Analysis of variance - ANOVA

Krzysztof Podgórski Department of Mathematics and Statistics University of Limerick

October 7, 2009

ANOVA - Example

3.2 Fluorescence from solutions stored under different conditions

Conditions (Second Second Seco	Replicate measurements	Mean
A Freshly prepared S Stored for 1 hour in the dark C Stored for 1 hour in subdued light D Stored for 1 hour in bright light	102, 100, 101 101, 101, 104 97, 95, 99 90, 92, 94	101 102 97 92

 For each sample, say the jth sample we compute variance within sample

$$S_j^2 = \frac{\sum_{i=1}^n (X_{ji} - \bar{X}_j)^2}{n-1}.$$

 For each sample, say the jth sample we compute variance within sample

$$S_j^2 = \frac{\sum_{i=1}^n (X_{ji} - \bar{X}_j)^2}{n-1}.$$

Within variance estimator of variance

$$\hat{\sigma}^2 = \sum_{j=1}^h s_j^2/h = \sum_{j=1}^h \sum_{i=1}^n (X_{ji} - \bar{X}_j)^2/(h(n-1)).$$

 For each sample, say the jth sample we compute variance within sample

$$S_j^2 = \frac{\sum_{i=1}^n (X_{ji} - \bar{X}_j)^2}{n-1}.$$

Within variance estimator of variance

$$\hat{\sigma}^2 = \sum_{j=1}^h s_j^2 / h = \sum_{j=1}^h \sum_{i=1}^n (X_{ji} - \bar{X}_j)^2 / (h(n-1)).$$

R computations

```
x=matrix(c(102,100,101,101,101,104,97,95,99,90,92,94), byrow=T,ncol=3)
s=apply(x,1,var)
mean(s)
```


Compute overall mean of the data

$$\bar{x} = \sum_{i=1}^{n} \sum_{j=1}^{h} x_{ij}/(nd).$$

Compute overall mean of the data

$$\bar{x} = \sum_{i=1}^{n} \sum_{j=1}^{h} x_{ij}/(nd).$$

• For each sample, say the jth sample we compute its mean

$$\bar{x}_j = \sum_{i=1}^n X_{ji}/m.$$

Compute overall mean of the data

$$\bar{x} = \sum_{i=1}^{n} \sum_{j=1}^{h} x_{ij}/(nd).$$

For each sample, say the jth sample we compute its mean

$$\bar{X}_j = \sum_{i=1}^n X_{ji}/m.$$

Between variance estimator of variance

$$\tilde{\sigma}^2 = n \sum_{j=1}^h (\bar{x}_j - \bar{x})/(h-1).$$

Compute overall mean of the data

$$\bar{x} = \sum_{i=1}^{n} \sum_{j=1}^{h} x_{ij}/(nd).$$

For each sample, say the jth sample we compute its mean

$$\bar{X}_j = \sum_{i=1}^n X_{ji}/m.$$

Between variance estimator of variance

$$\tilde{\sigma}^2 = n \sum_{i=1}^h (\bar{x}_j - \bar{x})/(h-1).$$

R computations

```
n=dim(x)[2]
m=apply(x,1,mean)
n*var(m)
```


F-test and detecting source of differences

We compute the test statistics $F=62/3\approx 20.7$ while the 95% quantile of F distribution with 3 and 8 degrees of freedom is given as

4.066181

We clearly see that the test informs us about a significant difference between the means.

F-test and detecting source of differences

We compute the test statistics $F=62/3\approx 20.7$ while the 95% quantile of F distribution with 3 and 8 degrees of freedom is given as

```
qf(0.95,3,8)
# 4.066181
```

We clearly see that the test informs us about a significant difference between the means

But which means are different? The least significant difference method described in Section 3.9:

We compute the least significant difference $s\sqrt{2/n}*t$, where s^2 is within sample estimate of variance and t is the 97.5% quantile of Student-t distribution with h(n-1) degrees of freedom.

```
sqrt (mean(s))*sqrt(2/3)*qt(0.975,8)
# 3.261182
m=apply(x,1,mean)
m
#[1] 101 102 97 92
```

Degrees of freedom and Sum of Squares (SS)

The associated degrees of freedom: for within-sample h(n-1) (in our example 4*2=8), for between-sample h-1 (in our example 3).

Degrees of freedom and Sum of Squares (SS)

The associated degrees of freedom: for within-sample h(n-1) (in our example 4*2=8), for between-sample h-1 (in our example 3).

Total number of degrees freedom hn - 1 and we see

$$hn - 1 = h(n - 1) + h - 1.$$

But there is more then the relation between degrees of freedom. Namely

$$SS_T = SS_M + SS_R$$

where

$$SS_T = \sum_{i=1}^h \sum_{j=1}^n (x_{ij} - \bar{x})^2,$$

$$SS_M = n \sum_{i=1}^h (\bar{x}_i - \bar{x})^2$$

$$SS_R = \sum_{j=1}^h \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2.$$

Table 3.4

Table 3.4 Summary of sums of squares and degrees of freedom

Source of variation	Sum of squares	Degrees of freedom
Between-sample	$n\sum_{i}(\overline{x}_{i}-\overline{x})^{2}=186$	h - 1 = 3
Within-sample	$\sum_{i}\sum_{j}(x_{ij}-\overline{x}_{i})^{2}=24$	h(n-1)=8
Total	$\sum_{i} \sum_{j} (x_{ij} - \overline{x})^2 = 210$	<i>hn</i> − 1 = 11

Computations in R