(19 日本国特許庁 (JP)

⑩特許出願公開

⑫公開特許公報(A)

昭57-7931

f) Int. Cl.³H 01 L 21/30

識別記号

庁内整理番号 6741-5F **③公開 昭和57年(1982)1月16日**

発明の数 1 審査請求 未請求

(全 3 頁)

69隙間測定方法

②特

願 昭55-82410

②出

頁 昭55(1980)6月18日

720発 明

者 平川忠夫

川崎市幸区小向東芝町1番地東京芝浦電気株式会社生産技術研究所内

*7*1/7/173

@発 明 者 横山良平

川崎市幸区小向東芝町1番地東京芝浦電気株式会社生産技術研究所内

加発 明 者 森脇祥修

川崎市幸区小向東芝町1番地東京芝浦電気株式会社生産技術研究所内

@発 明 者 相川哲男

川崎市幸区小向東芝町1番地東 京芝浦電気株式会社生産技術研 究所内

①出 願 人 東京芝浦電気株式会社

川崎市幸区堀川町72番地

⑩代 理 人 弁理士 鈴江武彦 外2名

明細相

1.発明の名称

除間測定方法

2. 特許請求の範囲

3. 発明の詳細な説明

異光用マスクとウエハとの対向間隙を設定する場合に、上記マスクと対向して配設された非接触型の距離 測定器によつて上記マスクの距離を形成された部分でこのマスクまでの距離を測定するとともに、上記マスクの面像が形成されていない部分でこのマスクを介して上記ウェハまでの距離を測定することにより、上記マスクとウェハとの対向間隙を求める隙間測定方法。

この発明は第光用マスクとウェハとの対向間 除を高精度に設定するための際間側定方法に関 する。

L S 1 のような半導体集積回路を製造する際には、 第光用マスクによつてこのマスクに形成された 画像をウェハに転写する工程がある。 この工程においては、上記マスクの画像を多重転

写することが行なわれる。したがつて、 転写像 の鮮明度を得るためには、 上記ウェハとマスク との対向間隙を常に高精度に設定しなければな らない。

この発明は上記事情にもとづきなされたもので、その目的とするところは、 ウェハとマスクと 対向間隙を直接的に、 かつ非接触で 高精度に 測定して、 マスクの画像をウェハに鮮明に 転写することのできるようにした 隙間 測定方法を

提供することにある。

以下、この発明の一実施例を図面を参照して 説明する。図中1はテーブルである。このテー プル1の上面にはウエハ1がたとえば真空設着 などの手段によつて保持固定されている。上記 テープル1の下面には中空部3が形成された被 駅動体 4 が取着されている。この被駆動体 4 の 上記中空部3には、垂直に立設され上端にピス トン部をが形成された軸体をが挿通され、上記 ピストン部をによつて上記中空部3を上部室り と下部室8に気密に隔別している。上記上下部 宜り、8には、それぞれ制御弁9,10を備え 図示せぬ空気源に連通した第1,第2の供給管 98.109が接続されている。したがつて、 上紀制御弁9,10を介して上部室1あるいは 下部室 8 のどちらに圧力空気を供給するかによ り被駆動体々が上下方向に駆動されるようにな つている。なお、上記制御弁9、10は図示せ ぬ制御装置に電気的に接続され、この制御装置 からの信号によつて開閉制御されるようになつ

ている。

一方、上記テープル」の上方には貫光用マス ク11を保持した保持具18が配設されている。 上記マスク11は、第2図に示すよりに厚さが 2 m 程度のポリイミド験18の下面に Cr と Au の第1,第2の被膜」(a ,)(b を順次 蒸着したのち、上記第 2 の被膜 J √ b に上記ゥ エハミに転写するための画像 I S が Au によつ て設けられてなるもので、上記ポリイミド膜 14の周辺部には第1、第2の被膜13、74 を予め除去した透過部」6が形成されている。 また、上記保持具」2の上方には容量型や電 磁誘導型などのような非接触型の距離測定器 17、この実施例では電磁誘導型のものが配設 されている。この距離御定器11は、図示せぬ ポールねじ機構などによつて看動面』8に沿い 駆動される可動体19に支持軸20を介して保 持されている。したがつて、上紀御定器11は、 その検出部178が上記マスク」」と一定の間

なお、上記側定器17は、上述した図示しない 制御装備に電気的に接続されていて、この制御 装徴に出力信号を入力するようになつている。

(4, -4.)によつて求めることができる。 なお、上記距離測定器 1 7 からの検出信号は 上記制御装置に入力され、ここで (4, -4.) が質出されるようになつていて、この算出値が 上記制御装置に予め設定された設定値と比較さ れる。そして、質出値が設定値と異なる場合には、制御装置から第1,第2の供給管9a, 10gに設けられた制御弁8,10のいずれか に循号が出力されてその制御弁が開放され、上 部室1あるいは下部図8に圧力空気を供給して テーブル1、すなわちウエハ2のマスク11に 対する対向間隙を上記設定値と同一になるよう 自動的に制御するようになつている。

隔で対向して平行に移動するようになつている。

なお、上記一実施例では電磁筋導型の距離側 定器を用いたため、マスクに透過距を形成成 この透過部を介してウェハまでの距離を測定と たが、上記距離測定器が静値容量型のものであれば、マスクに透過部を形成せずとも乳1、乳2の破験部分の画像が形成されていないの配像を測定することができる。

以上述べたようにこの発明は、非接触型の距離側定器によつてマスクの面像が形成された即分でこのマスクまでの距離を測定するとともに、上記マスクの画像が形成されていない部分でこ

のマスクを介してウェハまでの距離を測定する ことにより、上記マスクとウェハとの対向間隙 を求めるようにしたから、従来のようにから などを用いることなく直接的に、かつ非接触で マスクとウェハとの対向間隙を高稽底に関定す ることができる。したがつて、マスクの ウェハに高精度に転写することができるという 実用上大きな別点がある。

4.図面の簡単な説明

図面はこの発明の一実施例を示し、第1図は 概略的構成図、第2図はマスクの拡大図である。 2… ウェハ、11…マスク、15…面像、 16… 透過郎、17…距離測定器。

出願人代理人 弁理士 鈴 江 武 彦

04/14/2004, EAST Version: 1.4.1