Тема учебного занятия: Магнитный поток. Явление электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции. Решение задач по теме "Правило Ленца. Закон электромагнитной индукции".

Магнитный поток

Что такое магнитный поток?

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Магнитным потоком Φ через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Формула магнитного потока:

$$\Phi = BS \cos \alpha$$

здесь α - угол между направлением вектора магнитной индукции В и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при $\cos \alpha = 1$, а это случится, когда вектор В параллелен нормали к поверхности S. Минимальным магнитный поток будет при $\cos \alpha = 0$, это будет, когда вектор В перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора В будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Магнитный поток является скалярной величиной.

Рисунок 1 Магнитный поток через замкнутый контур. Направление нормали и выбранное положительное направление обхода контура связаны правилом правого буравчика

Магнитный поток измеряется

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * c.

Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10^8 мкс. Соответственно 1 мкс = 10^{-8} вб.

Закон электромагнитной индукции. Правило Ленца

В 1831 году английский ученый физик в своих <u>опытах</u> М.Фарадей открыл явление электромагнитной индукции. Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или <u>генераторе электрического тока</u> тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока.

То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую - и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока, кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

$$e = -\frac{d\Phi}{dt}$$

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

$$e = -n\frac{d\Phi}{dt}$$

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

$$\mathcal{S}_{\text{range}} = -\frac{\Delta \Phi}{\Delta t}$$

Эта формула носит название закона Фарадея.

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит <u>постоянный магнит</u>. Направление индуцируемого тока можно определить с помощью правила Ленца.

Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – проти

Рисунок 2. Иллюстрация правила Ленца.

в часовой стрелки.

Правило Ленца имеет глубокий физический смысл — оно выражает закон сохранения энергии.

<u>Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам.</u>

- 1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле.
- 2. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной 1 скользит со скоростью по двум другим сторонам (рис. 1.20.3).

Рисунок 3. Возникновение ЭДС индукции в движущемся проводнике. Указана составляющая силы Лоренца, действующей на свободный электрон

На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис.3. Она играет роль сторонней силы. Ее модуль равен

$$F_{\rm JJ} = e \upsilon B$$

Закон электромагнитной индукции:

ЭДС индукции, возникающая в проводнике, движущемся в магнитном поле, прямо пропорциональна модулю индукции В магнитного поля, длине активной части

проводника (части, которая находится в магнитном поле), скорости проводника и синусу угла между направлением поля и направлением движения проводника, т.е.

$$\varepsilon_i = Bl\theta \sin \alpha$$

Направление индукционного тока в контуре с перемещающимся стержнем может быть установлена с помощью правила правой руки: Вектор магнитной индукции входит в ладонь, большой палец указывает направление движения проводника в магнитном поле, то четыре пальца покажут направление силы тока в проводнике.

Явление электромагнитной индукции было открыто Фарадеем в августе 1831г.

В своих опытах Фарадей изменял магнитный поток через проводящую катушку, внося в нее постоянный магнит.

Опыты Фарадея позволили установить закон электромагнитной индукции (закон Фарадея), количественно определяющий ЭДС индукции в контуре:

ЭДС электромагнитной индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока через него:

$$\varepsilon_i = -\frac{\Delta\Phi}{\Delta t}$$

Направление индукционного тока, возникающего в контуре, было определено русским физиком Ленцем в 1833г. Согласно правилу Ленца в законе Фарадея следует ставить знак минус, т.к.

Возникающий в контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.