

ANALYSIS OF SEQUENTIAL CIRCUITS

- X How to design machines that go through a sequence of events
- X Earlier we learned how to specify combinational circuits
 - X Truth tables, Boolean equations, ...
- X Now extend to synchronous sequential circuits
 - X Include time
 - X Use 'state tables' and 'state diagrams'

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

- 1. State/Output Equations (transition/characteristic equation)
 - Specifies the next state as a function of present state and input
- 2. State Table (transition/characteristic table)
 - Displays the relationship between various states in a table form
 - Present State, Input, Next State, Output
- 3. State Diagram
 - Graphic representation
 - States represented by circles
 - Lines represent transition

STATE TABLE

- X State Table
- X It is like truth table but with states added

8

ANALYSIS PROCEDURE OF FLIP FLOP

- X The next-state value of a sequential circuit that uses flip-flops can be derived using the following procedure.
 - 1. determine the flip-flop input equation in terms of present state and input variable.
 - 2. List the binary values of each input equation
 - 3. Use the corresponding flip-flop characteristic table to determine the next values in the state table.

