

Algorithmique Avancée (avec solution)

Partie B. Chap 5. Programmation Linéaire (suite) : Dégénerescence et dualité

Florence Bannay

Master Informatique – Université Paul Sabatier 2020-2021

Ce qu'on a déjà vu

- I. Introduction par l'exemple
 - 1. Le barman
 - 2. Les formes : générale/canonique/standard ; in extenso/matricielle
 - 3. Transformations
- II. Résolution géométrique
- III. Résolution algébrique et Simplexe Tableau
 - 1. solution de base
 - 2. solution voisine
 - 3. pivot et algorithme du simplexe
 - 4. théorème : solution optimale = solution de base

IV. Dégénérescence

$$\max(z = x + y)$$

$$x + y \le 6$$
 (contrainte C1)
$$y \le 3$$
 (contrainte C2)
$$x \ge 0 \text{ et } y \ge 0$$

Tracez la zone qui satisfait C1:

- La droite D1: x + y = 6 passe par : A(0, .?.) et B(.?., 0).
- Le point (0,0) satisfait-il C1? (oui/non)
- Le demi-plan délimité par D1 et contenant (0,0) contient-il des solutions réalisables? (oui/non)

Exercice 1 (solution)

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

Tracez la zone qui satisfait C1:

- La droite D1: x + y = 6 passe par : A(0,6) et B(6,0).
- (0,0) satisfait C1
- le demi-plan non-hachuré contient des solutions réalisables.

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

Tracez la zone qui satisfait C2: Tracez d'abord la droite D2 : y=3

- (0,0) satisfait-il C2? (oui/non)
- Le demi-plan délimité par D2 et contenant (0,0) contient-il des solutions réalisables? (oui/non)

Exercice 2 (solution)

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

Tracez la zone qui satisfait C2 : Tracez d'abord la droite D2 : y=3

- (0,0) satisfait C2
- la zone non-hachurée contient des solutions réalisables.

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

Calcul de l'optimum :

- Tracez la droite x+y=0 elle passe par (-1,??) et (??,-1)
- Quelle est la solution optimale pour ce programme linéaire?

Exercice 3 (solution)

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

• La droite x+y=0 elle passe par (-1, 1) et D(1, -1)

Exercice 3 (solution)

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

- La droite x+y=0 elle passe par (-1, 1) et D(1, -1)
- Il y a une infinité de solutions optimales : le segment [A,B]
- Toutes ces solutions ont pour valeur z = 6.
- Dégénerescence : l'objectif est parallèle à une contrainte

Exercice 4 : résolution par le Simplexe

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$

$$x \ge 0 \text{ et } y \ge 0$$

Décrire le tableau initial:

	x	y	e_1	e_2	В
variables de base					
e_1 :					
e_2 :					
C, z - v:					z

Exercice 4 (solution)

$$\max(z = x + y)$$
(C1) $x + y \le 6$
(C2) $y \le 3$
 $x \ge 0 \text{ et } y \ge 0$

	x	y	e_1	e_2	В
variables de base					
e_1 :	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	1	1	0	0	z

	x	y	e_1	e_2	B	rapport $B/$ entrante
variables de base						
e_1 :	1	1	1	0	6	
e_2 :	0	1	0	1	3	
C, z - v:	1	1	0	0	z	/

On choisit de faire entrer x. Donnez la variable sortante.

Exercice 5 (solution)

	x	y	e_1	e_2	В	B/x
variables de base						
e_1 :	1	1	1	0	6	6/1 = 6
e_2 :	0	1	0	1	3	$3/0 = +\infty$
C, z - v:	1	1	0	0	z	/

entrante : x, sortante : e_1 (variable t.q. $B/entrante \min$)

	x	y	e_1	e_2	В
variables de base					
e_1 :	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	1	1	0	0	z

Pivotez ce tableau en faisant entrer x et sortir e_1 . Rappel :

- ligne pivot : on divise la ligne du pivot par le pivot
- ullet autre ligne : ligne coef col pivot imes nouvelle ligne pivot

Exercice 6 (solution)

Second tableau:

	x	y	e_1	e_2	В
variables de base					
x:	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

Exercice 6 (solution)

Second tableau:

	x	y	e_1	e_2	В
variables de base					
x:	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

- ullet Tous les coefficients de z sont nuls ou négatifs
- donc l'optimum est atteint

Second tableau:

	x	y	e_1	e_2	В
variables de base					
x:	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

En déduire une solution optimale.

Exercice 7 (solution)

Second tableau:

	x	y	e_1	e_2	В
variables de base					
x:	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

- ullet Tous les coefficients de z sont nuls ou négatifs
- Donc l'optimum est atteint
- La solution de base associée est z = 6 pour x = 6 et y = 0.
- L'algo du Simplexe s'arrêterait là

Second tableau:

	x	y	e_1	e_2	В
variables de base					
x:	1	1	1	0	6
e_2 :	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

- \bullet On peut choisir de faire entrer y en base,
- Quelle variable doit sortir? calculez le nouveau tableau.

Exercice 8 (solution)

Il faut absolument sortir e2 : critère de sortie (B/entrante minimal) obligatoire pour que solution réalisable.

Second tableau

Second tableau									
	\boldsymbol{x}	y	e_1	e_2	B	B/y			
var. base									
x:	1	1	1	0	6	6			
e_2 :	0	1	0	1	3	3			
C z = v:	0	0	-1	0	z-6	/			

-1	0	z-6	/

Troisième tableau

Troisième tableau						
	x	y	e_1	e_2	B	
var. base						
x:	1	0	1	-1	3	
y:	0	1	0	1	3	
C, z - v:	0	0	-1	0	z-6	

Troisième tableau:

	x	y	e_1	e_2	B
var. base					
x:	1	0	1	-1	3
y:	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

- L'optimum est-il atteint?
- Donnez la solution de base associée

Exercice 9 (solution)

Troisième tableau:

	x	y	e_1	e_2	В
variables de base					
x:	1	0	1	-1	3
y:	0	1	0	1	3
C, z - v:	0	0	-1	0	z-6

- \bullet L'optimum est encore atteint (les coeffs dans z sont tous négatifs ou nuls)
- La solution de base associée est z = 6 avec x = 3 et y = 3.

Problème primal/dual

Le problème de maximisation du barman (primal)

Le barman désire préparer le nombre optimal de bidons de type 1 et 2 pour maximiser son gain.

VAR DECISION :	x: nb bidons 1 (5 orange, 2 pampl. 1 framb.)				
VAIL DECISION.	y: nb bidons 2 (3 de chaque)				
OBJECTIF:	$\max (z = 80x + 60y)$				
	$5x + 3y \le 30 \text{ (stock jus orange)}$				
CONTRAINTES :	$2x + 3y \le 24$ (stock jus pamplemousse)				
CONTRAINTES.	$1x + 3y \le 18$ (stock jus framboise)				
	$x,y \ge 0$ (contraintes de positivité)				

Le problème de minimisation associé du grossiste (dual)

Un grossiste veut acheter tout le stock de jus de fruits (30 l orange, 24 pampl., 18 framb.) au prix le plus bas possible. On note :

- ullet v: prix d'un litre de jus de pamplemousse
- w : prix d'un litre de jus de framboise

Le grossiste payera la somme s = 30u + 24v + 18w.

Problème du grossiste :

- trouver u, v et w qui minimise s
- ullet avec contrainte : s acceptable pour le barman

```
\left(\begin{array}{c} u\\v\\w\end{array}\right) étant les prix au litre des jus de \left(\begin{array}{c} orange\\pamplemousse\\framboise\end{array}\right)
```

- La contrainte que la somme s soit acceptable pour le barman se traduit par des inéquations sur u, v et w.
- Le barman ne doit pas perdre d'argent par rapport à une vente sous forme de bidons
 - bidon type 1 (vendu 80 euros) : 51 orange, 21 pampl, 11 framb
 - bidon type 2 (vendu 60 euros) : 31 de chaque
- Écrivez les contraintes du grossiste sur u v et w.

Exercice 10 (solution)

Suspense ...