FREIE SCHWINGUNG

(durch einmaliges Anregen)

oder

homogene Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

(vgl. Timischl et al, Ingenieur-Mathematik 4, Dorner Verlag 2018, S. 72ff)

gedämpftes Feder-Masse-System

elektrischer Reihenschwingkreis

Körper mit Masse m ist mit Feder und Dämpfer verbunden

y(t) ... Auslenkung der Masse m aus der Ruhelage zur Zeit t

es wirken:

- Rückstellkraft der Feder $F_F = -c \cdot y$ c ... Federkonstante
- Reibungskraft $F_R = -b \cdot y'$ b ... Dämpfungskonstante
- igoplus nach dynamischen Grundgesetz: $m \cdot a = F_F + F_R$

$$y'' + rac{b}{m} \; y' + rac{c}{m} y = 0$$
 DGL für Auslenkung y(t)

Anfangsbed.: (1) y(0) = 0 (2) $y'(0) = v_0$

Kondensator ist mit Spannung U₀ aufgeladen, zur Zeit t=0s wird der Schalter geschlossen und Strom i(t) fließt.

Spannungsabfälle:

$$u_R = R \cdot i$$

$$u_L = L \cdot \frac{di}{dt}$$

$$u_C = \frac{q}{C}$$

→ nach 2. Kirchhoff'schen Gesetz:

$$u_R + u_L + u_C = 0$$

$$R \cdot i + L \cdot i' + \frac{q}{C} = 0$$

$$i'' + \frac{R}{L}i' + \frac{1}{CL}i = 0$$
 DGL für Strom i(t)

 $\label{eq:anfangsbed:infty} \text{Anfangsbed.:} \text{(1)} \ i(0) = 0 \quad \text{(2)} \ i'(0) = \frac{1}{L} U_0$

Beide DGL formal ident mit:

$$y'' + 2\delta \cdot y' + \omega_0^2 \cdot y = 0$$

 δ ... Abklingkoeffizient ω_0 ... Kennkreisfrequenz D ... Dämpfungsgrad mit $\delta = D \cdot \omega_0$

Zusammenhang

gedämpftes Feder-Masse-System		elektrischer Reihenschwingkreis
m	Konstante	L
b	Konstante	R
С	Konstante	1/C
$\sqrt{\frac{c}{m}}$	Kennkreisfrequenz ω_0	$\frac{1}{\sqrt{LC}}$
$\frac{b}{2m}$	Abklingkoeffizient $\delta = D \cdot \omega_0$	$\frac{R}{2L}$
$\frac{b}{2\sqrt{c} m}$	Dämpfungsgrad D	$\frac{R}{2}\sqrt{\frac{C}{L}}$

Art der Bewegung: abhängig vom Dämpfungsgrad bzw. vom Ergebnis der charakteristischen Gleichung

Schwingfall: $D < 1 (\lambda_1, \lambda_2 \in \mathbb{C})$

Aperiodischer Grenzfall: $D = 1(\lambda_1 = \lambda_2 \in \mathbb{R})$

Kriechfall: $D > 1 \quad (\lambda_1, \lambda_2 \in \mathbb{R})$