正弦交流电路的相量分析法

上7么又心中平平77日里,7717

第10章

主讲人: 邹建龙

时间: 年月日

10 正弦交流电路的相量分析法——主要内容

- □引言
- □ 10.1 相量分析法
- □ 10.2 相量分析法的应用
- □ 10.3 相量图
- □小结

10 正弦交流电路的相量分析法——引言

10.1 相量分析法——依据

内容	对象	相量分析法的依据
KCL	节点	对任意一个节点,所有支路电流相量代数和为零 $\sum \pm \dot{I}_{\scriptscriptstyle k} = 0$ 或 \sum 流入 $\dot{I}_{\scriptscriptstyle m} = \sum$ 流出 $\dot{I}_{\scriptscriptstyle n}$
KVL	回路	对任意一个回路,所有支路电压相量代数和为零 $\sum \pm \dot{U}_{\scriptscriptstyle k} = 0 \; \text{或} \sum \text{升压} \dot{U}_{\scriptscriptstyle m} = \sum \text{降压} \dot{U}_{\scriptscriptstyle n}$
VCR	电阻	$\dot{U}_R = R\dot{I}_R \otimes \dot{I}_R = \frac{\dot{U}_R}{R}$
	电感	$\dot{U}_L = j\omega L \dot{I}_L $ $ \vec{\mathbf{j}} \dot{u} \dot{L} = \frac{\dot{U}_L}{j\omega L} $
	电容	$\dot{U}_C = \frac{1}{j\omega C} \dot{I}_C \neq j\omega C \dot{U}_C$
	任意阻抗	$\dot{U}_Z = Z\dot{I}_Z$ or $\dot{I}_Z = \frac{\dot{U}_Z}{Z}$

10.1 相量分析法——步骤

第1步:将所有时域正弦量电压和电流转化为相量,并将时域电阻、电感和电容转化为相量域的阻抗。(第1步通常可以省略)

第2步: 列写KCL方程和KVL方程。

第3步:列写电路元件的VCR方程。(第2步与第3步通常合成为一步,也可以用节点电压法、回路电流法、等效变换等)第4步:根据KCL方程、KVL方程和VCR方程求解出待求的电压和电流相量。

第5步:将电压和电流相量转化为时域正弦量电压和电流。

(第5步通常可以省略)

10.1 相量分析法——步骤

例题1(基础) 求正弦交流电路稳态时的响应i。

10.1 相量分析法——

求正弦交流电路稳态时的响应i。

$$\frac{U_{\rm m}}{\sqrt{2}} \angle \varphi_{u} = \dot{U}_{R} + \dot{U}_{L} + \dot{U}_{C}$$

$$\dot{U}_R = R\dot{I}, \ \dot{U}_L = j\omega L\dot{I}, \ \dot{U}_C = -j\frac{1}{\omega C}\dot{I}$$

$$\frac{\dot{U}_{\text{m}}}{\sqrt{2}} \angle \varphi_{u} \stackrel{+}{\overset{+}{\overset{-}{U}_{R}}} - \dot{U}_{L} \stackrel{+}{\overset{-}{\overset{-}{U}_{L}}} - \dot{J}_{C}$$

$$\dot{I} = \frac{U_{\rm m}}{\sqrt{2}\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \angle \left(\varphi_u - \arctan\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

$$i = \frac{U_{\rm m}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \cos\left(\omega t + \varphi_u - \arctan\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

10.1 相量分析法——步骤

同步练习题1(基础)

求正弦交流电路稳态时的响应u。

10.1 相量分析法——步骤

同步练习题1(基础) 求正弦交流电路稳态时的响应u。

答案:
$$u = \frac{I_{\rm m}}{\sqrt{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}} \cos\left[\omega t + \varphi_i - \arctan\left(\frac{R}{\omega C} - R\omega L\right)\right]$$

例题2(基础)

分别用节点电压法、回路电流法、等效变换和戴维南定理四种方法求图中的电阻电流。

例题2(基础) 节点电压法。

例题2(基础) 节点电压法。

$$\left(\frac{1}{j20} + \frac{1}{-j10} + \frac{1}{20}\right)\dot{U}_{n1} = \frac{100 \angle 0^{\circ}}{j20}$$

$$\dot{U}_{\rm n1} = 50\sqrt{2} \angle \left(-135^{\rm o}\right) V$$

$$\dot{U}_{\rm n1} = 50\sqrt{2} \angle \left(-135^{\circ}\right) \text{V}$$
 $\dot{I}_{R} = \frac{\dot{U}_{\rm n1}}{20} = 2.5\sqrt{2} \angle \left(-135^{\circ}\right) \text{A}$

例题2(基础) 回路电流法。

例题2(基础)

回路电流法。

$$[j20 + (-j10)] \dot{I}_1 - (-j10) \dot{I}_R = 100 \angle 0^{\circ}$$

$$- (-j10) \dot{I}_1 + [(-j10) + 20] \dot{I}_R = 0$$

$$\dot{I}_R = 2.5\sqrt{2}\angle\left(-135^{\circ}\right)A$$

例题2(基础)

等效变换。

例题2(基础)

等效变换。

$$\dot{I}_{R} = \frac{\frac{1}{20}}{\frac{1}{j20} + \frac{1}{-j10} + \frac{1}{20}} \times \frac{100}{j20}$$

$$= 2.5\sqrt{2}\angle\left(-135^{\circ}\right) A$$

例题2(基础) 戴维南定理。

例题2(基础)

戴维南定理。

$$\dot{U}_{oc} = \frac{-j10}{j20 + (-j10)} \times 100$$
$$= 100 \angle 180^{\circ} \text{ V}$$

$$Z_{eq} = \frac{j20 \times (-j10)}{j20 + (-j10)}$$
$$= -j20 \Omega$$

$$\dot{I}_R = \frac{\dot{U}_{oc}}{Z_{eq} + 20}$$
$$= 2.5\sqrt{2}\angle\left(-135^{\circ}\right) A$$

同步练习题2 (基础)

求图中的电阻电流。

同步练习题2(基础)

求图中的电阻电流。

例题3 (提高)

求图中2欧姆电阻的电流。

例题3(提高)

求图中2欧姆电阻的电流。

$$\left(\frac{1}{1} + \frac{1}{j1} + \frac{1}{-j0.5}\right) \dot{U}_{n1} - \frac{1}{-j0.5} \dot{U}_{n2} = \frac{10 \angle 0^{\circ}}{1} \\
- \frac{1}{-j0.5} \dot{U}_{n1} + \left(\frac{1}{2} + \frac{1}{-j0.5}\right) \dot{U}_{n2} = j0.5 \dot{I}_{1} \\
\frac{1}{j1} \dot{U}_{n1} = \dot{I}_{1}$$

$$\dot{U}_{\rm n1} = \dot{U}_{\rm n2} = 5\sqrt{2}\angle 45^{\rm o} \ {\rm V}$$

$$\dot{I}_2 = \frac{\dot{U}_{\rm n2}}{2} = 2.5\sqrt{2} \angle 45^{\rm o} \text{ A}$$

同步练习题3 (提高)

求图中的电容电流。

同步练习题3(提高)

求图中的电容电流。

同步练习题1(基础) 求

求正弦交流电路稳态时的响应u。

答案:
$$u = \frac{I_{\rm m}}{\sqrt{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}} \cos\left[\omega t + \varphi_i - \arctan\left(\frac{R}{\omega C} - R\omega L\right)\right]$$

相量图是代数方程的几何表示。

相量图的优点是直观形象,有时能简化正弦交流电路的分析。

$$\dot{U}_1 + \dot{U}_2 + \dot{U}_3 + \dot{U}_4 + \dot{U}_5 = 0$$

相量图绘制依据: KCL+KVL+VCR。

电流相量满足的KCL方程: $\sum (\pm \dot{I}_k)=0$

电压相量满足的KVL方程: $\sum (\pm \dot{U}_k) = 0$

KCL和KVL决定了相量图都是封闭的多变形。

$$\dot{U}_1 + \dot{U}_2 + \dot{U}_3 + \dot{U}_4 + \dot{U}_5 = 0$$

相量图绘制依据之一——VCR。

相量图绘制依据之一——VCR。

电路元件	VCR	电压与电流相位关系	电压相量与电流相量的角度关系
电阻	$\dot{U}_{\scriptscriptstyle R} = R\dot{I}_{\scriptscriptstyle R}$		电阻电压相量与电流相量
		$arphi_u - arphi_i = 0^\circ$	几何上相互平行
		电阻的电压与电流同相位	$\dot{U}_{\scriptscriptstyle R}$
			\dot{I}_R
电感	$\dot{U}_L = j\omega L \dot{I}_L$		电感电压相量与电流相量
			几何上相互垂直,
		$\varphi_u - \varphi_i = 90^\circ$	且电压相量垂直电流相量向上
		电感电压超前电流 90 度	\dot{U}_L \dot{I}_L
电容	$\dot{U}_C = -j \frac{1}{\omega C} \dot{I}_C$		电容电压相量与电流相量
			几何上相互垂直,
		$\varphi_u - \varphi_i = -90^\circ$	且电压相量垂直电流相量向下
		电容电压滞后电流 90 度	$\dot{U_C}$ $\dot{I_C}$

相量图绘制依据之一——VCR。

加美国2		VOICe	
电路元件	VCR	电压与电流相位关系	电压相量与电流相量的角度关系
			感性阻抗电压相量与电流相量
	$\dot{U}_Z = Z\dot{I}_Z$	$0^{\circ} < \varphi_u - \varphi_i < 90^{\circ}$	几何上夹角为锐角
感性阻抗	Z = R + jX,	感性阻抗电压超前电流	$\dot{U}_{Z^{(ar{ ext{gkt}})}}$
	X > 0	0至90度	· • • • • • • • • • • • • • • • • • • •
			$I_{Z($ 感性 $)}$
			容性阻抗电压相量与电流相量
	$\dot{U}_Z = Z\dot{I}_Z$	$-90^{\circ} < \varphi_u - \varphi_i < 0^{\circ}$	几何上夹角为锐角
宏州阳 县		N. P. P. M. N. P. M. M. A. P. N.	į

容性阻抗

$$Z = R + jX,$$
$$X < 0$$

容性阻抗电压滞后电流 0至90度

9.2.1 正弦量

正弦量的常用计算公式

计算内容	计算结果	
正弦函数转化为余弦函数的公式	$\sin(90^{\circ} - \theta) = \cos\theta$	
余弦函数公式	$\cos(-\theta) = \cos\theta$, $\cos(\theta + 180^\circ) = -\cos\theta$	
和差化积公式	$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$ $\cos \alpha - \cos \beta = -\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$	
积化和差公式	$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$ $\cos^2 \theta = \cos \theta \cos \theta = \frac{1 + \cos 2\theta}{2}$	
其他公式	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\cos^2 \theta + \sin^2 \theta = 1$	

第1步:列写电压相量满足的KVL方程和电流相量满足的KCL方程(建议采用代数和等于零的形式)。

第2步:确定参考相量。(参考相量指的是作为基准的相量,只有确定了参考相量,才能根据参考相量确定其他相量的角度。绘制相量图时,通常将参考相量的辐角设置为零。)第3步:根据元件VCR反映的角度关系确定容易绘制的相量。

第4步:根据KCL方程和KVL方程,构成封闭多边形。

例题4(基础)

绘制正弦交流电路的相量图。

例题4 (基础)

绘制正弦交流电路的相量图。

第1步: 列写KVL方程

$$-\dot{U}_{s} + \dot{U}_{R} + \dot{U}_{L} = 0$$

第2步: 选择参考相量

选择电流为参考相量(水平方向)

第3步:根据VCR确定相量的角度

同步练习题4(基础)

绘制正弦交流电路的相量图。

同步练习题4(基础)

绘制正弦交流电路的相量图。

例题5 (基础)

例题5(基础)

同步练习题5(基础)

同步练习题5(基础)

例题6 (提高)

例题6 (提高)

$$-\dot{I}_{L}+\dot{I}_{R}+\dot{I}_{C}=0$$

$$-\dot{U}_{s} + \dot{U}_{L} + \dot{U} = 0$$

同步练习题6 (提高)

同步练习题6(提高)

例题7(基础)

已知电压表1、2、3的读数分别为30V、40V和80V,求电压源电压有效值。

例题7(基础)

已知电压表1、2、3的读数分别为30V、40V和80V,求电压源电压有效值。

同步练习题7(基础)

已知交流电流表1、2、3的 读数分别为10A、10A和20A, 求交流电流表4的读数。

同步练习题7(基础)

已知交流电流表1、2、3的 读数分别为10A、10A和20A, 求交流电流表4的读数。

答案: $10\sqrt{2}$ A

例题8(提高)

电阻R由0逐渐增加到∞,分析c、d 之间电压随R改变时的模值和辐角变 化规律。(设电压源电压辐角为0)

例题8(提高)

$$-\dot{U}_{\rm s} + \dot{U}_{\rm ac} + \dot{U}_{\rm cb} = 0$$

$$-\dot{U}_{\rm ac} + \dot{U}_{\rm ad} - \dot{U}_{\rm cd} = 0$$

$$-\dot{U}_{cb} + \dot{U}_{cd} + \dot{U}_{db} = 0$$

电阻R由0逐渐增加到∞,分析c、d 之间电压随R改变时的模值和辐角变 化规律。(设电压源电压辐角为0)

c、d之间电压模值始终等于 电压源电压有效值,辐角从0 逐渐减小到-180度。

同步练习题8 (提高)

电容C由0逐渐增加到∞,分析c、d 之间电压随C改变时的模值和辐角 变化规律。(设电压源电压辐角为0)

同步练习题8(提高)

电容C由0逐渐增加到**∞**,分析c、d之间电压随C改变时的模值和辐角变化规律。(设电压源电压辐角为0)

答案: c、d之间电压模值始终等于电压源电压有效值的一半, 辐角从180度逐渐减小到0度。

10 正弦交流电路的相量分析法——小结

- □ 正弦交流电路的相量分析法依据相量域的KCL、KVL和VCR
- □ 直流电路的分析方法和电路定理同样适用于交流电路
- □ 节点电压法、回路电流法、等效变换、戴维南定理等
- □ 相量图是代数方程的几何表示
- □ 相量图更加直观形象,在有些情况下可以简化分析
- □ 相量图都是封闭多边形
- □ 绘制相量图的关键是根据VCR确定相量的角度

10 正弦交流电路的相量分析法

感谢大家聆听

らい。立つノスのフェステー

主讲人: 邹建龙

时间: 年月日

