

Universidade Federal do Rio Grande do Norte – UFRN Centro de Ensino Superior do Seridó – CERES Departamento de Ciências Exatas e Aplicadas – DCEA Bacharelado em Sistemas de Informação – BSI

Modelo de Referência para Escrita de Monografias e Relatórios do LabEPI

Nome Completo do Aluno

Orientador: Prof. Dr. Nome Completo do Professor

Relatório Técnico apresentado ao Curso de Bacharelado em Sistemas de Informação como parte dos requisitos para aprovação na atividade de Estágio Obrigatório.

UFRN / Biblioteca Central Zila Mamede. Catalogação da Publicação na Fonte.

Aluno, Nome Completo do.

Modelo de Referência para Escrita de Monografias e Relatórios do LabEPI. / Nome Completo do Aluno. – Caicó, RN, 2014.

28 f.: il.

Orientador: Prof. Dr. Nome Completo do Professor.

Relatório Técnico — Universidade Federal do Rio Grande do Norte. Centro de Ensino Superior do Seridó. Bacharelado em Sistemas de Informação.

1. Primeira palavra chave. 2. Segunda palavra chave. 3. Terceira palavra chave. I. Professor, Nome Completo do. II. Universidade Federal do Rio Grande do Norte. III. Título.

RN/UF/BCZM CDU 004.7

10

12

13 Resumo

- Este trabalho apresenta...
- Palavras-chave: Primeira palavra chave; Segunda palavra chave; Terceira palavra chave.

17 Abstract

- This document presents...
- 19 **Keywords**: First keyword; Second keyword; Third keyword.

₂₀ Sumário

21	List	a de Algoritmos	6
22	List	a de Definições	7
23	List	a de Figuras	8
24	List	a de Tabelas	9
25	List	a de Teoremas	10
26	Glo	ssário	11
27	1 I	ntrodução	17
28	1	1 Motivação	17
29	1	2 Objetivos	17
30	1	3 Trabalhos relacionados	17
31	1	.4 Contribuições	17
32	1	5 Organização do trabalho	17
33	1	6 Publicações relacionadas	17
34	2 I	Levantamento bibliográfico	19
35	2	2.1 Introdução	19
36	2	2.2 Fundamentação	19
37	2	2.3 Objetivos específicos	20
38	2	2.4 Metodologia	20
39	2	2.5 Cronograma	21
40	3 I		22
41	3	3.1 Introdução	22
42	3	3.2 Modelo proposto	22
43	3	3.3 Experimentos	23
44	3	3.4 Considerações	23
45	4 (24
46	4	l.1 Resultados	24
47	4	1.2 Trabalhos futuros	24
48	\mathbf{A}	Apêndice	25

	Modelo de Monografias e Relatórios do LabEPI	5
49	Referências Bibliográficas	26
50	Índice Remissivo	27

$_{\scriptscriptstyle{51}}$ Lista de Algoritmos

52	2.1	Algoritmo	(Cálculo dos grau	s de entrada	e saída de cada nó)	

	T • ,	1	$\mathbf{D} \cdot \mathbf{c} \cdot \mathbf{c}$	
53	Lista	de	Definiçõ	$\mathbf{e}\mathbf{s}$

54	2.1	Definicão	Grafo	direcionado	com pe	esos)	 							1	9

55 Lista de Figuras

56	2.1	Ilustração do procedimento metodológico	20
57	2.2	Exemplo de diagrama Gantt	21

Modelo de Monografias e Relatórios do LabEPI	9

	T • 1	1	σ 1 1	
	1.1gf 9	Δ	Tabela	C
58	11360		10050	\neg

59	1.1	Autores	da	teoria	da	amostragem																						1	7
----	-----	---------	----	--------	----	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

[∞] Lista de Teoremas

3.1 Lema (Comportamento assintótico de $f(n,m)=(n^{m+1}-n)/(n-1))$ 22

62 Glossário

63 Acrônimos

64	BFS	Breadth-First Search
65	BGP	Border Gateway Protocol
66	CAIDA	Cooperative Association for Internet Data Analysis
67	CDF	Cumulative Distribution Function
68	DDoS	Distributed Denial of Service
69	DoS	
70	FIFO	First-In First-Out
71	IDS	Intrusion Detection System
72	IoT	Internet of Things
73	IP	Internet Protocol
74	IPv4	Internet Protocol version 4
75	IPv6	Internet Protocol version 6
76	IPS	Intrusion Prevention System
77	ISN	Initial Sequence Number
78	NAPT	Network Address and Port Translation
79	NAT	Network Address Translation
80	NAT-PT	Network Address Translation - Protocol Translation
81	NP	$Non deterministic\ Polynomial\ Time$
82	P2P	
83	PDF	Probability Distribution Function
84	PRNG	Pseudo-Random Number Generator
85	SOM	Self-Organizing Map
86	TCP	Transmission Control Protocol

87 Simbologia

C.Q.D. Demarcador contração de 'como se queria demonstrar'.

 \square Demarca fim de Algoritmos, Definições, Teoremas, dentre outros.

Representações

 \mathbf{x} Letras minúsculas em negrito indicam vetores coluna. É possível parametrizar o vetor, por exemplo, $\mathbf{x}(t) = \begin{bmatrix} x_1(t) & \cdots & x_n(t) \end{bmatrix}^\mathsf{T}$ indica que o vetor \mathbf{x} é variante no tempo.

 \mathcal{X} Letras maiúsculas caligráficas representam variáveis aleatórias.

 $\dot{x}(t)$ Indica a derivada da função $x(\cdot)$ em relação ao tempo t. Também se aplica a funcionais em vetores e matrizes.

n! Operador fatorial, definido recursivamente como n! = n(n-1)! e com caso base 0! = 1. De forma iterativa também pode ser descrito como

$$n! = \prod_{i=0}^{n-2} (n-i),$$

para $n \geq 2$.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

que pode ser computado de forma eficiente utilizando

$$\binom{n}{k} = \prod_{i=1}^{k} \frac{n - (k-i)}{i},$$

que possui complexidade $\Theta(k)$.

 $\delta(t), \delta_{ij}$ A função delta de Kronecker, definida como

$$\delta_{ij} \triangleq \left\{ \begin{array}{ll} 1 & \text{se } i = j \\ 0 & \text{caso contrário} \end{array} \right.,$$

utilizada como contrapartida discreta da função delta de Dirac. Por conveniência, é possível usar a seguinte representação

$$\delta(t) \triangleq \begin{cases} 1 & \text{se } t = 0 \\ 0 & \text{caso contrário} \end{cases}.$$

Dessa forma temos de forma equivalente que o valor $\delta(i-j)$ é 1 se i=j e 0 caso contrário.

 \mathbf{H}_n Indica a soma dos n primeiros termos da série harmônica, representada por

$$H_n = \sum_{i=1}^n \frac{1}{i},$$

que diverge no limite quando $n \to \infty$. Porém, possui a seguinte propriedade assintótica

$$\lim_{n \to \infty} H_n - \log(n) = \gamma,$$

onde $\gamma \approx 0.57721$ representa a constante de Euler-Mascheroni. Portanto, é possível usar a seguinte igualdade assintótica

$$H_n \simeq \log(n) + \gamma$$
,

onde o logaritmo natural é o da base natural e.

 $\{x:p(x)\}$ Descrição do conjunto representado pelos elementos x que têm a propriedade, ou predicado, p(x). Adicionalmente, o predicado p(x) pode ser descrito utilizando os operadores da lógica proposicional.

 $(\forall x)(p(x))$... Quantificação universal em relação aos elementos x que têm a propriedade, ou predicado, p(x). A pertinência dos elementos representados por x também pode ser descrita de forma explicita, por exemplo, $(\forall x \in \mathbb{N})(p(x))$. Que expressa que todos os elementos do conjunto dos números naturais possuem o predicado p. Adicionalmente, o predicado p(x) pode ser descrito utilizando os operadores da lógica proposicional.

 $(\exists x)(p(x))$... Quantificação existencial em relação aos elementos x que têm a propriedade, ou predicado, p(x). A pertinência dos elementos representados por x também pode ser descrita de forma explicita, por exemplo, $(\exists x \in \mathbb{N})(p(x))$. Que expressa que existe pelo menos um número natural que possui o predicado p. Adicionalmente, o predicado p(x) pode ser descrito utilizando os operadores da lógica proposicional.

Notação assintótica

 $O(\cdot)$ Quando é expresso que $f(n) \in O(g(n))^{[i]}$, dize-se que existe uma constante k, tal que a função f(n), para todo valor de $n > n_0$, é sempre limitada superiormente por kg(n).

 $\Omega(\cdot)$ Quando é expresso que $f(n) \in \Omega(g(n))$, dize-se que existe uma constante k, tal que a função f(n), para todo valor de $n > n_0$, é sempre limitada inferiormente por kg(n).

 $^{^{[}i]}$ Utiliza-se o símbolo de pertinência \in pois interpreta-se que o operador $O(\cdot)$ representa o conjunto das funções que são limitadas superiormente pelo seu argumento, no caso a função $g(\cdot)$. O mesmo princípio pode ser aplicada aos outros operadores assintóticos apresentados em sequência.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c,$$

para g(n) diferente de zero ou, pelo menos, sempre maior de que zero a partir de algum ponto e para $0 < c < \infty$.

Igualdades matemáticas

 \approx Valor aproximado.

 \simeq Igualdade assintótica, isto é, se $f(n)\simeq g(n)$ então

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1,$$

para $g(\cdot)$ infinitamente diferente de zero.

 \propto Proporcionalidade, isto é, se $f(n) \propto g(n)$, então existe uma constante k tal que f(n) = kg(n). De forma generalista, pode considerar também a igualdade assintótica.

≜ Igualdade por definição, por exemplo,

$$\frac{d\mathbf{x}(t)}{dt} \triangleq \begin{bmatrix} \frac{dx_1(t)}{dt} & \dots & \frac{dx_n(t)}{dt} \end{bmatrix}^{\mathsf{T}},$$

onde $\mathbf{x}(t)$ é um vetor coluna.

 \equiv Equivalência, por exemplo, $x \equiv y$ significa que x é definido como sendo logicamente igual à y.

Notação estatística

 \sim Indicador de distribuição de probabilidade, por exemplo $\mathcal{X} \sim N(\mu, \sigma)$ indica que a variável aleatória \mathcal{X} segue uma distribuição de probabilidade normal com média μ e desvio padrão σ .

 $P(\mathcal{X}_{\zeta})$ Probabilidade da variável aleatória \mathcal{X} assumir a realização ζ .

- $P(\mathcal{X}_{\zeta} \mid p)$ Probabilidade da variável aleatória \mathcal{X} assumir a realização ζ dado que o predicado p é verdadeiro.
- $\mathrm{E}\{\mathcal{X}\}$ Valor esperado da variável aleatória $\mathcal{X}.$ No caso discreto é definido como

$$\mathrm{E}\{\mathcal{X}\} = \sum_{\{\zeta \in \mathcal{O}\}} \mathcal{X}_{\zeta} \, \mathrm{P}(\mathcal{X}_{\zeta}),$$

onde \mho é o conjunto de possíveis realizações da variável aleatória.

 $\mathbb{E}\{\mathcal{X}\mid p\}$ Valor esperado da variável aleatória \mathcal{X} dado que o predicado p é verdadeiro. No caso discreto é definido como

$$E\{\mathcal{X}\} = \sum_{\{\zeta \in \mathcal{V}\}} \mathcal{X}_{\zeta} P(\mathcal{X}_{\zeta} \mid p),$$

onde \mho é o conjunto de possíveis realizações da variável aleatória.

Operadores matemáticos

- $|\cdot|$ Se for aplicado a um escalar, indica o seu valor absoluto. Caso seja aplicado a um conjunto, indica sua cardinalidade.
- $\lfloor \cdot \rfloor$ O maior valor inteiro menor ou igual ao escalar.
- [·] O menor valor inteiro maior ou igual ao escalar.
- $\rho(\cdot)$ Posto de uma matriz, por exemplo dada uma matriz identidade $\mathbf{I}_{n\times n}$, $\rho(\mathbf{I})=n$.
- \mathbf{X}^{\intercal} Operação de transposição da matriz \mathbf{X} , isto é, troca dos elementos x_{ij} pelos elementos x_{ji} . Também pode ser aplicada a vetores, no qual transforma vetores coluna em vetores linha, e vice-versa.
- X-Y...... Subtração de elementos de conjuntos. Utilizando a notação de conjuntos pode ser definido por

$$X - Y \triangleq \{z : (z \in X) \land (z \notin Y)\},\$$

que representa o conjunto resultante da retirada dos elementos em X que também estão em Y.

 $X \times Y$ Produto cartesiano entre dois conjuntos X e Y. Utilizando a notação de conjuntos pode ser definido por

$$X \times Y \triangleq \{(x, y) : (x \in X) \land (y \in Y)\},\$$

que representa todas as possíveis combinações de pares ordenados entres os elementos de X e de Y.

Operadores lógicos

31. Introdução

"If knowledge can create problems, it is not through ignorance that we can solve them." Isaac Asimov

- 90 Paragrafo introdutório.
- Este Capítulo está organizado da seguinte forma...

92 1.1 Motivação

93 [Cormen et al., 2009]

94 1.2 Objetivos

₉₅ 1.3 Trabalhos relacionados

Autor	País
Whittaker [1915]	Reino Unido
Nyquist [1928]	Suécia
Kotelnikov [1933]	Rússia
Shannon [1949]	Estados Unidos

Tabela 1.1: Autores da teoria da amostragem e suas nacionalidades.

96 1.4 Contribuições

97 1.5 Organização do trabalho

98 1.6 Publicações relacionadas

Durante o desenvolvimento desta tese, foram publicados capítulos de livros, artigos em conferências e em periódicos. As publicações relacionados à esta tese são listadas a seguir.

101 Capítulos de livros

1. Medeiros, J.P.S.; Borges Neto, J.B.; Queiroz, G.S.D.; Pires, P.S.M. Intelligent
Remote Operating System Detection, Case Studies in Intelligent Computing:
Achievements and Trends, ISBN 978-1-4822-0703-3, CRC Press, Taylor and Francis,
2014.

106 Conferências

107

108

109

110

112

114

115

1. Medeiros, J.P.S.; Brito Júnior, A.M.; Pires, P.S.M. A New Method for Recognizing Operating Systems of Automation Devices, 14th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2009. Proceedings of ETFA 2009, ISSN 1946-0759, pages 1-4, ISBN 978-1-4244-2727-7, 2009.

111 Periódicos

1. Medeiros, J.P.S.; Santos, S.R.; Brito Júnior, A.M.; Pires, P.S.M. Advances in **Network Topology Security Visualisation**, International Journal of System of Systems Engineering (IJSSE), ISSN 1748-0671, Inderscience, volume 1, number 4, pages 387-400, 2009.

116 2. Levantamento bibliográfico

```
"We can only see a short distance ahead,
but we can see plenty there that needs to be done."

Alan Mathison Turing
```

O entendimento dos fundamentos...

Este Capítulo está organizado da seguinte forma...

2.1 Introdução

119

121

[Brassard and Bratley, 1996]

122 2.2 Fundamentação

```
Definição 2.1 (Grafo direcionado com pesos). [Cormen et al., 2009] Um grafo dire-
    cionado com pesos G é composto por uma tripla ordenada G = \langle N, E, \omega \rangle, onde N rep-
124
    resenta o conjunto de vértices (ou nós) do grafo e E o conjunto de arestas ao qual se
125
    atribui as seguintes propriedades: (i) cada aresta é composta por um par ordenado de nós
126
    (v_1, v_2), que indica que existe uma ligação saindo do nó v_1 em direção ao nó v_2 e (ii) para
127
    cada aresta e \in E existe um peso que é associado por uma função \omega(\cdot), que realiza o
    mapeamento dos pesos de cada aresta para um número real, ou seja, \omega \colon E \mapsto \mathbb{R}.
    Algoritmo 2.1 (Cálculo dos graus de entrada e saída de cada nó). É possível calcular os
130
    graus de entrada e saída de cada nó da rede de forma iterativa com base na representação
131
    por lista de adjacência.
132
    algoritmo graus(L)
133
      1: {Lista de adjacência L de um grafo direcionado G = \langle N, E \rangle.}
134
      2: g_{\text{in}} \leftarrow \text{novo-vetor}(|N|, 0) {Vetor de |N| posições preenchidas com zero.}
135
      3: g_{\text{out}} \leftarrow \text{novo-vetor}(|N|, 0)
136
      4: para i de 1 até |N| faça
137
              para cada (v_i, p) \in L[i] faça
138
                    {Nó adjacente v_i e peso p da aresta.}
      6:
                    g_{\text{out}}[i] \leftarrow g_{\text{out}}[i] + 1
      7:
140
                    g_{\rm in}[j] \leftarrow g_{\rm in}[j] + 1
      8:
141
              fim para
142
    10: fim para
143
     11: retorne \langle g_{\rm in}, g_{\rm out} \rangle {Vetores com os graus de entrada e saída de cada nó da rede.}
```

Considera-se que os vetores g_{in} e g_{out} são indexados a partir de 1. A complexidade do algoritmo é da ordem de $\Theta(n \in \{\mathcal{G}^{\text{out}}\})$ em tempo e $\Theta(n)$ em memória.

2.3 Objetivos específicos

2.4 Metodologia

148

149

150

151

152

153

154

155

156

157

158

159

160

162

163

164

165

167

168

169

170

171

172

173

174

O procedimento metodológico utilizado no desenvolvimento deste trabalho possui uma abordagem dividida em 5 estágios. Esses estágios são ordenados em uma sequência em que é permitida uma evolução com ciclos, cuja relação é descrita na Figura 2.1.

Figura 2.1: Ilustração do procedimento metodológico adotado no desenvolvimento deste trabalho. O processo foi divido em 5 estágios: (1) estudo bibliográfico para fundamentar o desenvolvimento de modelos representativos do problema; (2) modelagem do problema para servir de referência para a elaboração de soluções que, se identificadas como inadequadas, podem remeter novamente ao estudo bibliográfico; (3) elaboração de soluções algorítmicas que serão avaliadas nos próximos estágios; (4) análise de complexidade das soluções que, quando ineficientes, podem remeter a elaboração de uma nova solução e (5) análise experimental dos resultados teóricos.

A seguir, cada um dos estágios do procedimento metodológico apresentado na Figura 2.1 é descrito. Na descrição de cada estágio, são considerados, além de seu objetivo, as possibilidades de evolução de acordo com a ilustração apresentada.

- 1. Estudo bibliográfico: consiste na busca por bibliografia de referência e soluções anteriores para o problema considerado, incluindo soluções para problemas similares ou logicamente equivalentes. Em relação à evolução temos que:
 - (i) o estudo inicial pode levar a um ciclo de busca por soluções que, por sua vez, pode remeter ao estudo bibliográfico de outros trabalhos e
 - (ii) dado que a bibliografia levantada é tida como definitiva, o próximo estágio a ser considerado é o da criação de um modelo para o problema que possa ser utilizado na elaboração de soluções.
- 2. Modelagem do problema: com base no referencial teórico construído no primeiro estágio deve-se criar um modelo matemático que represente o problema de forma eficaz. Em relação à evolução desse estágio têm-se três opções:
 - (i) passar para o estágio de elaboração de soluções quando o modelo é eficaz para o problema em questão;
 - (ii) estender a modelagem ao se verificar uma deficiência na abordagem encontrada na literatura e
 - (iii) possivelmente, quando a necessidade de extensão ocorre, deve-se recorrer novamente ao estudo bibliográfico, pois essas extensões devem ser cuidadosamente projetadas e validadas.
- 3. Elaboração de soluções: a partir do modelo criado no estágio anterior, é possível elaborar soluções algorítmicas e aplicar métodos de otimização a fim de solucionar

- o problema redefinido com base no modelo matemático construído; Em relação à evolução desse estágio têm-se três opções:
 - (i) passar para o estágio de análise de complexidade da solução, seja essa complexidade associada à necessidade de recursos de tempo ou de memória;
 - (ii) estender a solução para subproblemas do modelo a fim de verificar propriedades que caracterizam e subsidiam a formação de hipóteses e
- (iii) possivelmente, quando a necessidade de uma nova técnica ocorre, deve-se recorrer novamente ao estudo bibliográfico.
- 4. **Análise de complexidade**: cada solução projetada tem um custo de implementação associado. A princípio, este custo não deve inviabilizar a utilização da solução em termos de tempo e memória, dentre outros recursos, necessários para resolver o problema em questão. Em relação à evolução temos que:
 - (i) se as complexidades envolvidas satisfizerem os requisitos, então evolui-se para o estágio de implementação das soluções de forma integrada e
 - (ii) se a complexidade for proibitiva, é necessário voltar ao estágio de elaboração para construção de uma outra solução.
- 5. Análise experimental: se o estágio de análise de complexidade fomenta a utilização da solução proposta, deve-se realizar experimentos com dados reais para validar a solução, ou aplicá-las à instâncias do modelo a fim de extrair conjecturas acerca das propriedades do modelo que indiquem a validade da solução.

2.5 Cronograma

Figura 2.2: Exemplo de diagrama Gantt.

3. Desenvolvimento

"Mathematical elegance is not a dispensable luxury but a factor that decides between success and failure." Edsger Wybe Dijkstra

O problema...

197

199

Este Capítulo está organizado da seguinte forma...

200 3.1 Introdução

3.2 Modelo proposto

A relação assintótica entre a razão de duas funções pode ser usada no estudo da ordem de crescimento delas. Para isso, utiliza-se a seguinte equação Brassard and Bratley [1996]; Cormen et al. [2009]:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & \Longrightarrow f(n) \in O(g(n)) \\ 0 < c < \infty & \Longrightarrow f(n) \in \Theta(g(n)) \\ \infty & \Longrightarrow f(n) \in \Omega(g(n)) \end{cases}, \tag{3.1}$$

onde c representa uma constante qualquer que satisfaz a inequação $0 < c < \infty$.

Lema 3.1 (Comportamento assintótico de $f(n,m) = (n^{m+1} - n)/(n-1)$). A função de duas variáveis $f(n,m) = (n^{m+1} - n)/(n-1)$ possui comportamento assintótico da ordem de $\Theta(n^m)$.

Demonstração. Para verificar se duas funções f(n) e g(n) possuem mesmo comportamento assintótico, isto é, $f(n) \in \Theta(g(n))$ e vice-versa, deve-se analisar se o limite da razão das duas, como definido pela Equação 3.1, converge para uma constante. Estendendo o uso da Equação 3.1 para funções de duas variáveis tem-se o seguinte limite

$$\lim_{(n,m)\to\infty} \frac{n^{m+1} - n}{(n-1)n^m} = \left[\lim_{(n,m)\to\infty} \frac{n^{m+1}}{(n-1)n^m} \right] - \left[\lim_{(n,m)\to\infty} \frac{n}{(n-1)n^m} \right]. \tag{3.2}$$

Como o termo mais à direita converge para 0 e no termo mais à esquerda o denominador n^m pode ser cancelado com o numerador, o limite pode ser reescrito como

$$\lim_{(n,m)\to\infty} \frac{n}{n-1} = 1. \tag{3.3}$$

Portanto,
$$f(n,m) \in \Theta(n^m)$$
.

3.3 Experimentos

217 3.4 Considerações

Os resultados apresentados neste Capítulo...

²¹⁹ 4. Conclusões

"If we can really understand the problem, the answer will come out of it, because the answer is not separate from the problem." Jiddu Krishnamurti

Neste trabalho...

220

222 4.1 Resultados

223 4.2 Trabalhos futuros

224 A. Apêndice

Neste Apêndice, são apresentadas...

26 Referências Bibliográficas

```
Brassard, G. and P. Bratley [1996], Fundamentals of Algorithmics, Prentice Hall.
      (Citado nas páginas 19 e 22)
228
    Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein [2009],
229
      Introduction to Algorithms, 3<sup>a</sup> edição, The MIT Press.
230
      (Citado nas páginas 17, 19 e 22)
231
    Kotelnikov, Vladimir A. [1933], On the transmission capacity of the 'ether' and of cables
232
      in electrical communications, em 'Proceedings of the first All-Union Conference on the
233
      technological reconstruction of the communications sector and the development of low-
234
      current engineering', Moscow, Russian.
235
      (Citado na página 17)
    Nyquist, Harry Theodor [1928], 'Certain topics in telegraph transmission theory', Trans.
      American Institute of Electrical Engineers 47(2), 617–644.
238
      (Citado na página 17)
239
    Shannon, Claude Elwood [1949], 'Communication in the presence of noise', Proc. Institute
240
      of Radio Engineers 37(1), 10–21.
241
      (Citado na página 17)
242
    Whittaker, Edmund Taylor [1915], 'On the functions which are represented by the expan-
243
      sions of the interpolation theory', Proc. Royal Soc. Edinburgh 35(A), 481-493.
244
      (Citado na página 17)
245
```

²⁴⁶ Índice Remissivo

247	Símbolos	280	\mathbf{F}
248	$\Omega(\cdot)$	281	fatorial
249	$\Theta(\cdot)$ 14		C
250	≈	282	G f
251	$\delta(t), \delta_{ij} \ldots 12$	283	grafo
252	≡	284	definição
253	$E\{\mathcal{X}\}$	285	direcionado com pesos19
254	H_n	286	I
255	O(·)13	287	igualdades14
256	$P(\mathcal{X}_{\zeta})$	288	implicação16
257	$P(\mathcal{X}_{\zeta} \mid p) \dots 15$		M
258	∞ 14	289	M matriz12
259	$\rho(\cdot)$	290	posto da
260	≥14	291	transposta
261	□11	292	média
262	≜14	293 294	metodologia 14
263	C.Q.D11	294	procedimento20
		293	procedimento20
264	A	296	N
265	algoritmo	297	negação
266	graus()19	298	P
	D	299	posto
267	B	300	probabilidade14
268	bi-implicação16	301	condicional
	C	302	produto cartesiano
269	C	303	publicações17
270	cardinalidade		0
271	coeficiente binomial	304	Q
272	conjunção	305	quantificador existencial
273	constante de Euler-Mascheroni13	306 307	universal
274	D	551	
275	delta de Dirac	308	R
276	delta de Kronecker	309	recorrênciaveja recursividade
277	derivada	310	recursividadeveja recorrência
278	desvio padrão	311	\mathbf{S}
279	disjunção	312	série harmônica

Modelo	de	Monograf	fias e	Relatórios	do	LabEPI

-	\circ
٠,	

Modelo de Monografias e Relatórios do LabEPI			28
\mathbf{V}	010	variável aleatória1	
valor absoluto	317	realização1	14
valor esperado	318	vetor1	12