Fiche d'exercices nº 3

Espaces vectoriels normés

Exercice 1.

Soit E un \mathbb{K} -espace vectoriel. On dit qu'une application $E \to \mathbb{R}^+$ est une semi-norme lorsqu'elle vérifie les propriétés d'homogénéité et d'inégalité triangulaire (mais pas nécessairement celle de séparation)

- a) Si $\varphi: E \to \mathbb{R}$ est une forme linéaire, montrer que l'application $x \mapsto |\varphi(x)|$ est une semi-norme sur E.
- **b)** Montrer que si s_1, \ldots, s_p sont des semi-normes sur E, alors l'application $x \mapsto \sup (s_1(x), \ldots, s_p(x))$ est une semi-norme sur E.
- c) Soit $(\varphi_1, \ldots, \varphi_p)$ une famille de formes linéaires sur E. Déterminer une condition nécessaire et suffisante pour que l'application $x \mapsto \sup (|\varphi_1(x)|, \ldots, |\varphi_p(x)|)$ soit une norme.

Exercice 2.

On note $E = \mathbb{K}^{\mathbb{N}} = \mathcal{F}(\mathbb{N}, \mathbb{K})$ l'espace vectoriel des suites à valeurs dans \mathbb{K} . En vous inspirant des normes $\|\cdot\|_1$, $\|\cdot\|_2$, et $\|\cdot\|_{\infty}$ sur \mathbb{K}^p , proposez des applications analogues sur certains sous-espaces (à définir) de E, et vérifiez qu'il s'agit bien de normes.

Exercice 3. *

Pour tout $p \in \mathbb{N}^*$, on admet que l'application $\|\cdot\|_p : x \mapsto \left(\sum_{k=1}^n |x_i|^p\right)^{\frac{1}{p}}$ définit une norme sur \mathbb{K}^n . Montrer que pour tout $x \in \mathbb{K}^n$, $\|x\|_p \underset{p \to +\infty}{\longrightarrow} \|x\|_{\infty}$.

Exercice 4. *

Soit A une partie non vide de \mathbb{R} . Pour tout polynôme $P \in \mathbb{R}[X]$, on pose $\|P\|_A = \sup_{x \in A} |P(x)|$. Quelle(s) condition(s) A doit-elle satisfaire pour que l'on obtienne ainsi une norme $\|\cdot\|_A$ sur $\mathbb{R}[X]$?

Exercice 5.

Lorsque A est une partie bornée non vide d'un espace normé (E, N), on introduit le diametre de A par :

$$\delta(A) = \sup_{(x,y)\in A^2} N(y-x)$$

Soient A et B deux parties bornées et non vides de E.

- a) Justifier l'existence de la borne supérieure définissant $\delta(A)$
- **b)** Établir

$$A \subset B \Rightarrow \delta(A) \leq \delta(B)$$

c) On suppose de plus $A \cap B \neq \emptyset$. Montrer

$$\delta(A \cap B) \leq \delta(A) + \delta(B)$$

Exercice 6. *

Soit $E = \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2\}.$

- a) Montrer que E est un \mathbb{Q} -espace vectoriel de dimension 2.
- b) Montrer que les applications

$$a + b\sqrt{2} \mapsto |a| + |b|$$
 et $a + b\sqrt{2} \mapsto |a + b\sqrt{2}|$

définissent deux normes sur E.

c) À l'aide de $u_n = (1 + \sqrt{2})^n$, montrer qu'elles ne sont pas équivalentes.

Exercice 7.

Soit (E, N) un espace vectoriel normé, et soit $(x_n)_{n\in\mathbb{N}}$ une suite de E. Montrer que si $(x_n)_n$ converge vers $\ell \in E$, alors la suite $(N(x_n))_n$ converge vers $N(\ell)$. La réciproque est-elle vraie?

Exercice 8.

Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé, et soient $(x_n)_n$ et $(y_n)_n$ deux suites de E. On dit qu'elles sont (asymptotiquement) équivalentes, et on note $x_n \sim y_n$ lorsque :

$$x_n - y_n = \mathrm{o}(\|y_n\|).$$

- a) Montrer que \sim est une relation d'équivalence sur l'ensemble des suites de E.
- b) On suppose $x_n \sim y_n$ Montrer alors que $(x_n)_n$ converge vers $\ell \in E$ si, et seulement si, $(y_n)_n$ converge vers ℓ .

Exercice 9.

Pour un polynôme $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$, on définit les applications N_1 , N_2 et N_{∞} par les formules suivantes :

$$N_1(P) = \sum_{k=0}^{n} |a_k|$$
 ; $N_2(P) = \sqrt{\sum_{k=0}^{n} |a_k|^2}$; $N_{\infty}(P) = \sup_{0 \le k \le n} |a_k|$

- a) Vérifier que N_1 , N_2 et N_{∞} définissent des normes sur $\mathbb{R}[X]$.
- b) En considérant les polynômes $P_n = \sum_{k=0}^n X^k$, montrer que les normes N_1 , N_2 et N_∞ ne sont pas équivalentes.
- c) Montrer que pour $n \in \mathbb{N}$ fixé, les normes N_1 , N_2 et N_∞ restreintes à $\mathbb{R}_n[X]$ sont équivalentes.

Exercice 10.

Soit $f:[0,1] \to \mathbb{R}$ continue et $N_f: P \mapsto \sup_{x \in [0,1]} |f(x)P(x)|$ définie sur $\mathbb{K}[X]$.

- a) Déterminer une condition nécessaire et suffisante sur f pour que N_f soit une norme sur $\mathbb{K}[X]$.
- b) Montrer que s'il existe a,b>0 tels que $a|f|\leqslant |g|\leqslant b|f|$, alors les normes N_f et N_g sont équivalentes.

Exercice 11.

Soit (E, N) un espace vectoriel normé et O un ouvert de E.

- a) Montrer que pour tout $a \in E$, l'ensemble $a + O = \{a + x, x \in O\}$ est un ouvert de E.
- b) Montrer que si $A \subset E$, l'ensemble A + O est un ouvert de E. Montrer, à l'aide d'un exemple, que A + O peut être ouvert sans que O (ni A) se soit ouvert.

Exercice 12.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé et F un sous-espace vectoriel de E.

- a) Montrer que l'adhérence de F est un sous-espace vectoriel de E.
- b) Montrer que si F est d'intérieur non vide, alors F = E.

Exercice 13.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$, muni de la norme $\|\cdot\|_1$. Montrer que la fonction constante égale à 1 est adhérente à $F = \{f \in E, f(0) = 0\}$.

Exercice 14. *

Soit $E = C([0,1], \mathbb{R})$, N une norme sur E, et $A = \{ f \in E \mid f(0) = 0 \}$.

- a) Montrer que A est soit fermé soit dense dans (E, N)
- b) Trouver un exemple de norme N_1 tel que A soit fermé dans (E, N_1) et un exemple de norme N_2 tel que A soit dense dans (E, N_2) .

Exercice 15.

Soit E le \mathbb{R} -espace vectoriel $\mathcal{C}^0([0,1],\mathbb{R})$, muni de la norme N_{∞} habituelle.

- a) Montrer que l'ensemble $A = \{ f \in E, \forall x \in [0,1], f(x) \neq 0 \}$ est un ouvert de E pour N_{∞} .
- b) Montrer que l'ensemble des points adhérents à A pour N_{∞} est constitué des fonctions continues sur [0,1], positives sur [0,1] ou négatives sur [0,1].

Exercice 16.

Montrer que si K est une partie compacte non vide de \mathbb{R} , alors K admet un plus grand et un plus petit élément.

Exercice 17.

Pour $\mathbb{R}[X]$ muni de la norme N_{∞} , définie pour $P = \sum_{k=0}^{n} a_k X^k$ par $N_{\infty}(P) = \sup_{0 \le k \le n} |a_k|$, montrer que la boule unitée fermée $B_F(0,1)$ n'est pas compacte.

Exercice 18.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $(K_n)_n$ une suite de compacts non vides décroissante pour l'inclusion.

- a) Montrer que $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$
- b) On suppose de plus que $\delta(K_n) = \sup_{(x,y) \in K_n^2} ||x-y||$ tend vers 0 quand $n \to +\infty$. Montrer que $\bigcap_{n \in \mathbb{N}}$ est un singleton.

Exercice 19. *

Soit $E = \mathcal{C}([0,1],\mathbb{R})$. On pose

$$U = \{ f \in E : f(1) > 0 \}$$
 et $F = \left\{ f \in E : \int_0^{1/2} f(t) dt \le 0 \right\}$

- a) Est-ce que U est un ouvert de $(E, \|\cdot\|_{\infty})$? De $(E, \|\cdot\|_{1})$?
- **b)** Est-ce que F est un fermé de $(E, \|\cdot\|_{\infty})$? De $(E, \|\cdot\|_{1})$?

Exercice 20. *

Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé et $(u_n)_n$ une suite de E. On note V l'ensemble des valeurs d'adhérence de $(u_n)_n$

- a) Démontrer que $V = \bigcap_{n \in \mathbb{N}} \overline{\{u_p : p \ge n\}}$
- b) En déduire que V est fermé.

Exercice 21.

Soient E un espace vectoriel normé et m un entier ≥ 1 . On note \mathcal{L} la partie de E^m constituée des familles libres (x_1, \ldots, x_m) de vecteurs de E.

Le but de cet exercice est de montrer que \mathcal{L} est un ouvert de E^m .

- a) Traiter le cas où E est de dimension finie, à l'aide d'une base de E.
- b) Traiter le cas général.

Exercice 22. *

On note $E = \mathcal{C}([0,1], \mathbb{R})$ et pour $\varphi \in E, N_{\varphi} : E \to \mathbb{R}$ l'application définie par

$$\forall f \in E, \quad N_{\varphi}(f) = ||f\varphi||_{\infty}.$$

- a) Montrer que N_{φ} est une norme sur E si, et seulement si, $(\varphi^{-1}(\{0\})) = \emptyset$.
- **b)** Montrer que N_{φ} et $\|\cdot\|_{\infty}$ sont des normes sur E équivalentes si, et seulement si $\varphi^{-1}(\{0\}) = \emptyset$.

Exercice 23. *

Soient E, F, G trois espaces vectoriels normés, A un ouvert de $E \times F, B$ un ouvert de $F \times G$. On définit

$$B \circ A = \{(x,y) \in E \times G \mid \exists y \in F, (x,y) \in A, (y,z) \in B\}$$

Montrer que $B \circ A$ est un ouvert de $E \times G$.

Exercice 24. (ccinp)

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien réel, dont on note $\| \cdot \|$ la norme associée. On définit deux type de convergences pour $(x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$:

- La convergence forte vers $x \in E$ lorsque $||x_n x|| \to 0$
- La convergence faible vers $x \in E$ lorsque pour tout $y \in E, \langle x_n x, y \rangle \to 0$
- a) Montrer l'unicité de la limite pour la convergence faible.
- b) Montrer que la convergence forte implique la convergence faible.
- c) Montrer que (x_n) converge fortement vers x si, et seulement si (x_n) converge faiblement vers x et $||x_n|| \to ||x||$.
- d) Montrer qu'en dimension finie, les deux types de convergence sont équivalentes.

Exercice 25. ** (centrale)

Soit E l'ensemble des fonctions f de classe C^2 telles que f(0) = f'(0) = 0. Pour $f \in E$, on pose :

$$N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)|, \quad N(f) = \sup_{x \in [0,1]} |f(x) + f''(x)|, \quad N_{1}(f) = \sup_{x \in [0,1]} |f''(x)| + \sup_{x \in [0,1]} |f(x)|$$

- a) Montrer que N_{∞} , N et N_1 sont des normes sur E.
- **b)** Montrer que N_{∞} n'est équivalente ni à N_1 , ni à N.
- c) Montrer que N et N_1 sont équivalentes (introduire l'équation différentielle y'' + y = g)