

Gene set-focused analysis of RNA-seq data with MIEP

Corradin, A., Ciminale, V., *MIEP: Make-it-easy-pipeline*, useR! 2024, July 8-12 2024, Salzburg, Austria

Corradin, A., et al., *Gene set-focused analysis of RNA-seq data with MIEP*, Computational Intelligence methods for Bioinformatics and Biostatistics 2024, September 4-6 2024, Benevento, Italy (submitted)

What is MIEP?

Make-it-easy-pipeline (MIEP)

- is an integrated, interactive, and user-friendly R package;
- aggregates a high number of tools for the analysis of RNA-seq data;
- develops/edits new gene sets based on gene ontology enrichment tests and variable importance derived from random forests;
- MIEP R package is composed of more than R 200 scripts.

Where is it?

https://github.com/AlbertoCorradinPhD/MIEP

The idea

Pathway disruption plays a critical role in cancer development.

This affects the signaling mechanisms that rule cell function.

By focusing on gene sets mimicking pathways, we can accelerate the development and testing of treatments.

(supposing these latter act on key elements of signal transduction)

The pipeline in pictures

- Pre-filtering low count genes
- Check if data are biased
- Data shrinkage
- Differentially expressed features
- Annotations
- Features selection
- Dimensionality reduction
- Enrichment of Gene Ontology terms
- Conditional random forests
- Focusing on single gene sets

Pre-filtering low count genes

http://127.0.0.1:5274 🖅 Open in Browser 🎯
✓ Change default settings? Default answer is no Insert
http://127.0.0.1:6622 🖅 Open in Browser 🕓
Let's apply 'batch filter'? If so, insert required average number of reads per sample
0
Insert
http://127.0.0.1:6622 🔊 Open in Browser 🕞
Let's apply 'pheno filter'? If so, insert required average number of reads per paired 'cell line-condition'
10
Insert

N.2 distinct filters: Filtering is customizable based on experimental conditions

Check if data are biased

Preliminary Principal Component Analysis show potential bias due to patient specificity.

Data shrinkage

Differentially expressed features

DE features = statistically significant (Wald test +BH correction for multiple testing) and FC> FC cut-off

Annotations

- Annotation of sequences based on Hugo Gene nomenclature (HGCN, https://www.genenames.org/).
- Cleaning: long intergenic non-protein coding RNA (IncRNA), uncharacterized open reading frames families with sequence similarity, small nucleolar RNA, pseudogenes, ... are discarded (we focus on coding genes).
- Do you want to keep miRNAs? (customizable)

http://127.0.0.1:4742 🔊 Open in Browser 🕃	
☐ Do you want to keep miRNAs? No is default	
Insert	

Samples are initially clustered by patient because of patient specificity

Bias correction

Z-score transformed data

Dimensionality reduction

Features' importance: weights in composing first principal component

You can provide additional indications to biologists for next experiments

TSNE+SVM and UMAP

Enrichment of Gene Ontology terms

GO Biological processes Top terms ordered by Fisher test p-value (BH correction) regulation of multicellular organismal process Customizable subset of interest to test: -log10(padj) cell differentiation 2.2 insert object of this analysis (PCA, DE, lists) -log10(padj) cellular developmental process DE 2.4 2.2 Insert 2.0 multicellular organismal process negative regulation of biological process

p-value (BH correction) in logarithmic scale

Cut-off lines drawn at equivalents of padj=0.05, padj=0.01, padj=0.001

Nodes graph

New gene sets are edited based on nodes graph:

multicellular_organismal_process_in_featuresSelection_for_ Patient2 > GO:0032501 from GO enrichment test AKAP6 ALPK3 **APLF** ARHGAP42 BCL7A BTG2 CAMK2D CAMK4 CDH23 CDKN1A CLMN CRYBG3 DNHD1 **ERMN IL15** IL7R KCNMB4 KAT14 LFNG LILRB3 LOXL3 MC1R MSR1 MAPK13 **NUP155** OMG OR52K2 OVGP1 P2RX1 PDK4 PROK2 RAPGEF1 SEMA4D SIDT2 SLC27A1 SLA2 SLC8A1 TBX19 TNFSF8 TPH1 TRIM32 **TYROBP VCAN** ZMYND15

Conditional random forests

tp://127.0.0.1:4742						
insert classification method for random forests. By cell line (or patient), by condition (or treatment), or by both?						
Insert	Customizable classification					

Variables' importance

New gene sets are edited based on variables importance:

t	i - D O liti		and a late
	assicByCondition		
importance	PHKG1	WDHD1	DMC1
	PRELID2	GKAP1	DNA2
	PALS2	ZNF532	TMEM169
	CLMN	PEX7	UBAP2
	CCDC18	POLR3G	OPTN
	TMEM53	BCO2	RPS24
	NEMF	PHIP	RELL1
	PARPBP	TTC12	NUDT7
	TAS2R50	CSNK1G3	VARS1
	DNAJB2	EZH2	MMAA
	CCDC66	RPL21	ZDHHC20
	TBX19	UBXN2A	ARHGAP42
	KAT14	SCAMP2	NFE2L2
	RARS1	KIF20B	ISM1
	THBS3	KIF18A	SIDT2
	RGS18	PIDD1	SLF1
	NUSAP1	NIBAN2	19

Focusing on single gene sets

Heat map of fold changes

Why MIEP?

MIEP's functions include:

- Dimensionality reduction and visualizations by PCA, UMAP, tSNE, SVM
- Enrichment of Gene Ontology (GO) terms
- Calculation of features' importance subsequent to classification (conditional random forests)
- Gene set editing based on the ranking of GO terms or features' importance
- Analyses focused on gene sets and user-friendly graphical representations.

These characteristics and careful handling of exceptions make MIEP an easy-to-use tool for biologists with basic programming skills.

... and it's for free!

MIEP's technical features (1/2)

- The settings of conditional random forests' parameters are optimized by a grid search approach, whose computational burden is eased by parallel computing;
- Distinct implementations of parallel computing are automatically tested before grid search, to select the fastest;
- Random seeds were considered by registering them from the global environment

MIEP's technical features (2/2)

- An ad hoc environment of the package was declared in the main script to facilitate the transmission of variables along the grid search or to object constructors calling functions;
- Since expanded swap memory is often used as a surrogate when RAM is limited, swappiness in Linux OS is automatically increased for machine learning by invoking system commands. A shiny app allows inserting a superuser password for the execution of system calls.

Taken together, these characteristics allow running the pipeline with limited computational resources.