Complexity

Measuring Complexity

- 1. Just Run a program and see
- 2. Count the number of instructions it would require
- 3. Come up with an approximate technique
 - We have to implement an algorithm
 - It might take different amounts for different inputs
 - It will probably be faster on faster computers

Experiment 1:

```
def count2sum(a):
    N = len(a)
    count = 0
    for i in range(N):
        for j in range(N):
            if a[i] + a[j] == 0:
                count += 1
    return count
Experiment 2:
def counteven(N):
    count = 0
    for i in range(1, N + 1):
        if i % 2 == 0:
            count += 1
    return count
Experiment 3:
def sum3(a):
    N = len(a)
    count = 0
    for i in range(N):
        for j in range(i + 1, N):
            for k in range(j + 1, N):
                if a[i] + a[j] + a[k] == 0:
                    count += 1
    return count
```

Experiment 4:

def counteven(N): # Half the numbers will be even # The other half are odd count = N//2 return count

Classifications

- We can classify algorithms based on their performance
 - 1. Quadratic
 - Runtime proportional to N^2
 - 2. Linear
 - Runtime proportional to N
 - 3. Cubic
 - Runtime proportional to N^3
 - 4. Linear
 - Runtime is proportional to 1

Constant Factors

- Generally constant factors are not important, that is one quadratic algorithm could be twice as fast as another
 - They are both still quadtratic
 - We are interested in the performance relative to N

Lower terms

- The runtime could be proportionals to $N^2 + 4N + 20$
 - We ignore the N and the 20 because there is N^2 which is going to dominate as N gets large
 - Just take the highest power as it is what will dictate the runtime as N increases

Big O Notation

- Big O Notation is used to classify running times
 - O(N^2) Quadratic
 - $O(N^3) Cubic$
 - O(N) Linear
 - O(1) Constant

Worst Case

- In theory, Big O Notation is for the worst case, so saying an algorithm is $O(N^3)$ means it will not be worse than $O(N^3)$
 - You could say that an O(1) algorith is $O(N^3)$
 - You could not say that an $O(N^3)$ algorithm is O(1)

Algorithm Classes

O-Notation	Description	Speed	n = 1000	N = 1000000
$\overline{\mathrm{O}(1)}$	Constant	Instant	10^-9 secs	10^-9 secs
O(n)	Linear	Fast	10^-6 secs	10^-3 secs
$O(N^2)$	Quadratic	Slow for Large N	10^-3 secs	10^3 secs
$O(N^3)$	Cubic	Slow for medium N	1 second	10^9 secs

Examining Code

- It's easier if to not have to run an experiment everytime you run a program
- Generally, everytime we go over an input, the runtime is multiplied by N.
 - If we examine the input once, the algorithm will be O(N)
 - If for each item in the input, we check every other item in the input, then the algorithm is $O(N^2)$

Logarithmic and Exponential

- There are two more important classes of algorithm
 - 1. Logarithmic
 - The input is split in half every time (e.g. Binary Search)
 - 2. Exponential
 - The runtime doubles each time N increases by 1

Logarithmic

- Very Fast
 - Sample values:

N	Value
1000	10
1000000	20
1000000000	30

The log of a number rises very slowly, Doing a binary search on an array of 1000000 elements is only 20 times longer than a binary search of an array of 1 element.

N*Log(N)

- Nlog(N), O(N log N), N log(N)
 - Linearithmic
 - * very close to linear

Exponential

- 2^N
 - The runtime doubles each time N is increased by 1

N	Value
10	1000
20	1000000
30	1000000000

- When N is 30, the operation takes the order of a second. When N is 40 it takes 1000 seconds (15 minutes)
- N = 50 requires 1000 * 15 minutes (approx 250 hours or 10 days)

O-Notation	Description	Speed	~Time for n=1000	~time for n=1000000
$\overline{\mathrm{O}(1)}$	Constant	Instant	10^-9 secs	10^-9 secs
O(log N)	Logarithmic	Very Fast	10^8 secs	10^8 secs
O(N)	Linear	Fast	10^-6 secs	$10^-3 secs$
O(NlogN)	Linearithmic	Fast	10^-5 secs	$10^-3 secs$
$O(N^2)$	Quadratic	Slow for Large N	10^-3 secs	10^3 secs
$O(N^3)$	Cubic	Slow for Medium N	1 second	10^9 secs
$O(2^N)$	Exponential	Extremely Slow	10^301 secs	-> ∞

Types of Data

- The runtime complexity can depend on the actual data
 - Not just the size on the dataset (N)
 - In this case we can talk about best case
 - Or worst case
 - Or average case
- Worst case is usually considered