Introduction to Deep Learning

3. Gradient and Auto Differentiation

STAT 157, Spring 2019, UC Berkeley

Alex Smola and Mu Li courses.d2l.ai/berkeley-stat-157

Review Scalar Derivative

У	a	χ^n	$\exp(x)$	$\log(x)$	$\sin(x)$
$\frac{dy}{dx}$	0	nx^{n-1}	$\exp(x)$	$\frac{1}{x}$	$\cos(x)$
a is not a function of x					

Derivative is the slope of the tangent line

The slope of the tangent line is 2

У	u+v	uv	$y = f(u), \ u = g(x)$	
$\frac{dy}{dx}$	$\frac{du}{dx} + \frac{dv}{dx}$	$\frac{du}{dx}v + \frac{dv}{dx}u$	$\frac{dy}{du}\frac{du}{dx}$	

Subderivative

Extend derivative to non-differentiable cases

$$\frac{\partial |x|}{\partial x} = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0\\ a & \text{if } x = 0, \quad a \in [-1, 1] \end{cases}$$

Another example:

$$\frac{\partial}{\partial x} \max(x,0) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \\ a & \text{if } x = 0, \quad a \in [0,1] \end{cases}$$

Gradients

Generalize derivatives into vectors

$$\partial y/\partial \mathbf{x}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_n} \end{bmatrix} \qquad \mathbf{y} \quad \frac{\frac{\partial y}{\partial \mathbf{x}}}{\frac{\partial y}{\partial \mathbf{x}}} \quad \frac{\frac{\partial y}{\partial \mathbf{x}}}{\frac{\partial y}{\partial \mathbf{x}}}$$

$$\frac{\partial}{\partial \mathbf{x}} x_1^2 + 2x_2^2 = [2x_1, 4x_2]$$

Direction (2, 4), perpendicular to the contour lines

Examples

У	a	аи	sum(x)	$\ \mathbf{x}\ ^2$	a is not a	a function of x
$\frac{\partial y}{\partial \mathbf{x}}$	0^T	$a\frac{\partial u}{\partial \mathbf{x}}$	1^T	$2\mathbf{x}^T$	0 and 1 a	are vectors
У	<i>u</i> +	ν	uv		$\langle \mathbf{u}, \mathbf{v} \rangle$	
$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial u}{\partial \mathbf{x}} +$	$\frac{\partial v}{\partial \mathbf{x}}$	$\frac{\partial u}{\partial \mathbf{x}}v + \frac{\partial v}{\partial \mathbf{x}}$	$-u$ \mathbf{u}^T	$\frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	

$$\partial \mathbf{y}/\partial x$$
 $\begin{bmatrix} \partial y_1 \end{bmatrix}$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \qquad \frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}$$

 $\partial y/\partial x$ is a row vector, while $\partial y/\partial x$ is a column vector

It is called numerator-layout notation. The reversed version is called denominator-layout notation

$$\partial \mathbf{y}/\partial \mathbf{x}$$

$$= \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial y_1}{\partial \mathbf{x}} \\
\frac{\partial y_2}{\partial \mathbf{x}} \\
\vdots \\
\frac{\partial y_m}{\partial \mathbf{x}}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1}, \frac{\partial y_1}{\partial x_2}, \dots, \frac{\partial y_1}{\partial x_n} \\
\frac{\partial y_2}{\partial x_1}, \frac{\partial y_2}{\partial x_2}, \dots, \frac{\partial y_2}{\partial x_n} \\
\vdots \\
\frac{\partial y_m}{\partial x_1}, \frac{\partial y_m}{\partial x_2}, \dots, \frac{\partial y_m}{\partial x_n}
\end{bmatrix}$$

X

Examples

$$\mathbf{a} \qquad \mathbf{x} \qquad \mathbf{A}\mathbf{x} \qquad \mathbf{x}^T \mathbf{A} \qquad \mathbf{x} \in \mathbb{R}^n, \quad \mathbf{y} \in \mathbb{R}^m, \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n}$$

a, a and A are not functions of x

0 and I are matrices

y	$a\mathbf{u}$	Au	$\mathbf{u} + \mathbf{v}$	
$\frac{\partial \mathbf{y}}{\partial \mathbf{y}}$	∂u	∂u	∂u	$\partial \mathbf{v}$
$\partial \mathbf{x}$	$a \frac{\overline{\partial \mathbf{x}}}{\partial \mathbf{x}}$	$\mathbf{A} \overline{\partial \mathbf{x}}$	$\overline{\partial \mathbf{x}}$	$+{\partial \mathbf{x}}$

Generalize to Matrices

Chain Rule

Generalize to Vectors

Chain rule for scalars:

$$y = f(u), \ u = g(x)$$
 $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$

Generalize to vectors straightforwardly

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial \mathbf{x}} \qquad \frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$(1,n) \quad (1,) \quad (1,n) \quad (1,k) \quad (k,n) \quad (m,n) \quad (m,k) \quad (k,n)$$

Example 1

$$\frac{\mathbf{y}}{\mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

Assume $x, w \in \mathbb{R}^n$, $y \in \mathbb{R}$

$$z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^{2}$$
Compute $\frac{\partial z}{\partial \mathbf{w}}$

Decompose
$$a = \langle \mathbf{x}, \mathbf{w} \rangle$$
$$b = a - y$$
$$z = b^2$$

$$\frac{\partial z}{\partial \mathbf{w}} = \frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial \mathbf{w}}$$

$$= \frac{\partial b^2}{\partial b} \frac{\partial a - y}{\partial a} \frac{\partial \langle \mathbf{x}, \mathbf{w} \rangle}{\partial \mathbf{w}}$$

$$= 2b \cdot 1 \cdot \mathbf{x}^T$$

$$= 2 \left(\langle \mathbf{x}, \mathbf{w} \rangle - y \right) \mathbf{x}^T$$

Example 2

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

Assume $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{w} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$

$$z = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

$$z = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Compute
$$\frac{\partial z}{\partial \mathbf{w}}$$

Decompose
$$a = Xw$$
$$b = a - y$$
$$z = ||b||^2$$

$$\frac{\partial z}{\partial \mathbf{w}} = \frac{\partial z}{\partial \mathbf{b}} \frac{\partial \mathbf{b}}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial \mathbf{w}}$$

$$= \frac{\partial ||\mathbf{b}||^2}{\partial \mathbf{b}} \frac{\partial \mathbf{a} - \mathbf{y}}{\partial \mathbf{a}} \frac{\partial \mathbf{X} \mathbf{w}}{\partial \mathbf{w}}$$

$$= 2\mathbf{b}^T \times \mathbf{I} \times \mathbf{X}$$

$$= 2(\mathbf{X} \mathbf{w} - \mathbf{y})^T \mathbf{X}$$

Auto Differentiation

Auto Differentiation (AD)

- AD evaluates gradients of a function specified by a program at given values
- AD differs to
 - Symbolic differentiation

In[1]:=
$$D[4x^3 + x^2 + 3, x]$$

Out[1]= $2x + 12x^2$

Numerical differentiation

$$\frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Computation Graph

- Decompose into primitive operations
- Build a directed acyclic graph to present the computation

Assume $z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$

Computation Graph

- Decompose into primitive operations
- Build a directed acyclic graph to present the computation
- Build explicitly
 - Tensorflow/Theano/MXNet

```
from mxnet import sym
a = sym.var()
b = sym.var()
c = 2 * a + b
# bind data into a and b later
```


Computation Graph

- Decompose into primitive operations
- Build a directed acyclic graph to present the computation
- Build explicitly
 - Tensorflow/Theano/MXNet
- Build implicitly though tracing
 - PyTorch/MXNet

```
from mxnet import autograd, nd
with autograd.record():
    a = nd.ones((2,1))
    b = nd.ones((2,1))
    c = 2 * a + b
```


Two Modes

• By chain rule $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u_n} \frac{\partial u_n}{\partial u_{n-1}} ... \frac{\partial u_2}{\partial u_1} \frac{\partial u_1}{\partial x}$

Forward accumulation

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u_n} \left(\frac{\partial u_n}{\partial u_{n-1}} \left(\dots \left(\frac{\partial u_2}{\partial u_1} \frac{\partial u_1}{\partial x} \right) \right) \right)$$

Reverse accumulation (a.k.a Backpropagation)

$$\frac{\partial y}{\partial x} = \left(\left(\left(\frac{\partial y}{\partial u_n} \frac{\partial u_n}{\partial u_{n-1}} \right) \dots \right) \frac{\partial u_2}{\partial u_1} \right) \frac{\partial u_1}{\partial x}$$

Assume
$$z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$$

Assume
$$z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$$

Assume $z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$

Assume
$$z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$$

Reverse Accumulation Summary

- Build a computation graph
- Forward: Evaluate the graph, store intermediate results
- Backward: Evaluate the graph in a reversed order
 - Eliminate paths not needed

Complexities

- Computational complexity: O(n), n is #operations, to compute all derivatives
 - Often similar to the forward cost
- Memory complexity: O(n), needs to record all intermediate results in the forward pass
- Compare to forward accumulation:
 - O(n) time complexity to compute one gradient, O(n*k) to compute gradients for k variables
 - O(1) memory complexity

[Advanced] Rematerialization

- Memory is bottleneck for backward accumulation
 - Linear to #layers and batch size
 - Limited GPU memory (32GB max)
- Trade computation for memory
 - Save a part of intermediate results
 - Recompute the rest when needed

Rematerialization

Complexities

- An additional forward pass
- Assume *m* parts, then O(m) for head results, O(n/m) to store one part's results
 - Choose $m = \sqrt{n}$ then the memory complexity is $O\left(\sqrt{n}\right)$
- Applying to deep neural networks
 - Only throw aways simple layers, e.g. activation, often
 <30% additional overhead
 - Train 10x larger networks, or 10x large batch size

Autograd in MXNet

https://d2l.ai/chapter_crashcourse/autograd.html

Limitations

- Does not support every operations
 - Indexing
 - Inplace
- Not smart enough to get numerical stable results
 - Homework

