

CSC380: Principles of Data Science

Probability Primer 2

Xinchen Yu

- What is probability?
- Axioms
- Event = set ⇒ use set theory!
- Set theory + axiom 3 is quite useful
- Draw diagrams
- Lots of jargons

Make your own cheatsheet.

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

distributive law by Venn diagram

 $(A \cap B) \cup (A \cap C)$

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A = A \cap \Omega = A \cap (\cup_i B_i) = \cup_i (A \cap B_i)$ = $A \cap (B_1 \cup B_2 \cup B_3 ... \cup B_n)$ = $(A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3) ... \cup (A \cap B_n)$

Law of total probability: Let A be an event. For any events B_1 , B_2 , ... that partitions Ω , we have

$$P(A) = \sum_{i} P(A \cap B_i)$$

$$P(A) = \sum_{i} P(A \cap B_i)$$

A: the customer (100)

B: fill gas

- B_1 : unleaded (30)
- *B*₂: mid grade (30)
- B_3 : premium (40)

$$P(A = student)$$

= $P(A = student, B = B_1) + P(A = student, B = B_2) + P(A = student, B = B_3)$
= $P(A = student|B = B_1)P(B = B_1) + P(A = student|B = B_2)P(B = B_2) + P(A = student|B = B_3)P(B = B_3)$

Overview

- Numpy package
- Conditional probability
- Independence

Numpy Library

Package containing many useful numerical functions...

If you use pip: pip install numpy

...we are interested in numpy.random at the moment

numpy.random

numpy.random.randint

numpy.random.randint(low, high=None, size=None, dtype='l')

Return random integers from low (inclusive) to high (exclusive).

Return random integers from the "discrete uniform" distribution of the specified dtype in the "half-open" interval [low, high). If high is None (the default), then results are from [0, low).

Sample a discrete uniform random variable,

```
import matplotlib.pyplot as plt
X = np.random.randint(0,10,1000)
count, bins, ignored = plt.hist(X, 10, density=True)
plt.show()
```


- Caution Interval is [low,high) and upper bound is exclusive
- Size argument accepts tuples for sampling ndarrays (multidimentional arrays)

numpy.random

Allows sampling from many common distributions

Set (global) random seed as,

```
import numpy as np
seed = 12345
np.random.seed(seed)
```

- © easier to debug (otherwise, you may have 'stochastic' bug)
- • ⊗ can be risky

E.g., buy into the result based on a particular seed, publish a report. ... turns out, you get a widely different result if you use a different seed!

Recommendation: change the seed every now and then

- Two fair dice example:
 - Suppose I roll two dice secretly and tell you that one of the dice is 2.
 - In this situation, find the probability of two dice summing to 6.

```
import numpy as np
for n in [10,100,1000,10_000,100_000, 1_000_000]:
    res_dice1 = np.random.randint(6,size=n) + 1
    res_dice2 = np.random.randint(6,size=n) + 1
    res = [(res_dice1[i], res_dice2[i]) for i in range(len(res_dice1))]

    conditioned = list(filter(lambda x: x[0] == 2 or x[1] == 2, res))
    n_eff = len(conditioned)

    cnt = len(list(filter(lambda x: x[0] + x[1] == 6, conditioned)))
    print("n=%9d, n_eff=%9d, result: %.4f " % (n, n_eff, cnt/n_eff))
```


compare: without conditioning, it was 0.138.

```
10, n_eff=
                           4, result: 0.0000
                                                            10, n_eff=
                                                                               3, result: 0.3333
n=
                                                           100, n_eff=
                                                                              32, result: 0.0625
        100, n_eff=
                          32, result: 0.2500
n=
                                                   n=
       1000, n_eff=
                         300, result: 0.1733
                                                           1000, n_eff=
                                                                             343, result: 0.2245
n=
                                                   n=
      10000, n_eff=
                                                         10000, n_eff=
                        3002, result: 0.1742
                                                                            3062, result: 0.1897
n=
     100000, n_eff=
                       30590, result: 0.1823
                                                        100000, n_eff=
                                                                           30651, result: 0.1811
n=
    1000000, n_eff=
                      305616, result: 0.1818
                                                        1000000, n_eff=
                                                                          305580, result: 0.1808
n=
```

Random Events and Probability

What is the probability of having two numbers sum to 6 given one of dice is 2?

Each outcome is equally likely. by the independence (will learn this concept later) => 1/36 # sum to 6: => 5 # one of dice is 2: => 11 # sum to 6 and one of dice is 2: => 2 answer:

Two fair dice example

• Find the probability of one of the dice is 2 (event C) and two dice summing to 6 (E)

$$P(E \cap C)$$

• I secretly tell you one of the dice is 2, find the probability of two dice summing to 6.

$$\frac{P(E\cap C)}{P(C)}$$

- Two fair dice example:
 - Suppose I roll two dice and secretly tell you that one of the dice is 2.
 - In this situation, find the probability of two dice summing to 6.
- Turns out, such a probability can be computed by $\frac{P(E \cap C)}{P(C)}$
- It's like "zooming in" to the condition.
- This happens a lot in practice, so let's give it a notation:

$$P(E|C) \coloneqq \frac{P(E \cap C)}{P(C)}$$

Say: probability of "E given C", "E conditioned on C"

"it's the ratio"

Q: Conditional probability P(A|B) could be undefined. When?

• A: The denominator can be 0 already. In this case, numerator is also 0!

Note $P(A|B) \neq P(B|A)$ in general!

$$P(A|B) \coloneqq \frac{P(A \cap B)}{P(B)}$$

E.g., throw a fair die. X := outcome. $A = \{X=4\}$, $B = \{X \text{ is even}\}$ **Question**: $P(A \mid B) = P(B \mid A)$?

- P(A) = 1/6
- P(B) = 1/2
- $P(A \cap B) = 1/6$
- Therefore, P(A|B) = 1/3, P(B|A) = 1

Chain rule

- $P(A \cap B) = P(A|B)P(B)$ \leftarrow just a rearrangement of definition: $P(A|B) := \frac{P(A \cap B)}{P(B)}$
- $P(A \cap B \cap C) = P(A|B \cap C)P(B \cap C) = P(A|B \cap C)P(B|C)P(C)$
- $P(E_1 \cap E_2 \cap \cdots \cap E_n) = P(E_1) \prod_{i=1}^n P(E_i | \bigcap_{j=1}^{i-1} E_j)$ valid for any ordering!

• $P(E \cap C) = P(E|C)P(C) = P(C|E)P(E)$

"it's the ratio"

Recall: let A be an event. For events B_1 , B_2 , ... that partitions Ω , we have

$$P(E \cap C)$$

$$= P(E|C)P(C)$$

$$= P(C|E)P(E)$$

$$P(A) = \sum_{i} P(A \cap B_{i})$$

$$A = A \cap \Omega = A \cap (\cup_{i} B_{i}) = \cup_{i} (A \cap B_{i})$$
Check axiom 3 & distributive law!

Check axiom 5 & distributive law

Law of total probability: If $A \in \mathcal{F}$ and $\{B_i \in \mathcal{F}\}_i$ partitions Ω , then

$$P(A) = \sum_{i} P(A, B_i) = \sum_{i} P(B_i)P(A|B_i)$$

Shortcut: $P(A,B) := P(A \cap B)$

$$= \sum_{i} P(A)P(B_i|A)$$
 (by definition)

•
$$P(A) = \sum_{i} P(A, B_i) = \sum_{i} P(B_i) P(A|B_i)$$

$$P(A = student)$$

= $P(A = student|B = B_1)P(B = B_1) + P(A = student|B = B_2)P(B = B_2) + P(A = student|B = B_3)P(B = B_3)$

$$P(A = student)$$

= $10/30 \times 30/100 + 15/30 \times 30/100 + 5/40 \times 40/100$

• $\sum_{i} P(B_i|A) = 1$

$$P(B_1|A = student) + P(B_2|A = student) + P(B_3|A = student)$$

= $\frac{10}{10+15+5} + \frac{15}{10+15+5} + \frac{5}{10+15+5} = 1$

30, 10

30, 15

40, 5

The Public Health Department gives us the following information:

- A test for the disease yields a positive result (+) 90% of the time when the disease is present (Y)
- A test for the disease yields a positive result 1% of the time when the disease is not present (N)
 P(+ | N) = 0.01
- One person in 1,000 has the disease.

$$P(Y) = 0.001$$

 $\underline{\mathbf{Q}}$: What is the probability that a person with positive test has the disease? $P(Y \mid +)$?

Pick a person uniformly at random from the population. Apply the test. When test=+, what is the probability of this person having the disease (Y)?

What we know:

$$P(+ | Y) = 0.9$$

$$P(+ | N) = 0.01$$

$$P(Y) = 0.001$$

$$\Rightarrow$$

$$P(-|Y) = 0.1$$

$$P(-|N) = 0.99$$

$$P(N) = 0.999$$

Question: P(Y | +)

$$=\frac{P(Y,+)}{P(+)}$$

$$P(+) = P(+,Y) + P(+,N)$$

$$P(+,Y) = P(+|Y)P(Y)$$

$$P(+,N) = P(+|N)P(N)$$

Law of total probability

$$P(A) = \sum_{i} P(A, B_i) = \sum_{i} P(B_i) P(A|B_i)$$

The answer is 0.0826...

Terminology

When we have two events A and B...

• Conditional probability: P(A|B), $P(A^c|B)$, P(B|A) etc.

• Joint probability: P(A,B) or $P(A^c,B)$ or ...

• Marginal probability: P(A) or $P(A^c)$

Tip: Make a table of joint probabilities

$$P(+ | Y) = 0.9$$

 $P(+ | N) = 0.01$
 $P(Y) = 0.001$

Each cell is P(column event \cap row event) = P(T=t \cap D=d) = P(T=t \mid D=d) P(D=d)

	Test = +	Test = -	
Disease=Y	$0.9 \cdot 0.001 = 0.0009$	$0.1 \cdot 0.001 = 0.0001$	0.001
Disease=N	$0.01 \cdot 0.999 = 0.00999$	$0.99 \cdot 0.999 = 0.98901$	0.999
	0.01089	0.98911	

Workflow:

$$P(test = +)$$

- make a table, then fill in the cells.
- write down the target P(A|B) all in terms of joint probabilities and marginal probabilities.

We can directly calculate:

$$P(Y|+) = \frac{P(Y,+)}{P(+)} = \frac{P(+|Y)P(Y)}{P(+)}$$

Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 proof: definition and definition!

 \Rightarrow particularly useful in practice: infer P(A|B) given P(B|A)!

```
P(A): prior probability e.g., A='dice sum to 6', B='one of the die is 2' P(A|B): posterior probability e.g., A='disease=Y', B='test=+'
```

- Informally, given two events A and B, they are <u>independent</u> if the probability of A is not affected by whether B is true or false (and vice versa)
 - E.g., A = "die1=1" and B="die2=1" are independent.
 ⇒ we know that the probability of die1 being 1 would not be changed just because die2=1.
- Mathematically, this can be written as P(A|B) = P(A) or P(B|A) = P(B).
- E.g., A = "die1=6" and B="two dice sum to 6" are <u>not independent</u>. quiz candidate
 ∴ intuitively, when B is true, A can never happen! So, P(A|B)=0 but P(A) = 1/6.
- E.g., A = "die1=1" and B="two dice sum to 6" are not independent. quiz candidate
 - P(A) = 1/6 = 0.166... However, P(A|B) = 1/5 = 0.2

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

[Def] Two events A and B are <u>independent</u> if P(A,B) = P(A)P(B)

 $A \perp B$ means A and B are independent

"joint probability is product of two marginal probabilities"

=> note: symmetric!

Also, a set of events $\{A_i\}_{i=1}^n$ (n can be ∞) are <u>mutually</u> independent if

for every $J \subseteq \{1, ..., n\}$, we have $P(\cap_{i \in J} A_i) = \prod_{i \in J} P(A_i)$

- Ex) recall two fair dice
 - We took it for granted that P((1,1)) is 1/36.
 - But why is it true, really?
 - To be rigorous,

$$P(die1 = 1, die2 = 1) = P(die1 = 1)P(die2 = 1) = \frac{1}{6} \cdot \frac{1}{6}$$

due to independence.

E.g., two biased coin <u>C1</u> and <u>C2</u>. Suppose P(C1=H) = 0.3 and P(C2=H) = 0.4. Compute the probability of P(C1=H,C2=T).

 $0.3 \cdot 0.6 = 0.18$ quiz candidate

- Ex) Unfair die
 - Let A be the outcome of a single throw.

•
$$P(A=1) << P(A=2) = ... = P(A=5) << P(A=6)$$

say, 0.1 0.15 0.15. 0.3

- Throw this die twice. What's the probability of observing (1,3)?
 - P((1,3)) = 0.1*0.15 = 0.015
- Similarly, P((6,3)) = 0.3*0.15 = 0.045

Example: Dependent Coin Flips

- First coin (X1): fair coin
- Second coin (X2):
 - if X1=H, throw a **fair** coin.
 - If X1=T, throw an <u>unfair</u> coin P(H) = 0.2, P(T) = 0.8

• Q: Are X1=H and X2=H independent or not?

$$P(X1=H) = ____ 0.5$$

 $P(X2=H) = ____ = P(X2=H,X1=H) + P(X2=H,X1=T) = 0.25 + 0.1 = 0.35$
 $P(X1=H, X2=H) = ____ 0.25$

P(X1=H)*P(X2=H) = 0.175

Quiz candidate

Axiom 3:

For any finite or countably infinite sequence of disjoint events $E_1, E_2, E_3, ..., P\left(\bigcup_{i\geq 1} E_i\right) = \sum_{i\geq 1} P(E_i)$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Law of total probability: For events B_1 , B_2 , ... that partitions Ω ,

$$P(A) = \sum_{i} P(A \cap B_i)$$

$$P(E|C) \coloneqq \frac{P(E \cap C)}{P(C)}$$

 $(P(A|B) \neq P(B|A)$ in general)

Probability chain rule:

$$P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$$

Bayes' rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Independence: (definition) A and B are independent if P(A, B) = P(A)P(B)

(property) A and B are independent if and only if P(A|B) = P(A) (or P(B|A) = P(B))