Amendments to the Claims:

2 This listing of claims will replace all prior versions, and listings of claims in the application:

3 <u>Listing of Claims:</u>

1

1-63 (canceled)

1	64 (previously presented): A system for detecting a macromolecular analyte
2	comprising:
3	a removably insertable rigid and structurally self-supporting probe having a
4	sample presenting surface for presenting the macromolecular analyte to a laser desorption
5	ionization energy source that emits energy capable of desorbing and ionizing the macromolecular
6	analyte from the probe, wherein at least the surface comprises a non-metallic material selected
7	from the group consisting of polystyrene, polypropylene, polyethylene, polycarbonate, nylon,
8	starch, agarose, and dextran;
9	a laser desorption ionization energy source that directs laser energy to the sample
10	presenting surface of the probe for desorbing and ionizing the macromolecular analyte;
11	a spectrometer tube;
12	a vacuum means for applying a vacuum to the interior of said tube;
13	electrical potential means within the tube for applying an accelerating electrical
14	potential to the desorbed and ionized analyte;
15	a detector in communication with the probe surface that detects the desorbed
16	macromolecular analyte; and
17	means for detecting the mass of the ions by their time of flight.
	65-85 (canceled)
1	86 (previously presented): A method for detecting a macromolecular analyte
2	comprising the steps of:
3	a) providing a system comprising:

4	(1) a removably insertable rigid and structurally self-supporting probe
5.	having a sample presenting surface for presenting the macromolecular analyte to a laser
6	desorption ionization energy source that emits energy capable of desorbing and ionizing the
7	macromolecular analyte from the probe, wherein at least the surface comprises a non-metallic
8	material selected from the group consisting of polystyrene, polypropylene, polyethylene,
9	polycarbonate, nylon, starch, agarose, and dextran, wherein the macromolecular analyte is
10	presented on the probe surface;
11	(2) a laser desorption ionization energy source that directs laser energy
12	to the sample presenting surface of the probe for desorbing and ionizing the macromolecular
13	analyte;
14	(3) a spectrometer tube;
15	(4) a vacuum means for applying a vacuum to the interior of said tube
16	(5) electrical potential means within the tube for applying an
17	accelerating electrical potential to the desorbed and ionized analyte;
18	(6) a detector in communication with the probe surface that detects the
19	desorbed and ionized macromolecular analyte; and
20	(7) means for detecting the mass of the ions by their time of flight;
21	b) desorbing and ionizing at least a portion of the macromolecular analyte
22	from the surface by exposing the macromolecular analyte to energy from the laser desorption
23	ionization energy source;
24	c) accelerating the desorbed and ionized analyte toward the detector;
25	d) detecting the desorbed and ionized macromolecular analyte with the
26	detector; and
27	e) detecting the mass of the ions by their time of flight.
	97 (amadad)
	87 (canceled)
1	88 (previously presented): The method of claim 86 further comprising before
2	step (b) the step of modifying the macromolecular analyte chemically or enzymatically while
3	deposited on the probe surface.

1	89 (previously presented): The method of claim 86 further comprising after step
2	(c) the steps of:
3	d) modifying the macromolecular analyte chemically or enzymatically while
4	deposited on the probe surface; and
5	e) repeating steps b) and c).
1	90 (previously presented): The method of claim 86 wherein the probe surface
2	comprises an array of locations, each location having at least one macromolecular analyte
3	deposited thereon; and step (b) comprises desorbing and ionizing a first macromolecular analyte
4	from a first location in the array;
5	and wherein the method further comprises the step of:
6	d) desorbing and ionizing a second macromolecular analyte from a second
7	location in the array; and
8	e) detecting the desorbed and ionized second macromolecular analyte with
9	the detector.
	91-100 (canceled)
1	101 (previously presented): The method of claim 86 wherein the
2	macromolecular analyte comprises a protein or a peptide.
	102-107 (canceled)
1	108 (previously presented): The system of claim 64, wherein the
2	macromolecular analyte is a biomolecule.
l	109 (previously presented): The system of claim 64, wherein the
2	macromolecular analyte is a biomolecule from an undifferentiated sample.
1	110 (previously presented): The system of claim 64, wherein the
2	macromolecular analyte is a protein or a peptide.

1	111 (previously presented): The method of claim 86, wherein the
2	macromolecular analyte is a biomolecule.
1	112 (previously presented): The method of claim 86, wherein the
2	macromolecular analyte is a biomolecule from an undifferentiated sample.
1	113 (previously presented): The method of claim 86, wherein the
2	macromolecular analyte is a protein or a peptide.
	114-120 (canceled)
1	121 (previously presented): The system of claim 64, wherein the
2	macromolecular analyte is a nucleic acid.
1	122 (previously presented): The system of claim 64, wherein the
2	macromolecular analyte is a carbohydrate.
1	123 (previously presented): The method of claim 86, wherein the
2	macromolecular analyte is a nucleic acid.
1	124 (previously presented): The method of claim 86, wherein the
2	macromolecular analyte is a carbohydrate.
1	125 (canceled)
1	126 (previously presented): The system of any of claims 64 or 137-141 further
2	comprising applying to the macromolecular analyte a matrix material for promoting desorption
3	and ionization of the macromolecular analyte on the surface.
l	127 (previously presented): The method of any of claims 86, 88-90, 101, 111-
2	113, 123, 124 or 144-148 further comprising applying to the macromolecular analyte a matrix
3	material for promoting desorption and ionization of the macromolecular analyte on the surface

128-136 (canceled)

1	137 (previously presented): The system of claim 64 wherein the non-metallic
2	material is polystyrene.
1 2	138 (previously presented): The system of claim 64 wherein the non-metallic material is polypropylene.
1 2	139 (previously presented): The system of claim 64 wherein the non-metallic material is polycarbonate.
1	140 (previously presented): The system of claim 64 wherein the non-metallic material is nylon.
1 2	(previously presented): The system of claim 64 wherein the non-metallic material is dextran.
	142-143 (canceled)
1 2	144 (previously presented): The method of claim 86 wherein the non-metallic material is polystyrene.
1 2	145 (previously presented): The method of claim 86 wherein the non-metallic material is polypropylene.
1 2	146 (previously presented): The method of claim 86 wherein the non-metallic material is polycarbonate.
1 2	147 (previously presented): The method of claim 86 wherein the non-metallic material is nylon.

Appl. No. 09/123,253 Amdt. dated July 12, 2005 Reply to Office Action of April 12, 2005

148 (previously presented): The method of claim 86 wherein the non-metallic material is dextran.