Linear Regression II

Termeh Shafie

Assessing Model Fit

$$Y = \underbrace{f(X)}_{\text{signal}} + \underbrace{\epsilon}_{\text{noise}}$$

Loss Function

a metric for model performance, lower values are better

(for now we pretend that we have never heard of or seen cross-validation)

Assessing Model Fit

$$\mathsf{MAE} = \frac{1}{n} \sum_{i} |\mathsf{actual}_{i} - \mathsf{predicted}_{i}|$$

Assessing Model Fit

$$MSE = \frac{1}{n} \sum_{i} (actual_i - predicted_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i} (actual_{i} - predicted_{i})^{2}}$$

...what about a measure that is always on the same scale?

Assessing Model Fit

$$R^{2} = 1 - \frac{\sum_{i} (\text{actual}_{i} - \text{predicted}_{i})^{2}}{\sum_{i} (\text{actual}_{i} - \text{average})^{2}}$$

Assessing Model Fit

$$R^{2} = 1 - \frac{\sum_{i} (\text{actual}_{i} - \text{predicted}_{i})^{2}}{\sum_{i} (\text{actual}_{i} - \text{average})^{2}}$$

Assessing Model Fit

$$R^{2} = 1 - \frac{\sum_{i} (\text{actual}_{i} - \text{predicted}_{i})^{2}}{\sum_{i} (\text{actual}_{i} - \text{average})^{2}}$$

Assessing Model Fit

$$MAPE = \frac{1}{n} \sum_{i} \left| \frac{\text{actual}_{i} - \text{predicted}_{i}}{\text{actual}_{i}} \right|$$

$\mathbf{Estimate}\,\hat{f} = \mathbf{Learn}\,\hat{f}$

$$V = f(Y) \perp c$$

$$Y = f(X) + \epsilon$$

sources of error: irreducible error ϵ

reducible error \hat{f}

the squared error for a given estimate \hat{f} is

 $E(\text{actual} - \text{predicted})^2 = E(Y - \hat{Y})^2$

which factors as

$$E[f(X) + \epsilon - \hat{f}(X)]^2$$

$$[f(X) - \hat{f}(X)^2] \ + \quad \operatorname{Var}(\epsilon)$$

reducible

irreducible

until now, training data was the only data we considered we compute reducible error (or MSE) on the same data used to learn \hat{f} let's change that!

Training

training data set

$$\{(y_1, x_1,), ..., (y_n, x_n))\}$$

$$\hat{f} = \arg\min_{q} MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - q(x_i))^2$$

Testing

testing data sets (unseen)

$$(y_0, x_0)$$

used to compute Test MSE

$$E[y_0 - \hat{f}(x_0)^2]$$

often not so closely related

Training and Testing present data future data

Formalizing Bias Variance Trade-Off

National Action Controlled or Control

Expected test MSE

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{bias}(\hat{f}(x_0)) \right]^2 + \mathrm{Var}(\epsilon)$$

$$\underbrace{\mathrm{variance\ increases}}_{\text{with\ complexity}} \underbrace{\mathrm{bias\ decreases}}_{\text{with\ complexity}}$$

[try it out: https://floswald.shinyapps.io/bias_variance/

A Simulation Example

Estimate the conditional mean of Y given X

$$Y = f(X) + \epsilon$$

Assume probability model:

$$Y = 1 - 2x - 3x^2 + 5x^3 + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$

Alternatively:

$$Y \mid X \sim N(1 - 2x - 3x^2 + 5x^3, \sigma^2)$$
 or $u(x) = E[Y \mid X = x] = 1 - 2x - 3x^2 + 5x^3$

conditional mean is a linear combination of the feature variables

note: the true probability model and thus also $\mu(x)$ are often not known!

A Simulation Example

1. Simulate data from assumed probability model

$$Y = 1 - 2x - 3x^2 + 5x^3 + \epsilon$$

2. Fit three models to data:

I. Degree 1 Polynomial $\mu(x) = \beta_0 + \beta_1 x$

II. Degree 3 Polynomial $\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$

III. Degree 9 Polynomial $\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_9 x^9$

A Simulation Example

- How close is the estimated regression (mean) function to the data?
- How close is the estimated regression (mean) function to the true regression (mean) function?

Do not fit model on test data!

In addition to the train-test split, we will later split the data into validation set

