1.6 Examples

Everyone majoring in computer science has Linux installed.

George doesn't have Linux installed.

Therefore, George isn't majoring in computer science.

Everyone majoring in computer science has Linux installed. $\forall X(C(X) \rightarrow L(X))$

George doesn't have Linux installed. ¬ L(g

Therefore, George isn't majoring in computer science. $\neg C(a)$

Everyone majoring in computer science has Linux installed. $\forall x(C(x) \rightarrow L(x))$

George doesn't have Linux installed. $\neg L(g)$

$$\forall x(C(x) \to L(x))$$

$$\neg L(g)$$

$$\therefore \neg C(g)$$

Everyone majoring in computer science has Linux installed. $\forall x (C(x) \rightarrow L(x))$

George doesn't have Linux installed.

Therefore, George isn't majoring in computer science.

Correct! Universal Modus Tollens

$$\forall x (C(x) \rightarrow L(x))$$

$$\neg L(g)$$

$$\therefore \neg C(g)$$

A Dvorak keyboard is efficient to use.

Jake's keyboard is not a Dvorak keyboard.

A Dvorak keyboard is efficient to use. $\forall x(D(x) \rightarrow E(x))$

$$\forall x (D(x) \to E(x))$$

Jake's keyboard is not a Dvorak keyboard.

A Dvorak keyboard is efficient to use. $\forall x(D(x) \rightarrow E(x))$

$$\forall x (D(x) \rightarrow E(x))$$

Jake's keyboard is not a Dvorak keyboard.

$$\neg D(j)$$

$$\forall x(D(x) \rightarrow E(x))$$

$$\neg D(j)$$

$$\therefore \neg E(j)$$

A Dvorak keyboard is efficient to use. $\forall x(D(x) \rightarrow E(x))$

$$\forall x(D(x) \rightarrow E(x))$$

Jake's keyboard is not a Dvorak keyboard.

$$\neg D(j)$$

Therefore, Jake's keyboard is not efficient.

Incorrect! We can't conclude ¬ E(j) with this information

$$\forall x(D(x) \to E(x))$$

$$\neg D(j)$$

$$\therefore \neg E(j)$$

A Dvorak keyboard is efficient to use. $\forall x(D(x) \rightarrow E(x))$

$$\forall x(D(x) \rightarrow E(x))$$

Jake's keyboard is not a Dvorak keyboard.

$$\neg D(j)$$

$$\forall x(D(x) \rightarrow E(x))$$

$$\neg E(j)$$

$$\therefore \neg D(j)$$

$$\frac{\forall x(D(x) \to E(x))}{\neg D(j)}$$

$$\frac{\neg D(j)}{\therefore \neg E(j)}$$

A Dvorak keyboard is efficient to use.

Jake's keyboard is not efficient to use.

Therefore, Jake's keyboard is not a Dvorak.

A Dvorak keyboard is efficient to use. $\forall x(D(x) \rightarrow E(x))$

$$\forall x (D(x) \to E(x))$$

Jake's keyboard is not efficient to use.

Therefore, Jake's keyboard is not a Dvorak. - D(i)

A Dvorak keyboard is efficient to use. $\forall x(D(x) \rightarrow E(x))$

$$\forall x (D(x) \rightarrow E(x))$$

Jake's keyboard is not efficient to use.

Therefore, Jake's keyboard is not a Dvorak.

$$\neg D(j)$$

Correct! Universal Modus Tollens

$$\forall x(D(x) \rightarrow E(x))$$

$$\neg E(j)$$

$$\therefore \neg D(j)$$

#6 from the book

Show that the following hypothesis:

- "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on,"
- "If the sailing race is held, then the trophy will be awarded,"
- "The trophy was not awarded."

imply the conclusion "It rained."

Show that the following hypothesis:

- "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on,"
- "If the sailing race is held, then the trophy will be awarded,"
- "The trophy was not awarded."

imply the conclusion "It rained."

```
f="It's foggy." s="The sailing race is held."
```

r="It rains." t="The trophy is awarded."

I="The life saving demonstrations will go on."

Show that the following hypothesis:

- "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on," $(\neg r \lor \neg f) \rightarrow (s \land l)$
- "If the sailing race is held, then the trophy will be awarded," $s \rightarrow t$
- "The trophy was not awarded."

imply the conclusion "It rained." r

f="It's foggy." s="The sailing race is held."

r="It rains." t="The trophy is awarded."

I="The life saving demonstrations will go on."

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\neg t$$

$$\therefore r$$

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. ¬s	Modus tollens using (1) and (2)

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. ¬s	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise
5. $(\neg (s \land l)) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. ¬s	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \rightarrow (s \land l)$	Premise
5. $(\neg (s \land l)) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)
6. $(\neg s \lor \neg l) \rightarrow (r \land f)$	De Morgan's law and double negative

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. ¬s	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \rightarrow (s \land l)$	Premise
5. $(\neg (s \land l)) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)
6. $(\neg s \lor \neg l) \rightarrow (r \land f)$	De Morgan's law and double negative
7. ¬s v ¬l	Addition using (3)

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise
5. $(\neg (s \land l)) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)
6. $(\neg s \lor \neg l) \rightarrow (r \land f)$	De Morgan's law and double negative
7. ¬s v ¬l	Addition using (3)
8. <i>r</i> ∧ <i>f</i>	Modus ponens using (6) and (7)

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \rightarrow (s \land l)$	Premise
5. $(\neg (s \land l)) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)
6. $(\neg s \lor \neg l) \rightarrow (r \land f)$	De Morgan's law and double negative
7. ¬s ∨ ¬l	Addition using (3)
8. <i>r</i> ∧ <i>f</i>	Modus ponens using (6) and (7)
9. <i>r</i>	Simplification using (8)

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\neg t$$

$$\therefore r$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \rightarrow (s \land l)$	Premise
5. $(\neg (s \land l)) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)
6. $(\neg s \lor \neg l) \rightarrow (r \land f)$	De Morgan's law and double negative
7. ¬s v ¬l	Addition using (3)
8. <i>r</i> ∧ <i>f</i>	Modus ponens using (6) and (7)
9. <i>r</i>	Simplification using (8)

More than one way to do this...

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise
5. ¬s v ¬l	Addition using (3)

$$(\neg r \lor \neg f) \rightarrow (s \land l)$$

$$s \rightarrow t$$

$$\neg t$$

$$\therefore r$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise
5. ¬s∨ ¬/	Addition using (3)
6. ¬(s ∧ l)	De Morgan's law using (5)

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \to (s \land l)$	Premise
5. <i>¬s</i> ∨ <i>¬l</i>	Addition using (3)
6. ¬(s ∧ l)	De Morgan's law using (5)
7. $\neg(\neg r \lor \neg f)$	Modus tollens using (4) and (6)

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \rightarrow (s \land l)$	Premise
5. <i>¬s</i> ∨ <i>¬l</i>	Addition using (3)
6. ¬(s ∧ l)	De Morgan's law using (5)
7. $\neg(\neg r \lor \neg f)$	Modus tollens using (4) and (6)
8. <i>r</i> ∧ <i>f</i>	De Morgan's law and double negation (using (7)

$$(\neg r \lor \neg f) \to (s \land l)$$

$$s \to t$$

$$\frac{\neg t}{\therefore r}$$

Step	Reason
1. <i>¬t</i>	Premise
$2. s \rightarrow t$	Premise
3. <i>¬s</i>	Modus tollens using (1) and (2)
$4. \ (\neg r \lor \neg f) \rightarrow (s \land l)$	Premise
5. ¬s∨ ¬l	Addition using (3)
6. ¬(s ∧ l)	De Morgan's law using (5)
7. ¬(¬r∨ ¬f)	Modus tollens using (4) and (6)
8. <i>r</i> ∧ <i>f</i>	De Morgan's law and double negation (using (7)
9. <i>r</i>	Simplification using (8)