Part III Local Fields

Based on lectures by Dr C. Johansson

Michaelmas 2016 University of Cambridge

Contents

1	Basic Theory		
	1.1	The p-adic Numbers	3
	1.2	Valued Fields	4
	1.3	Newton Polygons	6
	1.4	*Wiff Vectors*	11
2 Some p-adic Analysis		ne p-adic Analysis	12
	2.1	Mahler's Theorem	13

1 Basic Theory

Definition 1 (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ s.t.

$$i. |x| = 0 \iff x = 0$$

$$ii. |xy| = |x| |y| \quad \forall x, y \in K$$

iii.
$$|x+y| \le |x| + |y|$$

Definition 2 (Valued field). A valued field is a field with an absolute value.

Definition 3 (Equivalence of absolute values). Let K be a field and let $|\cdot|$, $|\cdot|'$ be absolute values on K. We say that $|\cdot|$ and $|\cdot|'$ are **equivalent** if the associated metrics induce the same topology.

Definition 6 (Non-archimedean absolute value). An absolute value $|\cdot|$ on a field K is called **non-archimedean** if $|x+y| \leq \max(|x|,|y|)$ (the **strong triangle inequality**).

Metrics s.t. $d(x, z) \leq \max(d(x, y), d(y, z))$ are called **ultrametrics**.

Assumption: unless otherwise mentioned, all absolute values will be non-archimedean. These metrics are weird!

Proposition 7. Let K be a valued field. Then $\mathcal{O} = \{x \mid |x| \leq 1\}$ is an open subring of K, called the **valuation ring** of K. $\forall r \in (0,1], \{x \mid x < r\}$ and $\{x \mid x \leq r\}$ are open ideals of \mathcal{O} .

Moreover, $\mathcal{O}^x = \{x \mid |x| = 1\}.$

Proposition 8. Let K be a valued field.

i. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) is Cauchy

Assume that K is complete

ii. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) converges

iii. Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges

Definition 9. Let $R \subseteq S$ be rings. Then $s \in S$ is integral over R if \exists monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 10. Let $R \subseteq S$ be rings. Then $s_1, \ldots, s_n \in S$ are all integral over $R \iff R[s_1, \ldots, s_n] \subseteq S$ is a finitely generated R-module.

Corollary 11. let $R \subseteq S$ be rings. If $s_1, s_2 \in S$ are integral over R, then $s_1 + s_2$ and s_1s_2 are integral over R. In particular, the set $\tilde{R} \subseteq S$ of all elements in S integral over R is a ring, called the **integral closure** of R in S.

Definition 12. Let R be a ring. A topology on R is called a **ring topology** on R if addition and multiplication are continuous maps $R \times R \to R$. A ring with a ring topology is called a **topological ring**.

Definition 13. Let R be a ring, $I \subseteq R$ an ideal. A subset $U \subseteq R$ is called *I-adically open* if $\forall x \in U \exists n \geq 1 \text{ s.t. } x + I^n \subseteq U$.

Proposition 14. The set of all I-adically open sets form a topology on R, called the I-adic topology.

Definition 15. Let $R_1, R_2, ...$ be topological rings with continuous homomorphisms $f_n : R_{n+1} \to R_n \ \forall n \geq 1$. The **inverse limit** of the R_i is the ring

$$\lim_{n \to \infty} R_n = \left\{ (x_n) \in \prod_n R_n \mid f_n(x_{n+1}) = x_n \forall n \ge 1 \right\}$$

$$\subseteq \prod_n R_n$$

Proposition 16. The inverse limit topology is a ring topology.

Definition 17. Let R be a ring, I an ideal. The I-adic completion of R is the topological ring $\varprojlim_n R/I^n$ (R/I^n has the discrete topology, and $R/I^{n+1} \to R/I^n$ is the natural map).

There exists a map $\nu: R \to \varprojlim R/I^n$, $r \mapsto (r \mod I^n)_n$ This map is a continuous ring homomorphism when R is given the I-adic topology. We say that R is I-adically complete if ν is a bijection.

If I = xR then we often call the I-adic topology the x-adic topology.

1.1 The p-adic Numbers

Let p be a prime number throughout.

If $x \in \mathbb{Q}\setminus\{0\}$ then $\exists!$ representation $x = p^n \frac{a}{b}$, where $n \in \mathbb{Z}$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{>0}$ and (a, p) = (b, p) = (a, b) = 1.

We define the **p-adic absolute value** on $\mathbb Q$ to be the function $|\cdot|_p:\mathbb Q\to\mathbb R_{\geq 0}$ given by

$$|x|_p = \begin{cases} 0 & \text{if } x = 0 \\ p^{-n} & \text{if } x = p^n \frac{a}{b} \ (\neq 0) \text{ as before} \end{cases}$$

Then $|\cdot|_p$ is an absolute value.

Definition 18. The **p-adic numbers** \mathbb{Q}_p are the completion of \mathbb{Q} w.r.t. $|\cdot|_p$. The valuation ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ is called the **p-adic integers**.

Proposition 19. \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{Q}_p .

Proposition 20. The non-zero ideals of \mathbb{Z}_p are $p_n\mathbb{Z}_p$ for $n \geq 0$. Moreover, $\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}_p/p^n\mathbb{Z}_p$

Corollary 21. \mathbb{Z}_p is a PID with a unique prime element p (up to units).

Proposition 22. The topology on \mathbb{Z} induced by $|\cdot|_p$ is the p-adic topology.

Proposition 23. \mathbb{Z}_p is p-adically complete and is (isomorphic to) the p-adic completion of \mathbb{Z} .

Corollary 24. Every $a \in \mathbb{Z}_p$ has a unique expansion

$$a = \sum_{i=0}^{\infty} a_i p^i$$

with $a_i \in \{0, 1, \dots, p-1\}$

Every $a \in \mathbb{Q}_p^{\times}$ has a unique expansion

$$a = \sum_{i=n} \infty a_i p^i$$

 $n \in \mathbb{Z}, \ n = -\log_p |a|_p, \ a_n \neq 0.$

1.2 Valued Fields

Definition 25. Let K be a field. A valuation on K is a function $v: K \to \mathbb{R} \cup \{\infty\}$ s.t.

$$i. \ v(x) = \infty \iff x = 0$$

ii.
$$v(xy) = v(x) + v(y)$$

iii.
$$v(x+y) \ge \min(v(x), v(y))$$

 $\forall x, y \in K$.

Here we use the conventions $r + \infty = \infty$, $r \leq \infty \ \forall r \in \mathbb{R} \cup \{\infty\}$. v a valuation \implies if $|x| = c^{-v(x)}$, $c \in \mathbb{R}_{>1}$, then $|\cdot|$ is an absolute value. Conversely, if $|\cdot|$ is an absolute value then $v(x) = -\log_c |x|$.

Let K be a valued field.

- $\mathcal{O} = \mathcal{O}_K = \{x \in K \mid |x| \le 1\}$ is the valuation ring
- $\mathfrak{m} = \mathfrak{m}_K = \{x \in K \mid |x| < 1\}$ is the **maximal ideal**
- $k = k_K = \mathcal{O}/\mathfrak{m}$ is the **residue field**

If K is a valued field and $F(x) = a_0 + a_1 x + \cdots + a_n x^n \in K[x]$ is a polynomial, we say that F is **primitive** if $\max_i |a_i| = 1 \ (\Longrightarrow F \in \mathcal{O}[x])$.

Theorem 26 (Hensel's Lemma). Assume that K is complete and that $F \in K[x]$ is primitive. Put $f = F \mod \mathfrak{m} \in k[x]$. If \exists factorisation f(x) = g(x)h(x) with (g,h) = 1, then \exists factorisation F(x) = G(x)H(x) in $\mathcal{O}[x]$ with $g \equiv G$, $h \equiv H \mod \mathfrak{m}$ and $\deg g = \deg G$.

Proof. Put $d = \deg F$, $m = \deg g$, so $\deg h \leq d - m$. Pick lifts $G_0, H_0 \in \mathcal{O}[x]$ of g, h with $\deg G_0 = \deg g$, $\deg H_0 \leq d - m$.

$$(g,h) = 1 \implies \exists A, B \in \mathcal{O}[x] \text{ s.t. } AG_0 + BH_0 \equiv 1 \mod \mathfrak{m}.$$

Pick
$$\pi \in \mathfrak{m}$$
 s.t. $F - G_0 H_0 \equiv AG_0 + BH_0 - 1 \mod \pi$.

Want to find $G = G_0 + \pi P_1 + \pi^2 P_2 + \dots$, $H = H_0 + \pi Q_1 + \pi^2 Q_2 + \dots \in \mathcal{O}[x]$ with $P_i, Q_i \in \mathcal{O}[x]$, $\deg P_i < m$, $\deg Q_i \le d - m$.

Define

$$G_{n-1} = G_0 + \pi P_1 + \dots + \pi^{n-1} P_{n-1}$$

$$H_{n-1} = H_0 + \pi Q_1 + \dots + \pi^{n-1} Q_{n-1}$$

We want $F \equiv G_{n-1}H_{n-1} \mod \pi^n$, then take the limit.

Induction on n: n = 1

Assume we have $G_{n-1}, H_{n-1}, G_n = G_{n-1} + \pi^n P_n, H_n = H_{n-1} + \pi^n Q_n$. Expanding $F - H_n G_n$, we want

$$F - G_{n-1}H_{n-1} \equiv \pi^n (G_{n-1}Q_n + H_{n-1}P_n) \mod \pi^{n+1}$$

and divide by π^n

$$G_{n-1}Q_n + H_{n-1}P_n = \frac{1}{\pi^n} (F - G_{n-1}H_{n-1}) \mod \pi$$

Let $F_n := F - G_{n-1}H_{n-1}$. $AG_o + BH_0 \equiv 1 \mod \pi \implies F_n \equiv AG_0F_n + BH_0F_n \mod \pi$.

Write $BF_n = QG_0 + P_n$ with $\deg P_n < \deg G_0, P_n \in \mathcal{O}[x]$

$$\implies G_0(AF_n + H_0Q) + H_0P_n \equiv F_n \mod \pi$$

Now omit all coefficients from $AF_n + H_0Q$ divisible by π to get Q_n .

Corollary 27. Let $F(x) = a_0 + a_1 x + \dots + a_n x^n \in K[x]$, K complete, $a_0 a_n \neq 0$. If F is irreducible, then $|a_i| \leq \max(|a_0|, |a_n|) \ \forall i$.

Corollary 28. $F \in \mathcal{O}[x]$ monic, K complete. If $F \mod \mathfrak{m}$ has a simple root $\bar{\alpha} \in k$, then F has a (unique) simple root $\alpha \in \mathcal{O}$ lifting $\bar{\alpha}$.

Useful fact: let K be a valued field, $x, y \in K$. $|x| > |y| \implies |x + y| = |x|$. More generally, if we have a convergent series $\sum_{i=0}^{\infty} x_i$ and the non-zero $|x_i|$ are distinct, then $|x| = \max |x_i|$.

Theorem 29. Let K be a complete valued field and let L/K be a finite extension. Then the absolute value $|\cdot|$ on K has a unique extension to an absolute value $|\cdot|_L$ on L, given by

$$|\alpha|_L = \sqrt[n]{|N_{L/K}(\alpha)|}, \ n = [L:K]$$

and L is complete w.r.t. $|\cdot|_L$.

Corollary 30. Let K be a complete valued field. If M/K is an algebraic extension of K, then $|\cdot|$ extends uniquely to an absolute value on M.

Corollary 31. In the setting of Theorem 16, if $\sigma \in \operatorname{Aut}(L/K)$ then $|\sigma(\alpha)|_L = |\alpha|_L \ \forall \alpha \in L$

Definition 32. Let K be a valued field and V a vector space over K. A norm on V is a function $||\cdot||: V \to \mathbb{R}_{\geq 0}$ such that

$$i. ||x|| = 0 \iff x = 0$$

ii.
$$||\lambda x|| = |\lambda| ||x|| \ \forall \lambda \in K, x \in V$$

iii.
$$||x + y|| \le \max(||x||, ||y||) \ \forall x, y, \in V$$

Two norms $||\cdot||, ||\cdot||'$ are **equivalent** if they induce the same topology on $V \iff \exists C, D > 0 \text{ s.t. } C ||x|| \le ||x||' \le D ||x|| \ \forall x \in V.$

Proposition 33. Let K be a complete valued field and V a finite dimensional K-vector sapee. Let x_1, \ldots, x_n be a basis of V, then if $x = \sum a_i x_i \in V$,

$$||x||_{\max} = \max_{i} |a_i|$$

defines a norm on V, and V is complete w.r.t $\left\| \cdot \right\|_{\max}$.

Moreover, if $||\cdot||$ is any norm on V, then $||\cdot||$ is equivalent to $||\cdot||_{\max}$ and hence V is complete w.r.t $||\cdot||$.

Lemma 34. Let K be a valued field. Then \mathcal{O}_K is integrally closed in K.

Corollary 35. Let K be a complete valued field, L/K finite. Equip L with $|\cdot|_L$ extending $|\cdot|$ on K. Then \mathcal{O}_L is the integral closure of \mathcal{O}_K inside L.

1.3 Newton Polygons

Definition. $S \subset \mathbb{R}^2$ is lower convex if

$$i. (x,y) \in S \implies (x,z) \in S \ \forall z > y$$

ii. S is convex

Given any $T \subset \mathbb{R}^2$, there exists a minimal lower convex $LCH(T) \supseteq T$ $(LCH(T) = \bigcap_{T \subset S', S' \text{lower convex}} S')$.

Definition. Let $f(x) = a_0 + a_1 x + \dots + a_n x^n \in K[x]$ where K is a valued field, v a valuation on K.

Define the **Newton polygon** of
$$f$$
 as $LCH\left(\left\{(i, v(a_i)) \middle| \begin{array}{c} i = 0, 1, \dots, n \\ a_i \neq 0 \end{array}\right\}\right)$.

Definition. The horizontal length of a line segment is called the **multiplicity**. Line segments have a **slope**.

Theorem 36. Let K be a complete valued field, v a valuation on K, $f(x) = a_0 + a_1x + \cdots + a_nx^n \in K[x]$. Let L be the splitting field of f over K, equipped with the unique extension w of v.

If $(r, v(a_r)) \to (s, v(a_s))$ is a line segment of the Newton polygon of f with slope $-m \in \mathbb{R}$, then f has precisely s - r roots of valuation m.

Proof. Dividing by a_n only shifts the NP vertically, so wlog $a_n = 1$. Number the roots of f s.t.

$$v(\alpha_1) = \dots = v(\alpha_{s_1}) = m_1$$

 $v(\alpha_{s_1+1}) = \dots = v(\alpha_{s_2}) = m_2$
 $\vdots \qquad \vdots \qquad \vdots$
 $v(\alpha_{s_t+1}) = \dots = v(\alpha_{s_1}) = m_{t+1}$

where $m_1 < m_2 < \cdots < m_{t+1}$, and the α_i are the roots of f with multiplicity.

$$\begin{split} &v(a_n) = v(1) = 0 \\ &v(a_{n-1}) = v(\sum_i a_i) \ge \min_i v(\alpha_i) = m_1 \\ &v(a_{n-2}) \ge \min_{i \ne j} v(\alpha_i \alpha_j) = 2m_1 \\ &v(a_{n-s_1}) = v(\sum_{i_1, \dots i_{s_1} \text{ distinct }} \alpha_{i_1} \dots \alpha_{i_{s_1}}) = s_1 m_1 \\ &v(a_{n-s_1-1}) \ge \min v(\alpha_{i_1} \dots \alpha_{i_{s_1+1}}) = s_1 m_1 + m_2 \\ &\vdots \\ &v(a_{n-s_2}) = \min v(\alpha_{i_1} \dots \alpha_{i_{s_2}}) = s_1 m_1 + (s_2 - s_1) m_2 \end{split}$$

etc. Drawing the lines between the points (n,0), $(n-s_1,s_1m_1)$, ... gives the NP of f.

The first line segment has length $n-(n-s_1)=s_1$ and slope $\frac{0-s_1m_1}{n-(n-s_1)}=-m_1$. For $k\geq 2$, the kth line segment has length $(n-s_{k-1})-(n-s_k)=s_k-s_{k-1}$ and slope

$$\frac{(s_1 m_1 + \sum_{i=1}^{k-2} (s_{i+1} - s_i) m_{i+1}) - (s_1 m_1 + \sum_{i=1}^{k-1} (s_{i+1} - s_i) m_{i+1})}{(n - s_{k-1}) - (n - s_k)}$$

$$= \frac{-(s_k - s_{k-1}) m_k}{s_k - s_{k-1}} = -m_k$$

Corollary 37. If f is irreducible, then the NP has a single line segment.

Proof. we need to show that all roots have the same valuation. Let α, β be roots in the splitting field L. Then $\exists \sigma \in \operatorname{Aut}(L/K)$ s.t. $\sigma(\alpha) = \beta$. So $v(\alpha) = v(\sigma(\alpha)) = v(\beta)$ by Corollary 30.

Definition 38. Let K be a valued field with valuation v. K is a **discretely valued field** (DVF) if $v(K^{\times}) \subset \mathbb{R}$ is a discrete subgroup of \mathbb{R} ($\iff v(K^{\times})$ is infinite cyclic).

Definition 39. A complete DVF with finite residue field is called a **local field**.

Let K be a DVF. $\pi \in K$ is called a **uniformiser** if $v(\pi) > 0$ and $v(\pi)$ generates $v(K^{\times})$ ($\iff v(\pi)$ has minimal positive valuation).

Proposition 40. Let K be a DVF, uniformiser π . Let $S \subset \mathcal{O}_K$ be a set of coset representatives of $\mathcal{O}_k/\mathfrak{m}_K = k_K$ containing 0. Then

- 1. The non-zero ideals of \mathcal{O}_K are $\pi^n \mathcal{O}_K$, $n \geq 0$
- 2. \mathcal{O}_K is a PID with unique prime π (up to units), $\mathfrak{m}_K = \pi \mathcal{O}_K$
- 3. The topology on \mathcal{O}_K induced by $|\cdot|$ is the π -adic topology
- 4. If K is complete, then \mathcal{O}_K is π -adically complete
- 5. If K is complete, then any $x \in K$ can be written uniquely as

$$x = \sum_{n \gg -\infty}^{\infty} a_n \pi^n$$

with $a_n \in S$ and $|x| = |pi|^{-\inf\{n \mid a_n \neq 0\}}$

6. The completion \hat{K} of K is a DVF, π is a uniformiser and

$$\mathcal{O}_K/\pi^n\mathcal{O}_K \xrightarrow{\sim} \mathcal{O}_{\hat{K}}/\pi^n\mathcal{O}_{\hat{K}}$$

via the natural map.

Proof. The same as for \mathbb{Q}_p and \mathbb{Z}_p (use π instead of p). Note that $|\hat{K}| = |K|$ by Ex 9, sheet 1 ($\Longrightarrow \hat{K}$ is a DVF).

Proposition 41. Let K be a DVF. Then K is a local field $\iff \mathcal{O}_K$ is compact

Proof. \mathcal{O}_K compact $\implies \pi^{-n}\mathcal{O}_K$ is compact $\forall n \geq 0 \ (\pi \text{ uniformiser}).$

$$\mathcal{O}_K \cong \pi^{-n}\mathcal{O}_K \implies K = \bigcup_{n>0}^{\infty} \pi^{-n}\mathcal{O}_K$$
 is complete.

Also $\mathcal{O}_K \twoheadrightarrow k_K$ and this map is continuous when k_K is given the discrete topology. So k_K is compact and discrete $\implies k_K$ finite.

Conversely, we seek to prove that K local $\Longrightarrow \mathcal{O}_K$ is sequentially compact (\iff compact). Note that $\mathcal{O}_K/\pi^n\mathcal{O}_K$ is finite $\forall n \geq 0$ (induction and $\pi^{n-1}\mathcal{O}_K/\pi^n\mathcal{O}_K \cong \mathcal{O}_K/\pi\mathcal{O}_K$).

Let (x_i) be a sequence in \mathcal{O}_K . \exists a subsequence (x_{1i}) which is constant modulo π . Keep going: choose a subsequence $(x_{n+1,i})$ of (x_{ni}) s.t. $(x_{n+1,i})$ is constant mod π^{n+1} .

Then $(x_{ii})_{i=1}^{\infty}$ converges: it's Cauchy since $|x_{ii} - x_{jj}| \leq |\pi|^j \ \forall j \leq i$, and K is complete.

Definition 42. A ring R is called a **discrete valuation ring** (DVR) if it is a PID with a unique prime element (up to units).

Proposition 43. R is a DVR \iff R \cong \mathcal{O}_K for some DVF K.

Proof. The reverse implication is contained in Proposition 42.

Suppose R is a DVR, π prime. $\forall x \in R \setminus \{0\}$, $\exists ! u \in R^{\times}$, $n \in \mathbb{Z}_{\geq 0}$ such that $x = \pi^n u$ by uniqueness of prime factorisation.

Define
$$v(x) = \begin{cases} n & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.$$

v defines a discrete valuation of $R \implies v$ extends uniquely to $K = \operatorname{Frac}(R)$. It remains to show that $R = \mathcal{O}_K$. First, note that $K = R[\frac{1}{\pi}]$. Any non-zero element looks like $\pi^n u$, $u \in R^{\times}$, $n \in \mathbb{Z}$, so it is invertible.

Then
$$v(\pi^n u) = n \in \mathbb{Z}_{\geq 0} \iff \pi^n u \in R$$

$$\therefore R = \mathcal{O}_K.$$

Definition 44. Let K be a valued field with residue field k_K . K has **equal characteristic** if $\operatorname{char} K = \operatorname{char} k_K$, **mixed characteristic** otherwise (\Longrightarrow $\operatorname{char} K = 0$, $\operatorname{char} k_K > 0$).

Definition 45. Let R be a ring of characteristic p. R is **perfect** if the Frobenius map $x \mapsto x^p$ is an automorphism of R.

Theorem 46. Let K be a complete DVF of equal characteristic p and assume that k_K is perfect. Then $K \cong k_K[[T]]$ (as DVFs).

Corollary 47. Let K be a local field of equal characteristic p. Have $k_K \cong \mathbb{F}_q$ for some q a power of p, and $K \cong \mathbb{F}_q((T))$.

Definition 48. Let K be a DVF. The normalised valuation v_K on K is the unique valuation on K in the given equivalence class s.t. $v_K(\pi) = 1$ for any uniformiser π .

Lemma 49. Let R be a ring and let $x \in R$. Assume that R is x-adically complete and that R/xR is perfect of characteristic p.

Then $\exists ! \ map \ [-] : R/xR \to R \ such \ that$

$$[a] \equiv a \mod x$$
$$[ab] = [a][b] \ \forall a, b \in R/xR$$

Moreover if R has characteristic p, then [-] is a ring homomorphism.

Proof. Let $a \in R/xR$. $\exists ! \ a^{p^{-n}} \in R/xR \ \forall n \geq 0$ since R/xR is perfect. Now lift arbitrarily: take $\alpha_n \in R$ such that $\alpha_n \equiv a^{p^{-n}} \mod x$.

Put
$$\beta_n = \alpha_n^{p^n}$$
.

Claim: $\lim_{n\to\infty} \beta_n$ exists and is independent of choices. Call this [a].

Note that if the limit exists no matter how the α_n are chosen, then it is independent of the choices.

Want to prove $\beta_{n+1} - \beta_n \to 0$ x-adically.

$$\beta_{n+1} - \beta_n = (\alpha_{n+1}^p)^{p^n} - (\alpha_n)^{p^n}$$

$$\alpha_{n+1}^p \equiv (a^{p^{-n-1}})^p \equiv a^{p^{-n}} \equiv \alpha_n \mod x$$

The binomial theorem, R/xR characteristic p and induction \implies

$$(\alpha_{n+1}^p)^{p^n} \equiv \alpha_n^{p^n} \mod x^{n+1}$$

i.e. $\beta_{n+1} - \beta_n \equiv 0 \mod x^{n+1}$ so $\lim_{n \to \infty} \beta_n$ exists.

Multiplicativity: if $b \in R/xR$, with $\gamma_n \in R$ lifting $b^{p^{-n}} \forall n \geq 0$, then $\alpha_n \gamma_n$ lifts $(ab)^{p^{-n}} = a^{p^{-n}}b^{p^{-n}}$

$$\implies [ab] = \lim_{n \to \infty} \alpha_n^{p^n} \lim_{n \to \infty} \gamma_n^{p^n} = [a][b]$$

 $[a] \equiv a \mod x$:

$$\lim_{n\to\infty}\alpha_n^{p^n}\equiv\lim_{n\to\infty}(a^{p^{-n}})^{p^n}\equiv\lim_{n\to\infty}a\equiv a\mod x$$

Uniqueness: let $\phi: R/xR \to R$ be another map with these properties.

$$[a] = \lim_{n \to \infty} \phi(a^{p^{-n}})^{p^n} = \lim_{n \to \infty} \phi(a) = \phi(a)$$

since $\phi(a^{p^{-n}}) \equiv a^{p^{-n}} \mod x$ and ϕ is multiplicative.

Finally, if R has characteristic p, then $\alpha_n + \gamma_n$ lifts $a^{p^{-n}} + b^{p^{-n}} - (a+b)p^{-n}$, so

$$[a+b] = \lim_{n \to \infty} (\alpha_n + \gamma_n)^{p^n} = \lim_{n \to \infty} \alpha_n^{p^n} + \gamma_n^{p^n} = [a] + [b]$$

So [-] is additive and multiplicative and (check!) [1] = 1, so it's a homomorphism.

Definition 50. $[-]: R/xR \to R$ is called the **Teichmüller map/lift** and [x]is called the **Teichmüller lift/representative** of x.

Proof of Theorem 48. K is a complete DVF. We want to prove that $\mathcal{O}_K \cong$ $k_K[[T]].$

 $\mathcal{O}_K \operatorname{char} p \Longrightarrow [-]: k_K \hookrightarrow \mathcal{O}_K$ is an injective ring homomorphism.

Choose a uniformiser $\pi \in \mathcal{O}_K$. Then $k_K = \mathcal{O}/\pi \mathcal{O}_K$, \mathcal{O}_K π -adically complete. Now define

$$k_K[[T]] o \mathcal{O}_K$$
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞

$$\sum_{n=0}^{\infty} a_n T^n \mapsto \sum_{n=0}^{\infty} [a_n] \pi^n$$

It's a bijection by one of the basic properties of complete DVFs, check it's a homomorphism. Fact: let F be a field of characteristic p. Then F is perfect \iff every finite extension of F is separable.

 \mathbb{F}_q is perfect for every $q = p^n$.

1.4 *Wiff Vectors*

Definition 51. Let A be a ring. A is called a **strict p-ring** if A is p-torsionfree, p-adically complete and A/pA is perfect.

Proposition 52. Let $X = \{x_i | i \in I\}$ be a set. Let

$$\begin{split} B &= \mathbb{Z}[x_i^{p^{-\infty}} \mid i \in I] \\ &= \bigcup_{n=0}^{\infty} \mathbb{Z}[x_i^{p^{-n}} \mid i \in I] \end{split}$$

(Note that $\mathbb{Z}[x_i \mid i \in I] \subseteq \mathbb{Z}[x_i^{p^{-1}} \mid i \in I] \subseteq ...$) and let A be the p-adic completion of B. Then A is a strict p-ring, and $A/pA \cong \mathbb{F}_p[x_i^{p^{-\infty}} \mid i \in I]$ (think of as 'universal perfect rings').

Lemma 53. Let A and B be strict p-rings and let $f: A/pA \to B/pB$ be a ring homomorphism. Then $\exists !$ homomorphism $F: A \to B$ such that $f \equiv F \mod p$. F is explicitly given by $F(\sum_{n=0}^{\infty} [a_n]p^n) = \sum_{n=0}^{\infty} [f(a_n)]p^n$.

Theorem 54. Let R be a perfect ring. Then $\exists !$ (up to isomorphism) strict p-ring W(R) (called the **Wiff vectors** of R) such that $W(R)/pW(R) \cong R$. Moreover, if R' is another perfect ring the reduction mod p map gives a bijection

$$Hom_{Ring}(W(R), W(R')) \xrightarrow{\sim} Hom_{Ring}(R, R')$$

Proposition 55. A complete DVR A of mixed characteristic with perfect residue field and such that p is a uniformiser is the same as a strict p-ring A such that A/pA is a field.

Definition 56. Let R be a mixed characteristic DVR with normalised valuation v_R . The integer $v_R(p)$ where p is the characteristic of the residue field of R is called the **absolute ramification index** of R.

Corollary 57. Let R be a CDVR of mixed characteristic with absolute ramification index 1 and perfect residue field k. Then $R \cong W(k)$.

Lemma 53'. Let A be a strict p-ring and let B be a p-adically complete ring. If $f: A/pA \to B/pB$ is a ring homomorphism, then $\exists !$ ring homomorphism $F: A \to B$ with $f \equiv F \mod p$.

Theorem 58. Let R be a CDVR of mixed characteristic with perfect residue field k and uniformiser π . Then R is finite over W(k).

Corollary 59. Let K be a mixed characteristic local field. Then K is a finite extension of \mathbb{Q}_p .

2 Some p-adic Analysis

Recall the power series

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{x!}$$

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

Proposition 60. Let K be a complete valued field with absolute value $|\cdot|$, and assume that $K \supseteq \mathbb{Q}_p$, $|\cdot||_{\mathbb{Q}_p} = |\cdot|_p$. Then $\exp(x)$ converges for $|x| < p^{-\frac{1}{p-1}}$ and $\log(1+x)$ converges for |x| < 1, and they define continuous maps

$$\exp: \left\{ x \in K \, | \, |x| < p^{-\frac{1}{p-1}} \right\} \to \mathcal{O}_K$$

$$\log: \{x \in K \,|\, |x| < 1\} \rightarrow K$$

Proof. $v = -\log_p |\cdot|$, this extends v_p .

 $\log: v(n) \leq \log_p n \implies$

$$v(\frac{x^n}{n}) \ge n \cdot v(x) - \log_p n \to \infty$$

if v(x) > 0.

exp: $v(n!) = \frac{n - s_p(n)}{p-1}$. Then

$$v(\frac{x^n}{n!}) \ge n \cdot v(x) - \frac{n}{p-1} = n(v(x) - \frac{1}{p-1}) \ge 0$$

and $\to \infty$ as $n \to \infty$ if $v(x) > \frac{1}{p-1}$.

For continuity, we use uniform convergence as in the real case.

Lemma 53". Let A be a strict p-ring, B a ring with element $x \in B$ such that B is x-adically complete and B/xB is perfect of characteristic p. If $f: A/pA \to B/pB$ is a ring homomorphism, then $\exists !$ ring homomorphism $F: A \to B$ with $f \equiv F \mod p$.

Let $n \geq 1$.

$$\binom{x}{n} = \frac{x(x-1)\dots(x-n+1)}{n!}$$

is a polynomial in x, and so defines a continuous function $\mathbb{Z}_p \to \mathbb{Q}_p$, $x \mapsto \binom{x}{p}$.

Since $\binom{x}{n} \in \mathbb{Z}$ if $x \in \mathbb{Z}_{\geq 0}$, by the density of $\mathbb{Z}_{\geq 0} \subset \mathbb{Z}_p$ we must have $\binom{x}{n} \in \mathbb{Z}_p \forall x \in \mathbb{Z}_p$.

When n = 0, set $\binom{x}{0} = 1 \forall x \in \mathbb{Z}_p$.

2.1 Mahler's Theorem

Theorem 61 (Mahler). Let $f: \mathbb{Z}_p \to \mathbb{Q}_p$ be a continuous function. Then \exists a unique sequence $(a_n)_{n\geq 0}$ with $a_n \in \mathbb{Q}_p$, $a_n \to 0$ such that

$$f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n} \ \forall x \in \mathbb{Z}_p$$

and $\sup_{x \in \mathbb{Z}_p} |f(x)|_p = \max_{n=0,1,\dots} |a_n|_p$.

Let $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) = \{f : \mathbb{Z}_p \to \mathbb{Q}_p \text{ cts}\}$. This is a \mathbb{Q}_p -vector space.

If $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$, set $||f|| = \sup_{x \in \mathbb{Z}_p} |f(x)|_p$. \mathbb{Z}_p compact $\Longrightarrow f$ is bounded, so the supremum exists and is attained.

Let c_0 denote the set of sequences $(a_n)_{n=0}^{\infty}$ in \mathbb{Q}_p such that $a_n \to 0$. This is a \mathbb{Q}_p -vector space, with a norm $||(a_n)|| = \max_{n=0,1,\dots} |a_n|_p$, and c_0 is complete w.r.t $||\cdot||$.

Define $\triangle : \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \to \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$ by $\triangle f(x) = f(x+1) - f(x)$. By induction,

$$\triangle^n f(x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(x+n-i)$$

Note that \triangle defines a linear operator on $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$, and

$$|\triangle f(x)|_p = |f(x+1) - f(x)|_p \leq ||f|| \implies ||\triangle f|| \leq ||f|| \text{ or } ||\triangle|| \leq 1$$

Definition 62. Let $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$. The **nth Mahler coefficient** $a_n(f) \in \mathbb{Q}_p$ is defined by

$$a_n(f) = \triangle^n f(0) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(n-i)$$

Lemma 63. Let $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$. Then $\exists k \geq 1$ such that $\left| \left| \triangle^{p^k} f \right| \right| \leq \frac{1}{p} ||f||$.

Proof. If f = 0 there's nothing to prove, so wlog ||f|| = 1 (by scaling). Then we want to show that $\Delta^{p^k} f(x) \equiv 0 \mod p \ \forall x \in \mathbb{Z}_p$, some $k \geq 1$.

$$\Delta^{p^k} f(x) = \sum_{i=0}^{p^k} (-1)^i \binom{p^k}{i} f(x + p^k - i) \equiv f(x + p^k) - f(x) \mod p$$

because $\binom{p^k}{i} \equiv 0 \mod p$ for $i = 1, 2, \dots, p^k - 1$ and $(-1)^{p^k} \equiv -1 \mod p$.

Now \mathbb{Z}_p compact $\Longrightarrow f$ is uniformly continuous, so $\exists k$ such that $|x-y|_p \le p^{-k} \Longrightarrow |f(x)-f(y)|_p \le \frac{1}{p} \ \forall x,y \in \mathbb{Z}_p$. Take this k, and we're done. \square

Proposition 64. The map $f \mapsto (a_n(f))_{n=0}^{\infty}$ defines an injective norm-decreasing linear map $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \to c_0$.

Proof. First we prove that $a_n(f) \to 0$. We have $|a_n(f)|_p \le ||\triangle^n f||$, so it suffices to prove that $||\triangle^n f|| \to 0$. Since $||\triangle|| \le 1$, $||\triangle^n f||$ is monotonically decreasing, so it suffices to find a subsequence $\to 0$.

Apply Lemma 63 repeatedly to get k_1, k_2, \ldots such that

$$\left| \left| \triangle^{p^{k_1 + \dots + k_n}} f \right| \right| \le \frac{1}{p^n} \left| \left| f \right| \right|$$

This gives the desired subsequence.

Note that $|a_n(f)|_p \leq ||\triangle^n f|| \leq ||\triangle||$, so $||(a_n(f))_n|| = \max_{n=0,1,\dots} |a_n(f)|_p \leq ||f||$, so the map is norm-decreasing. Linearity follows from the linearity of \triangle .

Injectivity: assume $a_n(f) = 0 \ \forall n \geq 0$. Then $a_0(f) = f(0) = 0$, and by induction $f(n) = \triangle^n f(0) = a_n(f) = 0 \ \forall n \geq 0$. So f = 0 by continuity since $\mathbb{Z}_{\geq 0} \subseteq \mathbb{Z}_p$ is dense.