

Adrià Arrufat

Orange Labs and IETR/INSA — Rennes, France

11th December 2015

Director: Olivier Déforges

Supervisor: Pierrick Philippe

École Doctorale Matisse

INSTITUT NATIONAL DES SCIENCES

- 1 General introduction
- 2 Transform coding
- 3 Mode-dependent transform competition
- 4 Simplifications of the MDTC systems
- 5 Conclusions

Era of the Internet and videos

Current situation

- In 2014: around 70% of Internet traffic was due to video streaming
- Forecast for 2019: more than 80%¹

Continuous need for video compression

- New formats emerge
- New applications require improved video quality
- Need to decrease the bit-rate to stream/store videos

¹Cisco Visual Networking Index: Forecast and Methodology, 2014–2019 White Paper

Era of the Internet and videos

Standardisation

Video coding standards

- The work is inscribed inside a standardisation context
- Latest standard, HEVC, was released in 2013

Working context

- Beginning of the standardisation phase
- Exploratory phase with relaxed complexity constraints
- Goal: achieve a suitable solution for a video coding standard for around 2020.

The hybrid video coding scheme

Used in most video coding standards

Adrià Arrufat

The hybrid video coding scheme

Used in most video coding standards

- 1 General introduction
- 2 Transform coding
- 3 Mode-dependent transform competition
- 4 Simplifications of the MDTC systems
- 5 Conclusions

Introduction to transforms

Definition

- A transform is a mathematical function of a signal from a representation domain to another, e.g. a rotation (2D)
- A transform is a change of basis

Desirable properties

- Low complexity
 - real time
 - battery drain
- Compact representation
- Orthogonality
 - perfect reconstruction
 - easily invertible

Separability and non-separability

Pros & Cons Non-separable

- Able to exploit any linear correlation within a block
- They require $\approx N^4$ operations

Separable

- Able to decorrelate pixels sharing rows or columns
- They require $\approx 2N^3$ operations

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Example with N = 4

Separability and non-separability

Pros & Cons Non-separable

- Able to exploit any linear correlation within a block
- They require $\approx N^4$ operations

Separable

- Able to decorrelate pixels sharing rows or columns
- They require $\approx 2N^3$ operations

Example with N = 4

Separability and non-separability

Pros & Cons Non-separable

- Able to exploit any linear correlation within a block
- They require $\approx N^4$ operations

Separable

- Able to decorrelate pixels sharing rows or columns
- They require $\approx 2N^3$ operations

Example with N = 4

What kind of data is processed by transforms?

Particular case of HEVC

Residual blocks

- Difference between:
 - original block
 - predicted block
- Examples:

The same transform is used for all of them

They are generated as different combinations of

- transform units (TUs): 32, 16, 8, 4
- predictions
 - spatial or intra: 0,1,...,34
 - temporal or inter

The choice is made by the encoder

- it selects the best combination in terms of:
 - distortion
 - rate

The intra prediction scheme

Intra Prediction Modes (IPMs)

How are transforms conceived?

The trade-off

 $J(\lambda)$ = Distortion + λ Rate

State of the art

- KLT → Optimal transform assuming
 - large amount of bits → High-resolution quantisation hypothesis
- Hypothesis for optimality is not valid in video coding
- RDOT → Alternative design approach^[1]
 - focused on signal sparsity in the transform domain

References

[1] O.G. Sezer — Sparse orthonormal transforms for image compression, 2008

The rate-distortion optimised transform

RDOT design features

- Minimise the distortion and the number of significant coefficients
- Use a simple model for the bit-rate
 - \bullet ℓ_0 norm: number of non-zero coefficients
- Sparsity suits video coding syntax elements

The RDOT equation

The RDOT equation
$$J(\lambda) = \sum_{\forall i} \frac{\|\mathbf{x}_i - \mathbf{A}^T \cdot \mathbf{c}_i\|^2}{\text{Distortion}} + \lambda \frac{\|\mathbf{c}_i\|_0}{\text{rate}} \quad \text{with} \begin{cases} \mathbf{x}_i & \text{residuals} \\ \mathbf{A} & \text{transform} \\ \mathbf{c}_i & \text{transf. & quant. coeff.} \\ \lambda & \text{Lagrange multiplier (PDF independent)} \end{cases}$$

iterative algorithm

Objective

- For a given set of residuals \mathbf{x}_i 's
- Find the transform **A** that minimises $J(\lambda)$

Adrià Arrufat

Multiple transforms for video coding

Orange Labs and IETR/INSA — Rennes, France

Experiment: Using the transforms in HEVC

Mode-dependent directional transforms (MDDT) for 4×4 and 8×8 TUs

Learning phase

- Learn an adapted transform to each of the 35 IPMs (MDDT)
- Replace the default HEVC transforms (no additional signalling) with:
 - KLT
 - RDOT

Decoding scheme

MDDT performances on the HEVC test set

Y BD-rate (%) on AI for 4×4 and 8×8 blocks

Conclusions

Performance over HEVC

	KLI		RDOT	
	sep	non-sep	sep	non-sep
Y BD-rate	-0.39%	-1.87%	-1.02%	-3.23%
Encoding	108%	112%	108%	112%
Decoding	105%	120%	105%	120%
ROM	8.20 kB	148.75 kB	8.20 kB	148.75 kB

1/1 =

Transform design

- RDOT design provides significant better results than the KLT design
- Separability plays an important role on the performance
 - complexity (encoding/decoding)
 - storage requirements
 - bit-rate savings

Next steps

Find out the limits of this technique

- 1 General introduction
- 2 Transform coding
- 3 Mode-dependent transform competition
- 4 Simplifications of the MDTC systems
- 5 Conclusions

Motivations

- Residual variability even inside the same IPM
- Significantly better results using RDOTs in MDDT than KLTs

Multiple transform design for HEVC

- Conservative approach \rightarrow 1 + 2^N transforms
 - default transform (DCT/DST) + additional RDOTs
 - signalling → flag plus fixed length codeword
- Learning algorithm → based on the RDOT metric

Multiple transform design

Classic clustering method: classify/update

Using the RDOT metric

- It is used to evaluate a transform
 - compute the optimal transform for a set of residuals
 - assign each residual to the transform that minimises $J(\lambda)$
- It allows creating an iterative clustering algorithm

11th December 2015

MDTC

Learning results

Averaged RDOT metric for 4 × 4 blocks across all IPMs

MDTC 00

Results in video coding on top of HEVC

Y BD-rate (%) for 4 × 4 blocks

Adrià Arrufat

MDTC performances in detail

Y BD-rate (%) for High Performance System: $4 \times 4 : 1 + 16 \& 8 \times 8 : 1 + 32$

Results in video coding on top of HEVC

MDTC performances in detail

Graphical improvement at QP 37 on BasketballDrill (3 Mbps)

Figure: Comparison between HEVC and MDTC

Conclusions

Performances

	sep.	non-sep.	
- V/ DD	1.100/	7.400/	
Y BD-rate	-4.10%	-7.10%	
Enc. Time	800%	2000%	
Enc. Time	000%	2000%	
Dec. Time	105%	120%	
	1		
ROM	236.25 kB	4.51 MB	
_		-	

Next steps

- Important bit-rate savings thanks to transform competition
- Non-separable transforms are very complex
 - encoding/decoding complexity
 - storage requirements
- Simplify MDTC systems to make them usable

- 1 General introduction
- 2 Transform coding
- 3 Mode-dependent transform competitio
- 4 Simplifications of the MDTC systems
- 5 Conclusions

Outline

- 4 Simplifications of the MDTC systems
 - ROM limitations on MDTC systems
 - MDTC systems based on Discrete Trigonometric Transforms

Different number of transforms per IPM

Observations

- Proposed MDTC uses the same number of transforms in all IPMs
- IPM usage is not uniform: there are some favoured modes (MPM)

Symmetries in intra prediction residuals

Observations

- Residuals coming from specific IPMs present geometrical relations
- With proper manipulation, transforms can be reused

Graphical interpretation

transposed and mirrored modes

Operations applied to blocks

$$\mathbf{X} = \begin{cases} \mathbf{A} \mathbf{x} & 0 \le \mathsf{IPM} \le 10 \\ \mathbf{A} \ \zeta \mathbf{x} & 11 \le \mathsf{IPM} \le 18 \\ \mathbf{A} \ \zeta \mathbf{x}^T & 19 \le \mathsf{IPM} \le 25 \\ \mathbf{A} \mathbf{x}^T & 26 \le \mathsf{IPM} \le 34 \end{cases}$$

Adrià Arrufat

11th December 2015

transposed modes

Summary and conclusions

Systems on demand (performances on the HEVC test set)

System	16 kB	32 kB	64 kB	128 kB
Y BD-rate	-2.87%	-3.21%	-3.55%	-3.79%
Encoding	372%	481%	761%	1297%
Decoding	105%	105%	105%	105%

Remarkable points

- ROM can be reduced up to a third of its original value
- Bit-rate savings are maintained
- Coding complexity remains more or less untouched

1 General introduction

MDTC systems based on Discrete Trigonometric Transforms

- 2 Transform coding
- 3 Mode-dependent transform competition
- 4 Simplifications of the MDTC systems
 - ROM limitations on MDTC systems
 - MDTC systems based on Discrete Trigonometric Transforms
- 5 Conclusions

MDTC systems based on Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

DCTs and DSTs

DTT strengths

- Fast algorithms
 - number of operations in the order of $N \log_2 N$ instead of N^2
- Transform coefficients can be computed analytically
 - notable reduction in storage requirements
- They can be more easily pushed into a standard

Examples of 4 × 4 DTTs

(a) DCT-II — DCT-II

(e) DST-VII — DCT-IV

(b) DST-VII — DST-VII

(f) DST-V — DCT-IV

(c) DCT-IV — DCT-IV

(g) DST-VII — DCT-V

(d) DCT-III — DCT-IV

(h) DST-VII — DST-II

Designing a DTT-based MDTC system

Using the RDOT metric to classify

- Transforms are already known (8 DCTs, 8 DSTs and their inverses)
- There are 256 possible transforms
- Complexity of the classifying algorithm:
 - selection the best combination of N transforms amongst 256
 - \blacksquare example for N=4:

$$\binom{256}{4} = 174792640 \approx 1.75 \times 10^8 \tag{1}$$

- The algorithm suboptimality increases with N
- Symmetries and non-homogeneous repartition of transforms are used with DTTs

Performances of DTT-based MDTC systems

Performances of DTT-based MDTC systems

Summary

DTT-based MDTC system compared to RDOT-based ones

	DTT			RDOT		
System	1 kB	2 kB	4 kB	1 kB	2 kB	4 kB
Y BD-rate	-1.28%	-1.54%	-1.86%	-0.89%	-1.25%	-1.71%
Encoding	164%	177%	230%	126%	150%	175%
Decoding	100%	100%	100%	105%	105%	105%

Remarkable points

- Almost 2% bit-rate savings with low complexity
- Performances could be higher by improving the learning algorithm
- DTTs make transforms for bigger block sizes more reasonable
 - \blacksquare room for improvement when using 16 \times 16 or even 32 \times 32 transforms

Adrià Arrufat

- 1 General introduction
- 2 Transform coding
- 3 Mode-dependent transform competition
- 4 Simplifications of the MDTC systems
- 5 Conclusions

Conclusions

Interest of multiple transforms for video coding

- This technique alone is able to achieve significant bit-rate savings over HEVC, depending on complexity:
 - non-separable transforms: up to 7%
 - separable transforms: up to 4%
 - DTTs: 2% (in progress)
 - reminder: HEVC improves intra coding by 22% over AVC
- Systematic on demand design with the RDOT metric
 - the ℓ_0 has proved to be a robust rate approximation
 - independence from residuals PDF has been proved

Perspectives and future work

Immediate action points

- extend the system
 - bigger TU sizes
 - inter coding (gain in RA is about 2/3 of AI)
 - chroma
- coding complexity
 - incomplete transforms
 - exhaustive search might not be necessary
- transform signalling and quantisation

Multiple transforms in future video formats

Multiple transforms are part of the preliminary draft for a future video coder by ITU and MPEG

Adrià Arrufat Multiple transforms for video coding

Publications

Conference papers

- 2 VCIP 2014 presented papers
- 2 ICIP 2015 presented papers
- 1 ICASSP 2016 submitted paper

Patents

5 filled patent applications

Thank you for your attention Questions?

Adrià Arrufat adria.arrufat@protonmail.ch

