Epimorphisms in varieties of Heyting algebras

Tommaso Moraschini joint work with Jamie Wannenburg

Institute of Computer Science of the Czech Academy of Sciences

January 27, 2019

When the variety K algebraizes a logic ⊢,
K has the ES property iff ⊢ has the Beth definability property,
where (informally) the latter means that implicit definitions in ⊢ can be turned explicit.

More precisely, for arbitrarily large disjoint sets of variables Z, X,

▶ Z is defined **implicitly** in terms of X by means of a set of formulas Γ over $X \cup Z$, if

$$\Gamma \cup \sigma[\Gamma] \vdash \mathsf{z} \leftrightarrow \sigma(\mathsf{z})$$

for every $z \in Z$, and substitution σ such that $\sigma(x) = x$ for all $x \in X$;

▶ Z is defined **explicitly** in terms of X by means of Γ , when for every $z \in Z$, there exists a formula φ_z over X such that

$$\Gamma \vdash \mathbf{z} \leftrightarrow \varphi_{\mathbf{z}}$$
.

▶ Aim of the talk. Investigate varieties of Heyting algebras with the ES property (equiv. intermediate logics with the infinite Beth property).

Definition

Let K be a variety of algebras and $A, B \in K$. A homomorphism $f: A \to B$ is a K-epimorphism if for every $C \in K$ and every pair of homomorphisms $g, h: B \rightrightarrows C$,

if
$$g \circ f = h \circ f$$
, then $g = h$.

- ▶ All surjective homomorphisms $f: A \rightarrow B$ are K-epimorphisms.
- ► The contrary however need not hold, and K is said to have the ES property when K-epimorphisms are surjective.
- ▶ This demand can be simplified: a subalgebra $A \le B \in K$ is K-epic if the inclusion $A \hookrightarrow B$ is a K-epimorphism.

Remark. K has the ES property iff its members have no **proper** K-epic subalgebra.

▶ What is known about epimorphisms in Heyting varieties K?

Theorem (Maksimova)

There are only **finitely many** varieties K with the following **stronger** variant of the ES property:

if $f: \mathbf{A} \to \mathbf{B}$ is a hom. in K and $b \in B \setminus f[A]$, then there are $\mathbf{C} \in K$ and $g, h: \mathbf{B} \rightrightarrows \mathbf{C}$ such that $g \circ f = h \circ f$ and $g(b) \neq h(b)$.

► Varieties satisfying this stronger property include Boolean algebras, Gödel algebras, and Heyting algebras.

Theorem (Kreisel)

Every variety K has the following **weaker** variant of the ES: if $f: \mathbf{A} \to \mathbf{B}$ is a hom. in K such that \mathbf{B} is generated by f[A] plus finitely many elements of $B \setminus f[A]$, then f is not a K-epimorphism.

▶ However, the standard ES property remains poorly understood.

▶ What can we infer about the standard ES property?

Theorem (Campercholi)

Let K be an arithmetical variety whose FSI members form a universal class. Then K has the ES property if and only if its FSI members lack proper K-epic subalgebras.

▶ We obtain the following:

Proposition

Fin. gen. varieties of Heyting algebras have the ES property.

Proof.

- ► Suppose, with a view to contradiction, that there is a finitely generated Heyting variety K without the ES property.
- ▶ By Campercholi's result there is a FSI B ∈ K with a proper K-epic subalgebra A.
- ▶ As K is fin. gen., Jónsson's lemma guarantees that **B** is finite.
- **b** By Kreisel's result the inclusion $\mathbf{A} \hookrightarrow \mathbf{B}$ isn't a K-epimorphism.
- ▶ This contradicts the fact that **A** is a K-epic subalgebra of **B**.

Definition

Let $0 < n \in \omega$. A poset $\langle X, \leqslant \rangle$ has width $\leqslant n$ if for every $x \in X$, the upset $\uparrow x$ does not contain antichains of n+1 elements. A Heyting algebra \boldsymbol{A} has width $\leqslant n$ if so does its Esakia dual, i.e. if the poset of prime filters of \boldsymbol{A} has width $\leqslant n$.

Theorem (Baker, Hosoi, Maksimova, and Ono)

Let $0 < n \in \omega$. The class W_n of Heyting algebras of width $\leq n$ is a variety. In particular, W_1 is the variety of Gödel algebras.

- ▶ Aim. To show that W_n lacks the ES property for every $n \ge 2$.
- ▶ Given $n \ge 2$, let X_n be the following poset:

- ► The challenge of understanding the ES property is concerned with non-finitely generated varieties only.
- ▶ One of the more general positive results is the following:

Theorem (G. Bezhanishvili, T.M., and J. Raftery)

Varieties of Heyting algebras of finite depth have the ES property.

- ▶ Hence there is a continuum of varieties with the ES property.
- ► What about varieties without the ES property? To spot them, we rely on Esakia duality for Heyting varieties K:

Observation

K lacks the ES property iff there are an Esakia space $\boldsymbol{X} \in K_*$ with a correct partition R different from the identity relation s.t. for every $\boldsymbol{Y} \in K_*$ and every pair of Esakia morphisms $g,h\colon \boldsymbol{Y}\rightrightarrows \boldsymbol{X}$, if $\langle g(y),h(y)\rangle \in R$ for every $y\in Y$, then g=h.

▶ Now, we construct a tower of ω copies of \boldsymbol{X}_n as follows:

Let X_n^{∞} be the above poset endowed with the topology $\tau = \{U \colon \text{if } T \in U, \text{ then } U \text{ extends an infinite upset}\}.$

▶ Remark. X_n^{∞} is an Esakia space, and the relation R depicted below is a correct partition on it.

Main observation

For every $\boldsymbol{Y} \in (W_n)_*$ and every pair of Esakia morphisms $g,h \colon \boldsymbol{Y} \rightrightarrows \boldsymbol{X}_n^{\infty}$, if $\langle g(y),h(y) \rangle \in R$ for every $y \in Y$, then g=h.

▶ As a consequence we obtain the following:

Theorem

Let $2 \leqslant n \in \omega$ and $K \subseteq W_n$ be a variety. If $\boldsymbol{X}_n^{\infty} \in K_*$, then K lacks the ES property. In particular,

- 1. W_n lacks the ES property;
- 2. W₂ has a continuum of subvarieties lacking the ES property.
- ► Can we understand this failure of the ES property in terms of a (more transparent) failure of the infinite Beth definability?

- ▶ The sum A + B of two disjoint Heyting algebras A and B is the unique Heyting algebra obtained pasting A on top of B, and identifying the minimum of A with the maximum of B.
- ► The sum $\sum \mathbf{A}_n$ of a family of disjoint Heyting algebras $\{\mathbf{A}_n \colon n \in \omega\}$ is the unique Heyting algebra with universe

$$\{\bot\} \cup \bigcup_{n \in \omega} (A_n \setminus \{0^{\mathbf{A}_n}\})$$

and whose lattice order is defined for every $a,b\in \sum {\pmb A}_n$ as:

$$a \leqslant b \iff$$
 either $a = \bot$ or $(a, b \in A_n \text{ for some } n \in \omega \text{ and } a \leqslant^{\mathbf{A}_n} b)$ or $(a \in A_n \text{ and } b \in A_m \text{ for some } n, m \in \omega \text{ s.t. } m < n).$

► The Rieger-Nishimura lattice RN is the one-generated free Heyting algebra depicted below:

Definition

The Kuznetsov-Gerčiu variety is defined as

$$\mathsf{KG} \coloneqq \mathbb{V}\{\mathbf{A}_1 + \dots + \mathbf{A}_n \colon \mathbf{A}_1, \dots, \mathbf{A}_n \in \mathbb{H}(\mathbf{RN}) \text{ and } 0 < n \in \omega\}.$$

Thank you for coming!

Theorem

A variety K \subseteq KG has the ES property iff it excludes all sums of the form $\sum \boldsymbol{A}_n$ where $\{\boldsymbol{A}_n \colon n \in \omega\}$ is a family such that each \boldsymbol{A}_n is one of the following:

As a consequence, we obtain that

- ► Gödel varieties have the ES property (already known).
- ▶ The ES property implies local finiteness in subvarieties of KG.
- ▶ The ES property is **hereditary** in subvarieties of KG.
- ► The variety $\mathbb{V}(RN)$ lacks the ES property, and has a continuum of locally finite such subvarieties.