Diszkrét matematika II. feladatok

Harmadik alkalom

Bemelegítő feladatok

1. A bővített euklideszi algoritmus segítségével oldja meg az ax + by = (a, b) $(x, y \in \mathbb{Z})$ egyenletet adott a, b számok esetében

a)
$$a = 13, b = 14$$
; b) $a = 16, b = 37$; c) $a = 90, b = -111$; d) $a = -168, b = 219$
e) $a = 39, b = 55$; f) $a = 51, b = 91$; g) $a = 105, b = 154$; h) $a = -63, b = -70$

Megoldás: Amikor az b > a > 0, akkor a legelső sort (ami 0 hányadossal a-t adja maradékul) lespórolhatjuk, de akkor vigyázni kell, hogy melyik az alfák és melyik a béták oszlopa, ezért ezt most nem tesszük meg.

	a = 13	$\alpha_{-1} = 1$		$\beta_{-1} = 0$		$a = 1 \cdot a + 0 \cdot b$
	b = 14	$\alpha_0 = 0$	$q_0 = 0$	$\beta_0 = 1$		$b = 0 \cdot a + 1 \cdot b$
a)	$r_1 = 13$	$\alpha_1 = 1$	$q_1 = 1$	$\beta_1 = 0$		
	$r_2 = 1$	$\alpha_2 = -1$	$q_2 = 13$	$\beta_2 = 1$	azaz	$\gcd(a,b) = a \cdot (-1) + b \cdot (1) = 1$
	$r_3 = 0$	$\alpha_3 = 14$		$\beta_3 = -13$	azaz	$a \cdot (14k) + b \cdot (-13k) = 0$

Összegezve: $13 \cdot (14k - 1) + 14 \cdot (1 - 13k) = \gcd(13, 14)$, vagyis x = 14k - 1 és y = 1 - 13k.

	a = 16	$\alpha_{-1} = 1$		$\beta_{-1} = 0$		$a = 1 \cdot a + 0 \cdot b$
	b = 37	$\alpha_0 = 0$	$q_0 = 0$	$\beta_0 = 1$		$b = 0 \cdot a + 1 \cdot b$
		$\alpha_1 = 1$				
D)	$r_2 = 5$	$\alpha_2 = -2$	$q_2 = 3$	$\beta_2 = 1$		
	$r_3 = 1$	$\alpha_3 = 7$	$q_3 = 5$	$\beta_3 = -3$	azaz	$\gcd(a, b) = a \cdot (7) + b \cdot (-3) = 1$
	$r_4 = 0$	$\alpha_4 = -37$		$\beta_4 = 16$	azaz	$a \cdot (-37k) + b \cdot (16k) = 0$

Összegezve: $16 \cdot (7 - 37k) + 37 \cdot (16k - 3) = \gcd(16, 37)$, vagyis x = 7 - 37k és y = 16k - 3.

c) Hogy a maradékos osztás nemnegatív számok körében fusson, a negatív b helyett a pozitív -b-vel írjuk fel a táblázatot (és a végén az együtthatóra visszük majd át az előjelet):

a = 90	$\alpha_{-1} = 1$		$\beta_{-1} = 0$	$a = 1 \cdot a + 0 \cdot (-b)$
-b = 111	$\alpha_0 = 0$	$q_0 = 0$	$\beta_0 = 1$	$-b = 0 \cdot a + 1 \cdot (-b)$
$r_1 = 90$	$\alpha_1 = 1$	$q_1 = 1$	$\beta_1 = 0$	
$r_2 = 21$	$\alpha_2 = -1$	$q_2=4$	$\beta_2 = 1$	
$r_3 = 6$	$\alpha_3 = 5$	$q_3 = 3$	$\beta_3 = -4$	
$r_4 = 3$	$\alpha_4 = -16$	$q_4=2$	$\beta_4 = 13$	$\gcd(a, -b) = a \cdot (-16) + (-b) \cdot (13) = 3$
$r_5 = 0$	$\alpha_5 = 37$		$\beta_5 = -30$	$a \cdot (37k) + (-b) \cdot (-30k) = 0$

Tehát $\gcd(a,-b) = \gcd(a,b) = 3 = a \cdot (-16) + (-b) \cdot (13) = a \cdot (-16) + b \cdot (-13)$, továbbá $a \cdot (37k) + b \cdot (30k) = 0$. Összegezve: $90 \cdot (37k - 16) + (-111) \cdot (30k - 13) = \gcd(90,-111)$, vagyis x = 37k - 16 és y = 30k - 13.

d) Hogy a maradékos osztás nemnegatív számok körében fusson, a negatív a helyett a pozitív -a-val írjuk fel a táblázatot (és a végén az együtthatóra visszük majd át az előjelet):

-a = 168	$\alpha_{-1} = 1$		$\beta_{-1} = 0$	$-a = 1 \cdot (-a) + 0 \cdot b$
b = 219	$\alpha_0 = 0$	$q_0 = 0$	$\beta_0 = 1$	$b = 0 \cdot (-a) + 1 \cdot b$
$r_1 = 168$	$\alpha_1 = 1$	$q_1 = 1$	$\beta_1 = 0$	
$r_2 = 51$	$\alpha_2 = -1$	$q_2 = 3$	$\beta_2 = 1$	
$r_3 = 15$	$\alpha_3 = 4$	$q_3 = 3$	$\beta_3 = -3$	
$r_4 = 6$	$\alpha_4 = -13$	$q_4 = 2$	$\beta_4 = 10$	
$r_5 = 3$	$\alpha_5 = 30$	$q_5 = 2$	$\beta_5 = -23$	$\gcd(-a, b) = (-a) \cdot (30) + b \cdot (-23) = 3$
$r_6 = 0$	$\alpha_6 = -73$		$\beta_6 = 56$	$(-a) \cdot (-73k) + b \cdot (56k) = 0$

Tehát $\gcd(-a,b) = \gcd(a,b) = 3 = (-a) \cdot (30) + b \cdot (-23) = a \cdot (-30) + b \cdot (-23)$, továbbá $a \cdot (73k) + b \cdot (56k) = 0$. Összegezve $-168 \cdot (73k - 30) + 219 \cdot (56k - 23) = \gcd(-168, 219)$, vagyis x = 73k - 30 és y = 56k - 23.

Összegezve: $39 \cdot (24 - 55k) + 55 \cdot (39k - 17) = \gcd(39, 55) = 1$, vagyis x = 24 - 55k és y = 39k - 17.

	a = 51	$\alpha_{-1} = 1$		$\beta_{-1} = 0$		$a = 1 \cdot a + 0 \cdot b$
f)	b = 91	$\alpha_0 = 0$	$q_0 = 0$	$\beta_0 = 1$		$b = 0 \cdot a + 1 \cdot b$
	$r_1 = 51$	$\alpha_1 = 1$	$q_1 = 1$	$\beta_1 = 0$		
	$r_2 = 40$	$\alpha_2 = -1$	$q_2 = 1$	$\beta_2 = 1$		
	$r_3 = 11$	$\alpha_3 = 2$	$q_3 = 3$	$\beta_3 = -1$		
	$r_4 = 7$	$\alpha_4 = -7$	$q_4 = 1$	$\beta_4 = 4$		
	$r_5 = 4$	$\alpha_5 = 9$	$q_5 = 1$	$\beta_5 = -5$		
	$r_6 = 3$	$\alpha_6 = -16$	$q_6 = 1$	$\beta_6 = 9$		
	$r_7 = 1$	$\alpha_7 = 25$	$q_7 = 3$	$\beta_7 = -14$	azaz	$\gcd(a, b) = a \cdot (25) + b \cdot (-14) = 1$
	$r_8 = 0$	$\alpha_8 = -91$		$\beta_8 = 51$	azaz	$a \cdot (-91k) + b \cdot (51k) = 0$

Összegezve: $51 \cdot (25 - 91k) + 91 \cdot (51k - 14) = \gcd(51, 91) = 1$, vagyis x = 25 - 91k és y = 51k - 14.

Összegezve: $105 \cdot (3-22k) + 154 \cdot (15k-2) = \gcd(105,154) = 7$, vagyis x = 3-22k és y = 15k-2.

h) Hogy a maradékos osztás nemnegatív számok körében fusson, a negatív a helyett a pozitív -a-val és negatív b helyett pozitív -b-vel írjuk fel a táblázatot (és a végén az együtthatóra visszük majd át az előjelet):

Tehát $gcd(-a, -b) = gcd(a, b) = -a \cdot (-1) + (-b) \cdot (1) = a \cdot (1) + b \cdot (-1) = 7$, és $a \cdot (-10k) + b \cdot (9k) = 0$. Összegezve: $-63 \cdot (1 - 10k) + (-70) \cdot (9k - 1) = gcd(-63, -70) = 7$, vagyis x = 1 - 10k és y = 9k - 1.

2. A bővített euklideszi algoritmus segítségével oldja meg az ax+by=c $(x,y\in\mathbb{Z})$ egyenletet adott a,b,c számok esetében

a)
$$a = 13, b = 14, c = 5;$$
 b) $a = 16, b = 37, c = -2;$ c) $a = 90, b = -111, c = 13;$

d)
$$a = -168, b = 219, c = 12$$
; e) $a = 39, b = 102, c = 10$; f) $a = 51, b = 114, c = -9$

Megoldás: Az előző feladatban elvégzett algoritmusok eredményét felhasználjuk.

- a) 13x+14y=5. Tudjuk, hogy $\gcd(13,14)=13\cdot(-1)+14\cdot(1)=1$, és $13\cdot(14k)+14\cdot(-13k)=0$. Az első egyenlőséget 5-tel szorozva és hozzáadva a másodikat: $13\cdot(14k-5)+14\cdot(5-13k)=5$. Azaz x=14k-5 és y=5-13k.
- **b)** 16x+37y=-2. Mivel $16\cdot(7)+37\cdot(-3)=\gcd(16,37)=1$, és $16\cdot(-37k)+37\cdot(16k)=0$, ezért az első egyenlőséget -2-vel szorozva és hozzáadva a másodikat: $16\cdot(-14-37k)+37\cdot(16k+6)=-2$, vagyis x=-14-37k és y=16k+6.
- c) 90x 111y = 13. Tudjuk, hogy $90 \cdot (-16) + (-111) \cdot (-13) = \gcd(90, -111) = 3$, és mivel 3 NEM osztója 13-nak, viszont mindig osztója 90x 111y-nak minden egész x és minden egész y esetén, ezért NINCS egész megoldás.
- d) -168x + 219y = 12. Mivel $-168 \cdot (-30) + 219 \cdot (-23) = 3$, és $-168 \cdot (73k) + 219 \cdot (56k) = 0$, az első egyenlőséget 4-gyel szorozva, a másodikat hozzáadva: $-168 \cdot (73k 120) + 219 \cdot (56k 92) = 12$, vagyis x = 73k 120 és y = 56k 92.
- e) 39x + 102y = 10; Tudjuk, hogy 39x + 102y-nak minden egész x és minden egész y esetén osztója a 3, míg 10 nem osztható 3-mal, ezért NINCS egész megoldás.
- f) 51x + 114y = -9, egyszerűsítsünk 3-mal: 17x + 38y = -3.

b = 38	$\beta_{-1} = 1$	\boxtimes	$\alpha_{-1} = 0$
a = 17	$\beta_0 = 0$	$q_0 = 2$	$\alpha_0 = 1$
$r_1 = 4$	/ *	$q_1 = 4$	$\alpha_1 = -2$
$r_2 = 1$	$\beta_2 = -4$	$q_2 = 4$	$\alpha_2 = 9$
$r_3 = 0$	$\beta_3 = 17$	\boxtimes	$\alpha_3 = -38$

Vagyis $17 \cdot (9) + 38 \cdot (-4) = 1$, ezt -3-mal szorozva: $17 \cdot (-27) + 38 \cdot (12) = -3$, ehhez $17 \cdot (-38k) + 38 \cdot (17k) = 0$ -t hozzáadva: $17 \cdot (-27 - 38k) + 38 \cdot (12 + 17k) = 0$, vagyis x = -27 - 38k és y = 12 + 17k.

Gyakorló feladatok

3. Pajkos százlábúak futkároznak a ládában. Az egyik fajtának 14 lába van, a másiknak 20. Összesen 232 lábat számoltunk meg. Hány százlábú van a ládában?

Megoldás: x darab húszlábú és y darab tizennégylábú állatnak összesen 20x + 14y lába van. A feladat szerint 20x + 14y = 232. Ez egy diophantoszi egyenlet azzal a plusz feltétellel, hogy a egész x és az egész y is nemnegatív.

a = 20	$\alpha_{-1} = 1$		$\beta_{-1} = 0$
b = 14	$\alpha_0 = 0$	$q_0 = 1$	$\beta_0 = 1$
$r_1 = 6$	$\alpha_1 = 1$	$q_1=2$	$\beta_1 = -1$
$r_2 = 2$	$\alpha_2 = -2$	$q_2 = 3$	$\beta_2 = 3$
$r_3 = 0$	$\alpha_3 = 7$	\boxtimes	$\beta_3 = -10$

Vagyis $20 \cdot (-2) + 14 \cdot (3) = 2$ a legnagyobb közös osztó. Ez osztja 232-t, a hányados 116, amivel a legnagyobb közös osztót előállító lineáris kombinációt beszorozva: $20 \cdot (-232) + 14 \cdot (348) = 232$, ehhez hozzá kell adni a 0 összes lehetséges előállítását: $20 \cdot (7k) + 14 \cdot (-10k) = 0$, amiből azt kapjuk, hogy: $20 \cdot (7k - 232) + 14 \cdot (348 - 10k) = 232$, azaz (x = 7k - 232, y = 348 - 10k) az általános megoldás.

Most alkalmazzuk, hogy $x=7k-232\geq 0$ és $y=348-10k\geq 0$, vagyis $7k\geq 232$ és $348\geq 10k$, amiből $k\geq 33\frac{1}{7}$ és $34,8\geq k$, vagyis k olyan egész szám, amire $34,8\geq k\geq 33\frac{1}{7}$. Ezt csak k=34 elégíti ki az egészek közül, tehát $x=7\cdot 34-232=6$ és $y=348-10\cdot 34=8$.

Tehát hat darab húszlábú és nyolc darab tizennégylábú állat futkározik a ládában.

4. A boltban a vásárlás során 100 forint a visszajáró. Hányféleképpen kaphatjuk meg a visszajárót, ha a pénztárgépben csak 20 és 50 forintosok vannak?

Megoldás: Lehet józan paraszti ésszel is megoldani, aszerinti esetszétválasztással, hogy ötvenest egyáltalán kapok-e vissza. Ha kapok legalább egy ötvenest, akkor a fennmaradó 50 forintot nem kaphatom csupa huszasokban, hiszen a 20 nem osztója az 50-nek. De ekkor a fennmaradó 50 forintot is csak egy mási ötvenessel kaphatom vissza: vagyis ebben az esetben két ötvenest kapok. Ha nem kapok vissza övenest, akkor csupa huszasokban kaptam a visszajárót. Azaz kétféleképpen kaphatjuk a visszajárót: vagy két ötvenes, vagy öt huszas.

Másik megoldás: Akinek ez nem jut eszébe, visszavezetheti a feladatot diophantoszi egyenletre is: x darab övenes és y darab huszas esetén 50x + 20y = 100 forintot kell visszakapnom. Most is (a százlábús feladathoz hasonlóan) csak nemnegatív egész megoldásokat keresünk.

Mivel $50 \cdot (1) + 20 \cdot (-2) = 10$ az ötven és a húsz legnagyobb közös osztójának előállítása (ránézésre is kitalálható, de a bővített euklideszi algoritmus is ezt adná), és a tíz az a száznak osztója, ezért $50 \cdot (10) + 20 \cdot (-20) = 100$ egy partikuláris megoldás.

Mivel az öt és a kettő (50 és 20 osztva a legnagyobb közös osztójukkal) relatív prímek, belőlük a nulla csak $5 \cdot (-2k) + 2 \cdot (5k) = 0$ módon állítható elő nemtriviálisan, ezért $50 \cdot (-2k) + 20 \cdot (5k) = 0$ a homogén feladat általános megoldása, amit hozzá kell adni a partikuláris megoldáshoz:

 $50 \cdot (10-2k) + 20 \cdot (5k-20) = 100$, vagyis x=10-2k és y=5k-20 az általános megoldások. A plusz nemnegativitási feltételekből $10 \ge 2k$ és $5k \ge 20$ adódik, azaz $5 \ge k$ és $k \ge 4$. Tehát most kettő különböző megoldásunk is lesz: k=4 és k=5. k=4 esetén x=2,y=0 és k=5 esetén x=0,y=5.

Érdekes feladatok

5. Oldja meg a következő egyenleteket egész számok körében!

a)
$$8^a \cdot 16^b = 32$$
; b) $27^a \cdot 81^b = 9$ c) $16^a \cdot 128^b = 1024$; d) $64^a \cdot 512^b = 2048$

Megoldás: Vegyük észre, hogy minden feladaton belül ugyananak a prímnek a hatványai szerepelnek! Minden egyenletnek vehetjük ezen prím alapú logaritmusát:

a)
$$(2^3)^a \cdot (2^4)^b = 2^5$$
, vagyis $2^{3a+4b} = 2^5$, azaz $3a + 4b = 5$.

Ezt a diophantoszi egyenletet kell megoldani. $3 \cdot (-1) + 4 \cdot (1) = 1$, azaz $3 \cdot (-5) + 4 \cdot (5) = 5$, ehhez adódik $3 \cdot (4k) + 4 \cdot (-3k) = 0$, tehát $3 \cdot (4k - 5) + 4 \cdot (5 - 3k) = 5$. a = 4k - 5 és b = 5 - 3k adják a megoldáspárokat minden egész k-ra.

b)
$$(3^3)^a \cdot (3^4)^b = 3^2$$
, vagyis $3^{3a+4b} = 3^2$, azaz $3a + 4b = 2$.

Ezt a diophantoszi egyenletet kell megoldani, használva az előző feladatban kijött első egyenletet: $3 \cdot (-2) + 4 \cdot (2) = 2$, ehhez adódik $3 \cdot (4k) + 4 \cdot (-3k) = 0$, tehát $3 \cdot (4k-2) + 4 \cdot (2-3k) = 2$. a = 4k-2 és b = 2-3k adják a megoldáspárokat minden egész k-ra.

c)
$$(2^4)^a \cdot (2^7)^b = 2^{10}$$
, vagyis $2^{4a+7b} = 2^{10}$, azaz $4a + 7b = 10$.

Ezt a diophantoszi egyenletet kell megoldani. $4 \cdot (2) + 7 \cdot (-1) = 1$, azaz $4 \cdot (20) + 7 \cdot (-10) = 10$, ehhez adódik $4 \cdot (-7k) + 7 \cdot (4k) = 0$, tehát $4 \cdot (20 - 7k) + 7 \cdot (4k - 10) = 10$. a = 20 - 7k és b = 4k - 10 adják a megoldáspárokat minden egész k-ra.

- d) $(2^6)^a \cdot (2^9)^b = 2^{11}$, vagyis $2^{6a+9b} = 2^{11}$, azaz 6a+9b=11. Ennek a diophantoszi egyenletnek viszont NINCS megoldása, mert a baloldal osztható hárommal, a jobboldal viszont nem.
- 6. Mutassa meg, hogy

a)
$$3^{3n+1}5^{2n+1} + 2^{5n+1}11^n \equiv 0 \mod 17$$
; b) $61^{k+1} + 11^k7^{2k}3^{3k}2^{5k+3} \equiv 0 \mod 23$

Megoldás: Egy lehetséges gondolatmenet, ha észrevesszük, hogy $11 \equiv -6 \equiv -2 \cdot 3 \pmod{17}$, ezért $11^n \equiv (-2)^n \cdot 3^n \pmod{17}$, továbbá $2^{5n+1} = 2 \cdot (2^5)^n = 2 \cdot 32^n \equiv 2 \cdot (-2)^n \pmod{17}$, ezért $2^{5n+1} \cdot 11^n \equiv 2 \cdot (-2)^n \cdot (-2)^n \cdot 3^n \equiv 2^{2n+1} \cdot 3^n \pmod{17}$, kihasználva, hogy $(-2)^n \cdot (-2)^n = (-2)^{2n} = 2^{2n}$.

 $3^{3n+1} \cdot 5^{2n+1} = 3^n \cdot 3^{2n+1} \cdot 5^{2n+1} = 3^n \cdot 15^{2n+1} \equiv 3^n \cdot (-2)^{2n+1} \equiv (-1) \cdot 3^n \cdot 2^{2n+1} \pmod{17},$ kihasználva, hogy $(-2)^{2n+1} = (-1) \cdot 2^{2n+1}$.

Így
$$3^{3n+1} \cdot 5^{2n+1} + 2^{5n+1} \cdot 11^n \equiv (-1) \cdot 3^n \cdot 2^{2n+1} + 2^{2n+1} \cdot 3^n \equiv 0 \pmod{17}$$

b) $61 \equiv -8 \pmod{23}$, ezért $61^{k+1} \equiv (-8)^{k+1} \equiv -8 \cdot (-8)^k \pmod{23}$. A másik tag végén $2^{5k+3} = 2^{5k} \cdot 2^3 = 32^k \cdot 8 \equiv 9^k \cdot 8 \pmod{23}$, azaz mindkét tagból 8-at ki tudunk emelni. Ez bíztató. $3^{3k} = 27^k \equiv 4^k \pmod{23}$, $7^{2k} = 49^k \equiv 3^k \pmod{23}$, tehát $7^{2k} \cdot 2^{5k+3} \equiv 3^k \cdot 9^k \cdot 8 \equiv 27^k \cdot 8 \equiv 4^k \cdot 8 \pmod{23}$, vagyis $7^{2k} \cdot 3^{3k} \cdot 2^{5k+3} \equiv 4^k \cdot 4^k \cdot 8 \equiv 16^k \cdot 8 \pmod{23}$. Ami eddig megvan, abból: $61^{k+1} + 11^k \cdot 7^{2k} \cdot 3^{3k} \cdot 2^{5k+3} \equiv -8 \cdot (-8)^k + 11^k \cdot 16^k \cdot 8 \pmod{23}$.

 $11 \cdot 16 = 176 = 115 + 61 \equiv 61 \equiv -8 \pmod{23}, \text{ ezért } 61^{k+1} + 11^k \cdot 7^{2k} \cdot 3^{3k} \cdot 2^{5k+3} \equiv -8 \cdot (-8)^k + (-8)^k \cdot 8 \equiv 0 \pmod{23}.$

7. Legyen $z = \frac{1+i}{\sqrt{2}} \in \mathbb{C}$. Oldja meg a $z^{3x} = i$ egyenletet!

Megoldás: Trigonometrikus alkakban $z=1\cdot(\cos 45^\circ+i\cdot\sin 45^\circ)$, ez egy primitív 8-adik egységgyök (a 8 a legkisebb pozitív egész, ahányadik hatványa az 1). $z^2=i,\ z^3=i\cdot z,\ z^4=-1,\ z^5=-z,\ z^6=-i,\ z^7=-i\cdot z,\ z^8=1$, és innen újraindul a ciklus: $z^{k+8}=z^k$, és általában $z^k=z^n\Longleftrightarrow k\equiv n\pmod 8$.

 $z^{3x} = i \iff z^{3x} = z^2 \iff 3x \equiv 2 \pmod{8}$. Ezt a kongruenciát kell megoldani.

 $2 \equiv 2 + 16 \pmod{8}$, $3x \equiv 18 \pmod{8}$, a 3 relatív prím a 8-hoz, így $x \equiv 6 \pmod{8}$.

Szorgalmi feladatok

8. Bendegúz pontosan négy pint sört szeretne meginni a csütörtök esti buliban (jó a hangulat, de másnap reggel mégiscsak dimat előadás van). Sajnos csak egy 3 pintes és egy 5 pintes (mérőbeosztás nélküli) edény áll rendelkezésére, továbbá egy hordó sör. Legkevesebb hány pint sört kell engednie a hordóból, hogy pontosan a kívánt mennyiséget tudja elfogyasztani?

Megoldás: Először megtölti a hárompintes korsót, azután annak tartalmát áttölti az ötpintesbe. Ekkor az ötpintesben még marad 2 pint üres hely. Ezután újra megtölti a hárompintes korsót, és csurig tölti belőle az ötpinteset (azaz 2 pintet áttölt.)

Most van egy pint söre a kisebbik korsóban: azt megissza.

Ezután az ötpintesből csurig tölti a hárompinteset (az ötpintesben 2 pint marad). Most is a kisebbik korsó tartalmár issza meg, ami most 3 pint. Ezzel összesen 4 pint sört ivott, és csak a nagyobbik korsóban maradt 2 pintet "pocsékolta" el.