Grupos - Introdução

José Antônio O. Freitas

MAT-UnB

20 de outubro de 2020

Definição Seja $G \neq \emptyset$

Seja $G
eq \emptyset$ um conjunto no qual está definida uma operação binária*

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária $\underline{*}$ tal que:

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos $\underline{x}, \underline{y}, \underline{z} \in G$:

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x * y) * z$$

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z = \underline{x}*(y*z).$$

~ ASSOCIATIVA

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $\underline{e} \in G$

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe e∈ G tal que

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e$$

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e = \underline{x} =$$

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e = x = e * x$$

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e = x = e * x$$

para todo $x \in G$.

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e = x = e * x$$

para todo $x \in G$. Tal elemento e

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e = x = e * x$$

para todo $x \in G$. Tal elemento e é chamado de **elemento neutro**

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) Existe $e \in G$ tal que

$$x * e = x = e * x$$

para todo $x \in G$. Tal elemento e é chamado de **elemento neutro** ou **unidade**

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x*y)*z=x*(y*z).$$

ii) $Existe_{e} \in G$ tal que

$$x*e = x = e*x$$

para todo $x \in G$. Tal elemento e é chamado de **elemento neutro** ou **unidade** de G.

Seja $G \neq \emptyset$ um conjunto no qual está definida uma operação binária * tal que:

i) Para todos x, y, $z \in G$:

$$(x * y) * z = x * (y * z).$$

ii) Existe $e \in G$ tal que

$$-x \times e = x = e \times x$$

para todo $x \in G$. Tal elemento e é chamado de **elemento neutro** ou **unidade** de G.

iii) Para cada $x \in G$,

iii) Para cada $x \in G$, existe $y \in G$

iii) Para cada $x \in G$, existe $y \in G$ tal que

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y$$

iii) Para cada $x \in G$, existe $y \in G$ tal que x * y = G

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e = y * x$$
.

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$y = e = y * x.$$

O elemento y

$$x * y + y * x$$

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso**

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de inverso ou oposto

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de <u>x</u>.

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de x.

Nesse caso dizemos que o par (G,*)

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de x.

Nesse caso dizemos que o par (G,*) é um **grupo**.

3/9

iii) Para cada $x \in G$, existe $y \in G$ tal que

$$x * y = e \neq y * x.$$

O elemento y é chamado de **inverso** ou **oposto** de x.

Nesse caso dizemos que o par (G_*) é um **grupo**.

Quando * é uma "soma",

$$x = x \oplus y = x \oplus y \oplus 3$$

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação",

$$x + y = x + y - \begin{bmatrix} x \cdot y \\ 3 \end{bmatrix}$$

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (

Quando * é uma "soma", dizemos que (G_{\bigodot}) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

 $Um\ grupo\ (G,*)$

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de grupo comutativo

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de **grupo comutativo** ou **abeliano**

ABEL

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de **grupo comutativo** ou **abeliano** quando * é comutativa,

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de **grupo comutativo** ou **abeliano** quando * é comutativa, ou seja, quando

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de **grupo comutativo** ou **abeliano** quando * é comutativa, ou seja, quando

$$x * y =$$

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de **grupo comutativo** ou **abeliano** quando * é comutativa, ou seja, quando

$$x * y = y * x$$

Quando * é uma "soma", dizemos que (G,*) é um **grupo aditivo**.

Se * é uma "multiplicação", dizemos que (G,*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,*) vamos dizer simplesmente que G é um grupo.

Definição

Um grupo (G,*) é chamado de **grupo comutativo** ou **abeliano** quando * é comutativa, ou seja, quando

$$x * y = y * x$$

para todos $x, y \in G$.

1) (Z,+) é um grupo abeliano.

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (ZQ) não é grupo.

$$\chi$$
. $L = \chi = J \cdot \chi$, $\forall \chi \in \mathbb{Z}$

$$x \cdot y = 1 = y \cdot x$$

 $z \cdot y \neq L ; \forall y \in \mathbb{Z}$

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (\mathbb{Z},\cdot) não é grupo.
- 3) $(\mathbb{Q},+)$ é um grupo abeliano.

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (\mathbb{Z} , ·) não é grupo.
- 3) $(\mathbb{Q}, +)$ é um grupo abeliano.
- 4) ((é um grupo abeliano.

$$\chi \cdot L = \chi = J \cdot \chi, \forall \chi \in \mathbb{Q}$$

$$X \cdot \frac{1}{x} = 1 = \frac{1}{x} \cdot x + xeD^{*}$$

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (\mathbb{Z},\cdot) não é grupo.
- 3) $(\mathbb{Q}, +)$ é um grupo abeliano.
- 4) (\mathbb{Q}^*, \cdot) é um grupo abeliano.
- 5) $(\mathbb{R}, +)$ é um grupo abeliano.

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (\mathbb{Z},\cdot) não é grupo.
- 3) $(\mathbb{Q},+)$ é um grupo abeliano.
- 4) (\mathbb{Q}^*, \cdot) é um grupo abeliano.
- 5) $(\mathbb{R},+)$ é um grupo abeliano.
- 6) (ℝ*0) é um grupo abeliano.

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (\mathbb{Z},\cdot) não é grupo.
- 3) $(\mathbb{Q}, +)$ é um grupo abeliano.
- 4) (\mathbb{Q}^*, \cdot) é um grupo abeliano.
- 5) $(\mathbb{R},+)$ é um grupo abeliano.
- 6) (\mathbb{R}^*,\cdot) é um grupo abeliano.
- 7) $(\mathbb{C}, +)$ é um grupo abeliano.

- 1) $(\mathbb{Z},+)$ é um grupo abeliano.
- 2) (\mathbb{Z},\cdot) não é grupo.
- 3) $(\mathbb{Q}, +)$ é um grupo abeliano.
- 4) (\mathbb{Q}^*, \cdot) é um grupo abeliano.
- 5) $(\mathbb{R},+)$ é um grupo abeliano.
- 6) (\mathbb{R}^*, \cdot) é um grupo abeliano.
- 7) $(\mathbb{C},+)$ é um grupo abeliano. (
- 8) (C*, ·) é um grupo abeliano.

9) (\mathbb{Z}_m, \oplus) é grupo abelianq.

$$\overline{\chi}$$
 Θ $\overline{m-\chi} = \overline{D}$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais R

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação $\underline{*}$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y =$$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

para $x, y \in \mathbb{R}$.

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por x*y=x+y-3

para x, $y \in \mathbb{R}$. Então $(\mathbb{R},*)$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$\underline{x} * y = \underline{y} + \underline{y} - \underline{3}$$

i) SEJAM $x, y, z \in \mathbb{R}$. TEMOS (x + y) + z = (x + y - 3) + z = (x + y - 3) + z - 3

 $\chi * (y * 3) = \chi * (y * 3 - 3) = \chi * (y * 3 - 3) - 3$

= \times tytj - 6

1 260

(xay) x 3 = x + (y x 3).

ij x*e=x, 7xeR x+e-3=x = e=36R

TOME C=3ER. ASSIM

$$\chi_{\alpha} C = \chi + 3 = \chi + 3 - 3 = \chi$$

 $e \times \chi = 3 \times \chi = 3 + \chi - 3 = \chi$

PANA TODO X611. LOCO C=3 E O ELEMENTO NEVILO DE * EM R.

$$X + y - 3 = 3$$
 (=) $Y = 6 - X \in \mathbb{R}$

$$M00 \times 60 \quad me = 4 - (-x + 0) \quad 0$$

	<u> </u>			
DADO	XE N,	ME	4=6-XEIZ.	DA

 $x = y = x \times (6 - x) = x + (6 - x) - 3 = 3 = c$

$$y \times \chi = (6-\pi) \times \chi = (6-\chi) + \chi - 3 = 3 = 0$$

LOGO 6-X & O OPOSTO DE X

NA OPEMOAP + EM IR.

PORTANTO (R. ,) E un GRUPO.

ALEN DISSO, PARA TODOS X, YER TEMOS

x * y = x + y - 3 = y + x - 3 = y * x.

L060, (R,*) E un GRUPO ABELIA-

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

para $x, y \in \mathbb{R}$. Então $(\mathbb{R}, *)$ é um grupo abeliano.

11)
$$(\mathbb{Z}_m - \{\overline{0}\}, \otimes)$$

6/9

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

- 11) $(\mathbb{Z}_m \{\overline{0}\}, \otimes)$ é grupo?
- *12)* (ℝ, ∗)

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

- 11) $(\mathbb{Z}_m \{\overline{0}\}, \otimes)$ é grupo?
- 12) $(\mathbb{R},*)$ onde x*y=y

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

para $x, y \in \mathbb{R}$. Então $(\mathbb{R}, *)$ é um grupo abeliano.

- 11) $(\mathbb{Z}_m \{\overline{0}\}, \otimes)$ é grupo?
- 12) $(\mathbb{R},*)$ onde x*y = y para todos $x, y \in \mathbb{R}$

- 9) (\mathbb{Z}_m, \oplus) é grupo abeliano.
- 10) Considere o conjunto dos números reais $\mathbb R$ com a operação * definida por

$$x * y = x + y - 3$$

para $x, y \in \mathbb{R}$. Então $(\mathbb{R}, *)$ é um grupo abeliano.

- 11) $(\mathbb{Z}_m \{\overline{0}\}, \otimes)$ é grupo?
- 12) $(\mathbb{R} *)$ onde $\underline{x} * y = y$ para todos $x, y \in \mathbb{R}$ é grupo?

$$(x \times y) \times 3 = y \times 3 = 3$$

(xxy)xz= yxz= z

L060 (Xxy)xj= Xx(yxz).

x* (y*3) = x*3 = 3

ii)
$$x \neq e = x$$
; $\forall x \in \mathbb{R}$

$$e = x$$

$$e = x$$

$$\forall x \in \mathbb{R}$$

$$\exists x \in \mathbb{R}$$

X*C=e + X.

VALE

OU SEJA, A O PENAGO * NAS POSSUI ELENENTO NEUTRO.

13) Denote por \mathbb{K}

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} ,

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} ,

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R}

13) Denote por K um dos conjunto ऄॣ(ॣॖॖ0, ℝ ou ℂ

13) Denote por $\mathbb K$ um dos conjuntos $\mathbb Z$, $\mathbb Q$, $\mathbb R$ ou $\mathbb C$, indistintamente. Seja

13) Denote por $\mathbb K$ um dos conjuntos $\mathbb Z$, $\mathbb Q$, $\mathbb R$ ou $\mathbb C$, indistintamente. Seja $M_{r\times s}(\underline{\mathbb K})$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{\mathbb{C}^k s}(\mathbb{K}) = \{A \mid \underline{A} \text{ \'e uma matriz}$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja M_r $\mathfrak{S}(\mathbb{K}) = \{A \mid A \text{ \'e uma matriz} de r linhas}$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r \times s}(\underline{\mathbb{K}}) = \{A \mid A \text{ \'e uma matriz } de \text{ r linhas por s}$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r \times s}(\mathbb{K}) = \{A \mid A \text{ \'e uma matriz} \text{ de r linhas por s colunas cujas entradas estão em } \mathbb{K}$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }.

Então $(M_{r\times s}(\mathbb{K}),+)$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde $\underline{+}$ é a soma de matrizes

13) Denote por $\mathbb K$ um dos conjuntos $\mathbb Z$, $\mathbb Q$, $\mathbb R$ ou $\mathbb C$, indistintamente. Seja

 $M_{r \times s}(\mathbb{K}) = \{ \underline{A} \mid A \text{ \'e uma matriz} \}$ de r linhas por s colunas cujas entradas estão em $\mathbb{K} \}$.

de l'illinas poi s'ediunas cujas entradas estad eni meg.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por 🧏

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\text{ \'e uma matriz} \text{ de }r\text{ linhas por }s\text{ colunas cujas entradas estão em }\mathbb{K}\}.$

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} ,

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }. Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo

Entao $(M_{r\times s}(\mathbb{K}),+)$ onde + e a soma de matrizes e um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R}

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} .

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} ,

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} $\}$.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por $\mathbb K$ um dos conjuntos $\mathbb Q$, $\mathbb R$ ou $\mathbb C$, indistintamente. Seja

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }. Então $(M_{r\times s}(\mathbb{K}), +)$ onde + é a soma de matrizes é um grupo

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por $\mathbb K$ um dos conjuntos $\mathbb Q$, $\mathbb R$ ou $\mathbb C$, indistintamente. Seja $G_{\mathbb C}(\mathbb K)$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja

 $-M_{\mathbb{C}_{\bullet}}(\mathbb{K}) = \{A \mid A \text{ \'e uma matriz} \}$ de r linhas por s colunas cujas entradas estão em $\mathbb{K}\}$.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $GL_{\mathbf{Q}}(\mathbb{K})=\{\underline{A}\in M_{\underline{n}\times\underline{n}}(\mathbb{K})$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A \text{ \'e uma matriz}$

de r linhas por s colunas cujas entradas estão em \mathbb{K} $\}$.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $GL_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{K}) \mid \det(A) = \underline{1}\}.$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K}) = \{A \mid A \text{ \'e uma matriz}\}$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $GL_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{K}) \mid \det(A) = 1\}.$ Então $(GL_n(\mathbb{K}), :)$

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }. Então $(M_{r\times s}(\mathbb{K}), +)$ onde + é a soma de matrizes é um grupo

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $GL_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{K}) \mid \det(A) = 1\}.$

Então $(GL_n(\mathbb{K}),\cdot)$ onde \cdot é a multiplicação de matrizes é um grupo

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K}) = \{A \mid A \text{ \'e uma matriz}\}$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja

 $GL_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{K}) \mid \det(A) = \underline{1}\}.$

Então $(GL_n(\mathbb{K}), \cdot)$ onde. é a multiplicação de matrizes é um grupo unão abeliano.

A.B & B. A

13) Denote por \mathbb{K} um dos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $M_{r\times s}(\mathbb{K})=\{A\mid A \text{ \'e uma matriz}\}$

de r linhas por s colunas cujas entradas estão em \mathbb{K} }.

Então $(M_{r\times s}(\mathbb{K}),+)$ onde + é a soma de matrizes é um grupo abeliano.

14) Denote por \mathbb{K} um dos conjuntos \mathbb{Q} , \mathbb{R} ou \mathbb{C} , indistintamente. Seja $GL_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{K}) \mid \det(A) = 1\}.$

Então $(GL_n(\mathbb{K}), \cdot)$ onde \cdot é a multiplicação de matrizes é um grupo não abeliano.

Seja (G,*) um grupo.

Seja (G,*) um grupo. Então:

Seja (G, *) um grupo. Então:

i) O elemento neutro de G é único.

$$\chi^{-1} \neq \frac{1}{\chi} : \left(\frac{2}{5}, -\sqrt{5}\right), \infty$$

$$\left(\frac{2}{5}, -\sqrt{5}\right) = \frac{3}{5}$$

Seja (G, *) um grupo. Então:

- → i) O elemento neutro de G é único.
- \bullet ii) Existe um único inverso para cada $x \in G$.

iii) Para todos $x, y \in G$

iii) Para todos $x, y \in G$,

$$(x * y)^{-1}$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1} * x^{-1}.$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução,

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução, $\underline{x_1}$, $\underline{x_2}$, ..., $\underline{x_{n-1}}$, $\underline{x_n} \in \underline{G}$,

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * (x_{n-1}) * (x_n)^{-1} =$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = \underline{x_n^{-1}}$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1}$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots *$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1}$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_2^{-1}$$

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução, x_1 , x_2 , ..., x_{n-1} , $x_n \in G$,

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$

iv) Para todo $x \in G$,

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução, x_1 , x_2 , ..., x_{n-1} , $x_n \in G$,

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$

iv) Para todo $x \in G$,

iii) Para todos $x, y \in G$,

$$(x*y)^{-1} = y^{-1} * x^{-1}.$$

Por indução, $x_1, x_2, ..., x_{n-1}, x_n \in G$,

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$

iv) Para todo $x \in G$,

$$(x^{-1})^{-1} = \underline{x}.$$

$$(\chi_{*}y) = (\chi_{*}y) = \chi_{*}(y_{*}y) + \chi^{-1}$$

= (x · e) · x = x × x = e

$$(y' * (x') * (x) * y) = y' * (x' * x) * y$$

$$= (y' * e) * y = y' * y = e$$

= (y'*e) * y = y * y = e

PORTANTO O INVENSO DE X* y
É y' + x', DU SEJA,

$$(x*y) = y * x \cdot \#$$