Rappel de cours sur l'analyse dimensionnel

L'analyse dimensionnelle permet de déduire les relations possibles entre les variables importantes d'un système physique en étudiant seulement les dimensions de ces variables.

I. Unités de mesure الوحدات الأساسية

D'une manière générale, on admet qu'un système est composé de six unités fondamentales (système SI).

- le mètre, unité de longueur (m).
- le kilogramme, unité de masse (kg).
- la seconde, unité de temps (s).
- l'ampère, unité d'intensité de courant électrique (A).
- le degré kelvin, unité de température absolue (° K).
- la candela, unité d'intensité lumineuse.

Les quatre premières unités forment le système international MKSA. A l'aide de ces unités fondamentales, on peut construire les unités dérivées : surface (m²), vitesse (m.s⁻¹), force (m.kg.s⁻²) etc...

Remarque : Dans le système CGS, les unités fondamentales sont le centimètre, le gramme et la seconde.

II. les équations aux dimensions

Toute grandeur physique est caractérisée par sa dimension qui est une propriété associée à une unité. La dimension de la grandeur **G**, notée **[G]**, nous informe sur la nature physique de la grandeur.

Par exemple, si G a la dimension d'une masse, on dit qu'elle est homogène à une masse.

La relation [G] = M correspond à l'équation aux dimensions de la grandeur G.

Il existe sept grandeurs fondamentales:

- la longueur (L)
- la masse (M)
- le temps (t)
- l'intensité du courant électrique (I)
- la température (θ)

- l'intensité lumineuse (J)
- la quantité de matière (N)

On s'intéresse aux trois dimensions fondamentales L, M et T pour les étudiants de la 1^{er} année LMD-MI, comme le montre le tableau suivant :

Grandeurs physiques	Symbole	de	la	Equation	aux	Unité	en	système
Fondamentales	grandeur			dimensions		interna	tional	(MKSA)
La Masse	M, m			[m]=M		Kilogra	ımme	(kg)
La Longueur	L, 1			[1]=L		Mètre (m)	
Le Temps	T, t			[t]=T		Second	e (s)	
Exemple:								

L'aire A étant le produit de deux longueurs, sa dimension est $[A] = L^2$.

Règles:

- Toute relation doit être homogène en dimensions, c'est-à-dire que ses deux membres ont la même dimension.
- Ainsi l'équation A = B + C.D n'a de sens que si les dimensions de A et de (B + C.D) sont identiques.
- Pour obtenir la dimension du second membre on doit appliquer les règles suivantes :
- ✓ La dimension du produit C.D est le produit des dimensions de chacune des grandeur C et D : [C.D] = [C].[D]. On procède de même pour une division.

$$[C/D] = [C]/[D]$$

✓ La dimension de la somme B + C.D est la même que les deux termes B et C.D :

[B + C.D] = [B] = [C.D]. On procède de même pour une soustraction.

$$[B - C.D] = [B] = [C.D].$$

D'autre part on a $[X^n] = [X]^n$.

- ✓ Les constantes, les angles, les fonctions (exp, ln, fonctions trigonométriques et leurs arguments) sont sans dimension (c'est à dire de dimension = 1).
- ✓ On ne peut pas additionner (ni soustraire) des dimensions.
- ✓ Vérifier l'homogénéité d'une équation, c'est vérifier que ses membres ont bien la même dimension.

Conclusion:

L'intérêt de l'analyse dimensionnelle est :

- ✓ La vérification de l'homogénéité des formules physiques.
- ✓ La recherche de la nature d'une grandeur physique.
- ✓ La recherche de la forme générale des lois physiques.

III. Corrigés des exercices

Exercice 1

• La surface :

On à
$$[1]=L$$
, $[t]=T$ et $[m]=M$.

$$S = l \times l \implies [S]=L.L=L^2 \implies [S]=L^2$$
 l'unité est (m^2)

• Le volume :

$$V=l\times l\times l \implies [S]=L.L.L=L^3 \implies [V]=L^3$$
 l'unité est (m³)

• La masse volumique :

$$\rho = \frac{m}{V} \quad \text{donc} \quad [\rho] = \frac{[m]}{[V]} = \frac{M}{L^3} = ML^{-3} \implies \quad [\rho] = ML^{-3} \quad \text{l'unit\'e est (kg.m-3)}$$

• La fréquence :

$$f = \frac{1}{T} \Longrightarrow^{1} [f] = \frac{1}{[T]} = \frac{1}{T} = T^{-1} \Longrightarrow [f] = T^{-1}$$
 l'unité est (s⁻¹ ou Hertz)

• La vitesse linéaire :

$$v = \frac{dx}{dt} \implies [v] = \frac{[x]}{[t]} = \frac{L}{T} = LT^{-1} \implies [v] = LT^{-1}$$
 l'unité est (m.s⁻¹)

• La vitesse angulaire :

$$\omega = \theta = \frac{d\theta}{dt} = \frac{v}{R} \implies [\omega] = \frac{[\theta]}{[t]} = \frac{1}{T} = T^{-1} \implies [\omega] = T^{-1} \text{ l'unit\'e est (Rd.s-1)}$$

• L'accélération linéaire :

$$\gamma = \frac{dv}{dt} \implies [\gamma] = \frac{[dv]}{[dt]} = \frac{LT^{-1}}{T} = LT^{-2} \implies [\gamma] = LT^{-2}$$
 l'unité est (m.s⁻²)

• L'accélération angulaire :

$$\omega = \theta = \frac{d\theta}{dt} \implies [\omega] = \frac{[d\theta]}{[dt]} = \frac{T^{-1}}{T} = T^{-2} \implies [\omega] = T^{-2} \quad \text{l'unit\'e est (Rd.s}^{-2})$$

• La force:

$$F = m \times \gamma \implies [F] = [m] \times [\gamma] = M.L.T^{-2} \implies [F] = MLT^{-2}$$
 l'unité est (kg.m.s⁻² ou Newton)

• Le travail :

$$W = F \times d \Longrightarrow [W] = [F] \times [d] = MLT^{-2}.L = ML^2T^{-2}$$
 l'unité est (kg.m².s⁻² ou Joule)

• L'énergie :

$$E_C = (\frac{1}{2}).m. v^2 \implies [E] = [\frac{1}{2}].[m].[v]^2 = ML^2T^{-2}$$
 l'unité est le Joule

• La puissance :

$$P = W/t \implies [P]=[W]/[t]=(ML^2T^{-2})/T=ML^2T^{-3}$$
 l'unité est (kg.m².s⁻³ ou Watt)

• La pression :

$$P = F/S \implies [P] = [F]/[S] = (MLT^{-2})/L^2 = ML^{-1}T^{-2}$$
 l'unité est (kg.m⁻¹.s⁻² ou Pascal).

Résumé:

Grandeur physique	Symbole d grandeur	le la	Formule utilisée	Dimension	Unité (SI)
Surface	S		1×1	L^2	m^2
Volume	V		$1\times1\times1$	L^3	m^3
Masse volumique	ho		m/V	ML^{-3}	Kg.m ⁻³
Fréquence	F		1/T	T^{-1}	s ⁻¹ ou
_					hertz
Vitesse linéaire	V		dx/dt	LT^{-1}	ms ⁻¹
Vitesse angulaire	Ω		$d\theta/dt$	T^{-1}	Rd.s ⁻¹
Accélération linéaire	γ		dv/dt	LT ⁻²	$m.s^{-2}$
Accélération	ω .		dθ·/dt	T^{-2}	Rd.s ⁻²
angulaire					
Force	F		m.γ	MLT ⁻²	Newton
Travail	W		F.d	$ML^2 T^{-2}$	Joule
Energie	E		$(\frac{1}{2})$ mv ²	ML^2T^{-2}	Joule
Puissance	P		W/t	ML^2T^{-3}	Watt
Pression	${\mathcal G}$		F/S	$ML^{-1}T^{-2}$	Pascal

Exercice 2

On a
$$\left(P + \frac{a}{V^2}\right) \times (V - b) = C$$

$$[b] = [V] = L^3$$

$$\left[\frac{a}{V^2}\right] = [P] \Longrightarrow [a] = [P] \times [V]^2 = M.L^{-1}T^{-2}L^6 = M.L.^5T^{-2}$$

$$Et \ [C] = [P] \times [V] = ML^{-1}T^{-2}L^{3} = ML^{2}T^{-2}$$

Exercice 3

On a
$$y = \frac{g}{2v_0^2}x^2 + h$$
(*)

1- Démontrez que cette équation est homogène :

Sachant que
$$\begin{cases} [g] = LT^{-2} \\ [v_0] = LT^{-1} \\ [x] = L \\ [h] = [y] = L \end{cases}$$

L'équation (*) est homogène si :
$$[y] = \left[\frac{g}{2v_0^2}x^2\right] = [h]$$

On a
$$[y] = [h] = L$$
 donc il suffit de vérifier que $\left[\frac{g}{2v_0^2}x^2\right] = L$

$$\Rightarrow \left[\frac{g}{2v_0^2} x^2 \right] = \frac{[g] \cdot [x]^2}{[2] [v_0]^2} = \frac{LT^{-2}L^2}{L^2T^{-2}} = L$$

Donc l'équation (*) est homogène.

2-
$$\vec{F} = -G \frac{m.m'}{r^2} \vec{u}$$
 quel est la dimension de G?

$$\|\vec{F}\| = F = G \frac{m.m'}{r^2} \implies [F] = [G] \cdot \frac{[m] \cdot [m']}{[r]^2}$$

$$\implies [G] = [F] \cdot \frac{[r]^2}{[m] \cdot [m']} = MLT^{-2} \frac{L^2}{M.M} = L^3 M^{-1} T^{-2}$$

 $[G] = L^3 M^{-1} T^{-2}$, l'unité de G sera kg⁻¹.m³.s⁻² ou N.m²/kg².

Exercice 4

On a $v = k\rho^x \chi^y$ donc $[v] = [k][\rho]^x [\chi]^y$.

avec
$$\begin{cases} [v] = LT^{-1} \\ [k] = 1 \\ [\rho] = ML^{-3} \\ [\chi] = \frac{1}{[p]} = M^{-1}LT^{+2} \end{cases}$$
$$\Rightarrow [v] = LT^{-1} = (ML^{-3})^{x}(M^{-1}LT^{2})^{y}$$
$$\Rightarrow M^{0}LT^{-1} = M^{x}L^{-3x} M^{-1y}L^{y}T^{2y}$$
$$\Rightarrow M^{0}LT^{-1} = M^{x-y}L^{-3x+y} T^{2y}$$

$$\Rightarrow \begin{cases} x - y = 0 \\ -3x + y = 1 \Rightarrow \begin{cases} x = y = -\frac{1}{2} \Rightarrow v = k\rho^{-1/2}\chi^{-1/2} = \frac{k}{\sqrt{\rho\chi}} \end{cases}$$
$$v = \frac{k}{\sqrt{\rho\chi}}$$

Alors

Exercice 6:

$$A = \sqrt{\frac{2}{m} \cdot \left(\frac{B \cdot c}{\lambda} - W_0\right)}$$

$$\begin{cases} [W_0] = [E] = ML^2T^{-2} \\ [\lambda] = L \\ [c] = LT^{-1} \\ [m] = M \end{cases}$$
(01pts)

1-
$$[B] = ??$$

On a

$$A^{2} = \frac{2}{m} \cdot \left(\frac{B \cdot c}{\lambda} - W_{0}\right)$$
$$\Rightarrow [B] = \frac{[\lambda]}{[c]}[W_{0}]$$

$$\Rightarrow [B] = ML^2T^{-1}$$
 (01pts) l'unité de B est kg.m².s⁻¹ (0.25pts)

Et
$$[A]^2 = \left[\frac{2}{m}\right] \cdot [W_0] = L^2 T^{-2} \Rightarrow [A] = L^{-1} (01 \text{pts})$$
 l'unité de **A** est m·s⁻¹ (0.25 pts)

2-
$$W_0 = 0$$
 et $\Delta c = 0$:

Donc

$$A^2 = \frac{2}{m} \cdot \left(\frac{B \cdot c}{\lambda}\right) (0.5 \text{pts})$$

$$\Rightarrow 2logA = log2c + logB - logm - log\lambda$$
 (0.5pts)

$$\Rightarrow 2\frac{dA}{A} = \frac{d(2c)}{2c} + \frac{dB}{B} - \frac{dm}{m} - \frac{d\lambda}{\lambda}$$
 (0.5pts)

$$\Rightarrow 2\frac{\Delta A}{A} = \frac{\Delta B}{B} + \left| -\frac{\Delta m}{m} \right| + \left| -\frac{\Delta \lambda}{\lambda} \right| (0.5 \text{pts})$$

$$\Rightarrow \frac{AA}{A} = \frac{1}{2} \left(\frac{AB}{B} + \frac{Am}{m} + \frac{A\lambda}{\lambda} \right) (0.5 \text{pts})$$

Exercice 8

Montrer, par une analyse dimensionnelle, que la période des petites oscillations de ce pendule peut s'écrit :

$$T = f(l, m, g) = k \sqrt{\frac{l}{g}}$$

On a T = f(m, g, l) donc $T = k . m^{\alpha} g^{\beta} l^{\gamma}$.

D'où
$$[T] = [k][m]^{\alpha}[g]^{\beta}[l]^{\gamma}$$

Avec
$$\begin{cases} [m] = M \\ [l] = L & et [k] = 1 \\ [g] = LT^{-2} \end{cases}$$

Donc
$$[T] = M^{\alpha}L^{\beta}T^{-2\beta}L^{\gamma} = T^{-1}$$

$$\Rightarrow \begin{cases} \alpha = 0 \\ \beta + \gamma = 0 \\ -2\beta = 1 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha = 0 \\ \gamma = 1/2 \Rightarrow T = k \sqrt{\frac{l}{g}} \\ \beta = -1/2 \end{cases}$$

Exercice supplémentaire.

A)
$$E = \frac{\pi^2 \sigma^2}{2mV^{\frac{2}{3}}} n^2 \Rightarrow \sigma^2 = \frac{2mEV^{\frac{2}{3}}}{n^2\pi^2} \Rightarrow [\sigma]^2 = \frac{[2][m][E][V]^{\frac{2}{3}}}{[n]^2[\pi]^2}$$

$$\begin{cases} [E] = M. L^2. T^{-2} \\ [m] = M \\ [n] = [2] = [\pi] = 1 \\ [V] = L^3 \end{cases}$$

$$\Rightarrow [\sigma]^2 = \frac{M. L^2. T^{-2}. L^2}{1}$$

$$\Rightarrow [\sigma]^2 = M^2. L^4. T^{-2} \Rightarrow [\sigma] = M. L^2. T^{-1}$$

La dimension de σ est $M.L^2.T^{-1}$.