What can we learn about the carbon cycle from ²³⁴Th?

Perrin W. Davidson

The University of Chicago

pwd@uchicago.edu

Collaborators: Jennifer A. Kenyon (MIT-WHOI), Ken O. Buesseler (WHOI), David P. Nicholson (WHOI), Erin E. Black (URochester), Elena Ceballos-Romero (USevilla), Phoebe J. Lam (UCSC), Paul Lerner (NASA), Olivier Marchal (WHOI)

November 12th, 2021

What's up with ^{234}Th ?

The Story: Biological (Carbon) Pump

 238 U - 234 Th Disequilibria

²³⁴Th Activity and Flux

We can describe the distribution of 234 Th throughout the ocean with an advection-diffusion relationship:

$$\frac{\partial C_{Th}}{\partial t} = \underbrace{\nabla \cdot (\kappa \nabla C_{Th})}_{Diffusion} - \underbrace{\nabla \cdot (\mathbf{u}C_{Th})}_{Advection} + \underbrace{\lambda_{Th} (C_U - C_{Th}) - P_{Th}}_{Source \& Sink}. \tag{1}$$

Assuming steady state (SS, $\partial_t C_{Th} = 0$), we can solve for the flux P_{Th}^z at a depth z to get:

$$P_{Th}^{z} = \int_{-\pi}^{0} \left(\lambda_{Th} \left(C_{U} - C_{Th} \right) + \nabla \cdot \left(\kappa \nabla C_{Th} \right) - \nabla \cdot \left(\mathbf{u} C_{Th} \right) \right) dz. \tag{2}$$

²³⁴Th as a POC Flux Proxy

We then use the ratio of particulate organic carbon (POC) to ²³⁴Th to estimate the flux of POC:

$$P_{POC}^{z} = \frac{[POC]}{C_{Th}} \bigg|_{z} P_{Th}^{z}. \tag{3}$$

Importantly, we assume that only large size fraction (LSF, $> 51 \mu m$) POC contribute to the downward flux of $^{234} Th$.

²³⁴Th-derived POC Flux Model Inputs

From Eq. (2) and Eq. (3), we see that there are four main inputs to our POC flux model:

(1)
238
U activity: C_U

(2)
234
Th activity: C_{Th}

(3) POC:
234
Th ratio: $[POC]/C_{Th}$

We use in-situ measured values for C_{Th} and $[POC]/C_{Th}$ at a depth z, but assuming that C_U is in continuum within the water column, we estimate C_U with lower error using salinity, S:

$$C_U (\pm 0.047) = (0.0786 \pm 0.00446) \cdot S - (0.315 \pm 0.158)$$
 (4)

Global ²³⁴Th-Derived Particulate Carbon Flux Model ²³⁴Th Quality Control

Global ²³⁴Th-Derived Particulate Carbon Flux Model ²³⁴Th Global Mapping

Global ²³⁴Th-Derived Particulate Carbon Flux Model

POC Flux Estimation