Projeto Final - Veículo Autoguiado

Sistemas Embarcados - UTFPR

Francisco Miamoto - Agosto de 2021

Introdução

O presente documento tem por objetivo contextualizar o problema do controle de um veículo autoguiado em uma pista com obstáculos.

O objetivo principal será garantir que o veículo se locomova dentro dos limites de uma pista oval enquanto desvia de quaisquer obstáculos presentes na mesma.

Para tal, vamos inicialmente apresentar detalhadamente as entidades que compõem o domínio deste problema.

Entidades

Veículo

Entidade a ser controlada, possui a capacidade de acelerar em uma determinada direção - em ambos os sentidos - e de alterar esta mesma direção.

Figura 1: Veículo e obstáculo. Fonte: Manual SimSE2

Possui uma interface UART para o recebimento de comandos e a leitura dos sensores embarcados - apresentados a seguir.

Sensores

Dispositivos presentes no *veículo* que permitem a medição da posição do veículo na pista bem como a presença de obstáculos.

Figura 2: Sensores presentes no veículo. Fonte: Manual SimSE2

Os sensor de radiofrequência e as câmeras de borda permitem ao sistema conhecer o posicionamento do veículo - ou seja qual região da pista o mesmo se encontra.

Já os sensores a laser e de ultrassom permitem a detecção dos obstáculos na pista.

Obstáculo

Objeto situado no centro da pista que deverá ser contornado pelo veículo para evitar colisões.

Pode ser visto na Figura 1.

Pista

Região de locomoção do veículo.

Como podemos ver na Figura 3, a pista é composta de duas regiões:

- Principal: em cinza.
- Lateral: em verde claro.

Adicionalmente, temos a região externa à pista em verde escuro.

A região lateral e externa da pista deverão ser evitadas.

Na Figura 3 é possível também notar a presença de um condutor preto no centro da região principal da pista.

Combinado com um sensor apropriado, este condutor pode ser utilizado para determinar a posição do ve'iculo em relação ao centro da pista.

Controlador

Sistema a ser desenvolvido e embarcado ao veículo para o controle do mesmo.

Figura 3: Vista superior da pista com suas dimensões. Fonte: Manual SimSE2

Figura 4: Vista aérea completa da pista. Fonte: Manual ${\tt SimSE2}$

Será o responsável por garantir o atendimento aos requisitos de controle impostos pelo problema.

Usuário

Agente externo capaz de interagir com o sistema através de uma interface pré-definida.

Será capaz de solicitar a entrada em movimento e parada do veículo.

Veículo Autoguiado - VA

Conjunto formado pelo veículo com o controlador já embarcado.

Deverá atender a todos os requisitos definidos pelos stakeholders.

Especificação

Conhecendo agora as entidades que compõem o domínio do problema, podemos estabelecer os requisitos desejáveis ao veículo autoguiado.

Requisitos funcionais - RF

- RF1: O VA deverá garantir que o veículo não atinga a região externa da pista.
 - RF1.1: O VA deverá garantir que o veículo realize as curvas da pista sem intervenção do usuário.
- RF2: O VA deverá garantir manter o veículo em uma velocidade constante quando em movimento.
 - RF2.1: O VA deverá permitir ao usuário a definição da velocidade mantida quando em movimento.
 - RF2.2: O VA deverá respeitar um limite de velocidade máxima.
- RF3: O VA deverá aumentar a velocidade do veículo caso o mesmo já esteja em movimento e uma nova solicitação de entrada em movimento seja realizada.
 - RF3.1: O VA deverá ser ignorar o aumento caso o mesmo implique num desrespeito ao limite de velocidade máxima.
- RF4: O VA deverá permitir ao usuário solicitar a parada do veículo.
- RF5: O VA deverá permitir ao usuário solicitar a entrada em movimento do veículo.
- RF6: O VA deverá solicitar a entrada em movimento do veículo somente após uma solicitação do usuário.
- RF7: O VA deverá aguardar o início da comunicação do veículo antes de enviar qualquer comando ao mesmo.
- RF8: O VA deverá garantir que o veículo não colida com nenhum objeto.
 - -RF7.1: O VA deverá garantir que $\mathit{obst\'aculos}$ na pista serão desviados pelo $\mathit{ve\'aculo}.$
- RF9: O VA deverá utilizar apenas a pista principal para os desvios de obstáculo.
- RF10: O VA deverá manter o veículo sobre o centro da pista na ausência de obstáculos.
- RF11: O VA deverá desviar de obstáculos pelo lado esquerdo.
- RF12: O VA deverá se comunicar com o veículo através de uma interface UART.

Requisitos não funcionais - RNF

- RNF1: O VA deverá responder a uma solicitação de parada em até 100 ms.
- RNF2: O VA deverá responder a uma solicitação de entrada em movimento em até 100 ms.
- RNF3: O VA deverá permitir a definição do limite de velocidade máxima através de um parâmetro de compilação.
- RNF4: O VA deverá utilizar o menor número possível de sensores.

- RNF5: O $V\!A$ deverá retornar ao centro da pista após o desvio de um obstáculo

Restrições - R

- R1: O controlador deverá ser implementado usando o RTOS Keil RTX5.
- R2: O controlador deverá ser desenvolvido para o microcontrolador Texas Instruments TM4C1294.
- R3: A interface entre o *usuário* e o *VA* deverá ser realizada pelos botões incluídos na placa de desenvolvimento do microcontrolador TM4C1294.
- R3: O controlador deverá ser desenvolvido em linguagem C.
- R4: O controlador deverá realizar a comunicação UART utilizando interrupções do microcontrolador.
- R5: O controlador deverá ter no mínimo três tarefas de RTOS.