第二章 孟德尔式遗传

第一节 分离规律

第二节 自由组合规律

第三节 孟德尔遗传的扩展

第一节 分离规律

一、孟德尔的豌豆杂交试验

1. 相关术语

①. 性状(trait):

单位性状(unit trait): 生物体所表现的形态特征和生理特性,能从亲代遗传给子代,如: 豌豆的花色、种子形状、株高、子叶颜色、豆荚形状及豆荚颜色;

相对性状(contrasting trait):指同一单位性状的相对差异,如红花与白花、高秆与矮秆等;

②. \mathbf{F}_n : \mathbf{F} 表示子代,下角标表示代数,如 \mathbf{F}_1 为子一代, \mathbf{F}_2 为子二代;

③. 自交: 狭义- 仅限于两性同体的生物;

广义- 所有同型间的交配;

 $AABB \times AAbb$

杂交: 所有不同型间的交配,如开白花的植株与开红花的植株交配,白眼果蝇和红眼果蝇交配;

杂交和自交是相对的!!!

2. 试验

以一对性状为例,如花色:

自交实验:

₩自交

F₁: 红花

P: 白花♀ × 白花 ₺

↓⊗自交

F₁: 白花

杂交试验:

正交

P: 红花♀×白花&

F₁: 红花

F₂: 红花:白花

株数: 705: 224

比例: 3.15:1

反交

P: 白花♀ × 红花 ₺

F₁: 红花

F₂: 红花:白花

株数: 943: 317

比例: 2.97:1

哈工大-遗传学

第二章 孟德尔式遗传分析

7对相对性状的试验结果

性状	九六加人	T	$\mathbf{F_2}$				
1生化	杂交组合	F ₁	显性性状	隐性性状	比例		
花色	红花×白花	红花	红花705	白花224	3.15:1		
种子形状	圆形×皱缩	圆形	圆形5474	皱缩1850	2.96:1		
子叶颜色	黄花×绿花	黄花	黄花6022	绿花2001	3.01:1		
豆荚形状	饱满×缢缩	饱满	饱满822	缢缩299	2.96:1		
豆荚颜色	绿色×黄色	绿色	绿色408	黄色152	2.82:1		
花着生位置	腋生×顶生	腋生	腋生651	顶生207	3.14:1		
株高	高茎×矮茎	高茎	高茎787	矮茎277	2.84:1		

哈工大-遗传学

3. 特点

- (1). F₁性状表现一致,只表现一个亲本性状,另一个亲本性状隐藏;
 - ④. 显性性状: F₁表现出来的性状; 隐性性状: F₁未表现出来的性状;
- (2). F₂自交分离:一些植株表现出这一亲本性状,另一些植株表现为另一亲本性状,说明隐性性状并未消失;
- (3). F₂群体中显隐性分离比例大致为3:1;

二、孟德尔对试验结果的解释---分离规律

孟德尔提出以下假说:

- I. 遗传性状是由颗粒性的遗传因子控制的,控制显性和隐性性 状的遗传因子分别称为显性遗传因子和隐性遗传因子,且显 性遗传因子可以掩盖隐性遗传因子的作用;
- Ⅱ. 体细胞中遗传因子成对存在,一个来自父本生殖细胞,一个来自母本生殖细胞;
- Ⅲ. 在配子形成时,成对存在的遗传因子分离,并均等的分配到 配子中,每一配子只含其中的一个;
- Ⅳ. 受精时,雌雄配子随机结合成合子,不同的遗传因子在个体中独立存在,互不混淆;

以遗传因子假说解释花色的遗传:

₹	2	•

雌配子	雄配子(ま)				
(早)	A (1/2)	a _(1/2)			
A (1/2)	AA(红花) _(1/4)	Aa(红花) _(1/4)			
a _(1/2)	Aa(红花) _(1/4)	aa(白花) _(1/4)			

哈工大-遗传学

第二章 孟德尔式遗传分析

孟德尔提出的遗传因子→等位基因(allele)

- ⑤.等位基因(allele):控制某一性状的遗传因子;如控制花色的两个等位基因A和a;
- ⑥.基因型(genotype): 个体的基因组合即遗传组成;如花色基因型AA、Aa、aa;
 - 表型(phenotype): 生物体所表现的性状,如红花、白花、高径、矮径等;
- ⑦.纯合基因型(homozygous genotype): 或称纯合体,由相同等位基因构成的基因型,如AA、aa; 杂合基因型(heterozygous genotype): 由不同等位基因构成的基因型,如Aa;

三、分离规律的验证---测交

- ⑧.回交: 子代与亲本之间进行杂交;
- ⑨.测交: 与隐性纯合基型个体的杂交;

测交法 (test cross): 即把被测验的个体与隐性

纯合基型的个体杂交,根据测交子代的表型和比

例测知该个体的基因型。

哈工大-遗传学

第二章 孟德尔式遗传分析

四、分离规律的归纳

一对等位基因在杂合状态互不污染,保持其独立性,在配子形成时,又按原样分离到不同的配子中去。在一般情况下,配子分离比是1:1, F_2 基因型分离比是1:2:1, F_2 表型分离比是3:1,也称分离律。

第二节 自由组合规律

孟德尔以豌豆为材料,选用具有两对相对性状差异的纯合亲本进行杂交→研究两对相对性状的遗传后提出:

自由组合规律(独立分配规律)

一、两对相对性状的遗传

1. 试验方法

子叶颜色: 黄色和绿色

种子形状: 圆形和皱缩

哈工大-遗传学

2. 结果分析

先按一对相对性状杂交的试验结果分析:

```
黄:绿 = (315+101): (108+32) = 416: 140 = 2.97: 1 ≈ 3:1
```

圆:皱 =
$$(315+108)$$
: $(101+32)$ = 423 : 133 = 3.18 : $1 \approx 3$: 1

∴两对性状是<u>独立</u>互不干扰地遗传给子代→每对性状的F₂分离符合3:1比例。

 \mathbf{F}_2 出现两种重组型个体→说明控制两对性状的基因在从 \mathbf{F}_1 遗传给 \mathbf{F}_2 时,是自由组合的。

按概率定律,两个独立事件同时出现的概率是分别出现概率的乘积:

● 黄、圆: 3/4×3/4=9/16

→ 黄、皱: 3/4×1/4=3/16

● 绿、圆: 1/4×3/4=3/16

→ 绿、皱: 1/4×1/4=1/16

二、自由组合现象的解释

自由组合规律的要点:

控制两对不同性状的等位基因在配子形成过程中,一对等位基因与另一对等位基因的分离和组合互不干扰,各自独立分配到配子之中。

同一对等位基因分开,不同对等位基因自由组合

从遗传学角度解释两对性状的遗传:

哈工大-遗传学

第二章 孟德尔式遗传分析

配子: YR : Yr : yR : yr

1/4 : 1/4 : 1/4 : 1/4

雌配子	雄配子(å)					
(早)	YR _(1/4)	Yr _(1/4)	yR _(1/4)	yr _(1/4)		
YR _(1/4)	YYRR黄圆 _(1/16)	YYRr黄圆 _(1/16)	YyRR黄圆 _(1/16)	YyRr黄圆 _(1/16)		
Yr _(1/4)	YYRr黄圆 _(1/16)	YYrr黄皱 _(1/16)	YyRr黄圆 _(1/16)	Yyrr黄皱 _(1/16)		
yR _(1/4)	YyRR黄圆 _(1/16)	YyRr <mark>黄圆_(1/16)</mark>	yyRR绿圆 _(1/16)	yyRr绿圆 _(1/16)		
yr _(1/4)	YyRr黄圆 _(1/16)	Yyrr黄皱 _(1/16)	yyRr绿圆 _(1/16)	yyrr绿皱 _(1/16)		

哈工大-遗传学

表现型	基因型	基因型比例	表现型比例	
	YYRR	1		
芸国 V D	YrRR	2	9	
黄圆 Y_R_	YYRr	2	9	
	YyRr	4		
<u> ++</u>	Y <mark>Y</mark> rr	1		
黄皱 Y_rr	Y <mark>y</mark> rr	2	3	
	yyRR	1		
绿圆 yyR_	yyRr	2	3	
绿皱 yyrr	yyrr	1	1	

三、自由组合规律的验证

雄配子	雌配子(♀)					
(8)	YR _(1/4)	Yr (1/4)	yR _(1/4)	yr _(1/4)		
yr ₍₁₎	YyRr黄圆 _(1/4)	Yyrr黄皱 _(1/4)	yyRr绿圆 _(1/4)	yyrr绿皱 _(1/4)		

1 : 1 : 1 : 1

四、自由组合规律的归纳

两对基因在杂合状态互不污染,保持其独立性。配子形成时,同一对基因各自独立分离,不同对基因则自由组合,在一般情况下, F_1 配子分离比是1:1:1; F_2 表型分离比是9:3:3:1。

五、自由组合规律的扩展---多对相对性状遗传

基因对 (座)数	F ₁ 配子 类型	F ₂ 基因型	F ₂ 表型	F ₂ 基因型 分离比	F₂表现型 分离比
1	2	3	2	$(1:2:1)^1$	(3:1)1
2	4	9	4	$(1:2:1)^2$	$(3:1)^2$
3	8	27	8	$(1:2:1)^3$	(3:1) ³
4	16	81	16	(1:2:1)4	(3:1) ⁴
n	2 ⁿ	3 ⁿ	2 ⁿ	(1:2:1) ⁿ	(3:1) ⁿ

哈工大-遗传学

第二章 孟德尔式遗传分析

六、孟德尔成功的原因

1. 选材得当

(1). 豌豆是自花、闭花授粉植物,所以自然状态它永远是纯种; (2). 性状稳定,易于区分; (3). 便于操作,易于控制; (4). 种子保留在豆荚内,不会丢失; (5). 他选用的7对相对性状恰好都不呈连锁遗传。

六、孟德尔成功的原因

- 2. 设计严密
 - >采用正反交;
 - >采用大样本;
 - ▶把自交持续到第六代;
- 3. 定量分析

六、孟德尔成功的原因

- 4. 缜密的推论
 - ▶区分性状的显隐性;
 - >区分体细胞和生殖细胞中的遗传因子;
- 5. 精确的验证
 - ▶测交;
 - ▶回交;

七、χ² 检验

各种因素的干扰→实际获得的各项数值与其理 论上按概率估算的期望值有一定的偏差→属于试验 误差,还是真实差异?→χ²检验

进行 χ^2 测验时可利用以下公式(O是实测值,E是理论值, Σ 是总和),即:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

利用 χ^2 值和自由度(df = k - 1,k为类型数,一般为子 代分离类型数目减1),可查出P值。P值是指实测值与 理论值相差一样大以及更大的积加概率。

例如,子代表现为1:1、3:1,df是1;表现为9:3:3:1,df为3。例如,用 χ^2 测验检验孟德尔两对相对性状的试验结果,列于下表中:

哈工大-遗传学

孟德尔两对基因杂种自交结果的x²测验

	圆、黄	圆、绿	皱、黄	皱、绿	总数			
实测值(O)	315	108	101	32	556			
理论值(E)	312.75	104.25	104.25	34.75	556			
(O –E)	2.25	3.75	-3.25	-2.75	0			
$\frac{(O-E)^2}{E}$	0.016	0.135	0.101	0.218				
$\chi^2 = \sum \frac{(O-E)^2}{E}$	$\chi^2 = 0.016 + 0.135 + 0.101 + 0.218 = 0.47$							

注: 理论值是由总数556粒种子按9:3:3:1比例求得

在遗传学实验中P值常以5%(0.05)为标准,P>0.05说明"差异不显著",P<0.05说明"差异显著";如果P<0.01说明"差异极显著"。

哈工大-遗传学

χ²表

P df	0.99	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01
1	0.00016	0.004	0.016	0.064	0.148	0.455	1.074	1.642	2.706	3.841	6.635
2	0.0201	0.103	0.211	0.446	0.713	1.386	2.408	3.219	4.605	5.991	9.210
3	0.115	0.352	0.584	1.005	1.424	2.366	3.665	4.642	6.251	7.815	11.345
4	0.297	0.711	1.064	1.649	2.195	3.357	4.878	5.989	7.779	9.488	13.277
5	0.554	1.145	1.610	2.343	3.000	4.351	6.064	7.269	9.236	11.070	15.086
6	0.872	1.635	2.204	3.070	3.828	5.345	7.231	8.588	10.645	12.592	16.812
7	1.239	2.167	2.833	3.822	4.671	6.346	8.783	9.803	12.017	14.067	18.475
8	1.646	2.733	3.490	4.594	5.527	7.344	9.524	11.030	13.362	15.507	20.090
9	2.088	3.325	4.168	5.380	6.393	8.343	10.656	12.242	14.684	16.919	21.666
10	2.558	3.940	4.865	6.179	7.627	9.342	11.781	13.442	15.987	18.307	23.209

表内数字是各种 χ^2 值,df为自由度,P是在一定自由度下 χ^2 大于表中数值的概率。

哈工大-遗传学

八、遗传的染色体学说

发现遗传因子的行为与染色体行为呈平行关系

→遗传因子位于细胞核内染色体上 →将孟德尔遗传

规律与细胞学研究结合起来→染色体遗传学说(萨顿

-鲍维里假说)。

 $\begin{bmatrix} a & B \end{bmatrix}$ 基因型为 AaBb 的性母细胞 第一次减数分裂 第二次减数分裂 AB aB

自由组合规律

九、系谱图符号

哈工大-遗传学

第二章 孟德尔式遗传分析

九、系谱图符号

思考题

图中所示的是一个罕见的常 染色体隐性遗传疾病苯丙酮 尿症(PKU)的系谱图: (1). 尽可能多的列出各成员的基 因型; (2). 如果A和B结婚, 则他们的第一个孩子患 PKU的概率有多大? (3). 如 果他们的第一个孩子是正常 的,则他们的第二个孩子患 PKU的概率有多大? (4). 如 果他们的第一个孩子患病, 则他们第二个孩子正常的概 率有多大?

思考题

一位妇女的父亲是非品尝者,而自己具有尝味能力。 一位离异男子有一个无尝味能力的女儿,若这两人结婚, 则他们第一个孩子为(1)有尝味能力的的概率是多大? (2)无 尝味能力的女儿的概率是多大? (3)若生两个孩子,一个有 尝味能力,一个没有尝味能力的概率是多大? (4)若他们已 有了一个孩子且无尝味能力,则再要第二个孩子有尝味能 力的概率是多大?

思考题

甲和乙准备结婚,甲的哥哥有半乳糖血症(常染色体隐性遗传病),而乙的外祖母也有此症。乙的姐姐的3个孩子都未患此病。那么甲和乙第一个孩子患此病的概率是多大?

第三节 孟德尔遗传的扩展

一、基因与环境的互作

哈工大-遗传学

第二章 孟德尔式遗传分析

例1: 兔子皮下脂肪的遗传:

兔子绿色食物中含有大量黄色素。

- Y → 合成黄色素分解酶 → 分解黄色素;
- y → 不能合成黄色素分解酶 → 不会分解黄色素。

若兔子只吃不含黄色素的饲料,则无论哪种基因型, 脂肪颜色均为白色!

哈工大-遗传学

第二章 孟德尔式遗传分析

例2: 山羊角的遗传:

P: 有角羊 × 无角羊

 F_1 : 雄的有角,雌的无角

性别

哈工大-遗传学

第二章 孟德尔式遗传分析

F₁ 低温强光下为红色 高温遮光下为象牙色

♣水稻:繁5突变体

20.0℃白色

23.1℃黄白色

26.1℃黄绿色

30.1℃绿色

光照

温度

受一对隐性基因所控制(F_1 绿色, F_2 为3:1)

二、等位基因间的互作

- 1. 完全显性: F_1 表型与亲本之一相同;
- 2.不完全显性: F₁表型为双亲性状的中间型;

3. 共显性: F₁在同一部位同时表现双亲性状;

正常人

贫血病患者

红血球碟形□×□红血球细胞镰刀形

SS

Ss

红血球细胞中即有碟形也有镰刀形

这种人平时不表现病症,缺氧时才发病

谈家桢 中国遗传学之父

摩尔根与谈家桢

5. 纯合致死: 两个等位基因纯合时导致个体死亡

致死基因: 能使个体不能存活的等位基因

- 1). 隐性致死(recessive lethal)基因: 纯合状态有致死效应的隐性基因。
- 2). 显性致死(dominant lethal)基因: 纯合状态时有致死作用的显性基因。

例: 1904年法国遗传学家L.Cuenot发现黄色小鼠不能真实遗传,黄色小鼠与黄色小鼠交配,其后代总会出现1/3的灰色小鼠。

P 黄色 (Aa)×黄色 (Aa)

F₁ 1/4黄色 (AA): 2/4黄色 (Aa): 1/4灰色 (aa) (胚胎期死亡)

三、非等位基因间的互作

对于两对性状:

- ●F₂表现型呈9:3:3:1的分离比 → 符合自由组合规律;
- F_2 表现型不符合9:3:3:1分离比 → 有一些是属于两对基因间相 互作用的结果 → 基因互作;

基因互作:不同基因间相互作用、影响性状表现的现象;

配子: YR : Yr : yR : yr

1 : 1 : 1 : 1

⊗自交

F₂:

雌配子	雄配子(ま)				
(早)	YR _(1/4)	Yr _(1/4)	yR _(1/4)	yr _(1/4)	
YR _(1/4)	YYRR黄圆 _(1/16)	YYRr黄圆 _(1/16)	YyRR黄圆 _(1/16)	YyRr黄圆 _(1/16)	
Yr _(1/4)	YYRr黄圆 _(1/16)	YYrr黄皱 _(1/16)	YyRr黄圆 _(1/16)	Yyrr黄皱 _(1/16)	
yR _(1/4)	YyRR黄圆 _(1/16)	YyRr <mark>黄圆_(1/16)</mark>	yyRR绿圆 _(1/16)	yyRr绿圆 _(1/16)	
yr _(1/4)	YyRr <mark>黄圆_(1/16)</mark>	Yyrr黄皱 _(1/16)	yyRr绿圆 _(1/16)	yyrr绿皱 _(1/16)	

哈工大-遗传学

配子: AB : Ab : aB : ab

1 : 1 : 1 : 1

⊗自交

F₂:

雌配子	雄配子(ま)				
(早)	AB (1/4)	Ab (1/4)	aB _(1/4)	ab _(1/4)	
AB (1/4)	AABB黄圆 _(1/16)	AABb黄圆 _(1/16)	AaBB黄圆 _(1/16)	AaBb黄圆 _(1/16)	
Ab (1/4)	AABb黄圆 _(1/16)	AAbb黄皱 _(1/16)	AaBb黄圆 _(1/16)	Aabb黄皱 _(1/16)	
aB _(1/4)	AaBB黄圆 _(1/16)	AaBb黄圆 _(1/16)	aaBB绿圆 _(1/16)	aaBb绿圆 _(1/16)	
ab _(1/4)	AaBb黄圆 _(1/16)	Aabb黄皱 _(1/16)	aaBb绿圆 _(1/16)	aabb绿皱 _(1/16)	

哈工大-遗传学

 $\mathbf{F_1}$: AaBb

 F_2 : $9A_B_ : 3A_bb : 3aaB_ : 1aabb$

(一)、互补作用(Complementary effect)

两类显性基因只有同时存在时,才表现某一性状, 否则表现为另一性状, F₂表型分离比为9:7。

哈工大-遗传学

第二章 孟德尔式遗传分析

(二)、叠加作用(Duplicate effect)

两对等位基因独立地决定同一性状,只要有一类显性基因存在,该性状就能表现, F_2 表型分离比为15:1。

哈工大-遗传学

第二章 孟德尔式遗传分析

哈工大-遗传学

第二章 孟德尔式遗传分析

(三)、积加作用(Additive effect)

两类显性基因都存在时产生第一种性状,仅一类显性基因存在时产生第二种性状,两类显性基因都不存在时产生第三种性状,F₂表型分离比为9:6:1。

A_B_ 扁盘形

A_bb和 aaB_ 圆球形

aabb 长圆形

显性基因:产物有或多

隐性基因:产物无或少

哈工大-遗传学

第二章 孟德尔式遗传分析

(四)、交互互作(interaction effect)

不同等位基因相互作用决定不同的表型, F_2 表型分离比为9:3:3:1。

```
例: 家鸡冠型遗传
P: 玫瑰冠(AAbb) × 豆冠(aaBB)

↓
F<sub>1</sub>: 胡桃冠(AaBb)

↓
♥
F<sub>2</sub>: 9A_B_: 3A_bb: 3aaB_: 1aabb
 胡桃冠 玫瑰冠 豆冠 单冠
```

玫瑰冠(A)和豆冠(B)各由一对显性基因决定,A、B相互作用形成胡桃冠,a、b相互作用形成单冠;

(五)、抑制作用(Inhibiting effect)

在两对基因中,其中一对的显性基因,本身并不控制 其他性状的表现,但对另一对基因的表现具有抑制作用, 该基因称显性抑制基因, \mathbf{F}_2 表型分离比为 $\mathbf{13}:\mathbf{3}$ 。

哈工大-遗传学

第二章 孟德尔式遗传分析

哈工大-遗传学

第二章 孟德尔式遗传分析

(六)、上位作用(Epistatic effect)

上位作用:两对等位基因共同对一对性状发生作用,其中一对等位基因对另一对等位基因的表现有掩盖或抑制作用; 其中掩盖者为上位基因(epistatic gene),被掩盖者为下位 基因(hypostatic gene)。

分为:

隐性上位(Recessive epistasis)
显性上位(Dominant epistasis)

哈工大-遗传学

第二章 孟德尔式遗传分析

1. 隐性上位(Recessive epistasis)

上位基因是一对隐性基因,掩盖了下位基因的作用,

 F_2 表型分离比为9:3:4。 A控制黑色素形成, B决定黑色素在毛皮中 的分布,在aa个体中, 例:家兔的毛色遗传 没有黑色素形成,也就 灰色(AABB) × 白色(aabb) **P**: 谈不上色素的分布,B 的作用被掩盖,因此a 灰色(AaBb) $\mathbf{F_1}$: 是B的隐性上位基因。 $\mathsf{L} \otimes$ $9 A_B_: 3 A_b : (3 aaB_+ + 1 aabb)$ **F**₂: 白色 灰色 黑色

哈工大-遗传学

第二章 孟德尔式遗传分析

2. 显性上位(Dominant epistasis)

上位基因是一对显性基因,掩盖了下位基因的作用,

F₂表型分离比为12:3:1。

例: 燕麦颖色遗传 黑颖(BByy) × 黄颖(bbYY) B不存在,而Y存在时, **P**: $\mathbf{F_1}$: 黑颖(BbYy)

B控制黑色,Y控制 黄色,只要存在B,Y的 作用就被掩盖,只有当 才会出现黄颖, B是Y 的显性上位基因。

 F_2 : (9 $B_Y + 3 B_y$): 3 bbY: 1 bbyy黑颖 黄颖 白颖

显性上位作用与显性抑制作用的不同点:

抑制基因本身不能决定其他性状,F₂只有两种 类型;显性上位基因遮盖的其它基因的表现,同时 本身还能决定性状,F₂有3种类型。

小 结

	A_B_	A_bb	aaB_	aabb
无互作	9	3	3	1
互补作用	9		7	
叠加作用		15		1
积加作用	9	6		1
交互作用	9	3	3	1
抑制作用	12		3	1
隐性上位	9	3	4	
显性上位	12		3	1

哈工大-遗传学

第二章 孟德尔式遗传分析

(1)红色+蓝色=紫色; (2)黄色+蓝色=绿色