Problem Set 2

Problems marked (T) are for discussions in Tutorial sessions.

1. (T) A square matrix P is called a *permutation matrix* if each row and column of P contains exactly one 1 and the rest of the entries are 0. Determine all the 3×3 permutation matrices. Now,

let $A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}$. Write down the permutation matrix P such that PA is upper triangular.

Which permutation matrices P_1 and P_2 make P_1AP_2 lower triangular?

- 2. **(T)** Decide if they are row-equivalent:
 - (a) $\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 5 & -1 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \\ 2 & 0 & 4 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 4 & 3 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \end{bmatrix}$
- 3. Supply two examples each and explain their geometrical meaning.
 - (a) Two linear equations in two variables with exactly one solution.
 - (b) Two linear equations in two variables with infinitely many solutions.
 - (c) Two linear equations in two variables with no solutions.
 - (d) Three linear equations in two variables with exactly one solution.
 - (e) Three linear equations in two variables with no solutions.
- 4. Suppose that \mathbf{x} and \mathbf{y} are two distinct solutions of the system $A\mathbf{x} = \mathbf{b}$. Prove that there are infinitely many solutions to this system, by showing that $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ is also a solution, for each $\lambda \in \mathbb{R}$. Do you have a geometric interpretation?
- 5. Is it possible to have $RREF([A|\mathbf{b}]) = \begin{bmatrix} 1 & * & * & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$? Give reasons for your answer.
- 6. Give examples of three matrices of size 3×4 that are in Row Reduced Echelon Form (RREF) but are different from the one given above. Give examples of matrices that are not in RREF, specifying the reasons.
- 7. Let B be a square invertible matrix. Then, prove that the system $A\mathbf{x} = \mathbf{b}$ and $BA\mathbf{x} = B\mathbf{b}$ are row-equivalent.
- 8. [T] Suppose $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have same solutions for every \mathbf{b} . Is it true that A = C?

- 9. Find the coefficients a, b, c, d so that the graph of $y = ax^3 + bx^2 + cx + d$ passes through (1,2), (-1,6), (2,3)(0,1).
- 10. Find matrices A and B with the given property or explain why you can not:
 - (a) The only solution to $A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - (b) The only solution to $B\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- 11. Apply Gauss elimination to solve the system 2x+y+2z=3 3x-y+4z=7 and 4x+3y+6z=5.
- 12. **(T)** Using Gauss Jordan method, find the inverse of $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.
- 13. (T) Let $B_{n\times n}$ be a real skew-symmetric. Show that I-B is nonsingular.
- 14. (T) For two $n \times n$ matrices A and B, show that $\det(AB) = \det(A)\det(B)$.
- 15. For an $n \times n$ matrix $A = [a_{ij}]$, prove that $\det(A) = \det(A^T)$.
- 16. Let A be an $n \times n$ matrix. Prove that
 - (a) If $A^2 = \mathbf{0}$ then A is singular.
 - (b) If $A^2 = A, A \neq I$ then A is singular.
- 17. Consider the system $A\mathbf{x} = \mathbf{b}$. Let $RREF([A|\mathbf{b}])$ be one of the matrices in Question 5. Now, recall the matrices A_j 's, for $1 \le j \le 3$ (defined to state the Cramer's rule for solving a linear system), that are obtained by replacing the j-th column of A by \mathbf{b} . Then, we see that the above system has NO solution even though $\det(A) = 0 = \det(A_j)$, for $1 \le j \le 3$.
- 18. (T) Let A be an invertible square matrix with integer entries. Show that A^{-1} has integer entries if and only if $det(A) = \pm 1$.
- 19. Let A be an $n \times n$ matrix. Prove that the following statements are equivalent:
 - (a) $\det(A) \neq 0$.
 - (b) A is invertible.
 - (c) The homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - (d) The row-reduced echelon form of A is I_n .
 - (e) A is a product of elementary matrices.
 - (f) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every <u>.</u>
 - (g) The system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} .

 $19a \Longrightarrow 19b$

By, definition, whenever $\det(A) \neq 0$, $A^{-1} = \frac{C^t}{\det(A)}$, where C is the co-factor matrix.

 $19b \Longrightarrow 19a$

As A is invertible, $AA^{-1} = I_n$ and hence $\det(A)\det(A^{-1}) = \det(I_n) = 1$. Hence, $\det(A) \neq 0$.

 $19b \Longrightarrow 19c$

As A is invertible, $A^{-1}A = I_n$. Let \mathbf{x}_0 be a solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$. Then

$$\mathbf{x}_0 = I_n \mathbf{x}_0 = (A^{-1}A)\mathbf{x}_0 = A^{-1}(A\mathbf{x}_0) = A^{-1}\mathbf{0} = \mathbf{0}.$$

Thus, **0** is the only solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$.

 $19c \Longrightarrow 19d$

Let $\mathbf{x}^t = [x_1, x_2, \dots, x_n]$. As $\mathbf{0}$ is the only solution of the linear system $A\mathbf{x} = \mathbf{0}$, the final equations are $x_1 = 0, x_2 = 0, \dots, x_n = 0$. These equations can be rewritten as

$$1 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \dots + 0 \cdot x_n = 0$$

$$0 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + \dots + 0 \cdot x_n = 0$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \dots + 0 \cdot x_n = 0$$

$$\vdots = \vdots$$

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \dots + 1 \cdot x_n = 0.$$

That is, the final system of homogeneous system is given by $I_n \cdot \mathbf{x} = \mathbf{0}$. Or equivalently, the row-reduced echelon form of the augmented matrix $[A \ \mathbf{0}]$ is $[I_n \ \mathbf{0}]$. That is, the row-reduced echelon form of A is I_n .

 $19d \Longrightarrow 19e$

Suppose that the row-reduced echelon form of A is I_n . Then there exist elementary matrices E_1, E_2, \ldots, E_k such that

$$E_1 E_2 \cdots E_k A = I_n. \tag{1}$$

Now, the matrix E_j^{-1} is an elementary matrix and is the inverse of E_j for $1 \le j \le k$. Therefore, successively multiplying Equation (1) on the left by $E_1^{-1}, E_2^{-1}, \ldots, E_k^{-1}$, we get

$$A = E_k^{-1} E_{k-1}^{-1} \cdots E_2^{-1} E_1^{-1}$$

and thus A is a product of elementary matrices.

 $19e \Longrightarrow 19b$

Suppose $A = E_1 E_2 \cdots E_k$; where the E_i 's are elementary matrices. As the elementary matrices are invertible and the product of invertible matrices is also invertible, we get the required result.

 $19b \Longrightarrow 19f$

Observe that $\mathbf{x}_0 = A^{-1}\mathbf{b}$ is the unique solution of the system $A\mathbf{x} = \mathbf{b}$.

 $19f \Longrightarrow 19g$

The system $A\mathbf{x} = \mathbf{b}$ has a solution and hence by definition, the system is consistent.

 $19g \Longrightarrow 19b$

For $1 \leq i \leq n$, define $\mathbf{e}_i = (0, \dots, 0, \underbrace{1}_{i}, 0, \dots, 0)^t$, and consider the linear system $A\mathbf{x} = \mathbf{e}_i$. By assumption, this system has a solution, say \mathbf{x}_i , for each $i, 1 \leq i \leq n$. Define a

 $A\mathbf{x} = \mathbf{e}_i$. By assumption, this system has a solution, say \mathbf{x}_i , for each $i, 1 \leq i \leq n$. Define a matrix $B = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$. That is, the i^{th} column of B is the solution of the system $A\mathbf{x} = \mathbf{e}_i$. Then

$$AB = A[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] = [A\mathbf{x}_1, A\mathbf{x}_2, \dots, A\mathbf{x}_n] = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n] = I_n.$$

Therefore, the matrix A is invertible.

- 20. Let A be an $n \times n$ matrix. Then prove that det(A) = 0 if and only if the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
- 21. Let A be an $n \times n$ matrix. Then the two statements given below cannot hold together.
 - (a) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} .
 - (b) The system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
- 22. (T) A real square matrix A is said to be orthogonal if $A^TA = AA^T = I$. Show that if A is orthogonal then $\det(A) = \pm 1$.
- 23. Let $A = [a_{ij}]$ be an invertible matrix and let $B = [p^{i-j}a_{ij}]$, for some $p \neq 0$. Find the inverse of B and also find $\det(B)$.
- 24. Suppose the 4×4 matrix M has 4 equal rows all containing a, b, c, d. We know that det(M) = 0. The problem is to find by any method

$$det(I+M) = \begin{vmatrix} 1+a & b & c & d \\ a & 1+b & c & d \\ a & b & 1+c & d \\ a & b & c & 1+d \end{vmatrix}.$$

- 25. (T) For a complex matrix $A = [a_{ij}]$, let $\bar{A} = [\overline{a_{ij}}]$ and $A^* = \bar{A}^T$. Show that $\det(\bar{A}) = \det(A^*) = \det(A)$. Therefore if A is Hermitian (that is, $A^* = A$) then its determinant is real.
- 26. The numbers 1375, 1287, 4191 and 5731 are all divisible by 11. Prove that 11 also divides the determinant of the matrix

$$\begin{bmatrix} 1 & 1 & 4 & 5 \\ 3 & 2 & 1 & 7 \\ 7 & 8 & 9 & 3 \\ 5 & 7 & 1 & 1 \end{bmatrix}.$$