## **ECA-Net**

# 论文的研究内容

### 论文原文:

"By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local crosschannel interaction strategy without dimensionality reduction, which can be efficiently implemented via 1D convolution. Furthermore, we develop a method to adaptively select kernel size of 1D convolution, determining coverage of local cross-channel interaction."

#### 总结:

作者认为SE block的两个FC层之间的降维是不利于channel attention的权重学习的,因此提出了一个基于1D Conv实现不降维的方法。

# 原理



Figure 2. Diagram of our efficient channel attention (ECA) module. Given the aggregated features obtained by global average pooling (GAP), ECA generates channel weights by performing a fast 1D convolution of size k, where k is adaptively determined via a mapping of channel dimension C.

ECA首先沿通道方向进行avg\_pool,将特征图的维度从b×c×h×w变成b×c×1×1。

ECA学习通道间的依存关系的策略:每次学习k个相邻通道之间的依存关系,而不是一次性学习所有通道之间的依存关系,并且每一次学习共享权重。例如,C个通道,标号从0开始,直到C。第一次学习0到k号通道的依存关系;第二次学习1到1+k号通道的依存关系……如此反复,截止到C号通道。

论文使用带状矩阵,来描述这一过程,如下:

$$\begin{bmatrix} w^{1,1} & \cdots & w^{1,k} & 0 & 0 & \cdots & \cdots & 0 \\ 0 & w^{2,2} & \cdots & w^{2,k+1} & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & w^{C,C-k+1} & \cdots & w^{C,C} \end{bmatrix}$$
(6)

为了方便计算,采用了上述的每次k个通道的依存关系学习 共享 权重,即:图中的ω... 均为同一组权重。因此该过程就可以使用一维卷积来表示,卷积后跟sigmoid激活函数,如下:

$$\omega_i = \sigma \left( \sum_{j=1}^k w^j y_i^j \right), \ y_i^j \in \Omega_i^k. \tag{8}$$

Note that such strategy can be readily implemented by a fast 1D convolution with kernel size of k, i.e.,

$$\omega = \sigma(\mathrm{C1D}_k(\mathbf{y})),\tag{9}$$

where C1D indicates 1D convolution. Here, the method in

可以想象成一个一维卷积核(要学习的权重)在通道特征图中滑动,图解如下:



SE模块和ECA模块的结构差别:



# pytorch代码

```
class ECA(nn.Module):
    def __init__(self, c1, c2, k_size=3):
        super(ECA, self).__init__()
       self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1,
kernel size=k size, padding=(k size-1)//2,
bias=False)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
       out = self.avg pool(x)
       out = out.squeeze(-1)
       # 理解成矩阵转置, 变成行向量
        out = out.transpose(-1, -2)
       out = self.conv(out)
        out = out.transpose(-1, -2)
        out = out.unsqueeze(-1)
       out = self.sigmoid(out)
       out = out.expand as(x)
        return out * x
```