Department of Mathematics, The University of Hong Kong

MATH4302 (Algebra II), May 21, 2020 2:30 pm - 5:00 pm Answer ALL SEVEN questions

This is a **closed-book exam**. Except for Problem 1, you should always give precise and adequate explanations to support your conclusions. Please do not forget to put your University ID on the top of **every page** of your answer sheet.

Problem 1 (18 points). Answer "True" or "False" to each of the following six statements. For this problem only, you do not need to explain your answers.

- 1) In any integral domain R, the ideal $\{0\}$ of R is prime;
- 2) For any integer $n \geq 2$, the ring $(\mathbb{Z}/n\mathbb{Z})[x_1, x_2]$ is a unique factorization domain.
- 3) The field extension $\mathbb{Q}(\sqrt[5]{2})$ of \mathbb{Q} is normal;
- 4) The polynomial $f(x) = x^9 2 \in \mathbb{F}_3[x]$ is separable;
- 5) The splitting field of $(x^3 + 5)^3(x^8 9)^2 \in \mathbb{Q}[x]$ over \mathbb{Q} is a Galois extension of \mathbb{Q} ;
- 6) No polynomial in $\mathbb{Q}[x]$ of order 5 is solvable by radicals.

Problem 2 (12 points). 1) If R is a unique factorization domain, and if $a, b \in R$ are both non-zero, define a greatest common divisor of a and b. Is it unique?

2) Determine the greatest common divisors of $a(x) = x^3 + 2$ and b(x) = x + 1 in $\mathbb{Z}[x]$ as well as in $\mathbb{F}_2[x]$.

Problem 3 (10 points). Let K be a field and L a field extension of K. Can two different irreducible monic polynomials p(x) and q(x) in K[x] have a common root in L? Why?

Problem 4 (10 points). Let α be a real root of the polynomial $p(x) = x^3 + 9x + 1$. Can α be constructed by a ruler and compass? Explain your answer.

Problem 5 (15 points). Show that there are infinitely many prime elements in K[x] for any field K.

Problem 6 (15 points). Let K be any field. State the definition of a splitting field of a non-constant polynomial $f \in K[x]$ over K. Give at least **three** facts about splitting fields to show that they are interesting and useful.

Problem 7 (20 points). Let $\omega = e^{\pi i/4} = \frac{\sqrt{2}}{2}(1+i) \in \mathbb{C}$ and let $L = \mathbb{Q}(\omega)$.

- (a) Is L a Galois extension of \mathbb{Q} ? Why? What is $[L : \mathbb{Q}]$?
- (b) Compute the Galois group $Gal(\mathbb{Q}(\omega)/\mathbb{Q})$;
- (b) Describe all the intermediate fields between \mathbb{Q} and L.

***** END OF PAPER *****