PHYS 3021

Sean Eva

September 2021

1. Stefan-Boltzmann Law: $E = 4\pi R^2 \sigma T^4$

$$\begin{split} \frac{E_{\mathrm{giant}}}{E_{\mathrm{hotter}}} &= (4)^2 (\frac{7500}{12000})^4 \\ \frac{E_{\mathrm{giant}}}{E_{\mathrm{hotter}}} &= 2.44. \end{split}$$

The giant star is 2.44 times as luminous as the smaller, but hotter star is.

2. Kepler's Third Law: $(M_1 + M_2)P^2 = a^3$

$$(M_1 + M_2) = \frac{a^3}{P^2}$$

$$(M_1 + M_2) = \frac{(\tan(\frac{2}{3600}) * (6.25 * 206265))^3}{(17)^2}$$

$$(M_1 + M_2) = 6.76 \text{ solar masses}$$

3. (a) Spectroscopic Binaries: $\frac{M_1}{M_2} = \frac{v_2}{v_1}$

$$\frac{M_1}{M_2} = \frac{500}{100}$$

$$\frac{M_1}{M_2} = 5.$$

One star is 5 times more massive than the other.

(b) Kepler's Third Law: $(M_1+M_2)P^2=a^3$ where $(M_1+M_2)=6M_2$ since $M_1=5M_2$

$$(6M_2) = \frac{a^3}{P^2}$$

 $(6M_2) = \frac{(0.21)^3}{(0.04)^2}$
 $(6M_2) = 5.71$ solar masses
 $M_1 = 4.82$ solar masses
 $M_2 = 0.96$ solar masses

4. (a)

$$\log(\frac{L_1}{L_2}) = 0.4(m_2 - M_1)$$

$$\frac{L_1}{L_2} = 10^{0.4(m_2 - m_1)}$$

$$= 10^{0.4(11.5 - 1.8)}$$

$$= 7.59 * 10^3.$$

(b) Stefan-Boltzmann Law: $L = e\pi R^2 \sigma T^4$

$$\begin{split} \frac{T_1}{T_2} &= \left(\frac{L_1}{L_2} \left(\frac{R_1}{R_1}\right)^2\right)^{1/4} \\ &= (7.59 * 10^3 \left(\frac{0.01}{1.4}\right)^2\right)^{1/4} \\ &= 0.789 \end{split}$$

5. Kepler's Third Law: $(M_1 + M_2)P^2 = a^3$

$$a = ((M_1 + M_2)P^2)^{1/3}$$

= $((8)(0.0018)^2)^{1/3}$
= 0.03 AU

6. (a) Mass-Luminosity Relationship: $L \propto M^4$

$$L = (0.085)^4$$

$$L = 5.22 * 10^{-5}$$

$$L = (100)^4$$

$$L = 10^8$$
.

This range is between $5.22*10^{-5}$ to $1*10^{8}$ times as luminous as the sun.

(b) Mass-Luminosity Relationship: $L \propto M^4$

$$0.1 = (M)^4$$

$$M = 0.56 \text{ times the mass of the sun}$$

$$1000 = (M)^4$$

$$M = 10^{3/4} \text{ times the mass of the sun}.$$

7. Kepler's Third Law: $(M_1 + M_2)P^2 = a^3$

(a)

$$(M_1 + M_2)P^2 = a^3$$

 $(3.0027 * 10^{-5})(0.575)^2 = a^3$
 $a = 0.021 \text{AU}$

$$(M_1 + M_2)P^2 = a^3$$

 $(5.03 * 10^5)(0.00011)^2 = a^3$
 $a = 0.183$ AU

$$(M_1 + M_2)P^2 = a^3$$

 $(M_1 + M_2)(0.25)^2 = (0.47)^3$
 $(M_1 + M_2) = 1.66$ solar masses

(d)

$$(M_1 + M_2)P^2 = a^3$$

 $(M_1 + M_2)(1.82 * 10^{-3})^2 = (0.02)^3$
 $(M_1 + M_2) = 2.42$ solar masses

(e)

$$(M_1 + M_2)P^2 = a^3$$

 $(13)P^2 = (5.2)^3$
 $P = 3.29 \text{ years}$