1. Power Transistors

2. DC-DC Converters

Dr. Suneel Kommuri

Email: Suneel.Kommuri@xjtlu.edu.cn

Dept. Electrical & Electronic Engineering

1.0 Outline – Power Transistors

- Power Electronic Devices
- Power Transistors
 - Power BJT
 - Power MOSFET
 - IGBT
- Comparison

Power semiconductor devices

• Power Diode – uncontrollable

- Important feature
 - Controllability

- Thyristor (THYRatron tube & transISTOR)
 - SCR (Silicon Controlled Rectifier) ON controllable
 - TRIAC (Triode ac switch) ON controllable
 - GTO (Gate turn-off thyristor) ON/OFF controllable
- Power Transistors ON/OFF controllable
 - Power BJT
 - Power MOSFET
 - IGBT

1.0 Power Transistors

Feature:

 Fully-controllable: The transistor remains in the ON-state as long as the control signal is present. When this control signal is removed, the power transistor is turned OFF.

Applications

- In use from 1980s
- GTR and GTO are seldom in use today
- IGBT and power MOSFET are the two major power semiconductor devices nowadays

1.1 Power BJT (Bipolar Junction Transistor)

Three terminals – collector (C), emitter (E), and base (B).

NPN type

- Emitter with an arrowhead indicates the direction of emitter current.
- Three layer, two junction NPN or PNP semiconductor device.
- NPN type transistors are easy to manufacture, cheaper and very wide in high-voltage and high-current applications.
- Bipolar the current flow in the device is due to the movement of both holes and electrons.

PNP type

BJT I-V Characteristics

- Common-emitter (CE) is more common in switching applications.
- Output characteristics: Collector current (I_C) versus collectoremitter voltage (V_{CE}) .
- For $I_B = 0$, as V_{CE} is increased, a small leakage current exists.
- As the base current is increased from $I_B = 0$ to I_{B1} , I_{B2} etc., collector current also rises as shown below:

Input characteristics

Output characteristics

1.2 Power MOSFET

- Three-terminals drain (D), source (S), and gate (G).
- Arrow indicates the direction of electron flow.
- BJT is current-controlled device whereas MOSFET is a voltagecontrolled device.
- MOSFETs are used in low-power high-frequency converters.

MOSFET I-V Characteristics

- Input signal V_{GS} is applied across gate to source & output signal V_{DS} is obtained from drain. Source terminal (S) is common between input & output of a MOSFET.
- Transfer characteristics: I_D is a function of V_{GS} . When $V_{GS} < V_{GS(th)}$, the current flow from D to S is zero. In general, the value of $V_{GS(th)}$ is about 2 to 3 V.
- Output characteristics: I_D is a function of V_{DS} with V_{GS} as a parameter. For given V_{GS} , if V_{DS} is increased, output characteristic is relatively flat indicating that drain current is nearly constant. It consists of cut-off, active and ohmic regions.

n –channel MOSFET

Transfer characteristics

Switching Characteristics

- When a pulse input voltage is applied to the gate of MOSFET, the device will turn-ON if $V_{GS} > V_{GS(th)}$.
- Switching characteristics' are influenced to large extent by internal capacitance.
- At $t = t_o$, input voltage $V_G = 0 \& V_{GS} < V_{GS(th)} \rightarrow I_D = 0$, device in OFF state.
- At $t = t_1$, voltage starts to increase from 0 to $V_1 \rightarrow C_{gs}$ starts to charge. During t_d , C_{gs} is charged to $V_{GS(th)}$. During t_r , V_{GS} increases from $V_{GS(th)}$ to full gate voltage V_{GSP} to operate the transistor in linear region, also increases to I_D .

Switching Characteristics

Applications and Features different from BJT

- High-frequency switching applications, varying from few W to kWs.
- Very popular in switch mode power supplies and inverters.
- Unipolar device whereas BJT is bipolar device.
- High input impedance whereas BJT has low impedance.
- Voltage controlled device whereas BJT is current controlled device.
- Conduction loss of MOSFET is larger than that of BJT due to a larger voltage drop for high-voltage applications.
- Lower switching losses whereas BJT has higher switching losses.

1.3 IGBT (Insulated Gate Bipolar Transistor)

- Combination of power transistors BJT and MOSFET.
- High input impedance like MOSFET and low on-state power loss as in BJT.
- Voltage controlled device.
- IGBT is very popular amongst power electronic engineers.

Features

- Low conduction loss (BJT)
 - High-speed turn-ON (MOSFET)
 - Low-power, easy drive (MOSFET)

IGBT I-V Characteristics

- Emitter terminal is common between input and output of IGBT.
- Transfer characteristics: I_C versus the V_{GE} similar to MOSFET.
- Output characteristics: I_C versus V_{CE} for various values of V_{GE1} , V_{GE2} etc., In the forward direction, the shape of the output characteristic is like that of BJT. But here the controlling parameter is V_{GE} because IGBT is voltage-controlled device.

Review of the classifications

power electronic devices

Thyristor, GTO, GTR

Voltage-driven (voltage-controlled) devices

(Field-controlled devices):power MOSFET, IGBT, SIT, SITH, MCT, IGCT

Pulse-triggered devices: thyristor, GTO

MCT, IGCT

Level-sensitive (Level-triggered) devices:

GTR, power MOSFET, IGBT, SIT, SITH,

power electronic

devices

Comparison of power semiconductor devices

2.0 Outline – DC to DC Converters

- ✓ Step-down operation
 Duty cycle generation
- √ Types of DC-DC converter

Buck converters

Boost converters

Buck-Boost converter

✓ Closed-loop control of DC-DC converters

2.1 Types of DC-DC Converters

- DC-DC converters (also called choppers) can be used to obtain a variable dc voltage from a fixed dc supply.
- Step-down (*Buck converters*) output voltage is less than input voltage.
- Step-up (Boost converters) output voltage is higher than input voltage.
- Step-up/down: Buck-boost converters
 - the output voltage can be higher or less than the input voltage.

2.1.1 Step-down operation

- Operates in two modes:
 - \triangleright Switch S is ON $\rightarrow v_o = V_s$
 - \triangleright Switch S is OFF $\rightarrow v_o = 0$
- Average output voltage:

$$V_o = \frac{1}{T} \int_0^T v_o(t) dt = \frac{1}{T} \int_0^{t_1} V_S dt = \frac{t_1}{T} V_S = kV_S$$

where k is the duty cycle;

- t_1 ON time period of switch.
- t_2 OFF time period of switch.
- RMS output voltage:

$$V_{RMS} = \left[\frac{1}{T} \int_{0}^{T} v_o^2(t) dt\right]^{1/2} = \sqrt{k} V_s$$

2.1.2 Step-down operation

- Operates in two modes (RL –load):
 - Switch S is ON → current flows from supply to load
 - Switch S is OFF → load current continues to flow thru freewheeling diode.
- Assume that the load current rises linearly.
- However, the current flowing through an RL load rises or falls exponentially with a time constant $(\tau = L/R)$, which is generally much higher than switching period T.

2.1.3 Generation of duty cycle

- If a saw-tooth signal v_{cr} and a DC reference signal v_r are supplied to a comparator, then the output of comparator is shown as v_g .
- The duty cycle of v_g is given as, $k = \frac{v_{cr}}{v_r}$
 - ✓ V_{cr} is the peak value of v_{cr} ; V_r is the peak value of v_r .
 - ✓ By varying the carrier signal v_{cr} from 0 to V_{cr} , the k can be varied from 0 to 1.
- This is how we control the voltage of a DC-DC converter.

2.2 Buck Converter

- Average output voltage is less than input voltage hence, called buck converter.
- One switch and one diode (to overcome the problem of stored inductive energy).
- Switch S can be a power BJT and acts as a controlled switch; diode D is uncontrolled switch – operate as two SPST bidirectional switches, shown below.
- LC filter to remove switching harmonics and to pass only the DC component so that the output voltage v_o is nearly a constant.

See you in the next class (April 21st)

✓ Continue in the next Lecture

The End

