

2016 年全国硕士研究生入学统一考试 数学一试题

本试卷满分 150, 考试时间 180 分钟

一、选择题: $1 \sim 8$ 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目 要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 若反常积分
$$\int_0^{+\infty} \frac{1}{x^a (1+x)^b} dx$$
 收敛,则()

$$(A)a < 1 \pm b > 1$$
 $(B)a > 1 \pm b > 1$ $(C)a < 1 \pm a + b > 1$ $(D)a > 1 \pm a + b > 1$

(2) 已知函数
$$f(x) = \begin{cases} 2(x-1), x < 1 \\ \ln x, x \ge 1 \end{cases}$$
, 则 $f(x)$ 一个原函数是 ()

$$(A) F(x) = \begin{cases} (x-1)^2, x < 1 \\ x(\ln x - 1), x \ge 1 \end{cases}$$

$$(B) F(x) = \begin{cases} (x-1)^2, x < 1 \\ x(\ln x + 1) - 1, x \ge 1 \end{cases}$$

$$(C) F(x) = \begin{cases} (x-1)^2, x < 1 \\ x(\ln x + 1) + 1, x \ge 1 \end{cases}$$

$$(D) F(x) = \begin{cases} (x-1)^2, x < 1 \\ x(\ln x - 1) + 1, x \ge 1 \end{cases}$$

$$(C) F(x) = \begin{cases} (x-1)^2, x < 1 \\ x(\ln x + 1) + 1, x \ge 1 \end{cases} (D) F(x) = \begin{cases} (x-1)^2, x < 1 \\ x(\ln x - 1) + 1, x \ge 1 \end{cases}$$

(3) 若
$$y = (1+x^2)^2 - \sqrt{1+x^2}$$
, $y = (1+x^2)^2 + \sqrt{1+x^2}$ 是微分方程 $y' + p(x)y = q(x)$ 两个解,则 $q(x) = ($)

$$(A)3x(1+x^2)$$
 $(B)-3x(1+x^2)$ $(C)\frac{x}{1+x^2}$ $(D)-\frac{x}{1+x^2}$

(4) 已知函数
$$f(x) = \begin{cases} x, x \le 0 \\ \frac{1}{n}, \frac{1}{n+1} < x \le \frac{1}{n} \end{cases}$$
 $n = 1, 2, \dots$ ()

$$(A)$$
 $x = 0$ 是 $f(x)$ 第一类间断点

$$(B) x = 0$$
是 $f(x)$ 第二类间断点

$$(C)$$
 $f(x)$ 在 $x=0$ 处连续但不可导 (D) $f(x)$ 在 $x=0$ 处可导

$$(D) f(x) 在 x = 0$$
 处可导

(5) 设A,B是可逆矩阵,且A与B相似,则下列结论错误的是()

$$(A) A^T 与 B^T$$
 相似

☞ 沪江网校·考研

- (6) 设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_1x_3$,则 $f(x_1, x_2, x_3) = 2$ 在空间 直角坐标系下表示的二次曲面是(
- (*A*) 单叶双曲面
- (*B*) 双叶双曲面
- (C) 椭球面
- (D) 柱面

(7) 设随机变量
$$X$$
 为 $X \sim N(\mu, \sigma^2)(\sigma > 0)$, 记 $p = P\{X \le \mu + \sigma^2\}$. 则()

- (A)p 随着 μ 增加而增加
- (B)p 随着 σ 增加而增加
- (C)p随着 μ 增加而减少
- (D)p随着 σ 增加而减少
- 随机试验E有三种两两不相容的结果 A_1,A_2,A_3 ,且三种结果发生的概率均为 $\frac{1}{2}$,将试验E独 立重复做两次,X表示 2 次试验中结果 A_1 发生的次数,Y表示两次试验中结果 A_2 发生的次数,则 XY的相关系数为(
- $(A) \frac{1}{2}$ $(B) \frac{1}{3}$ $(C) \frac{1}{3}$ $(D) \frac{1}{2}$

- 二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9)
$$\lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{1 - \cos x^2} = \underline{\hspace{1cm}}.$$

- (11) 设函数 f(u, y) 可微, z=z(x) 由方程 $(x+1)z-y^2=x^2f(x-z,y)$ 确定,则 $dz|_{(0,1)} =$ _____
- (12) 设函数 $f(x) = \arctan x \frac{x}{1 + ax^2}$, 且 f'''(0) = 1, 则 $a = \underline{\hspace{1cm}}$

(13) 行列式
$$\begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{vmatrix} = \underline{\qquad}$$

☞沪江网校·考研_

(14) 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,样本均值 $\overline{X} = 9.5$,参数 μ 置信度为 0.95 的双侧置信区间的置信上限为 10.8,则 μ 置信度为 0.95 的双侧置信区间为_____.

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) 已知平面区域
$$D = \left\{ \left(r,q\right) \mid 2 \le r \le 2\left(1 + \cos q\right), -\frac{\rho}{2} \le q \le \frac{\rho}{2} \right\}$$
, 计算二重积分 👸 $x \, dx \, dy$.

- (16) 设函数 y(x)满足方程 y'' + 2y' + ky = 0,其中0 < k < 1。
- (1) 证明: 反常积分 $\int_0^{+\infty} y(x) dx$ 收敛
- (2) 若 y(0) = 1, y'(0) = 1, 求 $\int_0^{+\infty} y(x) dx$ 的值

(17) 设函数
$$f(x,y)$$
满足 $\frac{\partial f(x,y)}{\partial x} = (2x+1)e^{2x-y}$,且 $f(Qy)$ **为 1** , L_t 是从点 $(0,0)$ 到点 $(1,t)$

的光滑曲线, 计算曲线积分 $I(t) = \int_{L_t} \frac{\partial f(x,y)}{\partial x} dx + \frac{\partial f(x,y)}{\partial y} dy$, 并求 I(t) 的最小值。

(18) 设有界区域 Ω 由曲面2x+y+2z=2与三个坐标平面围成, Σ 为 Ω 整个表面的外侧,计算曲面积分 $I=\iint_\Sigma (x^2+1) dy dz - 2y dz dx + 3z dx dy$ 。

(19) 已知函数 f(x) 可导, 且 $f(0) = 1, 0 < f'(x) < \frac{1}{2}$, 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$,

证明 (1) 级数 $\sum_{n=1}^{\infty} (x_{n+1} - x_n)$ 绝对收敛; (2) $\lim_{n \to \infty} x_n$ 存在且 $0 < \lim_{n \to \infty} x_n < 2$ 。

(20) 设矩阵
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{pmatrix}, B = \begin{pmatrix} 2 & 2 \\ 1 & a \\ -a-1 & -2 \end{pmatrix}, 当 a 为何值时,方程 $AX = B$ 无解,有$$

唯一解,有无穷多解?在有解时,求解此方程。

(21) (本题满分 11 分)已知矩阵
$$A = \begin{bmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

- (1) 求 A^{99} .
- (2) 设三阶矩阵 $B = (\alpha_1, \alpha_2, \alpha_3)$ 满足 $B^2 = BA$, 记 $B^{100} = (\beta_1, \beta_2, \beta_3)$, 将 $\beta_1, \beta_2, \beta_3$ 分别表示为 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合。

- (22) (本题满分 11 分)设二维随机变量 (X,Y) 在区域 $D = \{(x,y) | 0 < x < 1, x^2 < y < \sqrt{x}\}$ 服从均匀分布,令 $U = \begin{cases} 1 & X \le Y \\ 0 & X > Y \end{cases}$
- (1) 写出(X,Y)的概率密度.
- (2) 问U与X是否相互独立,说明理由。
- (3) 求Z = U + X的分布函数F(Z).

(23) 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3}, 0 < x < \theta \\ 0, else \end{cases}$, 其中 $\theta \in (0, +\infty)$ 为未知参数,

 X_1, X_2, X_3 为来自总体 X 的简单随机样本, $T = \max \left\{ X_1, X_2, X_3 \right\}$ 。

- (1) 求T的概率密度;
- (2) 确定a, 使得aT为 θ 的无偏估计.

