自旋几何

孙天阳

目录

	目录		1
1	Cliff	ford 代数、自旋群及其表示	2
	1	第二次	4
	2	Pin 群, spin group	7
	3	Clifford 代数	10
		3.1 title	12
	4	分类	13
	5	表示	14

Chapter 1

Clifford 代数、自旋群及其表示

外代数 $\xrightarrow{\frac{\mathbb{B}^{\mathcal{H}}}{Getzler}}$ Clifford 代数: \mathbb{C}, \mathbb{H}

• $e_i e_j + e_j e_i = -2\delta_{ij}$ 该式是新定义的乘法的关系

$$\mathbb{C}=\mathbb{R}\left\langle e\right\rangle$$

$$e^2 = -1$$

$$i^2 = -1$$

• $\mathbb{R}^2 = \langle e_1, e_2 \rangle$

$$Cl(\mathbb{R}^2) = \mathbb{R} \langle 1, e_1, e_2, e_1 e_2 \rangle$$

$$e_1^2 = e_2^2 = -1$$

$$(e_1e_2)^2 = e_1e_2e_1e_2 = -e_1e_1e_2e_2 = -1$$

分别令 e_1, e_2, e_1e_2 为 i, j, k

$$ij = -ji$$

$$ik = e_1e_1e_2 = -e_2$$

$$ki = e_1e_2e_1 = -e_2e_1e_1 = e_2 = -ik$$

$$i^2 = j^2 = k^2 = -1$$

练习:
$$kj = -jk$$

注记. • $\Lambda \mathbb{R}^2 = \mathbb{R} \{1, e_1, e_2, e_1 \wedge e_2\}$ 按外代数的生成关系生成

$$e_i \wedge e_j + e_j \wedge e_i = 0$$

而 Clifford 代数的生成关系是 $e_i \cdot e_j + e_j \cdot e_i = -2\delta_{ij}$

• $\nabla \stackrel{\stackrel{\text{def}}{\longrightarrow}}{\longrightarrow} D$

前者是 Clifford 联络,后者是 Dirac 算子

Chern-Weil 理论 $\stackrel{\mathbb{Z}^{+}V}{\longrightarrow} A$ -S 指标定理

定义 0.1. 设 k 是交换域 (可理解为 \mathbb{R} 或 \mathbb{C}), V 是 k-向量空间, q 是 V 上的二次型.

Clifford 代数: Cl(V,q)

张量代数: $\mathcal{T}(V) = \sum_{i=1}^{\infty} \otimes^{r} V$

 $\otimes^r V = k \left\langle e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_r} \right\rangle$

 $\otimes^r V$ 可认为是 V^* 上的 r 重线性函数 $V^* \times \cdots \times V^* \to k$

理想: $\mathscr{T}_q(V) = \langle v \otimes v + q(v) \cdot 1 : \forall v \in V \rangle$

 $\text{ \mathbb{R}\,$\raisebox{.4ex}{χ}:$} \ Cl(V,q) := \frac{\mathscr{T}(V)}{\mathscr{T}_{q}(V)}$

 $[v \otimes v + q(v) \cdot 1] = 0$

 $\Longrightarrow [v] \cdot [v] + q(v) \cdot 1 = 0$

 $[v] \cdot [v] = -q(v)$, 生成关系

注记. 回忆二次型: 给定双线性函数 $f(\cdot,\cdot):V\times V\to k$, 称 Q(v)=f(v,v) 为二次型, 称 f 为 Q 的极化.

哦哦, 内积, 范数, 极化恒等式

2f(v, w) := Q(v + w) - Q(v) - Q(w)

讲究: 为什么不把 2 除过去, 因为不知道域特征

可适当选取一组基使得 Q(v) 可写为标准型

$$Q(v) = (x^{1})^{2} + \dots + (x^{k})^{2} - (x^{k+1})^{2} - \dots + (x^{k+l})^{2}$$

sign(Q) := k - l, 正负惯性指标

注记.
$$\wedge(V) = \frac{\mathscr{T}(V)}{\langle v_i \otimes v_j + v_j \otimes v_i, \forall \ v_i, v_j \in V \rangle}$$

$$[v_i \otimes v_j + v_j \otimes v_i] = 0 \Longrightarrow [v_i] \wedge [v_j] + [v_j] \wedge [v_i] = 0$$
 当 $g(v)$ 取 0 时退化为此情形

典范投影

$$\pi_q: \mathscr{T}(V) \longrightarrow \frac{\mathscr{T}(V)}{\mathscr{T}_q(V)}$$

$$\alpha \longmapsto [\alpha]$$

自然嵌入

$$V \hookrightarrow Cl(V, q)$$

$$e_i \mapsto [e_i]$$

定义 0.2. 如果 $\varphi \in \otimes^{s}V$, 则称 φ 的纯度数 (pure degree) 为 s.

命题 0.1. $\pi_q|_V$ 为单射.

证明. 若
$$\varphi \in \ker(\pi_q) \cap V = \mathscr{T}_q(V) \cap V$$
,则 $\varphi = 0$.
$$\varphi \in \ker(\pi_q) \Longrightarrow \varphi = \sum_i a_i (v_i \otimes v_i + q(v_i)) b_i$$

可假设 a_i, b_i 为纯度数.

首先考虑 $deg(a_i) + deg(b_i)$ 最大的项,因为张量代数中有一个分次,

$$\sum_{i'} a_{i'}(v_{i'} \otimes v_{i'}b_{i'}) = 0 \xrightarrow{-\text{XDEf}(\hat{a}\hat{\mu})} a_{i'}q(v_i)b_{i'} = 0$$

咋缩并的, 按我理解反变协变才能缩并

$$\Longrightarrow \sum_{i'} a_{i'} (v_{i'} \otimes v_{i'} + q(v_{i'})) b_{i'} = 0$$

没听懂,哪里用到 φ 落在V里了,如果落在V里 φ 的 degree 就是1啊.

$$Cl(V,q): V \subset Cl(V,q)$$
, 由 $v \cdot v = -q(v) \cdot 1$ 生成的.

定义
$$2q(v,w) = q(v+w) - q(v) - q(w)$$

$$\implies (v+w) \cdot (v+w) = -q(v+w) \cdot 1$$

$$\implies v \cdot w + w \cdot v = -2q(v, w)$$

若
$$\{e_1, \dots, e_n\}$$
 是 V 的一组基,则 Clifford 代数的一组基为 $\left\{1, e_1, \dots, e_n, \underbrace{e.e_j}_{i < j}, \underbrace{e_1 \cdot e_j \cdot e_k}_{i < j < k}, \dots, \underbrace{e_{i_1} \cdot e_{i_2} \cdot \dots \cdot e_i}_{i_1 < i_2 < \dots < i_k}\right\}$

 $2^n \, \text{ dim } \bigwedge V = \dim Cl(V,q)$

$$\mathbb{C}: \left\langle \mathbb{R}, q(v) = v^2 \right\rangle$$

$$\mathbb{H}: \left\langle \mathbb{R}^2, q(v^1e_1 + v^2e_2) = (v^1)^2 + (v^2)^2 \right\rangle$$

$$v \cdot w + w \cdot v = -2(v, w)$$

第二次 1

前情回顾
$$T = \sum_{s=0}^{\infty} \otimes^{s} v$$

- $\bullet \stackrel{e_i \cdot e_j + e_j \cdot e_i = -2q(e_i, e_j)}{\longrightarrow} Cl(V, q)$
- $\bullet \xrightarrow{e_i \wedge e_j = -e_j \wedge e_i} \wedge V$
- $\stackrel{e_i \cdot e_j = e_j \cdot e_i}{\longrightarrow}$ 多项式代数

命题 1.1. \mathscr{A} 含幺结合代数, $f: V \to \mathscr{A}$ 线性映射,

$$f(v)^2 = -q(v) \cdot 1_{\mathscr{A}}, \forall \ v \in V,$$

则唯一延拓为

$$\tilde{f}: Cl(V,q) \to \mathscr{A}$$

同态. 具有这样性质的代数是唯一的.

函子性质

$$f: (V,q) \longrightarrow (V',q')$$

- (1) f 线性
- (2) $f^*(q') = q$

同态:
$$\tilde{f}$$
: $Cl(V,q) \to Cl(V',q')$ Clifford 代数同构 $\iota \circ f$: $V \to Cl(V',q')$ $f(v) \cdot f(v) \stackrel{\iota}{=} -q'(f(v)) \cdot 1 = -(f^*(q'))(v) \cdot 1 = -q(v) \cdot 1$ $(V,q) \stackrel{f}{\to} (V',q') \stackrel{g}{\to} (V'',q'')$ 提升 $\widetilde{g \circ f} = \tilde{g} \circ \tilde{f}$

title

正交群
$$O(V,q) = \{f \in GL(V) : f^*q = q\}$$
 $O(V,q) \xrightarrow{i} Aut(Cl(V,q))$ $Image(O(V,q))$ 是内自同构群

Z_2 分次

$$\alpha\colon V\to V, v\mapsto -v$$
 容易验证 $\alpha^*q=q$
$$\tilde{\alpha}\colon Cl(V,q)\to Cl(V,q)$$
 同构
$$i=\begin{cases} 0 & \text{偶次} \\ 1 \hat{\neg} \chi \end{cases}$$

$$Cl^i(V,q)=\left\{\varphi\in CL(V,q):\alpha(\varphi)=(-1)^i\varphi\right\}$$

$$Cl(V,q)=Cl^0(V,q)\oplus Cl^1(V,q)$$

$$Cl^i(V,q)\cdot Cl^j(V,q)\subset Cl^{i+j\mod 2}(V,q)$$

$$\mathbb{Z}_2\ \mathcal{G}\chi \mathcal{K}_{\infty},\ \text{也叫超代数}$$

$$Cl^0(V,q)\ \text{是子代数},\ Cl^1(V,q)\ \text{不是}.$$

Cl(V,q) 与 \wedge^*V 之间的关系

$$\mathcal{T}(V) = \sum_{r=0}^{\infty} \otimes^{r} V \text{ filtration 过滤}$$

$$\tilde{\mathcal{F}}^{0} \subset \tilde{\mathcal{F}}^{1} \subset \tilde{\mathcal{F}}^{2} \subset \cdots \subset \mathcal{T}(V)$$
其中 $\tilde{\mathcal{T}} = \sum_{s \leqslant k} \otimes^{s} V$

$$\pi_{q} : \mathcal{T}(V) \to Cl(V, q)$$
得到 Clifford 代数的 filtration.
$$\mathcal{F}^{0} \subset \mathcal{F}^{1} \subset \mathcal{F}^{2} \cdots \subset Cl(V, q)$$

$$\mathcal{F}^{i} := \pi_{q}(\tilde{\mathcal{F}}^{i})$$

$$\mathcal{F}^{r} \cdot \mathcal{F}^{s} \subset \mathcal{F}^{r+s}$$

$$Cl(V, q) \text{ 成为 filtered 代数 (滤过代数)}$$
映射 $\forall r, s$

$$\mathcal{F}^{r}/\mathcal{F}^{r-1} \times \mathcal{F}^{s}/\mathcal{F}^{s-1} \to \mathcal{F}^{r+s}/\mathcal{F}^{r+s-1}$$
伴随分次代数
$$C^{*} = \oplus_{r \geqslant 0} \mathcal{G}^{r}, \text{ 其中 } \mathcal{G}^{r} = \mathcal{F}^{r}/\mathcal{F}^{r-1}$$

命题 1.2. 任意 (V,q), Cl(V,q) 的伴随分次代数

$$\mathcal{C}^* \cong \wedge^* V$$

证明.

- 满射
- 单射为什么 $\tilde{\phi}$ 形如这样

命题 1.3. $\wedge^*V \xrightarrow{\sim} Cl(V,q)$

向量空间同构,保持 filtration(?)

证明.
$$\underbrace{V\times V\times \cdots \times V}_r \xrightarrow{f_r} f_r(v_1,\cdots,v_r) = \frac{1}{r!} \sum_{\sigma} sgn(\sigma)v_{\sigma_1} \cdot \cdots \cdot v_{\sigma(r)} \in Cl(V,q)$$

由外积泛性质得到 $\wedge^r V \stackrel{\tilde{f}}{\longrightarrow} Cl(V,q)$

$$f^2H^2$$

$$|\nabla^{\Sigma} f|$$

 \mathscr{A} , \mathscr{B} 是 k 上的含幺结合代数, 定义 $\mathscr{A} \otimes \mathscr{B}$ 上的乘法

$$(a \otimes b) \cdot (a' \otimes b') = (a \cdot a') \otimes (b \cdot b')$$

$$\mathscr{A} = \mathscr{A}^0 \oplus \mathscr{A}^1, \mathscr{B} = \mathscr{B}^0 \oplus \mathscr{B}^1 \mathbb{Z}_2$$
 分次代数, 定义 $\mathscr{A} \hat{\otimes} \mathscr{B}$

$$(a \otimes b) \cdot (a' \otimes b') = (-1)^{(\deg b)(\deg a')} (a \cdot a') \otimes (b \cdot b')$$

$$(\mathscr{A} \hat{\otimes} \mathscr{B})^0 := \mathscr{A}^0 \otimes \mathscr{B}^0 + \mathscr{A}^1 \otimes \mathscr{B}^1$$

$$(\mathscr{A} \hat{\otimes} \mathscr{B})^1 := \mathscr{A}^0 \otimes \mathscr{B}^1 + \mathscr{A}^1 \otimes \mathscr{B}^0$$

$$\mathscr{F}^r := \sum_{k+l-r} \mathscr{F}^k(\mathscr{A}) \otimes \mathscr{F}^l(\mathscr{B}) \longrightarrow$$
给出了 $\mathscr{A} \hat{\otimes} \mathscr{B}$ 上的 filtration

命题 1.4. $V = V_1 \oplus V_2$, 关于 (V,q) 的 q— 正交分解 (?)

则存在 Clifford 代数的自然同构

$$Cl(V,q) \cong Cl(V_1,q_1) \hat{\otimes} Cl(V_2,q_2)$$

证明. $v \in V, v = v_1 + v_2, v_1 \in V_1, v_2 \in V_2$

$$f: V \to Cl(V_1, q_1) \hat{\otimes} Cl(V_2, q_2)$$

$$v = v_1 + v_2 \mapsto v_1 \otimes 1 + 1 \otimes v_2$$

验证
$$f(v) \cdot f(v) = -q(v)$$

对合映射 $\tau: \mathcal{T}(V) \to \mathcal{T}(V)$

$$e_{i_1} \otimes \cdots \otimes e_{i_k} \mapsto e_{i_k} \otimes \cdots \otimes e_{i_1}$$

$$\tau(\mathcal{J}_0) \subset \mathcal{J}_0$$

 $\tau^2 = Id$, 称 τ 为转置映射

$$(\psi \cdot \phi)^t = \phi^t \cdot \psi^t$$

2 Pin 群, spin group

伴随表示

$$Ad: Cl^{\times}(V,q) \to Aut(Cl(V,q))$$
 $\varphi \mapsto Ad_{\varphi} := (v \mapsto \varphi v \varphi^{-1})$
在单位元处取切映射 \Longrightarrow
李代数同态: $ad: Cl(V,q) \to Der(Cl(V,q)), y \mapsto ad_{y}(x) : [y,x]$
指数映射 exp: $Cl(V,q) \to Cl^{\times}(V,q)$
 $y \mapsto \sum_{k=0}^{\infty} \frac{y^{k}}{k!}$
 $ad_{y}(x) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} Ad_{exp(ty)}(x)$

命题 2.1. 令 $v \in V \subset Cl(V,q)$ such that $q(v) \neq 0$, 则

- (1) $Ad_v(V) = V$
- (2) 对任意 $w \in V$, 有

$$-Ad_v(w) = w - 2\frac{q(v,w)}{q(v)}v$$

证明.
$$v^2 = -q(v) \Longrightarrow v^{-1} = -\frac{v}{q(v)}$$

$$-q(v)Ad_v(w) = -q(v)v^{-1}vw = vwv = (-wv - 2q(v,w))v = -wv^2 - 2q(v,w)v = wq(v) - 2q(v,w)v$$

两边同除
$$q(v)$$
.

$$G_0 = \{ \varphi \in Cl^{\times}(V, q) \text{ s.t. } Ad_{\varphi}(V) = V \}$$
 由命题知, $\{ v \in V, q(v) \neq 0 \} \subset G_0$ $(Ad_v^*q)(w) := q(Ad_v(w)) = q(w)$ 定义: $p(v,q) := \langle v \in V, q(v) \neq 0 \rangle \leqslant Cl^{\times}(V,q)$ $P(V,q) \xrightarrow{Ad} O(V,q) = \{ \lambda \in Gl(V) : \lambda^*q = q \}$

定义 2.1.
$$Pin(V,q) = \langle v \in V : q(v) = \pm 1 \rangle \leqslant p(V,q)$$

自旋群 $spin(V,q) = Pin(V,q) \cap Cl^0(V,q)$

$$Ad_v \colon V \to V$$
,扭曲的伴随表示 $\tilde{A}d \colon Cl^{\times}(V,q) \to Aut(Cl(V,q)), \varphi \mapsto \tilde{A}d_{\varphi}(y) = \alpha(\varphi)y\varphi^{-1}$

- (1) $\tilde{A}d_{\varphi_1\varphi_2} = \tilde{A}d_{\varphi_1} \circ \tilde{A}d_{\varphi_2}$
- (2) $\tilde{A}d_{\varphi} = Ad_{\varphi}, \varphi \in Cl^{0}(V, q)$

$$\tilde{A}d_v(w) = w - \frac{2q(v, w)}{q(v)}v$$

定义 2.2.
$$\tilde{p}(V,q) = \left\{ \varphi \in Cl^{\times}(V,q) \colon \tilde{A}d_{\varphi}(V) = V \right\}$$

命题 2.2. $\dim V < +\infty$, q 非退化,

$$\ker\left(\tilde{p}(V,q) \xrightarrow{\tilde{A}d} Gl(V)\right) = k^*$$

证明. 取
$$\{v_1, \dots, v_n\}$$
 是 V 的一组基使得 $q(v_i) \neq 0$ 且 $\forall i \neq j, q(v_i, v_j) = 0$ 设 $\varphi \in Cl^{\times}(V, q)$ s.t. $\varphi \in \ker(\tilde{A}d)$ $\varphi = \varphi_0 + \varphi_1 \in Cl^0(V, q) \oplus Cl^1(V, q)$ $\varphi \in \ker(\tilde{A}d) \iff \tilde{A}d_{\varphi} = Id \iff \forall v \in V, \alpha(\varphi)v\varphi^{-1} = v$ $\iff \alpha(\varphi)v = v\varphi$ $\implies \forall v \in V, v\varphi_0 = \varphi_0v, -v\varphi_1 = \varphi_1v$ $\varphi_0 = a_0 + v_1a_1$, 其中 a_0, a_1 为 v_2, \dots, v_n 的多项式 取 $v = v_1$, 有 $v_1\varphi_0 = \varphi_0v_1$ $\implies v_1(a_0 + v_1a_1) = (a_0 + v_1a_1)v_1$ $\implies v_1a_0 + v_1^2a_1 = a_0v_1 + v_1a_1v_1 = a_0v_1 - v_1^2a_1 \implies 2v_1^2a_1 = 0 \implies a_1 = 0$ $\implies \varphi = a_0$ 不含 v_1 . 同理 $\varphi_1 = a_1 + v_1a_0$ $-v_1(a_1 + v_1a_0) = (a_1 + v_1a_0)v_1$ $\implies -v_1a_1 - v_1^2a_0 = a_1v_1 + v_1a_0v_1 = a_1v_1 + v_1^2a_0$ $\implies 2v_1^2a_0 = 0, \varphi_1$ 不含 v_1

范数映射

$$N: Cl(V,q) \to Cl(V,q), \varphi \mapsto N(\varphi) := \varphi \alpha(\varphi^t)$$

注记. (1)
$$\alpha(\varphi^t) = (\alpha(\varphi))^t$$

(2)
$$\forall v \in V, N(v) = v \cdot \alpha(v^t) = v\alpha(v) = -v^2 = q(v)$$

命题 2.3. dim $V < +\infty, q$ 非退化,则 $N: \tilde{p}(V,q) \to k^{\times}$

证明.
$$N(\tilde{p}(V,q)) \subset k^*$$

下说明 N 是同态.

取
$$\varphi \in \tilde{p}(V,q)$$
, $\forall v \in V, \tilde{A}d_{\varphi}(v) = \alpha(\varphi)v\varphi^{-1} \in V$

$$\Longrightarrow \alpha(\varphi)v\varphi^{-1} = (\alpha(\varphi)v\varphi^{-1})^t = (\varphi^t)^{-1}v\alpha(\varphi)^t$$

$$\Longrightarrow \varphi^t\alpha(\varphi)v\varphi^{-1}\alpha(\varphi^t)^{-1} = v$$

$$\tilde{A}d_{\alpha(\varphi^t)}\circ \tilde{A}d_{\varphi}(v) = v$$

$$\tilde{A}d_{\alpha(\varphi^t)\varphi}(v)$$

$$\tilde{A}d_{\alpha(\varphi^t)\varphi} = Id\big|_V$$

$$\alpha(\varphi^t)\varphi \in k^* \Longrightarrow N(\varphi^t) \in k^*$$
只要再说明 $(\tilde{p}(V,q))^t \subset \tilde{P}(V,q)$,假装自己说明了.

 $N(\varphi\psi) = \varphi\psi\alpha((\varphi\psi)^t) = \varphi\psi\alpha(\psi^t\alpha^t) = \varphi\psi\alpha(\psi^t) \cdot \alpha(\varphi^t) = N(\psi)\varphi\alpha(\varphi^t) = N(\psi)N(\varphi) \qquad \Box$

推论 2.1.
$$\varphi \in \tilde{p}(V,q)$$
, 则 $\tilde{A}d_{\varphi} \colon V \to V$ 保持二次型 q . $\tilde{A}d = \tilde{p}(V,q) \to O(V,q)$

证明.
$$\varphi\in \tilde{p}(V,q)$$
, $N(\alpha(\varphi))=N(\varphi)$ 令 $V^*=\{v\in V: q(v)\neq 0\}$. 对 $\forall\ v\in V^*$,
$$N(\tilde{A}d_{\varphi}(v))=N(\alpha(\varphi)v\varphi^{-1})=N(\alpha(\varphi))N(v)N(\varphi^{-1})=N(\varphi)N(\varphi^{-1})N(v)=N(v)=q(v)$$

定义 2.3.
$$P(V,q) = \{v_1 \cdots v_r \in Cl(V,q) : v_1, \cdots, v_r \to V^* \text{ 中有限序列} \}$$

$$\tilde{A}d: \underline{p}(V,q) \to O(V,q)$$
 $\tilde{A}d_{(v_1 \cdots v_r)} = \tilde{A}d_{v_1} \circ \cdots \circ \tilde{A}d_{v_r} \in O(v,q)$
 $\tilde{A}d: O(V,q)$ 满射

定理 2.1 (Cartan-Dieudonne).

$$sp(V,q) = P(V,q) \cap Cl^0(V,q)$$
 $SO(V,q) = \{\lambda \in O(V,q), \det \lambda = 1\}$ 定理 $2.7 \Longrightarrow \tilde{Ad} \colon SP(V,q) \to SO(V,q)$ 也是满射.

定理 2.2. $k = \mathbb{R}$ 或 $\mathbb{C}.q$: V 上的非退化的二次型. 则存在短正合列

$$0 \longrightarrow F \longrightarrow Spin(V,q) \; So(\stackrel{\tilde{Ad}}{(V,q)} \longrightarrow 1.$$

其中
$$F = \begin{cases} \mathbb{Z}_2 = \{\pm 1\}, k = \mathbb{R} \\ \mathbb{Z}_4 = \{\pm 1, \pm \sqrt{-1}\}, k = \mathbb{C} \end{cases}$$

证明. 设
$$\varphi = v_1 \cdots v_r \in Pin(V, q)$$

$$\varphi \in \ker(\tilde{A}d) \Longrightarrow \varphi \in k^*$$

$$N(\varphi) = \varphi \alpha(\varphi)^t = \varphi^2$$

$$N(\varphi) = N(v_1) \cdots N(v_r) = \pm 1$$

$$\Longrightarrow \varphi^2 = \pm 1$$

定理 2.3. 任意 (r,s), 短正合序列

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow Spin_{r,s} \longrightarrow SO_{r,s} \longrightarrow 0$$
$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow Pin_{r,s} \longrightarrow O_{r,s} \longrightarrow 0$$

若 $(r,s) \neq (1,1)$, 则二重覆叠映射非平凡.

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow Spin_n \longrightarrow SO(n) \longrightarrow 0, n \geqslant 3$$

是万有覆叠映射.

证明.
$$(r,s) \neq (1,1)$$
,取 $e_1, e_2 \in \mathbb{R}^n$,使得 $q(e_1) = q(e_2) = \pm 1$,则
$$r(t) = \pm \cos(2t) + e_1 \cdot e_2 \sin(2t), t \in [0, \frac{\pi}{2}]$$

$$r(t) = (e_1 \cos t + e_2 \sin t)(e_2 \cos t - e_1 \cos t)$$

$$q(v_1) = q(v_2) = \pm 1$$

• $r(t) \in spin_{r,s}$

3 Clifford 代数

$$Cl_{r,s} := Cl(V,q)$$
, $V = \mathbb{R}^{r+s}$, $q(x) = x_1^2 + \dots + x_r^2 - x_{r+1}^2 - \dots - x_{r+s}^2$ 特别 $Cl_n := Cl_{n,0}$ $Cl_n^* = Cl_{0,n}$

命题 3.1. 取
$$e_1, \dots, e_{r+s}$$
 为 $\mathbb{R}^{r+s} \subset Cl_{r,s}$ 的 q 正交基,则 $Cl_{r,s}$ $e_ie_j + e_je_i = \begin{cases} -2\delta_{ij} & i \leq r \\ 2\delta_{ij} & i > r \end{cases}$

命题 3.2. $Cl_{r,s} \cong Cl_1 \hat{\otimes} \cdots \hat{\otimes} \hat{\otimes} Cl_1^* \hat{\otimes} \cdots \hat{\otimes} Cl_1^*$

注记. $Cl_1 = \mathbb{C}, Cl_1^* = \mathbb{R} \oplus \mathbb{R}$

定义 3.1. 体积元: $\omega=e_1\cdots e_r e_{r+1}\cdots e_{r+s}$, q- 正交定向基

习题: ω 不依赖于基的选取.

命题 3.3. 令
$$n=r+s$$
, 则 $\omega^2=(-1)^{\frac{n(n+1)}{2}+s}$ 且 $\forall v \in \mathbb{R}^n, v \cdot w=(-1)^{n-1}wv$ 特别地,当 n 奇, $w \in Z(Cl_{r,,s})$ n 偶, $\varphi \omega = \omega \alpha(\varphi)$

证明. 取 e_1, \cdots, e_{r+s} 是 q- 正交定向基.

$$\omega^{2} = e_{1} \cdots e_{r+s} e_{1} \cdots e_{r+s} = (-1)^{n-1} e_{1}^{2} e_{2} \cdots e_{r+s} e_{2} \cdots e_{r+s}$$

$$= (-1)^{n-1} (-1)^{n-2} e_{1}^{2} e_{2}^{2} (e_{3} \cdots e_{r+s})^{2}$$

$$(-1)^{\sum_{i=1}^{n-1} i} e_{1}^{2} e_{2}^{2} \cdots e_{r+s}^{2}$$

$$(-1)^{\frac{n(n-1)}{2}} (-1)^{r}$$

$$\omega^2 = \begin{cases} (-1)^s & n = 3, 4 \mod 4 \\ (-1)^{s+1} & n = 1, 2 \mod 4 \end{cases}$$

引理 3.1. 设
$$\omega \in Cl_{r,s}, \omega^2=1$$
,令
$$\pi^+=\frac{1}{2}(1+\omega), \pi^-=\frac{1}{2}(1-\omega)$$
 则

(1)
$$\pi^+\pi^- = 1$$

(2)
$$(\pi^+)^2 = \pi^+, (\pi^-)^2 = \pi^-$$

(3)
$$\pi^+\pi^- = \pi^-\pi^+ = 0$$

命题 **3.4.** $\omega^2 = 1, r + s$ 为奇数,则

$$Cl_{r,s} = Cl_{r,s}^+ \oplus Cl_{r,s}^-$$

其中
$$Cl_{r,s}^{\pm} = \pi^{\pm} Cl_{r,s} = Cl_{r,s}\pi^{\pm}$$

 $\alpha(Cl_{r,s}^{\pm}) = Cl_{r,s}^{\pm}$

命题 3.5.
$$\omega^1=1$$
, $r+s$ 偶数, $V:Cl_{r,s}-$ 模, 即 $Cl_{r,s}\xrightarrow{\varphi}Hom(V,V)$ 代数同态则 $V=V^+\oplus V^-$, $V^\pm=\{v\in V:\rho(w)v=\pm v\}$ $V^+=\mathrm{i}^+\cdot V, V^-=\pi^-\cdot V$ 且任意 $e\in\mathbb{R}^{r+s}, q(e)\neq 0$, 则 $e:V^+\to V^-, V^-\to V^+$

定理 3.1. $\forall r, s$, 代数同构

$$Cl_{r,s} \cong Cl_{r+1,s}^0$$

特别地, $Cl_n \cong Cl_{n+1}^0$.

证明. 取
$$q$$
 正交基, $e_1, \dots, e_{r+s+1} \in \mathbb{R}^{r+s+1}$ 使得
$$\begin{cases} q(e_i) = 1 & 1 \leqslant i \leqslant r+1 \\ q(e_i) = -1 & r+1 < i \leqslant n+1 \end{cases}$$
 取 $spin \{e_i \mid i \neq r+1\} = \mathbb{R}^{r+s}$ 定义 $f \colon \mathbb{R}^{r+s} \longrightarrow Cl_{r+s}^0$ (之后提升)
$$e_i \mapsto e_{r+r} \cdot e_i \\ x \in \mathbb{R}^{r+s} = \sum_{i \neq r+1} x_i e_i, f(x)^2 = -q(x) \end{cases}$$

由命题 1.1, $\Longrightarrow \tilde{f}: Cl_{r,s} \to Cl_{r+s+1}^0$ 由维数知同构.

命题 3.6.
$$L: Cl_n \to Cl_n$$

$$\varphi \mapsto L(\varphi) := -\sum_i e_i \varphi e_i$$
 其中 e_i 为 \mathbb{R}^n 的正交基.
$$\diamondsuit \tilde{L} := \alpha \circ L, \ \ \text{则} \ \tilde{L} \ \ \text{的特征空间为} \ \Lambda^p = \Lambda^p(\mathbb{R}^n) \ \ \text{在} \ \ Cl_n \ \ \text{中的典范的像}.$$
 $\tilde{L}|_{\Lambda^p} = (n-2p)Id$

证明.
$$\varphi \in \bigwedge^p, \varphi = e_1 \cdots e_p$$

$$L(\varphi) = -\sum_i e_i (e_1 \cdots e_p) e_i = -\sum_{i=1}^p e_i (e_1 \cdots e_p) e_i - \sum_{i=p+1}^n e_j (e_1 \cdots e_p) e_i$$

$$= (-1)^{p-1} \sum_{p=1}^p e_1 \cdots e_p + (-1)^p \sum_{i=p+1}^n e_1 \cdots e_p$$

$$= (-1)^p (n-2p) e_1 \cdots e_p = (n-2p) \alpha(e_1 \cdots e_p)$$

3.1 title

$$Cl_n\cong \bigwedge^*\mathbb{R}^n$$
 下,Clifford 乘法的表示 $\mathbb{R}^n\cong (\mathbb{R}^n)^*$ 任意 $v\in\mathbb{R}^n$,缩并 v 易证 血压高了

命题 3.7.
$$Cl_n\cong \bigwedge^*\mathbb{R}^n, \forall v\in\mathbb{R}^n, \varphi\in Cl_n$$
 $v\cdot\varphi=v\wedge\varphi-vL\varphi$

证明. 取
$$\mathbb{R}^n$$
 的正交基, e_1, \cdots, e_n ,使得 $v=t\mathbf{e}_1$, $t\in\mathbb{R}$ 令 $\varphi=e_{i_1},\cdots$

分类 4

$$Cl_{r,s} \cong$$
 矩阵代数

$$Cl_{1,0} \cong \mathbb{C}$$

$$Cl_{0,1} \cong \mathbb{R} \oplus \mathbb{R} = \langle 1, t \mid t^2 = 1 \rangle$$

$$Cl_{2,0} = \mathbb{H}$$

$$Cl_{1,1} = \mathbb{R}(2)$$

定理 4.1. $\forall r, s, n \geqslant 0$, 代数同构 $Cl_{n,0} \otimes Cl_{0,2} \cong Cl_{0,n+2}$

$$Cl_{0,n} \otimes Cl_{2,0} \cong Cl_{n+2,0}$$

 $Cl_{r,s} \otimes Cl_{1,1} \cong Cl_{r+1,s+1}$

命题 4.1. •
$$\mathbb{C} \otimes \mathbb{H} \cong \mathbb{C}(2)$$

• $\mathbb{H} \otimes \mathbb{H} \cong \mathbb{R}(4)$

证明.

$$(3) \ \mathbb{C} \oplus \mathbb{C} \longrightarrow \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$$
$$(1,0) \mapsto \frac{1}{2} (1 \otimes 1 + i \otimes i)$$

1.

$$\mathbb{C}$$
 上的非退化二次型 $q_{\mathbb{C}}(z) = \sum_{j=1}^{n} z_{j}^{2}$ $Cl_{r,s} \otimes \mathbb{C} \cong Cl(\mathbb{C}^{r+s}, q \otimes \mathbb{C})$

定义 4.1.
$$Cl_n := Cl(\mathbb{C}^n, q_{\mathbb{C}})$$

定理 4.2. $\forall n \ge 0$, 周期性同构,

•
$$Cl_{n+8,0} \cong Cl_{n,0} \otimes Cl_{8,0}$$

•
$$Cl_{0,n+8} \cong Cl_{0,8} \otimes Cl_{0,n}$$

•
$$Cl_{n+2} \cong Cl_n \otimes_{\mathbb{C}} Cl_2$$

•
$$Cl_{8,0} = R(16)$$

• Cl_2

5 表示

V 是 k 向量空间, q 是 V 上的二次型

定义 5.1. $\mathbb{K} \supset k$

Cl(V,q) 的 \mathbb{K} 表示

 $ho\colon Cl(V,q) o Hom_{\mathbb{K}}(W,W)$ 的 k 代数同态. 其中 W 是 \mathbb{K} 有限维向量空间.

称 W 为 \mathbb{K} 上的 Cl(V,q) 模

任意 $\varphi \in Cl(V,q)$, $w \in W$

 $\varphi \cdot w := \rho(\varphi)(w)$

Clifford 乘法

W 实向量空间, $J: W \to W$, \mathbb{R} 线性使得 $J^2 = -\operatorname{Id}$.

W 成为复向量空间

 $Cl_{r,s}$ 的复表示

实表示

 $W_{\mathbb{R}}$ 上有四元数结构,存在 $I,J,K\in Hom_{\mathbb{R}}(W,W)$ 使得 $I^2=J^2=K^2=-\operatorname{Id}$

IJ = -JI = K

JK = -KJ = I

KI = -IK = J

定义 5.2. $V, q, k \subset \mathbb{K}$

 \mathbb{K} 表示 ρ : $Cl(V,q) \to Hom_{\mathbb{K}}(W,W)$

称为可约的,如果

 $W=W_1\oplus W_1$,使得任意 $\varphi\in Cl(V,q)$, $\rho(\varphi)(W_i)\subset (W_i)$

 $\rho = \rho_1 \oplus \rho_2$

命题 **5.1.** Cl(V,q) 的表示 ρ

 $\forall r, s, Cl_{r,s} \cong Cl_{r+1,s}^0$

 $Spin_{r,s} \subset Cl_{r,s}^0 \cong Cl_{r-1,s}$

Clifford 代数的表示就可以诱导 Spin 群的表示

由此以后 $Cl_n = Cl_{n,0}$

 $d_n = \dim_{\mathbb{R}} W$, Cl_n 的不可约 \mathbb{R} 表示

 $d_n^{\mathbb{C}} = \dim_{\mathbb{C}} W$,不可约复表示的维数

 K_n 与 $\rho(Cl(V,q))$ 交换的