VE216 Lecture 16

Fourier Transform

Fourier Series

• Analysis equation: $X(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt$ • Synthesis equation: $x(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega$

$$E(\omega) = X(j\omega)$$

Relation between Fourier and Laplace Transforms

Property	x(t)	X(s)	$X(j\omega)$
Linearity	$ax_1(t)+bx_2(t) \\$	$aX_1(s)+bX_2(s)\\$	$aX_1(j\omega)+bX_2(j\omega)$
Time shift	$x(t-t_0)$	$e^{-st_0}X(s)$	$e^{-j\omega t_0}X(j\omega)$
Time scale	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Differentiation	$rac{dx(t)}{dt}$	sX(s)	$j\omega X(j\omega)$
Multiply by t	tx(t)	$-\frac{d}{ds}X(s)$	$-\frac{1}{j}\frac{d}{d\omega}X(j\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(s) \times X_2(s)$	$X_1(j\omega) \times X_2(j\omega)$

Fourier Transform Property

Moments

Since $X(j\omega)=\int_{-\infty}^\infty x(t)e^{-j\omega t}dt$, then $X(0)=\int_{-\infty}^\infty x(t)dt$, and here we get 2 as result.

Then $x(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega$, so $x(0)=rac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)d\omega=1$, or $\int_{-\infty}^{\infty}X(j\omega)d\omega=2\pi$.

