Notes

October 29, 2014

3.8 # 10

```
N \leq G and m = [G:N] = |G/N| if x \in G/N then \operatorname{order}(x)|m. then \forall a \in G, aN \in G/N. let x \in aN and then \operatorname{order}(aN)|m and (aN)^m = N. a^m N = N \leftrightarrow a^m \in N
```

simple group

G is simple iff 'normal' subgroups.

3.8 #6

two subgroups intersecting is a subgroup. $x \in H \cap N$ means $x \in H \cap N$ so for all $a \in H$ we have $axa^{-1} \in N$ and $axa^{-1} \in H$ (from closure of H).

chapter 4

polynomials with coefficients in fields

field definition

a set with two operations on it. $(K, +, \cdot)$ is a field if $+, \cdot$ are binary operations on K such that (K, +) is an abelian group and $K^* = K \setminus \{0\}$ and (K^*, \cdot) is an abelian group and $(a+b) \cdot c = ac+bc$ and a(b+c) = ab+ac.

examples

 $(\mathbb{R},+,\cdot)$ is a field. $(\mathbb{Q},+,\cdot)$ is a field, and so is \mathbb{C} . $(\mathbb{Z},+,\cdot)$ is not a field because (\mathbb{Z}^*,\cdot) is not a group. $\{a+b\sqrt{2}:a,b\in\mathbb{Q}\}$ is a field with respect to usual mult and addition.

polynomial definition

let K be a field, $f(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$ where x is indeterminate and $a_i \in K$. we say that f(x) is a polynomial with coefficients in K. if $a_m \neq 0$ then we define deg f = m. conventional problem with degree of zero. defined to be $-\infty$.

K[x] = the set of all polynomials with coefficients in K. on K[x] we define two operations. if f(x) is deg m and g(x) is degree n then f(x) + g(x) = as usual and f(x)g(x) = as usual.

obeservation

given a polynomial $f(x) \in K[x]$, the polynomial function associated with f(x) is the function defined from $K \to K$ that takes $c \to f(c)$.

there is a difference between a polynomial and a polynomial function. they are different objects. lets take $K = \mathbb{Z}_p$. where p is prime. This is a field.

let $f(x) = x^p - x \in K[x]$. def f = p. polynomial function associated with f(x) is $[a] \to [a]^p - [a] = [a^p - a]$ but for $a \in \mathbb{Z}$ we have $a^p \equiv a \mod p$ and so the function is zero.

finite fields make confusing the polynomial and the function dangerous.

observation

 $f(x), g(x) \in K[x]$, if $f(x) \neq 0$ and $g(x) \neq 0$ then the product is not zero and the degree of the product is the sum of the degrees of f(x) and g(x)

claim $a, b \neq 0$ then $ab \neq 0$. assume ab = 0 then $a^{-1}ab = a^{-1}0$ because $a \neq 0$ and so b = 0 because $a^{-1}0 = a^{-1}(0+0)$ minus $a^{-1}0$ from both sides.