DEBRECENI EGYETEM, INFORMATIKAI KAR

Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz

🌲 a megoldásra feltétlenül ajánlott feladatokat jelöli, e feladatokat a félév végére megoldottnak tekintjük

★ a nehezebb feladatokat jelöli

Halmazelmélet

- (1) \blacktriangle Legyen $A = \{2, 3, 4\}, B = \{2, 5, 6\}, C = \{5, 6, 2\}, D = \{6\}.$
 - (a) Melyik igaz az alábbi állítások közül: $4 \in C, A \subset B, D \subset C, B = C, A = B$.
 - (b) Határozzuk meg az $A \cap B, A \cup B, A \setminus B, (A \cup B) \setminus (A \cap B), A \cap B \cap C$ halmazokat!
- (2) \spadesuit (a) A költők között a legnagyobb festő és a festők között a legnagyobb költő vajon ugyanaz a személy-e?
 - (b) A költők között a legöregebb festő és a festők között a legöregebb költő vajon egy és ugyanaz a személy?
- (3) \spadesuit Legyen X a DE hallgatóinak összessége, L a hallgatólányok halmaza, K a közgazdászhallgatók halmaza, C az egyetemi kórus tagjainak halmaza, B a biológia tárgyat felvett hallgatók halmaza, T pedig a teniszezőké. Fogalmazzuk meg az alábbi állításokat a halmazelmélet nyelvén:
 - (a) Minden biológiát tanuló hallgató közgazdász.
 - (b) Az egyetem kórusában van biológiát felvett hallgató.
 - (c) Azon hallgatólányok, akik se nem teniszeznek, se nem énekkarosok mind tanulnak biológiát.
- (4) ♠ Egy társaságban végzett felmérés szerint a társaságból ötvenen kávéznak és negyvenen teáznak. Harmincöt olyan személy van, aki kávézni és teázni is szokott, valamint tíz olyan személy van, aki egyiket sem. Hány tagú a társaság?
- (5) ♠ Legyen

$$A \triangle B := (A \setminus B) \cup (B \setminus A)$$

az A és B halmazok szimmetrikus differenciája. Igazoljuk, hogy bármely két halmaz esetén

$$A\triangle B = B\triangle A, \qquad A\triangle B = (A\cup B)\setminus (A\cap B).$$

(6) ★ Az alábbi halmazazonoságok közül az egyik nem igaz. Melyik?

$$\begin{array}{rcl} (A\triangle B)\triangle C &= A\triangle (B\triangle C),\\ (A\cap C)\triangle B &= (A\triangle B)\cap (C\triangle B),\\ A\triangle A &= \emptyset. \end{array}$$

- (7) Igazoljuk, hogy ha $A \setminus B = B \setminus A$, akkor A = B.
- (8) Állapítsuk meg, hogy a következő összefüggések közül melyek igazak tetszőleges $A,\,B,\,$ és C halmazokra.
 - (a) \spadesuit $A \cup (B \setminus C) = (A \cup B) \setminus C$,
 - (b) $A \cap B \cap C = A \cap B \cap (B \cup C)$,
 - (c) $[A \setminus (A \setminus \bar{B})] \cup B = A \cup B$.
- (9) Legyen $A = \{n \in N \mid n \text{ páros}\}, \ B = \{n \in N \mid n < 4\}, \ C = \{n \in N \mid n > 2\}.$ Állapítsuk meg, mik lesznek az $X = [A \setminus (B \cap C)] \cup [(A \setminus B) \setminus C]$ halmaz elemei.
- (10) Hozzuk egyszerűbb alakra a következő kifejezéseket:
 - (a) $(A \cup B) \cap (A \cup \bar{B})$,
 - (b) $(A \cup B) \cap (B \cup C)$,
 - (c) $(A \cup B) \cap (B \cup \bar{A}) \cap (A \cup \bar{B})$.

- (11) Vizsgáljuk meg, hogy milyen kapcsolat áll fenn az A és B halmazok között, ha teljesül az $A \cap B = A$ egyenlőség.
- (12) Állapítsuk meg, milyen esetben állhat fenn az $A \cup B = \bar{A}$ egyenlőség.
- (13) Vizsgáljuk meg, hogy milyen kapcsolat áll fenn az A és B halmazok között, ha teljesül az $A \cup B = A$ egyenlőség.
- (14) Vizsgáljuk meg, milyen A és B kapcsolata, ha $A \cup B = A \cap B$ teljesül.
- (15) Milyen kapcsolat áll fenn az A és B halmazok között, ha az $A \cup (B \cap \bar{A}) = B$ igaz?
- (16) Vizsgáljuk meg, hogy milyen esetben teljesül az $(A \cup B) \setminus B = A$ egyenlőség.
- (17) Mutassuk meg, hogy tetszőleges A és B esetén $[A \setminus (A \cap B)] \cup B = A \cup B$.
- (18) \spadesuit Legyen $A = \{1, 2\}, B = \{1, 2, 3\}.$ Írjuk fel az

$$(A \times B) \cap (B \times A)$$
 és az $(A \times B) \setminus (B \times A)$

halmazok elemeit.

(19) Legyen $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = ax + b\}$ és $B = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = cx + d\}$.

Mit mondhatunk az a, b, c, és d paraméterekről, ha tudjuk, hogy

- (a) $A \setminus B = A$, (b) $A \cap B = \{(0,0)\},\$
- (c) $A \setminus B = \emptyset$,
- (d) $\{(1,0),(0,1)\}\subset A\cap B$.
- (20) \spadesuit Ábrázoljuk a $\mathbb{Z} \times \mathbb{R}$ és $\mathbb{R} \times \mathbb{Z}$ halmazokat a koordinátasíkon.
- (21) Lássuk be, hogy tetszőleges A, B és C halmazokra
 - (a) $A \times (B \cup C) = (A \times B) \cup (A \times C),$
 - (b) $A \times (B \cap C) = (A \times B) \cap (A \times C),$
 - (c) $(A \cup B) \times C = (A \times C) \cup (B \times C),$
 - (d) $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- (22) Igazoljuk, hogy tetszőleges Aés $B_1,B_2,\dots B_n$ halmazokra

oreges
$$A \in S_1, B_2, \dots B_n$$
 naminazoria
$$A \cap (B_1 \cup B_2 \cup \dots \cup B_n) = \bigcup_{i=1}^n (A \cap B_i),$$

$$A \cup (B_1 \cap B_2 \cap \dots \cap B_n) = \bigcap_{i=1}^n (A \cup B_i)$$

$$\frac{\overline{\bigcup_{i=1}^n B_i}}{\overline{\bigcap_{i=1}^n B_i}} = \bigcap_{i=1}^n \overline{B_i},$$

$$\overline{\bigcap_{i=1}^n B_i} = \bigcup_{i=1}^n \overline{B_i}.$$

(23) Legyen a D reláció \mathbb{N} -en az alábbi

$$(\forall m, n \in \mathbb{N})(m D n \iff \text{ha } m \text{ osztója } n\text{-nek.}$$

Igazolja, hogy D féligrendezés \mathbb{N} -en.

(24) A Tekintsük a következő leképezéseket:

$$\begin{array}{ll} F: \mathbb{N} \to \mathbb{N}, & F(n) = 2n \ (n \in \mathbb{N}) \\ G: \mathbb{Q} \to \mathbb{Q}, & G(x) = 2x \ (x \in \mathbb{Q}) \\ H: \mathbb{R} \to \mathbb{R}, & H(x) = x^2 \ (x \in \mathbb{R}) \\ L: \mathbb{N} \to \mathbb{N}, & L(n) = n^2 \ (n \in \mathbb{N}). \end{array}$$

Állapítsuk meg közülük melyik injektív, szürjektív, ill. bijektív.

- (25) Legyen A és B, véges halmaz. Mit mondhatunk A és B elemeinek a számáról, ha tudjuk, hogy létezik olyan $F: A \to B$ leképzés, amely:
 - (a) injektív,
- (b) szürjektív,
- (c) bijektív.

Indukció

- (26) Bizonyítsuk be teljes indukcióval, hogy minden $n \in \mathbb{N}$ -re, vagy a megadott n-ekre
 - (a) $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2},$

 - (c) $1^3 + 2^3 + 3^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$,
 - (d) $1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$
 - (e) $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! 1$,
 - (f) $\spadesuit \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$
 - (g) $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}$
 - (h) $2 \cdot 2^1 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + n \cdot 2^{n-1} = (n-1)2^n$,

 - (j) $\sum_{i=1}^{n} \frac{1}{\sqrt{j}} \ge 2(\sqrt{n+1}-1),$
 - (k) $4^{n+4} > (n+4)^4$,
 - (1) $\sum_{j=1}^{n} \frac{1}{n+j} > \frac{13}{24} \ (n \ge 2),$
 - (m) $n^3 < 2^{n+1} (n > 8)$,
 - (n) $\frac{1}{\sqrt{3n+1}} \ge \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n}$,
 - (o) \spadesuit $(n+1)! > 2^{n+3}, (n \ge 5),$
 - (p) $\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15}$ egész szám,
 - (a) $10^n + 3 \cdot 4^{n+2} + 5$ osztható 9-cel,
 - (r) $n^3 + 5n + 6$ osztható 3-mal
- (27) ♠ Mutassuk meg, hogy

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1},$$

$$ahol \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

(28) ★ Bizonyítsuk be a binomiális tételt:

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n,$$

ahol n tetszőleges természetes szám, a,b tetszőleges valós számok. A fenti egyenlőség tömörebb formája:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

(29) \spadesuit Bizonyítsuk be, hogy minden n természetes szám és $x \ge -1$ szám esetén teljesül a Bernoulli egyenlőtlenség:

$$(1+x)^n \ge 1 + nx,$$

és itt egyenlőség akkor, és csakis akkor teljesül, ha n = 1 vagy x = 0.

(30) \bigstar Bizonyítsuk be, hogy ha x_1, x_2, \dots, x_n $(n \geq 2)$ nemnegatív valós számok, akkor teljesül a számtani és mértani közép közötti egyenlőtlenség:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n}.$$

Egyenlőség pontosan akkor teljesül, ha $x_1 = x_2 = \cdots = x_n$.

Valós számok

- (31) Bizonyítsuk be következő egyenlőtlenségeket (a > 0, b > 0):
 - (a) $\frac{2ab}{a+b} \le \sqrt{ab}$,
 - (b) $\sqrt{\frac{a^2+b^2}{2}} \ge \frac{a+b}{2}$,
 - (c) $\left| \frac{a}{b} + \frac{b}{a} \right| \ge 2$.
- (32) ♠ Mutassuk meg, hogy

$$\frac{n}{2} < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} < n.$$

(33) A valós számok (test)axiómáit felhasználva igazolja, hogy bármely $x, y, z \in \mathbb{R}$ esetén

$$\begin{array}{lll} \text{ha } x+y=x+z, & \text{akkor } y=z, \\ \text{ha } x+y=x, & \text{akkor } y=0, \\ \text{ha } x+y=0, & \text{akkor } y=-x, \\ -(-x)=x, & \text{ha } xy=x, \ x\neq 0, \\ \text{ha } xy=x, \ x\neq 0, & \text{akkor } y=1, \\ \text{ha } xy=1, \ x\neq 0, & \text{akkor } y=x^{-1}, \\ \text{akkor } x=x^{-1}, & \text{akkor } x=x^{-1}, \\ \text{akkor } x=$$

továbbá

$$0x = 0, x \neq 0, y \neq 0 \Rightarrow xy \neq 0,$$

$$(-x)y = -(xy) = x(-y), (-x)(-y) = xy.$$

(34) A valós számok (rendezett test) axiómáit felhasználva igazolja, hogy bármely $x, y, z \in \mathbb{R}$ esetén

- (35) Bizonyítsuk be, hogy ha $r \in \mathbb{Q}$, $x \in \mathbb{R} \mathbb{Q}$, akkor r + x, és ha $r \neq 0$, akkor $rx \in \mathbb{R} \setminus \mathbb{Q}$.
- (36) \spadesuit Bizonyítsuk be, hogy x irracionális, ha a) $x^2 = 2$, b) $x^2 = 6$, c) $x^3 = 5$.
- (37) Mivel egyenlő inf H, sup H, min H, max H, ha H =

$$\bigstar \qquad \left\{ \frac{m}{n} + \frac{4n}{m} : m, n \in \mathbb{N} \right\}, \quad \bigstar \quad \left\{ \frac{n}{|n| + m} : m \in \mathbb{N}, n \in \mathbb{Z} \right\}.$$

(Utóbbi két feladatnál helyettesítsünk $r = \frac{m}{r}$ -et!)

(38) ♠ Legyen

$$E = [0,1] \cup \{2,3\}, \quad F = \{ r : r \in \mathbb{Q}, 0 \le r < 1 \}, \quad G = \bigcup_{n=1}^{\infty} \left[\frac{1}{2n+1}, \frac{1}{2n} \right],$$

Határozzuk meg e halmazok belső, izolált, torlódási és határpontjait!

Sorozatok

(39) Allapítsuk meg, hogy az alábbi sorozatok közül melyek konvergensek, melyek divergensek.

$$a_n = (-1)^n,$$
 $b_n = 2^n,$ $c_n = \log_2(n^2 + n),$ $d_n = 8\sin(7, 2n^\circ),$ $e_n = \sin(2\pi n^2),$ $f_n = \frac{2n+1}{7n-3}$ $(n \in \mathbb{N}).$

(40) • Vizsgáljuk meg a következő sorozatokat monotonitás és korlátosság szempontjából. Határozzuk meg a sorozatok határértékét is.

(a)
$$a_n = \frac{1+2+\dots+n}{(n+1)(n+10)}$$
, (b) $a_n = \frac{1+2+\dots+n}{n+4} - \frac{n}{2}$, (c) $a_n = \frac{5^{n+1}}{n!}$.

(41) \spadesuit Vizsgáljuk meg, hogy hányadik tagtól kezdve esnek a sorozat elemei a határérték $\varepsilon>0$ sugarú környezetébe:

(a)
$$a_n = \frac{n+2}{3n-8}$$
, (b) $a_n = 1 - \frac{(-1)^n}{n}$.

(42) Határozzuk meg az alábbi a_n $(n \in \mathbb{N})$ sorozatok határértékét, amennyiben az létezik.

(a)
$$a_n = \frac{\sqrt[3]{4n^2 + 3n}}{n+2},$$

(b)
$$a_n = \sqrt{n^2 + 1} - n,$$

(c)
$$a_n = \sqrt{n^2 + n} - \sqrt{n^2 + 1}$$

(d)
$$a_n = \frac{\sqrt{n} + \sqrt[3]{n} + \sqrt[4]{n} + \sqrt[5]{n}}{\sqrt{5n+1}},$$

(e)
$$a_n = \frac{\sqrt{2n^2 + 2n + 3} - \sqrt{2n^2 + 6n + 5}}{\sqrt{3n^2 + 5n + 1} - \sqrt{3n^2 + 7n - 1}}$$

(g)
$$a_n = \left(\frac{n^2 + 2}{n^2 + 3}\right)^{n^2 + 5},$$

(h)
$$a_n = (1+1)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\dots\left(1+\frac{1}{n}\right)$$
,

(i)
$$a_n = \frac{10^n + 10^2}{5^n + 2^n + 10^5},$$

(j)
$$a_n = \frac{2+8n}{3+9n}$$

(k)
$$a_n = \frac{2 + 8n^2}{3n + 9n^3}$$
,

(l)
$$a_n = \frac{2+8n}{3+9n} + \log_{10}\left(\frac{2+8n}{3+9n}\right)$$
,

(m)
$$a_n = \frac{n^3 + 7n + 49n^2}{231a - 1 + 13n^2}$$
, $(a \in \mathbb{R} \text{ adott})$,

(n)
$$a_n = \frac{\log_3(n^2 + n + 1)}{\log_3 n},$$

(o)
$$\star a_n = \frac{\log_{n^2}(\sqrt{n}+3)}{\log_n(n^2+n)},$$

(p)
$$a_n = \frac{2^{\frac{n+1}{n}}}{2^{\frac{n-3}{n}}}.$$

- (43) Tudjuk, hogy $\lim_{n\to\infty} (\log_2(n^2+n+4)) = +\infty$. Tetszőleges K>0 számhoz határozzunk meg egy olyan N természetes számot, hogy $\log(n^2+n+4) > K$, ha n > N.
- (44) \spadesuit Tegyük fel hogy $a_n \to +\infty$, $b_n \to 0$. Lehetséges-e, hogy $a_n b_n \to 0$, $a_n b_n \to -1, 2, 3$, $a_n b_n \to \infty$, $a_n b_n \to -\infty$?
- (45) Tegyük fel, hogy $a_n \to 1/2$. Képezzük a

$$b_1 = a_1$$
, $b_2 = a_1 a_2$, $b_3 = a_1 a_2 a_3$, $b_4 = a_1 a_2 a_3 a_4$, ...

sorozatot. Bizonyítsuk be, hogy $b_n \to 0$.

- (46) \spadesuit Bizonyítsuk be, hogy ha $a_n \to a$, és $a_n > 0$ bármely $n \in N$ -re, akkor $\sqrt{a_n} \to \sqrt{a}$.
- (47) Tegyük fel, hogy $a_n \to +\infty$. Bizonyítsuk be, hogy $\log_2 a_n \to +\infty$.
- (48) Tegyük fel, hogy $a_n \to 13$. Bizonyítsuk be, hogy $\lim_{n \to \infty} (a_{n+1} a_n) = 0$.
- (49) A Tegyük fel, hogy egy sorozatnak végtelen sok pozitív, és végtelen sok negatív eleme van. Lehet-e ez a sorozat konvergens?
- (50) Legyen $a_1 = \frac{1}{1 \cdot 2}$, $a_2 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3}$, $a_3 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4}$,... Bizonyítsuk be, hogy az a_n sorozat konvergens.
- (51) Legyen $a_1=1,\,a_2=1+\frac{1}{2^2},\,a_3=1+\frac{1}{2^2}+\frac{1}{3^2},\ldots$. Bizonyítsuk be, hogy az a_n sorozat konvergens.
- (52) Számítsuk ki a $\lim_{n\to\infty} s_n$ határértéket, ahol

(a)
$$s_n = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}$$

(b)
$$s_n = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)}$$
.

- (53) Tegyük fel, hogy az a_n sorozat konvergens. Mutassuk meg, hogy tetszőleges $\varepsilon > 0$ -hoz létezik olyan N, hogy $|a_n a_m| < \varepsilon$, han > N és m > N.
- (54) Igazoljuk az előző állítás megfordítását! Tegyük fel, hogy tetszőleges $\varepsilon > 0$ -hoz létezik olyan N, hogy $|a_n a_m| < \varepsilon$, ha n > N. Bizonyítsuk be, hogy a_n konvergens.

Sorok

(55) 🏟 Határozzuk meg, hogy az alábbiak közül melyik geometriai sor, és a konvergenseknek számítsuk ki az összegét!

(a)
$$8+1+\frac{1}{8}+\frac{1}{64}+\dots$$
 (b) $1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\dots$

(b)
$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
..

(c)
$$\frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots$$

(c)
$$\frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots$$
 (d) $1 + \frac{1}{1+x} + \frac{1}{(1+x)^2} + \dots$

(e)
$$\sum x^{2n+1}$$

(f)
$$x + \sqrt{x} + 1 + \frac{1}{\sqrt{x}} + \dots$$

(56) Határozzuk meg a

$$\sum_{k=0}^{\infty} b \left(1 + \frac{p}{100} \right)^{-k}$$

sor összegét.

- (57) 🏚 1971-ben a világ teljes vasfelhasználása kb. 794 millió tonna volt. Ha a világ teljes vas-készlete 249 milliárd tonna, és a felhasználás évi 5%-kal nő, akkor mennyi ideig lesz elég a készlet?
- (58) A Számítsuk ki a következő végtelen sorok összegét:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{5^{2n+1}}$$

(a)
$$\sum_{n=0}^{\infty} \frac{1}{5^{2n+1}}$$
, (b) $\sum_{n=0}^{\infty} \frac{1+(-1)^n}{10^n}$,

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
, (d) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$.

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

(59) \spadesuit Mutassuk meg, hogy az alábbi sorok divergensek

(a)
$$\sum_{n=1}^{\infty} \frac{n}{1+n}$$
, (b) $\sum_{n=1}^{\infty} \frac{101}{100}$, (c) $\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^n}$.

(60) Konvergensek-e a következő sorok: (alkalmazzuk a majoráns, hányados vagy gyök tesztet)

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n},$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n}$$
, (b) \spadesuit $\sum_{n=1}^{\infty} \frac{1}{2n-1}$, (c) $\sum_{n=1}^{\infty} \frac{1}{2+3n}$,

(c)
$$\sum_{n=1}^{\infty} \frac{1}{2+3n}$$

(d)
$$\sum_{k=2}^{\infty} \frac{1}{\ln k},$$

$$(f) \quad \sum_{n=1}^{\infty} \frac{2n-1}{(2n)!}$$

$$(g) \spadesuit \quad \sum_{p=1}^{\infty} \frac{1}{\sqrt{p}}$$

(i)
$$\sum_{k=1}^{\infty} \frac{k+1}{k(k+2)}$$

$$(j) \spadesuit \quad \sum_{n=1}^{\infty} \frac{n-1}{n^3+1}$$

(k)
$$\sum_{s=1}^{\infty} \frac{(2s)!}{s^s}$$

$$(j) \spadesuit \quad \sum_{i=1}^{\infty} \frac{n-1}{n^3+1}, \qquad (k) \quad \sum_{i=1}^{\infty} \frac{(2s)!}{s^s}, \qquad \qquad (l) \spadesuit \quad \sum_{i=1}^{\infty} \left(\frac{n+1}{3n}\right)^n.$$

(61) Számítsuk ki a következő hatványsorok konvergenciasugarát:

(a)
$$\sum_{n=1}^{\infty} nx^n$$

(a)
$$\sum_{n=1}^{\infty} nx^n$$
, (b) $\sum_{n=0}^{\infty} 3^{n+1}x^n$, (c) $\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$.

(c)
$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$
.

Függvények határértéke és folytonossága

(62) \spadesuit Az $f(x) = \frac{5}{2-x}$ függvény az x=2 helyen nincs értelmezve. Közelítsük meg a 2-t először az $x_n = 1 + \frac{n}{n+1}$ sorozattal, majd az $y_n = 2 + \frac{1}{n} (n \in \mathbb{N})$

sorozattal, és határozzuk meg a megfelelő függvényértékek sorozatának határértékét. Értelmezzük az eredményt.

(63) Határozzuk meg a következő határértékeket: (a)
$$\spadesuit \lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 5x + 6}$$
, (b) $\lim_{x \to 5} \frac{2 - \sqrt{x - 1}}{x^2 - 25}$,

(b)
$$\lim_{x\to 5} \frac{2-\sqrt{x-1}}{x^2-25}$$

(e)
$$\lim_{x \to 1} \left(\frac{2}{1 - x^2} - \frac{3}{1 - x^3} \right)$$
, (f) $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$,

(g)
$$\spadesuit$$
 $\lim_{x \to \infty} \frac{\sqrt{1+4x^2}}{1-x}$, (h) \spadesuit $\lim_{x \to \infty} \left[x \left(\frac{1}{a+\frac{1}{x}} - \frac{1}{a} \right) \right]$,

(j)
$$\lim_{x \to \infty} \frac{\sqrt[4]{x^3 + x - x}}{\sqrt{x^2 + 1} - \sqrt{x}}$$

(k)
$$\lim_{x \to \infty} \frac{x}{x + \sqrt[3]{x^3 + 1}}$$

(k)
$$\lim_{x \to \infty} \frac{x}{x + \sqrt[3]{x^3 + 1}}$$
, (l) $\lim_{x \to \infty} \frac{1 - \sqrt[3]{x^2 + 1}}{\sqrt[3]{2x^2} + \sqrt[4]{x^2 + x}}$

(m)
$$\triangleq \lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^{1+2x},$$
 (n) $\lim_{x \to \infty} \left(\frac{2x+3}{1+2x}\right)^{x+2}.$

(n)
$$\lim_{x \to \infty} \left(\frac{2x+3}{1+2x} \right)^{x+2}.$$

(64) Igazoljuk, hogy fennállnak a következő összefüggések:

(a)
$$\lim_{y \to 0} (1+y)^{\frac{1}{y}} = e,$$

(b)
$$\lim_{x \to 0} \sqrt[x]{1+3x} = e^3$$
,

(d)
$$\lim_{x \to 0} (1 + ax)^{\frac{n}{x}} = e^{na}, \quad (a > 0, \ n \in \mathbb{N}).$$

(65) Döntsük el, monotonok-e a következő függvények:

(a)
$$f(x) = 1 - x^2$$
 $(x < 1)$

(c)
$$f(x) = \frac{x}{4 - x^2}$$
 $(-2 < x < 2)$, (d) $f(x) = |1 - x^2|$ $(x > 1)$.

(d)
$$f(x) = |1 - x^2|$$
 $(x > 1)$

- (66) ♠ Lehetséges-e, hogy nem folytonos függvények összege, illetve szorzata folytonos?
- (67) ♠ Bizonyítsuk be, hogy minden páratlan fokú, valós együtthatós egyenletnek van valós gyöke.
- (68) Vizsgáljuk meg, hogy viselkednek a következő függvények szakadási helyeik környezetében és a végtelenben:

(e)
$$f(x) = \begin{cases} -\frac{1}{2}x^2, & \text{ha } x \le 2, \\ x, & \text{ha } x > 2, \end{cases}$$
 (f) $f(x) = \begin{cases} 1 - x^2, & \text{ha } x \le 0, \\ (1 - x)^2, & \text{ha } 0 < x \le 2, \\ 4 - x, & \text{ha } x > 2. \end{cases}$

(69) A Állapítsuk meg, hogy vannak-e olyan pontok, melyben az

$$f(x) = \begin{cases} 4 - x^2, & \text{ha } x \text{ racion\'alis }, \\ \\ 4 + x^2, & \text{ha } x \text{ irracion\'alis} \end{cases}$$

függvény folytonos.

(70) A Hol vannak értelmezve és hol folytonosak a következő függvények?

(a)
$$f(x) = x^5 + 4x$$
 (b) $f(x) = \frac{x}{1-x}$

(b)
$$f(x) = \frac{x}{1-x}$$

(c)
$$f(x) = \frac{1}{\sqrt{2-x}}$$
 (d) $f(x) = \frac{x}{x^2+1}$

(d)
$$f(x) = \frac{x}{x^2 + 1}$$

(e)
$$f(x) = \sqrt{x} + \frac{1}{x}$$

(e)
$$f(x) = \sqrt{x} + \frac{1}{x}$$
 (f) $f(x) = \frac{1}{\sqrt{x}} + (x+2)^{3/2}$.

(71) ♠ Legyen

$$f(x) := \frac{1}{x} \ (x \in]0,1]), \qquad g(x) := \frac{1}{x} \ (x \in [1,\infty[)$$

 $f(x):=\frac{1}{x} \ (x\in]0,1]), \qquad g(x):=\frac{1}{x} \ (x\in [1,\infty[).$ Igazoljuk, hogy mindkét függvény folytonos (mindenütt ahol értelmezve van), de f nem korlátos, g nem veszi fel a függvényértékek pontos alsó korlátját.

- (72) A Melyek azok a függvények, amelyek valószinűleg az időnek folytonos függvényei?
 - (a) Egy uncia arany ára a zürichi arany piacon.
 - (b) Egy növekedő gyermek magassága.
 - (c) Egy repülőgép föld feletti magassága.
 - (d) Egy autó által megtett út.

Differenciálszámítás

Deriváltak kiszámítása

- (73) \spadesuit Számítsuk ki az $f(x) = 1/x^2$ függvény deriváltját x = 2-ben a definíció segítségével, azaz határozzuk meg a $\lim_{x\to 2} \frac{1/x^2 1/2^2}{x-2}$ határértéket.

 (74) \spadesuit Bizonyítsuk be, hogy az f(x) = |x| függvény nem differenciálható x = 0-ban. Ez pl. igazolható
- egy olyan $x_n \to 0$ sorozat megadásával, melyre az $\frac{|x_n| |0|}{x_n 0} = \frac{|x_n|}{x_n}$ sorozat nem konvergens.
- (75) Ábrázoljuk az

függvényeket. Differenciálható-e f és g az x = 0-ban?

(76) ♠ Deriváljuk a következő függvényeket:

$$f(x) = \frac{x^2 - x}{5}; \qquad g(x) = x + \frac{4}{2x^2}; \qquad h(x) = \frac{2 + \sqrt{x}}{2 - \sqrt{x}};$$

$$i(x) = \sin 2x; \qquad j(x) = 2\sin x \cos x; \qquad k(x) = \sin x^3;$$

$$\ell(x) = \sin(\cos x); \qquad m(x) = \ln(\sin x); \qquad n(x) = x^x;$$

$$o(x) = x \operatorname{tg} x; \qquad p(x) = \left(\operatorname{tg} \sqrt{x^2 + \cos x}\right)^3; \qquad q(x) = \operatorname{tg} x/\cos x.$$

(77) ♠ Adjuk meg a következő függvények deriváltját:

$$f(x) = \ln \frac{\sqrt{2x+1}}{\sin x}; \qquad g(x) = \ln \left(\frac{\cos x \sin(2x)^2}{x^3 + (3x-1)^2}\right);$$

$$h(x) = x^{\cos x}; \qquad i(x) = x^2 + (\sin x)^{\sin x};$$

$$j(x) = (\ln 2x)^{3x^2}; \qquad k(x) = (3x^2)^{\sqrt[3]{x-4}};$$

$$\ell(x) = \lg\{5x^3 + 3x^2 - \sin^2(2-x)\}; \qquad m(x) = \left(\left(\sqrt[7]{(x-4)}\right)x^6\right)^{\sqrt[3]{x-4}}.$$

(78) Hol nem differenciálhatók az alábbi függvények? Számítsuk ki a differenciálhányadosukat ott, ahol differenciálhatók!

(79) Létezik-e a deriváltja az

$$f(x) = \begin{cases} 0 & \text{ha } x \le 0 \\ e^{-\frac{1}{x}} & \text{ha } x > 0 \end{cases}$$

függvénynek az x = 0 pontban?

(80) \spadesuit Határozzuk meg a következő függvények magasabbrendű deriváltjait:

(a)
$$f(x) = 8x^4 + 4x^5 + 3x^2 + 5$$
 $f^{(5)}(x) =$
(b) $f(x) = e^{-x^2}$ $f^{(2)}(x) =$
(c) $f(x) = e^x \cos x$ $f^{(3)}(x) =$
(d) $f(x) = x^2 \ln x$ $f^{(2)}(x) =$
(e) $f(x) = \arctan x$ $f^{(3)}(x) =$

Középértéktételek, Taylor tétel

- (81) \spadesuit Legyen $f(x) = x^2$. Lagrange tétele szerint létezik egy olyan $\xi \in (1,2)$ szám, hogy $\frac{2^2 1^2}{2 1} = 3 = f'(\xi)$. Keressük meg ξ -t.
- (82) \spadesuit Határozzuk meg az $y = \cos x$ függvény Maclaurin-sorát, valamint az $x = \pi$ körül a Taylor sorát.
- (83) Legyen $g(x) = 6x^6 25x^5 + 8x^4 9x^3 + 4x^2 + 1$. Írjuk fel a függvény x = 2 körüli Taylor-formuláját, azaz alakítsuk át a függvényt úgy, hogy benne csak az (x 2) hatványai szerepeljenek.
- (84) Határozzuk meg az $y = e^x$ függvény Taylor-sorát az x = 1 pont körül.

Függvényvizsgálat, monotonitás, konvexitás, szélsőérték

(85) Vizsgáljuk meg a következő függvényeket. (Határozzuk meg a zérushelyeket, határértékeket, azokat az intervallumokat, ahol monoton növekvő, illetve csökkenő, konvex illetve konkáv, végül ábrázoljuk a függvényt.)

$$(a) \spadesuit f_1(x) = 8(x^3 - 9x); \qquad (b) \spadesuit f_2(x) = (x - 1)^2 (x + 3)^2;$$

(c)
$$f_3(x) = \frac{x^2}{x^2 - 2x + 1};$$
 $(d) \spadesuit f_4(x) = \frac{1 + x^3}{x^2};$

(e)
$$f_5(x) = \frac{x}{(x-1)e^x};$$
 (f) $f_6(x) = \sin 2x + 2\cos x;$

(g)
$$f_7(x) = \frac{\sin x}{2 - \cos x}$$
 $0 < x < 2\pi$.

(86) Határozzuk meg a következő függvények lokális szélsőértékeit, és azokat az intervallumokat, amelyekben a függvény monoton, konvex/konkáv.

$$(a) \spadesuit f(x) = x^4 - x^2;$$
 $(b) \quad f(x) = \frac{x}{x^2 - 1};$

$$(c) \spadesuit f(x) = \frac{x^2 - 1}{x^2 + 1};$$
 $(d) \quad f(x) = \sin x + \cos x;$

(e)
$$f(x) = x\sqrt{1-x^2}$$
; $(f) \spadesuit f(x) = -x \ln x$.

(87) A következő függvényeknél vizsgáljuk meg, hogy a függvény görbéje mely intervallumban konvex, illetve konkáv. Határozzuk meg a függvény inflexiós helyeit is.

$$(a) \spadesuit f(x) = x^3 - 3x^2 - 9x + 9;$$
 $(b) \spadesuit g(x) = (x - 2)^2 - 5;$

(c)
$$h(x) = \frac{4x}{x^2 + 1}$$
; (d) $i(x) = 1 + \left(\frac{x+1}{x-2}\right)^2$;

$$(e) \spadesuit j(x) = \frac{x^2}{2} + \ln x; \qquad (f) \quad k(x) = \operatorname{arctg} x;$$

(g)
$$\ell(x) = \frac{1}{2}(e^x - e^{-x});$$
 (h) $m(x) = x(\ln x)^{-1};$

(k)
$$n(x) = -x^3 + 2x^2 - x;$$
 $o(x) = x^5 - 5x^2.$

(88) Ha f differenciálható az x_0 belső pontban, és f-nek ott helyi szélső értéke van, akkor $f'(x_0) = 0$. Adjunk meg egy olyan konkrét függvényt, hogy $f'(x_0) = 0$, de f-nek nincs helyi szélsőértéke x_0 -ban.

(89) L'Hospital szabály alkalmazásával határozzuk meg az alábbi határértékeket:

$$\begin{array}{lll} (a) \spadesuit \lim_{x \to 0} \frac{1 - \cos kx}{1 - \cos mx}; & \quad (b) & \lim_{x \to \infty} \frac{x}{\ln(x+1)}; & \quad (c) & \lim_{x \to 0} \frac{e^{2x} - 1}{\sin x}; \\ (d) & \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x - x}{x - \sin x}; & \quad (e) & \lim_{x \to 1} \frac{\ln x}{a^{\ln x} - x}; & \quad (f) & \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x}{\operatorname{tg} 5x}; \\ (g) \spadesuit \lim_{x \to 2} \frac{\ln \left(\frac{x}{2}\right)}{x - 2}; & \quad (h) & \lim_{x \to 0} \frac{\operatorname{arc} \operatorname{tg} x}{x}; & \quad (i) \spadesuit \lim_{x \to +0} \frac{7^x - 5^x}{x^2}; \end{array}$$

(d)
$$\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x - x}{x - \sin x};$$
 (e) $\lim_{x \to 1} \frac{\ln x}{a^{\ln x} - x};$ (f) $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x}{\operatorname{tg} 5x};$

$$(g) \spadesuit \lim_{x \to 2} \frac{\ln\left(\frac{x}{2}\right)}{x - 2}; \qquad (h) \quad \lim_{x \to 0} \frac{\arctan \operatorname{tg} x}{x}; \qquad (i) \spadesuit \lim_{x \to +0} \frac{7^x - 5^x}{x^2}$$

(j)
$$\lim_{x \to +0} 2x \ln x;$$
 (k) $\lim_{x \to +0} x^{\sin x};$ (l) $\lim_{x \to 0} 2x \operatorname{ctg} 3x;$

$$(m) \oint \lim_{x \to +0} (\sin x)^{\frac{1}{x}}; \qquad (n) \quad \lim_{x \to 0} x^2 e^{\left(x^{\frac{1}{2}}\right)}; \qquad (o) \quad \lim_{x \to 1} \frac{3x^2 - 2x - 1}{5x^2 - x - 4};$$

$$(s) \lim_{x \to 2} \frac{1}{x - 2} = \frac{1}{x - 2}, \qquad (t) \lim_{x \to 0} \frac{1}{x}, \qquad ($$

$$(s) \quad \lim_{x \to \infty} \frac{x}{5x - 1/x^2}; \qquad (t) \quad \lim_{x \to 0} \frac{\operatorname{tg} x}{\operatorname{tg} 5x}; \qquad \qquad (u) \spadesuit \lim_{x \to 0} \frac{\cos x - 1}{x^2}.$$

(90) Bizonyítsuk be az alábbi egyenlőtlenségeket

$$(a) \quad \log_a x < (x-1)\log_a e \qquad \qquad \text{ha} \quad x>1 \ a>1;$$

$$(b) \spadesuit \ln(1+x) > \frac{x}{x+1}$$
 ha $x > 0;$

(c)
$$(ax+1)e^{-ax} < 1$$
 ha $a > 0, x > 0$;

(d)
$$\frac{1+x}{1-x} > e^{2x}$$
 ha $0 < x < 1$.

- (91) \spadesuit A K=1 cm kerületű téglalapok közül melyiknek a legnagyobb a területe?
- (92) Az 1 m² területű téglalapok közül melyiknek a legnagyobb a kerülete?
- (93) Az r=2m sugarú körbe írható téglalapok közül melyiknek a legnagyobb a területe? És a kerülete?
- (94) Határozza meg az $f(x) = \frac{1+x^2}{1+x^4}$ függvény infimumát és szuprémumát a $]0,\infty[$ intervallumon!
- (95) \spadesuit Egy d átmérőjű kör alakú fatörzsből gerendát faragnak, melynek keresztmetszete b alapú és h magasságú téglalap. Mikor lesz a gerenda (bh^2 -tel arányos) szilárdsága a maximális?
- (96) Az R sugarú gömbbe írjunk maximális térfogatú hengert!
- (97) A Határozzuk meg azt a legnagyobb térfogatú kúpot, amelynek alkotója adott l hosszúságú!
- (98) Egymással ϑ szöget bezáró egyenesek mentén egy-egy hajó halad állandó u ill. v sebességgel. Határozzuk meg a hajók közti legrövidebb távolságot, ha egy adott időpillanatban a hajók távolsága az egyenesek metszéspontjától számítva a ill. b!
- (99) \spadesuit Egy személy x Ft bruttó jövedelme utáni A(x) Ft adóját az

$$A(x) = a(bx + c)^p + kx$$

képlettel számolhatjuk, ahol a, b, c pozitív állandók, $p > 1, k \in \mathbb{R}$. Milyen jövedelem mellett lesz az átlagos adóhányad

$$\bar{A}(x) = \frac{A(x)}{x}$$

minimális?

(100) \spadesuit Adott n darab szám, a_1, a_2, \ldots, a_n . Keressük meg azt az x számot amely ezeket legjobban közelíti abban az értelemben, hogy a

$$d(x) := (x - a_1)^2 + (x - a_2)^2 + \dots + (x - a_n)^2$$

a lehető legkisebb legyen!

- (101) \spadesuit Keressük meg az $f(x) = x^3 3x + 8$ függvény (globális) maximumát és minimumát a [-1,2]intervallumon.
- (102) ♠ Egy cég egyféle terméket gyárt. Egy adott időszakban termelt és eladott x mennyiségű termékből B(x) bevétele van, míg költségei K(x)-t tesznek ki (valamilyen pénzegységben). Az x mennyiségű termék eladásából származó P(x) profit

$$P(x) = B(x) - K(x).$$

Technikai korlátok miatt a cég egy adott időszakban legfeljebb \bar{x} mennyiségű terméket tud előállítani, így $x \in [0, \bar{x}].$

Milyen $x \in [0, 500]$ mellett lesz a profit maximális, ha

- B(x) = 1840x, $K(x) = 2x^2 + 40x + 5000,$ B(x) = 2240x, $K(x) = 2x^2 + 40x + 5000,$ B(x) = 1840x, $K(x) = 2x^2 + 1940x + 5000.$
- (103) \spadesuit Az előző feladatban legyen $K(x) = ax^3 + bx^2 + cx + d$ ahol $a > 0, b \ge 0, c, d > 0$ adott konstansok. Igazolja, hogy az

$$A(x) := \frac{K(x)}{x}$$

átlagos költségfüggvénynek van minimuma a $]0,\infty[$ intervallumban. Keressük meg ezt a minimumhelyet, ha b = 0.

- (104) \spadesuit Legyen most $K(x) = ax^b + c$ ahol $a > 0, b > 1, c \ge 0$. Igazolja, hogy az átlagos költségfüggvénynek van minimuma a $]0,\infty[$ intervallumban, és keresse is meg ezt a minimumhelyet!
- (105) \spadesuit Határozza meg az $x^2, e^x, \sin x$ függvények elaszticitását!

Kétváltozós függvények

- (106) Határozza meg a következő függvények értelmezési tartományát (és ábrázolja a kapott halmazokat \mathbb{R}^2 -ben):
 - (a) $f(x,y) = \ln xy;$
 - (b) $f(x,y) = \sqrt{1 \frac{x^2}{a^2} \frac{y^2}{b^2}}$ (a, b > 0);
 - (c) $f(x,y) = \sqrt{\sin \pi (x^2 + y^2)}$;

(d)
$$f(x,y) = \frac{1}{\arccos(\sqrt{x^2 + y^2} - 1)};$$

- (107) Határozza meg, milyen alakzatot alkotnak az $f(x,y) = z_0$ egyenlet megoldásai, ha
 - (a) $f(x,y) = x^2 + y^2, z_0 = 25;$
 - (b) $f(x,y) = \cos \pi(x+y), z_0 = 1;$
 - (c) $f(x,y) = \operatorname{tg} \frac{\pi}{4} xy$, $z_0 = 1$;
 - (d) $f(x,y) = \sin \pi (x^2 + y^2), z_0 = 0.$
- (108) (a) Szemléltessük az $f(x,y) = x^2 + y^2$ $(x,y) \in \mathbb{R}^2$ függvényt!
 - (b) Szemléltessük az $f(x,y) = \sqrt{x^2 + y^2}$ $(x,y) \in \mathbb{R}^2$ függvényt!
- (109) Létezik-e határértéke az (\mathbb{R}^2 -beli) (a_n) sorozatnak? Ha igen, határozza meg.
 - (a) $a_n = \left(\frac{n^2}{n^3 + 1}, \ 2^{-n} \right);$
 - (b) $a_n = \left(\frac{\sin n}{n}, \frac{2n}{n+1}\right);$

(c)
$$a_n = (n, \frac{1}{n^2}).$$

(110) Léteznek-e a következő függvényhatárértékek? Ha igen, határozza meg.

(a)
$$\oint \lim_{(x,y)\to(2,-2)} \frac{x^2 + 2xy + y^2}{x^2 - y^2};$$

(b)
$$\lim_{(x,y)\to(3,0)} \frac{\sin xy}{y};$$

(c)
$$\lim_{(x,y)\to(1,1)} \frac{1}{x-y}$$
;

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x+xy-y}{x+xy+y}$$

(111) Folytonosak-e az alábbi, az egész \mathbb{R}^2 -n értelmezett függvények?

(a)
$$f(x,y) = x^2 - y$$
;

(b)
$$f(x,y) = \sin xy$$
;

(c)
$$f(x,y) = \ln(x^2 + y^2 + 1)$$
.

(112) Folytonosak-e (0,0)-ban a következő függvények ?

(a)
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0); \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0); \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Többváltozós függvények differenciálása

(113) 📤 Számítsa ki a következő függvények első parciális deriváltjait, majd hozza őket egyszerűbb alakra.

(a)
$$f(x,y) = x^2 - 2xy + y^2 - x + 1;$$

(b)
$$f(x,y) = (x^3 - 2x^2y + y^2)^7$$
;

(c)
$$f(x,y) = xy \cos x^2 y^2;$$

(d)
$$f(x,y) = e^{x^2 + y^2 - 1}$$
;

(e)
$$f(x,y) = (2x+y)^{2x-y}$$
.

(114) 🛦 Számítsa ki a következő függvények másodrendű parciális deriváltjait.

(a)
$$f(x,y) = x^3 - 3x^2y + xy^2 + y^3$$
;

(b)
$$f(x,y) = \frac{x-y}{x+y};$$

(c)
$$f(x,y) = \sin x \cos y$$
;

(d)
$$f(x,y) = \frac{1}{x^2 + y^2}$$
.

(115) ** Mutassa meg, hogy az alábbi függvény parciális differenciálhányadosai az origóban nem folytonosak, de ott a függvény mégis differenciálható.

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

(116) Az $y^6 + y^5 - x^2 - x + 4 = 0$ egyenlet implicit módon meghatározza az y = f(x) függvényt, és f(2) = 1. Határozza meg f'(2)-et!

Kétváltozós függvények szélsőértékszámítása

- (117) Határozza meg az alábbi függvények stacionárius pontjait és lokális szélsőérték helyeit, azok típusát és nagyságát.
 - (a) $f(x,y) = x^2 + 2y^2 x 2y 1,$ $(x,y \in \mathbb{R});$

 - (c) $f(x,y) = 2x^4 + y^4 x^2 2y^2,$ $(x,y \in \mathbb{R});$
 - (d) $\oint f(x,y) = \frac{20}{x} + \frac{50}{y} + xy,$ (x > 0, y > 0);
 - (e) $f(x,y) = e^{-(x^2 2xy + 2y^2)},$ $(x, y \in \mathbb{R});$
 - (f) $f(x,y) = x^2 4xy + y^3 + y^2 + 5,$ $(x, y \in \mathbb{R});$
 - (g) $f(x,y) = x(x^2 + y 1)^2,$ $(x, y \in \mathbb{R});$
 - (h) $f(x,y) = e^{x^2 y} (5 2x + y),$ $(x, y \in \mathbb{R});$

 - (1) \star $f(x,y) = x^2 + xy + y^2 4 \ln x 10 \ln y$, (x > 0, y > 0).
- (118) Határozza meg az alábbi függvényeknek a megadott korlátos, zárt (kompakt) D halmazon felvett minimumát és maximumát!
 - (a) f(x,y) = x 2y 3, $D = \{ (x,y) \in \mathbb{R}^2 : x, y, x + y \in [0,1] \};$

 - (d) $f(x,y) = x^2 xy + y^2$, $D = \{ (x,y) \in \mathbb{R}^2 : |x| + |y| \le 1 \}$;
 - (e) f(x,y,z) = x + y + z, $D = \{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 < z < 1 \}$.
- (119) Egy vállalat kétféle terméket gyárt, A-t és B-t. Tegyük föl, hogy x egységnyi A és y egységnyi B termelésének napi költsége

$$C(x,y) = 0.04x^2 + 0.01xy + 0.01y^2 + 4x + 2y + 500$$
 euro.

Egységnyi A termék ára 15 euro, B ára 9 euro. Határozzuk meg x és y értékét úgy, hogy a profit maximális legyen.

Határozatlan integrál

(120) 📤 Az alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk ki a következő integrálokat!

(121) Az

$$\int f^{\alpha} f' = \frac{f^{\alpha+1}}{\alpha+1} \ (\alpha \neq -1) \text{ és } \int \frac{f'}{f} = \ln|f|$$

formulák segítségével határozzuk meg a következő integrálokat!

a)
$$\int \frac{x+1}{x^2+2x-1} dx \, \spadesuit$$
b)
$$\int \frac{x-2}{x(x-4)} dx$$
c)
$$\int \frac{1}{x \ln x} dx \, \spadesuit$$
d)
$$\int \tan 2x \, dx \, \spadesuit$$
e)
$$\int \frac{\sin 2x}{1+\sin^2 x} dx$$
f)
$$\int \frac{8x-7}{4x^2-7x+11} dx$$
g)
$$\int \frac{e^{2x}}{1+e^{2x}} dx$$
h)
$$\int \frac{2x}{1+x^2} dx$$
i)
$$\int \frac{x}{2+3x^2} dx$$
k)
$$\int \frac{2x+5}{1+3x^2} dx \, \spadesuit$$
l)
$$\int \frac{1+x}{2+3x^2} dx$$

(122) Számítsuk ki (parciális integrálással) a következő határozatlan integrálokat!

a)
$$\int xe^x dx \, \spadesuit$$

b) $\int x^3 e^x dx$
c) $\int x \sin x \, dx$
d) $\int x \ln x \, dx \, \spadesuit$
i) $\int (x^3 + 3x^2 + 1)e^x \, dx$
j) $\int (x^2 + 1) \cos x \, dx$
k) $\int (x^3 - 3x^2 - 7) \sin x \, dx$
e) $\int e^x \cos x \, dx \, \spadesuit$
g) $\int e^{-x} \sin x \, dx$
h) $\int \ln x \, dx$
m) $\int x^7 \ln x \, dx$
n) $\int x \arctan \operatorname{tg} x \, dx \, \spadesuit$
l) $\int (x^2 + 1) \ln x \, dx$
p) $\int \arcsin x \, dx$

(123) Alkalmas helyettesítésekkel határozzuk meg a következő határozatlan integrálokat!

a)
$$\int xe^{-x^2}dx \, \spadesuit$$
b)
$$\int \frac{3x}{(2+3x^2)^3}dx$$
c)
$$\int \frac{x}{(1+x^2)^2}dx \, \spadesuit$$
d)
$$\int \frac{x}{(8x^2+27)^{\frac{2}{3}}}dx$$
e)
$$\int \frac{x}{\sqrt{1-x^2}}dx$$
f)
$$\int \sin^3 x \cos x \, dx \, \spadesuit$$
g)
$$\int \frac{3+x}{\sqrt{5-2x^2}} \, dx$$
h)
$$\int \frac{\sin x}{\sqrt{\cos^3 x}} \, dx$$
i)
$$\int \frac{\arctan \tan^3 x}{1+x^2} \, dx \, \spadesuit$$
j)
$$\int \frac{\tan^2 x}{\cos^2 x} \, dx$$

(124) Integráljuk a következő racionális törtfüggvényeket!

a)
$$\int \frac{x^3}{x^2 + 1} dx \, \spadesuit$$

b) $\int \frac{1}{x^2 - 2x - 3} dx \, \spadesuit$
c) $\int \frac{1}{x^2 + 2x + 6} dx$
d) $\int \frac{2x + 3}{x^2 + 3x - 10} dx \, \spadesuit$
e) $\int \frac{5}{(x - 2)(x + 5)} dx \, \spadesuit$
f) $\int \frac{2x + 3}{(x - 2)(x + 5)} dx$
g) $\int \frac{x}{x^2 - 2x - 3} dx$
h) $\int \frac{3x + 1}{x^2 + 5x + 6} dx$

(125) Bontsa fel a

racionális törteket parciális törtekre, és **az együtthatók kiszámolása nélkül** (határozatlan együtthatókkal) határozza meg e függvények integrálját!

(126) Alkalmas helyettesítéssel számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{1}{1+2\cos x} dx \quad (t=\operatorname{tg}\frac{x}{2})$$
b)
$$\int \frac{1}{\sqrt{x+1}+(\sqrt{x+1})^3} dx \, \spadesuit$$
c)
$$\int \frac{e^{4x}}{1+e^x} dx$$
d)
$$\int \sqrt{e^x-1} dx \quad (e^x-1=t^2)$$
e)
$$\int \operatorname{tg}^3 x dx \quad (t=\operatorname{tg} x)$$
f)
$$\int \sqrt{x}e^{\sqrt{x}} dx$$
g)
$$\int \sqrt{1-x^2} dx \quad (x=\sin t)$$
h)
$$\int \frac{1}{1+\sqrt{x}} dx \, \spadesuit$$
i)
$$\int \frac{x^3}{(x+2)^4} dx$$
k)
$$\int \frac{dx}{1+\sin x}$$
l)
$$\int \frac{dx}{1+\cos x}$$
m)
$$\int \frac{\ln x}{x\sqrt{1+\ln x}} dx \, \spadesuit$$
o)
$$\int \frac{dx}{5+3\cos x}$$
p)
$$\int \sin(\ln x) \, dx \, \spadesuit$$

Határozott integrál

(127) 🛦 Számítsuk ki a következő határozott integrálokat!

$$\int_{22}^{3} 1 \, dx \; ; \quad \int_{0}^{2\pi} \sin x \, dx \; ; \quad \int_{\sqrt{2}}^{-1} \cos x \, dx \; ; \quad \int_{-1}^{\pi} x^{2} \, dx \; ; \quad \int_{1}^{100} \frac{1}{x} \, dx.$$

(128) Legyen

$$f(x) = \begin{cases} -2 & \text{ha} & x < 1 \\ 3 & \text{ha} & x = 1 \\ -1 & \text{ha} & x > 1 \end{cases} ; \quad g(x) = \begin{cases} -1 & \text{ha} & x < 0 \\ 2x & \text{ha} & x > 0. \end{cases}$$

Mennyi a következő integrálok értéke?

$$\int_{-5}^{3} f(x) \, dx \; ; \quad \int_{-1}^{2} g(x) \, dx.$$

(129) A Számítsuk ki a következő integrálokat!

$$\int_{0}^{3} x^{2} e^{2x} dx \; ; \quad \int_{-2}^{2} \frac{2x}{(x^{2} - 100)^{7}} dx \; ; \quad \int_{\pi/3}^{\pi/2} \operatorname{ctg}(x) dx.$$

(130) Számítsuk ki a következő határozott integrálokat!

$$\int_{2}^{3} \sqrt{x} \ e^{\sqrt{x}} \, dx \ ; \quad \spadesuit \int_{4}^{12} \frac{1}{1 - x^{2}} \, dx \ ; \quad \int_{0}^{e} \frac{e^{4x}}{1 + e^{x}} \, dx \ ; \quad \int_{2}^{4} \frac{1}{x^{3} - x} \, dx.$$

Improprius integrálok

(131) Léteznek-e a következő improprius integrálok? Ha igen, számítsuk ki őket!

$$\oint_{1}^{\infty} \ln x \, dx \; ; \quad \oint_{0}^{e} \ln x \, dx \; ; \quad \int_{-1}^{1} \ln |x| \, dx \; ; \quad \int_{-\infty}^{1} \frac{1}{x} \, dx \; ; \quad \int_{-\infty}^{\infty} \frac{1}{x} \, dx \; ; \quad \oint_{+\infty}^{0} e^{-x} \, dx \; ;$$

$$\int\limits_{-\infty}^{0} e^{x} \, dx \; ; \quad \int\limits_{-\infty}^{1} \frac{1}{x^{2}} \, dx \; ; \quad \int\limits_{-\infty}^{0} \frac{1}{x^{2}} \, dx \; ; \quad \int\limits_{0}^{3} \frac{1}{\sqrt{x}} \, dx \; ; \quad \int\limits_{2}^{\infty} \frac{3}{\sqrt{x}} \, dx \quad \spadesuit \int\limits_{0}^{\infty} \frac{dx}{1+x^{2}} .$$

(132) Léteznek-e az alábbi improprius integrálok? Ha igen, számítsuk ki őket!

$$\int_{1}^{\infty} \frac{dx}{x^{3}} \; ; \quad \int_{2}^{\infty} \frac{dx}{(1-x)^{2}} \; ; \quad \int_{4}^{\infty} x e^{-2x} \, dx \; ; \quad \spadesuit \int_{0}^{\infty} \frac{dx}{\sqrt{2+6x}} \; ;$$

$$\int_{0}^{\infty} x^{2} e^{-x/3} dx \; ; \quad \int_{0}^{3} \frac{dx}{\sqrt{x}} \; ; \quad \spadesuit \int_{0}^{2} \frac{dx}{\sqrt{2-x}} \; ; \quad \int_{0}^{1} \frac{x+1}{\sqrt{x}} dx.$$

Az integrál alkalmazásai

(133) Egy munkás bére egy adott év n-edik napján

$$b(n) = 500 + n \cdot 0, 5 + n^2 \cdot 0,001$$

forint. Mennyit keres így egy év alatt? Helyes-e az integrálszámítást használni a feladat megoldásához?

- (134) \spadesuit Egy üzem raktárában r egység anyagmennyiség van, és ezt T nap alatt dolgozzák fel. A rendelkezésre álló adatok szerint a raktárkészlet fogyásának grafikonja jól közelíthető egy $y=a(x-b)^2$ parabolával a [0,T] intervallumon. Számítsuk ki a-t és b-t, majd határozzuk meg a T napra fizetendő raktározási költségeket, ha egy egység raktározása R forintba kerül naponként .
- (135) Legyen $A = \{(x,y) \mid y \ge x^2\}$ és $B = \{(x,y) \mid y \le x+2\}$. Mennyi $A \cap B$ területe ?
- (136) Mennyi az $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ellipszis területe?
- (137) \spadesuit A t=0 időpillanatban kezdjük el kitermelni az olajat egy olyan kútból, amely 10^5 hordó olajat taralmaz. A kitermelés sebessége a t időpillanatban $u(t)=t^2+t$. Mikor merül ki a kút?

Kettős integrál

- (139) Integrálja a következő függvényeket a megadott $\,A\,$ tartományon !

 - $\iint_{A} (x^2 + y^2 + 1) \, dx \, dy \qquad A = \{(x, y) \mid x^2 + y^2 \le 1, nx \ge y\} \quad (n > 0 \text{ adott}).$
- (140) \spadesuit Határozza meg a $\iint x\,dxdy$ kettős integrál értéket, ahol $A = \{ (x,y) | 2x^2 - y \stackrel{A}{\leq} 0, \ 2 - 2x^2 \ge y \ \}!$
- (141) Határozza meg a $\iint x \, dx dy$ kettős integrál értéket, ahol A az $y = x^2 3x$ és az $y = -x^2 x + 4$ parabolák által közrezárt tartomány!
- (142) \spadesuit Határozza meg a $\iint (x^2 + 2y) dxdy$ kettős integrál értéket, ahol A az x = 0, y = 0 és az x + 2y = 2 egyenletű egyenesek által határolt háromszög!
- (143) Határozza meg a $\iint e^{\frac{x}{y}} dxdy$ kettős integrál értéket, ahol A az x=0, y=1 és az $y^2=x$ egyenletű görbék által határolt síkrész!