Cyber physical social systems: Modelling of consumer assets and behavior in an integrated energy system

Energy Systems Integration 102 – Research Challenges

by Tim Hansen and Sid Suryanarayanan

Department of Electrical and Computer Engineering Colorado State University

Fort Collins, Colorado, USA

August 5, 2015

Outline

- introduction to resource allocation
- resource allocation in Smart Grid
- role of customers in resource allocation
- a method for incentivizing customers
 - customer incentive pricing
 - modeling the customer assets and behavior
- conclusions and future directions

Introduction to Resource Allocation

- what is resource allocation?
 - assignment of limited resources to perform useful work
- optimal resource allocation problems, in general, are NP-Complete
- in high-performance computing (HPC):
 - allocate HPC resources to parallel applications
- in electric power systems:
 - allocate generation resources to energy consumers
- Figure sources
 - [1] Global Nettech. [Online] http://goo.gl/XjGx18
 - [2] PJM Learning. [Online] http://goo.gl/vvvNyj

Traditional Bulk Power System

transmission level

distribution level

Bulk Power Market

- owners of generators bid into the bulk power market
- as demand increases, more expensive generators are needed to meet the demand

Example Variation of Price

Demand Response

demand response:

peak demand reduction by shifting or shedding loads in response to system or economic conditions

load shëtidigng:

Motivation for Demand Response

- physical
 - growth in transmission capability lagging behind growth in peak electricity usage
 - residential electricity sales in the United States expected to grow 24% between 2011 and 2040
 - peak demand expected to exceed available transmission capability
- economical
 - peaking power plants are expensive
 - ^ 5% reduction in peak demand during the 2000 California energy crisis would have reduced wholesale prices by 50%
- intelligently reducing load during peak hours would help
 alleviate these problems (i.e., using demand response)

Cyber-physical System

Cyber-physical Social System (CPSS)

Aggregator-based Residential Demand Response

- for-profit aggregator entity ISO offers all customers time-varying price for participating in DR local utility aggregator 1 (aggregator EMS customer incentive price (CIP) competitive rate Legend customer 2 customer 1 customer 3 customer cyber entity owns a set of DR assets physical entity home EMS smart meter schedulable smart market entity social entity appliances power flow appliances data flow pays CIP for allowing
 - generally cheaper than utility price

aggregator use of DR assets

Assumptions

- price is exogenous
 - at the load levels one aggregator changes, bulk price changes marginally
- retail electricity market is fully deregulated
 - allows customer to choose supplier
- control and communication infrastructure
 - exchange of information and control of DR assets
- customer willingness to participate

Smart Grid Resource Allocation

- Smart Grid Resource Allocation (SGRA)
- given
 - set of customers
 - information about customer loads
- constraints
 - customer constraints
 - availability of loads to be rescheduled
 - incentive pricing requirements
 - system
- objective
 - aggregator find customer incentive pricing and schedule of loads to maximize aggregator profit
- hypothesize that optimizing purely for profit, a beneficial change on the peak load will be enacted

System Model – Aggregator-Customer-Utility

- aggregator determines incentive pricing for all customers
 - day-ahead using forecast spot market and dynamic pricing
- customer decides whether incentive price worth inconvenience
 - customer 1 to y decide it is worth it
 - customer y+1 to Y decide it is not worth it
- aggregator and utility need some relationship

Enabling Technologies and Assumptions

- retail electricity market is fully deregulated
 - allows customer to choose supplier
- control and communication infrastructure
 - exchange of information and control of schedulable loads
- customer willingness to participate

Heuristic Framework Overview

- SGRA solved using a heuristic framework, implemented as a genetic algorithm
- designed as a day-ahead optimization
 - optimization technique needs to run in less than 24-hours
- resolution of framework of 15-minutes
 - i.e., 96 intervals of 15-minutes to represent the day

Framework – Schedulable Loads

- subset of the system load is schedulable
- aggregator possesses information of each schedulable load
 - the runtime duration
 - average power rating
 - the initial customer scheduled start time
 - load availability vector
- information provided by customer for each of their schedulable loads

Framework - Aggregator

- additionally, aggregator possesses information on:
 - the forecasted spot price in the bulk electricity market
 - the forecasted dynamic price from the distribution company
 - an indication of whether a customer will allow their load to be rescheduled to a given time with a given incentive price
- aggregator must determine the following to maximize their profit:
 - the set of loads to attempt to reschedule
 - customer can still say no
 - the rescheduled start time for each of the loads
 - the customer incentive pricing vector
 - 96 price points for each of the intervals of the day

Framework - Objective Function

- let P be the aggregator profit
- let N be the total income received for selling negative load to the spot market
- let S be the total income received for selling electricity to customers at the incentive price
- let B be the total cost paid to the spot market for buying electricity

Genetic Algorithm Implementation

chromosome represents an entire solution to the problem

λ_1	λ_2		λ ₉₆	t _{1,sch}	t _{2,sch}	•••	t _{I,sch}
customer incentive pricing				schedule of loads			

- elitism used to maintain the best solutions between generations
- selection via linear bias function
 - ↑ linear bias of 1.5 → best solution 50% greater chance of selection than median solution

Genetic Algorithm Parameters

 parameter sweep determined parameters to use in the scope of this problem

- population size: 100
- linear bias: 1.4
- probability of mutation: 0.05
- stopping criterion: 500,000 iterations

Pricing Data

- spot market pricing from PJM
- real-time pricing from ComEd
- pricing data obtained for Saturday July 9, 2011

Customer overview

- each customer has sets of baseline and schedulable loads
- customer participation is a key enabler in DR
 - needs in-depth study for full characterization
- behavior of each customer modeled using the α -model
 - ightharpoonup determines if a customer will allow rescheduling ($\gamma = 1$)
 - ightharpoonup customer can veto aggregator's schedule by setting ($\gamma = 0$)

Customer behavior: α -model

- based on an associated threshold metric for customer comfort
- metric specified for each schedulable load, i
- let
 - $\Delta \alpha_i$ be threshold metric assoc. with schedulable load i
 - $-c_{i-0}$ be original cost of running load i at utility RTP
 - $ightharpoonup^{-}c_{i ext{-}sch}$ be rescheduled cost of running load i at aggregator CIP
- for $(\gamma = 1)$
 - $c_{i-sch} \le \alpha_i c_{i-0}$ must hold
- using CIP: customer always guaranteed to save $(1-\alpha_i)$ times the cost of running load i compared to paying utility RTP

Customer behavior: α -model

- ullet customer inconvenience of load rescheduling capture by γ
- To generate α values, we use coefficient-of-variation (cov) based method
 - Analogous to generating task execution times for a heterogeneous set of machines
- let
 - \uparrow μ_a be desired average load α value for all loads
 - \bullet σ_a be desired *cov* of load types
 - \bullet σ_c be desired *cov* of customers within a load type
- for each load type, k,
 - a gamma distribution is sampled with (μ_a, σ_a) to obtain mean α_k value, denoted $\mu_{a,k}$

Customer behavior: α-model

- for each customer that owns load type, k,
 - obtain α_i by sampling a gamma distribution with (μ_{ak}, σ_c)
- this gives similar α values for each load type, k
 - thus, similar customer behavior
- this approach is chosen due to assumption that customers will generally act similar regarding use of a certain load type
 - ↑ TVs v. laundry machines

Customer loads

- each customer has two sets of loads
 - baseline: thermal (AC and EWH) and other nonschedulable loads
 - non-schedulable loads are probabilistically generated from data
 - smart (schedulable): chosen probabilistically from 18 generic appliance types
 - if present, rated power, start time (obtained from normal distribution) and duration in 15-min blocks
 - $\hat{}$ each load has an assoc. availability window (A_{i_start} , A_{i_dur})
 - $\hat{}$ $t_{t \ start}$ is original start time
 - to generate availability window for each load i, $A_{i_dur} = U(\delta i, 96)$ is generated around t_{t_start}

Simulation Setup

- 5,555 customers
 - each customer has a threshold for determining whether the CIP offers enough discount
 - each customer defines a time period to which each load can be rescheduled
- 56,498 schedulable loads
 - probabilistically generated to simulate use of an average household
 - each load has an availability window around its original start time that it can be rescheduled to
- pricing data
 - bulk power spot market price from PJM
 - utility price from ComEd
- genetic algorithm used as optimization method

Results – Demand Response Load Shifting

- peak reduction of 2.66MW (12.6%)
- aggregator profit
 - **\$947.90**
- total customer savings
 - **\$794.93**

Customer Incentive Pricing

CIP versus forecast price (top) and actual price (bottom)

Contributions

- alternative customer pricing structure
 - customer incentive pricing
- heuristic optimization framework
 - mathematical models for the customer and aggregator entities
- large-scale test simulation consisting of 5,555 customers and ~56,000 schedulable loads
 - used real pricing data from ComEd and PJM
- showed that aggregator optimizing for economic reasons:
 - benefits participating customers
 - benefits aggregator
 - benefits non-participating customers
 - system peak reduced as a common good

Some research challenges

- how to integrate distribution systems and transmission systems in power systems simulations?
 - co-simulation framework
- how to verify and validate if method of DR is effective?
 - visualization techniques
 - Use of high-performance computing platforms for extended simulations

Co-simulation in Power Systems

• co-simulation: multiple individual tools, each specializing in a specific domain, interact while running simultaneously

Bus.py

- introducing bus.py a transmission-level bus simulator and communication interface
- enables co-simulation between:

System Model

- aggregator controls the individual loads within a household
- each house is represented on a GridLAB-D distribution feeder
 - GridLAB-D a PNNL distribution system simulator at time t=1...96

Peak Load Reduction

reduction in peak load of 19.2 kVA (total available at peak time)

Cost Minimization in Time-of-Use Pricing

 change in schedulable load when minimizing cost in a time-of-use market

Contributions

- design of bus.py, a software transmission bus interface for use in Smart Grid co-simulation studies
- demonstration of bus.py interfacing with GridLAB-D simulating a small set of customers on a distribution feeder and an aggregator entity

Conclusions

- resource allocation in Smart Grid
 - system-view with aggregator-based demand response
- the demand response method using customer behavior model shown to reduce peak demand
- reduction in peak demand can:
 - reduce the cost of electricity
 - reduce the output of dirty diesel peaking generators
 - defer building new transmission lines
- future work on
 - surveys-based quantification
 - delayed-gratification techniques for customer profits

Questions and Discussion

collaborators:

Hansen et al., "Heuristic Optimization for an Aggregator-based Resource Allocation in the Smart Grid," IEEE Transactions on Smart Grid, Vol. 6, No. 4, pp. 1785–1794, July 2015.

Hansen et al., "Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations," in Proc. *IEEE Power and Energy Society General Meeting 2015*, 5 pp.

