Algorithms for matching

Introduction to Computational Linguistics

Geert-Jan M. Kruijff

⟨gj@dfki.de⟩

Today's lecture

- Objective:
 - Efficient algorithms for finding matches of patterns (strings) in texts.
 - The focus is on exact matching
 - We deal with chars/Strings, but this generalizes to words/Strings

Today's lecture

Objective:

- Efficient algorithms for finding matches of patterns (strings) in texts.
- The focus is on exact matching
- We deal with chars/Strings, but this generalizes to words/Strings
- Why efficient methods for pattern matching?
 - Applications of pattern matching in search (web search for IR, IE, Q/A), tagging (named entity recognition), shallow processing (parsing)
 - Efficiency pays off when dealing with large amounts of data!
 - Furthermore: preliminaries for finite-state automata, dynamic programming/memoization techniques in parsing

Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997: Chapters 1, 2, 3[pp52-65]; Chapter 11

- 1. The naive method for exact string matching
 - Method for finding matches of a pattern P in a text T using $O(|P| \cdot |T|)$ comparisons

Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997: Chapters 1, 2, 3[pp52-65]; Chapter 11

- 1. The naive method for exact string matching
 - Method for finding matches of a pattern P in a text T using $O(|P| \cdot |T|)$ comparisons
- 2. Methods for fundamental preprocessing of a pattern
 - Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997: Chapters 1, 2, 3[pp52-65]; Chapter 11

- 1. The naive method for exact string matching
 - Method for finding matches of a pattern P in a text T using $O(|P| \cdot |T|)$ comparisons
- 2. Methods for fundamental preprocessing of a pattern
 - Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found
- 3. The Booyer-Moore algorithm, the Knuth-Morris-Pratt algorithm
 - Smart shifts in sublinear O(|P|+|T|) time (B-M) or linear time (K-M-P)

Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997: Chapters 1, 2, 3[pp52-65]; Chapter 11

- The naive method for exact string matching
 - Method for finding matches of a pattern P in a text T using $O(|P| \cdot |T|)$ comparisons
- 2. Methods for fundamental preprocessing of a pattern
 - Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found
- 3. The Booyer-Moore algorithm, the Knuth-Morris-Pratt algorithm
 - Smart shifts in sublinear O(|P|+|T|) time (B-M) or linear time (K-M-P)
- 4. Methods for exact matching with a set of patterns
 - Keyword trees to represent sets of patterns; their use in a generalization of Knuth-Morris-Pratt

- The naive method for exact string matching
 - Method for finding matches of a pattern P in a text T using $O(|P| \cdot |T|)$ comparisons
- 2. Methods for fundamental preprocessing of a pattern
 - · Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found
- 3. The Booyer-Moore algorithm, the Knuth-Morris-Pratt algorithm
 - Smart shifts in sublinear O(|P|+|T|) time (B-M) or linear time (K-M-P)
- 4. Methods for exact matching with a set of patterns
 - Keyword trees to represent sets of patterns; their use in a generalization of Knuth-Morris-Pratt

This week points 1-3 up to Booyer-Moore, next week KMP and trees.

Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997: Chapters 1, 2, 3[pp52-65]; Chapter 11

• A **string** S is an ordered list of characters, written contiguously from left to right. For any string S, S[i..j] is the (contiguous) **substring** of S that starts at position i and ends at position j.

- A string S is an ordered list of characters, written contiguously from left to right. For any string S, S[i..j] is the (contiguous) substring of S that starts at position i and ends at position j.
- The substring S[1..i] is the prefix of S that ends at position i, and the substring S[j..|S|] is the suffix of S starting at position i, with |S| the length of S.

Preliminaries

- A **string** S is an ordered list of characters, written contiguously from left to right. For any string S, S[i..j] is the (contiguous) **substring** of S that starts at position i and ends at position j.
- The substring S[1..i] is the prefix of S that ends at position i, and the substring S[j..|S|] is the suffix of S starting at position i, with |S| the length of S.
- For any string S, S(i) denotes the character at position i in S.

Preliminaries

- A **string** S is an ordered list of characters, written contiguously from left to right. For any string S, S[i..j] is the (contiguous) **substring** of S that starts at position i and ends at position j.
- The substring S[1..i] is the prefix of S that ends at position i, and the substring S[j..|S|] is the suffix of S starting at position i, with |S| the length of S.
- For any string S, S(i) denotes the character at position i in S.

Given

- a pattern P, and a text T in which we are looking for matches of P
- Pointers: p to position in P; t to position in T; s to start of matching P in T

Algorithm

[Start: p=1, t=1,s=1]

- 1. Align the left of P with the left of T: set position in P, p=1; set position in T, t=1
- 2. Set the current left-alignment position in T to s=1

[Loop]

- 2. Compare the character at P(p) with the character at T(t)
- 3. If P(p) == T(t),
 - 4. If p < |P| then set p=p+1 and set t=t+1; else report match, and set p=1, s=s+1, t=s;
 - 5. Else p=1 and s=s+1, t=s


```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]  1. \text{ Align the left of P with the left of T:}   2. p=1; t=1; s=1  [Loop]  2. \text{ Compare P(p) with T(t)}   3. \text{ If P(p)} == T(t),   4. \text{ If p < |P|}   then p=p+1 \text{ and } t=t+1;   else \text{ report match, and } p=1, s=s+1, t=s;
```

```
T= XABXYABXYABXZ

P= ABXYABXZ
```

[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

t=2

s=2

ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

s=2

p=1 t=2 s=2

ABXYABXZ


```
[Start: p=1, t=1,s=1]
```

1. Align the left of P with the left of T:

[Loop]

2. Compare P(p) with T(t)

3. If
$$P(p) == T(t)$$
,

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;

1 2 3 4 5 6 7 8 9 10 11 12 13

T= XABXYABXYABXZ

P= ABXYABXZ

p=I p=2 t=2 t=3 s=2 s=2

ABXYABXZ


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;

```
T= XABXYABXYABXZ

P= ABXYABXZ
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
p=1 p=2
t=2 t=3
s=2 s=2

A B XYABXZ
```

```
[Start: p=1, t=1,s=1]  1. \text{ Align the left of P with the left of T:} \\ 2. p=1; t=1; s=1 \\ \text{[Loop]} \\ 2. \text{ Compare P(p) with T(t)} \\ 3. \text{ If P(p)} == \text{T(t)}, \\ 4. \text{ If p} < |P| \\ \text{then p=p+1 and t=t+1;} \\ \text{else report match, and p=1, s=s+1, t=s;}
```



```
p=I p=2 p=3
t=2 t=3 t=4
s=2 s=2 s=2

A B X Y A B X Z
```

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

```
T= XABXYABXYABXZ

P= ABXYABXZ
```



```
p=I p=2 p=3

t=2 t=3 t=4

s=2 s=2 s=2

ABXYABXZ
```

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
p=1 p=2 p=3
t=2 t=3 t=4
s=2 s=2 s=2

A B X Y A B X Z
```

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1
[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
p=1 p=2 p=3 p=4
t=2 t=3 t=4 t=5
s=2 s=2 s=2 s=2

ABXYABXZ
```

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;
```


T= XABXYABXYABXZ

P= ABXYABXZ

ABXYABXZ


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;


```
T= XABXYABXYABXZ

P= ABXYABXZ
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


T= XABXYABXYABXZ

P= ABXYABXZ

p=1 p=2 p=3 p=4 p=5 t=2 t=3 t=4 t=5 t=6 s=2 s=2 s=2 s=2

ABXYABXZ


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then
$$p=p+1$$
 and $t=t+1$;

else report match, and p=1, s=s+1, t=s;

```
T= XABXYABXYABXZ

P= ABXYABXZ
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


T= XABXYABXYABXZ

P= ABXYABXZ


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;

T= XABXYABXYABXZ

P= ABXYABXZ


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;


```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


T= XABXYABXYABXZ

P= ABXYABXZ


```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|
```

then p=p+1 and t=t+1;

5. Else p=1 and s=s+1, t=s

else report match, and p=1, s=s+1, t=s;


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;


```
[Start: p=1, t=1,s=1]
```

- 1. Align the left of P with the left of T:
- 2. p=1; t=1; s=1

[Loop]

- 2. Compare P(p) with T(t)
- 3. If P(p) == T(t),

4. If
$$p < |P|$$

then p=p+1 and t=t+1;

else report match, and p=1, s=s+1, t=s;


```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1
[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

```
T= XABXYABXYABXZ

P= ABXYABXZ
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8

ABXYABXZ

/////////

ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

s=3


```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1
[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```


t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8 s=3ABXYABXZ **/////////** ABXYABXZ ABXYABXZ ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

ABXYABXZ


```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
              s=3
ABXYABXZ
/////////
 ABXYABXZ
   ABXYABXZ
    ABXYABXZ
      ABXYABXZ
```

```
[Start: p=1, t=1, s=1]
      1. Align the left of P with the left of T:
      2. p=1; t=1; s=1
[Loop]
      2. Compare P(p) with T(t)
      3. If P(p) == T(t),
            4. If p < |P|
                 then p=p+1 and t=t+1;
                  else report match, and p=1, s=s+1, t=s;
            5. Else p=1 and s=s+1, t=s
```



```
    P=1    P=2    P=3    P=4    P=5    P=6    P=7    P=7    P=7    P=1    P
```

× ABXYABXZ × ABXYABXZ

```
/
```

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1
[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1
[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
              s=3
ABXYABXZ
VVVVVVX
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
      ABXYABXZ
```

~~


```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
              s=3
ABXYABXZ
/////////
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
      ABXYABXZ
      ノノノ
```

```
[Start: p=1, t=1, s=1]
      1. Align the left of P with the left of T:
      2. p=1; t=1; s=1
[Loop]
      2. Compare P(p) with T(t)
      3. If P(p) == T(t),
            4. If p < |P|
                  then p=p+1 and t=t+1;
                  else report match, and p=1, s=s+1, t=s;
            5. Else p=1 and s=s+1, t=s
```



```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
              s=3
ABXYABXZ
/////////
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
      ABXYABXZ
      UUUU
```

```
[Start: p=1, t=1, s=1]
      1. Align the left of P with the left of T:
      2. p=1; t=1; s=1
[Loop]
      2. Compare P(p) with T(t)
      3. If P(p) == T(t),
            4. If p < |P|
                  then p=p+1 and t=t+1;
                  else report match, and p=1, s=s+1, t=s;
            5. Else p=1 and s=s+1, t=s
```



```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
              s=3
ABXYABXZ
/////////
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
      ABXYABXZ
      UUUUU
```

```
[Start: p=1, t=1, s=1]
      1. Align the left of P with the left of T:
      2. p=1; t=1; s=1
[Loop]
      2. Compare P(p) with T(t)
      3. If P(p) == T(t),
            4. If p < |P|
                  then p=p+1 and t=t+1;
                  else report match, and p=1, s=s+1, t=s;
            5. Else p=1 and s=s+1, t=s
```



```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
             s=3
ABXYABXZ
/////////
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
      ABXYABXZ
```

```
[Start: p=1, t=1, s=1]
      1. Align the left of P with the left of T:
      2. p=1; t=1; s=1
[Loop]
      2. Compare P(p) with T(t)
      3. If P(p) == T(t),
            4. If p < |P|
                  then p=p+1 and t=t+1;
                  else report match, and p=1, s=s+1, t=s;
            5. Else p=1 and s=s+1, t=s
```



```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
              s=3
ABXYABXZ
/////////
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
      ABXYABXZ
      UUUUUU
```


t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8

ABXYABXZ

/////////

ABXYABXZ

ABXYABXZ

```
[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|

then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s
```

```
X
ABXYABXZ
ABXYABXZ
```

s=3

[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t),

4. If p < |P|then p=p+1 and t=t+1;
else report match, and p=1, s=s+1, t=s;

5. Else p=1 and s=s+1, t=s

```
t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=8
            s=3
ABXYABXZ
/////////
 ABXYABXZ
  ABXYABXZ
    ABXYABXZ
     ABXYABXZ
```

In total, we had to make 20 comparisons

Observations

- The worst-case number of comparisons is $O(|P| \cdot |T|)$
- This is not so useful in real-life applications!
- E.g. |P|=30 and |T|=200K: 6M comparisons; with 1ms per comparison this would mean 6000s, or 100 minutes, i.e. 1:40h. If we manage to get linear complexity O(|P|+|T|) we are down to 3.33min!

Observations

- The worst-case number of comparisons is $O(|P| \cdot |T|)$
- This is not so useful in real-life applications!
- E.g. |P|=30 and |T|=200K: 6M comparisons; with 1ms per comparison this would mean 6000s, or 100 minutes, i.e. 1:40h. If we manage to get linear complexity O(|P|+|T|) we are down to 3.33min!
- Ideas for speeding up the naive method
 - Try to shift further when a mismatch occurs, but never so far as to miss an occurrence of P in T

ABXYABXZ

In total,
we had to make

7
comparisons

The next occurrence of P(I)="A" in T is not before position 5 in T, so shift to position 6!

ABXYABXZ

ABXYABXZ

ABXYABXZ

In total, we had to make

4
comparisons

- Before searching, preprocess P (or T, or P+T)
- Fundamental preprocessing of a string S
 - At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S
 - Let Z_i(S) be that length at i

- Before searching, preprocess P (or T, or P+T)
- Fundamental preprocessing of a string S
 - At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S
 - Let Z_i(S) be that length at i

$$S = AABCAABXAAZ$$

- Before searching, preprocess P (or T, or P+T)
- Fundamental preprocessing of a string S
 - At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S
 - Let Z_i(S) be that length at i

$$S = AABCAABXAAZ$$

 $Z_5(S)=3: (AABC...AABX)$

- Before searching, preprocess P (or T, or P+T)
- Fundamental preprocessing of a string S
 - At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S
 - Let Z_i(S) be that length at i

$$S = AABCAABXAAZ$$

 $Z_5(S)=3: (AABC...AABX)$
 $Z_6(S)=1: (AA...AB)$

Smarter shifting thru preprocessing

- Before searching, preprocess P (or T, or P+T)
- Fundamental preprocessing of a string S
 - At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S
 - Let Z_i(S) be that length at i

$$S = AABCAABXAAZ$$
 $Z_5(S)=3: (AABC...AABX)$
 $Z_6(S)=1: (AA...AB)$
 $Z_7(S)=Z_8(S)=0$

Smarter shifting thru preprocessing

- Before searching, preprocess P (or T, or P+T)
- Fundamental preprocessing of a string S
 - At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S
 - Let Z_i(S) be that length at i

$$S = A A B C A A B X A A Z$$

 $Z_5(S)=3: (A A B C...A A B X)$
 $Z_6(S)=1: (A A ...A B)$
 $Z_7(S)=Z_8(S)=0$
 $Z_9(S)=2: (A A B ...A A Z)$

- Given a string S=P\$T
 - The dollar sign \$ is not in the languages for P or T
 - |P|=n, |T|=m, n≤m, so S=n+m+1
- Compute Z_i(S) for 2 < i < n+m+1
 - Because "\$" is not in the language for P, Z_i(S) ≤ n for every i > 1
 - Z_i(S)=n for i > n+1 identifies an occurrence of P starting at i-(n+1) in T
 - Also: If P occurs in T starting at position j, then it must be that $Z_{(n+1)+i}(S)=n$
- If Z_i(S) is computable in linear time, then we have linear time matching
 - Matching = search ⇒ matching = preprocessing + search

- The task: Compute $Z_i(S)$ in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

S _____

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- The task: Compute Z_i(S) in linear time, i.e. O(|S|)
- The notion of a Z-box
 - For every i > 1 with $Z_i(S) > 0$, define a Z-box to be the substring from i until $i+Z_i(S)-1$, i.e. $S[i...i+Z_i(S)-1]$
 - For every i > 1, r_i is the right-most endpoint of the Z-boxes that begin at or before i;
 - i.e, r_i is the largest value of $j+Z_i(S)-1$ for all $1 < j \le i$ such that $Z_i(S) > 0$

- We need to compute $Z_i(S)$, r_i and l_i for every i > 2
- In any iteration i, we only need r_j and I_j for j=i-1; i.e just r, I
- If we discover a new Z-box at i, set r to the end of that Z-box,
 which is the right-most position of any Z-box discovered so far
- Step 0

Find $Z_2(S)$ by comparing left to right S[2..|S|] and S[1..|S|] until a mismatch is found; $Z_2(S)$ is the length of that string. If $Z_2(S) > 0$ then set $r=r_2$ to $Z_2(S)+1$ and $l=l_2$, else r=l=0

- Induction hypothesis: we have correct Z_i(S) for i up to k-1>1, r, I
 - Next, compute Z_i(S) from the already computed Z values

- Simplest case: inclusion
- E.g. for k=121, we have $Z_2(S)...Z_{120}(S)$, and $r_{120}=130$, $l_{120}=100$
 - Thus: a substring of length 31 starting at position 100, matching S[1..31]
 - And: the substring of length 10 starting at 121 must match S[22..31], so Z₂₂ could help!
 - For example, if Z₂₂ is 3, then Z₁₂₁ must also be 3

- Given $Z_i(S)$ for all $1 < i \le k-1$, and the current values of $Z_k(S)$, r, and I; compute the updated r and I
- Step 1:
 - if k > r, then find $Z_k(S)$ by comparing the characters starting at k to the characters starting at position 1 in S, until a mismatch is found. The length of the match is $Z_k(S)$. If $Z_k(S) > 0$, set $r=k+Z_k(S)-1$, and l=k.

Step 2

- If k ≤ r, then position k is contained in a Z-box, and hence S(k) is contained in a substring S[I..r] (call it α) such that I > 1 and α matches a prefix of S.
- Therefore, character S(k) also appears in position k'=k-l+1 of S.
- By the same reasoning, the substring S[k..r] (call it β) must match substring S[k'..Z_I(S)]. (Remember the example with Z₂₂(S), r=121!)
- Hence, the substring at position k must match a prefix of S of length at least the *minimum* of $Z_{k'}(S)$ and $|\beta|$ (which is r-k+1).

Two cases given the minimum

- Case 1: If Z_{k} ,(S) < $|\beta|$
 - then position k is a Z-box (call it γ) contained within a larger Z-box
 - set $Z_k(S)=Z_{k'}(S)$ and leave r and I as they are

Two cases given the minimum

- Case 2: If Z_k , $(S) \ge |\beta|$
 - then the entire substring S[k..r] must be a prefix of S and Z_k(S)≥|β|=r-k+1
 - However, Z_k(S) may be strictly larger, so compare characters starting at r
 +1 of S to the characters starting at |β|+1 of S until a mismatch occurs (Remember the second smart improvement over the naive method!)
 - Say the mismatch is at $q \ge r+1$. Then $Z_k(S)=q-k$, r=q-1, and l=k

• "The algorithm computes all the $Z_i(S)$ values in O(|S|) time"

The time is proportional to the number of iterations, |S|, plus the number of character comparisons. Each comparison is either a match or a mismatch. Each iteration that performs any character comparisons at all ends the first time it finds a mismatch; hence there are at most |S| mismatches during the entire algorithm. To bound the number of mismatches, note first that $r_k \ge r_{k-1}$ for every iteration k. Now, let k be an iteration where q > 0 matches occur. Then r_k is set to $r_k + q$ at least. Finally, $r_k \le |S|$ so the total number of matches that can occur during any execution of the algorithm is at most |S|.

"Computing Z_i(S) on S=P\$T finds matches of P in T in O(|T|)"

The Boyer-Moore algorithm

- Like the naive method
 - Align P with T, check whether characters in P and T match
 - After the check is complete, P is shifted rightwards relative to T
- Smarter shifting
 - For an alignment, check whether P occurs in T scanning right-to-left in P
 - The bad character shift: shift right beyond the bad character
 - The good suffix shift: shift right using the match of the good suffix of P

- For example,
 - P(7)=T(9) ... but $P(3) \neq T(5)$
 - Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
 - Scanning right-to-left still yields an algorithm running in O(nm) time

- For example,
 - P(7)=T(9) ... but $P(3) \neq T(5)$
 - Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
 - Scanning right-to-left still yields an algorithm running in O(nm) time

- For example,
 - P(7)=T(9) ... but $P(3) \neq T(5)$
 - Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
 - Scanning right-to-left still yields an algorithm running in O(nm) time

- For example,
 - P(7)=T(9) ... but $P(3) \neq T(5)$
 - Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
 - Scanning right-to-left still yields an algorithm running in O(nm) time

- For example,
 - P(7)=T(9) ... but $P(3) \neq T(5)$
 - Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
 - Scanning right-to-left still yields an algorithm running in O(nm) time

- For example,
 - P(7)=T(9) ... but $P(3) \neq T(5)$
 - Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
 - Scanning right-to-left still yields an algorithm running in O(nm) time

B-M: The bad character shift

- The basic idea
 - Suppose the rightmost character in P is y, aligned to x in T with x≠y
 - If x is in P, then we can shift P so that the rightmost x is below x in T
 - If x is not in P, then we can shift P completely beyond the x in T
- Possibly sublinear matching: not all characters in T may need to be compared

For each character x in the alphabet, let R(x) be the rightmost position of x in P. R(x) is defined to be 0 if x is not in P.

The bad character shift rule makes use of R

For each character x in the alphabet, let R(x) be the rightmost position of x in P. R(x) is defined to be 0 if x is not in P.

The bad character shift rule makes use of R

For each character x in the alphabet, let R(x) be the rightmost position of x in P. R(x) is defined to be 0 if x is not in P.

The bad character shift rule makes use of R

For each character x in the alphabet, let R(x) be the rightmost position of x in P. R(x) is defined to be 0 if x is not in P.

The bad character shift rule makes use of R

For each character x in the alphabet, let R(x) be the rightmost position of x in P. R(x) is defined to be 0 if x is not in P.

The bad character shift rule makes use of R

• The basic idea:

- Given the character T(k) against which P mismatches,
- Take the good suffix t of P, i.e. the part that matched against T
- Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
- Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

B-M: the good suffix rule

- The basic idea:
 - Given the character T(k) against which P mismatches,
 - Take the good suffix t of P, i.e. the part that matched against T
 - Look in P for the left-most copy t' of t, such that the character k' to the immediate left of t' differs from T(k); else the shift would yield the same mismatch!
 - Then, shift P to the right such that t' is below the matching t in T.

Suppose for a given alignment of P and T, a substring t of T matches a suffix of P, but a mismatch occurs at the next comparison to the left. Then find, if it exists, the right-most copy t' of t in P such that t' is not a suffix of P and the character to the left of t' in P differs from the character to the left of t in P. Shift P to the right so that the substring t' in P is below substring t in T. If t' does not exist, then shift the left end of P past the left end of t in T by the least amount so that a prefix of the shifted pattern matches a suffix of t in T. If no such shift is possible, then shift P by n places to the right. If an occurrence of P is found, then shift P by the least amount so that a proper prefix of the shifted P matches a suffix of the occurrence of P in T. If no such shift is possible, then shift P by n places, past t in T.

Τ		x	t	
P before shift	z t'	у	t	
P after shift	_	z	ť	

- We need some preprocessing for the good suffix rule
 - We need to compute the positions of copies of suffixes of P
 - whereby a copy differs from the suffix in its immediate left character

Definition

- We need some preprocessing for the good suffix rule
 - We need to compute the positions of copies of suffixes of P
 - whereby a copy differs from the suffix in its immediate left character

Definition

- We need some preprocessing for the good suffix rule
 - We need to compute the positions of copies of suffixes of P
 - whereby a copy differs from the suffix in its immediate left character

Definition

$$P = CABDABDAB L(8)=6$$

- We need some preprocessing for the good suffix rule
 - We need to compute the positions of copies of suffixes of P
 - whereby a copy differs from the suffix in its immediate left character

Definition

$$P = CABDABDAB L(8)=6 L'(8)=3$$

- Computing L'(i)
 - For string P, $N_j(P)$ is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.

- We can compute N_i(S) from Z_i(S)
 - Recall that Z_i(S) is the length of the longest substring of S that starts at i and is a *prefix* of S
 - $N_i(S)$ is the reverse of Z: if P^r is the reverse of P, then $N_j(P) = Z_{n-j+1}(P^r)$
 - Hence we can obtain the values for N using the linear algorithm for Z

- Computing L'(i)
 - For string P, $N_j(P)$ is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.

$$P = CABDABDAB$$
1 2 3 4 5 6 7 8 9

- We can compute N_i(S) from Z_i(S)
 - Recall that Z_i(S) is the length of the longest substring of S that starts at i and is a *prefix* of S
 - $N_i(S)$ is the reverse of Z: if P^r is the reverse of P, then $N_j(P) = Z_{n-j+1}(P^r)$
 - Hence we can obtain the values for N using the linear algorithm for Z

- Computing L'(i)
 - For string P, $N_j(P)$ is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.

$$P = CABDABDAB$$
 $N_3(P)=2$

- We can compute N_i(S) from Z_i(S)
 - Recall that Z_i(S) is the length of the longest substring of S that starts at i and is a *prefix* of S
 - $N_i(S)$ is the reverse of Z: if P^r is the reverse of P, then $N_j(P) = Z_{n-j+1}(P^r)$
 - Hence we can obtain the values for N using the linear algorithm for Z

- Computing L'(i)
 - For string P, $N_j(P)$ is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.

$$P = CABDABDAB$$
1 2 3 4 5 6 7 8 9

- We can compute N_i(S) from Z_i(S)
 - Recall that Z_i(S) is the length of the longest substring of S that starts at i and is a *prefix* of S
 - $N_i(S)$ is the reverse of Z: if P^r is the reverse of P, then $N_j(P) = Z_{n-j+1}(P^r)$
 - Hence we can obtain the values for N using the linear algorithm for Z

- Computing L'(i)
 - For string P, $N_j(P)$ is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.

$$N_3(P)=2$$
 $N_6(P)=5$

- We can compute N_i(S) from Z_i(S)
 - Recall that Z_i(S) is the length of the longest substring of S that starts at i and is a *prefix* of S
 - $N_i(S)$ is the reverse of Z: if P^r is the reverse of P, then $N_j(P) = Z_{n-j+1}(P^r)$
 - Hence we can obtain the values for N using the linear algorithm for Z

- Computing L'(i)
 - For string P, $N_j(P)$ is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.

- We can compute N_i(S) from Z_i(S)
 - Recall that Z_i(S) is the length of the longest substring of S that starts at i and is a *prefix* of S
 - $N_i(S)$ is the reverse of Z: if P^r is the reverse of P, then $N_j(P) = Z_{n-j+1}(P^r)$
 - Hence we can obtain the values for N using the linear algorithm for Z

Z-based Boyer-Moore for obtaining L'(i) from N_i(P)

```
for i := 1 to n do L'(i) := 0
for j := 1 to n-1 do
begin
i := n - N_j(P) + 1
L'(i) := j
end
```

Intuition

- We have computed the lengths of the longest suffixes as N_i(P)
- Cycle over P right-to-left, looking at where the longest suffixes start
- Assign to L'(i) the largest index j such that N_i(P) = |P[i..n]| = (n-i+1)
- Those L'(i) for which there is no such index have been initialized to 0.

• Let I'(i) denote the longest suffix of P[i..n] that is also a prefix of P, if one exists. If none exists, let I'(i) be zero.

- Let I'(i) denote the longest suffix of P[i..n] that is also a prefix of P, if one exists. If none exists, let I'(i) be zero.
- Once more, all the preprocessing and rules:
 - Bad character rule: given a mismatch on x in T, shift P right to align with an x in P (if any)
 - Compute R(x), the right-most occurrence of x in P
 - Good suffix rule: shift P right to a copy of the matching suffix but with a different character to its immediate left
 - Use $Z_i(P)$ to compute $N_i(P)$, the length of the longest suffix of P[1..j] that is a suffix of P
 - Use N_i(P) to compute L'(i), the largest position less than n s.t. P[i..n] matches a suffix of P[1..L'(i)]
 - Compute I'(i), to deal with the case when we have L'(i) = 0 or when an occurrence of P is found

[Preprocessing stage]

```
Given the pattern P  \label{eq:compute L'(i) and I'(i) for each position i of P}  and compute R(x) for each character x \in \Sigma
```

and the good suffix rule

[Search stage]

```
\begin{array}{l} k:=n \\ \text{while } k \leq m \text{ do} \\ i:=n \\ h:=k \\ \text{while } i>0 \text{ and } P(i)=T(h) \text{ do} \\ i:=i-1 \\ h:=h-1 \\ \text{if } i=0 \text{ then} \\ \text{report an occurrence of P in T ending at position } k \\ k:=k+n-l'(2) \\ \text{else} \\ \text{shift P (increase k) by the maximum amount determined by the bad character rule} \end{array}
```

Next week

Knuth-Morris-Pratt, extensions to tree-based search and inexact matching

More matching

Knuth-Morris-Pratt, extensions to tree-based search and inexact matching

- Improve search by making smart "jumps" upon mismatches
- Jumps based on computation of the Z-function
 - At each position i in a String, the score $Z_i(S)$ indicates the size of the Z-box at that position,
 - i.e. the length of the string starting at i which is a prefix of S (of that size)
- Booyer-Moore algorithm
 - Bad character, good suffix rules

What we will look at today

- Knuth-Morris-Pratt algorithm
 - Left-to-right matching of P against T
 - Smart jumps: look at suffix of P[1..i] which is also a prefix, jump beyond the prefix (like the good suffix role in B-M)
- Aho-Crosick algorithm: search using sets of patterns
 - Definition of keyword trees over sets of patterns
 - Extension of KMP, using failure links in keyword trees
- Inexact matching
 - A little bit of dynamic programming to find edit distances

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
 - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places (like good suffix rule!)
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
 - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
 - Extension: the Aho-Corasick algorithm for matching sets of patterns

Definition

For each position i in P, define sp_i(P) to be the length of the longest proper suffix of P[1...i] that matches a prefix of P.

Optimization

For each position i in P, define sp'_i(P) to be the length of the longest proper suffix of P[1...i] that matches a prefix of P, with the added condition that characters P(i+1) and P(sp'_i+1) are unequal.

Definition

For each position i in P, define $sp_i(P)$ to be the length of the longest proper suffix of P[1...i] that matches a prefix of P.

Optimization

For each position i in P, define sp'_i(P) to be the length of the longest proper suffix of P[1...i] that matches a prefix of P, with the added condition that characters P(i+1) and P(sp'_i+1) are unequal.

- Alignment of P and T, left-to-right matching
- The shift rule:

For any alignment of P and T, if the first mismatch (comparing from left to right) occurs in position i+1 of P and position k of T, then shift P to the right (relative to T) so that P[1..sp_i'] aligns with T[k-sp_i'..k-1]. In other words, shift P exactly i+1-(sp_i'+1)=i-sp_i' places to the right, so that character sp_i'+1 of P will align with character k in T. In the case that an occurrence of P has been found (no mismatch), shift P by n-sp_i' places.

Preprocessing using the Z values

Position j > 1 maps to i if $i=j+Z_j(P)-1$. That is, j maps to i if i is the right end of a Z-box starting at j.

Z-based Knuth-Morris-Pratt

for i := 1 to n do

$$sp_i' := 0;$$

for j := n downto 2 do
 $i := j + Z_j(P) -1;$
 $sp_i' := Z_i$

Preprocessing using the Z values

Position j > 1 maps to i if $i=j+Z_j(P)-1$. That is, j maps to i if i is the right end of a Z-box starting at j.

Z-based Knuth-Morris-Pratt

for i := 1 to n do

$$sp_i' := 0;$$

for j := n downto 2 do
 $i := j + Z_j(P) -1;$
 $sp_i' := Z_i$

Preprocessing using the Z values

Position j > 1 maps to i if $i=j+Z_j(P)-1$. That is, j maps to i if i is the right end of a Z-box starting at j.

$$S = \begin{bmatrix} \alpha & & & & \\ & \alpha & & \\ & & Z_{l_k} & & \\ & & &$$

Z-based Knuth-Morris-Pratt

for i := 1 to n do

$$sp_i' := 0;$$

for j := n downto 2 do
 $i := j + Z_j(P) -1;$
 $sp_i' := Z_j$

Preprocessing using the Z values

Position j > 1 maps to i if $i=j+Z_j(P)-1$. That is, j maps to i if i is the right end of a Z-box starting at j.

$$S \quad \boxed{\alpha} \quad \boxed{\alpha} \quad \boxed{\alpha} \quad \boxed{l_k=j} \quad k \quad r_k=j} \quad \boxed{r_k=j} \quad \boxed{r_$$

Z-based Knuth-Morris-Pratt

for i := 1 to n do

$$sp_i' := 0;$$

for j := n downto 2 do
 $i := j + Z_j(P) - 1;$
 $sp_i' := Z_j$

Preprocessing using the Z values

Position j > 1 maps to i if $i=j+Z_j(P)-1$. That is, j maps to i if i is the right end of a Z-box starting at j.

Z-based Knuth-Morris-Pratt

for
$$i := 1$$
 to n do

$$sp_{i}' := 0;$$

for j := n downto 2 do

$$i := j + Z_j(P) -1;$$

$$sp_i' := Z_j$$

sp'_i(P) is the length of the longest proper suffix of P[1...i] i.e. the length of the Z-box that starts at j (the suffix) Preprocessing using the Z values

Position j > 1 maps to i if $i=j+Z_j(P)-1$. That is, j maps to i if i is the right end of a Z-box starting at j.

Z-based Knuth-Morris-Pratt

for
$$i := 1$$
 to n do

$$sp_{i}' := 0;$$

for j := n downto 2 do

$$i := j + Z_j(P) -1;$$

$$sp_i' := Z_j$$

sp'_i(P) is the length of the longest proper suffix of P[1...i] i.e. the length of the Z-box that starts at j (the suffix)

Preliminaries

- Shifts through pointers: p points into P, c points into T
- For each position i from 1 to n+1, define the failure function F'(i) to be $sp'_{i-1} + 1$ (and define F(i)= $sp_{i-1} + 1$); let sp_0 ' and sp_0 be 0.

The algorithm

```
preprocess P to find F'(k)=sp'_{k-1}+1 for k from 1 to n+1

c:=1;
p:=1;
while c+(n-p) \le m do

while P(p)=T(c) and p \le n
p:=p+1;
c:=c+1;
if p=n+1 then

report an occurrence of P starting at position c-n of T

if p=1 then c:=c+1
p:=F'(p)
```


- Generalizing the exact matching problem
 - Match against a set of patterns P = {P1,...,Pz}
 - If n is the total length of the patterns, and m the length of T, then we can solve this problem in O(n+zm) time
- Representing a set of patterns as a keyword tree

The keyword tree for a set of patterns *P* is a rooted directed tree satisfying the following conditions: (1) each edge is labeled with exactly one character; (2) any two edges out of the same node have distinct labels; (3) every pattern Pi in *P* maps to some node v in the tree such that the characters on the path from the root of the tree to v exactly spell out Pi, and every leaf of the tree is mapped to by some pattern in *P*.

Naive use of keyword trees

- E.g: search for occurrences of patterns beginning at T(1)
 - Follow the unique path in the tree matching a prefix of T as far as
 - If we get to a node number i, pattern Pi has been found starting at T(1)
 - (More patterns are found if some patterns are prefixes of other patterns)
- General approach
 - To find patterns starting at position I in T, following unique paths
 - Numbered nodes indicate patterns found at position I in T
 - Given I, traversing the tree takes time proportional to m and n; incrementing I from 1 to m and traversing the tree thus takes O(mn) time
- Specialization: the dictionary problem
 - Given a known dictionary and a text, find a string from T in the dictionary

Speeding up set matching

- Speed up through a generalization of Knuth-Morris-Pratt
 - Knuth-Morris-Pratt improved on the naive method by longer shifts
 - Aho-Corasick shifts the position in I skipping over parts of paths
- Basic idea behind the Aho-Corasick algorithm
 - Generalization of Knuth-Morris-Pratt, particularly: generalize sp
 - Label each node v with the concatenation of the chars on its path, L(v)
 - For each node v, lp(v) is the length of the longest proper suffix of L(v) that is a prefix of some pattern in P.
 - Given α the lp(v)-length suffix of L(v), there is a unique node in the tree labeled with α . Let this node be n_v ; (v,n_v) is called the **failure link**.

• We can compute failure links in linear time

```
I := 1;
c := 1;
w := root;
repeat
   while there is an edge (w,w') labeled T(c)
       if w' is numbered by pattern i or there is
       a directed path of failure links from w' to a node numbered with i
           then report that Pi occurs in T ending at position c;
       w := w' \text{ and } c := c+1
   w := nw \text{ and } I = c - Ip(w)
until c > n
```

Inexact matching

- So far: exact matching problem
 - Inexact matching: approximation of pattern in text
 - From substring to subsequence matching
- The edit distance between two strings
 - Transformation: insertion, deletion, substitution of material

R		M	D	М	D	M	M	
V		i	n	t	n	е	r	
w	r	i		t		е	r	S

• A string over the alphabet I, D, R, M, that describes a transformation of one string to another is called an *edit transcript* of the two strings

Edit distance

The **edit distance** between two strings is defined as the minimum number of edit operations - insert, delete, substitute - needed to transform the first string into the second. (Matches are not counted.)

The edit distance problem

The edit distance problem is to compute the edit distance between two given strings, along with an optimal edit transcript that describes the transformation.

Dynamic programming

- For strings S1 and S2, D(i,j) is the edit distance between S1[1..i] and S2[1..j]. Let n=|S1| and m=|S2|.
- Dynamic programming:
 - Recurrence relation: recursive relationship between i and j in D(i,j)
 - Tabular computation: memoization technique for computing D(i,j)
 - Traceback: computing the optimal edit transcript from the table

Recurrence relation

Recursive relationship

- Relate value of D(i,j) for i and j positive, and values of D with index pairs smaller than i, j.
- Base conditions: D(i,0) = i and D(0,j) = j
- Recurrence relation for D(i,j) for i,j > 0
 - D(i,j) = min[D(i-1,j)+1, D(i,j-1)+1, D(i-1,j-1)+t(i,j)]
 - where t(i,j) is 1 if S1(i) ≠ S2(j) and 0 if S1(i)=S2(j)

Complexity issue

- The number of recursive calls grows exponentially with n and m
- But, there are only (n+1) * (m+1) combinations of i and j, hence only (n+1) * (m+1) distinct recursive calls

- (n+1) * (m+1) table
- Base: compute D(i,j) for the smallest possible values of i and j
- Induction: compute D(i,j) for increasing values of i and j, one row at the time

D(i,j			W	r	i	t	е	r	S
-		0		2	3	4	5	6	7
	0	0	I	2	3	4	5	6	7
٧	I		I	2	3	*			
i	2	2							
n	3	3							
t	4	4							
n	5	5							
е	6	6							
r	7	7							

Base: D(i,0) = i, D(0,j) = j

- (n+1) * (m+1) table
- Base: compute D(i,j) for the smallest possible values of i and j
- Induction: compute D(i,j) for increasing values of i and j, one row at the time

D(i,j			W	r	i	t	е	r	S
		0		2	3	4	5	6	7
	0	0	I	2	3	4	5	6	7
٧	I		I	2	3	*			
i	2	2							
n	3	3							
t	4	4							
n	5	5							
е	6	6							
r	7	7							

$$D(1,1) = min[D(0,1)+1, D(1,0)+1, D(0,0)+t(1,1)]$$

= $min[2,2,0+1] = 1$

Base: D(i,0) = i, D(0,j) = j

- (n+1) * (m+1) table
- Base: compute D(i,j) for the smallest possible values of i and j
- Induction: compute D(i,j) for increasing values of i and j, one row at the time

D(i,j			W	r	i	t	е	r	S
		0		2	3	4	5	6	7
	0	0	I	2	3	4	5	6	7
٧	I		I	2	3	*			
i	2	2							
n	3	3							
t	4	4							
n	5	5							
е	6	6							
r	7	7							

$$D(1,1) = min[D(0,1)+1, D(1,0)+1, D(0,0)+t(1,1)]$$

$$= min[2,2,0+1] = 1$$

$$D(1,2) = min[D(0,2)+1, D(1,1)+1, D(1,1)+t(1,2)]$$

$$= min[3,2,1+1] = 2$$

Base: D(i,0) = i, D(0,j) = j

- (n+1) * (m+1) table
- Base: compute D(i,j) for the smallest possible values of i and j
- Induction: compute D(i,j) for increasing values of i and j, one row at the time

D(i,j			W	r	i	t	е	r	S
_		0	I	2	3	4	5	6	7
	0	0	I	2	3	4	5	6	7
V	I	I	I	2	3	*			
i	2	2							
n	3	3							
t	4	4							
n	5	5							
е	6	6							
r	7	7							

$$D(1,1) = \min[D(0,1)+1, D(1,0)+1, D(0,0)+t(1,1)]$$

$$= \min[2,2,0+1] = 1$$

$$D(1,2) = \min[D(0,2)+1, D(1,1)+1, D(1,1)+t(1,2)]$$

$$= \min[3,2,1+1] = 2$$

$$D(1,3) = \min[D(0,3)+1, D(1,2)+1, D(0,2)+t(1,3)]$$

= min[4,3,2+1] = 3

Base: D(i,0) = i, D(0,j) = j

Traceback

Pointer-based approach:

- When computing (i,j), set a pointer to the cell yielding the minimum
- If (i,j) = D(i,j-1)+1 set a pointer from (i,j) to (i,j-1): ←
- If (i,j) = D(i-1,j)+1 set a pointer from (i,j) to (i-1,j): ↑
- If (i,j) = D(i-1,j-1)+t(i,j) set a pointer from (i,j) to (i-1,j-1):
- There may be several pointers if several predecessors yield the same minimum value

To retrieve the optimal edit transcripts

- Trace back the path(s) from (n,m) to (0,0)
- A horizontal edge (←) represents an insertion
- A vertical edge (1) represents a deletion
- A diagonal edge (\(\mathbb{\capacita}\)) represents a match if S1(i)=S2(j), and a substitution if S1(i)≠S2(j)

- Filling the table costs O(nm) time
 - To fill one cell takes a constant number of cell examinations, arithmetic operations, and comparisons
 - The table consists of n by m cells, hence O(nm) time
- Retrieving the optimal path(s) costs O(n+m) time

Conclusions

Exact matching problem

- Naive method compares character by character, single shift of P against T
- Optimization through smarter shifting; base information for smarter shifting is provided by Z-boxes, computable in linear time
- Boyer-Moore algorithm, Knuth-Morris-Pratt algorithm
- We can generalize the single pattern problem to sets of patterns, using the Aho-Corasick algorithm (based on K-M-P) on keyword trees
- Inexact matching problem
 - Looking for subsequences rather than substrings
 - Dynamic programming approach to establishing edit distance between two strings, specified as an edit transcript