APPM 4600 HW3

Ghulam Yahya Rajabi

Due Feb 16 2024

1 Question 1

1.1 part a:

Given the equation $2x - 1 = \sin(x)$, let $f(x) = 2x - \sin(x) - 1$. Then:

$$f(\pi) = 2\pi - 1 > 0$$
$$f(-\pi) = -2\pi - 1 < 0$$

Since f is continuous, $f(-\pi) < 0$ and $f(\pi) > 0$. By the Intermediate Value Theorem (IVT), there exists a root.

Also, by observing a simple plot, we can guess an interval of $[0, \frac{\pi}{2}]$. In that case:

$$f(0) = -1 < 0$$
$$f\left(\frac{\pi}{2}\right) = \pi - 2 > 0$$

By IVT, there exists a point $c \in [0, \frac{\pi}{2}]$ such that f(c) = 0.

To prove uniqueness, suppose there are two roots x_1 and x_2 :

$$f(x_1) = 2x_1 - 1 - \sin(x_1) = 0$$

$$f(x_2) = 2x_2 - 1 - \sin(x_2) = 0$$

The following must also be true:

$$f(x_1) - f(x_2) = 0$$

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = 0$$

The derivative of the function is:

$$f'(x) = 2 - \cos(x) = 0$$

We know by the Mean Value Theorem (MVT), since the function is continuous and differentiable, that there must exist $f'(c) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 0$. However, $\cos(x) = 2$ leads to a contradiction since the cosine function is bounded by |1|. As such, there can be no c such that f'(c) = 0, and therefore, there is only one root.

Another way of looking at the problem is to add the two equations:

$$2x_1 - 1 - \sin(x_1) + 2x_2 - 1 - \sin(x_2) = 0$$

After some algebra, we find that:

$$2(x_1 + x_2) = \sin(x_1) + \sin(x_2)$$

This is also a contradiction since $x_1 < x_1 + x_2 < 2x_1$ and $\sin(x_2) < x_2 < 2x_2$ are reconcilable with each other. Therefore, there must only be 1 root.

1.3 part c:

calling script in the appendix as well as the github repo Number of iterations: 28 the approximate root is 0.8878622125563768

2.1 part a:

Number of iterations: 11

the approximate root is 5.000073242187501

Number of iterations: 3 the approximate root is 5.12875

2.3 part c:

The first iteration of the expanded version gets a root of 5.105 while the non-expended form gets 4.915. As you can see, the first iteration is significantly above the actual root. Furthermore, all the subtractions in the expanded form continuously lead to greater errors.

3.1 part a:

Applying the theorem to this specific case, we get:

$$10^{-3} \le \frac{3}{2^n}$$

So,

$$2^n \leq 3 \times 10^3$$

$$n \leq \log_2(3 \times 10^3) \approx 11.55$$

Let us assume 12 iterations are needed.

3.2 part b:

Number of iterations: 11

the approximate root is 1.378662109375

Since the theorem is really conservative and considers the upper bound, we found the root in 1 less iteration.

4.1 part a:

Let $g(x_n) = x_{n+1}$. The derivative of g at x_n is:

$$g'(x_n) = 6 - \frac{12}{{x_n}^2}$$

$$|g'(2)| = |6 - \frac{12}{4}| = 3 > 1$$

Since the absolute value of the derivative near the fixed point is greater than 1, the sequence diverges.

Let $g(x_n) = x_{n+1}$. The first derivative of g at x_n is:

$$g'(x_n) = \frac{2}{3} - \frac{2}{x_n^3}$$

So, $g'(3^{1/3}) = 0$.

The second derivative of g at x_n is:

$$g''(x_n) = \frac{6}{{x_n}^4}$$

Thus, $g''(3^{1/3}) = \frac{2}{3\sqrt{3}}$.

Taking the Taylor series of $g(x_n)$ centered at $x_* = 3^{1/3}$ and simplifying, we get:

$$\lim_{n \to \infty} \left| \frac{x_{n+1} - 3^{1/3}}{(x_n - 3^{1/3})^2} \right| = \lim_{n \to \infty} \left| \frac{g''(k)}{2!} \right|, \quad k \in [x_n, 3^{1/3}]$$

For $k \in [x_n, 3^{1/3}]$ as $x_n \to 3^{1/3}, k = 3^{1/3}$. Thus:

$$\lim_{n \to \infty} \frac{\frac{2}{3\sqrt{3}}}{2!} = \frac{1}{3^{1/3}}$$

Therefore, it converges quadratically.

4.3 part c:

Let $g(x_n) = x_{n+1}$. The derivative of g at x_n is:

$$g'(x_n) = \frac{-12}{(1+x_n)^2}$$

So, $|g'(3)| = \frac{3}{4} < 1$.

we already know the rate of linear convergence but doing it formally and taking the Taylor series of $g(x_n)$ centered at $x_* = 3$ and simplifying, we get:

$$\lim_{n \to \infty} \frac{x_{n+1} - 3}{|x_n - 3|} = |g'(3)| = \frac{3}{4}$$

Therefore, it converges linearly with a rate of $\frac{3}{4}.$

5.1 part a:

generate figure:

Figure 1: 5 zero crossings

Let $g(x_n) = x_{n+1}$. The derivative of g at x_n is given by:

$$g'(x_n) = \frac{5}{4} - 2\cos(x_n)$$

So, evaluating at some points:

$$g'(-0.89) \approx 1.7 > 1$$

$$g'(-0.54) \approx 0.3 < 1$$

$$g'(1.73) \approx 3.2 > 1$$

$$g'(3.16) \approx 0.7 < 1$$

$$g'(4.51) \approx 3.1 > 1$$

Roots that the algorithm converges to satisfy |g'(x)| < 1, and the divergent ones don't.

6 Appendix (code also available in github repo)

```
# define routines
def bisection(f, a, b, tol):
    fa = f(a)
    fb = f(b)
    if fa * fb > 0:
        ier = 1
        astar = a
        return [astar, ier]
        verify end points are not a root
    if fa == 0:
        astar = a
        ier = 0
        return [astar, ier]
    if fb == 0:
        astar = b
        ier = 0
        return [astar, ier]
    count = 0
    d = 0.5 * (a + b)
    while abs(d - a) / abs(d) > tol:
        fd = f(d)
        if fd == 0:
            astar = d
            ier = 0
            return [astar, ier]
        if fa * fd < 0:
            b = d
        else:
            a = d
            fa = fd
        d = 0.5 * (a + b)
        count = count + 1
        print ("iteration: ", count, " | curr_root = ", d)
           print('abs(d-a) = ', abs(d-a))
    print("Number of iterations: ", count, "\n")
    astar = d
    ier = 0
    return [astar, ier]
```

```
print("")
def fixedpt(f, x0, tol, Nmax):
    """x0 = initial guess"""
   """ Nmax = max number of iterations"""
    """ tol = stopping tolerance"""
    count = 0
    while count < Nmax:
        count = count + 1
        x1 = f(x0)
        if abs(x1 - x0) / abs(x0) < tol:
            xstar = x1
            ier = 0
            return [xstar, ier]
        x0 = x1
    xstar = x1
    ier = 1
    return [xstar, ier]
def driver():
    f = lambda x: 2 * x - 1 - np.sin(x)
    a = 0
    b = np.pi / 2
    tol = 0.5 * 10**-8
    [astar, ier] = bisection(f, a, b, tol)
    print("the approximate root is", astar)
    # print ("the error message reads:", ier)
    print ("f(root) =", f(astar))
    print ("\n")
    return
```