Module 3

Simulating Attention in Memory

Learning Dot-product attention

Mini-Project 3: Attention-based retrieval from memory

Recall a word from memory based on 'cue'

cue: valid / invalid

time

Mini-Project 3: Attention-based retrieval from memory

- * Recall depends on match between cue & memory (Tulving & Thomson, 1973)
- * Words are encoded in a semantic context in memory
- * Attention can be diverted to target (valid) or away from target (invalid)... Posner cueing paradigm

Mini-Project 3: Attention-based retrieval from memory

How can we simulate this memory process?

Step 1: Encode words in a high-dimensional space

Note: Similarity using cosine similarity measure

Key part of "dot-product attention"

Demo 1: Encode words in high-dimensional space

We are going to write Python code to convert:

Demo 1: Encode words in high-dimensional space

Write Python code to:

- * Create a 'WordEncoder' class. This class should:
 - * Contain an attribute called 'dim' (the dimension of vector space)
 - * Contain a method call encode()
 - * This method should take a string as input and convert it into a random vector in an n-dimensional space
 - * This random vector should lie on the unit circle

Demo 2: Find similarity between representations

Write Python code to:

- * Define a function class called 'Similarity', with functions cosine() & euclidean() that calculate the cosine & euclidean distances
- * Use one of these functions based on the initialisation of Similarity instance.

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

Demo 3: Scores to probabilities

Write Python code to:

- * Create a numpy array called scores, with distances to each stored memory
- * Convert these scores to a probability distribution over memory traces

Demo 3: Pseudocode

FUNCTION softmax(scores):

1) exponentiate to amplify differences $e_i \leftarrow \exp(z_i)$ for each z_i

2) normalize to make probabilities total \leftarrow sum(e_i) $w_i \leftarrow e_i / total$ for each i

RETURN [w_1, ..., w_n]

Demo 4: Scale the attention based on temperature

Softmax function allows temperature scaling that is how sharply focused the attention is.
When temperature is high, attention is
"diffused", while when temperature is low,
attention is highly focused (winner-take-all).

- * Write Python code to change the softmax function so that the probabilities are computed based on temperature.
- * Test the function for different values of temperature parameter, but same scores

Demo 3: Pseudocode

FUNCTION softmax(scores, temperature t):

1) temperature scaling for each s in scores:

$$z_i \leftarrow s/\tau$$

2) exponentiate to amplify differences $e_i \leftarrow \exp(z_i)$ for each z_i

3) normalize to make probabilities total \leftarrow sum(e_i) $w_i \leftarrow e_i / total$ for each i

RETURN [w_1, ..., w_n]

Demo 5: Compute Context vector via Dot-product Attention

Let us put it all together and parallelise the attention mechanism.

Write a class called DotProductAttention with a function attend() that

- 1. computes the scores for all memories in parallel
- 2. Computes the attention weights for each memory
- 3. Computes a "context" based on aggregated memory recalled
- 4. Returns this context and attention weights

Test this function for memories: ['apple', 'bread', 'cloud', 'drum', 'eagle'] & query 'apple'

Cue → Query

Memory index → Key

Memory rep → Value

Demo 5: Compute Context vector via Dot-product Attention

CLASS DotProductAttention(temperature t):

METHOD attend(query q, keys K, values V):

 $d \leftarrow dimension of q$

1) compute similarity scores (dot products)

for each key k_i in K:

$$score_i \leftarrow q \cdot k_i$$

#2) convert scores to attention weights via softmax

 $w \leftarrow softmax([score_1, ..., score_n], \tau)$

#3) compute context vector as weighted sum of values

 $c \leftarrow \Sigma_i (w_i * v_i)$

RETURN w, c

 $Cue \rightarrow Query$

Memory index → Key

Memory rep → Value