

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE INFORMÁTICA E MATEMÁTICA APLICADA

DIM0320 Algoritmos e Programação de Computadores

#CONTROLE DE FLUXO #CONDICIONAIS #EXPRESSÕES LÓGICAS

ELIEZIO SOARES

ELIEZIOSOARES@DIMAP.UFRN.BR

Expressões Relacionais

Expressões relacionais são comparações entre dois valores do mesmo tipo.

Os valores podem ser constantes, variáveis ou expressões aritméticas.

- Possui apenas um dentre dois resultados possíveis:
 - Verdadeiro
 - Falso

Expressões Relacionais

- Igual
 - A == B
 - **2** == 2
 - A == 2
 - **-** (5-1) == 4
- Diferente
 - A != B
 - **5** != 3
 - A != 2
 - **(**5-1) != 4

- Maior que
 - A > B
 - **3** > 2

- Menor que
 - B < A
 - **2** < 3

- Maior ou igual a
 - A >= B
 - **5** >= 5
 - **(7-1)** >= 4
- Menor ou igual a
 - A <= B
 - **3** <= 2

Expressões Lógicas (booleanas)

- Operadores lógicos:
 - and (Conjunção)
 - or (Disjunção)
 - not (Negação)

Conjunções

- Imagine uma entrevista com 4 participantes e duas perguntas.
- As perguntas podem ser respondidas com sim OU não.
- As respostas não podem ser de outro tipo e nunca sim e não ao mesmo tempo.
- •Sim = 1
- ■Não = 0
 - PERGUNTA 1: Você conhece a linguagem C#?
 - PERGUNTA 2: Você conhece a linguagem Java?
- Somente candidatos que conheçam a linguagem C# E (and) a linguagem Java serão selecionados.
 - Ou seja: somente candidatos que conheçam as duas linguagens serão aprovados.

Conjunções

- •PERGUNTA 1: Você conhece a linguagem C#?
- •PERGUNTA 2: Você conhece a linguagem Java?

•O operador AND só considera a expressão como verdadeira se todas as expressões testadas forem verdadeiras.

Candidato	Pergunta 1	Pergunta 2	Resultado
Candidato 1	0	0	0
Candidato 2	0	1	0
Candidato 3	1	0	0
Candidato 4	1	1	1

APROVADO

Conjunções – Tabela Verdade

 A expressão lógica tem seu valor lógico verdadeiro somente quando as duas proposições forem verdadeiras;

р	q	p && q
V	V	V
V	F	F
F	V	F
F	F	F

Disjunções

- Imagine uma entrevista com 4 participantes e duas perguntas.
- As perguntas podem ser respondidas com sim OU não.
- As respostas não podem ser de outro tipo e nunca sim e não ao mesmo tempo.
- •Sim = 1
- ■Não = 0
 - PERGUNTA 1: Você conhece a linguagem C#?
 - PERGUNTA 2: Você conhece a linguagem Java?
- Somente candidatos que conheçam a linguagem C# OU (or) a linguagem Java serão selecionados.
 - Ou seja: qualquer candidato que conheça uma das duas linguagens serão aprovados.

Disjunções

- PERGUNTA 1: Você conhece a linguagem C#?
- PERGUNTA 2: Você conhece a linguagem Java?

O operador OR considera a expressão como verdadeira se pelo menos uma das expressões testadas for verdadeira.

Candidato	Pergunta 1	Pergunta 2	Resultado
Candidato 1	0	0	0
Candidato 2	0	1	1
Candidato 3	1	0	1
Candidato 4	1	1	1

APROVADOS

Disjunções – Tabela Verdade

 A proposição composta p OR q tem seu valor lógico verdadeiro quando p for verdadeira ou quando q for verdadeira;

р	q	p q
V	V	V
V	F	V
F	V	V
F	F	F

Negação - not

- O operador NOT é aplicado a uma proposição e tem o efeito de inverter seu valor lógico.
- Exemplo:
 - (p) Ele trabalha.
 - Ele não trabalha.
 - ! verdadeiro = FALSO
 - ! falso = VERDADEIRO

Negação — Tabela Verdade

A negação inverte o valor lógico da proposição original.

р	not p
V	F
F	V

Estruturas Condicionais

São estruturas de possibilitam a escolha de um grupo de ações a serem executadas quando determinadas condições são ou não são satisfeitas.

Utilizadas nas tomadas de decisões.

Podem ser simples ou compostas.

Estruturas Condicionais Simples

 Executa um bloco de comandos se a condição for verdadeira. Se a condição for falsa, a estrutura é finalizada sem executar o bloco de comandos.

O comando que define essa estrutura é representado pela palavra

IF

If (Sintaxe Python)

• If (condicional simples)

If expressão-lógica:

- # bloco de código que será executado
- # Atenção a identação
- # Tudo o que estiver recuado
- # Será executado

Expressão deve ser booleana.

If (Sintaxe C)

Abra um novo arquivo python e implemente o seguinte trecho de código:

```
a = int(input("Digite um número: "))
b = int(input("Digite um outro número: "))
if a>b:
    print("O primeiro número é o maior.")
if b>a:
    print("O segundo número é o maior.")
```

Execute o programa quantas vezes desejar, alterando os valores de entrada.

Estruturas Condicionais Compostas

 Segue o mesmo princípio da estrutura condicional simples, com a diferença de que quando a condição não for satisfeita, será executado outro bloco de comandos.

O comando que define essa estrutura é representado pelas palavras

IF e ELSE

If — else (Sintaxe Python)

If – else (condicional composto)

```
if expressão-lógica :

# bloco de código que será executado

# Atenção a identação

# Tudo o que estiver recuado

# Será executado

else:

# bloco de código que será executado

# Atenção a identação

# Tudo o que estiver recuado

# Será executado
```

- Else é **opcional**.
- Expressão deve ser booleana.

If — else (Sintaxe Python)

Abra um novo arquivo python e implemente o seguinte trecho de código:

```
a = int(input("Digite um número: "))
if a>0:
    print("O número digitado é positivo.")
else:
    print("O número digitado é negativo.")
```

- Execute o programa quantas vezes desejar, alterando os valores de entrada.
 - Sugestão: Execute a primeira vez digitando 10 e a segunda vez digitando -1.

If – else (Sintaxe Python)

Operador and

Abra um novo arquivo python e implemente o seguinte trecho de código:

```
a = int(input("Digite um número: "))
if a>10 and a<20:
    print("O número digitado está entre 10 e 20.")
else:
    print("O número digitado NÃO está entre 10 e 20.")</pre>
```

• Execute o programa quantas vezes desejar, alterando os valores de entrada.

If – else (Sintaxe Python)

Operador or

Abra um novo arquivo python e implemente o seguinte trecho de código:

```
a = int(input("Digite um número: "))
if a==0 or a==1:
    print("Você digitou um binário.")
else:
    print("Não é um binário...")
```

• Execute o programa quantas vezes desejar, alterando os valores de entrada.

Exercício

Construa um programa que leia a categoria de um produto e determine o preço, conforme a tabela abaixo:

Categoria	Preço
1	10,00
2	18,00
3	23,00
4	26,00
5	31,00

Vários e INEFICIENTES "ifs"

O seu programa, certamente, precisou de algo parecido com isso:

```
categoria = int(input("Informe a categoria do produto: "))
preco = 0
if categoria == 1:
   preco = 10
if categoria == 2:
    preco = 18
if categoria == 3:
    preco = 23
if categoria == 4:
    preco = 26
if categoria == 5:
    preco = 31
print("O valor do produto é %3.2f" %preco)
```

Ou...

Estruturas aninhadas

Essas estruturas aninhadas são mais eficientes, porém deselegantes e desorganizadas.

```
categoria = int(input("Informe a categoria do produto: "))
preco = 0
if categoria == 1:
   preco = 10
else:
    if categoria == 2:
        preco = 18
    else:
        if categoria == 3:
            preco = 23
        else:
            if categoria == 4:
                preco = 26
            else:
                if categoria == 5:
                    preco = 31
print ("O valor do produto é %3.2f" %preco)
```

Solução: Elif

Python apresenta uma solução para esse problema com um comando que concatena as funções else e if:

If – elif

■ If — elif

```
if expressão-lógica :

# bloco de código que será executado

# Atenção a identação

# Tudo o que estiver recuado

# Será executado

elif expressão-lógica:

# bloco de código que será executado

# Atenção a identação

# Tudo o que estiver recuado

# Será executado
```

■ If — elif - else

```
if expressão-lógica:
# bloco de código que será executado
# Atenção a identação
elif expressão-lógica:
# bloco de código que será executado
# Atenção a identação
else:
# bloco de código que será executado
# Atenção a identação
```

Solução: Elif

 A cláusula "elif" resolve o problema da eficiência e da elegância / organização.

```
categoria = int(input("Informe a categoria do produto: "))
preco = 0
if categoria == 1:
    preco = 10
elif categoria == 2:
    preco = 18
elif categoria == 3:
    preco = 23
elif categoria == 4:
    preco = 26
elif categoria == 5:
    preco = 31

print("O valor do produto é %3.2f" %preco)
```

Dúvidas

Exercícios

- 1. Construa um programa que leia dois números e pergunte ao usuário qual operação ele deseja executar: soma, subtração, multiplicação ou divisão. Após a operação o programa deve exibir o resultado do processamento.
- 2. Construa um programa bancário para aprovação de empréstimos. O programa deve receber o valor do empréstimo solicitado, o salário do cliente e a quantidade de meses para se pagar o empréstimo. O valor da prestação mensal não pode ultrapassar 30% do salário. O programa deve considerar o valor da prestação como sendo o valor solicitado dividido pela quantidade de meses.

Exercícios

3. Construa um programa que calcule o preço a pagar pela energia elétrica. O programa deve receber a quantidade de KWh consumidas e o tipo de instalação (R para residências; I para indústrias; C para comércios). O programa deve calcular o valor conforme a tabela abaixo:

Tipo	Faixa (KWh)	Preço (R\$)
Residencial	Até 500	0,40
	Acima de 500	0,65
Comercial	Até 1000	0,55
	Acima de 1000	0,60
Industrial	Até 5000	0,55
	Acima de 5000	0,60

Exercícios

4. Desenvolva um programa que leia a altura (em metros) e o peso (em quilogramas) e calcule o IMC - Índice de Massa Corporal do usuário e informe sua situação corporal conforme tabela abaixo. O cálculo do IMC é feito dividindo-se o peso pela altura ao quadrado. Sabe-se ainda que a tabela abaixo é válida apenas para pessoas acima dos 15 anos de idade, então o programa deverá invalidar os cálculos que fujam dessa regra.

RESULTADO	SITUAÇÃO
Abaixo de 17	Muito abaixo do peso
Entre 17 e 18,49	Abaixo do peso
Entre 18,5 e 24,99	Peso normal
Entre 25 e 29,99	Acima do peso
Entre 30 e 34,99	Obesidade I
Entre 35 e 39,99	Obesidade II (severa)
Acima de 40	Obesidade III (mórbida)