PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

JUNIO - 2002

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

- 1°) Sean A, B y X tres matrices cuadradas del mismo orden que verifican lo siguiente: $A \cdot X \cdot B = I$, siendo I la matriz unidad.
- a) Si el determinante de A vale -1 y el de B vale 1, calcular razonadamente el determinante de X.
- b) Calcular de forma razonada la matriz X si $A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$ $y B = \begin{pmatrix} 1 & -2 \\ 2 & -3 \end{pmatrix}$.
- 2°) Dada por $F(x) = \int_{0}^{x} (t^2 1) \cdot e^{-t^2} \cdot dt$, definida para todo $x \in R$.
- a) Calcular F'(x), estudiar el crecimiento de F(x) y hallar las abscisas de sus máximos y mínimos relativos.
- b) Calcular F''(x), estudiar la concavidad y convexidad de F(x) y hallar las abscisas de sus puntos de inflexión

CUESTIONES

1^a) Si \overrightarrow{u} y \overrightarrow{v} son dos vectores del plano con $|\overrightarrow{u}| = |\overrightarrow{v}|$, probar que los vectores $(\overrightarrow{u} + \overrightarrow{v})$ y $(\overrightarrow{u} - \overrightarrow{v})$ son ortogonales.

2ª) Calcular la distancia entre el plano $\pi_1 \equiv x + y - z - 1 = 0$ y el plano π_2 , que es paralelo a π_1 y pasa por el punto A(4, 3, 7).

3^a) Calcular
$$\int \frac{\cos x}{\sin^3 x} \cdot dx$$
.

4ª) Hallar la ecuación de la circunferencia que tiene su centro en el origen de coordenadas y pasa por los focos de la elipse de ecuación: $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

PRUEBA B

PROBLEMAS

1°) a) Hallar la recta t que corta a las rectas $r = \frac{x}{2} = \frac{y-2}{-3} = \frac{z-1}{3}$ y $s = \begin{cases} x+2y+2=0 \\ 2y+z-5=0 \end{cases}$ y pasa por el punto P(-2, 0, -7).

- b) Calcular la distancia del punto P a la recta r.
- 2°) a) Enunciar la Regla de Barrow.
- b) Hallar el área del recinto limitado por las parábolas $y = x^2$, $y = \frac{x^2}{2}$ y la recta y = 2x.

CUESTIONES

1^a) Calcular razonadamente la matriz A sabiendo que se verifica la siguiente igualdad:

$$A \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 2ª) Calcular el ángulo que forma la recta $r = \frac{x-3}{2} = \frac{y+1}{5} = \frac{z-1}{-1}$ con el plano de ecuación $\pi = 2x 5y + 7z 11 = 0$.
- 3ª) Dadas las funciones $f(x) = \sqrt[3]{x^2 + x + 1}$ y g(x) = L(x + 8), escribir la función $g \circ f$ y calcular su derivada.
- 4^a) Calcular: $\lim_{x \to \infty} \frac{\sqrt{x+1}}{e^x}.$
