Conditional Probability

STAT 330 - Iowa State University

Outline

In this lecture students will learn about conditional probability. We introduce a contingency table when we have two events. Various probabilities, including conditional probability, can be calculated using the contingency table.

Contingency Table

Contingency Table

Definition

& Events A *contingency table* gives the distribution of 2 variables.

Example 1: Suppose in a small college of 1000 students, 650 students own Iphones, 400 students own MacBooks, and 300 students own both.

Define events: I = "owns Iphone", and M = "owns MacBook".

Phone	Computer	M ↓	M	Total
	1>	300	?	650
	Ī	?	?	?
	Total	400	?	1000

Contingency Table

Computer	М	M	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

Marginal Probability

Marginal Probability

Definition

The *marginal probability* is the probability of a variable. It can be obtained from the *margins* of contingency table.

Phone	Computer	М	M	Total
	1	300	350	650
	Ī	100	250	350
	Total	400	600	1000

What is the probability of owning a Mac? (ie marginal probability of owning a Mac)

$$\mathbb{P}(M) = \frac{400}{1000} = 0.40$$

Conditional Probability

Conditional Probability

Does knowing someone owns an Iphone change the probability they own a Mac?

Informally, conditional probability is updating the probability of an event given information about another event.

If we *know* that someone owns an Iphone, then we can narrow our sample space to just the "owns Iphone" case (highlighted blue row) and ignore the rest!

Computer	М	M	Total
	(300)	350	650
Ī	100	250	350
Total	400	600	1000

Conditional Probability Cont.

What is the probability of owning a Mac given they own an Iphone?

Computer	М	M	Total
	300	350	650
T	100	250	350
Total	400	600	1000

$$\boxed{\mathbb{P}(M|I)} = \frac{300}{650} = \boxed{0.46}$$

Conditional Probability Cont.

Definition

The conditional probability of event A given event B is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

provided $\mathbb{P}(B) \neq 0$.

It can be obtained from the *rows/columns* of contingency table.

Back to Example 1 ...

What is the probability of owning a Mac given they own an Iphone?

$$\mathbb{P}(M|I) = \frac{\mathbb{P}(I \cap M)}{\mathbb{P}(I)} = \frac{0.3}{0.65} = 0.46$$

$$EX: Roll = fair die$$

$$A = \{1,2,3,4,5,6\}$$

$$A = \{2,3,4\}$$

$$A \cap B = \{2,3\}$$

$$A \cap B = \{2,3\}$$

$$A \cap B = \{1,2,3\}$$

$$A \cap B = \{2,3\}$$

$$A \cap B = \{1,2,3\}$$

$$A \cap B = \{1,2,3$$

Consequences of Conditional Probability

The definition of conditional probability gives useful results:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \to \mathbb{P}(A \cap B) = \underline{\mathbb{P}(B)\mathbb{P}(A|B)}$$

2.

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \to \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B|A)$$

This gives us two additional ways to calculate probability of intersections. Putting it together . . .

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A)$$

a decc. Draw 2 Cards from what is the Probability you get an Ace and a ling? AK other 414/44 (i) Counting D(Ace and king) $= \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.012 \end{pmatrix}$ 21) mult. Rule: Mow do I get an ace and king? (AINK2) U (KINA2)

2.) mult. Rule.

ace and king?
$$(A_1 \land K_2) \lor (k_1 \land A_1) \land (k_2) \lor (k_1 \land A_2) \land (k_$$

Probability Calculations

Probability Calculations

A contingency table can also be written with probabilities instead of counts. This is called a *probability table*.

Inner cells give "joint probabilities" \rightarrow probability of intersections

• $\mathbb{P}(A \cap B), \mathbb{P}(\overline{A} \cap B)$, etc

 $\overline{\mathsf{Margins}}$ give "marginal probabilities" o probability of variables

• $\mathbb{P}(A), \mathbb{P}(B), \mathbb{P}(\overline{A})$, etc

Computer	М	M	Total
 	0.30 0.10	0.35 0.25	0.65 0.35
Total	0.40	0.60	1

Probability Calculations Cont.

Computer	М	M	Total
<u> </u> 	0.30	0.35 0.25	0.65
Total	0.40	0.60	1

$$\mathbb{P}(\overline{I}) = .35$$

$$\mathbb{P}(M) = .40$$

$$\mathbb{P}(\overline{I}\cap M)=.10$$

$$\mathbb{P}(M|\bar{I}) = \frac{.10}{.35} = .286$$

$$\mathbb{P}(\bar{I}|M) = \frac{.10}{40} = .25$$

Recap

Students should understand conditional probability and how you are updating probabilities given another event has occurred. Students should now be able to calculate probabilities involving two events using a contingency table.