Αρχιτεκτονική Διάλεξη 11

Κρυφή μνήμη

- υπάρχουν τρεις μορφές οργάνωσης
- Το block είναι ουσιαστικά μια γραμμή. Για την Ram την λεμε Block. Για την Cache της λέμε γραμμές.

Δηλαδή γραμμές Ram= Block γραμμές Cache= γραμμές

Cache= 8 γραμμές

Δεν μπορούμε να φέρουμε ολη την RAM στην Cache επομένως πρέπει να βρούμε μηχανισμούς αντιστοιχισης block σε γραμμές

Κάθε Block Α αντιστοιχίζεται σε μια γραμμή Β χρησιμοποιώντας μια πράξη Modulo

Αν οι γραμμές της Cache ειναι Μ τότε κάθε Block N αντιστοιχιζεται στην γραμμή N mod M

Δηλαδή

Αντιστοιχίες:

Έστω ότι ζητούνται οι διευθύνσεις RAM 5,6,7,8,40,127

Δεύτερος τρόπος: παίρνω byte 5. Διαιρώ με 4 και βρισκώ 5/4=1(Πλήθος byte/block) (κρατάω το ακέραιο κομμάτι) 1= δείκτης Block της Ram δηλαδη το byte βρίσκεται στο Block 1

Αρχικά η Cache είναι άδεια.

Ένα πρόγραμμα ζητάει διαδοχικά τις διευθύνσεις 0,1,2,3,4,5,6,7,32,33,34,35,36 Να βρείτε το ποσοστό ευστοχίας και αστοχίας και να δείξετε την τελική κατάσταση της Cache. Αρχικά η cache είναι αδεια

Tag: Οτι περισσευει 7-5=2 $tag=log_2(4)=2$

Διαιρούμε το πλήθος Block/πλήθος γραμμών για να βρούμε ποσα block αντιστοιχιζονται σε κάθε γραμμή M= αριθμος Block/ αριθμός γραμμών $tag=log_2(M)$

Αν η κάθε ζητούμενη διεύθυνση αναζητείται στην Cache. Αν βρεθεί \rightarrow hit . Αν δεν βρεθεί \rightarrow miss και φέρνουμε ολο το Block της ζητούμενης διευθυνσης απο την RAM

0 miss: 00 00000

Πως γίνεται ο ελεγχος?

1) Διαβάζεται το πεδίο LINE=000

Επειδή έχουμε άμεση αντιστοιχιση το συστημα ελεγχει την γραμμη

 $00000(00-11) \rightarrow Block \ 0 \ (0-3)$

01000(00-11)→ Block 8

 $10000(00-11) \rightarrow Block 16$

11000(00-11)→ Block 24

$4 \rightarrow 00\ 001\ 00$

Αναζητουμε το tag 00 στη γραμμή 001 της Cache αρα Miss αρα μπαινουν BCDE στην Cache οπως δείχνει το σχήμα:

RAM			Cache Tag			RAM							Cache					g rectory							
0	Α	7	12	15.	0	Α.	7	12	15	00			0	Α	7	12	15.		0.	A	7	12	15	(00
1	В	С	D	Е	1								1	В	С	D	Е		1	2	3	4	5		00
2	Α	7	13	18	2								2	Α	7	13	18		2				П		
3	5	7	4	1	3								3	5	7	4	1		3				П		
4	2	3	4	5	4								4	2	3	4	5		4						
5					5								5						5						
6					6								6						6						
7	Α	В	Γ	Δ	7								7	Α	В	Γ	Δ		7						
8													8												
9	Х	Υ	Z	W									9	Х	Υ	Z	W								
10	9	4	3	4									10	9	4	3	4								
11	В	Χ	Χ	W									11	В	Х	Х	W								

 $5 \rightarrow 00~001~01$ hit Αφου εχουμε γεμίσει την γραμμή 001 και εχουν ιδιο Tag=00

Άσκηση:

Έστω μία μνήμη αποτελείται απο λέξης 1 byte κάθε λέξη.

Το μέγεθος RAM=128 bytes. Το μέγεθος block=4 bytes.

Η cache έχει μέγεθος 32 bytes και μέγεθος γραμμής 4 bytes.

- 1) Να αναλύσετε τη διεύθυνση της RAM
- 2) Να δώσετε τις διευθύνσεις των λέξεων που σχετίζονται με την γραμμή 2 της Cache αν έχουμε τεχνική άμεσης συσχέτισης

Λύση κομμάτι 1:

Μέγεθος διεύθυνσης καθορίζεται από την RAM 128 bytes= 2^7 =7 bit Τύπος: 2^N =N bit

128 bytes Ram/4 block= 32 block αρα για να μπουν τα 32 block της RAM στις 8 γραμμές της Cache θέλουμε 32/8= 4 tag αρα το Tag εχει 2 δυαδικά ψηφία

Bloo	rk	Σε σχήμα								
N= 0 1 2 3 4 5	0mod8=0 1mod8=1 2mod8=2 3mod8=3 4mod8=4 5mod8=5	Block 0 Block 8 Block 16 Block 24 Block 31	RAM	Cache Γραμμή 0 Γραμμή 7						
6 7	6mod8=6 7mod8=7	Block	Γραμμή							
8	8mod8=0	0,8,16,24	0 (mod8:	0 (mod8=0)						
		1,9,17,25	1 (mod8:	=1)						
16	16mod8=0	2,10,18,26	2 (mod8:	mod8=2)						
		3,11,19,27	3 (mod8:	=3)						
		4,12,20,28	4 (mod8:	4 (mod8=4)						
		5,13,21,29	5 (mod8:	5 (mod8=5)						
		6,14,22,30	6 (mod8:	=6)						
		7,15,23,31	7 (mod8:	=7)						

32 bytes η Cache και 4 μέγεθος γραμμής αρα 32/4=8 γραμμες συνολικα αρα θέλουμε 3 δυαδικά ψηφία απο τα 7. Απομένουν δηλαδή 2 διαδ. ψηφία για τα byte

XX	XXX	XX
Tag(2 bit)	Γραμμή (3 bit)	byte (2 bit)

Λύση κομμάτι 2 :

Για να πάει μια διεύθυνση στη γραμμή 2, πρεπει το πεδίο γραμμής να δείχνει 010

tag	Line	byte
xx	010	XX
4		4

	Byte	
00 010 00	8	Block 00 που
00 010 01	9	-αντιστοιχίζεται στη
00 010 10	10	γραμμή 2
00 010 11	11/	γραμμη Ζ
01 010 00	40	Block 01 που
01 010 01	41	
01 010 10	42	≻αντιστοιχίζεται στο γραμμά 2
01 010 11	43	στη γραμμή 2
10 010 00	72	Block 10 που
10 010 01	73	
10 010 10	74	αντιστοιχίζεται
01 010 11	75	στη γραμμή 2
11 010 00	104	Dis-1-44
11 010 01	105	Block 11 που
11 010 10	106	- αντιστοιχίζεται
11 010 11	107	στη γραμμή 2