Série 11

L'exercise 1 sera discuté pendant le cours le lundi 5 decembre. L'exercice 3 (*) peut être rendu le jeudi 8 decembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a)	Déterminer si les énoncés proposés sont vrais ou faux.	
	• Soient $m, n > 1$ des entiers positifs et $F: M_{m \times n}(K) \to M_{m \times n}(K)$ une applica	ati

• Soient m, n > 1 des entiers positifs et $F : M_{m \times n}(K) \to M_{m \times n}(K)$ une application linéaire. Alors il existe $k \in \mathbb{N}$ tel que dim Ker (F) = km ou dim Ker (F) = kn.

• Soient m, n > 1 des entiers positifs et $F : K^m \to K^n$ une application linéaire. Soient $\mathcal{B}_1, \tilde{\mathcal{B}}_1$ deux bases de K^m et $\mathcal{B}_2, \tilde{\mathcal{B}}_2$ deux bases de K^n . Alors dim Ker $([F]_{\mathcal{B}_1, \mathcal{B}_2}) = \dim \operatorname{Ker}([F]_{\tilde{\mathcal{B}}_1, \tilde{\mathcal{B}}_2})$.

○ vrai ○ faux

• Soient V un K-espace vectoriel de dimension finie, \mathcal{B} une base de V, et $I:V\to V$ l'application identité. Alors $[I]_{\mathcal{B},\mathcal{B}}$ est toujours la matrice d'identité.

○ vrai ○ faux

• On considère l'opérateur de décalage à droite $\Sigma : \mathbb{R}^n \to \mathbb{R}^n$, $\Sigma(v_1, \ldots, v_n) := (0, v_1, \ldots, v_{n-1})$. Soit \mathcal{B} une base de \mathbb{R}^n . Alors $[\Sigma]_{\mathcal{B},\mathcal{B}}$ est une matrice triangulaire inférieure.

○ vrai ○ faux

• Soient n > 1 un entier positif et $A, B \in M_{n \times n}(K)$. Donc $\det(A + B) = \det(A) + \det(B)$.

○ vrai ○ faux

• Soient n > 1 un entier positif, $A \in M_{n \times n}(K)$ et $\alpha \in K$. Donc $\det(\alpha A) = \alpha \det(A)$.

○ vrai ○ faux

(b) Soient U, V, W des K-espaces vectoriels de dimension finie. Quelle condition est nécessaire pour que l'application suivante soit surjective?

$$\begin{array}{ccc} L(U,V)\times L(V,W) & \longrightarrow & L(U,W) \\ (F,G) & \longmapsto & G\circ F. \end{array}$$

 \bigcirc dim $(W) \le \dim(U)$ et dim $(W) \ge \dim(V)$.

 \bigcirc dim $(V) \le \dim(U)$ et dim $(V) \ge \dim(W)$.

- \bigcirc dim $(V) \ge \dim(U)$ ou dim $(V) \ge \dim(W)$.
- Aucun des autres assertions n'est correcte.

Exercice 2

Soient K un corps, $n \ge 1$ un entier positif, et $\operatorname{Tr}: M_{n \times n}(K) \to K$ l'application trace. Soient E la base canonique de $M_{n \times n}(K)$ et G = (1) la base canonique de K. Trouver la matrice de Tr par rapport à ces bases.

Exercice $3 (\star)$

La matrice

$$A = \begin{pmatrix} 1 & 4 & 3 & 2 \\ 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

décrit une application linéaire $F_A: \mathbb{C}^4 \to \mathbb{C}^4$ dans la base canonique \mathcal{B} de \mathbb{C}^4 . Décrire la matrice $[F_A]_{P,P}$ dans la base

$$P = \left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-i\\-1\\i \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\i\\-1\\-i \end{pmatrix} \right).$$

Exercice 4

On considère les polynômes suivants dans $\mathbb{R}_2[t]$:

$$r_1(t) = t^2,$$
 $r_2(t) = (t-1)^2,$ $r_3(t) = (t+1)^2,$

et

$$q_1(t) = 1,$$
 $q_2(t) = t + 1,$ $q_3(t) = t^2 + t + 1.$

- i) Montrer que $R = \{r_1, r_2, r_3\}$ et $Q = \{q_1, q_2, q_3\}$ sont des bases de $\mathbb{R}_2[t]$. Si B est la base canonique de $\mathbb{R}_2[t]$, déterminer les deux matrices de passage $[I]_{R,B}$ et $[I]_{Q,B}$.
- ii) Déterminez la matrice de passage $[I]_{R,Q}$.
- iii) Déterminez les coordonnées du polynôme

$$w(t) := 3r_1(t) + 2r_2(t) - r_3(t)$$

dans la base Q.

Exercice 5

Soit $A:\mathbb{C}^2\to\mathbb{C}_2[t]$ l'application linéaire définie par

$$A(z_1, z_2) = (2+i)z_1 + iz_2t + (z_1 + z_2)t^2.$$

Soient E la base canonique de \mathbb{C}^2 et B la base canonique de $\mathbb{C}_2[t]$. Soient

$$F = (f_1, f_2) = ((1, -i), (-2, 1 + i))$$

 et

$$G = (g_1, g_2, g_3) = (t - 1, it + t^2, 2 - t + it^2).$$

- a) Montrer que F est une base de \mathbb{C}^2 et que G est une base de $\mathbb{C}_2[t]$.
- b) Déterminer la matrice $[A]_{E,B}$.
- c) Déterminer les matrices de passage $[I]_{F,E}$, $[I]_{G,B}$ et $[I]_{B,G}$.
- d) Déterminer $[A]_{F,G}$.

Exercice 6

Soit $\pi, \sigma \in S_6$ avec

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 3 & 1 & 6 & 2 \end{pmatrix} \qquad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 3 & 5 & 1 & 4 \end{pmatrix}.$$

- i) Calculer $\pi \circ \sigma$, $\sigma \circ \pi$, π^{-1} , σ^{-1} .
- ii) Écrire π comme composition de transpositions.
- iii) Calculer $sgn(\pi)$ et $sgn(\sigma)$.

Exercice 7

i) Calculer le déterminant de la matrice

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ -1 & -2 & 4 \end{pmatrix}.$$

ii) Calculer le déterminant de la matrice en utilisant la définition.

$$B = \begin{pmatrix} 1 & 2 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 2 & 1 & 2 \\ 2 & -1 & 4 & 0 \end{pmatrix}.$$