1. Förklara vad pilarna A och B står för i det förenklade reaktionsdiagrammet nedan.

- 2. Hur mycket energi krävs det för att höja temperaturen för 100 g silver från 30 °C till 60 °C? Värmekapaciteten för silver är $0.24~\mathrm{kJ/(kg \cdot K)}$. *Endast svar krävs*.

3.	Sockermolekylen glukos ($C_6H_{12}O_6$) innehåller mycket energi. Energiinnehållet är 2802,5 kJ/mol.
	Du får i dig 2,0 g glukos från godis. Hur mycket energi får du från det?
4.	Hur mycket energi krävs det för att höja temperaturen för 500,0 g koppar från 20 °C till 80 °C? Värmekapaciteten för koppar är $0.384~{\rm kJ/(kg\cdot K)}$. Svara med tre värdesiffror. <i>Endast svar krävs</i> .
	Svar:
5.	a) Vilket av följande ämnen har högst entropi (S) ? \square vattenånga - $\mathrm{H_2O}(\mathrm{g})$ \square snö - $\mathrm{H_2O}(\mathrm{s})$

	b)	Förklara kortfattat ditt svar i a.
6.		ör om entropin ökar eller minskar i processerna nedan. Motivera dina svar.
	a)	$ m H_2O(l) ightarrow H_2O(g)$
	b)	$ ext{CH}_3 ext{OH(1)} ightarrow ext{CO(g)} + 2 ext{H}_2 ext{(g)}$

c)	2 NO(g)	$+ O_2(g)$	$\rightarrow 2 \text{ N}$	$O_2(g)$
----	---------	------------	---------------------------	----------

- 7. Beräkna ΔH för följande kemiska reaktioner. *Endast svar krävs*.
 - a) A o C om följande gäller: A o B $\Delta H = -300 \ \mathrm{kJ/mol}$ B o C $\Delta H = -200 \ \mathrm{kJ/mol}$

Svar:

b) F o G om följande gäller: E o 2F $\Delta H=-400~{
m kJ/mol}$ E o 2G $\Delta H=-600~{
m kJ/mol}$

Svar: _____

a)	Förklara varför det behövs en gnista för att reaktionen ska starta.
b)	
b)	Beskriv och förklara varför reaktionen är fortgår av sig själv efter att reaktionen startat hjälp av begreppet entalpi.
b)	

Λ	På ett laboratorium	10,	•	1	1	1 '1 1	•	• 1
u	Pa Aff Jaharatariiim	later man r	magnegiiim .	ach curasc	reagera och	n hilda maai	120111max	71A
<i>)</i> .	I a cu iaudiatorium	iatel man i	nagnesium	och svigas	icagcia oci	i viiua iiiazi	icsiumo/	Mu.

$$2 \mathrm{Mg}\left(\mathrm{s}\right) + \mathrm{O}_{2}\left(\mathrm{g}\right)
ightarrow 2 \mathrm{MgO}\left(\mathrm{s}\right), \ \ \Delta H^{\circ} = -601 \ \mathrm{kJ/mol}$$

Reaktionen sker i en behållare som omges av en behållare med vatten, som fungerar som kylare. Vattenbehållaren innehåller 30 kg vatten som vid start har temperaturen 20 °C. I reaktionskärlet har man 97 g magnesium och man för in 80,0 g syrgas i kärlet och en reaktion startas genom att man för in en gnista som aktiverar reaktionen. Räkna med att all värme som bildas vid reaktionen tas upp av vattnet. (ΔH° avser standard bildningsentalpi i kJ per mol).

Beräkna vattnets temperatur när reaktionen avstannat och all kemisk energi övergått i värmeenergi. Vattnets specifika värmekapacitet är $4,\!18~kJ\cdot kg^{-1}\cdot K^{-1}$.

10. När 40,0 g NaOH löstes i 960 g vatten steg temperaturen i lösningen med 10,6 °C. NaOH(s) $\stackrel{\text{H}_2\text{O}}{\to}$ NaOH(aq)

Lösningens värmekapacitet $c = 4,\!20~\mathrm{J\cdot g^{-1}\cdot K^{-1}}$

$$q = m \cdot c \cdot \Delta T$$

a) Beräkna hur stor energimängd q som har frigjorts vid reaktionen.

Svar: _____

b) Beräkna ΔH för när natriumhydroxid löses upp i vatten.

Svar: _____

11.	Ammoniak och syrg	as bildar kvävemond	oxid och vatten	enligt följande reaktion:
-----	-------------------	---------------------	-----------------	---------------------------

$$4\mathrm{NH_3(g)} + 5\mathrm{O_2(g)} \rightarrow 4\mathrm{NO(g)} + 6\mathrm{H_2O(g)}$$

Beräkna ΔH för reaktionen utifrån följande data:

$$\mathrm{N_2(g)} + \mathrm{O_2(g)}
ightarrow 2\mathrm{NO(g)}, ~~\Delta H = +180{,}5~\mathrm{kJ}$$

$$m N_2(g) + 3H_2(g)
ightarrow 2NH_3(g), \ \ \Delta H = -91.8 \ kJ$$

$$2{
m H}_2({
m g})+{
m O}_2({
m g}) o 2{
m H}_2{
m O}({
m g}), \ \ \Delta H=-483.6~{
m kJ}$$