实验四 CST 仿真软件学习和反射系数折射系数仿真、

1. 实验目的

- a) 学习使用 3D electromagnetic simulation software CST;
- b) 掌握电磁学仿真的基本设置及绘制图形的方式;
- c) 掌握仿真结果的检验方法;
- d) 掌握用 cst 仿真反射系数和折射系数的方法。

2. 实验内容与步骤

a) 学习 CST 软件的基本操作

CST, 三维电磁场仿真软件。CST工作室套装[®]是面向 3D 电磁、电路、温度和结构应力设计工程师的一款全面、精确、集成度极高的专业仿真软件包。包含八个工作室子软件,集成在同一用户界面内,为用户提供完整的系统级和部件级的数值仿真优化。软件覆盖整个电磁频段,提供完备的时域和频域全波电磁算法和高频算法。典型应用包含电磁兼容、天线/RCS、高速互连 SI/EMI/PI/眼图、手机、核磁共振、电真空管、粒子加速器、高功率微波、非线性光学、电气、场路、电磁-温度及温度-形变等各类协同仿真。

新建 project:

SPACE 使结构最佳视窗
SHIFT+SPACE 使被选择物体最佳视窗
SHIFT+左键 平面内旋转视图
CTRL 任意旋转视图
SHIFT+CTRL 平移视图

b) 从无损材料入射到无损材料

1) 在 parameter list 中设置实验所需参数, lambda 为波长, frequency 为实验频率, height 为立方体高度, length 为立方体变长。

Parameter List									
	Expression	Value	Description						
lambda	= clight/frequency*1e3	299.792458							
frequency	= 1e9	1e9							
height	= 100	100							
frequency height length	= 1*lambda	299.792458							
<new parameter=""></new>									

2) 点击 Modeling—Shapes 中的立方体,按键盘 Esc 键进入设置,设置参数如图。Preview 可以预览图像,点击 OK 保存设置。

3) 右键左侧边栏中的 Materials, 选择 New Material, 设置 Epsilon 为 eps_r, 并设置其参数值如图。

4) 点击 Simulation 中 Picks,选择图中位于 xy 平面的面并双击

5) 点击 Modeling—Shapes—Extrusions,设置参数如下图,注意材料改为 UserDefMat。Preview 无误后点击 ok。

6) 点击 Simulation—Plane Wave 设置参数如图并 ok。

7) 点击 Simulation—Boundaries,设置如下图。

8) 点击 Simulation—Field Monitor, 设置如图并点击 OK。

9) 重复上一步骤,设置如下图。

10) 重复上上一步骤,设置如图。此处设置三个 Monitor 的目的是,第一个 ALL monitor 展示整个介质波形图,第二、第三个 Monitor 建立在各介质中,以快速得到振幅。

11) 点击 Simulation—Setup Solver,设置如图,点击 Start 开始运行

12) 运行时右下角 Process 中有进度条。运行结束后,选择左边栏 2D/3D Results—E-Eield—e-field(f=1)_All[pw]—X

13) 点击 2D/3D Plot, 选择 3D Fields on 2D Plane, 然后 Properties 设置如图, 展示更好看的 Carpet 图, **Apply 后截图**。

14) 选择左边栏 2D/3D Results—E-Eield—e-field(f=1)_media1[pw], 观察并记录 图右下角 3D Maximum 的值。

15) 选择左边栏 2D/3D Results—E-Eield—e-field(f=1)_media2[pw], 观察并记录 图右下角 3D Maximum 的值。

16) 更改 eps_r 参数小于 1 (可取 0.1),模拟并重新观察、记录各 Field_Monitor, 3D Maximum 的值。

- c) 从无损材料入射到有损材料
- 1) 双击 UserDefMat(或右键 UserDefMat→Properties)打开材料设置界面,点击 Conductivity 如图设置,令材料电导率为 e_cond,并设置数值为 0.1。

2) 点击 Setup Solver→Start, 要求截 Carpet 图展示波形,并尝试计算理论数值。

d) 从无损材料射到 PEC 平面

1) 建立模型如下

PEC 和无损材料模型:

无损材料尺寸:10mm*10mm*300mm

PEC 参数:

无损材料参数

2) 参考上述步骤添加 E_field monitor

3) 并增加 H_field monitor

4) 进行模拟并展示结果,截图:

e) 从无损材料射到 PMC 平面

1) 运用(e) 的模型,新建 Material,取 Mue=999999999 (无限大),建立一个PMC 材料。

2) 右键点击(e)中的 PEC 材料 Brick,Change Material and Color,在 Material 栏中选择之前新建的 PMC,点击 OK。

- 3) 进行模拟并展示结果,截图。
- f) 三个无损材料的入射
 - 1) 参考(a)中步骤, 建立第三种介质(此处选择真空)。

2) 参考(a)中步骤,建立第三个 E_Field Monitor,并指定区域。同时确保 Field Monitor All 的范围为整个介质。

3) 参考(a)中步骤, 观察并记录三个 Monitor 中 3D Maximum 的值。

3. 实验报告要求

- a) 填表,分析并尝试计算反射系数、透射系数,对比理论值。要求给出计算公式。
- b) 分析并简单解释各波形图现象。

		介质	5一	介质二		介质三		理论值		测量值	
		eps_r	Mue_r	eps_r	Mue_r	eps_r	Mue_r	反射系数	透射系数	反射系数	透射系数
无损到无损 -	1					/	/				
	2					/	/				
无损到有损	3					/	/				
无损到PEC	4			/	/	/	/				
无损到PMC	5			/	/	/	/				
三种介质	6										