SEMAINE DU 14/01 AU 18/01

1 Cours

Groupes, anneaux, corps

Notion de loi interne Définition. Associativité, commutativité. Définition d'un élément neutre, unicité sous réserve d'existence. Inversibilité, unicité de l'inverse si la loi est associative.

Groupes Définition. Sous-groupe : définition et caractérisation.

Anneaux Définition. Groupe des éléments inversibles. Règles de calcul dans les anneaux. Intégrité. Formule du binôme de Newton et formule de Bernoulli si **commutativité**. Sous-anneaux : définition et caractérisation.

Corps Définition. Tout corps est intègre. Sous-corps : définition et caractérisation.

Arithmétique

Division dans \mathbb{Z} Relation de divisibilité. Opérations sur la divisibilité. Relation de congruence. Opérations sur la congruence. Division euclidienne.

PGCD et entiers premiers entre eux PGCD : définition. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu. Nombres premiers entre eux. Théorème de Bézout (équivalence). Théorème de Gauss. Si a|n et b|n avec $a \land b = 1$, alors ab|n.

2 Méthodes à maîtriser

- ▶ Dans un anneau, on prendra garde à se méfier des habitudes de calcul.
 - La seconde loi n'est pas toujours commutative.
 - Un produit d'éléments d'un anneau non intègre peut-être nul sans qu'aucun des facteurs soit nul.
 - Un élément d'un anneau n'est pas forcément inversible.
- ▶ Pour montrer qu'un ensemble est un groupe/anneau/corps, on peut montrer que c'est un sous-groupe/sous-anneau/sous-corps d'un groupe/anneau/corps déjà connu.
- ▶ Dans un corps, on calcule comme on en a l'habitude.
- ► Caractériser le reste d'une division euclidienne par une relation de congruence.
- ▶ Montrer que deux entiers positifs sont égaux en montrant qu'ils se divisent l'un l'autre
- ▶ Savoir montrer que deux entiers sont premiers entre eux en exhibant une relation de Bézout.

3 Questions de cours

- $\blacktriangleright \ \, \text{Montrer que } \mathbb{U} \text{ est un sous-groupe de } (\mathbb{C}^*,\times) \text{ puis que } \mathbb{U}_n \text{ est un sous-groupe de } (\mathbb{U},\times).$
- \blacktriangleright Soit H et K deux sous-groupes d'un groupe G. Montrer que si H \cup K est un sous-groupe de G, alors H \subset K ou K \subset H.
- ▶ Soient $(A, +, \times)$ un anneau et $(x, y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- ▶ Soit $(A, +, \times)$ un anneau. Montrer que si $x \in A$ est nilpotent, alors $1_A x$ est inversible et déterminer son inverse.
- lacktriangle Montrer que $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C},+,\times)$ et déterminer ses éléments inversibles.
- ▶ Soit G un sous-groupe de (\mathbb{Z} , +). Montrer qu'il existe $\mathfrak{a} \in \mathbb{Z}$ tel que $G = \mathfrak{a}\mathbb{Z}$.