

State Space Problem Solving

Prolog Programming Assignment 2

Prolog Programming Assignment #2: State Space Problem Solving
Abstract
Task 3: One Move Predicate and a Unit Test
State Space Operator Implementation
Unit Test Code
Unit Test Demo

Task 4: The Remaining Five Move Predicates and a Unit Tests

State Space Operator Implementation

Unit Test Code

Unit Test

Task 5: Valid State Pr	redicate and Unit	Test	
Unit Test Program D	emo		
Unit Test Program			

Task 6:	Defining th	e write_sequ	ence predica	ite		
		=				
Unit Te	est Program	Code				

Task 7: Run the program to solve the 3 disk problem

```
?- solve.
PathSoFar = [[[s,m,l],[],[]]]
rathsorar = [[[s,m,t],[],[]]]
Move = m12
NextState = [[m,t],[s],[]]
Pathsorar = [[[s,m,t],[],[],[[m,t],[s],[]]]
Move = m12
NextState = [[[],[m,s],[]]
Move = m13
MOVE = |||13
| NextState = [[[],[s],[m]]
| PathSoFar = [[[s,m,1],[],[]],[[m,1],[s],[]],[[1],[s],[m]]] | Move =
m12
NextState = [[],[1,s],[m]]
Move = m13
NextState = [[],[s],[1,m]]
Move = m21
NextState = [[s,1],[],[m]]
PathSoFar =
[[[s,m,l],[],[]],[[m,l],[s],[]],[[l],[s],[m]],[[s,l],[],[m]]]
[[l ],[],[s,m]]]

Move = m12

NextState = [[],[l],[s,m]]
PathSofar = [[[s,m,1],[],[],[[s],[]],[[t],[s],[m]],[[s,l],[,m]], [[t],[],[s],[m]], [[s,l],[],[m]], [[t],[s,m]]] Move = m21
NextState = [[1],[],[s,m]]

Move = m23

NextState = [[],[],[1,s,m]]
Move = m31
Move = m31

PathSoFar = [[[s],[1],[m]]

PathSoFar = [[[s,m,1],[],[],[[m,1],[s],[],[[1],[s],[m]],[[s,1],[],[m]],

[[l],],[s,m],[[],[],[s,m],[[s],[l],[m]]]

Move = m12

NextState = [[],[s,1],[m]]
Move = m21

NextState = [[s],[1],[m]]

Move = m23
Move = m23

NextState = [[],[l],[s,m]]

Move = m31

NextState = [[m],[s,l],[]]
NextState = [[m],[s,t],[]]
PathSfare =
[[[s,m,1],[],]],[[m,1],[s],[]],[[1],[s],[m]],[[s,1],[m]],[[m]],
[[1],[],[s,m]],[[],[1],[s,m]],[[s],[1],[m]],[[m],[m]],
[[s, 1],[m]]
Move = m12
NextState = [[],[m,s,l],[]]
Move = m13
Move = m13

NextState = [[],[s,1],[m]]

Move = m21

NextState = [[s,m],[l],[]]
Move = m13

NextState = [[m],[1],[s]]

PathSoFar =
PathSoFar =
[[[s,m,l], ], ], [[m,l],[s], ], [[l],[s],[m]], [[s,l], ], [m]],
[[l], ], [s,m], [l], [l], [s,m], [[s], [l], [m]], [[m], [m],
[m], [s,m], [l], ], [[m], [l], [s]]]
Move = m12
NextState = [[],[m,l],[s]]
PathSoFar =
PathSoFar =
rathsorar =
[[[s,m,1,], ], ], [[m,1,],[s], ], [[1], [s], [m], [[s,1], ], [m]],
[[1,1,],[s,m], [], [1,1,], [[s], [1], [m], [], [s,1], [m]],
[[s,1], ], [[s,m], [1], ], [[m], [1], [s]], [[m,1], [s]]]
[extState = [[m], [1], [s]]
Move = m23
NextState = [[],[1],[m,s]]
Move = m31
[m,l],[]]]
Move = m12
NextState = [[],[s,m,l],[]]
PathSoFar =
```

```
NextState = [[s],[m,1],[]]
Move = m23

NextState = [[],[m,1],[s]]

Move = m13
Move = mis

NextState = [[],[m,l],[s]]

Move = m21

NextState = [[m,s],[l],[]]
Move = m23
NextState = [[s],[l],[m]]
Move = m32
Move = m21
NextState = [[s],[m,l],[]]
PathSoFar =
NextState = [[],[s,m,l],[]]

Move = m13

NextState = [[],[m,l],[s]]
Move = m21
NextState = [[m,s],[1],[]]
Move = m23

NextState = [[s],[1],[m]]

Move = m23
NextState = [[],[m,1],[s]]
Move = m13
NextState = [[],[1],[m,s]]
NextState = [[],[[],[m,s]]

Move = m21

Move = m23

NextState = [[m],[],[1,s]]

Move = m31
Move = m31

NextState = [[s,m],[l],[]]

Move = m32

NextState = [[m],[s,l],[]]

Move = m21
NextState = [[1,s,m],[],[]]
NextState = [[t,s,m],[],[]]

Move = m23

NextState = [[s,m],[],[]]

PathSofar = [[s,m,1],[],[]],[[n,1],[s],[m]],[[s,1],[],[m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1],[s,m]],[[1]])

1],[[s,m],[1],[],[[s,m],[],[],[]]]
Move = m12
NextState = [[m],[s],[1]]
PathSoFar =
Move = m12

NextState = [[],[m,s],[1]]

Move = m13
]]
Move = m21
NextState = [[s],[],[m,1]]
PathSoFar =
[[[s,m,l],[],[]],[[m,l],[s],[]],[[l],[s],[m]],[[s,l],[],[m]],[[l
],[],(s,m]),[[],(t],(s,m]),[[s],(t],(m]),[[],(s,t],(m]),[[m],(s,
t],(]),([s,m],(t],(]),([s,m],(],(t)),([m],(s],(t)),((),(s],(m,t)
],([s],(],(m,t)])
Move = m12
NextState = [[],[s],[m,1]]
Move = m13
NextState = [[],[],[s,m,l]]
PathSoFar =
],[[s],[],[m,1]],[[],[],[s,m,1]]]
SolutionSoFar =
[m12,m13,m21,m13,m12,m31,m12,m31,m21,m23,m12,m13,m21,m13]
Solution .
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 2.

Transfer a disk from tower 1 to tower 3.

Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.

Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 2 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
```

Questions

1. What was the length of your program's solution to the three disk problem?

The program solved the three disk problem in 14 moves.

2. What is the length of the shortest solution to the three disk problem?

The shortest solution is 7 moves long. (M13, M12, M32, M13, M21, M23, M13)

3. How do you account for the discrepancy?

The program is not designed to find the most efficient solution, only the first path to the end it found. The program does a depth-first search, rather than a breadth-first search. The program takes the first path available to it, even if it was not a step toward an optimum solution.

Task 8: Run the program to solve the 4 disk problem

Task 8: Run the program
?-solve.
Solution
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 2. Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.

Transfer a disk from tower 2 to tower 1. Transfer a disk from tower 1 to tower 3.

true.

Questions

- **1.What was the length of your program's solution to the four disk problem?** The program solved the four disk problem in 40 moves.
- 2. What is the length of the shortest solution to the four disk problem?

The four disk problem can be solved in 15 moves.