goal: estimate state of an observable LTI system in closed-loop by filtering output through an LTI observer

ref: Hespanha Ch 16.5

recall: open-loop state estimation — offline, i.e. from batch data of given (LTV-DE) $x/x^+ = A(t) \times + B(t)u$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^k$ $y = C(t) \times + D(t)u$, $y \in \mathbb{R}^m$. Let $\tilde{y}(t) = C(t) \Phi(t, t_0) \times$. $= y(t) - \int_t^t C(t) \Phi(\tau, t_0) B(\tau) u(\tau) d\tau + D(t) u(t)$ be "augmented output" produced by x_0 and $M(t_0, t_1) = \int_{t_0}^{t_1} \Phi(\tau, t_0)^T C(\tau)^T C(\tau) \Phi(\tau, t_0) d\tau$

closing the loop Page 1

be observability Gramian — assume CT-LTV observable so M(to,t,) nonsingular

• then: $X_0 = M(t_0, t_1)^{-1} \int_{t_0}^{t_1} \overline{D}(t_1, t_0)^{T} C(t)^{T} \overline{y}(t) dt \in \mathbb{R}^n$

is an "open-loop" estimate of initial state

-> sensitive to errors: - un modeled depromies / model inacrotracy

- external disturbonces

- measurement noise

closed-loop state estimation — online, i.e. using data stream on consider LTI-DE $\dot{x}/\dot{x}^{\dagger} = A\dot{x} + B\dot{u}$, $\dot{x} \in \mathbb{R}^n$, $\dot{u} \in \mathbb{R}^k$ $\dot{y} = C\dot{x} + D\dot{u}$, $\dot{y} \in \mathbb{R}^m$

closing the loop Page

(<u>observer</u> system)

and dynamics of error $e = \hat{\chi} - \chi$ are LTI: $\dot{e}/e^{+} = \hat{\chi}/\hat{\chi}^{+} - \dot{\chi}/\chi^{+} = A\hat{\chi} + Bu - (Ax + Bu)$ $=A\hat{x}-Ax=Ae$ k if A stable then $e(t) \rightarrow 0$ as $t \rightarrow \infty$ o i.e. observes state $\widehat{\chi}(t) \rightarrow \chi(t)$ as $t \rightarrow \infty$ = · if A is not stable: augment error degnamics by augmenting observer dynamics: $\hat{\chi}/\hat{\chi}^{\dagger} = A\hat{\chi} + Bu - L(\hat{y}-y)$, LER^{nxm} g = Cx + Du "output error "injection" $\dot{e}/e^{+} = \dot{\hat{\chi}}/\hat{\chi}^{+} - \dot{\hat{\chi}}/\hat{\chi}^{+} = A\hat{\chi} + B\hat{u} - L(\hat{y} - y) - (Ax + B\hat{u})$ $= A\hat{x} - Ax - L(C\hat{x} + Du - (Cx + Du))$ $= Ae - LC(\hat{X} - X)$ = Ae - LCe = (A - LC)e* if (A-LC) stable then $e(t) \rightarrow 0$ as $t \rightarrow \infty$ o i.e. observes state $\hat{\chi}(t) \rightarrow \chi(t)$ as $t \rightarrow \infty$

fact: can synthesize L s.t. A-LC stable

(=> "LT s.t. AT-CTLT stable

(=> (AT, CT) cantrollable (=> (A, C) observable