Lista 1 - Entregar os exercícios 1, 2, 3, 6 e 7

- 1. É verdade que existe um polinômio de grau 3 que passa pelos pontos $P_1 = (0,1)$, $P_2 = (1,0)$, $P_2 = (2,-1)$, $P_3 = (3,2)$? Como encontrá-lo? Mostre que este problema é equivalente a resolver um sistema linear. Use um pacote computacional para resolver o sistema e para desenhar um gráfico com os pontos P_i e este polinômio interpolador.
- 2. Seja $A=\begin{bmatrix}1&0&1\\2&1&1\\3&1&2\\3&2&1\end{bmatrix}$. Use eliminação gaussiana para verificar se o sistema $A\cdot x=b,$ onde $b=[1,2,3,1]^T,$ tem solução.
- 3. Determine a inversa da matriz $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$
- 4. Poole: 23, 27, 33, 34, 35, 36
- 5. (Trefethen) Considere a matriz B de dimensões 4x4. Sobre ela são aplicadas as seguintes operações:
 - (a) Multiplicar a coluna 1 por 2
 - (b) Dividir a linha 1 por 3
 - (c) Adicionar a linha 3 à linha 1
 - (d) Trocar a coluna 1 com a coluna 4 de lugar
 - (e) Subtrair a linha 2 das demais linhas
 - (f) Substituir a coluna 4 pela coluna 3
 - (g) eliminar a coluna 1 (portanto o número de colunas é reduzido para 3)
 - i.
- Escreva o resultado como produto de 8 matrizes
- ii. Escreva o resultado novamente como um produto $A \cdot B \cdot C$ (mesmo B do enunciado) de três matrizes.
- 6. Monte um programa que tem como entrada uma matriz $L_{n\times n}$ triangular inferior e um vetor $b_{n\times 1}$ e devolve um vetor $x_{n\times 1}$ que é a solução de $L\cdot x=b$. O algoritmo implementado deve ter complexidade $O(n^2)$.
- 7. Estime a complexidade do algoritmo de solução de sistemas lineares do pacote computacional de sua preferência: registre os tempos que o pacote levou para resolver sistemas aleatórios $n \times n$, com n = 16, 32, 64, 128, 256, 512, 1024, 2048. Faça um gráfico do log do número de colunas contra o log dos tempos registrados. O algoritmo do pacote tem complexidade inferior a $O(n^3)$?

1