# 2.3. Monday for MAT4002

### Reviewing.

1. Topological Space  $(X, \mathcal{J})$ : a special class of topological space is that induced from metric space (X, d):

$$(X, \mathcal{T})$$
, with  $\mathcal{T} = \{\text{all open sets in } (X, d)\}$ 

2. Closed Sets  $(X \setminus U)$  with U open.

**Proposition 2.8** Let  $(X, \mathcal{T})$  be a topological space,

- 1.  $\emptyset$ , *X* are closed in *X*
- 2.  $V_1, V_2$  closed in X implies that  $V_1 \cup V_2$  closed in X
- 3.  $\{V_{\alpha} \mid \alpha \in A\}$  closed in X implies that  $\bigcap_{\alpha \in A} V_{\alpha}$  closed in X

Proof. Applying the De Morgan's Law

$$(X\setminus\bigcup_{i\in I}U_i)=\bigcap_{i\in I}(X\setminus U_i)$$

## 2.3.1. Convergence in topological space

**Definition 2.4** [Convergence] A sequence  $\{x_n\}$  of a topological space  $(X, \mathcal{T})$  converges to  $x \in X$  if  $\forall U \ni x$  is open, there  $\exists N$  such that  $x_n \in U, \forall n \geq N$ .

■ Example 2.9 1. The topology for the space  $(X = \mathbb{R}^n, d_2) \to (X, \mathcal{T})$  (i.e., a topological space induced from meric space  $(X = \mathbb{R}^n, d_2)$ ) is called a usual topology on  $\mathbb{R}^n$ .

When I say  $\mathbb{R}^n$  (or subset of  $\mathbb{R}^n$ ) is a topological space, it is equipeed with usual topology.

Convergence of sequence in  $(\mathbb{R}^n, \mathcal{T})$  is the usual convergence in analysis.

For  $\mathbb{R}^n$  or metric space, the limit of sequence (if exists) is unique.

2. Consider the topological space  $(X, \mathcal{T}_{\mathsf{indiscrete}})$ . Take any sequence  $\{x_n\}$  in X, it is convergent to any  $x \in X$ . Indeed, for  $\forall U \ni x$  open, U = X. Therefore,

$$x_n \in U(=X), \forall n \geq 1.$$

- 3. Consider the topological space  $(X, \mathcal{T}_{\text{cofinite}})$ , where X is infinite. Consider  $\{x_n\}$  is a sequence satisfying  $m \neq n$  implies  $x_m \neq x_n$ . Then  $\{x_n\}$  is convergent to any  $x \in X$ . (Question: how to define openness for  $\mathcal{T}_{\text{cofinite}}$  and  $\mathcal{T}_{\text{indiscrete}}$ )?
- 4. Consider the topological space  $(X, \mathcal{T}_{\text{discrete}})$ , the sequence  $\{x_n\} \to x$  is equivalent to say  $x_n = x$  for all sufficiently large n.

The limit of sequences may not be unique. The reason is that " $\mathcal{T}$  is not big enough". We will give a criterion to make sure the limit is unique in the future. (Hausdorff)

**Proposition 2.9** If  $F \subseteq (X, \mathcal{T})$  is closed, then for any convergent sequence  $\{x_n\}$  in F, the limit(s) are also in F.

*Proof.* Let  $\{x_n\}$  be a sequence in F with limit  $x \in X$ . Suppose on the contrary that  $x \notin F$  (i.e.,  $x \in X \setminus F$  that is open). There exists N such that

$$x_n \in X \setminus F, \forall n \geq N$$
,

i.e.,  $x_n \notin F$ , which is a contradiction.

R The converse may not be true. If the  $(X, \mathcal{T})$  is metrizable, the converse holds. Counter-example: Consider the co-countable topological space  $(X, \mathcal{T}_{\text{co-co}})$ , where

$$\mathcal{T}_{\text{co-co}} = \{U \mid X \setminus U \text{ is a countable set}\} \bigcup \{\emptyset\},$$

and X is uncontable. Let  $F \subsetneq$  be an un-countable set such that is closed under limits, e.g., [0,1]. It's clear that  $X \setminus F \notin \mathcal{T}_{\text{co-co}}$ , i.e., F is not closed.

# 2.3.2. Interior, Closure, Boundary

**Definition 2.5** Let  $(X, \mathcal{T})$  be a topological space, and  $A \subseteq X$  a subset.

1. The **interior** of A is

$$A^{\circ} = \bigcup_{U \subseteq A, U \text{ is open}} U$$

2. The **closure** of A is

$$\overline{A} = \bigcap_{A \subseteq V, V \text{ is closed}} V$$

If  $\overline{A} = X$ , we say that A is dense in X.

The graph illustration of the definition above is as follows:



(a) Illustration of A

(b) Illustration of  $A^{\circ}$ 

(c) Illustration of  $\overline{A}$ 

Figure 2.1: Graph Illustrations

■ Example 2.10 1. For  $[a,b) \subseteq \mathbb{R}$ , we have:

$$[a,b)^{\circ}=(a,b), \quad \overline{[a,b)}=[a,b]$$

- 2. For  $X = \mathbb{R}$ ,  $\mathbb{Q}^{\circ} = \emptyset$  and  $\overline{\mathbb{Q}} = \mathbb{R}$ .
- 3. Consider the discrete topology  $(X, \mathcal{T}_{\text{discrete}})$ , we have

$$S^{\circ} = S$$
,  $\overline{S} = S$ 

The insights behind the definition (2.5) is as follows

**Proposition 2.10** 1.  $A^{\circ}$  is the largest open subset of X contained in A;

 $\overline{A}$  is the smallest closed subset of *X* containing *A*.

- 2. If  $A \subseteq B$ , then  $A^{\circ} \subseteq B$  and  $\overline{A} \subseteq \overline{B}$
- 3. A is open in X is equivalent to say  $A^{\circ} = A$ ; A is closed in X is equivalent to say  $\overline{A} = A$ .
- **Example 2.11** Let (X,d) be a metric space. What's the closure of an open ball  $B_r(x)$ ? The direct intuition is to define the closed ball

$$\bar{B}_r(x) = \{ y \in X \mid d(x,y) \le r \}.$$

Question: is  $\bar{B}_r(x) = \overline{B_r(x)}$ ?

1. Since  $\bar{B}_r(x)$  is a closed subset of X, and  $B_r(x) \subseteq \bar{B}_r(x)$ , we imply that

$$\overline{B_r(x)} \subseteq \bar{B}_r(x)$$

2. Howover, we may find an example such that  $\overline{B_r(x)}$  is a proper subset of  $\bar{B}_r(x)$ : Consider the discrete metric space  $(X,d_{\text{discrete}})$  and for  $\forall x \in X$ ,

$$B_1(x) = \{x\} \implies \overline{B_1(x)} = \{x\}, \quad \overline{B}_1(x) = X$$

The equality  $\bar{B}_r(x) = \overline{B_r(x)}$  holds when (X,d) is a normed space.

Here is another characterization of  $\overline{A}$ :

#### **Proposition 2.11**

$$\overline{A} = \{x \in X \mid \forall \text{open } U \ni x, U \bigcap A \neq \emptyset\}$$

Proof. Define

$$S = \{x \in X \mid \forall \text{open } U \ni x, U \bigcap A \neq \emptyset\}$$

It suffices to show that  $\overline{A} = S$ .

#### 1. First show that *S* is closed:

$$X \setminus S = \{x \in X \mid \exists U_x \ni x \text{ open s.t. } U_x \cap A = \emptyset\}$$

Take  $x \in X \setminus S$ , we imply there exists open  $U_x \ni x$  such that  $U_x \cap A = \emptyset$ . We claim  $U_x \subseteq X \setminus S$ :

• For  $\forall y \in U_x$ , note that  $U_x \ni y$  that is open, such that  $U_x \cap A = \emptyset$ . Therefore,  $y \in X \setminus S$ .

Therefore, we have  $x \in U_x \subseteq X \setminus S$  for any  $\forall x \in X \setminus S$ .

Note that

$$X\setminus S=\bigcup_{x\in X\setminus S}\{x\}\subseteq\bigcup_{x\in X\setminus S}U_x\subseteq X\setminus S,$$

which implies  $X \setminus S = \bigcup_{x \in X \setminus S} U_x$  is open, i.e., S is closed in X.

2. By definition, it is clear that  $A \subseteq S$ :

$$\forall a \in A, \forall \text{open } U \ni a, U \cap A \supseteq \{a\} \neq \emptyset \implies a \in S.$$

Therefore,  $\overline{A} \subseteq \overline{S} = S$ .

3. Suppose on the contrary that there exists  $y \in S \setminus \overline{A}$ .

Since  $y \notin \overline{A}$ , by definition, there exists  $F \supseteq A$  closed such that  $y \notin F$ .

Therefore,  $y \in X \setminus F$  that is open, and

$$(X\setminus F)\bigcap A\subseteq (X\setminus A)\bigcap A=\emptyset \implies y\notin S,$$

which is a contradiction. Therefore,  $S = \overline{A}$ .

**Definition 2.6** [accumulation point] Let  $A \subseteq X$  be a subset in a topological space. We call  $x \in X$  are an **accumulation point** (**limit point**) of A if

$$\forall U \subseteq X \text{ open s.t. } U \ni x, (U \setminus \{x\}) \cap A \neq \emptyset.$$

The set of accumulation points of  $\boldsymbol{A}$  is denoted as  $\boldsymbol{A}'$ 

**Proposition 2.12**  $\overline{A} = A \bigcup A'$ .