3.012 Fund of Mat Sci: Bonding – Lecture 13 THE DANCE OF SHIVA

Source: Wikipedia

Homework for Mon Oct 31

- Study:18.1 (quantum oscillator), 28.1 and 28.2 (symmetry)
- Read 18.6 (classical harmonic oscillator)

Last time:

1. Diagonalization in a basis

2. Huckel model for conjugated and aromatic

polymers

Figure by MIT OCW.

Figure by MIT OCW.

Matrix Formulation

$$\begin{vmatrix} \boldsymbol{\psi} \rangle = \sum_{n=1,k} c_n | \boldsymbol{\varphi}_n \rangle \qquad H_{mn} = \langle \boldsymbol{\varphi}_m | \hat{H} | \boldsymbol{\varphi}_n \rangle$$

$$\begin{pmatrix} H_{11} - E & \dots & H_{1k} \\ \vdots & H_{22} - E & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ H_{k1} & \dots & H_{kk} - E \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = 0$$

The Quantization of Vibrations

- Electrons are much lighter than nuclei $(m_{proton}/m_{electron} \sim 1800)$
- Electronic wave-functions always rearrange themselves to be in the ground state (lowest energy possible for the electrons), even if the ions are moving around
- Born-Oppenheimer approximation: electrons in the instantaneous potential of the ions (so, electrons can not be excited FALSE in general)

Nuclei have some quantum action...

• Go back to Lecture 1 – remember the harmonic oscillator

Graph of Potential energy, V(x), as a function of the bond length, x, for a diatomic molecule.

Removed for copyright reasons.

See Engel, T., and P. Reid. *Physical Chemistry*. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 378, figure 18.1.

Figure by MIT OCW.

The quantum harmonic oscillator

$$-\frac{\hbar^{2}}{2M}\frac{d^{2}\varphi(z)}{dz^{2}} + \frac{1}{2}kz^{2}\varphi(z) = E\varphi(z)$$

$$\omega = \sqrt{\frac{k}{m}} \qquad a = \frac{\sqrt{km}}{\hbar}$$

The quantum harmonic oscillator (II)

$$\psi_0 = \left(\frac{a}{\pi}\right)^{1/4} e^{-az^2/2}$$

$$\psi_1 = \left(\frac{4a^3}{\pi}\right)^{1/4} z e^{-az^2/2}$$

$$\psi_2 = \left(\frac{a}{4\pi}\right)^{1/4} (2az^2 - 1)e^{-az^2/2}$$

$$E = \hbar \omega \left(n + \frac{1}{2} \right)$$

Figure by MIT OCW.

Quantum Oscillator Applet

Quantized atomic vibrations

Figure by MIT OCW.

Image removed for copyright reasons.

See http://w3.rz-berlin.mpg.de/%7Ehermann/hermann/Phono1.gif.

Photo courtesy of Malene Thyssen, www.mtfoto.dk/malene/

Specific Heat of Graphite (Dulong and Petit)

Figure by MIT OCW.

Structure

Symmetry

- Symmetry operations: actions that transform an object into a new but undistinguishable configuration
- Symmetry elements: geometric entities (axes, planes, points...) around which we carry out the symmetry operations

Figure 17.1b

Images of the symmetry elements of the allene (CH₂CCH₂) and PCl₅ molecules removed for copyright reasons.

See Engel, T., and P. Reid. Physical Chemistry. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 658, figure 28.1.

Table 28.1

Table of symmetry elements and their corresponding operations removed for copyright reasons.

See Engel, T., and P. Reid. Physical Chemistry. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 658, table 28.1.

Group Therapy...

A group G is a finite or infinite set of elements A, B, C, D...together with an operation "\times" that satisfy the four properties of:

- 1. Closure: If A and B are two elements in G, then $A \not \supset B$ is also in G.
- 2. Associativity: For all elements in G, $(A \Leftrightarrow B) \Leftrightarrow C == A \Leftrightarrow (B \Leftrightarrow C)$.
- 3. Identity: There is an identity element I such that $I \not \supset A = A \not \supset I = A$ for every element A in G.
- 4. Inverse: There is an inverse or reciprocal of each element. Therefore, the set must contain an element B=inv(A) such that $A \Leftrightarrow inv(A)=inv(A) \Leftrightarrow A=I$ for each element of G.

Examples

• Integer numbers, and addition

• Integer numbers, and multiplication

• Real numbers, and multiplication

Rotations around an axis by 360/n

Figure 17.3

Image of mirror planes in a water molecule removed for copyright reasons.

See Engel, T., and P. Reid. Physical Chemistry. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 663, figure 28.3.

Figure by MIT OCW. 3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Table 17.3

Multiplication Table for Operators of the C_{2V} Group removed for copyright reasons.

See Engel, T., and P. Reid. Physical Chemistry. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 666, table 28.3.

Image of the Symmetry elements of the D_{2h} group in ethene removed for copyright reasons.

See Engel, T., and P. Reid. Physical Chemistry. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 682, figure 28.10.