In Re the Application of: Wheeler Application No. 10/748,853 Filed: December 30, 2003

Page 2

## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

## Listing of Claims:

Claims 1-67 (Canceled).

- 68. (Currently Amended) <u>A method of delivering an anionic molecule into a cell, comprising:</u>
- (a) forming a lipid complex by contacting the anionic molecule with a composition comprising an effective amount of a compound according to the formula;



wherein R<sub>1</sub> and R<sub>2</sub> are independently H; linear or branched, unsubstituted or substituted C<sub>1:23</sub> alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, -S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4:

R<sub>3</sub> and R<sub>4</sub> are independently H; linear or branched, unsubstituted or substituted C<sub>1-23</sub> alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>,-S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4:

In Re the Application of: Wheeler Application No. 10/748,853 Filed: December 30, 2003

Page 3

## R5 has the structure



wherein Z is selected from the group consisting of O, S, NR<sub>1</sub>, NH, and S; R<sub>6</sub> is selected from the group consisting of H, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, and R<sub>4</sub>, and, when Z is O, NH,

NR<sub>1</sub>, or S, R<sub>5</sub> can further be an amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent, wherein Z is an atom of said amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent;

n is 1 to 6;

m is 1 to 10:

Y is a pharmaceutically acceptable anion; and

 $R_7$  and  $R_8$  independently or in combination are H or alkyl groups as defined for  $R_1$  and  $R_2$ ;

wherein if Z is O, n is 1, and m is 3, then  $R_6$  is selected from the group defined for  $R_3$  and  $R_4$  and wherein  $R_1$  and  $R_2$  are not both H; and

b) contacting a cell with the lipid complex formed in step (a);

whereby a biologically effective amount of the anionic molecule is delivered into the cell; and The method according to claim 64; wherein  $R_1$  and  $R_2$  are identical and are selected from the group consisting of  $C_{14}H_{29}$  and  $C_{12}H_{25}$ .

Claims 69-70 (Canceled).

- 71. (Previously Presented) A method of delivering an anionic molecule into a cell, comprising:
- (a) forming a lipid complex by contacting the anionic molecule with a composition comprising an effective amount of a compound according to the formula:

In Re the Application of:
Wheeler
Application No. 10/748,853
Filed: December 30, 2003
Page 4

wherein

R<sub>1</sub> and R<sub>2</sub> are saturated or unsaturated C<sub>10</sub>-C<sub>18</sub> alkyl groups;

 $R_3$  and  $R_4$  are independently H; linear or branched, unsubstituted or substituted  $C_{1\cdot 23}$  alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>,-S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4;

Rs has the structure:

R<sub>7</sub> and R<sub>8</sub> are independently selected from the group defined for R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub> and one of R<sub>7</sub> and R<sub>8</sub> can further be an amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent, wherein an amino nitrogen of said amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent is the N to which R<sub>7</sub> or R<sub>8</sub> is attached:

n is 1 to 6;

m is 1 to 10; and

Y is a pharmaceutically acceptable anion; and

(b) contacting a cell with the lipid complex formed in step (a);
 whereby a biologically effective amount of the anionic molecule is delivered into the cell.

In Re the Application of: Wheeler Application No. 10/748,853 Filed: December 30, 2003 Page 5

- (Previously Presented) The method according to claim 71, wherein R<sub>1</sub> and R<sub>2</sub> are identical and are selected from the group consisting of C<sub>14</sub>H<sub>20</sub> and C<sub>12</sub>H<sub>25</sub>.
- 73. (Previously Presented) The method according to claim 72, wherein R<sub>3</sub> and R<sub>4</sub> are selected from the group consisting of C<sub>1</sub>-C<sub>5</sub> alkyl groups and C<sub>1</sub>-C<sub>5</sub> heteroalkyl groups having one heteroatom therein.
- 74. (Previously Presented) A method according to claim 73, wherein  $R_3$  and  $R_4$  are methyl groups.

Claims 75-84 (Canceled).

- 85. (Currently amended)) A method of delivering an anionic molecule into a cell, comprising:
- (a) forming a lipid complex by contacting the anionic molecule with a composition comprising an effective amount of a compound according to the formula:

wherein R<sub>1</sub> and R<sub>2</sub> are independently H; linear or branched, unsubstituted or substituted C<sub>1:23</sub> alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>,-S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4;

R<sub>3</sub> and R<sub>4</sub> are independently H; linear or branched, unsubstituted or substituted C<sub>1-23</sub> alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or

In Re the Application of:

Wheeler

Attorney Docket No.: VICAL1380-2

Wheeler Application No. 10/748,853 Filed: December 30, 2003

Page 6

aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>,-S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4:

Rs has the structure

wherein Z is selected from the group consisting of O, S, NR<sub>1</sub>, NH, and S:

R<sub>6</sub> is selected from the group consisting of H, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, and R<sub>4</sub>, and, when Z is O, NH, NR<sub>1</sub>, or S, R<sub>6</sub> can further be an amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent, wherein Z is an atom of said amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent:

n is 1 to 6;

m is 1 to 10:

Y is a pharmaceutically acceptable anion; and

 $R_7$  and  $R_8$  independently or in combination are H or alkyl groups as defined for  $R_1$  and  $R_2$ :

 $\frac{\text{wherein if }Z\text{ is }O, \text{ n is }1, \text{ and }m\text{ is }3, \text{ then }R_6\text{ is selected from the group defined for }R_3\text{ and }R_4\text{ and wherein }R_1\text{ and }R_2\text{ are not both }H; \text{ and }$ 

(b) contacting a cell with the lipid complex formed in step (a); whereby a biologically effective amount of the anionic molecule is delivered into the cell; and The method according to claim 64, wherein Z is NH or NR.

- (Currently amended)) A method of delivering an anionic molecule into a cell, comprising:
- (a) forming a lipid complex by contacting the anionic molecule with a composition comprising an effective amount of a compound according to the formula:

In Re the Application of:
Wheeler
Application No. 10/748,853
Filed: December 30, 2003
Page 7

wherein R<sub>1</sub> and R<sub>2</sub> are independently H; linear or branched, unsubstituted or substituted C<sub>1:23</sub> alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, -S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4:

R<sub>3</sub> and R<sub>4</sub> are independently H; linear or branched, unsubstituted or substituted C<sub>1-23</sub> alkyl, acyl, alkenyl, or heteroalkyl group having from 0 to 6 sites of unsaturation; or a cyclic or aryl group, said heteroalkyl, cyclic, and aryl groups comprising from 0 to 5 heteroatoms wherein said heteroatoms are not the first atoms in said groups, wherein the substituent groups are selected from the group consisting of -0-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>,-S-(CH<sub>2</sub>)<sub>k</sub>-CH<sub>3</sub>, and X-(CH<sub>2</sub>)<sub>k</sub>-, wherein X is a halide, and k is 0 to 4;

R5 has the structure

wherein Z is selected from the group consisting of O, S, NR1, NH, and S;

R<sub>6</sub> is selected from the group consisting of H, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, and R<sub>4</sub>, and, when Z is O, NH, NR<sub>1</sub>, or S, R<sub>6</sub> can further be an amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent, wherein Z is an atom of said amino acid, peptide, polypeptide, protein, mono-, di- or polysaccharide, or other bioactive or pharmaceutical agent;

In Re the Application of: Wheeler Application No. 10/748,853 Filed: December 30, 2003

Attorney Docket No.: VICAL1380-2

Page 8

n is 1 to 6;

m is 1 to 10:

Y is a pharmaceutically acceptable anion; and

 $R_7$  and  $R_8$  independently or in combination are H or alkyl groups as defined for  $R_1$  and  $R_2$ ;

wherein if Z is O, n is 1, and m is 3, then  $R_6$  is selected from the group defined for  $R_3$  and  $R_4$  and wherein  $R_1$  and  $R_2$  are not both H; and

b) contacting a cell with the lipid complex formed in step (a);

whereby a biologically effective amount of the anionic molecule is delivered into the cell;
and The method-according to claim 64, wherein said compound is selected from the group
consisting of DORIE carboxylate (dioleyl Rosenthal Inhibitor Ether carboxylate), DMRIE
carboxylate (dimyristyl Rosenthal Inhibitor Ether carboxylate), DMRIE carboxylate propyl
amide, DMRIE carboxylate (methionine-methylester) amide, DMRIE carboxylate (methionine-leucine-methylester) amide, and DMRIE carboxylate (methionine-leucine-phenylalaninemethylester) amide.

87. (Previously Presented) The method according to claim 71, wherein  $R_7$  and  $R_8$  are independently selected from the group defined for  $R_1$ ,  $R_2$ ,  $R_3$ , and  $R_4$ .

Claims 88-90 (Canceled).