数学参老答案

一、单项选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求 的。

题号	1	2	3	4	5	6	7	8
答案	C	В	D	В	D	A	D	С

二、多项选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的四个选项中, 有多项符合题目要求. 全 部选对的得5分,部分选对的得2分,有选错的得0分。

题号	9	10	11	12
答案	AD	BCD	ABC	ABD

三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13.
$$\frac{\sqrt{3}}{3}\pi$$
; 14. $\frac{2}{5}$; 15. $\frac{1}{2}$; 16. 39

14.
$$\frac{2}{5}$$

15.
$$\frac{1}{2}$$

四、解答题: 共70分解答应写出文字说明、证明过程或演算步骤.

17. (10分)

【解析】(1) 因为 $b\cos C + c\cos B = 2a\sin A$.

所以 $\sin B \cos C + \sin C \cos B = 2 \sin A \sin A$.

所以 $\sin(B+C) = 2\sin A\sin A$,

因为 $\sin(B+C)=\sin A$,

所以 $2\sin A = 1$,即 $\sin A = \frac{1}{2}$

所以
$$2R = \frac{a}{\sin A} = \frac{1}{\frac{1}{2}} = 2$$
,即 $R = 1$.

(2) 由 (1) 可知:
$$\sin A = \frac{1}{2}$$
, $A = \frac{\pi}{6} \vec{\mathfrak{g}} \frac{5\pi}{6}$,

因为
$$b^2 + c^2 = 4$$
, $a = 1$

所以
$$A=\frac{\pi}{6}$$
,

由余弦定理得 $a^2 = b^2 + c^2 - 2bc \cos A$,

所以
$$bc=\sqrt{3}$$
,

所以
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$$
.

18. (12分)

【解析】(1) 由已知数据可得,
$$\bar{x}=3$$
, $\bar{y}=\frac{\sum\limits_{i=1}^{5}y_{i}}{5}=\frac{6100}{5}=1220$,

所以,
$$\sum_{i=1}^{5} x_i y_i - 5\overline{xy} = 16589 - 5 \times 3 \times 1220 = -1711$$
,

所以,
$$r = \frac{\sum_{i=1}^{5} x_i y_i - 5\overline{xy}}{\sqrt{(\sum_{i=1}^{5} x_i^2 - 5\overline{x}^2)(\sum_{i=1}^{5} y_i^2 - 5\overline{y}^2)}} \approx \frac{-1711}{1736} \approx -0.9856$$
,

因为|r|非常接近 1,所以可用线性回归模型拟合销售额y与年份编号x的关系.

(2) 由已知数据可得,
$$\sum_{i=1}^{5} x_i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$
,

所以,
$$\hat{b} = \frac{\sum_{i=1}^{5} x_i y_i - 5\overline{xy}}{\sum_{i=1}^{5} x_i^2 - 5\overline{x}^2} = \frac{16589 - 5 \times 3 \times 1220}{55 - 5 \times 3^2} = -171.1$$
,

$$\hat{a} = \bar{y} - \hat{b}\bar{x} = 1220 - (-171.1) \times 3 = 1733.3$$

所以, y关于 x 的回归方程为 $\hat{y} = -171.1x + 1733.3$

令
$$x = 6$$
 ,则 $\hat{v} = -171.1 \times 6 + 1733.3 = 706.7$ (万元)

所以预测 2023 年该商场的线下销售额为 706.7 万元。

19. (12分)

【解析】(1) 法一: 由题意可得:
$$\begin{cases} a_5 = a_1 + 4d = 5 \\ a_1 + a_7 = 2a_1 + 6d = 8 \end{cases}$$

解得, $a_1 = d = 1$,

所以,
$$a_n = a_1 + (n-1)d = n$$
;

法二: 由题意可得, $a_1 + a_2 = 2a_4 = 8$, 所以 $a_4 = 4$,

则 $d = a_5 - a_4 = 1$,

所以
$$a_n = a_4 + (n-4)d = n$$
.

$$\mathbb{Z} b_n > 0 \perp b_2 = a_2 = 2, b_4 = \sqrt{a_1 a_{64}} = 8$$

所以
$$q = \sqrt{\frac{b_4}{b_2}} = 2$$
,

所以
$$b_n = b_2 q^{n-2} = 2^{n-1}$$
.

(2) 因为
$$c_n = a_n + b_n = n + 2^{n-1}$$
,

所以
$$S_n = (1+2^0) + (2+2^1) + (3+2^2) + \cdots + (n+2^{n-1})$$

$$= (1 + 2 + 3 + \dots + n) + (2^{0} + 2^{1} + 2^{2} + \dots + 2^{n-1})$$

$$= \frac{n(1+n)}{2} + \frac{2^0(1-2^n)}{1-2} = \frac{n^2+n}{2} + 2^n - 1$$

20. (12分)

【解析】(1) 在正方形 ABCD中, 有 AD LCD,

又 PA ⊥底面 ABCD, CD ⊂ 平面 ABCD,

所以 $PA \perp CD$, 又 $AD \cap AP = A$,

所以CD⊥平面PAD,又AF ⊂平面PAD,所以CD ⊥ AF,

又PA = AD,点F是棱PD的中点,所以有 $AF \perp PD$,

又 $CD \cap PD = D$,所以 $AF \perp$ 平面PDC,

又EF ⊂ 平面 PDC, 所以 AF ⊥ EF.

(2) 如图,以点 A为原点,以 AB, AD, AP 为 x, y, z 轴建立空间

角坐标系,B(3,0,0) , P(0,0,3) , $F(0,\frac{3}{2},\frac{3}{2})$, 设点 E(m,3,0) , $0 \le m \le 3$,

设平面 AEF 的法向量 n = (x, y, z),

$$\begin{cases} \boldsymbol{n} \cdot \overrightarrow{AE} = 0 \\ \boldsymbol{n} \cdot \overrightarrow{AF} = 0 \end{cases} \Rightarrow \begin{cases} \boldsymbol{m}\boldsymbol{x} + 3\boldsymbol{y} = 0 \\ \boldsymbol{y} + \boldsymbol{z} = 0 \end{cases},$$

$$\nabla BP = (-3.0.3)$$
,

化简可得
$$m^2-22m+21=0$$
,即 $(m-1)(m-21)=0$,

所以m=1或m=21 (舍),

即点
$$E(1,3,0)$$
,由 $m=1$ 可得, $n=(3,-1,1)$, $\overline{AB}=(3,0,0)$,

所以点
$$B$$
 到平面 AEF 的距离 $d = \frac{|\mathbf{n} \cdot \overline{AB}|}{|\mathbf{n}|} = \frac{9\sqrt{11}}{11}$.

21. (12分)

【解析】(1) 由题
$$\begin{cases} \frac{b}{a} = \frac{\sqrt{2}}{2} \\ \frac{4}{a^2} - \frac{1}{b^2} = 1 \end{cases}$$
,所以
$$\begin{cases} a = \sqrt{2} \\ b = 1 \end{cases}$$
,故双曲线的方程为 $\frac{x^2}{2} - y^2 = 1$.

(2) 显然直线1的斜率不为0,

设
$$l: x = my + \sqrt{3}$$
, $P(x_1, y_1)Q(x_2, y_2)$,

直

则联立双曲线得: $(m^2-2)y^2+2\sqrt{3}my+1=0$, 故 $\Delta>0$, $y_1+y_2=-\frac{2\sqrt{3}m}{m^2-2}$, $y_1y_2=\frac{1}{m^2-2}$,

$$k_{AP} + k_{AQ} = \frac{y_1 - 1}{x_1 - 2} + \frac{y_2 - 1}{x_2 - 2} = 0$$
,

化简得: $2my_1y_2 - (m+2-\sqrt{3})(y_1+y_2) + 4 - 2\sqrt{3} = 0$,

故
$$2m\frac{1}{m^2-2}-(m+2-\sqrt{3})\frac{-2\sqrt{3}m}{m^2-2}+4-2\sqrt{3}=0$$
,

即
$$(m+1)$$
 $\left[m-\left(2-\sqrt{3}\right)\right]=0$, $m=-1$ 或 $m=2-\sqrt{3}$

当 $m=2-\sqrt{3}$ 时,直线I过A点,不合题意,舍去,

所以直线1的方程 $x+v-\sqrt{3}=0$.

22. (12分)

【解析】(1) 方法一: 由题意知, $x \in (0, +\infty)$, $f'(x) = \frac{a}{x} - 1 = \frac{a-x}{x}$,

- ①当 $a \le 0$ 时,f'(x) < 0 ,f(x) 在 $(0,+\infty)$ 上单调递减,所以,当 $x \in (0,1)$ 时,f(x) > f(1) = 0 ,不合题意;
- ②当0 < a < 1时,由f'(x) > 0得, $x \in (0,a)$,则f(x)在(0,a)上单调递增,由f'(x) < 0得, $x \in (a,+\infty)$,则f(x)在 $(a,+\infty)$ 上单调递减,所以,f(a) > f(1) = 0,不合题意;
- ③当a=1时,由f'(x)>0得, $x \in (0,1)$,则f(x)在(0,1)上单调递增,由f'(x)<0得, $x \in (1,+\infty)$,则f(x)在 $(1,+\infty)$ 上单调递减,所以,对于任意的 $x \in (0,+\infty)$, $f(x) \leqslant f(1)=0$,符合题意;
- ④当a>1时,由f'(x)>0得, $x\in(0,a)$,则f(x)在(0,a)上单调递增,由f'(x)<0得, $x\in(a,+\infty)$,则f(x)在 $(a,+\infty)$ 上单调递减,所以,f(a)>f(1)=0,不合题意.

综上所述, a=1.

(2) 由 (1) 知, a=1时, $\ln x+1-x\leq 0$, 即 $\ln x\leq x-1$, 当且仅当x=1时等号成立.

又
$$n-1 < n(n-1)$$
 , 所以, $\ln n < n(n-1)$, 即 $\frac{\ln n}{n^2} < \frac{n-1}{n}$

所以,
$$\frac{\ln 2}{2^2} \times \frac{\ln 3}{3^2} \times \frac{\ln 4}{4^2} \times \dots \times \frac{\ln n}{n^2} < \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \dots \times \frac{n-1}{n} = \frac{1}{n}$$

所以,原不等式得证.