1. (currently amended) A compound of the formula I,

in which

W, X, Y are, independently of one another, O or S;

- R9, R10, R11, R12 are, independently of one another, H, F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, O-SO₂-(C₁-C₄)-alkyl, O-SO₂-phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-NH₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, (C₀-C₆)-alkylene-COOR13, CON(R14)(R15), (C₀-C₆)-alkylene-N(R14)(R15), NH-COR13, NH-CO-phenyl, NH-SO₂-phenyl or phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15);
- R13 is H, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl- (C_1-C_4) -alkyl;
- R1, R2 are, independently of one another, H, (C₁-C₆)-alkyl, where alkyl may be substituted by OH, O-(C₁-C₄)-alkyl or N(R14)(R15), or O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, CO-(C₁-C₆)-alkyl, CO-(C₂-C₆)-alkynyl, COOR13 or (C₀-C₆)-alkylene-COOR13;
- R3, R4, R5, R6 are, independently of one another, H, Cl_7 -Br, OH, CF₃, NO₂, CN, OCF₃, (C_1-C_6) -alkyl, (C_2-C_6) -alkynyl, (C_2-C_6) -alkynyl, (C_1-C_1) -alkyl, (C_2-C_1) -alkynyl, (C_2-C_1) -alkynyl, (C_3-C_1) -alkyl, (C_3-C_1) -alkynyl, (C_3-C_1) -alkyl, (C_3-C_1) -alkyl, (C

cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, Br, SO-phenyl, SO₂-phenyl, where the phenyl ring may be substituted by F, Cl, Br or R13, or OR13, COOR13, CON(R14)(R15), N(R14)(R15) or CO-heteroalkyl, or are O-SO-(C₁-C₆)-alkyl, O-SO₂-(C₁-C₆)-alkyl, O-SO₂-(C₆-C₁₀)-aryl, O-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OR13, R13, CF₃ or OCF₃, or are SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-(C₆-C₁₀)-aryl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or are SO₂-N(R14)(R15), COOR13, CO-heteroalkyl, N(R14)(R15) or heteroalkyl;

- R14, R15 are, independently of one another, H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or are (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, CO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-phenyl, COO-(C₁-C₆)-alkenyl-phenyl, OH, O-(C₁-C₆)-alkyl, O-(C₁-C₆)-alkenyl-phenyl or NH₂;
- or the radicals R14 and R15 form with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 2 further heteroatoms from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;
- R16, R17 are, independently of one another, H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or are (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl, CO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-phenyl, COO-(C₁-C₆)-alkenyl-phenyl, OH, O-(C₁-C₆)-alkyl, O-(C₁-C₆)-alkenyl-phenyl or NH₂;
- heteroalkyl is a 3-7-membered, saturated or up to triunsaturated heterocyclic ring which may comprise up to 4 heteroatoms which correspond to N, O or S, where the heterocyclic ring may be substituted at all sensible positions up to three times by F, Cl, Br, CN, oxo, (C₁-C₄)-alkyl, (C₀-C₄)-alkylene-COOR13, CON(R14)(R15), OR13, N(R14)(R15) or phenyl, where phenyl may be substituted by COOR13;
- R7 is H, (C₁-C₆)-alkyl, where alkyl may be substituted by OR13 or N(R14)(R15), or is O-(C₁-C₆)-alkyl, CO-(C₁-C₆)-alkyl or (C₀-C₆)-alkylene-COOR13;

R8 is N(R18)(R19) or OR20; or R8 and R4 together form the group NH CO;

R18, R19 are, independently of one another, H, (C₁-C₁₀)-alkyl, (C₂-C₁₀)-alkenyl, (C₂-C₁₀)alkynyl, (C_3-C_7) -cycloalkyl, (C_3-C_7) -cycloalkyl- (C_1-C_6) -alkyl, (C_6-C_{10}) -aryl, (C_6-C_{10}) $aryl-(C_1-C_4)-alkyl, (C_6-C_{10})-aryl-(C_2-C_4)-alkenyl, (C_6-C_{10})-aryl-(C_2-C_4)-alkynyl,$ heteroaryl, heteroaryl-(C₁-C₄)-alkyl, heteroaryl-(C₂-C₄)-alkenyl, heteroaryl-(C₂-C₄)alkynyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, CN, OR13, R13, CF₃, OCF₃, (C₆-C₁₀)-aryl, NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13 or CON(R14)(R15), and where aryl may be substituted more than once by F, Cl, CN, O-(C₁-C₆)-alkyl, O- (C_2-C_6) -alkenyl, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_1-C_6) -alkyl, (C_2-C_6) -alkyl, (C_2-C_6) -alkyl, (C_1-C_6) -alkyl, $(C_1-C_$ alkenyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH₃, OCH₃ or CN, or NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13, CON(R14)(R15), O-phenyl, phenyl or pyridyl; COOR13, CON-(R14)(R15), CO-heteroalkyl, CO-(C₆-C₁₀)-aryl or SO₂-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OH, (C₁-C₆)-alkyl, O-(C₁-C₆)alkyl, CF₃, OCF₃, COOR13 or CON(R14)(R15);

or the radicals R18 and R19 form with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 2 further heteroatoms from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;

eyeloalkyl-(C₁-C₆) alkyl, (C₂-C₁₀) alkenyl, (C₃-C₁₀) alkynyl, (C₄-C₄) eyeloalkyl, (C₆-C₁₀) aryl, (C₆-C₁₀) aryl-(C₁-C₄) alkyl, (C₆-C₁₀) aryl-(C₂-C₄) alkynyl, where aryl may be substituted more than once by F, Cl, CN, O (C₁-C₆) alkyl, O (C₂-C₆) alkonyl, (C₁-C₆) alkyl, (C₂-C₆) alkonyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH₃, OCH₃ or CN, or NH C(=NR14) N(R14)(R15), N(R14)(R15), C(=NR14) N(R14)(R15), O phenyl, phenyl or pyridyl, where phenyl may be substituted by F, Cl, CN or (C₁-C₆) alkyl;

or a pharmaceutically acceptable salt thereof,

provided the radicals R6, R7, X, Y and R8 do not have the following meanings at the same time:

R6 is H[[, Cl,]] or $CF_3[[, CH_3]]$;

R7 is H:

X is O; and

Y is O, S;

R8 is substituted or unsubstituted NH-phenyl.

2. (currently amended) A compound of the formula I as claimed in claim 1, wherein said compound has the structure of compound Ia:

wherein

is F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, O-SO₂-(C₁-C₄)-alkyl, O-SO₂-phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-NH₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl, -COOR13, (C₁-C₆)-alkylene-COOR13, CON(R14)(R15), -N(R14)(R15), (C₁-C₆)-alkylene-N(R14)(R15), NH-COR13, NH-COphenyl, NH-SO₂-phenyl or phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15);

R10, R11, R12 independently of one another are H, F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, O-SO₂-(C₁-C₄)-alkyl, O-SO₂-phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-NH₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl,

COOR13, (C₁-C₆)-alkylene-COOR13, CON(R14)(R15), N(R14)(R15), (C₁-C₆)-alkylene-N(R14)(R15), NH-CO-phenyl, NH-SO₂-phenyl or phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15);

- R13 is H, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl or (C_3-C_7) -cycloalkyl- (C_1-C_4) -alkyl;
- R3, R4, R5, are independently of one another H, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, (C₄, C₆) alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, O-(C₁-C₁₀)-alkyl, O-(C₂-C₁₀)-alkenyl, O-(C₂-C₁₀)-alkynyl, S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, Br, SO-phenyl, SO₂-phenyl, where the phenyl ring may be substituted by F, Cl, Br or R13, or OR13, COOR13, CON(R14)(R15), N(R14)(R15) or CO-heteroalkyl, or O-SO-(C₁-C₆)-alkyl, O-SO₂-(C₁-C₆)-alkyl, O-SO₂-(C₆-C₁₀)-aryl, O-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OR13, R13, CF₃ or OCF₃, or SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-(C₆-C₁₀)-aryl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or SO₂-N(R14)(R15), COOR13, CO-heteroalkyl, N(R14)(R15) or heteroalkyl;
- is F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, (C₁-C₆) alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, O-(C₁-C₁₀)-alkyl, O-(C₂-C₁₀)-alkynyl, O-(C₂-C₁₀)-alkynyl, S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, Br, SO-phenyl, SO₂-phenyl, where the phenyl ring may be substituted by F, Cl, Br or R13, or OR13, COOR13, CON(R14)(R15), N(R14)(R15) or CO-heteroalkyl, or O-SO-(C₁-C₆)-alkyl, O-SO₂-(C₁-C₆)-alkyl, O-SO₂-(C₆-C₁₀)-aryl, O-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OR13, R13, CF₃ or OCF₃, or SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-(C₆-C₁₀)-aryl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or SO₂-N(R14)(R15), COOR13, CO-heteroalkyl, N(R14)(R15) or heteroalkyl;
- R14, R15 independently of one another are H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl-6-

 (C_1-C_4) -alkyl, $CO-(C_1-C_6)$ -alkyl, $COO-(C_1-C_6)$ -alkyl, $COO-(C_1-C_6)$ -alkyl, $COO-(C_1-C_6)$ -alkyl, COO-phenyl, COO-phenyl, $COO-(C_1-C_6)$ -alkenyl-phenyl, OH, $O-(C_1-C_6)$ -alkyl, $O-(C_1-C_6)$ -alkenyl-phenyl or NH_2 ;

- or the radicals R14 and R15 form with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 2 further heteroatoms from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;
- R16, R17 independently of one another are H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, CO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-phenyl, COO-(C₁-C₆)-alkenyl-phenyl, OH, O-(C₁-C₆)-alkyl, O-(C₁-C₆)-alkenyl-phenyl or NH₂;
- heteroalkyl is a 3-7-membered, saturated or up to triumsaturated heterocyclic ring which may comprise up to 4 heteroatoms selected from N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, CN, oxo, (C₁-C₄)-alkyl, COOR13, (C₁-C₄)-alkylene-COOR13, CON(R14)(R15), OR13 or N(R14)(R15) or phenyl, where phenyl may be substituted by COOR13;
- R8 <u>is N(R18)(R19) or OR20;</u> or R8 and R4 together form the group NH CO;
- R18, R19 independently of one another are H, (C₁-C₁₀)-alkyl, (C₂-C₁₀)-alkenyl, (C₂-C₁₀)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₀)-aryl, (C₆-C₁₀)-aryl-(C₁-C₄)-alkyl, (C₆-C₁₀)-aryl-(C₂-C₄)-alkenyl, (C₆-C₁₀)-aryl-(C₂-C₄)-alkynyl, heteroaryl, heteroaryl-(C₁-C₄)-alkyl, heteroaryl-(C₂-C₄)-alkenyl, heteroaryl-(C₂-C₄)-alkynyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, CN, OR13, R13, CF₃, OCF₃, (C₆-C₁₀)-aryl, NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13 or CON(R14)(R15), and where aryl may be substituted more than once by F, Cl, CN, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, CO-(C₁-C₆)-alkyl, CO-(C₂-C₆)-alkenyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH₃, OCH₃ or CN, or NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13, CON(R14)(R15), O-phenyl, phenyl or pyridyl;

COOR13, CON-(R14)(R15), CO-heteroalkyl, CO-(C₆-C₁₀)-aryl or SO₂-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OH, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, CF₃, OCF₃, COOR13 or CON(R14)(R15);

or the radicals R18 and R19 form together with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 3 heteroatoms selected from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;

eycloalkyl, (C₂-C₁₀) alkenyl, (C₂-C₁₀) alkenyl, (C₅-C₁₀) aryl, (C₆-C₁₀) aryl (C₁-C₄) alkyl, (C₆-C₁₀) aryl (C₂-C₄) alkyl, (C₆-C₁₀) aryl (C₂-C₄) alkyl, (C₆-C₁₀) aryl (C₂-C₄) alkynyl, where aryl may be substituted more than once by P; Cl, CN, O-(C₁-C₆) alkyl, O-(C₂-C₆) alkenyl, (C₁-C₆) alkyl, (C₂-C₆) alkenyl, where alkyl and alkenyl-may be substituted more than once by P, Cl, CH₂, OCH₂-or-CN, or NH-C(=NR14) N(R14)(R15), N(R14)(R15), C(=NR14) N(R14)(R15), O-phenyl, phenyl or pyridyl, where phenyl may be substituted by F, Cl, CN or (C₁-C₆) alkyl;

or a pharmaceutically acceptable salt thereof,

provided the radical R8 is not substituted or unsubstituted NH-phenyl.

3. (currently amended) A compound of the formula Ia as claimed in claim 2, wherein

R9, R10, R11 independently of one another are F or Cl;

R12 is H;

R13 is H, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl or (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl;

R14, R15 independently of one another are H or (C_1-C_6) -alkyl, where alkyl may be substituted by $N(R13)_2$;

heteroalkyl is a 3-7-membered, saturated or up to triunsaturated heterocyclic ring which may comprise up to 4 heteroatoms selected from N, O or S, where the heterocyclic ring may

be substituted up to three times by F, Cl, Br, CN, oxo, (C₁-C₄)-alkyl, COOR13, (C₁-C₄)-alkylene-COOR13, CON(R14)(R15), OR13 or N(R14)(R15) or phenyl, where phenyl may be substituted by COOR13;

R8 is N(R18)(R19)-or OR20; or R8 and R4 together form the group- NH CO-;

R18, R19 independently of one another are H, (C1-C10)-alkyl, (C2-C10)-alkenyl, (C2-C10)-alkynyl, (C_3-C_7) -cycloalkyl, (C_3-C_7) -cycloalkyl- (C_1-C_6) -alkyl, (C_6-C_{10}) -aryl, (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl, (C_6-C_{10}) -aryl- (C_1-C_1) - C_4)-alkyl, (C_6-C_{10}) -aryl- (C_2-C_4) -alkenyl, (C_6-C_{10}) -aryl- (C_2-C_4) -alkynyl, heteroaryl, heteroaryl-(C₁-C₄)-alkyl, heteroaryl-(C₂-C₄)-alkenyl, heteroaryl-(C₂-C₄)-alkynyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, CN, OR13, R13, CF₃, OCF₃, (C₆-C₁₀)-aryl, NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13 or CON(R14)(R15), and where aryl may be substituted more than once by F, Cl, CN, O-(C1-C6)-alkyl, O-(C2-C6)-alkenyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, CO-(C₁-C₆)-alkyl, CO-(C₂-C₆)-alkenyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH₃, OCH₃ or CN, or NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13, CON(R14)(R15), O-phenyl, phenyl or pyridyl; COOR13, CON-(R14)(R15), CO-heteroalkyl, CO-(C₆-C₁₀)-aryl or SO₂-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OH, (C1-C6)-alkyl, O-(C1-C6)alkyl, CF₃, OCF₃, COOR13 or CON(R14)(R15);

or the radicals R18 and R19 form together with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 3 heteroatoms selected from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl[[;]].

is (C₁-C₁₀) alkyl, (C₂-C₁₀) alkenyl, (C₂-C₁₀) alkynyl, (C₃-C₄) eyeloalkyl, (C₆-C₁₀) aryl, (C₆-C₁₀) aryl (C₁-C₄) alkyl, (C₆-C₁₀) aryl (C₂-C₄) alkyl, (C₆-C₁₀) aryl (C₂-C₄) alkynyl, where aryl may be substituted more than once by F, Cl, CN, or O (C₄-C₆) alkyl.

4. (previously presented) A pharmaceutical composition comprising one or more of the compounds as claimed in claim 1 and an acceptable carrier.

- 5. (withdrawn) A pharmaceutical composition comprising one or more of the compounds as claimed in claim 1, an acceptable carrier, and at least one other active ingredient.
- 6. (withdrawn) A pharmaceutical composition as claimed in claim 5, wherein the other active ingredient comprises one or more antidiabetics, hypoglycemic active ingredients, HMG-CoA reductase inhibitors, cholesterol absorption inhibitors, PPAR gamma agonists, PPAR alpha agonists, PPAR alpha/gamma agonists, fibrates, MTP inhibitors, bile acid absorption inhibitors, CETP inhibitors, polymeric bile acid adsorbents, LDL receptor inducers, ACAT inhibitors, antioxidants, lipoprotein lipase inhibitors, ATP-citrate lyase inhibitors, squalene synthetase inhibitors, lipoprotein(a) antagonists, lipase inhíbitors, insulins, sulfonylureas, biguanides, meglitinides, thiazolidinediones, α -glucosidase inhibitors, active ingredients which act on the ATP-dependent potassium channel of the beta cells, CART agonists, NPY agonists, MC4 agonists, orexin agonists, H3 agonists, TNF agonists, CRF agonists, CRF BP antagonists, urocortin agonists, β3 agonists, MSH (melanocyte-stimulating hormone) agonists, CCK agonists, serotonin reuptake inhibitors. mixed serotoninergic and noradrenergic compounds, 5HT agonists, bombesin agonists, galanin antagonists, growth hormones, growth hormone-releasing compounds, TRH agonists, decoupling protein 2 or 3 modulators, leptin agonists, DA agonists (bromocriptine, Doprexin), lipase/amylase inhibitors, PPAR modulators, RXR modulators or TR-β agonists or amphetamines.
- 7. (original) A process for producing a pharmaceutical composition comprising mixing one or more of the compounds as claimed in claim 1 with an active ingredient and a pharmaceutically suitable carrier and converting this mixture into a suitable for administration.
- 8. (withdrawn) A method for reducing blood glucose, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
- 9. (withdrawn) A method for treating type 2 diabetes, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
- 10. (withdrawn) A method for treating disturbances of lipid and carbohydrate metabolism, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
- (withdrawn) A method for treatin arteriosclerotic manifestations, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.

12. (withdrawn) A method for treating insulin resistance, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.