Three Ways to Prepare a Buffer

Suppose you are asked to prepare 500 mL of a HCO_3^{-}/CO_3^{2-} buffer subject to the following conditions: the buffer must have a pH of 9.87 and the total concentration of HCO_3^{-} and CO_3^{2-} must be 0.200 M. How might you prepare this buffer?

We begin by determining the relative amount of weak base (CO_3^{2-}) and weak acid (HCO_3^{-}) needed to give the desired pH; thus, using the Henderson-Hasselbalch equation we find that

pH = 9.87 = p
$$K_a$$
 + log $\frac{[CO_3^{2-}]}{[HCO_3^{-}]}$ = 10.33 + log $\frac{[CO_3^{2-}]}{[HCO_3^{-}]}$ = 0.3467

We then calculate the total moles of CO₃²⁻ and HCO₃⁻ needed

$$\frac{0.200 \text{ mol}}{L} \times 0.500 \text{ L} = 0.100 \text{ mol} = \text{mol HCO}_3^- + \text{mol CO}_3^{2-}$$

Next, we calculate the exact moles of CO_3^{2-} and HCO_3^- that we will need. Letting X be the moles of CO_3^{2-} , we know that the moles of HCO_3^- are

$$0.100 \text{ mol} - X = \text{mol HCO}_3^-$$

Substituting back gives

$$\frac{[\text{CO}_3^{2-}]}{[\text{HCO}_3^{-}]} = \frac{X}{0.1 - X} = 0.3467$$

$$X = 0.02574 \text{ mol CO}_3^{2-}$$

$$0.100 - X = 0.07426 \text{ mol HCO}_3^{2-}$$

Now that we know how many moles of CO_3^{2-} and HCO_3^{-} we need, we can determine the amounts of each reagent to use. We have three choices: (i) use solid Na_2CO_3 and solid $NaHCO_3$; (ii) use solid $NaHCO_3$ and convert some of it to CO_3^{2-} by adding a strong base; or (iii) use solid Na_2CO_3 and convert some of it to HCO_3^{-} by adding a strong acid.

Using Na₂CO₃ and NaHCO₃

The moles of Na_2CO_3 and $NaHCO_3$ needed are just the same as the moles of CO_3^{2-} and HCO_3^{-} calculated above; thus

$$0.02574 \text{ mol Na}_2\text{CO}_3 \times \frac{105.998 \text{ g}}{\text{mol}} = 2.73 \text{ g Na}_2\text{CO}_3$$

 $0.07426 \text{ mol NaHCO}_3 \times \frac{84.0059 \text{ g}}{\text{mol}} = 6.24 \text{ g NaHCO}_3$

To prepare the buffer, therefore, we add these amounts of the solid reagents to a 500-mL volumetric flask and dilute to volume.

Using NaHCO₃ and NaOH

In this approach we begin by weighing out an amount of NaHCO₃ equivalent to the total moles of HCO₃⁻ and CO₃²⁻ needed; thus, we begin with 0.100 moles of NaHCO₃, or

$$0.100 \text{ mol NaHCO}_3 \times \frac{84.0059 \text{ g}}{\text{mol}} = 8.40 \text{ g NaHCO}_3$$

Next, we add NaOH, converting 0.02574 moles of the HCO_3^- to CO_3^{2-} as shown by the following reaction

$$\text{HCO}_3^- + \text{OH}^- \rightarrow \text{CO}_3^{2-} + \text{H}_2\text{O}$$

Thus, we need 0.02574 moles of NaOH, or

$$0.02574 \text{ mol NaOH} \times \frac{1 \text{ L}}{6 \text{ mol}} \times \frac{1000 \text{ mL}}{\text{L}} = 4.29 \text{ mL NaOH}$$

To prepare the buffer we add 8.40 g of NaHCO₃ to a 500-mL volumetric flask and dissolve it with some water. We then add 4.29 mL of 6 M NaOH and dilute to volume.

Using Na₂CO₃ and HCl

In this approach we begin by weighing out an amount of Na₂CO₃ equivalent to the total moles of HCO₃⁻ and CO₃²⁻ needed; thus we begin with 0.100 moles of Na₂CO₃, or

$$0.100 \text{ mol Na}_2\text{CO}_3 \times \frac{105.998 \text{ g}}{\text{mol}} = 10.60 \text{ g Na}_2\text{CO}_3$$

Next, we add HCl, converting 0.07426 moles of the $\mathrm{CO_3}^{2-}$ to $\mathrm{HCO_3}^-$ as shown by the following reaction

$$CO_3^{2-} + H_3O^+ \rightarrow HCO_3^- + H_2O$$

Thus, we need 0.07426 moles of HCl, or

$$0.07426 \text{ mol HCl} \times \frac{1 \text{ L}}{6 \text{ mol}} \times \frac{1000 \text{ mL}}{\text{L}} = 12.38 \text{ mL HCl}$$

To prepare the buffer we add 10.60~g of Na_2CO_3 to a 500-mL volumetric flask and dissolve it with some water. We then add 12.38~mL of 6~M HCl and dilute to volume.

A Final Comment of Preparing Buffers

For reasons we will discuss later, a buffer prepared following one of these approaches probably will not produce a solution whose pH level matches exactly the desired value. When preparing a buffer in the laboratory it often is necessary to adjust the buffer's pH level to the desired value by adding small amounts of either a strong acid or a strong base while monitoring the pH with a pH electrode.