Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0624 — Laboratorio I III ciclo 2023

Título: Introducción a microcontroladores y manejo de GPIOS

Estudiante: Josué Salmerón Córdoba

Grupo 1

Profesor: Marco Villalta

8 de enero de 2024

${\rm \acute{I}ndice}$

1.	Resumen	1
2.	Nota teórica	2
3.	Desarrollo/Análisis	11
4.	Conclusiones y recomendaciones	15
5.	Anexos	17

Índice de figuras

1.	MC PIC12F675. Tomado de [1]	2
2.	Pines del PIC12F765. Tomado de [2]	3
3.	Diagrama de bloques del PIC12F765. Tomado de [2]	3
4.	Representación de los 7 segmentos. Tomado de [3]	5
5.	Otros pines del display de 7 segmentos	5
6.	Decodificador CD4511BE. Tomado de [1]	6
7.	Decodificador de SimulIDE	6
8.	Botón. Tomado de $[1]$	7
9.	Control del efecto rebote. Tomado de [4]	7
10.	Inversor/Compuerta not. Tomado de [1]	8
11.	Inversor. Elaboración propia	8
12.	Filtro RC para evitar rebote	9
13.	Protección de los LEDs	9
14.	Conexión del BCD	10
15.	Circuito del bingo.	10
16.	Diagrama de bloques juego bingo	11
17.	Nueva modificación del circuito	12
18.		12
19.	Corriente eléctrica en los 7S	12
20.	Resultados del nuevo circuito	12
21.	Diagrama de bloques mostrar número aleatorio	13
22.	Diagrama de bloques mostrar combinaciones de números	14
23.	Primer número	14
24.	Segundo número	14
25.	Tercer número	14
26.	Cuarto número	14
27	Conclusión del juego	15

Índice de tablas

1.	Registros importantes	4
2.	Lista de equipos	8

1. Resumen

(Aquí va el resumen cuando se trata del reporte, en el prereporte NO)

$Palabras\ clave$

palabras,clave,separadas, por,coma (solo en el reporte)

2. Nota teórica

Con base a lo sugerido en el enunciado del laboratorio, en esta sección se muestran los componentes que se usarán en el diseño de la tombola de bingo.

Microcontrolador PIC12F675

Figura 1: MC PIC12F675. Tomado de [1]

Se trata de un microcontrolador CMOS de 8 bits que tiene 8 pines fabricado por Microchip. Con arquitectura RISC usa 35 instrucciones para aprender, tiene una Flash de 8 bits contenido en 8 pines, presenta 4 canales para el conversor análogo-digital de 10 bits, 1 comparador análogo y una memoria EEPROM de 128 bytes [5]. Ahora, se mostrarán más detalles de este microcontrolador y así conocer funciones más específicas de éste.

Características generales

La mayoría de los pines en un microcontrolador son GPIOS, solo que para el caso del PIC12F675, los pines Vdd y Vss (y otros como entradas de reloj) no lo son. Así, detallando un poco más las funciones de los pines se tiene lo siguiente.

- Pin GP0/AN0/CIN+: funciona como entrada o salida, es una entrada análoga para el A/D y para el comparador.
- Pin GP1/AN1/CIN-/Vref: funciona como entrada o salida, es una entrada análoga para el A/D y para el comparador. Se le puede configurar un voltaje de referencia para el A/D.
- GP2/AN2/T0CKI/INT/COUT: funciona como entrada o salida, es una entrada análoga para el A/D, es un entrada de reloj para el TMRO. Activa una interrupción por un flanco externo, es una salida digital para el comparador.
- GP3/ MCLR/VPP: solo puede funcionar como entrada y como Master Clear Reset.
- GP4/AN3/T1G/OSC2/CLKOUT: funciona como entrada o salida, es una entrada para el A/D, el TMR1 es una compuerta de entrada, se puede conectarle un cristal resonante, es una salida del reloj.
- GP5/T1CKI/OSC1/CLKIN: funciona como entrada o salida, el TMR1 es un entrada de reloj, se puede conectarle un cristal resonante, es una entrada del reloj.

Los pines de este microcontrolador se muestran en la figura 2.

Figura 2: Pines del PIC12F765. Tomado de [2]

El siguiente diagrama de bloques de la figura 3 se muestran los elementos más relevantes de este microcontrolador tales como la memoria flash, el contador, la frecuencia de oscilación, una ALU, el convertidor A/D, comparador, los temporizadores.

Figura 3: Diagrama de bloques del PIC12F765. Tomado de [2]

Este microcontrolador tieen 32 registros para funciones especiales, algunos registros relevantes son: GPIO pines generales, TRISIO dice si un pin es entrada o salida, ANSEL indica si

una señal es analógica o digital, CMCON trabaja con los comparadores, VRCON, deshabilita la referencia interna de la tensión eléctrica.

Tabla 1: Registros importantes

Nombre	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
GPIO	-	-	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
TRISIO	_	-	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0
ANSEL	-	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0
CMCON	-	COUT	-	CINV	CIS	CM2	CM1	CM0
VRCON	VREN	-	VRR	-	VR3	VR2	VR1	VR0

Componentes electrónicos complementarios

Display de 7 segmentos

Es un arreglo de 7 LEDS y otro LED para el punto decimal, permite mostrar números del 0-9 y letras A-F [3], tal como se muestra en la figura 4. Con ayuda de dos de estos componentes será posible mostrar los números del 00 al 99. Con ayuda del simulador SimulIDE fue posible configurarlo para añadir otra pantalla, ahora, note que posee 10 pines, los 7 de la izquierda representan las letras a-g y los otros pines que están en la parte de abajo son los cátados (con signos -) y el punto decimal, esto se presenta en la figura 5.

Figura 4: Representación de los 7 segmentos. Tomado de [3]

Figura 5: Otros pines del display de 7 segmentos.

Dos detalles importantes a tener en cuenta son: saber como escribir los números y la protección de los LEDS de cada segmento. En cuanto a la escritura basta con saber que para lograr esto alguna de las letras debe estar en alto, así realizando la combinación respectiva se logra mostrar el número deseado. El otro detalle es que el display del simulador dice que la corriente máxima es de 0,02 A, más adelante en la sección de diseño se mostrarán estos cálculos.

Decodificador BCD 7S

Figura 6: Decodificador CD4511BE. Tomado de [1]

Si bien es cierto el PIC12F675 tiene muy pocos pines, y no es posible conectarle un display de 7 segmentos, por tanto, hay que usar un decodificador BCD de 7 segmentos. Este componente proporciona las funciones de un latch de almacenamiento de 4 bits, un decodificador 8421 BCD a siete segmentos y una capacidad de unidad de salida [6]. En realidad, para hacer la cotización de los componentes se usó este modelo, no obstante para cuestiones de la simulación en SimulIDE se usó el siguiente:

Figura 7: Decodificador de SimulIDE.

Esto porque el BCD de la figura 7 solo tiene una entrada 0E, basta con colocarla a tierra para el buen funcionamiento, mientras que el CD4511BE tiene 3 entradas adicionales que requiere una lectura detallada del la hoja del fabricante para hacer las conexiones pertinentes.

Botón

Figura 8: Botón. Tomado de [1]

También conocido como switch, será de gran utilidad porque a la hora de presionarlo el circuito (o la tombola) mostrará los números aleatorios. Esto es un componente mecánico y eléctrico, se estudió en clase que a la hora de presionarlo tiene un efecto de rebote, esta acción hace que se generen lecturas falsas, por lo que se tienen que filtrar, en ese sentido hay que considerar la frecuencia de oscilación del microcontrolador en uso, para este caso corresponde a 4 MHz. Y realizar la siguiente conexión:

Figura 9: Control del efecto rebote. Tomado de [4]

Al tener en cuenta esta conexión el microcontrolador no se verá forzado a esperar 50 ms para que se eliminen los rebotes y continuar con el programa, realmente no es una buena práctica pues mantiene el microcontrolador esperando que pase el delay [4]. En ese sentido, sabiendo la frecuencia de oscilación hay que considerar las magnitudes de las resistencias y el de la capacitancia para evitar estos rebotes. Esto se detallará en la sección de diseño.

Inversor

Figura 10: Inversor/Compuerta not. Tomado de [1]

Es intuitivo pensar que este componente lo que hará es ver el estado actual de una señal y aplicarle su inversa, es decir, si está en bajo, ahora estará en alto y viceversa. La idea de hacer uso de esta compuerta lógica en el cátado y ánado del display es para darle sentido a los números que se mostrarán, es decir, que se encienda uno a la vez.

Figura 11: Inversor. Elaboración propia.

Lista de componentes

La tabla 2 resume el costo de cada componente a usar para el diseño del bingo.

Tabla 2: Lista de equipos

Componente	Cantidad	Precio
PIC12F675	1	4.95\$
Batería 5 V	1	0.25\$
Capacitor 10 pF	1	0.18\$
BCD 7 segmentos	1	1.30\$
Switch	1	0.65\$
Inversor	1	1.50\$
Display de 7 segmentos	2	4.40\$
Potenciómetros 0 $\Omega\text{-}100\Omega$	2	2\$
Total		15.23\$

Los componentes mostrados anteriormente se pueden comprar en la tiendo MicroJpm, disponible en [1].

Diseño del circuito

Inicialmente se construyó el filtro RC mostrado en la figura 9, esto para evitar el efecto rebote en el circuito, por este motivo se consideró la frecuencia de oscilación de 40 MHz, así:

$$\tau = R \cdot C = 40 \cdot 20 \cdot 10 \times 10^{-12} = 8 \,\text{ns}$$
 (1)

Con base al resultado de la ecuación 1, es posible evitar las lecturas falsas en el circuito. Esta sección del circuito se aprecia en la figura 12

Figura 12: Filtro RC para evitar rebote.

Lo siguiente que se hizo fue revisar las especificaciones del display de 7 segmentos que brinda SimulIDE, en especial la corriente máxima que éste componente posee, que es de $0.02\,\mathrm{A}$, entonces al conectarle una fuente de alimentación de $5\,\mathrm{V}$, y una resistencia eléctrica de $175\,\Omega$, note que los LEDs del display le están llegando la corriente adecuada tal como se muestra en la figura 13.

Figura 13: Protección de los LEDs

Ahora, conectando el decodificador al avance que se tiene del circuito se tiene lo siguiente. Esto para comprobar que la corriente en los LEDs es la adecuada.

Figura 14: Conexión del BCD.

En efecto, se tiene una corriente eléctrica de 12,06 mA.

Hecho lo anterior, además de conectar la señal OE a tierra, el siguiente paso es conectar las entradas P0, P1, P2 y P4, a las entradas S0, S1, S2 y S3, del PIC12F675 al BCD respectivamente, mientras que la señal P3 se conectará al filtro creado previamente mostrado en la figura 12. Por tanto, el circuito que simula un juego de bingo queda de la siguiente forma:

Figura 15: Circuito del bingo.

En la sección de desarrollo se mostrará la corriente eléctrica que le están llegando a algunos de los segmentos, pero lo mostrado en la figura 15 es una optimización del circuito general. Claramente, no muestra ningún resultado pertinente porque aún no tiene el archivo .hex en el firmware del microcontrolador. Ahora, se espera que se muestren números aleatorios, y según lo visto en clase, la función sran no está disponible para microcontroladores, por tanto, hay otros métodos para lograr esto tales como: RNG, lectura de convertidores A/D, lfsr, algoritmo Blum-Blum-Shub y por medio de contadores.

3. Desarrollo/Análisis

A continuación, se muestra el diagrama de flujo que se utilizó para crear la simulación del bingo.

Figura 16: Diagrama de bloques juego bingo.

Ya con el código listo se realizaron algunas pruebas para mostrar resultados consistentes en esta sección. Lo primero es que se tuvo que eliminar las resistencias del primer diseño creado, por lo que el circuito queda de la siguiente manera:

Figura 17: Nueva modificación del circuito

Esto porque se notó que la corriente eléctrica que estaba llegando a los LEDs era muy baja y por tanto éstos casi no se encendían, de tal forma que costaba identificar los números que se mostraban en la tombola, esto se muestra en la figura 18 y 19.

Figura 18: Números en la tombola.

Figura 19: Corriente eléctrica en los 7S.

La figura 18 muestra un número distinguible, es un 71, no obstante, el de la figura 19 cuesta trabajo identificarlo (se probó con diferenes colores y el resultado no se mejoraba), y esto tiene sentido por la baja corriente que le esta llegando a los 7 segmentos, por este motivo es que se decidió quitar los resistores conectados a los display. Realizando una prueba con el diseño mostrado en la figura 17, se obtiene una mejora.

Figura 20: Resultados del nuevo circuito.

Con este nuevo diseño se aprecia una mejora en la corriente (12,94 mA) que le está llegando a los segmentos encargados de mostrar el número 46, pues ahora es cercana a 20 mA, y los LEDs presentan una mejor iluminación en los segmentos. Ya con el buen funcionamiento de la tombola, se muestra un pequeño diagrama de bloques por cada vez que se presionaba el botón.

Figura 21: Diagrama de bloques mostrar número aleatorio.

En el último cuadro donde hay un loop for junto con la función mostrar_num esto fue importante para lograr las transiciones del número 99, es decir, el parpadeo solicitado, ya después se reinicia el programa. El diagrama de bloques para la función mostrar_num es un simple case tal como se muestra en la figura 22.

Figura 22: Diagrama de bloques mostrar combinaciones de números.

De esta manera, los resultados de la tombola del bingo se muestran en las siguientes imágenes.

Figura 23: Primer número

Figura 25: Tercer número

Figura 24: Segundo número

Figura 26: Cuarto número

Estos resultados demuestran que los números no se repiten, quiere decir que la función implementada está correcta. Por último, cuando aparece el número 99 el programa sabe que ya el sorteo terminó, entonces aparecerá este mismo número por 3 veces y se reinician los displays junto con los contadores.

Figura 27: Conclusión del juego.

4. Conclusiones y recomendaciones

A modo de conclusión, el bingo circuito funciona correctamente ya que muestra solo 10 números de manera aleatoria y cuando se llega al límite de pulsaciones el juego se reinicia, esto demuestra lo solicitado para este reporte. En cuanto a la incandescencia de los displays se notó que para ciertos números era muy buena, en cambio para otros no tanto pues hay que realizar cierto esfuerzo para identificar el número, por este motivo se quitaron las resistencias del circuito previamente diseñado y los resultados en los displays mejoró, claramente siempre respetando la corriente eléctrica máxima de los displays.

Como recomendaciones,

- Leer cuidadosamente los detalles de las hojas del fabricante, éstas pueden ser muy extensas sin embargo, dependiendo de las necesidades de diseño serán detalles muy específicos que se ocuparán.
- El circuito armado en SimulIDE no funcionará si no tiene un archivo .hex en su firmware, por lo que es posible que en los display muestre un valor por defecto siempre y cuando esté encendido, caso contrario no se verá nada.
- Estar comprobando siempre que los componentes le está llegando la corriente eléctrica adecuada sino se tendrá dificultades, y es una buena práctica hacerlo porque al trabajar con componentes físicos se tendrá el cuidado de éstos en todo momento.
- Aplicar y consultar la teoría de los conceptos explicados en clase para el desarrollo de las tareas asignadas, por ejemplo, el efecto rebote para evitar falsas lecturas a la hora de presionar el botón.

Referencias

- [1] MicroJpm. Tienda de componentes. All about Circuits https://www.microjpm.com/search/?x=15&y=12&text=, octubre 2017. Accedido en enero de 2024.
- [2] Microchip. Pic12f675 datasheet (pdf) download microchip technology. ALLDA-TASHEET.COM, https://pdf1.alldatasheet.com/datasheet-pdf/download/348702/MICROCHIP/PIC12F675.html, Agosto 2003. Accedido en enero de 2024.
- [3] Paul Nicholls. 7 segment displays. Electronics resources, https://pfnicholls.com/ Electronics/LEDDisplays.html, Mayo 2019. Accedido en enero de 2024.
- [4] Jens Christoffersen. Switch bounce and how to deal with it. All about Circuits https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-to-deal-with-it/, setiembre 2015. Accedido en enero de 2024.
- [5] Sigma. Sigma electrónica. Sigma, https://www.sigmaelectronica.net/producto/pic12f675-ip/, Agosto 2017. Accedido en enero de 2024.
- [6] Fairchid semiconductor. Bcd-to-7 segment latch/decoder/driver. ALLDATASHEET.ES, https://www.alldatasheet.es/datasheet-pdf/pdf/50863/FAIRCHILD/CD4511BC. html, Junio 1987. Accedido en enero de 2024.

5. Anexos

Aquí van las hojas del fabricante de los componentes usados para este laboratorio.

PIC12F629/675 Data Sheet

8-Pin, Flash-Based 8-Bit CMOS Microcontrollers

PIC12F629/675

8-Pin Flash-Based 8-Bit CMOS Microcontroller

High-Performance RISC CPU:

- · Only 35 Instructions to Learn
 - All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- · Interrupt Capability
- · 8-Level Deep Hardware Stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- · Internal and External Oscillator Options
 - Precision Internal 4 MHz oscillator factory calibrated to ±1%
 - External Oscillator support for crystals and resonators
 - 5 μs wake-up from Sleep, 3.0V, typical
- · Power-Saving Sleep mode
- Wide Operating Voltage Range 2.0V to 5.5V
- · Industrial and Extended Temperature Range
- · Low-Power Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Detect (BOD)
- Watchdog Timer (WDT) with Independent Oscillator for Reliable Operation
- Multiplexed MCLR/Input Pin
- Interrupt-on-Pin Change
- · Individual Programmable Weak Pull-ups
- · Programmable Code Protection
- · High Endurance Flash/EEPROM Cell
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM Retention: > 40 years

Low-Power Features:

- · Standby Current:
 - 1 nA @ 2.0V, typical
- · Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- · Watchdog Timer Current
 - 300 nA @ 2.0V, typical
- · Timer1 Oscillator Current:
 - 4 μA @ 32 kHz, 2.0V, typical

Peripheral Features:

- · 6 I/O Pins with Individual Direction Control
- · High Current Sink/Source for Direct LED Drive
- Analog Comparator module with:
 - One analog comparator
 - Programmable on-chip comparator voltage reference (CVREF) module
 - Programmable input multiplexing from device inputs
 - Comparator output is externally accessible
- Analog-to-Digital Converter module (PIC12F675):
 - 10-bit resolution
 - Programmable 4-channel input
 - Voltage reference input
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- · Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Device	Program Memory	Data N	Memory	Comparators	Timers		
Device	Flash (words)	SRAM (bytes)	_	1/0	(ch)	Comparators	8/16-bit
PIC12F629	1024	64	128	6	_	1	1/1
PIC12F675	1024	64	128	6	4	1	1/1

^{* 8-}bit, 8-pin devices protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

Pin Diagrams

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F629/675. Additional information may be found in the PIC® Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data

Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC12F629 and PIC12F675 devices are covered by this Data Sheet. They are identical, except the PIC12F675 has a 10-bit A/D converter. They come in 8-pin PDIP, SOIC, MLF-S and DFN packages. Figure 1-1 shows a block diagram of the PIC12F629/675 devices. Table 1-1 shows the pinout description.

FIGURE 1-1: PIC12F629/675 BLOCK DIAGRAM

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0	l	I	I	l .	I			l	l .	l .	
00h	INDF ⁽¹⁾	Addressing	this Location	uses Conte	nts of FSR to	Address Dat	a Memory			0000 0000	20,61
01h	TMR0	Timer0 Mod	ule's Registe	er						xxxx xxxx	29
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	19
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	14
04h	FSR	Indirect Data	a Memory Ad	dress Pointe	er			•		xxxx xxxx	20
05h	GPIO	_	 — GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0 								21
06h	_	Unimplemen	nted							_	_
07h	_	Unimplemen	nted							_	_
08h	_	Unimplemen	nted							_	_
09h	_	Unimplemen	nted							_	_
0Ah	PCLATH	_	_	_	Write Buffer	for Upper 5 I	bits of Progra	am Counter		0 0000	19
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	15
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	17
0Dh	_	Unimplemen	nted					•		_	_
0Eh	TMR1L	Holding Reg	gister for the	Least Signific	cant Byte of t	he 16-bit Tim	er1			xxxx xxxx	32
0Fh	TMR1H	Holding Reg	ister for the	Most Signific	ant Byte of th	ne 16-bit Time	er1			xxxx xxxx	32
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	35
11h	_	Unimplemen	nted							_	_
12h	_	Unimplemen	nted							_	_
13h	_	Unimplemen	nted							_	_
14h	_	Unimplemen	nted							_	_
15h	_	Unimplemen	nted							_	_
16h	_	Unimplemen	nted							_	_
17h	_	Unimplemen	nted							_	_
18h	_	Unimplemen	nted							_	_
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	38
1Ah	_	Unimplemen	nted							_	_
1Bh	_	Unimplemen	nted							_	_
1Ch		Unimplemen	nted							_	_
1Dh		Unimplemen	nted							_	_
1Eh	ADRESH ⁽³⁾	Most Signific	cant 8 bits of	the Left Shif	ted A/D Resi	ult or 2 bits of	the Right Sh	nifted Result		xxxx xxxx	44
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000	45,61

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.
2: These bits are reserved and should always be maintained as '0'.
3: PIC12F675 only.

PIC12F629/675

SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED) **TABLE 2-1:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this Location	uses Conter	nts of FSR to	Address Dat	ta Memory			0000 0000	20,61
81h	OPTION_REG	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	14,31
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	14
84h	FSR	Indirect Data	a Memory Ad	Idress Pointe	er				•	xxxx xxxx	20
85h	TRISIO	_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	21
86h	_	Unimplemen	nted							_	_
87h	_	Unimplemen	nted							_	_
88h	_	Unimplemen	nted							_	_
89h	_	Unimplemen	nted							_	_
8Ah	PCLATH	_	_	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	TOIF	INTF	GPIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	00 00	16
8Dh	_	Unimplemen	nted						•	_	_
8Eh	PCON	_	_	_	_	_	_	POR	BOD	0x	18
8Fh	_	Unimplemen	nted							_	_
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	1000 00	18
91h	_	Unimplemen	nted							_	_
92h	_	Unimplemen	nted							-	_
93h	_	Unimplemen	nted							_	_
94h	_	Unimplemen	nted							_	_
95h	WPU	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	21
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	23
97h	_	Unimplemen	nted							_	_
98h	_	Unimplemen	nted							_	_
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	42
9Ah	EEDATA	Data EEPR	OM Data Reg	gister						0000 0000	49
9Bh	EEADR		Data EEPR	OM Address	Register					-000 0000	49
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	50
9Dh	EECON2 ⁽¹⁾	EEPROM C	ontrol Regist	er 2							50
9Eh	ADRESL ⁽³⁾	Least Signif	icant 2 bits o	f the Left Shi	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		xxxx xxxx	44
9Fh	ANSEL ⁽³⁾	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	46,61

— = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.3: PIC12F675 only.

PIC12F629/675

3.3 Pin Descriptions and Diagrams

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.3.1 GP0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · an analog input to the comparator

3.3.2 GP1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

- · as a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · an analog input to the comparator
- a voltage reference input for the A/D (PIC12F675 only)

FIGURE 3-1: BLOCK DIAGRAM OF GP0
AND GP1 PINS

3.3.3 GP2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · the clock input for TMR0
- an external edge triggered interrupt
- · a digital output from the comparator

FIGURE 3-2: BLOCK DIAGRAM OF GP2

3.3.4 GP3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following:

- · a general purpose input
- · as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF GP3

PIC12F629/675

3.3.5 GP4/AN3/T1G/OSC2/CLKOUT

Figure 3-4 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · a TMR1 gate input
- · a crystal/resonator connection
- · a clock output

FIGURE 3-4: BLOCK DIAGRAM OF GP4

3.3.6 GP5/T1CKI/OSC1/CLKIN

Figure 3-5 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following:

- a general purpose I/O
- · a TMR1 clock input
- · a crystal/resonator connection
- · a clock input

FIGURE 3-5: BLOCK DIAGRAM OF GP5

Data sheet acquired from Harris Semiconductor SCHS072B – Revised July 2003

CMOS BCD-to-7-Segment Latch Decoder Drivers

High-Voltage Types (20-Volt Rating)

25.25.097

■ CD4511B types are BCD-to-7-segment latch decoder drivers constructed with CMOS logic and n-p-n bipolar transistor output devices on a single monolithic structure. These devices combine the low quiescent power dissipation and high noise immunity features of RCA CMOS with n-p-n bipolar output transistors capable of sourcing up to 25 mA. This capability allows the CD4511B types to drive LED's and other displays directly.

Lamp Test (\overline{LT}), Blanking (\overline{BL}), and Latch Enable or Strobe inputs are provided to test the display, shut off or intensity-modulate it, and store or strobe a BCD code, respectively. Several different signals may be multiplexed and displayed when external multiplexing circuitry is used.

The CD4511B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes)

These devices are similar to the type MC14511.

CD4511B TERMINAL ASSIGNMENT

Features:

- High-output-sourcing capability up to 25 mA
- Input latches for BCD Code storage
- Lamp Test and Blanking capability
- 7-segment outputs blanked for BCD input codes > 1001
- 100% tested for quiescent current at 20 V
- Max. input current of 1 μA at 18 V, over full package-temperature range, 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings

Applications:

- Driving common-cathode LED displays
- Multiplexing with common-cathode LED displays
- Driving incandescent displays

CD4511B Types

■ Driving low-voltage fluorescent displays

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD) Voltages referenced to VSS Terminal) -0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS -0.5V to VDD +0.5V DC IMPUT CURRENT, ANY ONE INPUT ±10mA POWER DISSIPATION PER PACKAGE (PD): For T_A = -55°C to +100°C Device DISSIPATION PER OUTPUT TRANSISTOR FOR T_A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) OPERATING-TEMPERATURE RANGE (Tstg) STORAGE TEMPERATURE RANGE (Tstg) -65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):

OPERATING CONDITIONS AT TA = 25°C Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

Characteristic	V _{DD}	Min.	Max.	Units
Supply Voltage Range (T _A): (Full Package Temperature Range)		3	18	· V
	5	150	-	ns
Set-Up Time (tg)	10	70	_	ns
	15	40		ns
	5	0	_	ns
Hold Time (t _H)	10	0	_	ns
	15	0	-	ns
	5	400	_	ns
Strobe Pulse Width (t _W)	10	160	_	ns
, , ,	15	100	_	ns

CD4511B Types

STATIC ELECTRICAL CHARACTERISTICS

	TE	ST CON	OITIO	NS	l						.0.0.	
					LI	MITS A	r indic/	ATED TE	MPERA	TURES	(°C)	
CHARACTERISTIC	Юн	v _o	VIN	V _{DD}		ſ	Γ		ı —	+25		Units
	(mA)	(V)	(V)	(V)	–55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent Device	-		_	5	5	5	150	150	-	0.04	5	-
Current: IDD			_	10	10	10	300	300		0.04	10	μΑ
Max.	_			15	20	20	600	600		0.04	20	μΑ.
			_	20	100	100	3000	3000	_	0.08	100	
Output Voltage:		,										
			0,5	5			0.05		· -	0	0.05	
Low-Level VOL Max.			0,10	10			0.05		-	0	0.05	V
Max.	<u> </u>	<u> </u>	0,15	15			0.05			0	0.05	'
		<u>-</u>	0,5	5	4	4	4.2	4.2	4.1	4.55		
High-Level V _{OH}		_	0,10	10	9	9	9.2	9.2	9.1	9.55		V
Min.	-		0.15	15	14	14	14.2.	14.2	14.1	14.55		
Input Low	_	0.5,3.8		5			1.5			_	1.5	
Voltage, V _{IL}		1,8.8	-	10			3		-	-	3	V
Max.		1.5,13.8		15			4		-	-	4	
Input High	-	0.5,3.8		5	3.5				3.5	-	_	
Voltage, VIH	_	1,8.8		10	7				7			l v
Min.		1.5,13.8		15			11		11	_	-	1
	0			4	4.0	4.0	4.20	4.20	4.10	4.55		
	5	-						-	-	4.25		1
	10			5	3.80	3.80	3.90	3.90	3.90	4.10		l _v
	15		-	!		-	3.50	3.50	-	3.95	_	
	20	-			3.55	3.55	3.30	-	3.40	3.75	_	
	25				3.40	3.40	-		3.10	3.55	-	
	0		-	4	9.0	9.0	9.20	9.20	9.10	9.55		
Output Drive	5				-	-	-		_	9.25	<u>-</u>	
Voltage:	10	-	-	' [.	8.85	8.85	9.00	9.00	9.00	9.15	-	Ιν
High Level VOH	15	,	-	10	-		_		_	9.05		*
Min.	20	-	,		8.70	8.70	8.40	8.40	8.60	8.90		
	25	-	-	•	8.60	8.60	-		8.30	8.75	. –	
	0	_		•	14.0	14.0	14.20	14.20	14.10	14.55		
	5		-		-	_	-	-		14.30		
	10			15	13.90	13.90	14.0	14.0	14.0	14.20		v
	15					-	-	-		14.10		
	20 25		-		13.75	13.75	13.50	13.50	13.70	13.95	-	
	_25				13.65	13.65			13.50	13.80		L
Output Low		0.4	۸.	5	0.64	0.61	0.40		امدا			
(Sink) Current,		0.4	0,5	10	1.6		0.42 1.1	0.36	0.51	2.6		mΑ
^I OL Min.	H	1.5	0,10	15	4.2	1.5 4	2.8	0.9 2.4	1.3 3.4	2.6 6.8		
IAIILI.		1.5	0,15	13	4.2	4	2.5	2.4	3.4	ზ.შ		<u> </u>
Input Current, I _{IN}	-	0,18	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μΑ
Max.						L	L	L	L		نـــــــا	L

ig. 1 — Typical output low (sink) current characteristics.

Fig. 2 — Typical data-to-output, low-to-high-level propagation dalay time as a function of load capacitance.

Fig. 3 — Typical data-to-output, high-to-low-level propagation dalay time as a function of load capacitance.

Fig. 4 — Typical low-to-high-level transition time as a function of load capacitance.

CD4511B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	Test Conditions		LIMITS All Packag		UNITS
N	V _{DD} Volts	Min.	Тур.	Max.	
Propagation Delay Time: (Data)	5 10	-	520 210	1040 420	
High-to-Low Level, tpHL	15	-	150	300	ns
	5	-	660	1320	
Low-to-High Level, tpLH	10 15		260 180	520 360	ns
Propagation Delay Time:	5	-	350	700	
(BL) High-to-Low Level, t _{PHL}	10 15	_	175 125	350 250	ns
	5		400	800	
> Low-to-High Level, tpLH	10 15	- 	175 150	350 300	ns
Propagation Delay Time:	5	_	250	500	
(LT) High-to-Low Level, t _{PHL}	10 15	- -	125 85	250 170	ns
	5	_	150	300	
Low-to-High Level, tpLH	10 15	_	75 50	150 100	ns
Transition Time:	5	-	40	80	
Low-to-High Level, t _{TLH}	10 15	- -	30 25	60 50	ПS
	5	-	125	310	
High-to-Low Level, tTHL	10 15	_	75 65	185 160	ns
Minimum Set-Up Time, t _S	5	150	75 25	-	
withing and detrop Time, is	10 15	70 40	35 20	<i>-</i>	ns
Minimum Hald Time 4	5	0	-75 -25	_	
Minimum Hold Time, tH	10 15	0	-35 -20	_	ns
Caroba Dulas Wilds	5	400	200	_	
Strobe Pulse Width, t _W	10 15	160 100	80 50		ns
Input Capacitance, C _{IN}			5	7.5	pF

Fig. 5 - Typical high-to-low transition time as a function of load capacitance.

Fig. 6 — Typical voltage drop (V_{DD} to output) vs. output source current as a function of supply.

Fig. 7 — Typical dynamic power dissipation characteristics.

Data sheet acquired from Harris Semiconductor SCHS072B – Revised July 2003

CMOS BCD-to-7-Segment Latch Decoder Drivers

High-Voltage Types (20-Volt Rating)

25.25.097

■ CD4511B types are BCD-to-7-segment latch decoder drivers constructed with CMOS logic and n-p-n bipolar transistor output devices on a single monolithic structure. These devices combine the low quiescent power dissipation and high noise immunity features of RCA CMOS with n-p-n bipolar output transistors capable of sourcing up to 25 mA. This capability allows the CD4511B types to drive LED's and other displays directly.

Lamp Test (\overline{LT}), Blanking (\overline{BL}), and Latch Enable or Strobe inputs are provided to test the display, shut off or intensity-modulate it, and store or strobe a BCD code, respectively. Several different signals may be multiplexed and displayed when external multiplexing circuitry is used.

The CD4511B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes)

These devices are similar to the type MC14511.

CD4511B TERMINAL ASSIGNMENT

Features:

- High-output-sourcing capability up to 25 mA
- Input latches for BCD Code storage
- Lamp Test and Blanking capability
- 7-segment outputs blanked for BCD input codes > 1001
- 100% tested for quiescent current at 20 V
- Max. input current of 1 μA at 18 V, over full package-temperature range, 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings

Applications:

- Driving common-cathode LED displays
- Multiplexing with common-cathode LED displays
- Driving incandescent displays

CD4511B Types

■ Driving low-voltage fluorescent displays

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD) Voltages referenced to VSS Terminal) -0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS -0.5V to VDD +0.5V DC IMPUT CURRENT, ANY ONE INPUT ±10mA POWER DISSIPATION PER PACKAGE (PD): For T_A = -55°C to +100°C Device DISSIPATION PER OUTPUT TRANSISTOR FOR T_A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) OPERATING-TEMPERATURE RANGE (Tstg) STORAGE TEMPERATURE RANGE (Tstg) -65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):

OPERATING CONDITIONS AT TA = 25°C Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

Characteristic	V _{DD}	Min.	Max.	Units
Supply Voltage Range (T _A): (Full Package Temperature Range)		3	18	· V
	5	150	-	ns
Set-Up Time (tg)	10	70	_	ns
	15	40		ns
	5	0	_	ns
Hold Time (t _H)	10	0	_	ns
	15	0	-	ns
	5	400	_	ns
Strobe Pulse Width (t _W)	10	160	_	ns
, , ,	15	100	_	ns

CD4511B Types

STATIC ELECTRICAL CHARACTERISTICS

	TEST CONDITIONS					.0.0.						
					LIMITS AT INDICATED TEMPERATURES (°C)							
CHARACTERISTIC	Юн	v _o	VIN	V _{DD}		ſ	Γ		ı —	+25		Units
	(mA)	(V)	(V)	(V)	–55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent Device	-		_	5	5	5	150	150	-	0.04	5	-
Current: IDD			_	10	10	10	300	300		0.04	10	μΑ
Max.	_			15	20	20	600	600		0.04	20	
			_	20	100	100	3000	3000	_	0.08	100	
Output Voltage:		,										
			0,5	5			0.05		· -	0	0.05	
Low-Level VOL Max.			0,10	10			0.05		-	0	0.05	V
Max.	<u> </u>	<u> </u>	0,15	15			0.05			0	0.05	'
		<u>-</u>	0,5	5	4	4	4.2	4.2	4.1	4.55		
High-Level V _{OH}		_	0,10	10	9	9	9.2	9.2	9.1	9.55		V
Min.	-		0.15	15	14	14	14.2.	14.2	14.1	14.55		
Input Low	_	0.5,3.8		5			1,5			_	1.5	
Voltage, V _{IL}		1,8.8	-	10			3		-	-	3	V
Max.		1.5,13.8		15			4		-	-	4	
Input High	-	0.5,3.8		5			3.5		3.5	-	_	
Voltage, VIH	_	1,8.8		10	7			7			V	
Min.		1.5,13.8		15				11	_	-		
Output Drive	0			4	4.0	4.0	4.20	4.20	4.10	4.55		
	5	-						-	-	4.25		1
	10			5	3.80	3.80	3.90	3.90	3.90	4.10		l _v
	15		-	!		-	3.50	3.50	-	3.95	_	
	20	-			3.55	3.55	3.30	-	3.40	3.75	_	
	25				3.40	3.40	-		3.10	3.55	-	
	0		-	4	9.0	9.0	9.20	9.20	9.10	9.55		
	5				-	-	-		_	9.25	<u>-</u>	
Voltage:	10	-	-	' [.	8.85	8.85	9.00	9.00	9.00	9.15	-	Ιν
High Level VOH	15	,	-	10	-		-		_	9.05		*
Min.	20	-	,		8.70	8.70	8.40	8.40	8.60	8.90		
	25	-	-	•	8.60	8.60	-		8.30	8.75	. –	
	0	_		•	14.0	14.0	14.20	14.20	14.10	14.55	-	
	5		-		-	_	_	-		14.30		
	10			15	13.90	13.90	14.0	14.0	14.0	14.20		v
	15					-	-	-		14.10		
	20 25		-		13.75	13.75	13.50	13.50	13.70	13.95	-	
	25	-			13.65	13.65		_	13.50	13.80		
Output Low		0.4	۸.	5	0.64	0.61	0.40		امدا			
(Sink) Current,		0.4	0,5	10	1.6		1.1	0.36	0.51	2.6		mA
^I OL Min.	H	1.5	0,10	15	4.2	1.5 4	2.8	0.9 2.4	1.3 3.4	2.6 6.8		
IAIILI.		1.5	0,15	13	4.2	4	2.5	2.4	3.4	8.0		<u> </u>
Input Current, I _{IN}	-	0,18	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μΑ
Max.						L		L	L		نـــــــا	L

ig. 1 — Typical output low (sink) current characteristics.

Fig. 2 — Typical data-to-output, low-to-high-level propagation dalay time as a function of load capacitance.

Fig. 3 — Typical data-to-output, high-to-low-level propagation dalay time as a function of load capacitance.

Fig. 4 — Typical low-to-high-level transition time as a function of load capacitance.

CD4511B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	Test Conditions		UNITS		
N	V _{DD} Volts	Min.	Тур.	Max.	
Propagation Delay Time: (Data)	5 10	-	520 210	1040 420	ns
High-to-Low Level, tpHL	15	_	150	300	115
Low-to-High Level, tpLH	5	-	660	1320	
Low-to-righ Level, tpLH	10 15	-	260 180	520 360	ns
Propagation Delay Time:	5	_	350	700	
(BL) High-to-Low Level, t _{PHL}	10 15	_	175 125	350 250	ns
	5		400	800	
> Low-to-High Level, tpLH	10 15	- - ,	175 150	350 300	ns
Propagation Delay Time:	5	-	250	500	
(LT) High-to-Low Level, t _{PHL}	10 15	- -	125 85	250 170	ns
	5	_	150	300	
Low-to-High Level, tpLH	10 15	-	75 50	150 100	ns
Transition Time:	5	-	40	80	
Low-to-High Level, tTLH	10 15	- -	30 25	60 50	ПS
	5	-	125	310	<u> </u>
High-to-Low Level, tTHL	10 15	_	75 65	185 160	ns
Minimum Set-Up Time, t _S	5 10	150	75 25	_	
Time, ts	15	70 40	35 20	_	ns
Minimum Hold Time, tH	5	0	-75 25	_	
малания пова тініе, тр	10 15	0	-35 -20	_	ns
Strobe Bules Wildsh	5	400	200	_	
Strobe Pulse Width, t _W	10 15	160 100	80 50		ns
Input Capacitance, C _{IN}			5	7.5	pF

Fig. 5 - Typical high-to-low transition time as a function of load capacitance.

Fig. 6 — Typical voltage drop (V_{DD} to output) vs. output source current as a function of supply.

Fig. 7 — Typical dynamic power dissipation characteristics.

0.36 Inch DUAL Digit Display

ESD-036UW2BW-CCS1

REV:A/0

PACKAGE DIMENSIONS

Note:

- 1.All Dimensions are in millimeters.
- 2.Tolerance is ±0.25mm(0.010 ")Unless otherwise specified.

DRAWING NO. :ESD-DS-0555 DATE :2014-03-26 Page : 2

0.36 Inch DUAL Digit Display

ESD-036UW2BW-CCS1

REV:A/0

■ 产品特征 FEATURES:

• 高可靠性和高稳定性

High intensity and reliability

• 高品质、和低功耗、低成本

High quality, Low power requirement and low cost

● IC 易兼容、易装配

IC compatible, Easy assembly

● 符合 RoHS 指令要求

Meet RoHS EU Directive

● 静电承受能力 200V

ESD 200V

■ 产品描述 DESCRIPTION:

● 0.36 英寸双位数码管

0.36 Inch DUAL Digit Display

• 极性共阴

Common Cathode

● 黑面,黄胶

Black face, Yellow segment

• 发光颜色

Luminous Color:

白色 white

●晶片材质

Chips Materials

1、InGaN

DRAWING NO. :ESD-DS-0555 DATE :2014-03-26 Page : 3

0.36 Inch DUAL Digit Display

ESD-036UW2BW-CCS1

REV:A/0

■ 产品最大绝对参数値(Ta:25℃)ABSOLUTE MAXIMUM RATINGS AT Ta=25℃:

PARAMETER	SYMBOL	白色	UNIT	
项目	符号	white	单 位	
Power Dissipation Per Segment	PAD	100	mw	
功 耗	17.0	100		
Reverse Voltage Per Segment	VR	5	V	
反 向 耐 压	VIX	5		
Continuous Forward Current Per Segment	IAF	2 0	mA	
最大使用电流	IAF	20		
Peak Forward Current Per				
Segment(Duty-0.1,1KHz)	IPF	100	mA	
最大峰值电流				
Operating Temperature Range	TOD _r	-20℃ to 80℃		
工作温度	TOPr			
Storage Temperature Range	Teta	30° +≏ 0		
贮 藏 温 度	Tstg	-30℃ to 85℃		

Lead Soldering Temperature 260 $^{\circ}$ C at 1.6mm From Body for 3 second 焊接温度 260 $^{\circ}$ C/3 秒 距离胶体 1.6mm 以上

■ 产品光电参数値(Ta:25℃)ELECTRICAL/OPTICAL CHARACTERISTICS AT Ta=25℃:

PARAMETER 项 目	SYMBOL 符号	TEST CONDITION 测试条件	Color 颜色	MIN 最小値	TYP 标准值	MAX 最大値	UNIT 单位
Forward Voltage ,Per Segment 正 向 压 降	VF	IF=20mA	白色 white	2.8	3.2	3.5	V
Reverse Current, Per Segment 反向漏电流	IR	VR=5V	白色 white			50	μΑ
Peak Emission Wavelength 峰 値 波 长	λр	IF=20mA	白色 white				nm
Luminous Intensity Per Segment 法向光强	IV	IF=20mA	白色 white	70	80	100	mcd

DRAWING NO. :ESD-DS-0555 DATE :2014-03-26 Page : 4

Features

- Multiturn / Cermet / Industrial / Sealed
- 5 terminal styles
- Tape and reel packaging available
- Chevron seal design
- Listed on the QPL for style RJ24 per MIL-R-22097 and RJR24 per High-Rel Mil-R-39035
- Mounting hardware available (H-117P)
- RoHS compliant* version available
- For trimmer applications/processing guidelines, click here

3296 - 3/8 " Square Trimpot® Trimming Potentiometer

Electrical Characteristics

Standard Resistance Range

.....10 ohms to 2 megohms (see standard resistance table)

Resistance Tolerance±10 % std. (tighter tolerance available)

Absolute Minimum Resistance

......1 % or 2 ohms max. (whichever is greater)

Contact Resistance Variation

......1.0 % or 3 ohms max. (whichever is greater)

Adjustability Voltage ±0.01 % Resistance±0.05 % Resolution Infinite Insulation Resistance500 vdc. 1,000 megohms min.

Dielectric Strength

Sea Level......900 vac 70,000 Feet 350 vac Effective Travel25 turns nom.

Environmental Characteristics

Power Rating (300 volts max.) 70 °C0.5 watt 125 °C 0 watt Temperature Range ... -55 °C to +125 °C Temperature Coefficient ... ±100 ppm/°C Seal Test.....85 °C Fluorinert† HumidityMIL-STD-202 Method 103 (2 % Δ TR, 10 Megohms IR) Vibration 20 G (1 % ΔTR; 1 % ΔVR) Shock 100 G (1 % ΔTR; 1 % ΔVR) Load Life.. 1,000 hours 0.5 watt @ 70 °C

(3 % ΔTR; 3 % or 3 ohms, whichever is greater, CRV) Rotational Life200 cycles (4 % ΔTR; 3 % or 3 ohms,

whichever is greater, CRV)

Physical Characte	eristics
	3.0 oz-in. max. Wiper idles
	Solderable pins
	0.03 oz.
	Manufacturer's
	ark, resistance code,
	diagram, date code,
n	nanufacturer's model
	number and style
	% (Actual TR) ±10 %
	U.L. 94V-0
	g50 pcs. per tube H-90

Product Dimensions

R = Tape and Reel (X and W Pin Styles Only)

A = Ammo Pack (X and W Pin Styles Only)

Terminations

100 % Tin-plated (RoHS compliant) Blank = 90 % Tin / 10 % Lead-plated (Standard)

Consult factory for other available options.

DIMENSIONS:	(INCHES)
TOLERANCES: $\pm \frac{0.25}{(.010)}$	EXCEPT WHERE NOTED

Standard Resistance Table

Resistance (Ohms)	Resistance Code
10	100
20	200
50	500
100	101
200	201
500	501
1,000	102
2,000	202
5,000	502
10,000	103
20,000	203
25,000	253
50,000	503
100,000	104
200,000	204
250,000	254
500,000	504
1,000,000	105
2,000,000	205

Popular values listed in boldface. Special resistances available.

^{†&}quot;Fluorinert" is a registered trademark of 3M Co.

^{*}RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.