```
In [12]: # reading dataset
    import pandas as pd
    df = pd.read_csv('student_info.csv')
    df
```

Out[12]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	220.0	3.60	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	NaN	BSc	Medium	NaN	0
3	Ankita	23.0	2.95	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95	MSc	High	NaN	1
5	Warka	35.0	3.00	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96	PhD	High	NaN	1
7	Eidid	NaN	3.85	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00	PhD	High	NaN	1
9	Nabila Anawar	24.0	NaN	MSc	High	NaN	1

```
In [14]: # showing outlier using scatter plot
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(df['Age'], df['Name'])
```

Out[14]: <matplotlib.collections.PathCollection at 0x1a5865dd3d0>


```
In [15]: # calculating age by mode
age_mode = df['Age'].mode()[0]
age_mode
```

Out[15]: 23.0

```
In [16]: # replacing outlier age value with age_mode value
    df['Age'][0] = age_mode
    df
```

C:\Users\USER\AppData\Local\Temp\ipykernel_16588\3369074777.py:2: SettingWithCo
pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['Age'][0] = age_mode

Out[16]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	23.0	3.60	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	NaN	BSc	Medium	NaN	0
3	Ankita	23.0	2.95	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95	MSc	High	NaN	1
5	Warka	35.0	3.00	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96	PhD	High	NaN	1
7	Eidid	NaN	3.85	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00	PhD	High	NaN	1
9	Nabila Anawar	24.0	NaN	MSc	High	NaN	1

Out[17]: Name

Name 0
Age 1
CGPA 2
Degree 0
Job Probability 0
Unnamed: 5 10
Intern 0
dtype: int64

```
In [18]: # Filling the NaN value with age_mode value
df["Age"].fillna(age_mode, inplace=True)
df
```

_			
n	m±1	112	
\mathbf{C}	u c	1 70	ь.

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	23.0	3.60	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	NaN	BSc	Medium	NaN	0
3	Ankita	23.0	2.95	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95	MSc	High	NaN	1
5	Warka	35.0	3.00	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96	PhD	High	NaN	1
7	Eidid	23.0	3.85	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00	PhD	High	NaN	1
9	Nabila Anawar	24.0	NaN	MSc	High	NaN	1

```
In [20]: # calculating mean value of CGPA column
cg = df['CGPA'].mean()
cg
```

Out[20]: 3.62625

```
In [21]: # Filling the NaN value with cg value
df['CGPA'].fillna(cg, inplace=True)
df
```

Out[21]:

	Name	Age	CGPA	Degree	Job Probability	Unnamed: 5	Intern
0	Sraboni Shah	23.0	3.60000	BSc	Medium	NaN	0
1	Mukit Al Hasan	22.0	3.70000	BSc	Medium	NaN	0
2	Niam ur Rashid	21.0	3.62625	BSc	Medium	NaN	0
3	Ankita	23.0	2.95000	BSc	Low	NaN	0
4	Noman Sarkar	23.0	3.95000	MSc	High	NaN	1
5	Warka	35.0	3.00000	MSc	Medium	NaN	0
6	Salma Tabassum	24.0	3.96000	PhD	High	NaN	1
7	Eidid	23.0	3.85000	PhD	High	NaN	1
8	Nahid Sidiqque	25.0	4.00000	PhD	High	NaN	1
9	Nabila Anawar	24.0	3.62625	MSc	High	NaN	1

```
In [22]: # calculating total NaN value
          df.isna().sum()
Out[22]: Name
                                0
          Age
                                0
          CGPA
                                0
          Degree
                                0
          Job Probability
                                0
          Unnamed: 5
                               10
          Intern
                                0
          dtype: int64
In [23]: # Removing the 'Unnamed: 5' column
          df2 = df.drop(['Unnamed: 5'], axis=1)
          df2
Out[23]:
                                   CGPA Degree Job Probability Intern
                      Name Age
           0
                Sraboni Shah 23.0 3.60000
                                             BSc
                                                        Medium
                                                                   0
           1
               Mukit Al Hasan 22.0 3.70000
                                            BSc
                                                        Medium
                                                                   0
               Niam ur Rashid 21.0 3.62625
                                             BSc
                                                        Medium
                                                                   0
           3
                      Ankita 23.0 2.95000
                                             BSc
                                                           Low
                                                                   0
                Noman Sarkar 23.0 3.95000
                                            MSc
                                                          High
           4
                                                                    1
                      Warka 35.0 3.00000
                                            MSc
                                                        Medium
                                                                    0
           5
              Salma Tabassum 24.0 3.96000
                                            PhD
                                                          High
                                                                    1
                       Eidid 23.0 3.85000
                                            PhD
           7
                                                          High
                                                                    1
               Nahid Sidiqque 25.0 4.00000
                                            PhD
           8
                                                          High
                                                                   1
           9
                Nabila Anawar 24.0 3.62625
                                            MSc
                                                          High
                                                                    1
In [35]: # converting the string value with number using LabelEncoder
          from sklearn.preprocessing import LabelEncoder
          le = LabelEncoder()
```

df2['Name'] = le.fit_transform(df2['Name'])
df2['Degree'] = le.fit_transform(df2['Degree'])

df2['Job Probability'] = le.fit transform(df2['Job Probability'])

```
In [36]: # removing the intern column
x = df2.drop(['Intern'], axis=1)
x
```

Out[36]:

	Name	Age	CGPA	Degree	Job Probability
0	8	23.0	3.60000	0	2
1	2	22.0	3.70000	0	2
2	5	21.0	3.62625	0	2
3	0	23.0	2.95000	0	1
4	6	23.0	3.95000	1	0
5	9	35.0	3.00000	1	2
6	7	24.0	3.96000	2	0
7	1	23.0	3.85000	2	0
8	4	25.0	4.00000	2	0
9	3	24.0	3.62625	1	0

```
In [37]: # taking the Intern column
y = df2['Intern']
y
```

```
Out[37]: 0 0
1 0
2 0
3 0
4 1
5 0
```

6 1 7 1

8191

Name: Intern, dtype: int64

```
In [48]: # dividing the dataset for training & testing
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size = 0.2, random_
```

```
In [49]: x_train
```

```
Out[49]:
                           CGPA Degree Job Probability
              Name Age
           5
                  9 35.0 3.00000
                                       1
                                                      2
           0
                                                     2
                  8 23.0 3.60000
                                       0
           7
                  1 23.0 3.85000
                                       2
                                                      0
           2
                  5 21.0 3.62625
                                       0
                                                     2
                  3 24.0 3.62625
                                                      0
           9
                                       1
                  6 23.0 3.95000
                                                      0
                  0 23.0 2.95000
           3
                                       0
                                                      1
                  7 24.0 3.96000
                                       2
                                                      0
```

```
In [50]: y_train
Out[50]: 5
              0
              0
         7
              1
         2
              0
         9
              1
         4
              1
         3
              0
              1
         Name: Intern, dtype: int64
In [51]: # using LogisticRegression model
         from sklearn.linear_model import LogisticRegression
         model = LogisticRegression()
In [52]: # training the model
         model.fit(x_train, y_train)
Out[52]: LogisticRegression()
In [54]: # predicting by test data
         y_pred = model.predict(x_test)
         y_pred
Out[54]: array([1, 0], dtype=int64)
```