Complexity Theory

1. We have defined a relationship \leq_p among languages. This relationship is reflexive, (i.e $L \leq_p L'$ for all languages) and transitive (i.e, if $L \leq_p L'$, and $L' \leq_p L''$, then $L \leq_p L''$). Why is it not symmetric, namely, why is it that if $L \leq_p L'$, it is not necessarily true that $L' \leq_p L$?

Solution: Consider two languages $L = \emptyset$ and $L' = \{a\}$ over a non-empty language Σ , and $a \in \Sigma$.

- 1. $L \leq_p L'$: We transform any input into the string "aa", which can be done in polytime. Since L is empty, and doesn't contain any string, it always returns 'No'. Thus, the reduction maps any input to "aa", which determines that the reduction passes or not. Thus, $L \leq_p L'$.
- 2. $L' \nleq_p L$: This is trivial, since $L = \emptyset$ has no strings, thus we cannot construct a reduction such that 'a' in L' is mapped to any string in L, since we basically have to map 'a' to nothing. Thus, $L' \nleq_p L$.

Hence, we have given a counterexample to the symmetry of the relationship \leq_p , hence, it is not symmetric.

2. Show that NP is closed under union, intersection, concatenation, and Kleene star.

Solution: Consider any two arbitrary languages L_1 and L_2 , which have non-deterministic turing machines M_1 and M_2 respectively. To prove the above, we basically a construct a non-deterministic turing machines M such that:

1. Union:

M = "On input w:

- 1. Run M_1 on w. If M_1 accepts, **accept**.
- 2. Run M_2 on w. If M_2 accepts, **accept**.
- 3. **reject** otherwise. "

Clearly, the longest branch on an input w of length n is $\mathcal{O}(n^{\max\{k,l\}})$. Thus, M is a non-deterministic turing machine that accepts $L_1 \cup L_2$, and hence, NP is closed under union.

2. Intersection:

M = "On input w:

- 1. Run M_1 on w. If M_1 rejects, **reject**.
- 2. Else run M_2 on w. If M_2 rejects, **rejects**.
- 3. accept otherwise. "

Clearly, the longest branch on an input w of length n is $\mathcal{O}(n^{\max\{k,l\}})$. Thus, M is a non-deterministic turing machine that accepts $L_1 \cap L_2$, and hence, NP is closed under intersection.

3. Concatenation:

M = "On input w:

- 1. Non-deterministically split w into two strings x and y such that w = xy.
- 2. For all x and y, run M_1 on x and M_2 on y. If both accept, **accept**.
- 3. **reject** otherwise. "

Clearly, the longest branch on an input w of length n is $\mathcal{O}(n^{\max\{k+l\}})$. Thus, M is a non-deterministic turing machine that accepts $L_1 \cdot L_2$, and hence, NP is closed under concatenation.

4. Kleene Star:

M = "On input w:

- 1. If $w = \epsilon$, accept.
- 2. Non-deterministically select a number m such that $1 \leq m \leq |w|$
- 3. Non-deterministically split w into m strings such that w_1, w_2, \ldots, w_m .
- 4. $\forall i, 1 \leq i \leq m : \text{run } M_1 \text{ on } w_i. \text{ If } M_1 \text{ rejects, } \mathbf{reject.}$
- 5. **accept** otherwise $(M_1 \text{ accepted al } w_i, 1 \leq i \leq m)$.

Steps 1 and 2 take $\mathcal{O}(n)$ time, since the size of the input is bounded by n. Step 3 is also doable in polytime using non-determinism. Step 4 takes polynomial time since a loop would have to be run m times, hence, M runs in polynomial time.

3. Show that if P = NP, then $NP \subset EXP$, where \subset denotes the proper subset relation.

Solution: By definition, EXP includes all problems that can be solved by a deterministic TM in exponential time; $2^{p(n)}$, where p(n) is a polynomial in the input size n.

If P = NP, then every problem in NP can be solved in polynomial time by a deterministic TM, which is much faster than EXP time. Since polytime algorithms are a subset of exponential-time algorithms, we have $NP \subset P \subset EXP$. Thus, if P = NP, then all problems in NP can be solved in exponential time, and hence, $NP \subset EXP$.

4. ExactOne3SAT is NP-Complete

Solution: ExactOne3SAT: A variation of 3SAT where each clause has exactly three literals, and the goal is to determine if there exists a truth assignment such that exactly one literal in each clause is true.

ExactOne3SAT is in NP, since we can verify in polynomial time that a given truth assignment satisfies the conditions of the problem.

To show that ExactOne3SAT is NP-Hard, we reduce 3SAT to ExactOne3SAT. We show that 3SAT \leq_p ExactOne3SAT.

Given an boolean formaula ϕ of 3SAT, let's assume it consists of clauses $C_1, C_2, ..., C_m$, where each clause has exactly three literals. We construct a new boolean formula ϕ' of ExactOne3SAT in such a way that ϕ' has a satisfying assignment iff the original formula ϕ has a satisfying assignment.

Clause Transformation: For each clause $C_i = (l_1 \vee l_2 \vee l_3)$ in ϕ , we introduce two new clauses for the ExactOne3SAT formula ϕ' . [Here l_i is a literal, and \vee is the logical OR operator.]

We introduce new auxiliary variables y_i for each clause C_i . The idea is to ensure that exactly one of the original literals in the clause is true, thus we do this by adding auxiliary variables as so:

- For each clause $C_i = (l_1 \vee l_2 \vee l_3)$, we construct the following ExactOne3SAT clauses:
 - 1. $(l_1 \vee l_2 \vee y_i)$
 - 2. $\neg y_i \lor l_3 \lor z_i$

The auxillary variable y_j ensures that exactly one of the literals in the original clause is true, if neither or both are true, y_i controls which of them is allowed to be true. The second clause ensures that the third literal l_3 behaves similarly using the auxillary variable z_i .

If a clause in 3SAT has at least one true literal, the transformation ensures that exactly one literal will be true in each new clause of the ExactOne3SAT instance.

Conversely, if there is a solution to the ExactOne3SAT instance, it corresponds to a valid solution to the original 3SAT instance.

The transformation can be done in polynomial time for each clause in the 3SAT instance, as we only add a small number of new variables and clauses. Thus, we have shown that 3SAT \leq_p ExactOne3SAT, and since 3SAT is NP-Complete, ExactOne3SAT is NP-Complete.

5. Dominating Set is NP-Complete

Solution: Dominating Set is a subset D of vertices V such that every vertex in V is either in D or adjacent to at least one vertex in D. Thus, we need to find if there exists a Dominating Set of size k.

We can easily build a verifier V that verifies a Dominating Set in polynomial time. Given a certificate c which is a subset of k vertices, we can verify in polynomial time that the subset forms a Dominating Set. This would take $\mathcal{O}(n^2)$ time, since we would have to check each vertex and its neighbors.

We reduce VC to DS to show that DS is NP-Hard.

Given an instance of the Vertex Cover problem (G, k), we construct an instance of the Dominating Set problem (G', k) as follows:

- Take the original graph G = (V, E)
- Construct a new graph G' by adding a new vertex v_e for each edge $e = (u, v) \in E$ in G.
- In G', connect each v_e to the two endpoints u and v of the edge e from G.

In the new graph G' each new vertex v_e , needs to be dominated by either u or v, where u and v are the endpoints of the edge e = (u, v) in the original graph. A vertex cover in the original graph G of size k selects k vertices such that every edge is covered. Similarly, in the graph G', a dominating set of size k must include a set of vertices that dominate all the vertices v_e . This happens exactly when the dominating set corresponds to a vertex cover in the original graph G, because the vertices in the vertex cover can dominate all the new vertices v_e .

Thus, G has a vertex cover of size k iff G' has a dominating set of size k. Since Vertex Cover is NP-Complete, and Dominating Set is in NP, Dominating Set is NP-Complete.

6. 3 Dimensional Matching

Solution:			

3 Dimensional Matching (3DM)

Definition 3. 3DM: Given disjoint sets X, Y, and Z, each of n elements and triples $T \subseteq X \times Y \times Z$ is there a subset $S \subseteq T$ such that each element $\in X \cup Y \cup Z$ is in exactly one $s \in S$?

3DM is NP. Given a certificate, which lists a candidate list of triples, a verifier can check that each triple belongs to T and every element of $X \cup Y \cup Z$ is in one triple.

3DM is also NP-complete, via a reduction from 3SAT. We build gadgets for the variables and clauses

The variable gadget for variable x_i is displayed in the picture. Only red or blue triangles can be chosen, where the red triangles correspond to the true literal, while the blue triangles correspond to the false literal. Otherwise, there will be overlap, or some inner elements will not be covered. There is an $2n_{x_i}$ "wheel" for each variable gadget, where n_{x_i} corresponds to the number of occurrences of x_i in the formula.

The clause gadget for the clause $x_i \wedge \bar{x_j} \wedge x_k$ is displayed in the picture. The dot that is unshared in each variable's triangle within the clause gadget is also the single dot within the variable gadget.

Then, if we set x_i to true, we take all of the red false triangles in the variable gadget, leaving a blue true triangle available to cover the clause gadget. However, this still potentially leaves $\bar{x_i}$ and x_k uncovered, so we need a garbage collection

Ę

Lecture 38

NP-Completeness

 $6.046J \ \mathrm{Spring} \ 2015$

gadget, pictured below. There are $\sum_x n_x$ clauses of these gadgets, because there are n_x unnecessary elements of the variable gadget that won't be covered. However, of the remaining elements, one of these per clause will be covered, so the remaining need to be covered by the garbage collection clause.

Thus, if a solution exists to the 3SAT formula, we can find the solution to the 3DM problem by choosing the points in 3DM corresponding to the variable values. If we have a 3DM solution, we can map this back to the satisfying assignment for 3SAT. Thus, our reduction is complete and 3DM is NP-hard.

7. SUBSET SUM is NP-Complete

Solution: SUBSET SUM = $\{(S, t) \mid S \text{ is a multiset of positive integers, and some subset of } S \text{ sums to } t \}$

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- 3. If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

N = "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
- **2.** Test whether c is a collection of numbers that sum to t.
- 3. If the test passes, accept; otherwise, reject."

We reduce 3SAT to SUBSET SUM to show that SUBSET SUM is NP-Hard.

Using a 3CNF formula ϕ , we construct an instance of SUBSET SUM which contains a subcollection whose summation target is t.

Then let ϕ be a boolean formula in 3CNF with n variables $x_1, x_2, ..., x_n$ and m clauses $C_1, C_2, ..., C_m$. We reduce ϕ to SUBSET SUM as follows:

- 1. For each variable x_i , we construct two integers y_i and z_i which represent the truth values of x_i in the subcollection (y can be true and z can be false)
- 2. We construct a table with k+1 columns, and 2(k+1) rows.
- 3. For every y, z in the i th row, set the i th column value as 1 and the rest be 0.
- 4. For every y, z in the j th column, set y = 1 for the jth column if x is true, else set z as true. All else to be set as 0.
- 5. For every g, h in the (j+1)-th row, set the jth column as 1 and set everything to 0
- 6. Set the first 1 columns of final row as 1 and the remaining k columns as 3.

The table looks as so:

										_
_ 1	2	3	4		l	c_1	c_2	• • •	c_k	
y_{\perp}	. 0	0	0		0	1	0		0	
z_1 1	0	0	0		0	0	0	• • •	0	
y_2	1	0	0		0	0	1	• • •	0	
z_2	1	0	0		0	1	0	• • •	0	
y_3		1	0		0	1	1	• • •	0	
z_3		1	0		0	0	0	• • •	1	
						ļ				
:				٠.	÷	1		:	:	
y_l					1	0	0		0	
z_l					_1	0	0	• • •	0	
g_1						1	0	• • •	0	
h_1						1	0		0	
g_2							1		0	
h_2							1	• • •	0	
:								٠٠.	:	
									٠, ١	
g_k									1	
h_k									1	
t 1	. 1	1	1		1	3	3		3	

Now considering a sample boolean expression, take y_i if x_i is true, else take z_i . If the number of literals in c_j is at most 2, take g_i , else if the number is 1 take h_j .

The reduction takes polynomial time, and the boolean expression has a satisfying assignment iff the SUBSET SUM instance has a subcollection that sums to t. Thus, SUBSET SUM is NP-Complete.

Solution: A better solution is as follows:

We sketch the proof. SubSum is in **NP**, since there is an obvious polynomial time computable verifier for the problem. The witness is a subset S, and the verifier simply checks that $\sum_{i \in S} a_i = t$, which can be done in polynomial time.

To show that SubSum is NP-hard, we shall show that

 $3SAT \leq_P SubSum$.

We describe the polynomial time reduction next. Given a 3-sat formula ϕ , our algorithm needs to output numbers a_1, \ldots, a_k and t such that $\mathsf{SubSum}(a_1, \ldots, a_k, t) = 1$ if and only if ϕ is satisfiable.

Suppose ϕ has n variables and m clauses. Then, we will have k = 2n + 2m, and all of the numbers a_1, \ldots, a_k and t will be n + m digit numbers, written in base 10. Moreover, all the digits of a_1, \ldots, a_k will be either 0 or 1, and the numbers will be chosen in such a way that adding any subset of a_1, \ldots, a_k will never produce a carry.

For each variable x_i of the formula ϕ , we shall have two numbers: t_i and f_i . The i'th digit of t_i and f_i will be set to 1 and all of the remaining n-1 digits in the first n digits will be set to 0. Meanwhile, in the target number t, all of the first n digits will be set to 1. This choice ensures that choosing any subset of $t_1, f_1, \ldots, t_n, f_n$ that sums to t corresponds to choosing either t_i or f_i to be included in the set, for each i. In other words, a subset of these numbers that sums to t corresponds to a truth assignment to the variables x_1, \ldots, x_n .

Next, we need to add more digits to ensure that this truth assignment satisfies all the clauses. For every i,j, if x_i occurs in the j'th clause, we make the n+j'th digit of t_i 1. If $\neg x_i$ occurs in the j'th clause, we make the n+j'th digit of f_i 1. All other digits (upto the n+m'th digit) of t_i , f_i are set to 0. This choice ensures that if the subset chosen satisfies the j'th clause, then the j'th digit of the sum will be either 1, 2 or 3. Finally, we add two numbers b_j , c_j , which are 0 in all digits, except for the j'th digit. The j'th digit of both numbers is 1. This ensures that if the j'th clause is satisfied by the assignment, then one can pick 0, 1 or 2 elements of $\{b_j, c_j\}$ to add to the subset, so that the sum of the j'th digits is 3.