Projeto de Filtros FIR e IIR

Disciplina: Processamento Digital de Sinais

Professores: Eddie Filho e Waldir Sabino

Projeto de Filtros FIR e IIR

Relembrando sobre a avaliação:

- Prova 1 (já realizado)
- Prova 2 (já realizado)
- Projeto/Sistema 1 (longo)
- Trabalhos Projeto/Filtragem (19) (curto)

Parte 1

Filtros FIR

Introdução

- Projetar filtros discretos com resposta ao impulso finita.
- Quatro tipos básicos de filtros: Passa-baixa, Passa-alta, Passa-faixa, Rejeita-faixa.
- Em todos os casos usaremos a formulação matemática e o projeto em si realizado em Matlab.
- Algumas etapas do projeto podem ser implementadas em linguagem C.

Introdução

Procedimentos para Projetar filtros

- Definir qual será a resposta em frequência do filtro conforme a aplicação desejada.
- Determinar a resposta ao impulso que produz a resposta em frequência desejada.
- Modificar a resposta ao impulso para que o filtro possa ser utilizado na prática.
- Implementar o filtro utilizando alguma linguagem.

Filtros Ideais

- Os filtros ideais, que normalmente são o objetivo, não são passíveis de implementação, pois exigem infinitos coeficientes e são não-causais (prejudica implementação em tempo real).
- Exemplo:

Descrição Matemática do Filtro

$$\left| H(e^{j\omega}) \right| = \begin{cases} 1, \, p/ \mid \omega \mid \leq \omega_c \\ 0, \, p/ \mid \omega_c \leq \mid \omega \mid \leq \pi \end{cases}$$

Resposta de Magnitude do Filtro

Note que: A resposta em magnitude é periódica (= 2π)

Filtros Ideais

Resposta de Magnitude dos filtros ideais

Filtros Ideais

Resposta de Magnitude e Resposta ao Impulso.

Filter Type	Magnitude Response	Impulse Response	
	$ H(e^{j\omega}) $	h(n)	
Lowpass	$ \left\{ \begin{array}{ll} 1, & \mathrm{for} \; 0 \leq \omega \leq \omega_{C} \\ 0, & \mathrm{for} \; \omega_{C} < \omega \leq \pi \end{array} \right. $	$\left\{ \begin{array}{l} \displaystyle \frac{\omega_{\text{c}}}{\pi}, \ \mathrm{for} \ n=0 \\ \displaystyle \frac{1}{\pi n} \sin(\omega_{\text{c}} n), \ \mathrm{for} \ n \neq 0 \end{array} \right.$	
Highpass	$ \left\{ \begin{array}{ll} 0, & \mathrm{for} \; 0 \leq \omega < \omega_C \\ 1, & \mathrm{for} \; \omega_C \leq \omega \leq \pi \end{array} \right. $	$ \begin{cases} 1 - \frac{\omega_c}{\pi}, & \text{for } n = 0 \\ -\frac{1}{\pi n} \sin(\omega_c n), & \text{for } n \neq 0 \end{cases} $	
Bandpass	$ \begin{cases} & 0, \text{ for } 0 \leq \omega < \omega_{c_1} \\ & 1, \text{ for } \omega_{c_1} \leq \omega \leq \omega_{c_2} \\ & 0, \text{ for } \omega_{c_2} < \omega \leq \pi \end{cases} $	$\left\{ \begin{array}{l} \displaystyle \frac{(\omega_{c_2}-\omega_{c_1})}{\pi}, \ \mathrm{for} \ \mathfrak{n}=0 \\ \\ \displaystyle \frac{1}{\pi\mathfrak{n}} \left[\sin(\omega_{c_2}\mathfrak{n})-\sin(\omega_{c_1}\mathfrak{n})\right], \end{array} \right.$	
Bandstop	$ \begin{cases} 1, & \text{for } 0 \leq \omega \leq \omega_{c_1} \\ 0, & \text{for } \omega_{c_1} < \omega < \omega_{c_2} \\ 1, & \text{for } \omega_{c_2} \leq \omega \leq \pi \end{cases} $	$\left\{ \begin{array}{l} 1-\frac{(\omega_{c_2}-\omega_{c_1})}{\pi}, \ \mathrm{for} \ n=0 \\ \frac{1}{\pi n}\left[\sin(\omega_{c_1} n)-\sin(\omega_{c_2} n)\right], \end{array} \right.$	

Filtros Ideais

- Projeto de Filtros Ideais (Trabalho 1, 2 e 3).
 - 1) Projeto de filtro: projetar um filtro passa-alta ideal com ganho unitário com freqüência de corte igual a 12kHz e considerando que a freqüência de amostragem é 60kHz.
 - 2) Projeto de filtro: projetar um filtro passa-faixa ideal com ganho unitário com frequência de passagem entre 12kHz e 16kHz. A frequência de amostragem é 60kHz.
 - **3) Filtragem:** Misture duas senoides, uma com 40kHz e outra com 14kHz, com diferentes amplitudes. Filtre este sinal com os filtros projetados em (1) e (2). Esboce gráficos do sinal filtrado no domínio do tempo e da frequência.

Itens obrigatórios:

- Resposta em frequência (tanto freq. digital quanto analógica com comentários).
- Sinais no domínio do tempo, quando couber.

Dicas:

- a) Cuidado com a relação entre freqüências digitais (símbolo ω) e analógicas (símbolo Ω). A relação é $\omega = \Omega \cdot T$.
- b) A frequência digital de amostragem equivalente à analógica é sempre igual a 2π .

Amostragem na Freqüência

Idéia principal:

- Aproximação por amostragem na frequência: a DFT do filtro corresponde às amostras da resposta em frequência desejada.
- As amostras são tomadas em ω_sk/N,com 0≤k≤N-1.

Amostragem na Freqüência

 Supondo a resposta em freqüência desejada igual a D(ω) e a DTFT do filtro h(n) igual a H(e^{jω}) temos:

- Note que:
 - (1) O erro de aproximação é zero nas freqüências amostradas.
 - (2) O erro de aproximação é maior nas transições e menor fora delas.
 - (3) A transição pode ser "controlada" pois consegue-se impor um zero em H(e^{jω}).

Amostragem na Freqüência

Resposta ao Impulso.

Filter	Impulse Response	Condition
Type	$h(n)$, for $n = 0, \dots, M$	
Type I	$\frac{1}{N} \left[A(0) + 2 \sum_{k=1}^{\frac{M}{2}} (-1)^k A(k) \cos \frac{\pi k (1+2n)}{M+1} \right]$	
	$\frac{1}{N} \left[A(0) + 2 \sum_{k=1}^{\frac{M-1}{2}} (-1)^k A(k) \cos \frac{\pi k (1+2n)}{M+1} \right]$	$A\left(\frac{M+1}{2}\right)=0$
Type III	$\frac{2}{N} \sum_{k=1}^{\frac{M}{2}} (-1)^{k+1} A(k) \sin \frac{\pi k (1+2n)}{M+1}$	A(0) = 0
Type IV	$\begin{split} &\frac{2}{N}\sum_{k=1}^{\frac{M}{2}}(-1)^{k+1}A(k)\sin\frac{\pi k(1+2n)}{M+1}\\ &\frac{1}{N}\Biggl[(-1)^{\frac{M+1}{2}+n}A\biggl(\frac{M+1}{2}\biggr) + 2\sum_{k=1}^{\frac{M}{2}}(-1)^{k}A(k)\sin\frac{\pi k(1+2n)}{M+1}\Biggr] \end{split}$	A(0) = 0

Amostragem na Freqüência

Correspondência entre os tipos de filtros.

Filter Type	Type I	Type II	Type III	Type IV
Lowpass	Yes	Yes	No	No
Highpass	Yes	No	No	Yes
Bandpass	Yes	Yes	Yes	Yes
Bandstop	Yes	No	No	No

Amostragem na Freqüência

- Projeto de Filtros por Amostragem na Freqüência (Trabalho 4, 5 e 6).
 - 1) Projeto de filtro: projetar um filtro passa-baixa com ganho unitário com frequência de corte igual a 5kHz com transição de 1,5kHz e considerando que a frequência de amostragem é 60kHz.
 - 2) Projeto de filtro: projetar um filtro passa-alta com ganho unitário com frequência de corte igual a 12kHz e transição de 3kHz e considerando que a frequência de amostragem é 60kHz.
 - **3) Filtragem:** Misture três senoides, uma com 3kHz, outra com 17kHz e outra com 14kHz, com diferentes amplitudes. Filtre este sinal com os filtros projetados em (1) e (2). Esboce gráficos do sinal filtrado no domínio do tempo e da frequência.

Itens obrigatórios:

- Resposta em frequência (tanto freq. digital quanto analógica com comentários).
- Sinais no domínio do tempo, quando couber.

Dicas:

- a) O termo A(k) é igual a resposta de magnitude desejada. Para determiná-la basta observar a resposta em freqüência do filtro.
- b) A(s) freqüência(s) de transição iram indicar os valores de k tal que A(k) é zero ou um.

Projeto com Funções Janela

- Uma maneira de contornar o problema das respostas com duração infinita, apresentada pelos filtros ideais, é truncar a mesma com funções janela
- O Truncamento é interpretado como um produto no tempo discreto por uma função janela w(n).
- Assim, supondo $h_d(n)$ a resposta ao impulso de duração infinita, temos:

$$h(n) = h_d(n)w(n)$$

- Neste exemplo, podemos visualizar o efeito do truncamento no domínio do tempo.
- Note que o filtro truncado é obtido por um produto da função janela pela resposta ideal

Projeto com Funções Janela

- Utilizando o Teorema da Modulação podemos determinar a resposta em frequência para o filtro truncado.
- Dessa forma, o produto no domínio do tempo equivale a convolução no domínio na freqüência. Observe que a convolução é periódica pois os sinais são periódicos.

$$h_{d}(n) \xrightarrow{\mathcal{F}} H_{d}(e^{j\omega})$$

$$w(n) \xrightarrow{\mathcal{F}} W(e^{j\omega})$$

$$h(n) = h_{d}(n) \cdot w(n) \xrightarrow{\mathcal{F}} H(e^{j\omega}) = \frac{1}{2\pi} H_{d}(e^{j\omega}) * W(e^{j\omega})$$

Projeto com Funções Janela

ou secundários

 Antes de observar a resposta em freqüência do filtro truncado H, vamos definir alguns termos referentes à função janela e ao filtro truncado

Projeto com Funções Janela

Observando a resposta em freqüência do filtro truncado H, temos:
 (1) A Banda de Transição aumenta se a Largura do Lóbulo Principal aumentar.

Projeto com Funções Janela

- Observando a resposta em freqüência do filtro truncado H, temos:
 - (2) As ondulações (*ripples*) aumentam se as área dos Lóbulos Laterais (ou secundários) aumentarem.

Projeto com Funções Janela

- Assim, a forma da função janela modifica diversas especificações da resposta em freqüência do nosso filtro. Resumidamente, procuramos uma janela com as seguintes características:
 - Razão entre a amplitude do lóbulo principal e a do lóbulo lateral deve ser alta;
 - Largura do lóbulo principal determina a largura da faixa de transição. Logo, este valor deve ser pequeno;
- Nesse sentido, algumas funções foram propostas. São elas:

Projeto com Funções Janela – Retangular

A janela retangular, já estudada anteriormente.

$$w(n) = \begin{cases} 1, & p/0 \le n \le M - 1 \\ 0, & outrovalor \end{cases}$$

Projeto com Funções Janela – Retangular

Projeto com Funções Janela – Triangular

 A janela retangular origina muita ondulação nas extremidades, que não pode ser controlada. Para reduzir essas ondulações, várias janelas foram propostas. A janela triangular é dada por:

$$w[n] = \begin{cases} 2n/M, & 0 \le n \le M/2 \\ 2 - 2n/M & M/2 < n \le M \\ 0, & \text{outros casos.} \end{cases}$$

Projeto com Funções Janela – Triangular

Projeto com Funções Janela – Hamming e Hanning

 A janela retangular origina muita ondulação nas extremidades, que não pode ser controlada. Para reduzir essas ondulações, várias janelas foram propostas. A janela de hamming (α=0,54) é dada por:

$$w(n) = \begin{cases} \alpha + (1-\alpha)\cos\left(\frac{2\pi n}{M}\right), \ p//n/\leq \frac{M}{2} \\ 0, \ /n/>\frac{M}{2} \end{cases}$$

• Se α =0,50, o filtro é conhecido como janela de *hanning*.

Projeto com Funções Janela – Hamming e Hanning

Projeto com Funções Janela – Hamming e Hanning

Projeto com Funções Janela – Blackman

 A janela de blackman introduz um outro termo cossenoidal, visando um maior controle da faixa de transição.

$$w(n) = \begin{cases} 0,42 + 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right), \ p//n/ \le \frac{M}{2} \\ 0, /n/ > \frac{M}{2} \end{cases}$$

Projeto com Funções Janela - Blackman

Projeto com Funções Janela – Procedimento Geral

- Procedimento geral:
- 1) Selecione a função janela apropriada;
- 2) Especifique a resposta em freqüência do filtro ideal H_d;
- 3) Calcule os coeficientes do filtro ideal h_d
- 4) Multiplique os coeficientes do filtro ideal pela função janela para obter os coeficientes do filtro h;
- 5) Determine a resposta em freqüência do filtro h e faça iterações se necessário (tipicamente, altere o valor da ordem).

Projeto com Funções Janela - Procedimento Geral

Procedimento geral (Especificações):

Projeto com Funções Janela - Procedimento Geral

Procedimento geral (Especificações):

Window's name	Mainlobe	Mainlobe/sidelobe	Peak $20\log_{10}\delta$
Rectangular	$4\pi/ M $	-13dB	-21dB
Hanning	$8\pi/M$	-32dB	-44dB
Hamming	$8\pi/M$	-43dB	-53dB
Blackman	$12\pi/M$	-58dB	-74dB

Projeto com Funções Janela

Retangular, Triangular, Hanning, Hamming, Blackman

- Trabalho 7, 8, 9, 10 e 11 (projeto de filtro)
 - Projete um filtro usando as cinco primeiras funções janelas com as seguintes especificações (pode-se usar somente duas funções Matlab)
 - Rejeita-faixa

```
\Omega_{p_1} = 2000 \text{ rad/s}

\Omega_{p_2} = 4000 \text{ rad/s}

\Omega_s = 10000 \text{ rad/s}
```

- Trabalho 12, 13 e 14 (filtragem)
 - Misture quatro senoides, uma com 3000rad/s, outra com 2500rad/s, outra com 1000rad/s e outra com 8000rad/s, com diferentes amplitudes. Filtre este sinal com os três dos cinco filtros janela, projetados nos trabalhos 7, 8, 9, 10 e 11. Esboce gráficos do sinal filtrado no domínio do tempo e da frequência.
- Itens obrigatórios:
 - Resposta em frequência (tanto freq. digital quanto analógica com comentários).
 - Sinais no domínio do tempo, quando couber.

Projeto com Funções Janela

Retangular, Triangular, Hanning, Hamming, Blackman

Exercício:

Retangular

Hamming

Projeto com Funções Janela - Procedimento Geral

Implementações no MatLab

- O MatLab tem diversas funções para implementar janelas:
 - w = rectwin(M+1): Janela retangular
 - w = bartlett(M+1): Janela triangular
 - w = hann(M+1): Janela de Hanning
 - w = hamming(M+1): Janela de Hamming
 - w = blackman(M+1): Janela de Blackman
 - w = kaiser(M+1, Beta): Janela de Kaiser
 - w = chebwin(M+1): Equiriple

Projeto com Funções Janela - Janela Flexível

Projeto com Funções Janela – Kaiser (Janela Flexível)

 A janela de kaiser permite controlar as ondulações nas faixas de passagem e rejeição. β=Ω_a(M/2)T e I₀(x) é a função de bessel modificada de primeira classe de ordem zero.

$$w_{K}(n) = \begin{cases} \frac{I_{0} \left[\beta \sqrt{1 - (2n/M)^{2}}\right]}{I_{0}(\beta)}, & p/|n| \leq \frac{M}{2} \\ 0, & |n| > \frac{M}{2} \end{cases}$$

$$I_{0}(x) = 1 + \sum_{k=1}^{\infty} \left[\frac{(x/2)^{k}}{k!}\right]^{2}$$

Projeto com Funções Janela - Kaiser (Janela Flexível)

Projeto com Funções Janela – Equiriple

 A janela de Dolph-chebyshev (equiripple) permite que a largura do lóbulo principal e a faixa de transição sejam controlados pelo mesmo parâmetro (M) e a sua faixa de rejeição tem ondulação constante.

$$w_{DC}(n) = \begin{cases} \frac{1}{M+1} \left\{ \frac{1}{r} + 2 \sum_{i=1}^{M/2} C_M \left[x_0 \cos \left(\frac{i\pi}{M+1} \right) \right] \cos \left(\frac{2ni\pi}{M+1} \right) \right\}, p/|n| \le \frac{M}{2} \\ 0, |n| > \frac{M}{2} \end{cases}$$

$$C_M(x) = \begin{cases} \cos \left[M \cos^{-1}(x) \right], p/|x| \le 1 \\ \cosh \left[M \cosh^{-1}(x) \right], p/|x| > 1 \end{cases}$$

$$r = \frac{\delta_r}{\delta_n}, x_0 = \cosh \left[\frac{1}{M} \cosh^{-1} \left(\frac{1}{r} \right) \right]$$

Projeto com Funções Janela – Equiriple

Projeto com Funções Janela – Kaiser

- Passos para o projeto de um filtro com janela de kaiser:
 - Passo 1:
 - Se PB ou PA, $\Omega_c = (\Omega_p + \Omega_r)/2$ e $T_r = |\Omega_p \Omega_r|$;
 - Se PF ou RF, $T_r = min\{|\Omega_{p1} \Omega_{r1}|, |\Omega_{p2} \Omega_{r2}|\}, \Omega_{c1} = \Omega_{p1} + T_r/2 e \Omega_{c2} = \Omega_{p2} T_r/2;$
 - Passo 2: $δ_p$ =(10^{0,05Ap}-1)/(10^{0,05Ap}+1), $δ_r$ =(10^{-0,05Ar}) e δ=min($δ_p$, $δ_r$);
 - Passo 3: $A_p=20\log\{(1+\delta)/(1-\delta)\}$, $A_r=-20\log(\delta)$
 - Passo 4:

$$\beta = \begin{cases} 0, p/A_r \le 21 \\ 0,5842(A_r - 21)^{0.4} + 0,07886(A_r - 21), p/21 < A_r \le 50 \\ 0,1102(A_r - 8,7), p/50 < A_r \end{cases}$$

Projeto com Funções Janela – Kaiser

- Passos para o projeto de um filtro com janela de kaiser:
 - Passo 5: M≥(Ω_s D)/T_r;

$$D = \begin{cases} 0,9222, p/A_r \le 21\\ (A_r - 7,95)/14,36, p/21 < A_r \end{cases}$$

- Passo 6: Calcular $w_k(n)$ e depois $h(n) = w_k(n)h_d(n)$;
- Passo 7: $H(z)=z^{-M/2}\Im\{h'(n)\}.$

Projeto com Funções Janela – Kaiser

- Trabalho 15 (projeto de filtro)
 - Projete um filtro de kaiser com as seguintes especificações
 - Rejeita-faixa

$$\begin{split} A_{p} &= 1.0 \text{ dB} \\ A_{r} &= 45 \text{ dB} \\ \Omega_{p_{1}} &= 800 \text{ Hz} \\ \Omega_{r_{1}} &= 950 \text{ Hz} \\ \Omega_{r_{2}} &= 1050 \text{ Hz} \\ \Omega_{p_{2}} &= 1200 \text{ Hz} \\ \Omega_{s} &= 6000 \text{ Hz} \end{split}$$

Resposta

Ω_{c_1}	875 Hz
Ω_{c_2}	1125 Hz
$\Omega_{\mathfrak{p}_1}$	800 Hz
Ω_{r_1}	950 Hz
Ω_{r_2}	1050 Hz
$\Omega_{\mathfrak{p}_2}$	1200 Hz
$\delta_{\rm p}$	0.0575
$\delta_{\rm r}$	0.00562
Tr	150 Hz
D	2.5800835
β	3.9754327
M	104

- Trabalho 16 (filtragem)
 - Misture quatro senoides, uma com 1000Hz, outra com 980Hz, outra com 700Hz e outra com 1500Hz, com diferentes amplitudes. Filtre este sinal com o filtro Kaiser, projetado no trabalho 15. Esboce gráficos do sinal filtrado no domínio do tempo e da frequência.

Projeto com Funções Janela – Kaiser

- Exercício:
 - Resposta em frequência

Projeto com Funções Janela – Kaiser

- Exercício:
 - Resposta em frequência

Projeto com Funções Janela – Dolph-chebyshev (equiripple)

- Passos para o projeto:
 - Passo1: Executar passos 1 e 2 da janela de kaiser;
 - Passo 2: Determinar r;
 - Passo 3: Executar os passos 3 e 5 a 6 de kaiser, substituindo A_r por A_r + 2,5 no cálculo de D, pois a atenuação na banda de rejeição é maior.
 - Passo 4: Calcular x_0 ;
 - Passo 5: Proceder como na janela de kaiser.

Projeto com Funções Janela – Dolph-chebyshev (equiripple)

- Trabalho 17 (projeto de filtro)
 - Projete novamente o filtro anterior com este método.
- Trabalho 18 (filtragem)
 - Use a senoide do trabalho 16 e filtre com o filtro equiripple, projetado no trabalho 17. Esboce gráficos do sinal filtrado no domínio do tempo e da frequência.

Projeto utilizando Otimização - Formulação do Problema

- Para se utilizar algoritmos de otimização, é interessante descrever os filtros de forma mais generalizada.
- Utilizando os tipos I, II, III e IV podemos projetar todos os tipos de filtros e ainda com a fase sendo linear.
- A forma generalizada que utiliza a função auxiliar $P(\omega)$ igual a

$$P(\omega) = \sum_{l=0}^{L} p(l) \cos(\omega l)$$

para todos os tipos, pode ser encontrada como:

$$H(e^{j\omega}) = e^{-j(\alpha\omega - \beta)}A(\omega)$$

$$A(\omega) = Q(\omega)P(\omega), \ \alpha = \frac{M}{2}$$

Projeto utilizando Otimização - Formulação do Problema

 A forma generalizada, para tipos I, II, III e IV pode ser expressa como:

$$\begin{split} \mathsf{H}(\mathrm{e}^{\mathrm{j}\omega}) &= \mathrm{e}^{-\mathrm{j}(\alpha\omega-\beta)} Q(\omega) \mathsf{P}(\omega) = \mathrm{e}^{-\mathrm{j}(\alpha\omega-\beta)} \mathsf{A}(\omega) \\ \mathsf{Type} \ \mathsf{I}: \ \beta = 0 \ \mathsf{and} \ Q(\omega) = 1 \\ \mathsf{Type} \ \mathsf{II}: \ \beta = 0 \ \mathsf{and} \ Q(\omega) = \cos(\frac{\omega}{2}) \\ \mathsf{Type} \ \mathsf{III}: \ \beta = \frac{\pi}{2} \ \mathsf{and} \ Q(\omega) = \sin(\omega) \\ \mathsf{Type} \ \mathsf{IV}: \ \beta = \frac{\pi}{2} \ \mathsf{and} \ Q(\omega) = \sin(\frac{\omega}{2}). \end{split}$$

Projeto utilizando Otimização - Formulação do Problema

• Se $D(\omega)$ for a resposta desejada, define-se a função erro ponderada por $W(\omega)$ como:

$$E(\omega) = W(\omega) \left(D(\omega) - A(\omega) \right) = W(\omega) \left(D(\omega) - Q(\omega) P(\omega) \right)$$
$$E(\omega) = W(\omega) Q(\omega) \left(\frac{D(\omega)}{Q(\omega)} - P(\omega) \right)$$

Definindo:

$$W_{q}(\omega) = W(\omega)Q(\omega)$$
$$D_{q}(\omega) = \frac{D(\omega)}{O(\omega)}$$

Projeto utilizando Otimização - Formulação do Problema

• Temos a função de erro ponderada por $W_q(\omega)$ como:

$$E(\omega) = W_q(\omega) \Big(D_q(\omega) - P(\omega) \Big)$$

 De posse da função de erro ponderada, podemos definir o nosso problema de otimização para os filtros FIR como:

Determine o conjunto de coeficientes p(l) que minimiza alguma função objetivo da função de erro ponderada $E(\omega)$ sobre um conjunto prescrito de freqüências.

Projeto utilizando Otimização - Formulação do Problema

• A otimização então determinará o conjunto de coeficientes p(l) que minimizará o erro $E(\omega)$. Tal função é avaliada num conjunto de freqüências $0 \le \omega_i \le \pi$. É possível descartar os pontos nas faixas de transição. Colocando em notação matricial:

$$\mathbf{e} = \mathbf{W}_{q} (\mathbf{d}_{q} - \mathbf{U}\mathbf{p})$$

$$Onde:$$

$$\mathbf{e} = [E(\omega_{1}) E(\omega_{2}) ... E(\omega_{N})]^{T}$$

$$\mathbf{W}_{q} = diag[W_{q}(\omega_{1}) W_{q}(\omega_{2}) ... W_{q}(\omega_{N})]$$

$$\mathbf{d}_{q} = [D_{q}(\omega_{1}) D_{q}(\omega_{2}) ... D_{q}(\omega_{N})]^{T}$$

$$\mathbf{U} = \begin{bmatrix} 1 & \cos(\omega_{1}) & \cdots & \cos(L\omega_{1}) \\ 1 & \cos(\omega_{2}) & \cdots & \cos(L\omega_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \cos(\omega_{N}) & \cdots & \cos(L\omega_{N}) \end{bmatrix}$$

$$\mathbf{p} = [p(0) p(1) ... p(L)]^{T}$$

Projeto utilizando Otimização – Mínimos Quadrados (WLS)

 A otimização pelo método dos mínimos quadrados ponderados tem como objetivo minimizar o quadrado da energia da função erro E(ω):

$$\min_{p} \left\{ \left| E(\omega) \right|_{2}^{2} \right\} = \min_{p} \left\{ \int_{0}^{\pi} \left| E(\omega) \right|^{2} d\omega \right\} \approx \frac{1}{N} \sum_{k=1}^{N} \left| E(\omega_{k}) \right|^{2} = \frac{1}{N} \mathbf{e}^{T} \mathbf{e}$$

Projeto utilizando Otimização - Chebyshev (minimax)

 A otimização pelo método de chebyshev (minimax) procura minimizar o máximo valor absoluto da função erro:

$$\min_{p} \left\{ \left| E(\omega) \right| \right|_{\infty} \right\} = \min_{p} \left\{ \max_{\omega \in F} \left| E(\omega) \right| \right\}$$

 A ordem aproximada do filtro pode ser calculada com a fórmula:

$$M \approx \frac{-20\log_{10}\left(\sqrt{\delta_r \delta_p}\right) - 13}{2,3237(\omega_r - \omega_p)} + 1$$

Projeto utilizando Otimização – WLS-Chebyshev

- A otimização pelo método de WLS-chebyshev é utilizada em projeto de filtros de faixa estreita, levando em consideração tanto a atenuação mínima quanto a energia na faixa de rejeição.
- Tal técnica combina os métodos WLS e Chebyshev.

Projeto utilizando Otimização - Funções do Matlab

 Comandos do MATLAB para projetar filtros por otimização Filtros WLS: firls e fircls.

Filtros Chebyshev (minimax): firpm, usar também firpmord.

Filtros WLS-chebyshev: não implementado no Matlab.

Projeto utilizando Otimização

- Trabalho 18
- Exercício: Projete o filtro abaixo utilizando os métodos chebyshev e wls
 - Passa-baixas
 - $-A_p=1dB\ p/\ 0 \le \Omega \le 2KHz$
 - A_r=40dB p/ $\Omega \ge 2,5$ KHz
 - $-\Omega_s=10KHz$
- Trabalho 19
- Exercício: Projete o filtro multibanda abaixo utilizando o método de chebyshev.
 - δr1=40dB p/ 0≤ Ω ≤2KHz
 - δp1=1dB p/ 2,5≤ Ω ≤3,5KHz
 - δr2=40dB p/ 4≤ Ω ≤6KHz
 - δp2=1dB p/ 6,5≤ Ω ≤7,5KHz
 - δpr3=40dB p/ 8≤ Ω ≤10KHz
 - $-\Omega_s=20KHz$

Parte 2

Filtros IIR

Aproximações para filtros IIR Introdução

- Filtros IIR são representados por funções de transferência que consistem na razão de polinômios. Isso geralmente resulta numa resposta ao impulso com duração infinita.
- É possível projetar filtros IIR que necessitem de um número de multiplicações menor que o dos filtros FIR, o que os torna atrativos para aplicações em tempo real.

Aproximações para filtros IIR Introdução

- O projeto de filtros digitais IIR utiliza métodos clássicos para aproximação de filtros analógicos (especificações de módulo). Esses filtros analógicos (obviamente) são definidos no domínio de tempo contínuo.
- Os diferentes tipos de filtros analógicos (passa-alta, passa-faixa e rejeita-faixa) são obtidos a partir de um filtro analógico protótipo passa-baixa.

Introdução

 A partir do filtro analógico protótipo passa-baixa podemos obter qualquer filtro digital IIR. Esquematicamente, temos duas opções, a primeira é:

Aproximações para filtros IIR Introdução

A segunda é:

Introdução

• O projeto de um filtro passa baixas analógico requer a especificação de resposta em módulo e fase que se deseja. ω_p e ω_r são as freqüências de passagem e rejeição e A_p e A_r são as ondulações máximas permitidas.

Butterworth

 A aproximação de butterworth trata de filtros do tipo sópólos, e a sua atenuação é dada por:

$$|A(j\Omega)|^2 = 1 + |E(j\Omega)|^2$$

• A frequência Ω é normalizada pela frequência de passagem (Ω_p) e $E(j\Omega)$ é o polinômio que aproxima $A(j\Omega)$. Para que o mesmo tenha módulo reduzido em altas frequências e elevando em baixas, define-se:

$$E(j\Omega) = \varepsilon(j\Omega)^n$$

$$|A(j\Omega)|^2 = 1 + \varepsilon^2(\Omega)^{2n}$$

Butterworth

A atenuação em dB em dada por:

$$A_{dB}(\Omega) = 20\log_{10}|A(j\Omega)| = 10\log_{10}\left[1 + \varepsilon^{2}(\Omega)^{2n}\right]$$

A atenuação na faixa de passagem é então dada por:

$$A_p = 10\log_{10}\left[1 + \varepsilon^2\right]$$
$$\varepsilon = \sqrt{10^{0.1A_p - 1}}$$

A ordem mínima do filtro é dada por

$$Ar = 10\log_{10}\left[1 + \varepsilon^{2}(\Omega_{r})^{2n}\right]$$

$$\log_{10}\left(\frac{10^{0,1A_{r}} - 1}{\varepsilon^{2}}\right)$$

$$n \ge \frac{\log_{10}\left(\frac{10^{0,1A_{r}} - 1}{\varepsilon^{2}}\right)}{2\log_{10}\Omega_{r}}$$

Butterworth

• $|A(j\Omega)|^2$ pode ser dado por:

$$|A(j\Omega)|^2 = A(j\Omega)A(-j\Omega) = 1 + \varepsilon^2(\Omega)^{2n} = 1 + \varepsilon^2[-(j\Omega)^2]^n$$
$$|A(j\Omega)|^2 = 1 + \varepsilon^2(-s^2)^n$$

As raízes do polinômio são dadas por:

$$|A(j\Omega)|^2 = 1 + \varepsilon^2 \left(-s^2\right)^n = 0$$

$$S_i = \frac{1}{\varepsilon^{1/n}} e^{j\frac{\pi}{2}\left(\frac{2i+n+1}{n}\right)}$$

Butterworth

 Para que o filtro seja estável, escolhe-se as raízes na metade esquerda do plano S:

$$H(s) = \frac{H_0}{\prod_{i=1}^{n} (s - p_i)}$$

$$H_0 = \prod_{i=1}^n (-p_i)$$

Butterworth

 Para que o filtro seja estável, escolhe-se as raízes na metade esquerda do plano S:

$$H(s) = \frac{H_0}{\prod_{i=1}^{n} (s - p_i)}$$

$$H_0 = \prod_{i=1}^n (-p_i)$$