

Deep(FAMS): Mohammad Alyetama, Ali Al-Ramini, Fangyi Li

Introduction

Background

- Generative Adversarial Networks (GANs) is a generative modeling approach using deep learning techniques, to automatically discover and learn the input patterns to generate an output.
- Issues with GAN models

GANs are limited to smaller sized datasets

- Overfitting
- Augmented distribution
- Applying a wide range of augmentation using an **adaptive discriminator augmentation** (ADA) mechanism based on Karras et. al (2020).

Introduction

Objectives & Approach

• Evaluation of ADA mechanism with small datasets:

- Are we able to reproduce good results as paper reported?
- We used StyleGAN2-ADA with some of the same datasets as used in the paper.
- Are we able to produce good results with other datasets?
- We evaluated replicability of StyleGAN2-ADA using other small datasets.
- Any advantage of ADA mechanism?
- We trained StyleGAN2 models and compared results with StyleGAN2-ADA.
- Any effect on training results when the quantity of the data is limited?
- We artificially subset a relatively large dataset, FFHQ, into different sizes then make comparison with and without ADA.

DATASETS

Dataset	No. of images		
METFACES	1,336		
Animal-Faces-High- Quality (AFHQ)	WILD: 4,738 DOG: 4,739		
Cars196	16,185		
OxfordFlowers102	6,149		
Flickr-Faces-High- Quality (FFHQ)	52,000		

Preprocessing

• Resizing

We resize our dataset to half the original size that was used in the paper, that is, a resized resolution of (256 X 256) for all datasets except for the METFACES dataset, which we resized to (512 X 512).

• Data Splitting

We use data splitting on FFHQ
(Flickr-Faces-High-Quality) to measure the
performance of StyleGAN2-ADA over portions of data.

Architecture

• Architecture

• The StyleGAN2-ADA mechanism is implemented on top of the StyleGAN2 official TensorFlow implementation with most of the details unchanged, including network architectures.

Data Augmentation

- One of the major improvements in StyleGAN2-ADA is dynamically changing the amount of image augmentation during training.
- These augmentations consist of 18 transformations: geometric (7), color (5), filtering (4), and corruption (2).

Data Augmentation Pipeline

Percentile:

35th

Color transformations

95th

1. Geometric and color transformations

- Pixel Blitting
- General geometric transformations
- Color transformations

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, "Training generative adversarial networks with limited data," arXiv, 2020.

Data Augmentation Pipeline

2. Image-space filtering and corruptions

- Image-space filtering
- Image-space corruptions

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, "Training generative adversarial networks with limited data," arXiv, 2020.

Hyperparameters & Evaluation

Evaluation

We used FID metric to evaluate our results, and compare it to the FID scores obtained from the original paper.

Parameter	METFACES	AFHQ-WILD	AFHQ-DOG	Cars196	Oxford Flowers102	FFHQ
Resolution	512*512	256*256				
No. of GPUs (Tesla V100)	2					
Base feature maps	16,384	8,192	5,000	16,185	8,192	52,000
Training time (hrs)	92.05	132.64	93.22	146.46	120.84	71.45
Minibatch size	16	32				
Minibatch stddev	4	4	16	16	4	16
Learning rate	0.0025					
R1 regularization	3.2768	0.4096				
Dataset x-flips; Mixed-precision; Mapping net depth; Style mixing reg.; Path length reg.; Resnet D	Yes	Yes	Yes	Yes	Yes	Yes

Results

Table 1. Final FID scores of datasets trained from scratch with StyleGAN2-ada

Dataset	Training time (in days)	Reported FID	Our FID
AFHQ-WILD	3	3.05 (original paper)	1.94
AFHQ-DOG	3	7.40 (original paper)	8.68
metfaces	3	15.34 (original paper)	18.26
cars196	5	16.03 (FineGAN)	8.07
102flowers	5	19.60 (MSG-StyleGAN)	6.85

Figure 1. Example snapshots from various datasets trained with StyleGAN2-ada.

Cont. Result

Figure 2. FID score as a function of wallclock time. Each curve corresponds to training the dataset from scratch with two NVIDIA Tesla V100 GPUs.

Comparison with baseline StyleGAN2

Figure 3. Uncurated 256×256 results generated for AFHQ-DOG (4739 images) with and without ADA. Both generators were trained from scratch for ~3 days.

Model performance with limited data

Figure 4. FID score as a function of wallclock time. Each curve corresponds to training the dataset from scratch with two NVIDIA Tesla V100 GPUs. Different lines color/shape correspond to different subsets of FFHQ.

Figure 5. Images generated for different subsets of FFHQ at 256×256 resolution. We show the best snapshot of the **best** training run for each case, selected according to FID.

Discussion

- StyleGAN2-ada performs a lot better than baseline StyleGAN2, especially when the quantity of the data is limited.
- Models that did not employ augmentation, degrade noticeably as the size of the training set decreases, generally yielding poor image quality and diversity with fewer than 30k training images.
- With ADA, the degradation is much more graceful, and the results remain reasonable even with a 5k training set.

*Animated image generated with the snapshots of the StyleGAN2-ada model trained from scratch on FFHQ.

Conclusion

- The ADA mechanism yields better results in a shorter time compared to baseline StyleGAN2.
- The adaptive discriminator augmentation reliably stabilizes training.
- Good results are possible using only a few thousand training images.
- The experiments that we attempted to reproduce from the paper were reproducible.
 - o Downsides: poor forward compatibility.

*Animated image generated with the snapshots of the StyleGAN2-ada model trained from scratch on AFHQ-WILD.

All source code to reproduce the reported results and figures are available on our GitHub repository and is ready for use with minimal to no adjustments.

https://github.com/Deep-FAMS/StyleGAN2-ada-Reproducibility

Thanks for Listening!

Any questions?

*Animated image is generated with the snapshots of the StyleGAN2-ada model trained from scratch on AFHQ-DOG.