Vyčíslitelnost

Doc. RNDr. Antonín Kučera, CSc.

15. června 2021

Obsah

Τ	Zkratky	2			
2	Uvod2.1 Historická vsuvka2.2 Terminologie	2 2 3			
3	Rekurzivně spočetné množiny a predikáty				
	3.1 10 Hilbertův problém	8			
	3.2 Selektory	8			
	3.3 Imunní množiny	9			
4	Věty o rekurzi	10			
5	Produktivní množiny	13			
6	Dvojice množin	18			
7	Gödelovy věty	21			
	7.1 Kalibrace síly teorie	23			
8	Relativní vyčíslitelnost	24			
	8.1 Formalizace relativného vypočtu	24			
	8.2 Struktura T-stupňu	27			
	8.3 Relativizace dřívějších výsledků	28			
	8.4 Operace skoku	28			
	8.5 Stejnoměrnost	30			
9	Limitní vyčíslitelnost	31			
10	Aritmetická hierarchie	31			
	10.1 Numerace	33			
11	Pokročilejší vyčíslitelnost	37			
	11.1 R.S. množiny	37			
	11.2 Forcing	37			
	11.3 Algoritmická náhodnost	39			
	11.4 Kolmogorovská složitost, Martingale	39			

1 Zkratky

- 1. ČRF částečně rekurzivní funkce.
- 2. ORF obecně rekurzivní funkce.
- 3. PRF primitivně rekurzivní funkce.
- 4. r.s. rekurzivně spočetná.
- 5. ZAS zakladní aritmetika síla.
- 6. PA Peano Aritmetika.
- 7. ORP obecně rekurzivní predikát.
- 8. PNF prenexní normální tvar.

2 Uvod

2.1 Historická vsuvka

Hilbertův 10. problém, úplnost aritmetiky 1900. Gödel dokázal že nejde. V prvním větě použil *Primitivně rekurzivní funkce*.

Definice 2.1. Primitivně rekurzivní funkce - podmnožina efektivně vyčíslitelných funkci, jsou všude definované.

Tyto ale nestačí pro hlavní problém dokazatelnosti.

Při dalším vývoje se vyvinul kalkulus tzv obecně rekurzivních funkci ORF a částečně rekurzivních funkci ČRF.

Definice 2.2. Částečně rekurzivní funkce - efektivně vyčíslitelné funkce.

Definice 2.3. Obecné rekurzivní funkce - ČRF které jsou všude definované.

Poznámka 2.4 (Church-Turing teze). Historický vývoj:

- A. Church vyvinul λ -konverze (λ -calculus) a dokázal, že neexistuje algoritmus tzv "rozhodovací". Lambda konverze jsou poměrně obtížné.
- Turing, nezávislé na Churchoví v roce 36 vyvinul Turing Machines a dokázal nevyčíslitelnost Halting problému.

Pak ostatní prohlásili Church-Turing teze, že všechno co je efektivně vyčíslitelné je Turingovský nebo λ -konverzi vyčíslitelné.

Definice 2.5. λ -calculus:

Nechť C je množina konstant, nechť V je (spočetná) množina proměnných. Množina tzv λ terms Λ je nejmenší množina tž:

- $C \subseteq \Lambda$.
- $V \subset \Lambda$

- nechť $t_1, t_2 \in \Lambda$ termy, pak aplikace t_1 t_2 jako v Haskellu je taky term
- $t \in \Lambda, x \in V \Rightarrow \lambda x. t \in \Lambda$. V Haskellu: $(\backslash x \to t)$

Což je funkce s parametrem x a vrací t.

Jako závěr, formální, efektivně dokazovací systém nemůže uplně popsat pravdu. Je mnohem složitější.

Poznámka 2.6 (System PRF(odbočka)). Funkcionální systém, postavený na axiomech:

- Základní funkce: 0, +1, id (resp vydělení i-té složky)
- 2 Odvozovací pravidla:
 - 1) substituce
 - 2) operátor primitivní rekurze. Jednoduše řečeno, výpočet v bode (y+1) uděláme rekurzivně z bodu "y".

Pak se vezme *tranzitivní uzávěr* - všechno co jde odvodit ze základních funkci pomoci odvozovacích pravidel. Na rozdíl od ČRF nemáme **while**, čímž dostaneme jenom podmnožinu ČRF.

Substituce:

$$S(f, g_1, \dots, g_n) = f(g_1(y_1, \dots, y_n), \dots, g_n(y_1, \dots, y_n))$$

Primitivní rekurze:

Poznámka 2.7 (Kleeneho system ČRF). Pak přidáním operátoru μ a while k předchozímu systému dostaneme ČRF (znovu tranzitivni~uzávěr). Je komplikovaný, je lepší používat nějaké dokazování.

Q: je možné, že existuje mnohem komplikovanější systém než všechny které máme v Church-Turingové téze, který by byl silnější z pohledu vyčíslitelnosti?

2.2 Terminologie

Přibližně do roku 1990 převládala terminologie ORF, ČRF zavedená Kleene. Pak byla snaha změnit na **computable functions** - efektivně vyčíslitelné.

Definice 2.8. Množina je rekurzivní, neboli rozhodnutelná (decidable, computable) - efektivně rozhodnutelná. Jednoduše řečeno, máme program, který na každém vstupu se vždy zastaví a rozhodne ANO nebo NE (jestli slovo patří do ni).

Definice 2.9. Množina je rekurzivní spočetná (částečně rozhodnutelná), nebo computably enumerable. Formálně je definičním oborem nějakého programu (tzn částečně rekurzivní funkce, TS etc.).

Poznámka 2.10. Na rozdíl od kurzu ZSV, kde jsme definovali funkce $f: \{0,1\}^n \to \{0,1\}^n$, budeme zkoumat funkce aritmetické.

$$f: \mathbb{N} \to \mathbb{N}, f: \mathbb{N}^k \to \mathbb{N}$$

Nemusí být všude definované.

Přístupy jsou ekvivalentní, protože můžeme očíslovat slova.

Poznámka 2.11. Formálně nemáme klasické k-tice jako vektory, ale kodujeme všechno do přirozených čísel. Je znamá jako Cantorová metoda parovaní.

Značení 2.12. Program konverguje - znamená že se zastaví za konečný počet kroků.

Připomenutí 2.13. Rekurzivita, rekurzivní spočetnost se zachovává na \cup , \cap . Rekurzivita je taky zachovaná při \neg (doplněk). Rekurzivní spočetnost nikoliv.

Věta 2.14 (Postova). L je rozhodnutelný $\iff L \wedge \bar{L}$ jsou c.r.

 $D\mathring{u}kaz. \Rightarrow Z$ TS pro L sestavíme pro doplněk znegovaním všech odpovědi. \Leftarrow . Nechť $L(M) = L \wedge L(B) = \overline{L}$, pak sestavíme TS pro rozhodnutí L.

- 1. Pust B, M paralelně
- 2. if(Acc(M, x))
- 3. accept
- 4. if(Acc(B, x))
- 5. reject

Pokud se aspoň 1 zacykli - reject. Paralelní spuštění lze implementovat pomoci 2 pasek, případně je slepit do 1. $\hfill\Box$

Definice 2.15. Gödelové číslo - index programu. Necht φ je ČRF, P_e je program který ji vyčísluje. Pak index funkce φ je e.

Poznámka 2.16. Každá ČRF má nekonečně mnoho programu, takže i nekonečně mnoho indexu. Očíslovaní programu generuje očíslovaní funkci.

V jistém smyslu, nezáleží na konkretním očíslovaní pokud je efektivní (nemáme čas toto dokazovat). 2 různé indexace jsou *efektivně ekvivalentní*.

Q: pokud zafixujeme "jazyk programování" má program jednoznačné očíslovaní? Q: jaký z jazyků programování "je nejbližší k ČRF? Asi λ -calculus.

Připomenutí 2.17. Univerzální TS - dostane program M a data x, simuluje výpočet M(x).

Pro nás to bude univerzální ČRF.

Definice 2.18. Univerzální ČRF je

$$\Psi_n(e,x_1,x_2,\ldots,x_n)$$

kde e je index programu, x_i jsou data.

Občas se značí

$$\varphi_e^n(x_1,\ldots,x_n) \simeq e(x_1,\ldots,x_n)$$

Značení 2.19.

$$\varphi_e^n(x_1,\ldots,x_n) \simeq U(\mu_y T_n(x_1,\ldots,x_n,y))$$

- Kde T_n je primitivně rekurzivní predikát, který říká "za n kroků".
- *U* je primitivně rekurzivní funkce 1 proměnné. Který "vydělí"výsledek z mezivýsledků (jelikož máme všechno zakodované jako přirozená čísla).
- μ_y říká "nejmenší y".

Věta 2.20 (s-m-n (BD)).

$$\varphi_e^{m+n}(x_1,\ldots,x_n,y_1,\ldots,y_m) \simeq \varphi_{s_n^m(e,y_1,\ldots,y_m)}^n(x_1,\ldots,x_n)$$

 $V \Psi$ notace

$$\Psi_{n+m}(e,\bar{x},\bar{y}) \simeq \Psi_m(s_n^m(e,\bar{x},\bar{y}))$$

 $kde \ \bar{x}, \bar{y} \ jsou \ vektory \ pro \ kratší \ zápis.$

Funkce $s_n^m : e, x_1, \ldots, x_n$ vyrobí nový program. Ten čeká na vstup y_1, \ldots, y_m , k tomu přidá zahardkodované data x_1, \ldots, x_n a spustí na to e. Je to pouze syntaktická manipulace dat.

Značení 2.21. $dom(\varphi)$ - definiční obor.

Značení 2.22. $range(\varphi)$ - obor hodnot.

Definice 2.23. e-ta rekurzivně spočetná množina.

$$W_e = dom(\varphi_e) = \{x : \varphi_e(x) \downarrow\} = \{\Psi_1(e, x) \downarrow\}$$

Poznámka 2.24. Rekurzivní spočetné funkce se definuji jako obor hodnot ČRF.

M je rekurzivní množina \iff je oborem hodnot **rostoucí** ČRF.

M je rekurzivně spočetná množina \iff je oborem hodnot **prosté** ČRF.

Rozdíl v definici souvisí s Halting problémem.

Definice 2.25. $A \leq_1 B \iff \exists \text{ ORF } f \text{ (všude definovaná, efektivně vyčíslitelná):}$

$$x \in A \iff f(x) \in B$$

Značení 2.26.

$$K = \{x : s \in W_x\} = \{s : \varphi_x(x) \downarrow \}$$

Taky

$$K_0 = \{\langle x, y \rangle : \varphi_x(y) \downarrow \}$$

Značení z ZSV

$$DIAG = \{ \langle M \rangle : M \in L(M) \} = \{ \langle M \rangle : M(\langle M \rangle) \}$$

Poznámka 2.27. DIAG je rekurzivně spočetný (částečně rozhodnutelný) ale není rekurzivní (rozhodnutelný).

Důkaz pomoci Cantorové diagonální metody.

Důkaz.

$$\overline{K} = \{x : x \notin W_x\}$$

 W_x ale jsou všechny rekurzivně spočetné. Z toho

$$\forall W_x : \overline{K} \neq W_x$$

Takže \overline{K} není částečně rekurzivní. Dle Postové věty 2.14 K není rozhodnutelná.

Věta 2.28 (K 1-complete). K (taky K_0) je 1-úplná.

Důkaz. Zavedeme ČRF

$$\alpha(x,y,w) \downarrow \iff \varphi_x(y) \downarrow$$

kde w je fiktivní proměnná. Je to ekvivalentní

$$\Psi_1(e,x,y,w)$$

použijeme 2.20

$$\Psi_1(e, x, y, w) \simeq \Psi_1(s_2^1(e, x, y), w) \simeq \varphi_{s_2^1(e, x, y)}(w)$$

dosadíme za $w = s_2^1(e, x, y)$.

Pomociw se dostáváme na diagonálu. Pak

$$x \in W_y \iff s_2^1(e, x, y) \in K$$

Věta 2.29. Ψ_n nemá obecně rekurzivní rozšíření. Jinými slovy neexistuje ORF h rozšíření Ψ tž $\Psi_n(x) = h(x)$ pro $x \in dom(\Psi_n)$ a h je definovaná pro vstupy mimo $dom(\Psi_n)$. Dokonce, pokud α částečně rekurzivně rozšířuje Ψ_n , tak najdeme vstup na kterém diverguje

$$\exists x_1 : \alpha(x_1, x_1) \uparrow$$

Důkaz. Použijeme Cantorovou diagonální metodu. Definujme pomocnou ČRF:

$$\beta(x) \simeq 1 \div \alpha(x,x)$$

Kde $\dot{-}$ je dodefinovaná operace odečítaní pro přirozená čísla. Např $1 \dot{-} 100 = 0$. Jelikož je ČRF \Rightarrow má index e_{β} , neboli

$$\beta(e_{\beta}) \simeq \Psi_1(e_{\beta}, e_{\beta}) \simeq 1 - \alpha(e_{\beta}, e_{\beta})$$

Necht sporem $\alpha(e_{\beta}, e_{\beta}) \downarrow$, pak

$$\Psi_n(e_\beta,e_\beta)\downarrow$$

Protože α je rozšíření

$$\Psi_n(e_\beta, e_\beta) = \alpha(e_\beta, e_\beta)$$

což je spor protože

$$1 - \alpha(e_{\beta}, e_{\beta}) = \Psi_n(e_{\beta}, e_{\beta}) = \alpha(e_{\beta}, e_{\beta})$$

3 Rekurzivně spočetné množiny a predikáty

Poznámka 3.1. R.s. množiny a predikáty je jedno a totéž protože obor pravdivostí predikátu je množina a naležení do množiny je predikát.

Lemma 3.2. Pokud Q je rekurzivní $\Rightarrow \exists y Q(...)$ je rekurzivně spočetný.

 $D\mathring{u}kaz$. Uvažme charakteristickou funkci C_Q predikátu Q. Je všude definovaná, čili je ORF.

Pak následující je ČRF:

$$\mu_y Q(\ldots) \simeq \mu_y (C_Q(\ldots) = 1)$$

Věta 3.3 (Univerzální Kleeneho r.s. predikát). Každý rekurzivně spočetní predikát je tvaru:

$$\exists y Q(...)$$

Pak r.s. množiny jsou definiční obory ČRF.

Dokonce máme univerzální rekurzivně spočetný predikát

$$\exists y T_n(e, x_1, \dots, x_n, y)$$

Důsledek 3.4. Lze definovat index rekurzivně spočetných predikátů.

Poznámka 3.5. s-m-n věta 2.20 platí i pro predikáty T_n .

Věta 3.6. Rekurzivní spočetnost je uzavřená na \cup , \cap . Dokonce efektivně z indexu. Máme $ORF(dokonce\ PRF)$

$$W_{\alpha(a,b)} = W_a \cap W_b$$

 $D\mathring{u}kaz$. Formálně pro \cap :

$$\exists s_1 T_1(a, x, s_1) \land \exists s_2 T_1(a, x, s_2) \iff \exists w (T_1(a, x, (w)_{2,1}) \land T_1(b, x, (w)_{2,2})$$

kde w koduje dvojici s_1, s_2 .

$$(w)_{2,1}$$

říká, že w je n-tice velikosti 2, vezmi 1. složku.

$$\exists s_1 T_1(a,z,s_1)$$

je reprezentace množiny W_a pomoci univerzálního predikátu. Dohromady máme rekurzivně spočetný predikát. Takže

$$\exists z T_3(e,a,b,x,z)$$

Což je program, který pouští oba dva programy a čeká až se jeden z nich zastaví. Použijeme s-m-n 2.20 pro predikáty

$$\exists z T_3(e, a, b, x, z) \iff \exists z T_1(s_2(e, a, b), x, z)$$

Pak definujme

$$\alpha(a,b) := s_2(e,a,b)$$

Analogicky pro \cup .

Otázka: pokud všude použijeme omezené kvantifikátory sy = velikost částic ve vesmíru, dostaneme upravenou logiku pro počítače?

Definice 3.7. Omezený existenční kvantifikátor

$$\exists_{y < z} Q$$

Jmenuje se konečná dizjunkce.

Definice 3.8. Omezený všeobecný kvantifikátor

$$\forall_{u < z} Q$$

Jmenuje se konečná konjunkce.

Věta 3.9 (Omezená kvantifikáce). Rekurzivní spočetnost je uzavřená na omezené kvantifikáce.

Dokonce efektivně na indexech, ale toto dělat nebudeme.

 $D\mathring{u}kaz$. Pro existenční spustíme z programů paralelně a čekáme až jeden přijme. Pro všeobecný spustíme paralelně a čekáme jestli všechny přijmou.

Věta 3.10 (Neomezená kvantifikáce). Rekurzivní spočetnost je uzavřená na existenční kvantifikáce.

 $D\mathring{u}kaz$. Analogicky jako důkaz pro \cap , nahradíme dva existenční kvantifikátory jediným s dvojici.

$$\exists y \exists s : T_n(...) \simeq \exists k = \langle y, s \rangle ...$$

Poznámka 3.11. Pro všeobecnou již neplatí (ani pro částečně rozhodnutelné). Protipříkladem je \overline{K} která není č.r. Již lze zapsat pomoci všeobecného kvantifikátory

$$x \in \overline{K} \iff \forall s \neg T_1(x, x, s)$$

Kde T_1 je částečně rozhodnutelný predikát, negace taky.

3.1 10 Hilbertův problém

V moderní terminologií 10. Hilbertův problém zni: "zda existuje algoritmus, který by pro libovolný celočíselný polynom rozhodnul jestli existuje řešení v celých číslech.

Libovolný celočíselný polynom je ekvivalentní 2 polynomům v \mathbb{N} , řešení pak taky hledáme v \mathbb{N} . Nejprve dáme záporné koeficienty na pravou stranu, pak aplikujeme Lagrangeovou větu o 4 \square .

Věta 3.12 (RDPM (BD)). Predikát Q je rekurzivně spočetný ⇔ je tzv diofantický:

$$\exists x_1, \dots, x_k \in \mathbb{N} : (p_1(x_1, \dots, x_k, y_1, \dots, y_n) = p_2(x_1, \dots, x_k, y_1, \dots, y_n))$$

Důsledek 3.13. 10. Hilbertův problém má negativní odpověď.

Protože máme množiny které nejsou rozhodnutelné, třeba DIAG.

Dodatek 3.14. Jako byprodukt dostáváme ekvivalenci:

$$\exists (PRP) \iff \exists (p_1(\ldots) = p_2(\ldots))$$

Bez existenčního kvantifikátoru vůbec není pravda. V aritmetice lze vytvořit i superexponenxielu e^{n^n} atd, polynomy jsou ale omezené. Taky polynomy lze elementárně vyjádřit pomoci Robinsonové aritmetiky.

3.2 Selektory

Obecné, Selektor je definovaný pro "hezké relace", napřQ(x,y). Pak selektor vybírá y pro $\forall x$.

Věta 3.15 (O selektoru). Nechť Q(x,y) je rekurzivně spočetný (resp $Q(x_1,...,x_n,y)$), pak $\exists \varphi \in C \check{R} F$:

$$\varphi(x) \downarrow \iff \exists y : Q(x,y)$$

 $\varphi(x) \downarrow \Rightarrow Q(x,\varphi(x))$

Jinými slovy vybere v pokud existuje.

 $D\mathring{u}kaz$. Pozor, nemůžeme vzít nejmenší, musíme vzít první protože lepší už třeba nebude. Q je r.s. \Rightarrow má index e, napíšeme pomoci univerzálního predikátu

$$\exists s: T_2(e, x, y, s)$$

Predikát zapíšeme jako množinu

$$dom(\varphi_e(x,y))$$

Pak pro dáne x probereme všechny $\langle y,s \rangle$ a hledáme nejmenší dvojici tž platí

$$T_2(e,x,y,s)$$

Neboli hledáme první $\langle y, s \rangle$ tž za s kroků $\varphi_e(x, y) \downarrow$. Formálně:

$$\varphi(x) \simeq (\mu_{\langle y,s\rangle} T_2(e,x,y,s))_{2,1}$$

indexy vydělí y.

Definice 3.16. Graf ČRF je

$$graph(\varphi) = \{\langle x, y \rangle | \ \varphi(x) = y\}$$

Důsledek 3.17. φ je ČRF \iff graph (φ) je r.s.

 $D\mathring{u}kaz$. " $\Rightarrow \langle x, y \rangle \in graph(\varphi) \Rightarrow \exists s \text{ (za } s \text{ kroků } \varphi(x) = y)$.

Což je r.s. predikát.

"⇐"Aplikuj selektor. Volba v totalitním režimu, buď jeden kandidát nebo nic.

□

Poznámka 3.18. Při zobecněních vyčíslitelnost do vyšších hierarchii, definujme vyčíslitelnost tak, že graf je rozumný.

Věta 3.19 (Postova podruhe).

$$Q(x,y) = (x \in M \land y = 1) \lor (x \in \overline{M} \land y = 0)$$

Neboli φ je charakteristická funkce množiny M.

3.3 Imunní množiny

Definice 3.20. A je *imunní* pokud je nekonečná a neobsahuje nekonečnou rekurzivní spočetnou podmnožinu.

$$W_x \subseteq A \Rightarrow |W_x| < \infty$$

Je nekonečná, ale nemůžeme to efektivně zkontrolovat. Protože veškeré algoritmický zkontrolovatelné podmnožiny jsou konečné.

Definice 3.21. A je *simple* pokud je rekurzivní spočetná a \overline{A} je imunní.

Poznámka 3.22. Postův problém: co je mezí Rekurzivní množiny a nerekurzivní množinou K?

Definoval Simple, hypersimple, hyper-hyper ... atd až do Maximalní. Ale tato klasifikace neuspěla.

Věta 3.23 (Existence Simple). Existuje Simple množina.

Důkaz. Uděláme predikát

$$Q(x,y) \iff y \in W_x \land y > 2x$$

je rekurzivně spočetný protože nalezení je r.s. a druhá podmínka taky. Nechť $\varphi \in \text{C\Breve{K}F}$ je selektor pro Q. Pak

$$A = range(\varphi)$$

Podrobněji:

$$W_x \subseteq \overline{A} \Rightarrow W_x \subseteq \{0, \dots, 2x\}$$

Neboli \overline{A} neobsahuje nekonečnou r.s. množinu.

 \overline{A} nekonečná?

Do $\{0,\ldots,2x\}$ mohou přispět nejvýše W_0,\ldots,W_{x-1} množin. Neboli nejvýše x čísel. Pak ale v \overline{A} zůstane nejméně (x+1) čísel, neboli \overline{A} je nekonečná.

Dohromady \overline{A} je imunní.

4 Věty o rekurzi

Poznámka 4.1. Taky se jmenuji věty o pevném bodě. Používá se self-refrenční trik

Věta 4.2 (O rekurzi 1). Pokud f je ČRF (pro jednoduchost 1 proměnné) \Rightarrow (efektivně z indexů)

$$\exists a \ \forall x : \varphi_a(x) \simeq \varphi_{f(a)}(x)$$

Jinými slovy: pokud $f(a) \downarrow \Rightarrow \varphi_a$ a $\varphi_{f(a)}$ jsou stejné funkce. Programy nejsou stejné, ale vyčísluji stejnou funkci.

Pokud ale $f(a) \uparrow \Rightarrow \forall x : \varphi_a(x) \uparrow$.

Důkaz.

$$\varphi_{f(s_1(z,z))}(x) \simeq \Psi_2(e,z,n)$$

Protože levá strana je efektivně vyčíslitelná. e je program který počítá levou stranu. Pak dle s-m-n věty 2.20

$$\varphi_{f(s_1(z,z))}(x) \simeq \Psi_2(e,z,x) \simeq \varphi_{s_1(e,z)}(x)$$

polož z = e, dostaneme

$$\varphi_{f(s_1(e,e))}(x) \simeq \varphi_{s_1(e,e)}(x)$$

Neboli

$$a = s_1(e, e)$$

Který program počítá déle? Program $e = f(s_1(z, z))$:

- 1. spočítej $s_1(z,z)$.
- 2. spočítej $f(s_1(z,z))$. který ale nemusí konvergovat
- 3. $if(f(s_1(z,z))\downarrow)$ spust e na vstup x.

Program $a = s_1(z, z)$:

- 1. dostane x na vstupu, kvůli s-m-n přidá e ke vstupu
- 2. spustí program e na vstup $\langle e, x \rangle$.
- 3. spočítej $a = s_1(z, z)$. Tady spočítal svůj vlastní index.
- 4. spočítej $f(s_1(z,z))$ tzn f(a). který ale nemusí konvergovat
- 5. $if(f(s_1(z,z))\downarrow)$ then spust f(a) na vstup x.

Takže a počítá déle.

Věta 4.3 (O rekurzi 2). Pokud f je ČRF (n+1) proměnných \Rightarrow ORF $(dokonce\ PRF)$

$$\varphi_{h(y_1,\dots,y_n)}(x) \simeq \varphi_{f(h(y_1,\dots,y_n,y_1,\dots,y_n)}(x)$$

Pokud smažeme y-ny, tak dostaneme právě Větu o rekurzi 1 4.2. Pevné body efektivně na parametrech.

 $D\mathring{u}kaz.$ Analogicky jako důkaz Věty o rekurzi 1 4.2. Jenom aplikujeme s-m-n na větší počet parametrů.

$$\varphi_{f(s_{n+1}(z,z,y_1,...,y_n),y_1,...,y_n)}(x) \simeq \Psi_{n+2}(e,z,y_1,...,y_n,x) = \simeq \varphi_{s_{n+1}(e,z,y_1,...,y_n)}(x)$$

Pak

$$h(y_1, \dots, y_n) = s_{n+1}(e, e, y_1, \dots, y_n)$$

Věta 4.4 (O rekurzi ∞). Pokud f je ČRF $\Rightarrow \exists$ prostá ORF g (dokonce PRF)

$$\varphi_{g(j)}(x) \simeq \varphi_{f(g(j)}(x)$$

Pak pevných bodů je nekonečno

$$g(0), g(1), \dots$$

Důkaz.

$$\varphi_{f(s_2(z,z,j))}(x) \simeq \Psi_2(e,z,j,x) \simeq \varphi_{s_2(e,z,j)}(x)$$

Zvolme

$$g(j) = s_2(e, e, j)$$

Věta 4.5 (O rekurzi 3). Pokud $h(x, z_1, ..., z_n)$ je ČRF, pak existuje $a \in \mathbb{N}$ t.ž. a je indexem funkce

$$h(a, z_1, \ldots, z_n)$$

Důkaz.

$$h(x, z_1, ..., z_n) \simeq \Psi_{n+1}(e, x, z_1, ..., z_n) \simeq \varphi_{s_1(e, x)}(z_1, ..., z_n)$$

Pak aplikujeme Větu o rekurzi 4.2 na funkci $s_1(e,x)$.

Poznámka 4.6. Věty o rekurzi platí nejen pro ČRF ale taky pro jejich definiční obory. Takže

$$f \in \check{\mathbf{C}}RF \Rightarrow \exists a : W_a = W_{f(a)}$$

Věta 4.7. Existuje n_0 :

$$\varphi_{n_0}(n_0) = n_0$$

Program který vypíše svůj vlastní kod.

Důkaz. Pořídíme si pomocnou ORF

$$\alpha(n, w) = n$$

použijeme s-m-n 2.20

$$\alpha(n,w) \simeq \varphi_{f(n)}(w)$$

Kde

$$\alpha(n,w) = \simeq \Psi(e,n,w) \simeq \phi_{s_1(e,n)}(w)$$

Stačí použít Větu o rekurzi 4.2 k f

$$\varphi_{n_0}(n) \simeq \varphi_{f(n_0)}(w) = n_0$$

Věta 4.8 (BD). Existuje ORF f:

$$W_{f(y)} = \{f(0), \dots, f(y-1)\}$$

 $D\mathring{u}kaz$. Hint: hledáme index f kterých je spočetně mnoho. Musíme použít Větu o rekurzi na urovně indexů.

Věta 4.9 (Rice podruhe). Pokud F je netriviální třída ČRF (nebo r.s množin). Není prázdná, nebo má všechny. Pak indexová množina

$$A = \{x | \varphi(x) \in F\}$$

Důkaz. Z netriviálity F

$$\exists a \in A \land b \in \overline{A}$$

Nechť sporem A je rekurzivní. Uděláme funkci h t.ž

$$\forall x \in A : h(x) = b$$

$$\forall y \in \overline{A} : h(y) = a$$

Protože A je rekurzivní, tak h je ORF \Rightarrow existuje pevný bod třeba n_0

$$n_0 \in A \Rightarrow h(n_0) \in \overline{A}$$

Z Věty o rekurzi ale víme

$$\varphi_{n_0} = \varphi_{h(n_0)}$$

takže $n_0, h(n_0)$ musí být ve stejné množině.

Z toho A nené rekurzivní.

Věta 4.10 (O rekurzi (BD)). Nechť $f \in \check{\mathbb{C}}RF$ pak //TODO

 $D\mathring{u}kaz$.

$$\varphi_{\varphi_u(u)}(z) \simeq \Psi_2(a, u, z) \simeq^{s-m-n} \varphi_{s_1(a, u)}(z) \simeq \varphi_{d(u)}(z) \simeq \varphi_{\varphi_e(u)}(z)$$

Všimneme si, že

$$\varphi_u(x)$$

je matice funkci. Implikace nahoře ukazuje, že její diagonála $\varphi_u(u)$ se rovná řádku φ_e . Ukážeme, že f permutuje řádky.

$$\varphi_{f \circ \varphi_u(x)}(z) \simeq \varphi_{\beta(u,x)} \simeq^{s-m-n} \varphi_{\varphi_{H(u)}(x)}(z)$$

Kde

$$H(u) = s_1(b, u)$$

Z toho u-tý řádek se zobrazí na H(u)-tý. Speciálně

$$e \to H(e)$$

Z toho $\varphi_e(H(e))$ je pevný bod. Protože:

$$\varphi_{f \circ \varphi_e(H(e))}(z) \simeq \varphi_{\varphi_{H(e)}(H(e))}(z) \simeq^{diagonala} \varphi_{\varphi_e(H(e))}(z)$$

5 Produktivní množiny

Definice 5.1 (Produktivní množina). B je produktivní pokud

$$\exists \varphi \in \check{\mathbf{C}}RF : W_x \subseteq B \Rightarrow (\varphi(x) \downarrow) \land \varphi(x) \in B \setminus W_x$$

Jinými slovy: non-rekurzivní spočetnost. Pokud máme uvnitř množinu W_x tak se nemůže rovnat B. Taky máme stroječek který najde $\varphi(x)$ který leží mimo danou W_x .

Definice 5.2 (Kreativní množina). Množina A je *kreativní* pokud A je rekurzivně spočetná a \overline{A} je produktivní.

Příklad 5.3. \overline{K} je produktivní funkce je id, K je kreativní. Protože

$$W_x \subseteq \overline{K} \Rightarrow x \in (\overline{K} - W_x)$$

Věta 5.4 (Modifikace K). Modifikace předchozího příkladu: Nechť máme $f \in ORF$ prostá, pak uvažme množinu:

$$A = \{ f(x) | f(x) \in W_x \}$$

A je kreativní, \overline{A} produktivní s f.

 $D\mathring{u}kaz$. Necht $W_x \subseteq \overline{A}$, kdyby $f(x) \in W_x$ tak

$$f(x) \in \overline{A}$$

ale dle definice A

$$f(x) \in A$$

Tedy

$$f(x) \notin W_x$$

a jelikož je **prostá** tak

$$f(x) \in \overline{A} - W_x$$

Věta 5.5 (Produktivní funkce ORF). Každá produktivní množina má ORF produktivní funkce.

 $D\mathring{u}kaz.$ Jednoduše dodefinovat ČRF na ORF nejde. Chceme najít ORF h:

$$W_{h(y)} = \begin{cases} W_y & \text{pro } \varphi(h(y)) \downarrow \\ \emptyset & \text{pro } \varphi(h(y)) \uparrow \end{cases}, kde \ \varphi \in \check{\mathbf{C}}RF \ prod.$$

Formálně:

$$\varphi \circ h \in ORF$$

Kdyby $\varphi(h(y)) \uparrow \text{tak}$

$$\Rightarrow W_{h(y)} = \emptyset \subseteq B \Rightarrow \varphi(h(y)) \downarrow spor$$

Dal

$$\forall y : W_{h(y)} = W_y$$

Taky

$$W_y \subseteq B \Rightarrow W_{h(y)} \subseteq B$$

Z toho

$$\varphi(h(y)) \in B - W_{h(y)} = B - W_y$$

Hledaná funkce je $\varphi \circ h$.

Ziskáme funkci h pomoci věty o rekurzi 4.2. Vezmeme pomocnou $f \in ORF$:

$$W_{f(x,y)} = \begin{cases} W_y & \text{pro } \varphi(x) \downarrow \\ \emptyset & \text{pro } \varphi(x) \uparrow \end{cases}$$

f pomoci s-m-n 2.20

$$f \simeq \alpha(x, y, w) \downarrow \iff w \in W_u \land \varphi(x) \downarrow$$

Taky

$$\alpha(x,y,w) \simeq \varphi_{f(x,y)}(w)$$

kde

$$f(x,y) = s_2(a,x,y)$$

Věta 5.6 (Produktivní funkce ORF prostá(BD)). Každá produktivní množina má dokonce prostou ORF produktivní funkce. Dokonce rekurzivní permutace.

Věta 5.7 (Nekonečná množina). Každá produktivní množina obsahuje nekonečnou r.s. podmnožinu.

 $D\mathring{u}kaz$. Máme B a $f \in ORF$ produktivní.

Vezmeme takové z_0 :

$$W_{z_0} = \emptyset$$

Množinu vytváříme iterativně, vždy na jeden z bodů co máme aplikujeme f a vezmeme sjednocení.

Formálně:

$$W_{g(x)} = W_x \cup \{f(x)\}$$

rekurze

$$h(0) = z_0 \tag{1}$$

$$h(y+1) = g(h(y)) \tag{2}$$

Pak

$$W_{h(y)} = \{f(z_0), \dots, f(h(y) - 1)\}$$

 $\operatorname{což} \operatorname{je} y \operatorname{bodů} \operatorname{z} \operatorname{B}.$

Poznámka 5.8. Imunní a produktivní množiny jsou disjunktní pojmy.

Dodatek 5.9. Jak dlouho lze pokračovat v konstrukci množiny popsané ve Větě o nekonečné množině 5.7?

Odpověď: pokud to bude efektivní proces neboli aby množiny byly r.s.

 $Můžeme iterovat \ \omega, 2\omega \dots podél tzv rekurzivních ordinálů (viz ordinální číslo v teorii množin).$

Lemma 5.10. A produktivní a $A \leq_m B$.

Neboli produktivita se zachovává směrem vzhůru při \leq_m .

 $D\mathring{u}kaz.$ Máme ORF funkce gz převoditelnosti. Pak nechť $W_x\subseteq B,$ najdeme její preimage v A

$$P = g^{-1}(W_x) \subseteq A$$

Z toho že A je kreativní, pomoci kreativní funkce f najdeme bod $f(y) \notin P$. Zobrazíme pomoci g(f(y)), tím dostaneme bod $\in B-W_x$. Formálně:

$$W_{h(x)} = g^{-1}(W_x) = \{y | g(y) \in W_x\}$$

Pak

$$W_x \subseteq B \Rightarrow W_{h(x)} \subseteq A$$

Poslední krok

$$g \circ f \circ g^{-1}(x) \in B - W_x$$

Věta 5.11 (Ekvivalence Kreativní). Nechť M množina. Následující tvrzení jsou ekvivalentní:

- (a) M je kreativní $\iff \overline{M}$ produktivní.
- (b) M je 1-úplná $\iff \overline{K} \leq_1 \overline{M}$
- (c) M je m-úplná $\iff \overline{K} \leq_m \overline{M}$

Každý z pojmu zahrnuje rekurzivní spočetnost.

Ekvivalence mezi totálně různými pojmy. 1-úplnost jako u NP znamená, že je to nejtěžší ze všech takových množin.

 $D\mathring{u}kaz.$ $(b) \Rightarrow (c)$ z vlastnosti 1 a m převoditelnosti. $(c) \Rightarrow (a)$

Z vlastnosti převoditelnosti

$$K \leq_m M \iff \overline{K} \leq_m \overline{M}$$

pak použijeme lemma 5.10. Víme že \overline{K} je produktivní, takže i \overline{M} . Pak dle definice, M je kreativní.

 $(a) \Rightarrow (b) \ (\overline{M} \text{ produktivn} i) \Rightarrow \overline{K} \leq_1 \overline{M})$ Cil

$$W_{h(y)} = \begin{cases} \{f \circ h(y)\} & \text{pro } y \in K \\ \emptyset & \text{pro } y \notin K \end{cases}$$

kde f je ORF prostá, produktivní pro \overline{M} .

Konstrukce funkce h

$$W_{g(x,y)} = \begin{cases} \{f(x)\} & \text{pro } y \in K \\ \emptyset & \text{pro } y \notin K \end{cases}$$

g dostaneme pomoci s-m-n věty 2.20:

$$\alpha(x, y, w) \simeq \varphi_{g(x,y)}(w) \downarrow \iff y \in K \land w = f(x)$$

Strojil skripta chyba, rovnice č. 57.

Pak použijeme větu o rekurzi

$$W_{h(y)} = W_{g(h(y),y)}$$

Z toho platí

$$y \notin K \Rightarrow W_{h(y)} = \emptyset \subseteq \overline{M} \Rightarrow f \circ h(y) \in \overline{M}$$
$$y \in K \Rightarrow W_{h(y)} = \{f \circ h(y)\}$$

kdyby $f \circ h(y) \in \overline{M}$ tak

$$W_{h(y)} \subseteq \overline{M}f \circ h(y) \in \overline{M} - W_{h(y)}$$

což je spor.

Neboli

$$f \circ h(y) \in M \Rightarrow \overline{K} \leq_1 \overline{M}$$

Důsledek 5.12. \overline{K} je nejjednodušší produktivní množinou při \leq_1 nebo \leq_m . Protože všechny produktivní množiny jsou

$$\{B | \overline{K} \leq_m B\}$$

Definice 5.13. B je úplně produktivní když existuje ORF f tž:

$$f(x) \in B - W_x \lor f(x) \in W_x - B$$

Příklad 5.14. \overline{K} je úplně produktivní dle definice K.

$$x \in \overline{K} - W_x \lor x \in W_x - \overline{K}$$

neboli funkce je id.

Věta 5.15 (Uplna produktivita). B je úplně produktivní ⇔ B je produktivní.

 $D\mathring{u}kaz. \Rightarrow \text{triviálně z definice.}$

← lze dokázat 2ma způsoby. První je inspekci minulého důkazu. Uděláme

- 1. $g^{-1}(W_x)$
- 2. f(...)
- 3. $g \circ f \circ g^{-1}$.

Jen se musí ověřit o 1 disjunkci víc.

Druhý pomoci věty o rekurzi:

$$W_{h(y)} = \left\{ \begin{array}{ll} \{f \circ h(x)\} & \text{pro } f \circ h(x) \in W_y \\ \emptyset & \text{pro } f \circ h(x) \notin W_y \end{array} \right.$$

f je ORF produktivní funkce, h dostaneme pomoci věty o rekurzi a s-m-n věty. Pak

$$f \circ h(x) \notin W_y \Rightarrow W_{h(y)} = \emptyset \Rightarrow f \circ h(x) \in B \Rightarrow f \circ h(x) \in B - W_y$$

$$f \circ h(x) \in W_y \Rightarrow W_{h(y)} = \{f \circ h(x)\}$$

Kdyby $f \circ h(x) \in B$ tak

$$\Rightarrow W_{h(y)} \in B \Rightarrow f \circ h(x) \in B - W_{h(y)}$$

Z toho

$$f \circ h(x) \in W_u - B$$

Definice 5.16 (Totální množina).

$$Tot = \{x | \varphi_x \text{ totální}\} = \{x | \exists y \varphi_x(y) \downarrow\}$$

Lemma 5.17 (Totalni je produktivni). Totální množina je produktivní.

 $D\mathring{u}kaz$. Pomoci m-převodu na \overline{K} .

$$\varphi_{h(x)}(y) \downarrow \iff x \notin K_i$$

Kde $x \notin K_j$ znamená, že $x \notin K$ za j kroků.

$$x \notin K \iff h(x) \in Tot$$

Pokud x není v K, tak tam nebude za žádný počet kroků. Pak i h(x) je všude definovaná. Jinak

$$x \in K \Rightarrow dom(\varphi_{h(x)}) < \infty$$

Definiční obor je konečný a rovna se nějakému $\{0,...,j_0\}$, což je počet kroků za který x vstoupí do K.

Problém ale je, že dostáváme nový program, ale ne zaručeně novou funkci. Dokážeme silnější tvrzení a konkretně vytvoříme novou funkci. Máme

$$W_u \in Tot$$

uděláme novou $F \in ORF$ která roste rychleji než $\varphi_a : \forall a \in W_y$. Jinými slovy

$$\forall a \in W_y \exists z_0 \forall z \ge z_0 : F(x) \ge \varphi_a(z)$$

F majorizuje $\varphi_a : \forall a \in W_y$.

BUNO: W_y je nekonečná, jinak přidáme nekonečně indexů prázdného programu. Kvůli enumeratoru, můžeme W_y efektivně generovat, neboli vypisovat

$$a_0, a_1, \dots$$

Pak

$$F(x) = \max_{j \in \{1, ..., x\}} (\varphi_{a_j}(x)) + 1$$

Důsledek 5.18. Z věty plyne omezení logiky.

Vezmeme třeba Peano aritmetiku (PA). Můžeme efektivně generovat sentence které PA dokazuje, tudíž lze efektivně generovat ty a : φ_a totální.

Pak můžeme dle předchozí věty můžeme najít F která roste rychleji, než cokoliv co PA dokazuje.

Libovolná efektivně zadaná teorie má jen r.s. množinu dokazatelných sentenci. Pokud z nich vybereme ty, co dokazuji o nějakém programu že je všude definovaný, tak vyrobíme sentenci na kterou daná teorie nestačí.

6 Dvojice množin

Poznámka 6.1. Motivace z logiky: pokud máme rozumnou teorii, tak určuje sentence které dokazuje a sentence které vyvrací. Když teorie je bezesporná, tak množiny jsou disjunktní.

Definice 6.2 (Rekurzivní neoddělitelnost). Disjunktní dvojice množin A, B jsou rekurzivně neoddělitelné když neexistuje M t.ž.

$$A \subseteq M \land M \cap B = \emptyset(B \subseteq \overline{M})$$

Definice 6.3 (Efektivní neoddělitelnost). Disjunktní dvojice množin A, B jsou efektivně neoddělitelné když existuje $f \in \check{C}RF$ t.ž.

$$A \subseteq W_x \land B \subseteq W_y \land W_x \cap W_y = \emptyset \Rightarrow f(x,y) \downarrow \notin W_x \cup w_y$$

Efektivně můžeme nejít bod který leží mimo obaly A, B.

Poznámka 6.4. Efektivní neoddělitelnost ⇒ rekurzivní neoddělitelnost.

Věta 6.5 (Efektivní neoddělitelné (BD)). Existuji rekurzivně neoddělitelné které nejsou efektivně neoddělitelné.

Důkaz. Podobná konstrukce jako u Simple.

Poznámka 6.6. Efektivní neoddělitelnost vždy lze definovat tak, aby $f \in ORF$ (neboli všude definovaná).

Věta 6.7 (Existence efektivní neoddělitelné). Existuji disjunktní r.s E, F které jsou efektivně neoddělitelné.

Důkaz. Znovu diagonální metoda.

Vezmeme

$$E = \{x | \varphi_x(x) \simeq 0\}$$

$$F = \{x | \varphi_x(x) \simeq 1\}$$

Na konkretních hodnotách nezáleží, šlo by vzít $i, j \in \mathbb{N} : i \neq j$.

Hned je vidět, že E, F jsou disjunktní a r.s.

Podle s-m-n 2.20 věty existuje PRF taková, že:

$$\varphi_{\alpha(x,y)}(w) = \left\{ \begin{array}{ll} 1 & w \text{ padne d\'r\'ive do } W_x \text{ než do } W_y \\ 0 & w \text{ padne d\'r\'ive do } W_y \text{ než do } W_x \\ \uparrow & w \notin W_x \cup W_x \end{array} \right.$$

Formálně (dříve než ...)

$$\exists j (T_1(x, w, j) \land \forall i \le j : \neg T_1(y, w, i))$$

Pokud oba dva programy skonči za stejný počet kroků, tak vezmeme libovolný. Nechť $W_x\supseteq E$ je rekurzivní obal E, nápodobně $W_y\supseteq F$. Uvažme

$$\varphi_{\alpha(x,y)}(\alpha(x,y))$$

Kdyby $\alpha(x,y)$ padlo do W_x , potom zřejmě padne dříve do W_x než do W_y . Pak

$$\varphi_{\alpha(x,y)}(\alpha(x,y)) = 1$$

a tedy by muselo $\alpha(x,y)$ padnout do B. To nelze. Symetricky $\alpha(x,y)$ nemůže padnout do W_y neboli

$$\alpha(x,y) \notin W_y \cup W_y$$

Poznámka 6.8. Paradox lháře: tento výrok je lživý. Používá self-referenci. Ten ale operuje s pojmem pravdy, který není matematický. Můžeme ale podobný trik provést s např pojmem dokazatelnosti (viz Godelová 1. věta o neúplnosti).

Definice 6.9 (1-převoditelnost dvojic). Disjunktní dvojice

$$(C,D) \leq_1 (A,B)$$

právě když existuje prostá $f\in \check{\mathbf{C}}RF$:

$$x \in C \iff f(x) \in A$$
$$x \in D \iff f(x) \in B$$
$$x \notin C \cup D \iff f(x) \notin A \cup B$$

Definice 6.10 (1-úplnost dvojic). Disjunktní dvojice r.s. množin (A, B) je 1-úplná pravě když libovolná disjunktní dvojice r.s. množin (C, D) platí:

$$(C,D) \leq_1 (A,B)$$

Věta 6.11 (Dvojná věta o rekurzi). Pro libovolné $f, g \in ORF$:

$$\exists m, n : \varphi_m = \varphi_{f(m,n)}, \ \varphi_n = \varphi_{g(m,n)}$$

Obecněji: pro libovolné $f,g \in ORF$, obě (k+2) proměnných, existují $w_1, w_2 \in PRF$:

$$\varphi_{w_1(y_1,\dots,y_k)} = \varphi_{f(w_1(y_1,\dots,y_k),w_2(y_1,\dots,y_k),y_1,\dots,y_k)}$$

$$\varphi_{w_2(y_1,\dots,y_k)} = \varphi_{g(w_1(y_1,\dots,y_k),w_2(y_1,\dots,y_k),y_1,\dots,y_k)}$$

 $D\mathring{u}kaz$. Z Věty o rekurzi 4.2 existuje $h \in ORF$:

$$\varphi_{h(y)} = \varphi_{f(h(y),y)}$$

Vezmeme

$$\varphi_{g(h(y),y)}, \exists n : \varphi_n = \varphi_{g(h(n),n)}$$

Položme m = h(n).

Věta 6.12 (Existence efektivní neoddělitelné). Disjunktní r.s dvojice množin jsou efektivně neoddělitelné \iff jsou 1-úplné.

 $D\mathring{u}kaz$. "1-úplnost \Rightarrow efektivní neoddělitelnost".

Nechť (C, D) efektivně neoddělitelné s funkci f a $(C, D) \le_1 (A, B)$ s funkci h, neboli (C, D) je 1-úplná.

Vezmeme vzory r.s. obalů $A \subseteq W_x, B \subseteq W_y$:

$$W_{\alpha(x)} = g^{-1}(W_x), W_{\alpha(y)} = g^{-1}(W_y)$$

Jelikož, (C,D) efektivně neoddělitelné $\Rightarrow W_{\alpha(x)} \cap W_{\alpha(y)} = \emptyset$. Taky funkce f dá bod

$$new = f(\alpha(x), \alpha(y)) : new \not\in W_{\alpha(x)} \cup W_{\alpha(y)}$$

Zobrazíme new pomoci q zpátky. Pak

$$g(new) = f \circ g(\alpha(x), \alpha(y) \notin W_x \cup W_y$$

Z čehož, (A, B) je efektivně neoddělitelná.

[&]quot;1-úplnost ← efektivní neoddělitelnost".

Nechť (A,B) efektivně neoddělitelné s funkci $f \in \check{\mathbf{C}}RF$. Nechť (C,D) libovolné disjunktní množiny.

Sestavíme množiny

$$W_{w_1(x)} = \begin{cases} A \cup \{f(w_1(x), w_2(x))\} & \text{pro } x \in D \\ A & \text{pro } x \notin D \end{cases}$$

$$W_{w_2(x)} = \begin{cases} B \cup \{f(w_1(x), w_2(x))\} & \text{pro } x \in C \\ B & \text{pro } x \notin C \end{cases}$$

Které dostaneme pomoci dvojné věty o rekurzi 6.11

$$W_{\alpha(y_1,y_2,x)} = \begin{cases} A \cup \{f(y_1(x), y_2(x))\} & \text{pro } x \in D \\ A & \text{pro } x \notin D \end{cases}$$

$$W_{\beta(y_1,y_2,x)} = \begin{cases} B \cup \{f(y_1(x),y_2(x))\} & \text{pro } x \in C \\ B & \text{pro } x \notin C \end{cases}$$

Zkontrolujeme 2 případy:

$$x \notin C \cup D \Rightarrow W_{w_1(x)} = A, W_{w_2(x)} = B \Rightarrow f(w_1(x), w_2(x)) \notin A \cup B$$

jinak např $x \in C \Rightarrow x \notin D$ protože jsou disjunkci dle předpokladu. Pak

$$W_{w_1(x)} = A, W_{w_2(x)} = B \cup \{f(w_1(x), w_2(x))\}\$$

Pokud $f(w_1(x), w_2(x)) \notin A$ tak množiny $W_{w_1(x)}, W_{w_2(x)}$ jsou obaly A, B. Pak z efektivní neoddělitelnosti f by měla vracet nový bod, ležící mimo:

$$f(w_1(x), w_2(x)) \notin W_{w_1(x)} \cup W_{w_2(x)}$$

což je spor s konstrukci $W_{w_2(x)}$, protože $f(w_1(x), w_2(x)) \in W_{w_2(x)}$. Symetricky pro D.

Dohromady $f(w_1(x), w_2(x))$ 1-převádí (C, D) k (A, B).

7 Gödelovy věty

Definice 7.1 (Rozumná teorie). Rozumná teorie musí být:

- bezesporná
- axiomatizovatelná
- Základní aritmetické sily (adekvátní)

Definice 7.2 (Axiomatizovatelná teorie). Axiomatizovatelná teorie je právě když množina dokazatelných formuli je r.s.

Způsoby řešení paradoxu v teorii množin:

• intuicionisty/kontruktivisti finitisty - odmítají nekonečno. Jde vybudovat spoustu věci, ale vznikající teorie je kostrbatá a nepříjemná.

Již Bolzano upozorňoval, že nekonečno je nevlastní pojem, překročující lidskou existenci. Viz [1]

• Hilbertův formalismus - vybudovat teorie z logiky +1. řadu a aby každé tvrzení šlo jednoznačně dokázat nebo vyvrátit + aby teorie byla bezesporná.

Poznámka 7.3. Tzv. Presburgerová Aritmetika bez násobení je rekurzivní a konzistentní.

Poznámka 7.4. Teorie vyčíslitelnosti dává ekvivalentní pohled na Godelovy věty. Které původně byly vyjádřené přes jazyk aritmetiky.

Definice 7.5 (Reprezentovatelnost). $f \in \check{\mathbf{C}}RF$ je reprezentovatelná v teorii T pokud existuje formule F:

$$f(x) = y \Rightarrow \vdash_T F(\overline{x}, \overline{y})$$

$$\vdash_T F(x,y) \land F(x,z) \Rightarrow y = x$$
 (funkční vlastnost, aby nebyla jen relace)

Pokud platí obě podminky a T je bezesporná, tak

$$\{(x,y),\vdash_T F(\overline{x},\overline{y})\}$$
 graf nějaké funkce $\supseteq f$

Pozorování 7.6. ČRF jsou reprezentovatelné v libovolné teorii ZAS.

Víme, že pro $\varphi \in \check{C}RF$ graf

$$\{(x,y):\varphi(x)\simeq y\}$$

je r.s.

Z důsledku RDPM věty 3.14 máme

r.s.
$$\approx \exists (p_1(...) = p_2(...))$$

Rovnost dvou polynomu je jednodušé formalizovatelné v teorii ZAS.

Věta 7.7. Pak pokud máme Σ_1 formule v jazyce ZAS, které jsou pravdivé v \mathbb{N} jsou v T (ZAS) dokazatelné.

$$\mathbb{N} \models \exists (\ldots) \Rightarrow \vdash_T \exists (\ldots)$$

Důkaz. Vezmeme např následující formule:

$$\exists x(x+\overline{7}=\overline{17})$$

Od teorie T chceme, aby formuli ověřila.

Pokud v \mathbb{N} je pravdivá nějaká Σ_1 formule, tak existuje tzv. Σ_1 svědek. Což je jedno nebo několik přirozených čísel které splňuji formuli po dosazení. Teorie zkontroluje rovnost termu.

Lemma 7.8 (Disjunktní množiny formule(BD)). Nechť T je bezesporná, ZAS. Pak A, B jsou disjunktní r.s. tak existuje Σ_1 -formule G:

$$x \in A \Rightarrow \vdash_T G(\overline{x})$$

$$x \in B \Rightarrow \vdash_T \neg G(\overline{x})$$

Důkaz. Sestavíme formuli:

$$\left\{ \begin{array}{ll} \varphi(x) = 0 & \text{pro } x \in A \\ \varphi(x) = 1 & \text{pro } x \in B \end{array} \right.$$

Pak

$$x \in A \Rightarrow \vdash_{\mathcal{T}} F(\overline{x}, \overline{0})$$

$$x \in B \Rightarrow \vdash_T F(\overline{x}, \overline{1})$$

Z bezespornosti

$$x \in B \Rightarrow \vdash_T F(\overline{x}, \overline{1}) \Rightarrow \vdash_T \neg F(\overline{x}, \overline{0})$$

Pak hledaná formule je

$$G(x) = F(x, \overline{0})$$

Věta 7.9 (Gödelové věty). Jestliže teorie T 1. řádu má základní aritmetickou sílu a je bezesporná, pak:

- 1. množina dokazatelných v T formuli není rekurzivní
- 2. pokud je T navíc axiomatizovatelná, tak existuje uzavřená formule (sentence) F taková, že:

$$T \nvdash F \land T \nvdash \neg F$$

3. (2. Věta) axiomatizovatelnost + Indukce Σ_1 (stačí i trochu méně) tak v T nelze dokázat její bezespornost (consistency). Formálně:

$$T \nvdash Con_T$$

kde Con_T je formule vyjádřující konsistence, např

$$\neg \exists proof \ (\overline{0} = \overline{1})$$

Důkaz. 1. Nechť

$$A_1 = \{x : \vdash_T G(\overline{x})\}$$

$$B_1 = \{x : \vdash_T \neg G(\overline{x})\}$$

Jelikož A,B jsou efektivně neoddělitelné \Rightarrow jsou rekurzivně neoddělitelné. Z toho A_1,B_1 nejsou rekurzivní.

Q: protože jinak kdyby byly rekurzivní, tak by nevyplnili celý prostor?

2. Když přidáme axiomatizovatelnost, tak A_1, B_1 jsou r.s.

Pak z efektivní neoddělitelnosti efektivně najdeme takové $k \notin A_1 \cup B_1$ že:

$$\nvdash_T G(\overline{k}) \land \vdash_T \neg G(\overline{k})$$

3. BD, formalizace, hodně logiky.

Jinými slovy, máme následující:

∃můj důkaz IF existuje kratší důkaz mé negace

A symetricky pro gace. Nedochází k žádnému paradoxu, oproti paradoxu lháře.

7.1 Kalibrace síly teorie

Poznámka 7.10. Konečná verze Ramsey věty je v PA nedokazatelná.

Poznámka 7.11. PA má sílu

$$\varepsilon_0 = w^{w^{\cdots}}$$

kde exponent je dlouhý w.

Což je největší ordinál, který ještě dává dobré uspořádaní.

Zkoumá tuto oblast proof theory.

8 Relativní vyčíslitelnost

Zobecnění 1-převoditelnosti na relativný výpočet (s Orákulem).

Definice 8.1 (tt-Převoditelnost). Tzv tt (truth table) převoditelnost znamená, že existuje $f \in ORF$ která vrátí:

$$x \to \begin{cases} n_x \\ \alpha_x & \text{n-arní booleovskou funkci} \\ y_1, \dots, y_n & \text{body} \end{cases}$$

Pro niž platí:

$$C_A(x) = \alpha_x(C_B(y_1), \dots, C_b(y_n))$$

Kde C_i je charakteristická funkce.

Neboli

$$x \in A \iff \alpha_x(\ldots) = 1$$

Značení:

$$A \leq_t tB$$

Poznámka 8.2. TT převoditelnost musí napřed říct, na které body se bude ptát. Což je omezení.

8.1 Formalizace relativného vypočtu

Existuje několik možnosti formalizace:

- **Definice 8.3.** 1. TS s orákulem. Přidáme další pasku, kde TS bude umisťovat slova pro dotazy k orákulu. Pak množina B (asi jazyk orákula) je dalším vstupem programu.
 - 2. ČRF. Přidáme charakteristické funkce C_B , kde B je proměnná.
 - 3. Programovací jazyk. Přidáme funkci B, v console se objeví dotaz, jestli slovo patří nebo nepatří do jazyka.

Poznámka 8.4. Relativní výpočet je jedním z druhu paralelizace. Pro konkretní vstup x vzniká tzv výpočtový strom.

Důležité je, že množina konečných větví je r.s. Každou z větvi lze charakterizovat pomoci

$$\langle x, z, y, n \rangle$$

Kde x je vstup, y je vystup, y je index konečné množiny kladně zodpovězených orákulem dotazů, n je index množiny negativních dotazů. Přitom

$$D_y \subseteq B, D_n \subseteq \overline{B}$$

Předpokládáme, že jazyk orákula je korektní, neboli

$$D_u \cap D_n = \emptyset$$

Tento přistup formalizace není nejvýhodnější, protože body na které se práme netvoří souvislý počátek přirozených čísel.

Úmluva 8.5. Nadále pracujeme s konečné binární řetízky (string), které značíme buď $\{0,1\}^*$, nebo $2^{< w}$.

Operace:

• konkatenace: $\sigma * \tau$.

• délka: $|\sigma|$

• indexovaní: $\sigma(0) * \sigma(1) * \dots * \sigma(|\sigma| - 1)$.

• počátek(ostrý): $\alpha \leq \beta(\alpha \leq \beta)$.

• počátek množiny: $\alpha \prec B$ což znamená $\alpha \leq C_B$.

Definice 8.6. Částečně rekurzívní funkcionál je r.s. množina Φ trojic taková, že pokud platí:

$$\langle \sigma, x, y \rangle \in \Phi$$

 $\langle \sigma^*, x, y^* \rangle \in \Phi$
 $\sigma \preccurlyeq \sigma^*$

Tak $y = y^*$.

Funkcionál je funkce vyššího řadu, vrací funkce.

Poznámka 8.7. Přístupy jsou ekvivalentní, protože v případě Částečně rekurzívního funkcionálu číslo na které se orákula neptáme označíme nulou v řetízku.

Příklad 8.8. Program má na vstupu x, na vystup vypíše y s použití $\alpha < B$.

Definice 8.9. Částečně rekurzívní funkcionál určuje částečné zobrazení:

$$\begin{split} \Phi(\sigma)(x) &\simeq y \iff \langle \sigma, x, y \rangle \in \Phi \\ \Phi(\tau)(x) &\simeq y \iff \text{pro nějaké } \sigma \preccurlyeq \tau : \Phi(\sigma)(x) \simeq y \\ \Phi(B)(x) &\simeq y \iff \text{pro nějaké } \sigma \preccurlyeq B : \Phi(\sigma)(x) \simeq y \end{split}$$

Q: proč funkcionál místo zobrazení s 2ma parametry?

Poznámka 8.10. Máme funkcionální term, který aplikujeme na 0,1 (charakteristickou) funkci. Tím dostaneme funkční term. Aplikace funkčního termu na číselný term může ale nemusí davat číselnou hodnotu.

Vlastnosti 8.11. 1. $\Phi(B)$ je korektně definováno.

- 2. $\Phi(B)$ je intuitivně efektivně vyčíslitelné pomoci B. Postup: efektivně generuj trojice $\langle \sigma, x, y \rangle$. Pak $\sigma \prec B$? Pokud ano, stop. Jinak pokračuj dal.
- 3. Výpočetní strom $\rightarrow \Phi$ vystihuje pojem efektivní vyčíslitelnosti vzhledem k B.

Definice 8.12 (T-Převoditelnost).

$$A \leq_T B$$

Pokud existuje nějaký ČRFunkcionál Φ:

$$\Phi(B) = A, \forall x (A(x) = \Phi(B)(x))$$

Taky se říká: A je B-rekurzívní, A je reflexivní vzhledem k B.

Definice 8.13 (T-Převoditelnost pro funkce). φ je B-ČRF pokud

$$\varphi(x) \simeq \Phi(B)(x)$$

Lemma 8.14 (Regularizační funkce). Existuje ORF (dokonce PRF) ρ regulárizační funkce. Splňující:

- 1. $W_{\rho(x)} \subseteq W_x$.
- 2. $W_{\rho(x)}$ je ČRFunkcionál.
- 3. W_x je ČRFunkcionál $\Rightarrow W_{\rho(x)} = W_x$.

Důkaz. Není formální důkaz.

Budeme efektivně generovat W_x .

- 1. for each $(tmp = \langle \sigma, x, y \rangle \in W_x)$
- 2. if $(W_{\rho(x),s} \cup \{tmp\}$ je regulární)
- 3. $W_{\rho(x)} = W_{\rho(x)} \cup \{tmp\} //add$

Definice 8.15 (Numerace funkcionálu). $W_{\rho(x)}$ z lemmatu je e-tý ČRFunkcionál, značíme Φ_e .

$$\Phi_e(B)(x) \simeq y \iff \langle \sigma, x, y \rangle \in W_{\rho(x)} : \sigma \prec B$$

Taky za s kroků: $\Phi_{e,s}(B)(x)$.

Pozorování 8.16. $\Phi_e(\sigma)(X) \downarrow \text{ je r.s. v B.}$

Pozorování 8.17. $\Phi_{e,s}(\sigma)(X) \downarrow$ je rekurzívní.

Věta 8.18 (s-m-n pro Relativní).

Důkaz. Nemůžeme rovnou použit standardní s-m-n větu, protože ne každá W_x splňuje funkční vlastnost. Proto potřebujeme Regularizační funkce 8.14.

Pak $\Phi_e(B)(x)$ je univerzální B-ČRF. Pak platí

$$\forall B, \forall x_1, \dots, x_m, y_1, \dots, y_n \Phi_e(B)(x_1, \dots, x_m, y_1, \dots, y_n) \simeq \Phi_{\overline{s_m}(e, x_1, \dots, x_m)}(B)(y_1, \dots, y_n)$$

Kde $\overline{s_m}$ jsou ORF (dokonce PRF).

Formálně, uděláme ČRF takovou, že

$$\alpha(e,x,w)\downarrow \iff w=\langle \sigma,y,t\rangle: \langle \sigma,\langle x,y\rangle,t\rangle \in W_{\rho(x)}$$

S tím, že

$$\alpha(e, x, w) \simeq \varphi_{s_2(a, e, x)}(w)$$

Položme

$$\overline{s_2}(e,x) = s_2(a,e,x)$$

Rozbor: s pomoci σ orákulu a vstupu y vypočti t jestliže

$$\Phi_e(\sigma)(\langle x, y \rangle) = t$$

Což znamená (pro jednoduchost pro 2 proměnné):

$$\Phi_e(B)(\langle x, y \rangle) \simeq \Phi_{\overline{s_2}(e, x)}(B)(y)$$

Poznámka 8.19. 1. \leq_T je reflexivní, tranzitivní.

- 2. A rekurzívní $\Rightarrow \forall B: A \leq_T B$. Pokud umíme spočítat A, tak to můžeme udělat s libovolným orákulem bez dotazů.
- 3. B rekurzívní $\wedge A \leq_T B \Rightarrow A$ je rekurzívní. Pro dotazy k orákulu B použijeme TS který rozhoduje B. Jako vnoření vypočtu v složitosti.

Definice 8.20 (Turingovská ekvivalence).

$$A =_T B \iff A \leq_T \land B \leq_T A$$

Definice 8.21 (Stupně převoditelnosti).

$$deg_T(A) = \{B : B \le_T A\}$$

Poznámka 8.22. $\{\varphi_e\}_x$ a $\{\Phi_e(\emptyset)(x)\}$ jsou různá vyjádření právě všech ČRF. Jsou rekurzivně izomorfní: máme efektivní překladač mezi těmito systémy.

Definice 8.23 (B-rekurzívní spočetnost). A je B-r.s. právě když

$$A = dom(\Phi_e(B))$$

Značení 8.24.

$$W_e^B = dom(\Phi_e(B))$$

e-ta B-r.s.

Podobně za s kroků:

$$W_{e,s}^B = dom(\Phi_e(B))$$

Definice 8.25 (T-úplnost). A je T-úplná pravě když je r.s. a platí

$$\forall B \in r.s. : B \leq_T A$$

Taky

$$A <_T B \iff A \leq_T B \land B \nleq_T A$$

8.2 Struktura T-stupňu

T-stupně tvoří horní polosvaz (upper semilattice), označuji se $\mathcal{D}(\leq)$.

Definice 8.26. Necht a, b třídy ekvivalence v $\mathcal{D}(\leq)$. Pak

$$a \le b \iff \exists A \in a, \exists B \in b : A \le_T B$$

Definice 8.27 (Join).

A join
$$B = A \oplus B = \{2x : x \in A, 2x + 1 : x \in B\}$$

Vlastnosti 8.28.

Join:

- $A \leq_T A \oplus B$.
- $B \leq_T A \oplus B$.
- $B \leq_T C \land A \leq_T C \Rightarrow A \oplus B \leq_T C$.

8.3 Relativizace dřívějších výsledků

Vlastnosti 8.29. • Postová věta: A je B-rekurzívní $\iff A, \overline{A}$ jsou B-r.s.

- r.s. které mají enumerator jsou efektivně generovatelné. Podobně, B-r.s která má enumerator je efektivně generovatelná relativně kB.
- r.s. množiny jsou právě ty, které lze vyjádřit pomoci \exists (rekurzívní podmínka). Podobně: B-r.s. množiny jsou právě ty, které lze vyjádřit pomoci \exists (B-rekurzívní podmínka).

Q: co je B-rekurzívní podmínka? Zahrnuje taky $y \in B$?

8.4 Operace skoku

Definice 8.30 (Jump). Skok neboli relativizovaný Halting problém.

$$A' = \{x : \Phi_x(A)(x) \downarrow\} = \{x : x \in W_x^A\}$$

Věta 8.31 (Vlastnosti skoku). 1. A' je r.s.

- 2. A' není A-rekurzívní $\mathfrak{E} \overline{A'}$ není A-r.s.
- 3. B je A-r.s \iff B $\leq_1 A'$.
- 4. B je A-r.s & $A \leq_1 C \Rightarrow B$ je C-r.s.

5.

$$A \leq_T B \iff A' \leq_1 B'$$

6.

$$A \equiv_T B \iff A' \equiv_1 B'$$

 $Kde \equiv je \ znak \ rekurzívní \ izomorfie.$

 $D\mathring{u}kaz$. 1. z definice, A' je definičním oborem programu $\Phi_x(A)(x)$.

2. Cantorová diagonální metoda. Formálně:

$$\overline{A'} = \{x: x \notin W_x^A\} \Rightarrow \forall x: \overline{A'} \neq W_x^A$$

Pak z relativní Postové věty 8.29: A' není A-rekurzívní.

3. " \Leftarrow ". Necht $B \leq_1 A'$.Pak

$$\exists f \in ORF : x \in B \iff f(x) \in A'$$

Z toho můžeme spočítat f(x) a pokud $f(x) \in A$ tak $x \in B$. Což je program pro rozhodnutí B.

"⇒"Pomoci fiktivní proměnné. Sestavíme

$$\alpha(x, y, w) \downarrow \iff y \in W_x$$

Dle s-m-n věty 8.18

$$\alpha(x, y, w) \simeq \varphi_{h(x,y)}(w)$$

Dosadíme za fiktivní proměnnou w = h(x, y). Pak

$$h(x,y) \in K \iff y \in W_x$$

Zvolme $x = x_0$, pak $h(x_0, y)$ 1-převádí W_x na K.

V relatívném případě máme W_x^A a A' místo K.

4. Když B je A-r.s. a $A \leq_T C$. Víme:

$$B = dom(\Phi_e(A))$$

v průběhu vypočtu se objeví dotaz
y $z\in A?$ Vnoříme pro každý dotaz proceduru, která rozhoduje
 A pomociC. Pak

$$B = dom(\Phi_i(C))$$

Pozor, důkaz není formální.

5. Máme následující diagram:

" \Rightarrow ". Necht $A \leq_T B$. Víme z 1), že A' je A-r.s. Podle 4) $A \leq_T B \Rightarrow A'$ je B-r.s. Tedy dle 3) protože B' je "nejtěžší"mezí B-r.s (je 1-úplná pro B-r.s):

$$A' <_1 B'$$

"
=". Nechť $A' \leq_1 B'$. Triviálně: A, \overline{A} jsou A-rekurzívní proto dle relativní Postové věty 8.29: A, \overline{A} jsou A-r.s.

Pak dle 3) A' je 1-úplná pro všechny A-r.s.

$$A, \overline{A} \leq_1 A'$$

Z předpokladu, relace je tranzitivní

$$A, \overline{A} <_1 B'$$

Proto A, \overline{A} jsou B-r.s. Konečně dle relativní Postové věty 8.29 A je rekurzívní v B:

$$A \leq_T B$$

6. Přímý důsledek 5), aplikujeme relaci na obou stranách.

Poznámka 8.32.

$$deg_T(A) = \{B : A \equiv_T B\}$$

Se po skoku zobrazí na třídu 1-ekvivalence A'.

Definice 8.33 (Jump na T-stupních). \underline{a}' skok T-stupně \underline{a} je třída

$$\{B: B \geq_T A', A \in a\}$$

Na volbě A nezáleží protože je to ekvivalence.

Poznámka 8.34. Skok lze iterovat:

$$(A)^0 = A, (A)^{(n+1)} = (A^{(n)})'$$

Taky všechny konečné:

$$A^{(\omega)} = \{ \langle x, y \rangle : x \in A^{(y)} \}$$

Analogicky na třídách

$$\underline{a}^0 = \underline{a}, (\underline{a})^{(n+1)} = (\underline{a}^{(n)})'$$

Pozorování 8.35.

$$\underline{0} = deg_T(\emptyset)$$

Což jsou právě všechny rekurzívní množiny.

Pozorování 8.36. K a \emptyset' jsou různá vyjádření Halting problému. Jsou rekurzivně izomorfní: máme efektivní překladač mezi těmito systémy.

$$D\mathring{u}kaz$$
. Protože \emptyset' je \emptyset -r.s. $\Rightarrow \emptyset'$ -r.s. $\Rightarrow \emptyset' \leq_1 K$. Opačně K je r.s. (absolutně) $\Rightarrow \emptyset$ -r.s. $\Rightarrow K \leq_1 \emptyset$.

8.5 Stejnoměrnost

Tvrzení o skoku platí stejnoměrně (jako v analýze).

Věta 8.37.

$$\exists z_0 \forall A(W_{z_0}^A = A')$$

Existuje pevný program, který funguje pro všechny množiny.

 $D\mathring{u}kaz$.

$$W_{z_0} = \{ \langle \sigma, x, y \rangle : \langle \sigma, x, y \rangle \in W_{\rho(x)} \}$$

Pak W_{z_0} je regulární, protože prvky bereme z regulární množiny $W_{\rho(x)}$. Dal

$$x \in A' \iff \Phi_x(A)(x) \downarrow \iff \exists \sigma, \exists y (\langle \sigma, x, y \rangle \in W_{\rho(x)} \land \sigma \prec A) \iff x \in W_{z_0}^A$$

Podobně:

$$\exists f \in ORF \forall A, B, \forall z : A = \Phi_z(B) \Rightarrow A' \leq_1 B'$$
pomoci $\varphi_{f(z)}$

Kde $\varphi_{f(z)}$ je ORF, prostá.

9 Limitní vyčíslitelnost

10 Aritmetická hierarchie

Poznámka 10.1. Aritmetická hierarchie je v jistém smyslu efektivní verzi Borelovské hierarchie.

 \cup odpovídá \exists a $\cap - \forall$.

Poznámka 10.2. Podobná konstrukce jako polynomiální hierarchie v teorii složitosti.

Definice 10.3 (Σ_n, Π_n). Σ_n resp Π_n prefix je skupina (aritmetických kvantifikátoru). Σ_n začíná \exists , Π_n naopak \forall .

Každá ze skupin je homogenní - několik kvantifikátoru stejného typu, např $\exists\exists\exists$ nebo $\forall\forall.$

Definice 10.4 (Redukovaný prefix). Každá ze skupin obsahuje pouze jeden kvantifikátor.

Příklad 10.5. $\exists\exists\forall\exists\exists\exists\ je\ \Sigma_3.$

 $\exists \forall \exists$ je redukovaný Σ_3 .

Poznámka 10.6. Aritmetická hierarchie se označuje Σ_n^0, Π_n^0 protože kvantifikace je přes \mathbb{N} (aritmetická). Dolní index označuje počet střídavých kvantifikátoru. Σ_n^1, Π_n^1 by byla kvantifikace navíc přes funkce $f: \mathbb{N} \to \mathbb{N}$.

Definice 10.7. Predikát (resp množina) je ve třídě $\Sigma_n(\Pi_n)$ jestliže je vyjadřítelný ve tvaru $\Sigma_n(\Pi_n)$ prefix na rekurzivní základ (ORP).

Podobně pro relativní:

 $\Sigma_n^{0,A}$, predikáty jsou A-ORP.

Pozorování 10.8. $\Sigma_0^0 = \Pi_0^0$ jsou právě rekurzivní predikáty.

Q: rovnost plyne z toho, že můžeme prohodit kvantifikace? Na vyšších úrovních neplatí protože...??

Definice 10.9 (Aritmetický predikát). Predikát je *aritmetický* právě když ho lze vyjádřít pomoci logiky 1. řádu, kde atomické části jsou rekurzivní.

Pozorování 10.10. Predikát je aritmetický právě když patří do Σ_n nebo Π_n .

Důkaz. "⇐"zřejmé.

"⇒"Úpravou výrazu do prenexního normálního tvaru. Z logiky, libovolnou formuli lze do tohoto tvaru převést. □

Poznámka 10.11. Pokračováním do rekurzívních ordinálu lze studovat hyperaritmetickou hierarchii. Dal analytická hierarchie.

V rámci kurzu končíme u konečných, neboli ω .

Příklad 10.12. Množina Tot 5.16 je v Π_2^0 .

Důkaz.

$$x \in Tot \iff \forall y \exists x : \varphi_{x,s}(y) \downarrow$$

Máme 2 střídavé kvantifikátory, $\varphi_{x,s}(y) \downarrow$ je rekurzivní.

Věta 10.13 (Omezené kvantifikátory). Omezené kvantifikátory nezvyšují složitost (lze prohodit doprava).

 $D\mathring{u}kaz$. Rozebereme 2 případy dle typu omezeného kvantifikátoru na začátku formule $(\forall_{x < t}, \exists_{x < t})$.

BUNO máme formuli v PNF:

$$\forall_{x < t} \exists y (\ldots)$$

vezmeme w jako kodovaní (t+1)-tice, pak formuli lze ekvivalentně upravit na následující tvar

$$\exists w \forall_{x \leq t} (\dots (w)_{t+1,x} \dots)$$

Protože existence svědka pro všechny $x \leq t$ je stejný jako říct, že existuje skupina (t+1) svědků.

Pak existenční kvantifikátor, BUNO máme formuli:

$$\exists_{x \leq t} \forall y(\ldots)$$

Použijeme negaci a předchozí případ:

$$\forall_{x \le t} \exists y \neg (\dots)$$
$$\exists w \forall_{x < t} \neg (\dots (w)_{t+1,x} \dots)$$

Teď odstraníme negaci:

$$\forall w \exists_{x < t} (\ldots)$$

V libovolné formuli můžeme postupem popsaném nahoře posunout omezené kvantifikátory doprava. Pak dle věty o omezené kvantifikace 3.9 ORP a omezený kvantifikátor jsou dohromady ORP. Omezený kvantifikátor lze nahradit konečnou disjunkce/konjunkce.

Věta 10.14 (Redukovaný prefix). Libovolnou formuli lze převést do redukovaného prefixu.

Důkaz. Znovu 2 případy dle typu kvantifikátoru.

Podobně jako ve větě o neomezené kvantifikace 3.10 nahradíme n kvantifikátoru jediným kvantifikátorem n-tice.

$$\exists x \exists y \to \exists w((w)_{2,1} \dots (w)_{2,2})$$

Analogicky pro \forall .

Příklad 10.15. Množina Rec = $\{x: W_x \text{ je rekurzivní }\} \in \Sigma_3^0$.

Důkaz. Dle Postové věty 2.14:

$$x \in Rek \iff \exists y(W_x \cup W_y = W \land W_x \cap W_y = \emptyset)$$

Neboli $W_y = \overline{W_x}$, dohromady vyplní celý prostor, ale průnik je prázdný. Přepíšeme formuli:

$$\forall y (\forall z (z \in W_x \cup W_y) \land \forall z (z \notin W_x \cap W_y))$$

Po krocích:

$$\forall y(\forall z \exists s(z \in W_{x,s} \cup W_{y,s}) \land \forall z \forall s(z \notin W_{x,s} \cap W_{y,s}))$$

Pak šikovně vytáhneme jeden všeobecný kvantifikátor z levé části a 2 všeobecné z pravé části. V posledním kroku vytáhneme existenční kvantifikátor z levé části. Čímž dostaneme

$$\exists \forall \exists (\ldots) \in \Sigma_3^0$$

Věta 10.16 (Základní vlastnosti hierarchie). 1. $A \in \Sigma_n \iff \overline{A} \in \Pi_n$

- 2. $B \in \Sigma_n(\Pi_n) \Rightarrow \forall m > n : B \in \Sigma_m \cup \Pi_m$.
- 3. $A \leq_m B \land B \in \Sigma_n(\Pi_n) \Rightarrow A \in \Sigma_n(\Pi_n)$

Důkaz. 1. Plyne z De Morgan pravidla. Negace mění kvantifikátor na opačný.

- 2. Přidáme redundantní kvantifikátory přes fiktivní proměnné. Pokud jdeme směrem $\Sigma_n \to \Sigma_{n+1}$, tak přidáme kvantifikátor na konec prefixe. Opačně $\Sigma_n \to \Pi_{n+1}$, přidáme kvantifikátor na začátek prefixe.
- 3. dle definice $\leq_m \exists f \in ORF$:

$$x \in A \iff f(x) \in B$$

f(x) můžeme jednodušé kvantifikovat.

10.1 Numerace

Věta 10.17. Třída $\Sigma_0^0 = \Pi_0^0$ nemá univerzální ORP (rekurzivní numerace).

 $D\mathring{u}kaz$. Pomoci Cantorové diagonální metody. Nechť R(e,x) je ORP. Pak musí platit:

$$\neg R(e,e) = R(a_0,e)$$

položme $a_0 = e$ a dostáváme spor.

Poznámka 10.18. Univerzální ČRF, neboli univerzální r.s. predikát 3.3 je univerzální Σ_1^0 2 proměnných pro třídu Σ_1^0 1 proměnné.

Věta 10.19 (O numeraci, univerzálním predikátu). Pro $(n \ge 1)$ třída $\Sigma_n(\Pi_n)$ má univerzální $\Sigma_n(\Pi_n)$ predikát. Tedy máme $\Sigma_n(\Pi_n)$ -indexu.

 $D\mathring{u}kaz$. Pro Σ_n , Π_n analogicky.

Nechť máme Σ_n predikát. Nechť n liché. Pak je tvaru

$$\exists \forall \ldots \exists Q(\ldots)$$

Ořízneme poslední existenční kvantifikátor a predikát, dle věty o univerzálním r.s. predikátu 3.3:

$$\exists y_n Q(\ldots, y_n) = \exists y_n T_n(e, \ldots, y_n)$$

Tím dostaneme vyjádření přes univerzální predikát:

$$\exists y_1, \forall y_2, \dots \exists y_n T_n(e, y_1, y_2, \dots, y_n)$$

Pokud n je sudé, tak máme predikát:

$$\exists \forall \dots \forall Q(\dots)$$

Znovu použijeme negaci na

$$\forall Q(\ldots) = \exists \neg Q(\ldots)$$

Což je r.s., proto se rovná univerzálnímu predikátu:

$$\exists \neg Q(\ldots) = \exists T_n(e,\ldots)$$

zpět negace:

$$\exists T_n(e,\ldots) = \forall y_n \neg T_n(e,\ldots)$$

Dohromady:

$$\exists y_1, \ldots, \forall y_n \neg T_n(e, y_1, \ldots, y_n)$$

Poznámka 10.20. Ve třídě složitosti nemáme univerzální polynom, proto $P \neq NP$ problém.

Důsledek 10.21. Pro $(n \ge 1)\Sigma_n^0 - \Pi_n^0 \ne \emptyset$.

 $D\mathring{u}kaz$. Pro n=1 máme $K\in \Sigma^0_1-\Pi^0_1$.

Pro ostatní n stejný důkaz. Nechť U(e,x) je univerzální predikát pro Σ_n^0 . Kdyby $U(e,e) \in \Pi_n^0 \Rightarrow \neg U(e,e) \in Sigma_n^0$. Z existenci univerzálního $\neg U(e,e)$ má index i. Dosadíme index, dostaneme spor

$$U(i,i) = \neg U(i,i)$$

Tedy $U(i,i) \notin \Pi_n^0$.

Definice 10.22 (Δ_n) .

$$\Delta_n = \Sigma_n \cap \Pi_n$$

Definice 10.23 (Σ_n^0 -úplnost). B je Σ_n^0 -úplná právě když $B \in \Sigma_n^0$ a

$$\forall A \in \Sigma_n^0 : A \le_1 B$$

Věta 10.24 (O aritmetické hierarchii). 1. $\emptyset^{(n)}$ je Σ^0_n -úplná pro $(n \ge 1)$.

- 2. A je r.s. $v \emptyset^{(n)} \iff A \in \Sigma_{n+1}^0$.
- 3. $A \leq_T \emptyset^{(n)} \iff A \in \Delta_{n+1}$.

Tato věta propojuje skok 8.30 s aritmetickou hierarchii a vyjádřitelnosti v PA.

 $D\mathring{u}kaz$. Indukci, pro n=0 platí, protože

$$A \text{ je r.s.} \iff A \in \Sigma_1^0$$

- 1. z vlastnosti operace skoku 8.30 je $\emptyset^{(n+1)}$ r.s. v $\emptyset^{(n)}$. Podle 2) $\emptyset^{(n+1)} \in \Sigma_{n+1}^0$. Pak $\emptyset^{(n+1)}$ je Σ_{n+1}^0 -úplná.
- 2. "⇐"Jelikož

$$A \in \Sigma_{n+1}^0$$

A Lze vyjádřit jako

$$\exists \forall \dots Q(\dots)$$

Ořízneme od prvního kvantifikátoru

$$\forall \dots Q(\dots) \in \Pi_n^0$$

Použijeme trik s negaci jako ve větě o numeraci 10.19. Čímž dostaneme predikát $P \in \Sigma_n^0$ který je dle i.p. $P \leq_1 \emptyset^{(n)}$. Tedy i $P \leq_T \emptyset^{(n)}$. Dáme zpět negace a dostaneme predikát tvaru

$$\exists (\emptyset^{(n)} \text{ rekurzivní relace})$$

Z toho A je r.s. v $\emptyset^{(n)}$.

"⇒". Lze dokázat 2ma způsoby:

a) Jelikož A je r.s. v $\emptyset^{(n)}$. Tak

$$A = dom(\varphi)$$

Kde φ je $\emptyset^{(n)}$ -ČRF. Dále

$$x \in A \iff \varphi(x) \downarrow \Rightarrow \Phi(\emptyset^{(n)})(x) \downarrow$$

Kde $f = \Phi(\emptyset^{(n)})$ je Je to ekvivalentní

$$\exists \sigma \exists y (\Phi(\sigma)(x) \simeq y \land \sigma \prec \emptyset^{(n)})$$

Máme následující kvantifikátory:

$$\exists (\exists \land \sigma \prec \emptyset^{(n)})$$

Tvrdíme, že $\sigma \prec \emptyset^{(n)}$) je $\Sigma_n^0 \wedge \Pi_n^0$. Protože pro $j \leq |\sigma|$:

$$\sigma(j) = 1 \Rightarrow j \in \emptyset^{(n)}$$

což dle i.p. je Σ_n^0 . Opačně:

$$\sigma(j) = 0 \Rightarrow j \notin \emptyset^{(n)}$$

což dle i.p. je Π_n^0 .

Dohromady:

$$\exists (\Sigma_n^0 \wedge \Pi_n^0)$$

Vytáhneme existenční kvantifikátor

$$\exists (\Pi_{n-1}^0 \wedge \Pi_n^0) = \Sigma_{n+1}^0$$

b) Jelikož A je r.s. v $\emptyset^{(n)}.$ Tak

$$A = dom(\varphi)$$

Kde φ je $\emptyset^{(n)}$ -ČRF.

Dle věty o limitní vyčíslitelnosti

$$\varphi(x) \simeq \lim_{s} F(x,s)$$

kde F je $\emptyset^{(n-1)}$ -ORF. Pak

$$x \in A \iff \varphi(x) \downarrow = \exists \lim_{s} F(x,s)$$

Existenci limity lze zapsat:

$$\exists s_0 \forall t > s_0 : F(x,t) = F(x,s_0)$$

Protože jsme v diskretním prostoru, limita existuje když hodnota funkce se stabilizuje. Navíc $F(x,t)=F(x,s_0)$ je $\emptyset^{(n-1)}$ -ORF. Dle i.p. je Π^0_n a Σ^0_n . Vezmeme jen Π^0_n a dostaneme predikát:

$$\exists \forall (\Pi_n^0) \in \Sigma_{n+1}^0$$

3. " \Leftarrow ". Podle 2) A je r.s. v $\emptyset^{(n)}$. Pak z vlastnosti hierarchie 10.16: $\overline{A} \in \Pi_n$. Takže \overline{A} je r.s. v $\emptyset^{(n)}$. Dohromady dle Postové Věty 8.29 A je rekurzivní v $\emptyset^{(n)}$.

"⇒". Pokud $A \leq_T \emptyset^{(n)}$ tak podle indukčního předpokladu A, \overline{A} je r.s. v $\emptyset^{(n)}$. Tedy $A \in \Delta_{n+1}$.

Poznámka 10.25. Předchozí věta souvisí s elementární aritmetikou, protože dle RDPM věty 3.12:

$$\Sigma_1^0 \models_{\mathbb{N}} \Sigma_1 - \text{formule}$$

Což je taky rovnost dvou polynomů.

Z 1) bodů předchozí věty:

Vlastnosti 10.26. 1. K, \emptyset' jsou 1-úplné neboli Σ_1^0 -úplné.

2. $\overline{K}, \overline{\emptyset'}$ jsou 1-úplné neboli Π_1^0 -úplné.

Věta 10.27 (Tot úplnost). Množina Tot 5.16 je Π_2^0 -úplná.

 $D\mathring{u}kaz$. $Tot \in \Pi_2^0$, viz 10.12. Nechť $B \in \Pi_2^0$ libovolná. Pak

$$x \in B \iff \forall y \exists s : Q(x, y, s)$$

Kde Q je rekurzivní predikát. Uděláme program:

$$\varphi_{\alpha(x)}(y) \simeq \mu_s Q(x, y, s)$$

Pak

$$x \in B \Rightarrow \alpha(x) \in Tot$$

Protože program najde s pro všechna y. Opačně:

$$x \notin B \Rightarrow \alpha(x) \in Tot$$

Protože $\exists y \forall s: \neg Q(x,y,s).$ Dokonce α lze udělat prostou. Z toho

$$B \le_1 Tot$$

Definice 10.28 (Fin).

$$Fin = \{x : |W_x| < \infty\}$$

Definice 10.29 (Inf).

$$Inf = \{x : |W_x| = \infty\}$$

Věta 10.30 (Fin úplnost). Množina Fin je Σ_2^0 -úplná.

Důkaz.

$$x \in Fin \iff \exists y \forall z, s(z \notin W_x \land z > y)$$

Pokud je konečná, tak od určitého místa do ní nepadne žádný prvek. y je buď maksimalní, nebo větší než max.

Formule je Σ_2^0 .

Dokážeme přes komplement

$$\varphi_{\beta(x)}(y) \downarrow \iff \forall j \leq y(\varphi_x(j) \downarrow)$$

Pak

$$x \in Tot \iff \beta(x) \in Inf$$

Protože pokud není nekonečná, tak na nějakém vstupu nekonverguje a totiž není všude definováná. Taky opačně:

$$x \notin Tot \iff \beta(x) \notin Inf$$

Alternativně:

$$\varphi_{\gamma(x)}(j)\downarrow \iff \exists j-\text{prvků} \in W_x$$

Pak platí

$$x \in Tot \iff \gamma(x) \in Inf$$

a i opačně. Dohromady:

$$Inf \equiv_1 Tot$$

Definice 10.31 (Rek).

$$Rek = \{x : W_x \text{ je rekurzivní }\}$$

Věta 10.32 (Rek úplnost (BD)). Množina Rek je Σ_3^0 -úplná.

11 Pokročilejší vyčíslitelnost

11.1 R.S. množiny

Definice 11.1 (Postův problém podruhe).

$$\exists A : \emptyset <_T A <_T \emptyset'$$

Byl vyřešen nezávislé Friedberg-Mučník pomoci tzv. prioritních metod.

- 1. finite injury \emptyset' -priority
- 2. infinite injury \emptyset''
- 3. \emptyset'' -priority

11.2 Forcing

Definice 11.2 (Cantor space). Hlavní myšlenka je použit tzv
 Cantorův prostor 2^{ω} . Což je prostor všech zobrazení

$$f: \mathbb{N} \to \{0,1\}$$

Je úplný metrický prostor.

Poznámka 11.3. Okolí v Cantorovém prostoru je

$$o_{\sigma} = \{B : \sigma \prec B\}$$

Pak vzdálenost

$$\rho(\ldots) \le 2^{-\sigma}$$

Definice 11.4 (Finite extension method (Cohen)). Souvisí s Cohenovým forcingem v teorii množin kterým vyřešil hypotézu continua.

Věta 11.5 (Bairová věta o kategoriích). Máme úplný metrický prostor. Pak

$$\bigcap_{spočetn\acute{a}}(\textit{otev}\check{r}en\acute{e},\;\textit{hust\acute{e}}) \neq \emptyset$$

Jde o ekvivalentní formulace. Viz Baire category theorem.

Důkaz. Hint:

Nechť první bod je A_0 leží v otevřené husté množině. Jelikož je otevřená, existuje okolí A_0 které je uvnitř množiny. Z hustoty v tomto okolí je další bod, je taky s okolím atd. Takovým postupem vytvoříme Cauchy posloupnost, která kvůli úplnosti má limitu. Tato limita leží v průniku.

Speciálně platí v Cantorovém prostoru.

Definice 11.6 (1-generická). A je 1-generická když

$$\forall e \exists \sigma (\sigma \prec A \land (\Phi_e(\sigma)(e) \downarrow \lor (\forall \tau \geq \sigma : \Phi_e(\tau)(e) \uparrow))$$

Buď s nějakým začátkem konverguje, nebo tzv. silně diverguje (i v okolí). První podmínka je ekvivalentní

$$\forall \sigma \prec B : \Phi_e(B)(e) \downarrow$$

Druhá je ekvivalentní

$$\forall \sigma \prec B : \Phi_e(B)(e) \uparrow$$

Věta 11.7 (Existence 1-generické). Existuje 1-generická:

$$A <_T \emptyset'$$

 $D\mathring{u}kaz$. Používá se finite extension method. Pomoci \emptyset' vytvoříme \emptyset' -posloupnost $\{\sigma_n\}_n$:

$$\sigma_{n+1} \preccurlyeq \sigma_n$$

Pak

$$A = \bigcup \sigma_n$$

BUNO: $\sigma_0 = \emptyset$. Indukční krok: máme σ_n chceme další. Zkusíme:

$$\exists \sigma_e \preccurlyeq \tau : (\Phi_e(\tau)(e) \downarrow)$$

Pokud ano, vezmeme první takové a $\sigma_{e+1} = \tau$. Jinak $\sigma_{e+1} = \sigma_e$. Otázka je 1-kvantifikatorová neboli $\leq_T \emptyset'$. Neboli \emptyset' umí rozhodnout.

Věta 11.8 (Kleene-Post). Existují nerekurzívní $A, B \leq_T \emptyset'$ takové, že A, B jsou T-neporovnatelné.

 $D\mathring{u}kaz$. Pomoci \emptyset' vytvoříme monotonní \emptyset' -posloupnosti:

$$A = \bigcup \{\alpha_n\}_n, B = \bigcup \{\beta\}_n$$

BUNO: $\alpha_0 = \beta_0 = \emptyset$.

Indukční krok: 2 podkroky, protože potřebujeme zajistit

$$(A \nleq_T B \simeq \Phi_e(B) \neq A) \land (B \nleq_T A \simeq \Phi_e(A) \neq B)$$

Stačí jedná z podmínek, druhá symetricky.

Otázka

$$\exists \beta_e \leq \tau : (\Phi_e(\tau)(x_0) \downarrow = 0)$$

kde $x_0 = |\alpha_e|$, $\alpha_e(x_0)$ není definované.

Pokud ANO, tak

$$\alpha_{e+1} = \alpha_e + 1, \beta_{e+1} = \tau$$

S tím, že τ první které padlo. Pak pro libovolnou $\beta_{e+1} \preceq B$ platí

$$\Phi_e(B)(x_0) = 0 \land A(x_0) = 1(A \preccurlyeq \alpha_{e+1})$$

Jinak

$$\alpha_{e+1} = \alpha_e + 0, \beta_{e+1} = \beta_e$$

Pak

$$A(x_0) = 0 \land (B(x_0) \downarrow = 1 \lor B(x_0) \uparrow)$$

Věta 11.9 (R.S. a 1-generické). Žádná rekurzívní není 1-generická.

 $D\mathring{u}kaz$. A je rekurzívní, najdeme e_0 takové, že

$$\Phi_{e_0}(A)(e_0) \uparrow \land \forall B \neq A : \Phi_{e_0}(B)(e_0) \downarrow$$

$$\mu_y(B(y) \neq A(y))$$

Pak máme divergenci v množině A ale nikoliv silnou (v okolí konverguje). □

Poznámka 11.10. Těch A, které nejsou 1-generické je málo. Přesněji v topologickém smyslu (2 kategorie) 1-generická jsou "všude".

Odbočka, pro funkcionál $dom(\Phi_e)$ je otevřená. Doplněk je dle definice uzavřená, vnitřek je největší otevřená, takže je ok. Zbývá hranice, a takových je málo.

Definice 11.11 (n-generická). Podobně jako 1-generická, ale místo Σ_1^0 vezmeme Σ_n^0 .

Poznámka 11.12. Problém prioritních metod.

Věta 11.13 (Low). A je 1-generická a $A \leq_T \emptyset' \Rightarrow A$ je tzv. low.

$$A'equiv_T\emptyset'$$

Libovolný skok 8.30 je \emptyset' .

 $D\mathring{u}kaz$.

11.3 Algoritmická náhodnost

11.4 Kolmogorovská složitost, Martingale

Reference

 $[1] \ \ Bernard \ Bolzano. \ \textit{Paradoxes of the Infinite (Routledge Revivals)}. \ \ Routledge, \ 2014.$