

IHEP Framework Tutorial

Duncan Leggat 20th January 2021

Scope of the code

Main goals

- Create a generic, highly customisable and easily configurable framework.
- Highly parallelisable to exploit Condor cluster

Inputs

- TNT/BOOM BSM framework trees,
 - This is, strictly, customisable, but in general it's built around the BSM trees
- Cut and object definitions

Action on trees

- Extract particles and apply all necessary/relevant corrections
- Apply customisable selection requirements
- Plot customisable histograms
- Calculate systematic uncertainties

Outputs

- Skimmed output tree (including additional variables)
- Histogram files

Flow of the code

Main event loop

Github frontpage

Framework front page: https://github.com/leggat/tWIHEPFramework

What's in each folder?

SingleTopRootAnalysis	→ Headers for all classes
bin/Wt	→ Analysis executables
config	→ Configuration files
macros/wt-channel/L	→ Object and cut definitions
src	→ Source code for all classes
tmva	→ TMVA code
utils utils	→ Utilities
	→ Git ignore file
	→ Make file
□ README.md	
SingleTop.Wt.LP.m	
newTest.sh	Example to run Wt_generic.x

Key:
Main code
Configurations
tW-related code

Main code sub-directories

Main code directories found in SingleTopRootAnalysis (headers) and src (source)

 Base Classes that govern the central running of the code Cuts Event selections Histogramming Classes for the production of histograms Particles Definition of particles Trees Event tree (makeclass output) Vars Additional variables to store in output tree 		
 ► Histogramming → Classes for the production of histograms ► Particles → Definition of particles ► Trees → Event tree (makeclass output) 	Base	→ Classes that govern the central running of the code
 ▶ Particles → Definition of particles ▶ Trees → Event tree (makeclass output) 	Cuts	→ Event selections
► Trees → Event tree (makeclass output)	Histogramming	→ Classes for the production of histograms
	Particles	→ Definition of particles
Vars → Additional variables to store in output tree	Trees	→ Event tree (makeclass output)
	Vars	→ Additional variables to store in output tree

Example executable

A bunch of pre-amble, but the important bit starts at 1.225

Two main vectors to be customised:

Cut list mystudy.AddCut()

- Includes selection requirements and histogramming classes,
- Performed sequentially on each event until the event passes or fails a cut.

Additional variable list mystudy.AddVars()

- Add additional variables to the output skim tree,
- Performed to all events that pass selection.

```
// Add Cuts and Histograms applicable to Fast and Full Analyses
       // ******* Cuts and Histograms applied to all studies *******
229
       mystudy.AddCut(new EventWeight(particlesObj,mystudy.GetTotalMCatNLOEvents(), mcStr, doPileup, dobWeight, useLeptonSFs, usebTagR
       mystudy.AddCut(new HistogrammingMuon(particlesObj, "All")); // make the muon plots, hopefully.
       mystudy.AddCut(new HistogrammingMuon(particlesObj, "Tight", useInvertedIsolation)); // make the muon plots, hopefully.
       mystudy.AddCut(new HistogrammingMuon(particlesObj, "Veto")); // make the muon plots, hopefully.
       mystudy.AddCut(new HistogrammingMuon(particlesObj, "UnIsolated")); // make the muon plots, hopefully.
       mystudy.AddCut(new CutPrimaryVertex(particlesObj));
       mystudy.AddCut(new CutTriggerSelection(particlesObj, whichtrig));
       mystudy.AddCut(new HistogrammingMET(particlesObj));
       //mystudy.AddCut(new CutElectronTighterPt(particlesObj, "Tight"));
       mystudy.AddCut(new CutMuonN(particlesObj, leptonTypeToSelect));
                                                                        //require that lepton to be isolated, central, high pt
       mystudy.AddCut(new CutMuonN(particlesObj, "Veto"));
                                                             //require that lepton to be isolated, central, high pt
       mystudy.AddCut(new CutElectronN(particlesObj, leptonTypeToSelect)); //require that lepton to be isolated, central, high pt
       mystudy.AddCut(new CutElectronN(particlesObj, "Veto")); //require that lepton to be isolated, central, high pt
       mystudy.AddCut(new HistogrammingElectron(particlesObj,leptonTypeToSelect,useInvertedIsolation)); // make the muon plots, hopef
       mystudy.AddCut(new HistogrammingElectron(particlesObj, "Veto")); // make the muon plots, hopefully.
       mystudy.AddCut(new HistogrammingMET(particlesObj));
       mystudy.AddCut(new HistogrammingMtW(particlesObj,useInvertedIsolation));
       mystudy.AddCut(new HistogrammingMuon(particlesObj,leptonTypeToSelect)); // make the muon plots, hopefully.
       //mystudy.AddCut(new CutMuonTighterPt(particlesObj, "Tight")); //require that new Pt cut for leading and subleading muon
       // mystudy.AddCut(new CutEMuOverlap(particlesObj));
       //mystudy.AddCut(new CutJetPt1(particlesObj));
       mystudy.AddCut(new CutJetN(particlesObj,nJets));
```

Link: https://github.com/leggat/tWIHEPFramework/blob/master/bin/Wt/Wt_generic.cpp

Example cut class

Each cut contains;

- BookHistogram()
 - Book histograms to fill when running cut
 - Also defines the value of the cut
- Apply()
 - Applies the cut to each event
 - Fill histograms
 - Returns true if pass, false if fail cut

Added into analysis executable

```
* CutMissingEt.hpp
      * Cuts on Missing Et
      * Derived from HistoCut which is in turn derived from BaseCut
      * Public Member Functions of CutMissingEt class
          CutMissingEt()
                                             -- Parameterized Constructor
          ~CutMissingEt()
10
                                             -- Destructor
          BookHistogram()
                                             -- Book histograms
          Apply()
                                             -- Apply cuts and fill histograms
12
                                             -- Returns "CutMissingEt"
13
          GetCutName()
14
      * Private Data Members of CutMissingEt
15
          myTH1F* _hMissingEtBefore
                                             -- Hist of MissingEt before cuts
16
          myTH1F* _hMissingEtAfter
                                             -- Hist of MissingEt after cuts
          Int_t _missingEtMin;
                                             -- Minimum Missing Et
18
          Int_t _missingEtMin;
                                             -- Minimum Missing Et
19
21
             15 Dec 2006 - Created by P. Ryan
```

https://github.com/leggat/tWIHEPFramework/blob/master/src/Cuts/Other/CutMissingEt.cpp

Example histogram class

Histogram classes are treated as cuts but always return true

Added into executable in the cut flow list chain:

```
HistogrammingMET.hpp
* Books and fills histograms
* Used for events passing cuts applied in other classes
* Derived from HistoCut which is in turn derived from BaseCut
* Public Member Functions of AnalysisMain class
    HistogrammingMET()
                                     -- Parameterized Constructor
    ~HistogrammingMET()
                                     -- Destructor
    BookHistogram()
                                       -- Book histograms
                                       -- Fill histograms only (No Cuts)
    Apply()
                                       -- Returns "HistogrammingMET"
    GetCutName()
* Private Data Members of this class
* - histograms of MET
      14 Nov 2006 - Created by R. Schwienhorst for ATLAS
      20 Nov 2006 - Modified by Bernard Pope
      21 Mar 2007 - RS: Fill from event container, add sumET, mex, mey
```

```
mystudy.AddCut(new HistogrammingMET(particles0bj));
mystudy.AddCut(new HistogrammingMtW(particles0bj,useInvertedIsolation));
mystudy.AddCut(new HistogrammingJetAngular(particles0bj,useInvertedIsolation));
mystudy.AddCut(new HistogrammingJet(particles0bj));
mystudy.AddCut(new HistogrammingNPvtx(particles0bj));
```

Link: https://github.com/leggat/tWIHEPFramework/blob/master/src/Histogramming/Recon/HistogrammingMET.cpp

Example of additional variable class

Adds additional variables to the output tree

- Variables are defined in the constructor
 - float, int, vectors of floats and ints are currently supported types
- Filled in the FillBranches() method

Included in analysis executable in the additional variable chain:

```
mystudy.AddVars(new JESBDTVars()); 45
mystudy.AddVars(new WeightVars(useIterFitbTag)); 46
mystudy.AddVars(new ChannelFlag());
```

Additional variable definition

```
WeightVars::WeightVars(Bool_t useIterFit){
    _floatVars["EventWeight"] = 0.;
    _floatVars["bWeight"] = 0.;
    _floatVars["puWeight"] = 0.;
    _floatVars["lepSF"] = 0.;
    _floatVars["trigSF"] = 0.;
```

Now the output tree contains additional branches named after these strings

Variable filling

```
void WeightVars::FillBranches(EventContainer * evtObj){

//Fill the nominal event weight variables

_floatVars["EventWeight"] = evtObj->GetOutputEventWeight();

_floatVars["bWeight"] = evtObj->GetEventbTagReshape();

_floatVars["puWeight"] = evtObj->GetEventPileupWeight();

_floatVars["lepSF"] = evtObj->GetEventLepSFWeight();

_floatVars["trigSF"] = evtObj->GetEventTrigSFWeight();
```

Link: https://github.com/leggat/tWIHEPFramework/blob/master/src/Vars/WeightVars.cpp

Running the code

11

Once we've written our main analysis and cut/histogram/variable classes we need to compile the code

- Most technical bit: edit Makefile to run over your specific code

Now we are ready to run the analysis:

bin/myAnalysis.x -config config/overall/myAnalysis.config -inlist config/files/myAnalysisFiles.list -skimfile skimFileOutput/mySkim.root -hfile histFileOutput/myHists.root [additional options]

Necessary parts of execution command:

- Analysis executable
- -config <config> contains links to further configuration files
- -inlist <inlist> a list of files to run over
- -skimfile <skimFile> what to call the output skim tree (optional)
- -hfile <hfile> histogram file destination (optional)
- Additional opts Defined in analysis executable and AnalysisMain.cpp

Commands can also be run on Condor cluster

• Utility classes to help with this are available in the utils folder

Main Configuration File

Important information that the analysis needs

All configuration files are united into one common TEnv area accessible to the analysis code.

Each item is stored in a map locatable by its unique string identifier (e.g. Include.CutsFile)

The cut values to use in the analysis

Information of weights of MC samples

Physics objects defintions

Root file containing pt/eta dependent muon ID SF information

Configuration file for the single top analysis # Set the debug level: the higher, the more printout Mass set to MC value for this study. If we are optimizing for some top mass, set that mass here: # Read in a file listing cuts we want to make (electron channel): #Include.CutsFile: macros/wt-channel/LP/config/cuts/SingleTopCuts.Wt.DiElectron.onePlusJets.cuts Include.CutsFile: macros/wt-channel/LP/config/cuts/SingleTopCuts.Wt.ElectronMuon.onePlusJets.cuts # Read in a file listing the event weight: Include.WeightsFile: config/weights/MCInformation.weights # Read in a file listing the object ID definitions Include.ObjectIDFile: macros/wt-channel/LP/config/objects/SingleTopObjects.Wt.LP.noshift.config # Output file with topological variables Topology.SkimFile: topovars.root # Events files Include.MCTotEventNumberFile: config/weights/MCInformation.weights #Include.pileUpReWeightingFile: config/weights/SingleTopWeights.PileUpReWeight.156.weights Include.MuonIDSFsFile: config/weights/muon/MuonID_all.root

Example for tW analysis:

https://github.com/leggat/tWIHEPFramework/blob/master/config/overall/SingleTop.Wt.

LP.mm1%2Bj.muonMSSmeardown.config

Examples of cut and object definition files

- Cut definitions are read in by the cut classes
- Object definitions are read by the particle classes

```
# Jets
#
ObjectID.Jet.MinPt: 30.0
ObjectID.BJet.MaxEta: 2.4
ObjectID.BJet.MinPt: 30.
#ObjectID.BJet.MinPt: 30.
#ObjectID.BJet.BTagCut: 0.5426 #Loose CSVv2 WP
ObjectID.BJet.BTagCut: 0.8484 #Medium CSVv2 WP
#ObjectID.BJet.BTagCut: 0.9535 #Tight CSVv2 WP
ObjectID.BJet.InverseTag: 0.6 # For QCD region possibly
ObjectID.Jet.ElectronDeltaRMin: 0.3
ObjectID.Jet.LepCleanR: 0.4
#ObjectID.Jet.ElectronDeltaRMin: 0.2
##ObjectID.Jet.ElectronDeltaRMin: 0.0
ObjectID.Vertex.Ndof: 4.
ObjectID.Vertex.Ndof: 4.
ObjectID.Vertex.Z: 24.
ObjectID.Vertex.Dxy: 2.
```

https://github.com/leggat/tWIHEPFramework/blob/master/macros/wt-channel/LP/config/objects/SingleTopObjects.Wt.LP.noshift.config

```
SingleTopCuts.Wt.ElectronMuon.onePlusJets.cuts
   ########## Trigger Cuts ##############
 Trigger cuts implemented within the trigger cut classes (for now)
Number of Electrons
Cut.Electron.Tight.Number.Min: 0
Cut.Electron.Tight.Number.Max: 0
Cut.Electron.Tight.LeadingPt: 26
Cut.Electron.Tight.SubLeadingPt: 20
Number of Electrons
Cut.Electron.Veto.Number.Min: 0
ut.Electron.Veto.Number.Max: 0
Number of Muons
Cut.Muon.Tight.Number.Min: 1
Cut.Muon.Tight.Number.Max: 1
Cut.Muon.Tight.LeadingPt: 26
Cut.Muon.Tight.SubLeadingPt: 20
Number of Muons
Cut.Muon.UnIsolated.Number.Min: 1
Cut.Muon.UnIsolated.Number.Max: 1
Cut.Muon.UnIsolated.LeadingPt: 26
Cut.Muon.UnIsolated.SubLeadingPt: 20
############# Veto Muon Cuts #######################
 Number of Veto Muons
Cut.Muon.Veto.Number.Min: 1
Cut.Muon.Veto.Number.Max: 1
 ############ Jet Cuts ##########################
 Jet multiplicity cuts
Cut.Jet.Number.Min: 2
Cut.Jet.Number.Max: 4
Cut.Jet.Pt.1.Min: 30
Cut.Jet.Pt.1.Max: 999
```

https://github.com/leggat/tWIHEPFramework/blob/master/macros/wt-channel/LP/config/cuts/SingleTopCuts.Wt.ElectronMuon.onePlusJets.cuts

File list and MC weighting

An example file list file:

```
Name: tW_top_nfh

Aumber: 500026 1

Aumber: 5000
```

'Number' corresponds to a specific number in the config/weights/MCInformation.weights file:

Weight.Source.Number: <cross section> Events.Source.Number: <nEvents in sample>

Plausible that additional settings could be added into this file (i.e. different configuration for run years?) but not included as of now.

```
#500026 = not fully hadronic tW
Weight.Source.500026: 19.559
Events.Source.500026: 11345619

#500027 = not fully hadronic tW_antitop
Weight.Source.500027: 19.559
Events.Source.500027: 11408144

#500028 = w+0jets
Weight.Source.500028: 49670.0
Events.Source.500028: 98083988
```


Cut flow output

At completion the framework outputs a cut flow of the processed trees

 A cut class can be linked the cut flow using

GetCutFlowTable()>AddCutToFlow(cutName)

• And filled using:

GetCutFlowTable()->[Pass| Fail]Cut(cutName)

<cutflowjettable> GlobalCutFlow re</cutflowjettable>	sult:									
Cut Name	0 jet	1 jet	2 jet	3 jet	4 jet	5 jet	6 jet	7 jet	8+jet	total
PV	25768	131334	259142	255591	146440	60764	21016	6409	2425	908889
MuonTrigger	7631	38972	69302	60413	30588	11769	3971	1132	398	224176
TightMuon.Number.Min	7388	36856	63229	51601	24027	8765	2840	791	255	195752
TightMuon.Number.Max	6515	35026	67179	59566	30298	11686	3952	1125	395	215742
TightMuon.Number.All	6272	32910	61106	50754	23737	8682	2821	784	252	187318
VetoMuon.Number.Min	6272	32910	61106	50754	23737	8682	2821	784	252	187318
VetoMuon.Number.Max	5218	26438	49180	39900	17709	6006	1884	495	145	146975
VetoMuon.Number.All	5218	26438	49180	39900	17709	6006	1884	495	145	146975
TightElectron.Number.Min	5218	26438	49180	39900	17709	6006	1884	495	145	146975
TightElectron.Number.Max	5042	25907	48927	39810	17682	6002	1883	495	145	145893
TightElectron.Number.All	5042	25907	48927	39810	17682	6002	1883	495	145	145893
VetoElectron.Number.Min	5042	25907	48927	39810	17682	6002	1883	495	145	145893
VetoElectron.Number.Max	4809	22908	40990	32616	13686	4395	1313	348	80	121145
VetoElectron.Number.All	4809	22908	40990	32616	13686	4395	1313	348	80	121145
Jet.Number.Min	Θ	1266	40990	32616	13686	4395	1313	348	80	94694
Jet.Number.Max	4809	22908	40990	32616	13686	488	5	0	0	115502
Jet.Number.All	0	1266	40990	32616	13686	488	5	0	0	89051

<CutFlowTable> GlobalCutFlow result:

Cut Name	exp	osed	pass	S	cut
	count	yield	count	yield	
PV	925904	56240.1	908889	55383.7	Primary Vertex Cut
MuonTrigger	908889	55383.7	224176	13516.1	Muon Trigger
TightMuon.Number.Min	224176	13516.1	195752	11769.5	Tight Muon : N >= 1
TightMuon.Number.Max	224176	13516.1	215742	13024.7	Tight Muon : N <= 1
TightMuon.Number.All	224176	13516.1	187318	11278.1	Tight Muon : 1 <= N <= 1
VetoMuon.Number.Min	187318	11278.1	187318	11278.1	Veto Muon : N >= 1
VetoMuon.Number.Max	187318	11278.1	146975	9003.72	Veto Muon : N <= 1
VetoMuon.Number.All	187318	11278.1	146975	9003.72	Veto Muon : 1 <= N <= 1
TightElectron.Number.Min	146975	9003.72	146975	9003.72	Tight Electron : N >= 0
TightElectron.Number.Max	146975	9003.72	145893	8944.91	Tight Electron : N <= 0
TightElectron.Number.All	146975	9003.72	145893	8944.91	Tight Electron : 0 <= N <= 0
VetoElectron.Number.Min	145893	8944.91	145893	8944.91	Veto Electron : N >= 0
VetoElectron.Number.Max	145893	8944.91	121145	7418.47	Veto Electron : N <= 0
VetoElectron.Number.All	145893	8944.91	121145	7418.47	Veto Electron : 0 <= N <= 0
Jet.Number.Min	121145	7418.47	94694	5779.79	Jet : N >=2
Jet.Number.Max	121145	7418.47	115502	7076.55	Jet : N <= 4
Jet.Number.All	121145	7418.47	89051	5437.87	Jet : 2 <= N <= 4

Output histogram file

Example of output histogram file

