Homework 5

Christophe Hunt February 28, 2017

Contents

1	Page 228: problem 1 1.1 Model to solve for long-term percentage	2 2
2	Page 232: problem 1	3
3	Page 240: problem 1	3
4	Page 240: problem 2	3

1 Page 228: problem 1

Consider a model for the long-term dining behavior of the students at College USA. It is found that 25% of the students who eat at the college's Grease Dining Hall return to eat there again, whereas those who eat at Sweet Dining Hall have a 93% return rate. These are the only two dining halls available on campus, and assume that all students eat at a one of these halls. Formulate a model to solve for the long-term percentage of students eating at each hall.

Table 1: Present - Next State for Dining

		NEXT STATE	
		Grease Dinning Hall	Sweet Dining Hall
PRESENT STATE	Grease Dining Hall	.25	.75
	Sweet Dining Hall	.7	.93

1.1 Model to solve for long-term percentage

$$Grease_{n+1} = .25 \ Grease_n + .7 \ Sweet_N$$

$$Sweet_{n+1} = .75 \ Grease_n + .93 \ Sweet_N$$

2 Page 232: problem 1

Consider a stereo with CD player, FM-AM radio tuner, speakers (dual) and power amplifier (PA) components, as displayed with the reliability. Determine the system's reliability. what assumptions are required in your model?

Figure 1: image.

Compenent Reliability

$$R_{s1} = 0.95$$

 $R_{s2} = 0.98 + .97 - (.98 * .97) = 0.9994$
 $R_{s3} = .99 + .99 - (.99 * .99) = 0.9999$

Entire system reliability:

$$R_{s1,s2,s3} = .95 * 0.9994 * 0.9999 = 0.9493351$$

3 Page 240: problem 1

4 Page 240: problem 2