1.2. Semântica do Cálculo Proposicional clássico

Definição 36: Os valores lógicos do CP são verdade e falsidade e são habitualmente notados por 1 e O ou V e F, respetivamente.

O significado do conetivo ¬ é dado pela função

$$v_{\neg}: \{0,1\} \longrightarrow \{0,1\}$$

 $1 \longmapsto 0$
 $0 \longmapsto 1$

O significado do conetivo A é dado pela função

$$\begin{array}{ccccc} \nu_{\wedge} : \{0,1\} \times \{0,1\} & \longrightarrow & \{0,1\} \\ & (1,1) & \longmapsto & 1 \\ & (1,0) & \longmapsto & 0 \\ & (0,1) & \longmapsto & 0 \\ & (0,0) & \longmapsto & 0 \end{array}$$

O significado do conetivo ∨ é dado pela função

O significado do conetivo \rightarrow é dado pela função

$$v_{\rightarrow}: \{0,1\} \times \{0,1\} \longrightarrow \{0,1\}$$
 $(1,1) \longmapsto 1$
 $(1,0) \longmapsto 0$
 $(0,1) \longmapsto 1$
 $(0,0) \longmapsto 1$

O significado do conetivo \leftrightarrow é dado pela função

$$v_{\leftrightarrow}: \{0,1\} \times \{0,1\} \longrightarrow \{0,1\}$$
 $(1,1) \longmapsto 1$
 $(1,0) \longmapsto 0$
 $(0,1) \longmapsto 0$
 $(0,0) \longmapsto 1$

Definição 37: Uma *valoração* é uma função $v : \mathcal{F}^{CP} \longrightarrow \{0,1\}$ que satisfaz as seguintes condições:

- a) $v(\bot) = 0;$
- **b)** $v(\neg \varphi) = v_{\neg}(v(\varphi))$, para todo $\varphi \in \mathcal{F}^{CP}$;
- c) $v(\varphi \square \psi) = v_{\square}((v(\varphi), v(\psi)))$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e todos $\varphi, \psi \in \mathcal{F}^{CP}$.

Proposição 38: Sejam v uma valoração e φ, ψ fórmulas do CP. Então:

- 1. $v(\neg \varphi) = 1$ sse não é verdade que $v(\varphi) = 1$;
- 2. $v(\varphi \land \psi) = 1$ sse $v(\varphi) = 1$ e $v(\psi) = 1$;
- 3. $v(\varphi \lor \psi) = 1$ sse $v(\varphi) = 1$ ou $v(\psi) = 1$;
- 4. $v(\varphi \rightarrow \psi) = 1$ sse (se $v(\varphi) = 1$ então $v(\psi) = 1$);
- 5. $v(\varphi \leftrightarrow \psi) = 1$ sse $(v(\varphi) = 1$ se e só se $v(\psi) = 1)$.

Dem.: Imediata, a partir da definição de valoração.

Definição 39: O valor lógico de uma fórmula φ para uma valoração v é $v(\varphi)$.

Dada uma fórmula arbitrária φ , a relação entre o valor lógico de φ e o valor lógico de $\neg \varphi$ pode ser representada através da seguinte tabela:

φ	$\neg \varphi$
1	0
0	1

Dadas duas fórmulas φ e ψ , a relação entre os valores lógicos de φ e ψ e o valor lógico de $\varphi \wedge \psi$ pode ser representada através da seguinte tabela:

φ	Ψ	$\varphi \wedge \psi$
1	1	1
1	0	0
0	1	0
0	0	0

Dadas duas fórmulas φ e ψ , a relação entre os valores lógicos de φ e ψ e o valor lógico de $\varphi \lor \psi$ pode ser representada através da tabela:

φ	Ψ	$\varphi \lor \psi$
1	1	1
1	0	1
0	1	1
0	0	0

e a relação entre os valores lógicos de φ e ψ e o valor lógico de $\varphi \to \psi$ pode ser representada através da seguinte tabela:

ert arphi ert arphi ert arphi ert arphi ert arphi ert arphi -		$\varphi \rightarrow \psi$
1	1	1
1	0	0
0	1	1
0	0	1

Dadas duas fórmulas φ e ψ , a relação entre os valores lógicos de φ e ψ e o valor lógico de $\varphi \leftrightarrow \psi$ pode ser representada através da seguinte tabela:

φ	Ψ	$\varphi \leftrightarrow \psi$
1	1	1
1	0	0
0	1	0
0	0	1

O Princípio de recursão estrutural para fórmulas do CP dá-nos a garantia de que uma valoração fica totalmente definida se conhecermos as imagens das variáveis proposicionais.

Proposição 40: Seja $f: \mathcal{V}^{CP} \longrightarrow \{0,1\}$ uma função. Então, existe uma e uma só valoração v tal que v(p) = f(p), para todo $p \in \mathcal{V}^{CP}$.

Dem.: Consequência imediata do Princípio de recursão estrutural para fórmulas do CP.

Exemplo 41: Sejam v_1 a única valoração tal que $v_1(p) = 0$, para todo $p \in \mathcal{V}^{CP}$, e v_2 a única valoração tal que

$$v_2(p) = \begin{cases} 1 \text{ se } p \in \{p_0, p_2\} \\ 0 \text{ se } p \in \mathcal{V}^{CP} \setminus \{p_0, p_2\} \end{cases}.$$

Sejam ainda $\varphi = (p_1 \lor p_2) \to (p_1 \land p_2)$ e $\psi = \neg p_1 \leftrightarrow (p_1 \to \bot)$. Então:

a) por definição de valoração,

$$v_1(\varphi) = \begin{cases} O \text{ se } v_1(p_1 \lor p_2) = 1 \text{ e } v_1(p_1 \land p_2) = 0 \\ 1 \text{ se } v_1(p_1 \lor p_2) = 0 \text{ ou } v_1(p_1 \land p_2) = 1 \end{cases}.$$

Assim, como $v_1(p_1 \lor p_2) = v_{\lor}((v_1(p_1), v_1(p_2))) = v_{\lor}((0, 0)) = 0$, segue que $v_1(\varphi) = 1$.

[Exercício: verifique que $v_2(\varphi) = 0$.]

b) por definição de valoração,

$$v_1(\psi) = \begin{cases} 1 \text{ se } v_1(\neg p_1) = v_1(p_1 \to \bot) \\ 0 \text{ se } v_1(\neg p_1) \neq v_1(p_1 \to \bot) \end{cases}.$$

Assim, como

$$v_1(\neg p_1) = v_{\neg}(v_1(p_1)) = v_{\neg}(0) = 1$$

e

$$v_1(p_1 \to \bot) = v_{\to}((v_1(p_1), O))$$

= $v_{\to}((O, O))$
= 1.

segue que $v_1(\psi) = 1$.

[Exercício: verifique que $v_2(\psi) = 1$; em particular, observe que v_2 e v_1 atribuem o mesmo valor lógico à única variável proposicional que ocorre em ψ .]

Proposição 42: Sejam v_1 e v_2 valorações e seja φ uma fórmula do CP. Se, para todo $p \in var(\varphi)$, $v_1(p) = v_2(p)$, então $v_1(\varphi) = v_2(\varphi)$.

Dem.: Por indução estrutural em fórmulas do CP.

Seja $P(\varphi)$ a propriedade:

para todo $p \in var(\varphi), v_1(p) = v_2(p) \Rightarrow v_1(\varphi) = v_2(\varphi).$

- a) $P(\perp)$ é verdadeira, pois $v_1(\perp) = 0 = v_2(\perp)$, por definição de valoração.
- b) Suponhamos que p' é uma variável proposicional e que, para todo $p \in var(p')$, $v_1(p) = v_2(p)$. Assim, como $p' \in var(p')$, temos $v_1(p') = v_2(p')$. Deste modo, para qualquer $p' \in \mathcal{V}^{CP}$, P(p') é verdadeira.

c) Mostremos que $P(\varphi_1)$ e $P(\varphi_2)$ implicam $P(\varphi_1 \land \varphi_2)$, para todos $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$.

Começamos por assumir $P(\varphi_1)$ e $P(\varphi_2)$, como hipóteses de indução.

Suponhamos que, para todo $p \in var(\varphi_1 \land \varphi_2)$, $v_1(p) = v_2(p)$. Então, como $var(\varphi_i) \subseteq var(\varphi_1 \land \varphi_2)$, temos $v_1(p) = v_2(p)$, para todo $p \in var(\varphi_i)$ $(i \in \{1,2\})$ e, aplicando as hipóteses de indução $P(\varphi_1)$ e $P(\varphi_2)$, segue que $v_1(\varphi_i) = v_2(\varphi_i)$ $(i \in \{1,2\})$. Assim, $v_1(\varphi_1 \land \varphi_2) = v_{\land}((v_1(\varphi_1), v_1(\varphi_2))) = v_{\land}((v_2(\varphi_1), v_2(\varphi_2))) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2))) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2))) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2))) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2))) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_2)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1), v_2(\varphi_2)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1), v_2(\varphi_1)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1), v_2(\varphi_1)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1), v_2(\varphi_1)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1), v_2(\varphi_1), v_2(\varphi_1)) = v_{\land}((v_1(\varphi_1), v_2(\varphi_1), v_2(\varphi_1)) = v_{\land}$

Assim, $v_1(\varphi_1 \land \varphi_2) = v_{\land}((v_1(\varphi_1), v_1(\varphi_2))) = v_{\land}((v_2(\varphi_1), v_2(\varphi_2))) = v_{\land}((\varphi_1 \land \varphi_2), e, portanto, P(\varphi_1 \land \varphi_2))$ é verdadeira.

 d) Exercício: demonstrar as restantes condições necessárias à aplicação do Princípio de indução estrutural para fórmulas do CP.

Observação 43: Pela Proposição 42, para estudar o valor lógico de uma fórmula φ para uma dada valoração v, basta conhecer o valor lógico, para v, das variáveis proposicionais que ocorrem em φ .

Para estudar os possíveis valores lógicos de φ para as diferentes valorações, podemos recorrer a uma tabela de verdade, como se segue: Introduzimos uma coluna para cada variável proposicional de φ ; uma coluna para φ ; e colunas (auxiliares) para cada uma das restantes subfórmulas de φ . Introduzimos linhas para cada uma das atribuições, possíveis, de valores de verdade às variáveis proposicionais de φ (i. e., sequências de 0's e 1's de comprimento igual ao número de variáveis proposicionais em φ). Preenchemos as colunas respeitantes às variáveis proposicionais com essas atribuições. Nas restantes posições posii da tabela, escrevemos o valor lógico da fórmula respeitante à coluna j, para uma valoração que satisfaz as atribuições às variáveis proposicionais na linha i.

Exemplo 44: Queremos estudar os possíveis valores lógicos da fórmula $\varphi = \neg p_0 \land (p_1 \lor p_0)$.

Nesta fórmula ocorrem duas variáveis proposicionais, p_0 e p_1 , pelo que se torna necessário considerar todas as combinações possíveis dos valores lógicos de p_0 e p_1 .

Como cada variável pode assumir um de dois valores lógicos (O ou 1), existem 2^2 combinações possíveis. Logo, a tabela de verdade de φ terá 4 linhas:

po	<i>p</i> ₁	$\neg p_0$	$p_1 \lor p_0$	$\neg p_0 \wedge (p_1 \vee p_0)$
1	1	0	1	0
1	0	0	1	0
0	1	1	1	1
0	0	1	0	0

Definição 45: Seja *v* uma valoração.

- 1. Dizemos que v satisfaz uma fórmula do CP φ , e escrevemos v sat. φ , quando $v(\varphi) = 1$. Quando v não satisfaz φ , i. e., quando $v(\varphi) = 0$, escrevemos v não sat. φ .
- 2. Dizemos que v satisfaz um conjunto de fórmulas do CP Γ , e escrevemos v sat. Γ , quando v satisfaz todas as fórmulas de Γ . Quando v não satisfaz Γ , i. e., quando existe $\varphi \in \Gamma$ t. q. v não sat. φ ou, equivalentemente, quando existe $\varphi \in \Gamma$ t. q. $v(\varphi) = 0$, escrevemos v não sat. Γ .

Definição 46: Uma fórmula φ do CP diz-se *satisfazível* quando existe pelo menos uma valoração que satisfaz φ .

Exemplo 47: Seja v_0 a valoração que atribui o valor lógico O a todas as variáveis proposicionais.

- 1. v_0 sat. $p_1 \leftrightarrow p_2$ e v_0 sat. $\neg p_1 \land \neg p_2$;
- 2. v_0 não sat. $p_1 \lor p_2$ e v_0 não sat. $p_1 \leftrightarrow \neg p_2$;
- 3. v_0 sat. $\{p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2\}$ (por 1.);
- 4. v_0 não sat. $\{p_1 \leftrightarrow p_2, p_1 \lor p_2\}$ (v_0 não satisfaz a 2.ª fórmula);
- 5. v_0 não sat. $\{\neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2\}$ (v_0 não satisfaz a 2ª fórmula);
- 6. As fórmulas $p_1 \leftrightarrow p_2$ e $\neg p_1 \land \neg p_2$ são satisfazíveis (por 1.).

Observação 48: Dado que no conjunto vazio não há qualquer fórmula, tem-se, trivialmente, que, para toda a valoração v, v sat. \emptyset .

Observação 49: Dadas uma valoração v e duas fórmulas φ e ψ do CP,

- 1. v sat. $\neg \varphi$ se e só se v não sat. φ ;
- 2. $v \text{ sat. } \varphi \wedge \psi \text{ se e s\'o se } v \text{ sat. } \varphi \text{ e } v \text{ sat. } \psi$.;
- 3. v sat. $\varphi \lor \psi$ se e só se v sat. φ ou v sat. ψ .;
- 4. $v \text{ sat. } \varphi \rightarrow \psi \text{ se e s\'o se } v \text{ n\~ao sat. } \varphi \text{ ou } v \text{ sat. } \psi$.;
- 5. $v \text{ sat. } \varphi \leftrightarrow \psi \text{ se e s\'o se } (v \text{ sat. } \varphi \text{ e } v \text{ sat. } \psi.) \text{ ou } (v \text{ n\~ao sat. } \varphi \text{ e } v \text{ n\~ao sat. } \psi.).$

Definição 50:

- 1. Uma fórmula φ é uma tautologia quando, para qualquer valoração v, v sat. φ (ou seja, $v(\varphi) = 1$).
- 2. Uma fórmula φ é uma contradição quando φ não é satisfazível, i. e., quando, para qualquer valoração v, $v(\varphi) = 0$.

Notação 51: A notação $\models \varphi$ significará que φ é uma tautologia e $\not\models \varphi$ significará que φ não é uma tautologia. A notação $\varphi \models$ significará que φ é uma contradição e $\varphi \not\models$ significará que φ não é uma contradição.

Exemplo 52:

- 1. A fórmula $\psi = \neg p_1 \leftrightarrow (p_1 \rightarrow \bot)$ é uma tautologia: dada uma valoração v arbitrária, sabemos que $v(p_1) = 0$ ou $v(p_1) = 1$, e
 - (a) caso $v(p_1) = 0$, então $v(\neg p_1) = 1$ e $v(p_1 \rightarrow \bot) = 1$, donde $v(\psi) = 1$;
 - (b) caso $v(p_1)=1$, então $v(\neg p_1)=0$ e $v(p_1\to \bot)=0$, donde $v(\psi)=1$.
- 2. Para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$, $\varphi \land \neg \varphi$ é uma contradição. De facto, dada uma valoração v arbitrária, sabemos que $v(\varphi) = 0$ ou $v(\varphi) = 1$, e:
 - (a) caso $v(\varphi) = 0$, então $v(\varphi \land \neg \varphi) = v_{\land}((0,1)) = 0$.
 - (b) caso $v(\varphi) = 1$, então $v(\neg \varphi) = 0$ e $v(\varphi \land \neg \varphi) = v_{\land}((1,0)) = 0$.
- 3. As fórmulas p_0 , $\neg p_0$, $p_0 \lor p_1$, $p_0 \land p_1$, $p_0 \to p_1$, $p_0 \leftrightarrow p_1$ não são tautologias nem são contradições. (Porquê?)

П

Proposição 53: Para todo $\varphi \in \mathcal{F}^{CP}$,

- 1. $\models \varphi$ se e só se $\neg \varphi \models$;
- 2. $\varphi \models \text{se e s\'o se} \models \neg \varphi$.

Dem.: Exercício.

Observação 54: Sabendo que φ não é uma tautologia, não podemos concluir que φ é uma contradição e, analogamente, sabendo que φ não é uma contradição, não podemos concluir que φ é uma tautologia. Tenha-se em atenção que existem fórmulas que não são tautologias, nem são contradições (como vimos no exemplo anterior).

Exemplo 55: Seja φ a fórmula $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$. Da tabela de verdade para φ , apresentada de seguida, podemos concluir que φ é uma tautologia, uma vez que φ assume o valor lógico 1 para todas as possíveis atribuições de valores de verdade às variáveis proposicionais de φ .

p_1	p_2	$\neg p_1$	$\neg p_2$	$\neg p_1 \rightarrow \neg p_2$	$p_2 \rightarrow p_1$	$\left (\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1) \right $
1	1	0	0	1	1	1
1	0	0	1	1	1	1
0	1	1	0	0	0	1
0	0	1	1	1	1	1

Tabela de verdade de $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$.

22

Teorema 56 (Generalização): Sejam p uma variável proposicional e sejam φ e ψ fórmulas do CP. Se φ é uma tautologia, então $\varphi[\psi/p]$ é também uma tautologia.

Dem.: Qualquer que seja a valoração v, demonstra-se, por indução estrutural na fórmula φ , que a valoração v' definida, a partir de v e de ψ , do seguinte modo

$$v'(p') = \begin{cases} v(\psi) \text{ se } p' = p \\ \\ v(p') \text{ se } p' \in \mathcal{V}^{CP} \setminus \{p\} \end{cases}$$

é tal que $v'(\varphi) = v(\varphi[\psi/p])$. Portanto, se φ é uma tautologia, $v'(\varphi) = 1$ e, pela igualdade anterior, $v(\varphi[\psi/p]) = 1$. Assim, qualquer que seja a valoração v, $v(\varphi[\psi/p]) = 1$, i. e., $\varphi[\psi/p]$ é uma tautologia.

L

Exemplo 57: A fórmula $p_0 \vee \neg p_0$ é uma tautologia. Logo, para qualquer fórmula ψ , a fórmula $(p_0 \vee \neg p_0)[\psi/p_0] = \psi \vee \neg \psi$ é ainda uma tautologia.

Definição 58: Seja Γ um conjunto de fórmulas do CP.

- 1. Γ diz-se um conjunto satisfazível ou semanticamente consistente quando existe alguma valoração que satisfaz Γ.
- Γ diz-se um conjunto insatisfazível ou não satisfazível ou semanticamente inconsistente quando não há valorações que satisfaçam Γ. Neste caso escrevemos Γ ⊨.

Observação 59: Para qualquer fórmula φ do Cálculo Proposicional, $\{\varphi\} \models$ se e só se $\varphi \models$, ou seja, $\{\varphi\}$ é um conjunto não satisfazível se e só se a fórmula φ é uma contradição.

Exemplo 60:

- a) Como vimos no **exemplo 47**, o conjunto de fórmulas $\Delta_1 = \{p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2\}$ é satisfeito pela valoração v_0 desse exemplo e, portanto, Δ_1 é satisfazível.
- b) O conjunto $\Delta_2 = \{p_1 \leftrightarrow p_2, p_1 \lor p_2\}$, considerado no **exemplo 47**, não é satisfeito pela valoração v_0 , mas é satisfeito, por exemplo, pela valoração que atribui valor lógico 1 a qualquer variável proposicional. Logo, Δ_2 é também satisfazível.
- c) O conjunto $\Delta_3 = \{ \neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2 \}$, considerado no **exemplo** 47, não é satisfazível.

Dem.: Suponhamos que existe uma valoração v que satisfaz Δ_3 . Então, $v(\neg p_1 \land \neg p_2) = 1$, e portanto $v(p_1) = 0$ e $v(p_2) = 0$, e $v(p_1 \leftrightarrow \neg p_2) = 1$. Ora, de $v(p_2) = 0$, segue $v(\neg p_2) = 1$ e daqui e de $v(p_1) = 0$, segue $v(p_1 \leftrightarrow \neg p_2) = 0$, o que contradiz $v(p_1 \leftrightarrow \neg p_2) = 1$. Logo, não podem existir valorações que satisfaçam Δ_3 e, assim, Δ_3 é não satisfazível.

Proposição 61: Sejam Γ e Δ conjuntos de fórmulas do CP tais que $\Gamma \subset \Delta$. Então:

- i) se Δ é satisfazível, então Γ é satisfazível;
- ii) se Γ não é satisfazível, então Δ não é satisfazível.

Dem.: Exercício.

Definição 62: Uma fórmula φ diz-se *logicamente equivalente*, ou semanticamente equivalente, a uma fórmula ψ (notação: $\varphi \Leftrightarrow \psi$) quando, para toda a valoração v, $v(\varphi) = v(\psi)$.

Observação 63:

1. Prova-se que a relação de equivalência lógica é uma relação de equivalência em \mathcal{F}^{CP} . Em particular, sabemos que, se uma fórmula φ for logicamente equivalente a uma fórmula ψ , então ψ será logicamente equivalente a φ . Diremos, nesse caso, que φ e ψ são logicamente equivalentes, ou semanticamente equivalentes.

- 2. Dadas duas fórmulas φ e ψ , $\varphi \Leftrightarrow \psi$ se e só se $\models \varphi \leftrightarrow \psi$.
- 3. Se $\varphi \Leftrightarrow \psi$ então $\neg \varphi \Leftrightarrow \neg \psi$, para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$.
- 4. Se $\varphi_1 \Leftrightarrow \psi_1$ e $\varphi_2 \Leftrightarrow \psi_2$ então $(\varphi_1 \square \psi_1) \Leftrightarrow (\varphi_2 \square \psi_2)$, para quaisquer $\varphi_1, \psi_1, \varphi_2, \psi_2 \in \mathcal{F}^{CP}$ e qualquer $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

Exemplo 64: Para toda a fórmula $\varphi, \neg \varphi \Leftrightarrow (\varphi \to \bot)$. A demonstração deste resultado pode ser sintetizada numa *tabela de verdade*, como se segue:

φ	$\neg \varphi$	$\varphi \! o \! oldsymbol{\perp}$	$\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$
1	0	0	1
0	1	1	1

Tabela de verdade de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$.

O valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 1 e o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 0.

Proposição 65: As seguintes equivalências lógicas são válidas.

$$(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma) \qquad (\varphi \land \psi) \land \sigma \Leftrightarrow \varphi \land (\psi \land \sigma)$$

$$(associatividade)$$

$$\varphi \lor \psi \Leftrightarrow \psi \lor \varphi \qquad \varphi \land \psi \Leftrightarrow \psi \land \varphi$$

$$(comutatitvidade)$$

$$\varphi \lor \varphi \Leftrightarrow \varphi \qquad \varphi \land \varphi \Leftrightarrow \varphi$$

$$(idempotência)$$

$$\varphi \lor \bot \Leftrightarrow \varphi \qquad \varphi \land \neg \bot \Leftrightarrow \varphi$$

$$(elemento neutro)$$

$$\varphi \lor \neg \bot \Leftrightarrow \neg \bot \qquad \varphi \land \bot \Leftrightarrow \bot$$

$$(elemento absorvente)$$

$$\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma) \qquad \varphi \land (\psi \lor \sigma) \Leftrightarrow (\varphi \land \psi) \lor (\varphi \land \sigma)$$
 (distributividade)

$$\neg(\varphi \lor \psi) \Leftrightarrow \neg\varphi \land \neg\psi \qquad \neg(\varphi \land \psi) \Leftrightarrow \neg\varphi \lor \neg\psi$$
 (leis de De Morgan)

$$\neg \neg \varphi \Leftrightarrow \varphi$$
 (lei da dupla negação)

 $\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$

$$\varphi \rightarrow \psi \Leftrightarrow \neg \varphi \lor \psi$$

$$\varphi \lor \psi \Leftrightarrow \neg \varphi \to \psi$$

$$\varphi \land \psi \Leftrightarrow \neg (\neg \varphi \lor \neg \psi)$$

$$\neg \varphi \Leftrightarrow \varphi \rightarrow \bot$$

$$\bot \Leftrightarrow \varphi \land \neg \varphi$$

(expressão de um conetivo em termos de outros conetivos)

Dem.: Exercício.

П

Exemplo 66: Sejam φ e ψ fórmulas. Então,

$$\neg(\neg\varphi\wedge\psi)\ \Leftrightarrow\ \neg\neg\varphi\vee\neg\psi\ \Leftrightarrow\ \varphi\vee\neg\psi.$$

Justificações

- (1) Lei de De Morgan.
- (2) Como $\neg\neg\varphi \Leftrightarrow \varphi$, segue-se que $\neg\neg\varphi \lor \neg\psi \Leftrightarrow \varphi \lor \neg\psi$.

Donde, como ⇔ é transitiva, podemos concluir a equivalência lógica entre a primeira fórmula e a última fórmula.

Notação 67: Uma vez que a conjunção pode ser vista como uma operação associativa, utilizaremos por vezes a notação $\varphi_1 \wedge ... \wedge \varphi_n$ (com $n \in \mathbb{N}$) para representar qualquer associação, através da conjunção, das fórmulas $\varphi_1, ..., \varphi_n$ duas a duas. Analogamente, e uma vez que a disjunção também pode ser vista como uma operação associativa, utilizaremos por vezes a notação $\varphi_1 \vee ... \vee \varphi_n$ para representar qualquer associação, através da disjunção, das fórmulas $\varphi_1, ..., \varphi_n$ duas a duas. Em ambos os casos, quando n = 1, as notações anteriores representam simplesmente a fórmula φ_1 .

Exemplo 68: $p_0 \land \neg p_1 \land p_2$ representa as fórmulas $(((p_0 \land (\neg p_1)) \land p_2))$ e $(p_0 \land ((\neg p_1) \land p_2))$, que são logicamente equivalentes.

Definição 69: Seja $X \subseteq \{\bot, \neg, \land, \lor, \rightarrow\}$ um conjunto de conetivos. X diz-se *completo* quando, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}^{CP}$ tal que $\varphi \Leftrightarrow \psi$ e todos os conetivos de ψ estão em X.

Proposição 70: Os conjuntos de conetivos $\{\rightarrow, \neg\}$, $\{\rightarrow, \bot\}$, $\{\land, \neg\}$ e $\{\lor, \neg\}$ são completos.

Dem.: Vamos demonstrar que $\{\rightarrow, \neg\}$ é um conjunto completo de conetivos.

(A demonstração de que os outros conjuntos de conetivos mencionados são completos é deixada como exercício.)

Para tal, comecemos por definir, por recursão estrutural em fórmulas, a função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$ como a única função tal que:

- **a)** $f(\bot) = \neg(p_0 \to p_0);$
- **b)** f(p) = p, para todo $p \in \mathcal{V}^{CP}$;
- c) $f(\neg \varphi) = \neg f(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $f(\varphi \rightarrow \psi) = f(\varphi) \rightarrow f(\psi)$, para todos $\varphi, \psi \in \mathcal{F}^{CP}$;
- **e)** $f(\varphi \lor \psi) = \neg f(\varphi) \rightarrow f(\psi)$, para todos $\varphi, \psi \in \mathcal{F}^{CP}$;
- **f)** $f(\varphi \land \psi) = \neg (f(\varphi) \rightarrow \neg f(\psi))$, para todos $\varphi, \psi \in \mathcal{F}^{CP}$;
- g) $f(\varphi \leftrightarrow \psi) = \neg((f(\varphi) \rightarrow f(\psi)) \rightarrow \neg(f(\psi) \rightarrow f(\varphi)))$, para todos $\varphi, \psi \in \mathcal{F}^{CP}$.

Lema: Para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow f(\varphi)$ e os conetivos de $f(\varphi)$ estão no conjunto $\{\rightarrow, \neg\}$.

Dem.: Por indução estrutural em φ . Exercício.

Do lema anterior concluímos de imediato que $\{\to,\neg\}$ é um conjunto completo de conetivos, pois, para toda a fórmula φ , existe uma fórmula $f(\varphi)$ tal que $\varphi \Leftrightarrow f(\varphi)$ e os conetivos de $f(\varphi)$ estão no conjunto $\{\to,\neg\}$.

Exemplo 71: Da demonstração da proposição anterior, podemos concluir que a fórmula

 $f((\neg p_1 \land p_2) \to \bot) = \neg(\neg p_1 \to \neg p_2) \to \neg(p_0 \to p_0)$ é logicamente equivalente a $(\neg p_1 \land p_2) \to \bot$ e os seus conetivos estão no conjunto $\{\to,\neg\}$.

Definição 72: As variáveis proposicionais e as negações de variáveis proposicionais são chamadas *literais*.

Definição 73: Fórmulas do CP das formas

$$(l_{11} \vee ... \vee l_{1m_1}) \wedge ... \wedge (l_{n1} \vee ... \vee l_{nm_n})$$

ii)
$$(l_{11} \wedge ... \wedge l_{1m_1}) \vee ... \vee (l_{n1} \wedge ... \wedge l_{nm_n})$$

em que os l_{ij} são literais e n, bem como os m_i , pertencem a \mathbb{N} , serão designadas por formas normais conjuntivas (FNC) e formas normais disjuntivas (FND), respetivamente.

Exemplo 74:

- a) Todo o literal l é simultaneamente uma forma normal conjuntiva e disjuntiva (na definição de formas normais, basta tomar n = 1, $m_1 = 1$ e $l_{11} = l$).
- b) A fórmula $p_1 \land \neg p_2 \land \neg p_0$ é uma FNC (faça-se n=3, $m_1=1$, $m_2=1$, $m_3=1$, $l_{11}=p_1$, $l_{21}=\neg p_2$ e $l_{31}=\neg p_0$) e é também uma FND (faça-se n=1, $m_1=3$, $l_{11}=p_1$, $l_{12}=\neg p_2$ e $l_{13}=\neg p_0$).

Também a fórmula $p_1 \lor p_2$ é, em simultâneo, uma FND e uma FNC.

- Mais geralmente, conjunções de literais e disjunções de literais são, em simultâneo, formas normais conjuntivas e disjuntivas.
- c) A fórmula $(p_1 \lor p_0) \land (p_0 \lor \neg p_1)$ é uma FNC, mas não é uma FND.
- **d)** A fórmula $\neg(p_1 \lor p_0)$ não é nem uma FNC nem uma FND.

П

Proposicão 75: Para todo $\varphi \in \mathcal{F}^{CP}$, existe uma forma normal conjuntiva φ^c tal que $\varphi \Leftrightarrow \varphi^c$ e existe uma forma normal disjuntiva φ^d tal que $\varphi \Leftrightarrow \varphi^d$.

Dem.: Dada uma fórmula φ , uma forma normal conjuntiva e uma formal normal disjuntiva logicamente equivalentes a φ podem ser obtidas através das seguintes transformações:

 Eliminar equivalências, implicações e ocorrências do absurdo, utilizando as equivalências lógicas

$$\varphi_1 \leftrightarrow \varphi_2 \Leftrightarrow (\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1), \varphi_1 \rightarrow \varphi_2 \Leftrightarrow \neg \varphi_1 \lor \varphi_2 \in \bot \Leftrightarrow \varphi_1 \land \neg \varphi_1.$$

- 2. Mover negações que se encontrem fora de conjunções ou disjunções para dentro delas, utilizando as leis de De Morgan.
- 3. Eliminar duplas negações.
- 4. Aplicar a distributividade entre a conjunção e a disjunção.

Exemplo 76: Seja
$$\varphi = ((\neg p_1 \lor p_2) \to p_3) \land p_0$$
. Então:

i)
$$\varphi$$

$$\Leftrightarrow ((\neg p_1 \lor p_2) \to p_3) \land p_0$$

$$\Leftrightarrow (\neg (\neg p_1 \lor p_2) \lor p_3) \land p_0$$

$$\Leftrightarrow ((\neg \neg p_1 \land \neg p_2) \lor p_3) \land p_0$$

$$\Leftrightarrow ((p_1 \land \neg p_2) \lor p_3) \land p_0$$

$$\Leftrightarrow (p_1 \lor p_3) \land (\neg p_2 \lor p_3) \land p_0$$

e a última fórmula é uma FNC;

ii)
$$\varphi \\ \Leftrightarrow ((p_1 \land \neg p_2) \lor p_3) \land p_0 \quad \text{por i}) \\ \Leftrightarrow (p_1 \land \neg p_2 \land p_0) \lor (p_3 \land p_0),$$

sendo a última fórmula uma FND.

Observação 77: Consideremos de novo a Proposição 75 e a sua demonstração. Uma demonstração alternativa, que permite obter uma FND e uma FNC logicamente equivalentes a uma dada fórmula φ , pode ser feita com recurso à tabela de verdade de φ . Em particular, vejamos como obter uma FND φ^d , logicamente equivalente a φ , a partir da tabela de verdade de φ .

- Se φ é uma contradição ou uma tautologia, basta tomar, respetivamente, uma FND que seja uma contradição e uma FND que seja uma tautologia; por exemplo, tome-se, respetivamente, $\varphi^d = p_0 \land \neg p_0$ e $\varphi^d = p_0 \lor \neg p_0$.
- Doutro modo, sem perda de generalidade, suponhamos que $p_1, p_2, ..., p_n$ são as variáveis proposicionais que ocorrem em φ . A tabela de verdade de φ terá 2^n linhas e pode ser representada da seguinte forma:

linha $i \rightarrow$

	p_1	p ₂		p_{n-1}	p _n	φ
ſ	1	1		1	1	<i>b</i> ₁
	:	:		:		
	$a_{i,1}$	$a_{i,2}$		$a_{i,n-1}$	a _{i,n}	bi
	:	:		:		
	Ó	0	•••	0	Ö	b ₂ ⁿ

onde, para cada $i \in \{1, ..., 2^n\}$, $b_i = v_i(\varphi)$ para toda a valoração v_i tal que $v_i(p_i) = a_{i,j}$ para todo $j \in \{1, ..., n\}$.

Para cada $i \in \{1, ..., 2^n\}$ tal que $b_i = 1$, seja

$$\alpha_{i,j} = \begin{cases} p_j & \text{se } \alpha_{i,j} = 1 \\ \neg p_j & \text{se } \alpha_{i,j} = 0 \end{cases}$$
 (para todo $j \in \{1, \dots, n\}$)

e seja $\beta_i = \alpha_{i,1} \wedge \alpha_{i,2} \wedge \cdots \wedge \alpha_{i,n}$.

Finalmente, suponhamos que i_1, i_2, \ldots, i_k são as linhas para as quais $b_{i_r} = 1$, e tome-se $\varphi^d = \beta_{i_1} \vee \beta_{i_2} \vee \cdots \vee \beta_{i_k}$.

Prova-se que φ^d assim definida, de facto, é uma FND e é logicamente equivalente a φ . (Exercício.)

Exemplo 78: Consideremos a fórmula

 $\varphi = ((p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)) \land p_2$. Denotemos por ψ a subfórmula $(p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)$ de φ . A tabela de verdade de φ é:

p_1	p ₂	<i>p</i> ₃		$\neg p_1$	$p_3 \rightarrow p_1$	$\neg p_1 \leftrightarrow \bot$	Ψ	φ
1	1	1	0	0	1	1	1	1
1	1	0	0	0	1	1	1	1
1	0	1	0	0	1	1	1	0
1	0	0	0	0	1	1	1	0
0	1	1	0	1	0	0	0	0
0	1	0	0	1	1	0	1	1
0	0	1	0	1	0	0	0	0
0	0	0	0	1	1	0	1	0

As linhas para as quais φ tem valor lógico 1 são a 1, a 2 e a 6. Portanto, uma FND logicamente equivalente a φ é:

$$(p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3).$$

Definição 79: Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP.

- 1. Dizemos que φ é uma consequência semântica de Γ , e escrevemos $\Gamma \models \varphi$, quando, para toda a valoração v, se v sat. Γ , então v sat. φ .
- 2. Escrevemos $\Gamma \not\models \varphi$ quando φ não é consequência semântica de Γ , i. e., quando existe alguma valoração v t. q. v sat. Γ e v não sat. φ .

Observação 80: Da definição anterior, aplicando as definições de satisfação de uma fórmula e satisfação de um conjunto de fórmulas, segue de imediato que:

- 1. $\Gamma \models \varphi$ se e só se para toda a valoração v, se para todo $\psi \in \Gamma$, $v(\psi) = 1$, então $v(\varphi) = 1$.
- 2. $\Gamma \not\models \varphi$ se e só se existe alguma valoração v tal que, para todo $\psi \in \Gamma$, $v(\psi) = 1$ e $v(\varphi) = 0$.

Exemplo 81:

- 1. Seja $\Gamma = \{p_1, \neg p_1 \lor p_2\}$. Então:
 - (a) $\Gamma \models p_1$.

Se tomarmos uma valoração v tal que v sat. Γ , então v é tal que $v(p_1)=1$ e $v(\neg p_1 \lor p_2)=1$. Em particular, temos $v(p_1)=1$.

(b) $\Gamma \models p_2$.

Tomando uma valoração v tal que $v(p_1) = 1$ e $v(\neg p_1 \lor p_2) = 1$, temos $v(\neg p_1) = 0$ e daqui e de $v(\neg p_1 \lor p_2) = 1$, segue $v(p_2) = 1$.

(c) $\Gamma \models p_1 \land p_2$.

Tomando uma valoração v tal que $v(p_1) = 1$ e $v(\neg p_1 \lor p_2) = 1$, temos necessariamente $v(p_1) = 1$ e $v(p_2) = 1$ (tal como vimos nos exemplos anteriores) e, por isso, temos $v(p_1 \land p_2) = 1$.

(d) $\Gamma \not\models p_3$.

Existem valorações v tais que v sat. Γ e $v(p_3) = 0$. Por exemplo, a valoração que atribui valor lógico 1 a p_1 e p_2 e valor lógico 0 às restantes variáveis proposicionais é uma tal valoração.

(e) $\Gamma \not\models \neg p_1 \lor \neg p_2$.

Por exemplo, para a valoração v_1 tal que $v_1(p_i) = 1$, para todo $i \in \mathbb{N}_0$, temos v_1 sat. Γ e, no entanto, $v_1(\neg p_1 \lor \neg p_2) = 0$.

(f) $\Gamma \models p_3 \vee \neg p_3$.

Se tomarmos uma valoração v tal que v sat. Γ , temos $v(p_3 \lor \neg p_3)$. De facto, $p_3 \lor \neg p_3$ é uma tautologia e, como tal, o seu valor lógico é 1 para qualquer valoração (em particular, para aquelas valorações que satisfazem Γ).

П

- 2. Para todos $\varphi, \psi \in \mathcal{F}^{CP}$, $\{\varphi, \varphi \to \psi\} \models \psi$. De facto, para qualquer valoração v, se $v(\varphi) = 1$ e $v(\varphi \to \psi) = 1$, então $v(\psi) = 1$.
- 3. Já a afirmação "para todo $\varphi, \psi \in \mathcal{F}^{CP}, \{\varphi \to \psi\} \models \psi$ " é falsa. Por exemplo, $\{p_1 \to p_2\} \not\models p_2$ (uma valoração v tal que $v(p_1) = v(p_2) = 0$ satisfaz $\{p_1 \to p_2\}$ e não satisfaz p_2 .

Proposição 82: Para todo $\varphi \in \mathcal{F}^{CP}$, $\models \varphi$ se e só se $\varnothing \models \varphi$.

Dem.: Suponhamos que φ é uma tautologia. Então, para toda a valoração v, v sat. φ e, assim, de imediato, a implicação "v sat. $\varnothing \Rightarrow v$ sat. φ " é verdadeira, pelo que $\varnothing \models \varphi$.

Reciprocamente, suponhamos agora que $\varnothing \models \varphi$, i. e., suponhamos que para toda a valoração v,

$$v \text{ sat. } \emptyset \Rightarrow v \text{ sat. } \varphi.$$

Seja v uma valoração arbitrária. Pretendemos mostrar que $v(\varphi)=1$. Ora, trivialmente, v sat. \varnothing (Observação 48). Assim, da suposição, segue v sat. φ , ou seja, $v(\varphi)=1$.

П

Proposição 83: Para todo $\Gamma \subseteq \mathcal{F}^{CP}$, $\Gamma \models$ se e só se $\Gamma \models \bot$. **Dem.**: Exercício

Observação 84: Se Γ é um conjunto de fórmulas não satisfazível, então $\Gamma \models \varphi$, para todo $\varphi \in \mathcal{F}^{CP}$ (porquê?). Como tal, é possível ter-se $\Gamma \models \varphi$ sem que existam valorações que satisfaçam Γ .

Notação 85: Muitas vezes, no contexto da relação de consequência semântica, usaremos a vírgula para denotar a união de conjuntos e escrevemos uma fórmula para denotar o conjunto singular composto por essa fórmula. Assim, por exemplo, dadas fórmulas $\varphi, \psi, \varphi_1, ..., \varphi_n$ e conjuntos de fórmulas Γ, Δ , escrevemos:

- a) $\Gamma, \Delta \models \varphi$ em vez de $\Gamma \cup \Delta \models \varphi$;
- **b)** $\Gamma, \varphi \models \psi$ em vez de $\Gamma \cup \{\varphi\} \models \psi$;
- c) $\varphi_1,...,\varphi_n \models \varphi$ em vez de $\{\varphi_1,...,\varphi_n\} \models \varphi$.

Proposição 86: Sejam φ e ψ fórmulas e sejam Γ e Δ conjuntos de fórmulas.

- a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$.
- **b)** Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$.
- c) Se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Delta, \Gamma \models \psi$.
- **d)** $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$.
- **e)** Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$.

Dem.:

a) Suponhamos que $\varphi \in \Gamma$. Seja v uma valoração e suponhamos que v satisfaz Γ . Então, da definição de satisfação de conjuntos, sabemos que v atribui valor lógico 1 a todas as fórmulas de Γ . Assim, dado que por hipótese $\varphi \in \Gamma$, temos $v(\varphi) = 1$.

- b) Seja v uma valoração e suponhamos que v satisfaz Δ . Assim, em particular, v satisfaz Γ , pois (por hipótese) $\Gamma \subseteq \Delta$. Donde, pela hipótese de que φ é uma consequência semântica de Γ , segue que $v(\varphi)=1$.
- **c)** Exercício.
- d) \Rightarrow) Seja v uma valoração e suponhamos que v satisfaz $\Gamma \cup \{\varphi\}$. Então, por definição de satisfação de conjuntos, v satisfaz Γ e $v(\varphi) = 1$ (*). Assim, como v satisfaz Γ , da hipótese $\Gamma \models \varphi \rightarrow \psi$ segue que $v(\varphi \rightarrow \psi) = 1$ (**). Logo, de (*) e (**), por definição de valoração, $v(\psi) = 1$.
 - **⇐)** Exercício.
- e) Seja v uma valoração e suponhamos que v satisfaz Γ . Então, da hipótese $\Gamma \models \varphi \rightarrow \psi$, podemos concluir que $v(\varphi \rightarrow \psi) = 1$ (*) e, da hipótese $\Gamma \models \varphi$, podemos concluir que $v(\varphi) = 1$ (**). Logo, de (*) e (**), por definição de valoração, $v(\psi) = 1$.

Proposição 87: Sejam $\varphi, \varphi_1, ..., \varphi_n$ fórmulas, onde $n \in \mathbb{N}$. As seguintes proposições são equivalentes:

- i) $\varphi_1,...,\varphi_n \models \varphi$;
- ii) $\varphi_1 \wedge ... \wedge \varphi_n \models \varphi$;
- iii) $\models (\varphi_1 \land ... \land \varphi_n) \rightarrow \varphi$.

Dem.: A equivalência entre ii) e iii) é um caso particular de d) da proposição anterior. A equivalência entre i) e ii) pode ser demonstrada a partir da equivalência mais geral: para todo o conjunto Γ de fórmulas,

$$\Gamma, \varphi_1, ..., \varphi_n \models \varphi$$
 se e só se $\Gamma, \varphi_1 \land ... \land \varphi_n \models \varphi$,

a qual pode ser demonstrada por indução em *n* (exercício). A equivalência entre i) e iii) segue, então, por transitividade.

Proposição 88 (Redução ao absurdo): Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP. Então: $\Gamma \models \varphi$ se e só se $\Gamma \cup \{\neg \varphi\}$ não é satisfazível.

Dem.:

- \Rightarrow) Tendo em vista uma contradição, suponhamos que $\Gamma \cup \{\neg \varphi\}$ é satisfazível, i. e., suponhamos que existe uma valoração v que satisfaz $\Gamma \cup \{\neg \varphi\}$. Então, v satisfaz Γ e $v(\neg \varphi) = 1$, i. e., $v(\varphi) = 0$ (*). Contudo, da hipótese, uma vez que v satisfaz Γ , podemos concluir que $v(\varphi) = 1$, o que é contraditório com (*). Logo, por redução ao absurdo, $\Gamma \cup \{\neg \varphi\}$ não é satisfazível.
- \Leftarrow) Suponhamos que v satisfaz Γ . Então, $v(\neg \varphi) = 0$, de outra forma teríamos $v(\neg \varphi) = 1$, donde, como v satisfaz Γ , seguiria que $\Gamma \cup \{\neg \varphi\}$ seria satisfazível, contrariando a hipótese. Logo, $v(\varphi) = 1$. Mostrámos, assim, que toda a valoração que satisfaz Γ também satisfaz φ e, portanto, $\Gamma \models \varphi$.