全国硕士研究生入学统一考试备考用书

考研数学(一)

名师精选全真模拟冲刺题10套

考研辅导名师 陈启浩 编著

依据大纲选题 难易匹配真题 符合命题趋势

不止是模拟, 更接近实战

○ 机械工业出版社
CHINA MACHINE PRESS

2016 考研数学 (一) 名师精选全真模拟冲刺题 10 套

考研辅导名师 陈启浩 编著

机械工业出版社

本书是考研数学冲刺阶段的复习指导书,适用于参加"数学一"考试的学生.书中包含了10套精心设计的模拟试题,题目难度稍高于考研真题.这些题目大部分为首次公开发布,非常适合考生用来检验复习效果和临考重点复习.本书的解答部分,不仅给出详尽解答,还特别针对考试重点和难点进行了扩展复习.

本书可作为考生自学的复习材料,也可作为考研培训班的辅导教材,还可供大学数学基础课程的相关教学人员参考.

图书在版编目 (CIP) 数据

2016 考研数学 (一) 名师精选. 全真模拟冲刺题 10 套/ 陈启浩编著. —2 版.—北京: 机械工业出版社, 2015.5

全国硕士研究生人学统一考试备考用书 ISBN 978-7-111-48611-4

I.①2… Ⅱ.①陈… Ⅲ.①高等数学 – 研究生 – 入学考试 – 题解 Ⅳ.①013 – 44

中国版本图书馆 CIP 数据核字 (2014) 第 269302 号

机械工业出版社(北京市百万庄大街22号 邮政编码100037) 策划编辑:郑 玫 责任编辑:郑 玫 版式设计:霍永明 责任校对:张莉娟 封面设计:路恩中 责任印制:刘 岚 北京京丰印刷厂印刷

2015 年 4 月第 2 版・第 1 次印刷 184mm×260mm・13 印张・314 千字 0 001—3 000 册 标准书号: ISBN 978 -7 -111 -48611 -4 定价: 29.80 元

凡购本书, 如有缺页、倒页、脱页, 由本社发行部调换

电话服务 网络服务

服务咨询热线: 010-88361066 机 工 官 网: www. cmpbook. com 读者购书热线: 010-68326294 机 工 官 博: weibo. com/cmp1952

010-88379203 金 书 网: www. golden-book. com

封面无防伪标均为盗版 教育服务网: www. cmpedu. com

前 言

深入地读完我们编写的 2016 全国硕士研究生入学统一考试备考用书(包括认真地推演了其中的每道例题和练习题)的考生,已经具有了较强的分析问题和解决问题的能力,具有了能够从容面对即将来临的研究生考试的实力.但是为了把准备工作做得更充分,为了践行"战前多流汗,战时少流血",应在考试前进行 10 场"实战演习"——认真、独立地做完 10 套模拟试题(各套模拟试题的难度稍高于考研真题),作为最后的冲刺.

书中的10套试题是根据考研的数学大纲和编者的教学经验精心设计的,它既涵盖性强,又重点突出,其中的题目新颖,既有较强的针对性,又有明显的前瞻性.书中给出了这10套试题的详细、规范的解答,每题之后都加有附注,用简明的词语指明了与本题有关的概念、方法等值得注意的考点.当然,我们在"实战演习"时,不应一遇到困难就翻看解答,一定要认真、反复地思索,这样才能达到使用本书冲刺的目的——进一步提高应试能力,向着高分进发.使用本书的实践表明:弄通模拟试题,不想拿高分都难.

衷心祝愿考生们取得骄人的成绩,也欢迎考生们对本书提出宝贵意见,可发邮件到 cqh-shuxue@gmail.com,非常感谢!

北京邮电大学教授 陈启浩

目 录

前言	
模拟试题(一)	······································
模拟试题(二)	8
模拟试题(三):	
模拟试题(四)·	
模拟试题(五)·	
模拟试题(六)·	
模拟试题(七):	
模拟试题(八)·	
模拟试题(九):	57
模拟试题(十)·	64
模拟试题(一)解	71 71 71 71 71 71 71 71 71 71 71 71 71 7
模拟试题(二)解	7答
模拟试题(三)解	择答 ····································
模拟试题(四)解	7答
模拟试题(五)解	译答 ························· 124
模拟试题(六)解	7答
模拟试题(七)解	7答
模拟试题(八)解	7答
模拟试题(九)解	译答 ························· 176
模拟试题(十)的	Z答

模拟试题 (一)

(6) 已知矩阵 $Q = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 及 3 阶非零矩阵 P 满足 PQ = O,则

(A) t = 6 时, r(P) = 1.

- (C) $t \neq 6$ 时, r(P) = 1.
- (D) $t \neq 6$ 时, r(P) = 2.

(7) 在10件产品有4件一等品,6件二等品.现从中任取两次,每次取一件,取后不 放回,已知其中至少有一件是一等品,则两件都是一等品的概率 p 为

- $(A) \frac{1}{\epsilon}$
- (B) $\frac{2}{5}$. (C) $\frac{3}{5}$.
- (D) $\frac{4}{5}$.

(8) 设随机变量序列 $X_1, X_2, \dots, X_n, \dots$ 相互独立且同服从参数为 $\lambda(\lambda > 0)$ 的指数分布, 即它的概率密度同为 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0. & \text{其他.} \end{cases}$ 下列结论中正确的为

 $(A) \lim_{n \to \infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i - n}{\sqrt{n}} \leqslant x\right) = \Phi(x). \quad (B) \lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \leqslant x\right) = \Phi(x).$

$$(C) \lim_{n \to \infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i - \lambda}{\sqrt{n}\lambda} \le x\right) = \Phi(x). \quad (D) \lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - \lambda}{\sqrt{n}\lambda} \le x\right) = \Phi(x).$$

- 二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
- (9) 设函数f(x)满足f(0) = 0, $f\left(\frac{1}{x}\right) = x + \sqrt{1 + x^2}(x \neq 0)$, 则方程f(x) = 0 的实根个数 为 _____.
 - (10) 设函数f(x)连续,且满足 $f(x) = x + 2\int_{0}^{\frac{\pi}{2}} f(x) \cos x dx$,则定积分 $\int_{0}^{1} f(x) dx =$ _____
- (11) 设 $z = f(e^x, x^2 + y^2)$, 其中二元函数f(u, v)可微, 且y = y(x)是由方程 $e^x + \sin y = f(u, v)$ x 确定的隐函数,则 $\frac{dz}{1} =$ _____.
 - (12) 微分方程 $(x\cos y + \cos x)y' y\sin x + \sin y = 0$ 的通解为
- (13) 设A, B 都是 4 阶矩阵, 它们相似, 且A 的特征值为 -2, -1, 1, 2, 则行列式 $|\boldsymbol{B}^* - \boldsymbol{E}_4| =$
 - (14) 设随机变量 *X* 的概率密度为 $f(x) = \begin{cases} 2e^{-2x}, & x > 0, y \text{ 的概率分布为 } P(Y=0) = \frac{1}{3}, \\ 0, & \text{其他.} \end{cases}$

]

Γ

1

$$P(Y=1) = \frac{2}{3}, \ \ \text{M} \ E(X^3 + 2Y^2) = \underline{\hspace{1cm}}.$$

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

求微分方程 $y'' + y = 5e^{2x} + 2\sin x$ 的通解.

(16)(本题满分10分)

设数列 $\{a_n\}$ 由递推式 $a_1=2$, $a_{n+1}=\frac{1}{3}\left(2a_n+\frac{1}{a_n^2}\right)(n=1,\ 2,\ \cdots)$ 确定,求

(I)极限 $\lim_{n\to\infty}a_n$;

(II) 幂级数 $\sum_{n=1}^{\infty} \frac{a_n}{2^n} x^n$ 的收敛域.

(17) (本题满分10分)

设二元函数 f(x, y) 满足 $f(x,y)=\frac{1}{2}x^2y+x+3y\iint_D f(x,y)\,\mathrm{d}\sigma$,其中 D 是由曲线 $y=x^2$ 与直线 x=1 及 x 轴围成的平面图形,求 f(x,y) 在 D 上的最大值与最小值.

(18) (本题满分10分)

设函数 f(x) 在 [0, 1] 上可导,且 0 < f(x) < 1 及 $f'(x) \neq 1$,证明:存在唯一的 $\xi \in (0, 1)$,使得 $f(\xi) = \xi$.

(19) (本题满分10分)

设二元函数 f(x, y) 在点(0, 0) 的某个邻域内有定义,且 f(0, 0) = 0,f'(0, 0) = 3,f'(0, 0) = -1.记曲面 z = f(x, f(x, y)) 在点(0, 0) 处的切平面为 π ,求曲线积分

$$\oint_C xy dx + dy - z^2 dz,$$

其中 C 是 π 与曲面 S: $z = \frac{3}{4} - x^2 - y^2$ 的交线, 且从 z 轴正向看去, C 是逆时针的.

(20) (本题满分11分)

已知线性方程组(I) $\begin{cases} x_1 + x_2 - 2x_3 = 1, \\ x_1 - 2x_2 + x_3 = 2, 有两个不同的解, 且 <math>a$ 为系数矩阵的秩. 求 $ax_1 + bx_2 + cx_3 = 0 \end{cases}$

(I)的通解及向量 $\boldsymbol{\xi} = (a, b, c)^{\mathrm{T}}$ 在基 $\boldsymbol{\eta}_1 = (1, 0, -1)^{\mathrm{T}}, \boldsymbol{\eta}_2 = (-1, 1, 1)^{\mathrm{T}}, \boldsymbol{\eta}_3 = (1, 1, 0)^{\mathrm{T}}$ 下的坐标.

(21) (本题满分11分)

已知 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + cx_3^2 + 2x_1x_3 + 2x_2x_3 (c \ge 2)$ 与 $g(x_1, x_2, x_3) = x_1^2 - 2x_1x_2 + 4x_2^2 + x_3^2$ 中有且仅有一个是正定二次型,求常数 c,并用可逆线性变换将正定二次型化为规范形以及用正交变换将非正定二次型化为标准形.

(22) (本题满分11分)

设有随机变量 X 与 Y, 其中 Y 的概率密度为 $f_Y(y) = \begin{cases} 5y^4, & 0 < y < 1, \\ 0, & \text{其他,} \end{cases}$

下,
$$X$$
的条件概率密度为 $f_{X \vdash Y}(x \vdash y) = \begin{cases} \frac{3x^2}{y^3}, & 0 < x < y, \\ 0, &$ 其他.

(23)(本题满分11分)

设总体 Z = XY, 其中随机变量 X 与 Y 相互独立, 且 X 的概率密度为 $f_X(x)$

Z的一个简单随机样本的观测值. 求 Z的未知参数 λ 的最大似然估计值.

模拟试题 (二)

一、选择题: 1	~8 小题,	每小题4分,	共32分.	每小题给出的四个选项中,	只有一个
选项是符合题目要求	的,请将	所选项前的字	母填在答是	远 纸指定位置上.	

(A)
$$\frac{1}{2(x-1)^{11}} - \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$

(A)
$$\frac{1}{2(x-1)^{11}} - \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$
 (B) $\frac{10!}{2(x-1)^{11}} + \frac{10!}{x^{11}} + \frac{10!}{2(x+1)^{11}}$

(C)
$$\frac{10!}{2(x-1)^{11}} - \frac{10!}{x^{11}} + \frac{10!}{2(x+1)}$$

(C)
$$\frac{10!}{2(x-1)^{11}} - \frac{10!}{x^{11}} + \frac{10!}{2(x+1)^{11}}$$
 (D) $\frac{1}{2(x-1)^{11}} + \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$

 $(2) \int_{\underline{\pi}}^{\pi} \sin x \sqrt{1 - \sin^2 x} dx =$

$$(A) \frac{3}{4}$$

(B)
$$-\frac{1}{4}$$
.

(A)
$$\frac{3}{4}$$
. (B) $-\frac{1}{4}$. (C) $-\frac{3}{4}$.

(D)
$$\frac{1}{4}$$

1

1

]

]

]

Γ

Γ

(3) 设二元函数 f(x, y) 满足 $f_x'(0, 0) = 1$, $f_y'(0, 0) = 2$, $l = (\cos\alpha, \sin\alpha)$, 则

(A) f(x, y)在点(0, 0)处连续.

(B) $df(x, y) \mid_{(0,0)} = dx + 2dy$.

$$(C) \frac{\partial f}{\partial l} \Big|_{(0,0)} = \cos\alpha + 2\sin\alpha.$$

(D) f(x, y) 在点(0, 0)处沿 x 轴负向的方向导数为 – 1.

(4) 分别记函数 $f(x) = \begin{cases} x, & 0 \le x \le 1, \\ -x, & 1 < x \le 2 \end{cases}$ 的余弦级数与正弦级数之和函数为 $s_1(x)$ 与 $s_2(x)(-\infty < x < +\infty)$,则 $s_1(-3) + s_2(6)$ 为

$$(A) -2.$$

(5) 设A 是n(n>2)阶可逆矩阵,则 $(A^*)^*$ 等于

(A) A.

$$(C) \mid A \mid {}^{n-2}A.$$

(D)
$$|A|^{n-1}A$$
.

(6) 设A, B 都是n 阶正定矩阵,则下列选项中为正定矩阵的是

 $(A) A^* + 2B^*.$

(B)
$$A^* - B^*$$
.

(C) **A** * **B** *.

$$(D) \begin{pmatrix} AB & O \\ O & A+B \end{pmatrix}.$$

1

(7) 设随机变量
$$X \sim N(\mu, \sigma^2)$$
, $Y \sim N\left(2\mu, \frac{\sigma^2}{2}\right)$. 记 $p_1 = P(X \ge \mu - \sigma)$, $p_2 = \sigma^2$

$$P\left(Y \leqslant 2\mu + \frac{\sigma}{\sqrt{2}}\right)$$
,则

(A)
$$p_1 < p_2 < \frac{1}{2}$$
.

(B)
$$\frac{1}{2} < p_1 < p_2$$
.

(C)
$$p_2 < \frac{1}{2} < p_1$$
.

(D)
$$p_1 = p_2 > \frac{1}{2}$$
.

(8) 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(0, \sigma^2)$ 的一个简单随机样本,则统计量 Y = $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ 的数学期望与方差分别为

(A)
$$\frac{1}{n}\sigma$$
, $\frac{2}{n}\sigma^4$.

(B)
$$\frac{1}{n}\sigma^2$$
, $\frac{4}{n}\sigma^4$.

(C)
$$\sigma^2$$
, $\frac{2}{n}\sigma^4$.

(D)
$$\sigma^2$$
, $\frac{4}{n}\sigma^4$.

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

$$(\sin x - x) \arctan \frac{1}{x}$$
(9) 极限lim
$$\frac{\ln(1 + x^2)}{\ln(1 + x^2)} = \underline{\qquad}$$

(10) 定积分
$$\int_0^1 \arctan \frac{1-x}{1+x} dx =$$
______.

(11) 点(0, 0, 0)到曲面 $S: z = (x-1)^2 + y^2$ 在点(2, 1, 2)处切平面 π 的距离 d =__

(12) 设曲面 $S: z = 1 - (x^2 + y^2)(-3 \le z \le 1)$, 则曲面积分

$$\iint\limits_{S(\pm \mathbb{M})} x^2 \mathrm{d}y \mathrm{d}z \, + \, xy \mathrm{d}z \mathrm{d}x \, + \, z \mathrm{d}x \mathrm{d}y \, = \underline{\hspace{1cm}}.$$

$$S(\pm |\emptyset|)$$
 (13) 设矩阵 $A = \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix}$,则矩阵 $(A^2)^*$ 的秩 = _____.

(14) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} x, & 0 < x \le 1, \\ 2 - x, & 1 < x \le 2, \\ 0, & \text{其他,} \end{cases}$

数 $F_{y}(y) =$

三、解答题: 15~23 小题, 共94分.请将解答写在答题纸指定位置上.解答应写出文 字说明、证明过程或演算步骤.

(15) (本题满分10分)

求级数
$$\sum_{n=0}^{\infty} \frac{n^2+1}{2^n \cdot (n+1)!}$$
的和.

求不定积分
$$\int \frac{1}{\sin x \sqrt{1 + \cos x}} dx$$
.

(17) (本题满分10分)

证明:
$$c \ge \frac{1}{2}$$
时有 $\frac{1}{2}$ ($e^x + e^{-x}$) $< e^{cx^2}$ ($-\infty < x < +\infty$).

(18) (本题满分10分)

设函数 f(t) 在 $[0, +\infty)$ 上连续,曲面 S(t) 为半球 $\{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2, z \ge 0\}$ 的表面,它在 xOy 平面上的投影为 D(t) ,D(t) 的边界曲线为 L(t) ,并设对 t > 0 ,有

$$\oint\limits_{L(t)} f(\,x^2\,+\,y^2\,) \ \sqrt{x^2\,+\,y^2} \,\mathrm{d}s \,+\, \oint\limits_{S(t)} (\,x^2\,+\,y^2\,+\,z^2\,) \,\mathrm{d}S \,=\, \iint\limits_{D(t)} f(\,x^2\,+\,y^2\,) \,\mathrm{d}\sigma.$$

求 $f(t)(t \ge 0)$ 的表达式.

(19) (本题满分10分)

已知
$$\int_{0,0}^{(t,t^2)} f(x,y) dx + x \cos y dy = t^2$$
,其中二元函数 $f(x,y)$ 具有连续偏导数,求 $f(x,y)$.

(20) (本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 4 & 0 \\ -1 & 0 & -2 \\ a & b & c \end{pmatrix}$, 求使矩阵方程 $\mathbf{AX} = \mathbf{B}$ 有解的常数 a , b ,

c 以及该方程的所有解.

(21) (本题满分11分)

设 A 是 3 阶实对称矩阵,r(A) = 2,且 $A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}$. 求正交变换 x = Qy(其

中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是 3 阶正交矩阵), 使得二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T A \mathbf{x}$ 化为标准形, 并写出该标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, \ 0 \le y \le 2, \\ 0, & \text{ 其他}, \end{cases}$$

求(I) DX; (II) 概率 $P\left(X^2 + Y^2 \leq 1 \mid Y \geq \frac{1}{2}\right)$.

(23) (本题满分11分)

设随机变量 $Z = \ln X \sim N(\mu, \sigma^2)$, 其中 μ , σ^2 是未知参数,又设 Z_1 , Z_2 , …, Z_n 是来自总体 Z 的简单随机样本. 求 EX 的最大似然估计量.

模拟试题 (三)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 函数
$$f(x) = \begin{cases} \frac{\sin 2x}{(e^{\cos x} - 1)\ln(1 + \frac{1}{4}x)}, & -\pi < x < 0\\ x^2 + x, & 0 \le x < \frac{\pi}{2} \end{cases}$$
(A) 0. (B) 1. (C) 2. (D) 3.

(2) 当函数 $f(x) = x \ln(x+a) - \frac{1}{e}$ 仅有的单调减少区间是 $\left(0, \frac{1}{e}\right]$ 时,a 的值为

- (D) 1.

(3) 设函数f(x)连续,且f(0) = f'(0) = 0,记

$$F(x) = \begin{cases} \int_0^x du \int_0^u f(t) dt, & x \le 0, \\ \int_{-x}^0 \ln(1 + f(x+t)) dt, & x > 0, \end{cases}$$

则 F''(0) 为

- (A) 1.
- (B) $\frac{1}{2}$. (C) $\frac{1}{3}$.
- (D) 0.

(4) 设函数 $f(x) = x - 1(0 \le x \le 2)$ 的余弦级数展开式为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n \pi x}{2},$$

则幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域为 (A) (-1, 1). (B) [-1, 1). (C) (-1, 1]. (D) [-1, 1].

(5) 设A 是n(n ≥ 2)阶反对称矩阵,且 A^* 不为零矩阵,则 A^* 为对称矩阵是n为奇数 的

- (A) 充分而非必要条件.
- (B) 必要而非充分条件.

(C) 充分必要条件.

(D) 既非充分又非必要条件.

]

]

1

]

Γ

(6) 设矩阵
$$\mathbf{A}$$
 与 $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 相似,则 $r(\mathbf{A} - 2\mathbf{E}_3) + r(\mathbf{A} - \mathbf{E}_3)$ 为
(A) 2. (B) 3. (C) 4 (D) 5.

(7) 设二维连续型随机变量(X, Y)的分布函数为

$$F(x, y) = \begin{cases} (1 - e^{-x})(1 - e^{-\frac{1}{2}y}), & x > 0, y > 0, \\ 0, & \text{ 其他,} \end{cases}$$

则以下结论不正确的是

- (A) X 与 Y 相互独立.
- (B) EY = 2.
- (C) X 在 Y = y 条件下的条件概率密度 $f_{X \vdash Y}(x \vdash y) = e^{-x}$.

(D) 关于
$$X$$
 的边缘分布函数 $F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$

(8) 设 X_1 , X_2 , X_3 , X_4 是来自总体 $X \sim N(0, 2^2)$ 的简单随机样本,则统计量 $Z = \frac{1}{20}(X_1 - 2X_2)^2 + \frac{1}{100}(3X_3 - 4X_4)^2$ 的方差 D(Z) 为

- (A) 4.
- (B) 3.
- (C) 2.
- (D) 1.

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

(9)
$$\mathbb{R} \operatorname{Him}_{n \to \infty} \left(1 + \frac{1}{n} \right)^{(-1)^n \sin n} = \underline{\qquad}$$

(11) 设二元函数 f(u, v) 具有连续偏导数,且在点(1, 0) 的充分小邻域内有

$$f(u, v) = 1 - u - 2v + o(\sqrt{(u-1)^2 + v^2}).$$

记 $g(x, y) = f(e^y, x + y)$,则 $dg(x, y) \mid_{(0,0)} =$ ______.

(12) 设f(x, y)是连续的二元函数,则二次积分

$$\int_0^{\frac{\pi}{2}} d\theta \int_1^{-\sin\theta + \sqrt{3 + \sin^2\theta}} f(r\cos\theta, r\sin\theta) r dr$$

在直角坐标系中先 x 后 y 的二次积分为

(13) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 则矩阵 $\begin{pmatrix} \mathbf{A}^{-1} & \mathbf{O} \\ \mathbf{B} & \mathbf{C}^* \end{pmatrix}^{-1} = \mathbf{C}^{-1}$

]

7

(14) 设随机变量 X, Y 的概率密度同为 $f(t) = \begin{cases} \frac{3}{8}t^2, & 0 < t < 2, \\ 0, & 其他. \end{cases}$

 $B = \{Y > a\}$ 相互独立,且 $P(A \cup B) = \frac{3}{4}$,则常数 a =______.

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

分别求 a=1与 a=2 时微分方程

$$y'' + a^2y = \sin x + 2\cos 2x$$

的通解.

(16) (本题满分10分)

设二元函数
$$z=z(x, y)$$
 满足
$$\begin{cases} \frac{\partial^2 z}{\partial x \partial y} = x + y, \\ z(x,0) = x, \end{cases}$$
 求曲面 $S: z=z(x, y)(x>0)$ 上的点
$$z(0,y) = y^2.$$

 $P(x_0, y_0, z_0)$,使得 S 在点 P 处的切平面与平面 π: x+y-z=1 平行.

(17) (本题满分10分)

设二重积分 $\iint_D r^2 \sin\theta \sqrt{1-r^2\cos 2\theta} \mathrm{d}r \mathrm{d}\theta$ 在直角坐标系中的被积函数为 f(x,y),其中 $D=\left\{(r,\theta) \left| 0 \leqslant r \leqslant \sec\theta, \ 0 \leqslant \theta \leqslant \frac{\pi}{4} \right\}.$ 求 f(x,y) 在 D 上的最大值与最小值.

(18) (本题满分10分)

设 Ω 是由 yOz 平面上直线 z=0, z=2 以及曲线 $y^2-(z-1)^2=1$ 围成的平面图形绕 z 轴旋转—周而成的立体,求三重积分 $\iint_\Omega (x^2+y^2)\,\mathrm{d}v$.

(19) (本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} + \frac{1}{2n+1} \right) x^{2n}$ 的收敛域与和函数 s(x).

(20) (本题满分11分)

设向量组(A): $\boldsymbol{\alpha}_1 = (1, 0, 1)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (1, 3, 5)^T$ 与向量组(B): $\boldsymbol{\beta}_1 = (1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, a)^T$ 等价,

- (I) 求常数 a;
- (II) 对上述 a 的值, 求(A)由(B)的线性表示式.

(21) (本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$$
, 正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (x_1, x_2, x_3)^T$)

 $(y_1, y_2, y_3)^{\mathrm{T}}$, **Q** 是正交矩阵) 使二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 化为标准形,且 **Q** 的第一列为 $\frac{1}{\sqrt{6}} (1, 2, 1)^{\mathrm{T}}$. 求

- (I) 常数 a 及 f 的标准形;
- (\mathbb{I}) A^* 能否正交相似对角化? 如果能,写出使 $P^TA^*P = \Lambda$ 的正交矩阵 P 和对角矩阵 Λ ; 如果不能,说明理由.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度

$$f(x, y) = \begin{cases} Ax^2y, & (x, y) \in G = \{(x, y) \mid -1 \le x \le 1, x^2 \le y \le 1\}, \\ 0, & \text{ 其他}, \end{cases}$$

求常数 A 及 D(2X+3Y).

(23) (本题满分11分)

设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 1 - \left(\frac{\alpha}{x}\right)^2, & x > \alpha > 0, \\ 0, & \text{ 其他.} \end{cases}$$

又设 Z_1 , Z_2 , … , Z_n 是来自总体 $Z=X^2$ 的简单随机样本,求未知参数 α 的最大似然估计量.

模拟试题 (四)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
- (1) 设函数 f(x) 在($-\infty$, $+\infty$)上连续, $x_0 \neq 0$, $f(x_0) \neq 0$, 且(x_0 , $f(x_0)$) 是曲线 $\gamma =$ f(x)的拐点,则
 - (A) $f''(x_0) = 0$.
 - (B) $(x_0, -f(x_0))$ 是曲线 y = -f(x) 的拐点.
 - (C) $(-x_0, f(-x_0))$ 不是曲线 y = f(-x) 的拐点.
 - (D) $(-x_0, -f(x_0))$ 不是曲线 y = -f(-x) 的拐点.

(2) 设定积分 $I_1 = \int_0^{\frac{\pi}{2}} \sin(\sin x) dx$, $I_2 = \int_0^{\frac{\pi}{2}} \sin(\cos x) dx$, $I_3 = \int_0^{\frac{\pi}{2}} \cos(\sin x) dx$, 则有

(A) $I_1 < I_2$.

(B) $I_1 < I_3$. (C) $I_3 < I_2$.

(D) $I_3 < 1$.

Γ 7

Γ

1

(3) 设二元函数
$$f(x, y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0), \end{cases}$$

- (A) $f''_{xx}(0, 0) = f''_{xx}(0, 0)$.
- (B) $f''_{rr}(0, 0) > f''_{rr}(0, 0)$.
- (C) $f''_{xy}(0, 0) < f''_{yx}(0, 0)$. (D) $f''_{xy}(0, 0)$ 与 $f''_{yx}(0, 0)$ 至少有一个不存在.

(4) 设f(x)是[-1,1]上连续的偶函数,积分区域 $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1\}$, 则 $\iint f(x) dv$ 在[0, 1]上的定积分表示为

- (A) $\int_0^1 2\pi (1 + x^2) f(x) dx$.
- (B) $\int_{0}^{1} 2\pi (1-x) f(x) dx$.
- (C) $\int_{0}^{1} 2\pi (1 + x) f(x) dx$.

(D) $\int_{0}^{1} 2\pi (1 - x^{2}) f(x) dx$.

- (5) 设向量组 $\boldsymbol{\alpha}_1 = (1, 2, 3, 3)^T$, $\boldsymbol{\alpha}_2 = (-1, -4, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (3, 5, 4, t+2)^T$, $\alpha_{4} = (-2, -8, 2, t)^{T}$ 有以下结论:
 - ①t = 2 时, α_1 , α_2 , α_3 , α_4 线性相关.
 - ②t = 2 时, α_1 , α_2 , α_3 , α_4 线性无关.
 - ③t = 3 时, α_1 , α_2 , α_3 , α_4 线性相关.

1

则正确结论为

(A) ①3.

(B) 23.

(C) 14.

(D) (2)(4).

(6) 设矩阵 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & b \\ 1 & 0 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & -b-1 \\ 1 & 0 & 0 \end{pmatrix}$ 都可相似对角化,则

(A)
$$a = -b = \frac{1}{2}$$
.

(B)
$$a = b = \frac{1}{2}$$
.

(C)
$$a = -b = -\frac{1}{2}$$
.

(D)
$$a = b = -\frac{1}{2}$$
.

(7) 设连续型随机变量 X, Y满足 $P(X \ge 0, Y \ge 0) = \frac{3}{7}$, $P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$, 则概率 $P(\max\{X, Y\} \cdot X \ge 0)$ 为

(A)
$$\frac{6}{7}$$
.

(B)
$$\frac{5}{7}$$
.

(C)
$$\frac{4}{7}$$
.

(D)
$$\frac{3}{7}$$
.

(8) 设总体 $X \sim N(0, \sigma^2)$, X_1 , X_2 , …, X_9 是来自 X 的简单随机样本,记它的均值为 \overline{X} , 则使 $P(1 < \overline{X} < 3)$ 为最大的 σ 值是

$$(A) \frac{2}{\sqrt{\ln 3}}.$$

(B)
$$\frac{4}{\sqrt{\ln 3}}$$
.

(C)
$$\frac{6}{\sqrt{\ln 3}}$$
.

(D)
$$\frac{8}{\sqrt{\ln 3}}$$
.

二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

- (9) 设函数 $f(x) = (\sin x^3)^3 + \ln \cos x$, 则 $f^{(4)}(0) =$ ______.
- (10) 微分方程 $x^2y'' xy' = \ln x$ 的通解为_____.

(11) 定积分
$$\int_{-1}^{1} (|x| e^{-x} + \sin x^3 + \sqrt{1 - x^2}) dx = \underline{\qquad}$$

(12)
$$\begin{picture}(12) \begin{picture}(12) \begin{picture}(12$$

(13) 设 A 是 3 阶矩阵, α_1 , α_2 , α_3 是线性无关 3 维列向量组. 已知

$$A\alpha_1 = \alpha_2 + \alpha_3$$
, $A\alpha_2 = \alpha_1 + \alpha_3$, $A\alpha_3 = \alpha_1 + \alpha_2$,

则 A 的最大特征值为 $\qquad \qquad .$

(14) 已知甲、乙两箱中装有同种产品,其中甲箱中有3件合格品和3件次品,乙箱中仅有3件合格品.从甲箱中任取3件产品放入乙箱,然后从乙箱中任取3件产品,则其中的

次品数的平均值为__

三、解答题: 15~23 小题, 共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数
$$f(x) = \begin{cases} \frac{1}{(1-x)\sin\pi x} - \frac{1}{\pi(1-x)^2}, & \frac{1}{2} < x < 1, \\ A, & x = 1 \end{cases}$$
 在点 $x = 1$ 处在连续,求 A 的值.

(16) (本题满分10分)

证明: 方程 $xe^{2x} - 2x - \cos x + \frac{1}{2}x^2 = 0$ 在(0, 1)内有且仅有一个实根.

(17) (本题满分10分)

设二元函数 f(u, v) 在点(1, 1) 处可微,且 f(1, 1) = 1, $f'_u(1, 1) = 2$, $f'_v(1, 1) = 3$,以及 $\varphi(x) = f(x, f(x, x))$ 是单调函数,求 $\frac{\mathrm{d}}{\mathrm{d}x} \int_0^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t \, \Big|_{x=1}$ (其中, φ^{-1} 是 φ 的反函数).

(18) (本题满分10分)

设幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n (2n+1)} x^{2n+1}$ 的和函数为 s(x),求反常积分 $\int_0^{+\infty} \mathrm{e}^{-x} s^2(x) \, \mathrm{d}x$.

(19) (本题满分10分)

求满足微分方程 $\frac{4}{\pi^2} \cdot \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + y = x$ 以及 y(0) = 1 与 $y'(0) = 1 + \frac{\pi}{2}$ 的函数 y(x),并求 y(x) ($-1 \le x \le 1$) 的傅里叶级数展开式.

(20) (本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & a - 3 \end{pmatrix}$$
 有零特征值,且存在矩阵 $\mathbf{B} = \begin{pmatrix} 2 & 2 & 3 \\ 3 & 4 & 8 \\ b + 1 & c - 2 & - 3 \end{pmatrix}$,使得矩

阵方程 AX = B 有解. 求常数 a, b, c 以及该方程的所有解.

(21) (本题满分11分)

设向量 $\boldsymbol{\beta} = (1, 1, -2)^{T}$ 可由向量组 $\boldsymbol{\alpha}_{1} = (1, 1, a)^{T}$, $\boldsymbol{\alpha}_{2} = (1, a, 1)^{T}$, $\boldsymbol{\alpha}_{3} = (a, 1, 1)^{T}$ 线性表示,但表示式不是唯一的.

- (I) 求常数 a 及线性表示式的一般形式;
- (II) 对矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 以及上述求得的 a, 求正交变换 x = Qy (其中 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$, Q 是正交矩阵), 将二次型 $f(x_1, x_2, x_3) = x^T Ax$ 化为标准形, 并求此标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} \frac{3}{2}x, & 0 < x < 1, \ 0 < y < 2x, \\ 0, & \text{ i.i.} \end{cases}$$

记 Z = 2X - Y, 求 DZ 和 Z 的概率密度 $f_Z(z)$.

(23) (本题满分11分)

设总体 Z = XY, 其中随机变量 X = Y 相互独立,且 $X \sim N(0, \sigma^2)$, Y 的概率分布为

Y		
P	$\frac{1}{3}$	$\overline{\frac{2}{3}}$. 又设 Z_1 , Z_2 , … , Z_n 是来自总体 Z 的一个简单随机样本,求参数 σ^2

的矩估计量.

模拟试题 (五)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 函数
$$f(x) = \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1}$$
的极大值与极小值分别为

(A) 1, -1.

(B) -1, 1.

(C) 不存在, -1.

(D) 1. 不存在.

(2) 设函数 f(x) 在点 x_0 处连续,且在点 x_0 的去心邻域内二阶可导,在点 x_0 的左侧邻近 单调增加且图形是凹的,在点 x_0 右侧邻近单调减少且图形是凸的,则以下结论不正确的是

- (A) f(x)在点 x_0 处不可导.
- (B) f(x)在点 x_0 处可导.
- (C) $f(x_0)$ 是 f(x) 的极大值. (D) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

1

- (3) 二元函数 f(x, y) 在点(0, 0) 处可微的一个充分条件是
- (A) f(x, y)在点(0, 0)处连续.
- (B) $f_{x}'(0,0)$ 与 $f_{y}'(0,0)$ 都存在.

(C)
$$\lim_{x\to 0} f_x'(x, 0) = f_x'(0, 0) \not \boxtimes \lim_{y\to 0} f_y'(0, y) = f_y'(0, 0).$$

(D) $\lim_{(x,y)\to(0,0)} \frac{f(x, y) - f(0, 0)}{\sqrt{x^2 + y^2}} = 0.$

(4) 已知 $y_1 = x \ln x$, $y_2 = x \ln x + x$, $y_3 = 2x \ln x - x$ 是某个二阶齐次线性微分方程的三个特 解,则这个微分方程为

(A)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$
.

(B)
$$\frac{d^2 y}{dx^2} - 2y = 0$$
.

(C)
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 2y = 0.$$
 (D) $x^2 \frac{d^2 y}{dx^2} - 2y = 0.$

(D)
$$x^2 \frac{d^2 y}{dx^2} - 2y = 0.$$

(5)设A 是n 阶矩阵, α 是n 维非零列向量,记 $B = \begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix}$,且r(A) = r(B),则线性

方程组

- (A) $Ax = \alpha$ 有无穷多解.
- (B) $Ax = \alpha$ 有唯一解.
- (C) By = 0 有非零解.
- (D) By = 0 只有零解.

(6) 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
,则下列矩阵中与 A 合同且相似的矩阵是

$$(A) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

$$(B) \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} \end{pmatrix}.$$

(C)
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & -2 & 1 \end{pmatrix}$$
. (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{3}{2} \end{pmatrix}$.

- (7) 设随机变量 X 服从指数分布,它的概率密度为 $f(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & \text{其他}. \end{cases}$ $= \max \left\{ X, X^2, \frac{1}{2} \right\}$ 的分布函数是
 - (A) 连续的.

- (B) 只有一个间断点.
- (C) 只有两个间断点.
- (D) 多于两个间断点.
- (8) 设 X_1 , X_2 , …, X_8 是来自总体 $X \sim N(0, \sigma^2)$ 的简单随机样本, 则统计量 $\frac{(X_1 + X_2 + X_5 + X_6)^2}{(X_3 + X_4 - X_7 - X_8)^2}$ 服从

- (A) F(4, 2). (B) F(4, 4). (C) F(1, 1). (D) F(2, 4).
- 二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
- (9) 设函数 y = y(x) 由方程 $e^{x+y} \cos(xy) = e 1$ 确定,则 $\frac{d^2y}{dx^2}\Big|_{x=0} = \underline{\qquad}$
- (10) 设函数 $f(x) = \begin{cases} \cos x, & x \leq 1, \\ \ln x, & x > 1. \end{cases}$ 则定积分 $\int_{-1}^{\pi} e^{2f(x)} \sin x dx = \underline{\qquad}$.
- (11) 设二元函数 $z = \sin(xy) + \varphi\left(x, \frac{x}{y}\right)$, 其中 $\varphi(u, v)$ 具有二阶偏导数,且满足 φ''_{uv} +

$$\frac{1}{\gamma}\varphi''_{vv}=0$$
, $\bigvee z''_{xy}=$ ______.

- (12) 微分方程 $y'' + 2y' + y = 2e^{-x} + x$ 的通解为
- (13) 设A是 $m \times n$ 矩阵, 且其列向量组线性无关; B是n阶矩阵, 满足AB = A, 则 $r(\mathbf{B}^*) =$
- (14) 设二维随机变量(X, Y)的概率密度为 $f(x, y) = \begin{cases} 2e^{-(x+2y)}, & x>0, y>0, \\ 0, & \text{其他,} \end{cases}$ $+ Y^2) = _{---}$

三、解答题: $15 \sim 23$ 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数 $f(t) = \begin{cases} 2t^2 + \sin t, & t < 0, \\ y(t), & t \ge 0, \end{cases}$ 其中 y = y(t) 是微分方程 $\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = \mathrm{e}^{-t}$ 满足 y(0) = 0 的解. 求 f''(t).

(16) (本题满分10分)

设
$$f(x)$$
 是正值连续函数,满足 $f(x) \cdot \int_0^x f(x-t) dt = \sin x, f\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}$. 求 $f(x)$ 在 $\left[\frac{\pi}{2}, \pi\right]$ 上的平均值.

(17) (本题满分10分)

设二元函数 u=u(x,y) 具有 2 阶连续偏导数,且满足 $u''_{xx}=u''_{yy}$,u(x,2x)=x, $u_{x}'(x,2x)=x^2$,又设 D 是由半圆 $x^2+z^2=1(z\geq 0)$,曲线 $z=u''_{xx}(x,2x)$, $z=u''_{xy}(x,2x)$ 围成的平面图形。求 D 的面积.

(18) (本题满分10分)

设函数 f(x) 二阶可导,满足 f(0) = 1, f'(0) = 0, 且对任意 $x \ge 0$, 有 f''(x) - 5f'(x) + 6f(x) > 0.

证明:对任意 x > 0 有 $f(x) > 3e^{2x} - 2e^{3x}$.

(19) (本题满分10分)

计算曲面积分 $\iint_{\Sigma} z dS$, 其中 Σ 是锥面 S_1 : $z = \sqrt{x^2 + y^2}$ 被柱面 S_2 : $x^2 + y^2 = ax(a > 0)$ 所截下的有限部分.

(20) (本题满分11分)

设向量 $\boldsymbol{\alpha} = (1, 2, 1)^{\mathrm{T}}, \boldsymbol{\beta} = \left(1, \frac{1}{2}, 0\right)^{\mathrm{T}}, \boldsymbol{\gamma} = (0, 0, 8)^{\mathrm{T}}, \ \mathbf{i} \boldsymbol{A} = \boldsymbol{\alpha} \boldsymbol{\beta}^{\mathrm{T}}, \ b = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha}. \ \mathbf{x}$ 线性方程组 $2b^2 \boldsymbol{A}^2 \boldsymbol{x} = \boldsymbol{A}^4 \boldsymbol{x} + b^4 \boldsymbol{x} + \boldsymbol{\gamma}$ 的通解.

(21) (本题满分11分)

设实对称矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}$$
, 求使二次型 $f_1(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 与

 $f_2(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A}^* \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$)都化为标准形的正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ (其中 $\mathbf{y} = (y_1, y_2, y_3)^T, \mathbf{Q}$ 为 3 阶正交矩阵),并写出它们的标准形.

(22) (本题满分11分)

设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{3}, & -2 < x < 1, \\ 0, & 其他. \end{cases}$

- (I) 随机变量 $Y = X^2$ 的概率密度 $\varphi(y)$;
- (\blacksquare) $E(\mid Y-X^4\mid$).

(23) 设 X_1 , X_2 , …, X_n 是来自总体 X 的简单随机样本, 其中 X 的概率密度 $f(x; \theta)$ $= \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0, \\ 0, & \text{其他} \end{cases}$ 的最大似然估计量 $\hat{\theta}$ 所近似服从的分布.

模拟试题 (六)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
 - (1) 函数 $f(x) = x(x-2)^2 | x(x-2) |$ 的 2 阶不可导点个数为
 - (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

1

1

1

7

(2) 下列等式中不正确的是

(A)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^2$$
. (B) $\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{2n} \sum_{i=1}^{2n} \left(\frac{i}{2n}\right)^2$.

(B)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{2n} \sum_{i=1}^{2n} \left(\frac{i}{2n}\right)^2$$
.

(C)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{2n} \left(\frac{2i-1}{2n} \right)^2$$

(C)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{2n} \left(\frac{2i-1}{2n} \right)^2$$
. (D) $\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^n \left(\frac{3i-1}{3n} \right)^2$.

(3) 设二元函数 f(x, y) 在点 (x_0, y_0) 处的三个 2 阶偏导数 $f''_{xx}(x, y)$, $f''_{xx}(x, y), f''_{xx}(x, y)$ 存在,则必有

- (A) $f''_{xx}(x_0, y_0) = f''_{xx}(x_0, y_0)$.
- (B) f'_x(x, y) 在点(x₀, y₀) 处可微.
- (C) f'_x(x, y) 在点(x₀, y₀) 处连续.
- (D) f'_x (x, y₀) 在点 x₀ 处可微.

(4) 设 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$, 则以下各式正确的是

$$(A) \iint_{\Omega} \tan(x + y + z) dv = 1.$$

(B)
$$\iint_{\Omega} \tan(x + y + z) dv = 0.$$

(C)
$$\iint\limits_{\Omega}\tan(x+y+z)\,\mathrm{d}v=8\iint\limits_{\Omega_1}\tan(x+y+z)\,\mathrm{d}v(\Omega_1\stackrel{\cdot}{\to}\Omega$$
的第一卦限部分).

(D)
$$\iint_{\Omega} \tan(x + y + z) dv = \iint_{\Omega} \tan(3x) dv.$$

(5) 设 $A \in n$ 阶实矩阵,则方程组 Ax = 0 有解是方程组 $A^{T}Ax = 0$ 有解的

(A) 必要而非充分条件.

(B) 充分而非必要条件.

(C) 充分必要条件.

(D) 既非充分也非必要条件.

(B) -2.

(D) 2.

(7) 设随机变量 X, Y 相互独立, 概率密度都为 f(t), 则随机变量 Z = X - 2Y 的概率密 度 $f_z(z)$ 为

$$(\mathbf{A})f_Z(z) = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{z-x}{2}\right) \mathrm{d}x. \qquad (\mathbf{B})f_Z(z) = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{x-z}{2}\right) \mathrm{d}x.$$

$$(B)f_Z(z) = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{x-z}{2}\right) dx.$$

$$(C)f_Z(z) = 2\int_{-\infty}^{+\infty} f(x)f(2(z-x))dx$$

$$(C)f_{Z}(z) = 2 \int_{-\infty}^{+\infty} f(x)f(2(z-x)) dx. \qquad (D)f_{Z}(z) = 2 \int_{-\infty}^{+\infty} f(x)f(2(x-z)) dx.$$

(8) 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N$ (0, σ^2) 的简单随机样本, 则统计量 $Y = \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)^{2}$ 的数学期望为

(A)
$$\frac{1}{n}\sigma^4$$
.

(B)
$$\frac{2}{n}\sigma^4$$
.

(C)
$$\frac{1+n}{n}\sigma^4$$
.

(D)
$$\frac{2+n}{n}\sigma^4$$
.

二、填空题: 9~14 小题,每小题4分,共24分.请将答案写在答题纸指定位置上.

(9) 设函数
$$f(x) = \begin{cases} (e^x + \sin x)^{\frac{1}{\ln(1+x)}}, & x > 0, \\ a, & x \le 0 \end{cases}$$
 连续,则常数 $a =$ _____.

(10) 设二元函数
$$f(u, v)$$
 可微,则 $\frac{\partial}{\partial x} f\left(e^{xy}, \cos \frac{1}{x}\right) = \underline{\qquad}$

$$(11) \sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} + (-1)^{\frac{n}{\cos \frac{n}{2}}} \frac{1}{2^n} \right] = \underline{\hspace{1cm}}.$$

(12) 设 2 阶常系数齐次线性微分方程 y'' + py' + qy = 0 的通解为

$$y = e^x \left(C_1 \cos x + C_2 \sin x \right),\,$$

则 2 阶非齐次线性微分方程 $y'' + py' + qy = e^x \cos x$ 应具有的特解形式为

(13) 设4阶矩阵

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

(14) 某人向同一目标独立重复射击,每次射击命中目标的概率为p (0 < p < 1),记 A为"此人第4次射击恰好是第2次命中目标"这一事件,又记X为服从参数是P(A)的0-1 分布的随机变量,则 $E(X^2)$ =

三、解答题: 15~23 小题, 共94 分. 请将解答写在答题纸指定位置上. 解答应写出文 字说明、证明过程或演算步骤.

(15) (本题满分10分)

求不定积分
$$\int \frac{1}{\sin x \cos x} \sqrt{\sin^4 x + \cos^4 x} dx$$
.

(16) (本题满分10分)

已知
$$f_n(x)$$
 满足 $f_n'(x) = f_n(x) + x^{n-1}e^x$ 及 $f_n(1) = \frac{e}{n}(n = 1, 2, \dots)$,求
$$s(x) = \sum_{n=1}^{\infty} \frac{1}{n+1} f_n(x).$$

(17) (本题满分10分)

已知二元连续函数 f(x,y) 满足 $f(x,y) = y + \int_0^x f(x-t,y) dt, g(x,y)$ 满足 $g'_x(x,y) = g'_y(x,y) = 1$ 及 g(0,0) = 0. 求二重积分 $\iint_D f(\sqrt{x}, g(x,y)) d\sigma$, 其中 D 是由曲线 $x = y^2$ 及直线 x = 1 围成的平面图形.

(18) (本题满分10分)

设曲线
$$L:\begin{cases} x = \sin z, \\ y = 0. \end{cases}$$

- (I) 求曲线积分 $\int_{\widehat{O}A} (e^z \sin x + x z) dz + (e^z \cos x z) dx$,其中, $\widehat{O}A$ 是由原点沿曲线 L 到点 $A(0,0,\pi)$ 的有向曲线;
 - (II) 记由曲线 $L(0 \le z \le \pi)$ 绕 z 轴旋转—周而成的曲面(外侧) 为 Σ ,求曲面积分 $\oint_{\Sigma} xz \mathrm{d}y \mathrm{d}z + 2xy \mathrm{d}z \mathrm{d}x + 3xy \mathrm{d}x \mathrm{d}y.$

(19) (本题满分10分)

设函数 f(x) 在 [a, b] 上连续,在 (a, b) 内 2 阶可导,且 $f'_+(a) > 0$,f(b) = 0. 此外存在 $c \in (a, b)$,使得 f(c) = 0,f'(c) < 0. 证明:存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

(20) (本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1, 0, a)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (b, 3, 5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, b)^T$ 线性表示,但 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由向量组 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示,求常数 a, b.

(21) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y} ($ 其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$ 以及 \mathbf{Q} 是正交矩阵)下的标准形为 $y_1^2 + y_2^2 - y_3^2$, 且 \mathbf{Q} 的第 3 列为 $\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$, 求对称矩阵 \mathbf{A} 的伴随矩阵 \mathbf{A}^* .

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} \frac{1}{4}(1 - x^3y - xy^3), & |x| < 1, & |y| < 1, \\ 0, & \text{ 其他}. \end{cases}$$

- 求(I) 随机变量 $Z = X^2$ 的概率密度 $f_z(z)$;
 - (Ⅱ) 随机变量 $W = (X Y)^2$ 的数学期望.

(23) (本题满分11分)

(I)设总体 X 的概率分布为

X	1	2	3
P	$1-\theta$	$\theta - \theta^2$	$ heta^2$

(其中, $\theta \in (0, 1)$ 是未知参数). 以 N_i 表示来自总体 X 的简单随机样本 X_1 , X_2 , …, X_n 中取值等于 i 的个数 (i=1, 2, 3) ,求常数 a_1 , a_2 , a_3 ,使得 $T = \sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量.

(II) 当 n=300, $\theta=0.5$ 时,用中心极限定理计算上述样本中取值等于 2 的 N_2 的概率 $P(N_2>80)$. (标准正态分布函数 $\Phi(x)$ 的值: $\Phi(0.57)=0.7157$, $\Phi(0.67)=0.7486$, $\Phi(0.77)=0.7794$.)

模拟试题 (七)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.
 - (1) 方程 $2^{x} x^{2} 1 = 0$ 的不同实根个数为
 - (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.

- (2) $\mathcal{E}_{0} F(x) = \int_{0}^{x} \max\{e^{-t}, e^{t}\} dt, \mathbb{M}$
- (A) $F(x) = \begin{cases} 1 e^{-x}, x < 0, \\ e^{x} 1, x \ge 0. \end{cases}$
- (B) $F(x) = \begin{cases} e^{-x} 1, x < 0, \\ e^{x} 1, x \ge 0. \end{cases}$
- (C) $F(x) = \begin{cases} 1 e^{-x} < 0, \\ 1 e^{x} \ge 0. \end{cases}$
- (D) $F(x) = \begin{cases} e^{-x} 1, x < 0, \\ 1 e^{x}, x \ge 0. \end{cases}$

[] t散时,下列结论正确的

7

- (3) 设 $\{a_n\}$ 是单调减少收敛于零的正项数列,则当级数 $\sum_{n=1}^{\infty} a_n$ 发散时,下列结论正确的是
 - (A) 级数 $\sum_{n=1}^{\infty} a_{2n-1}$ 收敛,而级数 $\sum_{n=1}^{\infty} a_{2n}$ 发散.
 - (B) 级数 $\sum_{n=1}^{\infty} a_{2n-1}$ 发散,而级数 $\sum_{n=1}^{\infty} a_{2n}$ 收敛.
 - (C) 级数 $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 收敛.
 - (D) 级数 $\sum_{n=1}^{\infty} (a_{2n-1} a_{2n})$ 收敛.

]

- (4) 设 Σ 是半球面 $x^2+y^2+z^2=4(z\geq 0)$ 的上侧,则曲面积分 $\iint_{\Sigma}(x+2)\,\mathrm{d}y\mathrm{d}z+z\mathrm{d}x\mathrm{d}y$ 等于
 - (A) $2 \iint_{D_{-}} \sqrt{4 y^2 z^2} dy dz$.
 - (B) $2 \iint_{D_{yz}} (\sqrt{4-y^2-z^2}+2) \, dy dz + \iint_{D_{xy}} \sqrt{4-x^2-y^2} \, dx dy$.
 - (C) $2 \iint_{D_{yz}} \sqrt{4 y^2 z^2} dydz + \iint_{D_{xy}} \sqrt{4 x^2 y^2} dxdy.$
 - (D) $\iint_{D_{yy}} \sqrt{4 x^2 y^2} dx dy$.

其中 D_{xx} , D_{yz} 分别是 Σ 在 xOy 平面与 yOz 平面的投影.

(5) 设向量组 α,β,γ 线性无关,向量组 α,β,δ 线性相关,则

- (A) δ 可由 α , β , γ 线性表示, 且表示式是唯一的.
- (B) δ 可由 α , β , γ 线性表示, 但表示式不是唯一的.
- (C) β 不可由 α , γ , δ 线性表示.
- (D) δ 不可由 α,β,γ 线性表示.

(6) 设A 是n 阶矩阵以及以下命题:

- ① $A \neq n$ 个不同的特征值.
- ② A有 n 个线性无关的特征向量.
- ③ A 是实对称矩阵.
- ④ A 的每个 n_i 重特征值 λ_i 的特征矩阵 $\lambda_i E_n A$ 都满足 $r(\lambda_i E_n A_n) = n n_i$. 则 A 可相似对角化的充分必要条件是
 - (A) 12.
- (B) 23.
- (C) 24.
- (D) ①4.

Γ

]

7

[

- (7) 下列命题中不正确的是
- (A) 设二维随机变量(X,Y) 在矩形区域 $\{(x,y) \mid a \le x \le b, c \le y \le d\}$ 上服从均匀分布,则 X与 Y相互独立.
 - (B) 设二维随机变量(X,Y) 的概率密度

$$f(x,y) = \begin{cases} abe^{-(ax+by)}, & x > 0, y > 0, \\ 0, & \text{ide} \end{cases} (其 + a, b) \text{ and all } \text{ all } \text{ and all } \text{ all$$

则 X 与 Y 相互独立.

- (C) 设二维随机变量(X,Y) 在圆域{ $(x,y) | x^2 + y^2 \le R^2$ }上服从均匀分布(其中,R是正数),则X,Y相互独立.
- (D) 设 X_1, X_2, X_3, X_4 是来自同一总体的简单随机样本,则随机变量 $X = f_1(X_1, X_2), Y = f_2(X_3, X_4)$ (其中, f_1, f_2 都是连续函数) 相互独立.

(8) 设总体 $X\sim N(\mu_1,\sigma^2)$, $Y\sim N(\mu_2,\sigma^2)$, 它们相互独立,又设 X_1,X_2,\cdots,X_{n_1} 和 Y_1,Y_2 , … , Y_{n_2} 是分别来自 X 和 Y 的简单随机样本 , 记

$$Z = \frac{\sum\limits_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum\limits_{j=1}^{n_2} (Y_j - \overline{Y})^2}{n_1 + n_2 - 2} (\not \! \! \pm \not \! \! \! \! + , \overrightarrow{X} = \frac{1}{n_1} \sum\limits_{i=1}^{n_1} X_i, \overrightarrow{Y} = \frac{1}{n_2} \sum\limits_{j=1}^{n_2} Y_j) ,$$

则 DZ 为

(A) σ^2 .

(B)
$$\frac{\sigma^2}{n_1 + n_2 - 2}$$
.

(C)
$$\frac{\sigma^4}{n_1 + n_2 - 2}$$
.

(D)
$$\frac{2\sigma^4}{n_1 + n_2 - 2}$$
.

]

- 二、填空题: 9~14 小题,每小题4分,共24分.请将答案写在答题纸指定位置上.
- (9) 设极限 $\lim_{x\to 0} \frac{x-\sin x+f(x)}{x^4} = 1$,则极限 $\lim_{x\to 0} \frac{f(x)}{x^3} =$ ______.
- (10) 设函数 z = f(x + y, yg(x)), 其中, f 具有 2 阶连续偏导数, 曲线 w = g(x) 在点 (0, 1) 处的切线方程为 w = 1 + x, 且 f(u, v) 的各阶偏数在 u = v 处的值都为 1, 则 $\frac{\partial^2 z}{\partial x \partial y} \bigg|_{x=0 \atop x=1} = \underline{\qquad}.$
 - (11) 曲面 $z = x^2 + y^2$ 被上半球面 $x^2 + y^2 + z^2 = 2$ ($z \ge 0$) 截下的有限部分 Σ 的面积为
 - (12) 设函数 $f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ & \text{其余弦级数与正弦级数的和函数分别为} \\ 1 2x, & \frac{1}{2} < x \le 1, \end{cases}$
- $s_1(x)$ 与 $s_2(x)$,则 $s_1(-1)$ 与 $s_2(\frac{5}{2})$ 分别为______.
- (13) 设 A, B 分别为 2 阶与 4 阶矩阵,且 r(A) = 1, r(B) = 2, A^* , B^* 分别是 A = B 的伴随矩阵,则

$$r\begin{pmatrix} O & A^* \\ B^* & O \end{pmatrix} = \underline{\hspace{1cm}}.$$

- (14) 设随机变量 X 与 Y 相互独立,都服从参数为 1 的指数分布,即它们的概率密度都为 $f(t) = \begin{cases} e^{-t}, & t > 0, \\ 0, & \text{其他}, \end{cases}$ 则 $P(\max\{X, Y\} \leq 1) = \underline{\qquad}$.
- 三、解答题: $15 \sim 23$ 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15) (本题满分10分)

设函数 y(x) 在[0, + ∞)上有连续导数,且满足

$$y(x) = 1 + x + 2 \int_0^x (x - t)y(t)y'(t) dt$$

求 $y^{(n)}(x)$.

(16) (本题满分10分)

求三元函数 $f(x, y, z) = 2x + 2y + x^2 + y^2 - z^2$ 在 Ω : $x^2 + y^2 + z^2 \le 1$ 上的最大值与最小值.

(17) (本题满分10分)

证明: 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $2\sin x + \tan x > 3x$.

(18) (本题满分10分)

设
$$\alpha = \lim_{x \to 0^+} \frac{x^2 \tan \frac{x}{2}}{1 - (1 + x)^{x \sin^2 \sqrt{x}}}$$
,求级数 $\sum_{n=1}^{\infty} n^2 \sin^{n-1} \alpha$ 的和.

(19) (本题满分10分)

计算曲线积分
$$I = \int_{c} \frac{1}{x^2 + y^2} (x dy - y dx),$$

其中,
$$C$$
 为曲线
$$\begin{cases} x = a(t-\sin t) - a\pi, (a>0) \text{ 从 } t = 0 \text{ 到 } t = 2\pi \text{ 的一段}. \end{cases}$$

(20) (本题满分11分)

- (I) 求常数 a 的值.
- (II) 对上述算得的 a 值, 求方程组 (A) 与 (B) $\begin{cases} x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1 \end{cases}$ 有公共解时的 λ 值 及公共解.

(21) (本题满分11分)

设 A 是 3 阶实对称矩阵, 其秩为 2, 且满足

$$A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

- (I) 求A*;
- (II) 求正交变换 $\mathbf{x} = \mathbf{C}\mathbf{y}$ (其中, $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$, \mathbf{C} 为正交矩阵), 使得二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} (\mathbf{A}^* + \mathbf{A}) \mathbf{x}$ 成为标准形,并写出该标准形.

(22) (本题满分11分)

设二维随机变量(U, V)的概率密度为

$$f(u, v) = \begin{cases} 1, & 0 < u < 1, & 0 < v < 2u, \\ 0, & \text{ 其他 } . \end{cases}$$

又设 X 与 Y 都是离散型随机变量,其中 X 只取 -1,0,1 三个值,Y 只取 -1,1 两个值,且 EX=0.2,EY=0.4, $P(X=-1,Y=1)=P(X=1,Y=-1)=P(X=0,Y=1)=\frac{1}{3}P\Big(V\leqslant\frac{1}{2}\,\Big|\,U\leqslant\frac{1}{2}\Big)$. 求

- (I) (X, Y) 的概率分布.
- (\blacksquare) Cov(X, Y).

(23) (本题满分11分)

设二维随机变量 (X, Y) 的概率密度为

$$f(x, y) = \begin{cases} \frac{3}{\theta^3} x^2 e^{-(y-\theta)}, & 0 < x < \theta, \ \theta < y < +\infty, \\ 0, & \not\equiv \ell, \end{cases}$$

其中, θ 是未知参数,又设 X_1 , X_2 , …, X_n 是来自总体X的简单随机样本.

- (I) 计算 θ 的矩估计量 θ , 并判断 θ 是否为无偏估计量.
- (II) 求 $\hat{D}(\hat{\theta})$.

模拟试题 (八)

一、选择题: $1 \sim 8$ 小题,每小题 4 分,共 32 分。每小题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(1) 设函数
$$y = \frac{1}{(x-1)(x+2)}$$
, 则 $y^{(n)}$ 为

(A)
$$(-1)^n \frac{n!}{3} \left[\frac{1}{(x-1)^n} - \frac{1}{(n+2)^n} \right].$$

(B)
$$(-1)^n \frac{n!}{3} \left[\frac{1}{(x-1)^{n+1}} - \frac{1}{(n+2)^{n+1}} \right].$$

(C)
$$(-1)^{n+1} \frac{(n+1)!}{3} \left[\frac{1}{(x-1)^{n+1}} - \frac{1}{(x+2)^{n+1}} \right].$$

(D)
$$(-1)^{n+1} \frac{(n+1)!}{3} \left[\frac{1}{(x-1)^{n+2}} - \frac{1}{(x+2)^{n+2}} \right].$$

(2) $\mbox{iff } M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1 + x^2} \cos^2 x \, dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, dx,$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) dx, 则它们大小次序为$$

(A) M < N < P.

(B) N < M < P.

(C) P < M < N.

(D) P < N < M.

Γ

7

Γ

1

- (3) 微分方程 $x^2y'' + xy' + y = 2\sinh x$ 应有的特解形式为
- (A) $a\cos\ln x + b\sin\ln x$;

(B) $(a\cos\ln x + b\sin\ln x)\ln x$.

(C) $ax \cosh x$.

(D) $bx \sinh x$.

Γ

- (4) 收敛半径 R = 1 是幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x = -1 处条件收敛的
- (A) 充分而非必要条件.

(B) 必要而非充分条件.

(C) 充分必要条件.

(D) 既非必要又非充分条件.

- (5) 设A 是n 阶可逆矩阵, α 是A 的对应特征值 λ 的特征向量,且存在n 阶可逆矩阵P,使得 $P^{-1}AP = B$,则
 - (A) \mathbf{B}^* 有特征值 λ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$.
 - (B) \mathbf{B}^* 有特征值 λ 及对应的特征向量(\mathbf{P}^*)⁻¹α.
 - (C) \mathbf{B}^* 有特征值 $\frac{|\mathbf{A}|}{\lambda}$ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$.

[]

7

- (6) 设有 n 维列向组(\mathbf{I}): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$,…, $\boldsymbol{\alpha}_m$ 和(\mathbf{II}): $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$,…, $\boldsymbol{\beta}_m$ ($m \leq n$),记矩阵 $\boldsymbol{A} = (\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$,…, $\boldsymbol{\alpha}_m$) 和 $\boldsymbol{B} = (\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$,…, $\boldsymbol{\beta}_m$),则下列命题不正确的是
 - (A) 当(I) 与(II) 等价时,(I) 与(II) 等秩.
 - (B) 当(Ⅰ)与(Ⅱ)等秩时,(Ⅰ)与(Ⅱ)等价.
 - (C) 当A与B等价时,A与B等秩.
 - (D) 当A与B等秩时,A与B等价.

A >7

(7) 袋内有 7 个球,其中 4 个红球,3 个白球.现不放回地取球,每次取 1 个,记 $A = \{\$ \text{二次取球才取到白球}\},$

 $B = \{$ 第二次取球取到的是白球 $\}$,

则它们的概率分别为

(A)
$$P(A) = P(B) = \frac{2}{7}$$
.

(B)
$$P(A) = \frac{2}{7}, P(B) = \frac{3}{7}$$
.

(C)
$$P(A) = P(B) = \frac{3}{7}$$
.

(D)
$$P(A) = \frac{3}{7}, P(B) = \frac{2}{7}$$
.

(8) 设 $X \sim N(a,\sigma^2)$, $Y \sim N(b,\sigma^2)$, 且相互独立. 现分别从总体 X 和 Y 各抽取容量为 9 和 11 的简单随机样本,记它们的方差为 S_X^2 和 S_Y^2 , 并记 $S_{12}^2=\frac{1}{2}(S_X^2+S_Y^2)$, $S_{XY}^2=\frac{1}{18}(8S_X^2+10S_Y^2)$, 则上述四个统计量 S_X^2 , S_Y^2 , S_{12}^2 和 S_{XY}^2 中方差最小者为

- $(A) S_v^2$.
- (B) S_{v}^{2} .
- (C) S_{1}^{2} .
- (D) S_{xy}^2 .

[

- 二、填空题: 9~14 小题,每小题4分,共24分.请将答案写在答题纸指定位置上.
- (9) 已知f(x) 是连续函数,且满足

$$\int_0^x [5f(t) - 2] dt = f(x) - e^{5x},$$

则 $f''(0) = _____.$

(10) 设二元可微函数 z=z(x,y) 是由方程 $\int_{y}^{z} e^{t^2} dt + xy + yz = 0$ 确定, 则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0\\y=0}} =$

(11) 设有曲面 $S: x^2 + y^2 + z^2 = x$, 平面 $\pi_1: x - y - \frac{1}{2}z = 2$ 和 $\pi_2: x - y - z = 2$, 则垂直于 π_1 与 π_2 的 S 的切平面方程为______.

(12) 设 C 是正向椭圆 $4x^2 + y^2 = 8x$,则曲线积分 $\oint_C e^{y^2} dx + x dy = _____.$

(13) 已知 3 阶矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, 则 3 阶行列式 $\left| \left(\frac{1}{2} A^2 \right)^{-1} - 3A^* \right| = \underline{\qquad}$.

(14) 设 X 是离散型随机变量,其分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{4}, & 0 \le x < 1, \\ \frac{1}{2}, & 1 \le x < 2, \\ 1, & x \ge 2, \end{cases}$$

三、解答题:15~23小题,共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

设区域 $D = \{(x,y) \mid 0 \le x \le 2, \sqrt{2x - x^2} \le y \le \sqrt{4 - x^2}\}$, 分别求 D 绕 x 轴和 y 轴旋转 一周而成的旋转体体积 V_x 与 V_x .

(16) (本题满分10分)

设二元函数
$$f(x,y) = \begin{cases} \frac{(x+y)^n}{x^2+y^2}, (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$
 为大于1的正整数. 分别计算使 $f(x,y) = (0,0)$

 γ) 在点(0,0) 处连续与可微的最小 n 的值.

(17) (本题满分10分)

设数列
$$\{x_n\}$$
 满足 $x_1 > 0$, $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{1}{x_n^2} \right)$, 求极限
$$\lim_{n \to \infty} \frac{\mathrm{e}^{\tan(x_n-1)} - \mathrm{e}^{\sin(x_n-1)}}{\left(x_n - 1\right)^3}.$$

(18) (本题满分10分)

求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n}$$
 的收敛域与和函数.

(19) (本题满分10分)

设对于半空间 x > 0 内任意光滑有向闭曲面 S,都有

$$\oint_{S} xf(x) dydz - xyf(x) dzdx - e^{2x}zdxdy = 0,$$

其中,函数 f(x) 在(0, + ∞) 内具有连续的导数,且 $\lim_{x\to 0^+} f(x) = 1$. 求 f(x).

(20) (本题满分11分)

设方程组 $Ax = \beta$ 有解 $(1,2,2,1)^{T}$ 和 $(1,-2,4,0)^{T}$,其中 $A = (\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})$ 的秩为3,且 $\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}$ 都是4维列向量,求方程组 $By = \alpha_{1} + 2\alpha_{2}$ 的通解,其中,矩阵 $B = (\alpha_{3},\alpha_{2},\alpha_{1},\beta-\alpha_{4})$.

(21) (本题满分11分)

设 $f(x_1,x_2,x_3) = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x}$,其中, $\boldsymbol{x} = (x_1,x_2,x_3)^{\mathsf{T}}$,

$$A = \begin{pmatrix} 1 & 2b & 0 \\ 0 & a & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

- (I) 求二次型 $f(x_1,x_2,x_3)$ 的矩阵 \boldsymbol{B} (实对称矩阵),并计算 \boldsymbol{B} 有特征值 $\lambda=0,1,4$ 时常数 a,b 的值.
- (II) 对上述算得的 a,b 值, 用正交变换 x = Qy(Q 是正交矩阵, $y = (y_1,y_2,y_3)^T$) 将 $f(x_1,x_2,x_3)$ 化为标准形.

(22) (本题满分11分)

设二维随机变量(X,Y) 的概率密度为 $f(x,y) = \begin{cases} e^{-y}, 0 < x < y, \\ 0, 其他, \end{cases}$

- (I) (X,Y) 的条件概率密度 $f_{X|Y}(x \mid y)(y > 0)$.
- (Π) 概率 $P(X > 2 \mid Y > 4)$ 和 $P(X > 2 \mid Y = 4)$.

(23) (本题满分11分) 设总体 X 的概率分布为

X	0	1	2	3	
		$2\theta(1-\theta)$			 $(0 < \theta < \frac{1}{2}).$

- (I) 试利用总体 X 的简单随机样本值 3,1,3,0,3,1,2,3,求 θ 的矩估计值 $\hat{\theta}$.
- (\mathbb{I}) 设 X_1, X_2, \cdots, X_n 是来自X(其未知参数 θ 为(\mathbb{I}) 中确定的 $\hat{\theta}$) 的简单随机样本,则由中心极限定理知,当n充分大时,取值为2的样本个数Y近似地服从正态分布,求此正态分布的两个参数 μ 和 σ^2 .

模拟试题 (九)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
 - (1) 设函数 y = f(x)在[0, a]上可导,则曲线 L_1 , L_2 , L_3 :

7

与 y = f(x), y = f'(x), $y = \int_{0}^{x} f(t) dt$ 的对应关系为

(A) L_1 , L_2 , L_3 .

(B) L_1 , L_2 , L_3 .

 $(C) L_2, L_3, L_1.$

(D) L_3 , L_1 , L_2 .

(2) 设 f(x)是($-\infty$, $+\infty$)上连续的奇函数,则

 $(A) \int_{-\infty}^{+\infty} f(x) dx$ 收敛.

- (B) $\int_{-\infty}^{+\infty} f(x) dx$ 发散.
- (C) $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时, 其值必为零. (D) $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时, 其值不为零.

(3) 已知曲面 $S: x^2 + 2y^2 + 3z^2 = 1(y \ge 0, z \ge 0)$, 平面区域 $D: x^2 + 2y^2 \le 1(x \ge 0)$, 则

(A)
$$\iint_{S} x dS = \iint_{D} x dx dy$$
.

(B)
$$\iint_{S} y dS = \iint_{D} y dx dy$$
.

(C)
$$\iint_{S} x dS = \iint_{D} y dx dy.$$

(D)
$$\iint_{S} y dS = \iint_{D} x dx dy$$
.

(4) 设 $y_1 = e^x - e^{-x} \sin x$, $y_2 = e^x + e^{-x} \cos x$ 是 2 阶常系数非齐次线性微分方程 $y'' + py' + e^{-x} \cos x$ 是 2 阶常系数非齐次线性微分方程 $y'' + py' + e^{-x} \cos x$ qy = f(x)的两个解,则 f(x)为

 $(A) 5e^x$.

(B) e^{3x} .

 $(C) e^{x}$.

(D) e^{-x} .

(5) 设A, B 都是n 阶实矩阵, 且齐次线性方程组Ax = 0 与Bx = 0 有相同的基础解系 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$, 则方程组① $(\boldsymbol{A} + \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$, ② $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}$, ③ $\boldsymbol{B}^* \boldsymbol{x} = \boldsymbol{0}$ 以及④ $\begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{B} \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 中,仍以 $\boldsymbol{\xi}_1$, ξ , 为基础解系的是

]

]

(A) ①②.	(B) 24.
(C) 34.	(D) ①③.

(6) 设A, B 都是n 阶实对称矩阵, 则A 与B 合同的充分必要条件为

- (A) $r(\boldsymbol{A}) = r(\boldsymbol{B})$.
- $(B) \mid A \mid = \mid B \mid.$
- (C) A, B 的特征值相同(多重特征值按一个计算).
- (D) 分别以 A, B 为矩阵的二次型有相同的规范形.

(7) 设随机变量 <math>X 的概率密度 $f(x) = \begin{cases} \frac{1}{2}, & -1 < x < 0, \\ \frac{1}{4}, & 0 \le x \le 2, \end{cases}$ 记 $Y = X^2$ 和二维随机变量 (X, 0, X) 其他,

Y)的分布函数为 F(x, y),则 F(1, 4)等于

$$(A) \frac{1}{4}$$
.

(B)
$$\frac{1}{2}$$
.

(C)
$$\frac{3}{4}$$
.

(8) 设随机变量 $t \sim t(n)$, 对 $\alpha \in (0, 1)$, $t_{\alpha}(n)$ 为满足 $P(t > t_{\alpha}(n)) = \alpha$ 的实数,则满足 $P(+t+\leq b) = \alpha$ 的 b 等于

(A) $t_{\frac{\alpha}{2}}(n)$.

(B) $t_{1-\frac{\alpha}{2}}(n)$.

(C)
$$t_{\frac{1-\alpha}{2}}(n)$$
.

(D)
$$t_{\frac{1+\alpha}{2}}(n)$$
.

二、填空题: 9~14 小题,每小题 4分,共 24分.请将答案写在答题纸指定位置上.

- (9) 设函数 y = y(x) 由微分方程 $x^2y' + y + x^2e^{\frac{1}{x}} = 0$ 及 y(1) = 0 确定,则曲线 y = y(x) 的 斜渐近线方程为
- (10) 设二元函数 f(x, y) 在点(0, 0) 处可微,且 $f'_x(0, 0) = 1$, $f'_y(0, 0) = -1$, 则极限 $\lim_{t\to 0} \frac{f(2t, 0) + f(0, \sin t) 2f(t, t)}{t} =$ ______.
 - (11) 记 Σ 为抛物面 $z = x^2 + y^2 (z \le 1)$ 的下侧,则曲面积分

$$\iint_{\Sigma} xy dy dz + x dz dx + x^2 dx dy = \underline{\qquad}.$$

(12) 函数 $f(x) = \sin^2 x$ 的麦克劳林展开式为_____.

(13) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{pmatrix}$ 及 3 阶矩阵 \mathbf{B} ,它们满足 $r(\mathbf{B}) = 2$, $r(\mathbf{AB}) = 1$,则

 $\lambda =$.

(14) 设 A, B, C 是相互独立事件,且 P(A) = 0.4,P(B) = P(C) = 0.5,则 $P(A - C \mid AB \cup C) = \qquad .$

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数 $y(x) = \varphi(\psi(x))$, 其中

$$\varphi(x) = \begin{cases} x, & |x| \leq 1, \\ \sin x, & |x| > 1, \end{cases} \psi(x) = \begin{cases} x^2, & |x| \leq 2, \\ \cos x, & |x| > 2, \end{cases}$$

求 y''(x).

(16) (本题满分10分)

设函数 $f(x)=\int_0^x \left(3-\frac{3}{2}\sqrt{t}-\frac{1}{\sqrt{t}}\right) \mathrm{d}t (x\geq 0)$,求由曲线 y=f(x) 及 x 轴围成的平面图形面积.

(17) (本题满分10分)

设函数 $f(x) = \begin{cases} e^x, & x \ge 0, \\ 1, & x < 0, \end{cases}$ $g(x) = \begin{cases} 1, & 0 \le x \le 2, \\ 0, & \text{其他}, \end{cases}$ 求曲线积分 $\int_c f(x)g(y-x) \, \mathrm{d}s$,其中,C 是正方形 |x| + |y| = 1.

(18) (本题满分10分)

设幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n} x^{2n} (-1 \le x \le 1)$ 的和函数为 s(x). 求

- (I) s(x)的表达式;
- (\mathbb{I}) 函数 $f(x) = e^x s(x) (-1 \le x \le 0)$ 的最值.

(19) (本题满分10分)

设函数 f(x) 在 [0, 1] 上可微,且满足 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$. 证明:存在 $\xi \in (0, 1)$,使 得 $f(\xi) + \xi f'(\xi) = 0$.

(20) (本题满分11分)

设A 是 3 阶矩阵, α_1 , α_2 , α_3 是线性无关的 3 维列向量组. 已知

$$\begin{aligned} \boldsymbol{A}\boldsymbol{\alpha}_1 &= \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 \,, \\ \boldsymbol{A}\boldsymbol{\alpha}_2 &= \boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_3 \,, \\ \boldsymbol{A}\boldsymbol{\alpha}_3 &= \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 \,, \end{aligned}$$

问a为何值时,A不能相似对角化?

(21) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x} ($ 其中, $\mathbf{x} = (x_1, x_2, x_3)^T$, \mathbf{A} 是 3 阶实对称矩阵) 经过正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y} ($ 其中, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵) 化为标准形 $2y_1^2 - y_2^2 - y_3^2$. 又设 $\mathbf{A}^* \boldsymbol{\alpha} = \boldsymbol{\alpha} ($ 其中, $\boldsymbol{\alpha} = (1, 1, -1)^T$).

- (I) 求Q, A.
- (II) 求可逆线性变换 $\mathbf{x} = C\mathbf{z}(其中, \mathbf{z} = (z_1, z_2, z_3)^T)$, 将 $f(x_1, x_2, x_3)$ 化为规范形.

(22) (本题满分11分)

设随机变量 X 是连续型的,它的概率密度为 $f_X(x) = \begin{cases} e^{-x}, & x>0, \\ 0, & x\leq 0; \end{cases}$ 的,它的分布律为

Y	- 1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

- (I) 当X与Y相互独立时,求Z = XY的分布函数 $F_z(z)$.
- (II) 求 Cov(X, X²).

(23) (本题满分11分)

对某个目标独立重复射击,直到命中为止. 现对目标进行 $n(n \ge 1)$ 轮这样射击,各轮射击次数分别为 k_1, k_2, \dots, k_n ,求命中率 p 的矩估计值与最大似然估计值.

模拟试题 (十)

一、选择题: 1~8小	题,每小题4分,	共32分.	每小题给出的四个选项中,	只有一个
选项是符合题目要求的,	请将所选项前的字	· 母填在答题	题纸指定位置上 .	

- (1) x = 0 是函数 $f(x) = \frac{(e^{\frac{1}{x}} + e) \tan x}{x(e^{\frac{1}{x}} 1)}$ 的
- (A) 可去间断点.

(B) 跳跃间断点.

(C) 无穷间断点.

(D) 第二类间断点, 但不是无穷间断点.

- (2) 设f(x)是连续函数,则 $\int_{-\infty}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (x \in (-\infty, +\infty)) 是 f(x)$ 为偶函数 的
 - (A) 充分而非必要条件.

(B) 必要而非充分条件.

(C) 充分必要条件.

(D) 既非充分又非必要条件.

7

(3) 级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^{2}}} dx (\alpha > -1)$$

(A) 绝对收敛.

(B) 条件收敛.

(C) 发散.

(D) 收敛或发散与 α 取值有关.

7

(4)
$$\exists I_i = \iint_{D_i} \sqrt{x^2 + y^2} d\sigma(i = 1, 2, 3)$$
, 其中
$$D_1 = \{(x, y) \mid x^2 + y^2 \leq 1\},$$

$$D_2 = \{(x, y) \mid (x - 1)^2 + y^2 \leq 1\},$$

$$D_3 = \{(x, y) \mid x^2 + (y - 1)^2 \leq 1\},$$

则 I_1 , I_2 , I_3 的大小满足

(A) $I_1 < I_2 = I_3$.

(B) $I_2 = I_3 < I_1$.

(D) $I_3 < I_2 = I_1$.

(C) $I_2 < I_3 = I_1$.

(5) 设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3, \, \boldsymbol{\alpha}_4)$ 是4 阶实对称矩阵,如果 $(1, 1, 0, 0)^{\mathrm{T}}, \, (1, 0, 1, 0)^{\mathrm{T}}$ 和 $(0, 0, 1, 1)^{\mathrm{T}}$ 是齐次线性方程组 $A^*z = 0$ 的一个基础解系,则二次型 $f(x_1, x_2, x_3, x_4)$ $= \mathbf{x}^{\mathrm{T}} A \mathbf{x} (\mathbf{x} = (x_1, x_2, x_3, x_4)^{\mathrm{T}})$ 的标准形应形如

(A) $a_1 y_1^2 + a_2 y_2^2 + a_3 y_3^2$.

(B) $b_1 y_1^2 + b_2 y_2^2$.

(C) $c_1 y_1^2$.

(D) $d_1 y_1^2 + d_2 y_2^2 + d_3 y_3^2 + d_4 y_4^2$.

(其中, a_1 , a_2 , a_3 , b_1 , b_2 , c_1 , d_1 , d_2 , d_3 , d_4 都是非零常数).

1

7

 $f_2(y) = \begin{cases} e^{-(y-1)}, & y \ge 1, \\ 0, & y < 1, \end{cases}$ $\exists f(x) = \begin{cases} af_1(x), & x < 1, \\ bf_2(x), & x \ge 1, \end{cases}$ $\exists f(x) \ne m$ $\exists f($ 足

(A)
$$a + \frac{1}{2}b = 1$$
.

(B)
$$\frac{1}{2}a + b = 1$$
.

(C)
$$a + \frac{1}{2}b = 0$$
.

(D)
$$\frac{1}{2}a + b = 0$$
.

(8) 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, 其中, 参数 μ , σ^2 末知. 记 $\overline{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i}, Q^{2} = \sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$,则假设 H_{0} : $\mu=0$ 的 t 检验使用的统计量为

(A)
$$\frac{n\overline{X}}{O}$$
.

(B)
$$\frac{(n-1)\overline{X}}{O}$$
.

(C)
$$\frac{\sqrt{n(n-1)} \overline{X}}{Q}$$
.

(D)
$$\frac{Q}{\sqrt{n(n-1)}}\frac{\overline{X}}{X}$$
.

二、填空题: 9~14 小题,每小题4分,共24分.请将答案写在答题纸指定位置上.

(9) 函数 $f(x) = \cos^2 x$ 的二阶麦克劳林公式(带拉格朗日型余项)为_____.

(10) 对
$$a > 0$$
, 定积分 $\int_{0}^{a} x \sqrt{ax - x^{2}} dx = _____.$

- (11) 微分方程 (x^2-1) dy + $(2xy-\cos x)$ dx = 0 满足y(0) = 1 的特解为
- (12) 设f(x, y)是二元连续函数,则 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{-\frac{1}{2}}^{1} f(r\cos\theta, r\sin\theta) r dr$ 在直角坐标系下的 二次积分(先 γ 后x)为
- (13) 设A 是 3 阶矩阵,满足 $A^3 = E_3$,记 $B = A^2 A 2E_3$,则 B^{-1} 关于 E_3 ,A, A^2 表示 式为
- $\overline{(14)}$ 设 X_1 , X_2 , … , X_5 是来自总体 $X \sim N(0, \sigma^2)$ 的一个简单随机样本,且统计量 $\frac{a(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}}$ 服从 t 分布,则正的常数 a =_____.
- 三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文 字说明、证明过程或演算步骤.

(15) (本题满分10分)

计算极限 $\lim_{x\to 0} f(g(x))$, 其中

$$f(x) = \begin{cases} \frac{\ln(1-x^3)}{x - \arcsin x}, & x < 0, \\ \frac{e^{-x} + \frac{1}{2}x^2 + x - 1}{x \sin \frac{x}{6}}, & x > 0, \end{cases} \qquad g(x) = \frac{e^{\frac{1}{x}} \arctan \frac{1}{x}}{1 + e^{\frac{2}{x}}}.$$

(16) (本题满足10分)

设 f''(x) 不变号,且曲线 y = f(x) 在点 (1, 1) 处的曲率圆为 $x^2 + y^2 = 2$,证明函数 f(x) 在 (1, 2) 内无极值点但有唯一零点.

(17) (本题满分10分)

设 $a_0=1$, $a_1=2$, $a_2=\frac{7}{2}$, $a_{n+1}=-\left(1+\frac{1}{n+1}\right)a_n$ ($n\geqslant 2$) ,求幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 的和函数 s(x) ,并求定积分 $\int_{-\frac{1}{2}}^{\frac{1}{2}}s(x)\,\mathrm{d}x$.

(18) (本题满分10分)

方程 $xe^{2x} - 2x - \cos x = 0$ 在(0, 1)内的实根个数.

(19) (本题满分10分)

记曲面积分 $\iint_S x^2 z dy dz + yz^2 dz dx + xz^2 dx dy$ (其中,S 是曲面 $z = x^2 + y^2$ ($z \le 1$) 的第一卦限部分上侧) 的值为 A,求满足 f(0) = A,f'(0) = -A 的 2 阶可导函数 f(x),使得 $y[f(x) + 3e^{2x}]$ dx + f'(x) dy 是某个二元函数的全微分.

(20) (本题满分11分)

设 α_1 , α_2 , α_3 , α_4 为 4 维列向量组, 其中 α_1 , α_2 , α_3 线性无关, α_4 = α_1 + α_2 + 2 α_3 . 已 知方程组

$$(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)\boldsymbol{x} = \boldsymbol{\alpha}_4$$

有无穷多解.

- (I) 求常数 a 的值.
- (II) 对求得的 a 值, 计算方程组的通解.

(21) (本题满分11分)

已知矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
 可相似对角化.

- (I) 求常数 a 的值.
- (II) 对(I) 中求得的 a 值,求正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}($ 其中, $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$, \mathbf{Q} 是正交矩阵),将二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x}$ 化为标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} xe^{-y}, & 0 < x < y, \\ 0, & \sharp \ell \ell, \end{cases}$$

- (I) 求随机变量 $U = \max\{X, Y\}$ 的概率密度 $\varphi(u)$.
- (**II**) 求概率 *P*(*U*≤*EU*).

(23)设 $X_1,\ X_2,\ \cdots,\ X_n$ 是总体 $X\sim N(0,\ 1)$ 的简单随机样本, $\overline{X},\ S^2$ 分别是样本均值与方差,求

- (I) $E(\overline{X}^2S^4)$.

模拟试题(一)解答

一、选择题

 答案
 (1) (2) (3) (4) (5) (6) (7) (8)

 C D C C B C A A

(1) 当|x|≤1 时, 由1≤ $\sqrt[n]{1+|x|^{3n}}$ ≤ $\sqrt[n]{2}$ (n=1, 2, …)知 $f(x) = \lim_{n \to \infty} \sqrt[n]{1+|x|^{3n}} = 1$;

当
$$|x| > 1$$
时, $f(x) = |x|^3 \lim_{n \to \infty} \sqrt{1 + \left| \frac{1}{x} \right|^{3n}} = |x|^3$, 所以

$$f(x) = \begin{cases} 1, & |x| \le 1, \\ |x|^3, & |x| > 1. \end{cases}$$

显然 f(x) 在($-\infty$, -1) \cup (-1, 1) \cup (1, $+\infty$) 上可导, 但由

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = 0, \quad \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{3} - 1}{x - 1} = 3$$

知, f(x)在点 x=1 处不可导. 此外, 由 f(x) 是偶函数知 f(x) 在点 x=-1 处也不可导. 因此选 (C).

附注 由于 f(x) 是由数列极限确定的,所以要讨论它的可导性,首先要通过数列极限计算,确定 f(x) 的解析表达式.

(2) 由于
$$F(x) = \int_0^{2x} \cos^2(2x - t) dt$$
 $\frac{\diamondsuit u = 2x - t}{\int_0^{2x} \cos^2 u du}$,所以 $F'(x) = 2\cos^2 2x$, $F''(x) = -4\sin 4x$.

因此选 (D).

附注 要计算 $\frac{\mathrm{d}}{\mathrm{d}x} \int_a^{\varphi(x)} f(t,x) \, \mathrm{d}t$ 时,首先应将被积函数中的 x 移到积分号外,或移到积分限中去.

(3) 由于当 $AC - B^2 = 0$ 时, $f(x_0, y_0)$ 可能是极值,也可能不是极值,所以选项(C)不正确. 因此选(C).

附注 (C)的不正确性可用下列例子说明:

设 $f_1(x, y) = x^3 + y^3$,记 $(x_0, y_0) = (0, 0)$,则 $f'_x(x_0, y_0) = f'_y = (x_0, y_0) = 0$,且 $AC - B^2 = 0$. 此时, $f(x_0, y_0) = 0$ 不是f(x, y)的极值.

设
$$f_2(x, y) = x^4 + y^4$$
, 记 $(x_0, y_0) = (0, 0)$, 则 $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$,

且 $AC - B^2 = 0$. 此时, $f(x_0, y_0) = 0$ 是 f(x, y) 的极值(极小值).

(4)由于 Ω 关于xOy 平面对称,也关于yOz 平面对称,且被积函数z 在对称点处的值不变,所以 $\iint_{\Omega} z dv = 4 \iint_{\Omega} z dv$. 因此选 (C).

附注 设三重积分 $\iint_V f(x,y,z) \, dv$. 如果 V 具有某种对称性, 且 f(x,y,z) 在对称点处的值彼此相等(或互为相反数), 则

$$\iiint\limits_V f(x,y,z)\,\mathrm{d} v \,=\, 2 \iint\limits_{V_1} f(x,y,z)\,\mathrm{d} v \Big(\iint\limits_V f(x,y,z)\,\mathrm{d} v \,=\, 0 \Big),$$

其中 V₁ 是 V 按上述的对称性划分成的两部分之一.

(5) 由于
$$\begin{pmatrix} \mathbf{O} & (2A)^* \\ (3B)^{-1} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{O} & |2A|(2A)^{-1} \\ (3B)^{-1} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{O} & 8(2A^{-1}) \\ (3B)^{-1} & \mathbf{O} \end{pmatrix},$$
所以, $\begin{pmatrix} \mathbf{O} & (2A)^* \\ (3B)^{-1} & \mathbf{O} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{O} & ((3B)^{-1})^{-1} \\ (8(2A)^{-1})^{-1} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{O} & 3B \\ \frac{1}{4}A & \mathbf{O} \end{pmatrix}.$ 因此选(B).

附注 题解中应用了以下公式(应记住):

设A 是n 阶矩阵,则 $|A^*| = |A|^{n-1} (n \ge 2)$, $|kA| = k^n |A| (k$ 是常数).

设A 是n 阶可逆矩阵,则 $A^* = |A|A^{-1}$.

设
$$A$$
, B 分别是 m , n 阶可逆矩阵,则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$.

(6) 由题设知 $r(P) + r(Q) \le 3$. 由于当 $t \ne 6$ 时, r(Q) = 2, 所以此时 $r(P) \le 1$. 此外, 由 P 是非零矩阵知, $r(P) \ge 1$. 从而 r(P) = 1. 因此选 (C).

附注 本题也可按以下方法计算:

当 $t \neq 6$ 时, $r(\boldsymbol{Q}^{\mathsf{T}}) = 2$,所以齐次线性方程组 $\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系中只包含 3 - 2 = 1 个线性无关的解向量. 从而由 $\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{P}^{\mathsf{T}} = \boldsymbol{O}$ 知,非零矩阵 $\boldsymbol{P}^{\mathsf{T}}$ 的线性无关列向量个数为 1,即得 $r(\boldsymbol{P}) = r(\boldsymbol{P}^{\mathsf{T}}) = 1$.

(7)
$$iallow{A_1} = {第一次取到的是一等品}, A_2 = {第二次取到的是一等品},$$

则
$$p = P(A_1A_2 | A_1 \cup A_2) = \frac{P(A_1A_2(A_1 \cup A_2))}{P(A_1 \cup A_2)}$$
, 其中

$$P(A_1 A_2(A_1 \cup A_2)) = P(A_1 A_2) = P(A_1) P(A_2 | A_1) = \frac{4}{10} \times \frac{3}{9} = \frac{2}{15},$$

$$P(A_1 \cup A_2) = 1 - P(\overline{A_1}\overline{A_2}) = 1 - P(\overline{A_1})P(\overline{A_2}|\overline{A_1}) = 1 - \frac{6}{10} \times \frac{5}{9} = \frac{2}{3}$$

所以 $p = \frac{1}{5}$. 因此选 (A).

附注 题解中的 $P(A_1 \cup A_2)$ 也可按加法公式计算:

$$\begin{split} P(A_1 \cup A_2) &= P(A_1) + P(A_2) - P(A_1 A_2) = P(A_1) + P(\overline{A}_1 A_2) \\ &= P(A_1) + P(\overline{A}_1) P(A_2 | \overline{A}_1) = \frac{4}{10} + \frac{6}{10} \times \frac{4}{9} = \frac{2}{3}. \end{split}$$

显然,它没有题解中的计算简捷.

(8) 由于 $E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{\lambda}$, $D\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n\lambda^{2}}$, 所以由列维—林德柏格中心极限定理得

$$\lim_{n\to\infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right) = \lim_{n\to\infty} P\left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{\lambda}}{\sqrt{\frac{1}{n\lambda^2}}} \le x\right) = \Phi(x).$$

因此选 (A).

附注 列维—林德伯格中心极限定理是:

设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,它们的数学期望都为 μ , 方差都为 σ^2 , 则对任意实数x, 有

$$\lim_{n\to\infty} P\left(\frac{\frac{1}{n}\sum_{i=1}^n X_i - \mu}{\sigma/\sqrt{n}} \le x\right) = \Phi(x),$$

其中, $\Phi(x)$ 是标准正态分布函数.

二、填空题

(9) 由于f(0) = 0; x < 0 时, $f(x) = \frac{1 - \sqrt{1 + x^2}}{x} > 0$; x > 0 时, $f(x) = \frac{1 + \sqrt{1 + x^2}}{x} > 0$, 所以方程f(x) = 0 的实根个数为 1.

附注 题解中应注意的是 $\sqrt{x^2} \neq x$, 而 $\sqrt{x^2} = |x|$.

(10) 记
$$A = \int_0^{\frac{\pi}{2}} f(x) \cos x dx$$
,则
$$\int_0^{\frac{\pi}{2}} f(x) \cos x dx = \int_0^{\frac{\pi}{2}} x \cos x dx + 2A \int_0^{\frac{\pi}{2}} \cos x dx, \quad \text{即 } A = \int_0^{\frac{\pi}{2}} x \cos x dx + 2A.$$
所以,
$$A = -\int_0^{\frac{\pi}{2}} x \cos x dx = -\int_0^{\frac{\pi}{2}} x d \sin x = -\left(x \sin x \left| \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \sin x dx \right.\right) = 1 - \frac{\pi}{2}.$$
于是 $f(x) = x + 2 - \pi$,从而
$$\int_0^1 f(x) dx = \int_0^1 (x + 2 - \pi) dx = \frac{5}{2} - \pi.$$

附注 本题获解的关键,是注意到 $\int_{0}^{\frac{\pi}{2}} f(x) \cos x dx$ 是常数.

附注 计算 $\frac{dy}{dx}$ 时,要注意 y 是 x 的函数,而 $\frac{dy}{dx}$ 可由方程 $e^x + \sin y = x$ 两边对 x 求导得到.

(12) 由于所给微分方程可以改写成

$$(x\cos y dy + \sin y dx) + (\cos x dy - y \sin x dx) = 0$$
,

即 $d(x\sin y + y\cos x) = 0$. 因此通解为 $x\sin y + y\cos x = C$.

附注 对于微分方程 P(x, y) dx + Q(x, y) dy = 0,有时将 P(x, y) dx + Q(x, y) dy,经适当转换后分成若干组,使各组分别是某个二元函数的全微分,由此得到所给微分方程的通解,本题就是按此方法求解的,十分快捷。

(13) 由于 $A \sim B$, 所以B有特征值-2, -1, 1, 2, 从而 B^* 有特征值

$$\frac{|\mathbf{B}|}{-2} = -2, \ \frac{|\mathbf{B}|}{-1} = -4, \ \frac{|\mathbf{B}|}{1} = 4, \ \frac{|\mathbf{B}|}{2} = 2, \ \text{由此可知 } \mathbf{B}^* \sim \begin{pmatrix} -2 & & \\ & -4 & \\ & & 4 \\ & & & 2 \end{pmatrix}.$$

所以

$$|\mathbf{B}^* - \mathbf{E}_4| = \begin{vmatrix} -2 & & & \\ & -4 & & \\ & & 4 & \\ & & & 2 \end{vmatrix} - \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & & 1 \end{pmatrix} = 45.$$

附注 题解有两点值得注意:

- (I) 设A 是可逆矩阵,有特征值 λ ,则 A^* 对应有特征值 $\frac{|A|}{\lambda}$.
- (II) 设A, B 是相似的n 阶矩阵, 则 $|A E_n| = |B E_n|$.

(14) 由于
$$E(X^3 + 2Y^2) = E(X^3) + 2E(Y^2)$$
, 其中

$$E(X^{3}) = \int_{-\infty}^{+\infty} x^{3} f(x) dx = \int_{0}^{+\infty} x^{3} \cdot 2e^{-2x} dx = -\int_{0}^{+\infty} x^{3} de^{-2x}$$
$$= -\left(x^{3}e^{-2x} \Big|_{0}^{+\infty} - \frac{3}{2} \int_{0}^{+\infty} x^{2} \cdot 2e^{-2x} dx\right) = \frac{3}{2} E(X^{2})$$
$$= \frac{3}{2} \left[DX + (EX)^{2}\right] = \frac{3}{2} \left(\frac{1}{4} + \frac{1}{4}\right) = \frac{3}{4},$$

$$E(Y^2) = 0^2 \times \frac{1}{3} + 1^2 \times \frac{2}{3} = \frac{2}{3}.$$

所以,
$$E(X^3 + 2Y^2) = \frac{3}{4} + 2 \times \frac{2}{3} = \frac{25}{12}$$
.

附注 在 $E(X^3)$ 的计算中,对于 $\int_0^{+\infty} x^2 \cdot 2e^{-2x} dx$ 不必再作积分计算,这是因为它可由 $\int_0^{+\infty} x^2 \cdot 2e^{-2x} dx = \int_{-\infty}^{+\infty} x^2 f(x) dx = E(X^2) = DX + (EX)^2$ 直接得到.

三、解答题

(15) 由于 y'' + y = 0 的特征方程的根为 $\lambda = -i$, i, 所以它的通解为 $Y = C_1 \cos x + C_2 \sin x$. 此外,所给微分方程

$$y'' + y = 5e^{2x} + 2\sin x \tag{1}$$

应有特解 $y^* = Ae^{2x} + x(B_1\cos x + B_2\sin x)$. 将它代入式(1)得

$$5Ae^{2x} - 2B_1\sin x + 2B_2\cos x = 5e^{2x} + 2\sin x.$$

由此得到 A=1 , $B_1=-1$, $B_2=0$. 所以 , $y^*=\mathrm{e}^{2x}-x\mathrm{cos}x$, 从而式 (1) 的通解为 $y=Y+y^*=C_1\mathrm{cos}x+C_2\mathrm{sin}x+\mathrm{e}^{2x}-x\mathrm{cos}x$.

附注 应记住常系数线性微分方程的解法.

(16) (I) 显然 $\{a_n\}$ 是正项数列,且由

$$a_{n+1} = \frac{1}{3} \left(2a_n + \frac{1}{a_n^2} \right) = \frac{1}{3} \left(a_n + a_n + \frac{1}{a_n^2} \right) \geqslant \sqrt[3]{a_n \cdot a_n \cdot \frac{1}{a_n^2}} = 1 \, (n = 1, 2, \dots) \, \Xi, \quad \{ a_n \} \, \overline{A} \, \overline{F}$$

界. 此外,由

即

$$a_{n+1} - a_n = \frac{1}{3} \left(2a_n + \frac{1}{a_n^2} \right) - a_n = \frac{1}{3} \left(\frac{1}{a_n^2} - a_n \right) \le 0 \quad (n = 1, 2, \dots)$$

知, $\{a_n\}$ 单调不增. 从而由数列极限存在准则知, $\lim_{n\to\infty}a_n$ 存在,记为 a. 对递推式两边取极限得 $a=\frac{1}{3}\left(2a+\frac{1}{a^2}\right)$,所以 a=1,即 $\lim_{n\to\infty}a_n=1$.

(II) 由于
$$\lim_{n\to\infty} \frac{\frac{a_{n+1}}{2^{n+1}}}{\frac{a_n}{2^n}} = \frac{1}{2} \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$$
,所以所给幂级数的收敛半径 $R=2$.

当 x=2, -2 时,所给幂级数分别为 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} (-1)^n a_n$, 显然它们的通项极限都不为 零,所以所给幂级数在点 x=2, -2 处都是发散的,故收敛域为(-1,1).

附注 计算幂级数 $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域步骤如下:

- (I) 计算 $\sum_{n=0}^{\infty} c_n x^n$ 的收敛半径,记为 R.
- (II) 当 $R = + \infty$ 时, $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域为 $(-\infty, +\infty)$;当 R = 0 时, $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域为 $\{0\}$;当 R 为正数时, $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域为(-R, R) 与其收敛端点之并集.

(17)
$$i \exists A = \iint_{D} f(x, y) d\sigma$$
, $i \exists A = \iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) d\sigma = \iint_{D} \left(\frac{1}{2} x^{2} y + x \right) d\sigma + 3A \iint_{D} y d\sigma$,
$$A = \int_{0}^{1} dx \int_{0}^{x^{2}} \left(\frac{1}{2} x^{2} y + x \right) dy + 3A \int_{0}^{1} dx \int_{0}^{x^{2}} y dy$$

$$= \frac{2}{7} + \frac{3}{10} A.$$

所以
$$A = \frac{20}{49}$$
. 从而 $f(x, y) = \frac{1}{2}x^2y + x + \frac{60}{49}y$.

由于在 D 内, $f'_x = xy + 1 > 0$, $f'_y = \frac{1}{2}x^2 + \frac{60}{49} > 0$,所以 f 的最值只能在 D 的边界 C_1 : y = 0 $(0 \le x \le 1)$, C_2 : x = 1 $(0 \le y \le 1)$ 及 C_3 : $y = x^2 (0 \le x \le 1)$ 上取到.

在 C_1 上, $f(x, y) = x (0 \le x \le 1)$, 故最大值为 1, 最小值为 0.

在 C_2 上, $f(x, y) = \frac{169}{98}y + 1 \ (0 \le y \le 1)$, 故最大值为 $\frac{267}{98}$, 最小值为 1.

在 C_3 上, $f(x, y) = \frac{1}{2}x^4 + \frac{60}{49}x^2 + x$ 並 $\varphi(x)$ (0 $\leq x \leq 1$). 由于在(0, 1)上, $\varphi'(x) = x$

 $2x^3 + \frac{120}{49}x + 1 > 0$,所以 f(x, y) 在 C_3 上的最大值为 $\varphi(1) = \frac{267}{98}$,最小值为 $\varphi(0) = 0$.

因此, f(x, y)在 D 上的最大值为 $\frac{267}{98}$, 最小值为 0.

附注 二元连续函数 f(x, y) 在有界闭区域 D 上的最值计算步骤如下:

第一步 计算 f(x, y) 在 D 的内部的可能极值点,记为

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n).$$

第二步 计算 f(x, y) 在 D 的边界 C 上的最大值与最小值,分别记为 M_1 与 m_1 ,则 f(x, y) 在 D 上的最大值为

$$M = \max\{f(x_1, y_1), f(x_2, y_2), \dots, f(x_n, y_n), M_1\};$$

最小值为

$$m = \min\{f(x_1, y_1), f(x_2, y_2), \dots, f(x_n, y_n), m_1\}.$$

(18) 作辅助函数 F(x) = f(x) - x, 则 F(x)在[0, 1]上连续, 且

$$F(0)F(1) = f(0)[f(1) - 1] < 0$$

所以由零点定理知,存在 $\xi \in (0,1)$,使得 $F(\xi) = 0$,即 $f(\xi) = \xi$.

下面用反证法证明 ξ 的唯一性. 设另有 $\eta \in (0, 1)$, 使得 $f(\eta) = \eta$, 不妨设 $\eta < \xi$, 则

$$f(\xi) - f(\eta) = \xi - \eta.$$

由拉格朗日中值定理知,存在 $\theta \in (\eta, \xi) \subset (0, 1)$,使得

$$f'(\theta)(\xi-\eta)=\xi-\eta$$
, $\mathbb{H}f'(\theta)=1$.

这与题设 $f'(x) \neq 1(x \in [0, 1])$ 矛盾. 因此满足式(1)的 ξ 是唯一的.

附注 唯一性问题,往往用反证法证明. 本题就是如此.

(19) 由于
$$z'_x(0, 0) = f'_x(0, 0) + f'_y(0, 0) \cdot f'_x(0, 0) = 0,$$

 $z'_y(0, 0) = f'_y(0, 0) \cdot f'_y(0, 0) = 1,$

所以, π 的方程为 $z'_x(0,0)(x-0)+z'_y(0,0)(y-0)-(z-0)=0$,即 z=y.

于是,
$$C$$
的方程为 $\begin{cases} z = \frac{3}{4} - x^2 - y^2, \\ z = y. \end{cases}$

由此得到

附注 在计算关于坐标的曲线积分 $\int_{C} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$ 时,用 C 的方程消去 Pdx + Qdy + Rdz 中的一个积分变量,例如消去 z,则所给的曲线积分化简为 $\int_{C_{xy}} f(x, y) dx + g(x, y) dy$ (其中 C_{xy} 是 C 在 xOy 平面的投影),于是通过它的计算即得 $\int_{C} Pdx + Qdy + Rdz$.

这是比较快捷的方法, 本题的曲线积分就是按此法计算的

$$(20) \ \ \text{la} \ \ \mp \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -2 & 1 & 2 \\ a & b & c & 0 \end{pmatrix} \xrightarrow{\text{disffrex}} \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -3 & 3 & 1 \\ 0 & b - a & c + 2a & -a \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 1 & -1 & -\frac{1}{3} \\ 0 & b - a & c + 2a & -a \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{4}{3} \\ 0 & 1 & -1 & -\frac{1}{3} \\ 0 & 0 & a + b + c & -\frac{4}{3}a + \frac{1}{3}b \end{pmatrix},$$

所以由题设知, $\begin{cases} a+b+c=0,\\ -\frac{4}{3}a+\frac{1}{3}b=0, & \text{即 } a=2, b=8, c=-10. \\ a=2 \end{cases}$ 此时所给方程组与

(
$$II$$
) $\begin{cases} x_1 & -x_3 = \frac{4}{3}, \\ & \text{同解. } (II)$ 的导出组的基础解系为 $C(1, 1, 1)^T$,此外(II) 有特 $x_2 - x_3 = -\frac{1}{3}$

$$(x_1, x_2, x_3)^{\mathrm{T}} = C(1, 1, 1)^{\mathrm{T}} + \left(\frac{4}{3}, -\frac{1}{3}, 0\right)^{\mathrm{T}}$$
 (其中 C 是任意常数).

对上述算得的 a, b, c 知, $\xi = \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix}$.

设 ξ 在基 η_1 , η_2 , η_3 下的坐标为 y_1 , y_2 , y_3 , 则

$$\boldsymbol{\xi} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}. \tag{2}$$

比较式(1)与式(2)得

$$\begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

即

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3)^{-1} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 1 & -2 \\ -1 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 8 \\ 16 \\ 1 \end{pmatrix} = \begin{pmatrix} 26 \\ 16 \\ 16 \\ 0 \end{pmatrix}.$$

所以, 所求的坐标为 26, 16, -8.

附注 由所给方程组有两个不同解可得,这个方程组对应的齐次线性方程有非零解,所以系数矩阵的秩≤2,此外由系数矩阵本身可知,其秩≥2. 因此系数矩阵的秩 = 2. 从而有

$$\begin{cases} a+b+c=0, \\ -\frac{4}{3}a+\frac{1}{3}b=0, \\ a=2. \end{cases}$$

(21) 由于
$$g(x_1, x_2, x_3) = (x_1 - x_2)^2 + 3x_2^2 + x_3^2$$
 在
$$\begin{cases} y_1 = x_1 - x_2, \\ y_2 = \sqrt{3}x_2, \end{cases}$$
 即可逆线性变换
$$\begin{cases} y_3 = x_1 - x_2, \\ y_3 = x_3, \end{cases}$$

$$\begin{cases} x_1 = y_1 + \frac{1}{\sqrt{3}} y_2, \\ x_2 = \frac{1}{\sqrt{3}} y_2, & \text{下成为 } y_1^2 + y_2^2 + y_3^2, & \text{所以 } g(x_1, x_2, x_3) \\ x_3 = y_3 & \text{ 下成为 } y_1^2 + y_2^2 + y_3^2. \end{cases}$$

由于 $f(x_1, x_2, x_2)$ 是非正定二次型,所以,它的矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & c \end{pmatrix}$$

的顺序主子式不全为正,故有 $c \le 2$. 从而由题设 $c \ge 2$ 得 c = 2. 于是 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

由于
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 1 & -1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 3)$$
,所以 A 有特征值 $\lambda = 0$,

1, 3.

设**A** 的对应 $\lambda = 0$ 的特征向量为 $\boldsymbol{\xi} = (a_1, a_2, a_3)^{\mathrm{T}}$,则它满足

$$\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}, \quad \exists \mathbb{P} \begin{cases} a_1 & +a_3 = 0, \\ a_2 + a_3 = 0, \end{cases}$$

可取它的基础解系为 ξ , 即 $\xi = (-1, -1, 1)^T$.

设 A 的对应 $\lambda = 1$ 的特征向量为 $\eta = (b_1, b_2, b_3)^T$,则它满足

$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}, \quad \exists \mathbf{0} \begin{pmatrix} b_3 = 0, \\ b_1 + b_2 + b_3 = 0, \end{pmatrix}$$

可取它的基础解系为 η , 即 $\eta = (1, -1, 0)^{T}$.

设 \mathbf{A} 的对应 $\lambda = 3$ 的特征向量为 $\mathbf{\zeta} = (c_1, c_2, c_3)^{\mathrm{T}}$,则由 \mathbf{A} 是实对称矩阵知

$$\begin{cases} (\zeta, \xi) = 0, & \text{for } c_1 - c_2 + c_3 = 0, \\ (\zeta, \eta) = 0, & c_1 - c_2 = 0, \end{cases}$$

可取它的基础解系为 ζ , 即 $\zeta = (1, 1, 2)^T$.

显然, ξ , η , ζ 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi}^{0} = \frac{\boldsymbol{\xi}}{\|\boldsymbol{\xi}\|} = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T},$$
$$\boldsymbol{\eta}^{0} = \frac{\boldsymbol{\eta}}{\|\boldsymbol{\eta}\|} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^{T},$$
$$\boldsymbol{\zeta}^{0} = \frac{\boldsymbol{\zeta}}{\|\boldsymbol{\zeta}\|} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{T}.$$

$$id \mathbf{Q} = (\boldsymbol{\xi}^0, \, \boldsymbol{\eta}^0, \, \boldsymbol{\xi}^0) = \begin{pmatrix} -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} (正交矩阵), \, 则正交变换 \, \boldsymbol{x} = \mathbf{Q} \boldsymbol{z} \, (其中 \, \boldsymbol{x} = \mathbf{Q} \boldsymbol{z})$$

 $(x_1, x_2, x_3)^{\mathrm{T}}, \mathbf{z} = (z_1, z_2, z_3)^{\mathrm{T}})$ 将 $f(x_1, x_2, x_3)$ 化为标准形 $z_2^2 + 3z_3^3$.

附注 由于 $\varphi(x_1, x_2, x_3) = (x_1, x_2, x_3) \boldsymbol{B}(x_1, x_2, x_3)^{\mathrm{T}}(\boldsymbol{B}$ 是实对称矩阵) 为正定二次型的充分必要条件是它的矩阵 \boldsymbol{B} 的顺序主子式都大于零. 故当题中 $f(x_1, x_2, x_3)$ 不是正

定二次型时,它的矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & c \end{pmatrix}$$
的顺序主子式 1 , $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$, $|A| = c - 2$ 不全大于零,于是有 $c \le 2$.

(23) 记Z的分布函数为F(z),则

$$\begin{split} F(z) &= P(Z \leq z) = P(XY \leq z) \\ &= P(Y = -1)P(X \geq -z \mid Y = -1) + P(Y = 1)P(X \leq z \mid Y = 1) \\ &= \frac{1}{2}P(X \geq -z) + \frac{1}{2}P(X \leq z) \\ &= \begin{cases} \frac{1}{2} \int_{-z}^{+\infty} \lambda \, \mathrm{e}^{-\lambda x} \mathrm{d}x; & z \leq 0, \\ \frac{1}{2} \int_{0}^{+\infty} \lambda \, \mathrm{e}^{-\lambda x} \mathrm{d}x + \frac{1}{2} \int_{0}^{z} \lambda \, \mathrm{e}^{-\lambda x} \mathrm{d}x, & z > 0. \end{cases} \end{split}$$

所以,Z的概率密度为

$$f(z) = \frac{\mathrm{d}F(z)}{\mathrm{d}z} = \begin{cases} \frac{1}{2}\lambda e^{\lambda z}, & z \leq 0, \\ \frac{1}{2}\lambda e^{-\lambda z}, & z > 0 \end{cases} = \frac{1}{2}\lambda e^{-\lambda + z + (-\infty < z < +\infty)}.$$

由此得到似然函数

$$L(\lambda) = \frac{1}{2} \lambda e^{-\lambda |z_1|} \cdot \frac{1}{2} \lambda e^{-\lambda |z_2|} \cdot \cdots \cdot \frac{1}{2} \lambda e^{-\lambda |z_n|}$$
$$= \frac{1}{2^n} \lambda^n e^{-\lambda \sum_{i=1}^n |z_i|},$$

上式两边对 λ 求导得

$$\frac{\mathrm{dln}L(\lambda)}{\mathrm{d}\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} |z_i|,$$

附注 应熟练掌握参数点估计的两种方法:矩估计法与最大似然估计法.

模拟试题(二)解答

一、选择题

(1) 由于
$$y = \frac{1}{2x} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) = \frac{1}{2} \left[\frac{1}{x(x-1)} - \frac{1}{x(x+1)} \right]$$

$$= \frac{1}{2} \left[\left(\frac{1}{x-1} - \frac{1}{x} \right) - \left(\frac{1}{x} - \frac{1}{x+1} \right) \right] = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} - \frac{2}{x} \right),$$
所以, $y^{(10)} = \frac{1}{2} \left[(-1)^{10} \frac{10!}{(x-1)^{11}} + (-1)^{10} \frac{10!}{(x+1)^{11}} - 2(-1)^{10} \frac{10!}{x^{11}} \right]$

$$= \frac{10!}{2(x-1)^{11}} + \frac{10!}{2(x+1)^{11}} - \frac{10!}{x^{11}}.$$
 因此选 (C).

附注 应记住公式:对于 $a \neq 0$,

$$\left(\frac{1}{ax+b}\right)^{(n)} = (-1)^n \frac{a^n \cdot n!}{(ax+b)^{n+1}}.$$

$$(2) \int_{\frac{\pi}{4}}^{\pi} \sin x \sqrt{1 - \sin^2 x} dx = \int_{\frac{\pi}{4}}^{\pi} \sin x | \cos x | dx$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x \cos x dx - \int_{\frac{\pi}{2}}^{\pi} \sin x \cos x dx$$

$$= \frac{1}{2} \sin^2 x \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} - \frac{1}{2} \sin^2 x \Big|_{\frac{\pi}{2}}^{\pi} = \frac{3}{4}.$$
因此选 (A).

附注 题解中应注意的是: 在 $\left[\frac{\pi}{4}, \pi\right]$ 上, $\sqrt{1-\sin^2 x} \neq \cos x$, 而应 $\sqrt{1-\sin^2 x} = |\cos x|$.

(3) 由于 x 轴负向的方向余弦为($\cos \pi$, $\sin \pi$), 所以方向导数为

$$\lim_{r\to 0^+} \frac{f(0+r\cos\pi,\ 0+r\sin\pi)-f(0,\ 0)}{r} = -\lim_{r\to 0^+} \frac{f(-r,\ 0)-f(0,\ 0)}{-r} = -f_x'(0,\ 0) = -1.$$
 因此选 (D).

附注 由于 f(x, y) 的偏导数仅在点(0, 0) 处存在,所以选项(A),(B) 及(C) 都未必正确.

(4) 由于 f(x) 的余弦级数是 $F_1(x) = \begin{cases} f(x), & 0 \leq x \leq 2, \\ f(-x), & -2 \leq x < 0 \end{cases}$ 的傅里叶级数,所以它的和函数 $s_1(x)$ 是以 4 为周期的,于是

$$s_1(-3) = s_1(-3+4) = s_1(1) = \frac{1}{2}[f(1^-) + f(1^+)] = \frac{1}{2}[1 + (-1)] = 0.$$

由于f(x)的正弦级数是 $F_2(x) = \begin{cases} f(x), & 0 \le x \le 2, \\ -f(-x), & -2 < x < 0 \end{cases}$ 的傅里叶级数,所以它的和函

数 $s_2(x)$ 是以 4 为周期的,于是

$$s_2(6) = s_2(2+4) = s_2(2) = \frac{1}{2} [F_2(2^-) + F_2((-2)^+)] = \frac{1}{2} (-2+2) = 0.$$

由此得到 $s_1(-3) + s_2(6) = 0$. 因此选 (B).

附注 应记住: 计算 f(x) ($0 \le x \le a$)的余弦级数(正弦级数)时,应将 f(x) 作偶延拓(奇延拓),即考虑函数

$$F_{1}(x) = \begin{cases} f(x), & 0 \leq x \leq a, \\ f(-x), & -a \leq x < 0 \end{cases} \left(F_{2}(x) = \begin{cases} f(x), & 0 < x \leq a, \\ 0, & x = 0, \\ -f(x), & -a < x < 0 \end{cases} \right).$$

(5) 对于 n > 2有

$$(A^*)^* = (|A|A^{-1})^* = |A|^{n-1}(A^{-1})^* = |A|^{n-1}(A^*)^{-1}$$

= $|A|^{n-1}(|A|A^{-1})^{-1} = |A|^{n-1} \cdot \frac{1}{|A|}A = |A|^{n-2}A.$

因此选 (C).

附注 当 A 不可逆时,本题结论仍成立. 这是因为,当 A 不可逆,即 |A| = 0 时, $|A|^{n-2}A = 0$. 另一方面,当 |A| = 0 时,有 $r(A^*) = 1$ 或 0,即 $r(A^*) < n-1$ 从而 $r((A^*)^*) = 0$. 由此得到 $(A^*)^* = 0$. 故仍有

$$(\boldsymbol{A}^*)^* = |\boldsymbol{A}|^{n-2}\boldsymbol{A}.$$

(6)由 A 是正定矩阵知 A 是实对称矩阵,故 A^* 也是实矩阵,并且,由 $A^T = A$ 得 $(A^*)^T = (A^T)^* = A^*$,所以 A^* 也是对称的,从而 A^* 也是实对称矩阵.此外由 A 的特征值 λ_1 , λ_2 ,…, λ_n 全为正的知, A^* 的特征值 $\frac{|A|}{\lambda_1}$, $\frac{|A|}{\lambda_2}$,…, $\frac{|A|}{\lambda_n}$ 也全为正的.因此 A^* 是正定矩阵.同样可得 B^* 是正定矩阵.

于是对于任意x(n维非零列向量),有 $x^TA^*x>0, x^TB^*x>0$,由此可知 $x^T(A^*+2B^*)x>0,$

即 $A^* + 2B^*$ 是正定矩阵. 因此选(A).

附注 应记住以下结论:

设 A , B 都是 n 阶正定矩阵,则 A + B , $A^{T} + B^{T}$, $A^{-1} + B^{-1}$, $A^{*} + B^{*}$ 都是正定矩阵,但 A - B , AB , $A^{T}B^{T}$, $A^{-1}B^{-1}$, $A^{*}B^{*}$ 未必是正定矩阵.

(7) 由题设知
$$\frac{X-\mu}{\sigma} \sim N(0, 1)$$
, $\frac{Y-2\mu}{\sigma/\sqrt{2}} \sim N(0, 1)$, 所以
$$p_1 = P(X \geqslant \mu - \sigma) = P\left(\frac{X-\mu}{\sigma} \geqslant -1\right) = P\left(\frac{X-\mu}{\sigma} \leqslant 1\right) > \frac{1}{2},$$

$$p_2 = P\left(Y \leqslant 2\mu + \frac{\sigma}{\sqrt{2}}\right) = P\left(\frac{Y-2\mu}{\sigma/\sqrt{2}} \leqslant 1\right).$$

故有 $p_1 = p_2 > \frac{1}{2}$. 因此选 (D).

附注 由
$$\frac{X-\mu}{\sigma} \sim N(0, 1)$$
知 $P\left(\frac{X-\mu}{\sigma} \leq 0\right) = P\left(\frac{X-\mu}{\sigma} \geq 0\right) = \frac{1}{2}$. 所以有
$$P\left(\frac{X-\mu}{\sigma} \leq 1\right) > \frac{1}{2}.$$

(8) 由于
$$Y = \frac{\sigma^2}{n} \cdot \sum_{i=1}^n \left(\frac{X_i}{\sigma}\right)^2$$
, 其中由 X_1 , X_2 , …, X_n 相互独立,且 $\frac{X_i}{\sigma} \sim N(0, 1)$ $(i=1, 1)$

2, …,
$$n$$
)知, $\sum_{i=1}^{n} \left(\frac{X_{i}}{\sigma}\right)^{2} \sim \chi^{2}(n)$, 所以

$$EY = \frac{\sigma^2}{n} \cdot n = \sigma^2$$
, $DY = \frac{\sigma^4}{n^2} \cdot 2n = \frac{2\sigma^4}{n}$.

因此选 (C).

附注 应记住以下结论:

设 ξ_1 , ξ_2 , … , ξ_n 是相互独立且都服从 N(0,1) 的随机变量,则 $\eta=\sum_{i=1}^n \xi_i^2 \sim \chi^2(n)$,且 $E\eta=n$, $D\eta=2n$.

二、填空题

(9)
$$\lim_{x\to 0} \frac{(\sin x - x) \arctan \frac{1}{x}}{\ln(1 + x^2)} = \lim_{x\to 0} \frac{(\sin x - x) \arctan \frac{1}{x}}{x^2} = \lim_{x\to 0} \frac{\sin x - x}{x^3} \cdot \lim_{x\to 0} x \arctan \frac{1}{x}$$

所以,
$$\lim_{x\to 0} \frac{(\sin x - x) \arctan \frac{1}{x}}{\ln(1 + x^2)} = -\frac{1}{6} \times 0 = 0.$$

附注 由 $x \to 0$ 时,x 是无穷小, $\left| \arctan \frac{1}{x} \right| < \frac{\pi}{2}$,所以 $\lim_{x \to 0} x \arctan \frac{1}{x} = 0$. 类似地有

 $\lim_{x\to 0} x \sin \frac{1}{x} = 0.$

$$(10) \int_0^1 \arctan \frac{1-x}{1+x} dx = \int_0^1 (\arctan 1 - \arctan x) dx = \frac{\pi}{4} - \int_0^1 \arctan x dx$$
$$= \frac{\pi}{4} - \left(x \arctan x \Big|_0^1 - \int_0^1 \frac{x}{1+x^2} dx \right) = \frac{1}{2} \ln(1+x^2) \Big|_0^1 = \frac{1}{2} \ln 2.$$

附注 应记住初等数学公式:

$$\arctan \frac{a+x}{1-ax} = \arctan a + \arctan x,$$

$$\arctan \frac{a-x}{1+ax} = \arctan a - \arctan x.$$

(11) 由于
$$z'_x(2, 1) = 2$$
, $z'_y(2, 1) = 2$, 所以 π 的方程为
$$2(x-2) + 2(y-1) - (z-2) = 0$$
, 即 $2x + 2y - z - 4 = 0$.

因此点(0,0,0)到 π 的距离

$$d = \frac{|2x + 2y - z - 4|}{\sqrt{2^2 + 2^2 + (-1)^2}} \Big|_{(0,0,0)} = \frac{4}{3}.$$

附注 在平面上,点 (x_0, y_0) 到直线 ax + by + c = 0的距离为

$$d = \frac{|ax + by + c|}{\sqrt{a^2 + b^2}} \Big|_{(x_0, y_0)};$$

在空间中,点 (x_0, y_0, z_0) 到平面 Ax + By + Cz + D = 0 的距离为

$$d = \frac{\mid Ax + By + Cz + D \mid}{\sqrt{A^2 + B^2 + C^2}} \mid_{(x_0, y_0, z_0)}.$$

(12)记平面 z = -3 被曲面 S 截下部分为 S_1 (下侧),则

(12) 比于面
$$z = -3$$
 被面面 3 報 「中か 为 S_1 (下例),列
$$\int_{S(\pm M)} x^2 dy dz + xy dz dx + z dx dy$$

$$= \int_{\Sigma(M)} x^2 dy dz + xy dz dx + z dx dy - \int_{S_1(\mp M)} x^2 dy dz + xy dz dx + z dx dy (\Sigma = S + S_1),$$
其中 $\int_{\Sigma(M)} x^2 dy dz + xy dz dx + z dx dy = \frac{\overline{n} \overline{y} \Delta x}{\underline{n}} \iint_{\Omega} (3x + 1) dv (\Omega \text{ 是由 } \Sigma \text{ 围成的立体})$

$$= \iint_{\Omega} 3x dv + \iint_{\Omega} dv$$

$$= \iint_{\Omega} dv \left(\text{由于 } \Omega \text{ 关于 } y Oz \text{ 平面对称, 而被积函数 } 3x \text{ 在对称点处的值互为相反数,所以,} \right)$$

$$\iint_{\Omega} 3x dv = 0$$

$$= \iint_{D_{xy}} d\sigma \int_{-3}^{1-(x^2+y^2)} dz \quad (其中 D_{xy} = \{(x,y) \mid x^2 + y^2 \leq 4\} \text{ 是 } \Omega \text{ 在 } x Oy \text{ 平面上的投影})$$

$$= \iint_{D_{xy}} [4 - (x^2 + y^2)] d\sigma = \frac{W \pm w}{0} \int_{0}^{2\pi} d\theta \int_{0}^{2} (4 - r^2) r dr = 8\pi,$$

$$\iint\limits_{S_1(\mathbb{F}_{\emptyset})} x^2 \, \mathrm{d}y \, \mathrm{d}z + xy \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y$$
$$= - \iint\limits_{S_1(\mathbb{F}_{\emptyset})} - 3 \, \mathrm{d}x \, \mathrm{d}y \, ($$
由于 S_1 的方程为 $z = -$

$$= - \iint_{D_{xy}} -3 dx dy (由于 S_1 的方程为 z = -3)$$
$$= 12\pi.$$

所以, $\iint_{S(\mathbb{R}^m)} x^2 dydz + xydzdx + zdxdy = 8\pi - 12\pi = -4\pi.$

附注 由于 S 不是闭曲线,所以需添一块 S_1 ,使得 S 与 S_1 组成闭曲面(而且方向为外侧)后,才可以应用高斯公式,这是计算关于坐标的曲面积分的常用方法.

(13) 由于

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & -2 & -5 & -1 \\ -14 & 4 & 10 & 2 \\ -4 & 0 & 0 & 6 \\ -1 & 6 & -7 & 17 \end{pmatrix}$$

$$\xrightarrow{\text{ 7 ? 7 ? 4}} \begin{pmatrix} 7 & -2 & -5 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 6 \\ -1 & 6 & -7 & 17 \end{pmatrix},$$

所以 $r(A^2) = 3$,从而 $r[(A^2)^*] = 1$.

附注 本题是利用以下公式(应记住)计算的:

设A 是n 阶矩阵.则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n-1, \\ 0, & r(A) < n-1. \end{cases}$$

(14)
$$F_Y(y) = P(Y \le y) = P(X^2 \le y)$$
,

其中, $\gamma \le 0$ 时, $P(X^2 \le \gamma) = 0$;

$$y > 0 \text{ Iff } P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = P(0 \le X \le \sqrt{y})$$

$$= \begin{cases} \int_0^{\sqrt{y}} x dx, & 0 < y \le 1, \\ \int_0^1 x dx + \int_1^{\sqrt{y}} (2 - x) dx, & 1 < y \le 4, \\ \int_0^1 x dx + \int_1^2 (2 - x) dx, & y > 4 \end{cases}$$

$$= \begin{cases} \frac{1}{2}y, & 0 < y \le 1, \\ -1 + 2\sqrt{y} - \frac{1}{2}y, & 1 < y \le 4, \\ 1, & y > 4. \end{cases}$$

所以
$$F_{y}(y) = \begin{cases} 0, & y \leq 0, \\ \frac{1}{2}y, & 0 < y \leq 1, \\ -1 + 2\sqrt{y} - \frac{1}{2}y, & 1 < y \leq 4, \\ 1, & y > 4. \end{cases}$$

附注 $F_{\nu}(\gamma)$ 也可以按以下方法计算:

记 $g(x) = x^2$,则 g(x) 在 $\{x \mid f(x) \neq 0\} = (0, 2)$ 内单调增加,记它的反函数为 x = h(y),则 $h(y) = \sqrt{y}$, $h'(y) = \frac{1}{2\sqrt{y}}(0 < y < 4)$. 所以

$$Y 的概率密度 f_{\gamma}(y) = \begin{cases} f(h(y)) \left| \frac{1}{2\sqrt{y}} \right|, & 0 < y < 4, \\ 0, & 其他 \end{cases}$$

$$= \begin{cases} \sqrt{y} \cdot \frac{1}{2\sqrt{y}}, & 0 < y \leq 1, \\ (2 - \sqrt{y}) \cdot \frac{1}{2\sqrt{y}} & 1 < y < 4, \\ 0, & 其他 \end{cases}$$

$$0, & \pm 0, \\ 0, & \pm 0. \end{cases}$$
因此 $F_{\gamma}(y) = \int_{-\infty}^{y} f_{\gamma}(u) du = \begin{cases} 0, & y \leq 0, \\ \int_{0}^{y} \frac{1}{2} du, & 0 < y \leq 1, \\ \int_{0}^{1} \frac{1}{2} du + \int_{1}^{y} \left(\frac{1}{\sqrt{u}} - \frac{1}{2}\right) du, & 1 < y \leq 4, \\ \int_{-\infty}^{+\infty} f(u) du, & y > 4 \end{cases}$

$$= \begin{cases} 0, & y \leq 0, \\ \frac{1}{2}y, & 0 < y \leq 1, \\ -1 + 2\sqrt{y} - \frac{1}{2}y, & 1 < y \leq 4, \\ 1, & y > 4. \end{cases}$$

三、解答题

$$(15) \sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n \cdot (n+1)!} = \sum_{n=0}^{\infty} \frac{n(n+1) - (n+1) + 2}{2^n \cdot (n+1)!}$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \left(\frac{1}{2}\right)^{n-1} - \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n + 4 \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(\frac{1}{2}\right)^{n+1}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n - \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n + 4 \left[\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n - 1\right]$$

$$= \frac{7}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n - 4 = \frac{7}{2} e^{\frac{1}{2}} - 4.$$

附注 利用常用函数 e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^\mu$ 的麦克劳林级数计算级数和是经常采用的方法. 本题是利用 $\sum_{n=1}^{\infty} \frac{1}{n!} x^n = e^x (-\infty < x < + \infty)$ 计算所给级数之和.

$$(16) \int \frac{1}{\sin x} \frac{1}{\sqrt{1 + \cos x}} dx = \frac{1}{\sqrt{2}} \int \csc \frac{x}{2} \sec^2 \frac{x}{2} d\frac{x}{2} = \frac{1}{\sqrt{2}} \int \csc \frac{x}{2} d\tan \frac{x}{2}$$
$$= \frac{1}{\sqrt{2}} \csc \frac{x}{2} \tan \frac{x}{2} + \frac{1}{\sqrt{2}} \int \tan \frac{x}{2} \csc \frac{x}{2} \cot \frac{x}{2} d\frac{x}{2}$$

$$= \frac{1}{\sqrt{2}} \sec \frac{x}{2} + \frac{1}{\sqrt{2}} \int \csc \frac{x}{2} d\frac{x}{2}$$

$$= \frac{1}{\sqrt{2}} \sec \frac{x}{2} + \frac{1}{\sqrt{2}} \ln \left| \csc \frac{x}{2} - \cot \frac{x}{2} \right| + C.$$

附注 应记住以下积分公式:

$$\int \sec x dx = \ln |\sec x + \tan x| + C,$$
$$\int \csc x dx = \ln |\csc x - \cot x| + C.$$

(17) 对于
$$x \in (-\infty, +\infty)$$
有

$$\frac{1}{2} (e^{x} + e^{-x}) = \frac{1}{2} \left[\left(1 + x + \frac{1}{2!} x^{2} + \cdots \right) + \left(1 - x + \frac{1}{2!} x^{2} - \cdots \right) \right]$$

$$= 1 + \frac{1}{2!} x^{2} + \cdots + \frac{1}{(2n)!} x^{2n} + \cdots,$$

$$e^{\frac{1}{2} x^{2}} = 1 + \frac{1}{2} x^{2} + \frac{1}{2!} \cdot \frac{1}{2^{2}} x^{4} + \cdots + \frac{1}{n!} \cdot \frac{1}{2^{n}} x^{2n} + \cdots.$$

于是由 $\frac{1}{(2n)!} \le \frac{1}{2 \cdot 4 \cdot \dots \cdot (2n)} = \frac{1}{n!} \cdot \frac{1}{2^n}$ $(n = 0, 1, 2, \dots, 且仅当 n = 0, 1 时取等号)$

知, $\frac{1}{2}(e^x + e^{-x}) < e^{\frac{1}{2}x^2}$. 由此可知, 当 $c \ge \frac{1}{2}$ 时, 由 $e^{\frac{1}{2}x^2} \le e^{cx^2}$ 得证

$$\frac{1}{2}(e^{x} + e^{-x}) < e^{cx^{2}}(-\infty < x < +\infty).$$

附注 本题还可用反证法证明仅当 $c \ge \frac{1}{2}$ 时, $\frac{1}{2}$ ($e^x + e^{-x}$) $< e^{cx^2}$ 在($-\infty$, $+\infty$)上才成立. 具体如下:

设存在
$$c_0 < \frac{1}{2}$$
, 使得 $\frac{1}{2}$ ($e^x + e^{-x}$) $< e^{c_0 x^2}$ ($-\infty < x < +\infty$), (1)

则

$$\lim_{x\to 0} \frac{e^{c_0x^2} - \frac{1}{2}(e^x + e^{-x})}{x^2} \underbrace{\frac{2c_0xe^{c_0x^2} - \frac{1}{2}(e^x - e^{-x})}{2x}}_{\underline{AB \text{ Lim}}} = c_0 - \frac{1}{2} \lim_{x\to 0} \frac{e^x - e^{-x}}{2x} \underbrace{\underline{AB \text{ Lik}}}_{\underline{AB \text{ Lik}}} = c_0 - \frac{1}{2} \lim_{x\to 0} \frac{e^x + e^{-x}}{2}$$

$$= c_0 - \frac{1}{2} < 0.$$

故存在实数 x_0 ,使得 $e^{c_0x_0^2} - \frac{1}{2}(e^{x_0} + e^{-x_0}) < 0$,即 $\frac{1}{2}(e^{x_0} + e^{-x_0}) > e^{cx_0^2}$.这与式(1)矛盾.因 此仅当 $c \ge \frac{1}{2}$ 时, $\frac{1}{2}(e^x + e^{-x}) < e^{cx^2}$ 在 $(-\infty < x < + \infty)$ 上才成立.

$$\oint_{L(t)} f(x^{2} + y^{2}) \sqrt{x^{2} + y^{2}} ds = \int_{0}^{2\pi} f(t^{2}) t \cdot t d\theta = 2\pi t^{2} f(t^{2}),$$

$$\oint_{S(t)} (x^{2} + y^{2} + z^{2}) dS = \iint_{S_{1}} (x^{2} + y^{2} + z^{2}) dS + \iint_{S_{2}} (x^{2} + y^{2} + z^{2}) dS = \frac{S(t) \pi 2 \pi t^{2}}{2\pi t^{4}}$$

$$t^{2} \cdot 2\pi t^{2} + \iint_{D(t)} (x^{2} + y^{2}) d\sigma = \frac{2\pi t^{4}}{2\pi t^{4}} + \int_{0}^{2\pi} d\theta \int_{0}^{t} r^{2} \cdot r dr = 2\pi t^{4} + \frac{1}{2}\pi t^{4} = \frac{5}{2}\pi t^{4},$$

$$\iint_{D(t)} f(x^{2} + y^{2}) d\sigma = \frac{2\pi t^{4}}{2\pi t^{4}} + \int_{0}^{2\pi} d\theta \int_{0}^{t} f(r^{2}) r dr = 2\pi \int_{0}^{t} f(r^{2}) r dr.$$

于是由题设得 $2\pi t^2 f(t^2) + \frac{5}{2}\pi t^4 = 2\pi \int_0^t f(r^2) r dr$,即

$$t^2 f(t^2) + \frac{5}{4} t^4 = \int_0^t f(r^2) r dr.$$

上式两边对 t 求导得

$$f'(t^2) + \frac{1}{2t^2} f(t^2) = -\frac{5}{2}, \quad \mathbb{P} f'(u) + \frac{1}{2u} f(u) = -\frac{5}{2} (其中 u = t^2),$$
所以, $f(u) = e^{-\int \frac{1}{2u} du} \left(C - \int \frac{5}{2} e^{\int \frac{1}{2u} du} du \right) = \frac{C}{\sqrt{u}} - \frac{5}{3} u$,即
$$f(t) = \frac{C}{\sqrt{t}} - \frac{5}{3} t.$$

由于f(t)在[0, + ∞)上连续,所以 $\lim_{t\to 0^+} f(t)$ 存在,因此 C=0. 从而

$$f(t) = -\frac{5}{3}t \quad (t \geqslant 0).$$

附注 题解中值得注意的是常数 C 的确定,即利用 f(t) 在 $[0, +\infty)$ 上连续,推出 $\lim_{t\to 0^+} f(t)$ 存在,从而 C=0.

(19) 由于
$$\int_{(0,0)}^{(t,t^2)} f(x,y) \, \mathrm{d}x + x \cos y \mathrm{d}y \qquad 与积分路径无关, 所以有$$

$$\frac{\partial f(x, y)}{\partial y} = \frac{\partial (x \cos y)}{\partial x} = \cos y. \tag{1}$$
于是, $f(x,y) = \int \cos y \mathrm{d}y = \sin y + \varphi(x)$. 将它代入
$$\int_{(0,0)}^{(t,t^2)} f(x,y) \, \mathrm{d}x + x \cos y \mathrm{d}y = t^2 \ \theta$$

$$t^2 = \int_{(0,0)}^{(t,t^2)} \left[\sin y + \varphi(x) \right] \mathrm{d}x + x \cos y \mathrm{d}y = \int_{(0,0)}^{(t,t^2)} \mathrm{d}(x \sin y) + \varphi(x) \, \mathrm{d}x$$

$$= (x \sin y) \left| \frac{(t,t^2)}{(0,0)} + \int_0^t \varphi(x) \, \mathrm{d}x = t \sin t^2 + \int_0^t \varphi(x) \, \mathrm{d}x, \right|$$

即 $\int_0^t \varphi(x) dx = t^2 - t \sin t^2$. 两边对 t 求导得

$$\varphi(t) = 2t - \sin t^2 - 2t^2 \cos t^2.$$

从而, $f(x, y) = \sin y + 2x - \sin x^2 - 2x^2 \cos x^2$.

附注 由表达式 $\int_{(0,0)}^{(t,t^2)} f(x,y) dx + x \cos y dy$ 可知,该曲线积分与积分路径无关,因此有式 (1).

(20) 使矩阵方程 AX = B 有解,必须

$$r(A) = r(A \mid B).$$
由于 $(A \mid B) = \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ -1 & 1 & 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & a & b & c \end{pmatrix}$

$$\xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 2 & 2 & 0 & 4 & -2 \\ 0 & -1 & -1 & a - 1 & b - 4 & c \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & -1 & -1 & a - 1 & b - 4 & c \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & a - 1 & b - 2 & c - 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & a - 1 & b - 2 & c - 1 \end{pmatrix},$$

所以,使式(1)成立的 a, b, c 满足 $\begin{cases} a-1=0, \\ b-2=0, & \text{即 } a=1, b=2, c=1. \\ c-1=0, \end{cases}$

当 a=1, b=2, c=1 时, 所给的矩阵方程与

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \end{pmatrix}$$
 (1)

同解. 记 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$, 则式(1)等价于以下三个线性方程组

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{2}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \tag{4}$$

式(2)的通解为 $(x_{11}, x_{21}, x_{31})^{\mathrm{T}} = C_1(-1, -1, 1)^{\mathrm{T}} + (1, 0, 0)^{\mathrm{T}} = (-C_1 + 1, -C_1, C_1)^{\mathrm{T}},$

式(3)的通解为 $(x_1, x_2, x_3)^T = C_2(-1, -1, 1)^T + (2, 2, 0)^T = (-C_2 + 2, -C_2 + 2, C_2)^T$,

式(4)的通解为 $(x_{13},x_{23},x_{33})^{\mathrm{T}} = C_3(-1,-1,1)^{\mathrm{T}} + (1,-1,0)^{\mathrm{T}} = (-C_3+1,-C_3-1,C_3)^{\mathrm{T}}$. 所以,式(1),即所给矩阵方程的所有解为

$$X = \begin{pmatrix} -C_1 + 1 & -C_2 + 2 & -C_3 + 1 \\ -C_1 & -C_2 + 2 & -C_3 - 1 \\ C_1 & C_2 & C_3 \end{pmatrix}$$
 (其中 C_1 , C_2 , C_3 为任意常数).

附注 (I) 设矩阵方程 AX = B(其中 A, B 分别为 $m \times n$, $m \times l$ 矩阵),则 AX = B 有解的充分必要条件为 r(A : B) = r(A).

特别, AX = B 有唯一解的充分必要条件 $r(A \mid B) = r(A) = n$; AX = B 有无穷多解的充分必要条件是 $r(A \mid B) = r(A) < n$.

(II) 当矩阵方程 AX = B 有解时,可按以下方法求解:

如果 A 可逆(此时 m=n),则 $X = A^{-1}B$:

如果 A 不可逆,则如题解中那样,将 AX = B 表示成若干个线性方程组,然后逐一计算各个方程组的通解,即可得到 X.

(21)
$$\exists A \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}$$

$$A \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

所以, A 有特征值 -1, 2, 它们对应的特征向量分别为 $\boldsymbol{\xi}_1 = (1, 0, -1)^T$, $\boldsymbol{\xi}_2 = (1, 1, 1)^T$. 由于 r(A) = 2, 所以 A 还有特征值 0, 设它对应的特征向量为 $\boldsymbol{\xi}_3 = (a, b, c)^T$, 则由 A 是实对称矩阵知 $\boldsymbol{\xi}_3$ 满足

取它的基础解系为 ξ_3 , 即 $\xi_3 = (1, -2, 1)^T$.

显然, ξ_1 , ξ_2 , ξ_3 是正交向量组, 现将它们单位化:

$$\eta_{1} = \frac{\xi_{1}}{\|\xi_{1}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},
\eta_{2} = \frac{\xi_{2}}{\|\xi_{2}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T},
\eta_{3} = \frac{\xi_{3}}{\|\xi_{3}\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}.$$

 $f(x_1, x_2, x_3)$ 化为标准形 $-y_1^2 + 2y_2^2$.

附注 应熟练掌握用正交变换或可逆线性变换(即配平方法)将二次型化为标准形的方法.

(22) 记(X, Y)关于 X与 Y的边缘概率密度分别为 $f_X(x)$ 与 $f_Y(y)$, 则

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{0}^{2} \left(x^{2} + \frac{1}{3}xy\right) \, \mathrm{d}y, & 0 \le x \le 1, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} 2x^{2} + \frac{2}{3}x, & 0 \le x \le 1, \\ 0, & \text{ 其他}; \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \begin{cases} \int_{0}^{1} \left(x^{2} + \frac{1}{3}xy\right) \, \mathrm{d}x, & 0 \le y \le 2, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} \frac{1}{3} + \frac{1}{6}y, & 0 \le y \le 2. \end{cases}$$

$$= \begin{cases} \frac{1}{3} + \frac{1}{6}y, & 0 \le y \le 2. \end{cases}$$

(I) 由
$$EX = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{0}^{1} x \left(2x^2 + \frac{2}{3}x\right) dx = \frac{13}{18}$$
 得
$$DX = E(X^2) - (EX)^2 = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \left(\frac{13}{18}\right)^2$$

$$= \int_{0}^{1} x^2 \left(2x^2 + \frac{2}{3}x\right) dx - \left(\frac{13}{18}\right)^2 = \frac{17}{30} - \left(\frac{13}{18}\right)^2 = \frac{73}{1620}.$$
(II) $P\left(X^2 + Y^2 \le 1 + Y \ge \frac{1}{2}\right) = \frac{P\left(X^2 + Y^2 \le 1, Y \ge \frac{1}{2}\right)}{P\left(Y \ge \frac{1}{2}\right)},$
其中 $P\left(X^2 + Y^2 \le 1, Y \ge \frac{1}{2}\right) = \iint_{D} \left(x^2 + \frac{1}{3}xy\right) d\sigma \quad \left(D = \left\{(x, y) + x^2 + y^2 \le 1, y \ge \frac{1}{2}\right\}\right)$

$$= \int_{0}^{\frac{\sqrt{3}}{2}} dx \int_{\frac{1}{2}}^{\sqrt{1-x^2}} \left(x^2 + \frac{1}{3}xy\right) dy$$

$$= \int_0^{\frac{\sqrt{3}}{2}} \left[x^2 \sqrt{1 - x^2} + \frac{1}{6} x (1 - x^2) - \frac{1}{2} x^2 - \frac{1}{24} x \right] dx$$

$$= \int_0^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1 - x^2} dx + \frac{3}{128} - \frac{\sqrt{3}}{16}$$

$$\frac{x = \sin \theta}{16} \int_0^{\frac{\pi}{3}} \frac{1}{8} (1 - \cos 4\theta) d\theta + \frac{3}{128} - \frac{\sqrt{3}}{16}$$

$$= \frac{\pi}{24} - \frac{5\sqrt{3}}{64} + \frac{3}{128}.$$

附注 题解中需注意的是

$$\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{0}^{2} \left(x^{2} + \frac{1}{3}xy\right) \, \mathrm{d}y, & 0 \le x \le 1, \\ 0, & \text{ 其他,} \end{cases}$$

而不是 $\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \int_{0}^{2} \left(x^2 + \frac{1}{3}xy\right) \! \mathrm{d}y (0 \le x \le 1).$ 对 $\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x$ 也有同样的说法.

(23) 设 Z 的简单随机样本 Z_1 , Z_2 , …, Z_n 的观察值为 z_1 , z_2 , …, z_n , 则似然函数为

$$L(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(z_1 - \mu)^2}{2\sigma^2} \cdots \frac{1}{\sqrt{2\pi}\sigma}} e^{-\frac{(z_n - \mu)^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n (\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (z_i - \mu)^2}$$

取对数得

$$\ln L = \ln \left(\frac{1}{\sqrt{2\pi}}\right)^n - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (z_i - \mu)^2.$$

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^n (z_i - \mu),$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4}\sum_{i=1}^n (z_i - \mu)^2.$$

所以有

由最大似然估计法,令

$$\begin{cases} \frac{\partial \ln L}{\partial \mu} = 0\,, \\ \partial \mu , \ \sigma^2 \ \text{的最大似然估计值分别为} \frac{1}{n} \sum_{i=1}^n z_i \frac{\Box}{z}, \frac{1}{n} \sum_{i=1}^n \left(z_i - \bar{z}\right)^2, \text{所以} \mu, \sigma^2 \ \text{的} \\ \frac{\partial \ln L}{\partial \sigma^2} = 0\,, \end{cases}$$

最大似然估计量分别为

$$\begin{split} \hat{\mu} &= \frac{1}{n} \sum_{i=1}^{n} Z_{i} \stackrel{\text{id}}{===} \overline{Z}, \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2}. \\ \text{th} \mathcal{F} EX &= E(\mathbf{e}^{Z}) = \int_{-\infty}^{+\infty} \mathbf{e}^{z} \frac{1}{\sqrt{2\pi}\sigma} \mathbf{e}^{-\frac{(z-\mu)^{2}}{2\sigma^{2}}} dz \stackrel{\Leftrightarrow}{===} t \frac{z-\mu}{\sigma} \mathbf{e}^{\mu} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \mathbf{e}^{\sigma t - \frac{t^{2}}{2}} dt \\ &= \mathbf{e}^{\mu + \frac{1}{2}\sigma^{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \mathbf{e}^{-\frac{(t-\sigma)^{2}}{2}} dt = \mathbf{e}^{\mu + \frac{1}{2}\sigma^{2}}, \end{split}$$

所以,由最大似然估计量的不变性得 EX 的最大似然估计量为

$$EX = e^{\bigwedge_{\mu}^{\wedge} + \frac{1}{2}\sigma^{2}} = e^{\overline{Z} + \frac{1}{2n_{i}} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2}}.$$

附注 (I) 应记住,设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自 X 的简单随机样本,则 μ 的矩估计量 = μ 的最大似然估计量 $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}$,

$$\sigma^2$$
 的矩估计量 = μ 的最大似然估计量 $\overset{\wedge}{\sigma^2} = \frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2$.

(Ⅱ) 最大似然估计量的不变性是:

设 θ 是未知参数, θ 的函数 $u=u(\theta)$ 有单值反函数,则当 $\hat{\theta}$ 是 θ 的最大似然估计量时, $\hat{u}=u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计量.

模拟试题(三)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 B
 C
 D
 D
 C
 D
 C
 A

(1) 在 $(-\pi, 0)$ 内f(x)仅有间断点 $x = -\frac{\pi}{2}$. 由于

$$\lim_{x \to -\frac{\pi}{2}} f(x) = \lim_{x \to -\frac{\pi}{2}} \frac{\sin 2x}{\left(e^{\cos x} - 1\right) \ln\left(1 + \frac{1}{4}x\right)}$$
$$= \frac{1}{\ln\left(1 - \frac{\pi}{8}\right)^{x \to -\frac{\pi}{2}} \cos x} = -\frac{2}{\ln\left(1 - \frac{\pi}{8}\right)},$$

所以 $x = -\frac{\pi}{2}$ 是 f(x) 的可去间断点.

在 $\left(0, \frac{\pi}{2}\right)$ 内f(x)无间断点. 此外,由于

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin 2x}{\left(e^{\cos x} - 1\right) \ln\left(1 + \frac{1}{4}x\right)} = \frac{1}{e - 1} \lim_{x \to 0^{-}} \frac{2x}{4} = \frac{8}{e - 1} \neq 0 = \lim_{x \to 0^{+}} f(x),$$

所以 x = 0 不是 f(x) 的可去间断点.

由此可知, f(x)的可去间断点数为 1. 因此选 (B).

附注 寻找分段函数的间断点,除各个分段区间内的间断点外,还应通过考虑函数在分段点处的连续性,确定它是否为间断点.

(2) a = -2, -1 时, f(x) 在 $\left(0, \frac{1}{e}\right]$ 上无定义,所以选项(A),(B) 应排除. 当 a = 0 时, $f(x) = x \ln x - \frac{1}{e}$,且在 $\left(0, +\infty\right)$ 上,由

$$f'(x) = \ln x + 1 \begin{cases} <0, & 0 < x < \frac{1}{e}, \\ =0, & x = \frac{1}{e}, \\ >0, & x > \frac{1}{e} \end{cases}$$

知, f(x)的单调减少区间仅为 $\left(0, \frac{1}{e}\right]$. 因此选(C).

附注 本题是对选项逐一检验,直到得到正确的选项为止. 这是求解单项选择题的常用方法之一.

得 $F'(x) = \ln(1 + f(x))$. 此外,由

$$F'_{-}(0) = \lim_{x \to 0^{-}} F'(x) = \lim_{x \to 0^{-}} \int_{0}^{x} f(t) dt = 0,$$

$$F'_{+}(0) = \lim_{x \to 0^{+}} F'(x) = \lim_{x \to 0^{+}} \ln(1 + f(u)) = \ln(1 + f(0)) = 0$$

知 F'(0) = 0. 所以由

$$F''(0) = \lim_{x \to 0^{-}} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0^{-}} \frac{\int_{0}^{x} f(t) dt}{x}$$

$$= \frac{\text{As is in } f(x)}{x} = \lim_{x \to 0^{+}} \frac{\int_{0}^{x} f(t) dt}{x}$$

$$= \lim_{x \to 0^{+}} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0^{+}} \frac{\ln(1 + f(x))}{x}$$

$$= \lim_{x \to 0^{+}} \frac{f(x)}{x} = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = f'(0) = 0$$

得 F"(0) = 0. 因此选 (D).

附注 题解中 $F'(0) = \lim_{x \to 0} F'(x)$ 与 $F'(0) = \lim_{x \to 0} F'(x)$ 是根据以下结论:

设函数 $\varphi(x)$ 在点 x=0 处连续,在 $(-\delta,0)(\delta>0)$ 内可导,且 $\lim_{x\to 0^-} \varphi'(x)$ 存在,则 $\varphi'(0)=\lim_{x\to 0^+} \varphi'(x)$;

设函数 $\psi(x)$ 在点 x=0 处连续,在 $(0,\delta)(\delta>0)$ 内可导,且 $\lim_{x\to 0^+}\psi'(x)$ 存在,则 $\psi'_+(0)$ = $\lim_{x\to 0^+}\psi'(x)$.

第二个结论是 2009 年考研真题,第一个结论的证明与第二个相似. 因此上述这些结论都可作为定理用于解题.

$$(4) \, \boxplus \exists a_0 = \frac{2}{2} \int_0^2 (x - 1) \, \mathrm{d}x = 0,$$

$$a_n = \frac{2}{2} \int_0^2 (x - 1) \cos \frac{n \pi x}{2} \, \mathrm{d}x = \frac{2}{n \pi} \int_0^2 (x - 1) \sin \frac{n \pi x}{2}$$

$$= \frac{2}{n \pi} \Big[(x - 1) \sin \frac{n \pi x}{2} \Big|_0^2 - \int_0^2 \sin \frac{n \pi x}{2} \, \mathrm{d}x \Big]$$

$$= \frac{4}{\pi^2 n^2} \Big[(-1)^n - 1 \Big] = \begin{cases} 0, & n = 2k \\ \frac{8}{\pi^2 (2k - 1)^2}, & n = 2k - 1 \end{cases}$$

$$(k = 1, 2, \dots),$$

所以
$$\sum_{n=0}^{\infty} a_n x^n = \sum_{k=1}^{\infty} \frac{8}{\pi^2 (2k-1)^2} x^{2k-1}$$
.

收敛;当
$$|x| > 1$$
 时, $\sum_{k=1}^{\infty} \frac{16}{\pi^2 (2k-1)^2} x^{2k-1}$ 发散. 此外,当 $x = -1,1$ 时, $\sum_{k=1}^{\infty} \frac{16}{\pi^2 (2k-1)^2} x^{2k-1}$ 分别

成为
$$-\sum_{k=1}^{\infty} \frac{16}{\pi^2 (2k-1)^2}$$
与 $\sum_{k=1}^{\infty} \frac{16}{\pi^2 (2k-1)^2}$,它们都是收敛级数. 于是 $\sum_{k=1}^{\infty} \frac{16}{\pi^2 (2k-1)^2} x^{2k-1}$ 的收敛

域为[-1,1],从而 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域为[-1,1],因此选(D).

附注 缺项幂级数 $\sum_{n=0}^{\infty} u_n(x)$ 的收敛域可按以下步骤计算:

第一步计算
$$\lim_{n\to\infty}\left|\frac{u_{n+1}(x)}{u_{n}(x)}\right|$$
, 设其为 $A(x)$;

第二步解不等式 A(x) < 1, 设其解为 -a < x < a;

第三步考虑 $\sum_{n=0}^{\infty} u_n(x)$ 在点 x=-a, a 处的收敛性,则 $\sum_{n=0}^{\infty} u_n(x)$ 的收敛域为(-a,a) 与收敛的端点的并集.

(5) 由(\mathbf{A}^*)^T =(\mathbf{A}^T)^{*} =($-\mathbf{A}$)^{*} =(-1)ⁿ⁻¹ \mathbf{A}^* 知, n 为奇数时, 有(\mathbf{A}^*)^T = \mathbf{A}^* . 即 \mathbf{A}^* 是对称矩阵. 反之, 当 \mathbf{A}^* 是对称矩阵, 即(\mathbf{A}^*)^T = \mathbf{A}^* 时, 由以上计算得(-1)ⁿ⁻¹ =1, 即 n 为奇数.

所以 A^* 为对称矩阵是n为奇数的充分必要条件,因此选(C).

附注 对于 $n(n \ge 2)$ 阶矩阵 A, $A^* = 0$ 的充分必要条件是 r(A) < n-1. 因此 $A^* \ne 0$ 的充分必要条件是 r(A) = n 或 n-1.

(6) 由于 $A \sim B$, 所以存在3 阶可逆矩阵P, 使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{B}.$$

于是, $r(A-2E_3) = r(P^{-1}(A-2E_3)P) = r(B-2E_3)$. 由于

$$\begin{vmatrix} B - 2E_3 & -2 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -2 \end{vmatrix} = -3 \neq 0,$$

所以 $r(A-2E_3) = r(B-2E_3) = 3$.

同样有 $r(\mathbf{A} - \mathbf{E}_3) = r(\mathbf{B} - \mathbf{E}_3)$. 由于

$$\begin{vmatrix} \mathbf{B} - \mathbf{E}_3 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 0$$
,但 $\mathbf{B} - \mathbf{E}_3$ 的 2 阶子式 $\begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0$,

所以, $r(A - E_3) = r(B - E_3) = 2$.

从而 $r(\mathbf{A} - 2\mathbf{E}_3) + r(\mathbf{A} - \mathbf{E}_3) = 5$. 因此选 (D).

附注 本题也可按以下方法计算:

所以, $r(A-2E_3) + r(A-E_3) = 5$.

(7) 由关于
$$X$$
 的边缘分布函数 $F_X(x) = \lim_{y \to +\infty} F(x, y) = \begin{cases} 1 - e^{-x}, & x > 0, \\ 0, & \text{其他;} \end{cases}$

分布函数 $F_Y(y) = \lim_{x \to +\infty} F(x, y) = \begin{cases} 1 - e^{-\frac{1}{2}y}, & y > 0, \text{ 知 } F(x, y) = F_X(x) F_Y(y) (-\infty < x < y), \text{ where } x = 0, \text{ is } y = 0. \end{cases}$ 其他

$$f_{X \vdash Y}(x \vdash y) = f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x) = \begin{cases} \mathrm{e}^{-x}, & x > 0, \\ 0, & \text{ i.e. } \end{cases}$$

由此可知选项(C)不正确. 因此选(C).

附注 题解中,实际上已给出选项(A),(D)都正确.选项(B)也是正确的,这是因为

关于
$$Y$$
 的边缘概率密度 $f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} = \begin{cases} \frac{1}{2}\mathrm{e}^{-\frac{1}{2}y}, & y > 0, \\ 0, & \text{其他.} \end{cases}$

(8) 由题设知,
$$X_1$$
, X_2 , X_3 , X_4 相互独立, 且
$$E(X_1 - 2X_2) = 0, \quad D(X_1 - 2X_2) = D(X_1) + 4D(X_2) = 20,$$

$$E(3X_3 - 4X_4) = 0, \quad D(3X_3 - 4X_4) = 9D(X_3) + 16D(X_4) = 100.$$

于是
$$\frac{1}{\sqrt{20}}(X_1-2X_2)\sim N(0,\ 1)$$
, $\frac{1}{\sqrt{100}}(3X_3-4X_4)\sim N(0,\ 1)$,且它们相互独立,所以,

$$\frac{1}{20}(X_1-2X_2)^2+\frac{1}{100}(3X_3-4X_4)^2\sim\chi^2(2). \ \, 从而 \,D(Z)=4. \ \, 因此选 \,(A).$$

附注 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,则

$$Y = \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma} \right)^{2} \sim \chi^{2}(n), \exists EY = n, DY = 2n;$$

$$Z = \sum_{i=1}^{n} \left(\frac{X_{i} - \overline{X}}{\sigma} \right)^{2} \sim \chi^{2}(n-1), \exists EZ = n-1, DY = 2(n-1),$$

其中 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

二、填空题

(9)
$$\exists \exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{(-1)^n \sin n} = e^{\lim_{n \to \infty} (-1)^n \sin n \cdot \ln \left(1 + \frac{1}{n} \right)},$$

其中, $|(-1)^n \sin n| < 1(n=1, 2, \dots), \lim_{n\to\infty} \ln\left(1+\frac{1}{n}\right) = 0$, 所以

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{(-1)^n \sin n} = e^0 = 1.$$

附注 设 $\alpha(x)$ 是有界函数, $\beta(x)$ 是某个极限过程中的无穷小,则在这个极限过程中有 $\lim \alpha(x)\beta(x) = 0$.

(10) 由于 $x \in [-1, 1]$ 时, $\psi(x) = (x-1)^2$,显然 $x \in [-1, 0)$ 时, $\psi(x) > 1$; $x \in [0, 1]$ 时, $\psi(x) \le 1$,所以

$$\varphi(\psi(x)) = \begin{cases} \psi(x) \ln \psi(x), & x \in [-1, 0), \\ 1 - \psi(x), & x \in [0, 1] \end{cases} = \begin{cases} (1 - x^2) \ln(1 - x)^2, & x \in [-1, 0), \\ 1 - (x - 1)^2, & x \in [0, 1]. \end{cases}$$

于是
$$\int_{-1}^{1} \varphi(\psi(x)) dx = \int_{-1}^{0} (1-x)^{2} \ln(1-x)^{2} dx + \int_{0}^{1} [1-(x-1)^{2}] dx$$
,其中

$$\int_{-1}^{0} (1-x)^2 \ln(1-x)^2 dx = -\frac{2}{3} \left[(1-x)^3 \ln(1-x) \right]_{-1}^{0} + \int_{-1}^{0} (1-x)^2 dx = \frac{16}{3} \ln 2 - \frac{14}{9},$$

$$\int_0^1 \left[1 - (x - 1)^2\right] \mathrm{d}x = 1 - \frac{1}{3} (x - 1)^3 \Big|_0^1 = \frac{2}{3},$$

所以,
$$\int_{-1}^{1} \varphi(\psi(x)) dx = \left(\frac{16}{3} \ln 2 - \frac{14}{9}\right) + \frac{2}{3} = \frac{16}{3} \ln 2 - \frac{8}{9}$$
.

附注 平时应练习分段函数的复合运算.

(11) 由题设 $f(u, v) = 1 - u - 2v + o(\sqrt{(u-1)^2 + v^2}) = -(u-1) - 2(v-0) + o(\sqrt{(u-1)^2 + (v-0)^2})$ 知

$$f(1, 0) = 0, f'_{n}(1, 0) = -1, f'_{n}(1, 0) = -2.$$

记 $u = e^{y}$, v = x + y, 则 g(x, y) = f(u, v), 且

$$g'_{x}(x, y) = f'_{v}(u, v), g'_{y}(x, y) = f'_{u}(u, v)e^{y} + f'_{v}(u, v).$$

所以 $dg(x, y) \mid_{(0,0)} = g'_x(0, 0) dx + g'_y(0, 0) dy = f'_v(1, 0) dx + [f'_u(1, 0) + f'_v(1, 0)] dy = -2 dx - 3 dy.$

附注 本题获解的关键是由 $f(u, v) = 1 - u - 2v + o(\sqrt{(u-1)^2 + v^2})$ 得到 $f'_u(1, 0) = -1$, $f'_v(1, 0) = -2$.

$$(12) \int_{0}^{\frac{\pi}{2}} d\theta \int_{1}^{-\sin\theta + \sqrt{3 + \sin^2\theta}} f(r\cos\theta, r\sin\theta) r dr = \iint_{D} f(x, y) d\sigma, 其中$$
$$D = \left\{ (r, \theta) \mid 1 \le r \le -\sin\theta + \sqrt{3 + \sin^2\theta}, \ 0 \le \theta \le \frac{\pi}{2} \right\}.$$

D 是由曲线 $I: r = 1\left(0 \le \theta \le \frac{\pi}{2}\right)$, $II: r = -\sin\theta + \sqrt{3 + \sin^2\theta}\left(0 \le \theta \le \frac{\pi}{2}\right)$ 及 $III: \theta = 0$ 围成.

显然 I 的方程为 $x = \sqrt{1 - \gamma^2} (0 \le \gamma \le 1)$. 由于 II 的方程可改写成

$$r^2 = -r\sin\theta + \sqrt{3r^2 + r^2\sin^2\theta}$$
, $\exists I x^2 + y^2 + y = \sqrt{3x^2 + 4y^2}$,

或者, $x^2 + y^2 + 2y - y = \sqrt{3x^2 + 4y^2}$,两边平方后得 $(x^2 + y^2 + 2y)^2 - (2y + 3)(x^2 + y^2 + 2y) + 3 \cdot 2y = 0$,即 $(x^2 + y^2)(x^2 + y^2 + 2y - 3) = 0$. 由此得到 II 的方程为 $x^2 + y^2 + 2y = 3$,即 $x = \sqrt{4 - (y + 1)^2}(0 \le y \le 1)$. III 的方程为 y = 0. 于是 D 如图答 3-12 阴影部分所示,所以有

$$\iint_{D} f(x,y) d\sigma = \int_{0}^{1} dy \int_{\sqrt{1-y^{2}}}^{\sqrt{4-(y+1)^{2}}} f(x,y) dx.$$

上式右边即为所求的先 x 后 y 的二次积分.

图答 3-12

附注 对某个二次积分 I ,要改变它的积分次序或积分坐标系,总是先写出与 I 相对应的二重积分,然后再将这个二重积分转化为所要求的二次积分.

$$(13) \begin{pmatrix} A^{-1} & O \\ B & C^* \end{pmatrix}^{-1} = \begin{pmatrix} (A^{-1})^{-1} & O \\ -(C^*)^{-1}B(A^{-1})^{-1} & (C^*)^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} A & O \\ -\frac{1}{|C|}CBA & \frac{1}{|C|}C \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ -\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 \end{pmatrix} .$$

附注 这里利用了分块矩阵的求逆公式:

设A. D 都是可逆矩阵.则

$$\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{O} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{D}^{-1} \end{pmatrix}.$$

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{O} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}\mathbf{D}^{-1} \\ \mathbf{O} & \mathbf{D}^{-1} \end{pmatrix}.$$

同样有,

(14) 由题设知 P(A) = P(B), 于是由 $P(A \cup B) = \frac{3}{4}$ 得

$$2P(A) - [P(A)]^2 = \frac{3}{4}, \quad \mathbb{P}(A) = \frac{1}{2} \left(\pm \vec{J} P(A) = \frac{3}{2} \right).$$
 (1)

由此可知 0 < a < 2 (这是因为,如果 $a \le 0$,则 P(A) = 1,这与 $P(A) = \frac{1}{2}$ 矛盾;如果 $a \ge 2$,

则 P(A) = 0, 这也与 $P(A) = \frac{1}{2}$ 矛盾). 于是由式(1)得

$$\frac{1}{2} = P(A) = \int_{a}^{2} \frac{3}{8} t^{2} dt = 1 - \frac{1}{8} a^{3}, \text{ If } a = \sqrt[3]{4}.$$

附注 根据题设推出 P(A) = P(B) 以及 0 < a < 2 是本题获解的关键.

三、解答题

(15) 所给微分方程
$$y'' + a^2 y = \sin x + 2\cos 2x$$
 (1) 对应的齐次方程的通解为

 $Y = C_1 \cos ax + C_2 \sin ax (C_1, C_2)$ 是任意常数).

当 a=1 时,式(1)有特解

$$y^* = x(A_1\sin x + B_1\cos x) + (A_2\sin 2x + B_2\cos 2x).$$

将它代入a=1时的式(1)得

$$2A_1\cos x - 2B_1\sin x - 3A_2\sin 2x - 3B_2\cos 2x = \sin x + 2\cos 2x$$
.

由此得到 $A_1 = 0$, $B_1 = -\frac{1}{2}$, $A_2 = 0$, $B_2 = -\frac{2}{3}$. 故

$$y^* = -\frac{1}{2}x\cos x - \frac{2}{3}\cos 2x.$$

因此, 当a=1时,式(1)的通解为

$$y = Y + y^* = C_1 \cos x + C_2 \sin x - \frac{1}{2} x \cos x - \frac{2}{3} \cos 2x.$$

当 a = 2 时,式(1)有特解

$$y^* = A_1 \sin x + B_1 \cos x + x (A_2 \cos 2x + B_2 \sin 2x).$$

代入 a=2 时的式(1)得

$$3A_1\sin x + 3B_1\cos x - 4A_2\sin 2x + 4B_2\cos 2x = \sin x + 2\cos 2x$$
.

由此得到 $A_1 = \frac{1}{3}$, $B_1 = 0$, $A_2 = 0$, $B_2 = \frac{1}{2}$. 故

$$y^* = \frac{1}{3} \sin x + \frac{1}{2} x \sin 2x.$$

因此, 当 a=2 时, 式(1)的通解为

$$y = Y + y^* = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \sin x + \frac{1}{2} x \sin 2x.$$

附注 设有2阶线性微分方程

$$y'' + ay' + by = e^{\alpha x} (a_1 \cos \beta x + b_1 \sin \beta x)$$
 (*)

(其中a, b, a_1 , b_1 , α , β 都是常数),则式(*)有特解

$$y^* = x^k e^{\alpha x} (A\cos\beta x + B\sin\beta x) ,$$

其中 $k = \begin{cases} 0, & \text{当 } \alpha + \mathrm{i}\beta \text{ 是方程 } \lambda^2 + a\lambda + b = 0 \text{ 的 } 0 \text{ 重根}, \\ 1, & \text{当 } \alpha + \mathrm{i}\beta \text{ 是方程 } \lambda^2 + a\lambda + b = 0 \text{ 的 } 1 \text{ 重根}, \end{cases}$ 常数 A, B 可由 y^* 代入式(*)确定.

(16)
$$\pm \frac{\partial^2 z}{\partial x \partial y} = x + y \not\in \frac{\partial z}{\partial x} = \int (x + y) dy = xy + \frac{1}{2} y^2 + \varphi(x).$$
 (1)

z(x, 0) = x 两边对 x 求偏导数得 $\frac{\partial z(x, 0)}{\partial x} = 1$,将它与由式(1)得到的 $\frac{\partial z}{\partial x}$

较得 $\varphi(x) = 1$, 所以

$$\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + 1. \tag{2}$$

曲此得到
$$z = \int \left(xy + \frac{1}{2}y^2 + 1\right) dx = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + x + \psi(y).$$
 (3)

式(3)中令x=0,则由 $z(0, y)=y^2$ 得 $\psi(y)=y^2$.代入式(3)得

$$z = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + x + y^2. \tag{4}$$

由式(2)得 $\frac{\partial z}{\partial x}\Big|_{(x_0,y_0)} = x_0y_0 + \frac{1}{2}y_0^2 + 1$,由式(4)得 $\frac{\partial z}{\partial y}\Big|_{(x_0,y_0)} = \frac{1}{2}x_0^2 + x_0y_0 + 2y_0$. 于是由

曲面 S: z = z(x, y)(x > 0)的在点 (x_0, y_0, z_0) 处的切平面与 π 平行得

$$\frac{\frac{\partial z}{\partial x} \Big|_{(x_0, y_0)}}{1} = \frac{\frac{\partial z}{\partial y} \Big|_{(x_0, y_0)}}{1} = \frac{-1}{-1}, \quad \mathbb{E} \begin{bmatrix} x_0 y_0 + \frac{1}{2} y_0^2 + 1 = 1, \\ \frac{1}{2} x_0^2 + x_0 y_0 + 2 y_0 = 1. \end{bmatrix}$$

解此方程组 $x_0=\sqrt{2},\ y_0=0$ 代入式(4) 得 $z_0=\sqrt{2}.$ 因此所求的点 $P=(\sqrt{2},\ 0,\ \sqrt{2}).$

附注 题解中应注意的是:

由
$$\frac{\partial^2 z}{\partial x \partial y} = x + y$$
 得 $\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + \varphi(x)$,而不是 $\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + C$. 同样,由 $\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + C$. 同样,由 $\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + C$. 上述的 C 都为任意常数.

所以
$$f(x, y) = y \sqrt{1 - x^2 + y^2}$$
. 此外

$$D = \left\{ (r, \theta) \middle| 0 \le r \le \sec \theta, \ 0 \le \theta \le \frac{\pi}{4} \right\}$$
$$= \left\{ (x, y) \middle| 0 \le x \le 1, \ 0 \le y \le x \right\}$$

 $= \{ (x, y) \mid 0 \le x \le 1, 0 \le y \le x \},$

如图答 3-17 阴影部分所示. 由于

$$\frac{\partial f}{\partial x} = -\frac{xy}{\sqrt{1 - x^2 + y^2}}, \quad \frac{\partial f}{\partial y} = \frac{1 - x^2 + 2y^2}{\sqrt{1 - x^2 + y^2}},$$

所以 $\begin{cases} \frac{\partial f}{\partial x} = 0, \\ & \text{在 } D \text{ 的内部无解,即 } f(x, y) \text{在 } D \text{ 的内部无可能极值点.} \\ \frac{\partial f}{\partial y} = 0 \end{cases}$

D 有边界 $I: y = 0(0 \le x \le 1)$, $II: x = 1(0 \le y \le 1)$ 以及 $III: y = x(0 \le x \le 1)$.

在 $I \perp$, $f(x, y) \equiv 0 (0 \le x \le 1)$, 所以它的最大值与最小值都为 0.

在 \mathbb{I} 上, $f(x, y) = y^2 (0 \le y \le 1)$, 所以它的最大值为 1, 最小值为 0.

在III上, $f(x, y) = x(0 \le x \le 1)$, 所以它的最大值为 1, 最小值为 0.

因此f(x, y)在D的边界上,即在D上的最大值为1,最小值为0.

附注 题解时应注意的是, f(x, y) 在极坐标系中的表达式 $r\sin\theta \sqrt{1 - r^2\cos 2\theta}$, 而不是 $r^2\sin\theta \sqrt{1 - r^2\cos 2\theta}$.

(18) Ω 的侧面方程为 $x^2 + y^2 - (z-1)^2 = 1$, 所以

$$\iint\limits_{\Omega} (x^2 + y^2) dv = \int_0^2 dz \iint\limits_{D_z} (x^2 + y^2) d\sigma,$$

其中 $D_z = \{(x, y) \mid x^2 + y^2 \le 1 + (z - 1)^2\}$ 是 Ω 的水平截面(其立坐标 z) 在 xOy 平面的投影. 所以

$$\iint_{\Omega} (x^{2} + y^{2}) dv = \int_{0}^{2} dz \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{1 + (z-1)^{2}}} r^{2} \cdot r dr$$

$$= 2\pi \int_{0}^{2} \frac{1}{4} [1 + (z-1)^{2}] dz \xrightarrow{\stackrel{\text{def}}{=} z - 1} \frac{\pi}{2} \int_{-1}^{1} (1 + t^{2})^{2} dt$$

$$= \pi \int_{0}^{1} (1 + 2t^{2} + t^{4}) dt = \frac{28}{15} \pi.$$

附注 Ω 的水平截面是圆,所以对三重积分 $\iint_{\Omega} (x^2 + y^2) dv$ 用"先二后一"的方法计算.

$$(19) \ \ \overrightarrow{\mathbb{1}} \mathcal{U}_{n}(x) = \left(\frac{1}{2n-1} + \frac{1}{2n+1}\right) x^{2n}, \ \ \ \mathbb{M}$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_{n}(x)} \right| = \lim_{n \to \infty} \frac{\left(\frac{1}{2n+1} + \frac{1}{2n+3}\right) x^{2n+2}}{\left(\frac{1}{2n-1} + \frac{1}{2n+1}\right) x^{2n}} = \|x\|^{2}.$$

所以,所给幂级数在 |x| <1 时收敛,|x| > 1 时发散,此外,在 x = -1,1 时,所给幂级数都成为 $\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} + \frac{1}{2n+1}\right)$,它是发散级数.

因此, 所给幂级数的收敛域为(-1,1).

曲于
$$s(x) = \sum_{n=1}^{\infty} \left(\frac{1}{2n-1} + \frac{1}{2n+1} \right) x^{2n} = \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n} + \sum_{n=1}^{\infty} \frac{1}{2n+1} x^{2n}$$
$$= x \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1} + \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{2n+1} x^{2n+1}$$

$$= x \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1} + \frac{1}{x} \left(\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1} - x \right)$$

$$= x \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1} + \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1} - 1$$

$$= \left(x + \frac{1}{x} \right) \sum_{n=1}^{\infty} \frac{1}{2n-1} x^{2n-1} - 1$$

$$= \left(x + \frac{1}{x} \right) \cdot \frac{1}{2} \left[\sum_{n=1}^{\infty} \frac{1}{n} x^n + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n \right] - 1$$

$$= \left(x + \frac{1}{x} \right) \cdot \frac{1}{2} \left[-\ln(1-x) + \ln(1+x) \right] - 1$$

$$= \frac{1}{2} \left(x + \frac{1}{x} \right) \ln \frac{1+x}{1-x} - 1 \quad (x \in (-1,0) \cup (0,1)),$$

且 s(0) = 0, 所以,

$$s(x) = \begin{cases} \frac{1}{2} \left(x + \frac{1}{x} \right) \ln \frac{1+x}{1-x} - 1, & x \in (-1, 0) \cup (0, 1), \\ 0, & x = 0. \end{cases}$$

附注 本题利用以下公式,快捷地算得幂级数的和函数:

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n \quad (-1 < x \le 1),$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n \quad (-1 \le x < 1).$$

(20) (I) 由(A)与(B)等价知,
$$r(\boldsymbol{\beta}_1,\,\boldsymbol{\beta}_2,\,\boldsymbol{\beta}_3)=r(\boldsymbol{\alpha}_1,\,\boldsymbol{\alpha}_2,\,\boldsymbol{\alpha}_3).$$
 由于

$$| (\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) | = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \end{vmatrix} \neq 0$$
,即 $r(\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) = 3$,所以

$$r(\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \boldsymbol{\beta}_3) = 3$$
,即 $0 \neq | (\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \boldsymbol{\beta}_3) | = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & a - 3 \end{vmatrix} = a - 5$. 由此得

到 $a \neq 5$.

(Ⅱ) 当 a ≠ 5 时,由

$$\longrightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{vmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ 0 & 1 & 0 & \frac{-a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ 0 & 0 & 1 & \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix}$$

知, (A)由(B)的线性表示式为

$$\begin{cases} \boldsymbol{\alpha}_{1} = \frac{2a - 14}{a - 5} \boldsymbol{\beta}_{1} + \frac{-a + 3}{a - 5} \boldsymbol{\beta}_{2} + \frac{2}{a - 5} \boldsymbol{\beta}_{3}, \\ \boldsymbol{\alpha}_{2} = \frac{-a + 7}{a - 5} \boldsymbol{\beta}_{1} + \frac{a - 4}{a - 5} \boldsymbol{\beta}_{2} - \frac{1}{a - 5} \boldsymbol{\beta}_{3}, \\ \boldsymbol{\alpha}_{3} = -\boldsymbol{\beta}_{1} + 2\boldsymbol{\beta}_{2}. \end{cases}$$
(1)

附注 将初等行变换后的矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ \frac{-a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ 0 & 0 & 1 \end{pmatrix}$ 的列向量由左至右顺

序记为 $\boldsymbol{\beta}_1'$, $\boldsymbol{\beta}_2'$, $\boldsymbol{\beta}_3'$; $\boldsymbol{\alpha}_1'$, $\boldsymbol{\alpha}_2'$, $\boldsymbol{\alpha}_3'$, 容易看到

$$\begin{cases} \boldsymbol{\alpha}_{1}' = \frac{2a - 14}{a - 5} \boldsymbol{\beta}_{1}' + \frac{-a + 3}{a - 5} \boldsymbol{\beta}_{2}' + \frac{2}{a - 5} \boldsymbol{\beta}_{3}', \\ \boldsymbol{\alpha}_{2}' = \frac{-a + 7}{a - 5} \boldsymbol{\beta}_{1}' + \frac{a - 4}{a - 5} \boldsymbol{\beta}_{2}' - \frac{1}{a - 5} \boldsymbol{\beta}_{3}' \\ \boldsymbol{\alpha}_{3}' = -\boldsymbol{\beta}_{1}' + 2\boldsymbol{\beta}_{2}'. \end{cases}$$
(2)

由于"初等行变换不改变列向量之间的线性表示关系"(记住这一结论),因此由式(2)直接得到式(1),即(A)由(B)线性表示式.

(A)由(B)的线性表示式也可以用以下方法计算:

记
$$\boldsymbol{e}_1 = (1, 0, 0)^T$$
, $\boldsymbol{e}_2 = (0, 1, 0)^T$, $\boldsymbol{e}_3 = (0, 0, 1)^T$, 则由

$$(\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \boldsymbol{\beta}_3) = (\boldsymbol{e}_1, \, \boldsymbol{e}_2, \, \boldsymbol{e}_3) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}$$

得

$$(\boldsymbol{e}_1, \ \boldsymbol{e}_2, \ \boldsymbol{e}_3) = (\boldsymbol{\beta}_1, \ \boldsymbol{\beta}_2, \ \boldsymbol{\beta}_3) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}^{-1}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} 2 - \frac{2}{a-5} & -1 + \frac{4}{a-5} & -\frac{2}{a-5} \\ -1 - \frac{1}{a-5} & 1 + \frac{2}{a-5} & -\frac{1}{a-5} \end{pmatrix}.$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) = (\boldsymbol{e}_{1}, \, \boldsymbol{e}_{2}, \, \boldsymbol{e}_{3}) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} 2 - \frac{2}{a-5} & -1 + \frac{4}{a-5} & -\frac{2}{a-5} \\ -1 - \frac{1}{a-5} & 1 + \frac{2}{a-5} & -\frac{1}{a-5} \\ \frac{1}{a-5} & -\frac{2}{a-5} & \frac{1}{a-5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} \frac{2a-14}{a-5} & -\frac{a+7}{a-5} & -1 \\ -\frac{a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix},$$

它即为式(1).

(21) (I)由于 $\frac{1}{\sqrt{6}}(1, 2, 1)^{T}$ 是 A 的一个特征向量,记它对应的特征值为 λ ,则有 $\begin{pmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & -a \\ -4 & -a & \lambda \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 0$,即 $\begin{cases} \lambda - 2 = 0 \\ 1 + 2(\lambda - 3) - a = 0 \\ -4 - 2a + \lambda = 0 \end{cases}$

解此方程组得 $\lambda = 2$, a = -1.

将 a = -1 代入 A, 得 A 的特征方程

$$\begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda - 5)(\lambda + 4) = 0,$$

它的根除 $\lambda_1 = \lambda = 2$ 外,还有 $\lambda_2 = 5$, $\lambda_3 = -4$,所以, $f(x_1, x_2, x_3)$ 的标准形为 $2y_1^2 + 5y_2^2 - 4y_3^2$.

由于 A^* 是实对称矩阵,所以它能化为对角矩阵 Λ . 由于 A^* 的特征值为 $\mu_1 = \frac{|A|}{\lambda_1} = -20$, $\mu_2 = \frac{|A|}{\lambda_2} = -8$, $\mu_3 = \frac{|A|}{\lambda_2} = 10$,所以

$$\mathbf{\Lambda} = \begin{pmatrix} -20 & & \\ & -8 & \\ & & 10 \end{pmatrix}.$$

由题设知, A 的对应 $\lambda_1 = 2$ 的特征向量为 $\xi_1 = (1, 2, 1)^T$.

设对应 $\lambda_2 = 5$ 的特征向量为 $\xi_2 = (u_1, u_2, u_3)^T$,则

$$\begin{pmatrix}
5 & 1 & -4 \\
1 & 2 & 1 \\
-4 & 1 & 5
\end{pmatrix}\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix} = 0. \tag{1}$$

$$\oplus \div \begin{pmatrix}
5 & 1 & -4 \\
1 & 2 & 1 \\
-4 & 1 & 5
\end{pmatrix}
\xrightarrow{\text{institution}} \begin{pmatrix}
5 & 1 & -4 \\
1 & 2 & 1 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{\text{institution}} \begin{pmatrix}
0 & -9 & -9 \\
1 & 2 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

所以,式(1)与 $\begin{cases} u_2 + u_3 = 0, \\ u_1 + u_2 = 0 \end{cases}$ 同解,它的基础解系为 $(1, -1, 1)^T$,故取 $\boldsymbol{\xi}_2 = (1, -1, 1)^T$.

设对应 $\lambda_3 = -4$ 的特征向量为 $\boldsymbol{\xi}_3 = (v_1, v_2, v_3)^{\mathrm{T}}$,则由 \boldsymbol{A} 是实对称矩阵知,

$$\begin{cases} (\boldsymbol{\xi}_3, \ \boldsymbol{\xi}_1) = 0, \\ (\boldsymbol{\xi}_3, \ \boldsymbol{\xi}_2) = 0, \end{cases} \begin{cases} v_1 + 2v_2 + v_3 = 0, \\ v_1 - v_2 + v_3 = 0, \end{cases}$$

它的基础解系为 $(1, 0, -1)^T$, 故取 $\boldsymbol{\xi}_3 = (1, 0, -1)^T$. 显然, $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$, $\boldsymbol{\xi}_3$ 是正交向量组. 现将其单位化得

$$\boldsymbol{\xi}_{1}^{0} = \frac{\boldsymbol{\xi}_{1}}{\|\boldsymbol{\xi}_{1}\|} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}, \ \boldsymbol{\xi}_{2}^{0} = \frac{\boldsymbol{\xi}_{2}}{\|\boldsymbol{\xi}_{2}\|} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T}, \ \boldsymbol{\xi}_{3}^{0} = \frac{\boldsymbol{\xi}_{3}}{\|\boldsymbol{\xi}_{3}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T}.$$
 记 $\boldsymbol{P} = (\boldsymbol{\xi}_{1}^{0}, \boldsymbol{\xi}_{2}^{0}, \boldsymbol{\xi}_{3}^{0}), \ \boldsymbol{y} \ \boldsymbol{P} \ \boldsymbol{p} \ \boldsymbol{p} \ \boldsymbol{h} \ \boldsymbol{n} \ \boldsymbol{n} \ \boldsymbol{n} \ \boldsymbol{E} \ \boldsymbol{\Sigma} \ \boldsymbol{E} \ \boldsymbol{E}.$

附注 设 A 是可逆实对称矩阵,且有特征值 λ 及与之对应的特征向量 ξ ,则 A^* 有特征值 $\mu = \frac{|A|}{\lambda}$ 及对应的特征向量 ξ . 所以当 P^TAP 为对角矩阵时, P^TA^*P 也是对角矩阵,且对角线上的元素都是 A^* 的特征值.

所以,
$$f(x, y) = \begin{cases} \frac{21}{4}x^2y, & (x, y) \in G, \\ 0, & 其他. \end{cases}$$

$$D(2X+3Y) = E[(2X+3Y)^{2}] - [E(2X+3Y)]^{2},$$

其中
$$E[(2X+3Y)^2] = \iint_{xOy$$
平面} $(2x+3y)^2 f(x,y) d\sigma$

$$= \iint_{C} (2x + 3y)^{2} \cdot \frac{21}{4}x^{2}y d\sigma = \frac{21}{4}\iint_{C} (4x^{4}y + 12x^{3}y^{2} + 9x^{2}y^{3}) d\sigma$$

$$= \frac{21}{4} \cdot 2 \iint_{C_{1}} (4x^{4}y + 9x^{2}y^{3}) d\sigma \left(\text{由于 } G \not \in \mathcal{F} y \text{ 轴对称}, 4x^{4}y + 9x^{2}y^{3} \text{ 在对} \right)$$

$$= \frac{21}{2} \int_{0}^{1} (2x^{4}y^{2} + \frac{9}{4}x^{2}y^{4}) \left| \begin{array}{c} y = 1 \\ y = x^{2} \end{array} \right. dx$$

$$= \frac{21}{2} \int_{0}^{1} \left(\frac{9}{4}x^{2} + 2x^{4} - 2x^{8} - \frac{9}{4}x^{10} \right) dx = \frac{2506}{165},$$

$$E(2X + 3Y) = \iint_{xO^{\infty} \oplus \mathbb{H}} (2x + 3y) f(x, y) d\sigma = \iint_{C} (2x + 3y) \cdot \frac{21}{4}x^{2}y d\sigma$$

$$= \frac{21}{4} \iint_{C} (2x^{3}y + 3x^{2}y^{2}) d\sigma = \frac{21}{4} \int_{-1}^{1} dx \int_{-1}^{1} (2x^{3}y + 3x^{2}y^{2}) dy$$

$$= \frac{21}{4} \int_{-1}^{1} (x^{3}y^{2} + x^{2}y^{3}) \left| \begin{array}{c} y = 1 \\ y = x^{2} \end{array} \right.$$

$$\mathcal{F} \not \in \mathcal{F}, \ D(2X + 3Y) = \frac{2506}{165} - \left(\frac{7}{3} \right)^{2} = \frac{4921}{477}.$$

附注 应记住随机变量 X 的方差计算公式:

$$DX = E(X^2) - (EX)^2$$

(23) 由于
$$X$$
 的概率密度 $f(x) = \begin{cases} \frac{2\alpha^2}{x^3}, & x > \alpha, \\ 0, &$ 其他.

 $+\infty$)上单调增加,反函数 $x = h(z) = \sqrt{z}(z > \alpha^2)$,于是 Z 的概率密度为

$$f_{Z}(z) = \begin{cases} f(h(z)) \mid h'(z) \mid , & z > \alpha^{2}, \\ 0, & \text{ 其他 } \end{cases} = \begin{cases} \frac{\alpha^{2}}{z^{2}}, & z > \alpha^{2}, \\ 0, & \text{ 其他.} \end{cases}$$

记样本观察值为 z_1 , z_2 , …, z_n (由于现在是计算最大似然估计量,可认为它们都大于 α^2),故有似然函数为

$$L(\alpha^2) = \frac{\alpha^2}{z_1^2} \cdot \frac{\alpha^2}{z^2} \cdots \frac{\alpha^2}{z_1^2} = \frac{(\alpha^2)^n}{z_1^2 z_2^2 \cdots z_n^2}.$$

由于 $\frac{\mathrm{d}L(\alpha^2)}{\mathrm{d}\alpha^2} = \frac{n(\alpha^2)^{n-1}}{z_1^2 z_2^2 \cdots z_n^2} > 0$,所以 α^2 的最大似然估计值为 $\min\{z_1, z_2, \cdots, z_n\}$. 从而 α^2

的最大似然计量为 $\hat{\alpha}^2 = \min\{Z_1, Z_2, \dots, Z_n\}$.

由最大似然值估计量的不变性得 α 的最大似然估计量为

$$\hat{\alpha} = \sqrt{\hat{\alpha}^2} = \sqrt{\min\{Z_1, Z_2, \dots, Z_n\}}.$$

附注 本题也可计算如下:

由于 X 的概率密度 $f(x; \alpha) = \begin{cases} \frac{2\alpha^2}{x^3}, & x > \alpha, \\ 0, & \text{其他}, \end{cases}$

(它们都大于 α), 所以有似然函数

$$L(\alpha) = \frac{2\alpha^{2}}{z_{1}^{\frac{3}{2}}} \cdot \frac{2\alpha^{2}}{z_{2}^{\frac{3}{2}}} \cdots \frac{2\alpha^{2}}{z_{n}^{\frac{3}{2}}} = \frac{2^{n}}{(z_{1}z_{2}\cdots z_{n})^{\frac{3}{2}}} \alpha^{2n}.$$

于是由 $\frac{\mathrm{d}L(\alpha)}{\mathrm{d}\alpha} = \frac{2^n \cdot 2n}{(z_1 z_2 \cdots z_n)^{\frac{3}{2}}} \alpha^{2n-1} > 0$ 知, α 的最大似然估计值为 $\min\{z_1, z_2, \cdots, z_n\} = 0$

 $\sqrt{\min\{z_1,\ z_2,\ \cdots,\ z_n\}}$. 所以 α 的最大似然估计量 $\overset{\wedge}{\alpha}=\sqrt{\min\{Z_1,\ Z_2,\ \cdots,\ Z_n\}}$.

模拟试题(四)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	В	В	С	D	С	A	A	С

(1) 由 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点知, $(x_0, -f(x_0))$ 是曲线 y = -f(x) 的拐点. 因此选 (B).

附注 实际上, $(-x_0, f(x_0))$ 是曲线 y = f(-x) 的拐点, $(-x_0, -f(x_0))$ 是曲线 y = -f(-x) 的拐点.

(2) 在 $\left[0, \frac{\pi}{2}\right]$ 上, $\sin(\sin x) \leq \sin x ($ 仅在点 x = 0 处取等号), $\cos(\sin x) \geq \cos x ($ 仅在点 x = 0 处取等号), 所以

$$\int_{0}^{\frac{\pi}{2}} \sin(\sin x) \, \mathrm{d}x < \int_{0}^{\frac{\pi}{2}} \sin x \, \mathrm{d}x = 1, \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, \mathrm{d}x > \int_{0}^{\frac{\pi}{2}} \cos x \, \mathrm{d}x = 1.$$

故有 $I_1 < I_3$. 因此选 (B)

附注 选项(A)是不正确的,这是由于

$$\begin{split} I_1 - I_2 &= \int_0^{\frac{\pi}{2}} [\sin(\sin x) - \sin(\cos x)] \, \mathrm{d}x \\ &= \int_0^{\frac{\pi}{4}} [\sin(\sin x) - \sin(\cos x)] \, \mathrm{d}x + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} [\sin(\sin x) - \sin(\cos x)] \, \mathrm{d}x \\ &= \int_0^{\frac{\pi}{4}} [\sin(\sin x) - \sin(\cos x)] \, \mathrm{d}x + \int_0^{\frac{\pi}{4}} [\sin(\cos t) - \sin(\sin t)] \, \mathrm{d}t \\ &= \int_0^{\frac{\pi}{4}} [\sin(\sin x) - \sin(\cos x)] \, \mathrm{d}x + \int_0^{\frac{\pi}{4}} [\sin(\cos x) - \sin(\sin x)] \, \mathrm{d}x = 0 \,, \end{split}$$

 $\mathbb{P} I_1 = I_2.$

(3) 当 $(x, y) \neq (0, 0)$ 时,

$$f'_{x}(x, y) = \frac{(3x^{2}y - y^{3})(x^{2} + y^{2}) - (x^{3}y - xy^{3})2x}{(x^{2} + y^{2})^{2}} = \frac{x^{4}y + 4x^{2}y^{3} - y^{5}}{(x^{2} + y^{2})^{2}},$$

$$f'_{y}(x, y) = \frac{(x^{3} - 3xy^{2})(x^{2} + y^{2}) - (x^{3}y - xy^{3})2y}{(x^{2} + y^{2})^{2}} = \frac{x^{5} - 4x^{3}y^{2} - xy^{4}}{(x^{2} + y^{2})^{2}},$$

并且
$$f'_x(0, 0) = \lim_{x\to 0} \frac{f(x, 0) - f(0, 0)}{x} = 0$$
,

$$f'_{y}(0, 0) = \lim_{y\to 0} \frac{f(0, y) - f(0, 0)}{y} = 0,$$

$$\mathfrak{F}(\mathcal{Y}, f''_{xy}(0, 0) = \lim_{y \to 0} \frac{f'_{x}(0, y) - f'_{x}(0, 0)}{y} = \lim_{y \to 0} \frac{\frac{-y^{5}}{y^{4}}}{y} = -1,$$

$$f''_{yx}(0, 0) = \lim_{x \to 0} \frac{f'_{y}(x, 0) - f'_{y}(0, 0)}{x} = \lim_{x \to 0} \frac{\frac{x^{5}}{y}}{x} = 1,$$

故 $f_{rr}''(0,0) < f_{rr}''(0,0)$. 因此选 (C).

附注 在已算出 $f'_{x}(x, y)$ 时,可按以下方法快捷算出 $f'_{x}(x, y)$:

因此本题有
$$f'_y(x,y) = -f'_x(y,x) = -\frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}\Big|_{x = y_{\Sigma} \pm y_{\Xi}} = \frac{x^5 - 4x^2y^2 - xy^4}{(x^2 + y^2)^2}.$$

因此本题有
$$f'_{y}(x,y) = -f'_{x}(y,x) = -\frac{x^{4}y + 4x^{2}y^{3} - y^{5}}{(x^{2} + y^{2})^{2}}\Big|_{x = y_{2} \pm y_{2}} = \frac{x^{5} - 4x^{2}y^{2} - xy^{4}}{(x^{2} + y^{2})^{2}}.$$

$$(4) \iiint_{\Omega} f(x) dv = \int_{-1}^{1} dx \iint_{Dx} f(x) d\sigma \left(\text{其中 } D_{x} = \{(y,z) \mid y^{2} + z^{2} \leq 1 - x^{2}\} \neq \Omega \text{ 的横坐标为} \right)$$

$$= \int_{-1}^{1} \pi(1 - x^{2}) f(x) dx = \int_{0}^{1} 2\pi(1 - x^{2}) f(x) dx. \text{ 因此选 (D)}.$$

由于 Ω 的横坐标为x的截面为圆,所以对所给的三重积分采用"先二后一"方法 附注 进行计算.

(5) 由于
$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4})$$
 $=$
$$\begin{vmatrix} 1 & -1 & 3 & -2 \\ 2 & -4 & 5 & -8 \\ 3 & 1 & 4 & 2 \\ 3 & 1 & t+2 & t \end{vmatrix} = \begin{vmatrix} 1 & -1 & 3 & -2 \\ 0 & -2 & -1 & -4 \\ 0 & 4 & -5 & 8 \\ 0 & 4 & t-7 & t+6 \end{vmatrix}$$
$$= \begin{vmatrix} -2 & -1 & -4 \\ 4 & -5 & 8 \\ 4 & t-7 & t+6 \end{vmatrix} = \begin{vmatrix} -2 & 2 & 4 \\ 0 & -7 & 0 \\ 0 & t-9 & t-2 \end{vmatrix} = 14(t-2),$$

所以, t=2 时, $\mid (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) \mid =0$, 即 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性相关; t=3 时, $\bot(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ $\bot \neq 0$, 即 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关. 由此可知, 结论①④正确, 因此 选 (C).

附注 确定 n
ho n 维列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的线性相关性的好方法是计算行列式 D = \bot ($\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, \cdots , $\boldsymbol{\alpha}_n$) \bot . 如果 D=0, 则 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, \cdots , $\boldsymbol{\alpha}_n$ 线性相关; 如果 $D\neq 0$, 则 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, \cdots , α_n 线性无关.

(6) 由
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda & 0 & -1 \\ -a & \lambda - 1 & -b \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1)$$
知, A 的特征值为 $\lambda = 1$ (二

重), $\lambda = -1$.

由于A 可相似对角化,所以 $r(1 \cdot E_3 - A) = 3 - 2 = 1$,即

$$r\begin{pmatrix} 1 & 0 & -1 \\ -a & 0 & -b \\ -1 & 0 & 1 \end{pmatrix} = r\begin{pmatrix} 1 & 0 & -1 \\ -a & 0 & -b \\ 0 & 0 & 0 \end{pmatrix} = 1, \quad \text{Mfff} -a = b.$$
 (1)

用 -b-1 代替 b, A 就成为 B, 所以由 B 可相似对角化得

$$-a = -b - 1. \tag{2}$$

由式(1),式(2)得 $a = \frac{1}{2}$, $b = -\frac{1}{2}$. 因此选(A).

附注 设 A 是 n 阶矩阵,则 A 可相似对角化的充分必要条有较多种,其中常用的有:设 A 有特征值 λ_1 , λ_2 , … , λ_s ,它们的重数分别为 n_1 , n_2 , … , n_s ($n_1 + n_2 + \dots + n_s = n$),则 A 可相似对角化充分必要条件为

$$\begin{split} r(\lambda_{i}E_{n}-A) &= n-n_{i}(i=1,\ 2,\ \cdots,\ s)\\ (7) & \boxplus P(X{\geqslant}0,\ Y{\geqslant}0) = \frac{3}{7},\ P(X{\geqslant}0) = P(Y{\geqslant}0) = \frac{4}{7} \stackrel{\text{H}}{\rightleftarrows}\\ & P(X{\geqslant}0,\ Y{<}0) = P(X{\geqslant}0) - P(X{\geqslant}0,\ Y{\geqslant}0) = \frac{1}{7},\\ & P(X{<}0,\ Y{\geqslant}0) = P(Y{\geqslant}0) - P(X{\geqslant}0,\ Y{\geqslant}0) = \frac{1}{7}, \end{split}$$

$$P(X \le 0, Y \le 0) = 1 - P(X \ge 0, Y \ge 0) - P(X \ge 0, Y < 0) - P(X < 0, Y \ge 0) = \frac{2}{7},$$

所以 $P(\max\{X, Y\} \cdot X \ge 0) = P(\max\{X, Y\} \ge 0, X \ge 0) + P(\max\{X, Y\} \le 0, X \le 0)$ = $P(X \ge 0) P(\max\{X, Y\} \ge 0 \mid X \ge 0) + P(X \le 0, Y \le 0, X \le 0)$ = $P(X \ge 0) + P(X \le 0, Y \le 0) = \frac{4}{7} + \frac{2}{7} = \frac{6}{7}$. 因此选 (A).

附注 题解中有两点值得注意

- (I) 由于 X, Y 是连续型随机变量, 所以 $P(X \le 0, Y \le 0) = P(X < 0, Y < 0)$.
- (II) 由于 $X \ge 0$ 时,必有 $\max\{X, Y\} \ge 0$,所以 $P(\max\{X, Y\} \ge 0 \mid X \ge 0) = 1$.

(8) 由题设知
$$\overline{X} \sim N\left(0, \frac{\sigma^2}{9}\right)$$
, 所以

$$\begin{split} P(1 < \overline{X} < 3) &= P\left(\frac{3}{\sigma} < \frac{\overline{X} - 0}{\frac{\sigma}{3}} < \frac{9}{\sigma}\right) = \int_{\frac{3}{\sigma}}^{\frac{9}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{l^2}{2}} dt \xrightarrow{\text{id}} f(\sigma). \\ \text{d}f &= \frac{1}{\sqrt{2\pi}} e^{-\frac{81}{2\sigma^2}} \left(-\frac{9}{\sigma^2}\right) - \frac{1}{\sqrt{2\pi}} e^{-\frac{9}{2\sigma^2}} \left(-\frac{3}{\sigma^2}\right) \\ &= -\frac{3}{\sqrt{2\pi}\sigma^2} e^{-\frac{9}{2\sigma^2}} (3e^{-\frac{36}{\sigma^2}} - 1) \begin{cases} >0, & 0 < \sigma < \frac{6}{\sqrt{\ln 3}}, \\ =0, & \sigma = \frac{6}{\sqrt{\ln 3}}, \\ <0, & \sigma > \frac{6}{\sqrt{\ln 3}}, \end{cases} \end{split}$$

所以,使得 $P(1 < \overline{X} < 2)$ 为最大的 $\sigma = \frac{6}{\sqrt{\ln 3}}$. 因此选(C).

附注 应记住以下结论:

设 X_1 , X_2 , …, X_n 是来自总体 X 的简单随机样本,记 $\mu = EX$, $\sigma^2 = DX$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ (样本均值), $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,

$$E\overline{X} = \mu$$
, $D\overline{X} = \frac{\sigma^2}{n}$, $E(S^2) = \sigma^2$,

于是,当 $X \sim N(\mu, \sigma^2)$ 时, $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$,并且 $D(S^2) = \frac{2\sigma^4}{n-1}$.

二、填空题

(9) 由于 $(\sin x^3)^3$ 是奇函数, 所以它在点 x=0 处的 4 阶导数为 0.

由于
$$(\ln\cos x)' = -\tan x$$
, $(\ln\cos x)'' = (-\tan x)' = -\sec^2 x$, $(\ln\cos x)^{(3)} = (-\sec^2 x)' = -2\sec^2 x \tan x$,

所以,
$$(\ln\cos x)^{(4)}$$
 $\Big|_{x=0} = \lim_{x\to 0} \frac{(\ln\cos x)^{(3)} - (\ln\cos x)^{(3)}}{x} \Big|_{x=0} = \lim_{x\to 0} \frac{-2\sec^2x\tan x}{x} = -2.$

从而, $f^{(4)}(0) = 0 + (-2) = -2$.

附注 设 f(x) 在点 x=0 处任意阶可导,则

当f(x)是奇函数时, $f^{(2k)}(0) = 0(k=0, 1, 2, \cdots)$;

当f(x)是偶函数时, $f^{(2k+1)}(0) = 0(k=0, 1, 2, \cdots)$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t},$$

$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t} \right) = -\frac{1}{x^2} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x} \frac{\mathrm{d}^2y}{\mathrm{d}t^2} \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{x^2} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x^2} \frac{\mathrm{d}^2y}{\mathrm{d}t^2}.$$

将它们代入所给微分方程得

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2 \frac{\mathrm{d}y}{\mathrm{d}t} = t. \tag{1}$$

式(1)的齐次方程的通解为 $\overline{Y} = C_1 + C_2 e^{2t}$. 式(1)有特解 $y^* = t(A + Bt)$,将它代入式(1) 得 $A = B = -\frac{1}{4}$,即 $y^* = t\left(-\frac{1}{4} - \frac{1}{4}t\right) = -\frac{1}{4}(t+t^2)$,所以式(1)的通解为

$$y = \overline{Y} + y^* = C_1 + C_2 e^{2t} - \frac{1}{4} (t + t^2).$$

从而所求的通解为 $y = C_1 + C_2 x^2 - \frac{1}{4} (\ln x + \ln^2 x)$.

附注 $x^2y'' + axy' + by' = f(x)$ 是 2 阶欧拉方程,令 $x = e^t$ 可转化成 2 阶常系数线性微分方程

$$\frac{d^{2}y}{dt^{2}} + (a-1)\frac{dy}{dt} + by = f(e^{t}).$$

$$(11) \int_{-1}^{1} (|x|e^{-x} + \sin x^{3} + \sqrt{1-x^{2}}) dx = \int_{-1}^{1} |x|e^{-x}dx + \int_{-1}^{1} \sqrt{1-x^{2}} dx$$

$$= \int_{-1}^{0} -xe^{-x} dx + \int_{0}^{1} xe^{-x} dx + \frac{\pi}{2} = \int_{-1}^{0} xde^{-x} - \int_{0}^{1} xde^{-x} + \frac{\pi}{2}$$

$$= \left(xe^{-x} \Big|_{-1}^{0} - \int_{-1}^{0} e^{-x} dx\right) - \left(xe^{-x} \Big|_{0}^{1} - \int_{0}^{1} e^{-x} dx\right) + \frac{\pi}{2} = 2 - \frac{2}{e} + \frac{\pi}{2}.$$

附注 利用定积分几何意义,有

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = 上半单位圆的面积 = \frac{\pi}{2}.$$

(12) 由于 C 关于 x 轴对称, 在对称点处 xy 互为相反数, 所以 $\oint_C xy ds = 0$. 此外, C 的

极坐标方程为
$$\begin{cases} x = \frac{a}{2} + \frac{a}{2} \cos\theta, \\ y = \frac{a}{2} \sin\theta \end{cases} \quad (0 \le \theta \le 2\pi). \quad 因此$$

$$\begin{split} \oint_{c} (x^{2} + 4y^{2} + xy) \, \mathrm{d}s &= \oint_{c} (x^{2} + 4y^{2}) \, \mathrm{d}s \\ &= \int_{0}^{2\pi} \left[\left(\frac{a}{2} + \frac{a}{2} \mathrm{cos}\theta \right)^{2} + 4 \left(\frac{a}{2} \mathrm{sin}\theta \right)^{2} \right] \sqrt{\left(-\frac{a}{2} \mathrm{sin}\theta \right)^{2} + \left(\frac{a}{2} \mathrm{cos}\theta \right)^{2}} \, \mathrm{d}\theta \\ &= \frac{a^{3}}{2} \int_{0}^{2\pi} \left(\frac{5}{4} + \frac{1}{2} \mathrm{cos}\theta - \frac{3}{4} \mathrm{cos}^{2}\theta \right) \! \mathrm{d}\theta \\ &= \frac{a^{3}}{2} \int_{0}^{2\pi} \left(\frac{7}{8} + \frac{1}{2} \mathrm{cos}\theta - \frac{3}{8} \mathrm{cos}2\theta \right) \! \mathrm{d}\theta = \frac{7}{8} \pi a^{3}. \end{split}$$

于是,由题得 $\frac{7}{8}\pi a^3 = \frac{7}{8}\pi$,从而 a = 1.

附注 利用曲线 C 的对称性,可以化简关于弧长的曲线积分的计算:

设f(x, y)连续,曲线 C 具有某种对称性,则

$$\int_{c} f(x,y) \, \mathrm{d}s = \begin{cases} 0, & \exists f(x,y) \text{ 在对称点处的值互为相反数,} \\ 2 \int_{c_{1}} f(x,y) \, \mathrm{d}s, & \exists f(x,y) \text{ 在对称点处的值彼此相等,} \end{cases}$$

其中 C_1 是 C 按其所具有的对称性被划分成的两部分之一.

(13) 由题设得

$$\mathbf{A}(\boldsymbol{\alpha}_1, \; \boldsymbol{\alpha}_2, \; \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \; \boldsymbol{\alpha}_2, \; \boldsymbol{\alpha}_3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \tag{1}$$

记 $P = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$,则由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关知 P 可逆,且式(1)可以表示为 $P^{-1}AP = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 记 B,所以 $A \sim B$. 从而 A = B 有相同的特征值.

由
$$|\lambda E_3 - B|$$
 = $\begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix}$ = $(\lambda - 2)(\lambda + 1)^2$ 知, B 的最大特征值为 2,从而 A

的最大特征值为2.

附注 设A与B都是n阶矩阵,如果它们相似,则

- (I) |A| = |B|.
- (II) r(A) = r(B), 从而 A 与 B 等价.
- (**Ⅲ**) *A*. *B* 有相同的特征值.
- $(\mathbb{N}) A^* \sim B^*$.
- (V) 当 A 可逆时,B 也可逆,且 $A^{-1} \sim B^{-1}$.
- (14) $ilX = \{ Z箱中的次品数 \}$,

 $Y = \{ 从乙箱中取出的次品数 \},$

則
$$P(Y=1) = P(X=1)P(Y=1 \mid X=1) + P(X=2)P(Y=1 \mid X=2) + P(X=3)$$

$$P(Y=1 \mid X=3) = \frac{C_3^1 C_3^2}{C_6^3} \cdot \frac{C_1^1 C_5^2}{C_6^3} + \frac{C_3^2 C_3^1}{C_6^3} \cdot \frac{C_2^1 C_4^2}{C_6^3} + \frac{C_3^3 C_3^0}{C_6^3} \cdot \frac{C_3^1 C_3^2}{C_6^3} = \frac{207}{400},$$

$$P(Y=2) = P(X=2)P(Y=2 \mid X=2) + P(X=3)P(Y=2 \mid X=3)$$

$$= \frac{C_3^2 C_3^1}{C_6^3} \cdot \frac{C_2^2 C_4^1}{C_6^3} + \frac{C_3^3 C_3^0}{C_6^3} \cdot \frac{C_3^2 C_3^1}{C_6^3} = \frac{45}{400},$$

$$P(Y=3) = P(X=3)P(Y=3 \mid X=3) = \frac{C_3^3 C_3^0}{C_6^3} \cdot \frac{C_3^3 C_3^0}{C_6^3} \cdot \frac{C_3^3 C_3^0}{C_6^3} = \frac{1}{400}.$$

所以,所求的平均值 =
$$EY = 0 \cdot P(Y=0) + 1 \cdot P(Y=1) + 2 \cdot P(Y=2) + 3 \cdot P(Y=3)$$

= $\frac{207}{400} + \frac{90}{400} + \frac{3}{400} = \frac{3}{4}$.

附注 由于 *Y* 可能取的值为 0.1.2.3. 所以

$$EY = 0 \cdot P(Y = 0) + 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3).$$

但是,在具体计算时,P(Y=0)是不必算出的.

三、解答题

(15) 由 f(x) 在点 x = 1 处左连续知,

$$A = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left[\frac{1}{(1-x)\sin\pi x} - \frac{1}{\pi(1-x)^{2}} \right]$$

$$= \lim_{x \to 1^{-}} \frac{\pi(1-x) - \sin\pi x}{\pi(1-x)^{2}\sin\pi x} \xrightarrow{\frac{c}{2}t = 1-x} \lim_{t \to 0^{+}} \frac{\pi t - \sin\pi t}{\pi t^{2}\sin\pi t}$$

$$= \frac{1}{\pi^{2}} \lim_{t \to 0^{+}} \frac{\pi t - \sin\pi t}{t^{3}} \xrightarrow{\frac{2}{3}t \to 0^{+}} \frac{1}{\pi t^{2}\sin\pi t} \lim_{t \to 0^{+}} \frac{1 - \cos\pi t}{3t^{2}}$$

$$= \frac{1}{3\pi} \lim_{t \to 0^{+}} \frac{\frac{1}{2}(\pi t)^{2}}{t^{2}} = \frac{\pi}{6}.$$

附注 题解中有两点值得注意:

- (I) 作变量代换,将 $x\rightarrow 1^{-}$ 转换成 $t\rightarrow 0^{+}$.
- (II) 对 $\frac{0}{0}$ 型未定式极限 $\lim_{t\to 0^+} \frac{\pi t \sin \pi t}{\pi t^2 \sin \pi t}$ 在应用洛必达法则前,先用等价无穷小代替,将

未定式极限简化为 $\frac{1}{\pi^2}\lim_{t\to 0^+}\frac{\pi t-\sin\pi t}{t^3}$.

(16)
$$idf(x) = xe^{2x} - 2x - \cos x + \frac{1}{2}x^2, \, 则 f(x) 在[0, 1] 上连续, 且$$

$$f'(x) = e^{2x} + 2xe^{2x} - 2 + \sin x + x$$
,

$$f''(x) = 4e^{2x} + 4xe^{2x} + \cos x + 1 > 0 \quad (x \in (0, 1)),$$

所以由 $f'(0)f'(1) = (-1) \times (3e^2 - 1 + \sin 1) < 0$ 知,存在唯一的 $x_0 \in (0, 1)$,使得

$$f'(x) \begin{cases} <0, & x \in (0, x_0), \\ =0, & x = x_0, \\ >0, & x \in (x_0, 1). \end{cases}$$

于是 $f(x) < f(0) = -1 < 0(x \in [0, x_0])$,即方程f(x) = 0在 $[0, x_0]$ 上无实根. 由于 $f(x_0)f(1) = f(x_0)\left(e^2 - 2 - \cos 1 + \frac{1}{2}\right) < 0$,且f(x)在 $(x_0, 1)$ 内单调增加,所以方程f(x) = 0在 $(x_0, 1)$ 内有且仅有一个实根.

综上所述,方程 f(x) = 0 在(0, 1) 内有且仅有一个实根.

附注 由于 f'(x) 在 (0, 1) 内是变号的,所以不能由 f(0) f(1) < 0 确定方程 f(x) = 0 在 (0, 1) 内有且仅有一个实根. 因此需进一步分析,即考虑 f''(x). 本题就是按此思路求解的.

(17) 由 $\varphi(x)$ 单调知,它的反函数 $\varphi^{-1}(x)$ 存在,于是由 $\varphi(x)$ 可导得

$$\frac{\mathrm{d}}{\mathrm{d}x}\int_0^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t = \varphi^{-1}(\varphi(x)) \, \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

$$= x \big[f_u'(x, f(x, x)) + f_v'(x, f(x, x)) (f_u'(x, x) + f_v'(x, x)) \big],$$

从前
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t \, \Big|_{x=1} = f_u'(1,1) + f_v'(1,1) \left[f_u'(1,1) + f_v'(1,1) \right]$$

$$=f'_{n}(1, 1) + f'_{n}(1, 1)(2+3) = 2 + 3(2+3) = 17.$$

附注 题解中应注意的是: $\varphi^{-1}(\varphi(x)) = x$.

(18) 由于

$$s(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n (2n+1)!} x^{2n+1} = \sqrt{2} \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{x}{\sqrt{2}}\right)^{2n+1}$$
$$= \sqrt{2} \sin \frac{x}{\sqrt{2}} (-\infty < x < +\infty),$$

所以
$$\int_0^{+\infty} e^{-x} s^2(x) dx = \int_0^{+\infty} e^{-x} \cdot 2\sin^2 \frac{x}{\sqrt{2}} dx$$

$$= \int_0^{+\infty} e^{-x} (1 - \cos \sqrt{2}x) dx = \int_0^{+\infty} e^{-x} dx - \int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx, \tag{1}$$

其中, $\int_0^{+\infty} e^{-x} dx = 1$, 此外由

$$\int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx = -\int_0^{+\infty} \cos \sqrt{2}x de^{-x} = -\left(e^{-x} \cos \sqrt{2}x \Big|_0^{+\infty} + \int_0^{+\infty} e^{-x} \cdot \sqrt{2} \sin \sqrt{2}x dx\right)$$

$$= 1 + \sqrt{2} \int_0^{+\infty} \sin \sqrt{2}x de^{-x}$$

$$= 1 + \sqrt{2} \left(e^{-x} \sin \sqrt{2}x \Big|_0^{+\infty} - \int_0^{+\infty} e^{-x} \sqrt{2} \cos \sqrt{2}x dx\right)$$

$$= 1 - 2 \int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx$$

得 $\int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx = \frac{1}{3}$. 将以上计算代入式(1) 得

$$\int_0^{+\infty} e^{-x} s^2(x) dx = 1 - \frac{1}{3} = \frac{2}{3}.$$

附注 应记住 sinx, cosx 的麦克劳林展开式:

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1} (-\infty < x < +\infty),$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n} (-\infty < x < +\infty).$$

本题就是按此公式快捷算得所给幂级数的和函数 s(x).

(19) 所给微分方程
$$\frac{4}{\pi^2} \frac{d^2 y}{dx^2} + y = x$$
 (1)

对应的齐次微分方程的通解为 $Y=C_1\cos\frac{\pi}{2}x+C_2\sin\frac{\pi}{2}x$,此外,式(1)有特解 $y^*=x$,所以式(1)的通解为

$$y = Y + y^* = C_1 \cos \frac{\pi}{2} x + C_2 \sin \frac{\pi}{2} x + x,$$
 (2)

且

$$y' = -\frac{\pi}{2}C_1 \sin\frac{\pi}{2}x + \frac{\pi}{2}C_2 \cos\frac{\pi}{2}x + 1. \tag{3}$$

将 y(0) = 1, $y'(0) = 1 + \frac{\pi}{2}$ 代人式(2), 式(3)得 $C_1 = C_2 = 1$, 所以

$$y(x) = \cos\frac{\pi}{2}x + \sin\frac{\pi}{2}x + x.$$

下面计算 y(x) ($-1 \le x \le 1$) 的傅里叶级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x + b_n \sin n\pi x$,

$$a_0 = \int_{-1}^{1} \left[\cos \frac{\pi}{2} x + \sin \frac{\pi}{2} x + x \right] dx = 2 \int_{0}^{1} \cos \frac{\pi}{2} x dx = \frac{4}{\pi},$$

对于 n=1, 2, …

$$a_{n} = \int_{-1}^{1} \left[\cos \frac{\pi}{2} x + \sin \frac{\pi}{2} x + x \right] \cos n\pi x dx = \int_{0}^{1} 2 \cos \frac{\pi}{2} x \cos n\pi x dx$$

$$= \int_{0}^{1} \left[\cos \left(\frac{\pi}{2} + n\pi \right) x + \cos \left(\frac{\pi}{2} - n\pi \right) x \right] dx$$

$$= \left[\frac{1}{\frac{\pi}{2} + n\pi} \sin \left(\frac{\pi}{2} + n\pi \right) x + \frac{1}{\frac{\pi}{2} - n\pi} \sin \left(\frac{\pi}{2} - n\pi \right) x \right] \Big|_{0}^{1}$$

$$= (-1)^{n-1} \frac{4}{(4n^{2} - 1)\pi},$$

$$b_{n} = \int_{-1}^{1} \left[\cos \frac{\pi}{2} x + \sin \frac{\pi}{2} x + x \right] \sin \pi x dx = 2 \int_{0}^{1} \left[\sin \frac{\pi}{2} x + x \right] \sin n\pi x dx$$

$$= -\frac{2}{n\pi} \int_{0}^{1} \left(\sin \frac{\pi}{2} x + x \right) \cos n\pi x dx$$

$$= -\frac{2}{n\pi} \left[\left(\sin \frac{\pi}{2} x + x \right) \cos n\pi x \right] \Big|_{0}^{1} - \int_{0}^{1} \left(\frac{\pi}{2} \cos \frac{\pi}{2} x + 1 \right) \cos n\pi x dx \right]$$

$$= (-1)^{n-1} \frac{4}{n\pi} + \frac{1}{n} \int_{0}^{1} \cos \frac{\pi}{2} x \cos n\pi x dx$$

$$= (-1)^{n-1} \frac{4}{n\pi} + \frac{1}{2n} \int_{0}^{1} \left[\cos \left(\frac{\pi}{2} + n\pi \right) x + \cos \left(\frac{\pi}{2} - n\pi \right) x \right] dx$$

$$= (-1)^{n-1} \frac{4}{n\pi} + \frac{1}{2n} \cdot (-1)^{n-1} \frac{4}{(4n^{2} - 1)\pi} \left(\text{All } H \ a_{n} \text{ Bi H} \right) \text{ if } \text{ fixed}$$

$$= (-1)^{n-1} \left[\frac{4}{n\pi} + \frac{2}{n(4n^{2} - 1)\pi} \right],$$

By Us $f(x) = \frac{2}{\pi} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{4}{(4n^{2} - 1)\pi} \cos n\pi x + (-1)^{n-1} \left[\frac{4}{n\pi} + \frac{2}{n(4n^{2} - 1)\pi} \right] \sin n\pi x$

 $(-1 \le x \le 1).$

附注 要熟练掌握函数 $f(x)(-l \le x \le l)$ 的傅里叶系数的计算.

(20) 由 A 有零特征值知

$$|A| = \begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & a - 3 \end{vmatrix} = a - 1 = 0, \quad \exists \exists a = 1.$$

要使矩阵方程 AX = B 有解,必须 $r(A \mid B) = r(A)$. 于是由

$$(A \mid B) = \begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 3 \\ 2 & 1 & 5 & 3 & 4 & 8 \\ -1 & 0 & -2 & b+1 & c-2 & -3 \end{pmatrix} (已将 a = 1 代人)$$

知
$$\begin{cases} b+3=0, \\ c=0, \end{cases}$$
即 $b=-3, c=0.$

设
$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$
, 并将 $a = 1$, $b = -3$, $c = 0$ 代入,则矩阵方程 $AX = B$ 与

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ -1 & 0 & 2 \end{pmatrix}$$
 (1)

同解, 而式(1)即为以下三个线性方程组

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \tag{2}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}. \tag{4}$$

显然,式(2)的通解为 $C_1(2,1,-1)^T+(2,-1,0)^T=(2C_1+2,C_1-1,-C_1)^T$,式(3)的通解为 $C_2(2,1,-1)^T+(2,0,0)^T=(2C_2+2,C_2,-C_2)^T$,式(4)的通解为 $C_3(2,1,-1)^T+(3,2,0)^T=(2C_3+3,C_3+2,-C_3)^T$,

所以,
$$X = \begin{pmatrix} 2C_1 + 2 & 2C_2 + 2 & 2C_3 + 3 \\ C_1 - 1 & C_2 & C_3 + 2 \\ -C_1 & -C_2 & -C_3 \end{pmatrix}$$
 (其中, C_1 , C_2 , C_3 是任意常数).

附注 矩阵方程 AX = B 的解法见模拟试题(二)(20)的解答.

(21) (I) 由于
$$|(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)| = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix} = (a+2)(a-1)^2 = 0$$
的解为 $a=1, -2$.

当 a = 1 时,由

知, $\boldsymbol{\beta}$ 不能由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性表示.

当
$$a = -2$$
时,

$$(\boldsymbol{\alpha}_{1}, \ \boldsymbol{\alpha}_{2}, \ \boldsymbol{\alpha}_{3} \ | \ \boldsymbol{\beta}) = \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -2 & 1 & 1 \\ -2 & 1 & 1 & -2 \end{pmatrix} \xrightarrow{\text{disffogh}} \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性表示. 设表示式为 $\boldsymbol{\beta} = x\boldsymbol{\alpha}_1 + y\boldsymbol{\alpha}_2 + z\boldsymbol{\alpha}_3$, 即 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \boldsymbol{\beta}$. 由

以上的初等行变换知,该方程组与 $\begin{cases} x - z = 1, \\ y - z = 0 \end{cases}$ 同解. 它对应的齐次线性方程组的通解为 $C(1, 1, 1)^{\mathrm{T}}$,且有特解 $(1, 0, 0)^{\mathrm{T}}$. 所以它的通解为 $(x, y, z)^{\mathrm{T}} = C(1, 1, 1)^{\mathrm{T}} + (1, 0, 0)^{\mathrm{T}} = (C + 1, C, C)^{\mathrm{T}}$. 从而所求的a = -2,线性表示式的一般形式为

$$\boldsymbol{\beta} = (C+1)\boldsymbol{\alpha}_1 + C\boldsymbol{\alpha}_2 + C\boldsymbol{\alpha}_3$$
 (其中 C 是任意常数).

(Ⅱ) 由于 a = -2 时,

$$|\lambda E_3 - A| = \begin{pmatrix} \lambda - 1 & -1 & 2 \\ -1 & \lambda + 2 & -1 \\ 2 & -1 & \lambda - 1 \end{pmatrix} = \begin{pmatrix} \lambda & -1 & 2 \\ \lambda & \lambda + 2 & -1 \\ \lambda & -1 & \lambda - 1 \end{pmatrix} = \begin{pmatrix} \lambda & -1 & 2 \\ 0 & \lambda + 3 & -3 \\ 0 & 0 & \lambda - 3 \end{pmatrix},$$
$$= \lambda (\lambda - 3)(\lambda + 3),$$

所以 A 有特征值 $\lambda = 0$, 3, -3.

设对应 $\lambda = 0$ 的特征向量为 $\boldsymbol{a} = (a_1, a_2, a_3)^{\mathrm{T}}$,则 \boldsymbol{a} 满足

$$\begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}.$$
 (1)

由于

$$\begin{pmatrix}
-1 & -1 & 2 \\
-1 & 2 & -1 \\
2 & -1 & -1
\end{pmatrix}
\xrightarrow{\text{distrib}}
\begin{pmatrix}
-1 & -1 & 2 \\
0 & 3 & -3 \\
0 & 0 & 0
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
-1 & -1 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix},$$

所以式(1)与方程组 $\begin{cases} a_1 & -a_3 = 0, \\ a_2 - a_3 = 0 \end{cases}$ 同解,故 \boldsymbol{a} 可取它的基础解系,即 $\boldsymbol{a} = (1, 1, 1)^T$.

设对应 $\lambda = 3$ 的特征向量为 $\boldsymbol{b} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 \boldsymbol{b} 满足

$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 2 & -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$
 (2)

由于
$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$
 $\xrightarrow{\text{初等行变换}}$ $\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 0 & 9 & 0 \\ -1 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 所以式

(2)与方程组 $\begin{cases} b_1 + b_3 = 0, \\ b_2 = 0 \end{cases}$ 同解,故 \boldsymbol{b} 可取它的基础解系,即 $\boldsymbol{b} = (1, 0, -1)^T.$

设对应 $\lambda = -3$ 的特征向量为 $\boldsymbol{c} = (c_1, c_2, c_3)^{\mathrm{T}}$,则由 \boldsymbol{A} 是实对称矩阵知, $\boldsymbol{c} = \boldsymbol{a}$, \boldsymbol{b} 都正交,所以有 $\begin{cases} c_1 + c_2 + c_3 = 0, \\ c_1 & -c_3 = 0, \end{cases}$ 故 \boldsymbol{c} 可取它的基础解系,即 $\boldsymbol{c} = (1, -2, 1)^{\mathrm{T}}$.

a, b, c 是正交向量组, 现将它们单位化得

$$\boldsymbol{\xi} = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\eta} = \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\xi} = \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}}.$$

$$\label{eq:Q} \begin{split} \mathbf{\mathcal{Q}} = (\boldsymbol{\xi},\ \boldsymbol{\eta},\ \boldsymbol{\zeta}) = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} (\, \mathbf{E} \, \boldsymbol{\mathcal{D}} \mathbf{E} \, \boldsymbol{\mathcal{P}} \, \boldsymbol{\mathcal{P}} \, \boldsymbol{\mathcal{Y}} \, \boldsymbol{\mathcal$$

 (x_3) 化为标准形 $3y_2^2 - 3y_3^2$.

由 Z = 2X - Y 得

附注 由于当 $\mid (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) \mid \neq 0$,即 $\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3$ 线性无关时, $\boldsymbol{\beta}$ 必可由 $\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3$ 唯一线性表示。因此题解从 $\mid (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) \mid = 0$ 入手。

得
$$DZ = E(Z^2) - (EZ)^2$$

$$= \iint_{xOy \oplus f f} (2x - y)^2 f(x, y) d\sigma - \frac{9}{16} = \iint_{\Delta} (2x - y)^2 \cdot \frac{3}{2} x d\sigma - \frac{9}{16}$$

$$= \int_0^1 dx \int_0^{2x} (2x - y)^2 \cdot \frac{3}{2} x dy - \frac{9}{16} = \int_0^1 \frac{3}{2} x \cdot \left[-\frac{1}{3} (2x - y)^3 \right]_{y=0}^{y=2x} dx - \frac{9}{16}$$

$$= \int_0^1 4x^4 dx - \frac{9}{16} = \frac{19}{80}.$$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, 2x - z) \frac{1}{|-1|} dx = \int_{-\infty}^{+\infty} f(x, 2x - z) dx,$$
其中 $f(x, 2x - z) = \begin{cases} \frac{3}{2}x, & 0 < x < 1, & 0 < 2x - z < 2x, \\ 0, & \text{其他} \end{cases}$

$$= \begin{cases} \frac{3}{2}x, & 0 < x < 1, & 0 < z < 2x, \\ 0, & \text{其他} \end{cases} = \begin{cases} \frac{3}{2}x, & 0 < z < 2, & \frac{z}{2} < x < 1, \\ 0, & \text{其他} \end{cases}$$
因此
$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, 2x - z) dx = \begin{cases} \int_{\frac{z}{2}}^{1} \frac{3}{2}x dx, & 0 < z < 2, \\ 0, & \text{其他} \end{cases}$$

$$= \begin{cases} \frac{3}{4} \left(1 - \frac{1}{4}z^{2}\right), & 0 < z < 2, \\ 0, & \text{其他} \end{cases}$$

附注 记住以下公式:

设二维随机变量(X, Y)的概率密度为f(x, y),则随机变量 Z = aX + bY + c(a, b, c) 常数)的概率密度可按以下公式计算:

当
$$a \neq 0$$
 时, $f_Z(z) = \int_{-\infty}^{+\infty} f\left(\frac{z - by - c}{a}, y\right) \frac{1}{|a|} dy$,
当 $b \neq 0$ 时, $f_Z(z) = \int_{-\infty}^{+\infty} f\left(x, \frac{z - ax - c}{b}\right) \frac{1}{|b|} dx$.

(23) 设 Z 的分布函数为 $F_z(z)$,则

$$\begin{split} F_{Z}(z) &= P(Z \leqslant z) = P(XY \leqslant z) \\ &= P(Y = -1)P(XY \leqslant z \mid Y = -1) + P(Y = 1)P(XY \leqslant z \mid Y = 1) \\ &= \frac{1}{3}P(X \geqslant -z) + \frac{2}{3}P(X \leqslant z) \quad (这里利用 X 与 Y 相互独立) \\ &= \frac{1}{3} \int_{-z}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^{2}}{2\sigma^{2}} dx} + \frac{2}{3} \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^{2}}{2\sigma^{2}} dx}. \end{split}$$

所以,Z的概率密度为

$$f_Z(z) = \frac{\mathrm{d}F_Z(z)}{\mathrm{d}z} = \frac{1}{3} \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}} + \frac{2}{3} \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}.$$

即 $Z \sim N(0, \sigma^2)$. 于是由矩估计法, 令

$$E(Z^2) = \frac{1}{n} \sum_{i=1}^{n} Z_i^2, \quad \text{Iff } \sigma^2 + 0^2 = \frac{1}{n} \sum_{i=1}^{n} Z_i^2.$$

因此 σ^2 的矩估计量为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Z_i^2$.

附注 记住以下结论是有用的.

设 X_1 , X_2 , …, X_n 是总体 X 的简单随机样本,则当 $X \sim N(\mu, \sigma^2)$ 时, μ 的矩估计量为 $\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, \sigma^2$ 的矩估计量为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$ 当 $X \sim N(0, \sigma^2)$ 时, σ^2 的矩估计量为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2.$

模拟试题(五)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 A
 B
 D
 C
 C
 B
 B
 C

(1) 由于

$$|x| < 1$$
 Fry, $\lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = -\sin \pi x;$

$$|x| > 1$$
 Fr $\int_{n\to\infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1} = x;$

$$x = 1 \text{ Fr}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = 1;$$

$$x = -1 \text{ fr}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = -1,$$

所以, $y = f(x) = \begin{cases} -\sin \pi x, & |x| < 1, \\ x, & |x| \ge 1. \end{cases}$ 的图形如图答 5-1 所示,由图可知,f(x)的极大值为 $f\left(-\frac{1}{2}\right) = 1$,极小值为 $f\left(\frac{1}{2}\right) = -1$. 因此选(A).

附注 画图得到正确选项,是解选择题常用的方法之一.

(2) 选项(A)与(B)必有一个是不正确的. 现按题设可得 y = f(x) 在点 x_0 的邻域内的图形,如图答 5-2 所示,由图可知, f(x) 在点 x_0 不可导,因此选(B).

附注 实际上, f(x) 在点 x_0 处不可导可以用反证法证明. 具体如下: 设 f(x) 在点 x_0 处可导, 则

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
(由于 $f(x)$ 在点 x_0 的左侧邻近是单调增加的),

$$f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \text{ (由于 } f(x) \text{ 在点 } x_0 \text{ 的右侧邻近是单调减小的)}.$$

所以, $f'(x_0) = 0$. 于是对于点 x_0 左侧邻近的任意 x 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2$$

$$= f(x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2 \ge f(x_0) \left(\text{其中} \xi \in (x, x_0). \text{ 由于 } y = f(x) \text{ 的图形在点 } x_0 \text{ 的} \right),$$

$$\pm f(x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2 \ge f(x_0) \left(\text{其中} \xi \in (x, x_0). \text{ 所以 } f''(\xi) \ge 0 \right),$$

这与f(x)在点 x_0 左侧邻近单调增加(即 $f(x) < f(x_0)$)矛盾. 由此证得f(x) 在点 x_0 处不可导. 显然证明是不易的,但在求解选择题时,是不必寻求这样复杂的证明,有时画出简图即可得到符合题意的选项.

(3) 对于选项(D), 由
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$
 得 $\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{|x|} = 0$. 所以

有
$$f_x'(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \left[\frac{f(x, 0) - f(0, 0)}{|x|} \cdot \frac{|x|}{x} \right] = 0.$$
 同样可得 $f_y'(0, 0)$

=0. 于是由
$$\lim_{(x,y)\to(0,0)} \frac{f(x, y) - f(0, 0)}{\sqrt{x^2 + y^2}} = 0$$
 得

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-f_x'(0,0)x-f_y'(0,0)y}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}=0\,,$$

所以由二元函数可微的定义知, f(x, y)在点(0, 0)处可微, 因此选(D).

附注 显然,选项(A),(B)不是f(x,y)在点(0,0)处可微的充分条件.选项(C)也不是充分条件.例如 $f(x,y) = \sqrt{|xy|}$,由

$$f'_{x}(x, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0, \quad \text{ ##. } \iint f'_{x}(0, 0) = 0$$

知, $\lim_{x\to 0} f_x'(x, 0) = f_x'(0, 0)$, 同样有 $\lim_{y\to 0} f_y'(0, y) = f_y'(0, 0) = 0$. 但是由

$$\lim_{(x,y)\to(0,0)} \frac{f(x, y) - f(0, 0) - f'_x(0, 0)x - f'_y(0, 0)y}{\sqrt{x^2 + y^2}} = \lim_{(x,y)\to(0,0)} \frac{\sqrt{|xy|}}{\sqrt{x^2 + y^2}} \neq 0$$

知, f(x, y)在点(0, 0)处不可微.

(4) 显然选项(A), (B)的微分方程不可能有特解 y_1 , y_2 和 y_3 .

由于
$$\frac{dy_1}{dx} = 1 + \ln x$$
, $\frac{d^2y_1}{dx^2} = \frac{1}{x}$, 所以 $x^2 \frac{d^2y_1}{dx^2} - x \frac{dy_1}{dx} + y_1 = 0$.

由于
$$\frac{dy_2}{dx} = 2 + \ln x$$
, $\frac{d^2y_2}{dx^2} = \frac{1}{x}$, 所以 $x^2 \frac{d^2y_2}{dx^2} - x \frac{dy_2}{dx} + y_2 = 0$.

由于
$$y_3 = 3y_1 - y_2$$
,所以它必满足 $x^2 \frac{d^2 y_3}{dx^2} - x \frac{dy_3}{dx} + y_3 = 0$. 因此选(C)

附注 (C)是正确的选项,也可如下证明:

令 x=e',则 $y_1=te'$, $y_2=te'+e'$, $y_3=2te'-e'$,选项(C)中的微分方程(欧拉方程)成为

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\,\frac{\mathrm{d}y}{\mathrm{d}t} + y = 0. \tag{1}$$

由于(1)的特征方程 $\lambda^2 - 2\lambda + 1 = 0$ 有根 $\lambda = 1$ (二重),所以选项(C)的方程有特解 y_1 , y_2 , y_3 .

(5) 由于选项(C)与(D)有且仅有一个是正确的,因此只要考虑这两个选项即可.由 $r(B) = r(A) \le n < n + 1$ 知, By = 0 有非零解.因此选(C).

附注 设 $A \neq m \times n$ 矩阵,则

r(A) = n 是齐次线性方程组 Ax = 0 只有零解的充分必要条件;

r(A) < n 是齐次线性方程组 Ax = 0 有非零解的充分必要条件.

(6)
$$A$$
 有特征值 -1, 1, 2. 由 $\begin{pmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda - 1 & -2 \\ 0 & -2 & \lambda - 1 \end{pmatrix} = (\lambda - 3)(\lambda + 1)^2$ 知,选项(A)的

矩阵 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ 有特征值 $\lambda = 3$, -1(二重), 它与 A 有不同的特征值, 故不与 A 相似, 从

而不能选(A).

3)知,它有特征值 -1, 1, 2, 即与 A 有相同的特征值,所以这个实对称矩阵与 A 相似且合同。因此选(B)。

附注 (I) 设A = B 都是n 阶矩阵,则A = B 相似的充分必要条件有以下两类:

- (i) 存在 n 阶可逆矩阵 P, 使得 $P^{-1}AP = B$;
- (ii) A 与 B 有相同的特征多项式,或者 A 与 B 有相同的特征值(n_i 重以 n_i 个计算).
- (Ⅱ)设A与B都是n阶实对称矩阵,则A与B合同的充分必要条件有以下三类:
- (i) 存在 n 阶可逆矩阵 C, 使得 $C^{T}AC = B$;
- (ii) 二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ 与 $\mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathsf{T}}$) 有相同的规范形,或者二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ 与 $\mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x}$ 有相同的正惯性指数,也有相同的负惯性指数;
 - (iii) A 与 B 有相同的特征值(n_i 重的以 n_i 个计算).
 - (7) 记 Y 的分布函数为 $F_Y(y)$,则

$$\begin{split} F_Y(y) &= P(Y {\leqslant} y) = P\bigg(\max\bigg\{x\,,\ x^2\,,\ \frac{1}{2}\bigg\} {\leqslant} y\bigg) \\ &= P\bigg(X {\leqslant} y\,,\ X^2 {\leqslant} y\,,\ \frac{1}{2} {\leqslant} y\bigg) \\ &= \begin{cases} 0\,, & y {<} \frac{1}{2}\,, \\ P(X {\leqslant} y\,,\ -\sqrt{y} {\leqslant} X {\leqslant} \sqrt{y})\,, & y {\geqslant} \frac{1}{2}. \end{cases} \end{split}$$

$$= \begin{cases} 0, & y < \frac{1}{2}, \\ P(-\sqrt{y} \le X \le y), & \frac{1}{2} \le y \le 1, \\ P(-\sqrt{y} \le X \le \sqrt{y}), & y > 1 \end{cases}$$

$$= \begin{cases} 0, & y < \frac{1}{2}, \\ \int_0^y 2e^{-2x} dx, & \frac{1}{2} \le y \le 1, \\ \int_0^{\sqrt{y}} 2e^{-2x} dx, & y > 1 \end{cases}$$

$$= \begin{cases} 0, & y < \frac{1}{2}, \\ 1 - e^{-2y}, & \frac{1}{2} \le y < 1, \\ 1 - e^{-2\sqrt{y}}, & y \ge 1. \end{cases}$$

所以, Y的分布函数 $F_Y(y)$ 只有一个间断点 $x = \frac{1}{2}$. 因此选(B).

附注 由于
$$\sqrt{y}$$
 $\begin{cases} >y, & \frac{1}{2} \le y < 1, \\ \le y, & y \ge 1, \end{cases}$

$$P(X \leq y, -\sqrt{y} \leq X \leq \sqrt{y}) = \begin{cases} P(-\sqrt{y} \leq X \leq y), & \frac{1}{2} \leq y < 1, \\ P(-\sqrt{y} \leq X \leq \sqrt{y}), & y \geq 1. \end{cases}$$

(8) 记
$$U = X_1 + X_2 + X_5 + X_6$$
, $V = X_3 + X_4 - X_7 - X_8$, 则 $U \sim N(0, 4\sigma^2)$, $V \sim N(0, 4\sigma^2)$

$$4\sigma^2$$
),所以 $\frac{U}{2\sigma}$, $\frac{V}{2\sigma}$ 相互独立,且都服从 $N(0, 1)$,由此得到 $\frac{(X_1 + X_2 + X_5 + X_6)^2}{(X_3 + X_4 - X_7 - X_8)^2} = \frac{\frac{U^2}{4\sigma^2}}{\frac{V^2}{4\sigma^2}} \sim$

F(1, 1). 因此选(C).

附注 $F(n_1, n_2)$ 分布定义如下:

设
$$X \sim \chi^2(n_1)$$
, $Y \sim \chi^2(n_2)$, 且 $X 与 Y$ 相互独立, 则 $\frac{X}{Y} \sim F(n_1, n_2)$.

二、填空题

(9) 所给方程两边对 x 求导得

$$e^{x+y}\left(1+\frac{dy}{dx}\right)+\sin(xy)\left(y+x\frac{dy}{dx}\right)=0,$$

$$\exists P \frac{dy}{dx} = -\frac{e^{x+y} + y\sin(xy)}{e^{x+y} + x\sin(xy)}, \quad \exists \frac{dy}{dx} \Big|_{x=0} = \frac{dy}{dx} \Big|_{x=0,y=1} = -1.$$

于是,
$$\frac{d^2y}{dx^2}\Big|_{x=0} = \lim_{x\to 0} \frac{\frac{dy}{dx} - \frac{dy}{dx}\Big|_{x=0}}{x} = \lim_{x\to 0} \frac{-\frac{e^{x+y} + y\sin(xy)}{e^{x+y} + x\sin(xy)} + 1}{x}$$

$$=-\lim_{x\to 0}\frac{y\sin(xy)-x\sin(xy)}{x\left[e^{x+y}+x\sin(xy)\right]}=-\lim_{x\to 0}\left[\frac{\sin(xy)}{x}\cdot\frac{y-x}{e^{x+y}+x\sin(xy)}\right]=-\frac{1}{e}.$$

附注 $\frac{d^2y}{dx^2}\Big|_{x=0}$ 也可以由 $\frac{dy}{dx}$ 计算出 $\frac{d^2y}{dx^2}$,然后将 x=0, y=1, $\frac{dy}{dx}\Big|_{x=1}=-1$ 代入得到,但

这样计算比较繁复,没有题解中采用的方法简捷.

$$(10) \int_{-1}^{\pi} e^{2f(x)} \sin x dx = \int_{-1}^{1} e^{2f(x)} \sin x dx + \int_{1}^{\pi} e^{2f(x)} \sin x dx$$

$$= \int_{-1}^{1} e^{\cos x} \sin x dx + \int_{1}^{\pi} x^{2} \sin x dx = -\int_{1}^{\pi} x^{2} d\cos x$$

$$= -\left(x^{2} \cos x \Big|_{1}^{\pi} - \int_{1}^{\pi} 2x \cos x dx\right)$$

$$= \pi^{2} + \cos 1 + \int_{1}^{\pi} 2x d\sin x$$

$$= \pi^{2} + \cos 1 + \left(2x \sin x \Big|_{1}^{\pi} - 2\int_{1}^{\pi} \sin x dx\right)$$

$$= \pi^{2} + \cos 1 - 2\sin 1 - 2.$$

附注 由于 $e^{\cos x} \sin x$ 是奇函数, 所以题解中 $\int_{-1}^{1} e^{\cos x} \sin x dx = 0$.

(11) 由于
$$z'_{xy} = \cos(xy) \cdot y + \varphi'_{u} + \varphi'_{v} \cdot \frac{1}{y}$$
, 所以
$$z''_{xy} = -\sin(xy) \cdot xy + \cos(xy) + \varphi''_{uv} \cdot \left(-\frac{x}{y^{2}}\right) + \varphi''_{vv} \cdot \left(-\frac{x}{y^{2}}\right) \cdot \frac{1}{y} + \varphi'_{v} \cdot \left(-\frac{1}{y^{2}}\right)$$

$$= -xy\sin(xy) + \cos(xy) - \frac{x}{y^{2}} \left(\varphi''_{uv} + \frac{1}{y}\varphi''_{vv}\right) - \frac{1}{y^{2}}\varphi'_{v}$$

$$= -xy\sin(xy) + \cos(xy) - \frac{1}{y^{2}}\varphi'_{v}.$$

附注 要熟练掌握二元复合函数的1、2阶偏导数的计算.

(12) 所给微分方程

$$y'' + 2y' + y = 2e^{-x} + x$$
 (1)

对应的齐次微分方程 y'' + 2y' + y = 0 的通解为

$$Y = (C_1 + C_2 x) e^{-x}$$
.

此外,式(1)有特解

$$y^* = Ax^2 e^{-x} + B + Cx.$$

将它代入式(1)得

 $(2Ae^{-x} - 4Axe^{-x} + A^2x^2e^{-x}) + 2(2Axe^{-x} - Ax^2e^{-x} + C) + (Ax^2e^{-x} + B + Cx) = 2e^{-x} + x.$ 由此得到 A = 1, B = -2, C = 1, 所以

$$y^* = x^2 e^{-x} - 2 + x$$
.

因此式(1)的通解为

$$y = Y + y^* = (C_1 + C_2 x) e^{-x} + x^2 e^{-x} - 2 + x.$$

(13)
$$\oplus \exists r(\mathbf{A}) = r(\mathbf{A}\mathbf{B}) \leq r(\mathbf{B}), \ \ \exists r(\mathbf{A}) \leq r(\mathbf{B}).$$
 (1)

此外, 由
$$r(A) = n$$
 及 $r(A) + r(B) - n \le r(AB) \le r(A)$ 得 $r(B) \le r(A)$. (2) 所以由式(1)、式(2) 得 $r(B) = r(A) = n$. 从而 $r(B^*) = n$.

附注 题解中利用了关于矩阵秩的以下结论:

(I) 设A 是 $m \times n$ 矩阵, B 是 $n \times l$ 矩阵, 则

$$r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{A}\mathbf{B}) \leq \min\{r(\mathbf{A}), r(\mathbf{B})\}.$$

(\mathbb{I}) 设A 是n 阶矩阵.则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1 & r(A) = n - 1, \\ 0 & r(A) < n - 1. \end{cases}$$

(14) 由题设知, X, Y 相互独立, 从而 X 与 Y^2 相互独立, 且 X 的概率密度为 $f_x(x)$

$$= \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{ide}, \end{cases} Y \text{ in } \text{means } \text{means } \text{means } f_Y(y) = \begin{cases} 2e^{-2y}, & y > 0, \\ 0, & \text{ide}, \end{cases} \text{means } D(X + Y^2) = DX + D(Y^2), \text{ if } \text{if } \text{means } \text{means$$

因此, $D(X+Y^2)=1+\frac{5}{4}=\frac{9}{4}$.

附注 记住: 服从参数为 $\lambda(\lambda > 0)$ 的指数分布的随机变量 X 的概率密度 $f_X(x)$

$$= \begin{cases} \lambda e^{-\lambda x}, & x > 0, EX = \frac{1}{\lambda}, DX = \frac{1}{\lambda^2}, E(X^2) = \frac{2}{\lambda^2}. \end{cases}$$

三、解答题

(15) 由于
$$y(t) = e^{-\int 2dt} \left(C + \int e^{-t} \cdot e^{\int 2dt} dt \right) = Ce^{-2t} + e^{-t}$$
.

将 y(0) = 0 代入上式得 C = -1. 所以 $y(t) = -e^{-2t} + e^{-t} (t \ge 0)$.

当 t < 0 时, $f'(t) = (2t^2 + \sin t)' = 4t + \cos t$,

当t > 0时, $f'(t) = y'(t) = (-e^{-2t} + e^{-t})' = 2e^{-2t} - e^{-t}$.

由于 $\lim_{t\to 0^-} f'(t) = 1$, $\lim_{t\to 0^+} f'(t) = 1$, 所以f'(0) = 1. 因此

$$f'(t) = \begin{cases} 4t + \cos t, & t \leq 0, \\ 2e^{-2t} - e^{-t}, & t > 0. \end{cases}$$

由此可得,t < 0 时, $f''(t) = 4 - \sin t$; t > 0 时, $f''(t) = -4e^{-2t} + e^{-t}$. 由于 $\lim_{t \to 0^{-t}} f''(t) = 4$, $\lim_{t \to 0^{+t}} f''(t) = -3$,所以f''(0)不存在,因此

$$f''(t) = \begin{cases} 4 - \sin t, & t < 0, \\ -4e^{-2t} + e^{-t}, & t > 0. \end{cases}$$

附注 f'(0) = 1 与 f''(0) 不存在也可证明如下:

由于
$$f(t) = \begin{cases} 2t^2 + \sin t, & t < 0, \text{所以} \\ -e^{-2t} + e^{-t}, & t > 0, \end{cases}$$

$$f'_{-}(0) = \lim_{t \to 0^{-}} \frac{f(t) - f(0)}{t} = \lim_{t \to 0^{-}} \frac{2t^2 + \sin t}{t} = 1,$$

$$f'_{+}(0) = \lim_{t \to 0^{+}} \frac{f(t) - f(0)}{t} = \lim_{t \to 0^{+}} \frac{-e^{-2t} + e^{-t}}{t} = 1,$$

从而f'(0) = 1.

由于
$$f'(t) = \begin{cases} 4t + \cos t, & t < 0, \\ 2e^{-2t} - e^{-t}, & t > 0, \end{cases}$$

$$f''_{-}(0) = \lim_{t \to 0^{-}} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^{-}} \frac{4t + \cos t - 1}{t} = 4,$$

$$f''_{+}(0) = \lim_{t \to 0^{+}} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^{+}} \frac{2e^{-2t} - e^{-t} - 1}{t} = -3.$$

从而f''(0)不存在.

(16) 令
$$u = x - t$$
, 则 $f(x) \cdot \int_0^x f(x - t) dt = \sin x$ 成为
$$f(x) \cdot \int_0^x f(u) du = \sin x, 即 \int_0^x f(u) du = \frac{\sin x}{f(x)}.$$

上式两边对 x 求导得

$$y = e^{-\int 2\cot x dx} \left(C + \int \frac{2}{\sin x} e^{\int 2\cot x dx} dx \right)$$
$$= \frac{1}{\sin^2 x} \left(C + \int 2\sin x dx \right) = \frac{1}{\sin^2 x} \left(C - 2\cos x \right).$$

将 $f\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}$,即 $y\left(\frac{\pi}{2}\right) = 2$ 代入上式得C = 2,所以,在 $\left(\frac{\pi}{2}\right)$,用 $\left(\frac{\pi}{2}\right) = \cos\frac{x}{2}$. 因此f(x)

 $\left(\frac{\pi}{2}, \pi\right)$ 上的平均值为

$$\frac{1}{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} f(x) dx = \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos \frac{x}{2} dx = \frac{2}{\pi} (2 - \sqrt{2}).$$

附注 $y'+p(x)y=q(x)y^n(n\neq 0, 1)$ 称为伯努利方程,它可通过变量代换 $z=y^{1-n}$ 转换成线性方程 $\frac{\mathrm{d}z}{\mathrm{d}x}+(1-n)p(x)z=(1-n)q(x)$ 后求解.

(17) u(x, 2x) = x 两边对 x 求导得

$$u_x'(x, 2x) + 2u_x'(x, 2x) = 1.$$

再对 x 求导得[$u_{xx}''(x, 2x) + 2u_{xy}''(x, 2x)$] +2[$u_{yx}''(x, 2x) + 2u_{yy}''(x, 2x)$] =0, 利用 $u_{xx}'' = u_{xy}''$, $u_{xy}'' = u_{xx}''$ 化简后得

$$5u_{xx}''(x, 2x) + 4u_{xy}''(x, 2x) = 0.$$
 (1)

 $u_x'(x, 2x) = x^2$ 两边对 x 求导得

$$u_{xx}''(x, 2x) + 2u_{xy}''(x, 2x) = 2x.$$
 (2)

由式(1),式(2)得 $u_{xx}(x,2x) = -\frac{4}{3}x$, $u''_{xy}(x,2x) = \frac{5}{3}x$. 于是D如图答 5-17 阴影部分所示,所以D的面积为

$$\iint_{D} d\sigma = \int_{\arctan \frac{5}{3}}^{\pi - \arctan \frac{4}{3}} d\theta \int_{0}^{1} r dr$$
$$= \frac{1}{2} \left(\pi - \arctan \frac{4}{3} - \arctan \frac{5}{3} \right).$$

附注 本题获解的关键是利用题设从 u(x, 2x) = x, $u'_x(x, 2x) = x^2$ 中算出 $u''_{xx}(x, 2x)$ 与 $u''_{xy}(x, 2x)$ 的表达式,这一点可以如题解中那样,将以上两式对 x 求导即可.

(18) 所给不等式可改写成

$$(f'(x) - 3f(x))' - 2(f'(x) - 3f(x)) > 0.$$
(1)

式(1)两边同乘以 e^{-2x}得

 $e^{-2x}(f'(x) - 3f(x))' - e^{-2x} \cdot 2(f'(x) - 3f(x)) > 0,$ $[e^{-2x}(f'(x) - 3f(x))]' > 0.$

即 所以,对x>0有

 $e^{-2x}(f'(x) - 3f(x)) > [e^{-2x}(f'(x) - 3f(x))]\Big|_{x=0} = -3,$ $e^{-2x}(f'(x) - 3f(x)) + 3 > 0.$ (2)

即

式(2)两边同乘以 e^{-x}得

$$\left[e^{-3x}f'(x) - 3e^{-3x}f(x)\right] + 3e^{-x} > 0,$$

$$\left(e^{-3x}f(x) - 3e^{-x}\right)' > 0.$$

即

所以,对x>0有

$$e^{-3x}f(x) - 3e^{-x} > (e^{-3x}f(x) - 3e^{-x})\Big|_{x=0} = -2,$$

 $f(x) > 3e^{2x} - 2e^{3x}(x > 0).$

即

附注 题解中,值得注意的是:式(1)两边同乘以 e^{-2x} ,使其左边成为一个函数的导数;同样,在式(2)两边同乘以 e^{-x} ,使其左边也成为一个函数的导数.

(19)
$$\iint_{\Sigma} z dS = \iint_{D} \sqrt{x^{2} + y^{2}} \sqrt{1 + z_{x}^{2} + z_{y}^{2}} \Big|_{z = \sqrt{x^{2} + y^{2}}} d\sigma,$$

其中 $D = \{(x, y) \mid x^2 + y^2 \le ax\} = \left\{(r, \theta) \mid r \le a\cos\theta, -\frac{\pi}{2} \le \theta \le \frac{\theta}{2}\right\}$ 是 Σ 在 xOy 平面上的投影,且

 $\sqrt{1+z_x^2+z_y^2} = \sqrt{1+\left(\frac{x}{\sqrt{x^2+y^2}}\right)^2+\left(\frac{y}{\sqrt{x^2+y^2}}\right)^2} = \sqrt{2}.$

所以

$$\iint_{\Sigma} z dS = \sqrt{2} \iint_{D} \sqrt{x^{2} + y^{2}} d\sigma = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} r \cdot r dr$$

$$= \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{3} a^{3} \cos^{3}\theta d\theta = \frac{2\sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{3}\theta d\theta = \frac{2\sqrt{2}}{3} \cdot \frac{2}{3} = \frac{4\sqrt{2}}{9}.$$

附注 设曲面 Σ : z = z(x, y), 且 f(x, y, z) 是连续函数,则

$$\iint_{\Sigma} f(x,y,z) \, \mathrm{d}S = \iint_{D_{xy}} f(x,y,z(x,y)) \sqrt{1 + z_x^2 + z_y^2} \mathrm{d}\sigma,$$

其中, D_{xy} 是 Σ 在 xOy 平面上的投影.

$$2b^{2}A^{2} = 2 \cdot 2^{2} (\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}})^{2} = 8\boldsymbol{\alpha}(\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha})\boldsymbol{\beta}^{\mathrm{T}} = 16\boldsymbol{A} = 16 \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix},$$

$$A^{4} = (\alpha \beta^{T}) (\alpha \beta^{T}) (\alpha \beta^{T}) (\alpha \beta^{T}) = \alpha (\beta^{T} \alpha)^{3} \beta^{T} = 8A,$$

所以, 所给的方程组成为

$$(8\mathbf{A} - 16\mathbf{E}_3)\mathbf{x} = \mathbf{\gamma}, \quad \mathbb{P}(\mathbf{A} - 2\mathbf{E}_3)\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

或

$$\begin{pmatrix} -1 & \frac{1}{2} & 0 \\ 2 & -1 & 0 \\ 1 & \frac{1}{2} & -2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \tag{1}$$

由于
$$\begin{pmatrix} -1 & \frac{1}{2} & 0 \\ 2 & -1 & 0 \\ 1 & \frac{1}{2} & -2 \end{pmatrix} \xrightarrow{0} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$0 \xrightarrow{\text{初等行变换}} \begin{pmatrix} -1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \end{pmatrix} \xrightarrow{0} \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix},$$

所以,式(1)与方程组
$$\begin{cases} -2x_1 + x_2 &= 0, \\ x_2 - 2x_3 &= 1 \end{cases}$$
 (2)

同解. 式(2)的导出组的通解为 $C(1, 2, 1)^{\mathrm{T}}$,此外式(2)有特解 $\left(0, 0, -\frac{1}{2}\right)^{\mathrm{T}}$,所以,式(2),即所给方程组的通解 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}} = C(1, 2, 1)^{\mathrm{T}} + \left(0, 0, -\frac{1}{2}\right)^{\mathrm{T}}$ (其中,C是任意常数).

附注 设 α , β 都是 n 维列向量,则 $\alpha^T\beta$ 是一个常数,记为 c; $\alpha\beta^T$ 是 n 阶矩阵,记为 A, 则 $r(A) \leq 1$,且对正整数 k,有

$$A^{k} = (\alpha \beta^{T}) (\alpha \beta^{T}) \cdots (\alpha \beta^{T}) = c^{k-1} A.$$

$$(21) \ \ \dot{\mathbb{H}} \mp |\lambda E_{3} - A| = \begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ \lambda - 3 & 1 & \lambda \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ 0 & 0 & \lambda + 4 \end{vmatrix} = (\lambda + 4) \left[(\lambda - 3)^{2} - (\lambda - 1) \right]$$

$$= (\lambda - 2) (\lambda - 5) (\lambda + 4),$$

所以 A 有特征值 $\lambda = 2$, 5, -4.

设对应 $\lambda = 2$ 的特征向量为 $\boldsymbol{a} = (a_1, a_2, a_3)^{\mathrm{T}}$,则 \boldsymbol{a} 满足

$$\begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}. \tag{1}$$

$$\begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ & & & & \\ \end{pmatrix} \xrightarrow{\text{instance}} \begin{pmatrix} 0 & 3 & -6 \\ 1 & -1 & 1 \\ & & & \\ \end{pmatrix}$$

由于

$$\rightarrow \begin{pmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix},$$

所以,式(1)与方程组 $\begin{cases} a_2-2a_3=0, \\ a_1-a_3=0 \end{cases}$ 同解,故可取 \boldsymbol{a} 为它的基础解系,即 $\boldsymbol{a}=(1,\ 2,\ 1)^{\mathrm{T}}.$

设对应 $\lambda = 5$ 的特征向量为 $\boldsymbol{b} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 \boldsymbol{b} 满足

$$\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$
 (2)

由于

所以式(2) 与方程组 $\begin{cases} b_2 + b_3 = 0, \\ b_1 + b_2 = 0 \end{cases}$ 同解,故可取 \boldsymbol{b} 为它的基础解系,即 $\boldsymbol{b} = (1, -1, 1)^T$.

设对应 $\lambda = -4$ 的特征向量为 $\boldsymbol{c} = (c_1, c_2, c_3)^T$, 则由 \boldsymbol{A} 是实对称矩阵知, \boldsymbol{c} 与 \boldsymbol{a} , \boldsymbol{b} 都正交, 所以有

$$\begin{cases} (\boldsymbol{c}, \boldsymbol{a}) = 0, \\ (\boldsymbol{c}, \boldsymbol{b}) = 0, \end{cases}$$
 即
$$\begin{cases} c_1 + 2c_2 + c_3 = 0, \\ c_1 - c_2 + c_3 = 0. \end{cases}$$
 由于它与
$$\begin{cases} c_2 = 0, \\ c_1 + c_3 = 0. \end{cases}$$

同解,故可取 c 为它的基础解系,即 $c = (1, 0, -1)^{T}$.

显然 a, b, c 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi} = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\eta} = \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\xi} = \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{\mathrm{T}}.$$

$$\mathbf{E} \boldsymbol{Q} = (\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\xi}) = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
(正交矩阵), 则 $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{Q} = \begin{pmatrix} 2 & 5 \\ & & -4 \end{pmatrix}$, 于是在

正交变换
$$\mathbf{x} = \mathbf{Q}\mathbf{y}$$
 下, $f(x_1, x_2, x_3) = 2y_1^2 + 5y_2^2 - 4y_3^2$ (标准形).
由 $\mathbf{Q}^T \mathbf{A} * \mathbf{Q} = \mathbf{Q}^T | \mathbf{A} | \mathbf{A}^{-1} \mathbf{Q} = -40 \mathbf{Q}^{-1} \mathbf{A}^{-1} \mathbf{Q} \quad (|\mathbf{A}| = 2 \times 5 \times (-4) = -40)$

$$= -40 (\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q})^{-1} = -40 (\mathbf{Q}^T \mathbf{A} \mathbf{Q})^{-1}$$

$$= -40 \begin{pmatrix} 2 & & \\ 5 & & \\ & -4 \end{pmatrix}^{-1} = \begin{pmatrix} -20 & \\ & -8 & \\ & & 10 \end{pmatrix}$$

知,在正交变换x = Qy下,

$$f_{2}(x_{1}, x_{2}, x_{3}) = \mathbf{x}^{T} \mathbf{A}^{*} \mathbf{x} = \mathbf{y}^{T} (\mathbf{Q}^{T} \mathbf{A}^{*} \mathbf{Q}) \mathbf{y}$$

$$= \mathbf{y}^{T} \begin{pmatrix} -20 \\ -8 \\ 10 \end{pmatrix} \mathbf{y} = -20y_{1}^{2} - 8y_{2}^{2} + 10y_{3}^{2} ($$
 标准形 $)$.

附注 由题解可知,如果 *A* 是 *n* 阶可逆实对称矩阵,则当正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 将二次型 $f_1(x_1, x_2, \dots, x_n) = \mathbf{x}^T \mathbf{A}\mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$)化为标准 形 $\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$ (其 λ_1 , λ_2 , \dots , λ_n 是 *A* 的特征值)时,必将二次型 $f_2(x_1, x_2, \dots, x_n) = \mathbf{x}^T \mathbf{A}^* \mathbf{x}$ 化为标准形 $\mu_1 y_1^2 + \mu_2 y_2^2 + \dots + \mu_n y_n^2$ (其中 μ_1 , μ_2 , \dots , μ_n 是 \mathbf{A}^* 的特征值). 记住这个结论,是有用的.

(22) (I)记Y的分布函数为 $F_{y}(y)$,则

$$F_{Y}(y) = P(Y \leqslant y) = P(X^{2} \leqslant y).$$

当 $y \le 0$ 时, $P(X^2 \le y) = 0$;

当
$$0 < y \le 1$$
 时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{3} dx = \frac{2}{3} \sqrt{y};$

当
$$1 < y \le 4$$
 时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{1} \frac{1}{3} dy = \frac{1}{3} (1 + \sqrt{y});$

当
$$y > 4$$
时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-2}^{1} \frac{1}{3} dy = 1$,

所以,
$$F_{Y}(y) = \begin{cases} 0, & y \leq 0, \\ \frac{2}{3}\sqrt{y}, & 0 < y \leq 1, \\ \frac{1}{3}(1+\sqrt{y}), & 1 < y \leq 4, \\ 1, & y > 4. \end{cases}$$

$$\varphi(y) = \frac{\mathrm{d}F_{y}(y)}{\mathrm{d}y} = \begin{cases} \frac{1}{3\sqrt{y}}, & 0 < y \leq 1, \\ \frac{1}{6\sqrt{y}}, & 1 < y \leq 4, \\ 0, & 其他. \end{cases}$$

(II)
$$E(|Y-X^4|) = E(|X^2-X^4|) = E(X^2|1-X^2|)$$

= $\int_{-\infty}^{+\infty} x^2 |1-x^2| f(x) dx = \frac{1}{3} \int_{-2}^{1} x^2 |1-x^2| dx$

$$= \frac{1}{3} \left[\int_{-2}^{-1} x^2 (x^2 - 1) dx + \int_{-1}^{1} x^2 (1 - x^2) dx \right]$$

$$= \frac{1}{3} \left[\left(\frac{1}{5} x^5 - \frac{1}{3} x^3 \right) \Big|_{-2}^{-1} + \left(\frac{1}{3} x^3 - \frac{1}{5} x^5 \right) \Big|_{-1}^{1} \right]$$

$$= \frac{1}{3} \left(\frac{58}{15} + \frac{4}{15} \right) = \frac{62}{45}.$$

附注 $\varphi(y)$ 也可以按以下方法计算:

由于 $y = x^2$ 在 $f(x) \neq 0$ 的区间[-2,0)与(0,1]上都是单调的,且 $y = x^2$ 在(-2,0)内的反函数 $x = h_1(y) = -\sqrt{y}(0 < y \leq 4)$,在(0,1)内的反函数 $x = h_2(y) = \sqrt{y}(0 < y \leq 1)$,所以

$$\begin{split} \varphi(y) &= \begin{cases} \frac{1}{3} \left| h_1'(y) \right|, & 0 < y \leqslant 4, \\ 0, & \not\equiv \text{id} \end{cases} + \begin{cases} \frac{1}{3} \left| h_2'(y) \right|, & 0 < y \leqslant 1, \\ 0, & \not\equiv \text{id} \end{cases} \\ &= \begin{cases} \frac{1}{3\sqrt{y}}, & 0 < y \leqslant 1, \\ \frac{1}{6\sqrt{y}}, & 1 < y \leqslant 4, \\ 0, & \not\equiv \text{id}. \end{cases} \end{split}$$

(23) 设所给的随机简单样本的观察值为 x_1 , x_2 , …, x_n . 为了计算 θ 的最大似然估计量,可认为 x_1 , x_2 , …, x_n 全为正的. 故似然函数为

$$L(\theta) = \frac{1}{\theta} e^{-\frac{x_1}{\theta}} \cdot \frac{1}{\theta} e^{-\frac{x_2}{\theta}} \cdots \frac{1}{\theta} e^{-\frac{x_n}{\theta}} = \frac{1}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^n x_i},$$

即 $\ln L(\theta) = -n \ln \theta - \frac{\sum_{i=1}^{n} x_i}{\theta}$. 于是由

$$\frac{\mathrm{dln}L(\theta)}{\mathrm{d}\theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} = 0$$

得 θ 的最大似然估计值为 $\frac{1}{n}\sum_{i=1}^n x_i$, 从而 θ 的最大似然估计量为 $\hat{\theta} = \frac{1}{n}\sum_{i=1}^n X_i$.

由于 $EX = \theta$, $DX = \theta^2$, 所以由

$$\begin{split} P(\stackrel{\wedge}{\theta} \leqslant y) &= P\bigg(\frac{1}{n}\sum_{i=1}^n X_i \leqslant y\bigg) \\ &= P\bigg(\frac{\frac{1}{n}\sum_{i=1}^n X_i - \theta}{\sqrt{\frac{\theta^2}{n}}} \leqslant \frac{y - \theta}{\sqrt{\frac{\theta^2}{n}}}\bigg) \\ &\approx \int_{-\infty}^{\frac{y - \theta}{n}} \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{l^2}{2}} \mathrm{d}t \quad (其中, y 是任意实数). \end{split}$$

由此可知 $\hat{\theta}$ $\stackrel{\text{近似}}{\longrightarrow}$ $N\left(\theta, \frac{\theta^2}{n}\right)$.

附注 设 Y 是随机变量,如果对于任意实数 y 有 $P(Y \le y) = \int_{-\infty}^{\frac{y-a}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$,则 Y ~ $N(a, \sigma^2)$;如果对任意实数 y 有 $P(Y \le y) \approx \int_{-\infty}^{\frac{y-a}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$,则 Y $\stackrel{\text{iffl}}{\sim} N(a, \sigma^2)$.

模拟试题(六)解答

一、选择题

答案 (1) (2) (3) (4) (5) (6) (7) (8) B D D B C B B D

(1) $f(x) = x \mid x \mid \cdot (x-2)^2 \mid x-2 \mid$, 可能不可导点为 x = 0 , 2. 在点 x = 0 附近,

$$f(x) = -x \mid x \mid (x-2)^{3} = \begin{cases} x^{2}(x-2)^{3}, & x \leq 0, \\ -x^{2}(x-2)^{3}, & x > 0, \end{cases}$$
$$f'(x) = \begin{cases} 2x(x-2)^{3} + 3x^{2}(x-2)^{2}, & x < 0, \\ -[2x(x-2)^{3} + 3x^{2}(x-2)^{2}], & x > 0, \end{cases}$$

且由 $\lim_{x\to 0^-} f'(x) = 0$, $\lim_{x\to 0^+} f'(x) = 0$ 知f'(0) = 0.

$$f''_{-}(0) = \lim_{x \to 0^{-}} \frac{2x(x-2)^{3} + 3x^{2}(x-2)^{2}}{x} = -16, f''_{+}(0) = 16.$$

所以, x=0 是 f(x) 的 2 阶不可导点.

在点x=2附近,

$$f(x) = x^{2}(x-2)^{2} | x-2 | = \begin{cases} -x^{2}(x-2)^{3}, & x \le 2, \\ x^{2}(x-2)^{3}, & x > 2, \end{cases}$$
$$f'(x) = \begin{cases} -\left[2x(x-2)^{3} + 3x^{2}(x-2)^{2}\right], & x < 2, \\ 2x(x-2)^{3} + 3x^{2}(x-2)^{2}, & x > 2, \end{cases}$$

且由 $\lim_{x\to 2^-} f'(x) = 0$, $\lim_{x\to 2^+} f'(x) = 0$ 知f'(2) = 0.

$$f''_{-}(2) = \lim_{x \to 2^{-}} \frac{-\left[2x(x-2)^3 + 3x^2(x-2)^2\right]}{x-2} = 0, \ f''_{+}(2) = 0.$$

所以, x=2 是 f(x) 的 2 阶可导点. 因此选(B).

附注 如果记住以下结论,本题将快捷获解:

- (I) (x-a) | x-a| 在点 x = a 处 2 阶不可导, $(x-a)^2 | x-a|$ 在点 x = a 处 2 阶可导;
- (II) 设 $f(x) = \varphi(x)g(x)$, 其中 $\varphi(x)$ 在点 x = a 处可导而 2 阶不可导,g(x) 在点 x = a 处 2 阶可导且 $g(a) \neq 0$,则 f(x) 在点 x = a 处 2 阶不可导.
- (2) 由于 x^2 在[0, 1]上连续,选项(A),(B),(C)右边都是 x^2 在[0, 1]上的积分和式的极限,它们都等于 $\int_1^1 x^2 dx$,即选项(A),(B),(C)都正确.因此选(D).

附注 也可以通过直接计算,确认选项(D)不正确:

$$\lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^{n} \left(\frac{3i-1}{3n} \right)^{2} = \lim_{n \to \infty} \frac{1}{27n^{3}} \sum_{i=1}^{n} \left(9i^{2} - 6i + 1 \right)$$

$$= \lim_{n \to \infty} \frac{1}{27n^{3}} \left[\frac{9}{6} n(n+1) \left(2n+1 \right) - \frac{6}{2} n(n+1) + n \right]$$

$$= \frac{1}{9} \neq \frac{1}{3} = \int_{0}^{1} x^{2} dx.$$

(3) 由于 $f''_{xx}(x_0, y_0) = \frac{\mathrm{d}}{\mathrm{d}x} f'_x(x, y_0) \bigg|_{x=x_0}$,所以由 $f''_{xx}(x, y)$ 在点 (x_0, y_0) 处存在知 $f'_x(x, y_0)$ 在点 (x_0, y_0) 处可微. 因此选(D).

附注 当题中所给的三个 2 阶偏导数在点 (x_0, y_0) 处连续时,选项(A),(B),(C)都正确,但仅假定这三个 2 阶偏导数在点 (x_0, y_0) 处存在时,未必能推出这三个选项都正确.

(4) 由于 Ω 关于平面 π : x+y+z=0对称,设 $M_1(x_1, y_1, z_1)$ 与 $M_2(x_2, y_2, z_2)$ 为对称点,则线段 $\overline{M_1M_2}$ 的中点 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$ 位于平面 π 上,所以

$$\frac{x_1 + x_2}{2} + \frac{y_1 + y_2}{2} + \frac{z_1 + z_2}{2} = 0, \quad \exists I x_1 + y_1 + z_1 = -(x_2 + y_2 + z_2).$$

从而 $\tan(x_1+y_1+z_1)=-\tan(x_2+y_2+z_2)$,即 $\tan(x+y+z)$ 在对称点处的值互为相反数,于是有

$$\iint_{\Omega} \tan(x + y + z) \, \mathrm{d}v = 0.$$

因此选(B).

附注 计算三重积分时,应先按积分区域的对称性进行化简,然后计算. 对于三重积分 $\iint_{\Omega} f(x,y,z) \, \mathrm{d}v$,如果 Ω 具有某种对称性,且按此对称性 Ω 被划分成 Ω ₁ 与 Ω ₂ 两部分,则

当f(x,y,z) 在对称点处的值互为相反数时, $\iint_{\Omega} f(x,y,z) dv = 0$;

当 f(x,y,z) 在对称点处的值彼此相等时, $\iint_{\Omega} f(x,y,z) \, \mathrm{d}v = 2 \iint_{\Omega_1} f(x,y,z) \, \mathrm{d}v.$

(5) 由于方程组 Ax=0 的解 x_0 可使 $A^TAx_0=0$,即 x_0 也是方程组 $A^TAx=0$ 的解. 反之,设 $A^TAx=0$ 有解 ξ ,则

$$\boldsymbol{\xi}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{\xi} = 0, \mathbb{H}(\boldsymbol{A}\boldsymbol{\xi})^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{\xi}) = 0.$$

记 $A\xi = (\xi_1, \xi_2, \dots, \xi_n)^T$, 则由上式得 $\xi_1^2 + \xi_2^2 + \dots + \xi_n^2 = 0$, 即 $\xi_1 = \xi_2 = \dots = \xi_n = 0$ (利用 $\xi_1, \xi_2, \dots, \xi_n$ 都为实数). 所以有 $A\xi = 0$, 即 ξ 也是方程 Ax = 0 的解. 因此选(C).

附注 本题表明:设A 是 n 阶实矩阵,则Ax = 0 与 $A^{T}Ax = 0$ 是同解方程组.这一结论可推广为:

设 $A \not\in m \times n$ 实矩阵, $B \not\in n \times l$ 实矩阵,则 Bx = 0 与 ABx = 0 是同解方程组的充分必要条件是 r(AB) = r(B).

(6) 曲于
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^4$$

$$= \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{4} = \begin{pmatrix} 0 & 4 & 16 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

所以 $|\lambda E_3 - A| = \begin{vmatrix} \lambda & -4 & -16 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = 0$ 有解 $\lambda = -2$, 2, 3. 从而 A 的最小特征值为 -2.

因此选(B).

附注 题解中,由于注意到 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 都是初等矩阵,它们的三次方与四

次方分别左乘、右乘于 $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 表明,对 \mathbf{B} 施行三次"交换第 1、2 行"的初等变换后,

再施行四次"将第2列加到第3列"的初等变换,所以很快获解。

(7) 记
$$U = -2Y$$
 对应的函数 $u = -2y$, 即 $y = -\frac{u}{2}$, 则 U 的概率密度

$$f_U(u) = f\left(-\frac{u}{2}\right) \left| \frac{\mathrm{d}\left(-\frac{u}{2}\right)}{\mathrm{d}u} \right| = \frac{1}{2} f\left(-\frac{u}{2}\right),$$

从而 Z = X - 2Y = X + U 的概率密度为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x) f_U(z-x) dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{x-z}{2}\right) dx.$$

因此选(B).

附注 常用的随机变量函数的概率密度计算公式:

(I) 设随机变量 X 的概率密度为 f(x), 记 Y = g(X) (其中 y = g(x) 在 $f(x) \neq 0$ 的区间内是单调函数,且除个别点外处处可导),则 Y 的概率密度为

$$f_{Y}(y) = \begin{cases} f(h(y)) \mid h'(y) \mid, & y \in I, \\ 0, & \text{ 其他}, \end{cases}$$

其中 I 是 g(x) 在 $f_X(x) \neq 0$ 的区间上的值域, x = h(y) 是 y = g(x) 在该区间的反函数.

(\mathbb{I}) 设二维随机变量(X, Y)的概率密度为f(x, y),则随机变量 Z = aX + bY + c(a, b, c 都为常数)的概率密度为

当
$$b\neq 0$$
 时, $f_Z(z) = \int_{-\infty}^{+\infty} f\left(x, \frac{z-ax-c}{b}\right) \frac{1}{|b|} dx$,

$$\stackrel{\text{def}}{=} a \neq 0 \text{ ft}, \ f_Z(z) = \int_{-\infty}^{+\infty} f\left(\frac{z - by - c}{a}, y\right) \frac{1}{|a|} dy.$$

如果记住了(Ⅱ),则本题可快捷获解.

(8) 由于
$$\sum_{i=1}^{n} \frac{X_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n)$$
, 所以 $E\left(\sum_{i=1}^{n} \frac{X_{i}^{2}}{\sigma^{2}}\right) = n$, $D\left(\sum_{i=1}^{n} \frac{X_{i}^{2}}{\sigma^{2}}\right) = 2n$, 于是

$$EY = E\left[\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)^{2}\right] = D\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) + \left[E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)\right]^{2}$$

$$= \frac{\sigma^{4}}{n^{2}}D\left(\sum_{i=1}^{n}\frac{X_{i}^{2}}{\sigma^{2}}\right) + \frac{\sigma^{4}}{n^{2}}\left[E\left(\sum_{i=1}^{n}\frac{X_{i}^{2}}{\sigma^{2}}\right)\right]^{2} = \frac{\sigma^{4}}{n^{2}} \cdot 2n + \frac{\sigma^{4}}{n^{2}} \cdot n^{2} = \frac{2+n}{n}\sigma^{4}.$$

因此选(D).

附注 应记住以下结论:

(I) 设 X_1 , X_2 , \cdots , X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,则 $\sum\limits_{i=1}^n \frac{(X_i - \overline{X})^2}{\sigma^2} \sim$

$$\chi^{2}(n-1), \sum_{i=1}^{n} \frac{(X_{i}-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n), \sharp \dot{\pi} \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}.$$

(II) 设 $X \sim \chi^2(n)$, 则EX = n, DX = 2n.

二、填空题

(9) 由于f(x)在点x=0处连续,所以

$$a = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(e^{x} + \sin x \right)^{\frac{1}{\ln(1+x)}}$$
$$= e^{\lim_{x \to 0^{+}} \frac{\ln(e^{x} + \sin x)}{\ln(1+x)}}, \tag{1}$$

其中, $\lim_{x\to 0^+} \frac{\ln(e^x + \sin x)}{\ln(1+x)} = \lim_{x\to 0^+} \frac{\ln[1 + (e^x - 1 + \sin x)]}{x} = \lim_{x\to 0^+} \frac{e^x - 1 + \sin x}{x} = 2.$

代入式(1)得 $a = e^2$

附注 (I) 计算 $\frac{0}{0}$ 型未定式极限 $\lim \frac{f(x)}{g(x)}$ 时, 首先要对 $\lim \frac{f(x)}{g(x)}$ 进行化简, 其中对 f(x) 或 g(x) 作等价无穷小代替是最常用的, 也是最有效的化简方法.

(\mathbb{I}) 计算 0^0 , 1^∞ , ∞^0 型未定式极限 $\lim [f(x)]^{g(x)}$ 时, 应首先将函数指数化, 即 $[f(x)]^{g(x)} = e^{g(x) \ln f(x)}$,于是

$$\lim [f(x)]^{g(x)} = e^{\lim g(x) \ln f(x)} = \begin{cases} e^{A}, & \lim g(x) \ln f(x) = A, \\ 0, & \lim g(x) \ln f(x) = -\infty, \\ \infty, & \lim g(x) \ln f(x) = +\infty. \end{cases}$$

$$(10) \frac{\partial}{\partial x} f\left(e^{xy}, \cos\frac{1}{x}\right) = f'_{u} \frac{\partial}{\partial x} e^{xy} + f'_{v} \frac{\partial}{\partial x} \cos\frac{1}{x}$$
$$= y e^{xy} f'_{u} + \frac{1}{x^{2}} \sin\frac{1}{x} \cdot f'_{v}.$$

附注 计算多元复合函数的偏导数时,应先画出该函数与自变量之间的复合关系图,例 如本题的关系图为

(11) 由于
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
,

$$\sum_{n=1}^{\infty} (-1)^{\cos\frac{n}{2}\pi} \frac{1}{2^n} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2^n} \quad (\text{由} \mp (-1)^{\cos\frac{n}{2}\pi} = (-1)^{n-1})$$

$$= \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{1}{3},$$

$$\text{所以 } \sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} + (-1)^{\cos\frac{n}{2}\pi} \frac{1}{2^n} \right] = 1 + \frac{1}{3} = \frac{4}{3}.$$

附注 应记住
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
. 顺便计算 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)}$.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} + \sum_{n=1}^{\infty} (-1)^{n} \frac{1}{n+1}$$

$$= 2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} - 1$$

$$= 2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n} \Big|_{x=1} - 1$$

$$= 2 \ln(1+x) \Big|_{x=1} - 1$$

$$= 2 \ln 2 - 1$$

(12) 由 y'' + py' + qy = 0 的通解可知, 1 + i 是它的特征方程的根. 所以 $y'' + py' + qy = e^x \cos x$ 的特解形式应为

$$xe^{x}(A\cos x + B\sin x).$$

附注 对于2阶常系数非齐次线性微分方程

$$y'' + py' + qy = f(x),$$

当 $f(x) = e^{\alpha x} [P_l(x)\cos\beta x + Q_m(x)\sin\beta x](P_l(x), Q_m(x))$ 分别是x的l次,m次多项式)时,该方程应有的特解形式为

$$y^* = x^k e^{\alpha x} [R_n^{(1)}(x) \cos \beta x + R_n^{(2)}(x) \sin \beta x],$$

其中, k 是按 $\alpha + \beta$ i 是特征方程 $\lambda^2 + p\lambda + q = 0$ 的零重根与一重根对应地取 0, 1, $R_n^{(1)}(x)$, $R_n^{(2)}(x)$ 是 x 的 $n = \max\{l, m\}$ 次多项式.

(13) 由于
$$A^* = |A|A^{-1}$$
, 其中

$$A^{-1} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \begin{pmatrix} 1 & 0 \\ 0 & 0 & \begin{pmatrix} 0 & -1 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix},$$

从而
$$\mathbf{A}^* = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}.$$

附注 本题也可以利用以下公式、快捷算出 A^* .

设A, B 都是n 阶可逆矩阵, 则

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} |B| & A^* & O \\ O & |A| & B^* \end{pmatrix},$$
$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{pmatrix} O & |A| & B^* \\ |B| & A^* & O \end{pmatrix}.$$

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 1-3p^2(1-p)^2 & 3p^2(1-p)^2 \end{array}$$

所以 $E(X^2) = 1^2 \cdot 3p^2 (1-p)^2 = 3p^2 (1-p)^2$

附注 服从参数为 λ 的0-1分布的随机变量X的分布律为

由此可以算得X的数字特征,例如

$$EX = E(X^2) = \lambda \cdot D(X) = \lambda (1 - \lambda)$$

等.

三、解答题

$$(15) \int \frac{1}{\sin x \cos x} \frac{1}{\sqrt{\sin^4 x + \cos^4 x}} dx = \int \frac{1}{\frac{1}{2} \sin 2x} \frac{1}{\sqrt{1 - \frac{1}{2} \sin^2 2x}} dx$$

$$= \int \frac{1}{\sqrt{\csc^2 2x - \frac{1}{2}}} \frac{d2x}{\sin^2 2x}$$

$$= -\int \frac{1}{\sqrt{\cot^2 2x + \frac{1}{2}}} d \cot 2x$$

$$= -\ln\left(\cot 2x + \sqrt{\cot^2 2x + \frac{1}{2}}\right) + C.$$

附注 可考虑类似的不定积分: $\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx$. 解答如下:

$$\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx = \frac{1}{2} \int \frac{\cos x + \sin x}{\sqrt{2 + \sin 2x}} dx - \frac{1}{2} \int \frac{\cos x - \sin x}{\sqrt{2 + \sin 2x}} dx$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{3 - (\sin x - \cos x)^2}} d(\sin x - \cos x) - \frac{1}{2} \int \frac{1}{\sqrt{1 + (\sin x + \cos x)^2}} d(\sin x + \cos x)$$

$$= \frac{1}{2} \arcsin \frac{\sin x - \cos x}{\sqrt{3}} - \frac{1}{2} \ln(\sin x + \cos x + \sqrt{2 + \sin 2x}) + C.$$

(16) 由于 $f_n(x)$ 满足

$$f'_{n}(x) - f_{n}(x) = x^{n-1}e^{x}$$

所以,
$$f_n(x) = e^{\int dx} (C + \int x^{n-1} e^x \cdot e^{-\int dx} dx)$$

= $e^x (C + \int x^{n-1} dx) = e^x \left(C + \frac{1}{n} x^n\right)$.

将
$$f_n(1) = \frac{e}{n}$$
代入上式得 $C = 0$,所以 $f_n(x) = \frac{1}{n}x^n e^x (n = 1, 2, \cdots)$. 从而

$$s(x) = \sum_{n=1}^{\infty} \frac{1}{n+1} f_n(x) = e^x \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^n = e^x \left(\sum_{n=1}^{\infty} \frac{1}{n} x^n - \sum_{n=1}^{\infty} \frac{1}{n+1} x^n \right)$$

$$= e^x \left(\sum_{n=1}^{\infty} \frac{1}{n} x^n - \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1} \right)$$

$$= e^x \left\{ -\ln(1-x) - \frac{1}{x} \left[-\ln(1-x) - x \right] \right\}$$

$$= -e^x \left[\left(1 - \frac{1}{x} \right) \ln(1-x) - 1 \right] \quad (x \in [-1,0) \cup (0,1)).$$

此外, s(0) = 0. 所以

$$s(x) = \begin{cases} -e^{x} \left[\left(1 - \frac{1}{x} \right) \ln(1 - x) - 1 \right], & x \in [-1, 0) \cup (0, 1), \\ 0, & x = 0. \end{cases}$$

附注 题解中直接利用 $-\ln(1-x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n (x \in [-1,1))$,比较快捷.

(17) 由于
$$\int_0^x f(x-t,y) dt = \int_0^x f(u,y) du$$
 (其中, $u = x - t$),

所以 $f(x,y) = y + \int_0^x f(u,y) du$. 从而f(0, y) = y, 且

$$f_x'(x,y) = f(x,y),$$

由此得到 $f(x, y) = ye^x$. 此外, 由题设得

$$\mathrm{d} g(x,\ y) = g_x'(x,\ y)\,\mathrm{d} x + g_y'(x,\ y)\,\mathrm{d} y = \mathrm{d} (x+y)\;,$$

所以 $g(x, y) = x + y + C_0$. 从而由 g(0, 0) = 0 得 $C_0 = 0$.

$$g(x, y) = x + y.$$

由以上得到的f, g 得

$$f(\sqrt{x}, g(x, y)) = e^{\sqrt{x}}(x + y).$$

$$\iiint_D f(\sqrt{x}, g(x, y)) d\sigma = \iint_D e^{\sqrt{x}}(x + y) d\sigma$$

$$= \int_0^1 dx \int_{-\pi}^{\sqrt{x}} e^{\sqrt{x}}(x + y) dy = 2 \int_0^1 x^{\frac{3}{2}} e^{\sqrt{x}} dx$$

$$\frac{1}{2} \frac{1}{1000} \int_{-\sqrt{x}}^{1} dt = 36e - 96.$$

附注 题解中值得注意是:

为了对 $f(x,y) = y + \int_0^x f(x-t,y) dt$ 的两边关于 x 求偏导数,需将被积函数中的 x 移走,故令 u = x - t.

$$= \frac{\pi}{2} \left[z \left(z - \frac{1}{2} \sin 2z \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \left(z - \frac{1}{2} \sin 2z \right) dz \right]$$
$$= \frac{1}{2} \pi^{3} - \frac{\pi}{2} \left(\frac{1}{2} z^{2} + \frac{1}{4} \cos 2z \right) \Big|_{0}^{\pi} = \frac{1}{4} \pi^{3}.$$

附注 题解中有两点值得注意:

- (I) 由于 \overrightarrow{AO} 不是闭曲线,所以添上线段 \overrightarrow{OA} ,使得 \overrightarrow{AO} + \overrightarrow{OA} 成为闭曲线,然后应用格林 公式计算所给的曲线积分, 比较快捷.
- (II) 由于 Σ 是闭曲面,且是外侧,所以对所给的曲面积分直接应用高斯公式计算,比 较快捷.此外,计算 $\iiint z dv$ 时,由于 Ω 是旋转曲面,且被积函数与 x, y 无关,所以采用先 x, y, 后 z 的方法.
 - (19) c 将[a, b]分成两个小区间[a, c]与[c, b].

由于 $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} > 0$,所以存在 $x_{1} \in (a, c)$,使得 $f(x_{1}) > f(a)$.由于 $f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} < 0$,所以存在 $x_{2} \in (x_{1}, c)$,使得 $f(x_{2}) > f(c)$.因此f(x)在[a, c]

上的最大值在(a, c)内取到,于是由费马定理知,存在 $\eta_1 \in (a, c)$,使得 $f'(\eta_1) = 0$.

此外, 由 f(c) = f(b) = 0 知, f(x) 在 [c, b] 上满足罗尔定理条件, 所以存在 $\eta_2 \in$ (c, b), 使得 $f'(\eta_2) = 0$.

由题设及以上证明知, f'(x)在[η_1 , η_2]上满足罗尔定理条件, 所以存在 $\xi \in (\eta_1, \eta_2)$ $\subset (a, b)$, 使得 $f''(\xi) = 0$.

附注 当函数 f(x) 在[a, b]上有连续导数时,如果 $f'(a) \cdot f'(b) < 0$,则容易知道,存 在 $\xi \in (a, b)$, 使得 $f'(\xi) = 0$. 但是, 从本题的证明可知, "当f(x)在[a, b]上可导(未必 有连续导数)时,如果 $f'(a) \cdot f'(b) < 0$,则存在 $\xi \in (a, b)$,使得 $f'(\xi) = 0$."记住这个结 论,有助快捷解题.

(20) 由于 α_1 , α_2 , α_3 不能由 β_1 , β_2 , β_3 线性表示, 所以矩阵方程 $(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)X = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3)$

无解,从而

所以, b=5时, $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3 | \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 3 > 2 = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$, 即此时, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$

不能由 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 线性表示.

由于
$$\boldsymbol{\beta}_1$$
, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示,所以矩阵方程 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) Y = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$

有解,从而

$$r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3|\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)=r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3).$$
将 $b=5$ 代入得

所以, $a \neq \frac{2}{5}$ 时, $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 | \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) (=3)$,即此时, $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示.

于是, 所求的 $a \neq \frac{2}{5}$, b = 5.

附注 题解中有两点值得注意:

(I) 矩阵方程 AX = B 有解的充分必要条件是

$$r(A \mid B) = r(A),$$

而无解的充分必要条件是

$$r(A \mid B) > r(A)$$
.

- (II) 设有两个 n 维向量组(A): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_r$, (B): $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, …, $\boldsymbol{\beta}_s$, 则
- (A)可由(B)线性表示,且表示式是唯一的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_s)X=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_s)(其中,X是未知矩阵)$$

有唯一解:

(A)可由(B)线性表示,但表示式不唯一的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s)$$

有无穷多解;

(A)不可由(B)线性表示的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r)$$

无解.

(21) 由 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2 - y_3^2$ 知 \mathbf{A} 有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -1$, 且对应 $\lambda_3 = -1$ 的特征向量为 $\boldsymbol{\alpha}_3 = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$.

设 $\lambda_1 = \lambda_2 = 1$ 对应的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则由A是实对称矩阵知, $\alpha = \alpha_3$

正交.即

$$a_1 + a_3 = 0.$$

它的基础解系为 $\boldsymbol{\alpha}_1 = (0, 1, 0)^T$ 及 $\boldsymbol{\alpha}_2 = (-1, 0, 1)^T$,它们即为 \boldsymbol{A} 的对应 $\boldsymbol{\lambda}_1 = \boldsymbol{\lambda}_2 = 1$ 的特征向量 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 是正交向量组,现将它们单位化:

$$\boldsymbol{\xi}_{1} = \boldsymbol{\alpha}_{1} = (0,1,0)^{\mathrm{T}}, \boldsymbol{\xi}_{2} = \frac{\boldsymbol{\alpha}_{2}}{\|\boldsymbol{\alpha}_{2}\|} = \left(-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^{\mathrm{T}}, \boldsymbol{\xi}_{3} = \boldsymbol{\alpha}_{3} = \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^{\mathrm{T}},$$

它们是A的分别对应特征值为1, 1, -1的特征向量.

由此可知 A^* 的特征值为

$$\mu_1 = \frac{|A|}{\lambda_1} = -1, \mu_2 = \frac{|A|}{\lambda_2} = -1, \mu_3 = \frac{|A|}{\lambda_3} = 1,$$

它们对应的特征向量分别为 ξ_1 , ξ_2 , ξ_3 , 记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则由 A^* 是实对称矩阵得

$$\mathbf{Q}^{\mathsf{T}} \mathbf{A}^{*} \mathbf{Q} = \begin{pmatrix} -1 & & & \\ & -1 & \\ & & 1 \end{pmatrix},$$

$$\mathbf{A}^{*} = \mathbf{Q} \begin{pmatrix} -1 & & & \\ & -1 & \\ & & 1 \end{pmatrix} \mathbf{Q}^{\mathsf{T}}$$

$$= \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} -1 & & & \\ & -1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -1 & 0 & 0 \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

附注 题解中有两点值得注意:

- (I) 设A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 ξ ,则 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 ξ .
- (\mathbb{I}) 设 A 是可逆实对称矩阵,正交矩阵 Q 可使它正交相似对角化,则 Q 也可使 A^* 正 交相似对角化.
 - (22) (I) 关于 X 的边缘概率密度

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_{-1}^{1} \frac{1}{4} (1 - x^3 y - x y^3) \, \mathrm{d}y, & |x| < 1, \\ 0, & \text{ 其他} \end{cases}$$

从而

$$= \begin{cases} \frac{1}{2}, & |x| < 1, \\ 0, & \text{其他}. \end{cases}$$

记 Z 的分布函数为 F(z), 则 $F(z) = P(Z \le z)$.

当 $z \le 0$ 时, $P(Z \le z) = P(X^2 \le z) = 0$,

当
$$0 < z < 1$$
 时, $P(Z \le z) = P(X^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z}) = \int_{-\sqrt{z}}^{\overline{z}} \frac{1}{2} dx = \sqrt{z}$

当 z≥1 时,
$$P(Z \le z) = P(X^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z}) = \int_{-1}^{1} \frac{1}{2} dx = 1.$$

所以,
$$F(z) = \begin{cases} 0, & z \leq 0, \\ \sqrt{z}, & 0 < z < 1, 从而 f_z(z) = \begin{cases} \frac{1}{2\sqrt{z}}, & 0 < z < 1, \\ 0, & 其他. \end{cases}$$

$$(II) EW = E[(X - Y)^2] = E(X^2) + E(Y^2) - 2E(XY),$$

其中
$$E(X^2) = D(X^2) + (EX)^2 = \frac{1}{12} \times 2^2 + 0^2 = \frac{1}{3}$$
. 同样可得 $E(Y^2) = \frac{1}{3}$. 此外,

$$E(XY) = \iint_{xOy \text{Till}} xyf(x,y) d\sigma = \iint_{\substack{|x| < 1 \\ |y| < 1}} xy \cdot \frac{1}{4} (1 - x^3y - xy^3) d\sigma$$

$$= \frac{1}{4} \left(\iint_{\substack{|x| < 1 \\ |y| < 1}} xyd\sigma - 2 \iint_{\substack{|x| < 1 \\ |y| < 1}} x^4y^2 d\sigma \right)$$

$$= \frac{1}{4} \left(0 - 2 \cdot \frac{1}{5} x^5 \Big|_{-1}^{1} \cdot \frac{1}{3} y^3 \Big|_{-1}^{1} \right)$$

$$= -\frac{2}{15},$$

所以

$$EW = \frac{1}{3} + \frac{1}{3} - 2 \times \left(-\frac{2}{15} \right) = \frac{14}{15}.$$

附注 $E[(X-Y)^2]$ 也可按定义计算:

$$E[(X-Y)^{2}] = \iint_{xO_{y} \neq m} (x-y)^{2} f(x,y) d\sigma = \iint_{\substack{|x| < 1 \\ |y| < 1}} (x-y)^{2} \cdot \frac{1}{4} (1-x^{3}y-xy^{3}) d\sigma$$

$$= \frac{1}{4} \int_{-1}^{1} dx \int_{-1}^{1} (x-y)^{2} (1-x^{3}y-xy^{3}) dy$$

$$= \frac{1}{4} \int_{-1}^{1} dx \int_{-1}^{1} (x^{2}+y^{2}+2x^{4}y^{2}+2x^{2}y^{4}-2xy-2x^{3}y^{5}-x^{5}y-xy^{5}) dy$$

$$= \frac{1}{2} \int_{-1}^{1} dx \int_{0}^{1} (x^{2}+y^{2}+2x^{4}y^{2}+2x^{2}y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{1} \left(\frac{1}{3}+\frac{2}{3}x^{4}+\frac{7}{5}x^{2}\right) dx = \int_{0}^{1} \left(\frac{1}{3}+\frac{2}{3}x^{4}+\frac{7}{5}x^{2}\right) dx = \frac{14}{15}.$$
(23) (I) $\dot{\mathbf{H}} \neq N_{1} \sim B(n, 1-\theta), N_{2} \sim B(n, \theta-\theta^{2}), N_{3} \sim B(n, \theta^{2}), \mathcal{M} \downarrow \mathcal{M}$

$$EN_{1} = n(1-\theta), EN_{2} = n(\theta-\theta^{2}), EN_{3} = n\theta^{2}.$$

因此,
$$ET = E(a_1N_1 + a_2N_2 + a_3N_3) = a_1EN_1 + a_2EN_2 + a_3EN_3$$

= $a_1n(1-\theta) + a_2n(\theta-\theta^2) + a_3n\theta^2$
= $a_1n + (-a_1n + a_2n)\theta + (-a_2n + a_3n)\theta^2$.

欲使 $T \in \theta$ 的无偏估计量,必须 $ET = \theta$,即

$$a_1 n + (-a_1 n + a_2 n) \theta + (-a_2 n + a_3 n) \theta^2 = \theta.$$

比较 θ 同次幂的系数得

$$\begin{cases} a_1 n = 0, \\ -a_1 n + a_2 n = 1, & \text{if } a_1 = 0, a_2 = a_3 = \frac{1}{n}. \\ -a_2 n + a_3 n = 0, \end{cases}$$

(II) 由于 $N_2 \sim B(n, \ \theta - \theta^2) = B\bigg(300, \ \frac{1}{4}\bigg)$,所以 $EN_2 = 75$, $DN_2 = \frac{225}{4}$,因此由中心极

限定理(具体的是棣莫弗-拉普拉斯中心极限定理)知

$$P(N_2 > 80) = 1 - P(N_2 \le 80)$$

$$\approx 1 - \Phi\left(\frac{80 - EN_2}{\sqrt{DN_2}}\right) = 1 - \Phi\left(\frac{80 - 75}{\sqrt{\frac{225}{4}}}\right)$$

附注 本题的关键,是从总体 X 的概率分布,推出 N_i (i=1,2,3)的各自分布,即 $N_1 \sim B(n,1-\theta)$, $N_2 \sim B(n,\theta-\theta^2)$, $N_3 \sim B(n,\theta^2)$.

 $= 1 - \Phi(0.67) = 1 - 0.7486 = 0.2514.$

顺便计算 $T \in \theta$ 的无偏估计量时的 DT.

由于
$$T = \frac{1}{n}(N_2 + N_3) = 1 - \frac{1}{n}N_1$$
,所以
$$DT = D\left(1 - \frac{1}{n}N_1\right) = \frac{1}{n^2}DN_1 = \frac{1}{n^2} \cdot n(1 - \theta)\theta = \frac{1}{n}\theta(1 - \theta).$$

模拟试题(七)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
台采	С	A	D	С	В	С	С	D

(1) 显然 x = 0, 1 都是方程的实根. 记 $f(x) = 2^x - x^2 - 1$, 则 f(x) 连续,且

$$f(2) \cdot \lim_{x \to +\infty} f(x) < 0$$

 $f(2) \cdot \lim_{x \to +\infty} f(x) < 0,$ 所以由零点定理推广形式知所给方程 f(x) = 0 在 $(2, +\infty)$ 上有实根,记为 x_0 .

如果方程 f(x) = 0 还有不同实根 x_1 ,不妨 $x_1 > x_0$,则由 f(x) 可导,且 f(0) = f(1) = f(1) $f(x_0) = f(x_1)$ 及罗尔定理(高阶导数形式)知,存在 $\xi \in (0, x_1)$,使得 $f'''(\xi) = 0$. (1)

另一方面,计算
$$f(x)$$
 的 3 阶导数得 $f'''(\xi) = 2^{\xi} (\ln 2)^3 \neq 0.$ (2)

式(1)与式(2)矛盾知,方程 $2^x - x^2 - 1 = 0$ 除实根 $0, 1, x_0$ 外别无其他实根,因此选 (C).

附注 (I)零点定理的一种推广形式

设函数 f(x) 在 $[a, +\infty)$ 上连续,且 $f(a) \cdot \lim_{n \to \infty} f(x) < 0$,则存在 $\xi \in (a, +\infty)$,使得 $f(\xi) = 0.$

(Ⅱ) 罗尔定理的高阶导数形式

设函数 f(x) 在(a, b)内 2 阶可导,且有 $x_1, x_2, x_3 \in (a, b)$ (其中, $x_1 < x_2 < x_3$),使得 $f(x_1) = f(x_2) = f(x_3)$,则存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

设函数 f(x) 在(a, b)内 3 阶可导,且有 $x_1, x_2, x_3, x_4 \in (a, b)$ (其中, $x_1 < x_2 < x_3 < x_4 \in (a, b)$) x_4),使得 $f(x_1)=f(x_2)=f(x_3)=f(x_4)$,则存在 $\xi\in(a,b)$,使得 $f'''(\xi)=0$.

(2) 由于
$$\max\{e^{-t}, e^t\} = \begin{cases} e^{-t}, & t \leq 0, \text{ 所以} \\ e^t, & t > 0, \end{cases}$$

$$F(x) = \int_0^x \max\{e^{-t}, e^t\} dt = \begin{cases} \int_0^x e^{-t} dt, & x \leq 0, \\ \int_0^x e^t dt, & x > 0 \end{cases} = \begin{cases} 1 - e^{-x}, & x \leq 0, \\ e^x - 1, & x > 0. \end{cases}$$

因此选(A).

附注 同样可以计算 $\int_{-\infty}^{x} \min\{e^{-t}, e^{t}\} dt$, 具体如下:

由于
$$\min\{e^{-t}, e^t\} = \begin{cases} e^t, & t \leq 0, \\ e^{-t}, & t > 0, \end{cases}$$
 所以

$$\int_{-\infty}^{x} \min\left\{ e^{-t}, e^{t} \right\} dt = \begin{cases} \int_{-\infty}^{x} e^{t} dt, & x \leq 0, \\ \int_{-\infty}^{0} e^{t} dt + \int_{0}^{x} e^{-t} dt, & x > 0 \end{cases}$$

$$= \begin{cases} e^x, & x \leq 0, \\ 2 - e^{-x}, & x > 0. \end{cases}$$

(3) 由 $\{a_n\}$ 是单调减少收敛于零的正项数列知 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛. 所以对它两项两项地加括号所得级数

$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$$

收敛. 因此选(D).

附注 本题获解的关键是,由莱布尼茨定理确定 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛.此外,应记住以下的收敛级数性质:

设 $\sum_{n=1}^{\infty} c_n$ 收敛,则对它任意加括号所得级数仍收敛,但反之未必正确,即级数 $\sum_{n=1}^{\infty} c_n$ 任意加括号后所得的级数收敛时,原级数未必收敛.

(4)
$$\exists f \iint_{\Sigma} (x+2) \, dy dz + z dx dy$$

$$= \iint_{D_{yz}} (\sqrt{4-y^2-z^2}+2) \, dy dz - \iint_{D_{yz}} (-\sqrt{4-y^2-z^2}+2) \, dy dz + \iint_{D_{xx}} \sqrt{4-x^2-y^2} \, dx dy$$

$$= 2 \iint_{D_{xx}} \sqrt{4-y^2-z^2} \, dy dz + \iint_{D_{xx}} \sqrt{4-x^2-y^2} \, dx dy.$$

所以选(C).

附注 题中计算 $\iint_{\Sigma} (x+2) \, dy dz$ 时,需用平面 x=0 将 Σ 划分成两部分: $\Sigma_1: x=\sqrt{4-y^2-z^2}$ (前侧) 与 $\Sigma_2: x=-\sqrt{4-y^2-z^2}$ (后侧),它们在 yOz 平面的投影都为 D_{vo} .

(5) 由 α , β , γ 线性无关知 α , β 线性无关, 从而由 α , β , δ 线性相关知 δ 可由 α , β 线表示, 即 δ 可由 α , β , γ 线性表示. 因此选(B).

附注 关于向量组的线性相关性的以下结论应记住:

(I) 设向量组(A): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$.

如果(A)线性无关,则它的任一部分组也线性无关;

如果(A)的某一部分组线性相关,则(A)线性相关,

(Ⅱ) 设向量组(A): α_1 , α_2 , …, α_m , β .

如果(A)线性相关,则至少存在一个向量可用其余向量线性表示:

如果(A)线性相关,但 α_1 , α_2 ,…, α_m 线性无关,则 β 可由 α_1 , α_2 ,…, α_n 线性表示、且表示式是唯一的。

(6) ②④都是 A 可相似对角化的充分必要条件, 因此选(C).

附注 应记住以下的结论:

设A 是n 阶矩阵,则"A 有n 个线性无关的特征向量",或"A 的每个 n_i 重特征值 λ_i 的

特征矩阵 $\lambda_i E_n - A$ 都满足 $r(\lambda_i E - A) = n - n_i$ ", 都是 A 可相似对角化的充分必要条件. 而 A 有 n 个不同的特征值, 或 A 是实对称矩阵,则是 A 可相似对角化的充分而非必要条件.

(7) 对于选项(C),
$$(X, Y)$$
的概率密度 $f(x, y) = \begin{cases} \frac{1}{\pi R^2}, & x^2 + y^2 \leq R^2, \\ 0, & 其他, \end{cases}$ 它的关于 $X \ni Y$

的边缘概率密度分别为

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_{-\sqrt{R^{2} - x^{2}}}^{\sqrt{R^{2} - x^{2}}} \frac{1}{\pi R^{2}} \mathrm{d}y, & -R \leq x \leq R, \\ 0, & \text{ #th} \end{cases}$$

$$= \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - x^{2}}, & -R \leq x \leq R, \\ 0, & \text{ #th}, \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - y^{2}}, & -R \leq y \leq R, \\ 0, & \text{ #th}, \end{cases}$$

$$0, & \text{ #th}, \end{cases}$$

显然 $f_X(x)f_Y(y) = f(x, y)$ 不是几乎处处成立的,所以 X 与 Y 不相互独立.因此选(C).

附注 应记住选项(A), (B), (D)的结论.

与 $\frac{1}{\sigma^2}\sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$ 相互独立,所以由 χ^2 分布的可加性得

$$\begin{split} \frac{1}{\sigma^2} \sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2 + \frac{1}{\sigma^2} \sum_{j=1}^{n_2} \left(Y_j - \overline{Y} \right)^2 &\sim \chi^2 (n_1 + n - 2). \\ \exists E D(Z) &= \frac{\sigma^4}{(n_1 + n_2 - 2)^2} D \Big[\frac{1}{\sigma^2} \sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2 + \frac{1}{\sigma^2} \sum_{j=1}^{n_2} \left(Y_j - \overline{Y} \right)^2 \Big] \\ &= \frac{\sigma^4}{(n_1 + n_2 - 2)^2} \cdot 2 (n_1 + n_2 - 2) &= \frac{2\sigma^4}{n_1 + n_2 - 2}. \end{split}$$

因此选(D).

附注 要记住以下的关于 χ^2 分布的结论:

- (I) 设 $X \sim \chi^2(n)$, 则EX = n, DX = 2n;
- (II) 设 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$ 且它们相互独立,则 $X + Y \sim \chi^2(n_1 + n_2)$.

二、填空题

(9) 由
$$1 = \lim_{x \to 0} \frac{x - \sin x + f(x)}{x^4} = \lim_{x \to 0} \frac{\frac{x - \sin x}{x^3} + \frac{f(x)}{x^3}}{x}$$
知 $\lim_{x \to 0} \left[\frac{x - \sin x}{x^3} + \frac{f(x)}{x^3} \right] = 0$,从而
$$\lim_{x \to 0} \frac{f(x)}{x^3} = -\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

$$\frac{A \times \text{Kid}}{x^3} - \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = -\frac{1}{6}.$$

附注 类似地可考虑:

设
$$\lim_{x\to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3$$
,求 $\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}}$. 具体计算如下:

曲
$$\lim_{x\to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3$$
 得 $\lim_{x\to 0} \frac{\ln\left[1 + x + \frac{f(x)}{x}\right]}{x} = 3$. 由此可得 $\lim_{x\to 0} \left[x + \frac{f(x)}{x}\right] = 0$,即

$$\lim_{x \to 0} \frac{f(x)}{x} = 0, \quad \text{ULZ } 3 = \lim_{x \to 0} \frac{x + \frac{f(x)}{x}}{x} = 1 + \lim_{x \to 0} \frac{f(x)}{x^2}, \quad \text{Pl}\lim_{x \to 0} \frac{f(x)}{x^2} = 2.$$

所以,
$$\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e_{x\to 0}^{\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]} = e_{x\to 0}^{\lim_{x\to 0} f(x)} = e^2.$$

(10) 由
$$\frac{\partial z}{\partial x} = f'_u(x+y,yg(x)) + f'_v(x+y,yg(x))yg'(x)$$
得

$$\frac{\partial z(0,y)}{\partial x} = f'_{u}(y,y) + f'_{v}(y,y)y \quad (\text{All } g(0) = g'(0) = 1)$$

$$=f'_{x}(y,y)+f'_{y}(y,y)y=1+y$$
 (利用 $f'_{x}(y,y)=f'_{y}(y,y)=1$),

所以,
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0\\y=1}} = \frac{\mathrm{d}}{\mathrm{d}y}(1+y)\Big|_{y=1} = 1.$$

附注 由于 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=0} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \Big|_{x=0} \right) \Big|_{y=1}$,所以可先算出 $\frac{\partial z(0,y)}{\partial x}$,记为 $\varphi(y)$,然后计算

$$\frac{\mathrm{d}\varphi(y)}{\mathrm{d}y} \Big|_{y=1} \mathbb{D} \left\{ \frac{\partial^2 z}{\partial x \partial y} \Big|_{x=0 \atop y=1}, \text{这样计算比先算出} \frac{\partial^2 z}{\partial x \partial y}, \text{然后将 } x=0, y=1 \text{ 代入计算} \frac{\partial^2 z}{\partial x \partial y} \Big|_{x=0 \atop y=1} \text{快捷} \right.$$

(11) 由于曲面
$$z = x^2 + y^2$$
 与 $x^2 + y^2 + z^2 = 2$ ($z \ge 0$) 的交线为 $\begin{cases} z = x^2 + y^2, \\ x^2 + y^2 + z^2 = 2, \end{cases}$ 即

 $\begin{cases} x^2 + y^2 = 1, \\ z = 1. \end{cases}$ 所以 Σ 在 xOy 平面的投影为 $D = \{(x, y) \mid x^2 + y^2 \leq 1\}$,从而 Σ 的面积

$$S = \iint_{\Sigma} dS = \iint_{D} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} \Big|_{z=x^{2}+y^{2}} d\sigma$$

$$= \iint_{D} \sqrt{1 + 4(x^{2} + y^{2})} d\sigma$$

$$= \frac{\frac{1}{2}}{\frac{1}{2}} \int_{0}^{2\pi} d\theta \int_{0}^{1} \sqrt{1 + 4r^{2}} r dr$$

$$= \frac{\pi}{6} (1 + 4r^{2})^{\frac{3}{2}} \Big|_{0}^{1} = \frac{\pi}{6} (5\sqrt{5} - 1).$$

附注 顺便计算上半球面 $x^2+y^2+z^2=2(z\ge 0)$ 位于曲面 $z=x^2+y^2$ 之内部分 Σ_1 的面积 S_1 :

$$S_1 = \iint_{\Sigma_1} dS = \iint_D \sqrt{1 + (z'_x)^2 + (z'_y)^2} \Big|_{z = \sqrt{2 - x^2 - y^2}} d\sigma$$

$$= \sqrt{2} \iint_{D} \frac{1}{\sqrt{2 - x^2 - y^2}} d\sigma$$

$$= \frac{\cancel{6} \times \cancel{6} + \cancel{6}}{\cancel{6} \times \cancel{6}} \sqrt{2} \int_{0}^{2\pi} d\theta \int_{0}^{1} \frac{r}{\sqrt{2 - r^2}} dr = 2(2 - \sqrt{2}) \pi.$$

(12) 将 f(x) 偶延拓为周期是 2 的周期函数 $f_1(x)$, 其中在[-1,1]上

$$f_1(x) = \begin{cases} f(x), & 0 \le x \le 1 \\ f(-x), & -1 \le x < 0, \end{cases}$$

所以,

$$s_1(-1) = \frac{1}{2}[f_1(1) + f_1(-1)] = f(1) = -1.$$

将f(x)奇延拓为周期为 2 的周期函数 $f_2(x)$,其中在(-1,1]上

$$f_2(x) = \begin{cases} f(x), & 0 \le x \le 1, \\ -f(-x), & -1 < x < 0, \end{cases}$$

所以

$$s_2\left(\frac{5}{2}\right) = s_2\left(\frac{1}{2}\right)$$
 (由于 S_2 是以 2 为周期的周期函数)
$$= \frac{1}{2}\left[f_2\left(\left(\frac{1}{2}\right)^-\right) + f_2\left(\left(\frac{1}{2}\right)^+\right)\right]$$

$$= \frac{1}{2}\left[f\left(\left(\frac{1}{2}\right)^-\right) + f\left(\left(\frac{1}{2}\right)^+\right)\right] = \frac{1}{2}\left(\frac{1}{2} + 0\right) = \frac{1}{4}.$$

附注 应记住:要计算 f(x) ($0 \le x \le l$)的余弦级数(正弦级数)时,应将 f(x)作偶延拓(奇延拓).此外应掌握用狄利克雷收敛定理计算傅里叶级数的和函数的方法.

其中, A 是 2 阶矩阵, 所以当 r(A) = 1 时, $r(A^*) = 1$; B 是 4 阶矩阵, 所以当 r(B) = 2 时, $r(B^*) = 0$.

从而
$$r\begin{pmatrix} \mathbf{O} & \mathbf{A}^* \\ \mathbf{B}^* & \mathbf{O} \end{pmatrix} = 1 + 0 = 1.$$

附注 应记住以下公式:

设 $A \in n$ 阶矩阵, $A^* \in A$ 的伴随矩阵, 则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n - 1, \\ 0, & r(A) < n - 1. \end{cases}$$

(14)
$$P(\max\{X,Y\} \le 1) = P(X \le 1, Y \le 1)$$

= $P(X \le 1) P(Y \le 1) = \left(\int_{-\infty}^{1} f(t) dt\right)^{2}$
= $\left(\int_{0}^{1} e^{-t} dt\right)^{2} = (1 - e^{-1})^{2}$.

附注 应记住以下公式:

设随机变量 X, Y 相互独立,它们的分布函数分别为 $F_X(x)$ 与 $F_Y(y)$, 则 $Z_1=\max\{X,Y\}$ 的分布函数 $F_{Z_1}(z)=F_X(z)F_Y(z)$;

 $Z_2 = \min\{X, Y\}$ 的分布函数 $F_{Z_2}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)].$

三、解答题

(15) y(0) = 1, 此外,

由
$$y(x) = 1 + x + 2x \int_0^x y(t)y'(t) dt - 2 \int_0^x ty(t)y'(t) dt$$
 得

$$y' = 1 + 2 \int_0^x y(t)y'(t) dt = 1 + y^2 - y^2(0) = y^2,$$

所以 $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{y}\right) = -1$,从而 $\frac{1}{y} = -x + C$. 将 y(0) = 1 代入得 C = 1. 因此 $y = \frac{1}{1-x}$. 从而

$$y^{(n)} = \frac{n!}{(1-x)^{n+1}}.$$

$$x \int_{0}^{x} y(t)y'(t) dt - \int_{0}^{x} ty(t)y'(t) dt.$$
(16) 由于 $f'_{x} = 2(x+1)$, $f'_{y} = 2(y+1)$, $f'_{z} = -2z$, 所以由方程组
$$\begin{cases} f'_{x} = 0, \\ f'_{y} = 0, \\ f'_{z} = 0, \end{cases} \begin{cases} 2(x+1) = 0, \\ 2(y+1) = 0, \\ -2z = 0 \end{cases}$$

在 Ω 内部无解知, f(x, y, z)在 Ω 内部无可能极值点.

下面计算 f(x, y, z) 在 Ω 的表面上的最值.

记
$$F(x, y, z) = 2x + 2y + x^2 + y^2 - z^2 + \lambda(x^2 + y^2 + z^2 - 1)$$
,则
$$F'_x = 2(1 + x + \lambda x), \quad F'_y = 2(1 + y + \lambda y), \quad F'_z = 2(-1 + \lambda)z.$$

于是方程组

$$\begin{cases} F'_{x} = 0, \\ F'_{y} = 0, \\ F'_{z} = 0, \\ x^{2} + y^{2} + z^{2} = 1, \end{cases} \begin{cases} 1 + (1 + \lambda)x = 0, \\ 1 + (1 + \lambda)y = 0, \\ (-1 + \lambda)z = 0, \\ x^{2} + y^{2} + z^{2} = 1. \end{cases}$$
(1)

由式(1)与式(2)知 x=y,由式(3)知 z=0或 $\lambda=1$.

将 x = y, z = 0 代入式(4) 得 $x = y = \pm \frac{1}{\sqrt{2}}$. 这时可能极值点为

$$M_1\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$
 $\neq 1 M_2\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$.

将 x=y, $\lambda=1$ 代人式(1)、式(2)得 $x=y=-\frac{1}{2}$,将它们代人式(4)得 $z=\pm\frac{1}{\sqrt{2}}$.这时

可能极值点为

$$M_3\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{\sqrt{2}}\right), \quad M_4\left(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{\sqrt{2}}\right).$$

由于
$$f \mid_{M_1} = 2\sqrt{2} + 1$$
, $f \mid_{M_2} = -2\sqrt{2} + 1$, $f \mid_{M_3} = f \mid_{M_4} = -2$,

所以 f(x, y, z) 在 Ω 上的最大值为 $2\sqrt{2}+1$,最小值为 -2.

附注 计算三元函数 f(x, y, z) 在有界闭区域 Ω 上的最值,通常可按以下步骤进行:

- (I) 计算 f(x, y, z) 在 Ω 内部的所有可能极值点,记为 M_1, M_2, \dots, M_n .
- (\mathbb{I}) 计算 f(x, y, z) 在 Ω 的边界上的最值(通常使用拉格朗日乘数法),记最大值为 M,最小值为 m.
- (III) 比较 $f(M_1)$, $f(M_2)$, …, $f(M_n)$, M, m 的大小,则最大者与最小者,分别为 f(x, y, z)在 Ω 上的最大值与最小值.
 - (17) $i \exists f(x) = 2\sin x + \tan x 3x$, \emptyset

$$f'(x) = 2\cos x + \sec^2 x - 3 = \tan^2 x - 2(1 - \cos x)$$

> $\tan^2 x - 2 \cdot \frac{x^2}{2} > 0 \left(x \in \left(0, \frac{\pi}{2} \right) \right),$

即 f(x)在 $\left(0, \frac{\pi}{2}\right)$ 内单调增加. 所以, 对 $x \in \left(0, \frac{\pi}{2}\right)$, 有

$$f(x) > \lim_{x \to 0^{+}} f(x) = 0$$
, \mathbb{H} $2\sin x + \tan x > 3x$.

附注 要证明函数不等式 $f(x) > g(x)(x \in (a, b))$ (其中, f(x)与 g(x)在 (a, b)内可导), 总是按以下步骤进行:

- (I) 作辅助函数 $\varphi(x) = f(x) g(x)$:
- (**I**) 计算 φ'(x).

如果 $\varphi'(x) > 0(x \in (a, b))$, 且 $\lim_{x \to a} \varphi(x) = A \ge 0$, 则有

$$\varphi(x) > 0, \mathbb{H} f(x) > g(x) (x \in (a,b)).$$

如果 $\varphi'(x) < 0(x \in (a, b))$, 且 $\lim \varphi(x) = B \ge 0$, 则有

$$\varphi(x) > 0$$
, $\mathbb{H} f(x) > g(x) (x \in (a,b))$.

如果
$$\varphi'(x)$$

$$\begin{cases} <0, \ a < x < x_0, \\ =0, \ x = x_0, & \text{且 } \varphi(x_0) = C > 0, \text{ 则有} \\ >0, \ x_0 < x < b, \\ \varphi(x) > 0, \text{即 } f(x) > g(x)(x \in (a,b)). \end{cases}$$

(18)
$$\alpha = \lim_{x \to 0^{+}} \frac{x^{2} \tan \frac{x}{2}}{1 - (1 + x)^{x \sin^{2} \sqrt{x}}} = -\frac{1}{2} \lim_{x \to 0^{+}} \frac{x^{3}}{e^{x \sin^{2} \sqrt{x} \ln(1 + x)}} - 1$$

$$= -\frac{1}{2} \lim_{x \to 0^{+}} \frac{x^{3}}{x \sin^{2} \sqrt{x} \ln(1 + x)} = -\frac{1}{2} \lim_{x \to 0^{+}} \frac{x^{3}}{x \cdot x \cdot x} = -\frac{1}{2}.$$

由于当 | x | < 1 时有

$$\sum_{n=1}^{\infty} n^2 x^{n-1} = \sum_{n=1}^{\infty} (x^{n+1})'' - \sum_{n=1}^{\infty} (x^n)'$$
$$= \left(\sum_{n=1}^{\infty} x^{n+1}\right)'' - \left(\sum_{n=1}^{\infty} x^n\right)'$$

$$= \left(\frac{x^2}{1-x}\right)'' - \left(\frac{x}{1-x}\right)'$$

$$= \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2} = \frac{1+x}{(1-x)^3},$$
FIU,
$$\sum_{n=1}^{\infty} n^2 \sin^{n-1} \alpha = \left(\sum_{n=1}^{\infty} n^2 x^{n-1}\right) \Big|_{x=\sin\left(-\frac{1}{2}\right)} = \frac{1+x}{(1-x)^3} \Big|_{x=-\sin\frac{1}{2}}$$

$$= \frac{1-\sin\frac{1}{2}}{\left(1+\sin\frac{1}{2}\right)^3}.$$

附注 利用幂级数计算级数 $\sum_{n=0}^{\infty} a_n x_0^n$ 和的步骤如下:

- (I) 构造幂级数 $\sum_{n=0}^{\infty} a_n x^n$,
- (\mathbb{I}) 计算上述幂级数的收敛域 I 与和函数 s(x),
- (III) 如果 $x_0 \in I$,则 $\sum_{n=0}^{\infty} a_n x_0^n = s(x_0)$,

本题就是如此计算的.

(19) C 如图答 7-19 所示的 \widehat{AB} , 其中, $A = (-a\pi, 0)$, $B = (a\pi, 0)$.

作正向闭曲线 $\Gamma = \overrightarrow{BA} + \overrightarrow{AN} + \overrightarrow{NM} + \overrightarrow{MB}$, 其中, \overrightarrow{AN} , \overrightarrow{MB} 是位于 x 轴上的线段, \overrightarrow{NM} 是上半圆 $x^2 + y^2 = \varepsilon^2 (y \ge 0)$, ε 是充分小的正数,使得 \overrightarrow{NM} 位于 \overrightarrow{BA} 下方.记上述闭曲线围成的区域为 D,则由格林公式得

$$\begin{split} I &= \int_{C} \frac{1}{x^{2} + y^{2}} (x \mathrm{d}y - y \mathrm{d}x) \\ &= -\int_{\widehat{B}A} \frac{-y}{x^{2} + y^{2}} \mathrm{d}x + \frac{x}{x^{2} + y^{2}} \mathrm{d}y \\ &= -\left[\oint_{\Gamma} \frac{-y}{x^{2} + y^{2}} \mathrm{d}x + \frac{x}{x^{2} + y^{2}} \mathrm{d}y - \int_{\widehat{AN}} \frac{-y}{x^{2} + y^{2}} \mathrm{d}x + \frac{x}{x^{2} + y^{2}} \mathrm{d}y - \int_{\widehat{MB}} \frac{-y}{x^{2} + y^{2}} \mathrm{d}x + \frac{x}{x^{2} + y^{2}} \mathrm{d}y \right] \\ &= -\iint_{D} \left[\frac{\partial \left(\frac{x}{x^{2} + y^{2}} \right)}{\partial x} - \frac{\partial \left(-\frac{y}{x^{2} + y^{2}} \right)}{\partial y} \right] \mathrm{d}\sigma + \int_{\pi}^{0} \frac{1}{\varepsilon^{2}} \left(\varepsilon^{2} \sin^{2}t + \varepsilon^{2} \cos^{2}t \right) \mathrm{d}t \\ &= \int_{D} \left[\frac{\partial \left(\frac{x}{x^{2} + y^{2}} \right)}{\partial x} - \frac{\partial \left(-\frac{y}{x^{2} + y^{2}} \right)}{\partial y} \right] \mathrm{d}\sigma + \int_{\pi}^{0} \frac{1}{\varepsilon^{2}} \left(\varepsilon^{2} \sin^{2}t + \varepsilon^{2} \cos^{2}t \right) \mathrm{d}t \\ &= \left(\frac{\partial \left(\frac{x}{x^{2} + y^{2}} \right)}{\partial x} - \frac{\partial \left(-\frac{y}{x^{2} + y^{2}} \right)}{\partial y} \right] \mathrm{d}\sigma + \int_{\pi}^{0} \frac{1}{\varepsilon^{2}} \left(\varepsilon^{2} \sin^{2}t + \varepsilon^{2} \cos^{2}t \right) \mathrm{d}t \\ &= \left(\frac{\partial \left(\frac{x}{x^{2} + y^{2}} \right)}{\partial x} - \frac{\partial \left(-\frac{y}{x^{2} + y^{2}} \right)}{\partial y} \right) \mathrm{d}\sigma + \int_{\pi}^{0} \frac{1}{\varepsilon^{2}} \left(\varepsilon^{2} \sin^{2}t + \varepsilon^{2} \cos^{2}t \right) \mathrm{d}t \\ &= \left(\frac{\partial \left(\frac{x}{x^{2} + y^{2}} \right)}{\partial x} - \frac{\partial \left(-\frac{y}{x^{2} + y^{2}} \right)}{\partial y} \right) \mathrm{d}\sigma + \int_{\pi}^{0} \frac{1}{\varepsilon^{2}} \left(\varepsilon^{2} \sin^{2}t + \varepsilon^{2} \cos^{2}t \right) \mathrm{d}t \right) \mathrm{d}\tau \right) \mathrm{d}\tau$$

 $= - \pi$.

附注 由于 C 不是闭曲线,不能直接应用格林公式计算所给的曲线积分,所以要添上一段曲线 C_1 ,使之成为正向闭曲线 Γ ,这里对 C_1 有以下要求:

- (I) 要求 $\frac{-y}{x^2+y^2}$, $\frac{x}{x^2+y^2}$ 在 Γ 围成的闭区域上具有连续的偏导数;
- (\mathbb{I}) 要求在 C_1 上的曲线积分比较容易计算.

题中所取的 $C_1(\mathbb{P}_{AN} + NM + \overline{MB})$ 就是按此要求确定的.

(20)(I)方程组(A)的增广矩阵

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & a+4 & -5 & 6 \\ -1 & -2 & a & -3 \end{pmatrix} \xrightarrow{\text{institute}} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & a & -7 & 0 \\ 0 & 0 & a+1 & 0 \end{pmatrix},$$

所以,线性方程(A)有无穷多解时,有a+1=0,即a=-1.

(Ⅱ) 当 a = -1 时,方程组(A)与(B)组成的方程组为

(C)
$$\begin{cases} x_1 + 2x_2 + x_3 = 3, \\ 2x_1 + 3x_2 - 5x_3 = 6, \\ -x_1 - 2x_2 - x_3 = -3, \\ x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1. \end{cases}$$

对(C)的增广矩阵施行初等行变换:

$$\begin{pmatrix}
1 & 2 & 1 & 3 \\
2 & 3 & -5 & 6 \\
-1 & -2 & -1 & -3 \\
1 & 1 & 1 & 0 \\
2 & \lambda & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
2 & 3 & -5 & 6 \\
-1 & -2 & -1 & -3 \\
1 & 2 & 1 & 3 \\
2 & \lambda & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & -7 & 6 \\
0 & -1 & 0 & -3 \\
0 & 1 & 0 & 3 \\
0 & \lambda - 2 & -2 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & -7 & 3 \\
0 & 0 & -2 & 7 - 3\lambda
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & -2 & 7 - 3\lambda
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & 7 - 3\lambda
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -\frac{3}{7} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{43}{7} - 3\lambda \end{pmatrix},$$

由此可知,有公共解时 $\frac{43}{7}$ – 3λ = 0,即 λ = $\frac{43}{21}$. 公共解为 x_1 = $-\frac{18}{7}$, x_2 = 3, x_3 = $-\frac{3}{7}$.

附注 设方程组 $A_1x = b_1$, $A_2x = b_2$ (其中 A_1 , A_2 分别是 $m_1 \times n$ 与 $m_2 \times n$ 矩阵, b_1 , b_2 分别是 m_1 维与 m_2 维列向量,则这两个方程组有公共解的充分必要条件为方程组、

$$\begin{cases} A_1 \mathbf{x} = \mathbf{b}_1, \\ A_2 \mathbf{x} = \mathbf{b}_2 \end{cases}$$

有解.

(21) (I)
$$\exists A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

$$A \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

所以,矩阵 A 有特征值 $\lambda = -1$, 1. 由 r(A) = 2 知 A 还有特征值 $\lambda = 0$. 显然对应 $\lambda = -1$, 1 分别有特征向量 $\boldsymbol{\alpha}_1 = (1, 0, -1)^T$ 和 $\boldsymbol{\alpha}_2 = (1, 0, 1)^T$. 设对应 $\lambda = 0$ 的特征向量为 $\boldsymbol{\alpha}_3 = (x_1, x_2, x_3)^T$, 则由 A 是实对称矩阵知 $\boldsymbol{\alpha}_3$ 与 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ 都正交,故有

$$\begin{cases} (\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_1) = 0, \\ (\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_2) = 0, \end{cases} \begin{cases} x_1 - x_3 = 0, \\ x_1 + x_3 = 0. \end{cases}$$

所以可取它的基础解系为 α_3 ,即 $\alpha_3 = (0, 1, 0)^T$. 显然 α_1 , α_2 , α_3 是正交向量组,现将它们单位化得

$$A = \mathbf{Q} \begin{bmatrix} -1 & & & \\ & 1 & \\ & & 0 \end{bmatrix} \mathbf{Q}^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} -1 & & \\ & 1 & \\ & & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix}$$
$$\left(-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$= \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$

从而按伴随矩阵的定义得
$$A^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

(II) 显然 |
$$Q = -1$$
, 所以 $Q^* = |Q| |Q^{-1}| = -Q^T$, 因此
$$Q^T A^* Q = -Q^* A^* (-Q^T)^* = (Q^T A Q)^*.$$
于是 $Q^T (A^* + A) Q = Q^T A^* Q + Q^T A Q = (Q^T A Q)^* + Q^T A Q$

$$= \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & 0 \end{pmatrix}^* + \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix} = \begin{pmatrix} -1 & & \\ & & 1 \\ & & & -1 \end{pmatrix}.$$

$$= \begin{pmatrix} 0 & & \\ & 0 & \\ & & -1 \end{pmatrix} + \begin{pmatrix} -1 & & \\ & & 1 \\ & & & 0 \end{pmatrix} = \begin{pmatrix} -1 & & \\ & & 1 \\ & & & -1 \end{pmatrix}.$$

$$(1)$$

由此可知,取 C = Q,则在正交变换 x = Cy = Qy 下,二次型 $f(x_1, x_2, x_3)$ 化为标准形 $y_1^2 + y_2^2 - y_3^2$.

附注 我们知道,使 $x^{T}Ax$ 化为标准形的正交变换也使 $x^{T}A^{*}x$ 化为标准形,即 $x^{T}A^{*}x$ = $\mu_{1}y_{1}^{2} + \mu_{2}y_{2}^{2} + \mu_{3}y_{3}^{2}$,其中 μ_{1} , μ_{2} , μ_{3} 是 A^{*} 的特征值. 当 $|A| \neq 0$ 时, μ_{1} , μ_{2} , μ_{3} 可由 A 的特征值 λ_{1} , λ_{2} , λ_{3} 直接得到,即 $\mu_{1} = \frac{|A|}{\lambda_{1}}$, $\mu_{2} = \frac{|A|}{\lambda_{2}}$, $\mu_{3} = \frac{|A|}{\lambda_{3}}$. 但是现在 |A| = 00,故为了算出 μ_{1} , μ_{2} , μ_{3} , 或为了将 $x^{T}(A^{*} + A)x$ 化为标准形,采用了题解中的方法.

(22) (I)由于(U, V)关于 U的边缘概率密度为

$$f_{U}(u) = \int_{-\infty}^{+\infty} f(u, v) \, \mathrm{d}v = \begin{cases} \int_{0}^{2u} \mathrm{d}v, 0 < u < 1, \\ 0, \quad \text{其他,} \end{cases} = \begin{cases} 2u, 0 < u < 1, \\ 0, \quad \text{其他,} \end{cases}$$
所以, $P\left(V \leqslant \frac{1}{2} \mid U \leqslant \frac{1}{2}\right) = \frac{P\left(U \leqslant \frac{1}{2}, \quad V \leqslant \frac{1}{2}\right)}{P\left(U \leqslant \frac{1}{2}\right)},$
其中 $P\left(U \leqslant \frac{1}{2} \mid V \leqslant \frac{1}{2}\right) = \iint f(u, v) \, \mathrm{d}\sigma$

其中,
$$P\left(U \leq \frac{1}{2}, V \leq \frac{1}{2}\right) = \iint\limits_{\substack{u \leq \frac{1}{2} \\ v \leq \frac{1}{2}}} f(u, v) d\sigma$$

= $\iint_D d\sigma$ (其中,D 如图答 7-22 的阴影部分所示的梯形)

$$= \frac{1}{2} \times \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} \right) = \frac{3}{16},$$

$$P\bigg(U \leqslant \frac{1}{2}\bigg) = \int_{-\infty}^{\frac{1}{2}} f_u(u) \, \mathrm{d} u \, = \, \int_0^{\frac{1}{2}} \! 2u \mathrm{d} u \, = \, \frac{1}{4}.$$

因此,由式(1)得 $P(V \le \frac{1}{2} \mid U \le \frac{1}{2}) = \frac{3/16}{1/4} = \frac{3}{4}.$

于是
$$P(X = -1, Y = 1) = P(X = 1, Y = -1) = P(X = 0, Y = 1)$$

图答 7-22

=0.25.

记(X, Y)的概率分布为

Y X	-1	1
– 1	P_1	0. 25
0	P_2	0. 25
1	0. 25	P_3

$$\text{III} \begin{cases} P_1 + P_2 + P_3 + 0.75 = 1 \,, \\ - \left(P_1 + 0.25 \right) + \left(0.25 + P_3 \right) = 0.2 \,, \\ - \left(P_1 + P_2 + 0.25 \right) + \left(0.5 + P_3 \right) = 0.4 \,, \end{cases} \\ \begin{cases} P_1 + P_2 + P_3 = 0.25 \,, \\ - P_1 + P_3 = 0.2 \,, \\ - P_1 - P_2 + P_3 = 0.15 \,. \end{cases}$$

所以 $P_1 = 0$, $P_2 = 0.05$, $P_3 = 0.2$ 因此 (X, Y) 的概率分布为

Y X	-1	1
- 1	0	0. 25
0	0. 05	0. 25
1	0. 25	0. 2

(
$$\coprod$$
) Cov(X , Y) = $E(XY) - EX \cdot EY$,

其中
$$E(XY) = (-1) \times (-1) \times 0 + (-1) \times 1 \times 0.25 + 0 \times (-1) \times 0.05 + 0 \times 1 \times 0.25 + 1 \times (-1) \times 0.25 + 1 \times 1 \times 0.25 = -0.3$$
,

所以, $Cov(X, Y) = -0.3 - 0.2 \times 0.4 = -0.38$.

附注 本题是连续型随机变量与离散型随机变量结合的综合题,需计算许多元素,因此 对题目审视后应确定计算各个元素的先后顺序:

先计算
$$P\left(V \leq \frac{1}{2} \mid U \leq \frac{1}{2}\right)$$
,为此需先算出关于 U 的边缘概率密度 $f_{U}(u)$;

然后确定(X, Y)的概率分布表,将已知的概率填入,对于未知的概率用 P_1, P_2, P_3 等表示,并利用已知条件逐一确定这些未知的概率.

最后根据(X, Y)的概率分布算出 Cov(X, Y).

(23)(I)由于关于 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{\theta}^{+\infty} \frac{3}{\theta^3} x^2 \mathrm{e}^{-(y-\theta)} \, \mathrm{d}y, 0 < x < \theta, \\ 0, & \sharp \mathfrak{t}, \end{cases}$$

其中,
$$\int_{\theta}^{+\infty} \frac{3}{\theta^3} x^2 e^{-(y-\theta)} dy = -\frac{3}{\theta^3} x^2 e^{-(y-\theta)} \Big|_{\theta}^{+\infty} = \frac{3}{\theta^3} x^2$$
,所以

$$f_X(x) = \begin{cases} \frac{3}{\theta^3} x^2, & 0 < x < \theta, \\ 0, & \text{其他.} \end{cases}$$

由于
$$EX = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^{\theta} \frac{3}{\theta^3} x^3 dx = \frac{3}{4} \theta$$
,所以由矩估计法,令 $EX = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,即 $\frac{3}{4} \theta$

 $=\overline{X}$. 由此得到 θ 的矩估计量为 $\hat{\theta}=\frac{4}{3}\overline{X}$.

由于
$$E\hat{\theta} = E\left(\frac{4}{3}\overline{X}\right) = \frac{4}{3} \cdot \frac{1}{n} \sum_{i=1}^{n} EX_i = \frac{4}{3}EX = \frac{4}{3} \cdot \frac{3}{4}\theta = \theta$$
,所以 $\hat{\theta}$ 是无偏估计量.

$$(\text{ II }) D(\hat{\theta}) = D(\frac{4}{3}\overline{X}) = \frac{16}{9}D\overline{X} = \frac{16}{9} \cdot \frac{1}{n}DX = \frac{16}{9n}[E(X^2) - (EX)^2],$$

其中,
$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx = \int_0^{\theta} \frac{3}{\theta^3} x^4 dx = \frac{3}{5} \theta^2$$
. 所以

$$D(\hat{\theta}) = \frac{16}{9n} \left[\frac{3}{5} \theta^2 - \left(\frac{3}{4} \theta \right)^2 \right] = \frac{1}{15n} \theta^2.$$

附注 要熟练掌握总体未知参数的两种点估计方法:矩估计法与最大似然估计法.

模拟试题(八)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
台采	В	С	В	В	С	В	В	D

(1) 由于
$$y = \frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right)$$
,所以

$$y^{(n)} = \frac{1}{3} \left[(-1)^n \frac{n!}{(x-1)^{n+1}} - (-1)^n \frac{n!}{(x+2)^{n+1}} \right]$$
$$= (-1)^n \frac{n!}{3} \left[\frac{1}{(x-1)^{n+1}} - \frac{1}{(x+2)^{n+1}} \right],$$

所以选(B).

附注 要记住公式:
$$\left(\frac{1}{x-a}\right)^{(n)} = (-1)^n \frac{n!}{(x-a)^{n+1}}$$
.

(2) 由于利用对称区间上定积分的性质可得

$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1 + x^2} \cos^2 x dx = 0$$
 (被积函数是奇函数),

$$N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, \mathrm{d}x = 2 \int_0^{\frac{\pi}{2}} \cos^4 x \, \mathrm{d}x > 0 \begin{cases} \sin^3 x \, \text{是奇函数}, \cos^4 x \, \text{是偶函数}, 在\left[0, \frac{\pi}{2}\right] \bot \\ \cos^4 x \ge 0, \text{且仅在点} \, x = \frac{\pi}{2} \, \text{处取等号} \end{cases},$$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) \, \mathrm{d}x = -2 \int_{0}^{\frac{\pi}{2}} \cos^7 x \, \mathrm{d}x < 0 \begin{pmatrix} x^2 \sin^3 x \, \text{是奇函数}, \cos^7 x \, \text{是偶函数}, 在 \left[0, \frac{\pi}{2}\right] \\ \text{上} \cos^7 x \ge 0, \text{且仅在点} \, x = \frac{\pi}{2} \, \text{处取等号} \end{pmatrix}.$$

所以 P < M < N. 因此选(C).

附注 应记住对称区间上定积分的性质:设f(x)在[-a, a](a>0)上连续,则

$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & f(x) \text{ 是偶函数,} \\ 0, & f(x) \text{ 是奇函数.} \end{cases}$$

此外, 当f(x)是非奇非偶函数时有

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx.$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + y = 2\sin t.$$

所以,原方程有形如 $y = t(a\cos t + b\sin t) = (a\cosh x + b\sinh x) \ln x$ 的特解. 因此选(B).

附注 所给微分方程是 2 阶欧拉方程, 令 $x = e^t$ 可以转换成 2 阶常系数线性微分方程, 由此即可确定应具有的特解形式.

附注 对于幂级数 $\sum_{n=0}^{\infty} a_n x^n$,当其收敛半径为 R(正数) 时, $\sum_{n=0}^{\infty} a_n x^n$ 在(-R, R) 内绝对收敛,但在端点 x = -R,R 处可能收敛(条件收敛或绝对收敛),也可能发散,应视 $\{a_n\}$ 而定.

(5) 由于 $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$,所以当 \mathbf{A} 有特征值 λ 及对应的特征向量为 α 时, \mathbf{B} 有特征值 λ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$. 因此由 \mathbf{A} 可逆知 \mathbf{B} 可逆,所以 \mathbf{B}^* 有特征值 $\frac{|\mathbf{B}|}{\lambda} = \frac{|\mathbf{A}|}{\lambda}$ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$. 因此选(C).

附注 应记住以下结论:

设 A 是 n 阶矩阵,有特征值 λ 及对应的特征向量 α ,则 $B = P^{-1}AP(P$ 是 n 阶可逆矩阵)有特征值 λ 和对应的特征向量 $P^{-1}\alpha$;当 A 可逆时,A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

(6) 由于当(I)与(II)等价时, (I)与(II)等秩; 当A与B等价时, A与B等秩, 反之也对, 所以选项(A)、(C)、(D)都正确, 因此选(B).

附注 当(I)与(II)等秩时, (I)与(II)未必等价. 例如, $\alpha_1 = (1, 0, 0)^T$, $\alpha_2 = (0, 1, 0)^T$, $\beta_1 = (1, 0, 0)^T$, $\beta_2 = (0, 0, 1)^T$. 显然 $r(\alpha_1, \alpha_2) = r(\beta_1, \beta_2)$, 但是 α_2 不能由 β_1 , β_2 线性表示,即 α_1 , α_2 与 β_1 , β_3 不等价.

由本题可知: 题中的(I)、(I)等价与A、B等价是有区别的,应注意这一点.

(7) 记 $C_i = \{ \% \ i \ \text{次取球取到的是白球} \} (i = 1, 2), 则$

$$A = \overline{C_1}C_2$$
, $B = \overline{C_1}C_2 \cup C_1C_2$,

所以 $P(A) = P(\overline{C_1}C_2) = P(\overline{C_1})P(C_2 | \overline{C_1}) = \frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$,

$$P(B) = P(\overline{C}_1C_2) + P(C_1C_2) = P(\overline{C}_1)P(C_2 \mid \overline{C}_1) + P(C_1)P(C_2 \mid C_1) = \frac{2}{7} + \frac{3}{7} \times \frac{2}{6} = \frac{3}{7}.$$
 因此选(B).

附注 本题有两点值得注意:

- (I) $\{$ 第二次取球才取到白球 $\}$ 与 $\{$ 第二次取球取到的是白球 $\}$ 这两个随机事件是有区别的 .
 - (II) 随机事件{第 i 次取球取到白球} (i=1, 2, 3)的概率是相等的,都为 $\frac{3}{7}$.

(8) 由于
$$\frac{8}{\sigma^2}S_X^2 \sim \chi^2(8)$$
, $\frac{10}{\sigma^2}S_Y^2 \sim \chi^2(10)$, 所以
$$D(S_X^2) = \frac{\sigma^4}{8^2}D\left(\frac{8}{\sigma^2}S_X^2\right) = \frac{\sigma^4}{8^2} \times 2 \times 8 = \frac{1}{4}\sigma^4,$$

$$D(S_Y^2) = \frac{\sigma^4}{10^2}D\left(\frac{10}{\sigma^2}S_Y^2\right) = \frac{\sigma^4}{10^2} \times 2 \times 10 = \frac{1}{5}\sigma^4,$$

 $\mathbb{E} D(S_{12}^2) = \frac{1}{4} [D(S_X^2) + D(S_Y^2)] = \frac{9}{80} \sigma^4, \ D(S_{XY}^2) = \frac{1}{18^2} [64D(S_X^2) + 100D(S_Y^2)] = \frac{1}{9} \sigma^4,$

所以,四个统计量中方差最小者为 S_{xy}^2 ,因此选(D).

附注 记住以下结论:

设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的随机样本, 记 $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i, S^2 = \frac{1}{n}\sum_{i=1}^n X_i$

$$\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}, \mathbb{M}\frac{(n-1)S^{2}}{\sigma^{2}}\sim\chi^{2}(n-1), E(S^{2})=\sigma^{2}, D(S^{2})=\frac{2\sigma^{4}}{n-1}.$$

二、填空题

(9) 由
$$\int_0^x [5f(t) - 2] dt = f(x) - e^{5x}$$
 得
$$5f(x) - 2 = f'(x) - 5e^{5x} \quad 以及 f(0) = 1, f'(0) = 8,$$
 有
$$\frac{f'(x) - 8}{x} = \frac{5[f(x) - f(0)] + 5(e^{5x} - 1)}{x},$$

所以有

$$f''(0) = 5f'(0) + 5 \times 5 = 65.$$

附注 本题也可以解答如下:由于对所给等式两边关于 x 求导得

$$5f(x) - 2 = f'(x) - 5e^{5x}$$
,

上式对 x 求导得

$$5f'(x) = f''(x) - 25e^{5x}$$
, $\mathbb{E}[f''(x)] = 5f'(x) + 25e^{5x}$.

于是利用f(0) = 1, f'(0) = 8 得

$$f''(0) = 5 \times 8 + 25 \times 1 = 65.$$

(10) 显然 x = 0, y = 0 时, 所给方程成为 $\int_0^z e^{t^2} dt = 0$, 从而 z(0,0) = 0.

此外, 所给方程两边对 x 求偏导数得

$$e^{z^2} \frac{\partial z}{\partial x} + y + y \frac{\partial z}{\partial x} = 0, \quad \mathbb{E} \left[\frac{\partial z}{\partial x} = \frac{-y}{e^{z^2} + y}, \quad \mathbb{E} \frac{\partial z(0,0)}{\partial x} = 0. \right]$$

$$\mathbb{E} \left[\frac{\partial^2 z}{\partial x \partial y} \Big|_{y=0}^{x=0} = \frac{d}{dy} \left(\frac{\partial z(0,y)}{\partial x} \right) \Big|_{y=0} = \lim_{y \to 0} \frac{\frac{\partial z(0,y)}{\partial x} - \frac{\partial z(0,0)}{\partial x}}{y} \right]$$

$$= \lim_{y \to 0} \frac{-\frac{y}{e^{z^2(0,y)} + y} - 0}{y} = -\lim_{y \to 0} \frac{1}{e^{z^2(0,y)} + y} = -\frac{1}{1+0} = -1.$$

附注 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=0}}$ 也可以由 $\frac{\partial z}{\partial x}$ 对 y 求偏导数算出 $\frac{\partial^2 z}{\partial x \partial y}$,然后将 x=y=z=0 代入计算得到. 但

题解中由 $\frac{\partial z}{\partial x}$ 按定义计算 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=0}}$ 更加快捷些.

(11) 设切点为 $M(x_0, y_0, z_0)$,则 S 在点 M 处的法向量为($2x_0-1, 2y_0, 2z_0$),于是由 切平面与 π_1 与 π_2 都垂直知

$$(2x_0-1, 2y_0, 2z_0) = \mu$$
 $\begin{vmatrix} i & j & k \\ 1 & -1 & -\frac{1}{2} \\ 1 & -1 & -1 \end{vmatrix} = \mu \left(\frac{1}{2}, \frac{1}{2}, 0\right) (\mu 为常数),$

所以
$$\begin{cases} 2x_0 - 1 = \frac{1}{2}\mu, \\ 2y_0 = \frac{1}{2}\mu, \\ 2z_0 = 0, \end{cases}$$
 即 $x_0 = \frac{1}{4}\mu + \frac{1}{2}, \ y_0 = \frac{1}{4}\mu, \ z_0 = 0.$

由 $M \in S$ 知, $x_0^2 + y_0^2 + z_0^2 = x_0$, 即

$$\left(\frac{1}{4}\mu + \frac{1}{2}\right)^2 + \left(\frac{1}{4}\mu\right)^2 = \frac{1}{4}\mu + \frac{1}{2}, \text{ 解此方程得} \mu = \pm\sqrt{2}.$$

所以切点为 $M_1\left(\frac{\sqrt{2}}{4} + \frac{1}{2}, \frac{\sqrt{2}}{4}, 0\right)$ 和 $M_2\left(-\frac{\sqrt{2}}{4} + \frac{1}{2}, -\frac{\sqrt{2}}{4}, 0\right)$, 因此所求的切平面方程为

$$\frac{1}{2}\left(x - \frac{\sqrt{2}}{4} - \frac{1}{2}\right) + \frac{1}{2}\left(y - \frac{\sqrt{2}}{4}\right) = 0, \quad \text{If } x + y = \frac{\sqrt{2} + 1}{2},$$

和

$$\frac{1}{2}\left(x + \frac{\sqrt{2}}{4} - \frac{1}{2}\right) + \frac{1}{2}\left(y + \frac{\sqrt{2}}{4}\right) = 0, \quad \text{RIF } x + y = \frac{-\sqrt{2} + 1}{2}.$$

附注 计算曲面 S 的切平面时,如果未知切点坐标,总是根据有关条件先计算切点坐标,然后写出切平面方程.

$$(12) \oint_{D} e^{y^{2}} dx + x dy = \frac{\text{MAKAT}}{D} \iint_{D} \left(\frac{\partial x}{\partial x} - \frac{\partial e^{y^{2}}}{\partial y} \right) d\sigma (其中, D = \{(x,y) \mid 4x^{2} + y^{2} \leq 8x\}$$

$$= \{(x,y) \mid (x-1)^{2} + \frac{y^{2}}{4} \leq 1\})$$

$$= \iint_{D} (1 - 2ye^{y^{2}}) d\sigma = \iint_{D} d\sigma - 2 \iint_{D} ye^{y^{2}} dy = 2\pi.$$

$$\left(\text{这是由于} \iint_{D} d\sigma = D \text{ 的面积} = \pi \cdot 1 \cdot 2 = 2\pi, \text{此外由于 } D \text{ 关于 } x \text{ 轴} \right)$$

$$\text{对称,在对称点处 } ye^{y^{2}} \text{ 的值互为相反数,所以} \iint_{D} ye^{y^{2}} d\sigma = 0$$

附注 题解中有两点值得注意:

- (I) 当曲线 C 是正向平面闭曲线时,曲线积分 $\oint_{c} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y$ 通常用格林公式计算比较快捷.
- (II) 对于二重积分,应先利用积分区域的对称性化简以后再行计算,具体说,设D满足某种对称性,则二重积分

$$\iint_{D} f(x,y) d\sigma = \begin{cases} 2 \iint_{D_{1}} f(x,y) d\sigma, \\ y = \int_{D_{1}} f(x,y) d\sigma, \\ 0, & \text{if } f(x,y) \end{cases}$$
的值在对称点处证出错, 其中, D_{1} 是 D 按

对称性划分成的两部分之一.

(13) 显然 |A| = 2, 此外

$$\left(\frac{1}{2}A^{2}\right)^{-1} - 3A^{*} = 2(A^{-1})^{2} - 3 | A | A^{-1} = (A^{-1})^{2} \cdot 2(E_{3} - 3A),$$

所以 $\left| \left(\frac{1}{2} A^2 \right)^{-1} - 3A^* \right| = |A^{-1}|^2 \cdot 8 |E_3 - 3A|$

$$= \left(\frac{1}{2}\right)^2 \times 8 \times \begin{vmatrix} -2 & -3 & 0 \\ 0 & -2 & -3 \\ -3 & -3 & -5 \end{vmatrix} = -58.$$

附注 计算矩阵的行列式时,以下结论是常用的:

设A, B 都是n 阶矩阵, 则

|AB| = |A| |B|, $|kA| = k^n |A| (k 是常数)$, $|A^*| = |A|^{n-1} (n > 1, A^*)$ 是 A 的伴随矩阵).

当
$$A$$
可逆时, $|A^{-1}| = \frac{1}{|A|}$.

(14) 由于
$$a = P(X = 1) = F(1) - F(1^{-}) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
,所以
$$P(Y \ge a) = P(Y \ge \frac{1}{4}) = \int_{\frac{1}{4}}^{+\infty} \varphi(t) dt = \int_{\frac{1}{4}}^{+\infty} e^{-t} dt = e^{-\frac{1}{4}}.$$

附注 由于 F(x) 只有间断点 x = 0, 1, 2 所以 X 的分布列为

X	0	1	2
P	$F(0) - F(0^{-})$	$F(1) - F(1^{-})$	$F(2) - F(2^{-})$
即			
X	0	1	2
P	$\frac{1}{4}$	1/4	$\frac{1}{2}$

三、解答题

(15) D 如图答 8-15 的阴影部分所示,所以

$$V_x = \pi \int_0^2 \left[(\sqrt{4 - x^2})^2 - (\sqrt{2x - x^2})^2 \right] dx$$

$$= \pi \int_0^2 (4 - 2x) \, dx = 4\pi.$$

$$V_y = 2\pi \int_0^2 x \left(\sqrt{4 - x^2} - \sqrt{2x - x^2} \right) \, dx,$$

$$\downarrow \psi \quad \int_0^2 x \sqrt{4 - x^2} \, dx = -\frac{1}{3} (4 - x^2)^{\frac{3}{2}} \Big|_0^2 = \frac{8}{3},$$

$$\int_0^2 x \sqrt{2x - x^2} \, dx = \int_0^2 x \sqrt{1 - (x - 1)^2} \, dx$$

$$\stackrel{\text{Ref. 8-15}}{=} \frac{1}{2} \left(t + 1 \right) \sqrt{1 - t^2} \, dt = \int_{-1}^1 \sqrt{1 - t^2} \, dt = \frac{\pi}{2}.$$

所以
$$V_y = 2\pi \left(\frac{8}{3} + \frac{\pi}{2}\right) = \frac{16}{3}\pi + \pi^2$$
.

附注 应记住以下公式

设 $f_1(x)$, $f_2(x)$ 都是连续函数, 且 $0 \le f_1(x) \le f_2(x)$ ($0 \le a \le x \le b$).

记 $D = \{(x, y) \mid 0 \le a \le x \le b, f_1(x) \le y \le f_2(x)\}$,则 D 绕 x 轴旋转一周而成的旋转体体积

$$V_{x} = \pi \int_{a}^{b} \left[f_{2}^{2}(x) - f_{1}^{2}(x) \right] dx,$$

D绕 γ 轴旋转一周而成的旋转体体积

$$V_y = 2\pi \int_a^b x [f_2(x) - f_1(x)] dx.$$

所以,此时f(x, y)在点(0, 0)处不连续.

 $n \ge 3$ 时,由于当 $(x, y) \rightarrow (0, 0)$ 时由

$$|f(x, y)| = \left| \frac{(x+y)^n}{x^2 + y^2} \right| = \frac{(x+y)^2}{x^2 + y^2} |x+y|^{n-2} \le 2|x+y|^{n-2}$$

知, $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$,所以此时f(x,y)在点(0,0)处连续,因此使f(x,y)在点(0,0)处连续的最小n值为 3.

$$n = 3 \text{ 时}, f'_{x}(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{x^{3}}{x^{3}} = 1, \text{ 同样有} f'_{y}(0, 0) = 1. \text{ 由于}$$

$$\lim_{\substack{(x,y) \to (0,0) \\ \text{沿直线}x = y}} \frac{f(x, y) - f(0, 0) - f'_{x}(0, 0)x - f'_{y}(0, 0)y}{\sqrt{x^{2} + y^{2}}}$$

$$= \lim_{\substack{(x,y) \to (0,0) \\ \text{沿直线}x = y}} \frac{(x + y)^{3} - (x + y)(x^{2} + y^{2})}{(x^{2} + y^{2})^{\frac{3}{2}}} = \lim_{x \to 0} \frac{4x^{3}}{2\sqrt{2}x^{3}} = \sqrt{2} \neq 0,$$

所以,此时f(x, y)在点(0, 0)处不可微.

$$n \ge 4$$
 时, $f'_{x}(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{x^{4}}{x^{3}} = 0$,同样有 $f'_{y}(0, 0) = 0$. 于是当 $(x, y) \to (0, 0)$ 时由

$$\begin{split} \left| \frac{f(x, y) - f(0, 0) - f'_{x}(0, 0)x - f'_{y}(0, 0)y}{\sqrt{x^{2} + y^{2}}} \right| &= \frac{(x + y)^{n}}{(x^{2} + y^{2})^{\frac{3}{2}}} \\ &= \frac{(x + y)^{3}}{(x^{2} + y^{2})^{\frac{3}{2}}} \cdot |x + y|^{n - 3} \leq \frac{\left[2(x^{2} + y^{2})\right]^{\frac{3}{2}}}{(x^{2} + y^{2})^{\frac{3}{2}}} |x + y|^{n - 3} = 2\sqrt{2}|x + y|^{n - 3} \\ &\text{ for } \lim_{(x, y) \to (0, 0)} \frac{f(x, y) - f(0, 0) - f'_{x}(0, 0)x - f'_{y}(0, 0)y}{\sqrt{x^{2} + y^{2}}} = 0, \end{split}$$

所以,此时 f(x, y) 在点(0, 0) 处可微. 因此使 f(x, y) 在点(0, 0) 处可微的最小 n 值为 4.

附注 本题的 f(x, y) 在点(0, 0) 处连续或可微都是由定义证明的.

设二元函数 g(x, y) 在点 (x_0, y_0) 处的某个邻域内有定义,如果

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-f'_x(x_0,y_0)(x-x_0)-f'_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0\,,$$

则f(x, y)在点 (x_0, y_0) 处可微.

(17) 由题设知 $\{x_n\}$ 是正项数列,且对 $n=1,2,\dots$ 有

所以 $\{x_n\}$ 有下界.此时,由 $x_n \ge 1(n=2,3,\cdots)$ 知

$$x_{n+1} - x_n = \frac{1}{3} \left(2x_n + \frac{1}{x_n^2} \right) - x_n = \frac{1}{3} \left(\frac{1}{x_n^2} - x_n \right) \le 0 (n = 2, 3, \dots),$$

即 $\{x_n\}$ 单调不增.因此由数列极限存在准则 \mathbb{I} 知 $\lim_{n\to\infty}x_n$ 存在,记为 A. 对所给递推式两边令 $n\to\infty$ 取极限得

$$A = \frac{1}{3} \left(2A + \frac{1}{A^2} \right), \quad \exists \exists A = 1.$$

由此得到 $\lim x_n = 1$.

考虑极限 $\lim_{x\to 1} \frac{e^{\tan(x-1)} - e^{\sin(x-1)}}{(x-1)^3}$ (即将欲求的极限式中的 x_n 改为 x,则当 $n\to\infty$ 时, $x\to 1$):

$$\lim_{x \to 1} \frac{e^{\tan(x-1)} - e^{\sin(x-1)}}{(x-1)^3} \xrightarrow{\frac{c}{2}t = x-1} \lim_{t \to 0} \frac{e^{\tan t} - e^{\sin t}}{t^3}$$

$$= \lim_{t \to 0} \left(e^{\sin t} \cdot \frac{e^{\tan t - \sin t} - 1}{t^3} \right) = \lim_{t \to 0} \frac{\tan t - \sin t}{t^3}$$

$$= \lim_{t \to 0} \left(\frac{\sin t}{t} \cdot \frac{1 - \cos t}{t^2} \cdot \frac{1}{\cos t} \right) = 1 \times \frac{1}{2} \times 1 = \frac{1}{2},$$

所以,
$$\lim_{n\to\infty} \frac{e^{\tan(x_n-1)} - e^{\sin(x_n-1)}}{(x_n-1)^3} = \frac{1}{2}.$$

附注 数列极限有两个存在准则:

准则 I: 设数列 $\{x_n\}$, $\{y_n\}$ 及 $\{z_n\}$ 满足

$$y_n \leq x_n \leq z_n (n = 1, 2, \cdots),$$

且 $\lim y_n = \lim z_n = A$,则 $\lim x_n = A$.

准则 II: 设数列 $\{x_n\}$ 是由递推式 x_1 , $x_{n+1} = f(x_n)(n=1, 2, \cdots)$ 确定.

如果 $\{x_n\}$ 单调不减有上界或单调不增有下界,则 $\lim_{n\to\infty} x_n$ 存在.

当数列 $\{x_n\}$ 由递推式确定时,通常总是利用数列极限存在准则 II,先确定 $\lim_{n\to\infty}x_n$ 存在,然后对所给递推式两边令 $n\to\infty$ 取极限算出极限值.

(18)
$$i = a_n = (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n} (n=1, 2, \dots), \quad \boxed{1}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{(2n+1)(2n+3)} |x|^2 = |x|^2,$$

且当x = -1, 1时, 所给幂级数都成为收敛级数

$$\sum_{i=1}^{n} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)}.$$

所以所给级数的收敛域为[-1,1].

对
$$x \in [-1, 0) \cup (0, 1]$$
有

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n}$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n} - \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} x^{2n}$$

$$= \frac{1}{2} x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1} - \frac{1}{2x} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} x^{2n+1}$$

$$= \frac{1}{2} x \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n-1} t^{2n-2} dt + \frac{1}{2x} \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n} t^{2n} dt$$

$$= \frac{1}{2} x \int_{0}^{x} \frac{1}{1+t^{2}} dt - \frac{1}{2x} \int_{0}^{x} \frac{t^{2}}{1+t^{2}} dt$$

$$= \frac{1}{2} x \arctan x - \frac{1}{2x} (x - \arctan x)$$

$$= \frac{1}{2} \left(x + \frac{1}{x}\right) \arctan x - \frac{1}{2},$$

且当x=0时, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n} = 0$,所以所给幂级数的和函数为 $s(x) = \begin{cases} \frac{1}{2} \left(x + \frac{1}{x} \right) \arctan x - \frac{1}{2}, & x \in [-1, 0) \cup (0, 1], \\ 0, & x = 0. \end{cases}$

附注 本题解答有两点值得注意:

(\mathbf{I})所给幂级数是缺项幂级数,所以应将幂级数记为 $\sum\limits_{n=1}^{\infty}a_{n}$,然后用比值法确定这个幂

级数的收敛域.

(II)
$$x \in [-1,0) \cup (0,1]$$
 时 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} x^{2n}$ 的和函数 $s(x)$ 也可计算如下:
由于 $\arctan x = \int_{0}^{x} \frac{1}{1+t^{2}} dt = \int_{0}^{x} \sum_{n=0}^{\infty} (-t^{2})^{n} dt$
$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{2n+1} x^{2n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1}, 所以$$
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n} = \frac{1}{2} \left[\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n} - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} x^{2n} \right]$$
$$= \frac{1}{2} x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1} + \frac{1}{2x} \sum_{n=1}^{\infty} (-1)^{n} \frac{1}{2n+1} x^{2n+1}$$
$$= \frac{1}{2} x \arctan x + \frac{1}{2x} \arctan x - \frac{1}{2}.$$

(19) 记 S(不妨设其为外侧) 围成的空间区域为 Ω ,则由高斯公式得

$$\iint\limits_{\Omega} \left\{ \frac{\partial \left[\, x f(x) \, \right]}{\partial x} + \frac{\partial \left[\, - \, x y f(x) \, \right]}{\partial y} + \frac{\partial (\, - \, \mathrm{e}^{2x} z)}{\partial z} \right\} \mathrm{d}v \, = \, 0.$$

由于 S 是半空间 x > 0 内任意有向闭曲面,所以由上式得

即
$$\frac{\partial \left[xf(x)\right]}{\partial x} + \frac{\partial \left[-xyf(x)\right]}{\partial y} + \frac{\partial \left(-e^{2x}z\right)}{\partial z} = 0(x > 0),$$
即
$$f'(x) + \left(\frac{1}{x} - 1\right)f(x) = \frac{1}{x}e^{2x}(x > 0).$$
它的通解为
$$f(x) = e^{-\int \left(\frac{1}{x} - 1\right)lx}\left(C + \int \frac{1}{x}e^{2x} \cdot e^{\int \left(\frac{1}{x} - 1\right)lx}dx\right)$$

$$= \frac{e^{x}}{x}\left(C + \int e^{x}dx\right)$$

$$= \frac{e^{x}}{x}(C + e^{x})(x > 0). \tag{1}$$

上式两边令 $x \rightarrow 0^+$ 取极限,且与题设 $\lim_{x \to 0} f(x) = 1$ 比较得

$$\lim_{x \to 0^{+}} \frac{e^{x} (C + e^{x})}{x} = 1,$$

所以 C = -1, 将它代入式(1)得 $f(x) = \frac{e^x}{x} (e^x - 1)(x > 0)$.

附注 闭曲面上的关于坐标的曲面积分通常用高斯公式计算比较快捷. 高斯公式为:

设 Σ 是光滑或分块光滑有向闭曲面(外侧),它围成的空间闭区域为 Ω , P(x, y, z), Q(x, y, z), R(x, y, z)都在 Ω 上具有连续偏导数,则

$$\oint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv.$$

(20) 由题设知(1, 2, 2, 1)^T - (1, -2, 4, 0)^T = (0, 4, -2, 1)^T 是方程组 Ax = 0 的解,所以有

$$4\alpha_2 - 2\alpha_3 + \alpha_4 = 0$$
, $\mathbb{P} \alpha_4 = -4\alpha_2 + 2\alpha_3$.

于是由 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的秩为 3 知, $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

此外, 由题设 $(1, -2, 4, 0)^{\mathrm{T}}$ 是方程组 $Ax = \beta$ 的解得

$$\boldsymbol{\beta} = \boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3,$$

于是方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$, 即为

$$(\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3) \mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2. \tag{1}$$

由于式(1)的系数矩阵的秩为 3,且对应的齐次方程组有基础解系(2, 2, 1, -1)^T. 此外,式(1)有特解(0, 2, 1, 0)^T. 所以方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$ 的通解为

$$y = C(2, 2, 1, -1)^T + (0, 2, 1, 0)^T (其中, C 是任意常数).$$

附注 要记住齐次线性方程组 $Ax = \mathbf{0}$ (其中, $A \in m \times n$ 矩阵, $x \in n$ 维未知列向量)的基础解系中所包含的线性无关解向量个数为 n - r(A).

(21)(I)由于

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = x_1^2 + 2bx_1x_2 + 2x_1x_3 + ax_2^2 + 2x_2x_3 + x_3^2$$
$$= \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{x},$$

所以 $f(x_1, x_2, x_2)$ 的矩阵 $\mathbf{B} = \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

由于B有特征值为 $\lambda=0$, 1, 4, 所以有

$$\begin{cases} 1+a+1=0+1+4 \,, & \text{if } a=3 \,, \ b=1. \\ \mid \textbf{\textit{B}} \mid = 0 \times 4 \times 1 \,, \end{cases}$$

(II)由以上计算知
$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

设 **B** 对应 $\lambda = 0$ 的特征向量为 $\alpha = (a_1, a_2, a_3)$,则 α 满足

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}.$$
 (1)

由于

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

所以式(1)与方程组 $\begin{cases} x_1 & +x_3=0, \\ x_2 & =0 \end{cases}$ 同解,可取它的基础解系为 $\boldsymbol{\alpha}$,即 $\boldsymbol{\alpha}=(1,0,-1)^{\mathrm{T}}$.

设 \boldsymbol{B} 对应 $\boldsymbol{\lambda} = 1$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 $\boldsymbol{\beta}$ 满足

$$\begin{pmatrix} 0 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$
 (2)

由于
$$\begin{pmatrix} 0 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & 0 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix},$$

所以式(2)与方程组 $\begin{cases} x_2 + x_3 = 0, \\ x_1 + x_2 = 0 \end{cases}$ 同解,可取它的基础解系为 $\boldsymbol{\beta}$,即 $\boldsymbol{\beta} = (-1, 1, -1)^T$.

设 \boldsymbol{B} 对应 λ = 4 的特征向量为 $\boldsymbol{\gamma}$ = $(c_1, c_2, c_3)^{\mathrm{T}}$,则由 \boldsymbol{B} 是实对称矩阵知 $\boldsymbol{\gamma}$ 与 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 都 正交,于是有

$$\begin{cases} c_1 - c_3 = 0, \\ -c_1 + c_2 - c_3 = 0, \end{cases}$$

可取它的基础解系为 γ , 即 $\gamma = (1, 2, 1)^{T}$. 显然 α , β , γ 两两正交, 现将它们单位化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\beta}}{\parallel \boldsymbol{\beta} \parallel} = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}.$$

使得 $f(x_1, x_2, x_3) = y_2^2 + 4y_3^2$ (标准形).

附注 题中的 A 不是实对称矩阵,所以要用正交变换将 $f(x_1, x_2, x_3) = x^T Ax$ 化为标准形,必须首先将 $f(x_1, x_2, x_3)$ 改写成 $x^T Bx$ (其中,B 是实对称矩阵)。此外,要熟练掌握,用正交变换把二次型化成标准形的方法。

(22)(I)由于当 $\gamma > 0$ 时,

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \int_{0}^{y} \mathrm{e}^{-y} \mathrm{d}x = y \mathrm{e}^{-y} > 0,$$
所以, $f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_{Y}(y)} = \begin{cases} \frac{1}{y}, & 0 < x < y, \\ 0, & 其他. \end{cases}$

$$(II) P(X > 2 \mid Y > 4) = \frac{P(X > 2, Y > 4)}{P(Y > 4)}, 其中,$$

$$P(X > 2, Y > 4) = \iint_{x > 2} f(x,y) \, \mathrm{d}\sigma$$

$$= \iint_{D} \mathrm{e}^{-y} \mathrm{d}\sigma(\sharp r, D = \{(x,y) \mid 2 < x < y, y > 4\})$$

$$= \int_{4}^{+\infty} dy \int_{2}^{y} e^{-y} dx$$

$$= \int_{4}^{+\infty} e^{-y} (y - 2) dy$$

$$= -\left[(y - 2) e^{-y} \Big|_{4}^{+\infty} - \int_{4}^{+\infty} e^{-y} dy \right] = 3 e^{-4}.$$

$$P(X > 2 \mid Y = 4) = \int_{2}^{+\infty} f_{X \mid Y}(x \mid 4) dx = \int_{2}^{4} \frac{1}{4} dx = \frac{1}{2}.$$

附注 对于二维连续型随机变量(X, Y), 必须掌握其两种条件概率 $P(X \ge a \mid Y \ge b)$ 和 $P(X \ge a \mid Y = b)$ 的计算方法.

(23)(I)由于
$$EX = 0 \cdot \theta^2 + 1 \cdot 2\theta(1-\theta) + 2 \cdot \theta^2 + 3 \cdot (1-2\theta) = 3-4\theta$$
.

样本值的平均值 $\bar{x} = \frac{1}{8}(3+1+3+0+3+1+2+3) = 2$,

所以由矩估计法, 令 $EX = \bar{x}$, 即 3 $-4\theta = 2$ 得 θ 的矩估计值 $\hat{\theta} = \frac{1}{4}$.

(II)由题设知 $Y \sim B(n, \hat{\theta}^2) = B\left(n, \frac{1}{16}\right)$,所以对于任意实数 y,由中心极限定理(具体是棣莫弗-拉普拉斯定理)得

$$P(Y \le y) = P\left(\frac{Y - \frac{n}{16}}{\sqrt{n \cdot \frac{1}{16} \cdot \frac{15}{16}}} \le \frac{y - \frac{n}{16}}{\frac{\sqrt{15n}}{16}}\right)$$

$$\approx \int_{-\infty}^{\frac{y - \frac{n}{16}}{\sqrt{15n}/16}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx. \tag{1}$$

因此,所求的参数为 $\mu = \frac{n}{16}, \sigma^2 = \frac{15n}{16^2}$.

附注 计算关于随机变量 $X \sim N(\mu, \sigma^2)$ 的概率问题时,总是引入标准化随机变量 $X^0 = \frac{X - \mu}{\sigma}$,则 $X^0 \sim N(0,1)$ (标准正态分布),于是 X 的分布函数 $F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$ (其中, $\Phi(u)$ 是标准正态分布函数),即 $P(X \leq x) = \int_{-\infty}^{\frac{x - \mu}{\sigma}} \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{t^2}{2}} \mathrm{d}t$.

由此可知,当 $P(X \le x) = \int_{-\infty}^{\frac{x-a}{b}} \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{t^2}{2}} \mathrm{d}t$ 时, $X \sim N(a,b^2)$. 本题中的参数就是如此得到的.

模拟试题(九)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	A	С	С	A	В	D	С	С

(1) 如果取 L_1 为 y = f(x) 的图形,则 $f'(x) > 0(x \in (0, x_2))$, $f'(x) < 0(x \in (x_2, x_4))$, $f'(x) > 0(x \in (x_4, a))$,这与 L_2 为 y = f'(x) 图形相符,也与 L_3 为 $y = \int_0^x f(t) dt$ 的图形相符. 所以选(A).

附注 本题是先选定 L_1 为 y = f(x) 的图形,然后检验 L_2 , L_3 是否分别为 y = f'(x), $y = \int_0^x f(t) dt$ 的曲线. 如果如此选定不行,则再考虑 L_2 为 y = f(x) 的图形,等等,直到得到正确选项为止.

(2) 当 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时,有

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{+\infty} f(x) \, \mathrm{d}x$$

$$= \int_{0}^{+\infty} f(-t) \, \mathrm{d}t + \int_{0}^{+\infty} f(x) \, \mathrm{d}x (\, \mbox{\rlap/$L$$!\depth.$$!\dept$$

所以选(C).

附注 当 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时有 $\int_{-\infty}^{+\infty} f(x) dx = \begin{cases} 0, & f(x) \text{ 是奇函数}, \\ 2 \int_{0}^{+\infty} f(x) dx, & f(x) \text{ 是偶函数}. \end{cases}$

(3) 由于 S 关于平面 x=0 对称,x 在对称点处的值互为相反数,所以 $\iint_S x dS = 0$. 由于 D 关于 x 轴对称,y 在对称点处的值互为相反数,所以 $\iint_S y dx dy = 0$,因此选(C).

附注 当曲面 S 关于某个坐标平面对称时,如果被积函数 f(x, y, z) 在对称点处的值彼此相等(或互为相反数),则

$$\iint_{S} f(x,y,z) \, \mathrm{d}S = 2 \iint_{S_{1}} f(x,y,z) \, \mathrm{d}S(\vec{x},0),$$

其中, S_1 是S被此坐标平面划分成的两部分之一。

记住这一结论,往往能化简关于面积的曲面积分的计算.

(4) 容易看到
$$y_2 - y_1 = e^{-x}(\cos x + \sin x)$$
是 $y'' + py' + qy = 0$ 的特解,所以
$$p = -\left[(-1+i) + (-1-i) \right] = 2, \ q = (-1+i)(-1-i) = 2.$$
 此外,由题设知 e^x 是 $y'' + py' + qy = f(x)$,即 $y'' + 2y' + 2y = f(x)$ 的特解,所以
$$f(x) = (e^x)'' + 2(e^x)' + 2e^x = 5e^x.$$

因此选(A).

附注 容易知道, $e^{-x}\cos x$ 是 y'' + 2y' + 2y = 0 的解, 所以由题设知 e^{x} 是 y'' + 2y' + 2y = f(x) 的解.

(5) 由于 $A^{T}Ax = 0$ 与Ax = 0 是同解方程组,所以 ξ_1 , ξ_2 必是 $A^{T}Ax = 0$ 的基础解系.

由于Ax = 0 与Bx = 0 都有基础解系 ξ_1 , ξ_2 , 所以 ξ_1 , ξ_2 也是 $\begin{pmatrix} A \\ B \end{pmatrix} x = 0$ 的基础解系, 因此选(B).

附注 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$ 未必是 $\boldsymbol{A} + \boldsymbol{B}$ 的基础解系,例如 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 和 $\begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 有相同的基础解系 $(0, 1)^T$,但它不是 $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$ 的基础解系,所以(A)与(D)都不能选.

$$\xi_1$$
, ξ_2 也未必是 $B^*x = 0$ 的基础解系,例如 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 有基础解系 $(0, 0, 1)^T$,但它不是 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 的基础解系,这是因为 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ 的秩为 $2 = 3 - 1$,所以 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 的 的 基础解系,这是因为 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 的基础解系中应有两个线性无关的解向量。因此 (C) 不能选。

(6) 实对称矩阵 A, B 合同的充分必要条件是分别以 A, B 为矩阵的二次型有相同的规范形.因此选(D).

附注 (I)选项(A)是A与B合同的必要条件而不是充分条件,而选项(B)、(C)既不是必要条件,也不是充分条件。

- (\mathbb{I}) 两个 n 阶实对称矩阵 A, B 合同的充分必要条件有两种:
- (i) A, B 的特征值分别相等(当某个特征值 k 重时,按 k 个计算);
- (ii) 以 A, B 为矩阵的二次型有相同的规范形.

(7)
$$F(1,4) = P(X \le 1, Y \le 4) = P(X \le 1, X^2 \le 4) = P(-2 \le X \le 1)$$

= $\int_{-2}^{1} f(x) dx = \int_{-2}^{-1} 0 dx + \int_{-1}^{0} \frac{1}{2} dx + \int_{0}^{1} \frac{1}{4} dx = \frac{3}{4}$.

因此选(C).

附注 顺便计算 X 的分布函数 $G(x) = P(X \le x)$.

当
$$x \leqslant -1$$
时, $P(X \leqslant x) = \int_{0}^{x} 0 dx = 0$,

当
$$-1 < x < 0$$
 时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-1}^{x} \frac{1}{2} dx = \frac{1}{2} (x+1)$,
当 $0 \le x \le 2$ 时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-1}^{0} \frac{1}{2} dx + \int_{0}^{x} \frac{1}{4} dx = \frac{1}{2} + \frac{1}{4} x$,
当 $x > 2$ 时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{+\infty} f(x) dx = 1$.

所以, $G(x) = \begin{cases} 0, & x \le -1, \\ \frac{1}{2} (x+1), & -1 < x < 0, \\ \frac{1}{2} + \frac{1}{4} x, & 0 \le x \le 2, \\ 1 & x > 2. \end{cases}$

(8) 由于随机变量 t 的概率密度曲线关于纵轴对称,所以由

$$\alpha = P(\mid t \mid \leq b) = 1 - P(\mid t \mid >b) = 1 - P(t > b) - P(t < -b) = 1 - 2P(t > b)$$

得 $P(t > b) = \frac{1-\alpha}{2}$,从而由 $t_{\alpha}(n)$ 的定义得 $b = t_{\frac{1-\alpha}{2}}(n)$.

因此选(C).

附注 应当记住:

当 $X \sim N(0, 1)$ 时,满足 $P(\mid X \mid \leq b) = \alpha$ 的 $b = u_{\frac{1-\alpha}{2}}$ (其中, u_{α} 为满足 $P(X > u_{\alpha}) = \alpha$ 的实数);

当 $X \sim T(n)$ 时,满足 $P(\mid X \mid \leq b) = \alpha$ 的 $b = t_{\frac{1-\alpha}{2}}(n)$ (其中, $t_{\alpha}(n)$ 为满足 $P(X > t_{\alpha}(n))$ = α 的实数).

二、填空题

(9) 所给微分方程可改写成

$$y' + \frac{1}{x^2}y = -e^{\frac{1}{x}},$$

它的通解为 $y = e^{-\int_{x^2}^{1} dx} \left(C - \int e^{\frac{1}{x}} e^{\int_{x^2}^{1} dx} dx \right) = e^{\frac{1}{x}} (C - x).$

将 y(1) = 0 代入得 C = 1,所以 $y = e^{\frac{1}{x}}(1-x)$. 从而由

$$a = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{e^{\frac{1}{x}} (1 - x)}{x} = -1,$$

$$b = \lim_{x \to \infty} (y - ax) = \lim_{x \to \infty} \left[e^{\frac{1}{x}} (1 - x) + x \right] = \lim_{x \to \infty} \left(e^{\frac{1}{x}} - \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} \right) = 0$$

得曲线 y = y(x) 的斜渐近线方程为 y = -x.

附注 计算曲线 y = f(x) 的斜渐近线方程时, 总是先计算

$$a = \lim_{x \to \infty} \frac{f(x)}{x}$$
 $f(x) = \lim_{x \to \infty} [f(x) - ax].$

如果这两个极限中至少有一个不存在,则计算

和

$$a_2 = \lim_{x \to +\infty} \frac{f(x)}{x} \# b_2 = \lim_{x \to +\infty} \left[f(x) - a_2 x \right].$$

(10)
$$\exists \exists \lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t}$$

$$= 2 \lim_{t \to 0} \frac{f(2t, 0) - f(0, 0)}{2t} + \lim_{t \to 0} \left(\frac{f(0, \sin t) - f(0, 0)}{\sin t} \cdot \frac{\sin t}{t} \right) - 2 \lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t}, \tag{1}$$

其中,
$$\lim_{t\to 0} \frac{f(2t, 0) - f(0, 0)}{2t} = f'_x(0, 0) = 1$$
, $\lim_{t\to 0} \left[f(0, \sin t) - f(0, 0) \cdot \frac{\sin t}{2t} \right] - f'(0, 0)$

$$\lim_{t\to 0} \left[\frac{f(0\,,\,\,\sin t)\,-f(0\,,\,\,0)}{\sin t} \cdot \frac{\sin t}{t} \right] = f_y'(0\,,\,\,0)\,\cdot 1 = -1\,,$$

$$\lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t} = \lim_{t \to 0} \frac{f_x'(0, 0)t + f_y'(0, 0)t + o(\sqrt{t^2 + t^2})}{t}$$
$$= f_x'(0, 0) + f_y'(0, 0) = 0.$$

将它们代入式(1)得

$$\lim_{t \to 0} \frac{f(2t,\ 0) \ + f(0,\ \sin t) \ - 2f(t,\ t)}{t} = 2 \times 1 \ - 1 \ + 2 \times 0 = 1.$$

附注 由于 f(x, y) 仅在点(0, 0) 处可微,所以需用偏导数的定义与全微分的定义计算本题的极限。

(11) 平面 z=1 被 Σ 所截下的有限部分上侧记为 S,它在 xOy 平面的投影为 $D=\{(x,y)\mid x^2+y^2\leq 1\}$,则由高斯公式有

$$\iint_{\Sigma} xy dy dz + x dz dx + x^{2} dx dy$$

$$= \iint_{\Sigma+S} xy dy dz + x dz dx + x^{2} dx dy - \iint_{S} xy dy dz + x dz dx + x^{2} dx dy$$

$$= \iint_{\Omega} \left[\frac{\partial (xy)}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x^{2}}{\partial z} \right] dv - \iint_{D} x^{2} dx dy (其中, \Omega 是由 \Sigma + S 围成的空间区域)$$

$$= \iint_{\Omega} y dv - \iint_{D} x^{2} dx dy = -\iint_{D} x^{2} dx dy$$

(由于 Ω 关于平面y = 0对称,在对称点处y的值互为相反数)

附注 由于题中的 Σ 不是闭曲面,所以添上一块 S,构成闭曲面,然后应用高斯公式计算所给的曲面积分. 这是计算关于坐标的曲面积分的常用方法.

(12) f(x)的麦克劳林展开式为

$$f(x) = \sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

$$= \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} (2x)^{2n}$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^{2n-1}}{(2n)!} x^{2n} (-\infty < x < +\infty).$$

附注 (I) 写出 f(x)的泰勒展开式或麦克劳林展开式时,应写出泰勒级数或麦克劳林级数的通项,还应写出展开式的成立范围。

(II) 初等函数的麦克劳林展开式总是用间接法计算,即利用常用函数 e^x , $\sin x$, $\cos x$, $\ln(1+x)\mathcal{D}(1+x)^\mu$ 的麦克劳林展开式及幂级数的加、减运算和求导、积分运算等计算.

(13) 由
$$r(A) + r(B) - 3 \le r(AB)$$
 得 $r(A) \le 2$, 所以

$$\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & \lambda & 3 \\ 0 & 2 & 2 \end{vmatrix} = 2(\lambda - 3) = 0$$
,由此得到 $\lambda = 3$.

附注 应记住关于矩阵秩运算的以下两个公式:

(I) 设A, B 都是 $m \times n$ 矩阵, 则

$$r(\mathbf{A} + \mathbf{B}) \leq r(\mathbf{A}) + r(\mathbf{B}).$$

(\mathbb{I}) 设A, B 分别是 $m \times n$ 和 $n \times l$ 矩阵, 则

$$r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{A}\mathbf{B}) \leq \min\{r(\mathbf{A}), r(\mathbf{B})\}.$$

$$(14)\ P(A-C\mid AB\cup C) = \frac{P((A-C)(AB\cup C))}{P(AB\cup C)},$$

其中, $P((A-C)(AB\cup C)) = P(A \overline{C}(AB\cup C))$

$$=P(AB\overline{C}) = P(A)P(B)(1-P(C)) = 0.1,$$

$$P(AB \cup C) = P(AB) + P(C) - P(ABC)$$

= $P(A)P(B) + P(C) - P(A)P(B)P(C) = 0.6$,

所以,
$$P(A-C \mid AB \cup C) = \frac{0.1}{0.6} = \frac{1}{6}$$
.

附注 对于比较复杂的随机事件概率,总是利用简单的随机事件概率和概率计算公式计算. 概率计算公式主要有

设A. B 都是事件. 则

 $P(\overline{A}) = 1 - P(A)$ (逆概公式);

$$P(A \cup B) = P(A) + P(B) - P(AB)$$
 (加法公式):

特别当A, B 互不相容时, $P(A \cup B) = P(A) + P(B)$;

$$P(AB) = \begin{cases} P(A)P(B \mid A), & P(A) > 0, \\ P(B)P(A \mid B), & P(B) > 0 \end{cases}$$
 (乘法公式);

设 A_1 , A_2 , …, A_n 是一个完全事件组,则当 $P(A_i)>0$ $(i=1,\ 2,\ \cdots,\ n)$ 时,对任意随 机事件 B 有

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$$
 (全概率公式).

三、解答题

(15)
$$\[\exists \ y(x) = \varphi(\psi(x)) = \begin{cases} \psi(x), & |\psi(x)| \leq 1, \\ \sin\psi(x), & |\psi(x)| > 1 \end{cases} = \begin{cases} x^2, & |x| \leq 1, \\ \sin x^2, & 1 < |x| \leq 2, \\ \cos x, & |x| > 2 \end{cases}$$

|x| < 1 时, y'(x) = 2x;

1 < |x| < 2 时, $y'(x) = 2x\cos x^2$;

|x| > 2 时, $y'(x) = -\sin x$.

并且
$$y'(1) = \lim_{x \to 1^-} y'(x) = 2$$
, $y'(1) = \lim_{x \to 1^+} y'(x) = 2\cos 1$,

并且
$$y'_{-}(1) = \lim_{x \to 1^{-}} y'(x) = 2$$
, $y'_{+}(1) = \lim_{x \to 1^{+}} y'(x) = 2\cos 1$, $y'_{-}(2) = \lim_{x \to 2^{-}} y'(x) = 4\cos 4$, $y'_{+}(2) = \lim_{x \to 2^{+}} y'(x) = -\sin 2$,

所以 y'(x) 在点 x=1, 2 处不存在,由于 f(x) 是偶函数,所以 y'(x) 在点 x=-1, -2 处也 不存在,从而

$$y'(x) = \begin{cases} 2x, & |x| < 1, \\ 2x\cos x^2, & 1 < |x| < 2, \\ -\sin x, & |x| > 2, \end{cases}$$
$$y''(x) = \begin{cases} 2, & |x| < 1, \\ 2\cos x^2 - 4x^2 \sin x^2, 1 < |x| < 2, \\ -\cos x, & |x| > 2. \end{cases}$$

因此

(I)要计算分段函数复合函数的导数,应先算出复合函数的表达式.

(II) 对分段函数
$$f(x) = \begin{cases} f_1(x), & x \leq x_0, \\ f_2(x), & x > x_0, \end{cases}$$
 如果已算出 $f_1'(x)(x < x_0)$ 与 $f_2'(x)(x > x_0)$,则

当 $\lim_{x \to x_0^-} f_1'(x)$ 与 $\lim_{x \to x_0^+} f_2'(x)$ 都存在时, $f_-'(x_0) = \lim_{x \to x_0^-} f_1'(x)$, $f_+'(x_0) = \lim_{x \to x_0^+} f_2'(x)$.

(16) 因为
$$f(x) = \int_0^x \left(3 - \frac{3}{2}\sqrt{t} - \frac{1}{\sqrt{t}}\right) dt = 3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}$$
$$= -x^{\frac{1}{2}}(x^{\frac{1}{2}} - 1)(x^{\frac{1}{2}} - 2).$$

并且 $x \in (0, 1) \cup (4, +\infty)$ 时 $f(x) < 0, x \in (1, 4)$ 时 f(x) > 0 以及 f(0) = f(1) = f(4) = 0, 所以 y = f(x) ($x \ge 0$) 的图形如图答 9-16 所示,因此,所求的面积为

$$A = \int_0^1 - (3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}) dx + \int_1^4 (3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}) dx$$

$$= -\left(\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}}\right)\Big|_0^1 + \left(\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}}\right)\Big|_1^4 = 1.$$

附注 计算平面图形的面积时,应先画出该 图形.

图答 9-16

当平面图形 D 是由曲线 $y = f_1(x)$, $y = f_2(x)(f_1(x), f_2(x)$ 在[a, b]上连续)及直线 x =a, x = b 围成,则D的面积

$$S = \int_{a}^{b} |f_{1}(x) - f_{2}(x)| dx.$$

本题的平面图形可理解为是由曲线 $\gamma = f(x)$, 直线 $\gamma = 0$, x = 0, x = 4 围成的, 所以

$$A = \int_0^4 |f(x) - 0| dx = \int_0^4 |f(x)| dx$$
$$= \int_0^1 -f(x) dx + \int_1^4 f(x) dx.$$

(17) 由于
$$f(x)g(y-x) = \begin{cases} e^x, x \ge 0, & 0 \le y-x \le 2, \\ 1, & x < 0, & 0 \le y-x \le 2, \\ 0, & 其他, \end{cases}$$

所以, f(x)g(y-x) 仅在图答 9-17 阴影部分取非零值, 而在 xOy 平面的其他部分都取零值. 因此

图答 9-17

$$\int_{C} f(x)g(y-x)ds = \int_{\overline{AB}} e^{x}ds + \int_{\overline{BC}} ds + \int_{\overline{CD}} ds, \qquad (1)$$

其中,
$$\overline{AB}$$
: $\begin{cases} x = t, \\ y = 1 - t, \end{cases}$ $0 \le t \le \frac{1}{2}$,所以

$$\int_{\mathbb{R}} e^{x} ds = \int_{0}^{\frac{1}{2}} e^{t} \sqrt{(t')^{2} + [(1-t)']^{2}} dt = \sqrt{2}e^{t} \Big|_{0}^{\frac{1}{2}} = \sqrt{2}(e^{\frac{1}{2}} - 1);$$

$$\overline{BC}$$
: $\begin{cases} x = t, \\ \gamma = 1 + t, \end{cases}$ $-1 \le t \le 0$,所以

$$\int_{\overline{DC}} ds = \int_{-1}^{0} \sqrt{(t')^{2} + [(1+t)']^{2}} dt = \sqrt{2};$$

$$\overline{CD}$$
: $\begin{cases} x = t, \\ y = -1 - t, \end{cases}$ $-1 \le t \le -\frac{1}{2}$,所以

$$\int_{CD} ds = \int_{-1}^{-\frac{1}{2}} \sqrt{(t')^2 + [(-1-t)']^2} dt = \frac{1}{2} \sqrt{2}.$$

将它们代入式(1)得

$$\int_{C} f(x)g(y-x) ds = \sqrt{2}(e^{\frac{1}{2}}-1) + \sqrt{2} + \frac{1}{2}\sqrt{2} = \sqrt{2}e + \frac{1}{2}\sqrt{2}.$$

附注 关于弧长的平面曲线积分计算公式是:

设 f(x, y) 是连续函数,曲线 C: $\begin{cases} x = x(t), \\ y = y(t) \end{cases} (t_0 \le t \le t_1), \quad \sharp \mapsto x(t), \quad y(t) \to [t_0, t_1] \bot$ 具有连续的导数,则

$$\int_{C} f(x,y) ds = \int_{t_0}^{t_1} f(x(t),y(t)) \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

(18) (I) 利用
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n (x \in (-1,1])$$
 得

$$s(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n} x^{2n} = \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (x^2)^n$$

$$= \frac{1}{2} \ln(1 + x^2) (x \in [-1,1]).$$

 $(II) f(x) = e^x s(x) = \frac{1}{2} e^x \ln(1+x^2)$ 在[-1,1]上连续,在(0,1)内可导且

$$f'(x) = e^{x} \left[\frac{x}{1+x^2} + \frac{1}{2} \ln(1+x^2) \right].$$

显然在(0, 1)内f'(x) > 0,且f'(0) = 0. 下面证明在(-1, 0)内f'(x) < 0.

$$\varphi'(x) = \frac{1 - x^2}{(1 + x^2)^2} + \frac{x}{1 + x^2} = \frac{x^3 - x^2 + x + 1}{(1 + x^2)^2}.$$

记 $\psi(x) = x^3 - x^2 + x + 1$,则 $\psi'(x) = 3x^2 - 2x + 1 > 0(x \in (-1, 0))$,且 $\psi(-1) < 0$, $\psi(0) > 0$,所以存在 $x_0 \in (-1, 0)$,使得

$$\psi(x) \begin{cases} <0, & -1 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 0. \end{cases}$$

由此得到
$$\varphi'(x)$$

$$\begin{cases} <0, & -1 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 0. \end{cases}$$

于是,由 $\varphi(-1) = -\frac{1}{2} + \frac{1}{2} \ln 2 < 0$, $\varphi(0) = 0$ 知 $\varphi(x) < 0$,即f'(x) < 0($x \in (-1, 0)$).

由此得到f(x)在(-1, 1)内有唯一驻点x = 0,于是f(x)在[-1, 1]上的最大值为 $\max\{f(0), f(-1), f(1)\} = \frac{e}{2}\ln 2$,最小值为 $\min\{f(0), f(-1), f(1)\} = 0$.

附注 解本题(\mathbb{I})的关键是证明 $f'(x) < 0(x \in (-1, 0))$,即证明不等式

$$\frac{x}{1+x^2} + \frac{1}{2} \ln(1+x^2) < 0(x \in (-1, 0)).$$

题解中采用了导数方法.

(19) 由于 $f(\xi) + \xi f'(\xi) = 0$ 即为 $[xf(x)]'|_{x=\xi} = 0$. 所以作辅助函数 F(x) = xf(x),它在[0, 1]上连续,在[0, 1]内可导,且由

$$f(1) = 2 \int_0^{\frac{1}{2}} x f(x) dx = x_1 f(x_1) \left(x_1 \in \left[0, \frac{1}{2} \right] \right) (根据积分中值定理)$$

知 $F(1) = F(x_1)$,所以由罗尔定理知,存在 $\xi \in (x_1, 1) \subset (0, 1)$,使得 $F'(\xi) = 0$,即 $f(\xi) + \xi f'(\xi) = 0$.

附注 题解中综合使用了罗尔定理与积分中值定理.

(20)
$$\mathbf{A}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2)$$

$$= (\boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}.$$

记
$$\mathbf{P} = (\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3), \ \mathbb{P} \, \mathbb{P} \, \mathbb{P} \, \mathbb{E} \, \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}, \ \mathbb{P}$$

$$\boldsymbol{A} \sim \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix} \xrightarrow{\text{id}} \boldsymbol{B}.$$

則由
$$f(\lambda) = |\lambda E_3 - B| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -a & \lambda \end{vmatrix} = \begin{vmatrix} \lambda + 1 & -(\lambda + 1) & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ -1 & -a & \lambda \end{vmatrix}$$
$$= (\lambda + 1) \begin{vmatrix} 1 & -1 & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ 1 & a & -\lambda \end{vmatrix} = -(\lambda + 1) [\lambda^2 - \lambda - (1 + a)]$$
知

$$= (\lambda + 1) \begin{vmatrix} 1 & -1 & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ 1 & a & -\lambda \end{vmatrix} = -(\lambda + 1) [\lambda^2 - \lambda - (1 + a)]$$

方程 $f(\lambda) = 0$ 不可能有三重根,这是因为如果 $\lambda = -1$ 是三重根,则 $\lambda = -1$ 是 $\lambda^2 - \lambda - (1$ (+a) = 0 的二重根; 但是当 $\lambda = -1$ 是 $\lambda^2 - \lambda - (1+a) = 0$ 的根时 a = 1, 此时 $\lambda^2 - \lambda - (1+a) = 0$ a) = 0 成为 $\lambda^2 - \lambda - 2 = 0$, 这与 $\lambda = -1$ 是它的二重根矛盾.

方程 $f(\lambda) = 0$ 有二重根时,应分两种情形讨论:

($\dot{1}$) $\lambda = -1$ 是方程的二重根,则由以上计算此时 a = 1,并且由

知 $r(-E_3-B)=1=3-2$ (即矩阵B的阶数与 $\lambda=-1$ 的重数之差),所以此时B可相似对角 化. 由于 $A \sim B$, 所以此时A 可相似对角化.

(ii) $\lambda = -1$ 不是方程的二重根时,方程 $\lambda^2 - \lambda - (1+a) = 0$ 必有二重根,从而 $(-1)^2$ -4[-(1+a)]=0,即 $a=-\frac{5}{4}$,并且此时的二重特征根为 $\lambda=\frac{1}{2}$. 由

$$\frac{1}{2}\boldsymbol{E}_{3} - \boldsymbol{B} = \begin{pmatrix} \frac{1}{2} & -1 & -1 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & -2 & -2 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -2 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -2 \\ 0 & -\frac{3}{2} & -3 \\ 0 & -\frac{3}{4} & -\frac{3}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -2 \\ 0 & -\frac{3}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

知, $r\left(\frac{1}{2}E_3 - B\right) = 2 \neq 1 = 3 - 2$ 即矩阵 B 的阶数与 $\lambda = \frac{1}{2}$ 的重数之差),所以此时 B 不可相 似对角化,从而A不可相似对角化.

综上所述, 当 $a = -\frac{5}{4}$ 时, A 不可相似对角化.

附注 设 $A \in n$ 阶矩阵,则A 可相似对角化的充分必要条件有下列两种:

- (I) A 有 n 个线性无关的特征向量;
- (Ⅱ) \mathbf{A} 的每个特征值 λ_i (即特征方程 $\mathbf{A} \mathbf{E}_n \mathbf{A} \mathbf{I} = \mathbf{0}$ 的根), 都满足

$$r(\lambda_i \mathbf{E}_n - \mathbf{A}) = n - n_i$$
 (n_i 是 λ_i 的重数).

本题的求解是利用第(Ⅱ)种充分必要条件.

(21) (I)由题设知, A 有特征值 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -1$. 从而 λ_1 对应 A^* 的特征值 $\mu_1 = \frac{|A|}{\lambda_1} = 1$, 所以由 $A^*\alpha = \alpha$ 知 $\mu_1 = 1$ 对应的特征向量为 $\alpha = (1, 1, -1)^T$, 由此可知 A 的对应 $\lambda_1 = 1$ 的特征向量为 α .

设 $\lambda_2 = \lambda_3 = -1$ 对应的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)$,则由 \boldsymbol{A} 是实对称矩阵知 $\boldsymbol{\beta}$ 与 $\boldsymbol{\alpha}$ 正 交,即

$$b_1 + b_2 - b_3 = 0$$
.

故可取 β 为它的基础解系、即

$$\boldsymbol{\beta}_1 = (-1, 1, 0)^T, \quad \boldsymbol{\beta}_2 = (1, 0, 1)^T.$$

现将它们正交化:

$$\boldsymbol{\gamma}_{1} = \boldsymbol{\beta}_{1} = (-1, 1, 0)^{T},$$

$$\boldsymbol{\gamma}_{2} = \boldsymbol{\beta}_{2} - \frac{(\boldsymbol{\beta}_{2}, \boldsymbol{\gamma}_{1})}{(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{1})} \boldsymbol{\gamma}_{1} = \left(\frac{1}{2}, \frac{1}{2}, 1\right)^{T}.$$

显然, α , γ_1 , γ_2 是正交向量组, 现将它们单位化得

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\gamma}_{1}}{\parallel \boldsymbol{\gamma}_{1} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}_{2}}{\parallel \boldsymbol{\gamma}_{2} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{T}.$$

于是所求的正交矩阵为 $Q = (\xi_1, \xi_2, \xi_3)$,它使

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{pmatrix} 2 & & & \\ & -1 & & \\ & & -1 \end{pmatrix},$$

所以
$$\mathbf{A} = \mathbf{Q} \begin{pmatrix} 2 & & \\ & -1 & \\ & & -1 \end{pmatrix} \mathbf{Q}^{\mathrm{T}}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 2 & & \\ & -1 & \\ & & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

(II) 由于 $f(x_1, x_2, x_3)$ 在正交变换x = Qy下的标准形为 $2y_1^2 - y_2^2 - y_3^2$,

故令
$$\begin{cases} z_1 = \sqrt{2}y_1, \\ z_2 = y_2, \\ z_3 = y_3, \end{cases} \ \mathbb{P} \begin{cases} y_1 = \frac{1}{\sqrt{2}}z_1, \\ y_2 = z_2, \\ y_3 = z_3, \end{cases} \ \mathbb{P} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 1 \\ 1 \end{bmatrix} z, \ \mathbb{M}$$

 $2y_1^2 - y_2^2 - y_3^2 = z_1^2 - z_2^2 - z_3^2$ (规范形).

从而 $f(x_1, x_2, x_3)$ 在可逆线性变换

$$x = Qy = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \\ & 1 \end{pmatrix} z,$$

$$x = Cz = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} z$$

即

下化为规范形,即

$$f(x_1, x_2, x_3) = z_1^2 - z_2^2 - z_3^2$$

附注 (I) 设 A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 α ,则 A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

(Ⅱ)要熟练掌握用正交变换化二次型为标准形的方法.

(22) (I) 由于
$$F_Z(z) = P(Z \le z)$$
, 其中

$$P(Z \leq z) = P(XY \leq z)$$

$$= P(Y = -1)P(XY \leq z \mid Y = -1) + P(Y = 0)P(XY \leq z \mid Y = 0) + P(Y = 1)P(XY \leq z \mid Y = 1)$$

$$= \frac{1}{3} [P(X \ge -z \mid Y = -1) + P(0 \le z \mid Y = 0) + P(X \le z \mid Y = 1)]$$

$$=\frac{1}{3}[P(X \geqslant -z) + P(0 \leqslant z) + P(X \leqslant z)](利用 X 与 Y 相互独立)$$

$$= \begin{cases} \frac{1}{3} \int_{-z}^{+\infty} e^{-x} dx, & z < 0, \\ \frac{1}{3} \left(\int_{0}^{+\infty} e^{-x} dx + 1 + \int_{0}^{z} e^{-x} dx \right), & z \ge 0 \end{cases}$$

$$\begin{cases} \frac{1}{3} e^{z}, & z < 0, \end{cases}$$

$$= \begin{cases} \frac{1}{3}e^{z}, & z < 0, \\ 1 - \frac{1}{3}e^{-z}, & z \ge 0. \end{cases}$$

所以,
$$F_Z(z) = \begin{cases} \frac{1}{3} e^z, & z < 0, \\ 1 - \frac{1}{3} e^{-z}, & z \ge 0. \end{cases}$$

(
$$\prod$$
) Cov $(X, X^2) = E(X^3) - EX \cdot E(X^2)$,

其中,
$$EX = 1$$
, $E(X^2) = D(X) + (EX)^2 = 1 + 1^2 = 2$,

$$E(X^{3}) = \int_{-\infty}^{+\infty} x^{3} f_{X}(x) dx = \int_{0}^{+\infty} x^{3} e^{-x} dx = -\int_{0}^{+\infty} x^{3} de^{-x}$$
$$= -\left(x^{3} e^{-x} \Big|_{0}^{+\infty} - 3 \int_{0}^{+\infty} x^{2} e^{-x} dx\right) = 3 \int_{0}^{+\infty} x^{2} e^{-x} dx$$
$$= 3 \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = 3E(X^{2}),$$

所以, $Cov(X, X^2) = 3E(X^2) - E(X^2) = 2E(X^2) = 4$.

附注 由于 Z = XY 是连续型随机变量与离散型随机变量之积,所以要计算它的分布函数应从定义出发,即从计算概率

$$P(Z \le z) = P(XY \le z)$$

入手.

(23) 记 X 为独立重复射击中,直到命中时的射击次数,则 k_1 , k_2 , … , k_n 为来自总体 X 的简单随机样本值.由于

$$P(X = k) = (1 - p)^{k-1} p(k = 1, 2, \dots),$$

所以,
$$EX = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = -p\frac{\mathrm{d}}{\mathrm{d}p}\sum_{k=1}^{\infty} (1-p)^k$$
$$= -p\frac{\mathrm{d}}{\mathrm{d}p} \left(\frac{1-p}{p}\right) = \frac{1}{p}$$

令 $EX = \overline{k} = \frac{1}{n} \sum_{i=1}^{n} k_i$, 即 $\frac{1}{p} = \overline{k}$, 于是由矩估计法得 p 的矩估计值 $\hat{p} = \frac{1}{\overline{k}}$.

最大似然函数为

$$L(p) = (1-p)^{k_1-1}p \cdot (1-p)^{k_2-1}p \cdot \cdots \cdot (1-p)^{k_n-1}p$$

= $p^n (1-p)^{\sum_{i=1}^n k_i-n}$,

取对数 $lnL(p) = nlnp + \left(\sum_{i=1}^{n} k_i - n\right) ln(1-p)$. 令

$$\frac{\mathrm{dln}L(p)}{\mathrm{d}p} = 0, \exists \frac{n}{p} - \frac{n(\overline{k} - 1)}{1 - p} = 0,$$

解此方程得 $p = \frac{1}{k}$. 于是由最大似然估计法知 p 的最大似然估计值 $\hat{p} = \frac{1}{k}$.

附注 应熟练掌握总体未知参数的两种点估法方法:矩估计法与最大似然估计法.

模拟试题(十)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 A
 C
 B
 B
 A
 B
 B
 C

(1) 由于
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{e^{\frac{1}{x}} + e}{e^{\frac{1}{x}} - 1} \cdot \frac{\tan x}{x} \right) = -e,$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(\frac{1 + e \cdot e^{-\frac{1}{x}}}{1 - e^{-\frac{1}{x}}} \cdot \frac{\tan x}{x} \right) = 1.$$

所以, x=1 是 f(x) 的可去间断点. 因此选(A).

附注 应记住: $\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$, $\lim_{x\to 0^+} e^{\frac{1}{x}} = + \infty$.

(2) 当f(x) 是偶函数时,由定积分性质知 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 成立. 反之,当 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 时,等式两边对x 求导得f(x) + f(-x) = 2f(x),即 $f(x) = f(-x)(-\infty < x < +\infty)$. 所以f(x) 是偶函数. 因此选(C).

附注 应记住本题的结论,即

设 f(x) 是连续函数,则 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 是 f(x) 为偶函数的充分必要条件.

(3) 记
$$a_n = \int_0^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^2}} dx$$
,则 $a_n > 0$ ($n = 1, 2, \cdots$),且{ a_n } 单调减少,收敛于零,所以所

给级数收敛. 但是由于 $-1 < \alpha \le 0$ 时,由 $a_n > \frac{1}{\sqrt{2}} \int_0^{\frac{1}{n}} x^{\alpha} \mathrm{d}x = \frac{1}{\sqrt{2}(\alpha+1)} \left(\frac{1}{n}\right)^{\alpha+1} (n=1,2,\cdots)$

及 $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{1+\alpha}$ 发散,知 $\sum_{n=1}^{\infty} a_n$ 发散,从而所给级数在 $\alpha > -1$ 时不是绝对收敛.

综上所述, 所给级数条件收敛. 因此选(B).

附注 本题的题解,实际上表明所给级数在 $\alpha > -1$ 时是收敛的,但不是对任意 $\alpha \in (-1, +\infty)$ 都是绝对收敛的,因此对所有的 $\alpha > -1$,所给级数收敛性的结论是条件收敛.

(4) 由于
$$I_1 = \int_{D_1} \sqrt{x^2 + y^2} d\sigma = \frac{W \pm \overline{m}}{\int_0^2 d\theta} \int_0^1 r^2 dr = \frac{2\pi}{3},$$

$$I_2 = \int_{D_2} \sqrt{x^2 + y^2} d\sigma = \frac{W \pm \overline{m}}{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta} \int_0^{\cos \theta} r^2 dr$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{3} \cos^3 \theta d\theta = \frac{2}{3} \int_0^{\frac{\pi}{2}} \cos^3 \theta d\theta = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9},$$

 $I_3 = I_2$ (这是由于 D_2 与 D_3 关于直线 y = x 对称,在对称点(x, y)与(y, x)处, $\sqrt{x^2 + y^2}$ 的值 彼此相等,所以 $I_2 = I_3$),因此选(B).

附注 题解中,用极坐标计算得出 I_1 , I_2 的值,但 $I_2 = I_3$ 是利用对称性得到的. 在二重积分计算中,应充分利用积分区域的对称性,以化简计算.

(5) 由题设知 $r(A^*)=4-3=1$,从而 r(A)=4-1=3. 所以 A 的特征值中有且仅有三个不为零. 由此推得 $f(x_1, x_2, x_3, x_4)$ 的标准形应形如 $a_1y_1^2+a_2y_2^2+a_3y_3^2(a_1, a_2, a_3)$ 零). 因此选(A).

附注 题解中利用了以下两个结论:

(I) 设A 是n 阶矩阵, A* 是它的伴随矩阵, 则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n-1, \\ 0, & r(A) < n-1. \end{cases}$$

- (II) 设A 是实对称矩阵,则A 可相似对角化.
- (6) 由于方程组 $Ax = b(A \not\in m \times n$ 矩阵, $x \not\in n$ 维未知列向量, $b \not\in m$ 维列向量)有无 穷多解的充分必要条件是

$$r(A \mid b) = r(A) < n.$$

记 $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_l)(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_l)$ 都是 m 维列向量), $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ ($\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ 都是 n 维列向量), 则 $\mathbf{A}\mathbf{X} = \mathbf{B}$ 有无穷多解的充分必要条件是

$$r(A \mid b_1) = r(A) \leq n, \dots, r(A \mid b_l) = r(A) \leq n$$

(其中至少有一式只取不等号),即

$$r(\mathbf{A} \mid \mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_l) = r(\mathbf{A}) < n.$$

由此得到、矩阵方程AX = B有无穷多解的充分必要条件是

$$r(A \mid B) = r(A) < n.$$

因此选(B).

附注 应记住关于矩阵方程 $AX = B(A \text{ } E \text{ } m \times n \text{ } 矩阵, B \text{ } E \text{ } m \times l, X \text{ } E \text{ } n \times l \text{ } 未知矩阵)$ 的有解性结论:

该方程有无穷多解的充分必要条件是 $r(A \mid B) = r(A) < n$; 有唯一解的充分必要条件是 $r(A \mid B) = r(A) = n$; 无解的充分必要条件是 $r(A \mid B) > r(A)$.

(7) 由于f(x)是概率密度,所以 $\int_{-\infty}^{+\infty} f(x) dx = 1$,即

$$a \int_{-\infty}^{1} f_1(x) dx + b \int_{1}^{+\infty} f_2(x) dx = 1.$$
 (1)

由 $f_1(x)$ 是 $X \sim N(1, 1)$ 的概率密度知, $\int_{-\infty}^1 f_1(x) dx = \frac{1}{2}$.

由 $f_2(x)$ 是 Y 的概率密度知 $\int_1^{+\infty} f_2(x) dx = 1$. 将它代入式(1) 得 $\frac{1}{2}a + b = 1$. 因此选(B).

附注 题解中利用了以下结论:

(I)设 $X \sim N(a, \sigma^2)$,则它的概率密度 f(x)满足

$$\int_{-\infty}^{a} f(x) dx = \int_{a}^{+\infty} f(x) dx = \frac{1}{2}.$$

(II) 设 X 的概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda(x-a)}, & x \leq a, \\ 0, & x > a, \end{cases}$ ($\lambda > 0$), 则 $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1.$

(8) 当 $\mu = 0$ 时,

$$\frac{\sqrt{nX}}{\sigma} = \frac{\overline{X}}{\sigma/\sqrt{n}} \sim N(0,1),$$

$$\frac{Q^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1),$$

$$\frac{\sqrt{n(n-1)X}}{Q} = \frac{\frac{\sqrt{nX}}{\sigma}}{\sqrt{(Q^2/\sigma^2)/(n-1)}} \sim t(n-1).$$

所以

因此选(C).

附注 应记住数理统计中服从三个抽样分布的随机变量的构成:

(I) 设 X_1, X_2, \dots, X_n 都服从N(0, 1) 的相互独立的随机变量,则 $X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n).$

(Ⅱ) 设
$$X \sim N(0, 1)$$
, $Y \sim \chi^2(n)$, 且 $X = Y$ 相互独立, 则
$$\frac{X}{\sqrt{Y/n}} \sim t(n).$$

(III) 设
$$X \sim \chi^2(n_1)$$
, $Y \sim \chi^2(n_2)$, 且 X 与 Y 相互独立,则
$$\frac{X/n_1}{Y/n_2} \sim F(n_1,n_2).$$

二、填空题

附注 $\sin x$ 的 2n-1 阶带拉格朗日型余项的麦克劳林公式为

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + \frac{1}{(2n+1)!}\sin\left(\xi + (2n+1) \cdot \frac{\pi}{2}\right)x^{2n+1},$$

而不是

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + \frac{1}{(2n)!}\sin\left(\xi + 2n \cdot \frac{\pi}{2}\right)x^{2n}.$$

同样, cos x 的 2n 阶带拉格朗日型余项的麦克劳林公式为

$$\cos x = 1 - \frac{1}{2!}x^{2} + \dots + (-1)^{n} \frac{1}{(2n)!}x^{2n} + \frac{1}{(2n+2)!}\cos\left(\xi + (2n+2) \cdot \frac{\pi}{2}\right)x^{2n+2},$$

而不是

$$\cos x = 1 - \frac{1}{2!}x^{2} + \dots + (-1)^{n} \frac{1}{(2n)!}x^{2n} + \frac{1}{(2n+1)!}\cos\left(\xi + (2n+1) \cdot \frac{\pi}{2}\right)x^{2n+1},$$

以上的 ξ 都是介于0与x之间的实数

$$(10) \int_{0}^{a} x \sqrt{ax - x^{2}} dx = \int_{0}^{a} x \sqrt{\left(\frac{a}{2}\right)^{2} - \left(x - \frac{a}{2}\right)^{2}} dx$$

$$\stackrel{\text{(a)}}{=} \frac{1}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(t + \frac{a}{2}\right) \sqrt{\left(\frac{a}{2}\right)^{2} - t^{2}} dt$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} t \sqrt{\left(\frac{a}{2}\right)^{2} - t^{2}} dt + \frac{a}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^{2} - t^{2}} dt$$

$$= \frac{a}{2} \cdot \frac{\pi}{2} \left(\frac{a}{2}\right)^{2} = \frac{\pi}{16} a^{3}.$$

附注 题解中 $\int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt = \frac{\pi}{2} \left(\frac{a}{2}\right)^2 = \frac{\pi}{8} a^2$ 是根据定积分的几何意义直接得到

(11) 由于所给微分方程可改写成

 $(x^2 dy + 2xy dx) - dy - \cos x dx = 0,$ $d(x^2 y - y - \sin x) = 0.$

即

的.

所以, $x^2y - y - \sin x = C$. 将 x = 0, y = 1 代入得 C = -1. 因此所求的特解为

$$x^2y - y - \sin x = -1.$$

附注 本题也可以用以下方法求解:

将所给微分方程改写成

$$y' + \frac{2x}{x^2 - 1}y = \frac{\cos x}{x^2 - 1}(-\text{阶线性微分方程}),$$

它的通解为

$$y = e^{-\int \frac{2x}{x^2 - 1} dx} \left(C + \int \frac{\cos x}{x^2 - 1} e^{\int \frac{2x}{x^2 - 1} dx} dx \right)$$

$$= \frac{1}{x^2 - 1} (C + \int \cos x dx) = \frac{1}{x^2 - 1} (C + \sin x).$$

将 y(0) = 1 代入上式得 C = -1. 所以所求的特解为

$$y = \frac{1}{x^2 - 1} (\sin x - 1).$$

$$(12) \int_{0}^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{1} f(r\cos\theta, r\sin\theta) r dr = \iint_{D} f(x, y) d\sigma,$$

$$\sharp \dot{\theta}, \ D = \left\{ (r, \theta) \middle| \frac{1}{\cos\theta + \sin\theta} \leqslant r \leqslant 1, \ 0 \leqslant \theta \leqslant \frac{\pi}{2} \right\}$$

兵中,
$$D = \{(r, \theta) \mid \frac{1}{\cos \theta + \sin \theta} = r = 1, 0 \le \theta = \frac{1}{2}\}$$

= 第一象限内由直线 $x + y = 1$ 和圆 $x^2 + y^2 = 1$ 围成的闭区域
= $\{(x, y) \mid 1 - x \le y \le \sqrt{1 - x^2}, 0 \le x \le 1\}$.

$$\text{FFU}\int_0^{\frac{\pi}{2}}\!\mathrm{d}\theta\int_{\frac{1}{\cos\theta+\sin\theta}}^1\!\!f(r\!\cos\!\theta,r\!\sin\!\theta)\,r\mathrm{d}r\,=\,\int_0^1\!\!\mathrm{d}x\int_{\frac{1-x}{1-x}}^{\sqrt{1-x^2}}\!\!f(x,y)\,\mathrm{d}y.$$

附注 本题是分两步完成的:

首先,将所给的极坐标系中的二次积分转换成直角坐标系中的二重积分,此时被积函数为f(x,y),积分区域为D.

然后,将所得到的二重积分转换成先 y 后 x 的二次积分.

(13)
$$\mathbf{B} = \mathbf{A}^2 - \mathbf{A} - 2\mathbf{E}_3 = (\mathbf{A} + \mathbf{E}_3)(\mathbf{A} - 2\mathbf{E}_3).$$
 (1)

由 $A^3 = E_3$ 得 $A^3 + E_3 = 2E_3$,即 $(A + E_3) \cdot \frac{1}{2} (A^2 - A + E_3) = E_3$,所以 $A + E_3$ 可逆,且

$$(A + E_3)^{-1} = \frac{1}{2}(A^2 - A + E_3). \tag{2}$$

由 $A^3 = E_3$ 得 $A^3 - 8E_3 = -7E_3$,即 $(A - 2E_3) \cdot \left(-\frac{1}{7}\right)(A^2 + 2A + 4E_3) = E_3$,所以 $A - 2E_3$ 可逆,且

$$(\mathbf{A} - 2\mathbf{E}_3)^{-1} = -\frac{1}{7}(\mathbf{A}^2 + 2\mathbf{A} + 4\mathbf{E}_3). \tag{3}$$

由式(1)~(3)知 B 可逆,且

$$B^{-1} = (A - 2E_3)^{-1}(A + E_3)^{-1}$$

$$= -\frac{1}{7}(A^2 + 2A + 4E_3) \cdot \frac{1}{2}(A^2 - A + E_3)$$

$$= -\frac{1}{14}(A^4 - A^3 + A^2 + 2A^3 - 2A^2 + 2A + 4A^2 - 4A + 4E_3)$$

$$= -\frac{1}{14}(A^4 + A^3 + 3A^2 - 2A + 4E_3)$$

$$= -\frac{1}{14}(A + E_3 + 3A^2 - 2A + 4E_3)$$

$$= -\frac{1}{14}(3A^2 - A + 5E_3).$$

附注 本题的 $A + E_3$ 与 $A - 2E_3$ 的逆矩阵都按定义计算的:

设A, B 都是n 阶矩阵, 如果 $AB = E_n$, 则A, B 都是可逆矩阵, 且 $A^{-1} = B$, $B^{-1} = A$.

(14) 由于
$$\frac{a(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}} = \frac{\frac{a}{\sqrt{3}\sigma}(X_1 + X_2)}{\sqrt{(X_3^2 + X_4^2 + X_5^2)/3\sigma^2}}$$
服从 t 分布(实际上是服从 $t(3)$ 分布),

显然, 其中 $(X_3^2 + X_4^2 + X_5^2)/\sigma^2 \sim \chi^2(3)$, 所以必有

$$\frac{a}{\sqrt{3}\sigma}(X_1 + X_2) \sim N(0,1).$$

从而由
$$D\left(\frac{a}{\sqrt{3}\sigma}(X_1+X_2)\right)=1$$
,即 $\frac{a^2}{3\sigma^2}\cdot 2\sigma^2=1$.由此得到 $a=\sqrt{\frac{3}{2}}$.

附注 服从 t(n) 的随机变量定义如下:

设随机变量 $X \sim N(0, 1)$, $Y \sim \chi^2(n)$, 且 X 与 Y 相互独立,则随机变量 $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$.

三、解答题

(15) 由于x < 0 时, g(x) < 0; x > 0 时, g(x) > 0, 并且由

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}} \arctan \frac{1}{x}}{1 + e^{\frac{2}{x}}} = 0,$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{e^{-\frac{1}{x}} \arctan \frac{1}{x}}{e^{-\frac{2}{x}} + 1} = 0$$

知 $\lim_{x \to 0} g(x) = 0$. 因此

$$\lim_{x \to 0^{-}} f(g(x)) \xrightarrow{\frac{4}{3}u = g(x)} \lim_{u \to 0^{-}} f(u)$$

$$= \lim_{u \to 0^{-}} \frac{\ln(1 - u^{3})}{u - \arcsin u} = -\lim_{u \to 0^{-}} \frac{u^{3}}{u - \arcsin u}$$

$$\xrightarrow{\overset{2}{\cancel{AB \times 35 \times 30^{-}}}} - 3 \lim_{u \to 0^{-}} \frac{u^{2}}{1 - \frac{1}{\sqrt{1 - u^{2}}}}$$

$$= -3 \lim_{u \to 0^{-}} \frac{u^{2}}{\sqrt{1 - u^{2}} - 1} = -3 \lim_{u \to 0^{-}} \frac{1}{-\frac{1}{2}} = 6,$$

$$\lim_{x \to 0^{+}} f(g(x)) \xrightarrow{\overset{4}{\cancel{AB \times 30^{-}}}} \lim_{u \to 0^{+}} f(u)$$

$$= \lim_{u \to 0^{+}} \frac{e^{-u} + \frac{1}{2}u^{2} + u - 1}{u \sin \frac{u}{6}} = 6 \lim_{u \to 0^{+}} \frac{e^{-u} + \frac{1}{2}u^{2} + u - 1}{u^{2}}$$

$$\frac{\text{ABWiking}}{\text{Both Air } 6 \lim_{u \to 0^+} \frac{-e^{-u} + u + 1}{2u}$$

$$= 3\left(-\lim_{u \to 0^+} \frac{e^{-u} - 1}{u} + 1\right) = 6,$$

由此得到 $\lim_{x \to 0^+} f(g(x)) = 6.$

附注 题解中先计算出 $\lim_{x\to 0} g(x) = 0$,然后计算 $\lim_{u\to 0} f(u)$,这样计算 $\lim_{x\to 0} f(g(x))$ 比较快捷

(16) 由于曲线 y = f(x) 与曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处有相同的切线,从而

$$f'(1) = y'(1) = -1$$
(曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处的切线斜率 $y'(1)$ 为 -1). (1)

此外,曲线 y = f(x) 与曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处有相同的凹凸性,而 $x^2 + y^2 = 2$ 在点(1, 1)处是凸的,从而 f''(1) < 0. 由于 f''(x) 不变号,所以在(1, 2)内 f''(x) < 0,从而 f'(x) 单调减少,故 $f'(x) < f'(1) = -1 < 0(x \in (1, 2))$,因此 f(x) 在(1, 2)内无极值点.

$$f(2) = f(1) + [f(2) - f(1)] = 1 + f'(\xi)$$
(其中, $\xi \in (1,2)$) <1 + $f'(1) = 0$

知f(1)f(2) < 0, 并且上面已证 $f'(x) < 0(x \in (0, 1))$, 所以f(x)在(1, 2)内有唯一零点.

附注 曲率圆定义如下:

设函数 y = f(x) 在点 x_0 处二阶可导,则当曲线 y = f(x) 在点 (x_0, y_0) (其中, $y_0 = f(x_0)$)

处的曲率 $K \neq 0$ 时,称以点 D 为圆心, $R = \frac{1}{K}$ 为半径的圆为该曲线在点 (x_0, y_0) 的曲率圆,

其中D位于该曲线的在点 (x_0, y_0) 处的法线(在凹的一侧)上,与点 (x_0, y_0) 的距离为R.

曲率圆与曲线 y = f(x) 在点 (x_0, y_0) 处有相同的切线及凹凸性.

(17) 由于
$$a_n = -\left(1 + \frac{1}{n}\right)a_{n-1} = (-1)^2\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n-1}\right)a_{n-2}$$

 $= \dots = (-1)^{n-2}\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n-1}\right)\dots\frac{4}{3}a_2$
 $= (-1)^{n-2}\frac{7}{6}(n+1) = (-1)^n\frac{7}{6}(n+1)(n=3, 4, \dots),$

所以 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n+1}{n} = 1$,即 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 1,

由于
$$x = -1$$
, 1时, $\sum_{n=0}^{\infty} a_n x^n = 1 - 2x + \frac{7}{2}x^2 + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6}(n+1)x^n$ 分别成为
$$\frac{13}{12} + \sum_{n=3}^{\infty} \frac{7}{6}(n+1), \frac{5}{2} + \sum_{n=3}^{\infty} (-1)^n \cdot \frac{7}{6}(n+1),$$

它们都发散. 因此 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域为(-1,1). 对任意 $x \in (-1,1)$,有

$$s(x) = \sum_{n=0}^{\infty} a_n x^n = 1 - 2x + \frac{7}{2}x^2 + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6} (n+1)x^n$$

附注 当计算幂级数的和函数 s(x)时,应先算出该幂级数的收敛域,即确定 s(x)的定义域.

(18) 记 $f(x) = xe^{2x} - 2x - \cos x$, 则 f(x) 在[0, 1]上有连续的导数,在(0, 1)内二阶可导,且由

$$f'(x) = e^{2x} + 2xe^{2x} - 2 + \sin x,$$

$$f''(x) = 4(1+x)e^{2x} + \cos x > 0,$$

知 f'(x)在(0, 1)内单调增加, $f'(0)f'(1) = (-1) \cdot (3e^2 - 2 + \sin 1) < 0$,所以存在唯一 $x_0 \in (0, 1)$,使得 $f'(x_0) = 0$. 由此得到

$$f'(x) \begin{cases} <0, & 0 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 1. \end{cases}$$

因此 由 f(0) = -1 < 0,知 f(x) < 0($x \in (0$, x_0]),即方程 f(x) = 0 在 $(0, x_0]$ 上无实根.此外,由 $e^{2-2-\cos 1}$ $f(x_0)f(1) < 0$ 及 f'(x) > 0($x \in (x_0, 1)$)知方程 f(x) = 0 在 $(x_0, 1)$ 上有唯一实根.

综上所述, 所给方程 $xe^{2x} - 2x - \cos x = 0$ 在(0, 1) 内有唯一实根.

附注 由题解中分析可知,曲线 y = f(x) 如图答 10-18 所示,由图可知方程 f(x) = 0 在(0, 1) 内有且仅有一个实根.

(19) 记 S 切下 yOz 平面、xOz 平面及平面 z=1 的部分为 S_1 (前侧), S_2 (右侧)及 S_3 (下侧), 则

$$\iint_{S} x^{2}z dy dz + yz^{2} dz dx + xz^{2} dx dy$$

$$= \iint_{S+S_{1}+S_{2}+S_{3}} x^{2}z dy dz + yz^{2} dz dx + xz^{2} dx dy - \iint_{S_{1}} x^{2}z dy dz + xz^{2} dx dx +$$

其中,
$$\int_{S_2} x^2 z dy dz + yz^2 dz dx + xz^2 dx dy = \int_{S_3} x^2 z dy dz + yz^2 dz dx + xz^2 dx dy,$$
其中,
$$\int_{S+S_1+S_2+S_3} x^2 z dy dz + yz^2 dz dx + xz^2 dx dy = -\int_{0}^{1} \left[\frac{\partial (x^2 z)}{\partial x} + \frac{\partial (yz^2)}{\partial y} + \frac{\partial (xz^2)}{\partial z} \right] dv$$

$$(\Omega \text{ 是由 } S + S_1 + S_2 + S_3 \text{ 围成的立体})$$

$$\frac{\text{高斯公式}}{n} - \iint_{\Omega} (4xz + 2yz) dv = -\int_{0}^{1} dz \iint_{\Omega} (4xz + 2yz) d\sigma$$

$$(其中, D_z = \{(x,y) \mid x^2 + y^2 \leq z, x \geq 0, y \geq 0\})$$

$$= -\int_{0}^{1} dz \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{5} (4zrcos \theta + 2zrsin \theta) r dr$$

$$= -\int_{0}^{1} 2z \frac{5}{2} dz = -\frac{4}{7},$$

$$\iint_{S_1} x^2 z dy dz + yz^2 dz dx + xz^2 dx dy = 0 \text{ (lh } S_1 \text{ 位于平面 } x = 0 \text{ L)},$$

$$\iint_{S_2} x^2 z dy dz + yz^2 dz dx + xz^2 dx dy = -\iint_{D_{xy}} x dx dy (其中, D_{xy} = \{(x,y) \mid x^2 + y^2 \leq 1, x \geq 0, y \geq 0\})$$

$$= -\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} rcos \theta \cdot r dr = -\frac{1}{3}.$$

$$\text{所以, } A = -\frac{4}{7} + \frac{1}{3} = -\frac{5}{21}.$$

$$\text{由于 } y[f(x) + 3e^{2x}] dx + f'(x) dy \text{ 是某个二元函数的全微分,所以}$$

$$\frac{\partial f'(x)}{\partial x} = \frac{\partial \{y[f(x) + 3e^{2x}]\}}{\partial y}, \text{ pl} f''(x) - f(x) = 3e^{2x},$$
它有通解
$$f(x) = C_1e^x + C_2e^{-x} + e^{2x}, \text{ LH}$$

$$f'(x) = C_1 e^x - C_2 e^{-x} + 2e^{2x}.$$

将
$$f(0) = A = -\frac{5}{21}$$
, $f'(0) = -A = \frac{5}{21}$ 代入以上两式得 $C_1 = -\frac{3}{2}$, $C_2 = \frac{11}{42}$.

所以,
$$f(x) = -\frac{3}{2}e^x + \frac{11}{42}e^{-x} + e^{2x}$$
.

附注 题解中有两点值得注意:

(I) 利用高斯公式计算所给的曲面积分,故需添上 S_1 , S_2 , S_3 , 但由此构成的闭曲面方向为内侧,故有

$$\iint\limits_{S+S_1+S_2+S_3} x^2z\mathrm{d}y\mathrm{d}z \,+\, yz^2\mathrm{d}z\mathrm{d}x \,+\, xz^2\mathrm{d}x\mathrm{d}y \,=\, -\, \iint\limits_{\Omega} \left[\frac{\partial \, \left(\, x^2z \, \right)}{\partial \, x} \,+\, \frac{\partial \, \left(\, yz^2 \, \right)}{\partial \, y} \,+\, \frac{\partial \, \left(\, xz^2 \, \right)}{\partial \, z} \right] \mathrm{d}v.$$

(II) $f''(x) - f(x) = 3e^{2x}$ 的通解为 $f(x) = C_1 e^x + C_2 e^{-x} + e^{2x}$ 是这样算得的:

首先,对应的齐次线性微分方程 f''(x) - f(x) = 0 的通解为

$$y = C_1 e^x + C_2 e^{-x}$$
.

其次, $f''(x) - f(x) = 3e^{2x}$ 有特解 $y^* = Me^{2x}$, 将它代入这个非齐次线性微分方程得 M =1, 即 $y^* = e^{2x}$. 所以通解 $f(x) = y + y^* = Ce^x + C_2e^{-x} + e^{2x}$.

(20)(I)由于所给方程组

$$(\boldsymbol{\alpha}_{1} - \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}, -\boldsymbol{\alpha}_{1} + a\boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3})\boldsymbol{x} = \boldsymbol{\alpha}_{4},$$
即为($\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$)
$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} \boldsymbol{x} = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

于是由 α_1 , α_2 , α_3 线性无关, 即 $(\alpha_1, \alpha_2, \alpha_3)$ 是可逆矩阵, 得所给方程组的同解方程组

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \tag{1}$$

对式(1)的增广矩阵 $\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & a & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$ 施行初等行变换得

$$\overline{A} \to \begin{pmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & a - 1 & | & 2 \\ 0 & 1 & 1 & | & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 0 & a - 2 & | & 0 \\ 0 & 1 & 1 & | & 2 \end{pmatrix},$$

所以, 当所给方程组有无穷多解时, $r(\overline{A}) = r(A) < 3(其中, A 是式(1))$ 的系数矩阵), 于是 a-2=0, $\mathbb{P} a=2$.

(Ⅱ) 当a=2时,式(1),即所给方程组

$$\begin{cases} x_1 & -x_3 = 1, \\ x_2 + x_3 = 2 \end{cases} \tag{2}$$

同解. 它对应的导出组通解为 $C(1, -1, 1)^{T}$, 且式(2)有特解(1, 2, 0) T . 所以式(2), 即 所给方程组的通解为

$$x = C(1, -1,1)^{\mathrm{T}} + (1,2,0)^{\mathrm{T}} (C$$
是任意常数).

附注 本题(I)获解的关键是根据 α_1 , α_2 , α_3 线性无关, 将所给的线性方程组化简为 同解方程组(1).

(21) (I) 由
$$|\lambda E_3 - A|$$
 = $\begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & 0 \\ 0 & -a & \lambda - 6 \end{vmatrix}$ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 知 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 和 A 和 A 有特征值 λ = $(\lambda + 2)(\lambda - 6)^2$ 和 A A 和 A

-2, 6(二重). 于是, A 可相似对角化时必有

$$r(6E_3 - A) = 3 - 2 = 1, (1)$$

其中, $6E_3 - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -8 & 0 \end{pmatrix}$ 初等行变换 $\begin{pmatrix} 4 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & -8 & 0 \end{pmatrix}$,因此,满足式(1)的 a = 0,即当 A

可相似对角化时, a=0.

(II)
$$a = 0$$
 时, $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$, 所以

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x} = 2x_1^2 + 10x_1 x_2 + 2x_2^2 + 6x_3^2$$
$$= \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \mathbf{x}.$$

记
$$\mathbf{B} = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 (实对称矩阵),则

$$|\lambda E_3 - B| = \begin{vmatrix} \lambda - 2 & -5 & 0 \\ -5 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 6 \end{vmatrix} = (\lambda + 3)(\lambda - 6)(\lambda - 7).$$

所以 B 有特征值 $\lambda = -3$, 6, 7.

设对应 $\lambda = -3$ 的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则 α 满足

$$\begin{pmatrix} -5 & -5 & 0 \\ -5 & -5 & 0 \\ 0 & 0 & -9 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}, \, \mathbb{BI} \left\{ \begin{array}{ccc} a_1 + a_2 & = 0, \\ & a_3 = 0. \end{array} \right.$$

于是取 α 为它的基础解系,即 $\alpha = (-1, 1, 0)^{T}$.

设对应 $\lambda = 6$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 $\boldsymbol{\beta}$ 满足

$$\begin{pmatrix} 4 & -5 & 0 \\ -5 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = 0, \exists \emptyset \begin{cases} 4b_1 - 5b_2 = 0, \\ -5a_1 + 4b_2 = 0, \end{cases}$$

于是取 $\boldsymbol{\beta}$ 为它的基础解系,即 $\boldsymbol{\beta} = (0, 0, 1)^{T}$.

设对应 λ = 7 的特征向量为 $\gamma = (c_1, c_2, c_3)^T$, 则由 B 是实对称矩阵知 γ 与 α , β 都正 交,即

$$\begin{cases} -c_1 + c_2 & = 0, \\ c_3 & = 0, \end{cases}$$

于是取 γ 为它的基础解系,即 $\gamma = (1, 1, 0)^{T}$

 α , β , γ 是正交向量组, 现将它们单位化, 即

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\beta}}{\parallel \boldsymbol{\beta} \parallel} = (0, 0, 1)^{T},$$

$$\boldsymbol{\xi}_3 = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{\mathrm{T}}.$$

记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则所求的正交变换为

$$x = Qy = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} y,$$

它将二次型 $f(x_1, x_2, x_3)$ 化为标准形 $-3y_1^2 + 6y_2^2 + 7y_3^2$

附注 用正交变换将二次型 $f(x_1, x_2, x_3)$ 化为标准形,首先要将该二次型表示成 $x^T B x$ (其中, B 是实对称矩阵),这是本题获解的关键.此外,应熟练掌握用正交变换化二次型为标准形的方法.

(22) (I) 记
$$U$$
 的分布函数为 $F(u)$, 则
$$F(u) = P(U \le u) = P\{\max\{X,Y\} \le u\}$$

$$= P(X \le u, Y \le u) = \iint_{\substack{x \le u \\ y \le u}} f(x,y) d\sigma$$

$$= \begin{cases} \int_0^u dx \int_x^u x e^{-y} dy, & u > 0, \\ 0, & u \le 0 \end{cases}$$

$$\left(u > 0 \text{ 时}, \pi \iint_{\substack{x \le u \\ y \le u}} f(x,y) d\sigma = \iint_{\Delta} x e^{-y} d\sigma, \Delta \text{ 如图答 10-22 的带阴影的三角形} \right)$$

$$= \begin{cases} 1 - e^{-u} - u e^{-u} - \frac{1}{2} u^2 e^{-u}, & u > 0, \\ 0, & u \le 0. \end{cases}$$

所以. U 的概率密度

$$\varphi(u) = \frac{\mathrm{d}F(u)}{\mathrm{d}u} = \begin{cases} \frac{1}{2}u^2\mathrm{e}^{-u}, & u > 0, \\ 0, & u \leq 0. \end{cases}$$

$$(II) 因为 EU = \int_{-\infty}^{+\infty} u\varphi(u) \, \mathrm{d}u = \int_{0}^{+\infty} \frac{1}{2}u^3\mathrm{e}^{-u} \, \mathrm{d}u = -\frac{1}{2}\int_{0}^{+\infty} u^3\mathrm{d}\mathrm{e}^{-u}$$

$$= -\frac{1}{2} \left(u^3\mathrm{e}^{-u} \Big|_{0}^{+\infty} - 3 \int_{0}^{+\infty} u^2\mathrm{e}^{-u} \, \mathrm{d}u \right)$$

$$= \frac{3}{2}ET^2 \Big(其中, T \sim E(1), 即 T 的概率密度为 f_T(t) = \begin{cases} \mathrm{e}^{-t}, & t > 0, \\ 0, & t \leq 0 \end{cases} \Big)$$

$$= \frac{3}{2} [DT + (ET)^2] = \frac{3}{2} (1 + 1^2) = 3,$$

所以 $P(U \leq EU) = P(U \leq 3) = \int_{-\infty}^{3} \varphi(u) \, \mathrm{d}u = \int_{0}^{3} \frac{1}{2}u^2\mathrm{e}^{-u} \, \mathrm{d}u = -\frac{1}{2} \int_{0}^{3} u^2\mathrm{d}\mathrm{e}^{-u}$

$$= -\frac{1}{2} \left(u^2\mathrm{e}^{-u} \Big|_{0}^{3} - 2 \int_{0}^{3} u\mathrm{e}^{-u} \, \mathrm{d}u \right) = -\frac{9}{2}\mathrm{e}^{-3} - \int_{0}^{3} u\mathrm{d}\mathrm{e}^{-u}$$

$$= -\frac{9}{2}e^{-3} - \left(ue^{-u}\Big|_{0}^{3} - \int_{0}^{3}e^{-u}du\right) = 1 - \frac{17}{2}e^{-3}.$$

附注 当 X 与 Y 相互独立,且概率密度分别为 $f_1(x)$, $f_2(y)$ 时, $U = \max\{X, Y\}$ 的概率密度为

$$\varphi(u) = f_1(u)F_2(u) + f_2(u)F_1(u)$$
,

其中 $F_1(x)$, $F_2(y)$ 分别是X与Y的分布函数.

当 X 与 Y 不相互独立,但(X, Y)的概率密度为 f(x, y)时, $U = \max\{X, Y\}$ 的概率密度应按题中的方法计算,不能直接套用上述公式.

(23) (I)由于 \overline{X} 与 S^2 相互独立,所以 \overline{X}^2 与 S^4 也相互独立,因此,

$$E(\overline{X}^2S^4) = E(\overline{X}^2)E(S^4), \qquad (1)$$

其中, 由 $\overline{X} \sim N\left(0, \frac{1}{n}\right)$ 知, EX = 0, $D\overline{X} = \frac{1}{n}$. 所以,

$$E(\overline{X}^2) = D(\overline{X}) + (E\overline{X})^2 = \frac{1}{n} + 0 = \frac{1}{n},$$

由 $(n-1)S^2 \sim \chi^2(n-1)$ 知 $E(S^2) = 1$, $D(S^2) = \frac{2}{n-1}$,所以

$$E(S^4) = D(S^2) + [E(S^2)]^2 = \frac{2}{n-1} + 1 = \frac{n+1}{n-1}.$$

将它们代入式(1)得

$$E(\overline{X}^2S^4) = \frac{n+1}{n(n-1)}.$$

(II) 由
$$\overline{X} \sim N\left(0, \frac{1}{n}\right)$$
知 $\sqrt{nX} = \frac{\overline{X}}{\sqrt{\frac{1}{n}}} \sim N(0, 1)$,所以

$$n \overline{X}^2 = (\sqrt{n} \overline{X})^2 \sim v^2(1).$$

从而,
$$D(\overline{X}^2) = D\left(\frac{1}{n} \cdot n \, \overline{X}^2\right) = \frac{1}{n^2} D(n \, \overline{X}^2) = \frac{1}{n^2} \cdot 2 = \frac{2}{n^2}.$$

附注 应记住以下结论:

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

则
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$
并且

$$E\overline{X} = \mu, \quad D\overline{X} = \frac{\sigma^2}{n},$$

$$E(S^2) = \sigma^2, \quad D(S^2) = \frac{2}{n-1}\sigma^4.$$