Previsão de Preços de Ações Utilizando Redes Neurais LSTM

Octávio Augusto dos Passos Teodoro

Junho de 2025

Resumo

Este trabalho tem como objetivo desenvolver um modelo preditivo capaz de estimar os preços de cinco ações brasileiras, utilizando redes neurais do tipo LSTM (Long Short-Term Memory). Foram utilizados dados históricos provenientes do Yahoo Finance, considerando indicadores financeiros para treinar o modelo. Os resultados obtidos demonstram uma acurácia moderada nas previsões, evidenciando o potencial das redes neurais para problemas de séries temporais no mercado financeiro.

Sumário

1	Introdução	2
2	Metodologia2.1 Coleta de Dados	
3	3	2 2 3 4
4	Discussão	4
5	Conclusão	5
6	Referências	5

1 Introdução

O mercado financeiro é altamente dinâmico e sensível a uma série de variáveis econômicas, políticas e sociais. A previsão de preços de ações representa um desafio, uma vez que os dados financeiros são sequenciais, ruidosos e não-lineares. Este projeto tem como objetivo construir um modelo preditivo utilizando redes neurais recorrentes, especificamente LSTM, para prever os preços de cinco ações do mercado brasileiro.

2 Metodologia

2.1 Coleta de Dados

Os dados foram coletados através da API do Yahoo Finance, utilizando a biblioteca yfinance em Python. Foram selecionadas cinco ações de empresas listadas na B3, abrangendo o período de janeiro de 2020 a maio de 2025.

2.2 Pré-processamento

Foram utilizados os seguintes passos de pré-processamento:

- Normalização dos dados com MinMaxScaler.
- Criação de janelas temporais para alimentar a rede LSTM.
- Separação dos dados em treino (80%) e teste (20%).

2.3 Modelo de Rede Neural LSTM

O modelo foi desenvolvido utilizando a biblioteca TensorFlow/Keras. A arquitetura da rede inclui:

- Camada LSTM com 50 unidades.
- Camada densa para saída, com ativação linear para previsão dos preços.
- Otimizador Adam.
- Função de perda: Mean Squared Error (MSE).

O treinamento foi realizado por 100 epochs, com batch size de 32.

3 Resultados

3.1 Métricas de Avaliação

O modelo apresentou os seguintes resultados médios nas previsões:

- Acurácia direcional do LSTM entre 50% a 55%.
- Taxa de assertividade geral de aproximadamente 75%.

3.2 Análise da Precisão

Os gráficos gerados mostram que o modelo é capaz de capturar tendências gerais, mas apresenta limitações na previsão de movimentos bruscos de curto prazo.

Figura 1: Eventos significativos, são um dos parâmetros para as analises de redes neurais.

Figura 2: O detalhamento do modelo com base em estátitica e fundamentos econômicos, juntamente com Data Sciense e Machine Learning, mostra-se eficience pra prever ações na bolsa de valores, sempre atentando-se aos riscos das operações.

Figura 3: Previsão de preços utilizando o algoritimo do LSTM e TensorFlow com análise retroativa.

Figura 4: Previsão de preços com diferentes rumos à curto e longo prazo.

COMPRAR Confiança de Previsão 77.6% Grau de Certeza 84.2% Análise Técnica Asúde Financeira Sentimento 85.0 Saúde Financeira Sentimento 88.1 Justificativa: Saúde financeira forte (85); Notícias muito positivas recentes

Figura 5: Amostra de um dos resultados, que indica que tal ação deve ser comprada no período de tempo preenchido no front-end da biblioteca streamlit.

3.3 Recomendação Final

Com base nas previsões, o modelo pode fornecer insights básicos para tomada de decisão. No entanto, não se mostrou suficientemente robusto para ser utilizado como única fonte de decisão no mercado financeiro.

4 Discussão

Apesar dos resultados razoáveis, o modelo apresenta limitações quando exposto a eventos externos inesperados, como crises econômicas, oscilações políticas ou mudanças regulatórias. Embora o modelo apresente certa capacidade preditiva na série histórica, seu desempenho em situações fora do padrão ainda precisa ser avaliado e melhorado.

Além disso, modelos baseados apenas em dados históricos de preços podem não ser suficientes. A inclusão de variáveis macroeconômicas, notícias e indicadores financeiros pode aumentar a capacidade preditiva.

5 Conclusão

O uso de redes neurais LSTM demonstrou ser eficiente na previsão de preços de ações dentro de certos limites, com desempenho moderadamente superior aos modelos estatísticos tradicionais para dados sequenciais.

O modelo desenvolvido pode ser aplicado como suporte na tomada de decisões no mercado financeiro, especialmente na análise técnica. Para trabalhos futuros mais robustos e complexos, recomenda-se:

- Implementação de arquiteturas mais sofisticadas, como modelos híbridos LSTM + CNN.
- Inclusão de mais dados alternativos (como os de notícias, sentimento, índices econômicos, que já estão inseridos no trabalho).
- Testes com hiperparâmetros mais otimizados e validação cruzada.

6 Referências

- Brownlee, J. (2017). Deep Learning for Time Series Forecasting. Machine Learning Mastery.
- Chollet, F. (2018). Deep Learning with Python. Manning Publications.
- Yahoo Finance API: https://finance.yahoo.com/
- TensorFlow Documentation: https://www.tensorflow.org/
- Repositório do projeto: https://github.com/otacs-dev/otacs-dev-redeneural_brl