Laws and Theorems of Boolean Algebra

1a.	$X \bullet 0 = 0$	1b.	X + 1 = 1	Annulment Law
2a.	$X \bullet 1 = X$	2b.	X + 0 = X	Identity Law
3a.	$X \bullet X = X$	3b.	X + X = X	Idempotent Law
4a.	$X \bullet \overline{X} = 0$	4b.	$X + \overline{X} = 1$	Complement Law
5.	X = X			Double Negation Law
6a.	$X \bullet Y = Y \bullet X$	6b.	X + Y = Y + X	Commutative Law
7a.	X(YZ) = (XY)Z = (XZ)Y = XYZ			Associative Law
7b.	X + (Y + Z) = (X + Y) + Z = (X + Z) + Y	=X+Y	I + Z	Associative Law
8a.	$X \bullet (Y + Z) = X Y + X Z$	8b.	$X + Y Z = (X + Y) \bullet (X + Z)$	Distributive Law
9a.	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$	9b.	$\overline{X+Y} = \overline{X} \bullet \overline{Y}$	de Morgan's Theorem
10a.	$X \bullet (X + Y) = X$	10b.	X + X Y = X	Absorption Law
11a.	$(X+Y) \bullet (X+\overline{Y}) = X$	11b.	$X Y + X \overline{Y} = X$	Redundancy Law
12a.	$(X + \overline{Y}) \cdot Y = XY$	12b.	$X\overline{Y} + Y = X + Y$	Redundancy Law
13a.	$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z) = (X + Y) \cdot (\overline{X} + Z)$	(Z + Z)		Consensus Law
13b.	$X Y + \overline{X} Z + Y Z = X Y + \overline{X} Z$			Consensus Law
14a.	$X \bigoplus Y = (X + \overline{Y}) \bullet (\overline{X} + Y)$	14b.	$X \bigoplus Y = \overline{X} Y + X \overline{Y}$	XOR Gate
15a.	$X \odot Y = (X + Y) \bullet (\overline{X \bullet Y})$	15b.	$X \odot Y = \overline{X} \overline{Y} + X Y$	XNOR Gate
15c.	$X \odot Y = (X + Y) \bullet (\overline{X} + \overline{Y})$			XNOR Gate

Gates

	Standard	DeMorgan's
NAND	$X = \overline{A \cdot B}$	$X = \overline{A} + \overline{B}$
	NAND Gate	
AND	$X = A \cdot B$	$X = \overline{\overline{A} + \overline{B}}$
	AND Gate	

NOR $X = \overline{A + B}$

 $X = \overline{A} \bullet \overline{B}$

NOR Gate

OR X = A + B OR Gate

 $X = \overline{\overline{A} \bullet \overline{B}}$