Generative Adversarial Network (GAN)

Restricted Boltzmann Machine:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RBM

%20(v2).ecm.mp4/index.html

Outlook:

Gibbs Sampling:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/MRF

%20(v2).ecm.mp4/index.html

NIPS 2016 Tutorial: Generative Adversarial Networks

- Author: Ian Goodfellow
- Paper: https://arxiv.org/abs/1701.00160
- Video: https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Generative-Adversarial-Networks

You can find tips for training GAN here: https://github.com/soumith/ganhacks

Review

http://www.rb139.com/index.ph p?s=/Lot/44547

Generation

Writing Poems?

Drawing?

Review: Auto-encoder

Randomly generate a vector as code

NN
Decoder

Image ?

Review: Auto-encoder

Review: Auto-encoder

Auto-encoder

Problems of VAE

• It does not really try to simulate real images

The evolution of generation

The evolution of generation

GAN - Discriminator

GAN - Generator

Updating the parameters of generator

The output be classified as "real" (as close to 1 as possible)

Generator + Discriminator = a network

Using gradient descent to update the parameters in the generator, but fix the discriminator

Source of images: https://zhuanlan.zhihu.com/p/24767059

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

10,000 rounds

20,000 rounds

50,000 rounds

Basic Idea of GAN

Maximum Likelihood Estimation

- Given a data distribution $P_{data}(x)$
- We have a distribution $P_G(x; \theta)$ parameterized by θ
 - E.g. $P_G(x; \theta)$ is a Gaussian Mixture Model, θ are means and variances of the Gaussians
 - We want to find θ such that $P_G(x;\theta)$ close to $P_{data}(x)$

Sample $\{x^1, x^2, ..., x^m\}$ from $P_{data}(x)$

We can compute $P_G(x^i; \theta)$

Likelihood of generating the samples

$$L = \prod_{i=1}^{m} P_G(x^i; \theta)$$

Find $heta^*$ maximizing the likelihood

Maximum Likelihood Estimation

$$\theta^* = arg \max_{\theta} \prod_{i=1}^{m} P_G(x^i; \theta) = arg \max_{\theta} log \prod_{i=1}^{m} P_G(x^i; \theta)$$

$$= arg \max_{\theta} \sum_{i=1}^{m} log P_G(x^i; \theta) \quad \{x^1, x^2, ..., x^m\} \text{ from } P_{data}(x)$$

$$\approx arg \max_{\theta} E_{x \sim P_{data}} [log P_G(x; \theta)]$$

$$= arg \max_{\theta} \int_{x} P_{data}(x) log P_G(x; \theta) dx - \int_{x} P_{data}(x) log P_{data}(x) dx$$

$$= arg \min_{\theta} KL(P_{data}(x)||P_G(x; \theta)) \qquad \text{How to have a very general } P_G(x; \theta)?$$

Now $P_G(x;\theta)$ is a NN

$$P_G(x) = \int P_{prior}(z) I_{[G(z)=x]} dz$$

It is difficult to compute the likelihood.

Basic Idea of GAN

- Generator G
 Hard to learn by maximum likelihood
 - G is a function, input z, output x
 - Given a prior distribution $P_{prior}(z)$, a probability distribution $P_{G}(x)$ is defined by function G
- Discriminator D
 - D is a function, input x, output scalar
 - Evaluate the "difference" between $P_G(x)$ and $P_{data}(x)$
- There is a function V(G,D).

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

Basic Idea

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

$$V = E_{x \sim P_{data}}[log D(x)] + E_{x \sim P_G}[log(1 - D(x))]$$

Given a generator G, $\max_D V(G,D)$ evaluate the "difference" between P_G and P_{data} Pick the G defining P_G most similar to P_{data}

$$\max_{D} V(G,D) \qquad G^* = \arg\min_{G} \max_{D} V(G,D)$$

Given G, what is the optimal D* maximizing

$$V = E_{x \sim P_{data}}[logD(x)] + E_{x \sim P_{G}}[log(1 - D(x))]$$

$$= \int_{x} P_{data}(x)logD(x) dx + \int_{x} P_{G}(x)log(1 - D(x)) dx$$

$$= \int_{x} \left[P_{data}(x)logD(x) + P_{G}(x)log(1 - D(x))\right] dx$$
Assume that D(x) can have any value here

Given x, the optimal D* maximizing

$$P_{data}(x)logD(x) + P_G(x)log(1 - D(x))$$

$$\max_{D} V(G,D) \qquad G^* = \arg\min_{G} \max_{D} V(G,D)$$

Given x, the optimal D* maximizing

$$P_{data}(x)logD(x) + P_G(x)log(1 - D(x))$$
a
D
b

• Find D* maximizing: f(D) = alog(D) + blog(1 - D)

$$\frac{df(D)}{dD} = a \times \frac{1}{D} + b \times \frac{1}{1 - D} \times (-1) = 0$$

$$a \times \frac{1}{D^*} = b \times \frac{1}{1 - D^*} \qquad a \times (1 - D^*) = b \times D^*$$
$$a - aD^* = bD^*$$

$$D^* = \frac{a}{a+b}$$

$$D^* = \frac{a}{a+b}$$

$$D^*(x) = \frac{P_{data}(x)}{P_{data}(x) + P_G(x)} < 1$$

$$\max_{D} V(G,D) \qquad G^* = \arg\min_{G} \max_{D} V(G,D)$$

$$\max_{D} V(G, D)$$

$$V = E_{x \sim P_{data}}[logD(x)]$$
$$+E_{x \sim P_{G}}[log(1 - D(x))]$$

$$\max_{D} V(G, D) = V(G, D^{*}) \qquad D^{*}(x) = \frac{P_{data}(x)}{P_{data}(x) + P_{G}(x)}$$

$$= E_{x \sim P_{data}} \left[log \frac{P_{data}(x)}{P_{data}(x) + P_{G}(x)} \right] + E_{x \sim P_{G}} \left[log \frac{P_{G}(x)}{P_{data}(x) + P_{G}(x)} \right]$$

$$= \int_{x} P_{data}(x) log \frac{\frac{1}{2} P_{data}(x)}{P_{data}(x) + P_{G}(x)} dx$$

$$+ 2log \frac{1}{2} - 2log 2 + \int_{x} P_{G}(x) log \frac{\frac{1}{2} P_{G}(x)}{P_{data}(x) + P_{G}(x)} dx$$

$$\max_{D} V(G, D)$$

$$ext{JSD}(P \parallel Q) = rac{1}{2}D(P \parallel M) + rac{1}{2}D(Q \parallel M)$$
 $M = rac{1}{2}(P + Q)$

$$\begin{aligned} \max_{D} V(G, D) &= V(G, D^{*}) & D^{*}(x) &= \frac{P_{data}(x)}{P_{data}(x) + P_{G}(x)} \\ &= -2log2 + \int_{x} P_{data}(x)log \frac{P_{data}(x)}{\left(P_{data}(x) + P_{G}(x)\right)/2} dx \\ &+ \int_{x} P_{G}(x)log \frac{P_{G}(x)}{\left(P_{data}(x) + P_{G}(x)\right)/2} dx \\ &= -2log2 + \text{KL}\left(P_{data}(x)||\frac{P_{data}(x) + P_{G}(x)}{2}\right) \\ &+ \text{KL}\left(P_{G}(x)||\frac{P_{data}(x) + P_{G}(x)}{2}\right) \end{aligned}$$

 $= -2log2 + 2JSD(P_{data}(x)||P_G(x))$ Jensen-Shannon divergence

In the end

$$V = E_{x \sim P_{data}}[logD(x)]$$
$$+E_{x \sim P_{G}}[log(1 - D(x))]$$

- Generator G, Discriminator D
- Looking for G* such that

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

What is the optimal G?

$$P_G(x) = P_{data}(x)$$

Algorithm

 $dD_1(x)/dx$

$$G^* = \arg\min_{G} \max_{D} V(G, D)$$

$$L(G)$$

• To find the best G minimizing the loss function L(G),

$$\theta_G \leftarrow \theta_G - \eta \, \partial L(G) / \partial \theta_G$$

 θ_G defines G

 $dD_3(x)/dx$

$$f(x) = \max\{D_1(x), D_2(x), D_3(x)\}$$

$$D_1(x)$$

$$D_2(x)$$

$$\frac{df(x)}{dx} =? \frac{dD_i(x)}{dx}$$
If $D_i(x)$ is the max one

 $dD_2(x)/dx$

Algorithm

 $G^* = \arg\min_{G} \max_{D} V(G, D)$ L(G)

- Given G_0
- Find D_0^* maximizing $V(G_0, D)$

 $V(G_0, D_0^*)$ is the JS divergence between $P_{data}(x)$ and $P_{G_0}(x)$

- $\theta_G \leftarrow \theta_G \eta \, \partial V(G, D_0^*) / \partial \theta_G$ Obtain G_1 Decrease JS
 - divergence(?)

• Find D_1^* maximizing $V(G_1, D)$

 $V(G_1, D_1^*)$ is the JS divergence between $P_{data}(x)$ and $P_{G_1}(x)$

- $\theta_G \leftarrow \theta_G \eta \, \partial V(G, D_1^*) / \partial \theta_G$ Obtain G_2
- •

Decrease JS divergence(?)

Algorithm

 $G^* = \arg\min_{G} \max_{D} V(G, D)$ L(G)

- Given G_0
- Find D_0^* maximizing $V(G_0, D)$

 $V(G_0, D_0^*)$ is the JS divergence between $P_{data}(x)$ and $P_{G_0}(x)$

In practice ...

$$V = E_{x \sim P_{data}}[logD(x)]$$
$$+E_{x \sim P_{G}}[log(1 - D(x))]$$

- Given G, how to compute $\max_{G} V(G, D)$
 - Sample $\{x^1, x^2, ..., x^m\}$ from $P_{data}(x)$, sample $\{\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}$ from generator $P_G(x)$

Maximize
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log (1 - D(\tilde{x}^i))$$

Binary Classifier

Output is D(x) Minimize Cross-entropy

If x is a positive example \longrightarrow Minimize $-\log D(x)$ If x is a negative example \longrightarrow Minimize $-\log(1-D(x))$

Binary Classifier

Output is f(x) Minimize Cross-entropy

If x is a positive example Minimize $-\log f(x)$ If x is a negative example Minimize $-\log (1-f(x))$

D is a binary classifier (can be deep) with parameters θ_d

$$\{x^1, x^2, ..., x^m\}$$
 from $P_{data}(x)$ Positive examples

$$\{\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^m\}$$
 from $P_G(x)$ Negative examples

Minimize
$$L = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D(\tilde{x}^i)\right)$$

Maximize
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D(\tilde{x}^i)\right)$$

Algorithm

Initialize θ_d for D and θ_a for G

• In each training iteration:

Can only find $\max V(G,D)$ lower found of

- Sample m examples $\{x^1, x^2, ..., x^m\}$ from data distribution $P_{data}(x)$
- Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from the prior Learning $P_{prior}(z)$

Repeat

k times

- Obtaining generated data $\{\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}$, $\tilde{x}^i = G(z^i)$
- Update discriminator parameters $heta_d$ to maximize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D(\tilde{x}^i)\right)$$

- $\theta_d \leftarrow \theta_d + \eta \nabla \tilde{V}(\theta_d)$
- Sample another m noise samples $\{z^1, z^2, ..., z^m\}$ from the prior $P_{prior}(z)$

G

Only Once

Learning • Update generator parameters $heta_{\!g}$ to minimize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D\left(G(z^i)\right)\right)$$

• $\theta_a \leftarrow \theta_a - \eta \nabla \tilde{V}(\theta_a)$

Objective Function for Generator in Real Implementation

$$V = E_{x \sim P_{data}}[logD(x)]$$

$$+ E_{x \sim P_{G}}[log(1 - D(x))]$$
 Slow at the beginning

 $V = E_{x \sim P_C} \left[-log(D(x)) \right]$

Demo

- The code used in demo from:
 - https://github.com/osh/KerasGAN/blob/master/MNIST_ CNN_GAN_v2.ipynb

Issue about Evaluating the Divergence

Evaluating JS divergence

Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training Generative Adversarial Networks, 2017, arXiv preprint

Evaluating JS divergence

https://arxiv.org/a bs/1701.07875

 JS divergence estimated by discriminator telling little information

Weak Generator

Strong Generator

Discriminator

$$V = E_{x \sim P_{data}}[logD(x)] + E_{x \sim P_{G}}[log(1 - D(x))]$$

$$\approx \frac{1}{m} \sum_{i=1}^{m} logD(x^{i}) + \frac{1}{m} \sum_{i=1}^{m} log(1 - D(\tilde{x}^{i}))$$

$$\max_{D} V(G, D) = -2log2 + 2JSD(P_{data}(x)||P_{G}(x)) = 0$$

$$\log 2$$

Reason 1. Approximate by sampling

Weaken your discriminator?

Can weak discriminator compute JS divergence?

Discriminator

$$V = E_{x \sim P_{data}}[logD(x)] + E_{x \sim P_{G}}[log(1 - D(x))]$$

$$\approx \frac{1}{m} \sum_{i=1}^{m} logD(x^{i}) + \frac{1}{m} \sum_{i=1}^{m} log(1 - D(\tilde{x}^{i}))$$

$$\max_{D} V(G, D) = -2log2 + 2JSD(P_{data}(x)||P_{G}(x)) = 0$$

Reason 2. the nature of data

Both $P_{data}(x)$ and $P_G(x)$ are lowdim manifold in high-dim space

Usually they do not have any overlap

http://www.guokr.com/post/773890/

Evaluation

Better

Patch of lightsensitive cells

Limpet

Squid

Evaluation

Add Noise

- Add some artificial noise to the inputs of discriminator
- Make the labels noisy for the discriminator

Discriminator cannot perfectly separate real and

generated data

 $P_{data}(x)$ and $P_{G}(x)$ have some overlap

Noises decay over time

Mode Collapse

Mode Collapse

Generated Distribution

Data Distribution

Mode Collapse

What we want ...

In reality ...

Flaw in Optimization?
$$KL = \int P_{data} log \frac{P_{data}}{P_{G}} dx \quad \text{Reverse } KL = \int P_{G} log \frac{P_{G}}{P_{data}} dx$$

Probability Density

Maximum likelihood (minimize $KL(P_{data}||P_G)$)

Minimize $KL(P_G||P_{data})$ (reverse KL)

This may not be the reason (based on Ian Goodfellow's tutorial)

So many GANs

Modifying the Optimization of GAN

fGAN

WGAN

Least-square GAN

Loss Sensitive GAN

Energy-based GAN

Boundary-seeking GAN

Unroll GAN

• • • • • •

Different Structure from the Original GAN

Conditional GAN

Semi-supervised GAN

InfoGAN

BiGAN

Cycle GAN

Disco GAN

VAE-GAN

• • • • • •

Conditional GAN

Motivation

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee, "Generative Adversarial Text-to-Image Synthesis", ICML 2016

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas, "StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks", arXiv prepring, 2016

Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee, "Learning What and Where to Draw", NIPS 2016

Motivation

Conditional GAN

Training data: (\hat{c}, \hat{x})

Can generated x not related to c

D (v1)

Positive example: (\hat{c}, \hat{x})

Negative example: $(\hat{c}, G(\hat{c})), (\widehat{c'}, \hat{x})$

Text to Image - Results

Caption	Image
a pitcher is about to throw the ball to the batter	
a group of people on skis stand in the snow	
a man in a wet suit riding a surfboard on a wave	

Text to Image - Results

"red flower with black center"

Caption	Image
this flower has white petals and a yellow stamen	华
the center is yellow surrounded by wavy dark purple petals	
this flower has lots of small round pink petals	

Image-to-image Translation

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, "Image-to-Image Translation with Conditional Adversarial Networks", arXiv preprint, 2016

Positive examples

Real or fake pair?

G tries to synthesize fake images that fool **D**

D tries to identify the fakes

Negative examples

Real or fake pair?

Image-to-image Translation - Results

Speech Enhancement GAN

https://arxiv.org/abs/1703.09452

Speech Enhancement GAN

Using Leastsquare GAN

Least-square GAN

For discriminator

D has linear output

$$\min_{D} \frac{1}{2} E_{x \sim P_{data}} [(D(x) - b)^{2}] + \frac{1}{2} E_{x \sim P_{G}} [(D(x) - a)^{2}]$$

For Generator

$$\min_{D} \frac{1}{2} E_{z \sim P_{data}} \left[\left(D(G(z)) - c \right)^{2} \right]$$

1

Least-square GAN

- The code used in demo from:
 - https://github.com/osh/KerasGAN/blob/master/MNIST_ CNN GAN v2.ipynb