Machine Learning HW2

r05922018 黃柏智

1. Logistic Regression.

(a) function

我用的 cost function 是用 cross entropy: $C(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$ 而 weights 遞減的速度則為 : $w_i \leftarrow w_i - \eta \sum_n -(\hat{y}^n - f_{w,b}(x^n)) x_i^n$

(b) features

首先講一下全部可用的 features 有哪些,每一筆 data 共有 57 個 features,我試過只用這 57 個 features 的一次方,以及這 57 個 feature 的一次方配上二次方,一次方上傳到 kaggle 的分數,大約都落在 $0.91 \sim 0.93$ 之間。而二次方的成績就很慘了,不論怎麼調參數,都無法突破 0.75。根據上次作業的經驗,使用高次方時,若有 overfitting,準確率通常不會下降這麼嚴重,推測是因為這次的 data 中,數值為 0 的 feature 太多,因此使用 high order 或 corelation 時,只會產生更多的 0,這很容易讓準確率嚴重下跌。

(c) implementation

一開始,我會先根據我想使用的 order,從原始資料中生成我要的 training data。接著進行 logistic regression。首先會 initial 一組 weight,在每一個 iteration 中,首先計算 gradient,接著根據當時的 learning rate 來改變 weights。而 learning rate 改變的機制是 這樣,當連續 10 個 iterations cost 遞減速率小於 1%,learning rate 就會變 1.1 倍,當某 個 iteration 的 cost 不減反增時,learning rate 便砍半。全部 iteration 結束後得出的 weight 便是 model。

(d) regularization

事實上我的公式除了老師投影片上列的那條之外,還加上了 regularization,就是在原本的 cost function 後面加上 (lambda/2m) * (w*w), lambda 是 regularization rate, m 是 train data 總筆數, w 是 weight。以下是不同 lambda 值跑 200 萬圈的結果:

lambda	1	5	10	15	20	25	30
accuracy	0.92000	0.91667	0.92667	0.91667	0.91333	0.91000	0.91000

縱使初始值為隨機,但是大致可以看出,lambda 的影響並不會很大,而我 logistic regression 中最好的結果是在 lambda = 10 時得到的。

(e) other discussion

此外,我還有試著做 feature scaling,用下面的公式分別對 train data & test data 做處理: X = (X - np.mean(X, axis=0)) / (np.std(X, axis=0))

但不知是我實作錯誤,抑或是這份 training set 不適合用此法,加上 feature scaling 後的 performance 很差,在 kaggle 上的分數只比亂猜得到的分數好一點。

2. Neural Network.

我的第二個方法選擇了 Neural Network。

(a) Neuron

我採用的神經元,便是在 logistic regression 中使用的 sigmoid 函式。每個 neuron 所輸出的值,都是 1.0 / (1.0 + np.exp(-z)),其中 z = wx+b。

(b) features & parameters

我使用的 feature 跟 logistic regression 一樣,是每一筆 train data 的 57 個 features,只使用一次方。而能改變的 parameters 有 layer 數、每層 layer 的 neuron 數、iteration 數、mini-batch 大小,以及 splitPercent。splitPercent 是指在給定的 training data 中,要有多少比例的 data 不參與 train 的過程。這些 data 是用來計算 training 後的 accuracy,我會用這個 accuracy 判斷一組參數的好壞,並當作是否上傳 kaggle 的依據。

(c) implementation

根據選定的 order 生成 training data 後,拿出一小部分用來驗證,其他丢進 NN 中。首先依照 mini-batch 的大小切割資料成很多個 slice,對每一段 slice 做 back-propagation,求出 NN 中每一層 weight & bias 的 gradient,然後更新每一個 layer 的 weight & bias。每一個 iteration 結束前都會用當初選的驗證資料來做預測,所以每個 iteration 都會得出一個 accuracy。在跑完所有 iterations 後,會產生擁有最高準確率的 iteration,用該 iteration 當下的 weight & bias 當成最後輸出的 model。產生 model 後,將 testing data 丢進 NN,進行 feedforward,得到最終預測結果。

(d) experiment result

以下列出一些實驗後得出的結論:

- == feature \ parameters 部分 ==
- ·經過各種測試之後,同一組參數, splitPercent = 10% 時準確率通常較高。
- 用分割出來的 data 來預測 model 準確率,所得到的分數跟上傳至 kaggle 的分數高度一致,差距幾乎不會超過 1%,只有在 model 中得到的準確率超過 96% 的時候,上傳 kaggle 的誤差才有可能上升至將近 2%。
- · 越深的 NN, 通常要配小一點的 learning rate 才容易 train 出好結果。
- 使用超過一次方的 order 當做 input layer 的 feature,效果極差,應該是 overfitting。
- == iteration 數、neuron 數部分 ==
- ・同樣的參數,iteration 越多,通常會進步,以一個三層的 NN 為例,跑 1000 圈正確率 88.5%,跑 10000 圈正確率 92.25%。
- · layer 越多時, iteration 也必須相對增加才能得到差不多的結果。若深度增加, iteration 不足時, 結果會更差。例如三層以及四層 NN 都跑 5000 圈, 後者準確率少 6%。
- · 有方法能讓跑同樣的 iteration 數時,準確率提升。假設現在跑 50000 個 iterations,第一種方法是產生驗證 data 後,一直用這組 data 來做準確率預測。第二種方法是把 50000 個 iterations 分成 10 次來跑,一次只跑 5000 個 iterations,但每次跑之前會重新選定用來做準確率預測的 data。這樣能避免整個 model 一直向 train data 的某一小部份靠攏。以一個三層,每層 neuron 數分別是 57、40、2 的 NN 為例,法一準確率為 92.17%,法二的準確率提升至 96.5%,在 kaggle 上的分數也差了快 5%,差距十分驚人。
- ·在 learning rate 不變的情況下,各種參數的 NN,似乎都在前 10000 圈就產生了最佳解。或許因為如此,剛剛提到的法二,效果才會如此顯著。
- input layer 有 57 個 neurons (因為有 57 個 features),我試著讓 NN 中有某一層的 neurons 數量遠超過 57 (e.g. 500),似乎對準確率不會產生太大的影響。
- == available future works ==
- ・把 Adagrad 加進 NN 中,動態改變 learning rate。
- 因為這次的 training data 並不算多,如果能把預測完的 testing data 加回到 model,做 feedback,或許有進步的機會。
- 實驗結果放在: https://www.csie.ntu.edu.tw/~r05922018/ML/hw2/