

Règles d'associations L'algorithme Apriori

Mohamed Bouguessa

Objectifs

- Comprendre l'importance de l'extraction des règles d'associations dans la pratique
- Présentation d'algorithmes capable d'extraire des règles d'associations
- Présenter une approche efficace qui permet de distinguer entre les règles intéressantes des règles qui ne contiennent pas de l'information pertinente.

- 1- Motivations
- 2- Concepts de base
- 3- Règles d'associations
- 4- Extraction des associations
- 5- L'algorithme Apriori

Motivations

- Approche automatique pour découvrir des relations / corrélations intéressantes entre des objets
- Origine marketing : analyser les ventes des supermarchés
- Données en entrée : données de transaction

Caddie	Liste des items achetés
1	{pain, beurre, lait}
2	{pain,viande}
n	{jus de fruit, poisson, fraises, pain}

Données en sortie : règles d'associations

Motivations

Règles de la forme: $A \Rightarrow B$ [support, confiance]

A et B peuvent être composés de conjonctions

"lorsqu'un client achète du pain et du beurre, il achète 9 fois sur 10 du lait en même temps"

$$\{pain, beurre\} \implies \{lait\}$$

Ensemble d'items A \implies Ensemble d'items B où A n B = Ø antécédent conséquent

- 1- Motivations
- 2- Concepts de base
- 3- Règles d'associations
- 4- Extraction des associations
- 5- L'algorithme Apriori

Concepts de base

- Soit D une base de donnée de N transactions.
- Chaque transaction est décrite par un identifiant T_{id} et une liste d'items

$$D = \{T_1, T_2, ..., T_N \}$$
; $T_{id} = \{i_1, i_2, ..., i_m\} \subset I$

 $I = \{i_1, i_2, ..., i_n\}$ l'ensemble de tout les items possibles

- Itemset : une collection d'un ou plusieurs items / un ensemble d'items
- *K*-itemset : un itemset qui contient *K* items

Exemple

5 transactions et 6 items

I = {Pain, Lait, Beurre, Fromage, Œufs, Coke}

1-itemset	{{Pain},	{Lait}, {Beurre},	{Coke}}
-----------	----------	-------------------	---------

T_{ID}	Items	
1	Pain, Lait	
2	Pain, Beurre, Fromage, Œufs	
3	Lait, Beurre, Fromage, Coke	
4	Pain, Lait, Beurre, Fromage	
5	Pain, Lait, Beurre, Coke	

2-itemset {{Pain, Lait}, {Pain, Beurre}, ..., {Fromage, Œufs}}

3-itemset {{Pain, Lait, Beurre}, ..., {Fromage, Œufs, Coke}}

Concepts de base

■ Support d'un itemset

Le support d'un itemset set est le % de transactions qui contiennent l'itemset en question $Support(X) = \frac{\#X}{N}$

TID	Items	
1	Pain, Lait	
2	Pain, Beurre, Fromage, Œufs	
3	Lait, Beurre, Fromage, Coke	
4	Pain, Lait, Beurre, Fromage	
5	Pain, Lait, Beurre, Coke	

Item	Support
Pain	80%
Lait	80%
Beurre	80%
Fromage	60%
Œufs	20%
Coke	40%
Pain, Lait	60%
• '	
:	:
Lait, Œufs	0%
•	-
:	:
Pain, Lait, Beurre	40%
:	
Pain, Lait, Beurre, Coke	20%
•	
•	
Pain Lait Bourse Calco Framese	00/
Pain, Lait, Beurre, Coke, Fromage	0%
:	:

Un itemset est fréquent si support(itemset) >= minsup

Plan

- 1- Motivations
- 2- Concepts de base
- 3- Règles d'associations
- 4- Extraction des associations
- 5- L'algorithme Apriori

Les règles d'associations expriment une corrélation entre la présence d'un item avec la présence d'un ensemble d'items.

Ex: 60% des personnes qui achètent du pain achètent du beurre

Une règle d'association est de la forme A→B

$$A \subseteq I, B \subseteq I \ et \ A \cap B = \phi$$

Pour chaque règle d'association A→B on doit estimer:

- 1 **Support** : probabilité qu'une transaction contienne A et B.
- 2 **Confiance**: probabilité conditionnelle P(B | A).

■ Support et confiance d'une règle d'association

ightharpoonup Le **support** d'une règle d'association A ightharpoonup B est le % des transactions qui contiennent $A \cup B$

support
$$(A \to B) = \frac{\#(A \cup B)}{N}$$

La **confiance** d'une règle d'association A \rightarrow B est le ratio du nombre de transactions qui contiennent $A \cup B$ sur le nombre de transactions qui contiennent A

$$confiance(A \to B) = p(B \mid A) = \frac{P(AetB)}{P(A)}$$

$$= \frac{\sup port(A \to B)}{\sup port(A)}$$

$$= \frac{\#(A \cup B)}{\#(A)}$$

■ Exemple : Support et confiance d'une règle d'association

TID	Items
1	Pain, Lait
2	Pain, Beurre, Fromage, Œufs
3	Lait, Beurre, Fromage, Coke
4	Pain, Lait, Beurre, Fromage
5	Pain, Lait, Beurre, Coke

```
{Lait, Beurre} \rightarrow {Fromage} (s = 40%, c = 67%)
{Lait, Fromage} \rightarrow {Beurre} (s = 40%, c = 100%)
{Beurre, Fromage} \rightarrow {Lait} (s = 40%, c = 67%)
{Fromage} \rightarrow {Lait, Beurre} (s = 40%, c = 67%)
{Beurre} \rightarrow {Lait, Fromage} (s = 40%, c = 50%)
{Lait} \rightarrow {Beurre, Fromage} (s = 40%, c = 67%)
```

Remarque

- ➤ Toutes ces règles sont issue de l'itemset : {Lait, Beurre, Fromage}
- Les règles originaires du même itemset ont un support identique, mais différentes valeurs de confiance

Pourquoi?

- Support et confiance : pourquoi deux mesures?
- Support
- Le support mesure le nombre d'occurrences d'une règle dans l'ensemble de données.
- > Généralement utilisé pour éliminer les règles moins intéressantes.

Expl. une règle d'association, qui représente les items achetés ensemble, qui a une valeur de support faible n'est pas intéressante du point de vue commercial, car ce n'est pas rentable de promouvoir les articles rarement achetés ensemble

{Pain, Beurre} \rightarrow {Œufs} - support = 20%

Confiance

- Confiance : mesure la fiabilité et la pertinence de l'inférence faite par une règle.
- ➤ Spécifiquement : Étant donnée une règle A→B, plus la valeur de confiance est grande, plus il est probable que B soit présent dans un grand nombre de transactions qui contiennent A.

Définition formelle du problème de la recherche des règles d'association

Le problème de la recherche des règles d'associations peut êtres formulé comme suit: Étant donné un ensemble de transactions D, identifier toutes les règles avec :

support $\geq = minsup$ et confiance $\geq = minconf$,

minsup et minconf correspondent respectivement aux seuils de support et de confiance.

Choix de la valeur de minsup et minconf

Élevée Peu de règles mais toutes « pratiquement » pertinentes.

Réduite Plusieurs règles, plusieurs d'entre elles sont « incertaines ».

Valeurs utilisées?

tout dépend de l'application

- 1- Motivations
- 2- Concepts de base
- 3- Règles d'associations
- 4- Extraction des associations
- 5- L'algorithme Apriori

Extractions des associations

■ Approche générale (Brute-force approach)

- > Identifier toutes les règles d'associations.
- Calculer le support et la confiance de chaque règle.
- Sélectionner que les règles avec support et confiance >= minsup et minconf

Complètement non praticable sur de grandes bases de données

pour un ensemble de données avec *n* items, le nombre total des règles possible:

$$R = 3^n - 2^{n+1} + 1$$

Si n = 6 alors R = 602, Plus de 80% des règles sont éliminées si minsup = 0.2 et minconf=0.5

On a besoin d'une stratégie efficace pour générer seulement que des règles intéressantes

Extractions des associations

Exemple

Les règles suivantes ont un support identique, car elles proviennent du même itemset

```
{Lait, Beurre, Fromage}:

{Lait, Beurre} \rightarrow {Fromage} (s = 40%)

{Lait, Fromage} \rightarrow {Beurre} (s = 40%)

{Beurre, Fromage} \rightarrow {Lait} (s = 40%)

{Fromage} \rightarrow {Lait, Beurre} (s = 40%)

{Beurre} \rightarrow {Lait, Fromage} (s = 40%)

{Lait} \rightarrow {Beurre, Fromage} (s = 40%)
```

> Intuition :

Si l'itemset {Lait, Beurre, Fromage} n'est pas fréquent c.-à-d. support({Lait, Beurre, Fromage}) < minsup alors toute les règles candidates peuvent êtres supprimées.

Décomposer le problème en deux étapes

Fin

Extractions des associations

Approche naïve

Deux étapes importantes pour identifier les règles d'associations

Étape 1 : identifier tout les itemsets fréquents

Étape 2 : générer les règles d'associations les plus pertinentes à partir des itemsets identifiés dans l'étape1

Étape 1

- D: une base de transactions
- I: ensemble de tous les items avec |I|=n
- Algorithme 1: Extraction des ensembles fréquents
 Fréquents = ∅

```
Pour chaque J ⊆ I Faire

count(J)=0

Pour chaque transaction t∈D Faire

Si J ⊆ t.items Alors

count(J)=count(J)+1

Si count(j) ≥ minsup Alors

Fréquents=Fréquents += J
```

Étape 2

- D: une base de transactions
- I: ensemble de tous les items avec |I|=n
- Algorithme 2: Extraction des règles
 Règles = Ø

```
Pour chaque J dans Fréquents

Pour chaque règle r extraite de J={A₁,...,Aտ}

Si confiance(r) ≥ minconf Alors

Règles= Règles+= r
```

Fin

Extractions des associations

L'approche est toujours couteuse

- |I| = n alors il y a 2ⁿ-1 ensembles J (c'est le nombre de sous-ensembles de I)
 - → 2ⁿ-1 parcours de D (la base de données des transactions)!

Extractions des associations

- Calcule du support de chaque itemset candidat
 - Pour chaque sous-ensemble d'itemset possible *J*, il faut parcourir la base de données des transactions D pour compter le nombre de ses occurrences.
 - Chaque itemset candidat on doit le comparer avec toutes les transactions

- Temps de calcule énorme puisque $M = 2^n-1$
 - Comment réduire le nombre des itemsets candidats (M) ?

- 1- Motivations
- 2- Concepts de base
- 3- Règles d'associations
- 4- Extraction des associations
- 5- L'algorithme Apriori

Extractions des associations : Apriori

Principe

- Si un itemset est fréquent alors tout ses sous-ensemble sont aussi fréquents
- Si un itemset est non fréquent, alors tout ses sur-ensemble ne sont pas fréquents

■ Illustration

Principe de L'algorithme Apriori

L'idée

Le support d'un itemset ne peut jamais dépasser le support de ces sous-ensembles.

- > Cette propriété est connue aussi sous le nom de la propriété anti-monotone.
- **Définition 1 (la propriété monotone)** soit I un ensemble d'item, et $J = 2^{I}$ l'ensemble des itemsets possibles. Une mesure f est monotone si

$$\forall X, Y \in J : (X \subseteq Y) \to f(X) \leq f(Y)$$

☐ Définition 2 (la propriété anti-monotone)

$$\forall X, Y \in J : (X \subseteq Y) \to f(Y) \le f(X)$$

> Une mesure qui possède une propriété anti-monotone peut être utilisée peut réduire la taille exponentielle de l'espace de recherche des itemsets candidats.

L'algorithme Apriori – Exemple

Générer les itemsets candidats dont la cardinalité = k

- 1- Scanner la BDD pour identifier les itemsets fréquents
- 2- Utiliser seulement les itemsets identifiés dans l'étape 1 pour générer les itemsets candidats de cardinalité k = k+1

Candidats

itemsets Fréquents

			/1	{Pain}, {Lait}, {Beurre}	{pain}(80%), {lait}(80%), {Beurre}(80%)
	minsup = 50%	cardinalité		{Fromage}, {Œufs}, {Coke}	{Fromage}(60%)
TID	Items	des itemsets	2	{Pain, Lait}	{Pain, Lait}(60%)
1	Pain, Lait		\bigcup	{Pain, Beurre}	{Pain, Beurre}(60%)
2	Pain, Beurre, Fromage, Œufs			{Pain, Fromage}	{Lait, Beurre}(60%)
3	Lait, Beurre, Fromage, Coke			{Lait, Beurre}	{Beurre, Fromage}(60%)
4	Pain, Lait, Beurre, Fromage			{Lait, Fromage}	
5	Pain, Lait, Beurre, Coke			{Beurre, Fromage}	

Passe

L'algorithme

```
k = 1
L_k: itemsets frequents de taille k
pour (k = 2; L_k != \phi; k++) //répéter jusqu'à aucun itemset ne sera identifier
      C_k = apriori-gen(L_k-1); // C_k: l'ensemble des itemsets candidat générés à partir de L_k-1
      pour chaque transaction T dans D
            C_t = sous-ensemble(C_k, T); //identifier les candidats qui appartiennent à T
             pour chaque itemset candidat c \in C_t
                  cpt(c) = cpt(c) + 1;
         L_k = \{c \mid c \in C_k \text{ et } cpt(c) \ge N * \min \sup \}
  return \bigcup_k L_k
```


Exemple (minsup = 2)

 $\{\{1, 2, 3\}, \{1, 2, 5\}, \{1, 3, 5\}\} \notin C_3$

■ Génération des itemset candidats: apriori-gen

Un itemset est considéré comme candidat seulement si tous ces sousensembles sont fréquents.

La génération des itemsets candidats se fait en deux étapes

- Etape de jointure : C_k est généré en joignant L_{k-1}
- Etape d'élimination: Chaque (k-1)-itemset qui n'est pas fréquent ne peut être un sous-ensemble d'un k-itemset fréquent
- La procédure de générations des itemset candidats de l'algorithme Apriori fusionne une pair de (k-1)- itemset fréquent seulement si leur première k-2 itemset sont identique.

Formellement

Soit $A = \{a_1, a_2, ..., a_{k-2}, a_{k-1}\}$ et $B = \{b_1, b_2, ..., b_{k-2}, b_{k-1}\}$ deux (k-1)-itemsets fréquents. A et B sont fusionné si:

$$a_i = b_i$$
 (i = 1, 2, ..., k-2) et $a_{k-1} \neq b_{k-1}$

■ Génération des itemset candidats

- Exemple
- Given: 20 clothing transactions; s=20%, c=50%
- Generate association rules using the Apriori algorithm

Transaction	Items	Transaction	Items
t ₁	Blouse	t ₁₁	TShirt
t ₂	Shoes, Skirt, TShirt	t ₁₂	Blouse, Jeans, Shoes, Skirt, TShirt
<i>t</i> ₃	Jeans, TShirt	t ₁₃	Jeans, Shoes, Shorts, TShirt
t ₄	Jeans, Shoes, TShirt	t ₁₄	Shoes, Skirt, TShirt
<i>t</i> 5	Jeans, Shorts	t ₁₅	Jeans, TShirt
t ₆	Shoes, TShirt	t16	Skirt, TShirt
t7	Jeans, Skirt	t ₁₇	Blouse, Jeans, Skirt
tg	Jeans, Shoes, Shorts, TShirt	t ₁₈	Jeans, Shoes, Shorts, TShirt
t ₉	Jeans	t ₁₉	Jeans
f ₁₀	Jeans, Shoes, TShirt	t ₂₀	Jeans, Shoes, Shorts, TShirt

Scan1: Find all 1-itemsets. Identify the frequent ones.

Candidates:Blowse, Jeans, Shoes, Shorts, Skirt, Tshirt

Support: 3/20 14/20 10/20 5/20 6/20 14/20

Frequent (Large): Jeans, Shoes, Shorts, Skirt, Tshirt

Join the frequent items – combine items with each other to generate candidate pairs

Exemple

Scan	Candidates	Large Itemsets
1	Blouse, Jeans, Shoes, Shorts, Skirt, T-Shirt	Jeans, Shoes, Shorts, Skirt, T-Shirt
2	{Jeans, Shoes}, {Jeans, Shorts}, {Jeans, Skirt}, {Jeans, T-Shirt}, {Shoes, Shorts}, {Shoes, Skirt}, {Shoes, T-Shirt}, {Shorts, Skirt}, {Shorts, T-Shirt}, {Skirt, T-Shirt}	{Jeans, Shoes}, {Jeans, Shorts}, {Jeans, T-Shirt}, {Shoes, Shorts}, {Shoes, T-Shirt}, {Shorts, T-Shirt}, {Skirt, T-Shirt}
3	{Jeans, Shoes, Shorts}, {Jeans, Shoes, T-Shirt }, {Jeans, Shorts, T-Shirt}, {Shoes, Shorts, T-Shirt}	{Jeans, Shoes, Shorts}, {Jeans, Shoes, T-Shirt}, {Jeans, Shorts, T-Shirt}, {Shoes, Shorts, T-Shirt}
4	{Jeans, Shoes, Shorts, T-Shirt}	{Jeans, Shoes, Shorts, T-Shirt}
5	empty	empty

Exemple

- The next step is to use the large itemsets and generate association rules
- c=50%
- The set of large itemsets is

L={{Jeans},{Shoes}, {Shorts}, {Skirt}, {TShirt}, {Jeans, Shoes}, {Jeans, Shorts}, {Jeans, TShirt}, {Shoes, Shorts}, {Shoes, TShirt}, {Shorts, TShirt}, {Skirt, TShirt}, {Jeans, Shoes, Shorts}, {Jeans, Shoes, TShirt}, {Jeans, Shoes, TShirt}, {Jeans, Shoes, TShirt}, {Shoes, Shorts, TShirt}, {Jeans, Shoes, Shorts, TShirt}}

 We ignore the first 5 as they do not consists of 2 nonempty subsets of large itemsets. We test all the others, e.g.:

$$confiance(Jeans \rightarrow Shoes) = \frac{\sup port(\{Jeans, Shoes\})}{\sup port(\{Jeans\})}$$
$$= \frac{\frac{7}{20}}{\frac{14}{20}} = 50\% \ge c$$

- Génération des règles
 - Soit L un itemset fréquent, identifier tout les sous-ensembles tel que confiance($l \rightarrow L-l$) $\geq minconf$
 - Les règles candidates de l'itemset fréquent {A, B, C, D}

Si |L| = k, alors le nombre des règles candidates = 2^k-2

(en ignorant $L \rightarrow \phi et \phi \rightarrow L$)

\blacksquare Calcule de la valeur de confiance (1 \rightarrow L-1)?

Le calcule de la confiance d'une règle d'association ne nécessite pas des lectures additionnelles de la base de données

confiance(
$$X \rightarrow Y$$
) = support($X \rightarrow Y$)/support($X \rightarrow Y$);
Expl. confiance($ABC \rightarrow D$) = support($ABC \rightarrow D$)/support(ABC)

- \triangleright On a pas besoin de calculer le support de ABC \rightarrow D, car = support{A,B,C,D}
- ➤ On n'a pas besoin de calculer le support de ABC, car il a été déjà calculé
 Pourquoi? la propriété anti-monotone du support assure que {ABC} est fréquent
 → donc on a la valeur de son support

On n'a pas besoin de passer à travers toute la BDD pour calculer la confiance d'une règle

■ Génération des règles

Comment générer des règles d'association de façons efficace à partir des itemsets fréquents ?

Propriété anti-monotone de la confiance ?

■ En général, confiance n'a pas de propriété anti-monotone

La confiance de $X \rightarrow Y$ peut être plus grande, plus petite ou égale à la confiance d'une autre règle $X \rightarrow Y$, avec $X \subseteq X$ et $Y \subseteq Y$

■ Génération des règles

On considère les règles issues de l'itemset fréquent Y

Théorème

Si confiance($X \rightarrow Y-X$)<minconf alors confiance($X \rightarrow Y-X$)<minconf X est un sous-ensemble de X

Preuve

Discussion en classe!

- Question : démonter que
- \triangleright confiance(ABC \rightarrow D) peut être plus petite ou plus grande que confiance(AB \rightarrow C)
- $ightharpoonup L={A, B, C, D}$ $confiance(ABC \rightarrow D) \ge confiance(AB \rightarrow CD) \ge confiance(A \rightarrow BCD)$

■ Génération des règles

- La génération des règles se fait par étape;
- Le numéro de chaque étape correspond au nombre d'éléments dans la partie droite de la règle;
- > On commence par générer des règles avec un nombre d'éléments égal à 1 dans la partie droite;

Si la valeur de la confiance de la règle BCD → A est petite Alors toutes les règles qui contiennent l'item A dans la partie « conséquent » peuvent être éliminées.

■ Génération des règles

Les règles candidates sont générées en fusionnant Chaque deux règles qui partagent le même préfixe.

Exercice 1

Appliquer l'algorithme Apriori sur l'ensemble des transactions suivant

$$minsup = 2$$

TID	items
1	a, b, f
2	b, c,d
	a, c, d, e, m
4 5	a, d, e
	a, b, c
6	a, b, c, d
7	a, I
8	a,b, c
9	a,b, d
10	b, c, e

Exercice 2

Soit les 3 règles suivantes :

 $R1: p \rightarrow q$

 $R2: p \rightarrow q, r$

 $R3: p, r \rightarrow q$

Soit C1, C2 et C3 les valeurs de confiance de R1, R2 et R3 respectivement.

- 1. Quelle est la relation, en termes d'inégalité, qui existe entre C1, C2 et C3?
- 2. Quelle est la règle qui a la plus petite valeur de confiance ?
- 3. On suppose que la valeur de support des trois règles sont égaux. Quelle est la règle avec la valeur de confiance la plus élevée ?

- Avantages et limites de Apriori
 - Un algorithme très simple
 - Nombre minimum de candidats Nombre minimum de calcul du support

Limite majeure

- Nombre de lectures important
- 1re lecture: Calcul du support des items? ensembles fréquents de longueurs 1
- Génération des candidats de longueur 2 à partir des ensembles fréquents de longueurs 1
- 2e lecture: Calcul du support des candidats de longueur 2 ? Ensembles fréquents de longueurs 2

. . .

• Arrêt lorsqu'aucun nouvel ensemble fréquent n'est trouvé