MMA320 Introduction to Algebraic Geometry Exercises for Chapter 2

- **2.1**. What points in \mathbb{P}^2 do not belong to two of the three sets \mathbb{A}^2_0 , \mathbb{A}^2_1 , \mathbb{A}^2_2 ?
- **2.2**. a) Describe the curve $C_1: 2X + Y^2 = 1$ in the other two standard coordinate charts on $\mathbb{P}^2(\mathbb{C})$. Hint: first homogenise the equation with the coordinate Z.
 - b) Let C_2 be defined by the equation $Y = X^3$ in the affine chart Z = 1. What does C_2 look like at infinity? Give its equation and draw its real part.
 - c) Find all the points of \mathbb{P}^2 which lie on both curves C_1 and C_2 .
- **2.3**. a) Let C_1 : $y = x^2 + 1$ and C_2 : y = 0. What is $C_1 \cap C_2$ in $\mathbb{A}^2(\mathbb{R})$ respectively $\mathbb{A}^2(\mathbb{C})$? Does anything change if we make the equations homogeneous and think of the curves as lying in \mathbb{P}^2 . Explain this in terms of 'asymptotic directions'. b) Let C_k be the circle $x^2 + y^2 = k^2$ in $\mathbb{A}^2(\mathbb{R})$. Show that $C_1 \cap C_2 = \emptyset$. What happens if we replace \mathbb{R} with \mathbb{C} ? What about $\mathbb{P}^2(\mathbb{C})$?
- **2.4**. Two conics in $\mathbb{P}^2(\mathbb{C})$ have four intersection points (counted with multiplicity). Give an example of two conics in $\mathbb{P}^2(\mathbb{R})$ which only intersect in 2 points. Find the extra intersection points when you use the same equations to define conics in $\mathbb{P}^2_{\mathbb{C}}$. [This may or may not be difficult depending on your choice of equation.] Why can you deduce that these intersection points are distinct (even without calculating them)?
- **2.5**. Let $k = \mathbb{Z}/(2)$ be the field with two elements. How many points has $\mathbb{P}^2(k)$? How many lines pass through P = (1:0:0)? How many points lie on each of these lines? Draw all points and lines. Hint: choose (1:0:0), (0:1:0) and (0:0:1) as vertices in a triangle and (1:1:1) as interior point.
- **2.6. Duality**. Let $\{e_0, e_1, e_2\}$ be a basis of $V \cong \mathbb{R}^3$ and let $(X_0 : X_1 : X_2)$ be corresponding homogeneous coordinates on $\mathbb{P}(V) \cong \mathbb{P}^2(\mathbb{R})$. Let $\{e_0^*, e_1^*, e_2^*\}$ be the dual basis in V^* , and $(U_0 : U_1 : U_2)$ corresponding homogeneous coordinates on $\mathbb{P}(V^*) \cong \mathbb{P}^2(\mathbb{R})$. Let $P = (a_0 : a_1 : a_2)$ be a point in $\mathbb{P}(V)$. Describe the pencil of all lines in $\mathbb{P}(V)$ through P in the coordinates $(U_0 : U_1 : U_2)$.
- **2.7**. Let l_1 and l_2 be two disjoint lines in \mathbb{P}^3 , and let $P \in \mathbb{P}^3 \setminus (l_1 \cup l_2)$ be a point. Show that there is a unique line $l \subset \mathbb{P}^3$ through P, intersecting l_1 and l_2 and P.
- **2.8**. Let P_0 , P_1 , P_2 (resp. Q_0 , Q_1 , Q_2) be three points in \mathbb{P}^2 not lying on a line. Show that there is a projective change of coordinates $T \colon \mathbb{P}^2 \to \mathbb{P}^2$ such that $T(P_i) = Q_i$, i = 0, 1, 2. Extend this to n points in \mathbb{P}^n , not lying on a hyperplane.
- **2.9**. Let l_0 , l_1 , l_2 (resp. m_0 , m_1 , m_2) be lines in \mathbb{P}^2 that do not all pass through one and the same point. Show that there is a projective change of coordinates $T: \mathbb{P}^2 \to \mathbb{P}^2$ such that $T(l_i) = m_i$, i = 0, 1, 2. (Hint: Let $P_i = L_j \cap L_k$, $Q_i = m_j \cap m_k$.)
- **2.10**. Let $f \in k[X_0, \ldots, X_n]$. Define the (formal) derivative $\frac{\partial f}{\partial X_i} \in k[X_0, \ldots, X_n]$, for any field k. (Hint: product rule).

2.11. Let $f \in k[X_0, ..., X_n]$ be a homogeneous polynomial of degree m. Show Euler's formula

$$\sum_{i=0}^{n} X_i \frac{\partial f}{\partial X_i} = mf . (*)$$

When does the converse hold: for which fields does (*) imply that $f \neq 0$ is homogeneous of degree m?

- **2.12**. Let $I \subset k[X_0, \ldots, X_n]$ be a homogeneous ideal. Show that I is prime if and only if for every two homogeneous elements $f, g \in I$ we have that $fg \in I$ implies $f \in I$ or $g \in I$.
- **2.13**. The sum, product, intersection and radical of homogeneous ideals are also homogeneous ideals.
- **2.14**. Show that an ideal $I \subset k[X_1, \ldots, X_n]$ is prime if and only if its homogenisation $\bar{I} \subset k[X_0, \ldots, X_n]$ is prime.
- **2.15**. Find I^{sat} , where $I = (X^2, XY) \subset k[X, Y]$.
- **2.16**. Let $k = \mathbb{Z}/(2)$ be the field with two elements. Determine for $V(x^2 + yz) \subset \mathbb{A}^3(\mathbb{Z}/(2))$ the ideal $I(V(x^2 + yz)) \subset \mathbb{Z}/(2)[x, y, z]$. Now consider the same equation in the projective plane: $V(X^2 + YZ) \subset \mathbb{P}^2$ and find the homogeneous ideal $J(V(X^2 + YZ)) \subset \mathbb{Z}/(2)[X, Y, Z]$.
- **2.17**. Let $C \subset \mathbb{P}^3$ be the rational normal curve of degree 3, given by the parametrization

$$\mathbb{P}^1 \to \mathbb{P}^3, \qquad (S:T) \mapsto (X:Y:Z:W) = (S^3:S^2T:ST^2:T^3) \; .$$

Let $P = (0:0:1:0) \in \mathbb{P}^3$, and let H be the hyperplane defined by Z = 0. Let π be the projection from P to H, i.e. the map associating to a point Q of C the intersection point of H with the unique line through P and Q.

- a) Show that π is a morphism.
- b) Determine the equation of the curve $\pi(C)$ in $H \cong \mathbb{P}^2$.
- c) Is $\pi: C \to \pi(C)$ an isomorphism onto its image?
- **2.18**. Show that the curve $C = V(X^3 ZY^2) \subset \mathbb{P}^2$, defined over an algebraically closed field k, is birational to P^1 . Consider the affine chart $U_0 = \{Z \neq 0\}$. Are the coordinate rings of the affine curve $C \cap U_0$ and \mathbb{A}^1 isomorphic? Does there exist an affine chart U_1 such that $C \cap U_1$ has coordinate ring, isomorphic to k[t]?
- **2.19**. Show that there is only one conic passing through the five points (0:0:1), (0:1:0), (1:0:0), (1:1:1), and (1:2:3); show that it is nonsingular, if char $k \neq 2, 3$.
- **2.20**. Consider the nine points (0:0:1), (0:1:1), (1:0:1), (1:1:1), (0:2:1), (2:0:1), (1:2:1), (2:1:1), and (2:2:1) in \mathbb{P}^2 ; it might help to make a picture. Show that there are infinitely many cubics passing through these points (if the field k is infinite).

- **2.21**. Let L be the vector space of homogeneous polynomials of degree 2 in k[X:Y:Z] and let $\mathbb{P}(L)$ be the linear system of conics.
 - a) Let P_1 , P_2 , P_3 and P_4 be four points in \mathbb{P}^2 and let $\mathbb{P}(L(P_1, P_2, P_3, P_4))$ be the linear system of conics passing through these points.
 - Show that $\dim \mathbb{P}(L(P_1, P_2, P_3, P_4)) = 2$ if the four points lie on a line, and that $\dim \mathbb{P}(L(P_1, P_2, P_3, P_4)) = 1$ otherwise.
 - b) Show that the space of irreducible conics in \mathbb{P}^2 is an open subset $U \subset \mathbb{P}(L)$. What geometric objects can be associated to the points in $\mathbb{P}(L) \setminus U$?
- **2.22.** Show that the plane curves $C_1 = V(ZY^2 X^3 + XZ^2)$ and $C_2 = V(X^3Z Y^2Z^2 + X^2Y^2)$ are birational (hint: standard Cremona transformation). Describe occurring singularities.
- **2.23**. Let $H_d \subset \mathbb{P}^n$ be a hypersurface of degree d. Show that the complement $\mathbb{P}^n \setminus H_d$ is an affine variety.
- **2.24.** Let $f(X_0, ..., X_n) = X_0 g(X_1, ..., X_n) + h(X_1, ..., X_n)$, where g is a homogeneous polynomial of degree d-1 and h is a homogeneous polynomial of degree d. Assuming that f is irreducible, prove that the variety V(f) is rational.
- **2.25**. Show that every isomorphism $f: \mathbb{P}^1 \to \mathbb{P}^1$ is a projective transformation.
- **2.26**. Is the union (resp. the intersection) of quasi-projective algebraic sets a quasiprojective algebraic set?
- 2.27. Let V be a projective variety over an algebraically closed field k. Show that $\mathcal{O}(V) = k$, that is, every rational function, regular on the whole of V, is constant. Hints: show that on each standard open affine set V_i an $r \in \mathcal{O}(V)$ has the form $r = f_i/X_i^{N_i}$ with $f_i \in S_{N_i}(V)$ homogeneous of degree N_i . Show that for N sufficiently large multiplication with r is an endomorphism of the vector space $S_N(V)$. Use the Theorem of Cayley–Hamilton to conclude that r is a root of a polynomial with coefficients in k; alternatively, consider an eigen vector and show that r equals the eigen value.
- **2.28**. Show that every regular map from a projective variety to an affine variety maps to a point.
- **2.29**. Let $C = V(f) \subset \mathbb{A}^2(\mathbb{C})$ and consider the blow up $\sigma \colon \mathrm{Bl}_0\mathbb{A}^2 \to \mathbb{A}^2$. Put $\tilde{f} = f \circ \sigma$. If $0 \in V(f)$, then the exceptional curve E is an irreducible component of $V(\tilde{f})$, and the closure of $V(\tilde{f}) \setminus E$ is the strict transform \bar{C} of C. Compute an equation for \bar{C} . If \bar{C} is singular, blow-up again until the strict transform of C is smooth. Resolve in this way the following curves:

$$A_n) x^2 - y^{n+1}, n \ge 1$$

$$(D_n) yx^2 - y^{n-1}, n \ge 4,$$

$$E_6$$
) $x^3 - y^4$,

$$E_7) x^3 - xy^3,$$

$$E_8$$
) $x^3 - y^5$