Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 11.03.2016

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note
	Aufgabe	1	2	3	4	\sum	l
	erreichbare Punkte	9	13	9	9	40	l
	erreichte Punkte						l
${\bf Bitte}\;$							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	dem I	Deckblat	et ein,
rechnen S	ie die Aufgaben auf se	eparatei	n Blätte	ern, ni	c ht auf	dem A	ngabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer a	ın,
begründer	n Sie Ihre Antworten a	ausführ	lich und	d			
kreuzen S antreten k	ie hier an, an welchem cönnten:	der fol	genden	Termi	ne Sie z	zur mün	dlichen Prüfung
	□ Mo., 21.03.20	16		□ I	Di., 22.	03.2016	

1. Kontinuierliche Systeme

Bearbeiten Sie die folgenden Teilaufgaben:

9 P.|

Gegeben ist das nichtlineare System

$$(ma^{2} + J)\ddot{\theta} + d\dot{\theta} - mga\sin(\theta) = ma\cos(\theta)u$$
 (1a)

$$\ddot{w} = u \tag{1b}$$

mit dem Eingang u, den Zuständen θ und w und den konstanten Parametern g, m, a, J und d.

a) Führen Sie einen Zustandsvektor ${\bf x}$ ein und geben Sie das System (1) in der $2\,{\rm P.}|$ Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$$

an.

b) Bestimmen Sie alle Ruhelagen des Systems (1).

 $1.5 \, P.$

c) Linearisieren Sie das System (1) um die Ruhelage ($u_R = 0, \mathbf{x}_R = \mathbf{0}$) und stellen 2.5 P.| Sie das sich ergebende System in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$

dar.

- d) Berechnen Sie die Übertragungsfunktionen vom Eingang Δu auf die Ausgänge 2 P.| Δw und $\Delta \theta$.
- e) Charakterisieren Sie die Stabilität der Differentialgleichung (1b). Begründen 1P. Sie ihre Antwort ausführlich.

2. Regelkreis

Bearbeiten Sie die folgenden Teilaufgaben:

13 P.

a) Die Abbildungen 1 und 2 zeigen zwei Regelkreise.

Abbildung 1: Regelkreis (a).

Abbildung 2: Regelkreis (b).

i. Bestimmen Sie die Übertragungsfunktionen $G_1(s)$ und $G_2(s)$ nach Ab- 3 P.| bildung 2 so, dass die Regelkreise (a) und (b) äquivalent bezüglich des Eingangs-Ausgangs-Verhaltens sind.

Hinweis: Zeichnen Sie dazu den Regelkreis nach Abbildung (1) in geeigneter Form um.

- ii. Bestimmen Sie die Übertragungsfunktion vom Eingang r zum Ausgang y 1 P.| für H(s) = h und R(s) = k/(s+w).
- b) Gegeben ist die Übertragungsfunktion

$$G(s) = \frac{4+s}{2s^3 + 8s^2 + 2(p+1)s + 4p - 12}$$
 (2)

mit dem reellen Parameter p.

- i. Überführen Sie die Übertragungsfunktion (2) in die Beobachtbarkeitsnor- 2 P. | malform.
- ii. Verwenden Sie ein geeignetes numerisches Stabilitätskriterium zur Bestimmung des Wertebereichs von p, sodass die Übertragungsfunktion (2) BIBOstabil ist.

c) Ein lineares, zeitinvariantes System der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$\mathbf{v} = \mathbf{C}\mathbf{x}$$

wird mit Hilfe einer regulären Zustandstransformation $\mathbf{x} = \mathbf{V}\mathbf{z}$ auf Jordansche Normalform transformiert. Es bezeichnen $\tilde{\mathbf{A}}$, $\tilde{\mathbf{b}}$ und $\tilde{\mathbf{C}}$ die Systemmatrizen des transformierten Systems. Folgende Matrizen sind bekannt

$$\tilde{\mathbf{\Phi}}(t) = \begin{bmatrix} e^{2t} & 0\\ 0 & e^{-4t} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \tilde{\mathbf{C}} = \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}, \tilde{\mathbf{b}} = \begin{bmatrix} 1/2\\ 1/2 \end{bmatrix},$$
(3)

wobei $\tilde{\Phi}(t)$ die Transitionsmatrix des transformierten Systems ist.

- i. Bestimmen Sie die Eigenwerte des Systems. Ist das System stabil? Begründen Sie ihre Antwort.
- ii. Berechnen Sie die Dynamikmatrix $\tilde{\mathbf{A}}$ des transformierten Systems. 1 P.
- iii. Bestimmen Sie die Transformationsmatrix V. 1 P.
- iv. Geben Sie die Systemmatrizen ${\bf A}$ und ${\bf b}$ des Originalsystems an.

3. FKL und Stabilität

Bearbeiten Sie die folgenden Teilaufgaben.

9 P.|
Aufgabe c) kann unabhängig von a) und b) gelöst werden.

a) Entwerfen Sie für die Streckenübertragungsfunktion 3 P.

$$G(s) = \frac{2}{s\left(\frac{s}{3} + 1\right)}$$

einen Regler so, dass die Sprungantwort des geschlossenen Kreises den Spezifikationen $t_r=1.5\,\mathrm{s},\,\ddot{u}=10\%$ und $e_\infty|_{r(t)=\sigma(t)}=0$ genügt. Benutzen Sie dazu einen Regler minimaler Ordnung der Form

$$R(s) = V \frac{z(s)}{s^{\rho}(1 + sT_R)}, \quad \rho \in \mathbb{N}_0$$

und wählen Sie z(s) und ρ passend und bestimmen Sie die Parameter V sowie T_R .

- b) Skizzieren Sie das Bodediagramm des offenen Regelkreises L(s) und zeichnen 2 P.| Sie die Durchtrittsfrequenz ω_c und die Phasenreserve Φ ein.
- c) Gegeben ist der folgende Regelkreis mit den Übertragungsfunktionen 4P.

Abbildung 3: Regelkreis.

$$G(s) = \frac{s-2}{s-1}$$
, $R(s) = \frac{c_1(s+1)}{s+c_2}$, $F(s) = a \neq 0$.

Welche Bedingungen müssen die Parameter c_1 , c_2 und a erfüllen, damit der Regelkreis aus Abbildung 3 intern stabil ist? Geben Sie diese Bedingungen explizit an.

4. Zeitdiskretes System

Die folgenden Teilaufgaben können unabhängig voneinander gelöst werden. 9 P.| Gegeben ist das zeitdiskrete System

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -2 \\ 0 & 2 & -1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} u_k \tag{4a}$$

$$y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}_k. \tag{4b}$$

- a) Weisen Sie die vollständige Bobachtbarkeit des Systems (4) anhand der Beob- 1 P.| achtbarkeitsmatrix nach.
- b) Entwerfen Sie einen vollständigen Luenberger Beobachter für das System (4). 3 P.| Die Eigenwerte der Fehlerdynamikmatrix Φ_e des Fehlersystems sollen bei $\lambda_1 = 0$, $\lambda_2 = 1/2$ und $\lambda_3 = 1/2$ liegen.
- c) Es wird nun ein Dead-Beat-Beobachter für das System (4) entworfen. Zeigen 2 P.| Sie, dass jeder Anfangsfehler $\mathbf{e}_0 = \hat{\mathbf{x}}_0 \mathbf{x}_0$ in höchstens n=3 Schritten zu $\mathbf{0}$ wird.
- d) Geben Sie das duale System zu (4) an. Zeigen Sie allgemein, dass die Er- 3 P. reichbarkeit des primalen Systems äquivalent zur Beobachtbarkeit des dualen Systems ist.

