

Nested Virtualization on ARM

NEVE: Nested Virtualization Extensions

Jin Tack Lim Christoffer Dall Shih-Wei Li Jason Nieh Marc Zyngier

LEADING
COLLABORATION
IN THE ARM
ECOSYSTEM

jitack@cs.columbia.edu christoffer.dall@linaro.org shih-wei@cs.columbia.edu, nieh@cs.columbia.edu marc.zyngier@arm.com

Nested Virtualization

Terminology

Host Hypervisor

Hardware

Use Cases

- 1. Run guest operating systems with built-in virtualization.
- 2. laaS hosting private clouds
- 3. Test your hypervisor in a VM
- 4. Debug your hypervisor in a VM
- 5. Develop hypervisors using a cloud

ARM Virtualization Extensions

EL2 Hypervisor

ARM Nested Virtualization

ARM Nested Virtualization

ARMv8.0 Nested Virtualization

ARMv8.0 Nested Virtualization

ARMv8.3 Nested Virtualization

- Gives you software emulation of vEL2 in EL1
- HCR_EL2.NV:
 - Traps EL2 operations executed in EL1 to EL2
 - · Traps eret to EL2
 - CurrentEL reports EL2 even in EL1

KVM/ARM Nested Virtualization Implementation

- EL2 Emulation
- Stage 2 MMU Virtualization
- Hyp Timer Virtualization
- Nested Virtual Interrupts

Nested CPU Virtualization

```
struct kvm_cpu_context {
    u64 sys_regs[NR_SYS_REGS];
+ u64 el2_regs[NR_EL2_REGS];
}
struct kvm_vcpu_arch {
    ...
    struct kvm_cpu_context ctxt;
}
```


Hypervisor-VM Switch

Hypervisor-Hypervisor Switch

Emulating EL2 in EL1

- Define mapping of EL2 registers to EL1 registers
- Example: TTBR0_EL2 to TTBR0_EL1
- Example: SCTLR_EL2 adapted to SCTLR_EL1
- Shadow EL1 registers

Nested CPU Virtualization

```
struct kvm cpu context {
    u64 sys regs[NR SYS REGS];
+ u64 el2 regs[NR EL2 REGS];
+ u64 shaow sys regs[NR_SYS_REGS];
 struct kvm vcpu arch {
     struct kvm cpu context ctxt;
```


Shadow Registers

Virtual Exceptions

- Trap to virtual EL2
- "Forward" exceptions
- Emulate virtual exceptions

Virtual Exceptions

- Returning from virtual EL2
- Trap eret to EL2 (ARMv8.3)
- Emulate virtual exception return

KVM/ARM Nested Virtualization Implementation

- EL2 Emulation
- Stage 2 MMU Virtualization
- Hyp Timer Virtualization
- Nested Virtual Interrupts

Stage 1: VA -> IPA

KVM/ARM Nested Virtualization Implementation

- EL2 Emulation
- Stage 2 MMU Virtualization
- Hyp Timer Virtualization
- Nested Virtual Interrupts

Nested Timer Virtualization

- ARM provides a virtual and physical timer in EL1
- EL2 provides a separate EL2 "hyp" timer
- Nested KVM/ARM supports a virtual CPU with EL2 and the hyp timer

KVM/ARM Nested Virtualization Implementation

- EL2 Emulation
- Stage 2 MMU Virtualization
- Hyp Timer Virtualization
- Nested Virtual Interrupts

ARM Generic Interrupt Controller (GIC)

ARM Generic Interrupt Controller (GIC)

Nested Interrupt Virtualization

Deliver virtual interrupts
 from the host to the VM

Nested Interrupt Virtualization

- Deliver virtual interrupts from the guest hypervisor to the nested VM
- Shadow list registers
- The nested VM can ACK and EOI virtual interrupts without trapping

Performance Evaluation

- Problem: No ARMv8.3 hardware available.
- Solution: Use ARMv8.0 hardware with the software modification

Emulating v8.3 on v8.0

Hypercall MicroBenchmark

Hypercall MicroBenchmark

	ARMv8.3	
	VM	Nested VM
Cycle counts	2,729	422,720
Ratio to VM	1	155x

Normalized overhead (lower is better)

Application Benchmarks

Nested VM Exit/Entry on ARM

> 120 traps

NEVE: NEsted Virtualization Extensions for ARM

- Supports unmodified guest hypervisors and OSes
- Improves performance by providing register redirection

Register Classification

- VM registers: EL1 registers only affecting the nested VM's execution
- Hypervisor registers: EL2 registers affecting the hypervisor's execution

VIVI Registers

VM Registers: Logging to Memory

Memory

VM Registers: Logging to Memory

VM Register

Hypervisor control registers

- · Can't apply the technique for VM registers
 - They have an immediate impact (EL2 system registers)
- Traps are handled by redirecting to EL1 registers in software

Hypervisor control registers

- Can't apply the technique for VM registers
 - They have an immediate impact (EL2 system registers)
- Traps are handled by redirecting to EL1 registers in software
- Redirect in hardware instead!

Hypercall MicroBenchmark

	ARMv8.3		NEVE
	VM	Nested VM	Nested VM
Cycle counts	2,729	422,720	92,385
Ratio to VM		155x	34x
Trap counts	1	126	15

Application Workloads

Application	Description	Application	Description
Kernbench	Kernel compile	Netperf TCP_RR	Network performance
Hackbench	Scheduler stress	Netperf TCP STREAM	Network performance
SPECjvm2008	Java Runtime	Netperf TCP MAERTS	Network performance
MySQL	Database management	Apache	Web server stress
Memcached	Key-Value store	Nginx	Web server stress

Experimental Setup

- ARM Hardware
 - APM X-Gene (ARMv8.0)
 - 8-way SMP
 - · 64 GB RAM
- x86 Hardware
 - Intel E5-2630 v3
 - VMCS Shadowing
 - 8-way SMP
 - 128 GB RAM

- Native/VM/Nested VM
 - 4-way SMP
 - 12 GB RAM
 - Virt I/O(VM/nested VM)
 - 10 Gb Ethernet

- Software
 - KVM on KVM
 - · v4.10

Normalized overhead (lower is better)

Application Benchmarks

Normalized overhead (lower is better)

Application Benchmarks

Conclusion

- We have an implementation of KVM/ARM for v8.3
- Evaluated nested virtualization performance by emulating ARMv8.3
- Nested virtualization on ARMv8.3 incurs high overhead
 - Due to the exit multiplication problem
- NEVE enhances performance significantly by reducing number of traps
- NEVE is used as basis for extended nested virtualization support in ARMv8.4
- NEVE to appear at SOSP later month read the paper for more details

Code

- Nested CPU Virtualization patches for ARMv8.3 [RFC v2]: https://lists.cs.columbia.edu/pipermail/kvmarm/2017-July/026388.html
- Nested Memory Virtualization patches for ARMv8.3 [RFC]: https://lists.cs.columbia.edu/pipermail/kvmarm/2017-October/027286.html
- v8.3 and NEVE Paravirtualization on Linux v4.12-rc1: https://github.com/columbia/nesting-pub
- QEMU Patches: https://github.com/columbia/gemu-pub nested-v2.3.0-model

