BE-I/11(A)

236179

(New Course)

ENGINEERING PHYSICS—COURSE NO. BSC-102

Time Allowed—3 Hours

Maximum Marks—100

Note: Attempt five questions in all, selecting at least two questions from each section. Each question carries 20 marks. Use of scientific calculator is allowed.

Section A

- 1. (a) Derive the equation of continuity $\nabla \cdot \vec{J} + \frac{\partial P}{\partial t} = 0$. How does it lead to the concept of displacement current? Explain its significance in Maxwell's equations of electromagentism. Show that it has dimensions of conventional current. 12
 - (b) An electromagnetic wave propagates through a medium having relative permittivity 4 and relative permeability 1.Find the velocity of the wave.
- (a) Explain the physical significance of a wave-function. Discuss the conditions and limitations, a wavefunction must obey.
 Derive time independent Schrödinger's wave equation and express it for a free particle also.

[Turn over

- (b) Prove uncertainty relation for energy and time from position momentum uncertainty relation.
- 3. (a) Distinguish between free, damped and forced oscillations.

 Deduce the differential equation of a forced harmonic oscillator and find its solution. Discuss its different cases.
 - (b) Show that the ratio of the energy lost per cycle to the energy stored in the damped oscillator is $\frac{2\pi}{Q}$, where Q is the quality factor.
- (a) Explain what is meant by the divergence of a vector field A. Derive expression for Div A in Cartesian co-ordinates.
 Discuss its physical significance.
 - (b) Find the probability that a particle trapped in a box of width 'L' can be found between 0.1 L and 0.2 L for the ground and the first excited states.

Section B

5. (a) Describe drift and diffusion currents and derive Einstein's relation for a P-N junction.

- (b) The resistivity of a doped silicon material is $9 \times 10^{-3} \Omega m$. The Hall co-efficient is 3.6×10^{-4} m³/C. Assume single carrier conduction, find the mobility and density of charge carriers.
- 6. (a) Differentiate between Fresnel and Fraunhofer's class of diffraction. Prove and explain the rectilinear propagation of light by using the concept of Fresnel's half period zones.
 - (b) Calculate the thickness of a doubly refracting crystal required to introduce a path difference of $\frac{\lambda}{2}$ between O and E rays when λ = 6000 Å, μ_o = 1.65 and μ_E = 1.48.
- 7. (a) Differentiate between:
 - (i) Laser and Ordinary light
 - (ii) Holography and Photography

Explain the principle of Holography. How is hologram produced and how is the image reconstructed from it.

Discuss some of its applications.

- (b) A glass clad fibre is made with core glass of refractive index 1.5 and the cladding is doped to give a fractional index difference of 0.0005. Find:
 - (i) Cladding index and
 - (ii) Numerical aperture.

8

- 8. (a) Obtain expressions for charge densities in n-type and
 P-type semiconductors. Give an expression for the mobility
 of a charge carrier.
 - (b) Describe the construction of a Nicol prism. Explain how it can be used as a polariser and as an analyzer. 10