3 pages 1

```
Source | Model | Option | Model_Option | Help on fd methods | Archived Tests
```

fd_fem_updownout_bs

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M
- Theta $\frac{1}{2} \le \theta \le 1$
- Raffinement $1 \le ref \le 4$

Output parameters:

- Price
- Delta

This finite element scheme there used a trapeizodal grid that is refined near the barriers, using a simple bell-shaped function to compute the point density in space.[1] In the american case we use the splitting method. It seems that it converges very slowly.

```
/*Initial Mesh*/
Computation of initial mesh.

/*New Mesh*/
Computation of new mesh.

/*Memory Allocation*/

/*Time Step*/
Define the time step k = \frac{T}{N}.
```

3 pages 2

/*Space Step*/

Define the space step $h = \frac{2l}{M}$.

/*Terminal value*/

Put the value of the payoff into a vector P_Old which will be used to save the option value.

/*Finite difference Cycle*/

At any time step, described by the loop in the variable TimeIndex, we have to solve the system $M^hv = NP$.

```
/*New Mesh computing*/
```

/*Computation of Lhs coefficients*/

/*Computation of Rhs coefficients*/

/*Right factor*/

Compute the right side factor NP and save the result in the vector V.

/*Dirichlet Boundary Condition*/

We set Dirichlet Boundary conditions on the barrier.

/*Gauss method*/

We solve the system $M^h v = S$ in two steps:

- 1. First loop consists in solving $L\bar{v}=S.$ The result is saved in S.
 - there.
- 2. Second loop consists in solving $Uv = \bar{v} = S$. The result is saved in P.

/*Splitting for American case*/

For American options, we compare at each time step the solution of $M^h v = NP$ saved in P with the payoff function saved in Obst. We save the result in P there.

/*Price*/

One uses linear interpolation to find the option value corresponding to the initial stock price. 3 pages

/*Delta*/

One uses linear interpolation to find the delta value corresponding to the initial stock price.

/*Memory Desallocation*/

References

[1] J.BUSCA. A finite element method for the valuation of american options. Technical report, C.A.R. Internal Report, 1998. 1