Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 12

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Rația progresiei geometrice este $q = \frac{b_6}{b_5} = 2$	2p
	$b_8 = b_6 q^2 = 6 \cdot 4 = 24$	3 p
2.	$b_8 = b_6 q^2 = 6 \cdot 4 = 24$ $f(\sqrt{3}) = 3 - \sqrt{3} - 3 = -\sqrt{3}$	2p
	$f\left(f\left(\sqrt{3}\right)\right) = f\left(-\sqrt{3}\right) = 3 + \sqrt{3} - 3 = \sqrt{3}$	3p
3.	$\lg x^2 = \lg (5x+6) \Rightarrow x^2 - 5x - 6 = 0$	3 p
	x = -1, care nu convine; $x = 6$, care convine	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Cifra sutelor, egală cu cifra unităților, poate fi aleasă în 9 moduri, iar, pentru fiecare alegere a cifrei sutelor, cifra zecilor poate fi aleasă în câte 10 moduri, deci sunt 90 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{90}{900} = \frac{1}{10}$	1p
5.	$BC \parallel Ox \text{ și } A \in Oy \Rightarrow AO \perp BC$, deci O este ortocentrul triunghiului $ABC \Leftrightarrow OC \perp AB$	2p
	Cum $m_{OC} = -\frac{2}{a}$ și $m_{AB} = 5$, obținem că $-\frac{2}{a} \cdot 5 = -1$, deci $a = 10$	3 p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \sin C = \frac{6\sin B}{3\sqrt{6}} \text{ si, cum } \sin B = \frac{\sqrt{3}}{2} \text{, obtinem } \sin C = \frac{\sqrt{2}}{2}$	3p
	Cum $C < \pi - \frac{\pi}{3}$, obținem $C = \frac{\pi}{4}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A\left(\sqrt{2}\right) = \begin{pmatrix} 1 & \sqrt{2} \\ -\sqrt{2} & 1 \end{pmatrix} \Rightarrow \det\left(A\left(\sqrt{2}\right)\right) = \begin{vmatrix} 1 & \sqrt{2} \\ -\sqrt{2} & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-\sqrt{2}\cdot \left(-\sqrt{2}\right)=1+2=3$	3p
b)	$\det A(a) = 1 + a^2$, pentru orice număr real a	2p
	$1+a^2>0$, pentru orice număr real $a\Rightarrow \det A(a)\neq 0$, deci $A(a)$ este inversabilă pentru orice număr real a	3 p
c)	$A(1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \ A(1) \cdot A(1) = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}, \ A(1) \cdot A(1) \cdot A(1) \cdot A(1) \cdot A(1) = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix} = -4I_2$	3 p
	$A(1) \cdot A(1) \cdot A(1) \cdot A(1) \cdot A(1) = -4I_2 \cdot A(1) = -4A(1)$, deci $k = -4$	2p

2.a)	$\frac{1}{3} \circ \frac{1}{3} = 3 \cdot \frac{1}{3} \cdot \frac{1}{3} - 2 \cdot \frac{1}{3} - 2 \cdot \frac{1}{3} + 2 =$	3p
	$=\frac{1}{3}-\frac{2}{3}-\frac{2}{3}+2=1$, care este număr întreg	2p
b)	$x \circ x = 3x^2 - 4x + 2$, pentru orice număr real x	2p
	$x \circ x \ge \frac{2}{3} \Leftrightarrow 3x^2 - 4x + \frac{4}{3} \ge 0$ şi, cum $\Delta = 0$, obţinem că $x \circ x \ge \frac{2}{3}$, pentru orice număr real x	3p
c)	$x \circ 1 = 1 \circ x = x$, pentru orice număr real x, deci $e = 1$	2p
	$x \circ x \circ x = 1 \Leftrightarrow 3^2 \left(x - \frac{2}{3}\right)^3 + \frac{2}{3} = 1 \Leftrightarrow x - \frac{2}{3} = \frac{1}{3}$, de unde obţinem $x = 1$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{e^x (x^2 + 1) - 2xe^x}{(x^2 + 1)^2} =$	3p
	$\left(x^2+1\right)^2$	•
	$= \frac{e^{x}(x^{2}-2x+1)}{(x^{2}+1)^{2}} = \frac{e^{x}(x-1)^{2}}{(x^{2}+1)^{2}}, x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^x}{x^3 + x} = \lim_{x \to +\infty} \frac{e^x}{3x^2 + 1} = \lim_{x \to +\infty} \frac{e^x}{6x} =$	3p
	$=\lim_{x\to+\infty}\frac{e^x}{6}=+\infty$, deci graficul lui f nu admite asimptotă spre $+\infty$	2p
c)	$f'(x) = 0 \Leftrightarrow x = 1, \ f'(x) > 0$ pentru orice $x \in (-\infty, 1) \Rightarrow f$ este strict crescătoare pe $(-\infty, 1)$,	
	$f'(x) > 0$ pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict crescătoare pe $(1, +\infty)$ și, cum f este	3p
	continuă în $x = 1$, obținem că f este strict crescătoare pe \mathbb{R}	
	Cum $\frac{\sqrt{5}}{3} < \frac{\sqrt{5}}{2}$, obținem că $f\left(\frac{\sqrt{5}}{3}\right) < f\left(\frac{\sqrt{5}}{2}\right)$	2p
2.a)	$\int_{1}^{4} f^{4}(x) dx = \int_{1}^{4} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{4} =$	3p
	$=\frac{4^3-1^3}{3}=21$	2p
b)	$\int_{0}^{1} f(e^{x}) dx = \int_{0}^{1} \sqrt{e^{x}} dx = \int_{0}^{1} e^{\frac{x}{2}} dx = 2e^{\frac{x}{2}} \Big _{0}^{1} =$	3p
	$=2e^{\frac{1}{2}}-2e^0=2\sqrt{e}-2$	2p
c)	$= 2e^{\frac{1}{2}} - 2e^{0} = 2\sqrt{e} - 2$ $\int_{1}^{4} e^{f(x)} dx = \int_{1}^{4} e^{\sqrt{x}} dx = 2\int_{1}^{4} \frac{1}{2\sqrt{x}} \cdot \sqrt{x} e^{\sqrt{x}} dx = 2\int_{1}^{4} (\sqrt{x})' \cdot \sqrt{x} e^{\sqrt{x}} dx = 2\int_{1}^{2} t e^{t} dt = 1$	3p
	$=2(t-1)e^{t} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2e^{2}$	2p