線性代數 2016 期中考 〔請依題號順序作答,否則扣5%;若該題沒有解答,請回答 "無解";除了回答 Yes or No 或 Dep. or Ind.的題目外,應寫出計算的主要過程,否則不計分。〕

- Definition or description (20%) 請回答時不必抄題目:
 - 1.1 Two systems of equations involving the same variables are said to be equivalent. p.20 if they have same solution sets.
 - 1.2 An $n \times n$ matrix is said to be singular. p.70 If It doe not have a multiplicative inverse.
 - An $n \times n$ matrix A is said to be symmetric. p.57 If $A^T = A$. 1.3
 - $\mathbb{R}^{m \times n}$ p131 The set of all $m \times n$ matrices with real entries 1.4
 - The nullspace of a $m \times n$ matrix A. p.138 The set of all solutions to the homogeneous system 1.5 Ax=0.

$$2x_1 + x_2 - 4x_3 = 1$$

Given a 3×3 linear system of equations $x_2+3x_3=5$, where $\alpha,\beta\in R$. $\alpha x_3=\beta-9$ 2

$$\alpha x_3 = \beta - 9$$

2.1 Let the matrix equation of the 3×3 linear system of equations be $A\mathbf{x} = \mathbf{b}$. Find A, \mathbf{x} and \mathbf{b} . (5%) Q2

Ans:
$$A = \begin{bmatrix} 2 & 1 & -4 \\ 0 & 1 & 3 \\ 0 & 0 & \alpha \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ \beta - 9 \end{bmatrix}$

- 2.2 Is the system in *strict triangular form*? Please answer **Yes** or **No**. (5%) Ans: Yes
- 2.3 For what values of α and β will the system have infinitely many solutions ? (5%) Q1 Ans: $\alpha = 0$, $\beta = 9$ so that a free variable exists in a consistent system.
- 3 Let $A\mathbf{x} = \mathbf{b}$ be a linear system whose augmented matrix $(A \mid \mathbf{b})$ has reduced row echelon

3.1 Write \mathbf{a}_4 as a linear combination of \mathbf{a}_1 and \mathbf{a}_3 . (5%)

Let $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)^T$ be a solution to $A\mathbf{x} = \mathbf{0}$.

- \Rightarrow x_1 and x_3 are lead (pivot) variables and the others are free variables.
- Let $x_2 = \alpha$, $x_4 = \beta$, $x_5 = \gamma$.
- The solution $\mathbf{x} = (\alpha 3\beta + 6\gamma, \alpha, 2\beta 4\gamma, \beta, \gamma)^T$, where $\alpha, \beta, \gamma \in \mathbb{R}$. ----- (*)

Substitute $\alpha = \gamma = 0$, $\beta = 1$ into (*), we have $\mathbf{x} = (-3, 0, 2, 1, 0)^T$ is a solution to $A\mathbf{x} = \mathbf{0}$.

$$\Rightarrow$$
 $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 + x_4\mathbf{a}_4 + x_5\mathbf{a}_5 = -3\mathbf{a}_1 + 2\mathbf{a}_3 + \mathbf{a}_4 = \mathbf{0}$

- $\mathbf{a}_4 = 3\mathbf{a}_1 2\mathbf{a}_3$ -----(**)
- 3.2 Determine **a**₄. (5%) M2015

Ans: By (**),
$$\mathbf{a}_4 = 3\mathbf{a}_1 - 2\mathbf{a}_3 = (1, -2, 3, 1)^T$$

線性代數 2016 期中考 〔請依題號順序作答,否則扣5%;若該題沒有解答,請回答 "無解";除了回答 Yes or No 或 Dep. or Ind.的題目外,應寫出計算的主要過程,否則不計分。〕

- 4 Let $P = \begin{bmatrix} I & O \\ B & I \end{bmatrix}$ and $Q = \begin{bmatrix} I & O \\ -B & I \end{bmatrix}$, where *I* is the $n \times n$ identity matrix, *O* is the $n \times n$ zero matrix, and *B* is a symmetric $n \times n$ matrix.
 - 4.1 Explain why Q is the (multiplicative) inverse of P. (5%)

Ans: Since
$$PQ = \begin{bmatrix} I & O \\ B & I \end{bmatrix} \begin{bmatrix} I & O \\ -B & I \end{bmatrix} = \begin{bmatrix} I & O \\ O & I \end{bmatrix} = I_{2n \times 2n}$$

and $QP = \begin{bmatrix} I & O \\ -B & I \end{bmatrix} \begin{bmatrix} I & O \\ B & I \end{bmatrix} = \begin{bmatrix} I & O \\ O & I \end{bmatrix} = I_{2n \times 2n}$

4.2 Compute $2P^T - PQ$ (5%) (The result should be shown by blocks *I*, *O* and *B*) Q2

Ans:
$$2P^T - PQ = 2P^T - I_{2n \times 2n} = 2\begin{bmatrix} I & B \\ O & I \end{bmatrix} - \begin{bmatrix} I & O \\ O & I \end{bmatrix} = \begin{bmatrix} I & 2B \\ O & I \end{bmatrix}$$
.

- 5 Given $A = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \text{ and } \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$
 - Compute the LDU factorization of A, where L is a 3×3 unit lower triangular matrix, D is a diagonal matrix, and U is a 3×3 unit upper triangular matrix. (5%) Q3

Ans:
$$A \xrightarrow{R_3 \to R_3 - 2R_1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = DU$$
. Since $l_{31} = 2$, $L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$

Express *A* as a product of elementary matrices (i.e., Find E_1 , E_2 , E_3 such that $A=E_1E_2E_3$) (5%) Q3 Ans: Since A=LDU, where L, D, U are elementary matrices.

$$\Rightarrow$$
 $E_1 = L$, $E_2 = D$, and $E_1 = U$.

5.3 Find the value of det(-2A). (5%) Q4

Ans:
$$\det(A) = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 3 \end{vmatrix} = 3$$
, $(\text{or } \det(A) = \det(L) \cdot \det(D) \cdot \det(U) = 1 \cdot 3 \cdot 1 = 3)$

$$\det(-2A) = (-2)^3 \cdot \det(A) = (-8) \cdot 3 = -24$$

5.4 Find the (1,2) entry of A^{-1} by computing a quotient of two determinants. (5%) Q4

Ans:
$$(A^{-1})_{12} = \frac{1}{\det(A)} \cdot A_{21} = \frac{1}{\det(A)} \cdot (-1)^{2+1} \cdot \det(M_{21}) = \frac{1}{3} (-1) \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix} = 1$$

5.5 Use Cramer's rule to solve $A\mathbf{x} = \mathbf{b}$ for x_1 . (5%) Q4

Ans:
$$x_1 = \frac{1}{\det(A)} \begin{vmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 3 \end{vmatrix} = \frac{1}{3}(6) = 2$$

5.6 Find the nullspace of A. (5%) Q5

Ans: Since $det(A) = 3 \neq 0$, A is nonsingular and Ax = 0 has only the trivial solution 0.

線性代數 2016 期中考 〔請依題號順序作答,否則扣5%;若該題沒有解答,請回答 "無解";除了回答 Yes or No 或 Dep. or Ind.的題目外,應寫出計算的主要過程,否則不計分。〕

$$N(A) = \begin{cases} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{cases}$$

- 5.7 Is the set $\{ \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \}$ a spanning set for \mathbb{R}^3 ? (a) Please answer Yes or No. (5%) Q5 Ans: Yes, since A is nonsingular and $A\mathbf{x} = \mathbf{b}$ has unique solution for any $\mathbf{b} \in \mathbb{R}^3$.
- Does the set $\{(x_1, x_2, x_3)^T \mid x_1 = 0 \text{ and } x_2 = 1\}$ form a subspace of \mathbb{R}^3 ? Please answer Yes or No. (5%)

Ans: No. Let $\mathbf{x} = (0, 1, a)^T$. Then \mathbf{x} belongs to the set.

Observe $2\mathbf{x} = (0, 2, 2a)^T$ does not belong to the set, since $x_2 = 2 \neq 1$.

- ⇒ This set is not closed under scalar multiplication and does not form a subspace.
- 7 Find all values of λ for which the determinant $\begin{vmatrix} 1-\lambda & 1 & 1\\ 1 & 1-\lambda & 1\\ 1 & 1 & 1-\lambda \end{vmatrix}$ will equal to 0. (5%) Q4

 $\Rightarrow \lambda = 0, 3.$