Entraı̂nement technique: projections

Pour chacun des cas ci-dessous, donner l'expression du vecteur \vec{P} de norme P dans la base $\vec{e_x}, \vec{e_y}$.

Entraı̂nement technique: projections – Solutions

1)
$$P(\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

2)
$$P(-\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

3)
$$P(\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

4)
$$P(-\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

5)
$$P(\sin\theta\vec{e}_x + \cos\theta\vec{e}_y)$$

6)
$$P(\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

7)
$$P(\sin\theta\vec{e}_x + \cos\theta\vec{e}_y)$$

8)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

9)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

10)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

11)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

12)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

13)
$$P(\sin\theta\vec{e}_x + \cos\theta\vec{e}_y)$$

14)
$$P(\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

15)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

16)
$$P(\sin\theta\vec{e}_x + \cos\theta\vec{e}_y)$$

17)
$$P(\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

18)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

19)
$$P(\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

20)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

21)
$$P(-\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

22)
$$P(-\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

23)
$$P(\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

24)
$$P(\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

25)
$$P(-\cos\theta\vec{e}_x + \sin\theta\vec{e}_y)$$

26)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

27)
$$P(\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$

28)
$$P(-\cos\theta\vec{e}_x - \sin\theta\vec{e}_y)$$