Directed Reading

Muhammad Zubair Khan December 5, 2018

Agenda

- Dataset
- Deep-Net Strategy
- Result
- Final Report
- Tools learned

Dataset

• Total fundus images: 208

• Classes: 4

• Normal images: 54

• **DR1 images**: 42

• **DR2 images:** 60

• **DR3 images**: 52

Constant HyperParameters

- Epochs: 30
- Activation hidden layer: Rectifier Linear Unit(ReLU)
- Activation output layer: Softmax
- Loss function: Categorical-Crossentropy
- **Dropout:** 0.5
- Optimizer: Adam

Figure 1: Color fundus images representing Normal and Stage-1 DR

Figure 2: Color fundus images representing Stage-2 and 3 of DR

Deep-Net Strategies

- 1. Conv-Net on gray-scale fundus images
- 2. Conv-net on color fundus images
- 3. Conv-net on augmented fundus images
- 4. Transfer learning using VGG16 on color fundus images
- 5. Transfer learning using VGG19 on color fundus images
- 6. Fine tuning using VGG16 on color fundus images
- 7. Fine tuning using VGG19 on color fundus images

Results

For jupyter notebooks (code files), click link below https://github.com/zubairqalbi/DR_Report

CNN on gray fundus images

Table 1: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
0.8588	0.6154	1.1591	0.4808

Table 2: Classification Report

	Precision	Recall	F1-Score	Support
Normal	0.31	0.40	0.35	10
DR1	0.67	0.55	0.60	11
DR2	0.50	0.56	0.53	16
DR3	0.50	0.40	0.44	15
Weighted avg	0.50	0.48	0.48	52

Figure 3: Loss and Accuracy on gray-scale fundus images

CNN on color fundus images

Table 3: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
0.5568	0.7628	1.3214	0.6923

Table 4: Classification Report

	Precision	Recall	F1-Score	Support
Normal	0.53	0.91	0.67	11
DR1	0.90	0.69	0.78	13
DR2	0.73	0.57	0.64	14
DR3	0.75	0.64	0.69	14
Weighted avg	0.73	0.69	0.70	52

Figure 4: Loss and Accuracy on color fundus images

CNN on augmented fundus images

Table 5: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
0.9614	0.5495	1.0002	0.4808

 Table 6: Classification Report

	Precision	Recall	F1-Score	Support
Normal	0.50	0.73	0.59	11
DR1	1.00	0.67	0.80	12
DR2	0.42	0.42	0.42	19
DR3	0.11	0.10	0.11	10
Weighted avg	0.51	0.48	0.48	52

Figure 5: Loss and Accuracy of augmented color fundus images

TL using vgg16 on color fundus images

Table 7: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
0.2025	0.9187	0.6669	0.7250

 Table 8: Classification Report

	Precision	Recall	F1-Score	Support
Normal	0.40	0.29	0.33	7
DR1	0.94	0.74	0.83	23
DR2	0.59	1.00	0.74	10
Weighted avg	0.76	0.72	0.72	40

Figure 6: Loss and Accuracy after applying transfer learning using VGG16 on augmented color fundus images

TL using vgg19 on color fundus images

Table 9: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
0.2166	0.9187	0.6566	0.7500

Table 10: Classification Report

	Precision	Recall	F1-Score	Support
Normal	0.60	0.43	0.50	7
DR1	0.85	0.74	0.79	23
DR2	0.67	1.00	0.80	10
Weighted avg	0.76	0.75	0.74	40

Figure 7: Loss and Accuracy after applying transfer learning using VGG19 on augmented color fundus images

FT using vgg16 on color fundus images

Table 11: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
3.2858 <i>e</i> – 05	1.0000	1.2077	0.7250

Figure 8: Loss and Accuracy after applying fine tuning by removing top four layers of VGG16 on augmented color fundus images

FT using vgg19 on color fundus images

Table 12: Training and Testing

Train Loss	Train Accuracy	Test Loss	Test Accuracy
0.2444	0.9687	2.3069	0.7750

Figure 9: Loss and Accuracy after applying fine tuning by removing top four layers of VGG19 on augmented color fundus images

Final Report

Click on link below to see the directed reading report https://github.com/zubairqalbi/DR_Report

Research document writting tools Learned

- LATEX (Miktex with TexStudio)
- LATEX (Miktex with TexMaker)
- LATEX with Lyx
- BibTeX management with Mendeley Desktop
- BibTeX management with JabRef
- BibTeX management with Zotero
- Beamers

Next To Do...

Image segmentation using deep neural networks

Reference Platforms

- Github
- Kaggle
- Keras Documentation
- EliteDataScience