COSC 290 Discrete Structures

Lecture 26: Relations, III

Prof. Michael Hay

Friday, Nov. 3, 2017

Colgate University

Plan for today

- 1. Relations & Relational Operators (Review)
- 2. Properties of relations (Review)
- 3. Properties of relations (practice)
- 4. Closures
- 5. Warshall relations

Relations & Relational Operators (Review)

Recall: Relations

A (binary) relation on $A \times B$ is a subset of $A \times B$.

Sometimes interested in relations on $A \times A$ which is sometimes simply called a relation on A.

Recall: inverse of a relation

Definition (Inverse)

Let R be a relation on $A \times B$. The inverse R^{-1} of R is a relation on $B \times A$ defined by $R^{-1} := \{ \langle b, a \rangle \in B \times A : \langle a, b \rangle \in R \}$

Intuition for inverse: think of *R* a table with columns *A*, *B*, inverse reorders the columns *B*, *A*.

Recall: composing two relations

Definition (Composition)

The composition of R and S is a relation on $A \times C$, denoted $S \circ R$, where $\langle a, c \rangle \in S \circ R$ iff there exists a $b \in B$ such that $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in S$.

Intuition for composition: think of R a table with columns A, B and think of S a table with columns B, C. Composition creates new table with columns A,C by matching rows from R and S that have matching B values.

Poll: Cardinality

Suppose that sets A, B, C have cardinalities n_A , n_B , n_C respectively. Let R be a relation on $A \times B$ and S a relation on $B \times C$. What is the maximum cardinality of $S \circ R$? (In discussion, justify your answer.)

- 1. *n*_B
- 2. $n_A + n_C$
- 3. $n_A \cdot n_C$
- 4. $\min \{ n_A, n_C \}$
- 5. $\min \{ n_A, n_B, n_C \}$

Properties of relations (Review)

Reflexivity

A relation R on A is reflexive if for every $a \in A$, $\langle a, a \rangle \in R$.

A relation R on A is irreflexive if for every $a \in A$, $\langle a, a \rangle \notin R$.

A relation can be reflexive, irreflexive, or neither.

Symmetry

A relation R on A is symmetric if for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\in R$ too.

A relation R on A is antisymmetric if for every $a, b \in A$, if $\langle a, b \rangle \in R$ and $\langle b, a \rangle \in R$, then a = b.

A relation R on A is asymmetric if for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \notin R$.

A relation can be none of the above, or more than one of the above.

Transitive

A relation R on A is transitive if for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$ too.

A relation can be transitive, or not.

Review poll from last time

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- **antiS** antisymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$ and $\langle b, a \rangle \in R$, then a = b.
 - **AS** asymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \not\in R$.
 - **T** transitive: for every $a, b, c \in A$, if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$, then $\langle a, c \rangle \in R$.

Consider the *implies* relation on all possible propositions expressed in the English language where $\langle p,q\rangle\in implies$ if $p\Longrightarrow q$ is true. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

Properties of relations (practice)

Poll: unequal sets

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- antiS antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \not\in R$.
 - **T** transitive: for every $a, b, c \in A$, if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$, then $\langle a, c \rangle \in R$.

Let X be an arbitrary set. Consider the relation diffSize on $\mathcal{P}(X)$ where $\langle S_1, S_2 \rangle \in diffSize$ if $|S_1| \neq |S_2|$. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

Poll: even divider

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- antiS antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\not\in R$.
 - **T** transitive: for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$.

Consider the relation R on \mathbb{Z} where $\langle x,y\rangle\in R$ if $x\mod 2=0$ and $y\mod x=0$. Which properties does this relation have? (You can choose more than one.)

- A) R
- B) IR
- c) s
- D) antiS
- E) AS
- F) T

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· Reflexive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· Reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

Symmetric closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· Reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

• Symmetric closure:

$$R' = R \cup R^{-1}$$

· Transitive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· Reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· Symmetric closure:

$$R' = R \cup R^{-1}$$

 Transitive closure: (hint: what does R ∘ R give you?)

Poll: towards transitive closure

Consider the *parentOf* relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is $parentOf \circ parentOf$?

- A) ancestorOf
- B) grandParentOf
- C) parentOf
- D) grandParentOrParentOf
- E) none of the above

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

· transitive closure:

$$R' = R \cup (R \circ R) \cup ((R \circ R) \circ R) \cup \cdots$$

Poll: transitive closure

Consider the *parentOf* relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is the transitive closure of $parentOf^{-1}$?

- A) ancestorOf
- B) parentOf
- C) childOf
- D) descendantOf
- E) siblingOf

Warshall relation

Let $A := \{a_1, a_2, \dots, a_n\}$, a finite set.

Let R be a relation on A.

For k = 0 to n, let W_k denote the k^{th} Warshall relation for R where W_k is defined as...

- $W_0 := R$
- For $k \geq 1$, W_k is a relation on A such that $\langle a_i, a_j \rangle \in W_k$ iff there is a sequence of relationships in R connecting a_i to a_j using any subset of the elements $\{a_1, a_2, \ldots, a_k\}$ as intermediates.