UNIVERSIDADE PRESBITERIANA MACKENZIE BRUNO GALVÃO DE OLIVEIRA LIMA LUCAS SANTOS BORBA DE ARAÚJO VICTOR MARTINS OLIVEIRA VITÓRIA FERREIRA CORRÊA

PROJETO APLICADO I ANÁLISE DE DADOS METEOROLÓGICOS DOS ÚLTIMOS 20 ANOS EM BAURU: INVESTIGANDO A CORRELAÇÃO COM O AQUECIMENTO GLOBAL

SÃO PAULO 2024

BRUNO GALVÃO DE OLIVEIRA LIMA LUCAS SANTOS BORBA DE ARAÚJO VICTOR MARTINS OLIVEIRA VITÓRIA FERREIRA CORRÊA

ANÁLISE DE DADOS METEOROLÓGICOS DOS ÚLTIMOS 20 ANOS EM BAURU: INVESTIGANDO A CORRELAÇÃO COM O AQUECIMENTO GLOBAL

Projeto aplicado I: Projeto temático e interdisciplinar. As equipes de estudantes projetam, implementam e apresentam um projeto de ciência de dados para um cliente que contemple a Análise Exploratória de Dados (AED)

Orientador: Professor Thiago Graziani Traue e Vinicius Piro Barragam

SÃO PAULO 2024

Sumário

INTRODUÇÃO	5
GLOSSÁRIO	6
1.1 Contexto do Estudo	8
1.2 Objetivo do Projeto	8
1.3 Apresentação da Empresa	8
1.4 Problema de Pesquisa	9
1.5 Proposta de Desenvolvimento e Pipeline	10
1.5.1. Proposta de Desenvolvimento	10
1.5.2 Pipeline	10
2. Apresentação dos Dados (Metadados)	12
2.1 Tipo de Arquivo	12
2.2. Origem dos dados	12
2.3 Sensibilidade	12
2.4 Validade	12
2.5 Proprietário dos dados	12
2.6 Informações adicionais	12
2.7 Restrições de uso	12
2.8 Descrição dos atributos	12
3. Metodologia e Modelos Analíticos	16
3.1 Análise Exploratória de Dados	16
3.2 Tratamento dos Dados	19
3.3 Modelagem Preditiva	19
4. Resultados e Discussão	20
4.1 Resultados dos Modelos	20
4.2 Insights Extraídos	20
5. Data Storytelling	21
6. Conclusão	23
7. Referências	24
8. Cronograma	25
9 Anexos	26

10. Link para o Repositório no GitHub	32
---------------------------------------	----

INTRODUÇÃO

O tema do aquecimento global tem se tornado cada vez mais importante nas últimas décadas e tem causado preocupação em vários setores, desde a comunidade científica até a população em geral. O aumento gradual das temperaturas médias do planeta é o que caracteriza esse fenômeno e acredita-se que o aumento das emissões de gases de efeito estufa causadas pelas atividades humanas, como a queima de combustíveis fósseis, desmatamento e práticas agrícolas intensivas. O aquecimento global tem o potencial de causar mudanças significativas no clima, afetando a frequência e a intensidade de eventos climáticos extremos como ondas de calor, secas e tempestades.

Bauru, uma cidade no interior do estado de São Paulo, tem um clima subtropical úmido. Os verões são quentes e chuvosos, enquanto os invernos são mais secos e de temperaturas moderadas. Para entender os impactos locais e globais das mudanças climáticas, é essencial estudar as mudanças climáticas que ocorreram em Bauru nos últimos vinte anos. A cidade tem visto mudanças nos padrões de temperatura e precipitação nos últimos anos, que podem ser atribuídas ao aquecimento

O objetivo desta pesquisa é investigar os dados meteorológicos de Bauru dos últimos vinte anos com o objetivo de identificar tendências e mudanças no clima. O objetivo é determinar se existe uma conexão entre o aquecimento global e essas variações climáticas locais. A temperatura média anual de Bauru aumentou significativamente? O padrão de precipitação evoluiu ao longo dos últimos vinte anos? Quais são as possíveis repercussões dessas mudanças para a cidade e seus habitantes? Este estudo tem como objetivo não apenas identificar e analisar as mudanças climáticas em Bauru, mas também aumentar a conscientização sobre a importância de ações para mitigação e adaptação às mudanças climáticas. É fundamental entender como o aquecimento global afeta cidades como Bauru, particularmente, para desenvolver políticas públicas mais eficazes e estratégias sustentáveis que minimizem sociais ambientais os impactos е dessas mudanças.

GLOSSÁRIO

- 1. Aquecimento Global: Aumento gradual da temperatura média da Terra, geralmente atribuído ao aumento das emissões de gases do efeito estufa por atividades humanas, como a queima de combustíveis fósseis.
- 2. Análise de Dados: Processo de examinar, limpar e modelar dados com o objetivo de descobrir informações úteis, chegando a conclusões informadas e ajudando na tomada de decisões.
- 3. Análise Exploratória de Dados (EDA): Conjunto de técnicas usadas para resumir e visualizar as principais características de um conjunto de dados, frequentemente utilizando gráficos e estatísticas descritivas.
- 4. Banco de Dados Meteorológicos: Coleção organizada de dados meteorológicos, que podem incluir informações sobre temperatura, umidade, precipitação e vento, entre outras variáveis climáticas.
- 5. Correlação: Medida estatística que indica a relação entre duas variáveis. No contexto do estudo, poderia indicar como o aumento da temperatura se relaciona com outros fatores climáticos.
- 6. Desvio Padrão: Medida de dispersão que mostra o quanto os valores de um conjunto de dados variam em relação à média. Um desvio padrão alto significa que os dados estão mais espalhados, enquanto um desvio padrão baixo significa que estão mais próximos da média.
- 7. Gráficos de Correlação: Ferramentas visuais usadas para identificar relações entre variáveis, frequentemente utilizadas para visualizar como duas variáveis se comportam juntas.
- 8. Histogramas: Gráficos que mostram a distribuição de um conjunto de dados. Eles são úteis para entender a frequência com que certos valores ocorrem dentro de um intervalo específico.
- 9. INMET (Instituto Nacional de Meteorologia): Órgão brasileiro responsável pela coleta, análise e divulgação de dados meteorológicos e climáticos em todo o país.
- 10. Medidas de Dispersão: Indicadores que mostram a variabilidade dos dados. As mais comuns incluem o desvio padrão e a amplitude.

- 11. Metadados: Informações que descrevem outros dados. No contexto do projeto, metadados referem-se a informações sobre o conjunto de dados meteorológicos, como sua origem, frequência de coleta e descrição das variáveis.
- 12. Modelagem Preditiva: Uso de modelos matemáticos e estatísticos para prever tendências futuras com base em dados históricos.
- 13. Outliers: Valores extremos que se desviam significativamente do restante dos dados. Esses valores podem indicar erros ou eventos incomuns.
- 14. Precipitação: Quantidade de água, em forma de chuva, neve, granizo ou orvalho, que cai sobre uma determinada área em um período de tempo específico.
- 15. Regressão: Técnica estatística usada para modelar e analisar a relação entre uma variável dependente e uma ou mais variáveis independentes.
- 16. Tendências Climáticas: Padrões de mudança em variáveis climáticas, como temperatura e precipitação, observadas ao longo do tempo.

1.1 Contexto do Estudo

A mudança climática é um fenômeno global que afeta diversas regiões. Este estudo se concentra na cidade de Bauru, analisando dados climáticos dos últimos 20 anos, disponibilizados de forma pública pelo Instituto Nacional de Meteorologia – INMET –, para identificar tendências relacionadas ao aquecimento global.

1.2 Objetivo do Projeto

O objetivo principal é avaliar as mudanças de temperatura e as transformações climáticas ao longo dos anos na cidade de Bauru/SP, identificando possíveis impactos do aquecimento global.

1.3 Apresentação da Empresa

O INMET é um órgão do Ministério da Agricultura e Pecuária, e foi criado pelo Decreto 7.672/1909, com o nome de Diretoria de Meteorologia e Astronomia, vinculado ao Ministério da Agricultura, Indústria e Comércio, sendo que ao longo de sua existência, o Instituto passou por diversas nomenclaturas até chegar a Instituto Nacional de Meteorologia, com a vigência da Lei 8.490/1992.

A sua missão é "agregar valor à produção no Brasil por meio de informações meteorológicas. Esta missão é alcançada por meio de monitoramento, análise e previsão de tempo e de clima, que se fundamentam em pesquisa aplicada, trabalho em parceria e compartilhamento do conhecimento, com ênfase em resultados práticos e confiáveis"¹.

Além disso, o Instituto representa o Brasil junto à Organização Meteorológica Mundial (OMM) e é responsável pelo trânsito das mensagens coletadas pela rede de observação meteorológica da América do Sul e os demais centros meteorológicos que compõem o Sistema de Vigilância Meteorológica Mundial.

Sobre as suas responsabilidades está a elaboração e divulgação diária de previsões do tempo, avisos e boletins meteorológicos, além de realizar estudos aplicados à agricultura e outras atividades. O órgão também coordena programas de pesquisas

_

¹ Disponível em: https://portal.inmet.gov.br/sobre Visitado em 27/09/2024.

sobre mudanças climáticas e ambientais, opera redes de observação meteorológica, e promove capacitação técnica.

As suas iniciativas em Ciência de Dados são amplas dentro do escopo do órgão, e vão desde a criação de modelos físico-matemáticos processados em supercomputadores até a obtenção de imagens por satélites para aparatar a previsão e monitoramento do clima.

Com relação ao seu banco de dados, o órgão digitalizou dados coletados desde 1961 e está em andamento um projeto para recuperar cerca de 12 milhões de documentos históricos sobre o clima, incluindo registros desde o período do Império (antes de 1900).

1.4 Problema de Pesquisa

A presente pesquisa abordará a análise exploratória dos dados meteorológicos da cidade de Bauru/SP ao longo dos últimos 20 anos, com o objetivo de investigar o impacto das variações climáticas nessa cidade

Esse estudo regionalizado permitirá o entendimento desses dados para essa microrregião e talvez possibilite a obtenção de *insights* sobre correlações com o aquecimento global.

Utilizando dados meteorológicos, como temperatura média, máxima, mínima, umidade e precipitação, pretendemos identificar padrões ou tendências de aumento ou diminuição das temperaturas que possam estar relacionados ao fenômeno citado.

Decomporemos o problema em análises univariadas daquelas variáveis disponibilizadas pelo INMET, utilizando medidas de posição e de dispersão para uma melhor identificação do problema aqui delimitado.

A utilização de correlação entre as variáveis não está descartada, o que inclusive cremos ser necessária para a obtenção de um modelo preditivo ao final do projeto, caso seja possível o alcançar.

1.5 Proposta de Desenvolvimento e Pipeline

1.5.1. Proposta de Desenvolvimento

A proposta do projeto é o desenvolvimento de um modelo preditivo climático para a cidade de Bauru/SP, amparado pela análise exploratória dos dados climáticos disponibilizados de forma pública pelo INMET para os últimos 20 anos.

1.5.2 Pipeline

Pipeline de Dados para Análise Climática (Bauru)

- 1. Coleta de Dados:
 - 1.1. Fonte: INMET (Instituto Nacional de Meteorologia).
 - 1.2. Tipo de dados: Temperatura, precipitação, umidade, e vento da cidade de Bauru, de 2004 a 2024.
 - 1.3. Formato: Arquivo CSV.
- 2. Pré-processamento:
 - 2.1. Limpeza de Dados:
 - 2.1.1. Remoção de valores ausentes ou anômalos.
 - 2.1.2. Tratamento de unidades de medida, se necessário.
 - 2.2. Normalização: Garantir que os dados estejam no mesmo intervalo de variação para futuras análises.
 - 2.3. Transformações temporais: Organizar os dados por períodos diários, mensais ou anuais para análise.
- 3. Análise Exploratória de Dados (EDA):
 - 3.1. Estatísticas Descritivas: Cálculo de média, mediana, desvio padrão para temperatura, precipitação e outras variáveis.
 - 3.2. Gráficos:
 - 3.2.1. Histogramas de distribuição das variáveis climáticas.
 - 3.2.2. Gráficos de linhas para visualizar mudanças ao longo do tempo.
 - 3.3. Detecção de Outliers: Identificar valores fora do padrão, como temperaturas extremas.
- 4. Modelagem:
 - 4.1. Análise Temporal: Análise de tendência das variáveis ao longo dos anos.
 - 4.2. Identificação de Padrões: Observação de mudanças significativas na temperatura ou na precipitação ao longo do tempo.
 - 4.3. Possíveis Modelos Preditivos: Testes com modelos simples para prever mudanças futuras (opcional).
- 5. Validação dos Resultados:
 - 5.1. Interpretação dos Dados: Verificar se os resultados fazem sentido, comparando com fenômenos conhecidos como o aquecimento global.

- 5.2. Ajustes no Modelo: Ajustar o processo de modelagem, se necessário, e retestar.
- 6. Apresentação de Resultados:
 - 6.1. Relatório Final: Apresentação de gráficos e conclusões sobre a análise das variáveis.
 - 6.2. Insights: Exemplos como "tendência de aumento da temperatura média nos últimos 10 anos", ou "alteração na precipitação anual".

2. Apresentação dos Dados (Metadados)

Os dados foram obtidos do Banco de Dados Meteorológicos do INMET e incluem informações sobre precipitação, pressão atmosférica, temperatura, umidade relativa, e vento, coletados entre 01/01/2004 e 01/01/2024.

2.1 Tipo de Arquivo

Arquivo Comma-separated values (csv)

2.2. Origem dos dados

https://bdmep.inmet.gov.br/

2.3 Sensibilidade

Dados não são sensíveis

2.4 Validade

Dados gerados a cada hora do dia, de forma automática pelas estações meteorológicas, e não perdem a sua validade

2.5 Proprietário dos dados

Dados públicos sob custódia do INMET

2.6 Informações adicionais

Verificamos que por vezes algumas medições não são realizadas, o que é retornado como nulos no dataset, possivelmente por conta de alguma indisponibilidade momentânea da estação meteorológica.

2.7 Restrições de uso

Sedm restrições de uso

2.8 Descrição dos atributos

1. Data

• Definição: Data da medição

• Tipo de dado: object (string)

2. Hora (UTC)

• Definição: Hora da medição em UTC

• Tipo de dado: int64 (inteiro)

3. Temp. Ins. (C)

Definição: Temperatura instantânea (Celsius)

- Tipo de dado: float64 (decimal)
- 4. Temp. Max. (C)
- Definição: Temperatura máxima (Celsius)
- Tipo de dado: float64 (decimal)
- 5. Temp. Min. (C)
- Definição: Temperatura mínima (Celsius)
- Tipo de dado: float64 (decimal)
- 6. Umi. Ins. (%)
- Definição: Umidade relativa instantânea (%)
- Tipo de dado: float64 (decimal)
- 7. Umi. Max. (%)
- Definição: Umidade relativa máxima (%)
- Tipo de dado: float64 (decimal)
- 8. Umi. Min. (%)
- Definição: Umidade relativa mínima (%)
- Tipo de dado: float64 (decimal)
- 9. Pto Orvalho Ins. (C)
- Definição: Ponto de orvalho instantâneo (Celsius)
- Tipo de dado: float64 (decimal)
- 10. Pto Orvalho Max. (C)
- Definição: Ponto de orvalho máximo (Celsius)
- Tipo de dado: float64 (decimal)
- 11. Pto Orvalho Min. (C)

- Definição: Ponto de orvalho mínimo (Celsius)
- Tipo de dado: float64 (decimal)
- 12. Pressao Ins. (hPa)
- Definição: Pressão atmosférica instantânea (hPa)
- Tipo de dado: float64 (decimal)
- 13. Pressao Max. (hPa)
- Definição: Pressão atmosférica máxima (hPa)
- Tipo de dado: float64 (decimal)
- 14. Pressao Min. (hPa)
- Definição: Pressão atmosférica mínima (hPa)
- Tipo de dado: float64 (decimal)
- 15. Vel. Vento (m/s)
- Definição: Velocidade do vento (m/s)
- Tipo de dado: float64 (decimal)
- 16. Dir. Vento (m/s)
- Definição: Direção do vento (graus)
- Tipo de dado: float64 (decimal)
- 17. Raj. Vento (m/s)
- Definição: Rajada máxima de vento (m/s)
- Tipo de dado: float64 (decimal)
- 18. Radiacao (KJ/m²)
- Definição: Radiação solar (KJ/m²)

• Tipo de dado: float64 (decimal)

19. Chuva (mm)

• Definição: Precipitação (mm)

• Tipo de dado: float64 (decimal)

3. Metodologia e Modelos Analíticos

3.1 Análise Exploratória de Dados

A análise exploratória de dados (EDA) tem como objetivo fornecer um entendimento

preliminar do conjunto de dados e identificar padrões, tendências e anomalias. A

seguir, apresentamos os principais resultados obtidos na análise exploratória dos

dados meteorológicos da cidade de Bauru entre 01/01/2004 e 01/01/2024.

Exemplares e Dimensões

O conjunto de dados contém 7579 exemplares (linhas), distribuídos ao longo de 18

atributos (colunas), que incluem variáveis climáticas diárias, como:

* Temperatura (Instantânea, Máxima, Mínima) em °C

* Umidade Relativa (Instantânea, Máxima, Mínima) em %

* Ponto de Orvalho (Instantâneo, Máximo, Mínimo) em °C

* Pressão Atmosférica (Instantânea, Máxima, Mínima) em hPa

* Velocidade e Direção do Vento, Rajada de Vento em m/s

* Radiação Global em KJ/m²

* Precipitação (Chuva) em mm

Medidas Estatísticas

A seguir, apresentamos as principais medidas estatísticas dos dados analisados, que

ajudam a entender a posição e a dispersão das variáveis.

Média (Valores médios dos atributos):

* Temperatura Instantânea: 21.9 °C

* Temperatura Máxima: 22.5 °C

* Temperatura Mínima: 21.2 °C

* Umidade Relativa Instantânea: 70.6%

* Ponto de Orvalho Instantâneo: 15.7 °C

- * Pressão Atmosférica Instantânea: 943.3 hPa
- * Velocidade do Vento: 1.3 m/s
- * Rajada de Vento: 4.4 m/s
- * Radiação Global: 1246.8 KJ/m²
- * Precipitação (Chuva): 0.1 mm

Mediana (Valores centrais dos atributos):

- * Temperatura Instantânea: 22.2 °C
- * Temperatura Máxima: 22.9 °C
- * Temperatura Mínima: 21.6 °C
- * Umidade Relativa Instantânea: 71.6%
- * Ponto de Orvalho Instantâneo: 16.2 °C
- * Pressão Atmosférica Instantânea: 943.0 hPa
- * Velocidade do Vento: 1.4 m/s
- * Rajada de Vento: 4.5 m/s
- * Radiação Global: 1288.0 KJ/m²
- * Precipitação (Chuva): 0.0 mm

Desvio-Padrão (Medida de dispersão dos atributos):

- * Temperatura Instantânea: 3.2 °C
- * Temperatura Máxima: 3.3 °C
- * Temperatura Mínima: 3.2 °C
- * Umidade Relativa Instantânea: 13.0%
- * Ponto de Orvalho Instantâneo: 4.0 °C
- * Pressão Atmosférica Instantânea: 3.3 hPa
- * Velocidade do Vento: 0.7 m/s
- * Rajada de Vento: 1.9 m/s
- * Radiação Global: 435.2 KJ/m²
- * Precipitação (Chuva): 0.4 mm

Primeiro Quartil (25% dos valores abaixo deste ponto):

* Temperatura Instantânea: 19.9 °C

* Temperatura Máxima: 20.5 °C

* Temperatura Mínima: 19.3 °C

* Umidade Relativa Instantânea: 62.4%

* Ponto de Orvalho Instantâneo: 12.8 °C

* Pressão Atmosférica Instantânea: 941.0 hPa

* Velocidade do Vento: 1.0 m/s

* Rajada de Vento: 3.6 m/s

* Radiação Global: 934.4 KJ/m²

* Precipitação (Chuva): 0.0 mm

Terceiro Quartil (75% dos valores abaixo deste ponto):

* Temperatura Instantânea: 24.0 °C

* Temperatura Máxima: 25.0 °C

* Temperatura Mínima: 23.0 °C

* Umidade Relativa Instantânea: 80.0%

* Ponto de Orvalho Instantâneo: 19.0 °C

* Pressão Atmosférica Instantânea: 946.0 hPa

* Velocidade do Vento: 2.0 m/s

* Rajada de Vento: 6.0 m/s

* Radiação Global: 1564.0 KJ/m²

* Precipitação (Chuva): 0.0 mm

Distribuição e Frequência

As variáveis meteorológicas analisadas mostram uma distribuição relativamente estável ao longo do período analisado, com flutuações esperadas, principalmente em relação à temperatura e umidade, que apresentam correlações inversas: um aumento da temperatura está associado à diminuição da umidade relativa.

Valores Perdidos ou Incorretos

Não foram encontrados valores ausentes ou incorretos no conjunto de dados, garantindo uma análise robusta e confiável.

Anomalias e Outliers

Alguns valores extremos de temperatura e precipitação foram identificados, possivelmente associados a eventos climáticos atípicos, como ondas de calor ou períodos de chuva intensa.

3.2 Tratamento dos Dados

Foi realizada a limpeza dos dados, removendo outliers e tratando valores ausentes para garantir a precisão das análises.

3.3 Modelagem Preditiva

Modelos de regressão e análise de clusters foram aplicados para prever tendências futuras.

4. Resultados e Discussão

4.1 Resultados dos Modelos

Os modelos preditivos indicaram uma tendência de aumento nas temperaturas médias ao longo dos anos.

4.2 Insights Extraídos

As análises sugerem que as mudanças sazonais e a frequência de eventos climáticos extremos têm aumentado, impactando significativamente a região.

5. Data Storytelling

1. Estruturação e Preparação dos Dados

Para facilitar a análise e visualização, os dados foram reordenados, renomeados e padronizados:

- Organização das Variáveis: Reorganizamos colunas e padronizamos os nomes para permitir uma análise direta das variáveis principais, como temperatura média, precipitação e radiação.
- Formatação de Datas: As datas foram convertidas para um formato consistente, essencial para a análise temporal e a modelagem.
- A organização dos dados estabeleceu uma base sólida, facilitando a interpretação e garantindo a qualidade das análises subsequentes.
- 2. Análise de Correlação e Interdependência entre Variáveis

Uma matriz de correlação foi usada para explorar as relações entre variáveis. Este passo revelou interdependências importantes que refletem padrões climáticos:

- Temperatura e Umidade: Uma correlação negativa sugere uma relação inversa significativa, onde dias mais quentes geralmente apresentam menor umidade, caracterizando um clima mais seco e quente.
- Radiação Solar e Temperatura: Uma forte correlação positiva indica que picos de temperatura estão associados a maior radiação solar, reforçando a influência do aquecimento global.

Essas correlações fornecem uma visão das interações climáticas locais, essenciais para futuras previsões e estratégias de mitigação.

3. Análise de Dispersões, Distribuições e Significância

Para entender a intensidade das relações entre variáveis, realizamos gráficos de dispersão com coeficientes de correlação (r) e valores de significância (p). Esses valores, exibidos nos gráficos de dispersão, indicam a força e a relevância estatística das relações observadas:

4. Avaliação dos Modelos de Regressão e Análise de Resíduos

Para entender a precisão dos modelos preditivos desenvolvidos, foi realizada uma avaliação dos resíduos do modelo de regressão múltipla, com foco em verificar o ajuste e a normalidade dos resíduos:

Histograma dos Resíduos: O histograma dos resíduos do modelo, com sobreposição de uma curva de distribuição normal, permite avaliar o ajuste do modelo e detectar possíveis desvios.

Valores de ajuste, como a média (mu) e o desvio padrão (sigma) dos resíduos, foram calculados para verificar se os resíduos seguem uma distribuição aproximadamente normal.

Resíduos vs Valores Ajustados: O gráfico de dispersão entre os resíduos e os valores ajustados, com transformação de Yeo-Johnson, identifica padrões e possíveis heterocedasticidades.

A linha horizontal em vermelho marca o ponto zero dos resíduos, permitindo avaliar se há uma distribuição aleatória ao redor do eixo. Essa distribuição é crucial para garantir que o modelo está capturando corretamente as tendências sem viés.

Essas análises confirmam que o clima de Bauru tem sofrido alterações consistentes com os efeitos do aquecimento global, incluindo um aumento de temperatura e variabilidade na precipitação e umidade. As correlações e distribuições observadas reforçam a interdependência entre variáveis climáticas, enquanto a avaliação dos resíduos garante a validade dos modelos preditivos desenvolvidos.

6. Conclusão

A análise climática dos últimos 20 anos em Bauru oferece uma visão clara dos impactos do aquecimento global em escala regional. As tendências de aumento nas temperaturas, combinadas com a variabilidade na precipitação e umidade, indicam mudanças significativas que afetam diretamente o ambiente urbano e a vida dos habitantes.

Através das correlações e dos modelos preditivos desenvolvidos, observamos padrões que alertam para um clima mais quente e seco, com eventos climáticos potencialmente mais extremos. Essas evidências reforçam a necessidade de políticas de adaptação e mitigação, como o fortalecimento da infraestrutura hídrica, o aumento de áreas verdes e o desenvolvimento de estratégias urbanas que promovam o conforto térmico e a sustentabilidade.

Esse estudo serve como uma base sólida para decisões futuras, enfatizando a importância do planejamento urbano orientado por dados e da adoção de práticas resilientes para enfrentar os desafios impostos pelo aquecimento global. A análise realizada não só contribui para a compreensão do clima atual de Bauru, mas também orienta ações preventivas que podem minimizar os impactos das mudanças climáticas na cidade e nas gerações futuras.

7. Referências

Banco de Dados Meteorológicos do INMET (2004-2024)

Documentação das Bibliotecas Utilizadas

8. Cronograma

Encontro síncrono: 20/08/2024

Criação da primeira versão do documento: 22/08/2024 – 29/08/2024

Entrega A1 Aplicando Conhecimento: 02/09/2024

Encontro síncrono 2: 03/09/2024

Exploração dos dados: 05/09/2024 – 12/09/2024

Coleta e limpeza dos dados: 12/09/2024 – 26/09/2024

Encontro síncrono 3: 17/09/2024

Criação dos metadados do projeto: 27/09/2024 – 29/09/2024

Entrega A2 Aplicando Conhecimento: 30/09/2024

Encontro síncrono 4: 01/10/2024

Modelagem e predição: 02/10/2024 – 27/10/2024

Encontro síncrono 5: 22/10/2024

Entrega A3 Aplicando Conhecimento: 28/10/2024

Encontro síncrono 6: 29/10/2024

Criação da versão final do documento: 30/10/2024 – 24/10/2024

Entrega A4 Aplicando Conhecimento: 25/11/2024

9. Anexos

	(mm)	Radiacao (KJ/m²)	Vel. Vento (m/s)	Dir. Vento (m/s)	Raj. Vento (m/s)	Temp Media (C)	Umi Media (%)	Pressao Media (hPa)
count	6926.000000	6926.000000	6926.000000	6926.000000	6926.000000	6926.000000	6926.000000	6926.000000
mean	3.219463	1248.225152	1.338406	163.508013	4.448094	21.900606	70.441886	943.257696
std	9.169697	433.790028	0.657810	62.211395	1.850983	3.242254	12.940920	3.265015
min	0.000000	3.000000	0.000000	39.400000	0.000000	8.600000	23.800000	932.200000
25%	0.000000	936.650000	1.000000	114.800000	3.600000	19.900000	62.400000	941.000000
50%	0.000000	1288.900000	1.400000	145.100000	4.500000	22.200000	71.500000	943.000000
75%	0.800000	1564.850000	1.800000	208.000000	5.500000	24.100000	79.675000	945.500000
max	134.400000	3141.400000	3.500000	350.300000	11.800000	32.100000	100.000000	954.500000

	Temp_Media	Precipitacao	Radiacao	Vel_Vento	Dir_Vento	Raj_Vento	Umi_Media	Pressao_Media
Temp_Media	11-1		***	余余余	***	余余余	***	索索索
Precipitacao	-0.01183	-	***				***	***
Radiacao	0.439736	-0.297187	-	安安安	***	余余余	余余余	安全会
Vel_Vento	-0.098417	-0.009928	0.060068	-	**	***	***	***
Dir_Vento	0.093579	0.004382	-0.075096	0.02672	0.50	***	**	***
Raj_Vento	-0.057034	0.011203	0.054289	0.9089	0.140974	_		***
Umi_Media	-0.272668	0.394313	-0.474214	-0.055966	-0.024308	0.005949	2	***
Pressao_Media	-0.57979	-0.249495	-0.162823	0.071547	-0.06613	0.037883	-0.171446	-
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	f = -0.012 g = 0.325 g = 0.325 g = 0.000 f = -0.000 g = 0.000 g = 0.000 g = 0.000 g = 0.000 g = 0.000 g = 0.000	5-1800	F - 0.000		0.073 0.073 0.073 0.000	1 - 0.000 1 - 0.000 1 - 0.000 1 - 0.000 1 - 0.000	p = 0.000 p = 0.000 p = 0.000	15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 100 100 100 100 100 100 100 100 100 10	p = 0.149 p = 0.00 p = 0.00 25 0 0 00 10 10	0.314 0.325 0.	0 3500 Well Works		0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	A STATE OF THE STA	p = 0.000	9 400 9 4 500 00 502 503 503 503 503

Tier

10. Link para o Repositório no GitHub https://github.com/galvaodeoliveirab/projeto_aplicado_1 https://portal.inmet.gov.br/