Computer-Aided VLSI System Design, Fall 2015

Verilog Homework 2

1. Function Description

Convolution is the most important and fundamental concept in signal processing and analysis. By using convolution, we can construct the output of a system for any arbitrary input signal, is we know the impulse response of the system. In this homework, we will implement a discrete convolution calculator to compute the convolution of two signal, f and g. The discrete convolution is given by:

$$(f * g) \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$

In this design, we are going to implement 8-point-by-8-point discrete convolution. The example is shown below:

Fig. 1. I/O port connecting

2. Specification

The input/output pins are defined in the following:

Signal Name	Input/Output	Bit Width	Description
clk	Input	1	Clock signal.
			Positive edge trigger.
reset	Input	1	Active high asynchronous reset signal.
Din	Input	4	Input data (one point per cycle).
			Every point only transmitted once.
in_en	Input	1	Input data enable signal:
			in_en=0(disable)
			in_en=1(enable)
			If signal busy=1, the testbench would
			not transmit input data.
busy	Output	1	The busy signal on CONV:
			busy=0 (Testbench can input data).
			Busy=1 (Testbench cannot input data).
out_valid	Output	1	Ouput control signal:
			out_valid = 0 (invalid output data).
			out_valid = 1 (valid output data).
Dout	Output	8	Output data (one point per cycle).
			Don't consider overflow.

3. Timing Diagram

The following figure shows the input timing diagram of the convolution circuit. After the signal **in_enable** is asserted (1'b1), point values are given serially for 16 cycle. The first 8-point data are signal **f**, the next 8-point data are signal **g**, and so on.

The following figure shows the output timing diagram of the convolution design. Whenever the signal **out_valid** is asserted (1'b1), the signal **Dout** will be fetched by testbench. **Note that the convolution result should be output serially as indicated in the figure.**

4. Provided Files

File Name	Description
CONV.v	Design file with I/O ports.
testfixture1.v	Testbench of CONV.v
pattern_1.dat	Test patterns of Din.
	All patterns are positive .
golden_1.dat	Answer of convolution.

5. RTL Simulation

You need to finish Verilog RTL and check its functional correctness. Here are the instructions you need to run: (Correct codes will see **Congratulation!**)

ncverilog +access+r testfixture1.v CONV.v

6. Grading Policy

Convolution of (Rectangular, Rectangular) are correct! (30%)

Convolution of (Rectangular, Upper Wave) are correct! (30%)

Congratulations! All data have been generated successfully! (30%)

Report for figures of simulation results and some conclusions. (10%)

7. Submission Requirements

Please submit your design as follows in one .zip file with the naming convention: StedentID_HW2_vk.zip (k is the number of version, k = 1, 2, ...)

File Name	Description
CONV.v	Your design.

testfixture1.v	Testbench of CONV.v
pattern_1.dat	Test patterns of Din.
	All patterns are positive .
golden_1.dat	Answer of convolution.
report.pdf	Your report.

Submission Deadline 2015/10/20 22:00

Appendix: Test patterns

1. Convolution of (Rectangular, Rectangular)

$$[2, 2, 2, 2, 2, 2, 2, 2] * [2, 2, 2, 2, 2, 2, 2, 2]$$

= $[4, 8, 12, 16, 20, 24, 28, 32, 28, 24, 20, 16, 12, 8, 4]$

2. Convolution of (Rectangular, Upper Wave)

$$[1, 1, 1, 1, 1, 1, 1, 1] * [1, 2, 3, 4, 5, 6, 7, 8]$$

= $[1, 3, 6, 10, 15, 21, 28, 36, 35, 33, 30, 26, 21, 15, 8]$

Appendix: Tool list

NCverilog: source/usr/cadence/cshrc