

# Aerosystems Engineer & Management Training School

**Academic Principles Organisation** 

**MATHEMATICS** 

**BOOK 11** 

Charts & Tables

#### **WARNING**

These course notes are produced solely for the purpose of training. They are not subject to formal amendment action after issue and they must NOT be used for operating and maintaining the equipment described. Operation and maintenance of equipment is governed by the limitations and procedures laid down in the authorized publications and manuals which must be complied with for these purposes

# WARNING INTELLECTUAL PROPERTY RIGHTS

This course manual is the property of the Secretary of State for Defence of the United Kingdom and Northern Ireland (the 'Authority'). The course manual is supplied by the Authority on the express terms that it may not be copied, used or disclosed to others, other than for the purpose of meeting the requirements of this course.

© CROWN COPYRIGHT

#### **KEY LEARNING POINTS**

| KLP   | Description                                                         |
|-------|---------------------------------------------------------------------|
| MA4.8 | Determine data values from graphs and tables                        |
| MA4.9 | Apply graphical techniques to the solution of engineering problems. |

This topic requires you to be able to read, interpret and extract information from a variety of engineering tables, graphs and charts. All the questions refer to a numbered graph or table, be sure to refer to the correct one. (Answers on page 8)

#### 1. Using Graph 1 (Page 2)

- (a) What is the density of the air at a height of 10000 ft?
- (b) What altitude would you be at, if the air density was 0.4 kg/m<sup>3</sup>?

#### 2. Using Graph 2 (Page 3)

- (a) From the graph, estimate the air pressure at 20000 feet.
- (b) If the measured pressure is 12 psi, what is the approximate altitude?

#### 3. Using Table 1 (Page 4)

- (a) At a height of 14 km, what is the temperature in k and the pressure in N/m<sup>2</sup>?
- (b) Estimate the altitude and the density of the air, if the local speed of sound is 303.8 m/s.

#### 4. **Using Table 2** (Page 5)

- (a) At 23000 ft, what is the expected air temperature, in degrees Fahrenheit and the expected air density?
- (b) If the air pressure gauge registers 619.6 hPa, what is the air temperature in centigrade and the air density?

#### 5. **Using Graph 3** (Page 6)

- (a) A circuit fused at 80 A attempts to pass 300 amps due to a fault. How long will it take to fail?
- (b) Approximately how much current is flowing in a faulty circuit, if the fuse rated at 20 A blows after ten seconds?

#### 6. **Using Graph 4** (Page 7)

- (a) An aircraft altimeter indicates 2500 ft at an outside air temperature of 20°C. What is the actual altitude?
- (b) Estimate the outside air temperature, when the actual altitude is 1500 ft, but the indicated altitude is 2000ft.

### **ALTITUDE V DENSITY**

### Relationship between Altitude and Density



Graph 1

### **Altitude v Pressure**

### Relationship between Altitude and Pressure



Graph 2

## International Standard Atmosphere (ISA)

| Altitude(km) | Temperature(K) | Density(kg/m3) | Pressure(N/m²) | Speed of Sound(m/s) |
|--------------|----------------|----------------|----------------|---------------------|
| 0            | 288.15         | 1.226          | 101320         | 340.292             |
| 1            | 281.65         | 1.112639088    | 89877.32861    | 336.4322896         |
| 2            | 275.15         | 1.007475016    | 79504.16655    | 332.5274883         |
| 3            | 268.65         | 0.910087898    | 70122.31916    | 328.5762857         |
| 4            | 262.15         | 0.820070087    | 61657.64316    | 324.576987          |
| 5            | 255.65         | 0.737026106    | 54039.92719    | 320.5277921         |
| 6            | 249.15         | 0.660572567    | 47202.77296    | 316.4267854         |
| 7            | 242.65         | 0.590338099    | 41083.4773     | 312.2719256         |
| 8            | 236.15         | 0.525963269    | 35622.91484    | 308.0610337         |
| 9            | 229.65         | 0.467100501    | 30765.42154    | 303.7917798         |
| 10           | 223.15         | 0.413413999    | 26458.67894    | 299.4616678         |
| 11           | 216.65         | 0.364579658    | 22653.59927    | 295.0680184         |
| 12           | 216.65         | 0.311426046    | 19350.83514    | 295.0680184         |
| 13           | 216.65         | 0.266021925    | 16529.59497    | 295.0680184         |
| 14           | 216.65         | 0.227237462    | 14119.67534    | 295.0680184         |
| 15           | 216.65         | 0.194107551    | 12061.1081     | 295.0680184         |
| 16           | 216.65         | 0.165807789    | 10302.6681     | 295.0680184         |
| 17           | 216.65         | 0.14163397     | 8800.598503    | 295.0680184         |
| 18           | 216.65         | 0.120984554    | 7517.521992    | 295.0680184         |
| 19           | 216.65         | 0.103345703    | 6421.510638    | 295.0680184         |
| 20           | 216.65         | 0.088278496    | 5485.291419    | 295.0680184         |
| 21           | 216.65         | 0.075408       | 4685.567563    | 295.0680184         |
| 22           | 216.65         | 0.064413949    | 4002.438833    | 295.0680184         |
| 23           | 216.65         | 0.055022766    | 3418.906333    | 295.0680184         |
| 24           | 216.65         | 0.047000764    | 2920.449506    | 295.0680184         |
| 25           | 216.65         | 0.040148324    | 2494.664809    | 295.0680184         |

Table 1

| Altitude<br>ft | <b>Air Press.</b><br>hPa ["Hg] | Air Temp.<br>°C [°F] | Air Density<br>kg/m³ |
|----------------|--------------------------------|----------------------|----------------------|
| 0              | 1013.25 [29.92]                | 15 [59.0]            | 1.225                |
| 1000           | 977.18 [28.86]                 | 13 [55.4]            | 1.190                |
| 2000           | 942.12 [27.82]                 | 11 [51.8]            | 1.155                |
| 3000           | 908.18 [26.82]                 | 9.1 [48.4]           | 1.121                |
| 4000           | 875.14 [25.84]                 | 7.1 [44.8]           | 1.088                |
| 5000           | 843.13 [24.90]                 | 5.1 [41.2]           | 1.056                |
| 6000           | 812.02 [23.98]                 | 3.1 [37.6]           | 1.024                |
| 7000           | 781.93 [23.09]                 | 1.1 [34.0]           | 0.993                |
| 8000           | 752.74 [22.23]                 | -0.8 [30.6]          | 0.963                |
| 9000           | 724.37 [21.39]                 | -2.8 [27.0]          | 0.934                |
| 10000          | 696.91 [20.58]                 | -4.8 [23.4]          | 0.905                |
| 11000          | 670.37 [19.80]                 | -6.8 [19.8]          | 0.877                |
| 12000          | 644.63 [19.04]                 | -8.8 [16.2]          | 0.849                |
| 13000          | 619.60 [18.30]                 | -10.8 [12.6]         | 0.823                |
| 14000          | 595.49 [17.58]                 | -12.7 [9.1]          | 0.797                |
| 15000          | 572.08 [16.89]                 | -14.7 [5.5]          | 0.771                |
| 16000          | 549.38 [16.22]                 | -16.6 [2.1]          | 0.746                |
| 17000          | 527.50 [15.58]                 | -18.6 [-1.5]         | 0.722                |
| 18000          | 506.32 [14.95]                 | -20.6 [-5.1]         | 0.698                |
| 19000          | 485.85 [14.35]                 | -22.6 [-8.7]         | 0.676                |
| 20000          | 465.99 [13.76]                 | -24.6 [-12.3]        | 0.653                |
| 21000          | 446.84 [13.20]                 | -26.5 [-15.7]        | 0.631                |
| 22000          | 428.30 [12.65]                 | -28.5 [-19.3]        | 0.610                |
| 23000          | 410.47 [12.12]                 | -30.5 [-22.9]        | 0.589                |
| 24000          | 393.14 [11.61]                 | -32.5 [-26.5]        | 0.569                |
| 25000          | 376.52 [11.12]                 | -34.5 [-30.1]        | 0.550                |
| 26000          | 360.41 [10.64]                 | -36.4 [-33.5]        | 0.530                |
| 27000          | 344.91 [10.19]                 | -38.4 [-37.1]        | 0.512                |
| 28000          | 329.91 [9.74]                  | -40.4 [-40.7]        | 0.494                |
| 29000          | 315.42 [9.31]                  | -42.4 [-44.3]        | 0.476                |
| 30000          | 301.44 [8.90]                  | -44.4 [-47.9]        | 0.459                |
| 31000          | 288.07 [8.51]                  | -46.3 [-51.3]        | 0.442                |
| 32000          | 275.10 [8.12]                  | -48.3 [-54.9]        | 0.426                |
| 33000          | 262.63 [7.76]                  | -50.3 [-58.5]        | 0.411                |
| 34000          | 250.68 [7.40]                  | -52.3 [-62.1]        | 0.395                |
| 35000          | 239.13 [7.06]                  | -54.2 [-65.6]        | 0.380                |
| 36000          | 227.98 [6.73]                  | -56.2 [-69.2]        | 0.366                |

Table 2

The ISA consists of dry air (=0% relative humidity).





### CALIBRATION CURVES SHOWING ACTUAL ALTITUDE GIVEN INDICATED ALTITUDE FOR DIFFERENT AIR TEMPERATURES



#### **Answers**

- 1. (a)  $0.9 \text{ kg/m}^3$ 
  - (b) 34000 ft
- 2. (a) 6.9 psi
  - (b) 7000 ft
- 3. (a) 216.65 k 14119 N/m<sup>2</sup>
  - ( b ) approx 9 km  $0.4671 \text{ kg/m}^3$
- 4. (a) -22.9 °F 0.589 kg/m<sup>3</sup>
  - (b) -10.8 °C 0.823 kg/m<sup>3</sup>
- 5. (a) 40 s
  - (b) 75 A
- 6. (a) 2250 ft
  - (b) 0°C

#### Notes