

Final Project Problem Statement - Prophet

Title: Data-Driven Stock Analysis using Time Series Models on StockGro

Objective

Participants will apply time series forecasting and analysis techniques to guide stock selection and capital allocation within a virtual ₹10,00,000 limit on the StockGro platform. The aim is to assess how predictive insights from models such as ARIMA, Prophet, and LSTM can enhance decision-making and manage short-term risk over a 2-day trading window.

Background

StockGro is a virtual stock market simulator that uses live NSE/BSE data, enabling users to trade, allocate funds, and monitor performance in real-time. This challenge encourages students to apply concepts from the Time Series Analysis course to real-market scenarios—demonstrating how data modeling can inform investment decisions in a practical, risk-free environment.

Data Requirements:

Participants must use historical stock price data imported using the yfinance Python library.

Example to fetch data:

In python-

```
import yfinance as yf
# Fetch last 60 days of daily stock data for Reliance
data = yf.download("RELIANCE.NS", period="60d", inte65erval="1d")
```

Dataset to be considered: 1st January, 2020 to 31st December, 2024.

Consider the minimum of the last 6 months of data during this period for testing.

Project Tasks:

1. Stock Universe Selection:

- Select a limited set of NSE-listed stocks (recommended: 5–10).
- Justify choices based on historical trends, volatility, or sector representation.
- Example methods:
 - Use rolling standard deviation to identify volatile stocks.
 - Apply seasonal decomposition to detect trending stocks.
 - Select stocks from diverse sectors for better coverage.

2. Data Preprocessing

- Ensure time series are ready for modeling by:
 - Handling missing values (e.g., forward/backward fill or removal).
 - Checking stationarity using ADF test and differencing if needed.
 - Normalizing or scaling data for ML-based models like LSTM.
 - Creating a **train-test split** (**minimum last 6 months** for validation).

3. Time Series Forecasting

- Use one or more models such as:
 - o ARIMA / SARIMA
 - Exponential Smoothing (SES / Holt-Winters)
 - Facebook Prophet
 - LSTM / GRU
 - o CNN
 - Any other pretrained model or transformer based models can be used
- Forecast stock prices for the **next 2 trading days**.
- Tips:
 - Tune ARIMA using **AIC/BIC**, validate with residual analysis.

 Compare model output with actual data using MAPE, RMSE, or hit rate (forecasted vs actual direction).

4. Volatility & Trend Analysis

Use time series techniques to assess how stock prices are behaving and where they might be heading:

- Estimate short-term volatility using statistical models and historical price data:
 - o Analyze fluctuations in log returns.
 - Use models that capture time-varying volatility to anticipate future uncertainty.
- Identify underlying trends and patterns:
 - Decompose stock price series into components like long-term trend, seasonality, and noise.
 - Evaluate the strength and consistency of the trend over time to guide decision-making.

These methods allow you to interpret price movements beyond the surface, using data-driven signals rooted in time series modeling.

5. How to Select Stocks?

Choose at least two strategies from the following:

Forecast-Guided Allocation

- Use predictions from time series models to rank stocks by expected performance over a short horizon.
- Allocate more capital to stocks with stronger predicted gains and higher confidence in forecast accuracy.
- Consider adjusting weights based on the consistency or certainty of forecasts.

Volatility-Aware Sizing

Reduce overall risk by lessen the number of stocks to trade which are expected to show higher volatility.

- Use predicted volatility from GARCH(1,1) or rolling standard deviation of log returns.
- Weight each stock inversely proportional to its forecasted volatility:

$$w_i \propto \frac{1}{\hat{\sigma}_i}$$
 $w_i = \frac{\frac{1}{\hat{\sigma}_i}}{\sum_{j=1}^N \frac{1}{\hat{\sigma}_j}}$

Normalize all weights to sum to 1.

Correlation-Based Diversification

- Select a mix of stocks that move independently to avoid concentrated risk.
- Use correlation analysis across recent time windows to identify combinations that provide better diversification.

Sector Momentum Rotation

- Group stocks by sector and assess how each sector is performing over time.
- Allocate more capital to sectors showing consistent upward movement.
- Within sectors, further refine allocations using any of the above strategies.

6. Model Comparison

- Compare forecasting models used in Task 3:
 - Evaluate using MAPE, RMSE, or directional accuracy.
 - Comment on strengths and weaknesses of each model.
- Consider ensemble predictions for better accuracy.
- Optionally combine model predictions for greater robustness.

7. StockGro Virtual Execution

Register and Join the Prophet League on StockGro To ensure you are enrolled in the trading league, follow these steps:

Register here to gain access:
 https://community.stockgro.club/form/2935407a-2aa5-4e3a-90fc-afd8036b5cd1

- Login to the StockGro mobile app or web platform.
- After 5 minutes, go to the Upcoming Leagues section and locate "Prophet".
- Enroll in the league before it begins.

Note: Once the league starts, no new entries will be allowed.

- Trading Window:
 - Start: 9:35 AM, 12 May 2025End: 3:25 PM, 13 May 2025
- To confirm enrollment, check the 'My Prep Zone' in the app. If "Prophet" appears there, your registration is successful.
- Need help? Watch the tutorial video: https://www.youtube.com/watch?v=70MWjoptEgY

After logging into the **StockGro App**:

- Deploy your strategy with ₹10,00,000.
- Execute trades before Day 1 market close.
- Track and report performance on **Day 2 market close** using in-app portfolio metrics.

This is just a list of common stocks in these sectors, here as an example for your reference, **feel free to choose any stocks of your choice**.

Final Submission Must Include:

 Ipynb notebook/python files for evaluation purposes including data analysis and prediction.

A **sample notebook** for your reference is provided: ostock_price_prediction_using_yfinance[1].ipynb

- A concise report (max 6 pages) covering:
 - Methodology and models used
 - Stock selection rationale
 - Forecast results and confidence intervals
 - Portfolio composition and rationale
 - Performance on StockGro (returns, volatility, key trades)
 - Model accuracy and prediction vs reality
 - Reflections: What worked, what didn't, what you'd improve
- (Optional Bonus): Visual dashboard or interactive plot of:
 - o Forecast Plots: Actual vs predicted stock prices.
 - Portfolio Allocation Charts: Pie/bar plots showing allocation by stock/sector.
 - Correlation Heatmaps: If using diversification strategy.
 - Trend & Volatility Graphs: To support strategy rationale.

Submission link:

https://forms.office.com/Pages/ResponsePage.aspx?id=jacKheGUxkuc84wRtTBwHMCiEbpZN_tGsGugOmiYCptUQ1dZTFq1VVk4RkJNOFkvQldEU0NLSFFJWC4u&embed=true