB)
4.0	AT BE	RNG	50.47	900		000	000	000	0000	9000.00	D TO H	SS	2000 2000	 90°	915.4 917.7 920.0	E HOV	RNG (NM)
0.097	CRITSE	IME	. 289 289	498 706 907	 22. 24. 24.	 	 966 806 806			3.00 3.00 8.00 8.00 8.00 8.00 8.00	DESCEND	IME	882	 	6.00 6.00 6.00 6.00 6.00 6.00 7.00 6.00 6	TAKEOE	TIME (HKS)

166 166						ET BE
708 0. 11 708 0. 11	O DEG. F				មែរ	EUER RATEL 12225HE 12225G. 122126. 12112.
780 0. 784 0.	59. (DEG.	MACH DIV . 4777 . 476 . 476
નંનં	URE =	00			34.0	222233 222233 222233
000	TEMPERATURE	LETF 0.000			URE=	E E E E E E E E E E E E E E E E E E E
1.000		PETE OR PEHE O. 071		PRES. ALT: (FT) 7000.	TEMPERATURE=	PETF OC. 2007 0. 2005 0. 2005 0. 2005
HH	RATING;	ENG CODE TH		HT. 50. 50.	TEM	CH CH CH CH CH CH CH CH CH CH CH CH CH C
1850. 1850.	ENGINE	TURE TEMP 1200 1200	FT.	WEIGHT (LBS.) 28006. 28006.	FUEL	12589. 12589. 12559. 12559. 12559.
ဝ်ပဲ	IDLE EN	TAS (KT) 0.	7000.	 		1385 1485 1489 1488 1488
ंं		PRES ALT (FT) 0.		A CONTRACTOR OF	RESERVE	ALLES 7000 7000 7000 7000 7000
28106. 28030.	S AT GROUND	WEIGHT (LB) 28030. 28006.	TITUDE TO	ANGE N. M.) 920. 00 920. 00	HRS. FOR	WEIGHT (LB) 28006. 27884. 27762. 27640. 27600.
6494. 6569.	025 HR	EUEL USED (LB) 6569.	AL	~ _	0.333	FUSED (LEB) 65594 66716. 7000.
00	o.	00 30 00 30 00 00 00 00 00 00 00 00 00 0	TRANSFER	1 ME HRS) 988	R	00000
920	FOR	99 200 900 900 900 900	TRA	H H	R FOR	000000 222222 200000 200000
3.947 3.963	TAXI	TIME (HRS) 3.963			LOITER	TITA 3.3 HRSE 44.0888 4.1888 32888 1.32888

END OF SUCCESSFUL CASE

6593. 52 406. 16 6999. 68

11 11 11

REQUIRED REQUIRED REQUIRED

FUEL FUEL FUEL

MISSION RESERVE TOTAL

VASCOMP II

B-93 PERFORMANCE COMPUTER PROGRAM S U M M A R Y ય્ V/STOL AIRCRAFT SIZING

11

ITERATION NO.

438.00 100.00 49.41 5.57	6005 6005	-w∨w	0.0000
H H I! H	م د	PTY REA	XE VI
	/4 CHORD SWE APER RATIO USELAGE WIDT	PER. WEIGHT BE SIGHT OF FUE FF. FLAT PL.	O. OF LIFT EN IFT THRUST/G
43800. 9710. 0.2217	0.0	2685 10085 20000 2000	ည္တဝ
ME WAR IIIIII		⋖	H H
GROSS WEIGHT NO. PRIMARY ENGINE PRIMARY THR. OR. PV PRIM. T/W OR BHP	E LEN	EIGHT WEIGH	LIFT ENG. THRUST

MISSION DATA

		97.			
=0, 399		TIME=		÷ J. 355	
MACH NO.		4537.		MACH NO.	
391.3 391.3	6.5	FUEL=	4	899.5 7.5 7.5	
3000.0	00	576. TOT.	00	7000.0	00
4,0,00	4. ખે.	SRV. FUEL=	4.00	ioic	275 245.24
		3961. R	111.		,-i-i
TOFE/LND CLIMB CRUISE	DESCENT TOFF/LND TAXI	RNG= 400.NM MSN. FUEI,=	TAXI TOFF/LND	CRUINE	TOFF/LND TAXI
	IND 1.5 24.1 0.0 75.2 0.0 5.5 2 89.8 3672.8 3000.0 391.3 MACH NO.	1.5 24.1 0.0 0.8 55.2 0.0 89.8 3672.8 3000.0 391.3 MACH NO. 1.5 75.2 0.0 6.5	TOFE/LND 1.5 75.2 0.0 0.0 CLIMB 0.8 3672.8 3000.0 391.3 MACH NO. =0.399 DESCENT 1.5 75.2 0.0 TOFE/LND 1.5 75.2 0.0 TAXI 1.5 75.2 0.0 1.5 75.2 0.0 400. NM MSN. FUEL= 3961. RSRV. FUEL= 576. TOT. FUEL= 4537. BLOCK TIME=	TOFE LND 1.5 75.2 0.0 0.0 0.0 0.0 0.8 55.2 0.0 0.0 0.8 55.2 0.0 0.0 0.8 0.8 3672.8 3000.0 391.3 MACH NO. =0.399 DESCENT 1.5 34.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	TOFE LND 1.5 75.2 0.0 0.0 CRUISE 89.8 3672.8 3000.0 391.3 MACH NO. =0.399 DESCENT 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 1.5 75.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

RNG= 920. NM MSN. FUEL= 6594. RSRV. FUTL=

406. TOT. FUEL= 7000. BLOCK TIME= 239.

V. DESCRIPTION OF EXPERIMENTS

A. EXPERIMENT 1 - MAXIMUM RANGE

In this experiment, the 25-passenger Model 107 and the 25-passenger tilt rotor were used to examine aircraft performance for a single-leg mission. The aircraft were programmed to carry identical payloads of 5000 pounds (which represented a load of twenty-five 200 pound passengers, including baggage) and to fly identical mission profiles at an altitude of 5000 feet mean sea level (MSL). The standard flight profile used for any given "mission" followed a sequence which included:

- * Taxi
- * Hover/Takeoff
- * Climb
- * Cruise
- * Pescent
- * Landing/Hover
- * Tar1

The objective was to determine the mission range, within the maximum range capability of the CH-46F, where the performance of the tilt rotor surpassed the performance of the tandem rotor helicopter.

P. DXPERIMENT 2 - LOJTER ENDUPANCE

The second experiment involved comparisons between the performance capabilities of a 25-passenger tilt rotor aircraft and the 25-passenger CH-46F for missions requiring

the aircraft to traverse a specified range (mission radius) and conduct a loiter mission for the maximum time permissible while maintaining sufficient fuel to return the same distance as the outhound leg (plus reserves). Payloads carried by the aircraft were 3500 pounds and the cruise segments were flown at an altitude of 5000 feet MSL. Each "mission" consisted of the following segment sequence:

- * Taxi
- * Hover/Takeoff
- * Climb
- * Cruise
- * Initer
- * Cruise
- * Descent
- * Landing/Hover
- * Taxi

The objective was to compare the capabilities of each type aircraft at given aission radius values.

C. EXPERIMENT 3 - HOVER ENDURANCE

This experiment is an extension of experiment \$2 in that payload, altitude parameters, and aircraft types remained unchanged. Flight profiles were similar except that the loiter segment was replaced with a descent-hover-climb series of segments. From a performance standpoint, the difference lies in the fact that the hover flight mode is a more demanding flight mode in terms of fuel (and power) required.

The objective in conducting this experiment was to analyze the differences in aircraft capabilities for given values of mission radius.

D. EXPERIMENT 4 - ONE TILT ROTOR VS. TWO HELICOPTERS

In the fourth and final experiment, the capability of one 44-passenger tilt rotor was compared to the capability of two 25-passenger Boeing CH-46F helicopters.

In this mission scenario, the two tandem rotor aircraft, with no payload onboard, simultaneously depart from a site designated "Helipad A". Each helicopter flies a distance equal to one-half of its maximum range capability (103 NM), receives a payload increase of 4400 pounds (to simulate the boarding of 22 passencers, each weight a total of 200 pounds with baggage), and returns to the original departure site. One helicopter flies to "Helipad R" while the other travels to "Helipad C". Helipads B and C are separated by a distance designated "Leg BC".

Starting from Helipad A with no pavload, the '4-passenger tilt rotor departs at the same time as the two helicopters, flies to Helipad B, picks up a 4400 pound payload, then flies to Helipad C and picks up an additional 4400 pounds. The tilt rotor complets its mission by returning to Helipad A. The standard flight profile used for this experiment was the same as that used for experiment #1.

The objective for this experiment was to find the values for Leg BC where the tilt rotor could transport the pavloads over further distances more efficiently than the two helicopters.

VI. RESULTS

A. EXPERIMENT #1

THE REPORT OF THE PROPERTY OF

1. Fig 1, Pg 86 - Fuel Required vs Range

In addition to the obvious advantage of the extended range capability (on a single fuel load) that the tilt rotor maintains over the tandem rotor helicopter, the graph on page 86 shows that for ranges of approximately 150 NM and beyond, the tilt rotor requires less fuel than the helicopter to complete the mission. It is noted that to traverse the distance covered by the tilt rotor in one fuel load the CH-46F would have to refuel three times.

2. Fig 2, Pg 87 - Time Required vs Range

For the data presented, within the single fuel load range of the tandem rotor halicopter, it can be seen that for any given range beyond approximately 75 NM the helicopter requires at least twice as much time to travel the same distance as the tilt rotor. Refueling time would further compound this disadvantage for the helicopter.

Fig 3, Pg 88 - Passenger-Mile per Lb of Fuel vs Range

This graph shows that at a range of just under 150 NM the tilt rotor will perform more efficiently by being able to complete more passenger miles per pound of expended fuel than the CH-46F.

Fig 2. Time Required vs. Range

Fig 3. Pax-Mi/Lb-Fuel vs. Range

B. EXPERIMENT #2

1. Fig 4 Pg 90 - Loiter Time vs Mission Radius

The tilt rotor clearly holds a significant loiter endurance advantage over the tandem rotor helicopver. At the maximum mission radius for the CH-46F, which allows no loiter time, the tilt rotor can travel the same distance and still conduct a three hour (plus) loiter mission.

2. Fig 5, Pg 91 - Fuel Required vs Loiter Time

The graph reveals the tilt rotor's disadvantage of requiring roughly 50% more fuel than the helicopter for the same amount of loiter time.

C. EXPERIMENT #3

1. Fig 6, Pa 92 - Hover Time vs Mission Radius

Compared to the loiter mission, the tilt rotor does not maintain as large a margin of superiority for the hover mission. At the maximum mission radius for the CH-46F, (no hover time capability) the tilt rotor has sufficient remaining fuel for a little over one hour of hover time.

2. Fia 7, Pg 93 - Fuel Peauired vs Hover Time

The hovering efficiency of rotary wing aircraft is made apparent by this graph which shows that the tilt rotor, for a given hover time requires roughly 2.7 times more fuel than the tandem rotor belicopter.

Fig 5. Fuel Required vs. Loiter Time

D. EXPERIMENT #4

1. Fig 8, Pg 95 - Fuel Required vs Range

This graph shows that one 44-passenger tilt rotor can do the job of two 25-passenger helicopters (operating at 88% seating capacity) using less fuel even when travelling to sites that are separated by distances of up to 250 NM. It is evident that even if the helicopters were operating at full capacity, the tilt rotor's advantage would not decrease substantially.

2. Fig 9, Pg 96 - Time Required vs Range

The 44-passenger tilt rotor, when travelling to locations separated by distances of up to nearly 300 NM, performs better than two CH-46F helicopters that are flying a 103 NM radius to the same locations.

3. Fig 10, Pg 97 - Passenger-Mile per Lb of Fuel vs Rng

This final graph shows that using one 44-passenger tilt rotor travelling to two landing sites separated by 150 MM or more is more efficient than using two tandem rotor CH-46F helicopters to cover the same two landing sites.

Fig 8. Fuel Required vs. Range

Fig 10. Pax-Mi/Lb-Fuel vs. Range

VII. DISCUSSION AND CONCLUSIONS

A. EXPERIMENTS

The experimental results substantiate that the V-22, designated to replace the CH-46F among other aircraft, will offer significant improvements in speed, loiter endurance, hover endurance, performance, and efficiency. The results lend further credence to the manufacturer's claims that tilt rotor aircraft can transport more passengers/payload over longer distances in less time than conventional while retaining the important advantage of helicopters vertical takeoff and landing. It is acknowledged that the tilt rotor can readily perform transport missions using less fuel than helicopters but if a large percentage of hovering flight is required, conventional rotary wing aircraft are far more efficient from a fuel consumption standpoint. However, they do not have the staying power that the tilt rotor demonstrates.

B. TILT ROTOR ADVANTAGES TO THE MILITARY

The speed and efficiency of the V-22 will allow greater stand-off ranges for naval assault fleets; permit more rapid buildup of assault forces at objectives while retaining the ability to operate from small ships and/or to maintain an independence from runways.

C. TILT ROTOR ADVANTAGES TO THE CIVILIAN AVIATION COMMUNITY

The high productivity of the tilt rotor will provide much needed relief in air traffic congestion at major airports by providing a vehicle that has twice the speed of conventional helicopters without sacrificing the ability to transport passengers on a city-center to city-center basis. This will, effectively, reduce the requirement to increase the number of available commuter jets and turboprops as transportation demands increase.

D. COMPUTER PROGRAMS

Both VASCOMP II and HESCOMP were found to be relatively straightforward in their application. Each program has an enviable range of versatility and flexibility. The most difficult factor in working with the programs is, without a doubt, obtaining the input data. Without the cooperation of an agency such as NASA Ames Research Center it would be extremely difficult to compile a complete data set for any given aircraft. Aircraft manufacturers are a potential data. The aircraft for which it is easiest to obtain data are those produced for the military. As part of the procurement process, manufacturers are required to submit a MIL-STD Form 1374 entitled GROUP WEIGHT STATEMENT which provides detailed weight data as well as dimensional and structural data. This document is generally available for official uses.

Concerning the accuracy of the programs in the faithful representation of the aircraft described by the input data, it is felt that the trends routines built into the program do an adequate job of approximating the vehicle and the flexibility of the program more than adequately allows for adjusting the output to obtain results which match actual flight test data.

APPENDIX

VASCOMP USER'S MANUAL

This User's Manual was completed in conjunction with thesis research. It was prepared using the guidelines that the manual should:

- 1. Provide helpful information for those individuals interested in using VASCOMP II at the Naval Postgraduate School (NPS), Monterey, California.
- 2. Provide information in such a way that a user could run VASCOMP II without relying on material elsewhere in this thesis.
- 3. Simplify, to a large extent, the material presented in the Boeing VERTOL Company VASCOMP II User's Manual.
- 4. Include examples of:
 - a. Required Job Control Language (JCL) statements for using VASCOMP II on the IBM 3033 computer at NPS.
 - b. Sample data for a V/STCL aircraft.
 - c. Sample output for a V/STOL aircraft.

I. INTRODUCTION

A. PURPOSE

This manual was designed to provide the user with a simplified version of the Boeing VERTOL Company's VASCOMP II User's Manual. A copy of the Boeing VERTOL user's manual is catalogued and available at the Dudley Knox Library at NPS. Also included in this manual are examples of:

- 1. Required Job Control Lanugage (JCL) statements for using VASCOMP II on the IBM 3033 computer at NPS.
- 2. Sample data for a V/STOL aircraft.
- 3. Sample output for a V/STOL aircraft.

B. APPLICABILITY

VASCOMP II, the V/STOL Aircraft Sizing and Performance Computer Program, is a viable computer program for predicting size and performance data for V/STOL aircraft. It can be used for any aircraft which employs fixed wing lift during primary cruise flight.

C. PROGRAM OPERATION AT NPS

Due to the large size of VASCOMP II, (in excess of 16,000 lines of FORTRAN code), production runs at NPS should be accomplished using the batch operating system on the IRM 3033 Network referred to as MVS (Multiple Virtual System). Chapter II of this manual provides an explanation and an

example of the Job Control Language statements required for running VASCOMP II on the batch system. Chapter II also describes the procedure for running the program on VM/CMS.

D. PROGRAM DATA

Production runs of VASCOMP II require a significant quantity of data. Chapter III provides information on the format of the data file and a list/description of the data locations.

E. V/STOL AIRCRAFT EXAMPLE

Chapter IV consists of output generated by running the program with the data shown in Chapter III.

II. PROGRAM OPERATION AT NPS

The VASCOMP II program can be run at NPS by one of two is highly encouraged to utilize the MVS The user means. batch system due to the excessive size of the program. is primarily for the user's convenience since, in order to run the program using VM/CMS, the program would have to be filed on an A-disk and would require 37% of the normal eight cylinder allocation for storage alone. Using only eight cylinders, it is not possible to compile the program. If it is necessary to use VM to run the program, the user can request allocation of a B-disk or, as an alternative, it is possible to create a temporary disk of variable size any time the user logs onto VM/CMS. NOTE: Files on a temporary disk are troly temporary. FILES ARE LOST IF THE USER LOGS OFF OR THE SYSTEM GOES DOWN UNEXPECTANTLY. A user can create a temporary disk using the following steps:

1. Create an EXEC File

In CMS type: XEDIT TDISK EXEC

2. Temporary Disk EXEC File Commands

Type the following lines into the file:

& TRACE
CP DEFINE T3350 200 CYL 24
& STACK YES
& STACK TDISK
FORMAT 200 C
ACCESS 191 B

3. Create a Second EXEC File

In CMS type: XEDIT MODES EXEC

4. Modes EXEC File Commands

Type the following lines into the file:

ACCESS 200 A

5. Activate the EXEC Files

In CMS type: TDISK. Wait for the "R;" response then type: MODES.

6. File Alignment

The user now has a 24 cylinder "temporary" A-disk and an 8 cylinder B-disk. All default files will go to the temporary A-disk. Move files for permanent storage on the 191 disk by typing the following command next to the file in FLIST: COPY / = B

B. PROGRAM OPERATION USING VM/CMS

Use VS FORTRAN if the program is to be run on VM.

C. PROGRAM OPERATION USING VMS BATCH

The preferred mode of operation is to the MVS batch. To run VASCOMP II on MVS batch at the Naval Postgraduate School, the user must access the "AERO DISK" and locate the file entitled: VASCOMP FORTRAN Al. Browse the file for further information on program operation.

D. JOB CONTROL LANGUAGE (JCL) STATEMENTS FOR DATA FILE

When the user has compile the necessary data to run the program, create a FORTRAN file by following the steps below.

1. Create the File

In CMS type: XEDIT (filename) FORTRAN

2. Job, Main, Procedure, and DD Statements

Place the following Job Control Language (JCL) statements at the top of the file:

where,

- * The jobname may contain eight alphanumeric characters. The first character must be alphabetic.
- * nnnn is the user number assigned by the computer center.
- * ident may contain twenty characters (including blanks).
- * Correct spelling and spacing on the JOB and MAIN statement (first and second line, respectively) is critical.
- * To send the program output to the remote printer in Halligan Hall, modify the MAIN statement by replacing NPGVM1.nnnnP with NPGVM1.HAL

3. Program Data

The data for the program is placed immediately after the last JCL statement (see example below).

4. Delimiter and Null Statements

Place the following JCL statements immediately after the last line of the program data:

/* // The delimiter (/*) statement is an end of file statement for marking the end of a data set. The null (//) statement is used to mark the end of the job. Without the null statement the user may find that the program will not run with any degree of consistency.

B. DATA FILE EXAMPLE

A complete data file, including proper JCL statements, for a program calibration run using an 8-passenger tilt rotor aircraft is included in Chapter III of this manual. The following is an example of the proper placement of the JCL statements.

```
//VASWALO1 JOB (1053.9999), TOM WALSH SMC 2986', CLASS=C
//*MAIN ORG=NPGVM1.1053P

//GO EXEC PGM=VASII
//STEPLIB DD DSN=MSS.Fxxxx.VASCOMP, DISP=SHR
// DD DSN=SYS1.PP.VFORTLIB, DISP=SHR
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=A, DCB=(RECFM=FBA, LRECL=133,
// BLKSIZE=1300)

//FT05F001 DD *

...
(data)
...
/*
/*
```

III. DATA LOCATIONS AND DESCRIPTIONS

A. INFORMATION SOURCE ACKNOWLEDGEMENT

It should be noted that a significant portion of the information in this chapter is either paraphrased or taken directly from the Boeing VERTOL Company VASCOMP II Users's Manual. In particular, most of the variable descriptive information is taken from Chapter 5 of the Boeing Manual.

B. ORGANIZATION OF DATA

For efficiency and program logic, each data value is identified by a four-digit integer. For convenience, the data is read in using rows of up to five (5) data values. The format of the FORTRAN "READ" statement is:

FORMAT(14,1x,11,5(E14.7))

When preparing the data file, spacing must match the above format precisely. Failure to accomplish this will result in erroneous data values. The correct sequencing of values for any given line of data is:

COLUMNS	VARIABLE TYPE	PATA DESCRIPTION
01 - 04 5 6	INTEGER N/A INTEGER N/A	First value identification Blank Number of values in row Blank
08 - 21 22 - 35 36 - 49	REAL REAL REAL	Value identified in COL ' - 4 Value in COL 1 - 4 clus e Value in COL 1 - 4 plus o
50 - 63 64 - 77 77 - 80	REAL REAL N/A	Value in COL 1 - 4 plus taree Value in COL 1 - 4 plus four Blank

123456789012345678901234567890123456789012345678901 EXAMPLE:

0227 4 0.123

以**同**下"不是他们们",这是是他们的一个人。

72.92

3.0

0.25

In this example, the data line contains four data values (the numbers at the top of the page are for the convenience of the manual user to verify the column locations of the data). The first data value, number 0227, is 0.123. The second data value, number 0228, is 72.92. The third value, number 0229, is 3.0. The fourth data value, number 0230, is 0.25.

C. COMMENT, END-OF-CASE-STUDY, AND EXIT LINES

- 1. Two types of comment lines can be included in the program data.
- a. The first type of comment is one which the user desires to have repeated at the top of each page of program output. To accomplish this, place a "7" in column 1 thru 8 on the first line immediately following the JCL statements, On the next line, columns 1 thru 6 must be left blank. Columns 7 thru 80 are then used for any comment (such as type of aircraft being studied, etc.) to be repeated at the top of each and every page of program output.
- b. The second type of comment is one which the user desires for separating groups of that. This type of comment card is optional. It is accomplished in the same manner as the first type (by placing a "7" in columns 1 thru 8, etc.) but the comment information will be printed in the output

only once. Examples of both types of comment lines are included in the sample data file at the end of this chapter.

- of aircraft using only one data file, the data groups can be separated by placing an "8" in columns 1 thru 8. A "7" card and a repeating comment line should immediately follow the "8" card.
- d. To properly exit the program, the last data line must contain a "9" in columns 1 thru 8.

D. DATA CATEGORIES

がいったとうと、これがあるのかが、これがいのかがない

SERVICE CONCRETE BACKERS STORY TO SERVICE

The Roeing VERTCL Company VASCOMP II User's Manual includes a total of twenty-four different data input sheets. Data can be loosely grouped into six categories:

- 1. Aircraft General Information
- 2. Aircraft Dimensional Information
- 3. Mission Profile Information
- 4. Engine Cycle Information
- 5. Propeller Data
- 6. Supplementary Information

The following paragraphs describe the purpose of each data location

E. AIRCRAFT GENERAL INFORMATION

LOCATION DATA DESCRIPTION (FORTRAN NAME)

Option Indicator (OPTIND)

- 0 = Program calculates aircraft gress weight, dimensions, and power required.
- 1 = Program calculates aircraft gross weight, dimensions, and power required to complete a user specified mission flight profile.

- 2 = Input gross weight and mission profile. Aircraft size remains fixed and program calculates time history performance data and fuel required to complete the mission.
- 3 = Input operating-weight-empty and mission profile. Aircraft size remains fixed and program calculates takeoff gross weight and fuel required to complete the mission.

For a combination of options 1 and 2, input data to describe the aircraft and mission flight profile at the top of the data file. This data should then be immediately followed by the additional missions for off-design-point performance calculations.

0002 Print Indicator (TNIRPK)

のは、「あためのからな」。これのかかない。 できかい ことに、「かんのからない。」ではいからなる。「ないないないない。」できなかないない。「できないないない。」できないない。

0 = Mission performance data output for the following flight segments will consist of:

All - time, range, fuel used, aircraft weight, press. alt., true airspeed, eng. turbine temp., eng. code specifying eng. performance, and the primary eng. thrust or horsepower fraction (PETF or PEHF).

Takeoff, Hover, and Landing - Thrust to weight ratio, propeller power coeff., propeller thrust coeff., prop tip speed.

Taxi/Takeoff, Hover/Landing - Lift eng.
thrust fraction (LETF).

Climb/Cruise/Descent/Loiter - Mac? no., equivalent airspeed.

Climb, Cruise, and Descent - Mach number for drag divergence.

Climb and Descent - Flight path angle, and fuselage attitude angle.

Climb - Rate of climb.

Cruise - Specific range.

Descent - Rate of sink.

Loiter - Time rate of fuel consumption.

Takeoff, Hover, Landing, Cruise, and Loiter - Propeller efficiency.

1 = All data output for TNIRPK = 0 is printed.
 The following information is also printed:

Climb/Cruise/Descent/Loiter - Fuel flow rate, lift, drag, horsepower, thrust, lift coeff., drag coeff., propeller power coefficient, prop advance ratio, propeller thrust coefficient, propeller tip speed, and propeller efficiency.

2 = Delete mission performance data output.

0003 Drag Indicator (DRGIND)

- 0 = Program calculates drag rise due to compressibility effects.
- 1 = If drag rise characteristics of the acft
 are known, a 3-D table of compressibility
 drag coeff. can be input as a function of
 Mach number and lift coefficients.
- 2 = Used for supercritical drag divergence.
- 0004 Oswald's Efficiency Factor Indicator (OSWIND)

 - 1 = Program calculates Oswald's efficiency
 factor as a function of wing aspect ratio.

O005 Propeller Dimension Indicator (PDMIND)

- 1 = Input dia. and activity factor per blade.
- 2 = Input disc loading and activity factor per blade.
- 3 = Input diameter and thrust coefficient to solidity ratio.
- 4 = Input propeller disc loading and thrust coefficient to solidity ratio.

0006 Fuselage Dimension Indicator (FDMIND)

- 0 = Input fuselage length and wetted area.
- 1 = Input cabin length (constant diameter),
 nose and tail fineness ratios. Program
 calculates acft length and wetted area.
- 2 = Input desired capacity, seat width and pitch, number and width of aisles, number of seats abreast for tourist and first class, galley and lavatory size. Program calculates fuselage size.

000? Wing Dimension Indicator (WDMIND)

- 0 = Input wing loading and aspect ratio
- 1 = Input chord to diameter ratio and disc loading. The size trends subroutine then calculates the wing loading.
- 2 = Input wing loading and disc loading. The size trends subroutine then calculates the chord to diameter ratio and aspect ratio.
- 3 = X-Wing configuration

******* DO NOT SET WDMIND = 1 or 2 IF ENGIND = 1 *******

0008 Horizontal Tail Indicator (HTIND)

- 0 = Program computes H-tail volume coefficient
- 1 = Input horiz. tail volume coeff. and moment
 arm. Horiz. tail sfc is then calculated
 by the size trends subroutine.
- 2 = Input the horizontal tail area as a fixed size surface.

0009 Vertical Tail Indicator (VTIND)

- 0 = Program computes vert. tail volume coeff.
- i = Input ver+. tail volume coeff. and moment arm. The size trends subroutine then calculates the vertical tail surface area.
- 2 = Input the vertical tail area as a fixed size surface.

- 0010 Engine Size Indicator (FIXIND)
 - 0 = Input level of maximum power or thrust. Engine size is fixed.
 - 1 = The engine size is "rubberized" and the engine sizing subroutine calculates the level of maximum power or thrust.
- 0011 Engine Indicator (ENGIND)
 - 0 = Turboshaft engine cycle.
 - 1 = Turbofan or turbojet engine cycle.
 - 2 = Turbofan engine cycle. Program simulates operation of a convertible engine cycle.
- 0012 Engine Sizing Indicator (ESZIND)
 - 0 = Engines sized for takeoff conditions only.
 - 1 = Engines sized for takeoff or cruise conditions whichever requires more power.

(No input if LFTIND = 0 or 1)

- 0013 Lift Engine Indicator (LFTIND)
 - 0 = No separate lift propulsion engine
 - 1 = Propulsion sys. includes a primary engine
 cycle (cruise) and a lift engine cycle.
- 0014 Gross Weight Initial Condition (WG00)

[LBS]

0015 Pressure Altitude Initial Condition (H00)

[FEET]; (normally zero except for partial mission analysis).

0016 Range Initial Condition (R00)

[NAUTICAL MILES]: (normally zero except for partial mission analysis).

0017 Time Initial Condition (ST00)

[HOURS]; (normally zero).

0018	Optimum Altitude Indicator (HOPTIN)
	0 = Input max alt. for each cruise segment.
	<pre>l = Input max alt. Program calculates optimum cruise altitude for segments preceded by a climb or transfer altitude.</pre>
0019	Flight Speed Limit Indicator (VLMIND)
	0 = No constraints on equivalent airspeed
	<pre>1 = Max of 250 knots for flight altitudes at or below 10,000 feet as per FAA regs.</pre>
0020	Maximum Operating Mach Number (EMMO)
0021	Maximum Operating Equivalent Airspeed (VMO)
0022	Design Dive Speed (VDIV)
0023	Maneuver Load Factor (EMLF)
	[G'S]; As prescribed by Fed Avn Rea 31.
0024	Fuel Req'd Multiplicative Reserve Factor (CK1)
	Any fraction greater than 1.0 represents the percent of reserve fuel (e.g. 1.1 represents a 10% fuel reserve).
0025	Reserve Fuel Factor (DELWF)
0026	Fuel Flow Multiplicative Drag Factor (CKFF)
0027	Mission Profile Informatic . (SGTIND)
thru	0 7 1 6 1
0076	<pre>0 = End of mission 1 = Taxi</pre>
	2 = Takeoff, hover, and landing
	3 = Climb
	<pre>4 = Cruise 5 = Descent</pre>
	6 = Loiter
	7 = Change of fuel weight
	<pre>8 = Change of payload weight 9 = Transfer altitude</pre>
	10 = X-Y plotter output
	<pre>11 = General performance</pre>
	100 = End of case

Mission profiles are programmed using combinations of the following elements:

- Segment A unique portion of the mission such as cruise or climb. A segment starts with a set of initial conditions and ends when a terminal condition has been satisfied.
- 2. Hop A set of segments ending at some logical terminal location (such as ground level at the desired range). Thus, a hop might consist of flying from point "A" to point "B" by means of combining the following segments: taxi, takeoff, climb, cruise, descent, landing, and taxi.
- 3. Leg A set of hops ending in a refueling of the aircraft.
- Mission A set of legs (or hops or segments) which satisfy specific operational requirements. In this program, the mission is the basic element for which the aircraft is sized.
- 5. Case A consecutive series of missions for the same aircraft. This program permits the user to analyze a case which consists of a mission for which an aircraft is sized, followed by a different mission which the now sized aircraft performs, followed by yet additional missions.

An array of segment indicators is input to specify the mission being studied. A typical array might be:

0077
THRU NOT USED 0093

```
0 = Low
               1 = High
      0095
               Location of Engine on Fuselage (SPACE1(19))
                   Expressed as fraction of length.
      0096
               Horiz. Tail 1/4 Chord Sweep (SPACE1(20))
      0097
               Vert. Tail 1/4 Chord Sweep (SPACE1(21))
               Aircraft 3-Views Plot Indicator (SPACE1(22))
      0098
                   Greater than 0.0 generates 3-view plot
      0099
               NOT USED
      0100
               1.0 = NPS THESIS2 format; 0.0 = 133 character
               format
    AIRCRAFT DIMENSIONAL INFORMATION
F.
    LOCATION
               DATA DESCRIPTION (FORTRAN NAME)
      0101
               Wing Aspect Ratio (DAM2)
                   (No input when WDMIND = 1,2)
      0102
               Mean Wing Chord to Prop. Diameter Ratio (DAM3)
                   (No input when WDMIND = 0,2)
      0103
               Ving Incidence Angle (EYEW)
                   [DEG]; With respect to the fuselage.
      0104
               Wing Root Thickness to Chord Ratio (TCR)
      0105
               Wing Tip Thickness Chord Ratio (TCT)
      0106
               Wing Loading at Design Gress Weight (DAM4)
                   [LBS/SQ FT]; (No input when WDMIND = 1).
      0107
               Quarter Chord Mean Sweep Angle (DLMCH)
                   [DEG]; (No input if DRGIND=1 & OPTIND=2).
```

Wing Location for 3-View Drawing (SPACE1(18))

0094

0108	Taper Ratio of Wing (SLM)
	Tip chord/root chord
0109	Horizontal Tail Aspect Ratio (ARHT)
0110	Horiz. Tail Position on Vertical Tail (SAH)
	Fraction of vert. tail span. 1.0 = "T" tail, 0.0 = horiz. tail on or helow the vert. tail root chord.
0111	Horizontal Tail Moment Arm (ELTH)
0112	Horiz. Tail Mean Thickness/Chord Ratio (TLCT)
0113	Horizontal Tail Volume Coefficient (VBARH)
	(No input when HTIND = 2)
0114	Horizontal Tail Taper Ratio (SLMH)
0115	Horizontal Tail Planform Area (AAW11)
	[SQUARE FEET]; (No input when HTIND = 1)
0116	Prop Blade Attachment Distance (SR)
	Measured from centerline of hub as a fraction of the propradius. (No input when ENGIND = 1).
0117	Distance Between Inboard Prop Tips (YCL)
	[FEET]; Measured from the inboard prop tip on one side of the fuselage to the inboard prop tip on the opposite side of the fuselage. [No input when WDMIND = 0].
0118	Prop-Over-Prop Overlap (ZETAl)
	Measured as a fraction of the prop radius. (No input when WDMIND = 0).
0119	Prop-Over-Wing-Tip Overlap (ZFTA2)
	Measured as a fraction of the prop radius.

(No input when WPMIVD = 0).

Increment in Wetted Area (DISWSW) 0120 Utilized for protrusions such as landing gear, etc. Ratio of incremental wetted area of airplane to wing planform area. 0121 Fuselage Height (HF) [FEET]; (No input when FDMIND = 0,2). .0122 Fuselage Length (DAM5) [FEET]; (No input when FDMIND = 1,2). 0123 Nose Section Fineness Ratio (ELPD) (No input when FDMIND = 0.2) Tail Section Fineness Ratio (ELTD) 0124 (No input when FDMIND = 0.2) 0125 Cabin Section Length (ELC) [FEET]; Length of constant dia. fuselage (No input when FDMIND = 0,2). 0126 Length of Ramp Well (ELRW) May also represent length of strengthened fuselage portion such as that rear engine attachment. Used in the calculation of fuselage weight penalty. 0127 Fuselage Wetted Area (DAM6) [SQ FT]; (No input when FPMIND = 1,2) Fuselage Width (SWF) 0128 [FEET] 0129 Vertical Tail Aspect Ratio (ARVT) 0130 Vertical Tail Moment Arm (ELTV) [FEET] 0131 Vert. Tail Mean Thickness Chord Ratio (TCVT)

0132	Vert. Tail Volume Coefficient (VBARV)
	(No input when VTIND = 2)
0133	Taper Ratio of Vertical Tail (SLMV)
0134	Area of Vertical Tail (AAW12)
	(No input when VTIND = 1)
0135	Position of Main Landing Gear (YMG)
	Measured outboard from the side of the body as a fraction of wing semi-span.
0136	Mean Position of Primary Engines (YP)
	Measured outboard from airplane centerline as a fraction of wing semi-span.
0137	Mean Position of Lift Engines (YL)
	Measured outboard from aircraft centerline as a fraction of wing semi-span (No input when LFTIND = 0).
0138	Lift Engine Cluster Gap Factor (EPSLON)
	Set by engine type, engine size, and by the no. of engines which may be clustered together (No input when LFTIND = 0).
0139	Primary Eng. Nacelle Dimen. Factor (AZETAl)
0140	Primary Eng. Nacelle Dimen. Factor (AZETA2)
0141	Primary Eng. Nacelle Dimen. Factor (AZETA3)
0142	Rotor t/c Ratio at 0.25R (SKIP(1))
0143 THRU 0150	NOT USED

CALCARA CARACACA CARACACACA CARACACA CARACACA CARACACA CARACACA CARACACA CARACACA CARACACACA CARACACA CARACACACA CARACACA CARACACACA CARACACA CARAC

G.	PASSENGER	DATA REQUIRED FOR FUSELAGE SIZING (FDMIND = 2)
	LOCATION	DATA DESCRIPTION (FORTRAN NAME)
	0151	Galley Indicator (DNIIGN)
		0 = galley area calculated by program
		<pre>1 = galley area input by user</pre>
	0152	Total Area of the Galley(s) (AGLLEY)
		[SQUARE FEET]; (No input if DNIIGN = 0)
	0153	First Class Section Passenger Capacity (ANPX1)
	0154	No. of Seats Abreast in First Class (ANAR1)
	0155	No. of Aisles in First Class (ANISL1)
	0156	Width of Seats in First Class (WSEAT1)
		[INCHES]; A typical value is 27 inches.
	0157	Seat Pitch in First Class (PSEAT1)
		[INCHES]; A typical value is 38 inches.
	0158	Aisle Width in F'rst Class (WAISL1)
		[INCHES]; A typical value is 20 inches
	0159	Lavatory Indicator (DNIVAL)
		0 = Number of lavatories calculated by program
	•	<pre>1 = Number of lavatories input by user</pre>
	0160	Number of lavatories (ANLAVS)
		(Yo input when DNIVAL = 0).
	0161	Tourist Section Passenger Capacity (ANPXT)
	0162	No. of Seats Abreast in Tourist (ANABT)
	0163	No. of Aisles in Tourist (ANISLT)
	0164	Width of Seats in Tourist (WSEATT)
		[INCHES]; A typical value is 20 inches.

0165	Seat Pitch in Tourist (PSEATT)
	[INCHES]; A typical value is 34 inches.
0166	Aisle Width in Tourist (WAISLT)
	[INCHES]; A typical value is 16 inches.
0167	Number in Flight Deck Crew (SPACE2(1))
0168	Number of Flight Attendants (SPACE2(2))
0169 THRU 0199	NOT USED

H. AIRCRAFT PROPULSION INFORMATION REQUIRED WHEN ENGIND = 0 (TURBOSHAFT ENGINES)

LOCATION DATA DESCRIPTION (FORTRAN NAME)

O201 Primary Engine Cycle Number (CYCPRP)

TABLE 1

PRIMARY CRUISE ENGINES	ENGINE CYCLE NUMBER	MAX. TURBINE INLET TEMP.	COMPRESSOR DESIGN PRESS RATIO	FAN BYPASS RATIO
	1	2600	13	
1	2	2600	16	1
	3	2900	1 13	1
TURBOSHAFT	4	2900	16	!
ENGINE	5	2900	1 19	1 1
CYCLES	6	3200	1 13	! !
1	7	3200	1.6	1
1	8	3200	1 19	1
1	9	3200	1 22	i j

O202 Primary Engine Max. Static Horsepower (DAM7)

Total for all engines at stnd. sea level conditions (No input when FIXIND = 1).

O203 NOT USED

O204 Number of Primary Engines (EMP)

0205 NOT USED

0206 Transmission Efficiency (ETAT)

0257 Transmission Indicator (XMSND)

0 = Trans. sized at fraction of installed power (see LOC 0258).

1 = Trans. sized at fraction of installed power (see LOC 0258) or at cruise power required, whichever is more critical.

(No input when ENGIND = 1)

0258 Fraction of Power for Trans. Sizing (XMSMRT)

Ratio of trans. SHP to prim. eng. max static HP (No input when ENGIND = 1).

0259 Accessory Horsepower (DSHPAC)

0223 Number of Rotors or Propellers (ENR)

0224 Propeller Tip Speed (VT)

[FT/SEC]

0225 Disc Loading (Fan Loading if ETAIND = 3) (WGA)

[LBS/SQ FT]; Reg'd if OPTIND = 2 or 3 (No input if OPTIND = 1 AND PDMIND = 1 or 3).

0226 Propeller Diameter (DI)

[FT]; NOTE: If ETAIND=3, see note in Ref. 3, pq. 5-7. (No input when PDMIND=2 or 4)

***** LOCATIONS 0207 - 0212 MUST BE INPUT IF FIXIND = 0 *****

0207 Takeoff Altitude (HES)

[FEET]; Typically set equal to zero.

0208 Thrust-to-Weight Ratio (SENE)

0209 Ambient Temp. Increment for Takeoff (TINY)

[DEG FARENHEIT]; Ambient temp. increment for engine sizing at takeoff conditions (For standard atmosphere, TINY = 0.0).

Ratio of operating power turbine speed to power turbine speed (No input when N2IND = 0 or1). Required when sizing primary engines for takeoff (see note in Ref. 3, page 5-41). 0211 Number of Inoperative Primary Engines (ENPO) (No input when FIXIND = 0). 0212 Number of Inoperative Lift Engines (ENLO) (No input when FIXIND = 0). 0260 Fraction of Power (SHPTO) Ratio of engine SHP to primary engine max static HP (LOC 0202). Required for sizing engines; nominally input as 1.0. 0261 Vertical Rate of Climb for Takeoff (VRCRC) [FT/MIN]; For engine sizing at takeoff. 0262 Takeoff Vertical Climb Power Constant (CKRC) Climb multiplicative pos constant; Nominally 2 turboshaft engines; Less for high dis ded aircraft and fans. LOCATIONS 0213 - 0217 MUST BE INPUT IF XMSNIND = 1 **** 0213 Power Indicator (POWESI) 0 = Maximum rated power 1 = Military rated power 2 = Normal rated power (No input when FIXIND = 0 or ESZIND = 0) 0214 Cruise Altitude (HC) [FT]; (No input if FIXIND=0 or ESZIND=0). 0215 True Airspeed at Cruise (VC) [KTS]; (No input if FIXIND=0 or ESZIND=0).

Power Turbine Speed Ratio for Takeoff (AN2TO)

0210

0216 Ambient Temp. Increment at Cruise (ATMIY)

[DEG FAREN.]; (No input when FIXIND = 0 or ESZIND = 0. For stnd. atmos., ATMIY = 0).

0217 Power Turbine Speed Ratio for Cruise (AN2CR)

Ratio of operating power turbine speed to maximum power turbine speed (No input when N2IND = 0 or 1 or FIXIND = 0 or ESZIND = 0). Required if sizing prim. engines for cruise (see note in Ref. 3, page 5-40).

I. PROPELLER DATA REQUIRED WHEN "ENGIND" = 0 (TURBOSHAFT ENGINES)

LOCATION DATA DESCRIPTION (FORTRAN NAME)

0200 Primary Engine Efficiency Indicicator (ETAIND)

0 = Propulsive efficiencies input by user

1 = Propulsive table input by user

2 = Propulsive performance calculated by prog.

3 = Fan table input by user

******* PROPELLER DATA WHEN "ETAIND" = 0 *********

0227 Thrust Coeff./Prop. Solidity Ratio (CTSIG)

Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)]
(No input when PDMIND = 1 or 2)

0228 Activity Factor of Propeller (AF)

[PER BLADE]; (No input if PDMIND = 3 or 4)

0229 Number of Blades on Propeller or Rotor (BLDN)

(No input when PDMIND = 3 or 4)

0232 Static Propeller Efficiency (ETAP2)

"Figure of Merit" for calculations during takeoff/hover/landing (when SGTIND = 2).

0233	Climb Propeller Efficiency (ETAP3)
	For climb calculations (SGTIND = 3).
0234	Descent Propeller Efficiency (ETAP5)
	For descent calculations (SGTIND = 5).
0235 THRU	Mach Number Table (TBEM5)
0244	Mach no. values to be paired with primary engine propulsive efficiencies for use when SGTIND = 4 (cruise) or 6 (loiter).
0245	Number of Mach No./Efficiency Pairs (ETAP4N)
0246 Thru	Propulsive Efficiency Table (TB8AP4)
0255	Primary eng. propulsive efficiency values to be paired with Mach no. values in LOC 0235 thru 0244. Permits rapid evaluation of sensitivity of aircraft performance and size to changes in propeller performance.
******	PROPELLER DATA WHEN "ETAIND" = 1 **********
0227	Thrust Coeff./Prop. Solidity Ratio (CTSIG)
0227	Thrust Coeff./Prop. Solidity Ratio (CTSIG) Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2).
0227	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)]
	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2).
	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2). Activity Factor of Propeller (AF)
0228	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2). Activity Factor of Propeller (AF) [PER BLADE]; (No input if PDMIND = 3 or 4)
0228	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2). Activity Factor of Propeller (AF) [PER BLADE]; (No input if PDMIND = 3 or 4) Number of Blades on Propeller or Rotor (BLPN)
0228	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2). Activity Factor of Propeller (AF) [PER BLADE]; (No input if PDMIND = 3 or 4) Number of Blades on Propeller or Rotor (BLDN) (No input when PDMIND = 3 or 4)
0228	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2). Activity Factor of Propeller (AF) [PER BLADE]; (No input if PDMIND = 3 or 4) Number of Blades on Propeller or Rotor (BLDN) (No input when PDMIND = 3 or 4) Descent Propeller Efficiency (ETAP5)

PROPELLER CHARACTERISTIC SUMMARY
ALL PROPELLERS ARE 3-BALDED, CONSTANT SPZED

 MANUFACTURER 	DESIGNATION	INTEGRATED DESIGN LIFT COEFFICIENT	ACTIVITY FACTOR PER BLADE	APPLIC.
 HARTZELL PROPELLERS, INC.	T10282H	0.555	114 (118)	TWIN OTTER SKYVAN
 HARTZELL PROPELLERS, INC.	T10173-8	0.620	104	BEECH KING AIR 99
 HAMILTON STANDARD DIV., UAC	33LF 1033A-0	0.424	127	HAWK CMDR
HAMILTON STANDARD DIV., UAC	33LF 1027A-0	0.500 i	110	
HAMILTON STANDARD DIV., UAC	33LF 1013A-0	0.483	97	

これが、これのは、これがあるのでは、これはないないのでは、これにはないないと、これにはないので、これにはない。これにはないは、これにはないないないない。 これない とうしゅう

NOTE: Values in parenthesis are quoted by Hartzell Props, Inc. Values not in parentheses are consistent with the blade geometric data supplied by Hartzell.

1700 User's Propeller Table Number (PROPCY)

A table of actual prop performance data obtained from test data can be input. Refer to Ref. 3, page 4-63 for a complete description of the table requirements.

1701 Number of Advance Ratio Values (XPXNO)

To be assigned to loc 1702-1721 NOTE: If used, XPXNO must at least equal 3.

1/C2 Thru	Propeller Advance Ratio Table (XPJ)
1721	Table of propeller advance ratio values to be input by user (minimum of 3 values).
1722	Number of Prop Power Coefficients (CPPNO)
	No. of prop pwr coeff. to be input by the user in loc 1723-1742. If used a table of at leasts used, a value of at least "3" must be assigned to CPPNO.
1723 THRU	Propeller Power Coefficients (CPPROP)
1742	Table of propeller power coeff. values to be input by user (minimum of 3 values).
1743 THRU	Values of Prop Thrust Coefficients (CTPROP)
2142	Table of propeller thrust coeff. values.
******	PROPELLER DATA WHEN "ETAIND" = 2 **********
0227	Thrust Coeff./Prop. Solidity Ratio (CTSIG)
	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2)
0228	Activity Factor of Propeller (AF)
	[PER BLADE]; (No input if OPTIND = 1 and PDMIND=3,4; ALWAYS req'd if OPTIND = 2, 3)
0229	Number of Blades on Propeller or Rotor (BLDN)
0230	Prop Integrated Design Lift Coeff. (CLEYE)
0234	Descent Propeller Efficiency (ETAP5)
	For descent calculations (SGTIND = 5).
****	PROPELLER DATA WHEN "ETAIND" = 3 **********
0227	Thrust Coeff./Prop. Solidity Ratio (CTSIG)
	Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/['density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2)

0228	Activity Factor of Propeller (AF)
	[PER BLADE]; (No input if PDMIND = 3 or 4)
0229	Number of Blades on Propeller or Rotor (BLDN)
	(No input when PDMIND = 3 or 4)
0230 THRU 0233	NOT USED
0234	Descent Propeller Efficiency (ETAP5)
	For descent calculations (SGTIND = 5).
0256	Fan Table Number (CYPROP)
	User selected no. to identify Fan Table.
0408	Tilting Mechanism Constant (SKTM)
	Tilt wing or tilt rotor tilt mechanism weight factor. This constant calculates a tilt mechanism weight proportional to the acft gross weight.
0457	Rotor/Prop Weight Adjustment Factor (SKRP)
	To avoid using the prop weights equations, input this variable value as zero.
1700	User's Fan Table Number (PROPCY)
	As assigned by user in LOC 0256.
1701	Number of Mach Number Values (XPXNO)
	To be assigned to locations 1702 - 1721 NOTE: If this table is used, a value of least "3" must be assigned to XPXNO.
1702	Mach Number Values (XPJ)
THRU 1721	Table of Mach Number values to be input by the user (minimum of 3 values).
1722	Number of Referred Power Coefficients (CPPNO)
	No. of referred power coefficients to be input by the user to LOC 1723 - 1742.

NOTE: If this table is used, a value of at least "3" must be assigned to CPPNO.

1723 THRU	Referred Power Coefficient Values (CPPROP)
1742	Table of referred power values to be input by the user (minimum of 3 values).
1743 THRU	Referred Thrust Coefficient Values (CTPROP)
2142	Table of referred thrust coeff. values.

J. AIRCRAFT PROPULSION INFORMATION REQUIRED WHEN ENGIND = 1 (TURBOJET OR TURBOFAN ENGINES)

LOCATION DATA DESCRIPTION (FORTRAN NAME)

0201 Primary Engine Cycle Number (CYCPRP)

To be selected from the TABLE 3 (below).

TABLE 3

PRIMARY CRUISE ENGINES	ENGINE CYCLE NUMBER	MAX. TURBINE INLET TEMP. (DEGREES R)	COMPRESSOR DESIGN PRESS RATIO	FAN BYPASS RATIO
TURBCJET ENGINE CYCLES	10 11 12 13 14 15 16 17 18	2600 2600 2900 2900 2900 3200 3200 3200 3200	1 13 16 13 16 19 13 16 19 22	
TURBOFAN ENGINE CYCLES	19,20,21 122,23,24 125,26,27 128,29,30 131,32,33 134,35,36 137,38,39 140,41,42 143,44,45	2600 2900 2900 2900 3200 3200 3200	16 20 16 20 20 24 16 20 24 24 28	2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6

0203 Primary Engine Maximum Static Thrust (DAM8)

Total thrust for all engines at stnd. sea level conditions (No input if FIXIND = 1).

0204 Number of Primary Engines (ENP)

0218 Lift Engine Cycle Number (CYCLFP)

See table below (No input if LFTIND = 0).

TABLE 4

LIFT ENGINES	ENGINE CYCLE NUMBER	MAX. TURBINE INLET TEMP. (DEGREES R)	COMPRESSOR DESIGN PRESS RATIO	FAN BYPASS RATIO
INDEPENDENT	46,47,48	2400	7	2,4,6
LIFT	49,50,51	2700	7	2,4,6
ENGINES	52,53,54	3000	7	2,4,6
	55,56,57 58,59,60 61,62,63 64,65,66 67,68,69 70,71,72 73,74,75 76,77,78 79,80,81	2900 3200 3200 3200	13 16 13 16 19 13 16 19 22	8,11,14 8,11,14 8,11,14 8,11,14 8,11,14 8,11,14 8,11,14 8,11,14

0219 Lift Engine Maximum Static Thrust (DAM9)

Total for all eng; stnd. sea level; (No input if FIXIND = 1 or LFTIND = 0).

0220 Number of Lift Engines (ENL)

(No input when LFTIND = 0)

0221 Number of Clusters of Lift Engines (ENC)

(No input when LFTIND = 0)

0231 Lift Engine Efficiency (ETAC)

(No input when LFTIND = 0).

To be used for Takeoff, Hover, and Landing conditions (SGTIND = 2). 0207 Takeoff Altitude (HES) [FEET]; Required for sizing engines and is typically set equal to zero. 0208 Thrust-to-Weight Ratio (SENE) 0209 Ambient Temp. Increment for Takeoff (TINY) [DEG FARENHEIT]; Ambient temp. increment for engine sizing at takeoff conditions (For standard atmosphere, TINY = 0.0). Power Turbine Speed Ratio for Takeoff (AN2TO) 0210 Ratio of operating power turbine speed to maximum power turbine speed (No input when N2IND = 0 or 1 or FIXIND = 0). Required when sizing primary engines for takeoff (see note in Ref. 3 page 5-41). 0211 Number of Inoperative Primary Engines (ENPO) Required for engine sizing (No input when FIXIND = 0). 0212 Number of Inoperative Lift Engines (ENLO) Required for engine sizing (No input when FIXIND = 0). LOCATIONS 0213 - 0217 MUST BE INPUT IF LFTIND = 1 0213 Power Indicator (POWESI) 0 = Maximum rated power 1 = Military rated power 2 = Normal rated power (No input when FIXIND = 0 or ESZIND = 0)

Primary Engine Propulsive Efficiency (ETAP2)

0232

0214 Cruise Altitude (HC)

[FEET]; This data is required for sizing the engines (No input when FIXIND = 0 or ESZIND = 0).

0215 True Airspeed at Cruise (VC)

[KNOTS]; This data is required for sizing the engines (No input when FIXIND = 0 or ESZIND = 0).

O216 Ambient Temperature Increment at Cruise (ATMIY)

[DEGREES FARENHEIT]; This data is used for sizing the engines (No input when FIXIND = 0 or ESZIND = 0. For standard atmosphere, ATMIY = 0.0).

O217 Power Turbine Speed Ratio for Cruise (AN2CR)

Ratio of operating power turbine speed to maximum power turbine speed (No input when N2IND = 0 or 1 or when FIXIND = 0 or ESZIND = 0). Required when sizing primary engines for cruise (see note in Ref. 3, page 5-40).

0200 Primary Engine Propulsive Efficiency Indicator (ETAIND)

MUST be input as "3". The user is required to input a fan table (Locations 1700 to 2142). Also, the rotor/propeller weight adjustment factor must be input as zero (Location 0457).

K. AIRCRAFT PROPULSION INFORMATION REQUIRED WHEN ENGIND = 2 (CONVERTIBLE ENGINES)

LOCATION DATA DESCRIPTION (FORTRAN NAME)

0201 Primary Engine Cycle Number (CYCPRP)

To be selected from Table 5 on page 134 below. NOTE: The number entered at this location must match the number entered at location 1301 to avoid an error message.

TABLE 5

PRIMARY CRUISE ENGINES	ENGINE CYCLE NUMBER	MAX. TURBINE INLET TEMP. (DEGREES R)	COMPRESSOR DESIGN PRESS RATIO	FAN BYPASS RATIO
TURBOSHAFT ENGINE CYCLES	1 2 3 4 5 6 7 8	2600 2600 2900 2900 2900 3200 3200 3200 3200	13 16 13 16 19 13 16 19 22	
TURBOJET ENGINE CYCLES	10 11 12 13 14 15 16 17 18	2600 2600 2900 2900 2900 3200 3200 3200 3200	13 16 13 16 19 13 16 19 22	-
TURBOFAN ENGINE CYCLES	 19,20,21 22,23,24 25,26,27 28,29,30 31,32,33 34,35,36 37,38,39 40,41,42 43,44,45	2900 2900 2900 3200 3200 3200	16 20 16 20 24 16 20 24 16 20 24 28	2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6

ERROLLES TOURS CONTRACTOR CONTRAC

Primary Engine Maximum Static Thrust (DAM8) 0203 [LBS-FORCE]; Total for all engines at stnd. sea level (No input if FIXIND = 1). 0204 Number of Primary Engines (ENP) Convertible Engine Conversion Ratio (BETA) 0205 [LBS-FORCE PER HORSEPOWER] 0206 Transmission Efficiency (ETAT) Transmission Indicator (XMSND) 0257 0 = Trans. sized at fraction of installed power (fraction at LOC 0258). sized at fraction of installed 1 = Trans. power (fraction at location 0258) or at cruise power required, whichever is more criticaí. (No input when ENGIND = 1) 0258 Fraction of Power for Trans. Sizing (XMSMRT) Ratio of transmission shaft horsepower to primary engine maximum static horsepower (location 0202) (No input when ENGIND = 1) 0259 Accessory Horsepower (DSHPAC) [HORSEPOWER] 0223 Number of Rotors or Propellers (ENR) 0224 Propeller Tip Speed (VT) [FEET PER SECOND] 0225 Disc Loading (Fan Loading if ETAIND = 31 (WGA) [LBS/SQ FT]; This is always required if OPTIND = 2 or 3 (No input when OPTIND = 1 AND PDMIND = 1 or 3).

Propeller Diameter (DI) [FEET]; If ETAIND = 3, see note in Ref. 1 page 5-7 (No input when PDMIND = 2 or 4). 0227 Thrust Coeff./Prop. Solidity Ratio (CTSIG) Ratio of thrust coefficient to propeller solidity. If acft is in the helo mode: Ct = thrust/[(density)*(area)*(tip speed)] (No input when PDMIND = 1 or 2) 0228 Activity Factor of Propeller (AF) [PER BLADE]; (No input if PDMIND = 3 or 4) 0229 Number of Blades on Propeller or Rotor (BLDM) (No input when PDMIND = 3 or 4) 0232 Static Propeller Efficiency (ETAP2) "Figure of Merit" for calculations during takeoff, hover, and landing (SGTIND = 2). LOCATIONS 0207 - 0212 MUST BE INPUT IF FIXIND = 0 0207 Takeoff Altitude (HES) [FT]; Typically set equal to zero. 0208 Thrust-to-Weight Ratio (SENE) 0209 Ambient Temp. Increment for Takeoff (TINY) [DEG FARENHEIT]; Ambient temp. increment engine sizing at takeoff conditions (For standard atmosphere, TINY = 0.0). 0210 Power Turbine Speed Ratio for Takeoff (AN2TO) Ratio of operating power turbine speed to maximum power turbine speed (No input when N2IND = 0 or 1 or FIXIND = 0). (see note in Ref. 3, page 5-41). 021i Number of Inoperative Primary Engines (ENPO) (No input when FIXIND = 0).

0226

O212 Number of Inoperative Lift Engines (ENLO)

(No input when FIXIND = 0).

0260 Fraction of Power (SHPTO)

Ratio of engine SHP to primary engine max static HP (LOC 0202). Nominally set equal to 1.0.

0261 Vertical Rate of Climb for Takeoff (VRCRC)

[FT/MIN]: Req'd for sizing eng. at takeoff

0262 Takeoff Vertical Climb Power Constant (CKRC)

Climb power multiplicative constant; nominally 2.0 for turboshaft engines; Less for high disc loaded aircraft and fans.

0213 Power Indicator (POWESI)

0 = Maximum rated power

1 = Military rated power

2 = Normal rated power

(No input when FIXIND = 0 or ESZIND = 0)

0214 Cruise Altitude (HC)

[FT]; (No input if FIXIND=0 or ESZIND=0).

0215 True Airspeed at Cruise (VC)

[KTS]; (No input if FIXIND=0 or ESZIND=0).

0216 Ambient Temp. Increment at Cruise (ATMIY)

[DEG FARENHEIT]; (No input if FIXIND = 0 or ESZIND as zero).

O217 Power Turbine Speed Ratio for Cruise (AN2CR)

Ratio of operating power turbine speed to maximum power turbine speed (No input when N2IND = 0 or 1 or FIXIND = 0 or ESZIND = 0). Required when sizing primary engines for cruise (see note in Ref. 3, page 5-40).

L. TRCRAFT AERODYNAMICS INFORMATION

SECTION TO THE PROPERTY OF THE

LATION	DATA DESCRIPTION (FORTRAN NAME)
0301	Vertical Tail Profile Drag Coefficient (CDVTI)
	Based on vertical tail planform area and a Reynold's number of 1.0E+07.
0302	Lift Eng. Nacelle Profile Drag Coeff. (CDHTI)
	Based on total wetted area of nacelle cluster and a Reynold's number of 1.0E+07.
0303	Primary Eng Nacelle Profile Drag Coeff. (CDNI)
	Based on wetted area of all nacelles and a Reynold's number of 1.0E+07.
0304	Horizontal Tail Profile Drag Coeff. (CDLNI)
	Based on horizontal tail planform area and a Reynold's number of 1.0E+07 (No input when LFTIND = 0).
0305	Profile Drag Increment (DELCD)
	Based on wing planform area
0306	Oswald's Efficiency Factor (DAM10)
	Spanwise efficiency factor (No input when OSWIND = 1).
0307	Equivalent Flat Plate Area Increment (DELFE)
	[SQ FT]; Based on fuselage parasite drag.
0308	Number of Pairs in Table (TLLN)
	Number of pairs of values in the table of wing profile drag coeff. (LOC 0335 - 0342) versus lift coeff. (LOC 0317 - 0324).
0309	Number of Mach Numbers (TENN)
	Number of Mach no. values in LOC 0325-0329 for use in table of compressibility drag

as a function of Mach number and lift coefficient (No input when PRGIND = 0).

0310	Number of Lift Coefficients (TCLZN)
	Number of lift coefficient values in LOC 0343 - 0349 for use in the table of compressibility drag as a function of Machno. and lift coeff. (No input if DRGIND=0)
0311	Lift Nacelle Multiplicative Drag Factor (CKLN)
0312	Wing Multiplicative Drag Factor (CKW)
0313	Prim. Nacelle Multiplicative Drag Factor (CKN)
0314	Fuselage Multiplicative Drag Factor (CKF)
0315	Vert. Tail Multiplicative Drag Factor (CKVT)
0316	Horiz. Tail Multiplicative Drag Factor (CKHT)
0317 THRU	Lift Coefficient Values (TBCL1)
0324	For the table of wing profile drag coeff. versus lift coefficients
0325 THRU	Mach Number Values (TBEM)
0329	For the table of compressibility drag as a function of Mach number and lift coeff. (No input when DRGIND = 0).
0330	Mean Reynold's No. per Foot for Misson (RECI)
0331	Two-Dimensional Lift Coefficient Slope (CSALF)
	[PER RADIAN]
0332	Zero Lift Angle of Attack (ALPHL)
0333	Nondimensional Position Along the Chord (XCPS)
	X/C (No input when DRGIND = 1).
0334	Nondimen. Pcsn. Along Chord at Max t/c (XCTCM)
	(X/C)max t/c ; (No input when DPGIND = 1).
0335 THRU	Wing Profile Drag Coefficient Values (TECDWI)
0342	Based on wing planform area at Reynold's Number of 1.0E+07 for the table of wing profile drag coeff. vs lift coeff.

0343 THRU	Lift Coefficient Values (TBCL2)
0349	For the table of compressibility drag as a function of Mach number and lift coeff. (No input when DRGIND = 0).
0350 THRU	Drag Increment (TBCDM)
0384	Increase in airplane drag due to Mach number (compressibility effects). Input this table as a function of Mach no. and lift coeff. based on wing planform area.
0385	Supercritical Factor (SPACE4(1))
	0.5 = 50% of technology
	1.0 = 100% of technology
0386	Max Lift Coeff. to Compute VMC (SPACE4(2))
0387	CLVRD CL of Vert. Tail & Rudder (SPACE4(3))
0388 THRU 0393	NOT USED

M. ROTOR, PROPELLER, AND GEARBOX WEIGHT

LOCATION	DATA DESCRIPTION (FORTRAN NAME)
0394	No. of Stages in Main Rotor Drive (SPACE4(10))
0395	Blade Fold Penalty (SPACE4(11))
	Default = 1.0 (no fold)
0396	Hub Weight Coefficient (SPACE4(12))
0397	Hub Material/Development Factor (SPACE4(13))
0398	Blade Weight Coefficient (SPACE4(14))
0399	Rotor Type Factor (SPACE4(15))
	1.0 = Fully articulated
	2.2 = Hingeless or teetering
	$9.1 = X-Win\sigma$

N. AIRCRAFT WEIGHT INFORMATION

LOCATION	DATA DESCRIPTION (FORTRAN NAME)	
0400	Operating Weight Empty (OWE1)	
	[LBS]; (No input when OPTIND = 1 or 2).	
0401	Weight of Fixed Equipment (WFE)	
	[LBS] .	
0402	Weight of Fixed Useful Load (WFUL)	
	[LBS]	
0403	Weight of Payload (WPL)	
	[LBS]; (No input when OPTIND = 2).	
0404	Cockpit Controls Constant (SKCC)	
0405	Fixed-Wing Controls Constant (SKFW)	
0406	System and Hydraulics Constant (SKH)	
0407	Factor for Stability Augmented System (SKSAS)	
	Also includes mixing units	
0408	Tilting Mechanism Constant (SKTM)	
0409	Upper Control Mechanisms Constant (SKUC)	
*****	*********	
* LOCATIONS 0410 - 0415 ARE NOMINALLY SET EOUAL TO 1.0 *		
0410	Cockpit Controls Weight Factor (CK15)	
0411	Upper Controls Weight Factor (CK16)	
0412	Hydraulics Weight Factor (CK17)	
0413	Fixed Wing Controls Weight Factor (CK18)	
0414	SAS Weight Factor (CK19)	
0415	Tilt Mechanism Weight Factor (CK20)	

Number of Temperature Pairs (THN) 0416 of atmosphere temperature pairs in locations 0440 - 0449 and 0466 - 0475 input if ATMIND is never set equal to 2). LOCATIONS 0417 - 0419 ARE NOMINALLY SET EQUAL TO 0.0 0417 Flt Controls Group Incremental Weight (PELWFZ) [LBS] 0418 Propulsion Group Incremental Weight (DELWP) [LBS] 0419 Structures Group Incremental Weight (DELWST) [LBS] 0420 Body Group Weight Adjustment Factor (SKP) 0421 Lift Engine Section Weight Factor (SKLES) (No input when LFTIND = 0) 0422 Alighting Gear Weight (SKLG) Expressed as a percentage of gross weight. 0423 Main Gear Weight to Gross Weight Ratio (SKMG) 0424 Tail Load Adjustment Factor (SKTL) 0425 Wing Bending Relief Moment Adj. Factor (SKWF) 0426 Wing Type Weight Adjustment Factor (SKWW) 0427 Pitch Radius of Gyration (SKY) [FT] Yaw Radius of Gyration (SKZ) 0423 [FT] 0429 Primary Engine Section Weight Factor (SKPES)

NO INPUT TO LOCATIONS 0430 - 0432 UNLESS SKPES = 0 (Loc 0429)

0430	Engine Nacelle Type Factor (SKMT)
0431	Engine Nacelle Adjustment Factor (SKNAC)
0432	Engine Attachment Point Ratio (SKLMT)
	Distance between engine center of gravity and closest structural attachment point between nacelle and wing expressed as a ratio to the length of the nacelle.
0433	Wing Weight Multiplicative Weight Factor (CK8)
0434	Horiz. Tail Wt Multiplic. Weight Factor (CK9)
0435	Vert. Tail Wt Multiplic. Weight Factor (CK10)
0436	Fuselage Wt Multiplic. Weight Factor (CKl1)
0437	Landing Gear Wt Multiplic. Wt Factor (CK12)
0438	Lift Eng. Section Multiplic. Wt Factor (CK13)
0439	Primary Eng. Sec. Multiplic. Wt Factor (CK14)
0440 THRU	Non-Standard Atmosphere Altitude (TPH)
0449	[FT]; Altitudes to be paired with ambient temperature ratios (LOC 0466 - 0475) for the non-standard atmosphere table.
0450	Cabin Differential Pressure Limit (DFLP)
	[PSI]
0451	Weight of Concentrated Load (WC)
	CLBS1
0452	Concentrated Load Position (YC)

the wing semi-span.

Distance of load outhoard from aircraft certerline. Expressed as a fraction of

- O453 Drive System Weight Adjustment Factor (SKDS)
 - 0 = No gearbox weight.

SOLE PROBLEM CONTROL SERVICE SERVICE CONTROL SERVICE SERVICES SERV

1 = Ham. standard gearbox weight trend.

(No input when ENGIND = 1)

- 0454 Fuel System Weight Adjustment Factor (SKFS)
- 0455 Lift Engine Installation Weight Factor (SKLEI)

(No input when LFTIND = 0)

- 0456 Primary Engine Install. Weight Factor (SKPEI)
- 0457 Rotor or Prop Weight Adjustment Factor (SKRP)
 - -1 = Use HESCOMP rotor and drive weight trend. (LOC 0394-0399 rotor coeff., LOC 0453 drive coeff. Also, LOC 0142 if not X-Wing configuration).
 - 0 = No prop wt (Use if ETAIND=3 LOC 0200).
 - 1 = 1970 Ham. standard prop weight factors
 - 2 = 1980 Ham. standard prop weight factors
- O458 Drive Sys. Weight Variation Adj. Factor (SKVT)

Adjustment factor for variations in drive system weight due to nonuniformities in and transmission tipspeed hover tipspeed the maximum power and the transmission or power are not the same. nominal value is 1.0 when these parameters The value of SKVT will vary similar. speed and ; ower change when tip indicated by the following expression:

(Design	Tipspeed)		(Maximum	Power)
		X		
(Hover	Tipspeed)		(Design	Power)

Airplane category in Ham standard prop and gearbox weight can be used by the input of a negative value of the category \{-1, -2, -3, etc.\} (No input when ENGIND = 1).

0459	Propeller Group Multiplic. Weight Factor (CK2)
0460	Drive System Multiplic. Weight Factor (CK3)
0461	Lift Engine Multiplic. Weight Factor (CK4)
0462	Primary Engine Multiplic. Weight Factor (CK5)
0463	Lift Eng. Install. Multiplic. Wt Factor (CK6)
0464	Prim. Eng. Install. Multiplic. Wt Factor (CK7)
0465	Fuel System Multiplic. Weight Factor (CK21)
0466 THRU	Ambient Temperature Ratio Values (TBTHE)
0475	To be paired with alt. (LOC 0440 - 0449) for the non-standard atmosphere table.

ENGINE ACOUSTICAL TREATMENT

LOCATION	DATA DESCRIPTION (FORTRAN NAME)
0476	Engine Acoustic Treatment Weight Trend Coefficient (SPACE5(1))
0477	Engine Weight Treatment Factor (SPACE5(2))
	(= 0477 * 0478 * WEP)
0478	Multiplicative Factor (SPACE5(3))
0479	NOT USED

P.	WEIGHT OF	FIXED EQUIPMENT (WFE)/FIXED USEFUL LOAD (WFUL)
	LOCATION	DATA DESCRIPTION (FORTRAN NAME)
	0480	WFE/WFUL Indicator (SPACE5(5))
		0 = WFE and WFUL input in LOC 0401 and 0402.
		1 = WFE and WFUL computed by program.
	0481	APU Trend Coefficient (SPACES(6))
	0482	Instruments Trend Coefficient (SPACE5(7))
	0483	Hydraulics Trend Coefficient (SPACE5(8))

```
0484
         Electrical Trend Coefficient (SPACE5(9))
0485
         Avionics Trend Coefficient (SPACE5(10))
0486
         First Class Furnishings Coeff. (SPACE5(11))
0487
         Tourist Class Furnishings Coeff. (SPACE5(12))
0488
         Air Conditioning Coefficient (SPACE5(13))
         Anti-Icing Coefficient (SPACE5(14))
0489
0490
         Auxiliary Gear Coefficient (SPACE5(15))
0491
         Crew Baggage (SPACE5(16))
             [LBS/PERSON]
0492
         First Class Passenger Service (SPACE5(17))
             [LBS/PASSENGER]
0493
         Tourist Class Passenger Service (SPACE5(18))
             [LBS/PASSENGER]
0494
         Water Allocation (SPACE5(19))
             [LBS/PERSON]
0495
         Emergency Equipment (SPACE5(20))
             [LBS]
0496
         Crew Catering (SPACE5(21))
             [LBS/CREW]
0497
         First Class Catering (SPACF5(22))
             [LBS/PASSENGER]
0498
         Tourist Class Catering (SPACE5(23))
             [LBS/PASSENGER]
0499
         Unusable Fuel Factor (SPACE5(24))
```

Q. TAXI INFORMATION {SGTIND = 1}

single point value for the increment in ambient temperature above the standard-day value. O511 Incremental Time for Taxi (DELTT) THRU O520 [HRS] O521 Ambient Temperature Increment (TIN1) THRU O530 [DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = Oor 2). O531 Lift Engine Taxi Segment Factor (SKFL) THRU O540 O = Lift engines off during taxi. 1 = Lift engines operating during taxi. O541 Power Turbine Speed Ratio (AN2M1) THRU O550 Ratio of operating power turbine speed to maximum power turbine speed [input for both primary and auxiliary independent engines in performance segment 3, TAXI].	LOCATION	DATA DESCRIPTION (FORTRAN NAME)
1 = Non-standard atmosphere. User inputs a single point value for the increment in ambient temperature above the standard-day value. 1 Incremental Time for Taxi (DELTT) 1 THRU 1		Taxi Segment Atmosphere Indicator (ATMIN1)
single point value for the increment in ambient temperature above the standard-day value. O511 Incremental Time for Taxi (DELTT) THRU O520 [HRS] O521 Ambient Temperature Increment (TIN1) THRU O530 [DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = Oor 2). O531 Lift Engine Taxi Segment Factor (SKFL) THRU O540 O = Lift engines off during taxi. 1 = Lift engines operating during taxi. O541 Power Turbine Speed Ratio (AN2M1) THRU O550 Ratio of operating power turbine speed to maximum power turbine speed {input for both primary and auxiliary independent engines in performance segment 3, TAXI}. See additional information in Ref. 1, page		0 = Standard atmosphere.
THRU 0520 [HRS] 0521 Ambient Temperature Increment (TIN1) THRU 0530 [DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = 0 or 2). 0531 Lift Engine Taxi Segment Factor (SKFL) THRU 0540 0 = Lift engines off during taxi. 1 = Lift engines operating during taxi. 1 = Lift engines operating during taxi. Power Turbine Speed Ratio (AN2M1) THRU 0550 Ratio of operating power turbine speed to maximum power turbine speed [input for both primary and auxiliary independent engines in performance segment 3, TAXI]. See additional information in Ref. 1, page		<pre>1 = Non-standard atmosphere. User inputs a single point value for the increment in ambient temperature above the standard-day value.</pre>
O520 [HRS] O521 Ambient Temperature Increment (TIN1) THRU O530 [DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = Oor 2). O531 Lift Engine Taxi Segment Factor (SKFL) THRU O540 O = Lift engines off during taxi. 1 = Lift engines operating during taxi. O541 Power Turbine Speed Ratio (AN2M1) THRU O550 Ratio of operating power turbine speed to maximum power turbine speed [input for both primary and auxiliary independent engines in performance segment 3, TAXI]. See additional information in Ref. 1, page		Incremental Time for Taxi (DELTT)
THRU 0530 [DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = 0 or 2). 0531 Lift Engine Taxi Segment Factor (SKFL) THRU 0540 0 = Lift engines off during taxi. 1 = Lift engines operating during taxi. 0541 Power Turbine Speed Ratio (AN2M1) THRU 0550 Ratio of operating power turbine speed to maximum power turbine speed {input for both primary and auxiliary independent engines in performance segment 3, TAXI}. See additional information in Ref. 1, page		[HRS]
[DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = 0 or 2). 1 Lift Engine Taxi Segment Factor (SKFL) THRU 1 = Lift engines off during taxi. 1 = Lift engines operating during taxi. Power Turbine Speed Ratio (AN2M1) THRU 1 Ratio of operating power turbine speed to maximum power turbine speed {input for both primary and auxiliary independent engines in performance segment 3, TAXI}. See additional information in Ref. 1, page		Ambient Temperature Increment (TIN1)
THRU 0540		[DEG FARENHEIT]; Used for engine sizing at TAXI conditions (No input when ATMIND = 0 or 2).
0540 0 = Lift engines off during taxi. 1 = Lift engines operating during taxi. O541 Power Turbine Speed Ratio (AN2M1) THRU O550 Ratio of operating power turbine speed to maximum power turbine speed [input for both primary and auxiliary independent engines in performance segment 3, TAXI]. See additional information in Ref. 1, page		Lift Engine Taxi Segment Factor (SKFL)
O541 Power Turbine Speed Ratio (AN2M1) THRU O550 Ratio of operating power turbine speed to maximum power turbine speed {input for both primary and auxiliary independent engines in performance segment 3, TAXI}. See additional information in Ref. 1, page		<pre>0 = Lift engines off during taxi.</pre>
THRU 0550 Ratio of operating power turbine speed to maximum power turbine speed (input for both primary and auxiliary independent engines in performance segment 3, TAXI). See additional information in Ref. 1, page		<pre>1 = Lift engines operating during taxi.</pre>
O550 Ratio of operating power turbine speed to maximum power turbine speed {input for both primary and auxiliary independent engines in performance segment 3, TAXI}. See additional information in Ref. 1, page		Power Turbine Speed Ratio (AN2M1)
		Ratio of operating power turbine speed to maximum power turbine speed {input for both primary and auxiliary independent engines in performance segment 3, TAXI}. See additional information in Ref. 1, page 5-40. (No input when N2IND = 0 or 1).

NAME OF CONTONION (FORTING MAKE)

R. TAKEOFF, HOVER, AND LANDING INFORMATION (SGTIND = 2)

LOCATION DATA DESCRIPTION (FORTRAN NAME)

O601 Takeoff, Pover, and Landing Indicator (TOLIND)
THRU
O610 l = User inputs the required thrust-to-weight ratio. Airplane will use:

a. Max power from lift engines before augmenting with primary engines.

- b. Only power from primary engines if LFTIND = 0.
- 2 = User inputs the required thrust-to-weight
 ratio. Airplane uses equal percentages of
 power from lift and primary engines. DO
 NOT INPUT TOLIND = 2 IF LFTIND = 0.
- 3 = User inputs rea'd fraction of max power.
- O611 Atmosphere Indicator for SGTIND = 2 (ATMIN2)
 THRU
 O620 0 = Standard atmosphere
 - l = Non-standard atmos. User inputs single
 point value for increment in ambient temp.
 above the standard day value.
 - 2 = Non-standard atmos. User inputs table of ambient temp. ratios as a function of alt.
- O621 Primary Eng Power (or Thrust) Factor (PFET2)
 THRU
 O630 Power and when MOLINE 2 (No input who
- Required when TOLIND = 3 (No input when TOLIND = 1 or 2).
- O631 Ambient Temperature Increment (TIN2)
 THRU
- DEG FARFMHEIT]; Used for engine sizing at
 Takeoff conditions (No input if ATMIND = 0
 or ?).
- O641 Lift Ermine Thrust Fraction (FLET2)
 THRU

0650 Req'd if TOLIND=3 (No input if TOLIND=1,2)

- O651 Thrust-to-Weight Ratio for Takeoff (ENT) THRU
- 0660 (No input when TOLIND = 3)
- O661 Step Size for Hover (DELTH)
 THRU
- 0670 [HRS]

0680

0671 Power Turbine Speed Ratio (AN2M2)
THRU

Ratio of operating power turbine speed to maximum power turbine speed input for both primary and auxiliary independent engines in performance segment 2, TAKEOFF, HOVER, LANDING (No input if N2IND = 0,1).

	0681 THRU 0690 2321 THRU 2330	<pre>Incremental Time for Hover (STH) [HRS] Vertical Rate of Climb for Takeoff (VRCTO) [FT/MIN]</pre>
s.	CLIMB INFO	PRMATION {SGTIND = 3}
	LOCATION	DATA DESCRIPTION (FORTRAN NAME)
	0691 THRU	Climb Indicator (CLMIND)
	0700	1 = Maximum rate of climb
		2 = Climb at constant equivalent airspeed
		3 = Climb at constant Mach number
		4 = Climb at constant true airspeed
	0701 THR ⁷ J	Mach, Equiv. Airspeed or True Airspeed (EMACH)
	0719	[KTS]; (No input when CLMIND = 1).
	0711 THRU	Climb Segment Atmosphere Indicator (ATMIN3)
	0720	0 = Standard atmosphere
		<pre>1 = Non-standard atmos. User inputs single point value for increment in ambient temp. above the standard day value.</pre>
		2 = Ncn-standard atmos. User inputs table of ambient temp. ratios as a function of alt.
	0721 ፕዘጽጣ	Step Size for Climb Seament (DELH3)
	0730	[FT]
	0731 THRU	Ambient Temperature Increment (TIN3)
	0740	[DEG FARENHEIT]; Used for sizing engine during climb (No input when ATMIND = 0.2).
	0741 THRU	Max Altitude for Climb or Alt. Transier (HMAX)
	0750	[FT]

0751 THRU 0760	Climb Segment Power Indicator (POWCLI) G = Maximum power
	1 = Military power
	2 = Normal power
0761 THRU	Max Body Attitude Angle for Climb (THEMAX)
0770	[DEG]
0771 THRU	Power Turbine Speed Ratio (AN2M3)
0780	Ratio - operating pwr turbine speed to max pwr turbine speed {input for both primary and auxillary independent eng. in sec. 3, CLIMB}. (No input if N2IND = 0 or 1).
0781 THRU 0790	Profile Drag Increase During Climb (DCLIMB)
0791 THEU	Incremental Normal Load Factor (ENCLIME)
0800	For energy-maneuverability calculations (Nominally set equal to 0.0).

T. CRUISE INFORMATION {SGTIND = 4}

AND LANGUAGE AND COURT AND COURT OF THE PROPERTY OF THE PROPER

LOCALION	DATA	DESCRIPTION	(FOR I KAN	NAML)

0801 Cruise Indicator (CRSIND)
THRU
0810 l = Cruise at cruise power.

2 = Cruise at constant true airspeed.

3 = Cruise at speed for best specific range.

4 = Cruise at speed for 99% of hest specific range.

5 = Cruise-climb (constant acft wt to ambient press ratio) at speed for best specific range.

6 = Cruise-climb (constant airplane weight to ambient pressure ratio) at speed for 90% of best specific range.

0811 THRU	True Airspeed or Headwind (VIN)
0820	[KTS]; Input true airspeed if CRSIND = 2; Input headwind when CRSIND = 3 thru 6.
0821 ·	Cruise Segment Atmosphere Indicator (ATMIN4)
0830	0 = Standard atmosphere
	<pre>1 = Non-standard atmos. User inputs single point value for increment in ambient temp. above the standard day value.</pre>
	<pre>2 = Non-standard atmos. User inputs table of ambient temp. ratios as a function of alt.</pre>
0831 THRU	Step Size for Cruise Segment (DELR)
0840	[NAUTICAL MILES]
0841 THRU	Ambient Temperature Increment (TIN4)
0850	[DEG FARENHEIT]; Used for sizing engine during cruise (No input if ATMIND = 0,2).
0851 THRU	Range at End of Cruise Segment (RMAX)
0860	[NAUTICAL MILES]
0861 THRU	Cruise Segment Power Indicator (POWCRU)
0870	0 = Maximum power
	<pre>l = Military power</pre>
	2 = Normal power
0871 THRU	Number of Primary Engines Shutdown (ENPSD)
0880	During cruise seament
0881 Thru	Power Turbine Speed Ratio (AN2M4)
0890	Ratio of operating power turbine speed to maximum power turbine speed input for both primary and auxiliary independent engines in performance segment 4, CRUISE).

0891	Profile Drag Increase (DLCDCR)
THRU	
0900	[SQ. FT.]; Drag increase during cruise due
	to engines being shut down (based on wing
	planform area).

U. DESCENT INFORMATION (SGTIND = 5)

0902

0930

LOCATION DATA DESCRIPTION (FORTRAN NAME)

0901 Descent Indicator (DESIND)
THRU

- 1 = Descend at maximum speed, terminal range specified.
- 2 = Descend at maximum speed, terminal range not specified.
- 3 = Descend at idle power, terminal range specified.
- 4 = Descend at idle power, terminal range not specified.
- 5 = Descend at constant equivalent airspeed, terminal range specified.
- 6 = Descend at constant equivalent airspeed, terminal range not specified.
- 7 = Descend at constant Mach number, terminal
 range specified.
- 8 = Descend at constant Mach number, terminal
 range not specified.

0911 THRU	Mach, Equiv. Airspeed or True Airspeed (EMACH)
0920	[KTS]; (No input if DESIND = $1,2,3,or,4$).
0921	Descent Segment Atmosphere Indicator (ATMINS)

O921 Descent Segment Atmosphere Indicator (ATMIN5)
THRU

0 = Standard atmosphere

- 1 = Non-standard atmos. User inputs single
 point value for increment in ambient temp.
 above the standard day value.
- 2 = Non-standard atmos. User inputs table of ambient temp. ratios as a function of alt.

	MIIDII	
	THRU	f===3
	0940	[DEG]
	0941	Ambient Temperature Increment (TIN5)
	THRU	·
	0950	[DEG FARENHEIT]; Used for sizing engine
	0,50	during descent (No input if ATMIND = 0,2).
	0951	Step Size for Descent (DELH5)
	THRU	
	0960	[FT]
	0961	Range at End of Descent (RMAX5)
	THRU	
	0970	[NM]; (No input when DESJND = $2,4,6,9$).
	0971	
	THRU	
	0980	[FT]
	0981	Power Turbine Speed Ratio (AM2M5)
	THRU	·
	0990	Ratio of operating power turbine speed to
		maximum power turbine speed {input for both primary and auxiliary independent
		engines in performance seg. 5, DESCENT) (No input if N2IND = 0 or 1).
	0991 THRU	Profile Drag Increase During Descent (CLCDDS)
	1000	Used to simulate drag brakes.
v.	LOITEF	INFORMATION {SGTIND = 6}
	1001 THRU	Loiter Indicator (DNIRTL)
	1010	0 = Loiter mission is used in reserve fuel
	1010	calculation (gross wt reset after loiter).
		<pre>l = Loiter mission used as part of basic mission profile (gross weight not reset).</pre>
	1011 THRU	Step Size for Loiter (DELST)
	1020	[HRS]
	1021 THRU	Atmosphere Indicator for SGTIND = 2 (ATMIN2)
	1030	0 = Standard atmosphere

0931 Minimum Body Attitude Angle, Descent (THEMIN)

- 1 = Non-standard atmos. User inputs single
 point value for increment in ambient temp.
 above the standard day value.
- 2 = Non-standard atmos. User inputs table of ambient temp. ratios as a function of alt.

1031 THRU	Incremental Time for Loiter (STL)
1040	[HRS]
1041 THRU	Ambient Temperature Increment ('TIN6)
1050	[DEG FARENHEIT]; Used for engine sizing at LOITER conditions (No input when ATMIND = 0 or 2).
1051 THRU	Number of Primary Engines Shutdown (EMPSDL)
1060	During loiter segment
1061 THRU	Power Turbine Speed Ratio (AN2M6)
1070	Ratio of operating power turbine speed to maximum power turbine speed fingut for both primary and auxiliary independent engines in performance segment 6, LOITER. (No input if N21ND = 0 or 1).
1071 THRU	Increase in Planform Drag (DLOITR)
1080	During loiter segment.
1081 Thru	Wing Area Increase (RSW)

W. CHANGE IN FUEL WEIGHT (SGTIND = 7)

1090

CONTRACTOR OF THE PROPERTY OF

LOCATION	DATA DESCRIPTION (FORTRAN NAME)
1101 THRU	Fuel Weight Increment (PLTAWF)
1110	[LBS]
1121 THRU	Incremental Time for Fuel Weight Change (STFW)
1130	[HRS]

Due to flap extension.

This is the ratio

the wing loading of the wing and flap

to the wing loading of the wing alone.

X. CHANGE IN PAYLOAD WEIGHT {SGTIND = 8}

LOCATION DATA DESCRIPTION (FORTRAM NAME)

1131 Payload Weight Increment (DELWPL)

THRU

1140 [LBS]

1141 Incremental Time for Payload Wt Change (STPW)

THRU

1150 [HRS]

Y. TRANSFER ALTITUDE [SGTIND = 9]

LOCATION DATA DESCRIPTION (FORTRAN NAME)

1111 Final Altitude (HFIN)

THRU

and the second seconds and the second seconds of the seconds and the seconds and the seconds and the seconds of

1120 [FT]; Final alt. if HOPTIND = 0 (LOC 0018) or max altitude if HOPTIND = 1.

Z. CHANGE FUEL OR CHANGE PAYLOAD

LOCATION DATA DESCRIPTION (FORTRAN NAME)

- 1151 Weight Indicator (WGTIND)
 - 9 = Restriction on maximum airplane weight.
 Weight cannot exceed gross weight.
 - 1 = No restriction on airplane weight (will only apply when running performance calculations).

AA. GENERAL PERFORMANCE INFORMATION (SGTIND = 11)

LOCATION DATA DESCRIPTION (FORTRAN NAME)

2201 Gross Weight Indicator (GWIND)

THRU

2210 l = User inputs the incremental change in gross weight into LOC 2211.

2 = User inputs gross weight into LOC 2211.

2211 Increment in Gross Weight/Gross Weight (GWP)

THRU

2220 [LBS]; For GWIND = 0, input the increment

in gross weight; For GWIND = 1, input the gross weight value.

2221 THRU	General Perform. Atmosphere Indicator (ATMIN7)			
2230	0 = Standard atmosphere			
	<pre>l = Non-standard atmos. User inputs single point value for increment in ambient temp. above the standard day value.</pre>			
	<pre>2 = Non-standard atmos. User inputs table of ambient temp. ratios as a function of alt.</pre>			
2241 THRU	Ambient Temperature Increment (TIN7)			
2250	[DEG FARENHEIT]; Used for engine sizing at GENERAL PERFORMANCE conditions (No input when ATMIND = 0 or 2).			
2251 THRU	Profile Drag Increase (DLCDCR)			
2260	[SO. FT.]; Drag increase during cruise due to engines being shut down (based on wing planform area).			
2261 THRU	Altitude (AHOP)			
2270	[FT]			
2271 THRU 2280	Thrust-to-Weight Ratio for Takeoff (ENT)			
2281 THRU	Power Turbine Speed Ratio (AN2M7)			
2290	Ratio of operating power turbine speed to max. power turbine speed input for both prim. and auxiliary independent engines in performance segment 11, TAKEOFF - GENEPAL PERFORMANCE.			
2291 THRU	Velocity Increment (DELVP)			
2300	ГКТЅ]			
2301 THRU	Maximum Velocity (VMAXP)			
2310	[KTS]			

2311 Power Turbine Speed Ratio (AN2F8)

THRU

Ratio of operating power turbine speed to max. power turbine speed (input for both prim. and auxiliary independent engines in perform. seg. 11, CRUISE - GEN PERFORM).

BB. ENGINE CYCLE DATA: NON-STANDARD PERFORMANCE

LOCATION DATA DESCRIPTION (FORTRAN NAME)

1201 Primary Engine Fuel Flow Indicator (WDTIND)

0 = No primary engine fuel flow cutoff

1 = Primary engine fuel flow cutoff

1202 Primary Engine N1 Indicator (ANLIND)

0 = No primary engine limit for the das generator shaft speed (N1)

1203 Primary Engine Referred Nl Indicator (AN3IND)

0 = No primary engine referred N1 limit

1 = Primary engine referred N1 limit

1204 Primary Engine N2 Indicator (AN2IND)

0 = No primary engine N2 limit. Primary eng.
 operates at optimum power turbine speed
 (N2) value.

1 = Limit imposed on primary engine N2. Eng.
 operates at optimum power turbine speed
 (N2) value.

2 = Limit imposed on primary engine N2. Eng. operates at known value of N2 (in general, a non-optimum value).

1205 Torque Limit Indicator (OIND)

0 = No torque limit

l = Torque limit

- Reynold's No. Correction Indicator (RNOIND)

 0 = No Reynold's no. corrections
 - 1 = Reynold's no. corrections
- 1207 Reynold's Number Correction Factor (PRN)
 THRU
 1216 Reynold's no. correction for gas generator shaft speed (No input if RNOIND = 0).
- 1217 Lift Eng. Fuel Flow Indicator (VWDIND)
 - 0 = No fuel flow limit on the lift engine.
 - 1 = Fuel flow limit imposed on the lift eng.
- 1218 Lift Engine N1 Indicator (VN1IND)
 - 0 = No limit on the lift engine gas generator shaft speed (N1).
 - 1 = Limit imposed on the lift engine gas
 generator shaft speed (N1).
- 1219 Lift Eng. Pwr Turbine Speed Indicator (VN2INT)
 - 0 = No limit on the lift engine power turbine speed (N2).
 - 1 = Limit imposed on the lift engine power
 speed (N2).
- Primary Eng. Referred Fuel Flow Cutoff (WMAX)

 (No input if WDTIND = 0)
- Primary Engine Gas Generator RPM Limit (AlMAX)

 Ratio of max gas generator RPM to RPM at max static power, standard sea level (No input when ANIIND = 0).
- Prim. Eng. Referred Gas Gen. RPM Limit (A3MAX)

 Simulates a restriction on compression speed (No input when AN3IND = 0).
- Primary Eng. Power Turbine Speed Limit (A2MAX)

 Ratio of max power turbine speed (N2) to

power turbine speed at max static power, standard sea level conditions (No input when AN2IND = 0).

1224 Torque Limi	(XAMQ) 3
------------------	----------

Ratio of max torque limit to torque developed at static conditions, standard sea level.

1225 Engine Power Correction Factor (RNE)

THRU

To account for Reynold's number effects (No input when RNOIND = 0).

1235 Lift Eng. Referred Fuel Flow Cutoff (WLMAX)

(No input when VWDIND = 0)

1236 Lift Engine Gas Generator RPM Limit (AlMAX)

Ratio of max gas generator RPM (N1) to RPM at max static power, standard sea level (No input when VN1IND = 0).

1237 Lift Engine Power Turbine Speed Limit (AL2MAX)

Ratio of max power turbine speed (N2) to power turbine speed at max static power, standard sea level (No input if VN2IND=0).

1238 Output Shaft Speed Correction Factor (A2NO)

THRU

Ratio of operating power turbing speed to optimum power turbine speed (input when N2IND = 2 and non-standard correction is desired). See additional info in Ref. 3, page 5-39. (No input if N2IND = 0 or 1).

1248 Output Power Correction Factor (PNZ)

THRU

Input if N2IND = 2 and non-standard correction is desired. Ratio of power available at specified power turbine speed to power available at the optimum power turbine speed (No input if N2IND = 0,1).

CC. PRIMARY ENGINE CYCLE INFORMATION

* LOCATIONS	1301 - 1565 ARE NOT REQUIRED IF A STANDARD * PRIMARY ENGINE CYCLE IS SELECTED *
LOCATION	DATA DESCRIPTION (FORTRAN NAME)
1301	Cycle Number (CYCPRL)
	MUST match engine cycle no. in LOC 0201.
1302	Primary Engine Weight Factor (SK3)
	[LB/HP] if ENGIND = 0; [LB/LB-THRUST] if ENGIND = 1 or 2.
1303	Primary Engine Weight Factor (SK4)
	[LBS]
1304	Primary Engine Dimensional Factor (XI4)
	<pre>[FT/LB-THRUST] if ENGIND = 1 or 2; [FT/SQRT(SHP)] if ENGIND = 0.</pre>
1305	Ground Idle Turbine Inlet Temperature (TGI)
	[DEG RANKINE]
1306	Flight Idle Turbine Inlet Temperature (TFI)
	[DEG RANKINE]
1307	Normal Power Turbine Inlet Temp. (TNRP)
	[DEG RANGINE]
1308	Military Power Turbine Inlet Temp. (TMIL)
	TDEG RANKINET
1309	Maximum Power Turbine Inlet Temp. (TMAX)
	[DEG RANKINE]
1310	Number of Referred Temperatures (UNTS)
	Number of values in LOC 1311 - 1318.

1311	Referred Turbine Temperatures (TSHP)			
THRU 1318	[DEG RANKINE]; Ratio of turbine temp. to			
1310	ambient temperature ratio.			
1319	Number of Mach No. (UMS)			
	Number of values in LOC 1320 - 1325.			
1320 THRU	Mach Number Values (AMSHP)			
1325	Referred thrust tbl values (LOC 1326-1373)			
1326 Thru	Referred Thrust or Horsepower Values (SHPAV)			
1373	(Table must be at least 3 X 3 in size)			
1374	Number of Referred Temperatures (UNTW)			
	Number of values in LOC 1375 - 1382.			
1375	Referred Turbine Temperature Values (TWD)			
THRU 1382	[DEG RANKINE]; Ratio of turbine temp. to			
1002	ambient temperature ratio.			
1383	Number of Mach Numbers (UMW)			
1383	Number of Mach Numbers (UMW) Number of values in LOC 1384 - 1389.			
1384				
	Number of values in LOC 1384 - 1389.			
1384 THRU 1389	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table			
1384 THRU 1389 1390 THRU	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Eng. Referred Fuel Flow Rate (FWDOT)			
1384 THRU 1389 1390 THRU 1437	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Eng. Referred Fuel Flow Rate (FWDOT) (Table must be at least 3 X 3 in size)			
1384 THRU 1389 1390 THRU	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Eng. Referred Fuel Flow Rate (FWDOT)			
1384 THRU 1389 1390 THRU 1437	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Eng. Referred Fuel Flow Rate (FWDOT) (Table must be at least 3 X 3 in size)			
1384 THRU 1389 1390 THRU 1437	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Enq. Referred Fuel Flow Rate (FWDOT) (Table must be at least 3 X 3 in size) Number of Referred Temperatures (UNT1)			
1384 THRU 1389 1390 THRU 1437	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Enq. Referred Fuel Flow Rate (FWDOT) (Table must be at least 3 X 3 in size) Number of Referred Temperatures (UNT1) Number of values in LOC 1439 - 1446. Referred Turbine Temperatures (TN1)			
1384 THRU 1389 1390 THRU 1437	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Eng. Referred Fuel Flow Rate (FWPOT) (Table must be at least 3 X 3 in size) Number of Referred Temperatures (UNT1) Number of values in LOC 1439 - 1446.			
1384 THRU 1389 1390 THRU 1437	Number of values in LOC 1384 - 1389. Mach Number Values (AMWD) Values for the referred fuel flow table (LOC 1390 - 1437). Primary Enq. Referred Fuel Flow Rate (FWDOT) (Table must be at least 3 X 3 in size) Number of Referred Temperatures (UNT1) Number of values in LOC 1439 - 1446. Referred Turbine Temperatures (TN1) [DEG RANKINE]; Ratio of turbine temp. to			

THRU	, , , , , , , , , , , , , , , , , , ,		
1453	Values for the referred gas generator RPM limit table (LOC 1454 - 1501).		
1454 THRU	Referred Gas Generator RPM Speed Limit (AONE)		
1501	(Table must be at least 3 X 3 in size)		
1502	Number of Referred Temperatures (UNT2)		
	Number of values in LOC 1503 - 1510.		
1503 THRU	Referred Turbine Temperatures (TN2)		
1510	[DEG RANKINE]; Ratio of turbine temp. to ambient temperature ratio.		
1511	Number of Mach No. (UNM2)		
	Number of values in LOC 1512 - 1517.		
1512 THRU	Mach Number Values (AM2)		
1517	Values for the referred power turbine RPM limit table (LOC 1518 - 1565).		
1518 THRU	Referred Gas Generator RPM Speed Limit (ATWO)		
1565	(Table must be at least 3 X 3 in size)		
DD. LIFT ENGINE CYCLE INFORMATION ***********************************			
1601	Cycle Number (CYCLFL)		
	MUST match lift eng. cycle no LOC 0218.		
1602	Lift Engine Weight Factor (SK1)		
	[LB/LB THRUST]		
1603	Lift Engine Weight Factor (SK2)		
	[LBS]		

Mach Number Values (AM1)

1604	Lift Engine Dimensional Factor (XII)
	[FT/SQRT(LB THRUST)]
1605	Lift Engine Dimensional Factor (XI2)
	[FT]
1606	Lift Engine Dimensional Factor (XI3)
	[FT/SQRT(LB THRUST)]
1607	Ground Idle Turbine Inlet Temperature (TLGI)
	[DEG RANKINE]
1608	Max Power Turbire Inlet Temperature (TLMAX)
	[DEG RANKINE]
1609 THRU	Referred Turbine Temperatures (TF)
1616	[DEG RANKINE]; Ratio of turbine temp. to ambient temperature ratio.
1617 THRU 1624	Values of Referred Thrust (FAVL)
1625 THRU	Referred Turbine Temperatures (TFW)
1632	[DEG RANKINE]; Ratio of turbine temp. to ambient temperature ratio.
1633 THRU 1640	Values of Referred Fuel Flow Rate (FWPOT)
1641 THRU	Referred Turbine Temperatures (TF))
1648	[PEG RANKINE]; Ratio of turbine temp. to ambient temperature ratio.
1649 THRU 1656	Referred Gas Generator Speed Limit (FONF)
1657 THRU	Referred Murbine Temperatures (TF2)
1564	[DEG RANKINE]; Ratio of turbine temp. to ambient temperature ratio.

	1665 THRU 1672	Referred Power Turbine Speed Limit (FTWO)
EE.	ECONOMICS	
	LOCATION	DATA DESCRIPTION (FORTRAN NAME)
	1675	Inflation Factor (SPAC15(3))
		Base year is 1967.
	1676	Profit Factor (SPAC15(4))
		Expressed as a no. greater than 1.0. For ex., 1.1 would represent a 10% profit.
	1677	No. of Prototype Aircraft (SPAC15(5))
		Number in development program.
	1678	No. of Production Aircraft (SPAC15(6))
	1679	Avionics and Miscellaneous Costs (SPAC15(7))
		Per prototype aircraft.
	1680	No. of Ground Test Articles (SPAC15(8))
	1681	No. of Flight Test Hours (SPAC15(9))
	1682	Trainer and Misc. RDT&E Costs (SPAC15(10))
	1683	Avionics Costs (SPAC15(11))
		Per production aircraft in 1º67 dollars.
	1684	Cost of Fuel (SPAC15(12))
		[DOLLARS/LP]
	1685	Cost of Oil (SPAC15(13))
		[DOLLARS/LB]
	1686	Hull Insurance Rate (SPAC15(14))
	1687	Maintenance Labor Rate (SPAC15(15))
		「DOLLARS/HR]

THE PROPERTY OF THE PROPERTY O

1688	Time Between Engine Overhauls (SPAC15(16))
	[HRS]
1689	Time Between Dynamic Svstems Overhauls (SPAC15(17))
	[HRS]
1690	Dynamic Systems Indicator (SPAC15(18))
	<pre>1 = Dynamic system used during entire flight.</pre>
	<pre>2 = Dynamic system used during takeoff/landing only.</pre>
1691	Annual Interest Rate on Capital (SPAC15(19))
1692	Depreciation Period (SPAC15(20))
	[YRS]
1693	Residual Value (SPAC15(21))
	[DOLLARS]
1694	Annual Utilization (SPAC15(22))
	[HRS]
1695	Customer Aircraft Buy (SPAC15(23))
FF. HOVER PER	FORMANCE MAP
LOCATION	DATA DESCRIPTION (FORTRAN NAME)
2351	Number of Thrust Coefficient to Propeller Solidity Ratios (CTSGNO)
	Number of values in LOC 2352 - 2361.
2352 THRU	Thrust Coeff. to Solid. Ratio Values (CTOSIG)
2361	(Input at least three (3) values)
2362	Number of Tip Mach Number Values (TPMNO)
	Number of values in LOC 2363 - 2368.

2368	(Input at least three (3) values)		
2369 THRU	Figure of Merit Table (FMER)		
2428	Figure of merit values as a function of thrust coefficient to prop solidity ratios and tip Mach numbers.		
GG. PROPELLER	/FAN PERFORMANCE DATA		

1700	Propeller/Fan Table Number (PROPCY)		
	MUST match value for CYPROP (LOC 0256).		
1701	Number of Advance Ratios or Mach No. (XPXNO)		
	Number of values in LOC 1702 - 1721		
1702 THRU	Prop Advance Ratios or Mach No. Values (XPJ)		
1721	(Input at least three (3) values of propadvance ratio or Mach number)		
1722	Number of Propeller Thrust Coefficients or Referred Thrust Coefficients (CPPNO)		

Tip Mach Number Values (TIPM)

2363

THRU

1723

THRU

1742

1743

THRU 2142

Propeller

of advance ratio and prop thrust coeff.

Fan Power Coefficients: Array input as a function of Mach number and referred thrust coefficient.

Prop Power Coeff: Arrav input as a func.

(Input at least three (3) values of prop thrust coeff. or referred thrust coeff.)

Number of values in LOC 1723 - 1742.

Propeller or Fan Power Coefficients (CPPROP)

Thrust Coefficients or Peferred

Thrust Coefficients (CTPROP)

HH. DESCRIPTION OF SAMPLE DATA VALUES

The following is an actual data file used to study an eight passenger tilt rotor aircraft design. Each data value used in the input data file is listed below and a resibed.

II. LISTING OF DATA LOCATION/VALUES

LOC	VARIABLE	VALUE	SIGNIFICANCE OF DATA VALUE
0001	OPTIND .	1.0	Sizing run
0002	TNIRPK	0.0	Standard output
0003	DRGIND	0.0	Program calculates drag rise due to compressibility effects
0004	OSWIND	1.0	Program calculates the Oswald's efficiency factor
0005	PDMIND	3.0	Input diameter and thrust coeff. to solidity ratio
0006	FDMIND	2.0	Input desired seating capacity, seat width and pitch, number and width of aisles, number of seats abreast for tourist and first class, galley and lavatory size; Program calculates fuselage size
9097	WDMIND	0.0	Input wing loading & aspect ratio
8000	HTIND	2.0	Input horizontal tail area
0009	VTIND	2.0	Input vertical tail area
0010	FIXIND	0.0	Input level of maximum power or thrust (fixed engine size)
0011	ENGIND	0.0	Turboshaft engine
0012	ESZIND	0.0	Engines sized for takeoff only
0013	LFTIND	0.0	No separate lift propulsion engine
0014	WG00	13000.0	First quess at gross weigh: [LRS]

0015	H00	0.0	Start altitude [FT]
0016	R00	0.0	Start range [NM]
0017	ST00	0.0	Start time [HRS]
0018	HOPTIN	0.0	Input desired cruise segment alt.
0019	VLMIND	0.0	Airspeed limited to 250 kts EAS at altitudes of 10,000 ft or less
0020	EMMO	0.575	Max operating Mach number
0021	VMO	260.0	Max operating equivalent airspeed [KTS]
0022	VDIV	300.0	Design dive speed [KTS]
0023	EMLF	4.0	Maneuver load factor
0024	CK1		Default = 1.0 (no reserve fuel)
0025	DELWF		Default = 0.0 (no fixed fuel for reserves or other use)
0026	CKFF		<pre>Default = 1.0 (use nominal engine fuel)</pre>
0027	SGTIND	1.0	Taxi
0028	SGTIND	2.0	Takeoff
0029	SGTIND	3.0	Climb
0030	SGTIND	4.0	Cruise
0031	SGTIND	5.0	Descent
0032	SGTIND	2.0	Land
0033	SGTIND	1.0	Taxi
0034	SGTIND	9.0	Transfer altitude
0035	SGTIND	6.0	Loiter
0036	SGTIND	100.0	End of case
0037 THRU	SGTIND		Not used
0076	SGTIND		Not used

0077 THRU 0093			Not assigned for program
0094	SPACE1(18)	1.0	High wing location for 3-View drawing
0095	SPACE1(19)		Default = 0.0
0096	SPACEL(20)		Default = 0.0
0097	SPACE1(21)		Default = 0.0
0098	SPACE1(22)	0.0	Any value greater than 0.0 will generate the 3-View drawing; NOT available at NPS as of this writing
0099			Not assigned for program
0100		1.0	NPS modification; output will be abbreviated and a maximum of 80 characters wide for compatibility with THESIS2.
9101	DAM2	6.6	Wing aspect ratio
0102	DAM3		WDMIND = 0 (LOC 0007), therefore no input
0103	EYEW	3.0	Wing incidence angle [PEG] measured with respect to fuselage
0104	TCR	0.223	Wing root thickness-chord ratio
0105	TCT	0.223	Wing tip thickness-chord ratio
0106	DAM4	72.45	Wing loading [LBS/SO FT] at design gross weight
0107	DLMC4	-6.5	Quarter chord mean sweep angle [DEG]; (The XV-15 has a forward swept wing for prop clearance during flapping)
0108	SLM	1.0	Taper ratio of wing (tip chord/root chord)
0109	ARHT	3.27	Horizontal tail aspect rato
0110	SAH	0.0	Horizontal tail is on vertical

tail root chord

0111	ELTH	22.4	Horizontal tail moment arm [FT]
0112	TLCT	0.15	Horizontal tail mean thickness to chord ratio
0113	VBARH		HTIND = 2 (LOC 0008), therefore no input
0114	SLMH	1.0	Horizontal tail taper ratio
0115	AAW11	50.25	Horizontal tail planform area [SQ FT]
0116	SR	.08	Prop blade attachment distance measured from the centerline of the hub and expressed as a fraction of the propeller radius
0117	YCL		WDMIND = 0 (LOC 0007), therefore no input
0118	ZETAl		WDMIND = 0 (LOC 0007), therefore no input
0119	ZETA2		WDMIND = 0 (LOC 0007), therefore no input
0120	DLSWSW		Default = 0.0 (no protrusions such as landing gear)
0121	HF		FDMIND = 2 (LOC 0006), therefore no input
0122	DAM5		FDMIND = 2 (LOC 0006), therefore no input
0123	ELPD	1.2	Nose section fineness ratio
0124	ELTD	2.5	Tail section fineness ratio
0125	ELC	18.8	Cabin section length of constant diameter [FT]
0126	ELRW	0.0	Length of ramp well [FT]
0127	DAM6		FDMIND = 2 (LOC 0006), therefore no input
0128	SWF		FDMIND = 2.0 (LOC 0006); no input

0129	7 .T	2.33	Vertical tail aspect ratio
0130	ELTV	23.2	Vertical tail moment arm [FT]
0131	TCVT	.09	Vertical tail mean thickness to chord ratio
0132	VBARV		VTIND = 2 (LOC 0009), therefore no input
0133	SLMV	0.587	Vertical tail taper ratio
0134	AAW12	50.5	Vertical tail area [SQ FT]
0135	YMG	0.0	Position of main landing gear measured outboard from the side of the body and expressed as a fraction of wing semi-span
0136	YP	1.0	Mean position of primary engines measured outboard from airplane centerline and expressed as a fraction of wing semi-span
0137	YL		LFTIND = 0 (LOC 0013), therefore no input
0138	EPSLON		LFTIND = 0 (LOC 0013), therefore no input
0139	AZETAl	0.0758	Primary engine nacelle dimension factor
0140	AZETA2	0.0	Primary engine nacelle dimension factor
0141	AZETA3	0.233	Primary engine nacelle dimension factor
0142	SKIP(1)	0.25	Rotor thickness to chord ratio at 0.25R
0143 THRU 0150			Not assigned in program
0151	DNIIGN	0.0	Galley area calculated by program
0152	AGLLEY	0.0	Area of galley (e.g. no galley)
0153	ANPX1	0.0	No first class seats

COSC CONTRACTOR CONTRA

0154	ANAB1		Default = 0
0155	ANISL1		Default = 0
0156	WSEAT1		Default = 0
0157	PSEAT1		Default = 0
0158 0159		1.0	Default = 0 User inputs number of lavatories
0160	ANLAVS	1.0	Number of lavatories = 1
0161	ANPXT	8.0	Passenger capacity in the tourist section
0162	THAMA	2.0	No. of seats abreast in tourist
€ 63	ANISLT	1.0	No. of aisles in tourist
0164	WSEATT	21.0	Width of seats in tourist [IN]
0165	PSEATT	41.0	Seat pitch [IN]
0166	WAISLT	17.	Aisle width [IN]
0167	SPACE2(1)	0.0	No. in flight deck crew
0168	SPACE2(2)	0.0	No of flight attendants
0169 THRU 0199			Not assigned in program
0200	ETAIND	2.0	Propulsive performance calculated by program
0201	CYCPRP	1.78	Primary engine cycle number
0202	DAM7	2920.0	Primary engine maximum static horsepower [HP]; total for all engines
0203			Not used for turboshaft engines
0204	ENP	2.0	Number of primary engines
0205			Not used for turboshaft engines
0206	ETAT	0.95	Transmission efficiency

0207	HES	0.0	Takeoff altitude [FT]
0208	SENE	1.098	Thrust-to-weight ratio
0209	TINY	0.0	Ambient temperature increment for takeoff [DEG FARENHEIT]
0210	AN2TO	1.0	Ratio of operating power turbine speed to max power turbine speed
0211	ENPO		FIXIND = 0 (LOC 0010), therefore no input
0212	ENLO		FIXIND = 0 (LOC 0010), therefore no input
0213	POWESI		FIXIND = 0 (LOC 0010), therefore no input
0214	нс		FIXIND = 0 (LOC 0010), therefore no input
0215	VC		FIXIND = 0 (LOC 0010), therefore no input
0216	ATMIY	•	FIXIND = 0 (LOC 0010), therefore no input
0217	AN2CR		FIXIND = 0 (LOC 0010), therefore no input
0218 THRU 0221			Not used for turboshaft engines
0222			Not assigned for program
0223	ENR	2.0	Number or propellers
0224	VT	817.7	Propeller tip speed [FT/SEC]
0225	WGA		PDMIND = 3 (LOC 0005), therefore no input
0226	DI	25.0	Propeller diameter [FT]
0227	CTSIG	0.123	Thrust coefficient to propeller solidity ratio
C228	AF	72.92	Activity factor per blade
0229	BLDN	3.0	Number of blades on propeller

0230	CLEYE	0.25	Propeller integrated design lift coefficient
0231 THRU 0233			ETAIND = 2 (LOC 0200), therefore no input
0234 0235 THRU 0256	ETAP5	0.75	Descent propeller efficiency LTAIND = 2 (LOC 0200), therefore no input
0257	XMSND	0.0	Transmission sized at fraction of installed power
0258	XMSMRT	1.0	Fraction of installed power for sizing transmission
0259	DSHPAC	15.0	Accessory horsepower [HP]
0260	SHPTO		Ratio of eng. SHP to primary eng. max static HP (LOC 0202); used for sizing eng; default = 1.0
0261	VRCRC ·		Takeofr vertical rate of climb [FT/MIN]
0262	СКНС		Climb pwr multiplicative constant (default is 2.0)
0263 THRU 0300			Not assigned in program
0301 THRU	CDVTI		Default = 0.0
0304	CDLNI		Delauxt - 0.0
0305	DELCD	0.0138	Profile drag increment based on wing planform area
0306	DAM10		OSWIND = 1 (LOC 0004), therefore no input
0307	DELFE	9.08	Equiv. flat plate area [SO FT]
0308	TLLN	2.0	Number of pairs of values in the table of wing profile drag coeff. (LOC 0335 - 0342) versus lift coeff. (LOC 0317 - 0324)

0309	TENN		DRGIND = 0.0 (LOC 0003); no input
0310	TCLZN		DRGIND = 0.0 (LOC 0003); no input
0311	CKLN		Default = 0.0
0312	CKW	1.0	Wing multiplicative drag factor
0313	CKN	1.0	Primary nacelle multiplicative drag factor
0314 THRJ 0316			Default = 0.0
0317	TBCL1(1)	0.0	Wing lift coeff. value
0318	TBCL1(2)	4.0	Wing lift coeff. value
0319 THRU 0324			Not used
0325 THRU 0329			DRGIND = 0.0 (LOC 0003); no input
0330	RECI	0.2E+07	Mean Reynold's number per foot for mission
0331	CSALF	6.28	Two dimensional lift coeff. slope
0332	ALPHL	-1.0	Zero lift angle of attack [DEG]
0333	XCPS	0.3	Nondimensional position along the chord
0334	XCTCM	0.35	Nondimensional position along the chord at maximum t/c ratio
0335	TBCDWI(1)	0.0	Wing profile drag coeff. value
0336	TBCDWI(2)	0.0	Wing profile drag coeff. value
0337 THRU 0342			Not used
0343 THRU 0384			DRGIND = 0.0 (LOC 0003); no input

0385 THRU 0393			Not used
0394	SPACE4(10)	4.0	No. of stages in main rotor drive
0395	SPACE4(11)		Blade fold penalty; default = 1.0 (no fold)
0396	SPACE4(12)	61.0	Hub weight coefficient
0397	SPACE4(13)	0.12	Hub material/development factor
0398	SPACE4(14)	44.0	Blade weight coefficient
0399	SPACE4(15)	2.2	Hingeless rotor system
0400	OWE1		OPTIND = 1 (LOC 0001); no input
0401	WFE	2477.0	Weight of fixed equipment [LBS]
0402	WFUL	716.0	Weight of fixed useful load [LBS]
0403	WPL	0.0	Weight of payload [LBS]
0404	SKCC	15.67	Cockpit controls constant
0405	SKFW	.016	Fixed-wing controls constant
0406	SKH	0.0	System and hydraulics constant
0407	SKSAS	165.0	Factor for stability augmented system
0408	SKTM	0.0162	Tilting mechanism constant
0409	SKUC	0.779	Upper control mechanisms constant
0410			D. f 1. 0
THRU 0415			Default = 1.0
0416	THN		ATMIND is not set equal to 2.0 during any segment; no input
0417 THRU	DELWFZ		Dofoult = 0.0
	DELWST		Default = 0.0
0420	SKP	162.0	Body group weight adjustment factor

0421	SKLES		LFTIND = 0.0 (LOC 0013); no input
0422	SKLG	0.04	Alighting gear weight expressed
0423	SKMG	0.80	Ratio of main gear weight to gross weight
0424	SKTL	1.0	Tail load adjustment factor
0425	SKWF	0.6	Wing bending relief moment adjustment factor
0426	SKWW	350.0	Wing type weight adjustment factor
0427	SKY	0.195	Pitch radius of gyration [FT]
0428	SKZ	0.13	Yaw radius of gyration [FT]
0429 0421	SKPES SKLES	0.3422	Primary engine section weight LFTIND = 0.0 (LOC 0013); no input
0422	SKLG	0.04	Alighting gear weight expressed as a percentage of gross weight
0423	SKMG	0.80	Ratio of main gear weight to gross weight
0424	SKTL	1.0	Tai: load adjustment factor
0425	SKWF	0.6	Wing bending relief moment adjustment factor
0426	SKWW	350.0	Wing type weight adjustment factor
0427	SKY	0.195	Pitch radius of gyration [FT]
0428	SKZ	0.13	Yaw radius of gyration [FT]
	SKPES SKDS	0.3422 345.0	Primary engine section weight Drive system weight adjustment factor
0454	SKFS	0.10	Fuel sys. wt. adjustment factor
0455	SKLEI		LFTIND = 0.0 (LOC 0013); no input

0457	SKRP	15.77	Prop. weight adjustment factor
	SKVT	1.00	Drive system weigh' variation adjustment factor
0459 THRU 0465			Default = 1.0
0466 THRU 0475	TRTHE		THM = 0.0 (LOC 0416); no input
0476 THRU 0500			Default = 0.0
0501	ATMINI	0.0	Standard atmosphere for first tax: segment
0502	ATMIN1	0.0	Standard atmosphere for second taxi segment
0503 THRU J510			Not used
0511	DELTT	0.025	<pre>Incremental time for first taxi segment [HPS]</pre>
0512	DELTT	0.025	Incremental time for second taxi segment [HRS]
0513 THRU 0520			Not used
0521 THRU 0530	TIN] TVN1		ATMIN1 = 0.0 (LOC 0501 - 0510); no input
0531 THRU 0540			LFTIND = 0.0 (LOC 0013); no input
0541	AN] M1	0.81	Ratio of operating power turbine speed to max power turbine speed for first taxi segment

0542	ANIMI	0.81	Ratio of operating power turbine speed to max power turbine speed for second taxi segment
0543 THRU 0550			Not used
0551 THRU 0600			Not assigned in program
0601	TOLIND	3.0	User inp ts required fraction of maximum power for takeoff segment
0602	TOLIND	3.0	User inputs required fraction of maximum power for landing segment
0603 THRU 0610			Not used .
0611	ATMIN2	0.0	Standard atmosphere for takeoff segment
0612	ATMIN2	0.0	<pre>flandard atmosphere for landing segment</pre>
0613 THRU 0620			Not used
0621	PFET2	1.0	Primary engine power (or thrust) factor for takeoff segment
0622	PFET2	1.0	Primary engine power (or thrust) factor for landing segment
0€23 THRU 0630			Not used
0631 THRU 0640			ATMIN2 = 0.0 (LOC 0611 - 0620); no input
0641 THRU 0660			Default = 0.0

0661	DELTH	0.01667	Step size for hover during takeoff segment [HRS]
0662	DELTH	0.01667	Step size for hover during landing segment [HRS]
0663 THRU 0670			Not used
0671	AN2M2	1.0	Ratio of operating power turbine speed to max power turbine speed for takeoff segment
0672	AN2M2	1.0	Ratio of operating power turbine speed to max power turbine speed for landing segment
0673 THRU 0680			Not used
0681	STH	0.01667	<pre>Incremental time for hover during takeoff segment [HRS]</pre>
0682	STH	0.01667	Incremental time for hover during langing segment [HRS]
0683 THRU 0690			Not used
0691	CLMIND	1.0	Maximum rate of climb during climb segment
0692 THRU 0700			Not used
0701 THRU 0710			CLMIND = 1.0 (LOC 0691); no input
0711	ATMIN3	0.0	Standard atmosphere for climb segment
0712 THRU 0720			Not used
0720	DELH3	1000.0	Step size for climb seament [FT]

Andrea Instructor professor assertions provinced a second

0721 THRU 0730			Not used
0731 THRU 0740			ATMIND = 0.0 (LOC 0711); no input
0741	HMAX	15000.0	Max altitude for climb segment [FT]
0742 THRU 0750			Not used
0751	POWCLI	1.0	Climb at military power rating
0752 THRU 0760			Not used
0761	THEMAX	20.0	Max body attitude angle for climb segment [DEG]
0762 THRU 0770			Not used
0771	AN2M3	0.81	Ratio of operating power turbine speed to max power turbine speed for climb segment
0772 THRU 0780			Not used
0781 THRU 0800			Default = 0.0
0801	CRSIND	1.0	Cruise at cruise power
0802 THRU 0810			Not used
J811 THRU 0820			Default = 0.0

0821	ATMIN4	0.0	Standard atmosphere for cruise segment
0822 THRU 0830			Not used
0831	DELR	20.0	Step size for cruise segment [NM]
0832 THRU 0840			Not used
0841 THRU 0850			ATMIN4 = 0.0 (LOC 0821); no input
0851	RMAX	300.0	Range at end of cruise segment
0861	POWCRU	2.0	Cruise at normal power rating
0862 THRU 0870			Not used
0871 THRU 0880			Pefault = በ.በ
0881	AN2M4	0.81	Ratio of operating power turbine speed to max power turbine speed for cruise segment
0882 THRU 0890			Not used
0891 THRU 0900			Pefault = 0.0
0901	DESIND	1.0	Descend at maximum speed at the terminal range specified
0902 THRU 0910			Not used
0911 THRU 0920			DESIND = 1.0 (LOC 0901); no input

0921	ATMIN5	0.0	Standard atmosphere for the descent segment
0922 THRU 0930			Not used
0931	THEMIN	-20.0	Minimum body attitude angle during descent segment [DEG]
0941 THRU 0950			ATMIN5 = 0.0 (LOC 0921); no input
0951	DELH5	1000.0	Step size for descent segment [FT]
0952 THRU 0960			Not used
0961	RMAX5	300.0	Range at end of descent [NM]
0962 THRU 0970			Not used
0971	HMIN	0.0	Minimum altitude during descent segment [FT]
0972 THRU 0980			Not used
0981	AN2M5	0.81	Ratio of operating power turbine speed to max power turbine speed during descent segment
0982 THRU 0990			Not used
0991 THRU 1000			Default = 0.0
1001	LTRIND	2.0	Loiter performed for reserve fuel calculation

1002 THRU 1010			Not used for this case
1011	DELST	0.1	Step size for loiter segment [HR]
1012 THRU 1020			Not used for this case
1021	ATMIN6	0.0	Standard atmosphere
1022 THRU 1030	·		Not used for this case
1031	STL	0.3333	Incremental time for loiter [HRS]
1032 THRU 1060			Not used for this case
1061	AN2M6	0.81	Ratio of operating power turbine speed to maximum power turbine speed during loiter segment
1062 THRU 1110			Not used for this case
1111	HFIN	15000.0	Final altitude for transfer altitude segment [FT]
1112 THRU 1151			Not used for this case
1152 THRU 1200			Not assigned for program
1201	WDTIND	1.0	Restriction will be applied to fuel flow
1202	ANI IND	0.0	No restruction on referred N1 limit
1204	AN2 TND	2.0	Restriction will be applied to N2: Engine will operate at a known value of N2 (generally non-optinum)

1205	QIND	0.0	No restruction on torque limit
1206 THRU 1219			Not used for this case
1220	WMAX	1.11	Maximum fuel flow will be 118 greater than fuel flow at maximum static thrust, standard sea level
1221	Almax	1.04	Gas generator cutoff at 4% over max. sea level gas generator RPM
1222	A3MAX	0.0	No cutoff of referred Nl
1223	A2MAX	0.905	Power turbine cutoff at 90.5% of maximum sea level turbine power
1224	QMAX	1.446	Torque cutoff at 44.6% over max. torque developed at sea level, static, standard day conditions
1225 THRU 1257			Not used for this case
1258 THRU 1300			Not assigned for program
THRU	CYCFRL	1.78	Not assigned for program Propulsion cycle number
THRU 1300		1.78	
THRU 1300 1301	SK3		Propulsion cycle number Primary engine weight
THRU 1300 1301 1302	SK3	0.36	Propulsion cycle number Primary engine weight Multiplicative factor Primary engine weights additional
THRU 1300 1301 1302 1303	SK3 SK4	0.36	Propulsion cycle number Primary engine weight Multiplicative factor Primary engine weights additional factor
THRU 1300 1301 1302 1303	SK3 SK4 XI4 TGI	0.36 0.00 0.032	Propulsion cycle number Primary engine weight Multiplicative factor Primary engine weights additional factor Primary engine dimensional factor Turbine inlet temperature, ground
THRU 1300 1301 1302 1303 1304 1305	SK3 SK4 XI4 TGI	0.36 0.00 0.032 1650.0	Propulsion cycle number Primary engine weight Multiplicative factor Primary engine weights additional factor Primary engine dimensional factor Turbine inlet temperature, ground idle power setting [DEG RANKINF] Turbine inlet temperature, flight

1309	TMAX	2280.0	Turbine inlet temperature, maximum power setting
1310	UNTS	7.0	Number of referred temperatures in locations 1311-1318
1311 1312 1313 1314 1315 1316 1317	TSHP " " " " "	1500.0 1800.0 2000.0 2200.0 2400.0 2600.0 2800.0	Values of referred turbine temp. for the referred thrust or H.P. tables
1318			Not used for this case
1319	UMS	5.0	Number of Mach number values in locations 1320-1325
1320 1321 1322 1323 1324	AMSHP	0.0 0.2 0.4 0.6 0.8	Values of Mach number for the referred thrust or H.P. tables
1325			Not used for this case
1326 1327 1328 1329 1330	SHPAV " "	0.035 0.075 0.125 0.180 0.240	Values of referred thrust or H.P. corresponding to referred temperature location 1311 and Mach numbers found in locations 1320-1324
1331			Not used for this case
1332 1333 1334 1335 1336	SHPAV " " "	0.330 0.375 0.425 0.480 0.534	Values of referred thrust or H.P. corresponding to referred temp. location 1312 and Mach numbers found in locations 1320 - 1324
1337			Not used for this case
1338 1339 1340 1341 1342	SHPAV " "	0.630 0.670 0.720 0.775 0.835	Values of referred thrust or H.P. corresponding to referred temp. location 1313 and Mach numbers found in locations 1320 - 1324 Not used for this case

1344 1345 1346 1347 1348	SHPAV " " " "	0.920 0.960 1.010 1.065 1.125	Values of referred thrust or H.P. corresponding to referred temperature location 1314 and Mach numbers found in locations 1320-1324
1349			Not used for this case
1350 1351 1352 1353 1354	SHPAV " "	1.200 1.245 1.295 1.350 1.410	Values of referred thrust or H.P. corresponding to referred temp. location 1316 and Mach numbers found in locations 1320 - 1324
1355			Not used for this case
1356 1357 1358 1359 1360	SHPAV " " "	1.340 1.390 1.440 1.495 1.550	Values of referred thrust or H.P. corresponding to referred temp. location 1316 and Mach numbers found in locations 1320 - 1324
1361			Not used for this case
1362 1363 1364 1365 1366	SHPAV " " "	1.400 1.450 1.500 1.550 1.600	Values of referred thrust or H.P. corresponding to referred temp. location 1317 and Mouth numbers found in locations 1320 - 1324
1367 THRU 1373			Not used for this case
1374	UNTW	7.0	Number of referred temperatures in LOC 1375-1382
1375 1376 1377 1378 1379 1380 1381	TWD " " " " "	1600.0 1800.0 2000.0 2200.0 2400.0 2600.0 2800.0	Values of referred turbine temp. for the referred fuel flow table
1382			Not used for this case
1383	UNW	5.0	Number of Mach number values in locations 1384-1389

1384 1385 1386 1387 1388	AMWD	0.0 0.2 0.4 0.6 0.8	Values of Mach number for the referred fuel flow table
1389			Not used for this case
1390 1391 1392 1393 1394	WDOT " " "	0.150 0.170 0.15C 0.15G 0.150	Values of referred fuel flow corresponding to the referred temperature location 1375 and Mach numbers found in locations 1384-1388
1395			Not used for this case
1396 1397 1398 1399 1400	WDOT " " "	0.277 0.277 0.277 0.277 0.277	Values of referred fuel flow corresponding to referred temp. location 1376 and Mach numbers found in locations 1384 - 1388
1401			Not used for this case
1402 1403 1404 1405 1406	WDOT	0.407 0.407 0.407 0.407 0.407	Values of referred fuel flow corresponding to referred temp. location 1377 and Mach numbers found in locations 1384 - 1388
1407			Not used for this case
1408 1409 1410 1411 1412	WDOT	0.535 0.535 0.535 0.535 0.535	Values of referred fuel flow corresponding to referred temperature location 1378 and Mach numbers found in locations 1384-1388
1413			Not used for this case
1414 1415 1416 1417 1418	WDOT " " "	0.662 0.662 0.662 0.662 0.663	Values of referred fuel flow corresponding to referred temp. location 1379 and Mach numbers found in locations 1384 - 1388
1419			Not used for this case
1420 1421 1422	WDOT "	0.750 0.750 0.750	Values of referred fuel flow corresponding to referred temp. location 1380 and Mach numbers

1423 1424	11 16	0.750 0.730	found in locations 1384 - 1388
1425			Not used for this case
1426 1427 1429 1429 1430	WDOT " " " "	0.802 0.802 0.802 0.802 0.802	Values of referred fuel flow corresponding to referred temp. location 1381 and Mach numbers found in locations 1384 - 1388
1431 THRU 1437			Not used for this case
1438	UNT1	7.0	Number of referred temperatures in LOC 1439-1446
1439 1440 1441 1442 1443 1444 1445	TN1	1600 0 1800.0 2000.0 2200.0 2400.0 2600.0 2800.0	Values of referred turbine temp. for the referred gas generator RPM limit table
1446			Not used for this case
1446 1447	UNMl	5.0	Not used for this case Number of Mach number values in locations 1448-1453
	UNM1 AM1 " "	5.0 0.0 0.2 0.4 0.6 0.8	Number of Mach number values in
1447 1448 1449 1450 1451	AM1 "	0.0 0.2 0.4 0.6	Number of Mach number values in locations 1448-1453 'alues of Mach number for the referred gas generator RPM limit
1447 1448 1449 1450 1451 1452	AM1 "	0.0 0.2 0.4 0.6	Number of Mach number values in locations 1448-1453 'alues of Mach number for the referred gas generator RPM limit table
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457	AM1 " " " AONE " "	0.0 0.2 0.4 0.6 0.8 0.722 0.735 0.748 0.766	Number of Mach number values in locations 1448-1453 Talues of Mach number for the referred gas generator RPM limit table Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1439 and Mach no.

1464	ts	0.871	
1465			Not used for this case
1466	AONE	0.925	Referred gas generator RPM limit
1467	11	0.927	values corresponding to referred
1468	**	0.933	temp. location 1441 and Mach no.
1469	11	0.939	locations 1448-1452
1470	11	0.950	
1471			Not used for this case
1472	AONE	0.990	Referred gas generator RPM limit
1473	11	0.992	values corresponding to referred
1474	11	0.997	temp. location 1442 and Mach no.
1475	41	1.004	locations 1448-1452
1476	**	1.015	10CdC10NS 1440-1432
14/0		1.013	•
1477			Not used for this case
1478	AONE	1.045	Referred gas generator RPM limit
1479	"	1.048	values corresponding to referred
1480	**	1.052	temp. location 1443 and Mach no.
1481	**	1.059	locations 1448-1452
1482	**	1.068	10Cactons 1440-1432
1402		1.000	
1483			Not used for this case
	AONE	1.097	
1484	AONE	1.097	Referred gas generator RPM limit
1484 1485		1.100	Referred gas generator RPM limit values corresponding to referred
1484 1485 1486	06	1.100	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no.
1484 1485 1486 1487	00 00	1.105 1.105 1.059	Referred gas generator RPM limit values corresponding to referred
1484 1485 1486	16 16 17	1.100	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no.
1484 1485 1486 1487	16 16 17	1.105 1.105 1.059	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no.
1484 1485 1486 1487 1488	## ## ## ##	1.105 1.105 1.059 1.068	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case
1484 1485 1486 1487 1488 1489	16 16 17	1.105 1.059 1.068	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit
1484 1485 1486 1487 1488 1489 1490 1491	AONE	1.105 1.059 1.068 1.150	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred
1484 1485 1486 1487 1488 1489 1490 1491 1492	AONE	1.105 1.059 1.068 1.150 1.154 1.158	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred
1484 1485 1486 1487 1488 1489 1490 1491 1492	AONE	1.105 1.059 1.068 1.150 1.154 1.158	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no. locations 1448-1452
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 THRU	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no. locations 1448-1452
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 THRU	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no. locations 1448-1452
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 THRU 1501	AONE " " " " " UNT2	1.105 1.059 1.068 1.150 1.154 1.158 1.111 1.119	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no. locations 1448-1452 Not used for this case Number of referred temperatures in locations 1503-1510
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 THRU 1501	AONE	1.105 1.059 1.068 1.150 1.154 1.158 1.111 1.119	Referred gas generator RPM limit values corresponding to referred temp. location 1444 and Mach no. locations 1448-1452 Not used for this case Referred gas generator RPM limit values corresponding to referred temp. location 1445 and Mach no. locations 1448-1452 Not used for this case Number of referred temperatures

1505 1506 1507 1508 1509	80 00 88 88	2000.0 2200.0 2400.0 2600.0 2800.0	speed limit ratio table
1510			Not used for this case
1511	UNM2	5.0	Number of Mach number values in locations 1512-1517
1512 1513 1514 1515 1516	AM2 " " " "	0.0 0.2 0.4 0.6 0.8	Values of Mach number for the referred power turbine speed limit ratio table
1517			Not used for this case
1518 1519 1520 1521 1522	ATWO " " " "	0.445 0.461 0.500 0.557 0.640	Values of referred power turbine speed limit corresponding to referred temp. location 1503 and Mach no. locations 1512-1516
1523			Not used for this case
1524 1525 1526 1527 1528	ATWO	0.685 0.699 0.734 0.789 0.858	Values of referred power turbine speed limit corresponding to referred temp. location 1504 and Mach no. locations 1512-1516
1529			Not used for this case
1530 1531 1532 1533 1534	CWTA " " "	0.856 0.880 0.908 0.940 0.973	Values of referred power turbine speed limit corresponding to referred temp. location 1505 and Mach no. locations 1512-1516
1535			Not used for this case
1536 1537 1538 1539 1540	ATWO " " "	0.983 0.997 1.009 1.023 1.029	Values of referred power turbine speed limit corresponding to referred temp. location 1507 and Mach no. locations 1512-1516 Not used for this case

1542 1543 1544 1545 1546	ATWO	1.084 1.088 1.089 1.086 1.076	Values of referred power turbine speed limit corresponding to referred temp. location 1507 and Mach no. locations 1512-1516
1547			Not used for this case
1548 1549 1550 1551 1552	ATWO	1.178 1.169 1.158 1.145 1.123	Values of referred power turbine speed limit corresponding to referred temp. location 1508 and Mach no. locations 1512-1516
1553			Not used for this case
1554 1555 1556 1557 1558	ATWO	1.264 1.246 1.224 1.197 1.161	Values of referred power turbine speed limit corresponding to referred temp. location 1509 and Mach no. locations 1512-1516
1559			Not used for this case

JJ. EXAMPLE DATA FILE

The remaining pages of this chapter are a presentation of the actual data file that was submitted on the MVS batch network at the NPS computer center for the tilt rotor aircraft described by the data above.

The user will note that the data above was kept in a sequential order for ease of reading. The data file, however, does not need to follow any sequence as can be seen in the sample file on pages 193-196.

		(00		60 00	0.0		u	0.15								1.0	0.25				
2986', CLASS=C	SHR HR	CL=133, BLKSIZE=1300 P=(OLD, KEEP)		 00% 000%			· ·	22. 4	0.0	1.0	0.25	SIZING	2.0 17.0		TURBOSHAFT ENGINE)	0.0	3.0				
WALSH SMC	3. VASCOMP, DISP=SHR VFORTLIB, DISP=SHR	RECEM=FBA, LRECL= . VIEWPLOT, DISP=(000 000	300.00 300.00	K.	C	400	30. 30. 30. 30. 30. 30. 30. 30. 30. 30.	0 0 0 0 0	0.233	FOR	40.00 0.00 0.00		INFORMATION (TUR)	1.098	72.92	15.0	INFORMATION		
1053,9999),'TOM M1.1053P	105 PP.	DD SYSOUTH, DCB=(100) DD DSN=MSS. S1053	E	0000	7000 8000 7000	DIMENSIONAL DATA	0	75. 70.	ω.	003 03 08 08 08	0.0	DATA	221. 11.00 10.00	o. O	PROPULSION INFO	0.00	0.123	1.0	AERODYNAMICS II	2.0	
ALO3	PLIB	/ FT07F001 DD // GO FT10F001 DD // FT05F001 DD // F77777777777777777777777777777777	SEPRESSENCES	}	.ဃ4. ၁၄.ဝ	7777 AIRCRAET	100	1000	1123 4 1. 0	0129 3 2.33 0133 4 0.587	139 4 0.0/	PA	001100 001100 0001100 0001100 0001100	167.20.	O 3 2.0		200 200 200 200 200 200	57 3 0.0	AIRCRAFT	200	317 2 0:

			165.0	350.0	0.0 1.446	1650.0 7.0 2400.0	200844700 0 1 46644700 0 2	0 0000000 74700000 000000000000000000000
0.35		2.2	0.0	9.0	2.0 1.128	0.032 2280.0 2200.0		0000000 2000000 2000000 8000000000000
0.3	AND GEARBOX WEIGHT	44.0	0.016	1.0	900 000	0.0 2235.0 2000.0		000000 000000 0000000 0000000000000
0.0	PROPELLER, AND	0.12	15.67	0.80	15.77 0.0 1.04	00000000000000000000000000000000000000		000000 600000 000000 00000000 000000000
	394 1 4	3004 3004 301 301 324 324	403 5 0.00.	442222 442222 442222 100.00 10	22454 2204 2204 2204 2304 2404 2404 2404 240	233333 23333 2333 2333 2333 2333 2333		2444444 2004 2004 244224 24444 2444 244

2	220010 220010 24.0010 250010 27.0010 27.0010 27.0010	9 0	00000 00000 000000 0000000000000000000) 102 102	5.0										
1	000444446 0000440 00000440 000000440 00000044040	4.0	000CL)	4.0 00										
	0000 00000000 000000000000000000000000	. 200.	00011 8000 8000 8000	250 250 250 250 250	DATA 3.0 9.0										
t	000044446 -000044466 -00004460 -00044600 -00004660	.000	0000 4,000 4,000 0000 10000 7,000	20-12	PROFILE O	0.0 0.025 8.1	000								
t	20 OC	ላ ∙		26.0	₩		000			·Oin	0.0	<u> </u>	.00	0.000 0.000	.00
	<u> </u>			t				_	_	_	-				
1	400000400	04	LL(なみさ)	4400	~ ~m	0 L4	iOT(10F	~დთ	L04	9	~Oc	30C		71WL
	せんようかんりんり				` 00	000 000	000	900 000	၁၀၀	000	070	080	0000	8860 000	000

```
0961 1 300. 0
0971 1 0. 0
1001 1 2. 0
1001 1 2. 0
1001 1 0. 1
1001 1 0. 1
1001 1 0. 3333
1061 1 0. 3333
1111 1 15000.
77777777
MISCELLANEOUS
0094 1 0. 0
0100 1 0. 0
0100 1 0. 0
0100 1 0. 0
```

IV. V/STOL AIRCRAFT EXAMPLE

This chapter contains the output generated by running VASCOMP II using the data file shown at the end of Chapter III. The sequence of the results printed by the program using the standard format is as follows:

- 1. Data Echo
- 2. Size Data
- 3. Passenger Sizing Data
- 4. Weights Data
- 5. Propulsion Data
- 6. Aerodynamics Data
- 7. Mission Performance Data
- 8. Sizing and Performance Summary
- 9. Mission Data Summary

ROTOR
TILT
PASSENGER
9
8
11/25/85
בו
DATE

VASCOMP II

PAGE

B-93 & PERFORMANCE COMPUTER PROGRAM V/STOL AIRCRAFT SIZING

CARD BY CARD REPRODUCTION OF THE INPUT DECK FOR THIS CASE 2 STARTING WITH LCC. (MAX OF = LOCATION N = NUMBER OF VALUE FOR = VALUE FOR = VALUE FOR = VALUE FOR ETC. THE FOLLOWING IS A

VAL4 3.000 0.0000E+00 0.0000E+00	-6.500 0.1500	1.000
VAL3 1.000 2.000 0.1300E÷05 0.0000E+00	72.45 22.40 0.0000E+00 0.2500 17.00	ENGINE) 0.0000E+00
VAL2 0.0000E+00 2.0000E+00 0.0000E+00 3.00.0	0.2230 0.0000E+00 0.8000E-01 18.80 0.9000E-01 0.2330 FUSELAGE SIZING 0.00000E+00 41.00	10N (TURBOSHAFT 2920.
VAL1 0.0000E+00 0.0000E+00 0.0000E+00 2.0000E+00	0. 2230 3.270 50.25 2.500 23.20 0.0000E+00 0.0000E+00 1.000 21.00	PROPULSION INFORMATION 1.780 0.0000E+00
VAL 1.000 2.000 0.0000E+00 0.5750	AIRCRAFT DIMENS 6.600 3.000 1.000 1.200 2.330 0.5870 0.7580E-01 PASSENGER DATA 0.0000E+00 1.000 1.000 0.0000E+00	AIRCRAFT PROPUI 2.000 0.9500 2.000
NOW 2004-04-04-04-04-04-04-04-04-04-04-04-04-	<u> ন</u> ুদুদুদুদুদুদুদুদুদুদুদুদুদুদুদুদুদুদুদ	ಬಗಾಬ
100. 110. 100.	HUHHHHHH	2222 2200 2004 2004 2049

0.2500						165.0	350.0	0.0000E+00 1.446	1650. 7.000 2400.	0. 6000	0.2400 0.8340 1.1250 1.410 1.550		0.6000	0.1500
3.000			0.3500		2.200	0.0000E+00	0.6000	2.000	0.3200E-01 2280. 2200.	0.4000	0. 1800 0. 4800 1. 7750 1. 350 1. 495	0	0.4000	0.1500
72. 92	15.00	rion	0, 3000	WEIGHT	44.00	O. 1600E-01	1.000 0.3422	1,000 0,0000E+00 0,0000E+00	0.0000E+00 2235. 2000.	0.2000	0. 1250 0. 4250 0. 7200 1. 010 1. 295	1.500 1800.	0.2000	0.1500
0.1230	1.000	AMICS INFORMATION 2.000 1.000 4.000	-1.000 0.0000E+00	I, AND CEARBOX	0.1260	0.7790	0.8000 0.1300	0.0000E+00 1.040	0.3600 2180. 1800.	0.0000E+00	0.7500E-01 0.3750 0.6700 0.9600 1.245 1.390	1. 1600 0.	, ,	0.1500
25	000	AIRCRAFT AERODYNAMICS 0.1380E-01 2.00 1.000 1.000 0.0000E+00	077	, C		,	.0000 .0000 .000		1807	80.0 20.0 20.0	0.3300E-01 0.3300E-01 0.9200 1.200	400	200 100 100 100 100 100 100 100 100 100	15
יטר	117	H000F	140	_	1400	100-	HUMHHE	പവവവം	വവവ	⁄⁄ν~	ւտտտտտու	സസന) ()	·ω
226	Ωı	2000 2000 2000 2000 2000 2000 2000 200	າຕຕ	σ	ρ	2000	4:4 0 101010	2000C	100cm	いべい	20000000000000000000000000000000000000	2000	-നന്	<u>ה</u>

CONTROL OF THE PROPERTY OF THE

00000000 2.8855000 0.00000000 0.000000000000000000	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	986 4200011	5.000 100.00
000000 2.00000 2.000000 2.0000000 4.0000000000			4.000 0.00 0.00
00000 00000 000000000 000000000 0000000		0.000	 000 000
000.2780 00.4500 00.4500 00.7500 00.8000 00.8000 0000 0000 0000 0000			PROFILE DATA 2.000 1.000 0.0000E+00 0.8100 3.000 0.1667E-01 1.000 0.1667E-01 0.1667E-01
24.00.00 20.000.00 20.000000 20.0000000000	00000 0.0000 0.0000 00004000 00000400000 0000000000	84989 · · · 988890000000000000000000000000	MISSION FLIGHT 2.000 0.0000E+00 0.8100 0.8100 0.1667E-01 1.000 0.1667E-01 0.1667E-01 0.1500E+00 0.1500E+00 0.25.00 0.8100 0.8100
വസവവവവവ	പസസസസസസസസസ	പഗഗഗഗഗഗഗ	הטמממממממטרייייי
000466844		444888446	くくくくくららののののでというとくとくくくくくくらっていることできることととしてこれにいいているというといいといいました。 しょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょう ストール しゅうしゅう しゅう

```
801

821

831

1.000

8831

1.000

8861

1.000

900

1.000

900

1.000

900

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.
```

THE PARTY OF THE PROPERTY OF T

Σ 0 Ö Ø K >

B-93	
PROGRAM	
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	THIS RIN CONVERGED IN 2 ITERATION(S)
RMANCE	2 TT
& PERFO	REGED IN
SIZING	IN CONV
IRCRAFT	THTS R
V/STOL A	A T A C
	[±

N

S

•	FT FT SQFT	SOFT	PT Deg	LB/SQFT	
	37.0 6.8 632.	6. 60 181. 6	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.222 7222 0.222 10.233	t
GROSS WEIGHT = 13155. LE	LENGTH WIDTH WETTED AREA	ASPECT RATIC AREA	GEOM. MEAN CHORD OUARTER CHORD SWEEP TAPER RATIO BOOM THICKNESS	TIP THICKNESS WING LOADING MEAN CHORD / PROP. DIA.	
	FUSELAGE LE WE SE	AING AR SER	CBARW LAMBDA C LAMBDA	HUS E	THE WOLL

VERTAND ASPECT RATIO AREA SVT SPAN CBANT CHORD (T/C)VT THICKNESS / CHOING VBARY ENG. NACELLE LENGTH DBARN MEAN DIAMETER SN.

FI

8.9 162.0

2.30 150.33 100.55 13.90 18.00 18.00 18.00

1. 18.24 1. 18.29 1. 18.20 1. 18.20 1. 18.20

NO LIFT PROPULSION SELECTED

LIFT ENG. NACELLE

LB/SQFT FT/SEC 0.25 0.0092 0.13.42 0.00034 0.000034 0.0000034 CERS PROP RADIUS RATIO PROPELLER
D SIGMA R/P
WG/A CT/SIGMA
NR BLADES
VT

α.
\overline{a}
ROTOR
Ξ
\approx
LL
٠.
TILT
Н
<u>-</u>
H
PASSENGER
Ð
O
Ž.
ᇊ
77
74
10
Ň
щ
ω
/85
`
3
25
25
25
25
11/25/
11/25
11/25
11/25
25

ന

PAGE

ASCOMP II

B-93 & PERFORMANCE COMPUTER PROGRAM SIZING V/STOL AIRCRAFT

FASSENGER SIZING DATA

_	TOURIST		FIRST CLASS	
NO. DEFENS. NO. OF AISLES UNIT SEAT WIDTH SEAT PITCH AISLE WIDTH	.2441 .24117 		zzz pococo	
NUMBER OF LAVATORI	(IES	1.00	!	

	*** TOURIST *** TOURIST
in H	• • 4
-12:0 02:0 03:0	76.4 81.34 IN
NUMBER OF LAVATORIES GALLEY AREA GLOSET ABEA	IN DIA

CLASS CRITICAL CLASS CRITICAL

NOSE SECTION LENGTH 8.1 F. TAIL SECTION LENGTH 16.9 F. CONST. DIA. LENGTH 11.9 F.

TOTAL, FUSELAGE LENGTH 3

37.0 ET

DATE 11/25/85 8 PASSENGER TILT ROTOR

3

VASCOMP

B-93		4. 000 2. 615 6. 000	00L 00L 400 4.000	52.0 50.0	, , , ,	3519.	894. 1385.	1051.	174.	
PROGRAM								•		TN
COMPUTER					ECTION COUSTIC TREAT. INCREMENT			7	ATION	T INCREME
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM		FACTOR FACTOR FACTOR		ECTION	e section E acousti Ght incre	RE WEIGHT	ROTOR OR PROP DRIVE SYSTEM	ES Nombre ser	E INSTALL	OUP WEIGH
NG & PER	IN LBS	MANEUVER LOAD GUST LOAD ULTIMATE LOAD	WING HOR. TAIL VERT. TAIL	NG GEAR ENGINE S	ARY ENGINE SECTION ARY ENGINE ACOUST CLURE WEIGHT INCR	STRUCTU	OR PROP SYSTEM	RY ENGINE	RY ENGIN	LSTON GR
FT SIZI		MANEU GUST ULTIM	WING HOR. VERT	LANDI	PRIMA PRIMA STRUCA	TOTAL	ROTOR DRIVE	PRIMA	PRIMA	PROPU
L AIRCRA	DATA		FURES GROUP WWWT WAT WAT WAT WAT	TC ESS SESS	PES (5(2) WST	N GROUP	R/P DS Er	5년 10년 1	NEG TH	WP
V/STC	IGHTS	EMLE GLEE ULE	STRUCTURES GRO KE WW K9 WHT K10 WVT	122 100 100 100 100 100 100 100 100 100	K14 SPACE DELTA	WST ROPIILSIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	7XX 0V 5	DELTA
	ы П		Ø			ρ.	•			

1385. 1051. 174. 146. 3650.	694 2212 1960 1960 1960 1960
ROTOR OR PROP DRIVE SYSTEM LIET ENGINES PRIMARY ENGINES LIFT ENGINE INSTALLATION PRIMARY ENGINE INSTALLATION FUEL SYSTEM PROPULSION GROUP WEIGHT	CONTROLS GROUP S WCC COCKPIT CONTROLS 6 WUC HYDRAULICS B WFW FIXED WING CONTROLS 9 WSAS O WIM CONTROL WEIGHT CONTROL WEIGHT 10 TAL CONTROL WEIGHT
KOLONION CONTROLL CON	FLIGHT CONTROLS K15 WCC K16 WUC K17 WH K18 WFW K19 WSAS K20 WTM DELTA WFC

WFE	WEIGHT OF FIXED EQUIPMENT	2477
NE NE	WEIGHT EMPTY	10976
WEUL	FIXED USE: UL LOAD	716
ONE	OPERATING WEIGHT EMPTY	11692
WPL	PAYLOAD	0
(WE)A WE)W	FUEL	1463 1463
5	GROSS WEIGHT	13155

VASCOMP I

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

PROPULSION DATA

PRIMARY PROPULSION CYCLE NO. 1.780

TURBOSHAFT ENGINE

ENGINES

BHP*P MAX. STANDARD S. L. STATIC H. P. 2920. H. P. P. PCWER LOADING = 0.2220

ENGINE SIZE WAS FIXED BY INPUT

ACCESSORY HORSEPOWER EXTRACTED = 15.00 H.P.

NO LIFT ENGINE CYCLE SELECTED

XMSN SIZED AT 100. PERCENT OF TOTAL PRIMARY ENGINE INSTALLED POWER (MAX. STANDARD S. L. STATIC H. P.), 100. O PERCENT HOVER RPM

TRANSMISSION EFFICIENCY = 6.9500

ALCOHOL BARROSSES CONTRACTORS CONTRACTORS

VASCOMP II

PROGRAM B-93	9.204 SOFT 1324. SOFT 0.006954	0000000 0000000 00000000	0.59515 -0.11302 0.12091 0.05069 0.95232 0.07202 5.11200 PER RADIAN
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	A E R O D Y N A M I C S D A T A FE TOTAL EFFECTIVE FLATPLATE AREA SWET TOTAL WETTED AREA CBARF MEAN SKIN FRICTION COEFF.	DRAGBREAKDOWN IN SQFT FEW AUNG FE FUSELACE FE FEVT VERT. TAIL FE FEHT HOR. TAIL FE FEN LIET ENG. NACELLE FE DELTA FE INCREMENTAL FE	AERODYNAMIC COEFF. A1 A2 A3 A4 A5 A6 A7 CL ALLIA 3-D LIFT SLOPE E

DATE 11/25/85 8 FASSENGER TILT ROTOR

APPEN COLUMN TO ALABAM DE LALCALIA CARACTERANCE AND AND AND COLUMN COLUMN FOR A COLUMN FOR THE PARTY OF THE PARTY AND THE

VASCOMP II

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

A T Ω 闰 ပ Z K E & 0 Œ œ 臼 д Z 0 ល Ø H

					£ 5000000000000000000000000000000000000
_		Œ	CT 1021 1021		Н
DEG. F		DEG.	44 00		44000000000000000000000000000000000000
59.0		HRS. 59.0	EM 0.64	RATING	## ## ## ## ## ## ## ## ## ## ## ## ##
≡		0. 017	THRUST TO TO HI 2831	INE R	Z
rg.	000 000 000	ATURI	ပဂ	ENGI	る母るものなないって母工母なので
TEMPERATURE	LE7F C. 00	O FOR MPERA	LETE 0.00	ia X	は
TEM	ETE CAR EHR . 091	0.00 1 回	ETF ORN . 000 . 000	TAR	図○図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Ö	H HOO	11	р рнн	171	M WOOOOOOOOOOO
RATING;	ENG CODE T	LETE	ENG CODE	AT M	
ENGINE F	TURB TEMP (R) 1650.	ON ON	TURB TEMP (R) 2241. 2241.	R/C	H ACCUPATION OF THE CONTROL OF THE C
IDLE EN	TAS (KT) O.	= 1. (FT/M)	TAS (KT) 0.	KIMUM	E ALLEHELEHELEHELE «Xononononononononono «Hooooaa, constantanoa ono ono ono ono ono ono ono ono ono ono
GROUND ID	PRES ALT (FT) O.	T PETE 0.0	PRES ALT (FT) 0.	H MAX	мдт оооооооооооооооооооооооооооооооооооо
AT	WEIGHT (LB) 13155. 13142.	R LAND AT	WEIGHT (LB) 13142.	FT. WITH	X
0.025 HRS	FUEL USED (LB) 13.	VER OF	FUEL USED (LB) 13.	5000.	日日 日
. c	o⊙ 300	HOY	" <u>~</u> 00	15	<u>О</u>
FOR (ZZ00	FF F	OO S	TO	NN
TAXI	TIME (HRS) 0.025	TAKEO	TIME (HRS) 0. C42	CLIMB	H_000000000000000000000000000000000000

	ETAP PROP	α		田
Eu	PECANGE			######################################
DEG.	MACH	<u>ი</u> იიიიიიიიიიიიიიიიიიიიიიიიიიიიიიიი		TO STATE OF THE ST
5.5	MACH	44444444444444444444444444444444444444	Ω	A
H		12570258085857024	回田	00000000000000
URE	EAS	44440000000000000000000000000000000000	SP	00000000000000000000000000000000000000
ERAT		๛๛๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛	MAX	田 O O O C O C O C O C O C O C O C O C O
MPI	ROP	400000000000000	AT	# #oooooooooooo
TEMP	ENG		MI.	CE C
	D □	00000000000000000000000000000000000000	00 N	## 00000000000000000000000000000000000
ING	4 5	70001111100000000000000000000000000000	300.	H_wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
INE RAT	RIF		II &	инциц типпиц типпиц типиц типис
ENGI	E I G		O. FT.	7
NORMAL	जिल्ल	7 111224447078890111 678674707086817 741980447077800873	II H	
		000000000000000		
E AT		40400000000000000000000000000000000000	TO TO	######################################
CRUISE	Ξ Σ		SCEND	MADDITUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT
CR	TI		DE	

1 0.017 HRS. TURE = 59.0 DEG. F	THRUST FM CT WEIGHT 00 1.412 0.644 0.1021	URE = 59.0 DEG. F	й 00			5.5 DEG. F	MACH DIV RATE PROP (LB-HR) : 232 : 433 584 : 849 : 232 : 433 578 : 848 : 232 : 433 576 : 846 : 232 : 434 575 : 846	+ + + + + + + + + + + + + + + + + + +
= 0.000 FOR	PETE OR LETE PEHE 1.000 0.00	3; TEMPERATURE	PETF LETE OR LETE PEHE 0.00 0.091 0.00		PRES. ALT. (FT) 15000.	TEMPERATURE=	PETE OR EAS 0.489 116.1 0.486 115.3 0.483 115.3 0.480 115.3 0.480 115.3	9 () () () () () () () () () () () () ()
DOO LETE	TURB ENG TEMP CODE (R) 2241. T	ENGINE RATING	TURB ENG TEMP CODE (R) 1650. I	FT.	WEIGHT (LBS.) 11877.	FUEL TEN	TURB ENG TEMPS CDE 1748. P 1745. P 1741. P	= 1277.57 = 193.49 = 1471.06
AT PETE = 1.	PRES ALT (KT (KT) 0.00	GROUND IDLE EI	PRES ALT (FIT) (KIT (O) (O)	TO 15000.	FUEL USED (LBS) (277.6	FOR RESERVE	PRES 1150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 150000 1 150000 1 150000 1 150000 1 150000 1 150000 1 1500000 1 1500000 1 1500000 1 1500000 1 1500000 1 1500000 1 1500000 1 1500000 1 1500000 1 15000000 1 150000000 1 15000000 1 1500000000	ON FUEL REQUIRED = 1277.57 VE FUEL REQUIRED = 193.49 FUEL REQUIRED = 1471.06
OF CLIMB =	EL WEIGHT (LB) (LB) 11918.	HRS AT GR	EL WEIGHT (LB) (LB) (AB) (AB) (AB) (AB) (AB) (AB) (AB) (A	ALTITUDE :	RANGE (N. M.) 300. 00	333 HR3. FC	EIGHT (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB)	ISSI ESER OTAL
TAKECEE HOVER	ME RNG US RS) (NM) (L 175 360.0 12 192 300.0 12	XI FOR 0.025	ME RNG US RS) 3(NM) (L 192 350.0 12 217 300.0 12	TRANSFER	TIME (HRS) 1.217	TER FOR 0.	REC. RNG USE: 217 300.0 127317 300.0 127417 300.0 1335517 300.0 145550 300.0 1455	N. A.
T	HH.I.	TA	H H H H H			LOI	まは、・・・・	*

CASE

SUCCESSFUL

OF

END

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

Ä
ROTOR
ᅜ
\mathfrak{S}
(LL
TILT
PASSENGER
Φ
./25/85
/25
11/
DATE

PAGE

B-93 V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM S U M M A R Y COMP ß V A

	181.58 72.45	700 100 100 100 100 100 100 100 100 100	1.0000	11692. 1463.	9.204	0.0000
73	11 11 1	1 11 1	1 11 11	11 11 11	11 11	11
ITERATION NO. =	WING AREA	ASPECT RATIO	H	VERT. TAIL AREA OPER. WEIGHT EMPTY WEIGHT OF FIRE	AREA	GRS
	13155.	0.2220	36. 99.	50. 10976.	1324.	١ .
	GINES	BHP/"	. H	RIZ. TAIL AREA = PIY WEIGHT	AREA	UST

			73.
		=0.437	TIME=
	·	MACH NO.	BLOCK TIME=
		MA	1471.
Æ	SEG. DIST (NMI)	2632. 263.14.	TOT. FUEL=
DATA	ALT. (FT)	00 0 00	
	EC.	0. 15000. 0.	193.
NISSIW	SEG. FUEL Las)	40000000000000000000000000000000000000	RSRV. FUEL=
I S S	<u> </u>	H	RSRV.
Σ	SEG. TIME (MIN)		1278.
		/LND SE SE ENT /LND	FUEL=
		TAXI TOFF/ CLIMB/ CRUINS DESCEN	
			300. NM MSN.
			RNG=

۵.

POSSE POSSESSE POSSES

LIST OF REFERENCES

- 1. NASA CR 2544, Conceptual Design Study of 1985 Commercial Tilt Rotor Transports, by Bell Helicopter Commany, p. 7, May 1975
- 2. NASA CR 151987, Applications of Advanced V/STOL Aircraft Concepts to Civil Utility Missions, by The Aerospace Corp., v. 2, pp. 25-144, February 1977.
- 3. Boeing VEFTOL Company, Report D8-0375, <u>User's Manual for VASCOMP II</u>, <u>The V/STOL Aircraft Sizing and Performance Computer Program</u>, Volume VI, Third Revision, by A. H. Schoen et al, May 1980.
- 4. Boeing VERTOL Company, US Navy Contract N62269-79-C-0217, User's Manual for HESCOMP, The Helicopter Sizing and Performance Computer Program, Second Revision, by S. J. Davis et al, October 1979.
- 5. Zuk, J., "Civil Benefits of the JVX", Vertiflite, v. 30, No. 1, pp. 20-23, Jan/Feb 1984.
- 6. Jane's All The World's Aircraft 1971-72, pp. 262-264, Sampson, Low, Marstol & Co. Ltd., 1971.
- Martin, S. and Peck, W. B., JVX Design Update, paper presented at the 40th Annual Forum of the American Helicopter Society, Arlington, Virginia, May 16-18, 1º84.

BIBLIOGRAPHY

- "Advanced VTOL Concepts to be Studied," <u>Aviation Week & Space Technology</u>, April 30, 1973, pp. 85-86.
- "Bell Tilt-Rotor: The Next V/STOL?" Flight International, February 9, 1980, pp. 381-386, 412.
- "Bell XV-15 to Test Tilt-Rotor Concept," <u>Aviation Week & Space Technology</u>, November 1, 1976, pp. 20-21.
- "Development of V/STOL Aircraft 1950 to 1970," Journal of the American Helicopter Society, June 1979, pp. 7-36.
- "Flexibility is Offered by XV-15 Tilt-Kotor Concept," Aviation Week & Space Technology, January 11, 1982, pp. 74-76, 81, 83, 85.
- "Flying the V-22 Predecessor: The NASA/Army/Bell XV-15," Rotor & Wing International, June 1985, pp. 44-50, 54-58, 93.
- "Handling Qualities Evaluation of the XV-15 Tilt Rotor Aircraft," Journal of the American Helicopter Society, April 1975, pp. 23-33.
- "Improving the Helicopter What Next?" Interavia, October 1972, pp. 1121-1123.
- "Joint Services Vertical Lift Development (JVX) Program: Looking to the Future," <u>Vertiflite</u>, Nov/Dec 1984, pp. 24-25.
- "JVX: Entering Preliminary Design," <u>Vertiflite</u>, Nov/Dec 1983, pp. 18-19.
- "JVX: The World's First Production Tilt-Rotor?" Interavia, July 1983, pp. 755-757.
- "JVX: Tilt-Rotor Sets Out to Succeed," Flight International, November 5, 1983, pp. 1214-1216.
- "JVX Program: Still a lot of Questions," <u>Interavia</u>, April 1983, pp. 348-349.
- "Military Potential of the Tilt-Rotor Aircraft," <u>Aeronautical</u> <u>Journal</u>, March 1983, pp. 99-103.
- "Moving V/STOL from Technology to System," **stronautics and Aeronautics, December 1977, pp. 26-27.

- "Proposal Request for JVX Authorized for December," <u>Aviation</u> Week & Space Technology, November 22, 1982, pg 29.
- "Structural Components, Design of Tilt-Rotor JVX Near Completion," <u>Aviation Week & Space Technology</u>, January 14, 1985, pp. 84-87.
- "The Promise of Tilt-Rotor," Aircraft Engineering, July 1978, pp. 11-13.
- "The XV-15 Experience From Wind Tunnel and Simulations to Joint Services V/STOL Aircraft," Presented at Army operations Research Symposium, Fort Eustis, Virginia, October 4-5, 1983.
- "The XV-15 Tilt Rotor Research Aircraft," Society of Experimental Test Pilots Symposium Proceedings, Sept. 1980, pp. 168-185.
- "Tilt-Rotor Aircraft," Army Research, Development and Acquisition Magazine, May-June 1980, pp 1-3.
- "Tilt-Rotor Aircraft Nears Final Design," Aviation Week & Space Technology, May 20, 1974, pp. 51-53.
- "Tilt-Rotor: Expanding Rotorcraft Horizons," <u>Vertiflite</u>, May/June 1980, pp. 8-11.
- "Tilt-Rotor VTOL," Popular Science, February 1978, pp. 68-70.
- "V/STOL Turning Promise to Reality," <u>Astronautics and Aeronautics</u>, September 1965.
- "XV-15 Experience: Joint Service Operational Testing of an Experimental Aircraft," Society of Experimental Test Pilots Symposium Proceedings, September 1983, pp. 4-20.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5092		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5000		5
4.	Professor Donald M. Layton, Code 67Ln Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5000		1
5.	Captain Thomas P. Walsh US Army Avaition Engineering Flight Activity Engineering Flight Test Division A Edwards Air Force Base. California 93523-5000		1