

Classifying fake news using supervised learning with NLP

What is supervised learning?

- Form of machine learning
 - Problem has predefined training data
 - This data has a label (or outcome) you want the model to learn
 - Classification problem
 - Goal: Make good hypotheses about the species based on

Sepal Length	Sepal Width	Petal Length	Petal Width	Species		
5.1	3.5	1.4	0.2	I. setosa		
7.0	3.2	4.77	1.4	I.versicolor		
6.3	3.3	6.0	2.5	I.virginica		

Supervised learning with NLP

- Need to use language instead of geometric features
- scikit-learn: Powerful open-source library
- How to create supervised learning data from text?
 - Use bag-of-words models or tf-idf as features

IMDB Movie Dataset

Plot	Sci-Fi	Action
In a post-apocalyptic world in human decay, a	1	0
Mohei is a wandering swordsman. He arrives in	0	1
#137 is a SCI/FI thriller about a girl, Marla,	1	0

- Goal: Predict movie genre based on plot summary
- Categorical features generated using preprocessing

Supervised learning steps

- Collect and preprocess our data
- Determine a label (Example: Movie genre)
- Split data into training and test sets
- Extract features from the text to help predict the label
 - Bag-of-words vector built into scikit-learn
- Evaluate trained model using the test set

Building word count vectors with scikit-learn

Predicting movie genre

- Dataset consisting of movie plots and corresponding genre
- Goal: Create bag-of-word vectors for the movie plots
 - Can we predict genre based on the words used in the plot summary?

Count Vectorizer with Python

```
In [1]: import pandas as pd
In [2]: from sklearn.model selection import train test split
In [3]: from sklearn.feature extraction.text import CountVectorizer
In [4]: df = ... # Load data into DataFrame
In [5]: y = df['Sci-Fi']
In [6]: X train, X test, y train, y test = train test split(
                                             df['plot'], y,
                                             test size=0.33,
                                             random state=53)
In [7]: count_vectorizer = CountVectorizer(stop words='english')
In [8]: count train = count vectorizer.fit transform(X train.values)
In [9]: count test = count vectorizer.transform(X test.values)
```


Training and testing a classification model with scikit-learn

Naive Bayes classifier

- Naive Bayes Model
 - Commonly used for testing NLP classification problems
 - Basis in probability
- Given a particular piece of data, how likely is a particular outcome?
- Examples:
 - If the plot has a spaceship, how likely is it to be sci-fi?
 - Given a spaceship and an alien, how likely now is it sci-fi?
- Each word from CountVectorizer acts as a feature
- Naive Bayes: Simple and effective

Naive Bayes with scikit-learn

```
In [10]: from sklearn.naive_bayes import MultinomialNB
In [11]: from sklearn import metrics
In [12]: nb_classifier = MultinomialNB()
In [13]: nb_classifier.fit(count_train, y_train)
In [14]: pred = nb_classifier.predict(count_test)
In [15]: metrics.accuracy_score(y_test, pred)
Out [15]: 0.85841849389820424
```


Confusion Matrix

	Action	Sci-Fi
Action	6410	563
Sci-Fi	864	2242

Simple NLP, Complex Problems

Translation

(source: https://twitter.com/Lupintweets/status/865533182455685121)

Sentiment Analysis

(source: https://nlp.stanford.edu/projects/socialsent/)

Language Biases

(related talk: https://www.youtube.com/watch?v=j7FwpZB1hWc)

