

基于Efinix FPGA的RISC-V 处理器开发入门指南

Bruce Chen 陈弘 +8613880416630 brucec@efinixinc.com Richard Zhu 朱仁昌 +8613735539530 richardz@efinixinc.com

需要准备的工具

- 硬件开发环境
 - Efinity开发软件
 - O Python 3.7 For Windows
 - ModelSim仿真软件
 - EFX RISCV1.0硬件工程实例
 - C232HM-DDHSL-D电缆
- 软件开发环境
 - 集成开发环境GNU MCU Eclipse IDE
 - 编译工具GNU GCC
 - GNU嵌入工具链
 - 调试工具OpenOCD
 - 软件工程实例
- 在线调试工具
 - RS232-TTL串口电缆
 - Trion T20 BGA256开发板
 - C232HM-DDHSL-D电缆

RISC-V软件开发环境配置操作指南

开发工具套件

- 集成开发环境GNU MCU Eclipse IDE
 - https://github.com/gnu-mcueclipse/org.eclipse.epp.packages/release
- 编译工具GNU GCC
 - https://github.com/gnu-mcueclipse/windows-build-tools/releases
- GNU 嵌入工具链
 - https://www.sifive.com/boards
- 调试工具OpenOCD
 - Efinix公司提供
- 工程实例
 - Efinix公司提供

工程实例

- Common
 - 链接和mk文件
- Dhrystone
- gpioDemo
- gpioInterruptDemo
- include
 - Library available
- timerDemo
- uartDemo

Eclipse的开发环境配置

- 新建项目
- 编译环境配置
- 调试环境配置

新建工程-选择工程类型

- 打开Eclipse IDE开发环境
- 选择New -> Project
 - Makefile Project with Existing Code
 - 点击Next

新建工程-选择源程序目录和编译工具

New Project ● 指定源代码目录 Import Existing Code Create a new Makefile project from existing code in that same directory (本例为 gpioDemo) Project Name Existing Code Location « software > standalone > gpioDemo VO 搜索 Browse.. 文件夹 Languages 修改日期 VC VC++ .settings 2019/6/21 14:10 Toolchain for Indexer Settings build 2019/6/21 14:16 <none> ARM Cross GCC 2019/6/21 14:07 GNU Autotools Toolchain RISC-V Cross GCC Show only available toolchains that support this platform ● 指定编译工具

Cancel

Cross GGC

(?)

< Back

新建工程-编辑和检查makefile文件

- ●双击makefile
 - 对比下图检查路径和内容

```
eclipse-workspace - gpioDemo/makefile - Eclipse IDE
File Edit Navigate Search Project Run Window Help
                                                    ∨ © gpioDemo Default
             * Debug

† De... ↑ Pro... □

                       ≧ makefile ≅
                         1 PROJ NAME=gpioDemo
                         2 DEBUG=ves
> 🕰 gpioDemo
                          3 MULDIV=ves
                          4 COMPRESSED=yes
                          5 STANDALONE = ...
                         7 SRCS = ${shell find src -type f -name *.c} \
                                  ${shell find src -type f -name *.cpp} \
                                  ${shell find src -type f -name *.S}
                         10
                        11 LDSCRIPT = ${STANDALONE}/common/linker ram.ld
                        12
                        13 CFLAGS += -I${STANDALONE}/include
                        14
                        15 include ${STANDALONE}/common/riscv64-unknown-elf.mk
                        16 include ${STANDALONE}/common/standalone.mk
                         17
                        18
```

Eclipse的开发环境配置

- 新建项目
- 编译环境配置
- 调试环境配置

配置编译器路径(1)

- 选中工程(本例为 gpioDemo)
 - Right click
 - Properties

配置编译器路径(2)

配置编译器路径(3)

● 添加GNU MCU Build Tool工具包路径

● 添加GNU GCC工具包路径

备注:将包含上面两个工具包的文件夹路径添加到上一页PPT所示的Path环境变量里

Eclipse的开发环境配置

- 新建项目
- 编译环境配置
- 调试环境配置

调试环境配置(1)

- Step1 Build
- Step2 Run Debug Configuration

调试环境配置(2)

● 添加调试工具和配置文件相关路径

Debug Configurations

调试环境配置(3)

Step1 OpenOCD 路径

xecutable pat	n: D:\efinix\ris	D:\efinix\riscv_demo\openocd_VexRiscv\bin\win64\openocd.exe						
DATA (D:) >	efinix > riscv_demo >	openocd_VexRiscv > bin > v	vin64					
Name	^	Date modified	Туре	Size				
openocd.e	xe	5/15/2019 12:00 PM	Application	6.140 KB				

Config options:

-f "D:\efinix\riscv_demo\openocd_riscv-riscv_spinal\tcl\interface\ftdi\c232hm.cfg" c 'set MURAX_CPU0_YAML D:\\efinix\riscv_demo\\EFX_Riscv-master_20190514\\cpu0.yaml' -f "D: \\efinix\riscv_demo\openocd_riscv-riscv_spinal\tcl\target\murax.cfg"

DATA (D:) > efinix > riscv_demo > openocd_riscv-riscv_spinal > tcl > interface >						
Name	Date modified	Туре	Size			
ft232r.cfg	4/3/2019 12:06 AM	Text Document	1 KB			
imx-native.cfg	4/3/2019 12:06 AM	Text Document	1 KB			
jlink.cfg	4/3/2019 12:06 AM	Text Document	1 KB			
jtag_tcp.cfg	4/3/2019 12:06 AM	Text Document	1 KB			

调试环境配置(4)

Step3 cpu0.yaml 和 murax.cfg路径

调试环境配置(5)

● Step4 GDB 调试工具路径

Executable name: D:\efinix\riscv_demo\tools\bin\riscv64-unknown-elf-gdb.exe

● 在Debug 配置菜单下执行Debug

● 退出Debug配置点击继续运行

RISC-V硬件开发、仿真和固化操作 指南

硬件开发环境

- 硬件开发所需相关软件和准备
 - Efinity开发软件
 - Python 3.7 For Windows
 - ModelSim仿真软件
 - 硬件工程实例
 - C232HM-DDHSL-D电缆
 - 软件工程编译生成的bin文件

硬件工程实例文件清单和说明

在Modelsim里仿真RISC-V

- Test bench代码: TestRiscVAXI.v
- RiscV处理器代码: EfxRiscvSoc.v
- RiscV顶层代码: EFX_Riscv.v
- 初始化头文件: Init_File.v

注意: 打开Init_File.v,确保 `define Simulation没有被注释掉,确保SoftBinFile正确路径

```
//需要固化程序,将"Simulation"注释掉

`define Simulation

//路径必须使用"/"

//SoftBinFile需要完整的路径名,可以采用绝对地址也可以采用相对地址
```

```
define SoftBinFile "D:/Efinix/RISC_V/software/standalone/gpioDemo/build/gpioDemo.bin"
define SoftHexFile1 "gpioDemo1.Hex"
define SoftHexFile2 "gpioDemo2.Hex"
define SoftHexFile3 "gpioDemo3.Hex"
```


Modelsim仿真结果

对应于这一段C代码生成的BIN 文件运行在RISC-V里,用 Modelsim功能仿真产生的波形 里可以看到GPIO计数值累加和 UART串口的信号翻转。

```
void main() {
    init();
    uint32_t counter = 0;
    uint32_t count_val=10;
    uart_writeStr(UART_A, "EFX RiscV GPIO & UART Demo!\n\r");
    while(1){
        if(counter++ == count_val){
            GPIO_A->OUTPUT = GPIO_A->OUTPUT + 1;
            counter = 0;
        }
        if (uart_readOccupancy(UART_A)){
            uart_read(UART_A);
            uart_writeStr(UART_A, "Input a count value:");
            count_val = uart_readuint(UART_A);
            counter = 0;
        }
    }
}
```


RISC-V ROM初始化文件生成

- ℓ 在固化RISC-V之前需要将软件生成的.BIN文件转化成FPGA编译需要的ROM初始化.HEX文件
- ℓ 由于在RISC-V的FPGA硬件设计里ROM被例化成了四块独立的Block RAM所以还需要对生成的 初始化文件进行分割
- ℓ 文件类型转换和分割都由SoftwareBinToHex.py完成

如果这里没有设置或注释掉了, SoftwareBinToHex.py会使用代码中缺省路径或文件

RISC-V ROM初始化文件生成步骤

- 打开硬件工程根目录下的Init_File.v, 保证 SoftBinFile路径指向软件工程生成的.BIN文件并将`define Simulation注释掉
- 双击运行RISC-V硬件工程目录下的 SoftwareBinToHex.py
- 完成.bin文件到.hex文件的转换和分割

RISC-V ROM初始化文件生成结果

```
D:\Efinix\Design\RISC_V\EFX_RiscV_Axi\EFX_RiscV_Axi_V10>SoftwareBin2Hex.py

2019-06-11 15:47:45

Source Bin File: D:/Efinix/RISC_V/software/standalone/gpioDemo/build/gpioDemo.bin

Taget Hex File: gpioDemo0. Hex

Taget Hex File: gpioDemo1. Hex

Taget Hex File: gpioDemo2. Hex

Taget Hex File: gpioDemo3. Hex

Conversion success!!!
```

用Efinity编译RISC-V处理器工程

- 进入Efinity,打开EFX_RiscV_Axi.xml工程
 - 选择生成SPI Passive比特文件
 - 选择PS模式可实现FPGA PS加载和CPU JTAG调试接口复用
 - 也可选择生成SPI Active比特文件通过T20开发板板载USB电缆以任意模式加载FPGA
- 运行SoftwareBinToHex.py,并编译整个工程生成FPGA比特流文件

注意:

- 1、运行SoftwareBinToHex.py之前,保证Init_File.v和SoftwareBinToHex.py在工程目录下;
- 2、打开Init_File.v,注释掉`define Simulation(不然编译会出错),检查并确保SoftPinFile证确保经

```
//需要固化程序,将"Simulation"注释掉

// define Simulation

//路径必须使用"/"

//文件定义需要完整的路径名,可以采用绝对地址也可以采用相对地址

define SoftBinFile "D:/RISCV/RiscV_v1.0/software/standalone/gpioDemo/build/gpioDemo.bin"

define SoftHexFile0 "gpioDemo0.Hex"

define SoftHexFile1 "gpioDemo1.Hex"

define SoftHexFile2 "gpioDemo2.Hex"

define SoftHexFile3 "gpioDemo3.Hex"
```

编译结果

C232HM/RS232-TTL电缆和T20F256开发板连接示意图

在线调试工具

- RS232-TTL串口电缆
- Trion T20 BGA256开发 板
- C232HM-DDHSL-D电缆

FPGA PS加载和CPU JTAG调试接口复用说明

由FTDI C232HM电缆JTAG模式和 SPI模式下管脚定义可见,只要在 设计中将CPU的JTAG相关管脚锁 定到对应的FPGA PS模式下载管脚 上,即可实现CPU的JTAG调试接 口与FPGA PS加载的接口复用。

Colour	Pin Number	Name	Туре	Description
Orange	2	SK	Output	Serial Clock
Yellow	3	DO	Output	Serial data output
Green	4	DI	Input	Serial Data Input
Brown	5	cs	Output	Serial Chip Select

Table 3.3 MPSSE Option SPI - Signal Descriptions

Colour	Pin Number	Name	Туре	Description
Orange	2	тск	Output	Test Interface Clock
Yellow	3	TDI	Input	Test Data Input
Green	4	TDO	Output	Test Data Output
Brown	5	TMS	Output	Test Mode Select

Table 3.2 MPSSE Option JTAG - Signal Descriptions

	FTDI			Flash		RISC-V		
NO	Color	JTAG Pin	SPI Pin	SPI Flash	Conf. Pin	T20 GPIO	T20 Demo Board	Pin name
1		VCC	VCC	VCC	VCC	VCC	VCC	VCC
2	ORANGE	TCK	SK	SCK	CCK	GPIO_01_CCK	CLK	io_jtag_tck
3	YELLOW	TDI	DO	SDI	CDI0	GPIO_08_CDI0	MOSI	io_jtag_tdi
4	GREEN	TDO	DI	SDO	CDI1	GPIO_09_CDI1	MISO	io_jtag_tdo
5	BROWN	TMS	CS	CS_B	SS_N	GPIO_00_SS	SS	io_jtag_tms
6	GREY	GPIOL0	GPIOL0		Creset		CRST	
7	PURRLE	GPIOL1	GPIOL1		ConfDone		CDONE	
8	WHITE	GPIOL2	GPIOL2					
9	BLUE	GPIOL3	GPIOL3					
10	BLACK	GND	GND	GND	GND	GND	GND	GND

注意: CPU的JTAG调试口的四个管脚是不同于FPGA下载专用JTAG口的,可以锁定在FPGA的任意可用IO上。FPGA的PS模式加载管脚在加载完成以后可以作为IO使用。这里将CPU的JTAG管脚锁定到FPGA的SPI管脚上,实现同一根电缆PS加载FPGA完成后到CPU JTAG调试无缝转换。

PS模式下载FPGA配置文件

按照下表对应关系连接C232HM-DDHSL-D电缆和T20 开发板SPI插 座

打开Programmer选择PS模式下载 下裁完成以后可以观察到USER LE

下载完成以后可以观察到USER_LED D3-D10按C程序的计数闪烁下载成功后,如果看不到闪烁,原因是C程序计数间隔初始值太小,可通过调整软件工程里main.c里counter_val的初始值重新编译软件工程生成新的bin文件,重复此前的步骤来观察到直观的计数闪烁,也可以通过连接串口直接修改计数值来观察LED计数闪

	ىل.	ニャア シ	- ///					
FTDI				Flash		RISC-V		
NO	Color	JTAG Pin	SPI Pin	SPI Flash	Conf. Pin	T20 GPIO	T20 Demo Board	Pin name
1		VCC	VCC	VCC	VCC	VCC	VCC	VCC
2	ORANGE	TCK	SK	SCK	CCK	GPIO_01_CCK	CLK	io_jtag_tck
3	YELLOW	TDI	DO	SDI	CDI0	GPIO_08_CDI0	MOSI	io_jtag_tdi
4	GREEN	TDO	DI	SDO	CDI1	GPIO_09_CDI1	MISO	io_jtag_tdo
5	BROWN	TMS	CS	CS_B	SS_N	GPIO_00_SS	SS	io_jtag_tms
6	GREY	GPIOL0	GPIOL0		Creset	A805, 0005	CRST	370 0300
7	PURRLE	GPIOL1	GPIOL1		ConfDone		CDONE	
8	WHITE	GPIOL2	GPIOL2	HOLD			HOLD	
9	BLUE	GPIOL3	GPIOL3				111 11 111 111 1	
10	BLACK	GND	GND	GND	GND	GND	GND	GND

RISC-V软硬件开发交互流程

技术支持联系方式

https://www.efinixinc.com/support/login.php

Bruce Chen 陈弘 +8613880416630 brucec@efinixinc.com Richard Zhu 朱仁昌 +8613735539530 richardz@efinixinc.com

谢 谢!

