การเข้าและถอดรหัสด้วยอัลกอริทึม DES และ AES สำหรับภาษาไทยแบบ Unicode 16 บิต

Data Encryption and Decryption Using DES and AES Algorithm for Thai Unicode 16 bits

สุมิตรา เด่นกองพล (Sumitrra Denkongpon)* ธนานนท์ กลิ่นแก้ว (Tananon Klinkaew)** ดร.พุธษดี ศิริแสงตระกูล (Dr.Pusadee Seresangtakul)***

บทคัดย่อ

ปัจจุบันการเข้ารหัสข้อมูลถูกนำมาใช้ในงานด้านความปลอดภัยเพิ่มมากขึ้น โดยที่ดีอีเอส 56 บิต และเออีเอส 128 บิต เป็นอัลกอริทึมแบบสมมาตร โดยที่เออีเอสเป็นอัลกอริทึมที่ได้รับความนิยมและยอมรับ อย่างแพร่หลายในการนำมาใช้งานซึ่งแต่ละอัลกอริทึมเหล่านี้แต่จะมีปัญหาในการแสดงผลภาษาไทย ดังนั้นงานวิจัย ชิ้นนี้จึงนำเสนอวิธีการเพื่อให้สามารถเข้ารหัสภาษาไทยตามมาตรฐาน unicode ขนาด 16 บิตด้วยอัลกอริธึม AES และ DES โดยเพิ่มเทคนิคการจับคู่ตารางเทียบเพื่อการแสดงผลอักษรไทยอย่างถูกต้อง ซึ่งมาตรฐาน Unicode นี้ กำหนดให้มีค่าเลขฐานสิบหกสำหรับแสดงอักขระไทย อยู่ในช่วง 0E00 ถึง 0E7F เพื่อทดสอบประสิทธิภาพ การทำงานของวิธีการที่นำเสนอ ผู้วิจัยได้ทำการพัฒนาโปรแกรมประยุกต์เพื่อจำลองการทำงานของอัลกอริทึม ดังกล่าว โดยการนำเข้าข้อความภาษาไทยที่ขนาดความยาว 4 กิโลไบท์ 10 กิโลไบท์ และ 14 กิโลไบท์ เพื่อทำ การทดสอบประสิทธิภาพสองประเด็นหลัก คือความถูกต้องและความเร็วของการเข้าและการถอดรหัส ซึ่งในแง่ ของความถูกต้องนั้นวิธีการที่นำเสนอมีความสามารถในการถอดรหัสและแสดงผลภาษาไทยได้ถูกต้องแม่นยำ เมื่อนำผลการทดสอบความเร็วในการเข้าและถอดรหัสที่ได้มาวิเคราะห์ ผลปรากฏว่า เวลาที่ใช้ในการทำงานของ ดีอีเอสเร็วกว่าเออีเอสอัลกอริทึม และทั้งเออีเอสและดีอีเอสมิลักษณะแปรผันตามขนาดของข้อความที่นำเข้ามา ซึ่งมีความสัมพันธ์แบบเชิงเส้น หมายความว่าเวลาที่ใช้ในการทำงานเพิ่มมากขึ้นตามขนาดข้อความที่นำเข้านั่นเอง

ABSTRACT

Data encryption has become one of the most important factors in computer security. The DES 56-bit symmetric algorithm was developed in the 1970s and was replaced with the AES 128-bit symmetric algorithm in 2001. The DES 56-bit was very popular and widely accepted for many years but with the increase in computer attacks had to be upgraded to the AES 128bit algorithm. This research presents the ASE and DES algorithm for 16-bits Unicode Thai characters in the range of 0E00 to 0E7F. In the study the table matching technique has been added to decrypt and encrypt the Thai characters. In order to evaluate the efficiency of the proposed method an application program was developed to simulate the operation of the proposed method.

^{*} นักศึกษา หลักสตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

^{**} นักศึกษา หลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

^{***} ผู้ช่วยศาสตราจารย์ ภาควิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

The main issues in testing were accuracy and speed of encryption and decryption. In terms of accuracy, the proposed method has the ability to decrypt the Thai language precisely. In terms of speed, Thai text collected from tales, general and academic papers with lengths of 4 kilobytes, 10 kilobytes and 14 kilobytes was introduced to test the accuracy of the algorithm. The test results showed that the time spent working on the DES and AES algorithms varied according to the size of the text line, i.e. there was a linear relationship. This means that the time spent working on either encryption or decryption increased according to the length of the text.

คำสำคัญ: การเข้ารหัส การเข้ารหัสภาษาไทย ดีอีเอส เออีเอส ยูนิโคต Key Words: Encryption, Thai encryption, DES, AES, Unicode

บทน้ำ

์ ปัจจุบันการแลกเปลี่ยนข้อมูลข่าวสารได้มี การประยุกต์ใช้งานกว้างขวางมากขึ้นไม่ว่าจะเป็นการ สื่อสารบนระหว่างเครื่องคอมพิวเตอร์ หรือ โทรศัพท์ เคลื่อนที่โดยมีการคำนึงถึงความปลอดภัยในระหว่าง การใช้งานแลกเปลี่ยนข้อมล วิธีการป้องกันไม่ให้ ข้อความที่ต้องการสื่อสารนั้นมีการเปลี่ยนแปลงแก้ไข หรือเปิดเผยข้อมูลก่อนถึงมือผู้รับจึงได้มีการเพิ่ม วิธีการเข้ารหัสข้อมูล (Encryption) (Trappe and Washington, 2006) จึงเป็นทางเลือกหนึ่งของการเพิ่ม ความปลอดภัยข้อมูลยิ่งขึ้น รูปแบบการเข้ารหัสข้อมูล แบ่งเป็น 2 กลุ่มหลัก คือ การเข้ารหัสแบบสมมาตร (Symmetric Encryption หรือ Secret Key) และ การเข้ารหัสแบบอสมมาตร (Asymmetric Encryption หรือ Public-Key Encryption)โดยนำข้อความ (Plain Text) ที่ต้องการส่งมาทำการเข้ารหัสด้วยลูกกุญแจ (Encryption) จะได้ข้อความที่ถูกเข้ารหัส (Cipher Text) หากมีการเข้ารหัสโดยใช้กุญแจแบบสมมาตร เป็นการเข้ารหัสและถอดรหัสโดยการใช้กุญแจดอก เดียวกัน (Secret-Key) โดยอัลกอริทึมในการเข้ารหัส แบบสมมาตร ไม่ว่าจะเป็น DES ขนาด 56 บิต และ AES ขนาด 128 บิต

สำหรับประเทศไทยได้มีการใช้มาตรฐานรหัส ภาษาไทยซึ่งมีอยู่หลากหลายไม่ว่าจะเป็น window-874 ซึ่งเป็นมาตรฐานการเข้ารหัสบนระบบปฏิบัติการ ของวินโดวส์ ส่วน tis-620 หรือ มอก.620 (ณัฐวุฒิ และคณะ, 2548) เป็นมาตรฐานของรหัสตัวอักษร ซึ่งกำหนดโดยสำนักงานมาตรฐานอุตสาหกรรมหรือ สมอ. (TISI: Thai Industrial Standard Institute) และ อีกมาตรฐานคือ Unicode เป็นมาตรฐานสากลใหม่ที่นำ มาใช้ในการกำหนดหมายเลขสำหรับอักขระ ซึ่งมีความ สามารถที่จะรองรับการเก็บอักษรทุกภาษาทั่วโลกได้ หาก Unicodeที่ใช้ มีการจัดเก็บแบบ 16 บิต นั้น จะเป็นการกำหนดตัวอักขระที่ใช้บ่อย ๆ เพื่อช่วยใน การประหยัดเนื้อที่ในการจัดเก็บ โดยมีค่าอ้างอิง สำหรับภาษาไทย อยู่ในช่วง 0E01-0E5A

ในการเข้ารหัสแบบสมมาตรนั้นสามารถ ทำงานได้ทั้งบนฮาร์ดแวร์และซอฟต์แวร์ เพราะความ สามารถในการประมวลผลอันรวดเร็วและเปิดเผย อัลกอริทึมจึงเป็นที่นิยมอย่างแพร่หลาย แต่อัลกอริทึม เหล่านี้นั้นใช้ตัวอักษรภาษาอังกฤษเป็นมาตรฐาน ในการเข้ารหัส หากต้องการนำอัลกอริทึมเหล่านี้มาใช้ เพื่อสนับสนุนสำหรับการทำงานของซอฟแวร์ในการเข้า และถอดรหัสตัวอักษรภาษาไทยนั้น จำเป็นอย่างยิ่งที่ ต้องเพิ่มขั้นตอนบางอย่างในการทำงานเขียนโปรแกรม เพื่อให้อัลกอริทึมแบบสมมาตรเหล่านั้นสามารถ เข้ารหัสและถอดรหัสออกมาเป็นภาษาไทยได้

วราภรณ์ (2539) ได้ทำการวิจัยการเข้าและ ถอดรหัสสำหรับตัวอักษรภาษาไทย โดยใช้อัลกอริทึม Affine Transformation, Exponentiation และ RSA cipher โดยการนำเข้าข้อความภาษาไทยผ่านอัลกอริทึม เหล่านี้ จะได้ข้อความที่เข้ารหัสแล้วในรูปตัวเลข 0 ถึง 63 ซึ่งเป็นค่าอ้างอิงที่ใช้ในการวิจัย ซึ่งงานวิจัย ดังกล่าวนั้น มีขีดจำกัดในเรื่องของขนาดข้อความที่นำ มาเข้ารหัส และค่าที่ใช้อ้างอิงในการเข้ารหัสนั้นขาด ความเป็นมาตรฐานสากล เพราะเป็นตัวเองที่จัดตั้งขึ้น เองเพื่อใช้งานเฉพาะ

เนื่องจาก Unicode เป็นมาตรฐานสากล สามารถรองรับอักษรทุกภาษา และรองรับการทำงาน แบบหลายภาษาได้ การวิจัยนี้นำเสนอการเข้ารหัสภาษา ไทยตามมาตรฐาน Unicode 16 บิต เพื่อให้แสดงผล ภาษาไทยได้อย่างถูกต้อง โดยใช้อัลกอริธึม AES และ DES และทำการพัฒนาโปรแกรม การเข้ารหัสและ ถอดรหัสสำหรับภาษาไทย เพื่อทดสอบความถูกต้อง ของวิถีการที่นำเสนอ

ทฤษฎีและแนวคิดที่เกี่ยวข้อง

ขั้นตอนในการดำเนินงานได้ดังนี้ศึกษา
ทฤษฎีการเข้ารหัสของ DES และ ศึกษามาตรฐานการ
เข้าและถอดรหัสภาษาไทย รวมไปถึง Unicode ขนาด
16-บิตและทำการพัฒนาโปรแกรมการเข้าและถอดร
หัสด้วยอัลกอริทึม DES และ AES สำหรับภาษาไทย
โดยเพิ่มกระบวนวิธี mapping กับตาราง Unicode เพื่อ
ให้สามารถแสดงผลภาษาไทยได้อย่างถูกต้อง ทดสอบ
และวัดประสิทธิภาพการทำงานของวิธีการที่นำเสนอ
ด้วยโปรแกรมที่พัฒนาขึ้นโดยวัดประสิทธิภาพความ
ถูกต้องและวัดประสิทธิภาพเวลาที่ใช้ในการประมวล
การทำงานกับขนาดข้อมูลที่แตกต่างกัน

การเข้าและถอดรหัสด้วยอัลกอริธึม Data Encryption Standard: DES

DES (Victor, 2007) เป็นอัลกอริทึมที่ใช้ ในการเข้าและถอดรหัสแบบ Block Cipher (Federal Information Processing Standards Publications, 1999) ซึ่งจะทำการแบ่งข้อมูลออกเป็น block แล้วนำไปทำการ เข้ารหัสทำการนำเข้าชุดข้อมูลแบบบล็อกขนาด 64 บิต และใช้กุญแจขนาด 56 บิต มีจำนวนรอบในการทำงาน เท่ากับ 16 รอบ เพื่อสร้างกุญแจย่อยให้มีจำนวน 16 ดอก โดยระหว่างการเข้ารหัสนั้นแต่ละรอบการทำงาน จะมีกุญแจขนาด 48 บิต การทำงานดังภาพที่ 1

ภาพที่ 1 แสดงการทำงานของอัลกอริทึม DES โดย การนำเข้าข้อมูลขนาด 64 บิต และกุญแจ ขนาด 54 บิต (Lai, 2009)

การเข้ารหัสและถอดรหัสด้วยอัลกอริธึม Advance Encryption Standard: AES

AES (Federal Information Processing Standards Publications, 2001) เป็นอัลกอริทึมที่ ถูกคิดค้นและพัฒนาโดย Rijmen and Daemen หรือ เรียกกันทั่วไปว่า Rijndael มีการใช้เทคนิคขนาดของ คีย์ (Key Size) และขนาดของข้อมูล (Block Size) ซึ่ง ขนาดของคีย์สามารถเลือกได้เป็น 128 บิต 192 บิต และ 256 บิต AES แสดงได้แสดงในภาพที่ 2

ภาพที่ 2 โครงสร้างการเข้ารหัสและถอดรหัสอัลกอริทึมเออีเอส

วิธีการดำเนินงานวิจัย

ในการเข้าและถอดรหัสสำหรับภาษาไทยด้วย อัลกอริธึม DES และ AES นี้เพื่อให้สามารถถอดรหัส และแสดงผลภาษาไทยได้อย่างถูกต้อง ผู้วิจัยได้สร้าง ตาราง Unicode (Davis, 1999) อ้างอิงสำหรับอักษร ในภาษาไทยทั้ง 90 ตัว ซึ่งข้อมูลที่จัดเก็บในตาราง อ้างอิง โดยอักขระแต่ละตัวในตารางอ้างอิงจะประกอบ ด้วย 4 แถวคือ แถวแรกแทนอักขระภาษาไทย แถวที่ 2 แทนรหัส ASCII ฐานสิบ สำหรับภาษาไทยขนาด 1 ไบต์ มีค่าระหว่าง 161-250 แถวที่ 3 แทนรหัส Unicode ฐานสิบขาด 2 ไบต์ และแถว 4 แทนรหัส Unicode ในรูปฐานสิบหกขนาด 2 ไบต์ (มีค่าระหว่าง

0E01-0E5A) ดังแสดงในตารางที่ 1 เพื่อให้สามารถ ถอดรหัสและแสดงผลกลับเป็นภาษาไทยอย่างถูกต้อง จะทำการ mapping ข้อมูลก่อนเข้ารหัส และข้อมูลที่ผ่าน การถอดรหัสในรูปของรหัส ASCII กับค่าในตาราง เปรียบเทียบที่สร้างขึ้น เพื่อดึงค่า Unicode ของ ตัวอักษรในเลขฐาน 16 มาเพื่อแสดงผล สามารถแสดง ขั้นตอนการประมวลผลดังภาพที่ 3

การทดสอบการเข้ารหัสและถอดรหัสภาษา ไทยโดยอัลกอริธึม AES และ DES ผู้วิจัยได้ทำการ พัฒนาโปรแกรมเพื่อทดสอบการเข้ารหัสและถอดรหัส สำหรับภาษาไทยโดยใช้ภาษา C# ทำงานภายใต้ระบบ ปฏิบัติการ windows XP แสดงดังภาพที่ 4

a			η
MACA 994 1	HIGO SOO II.	nicode สำหรับ การแก	30 0010 00010 10001
ตารางท 1	11 (4)(9)(1)(9) 1 1 1 1	nicode a nasti ti isila	N (91\71 L) N (71 L) N (1 L) N (1 L)

		1							
ก	ข	୩	ค	ฅ	ม	1	ข	ฉ	ช
161	162	163	164	165	166	167	168	169	170
3585	3586	3587	3588	3589	3590	3591	3592	3593	3594
E01	E02	E03	E04	E05	E06	E07	E08	E09	E0A
ng ng	ณ	ีเม	ภ	ภ	จ	ໆ ກ	ฒ	ณ	ด
171	172	លូ 173	ภ 174	ฏ 175	រុទ្ធ 176	177	178	179	180
3595	3596	3597	3598	3599	3600	3601	3602	3603	3604
E0B	E0C	E0D	E0E	E0F	E10	E11	E12	E13	E14
ต	ព	n	Б	น	υ	ıJ	М	Ы	W
181	182	183	184	185	186	187	188	189	190
3605	3606	3607	3608	3609	3610	3611	3612	3613	3614
E15	E16	E17	E18	E19	E1A	E1B	E1C	E1D	E1E
W		ม	ខ		 				ศ
191	ภ 192	193	194	ร 195	ព 196	ล 197	រា 198	ว 199	200
3615	3616	3617	3618	3619	3620	3621	3622	3623	3624
E1F	E20	E21	E22	E23	E24	E25	E26	E27	E28
					<u> </u>			E2/	
Я	ส	ห	W	ð	ø	4	2		1
201	202	203	204	205	206	207	208	209	210
3625	3626	3627	3628	3629	3630	3631	3632	3633	3634
E29	E2A	E2B	E2C	E2D	E2E	E2F	E30	E31	E32
°1	-	٩	ৰ	4					
211	212	213	214	215	216	217	218	219	220
3635	3636	3637	3638	3639	3640	3641	3642	3643	3644
E33	E34	E35	E36	E37	E38	E39	E3A	E3B	E3C
		В	ı	ı,	l [1	η	l ı	g l
221	222	223	224	225	226	227	228	229	ا 230
3645	3646	3647	3648	3649	3650	3651	3652	3653	3654
E3D	E3E	E3F	E40	E41	E42	E43	E44	E45	E46
ಡ		y	ଜ	•	d	۰	E		
231	232	233	234	235	236	237	238	239	240
3655	3656	3657	3658	3659	3660	3661	3662	3663	3664
E47	E48	E49	E4A	E4B	E4C	E4D	E4E	E4F	E50
					 				
241	യ 242	ຫ 243	હ 244	ر 245	b 246	e) 247	ಕ	ਰ 249	୍ୟା 250
3665	3666	243 3667		245 3669	246 3670	247 3671	248 3672		250 3674
E51	E52	E53	3668 E54	E55	E56	E57	E58	3673 E59	E5A
E31	E52	E33	£34	E33	E30	E5/	E38	E39	ESA

ภาพที่ 3 แสดงการเข้าและถอดรหัสด้วยเทคนิค mapping

ภาพที่ 4 โปรแกรมทดสอบการเข้าและถอดรหัส ข้อความภาษาไทย

การทดสอบและวัดประสิทธิภาพการทำงาน

เพื่อทำการทดสอบประสิทธิภาพการทำงาน ของการเข้ารหัส DES และ AES สำหรับภาษาไทย เนื่องจากงานวิจัยมุ่งเน้นความถูกต้องในการเข้ารหัส และถอดรหัสสำหรับภาษาไทยเป็นหลักนั้น ผู้วิจัย จะทำการทดสอบออกเป็น 2-ประเด็น คือ ความถูกต้อง ในการเข้ารหัสและถอดรหัสภาษาไทยเป็นประเด็นหลัก และความเร็วในการเข้ารหัสตามแนวทางของ Nadeem et al (2005) ซึ่งทำการทดสอบโดยการนำเข้าข้อมูล ที่มีขนาดต่างกัน และตรวจสอบความถูกต้องสมบูรณ์ ในการถอดรหัสข้อความที่นำเข้า ส่วนประเด็นที่สอง ในการทดสอบการเข้ารหัสและถอดรหัสแต่ละครั้ง จะทำการบันทึกเวลาเพื่อทำหาค่าเฉลี่ยของเวลาใน

การเข้าและถอดรหัสของชุดข้อมูลที่มีขนาดความยาว แตกต่างกัน

ในการวัดประวัดประสิทธิภาพความถูกต้อง
และความเร็วในการเข้ารหัสและถอดรหัสภาษาไทย
โดยอัลกอริทึมที่นำเสนอ ผู้วิจัยได้ทำการเข้ารหัส
ข้อความภาษาไทยที่นำมาจากนิทานพื้นบ้าน บทความ
ทั่วไปและบทความเชิงวิชาการ ที่ขนาดความยาว
4 กิโลไบท์ 10 กิโลไบท์ และ14 กิโลไบท์ อย่างละ 5 ชุด
ทำการทดสอบการเข้ารหัสและถอดรหัสโดยโปรแกรม
ที่พัฒนาขึ้น ผลการทดลองสามารถถอดรหัสและ
แสดงผลภาษาไทยได้ถูกต้องตรงกับข้อความต้นฉบับ
ทุกประการ ส่วนเวลาเฉลี่ยในการเข้ารหัสและถอดรหัส
โดย DES Algorithm และ AES Algorithm สามารถ
แสดงได้ดังตารางที่ 2, 3 และ 4

ตารางที่ 2 แสดงค่าเวลาที่ใช้ในการเข้าและถอดรหัสชุดข้อความภาษาไทย โดย DES Algorithm และเวลาเฉลี่ย

Time	ข้อความภาษาไทยขนาด 4 กิโลไบท์					ข้อความภาษาไทยขนาด 10 กิโลไบท์					ข้อความภาษาไทยขนาด 14 กิโลไบท์				
(ms)	ชุดที่ 1	ชุดที่ 2	ชุดที่ 3	ชุดที่ 4	ชุดที่ 5	ชุดที่ 1	ชุดที่ 2	ชุดที่ 3	ชุดที่ 4	ชุดที่ 5	ชุดที่ 1	ชุดที่ 2	ชุดที่ 3	ชุดที่ 4	ชุดที่ 5
Encrypt	2 2 4 2 9	2 1406	2 0212	2.2500	1 4044	0.4275	0 5701	0 1250	7 0275	7 2500	15 1406	15 2006	15 2201	15 2021	14 4275
time	2.3436	2.1400	2.0313	2.2300	1.4044	9.4373	0.3761	6.1230	1.9313	7.2300	13.1400	13.3900	13.3261	13.2031	14.43/3
Decrypt	0.4521	0.4210	0.5460	0.7656	1 2060	0.8125	1 1710	1 1406	1 2500	1 1004	1 7656	0.0063	1 5156	1 1710	1 2656
Time	0.4331	0.4219	0.5409	0.7030	1.2909	0.0123	1,1/19	1.1400	1.2300	1,1054	1.7030	0.9003	1.5150	1,1/19	1.2030
Average	1.3984	1.2813	1.2891	1.5078	1.3906	5.1250	4.8750	4.6328	4.5938	4.1797	8.4531	8.1484	8.4219	8.1875	7.8516
Average	1.3734				4.6813				8.2125						

Time	ข้อความภาษาไทยขนาด 4 กิโลไบท์					ข้อความภาษาไทยขนาด 10 กิโลไบท์					ข้อความภาษาไทยขนาด 14 กิโลไบท์				
(ms)	ชุดที่ 1	ชุดที่ 2	ชุดที่ 3	ชุดที่ 4	ชุดที่ 5	ชุดที่ 1	ชุดที่ 2	ชุดที่ 3	ชุดที่ 4	ชุดที่ 5	ชุดที่ 1	ชุดที่ 2	ชุดที่ 3	ชุดที่ 4	ชุดที่ 5
Encrypt	2 2012	2.0699	2 5701	2 0275	2 1562	11 0201	11 7100	11 2006	11 4521	10.0460	20.2500	10.5460	10 6975	19.6250	10 2201
Time	3.2813	2.9688	2.5/81	2.93/3	3.1363	11.8281	11./188	11.3906	11.4551	10.0469	20.2500	19.5469	19.68/3	19.6230	18.3281
Decrypt	2.2031	1 0 422	1 0044	2 1406	1.0504	2 7060	2 2125	2 2504	1 1562	2 2 4 2 0	47100	1 5605	4 9750	4.8438	4 5212
Time	2,2031	1.8432	1.9844	2.1400	1.8394	3./909	3.3123	3.3394	4.1303	3.3438	4./188	4.3623	4.8/30	4.8438	4.3313
Average	2.7422	2.4060	2.2813	2.5391	2.5078	7.8125	7.5156	7.3750	7.8047	6.6953	12.4844	12.0547	12.2813	12.2344	11.4297
Average	2.4953				7.4406				12.0969						

ตารางที่ 3 แสดงค่าเวลาที่ใช้ในการเข้าและถอดรหัสชุดข้อความภาษาไทย โดย AES Algorithm และเวลาเฉลี่ย

ตารางที่ 4 แสดงค่าเวลาเฉลี่ยสำหรับอัลกอริทึม DES และ AES

Plaintext sizes	Time	Time (ms)						
(Kbytes)	DES	AES						
4	1.3734	2.4953						
10	4.6813	7.4406						
14	8.2125	12.0969						

ภาพที่ 5 กราฟแสดงความสัมพันธ์ขนาดของข้อความ
ที่นำเข้าเทียบกับเวลาที่ใช้ในการประมวลของ
แต่ละอัลกอริทึม

อภิปรายผล

จากการทดสอบทำงานการเข้าและถอดรหัส ข้อความภาษาไทยที่มีขนาดความยาวที่แตกต่างกัน และ มีความหลากหลายของคำภาษาไทย ด้วยอัลกอริทึม DES และ AES ซึ่งแบ่งประเด็นการทดสอบออกเป็น สองประเด็นคือ ประเด็นแรกจะทดสอบความถูกต้อง ในการเข้าและถอดรหัสข้อความ ผลปรากฏว่า มีความ สามารถในการถอดรหัสออกมาได้อย่างถูกต้องแม่นยำ ตรงตามต้นฉบับข้อความแต่ละชุดที่นำเข้ามา และ

ในส่วนประเด็นที่สองนั้นจะทดสอบถึงความเร็วใน การเข้าและถอดรหัสข้อความด้วยอัลกอริทึม DES และ AES ผลปรากฏว่าค่าเวลาที่ได้สำหรับ อัลกอริทึม DES และ AES นั้น เพิ่มขึ้นตามขนาดข้อความที่นำเข้า มา หากพิจารณาในแง่ของความเร็ว DES อัลกอริทึม จะคำนวณได้เร็วกว่า เพราะมีความซับซ้อนและจำนวน บิตที่น้อยกว่า AES อัลกอริทึม หากพิจารณาในแง่ของ ความปลอดภัย AES อัลกอริทึมจะมีความปลอดภัย มากกว่าเพราะมีความซับซ้อนในการคำนวณมากกว่า และจำนวนบิตของกุญแจที่ยาวกว่า และเมื่อนำค่าเวลา เหล่านั้นมาทำการสร้างกราฟความสัมพันธ์ของแต่ละ อัลกอริทึมจะได้ดังภาพที่ 5

สรุปผลการวิจัย

จากการใช้เทคนิควิธีการเทียบชุดข้อความ
ที่นำเข้ากับตาราง Unicode เลขฐานสิบหกซึ่งเป็น
มาตรฐานของภาษาไทย มาใช้ในการถอดรหัสเป็น
ภาษาไทย และในแง่ของการทดสอบความถูกต้อง
ในการเข้าและถอดรหัสข้อความนั้น ผลปรากฏว่า
โปรแกรมประยุกต์พัฒนาขึ้นสามารถถอดรหัสออก
มาได้อย่างถูกต้องแม่นยำตรงตามต้นฉบับข้อความ
แต่ละชุดที่นำเข้ามา และในแง่ของการทดสอบความเร็ว
เวลาที่ประมวลผลการทำงานของแต่ละอัลกอริทึม
นั้นแปรผันตรงตามขนาดข้อความที่นำเข้ามา สำหรับ
การศึกษานี้ เน้นเรื่องความถูกต้องในการเข้ารหัสและ
ถอดรหัสด้วยเทคนิค AES และ DES ควรพิจารณา
เทคนิคอื่นเพิ่มเติมอาทิเช่น triple-DES, Blowflish

และควรเปรียบเทียบประสิทธิภาพด้านอื่นๆ เช่น CPU-workload เป็นต้น

เอกสารอ้างอิง

- ณัฐวุฒิ อันทะราศรี และคณะ. 2548. การสนับสนุน ภาษาไทยอย่างเต็มรูปแบบโดย เว็บเมล์ "สยามทะเล". The Joint Conference Computer Science and Software Engineering, November 17-18, 2005, 313-318.
- วราภรณ์ กาญจนทวี. 2539. ขั้นตอนวิธีในการสร้างรหัส ภาษาไทย (Algorithms in Thai Encryption). การ ประชุมทางวิชาของมหาวิทยาลัย เกษตรศาสตร์ ครั้งที่ 34. กรุงเทพฯ, 33-36.
- Nadeem, A., Javed, MY. 2005. A Performance Comparison of Data Encryption Algorithms. IEEE, 84–89.
- Victor, B. 2007. DES. [online] 2010 May 20. [cited 2007 August 7]. Available from http://www.it.uu.se/edu/course/homepage/security/p3vt07/bv/F3-8.PDF
- Federal Information Processing Standards
 Publications (FIPS PUBS). 1999. Data
 Encryption Standard (DES). Retrieved
 May 20, 2010. from http://www.itl.nist.
 gov/fipspubs/fip46-2.htm

- Federal Information Processing Standards
 Publications (FIPS PUBS). 2001.
 Advanced Encryption Standard(AES).
 Retrieved May 20, 2010. from http://csrc.nist.gov/archive/aes/index.html
- Davis, M. 1999. Forms of Unicode. IBM developer and President of the Unicode Consortium, IBM Retrieved May 20, 2010. from http://icu-project.org/docs/papers/forms_of_unicode/
- NutthNet Communication Network. [ม.ป.ป]. ตาราง แสดงตัวอักษร ภาษาไทยและลำดับรหัส ASCII, Unicode บนระบบคอมพิวเตอร์. ค้นเมื่อ 20 พฤษภาคม 2553, จาก http:// www.nutthnet.com/articles/charcode.php
- Lai, TH. 2009. Modern Block Ciphers. [online] 2010

 May 20. [cited 2009 April 15]. Available
 from http://www.cse.ohio-state.edu/~lai/
 651/3-DES.ppt
- Trappe, W., Washington, L. 2006. Introduction to Cryptography with Coding Theory. United State of America: Pearson Prentice Hall.