

Lesson 1.2 - Solubility

Generated Study Guide

Subject: science Grade Level: 11th Format: outline Generated: September 11, 2025

AICE Marine Science Study Guide: Water Solubility

Grade 11 | Lesson 1.2 | Intermediate Level

@ LEARNING OBJECTIVES

By the end of this study session, you will be able to:

- 1. **Explain** the molecular basis of water's solvent properties
- 2. **Identify** factors that affect solubility in marine environments
- 3. **Analyze** how salinity impacts marine organism distribution
- 4. Calculate basic concentration and solubility problems
- 5. Evaluate the role of dissolved substances in ocean chemistry

🔲 CONTENT PRIORITIZATION GUIDE

ESSENTIAL - Will definitely be on exam

IMPORTANT - Likely to be tested

SUPPORTING - Helpful context

I. WATER AS THE UNIVERSAL SOLVENT

A. Molecular Properties of Water

1. Polarity and Hydrogen Bonding

- Water molecule structure: H₂O with bent geometry
- Polar covalent bonds: Oxygen more electronegative than hydrogen
- **Dipole formation**: Partial negative (δ -) on oxygen, partial positive (δ +) on hydrogens

KEY TERM BOX:

Polarity: Uneven distribution of electrical charge in a molecule, creating positive and negative regions

2. Hydrogen Bond Network

- **Definition**: Weak attraction between H⁺ of one molecule and lone pair electrons of another
- Strength: ~10% of covalent bond strength
- Marine significance: Enables dissolution of ionic and polar compounds

Quick Check: Why is water called the "universal solvent"? What molecular property makes this possible?

B. Solubility Principles

1. "Like Dissolves Like" Rule

- Polar substances dissolve in polar solvents (water)
- Nonpolar substances dissolve in nonpolar solvents
- **lonic compounds** dissociate in polar solvents

2. Hydration Process

- **Ion-dipole interactions**: Water molecules surround dissolved ions
- **Hydration shell formation**: Multiple water layers around each ion
- **Energy considerations**: Lattice energy vs. hydration energy

II. FACTORS AFFECTING SOLUBILITY IN MARINE SYSTEMS

A. Temperature Effects

1. Solubility-Temperature Relationships

- **Most solids**: Solubility ↑ as temperature ↑
- **Gases**: Solubility ↓ as temperature ↑ (inverse relationship)
- Marine application: Cold water holds more dissolved O₂

CONNECTION POINT: This explains why polar waters are more oxygen-rich than tropical waters!

2. Thermodynamic Principles

- Endothermic dissolution: Heat required, solubility increases with temperature
- Exothermic dissolution: Heat released, solubility decreases with temperature

B. Pressure Effects

1. Henry's Law for Gases

- **Formula**: C = kP (where C = concentration, k = Henry's constant, P = pressure)
- Marine application: Deep ocean waters under high pressure dissolve more gases
- Decompression effects: Gas bubbles form when pressure decreases

2. Solid Solubility and Pressure

- Generally minimal effect on solid solubility
- Exception: Some salts show slight pressure dependence

C. pH and Chemical Environment

1. Acid-Base Effects

- pH influences solubility of many compounds
- Carbonate system: CO₂ + H₂O = H₂CO₃ = HCO₃⁻ + H⁺
- Ocean acidification: Affects shell-forming organisms

Quick Check: How does ocean acidification affect the solubility of calcium carbonate in seawater?

III. SEAWATER COMPOSITION AND SALINITY

A. Major Dissolved Components

1. Principal lons (by concentration)

- 1. Chloride (Cl⁻): 55.0% of dissolved salts
- 2. Sodium (Na+): 30.6% of dissolved salts
- 3. Sulfate (SO₄²⁻): 7.7% of dissolved salts
- 4. Magnesium (Mg²⁺): 3.7% of dissolved salts
- 5. Calcium (Ca²⁺): 1.2% of dissolved salts
- 6. Potassium (K+): 1.1% of dissolved salts

KEY TERM BOX:

Salinity: Total amount of dissolved salts in seawater, typically expressed in parts per thousand (‰) or practical salinity units (PSU)

2. Trace Elements and Nutrients

- Nitrogen compounds: NO₃-, NO₂-, NH₄+

- Phosphorus: PO₄3-

- Silicon: SiO₄⁴-

- Dissolved gases: O₂, CO₂, N₂

B. Salinity Variations

1. Global Patterns

Average ocean salinity: 35% (35 PSU)

- Range: 32-37‰ in open ocean

- Factors affecting salinity:

- Evaporation (increases salinity)
- Precipitation (decreases salinity)
- River input (decreases salinity)
- Ice formation/melting

2. Measurement Methods

- Conductivity: Most common modern method

- Refractometry: Measures light refraction

- Titration: Chemical analysis method

IV. BIOLOGICAL IMPLICATIONS OF SOLUBILITY

A. Osmoregulation in Marine Organisms

1. Osmotic Challenges

- Hyperosmotic environment: Seawater has higher solute concentration than body fluids
- Water loss tendency: Organisms tend to lose water to environment
- Salt gain: Tendency to accumulate excess salts

KEY TERM BOX:

Osmoregulation: Process by which organisms maintain water and salt balance in their bodies

2. Adaptation Strategies

- Bony fish: Active salt excretion through gills, concentrated urine
- Sharks: Urea retention to match seawater osmolarity
- Marine invertebrates: Often isosmotic with seawater

B. Nutrient Availability and Distribution

1. Dissolved Nutrients

- **Limiting factors**: N, P, Si often limit primary productivity
- Solubility controls: Affect nutrient availability
- Upwelling importance: Brings dissolved nutrients to surface

2. Oxygen Distribution

- Surface saturation: High O₂ from atmospheric exchange and photosynthesis
- Oxygen minimum zones: Mid-water regions with low dissolved O₂
- Temperature effects: Cold water holds more dissolved O₂

CONNECTION POINT: Remember that oxygen solubility decreases with temperature - this creates vertical oxygen gradients in the ocean!

V. CALCULATIONS AND PROBLEM-SOLVING

A. Concentration Units

1. Common Units in Marine Science

- Parts per thousand (‰): g solute/kg solution × 1000
- Molarity (M): moles solute/L solution
- Parts per million (ppm): mg solute/L solution
- Percentage by mass: (g solute/g solution) × 100

2. Conversion Formulas

- ppm to molarity: ppm ÷ (molecular weight × 1000) = M

Quick Check: If seawater has a salinity of 35%, how many grams of salt are dissolved in 1 kg of seawater?

B. Solubility Calculations -

1. Solubility Product (Ksp)

- For ionic compounds: Ksp = [A+]a[B-]b
- Precipitation prediction: Q vs Ksp comparison
- Marine applications: Carbonate shell formation

2. Henry's Law Applications -

- Gas solubility: $C = kH \times P$
- **Temperature corrections**: kH varies with temperature
- Depth calculations: Pressure increases ~1 atm per 10m depth

\(\infty \) EXAM PREPARATION CHECKLIST

Essential Formulas to Memorize:

- -[] Henry's Law: C = kP
- [] Salinity calculation: ‰ = (g salt/kg seawater) × 1000
- [] Pressure-depth relationship: P ≈ 1 atm + (depth in m/10)

Key Concepts for Short Answer:

- [] Explain water's polarity and hydrogen bonding
- [] Describe factors affecting gas vs. solid solubility
- [] Compare osmoregulation strategies in different marine organisms
- [] Analyze salinity patterns and their causes

Common Exam Question Types:

- 1. Calculate concentrations in different units
- 2. Predict solubility changes with temperature/pressure
- 3. Explain biological adaptations to marine salinity
- 4. Interpret graphs of solubility vs. environmental factors

> STUDY NOTES SECTION

Use this space for additional notes and connections

My Key Insights:	
Questions to Ask:	
Memory Devices:	

FINAL QUICK CHECK: Can you explain how a change in ocean temperature would affect both oxygen availability for marine life and the solubility of calcium carbonate for shell-forming organisms? This type of multi-concept question is common on AICE exams!