Advanced Empirical Finance: Topics and Data Science

Stefan Voigt Spring 2024

University of Copenhagen and Danish Finance Institute

High-frequency econometrics

High-frequency trading (?)

High-frequency trading

- · So far, we have focused on quarterly, monthly, or daily price observations
- · But: There is much more under the surface!
- High-frequency trading is a type of algorithmic financial trading characterized by high speeds, high turnover rates, and high order-to-trade ratios that leverages high-frequency financial data and electronic trading tools

Relevance for asset pricing

- 1. liquidity (transaction costs)
- price informativeness (have you asked yourself how information makes it into prices?) (see also KU's market microstructure course)
- 3. more information may be beneficial for volatility estimation
- 4. wasteful investments?

Quick primer on equity microstructure

- Market structure across asset classes can vary tremendously
- Large heterogeneity across US equity markets (lit pools, dark pools, maker-taker, ...)
- · Standard framework: Continuous limit order book
- Limit orders indicate a willingness to buy/sell at a pre-specified price
- · Market orders execute against limit orders

A typical NASDAQ trading day

- Opening auction at 9:30 am
- Continuous trading and order book adjustments throughout the entire day
- Message types: Cancellations/Submissions/Executions/ Hidden or Lit orders

- The number of daily messages is easily in the millions
- Closing auction at 4:00 pm

Realized volatility

HFT: Approaching continuous time finance

- Does it help to use data sampled at a high frequency to estimate μ_t and σ_t^2 ?
- · Continuous-time finance helps
- Well-known example: Geometric Brownian motion (stock price movements are additive on the log scale)

$$\log(P_t) = X_t = X_0 + \mu t + \sigma W_t$$

where W_t is a Brownian motion

Brownian motion

- The process $(W_t)_{0 \le t \le T}$ is a Brownian motion provided that
 - 1. $W_0 = 0$
 - 2. $t \rightarrow W_t$ is a continuous function of t
 - 3. W has independent increments and for t > s, W_t W_s is normal with mean zero and variance t s

6

Brownian motion

- Suppose t = 0 is the start of the training day and t = 1 is the end of the day
- Assume there are *n* equidistant observations (transactions) of the log price
- One observation every $\Delta_{t_n} = 1/n$ units of time
- We observe $X_{t_{n,i}}$ with $t_{n,i} = i\Delta t_n$ and get

$$\Delta X_{t_{n,i}} = X_{t_{n,i}} - X_{t_{n,i-1}}$$

- By definition of the BM, the $\Delta X_{t_{n,i}}$ are iid normal $N(\mu \Delta t_n, \sigma^2 \Delta t_n)$

7

Simulation of a Brownian motion

Estimating μ and σ^2 in the GBM model

• The natural estimator for $\hat{\mu}$ is

$$\hat{\mu}_n = \frac{1}{n\Delta t_n} \sum_{i=0}^{n-1} \Delta X_{t_n, i+1} = (X_1 - X_0)$$

- (Maybe) surprising: $\hat{\mu}_n$ does not depend on the sampling frequency. Consistent estimation requires $t \to \infty$
- (Maybe) more surprising: $\hat{\sigma}^2$ can be estimated consistently as $n \to \infty$!
- Set $U_{n,i} = \Delta X_{t_n,i}/(\sigma \Delta t_n^{1/2}) \sim N\left(\frac{\mu}{\sigma} \Delta t_n^{1/2}, 1\right)$ and define $\bar{U}_n = \frac{1}{n} \sum_{i=0}^{n-1} \left(U_{n,i} \bar{U}_n\right)^2$
- Then

$$\hat{\sigma}_{n}^{2} = \frac{1}{(n-1)\Delta t_{n}} \sum_{i=0}^{n-1} \left(\Delta X_{t_{n},i+1} - \Delta \bar{X}_{t_{n}} \right)^{2}$$

$$= \frac{\sigma^{2} \Delta t_{n}}{(n-1)\Delta t_{n}} \sum_{i=0}^{n-1} \left(\Delta U_{n,i} - \bar{U}_{n} \right)^{2} \stackrel{L}{=} \sigma^{2} \frac{X_{n-1}^{2}}{n-1}$$

• It follows that $E(\hat{\sigma}_n^2) = \sigma^2$ and $Var(\hat{\sigma}_n^2) = \frac{2\sigma^4}{n-1}$

Non-centered estimator

- for high frequency data, the mean $\Delta \bar{X}_{t_-}$ is often **not** removed in estimation
- · Instead, consider

$$\hat{\sigma}_{n,\text{nocenter}}^2 = \frac{1}{n\Delta t_n} \sum_{i=0}^{n-1} \left(\Delta X_{t_{n,i+1}} \right)^2 = \hat{\sigma}_n^2 + \Delta t_n \bar{\mu}_n^2 = \hat{\sigma}_n^2 + \frac{1}{n} \bar{\mu}_n^2$$

- Since $\bar{\mu}_n$ does not depend on n, it follows that $\hat{\sigma}_{n,\mathrm{nocenter}}^2$ is also consistent

The realized volatility

 If μ_t and σ_t > 0 are predictable processes of finite variation and we assume the diffusion

$$dX_t = \mu_t dt + \sigma_t dW_t$$

the continuously compounded return over the time interval from t - k to t is

$$r(t,k) = X_t - X_{t-k} = \int_{t-k}^{t} \mu_t dt + \int_{t-k}^{t} \sigma_t dW_t$$

The diffusive sample path variation is called the integrated variance

$$IV(t-k,k) = \int_{t-k}^{t} \sigma_t^2 dt$$

- As long as there are no jumps, $IV(0,1) = RV^{(n)} := \sum_{j=0}^{n-1} r_{j,n}^2$
- RV⁽ⁿ⁾ is the **realized variance**
- 'Infill' asymptotics: Sampling on the highest possible frequencies crucial!

Infill asymptotics

S&P 500 - Realized Volatility from 1988

Market Microstructure Noise

Market Microstructure Noise

- Problem in practice: market microstructure frictions
- E.g., Bid-ask spreads, price discreteness, asymmetric information, strategic order placement
- · We can only observe

$$Y_{i\Delta n} = X_{i\Delta n} + U_{i\Delta n}$$

where $Y_{i\Delta n}$ is the observed (log) transaction price or quote, $X_{i\Delta n}$ is the *efficient* latent (log) price

• $U_{i \wedge n}$ is white noise which captures microstructure frictions

What is the problem with microstructure noise?

· So far: the highest possible sampling frequency is optimal

What is the problem with microstructure noise?

 Now: What is the RV estimator's optimal sampling frequency/adjustment in the presence of microstructure noise?

What is the problem with microstructure noise?

- Consider for now the easiest case with $X_t = \sigma W_t$ and $\tilde{X}_t = X_t + U_t$ where the U_t are iid noise with zero mean and variance a^2
- Then

$$\begin{split} Y_{\tau_i} &= \tilde{X}_{\tau_i} - \tilde{X}_{\tau_{i-1}} \\ &= \left(X_{\tau_i} - X_{\tau_{i-1}} \right) + U_{\tau_i} - U_{\tau_{i-1}} \\ &= \sigma \left(W_{\tau_i} - W_{\tau_{i-1}} \right) + U_{\tau_i} - U_{\tau_{i-1}} \end{split}$$

- We get $Var(Y_{\tau_i}) = \sigma^2 \Delta_n + 2\alpha^2$ and $Cov(Y_{\tau_i}, Y_{\tau_{i-1}}) = -\alpha^2$
- the proportion of the total return variance that is market microstructure-induced is

$$\pi = \frac{2\alpha^2}{2\alpha^2 + \sigma^2 \Delta_n}$$

- As Δ_n gets small, a larger portion of the volatility reflects noise!
- Noise bias adjustment possible (Ait-Sahalia et al., 2005)

Optimal sampling frequencies (Ait-Sahalia et al., 2005)

Optimal sampling frequency

Value of a	T		
	1 day	1 year	5 years
	(a) $\sigma = 3$	30% Stocks	
0.01%	1 min	4 min	6 min
0.05%	5 min	31 min	53 min
0.1%	12 min	1.3 h	2.2 h
0.15%	22 min	2.2 h	3.8 h
0.2%	32 min	3.3 h	5.6 h
0.3%	57 min	5.6 h	1.5 day
0.4%	1.4 h	1.3 day	2.2 days
0.5%	2 h	1.7 day	2.9 days
0.6%	2.6 h	2.2 days	3.7 days
0.7%	3.3 h	2.7 days	4.6 days
0.8%	4.1 h	3.2 days	1.1 week
0.9%	4.9 h	3.8 days	1.3 week
1.0%	5.9 h	4.3 days	1.5 week

 the presence of market microstructure noise makes it optimal to sample less often than would otherwise be the case in the absence of noise