HO11

// a set of home works represented in H[] array is given as input, along with the following information:

1 t1, t2, ..., tn: time taken to solve homeworks (in hours)

11 m1, m2, --, mn: full marks of homeworks

11 de, de, ---, dn: deadlines of homeworks

11 T: particular time instance

- 2 $MM(m,T) = H[hw_n].m$ // base case $MM(j,T) = \begin{cases} H[hw_j].m + MM(j+1, T+H[hw_j].t \\ max \\ MM(j+1, T) \end{cases}$ if $H[hw_j].t + T \leq H[hw_j].a$ $H(j,T) = \begin{cases} MM(j+1,T) \\ H(j,T) \end{cases}$
- 3 Let M be the maximum marks obtained from home works $H[h\omega_k...h\omega_m]$ when started at time T.

Now, $M = \begin{cases} H[h\omega_k].m + MM(j \bullet, T+H[h\omega_k].t) \\ MM(j,T) \end{cases}$

where $MM(j, T+H[h\omega_k].t)$ and MM(j,T) returns the maximum scare of homeworks $H[h\omega_j....h\omega_n]$ when we start at time $T+H[h\omega_k].t$ and T respectively where j > k.

also we can write the above equation as

 $M = \begin{cases} H[h\omega_k]. m + m' \\ m_2 \end{cases}$

where my and m' are the marks obtained for the above two cases respectively.

Claim: m_1' and m_2' must be the maximum marks obtained from homeworks $H[hw_1]...hw_n]$ when we start at time $T + H[hw_k].t$ and T

which would obviously be greater than m. But this contradicts our assumption that m is the maximum marks from H [hox -.. hwn] started at time T. Thus,

 $M = \begin{cases} H [h\omega_k].m + MM(j, T + H[h\omega_k].t) \\ \text{if } H[h\omega_k].t + T \leq H[h\omega_k].d \\ \text{fight} \end{cases}$ MM(j, T)

where max is taken on all j such that j > k. If there is no such j then $M = H[h\omega_k].m$

Also for a single homework given H[hw,] we can simply take the marks of that homework.

- 4 2D away W[1...n][0...T] (Where $T = \Sigma H[h\omega, ...h\omega n].t$) W[j][T] will store the value of MM (j,T).
- [5] Initialize ω[n][T] = MM (n, T) = H[hωn].m.

 for i = n-1 ···· 1

 for j = T-1 ··· 0

 compoule ω[i][j] = MM (i, j)

 Using The reccurance formula on the given away H[].

6 Maximum marks obtained from homeworks H[] when starting to solve them at time T=0

3 Space complexity = $O(n \times T)$ where $T = \sum_{i=1}^{n} (H[hwi] \cdot t)$

Time Complexity = $O(n \times T)$ Since there are $O(n \times T)$ compulations to be done where each compulation requires O(1) time.

(8) To get the actual order of submitting homeworks we will also slive painters in 2D array ω that points to other indices of ω 2D array. we denote the painter associated with ω[j][T] as ω[j][T]. β.

Let Max Marks j be the max marks obtained from $\{f(x)\}$ the $\{f(x)\}$ when started at time $\{f(x)\}$ where $\{f(x)\}$ will point to max $\{f(x)\}$, $\{f(x)\}$, $\{f(x)\}$ where $\{f(x)\}$ i.e., it will point to the mext-home work how which should be polyed in sequence.

for base case i.e., W[n][T].p = nullfinally to get the order of submission of HW - U = 1, j = 0white (WW[i][j].p != WULL)print (WW[i][j].p) W[i][j] = W[i][j].p W[i][j] = U[i][j].p W[i][j] = U[i][j].p W[i][j] = U[i][j].p W[i][j] = U[i][j].p

print (temp[1])

Thus we will print the required sequence of HW for H[HW,,.... HWn] when submitted on time. The for loop will print the remaining HW which are submitted late.