抽象代数笔记

副标题

Zhang Liang

2025年2月24日

前言标题

前言内容

2025年2月24日

目录

第一章	域	0
1.1	域的定义	0
	1.1.1 域和子域	0
1.2	域的同态	1
第二章	一致收敛性、函数项级数与函数族的基本运算	3
2.1	逐点收敛性和一致收敛性	3
	2.1.1 逐点收敛性	3
第三章	附录	4
3.1	原函数初等性的判定方法	4
	3.1.1 切比雪夫定理	4
	3.1.2 刘维尔定理	4
3.2	一些超越积分的特殊解法	7
	3.2.1 Direchlet 积分	7

第一章 域

1.1 域的定义

1.1.1 域和子域

定义 1.1.1: 域

设 F 是一个集合,如果存在两个运算 $+: F \times F \to F$ 和 $\cdot: F \times F \to F$,分别称为加 法和乘法,并且满足:

- ① (加法单位元存在) 存在一个元素 $0_F \in F$, 称为零元, $\forall x \in F, x + 0_F = 0_F + x = x$
- ② (加法逆存在) $\forall x \in F, \exists (-x) \in F, \text{s.t.} x + (-x) = (-x) + x = 0_F, \ (-x)$ 称为 x 的加法逆元
- ③ (加法交换律) $\forall x, y \in F, x + y = y + x$
- ④ (加法结合律) $\forall x, y, z \in F, (x + y) + z = x + (y + z)$
- ⑤(乘法单位元存在)存在一个元素 $1_F \in F, 1_F \neq 0_F$,称为一元, $\forall x \in F, x \cdot 1_F = 1_F \cdot x = x$
- ⑥(乘法逆存在) $\forall x \in F 0_F, \exists x^-1 \in F, \text{s.t. } x \cdot x^-1 = x^-1 \cdot x = 1, \ x^-1$ 称为 x 的乘法逆元
- ②(乘法交换律) $\forall x, y \in F, x \cdot y = y \cdot x$
- \otimes (乘法结合律) $\forall x, y, z \in F, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- ⑨(乘法分配律) $\forall x, y, z \in F, x \cdot (y+z) = x \cdot y + x \cdot z$

我们再定义子域

1.2 域的同态 第一章 域

定义 1.1.2: 子域

设 E, F 是两个域, $E \subseteq F$

如果 $0_F, 1_F \in E$, 并且 F 中的加法和乘法对 E 形成一个域,

那么我们称 $E \in F$ 的一个子域, 并称 $F \in E$ 的一个域扩张,

记作 $F \setminus E$

从以上定义容易看出,F 也可以视为 E 上的一个线性空间。

定义 1.1.3: 域的 n 次扩张

如果 $F \setminus E$, 那么我们记 $[F : E] := dim_E F$, 并称 $F \in E$ 由 [F : E] 次扩张得到的。

1.2 域的同态

定义 1.2.1: 域的同态

 F_1, F_2 是两个域,如果存在一个映射 $\varphi: F_1 \to F_2$,满足:

①
$$\varphi(0_{F_1}) = 0_{F_2}$$

②
$$\varphi(1_{F_1}) = 1_{F_2}$$

值得注意的是,与我们之前了解到的线性空间同构不同,域的同态完全没有对映射的满 射性、单射性作任何限制。但是,

以下定理证明,两个域如果同态,那么同态映射是一个单射

定理 1.2.1: 域同态的单射性

若 $\varphi: F_1 \to F_2$ 是 F_1 到 F_2 的同态,那么 φ 是单射

证明: 不妨假设命题不成立。于是, $\exists x_1 \neq x_2$ s.t. $\varphi(x_1) = \varphi(x_2)$

那么有:
$$\varphi(x_1 - x_2) = \varphi(x_1) - \varphi(x_2) = 0_{F_2}$$

因为我们已经假设了 $x_1 \neq x_2$, 于是 $(x_1 - x_2)^{-1}$ 存在。将上式乘以 $\varphi((x_1 - x_2)^{-1})$ 得:

$$1_{F_2} = \varphi(1_{F_1})\varphi\left((x_1 - x_2)^- 1(x_1 - x_2)\right) = \varphi\left((x_1 - x_2)^- 1\right)\varphi\left((x_1 - x_2)\right) = 0_{F_1}$$

与
$$0_{F_2} \neq 1_{F_2}$$
 矛盾,于是命题得证。

1.2 域的同态 第一章 域

在证明这一点后,我们可以类似地引入域的同构:

定义 1.2.2: 域的同构

设 $\varphi: F_1 \to F_2$ 是 F_1 到 F_2 的同态

如果 φ 还是个满射,那么我们称 φ 是一个同构;

特别地,如果有 $F_1 = F_2$,我们称 φ 是一个自同构。

并且引入自同构的不动域的概念:

定义 1.2.3: 自同构域的不动域

设 $\sigma: F \to F$ 是 F 的自同构,那么我们称集合 $\{x \in F | \sigma(x) = x\} \text{ 为 } F \text{ 的不动域}$

"不动域"这一名称是合理的,因为利用域同构的定义容易证明不动域是一个域,而且是F的一个子域。

第二章 一致收敛性、函数项级数与函数族 的基本运算

在之前章节的讨论中,曾经涉及了级数一般项是函数的级数,也就是所谓的函数项级数。 在此之前,我们利用了所谓"逐点收敛",即对每一变量取值收敛。但是,一些例子中我 们发现这种收敛性并不具备很好的性质。

我们提出一致收敛性这一全新的收敛性,这一性质可以允许级数仅仅需要少量条件就可以拥有微分、积分上的良好性质

2.1 逐点收敛性和一致收敛性

2.1.1 逐点收敛性

定义 2.1.1: 逐点收敛性

考虑函数列 $f_n:X\to\mathbb{R}$. 如果在点 $x\in X$, $\{f_n(x),n\in\}$ 收敛,则称 $\{f_n(x),n\in\mathbb{N}\}$ 在点 x 收敛

使得 $\{f_n(x), n \in \mathbb{N}\}$ 收敛的点的集合称为收敛集。

 $\{f_n(x), n\in \mathbb{N}\}$ 在其收敛集上产生的极限 $f(x)=\lim_{n\to\infty}f_n(x)$ 称为极限函数,同时称 $\{f_n(x), n\in \mathbb{N}\}$ 逐点收敛于 f(x)

第三章 附录

这一部分中,对于正文中因为逻辑结构无法提及的部分,进行补充。包括特殊函数,有趣的数学概念,一些命题的全新解法,以及难以推导的公式证明可能使用复分析、实分析、泛函等超纲内容

3.1 原函数初等性的判定方法

3.1.1 切比雪夫定理

定理 3.1.1: 切比雪夫定理

设 $m, n, p \in \mathbb{Q} - \{0\}$, 那么以下积分

$$\int x^m (a+bx^n)^p \mathrm{d}x \tag{3.1}$$

初等的充要条件是: $p, \frac{m+1}{n}, \frac{m+1}{n} + p$ 中至少有一个为整数

3.1.2 刘维尔定理

在介绍刘维尔定理前,需要先介绍一些微分代数的概念:

首先我们扩展微分的概念。我们将满足类似乘法、除法微分性质的泛函也称为微分。 先引入微分域及其常数域

1. 微分域

定义 3.1.1: 微分域

一个由函数组成的域 F 及其上的一个算子 $\delta: F \to F$, 如果 $\forall f, g \in F$ 有:

$$\neg \delta(f+g) = \delta(f) + \delta(g)$$

$$\delta(fg) = \delta(f) \cdot g + f \cdot \delta(g)$$

那么称 (F,δ) 是一个微分域

容易验证 δ 是线性算子,于是我们有时简记 $\delta(f)$ 为 δf

定义 3.1.2: 微分域的常数域

微分域 (F,δ) 的常数域定义为:

$$Con(F,\delta)=\{f\in F|\delta f=0\}$$

同时定义域的扩张:

定义 3.1.3: 域的扩张

设 F, K 是两个域,并且 K 是满足 $F \subseteq K$ 且包含 $h \subseteq K$ 的最小域(即 K 是任何满足上述条件的域的子域),记作 K = F(h)

作为接下来内容的预备,我们先验证那些显然的微分性质:

命题 3.1.1. $\delta C = 0$, 其中 C 为常数

证明: 只需要验证 $\delta 1 = 0$

那么有: $\delta(1\cdot 1) = \delta 1\cdot 1 + 1\cdot \delta 1 = 2\delta 1$

于是有 $\delta 1 = 0$,利用微分的线性即得证。

命题 3.1.2.
$$\delta\left(\frac{f}{g}\right) = \frac{\delta f \cdot g - f \delta g}{g^2}$$

证明: 首先推导 $\delta\left(\frac{1}{a}\right)$

$$\cdot \delta 1 = \delta \left(g \cdot \frac{1}{q} \right) = 0$$

$$\Rightarrow \delta g \frac{1}{q} + g \delta \left(\frac{1}{q} \right) = 0$$

$$\Rightarrow \delta\left(\frac{1}{a}\right) = -\frac{\delta g}{a^2}$$

于是
$$\delta\left(\frac{f}{a}\right) = \delta\left(f \cdot \frac{1}{a}\right)$$

$$=\delta f \frac{1}{q} - f \frac{\delta g}{q^2} = \frac{\delta f \cdot g - f \delta g}{q^2}$$

2. 微分域的初等扩张 接下来讨论什么是"初等"的函数。

定义 3.1.4: 微分域的初等扩张

设 (F,δ) , (K,δ) 是两个微分域, $h \in K$ 并且 K = F(h), 那么:

¬如果存在 F 中的一个多项式 $p(x) \in F[x]$,有 p(h) = 0,那么称 $h \notin F$ 的一个代数元素, $K = F(h) \notin F$ 的单代数扩张

如果存在 F 中的一个函数 f,使得 $\delta h = \frac{\delta f}{f}$,那么称 K = F(h) 是 F 的单对数 扩张

如果存在 F 中的一个函数 f,使得 $\frac{\delta h}{h} = \delta f$,那么称 K = F(h) 是 F 的单指数扩张。

单对数扩张和单指数扩张统称为单超越扩张,其对应的 h 称为 F 的超越元素;以上三种扩张统称为单初等扩张

有限次初等扩张的复合称为初等扩张

我们也可以在此以另外的方式定义出初等函数:

定义 3.1.5: 初等函数

如果函数 f 处于微分域 $(C(x), \frac{d}{dx})$ 的某个初等扩张中,那么称 f 是一个初等函数

接下来就可以给出刘维尔定理了。

3. 刘维尔定理

定理 3.1.2: 刘维尔定理

 $(F,\delta),(K,\delta)$ 是两个微分域,K 是 F 的初等扩张,并且 $Con(F,\delta)=Con(K,\delta)$,且 $\forall f\in F, \exists g\in K, s.t. \delta g=f$

那么一定 $\exists c_1, \dots, c_n \in Con(F, \delta), u_1, \dots, u_n, v \in F$,使得

$$g = \sum_{i=1}^{n} c_i \ln(u_i) + v$$
 (3.2)

3.2 一些超越积分的特殊解法

3.2.1 Direchlet 积分