1

Assignment 20

KUSUMA PRIYA EE20MTECH11007

Download codes from

3.1 Answer From the

https://github.com/KUSUMAPRIYAPULAVARTY/assignment20

From the table, the choices would be option 1,2,3

1 QUESTION

For every 4×4 real symmetric non-singular matrix **A** there exists a positive integer p such that

- 1) $p\mathbf{I} + \mathbf{A}$ is positive definite
- 2) A^p is positive definite
- 3) A^{-p} is positive definite
- 4) $\exp(p\mathbf{A}) \mathbf{I}$ is positive definite

2 Theory

A matrix is real symmetric implies its eigen values are real and eigen vectors are orthogonal, that is its eigen value decomposition is

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.0.1}$$

 ${f D}$ is the diagonal matrix containing the real eigen values of ${f A}$

P has the corresponding eigen vectors

$$\mathbf{P}\mathbf{P}^T = \mathbf{P}^T\mathbf{P} = \mathbf{I} \tag{2.0.2}$$

A real matrix is positive definite if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \tag{2.0.3}$$

$$\implies \mathbf{x}^T \lambda \mathbf{x} > 0 \tag{2.0.4}$$

$$\implies \lambda \mathbf{x}^T \mathbf{x} > 0 \tag{2.0.5}$$

$$\implies \lambda > 0 \tag{2.0.6}$$

In other words, all the eigen values of A are positive

3 Solution

Let A be

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{3.0.1}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix}$$
 (3.0.2)

OPTIONS	DERIVATIONS	
	$p\mathbf{I} + \mathbf{A} = \mathbf{P}(p\mathbf{I})\mathbf{P}^T + \mathbf{P}\mathbf{D}\mathbf{P}^T$	(3.0.3)
Choice 1	$= \mathbf{P}\mathbf{D}_1\mathbf{P}^T$	(3.0.4)
	$\mathbf{D}_1 = \begin{pmatrix} \lambda_1 + p & 0 & 0 & 0 \\ 0 & \lambda_2 + p & 0 & 0 \\ 0 & 0 & \lambda_3 + p & 0 \\ 0 & 0 & 0 & \lambda_4 + p \end{pmatrix}$	(3.0.5)
	Some of the eigen values of A may be negative. All the eigen values in D_1 are positive only if	
	$p > \lambda_i \ \forall i \in [1, 4]$	(3.0.6)
Choice 2	$\mathbf{A}^2 = \mathbf{A}\mathbf{A}$	(3.0.7)
	$= (\mathbf{P}\mathbf{D}\mathbf{P}^T)(\mathbf{P}\mathbf{D}\mathbf{P}^T)$	(3.0.8)
	$= \mathbf{P}\mathbf{D}^2\mathbf{P}^T$	(3.0.9)
	Similarly, $\mathbf{A}^p = \mathbf{P}\mathbf{D}^p\mathbf{P}^T$	(3.0.10)
	$\mathbf{D}^{p} = \begin{pmatrix} \lambda_{1}^{p} & 0 & 0 & 0 \\ 0 & \lambda_{2}^{p} & 0 & 0 \\ 0 & 0 & \lambda_{3}^{p} & 0 \\ 0 & 0 & 0 & \lambda_{4}^{p} \end{pmatrix}$	(3.0.11)
	\mathbf{A}^p is positive definite only if p is even.	
Choice 3	$\mathbf{A}^{-p} = \mathbf{P}\mathbf{D}^{-p}\mathbf{P}^T$	(3.0.12)
	$\mathbf{D}^{-p} = \begin{pmatrix} \lambda_1^{-p} & 0 & 0 & 0\\ 0 & \lambda_2^{-p} & 0 & 0\\ 0 & 0 & \lambda_3^{-p} & 0\\ 0 & 0 & 0 & \lambda_4^{-p} \end{pmatrix}$	(3.0.13)
	\mathbf{A}^{-p} is positive definite only if p is even.	
Choice 4	$\exp(p\mathbf{A}) = \sum_{k=0}^{\infty} \frac{(p\mathbf{A})^k}{k!}$	(3.0.14)
	$\implies \exp(p\mathbf{A}) - \mathbf{I} = \mathbf{P}\exp(p\mathbf{D})\mathbf{P}^T - \mathbf{P}\mathbf{I}\mathbf{P}^T$	(3.0.15)
	$= \mathbf{P}(\exp(p\mathbf{D}) - \mathbf{I})\mathbf{P}^T$	(3.0.16)
	$\exp(p\mathbf{D}) - \mathbf{I} = \begin{pmatrix} e^{\lambda_1} - 1 & 0 & 0 & 0\\ 0 & e^{\lambda_2} - 1 & 0 & 0\\ 0 & 0 & e^{\lambda_3} - 1 & 0\\ 0 & 0 & 0 & e^{\lambda_4} - 1 \end{pmatrix}$	(3.0.17)
	A is non-singular	
	$\implies \forall i \in [1,4], \lambda_i \neq 0$	(3.0.18)
	$e^{\lambda_i} < 1$	(3.0.19)
	So, $\exp(p\mathbf{A}) - \mathbf{I}$ is not positive definite.	

TABLE 1:Solution