

21MES102L Engineering Graphics and Design School of Mechanical Engineering

Dr.R.SANTHANAKRISHANAN M.E., Ph.D., Associate Professor, Department of Mechanical Engineering, SRM IST, Kattankulathur.

Disclaimer

The content prepared in the presentation are from various sources, only used for education purpose. Thanks to all the sources.

21MES102L Engineering Graphics and Design

Sectioned Solids

Topics Covered

- ➤ Significance of Section of Solids
- ➤ Section of Solids when Section Plane Perpendicular to one Plane and Parallel to other Plane
- Section of Solids when Section Plane Perpendicular to one Plane and Inclined to other Plane

Plane

- ➤ A **PLANE** is a two dimensional object having Length and Breadth only.
- ➤ Its Thickness is always neglected.
- In order to show the inner details of a Machine Component, the object is imagined to be cut by a **CUTTING PLANE** and the **SECTION** is viewed after the removal of cut portion.

A **Section** is an imaginary cut taken through an object to expose the shape or interior

Sectioned Objects

Cutting Plane Orientation

- Cutting Plane Perpendicular to Ground and Parallel to Wall
- Cutting Plane Perpendicular to Wall and Parallel to Ground
- ➤ Cutting Plane Perpendicular to both Ground and Wall
- ➤ Cutting Plane Inclined to Ground and Perpendicular to Wall
- Cutting Plane Inclined to Wall and Perpendicular to Ground

Cutting Plane Representation

- The cutting plane line is **an imaginary plane** passing through an object at the place where a section is to be made.
- ➤ This imaginary line is identified with reference letters along with arrows to show the direction in which the sectional view is taken.
- The beginning and end styles of cutting plane lines are **made bold**. This is also done at the portions where the cutting plane is offset.

Elements of Sectional View

- 1, Cutting Plane
- 3. Sectioned pat

- 2. Portion of the part to be removed
- 4. Sectional Lines 5. Direction of Viewing

A Square Pyramid of base side 25 mm & 40 mm height is resting on its base with its Axis Perpendicular to HP and its base edges are equally Inclined to VP. A section plane is cutting the axis at point of 21 mm from its base at an angle of 30° with respect to HP & perpendicular VP. Extract the sectional front view, sectional top view & its true shape of the section.

- ➤ Change the work space environment to **3D Modeling** (**WORKSPACE SWITCHING**)
- > Complete the preliminary steps (setting UNITS & LIMITS)
- > Select **Top plane** (since the True shape of the solid is visible in **TOP** view)

- ➤ Use Pyramid command from **MODELLING** tool bar to create the Square Pyramid with given base & height
- ➤ Rotate the Pyramid (45°) such that the base edges are equally inclined to VP using the ROTATE command from MODIFY tool bar

- ➤ The Inclined Line is Drawn for the Given Angle 30° in
 Front Plane at the Given Height 21 mm from the
 Base (19 mm from Apex)
- ➤ The inclined line is used as the Reference to Locate the Section Plane using
 Section Tool

➤ Use Rotate command & Rotate the **Horizontal Line** for 30°

➤ While defining a point to locate section line

➤ The **Bottom portion** of the Solid is Sectioned

The **Top portion** of the Solid is Sectioned

After Sectioning

- To Pick the Sectioned Solid for Extracting the Orthographic Views
- ➤ Click on the **Section Tool**

> Select Generate Section

Click on Section Plane

Enter X scale factor, specify opposite corner, or

the scale factor 1 for both Y

Scale factor & Z Scale factor

- ➤ Use **DRAFTING STANDARD** from **VIEW BASE** tool bar for setting the **FIRST ANGLE** of projection.
- ➤ Use BASE command from VIEW BASE tool bar & select the command FROM MODEL SPACE to select the Sectioned Solid & press ENTER & assign the LAYOUT NAME & press enter.
- ➤ Select the LAYOUT newly created & give Right click to see the options & select the PAGE SETUP MANGER to modify the PAGE SETUP (to change the scale) in the newly created LAYOUT.
- > Set the SCALE for 1:1 & the UNITS in mm. & give OK & CLOSE for PAGE SETUP MANAGER.

Sectional Front View

Sectional Side View

Sectional Top View

In the LAYOUT sheet press ENTER to paste the Selected Sectioned Solid to the top to get FRONT VIEW & drag orthogonally down to get Top view & Drag Right side to get Side view & press Enter.

- Click on the **Front view** of the model, **CREATE VIEW** tool bar will be displayed at the top and select the **FULL** from the **Section view** Tool Bar
- ➤ Select two ends of cutting plane and drag (downwards) perpendicular to the cutting plane to get the **TRUE** shape of the section

To Extract the True Shape of the Section

Click on the Front View

Select the Section
Tool in Create
view Tool Bar

Specify start point:

- Drag the Cursor Perpendicular to the Arrow direction
- > Left Click to place the location of Section view.

Specify location of section view or: Press SHIFT to cycle between:

- Maintain alignment
- Break alignment

ct option [Hidden lines Scale Visibility Projection Depth | nnot | Specify the depth of the section view or [Full Slice] Full>:

Section view created successfully.

▼ Type a command

➤ Use HATCH command & Pick the internal points of the Boundary lines drawn in the Sectional Top view Side View & TRUE shape of the section.

TRUE SHAPE of the Section

Use DIMENSION tool from ANNOTATION tool bar& mark the relevant dimensions

A cylinder of **60** mm diameter, **80** mm height and having its axis vertical is cut by a section plane, perpendicular to the VP, inclined at **40**° to the HP and intersecting the axis **35** mm above the base. Draw its front view, sectional top view, sectional side view and the true shape of the section.

- ➤ Change the work space environment to **3D Modeling** (**WORKSPACE SWITCHING**)
- ➤ Complete the preliminary steps (setting **UNITS** & **LIMITS**)
- > Start with **TOP** view (since **True shape** of the solid is visible in **TOP** view)
- ➤ Use **Cylinder** command from **MODELLING** tool bar to create the Cylinder with given axis length.

Cylinder axis perpendicular to HP

> Select Top Plane & Create the Cylinder for the given Radius & Height

➤ Select Front Plane & Draw a Horizontal Line Touching the Base of the Cylinder.

➤ **Move** the Horizontal Line for **35** mm Above the Base

➤ Rotate the Horizontal Line for 40°

- ➤ Use **DRAFTING STANDARD** from **VIEW BASE** tool bar for setting the **FIRST ANGLE** of projection.
- ➤ Use BASE command from VIEW BASE tool bar & select the command FROM MODEL SPACE to select the Sectioned Solid & press ENTER & assign the LAYOUT NAME & press enter.
- ➤ Select the LAYOUT newly created & give Right click to see the options & select the PAGE SETUP MANGER to modify the PAGE SETUP (to change the scale) in the newly created LAYOUT.
- > Set the SCALE for 1:1 & the UNITS in mm. & give OK & CLOSE for PAGE SETUP MANAGER.

- Click on the **Front view** of the model, **CREATE VIEW** tool bar will be displayed at the top and select the **FULL** from the **Section view** Tool Bar
- ➤ Select two ends of cutting plane and drag (downwards) perpendicular to the cutting plane to get the **TRUE** shape of the section

To Extract the True Shape of the Section

- Specify the Bottom End & the Top End of the Section
- Perpendicular to
 the Arrow Direction
 & Press Enter to
 Specify the location
 of the True Shape
 of the Section.

- ➤ Use **LINE** command from **DRAW** tool bar & draw the reference line XY
- ➤ Use LINE command to draw the boundary line in the Sectional Top view & TRUE shape

➤ Use HATCH command &
 Pick the internal points of the
 Boundary lines drawn in the
 Sectional Top view & TRUE
 shape

