airbnb_data_challenge_solution_Ashim.R

ashimd

Sun Dec 13 23:29:40 2015

```
##Aribnb data challenge- Measure the success of product change
## Author- Ashim Datta
## email- datta.ashim2@gmail.com
## Summary:
## The test results are positive. The lift in treatment group is ~1.7x of the lift
in control. This shows that using 140 characters message is infact working.
## This test is a valid test since the treatment group and control have similar acc
eptance rate. Less than 10% variation
## However it is still not conclusive if this lift is significant. I would want to r
epeat this experiment for a few other groups and conclude if this feature is really
 useful
### See below for detail solution, scripts, graphs and discussion
## Extracting Data
setwd("/Users/ashimd/Documents/reashimlizairbnbdataanalyticsroles")
raw users<-read.csv("takehome assignments.csv")</pre>
raw_booking<- read.csv("takehome_contacts.csv")</pre>
library(sqldf)
## Loading required package: gsubfn
## Loading required package: proto
## Warning in doTryCatch(return(expr), name, parentenv, handler): unable to load sh
ared object '/Library/Frameworks/R.framework/Resources/modules//R_X11.so':
     dlopen(/Library/Frameworks/R.framework/Resources/modules//R X11.so, 6): Librar
y not loaded: /opt/X11/lib/libSM.6.dylib
     Referenced from: /Library/Frameworks/R.framework/Resources/modules//R X11.so
##
     Reason: image not found
## Could not load tcltk. Will use slower R code instead.
## Loading required package: RSQLite
## Loading required package: DBI
```

```
#Joining the 2 dataset to determine the group each guest belongs to
raw all data <- sqldf("select b.ab,a.* from raw booking a join raw users b
                    on a.id quest=b.id user")
# The above resulted in more rows than the booking data. There are probably duplica
te records for users. One single user is categorised both as test and control. We n
eed to make sure that each user has only one criteria
# Assigning users to the treatment group if they are both in treatment and control
raw users deduped <- sqldf ("select distinct id user, max(ab) as ab from raw users grou
p by id_user")
raw_all_data_deduped<-sqldf("select b.ab,a.* from raw_booking a join raw_users_dedu</pre>
ped b
                    on a.id guest=b.id user")
# Since we are interested in finding the impact of using a message on the acceptanc
e rate, there is no point looking at instant book as they are automatically accepte
d by the host
# Subsetting data to get only books where the contact method was contact me or book
it
bookings data<-raw all data deduped[which(raw all data deduped$dim contact channel=
=c('contact me','book it')),]
# creating 2 data sets- for treatment and control groups
booking data treatment<-bookings data[which(bookings data$ab=='treatment'),]
booking data control<-bookings data[which(bookings data$ab=='control'),]
#Overall percent of users who got accepted for treatment
booking data treatment acceptance <- nrow (booking data treatment [which (booking data t
reatment$ts booking at!='NULL'),])/nrow(booking data treatment)
#Overall percent of users who got accepted for control
booking data control acceptance <- nrow (booking data control [which (booking data contr
ol$ts booking at!='NULL'),])/nrow(booking data control)
#percent lift between the treatment and control group
lift<-(booking data treatment acceptance-booking data control acceptance)/booking d
ata control acceptance
print(lift)
```

```
## [1] -0.07349893
```

```
#This shows that the 2 groups are very similar. They have less than 10 percent diff
erence in their acceptance rates

#Plot acceptance rate:
#acceptance matrix

acceptance<-data.frame(c('treatment','control'),c(booking_data_treatment_acceptance, booking_data_control_acceptance))

names(acceptance)<-c("ab_group","acceptance_rate")

library(ggplot2)
ggplot(acceptance, aes(x=ab_group, y=acceptance_rate,label=round(acceptance_rate,2))) +
   geom_bar(position=position_dodge(),stat="identity") +geom_text(vjust=-.2,size=5, colour="blue")+ xlab("Group") +
   ylab("Acceptance_Rate") +
   ggtitle(expression(atop("Overall acceptance rate for each group of users")))</pre>
```

Overall acceptance rate for each group of users


```
# Now let us look at lift in acceptance in both treatment and control for people wh
o wrote more than 140 characters vs the ones who did not in each group
#Percent of users who got accepted from treatment by writing over 140 charcters
booking_data_treatment_acceptance_140<-nrow(booking_data_treatment[which(booking_da
ta treatment$ts booking at!='NULL'&
                                                           as.numeric(booking data
treatment$m_first_message_length)>=140),])/
  nrow(booking_data_treatment)
#Percent of users who got accepted from treament by writing less than 140 character
booking data treatment acceptance n140<-nrow(booking data treatment[which(booking d
ata_treatment$ts_booking_at!='NULL'&
                                                                            as.numer
ic(booking data treatment$m first message length)<140),])/</pre>
  nrow(booking data treatment)
#lift in treatment
lift treatment<-(booking data treatment acceptance 140-booking data treatment accep
tance n140)/booking data treatment acceptance n140
#Control
#Percent of users who got accepted from control by writing more than 140 characters
booking_data_control_acceptance_140<-nrow(booking_data_control[which(booking_data_c
ontrol$ts_booking_at!='NULL'&
                                                                          as.numeric
(booking data control$m first message length)>=140),])/
  nrow(booking data control)
#Percent of users who got accepted from control by writing less than 140 characters
booking data control acceptance n140<-nrow(booking data control[which(booking data
control$ts booking at!='NULL'&
                                                                             as.nume
ric(booking_data_control$m_first_message_length)<140),])/</pre>
  nrow(booking_data_control)
#lift in control
lift_control<-(booking_data_control_acceptance_140-booking_data_control_acceptance_
n140)/booking_data_control_acceptance_n140
```

```
#Comparing the lifts in 2 groups
lift_overall<-(lift_treatment-lift_control)/lift_control
print(lift_overall)</pre>
```

```
## [1] 1.672705
```

```
#The lift in treatment group is ~1.7x of the lift in control. This shows that usin
g 140 characters message is infact working.

#Plot lift in control and treatment
#Lift matrix

lift_t_c<-data.frame(c('treatment','control'),c(lift_treatment,lift_control))

names(lift_t_c)<-c("ab_group","Lift")

library(ggplot2)
ggplot(lift_t_c, aes(x=ab_group, y=Lift,label=round(Lift,2))) +
    geom_bar(position=position_dodge(),stat="identity") +geom_text(vjust=-.2,size=5,
colour="blue")+ xlab("Group") +
    ylab("Lift in each group") +
    ggtitle(expression(atop("Lift in each group")))</pre>
```

Lift in each group

#Power of the test

Now the question is is this test significant. Airbnb has 50 million users and if we assume each user books 2wice each year. Thus there will be 100million bookings p er year

Our dataset has 4984 valid observations. If we calculate the sample size with 99 % confidence level and 1 confidence interval for 100m observations then it would be 16369. See link: http://www.surveysystem.com/sscalc.htm

Hence I would ideally want to repeat this experiment for 4 more groups of control and treatment

Calculate the mean(expected difference between control and treatment) and sd in lifts in control and treatment

I will then calculate the power of the test which is probability of rejecting th e null hypothesis(the mean difference in lift is acceptable) when it is actually tr ue and decide on if this test is significant