http://itbookshub.com/

Operating System Solved MCQs - Part 2

MCQs

Multiple Choice Questions

Operating System Solved MCQs - Part 2

A scheduling algorithm assigns priority proportional to the waiting time of a process. Every process starts with priority zero(the lowest priority). The scheduler re-evaluates the process priorities every T time units and decides the next process to schedule. Which one of the following is TRUE if the processes have no I/O operations and all arrive at time zero?

- This algorithm is equivalent to the first-come-first-serve algorithm
- This algorithm is equivalent to the round-robin algorithm
- This algorithm is equivalent to the shortest-job-first algorithm
- This algorithm is equivalent to the shortest-remaining-time-first algorithm

	alg	gorithm		
A process executes the code fork(); fork(); fork();				
0	3			
O	4			
O	7			
0	8			

Memory utilization factor shall be computed as follows

- Memory in use/allocated memory
- Memory in use/total memory connected
- Memory allocated/total memory available
- Memory committed/total memory available

Assume N segments in memory and a page size of P bytes. The wastage on account of internal fragmentation is		
\circ	NP/2 bytes	
\circ	P/2 bytes	
\circ	N/2 bytes	
0	NP bytes	
Consider a logical address space of 8 pages of 1024 words mapped with memory of 32 frames. How many bits are there in the physical address ?		
\circ	9 bits	
\circ	11 bits	
\circ	14 bits	
0	15 bits	
Мо	ving process from main memory to disk is called	
\circ	Scheduling	
\circ	Catching	
0	Swapping	
0	Spooling	
Which of the following is the process by which a user's access to physical data in the application is limited, based on his privileges?		
\circ	Authorization	
0	Authentication	
\circ	Access Control	
0	All of these	
Which of the following statements is not correct with reference to distributed systems ?		

- Distributed system represents a global view of the network and considers it as a virtual uniprocessor system by controlling and managing resources across the network on all the sites.
- Distributed system is built on bare machine, not an add-on to the existing software.
- In a distributed system, kernel provides smallest possible set of services on which other services are built. This kernel is called microkernel. Open servers provide other services and access to shared resources.
- In a distributed system, if a user wants to run the program on other nodes or share the resources on remote sites due to their beneficial aspects, user has to log on to that site.

In the blocked state

- The processes waiting for I/O are found
- The process which is running is found
- The processes waiting for the processor are found
- None of the above

Match the following:

- (a) Disk scheduling 1. Round-robin
- (b) Batch processing 2. SCAN
- (c) Time sharing 3. LIFO
- (d) Interrupt processing 4. FIFO
- 0 3 4 2 1
- 4 3 2 1
- 0 2 4 1 3
- 0 1 4 3 2

In which of the following page replacement policies Balady's anomaly occurs?

- o FIFO
- LRU
- LFU
- NRU

The simplest way to break a deadlock is to

- Preempt a resource
- Rollback
- C Kill one of the processes
- Lock one of the processes

Three concurrent processes X, Y, and Z execute three different code segments that access and update certain shared variables. Process X executes the P operation (i.e., wait) on semaphores a, b and c; process Y executes the P operation on semaphores b, c and d; process Z executes the P operation on semaphores c, d, and a before entering the respective code segments. After completing the execution of its code segment, each process invokes the V operation (i.e., signal) on its three semaphores. All semaphores are binary semaphores initialized to one. Which one of the following represents a deadlock- free order of invoking the P operations by the processes?

```
X:P(a)P(b)P(c)Y:P(b)P(c)P(d)Z:P(c)P(d)P(a)
```

- X:P(b)P(a)P(c)Y:P(b)P(c)P(d) Z:P(a)P(c)P(d)
- C X:P(b)P(a)P(c)Y:P(c)P(b)P(d)Z:P(a)P(c)P(d)
- C X:P(a)P(b)P(c)Y:P(c)P(b)P(d)Z:P(c)P(d)P(a)

A relationship between processes such that each has some part (critical section) which must not be executed while the critical section of another is being executed, is known as

- Semaphore
- O Mutual exclusion
- Multiprogramming
- Message passing

Which of the following topologies consists of multiple CPUs connected by a single communication line running the length of the network?

0	Tree
0	Ring
0	Star
0	Bus
An	operating system
0	Is not required on large computers
\circ	Is always supplied with the computer
0	Is always supplied with the BASIC
0	Consists of programs that help in the operation of computer
	e operating system of a computer serves as a software interface ween the user and
0	Software
0	Hardware
О	Processor
0	Compiler
In c	one time password
0	The password is different in each instance
0	The password is same in each instance
О	Both A and B
0	None of these
Inte	erval between the time of submission and completion of job is led
0	Waiting time
0	Turn around time
0	Throughput

0	Response time	
In the process management Round-robin method is essentially the pre-emptive version of		
0	FILO	
О	FIFO	
О	SSF	
0	Longest time first	
Sys	stem supports two types of file which are	
\circ	Text files	
О	Executable binary files	
О	Both a and b	
О	None of these	
_		
0	There is no change.	
0	Average cohesion goes up but coupling is reduced.	
0	Average cohesion goes down and coupling also reduces.	
0	Average cohesion and coupling increase.	
In v	rirtual memory systems, Dynamic address translation	
0	Is the hardware necessary to implement paging	
О	Stores pages at a specific location on disk	
0	Is useless when swapping is used	
\circ	Is part of the operating system paging algorithm	
Wh	ich of the following is not supported by the operating system?	
0	Protection	

0	Accounting
0	Compilation
0	I/O operation
Me	mory on your computer where data is stored temporarily is called .
_	
0	RAM
0	ROM
0	BIOS
0	CPU
for	
for for for	(c); (c); (d); (d); (e); (e); (e); (e); (e); (f); (f); (f); (f); (f); (f); (f); (f
fori	k (); k (); t total number of child processes created is 7 9 31
forl forl The	k (); k (); k (); t total number of child processes created is 7 9 31 15 multiuser operating system, 20 requests are made to use a ticular resource per hour, on an average the probability that no
forliford The	k (); k (); k (); t total number of child processes created is 7 9 31 15 e multiuser operating system, 20 requests are made to use a ticular resource per hour, on an average the probability that no uest are made in 45 minutes is
forl forl forl The	k (i); k (j); k (j); total number of child processes created is 7 9 31 15 multiuser operating system, 20 requests are made to use a ticular resource per hour, on an average the probability that no uest are made in 45 minutes is e-15 e-5 1 - e-5
forl forl forl The	k (); k (); k (); total number of child processes created is 7 9 31 15 multiuser operating system, 20 requests are made to use a ticular resource per hour, on an average the probability that no uest are made in 45 minutes is e-15 e-5

Dijkstra banker algorithm is an operating system to solve the problem of		
0	dead look avoidance	
0	dead look recovery	
О	mutual exclusion	
0	contest sustaining	
	e-emptive scheduling is the strategy of temporarily suspending a	
0	before the CPU time slice expires	
0	to allow starving processes to run	
О	when it requests I/O	
0	to avoid collision	
Dat cyli no. loc	inders (0 -16383) and each cylinder contains 64 sectors (0 - 63). It a storage capacity in each sector is 512 bytes. Data are organized inder—wise and the addressing format is <cylinder no.,="" sector="">. A file of size 42797 KB is stored in the disk and the starting disk ation of the file is <1200, 9, 40>. What is the cylinder number of the t sector of the file, if it is stored in a contiguous manner?</cylinder>	
0	1281	
О	1282	
О	1283	
0	1284	
tak	e hit ratio of a Translation Look Aside Buffer (TLAB) is 80%. It es 20 nanoseconds (ns) to search TLAB and 100 ns to access in memory. The effective memory access time is	
0	36 ns	
О	140 ns	
	140 115	

0	40 ns	
A ti	hread	
0	Is a lightweight process where the context switching is low	
0	Is a lightweight process where the context switching is high	
0	Is used to speed up paging	
0	None of the above	
File	attributes are	
0	Name	
0	Туре	
0	Location	
0	All of these	
Wh	ich is built directly on the hardware?	
0	Computer Environment	
\circ	Application Software	
\circ	Operating System	
0	Database System	
A solution to the critical section problem must satisfy which requirements?		
0	Bounded waiting, monitor and relative speed	
\circ	Semaphores, monitor and prevention of deadlock	
\circ	Signal, wait and continue	
0	Mutual exclusion, progress and bounded waiting	
pol		
\circ	Single level implementation	

\circ	Two level implementation	
0	Multi level implementation	
0	None	
Wo	rm was made up	
0	One program	
\circ	Two program	
\circ	Three program	
0	All of these	
Given memory partitions of 100K, 500K, 200K, 300K and 600K (in order) and processes of 212K, 417K, 112K, and 426K (in order), using the first-fit algorithm in which partition would the process requiring 426K be placed?		
\circ	100K	
\circ	500K	
\circ	200K	
0	600K	
The	primary purpose of an operating system is	
\circ	To make the most efficient use of the computer hardware	
\circ	To allow people to use the computer	
\circ	To keep systems programmers employed	
0	To make computers easier to use	
Let the page fault service time be 10 millisecond(ms) in a computer with average memory access time being 20 nanosecond(ns). If one page fault is generated for every 106 memory accesses, what is the effective access time for memory?		
0	21 ns	
C	23 ns	

0	30 ns
\circ	35 ns
A tı	ree structured file directory system
0	Allows easy storage and retrieval of file names
0	Is a much debated unnecessary feature
O	Is not essential when we have millions of files
0	None of the above
Sec	curity violation due to
0	Malicious
0	Accidental
0	Both A and B
0	None of these
Mu	Itiprogramming systems
0	Are easier to develop than single programming systems
\circ	Execute each job faster
О	Execute more jobs in the same time period
0	Are used only one large mainframe computers
The	e most common approach to authenticating a user identity is
0	User password
0	User log in
0	Hardware device
0	None of these
ind	tarvation-free job-scheduling policy guarantees that no job waits efinitely for service. Which of the following job-scheduling icies is starvation-free?

0	Round-robin
0	Priority queuing
0	Shortest job first
С	Youngest job first
I. 2- II. T III. <i>I</i> IV. I	ich of the following statement is wrong? -phase locking protocol suffer from dead lockime stamp protocol suffer from more aborts. A block hole in a DFD is a data store with only inbound flows. Multivalued dependency among attribute is checked at 3 NF level. An entity-relationship diagram is a tool to represent event model.
О	I, II, II
О	II, III, IV
0	III, IV, V
0	II, IV, V
Rer	mote Computing Service involves the use of time sharing and
О	multi-processing
О	interactive processing
О	batch processing
С	real-time processing
	scading termination refers to termination of all child processes fore the parent terminates
0	Normally
С	Abnormally
С	Normally or abnormally
С	None of these

In round robin CPU scheduling as time quantum is increased the average turn around time

increases
 decreases
 remains constant
 varies irregularly

At intermediate multiprogramming levels, the rate of increase of throughput with multiprogramming levels decreases. This

At intermediate multiprogramming levels, the rate of increase of throughput with multiprogramming levels decreases. This phenomenon is best explained by the fact that as multiprogramming level increases

- I/O activities per request remains constant
- Some system resources begins to saturate (i.e., to be utilized 100%)
- The utilization of memory improves
- The average time spent in the system by each request increases