1. Basic Results — Inverse Transform Method

We want to use $\mathcal{U}(0,1)$ numbers to generate observations (variates) from other distributions.

Let X be a random variable with c.d.f. $F(\cdot)$. Then

$$U = F(X) \sim \mathcal{U}(0, 1).$$

Proof: Let Y = F(X) and suppose that Y has c.d.f. G(y). Then (for the continuous case),

$$G(y) = P(Y \le y) = P(F(X) \le y)$$

$$= P(X \le F^{-1}(y)) = F(F^{-1}(y))$$

$$= y. \diamondsuit$$

In the above, we defined the inverse c.d.f. by

$$F^{-1}(u) = \inf[x : F(x) \ge u] \quad u \in [0, 1].$$

Let $U \sim \mathcal{U}(0,1)$. Then the random variable $F^{-1}(U)$ has the same distribution as X.

- 1. Sample U from $\mathcal{U}(0,1)$.
- 2. Return $X = F^{-1}(U)$.

Example 1 Discrete Example. Suppose

$$X \equiv \begin{cases} -1 & \text{w.p. 0.6} \\ 2.5 & \text{w.p. 0.3} \\ 4 & \text{w.p. 0.1} \end{cases}$$

x	Pr(X = x)	F(x)	U(0,1)'s
-1	0.6	0.6	[0.0,0.6]
2.5	0.3	0.9	(0.6, 0.9]
4	0.1	1.0	(0.9, 1.0]

Thus, if U = 0.63, we take X = 2.5.

Example 2 The U(a,b) distribution.

$$F(x) = (x - a)/(b - a), a \le x \le b.$$

Solving (X - a)/(b - a) = U for X we get X = a + (b - a)U.

Example 3 The discrete uniform distribution on $\{a, a+1, \ldots, b\}$ with

$$Pr(X = k) = \frac{1}{b-a+1}, \quad a, a+1, \dots, b.$$

Clearly,

$$X = a + \lfloor (b - a + 1)U \rfloor.$$

Example 4 The exponential distribution.

$$F(x) = 1 - e^{-\lambda x}, x > 0.$$

Solving F(X) = U for X we get

$$X = -\frac{1}{\lambda} \ln(1 - U)$$
 or $X = -\frac{1}{\lambda} \ln U$.

Example 5 The Weibull distribution

$$F(x) = 1 - e^{-(\lambda x)^{\beta}}, x > 0.$$

Solving F(X) = U for X one has

$$X = \frac{1}{\lambda} [-\ln(1-U)]^{1/\beta}$$
 or $X = \frac{1}{\lambda} [-\ln U]^{1/\beta}$.

Example 6 The triangular distribution with density

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x \le 2. \end{cases}$$

The c.d.f. is

$$F(x) = \begin{cases} x^2/2 & \text{if } 0 \le x < 1\\ 1 - (2 - x)^2/2 & \text{if } 1 \le x \le 2. \end{cases}$$

Notice that F(1) = 1/2. We have two cases:

- (a) If U < 1/2, we solve $X^2/2 = U$ to get $X = \sqrt{2U}.$
- (b) If $U \ge 1/2$, the only root of $1 (2 X)^2/2 = U$ in [1,2] is

$$X = 2 - \sqrt{2(1 - U)}.$$

Remark 7 Do not replace U by 1-U here!

Example 8 The standard normal distribution. Unfortunately, the inverse c.d.f. $\Phi^{-1}(\cdot)$ does not have an analytical form. This is often a problem with the inverse transform method.

Easy solution: Do a table lookup. E.g., If U = 0.975, then $X = F^{-1}(U) = 1.96$.

More portable solution: The following approximation has absolute error $< 0.45 \times 10^{-3}$:

$$Z = \operatorname{sign}(U-1/2) \left(t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} \right),$$

where sign(x) = 1, 0, -1 if x is positive, zero, or negative, respectively,

$$t = \{-\ln[\min(U, 1 - U)]^2\}^{1/2},$$

and

$$c_0 = 2.515517, \quad c_1 = 0.802853, \quad c_2 = 0.010328,$$

 $d_1 = 1.432788, \quad d_2 = 0.189269, \quad d_3 = 0.001308.$

Example 9 The geometric distribution with probability function

$$Pr(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, ...$$

The c.d.f. is
$$F(k) = 1 - (1 - p)^k, k = 1, 2, ...$$

Hence,

$$X = \min[k: 1 - (1-p)^k \ge U]$$
$$= \left\lceil \frac{\ln(1-U)}{\ln(1-p)} \right\rceil.$$

(Have to be a little careful about the "ceiling" function.)

3. Convolution Methods

Convolutions refer to adding things up.

Example 11 Binomial(n, p)

Suppose X_1, \ldots, X_n are i.i.d. Bern(p). Then $Y = \sum_{i=1}^n X_i \sim \text{Bin}(n, p)$.

How do you get Bernoulli RV's?

Suppose U_1, \ldots, U_n are i.i.d. U(0,1). If $U_i \leq p$, set $X_i = 1$; otherwise, set $X_i = 0$. Repeat for $i = 1, \ldots, n$.

Example 12 Erlang $_n(\lambda)$

Suppose X_1, \ldots, X_n are i.i.d. $\text{Exp}(\lambda)$. Then $Y = \sum_{i=1}^n X_i \sim \text{Erlang}_n(\lambda)$.

Notice that by inverse transform,

$$Y = \sum_{i=1}^{n} X_{i}$$

$$= \sum_{i=1}^{n} \left[\frac{-1}{\lambda} \ln(U_{i}) \right]$$

$$= \frac{-1}{\lambda} \ln\left(\prod_{i=1}^{n} U_{i}\right)$$

(This only takes one natural log evaluation, so it's pretty efficient.)

Example 13 A simple Nor(0,1) generator.

Suppose that U_1, \ldots, U_n are i.i.d. U(0,1), and let $Y = \sum_{i=1}^n U_i$.

Note that E[Y] = n/2 and Var(Y) = n/12.

By the CLT, for large n.

$$Y \approx \text{Nor}(n/2, n/12).$$

In particular, let's choose n=12, and assume that it's "large". Then

$$Y - 6 = \sum_{i=1}^{12} U_i - 6 \approx \text{Nor}(0, 1).$$

Crude, but effective!

By the way, if $Z \sim \text{Nor}(0,1)$ and you want $X \sim \text{Nor}(\mu, \sigma^2)$, just take $X \leftarrow \mu + \sigma Z$.

Other convolution-related tidbits:

Did you know?

 $U_1 + U_2 \sim \text{Triangular}(0, 1, 2).$

If X_1, \ldots, X_n are i.i.d. Geom(p), then $\sum_{i=1}^n X_i \sim \mathsf{NegBin}(n,p)$.

If Z_1, \ldots, Z_n are i.i.d. Nor(0,1), then $\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$.

4. Acceptance-Rejection Method

Example 14 (Baby example, which you would usually do via inverse transform, but what the heck!)

Generate a U(2/3,1) RV. Here's the A-R algorithm:

- 1. Generate $U \sim U(0,1)$.
- 2. If $U \ge 2/3$, ACCEPT $X \leftarrow U$. Otherwise, REJECT and go to 1.

Motivation: The majority of c.d.f.'s cannot be inverted efficiently.

Suppose we want to simulate a continuous RV with p.d.f. f(x), but that it's difficult to generate directly. Also suppose that we can easily generate a RV having p.d.f. $h(x) \equiv t(x)/c$, where t(x) majorizes f(x), i.e.,

$$t(x) > f(x), \quad x \in \mathbb{R},$$

and

$$c \equiv \int_{-\infty}^{\infty} t(x) dx \ge \int_{-\infty}^{\infty} f(x) dx = 1,$$

where we assume that $c < \infty$.

Then f can be written as

$$f(x) = c \times \frac{f(x)}{t(x)} \times \frac{t(x)}{c} = cg(x)h(x),$$

where

$$\int_{-\infty}^{\infty} h(x) dx = 1 \quad (h \text{ is a density})$$

and

$$0 \le g(x) \le 1$$
.

Theorem 15 (von Neumann, 1951) Let $U \sim \mathcal{U}(0,1)$, and let Y a random variable with density h. If $U \leq g(Y)$, then Y has (conditional) density f.

This suggests the following "acceptance-rejection" algorithm ...

Algorithm A-R

Repeat

Generate U from $\mathcal{U}(0,1)$

Generate Y from h

until $U \leq g(Y)$

Return $X \leftarrow Y$

There are two main issues:

- \bullet The ability to quickly sample from h.
- ullet c must be small (t must be "close" to f) since

$$\Pr[U \le g(Y)] = \frac{1}{c}$$

and the mean number of trials until "success" $[U \leq g(Y)]$ is equal to c.

Example 16 (Law & Kelton) Generate a RV with p.d.f. $f(x) = 60x^3(1-x)^2$, $0 \le x \le 1$. Can't invert this analytically.

Note that the maximum occurs at x = 0.6, and f(0.6) = 2.0736.

Using the majorizing function

$$t(x) = 2.0736, \quad 0 \le x \le 1$$

(which isn't actually too efficient), we get $c = \int_0^1 f(x) dx = 2.0736$, and therefore

 $h(x)=1, \quad 0 \leq x \leq 1 \quad \text{(i.e., a U(0,1) p.d.f.)}$ and

$$g(x) = 60x^3(1-x)^2/2.0736.$$

E.g., if we generate U=0.13 and Y=0.25, then it turns out that $U \leq g(Y)=\frac{60Y^3(1-Y)^2}{2.0736}$, so we take $X \leftarrow 0.25$.

Example 17 (Ross) The standard half-normal distribution with density

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}, \quad x \ge 0.$$

Using the majorizing function

$$t(x) = \sqrt{\frac{2e}{\pi}}e^{-x}$$

we get

$$c = \sqrt{\frac{2e}{\pi}} \int_0^\infty e^{-x} dx = \sqrt{\frac{2e}{\pi}} = 1.3155,$$

$$h(x) = e^{-x}$$
 [exponential($\lambda = 1$) density],

and

$$g(x) = e^{-(x-1)^2/2}.$$

How can we generate from N(0,1)?

Generate U from $\mathcal{U}(0,1)$

Generate X from the half-normal distribution

Return

$$Z = \begin{cases} -X & \text{if } U \le 1/2\\ X & \text{if } U > 1/2. \end{cases}$$

How can we generate from $N(\mu, \sigma^2)$?

Use the transformation $\mu + \sigma Z$.

Example 18 The gamma distribution with density

$$f(x) = \frac{(x/\alpha)^{\beta - 1}}{\alpha \Gamma(\beta)} e^{-(x/\alpha)^{\beta}}, \quad x > 0.$$

If the shape parameter $\beta < 1$, we use the following A-R algorithm with $c \leq 1.39$:

Algorithm GAM1

 $b \leftarrow (e + \beta)/e$ (e is the base of the natural logarithm)

While (True)

Generate U from $\mathcal{U}(0,1)$; $W \leftarrow bU$

If W < 1

 $Y \leftarrow W^{1/\beta}$; Generate V from $\mathcal{U}(0,1)$

If $V \leq e^{-Y}$: Return $X = \alpha Y$

Else

$$Y \leftarrow -\ln[(b-W)/\beta]$$

Generate V from $\mathcal{U}(0,1)$

If $V \leq Y^{\beta-1}$: Return $X = \alpha Y$

If $\beta \geq 1$, the value of c for the following A-R algorithm decreases from 4/e=1.47 to $\sqrt{4/\pi}=1.13$ as β increases from 1 to ∞ .

Algorithm GAM2

$$a \leftarrow (2\beta - 1)^{-1/2}$$
; $b \leftarrow \beta - \ln 4$; $c \leftarrow \beta + a^{-1}$; $d \leftarrow 1 + \ln 4.5$

While (True)

Generate U_1 , U_2 from $\mathcal{U}(0,1)$

$$V \leftarrow a \ln[U_1/(1-U_1)]$$

$$Y \leftarrow \beta e^V$$
; $Z \leftarrow U_1^2 U_2$

$$W \leftarrow b + cV - Y$$

If
$$W + d - 4.5Z \ge 0$$
: Return $X = \alpha Y$

Else

If
$$W \ge \ln Z$$
: Return $X = \alpha Y$

Example 19 The Poisson distribution with probability function

$$Pr(X = n) = e^{-\lambda} \frac{\lambda^n}{n!}, \quad n = 0, 1, ...$$

Define A_i as the *i*th interarrival time from a Pois(λ) process. Then

$$X = n$$

 \Leftrightarrow See exactly n PP(λ) arrivals by t=1

$$\Leftrightarrow \sum_{i=1}^{n} A_i \le 1 < \sum_{i=1}^{n+1} A_i$$

$$\Leftrightarrow \sum_{i=1}^{n} \left[\frac{-1}{\lambda} \ell \mathsf{n}(U_i) \right] \leq 1 < \sum_{i=1}^{n+1} \left[\frac{-1}{\lambda} \ell \mathsf{n}(U_i) \right]$$

$$\Leftrightarrow \frac{-1}{\lambda} \ln \left(\prod_{i=1}^n U_i \right) \le 1 < \frac{-1}{\lambda} \ln \left(\prod_{i=1}^{n+1} U_i \right)$$

$$\Leftrightarrow \prod_{i=1}^{n} U_i \ge e^{-\lambda} > \prod_{i=1}^{n+1} U_i. \tag{5}$$

The following A-R algorithm samples U(0,1)'s until (5) becomes true.

Algorithm POIS1

$$a \leftarrow e^{-\lambda}$$
; $p \leftarrow 1$; $X \leftarrow -1$

Until $p \leq a$

Generate U from $\mathcal{U}(0,1)$

$$p \leftarrow pU$$
; $X \leftarrow X + 1$

Return X

Example 20 Apply Algorithm POIS1 to obtain a Pois($\lambda = 2$) variate.

Sample until $e^{-\lambda} = 0.1353 > \prod_{i=1}^{n+1} U_i$.

n	U_{n+1}	$\prod_{i=1}^{n+1} U_i$	Stop?
0	0.3911	0.3911	No
1	0.9451	0.3696	No
2	0.5033	0.1860	No
3	0.7003	0.1303	Yes

Thus, we take X = 3.

Remark 21 How many U's are required to generate one realization of X? Easy argument says that the expected number you'll need is $\mathsf{E}[X+1] = \lambda + 1$.

Algorithm POIS2 (For $\lambda \ge 20$)

$$a \leftarrow \pi \sqrt{\lambda/3}$$
; $b \leftarrow a/\lambda$; $c \leftarrow 0.767 - 3.36/\lambda$; $d \leftarrow \ln c - \ln b - \lambda$

Repeat

Repeat

Generate U from $\mathcal{U}(0,1)$

$$Y \leftarrow [a - \ln((1 - U)/U]/b$$

until Y > -1/2

$$X \leftarrow \lfloor Y + 1/2 \rfloor$$

Generate V from $\mathcal{U}(0,1)$

until
$$a - bY + \ln[V/(1 + e^{a-bY})^2] \le d + X \ln \lambda - \ln(X!)$$

Return X

Alternatively, we can use the normal approximation

$$\frac{X-\lambda}{\sqrt{\lambda}} pprox N(0,1).$$

Algorithm POIS3 (For $\lambda \ge 20$)

$$\alpha \leftarrow \sqrt{\lambda}$$

Generate Z from N(0,1)

Return $X = \max(0, \lfloor \lambda + aZ + 0.5 \rfloor)$ (Note that this employs a "continuity correction."

6. Generating Poisson Arrivals

When the arrival rate is constant, say λ , the interarrival times are i.i.d. exponential(λ) and the arrival times are generated recursively:

$$T_0 = 0$$

 $T_i = T_{i-1} - \frac{1}{\lambda} \ln U_i, \quad i \ge 1$

How can we generate a fixed number n of arrivals in a time interval [a,b]?

Generate U_1, \ldots, U_n from $\mathcal{U}(0, 1)$

Sort the
$$U_i$$
's: $U_{(1)} < U_{(2)} < \cdots < U_{(n)}$

Set the arrival times to $T_i = a + (b-a)U_{(i)}$

7. Special-Case Techniques

7.1 Box-Müller Method

Nice way to generate standard normals.

Theorem 23 If U_1, U_2 are i.i.d. U(0,1), then

$$Z_1 = \sqrt{-2\ell n(U_1)} \cos(2\pi U_2)$$

 $Z_2 = \sqrt{-2\ell n(U_1)} \sin(2\pi U_2)$

are i.i.d. Nor(0,1).

Note that the trig calculations must be done in radians.

Proof Someday soon. \Diamond

Some cool corollaries from Box-Müller.

Example 24 Note that

$$Z_1^2 + Z_2^2 \sim \chi^2(1) + \chi^2(1) \sim \chi^2(2)$$
.

But

$$Z_1^2 + Z_2^2$$

= $-2\ell n(U_1)(\cos^2(2\pi U_2) + \sin^2(2\pi U_2))$
= $-2\ell n(U_1)$
 $\sim \text{Exp}(1/2).$

Thus, we've just proven that

$$\chi^2(1) + \chi^2(1) \sim \text{Exp}(1/2).$$

Example 25 Note that

 $Z_1/Z_2 \sim \text{Nor}(0,1)/\text{Nor}(0,1) \sim \text{Cauchy}.$

But

$$Z_1/Z_2 = \frac{\sqrt{-2\ell n(U_1)}\sin(2\pi U_2)}{\sqrt{-2\ell n(U_1)}\cos(2\pi U_2)}$$

= $\tan(2\pi U_2)$.

Thus, we've just proven that

$$tan(2\pi U) \sim Cauchy.$$

Similarly,

$$\cot(2\pi U) \sim \text{Cauchy}.$$

Similarly,

$$Z_1^2/Z_2^2 = \tan^2(2\pi U) \sim F(1,1).$$

(Did you know that?)

Polar Method — a little faster than Box-Müller:

1. Generate U_1, U_2 i.i.d. U(0,1).

Let
$$V_i = 2U_i - 1$$
, $i = 1, 2$, and $W = V_1^2 + V_2^2$.

2. If W > 1, reject and go back to step 1.

Otherwise, let $Y = \sqrt{-2(\ln W)/W}$, and accept $Z_i \leftarrow V_i Y$, i = 1, 2.

7.2 Order Statistics

Suppose that X_1, X_2, \ldots, X_n are i.i.d. from some distribution, and let $Y = \min\{X_1, \ldots, X_n\}$. (Y is called the first order stat.) Can you generate Y using just one U(0,1)?

Example 26 Suppose $X_1, \ldots, X_n \sim \mathsf{Exp}(\lambda)$. Then

$$Pr(Y \le y) = 1 - Pr(Y > y)$$

$$= 1 - Pr(\min_i X_i > y)$$

$$= 1 - Pr(\text{all } X_i \text{'s} > y)$$

$$= 1 - (e^y)^n.$$

This implies that $Y = \min_i \{X_i\} \sim \mathsf{Exp}(n\lambda)$. So you can generate

$$Y = -\frac{1}{n\lambda} \ell \mathsf{n}(U).$$

Can you do the same kind of thing for $Z = \max_i X_i$?

7.3 Other Quickies

 $\chi^2(n)$ distribution: If Z_1, Z_2, \ldots, Z_n are i.i.d. N(0,1), then $\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$.

t(n) distribution: If $Z \sim N(0,1)$ and $Y \sim \chi^2(n)$, and X nd Y are independent, then

$$\frac{Z}{\sqrt{Y/n}} \sim t(n).$$

Note that t(1) is the Cauchy distribution.

F(n,m) distribution: If $X \sim \chi^2(n)$ and $Y \sim \chi^2(m)$ and X and Y are independent, then $(X/n)/(Y/m) \sim F(n,m)$.

Generating RV's from continuous empirical distributions — no time here. Can use the CONT function in Arena.

8. The Multivariate Normal Distribution

The random vector $\mathbf{X} = (X_1, \dots, X_k)^{\mathsf{T}}$ has the multivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}}$ and $k \times k$ covariance matrix $\boldsymbol{\Sigma}$ if, $\forall \mathbf{x} \in \mathbb{R}^k$, it has p.d.f.

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left\{-\frac{(\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu)}{2}\right\}.$$

It turns out that

$$E(X_i) = \mu_i$$
, $Var(X_i) = \sigma_{ii}$, $Cov(X_i, X_j) = \sigma_{ij}$.

It can be shown that $\Sigma = CC^{\mathsf{T}}$, where C is lower triangular, and

$$\mathbf{Z} = C^{-1}(\mathbf{X} - \boldsymbol{\mu}) \sim N(\mathbf{0}, I).$$

The following algorithm computes C (Cholesky):

Algorithm LTM (amended by DG, 4/06)

For
$$i = 1, \ldots, k$$
,

For
$$j = 1, ..., i - 1$$
,

$$c_{ij} \leftarrow \left(\sigma_{ij} - \sum_{\ell=1}^{j-1} c_{i\ell} c_{j\ell}\right) / c_{jj}$$

$$c_{ii} = 0$$

$$c_{ii} = \left(\sigma_{ii} - \sum_{\ell=1}^{i-1} c_{i\ell}^2\right)^{1/2}$$

Once C has been computed, \mathbf{X} is generated as follows:

Algorithm MN

$$i \leftarrow 1$$

Until i > k:

Generate X_i from N(0,1)

$$X_i \leftarrow \mu_i$$

$$j \leftarrow 1$$

Until
$$j > i$$
: $X_i \leftarrow X_i + c_{ij}X_j$; $j \leftarrow j + 1$

$$i \leftarrow i + 1$$

9. Some Stochastic Processes

9.1 First-Order Moving Average Process

An MA(1) process is defined by

$$Y_i = \varepsilon_i + \theta \varepsilon_{i-1}, \quad \text{for } i = 1, 2, \dots,$$

where the ε_i 's are i.i.d. Nor(0,1) random variables that are independent of Y_0 .

The MA(1) has covariance function $Var(Y_i) = 1 + \theta^2$, $Cov(Y_i, Y_{i+1}) = \theta$, and $Cov(Y_i, Y_{i+k}) = 0$ for $k \ge 2$.

So the covariances die off pretty quickly.

How to generate? Start with $\varepsilon_0 \sim \text{Nor}(0,1)$. Then generate $\varepsilon_1 \sim \text{Nor}(0,1)$ to get Y_1 , $\varepsilon_2 \sim \text{Nor}(0,1)$ to get Y_2 , etc.

The MA(1) is a popular tool for modeling detecting trends.

9.2 First-Order Autoregressive Process

An AR(1) process is defined by

$$Y_i = \phi Y_{i-1} + \varepsilon_i$$
, for $i = 1, 2, ...,$

where $-1 < \phi < 1$; Y_0 is a Nor(0,1) random variable; and the ε_i 's are i.i.d. Nor(0,1 $-\phi^2$) random variables that are independent of Y_0 .

The AR(1) has covariance function $Cov(Y_i, Y_{i+k}) = \phi^{|k|}$ for all $k = 0, \pm 1, \pm 2, \ldots$

If ϕ is close to one, you get highly positively correlated Y_i 's. If ϕ is close to zero, the Y_i 's are nearly independent.

How to generate? Start with $Y_0 \sim \text{Nor}(0,1)$ and $\varepsilon_1 \sim \sqrt{1-\phi^2}$ Nor(0,1). This gives Y_1 . Then generate ε_2 to get Y_2 , etc.

This is used to model lots of real-world stuff.

9.3 M/M/1 Queue.

Consider a single-server queue with customers arriving according to a $Poisson(\lambda)$ process, standing in line with a FIFO discipline, and then getting served in an $Exp(\mu)$ amount of time. Let I_{i+1} denote the interarrival time between the ith and (i+1)st customers; let S_i be the ith customer's service time; and let W_i denote the ith customer's waiting time before service. Lindley gives a very nice way to generate a series of waiting times for this simple example:

$$W_{i+1} = \max\{W_i - S_i + I_{i+1}, 0\}.$$

(Can you model time in system with a similar equation?)

9.4 Brownian Motion.

The stochastic process $\{cW(t), t \geq 0\}$ is a standard Brownian motion process if:

- (a) cW(0) = 0.
- (b) $cW(t) \sim Nor(0, \sigma^2 t)$.
- (c) $\{cW(t), t \geq 0\}$ has stationary and indep increments.

Increments: Anything like cW(b) - cW(a).

Stationary increments: The distribution of cW(t+h)-cW(t) only depends on h.

Independent increments: If a < b < c < d, then cW(d)-cW(c) is indep of cW(b)-cW(a).

Discovered by Brown; first analyzed rigorously by Einstein; mathematical rigor established by Wiener (also called *Wiener* process). Here's a way to construct BM:

Suppose Y_1, Y_2, \ldots is any sequence of identically distributed RV's with mean zero and variance 1. (To some extent, the Y_i 's don't even have to be indep!) Donsker's Central Limit Theorem says that

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{\lfloor nt \rfloor}Y_i \stackrel{d}{\longrightarrow} \mathcal{W}(t) \quad \text{as } n \to \infty,$$

where $\stackrel{d}{\longrightarrow}$ denotes convergence in distribution as n gets big, and $\lfloor \cdot \rfloor$ means to round down to the next integer, e.g., $\lfloor 3.7 \rfloor = 3$.

One choice that works well is to take $Y_i = \pm 1$, each with probability 1/2. Take n at least 100, $t = 1/n, 2/n, \ldots, n/n$, and calculate $\mathcal{W}(1/n), \mathcal{W}(2/n), \ldots, \mathcal{W}(n/n)$.

It really works!