# Facial Emotion Recognition with Convolutional Neural Networks

Justin Littman Matthew Martin DS 4440

# Background

- Automatic Facial Emotion Recognition (FER)
  - Human Computer Interaction
  - Virtual Reality
  - Augmented Reality
  - Driver Assistant Systems
  - Entertainment
- Find more efficient and smooth connections between humans and machines



## Dataset

- FER2013 Dataset
  - 35887 sample images
  - Seven labels
    - 1. Anger
    - 2. Disgust
    - 3. Fear
    - 4. Happy
    - 5. Sad
    - 6. Surprise
    - 7. Neutral



## Past Results with FER2013

- Kaggle Competition
  - Challenges in Representation Learning: Facial Expression Recognition Challenge (2013)
  - Top accuracy ~ 0.71
- Github Paper
  - Used Sequential CNN and Xception inspired architectures
  - Accuracy ~ 0.66



# Difficulties

- FER has many challenges
  - Non-uniform nature of human face
  - Limitations due to
    - Lighting
    - Face orientation
    - Shadows
- Nature of facial expressions
  - Subtle movements
- Need accurate and robust models
  - Deep learning can help achieve this



# **Implementations**

- Visual Geometry Group (VGG)
- Residual Neural
   Network (ResNet)
- Self-created model



# VGG (2014)

- Developed by Oxford University's Visual Geometry Group (VGG)
- Created model for ImageNet competition
  - Placed second for classification
- Wanted to see how ConvNet depth affects accuracy
- Best performing models
  - VGG16
  - VGG19



#### Architecture

- VGG Block
  - Convolution Layer
  - Nonlinearity
  - Maximum Pooling
- Kernel Size
  - 3x3 used in each Convolution
- Pooling Size
  - o 2x2 with stride of 2 in each Pool
- Different implementations of VGC





# VGG Implementations

- Implemented VGG11 and VGG16
  - Tested batch sizes of 32, 64, and 128 for each
- Tested Dropout with VGG11
  - More Dropout
    - 50% dropout after every layer
  - Less Dropout
    - 50% dropout after every other layer



## Resnet (2015)

- Developed by Microsoft Research
- Placed first in ImageNet 2015 competition for classification
  - Achieved error of .357
- Introduced deep residual learning framework
  - Eases training of deep networks
- Combats increasing depth problem



#### Architecture

- Idea: Allow information to easily propagate through the network
- Residual Blocks
  - Convolution Layer
  - Batch Normalization
  - Nonlinearity
  - Skip Connection
- Kernel Size
  - Uses VGG's 3x3 design



# Resnet Implementation

- Implemented ResNet50, ResNet18, and ResNet10\*
  - Tested batch sizes of 32, 64, and 128 for each
  - Tested Adam and RMSProp optimizers for each
- ResNet10 was an attempt to simplify the larger architectures
  - Used half the blocks of ResNet18



#### Our Model Architecture

- Followed the VGG Block architecture
  - Added Batch Normalization after each layer
  - Increase number of filters in each block
    - Number of filters: 3,5,7
- Added an attention component
  - Tells model what areas of the image are more important



## VGG Results

- VGG11
  - Batch size of 64 had best performance
  - Test accuracy of 58.9%
- VGG16
  - Batch size of 32 had the best performance
  - Test accuracy of 57.8%
- VGG11 with More Dropout
  - Test accuracy of 38%
- VGG11 with Less Dropout
  - Test accuracy of 58.7%



#### ResNet Results

- ResNet50 and ResNet18
  - Accuracies were low for both Adam and RMSProp optimizers
  - No accuracy above 25%
- Modified ResNet (10 Layers)
  - Best performance was with batch size
     32 and Adam optimizer
  - Accuracy of 43.2%

#### Modifed ResNet Sample Results



#### Our Model Results

- Batch size of 64 with an Adam optimizer
  - Test Accuracy of 61.4%
- Best performance on Happy (3) and Surprise (5)

|   | precision | recall | f1-score | support |
|---|-----------|--------|----------|---------|
| 0 | 0.68      | 0.41   | 0.51     | 958     |
| 1 | 0.79      | 0.49   | 0.60     | 111     |
| 2 | 0.41      | 0.54   | 0.47     | 1024    |
| 3 | 0.84      | 0.81   | 0.82     | 1774    |
| 4 | 0.45      | 0.57   | 0.50     | 1247    |
| 5 | 0.83      | 0.65   | 0.73     | 831     |
| 6 | 0.58      | 0.58   | 0.58     | 1233    |



## Attention Areas

#### Anger Attention









#### **Surprise Attention**





#### Happy Attention





# Demo