Date: -20.08:10.

EXPERIMENT #4 SQUARE AND TRIANGULAR WAVEFORM GENERATOR

I OBJECTIVES

The broad objective of this experiment is to familiarize the student with some general ideas concerning the generation of waveforms which employ op amp.

II COMPONENTS AND INSTRUMENTATION

The general purpose op amp μA 741 will be used. You require two supplies, ± 15 V for short. As well, you need a variety of resistors. For measurement, use a bench multimeter, a two channel oscilloscope and a waveform generator.

Fig 4.1. OP-AMP μA 741

III PREPARATION

Formulae used in design calculations

$$R_1 = \frac{R_3}{4 * f * R_2 * C} \qquad R_3 = \frac{2 * R_2 * V_{SAT}}{V_{o(P-P)}}$$

Q1. In the circuit of Fig.4.2., $V_{z1}=V_{z2}=6.3V$, $V_F=0.7V$, $R_1=5k\Omega$ and $R_f=100k\Omega$. Find the expression for output voltage when

- i) V_{in}=0.3sint
- ii) V_{in}=0.6sint
- iii)V_{in}=3sint

Q2. What are the nominal limiting levels at node V_{01} of the circuit of Fig 4.3. What frequency of oscillation do you expect if R_1 =4.7k Ω , R_2 =10k Ω , R_3 = 30k Ω and C=0.2 μ F?

Fig.4.2

Q3. What simple change would double the frequency while maintaining the amplitude at node V₀?

Q4. What simple change would double the frequency and half the amplitude at node V₀?

IV EXPERIMENTATION

4.1 - Square and Triangular Waveform Generator

Fig 4.3. Circuit Diagram of Square and Triangular waveform generator

Fig 4.4 Typical waveforms

Fig 4.5 Voltage limiting circuit

4.2

Use
$$C=0.11RF$$
, $R_2=10KR$
Zenes voltage = 5V zenes

- 1) Build the circuit.
- 2) Observe the signals at nodes V_{01} and V_{0} . Note the two waveforms, their peak to peak values and the frequency.

Signal	Measured		Calculated	
	Peak to peak (V)	Frequency (Hz)	Peak to peak (V)	Frequency (Hz)
V ₀₁	22	1562	26	1500
V ₀	7.6	1562	8	1500

3) In turn, shunt R₁, R₂, C by components of equal value, and note the effects on signal amplitudes and frequencies.

 R_1 Shunted by equal value ($R_{1\text{effective}} = 2.7 \text{ kg}$)

Signal	Measured		Calculated	
	Peak to peak (V)	Frequency (Hz)	Peak to peak (V)	Frequency (Hz)
V ₀₁	22	2941	26	3000
V ₀	7.6	2941	8	3000

 R_2 Shunted by equal value ($R_{2\text{effective}} = 5 \text{k} \Omega$)

Signal	Measured		Calculated	
	Peak to peak (V)	Frequency (Hz)	Peak to peak (V)	Frequency (Hz)
V ₀₁	22	2777.7	26	3000
V _o	4	2777.7	4	3000

 C_1 Shunted by equal value ($C_{effective} = 0.2 \text{HF}$)

Signal	Measured		Calculated	
	Peak to peak (V)	Frequency (Hz)	Peak to peak (V)	Frequency (Hz)
V ₀₁	22	769.2	26	750
V ₀	7.8	769.2	8	750

Comment on your observations:

Comment on your observations:

From the empirical relation: $f = \frac{R_3}{4R_1R_2C_1}$ and

Page 4

- If R, is reduced to half, frequency would double, vole-p, remains same.
- If R2 is reduced to half, frequency would double, vo(1-p) reduces by half.
- . If c, is doubled, frequency reduces to half, volo-10 remains same. This is because if a secristor is shunted, not resistance reduces. If capacitor is shunted, net capacitance in coseases.
 - 4) Connect the sub circuit shown in the Fig. 4.5 at the output of the comparator and note the amplitude and frequency.

Signal	Peak to peak (V)	Frequency (Hz)
V ₀₁	u u	1562.5
Vo	4.2	1562/5

INTEGRATED CIRCUITS LAB

5) While displaying the waveforms at nodes V_0 and V_{01} , short-out the zener Z intermittently, noting the changes in amplitude and frequency.

Signal	Peak to peak (V)	Frequency (Hz)
V ₀₁	2.4	1470-5
V ₀	0.96	1476.5

6) While displaying nodes V₀ and V₀₁, open circuit the zener and observe the overall effect. Note that without zener the operation depends on the relative saturation voltages of A₁ and A₂. Comment on the effect of zener.

Signal	Peak to peak (V)	Frequency (Hz)
V_{01}	22	1538-4
V_0	7.6	1538-4

- When von has a positive peak, diodes D, and D2 are typical on, thus due to zener action, von is not allowed to rise above 5v (peak). When von has a negative peak, diodes D3 and D4 are turned on, thus von is not allowed to fall below -5v (peak). However, vo also reduces proportionately.
- · When Z is shooted, vo would carry two diode drops (0.64+0.64) = 1.24 (peak)
 · When Z is removed, vo falls back to ±134 (peak) saturation levels
- When Z is removed, von falls back to ±13v (reak) saturation levels.

 Consider the variety of waveforms available and the means for control. Prepare an organized and well-labeled timing sketch, including at least the three node voltages P, V₀, V₀₁. (Use the ordinary graph sheet provided).

V INFERENCE \ CONCLUSIONS

- · The circuit of a square / triangular wave has been designed and constructed.
- . The empirical relations are verified:

[f & 1 R1R2C.] and [Vo(P-0) & R2]

· To limit the voltage after 1st stage (von), zener is used as shown in the voltage limiting circuit.

. When shorted, it leads to a drastic fall in both up and up.

Integrated	Circuits La	b	-
	Credit	Maximum Marks	
Preparation	5	5 &	2
Experimentation	91/2	10/0	
Reporting	5	5 9	l
Total Marks	19.5	20	

Voi, Vo

Voi, Vo

FIRM OF PRINCIPLE STATE OF STATE OF PRINCIPLE TO WALL

. Jules o east (ii

Formulae:

$$R_1 = \frac{R_3}{(4 + R_2 c)}$$
 and $R_3 = \frac{2 R_2 V_{AT}}{V_0 (p-p)}$

Prestient: 11 majorible is higher 11 mailesup In the given circuit, V21=V22=63V, V== 0.7V, R1=5KR, R1=100KR Find the expression for output voltage when

(ie)
$$Vin = 0.6 V (p-p)$$

$$Voot = \left(-\frac{Rf}{R_1}\right) Vin$$

$$= -20 \times 0.6$$

$$= -12 V (p-p)$$

However, the zeners don't have sufficient reverse bias (6.31 or above) to maintain constant voltage. thus (dosq) vod & = foot

er Formolae:

ii) Vin= 0.69int .

Edigation

Voot = ±12 V (peak)

During +ve half, 12 maintains 6.30, during -ve half Di maintains 6.3V, only if ilp magnitude is higher than minimum voltage required to zener operation

Find the expression for output voltage which = (6.3+0.7) = 7V.

however, the keners don't have sufficient reversities = nil (iii along) to maintain constant voltage, thus Vout = ± 60 V (peak).

Question 2:

What are the nominal limiting levels at node Vol. What frequency of oscillation do you expect if $R_1 = 4.7 \, \text{k.D.}$, $R_2 = 10 \, \text{k.D.}$, $R_3 = 30 \, \text{k.D.}$, $C = 0.2 \, \text{RF}$?

$$f = \frac{R_3}{4 R_1 R_2 C}$$

$$= \frac{30 \times 10^3}{4 (47 \times 10^3) (10 \times 10^3) (0.2 \times 10^6)}$$

$$f = 797.87 Hz$$

Question 8:

what simple change would double the frequency while maintaining the amplitude at node vo.

We know,
$$f = \frac{R_2}{4R_1R_2C}$$
 a $v_0(p-p) = \frac{2R_2V_{\text{sat}}}{R_3}$

$$R_1' = R_1/2$$
 , : $f' = 2f$.

what simple change would double the frequency and half the amplitude at node up?

Replace R3 by 2 R3.

Ver = tody = lovel protional entersh

4 (Mario) (Coro) (Correl) 4

= 1 T8.18 = 1°

es vollegage

what simple change would doobs the fraquency while maintaining the amplitude at node vo.

R' = R/2 , .. f'= 2f