hw language modelling

11 июня 2023 г.

1 Домашнее задание. Обучение языковой модели с помощью LSTM (10 баллов)

Это домашнее задание проходит в формате peer-review. Это означает, что его будут проверять ваши однокурсники. Поэтому пишите разборчивый код, добавляйте комментарии и пишите выводы после проделанной работы.

В этом задании Вам предстоит обучить языковую модель с помощью рекуррентной нейронной сети. В отличие от семинарского занятия, Вам необходимо будет работать с отдельными словами, а не буквами.

Установим модуль datasets, чтобы нам проще было работать с данными.

```
[1]: !pip install datasets torchinfo -q
```

2 Imports and settings

```
[2]: import collections
     import os
     import random
     import string
     import time
     import typing
     import matplotlib
     import matplotlib.pyplot as plt
     import numpy as np
     import seaborn as sns
     import tqdm.notebook as tqdm
     %matplotlib inline
     import datasets
     import nltk
     import nltk.tokenize
     import sklearn
     import sklearn.model_selection
     import torch
```

```
import torch.nn
     import torch.functional
     import torch.utils.data as data_utils
     import torchinfo
[3]: sns.set(style="darkgrid", font_scale=1.2)
     plt.rcParams["figure.figsize"] = (20, 20)
[4]: nltk.download('punkt')
    [nltk_data] Downloading package punkt to /home/shaorrran/nltk_data...
                  Package punkt is already up-to-date!
    [nltk_data]
[4]: True
```

Setting random seeds for reproducibility

[5]: # Check CUDA version

```
!nvcc --version
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2022 NVIDIA Corporation
    Built on Wed_Sep_21_10:33:58_PDT_2022
    Cuda compilation tools, release 11.8, V11.8.89
    Build cuda_11.8.r11.8/compiler.31833905_0
[6]: RANDOM_STATE = 42
     def fix_seed(state):
         random.seed(state)
         os.environ["PYTHONHASHSEED"] = str(state)
         np.random.seed(state)
         torch.manual_seed(state)
         torch.cuda.manual seed(state)
         torch.cuda.manual_seed_all(state)
     fix_seed(RANDOM_STATE)
     # Disable CuDNN benchmarking to eliminate related jitter. Will reduce
      \rightarrowperformance a bit.
     torch.backends.cudnn.benchmark = False
     \# See docs for torch.nn.RNN and torch.nn.LSTM for the rationale on using this \sqcup
     \rightarrow workaround
     os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:2"
     # Set a Torch Generator with a fixed seed for more reproducibility
     TORCH_RAND_GEN = torch.Generator()
     TORCH_RAND_GEN.manual_seed(RANDOM_STATE)
```

```
[6]: <torch._C.Generator at 0x7fbf75604750>
```

4 Determining available device

```
[7]: DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE
```

[7]: 'cuda'

5 Setting global variables

```
[8]: BATCH_SIZE = 96
WORD_THRESHOLD = 32
VOCAB_SIZE = 40000
```

5.1 Подготовка данных

Bоспользуемся датасетом imdb. В нем хранятся отзывы о фильмах с сайта imdb. Загрузим данные с помощью функции load_dataset

```
[9]: dataset = datasets.load_dataset("imdb")
```

Found cached dataset imdb (/home/shaorrran/.cache/huggingface/datasets/imdb/plai n_text/1.0.0/d613c88cf8fa3bab83b4ded3713f1f74830d1100e171db75bbddb80b3345c9c0)

```
0%| | 0/3 [00:00<?, ?it/s]
```

6 Preprocessing

6.0.1 Препроцессинг данных и создание словаря (1 балл)

Далее вам необходмо самостоятельно произвести препроцессинг данных и получить словарь или же просто **set** строк. Что необходимо сделать:

- 1. Разделить отдельные тренировочные примеры на отдельные предложения с помощью функции sent_tokenize из бибилиотеки nltk. Каждое отдельное предложение будет одним тренировочным примером.
- 2. Оставить только те предложения, в которых меньше word_threshold слов.
- 3. Посчитать частоту вхождения каждого слова в оставшихся предложениях. Для деления предлоения на отдельные слова удобно использовать функцию word_tokenize.
- 4. Создать объект vocab класса set, положить в него служебные токены '<unk>', '<bos>', '<eos>', '<pad>' и vocab size самых частовстречающихся слов.

```
sentences += [i.lower().replace("<br />", "").translate(str.
       →maketrans("", "", string.punctuation))
                                for i in nltk.tokenize.sent_tokenize(i)
                                if len(nltk.tokenize.word_tokenize(i)) < threshold]</pre>
          return sentences
      sentences = create_sentences(dataset)
     Generating sentences:
                             0%1
                                           | 0/25000 [00:00<?, ?sentences/s]
[11]: print("Всего предложений:", len(sentences))
     Всего предложений: 198801
     Посчитаем для каждого слова его встречаемость.
     Добавим в словарь vocab_size самых встречающихся слов.
[12]: def create_vocab(sentences, size=VOCAB_SIZE):
          words = collections.Counter()
          for sentence in tqdm.tqdm(sentences, desc="Creating vocabulary from_
       →sentences", unit="sentences", unit_scale=False):
              for word in nltk.tokenize.word_tokenize(sentence):
                  words[word] += 1
          vocab = collections.OrderedDict.fromkeys(["<unk>", "<bos>", "<eos>", "
       →"<pad>"]) # ordered replacement for set
          for word, _ in tqdm.tqdm(words.most_common(size), desc="Selecting frequent_u"
       →words", unit="words", unit_scale=False):
              vocab[word] = None
          word2ind = {word: i for i, word in enumerate(vocab.keys())}
          ind2word = {i: word for word, i in word2ind.items()}
          return vocab, word2ind, ind2word
      vocab, word2ind, ind2word = create_vocab(sentences)
     Creating vocabulary from sentences:
                                            0%|
                                                         | 0/198801 [00:00<?, ?sentences/
      S]
                                 0%|
                                               | 0/40000 [00:00<?, ?words/s]
     Selecting frequent words:
[13]: assert '<unk>' in vocab
      assert '<bos>' in vocab
      assert '<eos>' in vocab
```

assert '<pad>' in vocab

```
assert len(vocab) == VOCAB_SIZE + 4
```

```
[14]: print("Всего слов в словаре:", len(vocab))
```

Всего слов в словаре: 40004

6.0.2 Подготовка датасета (1 балл)

Далее, как и в семинарском занятии, подготовим датасеты и даталоадеры.

В классе WordDataset вам необходимо реализовать метод __getitem__, который будет возвращать сэмпл данных по входному idx, то есть список целых чисел (индексов слов).

Внутри этого метода необходимо добавить служебные токены начала и конца последовательности, а также токенизировать соответствующее предложение с помощью word_tokenize и сопоставить ему индексы из word2ind.

```
[15]: class WordDataset(data_utils.Dataset):
          def __init__(self, sentences):
              super().__init__()
              self.data = sentences
              self.unk_id = word2ind["<unk>"]
              self.bos_id = word2ind["<bos>"]
              self.eos_id = word2ind["<eos>"]
              self.pad_id = word2ind["<pad>"]
          def __getitem__(self, idx: int) -> typing.List[int]:
              tokenized_sentence = [self.bos_id]
              tokenized_sentence += [word2ind.get(word, self.unk_id) for word in nltk.
       →tokenize.word_tokenize(self.data[idx])]
              tokenized sentence += [self.eos id]
              return tokenized_sentence
          def __len__(self) -> int:
              return len(self.data)
```

```
[16]: def collate_fn_with_padding(
    input_batch: typing.List[typing.List[int]], pad_id=word2ind["<pad>"]) ->
    torch.Tensor:
    seq_lens = [len(x) for x in input_batch]
    max_seq_len = max(seq_lens)

    new_batch = []
    for sequence in input_batch:
        for _ in range(max_seq_len - len(sequence)):
            sequence.append(pad_id)
            new_batch.append(sequence)
```

```
sequences = torch.LongTensor(new_batch)

new_batch = {
    "input_ids": sequences[:,:-1],
    "target_ids": sequences[:,1:]
}

return new_batch
```

```
[17]: # The following function will use a fixed seed for DataLoader worker init
def seed_worker(worker_id):
    worker_seed = torch.initial_seed() % 2**32
    fix_seed(worker_seed)
```

```
[18]: train_sentences, eval_test_sentences = sklearn.model_selection.
      →train_test_split(sentences, test_size=0.2)
      eval_sentences, test_sentences = sklearn.model_selection.
       →train_test_split(eval_test_sentences, test_size=0.5)
      train_dataset = WordDataset(train_sentences)
      eval_dataset = WordDataset(eval_sentences)
      test_dataset = WordDataset(test_sentences)
      train dataloader = data utils.DataLoader(
          train_dataset, shuffle=True, collate_fn=collate_fn_with_padding,
          batch_size=BATCH_SIZE, num_workers=torch.multiprocessing.cpu_count(),
          worker_init_fn=seed_worker, generator=TORCH_RAND_GEN, pin_memory=True)
      eval_dataloader = data_utils.DataLoader(
          eval_dataset, shuffle=False, collate_fn=collate_fn_with_padding,
          batch_size=BATCH_SIZE, num_workers=torch.multiprocessing.cpu_count(),
          worker_init_fn=seed_worker, generator=TORCH_RAND_GEN, pin_memory=True)
      test_dataloader = data_utils.DataLoader(
          test_dataset, shuffle=False, collate_fn=collate_fn_with_padding,
          batch_size=BATCH_SIZE, num_workers=torch.multiprocessing.cpu_count(),
          worker_init_fn=seed_worker, generator=TORCH_RAND_GEN, pin_memory=True)
```

6.1 Обучение и архитектура модели

Вам необходимо на практике проверить, что влияет на качество языковых моделей. В этом задании нужно провести серию экспериментов с различными вариантами языковых моделей и сравнить различия в конечной перплексии на тестовом множестве.

Возмоэные идеи для экспериментов:

• Различные RNN-блоки, например, LSTM или GRU. Также можно добавить сразу несколько RNN блоков друг над другом с помощью аргумента num layers. Вам поможет

официальная документация здесь

- Различные размеры скрытого состояния. Различное количество линейных слоев после RNN-блока. Различные функции активации.
- Добавление нормализаций в виде Dropout, BatchNorm или LayerNorm
- Различные аргументы для оптимизации, например, подбор оптимального learning rate или тип алгоритма оптимизации SGD, Adam, RMSProp и другие
- Любые другие идеи и подходы

После проведения экспериментов необходимо составить таблицу результатов, в которой описан каждый эксперимент и посчитана перплексия на тестовом множестве.

Учтите, что эксперименты, которые различаются, например, только размером скрытого состояния или количеством линейных слоев считаются, как один эксперимент.

Успехов!

6.1.1 Функция evaluate (1 балл)

Заполните функцию evaluate

```
[19]: def evaluate(model, criterion, dataloader) -> float:
          model.eval()
          perplexities = []
          with torch.no_grad():
              for batch in tqdm.tqdm(dataloader, desc="Evaluating model", ___
       →unit="batches", unit_scale=False):
                  try:
                      inputs, targets = batch["input_ids"].to(DEVICE),__
       →batch["target_ids"].to(DEVICE)
                      logits = model(inputs).flatten(start_dim=0, end_dim=1)
                      loss = criterion(logits, targets.flatten())
                      perplexities.append(torch.exp(loss).item())
                  finally:
                      inputs, targets, logits = inputs.to("cpu"), targets.to("cpu"),
       →logits.to("cpu")
                      del inputs, targets, logits
                      torch.cuda.empty_cache()
          return np.mean(perplexities)
```

6.1.2 Train loop (1 балл)

Напишите функцию для обучения модели.

```
[20]: def train_epoch(train_loader, model, optimizer, criterion, epoch, epochs_count):
    model.train()
    running_loss = 0.0
    processed = 0
```

```
try:
                input, labels = batch["input_ids"].to(DEVICE), batch["target_ids"].
      →to(DEVICE)
                optimizer.zero_grad()
                output = model(input).flatten(start_dim=0, end_dim=1)
                loss = criterion(output, labels.flatten())
                loss.backward()
                optimizer.step()
                running_loss += loss.item() * input.size(0)
                processed += input.size(0)
             finally:
                input, labels, output = input.cpu(), labels.cpu(), output.cpu()
                del input, labels, output
                torch.cuda.empty_cache()
         return (running_loss / processed)
     def eval_epoch(val_loader, model, criterion, epoch, epochs_count):
         model.eval()
         running_loss = 0.0
         processed = 0
         for batch in tqdm.tqdm(val_loader, desc=f"Evaluating epoch {epoch + 1} / [
      trv:
                input, labels = batch["input_ids"].to(DEVICE), batch["target_ids"].
      →to(DEVICE)
                with torch.no_grad():
                    output = model(input).flatten(start_dim=0, end_dim=1)
                    loss = criterion(output, labels.flatten())
                    running_loss += loss.item() * input.size(0)
                    processed += input.size(0)
             finally:
                input, output, labels = input.cpu(), output.cpu(), labels.cpu()
                del batch, output, labels
                torch.cuda.empty_cache()
         return (running_loss / processed)
[21]: def train(train_loader, val_loader, model, optimizer, criterion, epochs,
      →scheduler=None, start_epoch=0):
         history = []
         start_time = time.time()
```

for batch in tqdm.tqdm(train_loader, desc=f"Fitting epoch {epoch + 1} / [

```
for epoch in tqdm.tqdm(range(start_epoch, epochs), desc="Training", u
→unit="epoch", unit_scale=False):
       try:
           train_loss = train_epoch(train_loader, model, optimizer, criterion,
→epoch, epochs)
           val_loss = eval_epoch(val_loader, model, criterion, epoch, epochs)
           if scheduler is not None:
               scheduler.step(val_loss)
           history.append((train_loss, val_loss, optimizer.
→param_groups[0]["lr"]))
       except KeyboardInterrupt as stop:
           tqdm.tqdm.write(f"Training interrupted at epoch {epoch + 1}.__
→Returning history")
           return history
  end_time = time.time()
  train_time = end_time - start_time
  tqdm.tqdm.write(f"Overall training time: {train_time: 0.1f} seconds.")
  return history
```

```
[22]: def plot_loss(history):
          loss, val_loss, _ = zip(*history)
          plt.figure(figsize=(15, 9))
          plt.plot(loss, label="Train loss", color="blue")
          plt.plot(val_loss, label="Validation loss", color="green")
          plt.legend(loc="best")
          plt.xlabel("Epochs")
          plt.ylabel("Loss")
          plt.show()
      def plot_learn_rate(history):
          _, _, learn_rates = zip(*history)
          plt.figure(figsize=(15, 9))
          plt.plot(learn_rates, label="Learn rate", color="red")
          plt.legend(loc="best")
          plt.xlabel("Epochs")
          plt.ylabel("Learn rate")
          plt.show()
```

6.1.3 Первый эксперимент (2 балла)

Определите архитектуру модели и обучите её.

```
[23]: class BaselineLM(torch.nn.Module):
         def __init__(self, hidden_dim: int, vocab_size: int, agg_type: str = "max", __
      →dropout_rate: float = 0.1):
            super().__init__()
            self.embed = torch.nn.Embedding(vocab_size, hidden_dim,__
      →padding_idx=word2ind["<pad>"])
            self.rnn = torch.nn.RNN(hidden_dim, hidden_dim, batch_first=True)
            self.rnn = torch.nn.Sequential(collections.OrderedDict([
                ("embedding", torch.nn.Embedding(vocab_size, hidden_dim,__
      →padding_idx=word2ind["<pad>"])),
                ("rnn", torch.nn.RNN(input_size=hidden_dim, hidden_size=hidden_dim,_
      ⇒batch_first=True)),
            1))
            self.fc0 = torch.nn.Linear(hidden_dim, hidden_dim)
            self.act = torch.nn.Tanh()
            self.drop = torch.nn.Dropout(p=dropout_rate)
            self.fc1 = torch.nn.Linear(hidden_dim, vocab_size)
            self.fc = torch.nn.Sequential(collections.OrderedDict([
                ("fc0", torch.nn.Linear(hidden_dim, hidden_dim)),
                ("act0", torch.nn.Tanh()),
                ("drop", torch.nn.Dropout(p=dropout_rate)),
                ("fc1", torch.nn.Linear(hidden_dim, vocab_size))
            ]))
         def forward(self, input):
            output, _ = self.rnn(input)
            return self.fc(output)
[24]: model = BaselineLM(hidden_dim=256, vocab_size=len(vocab)).to(DEVICE)
     criterion = torch.nn.CrossEntropyLoss(ignore_index=word2ind["<pad>"])
     optimizer = torch.optim.Adam(model.parameters())
[25]: torchinfo.summary(
         model.
         (BATCH_SIZE, WORD_THRESHOLD - 1),
         dtypes=[torch.long]
     )
========
     Layer (type:depth-idx)
                                           Output Shape
                                                                  Param #
     _____
                                                 =======
                                           [96, 31, 40004]
     BaselineLM
                                                                   20,587,844
     [U+251C] [U+2500] Sequential: 1-1
                                                        [96, 31, 256]
      → - -
```

```
10,241,024
     [U+2502]
               [U+2514] [U+2500] RNN: 2-2
                                                         [96, 31, 256]
            131,584
     [U+251C][U+2500]Sequential: 1-2
                                                   [96, 31, 40004]
                                                                       Ш
     [U+2502]
               [U+2514][U+2500]Linear: 2-3
                                                         [96, 31, 256]
            65,792
              [U+2514][U+2500]Tanh: 2-4
                                                         [96, 31, 256]
     [U+2502]
     [U+2502] [U+2514][U+2500]Dropout: 2-5
                                                         [96, 31, 256]
                                                                        1.1
     [U+2502]
               [U+2514][U+2500]Linear: 2-6
                                                         [96, 31, 40004]
            10,281,028
     ______
    Total params: 41,307,272
    Trainable params: 41,307,272
    Non-trainable params: 0
    Total mult-adds (Units.GIGABYTES): 2.37
     _______
    Input size (MB): 0.02
    Forward/backward pass size (MB): 970.70
     Params size (MB): 82.88
     Estimated Total Size (MB): 1053.60
     ______
     ========
[26]: history = train(train_dataloader, eval_dataloader, model, optimizer, criterion,
     ⇒epochs=10)
    Training:
             0%|
                        | 0/10 [00:00<?, ?epoch/s]
                                   | 0/1657 [00:00<?, ?batch(es)/s]
    Fitting epoch 1 / 10: 0%|
                                    | 0/208 [00:00<?, ?batch(es)/s]
    Evaluating epoch 1 / 10: 0%
    Fitting epoch 2 / 10: 0%
                                  | 0/1657 [00:00<?, ?batch(es)/s]
    Evaluating epoch 2 / 10: 0%|
                                     | 0/208 [00:00<?, ?batch(es)/s]
    Fitting epoch 3 / 10: 0%
                                  | 0/1657 [00:00<?, ?batch(es)/s]
    Evaluating epoch 3 / 10: 0%
                                    | 0/208 [00:00<?, ?batch(es)/s]
    Fitting epoch 4 / 10: 0%|
                                  | 0/1657 [00:00<?, ?batch(es)/s]
                                  | 0/208 [00:00<?, ?batch(es)/s]
    Evaluating epoch 4 / 10: 0%
                                  | 0/1657 [00:00<?, ?batch(es)/s]
    Fitting epoch 5 / 10: 0%
```

[U+2514] [U+2500] Embedding: 2-1

[96, 31, 256]

[U+2502]

| 0/208 [00:00<?, ?batch(es)/s] Evaluating epoch 5 / 10: 0% Fitting epoch 6 / 10: 0%| | 0/1657 [00:00<?, ?batch(es)/s] Evaluating epoch 6 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s] Fitting epoch 7 / 10: 0%| | 0/1657 [00:00<?, ?batch(es)/s] Evaluating epoch 7 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s]| 0/1657 [00:00<?, ?batch(es)/s] Fitting epoch 8 / 10: 0%| Evaluating epoch 8 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s] Fitting epoch 9 / 10: | 0/1657 [00:00<?, ?batch(es)/s] Evaluating epoch 9 / 10: 0% | 0/208 [00:00<?, ?batch(es)/s] Fitting epoch 10 / 10: 0% | 0/1657 [00:00<?, ?batch(es)/s] Evaluating epoch 10 / 10: | 0/208 [00:00<?, ?batch(es)/s] 0%1

Overall training time: 4172.4 seconds.

[27]: plot_loss(history)

[28]: baseline_metric = evaluate(model, criterion, eval_dataloader)
print(f"Baseline perplexity: {baseline_metric}")

Evaluating model: 0% | | 0/208 [00:00<?, ?batches/s]

Baseline perplexity: 214.94239689753607

```
[29]: model = model.to("cpu")
  del model
  torch.cuda.empty_cache()
```

6.1.4 Второй эксперимент (2 балла)

Попробуйте что-то поменять в модели или в пайплайне обучения, идеи для экспериментов можно подсмотреть выше.

```
[30]: class LSTMLM(torch.nn.Module):
          def __init__(self, hidden_dim: int, vocab_size: int, agg_type: str = "max", __
       →dropout_rate: float = 0.1):
              super().__init__()
              self.rnn = torch.nn.Sequential(collections.OrderedDict([
                  ("embedding", torch.nn.Embedding(vocab_size, hidden_dim)),
                  ("lstm", torch.nn.LSTM(input_size=hidden_dim,__
       →hidden_size=hidden_dim, batch_first=True)),
              1))
              self.fc = torch.nn.Sequential(collections.OrderedDict([
                  ("fc0", torch.nn.Linear(hidden_dim, hidden_dim)),
                  ("act0", torch.nn.Tanh()),
                  ("drop", torch.nn.Dropout(p=dropout_rate)),
                  ("fc1", torch.nn.Linear(hidden_dim, vocab_size))
              1))
          def forward(self, input):
              output, _ = self.rnn(input)
              return self.fc(output)
```

```
[31]: model = LSTMLM(hidden_dim=256, vocab_size=len(vocab)).to(DEVICE)
criterion = torch.nn.CrossEntropyLoss(ignore_index=word2ind["<pad>"])
optimizer = torch.optim.Adam(model.parameters())
```

```
[32]: history = train(train_dataloader, eval_dataloader, model, optimizer, criterion, ⊔

⇔epochs=10)
```

```
| 0/10 [00:00<?, ?epoch/s]
Training:
           0%|
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 1 / 10:
                        0%1
Evaluating epoch 1 / 10: 0%
                                        | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 2 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
                        0%1
Evaluating epoch 2 / 10: 0%|
                                        | 0/208 [00:00<?, ?batch(es)/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 3 / 10:
                        0%1
Evaluating epoch 3 / 10: 0%
                                        | 0/208 [00:00<?, ?batch(es)/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 4 / 10:
                       0%|
```

| 0/208 [00:00<?, ?batch(es)/s] Evaluating epoch 4 / 10: 0%| Fitting epoch 5 / 10: 0%| | 0/1657 [00:00<?, ?batch(es)/s] Evaluating epoch 5 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s] Fitting epoch 6 / 10: | 0/1657 [00:00<?, ?batch(es)/s]Evaluating epoch 6 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s]| 0/1657 [00:00<?, ?batch(es)/s] Fitting epoch 7 / 10: 0%1 Evaluating epoch 7 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s] | 0/1657 [00:00<?, ?batch(es)/s] Fitting epoch 8 / 10: Evaluating epoch 8 / 10: 0% | 0/208 [00:00<?, ?batch(es)/s] Fitting epoch 9 / 10: 0%| | 0/1657 [00:00<?, ?batch(es)/s] Evaluating epoch 9 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s] | 0/1657 [00:00<?, ?batch(es)/s] Fitting epoch 10 / 10: 0% Evaluating epoch 10 / 10: 0%| | 0/208 [00:00<?, ?batch(es)/s] Overall training time: 4235.1 seconds.

[33]: plot_loss(history)

[34]: lstm_metric = evaluate(model, criterion, eval_dataloader)
print(f"LSTM perplexity: {lstm_metric}")

Evaluating model: 0% | 0/208 [00:00<?, ?batches/s]

LSTM perplexity: 195.89662053034857

```
[35]: model = model.cpu()
    del model
    torch.cuda.empty_cache()
```

6.1.5 Training with different LR

```
[36]: model = LSTMLM(hidden_dim=256, vocab_size=len(vocab)).to(DEVICE)
criterion = torch.nn.CrossEntropyLoss(ignore_index=word2ind["<pad>"])
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
```

[37]: history = train(train_dataloader, eval_dataloader, model, optimizer, criterion, ⊔ ⇒epochs=10)

```
Training:
           0%|
                         | 0/10 [00:00<?, ?epoch/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 1 / 10:
                                        | 0/208 [00:00<?, ?batch(es)/s]
Evaluating epoch 1 / 10: 0%
Fitting epoch 2 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
                        0%1
Evaluating epoch 2 / 10:
                           0%1
                                        | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 3 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
                        0%1
Evaluating epoch 3 / 10:
                           0%|
                                        | 0/208 [00:00<?, ?batch(es)/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 4 / 10:
                                        | 0/208 [00:00<?, ?batch(es)/s]
Evaluating epoch 4 / 10: 0%
Fitting epoch 5 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
                        0%1
Evaluating epoch 5 / 10:
                          0%1
                                        | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 6 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 6 / 10: 0%
                                        | 0/208 [00:00<?, ?batch(es)/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 7 / 10:
                        0%|
Evaluating epoch 7 / 10: 0%|
                                        | 0/208 [00:00<?, ?batch(es)/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 8 / 10:
                                        | 0/208 [00:00<?, ?batch(es)/s]
Evaluating epoch 8 / 10:
                           0%|
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 9 / 10:
                                        | 0/208 [00:00<?, ?batch(es)/s]
Evaluating epoch 9 / 10:
                           0%1
Fitting epoch 10 / 10:
                       0%1
                                      | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 10 / 10:
                            0%1
                                         | 0/208 [00:00<?, ?batch(es)/s]
```

Overall training time: 4197.5 seconds.

```
[38]: plot_loss(history)
```


7 Setting hidden state size

```
[41]: model = LSTMLM(hidden_dim=512, vocab_size=len(vocab)).to(DEVICE)
criterion = torch.nn.CrossEntropyLoss(ignore_index=word2ind["<pad>"])
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
```

```
[42]: history = train(train_dataloader, eval_dataloader, model, optimizer, criterion, ⊔
→epochs=10)
```

Training: 0% | 0/10 [00:00<?, ?epoch/s]

```
| 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 1 / 10:
                       0%1
                                       | 0/208 [00:00<?, ?batch(es)/s]
Evaluating epoch 1 / 10: 0%
Fitting epoch 2 / 10:
                       0%|
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 2 / 10: 0%|
                                       | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 3 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 3 / 10:
                                       | 0/208 [00:00<?, ?batch(es)/s]
                          0%|
Fitting epoch 4 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 4 / 10: 0%|
                                       | 0/208 [00:00<?, ?batch(es)/s]
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Fitting epoch 5 / 10:
Evaluating epoch 5 / 10: 0%|
                                       | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 6 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
                       0%1
Evaluating epoch 6 / 10:
                                       | 0/208 [00:00<?, ?batch(es)/s]
                          0%|
Fitting epoch 7 / 10:
                       0%1
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 7 / 10: 0%|
                                       | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 8 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 8 / 10: 0%|
                                       | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 9 / 10:
                                     | 0/1657 [00:00<?, ?batch(es)/s]
Evaluating epoch 9 / 10: 0%
                                       | 0/208 [00:00<?, ?batch(es)/s]
Fitting epoch 10 / 10: 0%
                                     | 0/1657 [00:00<?, ?batch(es)/s]
                                        | 0/208 [00:00<?, ?batch(es)/s]
Evaluating epoch 10 / 10:
                           0%|
Overall training time: 6186.4 seconds.
```

[43]: plot_loss(history)


```
[44]: lstm_512_metric = evaluate(model, criterion, eval_dataloader) print(f"LSTM perplexity (lr=3e-4, hidden_dim=512): {lstm_512_metric}")
```

Evaluating model: 0% | 0/208 [00:00<?, ?batches/s]

LSTM perplexity (lr=3e-4, hidden_dim=512): 172.96553369668814

8 Training to convergence

8.0.1 Отчет (2 балла)

Опишите проведенные эксперименты. Сравните перплексии полученных моделей. Предложите идеи по улучшению качества моделей.

```
[49]: import pandas as pd
summary_table = pd.DataFrame({"Name": ["Baseline", "LSTM", "LSTM, lr=3e-4", □
→"LSTM hidden_dim=512"],

"Perplexity": [baseline_metric, lstm_metric, □
→lstm_karpathy_metric, lstm_512_metric]})
summary_table
```

```
[49]: Name Perplexity
0 Baseline 214.942397
1 LSTM 195.896621
2 LSTM, lr=3e-4 176.049854
3 LSTM hidden_dim=512 172.965534
```

```
[53]: summary_table.plot(kind="bar", x="Name", y="Perplexity")
```

[53]: <Axes: xlabel='Name'>

Как видно из графика, перплексия становилась ниже с каждым новым экспериментом, причём наибольшее влияние оказали переход на LSTM и снижение learn—rate.

Из графиков лоссов во время обучения (показаны после обучения каждой модели) видно, что модель начинает переобучаться в большинстве случаев примерно на 4-5 эпохе. Возможно, стоит попробовать добавить **BatchNorm** или попробовать изменять learn rate.

Примечание: модели обучаются невероятно долго, причём во время работы над экспериментами было установлено, что большую часть времени (почти 7 секунд при размере батча в 512!) занимает forward pass в последнем линейном слое.