Visualization Analysis & Design

Spatial Data (Ch 9)

Focus on Spatial

→ Dataset Types

How?

minimize d'infirencia all montre la corre **Encode**

- **→** Arrange
 - → Express
- → Separate

- → Order
- → Align
-

- → Use

How?

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion Direction, Rate, Frequency, ...

Manipulate

→ Change

→ Select

→ Navigate

Facet

→ Juxtapose

Reduce

→ Filter

→ Partition

Aggregate

→ Superimpose

....

→ Embed

How?

Encode

- Arrange
 - → Express
- → Separate

- → Order

→ Align

How?

Map

from categorical and ordered attributes

→ Color

- → Saturation → Luminance
- → Size, Angle, Curvature, ...

→ Shape

→ Motion Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

→ Juxtapose

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

Superimpose

→ Embed

Spatial data

- use given spatial position
- when?
 - dataset contains spatial attributes
 and they have primary importance
 - central tasks revolve around understanding spatial relationships
- examples
 - -geographical/cartographic data
 - -sensor/simulation data

Geographic Maps

Geographic Map

Interlocking marks

- shape codedarea coded
- position coded
 - cannot encode another attribute with these channels, they're "taken"

Thematic maps

- show spatial variability of attribute ("theme")
 - -combine geographic / reference map with (simple, flat) tabular data
 - –join together
 - region: interlocking area marks (provinces, countries with outline shapes)
 - also could have point marks (cities, locations with 2D lat/lon coords)
 - region: categorical key attribute in table
 - use to look up value attributes
- major idioms
 - -choropleth
 - -symbol maps

- -cartograms
- —dot density maps

Idiom: choropleth map

- use given spatial data
 - –when central task is understanding spatial relationships
- data
 - –geographic geometry
 - table with 1 quant attribute per region
- encoding
 - -position:

- use given geometry for area mark boundaries
- -color:sequentialsegmentedcolormap

http://bl.ocks.org/mbostock/4060606

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138

spurious
 correlations:
 most attributes
 just show where
 people live

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138

- spurious
 correlations:
 most attributes
 just show where
 people live
- consider when to normalize by population density
 - encode raw data values
 - tied tounderlyingpopulation
 - but should use

normalized values

– unemployedpeople per 100citizens, meanfamily income

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICAULY JUST POPULATION MAPS

[https://xkcd.com/1138]

- spurious
 correlations:
 most attributes
 just show where
 people live
- consider when to normalize by population density
 - encode raw data values
 - tied tounderlyingpopulation
 - but should use

- normalized values
 - unemployedpeople per 100citizens, meanfamily income
- general issue
 - -absolute countsvsrelative/normalized data
 - failure tonormalize iscommon error

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138

Choropleth maps: Recommendations

- only use when central task is understanding spatial relationships
- show only one variable at a time
- normalize when appropriate
- be careful when choosing colors & bins
- best case: regions are roughly equal sized

Choropleth map: Pros & cons

pros

- —easy to read and understand
- –well established visualization (no learning curve)
- data is often collected and aggregated by geographical regions

cons

- most effective visual variable used for geographic location
- visual salience depends on region size, not true importance wrt attribute value
 - large regions appear more important than small ones
- -color palette choice has a huge

influence on the result

Idiom: **Symbol maps**

- symbol is used to represent aggregated data (mark or glyph)
 - —allows use of size and shape and color channels
 - aka proportional symbol maps,

graduated symbol maps

- keep original spatial geometry in the background
- ofter chord

Symbol maps with glyphs

Symbol map: Pros & cons

pros

- –somewhat intuitive to read and understand
- mitigate problems with region size vs data salience
 - marks: symbol size follows attribute value
 - glyphs: symbol size can be uniform

cons

- –possible occlusion / overlap
 - symbols could overlap each other
 - symbols could occlude region boundaries
- –complex glyphs may require explanation / training

Idiom: Contiguous cartogram

- interlocking marks: shape, area, and position coded
- derive new interlocking marks
 - based on combination of original interlocking marks and new quantitative attribute
- algorithm to create new marks
 - -input: target size
 - —goal: shape as close to the original as possible
 - -requirement: maintain constraints
 - relative position
 - contiguous boundaries with their neighbours

Greenhouse Emissions

Child Mortality

Mark Newman, Univ. Michigan

- uniform-sized shapes arranged in rectilinear grid
- maintain approximate spatial position and arrangement

Cartogram: Pros & cons

pros

- can be intriguing and engaging
- best case: strong and surprising size disparities
- non-contiguous cartograms often easier to understand

cons

- require substantial familiarity with original dataset & use of memory
 - compare distorted marks to memory of original marks
 - mitigation strategies: transitions or side by side views
- -major distortion is problematic
 - may be aesthetically displeasing

- may result in unrecognizable marks
- difficult to extract exact quantities

Idiom: Dot density maps

- visualize distributi on of a phenom enon by placing dots
- one sym bol repre sents a constant number of items
 - –dots have

unifor m size & shape

-allowsuse ofcolorchanne

task: show spatial patterns, clusters

Dot density maps: Pros and cons

pros

- -straightforward to understand
- avoids choropleth non-uniform region size problems

cons

- –challenge: normalization, just like choropleths
 - show population density (correlated with attribute), not effect of interest
- perceptual disadvantage:difficult to extract quantities
- -performance
 disadvantage:

rendering many dots can be slow

Map Projections

- mathematical functions that map 3D surface geometry of the Earth to 2D maps
- all projections of sphere on

- plane necessarily distort surface in some way
- interactive: philogb.github.io/page/myriahedral/ and jasondavies.com/maps/

Mercator Projection

Spatial Fields

Idiom: topographic map

- data
 - –geographic geometry
 - –scalar spatial field
 - 1 quant attribute per grid cell
- derived data
 - –isoline geometry
 - isocontours computed for specific levels of scalar values

- –understanding terrain shape
 - densely lined regions = steep
- pros
 - –use only 2Dposition, avoid3D challenges
 - -color channel available for other attribute
- cons
 - –significantclutter fromadditional lines

<u>Land Information New Zealand Data Service</u>

• task

Idioms: isosurfaces, direct volume rendering

- data
 - –scalar spatial field (3D volume)
 - 1 quant attribute per grid cell
- task
 - shape understanding, spatial relationships

Idioms: isosurfaces, direct volume rendering

data

- –scalar spatial field (3D volume)
 - 1 quant attribute per grid cell

- –shape understanding,spatial relationships
- isosurface
 - derived data: isocontours computed for specific levels of scalar values

Idioms: isosurfaces, direct volume rendering

- data
 - –scalar spatial field (3D volume)
 - 1 quant attribute per grid cell
- task
 - –shape understanding, spatial relationships
- isosurface
 - derived data: isocontours computed for specific levels of scalar values
- direct volume

Vector and tensor fields

- data
 - -multiple attribs per cell (vector: 2)
- idiom families
 - -flow *glyphs*
 - purely local
 - *–geometric* flow
 - derived data from tracing particle trajectories
 - sparse set of seed points
 - -texture flow
 - derived data, dense seeds
 - *–feature* flow
 - global computation to detect features
 - -encoded with one of methods above

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Vector fields

- empirical study tasks
 - finding critical points, identifying their types
 - identifying what type of critical point is at a specific location
 - –predicting where a particle starting at a specified point will end up (advection)

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Idiom: similarity-clustered streamlines

- data
 - -3D vector field
- derived data (from field)
 - –streamlines: trajectory particle will follow
- derived data (per streamline)
 - -curvature, torsion, tortuosity
 - –signature: complex weighted combination
 - -compute cluster hierarchy

[Similarity Measures for Enhancing Interactive Streamline Seeding. McLoughlin,. Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans. Visualization and Computer Graphics 19:8

Idiom: Ellipsoid Tensor Glyphs

- data
 - tensor field: multiple attributes at each cell (entire matrix)
 - stress, conductivity, curvature, diffusivity...
 - -derived data:
 - shape (eigenvalues)
 - orientation (eigenvectors)
- visual encoding
 - -glyph: 3D ellipsoid

Arrange spatial data

- Use Given
 - → Geometry
 - _ 'aphic
 - → Other Derived
 - → Spatial Fields
 - → Scalar Fields (one value per cell)
 - → Isocontours
 - → Direct Volume Rendering
 - → Vector and Tensor Fields (many values per cell)
 - → Flow Glyphs (local)
 - → Geometric (sparse seeds)
 - → Textures (dense seeds)
 - → Features (globally derived)

