CV Project-4

Data condition

由於在解 SVD 的過程中非常容易受到 noise 或 outlier 的影響,所以我們使用 data condition 來降低數值運算上的誤差。核心概念是產生一個空間轉換矩陣H,使得資料點縮小到一個很小的空間中解 SVD,爾後再使用 H^{-1} 轉換回原空間.

計算個別相機i的 2D 點之 covariance matrix

$$S_{i} = \frac{1}{n} \begin{bmatrix} x_{i1} - c_{1i} & x_{i2} - c_{1i} & \cdots & x_{in} - c_{1i} \\ y_{i1} - c_{2i} & y_{i2} - c_{2i} & \cdots & y_{in} - c_{2i} \end{bmatrix} \begin{bmatrix} x_{i1} - c_{1i} & y_{i1} - c_{1i} & 1 \\ x_{i2} - c_{1i} & y_{i2} - c_{1i} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_{in} - c_{1i} & y_{in} - c_{1i} & 1 \end{bmatrix}$$

對 covariance matrix 使用 UL 分解, U^{-1} 即為我們的空間轉換矩陣H,也就是 data conditioner。我們將H合併平移 mean 步驟產生完整的 data conditioner,使得我們可以直接套用在原始 2D 點上

$$\mathbf{H}_{i} \leftarrow \mathbf{H}_{i} \begin{bmatrix} 1 & 0 & c_{1i} \\ 0 & 1 & c_{2i} \\ 0 & 0 & 1 \end{bmatrix}$$

而在之後的收斂過程,我們帶入的 2D 點即為縮小平移後的 2D 點

$$p_i \leftarrow H_i p_i$$

收斂後產生的M則是需要乘上 H^{-1} 放大回原空間,才能對應驗正我們的投影點 $M_i \leftarrow H_i^{-1}M_i$

Convergent Bilinear Algorithm

使用多影像間 2D 對應點關係重建 3D 點與投影矩陣,並且可以省去估 z 深度的影響。收斂過程分為兩步驟,分別為 3D 點步驟與投影矩陣步驟.

$$\begin{cases} E_j^{(\mathcal{M})} = \sum_{i=1}^m |\boldsymbol{p}_{ij} \times (\mathcal{M}_i \boldsymbol{P}_j)|^2, \\ E_i^{(\mathcal{P})} = \sum_{i=1}^n |\boldsymbol{p}_{ij} \times (\mathcal{M}_i \boldsymbol{P}_j)|^2. \end{cases}$$

Initial M

要進入該步驟循環收斂,我們必須要有初始的投影矩陣 M 或初始 3D 點 P。由於並非所有像機都有共同的對應點,所以我們無法利用對應關係求出所有的初

始 3D 點,而是利用所有相機都有看到的對應點去求得 initial M,假設 initial z=1

$$\mathcal{I} \stackrel{\text{def}}{=} \begin{pmatrix} z_{11} \boldsymbol{p}_{11} & \dots & z_{1n} \boldsymbol{p}_{1n} \\ \dots & \dots & \dots \\ z_{m1} \boldsymbol{p}_{m1} & \dots & z_{mn} \boldsymbol{p}_{mn} \end{pmatrix}$$

$$I = UWV^{T}$$
Initial $M = U_{4} \sqrt{W_{4}}$

Step M

$$\mathbf{\hat{0}} = p_{ij} \times \begin{pmatrix} M_i \ P_j \\ \mathbf{3} \times \mathbf{1} \end{pmatrix} = p_{ij} \times \begin{bmatrix} m_{i1}^T P_j \\ m_{i2}^T P_j \\ m_{i3}^T P_j \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -w_{ij} & v_{ij} \\ w_{ij} & \mathbf{0} & -u_{ij} \\ -v_{ij} & u_{ij} & \mathbf{0} \end{bmatrix} \begin{bmatrix} m_{i1}^T P_j \\ m_{i2}^T P_j \\ m_{i3}^T P_j \end{bmatrix} = \begin{bmatrix} -w_{ij} (P_j^T m_{i2}) + v_{ij} (P_j^T m_{i3}) \\ w_{ij} (P_j^T m_{i1}) + u_{ij} (P_j^T m_{i3}) \\ -v_{ij} (P_j^T m_{i1}) + u_{ij} (P_j^T m_{i2}) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & -w_{ij}P_{j}^{T} & v_{ij}P_{j}^{T} & v_{ij}P_{j}^{T} \\ w_{ij}P_{j}^{T} & \mathbf{0} & -u_{ij}P_{j}^{T} & \mathbf{0} \\ -v_{ij}P_{j}^{T} & u_{ij}P_{j}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} m_{i1} \\ m_{i2} \\ m_{i3} \\ 12 \times 1 \end{bmatrix} = \begin{bmatrix} \mathbf{0}^{T} & -w_{ij}P_{j}^{T} & v_{ij}P_{j}^{T} \\ w_{ij}P_{j}^{T} & -u_{ij}P_{j}^{T} \\ v_{ij}P_{j}^{T} & u_{ij}P_{j}^{T} \end{bmatrix} \begin{bmatrix} m_{i13} \\ m_{i21} \\ m_{i22} \\ m_{i23} \\ m_{i24} \\ m_{i31} \\ m_{i32} \\ m_{i33} \\ m_{i34} \end{bmatrix} = C_{ij}m_{i}, j = \mathbf{1}, \mathbf{2}, \Lambda, n$$

$$\begin{bmatrix} C_{i1} \\ C_{i2} \\ M \\ C_{in} \end{bmatrix} m_i = \begin{bmatrix} \mathbf{0}^T & -w_{i1}P_j^T & v_{i1}P_j^T \\ w_{i1}P_j^T & \mathbf{0}^T & -u_{i1}P_j^T \\ -v_{i1}P_j^T & u_{i1}P_j^T & \mathbf{0}^T \\ M & M & M \\ \mathbf{0}^T & -w_{in}P_j^T & v_{in}P_j^T \\ w_{in}P_j^T & \mathbf{0}^T & -u_{in}P_j^T \\ -v_{in}P_j^T & u_{in}P_j^T & \mathbf{0}^T \end{bmatrix} m_i = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

$$\mathbf{0} = p_{ij} \times \left(M_i P_j \right) \Rightarrow \begin{bmatrix} u_{ij} \\ v_{ij} \\ w_{ij} \end{bmatrix} \times \begin{bmatrix} m_{i1}^T \\ m_{i2}^T \\ m_{i3}^T \end{bmatrix} \begin{bmatrix} P_j \end{bmatrix}$$

$$=\begin{bmatrix} \mathbf{0} & -w_{ij} & v_{ij} \\ w_{ij} & \mathbf{0} & -u_{ij} \\ -v_{ij} & u_{ij} & \mathbf{0} \end{bmatrix} \begin{bmatrix} m_{i11} & m_{i12} & m_{i13} & m_{i14} \\ m_{i21} & m_{i22} & m_{i23} & m_{i24} \\ m_{i31} & m_{i32} & m_{i33} & m_{i34} \end{bmatrix} \begin{bmatrix} P_{jx} \\ P_{jy} \\ P_{jz} \\ P_{js} \\ 4\times 1 \end{bmatrix} = \mathbf{0}$$

$$\Rightarrow D_{ij} = \begin{bmatrix} \mathbf{0} & -w_{ij} & v_{ij} \\ w_{ij} & \mathbf{0} & -u_{ij} \\ -v_{ij} & u_{ij} & \mathbf{0} \end{bmatrix} \begin{bmatrix} m_{i11} & m_{i12} & m_{i13} & m_{i14} \\ m_{i21} & m_{i22} & m_{i23} & m_{i24} \\ m_{i31} & m_{i32} & m_{i33} & m_{i34} \end{bmatrix}$$

$$=\begin{bmatrix} -w_{ij}m_{i21} + v_{ij}m_{i31} & -w_{ij}m_{i22} + v_{ij}m_{i32} & -w_{ij}m_{i23} + v_{ij}m_{i33} & -w_{ij}m_{i24} + v_{ij}m_{i34} \\ w_{ij}m_{i11} - u_{ij}m_{i31} & w_{ij}m_{i12} - u_{ij}m_{i32} & w_{ij}m_{i13} - u_{ij}m_{i33} & w_{ij}m_{i14} - u_{ij}m_{i34} \\ -v_{ij}m_{i11} + u_{ij}m_{i21} & -v_{ij}m_{i12} + u_{ij}m_{i22} & -v_{ij}m_{i13} + u_{ij}m_{i23} & -v_{ij}m_{i14} + u_{ij}m_{i24} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & -w_{ij} & v_{ij} \\ w_{ij} & \mathbf{0} & -u_{ij} \\ -v_{ij} & u_{ij} & \mathbf{0} \end{bmatrix} \begin{bmatrix} m_{i11} & m_{i12} & m_{i13} & m_{i14} \\ m_{i21} & m_{i22} & m_{i23} & m_{i24} \\ m_{i31} & m_{i32} & m_{i33} & m_{i34} \end{bmatrix} \begin{bmatrix} P_{jx} \\ P_{jy} \\ P_{jz} \\ P_{js} \\ P_{js} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, i = \mathbf{1}, \mathbf{2}, \Lambda, m.$$

$$\begin{bmatrix} -w_{1j}m_{1} \ 21 + v_{1j}m_{1} \ 31 & -w_{1j}m_{1} \ 22 + v_{1j}m_{1} \ 32 & -w_{1j}m_{1} \ 23 + v_{1j}m_{1} \ 33 & -w_{1j}m_{1} \ 24 + v_{1j}m_{1} \ 34 \\ w_{1j}m_{1} \ 11 - u_{1j}m_{1} \ 31 & w_{1j}m_{1} \ 12 - u_{1j}m_{1} \ 32 & w_{1j}m_{1} \ 13 - u_{1j}m_{1} \ 33 & w_{1j}m_{1} \ 14 - u_{1j}m_{1} \ 34 \\ -v_{1j}m_{1} \ 11 + u_{1j}m_{1} \ 21 & -v_{1j}m_{1} \ 12 + u_{1j}m_{1} \ 22 & -v_{1j}m_{1} \ 13 + u_{1j}m_{1} \ 23 & -v_{1j}m_{1} \ 14 + u_{1j}m_{1} \ 24 \\ -w_{2j}m_{2} \ 21 + v_{2j}m_{2} \ 31 & -w_{2j}m_{2} \ 22 + v_{2j}m_{2} \ 32 & -w_{2j}m_{2} \ 23 + v_{2j}m_{2} \ 33 & -w_{2j}m_{2} \ 24 + v_{2j}m_{2} \ 34 \\ w_{2j}m_{2} \ 11 - u_{2j}m_{2} \ 31 & w_{2j}m_{2} \ 12 - u_{2j}m_{2} \ 32 & w_{2j}m_{2} \ 13 - u_{2j}m_{2} \ 33 & w_{2j}m_{2} \ 14 - u_{2j}m_{2} \ 34 \\ -v_{2j}m_{2} \ 11 + u_{2j}m_{2} \ 21 & -v_{2j}m_{2} \ 12 + u_{2j}m_{2} \ 22 & -v_{2j}m_{2} \ 13 + u_{2j}m_{2} \ 23 & -v_{2j}m_{2} \ 14 + u_{2j}m_{2} \ 24 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -w_{mj}m_{m} \ 21 + v_{mj}m_{m} \ 31 & -w_{mj}m_{m} \ 32 & -w_{mj}m_{m} \ 23 + v_{mj}m_{m} \ 33 & -w_{mj}m_{m} \ 44 + u_{mj}m_{m} \ 34 \\ -v_{mj}m_{m} \ 11 - u_{mj}m_{m} \ 31 & w_{mj}m_{m} \ 12 + u_{mj}m_{m} \ 32 & -v_{mj}m_{m} \ 13 + u_{mj}m_{m} \ 33 & -v_{mj}m_{m} \ 14 + u_{mj}m_{m} \ 24 \end{bmatrix}$$

$$= \begin{bmatrix} D_{1j} \\ D_{2j} \\ \vdots \\ D_{mj} \end{bmatrix} P_j = D_j P_j = 0$$

我們定程式的收斂條件為滿足下列 3 式

- 1. 當總投影誤差 $s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = MP$ 小於 threshold
- 2. M 與前一次 M 差值的 norm 小於 threshold
- 3. P 與前一次 P 差值的 norm 小於 threshold
- 4. 預設 Threshold = 0.0001

Projective space to Euclidean space

原本影像共有m張, C_n^m 取出n where $n \geq 4$ 張求 $Q_{Euclidean \leftarrow Projective}$ 空間轉換矩陣, M_i 為 projective space 的投影矩陣,我們的目標就是使用Q將投影矩陣與 3D 做標點從 projective space 轉為 Euclidean space.

基本投影公式如下

$$s\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = M_i P_{projective} = (M_i Q) (Q^{-1} P_{projective}) = M_{i_{Euclidean}} P_{Euclidean}$$

定義

$$Q = [Q_3 \quad q_4]$$

$$q_4 = [0 \ 0 \ 0 \ 1]^T$$

$$A = Q_3 Q_3^T$$

A為對稱矩陣共有 10 個 unknown

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{bmatrix}$$

$$\begin{split} C_{i}(p,q) &= M_{i}AM_{i}^{T}(p,q) = \lambda_{i}^{2}K_{i}K_{i}^{T}(p,q) \\ &= m_{p1}^{i}m_{q1}^{i}a_{11} + \left(m_{p1}^{i}m_{q2}^{i} + m_{p2}^{i}m_{q1}^{i}\right)a_{12} + \left(m_{p2}^{i}m_{q2}^{i}\right)a_{22} \\ &+ \left(m_{p1}^{i}m_{q3}^{i} + m_{p3}^{i}m_{q1}^{i}\right)a_{13} + \left(m_{p2}^{i}m_{q3}^{i} + m_{p3}^{i}m_{q2}^{i}\right)a_{23} \\ &+ \left(m_{p3}^{i}m_{q3}^{i}\right)a_{33} + \left(m_{p1}^{i}m_{q4}^{i} + m_{p4}^{i}m_{q1}^{i}\right)a_{14} \\ &+ \left(m_{p2}^{i}m_{q4}^{i} + m_{p4}^{i}m_{q2}^{i}\right)a_{24} + \left(m_{p3}^{i}m_{q4}^{i} + m_{p4}^{i}m_{q3}^{i}\right)a_{34} \\ &+ \left(m_{p4}^{i}m_{q4}^{i}\right)a_{44} \end{split}$$
 for $i = 1, 2 \dots n$

 $\Rightarrow u_0, v_0$ 為影像平面中心,假設像機內部參數如下

$$K_i = \begin{bmatrix} lpha & 0 & u_0 \\ 0 & eta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $\exists i K_i K_i^T = \begin{bmatrix} lpha + u_0^2 & u_0 v_0 & u_0 \\ u_0 v_0 & eta + v_0^2 & v_0 \\ u_0 & v_0 & 1 \end{bmatrix}$

展開 $M_iAM_i^T$,一張影像可以提供 3 個 equation

$$\begin{cases} C_i(1,2) - u_0 v_0 C_i(3,3) = 0 \\ C_i(1,3) - u_0 C_i(3,3) = 0 \\ C_i(2,3) - v_0 C_i(3,3) = 0 \end{cases}$$

把n組 equation 疊起來

$$\begin{bmatrix} C_1(1,2) - u_0 v_0 C_1(3,3) \\ C_1(1,3) - u_0 C_1(3,3) \\ C_1(2,3) - v_0 C_1(3,3) \\ \vdots \\ C_n(2,3) - v_0 C_n(3,3) \end{bmatrix} = 0$$

將上式合併共同系數整理成

$$C * \pm \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{14} \\ a_{22} \\ a_{23} \\ a_{24} \\ a_{33} \\ a_{34} \\ a_{44} \end{bmatrix} = 0$$

我們可以對C使用 SVD 求解 a_{ij} ,將 a_{ij} 對稱排列組合成A

求解相機參數與 Q_3

對 $M_i A M_i^T$ 做 UL 分解求 K_i ,所以A必為 positive definite matrix,因A有正負兩種解都符合方程式,我們只取 positive definite matrix 的A來進行之後的運算

$$M_i A M_i^T = UL = (\lambda_i K_i)(\lambda_i K_i)^T = \lambda_i^2 K_i K_i^T$$

$$K_i = \frac{U}{\lambda_i} \text{ where } \lambda_i = U(3,3)$$

SVD 求解 Q_3

現在我們可以對使A用 SVD 解出 Q_3 ,因為A為對稱矩陣,所以U=V

$$A = USV^{T} = \left(US^{\frac{1}{2}}V^{T}\right)\left(VS^{\frac{1}{2}}U^{T}\right) = Q_{3}Q_{3}^{T}$$

$$Q_{3} = U_{3}S_{3}^{\frac{1}{2}}$$

eigen decomposition 求解 Q_3

對A作 diagonalization

$$A = P\Lambda P^{T} = (P\Lambda^{\frac{1}{2}})(\Lambda^{\frac{1}{2}}P^{T}), PP^{T} = I$$
$$AP = P\Lambda P^{T}P$$

變成一個解 eigen decomposition 的問題,P為A的 eigen vector, Λ 為A的 eigen value $AP = \Lambda P$

我們將A和對應的P由大到小排序好

$$A = P\Lambda P^T = (P\Lambda^{\frac{1}{2}})(\Lambda^{\frac{1}{2}}P^T)$$

由於A的 rank 只有 3,所以只取前三大的 eigen vector 和 eigen value

$$A = P\Lambda P^{T} = \left(P_{3}\Lambda_{3}^{\frac{1}{2}}\right)\left(\Lambda_{3}^{\frac{1}{2}}P_{3}^{T}\right) = Q_{3}Q_{3}^{T}$$
$$Q_{3} = P_{3}\Lambda_{3}^{\frac{1}{2}}$$

求相機外部參數

有了03就可以求得相機旋轉矩陣

$$M_i Q_3 = \lambda_i K_i R_i$$
$$R_i = \frac{1}{\lambda_i} K_i^{-1} M_i Q_3$$

由於 SVD 或 eigen decomposition 的 Q_3 解可能有正負號兩種, 這邊我們需要檢查 R_i 旋轉矩陣是否合理($\det(R_i)$ 原則上等於 1)

$$\begin{cases} Q_3 \leftarrow Q_3, & if \ |R_i| \ge 0 \\ Q_3 \leftarrow -Q_3, & if \ |R_i| < 0 \end{cases}$$

$$\begin{cases} R_i \leftarrow R_i, & if \ |R_i| \ge 0 \\ R_i \leftarrow -R_i, & if \ |R_i| < 0 \end{cases}$$

然後 R_i 的 determine 可能不為 $\mathbf{1}$,所以使用 SVD 修正為新的 R_i ,使其滿足 orthogonal 特性

$$R_i = U\Sigma V^T$$
$$R_i \leftarrow UV^T$$

所以我們可以解出空間轉換矩陣Q, q_4 僅代表空間平移,所以設為 $[0\ 0\ 0\ 1]^\mathsf{T}$,求得相機外部平移參數t

$$Mq_4 = Kt$$
$$t = K^{-1}Mq_4$$

Vertex color mapping

我們可以將 3D 點對應的 2D 影像顏色對應著色上去,讓顏色看起來更接近實物

DBSCAN

由於對應點可能有錯誤,將會造成某些離主體相當遠的 3D 點,我們使用 DBSCAN clustering 方式將 outlier 剃除,以得到較正確且密集的 3D 點

實驗結果

3D points with color mapping

著色後的 3D 點存成 ply 檔案 3D_points_1.ply~3D_points_5.ply

實驗結果討論(新版)

在我們的實驗,使用了 4 台相機的組合,共有 5 種組合,其中 5 個A分別的關係如下

set of $n=4$	A is positive definite
1234	false
1235	true
1245	false
1345	false
2345	false

其中僅有第 2 組相機組合可以得到 positive definite 的A,該相機組合重建之模型 正好是我們希望的 90 度夾角牆面,與舊版作法不同的是我們對相機參數 R_i 做了檢查並修正鏡射之問題,並且將 R_i 修正為 orthogonal 的旋轉參數矩陣,下圖為 A的 3D 點模型

下表為得到的 Q_3

0.294419114400917	-0.223935447942300	0.0570124535386295
0.356639454760090	0.264480103021716	-0.198448358246974
-0.913067696658377	-0.0110101811130867	-0.0986355147081535
-0.147013245077285	0.261515240745277	0.245365266250366

下表為得到的4台相機之參數

1 50%014 514 5 H			
相機編號	K	R	T
1	1.2808e+03	0.2852 0.8369 -0.4673 0.9544 -0.2031 0.2187 0.0882 -0.5083 -0.8566	-0.0323 0.1219 0.2094
2	1.2679e+03 0 540.1897 0 1.2829e+03 391.5621 0 0 1	0.2988 0.7287 -0.6162 0.9543 -0.2206 0.2018 0.0111 -0.6483 -0.7613	-0.5901 0.1074 0.1403
3	1.3190e+03 0 531.1236 0 1.3295e+03 387.0078 0 0 1	0.3510 0.5509 -0.7572 0.9313 -0.2892 0.2213 -0.0970 -0.7829 -0.6146	-1.0890 0.1477 0.6525

5	1.2574e+03 0 1.2650e+0	0 536.2275 03 397.9914 0 1	0.1887 0.9712 0.1452	-0.1710	0.1657	1.1355 0.0628 0.2587
---	---------------------------	----------------------------------	----------------------------	---------	--------	----------------------------

實驗結果討論(舊版)

K、R、t 相機參數

我們使用了4台相機的組合,得到一個比較正確的 model,以下是該相機餐數

	К		R			t		
	1280.80	0	538.32		-0.28	-0.84	-0.46	-0.03
camera 1	0	1296.53	393.17		-0.95	0.20	0.21	0.12
	0	0	1		-0.09	0.57	-0.95	0.20
	1267.87	0	540.18		-0.29	-0.73	-0.60	-0.59
camera 2	0	1282.90	391.56		-0.95	0.22	0.19	0.10
	0	0	1		-0.01	0.72	-0.83	0.14
camera 3	1319.01	0	531.12		-0.35	-0.55	-0.75	-1.08
	0	1329.47	387.00		-0.93	0.29	0.21	0.14
	0	0	1		0.10	0.90	-0.69	0.65
camera 4	1257.42	0	536.22		-0.18	-0.97	-0.09	1.13
	0	1265.01	397.99		-0.97	0.17	0.16	0.06
	0	0	1		-0.16	0.13	-1.07	0.25

- 我們預測 singular value 越小的模型結果越好(平面夾角越接近 90 度),但結果顯示沒有正相關
- 部分影像有模型鏡射的錯誤(**高的煙囪應該在右邊**)
- ullet 模型鏡射的錯誤情形與對A做 SVD 分解能夠有不同種的 Q_3 正負號組合相關
- 分析模型鏡射的 Q_3 ,發現有兩種正負號的組合都可以滿足 $A = Q_3 Q_3^T$
- 調整 Q_3 正負號之後,可以修正模型鏡射的情形,但平面夾角沒有改善

set of $n=4$	singular value of $\it A$	模型鏡射	平面夾角(度)
1234	0.013180	反	60
1235	0.024465	正	90
1245	0.009616	反	60
1345	0.025461	正	100
2345	0.022502	正	90

觀察兩種正負號組合,正鏡射組合有兩種特性,反鏡射則沒有規則特性

● 每個 row 符號相乘為負

● 每個 column 符號相乘為正

鏡射 (反)	鏡射 (正)		
[- + +]	[- + +]		
\[\begin{array}{cccccccccccccccccccccccccccccccccccc			

我們試著強迫調整 Q_3 的正負號,使得所有 Q_3 都屬於正鏡射類型,然後同樣試算 3D 點如下比較表

各個不同 set 之 Q_3 (忽略正負號)

set 1			set 2		
0.290554	0.241439	0.045073	0.294419	0.223935	0.057012
0.365326	0.315727	0.113657	0.356639	0.26448	0.198448
0.915616	0.031243	0.096227	0.913068	0.01101	0.098636
0.140818	0.117775	0.237815	0.147013	0.261515	0.245365
set 3			set 4		
0.301131	0.231208	0.038705	0.291492	0.205199	0.107285
0.349011	0.297489	0.128227	0.358475	0.227234	0.245705
0.920982	0.015492	0.088276	0.908017	0.03466	0.098893
0.12742	0.156457	0.195356	0.153446	0.346151	0.214992
set 5					
0.292912	0.222288	0.066557			
0.358088	0.258991	0.208669			
0.911807	0.014838	0.100259			
0.14872	0.276767	0.243348			