Claims:

1. A compound of formula (I)

$$R3$$
 O-R4 O-R6 O-R8 O-R8 O-R9 R2 R1 N R5 E R7 G WO-R9 (1)

in which

5

10

15

20

25

30

▶ n represents 1, 2 or 3;

▶ A represents a substituent chosen from -C(O)-, -C(S)-, -CH₂-, -CHR¹⁰-, -CR¹⁰R¹¹-, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S-, -C(O)NH-, -C(NH)NH- and -C(S)NH-;

▶ B represents

an arylene;

 a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a naphthylene;

 a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

• a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms each;

 a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a biphenylene;

 or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl;

► C represents a substituent chosen from -O-, -S-, -CH₂-, -CHR¹⁷-, -CR¹⁷R¹⁸-, -NH- and -NR¹⁹:

▶ D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

► E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂ and NHR²⁰;

- ► R¹ represents a substituent chosen from H, C₁⁻₆-alkyl, C(O)H and C(O)CH₃;
- ▶ R^2 , R^3 , R^6 , R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H, $C_{1^-6^-alkyl}$, $C(O)C_{1^-6^-alkyl}$, $-C(S)C_{1^-6^-alkyl}$, $-C(O)OC_{1^-6^-alkyl}$, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(NH)NH_2$, $-C(NH)NH_3$,
- ▶ R⁴ represents a substituent chosen from H, C₁₋₆-alkyl and R²¹;
- ▶ R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl and R²²;
- ► R⁷ represents a substituent chosen from H, C₁₋₆-alkyl, arabinosyl and R²³;
- ► R⁸ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄ and R²⁴:
 - ▶ R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol and R²⁵,
 - ► R¹⁰, R¹¹, R¹⁷ and R¹⁸ represent, independently of each other, a substituent chosen from C₁₋₆-alkyl and F;
 - ▶ R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(O)NH_2$,

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable, such as lithium, sodium, potassium and tetraalkylammonium salts.

- 2. The compound of formula (I) as claimed in claim 1, having one or other of the following characteristics, taken separately or in combination:
 - n represents 2 or 3;

5

10

15

20

25

30

- ➤ A represents -C(O)- or -CH₂-;
- ▶ B represents a phenylene;
- ▶ C represents -O-;
- ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H, CH₃ or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.

3. The compound of formula (I) as claimed in claim 1 or 2, simultaneously having the following characteristics:

n represents 2 or 3;

5

10

15

- ▶ A represents -C(O)- or -CH₂-;
- ► E and G represent NHC(O)CH₃;
- ► R¹ represents H, CH₃ or C(O)CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 4. The compound of formula (I) as claimed in any one of claims 1 to 3, simultaneously having the following characteristics:
 - n represents 2 or 3;
- A represents -C(O)- or -CH₂-;
 - ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ► E and G represent NHC(O)CH₃;
 - R¹ represents H, CH₃ or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 5. The compound of formula (I) as claimed in any one of claims 1 to 4, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ➤ A represents -C(O)- or -CH₂-;
 - ▶ C represents -O-;
- D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H, CH₃ or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ⇒ R⁴ represents H, C(O)CH₃ or C(O)NH₂:
 - ▶ R^8 represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₇₈alkyl)₄, fucosyl or methylfucosyl.

WO 2005/063784

5

10

15

- 6. The compound of formula (I) as claimed in any one of claims 1 to 5, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ► A represents -C(O)- or -CH₂-;
 - B represents a phenylene;
 - ► C represents -O-;
 - ▶ D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;
 - ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H, CH₃ or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 7. The compound as claimed in claim 1 and of formula (la)

20 in which

25

- ▶ n represents 1, 2 or 3,
- B represents
 - an arylene;
 - a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
 - a naphthylene;
 - a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
 - a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms
 each;
 - a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a biphenylene;

5

10

15

20

25

30

35

 or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl;

- ► C represents a substituent chosen from -O-, -S-, -CH₂-, -CHR¹⁷-, -CR¹⁷R¹⁸-, -NH- or -NR¹⁹:
- ▶ D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;
- ► E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;
- ▶ R¹ represents a substituent chosen from H, C₁-6-alkyl, C(O)H, and C(O)CH₃;
- R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen from H, $C_{1^-6^-}$ alkyl, $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6^-}$ alkyl, $-C(S)NHC_{1^-6^-}$ alkyl, $-C(S)NHC_{1^-6^-}$ alkyl, $-C(S)NHC_{1^-6^-}$ alkyl,
 - ► R⁴ represents a substituent chosen from H, C₁₋₆-alkyl or R²¹;
 - ► R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl or R²²;
 - ► R⁷ represents a substituent chosen from H, C₁₋₆-alkyl, arabinosyl or R²³;
 - ► R⁸ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄ or R²⁴;
 - ► R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol or R²⁵;
 - ► R¹⁰, R¹¹, R¹⁷ and R¹⁸ represent, independently of each other, a substituent chosen from C₁₇₆-alkyl or F;
 - ▶ R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or $C_{1^-6^-}$ alkyl, $-C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(
 - ▶ R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_$

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

- 8. The compound of formula (Ia) as claimed in claim 7, having one or other of the following characteristics, taken separately or in combination:
 - n represents 2 or 3;

- B represents a phenylene;
- C represents -O-;

5

10

20

25

- ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
- ▶ E and G represent NHC(O)CH₃;
- ► R¹ represents H or CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
 - 9. The compound of formula (Ia) as claimed in claim 7 or 8, simultaneously having the following characteristics:
 - ▶ n represents 2 or 3;
- ▶ E and G represent NHC(O)CH₃;
 - ► R¹ represents H or CH₃:
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
 - 10. The compound of formula (Ia) as claimed in any one of claims 7 to 9, simultaneously having the following characteristics:
 - ▶ n represents 2 or 3;
 - ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ▶ E and G represent NHC(O)CH₃;
 - ▶ R¹ represents H or CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 11. The compound of formula (Ia) as claimed in any one of claims 7 to 10, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ► C represents -O-;
 - ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

WO 2005/063784

5

10

15

20

- ► E and G represent NHC(O)CH₃;
- ► R¹ represents H or CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 12. The compound of formula (Ia) as claimed in any one of claims 7 to 11, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ▶ B represents a phenylene;
 - ► C represents -O-;
 - ▶ D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;
 - ► E and G represent NHC(O)CH₃;
 - → R¹ represents H or CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H₁ C(O)CH₃ or C(O)NH₂;
 - ▶ R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 13. The compound as claimed in claim 1 and of formula (Ib)

$$R3$$
 O-R4 O-R6 O-R8 O-R8 O-R9 R2 R1 $R5$ E R7 G WO-R9 (Ib)

25

30

in which

- ▶ n represents 1, 2 or 3,
- ▶ B represents
 - an arylene;
 - a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
 - a naphthylene;

 a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

- a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms
 each;
- a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a biphenylene;

5

10

15

20

25

30

35

 or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl;

- ► C represents a substituent chosen from -O-, -S-, -CH₂-, -CHR¹⁷-, -CR¹⁷R¹⁸-, -NH- or -NR¹⁹.
- ▶ D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;
- ► E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;
- ▶ R¹ represents a substituent chosen from H, C₁-6-alkyl, C(O)H, and C(O)CH₃;
- ▶ R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen from H, $C_{1^-6^-}$ alkyl, $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_2$,
- ▶ R⁴ represents a substituent chosen from H, C₁-6-alkyl or R²¹;
- ▶ R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl or R²²;
- ▶ R⁷ represents a substituent chosen from H, C₁₋₆-alkyl, arabinosyl or R²³;
- ▶ R⁸ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄ or R²⁴;
- ▶ R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol or R²⁵;
- ► R¹⁰, R¹¹, R¹⁷ and R¹⁸ represent, independently of each other, a substituent chosen from C_{1.5}-alkyl or F;
 - ▶ R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or $C_{1^-6^-}$ alkyl, $-C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(
 - ▶ R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6^-}$ alkyl, $-C(S)NHC_{1^-6^-}$ alkyl or $-C(NH)NHC_{1^-6^-}$ alkyl;

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof,

which are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

- 5 14. The compound of formula (lb) as claimed in claim 13, having one or other of the following characteristics, taken separately or in combination:
 - n represents 2 or 3;
 - B represents a phenylene;
 - C represents -O-;

15

20

25

- D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H or C(O)CH₃;
 - → R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-8alkyl)₄, fucosyl or methyl-fucosyl.
 - 15. The compound of formula (Ib) as claimed in claim 13 or 14, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ▶ E and G represent NHC(O)CH₃;
 - ► R¹ represents H or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 16. The compound of formula (lb) as claimed in any one of claims 13 to 15 simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ▶ D'represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ▶ E and G represent NHC(O)CH₃;
 - ▶ R¹ represents H or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ▶ R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.

10

- 17. The compound of formula (lb) as claimed in any one of claims 13 to 16 simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ➤ C represents -O-;
 - ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ▶ E and G represent NHC(O)CH₃;
 - ► R¹ represents H or C(O)CH₃;
 - $ightharpoonup R^2$, R^3 , R^5 , R^6 , R^7 and R^9 represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 15 18. The compound of formula (Ib) as claimed in any one of claims 13 to 17 simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ▶ B represents a phenylene;
 - ▶ C represents -O-;
- D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;
 - ▶ E and G represent NHC(O)CH₃;
 - ► R¹ represents H or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
 - 19. The compound as claimed in claim 1 and of formula (Ic)

30

25

(Ic)

in which

- ▶ n represents 1, 2 or 3;
- ▶ A represents a substituent chosen from -C(O)-, -C(S)-, $-CH_2$ -, $-CHR^{10}$ -, $-CR^{10}R^{11}$ -, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S-, -C(O)NH-, -C(NH)NH- or -C(S)NH-;
- ▶ B represents

5

10

15

20

25

30

35

- an arylene;
- a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a naphthylene;
- a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms
 each;
- a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a biphenylene;
- or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl;

- ▶ D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;
- ▶ É and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;
- ► R¹ represents a substituent chosen from H, C₁-6-alkyl, C(O)H, and C(O)CH₃;
- ▶ R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen from H, C_{1^-6} -alkyl, $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl;
- ▶ R⁴ represents a substituent chosen from H, C₁₋₆-alkyl or R²¹;
- ▶ R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl or R²²;
- ► R⁷ represents a substituent chosen from H, C₁₋₆-alkyl, arabinosyl or R²³;
- ▶ R⁸ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄ or R²⁴;
- ▶ R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol or R²⁵;
- $ightharpoonup R^{10}$, R^{11} , R^{17} and R^{18} represent, independently of each other, a substituent chosen from C_{1^-6} -alkyl or F;

▶ R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or $C_{1^-6^-}$ alkyl, $-C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(

▶ R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

- 20. The compound of formula (Ic) as claimed in claim 19, having one or other of the following characteristics, taken separately or in combination:
 - ▶ n represents 2 or 3;

5

10

15

20

25

30

- ➤ A represents -C(O)- or -CH₂-;
- ▶ B represents a phenylene;
- ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
- ▶ E and G represent NHC(O)CH₃;
- R¹ represents H, CH₃ or C(O)CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-8alkyl)₄, fucosyl or methyl-fucosyl.
- 21. The compound of formula (Ic) as claimed in claim 19 or 20, simultaneously having the following characteristics:
 - ▶ n represents 2 or 3;
 - ➤ A represents -C(O)- or -CH₂-;
 - ► E and G represent NHC(O)CH₃;
 - ▶ R¹ represents H, CH₃ or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methyl-fucosyl.
- 22. The compound of formula (Ic) as claimed in any one of claims 19 to 21, simultaneously having the following characteristics:

10

15

20

25

- ▶ n represents 2 or 3;
- ▶ A represents -C(O)- or -CH₂-;
- ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
- ► E and G represent NHC(O)CH₃;
- ▶ R¹ represents H, CH₃ or C(O)CH₃;
- → R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methylfucosyl.
- 23. The compound of formula (Ic) as claimed in any one of claims 19 to 22, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ➤ A represents -C(O)- or -CH₂-;
 - B represents a phenylene;
 - ▶ D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;
 - ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H, CH₃ or C(O)CH₃;
 - ▶ R¹ represents H or CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 24. The compound as claimed in claim 1 and of formula (ld)

in which

- n represents 1, 2 or 3;
- B represents
 - an arylene;

 a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a naphthylene;

5

10

15

20

25

30

35

- a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms
 each;
- a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a biphenylene;
- or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl;

- ▶ D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;
- ► E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;
- ▶ R¹ represents a substituent chosen from H, C₁-6-alkyl, C(O)H, and C(O)CH₃;
- ▶ R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen from H, C_{1^-6} -alkyl, $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl;
- ▶ R⁴ represents a substituent chosen from H, C₁₋₆-alkyl or R²¹;
- ▶ R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl or R²²;
- ▶ R⁷ represents a substituent chosen from H, C₁₋₆-alkyl, arabinosyl or R²³;
- ▶ R⁸ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄ or R²⁴;
- ▶ R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol or R²⁵;
- Arr R¹⁰, R¹¹, R¹⁷ and R¹⁸ represent, independently of each other, a substituent chosen from C₁₋₆-alkyl or F;
- ▶ R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or $C_{1^-6^-}$ alkyl, $-C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(
- ▶ R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(O)NH_$

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

- 25. The compound of formula (Id) as claimed in claim 24, having one or other of the following characteristics, taken separately or in combination:
 - n represents 2 or 3;

5

10

15

25

- B represents a phenylene;
- ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms:
- ► E and G represent NHC(O)CH₃;
- ▶ R¹ represents H or CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 26. The compound of formula (Id) as claimed in claim 24 or 25, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ► E and G represent NHC(O)CH₃;
 - → R¹ represents H or CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methyl-fucosyl.
- The compound of formula (Id) as claimed in any one of claims 24 to 26, simultaneously having the following characteristics:
 - ▶ n represents 2 or 3;
 - ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - E and G represent NHC(O)CH₃;
 - → R¹ represents H or CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;

► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.

- 28. The compound of formula (Id) as claimed in any one of claims 24 to 27, simultaneously having the following characteristics:
 - ▶ n represents 2 or 3;
 - ▶ B represents a phenylene;
 - ▶ D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;
 - ► E and G represent NHC(O)CH₃;
 - → R¹ represents H or CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methylfucosyl.
 - 29. The compound as claimed in claim 1 and of formula (le)

20

25

30

5

10

15

in which

- ▶ n represents 1, 2 or 3;
- B represents
 - an arylene
 - a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
 - a naphthylene;
 - a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;
- a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms
 each;

• a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a biphenylene;

5

10

15

20

25

30.

35

or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen,
 oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl;

- ▶ D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;
- ► E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;
- ▶ R¹ represents a substituent chosen from H, C₁-g-alkyl, C(O)H, and C(O)CH₃;
- ► R², R³, and R⁶ represent, independently of each other, a substituent chosen from H, C₁₋₆-alkyl, C(O)C₁₋₆-alkyl, -C(S)C₁₋₆-alkyl, -C(O)OC₁₋₆-alkyl, -C(O)NH₂, -C(S)NH₂, -C(NH)NH₂, -C(O)NHC₁₋₆-alkyl, -C(S)NHC₁₋₆-alkyl or -C(NH)NHC₁₋₆-alkyl;
 - ► R⁴ represents a substituent chosen from H. C₁₋₆-alkyl or R²¹;
 - ► R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl or R²²;
- ▶ R⁷ represents a substituent chosen from H, C₁₋₆-alkyl, arabinosyl or R²³;
 - ► R⁸ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄ or R²⁴;
 - ► R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol or R²⁵.
 - $ightharpoonup R^{10}$, R^{11} , R^{17} and R^{18} represent, independently of each other, a substituent chosen from C_{1^-6} -alkyl or F;
 - ▶ R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or $C_{1^-6^-}$ alkyl, $-C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6^-}$ alkyl, $-C(S)NHC_{1^-6^-}$ alkyl or $-C(NH)NHC_{1^-6^-}$ alkyl;
 - ▶ R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl;

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

30. The compound of formula (le) as claimed in claim 29, having one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

5

10

20

25

- B represents a phenylene;
- ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
- ▶ E and G represent NHC(O)CH₃;
- → R¹ represents H or C(O)CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- → R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-alkyl)₄, fucosyl or methyl-fucosyl.
 - 31. The compound of formula (le) as claimed in claim 29 or 30, simultaneously having the following characteristics:
 - n represents 2 or 3;
- 15 ► E and G represent NHC(O)CH₃;
 - → R¹ represents H or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
 - 32. The compound of formula (le) as claimed in any one of claims 29 to 31, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - ▶ D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;
 - ▶ E and G represent NHC(0)CH₃;
 - ▶ R¹ represents H or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
 - ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
 - ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methyl-fucosŷl.
- 33. The compound of formula (le) as claimed in any one of claims 29 to 32, simultaneously having the following characteristics:
 - n represents 2 or 3;
 - B represents a phenylene;
 - ▶ D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

- ➤ E and G represent NHC(O)CH₃;
- → R¹ represents H or C(O)CH₃;
- ► R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;
- ► R⁴ represents H, C(O)CH₃ or C(O)NH₂;
- ► R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methyl-fucosyl.
- 34. The compound as claimed in any one of claims 1 to 33, for which
 - B represents

5

10

15

25

35

- a naphthylene;
 - an arylene;
 - a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; or
 - a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl.

- 20 35. The compound as claimed in any one of claims 1 to 34, for which
 - B represents
 - an arylene;
 - or a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl.

- 36. The compound as claimed in any one of claims 1 to 35, for which
- 30 ▶ B represents
 - a phenylene;
 - or a heterophenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl.

37. The compound as claimed in any one of claims 1 to 33, for which

B represents a substituent chosen from:

B1	R12	B6	S +N R12	B11	R12 R13	B16	R13 R12
B2	R12 N R13	B7	0 + N R12	B12	R13 R12	B17	R13 H N R12
В3	R12	B8	H N +N R12	B13	R13 R12	B18	R12 H
В4	0 R12	B9 ·	R12 R13	B14	R12 R13	B19	R12 S R13
B5	H N R12	B10	R13 R12	B15	R13 N R12	B20	R13 R12 S N

in which R¹² and R¹³ represent two substituents chosen, independently of each other, from halogen, CN, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁₋₆-alkyl.

- 38. The compound as claimed in claim 37, for which B represents a phenylene B1 that may be substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, CF_3 , OCF_3 , $-NO_2$, N_3 , OR^{14} , SR^{14} , $NR^{15}R^{16}$ and $C_{1^{-6}}$ -alkyl.
- 39. The compound as claimed in one of the preceding claims, having one of the following characteristics, taken separately or in combination:
 - \rightarrow n = 2 or 3;

10

- ▶ A represents -C(O)- or -CH₂-;
- C represents -O-;
 - ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H or C(O)CH₃;
 - ► R², R³, R⁵, R⁶, and R⁷ represent a hydrogen atom;
 - ► R⁴ represents a substituent chosen from H, C(O)CH₃ and C(O)NH₂;

- ► R⁸ represents a substituent chosen from H, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K and SO₃N(C₁₋₈alkyl)₄;
- R⁹ represents a hydrogen atom.
- 40. The compound as claimed in one of the preceding claims, having all of the following characteristics:
 - \rightarrow n = 2 or 3;
 - ▶ A represents -C(O)- or -CH₂-:
 - ► C represents -O-;
- 10 ► E and G represent NHC(O)CH₃;
 - ► R¹ represents H or C(O)CH₃;
 - ▶ R², R³, R⁵, R⁶, and R⁷ represent a hydrogen atom;
 - ► R⁴ represents a substituent chosen from H, C(O)CH₃ or C(O)NH₂;
 - ▶ R⁸ represents a substituent chosen from H, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K or SO₃N(C₁₋₈alkyl)₄;
 - R⁹ represents a hydrogen atom.
 - 41. The compound as claimed in one of the preceding claims, for which R^8 represents H, SO_3H , SO_3Li , SO_3Na , $SO_3N(C_{1^-8}alkyl)_4$ or a substituent of formula:

15

in which

- ► R²⁶ represents a substituent chosen from H and CH₃;
- ▶ R^{27} and R^{28} represent, independently of each other, a substituent chosen from H, C(O)CH₃, SO₃H, SO₃Li, SO₃Na, SO₃K and SO₃N(C₁₋₈alkyl)₄.

25

- 42. The compound as claimed in claim 41, for which R^{26} , R^{27} and R^{28} represent a hydrogen atom.
- 43. The compound as claimed in one of the preceding claims, for which D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 7 to 15 carbon atoms.
 - 44. The compound as claimed in one of the preceding claims, for which D represents a hydrocarbon-based chain according to one of the formulae represented below

in which

5

15

20

 \rightarrow m = 1 to 12

p = 0 to 11

 \Rightarrow q = 6 to 14

 \rightarrow s = 5 to 13

with m+p \leq 12 and m+p \geq 4.

45. The compound as claimed in one of the preceding claims, for which D represents a hydrocarbon-based chain according to one of the formulae represented below

in which

 \rightarrow m = 1 to 12

p = 0 to 11

ightharpoonup q = 6 to 14

with $m+p \le 12$ and $m+p \ge 4$;

46. The compound as claimed in one of the preceding claims, for which D represents a linear hydrocarbon-based chain containing 11 carbon atoms, which is saturated, or unsaturated between carbon atoms 4 and 5.

47. The compound as claimed in one of the preceding claims, corresponding to one of the following formulae:

10

in which, when it is present, M represents a cation chosen from H^+ , Li^+ , Na^+ , K^+ and $(C_{1^-8}alkyl)_4N^+$.

- 48. The use of a compound as claimed in any one of claims 1 to 47, as a nodulation factor for a plant.
- 49. The use as claimed in claim 48, characterized in that said plant is a legume.
- 50. The use as claimed in claim 49, characterized in that said legume is soybean, pea, horse bean, groundnut, bean, lupin, alfalfa or clover.
- 51. The use of a compound as claimed in any one of claims 1 to 47, as a plant growth stimulation factor
 - 52. A process for treating seeds, comprising the application, alone or as a combination with other active molecules, of one or more compound(s) as defined in any one of claims 1 to 47.