Register No:								
--------------	--	--	--	--	--	--	--	--

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

B.E. / B.Tech. End Semester Theory Examinations, Nov / Dec 2021

Fifth Semester

Computer Science and Engineering

UCS1524 LOGIC PROGRAMMING

(Regulations 2018)

Time: Three Hours Answer ALL Questions Maximum: 100 Marks

K1: Remembering K2: Understanding K3: Applying K4: Analyzing K5: Evaluating

$PART - A (10 \times 2 = 20 Marks)$

01.	K3	Using truth table, show that the formula $\neg (A \rightarrow B)^{\wedge}(B \rightarrow A)$ is satisfiable but not valid.	CO1
01.			
02.	K3	Consider the formula ¬P(k) ^ ∀ x Q(x) ∧ ∀ y P(y) ∧ ∃z ¬ Q(z). Identify whether the formula has the following properties (answer yes/no). a. Rectified b. Prenex c. Skolem d. Clausal form	CO1
03.	K2	Compare procedural semantics and declarative semantics.	CO2
04.	К3	Applying model theoretic semantics, find the Herbrand base for the following facts: likes(adam, chocolates) likes(adam, cake) likes(vishnu, chocolates) likes(vishnu, cake)	CO2
05.	К3	Consider the following Prolog code. fun1([], []). fun1([First Rest], Result) :- fun1(Rest, TempResult), append(TempResult, [First], Result). append([], L, L). append ([X L1], L2, [X L3]) :- append (L1, L2, L3). Make use of the above code and print the output for the goal: ?- fun1([1,2,3],R).	CO3
06.	K1	List the data objects supported by Prolog. Give examples.	CO3
07.	К3	Applying the rules for concatenation given below, find the value of L using the goal: ?- conc([_, _, _], L, [1,2,3,4,5,6]). conc([], L, L). conc([X L1], L2, [X L3]) :- conc(L1, L2, L3).	CO4
08.	К3	Let a search tree be represented using the following facts where s(x,y) means x is the successor of y. goal(j). s(b,d). s(b,e). s(d,h). s(e,i). s(e,j). Using the following Prolog program, predict the result for the goal: ?:-solve(b, S). solve(N, [N]) :- goal(N).	CO4

		solve(N, [N Sol1]) :- s(N, N1), solve(N1, Sol1).	
09.	K1	List the important features to be considered when you define the rules to represent	CO5
		knowledge.	
10.	K1	Define shell in an expert system.	CO5

$PART - B (5 \times 6 = 30 Marks)$

11.	К3	Construct the conjunctive and disjunctive normal forms of the formula: $\neg ((\neg A \rightarrow \neg B) \land \neg C)$	CO1
12.	K2	$\neg ((\neg A \rightarrow \neg B) \land \neg C)$ Explain answer generation in logic programming with an example.	CO2
13.	К3	Consider a one way road connecting 6 places as below. Tambaram> Chrompet> Pallavaram> Meenambakkam> Guindy> Adayar A person can travel from one place to another only in forward direction. Develop a recursive Prolog program to check whether she can travel on that road. Trace the output for the following goals:- a. can_travel(Chrompet,Guindy) b. can_travel(Adayar,Pallavaram) c. can_travel(Tambaram,Chrompet) Extend the above program with a suitable rule such that the person can travel also in reverse direction. Trace the output for the above goals.	CO3
14.	K2	Explain problem reduction strategy using AND/OR graph with DFS search.	CO4
15.	К3	 Maintain a knowledge base for automatic hotel booking. Each hotel can be described using the following details: Hotel_Name, City, Star, Room_Type, Room_Rate. Develop an expert system using Prolog with two Askables namely City and Room_Rate and perform the following. a. Write the rules in Prolog to create the knowledge base with 5 instances. b. Write the rules for Room_Search with required Askables and Star as an argument to display the Hotel_Name and Room_Type. c. Test for any 2 goals. 	CO5

$PART - C (5 \times 10 = 50 Marks)$

16.	K3	Consider the following FOL formulas.	CO1		
		a. $\exists x \text{ Puppy}(x) \land \text{Has (Mini, } x)$			
		b. $\forall x (\exists y \text{ Puppy}(y) \land \text{Has}(x,y)) \rightarrow \text{Zoophilist}(x)$			
		c. $\forall x \text{ Zoophilist } (x) \rightarrow \forall y \text{ Animal}(y) \rightarrow \neg \text{Hurts}(x,y)$			
		d. Hurts (Mini, Rini) V Hurts (Bunny, Rini)			
		e. Rabit(Rini)			
		f. $\forall x \text{ Rabit } (x) \rightarrow \text{Animal } (x)$			
		Construct clausal forms for the above formulas and show that the inference of the clause, Hurts(Bunny, Rini) using the logical formulas follows N-resolution.			
	OR				

UCS1524 2

17.	K3	 Apply resolution to show "Philip is smart" using the following sentences. (Hint: convert the sentences into clausal forms) a. Anyone passing data structures exam and wins the coding competition is smart. b. Anyone who studies or is intelligent can pass all his exams. c. Philip did not study but he is intelligent. d. Anyone who is intelligent wins the coding competition. 	CO1		
18.	K2	Explain procedural interpretation with an example.	CO2		
		OR			
19.	K2	Explain Horn clause program logic with example.	CO2		
20.	K2	Explain any five list operations with examples.	CO3		
		OR			
21.	K2	Explain the Prolog rules for any five polygons with examples.	CO3		
22.	К3	Let the set of students in Class A be {tom, john, mary, jim, brute} and in Class B {anu, preeth, banu, vimal}. Develop a Prolog program to combine these students into Class C and display the students in alphabetical order.	CO4		
		OR			
23.	К3	Develop a Prolog program to find the shortest path between the nodes: 's' and 'u' in the following graph.	CO4		
24.	K2	Explain the structure of an expert system and elaborate the knowledge representation for medical domain.	CO5		
	OR				
25.	K2	Show the rules and user interactions for an automatic music player using Prolog code and explain with appropriate goals.	CO5		

CO1: Apply propositional logic and predicate logic for knowledge representation. (K3)

CO2: Apply different types of semantics for logic programming. (K3)

CO3: Develop programs in PROLOG. (K3)

CO4: Solve AI problems using search algorithms in PROLOG. (K3)

CO5: Develop a simple Expert system shell in PROLOG. (K3).

UCS1524 3