SOFT-SUBSPACE CLUSTERING ON A HIGH-DIMENSIONAL MUSICAL DATASET

Emil Juzovitski

August 27, 2019

Master Thesis Presentation

Examiner: Pawel Herman Supervisor: Johan Gustavsson

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

METHOD

RESULTS

DISCUSSION

What is Clustering analysis?

Finding clusters (groups) in a set of data objects

What is Clustering analysis?

Finding clusters (groups) in a set of data objects

- feature similar data objects partitioned into the same cluster
- feature dissimilar data objects partitioned into different cluster.

What is Clustering analysis?

Finding clusters (groups) in a set of data objects, based on similarity

Example Tasks:

- Fitting products into different aisles in a grocery store
- Grouping distributors based on the products they sell

What is Clustering analysis?

Finding clusters (groups) in a set of data objects, based on similarity

- Point/Object vector of features describing the object
- How do we measure similarity?

$$D(X_1, X_2) = \sum_{j=1}^{m} d(x_{1j}, x_{2j})$$

Where *j* is a feature.

OUR DATASET AND TASK

Task

Categorizing songs based on anonymous numerical audio features

- •
- •

OUR DATASET AND TASK

Task

Categorizing songs based on anonymous numerical audio features

- Not specifically looking to categorize data based on genre
- Can we find usable themes, composers can not?

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

METHOD

RESULTS

DISCUSSION

APPROACHES TO CLUSTERING

k-means

Partition-based clustering measuring similarity through the Euclidean distance

•

APPROACHES TO CLUSTERING

k-means

Partition-based clustering measuring similarity through the Euclidean distance

Find k clusters by iteratively optimizing cluster- centers and members

k-means

Iteratively optimize one variable at a time for cost function P(U, C) where U is the partition matrix, and C the cluster center.

P1. Assign each point to the most similar cluster.

Fix C =
$$\hat{C}$$
, optimize $P(U, \hat{C})$

P2. Update the mean for each cluster.

Fix U =
$$\hat{U}$$
 optimize $P(\hat{U}, C)$

4

k-means

Iteratively optimize one variable at a time for cost function P(U, C) where U is the partition matrix, and C the cluster center.

P1. Assign each point to the most similar cluster.

Fix C =
$$\hat{C}$$
, optimize $P(U, \hat{C})$

$$u_{il} = \begin{cases} 1 & d(X_i, C_l) \le d(X_i, C_t) & \text{for } 1 \le t \le k \\ 0 & \text{for } t \ne l \end{cases}$$

k-means

Iteratively optimize one variable at a time for cost function P(U, C) where U is the partition matrix, and C the cluster center.

P2. Update the mean for each cluster.

Fix U =
$$\hat{U}$$
 optimize $P(\hat{U}, C)$

$$c_{lj} = \frac{\sum_{i=1}^{n} u_{il} x_{ij}}{\sum_{i=1}^{n} u_{il}}$$

- 1. Choose initial cluster representatives \mathcal{C}^0
- 2. Fix $C^t = \hat{C}$, optimize $P(U^t, \hat{C})$, Obtain $P(U^{t+1}, \hat{C})$ If $P(U^t, \hat{C}) = P(U^{t+1}, \hat{C})$ RETURN $P(U^t, \hat{C})$ (Convergence)
- 3. FIX U^{t+1} = \hat{U} , OPTIMIZE $P(\hat{U},C^t)$ OBTAIN $P(\hat{U},C^{t+1})$ IF $P(\hat{U},C^t)=P(\hat{U},C^{t+1})$ RETURN $P(\hat{U},C^t)$ (CONVERGENCE)
- 4. Repeat steps 2. and 3.

APPROACHES TO CLUSTERING

Problems:

- · Using the wrong features is destructive.
- Knowing what features to use is hard and time-intensive, sometimes impossible.
- Rhythm, Vocals? for theme₂?

APPROACHES TO CLUSTERING

Soft-subspace clustering

An extension of K-means with an additional variable to optimize $\mathbf{W}-$ allowing cluster unique feature weights.

- Automatic
- Embedded
- Cluster unique feature weights (Subspaces)
- Linear!

- 1. Choose initial cluster representatives C^0
- 2. FIX $C^t = \hat{C}$, $W^t = \hat{W}$, OPTIMIZE $P(U^t, \hat{C}, \hat{W})$. OBTAIN $P(U^{t+1}, \hat{C}, \hat{W})$ IF $P(U^t, \hat{C}, \hat{W}) = P(U^{t+1}, \hat{C}, \hat{W})$

RETURN
$$P(U^t, \hat{C}, \hat{W})$$
 (CONVERGENCE)

3. FIX $U^{t+1} = \hat{U}$, $W^t = \hat{W}$, OPTIMIZE $P(\hat{U}, C^t, \hat{W})$. OBTAIN

$$P(\hat{U}, C^{t+1}, \hat{W})$$

IF $P(\hat{U}, C^t, \hat{W}) = P(\hat{U}, C^{t+1}, \hat{W})$

RETURN
$$P(\hat{U}, C^t, \hat{W})$$
 (CONVERGENCE)

4. FIX
$$\hat{U} = U^{t+1}$$
, $\hat{C} = C^{t+1}$, **OPTIMIZE** $P(\hat{U}^t, \hat{C}^t, W^t)$. **OBTAIN** $P(\hat{U}, \hat{C}, W^{t+1})$
IF $P(\hat{U}, \hat{C}, W^t) = P(\hat{U}, \hat{C}, W^{t+1})$.

RETURN
$$P(\hat{U}, \hat{C}, W^t)$$
 (Convergence)

4. FIX
$$\hat{U} = U^{t+1}$$
, $\hat{C} = C^{t+1}$, **OPTIMIZE** $P(\hat{U}^t, \hat{C}^t, W^t)$. **OBTAIN** $P(\hat{U}, \hat{C}, W^{t+1})$ **IF** $P(\hat{U}, \hat{C}, W^t) = P(\hat{U}, \hat{C}, W^{t+1})$. **RETURN** $P(\hat{U}, \hat{C}, W^t)$ **(CONVERGENCE)**

SSC ALGORITHMS

1. FSC

$$P(U,C,W) = \sum_{l=1}^{k} \left[\sum_{i=1}^{n} \sum_{j=1}^{m} u_{il} w_{lj}^{\beta} d(x_{ij},c_{lj}) + \epsilon \sum_{j=1}^{m} w_{lj}^{\beta} \right]$$
(1)

$$W_{lj} = \frac{1}{\sum_{t=1}^{m} \left[\frac{D_{lj} + \epsilon}{D_{lt} + \epsilon}\right]^{\frac{1}{\beta - 1}}}$$
(2)

$$D_{lj} = \sum_{X_i \in C_l} d(X_{ij}, C_{lj}) \tag{3}$$

- 2. EWKM
- 3. LEKM

SSC ALGORITHMS

- 1. FSC
- 2. EWKM

$$P(U,C,W) = \sum_{l=1}^{k} \left[\sum_{i=1}^{n} \sum_{j=1}^{m} u_{il} w_{lj} d(x_{ij},c_{lj}) + \gamma \sum_{j=1}^{m} w_{lj} log(w_{lj}) \right]$$
(1)

$$c_{lj} = \frac{\sum_{X_i \in C_l} x_{ij}}{\mathsf{Count}_{X_i \in C_l}} \tag{2}$$

$$w_{lj} = \frac{\exp(\frac{-D_{lj}}{\gamma})}{\sum_{t=1}^{m} \exp(\frac{-D_{lt}}{\gamma})}$$
(3)

(4)

3. LEKM

SSC ALGORITHMS

- 1. FSC
- 2. EWKM
- 3. LEKM

$$P(U,C,W) = \sum_{l=1}^{k} \sum_{i=1}^{n} u_{il} \left[\sum_{j=1}^{m} w_{lj} \ln \left[1 + d(x_{ij},c_{lj}) \right] + \gamma \sum_{j=1}^{m} w_{lj} \ln(w_{lj}) \right]$$
(1)

$$c_{lj} = \frac{\sum_{X_i \in C_l} \left[1 + d(x_{ij}, c_{lj}) \right]^{-1} x_{ij}}{\sum_{X_i \in C_l} \left[1 + d(x_{ij}, c_{lj}) \right]^{-1}}$$
(2)

$$w_{lj} = \frac{\exp(\frac{-D_{lj}}{\gamma})}{\sum_{t=1}^{m} \exp(\frac{-D_{lt}}{\gamma})}$$
(3)

$$D_{lj} = \frac{\sum_{X_i \in C_l} \ln \left[1 + d(x_{ij}, c_{lj}) \right]}{\operatorname{Count}_{X_i \in C_l}} \tag{4}$$

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

METHOD

RESULTS

DISCUSSION

PROBLEM STATEMENT

- 1. What is a suitable soft-subspace algorithm for the given dataset?
- 2. How does the performance of the chosen soft-subspace clustering algorithm compare to K-means from the perspective of novelty and general quality?

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

METHOD

RESULTS

DISCUSSION

METHOD

- **Method PS 1.** Tuning parameters on an external criteria genre purity Selecting the best algorithm.
- **Method PS 2.** Asked a panel of music composers to rate clusters.

METHOD PS 1.

Hyperparameter	Description	Algorithm
k	Number of clusters	All
$egin{array}{c} eta \ \gamma \end{array}$	Weighting factor for fuzzy-weighting algorithms Entropy regularization factor	FSC EWKM, LEKM

METHOD PS 2.

Criteria	Description
Audio Similarity Cultural Similarity	How well do songs in the cluster share audio patterns? How well do songs in the cluster share an audience?
Playlist Uniqueness General Quality	How easy would it be for a composer come up with a similar playlist? How useful is the cluster for the composers?

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

METHOD

RESULTS

DISCUSSION

RESULTS PART I.

	K-means	EV	VKM	L	EKM	F	SC
k	Purity	$\overline{\gamma}$	Purity	γ	Purity	β	Purity
50	39.0%	0.005	28.2%	0.0	38.8%	30.0	38.0
100	40.8%	0.005	28.9%	2.1	40.6%	15	39.6
500	45.4%	0.001	28.6%	1.4	45.5%	30.0	43.8%

Best parameter- and purity-score (γ, β) given k, where scores represent the mean purity of three runs.

RESULTS PART I.

(a) EWKM

(b) LEKM

RESULTS PART 2.

	Mean And Standard Deviation					
Source	General Quality	Audio Similarity	Cultural Similarity	Playlist Uniqueness		
Playlist	7.7 (1.2)	7.8 (1.5)	7.7 (0.6)	4.5 (3.5)		
K-means	6.6 (2.5)	7.0 (2.3)	6.2 (2.9)	5.4 (3.2)		
LEKM	6.4 (3.4)	6.4 (2.4)	6.0 (2.5)	3.8 (2.6)		
	One-Way ANOVA					
Index	General Quality	Audio Similarity	Cultural Similarity	Playlist Uniqueness		
F _{0.05}	0.21	0.45	0.47	0.37		
F _{crit}	4.10	3.98	4.10	3.98		
P_value	0.81	0.65	0.64	0.70		

FINDINGS

- 1. Cannot differ k-means and LEKM in terms of purity
- 2. Cannot reject H_0 , $\mu_{playlist} = \mu_{kmeans} = \mu_{LEKM}!$

INTRODUCTION

BACKGROUND

PROBLEM STATEMENT

METHOD

RESULTS

DISCUSSION

DISCUSSION

- Limitations in testing purity, composer evaluation
- Underlying dataset problems, another limitation
- Dataset properties enjoy uniform weights?

FUTURE WORK

- 1. Better Initialization
- 2. Mixed Data SSC.
- 3. Inter-cluster distances
- 4. Automize k-selection.

1. OPPONENT QUESTIONS.

2. OTHER QUESTIONS.