Лабораторная работа №5

Оразгелдиев Язгелди

Российский университет дружбы народов, Москва, Россия

Докладчик

- Оразгелдиев Язгелди
- студент
- Российский университет дружбы народов
- orazgeldiyev.yazgeldi@gmail.com
- https://github.com/YazgeldiOrazgeldiyev

Цели и задачи

Построить модель xcos и OpenModelica

Материалы и методы

- · OpenModelica
- XCOS

Задача о распространении эпидемии описывается системой дифференциальных уравнений

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t). \end{cases}$$

Рис. 1: СДУ

Рис. 2: Модель SIR

Рис. 3: Начальные значения в блоках интегрирования

Рис. 4: Начальные значения в блоках интегрирования

Рис. 5: Параметры моделирования

Рис. 6: Эпидемический порог модели SIR при β = 1, ν = 0.3

Рис. 7: Модель SIR в xcos с применением блока Modelica

Рис. 8: Параметры блока Modelica для модели

Рис. 9: Параметры блока Modelica для модели

```
model lab5
      parameter Real I 0 = 0.001;
      parameter Real R 0 = 0;
      parameter Real S 0 = 0.999;
      parameter Real beta = 1;
      parameter Real nu = 0.3;
 8
 9
      Real s(start=S 0):
      Real i(start=I 0);
      Real r(start=R 0);
13
    equation
14
      der(s) = -beta*s*i;
      der(i) = beta*s*i - nu*i;
16
      der(r) = nu*i:
18
    end lab5;
```

Рис. 10: Заданием параметров и начальных значений

Рис. 11: модель SIR в OpenModelica

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

Рис. 12: СДУ из задания

Рис. 13: Схема модели SIR в хсоѕ

Рис. 14: График модели SIR в xcos

Рис. 15: Модель SIR в хсоs с применением блока Modelica

```
model 15t2
      parameter Real I 0 = 0.001;
      parameter Real R 0 = 0;
      parameter Real S 0 = 0.999;
      parameter Real beta = 1:
      parameter Real nu = 0.3;
      parameter Real mu = 0.1;
      Real s(start=S 0);
      Real i(start=I 0):
      Real r(start=R 0);
14
    equation
      der(s) = -beta*s*i + mu*i + mu*i:
16
      der(i) = beta*s*i - nu*i:
      der(r) = nu*i - mu*r;
18
19 end 15t2;
```

Рис. 16: Синтаксис для симуляции

Рис. 17: Модель SIR в OpenModelica

Рис. 18: Модель SIR в OpenModelica с разными параметрами

Рис. 19: Модель SIR в OpenModelica с разными параметрами

