Continuité d'une fonction numérique

Continuité d'une fonction numérique :

Activité O: Soutient des prérequis

Calculer les limites suivantes :

a. $\lim_{x \to +\infty} \frac{2x^2 + x + 3}{x - 1}$	b. $\lim_{x \to -\infty} \frac{x x -4x+3}{x^5-7x+2}$	$\lim_{x \to -2} \frac{x^2 + 5x + 6}{x + 2}$
d. $\lim_{x \to -3} \frac{2x^2 + 3x - 9}{x^2 + x - 6}$	e. $\lim_{x \to 1} \frac{\sqrt{2x+7}-3}{x-1}$	4. $\lim_{x \to -2} \frac{\sqrt{2x^2+1}-3\sqrt{x+3}}{x+2}$
g. $\lim_{x\to 2^-} \frac{x^2+5x+6}{2-x}$	h. $\lim_{x \to -3^+} \frac{2x^2 + x - 2}{-x^2 - x + 6}$	$\lim_{x \to 1} \frac{\sin(\pi x)}{x - 1}$

Continuité d'une fonction en un point

Activité D:

On donne ci-dessous la courbe représentative d'une fonction f.

- **1.** Déterminer graphiquement f(-1) et $\lim_{x \to -1} f(x)$. Que peut-on déduire ?
- **2.** Déterminer graphiquement f(1) et $\lim_{x\to 1^+} \bar{f}(x)$ et $\lim_{x\to 1^-} f(x)$. Que peut dire sur (C_f) au point $x_0 = 1$?

PP Définition :

Soit f une fonction définie sur un intervalle ouvert I et a un point de I.

On dit que f est **continue** en a si seulement si $\lim f(x) = f(a)$.

f est continue en a

f est discontinue en a

Exemples:

• La fonction définie par $\begin{cases} f(x) = \frac{x^2 - 9}{x - 3}; & x \neq 3 \\ f(3) = 6 \end{cases}$ est continue en 3.

En effet :
$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

= $\lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$
= $\lim_{x \to 3} x + 3 = 6 = f(3)$.

• La fonction définie par $\begin{cases} f(x) = \frac{\sin(3x)}{x}; x \neq 0 \\ \text{est discontinue en } 0. \end{cases}$

En effet : $\lim_{x \to 0} f(x) = \lim_{x \to 3} \frac{\sin(3x)}{x}$ $= \lim_{x \to 3} 3 \times \frac{\sin(3x)}{3x}$ $= 3 \neq f(0).$

∠ Application ②:

Etudier la continuité des fonctions suivantes au point a.

Etudier la continuité des fonctions suivantes au point
$$a$$
.

1.
$$\begin{cases}
f(x) = \frac{x^3 - 2x + 1}{x - 1}; x \neq 1 \\
f(1) = 1
\end{cases}$$
et $a = 1$.
$$\begin{cases}
g(x) = \frac{x\sqrt{x + 2} - 4}{x - 2}; & x \in [-2; 2[\cup]2; +\infty[\\
g(2) = \frac{5}{2}
\end{cases}$$
et $a = 2$

Exercice O:

Etudier la continuité des fonctions suivantes au point a.

1.
$$\begin{cases} f(x) = \frac{x^3 + 2x^2 + 3x + 2}{x^2 + 4x + 3} \; ; \; x \neq -1 \text{ et } a = -1. \\ f(-1) = 1 \end{cases}$$
2.
$$\begin{cases} g(x) = \frac{\sin(x - 2)}{x^2 - 2x} \; ; x > 2 \\ g(2) = \frac{1}{2} \end{cases}$$
 et $a = 2$.

2. Continuité à droite – continuité à gauche :

Définition :

- Soit f une fonction définie sur un intervalle |a-r|; a avec r>0. On dit que f est **continue à droite** de a si seulement si $\lim_{x\to a^+} f(x) = f(a)$.
- Soit f une fonction définie sur un intervalle [a; a + r[avec r > 0. On dit que f est **continue à gauche** de α si seulement si $\lim_{x \to a} f(x) = f(\alpha)$.

O Exemple:

La fonction définie par $\begin{cases} f(x) = \frac{x^2 - 1}{|x - 1|}; & x \neq 1 \\ f(1) = 2 \end{cases}$ est continue à droite en 1 est non continue

en 1 à gauche.

En effet :
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{|x - 1|}$$

$$= \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} \text{ (Du fait que } |x - 1| = x - 1 \text{ si } x > 1)$$

$$= \lim_{x \to 1^+} x + 1 = 2 = f(1).$$

Ainsi f est continue à droite en 1.

Et:
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} \frac{x^2 - 1}{|x - 1|}$$

$$= \lim_{x \to 1^-} \frac{x^2 - 1}{-(x - 1)} \quad \text{(Du fait que } |x - 1| = -(x - 1) \text{ si } x < 1\text{)}$$

$$= \lim_{x \to 1^+} -(x + 1) = -2 \neq f(1).$$

Ainsi f est discontinue à gauche en 1.

Propriété :

f est continue en a si seulement si f est continue à gauche et à droite de a. Autrement : f est continue en $a \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$.

Application 2:

On considère f la fonction définie par $\begin{cases} f(x) = \frac{x}{\sqrt{x+1}-1} & ; x > 0 \\ f(x) = \frac{\sin(2x)}{x} & ; x < 0 \end{cases}$ f(0) = 2

- **1.** Etudier la continuité de f à droite et à gauche en 0.
- **2.** f est-elle continue en 0.

Exercice 2:

1. Soit
$$f$$
 la fonction définie par :
$$\begin{cases} f(x) = \frac{\sqrt{x+2}-2}{x-2} ; x > 2 \\ f(x) = \frac{x^2-4x+3}{x-3} ; x \le 2 \end{cases}$$

Etudier la continuité de f à droite et à gauche en 0.

2. Soit g la fonction définie par $\begin{cases} g(x) = x^3 + ax & ; & x > -1 \\ g(x) = -x + 1 & ; & x \le -1 \end{cases}$

Déterminer la valeur de a pour que g soit continue en -1.

3. Continuité d'une fonction sur un intervalle :

PP Définition :

- On dit que f est continue sur l'intervalle ouvert]a; b[si f est continue en tout point de]a; b[.
- On dit que f est continue sur l'intervalle [a, b] si f est continue en tout point de]a; b[et continue à droite de a et à gauche de b.

O Remarque:

On définit de même manière la continuité sur les intervalles [a, b[,] a, b], $[a, +\infty[$ et $]-\infty, b]$.

O Exemple : Fonction partie entière

o La fonction partie entière est la fonction qui, à tout réel x, associe l'unique entier relatif n tel que $n \le x < n + 1$.On note la partie entière de x par E(x) ou [x].

○ Exemples

$$E(3,2) = 3$$
 parce que $3 \le 3,2 < 4$ et $E(-1,2) = -2$ parce que $-2 \le -1,2 < -1$.

- La courbe de la fonction $x \mapsto E(x)$ sur l'intervalle [-1; 3[est :
- La fonction $x \mapsto E(x)$ est continue sur l'intervalle [-1; 0[du fait qu'elle est continue en tout point de]-1; 0[et à droite en -1 car $\lim_{x \to -1^+} E(x) = -1 = E(-1)$.
- La fonction $x \mapsto E(x)$ n'est pas continue sur l'intervalle]1; 3[du fait qu'elle n'est pas continue en 1 car $\lim_{x \to 1^+} E(x) = 1 = E(1)$ et $\lim_{x \to 1^+} E(x) = 0 \neq E(1)$.

🎢 Propriété :

- Toute fonction polynômiale est continue sur \mathbb{R} .
- Toute fonction rationnelle est continue sur un intervalle inclus dans son domaine de définition.
- Les fonctions $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ sont continues sur \mathbb{R} .
- La fonction $x \mapsto tan(x)$ est continue sur $IR \left\{ \frac{\pi}{2} + k\pi/k \in Z \right\}$.
- La fonction $x \mapsto \sqrt{x}$ est continue \mathbb{R}^+ .
- La fonction $x \mapsto |x|$ est continue \mathbb{R} .

O Exemples:

- La fonction $f: x \mapsto x^3 + 2x^2 x + 1$ est continue sur \mathbb{R} parce qu'elle est une fonction polynômiale.
- La fonction $g: x \mapsto \frac{5x^3 + 2x 1}{x^2 1}$ est continue sur]1; +∞[parce qu'elle est une fonction rationnelle et]1; +∞[$\subset \mathbb{R} \setminus \{-1, 1\}$.

Application 3:

 $f(x) = -x + 4 \quad ; \qquad x < 3$ On considère f la fonction définie par

Montrer que la fonction f est continue sur \mathbb{R} .

Image d'un intervalle par une fonction continue : II.

1. Image d'un segment-Image d'un intervalle

Propriété :

- L'image d'un segment par une fonction continue est un segment.
- L'image d'un intervalle par une fonction continue est un intervalle.

O Remarque:

Si f est continue sur un segment [a, b] et M et m sont respectivement le maximum et le minimum de f sur [a, b], alors f([a, b]) = [m, M].

Application 4:

On donne ci-contre la courbe d'une fonction f définie sur [-2; 4]. Déterminer l'image des intervalles suivants [-2,3], [0,1], [1,3] et]-1,1] par

2. Image d'un intervalle par une fonction continue et strictement monotone

Soit f une fonction continue et strictement monotone sur un intervalle I. Dans ce tableau suivant a et b sont deux nombres réels ou $+\infty$ ou $-\infty$.

Image de l'intervalle I par la fonction f				
L'intervalle <i>I</i>	f strictement croissante sur I	f strictement décroissante sur I		
[<i>a</i> , <i>b</i>]	[f(a),f(b)]	[f(b),f(a)]		
[a, b[$\left[f(a), \lim_{x \to b^{-}} f(x)\right]$	$\lim_{x\to b^{-}}f(x),f(a)$		
]a,b]	$\left[\lim_{x\to a^+} f(x), f(b)\right]$	$\left[f(b), \lim_{x \to a^+} f(x)\right[$		
]a,b[$\lim_{x\to a^+} f(x), \lim_{x\to b^-} f(x)$	$\lim_{x \to h^{-}} f(x), \lim_{x \to a^{+}} f(x)$		

Exemple:

On considère f la fonction définie par $f(x) = x^2 - 4x - 1$.

La fonction f est strictement décroissante sur $]-\infty;2]$ et strictement croissante sur $[2; +\infty[$.On a:

$$f([2;4]) = [f(2);f(4)]$$

$$= [-5:-1]$$

$$0 f([-1;1]) = [f(1);f(-1)]$$

$$= [-4;4].$$

$$f([2; 4]) = [f(2); f(4)]$$

$$= [-5; -1] .$$

$$f([2; +\infty[)]) = [f(2); f(4)]$$

$$= [-4; 4] .$$

$$f([2; +\infty[)]) = [f(2), \lim_{x \to +\infty} f(x)]$$

$$= [-5; +\infty[] .$$

$$f([-1; 1]) = [f(1); f(-1)]$$

$$= [-4; 4] .$$

$$f([-1; 1]) = [f(1); f(-1)]$$

$$= [-4; 4] .$$

$$f([-1; 1]) = [f(1); f(-1)]$$

$$= [-4; 4] .$$

$$f([-1; 1]) = [f(1); f(-1)]$$

$$= [-4; 4] .$$

$$f([-1; 1]) = [f(1); f(-1)]$$

$$= [-5; +\infty[] .$$

$$f(]-\infty;2]) = \left[f(2), \lim_{x \to -\infty} f(x)\right]$$
$$= [-5: +\infty[$$

Application 5:

Soit f une fonction définie par $f(x) = \frac{3x+2}{x-4}$.

- **1.** Déterminer D_f .
- **2.** Etudier la monotone de f.
- **3.** Déterminer f([0,1]); $f(]4, +\infty[)$ et $f(]-\infty, 4[)$.

Exercice 3:

On considère f une fonction définie par $f(x) = 2x^3 - 3x^2$.

- 1. Dresser le tableau de variation de la fonction
- **2.** Déterminer les images des intervalles suivants]-1;0]; [1;2]; [-1;2[; $[1;+\infty[$ par f.

Propriété :

Soient f et g deux fonctions continues sur un intervalle I et $\lambda \in \mathbb{R}$. On a :

- Les fonctions f + g; $f \times g$; λf et |f| sont continues sur I.
- Pour tout $n \in \mathbb{N}^*$ la fonction f^n est continue sur I.
- Si $(\forall x \in I)$: $g(x) \neq 0$, alors $\frac{1}{g}$ et $\frac{f}{g}$ sont continues sur I.
- Si $(\forall x \in I) : f(x) \ge 0$, alors \sqrt{f} est continue sur I.

O Exemples:

- La fonction $f: x \mapsto 2x^2 x + \sqrt{x}$ est continue sur $[0, +\infty[$ en tant que somme de deux fonctions continues sur $[0, +\infty[$ qui sont $x \mapsto 2x^2 x$ et $x \mapsto \sin(x)$.
- On considère $g: x \mapsto \frac{\sqrt{x^2+1}}{x+1}$. On a :
- La fonction $x \mapsto x^2 + 1$ est continue sur $] \infty$; 1[puisqu'elle est une fonction polynomiale et on a $(\forall x \in] \infty$; 1[): $x^2 + 1 > 0$. Ainsi $x \mapsto \sqrt{x^2 + 1}$ est continue sur $] \infty$; 1[.
- ➤ La fonction $x \mapsto x + 1$ est continue sur $] \infty$; 1[et on a $(\forall x \in] \infty$; 1[): $x + 1 \neq 0$. Il en résulte que la fonction g est continue sur $] \infty$; 1[.

Application ©:

Montrer que f est continue sur I dans les cas suivants :

1.
$$f(x) = x^2 + 1 + \sin(x)$$
 et $I = \mathbb{R}$.

2.
$$f(x) = \cos(x) \times \sqrt{4x^2 + 5}$$
 et $I = \mathbb{R}$.

3.
$$f(x) = \frac{4\sqrt{x}}{x^2 + x - 2}$$
 et $I =]2; +\infty[$.

Propriété:

Soient f et g deux fonctions.

Si f est continue sur un intervalle I et g continue sur un intervalle J tel que $f(I) \subset J$ alors la fonction $g \circ f$ est continue sur l'intervalle I.

O Exemple:

On considère la fonction $h: x \mapsto \frac{\sqrt{x}}{\sqrt{x+1}}$.

On a h = gof avec $f: x \mapsto \sqrt{x}$ et $g: x \mapsto \frac{x}{x+1}$

Puisque f est continue sur $[0; +\infty[$ et g est continue sur $]-1; +\infty[$ et $f([0; +\infty[) \subset [0; +\infty[$, alors h est continue sur $[0; +\infty[$.

Application 0:

On considère la fonction $h: x \mapsto sin(x^2 - 4x + 1)$.

Montrer que h est continue sur \mathbb{R} .

IV. Théorème des valeurs intermédiaires

// Théorème :

Soit f une fonction continue sur un intervalle [a; b].

Pour tout réel k compris entre f(a) et f(b) il existe au moins un réel c de l'intervalle [a,b] tel que f(c)=k.

En d'autres termes : l'équation f(x) = k d'inconnue x admet au moins une solution dans [a, b] pour tout k compris entre f(a) et f(b).

O Exemple:

Montrons que l'équation $(E): x^2 - \sqrt{x+2} = 2$ admet au moins une solution sur [-2; 0]. On considère f la fonction définie par $f(x) = x^2 - \sqrt{x+2}$.

L'équation (E) est équivalente à l'équation f(x) = 2.

La fonction f est continue sur [-2; 0] comme somme de deux fonctions continues et on a f(-2) = 4 et $f(0) = -\sqrt{2}$.

Puisque $f(0) \le 2 \le f(-2)$, alors d'après le théorème des valeurs intermédiaires l'équation (E) admet au moins une solution sur [-2; 0].

O Corollaire:

Si la fonction f est continue sur [a, b] tel que $f(a) \times f(b) < 0$, alors l'équation f(x) = 0 admet au moins une solution dans l'intervalle [a, b].

Si de plus f est strictement monotone, alors cette solution est unique.

O Exemple:

Montrons que l'équation (E): $x^3 + x^2 + 1 = 0$ admet une unique solution α telle que $-1 < \alpha < 0$.

On considère f la fonction définie par $f(x) = x^3 + x^2 + 1$.

L'équation (E) est équivalente à l'équation f(x) = 0.

La fonction f est continue et strictement croissante sur [-1; 0] et on a $f(-1) \times f(0) < 0$. Donc d'après T.V.I l'équation (E) admet une solution unique α tel que $-1 < \alpha < 0$.

Donnons un encadrement de α d'amplitude 0,25.

On a
$$-1 < \alpha < 0$$
, alors $\alpha = -\frac{1}{2}$ ou $\alpha \in \left] -1, -\frac{1}{2} \right[$ ou $\alpha \in \left] -\frac{1}{2}, 0 \right[$.

Or $f\left(-\frac{1}{2}\right) = \frac{3}{2}$, alors $\alpha \neq -\frac{1}{2}$.

Et puisque $f(-1) \times f(-\frac{1}{2}) < 0$, alors $\alpha \in \left] -1, -\frac{1}{2} \right[$ et l'amplitude de cet encadrement est $-\frac{1}{2} - (-1) = \frac{1}{2} > 0,25$. On répète donc le procédé précédent.

On a $\alpha \in \left]-1, -\frac{1}{2}\right[$, alors $\alpha = -\frac{3}{4} \left(-\frac{3}{4} \text{ est le centre de } \alpha \in \left]-1, -\frac{1}{2}\right[$)ou $\alpha \in \left]-\frac{3}{4}, -\frac{1}{2}\right[$ ou $\alpha \in \left]-1, -\frac{3}{4}\right[$.

Puisque $f\left(-\frac{3}{4}\right) \neq 0$ et $f\left(-\frac{3}{4}\right) \times f\left(-\frac{1}{2}\right) < 0$, alors $\alpha \in \left]-\frac{3}{4}, -\frac{1}{2}\right[$ et l'amplitude de cet encadrement est $-\frac{1}{2} + \frac{3}{4} = 0.25$.

Ce procédé est appelé *la dichotomie*.

Application ©:

- 1. Montrer que l'équation $x^5 x^3 + 5x 4 = 0$ admet au moins une solution sur l'intervalle [0,1].
- **2.** Montrer que l'équation $\sin(x) + \frac{1}{2} = -x$ admet une solution unique dans l'intervalle $\left[\frac{-\pi}{6}; 0\right]$.

Exercice @:

Soit f la fonction définie sur IR par $f(x) = 2x^3 - 3x^2 - 1$.

1. Montrer que l'équation f(x) = 0 admet une unique solution α sur $[1; +\infty[$ puis vérifier que $1 < \alpha < 2$.

- **2.** Donner un encadrement de α d'amplitude 0,25.
- **3.** Donner le signe de f sur $[1; +\infty[$.

V. Fonction Réciproque d'une fonction continue et strictement monotone :

& Activité @:

Soit la fonction définie sur I = [1; 4] par : $f(x) = x^2 - 2x$

- **1.** Montrer que f est continue et strictement croissante sur I.
- 2. Déterminer l'intervalle / l'image de I par f.
- **3.** Soit $x \in J$ et $y \in I$, montrer que $f(y) = x \Leftrightarrow y = 1 + \sqrt{x+1}$.
- **4.** On considère g la fonction définie sur J par $g(x) = 1 + \sqrt{1+x}$.
- a. Remplir le tableau suivant :

, and p 2011 (00110)		
• g(−1) =	• f(1) =	
• $g(0) =$	• $f(2) =$	
• $g(8) =$	• $f(4) =$	

- **b.** Que remarquez-vous?
- **e.** Montrer que $(\forall x \in I)$ (gof)(x) = x et $(\forall x \in J)$ (fog)(x) = x.

La fonction g est appelée la fonction réciproque de f et on la note par f^{-1} .

Propriété :

Si f est continue et strictement monotone sur un intervalle I, alors f admet une fonction réciproque, notée f^{-1} , définie de J = f(I) vers I telle que : $\begin{cases} f^{-1}(x) = y \\ x \in I \end{cases} \Leftrightarrow \begin{cases} f(y) = x \\ y \in I \end{cases}$

O Conséquences:

- $(\forall x \in I): \overline{(f^{-1}of)(x)} = x$.
- $(\forall x \in I)$: $(f \circ f^{-1})(x) = x$.

O Exemple:

La fonction $f: x \mapsto \sqrt{x} + 2$ est continue et strictement croissante sur $[0, +\infty[$, donc f admet une fonction réciproque f^{-1} continue et strictement croissante sur $f([0, +\infty[$) = $[2, +\infty[$. Déterminons l'expression de f^{-1} :

Soient $y \in [0, +\infty[$ et $x \in [2, +\infty[$, on a :

$$f^{-1}(x) = y \Leftrightarrow f(y) = x$$

$$\Leftrightarrow \sqrt{y} + 2 = x$$

$$\Leftrightarrow \sqrt{y} = x - 2$$

$$\Leftrightarrow y = (x - 2)^{2}.$$

Donc $f^{-1}(x) = y \Leftrightarrow y = (x-2)^2$.

Il en résulte : $(\forall x \in [2, +\infty[) f^{-1}(x) = (x-2)^2$.

Application 9:

On considère la fonction f définie sur $[1, +\infty[$ par $f(x) = \sqrt{2x-4}$.

- **1.** Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- **2.** Déterminer l'expression de $f^{-1}(x)$ pour tout x de J.

Exercice 5:

On considère la fonction f définie sur $]-\infty$, -1[par $g(x) = \frac{2x+3}{x+1}$.

- **1.** Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- **2.** Déterminer l'expression de $f^{-1}(x)$ pour tout x de J.

// Propriété :

Si f est une fonction continue et strictement monotone sur un intervalle I, alors :

- La fonction réciproque f^{-1} est continue sur f(I) et a même sens de variations que la fonction f.
- Les courbes représentatives de f et de f dans un repère orthonormé, sont symétriques par

Application 2:

On donne ci-contre la courbe représentative d'une fonction f définie sur $[-1; +\infty[$.

- **1.** Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- **2.** Dresser le tableau de variations de f^{-1} .
- **3.** Construire la courbe représentative de f^{-1} .

VI. Fonction Racine n^{léme}:

Soit n un entier naturelle tel que : $n \ge 1$ et Soit f une fonction définie sur IR^+ par $f(x) = x^n$.

- f est une fonction polynôme donc f est continue sur IR par suite sur IR⁺.
- f est strictement croissante sur IR^+ , du fait que $(\forall x \in IR^+): f'(x) = nx^{n-1} \ge 0$.

Alors f admet une fonction réciproque f^{-1} , appelée **fonction racine n-ième**, définie sur $f(IR^+) = IR^+$.

- l'image du nombre x de IR⁺ par f^{-1} est note $\sqrt[n]{x}$ et on a :

$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) : x^n = y \iff x = \sqrt[n]{y}$$

O Remarques:

pour tout $x \in IR^+$ on a :

- $\bullet \quad \sqrt[1]{x} = x.$
- $\bullet \quad \sqrt[2]{x} = \sqrt{x}.$
- $\sqrt[3]{x}$ est appelée la racine cubique de x.

O Conséquences:

- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) x^n = y \iff x = \sqrt[n]{y}$.
- $(\forall x \in \mathbb{R}^+) \sqrt[n]{x^n} = (\sqrt[n]{x})^n = x.$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \sqrt[n]{x} = \sqrt[n]{y} \iff x = y.$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \sqrt[n]{x} < \sqrt[n]{y} \iff x < y.$
- La fonction $x \mapsto \sqrt[n]{x}$ est continue est strictement croissante sur \mathbb{R}^+ .
- $\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$.

O Exemples:

 $0 \sqrt[4]{16} = \sqrt[4]{2^4} = 2 \qquad 0 \sqrt[5]{5} > \sqrt[5]{3} \text{ parce que } 5 > 3 \qquad 0 \lim_{x \to +\infty} \sqrt[5]{x} = +\infty$ $0 (\forall x \in \mathbb{R}^+) x^5 = 32 \Leftrightarrow x = \sqrt[5]{32} = 2.$

Application OO:

Résoudre dans IR les équations suivantes :

1. $x^7 = 5$	2. $x^6 = -2$	3. $x^4 = 81$
4. $x^5 = -32$	5. $\sqrt[3]{3x-1}=2$	6. $\sqrt[5]{2x-3} < 2$

Propriété :

Soient a et b deux réels positifs, et n et p sont deux entiers naturels non nuls.

- $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$.
- Si $b \neq 0$, alors $\frac{n}{\sqrt{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
- $\sqrt[np]{a^p} = \sqrt[n]{a}$.
- $\bullet \quad (\sqrt[n]{a})^p = \sqrt[n]{a^p}.$
- $\sqrt[n]{\frac{p}{\sqrt{a}}} = \sqrt[np]{a}$.

O Exemple:

Simplifions le nombre : $A = \frac{\sqrt[4]{32} \times \sqrt[6]{27} \times \sqrt[4]{108}}{\sqrt[4]{144}}$

Application @@:

- **1.** Simplifier $A = \frac{\sqrt[3]{512}}{\sqrt[3]{64}}$; $B = \sqrt[3]{\sqrt{729}}$ et $C = \frac{\sqrt[15]{35} \times \sqrt[3]{9} \times \left(\sqrt[5]{9}\right)^3}{\sqrt[5]{3}}$.
- **2.** Mettre en ordre croissant les nombres $\sqrt[4]{3}$; $\sqrt[3]{2}$ et $\sqrt{5}$

Exercice ©:

Simplifier les nombres suivants : $A = \frac{\sqrt[3]{\sqrt{256}} \times \sqrt[4]{64}}{\sqrt[5]{24300000} \times \sqrt[3]{1024}}$ et $B = \frac{\sqrt{\sqrt[3]{3} \times \sqrt[3]{9} \times \sqrt[4]{9}}}{\sqrt[5]{729} \times \sqrt[\sqrt{3}]}$.

Propriété :

Soit f une fonction positive sur l'intervalle I et $x_0 \in I$.

- Si f est continue sur I alors $x \mapsto \sqrt[n]{f(x)}$ est continue sur I.
- Si $\lim_{x \to x_0} f(x) = l \ge 0$ alors $\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{l}$.
- Si $\lim_{x \to x_0} f(x) = +\infty$ alors $\lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty$.

(Les deux propriétés précédentes restent vraies au voisinage de $+\infty$ et $-\infty$)

Application @@:

- **1.** On considère f la fonction définie sur \mathbb{R} par $f(x) = \sqrt[3]{3x^2 + 4}$.
 - a. Etudier la continuité de f sur \mathbb{R} .
 - b. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- **2.** Calculer les limites suivantes

a.
$$\lim_{x \to 0} \frac{\sqrt[3]{x+1}-1}{x}$$

b.
$$\lim_{x \to +\infty} \sqrt[3]{x^3 + 1} - 2x$$

b.
$$\lim_{x \to +\infty} \sqrt[3]{x^3 + 1} - 2x$$
 c. $\lim_{x \to +\infty} \sqrt[3]{x^3 + x + 1} - x$

Exercice O:

Calculer les limites suivantes :

1.
$$\lim_{x \to 2} \sqrt[5]{x^3 + 24}$$

2.
$$\lim_{x \to +\infty} \sqrt[4]{x^5 - 3x^2 + 4}$$

1.
$$\lim_{x \to 2} \sqrt[5]{x^3 + 24}$$
 2. $\lim_{x \to +\infty} \sqrt[4]{x^5 - 3x^2 + 4}$ **3.** $\lim_{x \to +\infty} \sqrt[3]{x^3 + x^2 + 2} - 2x$

4.
$$\lim_{x\to 0} \frac{\sqrt[3]{x+8-2}}{x}$$

5.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - \sqrt{x}}{x - 1}$$

4.
$$\lim_{x \to 0} \frac{\sqrt[3]{x+8}-2}{x}$$
 5. $\lim_{x \to 1} \frac{\sqrt[3]{x}-\sqrt{x}}{x-1}$ **6.** $\lim_{x \to 2} \frac{\sqrt[3]{x+25}-3}{x^2-3x+2}$

VII. Puissances rationnelles d'un nombre réel strictement positif:

PP Définition :

Soient $x \in IR^+$ et r un nombre rationnel tel que : $r = \frac{p}{q}$ $(p \in \mathbb{Z}, q \in IN^*)$.

Le nombre a^r , appelé *puissance rationnelle de base a et d'exposant r*, est le nombre $\sqrt[q]{a^p}$. Autrement : $a^{\overline{q}} = \sqrt[q]{a^p}$.

O Exemples:

$$\circ 3^{\frac{2}{7}} = \sqrt[7]{3^2} \quad \circ 3^{\frac{5}{2}} = \sqrt{3^5} \quad \circ \sqrt[5]{6} = 6^{\frac{1}{5}} \qquad \circ 2^{-\frac{5}{3}} = \sqrt[3]{2^{-5}} = \sqrt[3]{\frac{1}{2^5}} = \frac{1}{\sqrt[3]{2^5}}$$

- $\bullet \quad a^r \times a^{r\prime} = a^{r+r\prime}.$
- $(a^r)^{r\prime}=a^{rr\prime}.$

- $(ab)^r = a^r \times b^r.$ $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}.$

Application @3:

Ecrire sous forme d'une puissance rationnelle les nombres $A = \frac{\sqrt[3]{4} \times 8^{\frac{1}{2}} \times \sqrt[5]{2}}{\sqrt[3]{2} \times \sqrt[6]{4}} et \ B = \frac{(27)^{\frac{2}{7}} \times (81)^{\frac{1}{4}}}{\sqrt[3]{\frac{17}{3}}}$