# Appunti del corso di Elementi di Algebra e Teoria di Galois

Lorenzo Molena

Lezioni dal 07/03/2023 al 25/05/2023

| I. | Gruppi                                         | 1  |
|----|------------------------------------------------|----|
| 1. | Richiamo sui gruppi                            | 3  |
|    | 1.1. Definizione                               | 3  |
|    | 1.2. Osservazioni                              | 3  |
|    | Esempi                                         | 4  |
|    | 1.3. Sottogruppi                               | 5  |
|    | 1.4. Esempi                                    | 5  |
|    | 1.5. Definizione                               | 6  |
|    | 1.6. Definizione                               | 6  |
|    | 1.7. Classificazione dei gruppi ciclici        | 6  |
|    | 1.8. Esempio                                   | 6  |
|    |                                                |    |
| 2. | Laterali                                       | 9  |
|    | 2.1. Richiamo sulle partizioni di un insieme   | 9  |
|    |                                                | 9  |
|    | 2.3. Teorema di Lagrange                       | 11 |
| 3. | Il gruppo quoziente                            | 13 |
|    | 3.1. Definizione                               | 13 |
|    | Esempi                                         | 14 |
|    | 3.2. Lemma e definizione                       | 14 |
|    | 3.3. Lemma e definizione                       | 15 |
|    | 3.4. Teorema di fattorizzazione di omomorfismi | 17 |
|    | 3.5. Teorema fondamentale dell'omomorfismo     | 18 |
| 1  |                                                | 10 |
| 4. | Gruppi risolubili                              | 19 |
|    | 4.1. Definizione                               | 19 |
|    | 4.2. Proprietà                                 | 19 |
|    | 4.3. Lemma e definizione                       | 21 |
|    | 4.4. Corollario                                | 22 |
|    | 4.5. Richiamo sul segno di una permutazione    | 23 |
|    | 4.6. Lemma e definizione                       | 23 |

|    | 4.7.         | Risolubilità di $S_n$         |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 25       |
|----|--------------|-------------------------------|----|---|-----|----|---|---|-------|---|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|
|    | 4.8.         | Lemma                         |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 26       |
|    |              |                               |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| 5. | Azio         | ni di un gruppo               |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 27       |
|    | 5.1.         | 0 00 01 (00 110 110 1 1 1 1 1 |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 27       |
|    | 5.2.         | Definizione                   |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 27       |
|    | 5.3.         | Osservazione                  |    |   |     |    |   | • |       |   |       |   |   |   |   |   |   |   | • |   |   |   |   |   | 28       |
|    | 5.4.         | Esempi                        |    |   |     |    |   |   |       |   |       |   |   |   | • |   |   |   |   |   |   |   |   |   | 29       |
|    | 5.5.         | Teorema di Cayley .           |    |   |     |    | • |   | <br>• |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 30       |
|    | 5.6.         | Lemma e definizione           |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   | • |   |   |   |   |   | 31       |
|    | 5.7.         | Lemma e definizione           |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 31       |
|    | 5.8.         | Esempio                       |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 32       |
|    | 5.9.         | Teorema                       |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 32       |
|    | Esen         | npio                          |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 33       |
|    | 5.10.        | Equazioni delle orbite        |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 33       |
|    | 5.11.        | Lemma e definizione           |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 34       |
|    | 5.12.        | Equazione delle classi        |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 35       |
|    | 5.13.        | Lemma e definizione           |    |   |     |    |   |   |       |   | <br>• |   |   |   |   |   |   |   |   |   |   |   |   |   | 36       |
| 6  | Toor         | remi di Sylow                 |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 37       |
| U. | 6.1.         | Esempio                       |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 37       |
|    | 6.2.         | Definizione                   |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 38       |
|    | 6.3.         | Osservazione                  |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 38       |
|    | 6.4.         | Proposizione                  |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 38       |
|    | 6.5.         | -                             |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 38       |
|    | 6.6.         |                               |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 39       |
|    | 0.0.         | Definizione                   |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 39       |
|    | 6.7.         | Esempi                        |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 39<br>40 |
|    | 6.8.         | Teorema(Wielandt).            |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 40       |
|    |              | Lemma                         |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 41       |
|    |              | Lemma                         |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|    |              | Teoremi di Sylow              |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 43       |
|    | 0.12.        | Corollario                    |    | • | •   | •  | • | • | <br>• | • | <br>• | • | • | • | • | • | • | • | • | • | • | • | • | • | 43       |
| 7. | Cons         | seguenze dei teoremi          | di | S | ylo | ΟW | , |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 45       |
|    | 7.1.         | Teorema di Cauchy .           |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 45       |
|    | 7.2.         | Corollario                    |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 45       |
|    |              |                               |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|    | 7.3.         | Richiamo                      |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 45       |
|    | 7.3.<br>7.4. |                               |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   | 45<br>46 |
|    |              | Richiamo                      |    |   |     |    |   |   |       |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |          |

| II. | Anelli                                                                                                                                                                                                                                                                                                                                         | 49                                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 8.  | Il concetto di anello 8.1. Definizione                                                                                                                                                                                                                                                                                                         | 51<br>52<br>52<br>53<br>54                               |
| 9.  | Ideali9.1. Definizione9.2. Esempi9.2. Esempi9.3. Lemma e definizione9.4. Esempio $\mathbb{Z}/n\mathbb{Z}$ 9.5. Algoritmo RSA9.5. Algoritmo RSA9.6. Definizione9.7. Proposizione9.7. Proposizione9.8. Esempi9.9. Teorema di fattorizzazione di omomorfismi9.10. Corollario (Teorema fondamentale dell'omomorfismo)9.11. Definizione9.12. Esempi | 57<br>58<br>59<br>59<br>60<br>61<br>62<br>63<br>64<br>64 |
| 10  | . Divisibilità  10.1. Definizione  10.2. Esempi  10.3. Proposizione  10.4. Definizione  10.5. Lemma e definizione  10.6. Algoritmo euclideo  10.7. Definizione  10.8. Proposizione  10.9. Definizione  10.10 Teorema                                                                                                                           |                                                          |
|     | I. Polinomi         Riassunto                                                                                                                                                                                                                                                                                                                  | <b>73</b> 75 <b>76</b> 76                                |
|     | 11.2. Definizione                                                                                                                                                                                                                                                                                                                              | 76                                                       |

| 11.3. Teorema di Ruffini                                   | 77              |
|------------------------------------------------------------|-----------------|
| 11.4. Corollario                                           |                 |
| 11.5. Proposizione                                         |                 |
| 11.6. Esempi                                               | 78              |
| 12. Criteri di divisibilità                                | 80              |
| 12.1. Osservazione                                         | 80              |
| 12.2. Riduzione modulo $p$                                 |                 |
| 12.3. Criterio di Eisenstein                               |                 |
| 12.4. Lemma di Gauss                                       | 82              |
| 12.5. Proposizione                                         | 82              |
| 12.6. Esempi                                               | 83              |
| 12.7. Sostituzione                                         | 84              |
| 12.8. Esempio                                              | 84              |
|                                                            |                 |
| IV. Campi                                                  | 85              |
| 13. Estensioni algebriche                                  | 87              |
| 13.1. Lemma e definizione                                  | 87              |
| 13.2. Proposizione                                         | 87              |
| 13.3. Esempi                                               | 88              |
| 13.4. Teorema (Kronecker)                                  | 89              |
| 13.5. Definizione                                          | 89              |
| 13.6. Lemma e definizione                                  |                 |
| 13.7. Esempi                                               |                 |
| 13.8. Lemma del grado                                      |                 |
| 13.9. Corollario                                           |                 |
| 13.10Esempio                                               | 93              |
| 14.Campi di riducibilità completa                          | 94              |
| 14.1. Teorema e definizione                                |                 |
| 14.2. Esempi                                               |                 |
| 14.3. Lemma                                                | 96              |
| 14.4. Teorema (Unicità del campo di riducibilità completa) | 97              |
|                                                            |                 |
| 15.1 Lommo o definizione                                   | <b>98</b><br>98 |
| 15.1. Lemma e definizione                                  |                 |
| 15.2. Esempi                                               |                 |
| 15.4. Corollario                                           |                 |

|                                                   | $I_{I}$ | nc  | dice |
|---------------------------------------------------|---------|-----|------|
| 15.5. Lemma e definizione                         |         |     | 100  |
| 15.6. Lemma e definizione                         |         |     | 101  |
| 15.7. Teorema di classificazione dei campi finiti |         |     | 101  |
| 15.8. Lemma                                       |         | •   | 102  |
| 15.9. Teorema dell'elemento primitivo             |         | •   | 102  |
| 16.Costruzioni con riga e compasso                |         |     | 103  |
| 16.1. Definizione                                 |         | •   | 103  |
| 16.2. Esempi                                      |         | •   | 104  |
| 16.3. Lemma                                       |         | •   | 105  |
| 16.4. Lemma                                       |         | •   | 107  |
| 16.5. Teorema                                     |         | •   | 107  |
| 16.6. Corollario                                  |         | • . | 108  |
| V. Teoria di Galois                               |         |     | 109  |
| 17. Estensioni normali                            |         |     | 111  |
| 17.1. Definizione                                 |         | -   |      |
| 17.2. Esempi                                      |         |     |      |
| 17.2. Esemple                                     |         |     |      |
| 17.4. Corollario                                  |         |     |      |
| 18. Separabilità                                  |         |     | 113  |
| 18.1. Teorema                                     |         |     | 113  |
| 18.2. Definizione                                 |         |     |      |
| 18.3. Esempi                                      |         |     |      |
| 18.4. Definizione                                 |         |     |      |
| 18.5. Teorema                                     |         |     |      |
| 18.6. Definizione                                 |         |     |      |
| 18.7. Esempi                                      |         |     |      |
| 19.Campi intermedi e sottogruppi                  |         |     | 116  |
| 19.1. Lemma e definizione                         |         | •   | 116  |
| 19.2. Lemma                                       |         |     | 116  |
| 19.3. Lemma di Dedekind                           |         |     |      |
| 19.4. Lemma e definizione                         |         |     |      |
| 19.5. Teorema di Artin                            |         |     |      |
| 19.6. Lemma e definizione                         |         |     |      |
| 19.7. Esempi                                      |         |     |      |
| 19.8. Teorema                                     |         |     |      |

| . Estensioni di Galois                                                                                                                                | 122     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 20.1. Teorema                                                                                                                                         | <br>122 |
| 20.2. Esempi                                                                                                                                          | <br>122 |
| 20.3. Teorema fondamentale della teoria di Galois                                                                                                     | <br>123 |
| 20.4. Calcolo del polinomio minimo                                                                                                                    | <br>125 |
| 20.5. Teorema                                                                                                                                         | <br>126 |
| 20.6. Esempio                                                                                                                                         | <br>127 |
| 20.7. Teorema dell'elemento primitivo                                                                                                                 | <br>129 |
| . Estensioni per radicali                                                                                                                             | 130     |
| 21.1. Radici $n$ -sime dell'unità $\dots \dots \dots$ |         |
| 21.2. Radici <i>n</i> -sime di un elemento                                                                                                            | <br>130 |
| 21.3. Radici primitive dell'unità                                                                                                                     | <br>131 |
| 21.4. Osservazione                                                                                                                                    | <br>132 |
| 21.5. Definizione                                                                                                                                     | <br>132 |
| 21.6. Osservazioni                                                                                                                                    | <br>133 |
| 21.7. Lemma                                                                                                                                           | <br>133 |
| 21.8. Definizione                                                                                                                                     | <br>134 |
| 21.9. Teorema di Galois                                                                                                                               | <br>134 |
| . Risolubilità del polinomio generale di grado $\it n$                                                                                                | 136     |
| 22.1. Proposizione                                                                                                                                    | <br>136 |
| 22.2. Corollario                                                                                                                                      | <br>136 |
| 22.3. Esempi                                                                                                                                          | <br>137 |
| 22.4. Definizione                                                                                                                                     | <br>138 |
| 22.5. Esempio                                                                                                                                         | <br>138 |
| 22.6. Definizione                                                                                                                                     | <br>138 |
| 22.7. Proposizione                                                                                                                                    | <br>139 |
| 22.8. Teorema di Abel-Ruffini                                                                                                                         | <br>140 |
| 22.9. Ancora sul caso $n \leq 4$                                                                                                                      | <br>141 |
|                                                                                                                                                       |         |

Parte I.

Gruppi

# 1. Richiamo sui gruppi

### 1.1. Definizione

Un gruppo  $(G, \cdot)$  è costituito da un insieme non-vuoto G e un'operazione  $\cdot : G \times G \to G$ ,  $(a, b) \mapsto a \cdot b = ab$ , che gode delle seguenti proprietà:

- (G1) associativa: a(bc) = (ab)c per  $a, b, c \in G$
- (G2) **elemento neutro**: esiste un  $e = e_G \in G$  tale che ae = ea = a per ogni  $a \in G$
- (G3) **elementi inversi**: per ogni  $a \in G$  esiste un  $b \in G$  tale che ab = ba = eG è un gruppo abeliano se vale inoltre la proprietà:
- (G4) commutatività:  $ab = ba \text{ per } a, b \in G$

### 1.2. Osservazioni

- L'elemento neutro e è univocamente determinato :
   se e, e' soddisfano (G2), allora
   e = ee' = e'.
   L'elemento inverso di a ∈ G è univocamente determinato e si indica con a<sup>-1</sup>
- 2. Per  $a, b \in G$  si ha  $(ab)^{-1} = b^{-1}a^{-1}$
- 3. proprietà cancellativa: se  $a, x, y \in G$  e soddisfano ax = ay, allora x = y
- 4. Si usa anche la notazione additiva (G, +). In tal caso l'elemento neutro si indica con  $0_G$  e l'inverso con -a

# Esempi

- 1.  $(\mathbb{Z}, +)$ ,  $(\mathbb{R}, +)$ ,  $(\mathbb{Q}, +)$ ,  $(\mathbb{R} \setminus \{0\}, \cdot)$ ,  $(\mathbb{Q} \setminus \{0\}, \cdot)$  sono gruppi abeliani. Gl(n, K): le matrici invertibili su campo K di ordine  $n \in \mathbb{N}$  formano un gruppo rispetto alla moltiplicazione di matrici, che non è abeliano per  $n \geq 2$ .
- 2. Dati  $n \in \mathbb{N}$  e due interi  $z, z' \in \mathbb{Z}$ , si ha che  $n \mid z z'$  se e solo se z e z' hanno lo stesso resto della divisione per n.

Per  $0 \le r < n$  chiamiamo classe di resto modulo n, l'insieme

$$\overline{r} := \{ z \in \mathbb{Z} \mid \text{il resto della divisione di } z \text{ per } n \text{ è } r \}$$

$$= \{ nq + r \mid q \in \mathbb{Z} \}$$

Abbiamo che  $n \mid z-z'$  se e solo se z e z' appartengono alla stessa classe di resto. Le classi di resto  $\overline{0}, \overline{1}, \ldots, \overline{n-1}$  formano un gruppo abeliano  $(\mathbb{Z}/n\mathbb{Z}, +)$  rispetto all'operazione  $\overline{a} + \overline{b} := \overline{a+b}$ 

3. Sia A un insieme non-vuoto. Le applicazioni biiettive  $f: A \to A$  formano un gruppo  $(S(A), \circ)$  rispetto alla composizione, detto gruppo simmetrico su A. In particolare per  $A = \{1, \ldots, n\}$  si ha  $S_n := S(A)$  il gruppo simmetrico delle permutazioni di n elementi. Per n = 3

$$S_3 = \{ id, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (1 \ 3 \ 2) \}$$

non è abeliano:

$$\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

# 1.3. Sottogruppi

Sia  $(G, \cdot)$  un gruppo. Un sottoinsieme non-vuoto  $H \subset G$  è un sottogruppo se è un gruppo rispetto all'operazione  $\cdot$  di G. In tal caso scriviamo  $H \leq G$ .

#### Osservazione

 $H \leq G$  se e solo se per tutti gli  $a, b \in H$  si ha  $ab^{-1} \in H$ .

# 1.4. Esempi

- 1. Ogni gruppo  $(G, \cdot)$  possiede i sottogruppi banali  $G, \{e\}$
- 2. I numeri dispari **non** formano un sottogruppo di  $(\mathbb{Z}, +)$
- 3. Dato un gruppo  $(G,\cdot)$  e un elemento  $a\in G$ , poniamo per  $n\in\mathbb{Z}$

$$a^{n} = \begin{cases} \underbrace{a \cdot \dots \cdot a}_{n \text{ volte}} & n > 0\\ e & n = 0\\ \underbrace{a^{-1} \cdot \dots \cdot a^{-1}}_{|n| \text{ volte}} & n < 0 \end{cases}$$

L'insieme  $\langle a \rangle := \{a^n \mid n \in \mathbb{Z}\}$  è un sottogruppo di G, detto il sottogruppo generato da a.

Infatti se  $a^n, a^m \in \langle a \rangle$ , allora

$$a^n \cdot (a^m)^{-1} = a^n \cdot a^{-m} = a^{n-m} \in \langle a \rangle$$

4. Il sottogruppo di  $(\mathbb{Z}, +)$  generato da un elemento  $n \in \mathbb{Z}$  è

$$\langle n \rangle = \{ nz \mid z \in \mathbb{Z} \} = n\mathbb{Z}$$

Tutti i sottogruppi di  $(\mathbb{Z}, +)$  hanno questa forma:

Sia  $H \leq (\mathbb{Z}, +)$ , se H = 0, allora  $H = 0\mathbb{Z}$ , altrimenti esiste un  $0 \neq m \in H$ . Possiamo assumere m > 0.

Sia n > 0 il minimo intero positivo in H. Allora  $H = n\mathbb{Z}$ :

Ovviamente  $n\mathbb{Z} \subset H$ .

Sia adesso  $a \in H$ .

Eseguiamo la divisione con resto:

$$a = nq + r \text{ con } q \in \mathbb{Z}, 0 \le r < n.$$

Abbiamo  $r=a-nq\in H$ e per la minimalità di n, si ha che r=0 e  $a\in n\mathbb{Z}$ .

## 1.5. Definizione

Un gruppo  $(G, \cdot)$  è detto *ciclico* se esiste un  $a \in G$  tale che  $G = \langle a \rangle$ .

## **Esempio**

$$\mathbb{Z} = \langle 1 \rangle, \, \mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$$

## 1.6. Definizione

Dati due gruppi  $(G,\cdot)$  e (G',\*), un'applicazione  $f:G\to G'$  è detta

- omomorfismo se  $f(a \cdot b) = f(a) * f(b)$
- isomorfismo se è un omomorfismo biiettivo.

Diciamo che G e G' sono isomorfi e scriviamo  $G \cong G'$  se esiste un isomorfismo  $f: G \to G'$ .

# 1.7. Classificazione dei gruppi ciclici

```
Sia (G, \cdot) un gruppo ciclico.
Se |G| = \infty, allora (G, \cdot) \cong (\mathbb{Z}, +).
Se |G| = n, allora (G, \cdot) \cong (\mathbb{Z}/n\mathbb{Z}, +)
```

## 1.8. Esempio

L'insieme  $\mathcal{V} = \{ id, (1 \ 2) (3 \ 4), (1 \ 3) (2 \ 4), (1 \ 4) (2 \ 3) \} \subset S_4$  è un sottogruppo di  $S_4$ , detto gruppo di Klein.

I suoi elementi hanno tutti ordine  $\leq 2$ .

Quindi  $\mathcal{V}$  è abeliano, ma non ciclico.

### Richiamo sull'ordine

L'ordine di un elemento  $a \in G$  è ord $(a) := |\langle a \rangle|$ , ovvero ord $(a) = \infty$  oppure è il minimo intero positivo m tale che  $a^m = e$ .

#### Lemma

Un gruppo G i cui elementi hanno tutti ordine  $\leq 2$  è sempre abeliano.

#### Dimostrazione.

In G si ha  $a^2 = e$  per ogni  $a \in G$ .

Ma allora per  $a, b \in G$  si ha  $e = a^2 = b^2 = (ab)^2$ , in particolare  $a^2 = baba$  e per la proprietà cancellativa a = bab, quindi  $ab^2 = bab$  e perciò ab = ba.

Tornando all'esempio  $V \leq S_4$  vediamo che:

$$((1 \ 2) (3 \ 4))^2 = (1 \ 2) (3 \ 4) (1 \ 2) (3 \ 4) = (1 \ 2)^2 (3 \ 4)^2 = id$$

e analogamente per gli altri elementi.

Per il Lemma  $\mathcal{V}$  è abeliano.

 $\mathcal{V}$  non è ciclico perché non possiede elementi di ordine 4.

## CAPITOLO 1. RICHIAMO SUI GRUPPI

## 2. Laterali

Le classi di resto  $\overline{0}, \overline{1}, \ldots, \overline{n-1}$  di  $\mathbb{Z}$  modulo n sono disgiunte a due a due e  $\mathbb{Z} = \overline{0} \cup \overline{1} \cup \ldots \cup \overline{n-1}$ .

# 2.1. Richiamo sulle partizioni di un insieme

Sia A un insieme con una relazione di equivalenza  $\sim$  (cioè  $\sim$  è riflessiva, simmetrica e transitiva).

Per  $a, b \in A$  si ha

$$a \sim b \Leftrightarrow \overline{a} = \overline{b} \Leftrightarrow \overline{a} \cap \overline{b} \neq \varnothing$$

dove  $\overline{a} = \{x \in A \mid x \sim a\}$  indica la classe di equivalenza di a modulo  $\sim$ .

In particolare  $\sim$  induce una partizione su A:

l'insieme A è unione di classi di equivalenza disgiunte a due a due.

### 2.2. Lemma e definizione

Ogni sottogruppo H di un gruppo  $G,\cdot$  definisce una relazione di equivalenza su G

$$a \sim b \text{ se } ab^{-1} \in H$$

Le classi di equivalenza di G modulo  $\sim$ 

$$\overline{a} = \{x \in G \mid xa^{-1}\} = \{ha \mid h \in H\} = Ha$$

si chiamano laterali (destri) di G modulo H (con rappresentante a). L'insieme di tutti i laterali si indica con

$$G/H = \{ \overline{a} \mid a \in G \}$$

L'ordine di G/H, cioè il numero di laterali di G modulo H, è detto indice di H in G e si indica con

$$[G:H] = |G/H|$$

#### Dimostrazione.

 $\sim$ relazione di equivalenza:

riflessiva:  $a \sim a$  perché  $aa^{-1} = e \in H$ .

simmetrica: se  $a \sim b$ , allora  $ab^{-1} \in H$ , perciò  $ba^{-1} = (ab^{-1})^{-1} \in H$  e  $b \sim a$ .

transitiva: se  $a \sim b$  e  $b \sim c$ , allora  $ab^{-1}$ ,  $bc^{-1} \in H$ , perciò  $ac^{-1} = ab^{-1}bc^{-1} \in H$  e  $a \sim c$ .

Il laterale destro di  $a \in G$  è

$$\overline{a} = \{ x \in G \mid x \sim a \} = \{ x \in G \mid xa^{-1} \in H \}$$

dunque

$$x\in \overline{a} \Leftrightarrow x=\underbrace{xa^{-1}}_{H}a$$
è di forma $x=ha$  con  $h\in H$ 

Perciò  $\overline{a} = \{ha \mid h \in H\} = Ha.$ 

### **Esempio**

 $G=(\mathbb{Z},+),\,H\leq G,$  allora  $H=n\mathbb{Z}$  con  $n\in\mathbb{Z}$  e per  $a,b\in\mathbb{Z}$  si ha:

$$a \sim b \Leftrightarrow a - b \in H = n\mathbb{Z}$$
$$\Leftrightarrow n \mid a - b$$

 $\Leftrightarrow a$  e b appartengono alla stessa classe di resto modulo n.

I laterali di  $\mathbb{Z}$  modulo  $H=n\mathbb{Z}$  sono esattamente le classi di resto  $\overline{0},\overline{1},\ldots,\overline{n-1}$  di  $\mathbb{Z}$  modulo n.

# 2.3. Teorema di Lagrange

Sia  $(G, \cdot)$  un gruppo finito e sia  $H \leq G$ , allora  $|G| = |H| \cdot [G : H]$ . In particolare |H| divide |G|.

#### Dimostrazione.

Poniamo  $n := |G|, m := |H| \le n.$ 

$$H = \{h_1, \dots, h_m\}$$

Ogni laterale  $\overline{a} = \{h_1 a, \dots, h_m a\}$  possiede esattamente m elementi (proprietà cancellativa).

Per il Lemma 2.2, i laterali danno luogo ad una partizione di G, quindi il numero dei laterali è finito. Poniamo r := [G : H].

$$G/H = \{\overline{a_1}, \dots, \overline{a_r}\}$$

Abbiamo quindi

$$G = \bigcup_{i=1}^{r} \overline{a_i}$$

e perciò

$$|G| = \sum_{i=1}^{r} |\overline{a_i}| = m \cdot r = |H| \cdot [G:H]$$

#### **Corollario**

Se G è un gruppo di orine n e  $a \in G$ , allora ord(a) divide n e  $a^n = e$ .

#### Dimostrazione.

 $m:=\operatorname{ord}(a)=|\langle a\rangle|$  divide |G| per il Teorema di Lagrange ed è il minimo intero positivo tale che  $a^m=e$ .

Scriviamo n=mq con  $q\in\mathbb{Z}$  e otteniamo  $a^n=a^{mq}=(a^m)^q=e^q=e$ 

## CAPITOLO 2. LATERALI

# 3. Il gruppo quoziente

Siano  $(G, \cdot)$  un gruppo e  $H \leq G$ . Vogliamo definire un'operazione su G/H tale che

$$\overline{a} \cdot \overline{b} = \overline{ab}$$

ovvero

$$Ha \cdot Hb = Hab$$

Affinché l'operazione sia ben definita, dobbiamo garantire:

Se 
$$\overline{a} = \overline{a'}$$
 e  $\overline{b} = \overline{b'}$ , allora  $\overline{ab} = \overline{a'b'}$ .

Ciò significa:

Se 
$$aa'^{-1} \in H$$
 e  $bb'^{-1} \in H$ , allora  $(ab)(a'b')^{-1} \in H$ .

In generale

$$(ab)(a'b')^{-1} = abb'^{-1}a'^{-1} = a\underbrace{bb'^{-1}}_{H}a^{-1}\underbrace{aa'^{-1}}_{H}$$

Quindi serve la condizione seguente:

## 3.1. Definizione

Un sottogruppo H di un gruppo  $(G,\cdot)$  si dice **normale**, e in tal caso si scrive  $H \triangleleft G$ , se per ogni  $a \in G$  si ha

$$aha^{-1} \in H$$

### Osservazione

 $H \lhd G$  se e solo se Ha = aH per ogni  $a \in G$ . Infatti se  $H \lhd G$ , allora  $Ha \subset aH$  poiché

$$ha = a\underbrace{a^{-1}ha}_{H} \in aH$$

Analogamente le altre implicazioni.

# Esempi

- 1. Ogni sottogruppo di un gruppo abeliano è normale
- 2. In  $S_3$  il sottogruppo  $H = \langle \begin{pmatrix} 1 & 2 \end{pmatrix} \rangle = \{ id, \begin{pmatrix} 12 \end{pmatrix} \}$  non è normale:

$$(1 \ 3) (1 \ 2) (1 \ 3)^{-1} = (1 \ 3) (1 \ 2) (1 \ 3)$$

$$= (13) \begin{pmatrix} 1 \ 2 \ 3 \\ 3 \ 1 \ 2 \end{pmatrix}$$

$$= (1 \ 3) (1 \ 3 \ 2)$$

$$= \begin{pmatrix} 1 \ 2 \ 3 \\ 1 \ 3 \ 2 \end{pmatrix} = (2 \ 3) \notin H$$

### 3.2. Lemma e definizione

Sia  $(G, \cdot)$  un gruppo e sia  $H \triangleleft G$ .

Allora l'insieme dei laterali G/H è un gruppo rispetto all'operazione

$$\overline{a} \cdot \overline{b} = \overline{ab}$$

con elemento neutro  $\overline{e} = H$ , detto gruppo quoziente di G modulo H. Per  $a \in G$  si ha  $\overline{a} = \overline{e}$  se e solo se  $a \in H$ .

#### Dimostrazione.

L'operazione è ben definita perché  $H \triangleleft G$ .

(G1) Per  $\overline{a}, \overline{b}, \overline{c} \in G/H$ 

$$(\overline{a}\cdot\overline{b})\overline{c}=\overline{ab}\cdot\overline{c}=\overline{(ab)c}=\overline{a(bc)}=\overline{a}(\overline{b}\cdot\overline{c})$$

(G2) Per  $\overline{a} \in G/H$ 

$$\overline{a} \cdot \overline{e} = \overline{a}\overline{e} = \overline{a} = \overline{e} \cdot \overline{a}$$

(G3) Dato  $\overline{a} \in G/H$ 

$$\overline{a}\cdot\overline{a^{-1}}=\overline{aa^{-1}}=\overline{e}=\overline{a^{-1}}\cdot\overline{a}$$

quindi 
$$\overline{a}^{-1} = \overline{a^{-1}}$$

Inoltre  $x \in \overline{e}$  se e solo se  $x \sim e$ , ovvero

$$xe^{-1} = xe = x \in H$$

e ciò equivale a dire che  $\overline{x} = \overline{e}$ .

### **Esempio**

$$G = \mathbb{Z}, H = n\mathbb{Z}.$$

L'elemento neutro di  $G/H = (\mathbb{Z}/n\mathbb{Z}, +)$  è  $\overline{0} = n\mathbb{Z}$ .

## 3.3. Lemma e definizione

Siano  $(G, \cdot)$  e (G', \*) due gruppi con un omomorfismo  $f: G \to G'$ . Allora

- 1.  $\ker f = \{a \in G \mid f(a) = e\} \lhd G$  è un sottogruppo normale, detto *nucleo* di f.
- 2. L'immagine im  $f = \{f(a) \mid a \in G\} \leq G'$  è un sottogruppo di G'.
- 3.  $e_G \in \ker f$ , e l'applicazione f è iniettiva se e solo se  $\ker f = \{e_G\}$ .
- 4. Se  $H \triangleleft G$ , allora l'applicazione

$$\nu: G \to G/H, a \mapsto \overline{a} = Ha$$

è un omomorfismo suriettivo con nucleo ker $\nu=H,$  detto **epimorfismo canonico**.

#### Dimostrazione.

1.  $\ker f \leq G$ : Siano  $a, b \in \ker f$ . Allora  $ab^{-1} \in \ker f$  perché

$$f(ab^{-1}) = f(a) * f(b)^{-1} = e_{G'} * e_{G'} = e_{G'}$$

Infatti:

•  $f(e_G) = e_{G'}$  poiché

$$f(e_G) * f(a) = f(e_g \cdot a) = f(a) = e_{G'} * f(a)$$

• Per  $b \in G$   $f(b) * f(b^{-1}) = f(bb^{-1}) = f(e_G) = e_{G'}$  quindi  $f(b)^{-1} = f(b^{-1})$ 

## CAPITOLO 3. IL GRUPPO QUOZIENTE

 $\begin{aligned} &\ker f \lhd G:\\ &\operatorname{Sia}\ a \in G \ \mathrm{e}\ h \in \ker f.\\ &\operatorname{Allora}\ aha^{-1} \in \ker f, \operatorname{perch\'e} \end{aligned}$ 

$$f(aha^{-1}) = f(a)\underbrace{f(h)}_{=e_{G'}} f(a)^{-1} = f(a)f(a)^{-1} = e_{G'}$$

2. Siano  $f(a), f(b) \in \text{im } f$ . Allora

$$f(a)f(b)^{-1} = f(ab^{-1}) \in \text{im } f$$

quindi im  $f \leq G'$ .

3. Se f è iniettiva e  $a \in \ker f$  allora  $f(a) = e_{G'} = f(e_G)$ , perciò  $a = e_G$ . Viceversa se  $\ker f = \{e_G\}$  e  $a, b \in G$  soddisfano f(a) = f(b), allora

$$e_{G'} = f(a) * f(b)^{-1} = f(ab^{-1})$$

dunque  $ab^{-1} \in \ker f$ , perciò  $ab^{-1} = e_G$ , ovvero a = b.

4.  $\nu$  omomorfismo: se  $a, b \in G$ 

$$\nu(ab) = \overline{ab} = \overline{a} \cdot \overline{b} = \nu(a) \cdot \nu(b)$$

 $\nu$  è suriettivo per definizione.

$$\ker \nu = \{ a \in G \mid \nu(a) = e_{G/H} \}$$
$$= \{ a \in G \mid \overline{a} = \overline{e_G} \}$$
$$= \{ a \in G \mid a \in H \} = H$$

# 3.4. Teorema di fattorizzazione di omomorfismi

Sia  $(G, \cdot)$  un gruppo e sia  $H \leq G$ .

Sia inoltre  $f: G \to G'$  un omomorfismo di gruppi tale che  $H \subseteq \ker f$ .

Allora esiste uno e un solo omomorfismo  $\overline{f}:G/H\to G'$  tale che  $\overline{f}\circ\nu=f,$  ovvero il seguente diagramma



è commutativo.

Si ha che  $\ker \overline{f} = \ker f/H$  e  $\operatorname{im} \overline{f} = \operatorname{im} f$ 

#### Dimostrazione.

Se esiste una tale  $\overline{f}$ , allora deve soddisfare  $\overline{f}(\overline{a}) = f(a)$ .

Poniamo quindi  $\overline{f}: G/H \to G', \overline{a} \mapsto f(a)$ .

Ben definita:

Se  $\overline{a} = \overline{a'}$ , allora  $aa'^{-1} \in H$  e quindi

$$f(a)f(a')^{-1} = f(aa'^{-1}) = e_{G'}$$
 perciò  $f(a) = f(a')$ 

 $\overline{f}$  omomorfismo:

$$\overline{f}(\overline{a} \cdot \overline{b}) = \overline{f}(\overline{ab}) = f(ab) = f(a) \cdot f(b) = \overline{f}(\overline{a}) \cdot \overline{f}(\overline{b})$$

 $\overline{f} \circ \nu = f$ :

$$(\overline{f}\circ\nu)(a)=\overline{f}(\nu(a))=\overline{f}(\overline{a})=f(a)$$
per ogni $a\in G$ 

Unicità:

Se  $g: G/H \to G'$  soddisfa  $g \circ \nu = f$ , allora per  $\overline{a} \in G/H$  si ha  $g(\overline{a}) = g(\nu(a)) = f(a) = \overline{f}(\overline{a})$ , quindi  $g = \overline{f}$ .

$$\ker \overline{f} = \{ \overline{a} \in G/H \mid \overline{f}(\overline{a}) = e_{G'} \}$$

$$= \{ \overline{a} \in G/H \mid f(a) = e_{G'} \}$$

$$= \{ \overline{a} \in G/H \mid a \in \ker f \} = \ker f/H$$

(si noti che  $H \triangleleft \ker f$ , infatti  $H \leq \ker f$  e per  $a \in \ker f$ ,  $h \in H$  si ha  $aha^{-1} \in H$ )

$$\operatorname{im} \overline{f} = \{ \overline{f}(\overline{a}) \mid \overline{a} \in G/H \} = \{ f(a) \mid a \in G \} = \operatorname{im} f$$

# 3.5. Teorema fondamentale dell'omomorfismo

Sia  $f: G \to G'$  un omomorfismo di gruppi.

Allora esiste uno e un solo omomorfismo  $\overline{f}:G/\ker f\to G',$  tale che  $\overline{f}\circ\nu=f,$  ovvero il diagramma



è commutativo.

In particolare  $G/\ker f \cong \operatorname{im} f$ .

#### Dimostrazione.

Caso particolare di 3.4 con  $H = \ker f$ .

In questo caso  $\ker \overline{f} = \{e_{G/\ker f}\}$ , perciò  $\overline{f}$  è iniettiva e induce un isomorfismo  $G/\ker f \to \operatorname{im} f$ . Perciò  $G/\ker f \cong \operatorname{im} f$ .

# 4. Gruppi risolubili

### 4.1. Definizione

Sia G un gruppo. Per  $a, b \in G$  poniamo

$$[a,b] := aba^{-1}b^{-1} = (ab)(ba)^{-1}$$

detto il commutatore di a e b.

Il sottogruppo K(G) di G generato da tutti i commutatori [a, b] è detto sottogruppo commutatore di G.

(Dato un sottoinsieme  $A \subset G$  possiamo sempre considerare l'intersezione di tutti i sottogruppi di G che contengono A, ovvero il più piccolo sottogruppo di G che contiene A, detto il sottogruppo di G generato da A).

Per iterazione consideriamo

$$K^{2}(G) = K(K(G))$$

$$K^{i}(G) = K(K^{i-1}(G))$$

# 4.2. Proprietà

Sia G un gruppo.

- 1. G è abeliano se e solo se  $K(G) = \{e_G\}$
- 2. Ogni elemento di K(G) è di forma

$$[a_1, b_1] \cdot \ldots \cdot [a_n, b_n] \text{ con } a_1, \ldots, a_n, b_1, \ldots, b_n \in G$$

- 3. Se  $f:G\to G'$  è un omomorfismo allora  $f({\mathcal K}(G))\subseteq {\mathcal K}(G')$  e si ha  $f({\mathcal K}(G))={\mathcal K}(G')$  quando f è suriettivo.
- 4.  $K(G) \triangleleft G$ . Più in generale se  $N \triangleleft G$ , allora  $K(N) \triangleleft G$ .
- 5. K(G) è il più piccolo sottogruppo normale N di G tale che G/N sia abeliano.

#### Dimostrazione.

- 1. G è abeliano  $\iff$   $[a,b] = e_G$  per tutti gli elementi  $a,b \in G \iff K(G) = \{e_G\}$
- 2. Gli elementi di K(G) sono prodotti di un numero finito di commutatori e loro inversi.

Ma 
$$[a,b]^{-1} = ((ab)(ba)^{-1})^{-1} = (ba)(ab)^{-1} = [b,a]$$

- 3.  $f([a,b]) = f((ab)(ba)^{-1}) = f(a)f(b)f(a)^{-1}f(b)^{-1} = [f(a), f(b)]$ Dunque  $f(K(G)) \subseteq K(G')$ , con "=" quando f è suriettivo.
- 4. Sia  $N \triangleleft G$ . Allora  $aNa^{-1}=N$  per ogni  $a\in G$  e  $f_a:N\to N, x\mapsto axa^{-1}$  è un isomorfismo<sup>(\*)</sup> con  $f_a^{-1}=f_{a^{-1}}$ . Dunque

$$a K(N)a^{-1} = f_a(K(N)) = K(N) \text{ per } (3)$$
  
 $f_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = f_a(x)f_a(y)$  (\*)

Concludiamo quindi che  $K(N) \triangleleft G$ .

5. G/K(G) è abeliano: poiché per  $a, b \in G$   $(ab)(ba)^{-1} = [a, b] \in K(G)$ , si ha

$$\overline{a} \cdot \overline{b} = \overline{ab} = \overline{ba} = \overline{b} \cdot \overline{a} \text{ in } G/\operatorname{K}(G)$$

Sia adesso  $N \triangleleft G$  tale che G/N è abeliano.

Allora per  $a, b \in G$  si ha

$$Nab = Na \cdot Nb = Nb \cdot Na = Nba$$

perciò  $[a,b] = (ab)(ba)^{-1} \in N$ . Dunque  $K(G) \subseteq N$ .

## 4.3. Lemma e definizione

Per un gruppo  $(G, \cdot)$  sono equivalenti i seguenti enunciati:

- 1. Esiste un  $n \in \mathbb{N}$  tale che  $K^n(G) = \{e_G\}$
- 2. G possiede una catena di sottogruppi

$$\{e_G\} = N_m \le \ldots \le N_2 \le N_1 \le N_0 = G$$

con le seguenti proprietà per ogni  $1 \le i \le m$ :

- (i)  $N_i \triangleleft N_{i-1}$
- (ii)  $N_{i-1}/N_i$  è abeliano.

Se valgono 1 e 2, il gruppo G è detto **risolubile**.

#### Dimostrazione.

 $(1) \Rightarrow (2)$ :

Consideriamo la catena

$$\{e_G\} = K^n(G) \le \ldots \le K^2(G) \le K(G) \le G =: K^0(G)$$

Abbiamo

- (i)  $K^{i}(G) = K(K^{i-1}(G)) \triangleleft K^{i-1}(G)$
- (ii)  $K^{i-1}(G)/K^{i}(G)$  è abeliano per 4.2.
- $(2) \Rightarrow (1)$ :

Procediamo per induzione su m:

m = 1:

$$\{e_G\} = N_1 \leq G$$
, con  $N_1 \triangleleft G \in G/N$  abeliano.

Poiché  $G/N_1 = G/\{e_G\} \cong G$ , concludiamo che G è abeliano e pertanto  $K(G) = \{e_G\}.$ 

 $\frac{m \to m+1}{\text{Sia}}$ :

$$\{e_G\} = N_{m+1} \le N_m \le \dots \le N_1 \le G$$

una catena con (i) e (ii).

Per ipotesi induttiva esiste un  $n \in \mathbb{N}$  tale che  $K^n(N_1) = \{e_G\}$ .

Inoltre  $K(G/N_1) = \{e_{G/N_1}\}$  perché  $G/N_1$  è abeliano per (i). Consideriamo l'epimorfismo canonico  $\nu: G \to G/N_1$ , vediamo che:

$$\nu(K(G)) = K(G/N_1) = \{e_{G/N_1}\}$$

Perciò  $K(G) \subseteq \ker \nu = N_1$ .

Segue che  $K^{n+1}(G) \subseteq K^n(N_1) = \{e_G\}$  considerando l'omomorfismo dato dall'inclusione di  $K(G) \subseteq N_1$  ecc.

## 4.4. Corollario

Sia G un gruppo risolubile.

Allora sono risolubili anche tutti i suoi sottogruppi normali N e tutti i quozienti G/N. Inoltre G è risolubile se e solo se esiste un sottogruppo normale  $N \lhd G$  tale che N e G/N sono risolubili.

#### Dimostrazione.

Se G è risolubile, allora  $K^n(G) = \{e_G\}$  per un  $n \in \mathbb{N}$  opportuno, e applicando la 4.2 all'immersione  $N \hookrightarrow G$  abbiamo  $K^n(N) = \{e_G\}$ .

Inoltre considerando  $\nu: G \to G/N$  abbiamo

$$K^n(G/N) = \nu(K^n(G)) = \{e_{G/N}\}$$

Per il secondo enunciato si procede come nella dimostrazione di 4.3 (2)  $\Rightarrow$  (1)

# 4.5. Richiamo sul segno di una permutazione

Data una permutazione  $\sigma \in S_n$ , una coppia (i, j) con  $1 \le i < j \le n$  è detta inversione se  $\sigma(i) > \sigma(j)$ . Se r è il numero delle inversioni, allora

$$\varepsilon(\sigma) := (-1)^r = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

è detto **segno** della permutazione  $\sigma$ .

Si dice che  $\sigma$  è pari se  $\varepsilon(\sigma) = 1$ , altrimenti  $\sigma$  è dispari.

#### Dimostrazione.

$$(-1)^r = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$
 con  $(r = \#$  inversioni):

$$\prod_{i < j} (\sigma(i) - \sigma(j)) = \prod_{\substack{i < j \\ \sigma(i) < \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot \prod_{\substack{i < j \\ \sigma(i) > \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot (-1)^r \text{ (rinomino)}$$

$$= \prod_{\substack{i < j \\ \sigma(i) < \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot \prod_{\substack{i < j \\ \sigma(i) > \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot (-1)^r \text{ (rinomino)}$$

$$= \prod_{\substack{i < j \\ \sigma(i) < \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot (-1)^r$$

$$= \prod_{\substack{i < j \\ \sigma(i) < \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot (-1)^r$$

$$= \prod_{\substack{\sigma(i) < \sigma(j) \\ \sigma(j) > \sigma(j)}} (\sigma(i) - \sigma(j)) \cdot (-1)^r, \text{ quindi } \prod_{i = j} \frac{\sigma(i) - \sigma(j)}{i - j} = (-1)^r$$

#### 4.6. Lemma e definizione

L'applicazione

$$\varepsilon: S_n \longrightarrow (\{-1,1\},\cdot)$$
 $\sigma \longmapsto \varepsilon(\sigma)$ 

è un omomorfismo suriettivo. Il suo nucleo  $A_n$  è formato dalle permutazioni pari. In particolare  $A_n \triangleleft S_n$  con  $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$ .

Il sottogruppo  $A_n$  è detto **gruppo alterno**.

Si ha 
$$|A_n| = \frac{n!}{2}$$

#### Dimostrazione.

 $\varepsilon: S_n \to (\{-1,1\},\cdot), \sigma \mapsto \varepsilon(\sigma)$  è un omomorfismo: Siano  $\sigma, \tau \in S_n$ . Dobbiamo mostrare che  $\varepsilon(\sigma \circ \tau) = \varepsilon(\sigma) \cdot \varepsilon(\tau)$ 

$$\varepsilon(\sigma \circ \tau) = \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{i - j}$$

$$= \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\sigma(i) - \sigma(j)} \cdot \prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j}$$

$$\underset{(*)}{\overset{\parallel}{\underset{(*)}{\underbrace{}}}}$$

Resta da verificare che  $(*) = \varepsilon(\sigma)$ . Abbiamo

$$(*) = \prod_{\substack{i < j \\ \tau(i) > \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \prod_{\substack{i < j \\ \tau(i) < \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(i) > \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \prod_{\substack{i < j \\ \tau(i) < \tau(j)}} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \text{ (scambio)}$$

$$= \prod_{\substack{i < j \\ \tau(i) > \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \prod_{\substack{j < i \\ \tau(j) < \tau(i)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \text{ (rinomino)}$$

$$= \prod_{\substack{\tau(i) > \tau(j) \\ \tau(i) > \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(j) < \tau(i)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(i) > \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(j) < \tau(i)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(j) < \tau(i)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(j) < \tau(i)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(i) < \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(i) < \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(i))}{\tau(i) - \tau(j)}$$

$$= \prod_{\substack{i < j \\ \tau(i) < \tau(j)}} \frac{\sigma(\tau(i)) - \sigma(\tau(i))}{\tau(i) - \tau(j)}$$

In particolare, se  $\sigma$  è composizione di r trasposizioni  $\sigma = \tau_1 \circ \ldots \circ \tau_2$ , allora

$$\varepsilon(\sigma) = \varepsilon(\tau_1) \cdot \ldots \cdot \varepsilon(\tau_r) = (-1)^r$$

Ovviamente  $\varepsilon$  è suriettivo (ad esempio si ha  $\varepsilon(id) = 1$  e  $\varepsilon((1 \ 2)) = -1$ ). Per il Teorema fondamentale dell'omomorfismo

$$S_n/A_n \cong (\{-1,1\},\cdot) \cong (\mathbb{Z}/2\mathbb{Z},+)$$
gruppo di
due elementi

Infine  $[S_n:A_n]=\frac{|S_n|}{|A_n|}$ , dunque

$$|A_n| = \frac{|S_n|}{[S_n : A_n]} = \frac{n!}{2}$$

# 4.7. Risolubilità di $S_n$

Il gruppo  $S_n$  è risolubile se e solo se  $n \leq 4$ 

#### Dimostrazione.

- 1. Ogni sottogruppo abeliano è risolubile, perciò  $S_1$  e  $S_2$  sono risolubili.
- 2.  $\{id\} \leq A_3 \leq S_3$  è una catena di sottogruppi normali con quozienti  $A_3 \cong \mathbb{Z}/3\mathbb{Z}, S_3/\mathbb{Z}/2\mathbb{Z}$  abeliani.
- 3.  $\{id\} \leq \mathcal{V} \leq A_4 \leq S_4$  è una catena di sottogruppi normali con quozienti  $\mathcal{V}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}$  abeliani. Infatti

$$V = \{ id, (1 \ 2) (3 \ 4), (1 \ 3) (2 \ 4), (1 \ 4) (2 \ 3) \} \subset A_4$$

Resta da verificare che  $\mathcal{V} \triangleleft S_4$ .

Usiamo la formula 4.8:

$$\sigma \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \sigma^{-1} = \sigma \begin{pmatrix} 1 & 2 \end{pmatrix} \sigma^{-1} \sigma \begin{pmatrix} 3 & 4 \end{pmatrix} \sigma^{-1}$$
$$= \begin{pmatrix} \sigma(1) & \sigma(2) \end{pmatrix} \circ \begin{pmatrix} \sigma(3) & \sigma(4) \end{pmatrix}$$

Analogamente per gli altri elementi di  $\mathcal{V}$ .

- 4. Sia adesso n > 4.
  - (i) Verifichiamo che se  $N \triangleleft S_n$  contiene tutti i 3-cicli, allora anche K(N) contiene tutti i 3-cicli: Sappiamo che  $K(N) \triangleleft S_n$  contiene  $a = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, b = \begin{pmatrix} 1 & 4 & 5 \end{pmatrix}$  (stiamo usando  $n \geq 5$ ). Quindi K(N) contiene

$$[a,b] = aba^{-1}b^{-1} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 5 & 4 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \dots & n \\ 2 & 4 & 3 & 1 & 5 & \dots & n \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix}$$

Dunque K(N) contiene anche tutti gli elementi  $\sigma$  (1 2 4)  $\sigma^{-1}$  per  $\sigma \in S_n$ , quindi  $(\sigma(1) \ \sigma(2) \ \sigma(4))$  per 4.8.

Se  $(x \ y \ z) \in S_n$  è un 3-ciclo, scegliamo un  $\sigma \in S_n$  tale che  $\sigma(1) = x$ ,  $\sigma(2) = y$ ,  $\sigma(4) = z$ , e vediamo che

$$(x \ y \ z) = \sigma (1 \ 2 \ 4) \sigma^{-1} \in K(N)$$

(ii) Poiché  $S_n$  contiene tutti i 3-cicli, concludiamo che anche  $K(S_n), K^2(S_n), K^3(S_n), \ldots$  contengono tutti i 3-cicli. Perciò  $S_n$  non è risolubile.

## 4.8. Lemma

Dati 
$$\sigma \in S_n$$
 e  $x_1, \ldots, x_m \in \{1, \ldots, n\}$  si ha

$$\sigma \circ (x_1 \ldots x_m) \circ \sigma^{-1} = (\sigma(x_1) \ldots \sigma(x_m))$$

#### Dimostrazione.

Sia  $j \in \{1, \ldots, n\}$ ,

$$\sigma \circ (x_1 \dots x_m) \circ \sigma^{-1} \qquad (\sigma(x_1) \dots \sigma(x_m))$$

$$j \mapsto \begin{cases} \sigma(x_{i+1}) & \text{se } j = \sigma(x_i), i < m \\ \sigma(x_1) & \text{se } j = \sigma(x_m) \\ j & \text{se } j \notin \{\sigma(x_1), \dots, \sigma(x_m)\} \end{cases} \qquad j \mapsto \begin{cases} \sigma(x_{i+1}) & \text{se } j = \sigma(x_i), i < m \\ \sigma(x_1) & \text{se } j = \sigma(x_m) \\ j & \text{se } j \notin \{\sigma(x_1), \dots, \sigma(x_m)\} \end{cases}$$

# 5. Azioni di un gruppo

#### 5.1. Osservazione

Siano  $(G, \cdot)$  un gruppo e X un insieme non-vuoto. Supponiamo che esista un omomorfismo

$$G \to S(X), a \mapsto \sigma_a$$

Abbiamo quindi  $\sigma_e = \mathrm{id}_X e \ \sigma_{a \cdot b} = \sigma_a \circ \sigma_b$ . Possiamo definire un'applicazione

$$G \times X \to X, (a, x) \mapsto \sigma_a(x)$$

con le proprietà

$$\sigma_e(x) = x$$
 $\sigma_{ab}(x) = \sigma_a(\sigma_b(x))$ 

per ogni  $x \in X, a, b \in G$ .

### 5.2. Definizione

Dati un gruppo  $(G, \cdot)$  e un insieme  $X \neq \emptyset$ , si dice che G agisce su X se esiste un'applicazione

$$G \times X \to X, (a, x) \mapsto a(x)$$

detta **azione** di G su X, con le seguenti proprietà per ogni  $x \in X$ :

$$(A1) \ e(x) = x$$

(A2) 
$$ab(x) = a(b(x))$$
 per  $a, b \in G$ 

## 5.3. Osservazione

Abbiamo visto che ogni omomorfismo  $G \to \mathcal{S}(X)$  da luogo ad un'azione G su X. Viceversa data un'azione

$$G \times X \to X, (a, x) \mapsto a(x)$$

per ogni elemento  $a \in G$  si ottiene un'applicazione

$$f_a: X \to X, x \mapsto a(x)$$

Per la proprietà (A1) si si ha  $f_e = \mathrm{id}_X$  e per (A2) si ha

$$f_{ab}(x) = f_a(f_b(x)) \tag{*}$$

Quindi  $f_a$  è invertibile, con applicazione inversa  $f_{a^{-1}}$ , perciò  $f_a \in S(X)$ . Dunque otteniamo un'applicazione

$$f: G \to S(X), a \mapsto f_a$$

che è un omomorfismo per (\*).

Concludiamo quindi che le azioni di G su X corrispondono biunivocamente agli omomorfismi  $G \to \mathcal{S}(X).$ 

# 5.4. Esempi

1. Sia  $n \in \mathbb{N}$ . Consideriamo il poligono regolare di n vertici



Il gruppo  $(\mathbb{Z}/n\mathbb{Z},+)$  agisce sull'insieme dei vertici  $X=\{z_0,\ldots,z_{n-1}\}$  tramite

$$\begin{array}{ccc} \mathbb{Z}/n\mathbb{Z} \times X & \longrightarrow & X \\ (\overline{r}, z_i) & \longmapsto & \rho^r(z_i) \end{array}$$

dove  $\rho$  è la rotazione di angolo  $\alpha$  e centro O. Infatti:

- poiché  $\rho^n = \mathrm{id}_X$ , vediamo che  $\rho^r$  non dipende dalla scelta del rappresentante di  $\overline{r}$ , quindi l'applicazione è ben definita.
- (A1)  $(\overline{0}, x) \mapsto \rho^0(x) = x$ (A2)  $(\overline{r+s}, x) = (\overline{r} + \overline{s}, x) \mapsto \rho^{r+s}(x) = \rho^r(\rho^s(x))$
- 2. Siano K un campo,  $n \in N$ . Il gruppo delle matrici invertibili G = Gl(n, K) agisce sullo spazio vettoriale  $V = K^n$  tramite

$$G \times V \to V, (A, v) \mapsto Av$$

3. Ogni gruppo G agisce su se stesso tramite il coniugio

$$G \times G \to G, (a, x) \mapsto axa^{-1}$$

Infatti ogni elemento  $a \in G$  definisce un automorfismo di G (cioè un isomorfismo  $G \to G$ ) detto automorfismo interno

$$\operatorname{int}_a: G \to G, x \mapsto axa^{-1}$$

(int $_a$  omomorfismo:

$$\operatorname{int}_a(xy) = axya^{-1} = axa^{-1}aya = \operatorname{int}_a(x) \cdot \operatorname{int}_a(y)$$

 $\operatorname{int}_a$  invertibile con inversa  $\operatorname{int}_{a^{-1}}$ )

Dunque abbiamo un omomorfismo

$$\operatorname{int}: G \to \operatorname{S}(G), a \mapsto \operatorname{int}_a$$

Infatti:

$$int_{ab}(x) = (ab)xab^{-1} 
= a(bxb^{-1})a^{-1} 
= int_a(int_b(x))$$

perciò  $\operatorname{int}_{ab} = \operatorname{int}_a \circ \operatorname{int}_b$ .

Se G è abeliano, l'azione del coniugio è banale.

Ogni gruppo  $(G, \cdot)$  agisce su se stesso anche tramite la moltiplicazione (a sinistra):

$$G \times G \to G, (a, x) \mapsto a \cdot x$$

Infatti ogni elemento di G definisce una biiezione

$$t_a: G \to G, x \mapsto a \cdot x$$

detta traslazione, con  $\mathbf{t}_a^{-1} = \mathbf{t}_{a^{-1}}$  e  $\mathbf{t}_{ab}(x) = a(b \cdot x) = \mathbf{t}_a(\mathbf{t}_b(x))$ . In altre parole

$$t: G \to S(G), a \mapsto t_a$$

è un omomorfismo di gruppi. Inoltre t è iniettivo: se  $t_a = id_G$ , allora ax = x per ogni  $x \in G$ , perciò  $a = e_G$ . Abbiamo dimostrato

# 5.5. Teorema di Cayley

Ogni gruppo G è isomorfo ad un sottogruppo del gruppo simmetrico  $(\mathbf{S}(G),\circ)$ 

### 5.6. Lemma e definizione

Sia  $G \times X \to X$  un'azione di un gruppo G su un insieme X. Per ogni elemento  $x \in X$  consideriamo l'insieme

$$O(x) := \{a(x) \mid a \in G\}$$

detto l'**orbita** di x attraverso l'azione di G.

Le orbite degli elementi di X inducono una partizione di X, cioè X è l'unione di orbite disgiunte a due a due.

#### Dimostrazione.

Consideriamo la relazione di equivalenza su X data da

$$x \sim y \text{ se } x \in \mathcal{O}(y)$$

riflessiva:  $x \sim x$  poiché  $x = e(x) \in O(x)$ 

simmetrica: se  $x \sim y$ , allora x = a(y) per un  $a \in G$ , dunque

$$y = e(y) \underset{(A1)}{=} (a^{-1}a)(y) \underset{(A2)}{=} a^{-1}(a(y)) = a^{-1}(x) \in O(x)$$

transitiva: se  $x \in \mathcal{O}(y)$  e  $y \in \mathcal{O}(z)$ , allora x = a(y) e y = b(z) per  $a, b \in G$  opportuni, quindi

$$x = a(b(z)) \underset{(A2)}{=} (ab)(z) \in \mathcal{O}(z)$$

e pertanto  $x \sim z$ .

Adesso si applichi 2.1.

### 5.7. Lemma e definizione

Sia  $G \times X \to X$  un'azione di un gruppo G su un insieme X. Per ogni elemento  $x \in X$  lo **stabilizzatore** di x è il sottogruppo di G dato da

$$G_x := \{ a \in G \mid a(x) = x \}$$

#### Dimostrazione.

Se  $a, b \in G_x$ , allora a(x) = x = b(x), perciò

$$b^{-1}(x) = b^{-1}(b(x)) \underset{(A2)}{=} e(x) \underset{(A1)}{=} x \quad \text{e} \quad ab^{-1}(x) = a(b^{-1}(x)) = a(x) = x$$

Dunque  $ab^{-1} \in G_x$ .

# 5.8. Esempio

Ogni  $\sigma \in S_n$  induce un'azione del gruppo  $G = \langle \sigma \rangle \leq S_n$  sull'insieme  $X = \{1, \ldots, n\}$  attraverso  $G \times X \to X, (\sigma^m, i) \to \sigma^m(i)$ .

Per 5.6 le orbite di questa azione inducono una partizione  $X = O(x_1) \cup \cdots \cup O(x_r)$ . Ogni orbita è di forma

$$O(x_i) = \{x_i, \sigma(x_i), \dots, \sigma^{m_i}(x_i)\}\$$

per un certo  $m_i < \operatorname{ord}(\sigma)$ .

 $m_i = 0$  se e solo se  $O(x_i) = \{x_i\}$ , ovvero  $\sigma(x_i) = x_i$ . In tal caso sia  $\tau_i = id_X$ . Per  $m_i > 0$  consideriamo il ciclo

$$\tau_i = (x_i \ \sigma(x_i) \ \dots \ \sigma^{m_i}(x_i)) \in S_n$$

Poiché le orbite sono disgiunte, i cicli  $\tau_1, \ldots, \tau_r$  sono disgiunti. E poiché  $X = \mathcal{O}(x_1) \cup \cdots \cup \mathcal{O}(x_r)$ , abbiamo

$$\sigma = \tau_1 \circ \ldots \circ \tau_r$$

Tale scomposizione è unica, a meno dell'ordine:

Se anche  $\sigma = \rho_1 \circ \ldots \circ \rho_s$  con cicli disgiunti  $\rho_1, \ldots, \rho_s$ , allora gli insiemi  $\{x \in X \mid \rho_i(x) \neq x\}$  per  $1 \leq i \leq s$ , determinano le orbite dell'azione di G su X.

Pertanto  $r = s \in \{\rho_1, ..., \rho_s\} = \{\tau_1, ..., \tau_r\}.$ 

Abbiamo dimostrato

### 5.9. Teorema

Ogni permutazione è prodotto di cicli disgiunti. Tale scomposizione è unica a meno dell'ordine.

# **Esempio**

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & 1 & 8 & 7 & 3 & 4 \end{pmatrix}$$

Le orbite di  $G = \langle \sigma \rangle$  sono:

$$O(1) = \{1, 2, 5, 8, 4\} O(3) = \{3, 6, 7\}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 5 & 8 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 7 \end{pmatrix}.$$
  
 $\operatorname{ord}(\sigma) = 15 = |G|.$ 

Mentre gli stabilizzatori di G sono:

$$G_1 = \{ id, \sigma^5, \sigma^1 0 \}$$
  $[G: G_1] = 5$   

$$G_3 = \{ id, \sigma^3, \sigma^6, \sigma^9, \sigma^1 2 \}$$
  $[G: G_3] = 3$ 

Osserviamo che  $|O(1)| = [G : G_1] e |O(3)| = [G : G_3].$ 

# 5.10. Equazioni delle orbite

Sia  $G \times X \to X$  un'azione di un gruppo G su un insieme X. Per ogni elemento  $x \in X$  si ha

$$|\operatorname{O}(x)| = [G:G_x]$$

#### Dimostrazione.

In O(x) si ha:

$$a(x) = b(x)$$
 se e solo se  $x = a^{-1}b(x)$   
se e solo se  $a^{-1}b \in G_x$   
se e solo se  $\overline{a} = \overline{b}$  in  $G/G_x$ 

Possiamo quindi definire

$$O(x) \longrightarrow G/G_x$$
  
 $a(x) \longmapsto \overline{a}$ 

Che è ben-definita, iniettiva e ovviamente anche suriettiva. Perciò

$$|O(x)| = |G/G_x| = [G:G_x]$$

# 5.11. Lemma e definizione

Siano  $(G, \cdot)$  un gruppo e  $x \in G$ . Consideriamo l'azione del coniugio. Lo stabilizzatore di x è

$$Z(x) = \{ a \in G \mid axa^{-1} = x \} = \{ a \in G \mid ax = xa \}$$

detto **centralizzatore** di x in G. Inoltre

$$O(x) = \{x\}$$
 se e solo se  $Z(x) = G$   
se e solo se  $ax = xa$  per ogni  $a \in G$ .

In altre parole  $O(x) = \{x\}$  se e solo se x appartiene al **centro** di G:

$$Z(G) := \{ a \in G \mid ay = ya \text{ per ogni } y \in G \}$$
$$= \bigcap_{y \in G} Z(y)$$

### **Corollario**

Per  $x \in G$  si ha  $O(x) = \{x\}$  se e solo se  $G = G_x$ .

# 5.12. Equazione delle classi

Sia G un gruppo finito e siano  $O(x_1), \ldots, O(x_m)$  le orbite distinte di G rispetto all'azione del coniugio.

Possiamo supporre che esista un  $1 \le r \le m$ , tale che  $x_1, \ldots, x_r \in \mathrm{Z}(G)$ , e  $x_{r+1}, \ldots, x_m \notin \mathrm{Z}(G)$ .

Allora

$$|G| = |Z(G)| + \sum_{i=r+1}^{r} [G : Z(x_i)]$$

#### Dimostrazione.

Poiché  $G = \bigcup_{i=1}^m \mathcal{O}(x_i)$ , abbiamo

$$|G| = \sum_{i=1}^{m} |\mathcal{O}(x_i)|$$

Inoltre  $\bigcup_{i=1}^r \mathcal{O}(x_i) = \{x_1, \dots, x_r\} = \mathcal{Z}(G)$ :

Se  $x \in Z(G)$  allora  $x \in O(x_i)$  con  $1 \le i \le m$ , ovvero  $\{x\} = O(x) = O(x_i)$ , perciò  $x = x_i$  e  $1 \le r \le r$ .

Dunque  $G = \mathcal{Z}(G) \cup \bigcup_{i=r+1}^{m} \mathcal{O}(x_i)$  e

$$|G| = |Z(G)| + \sum_{i=r+1}^{m} |O(x_i)|$$

$$= |Z(G)| + \sum_{i=r+1}^{m} [G:G_{x_i}]$$

# 5.13. Lemma e definizione

Ogni gruppo G agisce sull'insieme  $\mathcal{H}$  dei suoi sottogruppi, tramite coniugio

$$G \times \mathcal{H} \to \mathcal{H}, (a, H) \mapsto aHa^{-1}$$

Infatti  $aHa^{-1} \in \mathcal{H}$ , ovvero  $aHa^{-1} \leq G$ : Se  $axa^{-1}$ ,  $aya^{-1} \in aHa^{-1}$ , allora

$$(axa^{-1})(aya^{-1})^{-1} = axa^{-1}ay^{-1}a^{-1} = a\underbrace{xy^{-1}}_{H}a^{-1} \in aHa^{-1}$$

L'orbita di H è l'insieme di tutti i sottogruppi di G che sono coniugati ad H e il suo stabilizzatore è il **normalizzante** 

$$N_G(H) = \{ a \in G \mid aHa^{-1} = H \}$$
  
=  $\{ a \in G \mid aH = Ha \}$ 

Per 5.10 il numero dei sottogruppi di G coniugati ad H è  $[G: N_G(H)]$ 

# 6. Teoremi di Sylow

Il Teorema di Lagrange afferma che l'ordine di ogni sottogruppo di un gruppo G di ordine n divide n.

In generale però possono esistere divisori m di n tali che G non possiede sottogruppi di ordine m.

# 6.1. Esempio

Il gruppo alterno  $A_4$  ha 12 elementi e non possiede sottogruppi di ordine 6. Per verificarlo procediamo per assurdo e supponiamo che esista  $H \leq A_4$  con |H| = 6.

- 1. Poiché  $[G:A_4]=2$ , si ha  $H \triangleleft G$ .
- 2. Inoltre l'intersezione  $H \cap \mathcal{V}$  con il gruppo di Klein  $\mathcal{V}$  deve avere  $|H \cap \mathcal{V}| = 2$ . Infatti  $|H \cap \mathcal{V}|$ , per il Teorema di Lagrange, divide sia |H| = 6 che  $|\mathcal{V}| = 4$ , perciò  $|H \cap \mathcal{V}| \in \{1, 2\}$ .

Ma se  $|H \cap \mathcal{V}| = 1$ , ovvero  $H \cap \mathcal{V} = \{id\}$ , allora l'applicazione

$$H \times \mathcal{V} \to A_4, (h, v) \mapsto hv$$

sarebbe iniettiva:

se  $(h_1, v_1)$  e  $(h_2, v_2)$  soddisfano  $h_1v_1 = h_2v_2$ , allora  $h_2^{-1}h_1 = v_2v_1^{-1} \in H \cap \mathcal{V}$ , perciò  $h_2^{-1}h_1 = v_2v_1^{-1} = \text{id e } h_1 = h_2$ ,  $v_1 = v_2$ , quindi  $(h_1, v_1) = (h_2, v_2)$ . Ma ciò è impossibile poiché  $|H \times \mathcal{V}| = 24$  e  $|A_4| = 12$ .

3. Sappiamo per (2) che  $H \cap \mathcal{V} = \{id, v\}$  per un  $v \in \mathcal{V} \setminus \{id\}$ . Perciò  $v = (i \ j) (k \ l)$  con  $\{i, j, k, l\} = \{1, 2, 3, 4\}$ . Poniamo  $\sigma = (i \ j \ k)$  e calcoliamo

$$\sigma v \sigma^{-1} = (\sigma(i) \ \sigma(j)) (\sigma(k) \ \sigma(l))$$
$$= (j \ l) (i \ l) \neq v$$

Perciò  $\sigma v \sigma^{-1} \notin H \cap \mathcal{V}$ , quindi  $\sigma v \sigma^{-1} \notin H$ . Ma ciò contraddice  $H \triangleleft A_4$ .

### 6.2. Definizione

Dato un numero primo p diciamo che un gruppo è un p-gruppo se il suo ordine è di forma  $p^k$  con k > 0.

### 6.3. Osservazione

Se p è primo e G è un gruppo con |G| = p, allora G è ciclico (per  $a \in G \setminus \{id\}$ , si ha  $1 < \operatorname{ord}(a) \mid p$ , perciò  $\operatorname{ord}(a) = p$  e  $G = \langle a \rangle$ ) e pertanto è abeliano.

# 6.4. Proposizione

Sia p primo e sia G un p-gruppo con  $|G| = p^k$ ,  $k \in \mathbb{N}$ . Allora p divide |Z(G)|.

#### Dimostrazione.

Usiamo l'equazione delle classi 5.12

$$|G| = |Z(G)| + \sum_{i=r+1}^{m} [G : G_{x_i}]$$

Dove  $x_{r+1}, \ldots, x_m$  sono i rappresenti delle orbite di G attraverso l'operazione del coniugio che non sono elementi del centro Z(G).

Sappiamo che  $[G:G_{x_i}] \mid |G|$  per ogni  $r < i \le m$  e  $[G:G_{x_i}] > 1$ , poiché

 $[G:G_{x_i}]=|O(x_i)| \in O(x)=\{x\} \text{ se e solo se } x\in Z(G).$ 

Dunque ogni  $[G:G_{x_i}]$  è una potenza non banale di p.

Poiché p divide |G| e ciascun  $[G:G_{x_i}]$ , concludiamo che  $p \mid |Z(G)|$ .

### 6.5. Corollario

Se p è primo e G è un gruppo con  $|G| = p^k$ ,  $k \in \mathbb{N}$ , allora G è risolubile ed esiste una catena di sottogruppi

$$\{e\} = N_0 \le N_1 \le N_2 \le \dots \le N_k = G$$

tale che per ogni $1 \leq i \leq k$ 

- (i)  $N_{i-1} \triangleleft N_i$
- (ii)  $|N_i| = p^i$

#### Dimostrazione.

La dimostrazione è lasciata per esercizio.

### 6.6. Definizione

Sia G un gruppo e p un numero primo. I sottogruppi di G che sono p-gruppi si dicono p-sottogruppi.

Inoltre  $H \leq G$  è detto p-sottogruppo di Sylow se è massimale, cioè non esiste un p-sottogruppo di G che contenga propriamente H.

# 6.7. Esempi

Sia G un gruppo finito e p primo.

- 1. Se p non divide |G|, allora  $\{e\}$  è l'unico p-sottogruppo (di Sylow) di G.
- 2. Se G è abeliano, allora

$$G_p = \{a \in G \mid \operatorname{ord}(a) \text{ è una potenza di } p\}$$

è l'unico p-sottogruppo di Sylow di G (da dimostrare per esercizio)

3.  $G = S_4 \text{ con } |G| = 24 = 2^3 \cdot 3.$ 

I 3-sottogruppi non banali di G sono tutti di ordine 3, perciò isomorfi a  $\mathbb{Z}/3\mathbb{Z}$ . I 2-sottogruppi non banali di G possono avere ordine 2,4 oppure 8.

- ordine 2: generati da trasposizioni, sono isomorfi a  $\mathbb{Z}/2\mathbb{Z}$ .
- ordine 4:  $\mathcal{V}$ , oppure sottogruppi generati da cicli di lunghezza 4, quindi isomorfi a  $\mathbb{Z}/4\mathbb{Z}$ .
- ordine 8: abbiamo  $D_4$ , altri ? Vediamo che questi sono i 2-sottogruppi di Sylow e sono tutti coniugati (e quindi isomorfi) tra loro.

# 6.8. Teorema(Wielandt)

Sia G un gruppo finito e sia p un numero primo tale che  $p^k$  con  $k \in \mathbb{N}$  opportuno divide l'ordine di G.

Allora G possiede un sottogruppo di ordine  $p^k$ .

#### Dimostrazione.

 $n = |G| = p^l m$  dove k < l e p e m sono coprimi.

Poniamo  $t = p^k$  e consideriamo l'insieme  $\mathcal{A}$  di tutti i sottoinsiemi di G che hanno esattamente t elementi.

Vogliamo mostrare che  $\mathcal{A}$  contiene un sottogruppo di G.

Innanzitutto, si ricordi che per  $X \in \mathcal{A}$  e per  $a \in G$  si ha che

$$aX = \{ax \mid x \in X\}$$
ha nuovamente cardinalità  $t$ 

Abbiamo quindi un'azione

$$G \times \mathcal{A} \to \mathcal{A}, (a, X) \mapsto aX$$

che induce una partizione di A.

Siano  $O(x_1), \ldots, O(x_r)$  le orbite distinte di  $\mathcal{A}$  e siano  $G_{x_1}, \ldots, G_{x_r}$  i loro stabilizzatori. Per 5.10

$$|\mathcal{A}| = \sum_{i=1}^{r} |O(x_i)| = \sum_{i=1}^{r} [G:G_{x_i}]$$

Abbiamo

$$|\mathcal{A}| = \binom{n}{t} = \frac{n!}{t!(n-t)!} = \frac{n(n-1)\cdots(n-t+1)}{t(t-1)\cdots1}$$
$$= \prod_{i=0}^{t-1} \frac{n-i}{t-i} = \binom{n-1}{t-1} \frac{n}{t}$$

dove  $\frac{n}{t} = p^{l-k}m$  e per il Lemma 6.9 concludiamo che  $|\mathcal{A}|$  è divisibile per  $p^{l-k}$ , ma non per  $p^{l-k+1}$ .

Quindi deve esistere un  $1 \le i \le r$  tale che  $[G:G_{x_i}]$  non è divisibile per  $p^{l-k+1}$ . Resta da verificare che  $|G_{x_i}| = t$ .

$$G_{x_i} = \{ a \in G \mid aX_i = X_i \}$$

Se  $x \in X_i$ , allora possiamo definire

$$\mathbf{t}_x:G_{x_i}\to X_i,a\mapsto ax$$

che è iniettiva.

Dunque  $|G_{x_i}| \le |X_i| = t$ . Inoltre

$$\begin{aligned} |G| &= |G_{x_i}| \cdot \begin{array}{c} [G:G_{x_i}] \\ & \uparrow \\ p^l m \end{array} & \text{non è divisibile } \\ & \text{per } p^{l-k+1} \end{aligned}$$

$$\Rightarrow p^k \mid |G_{x_i}|$$

Quindi  $t \leq |G_{x_i}|$ , perciò  $G_{x_i}$  ha ordine t.

### **6.9.** Lemma

Siano p un numero primo ,  $k, n \in \mathbb{N}$ . Se  $t = p^k$  divide n, allora p non divide  $\binom{n-1}{t-1}$ 

#### Dimostrazione.

Sia  $n = p^k m$ . Per ogni  $1 \le i \le t - 1$  scriviamo  $i = p^{k_i} m_i$  con  $0 \le k_i < k$ ,  $m_i \in \mathbb{N}$  tali che  $p \in m_i$  siano coprimi.

Abbiamo

$$\frac{n-i}{t-i} = \frac{p^k m - p^{k_i} m_i}{p^k - p^{k_i} m_i} = \frac{p v_i - m_i}{p w_i - m_i}$$

per  $v_i, w_i \in \mathbb{N}$  opportuni, perciò

$$\binom{n-1}{t-1} = \prod_{i=1}^{t-1} \frac{n-i}{t-1} = \frac{pv - m'}{pw - m'}$$

dove  $m' = \prod_{i=1}^{t-1} (-m_i)$ .

Dunque, se p dividesse  $\binom{n-1}{t-1}$ , allora  $\frac{pv-m'}{pw-m'}=p\cdot q$  con  $q\in\mathbb{N}$  opportuno, perciò  $pv-m'=p\cdot q(pw-m')$  e p divide m'.

Ma ciò è impossibile poiché ogni  $m_i$  è coprimo con p.

# 6.10. Lemma

Siano G un gruppo finito, p un numero primo e sia  $|G|=p^k m$  dove  $k,m\in\mathbb{N}$  e p non divide m.

Sia P un p-sottogruppo di G di ordine  $p^k$ .

Per ogni p-sottogruppo H di G, esiste un  $x \in G$  tale che  $H \subseteq xPx^{-1}$ .

#### Dimostrazione.

Il sottogruppo H di G agisce sull'insieme G/P dei laterali di G modulo P tramite

$$H \times G/P \to G/P, (h, \overline{x}) \mapsto \overline{hx}$$

Abbiamo  $|G/P| = \frac{|G|}{|P|} = m$ .

Se  $O(\overline{x_1}), \ldots, O(\overline{x_r})$  sono le orbite di G/P, abbiamo

$$m = |G/P| = \sum_{i=1}^{r} [H : H_{\overline{x_i}}]$$
 per 5.10

Dove ogni addendo  $[H:H_{\overline{x_i}}]$  divide |H| per il Teorema di Lagrange e pertanto è una potenza di p. Perciò deve esistere un addendo con esponente nullo, altrimenti  $p \mid m$ , ovvero esiste un i con  $[H:H_{\overline{x_i}}]=1$ .

Ciò significa

$$H = H_{\overline{x_i}} = \{ h \in H \mid \overline{hx_i} = \overline{x_i} \text{ in } G/P \}$$

Dunque per ogni  $h \in H$  abbiamo

$$\overline{hx_i} = \overline{x_i}$$
 in  $G/P$ 

ovvero  $x_i^{-1}hx_i \in P$ , cioè  $h \in x_iPx_i^{-1}$ .

Dunque  $H \subseteq x_i P x_i^{-1}$ .

# 6.11. Teoremi di Sylow

Sia G un gruppo finito di ordine n e sia p un numero primo. Supponiamo che  $n = p^k m$ , dove  $k, m \in \mathbb{N}$  e p non divide m.

- 1. G possiede p-sottogruppi di Sylow. Essi sono precisamente i sottogruppi di ordine  $p^k$ .
- 2. I p-sottogruppi di Sylow sono coniugati tra loro: se  $P_1, P_2$  sono p-sottogruppi di Sylow, allora esiste un  $x \in G$  tale che  $P_1 = xP_2x^{-1}$ .
- 3. Il numero  $s_p$  dei sottogruppi di Sylow di  ${\cal G}$  è un divisore di m di forma

$$s_p = 1 + zp \quad \text{con } z \in \mathbb{N}_0$$

#### Dimostrazione.

Per il Teorema di Wielandt esiste un sottogruppo di ordine  $p^i$  per ogni  $1 \le i \le k$ . Se  $P \le G$  ha ordine  $p^k$ , allora P non può essere contenuto propriamente in un p-sottogruppo di G, perciò P è un sottogruppo di Sylow.

Viceversa se H è un p-sottogruppo di Sylow, allora per 6.10 esiste un  $x \in G$  tale che  $H \subseteq xPx^{-1}$ , quindi  $H = xPx^{-1}$ , e  $|H| = |P| = p^k$ . Abbiamo dimostrato (1) e (2). Prima di continuare, notiamo

### 6.12. Corollario

Sia G un gruppo di ordine  $n = p^k m$  come nel Teorema.

- 1. Ogni p-sottogruppo è contenuto in un p-sottogruppo di Sylow
- 2. Un p-sottogruppo di Sylow è normale se e solo se è l'unico p-sottogruppo di Sylow.
- 3. Se P è un p-sottogruppo di Sylow, allora il normalizzante  $N_G(P) = \{a \in G \mid aP = Pa\}$  ha ordine  $|N_G(P)| = p^k m'$  per un divisore m' di m e P è l'unico sottogruppo di Sylow di  $N_G(P)$ . (Si rammenti che  $P \triangleleft N_G(P)$ )

Riprendiamo la dimostrazione di 6.11

3. Se H è un p-sottogruppo di Sylow, allora  $s_p$  è il numero dei sottogruppi di G che sono coniugati ad H e per 5.13

$$s_p = [G : N_G(H)]$$

Per il Teorema di Lagrange  $s_p|N_G(H)|=|G|$ , ovvero  $s_p(p^km')=p^km$ . Perciò  $s_p|m$ .

Si noti che H agisce sull'insieme  $\mathcal P$  di tutti i p-sottogruppi di Sylow tramite

$$H \times \mathcal{P} \to \mathcal{P}, (a, P) \mapsto aPa^{-1}$$

ed è l'unico elemento di  $\mathcal{P}$  con orbita banale:

certamente  $O(H) = \{aHa^{-1} \mid a \in H\} = \{H\}$ , viceversa se  $O(P) = \{P\}$ , allora  $aPa^{-1}$  per ogni  $a \in H$ , perciò  $H \subseteq N_G(P)$ .

Quindi H è un p-sottogruppo di Sylow di  $N_G(P)$  e per 6.12(3) segue H = P. Dunque se  $O(P_1), \ldots O(P_r)$  sono le orbite di  $\mathcal{P}$  attraverso questa azione e  $H_{P_1}, \ldots, H_{P_r}$  i relativi stabilizzatori, allora

$$s_p = |\mathcal{P}| = \sum_{i=1}^r |O(P_i)| = \sum_{i=1}^r [H:H_{P_i}]$$

dove ogni addendo divide  $|H|=p^k$ , quindi è una potenza di p e un unico addendo ha esponente nullo.

Concludiamo che  $s_p = 1 + zp$  con  $z \in \mathbb{N}_0$  opportuno.

# 7. Conseguenze dei teoremi di Sylow

# 7.1. Teorema di Cauchy

Sia G un gruppo e sia p un numero primo. Se  $p \mid |G|$ , allora G possiede un elemento di ordine p.

#### Dimostrazione.

Teorema di Wielandt per k = 1.

### 7.2. Corollario

Se p è primo, allora un gruppo finito è un p-gruppo se e solo se l'ordine di ogni suo elemento è una potenza di p.

#### Dimostrazione.

"⇒" : per il Teorema di Lagrange

"<=" : se q fosse un numero primo con  $q \neq p$  e  $q \mid |G|$ , allora G avrebbe un elemento di ordine q.

### 7.3. Richiamo

Dati due gruppi  $G_1$  e  $G_2$ , il **prodotto diretto** ( o somma diretta) di  $G_1$  e  $G_2$  è l'insieme  $G_1 \times G_2$  con l'operazione  $(a_1, a_2) \cdot (b_1, b_2) = (a_1 \cdot b_1, a_2 \cdot b_2)$  ed elemento neutro  $(e_1, e_2)$ , ed è abeliano se e solo se lo sono  $G_1$  e  $G_2$ .

Se  $a_1 \in G_1$  e  $a_2 \in G_2$  sono elementi di ordine  $m_1$  e  $m_2$  rispettivamente, allora  $\operatorname{ord}((a_1, a_2)) = \operatorname{mcm}(m_1, m_2)$ .

45

# 7.4. Teorema

Sia p un numero primo. Se G è un gruppo di ordine  $p^2$ , allora  $G \cong \mathbb{Z}/p^2\mathbb{Z}$  oppure  $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ .

#### Dimostrazione.

Se G è un gruppo ciclico, allora  $G \cong \mathbb{Z}/p^2\mathbb{Z}$ .

Supponiamo che G non sia ciclico.

Poiché  $p \mid |G|$  per 6.4 abbiamo  $|G/Z(G)| \in \{1, p\}$ .

Perciò  $G/\mathbb{Z}(G)$  è ciclico, quindi G è abeliano (esercizio), inoltre G possiede un elemento a di ordine p per 7.1.

Prendiamo  $b \in G \setminus \langle a \rangle$ . Allora  $\operatorname{ord}(b) \in \{1, p, p^2\}$ , ma  $\operatorname{ord}(b) \neq 1$ , altrimenti  $b = e \in \langle a \rangle$ , e inoltre  $\operatorname{ord}(b) \neq p^2$ , altrimenti G sarebbe ciclico. Dunque  $\operatorname{ord}(b) = p$ . Consideriamo

$$\begin{array}{ccc} f: \langle a \rangle \times \langle b \rangle & \longrightarrow & G \\ (x,y) & \longmapsto & xy \end{array}$$

f omomorfismo:

$$f((x,y)\cdot(x',y'))=f((xx',yy'))=xx'yy'\underset{G\text{ abeliano}}{=}(xy)(x'y')=f((x,y))f((x',y'))$$

f iniettivo:

se f((x,y)) = e, allora xy = e, perciò  $x = y^{-1} \in \langle a \rangle \cap \langle b \rangle = \{e\}$  poiché  $b \notin \langle a \rangle$  implica che  $\langle a \rangle \cap \langle b \rangle \subsetneq \langle b \rangle$ .

Dunque f((x,y)) = e implica x = y = e e (x,y) = (e,e).

Poiché  $|\langle a \rangle \times \langle b \rangle| = |G|$ , concludiamo che f è un isomorfismo.

Quindi  $G \cong \langle a \rangle \times \langle b \rangle \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ 

### 7.5. Teorema

Siano p, q numeri primi tali che p < q e p non divida q - 1. Ogni gruppo di ordine pq è ciclico (e isomorfo a  $\mathbb{Z}/pq\mathbb{Z}$ )

#### Dimostrazione.

Siano P un p-sottogruppo di Sylow e Q un q-sottogruppo di Sylow. Allora

$$P \cong \mathbb{Z}/p\mathbb{Z} \in Q \cong \mathbb{Z}/q\mathbb{Z} \in P \cap Q = \{e\}$$

Inoltre  $s_q = 1 + zq$  con  $z \in \mathbb{N}_0$  e divide p.

Poiché p < q, segue z = 0 e  $s_q = 1$ , perciò  $Q \triangleleft G$ .

Inoltre  $s_p = 1 + z'p$  con  $z' \in \mathbb{N}_0$  e divide q. Se  $s_p \neq 1$ , allora  $s_p = q$  e  $p \mid q - 1$  Perciò anche  $s_p = 1$  e  $P \triangleleft G$ .

Consideriamo

$$f: P \times Q \to G, (x, y) \mapsto xy$$

Per verificare che f sia un omomorfismo basta mostrare che xx'yy' = xyx'y' per tutti gli elementi  $x, x' \in P, y, y' \in Q$ , ovvero basta vedere che xy = yx per  $x \in P$  e  $y \in Q$ . Ma si ha che

$$xy(yx)^{-1} = xyx^{-1}y^{-1} \in P \cap Q$$

Infatti  $xyx^{-1} \in Q$  poiché  $P \triangleleft G$ , perciò  $(xyx^{-1})y^{-1} \in Q$ , e  $yx^{-1}y^{-1} \in P$  poiché  $Q \triangleleft G$ , quindi  $x(yx^{-1}y^{-1}) \in P$ .

Poiché  $P \cap Q = \{e\}$ , segue che xy = yx.

Concludiamo che f è un omomorfismo, e come in 7.4 vediamo che è un isomorfismo. Perciò

$$G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$$

Prendendo  $a \in \mathbb{Z}/p\mathbb{Z}$  di ordine p e  $b \in \mathbb{Z}/q\mathbb{Z}$  di ordine q vediamo che ord((a, b)) = pq (vedi 7.3).

Perciò  $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$ 

# 7.6. Esempi

- 1. Ogni gruppo di ordine 15 è ciclico (15 =  $3 \cdot 5$  e 3 non divide 4)
- 2. Ogni gruppo G di 200 elementi ha un sottogruppo normale abeliano. Infatti  $200 = 2^3 5^2$  con  $s_5 = 1 + 5z \in \{1, 6, 11, ...\}$  e  $s_5 \mid 8$ , perciò  $s_5 = 1$ . Dunque c'è un unico 5-sottogruppo di Sylow P di ordine  $|P| = 5^2$ . Perciò

$$P \triangleleft G$$
 è abeliano

3. I gruppi di ordine < 10, a meno di isomorfismo

| G |                                                                                                                                                                            |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | $\mathbb{Z}/2\mathbb{Z}$                                                                                                                                                   |
| 3 | $\mathbb{Z}/3\mathbb{Z}$                                                                                                                                                   |
| 4 | $\mathbb{Z}/4\mathbb{Z}, \mathcal{V} \cong \mathbb{Z}/2\mathbb{Z} 	imes \mathbb{Z}/2\mathbb{Z}$                                                                            |
| 5 | $\mathbb{Z}/5\mathbb{Z}$                                                                                                                                                   |
| 6 | $\mathbb{Z}/6\mathbb{Z}, S_3$                                                                                                                                              |
| 7 | $\mathbb{Z}/7\mathbb{Z}$                                                                                                                                                   |
| 8 | $\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, D_4, Q$ |
| 9 | $\mathbb{Z}/9\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} 	imes \mathbb{Z}/3\mathbb{Z}$                                                                                              |

#### CAPITOLO 7. CONSEGUENZE DEI TEOREMI DI SYLOW

Caso |G| = 6:

Se G non è ciclico, consideriamo  $a, b \in G$  con  $\operatorname{ord}(a) = 3$ ,  $\operatorname{ord}(b) = 2$ .

Allora  $\operatorname{ord}(ab) \neq 6$ , perciò  $ab \neq ba$ , quindi  $bab = a^2$ .

Infatti  $\langle a \rangle$  ha indice 2 in G, ed è pertanto normale, dunque  $bab \in \langle a \rangle = \{e, a, a^2\}$  e  $bab \neq e$  poiché  $a \neq e$  e  $bab \neq a$  perché  $ba \neq ab$ .

Segue che  $(ba)^2 = (ab)^2 = a^3 = e$ .

Inoltre  $|G/\langle a \rangle| = 2$  implica

$$G = \{e, a, a^2\} \cup \{b, ab, a^2b\} = \{\underbrace{e, a, a^2}_{\text{ordine 3}}, \underbrace{b, ab, a^2b}_{\text{ordine 2}}\}$$

$$\downarrow \text{cicli di lunghezza 3} \qquad \text{trasposizioni}$$

Parte II.

Anelli

# 8. Il concetto di anello

### 8.1. Definizione

Un anello  $(R, +, \cdot)$  è dato da un insieme non vuoto R e due operazione  $+, \cdot : R \times R \to R$  che godono delle proprietà seguenti:

- (R1) (R,+) è un gruppo abeliano con elemento neutro  $0_R$
- (R2)  $(R,\cdot)$  gode della proprietà associativa e possiede un elemento neutro  $1_R$
- (R3) Leggi distributive

$$a(b+c) = ab + ac$$
  
 $(a+b)c = ac + bc$  per  $a, b \in R$ 

R è detto commutativo se  $(R,\cdot)$  gode della proprietà commutativa.

### Osservazioni

- 1.  $a \cdot 0_R = 0_R = 0_R \cdot a$  per ogni  $a \in R$ Infatti  $a \cdot 0_R + a \cdot a = a(0_R + a) = a \cdot a$ perciò  $a \cdot 0_R = 0_R$
- 2. (-a)b = -ab = a(-b) per  $a, b \in R$ Infatti  $(-a)b + ab = (-a+a)b = 0_R \cdot b = 0_R$ perciò (-a)b = -ab
- 3.  $0_R$  e  $1_R$  sono univocamente determinati.  $0_R = 1_R$  se e solo se  $R = \{0_R\}$ . Infatti se  $a \in R$ , allora  $a = a \cdot 1_R = a \cdot 0_R = 0_R$ . In questo corso supponiamo sempre  $R \neq \{0_R\}$

## 8.2. Lemma e definizione

Sia  $(R, +, \cdot)$  un anello.

- 1. Un elemento di  $a \in R$  si dice **invertibile** se esiste un  $b \in R$  tale che  $ab = ba = 1_R$ . In tal caso b è univocamente determinato e si indica con  $a^{-1}$ .
- 2. Sia  $R^*$  l'insieme di tutti gli elementi invertibili di R. Allora  $1_R \in R^* \subseteq R \setminus \{0_R\}$  e  $(R^*, \cdot)$  è un gruppo con elemento neutro  $1_R$ .
- 3. Un **campo** è un anello commutativo tale che  $R^* = R \setminus \{0_R\}$ . In altre parole ,  $(R \setminus \{0_R\}, \cdot)$  è un gruppo abeliano.
- 4.  $(R, +, \cdot)$  è un **dominio (di integrità)** se è commutativo e non possiede divisori di zero, cioè non esistono elementi  $x, y \in R \setminus \{0_R\}$  tali che  $xy = 0_R$ .

# 8.3. Definizione

Sia  $(R, +, \cdot)$  un anello (campo).

Un sottoinsieme non vuoto  $S \subset R$  si dice sottoanello (sottocampo) se  $(S, +, \cdot)$  è un anello (campo).

#### Osservazione

- 1.  $S \subset R$  è un sottoanello se e solo se
  - $(S, +) \le (R, +)$
  - $1_R \in S$  e  $ab \in S$  per tutti gli elementi  $a, b \in S$
- 2.  $S \subset R$  è un sottocampo se e solo se

$$(S, +) \le (R, +)$$
 e  $(S \setminus \{0_R\}, \cdot) \le (R \setminus \{0_R\}, \cdot)$ 

# 8.4. Esempi

- 1.  $(\mathbb{Z}, +, \cdot)$  è un dominio, con  $\mathbb{Z}^* = \{1, -1\}$
- 2.  $(\mathbb{Q}, +, \cdot)$ ,  $(\mathbb{R}, +, \cdot)$ ,  $(\mathbb{C}, +, \cdot)$  sono campi. Si ha una catena di sottocampi

$$\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

 $\mathbb{Z}$  è un sottoanello si  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ .

- 3. Ogni campo è un dominio: se  $a, b \in R$  con  $ab = 0_R$  e  $a \neq 0_R$ , allora  $b = a^{-1}ab = a^{-1} \cdot 0_R = 0_R$ .
- 4. L'insieme  $M_{n\times n}(K)$  delle matrici quadrate di ordine n su un campo K è un anello rispetto all'addizione e moltiplicazione di matrici. Non è commutativo e ha divisori di zero.

$$\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

5. Se  $R_1, \ldots, R_n$  sono anelli, allora  $R = R_1 \times \cdots \times R_n$  è un anello rispetto all'addizione e moltiplicazione per componenti.

$$(a_1,\ldots,a_n) + (b_1,\ldots,b_n) = (a_1 + b_1,\ldots,a_n + b_n)$$

con

$$0_R = (0_{R_1}, \dots, 0_{R_n})$$
  
 $1_R = (1_{R_1}, \dots, 1_{R_n})$ 

6. Sia I un insieme non vuoto e sia R un anello.

L'insieme  $R^I$  di tutte le funzioni  $f:I\to R$  è un anello rispetto a

$$f + g : I \to R, x \mapsto f(x) + g(x)$$
  
e  $f \cdot g : I \to R, x \mapsto f(x) \cdot g(x)$ 

con

$$0_{R^I}: I \to R, x \mapsto 0_R$$
$$1_{R^I}: I \to R, x \mapsto 1_R$$

Se  $I=[0,1],\ R=\mathbb{R},$  allora l'insieme  $\mathcal{C}^0(I,\mathbb{R})$  delle funzioni continue è un sottoanello di  $\mathbb{R}^I.$ 

Se  $I = \mathbb{N}_0$ , allora  $\mathbb{R}^{\mathbb{N}_0}$  è l'anello delle successioni di numeri reali.

### 8.5. Lemma e definizione

Dato un anello R, l'insieme  $R^{(\mathbb{N}_0)}$  delle successioni  $(a_0, a_1, a_2, \ldots)$  di elementi di R con  $a_n = 0_R$  per quasi tutti gli n, è un anello rispetto a

$$(a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) = (a_0 + b_0, a_1 + b_1, a_2 + a_2, \ldots)$$

$$(a_0, a_1, a_2, \ldots) \cdot (b_0, b_1, b_2, \ldots) = (a_0 b_0, a_0 b_1 + a_1 b_0, a_0 b_2 + a_1 b_1 + a_2 b_0, \ldots, \sum_{i=0}^k a_i b_{k-1}, \ldots)$$

con

$$0 = (0_R, 0_R, 0_R, \dots)$$
$$1 = (1_R, 0_R, 0_R, \dots)$$

Sia  $x = (0_R, 1_R, 0_R, ...)$ , allora

$$x^2 = (0_R, 0_R, 1_R, 0_R, \ldots), \quad x^i = (0_R, 0_R, \ldots, 1_R, 0_R, \ldots)$$

Perciò

$$(a_0, a_1, a_2, \ldots) = a_0 1 + a_1 x + a_2 x^2 + \ldots = \sum_{i=0}^n a_i x^i$$

dove  $a_n$  è l'ultima componente non nulla.

Diremo che  $f = \sum_{i=0}^{n} a_i x^i$  è un polinomio su R nell'incognita x con i coefficienti  $a_0, \ldots, a_n$ , dove  $a_n$  è detto **coefficiente conducente** e  $n = \deg f$  è il **grado** di f. Il polinomio nullo  $0 = (0_R, 0_R, 0_R, \ldots)$  per convenzione ha grado -1. L'anello  $R^{(\mathbb{N}_0)}$  con queste operazioni è detto **anello dei polinomi** e si indica con R[x]. Identificando gli elementi  $a \in R$  con i polinomi costanti  $(a, 0_R, 0_R, \ldots)$  (di grado  $\leq 0$ ) possiamo identificare R con un sottoanello di R[x].

Le definizioni di somma e prodotto tra polinomi sono giustificate da

$$\sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{m} b_i x^i = \sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i$$

$$\sum_{i=0}^{n} a_i x^i \cdot \sum_{i=0}^{m} b_i x^i = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \dots + (\sum_{i=0}^{k} a_i b_{k-i}) x^k + \dots + a_n b_m x^{n+m}$$

#### Osservazione

Sia R un dominio, allora

- 1. R[x] è un dominio
- 2. deg(fg) = deg(f) + deg(g) per  $f, g \in R[x]$  (non nulli)
- 3.  $R[x]^* = R^*$

#### Dimostrazione.

Siano  $f = \sum_{i=0}^n a_i x^i$ ,  $g = \sum_{i=0}^m b_i x^i$  due polinomi in R[x], con deg  $f = n \ge 0$ , deg  $g = m \ge 0$ , allora

$$fg = a_0b_0 + (a_0b_1 + a_1b_0)x + \ldots + a_nb_mx^{n+m}$$

con  $fg \neq 0$  di grado n + m.

Per (3) ovviamente  $a \in R^*$  è un polinomio invertibile con elemento inverso  $a^{-1}$ .  $\subseteq$ :

 $\subseteq$ : Siano  $f, g \in R[x]$  tali che  $fg = 1_{R[x]} = 1_R$ .

Allora

$$\deg f + \deg g = \deg(f+g) = 0$$

perciò  $\deg f = \deg g = 0$  e  $f = a_0, g = b_0$  con  $a_0 b_0 = 1$ .

# CAPITOLO 8. IL CONCETTO DI ANELLO

# 9. Ideali

### 9.1. Definizione

Dato un anello R, un sottoinsieme non vuoto  $I \subset R$  è un **ideale (bilatero)** di R se gode delle proprietà

- (i) se  $a, b \in I$ , allora  $a + b \in I$
- (ii) se  $a \in I$  e  $r \in R$ , allora  $ra, ar \in I$ .

### Osservazioni

- 1. Ogni anello possiede gli ideali banali  $0=\{0_R\}$ e R
- 2. Se I contiene un elemento invertibile, allora I=R: Se  $a\in R^*$  e  $a\in I$ , allora per ogni  $r\in R$  si ha

$$r = r \cdot 1_R = (r \cdot a^{-1}) \cdot a \in I$$

3. Ogni ideale è un sottogruppo di (R, +): Se  $a, b \in I$ , allora

$$a - b = a + (-1_R)b \in I$$

$$\underbrace{\bigcap_{R} \bigcap_{I}}_{I}$$

4. Data una famiglia di ideali  $(A_j)_{j\in J}$  di R, sono ideali anche

$$\sum_{j\in J} A_j := \{ \sum_{j\in J_0} a_j \mid J_0 \subseteq J \text{ sottoinsieme finito, e } a_j \in A_j \text{ per ogni } j \in J_0 \}$$

$$\bigcap_{j\in J} A_j$$

5. Ogni sottoinsieme non vuoto A di R definisce un ideale

$$(A) = \bigcap \{I \mid I \text{ ideale di } R \text{ con } A \subset I\}$$

ovvero il più piccolo ideale di R che contiene A.

Per  $A = \{a_1, \ldots, a_r\}$ , scriviamo  $(A) = (a_1, \ldots, a_r)$ . Se R è commutativo, allora

$$(a_1, \dots, a_r) = \{ \sum_{i=1}^n r_i a_i \mid r_1, \dots, r_n \in R \}$$

In particolare per  $a \in R$  l'ideale

$$(a) = \{ ra \mid r \in R \}$$

è detto ideale principale generato da a

# 9.2. Esempi

- 1. Ogni campo K possiede soltanto gli ideali banali 0 e K: Se  $I \neq 0$ , allora contiene un elemento invertibile  $a \in I$  e perciò I = K
- 2. Ogni ideale di  $\mathbb{Z}$  è principale: Se I è un ideale, allora  $(I, +) \leq (R, +)$  e pertanto  $I = n\mathbb{Z} = (n)$  per un  $n \in \mathbb{N}_0$ , vedi 1.4
- 3. Siano  $A \subset I$  due insiemi e R un anello, allora

$$\mathcal{N}(A) := \{ f \in R^I \mid f(A) = 0 \}$$

è un ideale nell'anello  $R^I$ :

(i) Se  $f, g \in \mathcal{N}(A)$ , allora per ogni  $x \in A$ 

$$(f+g)(x) = f(x) + g(x) = 0_R + 0_R = 0_R$$

perciò  $f + g \in \mathcal{N}(A)$ 

(ii) Se  $f \in \mathcal{N}(A)$ ,  $g \in R^I$ , allora per ogni  $x \in A$ 

$$(f \cdot q)(x) = f(x)q(x) = 0_R \cdot q(x) = 0_R$$

perciò  $f \cdot g \in \mathcal{N}(A)$  e analogamente per  $g \cdot f$ .

## 9.3. Lemma e definizione

Sia  $(R, +, \cdot)$  un anello e sia I un ideale di R.

Poiché  $(I, +) \triangleleft (R, +)$ , possiamo considerare il gruppo quoziente (R/I, +) dato dai laterali di R modulo I:

$$\overline{a} = \{ x \in R \mid x - a \in I \} = a + I$$

Si ha  $\overline{a} = \overline{b}$  se e solo se  $a - b \in I$ .

Ponendo  $\overline{a} + \overline{b} = \overline{a+b}$  sappiamo che (R/I, +) è un gruppo abeliano.

Definiamo una moltiplicazione su R/I ponendo  $\overline{a} \cdot \overline{b} = \overline{ab}$ .

Questa operazione è ben definita:

se  $\overline{a} = \overline{a'}$  e  $\overline{b} = \overline{b'}$ , allora

$$ab - a'b' = ab - ab' + ab' - a'b'$$

$$= \underbrace{a}_{R} \underbrace{(b - b')}_{I} + \underbrace{(a - a')}_{I} \underbrace{b'}_{R} \in I$$

perciò  $\overline{ab} = \overline{a'b'}$ .

Con queste operazioni R/I diventa un anello con

$$0_{R/I} = \overline{0_R} = I$$
  $1_{R/I} = \overline{1_R} = 1_R + I$ 

detto anello quoziente di R modulo I.

# **9.4.** Esempio $\mathbb{Z}/n\mathbb{Z}$

Per I = nZ, consideriamo l'anello  $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ 

1.  $\mathbb{Z}/n\mathbb{Z}^* = \{\overline{a} \mid 0 < a < n, \text{MCD}(a, n) = 1\}$ Infatti  $\overline{a}$  è invertibile se e solo se esiste  $\overline{\alpha} \in \mathbb{Z}/n\mathbb{Z}$  tale che  $\overline{\alpha}\overline{a} = \overline{1}$ , ovvero  $1 - \alpha a = \beta n \text{ con } \beta \in \mathbb{Z}$ , ovvero esistono  $\alpha, \beta \in \mathbb{Z}$  tali che

$$1 = \alpha a + \beta n$$
 (identità di Bézout)

Ciò equivale a MCD(a, n) = 1 (§10)

- 2. In particolare  $\mathbb{Z}/n\mathbb{Z}$  è un campo se e solo se n è un numero primo.
- 3. La funzione di Euler

Per ogni  $n \in \mathbb{N}$  denotiamo con  $\varphi(n)$  il numero degli 0 < a < n che sono primi con n, ovvero

$$\varphi(n) = |\mathbb{Z}/n\mathbb{Z}^*|$$

Otteniamo una funzione  $\varphi: \mathbb{N} \to \mathbb{N}$  che si calcola come segue: Se  $n = p_1^{r_1} \cdot \dots p_m^{r_m}$  è la scomposizione di n in fattori primi, allora

$$\varphi(n) = n(1 - \frac{1}{p_1}) \cdot \ldots \cdot (1 - \frac{1}{p_m})$$

### **Esempio**

$$n = 12 = 2^2 \cdot 3$$

$$\varphi(12) = |\{1, 5, 7, 11\}| = 4$$
$$= 12(1 - \frac{1}{2})(1 - \frac{1}{3})$$
$$= 12 \cdot \frac{1}{2} \cdot \frac{2}{3} = 4$$

Se p è primo  $\varphi(p) = p - 1$ .

#### 4. Teorema di Fermat-Euler

Dati due numeri naturali a,n che siano primi tra loro, in  $\mathbb{Z}/n\mathbb{Z}$  si ha sempre

$$\overline{a}^{\varphi(n)} = \overline{1}$$

#### Dimostrazione.

Per ipotesi  $\overline{a} \in \mathbb{Z}/n\mathbb{Z}^*$  che è un gruppo di ordine  $\varphi(n)$  rispetto alla moltiplicazione. Per 2.3 si ha  $\overline{a}^{\varphi(n)} = \overline{1}$ .

#### 5. Piccolo teorema di Fermat

Se  $a \in \mathbb{N}$  e p è un numero primo che non divide a, allora, in  $\mathbb{Z}/p\mathbb{Z}$  si ha sempre

$$\overline{a}^{p-1} = \overline{1}$$

#### Dimostrazione.

Caso particolare n = p.

# 9.5. Algoritmo RSA

Vedi note

## 9.6. Definizione

Siano R e S anelli.

Un'applicazione  $f: R \to S$  si dice

- omomorfismo se
  - (i) f(a+b) = f(a) + f(b) per  $a, b \in R$
  - (ii)  $f(a \cdot b) = f(a)f(b)$  per  $a, b \in R$
  - (iii)  $f(1_R) = 1_S$
- monomorfismo se è un omomorfismo iniettivo
- epimorfismo se è un omomorfismo suriettivo
- isomorfismo se è un omomorfismo bijettivo

Due anelli R, S sono *isomorfi* se esiste un isomorfismo  $R \to S$ . In tal caso si scrive  $R \cong S$ .

# 9.7. Proposizione

Sia  $f:R\to S$  un omomorfismo di anelli

- 1. ker  $f = \{a \in R \mid f(a) = 0_S\}$  è un ideale di R
- 2. im f è un sottoanello di S
- 3.  $f(0_R) = 0_S$  e f è un monomorfismo se e solo se ker  $f = \{0_R\}$

### Dimostrazione.

Sappiamo che f è anche un omomorfismo di gruppi  $f:(R,+)\to(S,+)$ , quindi

1.  $\ker f \leq (R, +)$ 

Inoltre se  $r \in R$  e  $a \in \ker f$ , allora

$$f(ra) = f(r)f(a) = f(r) \cdot 0_S = 0_S$$

perciò  $ra \in \ker f$ , e analogamente per ar.

2.  $\operatorname{im} f \leq (S, +)$   $1_S = f(1_R) \in \operatorname{im} f$  $\operatorname{Se} f(a), f(b) \in \operatorname{im} f$ , allora

$$f(a) \cdot f(b) = f(ab) \in \operatorname{im} f$$

Perciò im f è un sottoanello.

3. Come in 3.3

# 9.8. Esempi

- 1. Se  $R \subset S$  è un sottoanello, allora l'immersione  $\iota : R \hookrightarrow S$  è un monomorfismo di anelli. Ad esempio, l'immersione  $\iota : \mathbb{Z} \hookrightarrow \mathbb{Q}$  è un monomorfismo la cui immagine non è un ideale di  $\mathbb{Q}$
- 2. Sia R un anello. L'applicazione

$$\varphi: R[x] \to R, \quad \sum_{i=0}^{n} a_i x^i \mapsto a_0$$

è un epimorfismo con  $\ker f = (x)$ . Infatti

$$\varphi\left(\sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{m} b_i x^i\right) = \varphi((a_0 + b_0) + (a_1 + b_1)x + \dots)$$

$$= a_0 + b_0 = \varphi\left(\sum_{i=0}^{n} a_i x^i\right) + \varphi\left(\sum_{i=0}^{m} b_i x^i\right)$$

$$\varphi\left(\left(\sum_{i=0}^{n} a_i x^i\right) \cdot \left(\sum_{i=0}^{m} b_i x^i\right)\right) = \varphi(a_0 b_0 + (a_0 b_1 + a_1 b_0)x + \dots + a_n b_m x^{n+m})$$

$$= a_0 b_0 = \varphi\left(\sum_{i=0}^{n} a_i x^i\right) \cdot \varphi\left(\sum_{i=0}^{n} b_i x^i\right)$$

$$\varphi(1_{R[x]}) = 1_R$$

 $\varphi$  è suriettivo: Ogni  $a \in R$  è immagine del polinomio costante f = a.

$$\ker f = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_0 = 0_R \right\}$$
$$= \left\{ f \in R[x] \mid f = xg \text{ con } g \in R[x] \right\}$$
$$= (x)$$

- 3. Ogni omomorfismo di anelli  $\varphi:K\to R$  dove K è un campo è monomorfismo. Infatti  $\ker\varphi\subsetneq K$  poiché  $\varphi(1_K)=1_R$  perciò  $\ker\varphi=0$  e  $\varphi$  è un monomorfismo per 9.7
- 4. Se R è un anello e I un suo ideale, allora

$$\nu:R\to R/I, a\mapsto \overline{a}=a+I$$

è un epimorfismo di anelli con nucleo ker $\nu=I,$  detto epimorfismo canonico, si veda 3.3 e si noti che per  $a,b\in R$ 

$$\nu(ab) = \overline{ab} = \overline{a} \cdot \overline{b} = \nu(a) \cdot \nu(b)$$
$$\nu(1_R) = \overline{1_R} = 1_{R/I}$$

Come in 3.4 si ottiene

# 9.9. Teorema di fattorizzazione di omomorfismi

Siano  $f:R\to S$  un omomorfismo di anelli e I un ideale di R tale che  $I\subset\ker f$ . Allora esiste uno e un solo omomorfismo  $\overline{f}:R/I\to S$  tale che il seguente diagramma sia commutativo



cioè  $\overline{f} \circ \nu = f$ . Si ha  $\ker \overline{f} = \ker f/I$  e im  $\overline{f} = \operatorname{im} f$ 

#### Dimostrazione.

Si pone

$$\overline{f}: R/I \longrightarrow S$$

$$\overline{a} \longmapsto f(a)$$

come in 3.4.

Verifichiamo che  $\overline{f}$  è un omomorfismo di anelli:

$$\overline{f}(\overline{a} \cdot \overline{b}) = \overline{f}(\overline{ab}) = f(ab) = f(a)f(b) = \overline{f}(\overline{a})\overline{f}(\overline{b})$$
$$\overline{f}(1_{R/I}) = \overline{f}(\overline{1_R}) = f(1_R) = 1_S$$

# 9.10. Corollario (Teorema fondamentale dell'omomorfismo)

Sia  $f: R \to S$  un omomorfismo di anelli. Allora  $R/\ker f \cong \operatorname{im} f$ .

#### Dimostrazione.

Caso  $I = \ker f$ .

### 9.11. Definizione

Un ideale I di un anello R è detto **massimale** se è un elemento massimale dell'insieme ordinato formato dagli ideali propri di R rispetto all'inclusione " $\subset$ ".

In altre parole I è massimale se e solo se per ogni ideale A di R con  $I\subset A\subset R$  si ha I=A oppure A=R

#### Osservazione

Se R è commutativo allora I è massimale se e solo se R/I è un campo.

#### Dimostrazione.

La dimostrazione è lasciata per esercizio.

9.12. Esempi

- 1. Gli ideali massimale di  $\mathbb{Z}$  sono precisamente gli ideali  $p\mathbb{Z}$  con p primo.
- 2. Siano I un insieme,  $x \in I$  e K un campo. Allora

$$\mathcal{N}(x) := \{ f \in K^I \mid f(x) = x \}$$

è un ideale massimale nell'anello  $K^I$ .

Infatti l'applicazione

$$R := K^I \to K, f \mapsto f(x)$$

è un epimorfismo di anelli con nucleo  $\mathcal{N}(x)$ , quindi per il Teorema Fondamentale dell'Omomorfismo  $R/\mathcal{N}(x)\cong K$ .

Perciò  $\mathcal{N}(x)$  è un ideale massimale.

3. Sia K un campo. Allora l'ideale (x) è massimale in K[x]. Infatti per l'epimorfismo

$$\nu: K[x] \to K, \quad \sum_{i=0}^{n} a_i x^i \mapsto a_0$$

ha ker  $\nu=(x)$ , perciò per il Teorema Fondamentale dell'Omomorfismo  $K[x]/(x)\cong K$ 

# 10. Divisibilità

### 10.1. Definizione

Un **anello euclideo** è dato da una coppia  $(R, \delta)$  dove R è un anello e  $\delta : R \setminus \{0_R\} \to \mathbb{N}_0$ è una funzione tale che per tutti gli  $a, b \in R \setminus \{0_R\}$ , esistono  $q, r \in R$  con le proprietà:

- (i)  $a = b \cdot q + r$ (divisione con il resto)
- (ii)  $\delta(r) < \delta(b)$  oppure  $r = 0_R$

# 10.2. Esempi

1.  $(\mathbb{Z}, |\cdot|)$  è un anello euclideo:



Se 0 < a < b scegliamo q tale che  $qb \le a < (q+1)b$  e poniamo r = a - qb, analogamente per gli altri casi.

2. Sia K un campo. Allora  $(K[x], \deg)$  è un anello euclideo.

#### Dimostrazione.

Siano  $f = \sum_{i=0}^{n} a_i x^i, g = \sum_{i=0}^{m} b_i x^i \in K[x], \text{ con deg } f = n, \text{deg } g = m,$ entrambi > 0.

Se m > n, allora  $f = 0 \cdot g + f$ .

Assumiamo quindi  $n \geq m$  e procediamo per induzione su n:

$$\underline{n=0}$$
:

$$\frac{n=0}{f=a_0}$$
,  $g=b_0 \neq 0_K \text{ e } f = \underbrace{a_0 b_0^{-1}}_q g$ 

n > 0:

$$f' = f - a_n b_m^{-1} x^{n-m} g = f - (a_n x^n + \ldots)$$

ha grado < n e per l'ipotesi induttiva esistono  $q, r \in K[x]$  tali che

- (i) f' = qq + r
- (ii)  $\deg r < \deg q$  oppure r = 0

Ma allora

$$f = f' + a_n b_m^{-1} x^{n-m} g = g(q + a_n b_m^{-1} x^{n-m}) + r$$

3. Il sottoanello  $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$  di  $\mathbb{C}$ , degli interi di Gauss con

$$\delta: \mathbb{Z}[i] \setminus \{0\} \longrightarrow \mathbb{N}_0$$
$$a+ib \longmapsto a^2+b^2$$

è un anello euclideo.

# 10.3. Proposizione

In un anello euclideo  $(R, \delta)$  tutti gli ideali sono principali.

Un dominio con questa proprietà è detto dominio a ideali principali (PID).

#### Dimostrazione.

Sia  $I \neq 0$  un ideale e sia  $0_R \neq b \in I$  elemento con  $\delta(b)$  minimo.

Mostriamo che I = (b).

Chiaramente si ha "⊃".

Per " $\subset$ " consideriamo  $a \in I$  ed eseguiamo la divisione con il resto:

$$a = bq + r \operatorname{con} r = 0_R \operatorname{oppure} \delta(r) < \delta(b)$$

Poiché  $r = a - bq \in I$ , si ha che  $r = 0_R$  per la minimalità di b. Perciò  $a = bq \in (b)$ .

### 10.4. Definizione

Dati  $x, y \in R$  in un dominio R si dice che

- x divide y, e si scrive  $x \mid y$ , se esiste un  $r \in R$  tale che y = xr, ovvero  $y \in (x)$
- x, y sono associati, e si scrive  $x \sim y$ , se  $x \mid y \in y \mid x$ , ovvero (x) = (y)

### Osservazione

 $x \sim y$  se e solo se esiste un  $r \in \mathbb{R}^*$  tale che y = xr

#### Dimostrazione.

"\( = \)":  $y = xr \ e \ x = yr^{-1}$ , ovvero  $x \mid y \ e \ y \mid x$ , perciò  $x \sim y$ 

" $\Rightarrow$ ": Esistono  $r, s \in R$  tali che y = xr e x = ys.

Dunque  $y = ysr e y(1 - sr) = 0_R$ .

Possiamo assumere  $y \neq 0_R$ , perciò  $1_R - sr = 0_R$  e  $s = r^{-1}$ .

Quindi  $r, s \in R^*$ .

### **Esempio**

 $x, y \in \mathbb{Z}$  sono associati se e solo se x = y oppure x = -y.

## 10.5. Lemma e definizione

Sia  $(R, \delta)$  un anello euclideo e siano  $a_1, \ldots, a_n \in R \setminus \{0_R\}$  con  $n \ge 2$ . Allora esistono

- 1. un elemento  $d \in R$ , detto massimo comun divisore, tale che
  - (i) d è comun divisore di  $a_1, \ldots, a_n$ :

$$d \mid a_i$$
 per ogni  $1 \le i \le n$ 

- (ii) Se t è un comun divisore di  $a_1, \ldots, a_n$ , allora  $t \mid d$ .
- 2. un elemento  $m \in R$ , detto minimo comune multiplo, tale che
  - (i) m è comune multiplo di  $a_1, \ldots, a_n$ :

$$a_i \mid m$$
 per ogni  $1 \leq i \leq n$ 

(ii) Se c è un comune multiplo di  $a_1, \ldots, a_n$ , allora  $m \mid c$ .

Gli elementi d e m sono univocamente determinati a meno di associazione.

#### Dimostrazione.

- 1. Sappiamo:
  - $x \mid y$  se e solo se  $y \in (x)$
  - t comun divisore se e solo se  $(a_1, \ldots, a_n) \subset (t)$
  - d massimo comun divisore se e solo se  $(a_1, \ldots, a_n) = (d)$

Infatti (i) significa che  $(a_1, \ldots, a_n) \subset (d)$  e (ii) significa

Se 
$$(a_1, \ldots, a_n) \subset (t)$$
, allora  $d \in (t)$ 

Perciò (ii) significa  $(d) \subset (a_1, \ldots, a_n)$ .

Dunque d esiste poiché R è un dominio a ideali principali.

Inoltre se anche d' soddisfa (i) e (ii), allora

$$(d) = (a_1, \ldots, a_n) = (d')$$

e perciò  $d \sim d'$ .

2. Analogamente si vede che m è comune multiplo se  $(m) \subset (a_1) \cap \cdots \cap (a_n)$  ed è minimo comune multiplo se e solo se  $(m) = (a_1) \cap \cdots \cap (a_n)$ .

Perciò m esiste ed è unico a meno di associazione.

Scriveremo  $d = MCD(a_1, \ldots, a_n)$  e  $m = mcm(a_1, \ldots, a_n)$ .

# 10.6. Algoritmo euclideo

In un anello euclideo  $(R, \delta)$  possiamo calcolare MCD e mcm di due elementi  $a, b \in R \setminus \{0_R\}$  tramite divisione con il resto successive come segue:

Se  $b \mid a$ , allora MCD(a, b) = b, mcm(a, b) = a.

Altrimenti poniamo  $r_0 = b$  ed eseguiamo

$$\begin{array}{lll} a &= r_0 q_1 + r_1 & \text{con } q_1, r_1 \in R \text{ e } \delta(r_1) < \delta(r_0) \\ r_0 &= r_1 q_2 + r_2 & \text{con } q_2, r_2 \in R \text{ e } \delta(r_2) < \delta(r_1) \\ r_1 &= r_2 q_3 + r_3 & \text{con } q_3, r_3 \in R \text{ e } \delta(r_3) < \delta(r_2) \\ \vdots & \vdots & \vdots \\ r_{n-1} &= r_n q_{n+1} + r_{n+1} & \text{con } q_{n+1} \in R \text{ e } r_{n+1} = 0_R \end{array}$$

Allora

$$r_n = MCD(a, b)$$
 e  $\frac{ab}{r_n} = mcm(a, b)$ 

Inoltre, risalendo dal basso verso l'alto troviamo coefficienti  $\alpha, \beta \in R$  tali che

$$r_n = \alpha a + \beta b$$

#### Dimostrazione.

$$(a,b) = (r_0, r_1) = (r_1, r_2) = (r_2, r_3) = \dots = (r_n, r_{n+1}) = (r_n)$$
  
perciò  $r_n = \text{MCD}(a,b)$ .

Il secondo enunciato sarà mostrato più avanti.

**Esempio** 

Sia 
$$K = \mathbb{Z}/3\mathbb{Z}$$
 e  $R = K[x]$ ,  $f = x^3 + x + 1$ ,  $g = x^2 + x + 1 \in K[x]$ 

$$(x^3 + x + 1) : (x^2 + x + 1) = \underbrace{x + 2}_{q_1}$$

$$\underline{-(x^3 + x^2 + x)}_{2x^2 + 1}$$

$$\underline{-(2x^2 + 2x + 2)}_{r_1}$$

$$f = gq_1 + r_1$$

$$\frac{(x^{2} + x + 1) : (x + 2) = \underbrace{x + 2}_{q_{2}} \\
\underline{-(x^{2} + 2x)}_{2x + 1} \\
\underline{-(2x + 1)}_{r_{2} = 0} \qquad g = q_{2}r_{1} \\
r_{1} = \text{MCD}(f, g) = x + 2$$

Si ha  $r_1 = f - gq_1$ , quindi  $\alpha = 1$ ,  $\beta = -q_1 = 2x + 1$ 

### 10.7. Definizione

In un anello euclideo  $(R, \delta)$  si dice che  $a_1, \ldots, a_n \in R$  sono **coprimi** se ciascun divisore di  $a_1, \ldots, a_n$  è invertibile.

Ciò equivale a  $MCD(a_1, \ldots, a_n) = 1_R$ .

# 10.8. Proposizione

Sia  $(R, \delta)$  un anello euclideo

#### 1. Identità di Bézout

 $a, b \in R \setminus \{0_R\}$  sono coprimi se e solo se esistono  $\alpha, \beta \in R$  tali che

$$1_R = \alpha a + \beta b$$

2. Siano  $b_1, \ldots, b_n \in R \setminus \{0_R\}$  e sia  $d = \text{MCD}(b_1, \ldots, b_n)$ . Se  $a_i d = b_i$  per  $1 \le i \le n$ , allora  $a_1, \ldots, a_n$  sono coprimi.

#### 3. Lemma di Euclide

Siano  $x, a, b \in R$ . Se x e a sono coprimi e  $x \mid ab$ , allora  $x \mid b$ .

#### Dimostrazione.

1." $\Rightarrow$ ":  $MCD(a,b) = 1_R$ 

e l'algoritmo euclideo produce  $\alpha, \beta \in R$  con  $1_R = \alpha a + \beta b$ .

"\( = \)": Se t è comun divisore di a e b, allora  $t \mid 1_R$ , ovvero  $t \in R^*$ .

- 2. Sia t un divisore comune di  $a_1, \ldots, a_n$ . Allora td è un comun divisore di  $b_1, \ldots, b_n$  e pertanto  $td \mid t$ . Perciò esiste un  $s \in R$  tale che std = d. Perciò  $(1_R st)d = 0_R$ , dunque  $1_R = st$  e  $t \in R^*$ .
- 3. Possiamo assumere  $b \neq 0_R$ .

Consideriamo t = MCD(xb, ab). Poiché b è comun divisore di xb e ab, si ha  $b \mid t$ , ovvero bq = t per un  $q \in R$ .

Allora bq divide xb e ab, perciò q divide x e a.

Segue che  $q \in \mathbb{R}^*$  e  $b \sim t$  è massimo comun divisore di xb e ab.

Per ipotesi x è comun divisore di xb e ab e pertanto  $x \mid b$ .

Torniamo alla

#### Dimostrazione di 10.6.

Vogliamo mostrare che se d = MCD(a, b), allora  $mcm(a, b) = \frac{ab}{d}$ .

Scriviamo a = a'd e b = b'd con  $a', b' \in R$ . Dunque m = a'b = ab' è comune multiplo di  $a \in b$ .

Inoltre se c è un comune multiplo di a e b, allora esistono  $s, t \in R$  tali che c = ta = sb = ta'd = sb'd, perciò ta' = sb'.

Si noti che a' e b' sono coprimi. Per il Lemma di Euclide  $a' \mid s$ , perciò  $m = a'b \mid sb = c$ .

### 10.9. Definizione

Un elemento non invertibile  $p \in R$  si dice **irriducibile** se possiede soltanto divisori banali, cioè se p = xy, allora  $x \in R^*$  oppure  $y \in R^*$ .

#### Osservazione

Sia  $(R, \delta)$  un anello euclideo e sia  $p \in R \setminus \{0_R\}$  non invertibile. Allora sono equivalenti i seguenti enunciati:

- 1. p è un elemento irriducibile
- 2. Se p divide il prodotto xy di due elementi  $x,y\in R$ , allora divide uno dei due fattori:  $p\mid x$  oppure  $p\mid y$
- 3. (p) è massimale

#### Dimostrazione.

- $(1) \Leftrightarrow (3)$ : La dimostrazione è lasciata per esercizio
- (3)  $\Rightarrow$  (2): L'ipotesi 3 equivale a dire che R/(p) è un campo. Se adesso  $p \mid xy$ , allora  $xy \in (p)$  e  $\overline{x} \cdot \overline{y} = \overline{xy} = \overline{0}$  in R/(p). Per ipotesi si ha  $\overline{x} = \overline{0}$  oppure  $\overline{y} = \overline{0}$ , ovvero  $x \in (p)$  oppure  $y \in (p)$ . Dunque  $p \mid x$  oppure  $p \mid y$ .
- (2)  $\Rightarrow$  (1): Se p = xy, allora per ipotesi  $p \mid x$  oppure  $p \mid y$ , perciò (poiché  $x \mid p \in y \mid p$ ) si ha

$$p \sim x$$
 oppure  $p \sim y$ 

Nel primo caso otteniamo  $y \in R^*$ , nel secondo  $x \in R^*$ .

#### Osservazione

Gli elementi irriducibili di  $\mathbb Z$  sono esattamente i numeri primi. Abbiamo

### Teorema Fondamentale dell'Aritmetica

Ogni numero  $a \in \mathbb{Z} \setminus \{0, 1, -1\}$  è prodotto di numeri primi e questa scomposizione è unica a meno dell'ordine e segno dei fattori.

### **10.10.** Teorema

In un anello euclideo  $(R, \delta)$  ogni elemento  $a \in R \setminus (\{0_R\} \cup R^*)$  può essere scritto come prodotto di elementi irriducibili, e questa scomposizione è unica a meno dell'ordine dei fattori e di associazione.

Più precisamente

- (i) Esistono elementi irriducibili  $p_1, \ldots, p_n$  tali che  $a = p_1 \cdot \ldots \cdot p_n$
- (ii) Se anche  $a = q_1 \cdot \ldots \cdot q_m$  con elementi irriducibili  $q_1, \ldots, q_m$ , allora m = n ed esiste una permutazione  $\sigma \in S_n$  tale che  $p_i \sim q_{\sigma(i)}$  per ogni  $1 \leq i \leq n$ .

#### Dimostrazione.

1. Osserviamo innanzitutto che ogni catena ascendente di ideali di  ${\cal R}$ 

$$I_1 \subset I_2 \subset I_3 \subset \cdots$$

è stazionaria, cioè esiste  $n \in \mathbb{N}$  tale che

$$I_n = I_{n+1} = I_{n+2} = \cdots$$

Un anello con tale proprietà si dice noetheriano.

Infatti  $I = \sum_{i \in \mathbb{N}} I_i$  è un ideale principale, quindi I = (a) per un  $a \in I$  con  $a = \sum_{i=1}^n a_i$  dove  $n \in \mathbb{N}$ ,  $a_i \in I_i$ .

In particolare  $a_i \in I_n$  per ogni  $1 \le i \le n$ , perciò  $a \in I_n$ . Dunque

$$I = I_n = I_{n+1} = \cdots$$

2. Poiché R è noetheriano, ogni insieme non vuoto S di ideali contiene un elemento massimale, ovvero esiste un  $I \in S$  che non è contenuto propriamente in un elemento di S.

Altrimenti potremmo costruire una catena ascendente di ideali di  $\mathcal{S}$  che non è stazionaria.

#### CAPITOLO 10. DIVISIBILITÀ

- 3. Supponiamo adesso che esistano elementi in  $R \setminus (\{0_R\} \cup R^*)$  che non soddisfano (i). Sia  $\mathcal{S}$  l'insieme degli ideali generati da tali elementi e sia I = (a) un elemento massimale di  $\mathcal{S}$ . Per ipotesi a non è né nullo, né invertibile, né irriducibile. Allora esistono  $x, y \in R$  non invertibili tali che a = xy. Poiché  $I \subsetneq (x)$  e  $I \subsetneq (y)$ , segue che  $(x) \not\in \mathcal{S}$  e  $(y) \not\in \mathcal{S}$ , perciò x e y sono prodotto di elementi irriducibili. Ma allora anche a è prodotto di irriducibili.
- 4. Mostriamo (ii) per induzione su n.

$$\underline{n=1}$$
:

$$\overline{\text{Se } a} = p_1 = q_1 \cdot \ldots \cdot q_m$$
, allora  $m = 1$  e  $p_1 = q_1$ .

n > 1:

 $p_n \mid q_1 \cdot \ldots \cdot q_m$ , perciò  $p_n$  divide uno dei fattori, e dopo averli eventualmente riordinati, possiamo assumere  $p_n \mid q_m$ . Dunque  $q_m = p_n r$  con  $r \in R^*$  e  $q_m \sim p_n$ . Abbiamo quindi

$$p_1 \cdot \ldots \cdot p_n = q_1 \cdot \ldots \cdot q_{m-1} \cdot p_n \cdot r$$

perciò

$$p_1 \cdot \ldots \cdot p_{n-1} = q_1 \cdot \ldots \cdot (q_{m-1}r)$$

Per l'ipotesi induttiva segue che, n-1=m-1, e dopo aver eventualmente riordinato i fattori,

$$p_i \sim q_i$$
 per ogni  $1 \leq i < n$ 

Parte III.

**Polinomi** 

# Riassunto

Abbiamo visto che l'anello K[x] su un campo K ha le seguenti proprietà:

- 1. I polinomi invertibili sono esattamente i polinomi costanti non nulli, ovvero di grado 0.
- 2. Due polinomi  $f, g \in K[x]$  sono associati se e solo se  $f = \alpha g$  per un  $\alpha \in K \setminus \{0_K\}$ .
- 3. Due polinomi  $f, g \in K[x]$  possiedono sempre un MCD e mcm, unici a meno di una costante non nulla.
- 4. Ogni polinomio  $f \in K[x]$  di grado n > 0 è prodotto di polinomi irriducibili, e questa scomposizione è unica a meno dell'ordine e di costanti non nulle.

# 11. Zeri di polinomi

Sia K un campo

# 11.1. Proposizione

Per un polinomio  $f \in K[x]$  sono equivalenti i seguenti enunciati:

- 1. f è irriducibile in K[x]
- 2.  $n = \deg f > 0$  e f non può essere scritto come prodotto di due polinomi di grado < n.
- 3. K[x]/(f) è un campo.

#### Dimostrazione.

 $(1) \Leftrightarrow "(f)$  è un ideale massimale"  $\Leftrightarrow (3)$  (da verificare per esercizio)

 $(1) \Leftrightarrow (2)$ 

 $f \neq 0$  e non invertibile  $\Leftrightarrow n > 0$ .

Se f è irriducibile e f = gh, allora  $\deg g = 0$ , oppure  $\deg h = 0$ , ovvero  $\deg h = n$  oppure  $\deg g = n$ .

Viceversa se vale (2) e f = gh, uno dei fattori ha grado n e l'altro ha grado 0, perciò è invertibile.

### 11.2. Definizione

Sia R commutativo,  $f = \sum_{i=0}^{n} a_i x^i \in R[x]$  e sia  $\alpha \in R$ . Poniamo

$$f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i$$

e diciamo che  $\alpha$  è uno **zero** (o una radice) di f, quando  $f(\alpha) = 0_R$ .

# 11.3. Teorema di Ruffini

Per  $\alpha \in K$ , l'applicazione

$$\varepsilon_{\alpha}: K[x] \to K, \quad f \mapsto f(\alpha)$$

è un omomorfismo suriettivo con nucleo  $\ker \varepsilon_{\alpha} = (x - \alpha)$ .

Dunque  $\alpha$  è uno zero di  $f \in K[x]$  se e solo se  $x - \alpha \mid f$ . Inoltre  $K[x]/(x - \alpha) \cong K$ .

#### Dimostrazione.

• omomorfismo:

$$\varepsilon_{\alpha}(f + g) = \varepsilon_{\alpha}(f) + \varepsilon_{\alpha}(g)$$
  
 $\varepsilon_{\alpha}(1_{K[x]}) = 1_{K}$ 

• suriettivo:

Se  $a \in K$ , allora il polinomio costante f = a soddisfa  $\varepsilon_{\alpha}(f) = a$ .

•  $\ker \varepsilon_{\alpha}$ :

Ovviamente  $(x - \alpha) \subseteq \ker \varepsilon_{\alpha}$ .

Viceversa se  $f \in \ker \varepsilon_{\alpha}$ , eseguiamo la divisione

$$f = q(x - \alpha) + r$$
 dove  $q, r \in K[x]$  e  $r = 0$  oppure  $\deg r < 1$ 

dunque r è costante.

Allora  $r = f - q(x - \alpha)$  soddisfa

$$r(\alpha) = f(\alpha) - q(\alpha)(\alpha - \alpha) = 0$$

e pertanto r = 0. Dunque  $f \in (x - \alpha)$ .

 $K[x]/(x-\alpha)\cong K$  è un'applicazione del Teorema Fondamentale dell' Omomorfismo.

### 11.4. Corollario

Sia  $f \in K[x]$  un polinomio di grado  $n \ge 0$ . Allora f possiede al più n zeri in K.

### Dimostrazione.

Per induzione su n.

 $\underline{n=0}$ :

f è costante non nullo e quindi non ha zeri.

 $n-1 \to n$ :

Se  $\alpha \in K$  è uno zero di f, allora per 11.3 esiste  $g \in K[x]$  tale che  $f = (x - \alpha)g$  e deg g = n - 1. Per l'ipotesi induttiva di g ha al più n - 1 zeri in K, quindi f ne ha al più n.

# 11.5. Proposizione

- 1. Ogni polinomio  $f = a_0 + a_1 x \in K[x]$  di grado 1 è irriducibile con unico zero  $\alpha = -a_1^{-1}a_0$ .
- 2. Se  $f \in K[x]$  è irriducibile di grado n > 1, allora non possiede zeri.
- 3. Se  $f \in K[x]$  ha grado  $n \in \{2,3\}$ , f è irriducibile se e solo se non ammette zeri.

#### Dimostrazione.

- 1.  $f = a_1(x \alpha) \sim (x \alpha)$  è irriducibile poiché lo è  $x \alpha$  per 11.3 e 11.1, e  $\alpha$  è il suo unico zero.
- 2. Se  $\alpha$  fosse uno zero di f, avremmo una scomposizione non banale

$$f = (x - \alpha) g$$

$$\uparrow \qquad \nwarrow$$

$$\operatorname{grado} 1 < n \operatorname{grado} n - 1$$

 $3. "\Rightarrow " : Per (2)$ 

" $\Leftarrow$ " : Sia f = gh.

Quindi q oppure h devono avere grado 0.

# 11.6. Esempi

1. Teorema Fondamentale dell'Algebra

I polinomi irriducibili in  $\mathbb{C}[x]$  sono esattamente i polinomi di grado 1 (per 11.5.(2)).

Ogni polinomio  $f \in \mathbb{C}[x]$  è di forma

$$f = a(x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n)$$

con  $n \in \mathbb{N}_0, \alpha_1, \dots, \alpha_n \in \mathbb{C}$ .

2. Sia  $f = x^n - a \in \mathbb{C}[x]$ . Gli zeri di f sono le radici n-esime di a. Ricordiamo: Se  $a = r(\cos \alpha + i \sin \alpha)$ , allora gli zeri sono

$$z_k = \sqrt[n]{r} \left( \cos \frac{\alpha + 2k\pi}{n} + i \sin \frac{\alpha + 2k\pi}{n} \right), k = 0, 1, \dots, n - 1$$

3.  $f = x^4 + 1 \in \mathbb{R}[x] \subset \mathbb{C}[x]$  (caso particolare  $n = 4, a = -1 = \cos \pi + i \sin \pi$ ) Gli zeri di f sono

$$z_{0} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

$$z_{1} = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

$$\overline{z_{0}} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$

$$\overline{z_{1}} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$



Quindi in  $\mathbb{C}[x]$  possiamo scrivere

$$f = \underbrace{(x - z_0)(x - \overline{z_0})}_{g} \underbrace{(x - z_1)(x - \overline{z_1})}_{h}$$

$$g = \left(\left(x - \frac{\sqrt{2}}{2}\right) - i\frac{\sqrt{2}}{2}\right) \left(\left(x - \frac{\sqrt{2}}{2}\right) + i\frac{\sqrt{2}}{2}\right)$$

$$= \left(x - \frac{\sqrt{2}}{2}\right)^2 - \left(i\frac{\sqrt{2}}{2}\right)^2$$

$$= x^2 - \sqrt{2}x + \frac{1}{2} + \frac{1}{2} = x^2 - \sqrt{2} + 1 \in \mathbb{R}[x]$$

$$h = x^2 + \sqrt{2}x + 1 \in \mathbb{R}[x]$$

Quindi f non è irriducibile in  $\mathbb{R}[x]$  pur non avendo zeri in  $\mathbb{R}$ .

4. I polinomi irriducibili in  $\mathbb{R}$  sono i polinomi di grado 1 e i polinomi  $f = a_0 + a_1 x + a_2 x^2 \in \mathbb{R}[x]$  di grado 2 con discriminante  $\Delta = a_1^2 - 4a_0 a_2 < 0$ . Infatti se f non possiede zeri in  $\mathbb{R}$  e ha grado > 1, allora

$$f = \underbrace{(x-z)(x-\overline{z})}_{\in \mathbb{R}[x] \text{ come in (3)}} g$$

e se f è irriducibile, allora  $\deg g = 0$  e  $\deg f = 2$ .

Viceversa, i polinomi descritti sopra sono irriducibili per 11.5. Quindi ogni polinomio in  $\mathbb{R}[x]$  è prodotto di polinomi di grado al più 2.

5.  $f = x^2 + x + 1$  è irriducibile in  $\mathbb{Z}/2\mathbb{Z}[x]$  (perché non ha zeri). In  $\mathbb{Z}/3\mathbb{Z}[x]$  si ha  $f = x^2 - 2x + 1 = (x - 1)^2$  riducibile.  $g = x^4 + x^2 + 1 = (x^2 + x + 1)^2$  in  $\mathbb{Z}/2\mathbb{Z}[x]$  è riducibile, pur non avendo zeri.

## 12. Criteri di divisibilità

### 12.1. Osservazione

Per ogni  $0 \neq f \in \mathbb{Q}[x]$  esiste un  $\alpha \in \mathbb{Q}$  tale che  $\alpha f \in \mathbb{Z}[x]$  con coefficienti coprimi. Un polinomio  $f = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$  per il quale  $a_0, \ldots, a_n$  sono coprimi si dice **primitivo**.

Per esempio se  $f = \frac{2}{3} + \frac{4}{7}x^2$ , allora scegliamo  $\alpha = \frac{21}{2}$  per ottenere  $\alpha f = 7 + 6x^2$ . Ovviamente f è irriducibile in  $\mathbb{Q}[x]$  se e solo se lo è  $\alpha f$ .

Vedremo in 12.5 che basterà esaminare l'irriducibilità in  $\mathbb{Z}[x]$ , dunque  $f \in \mathbb{Q}[x]$  è irriducibile se e solo se  $\alpha f$  è irriducibile in  $\mathbb{Z}[x]$ .

### Esempi

- 1. Ogni polinomio **monico** (ovvero con coefficiente direttivo 1) è primitivo
- 2. Ogni polinomio irriducibile in  $\mathbb{Z}[x]$  di grado n > 0 è primitivo: altrimenti se d è MCD dei coefficienti di f, allora possiamo scrivere f = df' con deg f' = n > 0 e otteniamo una scomposizione di f in fattori non invertibili.
- 3.  $2 \in \mathbb{Z}[x]$  è irriducibile ma non è primitivo.
- 4. i polinomi irriducibili in  $\mathbb{Z}[x]$  sono
  - $\bullet\,$ i polinomi costanti p, dove p è un numero primo
  - ullet i polinomi primitivi di grado n>0 che non sono prodotto di due polinomi di grado strettamente inferiore

# **12.2.** Riduzione modulo p

Sia p un numero primo e

$$\rho: \mathbb{Z}[x] \longrightarrow \mathbb{Z}/p\mathbb{Z}[x] 
f = \sum_{i=0}^{n} a_i x^i \longmapsto \rho(f) = \sum_{i=0}^{n} \overline{a_i} x^i$$

Allora

1.  $\rho$  è un epimorfismo con nucleo

$$\ker \rho = \{ f = \sum_{i=0}^{n} a_i x^i \mid p \mid a_i \text{ per ogni } 1 \le i \le n \}$$
$$= \{ f = \sum_{i=0}^{n} a_i x^i \mid a_i \in p\mathbb{Z} \} = p\mathbb{Z}[x]$$

2. Se  $f = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$  è un polinomio primitivo di grado n > 0 e p non divide  $a_n$ , allora f è irriducibile quando ( $\Leftarrow$ ) lo è  $\rho(f)$ .

#### Dimostrazione.

2. f come nell'enunciato e sia  $\rho(f)$  irriducibile. Mostriamo che f è irriducibile. Chiaramente f non è invertibile. Siano  $g, h \in \mathbb{Z}[x]$  tali che f = gh.

Allora  $\rho(f) = \rho(g)\rho(h) \in \mathbb{Z}/p\mathbb{Z}[x]$  e per ipotesi  $\rho(f)$  ha grado n. Poiché  $\rho(f)$  è irriducibile, uno dei suoi fattori, poniamo  $\rho(h)$ , ha grado n.

Dunque  $n = \deg \rho(h) \leq \deg h$ , perciò g = a è costante con  $f = a \cdot h$ .

Dunque a è comun divisore dei coefficienti di f.

Concludiamo che  $g = a \in \{1, -1\}$  è invertibile.

12.3. Criterio di Eisenstein

Un polinomio primitivo  $f = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$  di grado n > 0 è irriducibile quando  $(\Leftarrow)$  esiste un numero primo p tale che

- 1. p non divide  $a_n$
- 2. p divide  $a_0, ..., a_{n-1}$
- 3.  $p^2$  non divide  $a_0$

Г

#### Dimostrazione.

Abbiamo che  $\rho(f) = \overline{a_n} x^n \neq 0$ .

Certamente f non è invertibile. Siano  $g, h \in \mathbb{Z}[x]$  tali che f = gh.

Scriviamo  $g = \sum_{i=0}^{m} b_i x^i$  e  $h = \sum_{i=0}^{r} c_i x^i$  e notiamo che  $\underline{p}$  divide  $b_0$  oppure  $c_0$ , ma non entrambi, ciò segue dal fatto che  $\underline{a_0} = \underline{b_0} c_0$  e  $\overline{0} = \overline{a_0} = \overline{b_0} \cdot \overline{c_0}$ , insieme all'ipotesi (3). Supponiamo  $p \mid c_0$ , allora  $\rho(g) = \overline{b_0} + \overline{b_1} x + \ldots + \overline{b_m} x^m$  divide  $\rho(f) = \overline{a_n} x^n$  e perciò  $\rho(g) = \overline{b_0}$  dev'essere costante.

La dimostrazione si conclude con 12.2.

### 12.4. Lemma di Gauss

Se  $f, g \in \mathbb{Z}[x]$  sono primitivi, allora lo è anche fg.

#### Dimostrazione.

Supponiamo che esista un numero primo p che divide tutti i coefficienti di fg, ed eseguiamo la riduzione modulo p:

$$\overline{0} = \rho(fg) = \rho(f)\rho(g) \text{ in } \mathbb{Z}/p\mathbb{Z}[x]$$

Quindi uno dei fattori, poniamo  $\rho(f)$ , è polinomio nullo in  $\mathbb{Z}/p\mathbb{Z}[x]$ , ma allora  $f \in \ker \rho = p\mathbb{Z}[x]$  e p divide tutti i coefficienti di  $f \notin (f$  è primitivo).

# 12.5. Proposizione

Un polinomio primitivo  $0 \neq f \in \mathbb{Z}[x]$  è irriducibile in  $\mathbb{Z}[x]$  se e solo se lo è in  $\mathbb{Q}[x]$ .

#### Dimostrazione.

" $\Rightarrow$ ": Sia f irriducibile in  $\mathbb{Z}[x]$  e siano  $g, h \in \mathbb{Q}[x]$  tali che f = gh.

Per 12.1 esistono  $\alpha, \beta \in \mathbb{Q}$  tali che  $\alpha g, \beta h \in \mathbb{Z}[x]$  siano primitivi.

Per il Lemma di Gauss anche  $\alpha\beta f = \alpha g \cdot \beta h = f' \in \mathbb{Z}[x]$  è primitivo.

Abbiamo  $f = \frac{1}{\alpha\beta}f'$ . Scriviamo  $\frac{1}{\alpha\beta} = \frac{m}{n}$  con  $m, n \in \mathbb{Z}$  coprimi.

Otteniamo nf = mf', perciò se  $f' = \sum_{i=0}^{l} a_i x^i$ , allora n divide  $ma_0, ma_1, \ldots, ma_l$  e per il Lemma di Euclide m divide  $a_0, \ldots, a_l$ . Poiché f' è primitivo concludiamo  $n \in \{-1, 1\}$ . Analogamente vediamo che  $m \in \{-1, 1\}$ , quindi  $\frac{1}{\alpha\beta} \in \{-1, 1\}$ .

Perciò  $f = (\alpha g)(\beta h)$  oppure  $f = -(\alpha g)(\beta h)$  in  $\mathbb{Z}[x]$ . Per ipotesi uno dei fattori, poniamo  $\alpha g$ , dev'essere invertibile, ovvero  $\alpha g \in \{-1, 1\}$ .

Concludiamo che  $g \in \mathbb{Q}[x]$  è costante non nullo, perciò è invertibile in  $\mathbb{Q}[x]$ .

"←": Questa implicazione è lasciata per esercizio.

# 12.6. Esempi

- 1.  $x^5 + 2x^3 + 6x^2 + 10$  è irriducibile in  $\mathbb{Z}[x]$  (e in  $\mathbb{Q}[x]$ ) per il Criterio di Eisenstein (p=2).
- 2.  $f = x^4 + 3x + 9$ Riduzione modulo 2:  $\rho(f) = x^4 + x + 1 \in \mathbb{Z}/2\mathbb{Z}[x]$ .
  - non ha zeri

Possibili divisori di grado 2:

$$x^2$$
 NO: ha uno zero  
 $x^2 + 1$  NO: ha uno zero  
 $x^2 + x$  NO: ha uno zero  
 $x^2 + x + 1$  irriducibile

Quindi nemmeno  $x^2 + x + 1$  divide  $\rho(f)$ 

• non ha divisori di grado 2

Concludiamo che  $\rho(f)$  è irriducibile in  $\mathbb{Z}/2\mathbb{Z}[x]$ . Per 12.2 segue che f è irriducibile in  $\mathbb{Z}[x]$  (e in  $\mathbb{Q}[x]$ )

3.  $f = x^n - a \in \mathbb{Z}[x] \text{ con } n \in \mathbb{N}.$ 

Se esiste un numero primo p tale che  $p \mid a$  ma  $p^2$  non divide a (ad esempio se a è il prodotto di due primi distinti), allora f è irriducibile in  $\mathbb{Z}[x]$  (e in  $\mathbb{Q}[x]$ ) per il Criterio di Eisenstein.

### 12.7. Sostituzione

Sia K un campo e sia  $f=\sum_{i=0}^n a_ix^i\in k[x]$ . Sostituiamo x con a+bx, dove  $a,b\in K$  e  $b\neq 0$ . Otteniamo il polinomio

$$\tilde{f} = \sum_{i=0}^{n} a_i (a + bx)^i \in K[x]$$

Allora f è irriducibile se e solo se lo è  $\tilde{f}$ .

#### Dimostrazione.

Si noti che

$$\begin{array}{ccc} K[x] & \longrightarrow & K[x] \\ f & \longmapsto & \tilde{f} \end{array}$$

è un isomorfismo di anelli con inversa data dalla sostituzione di x con  $b^{-1}x - b^{-1}a$ .

# 12.8. Esempio

Per ogni numero primo p il polinomio  $x^{p-1} + x^{p-2} + \ldots + x + 1 \in \mathbb{Z}[x]$  è irriducibile in  $\mathbb{Z}[x]$  e  $\mathbb{Q}[x]$ .

#### Dimostrazione.

Sostituzione  $x \mapsto x + 1$  (da completare per esercizio).

Parte IV.

Campi

# 13. Estensioni algebriche

### 13.1. Lemma e definizione

Se K, F sono campi e  $K \subset F$  è un sottocampo, diciamo che F è un'estensione di K. In tal caso F è uno spazio vettoriale su K tramite la moltiplicazione per scalari

$$K \times F \to F$$
,  $(\alpha, x) \mapsto \alpha x$ 

La dimensione di F su K si dice  $grado\ dell'estensione$  e si indica con

$$[F:K] = \dim_K F$$

L'estensione  $K \subset F$  è finita se  $[F:K] < \infty$ 

# 13.2. Proposizione

Sia K un campo e sia  $f \in K[x]$  irriducibile di grado n. Allora l'applicazione

$$\varphi: K \longrightarrow F := K[x]/(f)$$
  
 $a \longmapsto \overline{a} = a + (f)$ 

è un monomorfismo. Quindi  $K \subset F$  è un'estensione di campi. Si ha [F:K]=n e  $\{\overline{1},\overline{x},\overline{x}^2,\ldots,\overline{x}^{n-1}\}$  è una base di F su K.

#### Dimostrazione.

F è un campo per 11.1.

$$\varphi(a + b) = \overline{a + b} = \overline{a} + \overline{b} = \varphi(a) + \varphi(b)$$
$$\varphi(1_K) = \overline{1_K} = 1_F$$

 $\varphi$  è un omomorfismo iniettivo poiché K è un campo. Resta da verificare che  $\mathcal{B} = \{\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}\}$  è una K-base.

• Si noti che in  $_KF$  abbiamo per  $a\in K$  e  $g=\sum_{i=0}^m a_ix^i\in K[x]$ 

$$a \cdot \overline{g} = \overline{a} \cdot \overline{g} = \overline{ag} = \overline{a} \sum_{i=0}^{m} a_i x^i = \sum_{i=0}^{m} a a_i x^i = \sum_{i=0}^{m} \overline{a a_i x^i} = \sum_{i=0}^{m} a a_i \overline{x}^i$$

•  $\mathcal{B}$  insieme di generatori di  ${}_KF$ : Sia  $g = \sum_{i=0}^m a_i x^i \in K[x]$  ed eseguiamo la divisione con il resto:

$$g = qf + r$$
 dove  $q, r \in K[x]$  e  $r = 0$  oppure  $\deg r < n$ 

Dunque  $r = \sum_{i=0}^{n-1} b_i x^i$  e

$$\overline{g} = \overline{qf + r} = \overline{r} = \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} b_i \overline{x}^i$$

•  $\mathcal{B}$  è linearmente indipendente:

Siano  $a_0, \ldots, a_{n-1} \in K$  tali che  $a\overline{1} + a_1\overline{x} + \ldots + a_{n-1}\overline{x}^{n-1} = \overline{0}$ . Allora il polinomio  $g = \sum_{i=0}^{n-1} a_i x^i \in K[x]$  soddisfa

$$\overline{g} = \sum_{i=0}^{n-1} a_i x^i = \sum_{i=0}^{n-1} a_i \overline{x}^i = \overline{0}$$

Perciò  $g \in (f)$ , ovvero  $f \mid g$ .

Allora esiste un  $q \in K[x]$  tale che g = fq, e da qui segue che deg  $g = \deg f + \deg q$ . Ma deg  $g \le n - 1 < \deg f = n$ . Perciò g = q = 0 e  $a_0 = \ldots = a_{n-1} = 0$ .

# **13.3.** Esempi

1.  $K = \mathbb{R}, f = x^2 + 1$ 

Allora  $F = \mathbb{R}[x]/(x^2+1)$  è uno spazio vettoriale su  $\mathbb{R}$  con base  $\{\overline{1}, \overline{x}\}$ . Si noti che in F

$$\overline{x}^2 + 1 = \overline{f} = \overline{0}$$

perciò  $\overline{x}^2 = -\overline{1}$ e si ha un isomorfismo di campi

$$\begin{array}{ccc} F & \longrightarrow & \mathbb{C} \\ a\overline{1} + b\overline{x} & \longmapsto & a + ib \end{array}$$

2.  $K = \mathbb{Z}/2\mathbb{Z}$ ,  $f = x^2 + x + 1$ F = K[x]/(f) ha base  $\overline{1}, \overline{x}$  su K, quindi  $F = {\overline{0}, \overline{1}, \overline{x}, \overline{x} + \overline{1}}$  dove  $\overline{x} + \overline{1} = \overline{x}^2$ , poiché  $\overline{x^2 + x + 1} = \overline{x}^2 + \overline{x} + \overline{1} = \overline{0}$ .

$$\overline{x} \cdot \overline{x}^2 = \overline{x}(\overline{1} + \overline{x}) = \overline{x} + \overline{x}^2 = \overline{1}$$

In F[X] si ha

$$(X - \overline{x})(X - \overline{x}^2) = X^2 - (\overline{x} + \overline{x}^2)X + \overline{x}^2 = X^2 + X + \overline{1} = f$$

# 13.4. Teorema (Kronecker)

Sia K un campo e sia  $f \in K[x]$  di grado n > 0.

Allora esiste un'estensione  $K \subset F$  di grado  $[F : K] \leq n$  tale che f possiede uno zero in F.

#### Dimostrazione.

Passando eventualmente ad un suo fattore irriducibile, possiamo assumere che f sia irriducibile.

Consideriamo F = K[x]/(f) che è un'estensione di grado deg f. Poniamo  $\alpha = \overline{x}$ . Se  $f = \sum_{i=0}^{n} a_i x^i$  otteniamo

$$f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i = \sum_{i=0}^{n} a_i \overline{x}^i = \overline{\sum_{i=0}^{n} a_i x^i} = \overline{f} = \overline{0}$$

### 13.5. Definizione

Sia  $K \subset F$  un'estensione di campi.

1. Dato un sottoinsieme  $A \subset F$ , il campo

$$K(A) = \bigcap \{L \subset F \mid L \ \text{\`e un sottocampo di } F \ \text{con} \ K \subset L \ \text{e} \ A \subset L\}$$

si dice **aggiunzione** di A a K.

- 2. Un elemento  $\alpha \in F$  si dice **algebrico** se esiste  $f \in K[x]$  con  $f \neq 0$  e  $f(\alpha) = 0$ . Altrimenti  $\alpha$  si dice **trascendente** su K.
- 3. Se tutti gli elementi di F sono algebrici su K, si dice che  $K \subset F$  è un'estensione algebrica.

#### Osservazioni

1. Ogni estensione finita  $K \subset F$  è algebrica: Se [F:K] = n e  $\alpha \in F$ , allora  $\{1, \alpha, \dots, \alpha^n\}$  è un insieme linearmente dipendente. Dunque esistono  $a_0, a_1, \dots, a_n \in K$ , non tutti nulli tali che

$$\sum_{i=0}^{n} a_i \alpha^i = 0$$

In altre parole ,  $\alpha$  è uno zero del polinomio non nullo  $g = \sum_{i=0}^n a_i x^i \in K[x]$  .

2. In particolare,  $\alpha \in F$  è algebrico su K se e solo se  $[K(\alpha):K]<\infty$  . Per " $\Rightarrow$ " si veda:

### 13.6. Lemma e definizione

Sia  $K \subset F$  un'estensione di campi e sia  $\alpha \in F$  un elemento algebrico su K. Allora:

- 1. Esiste uno e un solo polinomio monico e irriducibile  $f \in K[x]$  tale che  $f(\alpha) = 0$ , detto **polinomio minimo** di  $\alpha$  su K.
- 2. Per  $g \in K[x]$  si ha  $g(\alpha) = 0$  se e solo se  $f \mid g$ .
- 3. Se  $n=\deg f$ , allora  $K(\alpha)\cong K[x]/(f)$  è un'estensione di grado n con base  $\{1,\alpha,\ldots,\alpha^{n-1}\}.$

#### Dimostrazione.

1. Consideriamo l'omomorfismo

$$\varepsilon = \varepsilon_{\alpha} : K[x] \longrightarrow F, \quad h \mapsto h(\alpha)$$

non è iniettivo, per ipotesi su  $\alpha$ , quindi esiste un  $f \neq 0$  tale che  $\ker \varepsilon = (f)$ . Possiamo assumere che f sia monico (altrimenti consideriamo il polinomio associato  $a_n^{-1}f$ ). Poiché  $f \in \ker \varepsilon$ , abbiamo  $f(\alpha) = 0$ .

Resta da verificare l'irriducibilità.

Si ha  $n = \deg f > 0$ . Siano  $g, h \in K[x]$  tali che f = gh.

Allora  $0 = f(\alpha) = g(\alpha) \cdot h(\alpha)$ , perciò uno dei fattori, poniamo  $g(\alpha) = 0$ .

Ma allora  $g \in \ker \varepsilon = (f)$ , perciò  $f \mid g \in \deg g = n$ .

Unicità di f: se anche f' soddisfa l'enunciato, allora poiché  $f(\alpha) = f'(\alpha) = 0$ , si ha  $f \sim f'$  ed essendo entrambi monici segue f = f'.

2.  $g(\alpha) = 0 \Leftrightarrow g \in \ker \varepsilon = (f) \Leftrightarrow f \mid g$ 

3. Poiché (f) è il nucleo di  $\varepsilon : K[x] \to F$ , si ha  $K[x]/(f) \cong \operatorname{im} \varepsilon$ . Si noti che im  $\varepsilon$  è un sottocampo di F che contiene  $K = \varepsilon(K)$  e  $\alpha = \varepsilon(x)$ , quindi  $K(\alpha) \subseteq \operatorname{im} \varepsilon$ .

D'altra parte  $K(\alpha)$  contiene tutti gli elementi di forma  $\sum_{i=0}^{m} a_i \alpha^i = \varepsilon(\sum_{i=0}^{m} a_i x^i)$ , perciò  $K(\alpha) = \operatorname{im} \varepsilon$ . Dunque

$$K[x]/(f) \stackrel{\cong}{\underset{\overline{\varepsilon}}{\cong}} K(\alpha)$$

$$\overline{x} \longmapsto \alpha$$

$$\{\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}\} \longleftrightarrow \{1, \alpha, \dots, \alpha^{n-1}\}$$
base base di  $K(\alpha)$ 

# 13.7. Esempi

- 1. Il polinomio minimo di i in  $\mathbb{R} \ e^2 + 1$
- 2. Il polinomio minimo di  $\sqrt{2}$  su  $\mathbb{Q}$  è  $x^2-2$
- 3. In 13.3(2) il polinomio minimo di  $\alpha=\overline{x}\in F$  su  $K=\mathbb{Z}/2\mathbb{Z}$  è  $x^2+x+1$
- 4. Il polinomio minimo di  $\alpha = -\frac{1}{2} + i(\frac{1}{2}\sqrt{3}) \in \mathbb{C}$  su  $\mathbb{Q}$  è uno zero di  $x^3 1 = (x+1)(x^2+x+1)$ , perciò il polinomio minimo di  $\alpha$  è  $x^2+x+1$ .



# 13.8. Lemma del grado

Sia  $K \subset F$  un'estensione finita e sia L un campo intermedio (cioè  $K \subset L$  e  $L \subset F$  sono estensioni di campi). Allora

$$[F:K] = [F:L][L:K]$$

#### Dimostrazione.

Sia  $\{\alpha_1, \ldots, \alpha_n\}$  una base di F su L e sia  $\{\beta_1, \ldots, \beta_m\}$  una base di L su K. Allora  $\{\alpha_i\beta_j \mid 1 \le i \le n, 1 \le j \le m\}$  è una base di F su K.

### 13.9. Corollario

Sia  $K \subset F$  un'estensione

- 1. Se [F:K] è primo, non esistono campi intermedi propri.
- 2.  $[F:K] < \infty \Leftrightarrow$  esistono elementi algebrici  $\alpha_1, \ldots, \alpha_n$  su K tali che

$$F = K(\alpha_1, \ldots, \alpha_n)$$

- 3. Sia  $K \subset L \subset F$  un campo intermedio. Allora  $K \subset F$  è algebrico se e solo se lo sono  $K \subset L$  e  $L \subset F$ .
- 4. Sia  $\overline{K}$  l'insieme di tutti gli elementi di F che sono algebrici su K. Allora  $K \subset \overline{K}$  è un'estensione algebrica, detta *chiusura algebrica* di K.

#### Dimostrazione.

1. Se  $K \subset L \subset F$ , allora

$$[F:K] = [F:L][L:K]$$

e [F:L] o [L:K] è pari a 1 e F=L oppure L=K.

2.,  $\Rightarrow$  ": Se  $\{\alpha_1, \ldots, \alpha_n\}$  è una base di F su K, allora ogni elemento di F appartiene a  $K(\alpha_1, \ldots, \alpha_n)$ , quindi  $F = K(\alpha_1, \ldots, \alpha_n)$ .

" $\Leftarrow$ ": Per induzione su n

$$\underline{n=1}$$

Se  $F = K(\alpha)$  con  $\alpha$  algebrico su K, allora  $[F : K] < \infty$  per 13.5.

$$n \to n+1$$

 $\overline{\text{Sia } K \subset L} \subset F \text{ con } L = K(\alpha_1, \dots, \alpha_n)$ . Per ipotesi induttiva  $[L:K] < \infty$ . Inoltre  $F = L(\alpha_{n+1})$  e  $\alpha_{n+1}$  è algebrico su L, quindi  $[F:L] < \infty$ , perciò  $[F:K] < \infty$  per 13.8

"\( \infty\)": Sia  $\alpha \in F$  e sia  $f = \sum_{i=0}^n a_i x^i \in L[x]$  il suo polinomio minimo su L. Ovviamente  $\alpha$  è anche algebrico su  $L' = K(a_0, \ldots, a_n)$ .

Perciò  $L' \subset L'(\alpha)$  è un'estensione finita.

Inoltre  $a_0, \ldots, a_n \in L$  sono algebrici su K, quindi  $[L':K] < \infty$  per (2).

Per il Lemma del Grado, segue che  $[L'(\alpha):K][L':K]<\infty$ .

Per 13.5 concludiamo  $K \subset L'(\alpha)$  è algebrica e in particolare  $\alpha$  è algebrico su K.

4. Dobbiamo mostrare che  $\overline{K} \subset F$  è un sottocampo. Siano  $\alpha, \beta \in \overline{K}$ . Per (2) l'estensione  $K \subset K(\alpha, \beta)$  è finita e pertanto algebrica. Quindi  $\alpha + \beta$ ,  $\alpha\beta$  sono algebrici su K, ovvero  $\alpha + \beta$ ,  $\alpha\beta \in \overline{K}$ .

# 13.10. **Esempio**

Un'estensione algebrica di grado infinito:  $\mathbb{Q} \subset \overline{\mathbb{Q}}$ . Sia  $n \in \mathbb{N}$  e sia p un numero primo, allora  $\sqrt[n]{p} \in \overline{\mathbb{Q}}$  con polinomio minimo  $x^n - p$  su  $\mathbb{Q}$ , perciò  $\mathbb{Q} \subset \mathbb{Q}(\sqrt[n]{p})$  è un'estensione di grado n (per 12.6 e 13.6).

Per il Lemma del Grado, segue che  $\mathbb{Q} \subset \overline{\mathbb{Q}}$  non può essere finita.

# 14. Campi di riducibilità completa

### 14.1. Teorema e definizione

Sia  $f \in K[x]$  un polinomio di grado n > 0 su un campo K. Allora esiste un'estensione  $K \subset F$  con  $[F : K] \leq n!$  tale che

- 1.  $f = a(x \alpha_1) \cdot \ldots \cdot (x \alpha_n) \text{ con } \alpha_1, \ldots, \alpha_n \in F$ .
- 2. Se F' è un campo intermedio  $K \subset F' \subset F$  che contiene  $\alpha_1, \ldots, \alpha_n$ , allora F' = F.

F è detto **campo di riducibilità completa** (**crc**) oppure campo di spezzamento di f su K.

#### Dimostrazione.

Per induzione su n.

$$\underline{n=1}$$
:  
 $\underline{f=a(x-\alpha)} \in K[x] \text{ e } F=K=K(\alpha)$ 

#### $n \rightarrow n+1$ :

Per il Teorema di Kronecker esiste  $K \subset F'$  di grado  $[F':K] \leq n+1$  dove f possiede uno zero  $\alpha = \alpha_{n+1}$ . Per il Teorema di Ruffini in F'[x] si ha

$$f = g(x - \alpha_{n+1})$$
 con  $g \in F'[x]$  di grado  $n$ .

Per l'ipotesi induttiva esiste  $F' \subset F$  di grado  $[F:F'] \leq n!$  tale che

$$q = (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n) \text{ con } a \in K \text{ e } \alpha_1, \ldots, \alpha_n \in F.$$

Quindi  $f = a(x - \alpha_1) \cdot \ldots \cdot (x - \alpha_{n+1})$  e  $[F : K] \leq n!(n+1) = (n+1)!$ . Se poniamo  $F = K(\alpha_1, \ldots, \alpha_n)$  vale anche (2).

# 14.2. Esempi

1. Il crc di  $f = x^3 - 1$  su  $\mathbb{Q}$ :  $f = (x - 1)(x^2 + x + 1)$  ha gli zeri  $1, \alpha = -\frac{1}{2} + i\frac{1}{2}\sqrt{3}, \overline{\alpha} = \alpha^2$ .



Perciò  $F = \mathbb{Q}(1, \alpha, \alpha^2) = \mathbb{Q}(\alpha)$  e  $[F : \mathbb{Q}] = \deg x^2 + x + 1 = 2$ .

2. Il crc di  $f = x^3 - 2$  su  $\mathbb{Q}$ : f ha zeri  $\sqrt[3]{2}$ ,  $\alpha \sqrt[3]{2}$ ,  $\alpha^2 \sqrt[3]{2}$ . Perciò  $F = \mathbb{Q}(\sqrt[3]{2}, \alpha \sqrt[3]{2}, \alpha^2 \sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, \alpha)$ . Infatti:

$$\supseteq$$
:  $\alpha = \frac{1}{2}(\alpha\sqrt[3]{2}) \cdot (\sqrt[3]{2})^2 \in F$ 

Dunque  $\mathbb{Q} \subset L = \mathbb{Q}(\sqrt[3]{2}) \subset L(\alpha) = F$  e  $[F:\mathbb{Q}] = [F:L] \cdot [L:\mathbb{Q}] = 2 \cdot 3 = 6 = 3!$   $[L:\mathbb{Q}] = 3$  poiché  $x^3 - 2$  è polinomio minimo di  $\sqrt[3]{2}$  su  $\mathbb{Q}$ .

[F:L]=2 poiché  $x^2+x+1$  è polinomio minimo di  $\alpha$  su  $\mathbb{Q}$  e su  $L\subset\mathbb{R}$ .

### 14.3. Lemma

Sia  $\sigma:K\to K'$  un omomorfismo di campi e sia  $K\subset F$  un'estensione finita. Allora esistono un'estensione finita  $K'\subset F'$  e un omomorfismo  $\tau:F\to F'$  che estende  $\sigma$ , cioè che rende commutativo il diagramma

$$\begin{array}{ccc} K & \subset & F \\ \sigma \Big\downarrow & & \Big\downarrow_{\tau} & \tau \Big|_{K} = \sigma \\ K' & \subset & F' \end{array}$$

#### Dimostrazione.

Sappiamo che esistono elementi  $\alpha_1, \ldots, \alpha_n \in F$  algebrici su K tali che  $F = K(\alpha_1, \ldots, \alpha_n)$ . Caso n = 1:  $F = K(\alpha)$ ,  $\alpha = \alpha_1$ 

L'omomorfismo  $\sigma$  induce un omomorfismo di anelli

$$\tilde{\sigma}: K[x] \longrightarrow K'[x]$$

$$f = \sum_{i=0}^{n} a_i x^i \longmapsto \tilde{\sigma}(f) = \sum_{i=0}^{n} \sigma(a_i) x^i$$

Sia f il polinomio minimo di  $\alpha$  su K, sia  $f' = \tilde{\sigma}(f)$ , sia g un fattore irriducibile di f' in K'[x] e sia F' = K'[x]/(g). Allora  $K' \subset F'$  è un'estensione finita.

Si noti che  $\nu \tilde{\varepsilon}(f) = \nu(f') = 0$  poiché  $f' \in (g)$ .

Perciò  $(f) \subset \ker \nu \tilde{\varepsilon}$  e per il Teorema di Fattorizzazione esiste  $\tau : F \to F'$  tale che  $\tau \circ \varepsilon_{\alpha} = \nu \circ \tilde{\sigma}$ . Dunque  $\tau_{|_{K}}$  coincide con l'applicazione  $K \xrightarrow{\sigma} K' \subset F'$ .



Per n > 1 si procede per induzione.

# 14.4. Teorema (Unicità del campo di riducibilità completa)

Sia  $\sigma: K \to K'$  un isomorfismo di campi. Siano inoltre  $f = \sum_{i=0}^n a_i x^i \in K[x]$  un polinomio di grado n > 0 e  $f' = \sum_{i=0}^n \sigma(a_i) x^i \in K'[x]$  e siano F il crc di f su K e F' il crc di f' su K'. Allora esiste un isomorfismo  $\tau: F \to F'$  che estende  $\sigma$ 

$$\begin{array}{cccc} K & \subset & F & \operatorname{crc} \operatorname{di} f \operatorname{su} K \\ \sigma \Big| \cong & & \cong \Big| \tau \\ K' & \subset & F' & \operatorname{crc} \operatorname{di} f' \operatorname{su} K' \end{array}$$

e induce una biiezione tra gli zeri di f e gli zeri di f'. In particolare , il crc di f su K è unico a meno di isomorfismo.

#### Dimostrazione.

Abbiamo

$$\begin{array}{cccc}
K & \subset & F \\
\sigma \downarrow & & & \tau \\
K' & \subset & F' & \subset & L
\end{array}$$

Per il Lemma esistono un'estensione finita  $F' \subset L$  e un omomorfismo  $\tau : F \to L$  che estende  $K \xrightarrow{\sigma} K' \subset F'$ . Sappiamo che  $\tau$  è iniettivo e dobbiamo mostrare che im  $\tau = F'$ . Sappiamo che esistono  $\alpha_1, \ldots, \alpha_n \in F$  tali che  $F = K(\alpha_1, \ldots, \alpha_n)$  e  $f = a(x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n)$  con  $a \in K$ .

Come nel Lemma, consideriamo l'isomorfismo

$$\tilde{\sigma}: K[x] \longrightarrow K'[x]$$

$$\sum_{i=0}^{n} a_i x^i \longmapsto \sum_{i=0}^{n} \sigma(a_i) x^i$$

e l'omomorfismo analogo  $\tilde{\tau}: F[x] \to L[x]$ . Si noti che

$$\tilde{\tau}_{|K[x]} = \tilde{\sigma}$$
 e im  $\tau = \tau(K)(\tau(\alpha_1), \dots, \tau(\alpha_n)) = K'(\tau(\alpha_1), \dots, \tau(\alpha_n))$ 

Inoltre

$$f' = \tilde{\sigma}(f) = \tilde{\tau}(f) = \tilde{\tau}(a(x - \alpha_1) \cdot \dots \cdot (x - \alpha_n))$$
  
=  $\tilde{\tau}(a)\tilde{\tau}(x - \alpha_1) \cdot \dots \cdot \tilde{\tau}(x - \alpha_n)$   
=  $\varepsilon(a)(x - \tilde{\tau}(\alpha_1)) \cdot \dots \cdot (x - \tilde{\tau}(\alpha_n))$  in  $L[x]$ 

Dunque  $\tau(\alpha_1), \ldots, \tau(\alpha_n)$  sono zeri di f' e perciò  $K'(\tau(\alpha_1), \ldots, \tau(\alpha_n)) = F'$ . Concludiamo che im  $\tau = F'$  e  $\tau$  induce una biiezione tra  $\{\alpha_1, \ldots, \alpha_n\}$  e l'insieme degli zeri di f'.

# 15. Campi finiti

### 15.1. Lemma e definizione

Dato un campo K, consideriamo l'applicazione

$$\psi: \mathbb{Z} \to K, \qquad n \mapsto n \cdot 1_K = \begin{cases} \underbrace{1_K + \ldots + 1_K}_{n \text{ volte}} & \text{se } n > 0 \\ 0_K & \text{se } n = 0 \\ \underbrace{-1_K - \ldots - 1_K}_{|n| \text{ volte}} & \text{se } n < 0 \end{cases}$$

che è un omomorfismo di anelli.

Se  $\psi$  è iniettiva, ovvero se ker  $\psi = 0$ , allora si dice che K ha **caratteristica** 0. Se  $\psi$  non è iniettiva, allora ker  $\psi = m\mathbb{Z}$  con m primo: se  $m \mid ab$  con  $a, b \in \mathbb{Z}$ , allora  $\psi(a)\psi(b) = \psi(ab) = 0_K$ , perciò uno dei fattori, poniamo  $\psi(a)$ , dev'essere nullo, dunque  $a \in \ker \psi = m\mathbb{Z}$  e  $m \mid a$ .

Dunque se  $\psi$  non è iniettivo, ker  $\psi = p\mathbb{Z}$  per un certo p e diciamo che K ha caratteristica p.

### Osservazioni

In un campo K di caratteristica  $p \neq 0$  si ha:

1. Se  $x \in K \setminus \{0_K\}$  e  $m \in \mathbb{N}$ , allora

$$mx = 0$$
 se e solo se  $p \mid m$ 

Infatti 
$$m \cdot x = \underbrace{x + \ldots + x}_{m \text{ volte}} = x(\underbrace{1_K + \ldots + 1_K}_{m \text{ volte}}) = x\psi(m) = 0$$
 se e solo se  $\psi(m) = 0$ , ovvero  $m \in \ker \psi = p\mathbb{Z}$ .

2. Per  $x, y \in K$  si ha  $(x + y)^p = x^p + y^p$ . Infatti

$$(x+y)^p = \sum_{i=0}^p \binom{p}{i} x^i y^{p-i}$$

dove

$$\binom{p}{i} = \frac{p!}{i!(p-i)!} \in p\mathbb{Z} \quad \text{per ogni} \quad 1 \le i \le p-1$$

e per (1) segue che  $(x+y)^p = \binom{p}{0}x^p + \binom{p}{p}y^p = x^p + y^p$ 

3. L'applicazione  $\varphi:K\to K, x\mapsto x^p$  è un omomorfismo, detto omomorfismo di Frobenius

### 15.2. Esempi

- 1.  $\mathbb{Q}, \mathbb{R}, \mathbb{C}$  hanno caratteristica 0.
- 2.  $\mathbb{Z}/p\mathbb{Z}$  e il campo  $\mathbb{Z}/p\mathbb{Z}(x) = \{\frac{f}{g} \mid f, g \in \mathbb{Z}/p\mathbb{Z}[x], g \neq 0\}$  delle funzioni razionali su  $\mathbb{Z}/p\mathbb{Z}$  (infinito) hanno caratteristica p.
- 3. Ogni campo finito K ha caratteristica  $p \neq 0$ , poiché  $\psi: \mathbb{Z} \to K$  non può essere iniettiva.

### 15.3. Lemma e definizione

Dato un campo K consideriamo  $\mathcal{P} = \bigcap \{L \subset K \mid L \text{ sottocampo di } K\}$  il suo più piccolo sottocampo, detto **sottocampo fondamentale** di K.

Si ha  $\mathcal{P} = \{(n1_K)(m1_K)^{-1} \mid n, m \in \mathbb{Z}, m1_K \neq 0_K\}.$ 

Inoltre char K=0 se e solo se  $\mathcal{P}\cong\mathbb{Q}$  e char K=p se e solo se  $\mathcal{P}\cong\mathbb{Z}/p\mathbb{Z}$ .

#### Dimostrazione.

Certamente  $\mathcal{P} \supset \{(n1_K)(m1_K)^{-1} \mid n, m \in \mathbb{Z}, m1_K \neq 0_K\}$  e char  $K = \operatorname{char} \mathcal{P}$ , perciò si ha "\( \in \)".

Sia adesso char K = 0. Allora  $\psi$  è iniettiva e

$$\begin{array}{ccc}
n & \mathbb{Z} & \longrightarrow & \mathbb{Q} \\
\downarrow & \psi \downarrow & \swarrow & \check{\psi} \\
n1_K & K & & & \\
\end{array} \quad \text{dove } \tilde{\psi}(\frac{n}{m}) = \psi(n)\psi(m)^{-1}$$

 $\tilde{\psi}$  è un omomorfismo che estende  $\psi$ .

Poiché  $\mathbb{Q}$  è un campo,  $\tilde{\psi}$  è iniettiva. Inoltre im  $\tilde{\psi} = \{(n1_K)(m1_K)^{-1} \mid n, m \in \mathbb{Z}, m \neq 0\}$  è un sottocampo di K contenuto in  $\mathcal{P}$ . Perciò

$$\operatorname{im} \tilde{\psi} = \{ (n1_K)(m1_K)^{-1} \mid n, m \in \mathbb{Z}, m \neq 0 \} = \mathcal{P}$$

e  $\tilde{\psi}$  induce un isomorfismo  $\mathbb{Q} \cong \mathcal{P}$ .

Se invece char K = p, allora  $\ker \psi = p\mathbb{Z}$  e

$$\begin{array}{ccc}
\mathbb{Z} & \longrightarrow \mathbb{Z}/p\mathbb{Z} \\
\psi \downarrow & & & \\
K & & & \\
\end{array}$$

per il Teorema di Fattorizzazione, im  $\overline{\psi} = \operatorname{im} \psi = \{n1_K \mid n \in \mathbb{Z}\} \subset \mathcal{P}$  e come sopra concludiamo che

$$\operatorname{im} \overline{\psi} = \{(n1_K)m1_k^{-1} \mid n, m \in \mathbb{Z}, m1_K \neq 0_K\} = \mathcal{P}$$

e  $\overline{\psi}$  induce un isomorfismo  $\mathbb{Z}/p\mathbb{Z} \cong \mathcal{P}$ .

15.4. Corollario

Sia F un campo finito , allora esistono un numero primo p e un  $n \in \mathbb{N}$  tali che  $|F| = p^n$  e  $x^{p^n} = x$  per ogni  $x \in F$ .

Dimostrazione.

Sappiamo che char  $F \neq 0$  e perciò  $\mathcal{P} \cong \mathbb{Z}/p\mathbb{Z}$ . Dunque  $\mathcal{P} \subset F$  è un'estensione finita, poniamo  $n = [F : \mathcal{P}]$ , e  $F \cong \mathcal{P}^n$  possiede  $|\mathcal{P}^n| = p^n$  elementi.

Inoltre se  $x \in F \setminus \{0_F\}$ , si ha che nel gruppo moltiplicativo  $(F \setminus \{0_F\}, \cdot)$  di  $p^n - 1$  elementi vale  $x^{p^n-1} = 1_F$ , perciò  $x^{p^n} = x$ .

15.5. Lemma e definizione

Sia F un campo. L'applicazione

$$\mathcal{D}: F[x] \longrightarrow F[x]$$

$$f = \sum_{i=0}^{n} a_i x^i \longmapsto \mathcal{D}f = \sum_{i=1}^{n} i a_i x^{i-1}$$

detta derivata formale è una derivazione di F[x], cioè soddisfa, per  $f, g \in K[x]$ 

$$(\mathcal{D}1) \ \mathcal{D}(f+g) = \mathcal{D}(f) + \mathcal{D}(g)$$

$$(\mathcal{D}2) \ \mathcal{D}(fq) = \mathcal{D}(f)q + f\mathcal{D}(q)$$

# 15.6. Lemma e definizione

Sia F un campo e siano  $f \in F[x]$  e  $\alpha \in F$  uno zero di f. Diremo che  $\alpha$  è uno zero di **molteplicità** n se  $(x - \alpha)^n \mid f$  ma  $(x - \alpha)^{n+1}$  non divide f.

- 1.  $\alpha$  è zero di f di molteplicità > 1 se e solo se  $\alpha$  è zero sia di f sia di  $\mathcal{D}f$ .
- 2. Se  $f \in \mathcal{D}f$  sono coprimi in F[x], allora  $\alpha$  è uno zero di molteplicità 1.

# 15.7. Teorema di classificazione dei campi finiti

- 1. Per ogni numero primo p e ogni  $n \in \mathbb{N}$  esiste un campo di  $p^n$  elementi  $F = \mathbb{F}_{p^n}$ , detto **campo di Galois** di ordine  $p^n$ , che si ottiene come campo di riducibilità completa del polinomio  $x^{p^n} x$  su  $\mathbb{Z}/p\mathbb{Z}$ .
- 2. Ogni campo finito F è isomorfo ad un campo di Galois  $\mathbb{F}_{p^n}$

#### Dimostrazione.

1. Sia F il crc di  $f = x^{p^n} - x$  su  $K = \mathbb{Z}/p\mathbb{Z}$  e sia  $F' = \{\alpha \in F \mid \alpha^{p^n} = \alpha\}$  l'insieme degli zeri di f in F. Verifichiamo che  $K \subset F' \subset F$  è un campo intermedio.  $K \subset F'$  perché gli elementi di K soddisfano  $\alpha^p = \alpha$  per 15.4.  $F' \subset F$  è un sottocampo:

Se  $\alpha, \beta \in F'$ , allora

$$(\alpha - \beta)^{p^n} = (\alpha + (-\beta))^{p^n} = \alpha^{p^n} + (-\beta)^{p^n} = \alpha - \beta$$
  
Infatti  $\beta + (-\beta)^{p^n} = \beta^{p^n} + (-\beta)^{p^n} = (\beta - \beta)^{p^n} = 0_K^{p^n} = 0_K$ , quindi  $(-\beta)^{p^n} = -\beta$ .  
E se  $\beta \neq 0_K$   
$$(\alpha \beta^{-1})^{p^n} = \alpha^{p^n} (\beta^{p^n})^{-1} = \alpha \beta^{-1}$$

Perciò  $\alpha - \beta$  e  $\alpha\beta^{-1} \in F'$ . Per la minimalità del crc segue F' = F. Resta da verificare che  $f = x^{p^n} - x$  possiede  $p^n$  zeri distinti in F. Si ha che  $\mathcal{D}f = p^n x^{p^n-1} - 1 = -1$  non ha zeri in comune con f. Per 15.6 segue che  $|F| = |F'| = p^n$ .

2. Sia F un campo con  $|F|=p^n$ . Allora sappiamo che ogni  $\alpha\in F$  è zero di  $f=x^{p^n}-x$  per 15.4, e poiché f ha al più  $p^n$  zeri, concludiamo che F è crc di f sul suo sottocampo fondamentale  $\mathcal{P}\cong \mathbb{Z}/p\mathbb{Z}$ . Abbiamo quindi

$$K = \mathbb{Z}/p\mathbb{Z} \quad \subset \quad \mathbb{F}_{p^n} \operatorname{crc} \operatorname{di} f \operatorname{su} K$$

$$\cong \downarrow^{\sigma} \qquad \cong \downarrow^{\tau}$$

$$\mathcal{P} \quad \subset \quad F \operatorname{crc} \operatorname{di} f \operatorname{su} \mathcal{P}$$

e per l'unicità del crc (14.4) segue  $F \cong \mathbb{F}_{p^n}$ 

# 15.8. Lemma

Ogni sottogruppo finito del gruppo moltiplicativo  $(F \setminus \{0_F\}, \cdot)$  di un campo F è ciclico.

#### Dimostrazione.

La dimostrazione è lasciata per esercizio.

# 15.9. Teorema dell'elemento primitivo

Se F è un campo finito di ordine  $p^n$ , allora esiste un  $\alpha \in F$  detto elemento primitivo, tale che  $F = \{0_F, 1_F, \alpha, \alpha^2, \dots, \alpha^{p^n-2}\}.$ 

#### Dimostrazione.

Per il Lemma  $(F \setminus \{0_F\}, \cdot)$  è un gruppo ciclico di ordine  $p^n - 1$  e perciò esiste un  $\alpha \in F$  tale che  $F \setminus \{0_F\} = \langle \alpha \rangle = \{1, \alpha, \alpha^2, \dots, \alpha^{p^n - 2}\}.$ 

# 16. Costruzioni con riga e compasso

# 16.1. Definizione

Sia  $M \subset \mathbb{C}$ . Denotiamo con  $\mathrm{E}(M)$  l'insieme di tutti i punti  $\alpha \in \mathbb{C}$  che si ottengono da M mediante una delle seguenti costruzioni elementari:

#### (I) intersecare due rette:

Se  $\mathcal{R}_1$  e  $\mathcal{R}_2$  sono due rette non parallele passanti rispettivamente per i punti  $p_1$  e  $q_1$ ,  $p_2$  e  $q_2$  di M, allora il punto di intersezione p appartiene ad E(M)



#### (II) Intersecare una retta con una circonferenza:

Se  $\mathcal{R}$  è una retta data dai punti p, q di M e  $\mathcal{C}$  è la circonferenza di centro  $c \in M$  e passante per  $d \in M$ , allora i punti di intersezione appartengono a E(M)



#### (III) Intersecare due circonferenze :

Se  $C_1$ ,  $C_2$  sono due circonferenze, rispettivamente di centri  $c_i \in M$  passanti per  $d_i \in M$ , allora i punti di intersezione appartengono a E(M).



Diremo che  $a \in \mathbb{C}$  è costruibile con riga e compasso da M se a è ottenuto da M attraverso un numero finito di costruzioni elementari, cioè esistono  $a_1, \ldots, a_n \in \mathbb{C}$  tali che  $a_1 \in E(M), a_2 \in E(M \cup \{a_1\}), \ldots, a_n \in E(M \cup \{a_1, \ldots, a_{n-1}\})$  e  $a_n = a$ . Diciamo che  $a \in \mathbb{C}$  è **costruibile** se è costruibile con riga e compasso da  $M = \{0, 1\}$ .

# 16.2. Esempi

1. Gli interi di Gauss $\mathbb{Z}[i] = \{a+ib \mid a,b \in \mathbb{Z}\}$ sono costruibili



2. Sia  $M \subset \mathbb{C}$ ,  $p, q, c \in M$  e sia  $\mathcal{R}$  la retta passante per p, q. Allora si costruiscono con riga e compasso la retta  $\mathcal{R}_1$  parallela a  $\mathcal{R}$  passante per c e la retta  $\mathcal{R}_2$  normale a  $\mathcal{R}$  passante per c.



3. Si costruiscono con riga e compasso la bisettrice di angolo, la somma di due angoli e il punto medio di un segmento.

# 16.3. Lemma

- 1. I numeri costruibili formano un campo intermedio  $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{C}$ .
- 2. Se  $c \in \mathbb{C}$  soddisfa  $c^2 \in \mathbb{K}$ , allora  $c \in \mathbb{K}$

#### Dimostrazione.

1. Siano  $a, b \in \mathbb{K}$ , allora anche  $a + b, -a \in \mathbb{K}$ , e  $|a| \in \mathbb{K} \cap \mathbb{R}$ .



2.  $|a| \cdot |b| \in \mathbb{K}$ , se  $b \neq 0$ , anche  $\frac{1}{|b|} \in \mathbb{K}$ .



#### Costruisco:

- la bisettrice  $\mathcal{B}$ ,
- p, q con (II),
- $\mathcal{R}_1$  passante per  $p \in |b|$ ,
- $\mathcal{R}_2$  parallela a  $\mathcal{R}_1$  passante per q.

Per il **Teorema di Talete**  $\frac{|q|}{|p|} = \frac{|c|}{|b|}$  e poiché |p| = 1, |q| = |a|, segue  $c = |a| \cdot |b|$ .

- $\mathcal{R}_3$  parallela a  $\mathcal{R}_2$  e passante per 1,
- $d \operatorname{con} (I)$ .

Per il Teorema di Talete  $\frac{|d|}{|p|} = \frac{1}{|b|}$ , perciò  $|d| = \frac{1}{|b|}$ .

# CAPITOLO 16. COSTRUZIONI CON RIGA E COMPASSO

3.  $ab \in \mathbb{K}, \frac{1}{b} \in K \text{ se } b \neq 0$ 



$$a = |a|(\cos \alpha + i \sin \alpha)$$

$$b = |b|(\cos \beta + i \sin \beta)$$

$$ab = |a||b|(\cos(\alpha + \beta) + i \sin(\alpha + \beta))$$

$$\frac{1}{b} = \frac{1}{|b|}(\cos(-\beta) + i \sin(-\beta))$$

- 4. Costruzione di  $\sqrt{a}$  con  $a=|a|(\cos\alpha+i\sin\alpha)$  : Costruiamo  $\sqrt{|a|}$ :
  - Costruiamo:
    - $\bullet$  -|a|,
    - p punto medio del segmento -|a|1,
    - q con (II). Il triangolo -|a|q1 è rettangolo con h=|q|.  $|a|1=h^2=|q|^2$ . Quindi  $|q|=\sqrt{|a|}$ .



# 16.4. Lemma

Sia  $L \subset \mathbb{C}$  un sottocampo tale che  $i \in L$  e  $\overline{L} = {\overline{a} \in \mathbb{C} \mid a \in L} = L$  e sia  $M \subset L$ . Per ogni  $a \in E(M)$  esiste un numero complesso  $b \in L$  tale che  $b^2 \in L$  e  $a \in L(b)$ .

#### Dimostrazione.

L'ipotesi su L implica che se  $a \in L$ , anche  $\overline{a}$ ,  $\Re(a) = \frac{1}{2}(a + \overline{a})$ ,  $\Im(a) = \frac{1}{2}(a - \overline{a}) \in L$  e  $|a|^2 = a\overline{a} \in L$ .

Caso (II)

a è ottenuto intersecando la retta  $\mathcal{R} = \{p + t(q - p) \mid t \in \mathbb{R}\}\$ con  $p, q \in M$  con la circonferenza  $\mathcal{C}$  con centro  $c \in M$  passante per  $d \in M$ .

Sappiamo che  $r^2 = |d - c|^2 \in L$ . Abbiamo dunque che  $|a - c|^2 = r^2$ , ovvero

$$(p - c + t(q - p))(\overline{p} - \overline{c} + t(\overline{q} - \overline{p})) = r^2$$

Quindi t è soluzione di un'equazione di secondo grado con coefficienti in L e perciò  $t \in L(b)$  dove  $b \in \mathbb{C}$  e  $b^2 \in L$  (ad esempio  $b = \delta$  con  $\delta^2 = \Delta$  il discriminante dell'equazione) e  $a = p + t(q - p) \in L(b)$ .

Analogamente per il caso (III), mentre nel caso (I) si ha che  $a \in L$ .

# 16.5. Teorema

Sia  $a \in \mathbb{K}$  costruibile. Allora esiste una catena finita di campi intermedi

$$\mathbb{Q} = L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_m \subset \mathbb{C}$$

Tale che  $[L_{i+1} : L_i] = 2$  per ogni  $1 \le i < m$  e  $a \in L_m$ .

In particolare a è un elemento algebrico su  $\mathbb{Q}$  dove  $[\mathbb{Q}(a):\mathbb{Q}]$  è una potenza di 2.

#### Dimostrazione.

Sia  $a \in \mathbb{K} \setminus \{0, 1\}$ , allora esistono  $n \in \mathbb{N}$  e  $a_1, \ldots, a_n \in \mathbb{C}$  tali che

 $a_1 \in E(\{0,1\}), a_2 \in E(\{0,1,a_1\}), \dots, a = a_n \in E(\{0,1,a_1,\dots,a_{n-1}\}).$ 

Poniamo  $L_1 = \mathbb{Q}(i)$ , dunque  $[L_1 : L_0] = 2$  e  $L_1$  soddisfa le ipotesi del Lemma con  $M = \{0, 1\}$ . Per  $a_1 \in \mathcal{E}(M)$  esiste quindi un  $b_1 \in \mathbb{C}$  tale che  $b_1^2 \in L_1$  e  $a_1 \in L_1(b)$ .

Poniamo  $L_2 = L_1(b_1) \subset L_3 = L_1(b_1, \overline{b_1})$ . Si ha  $[L_2 : L_1] \leq 2$  e poiché  $\overline{b_1}^2 \in \overline{L_1} = L_1$  anche  $[L_3 : L_2] \leq 2$ .

Poiché  $L_3$  soddisfa le ipotesi del Lemma e  $M_3 = \{0, 1, a_1\} \subset L_3$ , abbiamo che per  $a_2 \in E(M_3)$  esiste  $b_2 \in \mathbb{C}$  tale che  $b_2^2 \in L_3$  e  $a_2 \in L_3(b_2)$ .

Continuando così si ottiene una catena con le proprietà desiderate. Dunque abbiamo un campo intermedio  $\mathbb{Q} \subset \mathbb{Q}(a) \subset L_m$ , perciò  $[\mathbb{Q}(a):\mathbb{Q}] \mid [L_m:\mathbb{Q}] = 2^m$  è una potenza di 2, in particolare a è algebrico su  $\mathbb{Q}$ .

# 16.6. Corollario

1. La quadratura del cerchio è impossibile:

Non esiste un quadrato di lato  $a \in \mathbb{K}$  la cui area sia pari all'area della circonferenza di raggio 1 e centro 0. Infatti per tale  $a \in \mathbb{K}$  si avrebbe  $|a|^2 = \pi$  e quindi si avrebbe  $\pi \in \mathbb{K}$ . Ma per il **Teorema di Lindemann**  $\pi$  è trascendente su  $\mathbb{Q}$ .

2. La duplicazione del cubo è impossibile:

Non esiste un cubo di lato  $a \in \mathbb{K}$  il cui volume sia il doppio di volume del cubo di lato 1.

Infatti per tale  $a \in \mathbb{K}$  si avrebbe  $a^3 = 2$ , ovvero a avrebbe polinomio minimo  $x^3 - 2$  su  $\mathbb{Q}$  e quindi  $[\mathbb{Q}(a) : \mathbb{Q}] = 3$  non sarebbe una potenza di 2.  $\mathbf{1}$ 

3. La trisezione dell'angolo è impossibile:

Prendiamo  $\alpha = 60^{\circ} = \frac{\pi}{3}$ . Se  $\frac{\alpha}{3} = \frac{\pi}{9}$  fosse costruibile, lo sarebbe anche  $\frac{2\pi}{9}$ , ovvero  $z = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9} \in \mathbb{K}$ .

Ma z è una radice nona di 1 e il suo polinomio minimo è  $\phi_9 = x^6 + x^3 + 1$ . Infatti z è zero di  $x^9 - 1 = (x^3 - 1)(x^6 + x^3 + 1)$  e perciò è zero di  $\phi_9$  che è irriducibile (riduzione modulo 2). Quindi  $[\mathbb{Q}(z):\mathbb{Q}] = \deg \phi_9 = 6$  non è una potenza di 2 e  $z \notin \mathbb{K}$ .

# Parte V. Teoria di Galois

# 17. Estensioni normali

# 17.1. Definizione

Un'estensione  $K \subset F$  è **normale** se

- (i)  $K \subset F$  è un'estensione algebrica
- (ii) Per ogni  $\alpha \in F$  il polinomio minimo  $f \in K[x]$  di  $\alpha$  su K è prodotto di fattori lineari in F[x]

$$f = a(x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n) \text{ con } a \in K \text{ e } \alpha_1, \ldots, \alpha_n \in F$$

# 17.2. Esempi

- 1. Ogni estensione  $K \subset F$  di grado 2 è normale. Se  $\alpha \in F \setminus K$  il suo polinomio minimo f ha grado 2. Infatti  $K \subsetneq K(\alpha) \subset F$  mostra che deg  $f = [K(\alpha) : K] = 2$ . Quindi in F[x] si ha  $f = (x - \alpha)g$  con deg g = 1, perciò  $f = a(x - \alpha)(x - \beta)$
- 2. Sia p un numero primo. Allora  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{p})$  e  $\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\sqrt[4]{p})$  sono estensioni di grado 2 e pertanto normali, ma  $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{p})$  non è normale: Il polinomio minimo  $f = x^4 p$  di  $\sqrt[4]{p}$  è prodotto dei fattori irriducibili in F[x]

$$f = (x^{2} - \sqrt{p})(x^{2} + \sqrt{p})$$

$$= (x - \sqrt[4]{p})(x - \sqrt[4]{p})(x^{2} + \sqrt{p})$$
irriducibile su  $F = \mathbb{Q}(\sqrt[4]{p}) \subset \mathbb{R}$ 
poiché i suoi zeri  $i\sqrt[4]{p}, -i\sqrt[4]{p} \notin F$ 

# 17.3. Teorema

Sia  $K \subset F$  un'estensione. Allora  $K \subset F$  è finita e normale se e solo se F è un campo di riducibilità completa di un polinomio  $f \in K[x]$  su K.

#### Dimostrazione.

"⇒" : Esistono elementi algebrici  $\alpha_1, \ldots, \alpha_n \in F$  su K tali che  $F = K(\alpha_1, \ldots, \alpha_n)$ . Siano  $f_1, \ldots, f_n$  i polinomi minimi di  $\alpha_1, \ldots, \alpha_n$  su K e sia  $f = f_1 \cdot \ldots \cdot f_n \in K[x]$ . Poiché  $K \subset F$  è normale, ogni  $f_i$  e quindi anche f è prodotto di fattori lineari in F[x]. Dunque  $f = a(x - \beta_1) \cdot \ldots \cdot (x - \beta_m)$  con  $a \in K, \beta_1, \ldots, \beta_m \in F$ . Si noti che  $\{\alpha_1, \ldots, \alpha_n\} \subseteq \{\beta_1, \ldots, \beta_m\}$ , perciò

$$F = K(\alpha_1, \dots, \alpha_n) \subseteq K(\beta_1, \dots, \beta_m) \subseteq F$$

e F è crc di f su K.

" $\Leftarrow$ " : Sia F crc di  $f \in K[x]$  su K.

Supponiamo che  $K \subset F$  non sia normale. Allora esiste  $\alpha \in F$  il cui polinomio minimo  $g \in K[x]$  su K non è prodotto di fattori lineari in F[x].

Sia L il crc di g su F. Allora esiste un  $\beta \in L \setminus F$  con  $g(\beta) = 0$ . Si noti che g è anche polinomio minimo di  $\beta$  su K. Dunque abbiamo un isomorfismo

$$\sigma: K(\alpha) \quad \stackrel{\cong}{\underset{\overline{\varepsilon_{\alpha}}}{=}} \quad K[x]/(g) \quad \stackrel{\cong}{\underset{\overline{\varepsilon_{\beta}}}{=}} \quad K(\beta)$$

$$\alpha \longleftarrow \overline{x} \longmapsto \beta$$

con  $\sigma(\alpha) = \beta$  e  $\sigma|_{K} = \mathrm{id}_{K}$ . Abbiamo quindi

Dunque esiste un isomorfismo di campi  $\tau: F \to F(\beta)$  che estende  $\sigma$ . Ma  $\tau$  è anche un isomorfismo di spazi vettoriali su K: per  $k \in K, b \in F$ 

$$\tau(k \cdot b) = \tau(k) \cdot \tau(b) = k \cdot \tau(b)$$

Dunque  $[F(\beta):K]=[F:K]$  e per il Lemma del Grado applicato a  $K\subset F\subset F(\beta)$  otteniamo  $[F(\beta):F]=1$ , perciò  $F(\beta)=F$  e  $\beta\in F$ 

#### 17.4. Corollario

Sia  $K \subset F$  un'estensione finita e normale. Se  $\alpha, \beta \in F$  hanno lo stesso polinomio minimo, allora esiste un automorfismo  $\tau : F \to F$  tale che  $\tau|_K = \mathrm{id}_K$  e  $\tau(\alpha) = \beta$ .

# 18. Separabilità

# 18.1. Teorema

Sia K un campo e sia  $f \in K[x]$  un polinomio di grado n > 0. Sono equivalenti i seguenti enunciati:

- 1. Esiste un'estensione  $K \subset F$  tale che  $f = a(x \alpha_1) \cdot \ldots \cdot (x \alpha_n)$ , dove  $a \in K$  e  $\alpha_1, \ldots, \alpha_n$  sono elementi distinti di F
- 2.  $f \in \mathcal{D}(f)$  sono coprimi in K[x]
- 3. Non esiste un'estensione  $K \subset F$  nella quale f abbia uno zero di molteplicità > 1 Se f è irriducibile su K, gli enunciati (1) (3) sono equivalenti a:
  - 4.  $\mathcal{D}(f) \neq 0$

#### Dimostrazione.

"(1)  $\Rightarrow$  (2)": Sia  $d \in K[x]$  un comun divisore di  $f \in \mathcal{D}(f)$ . Allora in F[x] si ha  $d = c(x - \alpha_{i_1}) \cdot \ldots \cdot (x - \alpha_{i_r})$  con  $c \in K, i_1, \ldots, i_r \in \{1, \ldots, n\}$ 

per l'unicità della scomposizione in fattori irriducibili.

Poiché f e  $\mathcal{D}(f)$  non hanno zeri in comune per 15.6, segue r=0 e d=c è un polinomio costante e pertanto invertibile in K[x].

" $(2) \Rightarrow (3), (4)$ ": Per l'identità di Bézout, possiamo esprimere

$$1 = \alpha f + \beta \mathcal{D}(f)$$
 con  $\alpha, \beta \in K[x]$ 

Ma allora non può esistere un'estensione  $K \subset F$  nella quale  $f \in \mathcal{D}(f)$  abbiano uno zero comune e per 15.6 segue (3). Inoltre  $\mathcal{D}(f) \neq 0$ , poiché altrimenti f sarebbe invertibile, ma deg f > 0.

- "(3)  $\Rightarrow$  (1)": Scegliendo per F il crc di f su K.
- "(4)  $\Rightarrow$  (2)": Sia d un divisore comune di f e  $\mathcal{D}(f)$  in K[x]. Allora esistono  $g, h \in K[x]$  tali che f = dg e  $\mathcal{D}(f) = dh$ . Allora  $\deg d \leq \deg \mathcal{D}(f) < \deg f$ , perciò per ipotesi su f segue che  $\deg g = n$  e  $\deg d = 0$ , quindi d è invertibile.

# 18.2. Definizione

Sia K un campo e sia  $f \in K[x]$  un polinomio di grado n > 0. Se f è irriducibile su K, diremo che f è **separabile** su K quando soddisfa gli enunciati del Teorema 18.1. In generale f è separabile su K se lo sono tutti i suoi fattori irriducibili.

# 18.3. Esempi

- 1. L'ipotesi "irriducibile" in 18.1 è indispensabile: sia  $f = (x 2)^2 \in \mathbb{Q}[x]$ . Allora  $\mathcal{D}(f) = 2x \neq 0$  ma f ha uno zero di molteplicità 2.
- 2. Ogni polinomio non costante su un campo K di char K=0 è separabile. Basta verificarlo per un polinomio  $f \in K[x]$  irriducibile: se  $f = \sum_{i=0}^{n} a_i x^i$ , allora  $\mathcal{D}(f) = \sum_{i=1}^{n} i a_i x^{i-1} \neq 0$ , poiché  $na_n \neq 0$ .
- 3. Siano  $f_1, \ldots, f_n \in K[x]$ . Allora  $f = f_1 \cdot \ldots \cdot f_n$  è separabile se e solo se lo sono tutti gli  $f_i$ . Infatti i fattori irriducibili di f sono esattamente i polinomi irriducibili che dividono uno degli  $f_i$ .
- 4. Un polinomio separabile su K è separabile anche in qualsiasi estensione  $K \subset F$ . Infatti se  $f \in K[x]$  è separabile e  $g \in F[x]$  è un suo fattore irriducibile in F[x], allora g divide un fattore irriducibile h di f in K[x] (se  $f = f_1 \cdot \ldots \cdot f_r$  è la scomposizione in fattori irriducibili e  $g \mid f$  in F[x], allora g deve dividere uno dei fattori  $f_1, \ldots, f_r$ ). Ma allora non può esistere un'estensione  $F \subset F'$  nella quale g abbia uno zero di molteplicità > 1 poiché questo sarebbe anche zero del polinomio irriducibile e separabile h.

# 18.4. Definizione

Un campo K si dice **perfetto** se ogni polinomio non costante in K[x] è separabile se K.

Abbiamo visto che K è perfetto se char K=0 e vediamo adesso che ogni campo finito è perfetto, grazie a

# 18.5. Teorema

Un campo K di caratteristica  $p \neq 0$  è perfetto se e solo se l'omomorfismo di Frobenius

$$\varphi: K \to K, x \mapsto x^p$$

è suriettivo (e quindi biiettivo)

#### Dimostrazione.

"⇒" : Sia  $a \in K$ . Dobbiamo trovare  $\alpha \in K$  tale che  $\alpha^p = a$ , ovvero uno zero del polinomio  $f = x^p - a \in K[x]$ . Sia g un fattore irriducibile di f in K[x] e sia F il suo crc e  $\alpha \in F$  un suo zero. Allora  $\alpha$  è anche zero di f e resta da dimostrare che  $\alpha \in K$ . In F[x] si ha  $f = x^p - \alpha^p = (x - \alpha)^p$ , quindi  $g = (x - \alpha)^n$  per  $n \le p$ . Poiché per ipotesi g è separabile (e irriducibile) su K, abbiamo n = 1 e quindi  $g = x - \alpha \in K[x]$  e  $\alpha \in K$ .

"\( = " \): Supponiamo che esista un polinomio irriducibile  $f = \sum_{i=0}^n a_i x^i \in K[x]$  che non sia separabile. Allora  $\mathcal{D}(f) = \sum_{i=1}^n i a_i x^{i-1} = 0$ . Perciò  $a_i = 0$  per ogni  $i \notin p\mathbb{Z}$  e  $f = a_0 + a_p x^p + a_{2p} x^{2p} + \dots$  Inoltre per ipotesi ogni  $a_i, i \in p\mathbb{Z}$ , è di forma  $a_i = \alpha_i^p$  per un  $\alpha_i \in K$ . Dunque

$$f = \alpha_0^p + \alpha_p^p x^p + \alpha_{2p}^p x^{2p} + \dots$$
$$= (\alpha_0 + \alpha_p x + \alpha_{2p} x^2 + \dots)^p$$

# 18.6. Definizione

Sia  $K \subset F$  un'estensione. Un elemento  $\alpha \in F$  è **separabile** su K se  $\alpha$  è algebrico e il suo polinomio minimo è separabile su K. Se ogni  $\alpha \in F$  è separabile su K, diciamo che  $K \subset F$  è un'**estensione separabile**.

# 18.7. Esempi

- 1. Ogni estensione algebrica di un campo perfetto è separabile.
- 2. Un'estensione algebrica non separabile: Sia p primo e sia  $K = \mathbb{Z}/p\mathbb{Z}(x) = \{\frac{f}{g} \mid f, g \in \mathbb{Z}/p\mathbb{Z}[x], g \neq 0\}$  il campo delle funzioni razionali su  $\mathbb{Z}/p\mathbb{Z}$ .

K è un campo infinito di caratteristica p. Verifichiamo che non è perfetto: Consideriamo  $f = y^p - x \in K[y]$ . È irriducibile, ciò si mostra usando che x è un elemento irriducibile in  $\mathbb{Z}/p\mathbb{Z}[x]$  e anche in  $\mathbb{Z}/p\mathbb{Z}(x)$ ; gli argomenti sono analoghi a quelli usati in 12.6 e 12.5. La derivata  $\mathcal{D}(f) = py^{p-1} = 0$ , perciò f non è separabile su K.

Il cr<br/>c di f su K è quindi un'estensione algebrica che non è se<br/>parabile.

# 19. Campi intermedi e sottogruppi

#### 19.1. Lemma e definizione

Sia F un campo.

- 1. Gli automorfismi  $\varphi: F \to F$  di F formano un gruppo (Aut  $F, \circ$ ) rispetto alla composizione  $\circ$ .
- 2. Sia  $G \leq \operatorname{Aut} F$ . Allora l'insieme

$$Fix_F(G) = \{ a \in F \mid \varphi(a) = a \text{ per ogni } \varphi \in G \}$$

è un sottocampo di F, detto **campo fisso** di G in F.

#### Dimostrazione.

2. Siano  $a, b \in \text{Fix}_F(G)$ . Allora per  $\varphi \in G$ 

$$\varphi(a-b)=\varphi(a)-\varphi(b)=a-b$$
e se  $b\neq 0$  
$$\varphi(ab^{-1})=\varphi(a)\varphi(b)^{-1}=ab^{-1}$$
quindi  $a-b,ab^{-1}\in {\rm Fix}_F(G).$ 

19.2. Lemma

Dati due campi K, F consideriamo lo spazio vettoriale  $K^F$  su K di tutte le applicazioni  $F \xrightarrow{\varphi} K$  con l'addizione di applicazioni e la moltiplicazione per uno scalare

$$k \cdot \varphi : F \to K, x \mapsto k\varphi(x)$$

Gli omomorfismi  $F \to K$  formano un insieme linearmente indipendente in  $K^F$ .

#### Dimostrazione.

Supponiamo che esistano n omomorfismi distinti  $\varphi_1, \ldots, \varphi_n : F \to K$  che sono linearmente dipendenti su K e scegliamo n minimo. Allora  $n \geq 2$  e possiamo supporre  $\varphi_1 = \sum_{i=2}^n k_i \varphi_i$  con  $k_2, \ldots, k_n \in K$  e  $k_2 \neq 0$ . Per  $a, x \in F$  arbitrari si ha

$$\sum_{i=2}^{n} k_i \varphi_i(a) \varphi_i(x) = \sum_{i=2}^{n} k_i \varphi_i(ax) = \varphi_1(ax) = \varphi_1(a) \varphi_1(x) = \varphi_1(a) \sum_{i=2}^{n} k_i \varphi_i(x)$$

Quindi  $\sum_{i=2}^{n} k_i(\varphi_i(a) - \varphi_1(a))\varphi(x) = 0$  e poiché  $x \in F$  era arbitrario

$$\sum_{i=2}^{n} k_i \underbrace{(\varphi_i(a) - \varphi_1(a))}_{K} \varphi = 0$$

Per la minimalità di n, sappiamo che  $\varphi_2, \ldots, \varphi_n$  sono linearmente indipendenti, quindi  $k_i(\varphi_i(a) - \varphi_1(a)) = 0$  per ogni  $1 < i \le n$ . In particolare  $\varphi_2(a) = \varphi_1(a)$  con  $a \in F$  arbitrario, perciò  $\varphi_1 = \varphi_2$ 

# 19.3. Lemma di Dedekind

Siano K, F due campi e siano  $\varphi_1, \ldots, \varphi_n : F \to K$  omomorfismi distinti. Allora

$$L = \{ a \in F \mid \varphi_1(a) = \varphi_2(a) = \ldots = \varphi_n(a) \}$$

è un sottocampo di F con  $[F:L] \ge n$ .

#### Dimostrazione.

Supponiamo che esista una L-base  $\{a_1, \ldots, a_r\}$  di F con r < n. Consideriamo la matrice "orizzontale"

$$A = \begin{pmatrix} \varphi_1(a_1) & \varphi_2(a_1) & \cdots & \varphi_n(a_1) \\ \varphi_1(a_2) & \varphi_2(a_2) & \cdots & \varphi_n(a_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(a_r) & \varphi_2(a_r) & \cdots & \varphi_n(a_r) \end{pmatrix} \in \mathcal{M}_{r \times n}(K)$$

con l'applicazione lineare  $K^n \to K^r, x \mapsto Ax$  che non può essere iniettiva.

Sia dunque 
$$\binom{k_1}{\vdots}$$
  $\in K^n \setminus \{0\}$  un elemento del nucleo. Abbiamo  $A \binom{k_1}{\vdots} = 0$ ,

dunque per ogni 
$$1 \le k \le r$$
  $\sum_{i=1}^{n} k_i \varphi_i(a_k) = 0.$ 

Per  $a \in F$  arbitrario esistono  $l_1, \dots, l_r \in L$  tali che  $a = \sum_{k=1}^r l_k a_k$ , perciò

$$\sum_{i=1}^{n} k_i \varphi_i(a) = \sum_{i=1}^{n} k_i \varphi_i \left( \sum_{k=1}^{r} l_k a_k \right)$$

$$= \sum_{i,k} k_i \varphi_i(l_k a_k) = \sum_{i,k} k_i \underbrace{\varphi_i(l_k)}_{=\varphi_1(l_k)} \varphi_i(a_k)$$

$$= \sum_{k=1}^{r} \varphi_i(l_k) \underbrace{\sum_{i=1}^{n} k_i \varphi_i(a_k)}_{=0} = 0$$

Quindi  $\sum_{i=1}^{n} k_i \varphi_i = 0$ , ma non tutti i  $k_i$  sono nulli  $\boldsymbol{\ell}$  (19.2)

# 19.4. Lemma e definizione

Sia F un campo e  $G \leq \operatorname{Aut} F$  un sottogruppo finito. L'applicazione

$$\tau: F \to F, a \mapsto \sum_{\varphi \in G} \varphi(a)$$

è detta **traccia** di G in F e soddisfa im  $\tau = \operatorname{Fix}_F(G)$ 

#### Dimostrazione.

Sia  $G = \{\varphi_1, \ldots, \varphi_n\}$ 

"
$$\subseteq$$
" : Sia  $1 \le i \le n$ 

"\(\text{\text{"}}\)": Per 19.2 si ha che  $\tau = \varphi_1 + \ldots + \varphi_n \neq 0$  quindi esiste  $a \in F$  con  $\tau(a) \neq 0$ . Sia  $b \in \operatorname{Fix}_F(G)$ . Allora anche  $c = b\tau(a)^{-1} \in \operatorname{Fix}_F(G)$  e si ha

$$b = c\tau(a) = \sum_{i=1}^{n} c\varphi_i(a) = \sum_{i=1}^{n} \varphi_i(c)\varphi_i(a) = \sum_{i=1}^{n} \varphi_i(ca) = \tau(ca) \in \operatorname{im} \tau$$

# 19.5. Teorema di Artin

Sia F un campo e sia  $G \leq \operatorname{Aut} F$  un sottogruppo finito. Allora  $[F : \operatorname{Fix}_F(G)] = |G|$ 

#### Dimostrazione.

Poniamo  $K = \operatorname{Fix}_F(G)$ , n = |G| e  $G = \{\varphi_1 = \operatorname{id}_G, \varphi_2, \dots, \varphi_n\}$ . Si noti che  $\operatorname{Fix}_F(G) = \{a \in F \mid \varphi_1(a) = \varphi_2(a) = \dots = \varphi_n(a)\}$ , perciò

 $[F:K] \ge n$  per il Lemma di Dedekind.

Supponiamo che esista un insieme K-linearmente indipendente  $\{a_1, \ldots, a_{n+1}\} \subset F$ . La matrice

$$A = \begin{pmatrix} \varphi_1^{-1}(a_1) & \varphi_1^{-1}(a_2) & \cdots & \varphi_1^{-1}(a_{n+1}) \\ \varphi_2^{-1}(a_1) & \varphi_2^{-1}(a_2) & \cdots & \varphi_1^{-1}(a_{n+1}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_n^{-1}(a_1) & \varphi_n^{-1}(a_2) & \cdots & \varphi_n^{-1}(a_{n+1}) \end{pmatrix} \in \mathcal{M}_{n \times (n+1)}(F)$$

definisce un'applicazione lineare non iniettiva  $F^{n+1} \to F^n, x \mapsto Ax$ 

$$\operatorname{con}\begin{pmatrix}b_1\\\vdots\\b_{n+1}\end{pmatrix}\in F^{n+1}\smallsetminus\{0\} \text{ nel nucleo. Dunque per ogni }1\leq k\leq n \qquad \sum_{i=1}^{n+1}\varphi_k^{-1}(a_i)b_i=0.$$

Sia  $x \in F$  arbitrario, allora

$$\sum_{i=1}^{n+1} \underbrace{\tau(xb_i)}_{K} a_i = \sum_{i=1}^{n+1} (\varphi_1(xb_i) + \dots + \varphi_n(xb_i)) a_i$$

$$= \sum_{i=1}^{n+1} (\varphi_1(xb_i) \varphi_1 \varphi_1^{-1}(a_i) + \dots + \varphi_n(xb_i) \varphi_n \varphi_n^{-1}(a_i))$$

$$= \sum_{i=1}^{n+1} \sum_{k=1}^{n} \varphi_k(xb_i \cdot \varphi_k^{-1}(a_i))$$

$$= \sum_{k=1}^{n} \varphi_k \left( x \cdot \sum_{i=1}^{n+1} b_i \varphi_k^{-1}(a_i) \right) = 0$$

Per ipotesi segue che 
$$\tau(xb_i) = 0$$
 per ogni  $x \in F$  e  $\leq i \leq n+1$ .  
Scegliendo  $i$  con  $b_i \neq 0$  otteniamo  $\tau(x) = \tau(\underbrace{xb_i^{-1}}_{x' \in F} b_i) = 0$ , perciò  $\tau = 0$ .

# 19.6. Lemma e definizione

Sia  $K \subset F$  un'estensione di campi. Allora l'insieme

$$\operatorname{Gal}(F/K) = \{ \varphi \in \operatorname{Aut} F \mid \varphi(a) = a \text{ per ogni } a \in K \} = \{ \varphi \in \operatorname{Aut} F \mid \varphi_{|_K} = \operatorname{id}_K \}$$

è un sottogruppo di Aut F, detto **gruppo di Galois** di F su K.

#### Osservazioni

- 1. Se  $K \subset L \subset F$ , allora  $Gal(F/L) \leq Gal(F/K)$
- 2. Per ogni estensione finita  $K \subset F$  si ha

$$|\operatorname{Gal}(F/K)|$$
 divide  $[F:K]$ 

#### Dimostrazione di (2).

Siano G := Gal(F/K), n := [F : K]

Supponiamo che  $\varphi_1, \ldots, \varphi_{n+1}$  siano automorfismi distinti in G. Allora avremmo

$$K \subset L = \{a \in F \mid \varphi_1(a) = \ldots = \varphi_{n+1}(a)\} \subset F$$

con  $[F:L] \ge n+1$  per 19.3

Dunque  $|G| \le n$  e per  $K \subset \text{Fix}_F(G) \subset F$  vediamo con 19.5 che  $|G| = [F : \text{Fix}_F(G)] \mid n$ .

# 19.7. Esempi

- 1. Ogni automorfismo di F fissa gli elementi del sottocampo fondamentale  $\mathcal{P}$  (poiché fissa  $1_F$ ), perciò  $Gal(F/\mathcal{P}) = Aut F$
- 2. Sia  $d \in \mathbb{Z} \setminus \{0,1\}$  prodotto di primi distinti e sia  $F = \mathbb{Q}(\sqrt{d})$ . Allora  $\operatorname{Gal}(F/\mathbb{Q}) = \operatorname{Aut} F$  è un gruppo di ordine  $2 = [F : \mathbb{Q}]$ . Infatti ogni  $\varphi \in \operatorname{Aut} F$  fissa gli elementi di  $\mathbb{Q}$  e soddisfa  $\varphi(\sqrt{d})^2 = \varphi(d) = d$ , perciò  $\varphi(\sqrt{d}) = \pm \sqrt{d}$ , e poiché gli elementi di F sono di forma  $x = a + b\sqrt{d}$  con  $a, b \in \mathbb{Q}$ , si ha  $\varphi(x) = a + b\varphi(\sqrt{d})$ . Dunque

$$\varphi = \mathrm{id}_F$$
 oppure  $\varphi : F \to F, a + b\sqrt{d} \mapsto a - b\sqrt{d}$ 

3. Sia  $F = \mathbb{Q}(\sqrt[3]{2})$ . Allora  $[F : \mathbb{Q}] = 3$  e  $Gal(F/\mathbb{Q}) = Aut F = \{id_F\}$ . Infatti per  $\alpha = \sqrt[3]{2}$  si ha che ogni elemento di F è di forma  $x = a + b\alpha + c\alpha^2$  con  $a, b, c \in \mathbb{Q}$  e  $\varphi(x) = a + b\varphi(\alpha) + c\varphi(\alpha)^2$ , perciò  $\varphi$  è determinato dall'elemento  $\varphi(\alpha)$  e  $\varphi(\alpha)^3 = \varphi(2) = 2$ . Dunque  $\varphi(\alpha) \in F = \mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$  è una terza radice di 2, quindi  $\varphi(\alpha) = \sqrt[3]{2} = \alpha$ . Concludiamo  $\varphi = \mathrm{id}_F$ .

Abbiamo quindi

$$\mathbb{Q} \subset F \xrightarrow{} G = \operatorname{Gal}(F/\mathbb{Q}) = \{ \operatorname{id}_F \} \xrightarrow{\mathbb{Q}} \operatorname{Fix}_F(G) = F$$

# 19.8. Teorema

Sia F un campo e sia  $G \leq \operatorname{Aut} F$  un sottogruppo finito. Allora  $\operatorname{Gal}(F/\operatorname{Fix}_F(G)) = G$ 

#### Dimostrazione.

Sia 
$$K = \text{Fix}_F(G), n = |G| \in G = \{\varphi_1 = \text{id}_F, \dots, \varphi_n\}. \text{ Per } 19.5 \ [F : K] = n.$$

"⊆" : Supponiamo esista un  $\varphi \in \operatorname{Gal}(F/K)$  e  $\varphi \notin G$ . Allora avremmo un campo intermedio

$$K \subset L = \{ a \in F \mid \varphi_1(a) = \ldots = \varphi_n(a) = \varphi(a) \} \subset F$$

e per 19.3 avremmo che  $[F:L] \ge n+1$ 

#### Schema da tenere a mente

$$G \leq \operatorname{Aut} F \xrightarrow{K} = \operatorname{Fix}_F(G) \subset F \xrightarrow{19.8} \operatorname{Gal}(F/K) = G$$
 
$$K \subset F \xrightarrow{G} \operatorname{Gal}(F/K) \leq \operatorname{Aut} F \xrightarrow{\operatorname{se} G \ \text{e} \ \operatorname{finito}}_{19.7.(3)} K \underset{\text{in generale}}{\subset}_{F} \operatorname{Fix}_F(G) \subset F$$

# 20. Estensioni di Galois

# 20.1. Teorema

Per un'estensione di campi  $K \subset F$  sono equivalenti i seguenti enunciati:

- 1. Esiste un sottogruppo finito  $G \leq \operatorname{Aut} F$  tale che  $K = \operatorname{Fix}_F(G)$
- 2.  $K \subset F$  è un'estensione finita tale che  $K = \text{Fix}_F(\text{Gal}(F/K))$
- 3.  $K \subset F$  è un'estensione finita tale che  $[F:K] = |\operatorname{Gal}(F/K)|$

Se  $K \subset F$  soddisfa (1) – (3), diciamo che  $K \subset F$  è un'estensione di Galois

#### Dimostrazione.

```
"(1) \Rightarrow (2), (3)": Per 19.8 sappiamo che Gal(F/K) = G e [F : K] = |G| per 19.5
```

"(2)  $\Rightarrow$  (1)": Per l'Osservazione in 19.6  $\operatorname{Gal}(F/K)$  è finito

"(3)  $\Rightarrow$  (2)": Sia  $G = \operatorname{Gal}(F/K)$ . Sappiamo che  $K \subset L := \operatorname{Fix}_F(G) \subset F$  è un campo intermedio con [F:L] = |G| per 19.5.

Segue che [F:L] = [F:K], perciò [L:K] = 1 e K = L

# 20.2. Esempi

- 1.  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{d})$ , dove d'è prodotto di primi distinti, è un'estensione di Galois
- 2.  $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$  non è un'estensione di Galois
- 3. Se F è un campo finito e  $\mathcal{P}$  il suo sottocampo fondamentale, allora  $\mathcal{P} \subset F$  è un'estensione di Galois con  $\operatorname{Gal}(F/\mathcal{P}) = \operatorname{Aut} F$  generato dall'omomorfismo di Frobenius. Infatti, se  $p = \operatorname{char} F$  e  $\varphi : F \to F, x \mapsto x^p$ , allora  $G = \langle \varphi \rangle \leq \operatorname{Aut} F \leq \operatorname{S}(F)$  è finito. Verifichiamo che  $\mathcal{P} = \operatorname{Fix}_F(G)$ : Abbiamo  $\mathcal{P} \subset \operatorname{Fix}_F(G) \subset \{a \in F \mid a \text{ è zero di } x^p x\} = \mathcal{P}$  Perciò  $\mathcal{P} \subset F$  è un'estensione di Galois con  $\langle \varphi \rangle = \operatorname{Gal}(F/\mathcal{P}) = \operatorname{Aut} F$

# 20.3. Teorema fondamentale della teoria di Galois

Siano  $K \subset F$  un'estensione di Galois con  $G = \operatorname{Gal}(F/K)$ ,  $\mathcal{L}$  l'insieme dei campi intermedi  $K \subset L \subset F$ ,  $\mathcal{H}$  l'insieme dei sottogruppi di G. Le applicazioni

$$\operatorname{Gal}: \mathcal{L} \to \mathcal{H}, L \mapsto \operatorname{Gal}(F/L)$$

$$\operatorname{Fix}:\mathcal{H}\to\mathcal{L}, H\mapsto \operatorname{Fix}_F(H)$$

Sono corrispondenze biunivoche mutualmente inverse che invertono l'ordine dato dall'inclusione " $\subseteq$ ".

Inoltre per ogni campo intermedio  $K \subset L \subset F$  si ha

- 1.  $L \subset F$  è un'estensione di Galois
- 2. Se H = Gal(F/L), allora [L:K] = [G:H]
- 3. Sono equivalenti i seguenti enunciati:
  - a)  $K \subset L$  è un'estensione di Galois
  - b)  $H \triangleleft G$
  - c)  $\varphi(L) \subset L$  per ogni  $\varphi \in G$

Se valgono (a) - (c), allora  $Gal(L/K) \cong G/H$ 

Riassumendo:

Galois di grado 
$$|G|$$
 $K \subset L \subset F$ 

di grado  $[G:H]$  Galois di grado  $H$ 
 $\Leftrightarrow H \lhd G$  dove  $H = \operatorname{Gal}(F/L)$ 
 $\Rightarrow \operatorname{Gal}(L/K) \cong G/H$ 

#### Dimostrazione.

Siano  $n := [F : K] = |G|, K = Fix_F(G).$ 

Sappiamo per 19.8 che

$$\mathcal{H} \xrightarrow{\operatorname{Fix}} \mathcal{L} \xrightarrow{\operatorname{Gal}} \mathcal{H}, H \longmapsto \operatorname{Fix}_F(H) \longmapsto \operatorname{Gal}(F/\operatorname{Fix}_F(H)) = H$$

coincide con l'identità su  $\mathcal{H}$ .

Consideriamo un campo intermedio  $K \subset L \subset F$  e H := Gal(F/L).

$$K \subset L \subset L' := \operatorname{Fix}_F(H) \subset F$$

Vogliamo mostrare L = L'. Basta verificare [L' : K] = [L : K], ovvero " $\leq$ ".

#### CAPITOLO 20. ESTENSIONI DI GALOIS

(i) 
$$[L':K] = \frac{[F:K]}{[F:L']} = \frac{|G|}{|H|} = [G:H] = r$$

(ii) Se  $g, \tilde{g} \in G$ , allora

$$gH = \tilde{g}H \Leftrightarrow g^{-1}\tilde{g} \in H \Leftrightarrow g^{-1}\tilde{g}(a) = a$$
 per ogni $a \in L \Leftrightarrow \tilde{g}(a) = g(a)$  per ogni $a \in L$ 

- (iii) Se  $G/H = \{g_1H, \dots, g_rH\}$  con  $g_1 = \mathrm{id}_F, g_2, \dots, g_r \in G$ , allora  $\varphi_i := g_i|_L : L \to F$ , per  $1 \le i \le r$  sono r omomorfismi distinti per (ii)
- (iv)  $K = \{a \in L \mid \varphi_1^a(a) = \dots = \varphi_r(a)\} \subset L$ " $\subset$ ":  $\checkmark$

"⊇" : Sia  $a \in L$  con  $\varphi_1(a) = \ldots = \varphi_r(a)$  e sia  $g \in G$ . Allora  $gH = g_iH$  per un  $1 \le i \le r$  e per (ii) abbiamo  $g(a) = g_i(a) = \varphi_i(a) = \varphi_1(a) = a$ . Dunque  $a \in \text{Fix}_F(G) = K$ 

(v) Concludiamo da 19.3 che  $[L:K] \geq r = [L':K]$ 

Perciò  $L = L' = \text{Fix}_F(H)$  e abbiamo verificato (1) e (2).

Inoltre

$$\mathcal{L} \xrightarrow{\operatorname{Gal}} \mathcal{H} \xrightarrow{\operatorname{Fix}} \mathcal{L}$$

$$L \mapsto H = \operatorname{Gal}(F/L) \mapsto \operatorname{Fix}_F(H) = L$$

è l'identità su  $\mathcal{L}$ .

Resta da dimostrare (3).

 $(b)\Leftrightarrow (c)$ : Sia  $\varphi\in G$ . Abbiamo un campo intermedio  $K\subset \varphi(L)\subset F$  con estensione di Galois

$$Gal(F/\varphi(L)) = \{ \psi \in Aut \ F \mid \psi(\varphi(a)) = \varphi(a) \text{ per ogni } a \in L \}$$
$$= \{ \psi \in Aut \ F \mid \varphi^{-1}\psi\varphi(a) = a \text{ per ogni } a \in L \}$$
$$= \{ \psi \in Aut \ F \mid \varphi^{-1}\psi\varphi \in Gal(F/L) = H \} = \varphi H \varphi^{-1}$$

Quindi

(\*) 
$$[F : \varphi(L)] = |\operatorname{Gal}(F/\varphi(L))| = |H| = [F : L]$$

Inoltre  $H \lhd G \Leftrightarrow \varphi H \varphi^{-1} = H \text{ per ogni } \varphi \in G$   $\Leftrightarrow \operatorname{Gal}(F/\varphi(L)) = H = \operatorname{Gal}(F/L) \text{ per ogni } \varphi \in G$   $\Leftrightarrow \varphi(L) = L \Leftrightarrow \varphi(L) \subseteq L$   $\grave{\text{b injettive}}$ 

Infatti se  $K\subset \varphi(L)\subset L\subset F$ , allora  $\varphi(L)=L$  per (\*) e il Lemma del Grado.

 $(a)\Rightarrow (c)$ : Sia  $r=[L:K]=\operatorname{Gal}(L/K)$  e siano  $\psi_1,\ldots,\psi_r$  gli omomorfismi distinti di  $\operatorname{Gal}(L/K)$ . Essi inducono r omomorfismi distinti  $\varphi_i:L\to L\subset F$ . Supponiamo che esista  $\varphi\in G$  tale che  $\varphi(L)\not\subset L$ . Allora  $\varphi_1,\ldots,\varphi_r,\varphi_{|_L}$  sono r+1 omomorfismi distinti con  $K=\{a\in L\mid a=\varphi_1(a)=\ldots=\varphi_r(a)=\varphi_{|_L}\}\subset L$ 

"⊆": ✓

"\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}}}}}}}}} \exetitinesetitinget{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}}}}}}}}}}}} \exetitinget{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texitile}}}}}}}}} \exetiting{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}}}}}}}}} \exetiting{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t

 $(c)\Rightarrow (a)$ : Ogni  $\varphi\in G$  induce un automorfismo  $\tilde{\varphi}=\varphi|_L\in \operatorname{Aut} L$  che appartiene a  $\operatorname{Gal}(L/K)$ . L'applicazione  $\nu:G\to\operatorname{Gal}(L/K), \varphi\mapsto \tilde{\varphi}$  è un omomorfismo di gruppi:

$$\nu(\varphi \circ \psi) = (\varphi \psi)_{\big|_L} = \varphi_{\big|_L} \circ \psi_{\big|_L} = \nu(\varphi) \circ \nu(\psi)$$

con nucleo  $\{\varphi \in G \mid \varphi|_L = \mathrm{id}_L\} = \mathrm{Gal}(F/L) = H.$ 

Perciò  $[G:H] = |\operatorname{im} \nu| \le |\operatorname{Gal}(L/K)|.$ 

Ma sappiamo che  $|\operatorname{Gal}(L/K)|$  divide [L:K] = [G:H].

Perciò  $[G:H] = | \text{im } \nu | = | \text{Gal}(L/K) | = [L:K].$ 

Dunque  $K \subset L$  è un'estensione di Galois e  $\nu$  è suriettivo, perciò  $G/H \cong \operatorname{Gal}(L/K)$ .

# 20.4. Calcolo del polinomio minimo

Siano  $K \subset F$  un'estensione di Galois e  $\alpha \in F$ . Sia  $G = \operatorname{Gal}(F/K)$  e siano  $\alpha_1, \ldots, \alpha_r \in F$  gli elementi distinti dell'insieme  $\{\psi(a) \mid \psi \in G\}$ . Allora  $f = (x - a_1) \cdot \ldots \cdot (x - a_r)$  è il polinomio minimo di  $\alpha$  su K. In particolare  $K \subset F$  è finita, normale e separabile.

#### Dimostrazione.

Sia  $h \in K[x]$  il polinomio minimo di  $\alpha$  su K.

 $\begin{array}{ccc}
(i) & f \in K[x] \\
\text{Mostriamo} & (ii) & f(\alpha) = 0 \\
(iii) \deg h = \deg f
\end{array} \right\} \Rightarrow h \mid f$ 

(i) Sia  $\varphi \in G$  e sia  $\tilde{\varphi} : F[x] \to F[x], \sum_{i=0}^n b_i x^i \mapsto \sum_{i=0}^n \varphi(b_i) x^i$ . Poiché  $\{\varphi(a_1), \dots, \varphi(a_r)\} = \{\varphi\psi(\alpha) \mid \psi \in G\} = \{a_1, \dots, a_r\}$  si ha

$$\tilde{\varphi}(f) = (x - \varphi(a_1)) \cdot \ldots \cdot (x - \varphi(a_r)) = f$$

e perciò i coefficienti di f appartengono a  $\operatorname{Fix}_F(G) = K$ , ovvero  $f \in K[x]$ 

(ii) 
$$\alpha = \mathrm{id}_F(\alpha) \in \{a_1, \ldots, a_r\}$$
 è zero di  $f$ 

(iii) Per (i) e (ii) sappiamo  $h \mid f$ , perciò  $\deg h \leq \deg f$ . Se  $h = \sum_{i=0}^{n} c_i x^i$ , allora per  $a_j = \psi(\alpha)$  abbiamo

$$h(a_j) = \sum_{i=0}^n c_i a_j^i = \sum_{i=0}^n \psi(c_i) \psi(\alpha)^i = \psi\left(\sum_{i=0}^n c_i \alpha^i\right) = \psi(h(\alpha)) = \psi(0) = 0$$

$$\underset{c_i \in K = \operatorname{Fix}_F(G)}{\text{poich\'e}}$$

Dunque h possiede almeno r zeri distinti, e  $\deg h \ge r = \deg f$ . Concludiamo  $\deg h = \deg f$  e h = f.

# 20.5. Teorema

Sono equivalenti i seguenti enunciati per un'estensione  $K \subset F$ 

- 1.  $K \subset F$  è un'estensione di Galois
- 2.  $K \subset F$  è finita, normale, separabile
- 3. F è il campo di riducibilità completa di un polinomio separabile su K

#### Dimostrazione.

- $(1) \Rightarrow (2)$ : Per 20.4.
- $(2) \Rightarrow (3)$ : Sappiamo che F è crc del polinomio  $f = f_1 \cdot \ldots \cdot f_n$  dove  $f_i$  è il polinomio minimo di  $\alpha_i$  e  $F = K(\alpha_1, \ldots, \alpha_n)$ , vedi 17.3.

Per ipotesi ogni  $f_i$  è separabile su K e perciò f è separabile su K.

 $(3) \Rightarrow (1)$ : Sia  $G = \operatorname{Gal}(F/K)$ . Dobbiamo verificare che  $K = \operatorname{Fix}_F(G)$ . Sappiamo che F è crc di di un polinomio separabile  $f \in K[x]$ .

Procediamo per induzione sul numero m di zeri di f in  $F \setminus K$ 

$$m = 0$$
:  $F = K$ ,  $Gal(F/K) = \{id_F\}$ ,  $Fix_F(G) = K$ 

 $\underline{m>0}$ : Sia  $\alpha\in F\smallsetminus K$  uno zero di f, e sia  $L=K(\alpha)$ . Allora

Sia  $H = Gal(F/L) \leq G$ .

Abbiamo  $\operatorname{Fix}_F(G) \subseteq \operatorname{Fix}_F(H) = L = K(\alpha)$  dove L ha K-base  $\{1, \alpha, \dots, \alpha^{n-1}\}$ . Sia adesso  $a \in \operatorname{Fix}_F(G)$ . Allora  $a = \sum_{i=0}^{n-1} k_i \alpha^i$  con  $k_0, \dots, k_{n-1} \in K$ .

Per ipotesi, l'estensione  $K \subset F$  è normale, quindi h è prodotto di n fattori lineari in F[x]. Inoltre h è divisore irriducibile del polinomio separabile f.

Dunque h possiede n zeri distinti  $\beta_1, \ldots, \beta_n \in F$ .

Notiamo che  $\alpha$  e  $\beta_j$  hanno lo stesso polinomio minimo h su K.

Per 17.4 esiste  $\varphi_j \in \operatorname{Aut} F$  tale che  $\varphi_j|_K = \operatorname{id}_K e \varphi_j(\alpha) = \beta_j$ .

Dunque esistono  $\varphi_1, \ldots, \varphi_n \in G$  tali che  $\varphi_j(\alpha) = \beta_j$  per  $1 \leq j \leq n$ .

Allora poiché  $a \in \text{Fix}_F(G)$ , si ha per ogni  $1 \le j \le n$ 

$$a = \varphi_j(a) = \varphi_j\left(\sum_{i=0}^{n-1} k_i \alpha^i\right) = \sum_{i=0}^{n-1} k_i \beta_j^i$$

In altre parole, il polinomio  $g = a - \sum_{i=0}^{n-1} k_i x^i \in F[x]$  ha n zeri distinti, ma ha grado < n. Perciò g = 0 e  $a = k_0 \in K$ .

# 20.6. Esempio

Siano p,q due primi distinti e sia  $\alpha=\sqrt{p}+\sqrt{q}$ . Allora  $f=x^4-2(p+q)x^2+(p-q)^2$  è il polinomio minimo di  $\alpha$  su  $\mathbb Q$ e  $\mathbb{Q} \subset F := \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{p}, \sqrt{q})$  è un'estensione di Galois di grado 4 con  $\mathbb{Q}$ -base  $\{1,\sqrt{p},\sqrt{q},\sqrt{pq}\}$ 

#### Dimostrazione.

Si verifica che  $f(\alpha) = 0$ , dunque il polinomio minimo h di  $\alpha$  su  $\mathbb{Q}$  divide  $f \in \mathbb{Q}(\alpha)$ :  $\mathbb{Q}$ ] = deg  $h \leq 4$ .

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\alpha)$$
grado 2

Mostriamo che  $\mathbb{Q}(\sqrt{p}) \subseteq \mathbb{Q}(\alpha)$ . Infatti:

$$\alpha^{2} = p + q + 2\sqrt{pq} = p + q + 2\sqrt{p}(\alpha - \sqrt{p}) = q - p + 2\sqrt{p}\alpha$$

Pertanto  $\sqrt{p} = \frac{\alpha^{-1}}{2}(\alpha^2 + p - q) \in \mathbb{Q}(\alpha)$ . Analogamente si vede che  $\sqrt{q} \in \mathbb{Q}(\alpha)$ . Perciò abbiamo

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\sqrt{p}, \sqrt{q}) \subset \mathbb{Q}(\alpha)$$

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\alpha)$$

Si noti che  $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$ . Altrimenti

$$\sqrt{q} = a + b\sqrt{p}$$
 con  $a, b \in \mathbb{Q}$  e  $b \neq 0$  (altrimenti  $\sqrt{q} \in \mathbb{Q}$ ) e  $a \neq 0$  (altrimenti  $\sqrt{pq} \in Q$ )

e 
$$q = a^2 + 2ab\sqrt{p} + b^2p$$
 e avremmo  $\sqrt{p} \in Q$ 

Dunque concludiamo che  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{p}, \sqrt{q}) = \mathbb{Q}(\alpha)$  è un'estensione di grado 4.

Ciò mostra che f è il polinomio minimo di  $\alpha$  su  $\mathbb{Q}$ . Inoltre gli elementi di

Aut  $F = \operatorname{Gal}(F/\mathbb{Q})$  sono determinati da  $\varphi(\sqrt{p})$  e  $\varphi(\sqrt{q})$  poiché ogni elemento di F è di forma  $a + b\sqrt{p} + c\sqrt{q} + d\sqrt{pq}$ . Sappiamo che  $\varphi(\sqrt{p}) = \pm \sqrt{p}$  e  $\varphi(\sqrt{q}) = \pm \sqrt{q}$  poiché  $(\varphi(\sqrt{p}))^2 = \varphi(p) = p$  e analogamente per q.

Segue che  $|\operatorname{Gal}(F/\mathbb{Q})| = 4 = [F : \mathbb{Q}] \in \mathbb{Q} \subset F$  è un'estensione di Galois.

| $\varphi$       | $\sqrt{p}$  | $\sqrt{q}$  | $\operatorname{Fix}_F(H), H = \langle \varphi \rangle$ | $\operatorname{ord} \varphi$ |
|-----------------|-------------|-------------|--------------------------------------------------------|------------------------------|
| $\mathrm{id}_F$ | $\sqrt{p}$  | $\sqrt{q}$  | F                                                      | 1                            |
| $\varphi_1$     | $-\sqrt{p}$ | $\sqrt{q}$  | $\mathbb{Q}(\sqrt{q}) =: L_1$                          | 2                            |
| $arphi_2$       | $\sqrt{p}$  | $-\sqrt{q}$ | $\mathbb{Q}(\sqrt{p}) =: L_2$                          | 2                            |
| $arphi_3$       | $-\sqrt{p}$ | $-\sqrt{q}$ | $\mathbb{Q}(\sqrt{pq}) =: L_3$                         | 2                            |

 $G \cong \mathcal{V}$  abeliano  $\Rightarrow H_i \triangleleft G$  per i = 1, 2, 3



 $\mathbb{Q} \subset L_i \subset F$ Galois  $G/H_i \cong \mathbb{Z}/2\mathbb{Z} \quad H_i \triangleleft G$ 

Calcoliamo il polinomio minimo di  $\alpha$  su  $L_i$ 

$$\{\varphi(\alpha) \mid \varphi \in \operatorname{Gal}(F/L_i) = H_i\}, H_i = \{\operatorname{id}_F, \varphi_i\}$$

$$\frac{i=1}{f_1} \{\alpha, -\sqrt{p} + \sqrt{q}\} 
f_1 = (x-\alpha)(x - (-\sqrt{p} + \sqrt{q})) 
= (x - \sqrt{p} - \sqrt{q})(x + \sqrt{p} - \sqrt{q}) 
= ((x - \sqrt{q}) - \sqrt{p})((x - \sqrt{q}) + \sqrt{p}) = x^2 - 2\sqrt{q}x + (q - p)$$

$$\underline{i=2} \{\alpha, \sqrt{p} - \sqrt{q}\}$$
$$f_2 = x^2 - 2\sqrt{p}x + (p-q)$$

$$\underline{i = 3} \{\alpha, -\alpha\}$$

$$f_3 = (x - \alpha)(x + \alpha) = x^2 - \alpha^2 = x^2 - (p + q) - 2\sqrt{pq}$$

# 20.7. Teorema dell'elemento primitivo

Per ogni estensione finita e separabile  $K\subset F$  esiste un elemento detto **primitivo**  $\alpha\in F$  tale che  $F=K(\alpha)$ 

# 21. Estensioni per radicali

L'equazione  $x^2 + px + q = 0$  possiede le soluzioni  $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$ . Formule simili esistono per le equazioni di grado 3 e 4. Per polinomi di grado  $n \ge 5$ ?

**Ipotesi generale**:  $n \in \mathbb{N}$  e K un campo la cui caratteristica non divide n

# 21.1. Radici n-sime dell'unità

Sia  $K_n$  il campo di riducibilità completa del polinomio  $f = x^n - 1$  su K. Gli zeri di f, detti **radici** n-sime dell'unità, formano un sottogruppo ciclico  $E_n(K)$  di  $(K_n \setminus \{0\}, \cdot)$  di ordine n.

#### Dimostrazione.

 $E_n(K) \leq (K_n \setminus \{0\}, \cdot)$  è ciclico (Esercizio). Inoltre  $\mathcal{D}f = nx^{n-1}$  non ha zeri in comune con con f. Perciò f ha n zeri distinti e  $E_n(K) \cong (\mathbb{Z}/n\mathbb{Z}, +)$ .

# 21.2. Radici n-sime di un elemento

Sia  $a \in K \setminus \{0\}$  e sia F il campo di riducibilità completa del polinomio  $f = x^n - a$  su K. Gli zeri di f sono detti **radici** n-sime di a.

- 1. F contiene il campo di riducibilità completa  $K_n$  di  $x^n 1$  su K.
- 2. Se  $E_n(K) = \{z_0 = 1, z_1, \dots, z_{n-1}\}$ , e  $\alpha$  è uno zero di f, allora  $\{\alpha, z_1\alpha, \dots, z_{n-1}\alpha\}$  sono le radici n-sime di a.
- 3.  $F = K_n(\alpha)$  e  $K \subset F$  è un'estensione di Galois.
- 4. Se K contiene tutte le radici n-sime dell'unità, allora  $F = K(\alpha)$  e  $\mathrm{Gal}(F/K)$  è ciclico.

#### Dimostrazione.

- 1. Come in 21.1 vediamo che f possiede n zeri distinti  $\alpha = \alpha_1, \ldots, \alpha_n$ . Allora  $1 = \alpha^{-1}\alpha_1, \ldots, \alpha^{-1}\alpha_n$  sono le n radici distinte dell'unità. Quindi  $K_n \subset F$
- 2. ✓

- 3. Per (1) e (2)  $F = K(z_0, \ldots, z_n, \alpha) = K_n(\alpha)$ . Inoltre F è crc del polinomio separabile f, perciò  $K \subset F$  è un'estensione di Galois (20.5)
- 4. Sia  $G = \operatorname{Gal}(F/K)$ . Per ogni  $\sigma \in G$  si ha  $(\sigma(\alpha))^n = \sigma(\alpha^n) = \sigma(a) = a$ , perciò  $\sigma(\alpha)$  è una radice n-sima di a e  $\sigma(\alpha)\alpha^{-1} \in \operatorname{E}_n(K)$ . Ciò permette di definire un'applicazione

$$\psi: G \longrightarrow \operatorname{E}_n(K)$$

$$\sigma \longmapsto \sigma(\alpha)\alpha^{-1}$$

 $\psi$  è un omomorfismo di gruppi: siano  $\sigma_1, \sigma_2 \in G$ 

$$\psi(\sigma_{1}) \cdot \psi(\sigma_{2}) = \sigma_{1}(\alpha)\alpha^{-1}\sigma_{2}(\alpha)\alpha^{-1}$$

$$= \sigma_{1}(\alpha)\sigma^{-1}\sigma_{1}(\sigma_{2}(\alpha)\alpha^{-1}) \qquad (*) \quad \sigma_{1}(\underbrace{\sigma_{2}(\alpha)\alpha^{-1}}) = \sigma_{2}(\alpha)\alpha^{-1}$$

$$= \sigma_{1}(\alpha\sigma_{2}(\alpha)\alpha^{-1})\alpha^{-1} \qquad \qquad \bigoplus_{Gal(F/K)} \bigoplus_{E_{n}(K)\subset K} \bigoplus_{E_{n}(K)\subset$$

 $\psi$  è iniettivo: Se  $\psi(\sigma) = e_{\mathbf{E}_n(K)} = 1_K$ , allora  $\sigma(\alpha) = \alpha$ . Poiché  $\sigma|_K = \mathrm{id}_K$  e  $F = K(\alpha)$ , segue  $\sigma = \mathrm{id}_F$ .

Concludiamo che  $G \cong \operatorname{im} \psi \leq \operatorname{E}_n(K)$  che è ciclico, quindi G è ciclico.

# 21.3. Radici primitive dell'unità

- 1. Le radici *n*-sime dell'unità che generano il gruppo ciclico  $E_n(K)$  si dicono **primitive**. Se z è una radice primitiva dell'unità, allora  $E_n(K) = \{z^m \mid m = 0, \dots, n-1\}$ .
- 2.  $K \subset K_n$  è un'estensione di Galois e  $Gal(K_n/K)$  è isomorfo a un sottogruppo di  $(\mathbb{Z}/n\mathbb{Z}^*,\cdot)$  ed è abeliano.

#### Dimostrazione.

1. 
$$E_n(K) \cong (\mathbb{Z}/n\mathbb{Z}^*, \cdot)$$

$$z^m \longmapsto [m]$$

$$e \operatorname{ord}(z^m) = \operatorname{ord}([m]) = \frac{n}{\operatorname{MCD}(m,n)}$$

$$quindi z^m \operatorname{primitivo} \Leftrightarrow \operatorname{ord}(z^m) = n \Leftrightarrow \operatorname{MCD}(m,n) = 1$$

2.  $K \subset K_n$  è di Galois poiché  $K_n$  è crc del polinomio separabile  $x^n - 1$ . Sia  $G = \operatorname{Gal}(K_n/K)$ . Se  $z \in K_n$  e  $\sigma \in G$ , allora  $\sigma(z^d) = \sigma(z)^d = 1 \Leftrightarrow z^d = 1$ 

П

Quindi z è una radice primitiva se e solo se lo è  $\sigma(z)$ .

Possiamo quindi definire un'applicazione a partire da una radice primitiva z

$$\psi := \psi_z : G \longrightarrow (\mathbb{Z}/n\mathbb{Z}^*, \cdot)$$

$$\sigma \longmapsto [m]$$

$$\operatorname{dove} \sigma(z) = z^m$$

(si rammenti che  $\sigma(z)$  è primitiva e perciò di forma  $z^m$  con MCD(m, n) = 1, e  $\mathbb{Z}/n\mathbb{Z} = \{[m] \mid MCD(m, n) = 1\}$ )

 $\psi$  è omomorfismo di gruppi:

Se  $\sigma_1, \sigma_2 \in G$  soddisfano  $\sigma_1(z) = z^{m_1}$  e  $\sigma_2(z) = z^{m_2}$ , allora  $(\sigma_1 \circ \sigma_2)(z) = \sigma_1(z^{m_2}) = z^{m_1 m_2}$ , perciò

$$\psi(\sigma_1 \circ \sigma_2) = [m_1 m_2] = [m_1] \cdot [m_2] = \psi(\sigma_1) \cdot \psi(\sigma_2)$$

 $\psi$  iniettiva:

Se  $\psi(\sigma) = [1]$ , allora  $\sigma(z) = z^m$  dove [m] = [1], ovvero m = qn + 1 per un  $q \in \mathbb{Z}$ . Perciò  $\sigma(z) = z^{qn+1} = z^{qn} \cdot z = z$ .

Poiché  $K_n = K(z)$  e  $\sigma|_K = \mathrm{id}_K$ , segue  $\sigma = \mathrm{id}_K$ .

Concludiamo che  $G \cong \operatorname{im} \psi \leq \mathbb{Z}/n\mathbb{Z}^*$  che è abeliano, quindi G è abeliano.

# 21.4. Osservazione

L'ipotesi generale all'inizio del capitolo può essere fatta senza perdita di generalità: se K è un campo la cui caratteristica p divide n, possiamo scrivere  $n = p^k m$  con MCD(p,m) = 1 e scrivere  $x^n - 1 = (x^m - 1)^{p^k}$  dove  $x^m - 1$  è separabile su K e si vede che  $E_n(K) = E_m(K)$  è un gruppo ciclico di ordine m.

D'ora in avanti assumiamo char K=0, anche se i risultati che seguono valgono per qualsiasi campo K.

# 21.5. Definizione

Un'estensione  $K \subset F$  è detta estensione per radicali se esiste una catena di campi intermedi

$$K = L_0 \subset L_1 \subset \ldots \subset L_n = F$$

tale che ogni  $L_i$  è di forma  $L_i = L_{i-1}(\alpha_i)$  dove  $\alpha_i$  è una radice  $n_i$ -sima di un elemento  $a_i \in L_{i-1}$ .

# 21.6. Osservazioni

- 1. In 21.5 possiamo sempre assumere che  $K \subset F$  sia un'estensione di Galois. Infatti, data un'estensione per radicali  $K \subset F$ , possiamo sempre trovare  $F \subset F'$  tale che  $K \subset F \subset F'$  è un'estensione per radicali e  $K \subset F'$  è di Galois. Si dimostra per induzione su n (vedi filo rosso).
- 2. Un'estensione per radicali  $K = L_0 \subset L_1 \subset \ldots \subset L_n = F$  che sia anche un'estensione di Galois da luogo a una catena di sottogruppi

$$\{\mathrm{id}_F\} = H_n \le \ldots \le H_2 \le H_1 \le G = \mathrm{Gal}(F/K)$$

dove  $H_i = \operatorname{Gal}(F/L_i)$ 

#### **Richiamo**

Un gruppo G è risolubile se possiede una catena di sottogruppi

$$\{e\} = H_n \le \dots H_2 \le H_1 \le H_0 = G$$

tale che

- 1.  $H_i \triangleleft H_{i-1}$
- 2.  $H_{i-1}/H_i$  è abeliano

per ogni  $1 \le i \le n$ .

Sappiamo:

- Se G è risolubile, allora lo è anche G/N per ogni  $N \triangleleft G$ .
- G è risolubile se e solo se esiste  $N \triangleleft G$  tale che N e G/N sono risolubili.

# 21.7. Lemma

- 1. Siano  $K \subset L \subset F$  tali che  $K \subset L$  e  $K \subset F$  sono estensioni di Galois. Se  $\operatorname{Gal}(F/K)$  è risolubile, lo è anche  $\operatorname{Gal}(L/K)$ .
- 2. Se  $K = L_0 \subset L_1 \subset \ldots \subset L_n = F$  è una catena di campi intermedi tale che  $L_{i-1} \subset L_i$  è un'estensione di Galois con  $\operatorname{Gal}(L_i/L_{i-1})$  risolubile per ogni  $1 \leq i \leq n$  e  $K \subset F$  è un'estensione di Galois, allora  $G = \operatorname{Gal}(F/K)$  è risolubile.

#### Dimostrazione.

Si rammenti che se  $K \subset F$  e  $K \subset L$  sono estensioni di Galois, allora

$$K \subset L \subset F$$
 $G/N \qquad N \triangleleft G$ 

# 21.8. Definizione

Dato un polinomio  $f \in K[x]$ , diciamo che l'equazione f(x) = 0 è **risolubile per** radicali se esiste un'estensione per radicali  $K \subset F$  tale che f è prodotto di fattori lineari in F[x]. Inoltre, se E è campo di riducibilità completa di f su K, poniamo Gal(f/K) := Gal(E/K) il **gruppo di Galois** di f su K.

#### 21.9. Teorema di Galois

Per un polinomio  $f \in K[x]$  sono equivalenti i seguenti enunciati:

- 1. L'equazione f(x) = 0 è risolubile per radicali
- 2. Gal(f/K) è un gruppo risolubile

#### Dimostrazione.

 $(1) \Rightarrow (2)$ :

Per 21.6 possiamo supporre che esista un'estensione di Galois  $K \subset F$  tale che

- (i)  $K \subset F$  è un'estensione per radicali
- (ii) f è prodotto di fattori lineari in F[x]

Si ha quindi una catena di campi intermedi

$$K = L_0 \subset L_1 \subset \ldots \subset L_m = F$$

di forma  $L_i = L_{i-1}(\alpha_i)$ , dove  $\alpha_i$  è radice  $n_i$ -sima di un elemento di  $L_{i-1}$ . Per (ii) F contiene un crc E di f su K. Poiché K è perfetto, f è separabile su K e

quindi  $K \subset E$  è un'estensione di Galois. Applicando 21.7(2) a  $K \subset E \subset F$ , basta mostrare che  $\operatorname{Gal}(F/K)$  è risolubile per concludere che  $\operatorname{Gal}(f/K) = \operatorname{Gal}(E/K)$  è risolubile. Procediamo per induzione su m.

m=0: K=F,  $Gal(F/K)=\{id_F\}$  è risolubile

 $\underline{m} > \underline{0}$ :  $K = L_0 \subset L_1 = K(\alpha_1) \subset L_2 \subset \ldots \subset L_m = F$  dove  $\alpha := \alpha_1$  è una radice  $n := n_1$ -esima di un elemento di K. Per ricondurci al caso considerato in 21.2, aggiungiamo a K le radici n-sime dell'unità. Sostituiamo quindi l'estensione  $K \subset F$  con  $K_n := K(z) \subset F(z) =: F'$  dove z è una radice primitiva n-sima dell'unità. Si noti che  $K \subset F'$  è un'estensione di Galois.

Infatti se F è crc del polinomio g su K, allora F' è crc di  $g(x^n-1)$ . Abbiamo

$$K \subset F \subset F'$$

Per 21.7(2) basta verificare che  $G = \operatorname{Gal}(F'/K)$  è risolubile. Dalla catena di campi intermedi

$$K = L_0 \subset L_1 \subset \ldots \subset L_m = F$$

otteniamo

$$K_n = K(z) = L_0(z) \subset L_1(z) \subset L_2(z) \subset \ldots \subset L_m(z) = F'$$

Poniamo  $L := L_1(z)$ . Per ipotesi induttiva  $H := \operatorname{Gal}(F'/L)$  è risolubile. Consideriamo

$$K \subset K_n \subset L = K_n(\alpha) \subset F'$$

$$21.2 \text{ di Galois} \text{ di Galois} \text{ } H$$

$$21.3 \text{ Gal}(K_n/K) \text{ } \text{Gal}(L/K_n) \text{ } \text{ abeliano} \text{ } \text{ ciclico}$$

Per 21.7(2) concludiamo che G è risolubile.

 $(2) \Rightarrow (1)$ : vedi filo rosso.

 $\neg$ 

# 22. Risolubilità del polinomio generale di grado n

Sia char K=0

# 22.1. Proposizione

Sia  $f \in K[x]$  un polinomio di grado n > 0. Allora Gal(f/K) è isomorfo ad un sottogruppo di  $S_n$ .

#### Dimostrazione.

 $\operatorname{Gal}(f/K) = \operatorname{Gal}(E/K)$  dove  $E = K(\alpha_1, \dots, \alpha_n)$  è un crc di f su K e  $\alpha_1, \dots, \alpha_n$  sono gli zeri di f in E.

Se  $\sigma \in \operatorname{Gal}(f/K)$  e  $f = \sum_{i=0}^{n} a_i x^i$ , allora

$$f(\sigma(\alpha_j)) = \sum_{\substack{i=0 \ K \\ \Rightarrow a_i = \sigma(a_i)}}^n a_i \ \sigma(\alpha_j)^i = \sigma\left(\sum_{i=0}^n \alpha_j^i\right) = \sigma(f(\alpha_j)) = 0$$

Dunque  $\sigma$  induce una permutazione degli zeri di f, e possiamo definire

$$\Psi: \operatorname{Gal}(f/K) \longrightarrow S_n$$

$$\sigma \longmapsto \sigma|_{\{\alpha_1, \dots, \alpha_n\}}$$

 $\Psi$  omomorfismo:

$$\Psi(\sigma\tau) = \sigma\tau|_{\{\alpha_1,\dots,\alpha_n\}} = \sigma|_{\{\alpha_1,\dots,\alpha_n\}} \circ \tau|_{\{\alpha_1,\dots,\alpha_n\}} = \Psi(\sigma) \circ \Psi(\tau)$$

Ψ iniettivo: Se  $\Psi(\sigma) = \sigma|_{\{\alpha_1,...,\alpha_n\}} = \mathrm{id}_{\{\alpha_1,...,\alpha_n\}}$  allora poiché  $\sigma|_K = \mathrm{id}_K$  e  $E = K(\alpha_1,...,\alpha_n)$  si ha  $\sigma = \mathrm{id}_E$ .

# 22.2. Corollario

Per qualsiasi polinomio non costante  $f \in K[x]$  di grado  $n \le 4$  l'equazione f(x) = 0 è risolubile per radicali.

#### Dimostrazione.

 $\operatorname{Gal}(f/K)$  è isomorfo a un sottogruppo di  $S_n$  con  $n \leq 4$  ed è quindi risolubile per quanto visto in 4.7, 4.8.

# 22.3. Esempi

- 1. L'equazione  $x^5 = 1$  è risolubile per radicali poiché  $Gal(x^n 1/K) = Gal(K_n/K)$  è abeliano (21.3)
- 2.  $f = x^5 10x^4 + 27x^3 18x^2 + 30x + 50 = (x 5)^2(x^3 + 2x + 2) \in \mathbb{Q}[x]$ L'equazione f(x) = 0 è risolubile per radicali poiché  $\operatorname{Gal}(f/\mathbb{Q}) = \operatorname{Gal}(x^3 + 2x + 2/\mathbb{Q})$  è risolubile per 22.2
- 3. Per il polinomio  $f=x^5-4x+2\in\mathbb{Q}[x]$  l'equazione f(x)=0 non è risolubile per radicali.



Quindi f ha tre zeri reali e due complessi  $\alpha$ ,  $\overline{\alpha}$ .

Dunque se E è il crc di f su  $\mathbb{Q}$ , abbiamo  $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset E$ . Perciò  $5 \mid |\operatorname{Gal}(f/\mathbb{Q})|$ . f polinomio minimo di  $\alpha$ 

Per il Teorema di Cauchy  $G := \operatorname{Gal}(f/\mathbb{Q})$  contiene un elemento di ordine 5. Inoltre contiene un elemento di ordine 2 dato dalla conjugazione.

Poiché  $G \leq S_5$  e contiene un elemento di ordine 5 e un elemento di ordine 2, concludiamo  $G = S_5$  (Esercizio). Dunque G non è risolubile (4.7, 4.8).

# 22.4. Definizione

1. Per  $n \in \mathbb{N}$  definiamo ricorsivamente

$$K[x_1, x_2] = K[x_1][x_2]$$
  
 $K[x_1, \dots, x_n] = K[x_1, \dots, x_{n-1}][x_n]$ 

l'anello dei polinomi  $R := K[x_1, \ldots, x_n]$  nelle variabili  $x_1, \ldots, x_n$ . I suoi elementi sono di forma

$$\sum_{\substack{(i_1,\dots,i_n)\in I\\I\subset\mathbb{N}_n^n\text{ finito}}}a_{(i_1,\dots,i_n)}x_1^{i_1}\cdot\dots\cdot x_n^{i_n}$$

- 2. Il campo delle funzioni razionali  $F = K(x_1, ..., x_n)$  è dato dagli elementi  $\frac{f}{g} = \frac{f(x_1, ..., x_n)}{g(x_1, ..., x_n)}, f, g \in K[x_1, ..., x_n]$  e  $g \neq 0$
- 3. Ogni permutazione  $\sigma \in S_n$  definisce un automorfismo  $\tilde{\sigma}: F \to F$  con

$$\tilde{\sigma}\left(\frac{f}{g}\right) = \tilde{\sigma}\left(\frac{f(x_1, \dots, x_n)}{g(x_1, \dots, x_n)}\right) = \frac{f(x_{\sigma(1)}, \dots, x_{\sigma(n)})}{g(x_{\sigma(1)}, \dots, x_{\sigma(n)})}$$

# 22.5. Esempio

$$n = 2: R = K[x, y], F = K(x, y), \sigma = \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\tilde{\sigma}\left(\frac{x + 2y}{x + y}\right) = \frac{y + 2x}{y + x} \qquad \tilde{\sigma}\left(\frac{xy}{x + y}\right) = \frac{xy}{x + y}$$

Possiamo quindi interpretare  $S_n$  come sottogruppo di Aut F e considerare  $L = \text{Fix}_F(S_n)$ . Gli elementi di L si dicono **funzioni razionali simmetriche** nelle variabili  $x_1, \ldots, x_n$ .

# 22.6. Definizione

I seguenti polinomi di  $R = K[x_1, \dots, x_n]$  sono detti funzioni simmetriche elementari nelle variabili  $x_1, \dots, x_n$ .

$$s_0 = 1$$
  
 $s_1 = x_1 + \ldots + x_n$   
 $s_2 = x_1 x_2 + x_1 x_3 + \ldots + x_{n-1} x_n = \sum_{i < j} x_i x_j$   
 $s_3 = \sum_{i < j < k} x_i x_j x_k$   
 $\vdots$   
 $s_n = x_1 \cdot \ldots \cdot x_n$ 

# 22.7. Proposizione

Sia 
$$f = (x - x_1) \cdot \ldots \cdot (x - x_n) \in F[x]$$

1. Newton

$$f = x^{n} - s_{1}x^{n-1} + s_{2}x^{n-2} - \dots + (-1)^{n}s_{n} = \sum_{i=0}^{n} (-1)^{i}s_{i}x^{n-i} \in L[x]$$

- 2.  $F = L(s_1, \ldots, s_n)$  e F è il campo di riducibilità completa di f su L
- 3.  $Gal(f/L) = S_n$

#### Dimostrazione.

1. Per induzione su n:

$$\underline{n=2}: f = (x-x_1)(x-x_2) = x^2 - (x_1 + x_2)x + x_1 x_2$$

$$\underline{n \to n+1}:$$

$$f = (x - x_1) \cdot \dots \cdot (x - x_n)(x - x_{n+1})$$

$$= \sum_{\substack{s_i \text{ elementari} \\ \text{is a propriability}}}^{n} (-1)^i s_i x^{n-i+1} - \sum_{i=0}^{n} (-1)^i s_i x^{n-i} x_{n+1}$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i=1}^n x_i x_{n+1}x^{n-1} - \dots$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i=1}^n x_i x_{n+1}x^{n-1} - \dots$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i=1}^n x_i x_{n+1}x^{n-1} - \dots$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i=1}^n x_i x_{n+1}x^{n-1} - \dots$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i = 1}^n x_i x_{n+1}x^{n-1} - \dots$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_{n+1}x^{n-1} - \dots$$

$$= x^{n+1} - (x_1 + \dots + x_n)x^n - x_{n+1}x^n + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_{i < j \le n} x_i x_j x^{n-1} + \sum_$$

2., 3. Poiché  $s_1, \ldots, s_n \in L$ , si ha  $K(s_1, \ldots, s_n) \subset L \subset F$ , dove  $L \subset F$  è un'estensione di Galois con  $Gal(F/L) = S_n$ , quindi [F:L] = n!.

D'altra parte possiamo considerare F come crc di f su  $K(s_1, \ldots, s_n)$ , perciò  $[F:K(s_1,\ldots,s_n)] \leq n!$  e  $K(s_1,\ldots,s_n) = L$  per il Lemma del Grado. Dunque  $\operatorname{Gal}(f/L) = \operatorname{Gal}(F/L) = S_n$ .

# 22.8. Teorema di Abel-Ruffini

Per il polinomio generale p di grado  $n \geq 5$  l'equazione p(x) = 0 non è risolubile per radicali. Più precisamente: se  $p = x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \in K[x]$  allora nell'anello  $K(a_1, \ldots, a_n)[x]$  si ha

- 1.  $Gal(p/K(a_1, ..., a_n)) = S_n$
- 2. p(x) = 0 non è risolubile per radicali su  $K(a_1, \ldots, a_n)$

#### Dimostrazione.

- (2) segue da (1) per il Teorema di Galois.
  - 1. Sia E il crc di p su  $K(a_1, \ldots, a_n)$  e siano  $\alpha_1, \ldots, \alpha_n \in E$  gli zeri di p. Allora in E[x] si ha

$$p = (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n) = \sum_{k=0}^{n} (-1)^k \tilde{s}_k x^{n-k}$$

dove  $\tilde{s}_1, \ldots, \tilde{s}_n$  sono le funzioni elementari simmetriche nelle variabili  $\alpha_1, \ldots, \alpha_n$ . Confrontando i coefficienti, vediamo che  $a_k = (-1)^k \tilde{s}_k$  per  $1 \leq k \leq n$ . Consideriamo l'isomorfismo di anelli

$$\varphi: R = K[x_1, \dots, x_n] \longrightarrow K[\alpha_1, \dots, \alpha_n], x_i \mapsto \alpha_i$$

si ha  $\varphi(s_k) = \tilde{s}_k$ , quindi  $\varphi((-1)^k s_k) = a_k$  per  $1 \le k \le n$  con la notazione di 22.7.  $\varphi$  induce un isomorfismo

$$\varphi': K[s_1,\ldots,s_n] \longrightarrow K[a_1,\ldots,a_n]$$

e perciò anche un isomorfismo di campi

$$\psi: L = K(s_1, \ldots, s_n) \longrightarrow K(a_1, \ldots, a_n)$$

e perciò anche un isomorfismo

$$\tilde{\psi}: L[x] \longrightarrow K(a_1, \dots, a_n)[x]$$

Si noti che nella notazione di 22.7  $\tilde{\psi}(f) = (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n) = p$ Abbiamo

Per 14.3, 14.4  $\psi$  può essere esteso a un isomorfismo  $F \cong E$ . Dunque  $\operatorname{Gal}(E/K(a_1,\ldots,a_n)) = \operatorname{Gal}(F/L) \cong S_n$ .

# **22.9.** Ancora sul caso $n \leq 4$

Sia  $f \in K[x]$  un polinomio non costante di grado  $n \le 4$  e sia E il suo crc su K con  $G := \operatorname{Gal}(f/K) = \operatorname{Gal}(E/K)$ .

In E[x] abbiamo  $f = (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n)$  e gli elementi di G corrispondono a permutazioni di  $\{\alpha_1, \ldots, \alpha_n\}$ . Identifichiamo G con un sottogruppo di  $S_n$ .

Poniamo  $\delta = \prod_{1 \le i < j \le n} \alpha_i - \alpha_j \in E$  e consideriamo il discriminante

$$\Delta = \delta^2 = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2 \in \operatorname{Fix}_F(G) = K$$

Si noti che  $\sigma(\delta) = \delta$  se e solo se  $\sigma \in A_n$  e perciò  $\delta \in K$  se e solo se  $G \leq A_n$ .

Caso n=2

$$f = x^2 + px + q = (x - \alpha_1)(x - \alpha_2)$$
 con

$$-p = \alpha_1 + \alpha_2 \qquad \delta = \alpha_1 - \alpha_2$$
$$q = \alpha_1 \alpha_2 \qquad \Delta = (\alpha_1 - \alpha_2) = p^2 - 4q$$

e abbiamo  $\{\alpha_1, \alpha_2\} = \{-\frac{p}{2} + \frac{\delta}{2}, -\frac{p}{2} - \frac{\delta}{2}\}$ 

Se  $\delta \in K$ , allora  $G = \{ id_E \}$ 

Se  $\delta \notin K$ , allora  $G = S_2$ 

#### Caso n=3

1. Possiamo ridurci al caso  $f = x^3 + px + q$ . Infatti se  $f(x) = x^3 + px + q$ , allora

$$f' = f(x - \frac{1}{3}a_1) = \dots = x^3 + (-a_1 + a_1)x^2 + \dots$$

quindi z è zero di  $f' = x^3 + px + q$  se e solo se  $z - \frac{1}{3}a_1$  è zero di f, perciò f e f' hanno lo stesso discriminante e lo stesso gruppo di Galois.

- 2.  $\Delta = -4p^2 27q^2$
- 3. Se f è prodotto di fattori lineari in K[x] allora E = K,  $G = \{id_E\}$
- 4. Se  $f = (x \alpha_1)g$  dove  $\alpha_1 \in K$  e g è irriducibile su K di grado 2, allora g (essendo separabile) ha due zeri distinti e E è crc di g, e |G| = [E : K] = 2 e  $G \cong S_2$

#### CAPITOLO 22. RISOLUBILITÀ DEL POLINOMIO GENERALE DI GRADO n

5. f è irriducibile su K. Allora

$$K \subset K(\alpha_1) \subset E$$
grado 3

quindi 
$$3 | |G| = [E : K].$$

Se  $\delta \in K$ , allora  $G \subseteq A_3$  e  $G = A_3$ 

Se  $\delta \not\in K$ , abbiamo anche  $K \subset K(\delta) \subset E$  con  $[K(\delta):K]=2$  poiché  $x^2-\Delta$  è polinomio minimo di  $\delta$  su K. Quindi anche  $2\mid [E:K]=|G|\leq 6$ . Concludiamo che |G|=6 e  $G=S_3$ .

(Vedi filo rosso per le formule esplicite ed il caso n = 4).