

1.1 Caractéristiques générales

Définition 1.1 (Schéma TT) Schéma de liaison à la terre dans lequel :

Neutre: relié à la terre;

Masse: reliées à la terre.

Dans le SLT TT, le neutre du transformateur HT/BT (point commun) est relié à la terre via la prise de terre du neutre ①. Cette liaison présente une certaine résistance, la résistance de la prise de terre du neutre R_N ②. Sa mise en œuvre est à charge du fournisseur d'électricité et sa résistance globale doit être inférieure ou égale à $15\Omega^1$.

Les masses sont quant à elles reliées à la terre via la prise de terre de l'installation électrique (3), qui présente aussi une certaine résistance, la résistance de la prise de terre de l'installation électrique R_T (4). Sa mise en œuvre est à charge du propriétaire de l'installation (voir ?? page ??).

1.2 Schémas de principe

Fig. 1.1: Installation Terre-Terre

En cas de défaut d'isolement sur les masses métalliques, le courant de défaut I_d dispose d'un chemin, via la terre, pour revenir au poste de transformateur HT/BT. Cela forme la boucle de défaut. Dans les calculs, il faut tenir compte de la résistance de défaut R_d ① qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique.

^{1.} NF:C13-100-2015.

Fig. 1.3: Boucle de défaut du courant I_d sur L1

L'intensité de courant \mathcal{I}_d vaut alors :

Formule 1.1 (Courant de défaut I_d)

$$I_d = \frac{V}{R_N + R_T + R_d} \tag{1.1}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description	
V: tension	volt (V)	Différence de potentiel entre les masses métal-	
		liques et la terre	
R_N : résistance	ohm (Ω)	Résistance de la prise de terre du neutre	
R_T : résistance	ohm (Ω)	Résistance de la prise de terre de l'installation	
		électrique	
R_d : résistance	ohm (Ω)	Résistance de défaut d'isolement	

Le courant de défaut I_d fera alors apparaître une tension de défaut U_d entre la masse métallique et la terre. Pour satisfaire aux normes de sécurité de la NF C15-100, il est imposé (voir ?? page ??) :

Formule 1.2 (Tension de défaut U_d)

$$U_d = R_T \cdot I_d$$

$$< U_L$$
(1.2)

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description			
R_T : résistance	ohm (Ω)	Résistance de la prise de terre de l'installation			
		électrique			
I_d : intensité	ampère (A)	Courant de défaut d'isolement			
U_L : tension	volt (V)	Tension de sécurité du local avec :			
		Local sec : $U_L = 50 \text{V}$			
		Local humide : $U_L = 25V$			

Il est donc nécessaire de limiter U_d à la valeur suivante (voir ?? page ??) :

Formule 1.3 (Calibre du DDR $I_{\Delta n}$)

$$I_{\Delta n} < \frac{U_L}{R_T} \tag{1.4}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description			
U_L : tension	volt (V)	Tension de sécurité du local avec : Local sec : $U_L = 50$ V Local humide : $U_L = 25$ V			
R_T : résistance	ohm (Ω)	Résistance de la prise de terre de l'installation électrique			

Exemple 1.1 (Calcul du calibre du DDR $I_{\Delta n}$) Si on considère que le transformateur est un transformateur $20 \mathrm{kV}/400 \mathrm{V}$, que $R_T = 20 \Omega$, que $R_N = 10 \Omega$ et que R_d est négligée, on peut déduire que le courant de défaut I_d vaut :

$$I_d = \frac{V}{R_N + R_T}$$
$$= \frac{400}{20 + 10}$$
$$= 13,33A$$

Si une personne touche une masse des récepteurs en défaut, elle sera soumise à une tension de défaut U_d :

$$U_d = R_T \cdot I_d$$
$$= 20 \cdot 13,33$$
$$= 266,6V$$

La tension de défaut U_d est dangereuse quelle que soit la tension limite choisie :

- coupure la plus rapide possible ;
- protection des personnes.

Dans le cas d'un local sec :

Dans le cas d'un local humide :

$$\begin{split} I_{\Delta n} < \frac{U_L}{R_T} & I_{\Delta n} < \frac{U_L}{R_T} \\ < \frac{50}{20} & < \frac{25}{20} \\ < 2.5 \text{A} & < 1,25 \text{A} \end{split}$$

D'après le tableau situé en $\ref{eq:page:eq:p$

Tension nominale	$50V < U_0 \le 120V$		$120V < U_0 \le 230V$		$230V < U_0 \le 400V$		$U_0 > 400 \text{V}$	
Type de courant	alternatif	continu	alternatif	continu	alternatif	continu	alternatif	continu
Schéma TN/IT	0,8s	5s	0.4s	5s	0.2s	0.4s	0,1s	0.1s
Schéma TT	0.3s	5s	0.2s	0.4s	0.07s	0.2s	0,04s	0,1s