

Modelado para de la gestión del agua en la región hídrica Bogotá – Colombia

Andrés Chavarro Velandia PhD(c), Mónica Castañeda, PhD. Sebastián Zapata, PhD, Isaac Dyner, PhD.

Encuentro distrital CoSIAM

Noviembre 2019

Agenda

- 1. Problema de investigación
- 2. Estado del arte
- 3. Marco teórico
- 4. Modelo
- 5. Conclusiones preliminares
- 6. Artículos
- 7. Referencias

El problema del desabastecimiento de agua ...

Caso de estudio: región hídrica BogotáCundinamarca

Acueducto de Bogotá

Pertinencia de la investigación

- Cambio climático más crecimiento población aumenta la demanda de agua hasta en un 50% para Bogotá (Buytaert W. &., 2012).
- El 80% del territorio de la cuenca hídrica del río Bogotá está en alto o muy alto riesgo de desabastecimiento (HUITCA-CAR, 2017)
- La región representa el 17% de la economía del país y el 20% de la población nacional (DANE,2017)

Preguntas de investigación

- ¿Cuáles son las condiciones en el largo plazo para garantizar el suministro adecuado de agua en la región hídrica de Bogotá?
- Para la región hídrica Bogotá Cundinamarca, en términos de usos del territorio y crecimiento poblacional, ¿Cuánto es necesario, cuánto es posible y a qué velocidad crecer?
- ¿Cuál es la influencia del cambio y variabilidad climática en el abastecimiento de agua?

Marco teórico

Hipótesis dinámica

Diagrama de flujos y niveles

Ecuaciones del modelo

$$Population(t) = P_0 + \int Natural \ growth(t) \ dt$$

$$\begin{aligned} &Water\ reservoir(t)\\ &= Water\ reservoir_0\\ &+ \int \left[Water\ inflows(t) - \text{Consumption(t)} - \text{Natural outflow(t)}\right] \, dt \end{aligned}$$

$$Production\ capacity(t) = Production\ capacity_0 + \int Capacity\ entry(t)\ dt$$

Consumption = Agriculture + Domestic + Industrial + Others

$$System\ margin = \frac{Production\ capacity - Consumption}{Consumption}$$

Supuestos

- La ampliación de capacidad toma entre 5 y 9 años cada obra
- La demanda de agua de cada sector (domiciliaria, industrial, agrícola y otros), crece según la tasa promedio anual de los últimos 10 años.
- El crecimiento de la demanda de agua para el sector agrícola e industrial no depende del crecimiento de la economía
- Los hogares o suscriptores domésticos están conformados por cuatro personas cada uno (DANE, 2010)
- Es posible accionar dos políticas sobre el recurso hídrico al mismo tiempo.

Modo de referencia

Fuente: Jiménez- Aldana (2017)

Resultados de simulación BAU

Conclusiones preliminares

- En un primer escenario, se observa que la relación dinámica entre consumo y la oferta no presenta inminencia de desabastecimiento
- La evolución del sistema de abastecimiento uso muestra un comportamiento similar a las predicciones de los ejercicios de EAB.
- Cuando se introducen años secos (y sin todas las consideraciones que habría que tener) las se pueden presentar situaciones de desabastecimiento si la política pública no se hace más estricta en el consumo o la ampliación de la capacidad crece como históricamente se ha venido presentando

Referencias (1/2)

- Buytaert, W., & De Bièvre, B. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. WATER RESOURCES RESEARCH, VOL. 48, 1-13.
- Díaz, C. (2011). METABOLISMO DE LA CIUDAD DE BOGOTÁ D.C.: UNA HERRAMIENTA PARA EL ANÁLISIS DE LA SOSTENIBILIDAD AMBIENTAL URBANA. Bogotá: Tesis elaborada como requisito académico para optar al título de: Magister en Medio Ambiente y Desarrollo.
- GONZÁLEZ-MORENO, L. V., ARAGÓN-PINZÓN, A. M., & MORENO-GARCÍA, R. (2015).
 DETERMINAR LA VULNERABILIDAD AL DESABASTECIMIENTO HÍDRICO DEL PARAMO GUERRERO Y ESTABLECER LAS POSIBLES MEDIDAS DE ADAPTACION Y MITIGACIÓN. Bogotá: Tesis de especialización en recursos hídricos.
- Guhl-Naneitti, E. (2013). *La región hídrica de Cundinamarca-Bogotá. Una propuesta conceptual.* Bogotá: Acueducto de Bogotá Quinaxi.
- Huitaca consorcio CAR. (2017). AJUSTE DEL PLAN DE ORDENACIÓN Y MANEJO DE LA CUENCA DEL RÍO BOGOTÁ. Bogotá: CAR.
- IDEAM. (2015). Estudio Nacional del Agua 2014. Bogotá: IDEAM.
- Ivanova, Y. (2013). EVALUACIÓN DE LA HUELLA HÍDRICA DE LA CIUDAD DE BOGOTÁ COMO UNA HERRAMIENTA DE GESTIÓN DEL RECURSO HÍDRICO EN EL ÁREA URBANA. Bogotá: Tesis de Maestría en Gestión Ambiental.
- Instituto Alexander von Humboldt. (2016). Recomendación para la delimitación, por parte del Ministerio de Ambiente y Desarrollo Sostenible, del Complejo: Complejo de Páramos de Cruz Verde-Sumapaz / de Páramos de Chingaza a escala 1:25.000. Bogotá: Insituto de investigación de recursos biológios Alexander von Humbolt y Fondo de Adaptación.

Referencias (2/2)

- IDEAM. (2000). Estudio Nacional del agua. Bogotá: IDEAM.
- IDEAM. (2010). Estudio Nacional del Agua 2010. Bogotá: IDEAM.
- 11 de las grandes urbes con más probabilidad de quedarse sin agua potable. http://www.mientrastantoenmexico.mx/las-11-ciudades-estan-riesgo-quedarse-sin-agua-potable/
- Pérez-Hernández, E. (1998). La crisis del agua en Bogotá. Bitácora Urbano Regional. Universidad Nacional de Colombia Facultad de Artes, Departamento de Urbanismo, 55-59.
- Pérez-Preciado, A. (2000). El problema del Río Bogotá. En A. Pérez-Preciado, *Bogotá y Cundinamarca : expansión urbana y sostenibilidad* (págs. 21-60). Bogotá.
- Uribe, E. (2005-6). The allocation of water resources in the Bogotá Savanna region: case study. *Documento CEDE*, 1-30.