2 4 大修

専門科目(午前)

数学 時間 9:00~11:00

注意事項:

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題3題すべてに解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で2ページからなる.
- 6. 口頭試問を代数系,幾何系,解析系のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと.

記号について: ℝ は実数全体を表す.

[1] V,W を \mathbb{R} 上のベクトル空間 , $f:V\longrightarrow W$ を線型写像 , ${m v}_1,{m v}_2,\ldots,{m v}_l$ を V の元とする.このとき次を証明せよ.

- (1) 像 $\operatorname{Im}(f) = f(V)$ は W の線型部分空間である.
- (2) 核 $\operatorname{Ker}(f) = f^{-1}(\{\mathbf{0}\})$ は V の線型部分空間である.
- (3) f が単射であることと, $Ker(f) = \{0\}$ とは同値である.
- (4) $f(v_1), f(v_2), \ldots, f(v_l)$ が一次独立ならば, v_1, v_2, \ldots, v_l は一次独立である.
- (5) f が単射のとき v_1, v_2, \ldots, v_l が一次独立ならば $f(v_1), f(v_2), \ldots, f(v_l)$ は一次独立である.
- $[2][0,\infty)$ 上で定義された非負連続関数 f で

(*)
$$\int_0^\infty f(x) \, dx < \infty$$

となるものを考える.

- (1) $x_n \to \infty$ $(n \to \infty)$, $f(x_n) \to 0$ $(n \to \infty)$ となる $\{x_n\}$ が存在することを示せ.
- (2) (*) を満たし, $x \to \infty$ のとき 0 に収束しないような f の例をあげよ.
- (3) f が (*) を満たし, $[0,\infty)$ 上で一様連続ならば $f(x) \to 0$ $(x \to \infty)$ が成り立つことを示せ.
- [3] $\mathbb N$ を正の整数全体の集合とし, $X:=\mathbb N\cup\{0\}$ とする. X の部分集合族 $\mathcal O$ を次の様に定める: $A\subset X$ について,

 $A \in \mathcal{O} \iff A \subset \mathbb{N}$, または X - A は \mathbb{N} の有限部分集合.

このとき

- (1) O は開集合の公理をみたすことを示せ.
- (2) 位相空間 (X,\mathcal{O}) はハウスドルフ空間であることを示せ、また、X の交わらない 2 つの閉集合は開集合で分離されることを示せ、
- (3) 位相空間 (X, \mathcal{O}) はコンパクトか.
- (4) $Y=\{0\}\cup\{rac{1}{n}\,|\,n\in\mathbb{N}\}$ を、通常の位相をもつユークリッド空間 $\mathbb R$ の部分空間とするとき、 $(X,\mathcal O)$ と Y は同相であることを示せ、

2 4 大修

専門科目(午後)

数学 時間 12:30~15:00

注意事項:

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題のうち3題を選択して解答せよ.ただし口頭試問を 代数系で受けることを希望する者は,問1~問3のうちから少なくとも1題, 幾何系で受けることを希望する者は,問4~問7のうちから少なくとも1題, 解析系で受けることを希望する者は,問8~問11のうちから少なくとも1題, を選択する3題の中に入れること.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で5ページからなる.
- 6. 口頭試問を代数系,幾何系,解析系のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと(午前と同じ系を書くこと.)

記号について:

- ℝ は実数全体を表す.
- ℂ は複素数全体を表す.
- ℤ は整数全体を表す.

- [1] 体 F に対して、体としての自己同型群を $G_1(F)=\mathrm{Aut}\,(F,+,\times)$ とし、乗法モノイド(単位半群)としての自己同型群を $G_2(F)=\mathrm{Aut}\,(F,\times)$ とし、加法群としての自己同型群を $G_3(F)=\mathrm{Aut}\,(F,+)$ とする.
 - (1) $G_1(F)$ は $G_2(F)$ および $G_3(F)$ の部分群であることを示せ.
- (2) 自然数 n に対して, $\varphi(2^n-1)$ は n の倍数であることを示せ. ただし, $\varphi(m)$ は $1,\ldots,m$ のうちで m と素なものの個数を表すオイラー関数である.
- [2] A は整域, B は 1 を含むその部分環で, A は B 上整であるとする, すなわち A のどんな元 a に対しても $a^n+b_{n-1}a^{n-1}+\cdots+b_0=0$ となるような自然数 n および B の元 b_{n-1},\ldots,b_0 が存在するとする. このとき, A が体であることと B が体であることとは同値なことを示せ.
- [3] \mathbb{Q} を有理数体とし, $\zeta = e^{2\pi i/5}$ とする.
 - (1) $\mathbb{Q}(\sqrt{2},\zeta)/\mathbb{Q}$ の中間体の個数を求めよ.
 - (2) $\mathbb{Q}(\sqrt{2},\zeta)$ の部分体で \mathbb{Q} 上 2 次のものをすべて求めよ.

[4] M を 2 次元実射影空間とする . M の元 ℓ を \mathbb{R}^3 の原点を通る直線とみて , ℓ と x 軸 , y 軸 , z 軸のなす角をそれぞれ $\alpha=\alpha(\ell)$, $\beta=\beta(\ell)$, $\gamma=\gamma(\ell)$ とし ,

$$f(\ell) = \frac{\cos^2 \alpha + 2\cos^2 \beta + 3\cos^2 \gamma}{1 + \cos^2 \beta + 3\cos^2 \gamma}$$

とする.このようにして定まる M 上の関数 f が C^∞ 級関数であることを示し, f の最大値と最小値を求めよ.

[5]

- (1) リー群 G は向き付け可能であることを示せ.
- (2) 複素多様体 M は向き付け可能であることを示せ.

[6] $D^2:=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\},\ S^1:=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$ とする. $\mathbb{R}^2 imes[0,1]$ に同値関係 \sim を

 $(x,y,t)\sim(z,w,s)\Leftrightarrow(x,y,t)=(z,w,s),$ または $\{s,t\}=\{0,1\}$ かつ (x,y)=(z,w)

で導入する.

 $X:=S^1 imes[0,1]/\sim,\,Y:=\left(S^1 imes[0,1]\cup D^2 imes\{0,1\}
ight)/\sim$ とおき,ともに商位相により位相空間とみなす.ただし, $S^1 imes[0,1],\,D^2 imes\{0,1\}$ には \mathbb{R}^3 の相対位相を入れる.

- (1) 整係数ホモロジー群 $H_*(X;\mathbb{Z})$ を求めよ.
- (2) 整係数ホモロジー群 $H_*(Y;\mathbb{Z})$ を求めよ.
- [7] 座標平面 \mathbb{R}^2 上の領域 $D:=\{(u,v)\in\mathbb{R}^2\,|\, -\pi < u < \pi\}$ で定義された写像

$$p: D \ni (u, v) \longmapsto p(u, v) = (\cos u \cos v, \cos u \sin v, \sin u + v) \in \mathbb{R}^3$$

はユークリッド空間 \mathbb{R}^3 の曲面のパラメータ表示を与えている.とくに,一つの座標曲線 $\gamma(v)=p(0,v)$ は空間曲線を与えている.

- (1) 曲線 $\gamma(v)$ の曲率と捩率を求めよ.
- (2) パラメータ表示された曲面 p(u,v) のガウス曲率が負となるような点は, D のどのような点か .
- (3) 下の 4 枚の図のうち,この曲面(写像 p の像)を図示したものはどれか,理由をつけて答えよ.ただし \mathbb{R}^3 の座標 (x,y,z) は z 軸を上向きにとる右手系とし,図は uv 平面上の領域 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \times \left(-2\pi,2\pi\right)$ の像を表している.

[8] |z|<1 で定義された正則関数 $f(z)=c_0+c_1z+c_2z^2+\cdots$ が次の条件を満たすとする.

- f(0) = 1, $|f(z)| \le \frac{1}{1 |z|}$

このとき次の問に答えよ.

- $(1) \ 0 < r < 1$ に対して $|c_n| \leq rac{1}{r^n(1-r)} \quad (n=0,1,2,\ldots)$ が成り立つことを示せ.
- $(2) |c_n| \le e(n+1) \quad (n=0,1,2,\ldots)$ を示せ. $(3) |f(z)-1| \le e\left\{\frac{1}{(1-|z|)^2}-1\right\}$ を示せ.

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$ $0<\int_X |f(x)|^p\,d\mu(x)<+\infty$ を満たすとする. $t\in\mathbb{R}$ に対して定義された関数

$$\varphi(t) = \int_X |1 + tf(x)|^p d\mu(x)$$

を考える.

- (1) φ は \mathbb{R} 上で連続でかつ最小値をもつことを示せ.
- (2) φ は \mathbb{R} 上で微分可能であることを示せ.
- $(3) \min_{t \in \mathbb{R}} \varphi(t) = \mu(X)$ ならば $\int_X f(x) \, d\mu(x) = 0$ であることを示せ. 逆に $\int_X f(x) \, d\mu(x) = 0$ な らば $\min_{t \in \mathbb{R}} \varphi(t) = \mu(X)$ であることを示せ.

 $[\ 1\ 0\]$ $L^2(\mathbb{R})$ を \mathbb{R} 上の複素数値 2 乗可積分関数全体からなる空間とする $.f\in L^2(\mathbb{R})$ に対して , $c_n(f)=\int_n^{n+1}f(y)\,dy\;(n\in\mathbb{Z})$ とし, $\mathcal{L}(f)(x)=\sum_{n\in\mathbb{Z}}c_n(f)e^{2\pi inx}\;(x\in[0,1])$ とおく.

(1) $\mathcal{L}(f)$ は [0,1] 上の 2 乗可積分関数であることを示せ.

(2)

$$\sup \left\{ \int_{0}^{1} |\mathcal{L}(f)(x)|^{2} dx \mid f \in L^{2}(\mathbb{R}), \int_{-\infty}^{\infty} |f(y)|^{2} dy \le 1 \right\}$$

の値を求めよ.

(3) $(1+x^2)f(x)\in L^2(\mathbb{R})$ ならば $\mathcal{L}(f)(x)$ は C^1 級であることを示せ .

[11] k(r) は $r\geq 0$ について連続な正値関数とする . $\varphi(r)$ $(r\geq 0)$ を , $\varphi(0)=\varphi'(0)=0$ および

$$\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} \varphi(|x|) = -k(|x|), \quad x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \setminus \{\mathbf{0}\}$$

を満たす C^2 級の関数とする .

- (1) $\varphi(r)$ が満たす常微分方程式を求めよ.
- (2) n=1 のとき , $\lim_{r \to \infty} \varphi(r) = -\infty$ を示せ .
- (3) n=2 のとき , $\lim_{r \to \infty} \varphi(r) = -\infty$ を示せ .
- (4) $n\geq 3$ のとき , $\int_0^\infty rk(r)dr=\infty$ は $\lim_{r\to\infty} \varphi(r)=-\infty$ となるための必要十分条件であることを示せ .