

鑰匙 Keys

建築師蒂莫西設計了一款新的逃脫遊戲。在這個遊戲中,有n個房間,編號從0到n-1。最初,每個房間內都有一把鑰匙。而每把鑰匙都屬於一種類型,它是一個從0到n-1(包含)之間的整數。房間 i($0 \le i \le n-1$)的鑰匙類型為r[i]。請注意,多個房間可能包含相同類型的鑰匙,即是r[i]的值不一定是不同的。

遊戲中還有 m 條 **雙向的** 連接器,編號從 0 to m-1。連接器 j ($0 \le j \le m-1$) 連接兩個不同的 房間 u[j] 和 v[j]。兩個房間可以由多個連接器連接。

遊戲只供一個玩家玩耍,他收集鑰匙和通過連接器在房間之間移動。我們說玩家**通過**連接器 j,就是當玩家使用一個連接器從房間 u[j] 移動到房間 v[j] 時,反之亦然。 若玩家之前已經收集了 c[j] 類型的鑰匙,他才能通過連接器 j。

在遊戲過程中的任何時候,玩家都在某個房間 x 中,他都可以執行兩種類型的操作:

- 在房間 x 中收集鑰匙,其類型為 r[x] (除非他之前已經收集了它),
- 如果玩家事先收集了 c[j] 類型的鑰匙,則他可以通過連接器 j,其中 u[j] = x 或 v[j] = x。

請注意,玩家永不丟棄他所收集到的鑰匙。

玩家在某個房間 s 開始遊戲,沒有攜帶任何鑰匙。 如果在房間 s 中開始遊戲,玩家可以通過執行上述的一系列操作,並到達房間 t,則稱房間 t 是可以從房間 s 可到達的。

對於每個房間 i ($0 \le i \le n-1$),將從房間 i 可到達的房間數目表示為 p[i]。 蒂莫西想知道在 $0 \le i \le n-1$ 範圍內達到 p[i] 最小值中 i 的集合。

編程細節

你應該編寫以下的子程序:

int[] find reachable(int[] r, int[] u, int[] v, int[] c)

- r:長度為 n 的數組。 對於每個 i ($0 \le i \le n-1$),房間 i 中的鑰匙類型為 r[i]。
- u,v:兩個長度為 m 的數組。 對於每個 j ($0 \leq j \leq m-1$),連接器 j 連接房間 u[j] 和 v[j]。
- c:長度為 m 的數組。 對於每個 j ($0 \leq j \leq m-1$),通過連接器 j 所需的鑰匙類型是 c[j] 。
- 這個子程序應該返回一個長度為 n 的數組 a 。 對於每個 $0 \le i \le n-1$, a[i] 的值應該是 1 ,如果對於每個 j 使得 $0 \le j \le n-1$, $p[i] \le p[j]$ 。 否則, a[i] 的值應為 0 。

樣例

樣例 1

考慮以下的調用情況:

```
find_reachable([0, 1, 1, 2],
[0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

如果玩家在房間0開始遊戲,他可以執行以下的一系列操作:

所在的房間	操作
0	收集類型 0 的鑰匙
0	遍歷連接器 0 去到 房間 1
1	收集類型 1 的鑰匙
1	遍歷連接器 2 去到 房間 2
2	遍歷連接器 2 去到 房間 1
1	遍歷連接器 3 去到 房間 3

因此從房間 0 可以到達 3 房間。類似地,我們可以構建序列顯示所有房間都可以從房間 0 可到達,這意味著 p[0]=4。下表顯示了所有起始房間的可到達房間數:

開始房間 i	可到達房間	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

所有房間中 p[i] 的最小值是 2,這是在 i=1 或 i=2 時做到的。 因此,子程序應返回 [0,1,1,0]。

樣例 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
 [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
 [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
 [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

下表顯示了所有起始房間的可到達房間數:

開始房間 i	可到達房間	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

所有房間中 p[i] 的最小值是 2 ,這是在 $i \in \{1,2,4,6\}$ 時做到的。因此,子程序應返回 [0,1,1,0,1,0,1] 。

樣例 3

下表顯示了所有起始房間的可到達房間數:

開始房間 i	可到達房間	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

所有房間中 p[i] 的最小值是 1,這是在 i=2 時做到的。 因此,子程序應返回 S[0,0,1]。

限制

- $2 \le n \le 300\,000$
- 1 < m < 300000
- $0 \le r[i] \le n-1$ 對於所有 $0 \le i \le n-1$
- $0 \le u[j], v[j] \le n-1$ 和 $u[j] \ne v[j]$ 對於所有 $0 \le j \le m-1$
- $0 \le c[j] \le n-1$ 對於所有 $0 \le j \le m-1$

子任務

- 1. (9 分) c[j]=0 對於所有 $0\leq j\leq m-1$ 和 $n,m\leq 200$
- 2. (11 分) $n, m \leq 200$
- $3.(17 分) n, m \leq 2000$
- 4. (30 分) $c[j] \leq 29$ (for all $0 \leq j \leq m-1$) 和 $r[i] \leq 29$ (對於所有 $0 \leq i \leq n-1$)

5. (33 points) 沒有額外限制。

樣例評分程式

樣例評分程式按以下格式讀取輸入:

- 第 1 行: n m
- 第 2 行: r[0] r[1] ... r[n-1]
- 第 3 + j ($0 \le j \le m 1$)行: u[j] v[j] c[j]

樣例評分程式按以下格式打印find_reachable的返回值:

• 第 1行: a[0] a[1] ... a[n-1]