Laborator 6 – Surse electronice de tensiune

Stabilizatorul de tensiune cu diodă Zener

- 1. În LTSpice am deschis schema pentru Stabilizatorul de tensiune cu diodă Zener.
- a. Am modificat rezistența de sarcină pentru valorile de: (1k, 100 ohmi, 10 ohmi) x numele meu : Bejenaru Adrian(14 litere) și am masurat tensiunea de pe ieșire în aceste cazuri.

	Uin(V)	Uout(V)	Iin(mA)	Iout(mA)	Randament (%)
Rload kohm	12	0.169013	-0.845071	-0.845063	1.40842
Rload 100 ohm	12	1.49991	-7.50006	7.49956	12.5%
Rload 10 ohmi	12	4.71877	-520.088	235.938	17.83

b. Pentru o sarcină de 10 ohmi x nr litere din numele complet (am masurat curentul de pe intrare și cel de ieșire. Am calculat randamentul sursei de tensiune.

$$I(Vin) = -1.347A$$

$$I(Vout) = 0.026A$$

$$\eta = (5.214*0.026A)/(140A*-1.347A)*100=7%$$

c.) Ieșirea sursei de tensiune realizată cu diodă Zener variază cu sarcina deoarece curentul variaza in functie de rezistenta. Daca schimbam rezistenta , variaza si intensitatea, iar tensiunea e slab dependenta de curentul prin diode. Din aceasta cauza , iesirea sursei de tensiune nu este chiar constanta.

2. Stabilizatorul de tensiune cu circuit integrat stabilizat

- 2. În LTSpice am deschis schema pentru Stabilizatorul de tensiune cu circuit integrat st abilizat.
- a. Am modificat rezistența de sarcină pentru valorile de: (1k, 100 ohmi, 10 ohmi) x (nr de litere din numele complet) și am masurat tensiunea de pe ieșire în aceste cazuri completand tabelul următor.

	Uin(V)	Uout(V)	Iin(mA)	Iout(mA)	Randament (%)
Rload kohm	12	5.002	- 5.545	0.357	2.68
Rload 100 ohm	12	5.002	-8.761	3.573	16.99
Rload 10 ohmi	12	5.002	- 40.992	35.735	36.33

b. Pentru o sarcină de 10 ohmi x nr litere din numele complet, am masurat curentul de pe intrare și cel de ieșire. Am calculat randamentul sursei de tensiune.

$$I(vout) = 0.025A$$

$$I(Vin) = -0.03A$$

$$\eta = (5.031)*(0.025)/(-0.03*140) * 100 = 2.99\%$$

c.) La acest circuit , valoarea iesirii sursei de tensiuen este aproximativ egala . Fluctuatiile sunt nesemnificative , de ordin mic. Astfel , comparand circuitul cu diode Zener, precizia este mult mai buna .

3. Stabilizatorul de tensiune cu sursa în comutație

a. Am modificat rezistența de sarcină pentru valorile de: (1k, 100 ohmi, 10 ohmi) x (nr de litere din numele complet) si am masurat tensiunea de pe ieșire în aceste cazuri completandu-le în tabelul următor.

	U _{in} (V)	U _{out} (V)	l _{in} (mA)	I _{out} (mA)	Randament(%)
load 1k*22Ω	12	5.00586	14	0.227721	0.676
load 100*22Ω	12	5.02344	15.4	2.29	6.22091
lload 10*22Ω	12	5.0029	28.2	22.74	33.6155

b. Am preluat din tabel

 $I_{in} = 28.2 \text{mA}$

 $I_{out} = 22.74 mA$

 $\eta = 33.6155\%$

c. Dupa ce am comparat circuitele dupa tensiunea de ieșire am remarcat că ele au rezultate asemănătoare și că diferențele între valori sunt nesemnificative, deci valoarea sarcinii nu influențează ieșirea.

4. Circuit digital cu optocuplor.

a. Montajul executa o functie NOT.

Dupa ce am modificat circuitul acesta arata:

b. Pentru a obtine functia logica in varianta directa putem folosi o rezistenta pull-down.

Vin V1 330 Vout 5

PULSE(0 5 10u 10n 10n 10m 20m) 4N25 R2
.tran 100m