16.317: Microprocessor Systems Design I

Fall 2015

Homework 4 Due **2:00 PM, Friday, 10/30/15**

Notes:

- While typed solutions are preferred, handwritten solutions are acceptable
- All solutions must be legible and contained in one file. Archive files are not acceptable.
- Electronic submissions should be e-mailed to Dr. Geiger at Michael Geiger@uml.edu.
- This assignment is worth 100 points.
- 1. (40 points) Write the following subroutine in x86 assembly:

Given a single integer argument, n, return the nth value of the Fibonacci sequence—a sequence in which each value is the sum of the previous two values. The first 15 values are shown below—note that the first value is returned if n is 0, not 1.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
fib(n)	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377

Recall that:

- Subroutine arguments are passed on the stack, and can be accessed within the body of the subroutine starting at address EBP+8.
- At the start of each subroutine:
 - i. Save EBP on the stack
 - ii. Copy the current value of the stack pointer (ESP) to EBP
- iii. Create space within the stack for each local variable by subtracting the appropriate value from ESP. For example, if your function uses four integer local variables, each of which contains four bytes, subtract 16 from ESP.
- iv. Local variables can then be accessed starting at the address EBP-4.
- A subroutine's return value is typically stored in EAX.

See Lectures 15-18 for more details on subroutines, the x86 architecture, and the conversion from high-level concepts to low-level assembly.

Instructor: M. Geiger Homework 4

2. (60 points) Show the result of each PIC 16F1829 instruction in the sequences below. Be sure to show not only the state of updated registers, but also the carry (C) and zero (Z) bits.

a.	cblock 0x x endc	20
	movlw sublw clrf comf xorwf swapf btfsc bsf	0x05 0x15 x x, F x, F x, W x, 7 x, 0
b.	cblock A B endc	0x20
	clrf movlw movwf	A 0x11 B

addlw

subwf

comf

swapf

0x34

A, F A, W

A, F

C.	cblock 0x var1 endc	< 40				
	movlw movwf rrf xorwf btfss iorlw andwf bcf	0x1E var1, F var1, W var1, 4 0x06 var1, F var1, 0				
d.	d. cblock 0x70 num1, num2 endc					
	movlw andlw movwf xorlw movwf asrf lslf xorwf comf	0xAA 0x0F num1 0xFF num2 num2, F num1, W num2, F num2, W				