Corso di Linguaggi di Programmazione: Modulo 1 Parziale B del 18/12/2012

Tempo a disposizione: 2 ore

- 1) Considerare l'espressione regolare (ab)*ab. Costruire l'associato NFA seguendo la costruzione canonica vista a lezione.
- 2) Prendere l'NFA costruito al punto 1) e renderlo deterministico attraverso il procedimento di costruzione dei sottoinsiemi.
- 3) Verificare se il DFA prodotto al punto 2) è minimo, usando l'algoritmo a tabella iterativo, ed eventualmente costruire il DFA minimo.
- 4) Dato il DFA minimo del punto 3), costruire l'associata grammatica regolare. Rimuovere tutti i simboli inutili nella grammatica prodotta e ricostruire dalla grammatica risultante l'espressione regolare associata (non identica a quella al punto 1), ma ad essa equivalente).
- 5) Discutere la seguente affermazione: ogni linguaggio regolare può essere generato sia da una grammatica regolare ambigua, sia da una grammatica regolare non ambigua di classe LL(1).
- 6) Dimostrare che il linguaggio L = $\{a^nb^ma^nb^m \mid n, m \ge 0\}$ non è libero.
- 7) Considerare la grammatica libera $S := ccSb \mid A \mid A :: a \mid \varepsilon$ Quale linguaggio genera? Verificare che tale linguaggio non è regolare.
- 8) Verificare se la grammatica del punto 7) è LL(1) e, nel caso, costruire la tabella di parsing associata.
- 9) Considerare la grammatica al punto 7). Costruire per essa l'automa LR(0).
- 10) Verificare che la grammatica al punto 7) non è LR(0), ma è SLR(1).