Decision Trees. Bagging. Random Forest

Evgeny Burnaev

Skoltech, Moscow, Russia

Outline

Decision Trees

2 Bagging. Random Forest

Decision Trees

Bagging. Random Fores

A decision tree consists of

- Nodes
 - Test for the value of a certain attribute
- Edges
 - Correspond to the outcome of a test
 - Connect to the next node of leaf
- Leaves
 - Terminal nodes that predict the outcome

Input: age, gender, occupation,... ⇒ Does the person like computer games?

Example: weather prediction

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	?

- Typical decision tree learning algorithms
 - Top-Down Induction of Decision Trees
- Learn trees in a Top-Down fashion
 - Divide the problem in subproblems
 - Solve each subproblem
- Basic Divide-And-Conquer algorithm
 - Select a test for root node
 Create branch for each possible outcome of the test
 - Split instances into subsets
 One for each branch extending from the node
 - Repeat recursively for each branch, using only instances that reach the branch
 - Stop recursion for a branch if all its instances have the same class

Skoltech

ID3 Algorithm

- Function ID3
 - Input: example set S_m
 - **Output**: Decision Tree DT
- ullet If all examples in S_m belong to the same class c
 - Return a new leaf and label it with c
- Else
 - 1. Select an attribute x_j according to some heuristic approach
 - 2. Generate a new node in DT with x_j as test
 - 3. For each possible value e_r of x_j
 - a) Let $S_r = \text{all examples in } S_m \text{ with } x_j = e_r$
 - b) Use ID3 to construct a decision tree DT_r for examples in S_r
 - c) Generate an edge that connects DT and DT_r

Skoltech

Example: DT for weather prediction

- also explains all of the training data
- will it generalize well to new data?

Binary Decision Tree

- Decision tree is often a binary tree DT
- Internal nodes $u \in DT$: predicates $\beta_u : X \to \{0, 1\}$
- Leafs $v \in DT$: predictions y
- Algorithm $h(\mathbf{x})$ starts at $u=u_0$
 - Compute $b = \beta_u(\mathbf{x})$
 - If b = 0, $u \leftarrow \text{LeftChild}(u)$
 - If b = 1, $u \leftarrow \text{RightChild}(u)$
 - If u is a leaf, return some y
- In practice for a real variable:

$$\beta_u(\mathbf{x}; j, t) = 1[x_i < t]$$

Burnaev, ML Skoltech

- ullet Input: training set $S_m = \big\{ (\mathbf{x}_i, y_i) \big\}_{i=1}^m$
 - Greedily split S_m into S_1 and S_2 :

$$S_1(j,t)=\{(\mathbf{x},y)\in S_m|x_j\leq t\},\qquad S_2(j,t)=\{(\mathbf{x},y)\in S_m|x_j>t\}$$
 optimizing a given loss: $Q(S_m,j,t)\to \min_{(j,t)}$

- ② Create internal node u corresponding to the predicate $1[x_j < t]$
- If a stopping criterion is satisfied for u, declare it a leaf, setting some $c_u \in Y$ as leaf prediction
- lacksquare If not, repeat 1–2 for $S_1(j,t)$ and $S_2(j,t)$
- ullet Output: a decision tree DT

Greedy tree learning for binary classification

With decision trees, overfitting is extra-easy!

Design choices for learning a decision tree classifier

- Type of predicate in internal nodes
- The loss function $Q(S_m, j, t)$
- The stopping criterion
- Hacks: missing values, pruning, etc.

CART, C4.5, ID3

Which attribute to select as the root?

Picture credit: https://dzone.com/refcardz/machine-learning-predictive

What is a good Attribute?

- We want to grow a simple tree
 - A good attribute split the data so that each successor node is as pure as possible, e.g. it contains mostly a singlel class
- We want a measure that prefers attributes with high degree of order:
 - Maximum order: all examples are of the same class
 - Minimum order: all classes are equally likely
- Entropy is a measure for (un)-orderliness

Entropy (binary classification)

- S is a set of examples
- p_{+} is the proportion of examples in positive class
- $p_- = 1 p_+$ is the proportion of examples in negative class
- Entropy

$$E(S) = -p_+ \cdot \log_2 p_+ - p_- \cdot \log_2 p_-$$

- Amount of un-orderliness in the class distribution of S
- p_i is the proportion of examples in S from the i-th class

$$E(S) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_K \log_2 p_K = -\sum_{k=1}^K p_k \log_2 p_k$$

Burnaev, ML

• Outlook = sunny: 3 examples yes, 2 examples no

$$E(Outlook = sunny) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(Outlook = overcast) = -1\log(1) - 0\log(0) = 0$$

• Outlook = rainy: 2 examples yes, 3 examples no

$$E(Outlook = rainy) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

Problem:

- Entropy can be applied only to a single (sub-)set of examples
- Quality of an entire split, corresponding to the attribute x_i ?

Solution:

 Average over all sets resulting from the split, weighted by their size

$$I(S,j) = \sum_{r} \frac{|S_r|}{|S|} \cdot E(S_r)$$

Example: average entropy for attribute Outlook

$$I(Outlook) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

- When an attribute x_i splits the set S into subsets S_r
 - we compute the average entropy
 - and compare the sum to the entropy of the original set S
- Information Gain for Attribute x_i

$$Q(S,j) = E(S) - I(S,j) = E(S) - \sum_{r} \frac{|S_r|}{|S|} \cdot E(S_r)$$

- We select an attribute maximizing the difference, i.e. attribute that reduces the un-orderliness most
- Maximizing IG ⇔ minimizing average entropy
- Gain(S, Humidity) = 0.151; **Gain(S, Outlook)** = 0.246; Gain(S, Wind) = 0.048; Gain(S, Temperature) = 0.029

Burnaev, ML

Burnaev, ML Skottech

Formal definition: Loss function Q(S,j) for a binary tree

- S_t : the subset of S at step t
- ullet With the current split, let $S_l\subseteq S_t$ go left and $S_r\subseteq S_t$ go right
- Choose predicate to optimize

$$Q(S_t, j) = E(S_t) - \frac{|S_t|}{|S_t|} E(S_t) - \frac{|S_r|}{|S_t|} E(S_r) \to \max$$

- \bullet E(S): impurity criterion
- Generally

$$E(S) = \min_{c \in Y} \frac{1}{|S|} \sum_{(\mathbf{x}_i, y_i) \in S} L(y_i, c)$$

- Problematic: attributes with a large number of values
 - Extreme case: each example has its own value
 - E.g. ID; Day attribute in weather data
- Subsets are more likely to be pure if there is a large number of different attribute values
 - Information gain is biased towards choosing attributes with a large number of values
- Problems:
 - Overfitting
 - Data is fragmented into too many small sets

Entropy of split

$$I(Day) = \frac{1}{14} \left(E([0,1]) + E([0,1]) + \ldots + E([0,1]) \right) = 0$$

• Information gain is maximal for **Day** (0.940 bits)

Burnaev, ML Skoltech

- Intrinsic information of a split, done w.r.t.
- Entropy of distribution of instances into branches
- i.e. how much information do we need to tell which branch as instance belongs to

$$IntI(S,j) = -\sum_{r} \frac{|S_r|}{|S|} \log_2 \frac{|S_r|}{|S|}$$

- Empirical Observation: attributes with higher intrinsic information are less useful
- Intrinsic information of Day attribute

$$IntI(Day) = 14 \times \left(-\frac{1}{14} \cdot \log\left(\frac{1}{14}\right)\right) = 3.807$$

Burnaev, ML

- Modification of the information gain that reduces its bias towards multi-values attributes
- Takes number and size of branches into account when choosing an attribute
- Gain Ratio

$$GR(S,j) = \frac{Q(S,j)}{IntI(S,j)}$$

• Example: GR of Day attribute

$$GR(Day) = \frac{0.940}{3.807} = 0.246$$

- GR(Outlook) = 0.157; GR(Humidity) = 0.152; GR(Temperature) = 0.019; GR(Windy) = 0.049
- Day attribute would still win... ⇒ careful analysis!!!
- Anyway, GR is more reliable than IG!!!

Burnaev, ML Skoltech

Other information criteria

Regression:

Impurity

$$E(S) = \min_{c \in Y} \frac{1}{|S|} \sum_{(\mathbf{x}_i, y_i) \in S} (y_i - c)^2$$

Sum of squared residuals minimized by

$$c = \frac{1}{|S|} \sum_{(\mathbf{x}_i, y_i) \in S} y_i$$

- Impurity \equiv variance of the target
- Classification:
 - Let (share of y_i 's equal to k)

$$p_k = \frac{1}{|S|} \sum_{(\mathbf{x}_i, y_i) \in S} [y_i = k]$$

— Miss rate:

$$E(S) = \min_{c \in \mathbb{Y}} \frac{1}{|S|} \sum_{(\mathbf{x}: y_i) \in S} [y_i \neq c]$$

Impurity criterion is defined as

Minimizing miss rate E(S)

Algorithms in Production

- Permit numeric attributes
- Allow missing values
- Be robust in the presence of noise
- Be able to approximate arbitrary concept description
- Computationally efficient

As a result C4.5 has been developed!

Numeric attributes

- ullet Standard method: binary splits: E.g. temperature <20
- Unlike nominal attributes, there are many possible split points
- Selection of "best" split points computationally is more demanding
- Split points can be placed between values or directly at values
- Sort values before performing scan!

Binary vs. Multiway Splits

- Splitting (multi-way) on a nominal attribute exhausts all information in that attributed
 - Nominal attribute is tested (at most) once on any path in the tree
- Not so for binary splits on numeric attributes
 - Numeric attribute may be tested several times along a path in the tree
- Disadvantage: tree is hard to read
- Remedy:
 - Pre-discretize numeric attributed, or
 - Multi-way splits instead of binary ones

- If an attribute with a missing value needs to be tested:
 - split the instance into fractional instances (pieces)
 - one piece for each outgoing branch of the node
 - a piece going down a branch receives a weight proportional to the popularity of the branch
 - weights sum to 1
- Info gain or gain ratio work with fractional instances
 - use sums of weights instead of counts
- During classification split the instance in the same way
 - Merge probability distribution using weights of fractional instances

Burnaev, ML Skoltec

Overfitting and Pruning

- The smaller the complexity of a concept, usually the better its generalization ability is
- We need to try to keep the learned concepts simple
- Pre-pruning:
 - Stop growing a branch when information becomes unreliable
- Post-pruning
 - Grow a decision tree that correctly classifies all training data
 - Simplify it later by replacing some nodes with leafs
- Post-pruning is preferred in practice, pre-pruning can "stop early"

Burnaev, ML

Estimating Error Rates

- Prune only if it does not increase the estimated error
 - Error on the training data is NOT a useful estimator
- Reduced Error Pruning
 - Use hold-out set for pruning
- C4.5 method
 - Derive confidence interval from training data
 - Assume that the true error is on the upper bound of this confidence interval
- Optimize the accuracy of a decision tree on a separate pruning (validation) set. Prune as long as the error on the validation set does not increase

Stopping rules for decision tree learning

- Significantly impacts learning performance
- Multiple choices available:
 - Maximum tree depth
 - Minimum number of objects in leaf
 - Maximum number of leafs in tree
 - Stop if all objects fall into same leaf
 - Constrain quality improvement (stop when improvement gains drop below s%)
- Typically selected via exhaustive search and cross-validation

- Learn a large tree (effectively overfit the training set)
- ullet Detect overfitting via $K ext{-fold}$ cross-validation
- Optimize structure by removing least important nodes

Complexity of tree induction

- Assume
 - -d attributes
 - *m* training instances
 - tree depth $O(\log m)$
- Building a tree $O(dm \log(m))$
- Subtree replacement O(m)
- Subtree raising $O(m(\log(m))^2)$
- Total cost: $O(dm \log(m)) + O(m(\log(m))^2)$

Decision Trees

2 Bagging. Random Forest

Skoltech

Burnaev, ML

The bootstrapping procedure

- Input: a sample $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$
- Bootstrapping: generate new samples S_m^* of (\mathbf{x}_i, y_i) drawn from S_m uniformly at random with replacement (replicated (\mathbf{x}_i, y_i) possible!)
- Ensemble learning idea:
 - $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Generate N bootstrapped samples \\ S_m^1, \ldots, S_m^N \end{tabular}$
 - **2** Learn N hypotheses h_1, \ldots, h_N
 - ① Average predictions to obtain $h(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} h_i(\mathbf{x})$
 - Profit!

Picture credit: http://www.drbunsen.org/bootstrap-in-picture

- Input: a sample $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$
- Weak learners via bootstrapping $h_i(\mathbf{x}) = h_i(\mathbf{x}|S_m^i)$
- Ensemble average

$$h(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} h_i(\mathbf{x}) =$$
$$= \frac{1}{N} \sum_{i=1}^{N} h_i(\mathbf{x}|S_m^i)$$

The Random Forest algorithm

- Bagging over (weak) decision trees
- Reduce error via averaging over instances and features
- Input: a sample $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^d, y_i \in Y$
- The algorithm iterates for i = 1, ..., N:
 - lacksquare Pick p random features out of d
 - **②** Bootstrap a sample $S_m^i = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^p, y_i \in Y$
 - **3** Learn a decision tree $h_i(\mathbf{x})$ using bootstrapped S_m^i
 - **①** Stop when leafs in h_i contain less that n_{\min} instances

$$\begin{aligned} \mathbf{x}_i &\in \{\mathbf{A}, \mathbf{B}, \mathbf{C}\} \\ S_m &= \{(\mathbf{x}_i, y_i)\}_{i=1}^5 \end{aligned} \qquad \underbrace{\text{Tree 1}}_{\substack{[1,1,2,4,5]\\ [k,3]}} \qquad \underbrace{\text{Tree 2}}_{\substack{[1,1,2,4,5]\\ [k,6]}} \qquad \underbrace{\text{Tree 3}}_{\substack{[2,1,3,4,5]\\ [k,6]}} \qquad \underbrace{\text{Tree 3}}_{\substack{[2,1,3,4,5]\\ [k,6]}} \qquad \underbrace{\text{Tree N}}_{\substack{[1,1,3,3,4]\\ [k,6]}} \end{aligned}$$
 Bootstrap $S_m^i, i \in \{1,2,3,4\}$

Picture credit: http://www.thefactmachine.com/random-forests

