Übungsblatt 11

Trigonometrische Funktionen

Aufgabe 1.

Drücken Sie die folgenden im Gradmass beschriebenen Winkel im Bogenmass aus.

- (a) 30°
- (b) 135°
- (c) 270°
- (d) 390°
- (e) 133°

Aufgabe 2.

Zeichnen Sie geeignete Dreiecke, um die Funktionswerte für die Sinus- und Cosinusfunktion bei den Argumenten

- (a) $\frac{\pi}{6}$

- (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{2\pi}{3}$ (e) $\frac{5\pi}{6}$

ablesen zu können.

Aufgabe 3.

Bestimmen Sie für die folgenden Funktionen über dem Definitionsbereich $D=\mathbb{R}$ jeweils die Menge aller Nullstellen und die Wertemenge (Bildmenge) W.

(a)
$$f(x) = \sin(2\pi x)$$

(b)
$$f(x) = 2\cos\left(2\pi x + \frac{\pi}{4}\right)$$
 (c) $f(x) = \sin^2(x)$

(c)
$$f(x) = \sin^2(x)$$

Aufgabe 4.

Bestimmen Sie die Ableitung der folgenden Funktionen.

(a)
$$f(x) = 3\sin(3x) - 2$$

(c)
$$f(x) = \frac{\sin(x)\cos(2x)}{2}$$

(a)
$$f(x) = 3\sin(3x) - 2$$
 (c) $f(x) = \frac{\sin(x)\cos(2x)}{2}$ (e) $f(x) = \frac{\cos^2(x) + \cos(x)}{x^2 + 1}$

(b)
$$f(x) = \sin^2(x) + \cos(2x)$$
 (d) $f(x) = \frac{\sin^2(x)}{x^2}$

(d)
$$f(x) = \frac{\sin^2(x)}{x^2}$$

(f)
$$f(x) = \sin\left(\frac{1}{x}\right)$$

Aufgabe 5.

In der Vorlesung haben wir gesehen, dass

$$\sin(x) = \cos(x)$$
 und $\cos(x) = -\sin(x)$

gilt. Beweisen Sie damit, dass

(a)
$$\cot(x) = -\frac{1}{\sin^2(x)}$$
 (b) $\cot(x) = -1 - \cot^2(x)$

Aufgabe 6.

Zeigen Sie mit Hilfe der Kettenregel, indem Sie die Gleichungen $\cos(\arccos(x)) = x$ bzw. $\tan(\arctan(x)) = x$ ableiten, dass die folgenden Formeln richtig sind.

(a)
$$\arccos(x) = -\frac{1}{\sqrt{1-x^2}}$$
 (b) $\arctan(x) = \frac{1}{1+x^2}$

Aufgabe 7.

Zeigen Sie mit Hilfe der Ableitung $\sin(x) = \cos(x)$ und der Gleichung $\sin^2(x) + \cos^2(x) = 1$, dass die Ableitung von $\cos(x)$ gleich $\cos(x) = -\sin(x)$ ist.

Aufgabe 8.

Es ist $f(x) = \cos(x) + \sin(x)$. Welches ist die kleinste natürliche Zahl n, für die f(x) gleich der n-ten Ableitung von f(x) ist?

Aufgabe 9.

Zeigen Sie, dass für die Taylorreihe der Cosinusfunktion um den Nullpunkt x=0 herum gilt:

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \dots$$

Aufgabe 10.

Bestimmen Sie alle Extremalstellen der folgenden Funktionen.

(a)
$$f(x) = \cos^2(1 - x^2)$$
 (b) $f(x) = \cos^2((1 - x)^2)$

Aufgabe 11.

Lösen Sie die Gleichung $\sin(x) \cdot \cos(2x) = x - 2$ approximativ, indem Sie für die linke Seite ein Taylorpolynom 2. Ordnung um den Punkt $x_0 = \frac{\pi}{2}$ herum bestimmen.

Integral von trigonometrischen Funktionen

Stammfunktionen der Sinus- und der Cosinusfunktion:

Für x im Bogenmass gilt:

$$f(x) = \sin(x) \implies F(x) = -\cos(x)$$

$$f(x) = \cos(x) \implies F(x) = \sin(x)$$

Aufgabe 12.

Berechnen Sie die Fläche, die von der Sinusfunktion und der x-Achse im Intervall $[0, \pi]$ (erste Hälfte der ersten Periode) aufgespannt wird.

Aufgabe 13.

Zeigen Sie, dass folgende Gleichung gilt:

$$\int \sin^2(x) dx = \frac{1}{2}(x - \sin(x)\cos(x)) + C$$

Aufgabe 14.

Berechnen Sie den Inhalt der hervorgehobenen Fläche:

