In the Claims

1-3. (canceled)

4. (original) A mixture consisting of

(a) a color developer (1a)

$$(R_7)_s$$
 O A' O $(R_8)_t$ $(1a)$

wherein

A' stands for a unsubstituted or substituted divalent aromatic radical,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl, s stands for 0, 1, 2, 3, 4 or 5, t stands for 0, 1, 2, 3, 4, or 5,

and

(b) a compound of formula (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

and wherein the weight ratio of (1a) to (2) is chosen in the range from 99.9:0.1 to 0.1:99.9.

- 5. (canceled)
- 6. (canceled)
- 7. (original) A heat sensitive composition consisting of

d

- a) a colour forming compound, and
- b) a mixture of colour developer of the formula (1a) and compound of formula (2) as defined in claim 4.
- 8-10. (canceled)
- 11. (previously presented) A process for the manufacture of a mixture of colour developer (1)

wherein

A stands for a unsubstituted or substituted divalent aromatic radical, and

 R_1 and R_2 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl, m stands for 0,

1, 2, 3, 4 or 5, n stands for 0, 1, 2, 3, 4, or 5, with the proviso, that if A stands for para-phenylene, R_1 for hydroxy (m \neq 0), then R_2 is not hydroxyl,

and compound of formula (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} is defined as above, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} is defined as above,

by reacting a benzoic acid derivative with a dihalogen derivative, characterized in

(a) reacting benzoic acid derivative of formula (A1)

(A1)

with a dihalogen derivative of formula (B1)

(B1)

wherein R_{16} stands for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl,

(e),

4

 $-C(O)R_{1a}$, or $-NR_{1a}R_{1b}$, wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted C_1-C_8 alkyl, benzyl or unsubstituted or substituted phenyl, z1 stands for 0, 1, 2, 3, 4 or 5, A_1 stands for a unsubstituted or substituted divalent aromatic radical, or

(b) reacting a mixture of benzoic derivatives (A1) and (A2)

$$(R_{17})_{22}$$
 OH (A2)

with a dihalogen derivative of formula (B1),

wherein R_{17} , different from R_{16} , stands for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, -C(O)R_{1a}, or -NR_{1a}R_{1b}, z2 stands for 0, 1, 2, 3, 4 or 5,

or

(c) reacting benzoic acid derivative of formula (A1) with dihalogen derivative (B1) to yield compound (C1)

$$(R_{16})_{z1}$$
 O A_1 Hal

and then reacting compound (C1) with compound of formula (A2),

wherein the molar ratio of (A1) or ((A1)+(A2)) to (B1) is chosen in the range of less than 3:1.

12. (canceled)

- **13.** (previously presented) A process for the manufacture of a heat sensitive recording material by incorporating the mixture of developer (1a) and compound (2) as defined in claim 4 into a coating composition which is applied to a substrate to generate a heat sensitive recording material.
- **14.** (currently amended) A process for the manufacture of a heat sensitive recording material by incorporating the compound of formula (2) as defined in claim 4[[5]] into a coating composition which is applied to a substrate to generate the heat sensitive recording material.
- 15. (previously presented) A mixture of a colour developer of formula (1)

$$(R_1)_{m} \longrightarrow O \longrightarrow A \longrightarrow O \longrightarrow (R_2)_{n}$$

$$(1)$$

wherein

A stands for a unsubstituted or substituted divalent aromatic radical, and

 R_1 and R_2 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl, m stands for 0, 1, 2, 3, 4 or 5, n stands for 0, 1, 2, 3, 4, or 5, with the proviso, that if A stands for para-phenylene, R_1 for hydroxy (m \neq 0), then R_2 is not hydroxyl,

and a compound of formula (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} is defined as above, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} is defined as above,

wherein the mixture is a product by the process as defined in claim 11.

16. (currently amended) A process for the manufacture of compound (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} is stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl,

characterized in reacting compound (C1)

$$(R_{16})_{z1}$$
 O A_1 Hal

 A_1 stands for a unsubstituted or substituted divalent aromatic radical, wherein R_{16} stands for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a} and R_{1a} is defined as above, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} is defined as above,

and z1 stands for 0, 1, 2, 3, 4 or 5,

with colour developer (1) as defined in claim 1,

$$(R_1)_m$$
 O A O $(R_2)_n$ (1)

wherein

A stands for a unsubstituted or substituted divalent aromatic radical, and

 R_1 and R_2 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted or substituted phenyl, n stands for 0, 1, 2, 3, 4, or 5 and

where R_1 and/or R_2 of developer (1) is hydroxy and m is 1, 2, 3, 4 or 5,

with the proviso, that if A stands for para-phenylene and R_1 for hydroxy, then R_2 is not hydroxy.

17. (canceled)

18. (canceled)