6.630 Solution to Problem Set 5

Solution P5.1

- (a) t = 2l/v = 4 ns
- (b) The signal quality at the source is poor with two separate transitions to arrive at V_s .

(c) The signal quality at the load is good with a single transition to V_s .

Solution P5.2

- $\begin{array}{ll} \text{(a)} & V_{+} = I_{o}Z_{o}/2, V_{-} = -I_{o}Z_{o}/2 \,. \\ \text{(b)} & \Gamma_{L} = V_{-}/V_{+} = -1 \,. \\ \text{(c)} & Z_{L} = Z_{o}\frac{1+\Gamma_{L}}{1-\Gamma_{L}} = 0 \,. \end{array}$

- (d) At $\omega t = \pi/2$, $V(z,t) = \text{Re}\{V(z)e^{j\omega t}\} = I_o Z_o \sin kz$.
- (e) $Z_s = V_s/I_{in} = Z_o$.

Solution P5.3

(a) The load of T1 is Z_o parallel with $2Z_o$, which is $\frac{2}{3}Z_o$. Therefore the reflection coefficient $\Gamma_L=-\frac{1}{5}$.

(b) The input impedance of T3 is zero since its length is $\lambda/2$ and its load is short. Therefore the input impedance of T2 parallel with T3 is zero. In orther words, the load of T1 is short. Therefore Z_{in} for T1 is zero.