

Scientific Computing with Mathematica

PART (4): NUMERICAL OPTIMIZATION

The Basic Optimization Problem

■ The basic optimization problem is

minimize f(x)subject to $\Phi(x)$

- x is a design point which can be represented as a vector of values.
- The elements of x are adjusted to minimize the objective function $f(x) \in R$.
- But you have to make sure x still satisfies the constraints $\phi(x)$.

Outline

Classes of Optimization Problems **Unconstrained Optimization Constrained Optimization Linear Programming Quadratic Programming Convex Optimization**

Local vs Global

- In Mathematica®, local optimization problems constrained or unconstrained can be solved using FindMinimum.
- Global optimization problems can be solved exactly using Minimize or numerically using NMinimize.
- In convex optimization (linear optimization is a subclass), any local solution is a global minimizer.
- Finding global solutions to large-scale optimization problems is hard (except for convex optimization).

Example

```
f[x_{]}:= 3x^4-28x^3+84x^2-96x+42
In[ • ]:=
        Plot[f[x],{x,0,5}];
```

This finds the global solution symbolically:

```
Minimize [f[x], x];
```

This finds the global solution numerically:

```
NMinimize [f[x], \{x, 0, 5\}];
In[ • ]:=
```

This tries to find a local solution around a pre-specified guess point:

```
guess = 3;
In[ • ]:=
        FindMinimum [f[x],{x,guess}];
```

Constrained vs Unconstrained

• Constrained optimization problems are problems for which a function f(x) is to be minimized or maximized subject to constraints $\phi(x)$.

minimize f(x)subject to $\Phi(x)$

- For unconstrained problems, the feasible set is \mathbb{R}^N .
- In Mathematica, local optimization problems constrained or unconstrained can be solved using FindMinimum.

Example

This is a simple constrained optimization problem:

```
f[x_]:= 3x^4-28x^3+84x^2-96x+42
guess = 1.4;
FindMinimum [\{f[x], x<1.5\}, \{x, guess\}];
```

Linear vs Nonlinear

- Linear optimization problems are optimization problems where the objective function and constraints are all linear.
- The LinearProgramming function in Mathematica gives direct access to linear programming algorithms and is efficient for large-scale problems.

Example

Here is a linear optimization problem.

Minimize x + y subject to the constraints $x + 2y \ge 3$, $x \ge -1$, $y \ge -1$:

res=Minimize [x+y,{x+2y \ge 3,x \ge -1,y \ge -1},{x,y}]; In[•]:=

> Here is a nonlinear optimization problem with the same constrains, but with a nonlinear objective function:

res=Minimize [$Cos[x]+y^2, \{x+2y\geq 3, x\geq -1, y\geq -1\}, \{x, y\}$];

Convex vs Non-convex

- Convex optimization problems are optimization problems where the objective function and constraints are all convex.
- There are fast and robust optimization algorithms, both in theory and in practice.
- Mathematica 12 expands to include optimization of convex functions over convex constraints.
- The ConvexOptimization function in Mathematica gives direct access to linear programming algorithms and is efficient for large-scale problems.

Example

Minimize |x + 2y| subject to linear constraints:

ConvexOptimization [Abs[x + 2 y], $\{x + y == 1., x - y \le 2\}, \{x, y\}$];

Classification of Numerical Optimization **Algorithms**

Gradient-based methods

Gradient search methods use first derivatives (gradients) or second derivatives (Hessians) information.

- The sequential linear programming method
- The sequential quadratic programming method
- Penalty methods
- The augmented Lagrangian method
- The (nonlinear) interior point method

Direct search methods

Direct search methods do not use derivative information.

- Genetic algorithm and differential evolution
- Simulated annealing

The essence of most methods is in the local quadratic model

$$q_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T B_k p$$

which uses the Hessian information to approximate the right step to reach the local minimum.

The FindMinimum function has five different methods:

 $_{ln[+]:=}$ <code>TextGrid[{{"Newton", "use the exact Hessian or a finite difference approximation"},</code> {"QuasiNewton", "use the quasi-Newton BFGS approximation"}, {"LevenbergMarquardt ", "a Gauss-Newton method for least-squares problems"}, {"ConjugateGradient", "a nonlinear version of the conjugate gradient method for solving linear systems"}, {"PrincipalAxis ", "works without using any derivatives "}}, Frame → All]

Out[•]=	Newton	use the exact Hessian or a finite difference approximation
	QuasiNewton	use the quasi-Newton BFGS approximation
	LevenbergMarquardt	a Gauss-Newton method for least-squares problems
	ConjugateGradient	a nonlinear version of the conjugate gradient method for solving linear systems
	PrincipalAxis	works without using any derivatives

- With Method -> Automatic, the quasi-Newton method is used.
- If the problem is structurally a sum of squares, the Levenberg-Marquardt method is used.
- When given two starting conditions in each variable, the PrincipalAxis method is used.

Newton's Method

Local model

$$q_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T B_k (x - x_k)$$

Evaluating the gradient and setting it to zero:

$$\nabla q_k(x) = \nabla f(x_k) + B_k(x - x_k) = 0$$

Then solve for the next iterate:

$$x_{k+1} = x_k - B_k^{-1} \nabla f(x_k) B_k = 0$$

Newton's Method

- With Method → "Newton", the symbolic derivative will be computed automatically.
- If the function cannot be explicitly differentiated, FindMinimum uses finite differences to compute the Hessian.

This loads a package that contains some utility functions:

```
Needs["Optimization`UnconstrainedProblems`
```

FindMinimum will compute the Hessian symbolically:

```
FindMinimumPlot [Cos[x^2 - 3y] + Sin[x^2 + y^2],{{x,1},{y,1}}, Method -> "Newton"];
```

Newton's Method

Robustness

- The local quadratic model has to be positive definite, otherwise the method may not converge.
- For robustness, the Newton's step is modified by a line search or by using trust region methods.

This uses the unconstrained problems package to set up the classic Rosenbrock function, which has a narrow curved valley:

```
p = GetFindMinimumProblem [Rosenbrock];
       FindMinimumPlot [p, Method →{"Newton","StepControl "->"LineSearch "}];
Inf • ]:=
       FindMinimumPlot [p, Method →{"Newton","StepControl "->"TrustRegion "}];
```

Quasi-Newton Methods

- The exact Hessian is very expensive to compute.
- The idea is to build the Hessian matrix from the function and gradient values from some steps previously taken.
- Quasi-Newton methods are chosen as the default in Mathematica.

```
\label{lem:findMinimumPlot} FindMinimumPlot [Cos[x^2 - 3 y] + Sin[x^2 + y^2], \{\{x,1\},\{y,1\}\}, \ Method \rightarrow "QuasiNewton"];
In[ • ]:=
```

For large-scale sparse problems (e.g. Length[x] > 250), the LBFGS (low-memory BFGS) method is used instead:

```
In[ • ]:=
        m = 5;
        FindMinimumPlot [Cos[x^2 - 3y] + Sin[x^2 + y^2],{{x,1},{y,1}}, Method \rightarrow{"QuasiNewton ","StepMemory
```

The Nonlinear Conjugate Gradient Method

- The nonlinear conjugate gradient (CG) method generalizes the conjugate gradient method to nonlinear optimization.
- CG methods converge much more slowly than "Newton" or "quasi-Newton" methods, but have lower memory requirements.

FindMinimumPlot [Cos[$x^2 - 3y$] + Sin[$x^2 + y^2$],{{x,1},{y,1}}, Method \rightarrow {"ConjugateGradient "}];

■ For general nonconvex constrained optimization problems, the interior point algorithm is used.

```
FindMinimum [\{x^2+y^2, x^3+y-x=1\}, \{\{x,0\}, \{y,1\}\}, Method -> "InteriorPoint"]
Out[ \circ ] = \{0.59985, \{x \rightarrow -0.38088, y \rightarrow 0.674374\} \}
```

Linear Optimization

Linear optimization finds x that solves the problem:

minimize	C . X	
subject to constraints	a.x + b ≥ 0,	
	$a_{eq} \cdot x + b_{eq} = 0$	
where	$c \in \mathbb{R}^{n}$, $a \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$, $a_{eq} \in \mathbb{R}^{k \times n}$, $b_{eq} \in \mathbb{R}^{k}$	

Minimize x + y subject to the constraints $x + 2y \ge 3$, $x \ge 0$, $y \ge 0$:

res=LinearOptimization [x+y,{ $x+2y \ge 3$, $x \ge 0$, $y \ge 0$ },{x,y}]

Out
$$= J = \left\{ x \rightarrow 0, y \rightarrow \frac{3}{2} \right\}$$

The optimal point lies in a region defined by the constraints and where x + y is smallest within the region:

 $Show \left[Plot3D \left[x+y, \{x,0,2\}, \{y,0,3\}, \cdots \right] + \right], Graphics3D \left[\{Blue, PointSize \left[0.04\right], Point\left[\{x,y,x+y\}/.res \right] \} \right] \right]$

Quadratic Optimization

Quadratic optimization finds x that solves the problem:

minimize	$\frac{1}{2} \times \cdot q \cdot x + c \cdot x$	
subject to constraints	a.x + b ≥ 0,	
	$a_{eq} \cdot x + b_{eq} = 0$	
where	$q \in S_{+}^{n}$, $c \in \mathbb{R}^{n}$, $a \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$, $a_{eq} \in \mathbb{R}^{k \times n}$, $b_{eq} \in \mathbb{R}^{k}$	

This minimizes $2x^2 + 20y^2 + 6xy + 5x$ subject to the constraint $-x + y \ge 2$:

```
obj = 2x^2 + 20y^2 + 6x y + 5x;
res=QuadraticOptimization [obj,-x+y \ge 2,{x,y}]
```

```
Out[ *] = \{x \rightarrow -1.73214, y \rightarrow 0.267857\}
```

The optimal point lies in a region defined by the constraints and where $2x^2 + 20y^2 + 6xy + 5x$ is smallest:

```
Show \left[ Plot3D \left[ obj, \{x, -2, 0\}, \{y, 0, 1\}, \dots + \right], Graphics3D \left[ \{Blue, PointSize \left[ 0.05 \right], Point \left[ \{x, y, obj\} / . res \right] \} \right] \right]
```

Convex Optimization

Special Classes of Convex Optimization **Problems**

```
LinearOptimization—minimize \{c.x \mid a.x + b \ge 0\}
LinearFractionalOptimization—minimize \{(\alpha.x + \beta)/(y.x + \delta) \mid \alpha.x + b \ge 0\}
QuadraticOptimization—minimize \left\{\frac{1}{2}x.q.x+c.x \mid a.x+b \ge 0\right\}
SecondOrderConeOptimization—minimize \{c.x \mid ||a_j.x + b_j|| \le \alpha_j + \beta_j, j = 1...k\}
SemidefiniteOptimization—minimize \{c.x \mid a_0 + x_1 a_1 + ... + x_k a_k \succeq_{S_n^0} 0\}
\textbf{GeometricOptimization} - \text{minimize } \left\{ \sum_{j=1}^{k_0} c_{j0} \prod_{l=1}^n x_l^{\alpha_{jl0}} \; \middle| \; \sum_{j=1}^{k_i} c_{ji} \prod_{l=1}^n x_l^{\alpha_{jli}} \leq 1, \; i=1, \; \dots, \; s \right\}
ConicOptimization—minimize \{c.x \mid a_j.x + b_j \succeq_{\kappa_i} 0, j = 1 \dots k\}
```

When FindMinimum or NMinimize detects the problem as convex, they call on one of these solvers.

Convex Optimization

Special Classes of Convex Optimization **Problems**

The option Method -> method may be used to specify the method to use. Available methods include:

Automatic	choose the method automatically
solver	transform the problem, if possible, to use solver to sol
	problem
"SCS"	SCS (splitting conic solver) library
"CSDP"	CSDP (COIN semidefinite programming) library
"DSDP"	DSDP (semidefinite programming) library

Method -> solver may be used to specify that a particular solver is used.

Possible solvers are LinearOptimization, LinearFractionalOptimization, QuadraticOptimization, SecondOrderConeOptimization, SemidefiniteOptimization, ConicOptimization and GeometricOptimiza tion.

Convex Optimization

Modelling Tools for Optimization

For vector inequality constraints:

VectorGreaterEqual—partial ordering for vectors and matrices

VectorLessEqual, VectorGreater, VectorLess

Examples

 $x \ge y$ yields **True** when $x_i \ge y_i$ is True for all i = 1, ..., n:

```
\{1,2,3\}\succeq\{1,1,2\}
```

Out[•]= True

Minimize $2 x_1 + 3 x_2$ subject to $a_0 + a_1 x_1 + a_2 x_2 \succeq_{S_1^2} 0$, $x_1 \in \mathbb{R}$, $x_2 \in \mathbb{R}$:

```
|a_0| = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; a_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; a_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};
                   SemidefiniteOptimization \begin{bmatrix} 2x_1+3x_2, a_0+a_1x_1+a_2 & x_2 \ge 0, \{x_1 \in \text{Reals }, x_2 \in \text{Reals } \} \end{bmatrix}
```

```
Out[ • ]= \{x_1 \rightarrow 1.22474, x_2 \rightarrow 0.816497\}
```