Lecture 12

Hypothesis Testing & Inference on Two Population Means

Text: Chapters 5, 6

STAT 8010 Statistical Methods I February 25, 2020

> Whitney Huang Clemson University

Notes

Agenda

- Hypothesis Testing
- 2 Type I & Type II Errors
- 3 Duality of Hypothesis Test with Confidence Interval
- 4 Inference on Two Population Means

Notes			

Example (taken from The Cartoon Guide To Statistics)

New Age Granola Inc claims that average weight of its cereal boxes is 16 oz. The Genuine Grocery Corporation will send back a shipment if the average weight is any less.

Suppose Genuine Grocery Corporation takes a random sample of 49 boxes, weight each one, and compute the sample mean $\bar{X}=15.90$ oz and sample standard deviation s=0.35 oz.

Perform a hypothesis test at 0.05 significant level to determine if they would reject H_0 , and therefore, this shipment

Hypothesis Testing & Inference on Two Population Means				
CLEMS#N				
Hypothesis Testing				

Notes			

Cereal Weight Example Cont'd

 \bullet $H_0: \mu = 16$ vs. $H_a: \mu < 16$

② Test Statistic: $t_{obs} = \frac{15.9 - 16}{0.35/\sqrt{49}} = -2$

③ Rejection Region Method: $-t_{0.05,48} = -1.68$ ⇒ Rejection Region is $(-\infty, -1.68]$. Since t_{obs} is in rejection region, we reject H_0

P-Value Method: $\mathbb{P}(t^* \le -2) = 0.0256 < \alpha = 0.05 \Rightarrow$ reject H_0

Draw a Conclusion: We do have enough statistical evidence to conclude that the average weight is less than 16 oz at 0.05 significant level

Notes

12.4

Cereal Weight Example Cont'd

Hypothesis
Testing &
Inference on Two
Population Means

CLEMS Testing
Type I & Type II
Errors

Duality of
Hypothesis Test
with Confidence
Interval
Inference on Two
Population Means

Notes				

Example

A series of blood tests were run on a particular patient over five days. It is of interest to determine if the mean blood protein for this patient differs from 7.25, the value for healthy adults. Suppose the sample mean (n=20) is 7.35 and sample standard deviation is 0.5. Perform a hypothesis test using significance level of 0.05

1 $H_0: \mu = 7.25$ vs. $H_a: \mu \neq 7.25$

 $t_{obs} = \frac{7.35 - 7.25}{0.5/\sqrt{20}} = 0.8944$

9 P-value: $2 \times \mathbb{P}(t^* \ge 0.8944) = 0.3823 > 0.05$

We do not have enough statistical evidence to conclude that the mean blood protein is different from 7.25 at 5% significant level

Hypothesis Testing & Inference on Two Population Means
CLEMS N
Hypothesis Testing

Notes			
-			

Example Cont'd

Hypothesis Testing & Inference on Two Population Means LEMS Testing Hypothesis Testing Type I & Type II Errors Duality of Hypothesis Test with Confidence interval Inference on Two Population Means

Recap: Hypothesis Testing

• State the null H_0 and the alternative H_a hypotheses

ullet $H_0: \mu = \mu_0 \text{ vs } H_a: \mu > \mu_0 \Rightarrow \text{Upper-tailed}$

 $\bullet \ \, H_0: \mu = \mu_0 \text{ vs } H_a: \mu < \mu_0 \Rightarrow \text{Lower-tailed}$

 $\bullet \ \, H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0 \Rightarrow \text{Two-tailed}$

Ompute the test statistic

$$t^*=rac{ar{X}_n-\mu_0}{s/\sqrt{n}}$$
 (σ unknown); $z^*=rac{ar{X}_n-\mu_0}{\sigma/\sqrt{n}}$ (σ known)

Identify the rejection region(s) (or compute the P-value)

Oraw a conclusion

We do/do not have enough statistical evidence to conclude H_a at α significant level

NIVERSIT

Type I & Type II

Duality of Hypothesis Test with Confidence

Inference on Two

Notes

Notes

Region Region and P-Value Methods

Notes			

The 2×2 Decision Paradigm for Hypothesis Testing

True State	De	ecision
True State	Reject H_0	Fail to reject H_0
H_0 is true	Type I error	Correct
H_0 is false	Correct	Type II error

Errors in Hypothesis Testing

- \bullet The probability of a type I error is denoted by α
- The probability of a type II error is denoted by β

Type I & Type II Errors

- Type I error: $\mathbb{P}(\mathsf{Reject}\,H_0|H_0 \text{ is true}) = \alpha$
- Type II error: $\mathbb{P}(\mathsf{Fail} \ \mathsf{to} \ \mathsf{reject} \ H_0|H_0 \ \mathsf{is} \ \mathsf{false}) = \beta$

 $\alpha \downarrow \beta \uparrow$ and vice versa

Notes

Notes

Type II Error and Power

- \bullet The type II error, $\beta,$ depends upon the true value of μ (let's call it $\mu_a)$
- ullet We use the formula below to compute eta

$$\beta(\mu_a) = \mathbb{P}(z^* \le z_\alpha - \frac{|\mu_0 - \mu_a|}{\sigma/\sqrt{n}})$$

• The power (PWR): $\mathbb{P}(\text{Reject }H_0|H_0\text{ is false})=1-\beta.$ Therefore $\text{PWR}(\mu_a)=1-\beta(\mu_a)$

Question: What increases Power?

Testing & Inference on Two Population Means				
CLEMS N				
Hypothesis Testing Type I & Type II Errors				

Notes

Sample Size Determination

Suppose that we wish to determine what sample size is required to detect the difference between a hypothesized mean and true mean $\mu_0-\mu_a,$ denoted by $\Delta,$ with a given power $1-\beta$ and specified significance level α and known standard deviation σ . We can use the following formulas

$$n=\sigma^2rac{(z_{lpha}+z_{eta})^2}{\Delta^2}$$
 for a one-tailed test

$$n pprox \sigma^2 rac{(z_{lpha/2} + z_{eta})^2}{\Delta^2}$$
 for a two-tailed test

Example

An existing manufacturing process produces, on average, 100 units of output per day. A pilot plant is used to evaluate a possible process change. Suppose the Company CEO wants to know if yield is increased. The CEO uses $\alpha=0.05$ and the sample mean (n=25) is 103. Do we have sufficient evidence to conclude that the mean yield exceeds 100 if $\sigma = 10$?

- **1** $H_0: \mu = 100$ vs. $H_a: \mu > 100$
- $z_{obs} = \frac{103-100}{10/\sqrt{25}} = 1.5$
- The cutoff value of the rejection region is $z_{0.05} = 1.645$. Therefore we do not have enough evidence to conclude that the new process mean yield exceeds 100

I١	Ю	ιe	٠

Notes

Example Cont'd

Suppose the true true mean yield is 104.

What is the power of the test?

$$\begin{split} \beta(\mu = 104) &= \mathbb{P}\left(Z \le z_{0.05} - \frac{|100 - 104|}{10/\sqrt{25}}\right) \\ &= \mathbb{P}(Z \le 1.645 - 4/2) = \mathbb{P}(Z \le -0.355) \\ &= \Phi(-0.355) = 0.3613 \end{split}$$

Therefore, the power is 1 - 0.3613 = 0.6387

• What sample size is required to yield a power of 0.8 with a significance level of 0.05?

$$n = \sigma^2 \frac{(z_{0.05} + z_{0.2})^2}{\Delta^2} = 10^2 \frac{(1.645 + 0.8416)^2}{4^2} = 38.6324$$

Therefore, the required sample size is 39

Notes			

Duality of Hypothesis Test with Confidence Interval

There is an interesting relationship between CIs and hypothesis tests. If H_0 is rejected with significance level α then the corresponding confidence interval does not contain the value μ_0 targeted in the hypotheses with the confidence level $(1-\alpha),$ and vice versa

Hypothesis test at α level	(1-lpha) imes 100% CI
$H_0: \mu=\mu_0$ vs. $H_a: \mu eq \mu_0$	$\bar{X} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu > \mu_0$	$(\bar{X}-t_{\alpha,n-1}s/\sqrt{n},\infty)$
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu < \mu_0$	$\left(-\infty, \bar{X} + t_{\alpha, n-1)s/\sqrt{n}}\right)$

Notes			

Comparing Two Population Means

- We often interested in comparing two groups (e.g.)
 - Does a particular pesticide increase the yield of corn per acre?
 - Do men and women in the same occupation have different salaries?
- The common ingredient in these questions: They can be answered by conducting statistical inferences of two populations using two (independent) samples, one from each of two populations

1	Notes				
_					
-					
-					

Notation

- Parameters:
 - $\bullet \ \ \textbf{Population means:} \ \mu_1, \mu_2$
 - Population standard deviations: σ_1, σ_2
- Statistics:
 - ullet Sample means: $ar{X}_1, ar{X}_2$
 - ullet Sample standard deviations: s_1, s_2
 - Sample sizes: n_1, n_2

Hypothesis Testing & Inference on Two Population Means
CLEMS N
Inference on Two Population Means

Notes		

Statistical Inference for $\mu_1 - \mu_2$

- Point estimate: $\bar{X}_1 \bar{X}_2$
- Interval estimate: Need to figure out $\sigma_{\bar{X}_1 \bar{X}_2}$
- Hypothesis Testing:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1-\mu_2=0$ vs. $H_a: \mu_1-\mu_2\neq 0$

Notes

Notes

Confidence Intervals for $\mu_1 - \mu_2$

If we are willing to **assume** $\sigma_1 = \sigma_2$, then we can "pool" these two (independent) samples together to estimate the common σ using s_p :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

We can then derive the (estimated) standard error of $ar{X}_1 - ar{X}_2$, which takes the following form

$$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

With CLT (assuming sample sizes are sufficiently large), we obtain the $(1-\alpha) \times 100\%$ CI for $\mu_1 - \mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm \underbrace{t_{\alpha/2, n_1 + n_2 - 1} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}_{\text{margin of error}}$$

Confidence Intervals for $\mu_1 - \mu_2$: What if $\sigma_1 \neq \sigma_2$?

• We will use s_1^2, s_2^2 as the estimates for σ_1^2 and σ_2^2 to obtain the standard error:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

• The formula for the degrees of freedom is somewhat complicated:

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1} + \frac{(s_2^2/n_2)^2}{n_2}}$$

 \bullet We can then construct the $(1-\alpha)\times 100\%$ CI for $\mu_1 - \mu_2$:

$\bar{X}_1 - \bar{X}_2$	$\pm t(\alpha/2,$	df calculated from above)	$\frac{s_1^2}{n_1}$ +	$-\frac{s_2^2}{n_2}$
point estimate		margin of error		

Notes