Pós-Graduação em Ciência de Dados

Professora Cecília Pereira de Andrade

e

Professor Ricardo Sovat

Limites

Encontre uma equação da reta tangente à parábola $y = x^2$ no ponto que P (1; 1).

Equação de uma reta :

$$y - y_1 = m(x - x_1)$$

Coeficiente angular:

$$\mathbf{m} = \frac{y - y_1}{x - x_1}$$

Escolhemos $x \neq 1$ para que $Q \neq P$. Então

$$m_{PQ} = \frac{x^2 - 1}{x - 1}$$

Por exemplo, para o ponto Q(1,5; 2,25), temos

$$m_{PQ} = \frac{2,25-1}{1.5-1} = \frac{1,25}{0.5} = 2,5$$

As tabelas a seguir mostram os valores de m_{PQ} para vários valores de x próximos a 1.

x	m_{PQ}
2	3
1,5	2,5
1,1	2,1
1,01	2,01
1,001	2,001

х	m_{PQ}
0	1
0,5	1,5
0,9	1,9
0,99	1,99
0,999	1,999

Quanto mais próximo Q estiver de P, mais próximo x estará de 1 e, e a tabela indica que m_{PO} estará próximo de 2.

Sugestão: inclinação da reta tangente t deve ser

$$m = 2$$
.

Inclinação da reta tangente é o *limite* das retas secantes

$$\lim_{Q \to P} m_{PQ} = m \qquad , \qquad \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Equação de uma reta $[y - y_1 = m(x - x_1)]$ para o ponto (1; 1) temos

$$y - 1 = 2(x - 1)$$
 ou $y = 2x - 1$

A Figura ilustra o processo de limite que ocorre neste exemplo.

Q se aproxima de P pela direita

https://www.geogebra.org/m/su3mawv6

Vamos analisar o comportamento da função f definida por $f(x) = x^2 - x + 2$ para valores de x próximos de 2, mas não iguais a 2.

1,0 2,000000 3,0 8,000000	
1,5 2,750000 1,8 3,440000 1,9 3,710000 1,95 3,852500 1,99 3,970100 1,995 3,985025 1,999 3,997001 2,5 5,750000 4,640000 2,1 4,310000 2,05 4,152500 4,030100 2,005 4,015025 2,005 4,003001))))

Da tabela e do gráfico de f abaixo, vemos que quanto mais próximo x estiver de 2 (de qualquer lado de 2), mais próximo f(x) estará de 4.

Portanto,

$$\lim_{x \to 2} (x^2 - x + 2) = 4.$$

Notação: lim f(x) = L.
(x→a)

f(x) não precisa estar definida quando x = a. A única coisa que importa é como f está definida próximo de a.

nos três casos

 $\lim f(x) = L$

Propriedades dos limites

Propriedades dos Limites Supondo que c seja uma constante e os limites

$$\lim_{x \to a} f(x)$$

 $\lim_{x \to a} f(x) \qquad e \qquad \lim_{x \to a} g(x)$

existam, então

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{se } \lim_{x \to a} g(x) \neq 0$$

Propriedades dos limites

6.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$
 onde $n \notin \text{um inteiro positivo}$

7.
$$\lim_{x \to a} c = c$$

8.
$$\lim_{x \to a} x = a$$

Propriedade de Substituição Direta Se f for uma função polinomial ou racional e a estiver no domínio de f, então

$$\lim_{x \to a} f(x) = f(a).$$

As funções que possuem a essa propriedade de substituição direta são chamadas de contínuas em a.

Exemplo 1:

= 9.

Calcular $\lim_{x\to 3} (x^3 - 4x^2 + 7x - 3)$, usando as propriedades.

$$\lim_{x \to 3} (x^3 - 4x^2 + 7x - 3) = (\lim_{x \to 3} x^3) - 4(\lim_{x \to 3} x^2) + 7(\lim_{x \to 3} x) - 3$$

$$= (\lim_{x \to 3} x)^3 - 4(\lim_{x \to 3} x)^2 + 7(\lim_{x \to 3} x) - 3$$

$$= (3)^3 - 4(3)^2 + 7(3) - 3$$

$$= 27 - 36 + 21 - 3$$

Exemplo 1:

Como é uma função polinomial, podemos usar a propriedade da substituição direta:

$$\lim_{x\to 3} (x^3 - 4x^2 + 7x - 3) = (3)^3 - 4(3)^2 + 7(3) - 3$$

$$= 27 - 36 + 21 - 3$$

Exemplo 2:

Calcular
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
.

Temos que
$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1$$
.

Logo,
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

Exemplo 3:

Calcular
$$\lim_{h\to 0} \frac{(3+h)^2-9}{h}$$
.

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h} = \lim_{h \to 0} \frac{6h + h^2}{h} = \lim_{h \to 0} \frac{h(6+h)}{h}$$

Logo,
$$\lim_{h\to 0} \frac{(3+h)^2-9}{h} = \lim_{h\to 0} (6+h) = 6.$$

Exemplo 4:

Calcular
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
.

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \cdot \frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3} = \lim_{t \to 0} \frac{(t^2 + 9) - 9}{t^2(\sqrt{t^2 + 9} + 3)}$$

$$= \lim_{t \to 0} \frac{t^2}{t^2(\sqrt{t^2+9}+3)} = \lim_{t \to 0} \frac{1}{\sqrt{t^2+9}+3}.$$

Logo,
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = \lim_{t\to 0} \frac{1}{\sqrt{t^2+9}+3} = \frac{1}{3+3} = \frac{1}{6}$$
.