SC1007 Data Structures and Algorithms

Dynamic Programming

Lecturer yrloke@ntu.edu.sg

Dr. Loke Yuan Ren

College of Engineering
School of Computer Science and Engineering

Dynamic Programming

by Richard Ernest Bellman in 1953

What is Dynamic Programming?

- It is not a programming language like C
 - The term "Programming" refers to a tabular method (filling tables)
 - It is applied to optimization problems
 - Other "programming" methods in mathematical optimization are
 - Linear Programming
 - Integer Programming
 - Convex Programming
 - Semidefinite Programming
 - not related to coding
- Applied from system control to economics

What is Dynamic Programming (DP)?

- It is similar to divide-and-conquer strategy
 - Breaking the big problem into sub-problems
 - Solve the sub-problems recursively
 - Combining the solutions to the sub-problems
- What is the difference between them?
 - DP can be applied when the sub-problems are not independent
 - Every sub-problem is solved once and is saved in a table
 - The problem usually can have multiple optimal solutions
 - DP may just return one of them

What is Dynamic Programming (DP)?

- Optimal substructure
 - Combination of optimal solutions to its sub-problems
- Overlapping sub-problems
 - Having the same sub-problems

Fibonacci Series:
$$F_i = F_{i-1} + F_{i-2}$$

Dynamic Programming = Recursion + Memoization

Dynamic Programming Approaches

- Top-down approach
 - Recursively using the solution to its sub-problems
 - Memoize the solutions to the sub-problems and reuse them later

F(3)

F(1)

- Bottom-up approach
 - Figure out the order of calculation
 - Solve the sub-problems to build up solutions to larger problem

Fibonacci: Top-down approach

```
Fib(n)
  if (n == 0)
          M[0] = 0; return 0;
  if (n == 1)
          M[1] = 1; return 1;
  if (M[n-1] == -1)
                                        //F(n-1) was not calculated
          M[n-1] = Fib(n-1)
                                        //calculate F(n-1) and store in M
  if (M[n-2] == -1)
                                        //F(n-2) was not calculated
          M[n-2] = Fib(n-2)
                                        //calculate F(n-2) and store in M
 M[n] = M[n-1] + M[n-2]
 return M[n];
```

Store an array M

Complexity: O(n)

Fibonacci: Bottom-up approach

```
Fib(n)
  M[0] = 0;
  M[1] = 1;
  int i = 0;
  for (i = 2; i<=n; i++)
      M[i] = M[i-1] + M[i-2];
  return M[n];
```

Store an array M

Complexity: O(n)

Examples of DP

- String algorithms like longest common subsequence, longest increasing subsequence, longest common substring etc.
- Graph algorithms like Bellman-Ford algorithm, Floyd's algorithm
- Chain matrix multiplication
- Rod Cutting
- 0/1 Knapsack
- Travelling salesman problem
- Subset Sum

Rod Cutting Problem

Given a rod of a certain length and price of rod of different lengths, determine the maximum revenue obtainable by cutting up the rod at different lengths based on the prices.

Rod Cutting Problem

Length cm	1	2	3	4	5	6	7	8	9
Price \$	1	5	8	9	10	17	17	20	24

If a rod of length 4,

Length of each piece	Total Revenue
4	9
1+3	1+8 = 9
1+1+2	1+1+5 =7
1+1+1+1	1+1+1+1=4
2 + 2	5+5 =10

From all possible solutions, the maximum revenue is 10 by cutting the rod into two pieces of length 2 each.

Naïve Top-down Recursive Approach

Top-down Memoized Approach

• The result of each sub-problem is stored and reused

```
Cut-Rod (p,n)
begin
    r[1,...,n] ← {0}
    return Mem-Cut-Rod-Aux(p,n,r)
end
```

```
Mem-Cut-Rod-Aux (p,n,r)
begin

if n==0

return 0

if(r[n]>0)

return r[n]

else

q ← -∞

for i = 1 to n do

q ← max (q, p[i] + Mem-Cut-Rod-Aux(p, n-i, r))

r[n] ← q

return q

end
```

Bottom-up DP Approach

• The bottom-up and top-down versions has the same asymptotic running time, $\Theta(n^2)$

Length cm	1	2	3	4	5	6	7	8	9
Price \$	1	5	8	9	10	17	17	20	24
Max Rev \$	1	5	8	10	13	17	18	22	25

0/1 Knapsack

- Given n items, where the ith item has the size s_i and the value v_i
- Put these items into a knapsack of capacity C

• Optimization problem: Find the largest total value of the items that fits in the knapsack

$$\max_{x} \sum_{i=1}^{n} v_{i}x_{i}$$
 Subject to
$$\sum_{i=1}^{n} s_{i}x_{i} \leq C$$

$$x_{i} \in \{0,1\} \qquad i=1,2,...,n$$

0/1 Knapsack

$$\max_{x} \sum_{i=1}^{n} v_i x_i$$

Subject to

$$\sum_{i=1}^{n} s_i x_i \le C$$

$$x_i \in \{0,1\} \qquad i = 1, 2, \dots, n$$

- Brute-force algorithm
- The ith item is either included (1) or excluded (0)

• The time complexity of the algorithm is $\Theta(2^n)$

Item 1	Item 2	Item 3	Value
0	0	0	0
0	0	1	V3
0	1	0	V2
0	1	1	V2+V3
1	0	0	V1
1	0	1	V1+V3
1	1	0	V1+V2
1	1	1	V1+V2+V3

Can you see that some sub-problems are overlapping?

Using DP to solve 0/1 Knapsack

- The recursive formula
 - $M(i,j) = \max\{M(i-1,j), M(i-1,j-s_i) + v_i\}$

ith item is unused

ith item is used

The capacity of knapsack is 5 kg. (C = 5)

Canacity

Item	Weight	Value		
1	2kg	\$12		
2	1kg	\$10		
3	3kg	\$20		
4	2kg	\$15		

	•		C	араспу		
	i∖j	1	2	3	4	5
	1	\$0	\$12	\$12	\$12	\$12
Item	2	\$10	\$12	\$22	\$22	\$22
	3	\$10	\$12	\$22	\$30	\$32
	4	\$10	\$15	\$25	\$30	\$37

Using DP to solve 0/1 Knapsack

- The recursive formula
 - $M(i,j) = \max\{M(i-1,j), M(i-1,j-s_i) + v_i\}$

ith item is used

ith item is unused

- i = 1, ... n
- j = 1, ... C
- Create a n-by-C matrix, M
- All the possible sizes from 1 to C

- Bottom up approach
- Time Complexity is $\Theta(nC)$

Summary

- Dynamic Programming
 - Rod Cutting Problem
 - 0/1 Knapsack Problem