

ICT30010 eForensic Fundamentals

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

Lecture 8
Mobile Technologies

Troy Pretty

Digital Forensic Analyst

Lecture outline

- Mobile technologies
 - Mobile networks and protocols
 - Mobile software
- Mobile Data Storage
- Value to investigation
- Legal Authority

Overview of mobile technologies

- Mobile technologies include mobile telephony, broadband wireless, SMS, MMS and similar
- Users of such technologies purchase a handset (or modem) and subscribe to a network
 - Traditional handsets which offer voice and SMS
 - Smartphones such as iPhone and Android
- Users are often unaware of the huge infrastructure needed to support such communications

Cellular networks

- Coverage using cells allows communications frequencies to be reused
 - Frequency (bandwidth, spectrum) suitable for mobile communications is very limited and so is often auctioned by governments for huge sums of money
 - Efficient use of spectrum one of the key design issues of cellular networks
 - Cellular coverage often modeled using hexagons that slightly overlap

Cellular networks (GSM)

- Each base station (Base Transceiver Station BTS) is connected to a Base Station Controller (BSC)
- Each BSC is connected to a Mobile Switching Centre (MSC)
- The MSC is connected to other MSCs, other networks and contains a number of important databases

Cellular Networks

- Base Transceiver Station (or Base Station)
 - Antennae, Transmitter,
 Receiver
 - Backhaul which might be microwave, fibre optic or coaxial cable
- Base Station Controller
 - Responsible for frequency allocation
 - Usually located with MSC or BTS

Cellular networks

- As a user moves from one area of coverage to another, they may be disconnected from one base station and connected to another one
 - A process called "Handover" or "Handoff"

Cellular networks (GSM)

Global System for Mobile Communications (GSM)

Mobile Station =

Subscriber Identity Module (SIM)

Mobile Equipment (ME)

Mobile network technologies

AMPS	
1G	
1979	

GSM 2G

1991

UMTS 3G 1998

LTE 4G 2009

5G 2019

Physical SIM/USIM

- SIM for 2G
- USIM for 3G+, UMTS
- Dual mode (SIM/USIM)
- Variety of designs, with6 to 8 contacts.
- Chip is tiny and fragile
- Plastic is packaging
- ESIM?
 - Software based

Integrated Circuit Card Identifier (ICCID)

ICCID is the unique ID to reference a SIM card

International Mobile Subscriber Identity (IMSI)

IMSI is the unique ID to identify the subscriber

^{*} The length for MNC and MSIN has become more variable, mainly because of GSM 1900 in USA with >100 operators

International Mobile Equipment Identity (IMEI)

IMEI is the unique ID allocated to the mobile equipment (ME) / Handset

Device/Network Communications

- Mobile devices are very chatty
 - Even when not making a call, a great deal of information is exchanged between the network and the device
 - Location of the device
 - Base station connection information such as frequencies available, timing information and similar
 - Signal strength from neighboring base stations to help with handover decisions
- Lots of useful information made available just by turning the device on

Where is data stored?

- SIM Card
- Phone (Internal Memory)
- Memory card (External Memory)
- Network / Service Provider / Cloud

Data Types

- Contacts
- Call registers
- Text messages
- Calendar
- Identification numbers
- Multimedia messages
- Internet
- WiFi/Bluetooth

- Subscriber numbers
- Email
- Photos
- Ringtones
- Videos
- Sound recordings
- Applications
- GPS/SatNav

Data Storage – Internal Memory

- Flash memory
 - Can be read and written
 - Stores data without power source (non-volatile)
- Chip is fixed directly to circuit board
- Often uses proprietary file system (egYAFFS, APFS)
- Can only be fully read by manufacturer
 - JTAG / Chip-off becoming more available

Data Storage – SIM Card

- Network Information (IMSI, preferred/forbidden networks,etc.)
- Contacts
- SMS Messages
- Subscriber Phone Number (user-modifiable, often blank)
- USIM allows extended attributes such as email

Data Storage – Memory Cards

- Lots of standards
- Use standard file system
 - Typically FAT32
- Store user selected data
- Generally multimedia only
- May be internal or external

Data Storage – Cloud/Network

- 3rd Service Providers
 - Email
 - Hotmail, Gmail, Yahoo
 - Social Media
 - Facebook, Instagram, Snapchat
 - Chat Applications
 - Skype, Zoom
- Source of communications and contacts
- Issues with lawful access
 - Unauthorised access
 - Overseas service providers

Online Account Encryption

- Online accounts increasingly leverage encryption (Skype, Facebook etc.)
 - In transit
 - HTTPS
 - At rest
 - File
 - Database
 - Both

Online Account Encryption

- Analysis Challenges
 - Encrypted in transit but not at rest
 - Download and parse filesystem databases
 - Encrypted at rest but not in transit
 - Review data as it is transmitted (lawful?)
 - Encrypted at rest and in transit
 - Can be challenging
 - Crack or obtain password
 - Look for weaknesses in implementation of encryption
 - Look for data on other storage devices

Value

- Source of a crime
 - Hacking into a website
 - Sending abusive text messages
- Planning a crime
 - Calling or messaging co-offenders
 - Internet searches/history
- Evidence of a crime
 - Photos/videos of drugs/guns/assaults

Value

- Storage capacities and processing power rival traditional computers
- Mobile nature results in offending anytime/anywhere

Complexities

- There is an increasing differentiation between the Carrier, the Internet Service Provider and the Application Service Provider
 - For example, a customer might use Telstra's twisted pair copper wire to carry ADSL which connects them to ISP iiNet from where they make use of Google Apps
 - Linking identity to a particular IP packet in such an environment is quite challenging
 - Identifying the person who has requested a particular
 IP traffic stream is not straightforward

Authority/Authorisation

- Forensic investigator integrity
 - Cant break the law in the pursuit of evidence
- Need to ensure adequate authority to conduct investigation
 - Internal
 - Employment contract, HR/Manager authority
 - Outsourced
 - Contact/Scope of Work
 - Law Enforcement
 - Search warrant approved by the courts

Authority/Authorisation

- Forensic investigation uncovers online account passwords
 - Can these be used to login to the accounts?
 - CRIMES ACT 1958 SECT 247G
 - Unauthorised access to or modification of restricted data
 - Maximum 2 years imprisonment

Authority/Authorisation

- Compromise investigation
 - Tarnish reputation
 - Evidence discounted/excluded
 - Termination of employment
 - Criminal Investigation?

Summary

- Mobile technologies
- Mobile Data Storage
- Value to investigation
- Legal Authority

