Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Дискретное программирование» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 2 мая 2018 г.

Содержание

1	Техническое задание	3
2	Исходные данные	3
3	Решение методом ветвей и границ	3
Спис	ок иллюстраций	
3.1	Оптимальный путь	3
3.2	Дерево переходов	9

1. Техническое задание

Решить задачу коммивояжера методом ветвей и границ в соответствии с матрицей по вариантам.

Задача коммивояжера: имеется n городов, задана матрица расстояний между городами. Коммивояжер должен побывать в каждом городе только один раз и вернуться в начальный город. Требуется найти маршрут, имеющий минимальную длину.

2. Исходные данные

Из \В ∞ ∞ ∞ ∞ ∞ ∞

Таблица 2.1: Таблица переходов

3. Решение методом ветвей и границ

1. Найдем минимум в каждой строки исходной таблицы 2.1.

Из \В	1	2	3	4	5	6	min
1	∞	14	19	10	19	17	10
2	11	∞	33	8	25	31	8
3	16	24	∞	28	8	10	8
4	8	7	23	∞	21	26	7
5	15	20	7	21	∞	16	7
6	12	22	7	19	12	∞	7

Таблица 3.1: Таблица переходов

Вычтем найденные минимумы из каждой строки.

Таблица 3.2: Таблица переходов

Из \В	1	2	3	4	5	6
1	∞	4	9	0	9	7
2	3	∞	25	0	17	23
3	8	16	∞	20	0	2
4	1	0	16	∞	14	19
5	8	13	0	14	∞	9
6	5	15	0	12	5	∞
min	1	0	0	0	0	2

Из тех столбцов, в которых не оказалось нулей, вычтем минимальный элемент.

Таблица 3.3: Таблица переходов

Из \В	1	2	3	4	5	6
1	∞	4	9	0	9	5
2	2	∞	25	0	17	21
3	7	16	∞	20	0	0
4	0	0	16	∞	14	17
5	7	13	0	14	∞	7
6	4	15	0	12	5	∞

Сумма элементов, которые мы вычитали, равняется 50. Следовательно оптимальный путь не может быть меньше 50:

$$h = 50, \ V(H) = h = 50$$

2. Заменим в таблице 3.3 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.4: Таблица переходов

Из \В	1	2	3	4	5	6
1	_	_	_	4	_	_
2	_	_	_	2	_	_
3	_	_	_	_	5	5
4	2	4	_	_	_	_
5	_	_	7	_	_	_
6	_	_	4	_	_	_

$$\max = 7 \ (5 \to 3)$$

$$G^{(0)} = G_{5,3}^{(0)} \cup G_{\overline{5,3}}^{(0)}$$

$$V(G_{\overline{5,3}}^{(0)}) = V(H) + 7 = 50 + 7 = 57$$

Вычеркнем из таблицы 3.3 строку 5 и столбец 3, при этом запретим путь $3 \to 5$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.5: Таблица переходов

Из \В	1	2	4	5	6	min
1	∞	4	0	9	5	0
2	2	∞	0	17	21	0
3	7	16	20	∞	0	0
4	0	0	∞	14	17	0
6	4	15	12	5	∞	4

Вычтем из строки 6 минимальный элемент, равный 4, т.к. она не содержит ноль. В полученной таблице столбец 5 так же не содержит ноль, поэтому вычтем и из него наименьший элемент, равный 5-4=1.

Таблица 3.6: Таблица переходов

Из \В	1	2	4	5	6	min
1	∞	4	0	8	5	0
2	2	∞	0	16	21	0
3	7	16	20	∞	0	0
4	0	0	∞	13	17	0
6	0	11	8	0	∞	4
min	0	0	0	1	0	

Сумма вычитаемых элементов равна 5, следовательно:

$$V(G_{5,3}^{(0)}) = V(H) + 5 = 50 + 5 = 55 < 57 = V(G_{\overline{5,3}}^{(0)}) \Rightarrow V(G^{(0)}) = 55$$

3. Допустим нет перехода $5 \to 3$. Тогда заменим его на бесконечность, а из строки и столбца, содержащих данный переход, вычтем минимальные элементы: из строки вычтем 7, а из столбца 0.

Таблица 3.7: Таблица переходов

Из \В	1	2	3	4	5	6
1	∞	4	9	0	9	5
2	2	∞	25	0	17	21
3	7	16	∞	20	0	0
4	0	0	16	∞	14	17
5	0	6	∞	7	∞	0
6	4	15	0	12	5	∞

Заменим в таблице 3.7 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.8: Таблица переходов

Из \В	1	2	3	4	5	6
1	_	_	_	4	_	_
2	_	_	_	2	_	_
3	_	_	_	_	5	0
4	0	4	_	_	_	_
5	0	_	_	_	_	0
6	_	_	13	_	_	_

$$\max = 13 \ (6 \to 3)$$

$$G^{(1)} = G_{6,3}^{(1)} \cup G_{6,3}^{(1)}$$

$$V(G_{6,3}^{(1)}) = V(G^{(0)}) + 13 = 57 + 13 = 70$$

Вычеркнем из таблицы 6 строку и 3 столбец, при этом запретим путь $3 \to 6$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.9: Таблица переходов

Из \В	1	2	4	5	6	min
1	∞	4	0	9	5	0
2	2	∞	0	17	21	0
3	7	16	20	0	∞	0
4	0	0	∞	14	17	0
5	0	6	7	∞	0	0
min	0	0	0	0	0	

Сумма вычитаемых элементов равна 0, следовательно:

$$V(G_{6,3}^{(1)}) = V(G^{(0)}) + 0 = 57 < 80 = V(G_{\overline{6,3}}^{(1)}) \Rightarrow V(G^{(1)}) = 57$$

Заменим в таблице 3.9 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.10: Таблица переходов

Из \В	1	2	4	5	6
1	_	_	4	_	_
2	_	_	2	_	_
3	_	_	_	16	_
4	0	14	_	_	_
5	0	_	_	_	5

$$\max = 16 \ (3 \to 5)$$

$$G^{(2)} = G_{3,5}^{(2)} \cup G_{3,5}^{(2)}$$

$$V(G_{\overline{3,5}}^{(2)}) = V(G^{(1)}) + 16 = 57 + 16 = 73$$

Вычеркнем из таблицы 3 строку и 5 столбец, при этом запретим путь $5 \to 6$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.11: Таблица переходов

Из \В	1	2	4	6	min
1	∞	4	0	5	0
2	2	∞	0	21	0
4	0	0	∞	17	0
5	0	6	7	∞	0
min	0	0	5	0	

Вычтем из столбца 6 минимальный элемент, равный 5.

Таблица 3.12: Таблица переходов

Из \В	1	2	4	6	min
1	∞	4	0	0	0
2	2	∞	0	16	0
4	0	0	∞	12	0
5	0	6	7	∞	0
min	0	0	5	0	

Сумма вычитаемых элементов равна 5, следовательно:

$$V(G_{3,5}^{(2)}) = V(G^{(1)}) + 5 = 62 < 73 = V(G_{3,5}^{(2)}) \Rightarrow V(G^{(2)}) = 62$$

Заменим в таблице 3.12 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.13: Таблица переходов

Из \В	1	2	4	6
1	_	_	0	12
2	_	_	2	_
4	0	4	_	_
5	6	_	_	_

$$\max = 12 \ (1 \to 6)$$

$$G^{(3)} = G_{1,6}^{(3)} \cup G_{\overline{1,6}}^{(3)}$$

$$V(G_{\overline{1,6}}^{(3)}) = V(G^{(2)}) + 12 = 62 + 12 = 74$$

Вычеркнем из таблицы 1 строку и 6 столбец, при этом запретим путь $5 \to 1$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.14: Таблица переходов

Из \В	1	2	4	min
2	2	∞	0	0
4	0	0	∞	0
5	∞	6	7	6
min	0	0	0	

Вычтем из строки 5 минимальный элемент, равный 6.

Таблица 3.15: Таблица переходов

Из \В	1	2	4	min
2	2	∞	0	0
4	0	0	∞	0
5	∞	0	1	6
min	0	0	0	

Сумма вычитаемых элементов равна 6, следовательно:

$$V(G_{3,5}^{(2)}) = V(G^{(1)}) + 6 = 68 < 74 = V(G_{3,5}^{(2)}) \Rightarrow V(G^{(2)}) = 68$$

Заменим в таблице 3.15 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.16: Таблица переходов

Из \В	1	2	4
2	_	_	3
4	2	0	_
5	_	1	_

$$\max = 3 \ (2 \to 4)$$

$$G^{(4)} = G_{2,4}^{(4)} \cup G_{\overline{2,4}}^{(4)}$$

$$V(G_{\overline{2,4}}^{(4)}) = V(G^{(3)}) + 3 = 68 + 3 = 71$$

Вычеркнем из таблицы 2 строку и 4 столбец, при этом запретим путь $4 \to 2$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.17: Таблица переходов

Сумма вычитаемых элементов равна 0, следовательно:

$$V(G_{2,4}^{(4)}) = V(G^{(3)}) + 0 = 68 < 71 = V(G_{2,4}^{(4)}) \Rightarrow V(G^{(4)}) = 68$$

Осталось всего два незапрещенных перехода: $4 \to 1$ и $5 \to 2$, следовательно данная ветка образует следующий путь:

$$1 \rightarrow 6 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 4 \rightarrow 1$$

4 Допустим нет перехода $6 \to 3$. Тогда в таблице 3.7 заменим его на бесконечность, а из строки и столбца, содержащих данный переход, вычтем минимальные элементы: из строки вычтем 4, а из столбца 9.

Таблица 3.18: Таблица переходов

Из \В	1	2	3	4	5	6
1	∞	4	0	0	9	5
2	2	∞	16	0	17	21
3	7	16	∞	20	0	0
4	0	0	7	∞	14	17
5	0	6	∞	7	∞	0
6	0	11	∞	8	1	∞

Заменим в таблице 3.18 нули на сумму минимального элемента строки и минимального элемента столбца.

Из \В	1	2	3	4	5	6
1	_	_	7	0	_	_
2	_	_		2	_	_
3	_			_	1	0
4	0	4	_	_	_	_
5	0	_	_	_	_	0

Таблица 3.19: Таблица переходов

$$\max = 7 \ (1 \to 3)$$

$$G^{(2)} = G_{1,3}^{(2)} \cup G_{\overline{1,3}}^{(2)}$$

$$V(G_{\overline{1,3}}^{(2)}) = V(G^{(1)}) + 7 = 68 + 7 = 75$$

Вычеркнем из таблицы 1 строку и 3 столбец, при этом запретим путь $3 \to 1$. Найдем минимумы для каждого столбца и каждой строки.

Из \В \min ∞ ∞ ∞ ∞ ∞ min

Таблица 3.20: Таблица переходов

Сумма вычитаемых элементов равна 0, следовательно:

$$V(G_{1,3}^{(2)}) = V(G^{(1)}) + 0 = 68 < 75 = V(G_{\overline{13}}^{(2)}) \Rightarrow V(G^{(2)}) = 68$$

Заменим в таблице 3.19 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.21: Таблица переходов

Из \В	1	2	4	5	6
2	_	_	9	_	_
3	_	_	_	1	0
4	0	6	_	_	_
5	0	_	_	_	0
6	1	_	_	_	_

$$\max = 9 \ (2 \to 4)$$

$$G^{(3)} = G_{2,4}^{(3)} \cup G_{\overline{2,4}}^{(3)}$$

$$V(G_{\overline{2,4}}^{(3)}) = V(G^{(2)}) + 9 = 68 + 9 = 77$$

Вычеркнем из таблицы 2 строку и 4 столбец, при этом запретим путь $4 \to 2$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.22: Таблица переходов

Из \В	1	2	5	6	min
3	∞	16	0	0	0
4	0	∞	14	17	0
5	0	6	∞	0	0
6	0	11	1	∞	0
min	0	6	0	0	

Вычтем из столбца 2 минимальный элемент, равный 6.

Таблица 3.23: Таблица переходов

Из \В	1	2	5	6	min
3	∞	10	0	0	0
4	0	∞	14	17	0
5	0	0	∞	0	0
6	0	5	1	∞	0
min	0	6	0	0	

Сумма вычитаемых элементов равна 6, следовательно:

$$V(G_{2,4}^{(3)}) = V(G^{(2)}) + 6 = 74 < 77 = V(G_{2,4}^{(3)}) \Rightarrow V(G^{(3)}) = 74$$

5 Заменим в таблице 3.23 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.24: Таблица переходов

Из \В	1	2	4	5	6
1	_	_	4	_	_
2	_	_	2	_	_
3	_	_	_	_	12
4	0	4	_	_	_
6	0	_	_	8	_

$$\max = 12 (3 \to 6)$$

$$G^{(1)} = G_{3,6}^{(1)} \cup G_{\overline{3,6}}^{(1)}$$

$$V(G_{\overline{3,6}}^{(1)}) = V(G^{(0)}) + 12 = 55 + 12 = 67$$

Вычеркнем из таблицы 3 строку и 6 столбец, при этом запретим путь $6 \to 3$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.25: Таблица переходов

Из \В	1	2	4	5	min
1	∞	4	0	8	0
2	2	∞	0	16	0
4	0	0	∞	13	0
6	0	11	8	∞	0
min	0	0	0	8	

Вычтем из столбца 5 минимальный элемент, равный 8.

Таблица 3.26: Таблица переходов

Из \В	1	2	4	5	min
1	∞	4	0	0	0
2	2	∞	0	8	0
4	0	0	∞	5	0
6	0	11	8	∞	0
min	0	0	0	8	

Сумма вычитаемых элементов равна 8, следовательно:

$$V(G_{3,6}^{(1)}) = V(G^{(0)}) + 8 = 63 < 67 = V(G_{\overline{3,6}}^{(1)}) \Rightarrow V(G^{(1)}) = 63$$

6. Допустим нет перехода $3 \to 6$. Тогда в таблице 3.6 заменим его на бесконечность, а из строки и столбца, содержащих данный переход, вычтем минимальные элементы: из строки вычтем 7, а из столбца 5.

Таблица 3.27: Таблица переходов

Из \В	1	2	4	5	6
1	∞	4	0	8	0
2	2	∞	0	16	16
3	0	9	13	∞	∞
4	0	0	∞	13	12
6	0	11	8	0	∞

Заменим в таблице 3.27 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.28: Таблица переходов

Из \В	1	2	4	5	6
1	_	_	0	_	12
2	_	_	2	_	_
3	9	_	_	_	_
4	0	4	_	_	_
6	0	_	_	8	_

$$\max = 12 \ (1 \to 6)$$

$$G^{(2)} = G_{1,6}^{(2)} \cup G_{\overline{1,6}}^{(2)}$$

$$V(G_{\overline{1,6}}^{(2)}) = V(G^{(1)}) + 6 = 67 + 6 = 73$$

Вычеркнем из таблицы 3.27 строку 1 и столбец 6, при этом запретим переход $6 \to 1$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.29: Таблица переходов

Из \В	1	2	4	5	min
2	2	∞	0	16	0
3	0	9	13	∞	0
4	0	0	∞	13	0
6	∞	11	8	0	0
min	0	0	0	0	

Сумма вычитаемых элементов равна 0, следовательно:

$$V(G_{1,6}^{(2)}) = V(G^{(1)}) + 0 = 67 < 73 = V(G_{\overline{1,6}}^{(2)}) \Rightarrow V(G^{(2)}) = 67$$

7. Заменим в таблице 3.30 нули на сумму минимального элемента строки и минимального элемента столбца.

Таблица 3.30: Таблица переходов

Из \В	1	2	4	5
2	_	_	10	_
3	9	_	_	_
4	0	9	_	_
6	_	_	_	21

$$\max = 21 \ (6 \to 5)$$

$$G^{(3)} = G_{6,5}^{(3)} \cup G_{\overline{6,5}}^{(3)}$$

$$V(G_{\overline{6,5}}^{(3)}) = V(G^{(2)}) + 21 = 67 + 21 = 88$$

Вычеркнем из таблицы 3.29 строку 6 и столбец 5, при этом запретим переход $3 \to 1$. Найдем минимумы для каждого столбца и каждой строки.

Таблица 3.31: Таблица переходов

Из \В	1	2	4	min
2	2	∞	0	0
3	∞	9	13	9
4	0	0	∞	0

Вычтем из строки 3 минимальный элемент, равный 9.

Таблица 3.32: Таблица переходов

Из \В	1	2	4	min
2	2	∞	0	0
3	∞	0	4	0
4	0	0	∞	0
min	0	0	0	

Сумма вычитаемых элементов равна 9, следовательно:

$$V(G_{6,5}^{(3)}) = V(G^{(2)}) + 9 = 76 < 88 = V(G_{\overline{6,5}}^{(3)}) \Rightarrow V(G^{(3)}) = 76$$

76 > 68, следовательно эту ветку можно не разивать.

8. Таким образом, оптимальным является путь, длина которого равна 68:

Рис. 3.1: Оптимальный путь

Рис. 3.2: Дерево переходов