## AMENDMENTS TO THE CLAIMS

## In the claims:

- (CURRENTLY AMENDED) A semiconductor structure comprising: a substrate and a Sn<sub>x</sub>Ge<sub>1-x</sub> layer formed over <u>directly on the substrate</u>, wherein x has a value from about 0.02 to about 0.20, and wherein the <u>substrate consists</u> essentially of silicon.
- 2. (ORIGINAL) The semiconductor structure of claim 1 wherein the  $Sn_xGe_{1\cdot x}$  layer is an epitaxial layer with a direct band gap between about 0.72eV and about .041eV.
- (ORIGINAL) The semiconductor structure of claim 1, wherein x has a value of about 0.20 and the Sn<sub>x</sub>Ge<sub>1-x</sub> layer is a direct-gap material.
- 4. (CANCELLED)
- (CURRENTLY AMENDED) The semiconductor structure of claim 4 wherein the substrate emprises consists essentially of Si(100).
- (CURRENTLY AMENDED) The semiconductor structure of claim 4 wherein the substrate emprises-consists essentially of Si(111).
- 7. (CANCELLED)
- 8. (CANCELLED)
- 9. (CANCELLED)
- (ORIGINAL) The semiconductor structure of claim 1 wherein the Sn<sub>x</sub>Ge<sub>1-x</sub> layer has a thickness of about 50nm to about 1000nm.
- 11. (ORIGINAL) The semiconductor structure of claim 1 further comprising a strained Ge layer formed over the Sn<sub>x</sub>Ge<sub>1-x</sub> layer.
- 12. (ORIGINAL) The semiconductor structure of claim 11 wherein x is greater than about 0.11 and the strained Ge layer is a direct-gap material.
- (CURRENTLY AMENDED) A semiconductor structure comprising: a <u>discontinuous</u>
  Ge-Sn quantum structure formed over a silicon substrate.
- (ORIGINAL) The semiconductor structure of claim 13 wherein the Ge-Sn quantum structure comprises Ge<sub>1x</sub>Sn<sub>x</sub> and x has value from about 0.02 to about 0.03.
- 15. (ORIGINAL) The semiconductor structure of claim 13 wherein the Ge-Sn quantum structure is formed over Ge-Sn epitaxial layer formed over the silicon substrate.
- (ORIGINAL) The semiconductor structure of claim 13 wherein the substrate comprises Si(100).

- 17. (ORIGINAL) A method for depositing an epitaxial Ge-Sn layer on a substrate in a chemical vapor deposition reaction chamber, the method comprising introducing into the chamber a gaseous precursor comprising SnD<sub>4</sub> under conditions whereby the epitaxial Ge-Sn layer is formed on the substrate.
- 18. (ORIGINAL) The method of claim 17 wherein the gaseous precursor comprises SnD<sub>4</sub> and high purity H<sub>2</sub>.
- (CURRENTLY AMENDED) The method of claim 17 wherein the gaseous precursor further comprises high purity H<sub>2</sub> of about 15-20 by volume.
- 20. (ORIGINAL) The method of claim 17 wherein the gaseous precursor is introduced at a temperature in a range of about 250°C to about 350°C.
- 21. (ORIGINAL) The method of claim 17 wherein the substrate comprises silicon.
- 22. (ORIGINAL) The method of claim 17 wherein the substrate comprises Si(100).
- (ORIGINAL) The method of claim 17 wherein the Ge-Sn layer comprises Sn<sub>x</sub>Ge<sub>1-x</sub> and x is in a range from about .02 to about .20.
- 24. (ORIGINAL) A method for depositing a strained Ge layer on a silicon substrate with a Ge-Sn buffer layer in a chemical vapor deposition reaction chamber, the method comprising introducing into the chamber a combination comprising  $SnD_4$  and  $Ge_2H_6$  under conditions whereby the Ge-Sn layer is formed on the substrate and dehydrogenating  $Ge_2H_6$  under conditions whereby the Ge layer is formed on the Ge-Sn buffer layer.
- (NEW) The semiconductor structure of claim 1, wherein the Sn<sub>x</sub>Ge<sub>1-x</sub> layer is relaxed.
- 26. (NEW) The semiconductor structure of claim 1, wherein the  $Sn_xGe_{1-x}$  layer is epitaxial.
- 27. (NEW) The semiconductor structure of claim 26, wherein the substrate is accommodated by Lomer edge dislocations.
- 28. (NEW) The semiconductor structure of claim 1, wherein the Sn<sub>x</sub>Ge<sub>1-x</sub> layer lattice parameters are about 5.672 Å to about 5.833 Å.
- 29. (NEW) The method of claim 17 wherein the gaseous precursor comprises SnD<sub>4</sub> and Ge<sub>2</sub>H<sub>6</sub>.

30. (NEW) The semiconductor structure of claim 1, wherein the  $Sn_xGe_{1\cdot x}$  layer is atomically flat.