

Machine Learning and Data Mining (COMP 5318)

Linear Regression

Dr Tongliang Liu

Review

Logistic Regression

Discriminative model for binary classification

$$p(y|\mathbf{x}, \mathbf{w}) = \operatorname{Ber}(y|\sigma(\eta)) = \sigma(\eta)^{y} (1 - \sigma(\eta))^{1-y}$$

$$\eta = \mathbf{w}^{T} \mathbf{x}$$

$$\sigma(\eta) \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-\eta)} = \frac{e^{\eta}}{e^{\eta} + 1}$$

Sigmoid or Logistic function

Logistic Regression

• Assumes a parametric form for directly estimating $P(Y \mid X)$. For binary concepts, this is:

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

$$P(Y = 1|X) = 1 - P(Y = 0|X)$$

$$= \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

- Equivalent to a one-layer backpropagation neural net.
- Logistic regression is the source of the sigmoid function used in backpropagation.
- Objective function for training is somewhat different.

Logistic Regression Objective

 Weights are set during training to maximise the conditional data likelihood:

$$W \leftarrow \underset{W}{\operatorname{argmax}} \prod_{d \in D} P(Y^d \mid X^d, W)$$

where D is the set of training examples and Y^d and X^d denote, respectively, the values of Y and X for example d.

 Equivalently viewed as maximising the conditional log likelihood (CLL)

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum_{d \in D} \ln P(Y^d \mid X^d, W)$$

Logistic Regression Objective

 Equivalently viewed as maximising the conditional log likelihood (CLL)

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum_{d \in D} \ln P(Y^d \mid X^d, W)$$

The objective function

$$\begin{split} & \min_{W} - \frac{1}{|D|} \sum_{d \in D} \left(Y^d \ln \left(\frac{\exp(W^\top X^d)}{1 + \exp(W^\top X^d)} \right) + (1 - Y^d) \ln \left(\frac{1}{1 + \exp(W^\top X^d)} \right) \right) \\ & = \min_{W} \frac{1}{|D|} \sum_{d \in D} \ln \left(1 + \exp(W^\top X^d) \right) - Y^d W^\top X^d \end{split}$$

Maximum margin classifiers (1)

Given a training set

Inputs $\mathbf{x}_1, \dots, \mathbf{x}_N$

$$\mathbf{x}_1, \dots, \mathbf{x}_N$$

Targets

 $t_1, \ldots, t_N \text{ where } t_n \in \{-1, 1\}$

Linear classifier

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) + b$$

Output sign of y(x)

so that
$$t_n y(\mathbf{x}_n) > 0$$

for all points in the training set

Maximum margin classifiers(2)

Assuming $\phi(\mathbf{x}) = \mathbf{x}$

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

For points in the boundary

$$y(\mathbf{x}) = 0$$
 and

$$\frac{\mathbf{w}^{\mathrm{T}}\mathbf{x}}{\|\mathbf{w}\|} = -\frac{w_0}{\|\mathbf{w}\|}$$

For arbitrary x

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$
 and $r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$

Maximum margin classifiers(3)

For all points correctly classified $t_n y(\mathbf{x}_n) > 0$, $b = \omega_0$

and
$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

Maximum margin is found by

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

However, this is too difficult to optimise!

Maximum margin classifiers (4)

Note that if
$$\mathbf{w} \to \kappa \mathbf{w}$$
 $t_n y(\mathbf{x}_n)/\|\mathbf{w}\|$ is unchanged $b \to \kappa b$

Setting $t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) = 1$ for the support vectors:

Quadratic programming

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

s.t.

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \ n=1,\ldots,N$$

Support Vector Machines

Quadratic programming

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \, \frac{1}{2} \|\mathbf{w}\|^2$$

s.t.

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \ n=1,\ldots,N$$

- Solve efficiently by quadratic programming (QP)
- Hyperplane defined by support vectors

What happens if the data is not linearly separable?

Quadratic programming

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \, \frac{1}{2} \|\mathbf{w}\|^2$$

s.t.

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right) \geqslant 1, \ n=1,\ldots,N$$

If margin ≥ 1, don't care
If margin < 1, pay linear penalty

Soft Margin Classification

Quadratic programming

$$\underset{\mathbf{w},b}{\operatorname{arg min}} C \sum_{n=1}^{N} \xi_n + \frac{1}{2} ||\mathbf{w}||^2$$

s.t.

$$t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n$$

$$\xi_n \geqslant 0$$

$$n = 1, \dots, N$$

Linear Regression

C. Bishop, Pattern Recognition and Machine Learning, Chapter 3: Linear Models for Regression Springer New York, 2006

Linear Regression

Goal: Predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.

Given training data of size N: $\{(\mathbf{x}_n, t_n)\}_{n=1,...,N}$

Deterministic: Construct function $y(\mathbf{x})$ to predict t.

Probabilistic: Find predictive distribution $p(t|\mathbf{x})$

Areas for Applying Regression

Academia

Robotics: Autonomous Navigation, Agriculture,

Environmental Monitoring.

Biology: Cancer Research, Metabolic inference,

Brain and Mind Centre, Milk Production.

Astronomy: Light Curve Modelling.

Social Sciences: Criminology, Subnational/International Conflict,

Linguistics, Aged Care Facilities.

Industry

Retail: Amazon, Facebook, Google, etc.

Consultancy: Mining, Energy Generation and Distribution.

Banks: Loan estimation, Risk assessment.

 $sin(2\pi x)$

$$t = f(x) = \sin(2\pi x)$$

$$N = 10$$

$$\mathcal{D} = \{(x_n, t_n)\}_{n=1,...,10}$$

-1-

Polynomial fit:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

Sum-of-Squares Error Function $E(\mathbf{w})$

Polynomial Fit: $y(x, \mathbf{w})$

Best fit:
$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w})$$

$$E_n = y(x_n, \mathbf{w}) - t_n$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} E_n^2$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Degree of Polynomial: M

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Testset: N=10

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_{6}^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Behaviour with dataset size (M = 9):

Regularisation:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Penalise large coefficient values

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

 λ encodes the relative importance of the regularisation.

Regularisation:

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
$w_3^{\overline{\star}}$	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Regularisation: (M = 9)

Linear Basis Function Models

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

$$\mathbf{w} = (w_0, ..., w_{M-1})^{\mathrm{T}} \quad \boldsymbol{\phi} = (\phi_0, ..., \phi_{M-1})^{\mathrm{T}}$$

 $\phi_j(\mathbf{x})$ are the basis functions. $\phi_0(\mathbf{x}) = 1$

Linear Basis Function Models

Examples of Basis Functions:

Polynomial Basis Functions

$$\phi_j(x) = x^j$$

Gaussian **Basis Functions**

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\} \quad \phi_j(x) = \frac{1}{1+\exp\left\{-\frac{x-\mu_j}{s}\right\}}$$

Sigmoidal **Basis Functions**

$$\phi_j(x) = \frac{1}{1 + \exp\left\{-\frac{x - \mu_j}{s}\right\}}$$

Modelling Noisy Observations

Lets assume observations from a deterministic function with added Gaussian noise.

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, \beta^{-1})$

equivalently,

$$p(t|\mathbf{x}, \mathbf{w}, \beta^{-1}) = \mathcal{N}\left(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)$$

Given the training data: $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ $oldsymbol{ au} = \{t_1, \dots, t_N\}$

The expression of the likelihood of the iid data given the model is:

$$p(\boldsymbol{\tau}|\mathbf{X}, \mathbf{w}, \beta^{-1}) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right)$$

Modelling Noisy Observations

Lets assume observations from a deterministic function with added Gaussian noise.

Maximum Likelihood

$$p(\boldsymbol{\tau}|\mathbf{X}, \mathbf{w}, \beta^{-1}) = \prod_{n=1}^{N} \mathcal{N}\left(t_{n}|\mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\right)$$

$$= \prod_{n=1}^{N} \sqrt{\frac{\beta}{2\pi}} \exp{-\frac{\beta(t_{n} - \mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{n}))^{2}}{2}}$$

$$= \left(\frac{\beta}{2\pi}\right)^{N/2} \prod_{n=1}^{N} \exp{-\frac{\beta(t_{n} - \mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{n}))^{2}}{2}}$$

$$\ln(\cdot) = \ln(\cdot)$$

$$\ln p(\boldsymbol{\tau}|\mathbf{X}, \mathbf{w}, \beta^{-1}) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \beta \sum_{n=1}^{N} \frac{\left(t_{n} - \mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{n})\right)^{2}}{2}$$

$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \beta E(\mathbf{w})$$

Maximum Likelihood

$$\mathbf{w}_{\mathrm{ML}} = \operatorname*{argmax}_{\mathbf{w}} \, \ln p(\boldsymbol{\tau} | \mathbf{X}, \mathbf{w}, \boldsymbol{\beta}^{-1})$$

$$\Rightarrow \frac{\partial \ln p(\boldsymbol{\tau}|\mathbf{w}, \beta^{-1})}{\partial \mathbf{w}} \bigg|_{\mathbf{w}_{\mathrm{ML}}} = 0$$
$$\sum_{n=1}^{N} \left(t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right) \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = 0$$

$$\sum_{n=1}^{N} (t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = 0$$

Solving for
$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}oldsymbol{ au}$$

where the design matrix is:

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

Maximum Likelihood

We can also maximise the log likelihood with respect to the noise β .

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \mathbf{w}_{\text{ML}}^{\text{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2$$

Predictive Distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

Sequential Learning

Deal with Large Datasets

Two options: Incremental or Stochastic selection of data-points.

Stochastic Gradient Descent (for iteration i)

$$\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} - \eta \nabla E_n$$
$$\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \eta \left(t_n - \mathbf{w}^{(i)T} \boldsymbol{\phi}_n \right) \boldsymbol{\phi}_n$$

Least Mean Square algorithm (LMS)

Geometry of Least Squares

N-dimensional Space

Regularised Least Squares

Are we dealing with overfitting? NO

The expression of the log likelihood:

$$\ln p(\boldsymbol{\tau}|\mathbf{w},\beta^{-1}) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \beta E(\mathbf{w})$$

Introduce regulariser: $E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$ Data Term Regularisation Term

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Following previous maximisation procedure:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \boldsymbol{\tau}$$

Generalised Regulariser

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Multiple Outputs

K > I target variables.

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

$${f W}$$
 is a weight matrix $M imes K$ ${f T}$ is a target matrix $N imes K$

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\mathbf{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}$$

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

Bias-Variance Trade Off

Minimising both the weight vector and regularisation coefficient is not the right approach.

Over-fitting in the maximum-likelihood setting does not happen when marginalising out parameters as in the Bayesian setting (next lecture).

Let us look at various fits for subsets of the training data.

Bias-Variance Visualisation

Result of fitting the model to each dataset.

Average of the fits.

Bias-Variance Visualisation

Result of fitting the model to each dataset.

Average of the fits.

Bias-Variance Visualisation

Result of fitting the model to each dataset.

Average of the fits.

The Bias-Variance Trade Off

From these plots, we note that an over-regularised model (large λ) will have a high bias, while an under-regularised model (small λ) will have a high variance.

How to prevent overfitting?

Behaviour with dataset size

How to prevent overfitting?

Result of fitting the model to each dataset.

Average of the fits.

How to prevent overfitting?

- Increasing training sample size.
- Controlling the complexity of hypothesis, e.g., by employing regularisation.

Estimation vs Inference

- Learning as optimisation (frequentist): Given D, choose \hat{f} to approximate f as closely as possible, so as to minimise (future) expected risk
- ullet Usually compute parameter estimate $\hat{ heta}$
- Learning as inference (Bayesian): Given D, compute posterior over functions p(f|D)
- Or posterior over parameters

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

• Decision theory demonstrates that one of the best ways to minimise frequentist risk is to be Bayesian.