Міністерство освіти і науки України

Національний університет «Одеська Політехніка»

ІНДИВІДУАЛЬНІ ДОМАШНІ ЗАВДАННЯ З ВИЩОЇ МАТЕМАТИКИ І МЕТОДИЧНІ ВКАЗІВКИ ДО ЇХНЬОГО ВИКОНАННЯ

для студентів І курсу ІЦТДТ

Одеса 2023

Міністерство освіти і науки України Національний університет «Одеська Політехніка»

Індивідуальні домашні завдання з вищої математики і методичні вказівки до їхнього виконання для студентів І курсу ІЦТДТ

Затверджено на засіданні кафедри вищої математики і моделювання систем Протокол №

Одеса 2023

Вступ

У першому семестрі курс вищої математики складається з двох модулів. Кожен модуль складається з аудиторних занять та індивідуальної роботи студентів. Обсяг і зміст семестрових індивідуальних завдань визначається робочою програмою курсу. Кожен модульний контроль оцінюється виходячи з 50 балів. Розподіл балів в межах кожного модульного контролю виконується залежно від обсягу навчальних складових дисципліни згідно з робочою навчальною програмою. Модульний контроль складається з поточного контролю та модульної контрольної роботи. Модульна контрольна робота виконується у письмовій формі. Сума балів одержана за виконання індивідуального домашнього завдання зараховується у поточний контроль.

При виконанні й оформленні індивідуальних домашніх завдань студент повинен дотримуватися таких правил:

- а) виконувати завдання в окремому зошиті у клітинку 12 або 18 аркушів;
- б) вказати на обкладинці прізвище та ініціали, номер групи та номер варіанта;
- в) розв'язання задач розташовувати в довільному порядку, зазначаючи їх номери, виписуючи перед розв'язанням кожної задачі її умову;
- г) у разі необхідності розв'язання задач супроводжувати кресленнями, креслення виконувати олівцем.

Кожна задача індивідуальних домашніх завдань складається з 30 варіантів. Студент виконує варіант, номер якого визначається викладачем або за своїм номером у списку групи.

Список літератури

- 1. Пак В.В., Носенко Ю.Л. Вища математика. К.: Либідь, 1996.
- 2. Вища математика: основні розділи: Підруч.: У 2 кн. /За ред. Кулініча Г.Л. К.:Либідь, 1997.
- 3. Кліх Ю.О., Плотнікова Л.І., Усов А.В. Лінійна алгебра та елементи аналітичної геометрії. Одеса, ОДПУ, 1998.
- 4. Вища математика: основні означення, приклади і задачі: У 2 кн. /За ред. Васильченка І.П. К.:Либідь, 1992.
- 5. Кривуца В.Г., Барковський В.В., Барковська Н.В. Вища математика. Практикум: Навчальний посібник.- Київ: Центр навчальної літератури, 2005.

Задача 1. Виконати дії. Представити результат в алгебраїчній формі.

	задача 1. Биконати дп. представити результат в алгеорагчни формі.				
1	$\frac{(2-i)i^{25}}{(2+2i)^2}$	11	$\frac{(3+i)(1+i^{17})}{(1+i)^2}$	21	$\frac{(1-i)^3}{(3+2i^2)(1+i)}$
2	$\frac{3+5i^{11}}{2i(4-i)}$	12	$\frac{i^{43}(5+i)}{(3-i)^2}$	22	$\frac{(2+3i)(4-i)}{i^{18}(1+i)}$
3	$\frac{(5-i^9)i^{16}}{2+i^3}$	13	$\frac{(2+i)^3}{i^{21}(2-3i)}$	23	$\frac{(-1+3i) i^6}{(1-i)^2}$
4	$\frac{(1-i)^4}{(2i^2-4)(i-1)}$	14	$\frac{(2+3i)i^5}{(1-2i)^2}$	24	$\frac{(3-i)^2 i^5}{(1+2i)(1-3i)}$
5	$\frac{(3i-2)(i+4)}{i^{19}(5i+1)}$	15	$\frac{3i^7 + 5i^{11}}{6 - i^5}$	25	$\frac{3-2i^{13}}{i^3(4-i)}$
6	$\frac{(-3i+1)i^{7}}{(1-i)^{4}}$	16	$\frac{(1+i^8)i^{14}}{(2+i)^3}$	26	$\frac{(7+i^9)i^{35}}{9-(2i)^3}$
7	$\frac{(i+3)(1+i^{21})}{(1+i)^4}$	17	$\frac{(-i+2)i^{24}}{(2i-5)^2}$	27	$\frac{(3-i)^2 i}{(2i-1)(-3i)^2}$
8	$\frac{i^3(i+5)^2}{(3-i)^2}$	18	$\frac{3i^{11} + 1}{(i-2)(4-i)}$	28	$\frac{(1+2i)^3}{i^{21}(2-i)}$
9	$\frac{(2+i)^3}{i^{19}(i-3)}$	19	$\frac{(i^9 - 4) i^{32}}{i^3 + 2}$	29	$\frac{(3+i)(1+i^{17})}{(1+i)(i-4)}$
10	$\frac{(1-i)^4}{(i^2+4)(i^3+1)}$	20	$\frac{(i-3)(1+i^{17})}{(1-i)^2}$	30	$\frac{(1-2i^5)(1+i^3)}{(1-2i)(1+2i)}$

Задача 2. Виконати дії. Представити результат у показниковій формі.

	Задача 2. Виконати дн. представити результат у показникови форми.			эпикови форми.	
1	$\frac{(1-i)^4}{(2-2i)^5(1+i)}$	11	$\frac{(1-i\sqrt{3})^{25}}{(\sqrt{3}+i)^{14}}$	21	$\frac{(\sqrt{3}-i)^4 i^5}{(2+2i)(1-i)^{11}}$
2	$\frac{3+3i^{11}}{2i(-1+i)^9}$	12	$\frac{i^{43}(-1+i)^5}{(\sqrt{3}+i)^6}$	22	$\frac{(\sqrt{2} - i\sqrt{2})^{12}}{(1+i)^{26}}$
3	$\frac{(-\sqrt{2}-\sqrt{2}i)^9 i^{16}}{1+i^3}$	13	$\frac{(2+2i)^4}{i^{21}(1-\sqrt{3}i)^7}$	23	$\frac{(-1+i)^6}{i(1-i)^{12}}$
4	$\frac{(-1-i\sqrt{3})^{25}}{(2+2i)^{17}}$	14	$\frac{(1-i\sqrt{3})(1+i)^{17}}{(-1+i)^{21}}$	24	$\frac{(\sqrt{2} - i\sqrt{2})^{12}}{(2 - 2i)^{27}}$
5	$\frac{(i-\sqrt{3})^4(i+1)}{i^{19}(1-i)^7}$	15	$\frac{(\sqrt{3}-i)^7 5i^{11}}{(-1-i)^5}$	25	$\frac{(\sqrt{2} - \sqrt{2}i)^{13}}{i^3 (1 - i)^5}$

6	$\frac{(-\sqrt{3}i+1)^{7}i}{(1-i)^{4}}$	16	$\frac{(1+i)^8 i^{14}}{(-2+2i)^3}$	26	$\frac{(1+i\sqrt{3})^9 i^{35}}{(2-2i)^3}$
7	$\frac{(i+\sqrt{3})^5(1+i)^6}{(-1+i)^4}$	17	$\frac{(-i+\sqrt{3})^3 i^{24}}{(2-2i)^5}$	27	$\frac{(\sqrt{3}-i)^8 i}{(2i-2)^5 (-3i)^2}$
8	$\frac{i^3(i+1)^8}{(\sqrt{3}-i)^4}$	18	$\frac{(1+i\sqrt{3})^{11}}{(1+i)^5(1-i)}$	28	$\frac{(1-i\sqrt{3})^{10}}{(1-i)^6(1+i)}$
9	$\frac{(2+2i)^3}{i^{19}(i-\sqrt{3})^6}$	19	$\frac{(-1+i)^9 i^{32}}{(1-\sqrt{3}i)^3}$	29	$\frac{(\sqrt{3}+i)^3(1+i)^7}{(1-i)^4}$
10	$\frac{(1-i)^4}{(-2+2i)^3(-1+i)^3}$	20	$\frac{(i-\sqrt{3})(1+i)^8}{(1-i)^4}$	30	$\frac{(-1-i)^5(1+i)^3}{(3-3i)^3(1-i)}$

Задача 3. Обчислити значення $\sqrt[n]{z}$ та побудувати їх на площині комплексної змінної.

1	z = 8, n = 3	11	z = -1 + i, n = 5	21	z = -81i, n = 4
2	z = -2 + 2i, n = 3	12	z = -32i, $n = 5$	22	$z = -\sqrt{3} - i, n = 3$
	$z = \sqrt{3} + i, n = 4$		$z=1-i\sqrt{3}, \ n=3$		$z = -1 - i\sqrt{3}, n = 4$
	z = 3 - 3i, $n = 2$	14	z=8i, $n=3$	24	$z = -1 - i, \ n = 6$
5	z = -27, n = 3		$z = \sqrt{3} - i, n = 5$	_	z = 81i, n = 4
	$z = -\sqrt{3} + i, n = 4$	10	z = -2 - 2i, n = 3	_	z = -16 + 16i, $n = 4$
7	z = -8 + 8i, n = 5	17	z = 27, n = 3	<i>- '</i>	z = 1, n = 5
	$z = -1 + i\sqrt{3}, n = 3$	18	$z = -9i, \ n = 2$		$z = 1 + i\sqrt{3}, \ n = 4$
9	z = -8, n = 3	19	z = 16 + 16i, n = 4	29	z = -27i, n = 3
10	z = 64 i, n = 6	20	$z = -1, \ n = 3$	30	z = -16 - 16i, $n = 4$

Задача 4. Побудувати на площині комплексної змінної множину точок, що задовольняють заданим умовам.

1	$ z-2 = 1-2\overline{z} $	11	z-1 + z+i <10	21	$ \operatorname{Re} z \ge \operatorname{Im} z, z \ge 1$
2	$\left (z-1)/(z+1) \right \le 1$	12	$ z < 3, 0 \le \arg z \le \pi$	22	z+3+2i > 3
3	$\operatorname{Im}(1/z) \le -1/2$	13	$\operatorname{Re} iz \ge 0, \operatorname{Im}(z^2) > 1$	23	$z^2 + \overline{z}^2 \le 8$
4	$ z-1 \le 1, z-i \le 1$	14	$\left z\right ^2 + z + \overline{z} = 0$	24	$\left z\right ^2 \ge 2\operatorname{Re} z + 3$
5	$\left z-1 \le 1, z+1 > 2 \right $	15	$ z - \operatorname{Im} z = 6$	25	z+3 + z+1 <5
6	$\operatorname{Re} z = 2 z - i $	16	$\left z-i\right +\left z+i\right >4$	26	$ z = \operatorname{Im} z - 1$
7	z-i = z+2i	17	$1 \le z+2 \le 3$	27	z-2+3i <2

8	$ z-i + z+3 \le 9$	18	$\left z\right ^2 - z - \overline{z} = 0$	28	$\left z\right ^2 \le 3 - 2\operatorname{Im} z$
9	$ \operatorname{Re} z + \operatorname{Im} z = 1$	19	$ z = \operatorname{Re} z + 1$	29	$ \operatorname{Re} z < \operatorname{Im} z, z < 1$
10	2 < z+i < 3	20	z+1-i <1	30	$ z > 2$, $ \arg z \le \pi$

Задача 5. Написати розкладання вектора X по векторах P, Q, R

3	адача 5. Написати	розкладання векто	ра X по векторах P ,	Q, R.
1	<i>X</i> =(-1,0,2)	P=(1,-1,0)	Q=(1,2,0)	R=(1,-4,2)
2	X=(4,4,-6)	P=(1,1,0)	Q=(0,-1,2)	R=(2,-1,0)
3	X=(8,3,2)	P=(4,1,1)	<i>Q</i> =(1,1,-1)	R=(2,0,3)
4	X=(1,0,2)	P=(-2,2,0)	Q = (-5,2,-2)	R=(-3,2,2)
5	X=(0,1,2)	P=(1,0,4)	Q = (-2,1,7)	R=(1,0,2)
6	X=(-2,4,7)	P=(0,1,2)	Q=(1,0,1)	R=(-1,2,4)
7	<i>X</i> =(6,12,-1)	P=(1,3,0)	Q=(2,-1,1)	R=(0,-1,2)
8	<i>X</i> =(1,-4,4)	P=(2,1,-1)	Q=(0,3,2)	R=(1,-1,1)
9	<i>X</i> =(-9,5,5)	P=(1,1,1)	Q=(2,0,-3)	R=(-1,2,1)
10	X=(-5,-5,5)	P=(-2,0,1)	Q=(1,3,-1)	R=(0,4,1)
11	X=(13,2,7)	P=(5,1,0)	Q=(2,-1,3)	R=(1,0,-1)
12	<i>X</i> =(-19,-1,7)	P=(0,1,1)	Q = (-2,0,1)	R=(3,1,0)
13	X=(3,-1,4)	P=(1,0,2)	Q=(0,1,1)	R=(2,-1,4)
14	X=(3,31)	P=(3,1,0)	<i>Q</i> =(-1,2,1)	R=(-1,0,2)
15	<i>X</i> =(-1,7,-4)	P=(-1,2,1)	Q=(2,0,3)	R=(1,1,-1)
16	X=(6,5,-14)	P=(1,1,4)	Q = (0, -3, 2)	R=(2,1,-1)
17	X=(6,-1,7)	P=(1,-2,0)	Q = (-1,1,3)	R=(1,0,4)
18	X=(5,15,0)	P=(1,0,5)	Q = (-1,3,2)	R=(0,-1,1)
19	X=(2,-1,11)	P=(1,1,0)	Q=(0,1,-2)	R=(1,0,3)
20	<i>X</i> =(11,5,-3)	P=(1,0,2)	<i>Q</i> =(-1,0,1)	R=(2,5,-3)
21	X=(8,0,5)	P=(2,0,1)	<i>Q</i> =(1,1,0)	R=(4,1,2)
22	X=(3,1,8)	P=(0,1,3)	<i>Q</i> =(1,2,-1)	R=(2,0,-1)
23	X=(8,1,12)	P=(1,2,-1)	Q=(3,0,2)	R=(-1,1,1)
24	X=(-9,-8,-3)	P=(1,4,1)	Q = (-3,2,0)	R=(1,-1,2)
25	<i>X</i> =(-5,9,-13)	P=(0,1,-2)	<i>Q</i> =(3,-1,1)	R=(4,1,0)
26	<i>X</i> =(-15,5,6)	P=(0,1,5)	<i>Q</i> =(3,2,-1)	R=(-1,1,0)
27	X=(8,9,4)	P=(1,0,1)	Q=(0,-2,1)	R=(1,3,0)
28	X=(23,-14,-30)	P=(2,1,0)	Q=(1,-1,0)	R=(-3,2,5)
29	X=(3,1,3)	P=(2,1,0)	Q=(1,0,1)	R=(4,2,1)
30	X=(-1,7,0)	P=(0,3,1)	<i>Q</i> =(1,-1,2)	R=(2,-1,0)

Задача 6. Задані координати точок A,B та C. Знайти кут між векторами \overrightarrow{AB} та \overrightarrow{AC} .

1	A(1,-2,3), B(0,-1,2), C(3,-4,5)	16	A(3,-6,9), B(0,-3,6), C(9,-12,15)

2	A(0,-3,6), B(-12,-3,-3), C(-9,-3,-	17	A(0,2,-4), B(8,2,2), C(6,2,4)
	6)		
3	A(3,3,-1), B(5,5,-2), C(4,1,1)	18	A(3,3,-1), B(5,1,-2), C(4,1,1)
4	A(-1,2,-3), B(3,4,-6), C(1,1,-1)	19	A(-4,3,0), B(0,1,3), C(-2,4,-2)
5	A(-4,-2,0), B(-1,-2,4), C(3,-2,1)	20	A(1,-1,0), B(-2,-1,4), C(8,-1,-1)
6	A(5,3,-1), B(5,2,0), C(6,4,-1)	21	A(7,0,2), B(7,1,3), C(8,-1,2)
7	A(-3,-7,-5), B(0,-1,-2), C(2,3,0)	22	A(2,3,2), B(-1,-3,-1), C(-3,-7,-3)
8	A(2,-4,6), B(0,-2,4), C(6,-8,10)	23	A(2,2,7), B(0,0,6), C(-2,5,7)
9	A(0,1,-2), B(3,1,2), C(4,1,1)	24	A(-1,2,-3), B(0,1,-2), C(-3,4,-5)
10	A(3,3,-1), B(1,5,-2), C(4,1,1)	25	A(0,3,-6), B(9,3,6), C(12,3,3)
11	A(2,1,-1), B(6,-1,-4), C(4,2,1)	26	A(3,3,-1), B(5,1,-2), C(4,1,-3)
12	A(-1,-2,1), B(-4,-2,5), C(-8,-2,2)	27	A(-2,1,1), B(2,3,-2), C(0,0,3)
13	A(6,2,-3), B(6,3,-2), C(7,3,-3)	28	A(1,4,-1), B(-2,4,-5), C(8,4,0)
14	A(0,0,4), B(-3,-6,1), C(-5,-10,-1)	29	A(0,1,0), B(0,2,1), C(1,2,0)
15	A(2,-8,-1), B(4,-6,0), C(-2,-5,-1)	30	A(-4,0,4), B(-1,6,7), C(1,10,9)

Задача 7. Обчислити площу паралелограма, побудованого на векторах a та b .

1 $a = p + 2q, b = 3p - q, p = 1, q = 2, \angle p, q = \pi/6$ 2 $a = 3p + q, b = p - 2q, p = 4, q = 1, \angle p, q = \pi/4$ 3 $a = p - 3q, b = p + 2q, p = 1/5, q = 1, \angle p, q = \pi/2$ 4 $a = 3p - 2q, b = p + 5q, p = 4, q = 1/2, \angle p, q = 5\pi/6$ 5 $a = p - 2q, b = 2p + q, p = 2, q = 3, \angle p, q = 3\pi/4$ 6 $a = p + 3q, b = p - 2q, p = 2, q = 3, \angle p, q = \pi/3$ 7 $a = 2p - q, b = p + 3q, p = 3, q = 2, \angle p, q = \pi/2$ 8 $a = 4p + q, b = p - q, p = 7, q = 2, \angle p, q = \pi/4$ 9 $a = p - 4q, b = 3p + q, p = 1, q = 2, \angle p, q = \pi/6$ 10 $a = p + 4q, b = 2p - q, p = 7, q = 2, \angle p, q = \pi/3$ 11 $a = 3p + 2q, b = p - q, p = 10, q = 1, \angle p, q = \pi/2$ 12 $a = 4p - q, b = p + 2q, p = 5, q = 4, \angle p, q = \pi/4$ 13 $a = 2p + 3q, b = p - 2q, p = 6, q = 7, \angle p, q = \pi/3$ 14 $a = 3p - q, b = p + 2q, p = 3, q = 4, \angle p, q = \pi/3$ 15 $a = 2p + 3q, b = p - 2q, p = 2, q = 3, \angle p, q = \pi/4$ 16 $a = 2p - 3q, b = 3p + q, p = 4, q = 1, \angle p, q = \pi/6$	πυ.	
3 $a = p - 3q, b = p + 2q, p = 1/5, q = 1, \angle p, q = \pi/2$ 4 $a = 3p - 2q, b = p + 5q, p = 4, q = 1/2, \angle p, q = 5\pi/6$ 5 $a = p - 2q, b = 2p + q, p = 2, q = 3, \angle p, q = \pi/3$ 6 $a = p + 3q, b = p - 2q, p = 2, q = 3, \angle p, q = \pi/3$ 7 $a = 2p - q, b = p + 3q, p = 3, q = 2, \angle p, q = \pi/2$ 8 $a = 4p + q, b = p - q, p = 7, q = 2, \angle p, q = \pi/4$ 9 $a = p - 4q, b = 3p + q, p = 1, q = 2, \angle p, q = \pi/6$ 10 $a = p + 4q, b = 2p - q, p = 7, q = 2, \angle p, q = \pi/3$ 11 $a = 3p + 2q, b = p - q, p = 10, q = 1, \angle p, q = \pi/2$ 12 $a = 4p - q, b = p + 2q, p = 5, q = 4, \angle p, q = \pi/4$ 13 $a = 2p + 3q, b = p - 2q, p = 6, q = 7, \angle p, q = \pi/3$ 14 $a = 3p - q, b = p + 2q, p = 3, q = 4, \angle p, q = \pi/3$ 15 $a = 2p + 3q, b = p - 2q, p = 2, q = 3, \angle p, q = \pi/4$	1	$a = p + 2q$, $b = 3p - q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$
4 $a=3p-2q, b=p+5q, p =4, q =1/2, \angle p, q=5\pi/6$ 5 $a=p-2q, b=2p+q, p =2, q =3, \angle p, q=3\pi/4$ 6 $a=p+3q, b=p-2q, p =2, q =3, \angle p, q=\pi/3$ 7 $a=2p-q, b=p+3q, p =3, q =2, \angle p, q=\pi/2$ 8 $a=4p+q, b=p-q, p =7, q =2, \angle p, q=\pi/4$ 9 $a=p-4q, b=3p+q, p =1, q =2, \angle p, q=\pi/6$ 10 $a=p+4q, b=2p-q, p =7, q =2, \angle p, q=\pi/3$ 11 $a=3p+2q, b=p-q, p =10, q =1, \angle p, q=\pi/2$ 12 $a=4p-q, b=p+2q, p =5, q =4, \angle p, q=\pi/4$ 13 $a=2p+3q, b=p-2q, p =6, q =7, \angle p, q=\pi/3$ 14 $a=3p-q, b=p+2q, p =3, q =4, \angle p, q=\pi/3$ 15 $a=2p+3q, b=p-2q, p =2, q =3, \angle p, q=\pi/4$	2	$a = 3p + q$, $b = p - 2q$, $ p = 4$, $ q = 1$, $\angle p, q = \pi/4$
5 $a = p - 2q$, $b = 2p + q$, $ p = 2$, $ q = 3$, $\angle p, q = 3\pi/4$ 6 $a = p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/3$ 7 $a = 2p - q$, $b = p + 3q$, $ p = 3$, $ q = 2$, $\angle p, q = \pi/2$ 8 $a = 4p + q$, $b = p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/4$ 9 $a = p - 4q$, $b = 3p + q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$ 10 $a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$ 11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	3	$a = p - 3q$, $b = p + 2q$, $ p = 1/5$, $ q = 1$, $\angle p, q = \pi/2$
6 $a = p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/3$ 7 $a = 2p - q$, $b = p + 3q$, $ p = 3$, $ q = 2$, $\angle p, q = \pi/2$ 8 $a = 4p + q$, $b = p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/4$ 9 $a = p - 4q$, $b = 3p + q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$ 10 $a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$ 11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	4	$a = 3p - 2q$, $b = p + 5q$, $ p = 4$, $ q = 1/2$, $\angle p, q = 5\pi/6$
7 $a = 2p - q$, $b = p + 3q$, $ p = 3$, $ q = 2$, $\angle p, q = \pi/2$ 8 $a = 4p + q$, $b = p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/4$ 9 $a = p - 4q$, $b = 3p + q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$ 10 $a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$ 11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	5	$a = p - 2q$, $b = 2p + q$, $ p = 2$, $ q = 3$, $\angle p, q = 3\pi/4$
8 $a = 4p + q$, $b = p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/4$ 9 $a = p - 4q$, $b = 3p + q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$ 10 $a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$ 11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	6	$a = p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/3$
9 $a = p - 4q$, $b = 3p + q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$ 10 $a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$ 11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	7	$a = 2p - q$, $b = p + 3q$, $ p = 3$, $ q = 2$, $\angle p$, $q = \pi/2$
10 $a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$ 11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	8	$a = 4p + q$, $b = p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/4$
11 $a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$ 12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	9	$a = p - 4q$, $b = 3p + q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/6$
12 $a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$ 13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	10	$a = p + 4q$, $b = 2p - q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/3$
13 $a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$ 14 $a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$ 15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	11	$a = 3p + 2q$, $b = p - q$, $ p = 10$, $ q = 1$, $\angle p, q = \pi/2$
14 $a=3p-q, b=p+2q, p =3, q =4, \angle p, q=\pi/3$ 15 $a=2p+3q, b=p-2q, p =2, q =3, \angle p, q=\pi/4$	12	$a = 4p - q$, $b = p + 2q$, $ p = 5$, $ q = 4$, $\angle p, q = \pi/4$
15 $a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$	13	$a = 2p + 3q$, $b = p - 2q$, $ p = 6$, $ q = 7$, $\angle p, q = \pi/3$
	14	$a = 3p - q$, $b = p + 2q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/3$
16 $a = 2p - 3q$, $b = 3p + q$, $ p = 4$, $ q = 1$, $\angle p, q = \pi/6$	15	$a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$
	16	$a = 2p - 3q$, $b = 3p + q$, $ p = 4$, $ q = 1$, $\angle p, q = \pi/6$

17	$a = 5p + q$, $b = p - 3q$, $ p = 1$, $ q = 2$, $\angle p, q = \pi/3$
18	$a = 7p - 2q$, $b = p + 3q$, $ p = 1/2$, $ q = 2$, $\angle p, q = \pi/2$
19	$a = 6p - q$, $b = p + q$, $ p = 3$, $ q = 4$, $\angle p, q = \pi/4$
20	$a = 10p + q$, $b = 3p - 2q$, $ p = 4$, $ q = 1$, $\angle p, q = \pi/6$
21	$a = 6p - q$, $b = p + 2q$, $ p = 8$, $ q = 1/2$, $\angle p, q = \pi/3$
22	$a = 3p + 4q$, $b = -p + q$, $ p = 5/2$, $ q = 2$, $\angle p, q = \pi/2$
23	$a = 7p + q$, $b = p - 3q$, $ p = 3$, $ q = 1$, $\angle p, q = 3\pi/4$
24	$a = p + 3q$, $b = 3p - q$, $ p = 3$, $ q = 5$, $\angle p, q = 2\pi/3$
25	$a = 3p + q$, $b = p - 3q$, $ p = 7$, $ q = 2$, $\angle p, q = \pi/4$
26	$a = 5p - q$, $b = p + q$, $ p = 5$, $ q = 3$, $\angle p$, $q = 5\pi/6$
27	$a = 3p - 4q$, $b = p + 3q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/4$
28	$a = 6p - q$, $b = 5p + q$, $ p = 1/2$, $ q = 4$, $\angle p, q = 5\pi/6$
29	$a = 2p + 3q$, $b = p - 2q$, $ p = 2$, $ q = 1$, $\angle p, q = \pi/3$
30	$a = 2p - 3q$, $b = 5p + q$, $ p = 2$, $ q = 3$, $\angle p, q = \pi/2$

Задача 8. Обчислити об'єм трикутної піраміди з вершинами A,B,C,D та її висоту, проведену з вершини D на грань ABC .

	, mperegang erepenning northware the e
1	A(1,-1,2), B(2,1,2), C(1,1,4), D(6,-3,8)
2	A(-4,2,6), B(2,-3,0), C(-10,5,8), D(-5,2,-4)
3	A(7,2,4), B(7,-1,-2), C(3,3,1), D(-4,2,1)
4	A(2,1,4), B(-1,5,-2), C(-7,-3,2), D(-6,-3,6)
5	A(-1,-5,2), B(-6,0,-3), C(3,6,-3), D(-10,6,7)
6	A(0,-1,-1), B(-2,3,5), C(1,-5,-9), D(-1,-6,3)
7	A(5,2,0), B(2,5,0), C(1,2,4), D(-1,1,1)
8	A(2,-1,-2), B(1,2,1), C(5,0,-6), D(-10,9,-7)
9	A(-2,0,-4), B(-1,7,1), C(4,-8,-4), D(1,-4,6)
10	A(14,4,5), B(-5,-3,2), C(-2,-6,-3), D(-2,2,-1)
11	A(1,2,0), B(3,0,-3), C(5,2,6), D(8,4,-9)
12	A(2,-1,2), B(1,2,-1), C(3,2,1), D(-4,2,5)
13	A(1,1,2), B(-1,1,3), C(2,-2,4), D(-1,0,-2)
14	A(2,3,1), B(4,1,-2), C(6,3,7), D(7,5,-3)
15	A(1,1,-1), B(2,3,1), C(3,2,1), D(5,9,-8)
16	A(1,5,-7), B(-3,6,3), C(-2,7,3), D(-4,8,-12)

17	A(-3,4,-7), B(1,5,-4), C(-5,-2,0), D(2,5,4)
18	A(-1,2,-3), B(4,-1,0), C(2,1,-2), D(3,4,5)
19	A(4,-1,3), B(-2,1,0), C(0,-5,1), D(3,2,-6)
20	A(1,-1,1), B(-2,0,3), C(2,1,-1), D(2,-2,-4)
21	A(1,2,0), B(1,-1,2), C(0,1,-1), D(-3,0,1)
22	A(1,0,2), B(1,2,-1), C(2,-2,1), D(2,1,0)
23	A(1,2,-3), B(1,0,1), C(-2,-1,6), D(0,-5,-4)
24	A(3,10,-1), B(-2,3,-5), C(-6,0,-3), D(1,-1,2)
25	A(-1,2,4), B(-1,-2,-4), C(3,0,-1), D(7,-3,1)
26	A(0,-3,1), B(-4,1,2), C(2,-1,5), D(3,1,-4)
27	A(1,3,0), B(4,-1,2), C(3,0,1), D(-4,3,5)
28	A(-2,-1,-1), B(0,3,2), C(3,1,-4), D(-4,7,3)
29	A(-3,-5,6), B(2,1,-4), C(0,-3,-1), D(-5,2,-8)
30	A(2,-4,-3), B(5,-6,0), C(-1,3,-3), D(-10,-8,7)

Задача 9. Задані координати точок A і B. Скласти рівняння прямої AB та рівняння перпендикулярної до AB прямої, що проходить через середину відрізку AB.

1	A(-4,1)	B(12,13)	11	A(-3,2)	B(9,2)	21	A(-6,8)	B(18,4)
2	A(-4,1)	B(8,17)	12	A(-3,2)	<i>B</i> (13,10)	22	A(-7,5)	B(25,13)
3	A(-4,2)	<i>B</i> (12,14)	13	A(-12,3)	B(42,9)	23	A(-5,4)	B(23,20)
4	A(-4,2)	B(8,18)	14	A(-1,4)	B(11,0)	24	A(-2,4)	<i>B</i> (18,24)
5	A(-4,4)	B(12,16)	15	A(-1,4)	B(15,4)	25	A(-9,8)	<i>B</i> (33,16)
6	A(-4,4)	B(8,20)	16	A(-8,4)	<i>B</i> (16,22)	26	A(-5,4)	B(35,36)
7	A(-6,3)	B(10,15)	17	A(-7,3)	B(25,3)	27	A(-6,8)	<i>B</i> (18,32)
8	A(-8,4)	B(4,20)	18	A(-1,4)	B(11,4)	28	A(-8,7)	<i>B</i> (28,21)
9	A(-6,6)	B(10,18)	19	A(-5,2)	B(27,14)	29	A(-3,8)	B(21,4)
10	A(-8,8)	B(4,24)	20	A(-7,4)	B(37,12)	30	A(-7,9)	<i>B</i> (17,3)

Задача 10. Задані координати точок A,B,C,D. Скласти рівняння площини ABC і знайти відстань від точки D до цієї площини. Знайти точку D' симетричну точці D відносно площини ABC.

1	A(1,3,6)	B(2,2,1)	<i>C</i> (-1,0,1)	D(-4,6,-3)
2	A(-2,2,8)	B(2,4,6)	<i>C</i> (-1,5,8)	D(3,-3,-2)
3	A(7,2,-4)	<i>B</i> (7,-1,2)	C(6,3,-7)	D(3,-8,-6)
4	A(2,1,4)	<i>B</i> (-1,5,-2)	C(-7,-3,2)	D(-3,3,6)
5	A(-1,-5,2)	<i>B</i> (-6,0,-3)	C(3,6,-3)	D(-10,6,7)
6	A(0,-1,-1)	B(3,-2,3)	C(0,2,-7)	D(-30,10,6)
7	A(5,2,0)	B(2,5,0)	C(1,2,4)	D(-1,1,1)
8	A(2,-1,-2)	B(1,2,1)	C(5,0,-6)	D(-10,9,-7)

9	A(-2,0,-4)	B(-1,7,1)	C(4,-8,-4)	D(1,-4,6)
10	A(1,3,0)	B(4,-1,2)	C(3,0,1)	D(4,3,0)
11	A(-2,3,-5)	B(4,0,-3)	C(-3,4,-6)	D(1,1,1)
12	A(2,-1,2)	B(1,2,-1)	C(3,2,1)	D(-4,2,5)
13	A(1,1,2)	B(-1,1,3)	C(2,-2,4)	D(-1,0,-2)
14	A(2,3,1)	B(4,1,-2)	C(6,3,7)	D(7,5,-3)
15	A(1,1,-1)	B(2,3,1)	C(3,2,1)	D(5,12,-8)
16	A(1,5,-7)	B(-3,6,3)	C(-2,7,3)	D(-4,8,-12)
17	A(-4,2,6)	B(2,-3,0)	C(-10,5,8)	D(-9,-5,5)
18	A(-1,2,-3)	B(4,-1,0)	C(2,1,-2)	D(3,4,5)
19	A(4,-1,3)	B(-2,1,0)	C(0,-5,1)	D(3,2,-6)
20	A(2,-3,1)	B(4,-1,5)	C(7,2,-1)	D(1,2,3)
21	A(1,2,0)	B(1,-1,2)	C(0,1,-1)	D(-3,0,1)
22	A(1,0,2)	<i>B</i> (1,2,-1)	C(2,-2,1)	D(2,1,0)
23	A(1,2,-3)	B(1,0,1)	<i>C</i> (-2,-1,6)	D(-2,-5,-4)
24	A(3,10,-1)	B(-2,3,-5)	C(-6,0,-3)	D(1,-1,2)
25	A(-1,2,4)	B(-1,-2,-4)	<i>C</i> (-3,0,-1)	D(0,6,2)
26	A(0,-3,1)	B(-4,1,2)	C(2,-1,5)	D(3,1,-4)
27	A(1,3,0)	B(4,-1,2)	C(3,0,1)	D(-4,3,5)
28	A(-2,-1,-1)	B(0,3,-40)	<i>C</i> (4,1,-4)	D(8,9,19)
29	A(-3,-5,6)	B(3,1,-4)	C(0,-3,0)	D(-7,20,-13)
30	A(2,-4,-3)	B(5,-6,0)	<i>C</i> (-1,3,-3)	D(-10,-8,11)

Задача 11. Задані рівняння двох площин P_1 і P_2 . Знайти кут між площинами. Скласти канонічне рівняння їх лінії перетину.

No	P_1	P_2
1	4x + y + z + 2 = 0	2x-y-3z-8=0
2	2x - 3y + z + 6 = 0	x-3y-2z+3=0
3	6x - 5y - 4z + 8 = 0	6x + 5y + 3z + 4 = 0
4	6x - 7y - 4z - 2 = 0	x+7y-z-5=0
5	4x + y - 3z + 2 = 0	2x - y + z - 8 = 0
6	5x + y - 3z + 4 = 0	x - y + 2z + 2 = 0
7	x + 5y + 2z + 11 = 0	x-y-z-1=0
8	2x+3y+z+6=0	x-3y-2z+3=0
9	x-2y+z-4=0	2x + 2y - z - 8 = 0
10	2x + y + z - 2 = 0	2x - y - 3z + 6 = 0
11	2x - 3y - 2z + 6 = 0	x - 3y + z + 3 = 0
12	6x - 5y + 3z + 8 = 0	6x + 5y - 4z + 4 = 0
13	3x + 3y + z - 1 = 0	2x-3y-2z+6=0

14	3x + 4y + 3z + 1 = 0	2x - 4y - 2z + 4 = 0
15	2x + 3y - 2z + 6 = 0	x-3y+z+3=0
16	x-3y+z+2=0	x + 3y + 2z + 14 = 0
17	x+5y+2z-5=0	2x - 5y - z + 5 = 0
18	6x-7y-z-2=0	x+7y-4z-5=0
19	x - y + z - 2 = 0	x-2y-z+4=0
20	x + 5y - z + 11 = 0	x - y + 2z - 1 = 0
21	x+y-2z-2=0	x - y + z + 2 = 0
22	x - 3y + 2z + 2 = 0	x + 3y + z + 14 = 0
23	x + y + z - 2 = 0	x - y - 2z + 2 = 0
24	3x + y - z - 6 = 0	3x - y + 2z + 8 = 0
25	3x + 4y - 2z + 1 = 0	2x - 4y + 3z + 4 = 0
26	x - y - z - 2 = 0	x-2y+z+4=0
27	3x+3y-2z-1=0	2x-3y+z+6=0
28	8x - y - 3z - 1 = 0	x + y + z + 10 = 0
29	x + 5y - z - 5 = 0	2x - 5y + 2z + 5 = 0
30	5x + y + 2z + 4 = 0	x - y - 3z + 2 = 0

Задача 12. Лінія задана рівнянням у полярній системі координат. Визначити рівняння кривої у прямокутній декартовій системі координат, в якої початок координат збігається з полюсом, а невід'ємна піввісь абсцис — з полярною віссю. Звести це рівняння до канонічного вигляду і визначити тип кривої.

				,	
1	$r = \frac{2}{5 + 4\cos\varphi}$	11	$r = \frac{3}{5 - 4\cos\varphi}$	21	$r = \frac{1}{5 - 3\cos\varphi}$
2	$r = \frac{1}{3 - 2\cos\varphi}$	12	$r = \frac{4}{3 + 2\cos\varphi}$	22	$r = \frac{4}{7 - 5\cos\varphi}$
3	$r = \frac{4}{4 - 3\cos\varphi}$	13	$r = \frac{1}{4 + 3\cos\varphi}$	23	$r = \frac{6}{7 + 5\cos\varphi}$
4	$r = \frac{5}{5 - 4\cos\varphi}$	14	$r = \frac{2}{5 + 3\cos\varphi}$	24	$r = \frac{1}{6 + 2\cos\varphi}$
5	$r = \frac{1}{3 + \cos \varphi}$	15	$r = \frac{2}{6 + 4\cos\varphi}$	25	$r = \frac{4}{5 + 2\cos\varphi}$
6	$r = \frac{7}{3 - \cos \varphi}$	16	$r = \frac{3}{6 - 4\cos\varphi}$	26	$r = \frac{6}{7 + 3\cos\varphi}$
7	$r = \frac{8}{4 + 2\cos\varphi}$	17	$r = \frac{7}{4 - 2\cos\varphi}$	27	$r = \frac{1}{5 + \cos \varphi}$

8	$r = \frac{1}{2 - \cos \varphi}$	18	$r = \frac{5}{2 + \cos \varphi}$	28	$r = \frac{3}{5 - 2\cos\varphi}$
9	$r = \frac{3}{7 - 4\cos\varphi}$	19	$r = \frac{5}{7 + 4\cos\varphi}$	29	$r = \frac{4}{7 - 3\cos\varphi}$
10	$r = \frac{2}{4 + \cos \varphi}$	20	$r = \frac{3}{4 - \cos \varphi}$	30	$r = \frac{2}{6 - 2\cos\varphi}$

Зразок розв'язання задач

Задача 1. Виконати зазначені дії. Відповідь уявити в алгебраїчній формі $\frac{(1+i^{47})(2-i)}{(3+i)^2}\,.$

Рішення

Обчислимо спочатку $i^{47} = i \cdot (i^2)^{23} = i(-1)^{23} = -i$. Тоді маємо $\frac{(1+i^{47})(2-i)}{(3+i)^2} = \frac{(1-i)(2-i)}{9+6i-1} = \frac{1-3i}{2(4+3i)} \cdot \frac{4-3i}{4-3i} = \frac{-5-15i}{2(16+9)} = \frac{-1-5i}{10}.$

Задача 2. Виконати дії. Представити результат у показниковій та алгебраїчній формі.

$$\frac{(\sqrt{3}+i)^{46}(\overline{1-i\sqrt{3}})}{(-2-2i)^{28}}.$$

Рішення

Обчислимо модулі та аргументи комплексних чисел $z_1 = \sqrt{3} + i$, $|z_1| = \sqrt{3+1} = 2$, $\arg z_1 = \arctan(1/\sqrt{3}) = \pi/6$,

$$z_2 = \overline{1 - i\sqrt{3}} = 1 + i\sqrt{3}, \quad |z_2| = \sqrt{1 + 3} = 2, \quad \arg z_2 = \arctan\sqrt{3} = \pi/3,$$

$$z_3 = -2 - 2i, \quad |z_3| = \sqrt{4 + 4} = 2\sqrt{2},$$

$$\arg z_3 = \arctan 1 - \pi = \pi/4 - \pi = -3\pi/4.$$

Запишемо всі числа в показниковій формі: $z_1 = 2e^{i\pi/6}, z_2 = 2e^{i\pi/3}, z_3 = 2\sqrt{2}e^{-i3\pi/4}.$

Подальші дії виконуємо в показниковій формі. Для переходу до алгебраїчної формі скористаємося формулою Ейлера:

$$\frac{(\sqrt{3}+i)^{46}(\overline{1-i\sqrt{3}})}{(-2-2i)^{28}} = \frac{(2e^{i\pi/6})^{46}}{(2\sqrt{2}e^{-i3\pi/4})^{28}} = \frac{2^{47}e^{i8\pi}}{2^{42}e^{-i21\pi}} = 2^{5}e^{i29\pi} =$$

$$= 32e^{i(28\pi+\pi)} = 32e^{i\pi} = 32(\cos\pi + i\sin\pi) = -32.$$

Задача 3. обчислити значення $\sqrt[4]{-1}$ і побудувати їх на площині комплексної змінної.

Рішення

Обчислимо модуль і аргумент комплексного числа z = -1:

$$r = |-1| = 1$$
, $\varphi = \arg(-1) = \pi$.

Скористаємося формулою для обчислення кореня з комплексного числа

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = 0, 1, ..., n - 1.$$
 Отримаємо $\sqrt[4]{-1} = \sqrt[4]{1} \left(\cos \frac{\pi + 2\pi k}{4} + i \sin \frac{\pi + 2\pi k}{4} \right), \quad k = 0, 1, 2, 3.$

Знайдемо чотири значення кореня:

$$z_{0} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4},$$

$$z_{1} = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4},$$

$$z_{2} = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = \cos\frac{3\pi}{4} - i\sin\frac{3\pi}{4},$$

$$z_{3} = \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} = \cos\frac{\pi}{4} - i\sin\frac{\pi}{4}.$$

Всі значення $\sqrt[4]{-1}$ лежать на одиничному колі з центром в нульовій точці і ділять її на чотири рівні частини.

Задача 4. Побудувати на площині комплексної змінної множину точок, що задовольняють умові $Re \frac{1}{\overline{z}} \ge \frac{1}{2}$.

Рішення

Для отримання даної умови в декартових координатах підставимо $z = x + i \ y$ в ліву частину нерівності. Отримаємо:

$$\operatorname{Re} \frac{1}{x+iy} = \operatorname{Re} \frac{1}{x-iy} = \operatorname{Re} \frac{x+iy}{(x-iy)(x+iy)} = \operatorname{Re} \frac{x+iy}{x^2+y^2} = \frac{x}{x^2+y^2}.$$

Задана умова приймає вид

$$\frac{x}{x^2 + y^2} \ge \frac{1}{2}$$
 a fo $2x \ge x^2 + y^2$.

Виділяючи повний квадрат по зміною x, отримаємо: $(x-1)^2 + y^2 \le 1$. Шукана множина являє собою одиничне коло з центром в точці (1,0). Побудуємо його на малюнку.

Задача 5. Написати розкладання вектора \vec{X} =(15; -20; -1) по векторах \vec{P} =(0; 2; 1), \vec{Q} =(0; 1; -1) та \vec{R} =(5; -3; 2).

Рішення

Вектор \vec{X} допускає розкладання по векторах \vec{P} , \vec{Q} , \vec{R} , якщо ці вектори лінійно незалежні, тобто якщо їхній мішаний добуток не дорівнює нулю:

$$(\vec{P} \times \vec{Q}) \cdot \vec{R} = \begin{vmatrix} 0 & 2 & 1 \\ 0 & 1 & -1 \\ 5 & -3 & 2 \end{vmatrix} = 0 - 10 - 0 - 5 - 0 - 0 = -15 \neq 0.$$

Розкласти вектор \vec{X} по векторах \vec{P} , \vec{Q} та \vec{R} – це значить представити його у вигляді лінійної комбінації цих векторів, тобто $\vec{X} = \alpha \vec{P} + \beta \vec{Q} + \gamma \vec{R}$, де α , β та γ – коефіцієнти розкладання. У нашому випадку будемо мати рівняння:

$$(15; -20; -1) = \alpha(0; 2; 1) + \beta(0; 1; -1) + \gamma(5; -3; 2)$$
.

Два вектори, що задані своїми координатами, рівні тоді і лише тоді, коли дорівнюють їхні однойменні координати. Зрівнявши відповідні координати, одержимо систему:

$$\begin{cases} 0 \cdot \alpha + 0 \cdot \beta + 5\gamma = 15; \\ 2\alpha + \beta - 3\gamma = -20; \\ \alpha - \beta + 2\gamma = -1. \end{cases}$$

3 першого рівняння знаходимо $\gamma = 3$ і підставляємо в друге та третє:

$$\begin{cases} \gamma = 3; \\ 2\alpha + \beta = -11; \\ \alpha - \beta = -7. \end{cases}$$

Додаючи друге та третє рівняння, одержимо $3\alpha = -18$, звідки $\alpha = -6$. З третього рівняння виразимо $\beta = \alpha + 7$, отже $\beta = 1$.

Таким чином, розкладання вектора \vec{X} по векторах \vec{P} , \vec{Q} , \vec{R} має вигляд:

$$\vec{X} = -6\vec{P} + \vec{Q} + 3\vec{R}.$$

Задача 6. Задані координати точок A(-2,4,-6), B(0,2,-4), C(-6,8,-10). Знайти кут між векторами AB та AC.

Розв'язання

Обчислимо координати векторів AB(2,-2,2) та AC(-4,4,4) та їхні довжини

$$|AB| = \sqrt{2^2 + (-2)^2 + 2^2} = \sqrt{12} = 2\sqrt{3},$$

 $|AC| = \sqrt{(-4)^2 + 4^2 + 4^2} = \sqrt{48} = 4\sqrt{3}.$

Знайдемо скалярний добуток:

$$AB \cdot AC = 2 \cdot (-4) - 2 \cdot 4 + 2 \cdot 4 = -8$$
.

Обчислимо значення косинуса кута між векторами:

$$\cos \varphi = \frac{AB \cdot AC}{|AB| \cdot |AC|} = \frac{-8}{2\sqrt{3} \cdot 4\sqrt{3}} = -\frac{1}{3}.$$

Задача 7. Обчислити площу паралелограма, побудованого на векторах a=p+2q та b=3p-q, якщо $|p|=1, |q|=2, \angle p, q=\pi/6$.

Розв'язання

Користуючись властивостями векторного добутку, обчислимо площу паралелограму як модуль векторного добутку векторів a та b:

$$S = |a \times b| = |(p+2q) \times (3p-q)| = |3p \times p - p \times q + 6q \times p - 2q \times q| =$$
$$= |-p \times q - 6p \times q| = |-8p \times q| = 8|p||q|\sin p, q = 8 \cdot 1 \cdot 2\sin(\pi/6) = 8.$$

Задача 8. Обчислити об'єм трикутної піраміди з вершинами A(1,3,6), B(2,2,1), C(-1,0,1), та її висоту, проведену з вершини D(-4,6,-3) на грань ABC.

Розв'язання

Знайдемо координати векторів AB(1,-1,-5), AC(-2,-3,-5) і AD(-5,3,-9) та їх мішаний добуток:

$$(AB \times AC)AD = \begin{vmatrix} 1 & -1 & -5 \\ -2 & -3 & -5 \\ -5 & 3 & -9 \end{vmatrix} = 27 - 25 + 30 + 75 + 15 + 18 = 140.$$

Об'єм трикутної піраміди АВСО обчислимо за формулою

$$V = \frac{1}{6} |(AB \times AC)AD| = \frac{140}{6} = \frac{70}{3}.$$

Знайдемо векторний добуток векторів, які визначають основу піраміди:

$$AB \times AC = \begin{vmatrix} i & j & k \\ 1 & -1 & -5 \\ -2 & -3 & -5 \end{vmatrix} = i \begin{vmatrix} -1 & -5 \\ -3 & -5 \end{vmatrix} - j \begin{vmatrix} 1 & -5 \\ -2 & -5 \end{vmatrix} + k \begin{vmatrix} 1 & -1 \\ -2 & -3 \end{vmatrix} =$$

$$= -10i + 15j - 5k.$$

Обчислимо площу трикутника ABC як половину площі паралелограма, побудованого на векторах AB та AC:

$$S = |AB \times AC| = \sqrt{(-10)^2 + 15^2 + (-5)^2} = 5\sqrt{4 + 9 + 1} = 5\sqrt{14}.$$

Довжину висоти піраміди знайдемо з відомої формули її об'єму

— 1 с. и эрімун

$$V = \frac{1}{3}SH$$
, звідки

$$H = |AD| = \frac{3V}{S} = \frac{3 \cdot (70/3)}{5\sqrt{14}} = \sqrt{14}$$
.

Задача 9. Задані точки A(-8,4) і B(16,22). Скласти рівняння прямої AB та рівняння перпендикулярної до AB прямої, що проходить через середину відрізку AB.

Розв'язання

Рівняння прямої, що проходить через дві точки $A(x_1, y_1)$ і $B(x_2; y_2)$:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}.$$

За умовою задачі одержимо

$$\frac{y-4}{22-4} = \frac{x-(-8)}{16-(-8)} \Rightarrow \frac{y-4}{18} = \frac{x+8}{24} \Rightarrow \frac{y-4}{3} = \frac{x+8}{4}.$$

Напрямний вектор цієї прямої q(3,4).

Координати точки P(x; y), що лежить у середині відрізка AB між точками $A(x_1, y_1)$ та $B(x_2; y_2)$, обчислимо за формулами:

$$x = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$.

Підставимо у формулу значення координат точок A і B. Тоді:

$$x = \frac{-8+16}{2} = 4$$
, $y = \frac{4+22}{2} = 13$, $P(4;13)$.

Вектор q(3,4) є нормальним вектором прямої перпендикулярної до прямої AB. Отже, рівняння цієї прямої має вигляд

$$3(x-4)+4(y-13)=0$$

або 3x + 4y - 62 = 0.

Задача 10. Задані координати точок A(3;3;1), B(4;0;-1), C(5;1;-1), D(2;-1;1). Скласти рівняння площини ABC і знайти відстань від точки D до цієї площини. Знайти точку D' симетричну точці D відносно площини ABC.

Розв'язання

Нехай M(x; y; z) –довільна точка площини ABC. Тоді вектори

 $\overrightarrow{AM}(x-3;y-3;z-1), \ \overrightarrow{AB}(1;-3;-2)$ та $\overrightarrow{AC}(2;-2;-2)$ компланарні, тому

$$\begin{vmatrix} x-3 & y-3 & z-1 \\ 1 & -3 & -2 \\ 2 & -2 & -2 \end{vmatrix} = 0.$$

Обчислимо цей визначник:

$$6(x-3)-4(y-3)-2(z-1)+6(z-1)-4(x-3)+2(y-3)=0.$$

Розкриємо дужки, приведемо подібні доданки та скоротимо на 2. Одержимо рівняння площини ABC:

$$x - y + 2z - 2 = 0$$
.

Помножимо загальне рівняння площини на нормувальний множник

$$\lambda = \frac{1}{\sqrt{1^2 + (-1)^2 + 2^2}} = \frac{1}{\sqrt{6}},$$

одержимо нормальне рівняння площини АВС:

$$\frac{x}{\sqrt{6}} - \frac{y}{\sqrt{6}} + \frac{2z}{\sqrt{6}} - \frac{2}{\sqrt{6}} = 0.$$

Нормувальний множник λ беремо із знаком "+", бо вільний член рівняння площини від'ємний.

Відстань від точки D до площини ABC знайдемо, підставивши координати точки D у ліву частину нормального рівняння площини і взявши модуль отриманого результату:

$$d = \left| \frac{2}{\sqrt{6}} + \frac{1}{\sqrt{6}} + \frac{2}{\sqrt{6}} - \frac{2}{\sqrt{6}} \right| = \frac{3}{\sqrt{6}} = \sqrt{\frac{3}{2}}.$$

Для визначення координат точки D', що симетрична точці D відносно площини ABC, складемо рівняння прямої, що проходить через точку D(2;-1;1) перпендикулярно цій площині. За напрямний вектор прямої візьмемо нормальний вектор площини ABC: $\vec{n} = (1;-1;2)$. Отже, рівняння прямої

$$\frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-1}{2}.$$

Обчислимо координати точки K перетину цієї прямої з площиною ABC. Параметричні рівняння прямої

$$\begin{cases} x = t + 2; \\ y = -t - 1; \\ z = 2t + 1. \end{cases}$$

Для визначення t в точці перетину прямої та площини, підставимо x, y та z з параметричних рівнянь у рівняння площини:

$$t+2+t+1+4t+2-2=0 \implies 6t+3=0 \implies t=-0.5$$
.

Підставивши t = -0.5 у параметричні рівняння прямої, одержимо координати точки K перетину прямої та площини:

$$\begin{cases} x_K = -0.5 + 2 = 1.5; \\ y_K = 0.5 - 1 = -0.5; \\ z_K = -1 + 1 = 0. \end{cases}$$

Точка K поділяє відрізок DD' навпіл, тому

$$\frac{x_D + x_{D'}}{2} = x_K; \frac{y_D + y_{D'}}{2} = y_K; \frac{z_D + z_{D'}}{2} = z_K.$$

3 останніх трьох рівнянь одержимо

$$\begin{cases} x_{D'} = 2x_K - x_D; \\ y_{D'} = 2y_K - y_D; \Rightarrow \\ z_{D'} = 2z_K - z_D \end{cases} \begin{cases} x_{D'} = 2 \cdot 1, 5 - 2 = 1; \\ y_{D'} = 2 \cdot (-0, 5) + 1 = 0; \\ z_{D'} = 2 \cdot 0 - 1 = -1. \end{cases}$$

Таким чином, D' = (1; 0; -1).

Задача 11. Задані рівняння двох площин $P_1: 2x + y - 3z - 2 = 0$ та $P_2: 2x - y + z + 6 = 0$. Знайти кут між площинами. Скласти канонічне рівняння їх лінії перетину.

Розв'язання

В умові задачі задані загальні рівняння площин, отже відомі координати нормальних векторів цих площин $\vec{n}_1(2;1;-3)$ та $\vec{n}_2(2;-1;1)$. Кут між площинами знайдемо як кут між їх нормальними векторами:

знайдемо як кут між їх нормальними векторами:
$$\cos\vec{n}_1,\vec{n}_2=\frac{\vec{n}_1\cdot\vec{n}_2}{|\vec{n}_1||\vec{n}_2|}=\frac{2\cdot 2+1\cdot (-1)-3\cdot 1}{\sqrt{4+1+9}\sqrt{4+1+1}}=\frac{0}{\sqrt{14}\sqrt{6}}=0$$

Отже, площини P_1 та P_2 перпендикулярні.

Напрямним вектором прямої перетину цих площин ϵ векторний добуток нормальних векторів

$$\vec{l} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -3 \\ 2 & -1 & 1 \end{vmatrix} = -2\vec{i} - 8\vec{j} - 4\vec{k}.$$

Для визначення координат будь-якої точки шуканої прямої візьмемо, наприклад, z=0 та розв'яжемо систему рівнянь

$$\begin{cases} 2x + y - 2 = 0; \\ 2x - y + 6 = 0, \end{cases} \Leftrightarrow \begin{cases} 4x + 4 = 0; \\ 2y - 8 = 0, \end{cases} \Leftrightarrow \begin{cases} x = -1; \\ y = 4. \end{cases}$$

Таким чином, обрано точку M(-1;4;0). Канонічне рівняння лінії перетину плошин

$$\frac{x+1}{-2} = \frac{y-4}{-8} = \frac{z}{-4} \implies \frac{x+1}{1} = \frac{y-4}{4} = \frac{z}{2}.$$

 $r = \frac{3}{8 - 4\cos\phi}$. Визначити рівняння кривої у прямокутній декартовій системі

координат, в якої початок координат збігається з полюсом, а невід'ємна піввісь абсцис — з полярною віссю. Звести це рівняння до канонічного вигляду і визначити тип кривої.

Розв'язання

Для визначення рівняння даної кривої у прямокутній декартовій системі координат підставимо у рівняння кривої у полярних координатах, замість змінних r та φ , їхні значення у декартових координатах

$$\begin{cases} r = \sqrt{x^2 + y^2}; \\ \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}. \end{cases}$$

Маємо

$$\sqrt{x^2 + y^2} \left(8 - 4 \frac{x}{\sqrt{x^2 + y^2}} \right) = 3 \text{ ago } 8\sqrt{x^2 + y^2} = 3 + 4x.$$

Піднесемо обидві частини рівняння до квадрата та зведемо подібні доданки:

$$48x^2 - 24x + 64y^2 - 9 = 0$$

Для зведення одержаного рівняння до канонічного вигляду виділимо повний квадрат по змінній x:

$$48\left(x - \frac{1}{4}\right)^2 + 64y^2 = 12.$$

Розділивши обидві частини рівняння на 12, одержимо канонічне рівняння еліпса з центром у точці (1/4;0) та півосями $a=\frac{1}{2}, \quad b=\frac{\sqrt{3}}{4}$:

$$\frac{\left(x - \frac{1}{4}\right)^2}{\frac{1}{4}} + \frac{y^2}{\frac{3}{16}} = 1.$$