Lab 1. Определённый интеграл Римана

Задание: Для данной функции на данном отрезке для равномерных разбиений построить суммы Дарбу, доказать интегрируемость и получить значение интеграла. Проверить численно.

1.1 Аналитическая часть

- 1. Построить верхнюю и нижнюю суммы Дарбу для равномерного разбиения на nчастей.
- 2. Доказать, что функция интегрируема по Риману.
- 3. Найти пределы сумм Дарбу, найти значения интеграла.
- 4. Сравнить со значением, полученным по формуле Ньютона-Лейбница.

1.2 Численный метод

- 1. Постоить графики f(x) и ступенчатые фигуры, соответсвующие суммам Дарбу для некоторых значений n (Например, n = 5, 10, 100). Добавить их зачения в таблицу в отчете. (см. Замечания)
- 2. Построить графики интегральных сумм со случайными оснащениями (ξ) для тех же разбиений. Добавить их зачения в таблицу в отчете. (см. Замечания)
- 3. По желанию написать программу, вычисляющую приближённое значение интеграла для равномерного разбиения методом трапеций. Нарисовать рисунок, сравнить результаты.

- Замечания: (1) Входные данные программы: число точек, разбиения, способ выбора оснащения (левые, правые, средние, случайные).
 - (2) В таблицу добавить результаты минимум для 3 разных n. По желанию можно графически показать для большего количества различных n.

1.3 Требования к отчету

Отчет состоит из следующих пунктов:

- 1. Постановка задачи
- 2. Теория
- 3. Используемые програмные средства (можно включить ссылку на github)
- 4. Результаты
- 5. Обсуждение (результатов)

2 Варианты

1.
$$f(x) = x^2$$
, [1,2];

2.
$$f(x) = e^x$$
, $[0,1]$;

3.
$$f(x) = \sin x$$
, $[0, \pi]$;

4.
$$f(x) = \cos x$$
, $[0, \pi/2]$; **15.** $f(x) = 3^x$, $[-1, 0]$;

5.
$$f(x) = 2^x$$
, $[0,2]$;

6.
$$f(x) = x^3$$
, [0,1];

7.
$$f(x) = 3^x$$
, [1,2];

8.
$$f(x) = e^{-x}$$
, [0,1];

9.
$$f(x) = x^2$$
, $[-3,0]$;

10.
$$f(x) = e^{2x}$$
, $[0,1]$;

11.
$$f(x) = \sin x$$
, $[0, 2\pi]$; **22.** $f(x) = x^3$, $[-2, 0]$;

1.
$$f(x) = x^2$$
, [1,2]; **12.** $f(x) = \cos x$, [0, π];

13.
$$f(x) = 2^x$$
, [0,1];

14.
$$f(x) = x^3$$
, $[0,2]$;

15.
$$f(x) = 3^n$$
, $[-1,0]$;

16.
$$f(x) = e^{-x}$$
, [0,2];

17.
$$f(x) = x^2$$
, $[-1,1]$;

18.
$$f(x) = e^{3x}$$
, [0,0.5];

19.
$$f(x) = \sin 2x$$
, $[0, \pi]$;

20.
$$f(x) = \cos 2x$$
, $[0, \pi/2]$; **31.** $f(x) = 3^x$, $[-1,1]$;

10.
$$f(x) = e^{2x}$$
, $[0,1]$; **21.** $f(x) = 4^x$, $[0,2]$;

22.
$$f(x) = x^3$$
, $[-2,0]$

23.
$$f(x) = 4^x$$
, [1,2];

24.
$$f(x) = e^{-2x}$$
, [1,3]

25.
$$f(x) = x^2$$
, [1,4];

26.
$$f(x) = e^{2x}$$
, $[-1,0]$;

27.
$$f(x) = \sin 2x$$
, $[0, \pi.2]$;

28.
$$f(x) = \cos 2x$$
, $[0,\pi]$;

29.
$$f(x) = 5^x$$
, $[0,3]$;

30.
$$f(x) = x^3$$
, $[-1,1]$;

$$f(x) = 3^x, [-1,1]$$
:

32.
$$f(x) = e^{-x}$$
, $[-1,1]$.