ECE 269: Linear Algebra and Applications

Solutions to Homework 4

Fall 2020

1 Problem 1

We have the following relations that define A^+ the pseudoinverse of A, which we summarize here.

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}.\tag{1}$$

$$\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}.\tag{2}$$

$$\mathbf{A}^T(\mathbf{A}^+)^T = \mathbf{A}^+ \mathbf{A}.\tag{3}$$

$$(\mathbf{A}^+)^T \mathbf{A}^T = \mathbf{A} \mathbf{A}^+. \tag{4}$$

a) Let **B** and **C** be pseudoinverses of **A**. Then, we have:

$$\mathbf{A}\mathbf{B} = \mathbf{A}\mathbf{C}\mathbf{A}\mathbf{B} \stackrel{(4)}{=} \mathbf{C}^T \mathbf{A}^T \mathbf{B}^T \mathbf{A}^T = \mathbf{C}^T (\mathbf{A}\mathbf{B}\mathbf{A})^T = \mathbf{C}^T \mathbf{A}^T \stackrel{(4)}{=} \mathbf{A}\mathbf{C}.$$

Similarly, we can show that BA = CA. We therefore have

$$B = BAB = CAB = CAC = C.$$

b) Since **A** is full-rank and tall, $\mathbf{A}^T \mathbf{A}$ is symmetric and non-singular. Defining $\mathbf{B} := (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$, we see that $\mathbf{B} \in \mathbb{R}^{n \times m}$, and

$$\mathbf{A}\mathbf{B}\mathbf{A} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A} = \mathbf{A}$$

$$\mathbf{B}\mathbf{A}\mathbf{B} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T = \mathbf{B}$$

$$\mathbf{A}^T\mathbf{B}^T = \mathbf{A}^T\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1} = \mathbf{I}_n = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A} = \mathbf{B}\mathbf{A}$$

$$\mathbf{B}^T\mathbf{A}^T = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T = \mathbf{A}((\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T) = \mathbf{A}\mathbf{B}.$$

Thus, $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$ is the pseudoinverse of \mathbf{A} .

c) Since **A** is full-rank and fat, $\mathbf{A}\mathbf{A}^T$ is symmetric and non-singular. Defining $\mathbf{B} := \mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}$, we see that $\mathbf{B} \in \mathbb{R}^{n \times m}$, and

$$\mathbf{ABA} = \mathbf{AA}^T (\mathbf{AA}^T)^{-1} \mathbf{A} = \mathbf{A}$$

$$\mathbf{BAB} = \mathbf{A}^T (\mathbf{AA}^T)^{-1} \mathbf{AA}^T (\mathbf{AA}^T)^{-1} = \mathbf{A}^T (\mathbf{AA}^T)^{-1} = \mathbf{B}$$

$$\mathbf{A}^T \mathbf{B}^T = \mathbf{A}^T (\mathbf{AA}^T)^{-1} \mathbf{A} = (\mathbf{A}^T (\mathbf{AA}^T)^{-1}) \mathbf{A} = \mathbf{BA}$$

$$\mathbf{B}^T \mathbf{A}^T = (\mathbf{AA}^T)^{-1} \mathbf{AA}^T = \mathbf{I}_m = (\mathbf{AA}^T)(\mathbf{AA}^T)^{-1} = \mathbf{AB}.$$

Thus, $\mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}$ is the pseudoinverse of \mathbf{A} .

d) If **A** is full-rank and square, then so is \mathbf{A}^T , and using part (c) and the uniqueness of the pseudoinverse (proved in part (a)), we can compute the pseudoinverse of **A** as

$$\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} = \mathbf{A}^T (\mathbf{A}^T)^{-1} \mathbf{A}^{-1} = \mathbf{A}^{-1}.$$

e) Since **A** is an (orthogonal) projection matrix, it is symmetric and satisfies $A^2 = A$. We then have

$$\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} = \mathbf{A}^2 \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} = \mathbf{A}^2 = \mathbf{A}.$$

It also holds that $\mathbf{A}^T \mathbf{A}^T = \mathbf{A} \mathbf{A}$ since \mathbf{A} is symmetric, which show that \mathbf{A} is its own pseudoinverse.

f) Let $\mathbf{B} = (\mathbf{A}^+)^T$. Then $\mathbf{B} \in \mathbb{R}^{m \times n}$, and we have

$$\mathbf{A}^T \mathbf{B} \mathbf{A}^T = \mathbf{A}^T (\mathbf{A}^+)^T \mathbf{A}^T = (\mathbf{A} \mathbf{A}^+ \mathbf{A})^T = \mathbf{A}^T$$

$$\mathbf{B} \mathbf{A}^T \mathbf{B} = (\mathbf{A}^+)^T \mathbf{A}^T (\mathbf{A}^+)^T = (\mathbf{A}^+ \mathbf{A} \mathbf{A}^+)^T = (\mathbf{A}^+)^T = \mathbf{B}$$

$$(\mathbf{A}^T)^T \mathbf{B}^T = \mathbf{A} \mathbf{A}^+ = (\mathbf{A}^+)^T \mathbf{A}^T = \mathbf{B} \mathbf{A}^T$$

$$\mathbf{B}^T (\mathbf{A}^T)^T = \mathbf{A}^+ \mathbf{A} = \mathbf{A}^T (\mathbf{A}^+)^T = \mathbf{A}^T \mathbf{B}.$$

This shows that $(\mathbf{A}^T)^+ = (\mathbf{A}^+)^T$.

g) Let $\mathbf{B} := (\mathbf{A}^+)^T \mathbf{A}^+$. Then we have

$$(\mathbf{A}\mathbf{A}^T)\mathbf{B}(\mathbf{A}\mathbf{A}^T) = \mathbf{A}(\mathbf{A}^T(\mathbf{A}^+)^T)\mathbf{A}^+\mathbf{A}\mathbf{A}^T = \mathbf{A}(\mathbf{A}^+\mathbf{A})\mathbf{A}^+\mathbf{A}\mathbf{A}^T = \mathbf{A}\mathbf{A}^+\mathbf{A}\mathbf{A}^T = \mathbf{A}\mathbf{A}^T,$$

and

$$\mathbf{B}(\mathbf{A}\mathbf{A}^T)\mathbf{B} = (\mathbf{A}^+)^T\mathbf{A}^+\mathbf{A}\left(\mathbf{A}^T(\mathbf{A}^+)^T\right)\mathbf{A}^+ = (\mathbf{A}^+)^T\mathbf{A}^+\mathbf{A}\left(\mathbf{A}^+\mathbf{A}\right)\mathbf{A}^+ = (\mathbf{A}^+)^T\mathbf{A}^+\mathbf{A}\mathbf{A}^+ = (\mathbf{A}^+)^T\mathbf{A}^+ = \mathbf{B}.$$

Now, since **B** and $\mathbf{A}\mathbf{A}^T$ are both symmetric, their products will be symmetric if and only if they commute. We have

$$\mathbf{B}\mathbf{A}\mathbf{A}^T = (\mathbf{A}^+)^T\mathbf{A}^+\mathbf{A}\mathbf{A}^T = (\mathbf{A}^+)^T\mathbf{A}^T(\mathbf{A}^+)^T\mathbf{A}^T = (\mathbf{A}^+\mathbf{A}\mathbf{A}^+)^T\mathbf{A}^T = (\mathbf{A}^+)^T\mathbf{A}^T = \mathbf{A}\mathbf{A}^+,$$

and

$$\mathbf{A}\mathbf{A}^T\mathbf{B} = \mathbf{A}\mathbf{A}^T(\mathbf{A}^+)^T\mathbf{A}^+ = \mathbf{A}\mathbf{A}^+\mathbf{A}\mathbf{A}^+ = \mathbf{A}\mathbf{A}^+.$$

Thus, $(\mathbf{A}\mathbf{A}^T)^+ = (\mathbf{A}^+)^T\mathbf{A}^+$. Call this relationship (g1). Now, using this relation and part (f), we have

$$(\mathbf{A}^T\mathbf{A})^+ = [\mathbf{A}^T(\mathbf{A}^T)^T]^+ \stackrel{(g1)}{=} ((\mathbf{A}^T)^+)^T(\mathbf{A}^T)^+ \stackrel{(f)}{=} ((\mathbf{A}^+)^T)^T(\mathbf{A}^+)^T = \mathbf{A}^+(\mathbf{A}^+)^T \ .$$

h) We will show that $\mathcal{R}(\mathbf{A}^+) \subseteq \mathcal{R}(\mathbf{A}^T)$ and $\mathcal{R}(\mathbf{A}^+) \supseteq \mathcal{R}(\mathbf{A}^T)$. For showing the first part, let $\mathbf{y} \in \mathcal{R}(\mathbf{A}^+)$, then $\mathbf{y} = \mathbf{A}^+\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^m$. Then, we have

$$\mathbf{y} = \mathbf{A}^{+}\mathbf{x} = \mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+}\mathbf{x} = \mathbf{A}^{+}\mathbf{A}\mathbf{y} = \mathbf{A}^{T}(\mathbf{A}^{+})^{T}\mathbf{y}$$

so defining $\tilde{\mathbf{x}} := (\mathbf{A}^+)^T \mathbf{y}$, we see that \mathbf{y} can be written as $\mathbf{A}^T \tilde{\mathbf{x}}$, which shows that $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$.

For the opposite direction, if $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$ is written as $\mathbf{y} = \mathbf{A}^T \mathbf{x}$, then we can similarly show that

$$\mathbf{y} = \mathbf{A}^T \mathbf{x} = (\mathbf{A} \mathbf{A}^+ \mathbf{A})^T \mathbf{x} = \mathbf{A}^T (\mathbf{A}^+)^T \mathbf{A}^T \mathbf{x} = \mathbf{A}^T (\mathbf{A}^+)^T \mathbf{y} = \mathbf{A}^+ \mathbf{A} \mathbf{y}$$

so $\mathbf{y} = \mathbf{A}^+ \tilde{\mathbf{x}}$, where $\tilde{\mathbf{x}} := \mathbf{A}\mathbf{y}$. Thus, $\mathbf{y} \in \mathcal{R}(\mathbf{A}^+)$.

Therefore, we have shown that $\mathcal{R}(\mathbf{A}^+) = \mathcal{R}(\mathbf{A}^T)$.

Now, let $\mathbf{x} \in \mathcal{N}(\mathbf{A}^+)$. We then have

$$\mathbf{A}^{+}\mathbf{x} = 0 \Rightarrow \mathbf{A}\mathbf{A}^{+}\mathbf{x} = 0 \Rightarrow (\mathbf{A}^{+})^{T}\mathbf{A}^{T}\mathbf{x} = 0 \Rightarrow \mathbf{A}^{T}(\mathbf{A}^{+})^{T}\mathbf{A}^{T}\mathbf{x} = 0 \Rightarrow (\mathbf{A}\mathbf{A}^{+}\mathbf{A})^{T}\mathbf{x} = 0 \Rightarrow \mathbf{A}^{T}\mathbf{x} = 0.$$

Thus, $\mathbf{x} \in \mathcal{N}(\mathbf{A}^T)$.

Similarly, if $\mathbf{x} \in \mathcal{N}(\mathbf{A}^T)$, we have

$$\mathbf{A}^T \mathbf{x} = 0 \Rightarrow (\mathbf{A}^+)^T \mathbf{A}^T \mathbf{x} = 0 \Rightarrow \mathbf{A} \mathbf{A}^+ \mathbf{x} = 0 \Rightarrow \mathbf{A}^+ \mathbf{A} \mathbf{A}^+ \mathbf{x} = 0 \Rightarrow \mathbf{A}^+ \mathbf{x} = 0$$

Thus, $\mathbf{x} \in \mathcal{N}(\mathbf{A}^+)$.

We have therefore shown that $\mathcal{N}(\mathbf{A}^+) = \mathcal{N}(\mathbf{A}^T)$.

i) \mathbf{P} and \mathbf{Q} are symmetric by the properties of \mathbf{A}^+ , and

$$\mathbf{P}^2 = \mathbf{A}\mathbf{A}^+\mathbf{A}\mathbf{A}^+ = \mathbf{A}\mathbf{A}^+ = \mathbf{P}.$$

Similarly,

$$\mathbf{Q}^2 = \mathbf{A}^+ \mathbf{A} \mathbf{A}^+ \mathbf{A} = \mathbf{A}^+ \mathbf{A} = \mathbf{Q}$$

Therefore, P and Q are projection matrices.

j) Clearly, for every $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} = \mathbf{P}\mathbf{x} = \mathbf{A}\mathbf{A}^+\mathbf{x} \in \mathcal{R}(\mathbf{A})$. Thus, we are done if we can show that $\mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^T)$ which is $\mathcal{N}(\mathbf{A}^+)$ by (h). We have

$$\mathbf{A}^{+}(\mathbf{x} - \mathbf{P}\mathbf{x}) = \mathbf{A}^{+}\mathbf{x} - \mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+}\mathbf{x} = \mathbf{A}^{+}\mathbf{x} - \mathbf{A}^{+}\mathbf{x} = 0,$$

therefore P is indeed the projection onto $\mathcal{R}(A)$.

Similarly, for every $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{z} = \mathbf{Q}\mathbf{x} = \mathbf{A}^+\mathbf{A}\mathbf{x} \in \mathcal{R}(\mathbf{A}^+) = \mathcal{R}(\mathbf{A}^T)$, where the last equality follows from part (h). Thus, we are done if we can show that $\mathbf{x} - \mathbf{Q}\mathbf{x} \in \mathcal{N}(\mathbf{A})$. We have

$$\mathbf{A}(\mathbf{x} - \mathbf{Q}\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x} = 0,$$

therefore \mathbf{Q} is indeed the projection onto $\mathcal{R}(\mathbf{A}^T)$.

k) We have

$$\mathbf{A}^{+}(\mathbf{A}\mathbf{x}^{*} - \mathbf{b}) = \mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+}\mathbf{b} - \mathbf{A}^{+}\mathbf{b} = \mathbf{A}^{+}\mathbf{b} - \mathbf{A}^{+}\mathbf{b} = 0.$$

Hence $\mathbf{A}\mathbf{x}^* - \mathbf{b}$ is orthogonal to $\mathcal{R}((\mathbf{A}^+)^{\mathbf{T}}) = \mathcal{R}((\mathbf{A}^{\mathbf{T}})^+)$ which is $\mathcal{R}(\mathbf{A})$ by (h) and by orthogonality principle, \mathbf{x}^* is indeed a least-squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

l) Suppose that the linear equation $\mathbf{b} = \mathbf{A}\mathbf{x}$ has a solution $\tilde{\mathbf{x}}$. Then, $\mathbf{A}\mathbf{x}^* = \mathbf{A}\mathbf{A}^+\mathbf{b} = \mathbf{A}\mathbf{A}^+\mathbf{A}\tilde{\mathbf{x}} = \mathbf{A}\tilde{\mathbf{x}} = \mathbf{b}$. Now, let \mathbf{z} be any other solution to $\mathbf{b} = \mathbf{A}\mathbf{x}$, i.e., we have $\mathbf{A}\mathbf{z} = \mathbf{b}$.

Then
$$(\mathbf{z} - \mathbf{x}^*) \in \mathcal{N}(\mathbf{A})$$
. Also $\mathbf{x}^* \in \mathcal{R}(\mathbf{A}^+) = \mathcal{R}(\mathbf{A}^T)$. Since $\mathcal{N}(\mathbf{A}) \perp \mathcal{R}(\mathbf{A}^T)$,

$$(\mathbf{x}^*)^T(\mathbf{z} - \mathbf{x}^*) = 0$$

We then have

$$\left\|\mathbf{z}\right\|^2 = \left\|\mathbf{x}^* + (\mathbf{z} - \mathbf{x}^*)\right\|^2 = \left\|\mathbf{x}^*\right\|^2 + \left\|\mathbf{z} - \mathbf{x}^*\right\|^2 \geq \ \left\|\mathbf{x}^*\right\|^2.$$

2 Problem 2

a) Consider the characteristic polynomial of \mathbf{A} , namely, $X_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A})$. Clearly, the highest power of λ in $X_{\mathbf{A}}$, i.e., the n^{th} power, occurs only in the term $\prod_{i=1}^{n} (\lambda - \mathbf{A}_{ii})$. Therefore, the coefficient of λ^n equals 1. The constant term is given by $X_{\mathbf{A}}(0) = \det(-\mathbf{A}) = (-1)^n \det(\mathbf{A})$. Therefore, we have

$$\lambda_1.\lambda_2...\lambda_n$$
 = product of roots of $\{X_{\mathbf{A}}(\lambda) = 0\}$
= $(-1)^n.\frac{\text{constant term}}{\text{coefficient of }\lambda^n}$
= $\det(\mathbf{A})$

Alternate solution:

Using Schur decomposition $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^{\mathbf{H}}$. Then

$$\det(\mathbf{A}) = \det(\mathbf{U}\mathbf{T}\mathbf{U}^{\mathbf{H}}) = \det(\mathbf{U})\det(\mathbf{T})\det(\mathbf{U}^{H}) = \det(\mathbf{U})\det(\mathbf{U}^{H})\det(\mathbf{T}) = \det(\mathbf{T})$$

Since **T** is an upper triangular matrix $\det(\mathbf{T}) = \prod_{i=1}^{n} t_{ii}$. We also know the elements on the diagonal of **T** are equal to the eigenvalues $t_i = \lambda_i$. Hence,

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

b) We have

$$X_{\mathbf{A}^T}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}^T) = \det((\lambda \mathbf{I} - \mathbf{A})^T) = \det(\lambda \mathbf{I} - \mathbf{A}) = X_{\mathbf{A}}(\lambda)$$

which shows that \mathbf{A}^T and \mathbf{A} have identical characteristic polynomials and hence, identical eigenvalues.

c) A quick note about upper triangular matrices.

If **A** and **B** are $n \times n$ upper triangular matrices, then the elements of **AB** are

$$[\mathbf{A}\mathbf{B}]_{ij} = \sum_{k=1}^{n} \mathbf{A}_{ik} \mathbf{B}_{kj} = \sum_{i \le k \le j} \mathbf{A}_{ik} \mathbf{B}_{kj}$$

as $\mathbf{A}_{ik} = 0$ for k < i and $\mathbf{B}_{kj} = 0$ for j < k. Therefore $[\mathbf{A}\mathbf{B}]_{ij} = 0$ if i > j i.e. $\mathbf{A}\mathbf{B}$ is upper triangular. Also the elements on the diagonal are $[\mathbf{A}\mathbf{B}]_{ii} = \mathbf{A}_{ii}\mathbf{B}_{ii}$. An analogous statement can be made about lower triangular matrices.

Let $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^{\mathbf{H}}$ be the Schur decomposition of \mathbf{A} . Note $\mathbf{A}^2 = \mathbf{U}\mathbf{T}\mathbf{U}^{\mathbf{H}}\mathbf{U}\mathbf{T}\mathbf{U}^{\mathbf{H}} = \mathbf{U}\mathbf{T}^2\mathbf{U}^{\mathbf{H}}$. Similarly for any positive integer k, we have

$$\mathbf{A}^k = \mathbf{U} \mathbf{T}^k \mathbf{U}^H$$

which is a Schur decomposition as \mathbf{T}^k is also upper triangular. Hence the diagonal of \mathbf{T}^k contains the eigenvalues of \mathbf{A}^k as discussed in part (a). The *i*th diagonal element of \mathbf{T} is \mathbf{T}_{ii} and thus the *i*th diagonal element of \mathbf{T}^k is $(\mathbf{T}_{ii})^k$. Since $\mathbf{T}_{ii} = \lambda_i$ where λ_i is an eigenvalue of \mathbf{A} , we conclude that $\lambda_1^k, \ldots, \lambda_n^k$ are the eigenvalues of \mathbf{A}^k .

d) Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of **A**. We have:

A is invertible
$$\iff$$
 det(**A**) \neq 0 \iff $\prod_{i=1}^{n} \lambda_i \neq 0 \iff \lambda_i \neq 0 \ \forall i$

e) If **A** is invertible, we know that $\lambda_i \neq 0$ for all i. We have

$$\begin{split} X_{\mathbf{A}^{-1}}(\lambda) &= \det(\lambda \mathbf{I} - \mathbf{A}^{-1}) \\ &= \det((\lambda \mathbf{A} - \mathbf{I}) \mathbf{A}^{-1}) \\ &= \det(\lambda \mathbf{A} - \mathbf{I}) \det(\mathbf{A}^{-1}) \\ &= \lambda^n \det(\mathbf{A} - \lambda^{-1} \mathbf{I}) \det(\mathbf{A})^{-1} \\ &= (-\lambda)^n \det(\lambda^{-1} \mathbf{I} - \mathbf{A}) \det(\mathbf{A})^{-1} \\ &= (-\lambda)^n X_{\mathbf{A}}(\lambda^{-1}) \det(\mathbf{A})^{-1} \\ &= (-1)^n X_{\mathbf{A}}(\lambda^{-1}) \prod_{i=1}^n \frac{\lambda}{\lambda_i} \\ &= (-1)^n \prod_{i=1}^n \frac{\lambda}{\lambda_i} (\lambda^{-1} - \lambda_i) \\ &= \prod_{i=1}^n (\lambda - \lambda_i^{-1}) \end{split}$$

which shows that $\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1}$ are the eigenvalues of \mathbf{A}^{-1}

f) We have

$$X_{\mathbf{T}^{-1}\mathbf{A}\mathbf{T}}(\lambda) = \det(\lambda\mathbf{I} - \mathbf{T}^{-1}\mathbf{A}\mathbf{T}) = \det(\mathbf{T}^{-1}(\lambda\mathbf{I} - \mathbf{A})\mathbf{T}) = \det(\mathbf{T})^{-1}\det(\mathbf{T})\det(\lambda\mathbf{I} - \mathbf{A}) = X_{\mathbf{A}}(\lambda)$$

which shows that $\mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ has the same eigenvalues as \mathbf{A} .

3 Problem 3

a) We have

$$\lambda_1 + \lambda_2 + ... + \lambda_n = -(\text{coefficient of } \lambda^{n-1} \text{ in } X_{\mathbf{A}}(\lambda))$$

Now, in $X_{\mathbf{A}} = \det(\lambda \mathbf{I} - \mathbf{A})$, the only term containing λ^n and λ^{n-1} is $\prod_{i=1}^n (\lambda - \mathbf{A}_{ii})$. (This is immediately clear by considering the definition of a determinant in terms of permutations.) Therefore, the coefficient of λ^{n-1} in $X_{\mathbf{A}}$ is the same as the coefficient of λ^{n-1} in $\prod_{i=1}^n (\lambda - \mathbf{A}_{ii})$, which is given by $-\sum_{i=1}^n \mathbf{A}_{ii} = -\mathrm{tr}(\mathbf{A})$. Therefore,

$$tr(\mathbf{A}) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

Alternate solution:

The Schur decomposition of the matrix \mathbf{A} is $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ where \mathbf{U} is a unitary matrix and \mathbf{T} is an upper triangular matrix whose diagonal corresponds to the set of eigenvalues of \mathbf{A} . Now by the cyclic property of $\operatorname{trace}(\operatorname{tr}(\mathbf{A}\mathbf{B}\mathbf{C}) = \operatorname{tr}(\mathbf{C}\mathbf{A}\mathbf{B}))$,

$$\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{U}\mathbf{T}\mathbf{U}^H) = \operatorname{tr}(\mathbf{U}^H\mathbf{U}\mathbf{T}) = \operatorname{tr}(\mathbf{T}) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

b) Using problems 3(a) and 2(c), the result is immediate.

$$\operatorname{tr}(\mathbf{A}^k) = \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k$$

4 Problem 4

The Frobenius norm of a matrix \mathbf{A} is given by

$$\|\mathbf{A}\|_F = \sqrt{\operatorname{tr}(\mathbf{A}^H \mathbf{A})} = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |\mathbf{A}_{ij}|^2 \sqrt{\operatorname{tr}(\mathbf{A} \mathbf{A}^H)}} = \|\mathbf{A}^H\|_F$$

The Schur decomposition of the matrix \mathbf{A} is $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ where \mathbf{U} is a unitary matrix and \mathbf{T} is an upper triangular matrix whose diagonal corresponds to the set of eigenvalues of \mathbf{A} . For any matrix \mathbf{B} and a unitary matrix \mathbf{V} :

$$\left\|\mathbf{V}\mathbf{B}\right\|_{F} = \sqrt{\operatorname{tr}\left(\left(\mathbf{V}\mathbf{B}\right)^{H}\left(\mathbf{V}\mathbf{B}\right)\right)} = \sqrt{\operatorname{tr}\left(\mathbf{B}^{H}\mathbf{V}^{H}\mathbf{V}\mathbf{B}\right)} = \sqrt{\operatorname{tr}\left(\mathbf{B}^{H}\mathbf{B}\right)} = \left\|\mathbf{B}\right\|_{F}$$

Also,

$$\left\|\mathbf{B}\mathbf{V}\right\|_{F}=\left\|\mathbf{V}^{H}\mathbf{B}^{H}\right\|_{F}=\left\|\mathbf{B}^{H}\right\|_{F}=\left\|\mathbf{B}\right\|_{F}$$

Hence we have:

$$\left\|\mathbf{A}\right\|_F = \left\|\mathbf{U}\mathbf{T}\mathbf{U}^H\right\|_F = \left\|\mathbf{T}\right\|_F$$

Now **T** is an upper triangular matrix with diagonal elements as $\lambda_1, \lambda_2, ..., \lambda_n$. Therefore

$$\|\mathbf{T}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^n |\mathbf{T}_{ij}|^2 \ge \sum_{i=1}^n |\lambda_i|^2$$

Hence

$$\sum_{i=1}^{n} |\lambda_i|^2 \le \|\mathbf{T}\|_F^2 = \|\mathbf{A}\|_F^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} |\mathbf{A}_{ij}|^2$$

5 Problem 5

a) Let λ be an eigenvalue of A. Then by definition $\det(A - \lambda I) = 0$ i.e. $\mathcal{N}(A - \lambda I)$ is non trivial. Therefore there exists a vector $v \neq 0$ such that $(A - \lambda I)v = 0$ i.e. $Av = \lambda v$. Premultiplying by A^{k-1} gives us $A^k v = (\lambda)^k v$. But $A^k = 0$ and hence $\lambda^k v = 0 \implies \lambda^k = 0 \implies \lambda = 0$.

Therefore if λ is an eigenvalue of A, $\lambda = 0$.

b) (First Solution) Cayley Hamilton Theorem is indeed valid over any field and also over commutative rings. From a) we know the eigenvalues are 0. Hence the characteristic polynomial is $p_A(x) = (x-0)^n = x^n$. By Cayley Hamilton for arbitrary field, we know A satisfies its own characteristic equation.

Hence $A^n = 0$. As k is the smallest positive integer for which $A^k = 0$, we get $k \le n$.

(Alternative Solution) Define the sequence of subspaces

$$S_1 = \mathcal{N}(A), S_2 = \mathcal{N}(A^2), \dots S_k = \mathcal{N}(A^k)$$

Clearly $S_1 \subseteq S_2 \subseteq S_3 \cdots \subseteq S_k$. Let the corresponding dimensions be $d_1 \leq d_2 \leq d_3 \cdots \leq d_k$.

Suppose there exists an integer i such that $d_i = d_{i+1}$ and let i be the first instance such occurrence. Then $\mathcal{N}(A^i) = \mathcal{N}(A^{i+1})$ as $\mathcal{N}(A^i) \subseteq \mathcal{N}(A^{i+1})$.

Let t be a non-negative integer. For j = i + 1 + t, let $x \in \mathcal{N}(A^j)$. Then we have $A^j x = 0 \implies A^t x \in \mathcal{N}(A^{i+1}) = \mathcal{N}(A^i) \implies A^{t+i} x = A^{j-1} x = 0 \implies x \in \mathcal{N}(A^{j-1})$. Therefore $\mathcal{N}(A^j) = \mathcal{N}(A^{j-1})$ for all $j \geq i + 1$. By induction, this means $\mathcal{N}(A^i) = \mathcal{N}(A^{i+1}) = \mathcal{N}(A^{i+2}) = \mathcal{N}(A^{i+3}) = \dots$

Now we will show such i exists and $i \leq n$. Assume to the contrary $d_1 < d_2 < d_3 \cdots < d_n < d_{n+1}$. Since A is not full-rank, we know $d_1 \geq 1$. Due to chain of inequalities, we would have $d_{n+1} \geq n+1$. However $\mathcal{N}(A^{n+1}) \subset \mathbf{F}^n$ and hence $d_{n+1} \leq n$. We have a contradiction. Therefore $d_n = d_{n+1}$ and $i \leq n$.

But we know $\mathcal{N}(A^k) = \mathbf{F}^n$ and it is the smallest such k. If i < k, then $\mathcal{N}(A^i) = \mathcal{N}(A^k) = \mathbf{F}^n$ which contradicts that k is the smallest such k. Hence $k \le i$ and as $i \le n$, we can conclude $k \le n$.

c) Sufficient to show that $\{x, Ax, A^2x, \dots, A^{n-1}x\}$ are linearly independent to show that they are a basis for \mathbf{F}^n as the number of vectors is equal to the dimension.

Let $\sum_{i=0}^{n-1} \alpha_i A^i x = 0$. Let j be the smallest index for which $\alpha_j \neq 0$.

$$0 = \sum_{i=0}^{n-1} \alpha_i A^i x = \sum_{i=j}^{n-1} \alpha_i A^i x$$

Premultiplying by A^{n-1-j} and substituting i=k+j, we get $0=\sum_{k=0}^{n-1-j}\alpha_{j+k}A^{n-1+k}x=\alpha_jA^{n-1}x$ as $A^{n-1+k}=0$ for $k\geq 1$. We thus have $\alpha_jA^{n-1}x=0$. As $A^{n-1}x\neq 0$, we can conclude that $\alpha_j=0$ which contradicts our assumption that $\alpha_j\neq 0$. Therefore there is no smallest nonnegative index such that $\alpha_i=0$. Hence if the linear combination is 0, all α_i are 0 i.e. they are linearly independent.