1. To compute the 95% confidence interval for the population mean μ using classical methods, we use the formula:

Confidence Interval= $y^-\pm Z\alpha_{/2}\cdot\sigma/sqrt(n)$

Variables:

- Sample mean (y⁻): 176
- Population standard deviation (σ): 3
- Sample size (n): 10
- Confidence level: 95% so $Z\alpha_{/2}=1.96$

Steps:

1. Compute the standard error of the mean:

$$SE=\sigma/sqrt(n)=3/sqrt10\approx0.949$$

2. Compute the margin of error:

Margin of Error=
$$Z\alpha_{/2}$$
·SE=1.96*0.949 \approx 1.86

3. Compute the confidence interval:

Result:

The 95% confidence interval for μ using classical methods is:

2. Obtain 95% posterior credible intervals for μ for each of the cases:

(a)
$$\theta = 176$$
, $\tau = 8$; (b) $\theta = 176$, $\tau = 1000$ (c) $\theta = 0$, $\tau = 1000$. The result is below:

(a)
$$\theta = 176$$
, $\tau = 8$, *Prior1*:

> posteriorSummaryExact \$posterior_mean [1] 176 \$posterior_standard_deviation [1] 0.9420824

\$posterior_quantiles 0.50 0.025 0.975

[1] 176.0000 174.1536 177.8464

(b)
$$\theta = 176, \tau = 1000$$

\$posterior_mean [1] 176

\$posterior_standard_deviation [1] 0.9486829

\$posterior_quantiles
[1] 176.0000 174.1406 177.8594

(c)
$$\theta = 0, \tau = 1000$$

> posteriorSummaryExact \$posterior_mean [1] 175.9998

\$posterior_standard_deviation [1] 0.9486829

\$posterior_quantiles
[1] 175.9998 174.1405 177.8592

3. Comparison

Classical Model Confidence Interval:

[174.14,177.86]

Bayesian Credible Intervals Comparison:

1. (a):

[174.1536,177.8464]

Very close to the classical interval but slightly shifted.

2. (b):

```
[174.1406,177.8594]
```

Almost identical to the classical interval.

3. (c):

```
[174.1405,177.8592]
```

Also very close to the classical model, but slightly influenced by the prior mean $(\theta=0)$ theta = $0\theta=0$).

4.Conclusion:

• Case (b): θ =176, τ =1000 is the closest to the classical result.

Case (b): $\theta = 176$, $\tau = 1000$ is the closest to the classical method, almost exactly the same. This is because the prior mean (θ) matches the sample mean (y^-) perfectly, and the prior variance (τ^2) is very large, minimizing the influence of the prior on the posterior.