Time series clustering

Julien JACQUES

Introduction

Basics of Time Series Clustering

To go further

Features extraction from time series

Clustering

The **goal of clustering** is to create homogeneous group of obsevations, s.t.:

- observations within a group are as similar as possible
- groups are as different as possible from each other

The groups are called **clusters**.

Use of clustering

- ► Clustering is an unsupervised technique.
- ▶ It aims to explore the data and to discover some typical pattern.
- It is often used as a preliminary step between supervised approach.

The data

Our goal is to cluster time series.

For instance, the number of new cases of Covid19 in the different countries of the world.

```
covid19 = read.csv("data/2022-05-13-WHO-COVID-19-global-date
x=matrix(covid19$New_cases,ncol = 861,byrow = TRUE)
rownames(x)=unique(covid19$Country_code)
x_s=x[,(861-364):861]
x_s=x_s[rowMeans(x_s)>1000,]
```

For the example, a subset of countries having large number of cases are selected

The data

We have 80 time series, observed on 365 points

We want to cluster them into homogeneous group

Basics of Time Series Clustering

Time serie clustering

An easy way is to use usual algorithms:

- kmeans,
- hierarchical clustering,

applied on a given distance for time series:

- either the usual Euclidean distance
- or specific distances as DTW

We can apply the usual kmeans algorithm using the Euclidean distance between time series:

```
wss=NULL
for (k in 1:10){
  tmp=kmeans(x_s,centers=k)
  wss=c(wss,tmp$tot.withinss)
}
plot(1:10,wss,main="Within SS",type="b")
```


May be 4 clusters?

Representation of the curves per cluster

```
par(mfrow=c(2,2))
for (k in 1:4){
  if (tmp$size[k]>1){matplot(t(x_s[tmp$cluster==k,]),pch=20)}
  else{plot(x_s[tmp$cluster==k,],pch=20)}
```


Representation of the cluster means

```
par(mfrow=c(2,2))
for (k in 1:4){
     plot(tmp$centers[k,],type='l')
                               mp$centers(k,
                                                200
                                               Index
                                 50000
                                                200
                                               Index
```

Dynamic Time Warping

The Euclidean distance is influenced by non-alignment of time series:

Figure from https://rtavenar.github.io/blog/dtw.html

Dynamic Time Warping look for the best alignment of the 2 time series.

A distance can be build by measuring the distance between the best time series alignement.

```
library(dtw)
distMatrix <- dist(x_s, method="DTW")</pre>
```

Hierarchical clustering

We can then apply any clustering algorithm using this DTW distance

```
hc <- hclust(distMatrix, method="average")
plot(hc, hang = -1)</pre>
```


Clustering representation

```
cluster=cutree(hc,4)
mds2 <- -cmdscale(distMatrix)</pre>
plot(mds2, type="n", axes=FALSE, ann=FALSE)
text(mds2, labels=rownames(x_s), xpd = NA,col = cluster)
                          IN
                           BR
```

DF

Clustering representation

Representation of the cluster means

```
par(mfrow=c(2,2))
for (k in 1:4){
  if (sum(cluster==k)>1){
    plot(colMeans(x_s[cluster==k,]),type='l',xlab='',ylab='')}
  else{plot(x_s[cluster==k,],type='l',xlab='',ylab='')}
}
```


The dtwclust package

The following package allows different type of clustering, based on DTW distances:

```
library(dtwclust)
tmp=tsclust(x_s,k=4)
plot(tmp)
```


Functional data approach

An alternative way to work with time series is to assumes that $x_i(t_1), \ldots, x_i(t_m)$ are **discrete observations of a function**:

$$x_i(t)$$
 with $t \in [0, T]$

This is the functional data approach

Functional data approach

The advantages of the functional data approach vs the usual multidimensional approach:

- parsimonious modelling of the curves
- allows to deal with irregularly sampled time series

The funHDDC package

The funHDDC package provides clustering algorithm for functional data

```
## funHDDC:
##
        model K threshold complexity
                                             BIC
                                                            CO
## 1 AKJBKQKDK 2
                      0.2
                                 103 -62,356.33
## 2 AKJBKQKDK 1
                      0.2
                                  75 -236,542.16
## 3 AKJBKQKDK 3
                     0.2
                                <NA>
                                            -Inf pop<min.indivi
## 4 AKJBKQKDK 4
                      0.2
                                <NA>
                                            -Inf pop<min.indivi
##
## SELECTED: model AKJBKQKDK with 2 clusters.
## Selection Criterion: BIC.
```

The funHDDC package

Representation of the cluster means

Clustering representation

Exercice

Carry out a clustering of Canadian weather stations based on precipitation, then temperatures.

Is there a link with the geographical location of the cities (Atlantic, Pacific, Continental, Arctic), available in the variable *region*?

Features extraction from time series

Features extraction

Another ways to work with time series is to extract features from them:

```
library(tsfeatures)
x=CanadianWeather$dailyAv[, , "Temperature.C"]
xf=tsfeatures(x)
print(dim(xf))
```

Max. :1 Max. :0 Max. :1

[1] 35 16

```
summary(xf)
```

Min. :1

##

##

##

##

```
##
   1st Qu.:1 1st Qu.:0 1st Qu.:1 1st Qu.:0.9947
                                                 1st
##
   Median :1 Median :0 Median :1
                                  Median :0.9959
                                                Med
##
   Mean :1 Mean :0 Mean :1 Mean :0.9954
                                                Mea
   3rd Qu.:1 3rd Qu.:0 3rd Qu.:1 3rd Qu.:0.9964
##
                                                3rd
```

linearity curvature e_acf1 e_acf10

Min.

:0.9907

Max. :0.9984

Min

Max

:0.

frequency nperiods seasonal_period trend

Min. :0 Min. :1

Min. :2.736 Min. :-18.22 Min. :0.4588 Min. ## 1st Qu.:4.048 1st Qu.:-17.76 1st Qu.:0.5071 1st Qu.:0. ## Median :5.307 Median :-17.27 ## Median :0.5684 Median:0.

Features extraction

and then we can for instance do a clustering on the basis of these features :

Clustering result for Canadian Weather

```
library(ggplot2)
library(maps)
data(CanadianWeather)
cities <- data.frame(
  city = CanadianWeather$place,
  lon = -CanadianWeather$coordinates[,2],
 lat = CanadianWeather$coordinates[.1]
map canada <- map data("world", region = "Canada")</pre>
ggplot() +
geom polygon(data = map canada, aes(x=long,y=lat,group=group),
            fill = "lightgray", color = "black") +
geom text(data = cities, aes(x = lon, y = lat, label = city),
          color = xclus$classification, size = 3) +
coord_fixed(1.3) +
labs(title = "Clustering des villes en fonction de leur
     courbe de température") +
theme(plot.title = element_text(hjust = 0.5))
```

Clustering result for Canadian Weather

