Some Formulas

- $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$, where θ is the angle between \vec{u} and \vec{v} , with $0 \le \theta \le \pi$.
- $\operatorname{proj}_{\vec{v}}\vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\vec{v}$
- $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\theta$
- The area of the parallelogram spanned by the 3D vectors \vec{u} and \vec{v} is equal to $|\vec{u} \times \vec{v}|$.
- The volume of the parallelepiped spanned by the 3D vectors $\vec{u}, \vec{v}, \vec{w}$ is $|(\vec{u} \times \vec{v}) \cdot \vec{w}|$.
- Some trigonometric identities:

$$\sin(-\theta) = -\sin\theta, \quad \cos(-\theta) = \cos(\theta),$$
$$\cos^2\theta + \sin^2\theta = 1,$$
$$\sin 2\theta = 2\sin\theta\cos\theta, \quad \cos 2\theta = \cos^2\theta - \sin^2\theta$$

• Linear equation. The equation takes the form of

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = f(x).$$

This equation can be solved by using the following formulas:

$$\frac{\mathrm{d}z}{\mathrm{d}x} = p(x)z$$
 (integrating factor); $y(x) = \frac{1}{z(x)} \int z(x)f(x)\mathrm{d}x$.

• Exact equation. The equation takes the form of

$$N(x,y) + M(x,y)\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

such that

$$\frac{\partial}{\partial y}N(x,y) = \frac{\partial}{\partial x}M(x,y).$$

This equation can be solved by F(x, y(x)) = C for an implicit solution y = y(x) such that F(x, y) satisfies

$$N(x,y) = \frac{\partial F}{\partial x}(x,y), \quad M(x,y) = \frac{\partial F}{\partial y}(x,y).$$

• Bernoulli equation. The equation takes the form of

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = f(x)y^n \quad (n \neq 1).$$

This equation can be solved as the linear equation

$$\frac{\mathrm{d}u}{\mathrm{d}x} + (1-n)p(x)u = (1-n)f(x)$$

by the substitution $u = 1/y^{n-1}$.

• Homogeneous equation. The equation takes the form of

$$\frac{\mathrm{d}y}{\mathrm{d}x} = F(y/x).$$

This equation can be solved as the separable equation

$$x\frac{\mathrm{d}u}{\mathrm{d}x} + u = F(u)$$

by the substitution u = y/x. Also, a function f(x,y) can be expressed as f(x,y) = F(y/x) if f(tx,ty) = f(x,y) for all $t \neq 0$ and all x,y.

- Second-order homogeneous linear equations with constant coefficients. For ay'' + by' + cy = 0 with real coefficients $a \neq 0, b, c$ and characteristic polynomial p(z), the solutions are given as follows:
 - If p(z) has distinct real roots $r_1 \neq r_2$, then $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.
 - If p(z) has complex roots $\alpha \pm \beta \mathbb{B}$ for $\beta \neq 0$, then $y = C_1 e^{\alpha x} \cos(\beta x) + C_2 e^{\alpha x} \sin(\beta x)$.
 - If p(z) has a double root $r = r_1 = r_2$, then $y = C_1 e^{rx} + C_2 x e^{rx}$.

Also, recall that for the quadratic polynomial $Ax^2 + Bx + C$, the roots are given by $\frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$.

• Method of undetermined coefficients. (1) The equation

$$p(D)y = e^{\gamma x}, \quad p(z) = az^2 + bz + c,$$

can be solved by

$$y(x) = \frac{e^{\gamma x}}{p(\gamma)}$$
 if $p(\gamma) \neq 0$.

(2) The equations

$$p(D)y = e^{\alpha x}\cos(\beta x), \quad p(z) = az^2 + bz + c,$$

$$p(D)y = e^{\alpha x}\sin(\beta x), \quad p(z) = az^2 + bz + c,$$

for real α, β , have solutions take the form of

$$y(x) = Ae^{\alpha x}\cos(\beta x) + Be^{\alpha x}\sin(\beta x).$$

(3) The equation

$$ay'' + by' + cy = Ax^2 + Bx + C$$

has a solution taking the form of $y(x) = \alpha x^2 + \beta x + \gamma$, where $a, b, c, A, B, C, \alpha, \beta, \gamma$ are constants.

• Variation of parameters. To find a particular solution y_p for the equation ay'' + by' + cy = f(x) by using the method of variation of parameters, choose the two functions y_1, y_2 defining the complementary solutions $y_c = C_1y_1 + C_2y_2$, and then set $y_p = v_1y_1 + v_2y_2$, where $v_1(x)$ and $v_2(x)$ satisfy

$$\begin{cases} v_1' y_1 + v_2' y_2 = 0, \\ v_1' y_1' + v_2' y_2' = f/a. \end{cases}$$

• Cauchy–Euler equation. The equation takes the form of

$$a_2 x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + a_1 x \frac{\mathrm{d}y}{\mathrm{d}x} + a_0 y = g(x).$$

The equation can be solved by using the following substitution:

$$x = e^t$$
, which implies $x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt}$ and $x \frac{dy}{dx} = \frac{dy}{dt}$.

• Laplace transforms.

$$\mathcal{L}\lbrace t^n \rbrace(s) = \frac{n!}{s^{n+1}}, \ s > 0; \ n = 0, 1, 2 \cdots$$

$$\mathscr{L}\{\sin(\theta t)\}(s) = \frac{\theta}{s^2 + \theta^2}, \, s > 0$$

$$\mathcal{L}\{\cos(\theta t)\}(s) = \frac{s}{s^2 + \theta^2}, s > 0$$

$$\mathscr{L}\{\mathrm{e}^{at}f(t)\}(s)=\mathscr{L}\{f(t)\}(s-a),\,s>a$$

$$\mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} \mathcal{L}\lbrace f(t)\rbrace(s)$$

$$\mathscr{L}\{f'(t)\}(s) = -f(0) + s\mathscr{L}\{f(t)\}(s)$$

$$\mathcal{L}\{f''(t)\}(s) = -f'(0) - sf(0) + s^2 \mathcal{L}\{f(t)\}(s)$$