Markov Chain Monte Carlo

TP 2: Simulation de variables aléatoires continues. V.a. Exponentielle.

Théorie

Propriétés de fonction de repartitions.

Soit X une variable aléatoire réelle de fonction de répartition

$$F_X(x) = P(X \le x),$$

dont l'inverse généralisé (appelé quantile) est défini par

$$F^{-1}(u) = \{\inf x : F_X(x) \ge u\}.$$

Alors

$$F^{-1}(U)$$
 suit la loi de X .

Inversement, si F_X est continue,

alors

$$F_X(X)$$
 suit la loi $U([0,1])$.

Simulation de v.a. Exponentielle

• Nous souhaitons générer $X \sim Exp(\lambda)$. Dans ce cas,

$$F_X(x) = 1 - e^{-\lambda x}$$

alors que $F_X^{-1}(u) = -\frac{1}{\lambda}ln(1-u)$. Donc on établie l'algorithme suivant:

- Algorithme 5 de simulation d'une seule variable aléatoire exponentielle
 - function[X]=V_A_Exponentielle(λ)
 - \circ Générer U
 - $\circ \mathbf{Set} \ X = -\frac{1}{\lambda} ln(1-U)$
 - endfunction
- On applique l'Algorithme 5 N_{mc} fois pour générer N_{mc} réalisations de v.a. X

Travail à faire pour v.a. Exponentielle

- **Soient** $\lambda = 2, N_{mc} = 10000$
 - Simuler la v.a. Exponentielle
 - Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques $\mathbb{E}(X)=\frac{1}{\lambda},\quad \mathbb{V}ar(X)=\frac{1}{\lambda^2}$
 - Tracer sa function de repartition: $[a, b] = [0, 5], \Delta = 0.05, N_x = 100$
 - Tracer sa fonction de densité: $[a, b] = [0, 5], \Delta = 0.5, N_x = 100$
- **Soient** $\lambda = 100, N_{mc} = 10000$
 - Simuler la v.a. Exponentielle
 - Tracer sa function de repartition: $[a,b] = [0,0.07], \Delta = 0.0007, N_x = 100$
 - ullet Tracer sa fonction de densité: $[a,b]=[0,07], \Delta=0.0007, N_x=100$

Simulation de v.a. Gamma(α, β)

- Algorithme 6 de simulation d'une seule variable aléatoire $Gamma(\alpha,\beta)$
 - ullet On définit la v.a. Gamma X par la somme de $n=\alpha$ v.a.indépendantes Exponentielles Y_i :

$$X = \sum_{i=1}^{n} Y_i$$

- function[X]= V_A _Gamma (n, β)
- $\circ \operatorname{Simuler} Y = -\frac{1}{\beta}ln(1-U)$
- $\circ i = 1$
- \circ While i < n % on somme n v. a. exponentielles
- $\circ Y = Y \frac{1}{\beta} ln(1 U)$
- $\circ i = i + 1$
- o end
- \circ Set X = Y
- endfunction

Travail à faire pour v.a. Gamma

- **Soient** $\alpha = 9, \beta = 2, N_{mc} = 10000$
 - Simuler la v.a. Gamma($\alpha = 9, \beta = 2$)
 - ullet Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques $\mathbb{E}(X)=rac{lpha}{eta},\quad \mathbb{V}ar(X)=rac{lpha}{eta^2}$
 - Tracer sa function de repartition: $[a,b] = [0,15], \Delta = 1.5, N_x = 100$
 - Tracer sa fonction de densité: $[a,b] = [0,15], \Delta = 1.5, N_x = 100$
 - Simuler la v.a. Gamma($\alpha = 2, \beta = 1/2$)
 - Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques
 - Tracer sa function de repartition: $[a,b] = [0,15], \Delta = 1.5, N_x = 100$
 - ullet Tracer sa fonction de densité: $[a,b]=[0,15], \Delta=1.5, N_x=100$

Simulation de loi de Pareto (a, b)

$$f_X(x) = \frac{ab^a}{x^{a+1}} \mathbb{I}_{x \ge b}$$

- Calculer le fonction de repartition
- Inverser la fonction de repartition et simuler la variable de Pareto:
- Algorithme de simulation la v.a. de Pareto
 - function[X]= $V_A_Pareto(a, b)$
 - $\circ X = \frac{b}{U^{\frac{1}{a}}}$
 - endfunction

Travail à faire pour v.a. Pareto

- **Soient** $\alpha = 9, \beta = 2, N_{mc} = 10000$
 - Simuler la v.a. Pareto(a = 9, b = 2)
 - Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques $\mathbb{E}(X) = \frac{\alpha}{\beta}, \quad \mathbb{V}ar(X) = \frac{\alpha}{\beta^2}$
 - Tracer sa fonction de repartition: $[a_0, b_0] = [2, 12], \Delta = 0.1, N_x = 100$
 - ullet Tracer sa fonction de densité: $[a_0,b_0]=[2,12], \Delta=0.1, N_x=100$
 - Simuler la v.a. Pareto(a = 2, b = 1)
 - Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques
 - Tracer sa fonction de repartition: $[a_0, b_0] = [1, 11], \Delta = 0.1, N_x = 100$
 - \bullet Tracer sa fonction de densité: $[a_0,b_0]=[1,11], \Delta=0.1, N_x=100$

Simulation de v. a. "Triangulaire"

V. a. continue "Triangulaire" est définie par sa fonction de densité:

$$f_X(x) = \begin{cases} x, & 0 < x \le 1\\ 2 - x, & 1 < x \le 2 \end{cases}$$

Montrer que la fonction de repartition est

$$F_X(x) = \begin{cases} x^2/2, & 0 < \leq 1 \\ -(2-x)^2/2 + 1, & 1 < x \leq 2 \end{cases}$$

Justifier la simulation de cette v.a.

$$X = \begin{cases} \sqrt{2U}, & 0 \leqslant U < 1/2 \\ 2 - \sqrt{2(U-1)}, & 1/2 < U \leqslant 1 \end{cases}$$