# Contents

| L | Linear Algebra Tools                              | 1 |
|---|---------------------------------------------------|---|
|   | 1.1 Angles and Orthogonality                      | 1 |
|   | 1.1.1 Orthogonal Projections                      | 1 |
| 2 | Matrix Decompositions                             | 2 |
|   | 2.1 Eigenvalues and Eigenvectors                  | 2 |
| 3 | Vector calculus                                   | 3 |
|   | 3.1 Gradients of Real-Valued Functions            | 3 |
|   | 3.2 Gradients of Vector-Valued Functions          | 4 |
|   | 3.3 Backpropagation and Automatic Differentiation | 5 |
| 4 | Continuous Optimization                           | 7 |

# 1 Linear Algebra Tools

This chapter introduces inner product to give geometric meaning to vectors and vector spaces, enabling calculations of length, distance, and angles.

**Definition** (Symmetric Positive Definitive Matrix). A symmetric matrix  $A \in \mathbb{R}^{n \times n}$  that satisfies

for every nonzero vector 
$$x : x^T A x > 0$$
 (1.1)

is called **positive definite**. If only  $\geq$  holds in 1.1, then A is called **positive** semidefinite.

These properties helps in identifying positive definite matrices without having to check the definition explicitly:

- 1. The null space of A contains only the null vector;
- 2. The diagonal elements  $a_{ii}$  of A are positive;
- 3. The eigenvalues of A are real and positive.

# 1.1 Angles and Orthogonality

The angle  $\omega$  between vectors x and y is computed as:

$$\cos \omega = \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$$

Here,  $\langle x, y \rangle$  denotes the inner product between x and y. This angle indicated the vectors' similarity in orientation.

**Definition** (Orthogonal vectors). Two vectors are orthogonal if  $\langle x, y \rangle = 0$ . If additionally ||x|| = 1 = ||y||, then x and y are orthonormal.

**Definition** (Orthogonal matrix). A square matrix is an orthogonal matrix if and only if <u>its columns are orthonormal</u> so that

$$AA^T = I = A^T A$$

 $which\ implies\ that$ 

$$A^{-1} = A^T$$

The length of a vector x is not changed when transforming it using an orthogonal matrix A.

$$||Ax||_2^2 = ||x||_2^2$$

Moreover, the angle between any two vectors x, y is also unchanged when transforming both of them using an orthogonal matrix A.

**Definition** (Orthonormal Basis). In an n-dimensional vector space V with a basis set  $\{b_1, \ldots, b_n\}$ , if all the basis vectors are orthogonal to each other, the basis is called as an **orthogonal basis**. Additionally, if the length of each basis vector is 1, the basis is referred to as an **orthonormal basis**.

We can also have vector spaces that are orthogonal to each other. Given a vector space V of dimension D, let's consider a subspace U of dimension M such that  $U \subseteq V$ . Then its **orthogonal complement**  $U^{\perp}$  is a D-M dimensional subspace V and contains all vectors in V that are orthogonal to every vector in U.



# 1.1.1 Orthogonal Projections

Projections are key linear transformations in machine learning and are particularly useful for handling high-dimensional data. Often, only a few dimensions in such data are essential for capturing the most relevant information. By projecting the original high-dimensional data onto a lower dimensional feature space, we can work more efficiently to learn about the dataset and extract significant patterns.

**Definition** (Projection). Let V be a vector space and  $U \subseteq V$  a subspace of V. A linear mapping  $\pi: V \to U$  is called **projection** if it satisfies  $\pi^2 = \pi \circ \pi = \pi$ .

Given that linear mappings can be represented by transformation matrices, the above definition extends naturally to projection matrices  $P_{\pi}$ . These matrices exhibit the property that  $P_{\pi}^2 = P_{\pi}$ .

The projection  $\pi_U(x)$  of a vector  $x \in \mathbb{R}^n$  onto a subspace U is the closest point necessarily in U to x.

# 2 Matrix Decompositions

# 2.1 Eigenvalues and Eigenvectors

Eigenanalysis helps us understand linear transformations represented by a matrix A. Eigenvectors x are special vectors that only get scaled, not rotated, when multiplied by A. The scaling factor is the eigenvalue  $\lambda$ , which indicated how much x is stretched or shrunk.  $\lambda$  can also be zero.

**Definition** (Eigenvalue and Eigenvector). Let  $A \in \mathbb{R}^{n \times n}$  be a square matrix. Then  $\lambda \in \mathbb{R}$  is an **eigenvalue** of A and nonzero vector x is the corresponding **eigenvector** of A if

$$Ax = \lambda x \tag{2.1}$$

We call 2.1 the eigenvalue equation.

The following statements are equivalent:

- $\lambda$  is an eigenvalue of  $A \in \mathbb{R}^{n \times n}$ .
- A nonzero vector x exists such that  $Ax = \lambda x$  or, equivalently,  $(A \lambda I_n)x = 0$  for  $x \neq 0$ .
- Then  $A \lambda I$  is a singular matrix and its determinant is zero.

Each eigenvector x has one unique eigenvalue  $\lambda$ , but each  $\lambda$  can have multiple eigenvectors.

**Definition** (Eigenspace and Eigenspectrum). For  $A \in \mathbb{R}^{n \times n}$ , the set of all eigenvectors of A associated with an eigenvalue  $\lambda$  spans a subspace of  $\mathbb{R}^n$ , which is called the **eigenspace** of A with respect to  $\lambda$  and is denoted by  $E_{\lambda}$ . The set of all eigenvalues of A is called the **eigenspectrum** of A.

**Definition.** Let  $\lambda_i$  be an eigenvalue of a square matrix A. Then the **geometric** multiplicity of  $\lambda_i$  is the number of linearly independent eigenvectors associated with  $\lambda_i$ . In other words, it is the dimensionality of the eigenspace spanned by the eigenvectors associated with  $\lambda_i$ .

**Theorem.** The eigenvectors  $x_1, \ldots, x_n$  of a matrix  $A \in \mathbb{R}^{n \times n}$  with n distinct eigenvalues  $\lambda_1, \ldots, \lambda_n$  are linearly independent.

This theorem states that eigenvectors of a matrix with n distinct eigenvalues form a basis of  $\mathbb{R}^n$ .

# 3 Vector calculus

Firstly, we'll explore partial derivatives and gradients, focusing on functions that take a vector as input and produce a single real number as output. These functions are formally represented as  $f: \mathbb{R}^n \to \mathbb{R}$ .

Subsequently, we will extend these ideas to functions that not only take a vector as input but also produce a vector as output. These functions can be written as  $f: \mathbb{R}^n \to \mathbb{R}^m$ .

### 3.1 Gradients of Real-Valued Functions

When we deal with a function that depends on multiple variables, such as  $f(x) = f(x_1, x_2)$ , we use the **gradient** to represent its derivative. The gradient is a vector composed of **partial derivates** of the function. To compute each partial derivates, we differentiate the function with respect to one variable while keeping all other variables constant.

$$\nabla_x f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{1 \times n}$$
 (3.1)

where n is the number of variables.

#### Basic Rules of Partial Differentiation

Product rule:

$$\frac{\partial}{\partial x}(f(x)g(x)) = \frac{\partial f}{\partial x}g(x) + f(x)\frac{\partial g}{\partial x}$$

Sum rule:

$$\frac{\partial}{\partial x}(f(x) + g(x)) = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial x}$$

Chain rule:

$$\frac{\partial}{\partial x}(g \circ f)(x) = \frac{\partial}{\partial x}\left(g(f(x))\right) = \frac{\partial g}{\partial f}\frac{\partial f}{\partial x}$$

In the context of the chain rule, consider f as implicitly a composition  $f \circ g$ . If a function  $f(x_1, x_2)$  is a function of  $x_1$  and  $x_2$ , where  $x_1(t)$  and  $x_2(t)$  are themselves functions of a single variable t, the chain rule yields the partial derivates

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \end{bmatrix} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial t}{\partial x_2} \frac{\partial x_2}{\partial t}$$

### Example

Consider  $f(x_1, x_2) = x_1^2 + 2x_2$ , where  $x_1 = \sin t$  and  $x_2 = \cos t$ , then

with 
$$\frac{\partial f}{\partial x_1} = 2x_1$$
,  $\frac{\partial f}{\partial x_2} = 2$ 

$$\frac{\mathrm{d}f}{\mathrm{d}t} = 2\sin t \frac{\partial \sin t}{\partial t} + 2\frac{\partial \cos t}{\partial t}$$
$$= 2\sin t \cos t - 2\sin t$$

If a function  $f(x_1, x_2)$  is a function of  $x_1$  and  $x_2$ , where  $x_1(s, t)$  and  $x_2(s, t)$  are themselves functions of two variables s and t, the chain rule yields the partial derivates

$$\frac{\mathrm{d}f}{\mathrm{d}(s,t)} = \begin{bmatrix} \frac{\partial f}{\partial s} & \frac{\partial f}{\partial t} \end{bmatrix}$$

where

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial s} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial s}$$
$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}$$

Another way to obtain these two partial derivatives is to represent the previous formula as a row vector containing the partial derivatives of f with respect to  $x_1$  and  $x_2$ . This row vector is then multiplied by a matrix composed of the partial derivatives of  $x_1$  and  $x_2$  with respect to s and t. When you perform this multiplication, you get the exact same result as above.

$$\begin{bmatrix} \frac{\partial f}{\partial s} & \frac{\partial f}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial s} & \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial s} & \frac{\partial x_2}{\partial t} \end{bmatrix}$$

### Example

Given the following functions:

$$g: \mathbb{R}^2 \to \mathbb{R}^2 \quad g(s,t) = (\sin(t)s, \cos(s)t)$$
$$f: \mathbb{R}^2 \to \mathbb{R} \quad f(x_1, x_2) = x_1^2 + 2x_2$$

$$f \circ g : \mathbb{R}^2 \to \mathbb{R}$$

Compute  $\nabla_{(s,t)}(f \circ g)$  and evaluate  $\nabla_{(s,t)}(f \circ g)(0,0)$ .

$$= \begin{bmatrix} 2s\sin(t) & 2 \end{bmatrix} \begin{bmatrix} \sin(t) & s\cos(t) \\ -t\sin(s) & \cos(s) \end{bmatrix}$$
$$= \begin{bmatrix} 2s\sin^2(t) - 2t\sin(s) \\ 2s^2\sin(t)\cos(t) + 2\cos t \end{bmatrix} = (0, 2)$$

### 3.2 Gradients of Vector-Valued Functions

We can express a vector-valued function  $f: \mathbb{R}^n \to \mathbb{R}^m$  as a column vector of m real-valued functions  $f_i: \mathbb{R}^n \to \mathbb{R}$ . Given an input vector  $x = \begin{bmatrix} x_1, \dots, x_n \end{bmatrix}^T \in \mathbb{R}^n$ , the output is defined as:

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \in \mathbb{R}^m$$

**Definition** (Jacobian). By contrast, in Equation 3.1, each partial derivative  $\frac{\partial f}{\partial x_i}$  is a column vector.

$$J = \nabla_x f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

$$J(i,j) = \frac{\partial f_i}{\partial x_i}$$

The collection of all first-order partial derivatives of a vector-valued function f:  $\mathbb{R}^n \to \mathbb{R}^m$  is called the **Jacobian**. The Jacobian J is an  $m \times n$  matrix.

### Example

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \quad f: (x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ 2x_1^2 - x_2 \\ -x_1 x_2 \end{pmatrix}$$
$$J(f): \mathbb{R}^2 \to \mathbb{R}^{3 \times 2}, \quad J(i, j) = \begin{bmatrix} 1 & 1 \\ 4x_1 & -1 \\ -x_2 & -x_1 \end{bmatrix}, \quad J(1, 1) = \begin{bmatrix} 1 & 1 \\ 4 & -1 \\ -1 & -1 \end{bmatrix}$$

### Example

Let us consider the linear model

$$y = \Phi \theta$$

where  $\theta \in \mathbb{R}^D$  is a parameter vector,  $\Phi \in \mathbb{R}^{N \times D}$  are input features, and  $y \in \mathbb{R}^N$  are the corresponding observations. We define the functions

$$e: \mathbb{R}^D \to \mathbb{R}^N, \quad e(\theta) = y - \Phi\theta$$
  
 $L: \mathbb{R}^N \to \mathbb{R}, \quad L(e) = \|e\|_2^2, \quad L(\theta) = \|y - \Phi\theta\|_2^2$ 

This is called a **least-squares loss** function.

We want to find  $\frac{\partial L}{\partial \theta}$ , which is derivative of the loss function with respect to the parameters  $\theta$ . This will allow us to find the optimal  $\theta$  that minimizes the loss function  $L(\theta)$ .

The chain rule allows us to compute the gradient as

$$\frac{\partial L}{\partial e} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \theta}$$

We know that  $||e||_2^2 = e^T e$  and so

$$\frac{\partial L}{\partial e} = 2e^T \in \mathbb{R}^{1 \times N}$$

Furthermore, we obtain

$$\frac{\partial e}{\partial \theta} = -\Phi \in \mathbb{R}^{N \times D}$$

such that our desired derivative is

$$\nabla L_{\theta} = -2e^{T}\Phi = -2\underbrace{(y^{T} - \theta^{T}\Phi^{T})}_{1 \times N} \underbrace{\Phi}_{N \times D} \in \mathbb{R}^{1 \times D}$$

# 3.3 Backpropagation and Automatic Differentiation

In machine learning, finding optimal model parameters often involves performing gradient descent. This requires computing the gradient of a learning objective with respect to the model's parameters. Calculating the gradient explicitly can be impractical due to the complexity and length of the resulting derivative equations. To address this, the **backpropagation** algorithm was introduced in 1962 as an efficient way to compute these gradients, particularly for neural networks.

In neural networks, the output y is computed through a multi-layered function composition  $y = (f_K \circ f_{K-1} \circ \cdots f_1)(x)$ . Here, x are the inputs (e.g., images), y are the observations (e.g., class labels). Each functions  $f_i, i = 1, \ldots, K$ , has its own parameters. Specifically, in the  $i^{th}$  layer, the function is given  $f_i(x_{i-1}) = \sigma(A_{i-1} + b_{i-1})$ , where  $x_{i-1}$  is the output from layer i-1 and  $\sigma$  is an activation function.

Figure 5.2 Forward pass in a multi-layer neural network to compute the loss L as a function of the inputs x and the parameters  $A_i$ ,  $b_i$ .



In order to train a neural network, we aim to minimize a loss function L with respect to all parameters  $A_j, b_j$  for j = 0, ..., K-1. Specifically, we're interested in optimizing these parameters to minimize the squared loss given by

$$L(\theta) = \|y - f_K(\theta, x)\|^2$$

where  $\theta = \{A_0, b_0, \dots, A_{K-1}, b_{K-1}\}.$ 

To minimize  $L(\theta)$  we need to compute its gradients of L to the parameter set  $\theta$ . This involes calculating the partial derivatives of L with respect to the parameters  $\theta_j = \{A_j, b_j\}$  for each layer  $j = 0, \ldots, K - 1$ . The chain rule allows us to determine the partial derivatives as

$$\begin{split} \frac{\partial L}{\partial \theta_{K-1}} &= \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial \theta_{K-1}} \\ \frac{\partial L}{\partial \theta_{K-2}} &= \frac{\partial L}{\partial f_K} \left[ \frac{\partial f_K}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial \theta_{K-2}} \right] \\ \frac{\partial L}{\partial \theta_{K-3}} &= \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial f_{K-1}} \left[ \frac{\partial f_{K-1}}{\partial f_{K-2}} \frac{\partial f_{K-2}}{\partial \theta_{K-3}} \right] \\ \frac{\partial L}{\partial \theta_i} &= \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial f_{K-1}} \cdots \left[ \frac{\partial f_{i+2}}{\partial f_{i+1}} \frac{\partial f_{i+1}}{\partial \theta_i} \right] \end{split}$$

The red terms are partial derivatives of the output of a layer with respect to its inputs, whereas the blue terms are partial derivatives of the output of a layer with respect to its parameters.

The key insight of backpropagation is to reuse previously computed derivatives to avoid redundant calculations. When we've computed the partial derivatives  $\frac{\partial L}{\partial \theta_{i+1}}$ , we can reuse them to efficiently calculate the partial derivatives  $\frac{\partial L}{\partial \theta_i}$ .

It turns out that backpropagation is a special case of a set of techniques known as **automatic differentiation**. Automatic differentiation numerically evaluate the exact (up to machine precision) gradient of a function by working with intermediate variables and applying the chain rule.



Figure 5.2
Backward pass in a multi-layer neural network to compute the gradients of the loss function.

### Example

Consider the real-valued function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2))$$

Another way to attach this would be to just define some *intermediate variables*. Say

$$a = x^{2}$$

$$b = \exp(a)$$

$$c = a + b$$

$$d = \sqrt{c}$$

$$e = \cos(c)$$

$$f = d + e$$

The set of equations that include intermediate variables can be thought of as a computational graph



By looking at the computation graph, we can compute  $\frac{\partial f}{\partial x}$  by working backward from the end of the graph and obtain the derivative of each variable, making the use of the derivatives of the children of that variable

$$\frac{\partial f}{\partial d} = \frac{\partial f}{\partial e} = 1$$

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial c}$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial b}$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b} \frac{\partial b}{\partial a} + \frac{\partial f}{\partial c} \frac{\partial c}{\partial a}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x}$$

We observe that the computation required for calculating the derivative is of similar complexity as the computation of the function itself (forward pass).

Automatic differentiation is a formalization of last Example. Let  $x_1, \ldots, x_d$  be the input variables to the function,  $x_{d+1}, \ldots, x_{D-1}$  be the intermediate variables, and  $x_D$  the output variable. Then the computation graph can be expressed as follows:

For 
$$i = d + 1, ..., D$$
:  $x_i = g_i(x_{Pa}(x_i))$  (3.2)

where the  $g_i(\cdot)$  are elementary functions and  $x_{Pa}(x_i)$  are the parent nodes of the variable  $x_i$  in the graph.

Recall that by definition  $f = x_D$  and hence

$$\frac{\partial f}{\partial x_D} = 1$$

For other variables  $x_i$ , we apply the chain rule

$$\frac{\partial f}{\partial x_i} = \sum_{x_j: x_i \in Pa(x_j)} \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial x_i} = \sum_{x_j: x_i \in Pa(x_j)} \frac{\partial f}{\partial x_j} \frac{\partial g_j}{\partial x_i}$$
(3.3)

where  $Pa(x_j)$  is the set of parent nodes of  $x_j$  in the computation graph. Equation 3.2 is the forward pass, whereas 3.3 is the backward pass.

The automatic differentiation approach works whenever we have a function that can be expressed as a computation graph, where the elementary functions are differentiable.

4 Continuous Optimization