

Parameter Analysis for Range Extrapolation of Head-Related Transfer Functions using Virtual Local Wave Field Synthesis

Fiete Winter and Sascha Spors

Universität Rostock Institut für Nachrichtentechnik

DAGA 2015 18.03.2015, Nürnberg

Dynamische Binauralsynthese

CC BY 3.0, Wierstorf

HRTF Extrapolation mittels Schallfeldsynthese

$$\tilde{H}_{\{\mathsf{L},\mathsf{R}\}}(\mathbf{x}_{\mathsf{ps}},\omega) =$$

HRTF Extrapolation mittels Schallfeldsynthese

$$\tilde{H}_{\{L,R\}}(\mathbf{x}_{ps},\omega) = D_0(\mathbf{x}_{0,n},\omega)$$

HRTF Extrapolation mittels Schallfeldsynthese

$$\tilde{H}_{\{\mathsf{L},\mathsf{R}\}}(\mathbf{x}_{\mathsf{ps}},\omega) = \sum_{n=0}^{N_0-1} D_0\left(\mathbf{x}_{0,n},\omega\right) H_{\{\mathsf{L},\mathsf{R}\}}(\mathbf{x}_{0,n},\omega)$$

Wellenfeldsynthese

$$D_0\left(\mathbf{x}_{0,n},\omega\right) = H_{\text{pre}}(\omega)w(\mathbf{x}_{0,n})e^{-j\omega\tau(\mathbf{x}_{0,n})}$$

Lokale Wellenfeldsynthese

Lokale Wellenfeldsynthese

$$D_0(\mathbf{x}_{0,n},\omega) = |H_{\text{pre}}(\omega)|^2 \sum_{m}^{N_l - 1} w(\mathbf{x}_{0,n}, \mathbf{x}_{l,m}) e^{-j\omega \tau(\mathbf{x}_{0,n}, \mathbf{x}_{l,m})}$$

Lokale Wellenfeldsynthese

Einfluss der Zuhörerzone

Experiment I

Einfluss der Zuhörerzone

- HRTF Datensatz mit $N_0 = 360, R_0 = 1 \text{m}$
- Einfluss von R_I und N'_I auf extrapoliertem
 Amplitudenspektrum
- Vergleich mit gemessenem HRTF Datensatz

Ergebnisse I

HRTF, Linkes Ohr, $R_0=1\mathrm{m} \to R_\mathrm{ps}=3\mathrm{m},\,\alpha_\mathrm{ps}=45^\circ$

Ergebnisse I

HRTF, Linkes Ohr, $R_0=1\mathrm{m} \to R_\mathrm{ps}=3\mathrm{m},\,\alpha_\mathrm{ps}=45^\circ$

Experiment II

Korrektur von Amplitudenfehlern

- Systematische Amplitudenfehler bei 2D-HRTF Datensätzen
- Mögliche Lösung: individueller Referenzpunkt für jedes Ohr

Ergebnisse II

$$R_0 = 1 \text{m} \rightarrow R_{ps} = 3 \text{m}, R_I = 30 \text{cm}, N_I' = 90$$

Fazit

Einfluss der Zuhörerzone

- räumliches Aliasing durch zu große Zuhörerzone/zu wenig fokussierte Quellen
- Kopfgröße bestimmt minimale Zuhörerzone
- $N_I' \approx 60$, $R_I \approx 30$ cm

Korrektur von Amplitudenfehlern

- individuelle Referenzpunkte f
 ür jedes Ohr verbessern Ergebnisse
- optimale Referenzpunkte jedoch unbekannt

This research has been supported by EU FET grant Two!EARS, ICT-618075.