Aminopyrimidine derivatives, process for their preparation, agent containing them and their use as fungicides.

Publication number:	: P0407898 (A2)	Also published as:
Publication date:	1991-01-16	TI EP0407899 (A3)
Inventor(s):	GIENCKE WOLFGANG DR [DE]; SACHSE BURKHARD DR [DE]; WICKE HEINRICH DR [DE] +	EP0407899 (B1)
Applicant(s):	HOECHST AG [DE] +	DE3922735 (A1)
Classification:		US5250530 (A)
- internetional:	A01N43/54; C07D401/04; C07D401/14; A01N43/48; C07D401/00; (IPC1-7); A01N43/54; C07D401/04; C07D401/14	more >>
- European:	A01N43/54; C07D401/04; C07D401/14	
Application numbers	EP19900112903 19900706	Cited documents:
Priority number(s):	DE19893922735 19890711	US4109092 (A)

Abstract of EP 0407899 (A2)

Concounts of the formula I to which Ect-is IH, alley, alternyally, skylythically, Cyclosity, alternyl, silknyl, sylchesity, stachtural emin-solid prienty, inprevailable, phenographyl, phenographyl,

Data supplied from the espacenet database - Worldwide

EUROPÄISCHE PATENTANMELDUNG

Anmetgenummer: 90112903.1

@ Int. CL* C07D 401/04. A01N 43/54. C07D 401/14

Anmeldetag: 06.07.90

(6) Priorität: 11.07.89 DE 3922735

(a) Veröffentlichungstag der Anmaldung: 16.01,91 Patentblatt 91/03

(%) Beneante Vertragsstaaten: AT CHIDE ES FRIGIS GRITTU

(ii) Anmelder: HOECHST AKTIENGESELLSCHAFT Poetfech 60 03 20 D-6230 Frankfurt am Main 80(DE)

(a) Erlinder: Glencke, Wolfgang, Dr. Am Steinberg 45

D-6238 Hotheim am Taunus(DE) Frincion Sachse, Burkhard, Dr. An der Ziegelei 30

D-8233 Kelkheim (Taunus)(DE)

Erlinder Wicke, Heinrich, Dr. Schilleratrasse 3

D-6239 Eppstein/Taunus(DE)

- Aminopyrimidin-Derivate, Verlahren zu ihrer Herstellung, sie enthallende Mittel und ihre Verwendung als Fungizide.
- (ii) Verbindungen der Formel !

(1).

worin

81 × H. Alkyl, Alkoxvalkvi, Alkylthicalkyi, Cycloalkyl, Alkonyl, Alkinyl, Cycloalkylalkyl, subst. Amino-alkyl Phenyl, Phenylalkyl, Phenoxyalkyl, Phenylmercaptealkyl, Phenoxyphenoxyalkyl, wobel diese Reste Im Phenyltell substituiert sein können,

R2, R3, R4 = unabhlängig vonelnander H, Alkyl oder Phenyl, das substitulert sein kann.

R5 = H, Alkyl. Cycloalkyl, Cycloalkylalkyl, Haloalkyl, Alkoxy, Alkylthio, Alkoxyalkyl, sinen Rest R7R8N-, Alkvithicalkyl, R²R³N-alkyl, Halogen, Alkenyl, Alkinyl, Phenyl, Phenoxy, Phenylalkyl, Phenoxyalkyl, Phenylmercaptoalkyl, Phenylmercapto, Phenylaikoxy oder Phenylaikylthio, wobel diese Reste im Phenylteil substituiert sein

R⁶ = H. Alkyl, Alkyloxy, Alkenyloxy, Alkinyloxy. Alkylthio, Halogen oder Phenyl, das substitutert sein kann, oder R^c und R^c bilden zusammen eine Polymethylenkette und

Ry und Re = unabhängig voneinander H, Alkyl, Alkoxyalkyl, Hydroxyalkyl, Alkylthloalkyl, Alkenyl, substitutertes Aminoaikyi, Alkinyi, Cycloalkyi, Cycloalkytalkyi, welche im Cycloalkyteil substitutert sein können, Formyi, Phenyt oder Phenylakyi, die im Phenylleil substituiert sein können, oder R², R³ bilden zusammen mit dem Stickstoffstom einen unsubstitulerten oder substitularten 5- bis 7-gliedrigen gesättigten oder ungesättigten Hotarocyclus mit 1 bis 3 gleichen oder verschiedenen Heteratomen, bedeuten sowie deren Säureadditionssalze besitzen vorteithafte fungizide Eigenschaften.

AMINOPYRIMIDIN-DERIVATE, VERFAHREN ZU IHRER HERSTELLUNG, SIE ENTHALTENDE MITTEL UND HARF VERWENDUNG ALS FLINGIZIDE

Die vorliegence Erfindung betrifft neue Aminopynimidin-Derlvate, Verlahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Fungizide.

Pyrtinklin-Derivata eind bereits als wirkssens Komponenten in funglichten Mitteln bekannt (vgl. EP-A-270 32. EP-A-299 139, EP-A 234 109-). Die Wirkung diteser Pyrtinciin-Derivate ist jedoch insibesondere bei se niedtigen Aufwanderungen nicht immer befreiteigend.

Es wurden naue Pyrimidin-Derivate gefunden, die vorteilhafte Wirkungen bei der Bekämelung eines breiten Spektrums phytopathogener Plize insbesondere bei niedrigen Dosierungen aufweisen.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der Formel I

worin

28 R1 = Wasserstoff, (Cr-Cs)Alkyl, (Cr-Cs)Alkozy-(Cr-Cs)alkyl, (Cc-Cs)Alkozy-(Cr-Cs)alkyl, (Cs-Cs)Alkozy, (C

(G1-C4) planty, (G1-C4) planty, (G1-C4) planty, (G1-C4) planty, (G1-C4) planty, wobsi dar Phonyivest bis zu dreiffach durch Haliogen, Mitro, Cyano, (G1-C4) planty, (G1-C4) pl

(C,-C,)Haloalkovy substitulert sain kann. R[±] = Wasserscioff, (C₁-C,)Alsyl, (C₂-C)*Cycloalkyl, (C₂-C)*Cycloalkyl+(C₁-C₄)alkyl, wobel die belden letztgenannten Reste im Cycloalkylfeli ble zu creifech durch (C₁-C₄)Alkyl substitutiert sein können, (C₁-C₄)-Haloakyl, (C₁-C₄)Alkyl, eine Gruppe R*PRN-(C₁-C₄)Alkyl, eine Gruppe R*PRN-(C₁-C₄)-Alkylthio-(C₁-C₄)alkyl, eine Gruppe R*PRN-(C₁-C₄)Alkyl, Hopeon, (C₃-C₄)Alkyn, (D₁-C₄)Alkyl, Phenory-(C₁-C₄)Alkyl, Ph

Phenovy, Phenyl(C₁-C₁)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl35 (G.-C₄)alkxyl yoder Phenyl-(G.-C₄)alkylthio, wobel die acht letztgerannten Reste im Phenylfiell bis zu dreifach durch Halcgen, Nitro, Cyarro. (C₁-C₄)Alkyl, (G.-C₄)Alkyl, (G.-C₄)Alkylthio, (G.-C₄)Alkylthio, (G.-C₄)Alkylthio, (G.-C₄)Alkylthio (G.-C₄

p6 = Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoy, (C₂-C₅)Alkenyloxy, (C₂-C₅)Akinyloxy, (C₁-C₄)Akinyloxy, (C₁-C₄)Akinyloxy, (C₁-C₄)Akinyloxy, (C₁-C₄)Akinyloxy, (C₁-C₄)Akinyloxy, (C₁-C₄)Akinylox, (C₁-C₄

RE und Rt bliden zusammen eine Polymethylenkette der Formel - (Cht.)_e- mit m = 3 - 4 und R7. R* = unsättlingig voneihenden Wässenstrük, (G.-C-),Alley, (G.-C-),Alley, (P.-C-),Alley, (G.-C-),Alley, (G.

oder beide Reste R², R² stehen zusammen mit dem Stöckstoffatom, än das sie gebunden sind, für einen unsubsflutierten oder bis zu vierfach substituerten 5- bis 7-gledrifigen, gesätignen oder ungesätigden steherocycles mit 1 bis 3 gleichen oder verschiedenen Heterostoman, vorzugsweise mit den Heterostomen Stöckstoff, Saueströff unründer Schwiefel und dem Substituerten (Cr-C-) Allkyt).

 $R^2, R^{10} = unabhängig voneinander Wasserstoff, (C_1-C_6)Alkyl, (C_3-C_6)Alkenyl, (C_3-C_6)Alkinyl, (C_3-C_7)-Cycloalkyl, (C_3-C_7)Cycloalkyl-(C_1-C_4)elkyl, wobei die beiden letztgenannten Reste im. Gycloalkyl-teil bis zu$

EP 0 407 899 A2

dneiflach durch (G.-C.)Alkyl substitutud sein können; Formyl, Phenyl; Phenyl(G.-C.)alkyl, wobel die beliden Hattgeneniten Reite im Phenylteit bis zu prelität hunch Haldgen, Nitro, Oyano, (G.-C.)Alkyl, (C.-C.)-Alkoy, (C.-C.)Alkylthic, (G.-C.)Haldelkowy substitutier sein können;

oder beide Reste R³, R¹⁰ stohen zusemmen mit dem Stickstoffelom, an das eis gebunden ehnt, für einen umsüberlicheten oder bis zu wiertem süberbüreten 5- bis 7-glieddigen, gestänigten oder ungestätigten Heterocyclus mit 1 bis 3 gliebben oder verschleidenen Heterocyclung, worzugsweise mit den Heterockomen Stickstoff, Sauerstoff undioder Schwelet und dem Substitueren (Gr-GLARkyt; bedeuten, sowie denn Stureadführensetzie.

Bevorzugt unter den Verbindungen der Formal I sind selche, worin

R' = Wasserstoff, (C:-C₆)Alkyl, Phenyi, Phonyi-(C:-C₆)alkyl, Phenoxy-(Phonoxy-(C:-C₆)alkyl, wobel die ver leizbenannten Roste im Phenory-(Rib b) zu dreiffach durch Halogen oder (C:-C₄)Alkyl suitstituter sein könner. (C:-C₄)Alkyor, (C:-C₂)alkyl,

20 R², R³ = unabhängig voneinander Wasserstoff, (Ci-C₂)Alkyl, Phenyl, wobei der Phonyfrest bis zu dreiflach dutch Haiogen oder (Ci-C₂)Alkyl substitutiert sein kann,

R4 = Wasserstoff,

R^S = Wasserstoff, (C₁-C₂)Alkyl, (C₂-C₃)Cyclosklyl, (C₃-C₃)Cyclosklyl-(G₁-C₃)alkyl, Halogen. Phanyl, Phenyl-(C₁-C₂)alkyl, wobol de badan letztgerannten Reste in Phenytiet unsubstituiert oder bis zu dreiflach durch Halogen, (C₂-C₃)alkyl oder (C₁-C₃)alkkovg substituiert sein k\u00dchren (C₂-C₃)alkyl oder (C₁-C₃)alkkovg substituiert sein k\u00fchren (C₁-C₃)alkyl oder (C₁-C₃)alkovg substituiert sein k\u00fchren (C₁-C₃)alkyl oder (C₁-C₃)alkyl oder (C₂-C₃)alkyl oder (C₃-C₃)alkyl oder (C₁-C₃)alkyl oder (C₁-C₃)alkyl oder (C₂-C₃)alkyl oder (C₃-C₃)alkyl oder (C

Bi = Wasserstoff, (C1-G2)Alkvi, Halogen, Phenyl, (G1-G3)Alkoxy odor

RF und RF bilden zusammen eine Polymethylankette der Formet -(CH2)m- mit m = 3 - 4 und

R⁷ und R⁹ unathřängig voneinander Wasserstoff, (C-C₂)Alkyl, (C-C₂)Alkovy-(G-C₂)-Alloyl, Hydroxy-(C₂-C₂)-Alloyl, (G-C₂)Alkyl, (G-C₂)Alkyl, (G-C₂)Alkyl, (G-C₂)Alkyl, (G-C₂)Alkyl, (G-C₂)Alkyl, (G-C₂)Alkyl, (G-C₂)-Ge-C₂-Ge-C₂)-Gyclasigy, (G-C₂)-Gyclasigy, (G-C₂)-Gyclasigy, (G-C₂)-Gyclasigy, (G-C₂)-Alkyl, substitutert sein können; Formyl, Phenyl, Phenyl-(G-C₂)-Bikyl, wobel die beiden letzigenentnen Restet im Phenyl-(G-C₂)-Alkyl, (G-C₂)-Alkovy, Trifluormehity doer Trifluormehity der Trifluormehity

oder

35 beide Reste R?, R^o siehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder ble zu zweifach substituierten 5- ble 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gliedren oder verschiedenen Heterostomen, vorzugsweise mit den Heterostomen Stickstoff und/oder Sauerstoff und dem Dubstituenten (G--C2)Alkyl.

R¹⁰ = unachängig voreinander Wasserstoff, (Ci-C₄)Alikyt, (Cg-C₅)Alkenyt, (Cg-C₅)Alkenyt, (Cg-C₇)Alkenyt, (Cg-C₇)Alkenyt, (Cg-C₇)Alkenyt, (Cg-C₇)Alkenyt, (Cg-C₇)Alkenyt, (Cg-C₇)Alkenytheli bis zu dreiliach durch (Cg-C₇)Alkeryt subditibilist sein Kinnen; Formy, (Fhenyt, Phenyt)Cg-C₇)alkelyt, votei die beiden letzigerenten Rests im Phenytheli bis zu dreifach durch Halogen, Nitre. Oyano, (Gr-Ca)Alkyt, (Cg-Ca)Alkyt, (Cg-Ca)A

oder beide Resse R*, R* stehen zusammen mit dem Stockponstom, an des sie geunden statut, die eine unschstellungen oder bis zu wierfach süberbüllerigen 5- bis "Pijledirigen, gesättligten oder ungesättligfen Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heitgrostomen, vorzugsweise mit den Heterociomen Stekstoff, Sauerstoff undider Schwafel und dem Substituenten (C+-CL)Alkyl; bedauten, sowie deren Sätzunadführensteitze.

Zur Hersteilung der Säureadditionssalze der Verbindungen der Formel I könnnan forgetete Säuren in
5 Frage: Helogen/wasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäuren, konner Phosphosäure. Salpdersäure. Schweristiskure, more oder blitmiktionelle Carbonsäuren und Hydrowycarbonsäuren wie Essigsäure, Maleinsäure, Bemateinsäure, Fumareäure, Weinsäure, Cibronaedaure, Selloysäure, Schörtsäure oder Milchasaure sowie Sultonsäuren wie G-Tolubusitionsäure oder 1,5-Nephthalpridautfonsäure. Die Säureaddrinnssalze der Vorbindungen der Formel I kännen in enlachter Weiser mach üblichen Satzhlöllungsmäthoden. z. B. durch Lösen einer Verbindung der Formel I in einem geeigneten organischen Lösemittel und Hitzufügen der Säure erhelten werden und in bekannter Weise, z. B. durch Abfiltieren, isoliert und gegebenenfalls durch Wasschein mit einem Irderten organischen Lüsemittel gereinigt werden.

Gegenstand der vorflegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindungen der

Formel I, dadurch gekennzeichnet, das man eine Verbindung der Formel II in Gegenwart einer Base mit einer Verbindung der Formel III umsetzt.

Die Substitueren R¹ bis R³ haben dabei die Bedeutungen wie in dar Formei I. X steht für Halogen. Halogen bedeutet Fluor, Chlor, Brom oder Jod, Insbesondere Chlor oder Brom.

Die Umsetzung der Verbindungen II mit BI orfolgt vorzugsweise in Inerten aprotischen Lösungsmittelt wez z. B. Accelantifü, Dichtomerten, Toluci Xylof, Teratylorderan, Divan, Dalagkylater wie Gehrhysinghylocidalityiether, Insbesondere Diehylonglykoldelthylether, oder DMF bei Temperaturen zwischen -10 °C und der Siedetemporatur des Lösungsmittels. Als Basen eigene sich nie für diesem Renktörzehy Dibhaydroof-basen bei Bestellenbergen Schonzela und Hydrogenardbondels von Alksit-und Erdesfellmatellan, Alksfilhydroof-de, Alksfallakloholate wie K-tent-butylat, tert-Amme, Pyridin oder substitutiere Pyridinbasen (z. S. 4-Dimetty-iaminopyridini).

Auch ein zweites Äquivalent der Verbindungen der aligemeinen Formel III kann die Funktion der Basa übernehmen.

Die Verbindungen der Forme! II k\u00e4nnen nach bekannten Verfahren hergestellt werden (vgl. EP-4-254 f. 104, EP-4-259 139, EP-4-270 362, J. Org. Chem. 32, 1591, (1967)). Die Verbindungen der Forme! III sind bekannt und bieht zugänglich (Houben-Woyl, Methoden der Org. Chemie, Banc XIVI).

Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, bespielsweise als Holzschutzmittelt, als Konsanvierungsmittel in Anstrichtenben, in Kühlschmiermitteln für die Mestilbezrbeitung oder als Konsenvierungsmittel in Schri-und Schneidblien.

Gegenstand der Erfindung sind auch Mittel, die die Verbindungen der Formel I neben geeignsten Formularungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel I im allgemeinen zu 1 bis 95 Gawi-

Sie können auf verschiedene Art formuliert worden, ib nachdem wite as durch die blologischen undloder ich mischphysikalischen Paremoter vongsgeben ist. Als Formulierungsmöglichsiehe kommen daher in Frago: Spirtzuher (WP), emulgierbare Konzentrate (EC), währige Lösungen (BC), Emulsionen, versprühture Lösungen, Dispersionen auf ÖH oder Wasserbasis (SC), Suspoemulsionen (SC), Släubemittel (DP), Seizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzuge- und Adsorptionergerantelaten, wasserdispergierbare Granulate (VR), ULV-Formulierungen, Mikroapsen, Wasserbe oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben

III.
Winnacker-Küchler, "Chiemische Technologie", Band 7, C-Hauser Verlag München, 4. Aufl. 1896: van Falkenberg, "Pesticidise Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Hendbock," 2ft 2d. 1979. G. goodwin Lid. London.

Die norwondigen Formuliarungskilfamittel wie inertmateriallen, Tenetile, Lösungsmittel unt weitere Zusatstudie alnd ebentalis beischant und werden belspieleweise beschrieben in: Wattiens, "Handbook of insectidied Dust Ditientis and Carriers", 2nd Ed., Darland Books, Caldwell NJJ; Hx/Ophen, "introduction to Cary Colled Chemistry", "2nd Ed., J. Villey & Sons, NX.; Marschen, "Solvents Guide", 2nd Ed., Interschen, Co., NX, 1950; McDurpheory, "Detergents end Emulsifiers Annual," MC Publ. Corn, Riddewood NJ, Stelev and Wood, "Encyclopedis of Surface Active Agents", Chem. Publi. Co. Inc., N.Y. 1984; Schönfelst, "Grenzlächensktvo Äthyenoxidaddukte", Wrst. Verlagsgesett, Stuttgan 1970; Winnacker-Küchler, "Chemische Technologie", Baud 7, C. Heuser Verlag München, 4. Aull. 1989.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pesticht wirksamen 5 Stoffen, Düngemitteln und/oder Wachstamstrugulatoren heiststillen, z.B. in Form einer Fertigformulierung oder als Parkmitk.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirksteff aufler einem Verdürnungs-oder Inertsetif noch Netzmitria, z.B. polyosattrylarete Alkriphenosio, polyosattrylarete Alkriphenosione Syklypheno-suldrasse und Dispergiermitel, z.B. lightigerbenautere Netzmitri, z.2 – diraphithytmetitien-6,6 -dispuloneaures Natrium, diturylaphithatin-sulfonsaures Natrium anthalian. Emulgiarbare Konzontrate werden durch Auffben des Wirksfotfes in einem organischen Lösungsmittel, z.B. Butanol, Oylolbasanon, Direithyttermarrid, Xylol oder auch höhersisderden Arçmaten oder Kohlenmasserstoffen unter Zusatz von einem oder mehrene Emulgatoren hergaeteltt. Als Emulgatoren können beigseteltt. Als Emulgatoren Fatte können beigseteltt. Als Emulgatoren Fatte können beigseteltt. Als Emulgatoren Fatte Konnen beigseteltt. Als Emulgatoren Fatte können beigseteltt. Als Emulgatoren Fatte können beigseteltt. Als Emulgatoren Fatte Konnen bei Proteither Satzen bei der Proteithyeltspritzen bei Proteithyeltspritzen bei der Polyosethylensorbisieren.

Stäubemitel erhält man durch Vernablen des Wirksteffes mit tein variellten fessen Steffen, z.B. Talkum, nattifüchen Tonen wie Kaplin, Benonit, Poryphillit oder Distameanerde, Granulates Können entwester durch 20 Verdiben des Virkstoffes auf alseopfensfähiges, granulatets Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebernitieth. z.B. Polyhriytalschol, polyecytjasuren Natifum oder auch Mineratifien, auf de Oberlitäche von Trägerstoffen der Sand, fachstellt oder von geranitiertem Inertmaterial. Auch können geougnete Wirkstoffe in der für die Herstellung von Düngermiteigranulation täblichen Weise – geeringenhandlis in Mischonung mit Düngermitein - granulative werden.

28 In Spritzpulvern beträgt die Winketoffkonzentration z.B. etwa 10 bis 90 Gew. %. der Rest zu 100 Gew. % besseht aus Bülichen Formulierungsbestendrieben. Bei enutgieretzen Konzentraten kann die Winkstoffkonzentration alwas 5 bis 90 Gew. % beträgen. Subsubfrömige Formulierungen enthräten meistens 8 bis 20 Gew. % en Winkstoff, versprühbere Lösungen etwa 2 bis 20 Gew. % Bei Granulaten hängt der Winkstoffspenalt zum Teil davon ab, ob die winksame Varbindung illüssig oder fest vorliegt und welche Granulierhilfsmittel. 30 Füllsöffel sw. verwendet werden.

Daheben ertihalten die genannten Wirkstofformullerugen gegebenonfalls die Jeweils üblichen Haft-, Netz-, Dispergier-, Emelgier-, Penetrations-, Lösungsmittel, Füll-oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorllegenden Konzentrate gegebenentalts in üblicher Walse verdümit, z.B. bel Spritzoulvern, ermulgierberah Konzentratien, Dispersionen und tellweise se auch bei Mikrogranulaten mittels Wasser, Staubförmige und granuflierte Zuherreitungen sowie versprühübrar Lösungen werden vor der Anwendung üblicherweise nicht mahr mit weiteren inerten Stotlen verdümnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.e. variiert die erforderliche Aufwandmenge, sie kann Innerhalb weiter Grenzen schwankert. 26: zwischen 0,005 und 19,0 kg/ha üder mehr Aktiveubstanz, ovrzugswieße Begt die jedoch zwischen 0,01 und 5 kg/ha.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formullerungen entweder allein oder in Kombigation mit weiteren, incraturbekannten Fungiziden angewendet werden.

Als literaturbokannte Fungizide, die erlindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind z.B. folgende Produkte zu nannen:

Imazalli, Prochicraz, Feneganil, SSF 105, Triflumizol, PP 869, Flutriatol, BAY-MEB 6401, Propiconatol,
 Etaconazol, Diciobutzatol, Biterfanol, Triadimelon, Triadimenol, Fluttimazol, Tridemorph, Dodemorph, Fen-propinorph, Fallmorph, S-32165, Ghlobertzhiaanne, Parinol, Butlihobet, Fenpropidin, Triferine, Fenarimol, Natimol, Literimol, Ethirimol, Dimethirmol.

Bupirmate, Pabenzszole, Tricyclazole, Fluobenzimine, Pyrocyfur, NK-483, PP-399, Pyrogullon, Pyroceszo-Fediricogan, UH-8-227, Cymozani, Dichrotunatiei, Capitani, Capitani, Pobet, Tolyfflusieid, Chlorottalonil. 50 Ethidazol, Byłodene (Formel II), Procymidon, Vinclozolin, Melomectan, Myclozolin, Dichlazolinieis, Pluorimi-

de, Drazoxolan, Chinometrionate, Nêtrothalisopropyi, Dithlanon, Dinocap, Binapacryi, Ferifinacetate, Fentinaydroxide, Carboxin, Oxycarboxin, Pyrécarbellid, Methituroxam, Fentura, Furmecyclox, Benodanii, Mebnii, Mapronii, Flutalanii, Fuberidazola, Thiabendazole, Cerbendazim, Benornyi, Thiofante, Trilofanatametrivi, CGD-94340 F, KF-1216.

85 Mancozob, Mareb, Zineb, Nabam, Thiram, Problineb, Prothiocarb, Propamocarb, Dodine, Guazaline, Dicloran, Quintozene, Chloroneb, Tecnazone, Biphenryl, Anlacine, 2-Phenylphanol, Kupferverbindurigen wie Quoycritorid, Oxine-Qu, Qu-oxide, Schwefel, Foserylaluminium, Natrium-dodocylbeazoisulonet, Natrium-dodocylbeazoisulonet, Natrium-dodocylbeazoisulonet, Natrium-dodocylbeazoisulonet, Natrium-dodocylbeazoisulonet, Natrium-dodocylbeazoisulonet.

Natrium-C19/C15-alkoholethersuitonat. Natrium-cetostearviohosphatester. Dioctvi-natriumsulfosucciost, Natrium-isopropyinachthalineulfonat,

 Natrium-methylenbisnaphthalineulfonal, Cetyl-trimethy)-ammoniumchlorid.

Salze von langkeitigen primären, sekundären oder tertiären Aminen, Alkyl-propylenamine, Laurylpyridinjum-promid, ethoxilierte queterniede Fettamine, Alky:-dimethyl-benzyl-ammoniumchlorid und 1 Hydroxyethyl-2-alkyl-imidazolin.

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in CH.S. Worthing, U.S.B. Walker, The Pasticide Manual, 7. Auflage (1983), British Crop Protection Council beschrieben sind.

Darüberhinaus können die erfindungsgemäßen Wirkstoffe, insbesondere die der aufgeführten Beispiele, in ihren handelsüblichen Formulierungen zowie in den aus dieser Formulierungen bereiteten Anwendungs-15 formen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterliantien, Akanziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorllegen. Zu den Insektiziden zählen beispielsweise Phosphorsäursester, Carbamate, Carbonsäursester, Formamicine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u.a., Bevorzugte Mischungspartner sind:

1. aus der Gruppe der Phosphorsäurcester

Azinphos-ethyl, Azinphos-methyl, 1-(4-Chierphenyl)-4-(0-ethyl, 8-propyl)phosphoryloxypyrazol (TIA-230), Chlorpyrifes, Coumaphes, Dameton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoat, Ethoprophos. Etrimfos, Fentrothion, Fenthion, Heptenophos, Parathlon, Parathlon-methyl, Phosalon, Pirimiphos-ethyl. Pirimiphos-methyl, Profenofos, Prothiofos, Suiprofos, Triazophes, Trichlorphon. 2. aus der Grupps der Carbamate

Aldicarb, Bendiocarb, BPMC (2-(1-Methylpropyl)phenyl methylcarbamat), Butocarboxim, Butoxicarboxim, 25 Carbaryl, Carbofuran, Cerbosulfan, Gloethocarb, Isoprocarb, Methomyl, Oxamyl, Primicarb, Promecarb, Propoxur, Thiodicarb,

3. aus der Gruppe der Carbonsäursester

Allethrin, Alphamethrin, Bloallathrin, Bioresmethrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin, 2,2-Dimethyl-3-(2-chlor-2-trifiuormethylvinyi)cyclopropancarbonsäure-(alpha-cyano-3-30 phonyl-2-methyl-benzyl)ester (FMC 54900), Fenpropathrin, Fenfluthrin, Fenvalorat, Flucythrinale, Flumathrin, Pluvalinate, Permethrin, Resmethrin, Tralomethrin,

4 aus der Grenne der Formamirtige

Amitraz, Chlordimeform

5. aus der Gruppe der Zinnverbindungen Azocyclotin, Cyhexatin, Fenbutatinoxid

6. Sonstice

40

Abamektin, Bacilius thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofecin, Camphechlor, Garap, Chlorbenzialate, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlorentezine, Cyclopropancarbonsäure(2-naphthylmethyl)ester (Ro 12-0470), Cyromacin, DDT, Dicolol, N-13.5-Dichlor-4-(1,1,2,2,-tetrafluoroethoxy)chenylamino)carbonyl)-2,6-difluorbenzamide (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)2,4-xylidine, Dinobuton, Dinocap, Enclosulfan, Fenoxvoerb, Fenthiocarb, Flubenzimine, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramethylnen (AC 217 300) Ivermediin, Z-Mitromethyl-4,5-dihydro-6H-thiazin (SD 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35851), 2-Nitromethyleno-1,3-thlazinan-3-yl-carbamaidehyde (WL 108 477), Propargite, Toflubenzuron, Tetraditon, Tetrasul, Thiosyclam, Triflumaron, Kempolyeder- und Granuloseviren.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungstormen kann in weiten Bereichen variieren, Die Wirkstoffkonznetration der Anwendungsformen kann von 0,0001 bis zu 100 Gew.-% Wirkstoff, vorzugsweise zwischen 0,001 und 1 Gow.-% liegen. Die Anwendung geschieht in einer 50 den Anwendungsformen angepaßten üblichen Weison.

Nachfolgende Beispiele dienen zur Erläuterung der Erlindung.

A. Formulierungsbeispiele

a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als. Inertstoff mischt und in einer Schlagmühle zerkleinert.

b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile

EP 0 407 899 A2

- Wirkstoff, 65 Gew. Teile kaolinhatigen Quarz als thertstoff, 10 Gew. Teife Egninsulfonsaurce Kallum und 1 Gew. Teif olecyfmetryltaurinsaurce Natrium als Notz- und Dispeglermittel mischt und in einer Stiffmiblie maker.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzenists stellt man her, indem man 40 Gew.-Teile Wirkstellt mit 7 Gew.-Teilen ohnes Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsufbinsäure-Natriumsalzes und 51 Gew.-Teilen Wesser mischt und in einer Reibkurgemühle auf eine Feinhalt von unzer 5 Mikron vermahlf.
 - olien 3 metrol vertratur.

 Sit metrol potente Konzentrat I Böt och herstellen aug 15 Gew-Teilen Wirkstoff, 75 Gew-Teilen Cyclobezanon als Lösungsmittel und 10 Gew-Teilen oxodhyllertem Nonylphanol (10 AeO) als Errulgator.

 Sit Drambalt Mills alsch herstellan aus 2 bis 15 Gew-Teilen Wirkstoff und einem inerten Granuldurtägermateriat wire Atlaculgit, Birnsgranulat undicder Guerzsand. Zweckmäßigsmyelse vorwendort man sine Suspension des Spritzpulvers aus Belegkel bir mienem Fesstorianetien vin 50 %, und spritzt diese auf die Oberfliche ohres Atlaculgitgranulats, rocknet und vermischt innig. Dabel beträgt der Gewichtsanteil des Spritzpulvers oder 66 innehen Teilkömmeteriste zu 55 % ose lervingen Gemeintstanteil des Spritzpulvers oder 66 innehen Teilkömmeteriste zu 55 % ose lervingen Gemeintstant.

8. Chemischa Beispiele

20

4-Methyl-2-(2-methyl-pyridin-6-yl)-6-propylamino-pyrimidin (6sp. Nr. 1.2)

Zu siner Lösung von 1,10 g (6 mmol) 4-Chlord-meithyl-2-(2-meithyl-pyridin-d-yil-pyrimidn in 30 ml Acatolitifi (figt man nacheinsader 0,32 g (5,5 mmol) Propylamin, 0,33 g (6 mmol) K-CO, und 10 ml Senzylinishylammonlumbolitoh Iniza. Die Raskinamischung wird 7 ha mit Childing dekecht. Denach saugt man alle unföslichen Bestandteile ab. Das Fitirat wird eingeengt, in Methylenotlorid gelföst, anschließend 26 mlt Wasser gewaschen, über Nag-SO, getrocknet und im Vakuum eingedainpft Man erhält 1,15 g (85 %). dar Theherbrindung als gelteliches of.

4-Chtor-6-diethyjamino-2-(2-mathyl-pyridin-6-yl)-pyrimidin (Bep. 9.5)

Zu einer Lösung von 1,44 g (8 mmol) 4,8-Dichlor-24(2-methyl-pyridin-6-yl)-pyrimidin in 30 ml Acetonitril fügt man nacheinander 0.48 g (8,6 mmol) Diejhylamin, 0,97 g (7,0 mmol) K₂CO₃ und 10 mg Benzyltriethylermnenlunchlorkt. Die Reaktionsmischung wird 3 h bei Reumtemperatur gerührt.

Danach saugt man alle unlösichon Bestandteile ab. Das Filtrat wird eingeengt, in Methylenchlorid gelöst, mit Wasser gewaschen. Über Nas 90s getrocknet und im Vakuum eingedamptt. Man erhält 1,73 g (52 %) der Tieherbrichung als grüfniches Ort.

4-Phenyl-6-propylamino-2-(2-methylpyridin-6-yl)-pyrimidin Hydrochlorid (Bsp. Nr. 200.1)

In eine Lösung von 3,4 g (0,01 mat) 4-Prientyl-9-propylamino-2-(2-meihylpyridin-6-yt)-pyrimidin leitet man übor einen Zeitraum von 1 h HCI-Gas ein. Der ausgefallene Festshoft wird abgesaugt. Er zerfließt sofort zu einer sirubösen Masse.

Analog zu diesen Beispielen lassen sich die Verbindungen der Tabellen A und B herstellen.

Abkürzungen: Et = Ethyl Me = Methyl

Pr . Propyl

50

60

Tabelle A

5		section ten					
81		20 E13					
15		pnystralische Eldenschellen					
20							5
26	2	NINe	MISt	\bigcirc	MHCGHS	NCH 2C6HS	MC6H4-4-C1
30	4	A E	Œ	tipes solds	32	24	#
35	ų.	693	CH3	CH3	CH3	CH ₃	CH3
40	4	ž z	旗	200		Ħ	#
	50	ž =	ववर्गन क्रम्पन	· #	. ad	Ħ	n
45	tsetzus	¥ H	òpri sile	35	22	is a	н
50	Tabelle A Fortsetzung	GH3	CH3	CH3	CH3	CH3	CH3
55	Tabell	3.5	9,4	1.7	ф ф	9.1	1.10

	50	45	40	35	30		28	10	5
Tab	Tabelle A Fortsetsung	ortsetsu	pur						
Mr.	R1	283	В3	R.	ВŞ	RE	AR 7R8	physikalische Elgenschaften	snschaften
2.2	CH3	挺	×	辉	C3H7	pri	NSt2	(CDC13): 6 1 s 6,22 q 3 1 dq 1,79 t	8,14 t 7,65 ,69 m 2,69 1,21 t 1,03
2, 2	CH3	路	×	×	C3H7	jond 14-9	NH Propyl	[PPM] 1R-NaMR (CDCL ₃): d 8,17 t 7,66 d 7,16 s 6,17 q 3,25 m 2,69 s 2,64 m 1,68 t 1,00 t 0,96	8,17 t 7,66 ,25 m 2,69 ,00 t 0,98
6.	CH3	22	50	Ħ	C3117	bs	Ö ,	[ppm] 14. NMMR (CDC13): d 8,14 t 7,66 d 7,20 s 6,34 m 3,70 m 2,80 s 2,75 m 1,64 t 0,98 [ppm]	8,14 t 7,66 ,70 m 2,80 ,98 [ppm]
4.	GF3	in the	- Tata	mi .	Сзну	\$tf	$\langle z \rangle$	16.NWR (CDC13): d 8.15 t 7,65 t 7,19 s 6,11 m 3,56 t 2,72 s 2,69 m 2,00 m 1,74 t 1,0	d 8,15 t 7,65 3,56 t 2,72 1,74 t 1,0
in.	CH3	32;	m	Ħ	C3H7	bo	್ದಿ	[ppm] 1H-NeMR (CDCL3): d 8,16 t 7,68 d 7,20 s 6,84 m 3,77 m 2,75 s 2,66 m 1,78 t 0,99 [ppm]	8,16 t 7,68 ,77 m 2,75 ,99 [ppm]
2.6	CH3	M	Ħ	mi	C3B7	tri.	Mez	1H-NWR (DMSO-d6): 8,07 t 7,68 d 7,29 s 6,52 x 3,11 t 2,59	8,07 t 7,68

65	50	46		40	35	30	25	20	15	19	8
Tabel	Tabelle A Fortsetzung	rtsetzu	bu								
Nr.	r u	R2	R3	R4	#2	же	NR 7R8	physika	lische	physikalische Eigenschaften	ten
2.7	CH3	ш	Ħ	221	C3H7	122	MIHe	1H-NWR d 7,16	1H-NWR (CDCl3); d 7,16 s 6,19 m f 2 66 s 2 63 m	5,41	6 t 7,67 d 2,94 t 0.97
2,	CH3	×	213	Ħ	C387	斑	NCH3C6H5			200	
9.	CH3	m	æ	Ħ	C3H7	×	13184 1		: · dwg	Smp.: 100 - 102°C	Ď
2.10	CH3	tati	m	m	C3H7	Ħ	NHCH2CECH				
2.11	CH3	77	post .	н	C3H7	phys physics p	NHCH2-CH=CH2		Smp.: 111	111 - 113°C	ပွ
2.12	CH ₃	tu	III.	z	C3H7	Ħ	MH Heptyl				

Ray	< <	S & Rabelle A Fortsetzung	40 Suns		35	30	26	19	\$
H H H C3H7 H NH BULY1 Smp.: 99°C H H H C3H7 H NH tec-Buty1 Smp.: 119°C H H H C3H7 H NH Renty1 Smp.: 107°C H H H C3H7 H NH Renty1 Smp.: 76°C H H H C3H7 H NH Renty1 1.8mp.: 76°C H H H G3H7 H NH Renty1 1.8mp.: 76°C H C3H7 H NH Renty1 1.8mp.: 76°C H H H H G3H7 H NH Renty1 1.8mp.: 76°C H C3H7 H NH Renty1 1.8mp.: 7.20°C H C3H7 H NH R R NH R R R NH R R R NH R NH R NH R NH R NH R NH R R NH R R NH R R NH R NH R R NH R NH R R NH R R NH R R NH		R2	В3	22.4	RS	RE	NR7R8	physikalische Elgensch	atten
H H C3H7 H NH iso-Buty1 Smp.: 115°C H H R C3H7 H NH Renty1 Smp.: 110°C H H H C3H7 H NH Renty1 1-NMR (CDC13): 48.19 H H C3H7 H NH Renty1 1-NMR (CDC13): 48.19 R 7,36-7,21 d 7,16 s E 5,63 d 4,55 t 2,69 H H H C3H7 H NMR Benty1 14-NMR (CDC13): 4 6,13			575	bti	C3H7	I	WE Butyl	Smp. : 99°C	
H H C3H7 H NH sec-Buty1 Smp.: 107°C H H H C3H7 H NH Senzy1 1_NeR (CDCi_3): d 8.19 H H H C3H7 B NH Senzy1 1_NeR (CDCi_3): d 8.19 R 7.36-7,21 d 7.16 s t 5.63 d 4.55 t 2.69 dq 15s t 0.98 [5pm] H H H C3H7 R NH Benzy1 44.18 t 0.98 [5pm] s 7.27 d 7.15 s 6.30			III.	æ	C3H7	æ	NH iso-Butyl	Sup.: 119°C	
H H C3H7 H NH Rentyll Smp.: 76°C H H H C3H7 H NH Benzyll 1-NBM (CDCL3): d 8.19 t 5,63 d 4,55 t 2,69 dq 1/3 t 0.98 [ppm] H H H C3H7 R NMe Benzyl 14-NBM (CDCL3): d 8,13			m	æ	C3B7	25	NR sec-Butyl	Smp.: 107°C	
H H H C ₃ H7 B NR Berryll ¹ _NBR (CDCl ₃); d 8,136 a			pri	#	C3H7	m.	MH Pentyl	Sup.: 76°C	
H H B C ₃ H ₇ R News Bennsyl ¹ _{4,1} com (CDCl ₃): d 6,130 c 7,27 d 7,15 s 6,30 c 3,11 t 2,72 s 2,69	m		ps.	×	C3H7	323	MR Benzyl	1-NMR (CDC13): 4 8,19	
t 5,63 d 4,55 t 2,69 dq 1,5 t 0,98 [5pm] H H C ₃ H7 R NMe Benrayl ¹ M-NRR (ODCl3): d 8,13 s 7,27 d 7,15 s 6,30 s 3,11 t 2,72 s 2,69								d 7,16	6,16
dq 1/3 t 0.98 [ppm] H H C3H7 K Nake Benzyl ¹ HNaMR (CDC13): d 0.13 8 7,27 d 7,15 s 6,30								t 5,63 d 4,55 t 2,69	
7,27 d 7,15 s 6,30 3,11 t 2,72 s 2,69	. 40		超	×	C3H7	щ	NMe Benzyl	dq 1,75 t 0,98 [ppm] 1M-NGR (CDC13): d 8,1	3 t 7,62
3,11 t 2,72 s 2,69			*					7,27 d 7,15	
								3,11 t 2,72	

£ 0,98 [ppm]

55	50	4 5		40	35	30	20	15	ij 75	
Tabell	Tabelle A Fortsetzung Nr. R ¹ R ²	tsetzu R2	ng R ³	R4	R5	92	. NR 7R8	physikalisch	physikalische Eigenschaften	en
2.19	CII3	æ	\$X\$	EI,	C3H7	Ħ	NH iso-Propyl	Smp. ;	Sмр.: 118 - 120°С	
2.20	CH3	### ***	;E	#4	C3H7	513	NH Cyclohexyl	Smp	2,26 - 06	
2.23	CH3	Ħ	д	x	C3H7	z .	NH Cyclopentyl	Srap.:	Smp.: 146°C	
2.22	CH3	æ	æ	32	C3H7	. 32	. Net CGHS			
2.23	CH3	325	Ħ	Ħ	C3H7	æ	NH (4-C1-C6H4)	s.gms.	103 - 105°C	
2.2	CH3	222	×	п	C3H7	m	NH (2,4 Cl2- C6H3)			

55	50	45		40	36	30	20	15	10	5
Tabel	Tabelle A Fortsetzung	tesetzu	ng							
Mr.	R	R2	¥3	84	35	RG	NR 7R8	physikali	sche Elge	physikalische Eigenschaften
2.25	CH ₃	524 524	Ħ	æ.	C3B7	z	NH (4-CH3- C6H4)			
2,26	CH ₃	at	ź	Ħ	C3H7	\$C	NH (4-NO ₂ -C ₆ H ₄)			
2.27	CH3	12	\$15 ·	щ	C3H7	H	мн (3-сн ₃ - с ₆ н ₄)			
2.28	CH3	ш	я,	m	C3H7	m	NE-Cyclopropyl	prof.		
2,29	CH3	e April	32	m	C3H7	H	NH-CH ₂ CH= C(Me) ₂			
2.30	CH3	Ħ	Ħ	502	C3H7	H	NH-C6H4-4-OMe			

55	50	45		40	35	30	25	75	6	
Tabel.	Tabelle A Fortsetzung	tsetzur	ņ							
, in	к1	R2	R3	R4	82	RE	MR7R8	physikalisch	physikalische Eigenschaften	
2,31	CH3	加	-12	Ħ	C3H7	and ske	MH-C6H4- 3CF3			
2.3	CH3	=	m	, H	СН(СН3)2	tal	NEt ₂			
2,33	CW3	m	. ж	×	C3H7	ш	\bigcup_{z}	Зтр.:	Smp.: 151°C	
2.34	CH3	æ	24	22	сн(снз)2	III,	NH. Propyl	Smp.	Smp.: 105°C	
2.35	CH3	22	Ħ	×	CH(CH3)2	#	NR-Butyl			
2.36	СНЗ	H	Ħ	Ħ	CH(CH3)2	Ħ	Mil-Pentyl			

5			
	nschaften		
15)	he Elgen		
15	physikalische Eigenschaften		Smp. 113°C
20			ញ ហ
25	NR7R ⁸		
30	8.6 6		×
35	ಸ್	CH(CH3)2	C3H7
40	4. 4.	ш	u
45	mg R ³	Ħ	Ħ
~	rtsetal R2	æ.	. 92
50	Tabelle A Fortse Nr. R ¹ R	CH3	CH3
55	Tabel.	2.37	2.38

1H-NWR (CDC13): d 8,16 t 7,66 d 719 s 636 t 3,76 t 2,73 s 2,71 t 2,50 s 2,36 dg 1,76 t 1,00 [ppm]	1H-NWR (CDC13): d 8,19 t 7,69 d 7,19 s 6,35 m 3,86-3,70 sep 3,05 s 2,69 d 1,31 [ppm]
-N N-CH3	°
225	txi
C3H7	сн(снз)2
'n	zi.
ш .	m
pet .	221
E .	CH3

NCH3CH2-C6H5

III .

C₃H₇

m

X.

x

CH3

2.39

2.40

	4	11011					
5		nscoa	12990		J. 44		102°C
10	1 3 3	physikalische sigenschalten Smp.: 105°C	Smp.: 128 -	Smp.: 180°C	Smp.: 143-144°C	Smp.: 162°C	Sup.: 99 - 102°C
15		poysika	G	ų,	0,	VI	01
26	CC S	N N CH3	NH- C ₆ Hq-4-Cl	Ö	(°)	CJ.	NHCKCH3C2H5
25	:	Z	STATE OF THE STATE	ř.	7	Ĩ	N
30	V.	E H	leget plan	323	355	by/C	523
86	LZ I	CH (CH3)2	СН (СН3)2	C3H7	CSHG	CSHg	С5Н9
ıı	, and	* ×	Ħ		200	n	bit
16	Setzi	2 ==	×	Ħ	m	III.	Ħ
	Fart	Z ==	翼	. 25	ţa.	200	pq
50	Tabelle A Fortsetaung	CH3	CH ₃	£	CH3	CH ₃	CH3
55	Tat	Nr.	2.43	2.44	2.45	2.46	2.47

5 10 75		physikalische Elgenschaften	Smp., 111ªC	Smp.: 124 - 126°C	Smp.: 133°C	ld-lwin(CDC13) d 8.15 t 7,66 d 7,21 s'6,36 t 3,77 m 2,90-2,67 s 2,69 t 2,50 s 2,31 n 1,90-1,59 m 1,52-1,20 t 0,95 [ppm]	Smp., 72 - 74°C	Smp.: 80.63°C
20		P.	ñ		-CH2	33		, A-ca ₃
25		NR7R8	NHCH2C6N5	NH -	NHCH2CH=CH2	-N N-CH ₃	()	٥
30		Ré	н	m	m	. 1955	CI	C1
35								
40		25	CSH9	CSHg	CSHg	Сънь	CH3	CH3
	pd	RA	×	н	Ħ	Ħ	Ħ	æ
46	setzu	R3	25	325	Ħ)#4	125	- m
	Fort	82	22	tut	œ	æ	Ħ	缺
56	Tabelle A Fortsetzung	R.1	CR3	CHG	CH3	CH3	CH3	CH3
55	Tabe	Nr.	2.48	2.49	2.50	2.51	2.52	2.53

É		aften		99'2 7 6	d 7,19 a 6,16 s 2,69 m 1,78 t 0,99					11 m 8, 14 n 6, 70
10		physikalische Eigenschaften	Smb.: 95 - 97°C	${\tt NHCH_2CH_2N(CH_3)_2\ ^{1}H-NRTR\ (CDCl_3)_1\ d\ 8,19\ t\ 7,66}$.6 s 2,69 m					18-1M4R (CDC13): d 6,41 m 8,14 t 7,71 m 7,47 d 7,21 s 6,70 s 3,04 s 2,72 [ppm]
15		nysikal isch	Smp.: 95	H-MAR (CDC	7,19 a 6,1					18-NWR (CDC13): d 0, t 7,71 m 7,47 d 7,21 s 3,04 s 2,72 [ppm]
90		ld	9 19	CH3)2	T	H2OH	MECH2CH20CH3	NZ.	NHCH2CH2SCH3	
25		NR 7R8	CH ₃	NHCH2CH2N(NHCH2CH2OH	MICHIC	NCH2GH2N	NRCH2C	NRWe
30		R6	cı	×		pat .	ົວ	354	B	m
36			S)	C3H7		сна	CH3	(CH3)2CH	C4H9	C6HS.
40		157 266	G ₃	ံပိ		ö	Ü	Š	ů.	บั
	bun	R.4	m	Ħ		22	M	355	33	22
45	3842	R3	m	×		皿	x	ಪ	m	×
	Fort	82	225	THE STREET		Ħ	Ħ	H	34	322
50	Tabelle & Fortsetzung	RI	CH3	CH3		CH3	CH3	CH3	CH3	СНЗ
55	Tat	Nr.	2.54	55		2.56	2.57	2.58	2.59	e,

55	50		45		40	35	30	26	29	76	70	5
2.5	Tabelle A Fortsetzung	FOL	tsetzn	but								
Nr.	R.I	R2	R3	R4	RS		Вę	NR 7 R S	physi	physikalische Elgenschaften	Elgenscha	ften
6. 2.	СНЗ	x -	æ	m	C6H5			NEt ₂	1H-NWR t 7,69 q 3,69	JH-NMR (CDCI ₃): d 8,26 m 8,10 t 7,69 m 7,45 d 7,20 s 6,75 q 3,69 s 2,71 t 1,27 [ppm]	(CDC13): d 8,26 m 8 m 7,45 d 7,20 s 8,7 s 2,71 t 1,27 [ppm]	5 m 8,10 3 6,75 ppm]
6.	CH3	325	222	m	Cells			$\bigcirc_{\mathbf{z}}$	Smp.	Smp.: 120 - 122°C	32°C	
3.4	CH3	Ħ	æ	12	C6B5		m	MHBu	Smp.	SMp.: 119 - 121°C	21 90	
3,5	CH3	×	m()	125	C6145		=	MILE	Smp.	Smp.: 127 - 129°C	29°C	
3.6	CH3	Ħ	22	×	C6H5		æ	Milso- Propyl	ĢI.	Smp.: 105°C	ņ	
3.7	CH ₃	щ	Ħ	×	CeHs		д	$\langle z \rangle$	va	Smp.: 134°C	g	
න න	CH3	IM	æ	×	C6H5		×	$\binom{\circ}{z}$	Ø	Smp.: 131°C	ņ	
3.9	CH ₃	Ħ	m	×	4-CH3-C6H4	.6H4	m	NH-Propyl				
3.10	CH3	m	322	翼	2,4- (CB	2,4-(CH3)2-C6H3	Br	MH Butyl				
3.2	CH3	Ħ	x	***	2,6- (CB	2,6-(СИз)2-С6Н3	Br	MIEE				

ŏ		schaften						
10		se Eigen						
15		physikalische Eigenschaften						
20		A) A) Average man		T Ad			py]	
25		NR 7R8	$\bigcirc_{\mathbf{z}}$	NH Propyl	NH Ho	NMe2	NH Propyl	N Me2
30		RS	斑	Ħ	弄	×	ia M	j.; poj
36		д5	3-Et.C6H4	3-c1-C ₆ Hq	2,4-012-0643-	4.0CH3~C6H4~	Fropyl	Fropyl
10	pd	tre eli	\$11	Ħ	×	x	32	m
45	setzu	π3	225	225	m	22	. 22	ings.
	Fort	R2	m m	222	ps-	Ħ	**	22
60	Tabelle A Fortsetzung	R.1	CH3	CH3	CH3.	CH3	CH ₃	CH ₃
55	Tab	Nr.	3.12	3.13	3.14	ਲ ਦ • ਹ	4.	4.2

		e						
G		schafter						
10		Eigen						
16		physikalische Eigenschaften						
20								17.0
25		NR7R8	MEt.2	NH Et	Ç	NH Butyl	NH Propyl	NH iso-Propyl
30		R6	i. gg	is pa	ja gg	3.4 002	ರ	CT
35								
40		RS	Propyl	Propyl	Propyl	Propyl	Propyl	Propyl
	b	R.4	æ		345	mi	Ħ	×
45	setzur	R3	=	pt .		ä		Ħ
	Fort	22	\$55 \$65	m,	34	=======================================	m	-122
50	Tabelle A Fortsetzung	R.1	CH3	CH3	CH3	CH3	CH3	CH3
55	Tak	Z.	8.	4.4	4. N	9,4	7.	89

		-			(5	9	03	
5		haften			6 t 7,8 s 4,19 ppu]	17 t 7,6 s 4,12 [ppm]	19 t 7,4 s 4,09 t 0,92	
10		Figense			8 5,94 8 5,94	s 6,10 m 1,60	8,1 85,94 m 1,61	
15		physikalische Bigenschaften			LH-NWR (CDCL ₃): d 8,16 t 7,66 m 7,29 d 7,19 s 5,94 s 4,19 t 3,48 s 2,7 t 1,12 [ppw]	JH-NFRR (CDCL3): d 8,17 t 7,66 m 7,30 d 7,18 s 6,10 s 4,12 m 3,57 s 2,70 m 1,60 [ppm]	1H-7AMP (CDC13): d 8,19 t 7,68 m 7,30 d 7,19 s 5,94 s 4,09 t 3,16 s 2,69 m 1,61 t 0,92 {ppm]	
20		yha			H E W	# # #	H H J E	
26		NR 7R8	Q	NCR3CH2CeH5	MEt2		m Propyl	NH Et
aa		R6	ខ	ฮี	Ħ		25	×
35								
40		RS	Propyl	Fropyl.	CH2C6H5	CH2C6H5	сизсеиз	CHOCKRE
	pa	R.4	Por pos	H	m	m	×	tX
46	setzu	e ex	122	22	×	, at	bti	m
	Fort	22	æ	223	TT.	**	æ	'n
50	Tabelle A Fortsetzung	E E	CH3	CH3	CH3	CH3	CH3	É
55	Tab	- 22	6.4	4.10	T.		en .	7. 4

5		ar ten						7,68
10		Zigensch				. 163°C		d 8,17 t s 6,09 s 2,70 [ppm
18		physikalische Zigenschaften				Smp.: 161 .		1. HNWER (CDC1.31): d 0.17 t 7.68 s 7.23 d 7.19 s 6.09 s 4.16 m 3.04-3.52 s 2.70 [ppm]
20								e4 01 22
26		NR7R8	MH Butyl	\Box	NMe2	್ಧಿ	NH Pentyl	್ಧಿ
30		Re	555	×	#	覊	ш	100
35		RS	CH2C6H5	CH2C6H5	CH2C6H5	CH2C6H5	CH2CeR5	СН2С6И5
40			٥	О	U	Ð	ਹ	5
	bun	R4	tri	zis	325	m	Ħ	ac:
45	18 et 28	B3	m	Ħ	22	Þ	m	pd
	For	182	EE\$	M	æ	超	22	æ
50	Tabelle A Fortsetzung	H	CH3	CH3	CH3	CH ₃	CH3	CH3
£#	Tal.	Mr.	ε. ε.	n,	n, 7	10 80	9.	5.10

		1	mdd		ਦ			4.
5		chaften	8 t 7,68 s 4,18 s 2,30	೮	21 t 7,7 s 5,23 [ppm]			16 t 7,6 m 1,65
10		e Eigens	(); d 8,1 9 s 6,12 10 t 2,43	Smp.: 172 - 174°C	(3): d 8, 38 s 6,60 72 t 1,15			13): d 8,
75		physikalische Elgenschaften	1H-NMR(CDCL3): d 8,18 t 7,68 8 7,29 d 7,19 s 6,12 s 4,18 t 3,64 s 2,70 t 2,43 s 2,30 [ppm]	Simp.:	Hr.NMR (CDCl3): d 8,21 t 7,71 m 7,24 m 6,98 s 6,60 s 5,23 g 3,59 s 2,72 t 1,19 [ppm]	Smp.: 122°C	Smp.: 134°C	1H-NMR (CDC13): d 8,16 t 7,64 d 7,17 s 6,35 s 2,6 m 1,65 m 1,20 [ppm]
20				T C				
26		NR 7R8	No.ch3	NEC6Hq-4-CI	NHFt2		NWe2	Q
30		RÉ	à	æ	m	Ħ	虹	ĸ
35		in in	сн2С6Н5	CH2C6H5	cH₂ರಿದ ₆ ೫ <u>,</u> 5	CH2OC6H5	CH20C6H5	СИ ₉ CH ₂ -Cyclo-
***	Ç0+	4	323	н	m	ģis	Ħ	3 4
46	etzniu	ಜ	24	m	,	fix	pri.	Eq.
	Forts	2.5	24	×	ш	223	300	22
50	Tabelle A Fortsetzung	R.1.	CH3	CH3	CH3	CH3	CH3	CH3
56	Tab	Z.	5.11	5.12	6.	5.2	6,3	۵,

55	80		45	40	30	20	20	15	ra.	5
Ta	Tabelle A Fortsetzung	Fort	csetzı	bur						
Z.	7	R.2	233	R4	RS	ga	NR 7R8	physikalische Elgenschaften	che Eigen	schaften
9	CH3	=	at	m	CH2CH2-Cyclo- pentyl	jej	NH Propyl	<pre>JH-NWG (CDCl3): d 8,15 t 7,62 d 7,16 s 6,16 t 3,26 s 2,63 m 1,71 t 0,97 [ppm]</pre>	Cl3): d 8	,15 t 7,6; 6 s 2,63
9.6	CH3	m	Ħ	32	CH2CH2-Cyclo- pentyl	Ħ	Mine	1H-NWIR (CDCl3): d 8,19 t 7,69 d 1,9 s 6,19 4 5,60 d 2,94 s 2,66 m 1,69 [ppm]	Cl3): d 8 19 4 5,60 ,69 [ppm]	,19 t 7,69
6.7	CH3	E	無	æ	CH ₂ CH ₂ -Cycle- pentyl	×	NCH3CH2C6H5	4 8 4	-NWR (CDC13): d 8,14 t 77,26 d 7,16 s 6,31 s 4,8 3,13 s 2,70 m 1,62 [ppm]	,14 t 7,6 1 s 4,89 2 [ppm]
6.8	CH3	int .	203	tet	CH20C6H5	Super poles	MH Propyl	Smp.:	Smp.; 152 - 153°C	3 8
6.3	CH3	112	222	Ħ	CH2CH2Cyclopentyl H	==	$\mathring{\mathbb{Q}}$: des	Smp.: 98 - 100°C	D _o
6.10	CH3)C	ţu,	²²	CH20C6H5	ings plag	NEt2	: · dws	Smp.: 142°C	

							7,66	80
63		schaften	123°C	٥, ٥			,11 t 7,8 0 s 2,66	1,16 t 7,0 s 2,64
30		he Elgen	Smp.: 122 - 12	Smp.: 134 ~ 136°C	Smp.: 125°C	Smp. : 109°C	213): d 8 ,69 * 2,7	213); d 8,726 s 2,7
16		physikalische Elgenschaften	: -dws	Smp.	* - ฉัพร	Smb.	1H-NWR (CDCL3): d 8,11 t d 7,18 g 3,69 % 2,70 s 2, t 1,33 {ppm}	IR-NWR (CDCl ₃): d 8,16 t 7,68 d 7,19 g 3,26 s 2,70 s 2,64
23								
25		NR 7R8		N(CH3)2	$\binom{\circ}{z}$	NCH3C6H5	NEt2	NMe ₂
30		Rb	Ħ	Œ	覊	æ	ຜ	ប៊
35 40		R5	CH2OC6H5	CH2OC6H5	CH20C6H5	CH2OC6H5	CH ₃	CH ₃
	ng	R4	n	123	23	in	Ħ	pd.
45	setzo	R3	22	gart.	bal	33	ings poor	Þ
	Fort	R2	35	ju	缸	æ	Ħ	Ħ
ďΘ	Tabelle A Fortsetzung	Rl	CH3	CH3	. E	CH3	CH3	CH3
56	rar	Nr.	6.11	6.12	. 9	6.14	7.1	7.2

							4
		physikallsche Eigenschaften					1H-NWR (CDC13): d 8,14 t 7,64 d 7,16 s 4,56 s 3,81 s 3,46 s 2,64 [ppm]
6		haf					क क
		nsc					8,1
		108					ຫ ຕໍ
10		EQ	0.3				E 0
		ach	i i				PC1
		1	Smp.: 106 -107				1H-NWR (CDC1 d 7,16 s 4,5 s 2,64 [ppm]
16		X 1 24	24				116 ,64
		phys	C W				1H-1
20			and .	and			
		-	NH Propyl	NH Propyl	Ž		-
		NR 7g B	H	Ä p.	NH Butyl		NHC3H7
25		NR	HN	Z	2	Z	
						10	OCH3
		Re	U	Ħ	×	OCH3	DO
30							
3\$							
						CNF	27
			CH3	CF3	CR 3	MeOCH2	МеОСН ₂
40		RS	ਹ	T	ΰ	æ	Œ
	m	W. W.	描	32	×	×	四
	uns		-	-			
45	9	R3	200		þd	缸	lat.
	4						
	Jac .	RZ	m	II.	斑	×	22
50	2)		CH3	CH3	CH3	CH3	CH3
	Tabelle A Fortsetzung	B.1	ŭ	Ü	Ö	Ö	5
	Tak			-44	10	10	
65		Mr.	7.3	4.7	7.5	. 6	4.7

5.5	50		45		35	30	26	18	10	5
Tal	Tabelle A Fortsetzung	Fort	tsetzi	but						
Nr.	R1	R.2	F. 83	R.4	я5	RÓ	NR 7R8	physikalische Eigenschaften	e Eigensc	haften
69	CH3	×	Ħ	д	MeOCH ₂	фснз	WEt2	14-NWR(CDCi3): d 8,08 t 7,64 d 7,16 s 4,59 q 3,67 s 3,49 s 2,66 t 1,24 [ppm]); d'8,06 9 q 3,67 4 [ppm]	s 3,49
7.9	CH3	Ħ	æ	#	MeOCHZ	QCH3	оснз месен5			
7,10	CH3	22	æ	sine sine	изсоси2	оснз	NHC2H5	Smp.: 102°C	102°C	
7.11	CH3	×	×	粒	нзсосн2	OCH3	OCH3 NHCH2C6H5	z dwg	Smp.: 120 - 13	Do Let
7.12	CH3	- PG	. 82	top	н3сосн2	фСН ₃		Smp.	Smp.: 129°C	
7.13	CH3	×	355	32	C3H7	H	MHC3H7	Smp.: 77°C	77°C	

5		d						
3		hafte						
10		physikalische Elgenschaften			n		74°C	3°5
		che E	5mp.: 95°C	2,68 : dwg	Smp.: 103°C		7.25	Smp.: 80 - 83°C
10		Kalis	Sap.	Sap	Smp.:		Smp.: 72	Smp.:
20		phys						
40		in analyses				10.		m
25		83	M(C2H5)2	- 63	N(CH3)2	N- CH3	CO2	N-CH ₃
		NR7R8	M(C		N(C	Z		ليا
30		86	Br	Br	H M	ii m	ដ	ដ
				w.1				
35		a falan managaman						
40		82	C3H7	C3H7	C3H7	C3H7	CH3	CH3
	ang	R4	×	iz	2 0	ж ж	Ħ	×
45	tsetzı	EX.	m	a	200	m ·	, pa	. 25
	Fort	R2	x	Ħ	BE	at	ta:	133
50	Tabelle A Fortsetzung	TZ.	CH3	0 H 3	CHS	снз	G.	CHO
65	Tab	Nr.	7.14	7.15	7.16	7.17	7.18	7.19

56	50		45	40	i.	35	30	28	 15	10	5
Ta	Tabelle A Fortsetzung	A For	tsetz	ñuñ							
Nr.	n ₁	R2	"КЗ	R4	RS.	and the same of th	R6	NR 7R8	physikalische Bigenschaften	che Eigen	schaften
7.20	CH ₃	æ	III	×	93		ರ	CHO CHI	: des	2-46 - 56	
8.1	CH ₃	mi,	312	114			-(CH2)4-	NHCH ₃	1H-NWH (CDC13): d 8,21 t 7,4 d 7,17 s 3,14 m 2,91 s 2,66 m 2,35 m 1,84 [ppm]	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	JH-NWR (CDCl3): d 8,21 t 7,66 d 7,17 s 3,14 m 2,91 s 2,66 m 2,35 m 1,84 [ppm]
80 64	CH3	anyo ane	#	Ħ			-{CH ₂ }4-	$\binom{\circ}{z}$	1H-NMR (CDC13): d 8,14 t 7,4 d 7,17 m 3,85 m 3,47 m 3,05 s 2,68 m 2,59 m 1,86 [ppm]	(CDCl ₃): d 8,14 t 7 m 3,85 m 3,47 m 3,0 m 2,59 m 1,86 [ppm]	1H-NWR (CDCl3): d 8,14 t 7,68 d 7,17 m 3,85 m 3,47 m 3,05 s 2,68 m 2,59 m 1,86 [ppm]
8.3	CH3	inf	×	III.			-(CH2)4-	\Box	1E-NNR (CDCl3): d 8, d 7,15 m 3,71 t 2,97 s 2,66 m 1,86 [ppm]	(CDCl ₃): d 8,16 t 7,8 m 3,71 t 2,97 t 2,78 m 1,86 [ppm]	1A-NNR (CDCl3): d 8,16 t 7,64 d 7,15 m 3,71 t 2,97 t 2,78 s 2,66 m 1,86 [ppm]
8.4	CH3	212	E	×			-(CH2)4-	NH Propyl	Smp.	Smp.: 170 - 172°C	00
ຜູ້	CH3	æ	æ	200			-(CH ₂)4-	NEt2	Smith	Smp.: 153 - 154°C	ವಿ

o series		
s sip.: Adl - 144°C		
or Piveskalische Smp.: 141		
20		
NR 7 R B NR 7 R B NR CH2 CG C- H NCH3 CH2 C6 H5		NH Butyl
ж ⁶ - (СИ ₂)4 (СИ ₂)4-	OCH3	Z
35		
40 SH SH	m	æ
THE RESERVE THE PROPERTY OF TH	bt	m
H H R3 tzz	zi.	×
н н н н н	離	ÞÍ
CH3 H H H H H CH3 H H H H H H H H H H H	CH3	CH3
55 X 8 8 8 6 17 5 5 17 6 17 17 18 17 17 18 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	6	6,9

5	schaften		,14 t 7,54 8 s 2,68				
10	che Elgen		233): d 8 ,38 q 3,5	Marina GCI			
15	physikalische Eigenschaften		14-New (CDC13): d 8,14 t 7,54 d 7,20 s 6,38 g 3,58 s 2,68	1,23 [ppm			
20							
25	NR 7R8	NH Propyl	NEt2		OCH3 NR Pentyl	NH Propyl	
80	RÉ	m	trans pilas	缸	OCH3		
35						NH Propyl	
40	NS.	bn	ย	CI	ฮี	I HN	
	ng R4	in	32	pq	33	#	
46	setzu R3	щ	m ·	ex;	22	. ·	
	Fort	ж -	223	<u>m</u>	205	pa	
50	Tabelle A Fortsetzung	eg.	CH ₃	CH3	CH3	CH3	
95	Tab	4,	in o	9.	7.6	ø.	

\$	physikalische Eigenschaften						
10	sche Kig						
15	physikali						
20							
25	NR 7R8	NH Et	WBt2	Milite	MH Butyl	NH Propyl	
3¢	R 6	ogs.	124	E .	GH ₃ 3	a a	
36	RS	ocatig	OCH ₃	eass	S-C6H4-4-C1	離	
	ng R&	誕	22	Ħ	Ħ	11	
48	setzu R3	æ	m	(M)	int also	. 22	
	Fort R2	plat	14	im	缸	æ	
50	Tabelle A Fortsetzung	CH ₃	CH3	CH3	CH3	E B	
#5	Tab	9.10	9.11	9,12	61.	9.14	

6	physikalische Eigenschaften	Smp.: 79 - 81°C	1H-NWR(CDC13): d 8,14 t 7,68 d 7,21 s 6,37 q 3,56 s 2,67 t 1,20 [ppm]	Smp.: 159°C	Snp.: 135°C	1H-NWR (CDC13): dd 8,35 a 6,30 s 3,22 s 2,51 [ppm]
26	NR 7R8	NEL2	NEt2	$\binom{\circ}{z}$	NHC3H7	NWe2
30	R6	¤	255	Ħ	m,	H
35 40	R5	NHC3H7	cı	cı	OC2H5	СНЗ
p.	R.4	Ħ	22	超	22	m
45 95	53	\$C	m	ZZ.	, m	æ
s s Tabello A Fortsetzung	R1 R2	CH3	CH ₃ B	СНЗ	CH3	С6н5 Н
rabe]	Nr.	9.16	9.17	9.18	9.19	10.1

10 16 20	NR ⁷ R ² physikalische Eigenschaften	NEt ₂ lit-lwN (CDCl3): dd 5,32 % 6,25 q 3,62 % 2,51 t 1,23 {ppm}	NH Propyl HF-NWR (CDC13): dd 8,33 s 6,19 t 3,24 s 2,47 m 1,65 t 0,96 [ppm]	NH iso-Propyl 1R-NWR (CDC13); dd 8,39 s 6,17 sept 3,92 s 2,50 d 1,28 [ppm]	MF-(3,5-Ch2-C6H3)	NEt ₂ 1H-NNR (CDCL ₃): dd 8,28 s 6,21 q 3,61 t 2,73 m 1,80 t 1,24 t 1,02 [ppm]	
20	Жę		#£.	Ħ	CH3	RC	¤
35							
	202	CH3	CH ₃	É	CH3	C3H7	СЗН7
40 0	RG	tat.	Œ	×	m	20	æ
setsu	к3	22	25	želi	\$25		凯
Fort	¥2	×	×	Ħ	\$13	14	22
		CeHS	CGHS	C6H5	CeMS	COHS	Cells
s & & Tabelle & Fortsetsung	R.J.						

physikalische Eigenschaften	<pre>1H-NWR (CDCl3): dd 8,33 s 6,26 s 3,20 t 2,76 m 1,82 t 1,00 [ppm]</pre>				Smpkt.: 155 ~ 156°C	JH-NWR (CDCL3): d 8,81 d 8,49 m 8.10 t 7,81 m 7.41 s 6,73 q 3.69 t 1,26 [ppm]
NR 7RB	² ej∉i	NH-CH2-CH=CH2	NNCH2-CH=CH-CH3 E-Isomeres	NHCH2-CH=CH-CH3 Z-Isomerer	WEt2	
er o	900 884	pg	ta	СНЗ	Ħ	耍
3 5	C3H7	C3H7	C3H7	C3H7	C6H5	C6H5
age age	to:	H	ж	252	×	Ħ
setzu R3	Ħ	æ	红	其	. 25	M
Fort R2	ш	25	223	Di	in in	355
RI RI	CoHS	Cens	C6H5	C6H5	Ħ	Aqua SME
Tabe	11,3	11,4	11.5	31.6	20.1	20.2
	Tabelle A Fortsetzung $_{ m R}$, $_{ m R}$	NATER REPORTS TO THE TROUGH BETTER THE TROUGH BETTER BETTE	Rabelle A Fortsetzung R1 R2 R3 R4 R5 R6 NR7R ³ 3 C6H5 H H R C3H7 H NN+CH2.	R1 R2 R5 R6 NR7R3 R1 R2 R3 R4 R5 R6 NR7R3 C6H5 H H R C3H7 H NN+CH2-CH-CH2 C6H5 H H H G3H7 R NH-CH2-CH-CH2 C6H5 H H H G3H7 R NHG32-CH-CH-CH3	R1 R2 R4 R5 R6 NR ² R ³ R4 R5 R6 NR ² R ³ R4 R5 R6 NR ² R ³ R4 R5 R6 R6 R6 R6 R6 R6 R6	R1 R2 R3 R4 R5 R6 R8/R ^B Ebyzikalische Eigenschaften

45	AD		35	30		26	20	15	10	5
Ie A Ec	Tabelle A Fortsetzung	p _d								
R1	R2	R3	R4	un os	100	NR 7RB		physikal	physikalische Elgenschaften	nschaften
bi	bt	tu	×	Comp	III.	NH Propyl		Smp.	5mp.: 118 - 120°C	2000
щ	įq	iut.	飲	C6H5	æ	NH iso-Propyl	93.1			
щ	35	m	tri	CGRS	225	NEME				
322	Ħ	æ	Ħ	C6H5	itt	N-Me				
z.	×	m	Ħ	CeH5	æ	NWe2				
- 95	×	300	×	CGHS	Ħ	Ç.		Suits	5°091 - 189 - 190°C	2,06

ō 70		physikalische Eigenschaften	.46 °C	123°C	85°C	Smp.: 115 -117°C	1h-wwk (cbcl3): d 8,34 t 7,85 d 7,56 d 7,23 d 6,92 g 6,32	AH-NWR (CDCL3): d 8,30 t 7,81 d 7,53 d 7,22 d 6,92 s 6,25 s 5,39 g 3,62 s 2,52 t 1,23
15		physikalisch	Smp.: 146°C	3,577 1 dwg	Smp.: 82°C	Sept	18-WWR (CDC d 7,56 d 7,	14-Net (CDC d 7,53 d 7, s 5,39 q 3,
86				CH3)2		13.12		
26		NR7R8	NHC3H7	NHCH2CH(CH3)2	$\mathring{\bigcirc}$	MHCH(CH ₃) ₂	MNe2	NEt2
30		RE	14	per par	E	tet.	嵙	Mari Mari
3%		85	eg.	CH3	CH ₃	CH3	CH3	СНЗ
32		B.4	225	×	22	m	m	II .
40	Ęņ.	183	ont	æ	22	pt .	pa.	æ
	etzan	R2	21 .	. 122	×	ist.	. 22	H
45	Tabelle A Fortsetzung	1		,		n	4-C1-C6H4- OCH2	4-c1-c6#4- och2
56	Tabel	Mr. Rl	Z0.9 H	20.10 н	20.11 H	20.12	30.1	30.2

45	Tabelle A Fortsetzung Rl R2	4+cl.c ₆ H ₄ - H ócH ₂	с645-осн2 н	2,6-(Me) ₂ - H C ₆ H ₃	4-с1-с ₆ H ₂ - н осн ₂	4-c1-C ₆ H ₄ - H OCH ₂
45	я жэ ж <u>ф</u>	125 125	m	н	Ħ	M
35	E E	CH ₃	CH3	CH ₃	Propyl	Propyl
30	В	tos	Ħ	m	Ħ	Ħ
25	WR 7RB	MH Propyl	NHET		NE't2	NWez
23						
15	physikal				1H-NMR (G 7,54 d s 5,36 g	t 1,25 t 1,02 [ppm] lu.nwn (CDCl3): d 8 d 7,54 d 7,23 d 6,9 s 5,34 b 3,19 t 2,7
10	ische Ek				7,24 d	1,02 (p)
ŝ	physikalische Eigenschaften				lH-NWR (CDCl3): d 8,29 t 7,81 d 7,54 d 7,24 d 6,93 s 6,24 s 5,36 g 3,6 t 2,74 m 1,81	t 1,25 t 1,02 [ppm] li.NMR (CDCl3): d 8,31 t 7,81 d 7,54 d 7,23 d 6,93 s 6,30 d 7,54 b 3,19 t 2,74 m 1,83

			8		7,92	7,94		
ő		schaften	3,31 t 7,4 31 d 6,18 71 m 1,70		18,21 t,09 d 6,9	d 8,21 t,09 d 6,9 59 t 2,63 96 [ppm]		
13		che Eiger	CL3) : d 8,7,24 d 6,9,5,26 t 2,7	- 140°C	450-d6): q 7,37 dd 7 5,28 q 3,9	L.NMR (DMSO-d ₅): d 8,21 t 7,60 d 7,39 dd 7,09 d 6, 6,50 a 5,23 g 3,59 t 2,6 1,71 t 1,15 t 0,96 [ppm]	Smp.: 116°C	
16		physikallsche Eigenschaften	1H-NWR (CDC13): d 8,31 t 7,82 d 7,55 d 7,24 d 6,91 d 6,18 s 5,34 m 3,26 t 2,71 m 1,70 t 1,01 [ppm]	Smp.: 139 - 140°C	IH-NNR (DMSO-d6): d 8,21 t 7,92 d 7,58 d 7,37 dd 7,09 d 6,94 s 6,51 s 5,28 q 3,58 s 2,35 t 1,14 [ppm]	<pre>1H. MWR (DMSO-d₆): d 8,21 t 7,94 d 7,60 d 7,39 dd 7,09 d 6,94 s 6,50 m 5,23 q 3,59 t 2,63 m 1,71 t 1,15 t 0,96 [ppm]</pre>	a.	
20								
26		NR7R8	NH Propyl	NCH3C6H5	WEt2	NEt2	NHC6H5	NCH3C6H5
30		Ré	n	æ	n	×	æ	Ħ
35		RS	Propyl	Propyl	CH ₃	Propy1	Propyl	Propyl
40		R4	200	#	203	at .	æ	X.
	jg G	R3	m	œ	22	tat	x	323
45	etzu	RZ	Ħ	125	EF CI		×	22
50	Tabelle A Fortsetzung	RI	4-cl-c6Hq- OCH2	4-cl-c ₆ H ₄ - ocH ₂	4-C1-C6H4- 0C6H4-OCH2	4-C1-C6H4- O-C6H4-OCH2	C ₆ H ₅ CH ₂	C6H5CH2
36	Tak	Mr.	31.3	31.4	40.1	F	50.1	50.2

	50	46		-40	35	30	25	20	15	រស្	8	
Ţ	Tabelle A Fortsetzung	setzur	ğ	1	i				i	,		
RI		B.23	R3	4	RS	R6	NR 7R8		physikalische Eigenachaften	sche Eiger	aschaften	1
బ్	С6Н5СН2	故	tit	æ	Propyl	I	NH Propyi					
ပိ	C ₆ H ₅ CH ₂	ne .	312	眾	Propyl	×	Mi Pentyl					
ತ	C ₆ H ₅ CH ₂	æ,	is:	ET.	Propyl	Ħ						
J	C ₆ H ₅ CH ₂	, #4	ps	per	iso-Propyl H	Ħ	NH Propyl					
ő	сензсна	m.	æ	112	iso-Fropyl H	×	NEt2					
ల్ల	C ₆ H ₅ CH ₂	m	-tri	200	iso-Fropyl H	Œ				r		

f0		physikalische Eigenschaften		Smp. 1 98°C	Smp.: 127°C	Sup.: 154°C	2.11 - 511 :	Smp.: 162 - 163°C	Smp.: 164°C
16.		physika		Smb	Smp	Smp	Smp.:	Smp	Smo
20									
25		NR 7R8	L ^N	N(C2H5)2	NHC3H7	N(CH3)2	\bigcirc	$^{\circ}_{\mathbf{z}}$	CHO
30		R6	73.11	123 *	tet	8 2	in.	×	Ħ
35		R.5	iso-Fropyl H	СзН7	C3H7	C3M7	C3H7	C3H7	2
49		R4	m	z .	222	m	æ	333	:
	30	2	T.	m	bs	翼	200	315	
48	tsetzu	82	Œ	tr.	Ħ	pq	m	` ##	1
SD	Tabelle A Fortsetzung	R.1	C6H5CH2	Censchz	C6H5CH2	C6H5CH2	C6H5CH2	C6H5CH2	
55	Tab	Nr.	50.9	50,10	50.11	50.12	50.13	50.14	£

s 10 15	physikalische Eigenschaften	Smp.: 134°C	2₀02°: 120₀C	SMp.: 147 - 148°C	Sabit a. dms.	5. gmp : 489 - 101°C	Smp.: 139°C	Smp.: 147°C
25	MR7R8	N-CH3	N N	NHC3H7	N(C2H5)2	$^{\circ}_{z}$	$\binom{\circ}{z}$	NHC3H7
30	Ré	×	, 124	Ħ	Ħ	22	124	E
36	R5	C387	·C3H7	C ₆ H ₅	CeHS	CGH5	С5Н9	CSH9
	R4	111	85	223	m	25	227	m
40	E #3	m	ш	m	100	110	x	ės;
45	tsetzun R2	æ	×	m.	iii	te	· m	mi
50	Tabelle A Fortsetzung	C6H5CH2	CeH5CH2	с6н5сн2	CeH5CH2	C6HSCH2	C6H5CH2	CANACH?
66	Tabe Nr.	50,16	50.17	51.1	51.2	51	. 65	52.2

16
20
25
35
35
46
-45
50
55

Tabelle A Fortsetzung

Nr.	R1	R2	ж3	R4	R5	RS	MR ⁷ R ⁸	physikalische Eigenschaften
52.4	C6H5CH2	ж	コロ	Ħ	CSMg	ĸ	MICSH9	Smp.: 133°C
5.2.5	CeH5CH2	int	Œ	Ħ	С5Н9	322	N N- CB ₃	1H-PRR(CDC13): d 8,16 t 7,64 m 7,37-7,18 d 8,01 s 6,38 s 4,35 t 3,70 m 2,90-2,74 t 2,52 m 1,91-1,60 m 1,50-1,19 m 1,02-0,76 [ppm]
53.1	C6H5CH2	ţsţ	m	æ	C6H5CH2	Ħ	MC3H7	Smp., 149°C
53.2	C6H5CH2	Ħ	223	225	C6H5CH2	я	NHCHCH3C2H5	Smp.: 162°C
53.3	C6H5CH2	n	m	x	C ₆ N ₅ CH ₂	I	°	Smp.: 114 - 116°C
53.4	C6H5CH2	· 1811	m	\$400 Jens	C ₆ H ₅ CH ₂	Ħ	NHCH2CH=CH2	Smp.: 130 - 133°C
53.5	C6HSCH2	·m	in:	æ	C6H5CH2	æ	NHCH2C685	S#1 : d#8

Tabelli R1 1 H3										
	Tabelle A Fortsetzung	setzun	Б							
	pod	R2	F.R.3	P.4	R5 R6	NR 7RS	14	physikalische Bigenschaften	Elgenscha	44
	нзсосиз	Ħ	Ħ	pa pa	Propyl H		AI .0 D	1H-NMR (CDCL3): d 8,24 t 7,80 d 7,49 s 6,35 s 4,76 m 3,69 t 2,71 m 1,65 t 0,97 [ppm]	: d 8,24 s 4,76 m t 0,97 [F	p e u
71.2	н3сосн2	m	m	Ħ	Propyl H	MH Propyl				
	71.3 H ₃ COCH ₂	22	III.	nd	H iso-Propyl H	NH Propyl				
71.4 C	CH30CH2	223	æ	722	Propyl H	NCH2C6H5				
71.5 C	CH3OCH2	* pq	×	E	Propyl H	°)		Smp.: 116 -117°C	-117°C	
72.1 H	нзсоси	. #4	Ħ	m	сен5 н	MM Propyl	17 pr 18 hr	1H-1MKR (CDCl3): A 8,50 m 8,13 t 7,85 m 7,49 a 6,71 s 4,79 s 3,49 m 3,36 m 1,72 t 1,04	a 6,71 s m 1,72 t	≘ ਵਾਂ ਜੀ

5 70		physikalische Eigenschaften	IN-NWR (CDCL3): d 8,35 m 8,11 t 7,82 m 7,46 s 6,74 s 4,78 g 3,68 s 3,49 t 1,24 [ppm]	Smp.: 147 - 148°C					
36		physil	111-NNE t 7,8% q 3,68	v2					
20									
25		MR7R8	NEt2	$\binom{\circ}{\omega}$	NH Propyl	\Box	Maez	NH Butyl	NH Propyl
30		Re	×	222	æ	. 15	æ)2 H)2 H
35		R5	CGHS	C6H5	C3H7	C3H7	C3H7	СН(СН3)2 Н	CH(CH ₃) ₂ H
40		H4	ju;	m	m	Ħ	22	32	ese.
***	ğ	23	翼	Ħ	Ħ	data	m	Ħ	m
45	tsetzur	R.2	X	22	m	Ħ	213	35	¤
50	Tabelle & Fortsetzung	Rl	нзсоси2	н ₃ сосн ₂	C3H?	C3H7	C3H7	C3H7	i H
55	Tab	Nr.	72.2	72.3	80.1	80.2	80.3	\$0.4	2 O8

	1						
6	enschaften						
10	ae E						
15	physikalische Eigenschaften						
20							
25	NR7R8	NHEt	WH Butyl	NH Propyl	NHEt	NMe2	Ç
30	Re	Ħ	如	æ	ш	22	200
9S	R5	сн(снз)2 н	Cens	Propyl	Propyl	Propyl	iso-Propyl H
40	# 4	202	*	DE	22	345	W.
,,	, 6 R3	н	×	CR3	CEE3	CH3	CH3
46	tsetzun R2	E	321	試	##	. ш	II.
50	Tabelle A Fortsetzung Rl R ²	C3H7	C3H7	СНЗ	CH3	CH3	GH3
56	Tab	90.6	7.08	. 1	90.2	90.3	90.4

55	50	45	40		25	90	26		15	16	5
Tak	Tabelle A Fortsetzung	rtsetzur	19								
Nr.	Rl	82	R3	44	R5	RÉ	NR7R8	ū	ysikalis	che Elger	physikalische Elgenschaften
100.1	ji;	53	E C	×	Propyl	×	NH Fropyl				
100.2	ings pile	Ħ	朝	p	Propyl	122	Q				
100,3	pt.	20	ea ti	355	Propyl	m	Mi-iso-Propyl				
000	2	T.	£c.	×	CKHS	m	NHEt.				
	; is	· :	i ii	=======================================	C _K H _S	如	WEt.2				
100.6	E E	22	[8]	202	Celts	×	We ₂				

	66,-	48		40		95	30	25	20	15	10	В
10	belle A	Tabelle A Fortsetzung	5un									
Nx.	R1	RZ	1	кя3	4	85	W6	NR7g8		physikalische Eigenschaften	Eigensch	ften
100.7	22	52)		E C	n	iso-Propyl H	**	NH Propyl				
100.8	SE	×		a) Di	E .	iso-Fropyl H	sat	We ₂				
101.1	CH3	. GH3		bot	32	Frapyl	×	MH Propyl		Smp.: 108°C		
201.2	CH3	CHS		25	ж	Propyl	×	Nime		Smp.: 127 - 128°C	128°C	
101.3	CH3	OH3		223	-322	C3#7	æ	CE32		Smp.: 133°C		
								F				
101.4	CH3	Ö	CH3	22	be	C3Hy	m	, o,		Smp: 125°C		

	s ful	
R3	R3	R3
at x E		z;
онз н н	=	=
сиз н н	ш	ш
СИ3 И В	×	×
сиз н н	×	×
сиз и в	20	20
CH ₃ H H	æ	

Ê	chaften		e O			ນ	
10	physikalische Eigenschaften	Smp.: 96°C	Smp.: 112 -113°C	Ѕмр.: 139°С	Smp.: 185°C	Smp.: 135 - 136°C	Smp.: 112°C
15	physikalís	Sap	od as	c dimes	Services	'dwg	· dius
20							
25	NR7R8	NEtz	NHBt	NHC3H7	Ç	N NCH3	MICSBILL
30	Ré	CeHS	CGBS	Ħ	Ħ	Ħ	12
35	in M	ж.	æ	CERECH2	C ₆ H ₅ CH ₂	C6H5CH2	ColliscH2
	4	ist:	×	345	255	22	910
40	e e	303	m	×	H	ä	n
45	rtsetzun R ²	æ	H	н	Ħ	щ	223
50	Tabelle A Fortsetzung Rl R2 1	Propy1	Propyl	C3H7	C3H7	C3H7	C3H7
55	Mr.	102.1	102.2	102.3	102.4	102.5	102,6

5	physikalische Elgenschaften	Smp.: 156 159°C	Smp.: 112 - 114°C	Smp.: 174°C	Sup.: 170°C	141 - 143°C	Smp.: 158 - 160°C
16	physikalisc	Smp	; dwg	: - dwg	Samp	Smp.: 141	Smp. :
20							
28	MR 7R8	NHCH2C6H5	инсэн7	$\mathring{\mathbb{Q}}$		NHCH2CH=CB2	N NCH3
30	86	53	Εď	н н	у1 н	EL TA	Ħ
35	R5	С6И5СИ2	(CH2)2- H Cyclopentyl	(CH2)2- H Cyclopentyl	(CH2)2- H Cyclopentyl	(CH2)2- H Cyclopentyl	(CH2)2-
40	R4	щ	201	ba	24	22	22
ğ	R3	×	III	æ	m	32	jzi,
setzur	R2	300	122	×	ist.	, EG	u
% & & & & & & & & & & & & & & & & & & &	R1	C3H7	C3H7	C3H7	C3H7	C3H7	Cally
s Tabel	Nr.	102.7	102.8	102.9	102.10	102.11	102.12

	šG	45		40	36	30	28	20	16	1ğ	ö
w	Tabelle A Fortsetzung	setzun	ρņ								
1	в1	R.2	R3	я4	RS	Re	NR 7RS	qu.	physikalische Eigenschaften	Eigenschaf	ten
	102.13 C3H7	ta	æ	bs	сизосиз осиз	осиз	MIC347		Smp.: 87	ට _ය 6 හ	
102.14	C3H7	Synt phys	tts	je:	снзоси2	OCH3	°		3.55 1.3ms	n	
102.15	C3H7	. 24	×	, jet,	снзоснз	оснз	N N-CH3		Smp.: 121 ~ 122°C	. 122°C	
102.16	C3H7.	bi	æ	35	CH ₃	បី	инсэн7		Smp. 1 99°C		
102.17	C3H7	m	DE.	pt	CH3	ដ	Ç		Smp.: 161°C	n	
102.18	C3H7	m	22	買	CH3	Ü	MECH2CH=CH2		Smp.: 128°C	D	

50	Tabelle A Fortsetzung	102,19 C3H7	102.20 C3H7	102.21 C3H7	102.22 C3H7	102.23 C3H7	
45	setzu R2	Ħ	m	55	at	. #	
40	ng R3	pa:	\$2\$	200	. да	=	
	84	m	jac)	200	EE	н	
35	RS	CH3	C3H7	C3H7	C3H7	C3H7	
30	Rô	បី	z ,	ш	22	. IXI	
25	nr7r8	NHC5K11		NICSH11	NEC3H7	(°_2)	t
20	T.P. Indeed						
15	physikal	Smp.	: · dws	: · ding	Smp.	: dug	
10	physikalische Eigenschaften	Smp.: 112°C	5°55 - 19	Smp.: 75°C	5°66 - 89°€	2002	1

R5 C3H7	R4	н к	я н ж
in the text	н С ₃ H7 н С ₃ H7 н С ₃ H7	. *************************************	

88	50	45	40		38	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	tsetzur	19								
Mr.	RI	R2	к3	R4	R5	R6	NR7R8	a	ysikalise	physikalische Sigenschaften	chaften
102.31	C3H7	tel	æ	ш	- (CH2) -	2}4-			Smp. : 13	Smp.: 125 ~ 126°C	
102.32	C3H7	ad	m	(i)	· (CH	-(CH2)4-	$\binom{\circ}{z}$		Smp.: 1	Smp.: 111 - 113°C	
102.33	C3H7	22	m	316	OC2H5	m	NHC5H11				
110.1	ps.	222	с645 я	m	Propyl	æ	NHMe				
110.2	#	` #	Cens H	E	Fropyl	bit	We 2				
110.3	#	313	C6H5 H	**	Propyl	21	NH Propyl				

13 15 29		NR.R ^c physikalische Elgenschaften NH-Cyclohexyl	^	ин Екорул		ин-сусторкору1	
30				HW	NEET		_
35		Ro Propyl H	Propyl H	iso-Propyl H	iso-Fropyl H	iso-Propyl H	
40		m m	523,	=	100	×	
45	Tabelle A Fortsetzung	ceH5	C6H5	CGM5	CeHs	CoRS	
	FOL	18 H	25	South solds	100	ţtr	
SG	elle A	H B	222	true pend	pt	×	
58	Tab	Nr.	110.5	110.6	110.7	110.8	

ibe11	50 a	Fort	S & S & S & S & S & S & S & S & S & S &	40	35		30	25	20	15	10	5
12		R2	R3	4.4	. 85	R6	NR 7R8		physik	alische E	physikalische Eigenschaften	ren
222			CeHs	×	Fhenyl	н	NH Proypl	īd.				
	22	單 .	C6H5	m	Phenyl	m	NHH					
	é tra	æ	CeHS	m	Phenyl	æ	NH 1so-Propyl	Propyl				
	æ	341	CeHS	22	C3H7	m	NHC5H11		Sag	Smp.: 107°C		
	ned pas	m	CeHS	Ħ	C3H7	×	$\binom{\circ}{z}$		SmS	Smp.: 117 -	3,611 ·	
	122	m	Celts	H	C3H7	jui			S	Smp.: 125 -	125°C	

5							3,71	
7 <i>a</i> 7 <i>6</i>		physikalische Eigenschaften	Smp.: 132°C	Smp.: 139°C	Smp.: 1.40°C	Smp.: 146 - 150°C	1H-NWR(CDCl3): d 8,66 s(hr) 8,69 m 7,78-7,26 s 6,18 s 4,19 t 3,71 t 2,43 s 2,29 [ppm]	Smp.: 155°C
		1						
25		RB	NHCH2C6H5	месан,	2°5	CH ₃	N - CH ₃	c°5
30		FR7R8	MHC	NHC	$\binom{\circ}{z}$	ra J	(2)	
		R6	bt;	Ħ	gent gent	E	22	m
35		ħ5	C3H7	C ₆ H _S CH ₂	C6HSCH2	C6H5CH2	сензсн2	C3H7
40		84	æ	H	m	, pr	m	get
45	Tabelle A Fortsetzung	100 M	Célls	C6H5	C6H5	CGHS	C6Hs	CH3
	For	RZ	pri	34	he	##	m	200
50	elle k	133	×	STE .	ex.	践	· #	CH3
গুন	Tab	Nr.	110.16	110.17	110,18	110.19	110,20	120.1

5	physikalische Elgenachaften	170°C	1H-RWR(CDC13): s(br) 7,96 s(br) 7,03 s 6,38 t 3,71 t 2,74 s 2,64 t 2,53 s 2,36 dq 1,79 t 0,99 [ppm]	చి 88		0	n
15	Kalische	Smp.: 169 - 170°C	IR(CDCl3): 18 t 3,71 16 dq 1,79	Smp.; 86 - 88°C	Smp.: 112°C	Smp.: 131°C	Smp.: 148°C
26	physi	62	1H-NA	Ø	Ø.	in .	10
26	NR 7R8		Cy-cus	NHC3H7		WH.	$^{\circ}$
30		74	* .			**	m
	R6	缸	pt;	켏	н	22	
ag	50	C3H7	C3H7	C3B7	C3H7	C3H7	C ₆ H ₅ CH ₂
40	44	ta	Ħ	pti	.20	125	112
46	Tabelle A Fortsetaung	CH3.	CH3	снз	CH3	City	CEE3
	Fort	pt	314	H	缸	32	×
ឥជ	elle A	CH3	CH3	CH3	CH3	СНЗ	CH3
55	Tab	120.2	120.3	120,4	120.5	130.6	120.7

ó

Tabelle A Fortsetzung

	5-	3	
physikalische Eigenschaften	H-NWER(CDCl3): s(bx) 7,99 s(bx) 7,	s 6,11 s 4,18 t 3,65 s 2,63 t 2,45	s 2,38 s 2,31 [ppm]
phy	E -	s 6,	8 2,
NR7R8	N N-CH3		
94	m		
R4 R5 R6 NR7R3	C6H5CH2 H		
1	Ħ		
Nr. Rl R2 R3	CH3		
R2	Ħ		
E S	CH ₃ H CH ₃		
, a	120.8		

Tabelle B

(Säureadditionssalze)

-60

6 NR7R ⁸ physikalische Eigenschaften	NH Propyl semikristallin, farblos	NH Et	Br NH Propyl	
R5 R6	C6H5 H	C3#3	C3H7 B	
R.4	m	H	m	
R3	æ	Ħ	Ħ	
R2	tei	#	in in	
14 1	CH3	CH3	CH ₃	
Nr.	200.1 CH3	200.2	200.3	

ę

Tabel	Tabelle B Fortsetzung	rtsetzi	but					
Nr. R	R.1	R2	R2 .R3 R4	R4	R5	R6	R6 NR7R8	physikalische Elgenschaften
200.5	200.5 C3H7	æ	Ħ	202	CH2CH2.	m	NHEt	
					Cyclopentyl	m.		

C. Biglopische Belspiele

16

20

25

Filterpapierscheitschen von 6 mm Durchmesser werden mit je 20 µl der in Tabelle 1 angegebenen Wirkstoffe gleichmäßig benetzt und sut den, je nach Pitzart, untsrachseitliches Agar-Medium aufgelegt. Dam Agar entstet zuvor in noch Utsagen Zustand je Petrachale 0.5 mil Supensfonskultur der Stetzgnarenus (mr. vorläsgenden Fall Botrytis olseres, BCM- und iprodion resistenter Stamm, ca. 10° - 10° Kondlen) nr. zugegeben und die so behandelsen Agarplaten anschlessend bel ca. 22. C behörbet, Nach 3 - 4 tägiger inkubation wirt die Inhibitionszone als MaS der Pitzhermung gemossen und in mm angegeben.

Tabelle 1

Fungizide Wirkung Ipn	g gegenüber Botrytis cineres - BCM- und odion-resistariete: Stamm,
Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 ді pro Fillerscheibchen
1.1	28
1.2	26
1.3	30
1.4	24
2.7	32
2.1	12
2.38	12
2.2	44
7.1	14
7.3	40
10.2	14
11.1	22
11.2	20
11.3	22
31.4	16
unbehandelie Kontrolla	0

Beispiel 2

40

Filterpapierscheibchen von 8 min Dürchmesser werden mit je 20 uit der in Tabelle 2 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein. Je noch Pitzahr, unterschieldnes Agan-Medium aufgelegt. Dem Ager werden zuvor in noch tillsegelem Zustand je Petrischae (5, ml Suspensionskultur des Testorgenismus (im vortiagenden Feit Alternaria mail) zugegeben und die so behandelten Agarplatien anschließend bei ca. 22 °C bebrütet. Nach 3 · 4 tägiger inkubstion wird die Inhibitionszone als Maß der Pitzherrämung gemessen und in mm angegeben.

55

Tabello 2

Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1800 ppm Wirkstoff und 20 ull pro Filterscheibcher
2.2	20
7.1	36
7.3	36
10.1	14
10.2	14
10.4	26
11.1	30
11.2	30
11.3	30
31.3	16
inbehandelte Kontrolle	0

Beispiel 3

20

16

20

25

35

45

50

Filterzepierschiebchen von 6 mm Durchmesser werden mit je 20 uit der in Tabelle 3 angegebenen Winkstoffe gleichmäßig bonetzt und auf ein, je nach Pitzart, unterschiedlichse Agar-Medium aufgelegt. Dam Agar werden zuwer in noch füllseigen Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorlägenden Fall Solerotinia solerotiorum. Hyphenstlicke des Pitzes) zugegeben und die so behandelten Agarplaten anschließend bei ca. 22° C bebrütet. Nach 3 - 4 tägiger inkubation wird die Inhibitionszone als Maß der Pitzhemmung gemessen und in mm angegeben.

Tabblio 3

Verbindung gemäß Baispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 ul pro Filterscheibeher
2.2	14
7.1	46
7.3	50
10.2	14
10.4	20
30.1	12
31.2	20
nbehandelte Kontrolle	0

Beispiel 4

Gersien/pflanzen wurden im 2-Blattstedium mit, Konridine des Gensteinmehtlaus (Erytiphe graminist hondel) stadk inoktollert und in einhem Gewächshaus bei 20° C und einer relativen Lutteuchte von ca. 50 % weiterkutwirert. 1 Tag nach inokulation werden die Pflanzen mit den in Tabelle 4 aufgeführtan Verbindungen in den angegebenen Winkstoffkonzentrationen gleichmäßig beneizt. Nach einer Iniskablionszeit von 7 - 8 Tagon wurden die Pflanzen auf Befall mit Gerstennenbilau untersucht. Der Winksnegerad der Pflästbetän-

zen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 4 wiedergegeben.

Tabella 4

	Verbindung gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/Liter Spritzbrühe
		500
	9.17	100
)	2.49	100
	7.8	100
	7,12	90
	8.2	90
	8.5	100
	7,14	100
	7.15	100
	7.16	100
	2.8	90
	2.11	100
	101.1	100
	6.9	90
	102,11	100
	102.21	100
	102.16	100
	102.17	100
	102.33	100
	unbehandelle, Infizierte Pflanzon	0

Beispiel 5

30

Ca. 14 Tage alte Ackerbohnen der Sorten "Harz Freya" oder "Frank's Ackerperto" wurden mit wässrigen Suspensionen der beansprüchten Verbindungen tropfnaß behande/t.

Nach Antrocknen des Spritzeleiges wurden die Pitanzan mit einer Sporensuspension (1,5 Mio Sporentii) von Botrytis chieres indokuliert. Die Pitanzen wurden in einer Klimakammer bei 20 - 22 °C und ca. 99 % reil. Luftleuchte weiterkultwiert. Die Infektion der Pitanzen Zudert sich in der Bildung schwarzer Flecken auf Bildtern und Stengeln. Die Auswertung der Versuche erfolgte ca. I Woche nach Inokulation.

Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 5 wiedergegeben.

Tabelle5

50

EP 0 407 899 A2

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff
gemäß Beispiel	Liter Spritzbrühe
	500
2.15	100
5.8 .	90
2.33	90
2.9	. 100
5.11 '	100
72.3	100
101.1	100
110.20	90
101.5	100
101.10	100
101,11	100
1.20.3	100
5.12	90
6.9	90
102.7	90
102.11	100
102.21	90
102.22	90
102.8	100
102.3	100
102.17	100
102.4	100
102.5	100
102.13	90
102.26	90
102.15	100
102.14	100
102.32	100

EP 0 407 899 A2

Fortsetzung Tabelle 5

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
	gemäß Beispiel	Liter Spritzbrühe
		500
	6.13	100
	6.8	100
	9.16	90
	9.18	90
	2.34	90
	2.41	100
	2.40	100
	2.42	90
	2.45	90
	2.48	90
	7.18	100
	2.49	100
25	2.51	90
	7.19	100
	7.8	100
	52.4	90
	52.3	100
	8.1	90
	8.2	100
	8.5	90
40	7.13	90
	7.14	. 90
	7.15	90
	2.8	90
	3.7	90 .
	2.11	100
	2.13	100
	3.8	90
	2.16	100

Fortsetzung Tabelle 5

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
102.29	100
102.30	100
1.1	100
1.2	100
1.4	100
2.8	100
2.1	100
2.2	100
2.3	100
2,4	100
2.5	100
2.7	100
7.3	100
10.1	100
10.2	100
10.3	100
10.4	100
11.2	100
30.1	100
31.2	100
2.6	100

45 Beispiel 6

infizierte Pflanzen

Etwa 5 Wochen alte Reispflanzen der Sorte "Beillte" wurden nach Vorsprützer mit 0,05 %liger Gelätlinglösung mit den unten angegebenen Konzentrationen der beanspruchten Vertrindungen behanden. Nach Antrockenn des Sprützbelages wurden die Pflanzen mit einer Sporensuspension von Pfriculäris orgyza gleichnäßig inskullicht und 48 h in eine dunkel gehaltens Klimakammer mit einer Temperatur von 25° C und 100 % rol. Luftdeuchte gestellt. Danach wurden die Religibilarisen in einem Gewächshaus bei einer Temperatur von 25° C und 80 % rol. Luftdeuchte weiterkultiviert. Nach 5 Tagen erfolgte die Befallsauswertung. Der Wirkungsgrad der Prüfsichstanzen wurde prosentual zur enbehandelten, infizierren Kontrolle bonitiert und ist, in Tabelte 8 wähedsgeseben.

EP 0 407 899 A2

Tabelle 6

48

šΰ

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		506
10	9.17	100
	2.34	100
	2.41	100
	2.43	100
	2.45	100
15	2.46	100
	2.48	190
	2.47	100
20	2.49	100
	7.18	100
	2.51	90
25	7.20	90
	7.8	100
	7,7	90
30:	7.10	90
	7.11	100
	7.12	100
	8.2	100
35	8.5	100

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
WINDOWS TO THE WORK OF THE PARTY OF THE PART	500
7.13	1,00
7.14	100
7.15	100
7.16	100
2.19	100
3.6	90
2.11	100
2.21	100
3.4	90
2.14	90
3.8	100
2.33	90
2.9	100
120.1	90
120.6	90
6.9	100
102.11	100
102.21	100
102.16	100
102.22	100
192.17	100
102.23	100
102.18	100
102.13	90
102.32	100
102.29	100
1.1	100
1,2	100
2.1	. 100

Fortsetzung Tabelle 6

	Verbindungen	Wirkungsgrad in %	bei mg Wirkstoff/
	gemäß Beispiel	Liter Spritzbrühe	
		500	and the state of t
	2.2	100	
0	7.1	100	
	7.3	100	34-14-14-14-14-14-14-14-14-14-14-14-14-14
	unbehandelte,		
	infizierte Pflanze	n 0	

Beisplel 7

35

40

66

Weizen der Sorte "Jubiler" wurde im 2-Blattstadium mit wäßingen Suspensionen der bezuspruchten Verbindungen tropinas behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit wäßrigen Sporensuspensionen von Pupcinia recondita inokuliert. Die Pfianzen wurden für ca. 18 Stunden tropfnaß in eine Klimakammer 20°C und ca. 100 % rei. Luftieuchte gestellt. Anschließend wurden die infizierten Pflanzen in einem Gewächshaus bei einer Temperatur von 22 - 25 °C und 50 - 70 % ref. Luftfeuchte welterkultiviert.

Nach einer inkubationszeit von ca. 2 Wochen sporuliert der Pilz auf der gesamten Blattoberfläche der nicht behandelten Konkolipilanzen, so daß eine Befallsauswertung der Versuchspflanzen vorgenommen werden kann Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, Infizierten 30 Kontrolle bonitiert und ist in Tabelle 7 wiedergegeben.

Tabelle 7

	Verbindungen	Wirkungsgrad in % bei mg Wirksto	sff/
6	gemäß Beispiel	Liter Spritzbrühe	
		500	
	9.16	.90	
10	9.17	100	
10	9.18	1.00	
	2.45	90	
	2.49	90	
1.6	7.8	100	
	7.11	90	
	7.12	. 100	
20	8.5	100	
	7.14	100	
	7.15	100	
	7.16	100	
25	2.8	100	
	2.19	100	
	3.6	100	
30	2.11	100	
	2.21	90	
	2.14	90	
36	2.16	90	
	5.8	160	
	2.9	100	
	3.5	90	
40	120.5	90	
	6.9	90	
	102.11	100	
45	102.17	100	
	102.10	100	
	102.33	100	

55

śò

EP 0 407 899 A2

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
,	gemäß Beispiel	Liter Spritzbrühe
		500
	1.1	100
	1.2	100
3	2.7	. 100
	2.1	200
	2.2	100
5	7.1	100
	31.3	100
	7.3	100
	unbehandelte,	
10	infizierte Pflanzen	0

25 Beispiel 8

40

45

80

55

Weinsämfinge der Sorten "Filesting/Ehrenfeldor" wurden ca. 8 Wochen nach der Aussaat mit wäßrigen Suspensionen der beanspruchten Verbindung tropfnaß behandelt.

Nach dem Amrocknen des Spritzbeläges wurden die Pflanzen mit einer Zoosporangiensuspension von Planmopera vittoola inokulliert und tropfnaß in eine Klimakammer mit 23 °C und 80 - 90 % reil, Luftleuchte onstelli

Nach einer Inkubationszeit von 7 Tagen wurden die Pflenzen über Nacht in die Klimakammer gestellt, um die Sporu/ation des Pflizes anzuregen. Anschließend erfolgte die Befallsauswertung. Der Wirkungsgrad der Prüfeibetanzen wurde prozentual zur unbehandeilten, infzierten Kontrolle bonitiert und ist in Tabelle 8 Wederroeoble.

Tabelle 6

Verbindung gemäß Beispiel	Wirkungagrad in % bei mg Wirkstoffr_iter Spritzbrühe	
	500	
2.51	80	
52.5	100	
7.14	90	
2.8	100	
101,1	90	
101.11	90	
120.5	99	
102.11	90	
102.27	100	
102.5	100	
102.31	100	
102.10	90	
102.20	90	
2.7	100	
unbehandalte, infizierte Pflanzen	0	

Beispiel 9

10

15

20

25

Weizenpfianzen der Sorte "Jubitar" wurden im 2-Blattstacium mit w\u00e4\u00e4nfigen Suspensionen der in Tabelte 9 angegeben Pr\u00e4parate tropfna\u00e4 behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzon mit einer wäßrigen Pyknosporen-Suspension von Leptospheeria nodorum inokuliert und mehröre Stunden bei 100 % rei. Luffeuchte in einer Klimakammer inkubiert. Bis zur Symptomeusprägung wurden die Pflanzen im Gewächshaus bei ca. 90 % rei. Luffeuchte weiterkultifviert.

Der Wirkungsgrad ist prozentual zur unbehandelten, inlizierten Kontrolle ausgedrückt und wird in Tabelle 9 wiedergegeben.

Tabelle 9

45

50

Tabelle 9

50

55

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
	CONTRACTOR OF THE PROPERTY OF	500
	6.11	100
10	6.12	100
	5.13	100
	6.8	100
	9.17	100
15	9.18	100
	2.34	100
	2.40	100
20	2.41	100
	2.42	100
	2.43	100
26	2.45	100
20	2.46	100
	2.47	100
	2.48	100
36	2.50	100
	2.49	100
	7.18	100
Så	2,51	100
	7.19	100
	7.20	100
400	7.8	100
40	7.10	100 .
	7.7	90
	20.8	100
45	52.4	90

EP 0 407 899 A2

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	51.1	90
	52.5	90
10	51.3	90
	53.1	100
	52.1	100
15	53.2	100
	52.2	100
	52.3	100
20	53.4	100
	7.12	100
	8.1	100
	8.2	100
25	8.3	100
	8.4	100
	8.5	100
30	7.13	100
	7.15	100
	7.14	100
35	7.16	100
	8.6	90
	2.8	100
	2.19	100
40	3.6	100
	2.11	100
	2.14	100
48	3.7	100
	2.13	100
	2.21	100
55	3.4	100

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	2.14	100
10	2.16	100
	3.8	100
	2.17	100
	2.15	100
15	2.18	100
	2.33	100
	5.8	100
20	2.9	100
	3.5	100
	5.11	100
85	72.3	100
	110.15	100
	101.3	100
	101.9	100
30	120.2	90
	120.3	90
	101.1	90
35	120.6	100
	5.12	100
	6.9	100
40	6.10	100
	120.7	100
	102.11	100
	102.21	100
45	102.8	100
	102.16	100
	102.22	700
50	102.17	100

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
102.23	100
102.4	90
102.18	100
102.3	100
102.19	100
102.5	90
102.6	100
102.31	100
102.9	100
102.14	100
102.32	100
102,33	100
102.29	100
102.30	100
1.1	100
1.2	100
1.3	100
1.4	100
2.7	100
2.1	100
2.38	100
2.2	100
7.1	100
7.3	100
10.3	100
10.2	100
10.4	100
11.1	100
11.2	100

Fortsetzung Tabelle 9

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
11.3	100
31.2	100
unbehandelte,	
infizierte Pflan	zen 0

8elspiel 10

10

20

40

46

50

55

Gerstenpflanzen der Scrite "Igri" wurden im 2-Blattstadium mit einer wäßrigen Suspension der beanspruchten Vorbindungen troptnaß behandelt.

Nach dem Antrockrien des Spritzbelages wurden die Pffanzen mit wäßrigen Soorensuspensionen von Pyrenophore teres inokuliert und für 16 h in einer Klimakammer bei 100 % ret. Luffauchte inkubert. Anschließend wurden die Infizierten Pilanzen im Gewächshaus bei 25°C und 80 % ret. Luffauchte weiterkultifweit.

Ca. 1 Woche nach inckulation wurde der Befalt ausgewertet. Der Wirkungsgrad der Prüfeubstanzen wurde prozentual zur unbehandelten, infiziertan Kontrolle bonitiert und ist in Tabelle 10 wiedergegeben.

Tabelle 10

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/				
ö	gemäß Beispiel	Liter Spritzbrühe				
	500					
	6.11	90				
10	6.12	100				
7.0	6.13	. 100				
	9.17	90				
	9.18	100				
75	2.34	200				
	2.40	100				
	2.41	90				
20	2.42	90				
	2.43	90				
	2.46	100				
	2.48	100				
25	2.49	100				
	7.18	100				
	2.51	100				
30	7.19	100				
	7.11	90				
	52.5	100				
38	51.3	100				
	7.12	. 90				
	8.1	90				
	8.2	100				
40	8.3	90				
	7.13	100				
	7.15	90				
45	7.14	100				
	7.16	90				
	2.8	100				
50	2.19	100				

EP 0 407 899 A2

3.6 90 2.11 90 2.14 100 2.13 100 2.21 100 3.4 100 2.14 100 3.8 100 2.15 100 2.18 100 2.18 100 2.19 100 5.11 100 2.9 90 101.1 100 30 101.5 100 101.4 90 31 120.2 100 40 6.10 100 6.14 100 6.15 100 102.23 100 102.23 100 102.23 100	š	Verbindungen gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe 500
2.14 100 2.13 100 2.21 100 3.4 100 2.14 100 3.8 100 2.15 100 2.18 100 2.18 100 2.19 90 101.1 100 39 101.3 100 101.4 90 101.4 90 102.2 100 120.4 100 40 6.10 100 6.14 100 6.14 100 6.14 100 5.12 90 102.21 100 102.22 100 102.23 100 102.23 100		3.6	
2.14 100 2.13 100 2.21 100 3.4 100 2.14 100 3.8 100 2.15 100 2.15 100 2.18 100 2.18 100 2.19 100 3.10 100 3.10 100 3.10 100 3.10 100 3.10 100 3.10 100 4.10	10	2.11	90
2.21 100 3.4 100 2.14 100 3.8 100 2.15 90 2.18 100 2.18 100 2.33 100 5.11 100 2.9 90 101.1 100 9 101.3 100 101.5 100 101.4 90 102.2 100 120.3 100 120.4 100 6.14 100 6.14 100 5.12 90 102.21 100 40 6.14 100 5.12 90 102.21 100 41 102.22 100 102.3 100 102.3 100 102.23 100		2.14	100
3.4 100 2.14 100 3.8 100 2.16 90 2.15 100 2.18 100 2.18 100 2.33 100 5.11 100 2.9 90 101.1 100 30 101.3 100 101.5 100 101.4 90 3101.4 90 3102.2 100 120.4 100 40 6.10 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.14 100 6.15 12 90 102.21 100 102.21 100		2.13	100
2.14 100 3.8 100 2.15 90 2.18 100 2.18 100 2.18 100 2.9 90 101.1 100 39 101.3 100 101.5 100 101.4 90 120.3 100 120.4 100 40 6.10 100 40 6.14 100 5.12 90 102.21 100 102.21 100 102.22 100 102.21 100 102.23 100 102.23 100		2.21	100
3.8 100 2.16 90 2.15 100 2.18 100 2.33 100 5.11 100 2.9 90 101.1 100 30 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 6.14 100 5.12 90 102.21 100 102.21 100 102.21 100 102.22 100 102.23 100 102.23 100	7.5	3.4	100
20 2.16 90 2.15 100 2.18 100 2.18 100 2.33 100 5.11 100 2.9 90 101.1 100 30 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 102.22 100 102.21 100 102.23 100 102.23 100		2.14	100
2.15 100 2.18 100 2.18 100 2.33 100 5.11 100 2.9 90 101.1 100 59 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 102.21 100 102.22 100 102.23 100 102.23 100		3.8	100
2.18 100 2.33 100 5.11 100 2.9 90 101.1 100 59 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 40 6.10 100 6.14 100 5.12 90 102.21 100 40 102.22 100 102.3 100 102.23 100	20	2.16	90
2.33 100 5.11 100 2.9 90 101.1 100 101.3 100 101.5 100 102.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 40 6.12 100 40 102.22 100 102.3 100 102.21 100 40 102.22 100 102.3 100		2.15	100
5.11 100 2.9 90 101.1 100 30 101.3 100 101.5 100 102.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 40 6.12 100 40 6.14 100 5.12 90 102.21 100 40 102.22 100 102.3 100 102.3 100		2.18	100
5.11 100 2.9 90 101.1 100 30 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 40 102.22 100 102.3 100 102.3 100		2.33	100
101.1 100 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 106 102.3 100 102.3 100	7.9	5.11	100
99 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 40 102.22 100 102.3 100 102.3 100		2.9	90
99 101.3 100 101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 106 102.3 100 102.3 100		101.1	100
101.5 100 101.4 90 120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 106 102.3 100 102.23 100		101.3	100
120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 100 102.3 100 102.23 100		101.5	100
120.2 100 120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 100 102.3 100 102.23 100		101.4	90
120.3 100 120.4 100 6.10 100 6.14 100 5.12 90 102.21 100 46 102.22 100 102.3 100 102.23 100	35		100
6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 100 102.3 100 102.23 100			100
6.10 100 6.14 100 5.12 90 102.21 100 45 102.22 100 102.3 100		120.4	100
6.14 100 5.12 90 102.21 100 45 102.22 100 102.3 100 102.23 100			100
5.12 90 102.21 100 45 102.22 106 102.3 100 102.23 100	40		100
102.22 100 102.3 100 102.23 100		5.12	90
102.23 100 102.23 100		102.21	100
102.3 100 102.23 100	45		100
102.23			100
22			190
	50		90

Fortsetzung Tabelle 10

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/	
gemäß Beispiel	Liter Spritzbrühe	
	500	
102.19	100	
102.27	100	
102.6	90	
102.15	100	
102.31	100	
102.9	100	
102.32	100	
102.29	100	
102.30	100	
2.7	100	
7.1	100	
10.3	100	
10.2	100	
11.2	100	
11.3	100	

infizierte Pflanzen 0

Beispiel 11

Tomatenoflenzen der Sorte "Rheinlands Ruhm" wurden im 3 - 4 Blattstadium mit wäßrigen Suspensio-40 nen der beanspruchten Verbindungen gleichmäßig tropfnaß benetzt.

Nach dem Antrocknen wurden die Pflanzen mit einer Zoosporangien-Suspension von Phytophthore infestans inokuliert und für 2 Tage unter optimalen infektionsbedirigungen in einer Klimakammer gehalten. Danach wurden die Pflanzen bis zur Symptomausprägung im Gewächshaus weiterkultliviert.

Die Befallsbonitur erfolgte ca. 1 Woche nach Inokulation. Der Wirkungsgrad der Prüfsubstanzen wurde 45 prozentual zur unbehandelten, înfiziortan Kentrolle bonitiert und ist în Tabelle 11 wiedergegeben.

50

Tabelle 11

Verbindung gemliß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/Liter Spritzbrühe	
	500	
2.34	90	
2.40	100	
2.41	100	
2.49	100	
7.18	100	
7.8	90	
7.13	90	
8.1	100	
7.12	90	
8.2	100	
2.19	90	
2.13	100	
2.21	100	
2.16	90	
. 2.18	90	
2.9	100	
101.1	90	
101.5	90	
102.5	90	
102.33	90	
10.8	100	
10.2	100	
10.4	100	
mbehandelte, infizierte Pflanzen	0	

Ansprüche

10

15

20

25

30

35

40

45

1. Verbindungen der Formei I

worth

 $R^{s} = Wasserstoff, \ (C_{1} - C_{0})Alkyl, \ (C_{2} - C_{4})Alkoxy - (C_{1} - C_{4})alkyl, \ (C_{4} - C_{6})Alkylthio - (G_{3} - C_{4})alkyl, \ (C_{2} - C_{6})Alkenyl, \ (C_{3} - C_{6})Alkylthio - (G_{3} - C_{4})alkyl, \ (C_{5} - C_{6})Alkenyl, \ (C_{7} - C_{6})Alkylthio - (G_{7} - C_{6})Alkylthio - (G_{7} - G_{7})Alkylthio - (G_{7} - G_{7$ (C2-C6)Alkinyl,(C3-C7)Cycloalkyl, (C3-C7)Cycloalkyl-(C1-C4)alkyl, wobel die beiden letztgenannten Reste im Cycloalkyttell bis zu dreifach durch (G.-Cr.)Alkyl substituiert sein können, eine Gruppe R*R*N-(Gr-Gr.)alkyl. Phenyl, Phenoky-(C1-C2) alkyl, Phenylmercapto-(C1-C1)alkyl, Phenyl-(C1C1)alkyl, Phenoxy-phenoxy-(C1-35 Cajalkyi, wobel slie fünt letztgenannien Reste im Phényltell bis zu dreitach durch Halogen, Nitro, Oyano, (C1-C4)Alkyli, (C1-C4)Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substitutert sein können.

R², R³, R° = unabhängig voneinander Wasserstoff, (Cr-Cs)Alkyl, Phenyl, wobel der Phenylrest bis zu

- dreifach durch Hetogen, Nitro, Gyano, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)Alkylthiö, (C1-C4)Haloalkyl oder (C1-C4)Hetoalkoxy substituiert sein kenn,
- $\beta^{S} = Wasserstoff, (C_{1}-C_{6})Alkyl, (C_{3}-C_{7})Cycloalkyl, (C_{6}-C_{7})Cycloalkyl, (C_{1}-C_{6})Alkyl, wobel die beiden leitztgenannten Reste Im Cycloalkylfeill bis zu droffach durch (C_{1}-C_{4})Alkyl substituiert sein können, (C_{1}-C_{6})-C_{6}-$
- E Halicellovi, (C.-C.)Allicoxy, (C.-C.)Allicoxy, (C.-C.)Allicyhilo, (C.-C.)Allicyhilo, (C.-C.)Allicyhilo, (G.-C.)Allicyhilo, (G.-C.)Allicyhilo, (G.-C.)Allicyhilo, (G.-C.)Allicyhilo, (G.-C.)Allicyhilo, (G.-C.)Allicoxy, (G.-C.
 - (G-C₂) Hallowsky substituted sear neutrino.

 R° = Wassestoff, (G-C₂)Alk(r), (G-C₂)Alk(r), (G₂-C₃)Alkenyloxy, (C₂-C₄)Alk(r)doxy, (C₃-C₄)Alk(r)doxy, (G-C₄)Alk(r)doxy, (G-C₄)Alk(r)doxy,
 - R⁵ und R⁵ bilden zusammen eine Polymethylenkette der Formet -(CH₂)_m- mit m = 3 4
- rs und
 - RY, RY = unabhängig vereinander Wasserstoff, (C--Cs)Alkyl, (C--Cs)Alkyr, (C--Cs)-Alkyl, Hydroxy-(C--Cs)-Alkyl, Hydroxy-(C--Cs)-Alkyl, (C--Cs)-Alkyl, (C--Cs)-Alkyl, (C--Cs)-Alkyl, (C--Cs)-Alkyl, (C--Cs)-Alkyl, wobel die belden lerztgenanden Reste im Cyclosidytteil bis zu dreiffach ourch (C--Cs)-Alkyl substitution sein können: Formyl, Phenyl, Phenyl-(C--Cs)-Alkyl, wobel die belden lerztgenanden (C--Cs)-Alkyl substitution sein können: Formyl, Phenyl, Phenyl-(C--Cs)-Alkyl, wobel die belden letzgenanden (C--Cs)-Alkyl substitution (C--Cs)-Alkyl substitution
- 20 namten Reste im Phenyttell bis zu dreifzeh durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyt, (C₁-C₄)Alkyt, (C₁-C₄)Alkythio, (C₁-C₄)Alkythio,
- oder beide Rieste R², R² stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu viertach subelfüllerien is bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschledenen Heteroctomen, vorzugsweise mit den Heterostomen stickstoff, Sauerstoff undroder Schwedel und dem Substituenten (G--G-Alkley).
- R², R³⁰ = unabhäingig vonahrander Wasserstoff, (C.-C.):Mkryl, (G.-C.)-C.):Mkinryl, (G.-C.)-G.)-Mkinryl, (G.-C.)-G.)-Mkinryl, (G.-C.)-G.)-Mkinryl, (G.-C.)-G.)-Mkinryl, (G.-C.)-G.)-Mkinryl, G.-C., Bright, and the decident festalganannien Resto im Cytolakyfield be zu dreiflend durin (G.-C.)-Mkryl, etc.)-G. G. Bright, and be decident festalganannien Resto im Phonyheil ble zu dreiflach durch Heliogen, Nitro, Cyano, (G.-C.)-Mkrylk, (G.-C.)-Mkinryl, G.-C.)-Mkinryl, G.-C., Mkinryl, G.-C., M
- oder beide Reste R², R³ stehen zusammen mit dem Stückstoffatorn, an das sie gebunden sind, für einen unsubsitituerien oder bis zu wierfach substitutieren 6- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heterochmen, vorzugsweise mit den Heterochmen Steckstoff, Sauersteff undfoder Schwefel und dem Substituerten (Cr-G₂)Allyr; bedeuten, sowie deren
- Säureaddilionssaize.
 Verbindungen der Formel I von Anspruch 1, worin
 - R1 = Wassersjoff, (C.-C.)Alkyl, Phenyl, Phonyl-(C.-C.)alkyl, Phanoxy-phenoxy-(C.-C.)alkyl, Phenoxy-(C.-C.)alkyl, wobei die vier letztgenannton Reste im Phenyllell bis zu dreiflach durch Halegen oder (C.-C.)Alkyl substitutier letel Römen; (C.-C.)Alkoy-(C.-C.)Alkyl substitutier letel Römen; (C.-C.)Alkyl s
- #0 R², R³ = unabhängig voneinander Wasserstoff, (C₁-C₃)Alkyl, Phenyl, wobel der Phenylrest bis zu dreiflach durch -Heiogen oder (C₁-C₃)Alkyl substitutent sein kann,
 - Rt = Wasserstoff.
 - $R^3 = Wasserstoff, \ (C_1 C_6)Alkyl, \ (C_3 C_6)Cycloaikyl, \ (C_5 C_6)Cycloaikyl, \ (C_1 C_6)alkyl, \ Halogen, \ Phenyl + (C_1 C_6)alkyl, \ wobel die belden letztgenzanten Reste im Phenyl teit unsubstituiert oder bis zu dreiffach$
- 45 durch Halogon, (C:-C:)Alkyl oder (C:-C:)Alkoxy substitulert sein können,
 - R³ = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder
 - RS und RS bilden zusammen eine Polymethylenkette der Formel (CH₂)_m- mit rh = 3 4 und
 - R² und R³ unabhängig vonsinander Wassersroff, (C₁-C₅)Alkyi, (C₁-C₄)Alkoxy(C₁-C₅)Alkyi, Hydroxy(C₁-C₅)-Alkyi, (C₁-C₁)Alkyithio-(C₁-C₅)Alkyi, R²R¹⁰N-(C₁-C₅)Alkyi, (C₂-C₅)Alkonyi, (C₂-C₄)Alkinyi, (C₂-C₅)Cycloalkyi,
- 60 (C₂+C₂)Cycloskiyi-(C₁-C₂)alkyi, woboi die beiden letztgenannten Reete im Cycloskiyiteil bis zu zweifach durch (C₁-C₂)Alkyi aufstituiert sein können; Formyi, Phenyi-(C₁-C₂)Alkyi, wobei die beiden letztgenannten Resta im Phenyiteil bis zu zweifach durch Halogen, (C₁-C₂)Alkyi, (C₁-C₂)Alkyo, Trillicomethyl order Trinburmethyl subsidulert sein Können; oder
- beide Reste R², R³ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für ainen su insubstituierten oder bis zu aweitlach substituierten 5- bis 7-gliedrigen gesättigten oder ungasättigten Heterocyclus mit i oder 2 gleichen oder verschriedenen Heterostimen, rozugisweise mit den Heterostimen Shadsriff undrider Saucristiff und dem Substituenten (Gr-C)-Mik/k³.
 - R^g, R^{io} = unabhängig voneinander Wasserstoff, (C₁-C₆)Aikyi, (C₃-C₆)Aikenyi, (C₃-C₆)Aikinyi, (C₃-C₇)-

Cycloalityi, (C3-C7)Cycloalityi-(C -C4)aikyi, wobei die beiden terztgenannten Reste im Cycloalityiteil bis zu dreifach durch (C;-C,)Alkyl substitutert sein können; Formyl, Phenyl, Phenyl(C;-C,)alkyl, wobei die beiden letztgenannien Reste im Phenylteil bis zu dreifach durch Halogen, Niero, Cyano, (C1-C4)Alkyl, (C1-C4) Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substitutert sein können:

- 5 oder beide Reste R⁹, R¹⁰ stehen zusammen mit dem Stickstoffstom, an das sie gebunden sind, für einen unsubstitutierren oder bis zu viorfach substituierten 5- bis 7-gifedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C--C_e)Alkyl; bedeuten, sowie deren Säureadditionssalze.
- 10 3. Verfahren zur Herstellung von Verbindungen der Formel i gemäß Anspruch 1 oder 2, dadurch gokennzeichnet, daß man eine Verbindung der Formel II

worin R* - R^c die Bedeutungen wie in Formel I besitzen und X für Halogen steht, in Gegenwart einer Base mit einer Verbindung der Formel tit

worin R^y und R^a die Bedeutungen wie in Formel i besitzen, umsetzt.

4. Fungizion Mittel, dadurch gekennzeichnet, daß sie eine wirksame Menge einer Verbindung der Formel (gemäß Anspruch 1 oder 2 enthalten.

5. Verwendung von Verbindungen der Formet I gemäß Anspruch 1 oder 2 zur Bekämpfung von Schadpil-

6. Verfahren zur Bekämpfung von Schadpitzen, dadurch gekennzeichnet, daß man auf die von ihnen befallenen Pfianzen, Flächen oder Substrate eine wirksame Mange einer Verbindung der Fermel I gemäß Ansoruch 1 oder 2 appliziert.

« Patentansprüche für folgenden Vertragsstaat: ES

1. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man auf die von Ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung der Formel I

38

5/1

15

25

55 R1 = Wasserstoff, (C+-C+)Alkyl, (C+-C+)Alkoxy-(C+-C+)alkyl, (C+-C+)Alkylthio-(C+-C+)alkyl, (C2-C5)Alkeriy). (C2-C5)Alkinyi,(C3-C7)Cycloalkyl, (C3-C7)Cycloalkyl-(C1-C2)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C1-C4)Alkyl substituiert sein können, eine Gruppe R7R3N-(C1-C4)Alkyl, Phenyl, Phenoxy-(C1-C4) alkyl, Phenylmercapto-(C1-C4)alkyl, Phenoxy-phenoxy-(C1-C4)alkyl, Phenoxy-phenoxy-(C1-C4)

C_e)alkyl, wobel die fürft tetztgenannten Reele im Phenyltell bis zu draffech durch Halogen, Nitro, Cyenc. (G:-G-)alkyl, (G:-G-)Alkoxy, (G:-G-)Alkylthio, (G:-G-)Haloalkyl oder (G:-G-)Haloelkoxy substitutiert sein können.

- Pf. PS. Rf. = unebhängig voneinander Wasserstoff, (C;-Ce;Alkyl, Phenyl, wobel der Phonylrest blis zu direktioch durch Halogen, Nitro, Cyrano, (C;-Ce;Alkyl, (C;-Ce;Alkyl, C;-Ce;Alkyl), (C;-Ce;Alkyl), (C;-Ce;Alkyl),
 - P3 = Mussaseroift, (C₁-C₂)Alkyl, (C₂-C₂)Cyclosikyl, (C₂-C₂)Cyclosikyl-(C₁-C₂)alkyl, wobai die belden letzgenannien ?Beste im Oylocalkylidel bis zu dreifsich durch (C₁-C₂)Alkyr substituert sein könnan, (C₁-C₂)-Habalakyl, (C₂-C₂)Alkovyr, (C₃-C₂)Alkyr)hin, (C₃-C₂)Alkyry-(C₃-C₂)alkyl, eine Gruppe 8?ñ²N·, (C₃-C₂)
- 15 B* Wasserstoff, (C.-C.)Alkyl, (C.-C.)Alkoxy, (C.-C.)Alkoxy, (C.-C.)Alkenyloxy, (C.-C.)Alkinyloxy, (C.-C.)Alkylthio, Hacgon, Phanyl, wobsi der Phonylrest die zu dreiflach durch Halogon, Nitro. Cyano, (G.-C.)Alkylthio, (C.-C.)Halozikiyi, der (C.-C.)Halozikivy substituiert sein kann, oder R* und R* bilden zusermen eine Polymetriylenkerte der Formal (Cit.). et im = 3 4
- 29 R*, R* = unabäängig vonelnander Wasserstoff, (G.-Cs/Alkor), (G.-Cs/Alkory), (G.-Cs/Alkor
 - as oder beide Rosto R², R³ stehen zusammen mit dem Stokstoffatom, an das sie gebunden sind, für einen unsubsthierten oder bis zu wierfach substitutiorten 5- bis 7-gilleddigen, gesättigten oder ungseäftigten Hebreroybute mit i bis 3 gielchen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff undfoder Schwafel und dem Sticstituenten (Cr-Ca)Alkryl, bedeuten, sowie deren Stursdatformsetzle, applichten.
- sc 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I
 - Fi = Wasserstoff, (Ci-C₆)Alkyl, Phenyl, Phenyl-(Gr-C₂)alkyl, Phenoxy-(Ci-C₂)alkyl, Phenoxy-(Ci-C₂)alkyl, wobai die vier letztgenannten Reste im Phenylteit bis zu dreiflach durch Halogen oder (Cr-C₂)Alkyl substitutier sein köhnen; (Cr-C₂)Alkkyl substitutier sein köhnen köhnen können könne
- R², R² = unabhängig voneinander Wasserstoff, (C₁-C₂)Alkyl, Phenyl, wobei der Phenytrest bis zu dreifach 35 durch Halogen oder (G₁-C₂)Alkyl substituaert sein kann. R² = Wasserstoff.
 - Rf = Wassersoff, (C₁-C₆)Alkyl, (C₃-C₆)Cycloalkyl, (C₃-C₅)Cycloalkyl-(C₁-C₅)alkyl, Halogen, Phanyl, Phenyl-(C₁-C₅)alkyl, wobal die beiden letzgenannten Reste im Phenyl-diell unsubsitutiert oder bis zu dreifach durch Halogen, (C)-C₂-Alkyl-der (C)-C₃-Alkyl-dys substitutiert sein können,
- 49 RF = Wasserstott, (C1-C1)Alkyl, Halogen, Phenyl, (C1-C3)Alkoxy orier
 - R5 und R6 bilden zusammen eine Polymethylenkette der Formel -(Ch2)m- mit m = 3 4 und
 - R² und R³ unabhängig voneirunder Wassentoff, (C)-Cg-kliftyl, (C)-Cg-kliftyl), (C)-Cg-kliftyl), (C)-Cg-kliftyl, (C)-Cg-kliftyl), (C)-Cg-kliftyl, (C)-Cg-kliftyl), (C)-Cg-kliftyl, (C)-Cg-kliftyl, wobel dio beldon letzpenannten Restle im Cyclosifylfial bis zu zwelfach dutor, (C)-Cg-kliftyl, substitutiert sein können; Förmyl, Pharyll, Pharyll-(C)-Cg-kliftyl, wobel die beiden
- zwerach durch (Gr-cy/kky/substituert von kernisen, running, reening, reenin
- oder
 beitde Reste RY, RF stehen zusammen mit dem Stickstoffetom, an das sie gebunden sind, für einen unsuberbierteit oder bis zu zweifach substitutierten 5- bis 7-giedrigen gesättigten peter ungesättigten 6- bis einenzoyates mit 1 oder 2 gleichen oder verschlodenen Helsenstomen, vorzugsweise mit den Hetznestomen Stickstoff undroder Sauroströf und dem Substitutierten (Gr-Qhildry, bistetatient, sowie deren Stitutendafdinors-
 - 3. Verlahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 oder 2. dadurch gekennzeichnet, daß man eine Verbindung der Formel II

5.5

¹⁰ worin R! - Re die Bedeutungen wie in Formel I besitzen und X für Halogen sieht, in Gegenwart einer Base mit einer Verbindung der Formel III

worln R7 und R6 die Bedeutungen wie in Formel I besitzen, umsetzt.

ab 4 Verwendung von Verbindungen der Formel i geinäß Anspruch 1 oder 2 zur Bekämpfung von Schädpilzen.