Proof theory for modal and non-classical logics (a biased introduction)

Proof theory for intuitionistic modal logics

Marianna Girlando

ILLC, Universtiy of Amsterdam

MoL project course June 2023

Outline

Intuitionistic modal logics

Nested-style sequents

Labelled sequents

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$ k1 $\Box (A \supset B) \supset (\Box A \supset \Box B)$

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

 $\mathsf{k1} \quad \Box(\mathsf{A}\supset\mathsf{B})\supset(\Box\mathsf{A}\supset\Box\mathsf{B})$

 $k2 \quad \Box(A\supset B)\supset (\diamondsuit A\supset \diamondsuit B)$

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

k1 $\Box(A\supset B)\supset(\Box A\supset \Box B)$

 $k2 \quad \Box(A\supset B)\supset (\diamondsuit A\supset \diamondsuit B)$

CK

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

$$k1 \quad \Box (A \supset B) \supset (\Box A \supset \Box B)$$

$$k2 \quad \Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

$$d \quad \Box A \supset \Diamond A \qquad \Box A \supset \Diamond A$$

$$t \quad \Box A \supset A \qquad A \supset \Diamond A$$

$$t \quad \Box A \supset A \qquad A \supset \Diamond A$$

$$d \quad A \supset \Box \Diamond A \qquad \Diamond \Box A \supset A$$

$$d \quad \Box A \supset \Box \Box A \qquad \Diamond \Diamond A \supset \Box A$$

$$d \quad \Box A \supset \Box \Box A \qquad \Diamond \Diamond A \supset \Box A$$

$$d \quad \Box A \supset \Box \Box A \qquad \Diamond \Diamond A \supset \Box A$$

$$d \quad \Box A \supset \Box \Box A \qquad \Diamond \Diamond A \supset \Box A$$

$$d \quad \Box A \supset \Box \Box A \qquad \Diamond \Box A \supset \Box A$$

$$\mathcal{L} := p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

ecc if A is provable, so is $\Box A$

k1 $\Box (A \supset B) \supset (\Box A \supset \Box B)$

k2 $\Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$

d $\Box A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

b $A \supset \Box \Diamond A \land \Diamond \Box A \supset A$

4 $\Box A \supset \Box \Box A \land \Diamond \Diamond A \supset \Diamond A$

5 $\Diamond A \supset \Box \Diamond A \land \Diamond \Box A \supset \Box A$

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is
$$\square A$$

k1 $\square (A \supset B) \supset (\square A \supset \square B)$
k2 $\square (A \supset B) \supset (\diamondsuit A \supset \diamondsuit B)$

d
$$\Box A \supset \Diamond A$$

t $\Box A \supset A$ $\land A \supset \Diamond A$
b $A \supset \Box \Diamond A$ $\land \Diamond \Box A \supset A$
4 $\Box A \supset \Box \Box A$ $\land \Diamond \Diamond A \supset \Diamond A$
5 $\Diamond A \supset \Box \Diamond A$ $\land \Diamond \Box A \supset \Box A$

Constructive modal logics in the literature

► Type systems for constructive modal logics [Bierman, de Paiva, 2000]

Constructive modal logics in the literature

- ► Type systems for constructive modal logics [Bierman, de Paiva, 2000]
- Cut-free Gentzen-style sequent calculus for CK (and for some extensions) [Bierman, de Paiva, 2000], [Kuznets, Marin, Straßburger, 2017]

Rules of G3i, plus

$$k_{\square} \frac{C_1, \dots, C_n \Rightarrow A}{\square C_1, \dots, \square C_n, \Gamma \Rightarrow \square A} \quad k_{\lozenge} \frac{C_1, \dots, C_n, A \Rightarrow B}{\square C_1, \dots, \square C_n, \lozenge A, \Gamma \Rightarrow \lozenge B}$$

Constructive modal logics in the literature

- ► Type systems for constructive modal logics [Bierman, de Paiva, 2000]
- Cut-free Gentzen-style sequent calculus for CK (and for some extensions) [Bierman, de Paiva, 2000], [Kuznets, Marin, Straßburger, 2017]

Rules of G3i, plus

$$k_{\square} \frac{C_1, \dots, C_n \Rightarrow A}{\square C_1, \dots, \square C_n, \Gamma \Rightarrow \square A} \quad k_{\lozenge} \frac{C_1, \dots, C_n, A \Rightarrow B}{\square C_1, \dots, \square C_n, \lozenge A, \Gamma \Rightarrow \lozenge B}$$

Cut-free nested sequents for CK (and for some extensions)
 [Arisaka, Das, Straßburger, 2015]

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

$$\mathcal{L} := p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$
nec if A is provable, so is $\Box A$

$$k1 \quad \Box (A \supset B) \supset (\Box A \supset \Box B)$$

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

$$\mathsf{k1} \quad \Box(\mathsf{A}\supset\mathsf{B})\supset(\Box\mathsf{A}\supset\Box\mathsf{B})$$

$$\mathsf{k2} \quad \Box(\mathsf{A}\supset\mathsf{B})\supset(\diamondsuit\mathsf{A}\supset\diamondsuit\mathsf{B})$$

 $\Diamond T \supset T$

k5

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$
nec if A is provable, so is $\Box A$

$$k1 \quad \Box (A \supset B) \supset (\Box A \supset \Box B)$$

$$k2 \quad \Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

$$k3 \quad \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B)$$

$$k4 \quad (\Diamond A \supset \Box B) \supset \Box (A \supset B)$$

ΙK

$$\mathcal{L} := p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

k1 $\Box (A \supset B) \supset (\Box A \supset \Box B)$

k2 $\Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$

k3 $\Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B)$

k4 $(\Diamond A \supset \Box B) \supset \Box (A \supset B)$

k5 $\Diamond \bot \supset \bot$

d $\Box A \supset \Diamond A \qquad \Box A \supset \Diamond A$

t $\Box A \supset A \qquad A \supset \Diamond A$

t $\Box A \supset A \qquad A \supset \Diamond A$

d $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

t $\Box A \supset \Box A \qquad \Diamond A \supset \Diamond A$

$$\mathcal{L} ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

k1 $\Box (A \supset B) \supset (\Box A \supset \Box B)$

k2 $\Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$

k3 $\Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B)$

k4 $(\Diamond A \supset \Box B) \supset \Box (A \supset B)$

k5 $\Diamond \bot \supset \bot$

d $\Box A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

d $\Box A \supset \Box A \land \Diamond A \supset A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset \Diamond A$

t $\Box A \supset A \land A \supset A \supset A$

t $\Box A \supset A \land A \supset A \supset A$

t $\Box A \supset A \supset A \land A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A$

t $\Box A \supset A \supset A \supset A \supset A$

$$\mathcal{L} ::= \rho \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A \qquad \neg A \equiv A \supset \bot$$

nec if A is provable, so is $\Box A$

$$k1 \quad \Box (A \supset B) \supset (\Box A \supset \Box B) \qquad \qquad |S4 \qquad \qquad |S5 \rangle$$

$$k2 \quad \Box (A \supset B) \supset (\Diamond A \supset \Diamond B) \qquad |T \qquad |TB \rangle$$

$$k3 \quad \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B) \qquad |D4 \rangle \qquad |D45 \rangle$$

$$k4 \quad (\Diamond A \supset \Box B) \supset \Box (A \supset B) \qquad |D4 \rangle \qquad |D5 \rangle$$

$$k5 \quad \Diamond \bot \supset \bot \qquad |D \rangle \qquad |DB \rangle$$

$$d \quad \Box A \supset \Diamond A \qquad A \quad A \supset \Diamond A \qquad |K4 \rangle \qquad |K45 \rangle \qquad |K85 \rangle$$

$$t \quad \Box A \supset A \quad A \quad A \supset \Diamond A \qquad |K4 \rangle \qquad |K5 \rangle \qquad |K6 \rangle \qquad |K8 \rangle \qquad$$

$$\mathcal{L} := p \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A \mid \Diamond A$$
nec if A is provable, so is $\Box A$

$$k1 \quad \Box (A \supset B) \supset (\Box A \supset \Box B)$$

$$k2 \quad \Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

$$k3 \quad \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B)$$

$$k4 \quad (\Diamond A \supset \Box B) \supset \Box (A \supset B)$$

$$k5 \quad \Diamond \bot \supset \bot$$

$$d \quad \Box A \supset \Diamond A$$

$$t \quad \Box A \supset A \quad \land \quad A \supset \Diamond A$$

$$t \quad \Box A \supset A \quad \land \quad A \supset \Diamond A$$

$$d \quad \Box A \supset \Box A \quad \land \quad \Diamond \Box A \supset A$$

$$d \quad \Box A \supset \Box A \quad \land \quad \Diamond \Box A \supset A$$

$$d \quad \Box A \supset \Box A \quad \land \quad \Diamond \Box A \supset A$$

$$d \quad \Box A \supset \Box A \quad \land \quad \Diamond \Box A \supset A$$

$$d \quad \Box A \supset \Box A \quad \land \quad \Diamond \Box A \supset \Box A$$

 $\neg A \equiv A \supset \bot$

Why? [Simpson, 1994]

Why? [Simpson, 1994]

Requirements for an intuitionistic modal logic (IML) [Sec. 3.2]:

- 1. IML is conservative over IPL.
- 2. IML contains all substitution instances of theorems of IPL and is closed under modus ponens.
- 3. The addition of the schema $A \vee \neg A$ to IML yields a standard classical modal logic.
- If A ∨ B is a theorem of IML then either A is a theorem of IML or B is.
- 5. \square and \diamondsuit are independent in IML.
- There is an intuitionistically comprehensible explanation of the meaning of the modalities, relative to which IML is sound and complete.

Why? [Simpson, 1994]

Requirements for an intuitionistic modal logic (IML) [Sec. 3.2]:

- 1. IML is conservative over IPL.
- 2. IML contains all substitution instances of theorems of IPL and is closed under modus ponens.
- 3. The addition of the schema $A \vee \neg A$ to IML yields a standard classical modal logic.
- If A ∨ B is a theorem of IML then either A is a theorem of IML or B is.
- 5. \square and \diamondsuit are independent in IML.
- There is an intuitionistically comprehensible explanation of the meaning of the modalities, relative to which IML is sound and complete.

$$IML \vdash A \iff IFOL \vdash ST(A)(x)$$

Some observations

- The <-free fragment of CK and IK are different</p>
 - ★ ¬¬□¬ $p \rightarrow \Box \neg p$ (inspired from the double negation translation!)
 - \star (¬□⊥ → □⊥) → □⊥ (attributed to Carsten Grefe)

```
https://prooftheory.blog/2022/08/19/
brouwer-meets-kripke-constructivising-modal-logic/
#paperkey_43
```

Some observations

- ► The ◊-free fragment of CK and IK are different
 - ★ ¬¬□¬ $p \rightarrow \Box \neg p$ (inspired from the double negation translation!)
 - \star (¬□⊥ → □⊥) → □⊥ (attributed to Carsten Grefe)

```
https://prooftheory.blog/2022/08/19/
brouwer-meets-kripke-constructivising-modal-logic/
#paperkey_43
```

There are no known Gentzen-style calculi for IK

- ▶ [Fisher Servi, 1984], soundness and completeness proof
- ▶ [Simpson, 1994]

$$\mathcal{M} = \langle W, R, \leq, v \rangle$$

- ▶ [Fisher Servi, 1984], soundness and completeness proof
- ▶ [Simpson, 1994]

$$\mathcal{M} = \langle W, R, \leq, v \rangle$$

- ▶ [Fisher Servi, 1984], soundness and completeness proof
- ▶ [Simpson, 1994]

- ▶ [Fisher Servi, 1984], soundness and completeness proof
- ▶ [Simpson, 1994]

- ▶ [Fisher Servi, 1984], soundness and completeness proof
- ▶ [Simpson, 1994]

 \bowtie Monotonicity if $x \leq y$ and $x \Vdash A$, then $y \Vdash A$

Outline

Intuitionistic modal logics

Nested-style sequents

Labelled sequents

Polarised formulas: A* and A*

$$A, B \Rightarrow C, D \quad \rightsquigarrow \quad A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Polarised formulas: A* and A*

$$A, B \Rightarrow C, D \quad \rightsquigarrow \quad A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Single-conclusion nested sequents

Polarised formulas: A and A and A

$$A, B \Rightarrow C, D \rightarrow A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Single-conclusion nested sequents for $n, k \ge 0$

$$\Gamma ::= \Lambda, \Pi \qquad \Lambda ::= A_1^{\bullet}, \dots, A_n^{\bullet}, [\Lambda_1], \dots, [\Lambda_k] \qquad \Pi ::= A^{\circ} \mid [\Gamma]$$

Polarised formulas: A and A and A

$$A, B \Rightarrow C, D \rightarrow A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Single-conclusion nested sequents for $n, k \ge 0$

$$\Gamma ::= \Lambda, \Pi$$
 $\Lambda ::= A_1^{\bullet}, \dots, A_n^{\bullet}, [\Lambda_1], \dots, [\Lambda_k]$ $\Pi ::= A^{\circ} \mid [\Gamma]$

$$fm(\Lambda, \Pi) = fm(\Lambda) \supset fm(\Pi)$$

$$fm(\emptyset) = \bot$$

$$fm(A_1^{\bullet}, \dots, A_n^{\bullet}, [\Lambda_1], \dots, [\Lambda_k]) = A_1 \wedge \dots \wedge A_n \wedge \diamondsuit[\Lambda_1] \wedge \dots \wedge \diamondsuit[\Lambda_k]$$

$$fm(A^{\circ}) = A$$

$$fm([\Gamma]) = \Box fm(\Gamma)$$

Single-conclusion nested sequents [Straßburger, 2013]

Polarised formulas: A and A and A

$$A, B \Rightarrow C, D \rightarrow A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Single-conclusion nested sequents for $n, k \ge 0$

$$\Gamma ::= \Lambda, \Pi$$
 $\Lambda ::= A_1^{\bullet}, \dots, A_n^{\bullet}, [\Lambda_1], \dots, [\Lambda_k]$ $\Pi ::= A^{\circ} \mid [\Gamma]$

$$fm(\Lambda, \Pi) = fm(\Lambda) \supset fm(\Pi)$$

$$fm(\emptyset) = \bot$$

$$fm(A_1^{\bullet}, \dots, A_n^{\bullet}, [\Lambda_1], \dots, [\Lambda_k]) = A_1 \wedge \dots \wedge A_n \wedge \diamondsuit[\Lambda_1] \wedge \dots \wedge \diamondsuit[\Lambda_k]$$

$$fm(A^{\circ}) = A$$

$$fm([\Gamma]) = \Box fm(\Gamma)$$

 Γ {} context; Γ *{} context with the unique output formula removed

Single-conclusion nested rules NIK_s (and extensions)

Single-conclusion nested rules NIK_s (and extensions)

$$\begin{array}{c} \bot^{\bullet} \overline{\Gamma\{\bot^{\bullet}\}} \quad \mathrm{id} \, \overline{\Gamma\{A^{\bullet}, A^{\circ}\}} \quad \wedge^{\bullet} \frac{\Gamma\{A^{\bullet}, B^{\bullet}\}}{\Gamma\{A \wedge B^{\bullet}\}} \quad \wedge^{\circ} \frac{\Gamma\{A^{\circ}\}}{\Gamma\{A \wedge B^{\circ}\}} \quad \vee^{\bullet} \frac{\Gamma\{A^{\bullet}\}}{\Gamma\{A \vee B^{\bullet}\}} \quad \vee^{\bullet} \frac{\Gamma\{B^{\bullet}\}}{\Gamma\{A \vee B^{\bullet}\}} \\ \\ V_{st}^{\circ} \frac{\Gamma\{A^{\circ}\}}{\Gamma\{A \vee B^{\circ}\}} \quad V_{s2}^{\circ} \frac{\Gamma\{B^{\circ}\}}{\Gamma\{A \vee B^{\circ}\}} \quad \supset_{s}^{\bullet} \frac{\Gamma^{*}\{A \supset B^{\bullet}, A^{\circ}\}}{\Gamma\{A \supset B^{\bullet}\}} \quad \Gamma\{B^{\bullet}\} \\ \\ \overline{\Gamma\{\Box A^{\bullet}, [A^{\bullet}, \Delta]\}} \quad \overline{\Gamma\{A^{\bullet}, A^{\circ}\}} \quad \overline{\Gamma\{A^{\circ}\}} \quad & \\ \overline{\Gamma\{\Box A^{\bullet}, [A^{\bullet}, \Delta]\}} \quad \overline{\Gamma\{A^{\circ}\}} \quad & \\ \overline{\Gamma\{\Box A^{\bullet}\}} \quad \overline{\Gamma\{A^{\circ}\}} \quad & \\ \overline{\Gamma\{A^{\bullet}, A^{\circ}\}} \quad & \\ \overline{\Gamma\{A^{\bullet}, A^{\bullet}\}} \quad & \\ \overline{\Gamma$$

Main results

[Straßburger, 2013]

$$NIK_s + X^{\bullet} + X^{\circ}$$
, for $X \subseteq \{D, T, B, 4, 5\}$

Soundness

Whenever a sequent Γ is provable in NIK_s + X $^{\bullet}$ + X $^{\circ}$, then $fm(\Gamma)$ is X-valid.

Cut-admissibility for NIK_s + X^{\bullet} + X°

$$w \frac{\Gamma\{\emptyset\}}{\Gamma\{\Lambda\}} \qquad c \frac{\Gamma\{A^{\bullet}, A^{\bullet}\}}{\Gamma\{A^{\bullet}\}} \qquad cut \frac{\Gamma^*\{A^{\bullet}\}}{\Gamma\{\emptyset\}}$$

Completeness

Let $X \subseteq \{D,T,B,4,5\}$ be 45-closed. Then every theorem of the logic IK+X is provable in $NIK_s+X^{\bullet}+X^{\circ}$.

Main results

Straßburger, 2013]

$$NIK_s + X^{\bullet} + X^{\circ}$$
, for $X \subseteq \{D, T, B, 4, 5\}$

Soundness

Whenever a sequent Γ is provable in NIK_s + X $^{\bullet}$ + X $^{\circ}$, then $fm(\Gamma)$ is X-valid.

Cut-admissibility for NIK_s + X^{\bullet} + X°

$$w \frac{\Gamma\{\emptyset\}}{\Gamma\{\Lambda\}} \qquad c \frac{\Gamma\{A^{\bullet}, A^{\bullet}\}}{\Gamma\{A^{\bullet}\}} \qquad cut \frac{\Gamma^*\{A^{\bullet}\} \quad \Gamma\{A^{\bullet}\}}{\Gamma\{\emptyset\}}$$

Completeness

Let $X \subseteq \{D, T, B, 4, 5\}$ be 45-closed. Then every theorem of the logic IK + X is provable in $NIK_s + X^{\bullet} + X^{\circ}$.

[Marin, Straßburger, 2014]: full modularity by adding rules

Multi-conclusion nested sequents [Kuznets, Straßburger, 2019]

Polarised formulas: A* and A*

$$A, B \Rightarrow C, D \quad \rightsquigarrow \quad A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Multi-conclusion nested sequents [Kuznets, Straßburger, 2019]

Polarised formulas: A* and A*

$$A, B \Rightarrow C, D \rightarrow A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Multi-conclusion nested sequents

$$B_1^{\bullet}, \ldots, B_h^{\bullet}, C_1^{\circ}, \ldots, C_k^{\circ}, [\Gamma_1], \ldots, [\Gamma_m]$$

where $B_1, \ldots, B_h, C_1, \ldots, C_k$ are formulas and $\Gamma_1, \ldots, \Gamma_m$ are multi-conclusion nested sequents.

Multi-conclusion nested sequents [Kuznets, Straßburger, 2019]

Polarised formulas: A* and A*

$$A, B \Rightarrow C, D \quad \rightsquigarrow \quad A^{\bullet}, B^{\bullet}, C^{\circ}, D^{\circ}$$

Multi-conclusion nested sequents

$$B_1^{\bullet}, \ldots, B_h^{\bullet}, C_1^{\circ}, \ldots, C_k^{\circ}, [\Gamma_1], \ldots, [\Gamma_m]$$

where $B_1, \ldots, B_h, C_1, \ldots, C_k$ are formulas and $\Gamma_1, \ldots, \Gamma_m$ are multi-conclusion nested sequents.

 $\Gamma\{\}$ context; $\Gamma^*\{\}$ context with **all** output formula removed

Multi-conclusion rules NIK_m (and extensions)

$$\stackrel{\bullet}{\Gamma\{\bot^{\bullet}\}} \quad \text{id} \frac{}{\Gamma\{a^{\bullet}, a^{\circ}\}} \quad \stackrel{\bullet}{\wedge^{\bullet}} \frac{\Gamma\{A^{\bullet}, B^{\bullet}\}}{\Gamma\{A \wedge B^{\bullet}\}} \quad \stackrel{\wedge}{\wedge^{\bullet}} \frac{\Gamma\{A^{\circ}\}}{\Gamma\{A \wedge B^{\circ}\}} \quad \stackrel{\vee}{\vee^{\bullet}} \frac{\Gamma\{A^{\bullet}\}}{\Gamma\{A \vee B^{\bullet}\}} \quad \stackrel{\bullet}{\wedge^{\bullet}} \frac{\Gamma\{B^{\bullet}\}}{\Gamma\{A \vee B^{\bullet}\}} \quad \stackrel{\circ}{\wedge^{\circ}} \frac{\Gamma\{A^{\bullet}, B^{\circ}\}}{\Gamma\{A \vee B^{\circ}\}} \\
\stackrel{\circ}{\longrightarrow} \frac{\Gamma\{\Box A^{\bullet}, [A^{\bullet}, \Delta]\}}{\Gamma\{\Box A^{\bullet}, [\Delta]\}} \quad \stackrel{\circ}{\longrightarrow} \frac{\Gamma^{*}\{[A^{\circ}]\}}{\Gamma\{\Box A^{\circ}\}} \quad \stackrel{\diamond}{\wedge^{\bullet}} \frac{\Gamma\{[A^{\bullet}]\}}{\Gamma\{\Diamond A^{\bullet}\}} \quad \stackrel{\diamond}{\wedge^{\bullet}} \frac{\Gamma\{[A^{\circ}, \Delta]\}}{\Gamma\{\Diamond A^{\circ}, [\Delta]\}}$$

Multi-conclusion rules NIK_m (and extensions)

Main results: Soundness

- For a sequent Γ , let $tr(\Gamma)$ denote its sequent tree.
- For a sequent Γ and a birelational model $\mathcal{M} = \langle W, \leq, R, V \rangle$, define a \mathcal{M} -map $f: tr(\Gamma) \to W$ such that, whenever δ is a children of γ in $tr(\Gamma)$, then $f(\gamma)Rf(\delta)$.
- \blacksquare A sequent Γ is satisfied by a \mathcal{M} -map f iff

$$\mathcal{M}, f(\gamma) \models A \text{ for all } A^{\bullet} \in \gamma \in tr(\Gamma) \Longrightarrow \mathcal{M}, f(\delta) \models B \text{ for some } B^{\circ} \in \delta \in tr(\Gamma)$$

For $X \subseteq \{D, T, B, 4, 5\}$, a sequent is X-valid iff it is satisfiable by all \mathcal{M} -maps for all X-models \mathcal{M} .

Main results: Soundness

- For a sequent Γ , let $tr(\Gamma)$ denote its sequent tree.
- For a sequent Γ and a birelational model $\mathcal{M} = \langle W, \leq, R, V \rangle$, define a \mathcal{M} -map $f : tr(\Gamma) \to W$ such that, whenever δ is a children of γ in $tr(\Gamma)$, then $f(\gamma)Rf(\delta)$.
- \blacksquare A sequent Γ is satisfied by a \mathcal{M} -map f iff

$$\mathcal{M}, f(\gamma) \models A \text{ for all } A^{\bullet} \in \gamma \in tr(\Gamma) \Longrightarrow \mathcal{M}, f(\delta) \models B \text{ for some } B^{\circ} \in \delta \in tr(\Gamma)$$

For $X \subseteq \{D, T, B, 4, 5\}$, a sequent is X-valid iff it is satisfiable by all \mathcal{M} -maps for all X-models \mathcal{M} .

$$NIK_m + X^{\bullet} + X^{\circ}$$
, for $X \subseteq \{D, T, B, 4, 5\}$

Soundness

Whenever a sequent Γ is provable in NIK_m + X $^{\bullet}$ + X $^{\circ}$, then Γ is X-valid.

Completeness

Completeness

$$\operatorname{B}_m^\circ \frac{\Gamma^*\{A^\bullet,B^\circ\}}{\Gamma\{A\supset B^\circ\}} \qquad \operatorname{B}_m^\circ \frac{\Gamma^*\{\left[A^\circ\right]\}}{\Gamma\{\Box A^\circ\}} \qquad \diamond^\bullet \frac{\Gamma\{\left[A^\bullet\right]\}}{\Gamma\{\diamondsuit A^\bullet\}}$$

$$\begin{array}{l} \left[\Box s \rightarrow q^{\bullet}, \left[\ s^{\circ}\ \right], \left[\ r^{\bullet}\ \right]\ \right], \Box(\Box s \rightarrow q)^{\bullet} \\ \\ \left[\Box s \rightarrow q^{\bullet}, \Box s^{\circ}, \left[\ r^{\bullet}\ \right]\ \right], \Box(\Box s \rightarrow q)^{\bullet}, c^{\circ} \\ \\ \left[\Box s \rightarrow q^{\bullet}, \left[\ r^{\bullet}\ \right]\ \right], \Box(\Box s \rightarrow q)^{\bullet}, c^{\circ} \\ \\ \left[\Box s \rightarrow q^{\bullet}, \left[\ r^{\bullet}\ \right]\ \right], \Box(\Box s \rightarrow q)^{\bullet}, c^{\circ} \\ \\ \left[\left[c \ r^{\bullet}\ \right]\ \right], \Box(\Box s \rightarrow q)^{\bullet}, c^{\circ} \\ \\ \left[c \ r^{\bullet}\ \right], \Box(\Box s \rightarrow q)^{\bullet}, c^{\circ} \\ \\ \left[c \ c \ r^{\bullet}, \Box(\Box s \rightarrow q))^{\bullet}, c^{\circ} \\ \\ \\ \rightarrow_{m}^{\circ} \\ \hline \left(c \ c \ r \land \Box(\Box s \rightarrow q)) \rightarrow c\right)^{\circ} \\ \end{array}$$

Completeness

Completeness

Completeness

Completeness

Completeness

Let $X \subseteq \{D, T, B, 4, 5\}$ be 45-closed. Then if Γ is X-valid, then Γ is provable in $NIK_m + X^{\bullet} + X^{\circ}$.

 $\exists_{m}^{\infty} \frac{\Gamma^{*}\{A^{\bullet}, B^{\circ}\}}{\Gamma\{A \supset R^{\circ}\}} \qquad \exists_{m}^{\infty} \frac{\Gamma^{*}\{[A^{\circ}]\}}{\Gamma\{\Box A^{\circ}\}} \qquad \diamond^{\bullet} \frac{\Gamma\{[A^{\bullet}]\}}{\Gamma\{\Diamond A^{\bullet}\}}$

Outline

Intuitionistic modal logics

Nested-style sequents

Labelled sequents

Labelled calculi for IK (and extensions)

[Marin, Morales and Straßburger, 2021]

- Relational atoms and labelled formulas
 - $\triangleright x \le y \iff$ "y is accessible from x in the preorder"
- Some labelled rules

Labelled calculi for IK (and extensions)

[Marin, Morales and Straßburger, 2021]

- Relational atoms and labelled formulas
 - $\triangleright x \le y \iff$ "y is accessible from x in the preorder"
- Some labelled rules

$$\begin{array}{c} & \underset{|}{\operatorname{init}} \overline{x \leq y, \mathcal{R}, x : p, \Gamma \Rightarrow \Delta, y : p} \\ & \underset{|}{\square_{L}} \frac{x \leq y, xRy, \mathcal{R}, x : \square A, z : A, \Gamma \Rightarrow \Delta}{x \leq y, xRy, \mathcal{R}, x : \square A, \Gamma \Rightarrow \Delta} \quad \underset{|}{\square_{R}} \frac{x \leq y, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta, z : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \square A} \\ & \underset{|}{\operatorname{F1}} \frac{x'Ru, y \leq u, x \leq x', xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{x \leq x', xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \text{ (u!)} \\ & \underset{|}{\operatorname{F2}} \frac{x \leq u, uRy', xRy, y \leq y', \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, y \leq y', \mathcal{R}, \Gamma \Rightarrow \Delta} \text{ (u!)} \\ \end{array}$$