ОСНОВЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА

А.Б.Бакушинский Ю.И.Худак

2009 г.

ПРЕДИСЛОВИЕ

Цель книги — дать возможность читателям, **обладающим "стан- дартной"** подготовкой **инженера** по **математическому анализу** и **алгебре**, значительно обобщить полученные ими знания и уверенно ориентироваться в современном **математическом моделировании**.

В дальнейшем, это позволит им *создавать* и *исследовать* новые математические модели в различных областях науки и практики, необходимые для *информационного* и *программного* обеспечения указанных областей человеческой деятельности.

Книга *предназначена* тем, кто хочет или вынужден сделать свои *первые шаги* в освоении функционального анализа, именно в той его, уже давно, ставшей *классической* части, которая возникла в недрах старой классической математики в начале двадцатого века при осмыслении и обобщении самых фундаментальных ее понятий, таких как *функция*, *предел*, *непрерывность*, *производная* и *интеграл* от функции.

Современный функциональный анализ— это переплетение многих теорий, каждая из которых, как правило, содержит большое количество информации об используемых методах исследований, а также большое количество конкретных утверждений. Весь этот массив знаний, конечно же, нашёл своё отражение в большом количестве монографий и учебников.

Назовём лишь, наиболее близкие нам по направлению исследований и методам их проведения, четыре написанных в разное время и ставших классическими фундаментальных труда по функциональному анализу: Л. В. Канторович, Г. П. Акилов — "Функциональный анализ", Н. Данфорд, Дж. Т. Шварц — "Линейные операторы" (три тома, каждый объемом около 1 000 страниц), Э. Хилле, Р. Филлипс — "Функциональный анализ и полугруппы", и, наконец, Р. Эдвардс — "Функциональный анализ".

Эти монографии вряд ли годятся для *первоначального* знакомства с предметом. Предлагаемая *книга* серьезно *отличается*, как от упомянутых монографий, так и от имеющихся на русском языке "классических" *учебников* по функциональному анализу (краткое их перечисление приведено в списке литературы), её более *узкой* направленностью и большей *элементарностью* изложения.

Основное содержание группируется вокруг понятия *метрики*, вводимой на произвольном множестве, возникающем при этом понятии *метрического пространства* и изучении различных примеров функций, *отображающих* одно *метрическое пространство* в другое *метрическое пространство*.

Как показало развитие математики и её приложений в течение XX века, упомянутые выше *понятия метрического пространства* и *отображения* одного *метрического пространства в другое* оказались *основополагающими* в широком круге вопросов, возникающих

при привлечении *математических методов* для описания явлений и процессов в окружающем нас мире.

Теперь, коротко, рассмотрим содержание книги по главам.

В ней четыре главы, в которых мы постарались *изложешть все* наиболее *часто используемые* в приложениях *факты*, *u*, при этом, *не перегрузить читателя*, начинающего знакомиться с функциональным анализом, излишним их обилием.

Первая глава "Метрические пространства" имеет шесть параграфов.

Первые три из них содержат $\boldsymbol{muhumanbhu\"u}$ набор базовых определений \boldsymbol{u} самых важных для приложений $\boldsymbol{npumepos}$ и $\boldsymbol{ceo\~ucms}$ метрических пространств.

В остальных трёх параграфах главы последовательно рассмотрены три часто используемые в теории и приложениях общие конструкции, касающиеся существования пополнения (§ 4), сжимающих отображений (§ 5) и компактности (§ 6).

Вторая глава "Линейные нормированные пространства и линейные операторы" состоит всего из трёх параграфов. Она, также как и первая глава, в определённом смысле, является **подготовительной** для **центральных** по своему значению, как для **теории**, так и для **приложений**, глав III и IV.

В первом параграфе изложены основные базовые определения: *ли- нейного пространства*, *линейной зависимости*, *размерности* линейного пространства, а также основные факты, связанные с введением *нормы* в линейное пространство, превращающее его в *метрическое*

пространство.

Во втором параграфе изложены основные определения и результаты, дающие теоретический *базис* при изучении и применении *линейных операторов*, действующих из одного линейного нормированного пространства в другое линейное нормированное пространство.

И, наконец, в третьем параграфе этой главы приведены основные факты, касающиеся *алгебры операторов*, введено полнятие *обратного оператора* и приведены простые достаточные условия *непрерывности* обратного оператора.

Глава II содержит весьма *небольшое* количество *материала*, который можно пропустить при первом чтении, без ущерба для понимания дальнейшего. Это, прежде всего, содержащиеся в первом параграфе теорема о *непрерывном изоморфизме* всех конечномерных пространств одной и той же размерности, *теорема Ф. Рисса* и полезное во многих приложениях свойство *компактности* любого *ограниченного* множества в любом *конечномерном* линейном нормированном пространстве. "*Необязательный*" материал отмечен знаком в заголовке раздела.

Третья глава "Гильбертово пространство. Линейные отображения гильбертовых пространств" содержит шесть параграфов.

В первом параграфе приведено определение пространств *со скаляр- ным произведением*, понятия слабой сходимости в этих пространствах и основные факты *об ортогональности* и *замкнутости* линейных множеств в них.

Во втором параграфе изложены основные фундаментальные фак-

ты теории *гильбертовых пространств*: *теорема о проекции* на замкнутое выпуклое множество и, в частности, на замкнутое подпространство, теория *рядов Фурье* в пространстве со скалярным произведением и *об общем виде линейного функционала* в гильбертовом пространстве.

Третий параграф посвящён доказательству существования у всякого *самосопряжённого вполне непрерывного* оператора в *гильбер-товом* пространстве *собственных векторов* и вытекающей из этого факта *теоремы о спектральном разложении* рассматриваемых операторов.

В четвёртом параграфе приведены два важных примера систем собственных функций для *интегрального оператора* и для *задачи Штур-ма - Лиувилля* для дифференциального оператора второго порядка, опирающиеся на теорию параграфа три.

В пятом параграфе изложена теория решения *операторного урав- нения* второго рода с *самосопряжённым вполне непрерывным* оператором в *гильбертовом* пространстве.

И, наконец, в шестом параграфе этой главы исследуются *оператор*ные уравнения второго рода с произвольным вполне непрерывным оператором в гильбертовом пространстве.

Четвёртая глава "Нелинейные отображения линейных нормированных пространств" является **кратким введением** в **нелинейный функциональный анализ**. Она состоит из четырёх параграфов.

В первом параграфе рассмотрены основные понятия теории диффе-

ренцирования и интегрирования *абстрактных функций* со значениями в линейном нормированном пространстве.

Во втором параграфе изложены основы *дифференцирования нели- нейных отображений* линейных нормированных пространств. Приведены определения *дифференциала Фреше*, дифференциала *Гато* и *вариации* нелинейного отображения *по направлению*.

В небольшом третьем параграфе рассмотрен *метод Ньютона* построения *итерационных последовательностей* для приближённого решения операторных уравнений с *нелинейным* оператором в *гильбертовом* пространстве. Приведена теорема, содержащая условия сходимости соответствующего итерационного процесса.

Последний, четвёртый параграф четвёртой главы посвящён экстремальным задачам в линейных нормированных пространствах.

В качестве *примера* рассмотрены простейшие задачи классического *вариационного исчисления*. Приведены основные формулировки и типичные методы рассуждения при установлении *необходимых* условий *минимума* и *максимума* в рассматриваемых задачах.

Несколько *методических замечаний* для студентов, предполагающих изучать функциональный анализ по нашей книге.

Освоение всех изложенных результатов необходимо совершать *постепенно*, шаг за шагом, переходя от одного более простого факта к другому более сложному, только *убедившись* в хорошем усвоении предыдущего.

Например, сформулированные в $\S 1$ главы II основные ${\it ceoйcmea}$, вытекающие из ${\it axcuom\ nuhe\"uhozo\ npocmpahcmea}$, являются ${\it ochoeo\'u}$

элементарных действий и рассуждений, nocmoshho используемых при доказательствах nochoshio фактов функционального анализа.

Обычно, именно недостаточно *свободное владение* какими-то из перечисленных правил или их комбинациями служат *главным* тормозом на пути успешного овладения принципиальными элементами *классического* функционального анализа.

Сложность освоения материала книги *существенным образом* зависит от *уровня* предварительной подготовки читателя, особенно в области *линейной алгебры*, *аналитической геометрии* и *математического анализа*, синтезом которых и является часть функционального анализа, рассматриваемая в этой книге.

Поэтому, *при возникновении затруднений* с усвоением материала, очень полезно *понять* в каком из разделов трёх названных выше математических дисциплин рассматривались понятия, *похожие* или *родственные* вызвавшим затруднения. Вспомнив и освежив *старые* знания, легче будет двигаться *вперёд*.

В книге принята *сквозная* одинарная нумерация формул *внутри* каждого *параграфа*. При ссылке на предыдущий материал, обязательно указываются параграф и глава, в которой находится соответствующий материал или формула.

И, наконец, следует отметить, что отнесение некоторых *утверждений* к "разряду" *теорем* или *лемм* не служит цели увеличения или умаления их *значения* в общих математических *конструкциях*, а, в большинстве случаев, является либо данью устоявшимся *традициям*,

либо личным привычкам авторов.

Книга соответствует современным учебным планам по дисциплине Функциональный анализ, входящим в обязательную программу подготовки специалистов, бакалавров и магистров, как минимум по двум направлениям подготовки: классических университетов—

от 500 "Прикладная математика и информатика" и инженерного образования в области автоматизации и процессов управления—

220 400 "Прикладная математика".

Оба автора в течение ряда лет читали и читают курс функционального анализа по примерно одинаковым программам, в основном соответствующим объему материала, изложенного в главах $\mathbf{I} - \mathbf{IV}$, в Московском государственном институте радиотехники, электроники и автоматики (mexhuveckom yhusepcumeme MUP9A) и Московском государственном авиационно-технологическом институте (mexhuveckom yhusepcumeme MATU).

Помещённые в конце каждого параграфа *задачи* и *упраженения*, по нашему мнению, *могут* служить *базой для* проведения *практических занятий* по курсу функционального анализа.

Небольшое количество более трудных задач отмечено знаком * около номера задачи.

Авторы признательны рецензентам книги профессору, доктору физико-математических наук А.В. Чечкину и профессору, доктору физико-математических наук А.Г. Яголе за большую проделанную ими работу и ценные замечания, способствовавшие окончательному редактированию текста.

Глава 1

Метрические пространства

1.1 Определение и примеры метрических пространств

Определение 1. Метрическим пространством называется множесство \mathbf{X} , для любых двух элементов \mathbf{x}_1 , \mathbf{x}_2 которого определено действительное неотрицательное число $\boldsymbol{\rho}(\mathbf{x}_1,\mathbf{x}_2)$ – рассстояние между \mathbf{x}_1 и \mathbf{x}_2 , — обладающее следующими свойствами:

 $\mathbf{1}^{\circ}$ — $A\kappa cuoma$ невырожеденности:

$$\boldsymbol{\rho}(\mathbf{x}_1, \mathbf{x}_2) = 0 \iff \mathbf{x}_1 = \mathbf{x}_2 ,$$

т.е. **расстояние** между элементами **равно 0** тогда и только тогда, когда эти **элементы совпадают** (как элементы множества **X**).

 $\mathbf{2}^{\circ}$ — $A\kappa cuoma\ cummempuu$:

Eсли $\mathbf{x},\,\mathbf{y}$ — любые два элемента \mathbf{X} , то:

$$\rho(y, x) = \rho(x, y)$$
.

 3° — Аксиома треугольника:

Eсли $\mathbf{x}, \mathbf{y}, \mathbf{z}$ — любые три элемента \mathbf{X} , то:

$$\rho(\mathbf{x}, \mathbf{y}) \leqslant \rho(\mathbf{x}, \mathbf{z}) + \rho(\mathbf{z}, \mathbf{y}).$$

Другими словами, данное определение подразумевает, что *на прямом* (или, в другой терминологии, *декартовом*) *произведении* $\mathbf{X} \times \mathbf{X}$ множества \mathbf{X} на себя же, состоящем из всевозможных *пар* элементов $(\mathbf{x},\mathbf{y}) \in \mathbf{X}$, задана действительнозначная *неотрицательная функция* от *двух аргументов* $\mathbf{x},\mathbf{y}-\rho(\mathbf{x},\mathbf{y}),-$ *расстояние* между элементами или *метрика*, которая обладает свойствами $\mathbf{1}^{\circ}-\mathbf{3}^{\circ}$.

В дальнейшем, элементы множества ${\bf X}$ мы будем, иногда, называть ${\it movkamu}$ (${\it mempuveckoro}$ ${\it npocmpahcmea}$), а само множество ${\bf X}$ — ${\it hocumenem}$ метрического пространства.

Пример 1 — метрическое пространство \mathbb{E}^1

Важным *примером метрического пространства* является *чис- ловая прямая* \mathbb{R}^1 с *расстоянием* между точками \mathbf{x}, \mathbf{y} , определяемым следующим стандартным образом: $\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$.

Выполнение аксиом 1° и 2° , в данном случае, очевидным образом вытекает непосредственно из *определения* расстояния между точками \mathbf{x}, \mathbf{y} .

Во-первых,
$$\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}| \geqslant 0$$
 и $|\mathbf{x} - \mathbf{y}| = 0 \iff x = y$. Во-вторых, очевидно, $|\mathbf{y} - \mathbf{x}| = |\mathbf{x} - \mathbf{y}|$.

 ${\rm II}$, наконец, аксиома ${\bf 3}^{\circ}$ является следствием неравенства:

$$|\,a\,+\,b\,|\,\leqslant\,|\,a\,|\,+\,|\,b\,|$$

Получившееся метрическое пространство часто обозначается \mathbb{E}^1 .

 \Diamond

 $Mempuческое пространство \mathbb{E}^1$ для математического анализа является baselength bas

Как мы увидим ниже, в *функциональном анализе* важнейшие понятия предельного перехода и непрерывности функции одной переменной переносятся на произвольное *метрическое пространство*.

А это, в свою очередь, дает основание ожидать, что многие другие результаты *классического* математического анализа окажутся справедливыми для соответствующих классов *отображений* любых *метрических пространств*.

Нижеследующие примеры *метрических пространств* будут неоднократно использоваться на протяжении всего нашего курса.

Пример 2 — метрическое пространство \mathbb{E}^n

Множество ${\bf X}$ состоит из элементов ${\bf x}-{\bf n}$ - ${\bf o}{\kappa}$ (наборов из ${\bf n}$ действительных чисел): ${\bf x}\stackrel{def}{=}(x_1,\ldots,x_n)$.

Это *множество*, обычно, называется *арифметическим пространством* \mathbb{R}^n .

Зададим в \mathbb{R}^n расстояние $\rho(\mathbf{x}, \mathbf{y})$ следующим образом:

если $\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n)$ — два **элемента** \mathbb{R}^n , то

$$\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2} \tag{1}$$

Убедимся, что функция $ho(\mathbf{x},\mathbf{y})$, введенная в (1), действительно удовлетворяет аксиомам $\mathbf{1}^{\circ}-\mathbf{3}^{\circ}$ определения метрического пространства.

Выражение (1), очевидно, **неотрицательно** и может обращаться в нуль только в том случае, когда **все** квадраты **разностей** обращаются в нуль, т.е. когда наборы чисел $\mathbf{x} = (x_1, \dots, x_n)$ и $\mathbf{y} = (y_1, \dots, y_n)$ полностью совпадают между собой, что, как раз, и означает выполнение аксиомы $\mathbf{1}^{\circ}$ для предполагаемого расстояния (1).

Аксиома 2° для расстояния, определённого формулой (1), также, очевидным образом, будет выполнена.

Для проверки выполнения аксиомы 3° необходимо и достаточно проверить справедливость неравенства:

$$\sum_{i=1}^{n} (x_i - y_i)^2 \leqslant \left(\left[\sum_{i=1}^{n} (x_i - z_i)^2 \right]^{1/2} + \left[\sum_{i=1}^{n} (z_i - y_i)^2 \right]^{1/2} \right)^2, \quad (2)$$

для любых трех \mathbf{n} - $o\kappa$: $\mathbf{x} = \{x_i\}, \ \mathbf{y} = \{y_i\}, \ \mathbf{z} = \{z_i\}$ из \mathbf{X} .

Обозначим $x_i-z_i=a_i$ и $z_i-y_i=b_i$, тогда неравенство (2) можно переписать в виде:

$$\sum_{i=1}^{n} (a_i + b_i)^2 \leqslant \left(\left[\sum_{i=1}^{n} a_i^2 \right]^{1/2} + \left[\sum_{i=1}^{n} b_i^2 \right]^{1/2} \right)^2$$
 (3)

Раскрывая левую и правую части этого предполагаемого неравенства,

получим:

$$\sum_{i=1}^{n} a_i^2 + 2\sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} b_i^2 \leqslant \sum_{i=1}^{n} a_i^2 + 2\left[\sum_{i=1}^{n} a_i^2\right]^{1/2} \cdot \left[\sum_{i=1}^{n} b_i^2\right]^{1/2} + \sum_{i=1}^{n} b_i^2$$

Справедливость неравенства (2) вытекает теперь из следующего неравенства Коши - Буняковского:

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 - \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) \leqslant 0 \tag{4}$$

Приведем одно из возможных доказательств неравенства (4).

Определим функцию $\Phi(\lambda)$:

$$\Phi (\lambda) = \sum_{i=1}^{n} (a_i + \lambda \cdot b_i)^2$$

Функция $\Phi(\lambda)$, ввиду вещественности a_i , b_i и λ , является **неот- рицательной квадратичной** функцией числового параметра λ .

Поэтому *дискриминант* этой функции, совпадающий с левой частью неравенства (4), должен быть *неотрицательным*.

Таким образом, множество \mathbb{R}^n с **метрикой** (1) действительно является **метрическим пространством**.

Часто оно называется **n**-*мерным евклидовым пространством* \mathbb{E}^n , а *метрика*, определяемая (1) , — *евклидовой* метрикой в \mathbb{R}^{n-1}

 \Diamond

¹Точный смысл, вносимый прилагательным "евклидово" (пространство) или "евклидова" (метрика), связан с тем, что метрика, определяемая в \mathbb{R}^n формулой (1), порождает на \mathbb{R}^n также и соответствующее (1) скалярное произведение, что будет предметом специального обсуждения в главе III.

На базе одного и того же nocumens— множества \mathbf{X} , — можно строить pashbe метрические пространства, задавая pasnuvhbe метрики.

Пример 3. На множестве \mathbb{R}^n можно ввести **метрику** $\boldsymbol{\rho}(\mathbf{x}, \mathbf{y})$, например, так:

$$\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = \max_{1 \leq i \leq n} |x_i - y_i| \tag{5}$$

Проверку аксиом $\mathbf{1}^{\circ} - \mathbf{3}^{\circ}$ в случае метрики (5) читателю *рекомен- дуется* проделать самостоятельно.

Получившееся метрическое пространство мы будем обозначать \mathbb{R}^n_{\max} .

\Diamond

Пример 4 — метрическое пространство ℓ_2

Множество ${\bf X}$ состоит из *элементов* ${\bf x}$ — бесконечных *числовых* ${\it nocnedosameльноcmeй}-{\bf x}\stackrel{def}{=}(x_1,\ldots,x_n,\ldots)$ таких, что:

$$\sum_{i=1}^{\infty} x_i^2 < \infty \tag{6}$$

 $Mempu\kappa a \
ho\left(\, {f x}, {f y} \, \right)$ задается формулой:

$$\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{\infty} (x_i - y_i)^2\right]^{1/2}$$
 (7)

Прежде чем проверять для функции (7) аксиомы метрики $\mathbf{1}^{\circ} - \mathbf{3}^{\circ}$, убедимся, что сама функция (7) корректно определена, т.е. что для любых двух элементов $\mathbf{x} = (x_1, \dots, x_n, \dots)$, $\mathbf{y} = (y_1, \dots, y_n, \dots)$ из \mathbf{X} , ряд в правой части (7) сходится.

Действительно, в силу неравенства (3) при любом натуральном N:

$$\left[\sum_{i=1}^{N} (x_i - y_i)^2\right]^{1/2} \leqslant \left[\sum_{i=1}^{N} x_i^2\right]^{1/2} + \left[\sum_{i=1}^{N} y_i^2\right]^{1/2}.$$

В силу условия (6), отсюда следует сходимость ряда в (7).

Переходя к пределу при $n \to \infty$ одновременно в правой и левой частях неравенства (2), убеждаемся в справедливости неравенства треугольника — аксиомы $\mathbf{3}^{\circ}$, — для метрики, определяемой формулой (7).

Справедливость аксиом метрики 1° и 2° для функции (7) **очевидна** (см. пример 2).

Множество **X**, оснащенное метрикой (7), обычно называется **мет**рическим пространством ℓ_2 .

\Diamond

Пример 5 — метрическое пространство $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$

Множество ${\bf X}$ состоит из ${\it henpepushux}$ на отрезке $[{f a},{f b}]$ функций $x\left(t\right),$ т.е. ${f x}\stackrel{def}{=}x\left(t\right).$

 ${\it Paccmoshue}$ между элементами ${\bf x}, {\bf y}$ множества ${\bf X}$ задается формулой:

$$\rho(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{a} \leq t \leq \mathbf{b}} |x(t) - y(t)|$$
 (8)

Справедливость аксиом $1^{\circ} - 3^{\circ}$, из определения метрического пространства, следует в этом случае из почти очевидных числовых неравенств, которые мы рекомендуем читателю проверить самостоятельно.

Полученное mempuческое npocmpaнcmso, обычно, обозначается символом $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

Пример 6 — метрическое пространство $\mathbb{D}_k[\mathbf{a}, \mathbf{b}]$

Множество \mathbf{X} состоит из k раз непрерывно $\partial u\phi\phi$ еренцируемых функций $x\left(t\right)$, определенных на отрезке $[\mathbf{a},\mathbf{b}]$.

Paccmoshue между элементами f X можно ввести так:

$$\rho\left(\mathbf{x},\,\mathbf{y}\right) = \max_{0 \leqslant j \leqslant k} \left\{ \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x\left(t\right) - y\left(t\right) \right|, \, \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x'\left(t\right) - y'\left(t\right) \right|, \, \dots \right. \\ \left. \dots, \, \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x^{(k-1)}\left(t\right) - y^{(k-1)}\left(t\right) \right|, \, \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x^{(k)}\left(t\right) - y^{(k)}\left(t\right) \right| \right\}$$

$$(9)$$

Bce три аксиомы метрики для (9) проверяются почти также просто, как и для метрики (8) в предыдущем примере (5).

Отличие состоит только в том, что для (9) всякий раз приходится выбирать максимальное значение из набора k чисел, входящих в правую часть формулы (9).

Действительно, функция расстояния (*метрика*), определяемая формулой (9):

- $\mathbf{1}^{\circ}$. Heompuuameльна и может обратиться в $\ 0$ только тогда, когда $x\left(t\right)\equiv y\left(t\right)$.
 - $\mathbf{2}^{\circ}$. $\mathit{Cummempuчha}$ относительно её аргументов \mathbf{x} и \mathbf{y} .
 - ${f 3}^{\circ}$. *Неравенство треугольника* проверяется немного сложнее.

Во-первых, для любой точки t отрезка $[\mathbf{a}, \mathbf{b}]$:

$$|x(t) - y(t)| \leq \rho_{\mathbb{C}}(\mathbf{x}, \mathbf{z}) + \rho_{\mathbb{C}}(\mathbf{z}, \mathbf{y}) \stackrel{def}{=} \rho_{I}^{(0)} + \rho_{II}^{(0)},$$

а также справедливо аналогичное неравенство для любого номера $1 \,\leqslant\, j \,\leqslant\, k$

производной:

$$\begin{split} \left| x^{(j)}\left(t\right) - y^{(j)}\left(t\right) \right| \leqslant \boldsymbol{\rho}_{\mathbb{C}}\left(\mathbf{x}^{(j)}, \mathbf{z}^{(j)}\right) + \boldsymbol{\rho}_{\mathbb{C}}\left(\mathbf{z}^{(j)}, \mathbf{y}^{(j)}\right) \stackrel{def}{=} \boldsymbol{\rho}_{I}^{(j)} + \boldsymbol{\rho}_{II}^{(j)}, \end{split}$$
 где $\mathbf{x}^{(j)} = x^{(j)}\left(t\right), \mathbf{y}^{(j)} = y^{(j)}\left(t\right), \mathbf{z}^{(j)} = z^{(j)}\left(t\right).$

Далее, принимая во внимание, что

$$oldsymbol{
ho}_{\mathbb{D}_k} \left(\mathbf{x}, \, \mathbf{z}
ight) \overset{def}{=} \max_{0 \leqslant j \leqslant k} oldsymbol{
ho}_{\mathbb{C}} \left(\mathbf{x}^{(j)}, \, \mathbf{z}^{(j)}
ight) = \max_{0 \leqslant j \leqslant k} \left\{ oldsymbol{
ho}_I^{(j)}
ight\} \; ,$$

и, аналогично,

$$oldsymbol{
ho}_{\mathbb{D}_k} \left(\mathbf{z}, \, \mathbf{y}
ight) \stackrel{def}{=} \max_{0 \leqslant j \leqslant k} oldsymbol{
ho}_{\mathbb{C}} \left(\mathbf{z}^{(j)}, \, \mathbf{y}^{(j)}
ight) = \max_{0 \leqslant j \leqslant k} \left\{ oldsymbol{
ho}_{II}^{(j)}
ight\} \; ,$$

получаем, что *все левые* части выписанных выше неравенств, для *лю- бого* номера *производной* $0 \le j \le k$, для *любой* точки t отрезка $[\mathbf{a}, \mathbf{b}]$ удовлетворяют неравенству:

$$\left|x^{(j)}(t) - y^{(j)}(t)\right| \leqslant \boldsymbol{\rho}_{\mathbb{D}_k}(\mathbf{x}, \mathbf{z}) + \boldsymbol{\rho}_{\mathbb{D}_k}(\mathbf{z}, \mathbf{y}).$$

Но, выбрав в левых частях выписанных неравенств, максимум по t: $\max_{\mathbf{a}\leqslant t\leqslant \mathbf{b}}$, а затем максимум, среди получившихся таким образом чисел в левых частях, по j: $\max_{0\leqslant j\leqslant k}$, получим:

$$oldsymbol{
ho}_{\mathbb{D}_k} \left(\mathbf{x}, \, \mathbf{y}
ight) \, \leqslant \, oldsymbol{
ho}_{\mathbb{D}_k} \left(\mathbf{x}, \, \mathbf{z}
ight) \, + \, oldsymbol{
ho}_{\mathbb{D}_k} \left(\mathbf{z}, \, \mathbf{y}
ight) \, .$$

Построенное *метрическое пространство* принято обозначать: $\mathbb{D}_k [\mathbf{a}, \mathbf{b}]$. Поэтому, в полном соответствии с этим соглашением $\mathbb{D}_0 [\mathbf{a}, \mathbf{b}] = \mathbb{C} [\mathbf{a}, \mathbf{b}]$.

Пример 7 — метрическое пространство $\mathbb{C}_{\mathbb{L}_2}\left[\mathbf{a},\mathbf{b}\right]$

Носитель ${\bf X}$ такой же как в примере ${\bf 5}$: множество ${\bf X}$ состоит из ${\bf \textit{henpepuehux}}$ на отрезке $[{\bf a},{\bf b}]$ функций $x\left(t\right)$, т.е. ${\bf x}\stackrel{def}{=}x\left(t\right)$.

Но, в отличие от примера 5 , *расстояние* между функциями, принадлежащими \mathbf{X} , определяется так:

$$\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = \left(\int_{\mathbf{a}}^{\mathbf{b}} \left[x(t) - y(t)\right]^{2} dt\right)^{1/2}$$
(10)

Выполнение аксиомы 2° очевидно.

Выполнение аксиомы 1° следует из утверждения о тождественном равенстве нулю на отрезке $[\mathbf{a}, \mathbf{b}]$ *неотрицательной непрерывной* функции при условии равенства нулю интеграла от неё по этому отрезку. (См. задачу 3 в конце этого параграфа).

Выполнение аксиомы треугольника 3° проверяется по схеме аналогичного рассуждения примера 2, для чего используемая там функция $\Phi(\lambda)$ заменяется функцией

$$\mathbf{\Phi}(\lambda) = \int_{\mathbf{a}}^{\mathbf{b}} \left[x(t) + \lambda y(t) \right]^{2} dt.$$

Таким образом множество \mathbf{X} всех непрерывных функций на заданном отрезке $[\mathbf{a},\mathbf{b}]$ с метрикой, определенной по формуле (10), является метрическим пространством и, обычно, обозначается так: $\mathbb{C}_{\mathbb{L}_2}[\mathbf{a},\mathbf{b}]$.

Подпространство метрического пространства

Так как на базе одного и того же **носителя** — \mathbf{X} выбором **раз- личных** метрических функций $\boldsymbol{\rho}$ могут быть образованы **разные** метрические пространства, то в некоторых случаях удобно **обозначать** абстрактное метрическое пространство с **носителем** \mathbf{X} и **метрикой** $\boldsymbol{\rho}$ в виде "единого" объекта: $(\mathbf{X}, \boldsymbol{\rho})$.

Пусть $(\mathbf{X}, \boldsymbol{\rho})$ — метрическое пространство.

Если $\mathbf{X}_1 \subset \mathbf{X}$, любое **подмножество** \mathbf{X} , то $(\mathbf{X}_1, \boldsymbol{\rho})$ — также будет **метрическим пространством**, т.к. все необходимые для этого свойства метрики для $(\mathbf{X}_1, \boldsymbol{\rho})$ "наследуются" из объемлющего пространства $(\mathbf{X}, \boldsymbol{\rho})$.

Получаемое таким способом метрическое пространство $(\mathbf{X}_1, \boldsymbol{\rho})$ называется nodnpocmpaнcmsom рассматриваемого метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$.

Например, любое множество точек из \mathbb{E}^n образует nodnpocmpaн-cmso метрического npocmpaнства \mathbb{E}^n .

Важное предостережение: вообще говоря, рассматриваемое в \mathbb{E}^n произвольное множество не будет подпространством в \mathbb{E}^n в смысле,
обычно используемом в линейной алгебре!

Полезные неравенства

В заключение этого параграфа приведем два полезных неравенства.

Первое из них называется *неравенством четырёхугольника* и будет несколько раз использовано в дальнейшем изложении.

Если $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}$ — любые четыре элемента метрического пространства \mathbf{X} , то:

$$| \boldsymbol{
ho} \left(\mathbf{x}, \mathbf{y} \right) - \boldsymbol{
ho} \left(\mathbf{u}, \mathbf{v} \right) | \leqslant \boldsymbol{
ho} \left(\mathbf{x}, \mathbf{u} \right) + \boldsymbol{
ho} \left(\mathbf{y}, \mathbf{v} \right) .$$

Это неравенство получается двукратным применением неравенства треугольника:

$$m{
ho}\left(\mathbf{x},\mathbf{y}
ight) \ \leqslant \ m{
ho}\left(\mathbf{x},\mathbf{u}
ight) + m{
ho}\left(\mathbf{u},\mathbf{y}
ight) \ \leqslant \ m{
ho}\left(\mathbf{x},\mathbf{u}
ight) + m{
ho}\left(\mathbf{u},\mathbf{v}
ight) + m{
ho}\left(\mathbf{v},\mathbf{y}
ight) \,,$$
откуда

$$\rho(\mathbf{x}, \mathbf{y}) - \rho(\mathbf{u}, \mathbf{v}) \leqslant \rho(\mathbf{x}, \mathbf{u}) + \rho(\mathbf{v}, \mathbf{y})$$
.

С другой стороны, поступая аналогично, но начиная не с $\boldsymbol{\rho}(\mathbf{x},\mathbf{y})$, а с $\boldsymbol{\rho}(\mathbf{u},\mathbf{v})$, получается неравенство:

$$\rho(\mathbf{u}, \mathbf{v}) - \rho(\mathbf{x}, \mathbf{y}) \leqslant \rho(\mathbf{x}, \mathbf{u}) + \rho(\mathbf{v}, \mathbf{y})$$

которое и завершает доказательство неравенства четырёхугольника, т.к. левые части двух последних неравенств отличаются только *знаком*, а в их правых частях стоят одинаковые выражения.

Второе полезное неравенство, которое мы здесь упомянем, обычно, называется "второе неравенство треугольника".

Оно получается из неравенства четырёхугольника, если в нём положить $\mathbf{u} = \mathbf{z}$ и $\mathbf{v} = \mathbf{y}$, и имеет вид:

$$|\rho(\mathbf{x}, \mathbf{y}) - \rho(\mathbf{z}, \mathbf{y})| \leqslant \rho(\mathbf{x}, \mathbf{z}).$$

Упражнения и задачи к параграфу 1.

1. Подробно проверить *аксиомы метрики* в примерах 4, 5 и 6.

- 2. Сформулировать определение **подпространства** \mathbb{E}^n , принятое в **линейной алгебре** и **аналитической геометрии**.
 - 3. Пусть $x(t) \geqslant 0$ на $[\mathbf{a}, \mathbf{b}]$ *непрерывна* и, кроме того: $\int_{\mathbf{a}}^{\mathbf{b}} x(t) dt = 0$. *Доказать*, что $x(t) \equiv 0$ на $[\mathbf{a}, \mathbf{b}]$.
- 4. Пусть множество ${\bf X}$ состоит из элементов ${\bf x}$ бесконечных ${\bf vuc}$ ловых последовательностей ${\bf x}\stackrel{def}{=}(x_1,\ldots,x_n,\ldots)$ таких, что:

$$\sum_{i=1}^{\infty} |x_i| < \infty .$$

Mempuka $\rho(\mathbf{x}, \mathbf{y})$ задается формулой:

$$\rho(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{\infty} |x_i - y_i|,$$

где $\mathbf{y} = (y_1, \ldots, y_n, \ldots).$

Доказать, что \mathbf{X} — метрическое пространство.

Это метрическое пространство, обычно, обозначается ℓ_1 .

5. Пусть множество \mathbf{X} состоит из элементов \mathbf{x} — бесконечных **числовых последовательностей** — $\mathbf{x} \stackrel{def}{=} (x_1, \dots, x_n, \dots)$ таких, что каждая из этих последовательностей сходится в смысле классического математического анализа.

 $Mempuka \rho(\mathbf{x}, \mathbf{y})$ задается формулой:

$$\boldsymbol{\rho}(\mathbf{x}, \mathbf{y}) = \sup_{i} |x_i - y_i|,$$

где $y = (y_1, \ldots, y_n, \ldots) \in \mathbf{X}$.

Доказать, что $\mathbf{X}-$ метрическое пространство.

Это метрическое пространство, обычно, обозначается ${\bf c}$.

 6^* . Пусть множество ${f X}$ состоит из **элементов** ${f x}$ — бесконечных ${f uucnobux\ nocnedobameльноcmeй} - {f x} \stackrel{def}{=} (x_1, \ldots, x_k, \ldots)$.

Mempuka $\rho(\mathbf{x}, \mathbf{y})$ задается формулой:

$$\rho(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|},$$

где $y = (y_1, \ldots, y_k, \ldots) \in \mathbf{X}$.

Доказать, что $\mathbf{X}-$ метрическое пространство.

Это метрическое пространство, обычно, обозначается ${\bf s}$.

- 7. Можно ли на прямой $(-\infty < x < +\infty)$ ввести метрику по формуле $\rho(x,y) = |\arctan y|$?
- 8. Можно ли на прямой $(-\infty < x < +\infty)$ ввести метрику по формуле $\rho(x,y) = \arctan|x-y|$?

1.2 Сходимость. Замкнутые и открытые множества в метрическом пространстве

Сходимость последовательности в метрическом пространстве

Всякая заданная **метрика** позволяет естественным образом ввести понятие $\boldsymbol{cxodsugeŭcs}$ **последовательности** точек метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$.

Определение 2. Элемент \mathbf{x} метрического пространства называется пределом последовательности точек (элементов) $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n, \ldots$ того же метрического пространства \mathbf{X} , если выполняется соотношение:

$$\lim_{n \to \infty} \boldsymbol{\rho} \left(\mathbf{x}, \mathbf{x}_n \right) = 0 \tag{1}$$

Замечание. То, что последовательность точек $\{ \mathbf{x}_n \}$ *сходится* к точке \mathbf{x} , для краткости речи, часто, записывают в виде:

«
$$\mathbf{x_n} \to \mathbf{x}$$
 при $n \to \infty$ » или « $\lim_{n \to \infty} \mathbf{x_n} = \mathbf{x}$ ».

Определение 3. Если из заданной последовательности $\{\mathbf{x}_n\}$ по некоторому правилу: $n=k_1,\,k_2,\,\ldots,\,k_m,\,\ldots$, отобраны элементы этой последовательности $\{\mathbf{x}_{k_m}\}$, $m=1,\,2,\,\ldots$, то последовательность элементов $\{\mathbf{x}_{k_m}\}$, $m=1,\,2,\,\ldots$, называется подпоследовательностью последовательности $\{\mathbf{x}_n\}$.

Утверждение 1. Если последовательность точек $\{ \mathbf{x}_n \}$ метрического пространства \mathbf{X} сходится κ точке \mathbf{x}_0 этого пространства при $n \to \infty$, то всякая подпоследовательность этой последовательности $\{ \mathbf{x}_{n_k} \}$, $k = 1, 2, \ldots, p, \ldots$ сходится при $k \to \infty$, κ той эсе самой точке $\mathbf{x}_0 \in \mathbf{X}$.

Утверждение 2. Последовательность точек $\{ \mathbf{x}_n \}$ метрического пространства \mathbf{X} может сходиться не более чем к одной точке пространства \mathbf{X} .

Доказательство. Доказательство проведём от противного.

Пусть $\mathbf{x}_n \to \mathbf{a}$ и $\mathbf{x}_n \to \mathbf{b}$ $(\mathbf{a} \neq \mathbf{b}, \mathbf{a}, \mathbf{b} \in \mathbf{X})$ при $n \to \infty$.

Тогда, по определению сходимости $\lim_{n\to\infty} \boldsymbol{\rho}\left(\mathbf{a},\mathbf{x_n}\right) = 0$ и $\lim_{n\to\infty} \boldsymbol{\rho}\left(\mathbf{b},\mathbf{x_n}\right) = 0$.

Рассмотрим расстояние между точками а и b:

 $oldsymbol{
ho}\left(\mathbf{a},\mathbf{b}
ight)\leqslantoldsymbol{
ho}\left(\mathbf{a},\mathbf{x_n}
ight)+oldsymbol{
ho}\left(\mathbf{x_n},\mathbf{b}
ight)\ o 0$ при $n o\infty$, что возможно только при $oldsymbol{
ho}\left(\mathbf{a},\mathbf{b}
ight)=0$, откуда $\mathbf{a}=\mathbf{b}$.

Утверждение 3. Если последовательность точек $\{ \mathbf{x}_n \}$ метрического пространства \mathbf{X} сходится к точке \mathbf{x} пространства \mathbf{X} , то, для любой точки \mathbf{y} пространства \mathbf{X} , расстояния $\boldsymbol{\rho}(\mathbf{y}, \mathbf{x_n})$ ограничены в совокупности.

Доказательство вытекает из неравенства:

$$\rho(\mathbf{y}, \mathbf{x}_n) \leqslant \rho(\mathbf{x}, \mathbf{x}_n) + \rho(\mathbf{x}, \mathbf{y}) \leqslant \mathbf{M} + \rho(\mathbf{x}, \mathbf{y}),$$

где ${\bf M}$ величина, ограничивающая *бесконечно малую* последовательность ${m
ho}({f x},{f x}_n)$.

Определение 4. Открытым шаром $\mathbf{S}(\mathbf{a},r)$ радиуса r>0 с центром в точке $\mathbf{a} \in \mathbf{X}$ метрического пространства \mathbf{X} называется множество точек \mathbf{z} из \mathbf{X} , для которых: $\boldsymbol{\rho}(\mathbf{z},\mathbf{a}) < r$.

Определение 5. Множество ${\bf Q}$ в метрическом пространстве ${\bf X}$ называется ограниченным, если оно целиком содержится в некотором шаре ${\bf S}({\bf a},r)$ радиуса r>0 с центром в точке ${\bf a}\in {\bf X}$ метрического пространства ${\bf X}: {\bf Q}\subset {\bf S}({\bf a},r)$.

В соответствии с утверждением **3** всякая *сходящаяся* последовательность точек $\{\mathbf{x}_n\}$ метрического пространства \mathbf{X} *ограничена*, т.е. целиком содержится в некотором шаре пространства \mathbf{X} .

Более того, центр упомянутого шара может быть выбран в любой точке пространства ${\bf X}$.

Однако, далеко \boldsymbol{ne} \boldsymbol{scskoe} ограниченное множество в метрическом пространстве \mathbf{X} содержит в себе \boldsymbol{xoms} $\boldsymbol{6b}$ \boldsymbol{odhy} сходящуюся последовательность.

Пример 1. В самом деле рассмотрим, например, последовательность точек $\{\mathbf{x}_n\}$ в пространстве ℓ_2 , где

$$\mathbf{x}_1 = (1, 0, \dots 0, 0, 0, \dots)$$
 $\mathbf{x}_2 = (0, 1, \dots 0, 0, 0, \dots)$
 \vdots
 $\mathbf{x}_n = (0, 0, \dots 0, 1, 0, \dots)$
 \vdots

Легко видеть, что *все* точки этой последовательности находятся на расстоянии 1 от точки $\mathbf{x}_0 = (0, 0, \dots 0, 0, 0, \dots)$ этого пространства: $\boldsymbol{\rho}(\mathbf{x}_0, \mathbf{x}_n) = 1$, т.е. лежат внутри любого шара $\mathbf{S}(\mathbf{x}_0, r)$ пространства ℓ_2 с центром в точке \mathbf{x}_0 и радиуса r > 1.

Однако, указанная последовательность точек пространства ℓ_2 , не содержит *ни одной* сходящейся подпоследовательности, т.к. расстояние между *любыми* двумя элементами этой последовательности одно и то же, и равно $\rho(\mathbf{x}_m, \mathbf{x}_n) = \sqrt{2}$.

Действительно, предположив противное, т.е. что некоторая подпоследовательность точек $\{\mathbf{x}_{n_k}\}$, $k=1,2,\ldots$ последовательности $\{\mathbf{x}_n\}$ сходится к некоторой точке \mathbf{x}^0 пространства ℓ_2 : $\boldsymbol{\rho}(\mathbf{x}_{n_k},\mathbf{x}^0) \to 0$ при $k \to \infty$, мы немедленно придём к противоречию:

$$\sqrt{2} = \boldsymbol{\rho}(\mathbf{x}_{n_k}, \mathbf{x}_{n_p}) \leqslant \boldsymbol{\rho}(\mathbf{x}_{n_k}, \mathbf{x}^0) + \boldsymbol{\rho}(\mathbf{x}_{n_p}, \mathbf{x}^0) \to 0$$
 при $k, p \to \infty$.

Предельные точки и замкнутые множества

Определение 2 сходящейся последовательности можно переформулировать так:

Последовательность $\{\mathbf{x}_n\}$ элементов метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$ называется $\boldsymbol{cxodsumeŭcs}$, если $\forall \varepsilon > 0$ $\boldsymbol{cymecmsyem}$ такой номер $N\left(\varepsilon\right)$, что \boldsymbol{sce} точки последовательности \mathbf{x}_n с номерами $n \geqslant N\left(\varepsilon\right)$, содержатся в $\boldsymbol{omkpыmom\ mape}$ радиуса ε с центром в точке \mathbf{x} .

Определение 6. Пусть $\mathbf{M} \subseteq \mathbf{X}$. Точка $\mathbf{a} \in \mathbf{X}$ называется предельной для множества \mathbf{M} (предельной точкой \mathbf{M}), если открытый шар с центром в точке \mathbf{a} любого радиуса r>0 содержит хотя бы одну точку из множества $\mathbf{M} \setminus \mathbf{a}$, т.е. хотя бы одну точку множества \mathbf{M} , отличную от \mathbf{a} .

Формальная запись содержательной части этого определения на языке **теории множеств** выглядит так:

$$\forall r > 0: \mathbf{S}(\mathbf{a}, r) \cap (\mathbf{M} \setminus \mathbf{a}) \neq \emptyset$$

Замечание. Предельные точки множества ${\bf M}$ не обязаны принадлежать ${\bf M}$.

Некоторые из таких точек ($unu\ \partial a$ жее все!) могут принадлежать \mathbf{M} , а другие ($unu\ \partial a$ жее все!) могут не принадлежать \mathbf{M} .

Определение 7. Объединение множества ${\bf M}$ и множества ${\bf всеx}$ его предельных точек называется **замыканием множества** ${\bf M}$ и, обычно, обозначается $[{\bf M}]$.

Пример 2. Замыкание множества ${\bf Q}$ всех рациональных точек на прямой ${\mathbb R}^1$ относительно расстояния между точками ${\bf x}, {\bf y} \in {\bf Q}$, определяемого стандартным образом: ${m
ho}({\bf x}, {\bf y}) = |{\bf x} - {\bf y}|$ — есть вся прямая ${\mathbb R}^1$: $[{\bf Q}] = {\mathbb R}^1$.

Пример 3.* *Замыкание* множества **P** всех многочленов $p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ с вещественными коэффициентами $a_j, j = 1, 2, \ldots, n$, относительно метрики пространства $\mathbb{C}[\mathbf{a}, \mathbf{b}], -$ есть всё пространство $\mathbb{C}[\mathbf{a}, \mathbf{b}]$: $[\mathbf{P}] = \mathbb{C}[\mathbf{a}, \mathbf{b}]$.

Высказанное в примере 3 утверждение является следствием теоремы К. Вейерштрасса о том, что всякая *непрерывная* на заданном отрезке функция может быть представлена как предел *равномерно* сходящейся на этом отрезке к рассматриваемой функции последовательности *мно-гочленов* с вещественными коэффициентами.

 \Diamond

Определение 8. Множество \mathbf{M} точек метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$ называется замкнутым, если все предельные точки множества \mathbf{M} ему же самому и принадлежат.

В частности, согласно этому определению:

- ${f 1}^\circ$. ${m Bc\ddot{e}}$ множество ${f X}$ носитель метрического пространства $({f X},\,{m
 ho}),$ ${m samkhymoe}$ множество.
- $\mathbf{2}^{\circ}$. $\varPi y cmoe$ множество точек $\emph{замкнуто}$ в любом метрическом пространстве $(\mathbf{X},\,oldsymbol{
 ho})$.

Любое замкнутое множество обладает следующим свойством:

Утверждение 4. Если $\{ \mathbf{x}_n \}$ — **сходящаяся** последовательность точек **замкнутого** множества \mathbf{M} , то ее **предел** \mathbf{x} также **принад- лежит** \mathbf{M} .

Доказательство. Пусть $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}_n$, но $\mathbf{x} \notin \mathbf{M}$.

Рассмотрим два случая.

 ${f 1}^{\circ}$. В последовательности $\{{f x}_n\}$ присутствует **бесконечное** число **различных** точек ${f M}$, образующих **подпоследовательность** $\{{f x}_{n'}\}$ последовательности $\{{f x}_n\}$.

Тогда подпоследовательность $\{\mathbf{x}_{n'}\}$ сходится к тому же самому пределу \mathbf{x} , что и вся последовательность $\{\mathbf{x}_n\}$. В этом случае \mathbf{x} предельная точка множества \mathbf{M} , и, в силу его замкнутости, принадлежит \mathbf{M} , что приводит к противоречию.

 $\mathbf{2}^{\circ}$. В последовательности $\{\mathbf{x}_n\}$ присутствует лишь $\pmb{\kappa o n e u n o}$ число $\pmb{pasnuuh u x}$ точек \mathbf{M} .

Т.к. по условию последовательность $\{\mathbf{x}_n\}$ сходится к пределу $\mathbf{x} \in \mathbf{M}$, то, в этом случае, начиная с некоторого номера N все элементы последовательности $\{\mathbf{x}_n\}$ с номерами n>N должны совпадать с \mathbf{x} и потому мы снова приходим к противоречию.

Верно и обратное утверждение:

Утверждение 5. Если **предел** \mathbf{x} любой **сходящейся** последовательности точек из данного множества \mathbf{M} **принадлежит** этому множеству, то \mathbf{M} — **замкнуто**.

Доказательство. Пусть ${\bf a}$ произвольная ${\it npedeльная}\ {\it moчкa}\ {\bf M}$.

Рассмотрим последовательность шаров с центром в точке ${\bf a}$, радиусы которых r стремятся к 0 .

Пусть $\{\varepsilon_n\} \to 0$ — последовательность радиусов этих шаров.

В каждом открытом шаре $\mathbf{S}(\mathbf{a},\,\varepsilon_n)$ выберем точку $\mathbf{x_n} \neq \mathbf{a}\,,\mathbf{x_n} \in \mathbf{M}\,.$ Это всегда можно сделать, так как \mathbf{a} — предельная точка $\mathbf{M}\,.$

Очевидно $\lim_{n\to\infty} \mathbf{x_n} = \mathbf{a}$. Следовательно, по условию утверждения, $\mathbf{a}\in\mathbf{M}$, и, т.к. \mathbf{a} — произвольная предельная точка, то \mathbf{M} замкнуто.

Открытые и замкнутые множества в метрическом пространстве

Определение 9. Множество ${\bf M}$ точек метрического пространства $({\bf X}, {\boldsymbol \rho})$ называется **открытым**, если $\forall {\bf x} \in {\bf M} \ \exists \, r > 0 \,, \, \,$ такое, что открытый шар ${\bf S}({\bf x}, r) : {\bf S}({\bf x}, r) \subset {\bf M} \,.$

В частности, согласно этому определению, $\boldsymbol{sc\ddot{e}}$ множество \mathbf{X} – носитель метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$, — $\boldsymbol{om\kappa pumoe}$ множество.

Пусть \mathbf{M}_1 и \mathbf{M}_2 — два *открытых* множества из метрического пространства $(\mathbf{X}, \boldsymbol{
ho})$.

Утверждение 6. *Множество* $\mathbf{M}_1 \cup \mathbf{M}_2$ *открыто*.

Доказательство. Действительно, если $\mathbf{x} \in (\mathbf{M}_1 \cup \mathbf{M}_2)$, то \mathbf{x} , принадлежит по крайней мере, одному из этих множеств, например, \mathbf{M}_1 .

Так как \mathbf{M}_1 открыто, то $\mathbf{x} \in \mathbf{M}_1$ вместе с открытым шаром $\mathbf{S}(\mathbf{x}, r)$ некоторого радиуса r.

Тогда очевидно, что этот же шар $\mathbf{S}(\mathbf{x},r)$ целиком принадлежит и "сумме" множеств $\mathbf{M}_1 \cup \mathbf{M}_2$.

Замечание. Это же рассуждение проходит и в случае "суммы" (в смысле теории множеств) любого не обязательно **конечного** объединения **открытых** множеств из $(\mathbf{X}, \boldsymbol{\rho})$.

Поэтому справедливо

Утверждение 7. Теоретикомножественная **сумма** любого числа **от- крытых** множеств метрического пространства — **открытое** множество.

Рассмотрим теперь множество $\mathbf{M}_1 \cap \mathbf{M}_2$.

Утверждение 8. *Непустое* пересечение двух открытых множеств — открытое множество.

Доказательство. Действительно, если элемент $\mathbf{x} \in (\mathbf{M}_1 \cap \mathbf{M}_2)$, то, так как $\mathbf{x} \in \mathbf{M}_1$, множеству \mathbf{M}_1 принадлежит также открытый шар $\mathbf{S}(\mathbf{x}, r_1)$ некоторого радиуса $r_1 > 0$.

Одновременно $\mathbf{x} \in \mathbf{M}_2$ и, в силу открытости \mathbf{M}_2 , существует $r_2>0$ и открытый шар $\mathbf{S}\left(\mathbf{x},\,r_2\right)\subset\mathbf{M}_2$.

Пусть $r_3 = \min\left(r_1,\,r_2\right) > 0$. Тогда шар $\mathbf{S}\left(\mathbf{x},\,r_3\right)$ принадлежит как \mathbf{M}_1 , так и \mathbf{M}_2 .

Следовательно, множество $\mathbf{M}_1 \cap \mathbf{M}_2$ *открыто*.

Аналогично можно показать *открытость* пересечения любого *конечного* числа *открытых* множеств.

Замечание. Пересечение *бесконечного* числа *открытых* множеств может не быть *открытым*!

(См. упражнение 1 к этому параграфу).

Дополнение множества в метрическом пространстве

Пусть $(\mathbf{X}, \boldsymbol{\rho})$ — метрическое пространство и $(\mathbf{M}, \boldsymbol{\rho})$ — подпространство этого пространства.

Рассмотрим *множество* $\mathbf{X} \setminus \mathbf{M}$, — *дополнение* \mathbf{M} до всего пространства $(\mathbf{X}, \boldsymbol{\rho})$.

Утверждение 9. 1°. Если ${\bf M}-{\it omкрытоe}$ множество, то его дополнение ${\bf X}\setminus {\bf M}$ (до всего ${\bf X})-{\it замкнуто}$.

 ${f 2}^\circ$. Если ${f M}-{f samkhymo},$ то его дополнение ${f X}\setminus {f M}$ (до всего ${f X})$ — ${f omkpumo}.$

Доказательство. Докажем первую часть утверждения -1° .

Пусть ${\bf z}$ *предельная точка* ${\bf X} \backslash {\bf M}$ и ${\bf z} \notin ({\bf X} \backslash {\bf M})$. Тогда ${\bf z} \in {\bf M}$ и (в силу *открытости* ${\bf M}$) входит в ${\bf M}$ вместе с некоторым шаром ${\bf S}({\bf z},r)$.

Поэтому шар $\mathbf{S}(\mathbf{z},r)$ не содержит точек $\mathbf{X}\setminus\mathbf{M}$. Однако, это противоречит тому, что $\mathbf{z}-$ *предельная точка* $\mathbf{X}\setminus\mathbf{M}$.

Следовательно $\mathbf{z} \in (\mathbf{X} \setminus \mathbf{M})$ и дополнение к \mathbf{M} *замкнуто*.

Докажем вторую часть утверждения — 2° .

Пусть ${\bf M}$ *замкнуто* и ${\bf z}$ — точка ${\bf X} \setminus {\bf M}$, для которой любой шар ${\bf S}({\bf z},r)$ содержит точки из ${\bf M}$.

Пусть $\mathbf{S}\left(\mathbf{z},\,r_n\right),\;n=1,2,\,\ldots$ — последовательность вложенных шаров такая, что $\lim_{n\to\infty}r_n\,=\,0\,.$

В каждом из таких шаров содержатся точки из ${f M}$.

Выберем в каждом из них по одной точке $\mathbf{z}_n \in \mathbf{M}$.

Тогда $\lim_{n\to\infty}\mathbf{z}_n=\mathbf{z}$ и так как \mathbf{M} *замкнуто*, то $\mathbf{z}\in\mathbf{M}$ и, следовательно, $\mathbf{z}\notin(\mathbf{X}\setminus\mathbf{M})$. Противоречие.

Замечание. Доказанное утверждение можно обобщить:

если omкрытоe множество \mathbf{M} содержится в samkhymom множестве \mathbf{F} , то $\mathbf{F} \setminus \mathbf{M} - samkhymo$.

Сепарабельные метрические пространства

В заключение данного параграфа введём ещё два важных понятия.

Определение 10. Множество ${\bf M}$ метрического пространства ${\bf X}$ называется всюду плотным в этом метрическом пространстве, если ${\bf замыкание}$ множества ${\bf M}$ есть всё это пространство: $[{\bf M}]={\bf X}$.

Рассмотренные выше примеры 2, 3-xарактерные примеры всюду nnomhux множеств в соответствующих метрических пространствах.

Определение 11. Метрическое пространство X называется **сепара- бельным**, если в этом пространстве имеется **счётное** всюду плотное множество.

Рассмотренные выше примеры 2, 3, в сочетании с *утверждением*, что рассматриваемые в этих примерах множества: \mathbf{Q} всех рациональных точек на прямой и \mathbf{P} всех многочленов с вещественными коэффициентами, — \mathbf{c} \mathbf{v} \mathbf{e} \mathbf{m} \mathbf{h} \mathbf{u} , показывают, что соответствующие \mathbf{m} \mathbf{e} \mathbf{m} \mathbf{p} \mathbf{u} \mathbf{e} \mathbf{v} \mathbf{u} \mathbf{e} \mathbf{u} \mathbf{u}

Другие примеры *сепарабельных пространств* ещё не раз встретятся в нашем курсе.

Упраженения и задачи κ параграфу 2.

1. Показать на примере, что *счетное* пересечение *открытых* множеств может *не быть* открытым.

Указание. Рассмотреть пересечение последовательности интервалов:

$$\mathbf{M}_n \ = \ \left(\, \mathbf{a} - rac{\mathbf{1}}{\mathbf{n}}, \, \mathbf{b} + rac{\mathbf{1}}{\mathbf{n}} \,
ight)$$

из \mathbb{E}^1 .

Чему равно множество $\bigcap_{n=1}^{\infty} \left(\mathbf{a} - \frac{1}{\mathbf{n}}, \mathbf{b} + \frac{1}{\mathbf{n}} \right)$?

2. Показать на примере, что *счетное* объединение *замкнутых* множеств может не быть *замкнутым*.

Указание. Рассмотреть объединение последовательности отрезков:

$$\mathbf{M_n} \,=\, \left\lceil \, \mathbf{a} + rac{1}{n}, \, \mathbf{b} - rac{1}{n} \,
ight
ceil$$

из \mathbb{E}^1 .

Чему равно множество $\bigcup_{n=1}^{\infty} \left[\mathbf{a} + \frac{1}{\mathbf{n}}, \mathbf{b} - \frac{1}{\mathbf{n}} \right] ?$

- 3. Показать, что любой *открытый шар* $\mathbf{S}(\mathbf{a},r)$ в метрическом пространстве \mathbf{X} является *открытым множеством*, а множество точек $\mathbf{X}: \boldsymbol{\rho}(\mathbf{a},\mathbf{x}) \leqslant r$, (которое часто называют *замкнутым шаром*), *замкнутое множество*.
- 4^* . Обозначим ${f A}'$ множество всех *предельных точек* заданного множества ${f A}$.

Построить на прямой \mathbb{R}^1 такое множество точек \mathbf{A} , чтобы множество $\mathbf{A}'' \stackrel{def}{=} (\mathbf{A}')'$ было бы не пустым множеством $(\mathbf{A}'' \neq \varnothing)$, а $\mathbf{A}''' = \varnothing$.

- 5. Доказать, что множество ${\bf A}'$ всегда *замкнуто*, каково бы ни было множество ${\bf A}$.
 - 6. Доказать, что $[{\bf M}]$ *замкнутое множество*.
 - 7. Показать, что в метрических пространствах могут существовать

множества не являющиеся ни *открытыми*, ни *замкнутыми* и существуют множества замкнутые и открытые *одновременно*.

<u>Указание</u>. Рассмотреть множества $[{\bf a}, {\bf b})$ в пространстве ${\mathbb E}^1$, и множества \varnothing и ${\bf X}$ в произвольном метрическом пространстве $({\bf X}, {\bf \rho})$.

8. Величина $\rho(\mathbf{x}, \mathbf{A}) = \inf_{\mathbf{y} \in \mathbf{A}} \rho(\mathbf{x}, \mathbf{y})$ называется *расстоянием* от *точки* \mathbf{x} метрического пространства \mathbf{X} до некоторого *множества* точек \mathbf{A} того же пространства.

Доказать, что для всякого $\emph{замкнутого}$ множества \mathbf{A} $\emph{два}$ утверждения:

$$\mathbf{1} \cdot \boldsymbol{\rho}(\mathbf{x}, \mathbf{A}) = 0$$

$$\mathbf{2}$$
 . $\mathbf{x} \in \mathbf{A}$

— эквивалентны.

Будет ли иметь место такая *эквивалентность*, если множество **А** *не замкнуто* ?

- 9. Доказать, что для любого множества ${\bf A}$ точек метрического пространства $({\bf X}, {\boldsymbol \rho})$ множество точек ${\bf x}$ этого пространства ${\bf A}_{\varepsilon}$, удовлетворящих ${\it yc}$ ловию ${\boldsymbol \rho}({\bf x}, {\bf A}) < \varepsilon$, ${\it omkpumo}$, а множество $\hat{{\bf A}}_{\varepsilon}$ точек ${\bf y}$ этого пространства, удовлетворящих ${\it yc}$ ловию ${\boldsymbol \rho}({\bf x}, {\bf A}) \leqslant \varepsilon$, ${\it samkhymo}$.
 - 10. Доказать *включение* $[\mathbf{M} \cap \mathbf{N}] \subset ([\mathbf{M}] \cap [\mathbf{N}])$.

Всегда ли можно в написанном выражении знак *включения* заменить на знак *равенства* ?

- 11. Следует ли из включения $[\mathbf{M}] \subset [\mathbf{N}]$ включение $\mathbf{M} \subset \mathbf{N}$?
- 12. Доказать, что $(A \cup B)' = A' \cup B'$.

- 13*. Пусть **M** множество всех точек $\mathbf{x} (x_1, \dots, x_n, \dots)$ пространства ℓ_2 , у которых все координаты $x_j, \ j = 1, 2, 3, \dots$ **положительны**. Будет ли указанное множество **M открыто**?
- 14^* . Пусть вещественная функция f(x) определена и непрерывна на всей числовой оси $(-\infty, +\infty)$.

Доказать, что множество **G** точек x, где f(x) < 1 **открыто**.

15. В метрическом пространстве ${\bf X}$ даны две его точки ${\bf a}$ и ${\bf b}$, ${\bf a} \neq {\bf b}$.

Каким (*замкнутым* или *открытым*) будет множество ${\bf M}$ точек этого пространства ${\bf x}\in {\bf X}$, для которых выполнено *равенство* ${m
ho}({\bf x},{\bf a})={m
ho}({\bf x},{\bf b}),$ и множество ${\bf N}$ точек этого пространства ${\bf x}\in {\bf X}$, для которых выполнено двойное *неравенство*: ${\bf \alpha}<{m
ho}({\bf x},{\bf a})+{m
ho}({\bf x},{\bf b})<{\bf \beta},$ где ${\bf \alpha}<{\bf \beta}-$ заданные вещественные положительные числа.

Ответ обосновать.

- 16*. Доказать, что пространство $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ сепарабельно.
- 17*. Доказать, что пространство $\ell_{\bf 2}$ *сепарабельно*.

1.3 Полные метрические пространства

Фундаментальные последовательности в метрическом пространстве

Определение 12. Последовательность точек $\{\mathbf{x}_i\}$, (i = 1, 2, ...) метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$ называется фундаментальной или

последовательностью Коши, если:

$$\lim_{\mathbf{m}, \mathbf{n} \to \infty} \boldsymbol{\rho} \left(\mathbf{x}_m, \, \mathbf{x}_n \right) = 0 \tag{1}$$

Запись (1) означает, что $\forall \varepsilon > 0$, найдется такой номер $\mathbf{N}(\varepsilon)$, что при $\mathbf{m}, \mathbf{n} \geqslant \mathbf{N}(\varepsilon)$ выполнено неравенство: $\boldsymbol{\rho}(\mathbf{x}_m, \mathbf{x}_n) < \varepsilon$.

Из неравенства треугольника немедленно следует

Утверждение 10. Любая *сходящаяся* последовательность фундаментальна.

 \mathcal{A} оказательство. Действительно, если $\lim_{\mathbf{n}\to\infty}\mathbf{x}_n=\mathbf{x}$, то

$$\rho(\mathbf{x}_m, \mathbf{x}_n) \leqslant \rho(\mathbf{x}_m, \mathbf{x}) + \rho(\mathbf{x}, \mathbf{x}_n)$$
 (2)

В силу определения предела, правая часть неравенства (2) становится сколь угодно малой (меньше произвольного $\varepsilon > 0$), если \mathbf{m} , \mathbf{n} достаточно велики.

Пример 1. Последовательность точек $\{ \mathbf{x}_n \}$ в пространстве ℓ_2 , рассмотренная в примере 1 предыдущего параграфа, **не** является **фунда**-ментальной.

Более того: никакая nodnocnedoвательность этой последовательности ne является phamehmanьной в пространстве ℓ_2 .

Если *метрическое пространство* $(\mathbf{X}, \boldsymbol{\rho})$ есть *числовая прямая* \mathbb{R}^1 , — с обычной метрикой, то справедливо и *обратное*, по отношению к утверждению 10:

Утверждение 11. Любая фундаментальная в \mathbb{E}^1 последовательность **имеет** предел.

Это утверждение составляет содержание *критерия Коши* сходимости числовой последовательности, и, обычно, доказывается в курсе математического анализа.

Свойство полноты метрического пространства

В *произвольном* метрическом пространстве (X, ρ) *критерий Ко-ши*, вообще говоря, несправедлив: *фундаментальная* последовательность *может* не иметь предела (в рассматриваемом пространстве).

Пример 2. Рассмотрим *метрическое пространство*, состоящее из \boldsymbol{scex} вещественных чисел, принадлежащих интервалу $(\mathbf{0}, \mathbf{1})$ на числовой прямой, с обычной метрикой.

Последовательность точек $\{\mathbf x_n=\mathbf 1/\mathbf n\}$, *очевидно*, фундаментальна, т.к. $\boldsymbol{\rho}(\mathbf x_m,\mathbf x_n)=|\mathbf 1/\mathbf m-\mathbf 1/\mathbf n|<\frac{\mathbf 2}{\mathbf m}\to\mathbf 0$, при $\mathbf m\to\infty,\ \mathbf n>\mathbf m$, но предела (в *рассматриваемом* пространстве) не имеет.

Таким образом, существуют такие *метрические пространства*, в которых критерий Коши сходимости последовательностей точек этого пространства *справедлив*, и такие, в которых этот критерий *не справедлив*.

Определение 13. Метрическое пространство (X, ρ) называется полным, если в нем любая фундаментальная последовательность имеет предел.

Пример 1 — полнота метрического пространства \mathbb{E}^n

Пространство \mathbb{E}^n (см. пример 2 из § 1) — \emph{nonho} .

Действительно, если последовательность точек $\left\{\mathbf{x}^{(\mathbf{p})}\right\} \subset \mathbb{E}^n,$ $(\mathbf{p}=1,2,\dots)$ **фундаментальна**, то:

$$\lim_{\mathbf{p},\mathbf{q}\to\infty} \sum_{i=1}^n \left(x_i^{(\mathbf{p})} - x_i^{(\mathbf{q})} \right)^2 = 0.$$

Отсюда следует, что $\forall i \ (i=1,\ldots,n)$ каждая **числовая** последовательность отдельных компонент $\left\{x_i^{(\mathbf{p})}\right\}$ **фундаментальна** в пространстве \mathbb{E}^1 , и, следовательно, в силу **критерия Коши**, справедливого в этом пространстве, имеет при $\mathbf{p} \to \infty$ предел $-x_i$.

Поэтому, $\forall \varepsilon > 0$, найдется такой номер $\mathbf{N}_i(\varepsilon)$, что при $\mathbf{p} > \mathbf{N}_i(\varepsilon)$ для каждой координаты с номером i будет выполнено свое неравенство: $|x_i^{(\mathbf{p})} - x_i| < \frac{\varepsilon}{\sqrt{n}}$, а потому, при выполнении условия $\mathbf{p} > \mathbf{N}(\varepsilon)$, где $\mathbf{N}(\varepsilon) = \max_i \left\{ \mathbf{N}_i(\varepsilon) \right\}$, будут выполнены сразу все следующие неравенства:

$$|x_i^{(\mathbf{p})} - x_i| < \frac{\varepsilon}{\sqrt{n}}$$

Пусть $\mathbf{x}=(x_1,\ldots,x_n),$ — элемент \mathbb{E}^n , составленный из *пределов* отдельных координат — x_i .

Тогда, очевидно, $\lim_{\mathbf{p}\to\infty} \boldsymbol{\rho}\left(\mathbf{x}^{(\mathbf{p})},\,\mathbf{x}\right) = 0$, т.к. для выбранного выше произвольного $\varepsilon>0$, мы указали $\mathbf{N}\left(\varepsilon\right)$, такое, что $\boldsymbol{\rho}\left(\mathbf{x}^{(\mathbf{p})},\,\mathbf{x}\right)<\varepsilon$ при $\mathbf{p}>\mathbf{N}\left(\varepsilon\right)$, то есть последовательность $\left\{\mathbf{x}^{(\mathbf{p})}\right\}$ $\boldsymbol{cxodumcs}$ к $\mathbf{x}\in\mathbb{E}^n$.

Пример 2 — полнота метрического пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$

Пространство $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ непрерывных функций на отрезке $\left[\mathbf{a},\mathbf{b}\right]$ с метрикой (8) параграфа 1 *полно*.

Действительно, пусть $\{x_n(t)\}$ фундаментальная последовательность в пространстве $\mathbb{C}[\mathbf{a},\mathbf{b}]$, то есть

$$\lim_{\mathbf{m}, \mathbf{n} \to \infty} \left\{ \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} | x_m(t) - x_n(t) | \right\} = 0$$

Это означает, что $\ \forall \, \varepsilon \, > \, 0 \$ существует $\ \mathbf{N} \left(\varepsilon \right) \$ такое, что:

$$|x_m(t) - x_n(t)| < \varepsilon \tag{3}$$

для всех $\mathbf{m}, \mathbf{n} \geqslant \mathbf{N}(\varepsilon)$ npu всех $t \in [\mathbf{a}, \mathbf{b}]$.

Из этого соотношения следует, что при любом фиксированном $\xi \in [\mathbf{a}, \mathbf{b}]$ *числовая* последовательность $\{x_n(\xi)\}$ *фундаментальна* в пространстве \mathbb{E}^1 , и, следовательно, в силу *критерия Коши* для пространства \mathbb{E}^1 , имеет предел, который мы *обозначим* — $x(\xi)$.

Перейдем в неравенстве (3) к пределу при $\mathbf{m} \to \infty$.

Так как предельное неравенство выполняется сразу для всех $t \in [\mathbf{a}, \mathbf{b}]$, то можно записать:

$$\sup_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} |x_n(t) - x(t)| \leqslant \varepsilon, \qquad n \geqslant \mathbf{N}(\varepsilon)$$
 (4)

Неравенство (4) означает, что последовательность функций $\{x_n(t)\}$ сходится к x(t) равномерно.

Поэтому функция x(t) сама является **непрерывной** и, в силу этого, принадлежит $\mathbb{C}[\mathbf{a},\mathbf{b}]$.

Поэтому пространство $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ *полно*.

Пример 3 — полнота метрического пространства $\ \ell_2$

Пространство ℓ_2 из примера 3 параграфа 1 *полно*.

Действительно, пусть $\mathbf{x^{(n)}} = \left(x_1^{(n)}, \ldots, x_i^{(n)}, \ldots\right) -$ фундамен-

Тогда:

$$\lim_{\mathbf{m}, \mathbf{n} \to \infty} \sum_{i=1}^{\infty} \left(x_i^{(\mathbf{m})} - x_i^{(\mathbf{n})} \right)^2 = 0 ,$$

то есть для любого $\varepsilon > 0$ существует $\mathbf{N}(\varepsilon)$ такое, что:

$$\sum_{i=1}^{\infty} \left(x_i^{(\mathbf{m})} - x_i^{(\mathbf{n})} \right)^2 < \varepsilon, \quad \mathbf{m}, \, \mathbf{n} \geqslant \mathbf{N} \left(\varepsilon \right)$$
 (5)

Из этого неравенства следует, что $\forall i$ числовая последовательность $\left\{x_i^{(n)}\right\}$ фундаментальна в \mathbb{E}^1 и, поэтому, имеет предел при $\mathbf{n} \to \infty$, который мы обозначим x_i .

Покажем, что последовательность $\mathbf{x} \stackrel{def}{=} \{x_i\}$, составленная из всех пределов x_i , принадлежит ℓ_2 и именно к этому элементу ℓ_2 сходится рассматриваемая фундаментальная последовательность $\mathbf{x}^{(n)}$.

Пусть ${\bf M}$ произвольное натуральное число.

Перепишем неравенство (5) в виде:

$$\sum_{i=1}^{\infty} \left(x_i^{(\mathbf{m})} - x_i^{(\mathbf{n})} \right)^2 = \sum_{i=1}^{M} \left(x_i^{(\mathbf{m})} - x_i^{(\mathbf{n})} \right)^2 + \sum_{i=M+1}^{\infty} \left(x_i^{(\mathbf{m})} - x_i^{(\mathbf{n})} \right)^2 \leqslant \varepsilon$$

Отсюда:

$$\sum_{i=1}^{\mathbf{M}} \left(x_i^{(\mathbf{m})} - x_i^{(\mathbf{n})} \right)^2 \leqslant \varepsilon , \qquad (6)$$

при любых натуральных m, n.

Зафиксируем в неравенстве (6) параметр ${\bf n}$ и перейдем к пределу при ${\bf m} \to \infty$.

Получим:

$$\sum_{i=1}^{\mathbf{M}} \left(x_i^{(\mathbf{n})} - x_i \right)^2 \leqslant \varepsilon \tag{7}$$

Неравенство (7) справедливо для произвольного ${\bf M}$.

Поэтому в нем можно перейти к пределу при $\mathbf{M} \to \infty$.

Получим следующее неравенство:

$$\sum_{i=1}^{\infty} \left(x_i^{(\mathbf{n})} - x_i \right)^2 \leqslant \varepsilon \tag{8}$$

Так как $\mathbf{x^{(n)}} \in \ell_2$, то из (7), (8) в силу неравенства треугольника в пространстве \mathbb{E}^M :

$$\sum_{i=1}^{M} x_i^2 \leqslant \sum_{i=1}^{M} \left(x_i^{(\mathbf{n})} \right)^2 + \sum_{i=1}^{M} \left(x_i^{(\mathbf{n})} - x_i \right)^2$$

и произвольности \mathbf{M} следует, что $\mathbf{x} \in \ell_2$, откуда, в силу (8), следует сходимость последовательности $\mathbf{x^{(n)}}$ к \mathbf{x} .

Пример 4 — неполного метрического пространства

Пространство \mathbf{X} из примера 7 § 1 с метрикой (10) — \boldsymbol{ne} \boldsymbol{nonho} . Пусть для определённости $[\mathbf{a},\mathbf{b}]=[-\mathbf{1},\mathbf{1}]$.

Рассмотрим последовательность непрерывных функций:

$$x_n(t) = \begin{cases} -1, & \text{если } t \in [-1, -1/\mathbf{n}] \\ nt, & \text{если } t \in [-1/\mathbf{n}, 1/\mathbf{n}] \\ 1, & \text{если } t \in [1/\mathbf{n}, 1] \end{cases}$$
(9)

Henocpedcmвенно проверяется, что эта последовательность $\phi y u da$ ментальна в метрике (10) § 1.

Предположив, что эта последовательность $\boldsymbol{cxodumcs}$ в метрике (10) к некоторой $\boldsymbol{nenpepushoй}$ на отрезке [-1,1] функции $\boldsymbol{x}(t)$, мы придем к противоречию.

Действительно, рассмотрим отрезок $[\mathbf{c}, \mathbf{1}], \mathbf{c} > 0$.

Oчевидно, что на этом отрезке последовательность $x_n(t)$ равномерно cxodumcs к функции mosedecmeeнно равной 1.

Отсюда, в силу *единственности* предела, следует, что введенная выше предельная функция

$$x(t) \equiv 1, \quad t \in [\mathbf{c}, \mathbf{1}], \quad \forall \mathbf{c}, \quad 1 > \mathbf{c} > 0$$

Рассуждая аналогично, получим, что наша предельная функция

$$x(t) \equiv -1, \quad t \in [-1, -\mathbf{c}], \quad \forall \, \mathbf{c}, \quad 1 > \mathbf{c} > 0$$

Но, при любом значении x(0) такая предельная функция x(t) не может быть $\mathbf{непрерывной}$ на $[-\mathbf{1},\mathbf{1}]$.

Следовательно, последовательность (9), будучи фундаментальной, предела в рассматриваемом метрическом пространстве не имеет.

Пример 5 — полнота метрического пространства $\mathbb{D}_k[\mathbf{a}, \mathbf{b}]$

Пространство $\mathbb{D}_k [\mathbf{a}, \mathbf{b}]$, состоящее из k раз непрерывно $\partial u \phi \phi e p e n - u u p y e m u x$ функций x(t), определенных на отрезке $[\mathbf{a}, \mathbf{b}]$, с метрикой (9) § 1 *полно*.

Действительно, пусть $\{x_n(t)\}$ фундаментальная последовательность в пространстве $\mathbb{D}_k[\mathbf{a},\mathbf{b}]$, то есть

$$\lim_{m,n\to\infty} \boldsymbol{\rho}_{\mathbb{D}_k} \left(\mathbf{x}_m, \, \mathbf{x}_n \right) =$$

$$= \lim_{m,n\to\infty} \max_{0 \leqslant j \leqslant k} \left[\max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x_m(t) - x_n(t) \right|, \, \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x'_m(t) - x'_n(t) \right|, \dots \right]$$

$$\dots , \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x_m^{(k-1)}(t) - x_n^{(k-1)}(t) \right|, \, \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x_m^{(k)}(t) - x_n^{(k)}(t) \right| = 0$$

Это означает, что $\forall \varepsilon > 0$ существует $\mathbf{N}(\varepsilon)$ такое, что для **любого** номера **производной** $0 \leqslant j \leqslant k$:

$$|x_m^{(j)}(t) - x_n^{(j)}(t)| < \varepsilon \tag{10}$$

для всех $\mathbf{m}, \mathbf{n} \geqslant \mathbf{N}(\varepsilon)$ *при всех* $t \in [\mathbf{a}, \mathbf{b}]$.

Из этого соотношения следует, что каждая последовательность $\left\{x_n^{(j)}(t)\right\}$ фундаментальна в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, и, следовательно, в силу полноты пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, имеет в этом пространстве предел, который мы обозначим $-z_j(t),\ 0\leqslant j\leqslant k$.

Перейдем в неравенстве (10) к пределу при $\mathbf{m} \to \infty$.

Тогда:

$$\max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| x_n^{(j)}(t) - z_j(t) \right| \leqslant \varepsilon, \qquad n \geqslant \mathbf{N}(\varepsilon)$$
 (11)

Неравенство (11) означает, что каждая последовательность функций $\left\{x_n^{(j)}(t)\right\}$ сходится к $z_j(t)$ равномерно.

Поэтому каждая функция $z_j(t)$ сама является **непрерывной** и, в силу этого, принадлежит пространству $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

Для завершения доказательства полноты пространства $\mathbb{D}_k\left[\mathbf{a},\mathbf{b}\right]$ нам понадобится известная из математического анализа

Лемма 1. Если последовательность $\{ \boldsymbol{\varphi}_n = \varphi_n(t) \}$ сходится в пространстве $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ к $\boldsymbol{\varphi}_0 = \varphi_0(t)$, то последовательность $\{ \boldsymbol{\psi}_n \}$:

$$\boldsymbol{\psi}_{n} = \int_{\mathbf{a}}^{\mathbf{t}} \varphi_{n}(\tau) d\tau$$

cxoдumcя в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}
ight]$ κ

$$\boldsymbol{\psi}_{0} = \int_{\mathbf{a}}^{\mathbf{t}} \varphi_{0}(\tau) d\tau .$$

 \mathcal{A} оказательство. По условию $\forall \varepsilon > 0$ существует $\mathbf{N}(\varepsilon)$ такое, что при $n > \mathbf{N}(\varepsilon)$

$$\max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} |\varphi_n(t) - \varphi_0(t)| < \frac{\varepsilon}{\mathbf{b} - \mathbf{a}}$$

Тогда $\forall \boldsymbol{\xi} \in [\mathbf{a}, \mathbf{b}]$

$$\left|\psi_{n}\left(\boldsymbol{\xi}\right)-\psi_{0}\left(\boldsymbol{\xi}\right)\right|=\left|\int_{\mathbf{a}}^{\boldsymbol{\xi}}\varphi_{n}\left(\boldsymbol{\tau}\right)d\boldsymbol{\tau}-\int_{\mathbf{a}}^{\boldsymbol{\xi}}\varphi_{0}\left(\boldsymbol{\tau}\right)d\boldsymbol{\tau}\right|\leqslant\int_{\mathbf{a}}^{\boldsymbol{\xi}}\left|\varphi_{n}\left(\boldsymbol{\tau}\right)-\varphi_{0}\left(\boldsymbol{\tau}\right)\right|\,d\boldsymbol{\tau}<\varepsilon$$
 при $n>\mathbf{N}\left(\varepsilon\right)$.

Из доказанной леммы следует, что при выполнении её условий все рассматриваемые в ней функции $\{\psi_n(t)\}$ имеют производные: $\psi'_n(t) = \varphi_n(t)$, которые принадлежат пространству $\mathbb{C}[\mathbf{a},\mathbf{b}]$, а функция $\psi_0(t)$ имеет производную: $\psi'_0(t) = \varphi_0(t)$, которая также принадлежит пространству $\mathbb{C}[\mathbf{a},\mathbf{b}]$.

Все элементы $x_n(t)$, рассматриваемой выше, фундаментальной в пространстве $\mathbb{D}_k[\mathbf{a}, \mathbf{b}]$ последовательности $\{x_n(t)\}$, имеют представление:

$$x_n(\boldsymbol{\xi}) = x_n(\mathbf{a}) + \int_{\mathbf{a}}^{\boldsymbol{\xi}} x'_n(\tau) d\tau$$

Используя это представление, лемму и следствие из неё, можно утверждать, что при $n \to \infty$ получается представление:

$$z_0(\boldsymbol{\xi}) = z_0(\mathbf{a}) + \int_{\mathbf{a}}^{\boldsymbol{\xi}} z_1(\tau) d\tau,$$

из которого следует, что при $\forall t \in [\mathbf{a}, \mathbf{b}]$ существует производная: $z_0'(t) = z_1(t)$.

Совершенно аналогично, для **любого** номера **производной** $1\leqslant j\leqslant (k-1)$ имеем представление:

$$x_n^{(j)}(\xi) = x_n^{(j)}(\mathbf{a}) + \int_{\mathbf{a}}^{\xi} x_n^{(j+1)}(\tau) d\tau.$$

Используя это представление, лемму и следствие из неё, можно утверждать, что при $n \to \infty$ последовательно по $1 \leqslant j \leqslant (k-1)$ получается представление:

$$z_{j}(\boldsymbol{\xi}) = z_{j}(\mathbf{a}) + \int_{\mathbf{a}}^{\boldsymbol{\xi}} z_{j+1}(\tau) d\tau,$$

из которого следует, что при $\forall t \in [\mathbf{a}, \mathbf{b}]$ существует производная: $z_j'(t) = z_{j+1}(t)$ для **любого** номера $1 \leqslant j \leqslant (k-1)$.

Но это означает, что выше определённый набор непрерывных на отрезке $[\mathbf{a},\mathbf{b}]$ функций $z_j(t)$, являющихся для каждого $0\leqslant j\leqslant k$ пределом при $n\to\infty$ в пространстве $\mathbb{C}[\mathbf{a},\mathbf{b}]$ фудаментальной последовательности функций $\left\{x_n^{(j)}(t)\right\}$, на самом деле, является последовательными производными порядка $1\leqslant j\leqslant k$ одной и той же функции $z_0(t)$, что означает сходимость рассмотренной фундаментальной последовательности в $\mathbb{D}_k[\mathbf{a},\mathbf{b}]$ к $z_0(t)$.

Поэтому пространство $\mathbb{D}_k[\mathbf{a}, \mathbf{b}]$ полно

Упражнения и задачи κ параграфу 3.

1. Пусть $(\mathbf{X}, \boldsymbol{\rho})$ *полное* метрическое пространство и \mathbf{M} — его $\boldsymbol{samkhymoe}$ подмножество.

Показать, что **метрическое пространство** $(\mathbf{M}, \boldsymbol{\rho})$ также **полно**.

ций $\{x_n(t)\}$ *сходится* в смысле *метрики* $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ к *функции* x(t). Показать, что x(t) является *пределом* последовательности $\{x_n(t)\}$ и в смысле *метрики* (10) § 1.

2. Пусть последовательность **непрерывных** на отрезке [a,b] функ-

3. Пусть *последовательность* $\{x_n(t)\}$ сходится к *непрерывной* на $[\mathbf{a}, \mathbf{b}]$ функции x(t) в смысле *метрики* (10) § 1.

Показать *на примере*, что такая сходимость *не влечет* сходимость последовательности $\{x_n(t)\}$ к x(t) в *метрике* $\mathbb{C}[\mathbf{a},\mathbf{b}]$.

- 4. Показать, что последовательность непрерывныx функций $\{x_n(t)\}$ на отрезке $[\mathbf{0},\mathbf{1}]$, где $x_n(t) = \begin{cases} nt, & \text{при} \quad 0 \leqslant t \leqslant \frac{1}{n} \\ 1, & \text{при} \quad \frac{1}{n} \leqslant t \leqslant 1 \end{cases}$, сходится к функции $x(t) \equiv 1$ в метрическом пространстве $\mathbb{C}_{\mathbb{L}_2}$, но не схо-дится в пространстве $\mathbb{C}[\mathbf{0},\mathbf{1}]$ к той же самой функции.
- 5. Показать *полноту* метрического пространства с носителем из примера $2 \ \S \ 1$, рассматриваемого с *метрикой* (5) примера 3 того же параграфа.
- 6. Будет ли метрическое пространство, состоящее из точек прямой $(-\infty < x < +\infty)$ с **метрикой** $\rho(x,y) = |\arctan x \arctan y|$, рассмотренной в задаче 7 к § 1, **полным**?
- 7. Будет ли метрическое пространство, состоящее из точек прямой $(-\infty < x < +\infty)$ с **метрикой** $\rho(x,y) = \text{arctg} |x-y|$, рассмотренной в задаче 8 к § 1, **полным**?
- 8. Является ли **полным** метрическое пространство c всех числовых последовательностей $\mathbf{x}=(x_1,\,x_2,\,\ldots\,,x_k,\,\ldots)\,,$ где $x_k\to 0\,,$ когда

 $k \to \infty$, с **метрикой**, задаваемой формулой $\rho(\mathbf{x},\mathbf{y}) = \sup_k |x_k - y_k|$, где $\mathbf{y} = (y_1,\,y_2,\,\dots,y_k,\,\dots)$?

9. Пусть **X** множество *рациональных* чисел $\{\mathbf{r}\}$, *расстояние* между которыми определено формулой: $\boldsymbol{\rho}(\mathbf{r}_1,\mathbf{r}_2) = |\mathbf{r}_1 - \mathbf{r}_2|$.

Показать, что в *этом метрическом пространстве* последовательность

$$\mathbf{r}_n \,=\, \left(\,\mathbf{1} \,+\, rac{\mathbf{1}}{\mathbf{n}}\,
ight)^{\mathbf{n}}$$

является фундаментальной, но не имеет предела.

(Из курса математического анализа известно, что рассматриваемая последовательность $\pmb{umeem\ npeden}$ в метрическом $\pmb{npocmpancmee}\ \mathbb{E}^1)$.

10. Пусть X множество многочленов:

$$\{\mathbf{p}\} \stackrel{def}{=} \{p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n\},$$

расстояние между которыми определено формулой:

$$\boldsymbol{\rho}\left(\mathbf{p}_{1},\,\mathbf{p}_{2}\right) = \max_{\mathbf{a} \leq x \leq \mathbf{b}} |p_{1}\left(x\right) - p_{2}\left(x\right)|.$$

Показать, что в *этом метрическом пространстве* последовательность

$$\mathbf{p}_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k$$

является ϕy ндаментальной, но не имеет предела.

Будет ли рассматриваемая последовательность *иметь предел* в метрическом пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$?

1.4 Пополнение метрических пространств

Полнота того или иного метрического пространства, **участвующе- го** в постановке и решении конкретной математической или прикладной проблемы, часто весьма **существенна**.

Отсутствие свойства *полноты* обычно удается компенсировать, благодаря тому, что у любого *неполного* пространства существуют ассоциированные с ним *полные* метрические пространства, называемые *пополнениями* исходного метрического пространства.

Изометрия метрических пространств и пополнение

Определение 14. Два метрических пространства (X, ρ_X) и (Y, ρ_Y) называются изометричными, если существует такое взаимнооднозначное соответствие τ между ними, что:

$$\forall x, y \in X$$
 $\rho_X(x, y) = \rho_Y(\tau(x), \tau(y))$.

И, наоборот:

$$\forall \mathbf{x}' = \boldsymbol{\tau}(\mathbf{x}), \mathbf{y}' = \boldsymbol{\tau}(\mathbf{y}) \in \mathbf{Y}$$
 $\boldsymbol{\rho}_{\mathbf{Y}}(\mathbf{x}', \mathbf{y}') = \boldsymbol{\rho}_{\mathbf{X}}(\mathbf{x}, \mathbf{y})$.

Само **отображение** τ называется **изометрией** (между ${\bf X}$ и ${\bf Y}$).

Определение 15. *Полное* метрическое пространство \mathbf{Y} называется **пополнением** пространства \mathbf{X} , если:

- ${f 1}^{\circ}$. B ${f Y}$ есть подпространство ${f Y}_0$ изометричное ${f X}$.
- $\mathbf{2}^{\circ}$. \mathbf{Y}_0 всюду плотно в \mathbf{Y} , $\mathit{m.e.}$ $[\mathbf{Y}_0] = \mathbf{Y}$.

Теорема 1. *Любое* неполное метрическое пространство X имеет пополнение.

Все **пополнения** метрического пространства **X изометричны** между собой.

Мы не будем приводить здесь доказательства этой теоремы, 2 а ограничимся только несколькими общими соображениями $\it npuhuunuaльного$ характера.

 ${f 1}^{\circ}$. Прежде всего, напомним самое ${f cymecmsenhoe}$ свойство ${f nonhooo}$ метрического пространства ${f X}$.

По определению в каждом таком пространстве всякая фундамен mальная последовательность $\{\mathbf{x}_n\}$ имееет npeden — некоторый элемент \mathbf{x}_0 этого же пространства.

- 2° . Тогда всё множество фундаментальных последовательностей *пол- ного* пространства можно разделить на классы *эквивалентных* между собой последовательностей таким образом, чтобы к одному классу были отнесены все фундаментальные последовательности этого пространства, имеющие пределом *одну и ту эксе точку* \mathbf{x}_0 .
- $\mathbf{3}^{\circ}$. После этого можно считать, что точку \mathbf{x}_{0} *полного* метрического пространства вполне "заменяет" тот самый *класс* эквивалентных между собой последовательностей нашего *полного* метрического пространства.
- ${f 4}^{\circ}$. В *неполном* метрическом пространстве ${f X}$, вообще говоря, для *некоторых фундаментальных* в нём последовательностей $\{{f x}_n\}$ *не существует* "соответствующего" такой последовательности элемен-

²Конструкция пополнения неполного метрического пространства изложена, например, в книге [2]

та \mathbf{x}_0 , к которому бы $\boldsymbol{cxodunacb}$ данная фундаментальная последовательность.

Но формально ничто не мешает *обратить ситуацию* и "заменить" "недостающую" точку \mathbf{x}_0 в рассматриваемом случае, также как в случае полного пространства, *классом эквивалентных* между собой фундаментальных последовательностей неполного метрического пространства.

- $\mathbf{5}^{\circ}$. При этом вся "тонкость" ситуации состоит в том, что понятие **эквивалентности** фундаментальных последовательностей, используемое для **полных** метрических пространств в **неполном** метрическом пространстве **не работает**.
- ${f 6}^{\circ}$. Но, к счастью, можно так *определить* эквивалентность фундаментальных последовательностей в *неполном* метрическом пространстве, чтобы указанная выше замена "отсутствующей" точки ${f x}_0$ на класс эквивалентных между собой фундаментальных последовательностей стала возможной.
- 7°. Подходящее для наших целей *обобщение* понятия *эквивалент- ности* фундаментальных последовательностей на случай *необязатель- но* полного метрического пространства содержит

Определение 16. Две фундаментальных последовательности $\{ \mathbf{x}_n \}$ и $\{ \mathbf{y}_n \}$ из метрического пространства \mathbf{X} называются эквивалентными, если:

$$\lim_{n\to\infty} \boldsymbol{\rho}_{\mathbf{X}} \left(\mathbf{x}_n, \mathbf{y}_n \right) = 0$$

Изложенные в пунктах $1^{\circ} - 7^{\circ}$ соображения являются содержательной основой доказательства теоремы 1, могут быть ис**пользованы** при конкретном построении пополнений **неполных** метрических пространств, однако, довольно часто пополнение того или иного неполного пространства можно получить и **иными** способами.

Пример 1 — пополнение пространства рациональных чисел [0,1]

Mempuческое npocmpaнсmво X, элементами которого являются pauuoнaльные vucna отрезка [0,1], а расстояние между которыми вводится стандартным образом, как на всей числовой прямой, очевидно, vucna v

Его стандартное nononhehue — метрическое пространство \mathbf{Y} — отрезок [0,1] с расстоянием между точками, как на всей числовой прямой.

Более точно: пополнение рассматриваемого метрического пространства есть метрическое пространство, элементами которого будут *все* элементы множества *действительных* чисел от нуля до единицы, а функция, определяющая метрику, имеет *тот жее самый вид*, но *расширенную* область определения.

Пример 2 — пополнение пространства \mathbb{R}^{Φ}

Рассмотрим *арифметическое пространство* \mathbb{R}^1 (числовая прямая) с *метрикой*, задаваемой следующим образом:

$$oldsymbol{
ho}\left(\,\mathbf{x},\,\mathbf{y}\,
ight) \,=\, \left|\,\Phi\left(\mathbf{x}
ight) \,-\, \Phi\left(\mathbf{y}
ight)\,
ight| \;,$$

где $\Phi(\mathbf{x})$ непрерывная, строго возрастающая функция, заданная на \mathbb{R}^1 и такая, что

$$\lim_{\mathbf{x} \to -\infty} \mathbf{\Phi} \left(\mathbf{x} \right) \; = \; 0, \qquad \lim_{\mathbf{x} \to +\infty} \mathbf{\Phi} \left(\mathbf{x} \right) \; = \; 1 \; .$$

Полученное **метрическое пространство**, которое мы для удобства будем обозначать \mathbb{R}^{Φ} , — **неполное**.

Действительно, как легко проверить, последовательность $\{\mathbf x_n = \mathbf n\}$ фундаментальна в этом пространстве, но *предела* в этом пространстве не имеет.

 $m{Hononhehuem}$ (одним из возможных!) этого пространства служит отрезок [0,1] со стандартной $m{mempukoŭ}$, так как, легко показать, что рассматриваемое пространство $m{usomempuuho}$ интервалу (0,1).

При этом, требуемое для изометрии **взаимооднозначное** соответствие задается отображением: $\mathbf{x} \overset{\tau}{\leftrightarrow} \Phi(\mathbf{x})$, — а замыкание интервала $(\mathbf{0},\mathbf{1})$ есть отрезок $[\mathbf{0},\mathbf{1}]$.

Пример 3 — пространство $\ \mathbb{L}_2 \, [\, a, b \,],$ как пополнение пространства $\ \mathbb{C}_{\mathbb{L}_2} [\, a, b \,]$

Вновь рассмотрим *метрическое пространство* $\mathbb{C}_{\mathbb{L}_2}[\mathbf{a},\mathbf{b}]$, состоящее из непрерывных на конечном отрезке $[\mathbf{a},\mathbf{b}]$ функций, с *метрикой* (10) из § 1.

В § 3 (пример 6) было установлено, что это *метрическое пространство неполно*.

Пополнение рассматриваемого пространства c точностью до изометрии совпадает с метрическим пространством $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$, которое

состоит не из индивидуальных функций, а из **классов эквивалент**-**ных** между собой функций, удовлетворяющих некоторым дополнительным условиям, позволяющим ввести **метрику**, **согласованную** с метрикой (10).

Определение 17. Множество ${\bf M}$ точек ${\mathbb R}^1$ называется множеством меры нуль, если при любом $\varepsilon>0$ множество ${\bf M}$ может быть покрыто конечным или счетным множеством отрезков суммарной длины $\leqslant \varepsilon$.

Так как *отрезок* и соответствующий ему *интервал* (полуинтервал) имеют одинаковую *длину*, то в этом определении *отрезки* можно заменить *интервалами* или *полуинтервалами*.

Определение 18. Последовательность функций $\{f_n(x)\}$, заданных на $[\mathbf{a}, \mathbf{b}]$, называется сходящейся почти всюду на $[\mathbf{a}, \mathbf{b}]$ к некоторой функции f(x), если эта последовательность сходится к функции f(x) на множестве \mathbf{N} точек отрезка, дополнение к которому $\mathbf{M} = [\mathbf{a}, \mathbf{b}] \setminus \mathbf{N}$ имеет меру нуль.

Определение 19. Две функции f(x) и g(x), определенные на $[\mathbf{a}, \mathbf{b}]$, называются эквивалентными, если их значения различаются лишь на множестве точек отрезка $[\mathbf{a}, \mathbf{b}]$ меры нуль.

Приведенные выше определения ещё не позволяют аккуратно объяснить, что представляет из себя каждый *элемент* пространства $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$. Мы сделаем это чуть ниже.

Однако, после определения элементов пространства $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$, метрика в этом пространстве вводится формулой, по виду совпадающей с (10), но интеграл в которой понимается в более общем смысле, чем это, обычно, принято в математическом анализе. Этот более общий интеграл называется интегралом Лебега³.

Замечание. *Определить интеграл Лебега* можно *различными* способами.

Мы **не будем** проводить аккуратного построения и, тем более, **обоснования** теории интеграла Лебега, которое заняло бы значительный объём книги и надолго увело бы в сторону от её **основной** тематической линии.

За подробностями теории интеграла Лебега читатель может обратиться к [1], [7].

Для *понимания* же дальнейшего материала вполне *достаточно* знакомства со следующими *основными свойствами интегрируемых по Лебегу* функций.

- ${f 1}^{\circ}$. Если функция f(x) **интегрируема по Лебегу** на отрезке $[{f a},{f b}]$, то она останется **интегрируемой** с тем же значением интеграла при произвольном изменении значений рассматриваемой функции на произвольном множестве **меры нуль**.
- ${f 2}^{\circ}$. Если функция *интегрируема по Риману* на отрезке $[{f a},{f b}]$, то она *интегрируема* на $[{f a},{f b}]$ *по Лебегу* и при этом значения соответствующих интегралов ${f cosnadam}$.

 $^{^3}$ Интеграл, обычно используемый в элементарном анализе, называется *интегралом Римана*

- ${\bf 3}^{\circ}$. Если функция f(x) **интегрируема по Лебегу** на отрезке $[{\bf a},{\bf b}]$, то и функция |f(x)| **интегрируема по Лебегу** на этом отрезке (**обратное** утверждение, вообще говоря, **неверно!**).
- ${f 4}^{\circ}$. Если последовательность ${m u}{m m}{m e}{m r}{m u}{m p}{m v}{m e}{m m}{m w}{m n}{m o}{m M}{m e}{m e}{m e}{m v}$ на отрезке ${f [a,b]}$ функции ${m f}(x)$,

$$|f_n(x)| \leqslant \varphi(x), \quad \forall n = 1, 2, \dots$$

и $\varphi\left(x\right)$ интегрируема по Лебегу на $\left[\mathbf{a},\mathbf{b}\right]$, то и предельная функция $f\left(x\right)$ интегрируема по Лебегу на $\left[\mathbf{a},\mathbf{b}\right]$ и

$$\lim_{n \to \infty} \int_{\mathbf{a}}^{\mathbf{b}} f_n(x) \, dx = \int_{\mathbf{a}}^{\mathbf{b}} f(x) \, dx, \qquad \text{причём} \qquad \int_{\mathbf{a}}^{\mathbf{b}} |f(x)| \, dx \leqslant \int_{\mathbf{a}}^{\mathbf{b}} \varphi(x) \, dx \, .$$

Свойства $\mathbf{1}^{\circ} - \mathbf{4}^{\circ}$, — важные *теоремы* лебеговской теории интегрирования, доказательства которых можно найти, например, в [1], [7].

Утверждения $1^{\circ}-4^{\circ}$, обычно, позволяют найти *интеграл Лебега* от заданной функции либо найдя её *интеграл* в смысле *Римана*, когда это возможно, либо как *предел последовательности* результатов таких интегрирований.

Теперь, наконец, мы можем *сформулировать* определение пространства $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$.

Определение 20. Пространство $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$ это множество **классов** функций.

Каждый **класс** (отдельный элемент **х** пространства) состоит из функций, ⁴ **квадрат** которых **интегрируем по Лебегу** на отрез-

 $^{^4}$ Все функции, рассматриваемые при построении пространства $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}
ight]$ предполагаются \pmb{usme}

 $\kappa e [\mathbf{a}, \mathbf{b}]$.

Кроме того, это множество элементов **замкнуто** относительно линейных операций (сложения и умножения на числа) в алгебраическом смысле, означающем, что линейная комбинация $\alpha x(t) + \beta y(t)$ любых двух функций x(t), y(t) из двух классов \mathbf{x}, \mathbf{y} , принадлежащих $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$, сама принадлежит классу $\alpha \mathbf{x} + \beta \mathbf{y}$ пространства $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$, то есть соответствующая линейная комбинация интегрируема \mathbf{c} квадратом на отрезке $[\mathbf{a}, \mathbf{b}]$.

Пространство $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$ *полно* и является *пополнением* пространства $\mathbb{C}_{\mathbb{L}_2}\left[\mathbf{a},\mathbf{b}\right]$ примера 7 из § 1.

Строгое доказательство этого утверждения требует более *деталь- ного* знакомства с теорией интегрирования *в смысле Лебега* и здесь не приводится.

Замечание. Каждый элемент пространства $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$ можно также, в отличие от проведенной выше схемы рассуждений, рассматривать ровно таким же образом, как это намечено выше в пунктах $\mathbf{1}^{\circ} - \mathbf{7}^{\circ}$, как класс эквивалентных между собой фундаментальных последовательностей из пространства $\mathbb{C}_{\mathbb{L}_2}[\mathbf{a}, \mathbf{b}]$.

Заметим, что аналогично тому, как мы ввели пространство $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$, можно ввести пространство функций $\mathbb{L}_2(\prod[\mathbf{a}, \mathbf{b}])$, заданных на произвольном множестве $\prod[\mathbf{a}, \mathbf{b}]$ (см. пример (4) на с. 152 из § 5) и даже пространство $\mathbb{L}_2(\mathbf{Q})$, где \mathbf{Q} — произвольное *измеримое* множество из \mathbb{E}^n .

римыми. Это понятие аккуратно обсуждается, например, в [1], [7].

Упражнения и задачи κ параграфу 4.

1. Показать, что множество рациональных чисел на отрезке [0,1] — множество **меры нуль**.

<u>Указание</u>. Множество рациональных точек отрезка c четно, то есть из всех рациональных чисел [0,1] можно образовать одну n оследовательность.

Каждое число, — элемент получившейся таким образом последовательности, можно заключить в отрезок сколь угодно малой длины.

Поэтому достаточно подобрать длины всех этих отрезков так, чтобы сумма длин указанных отрезков была бы сколь угодно малой.

2. Показать, что функция Дирихле на отрезке [0,1]:

$$\boldsymbol{\chi}\left(x\right) = \left\{ egin{array}{ll} 1, & x - \mbox{иррационально} \\ 0, & x - \mbox{рациональнo} \end{array} \right.$$

интегрируема по Лебегу.

Чему равен *интеграл* от этой функции?

3. Показать, что функция $f(x) = x \cdot \boldsymbol{\chi}(x)$ интегрируема по Лебегу на $[\mathbf{0}, \mathbf{1}]$ и интеграл от этой функции равен 1/2.

1.5 Отображения метрических пространств.

Принцип сжатых отображений

Отображения метрических пространств

Одним из самых *основополагающих* понятий математики является понятие $\phi y + \kappa u u u$.

Сейчас мы значительно расширим понятие функции (по сравнению со стандартным определением из *математического анализа*).

Определение 21. Пусть ${\bf M}$ и ${\bf N}$ — два множества и каждому элементу ${\bf x}\in {\bf M}$ поставлен в соответствие некоторый (только один!) элемент ${\bf y}\in {\bf N}$.

B этом случае говорят, что на ${f M}$ задана **функция** со значениями ${f 6}$ ${f N}$.

Замечание. Вместо слова *функция*, по сложившейся в математике традиции, в зависимости от контекста, часто используют также слова - синонимы — *отображение* и *оператор*.

Точно также, *по традиции*, в случае, когда область значений $\mathbf N$ состоит из действительных чисел, а $\mathbf M$ — произвольное *метрическое пространство*, то вместо слова *функция* обычно используется термин *функционал*.

Определение 22. $\Pi ycmb \ f \ -$ отображение.

Элемент $\mathbf{y} = f(\mathbf{x}) \in \mathbf{N}$ называется **образом** \mathbf{x} в \mathbf{N} при отображении f.

Определение 23. Если $\mathbf{y} \in \mathbf{N}$, то под полным прообразом элемента \mathbf{y} понимается подмножество элементов \mathbf{M} , которые переходят в \mathbf{y} (соответствуют \mathbf{y}) при отображении f, причем это подмножество, которое, обычно, обозначается $f^{-1}(\mathbf{y})$, при некоторых $\mathbf{y} \in \mathbf{N}$, может быть и пустым.

Определение 24. Eсли $\mathbf{P} \subseteq \mathbf{M}$, то образ множества \mathbf{P} (в множестве \mathbf{N}): $-f(\mathbf{P}) \subseteq \mathbf{N}$, - подмножество \mathbf{N} , куда переходят точки из \mathbf{P} под действием оператора f.

Eсли $f(\mathbf{M}) = \mathbf{N}$, то говорят, что f отображает \mathbf{M} $\boxed{\mathbf{Ha}}$ \mathbf{N} . Eсли $f(\mathbf{P}) \subset \mathbf{N}$, то говорят об отображении \mathbf{M} $\boxed{\mathbf{B}}$ \mathbf{N} .

Непрерывность отображения метрических пространств

Наличие метрики позволяет ввести понятие непрерывности отображения.

Определение 25. Пусть $f(\mathbf{x})$ функция, определенная на метрическом пространстве $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$ со значениями в метрическом пространстве $(\mathbf{Y}, \boldsymbol{\rho}_{\mathbf{Y}})$.

Отображение f называется **непрерывным** в точке $\mathbf{x} \in \mathbf{X}$, если $\forall \, \varepsilon \, > \, 0 \, , \, \, \exists \, \delta \, (\mathbf{x}, \, \varepsilon) \, \, \,$ такое, что

$$\rho_{\mathbf{Y}}(f(\mathbf{x}), f(\mathbf{z})) < \varepsilon$$

если

$$\rho_{\mathbf{X}}(\mathbf{x}, \mathbf{z}) < \delta$$
.

Утверждение 12. Для непрерывности отображения f действующего из метрического пространства $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$ в метрическое пространство $(\mathbf{Y}, \boldsymbol{\rho}_{\mathbf{Y}})$ необходимо и достаточно, чтобы для любой последовательности $\mathbf{x}_n \to \mathbf{x}$ (в смысле сходимости в метрическом пространстве $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$), соответствующая последовательность значений $f(\mathbf{x}_n) \to f(\mathbf{x})$ в метрическом пространстве $(\mathbf{Y}, \boldsymbol{\rho}_{\mathbf{Y}})$.

Доказательство. **Необходимость**. Пусть отображение $f \colon \mathbf{X} \to \mathbf{Y}$ непрерывно в точке $\mathbf{x} \in \mathbf{X}$.

Это означает, что $\forall \varepsilon > 0$, $\exists \delta(\mathbf{x}, \varepsilon)$ такое, что

$$\rho_{\mathbf{Y}}(f(\mathbf{x}), f(\mathbf{z})) < \varepsilon$$

если

$$\rho_{\mathbf{X}}(\mathbf{x},\mathbf{z}) < \delta$$
.

Рассмотрим произвольную последовательность точек $\mathbf{x}_n \in \mathbf{X}$, сходящуюся к точке \mathbf{x} , т.е. такую, что для рассмотренного выше $\delta(\mathbf{x}, \varepsilon)$, $\exists N(\delta)$, что $\rho_{\mathbf{X}}(\mathbf{x}_n, \mathbf{x}) < \delta$ при $n > N(\delta)$.

Тогда последовательность точек $f(\mathbf{x}_n) \in \mathbf{Y}$, сходится к точке $f(\mathbf{x}) \in \mathbf{Y}$, т.к. для $\forall \varepsilon > 0, \; \exists N(\delta), \; \boldsymbol{\rho}_{\mathbf{Y}} \; (f(\mathbf{x}_n), f(\mathbf{x})) < \varepsilon \;$ при $n > N(\delta), \;$ т.к. при этом $\boldsymbol{\rho}_{\mathbf{X}} (\mathbf{x}_n, \mathbf{x}) < \delta$.

Достаточность. Доказательство достаточности проведём от противного.

Пусть для всякой последовательности точек $\mathbf{x}_n \in \mathbf{X}$, сходящейся к точке \mathbf{x} , соответствующая ей при отображении f последовательность точек $f(\mathbf{x}_n) \in \mathbf{Y}$, сходится к точке $f(\mathbf{x}) \in \mathbf{Y}$, но отображение f не является непрерывным в точке $\mathbf{x} \in \mathbf{X}$, т.е. существует такое вещественное число $\varepsilon_0 > 0$, что для любого δ существует хотя бы один элемент $\mathbf{z} \in \mathbf{X}$ такой, что $\rho_{\mathbf{X}}(\mathbf{z}, \mathbf{x}) < \delta$, но $\rho_{\mathbf{Y}}(f(\mathbf{z}), f(\mathbf{x})) \geqslant \varepsilon_0$.

Положим $\delta_n = \frac{1}{n}, \ n = 1, 2, \dots$

Выберем последовательность точек $\mathbf{z}=\mathbf{x}_n$, таких, что $\boldsymbol{\rho}_{\mathbf{X}}\left(\mathbf{x}_n,\,\mathbf{x}\right)<\delta_n$, но $\boldsymbol{\rho}_{\mathbf{Y}}\left(f\left(\mathbf{x}_n\right),\,f\left(\mathbf{x}\right)\right)\,\geqslant\,\varepsilon_0$.

Получившаяся таким образом последовательность точек $\mathbf{x}_n \in \mathbf{X}$, вопервых, сходится к точке $\mathbf{x} \in \mathbf{X}$, т.к. по построению $\boldsymbol{\rho}_{\mathbf{X}}(\mathbf{x}_n, \mathbf{x}) < \frac{1}{n}$, и, во-вторых, соответствующая последовательность точек $f(\mathbf{x}_n) \in \mathbf{Y}$, не сходится к точке $f(\mathbf{x}) \in \mathbf{Y}$, т.к. $\boldsymbol{\rho}_{\mathbf{Y}}(f(\mathbf{x}_n), f(\mathbf{x})) \geqslant \varepsilon_0$, что противоречит нашим предположениям.

В случае, когда $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}}) = (\mathbf{Y}, \boldsymbol{\rho}_{\mathbf{Y}}) = \mathbb{E}^1$, утверждение 4 означает *эквивалентность* двух определений *непрерывной* функции одного действительного переменного *по Коши* и *по Гейне - Борелю* соответственно.

Как было отмечено в § 1, *метрическая функция* отображает прямое произведение $\mathbf{X} \times \mathbf{X}$ в множество *неотрицательных чисел* \mathbb{R}^1_+ и, поэтому, можно говорить о её *непрерывности*.

Имеет место важная

Лемма 2. Расстояние $\rho(\mathbf{x}, \mathbf{y})$ является непрерывным функционалом по обеим своим аргументам \mathbf{x}, \mathbf{y} , т.е. для любых сходящихся последовательностей её аргументов: $\mathbf{x}_n \to \mathbf{x}_0$ и $\mathbf{y}_n \to \mathbf{y}_0$ при $n \to \infty$, $\rho(\mathbf{x}_n, \mathbf{y}_n) \to \rho(\mathbf{x}_0, \mathbf{y}_0)$ при $n \to \infty$.

Доказательство. Воспользуемся неравенством четырёхугольника, выбрав в качестве соответствующих точек $\mathbf{x} = \mathbf{x}_0$, $\mathbf{y} = \mathbf{y}_0$ и $\mathbf{u} = \mathbf{x}_n$, $\mathbf{v} = \mathbf{y}_n$.

Тогда:

$$|oldsymbol{
ho}\left(\mathbf{x}_{0},\,\mathbf{y}_{0}
ight)-oldsymbol{
ho}\left(\mathbf{x}_{n},\,\mathbf{y}_{n}
ight)|\leqslantoldsymbol{
ho}\left(\mathbf{x}_{0},\,\mathbf{x}_{n}
ight)+oldsymbol{
ho}\left(\mathbf{y}_{0},\,\mathbf{y}_{n}
ight)
ightarrow0$$
 при $n
ightarrow\infty$

Операторные уравнения в метрических пространствах

Многие проблемы в различных разделах математики сводятся к отысканию *решения* операторного уравнения:

$$F(\mathbf{x}) = \mathbf{y} , \qquad (1)$$

где F — omoбражение метрического пространства $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$ в другое метрическое пространство $(\mathbf{Y}, \boldsymbol{\rho}_{\mathbf{Y}})$, то есть к установлению nenycmo-mu полного прообраза $F^{-1}(\mathbf{y})$ $nenumber use use use use <math>\mathbf{y}$ и нахождения \mathbf{gcex} или $nenumber use use use <math>\mathbf{y}$ и нахождения \mathbf{gcex} или $nenumber use use use use <math>\mathbf{y}$ и нахождения \mathbf{y} и нахождения $\mathbf{y$

При решении npuкладных npoблем, обычно, речь идет о npuближенном нахождении каких-либо элементов множества $F^{-1}(\mathbf{y})$.

Принцип сжимающих отображений

Очень часто исследование конкретных уравнений типа (1) опирается на *принцип сэкимающих отображений*.

Теорема 2 (принцип сжимающих отображений). Пусть **A** отображение полного метрического пространства $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$ в себя.

Пусть кроме того $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}$ выполнено следующее неравенство:

$$\rho (\mathbf{A}(\mathbf{x}), \mathbf{A}(\mathbf{y})) \leq \mathbf{q} \cdot \rho (\mathbf{x}, \mathbf{y}),$$
 (2)

ede число $\mathbf{q}: 0 < \mathbf{q} < 1$ и не зависит от \mathbf{x} и \mathbf{y} .

 $extit{Torda}\ extit{cywecmsyem}\ extit{eduncmsehhas}\ moчкa\ extit{z}\ \in\ extbf{X}\ extit{makas},\ extit{чтo}$

$$\mathbf{A}\left(\mathbf{z}\right) = \mathbf{z} \tag{3}$$

Такая точка **z** называется **неподвижной точкой** отображения **A** .

Доказательство. Пусть \mathbf{x}_0 произвольно выбранный элемент $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$. Образуем последовательность $\{\mathbf{x}_n\}_{n=0}^{\infty}$ по следующему правилу:

$$\mathbf{x}_0, \ \mathbf{x}_1 = \mathbf{A}(\mathbf{x}_0), \ \mathbf{x}_2 = \mathbf{A}(\mathbf{x}_1), \ldots, \ \mathbf{x}_n = \mathbf{A}(\mathbf{x}_{n-1}), \ldots$$

Используя несколько раз неравенство (2), получим:

$$\rho\left(\mathbf{x}_{n}, \mathbf{x}_{n-1}\right) = \rho\left(\mathbf{A}\left(\mathbf{x}_{n-1}\right), \mathbf{A}\left(\mathbf{x}_{n-2}\right)\right) \leqslant \mathbf{q} \cdot \rho\left(\mathbf{x}_{n-1}, \mathbf{x}_{n-2}\right) \leqslant \cdots \tag{4}$$

$$\cdots \qquad \qquad \leqslant \mathbf{q}^{n-1} \cdot \rho\left(\mathbf{A}\left(\mathbf{x}_{0}\right), \mathbf{x}_{0}\right)$$

Пусть p некоторое натуральное число. Тогда, используя нужное число раз неравенство треугольника и окончательный результат (4), получим:

$$\rho\left(\mathbf{x}_{n}, \, \mathbf{x}_{n+p}\right) \leqslant \rho\left(\mathbf{x}_{n}, \, \mathbf{x}_{n+1}\right) + \rho\left(\mathbf{x}_{n+1}, \, \mathbf{x}_{n+2}\right) + \ldots + \rho\left(\mathbf{x}_{n+p-1}, \, \mathbf{x}_{n+p}\right) \leqslant$$

$$\leqslant \left(\mathbf{q}^{n} + \ldots + \mathbf{q}^{n+p-1}\right) \cdot \rho\left(\mathbf{A}\left(\mathbf{x}_{0}\right), \, \mathbf{x}_{0}\right) =$$

$$= \frac{\mathbf{q}^{n} - \mathbf{q}^{n+p}}{1 - \mathbf{q}} \cdot \rho\left(\mathbf{A}\left(\mathbf{x}_{0}\right), \, \mathbf{x}_{0}\right) \leqslant \frac{\mathbf{q}^{n}}{1 - \mathbf{q}} \cdot \rho\left(\mathbf{A}\left(\mathbf{x}_{0}\right), \, \mathbf{x}_{0}\right)$$

$$(5)$$

Из оценки (5) следует, что наша последовательность $\{\mathbf{x}_n\}$ фундаментальна в $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$ и, следовательно, в силу полноты $(\mathbf{X}, \boldsymbol{\rho}_{\mathbf{X}})$, имеет предел $\mathbf{z} = \lim_{n \to \infty} \mathbf{x}_n$.

В силу (2) отображение $\mathbf{A}(\mathbf{x})$ *непрерывно* в любой точке $\mathbf{x} \in \mathbf{X}$. Перейдя к пределу в соотношении:

$$\mathbf{x}_n = \mathbf{A}(\mathbf{x}_{n-1}),$$

получим, что ${\bf z}$ *неподвижная точка* отображения ${\bf A}$.

 ${\it Eduнcmsehhocm5}$ неподвижной точки сразу следует из неравенства (2) .

Действительно, пусть ${\bf w}$ какая либо (отличная от ${\bf z}$) ${\it henodeu}$ жения ${\bf A}$.

Тогда:

$$\rho(\mathbf{z}, \mathbf{w}) = \rho(\mathbf{A}(\mathbf{z}), \mathbf{w}) \leqslant \mathbf{q} \cdot \rho(\mathbf{z}, \mathbf{w}).$$

Отсюда *следует*, что $\rho(\mathbf{z}, \mathbf{w}) = 0$ и, следовательно $\mathbf{z} = \mathbf{w}$. \square

Неравенство (5) позволяет оценить paccmoshue между элементами последовательности \mathbf{x}_n и неподвижной точкой \mathbf{z} для любого n.

Действительно, в пределе при $p \to \infty$ из оценки (5) следует неравенство:

$$\rho\left(\mathbf{x}_{n},\,\mathbf{z}\right) \leqslant \frac{\mathbf{q}^{n}}{1-\mathbf{q}} \cdot \rho\left(\mathbf{A}\left(\mathbf{x}_{0}\right),\,\mathbf{x}_{0}\right)$$
 (6)

Использованная нами в доказательстве, *рекуррентно* образованная последовательность $\{\mathbf{x}_n\}$ (*итерационная последовательность*), — в конкретных случаях может использоваться не только для *доказательства* существования решения того или иного операторного уравнения, но и как источник все более точных (согласно оценке (6)) *приближений* к его решению \mathbf{z} .

Уравнение (1), рассматриваемое в паре *произвольных* метрических пространств \mathbf{X} и \mathbf{Y} , далеко не всегда можно преобразовать к виду (3), как, впрочем, вообще говоря, *не всегда* возможно сведение уравнения (3) к виду (1).

Однако, в приложениях, обычно, npeofpa3oвahue (1) в (3) или (3) в (1) оказывается возможным.

Пример 1 — уравнение (3) в \mathbb{E}^1

Пусть f(x) **дифференцируемая** функция, определенная для всех действительных x такая, что:

$$|f'(x)| \leqslant q < 1, \quad \forall x \tag{7}$$

Функцию $f\left(x\right)$ можно рассматривать как *отображение* полного пространства \mathbb{E}^{1} в себя.

Утверждение 13. Это отображение сжимающее.

Доказательство. Действительно:

$$\rho(f(x_1), f(x_2)) = |f(x_1) - f(x_2)| \le q \cdot |x_1 - x_2|$$

В силу принципа сжимающих отображений уравнение

$$f(x) = x ,$$

имеет единственное решение в \mathbb{E}^1 .

Пример 2 — система линейных алгебраических уравнений, как операторное уравнение (3) в пространстве \mathbb{R}^n_{\max}

Рассмотрим *систему линейных алгебраических уравнений* вида:

$$x_i = \sum_{j=1}^{n} a_{ij} x_j + b_i, \quad i = 1, \dots, n$$
 (8)

Утверждение 14. Предположим, что выполнено условие:

$$\max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) = q < 1 \tag{9}$$

Тогда система (8) имеет единственное решение.

Доказательство. Справедливость сформулированного утверждения можно установить, используя *принцип сжатых отображений*.

Уравнение (8) можно интерпретировать, как операторное, вида:

$$\mathbf{x} = \mathbf{A}\mathbf{x}$$
,

в котором \mathbf{x} элемент n-мерного арифметического пространства \mathbb{R}^n с метрикой примера 3 из $\S 1$.

Это пространство *полное* (см. упражнения к § 3).

Его *отображение* в себя, задаваемое правыми частями равенств (8), — *сжимающее*.

Действительно:

$$\boldsymbol{\rho}\left(\mathbf{A}\,\mathbf{x}^{(1)},\,\mathbf{A}\,\mathbf{x}^{(2)}\right) = \max_{i} \left(\sum_{j=1}^{n} \left|a_{ij}\left(x_{j}^{(1)}-x_{j}^{(2)}\right)\right|\right) \leqslant$$

$$\leqslant \max_{i} \left(\sum_{j=1}^{n} \left|a_{ij}\right|\right) \cdot \max_{j} \left|x_{j}^{(1)}-x_{j}^{(2)}\right| \leqslant q \cdot \boldsymbol{\rho}\left(\mathbf{x}^{(1)},\,\mathbf{x}^{(2)}\right)$$

Последнее неравенство получается в силу (9).

Пользуясь *принципом сэкатых отображений* можно исследовать уравнения, неизвестными в которых являются не только числа, но также, например, и *функции* или *наборы функций* одного или нескольких переменных.

Пример 3 — задача Коши для дифференциального уравнения, как уравнение вида (3)

В теории дифференциальных уравнений, в частности, изучается *за- дача Коши* для дифференциального уравнения:

$$y' = f(x, y(x)), \quad y(x_0) = y_0$$
 (10)

Здесь y(x) неизвестная функция, которую нужно определить из условий (10), а f(x,y) — заданная функция двух переменных, обычно считающаяся непрерывной в некотором (замкнутом) прямоугольнике евклидовой плоскости \mathbb{E}^2 с центром в точке (x_0,y_0) .

Ограничимся рассмотрением случая, когда функция f(x, y) **непре- рывна** в полосе:

$$\mathbf{D} = \{ \mathbf{a} \leqslant x \leqslant \mathbf{b}, -\infty < y < +\infty \}.$$

Точка $x_0 \in (\mathbf{a}, \mathbf{b})$ и для точек полосы \mathbf{D} выполнено условие:

$$|f(x, y_1) - f(x, y_2)| \leq \mathbf{K} \cdot |y_1 - y_2|,$$
 (11)

где постоянная $\, {f K} \,$ не зависит от $\, x, \, y_1, \, y_2 \, .$

Условие (11) называется *условием Липшица*.

Для его выполнения **достаточно**, чтобы **существовала** частная производная $f_y'(x,y)$ и выполнялось неравенство:

$$\sup_{\mathbf{D}} |f_y'(x, y)| \leqslant \mathbf{K}$$

Рассмотрим omoбражениe пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ в себя, задаваемое

формулой:

$$z(x) = y_0 + \int_{x_0}^{x} f(x, y(x)) dx$$
, или в операторном виде: $\mathbf{z} = \mathbf{A} \mathbf{y}$, (12)

где x_0 фиксированная точка отрезка $[\mathbf{a}, \mathbf{b}]$, а точка $x \in [\mathbf{a}, \mathbf{b}]$.

Непосредственно устанавливается, что оператор \mathbf{A} отображает пространство $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ в себя и *неподвижная точка* этого отображения является решением задачи Коши (10) на отрезке $\left[\mathbf{a},\mathbf{b}\right]$.

Вообще говоря, отображение (12) **не является сэкимающим** в пространстве $\mathbb{C}[\mathbf{a},\mathbf{b}]$ при **произвольных** значениях чисел \mathbf{a} и \mathbf{b} .

Однако, оно *будет сэкимающим*, если *длина* отрезка $[\mathbf{a},\mathbf{b}]$ достаточно *мала*.

Действительно, используя неравенство (11) и известные свойства интеграла, имеем:

$$\rho\left(\mathbf{A}\,\mathbf{y}_{1},\,\mathbf{A}\,\mathbf{y}_{2}\right) = \max_{\mathbf{a}\leqslant x\leqslant \mathbf{b}} \left| \int_{x_{0}}^{x} \left[f\left(x,\,y_{1}\left(x\right)\right) - f\left(x,\,y_{2}\left(x\right)\right)\right] dx \right| \leqslant$$

$$\leqslant K \cdot \left|\mathbf{b} - \mathbf{a}\right| \cdot \max_{\mathbf{a}\leqslant x\leqslant \mathbf{b}} \left|y_{1}\left(x\right) - y_{2}\left(x\right)\right| =$$

$$= K \cdot \left|\mathbf{b} - \mathbf{a}\right| \cdot \rho\left(\mathbf{y}_{1},\,\mathbf{y}_{2}\right)$$

Таким образом, если:

$$|\mathbf{b} - \mathbf{a}| < 1/K,$$

отображение (12) *сэкимающее* и задача Коши (10) *имеет* на отрезке [a, b] *единственное* решение.

Упражнения и задачи к параграфу 5.

Henpepывны ли на $npocmpancmee \ \mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ следующие ϕy нкиионалы:

a).
$$f(\mathbf{x}) = x(\mathbf{a})$$

6).
$$f(\mathbf{x}) = \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} |x(t)|$$

B). $f(\mathbf{x}) = \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} x(t)$

B).
$$f(\mathbf{x}) = \max_{\mathbf{a} \le t \le \mathbf{b}} x(t)$$

$$\Gamma$$
). $f(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} x(t) dt$

д).
$$f(\mathbf{x}) = \begin{cases} 0, & \text{если } x(t) \text{ принимает хотя бы одно отрицательное значение} \\ \frac{1}{2}, & \text{если } x(t) \equiv 0 \\ 1, & \text{если } x(t) \geqslant 0, \text{ причём } x(t) \not\equiv 0 \end{cases}$$

2. **Непрерывны** ли на **пространстве** $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$ следующие **функ**ционалы:

a).
$$f(\mathbf{x}) = x(\mathbf{a})$$

6). $f(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} \sqrt{1 + [x'(t)]^2} dt$?

6).
$$f(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} \sqrt{1 + [x'(t)]^2} dt$$
?

- 3. *Непрерывны* ли *функции* $f\left(\mathbf{x}\right) = \boldsymbol{\rho}\left(\mathbf{x}, \mathbf{A}\right) = \inf_{\mathbf{y} \in \mathbf{A}} \boldsymbol{\rho}\left(\mathbf{x}, \mathbf{y}\right)$ и $g\left(\mathbf{x}\right)=oldsymbol{arphi}\left(\mathbf{x},\,\mathbf{A}\,
 ight)=\sup_{\mathbf{y}\,\in\,\mathbf{A}}oldsymbol{
 ho}\left(\,\mathbf{x},\,\mathbf{y}\,
 ight),\,\,$ где $\,\mathbf{A}\,\,-\,$ множество в **метриче** $c \kappa o M$ пространстве ${f X}$.
- 4. Проверить, что функционал $f(\mathbf{x}) = \int_{0}^{\frac{1}{2}} x(t) dt \int_{1}^{1} x(t) dt$ непреpывен на npocmpaнсmве $\mathbb{C}\left[0,1
 ight]$.

Показать, что точная **верхняя грань** по всем элементам **единичного** *шара* этого пространства от указанной функции *не достигается* ни на одном элементе этого шара.

5. *Отображение* **F** на полупрямой $\mathbf{X}: 0 \leqslant x < +\infty$ переводит **точку** x в **точку** x + 1/x.

Будет ли указанное отображение *сэкимающим* в метрическом *про- странстве* \mathbf{X} со стандартной *метрикой* $\boldsymbol{\rho}(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}|$?

Имеет ли указанное отображение неподвиженую точку в \mathbf{X} ?

6. Рассмотрим систему (8), как *операторное уравнение* в *евкли- довом пространстве* \mathbb{E}^n (с метрикой (1) из § 1 главы I).

Показать, что оператор A, задаваемый правой частью (8), будет сэкимающим в этом пространстве, если выполнено условие:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} < 1$$

7. Рассмотрим в пространстве $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ операторное уравнение — u*н*-*тегральное уравнение Фредгольма*:

$$y(x) = \lambda \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(x, s) y(s) ds + f(x)$$

Пусть $\mathcal{K}(x,s)$ непрерывная функция на прямом произведении $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$.

Показать, что при выполнении условия:

$$|\mathbf{b} - \mathbf{a}| \cdot |\lambda| \cdot \max_{\mathbf{a} \leq x, s \leq \mathbf{b}} |\mathcal{K}(x, s)| < 1$$

такое интегральное уравнение uмеет eдuнcтbе решение в $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

Компактные метрические пространства.
 Компакты. Непрерывные функционалы на компактах

Компактные метрические пространства

Определение 26. Метрическое пространство $(\mathbf{X}, \boldsymbol{\rho})$ называется **компактным**, если **любая** бесконечная последовательность его точек содержит **фундаментальную подпоследовательность**.

Определение 27. Метрическое пространство (X, ρ) называется компактом, если любая бесконечная последовательность его точек содержит сходящуюся подпоследовательность.

Из этих определений следует:

- ${f 1}^{\circ}$. Любое *полное компактное* пространство *компакт*.
- 2° . Так как каждое подмножество метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$ само является *метрическим пространством*, то можно говорить о *компактных* подмножествах данного метрического пространства и о его подмножествах, которые являются *компактами*.

В частности, любое $\it samkhymoe компактноe$ подмножество полного метрического пространства — $\it komnakm$.

Пример 1. Метрическое пространство X, состоящее из **конечного** числа точек — **компакт**.

Пример 2. Отрезок $[\mathbf{a}, \mathbf{b}]$, рассматриваемый как подпространство в \mathbb{E}^1 , — компактное множество и компакт.

Пример 3. Интервал (**a**, **b**) *компактное* множество (*компактное* метрическое пространство), но не *компакт*.

Утверждения, содержащиеся в примерах 2 и 3 следуют из известной теоремы математического анализа о том, что любая *ограниченная* последовательность действительных чисел *содержит сходящуюся* подпоследовательность.

Пример 4. Пространство \mathbb{E}^n не компактно при любом $n=1,2,\ldots$ Действительно, множество всевозможных n-ок натуральных чисел (N_1, N_2, \ldots, N_n) принадлежит \mathbb{E}^n .

Это множество бесконечно, но *не содержит* никакой *фундамен- тальной* подпоследовательности.

Компактность ограниченных множеств в \mathbb{E}^n

Пример 5. Множество в \mathbb{E}^n , описываемое неравенствами:

$$\prod(\mathbf{a}, \, \mathbf{b}) = \{ a_i \leqslant x_i \leqslant b_i \}, \quad i = 1, 2, \dots, n ,$$

называется napaллелеnune dom и является komnakmom.

Действительно, пусть nocnedoвameльность элементов $\mathbf{x^{(k)}} \in \prod (\mathbf{a}, \mathbf{b}),$ $k=1,2,\ldots$

Тогда ${\it vucnobas}$ последовательность ${\it nepsux}$ координат этих элементов — $\left\{x_1^{(k)}\right\}$, содержит ${\it cxodsuyocs}$ подпоследовательность $\left\{x_1^{(k_1)}\right\}$.

Числовая последовательность **вторых** координат, относящихся к элементам, **выбранным** на первом шаге, $-\left\{x_2^{(k_1)}\right\}$, - содержит \boldsymbol{cxods} - **щуюся** подпоследовательность $\left\{x_2^{(k_2)}\right\}$ и так далее.

Последовательность n-ых координат, относящихся к элементам, **выбранным** на (n-1)-ом шаге, $-\left\{x_n^{(k_{n-1})}\right\}$, - содержит $\boldsymbol{cxodsuyvocs}$ подпоследовательность $\left\{x_n^{(k_n)}\right\}$.

Полученная в результате указанного выше процесса nocnedoeameль-nocmь элементов $\left\{\mathbf{x^{(k_n)}}\right\}_{n=1}^{\infty} \subset \prod(\mathbf{a},\,\mathbf{b})$ и cxodumcs в \mathbb{E}^n .

В силу *замкнутости* множества $\prod(\mathbf{a}, \mathbf{b})$ в \mathbb{E}^n , ее *предел* принадлежит $\prod(\mathbf{a}, \mathbf{b})$, то есть рассматриваемое нами множество — *компакт*.

Пользуясь результатом этого примера, легко доказать, что **компак- том** будет любое **замкнутое ограниченное** множество в \mathbb{E}^n (то есть множество **n**-ок из \mathbb{E}^n , все **компоненты** которых **ограничены** по модулю).

Для доказательства этого достаточно заметить, что такое множество содержится в некотором компакте $\prod(\mathbf{a}, \mathbf{b})$ и любое *замкнутое* подмножество *компакта* само является *компактом*.

Некомпактность единичного шара в ℓ_2

Пример 6. Рассмотрим *замкнутый* шар $\mathbf{S}(\mathbb{O}, 1)$ в пространстве ℓ_2 с центром в точке $\mathbb{O} = (0, 0, \dots, 0, \dots)$ и радиуса 1, то есть множество *последовательностей* действительных чисел таких, что:

$$\sum_{i=1}^{\infty} x_i^2 \leqslant 1$$

Множество $\mathbf{S}(\mathbb{O}, 1)$ не является **компактным** подмножеством в $\ell_{\mathbf{2}}$ (и тем более не является **компактом**).

Действительно, последовательность

$$\mathbf{e}^{(n)} = (0, \dots, 0, 1, 0, \dots),$$
 где 1 стоит на n -ом месте,

не содержит $\pmb{\mu u \kappa a \kappa o u}$ фундаментальной подпоследовательности, так как $\pmb{\rho}\left(\mathbf{e}^{(m)},\,\mathbf{e}^{(n)}\right) = \sqrt{2}\,,\,\,$ если $m \neq n\,.$

Следовательно, рассматриваемое множество не компактно.

 ${\it He\ компактно}$ даже множество элементов из $\,\ell_{2}\,,\,\,$ удовлетворяющих условию: $\,\sum\limits_{i=1}^{\infty}x_{i}^{2}\,=\,1\,.$

Свойства непрерывных функционалов на компактах

Непрерывные функционалы, заданные **на компактах**, сохраняют многие существенные свойства **непрерывных** функций, заданных **на отрезке** числовой оси.

В качестве иллюстрации сказанного, приведем следующие три утверждения.

Утверждение 15. *Непрерывный* функционал $f(\mathbf{x})$, заданный на компакте \mathbf{Q} , ограничен.

Доказательство. Предположим противное.

Тогда
$$\forall n = 1, 2, \dots \exists \mathbf{x_n} \in \mathbf{Q}$$
 такой, что $|f(\mathbf{x_n})| > n$.

По предположению, последовательность $\mathbf{x_n}$ содержит $\boldsymbol{cxodsuyrocs}$ подпоследовательность $\mathbf{x_{n_k}},\ n_k \to \infty$ при $k \to \infty$.

Пусть
$$\lim_{k \to \infty} \mathbf{x}_{\mathbf{n}_k} = \mathbf{x}, \mathbf{x} \in \mathbf{Q}.$$

В силу *непрерывности* $f(\mathbf{x})$ на *компакте* \mathbf{Q} : $\lim_{k\to\infty}\mathbf{f}(\mathbf{x_{n_k}})=\mathbf{f}(\mathbf{x})$, но, по построению, $|f(\mathbf{x_{n_k}})|>n_k$ и, следовательно, последовательность $\mathbf{f}(\mathbf{x_{n_k}})$ *не сходится*.

Получили противоречие.

Теорема 3 (*K. Вейерштрасс*). *Непрерывный* функционал $f(\mathbf{x})$, заданный на компакте \mathbf{Q} , достигает на компакте \mathbf{Q} своей верхней грани.

Доказательство. В силу (44), функционал $f(\mathbf{x})$ ограничен сверху на компакте \mathbf{Q} .

Пусть $\mathbf{M} = \sup_{\mathbf{Q}} f(\mathbf{x})$.

По определению $\pmb{sepxhe\"{u}}$ \pmb{cpahu} , $\forall\,n=1,2,\ldots,$ найдется такая точка $\pmb{x_n}$ компакта \pmb{Q} , что

$$\mathbf{M} \geqslant \mathbf{f}(\mathbf{x_n}) \geqslant \mathbf{M} - \mathbf{1/n} \tag{1}$$

B силу (1) — $\lim_{n\to\infty} f(x_n) = M$.

С другой стороны, последовательность $\{\mathbf{x_n}\}$, в силу **компактно-** cmu \mathbf{Q} , содержит cxodsuywcs подпоследовательность - $\{\mathbf{x_{n_k}}\}$.

Пусть $\lim_{n \to \infty} \mathbf{x}_{n_k} = \mathbf{z}$.

Тогда, в силу **непрерывности** f и (1): $\lim_{k \to \infty} \mathbf{f}\left(\mathbf{x_{n_k}}\right) = \mathbf{f}\left(\mathbf{z}\right) = \mathbf{M}$.

Таким образом, в точке $\mathbf{z} \in \mathbf{Q}$ *достигается* верхняя грань $f - \mathbf{M}$ *на компакте* \mathbf{Q} .

Рассуждая аналогично тому, как это сделано при доказательстве теоремы, можно доказать, что *непрерывный на компакте функционал* обязательно *достигает* своей *нижней грани*.

Утверждение 16. *Непрерывный* функционал $f(\mathbf{x})$, заданный на компакте \mathbf{Q} , равномерно непрерывен на этом компакте, т.е. $\forall \, \varepsilon \, > \, 0 \, \exists \, \delta \, (\varepsilon) \, > \, 0 \,$ такое, что

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| < \varepsilon$$
, ecau $\boldsymbol{\rho}(\mathbf{x}_1, \mathbf{x}_2) < \delta(\varepsilon)$, $\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{Q}$

Доказательство. Пусть это не так.

Тогда $\exists \, \varepsilon_0 > 0$, такое, что $\forall \, \delta_n = \frac{1}{n}, \, n = 1, \, 2, \, \dots \,$ и $\exists \, \mathbf{x}_1^{(n)}, \, \mathbf{x}_2^{(n)}$ такие, что $oldsymbol{
ho} \left(\mathbf{x}_1^{(n)}, \, \mathbf{x}_2^{(n)} \right) < \frac{1}{n}, \,$ но

$$\left| f\left(\mathbf{x}_{1}^{(n)}\right) - f\left(\mathbf{x}_{2}^{(n)}\right) \right| \geqslant \varepsilon_{0}$$

Ввиду того, что **Q компакт**, из последовательности $\left\{\mathbf{x}_{1}^{(n)}\right\}$ можно выбрать $\boldsymbol{cxodsuywcs}$ подпоследовательность.

Пусть это будет подпоследовательность $\left\{\mathbf{x}_1^{(n_k)}\right\}$ и пусть эта подпоследовательность $\boldsymbol{cxodumcs}$ при $n_k \to \infty$ к \boldsymbol{mouke} \mathbf{x}_0 компакта \mathbf{Q} .

Тогда **подпоследовательность** $\left\{\mathbf{x}_2^{(n_k)}\right\}$ последовательности $\left\{\mathbf{x}_2^{(n)}\right\}$ будет также при $n_k \to \infty$ **сходиться** к **точке** \mathbf{x}_0 , т.к. в силу неравенства треугольника и определения последовательностей $\left\{\mathbf{x}_1^{(n)}\right\}$, $\left\{\mathbf{x}_2^{(n)}\right\}$

$$ho\left(\mathbf{x}_{2}^{(n_{k})},\,\mathbf{x}_{0}\right)\leqslant
ho\left(\mathbf{x}_{2}^{(n_{k})},\,\mathbf{x}_{1}^{(n_{k})}\right)+
ho\left(\mathbf{x}_{1}^{(n_{k})},\,\mathbf{x}_{0}\right)<rac{1}{n_{k}}+
ho\left(\mathbf{x}_{1}^{(n_{k})},\,\mathbf{x}_{0}
ight)
ightarrow0$$
 при $n_{k}
ightarrow\infty$.

В силу **непрерывности** функционала f в **точке** \mathbf{x}_0 обе последовательности $\left\{ f\left(\mathbf{x}_1^{(n_k)}\right) \right\}$ и $\left\{ f\left(\mathbf{x}_2^{(n_k)}\right) \right\}$ будут $\boldsymbol{cxodumbcs}$ при $n_k \to \infty$ к одному и тому же **значению** $f\left(x_0\right)$.

Но тогда обязательно **найдётся** такое $N\left(\varepsilon_{0}\right)$, что при $n_{k}>N\left(\varepsilon_{0}\right)$ будет **выполнено** неравенство

$$\left| f\left(\mathbf{x}_1^{(n_k)}\right) - f\left(\mathbf{x}_2^{(n_k)}\right) \right| < \varepsilon_0,$$

которое противоречит нашему предположению.

И тем самым утверждение доказано.

Критерий компактности множества в метрическом пространстве

Существует критерий (необходимое и достаточное условие) компактности метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$, полезный в различных приложениях.

Для того, чтобы его сформулировать, введем следующее

Определение 28. Подмножество Σ метрического пространства $(\mathbf{X}, \boldsymbol{\rho})$ называется $\boldsymbol{\varepsilon}$ -сетью (для множества \mathbf{X}), если $\forall \mathbf{x} \in \mathbf{X}$ замкнутый шар $\mathbf{S}(\mathbf{x}, \varepsilon)$ содержит хотя бы одну точку из Σ , другими словами каждая точка $\mathbf{x} \in \mathbf{X}$ отстоит на расстоянии не большем ε от некоторой точки \mathbf{z} $\boldsymbol{\varepsilon}$ -сети Σ .

Теорема 4 (критерий компактности Хаусдорфа). Для того, чтобы метрическое пространство $(\mathbf{X}, \boldsymbol{\rho})$ было компактным, необходимо и достаточно, чтобы в нем, для любого $\varepsilon > 0$, существовала конечная (состоящая из конечного числа точек) ε -сеть.

Доказательство. **Необходимость**.

Предположим, что для какого-то $\varepsilon > 0$, для определенности $\varepsilon = 1$, в **компактном** пространстве ${\bf X}$ не существует конечной **1**-*cemu*.

Построим в ${\bf X}$ последовательность, не содержащую никакой ${\it фунда-ментальной}$ подпоследовательности.

В качестве начальной точки такой последовательности можно взять любую точку ${\bf X}$. Пусть это будет точка ${\bf x}_0$.

Так как в \mathbf{X} не существует $\mathbf{1}\text{-}\boldsymbol{cemu}$, состоящей из $\boldsymbol{o\partial ho\ddot{u}}$ точки, найдется точка $\mathbf{x}_1 \in \mathbf{X}$ такая, что $\boldsymbol{\rho}\left(\mathbf{x}_0, \mathbf{x}_1\right) \geqslant 1$.

Точки \mathbf{x}_0 и \mathbf{x}_1 , по предположению, также не образуют **1-** $cem \mathbf{b}$.

Поэтому найдется точка \mathbf{x}_2 такая, что $\boldsymbol{\rho}\left(\mathbf{x}_0,\,\mathbf{x}_2\right)\geqslant 1\,,\; \boldsymbol{\rho}\left(\mathbf{x}_1,\,\mathbf{x}_2\right)\geqslant 1\,.$ Этот процесс можно продолжить.

В результате получим последовательность точек $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n, \ldots$ из \mathbf{X} , которая, по построению, не будет фундаментальной, так как $\forall m$ и n>m- $\boldsymbol{\rho}(\mathbf{x}_m,\mathbf{x}_n)\geqslant 1$.

Достаточность.

Пусть в \mathbf{X} существует **конечная** $\boldsymbol{\varepsilon}$ -сеть при любом $\varepsilon > 0$.

Рассмотрим произвольную последовательность $\mathbf{x}_1, \dots, \mathbf{x}_n, \dots$ точек из \mathbf{X} .

Покажем, что она содержит *фундаментальную* подпоследовательность.

Обозначим $\mathbf{\Sigma}_k = \{\mathbf{y}_1^{(k)}, \mathbf{y}_2^{(k)}, \dots \mathbf{y}_{m_k}^{(k)}\}$ конечную $\mathbf{1}/\mathbf{k}$ -сеть в \mathbf{X} , где $k=1,2,\dots$

Положим k=1.

Объединение **замкнутых** шаров радиуса 1 с центрами в точках $\mathbf{y}_1^{(1)},\,\mathbf{y}_2^{(1)},\,\ldots,\,\mathbf{y}_{m_1}^{(1)}$ покрывает все \mathbf{X} .

Поэтому точки рассматриваемой нами подпоследовательности $\{\mathbf{x}_n\}$ как-то расположены в этой совокупности шаров.

Так как шаров **конечное** число, а последовательность $\{\mathbf{x}_n\}$ **беско- нечна**, то, по крайней мере в одном из шаров, находится **бесконечное**число членов нашей последовательности.

Выделим один из таких шаров. Пусть точка \mathbf{x}_{n_1} находится в этом выделенном шаре.

Этим завершается первый шаг процесса.

Положим теперь k=2.

Пусть
$$\mathbf{y}_1^{(2)},\,\mathbf{y}_2^{(2)},\,\ldots,\,\mathbf{y}_{m_2}^{(2)}$$
 конечная $1/2$ -сеть в \mathbf{X} .

Аналогично выше сказанному, какой-либо из шаров радиуса 1/2 с центром в одной из этих точек содержит *бесконечно* много точек из $\{\mathbf{x}_n\}$, попавших в шар, который был выделен на первом шаге процесса.

Выделим один из этих шаров второго шага процесса.

В выделенном шаре содержится **бесконечное** множество точек $\{ \mathbf{x}_n \}$.

Поэтому найдется номер $n_2 > n_1$ такой, что точка \mathbf{x}_{n_2} принадлежит этому шару второго выделения.

По построению \mathbf{x}_{n_2} , принадлежит также шару, выделенному на первом шаге процесса.

Полагая последовательно $k=3,\,4,\,\ldots\,,\,$ получим подпоследовательность $\{{\bf x}_{n_k}\}$ последовательности $\{{\bf x}_n\}\,.$

Эта подпоследовательность $\phi y h \partial a m e h m a n b h a$, так как члены этой последовательности с номерами $n_k, n_{k+1}, \ldots,$ по построению, принадлежат шару радиуса 1/k при $k=1,2,\ldots$

Следствие 1. Всякое **компактное** множество ${\bf Q}$ метрического пространства ${\bf X}$ ограничено.

 \mathcal{A} оказательство. Пусть $\mathbf{\Sigma_1} \stackrel{def}{=} \{\mathbf{z}_j\}_{j=1}^n$ есть **1**-сеть для множества \mathbf{Q} и \mathbf{x}_0 фиксированный элемент пространства \mathbf{X} .

Пусть

$$d = \max_{j} \boldsymbol{\rho}(\mathbf{x}_0, \mathbf{z}_j) .$$

Тогда для всякого элемента $\mathbf{x} \in \mathbf{Q}$ имеем:

$$\boldsymbol{\rho}(\mathbf{x}_0, \mathbf{x}) \leqslant 1 + d,$$

что и означает ограниченность множества $\, {f Q} \,$ в пространстве $\, {f X} \, . \,$

Компактные множества в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$

Для изучения компактных множеств в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ нам понадобится два новых понятия.

Определение 29. Множество \mathbf{Q} функций $\{\varphi(t)\}$ в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ называется равномерно ограниченным, если $\exists\,\mathbf{M}$ такое, что для любой функции $\varphi(t)\in\mathbf{Q}$

$$|\varphi(t)| \leq \mathbf{M}, \quad \forall t \in [\mathbf{a}, \mathbf{b}]$$
 (2)

Определение 30. Множество ${\bf Q}$ функций $\{\varphi(t)\}$ в пространстве ${\mathbb C}[{\bf a},{\bf b}]$ называется равностепенно непрерывным, если $\forall \, \varepsilon \, > \, 0$ $\exists \, \delta(\varepsilon) \, > \, 0$ такое, что для любой функции $\varphi(t) \in {\bf Q}$

$$|\varphi(t_1) - \varphi(t_2)| < \varepsilon$$
, $ecnu$ $|t_1 - t_2| < \delta(\varepsilon)$, $t_1, t_2 \in [\mathbf{a}, \mathbf{b}]$ (3)

Утверждение 17. Любое конечное множество функций $\{\varphi_j(t)\}_{j=1}^n$ из пространства $\mathbb{C}[\mathbf{a},\mathbf{b}]$ равностепенно непрерывно.

Доказательство. Т.к. каждая из функций множества $\{\varphi_j(t)\}_{j=1}^n$ непрерывна на **компакте** — отрезке $[\mathbf{a},\mathbf{b}]$, то, она также и **равномерно непрерывна** на отрезке $[\mathbf{a},\mathbf{b}]$ (см. утверждение 16 в этом параграфе), т.е. $\forall \varepsilon > 0 \quad \exists \, \delta_j(\varepsilon) > 0$

 $j=1,\,2,\,\ldots\,,n$ такие, что для **кажедой** функции $\,arphi_{j}\left(t
ight)$:

$$|\varphi_{j}(t_{1}) - \varphi_{j}(t_{2})| < \varepsilon$$
, если $|t_{1} - t_{2}| < \delta_{j}(\varepsilon)$, $t_{1}, t_{2} \in [\mathbf{a}, \mathbf{b}]$ (4)

Т.к. множество рассматриваемых функций **конечно**, то мы можем выбрать среди чисел $\delta_{j}(\varepsilon)$ наименьшее: $\delta(\varepsilon) \stackrel{def}{=} \min_{i} \delta_{j}(\varepsilon)$.

Выбранное выше число $\delta\left(\varepsilon\right)>0$ и, если только $|t_{1}-t_{2}|<\delta\left(\varepsilon\right),$ $t_{1},\,t_{2}\in\left[\mathbf{a},\mathbf{b}\right],\,$ то выполнены **все** неравенства (4), что и означает **равно- степенную непрерывность** функций конечного множества $\left\{\left.\varphi_{j}\left(t\right)\right.\right\}_{j=1}^{n}$.

 $\mathit{Kpumepuŭ}\ \mathit{компакmностu}\ \mathsf{B}\ \mathsf{пространствe}\ \mathbb{C}\left[\mathbf{a},\mathbf{b}\right]\ \mathsf{содержит}$

Теорема 5 (**Ч. Арцела**). Для того, чтобы множество ${\bf Q}$ функций $\{\varphi(t)\}$ в пространстве ${\mathbb C}[{\bf a},{\bf b}]$ было **компактно**, **необходимо** и **достаточно**, чтобы

- ${f 1}^\circ$. Множество ${f Q}$ было равномерно ограниченным в пространстве ${f C}\left[{f a},{f b}
 ight]$.
- ${f 2}^\circ$. Множество ${f Q}$ было равностепенно непрерывным в пространстве ${f C}\left[{f a},{f b}
 ight]$.

Доказательство. **Необходимость.** Пусть множество \mathbf{Q} функций $\{\varphi(t)\}$ компактно в пространстве $\mathbb{C}[\mathbf{a},\mathbf{b}]$.

Тогда pавномерная ограниченность всех функций $\varphi(t)$ множества \mathbf{Q} вытекает из следствия 1 из теоремы Хаусдорфа.

Докажем pавностепенную непрерывность всех функций $\varphi\left(t\right)$ множества \mathbf{Q} .

Возьмём произвольное число $\, arepsilon \, > \, 0 \, .$

Согласно **критерию** компактности Хаусдорфа, для всякого $\varepsilon > 0$, \exists **конечная** (состоящая из **конечного числа** $N(\varepsilon)$ точек) $\mathbf{z}_j \stackrel{def}{=} \psi_j(t)$, $j = 1, 2, \ldots, n$, ε -cemb $\mathbf{\Sigma}_{N(\varepsilon)} \stackrel{def}{=} \{\mathbf{z}_j = \psi_j(t)\}_{j=1}^n$ для множества \mathbf{Q} , т.е. для всякой точки $\mathbf{x} \stackrel{def}{=} \varphi(t)$ множества \mathbf{Q} всякий **замкнутый** шар $\mathbf{S}(\mathbf{x}, \varepsilon/3)$ содержит хотя бы одну **точку** $\mathbf{z}_{j_0} = \psi_{j_0}(t)$ из $\mathbf{\Sigma}_{N(\varepsilon)}$. Пусть $\delta(\varepsilon) > 0$ такое число, существующее в силу утверждения 17, что:

$$|\psi_j(t_1) - \psi_j(t_2)| < \varepsilon/3,$$
 если $|t_1 - t_2| < \delta(\varepsilon), t_1, t_2 \in [\mathbf{a}, \mathbf{b}].$

Тогда для произвольной функции $\varphi(t)$ множества \mathbf{Q} , согласно изложенному, найдётся хотя бы одна функция $\psi_{j_0}(t)$ из $\Sigma_{N(\varepsilon)}$, такая, что:

$$|\varphi(t) - \psi_{j_0}(t)| < \varepsilon/3$$
, если $t \in [\mathbf{a}, \mathbf{b}]$.

Поэтому

$$\begin{split} |\varphi\ (t_1) - \varphi\ (t_2)| &< |\varphi\ (t_1) - \psi_{j_0}\ (t_1)| + |\psi_{j_0}\ (t_1) - \psi_{j_0}\ (t_2)| + |\psi_{j_0}\ (t_2) - \varphi\ (t_2)| < \varepsilon\ , \\ \text{если} &|t_1 - t_2| &< \delta\ (\varepsilon), \quad t_1,\, t_2 \in \left[\mathbf{a},\mathbf{b}\right]\,, \end{split}$$

т.к. $\kappa a \varkappa c \partial o e$ из трёх слагаемых в "средней" части рассматриваемого неравенства не превосходит $\varepsilon/3$, что, в итоге, и означает pashocmenentum ную pashocmenentum всех функций $\{\varphi(t)\}$ множества \mathbf{Q} .

Достаточность. Пусть для множества \mathbf{Q} функций $\{\varphi(t)\}$ пространства $\mathbb{C}[\mathbf{a},\mathbf{b}]$ выполнены условия **равномерной ограниченности** (2) и **равностепенной непрерывности** (3).

В силу (3) $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) > 0$ такое, что для **каждой** функции $\varphi(t) \in \mathbf{Q}$:

$$|\varphi(t_1) - \varphi(t_2)| < \varepsilon$$
, если $|t_1 - t_2| < \delta(\varepsilon)$, $t_1, t_2 \in [\mathbf{a}, \mathbf{b}]$ (3)

Возьмём натуральное число N такое, чтобы $h=\frac{b-a}{N}$ было **меньше** $\delta\left(\varepsilon\right)$.

Разобьем отрезок $[{\bf a},{\bf b}]$ на подотрезки

$$\left[\mathbf{t^{(j)}}, \mathbf{t^{(j+1)}}\right], \quad \mathbf{t^{(j)}} = \mathbf{a} + jh, \quad j = 0, 1, 2, \dots, N, \ \partial \mathbf{nuhh} \ h \ .$$

Тогда в силу (3)

$$|arphi(t_1) - arphi(t_2)| < arepsilon$$
, если $|t_1 - t_2| \leqslant h$, $t_1, t_2 \in [\mathbf{a}, \mathbf{b}]$

и, в частности, для любых точек t_1, t_2 , принадлежащих одному и тому же частичному отрезку $\left[\mathbf{t^{(j)}}, \mathbf{t^{(j+1)}}\right], \quad j=0,1,2,\ldots,N$.

Каждой функции $\varphi(t)$ множества \mathbf{Q} поставим в соответствие \mathbf{nenpe} - $\mathbf{pывную}$ на всём отрезке $[\mathbf{a},\mathbf{b}]$ функцию $\psi_N(t)$ таким образом, чтобы были выполнены два условия:

 1° .

$$\psi_N\left(\mathbf{t}^{(\mathbf{j})}\right) = \varphi\left(\mathbf{t}^{(\mathbf{j})}\right), \quad j = 0, 1, 2, \dots, N.$$

 ${f 2}^\circ$. На **каждом** из отрезков ${f t^{(j)},\, {f t^{(j+1)}}}$ функция $\psi_N(t)$ **линейная**. В силу условий ${f 1}^\circ-{f 2}^\circ$ функция $\psi_N(t)$ является "ломаной", состоящей из N звеньев, "вписанной" в график **непрерывной** на всём отрезке ${f a,b}$ функции ${f arphi}(t)$ и, поэтому, **однозначно** определяется (N+1) -мерным вектором ${f arphi}_{N+1}$ значений функции ${f arphi}(t)$ в точках

 $\mathbf{t^{(j)}}, \quad j = 0, 1, 2, \dots, N,$ деления отрезка $[\mathbf{a}, \mathbf{b}]$:

$$\vec{\varphi}_{N+1} = \left(\varphi\left(\mathbf{t}^{(0)}\right), \varphi\left(\mathbf{t}^{(1)}\right), \dots, \varphi\left(\mathbf{t}^{(N-1)}\right), \varphi\left(\mathbf{t}^{(N)}\right)\right), \mathbf{t}^{(0)} = \mathbf{a}, \mathbf{t}^{(N)} = \mathbf{b}$$
(5)

Обозначим Φ_{N+1} множество всех векторов $\{\vec{\boldsymbol{\varphi}}_{N+1}\}$.

Если на границах частичного отрезка $\left[\mathbf{t^{(j)}},\,\mathbf{t^{(j+1)}}\right]$ для функции $\varphi\left(t\right)$ выполнено неравенство:

$$\varphi\left(\mathbf{t}^{(\mathbf{j})}\right) \leqslant \varphi\left(\mathbf{t}^{(\mathbf{j}+1)}\right)$$
,

то, в силу **линейности** функции $\psi_{N}\left(t\right)$ на этом отрезке и условия $\mathbf{1}^{\circ}$, для всех точек отрезка $\left[\mathbf{t^{(j)}},\,\mathbf{t^{(j+1)}}\right]$ будет справедливо неравенство:

$$\varphi\left(\mathbf{t}^{(\mathbf{j})}\right) \leqslant \psi_N(t) \leqslant \varphi\left(\mathbf{t}^{(\mathbf{j+1})}\right)$$

откуда, для всех точек t отрезка $\left[\mathbf{t^{(j)}},\,\mathbf{t^{(j+1)}}\right],$ следует неравенство:

$$-\varepsilon < \varphi(t) - \varphi\left(\mathbf{t^{(j+1)}}\right) \leqslant \varphi(t) - \psi_N(t) \leqslant \varphi(t) - \varphi\left(\mathbf{t^{(j)}}\right) < \varepsilon.$$

Если же на границах частичного отрезка $\left[\mathbf{t^{(j)}},\,\mathbf{t^{(j+1)}}\right]$ для функции $\varphi\left(t\right)$ выполнено неравенство:

$$\varphi\left(\mathbf{t}^{(\mathbf{j})}\right) \geqslant \varphi\left(\mathbf{t}^{(\mathbf{j+1})}\right)$$
,

то, в силу *линейности* функции $\psi_N(t)$ на этом отрезке и условия $\mathbf{1}^\circ$, для всех точек отрезка $\left[\mathbf{t^{(j)}},\,\mathbf{t^{(j+1)}}\right]$ будет справедливо неравенство:

$$\varphi\left(\mathbf{t}^{(\mathbf{j})}\right) \geqslant \psi_N(t) \geqslant \varphi\left(\mathbf{t}^{(\mathbf{j+1})}\right) ,$$

откуда, для всех точек t отрезка $[\mathbf{t^{(j)}}, \mathbf{t^{(j+1)}}]$, следует неравенство:

$$-\varepsilon < \varphi(t) - \varphi(\mathbf{t}^{(j)}) \leqslant \varphi(t) - \psi_N(t) \leqslant \varphi(t) - \varphi(\mathbf{t}^{(j+1)}) < \varepsilon,$$

т.е. при **любом** поведении функции $\varphi(t)$ на каждом из частичных отрезков $[\mathbf{t^{(j)}}, \mathbf{t^{(j+1)}}]$ сразу для **всех** точек отрезка $[\mathbf{a}, \mathbf{b}]$ будет выполнено неравенство:

$$|\varphi(t) - \psi_N(t)| < \varepsilon$$
,

которое выражает тот факт, что

$$oldsymbol{
ho}\left(oldsymbol{arphi},oldsymbol{\psi}_{N}
ight)$$

в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

A это означает, что **множество** $\Sigma_N \stackrel{def}{=} \{\psi_N\}$ есть $\pmb{\varepsilon}\text{-}\pmb{cemb}$ для множества \mathbf{Q} .

Покажем, что множество Σ_N компактно в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

Действительно, множество линейных функций Σ_N взаимнооднозначно определяется вектором $\vec{\varphi}_{N+1}$ (5) из линейного пространства \mathbb{R}^{N+1} , которое с метрикой

$$\boldsymbol{\rho}\left(\vec{\boldsymbol{\varphi}}_{N+1}^{(1)}, \vec{\boldsymbol{\varphi}}_{N+1}^{(2)}\right) \stackrel{def}{=} \max_{0 \leq i \leq N} \left| \varphi_j^{(1)} - \varphi_j^{(2)} \right|$$

является **метрическим пространством** \mathbb{R}^{N+1}_{\max} (см. пример 3 параграфа 1).

Это *полное* (см. упражнение 5 к параграфу 3) пространство (N+1) - *мерно*.

В силу pавномерной ограниченности множества ${f Q}$ константой ${f K}$, получаем

$$|\psi_N(t)| \leq |\varphi(t)| + |\varphi(t) - \psi_N(t)| < \mathbf{K} + \varepsilon,$$

что означает *ограниченность* множества Σ_N константой $\mathbf{K}+\varepsilon$ в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right].$

Но, в силу **линейности** функций $\psi_N(t)$ на каждом из интервалов разбиения отрезка $[\mathbf{a}, \mathbf{b}]$, очевидно, следующее равенство:

$$\rho_{\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]}\left(\boldsymbol{\psi}_{N}^{(1)},\,\boldsymbol{\psi}_{N}^{(2)}\right) = \max_{\mathbf{a}\leqslant t\leqslant \mathbf{b}}\left|\psi_{N}^{(1)}\left(t\right)-\psi_{N}^{(2)}\left(t\right)\right| = \\
= \max_{0\leqslant i\leqslant N}\left|\psi_{N}^{(1)}\left(\mathbf{t_{j}}\right)-\psi_{N}^{(2)}\left(\mathbf{t_{j}}\right)\right| = \rho_{\mathbb{R}_{\max}^{N+1}}\left(\vec{\boldsymbol{\varphi}}_{1},\,\vec{\boldsymbol{\varphi}}_{2}\right),$$

где $\mathbf{t^{(j)}}=\mathbf{a}+\frac{j(b-a)}{N}, \quad j=0,\,1,\,2,\,\ldots\,,N\,,\,\,$ означающее **изометрию** метрических пространств

$$ig(oldsymbol{\Sigma}_N,\,oldsymbol{
ho}_{\mathbb{C}\,[\mathbf{a},\mathbf{b}]}ig) \qquad oldsymbol{u} \qquad ig(oldsymbol{\Phi}_{N+1},\,oldsymbol{
ho}_{\mathbb{R}^{N+1}_{\mathbf{max}}}ig) \;\;,$$

в силу которой множество Φ_{N+1} *ограничено* в *конечномерном* пространстве \mathbb{R}^{n+1}_{\max} , и, следовательно, *компактно*.

Но, тогда, в силу указанной выше uзометpuu метрических пространств $\left(\Sigma_N, oldsymbol{
ho}_{\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]}\right)$ u $\left(\Phi_{N+1}, oldsymbol{
ho}_{\mathbb{R}^{N+1}_{\max}}\right)$ из компактности второго следует компактность nepвого.

Таким образом множество Σ_N является **компактной** ε -**сетью** для множества \mathbf{Q} в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

Теперь проведём рассуждение, *завершающее* доказательство *ком-* nakmhocmu множества \mathbf{Q} .

Пусть $\varepsilon > 0$ фиксировано.

Тогда найдется номер N такой, что Σ_N образует $\varepsilon/2$ - $cem_{oldsymbol{b}}$ для множества ${f Q}$.

Кроме того, из **компактности** множества Σ_N следует, что для него существует **конечная** $\varepsilon/2$ -сеть.

Очевидно, эта самая конечная $\varepsilon/2$ -сеть для множества Σ_N , будет конечной ε -сетью для самого множества \mathbf{Q} .

Пример. Рассмотрим в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ *подмножество* \mathbf{Q} , состоящее из функций $\varphi\left(t\right)$, удовлетворяющих двум *дополнительным* условиям:

$$|\varphi(a)| \leqslant \mathbf{M}$$

$$|\varphi(t_1) - \varphi(t_2)| \leqslant \mathbf{L} \cdot |t_1 - t_2|$$
(6)

Постоянные \mathbf{M} и \mathbf{L} в условиях (6) одни и те же для $\boldsymbol{\mathit{scex}}$ функций $\varphi\left(x\right)$ подмножества \mathbf{Q} .

В силу (6) множество функций, составляющих ${\bf Q}$, равномерно ограничено и равностепенно непрерывно. Поэтому, в силу теоремы Арцела, множество ${\bf Q}$ компактно.

Упражнения и задачи κ параграфу 6.

- 1. Показать, что множество ${\bf Q}$, *определённое* неравенствами (6), замкнуто в ${\mathbb C}\left[{\bf a},{\bf b}\right]$.
- 2. Показать, что множество функций из $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, выделяемое неравенством $\max_{\mathbf{a}\leqslant t\leqslant \mathbf{b}}|x\left(t\right)|\leqslant 1$, *замкнуто*, но не является *компактом*.
 - 3. Может ли быть компактное множество неограниченным?
- 4. Будет ли при **каких-либо** значениях **a** и **b компактным** в пространстве $\mathbb{C}[\mathbf{a},\mathbf{b}]$ **множество** всех степеней $\{\mathbf{x}_n=t^n\}$, $n=1,2,\ldots$?

Глава 2

Линейные нормированные пространства и линейные операторы

2.1 Основные определения

Определение линейного пространства

Определение 31. Mножество X называется линейным пространством (ЛП), если:

- 1. Для любых двух элементов \mathbf{x}, \mathbf{y} из \mathbf{X} определена операция их сложения (обозначаемая, обычно, знаком +), т.е. однозначно определен элемент $\mathbf{x} + \mathbf{y}$ в линейном пространстве \mathbf{X} , называемый суммой элементов \mathbf{x} и \mathbf{y} .
- **2** . **Для любого** элемента \mathbf{x} из \mathbf{X} и **любого** числа γ , определена **операция умножения** элемента \mathbf{x} **на число** (действительное или комплексное), (обозначаемая в записях знаком · или, в соот-

ветствии с устоявшейся алгебраической традицией, вообще пропускаемая), т.е. однозначно определён элемент $\gamma \mathbf{x}$ в **линейном простран- стве** \mathbf{X} , называемый **произведением** элемента \mathbf{x} и числа γ .

3. Операции сложения элементов и умножения элементов на числа в X подчиняются следующим аксиомам, которые для удобства запоминания и использования разделены на три группы:

І группа (свойства операции сложения элементов)

 $\mathbf{1}^{\circ}$. - Коммутативность **сложения**:

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} .$$

 $\mathbf{2}^{\circ}$. - Accoulamueность **сложения**:

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z}) .$$

3°. — <u>Существование **нейтрального**</u> (относительно **сложения**) **элемента**:

B **X существует** элемент \mathbb{O} , называемый **нейтральным** или, в более привычной терминологии, — **нулём** (пространства **X**) такой, что

$$\forall \mathbf{x} \in \mathbf{X} : \mathbf{x} + \mathbf{0} = \mathbf{x} .$$

 ${f 4}^{\circ}$. — Существование **противоположного** элемента:

Для **любого** \mathbf{x} уравнение

$$\mathbf{x} + \mathbf{y} = \mathbb{O}$$

разрешимо в Х.

Элемент $\mathbf{y} \in \mathbf{X}$, являющийся решением рассматриваемого уравнения, называется **противоположным** к элементу \mathbf{x} .

Элемент \mathbf{y} , **противоположный** к заданному элементу \mathbf{x} , стандартным образом **обозначается** как $-\mathbf{x}$.

II группа (свойства операции умножения элементов на числа)

 $\mathbf{5}^{\circ}$. - Accoulumnueность **умножения** (на числа):

 $Ec \wedge u \quad \lambda$, μ числа, то:

$$\lambda (\mu \mathbf{x}) = (\lambda \mu) \mathbf{x}$$
.

 ${f 6}^{\circ}$. — <u>Нейтральность</u> (особая роль) **числа** ${f 1}$ (относительно операции умножения элементов на числа):

$$\forall \mathbf{x} \in \mathbf{X} : 1 \cdot \mathbf{x} = \mathbf{x} .$$

III группа (совместные свойства операций сложения элементов u умножения на числа)

 $m{7}^{\circ}$. — <u>Дистрибутивность</u> **сложения элементов** (относительно **умножения на числа**):

$$\lambda \cdot (\mathbf{x} + \mathbf{y}) = \lambda \cdot \mathbf{x} + \lambda \cdot \mathbf{y}$$
.

 8° . — <u>Дистрибутивность</u> **сложения чисел** (относительно **умножения на элементы**):

$$(\lambda + \mu) \cdot \mathbf{x} = \lambda \cdot \mathbf{x} + \mu \cdot \mathbf{y}$$
.

В зависимости от того, какие числа ($\emph{действительные}$ или $\emph{ком-плексные}$) имеются ввиду в $\emph{аксиомах}\ 5^{\circ}-8^{\circ}$, $\emph{линейное}\ \emph{простран-ство}\ (\emph{коротко}-\varPi\Pi)$ называется $\emph{действительным}$ или $\emph{комплекс-ным}$.

В этом курсе мы будем использовать в рассуждениях толь-ко действительные линейные пространства.

Примеры линейных пространств

Пример 1. *Пространство* \mathbb{R}^n .

Его элементы \mathbf{n} -ки чисел (x_1, \ldots, x_n) с операциями покомпонентного сложения (для записей используется стандартный символ +) и умножения на число (для записей используется, а чаще пропускается, стандартный символ \cdot).

Сейчас мы приведём ещё несколько примеров линейных пространств.

Пример 2. Линейное пространство $\mathbb{C}[\mathbf{a}, \mathbf{b}]$, состоящее из непрерывных на отрезке $[\mathbf{a}, \mathbf{b}]$ функций, с естественными операциями сложения непрерывных на отрезке функций — (+) и умножения их на число — (\cdot) .

Пример 3. *Линейным пространством* является множество *ин- тегрируемых на отрезке* [a, b] функций, с *операциями* сложения интегрируемых на отрезке функций (+) и умножения их на число - (\cdot).

При этом интегрирование можно понимать как *по Риману*, так и *по Лебегу*.

Перечисленные в аксиомах свойства операций сложения элементов линейных пространств и умножения их на числа позволяют производить действия с любым конечным количеством элементов линейного пространства и конечным количеством чисел.

Определение 32. Элемент \mathbf{x} линейного пространства \mathbf{X} на-

зывается **линейной комбинацией**, элементов $\mathbf{x^{(1)}}, \dots, \mathbf{x^{(n)}}$ этого же **линейного пространства** с **коэффициентами** — числами c_1, c_2, \dots, c_n , если: $\mathbf{x} = c_1 \mathbf{x^{(1)}} + c_2 \mathbf{x^{(2)}} + \dots + c_n \mathbf{x^{(n)}}$.

Важнейшие следствия аксиом линейного пространства

Ввиду особой *важности* и для *удобства* читателей отметим несколько полезных свойств и формул, вытекающих из сформулированных выше аксиом.

Свойство 1. B любом линейном пространстве X нейтральный элемент $\mathbb O$ может быть только один.

 \mathcal{A} оказательство. Пусть кроме нейтрального элемента \mathbb{O} в линейном пространстве существует, по крайней мере, ещё один нейтральный элемент $\mathbb{O}' \neq \mathbb{O}$, т.е. такой, что

$$\forall \mathbf{x} \in \mathbf{X} : \mathbf{x} + \mathbb{O}' = \mathbf{x} .$$

Тогда, в частности, $\mathbb{O} + \mathbb{O}' = \mathbb{O}$, а, с другой стороны, используя свойство, определяющее нейтральный элемент \mathbb{O} , получим, что: $\mathbb{O}' + \mathbb{O} = \mathbb{O}'$.

Однако, в силу свойства коммутативности, левые части обеих написанных выше равенств одинаковы: $\mathbb{O} + \mathbb{O}' = \mathbb{O}' + \mathbb{O}$, а потому должны быть одинаковы и их правые части: $\mathbb{O}' = \mathbb{O}$, что, однако, противоречит нашим предположениям, и, следовательно, второго нейтрального элемента существовать не может.

Свойство 2. B любом линейном пространстве X уравнение: $\mathbf{a} + \mathbf{x} = \mathbf{a}$, для всякого фиксированного элемента $\mathbf{a} \in \mathbf{X}$, имеет только одно решение: $\mathbf{x} = \mathbb{O}$ — нейтральный элемент пространства \mathbf{X} .

Доказательство. Для элемента $\mathbf{a} = \mathbb{O} \in \mathbf{X}$ это, очевидно, верно.

Пусть для некоторого элемента $\mathbf{a} \neq \mathbb{O} \in \mathbf{X}$ существует решение рассматриваемого уравнения — элемент $\mathbf{x}^* \neq \mathbb{O}$, т.е. такой, что для него выполняется равенство: $\mathbf{a} + \mathbf{x}^* = \mathbf{a}$.

Прибавим к левой и правой частям последнего равенства по элементу $-\mathbf{a}$, противоположного к элементу \mathbf{a} .

Тогда в правой части полученного равенства получится \mathbb{O} , а полученную левую часть — $(\mathbf{a} + \mathbf{x}^*) + -\mathbf{a}$ можно, ввиду свойств сложения, преобразовать к виду: $(\mathbf{a} + -\mathbf{a}) + \mathbf{x}^*$, т.е. получить в левой части \mathbf{x}^* , и, таким образом, ввиду тождественности преобразований в левой и правой частях исходного равенства, получить равенство: $\mathbf{x}^* = \mathbb{O}$, которое противоречит нашим исходным предположениям.

Свойство 3. Для *всякого* элемента **х** из *линейного пространства* **Х** *противоположный* к нему *элемент* —**х** определяется *единственным* образом.

Доказательство. Пусть хотя бы для одного элемента $\mathbf{x} \in \mathbf{X}$ существует, по крайней мере, ещё один противоположный элемент $(-\mathbf{x})' \neq -\mathbf{x}$.

Тогда, с одной стороны, $[\mathbf{x} + (-\mathbf{x})'] + -\mathbf{x} = \mathbb{O} + -\mathbf{x} = -\mathbf{x}$, а с другой стороны, используя ассоциативное свойство сложения, коммутативное и ещё раз ассоциативное свойство сложения, получим в левой

части: $[\mathbf{x} + -\mathbf{x}] + (-\mathbf{x})' = \mathbb{O} + (-\mathbf{x})' = (-\mathbf{x})'$, что противоречит нашему предположению.

Свойство 4. Для *всякого числа* λ имеет место *формула*: $\lambda \cdot \mathbb{O} = \mathbb{O}$.

 \mathcal{A} оказательство. Обозначим $\mathbf{a} = \lambda \mathbf{x}$ и преобразуем это равенство: $\mathbf{a} = \lambda \mathbf{x} = \lambda \left[\mathbf{x} + \mathbb{O} \right] = \lambda \mathbf{x} + \lambda \mathbb{O} = \mathbf{a} + \lambda \mathbb{O}, \text{ откуда следует, что}$ $\lambda \cdot \mathbb{O} = \mathbb{O}.$

Свойство 5. Для всякого элемента ${\bf x}$ в линейном пространстве ${\bf X}$ имеет место формула: $0\cdot {\bf x}={\mathbb O}$.

Доказательство. Обозначим $\mathbf{a} = \lambda \cdot \mathbf{x}$ и преобразуем это равенство: $\mathbf{a} = \lambda \cdot \mathbf{x} = [\lambda + 0] \cdot \mathbf{x} = \lambda \cdot \mathbf{x} + 0 \cdot \mathbf{x} = \mathbf{a} + 0 \cdot \mathbf{x}$, откуда следует, что $0 \cdot \mathbf{x} = \mathbb{O}$.

Свойство 6. Для всякого элемента ${\bf x}$ в линейном пространстве ${\bf X}$ имеет место формула: $(-1)\cdot {\bf x} = -{\bf x}$.

Доказательство. Пусть $(-1) \mathbf{x} = \mathbf{y}$.

Рассмотрим сумму $\mathbf{x} + \mathbf{y}$, что, по определению \mathbf{y} , можно записать в виде $\mathbf{x} + (-1)\mathbf{x}$, или, используя тождество: $\mathbf{x} = 1 \cdot \mathbf{x}$ и дистрибутивное свойство сложения чисел относительно умножения на элементы, получим: $\mathbf{x} + (-1)\mathbf{x} = (1)\mathbf{x} + (-1)\mathbf{x} = [1 + (-1)]\mathbf{x} = 0\mathbf{x} = \mathbb{O}$, откуда следует, что элемент \mathbf{y} есть $-\mathbf{x}$.

Свойство 7. B любом линейном пространстве ${f X}$ уравнение: ${f a}+{f x}={f b}$ имеет только одно решение: ${f x}={f b}+(-{f a})$.

Действительно, подставляя это выражение в левую часть уравнения, получаем: $\mathbf{a} + \mathbf{x} = \mathbf{a} + [\mathbf{b} + (-\mathbf{a})] = [\mathbf{a} + (-\mathbf{a})] + \mathbf{b} = \mathbb{O} + \mathbf{b} = \mathbf{b}$.

То, что решение может быть только одно, даваемое приведенной в формулировке следствия формулой, докажем от противного.

Пусть \mathbf{z} решение рассматриваемого уравнения при заданной правой части, отличное от даваемого формулой, т.е. $\mathbf{z} \neq \mathbf{b} + (-\mathbf{a})$.

Тогда $\mathbf{a} + \mathbf{z} = \mathbf{b}$. И, если мы к обеим частям равенства добавим один и тот же элемент $-\mathbf{a}$, то, преобразуя левую часть, мы получим: $[\mathbf{a} + \mathbf{z}] + -\mathbf{a} = [\mathbf{a} + (-\mathbf{a})] + \mathbf{z} = \mathbb{O} + \mathbf{z} = \mathbf{z}$, а в правой части получается элемент $\mathbf{b} + (-\mathbf{a})$ и мы приходим к противоречию.

Свойство 8. Если в линейном пространстве ${\bf X}$ имеет место равенство $\lambda \cdot {\bf x} = \mathbb{O}$, то это возможно только тогда, когда либо $\lambda = 0$, либо ${\bf x} = \mathbb{O}$.

 \mathcal{A} оказательство. Пусть $\mathbf{x} \neq \mathbb{O}$. Покажем тогда, что $\lambda = 0$.

Доказательство проведём от противного, предположив, что $\ \lambda \neq 0 \,.$

Тогда существует число $\mu=\frac{1}{\lambda}\neq 0$ и мы имеем:

$$\mathbb{O}=\mu\cdot\mathbb{O}=\mu\cdot(\lambda\cdot\mathbf{x})=(\mu\cdot\lambda)\cdot\mathbf{x}=1\cdot\mathbf{x}=\mathbf{x}$$
, откуда вытекает противоречие.

Свойство 9. Если *в линейном пространстве* **X** имеет место *равенство* $\lambda \cdot \mathbf{x} = \mu \cdot \mathbf{x}$, при $\mathbf{x} \neq \mathbb{O}$, *то* $\lambda = \mu$.

Доказательство. Действительно, если $\lambda \cdot \mathbf{x} = \mu \cdot \mathbf{x}$, то

 $\lambda \cdot \mathbf{x} - \mu \cdot \mathbf{x} = \mathbb{O}$, т.е. $(\lambda - \mu) \cdot \mathbf{x} = \mathbb{O}$, что, ввиду условия $\mathbf{x} \neq \mathbb{O}$, влечёт за собой равенство: $\lambda - \mu = 0$, т.е. $\lambda = \mu$.

Изоморфизм линейных пространств

Определение 33. Два линейных пространства X и X' называются изоморфными, если между элементами указанных линейных пространств можно установить взаимнооднозначное соответствие: $\mathbf{x}' \stackrel{\tau}{=} \mathbf{x}$ таким образом, что результаты выполнения основных операций (сложение элементов — \oplus и умножение их на числа — \odot) в пространстве X' будут соответствовать (при указанном выше отображении τ) аналогичным результатам выполнения соответствующих операций (сложение элементов — + и умножение их на числа — \cdot) в пространстве X, т.е.

- 1. Если произвольные элементы \mathbf{x}', \mathbf{y}' пространства \mathbf{X}' соответствуют при отображении $\boldsymbol{\tau}$ элементам \mathbf{x}, \mathbf{y} пространства \mathbf{X} , то сумма \mathbf{z}' элементов \mathbf{x}' и $\mathbf{y}': \mathbf{z}' = \mathbf{x}' \oplus \mathbf{y}'$ будет
 соответствовать при отображении $\boldsymbol{\tau}$ сумме \mathbf{z} элементов \mathbf{x} и $\mathbf{y}: \mathbf{z} = \mathbf{x} + \mathbf{y},$ т.е. $\mathbf{z}' \stackrel{\tau}{=} \mathbf{z}$.
- **2** . Если произвольный элемент $\mathbf{x}' \in \mathbf{X}'$ соответствует при отображении $\boldsymbol{\tau}$ элементу \mathbf{x} пространства \mathbf{X} , то результат умножения элемента \mathbf{x}' на любое число $\lambda: \mathbf{u}' = \lambda \odot \mathbf{x}'$ будет соответствовать при отображении $\boldsymbol{\tau}$ результату умножения элемента \mathbf{x} на то же самое число $\lambda: \mathbf{u} = \lambda \odot \mathbf{x}$, т.е. $\mathbf{u}' \stackrel{\tau}{=} \mathbf{u}$.

Ограничимся всего *одним* простым примером изоморфных между собой линейных пространств.

Пример. Изоморфными друг другу являются линейное пространство \mathbb{P}_n всех многочленов с вещественными коэффициентами, стелени которых не превосходят заданного натурального числа \mathbf{n} , рассматриваемое \mathbf{c} естественными в этом пространстве операциями сложения многочленов — + и умножения многочленов на число - \cdot и, уже много раз упоминавшееся, линейное пространство (n+1)-мерных арифметических векторов — \mathbb{R}^{n+1} \mathbf{c} естественными операциями сложения элементов и умножения элементов на числа в этом пространстве.

В рассматриваемом примере *изоморфное* соответствие τ между элементами $\mathbf{p} \equiv p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ из пространства \mathbb{P}_n и (n+1)-кой чисел $\mathbf{x} \equiv (a_0, a_1, a_2, \ldots, a_n)$, образующих элемент пространства \mathbb{R}^{n+1} *устанавливается* формулой:

$$\boldsymbol{\tau}\left(p\left(x\right)\right) = \left(a_0, a_1, a_2, \dots, a_n\right) .$$

Читателю мы рекомендуем проверить (опираясь на определение) изоморфность этого соответствия.

Размерность линейного пространства

Определение 34. Элементы $\mathbf{x^{(1)}}, \dots, \mathbf{x^{(n)}}$ линейного пространства \mathbf{X} называются линейно независимыми, если из условия:

$$c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \ldots + c_n \mathbf{x}^{(n)} = \mathbb{O},$$

следует:

$$c_1 = c_2 = \ldots = c_n = 0.$$

Определение 35. Линейное пространство X называется n-мерным, если в этом пространстве существует n линейно независимых элементов, но любые n+1 элементов линейного пространства X линейно зависимы.

Пример 13. *Линейное пространство* \mathbb{R}^n из примеров 2, 3 § 1 главы 1 — $[\mathbf{n}$ -мерно].

Этот факт устанавливается в линейной алгебре.

Определение 36. Ecnu $\forall \mathbf{n} = 1, 2, 3, \dots$ в линейном пространстве \mathbf{X} существует \mathbf{n} линейно независимых элементов, то линейное пространство называется бесконечномерным.

Пример 14. *Линейные пространства* ℓ_2 , $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, $\mathbb{D}_k\left[\mathbf{a},\mathbf{b}\right]$ примеров 4, 5 и 6 § 1 главы $1-\boxed{\textit{бесконечномерные}}$.

Во всех трёх случаях необходимо для всякого натурального числа **п** *предъявить* систему линейно независимых элементов, состоящую из **п** элементов соответствующего пространства.

Ввиду *произвольности* числа **п** это и будет означать требуемое.

- ${f 1}$. Для пространства ℓ_2 требуемую систему линейно независимых векторов при любом конечном ${f n}$ составляют векторы $\{{f e}_k\}$, $k=1,2,\ldots,n$, у которых на всех местах, кроме k-ого, стоят нули, а на месте с номером k стоит единица.
- ${f 2}$. Для пространств ${\Bbb C}[{f a},{f b}]$ и ${\Bbb D}_k[{f a},{f b}]$ требуемую систему линейно независимых при любом конечном ${f n}$ векторов $\{{f e}_k\}$ образует,

например, система степеней: $\{t^k\}$, $k=0,1,2,\ldots,n$.

Действительно, многочлен $c_0+c_1x+c_2x^2+\ldots+c_nx^n\equiv 0$ тогда и только тогда, когда $c_0=c_1=c_2=\ldots=c_n=0$.

Отсюда следует линейная независимость системы $\{t^k\}$, $k=0,1,2,\ldots,n$ в пространствах $\mathbb{C}[\mathbf{a},\mathbf{b}]$ и $\mathbb{D}_k[\mathbf{a},\mathbf{b}]$.

Подпространство в линейном пространстве

Определение 37. Совокупность L элементов линейного пространства X, называется подпространством в X, если результаты операций сложения любых двух элементов из L и умножения любого элемента из L на любое число принадлежат L.

Из этого определения и аксиом *линейного пространства* следует, в частности, что:

- ${f 1}$. ${f 9}$ лемент ${\Bbb O}$, нуль пространства ${f X}$, принадлежит любому подпространству ${f L}$ пространства ${f X}$.
- 2. Для любого конечного множества элементов $\{\mathbf{x^{(1)}}, \dots, \mathbf{x^{(n)}}\}$ из подпространства \mathbf{L} линейного пространства \mathbf{X} любая их линейная комбинация $\mathbf{x} = c_1 \mathbf{x^{(1)}} + c_2 \mathbf{x^{(2)}} + \dots + c_n \mathbf{x^{(n)}}$, также является элементом рассматриваемого подпространства, т.е. всякое подпространство само является линейным пространством (с теми же операциями сложения (+) и умножения на числа (\cdot) , которые определены в объемлющем подпространство \mathbf{L} линейном пространстве \mathbf{X}).

Определение линейного нормированного пространства (ЛНП)

Если в **линейном пространстве** \mathbf{X} , каким-либо образом, ввести **метрику** $\boldsymbol{\rho}$, то оно превращается в линейное **метрическое** пространство $(\mathbf{X}, \boldsymbol{\rho})$ и, таким образом, приобретает все свойства общих **метрических** пространств.

 ${\it B}$ линейном ${\it cлучаe}$, обычно, используется ${\it mempuka}$, вводимая особым образом.

Определение 38. Неотрицательный функционал, определенный на $\mathit{nuheйhom\ npocmpahcmbe}\ \mathbf{X}$ называется $\mathit{hopmoй}\ \mathit{u}\ \mathit{oбозначается}$ $\|\mathbf{x}\|\ (\forall\,\mathbf{x}\in\mathbf{X})$, если он обладает следующими $\mathit{cboйcmbamu}$:

 ${f 1}^{\circ}$. — Невырожденность:

$$\|\mathbf{x}\| \geqslant 0$$
, u , $ecnu$: $\|\mathbf{x}\| = 0$, mo : $\mathbf{x} = \mathbb{O}$.

 $\mathbf{2}^{\circ}$. - Положительная однородность:

$$\|\lambda \cdot \mathbf{x}\| = |\lambda| \cdot \|\mathbf{x}\|$$
.

 ${f 3}^{\circ}$. — Полуаддитивность или неравенство треугольника:

$$\| \mathbf{x} + \mathbf{y} \| \le \| \mathbf{x} \| + \| \mathbf{y} \|$$
.

 \pmb{Ecnu} в $\pmb{nuheйhom\ npocmpahcmse}$ \pmb{X} введена норма $\|\mathbf{x}\|$, то в нём может быть введена $\pmb{mempuka}$ $\pmb{\rho}$ по формуле:

$$\rho\left(\mathbf{x},\,\mathbf{y}\right) = \|\,\mathbf{y} - \mathbf{x}\,\| \tag{1}$$

Мы оставляем читателю проверку того, что формула (1) действительно определяет **метрику**.

Непрерывность нормы и операций сложения и умножения на числа в линейном нормированном пространстве

Утверждение 18. В любом линейном нормированном пространстве X обе операции— сложения векторов и умножения вектора на число,— непрерывны.

Доказательство. 1. Пусть последовательность элементов $\{ \mathbf{x}_n \}$ сходится к элементу \mathbf{x} , а последовательность элементов $\{ \mathbf{y}_n \}$ сходится к элементу \mathbf{y} в линейном нормированном пространстве \mathbf{X} , при $n \to \infty$.

Тогда, в силу неравенства треугольника:

$$\| (\mathbf{x}_n + \mathbf{y}_n) - (\mathbf{x} + \mathbf{y}) \| \leq \| \mathbf{x}_n - \mathbf{x} \| + \| \mathbf{y}_n - \mathbf{y} \| \rightarrow 0,$$

при $n \to \infty$, что означает непрерывность сложения относительно обеих аргументов данной операции в линейном нормированном пространстве ${\bf X}$.

2 . Пусть последовательность элементов $\{ \mathbf{x}_n \}$ сходится к элементу \mathbf{x} в линейном нормированном пространстве \mathbf{X} , а последовательность чисел $\{ \gamma_n \}$ сходится к числу γ при $n \to \infty$.

Тогда, добавляя и вычитая слагаемое $\{\gamma \cdot \mathbf{x}_n\}$, на основании неравенства треугольника, получаем:

$$\|\gamma_n \mathbf{x}_n - \gamma \mathbf{x}\| \le \|(\gamma_n - \gamma) \cdot \mathbf{x}_n + \gamma (\mathbf{x}_n - \mathbf{x})\| \le |\gamma_n - \gamma| \|\mathbf{x}_n\| + |\gamma| \|\mathbf{x}_n - \mathbf{x}\| \to 0$$
, при $n \to \infty$, что означает непрерывность умножения относительно обеих аргументов данной операции в линейном нормированном пространстве \mathbf{X} .

Утверждение 19. Имеет место неравенство:

$$\left| \| \mathbf{x} \| - \| \mathbf{y} \| \right| \leqslant \| \mathbf{x} - \mathbf{y} \|$$

Доказательство. Это неравенство получается из второго неравенства треугольника для общих метрических пространств, если в нём положить $\mathbf{z} = \mathbb{O}$.

Утверждение 20. Φ ункционал нормы $\|\mathbf{x}\|_{\mathbf{X}}$ непрерывен в линейном нормированном пространстве \mathbf{X} .

Доказательство. Пусть последовательность элементов $\{ \mathbf{x}_n \}$ сходится к элементу \mathbf{x} в линейном нормированном пространстве \mathbf{X} , при $n \to \infty$.

Тогда, в силу предыдущего утверждения:

$$\left| \| \mathbf{x}_n \| - \| \mathbf{x} \| \right| \leqslant \| \mathbf{x}_n - \mathbf{x} \| \to 0,$$

при $n \to \infty$, что и означает непрерывность функционала нормы в линейном нормированном пространстве ${\bf X}$.

 ${\it Mempuческие пространства} \ {\it X}\,, \$ описанные в примерах $1-7\,,$ параграфа 1 главы $1\,,$ являются ${\it линейными нормированными}$ ${\it npocmpahcmbamu}.$

Такое заключение *непосредственно* следует из формул, определяющих в них *метрику*.

Изоморфизм конечномерных пространств данного числа измерений •

Теорема 6. Любые два конечномерных линейных нормированных пространства данного числа измерений $\mathbf{n} - \mathbf{X}_1$ и \mathbf{X}_2 , — изоморфны между собой, т.к. каждое из них изоморфно пространству \mathbb{E}^n соответствующего числа измерений.

Устанавливаемый в теореме **изоморфизм** au является **непрерыв- ным** в обе стороны отображением пространств $extbf{X}_1$, $extbf{X}_2$ u \mathbb{E}^n .

Доказательство. Пусть **X n-мерное линейное нормированное про- странство**, в котором, согласно определению, существует система **n линейно независимых** векторов, через которую **линейно выража- ется** любой вектор этого пространства.

(В *линейной алгебре* всякая система элементов линейного пространства, обладающая *обеими* указанными свойствами, называется *базисом* этого пространства.)

Пусть **базис** образуют элементы $\mathbf{e}_1, \, \mathbf{e}_2, \, \ldots, \, \mathbf{e}_n$.

Тогда всякий элемент \mathbf{x} пространства \mathbf{X} имеет $e \partial u h c m b e u h o e$ представление:

$$\mathbf{x} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \cdots + \alpha_n \mathbf{e}_n ,$$

где $\alpha_1, \alpha_2, \ldots, \alpha_n$ — некоторые вещественные числа, коэффициенты разложения элемента \mathbf{x} , определяемые по данному *элементу* и данному *базису единственным* образом.

Поставим в соответствие элементу \mathbf{x} линейного нормированного пространства \mathbf{X} элемент $\mathbf{\check{x}} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ **п**-мерного пространства \mathbb{E}^n

и будем обозначать это соответствие $\tau : \mathbf{x} \overset{\tau}{\leftrightarrow} \check{\mathbf{x}}$.

Очевидно, что указанное соответствие au является au являет

$$\mathbf{x} \overset{\tau}{\leftrightarrow} \check{\mathbf{x}} \qquad \mathbf{x} + \mathbf{y} \overset{\tau}{\leftrightarrow} \check{\mathbf{x}} + \check{\mathbf{y}}$$

$$\mathbf{y} \overset{\tau}{\leftrightarrow} \check{\mathbf{y}} \qquad \alpha \cdot \mathbf{x} \overset{\tau}{\leftrightarrow} \alpha \cdot \check{\mathbf{x}}$$

Написанные выше формулы означают то, что отображение au является u зоморфизмом между линейными пространствами \mathbf{X} и \mathbb{E}^n .

Покажем, что соответствие au будет также **непрерывным** в обе стороны: из \mathbf{X} в \mathbb{E}^n и из \mathbb{E}^n в \mathbf{X} .

Действительно для $\forall \, \mathbf{x} \in \mathbf{X}$:

$$\|\mathbf{x}\|_{\mathbf{X}} = \left\| \sum_{j=1}^{n} \alpha_{j} \mathbf{e}_{j} \right\|_{\mathbf{X}} \leqslant \sum_{j=1}^{n} |\alpha_{j}| \|\mathbf{e}_{j}\|_{\mathbf{X}} \leqslant \left(\sum_{j=1}^{n} \|\mathbf{e}_{j}\|_{\mathbf{X}}^{2} \right)^{1/2} \left(\sum_{j=1}^{n} \|\alpha_{j}\|^{2} \right)^{1/2} = \boldsymbol{\gamma} \|\check{\mathbf{x}}\|_{\mathbb{E}^{n}},$$

где
$$\boldsymbol{\gamma} = \left(\sum_{j=1}^n \|\mathbf{e}_j\|_{\mathbf{X}}^2\right)^{1/2}.$$
Поэтому

$$\|\mathbf{y} - \mathbf{x}\|_{\mathbf{X}} \leqslant \gamma \cdot \|\mathbf{\check{y}} - \mathbf{\check{x}}\|_{\mathbb{E}^n} \tag{2}$$

Покажем теперь, что существует константа $\,m>0\,\,$ такая, что

$$\|\mathbf{y} - \mathbf{x}\|_{\mathbf{X}} \geqslant m \cdot \|\check{\mathbf{y}} - \check{\mathbf{x}}\|_{\mathbb{E}^n} \tag{3}$$

Рассмотрим функцию:

$$f(\check{\mathbf{x}}) \stackrel{def}{=} f(\alpha_1, \alpha_2, \dots, \alpha_n) \stackrel{def}{=} \left\| \sum_{j=1}^n \alpha_j \mathbf{e}_j \right\|_{\mathbf{X}} = \|\mathbf{x}\|_{\mathbf{X}} \geqslant 0.$$

Эта функция, в силу определения, обладает тем свойством, что:

$$f(\check{\mathbf{x}}) = \|\mathbf{x}\|_{\mathbf{X}} = 0 \implies \mathbf{x} = \mathbb{O}_{\mathbf{X}} \stackrel{\boldsymbol{\tau}}{\Longrightarrow} \check{\mathbf{x}} = \mathbb{O}_{\mathbb{E}^n},$$

т.е. может обращаться в нуль **только** на элементе $\mathbb{O}_{\mathbb{E}^n}$.

Оценка

 $|f(\alpha_1, \alpha_2, \dots, \alpha_n) - f(\beta_1, \beta_2, \dots, \beta_n)| = |\|\mathbf{x}\|_{\mathbf{X}} - \|\mathbf{y}\|_{\mathbf{X}}| \leq \|\mathbf{x} - \mathbf{y}\|_{\mathbf{X}} \leq \boldsymbol{\gamma} \cdot \|\check{\mathbf{x}} - \check{\mathbf{y}}\|_{\mathbb{E}^n}$ показывает, что $f(\alpha_1, \alpha_2, \dots, \alpha_n) - \boldsymbol{nenpepushas}$ функция, т.е. при $\check{\mathbf{x}} \to \check{\mathbf{y}}$ в пространстве \mathbb{E}^n $f(\check{\mathbf{x}}) \to f(\check{\mathbf{y}})$ в пространстве \mathbf{X} . В пространстве \mathbb{E}^n рассмотрим множество $\mathbf{S}: \left\{\alpha_i \left| \sum_{i=1}^n \alpha_i^2 = 1\right.\right\}\right\}$ — это единичная сфера пространства \mathbb{E}^n .

Т.к. сфера ${\bf S}$ *ограниченное* в пространстве ${\mathbb E}^n$ множество, а потому *компактное* в ${\mathbb E}^n$ множество, то в силу *замкнутости* ${\bf S}$, это множество — *компакт*.

По теореме К. Вейерштрасса, **непрерывная** функция $f(\alpha_1, \alpha_2, \dots, \alpha_n)$ **на компакте** \mathbf{S} достигает своего **минимума** m хотя бы в одной точке $\check{\mathbf{x}}_* \in \mathbf{S}$: $f(\check{\mathbf{x}}_*) = m$.

При этом *обязательно* m > 0.

Таким образом, для $\forall \check{\mathbf{x}} \in \mathbf{S}$:

$$f(\check{\mathbf{x}}) = \|\mathbf{x}\|_{\mathbf{X}} \geqslant m > 0.$$

Далее имеем для $\check{\mathbf{x}} \neq \mathbb{O}_{\mathbb{E}^n}$:

$$f\left(\check{\mathbf{x}}\right) \stackrel{def}{=} \|\mathbf{x}\|_{\mathbf{X}} = \|\check{\mathbf{x}}\|_{\mathbb{E}^{n}} \cdot \left\| \sum_{j=1}^{n} \frac{\alpha_{j}}{\left(\sum\limits_{j=1}^{n} \alpha_{j}^{2}\right)^{1/2}} \mathbf{e}_{j} \right\|_{\mathbf{X}} \geqslant m \cdot \|\check{\mathbf{x}}\|_{\mathbb{E}^{n}},$$

которое, очевидно, будет также справедливо и при $\check{\mathbf{x}} = \mathbb{O}_{\mathbb{E}^n}$.

 ${
m T. k.}$ полученное неравенство справедливо для ${\it ecex}$ элементов пространства ${
m \mathbb{E}}^n$, то оно означает ${\it henpepushocmb}$ построенного в начале доказательства отображения ${\it au}$ из ${
m \mathbb{E}}^n$ в ${\bf X}$.

Непрерывность отображения au из \mathbf{X} в \mathbb{E}^n была доказана выше.

В некоторых случаях, в теории и приложениях полезно в линейном пространстве ${\bf X}$ "параллельно" рассматривать две нормы. В такой ситуации пространство ${\bf X}$ с первой нормой можно рассматривать, как линейное нормированное пространство ${\bf X}_1$, а то же линейное пространство со второй нормой, как ${\bf X}_2$.

Определение 39. Две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ в линейном пространстве \mathbf{X} называются эквивалентными, если существуют такие постоянные $\varkappa_1, \varkappa_2 > 0$, что для любого $\mathbf{x} \in \mathbf{X}$ справедливо двойное неравенство:

$$\varkappa_1 \cdot \|\mathbf{x}\|_1 \leqslant \|\mathbf{x}\|_2 \leqslant \varkappa_2 \cdot \|\mathbf{x}\|_1.$$

Заметим, что отсутствующая в приведенном определении "симметрия" относительно использования норм $\|\cdot\|_1$ и $\|\cdot\|_2$, легко "восстанавливается", т.к.

$$\frac{1}{\varkappa_2} \cdot \|\mathbf{x}\|_2 \leqslant \|\mathbf{x}\|_1 \leqslant \frac{1}{\varkappa_1} \cdot \|\mathbf{x}\|_2.$$

Если пространство \mathbf{X} *конечномерное*, то полученные при доказательстве теоремы об изоморфизме неравенства (2) и (3) позволяют утверждать, что *нормы* в пространствах \mathbf{X}_1 и \mathbf{X}_2 *эквивалентны*.

Частное рассуждение подобного рода, важное с точки зрения конкретных $\mathbf{\mathit{shavehu\"u}}$ констант \varkappa_1 , \varkappa_2 , содержит

Пример. В линейном пространстве \mathbb{R}^n нормы $\|\mathbf{x}\|_1 \stackrel{def}{=} \max_{1 \le j \le n} |x_j|$ и $\|\mathbf{x}\|_2 \stackrel{def}{=} \sum_{j=1}^n |x_j|$ эквивалентны, т.к.

$$\|\mathbf{x}\|_1 \leqslant \|\mathbf{x}\|_2 \leqslant n \cdot \|\mathbf{x}\|_1,$$

где $\varkappa_1 = 1, \ \varkappa_2 = n.$

Следствие 2. В любом конечномерном линейном нормированном пространстве \mathbf{X} с базисом $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ сходимость по норме эквивалентна покоординатной сходимости, т.е. последовательность векторов $\{\mathbf{x}_k\}$, $k=1,2,\ldots,n,\ldots$ будет сходиться к вектору \mathbf{x}_0 при $k\to\infty$, тогда и только тогда, когда все последовательности, составленные из "одноимённых" координат векторов $\{\mathbf{x}_k\}$ будут сходиться к "одноимённой" координате вектора \mathbf{x}_0 при $k\to\infty$.

Доказательство следует из неравенств (2) и (3), обоснованных выше.

Следствие 3. Любое конечномерное линейное нормированное пространство **X** полное.

Действительно, *любое* конечномерное линейное нормированное пространство \mathbf{X} размерности n *полно*, т.к. оно *непрерывно изоморфно* полному пространству \mathbb{E}^n . (*Полнота* \mathbb{E}^n была доказана в параграфе 3 главы 1).

Следствие 4. Всякое конечномерное подпространство L_m в линейном нормированном пространстве X замкнуто, m. е. обязательно является замкнутым подпространством X.

Доказательство. Пусть ${\bf e}_1, {\bf e}_2, \ldots, {\bf e}_m$ базис ${\bf L}_m$, а последовательность $\{{\bf x}_k\}$, $k=1,2,\ldots,k,\ldots$ сходится к вектору ${\bf x}_0$ при $k\to\infty$ в пространстве ${\bf X}$.

Покажем, что вектор \mathbf{x}_0 принадлежит подпространству \mathbf{L}_m .

В самом деле, каждый вектор последовательности $\{\mathbf{x}_k\}$ имеет разложение по базису \mathbf{L}_m :

$$\mathbf{x}_k = \alpha_1^{(k)} \mathbf{e}_1 + \alpha_2^{(k)} \mathbf{e}_2 + \cdots + \alpha_m^{(k)} \mathbf{e}_m ,$$

где $\alpha_1^{(k)},\,\alpha_2^{(k)},\,\dots,\alpha_m^{(k)}$ — коэффициенты разложения элемента ${f x}_k\,,$ $k\,=\,0,\,1,\,\dots,n,\,\dots$

Каждая из последовательностей $\alpha_1^{(k)}, \alpha_2^{(k)}, \dots, \alpha_m^{(k)}$ координат указанных разложений, согласно следствию (10), является сходящейся числовой последовательностью.

Обозначим пределы этих последовательностей $\alpha_1^{(0)}, \alpha_2^{(0)}, \dots, \alpha_m^{(0)}$ и рассмотрим вектор:

$$\alpha_1^{(0)} \mathbf{e}_1 + \alpha_2^{(0)} \mathbf{e}_2 + \cdots + \alpha_m^{(0)} \mathbf{e}_m$$
.

Очевидно, что этот вектор принадлежит \mathbf{L}_m и, в силу **единствен- ности** предела в метрическом пространстве \mathbf{X} , совпадает с вектором \mathbf{x}_0 .

 $oxed{etaeckohevenomephoe}$ подпространство в $oldsymbol{nuheŭhom}$ нормированном $oxed{npocmpahcmbe}$ х может быть и $oldsymbol{ne}$ замкнуто.

Пример 15. Пусть пространство $\mathbf{X} = \mathbb{C}\left[\mathbf{a}, \mathbf{b}\right]$, а \mathbf{L} его *бесконечно-мерное* линейное подпространство, порожденное *всеми* степенями независимого переменного $t: \left\{1, t, t^2, t^3, \ldots, t^n, \ldots\right\}$, — т.е. \mathbf{L} — множество *всех* многочленов с вещественными коэффициентами в $\mathbb{C}\left[\mathbf{a}, \mathbf{b}\right]$.

Оно *не замкнуто* в $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, т.к. предел последовательности многочленов в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ *может* не быть многочленом.

Поэтому $[L] \neq L$.

Теорема Ф. Рисса •

Для любого *замкнутого подпространства* в *линейном нормированном пространстве* имеет место важная

 $egin{array}{lll} {
m Teopema} & {
m 7} & (m{arPhi}. \ {
m Pucc}). \ {
m \Piycmb} & {
m L} \end{array} \ {
m \it samkhymoe} \ {
m \it nodnpocmpahcmbo} \ {
m \it s} \ {
m \it nuheйhom\ hopmuposahhom\ npocmpahcmbe} \ {
m \bf X} \ , \ \ {
m \it he\ cosnadabuyee} \ {
m \it c} \ {
m \bf X} \ : \ {
m \it L} \ \subset \ {
m \bf X} \ , \ \ {
m \it ho} \ \ {
m \bf L} \
eq {
m \bf X} \ . \end{array}$

Тогда $\forall \varepsilon > 0$ в пространстве \mathbf{X} $\exists \bar{\mathbf{u}} \in \mathbf{X}$, с нормой 1 : $\|\bar{\mathbf{u}}\|_{\mathbf{X}} = 1$ такой, что $\forall \mathbf{x} \in \mathbf{L}$:

$$\|\bar{\mathbf{u}} - \mathbf{x}\|_{\mathbf{X}} > 1 - \varepsilon$$
,

m.e. элемент $ar{\mathbf{u}}$ находится на **положительном** расстоянии от $oldsymbol{scex}$ $\mathbf{x} \in \mathbf{L}$.

 \mathcal{A} оказательство. Пусть \mathbf{u}_0 любой элемент \mathbf{X} не принадлежащий подпространству \mathbf{L} .

Рассмотрим на L числовую функцию

$$f(\mathbf{x}) = \|\mathbf{u}_0 - \mathbf{x}\|_{\mathbf{X}} \geqslant 0$$

Т.к. множество значений функции $f(\mathbf{x})$ ограничено снизу, то существует их точная нижняя $\inf_{\mathbf{x} \in \mathbf{L}} f(\mathbf{x}) = \inf_{\mathbf{x} \in \mathbf{L}} \|\mathbf{u}_0 - \mathbf{x}\|_{\mathbf{X}} = d$ и хотя бы одна минимизирующая последовательность $\{\mathbf{x}_n\} \in \mathbf{L}$ такая, что:

$$d \leqslant \|\mathbf{u}_0 - \mathbf{x}_n\|_{\mathbf{X}} < d + \varepsilon.$$

Заметим, что d>0, т.к. иначе элемент \mathbf{u}_0 был бы npedeльным элементом всякой минимизирующей для $f(\mathbf{x})$ последовательности, и, в силу того, что \mathbf{L} замкнутое подпространство в \mathbf{X} , обязан бы был принадлежать \mathbf{L} , что, однако, противоречит исходному предположению.

Далее, т.к. $d = \inf_{\mathbf{x} \in \mathbf{L}} \| \mathbf{u}_0 - \mathbf{x} \|_{\mathbf{X}}$, то $\forall \varepsilon > 0 \ \exists \, \mathbf{x}_0 \in \mathbf{L}$ такой, что

$$0 < d \leqslant \|\mathbf{u}_0 - \mathbf{x}_0\|_{\mathbf{X}} < d + d \cdot \varepsilon.$$

Положим

$$\bar{\mathbf{u}} \, = \, \frac{\mathbf{u}_0 \, - \mathbf{x}_0}{\|\, \mathbf{u}_0 \, - \mathbf{x}_0 \,\|_{\mathbf{X}}} \; .$$

Очевидно, что $\ \bar{\mathbf{u}} \not\in \mathbf{L}\,,$ т.к. иначе бы, вопреки предположению, и элемент $\ \mathbf{u}_0 \in \mathbf{L}\,.$

Кроме того, очевидно, что $\parallel \mathbf{\bar{u}} \parallel_{\mathbf{X}} = 1$.

Возьмём любой элемент $\mathbf{x} \in \mathbf{L}$ и пусть

$$\mathbf{v} \ = \ \mathbf{x}_0 \ + \ \| \ \mathbf{u}_0 \ - \mathbf{x}_0 \ \|_{\mathbf{X}} \cdot \mathbf{x} \ .$$

Тогда $\mathbf{v} \in \mathbf{L}$ и

$$\|\bar{\mathbf{u}} - \mathbf{x}\|_{\mathbf{X}} = \left\| \frac{\mathbf{u}_{0} - \mathbf{x}_{0}}{\|\mathbf{u}_{0} - \mathbf{x}_{0}\|_{\mathbf{X}}} - \mathbf{x} \right\|_{\mathbf{X}} =$$

$$= \frac{1}{\|\mathbf{u}_{0} - \mathbf{x}_{0}\|_{\mathbf{X}}} \cdot \|\mathbf{u}_{0} - \mathbf{x}_{0} - \|\mathbf{u}_{0} - \mathbf{x}_{0}\| \cdot \mathbf{x}\|_{\mathbf{X}} =$$

$$= \frac{1}{\|\mathbf{u}_{0} - \mathbf{x}_{0}\|_{\mathbf{X}}} \cdot \|\mathbf{u}_{0} - \mathbf{v}\|_{\mathbf{X}} > \frac{1}{d + d \cdot \varepsilon} \cdot \|\mathbf{u}_{0} - \mathbf{v}\|_{\mathbf{X}} >$$

$$\geq \frac{d}{d + d \cdot \varepsilon} = \frac{1}{1 + \varepsilon} > 1 - \varepsilon.$$

Конечномерность и компактность •

Теорема 8. Для того, чтобы **подпространство L** линейного нормированного пространства **X** было **конечномерным**, **необходимо** и **достаточно**, чтобы **каждое ограниченное** множество элементов из **L** было **компактно**.

Доказательство. Необходимость.

Пусть L n-мерно.

Тогда по доказанному выше пространство ${\bf L}$ *непрерывно изоморф- но* евклидову пространству ${\mathbb E}^n$ и всякое *ограниченное* множество элементов ${\bf M} \in {\bf L}$ взаимнооднозначно и взаимнонепрерывно преобразуется в *ограниченное* же множество ${\bf N} \in {\mathbb E}^n$.

Поскольку всякое *ограниченное* множество $\mathbf{N} \in \mathbb{E}^n$ *компактно*, то в каждом таком множестве \mathbf{N} найдётся хотя бы одна бесконечная *фундаментальная* последовательность.

Пусть эта последовательность $\{\check{\mathbf{x}}_k\}$.

Тогда каждому элементу этой последовательности будет отвечать единственный элемент множества $\mathbf{M} \in \mathbf{L}$, т.е. в \mathbf{M} мы получаем последовательность $\{\mathbf{x}_k\}$.

В силу *непрерывности* изоморфного соответствия последовательность $\{\mathbf{x}_k\}$ будет *фундаментальной* в \mathbf{M} , а потому содержащее последовательность $\{\mathbf{x}_k\}$ множество \mathbf{M} будет *компактным*.

Достаточность.

Пусть всякое organize hhoe множество $M \in L$ romnarmho.

Покажем, что в этом случае пространство $\ \mathbf{L}- \kappa o$ нечномерно.

Возьмём в \mathbf{L} произвольный элемент \mathbf{x}_1 с нормой $1: \|\mathbf{x}_1\| = 1$.

Рассмотрим линейное подпространство \mathbf{L}_1 , *порождаемое* единственным элементом \mathbf{x}_1 .

Если $\mathbf{L} = \mathbf{L}_1$, то теорема доказана.

Если же $\mathbf{L} \neq \mathbf{L}_1$, то по теореме Ф. Рисса при $\varepsilon = 1/2$ в \mathbf{L} найдётся такой элемент \mathbf{x}_2 , что, во-первых, $\|\mathbf{x}_2\| = 1$ и, во-вторых, расстояние от этого элемента до всех элементов подпространства \mathbf{L}_1 будет больше 1/2, т.е., в частности, $\|\mathbf{x}_2 - \mathbf{x}_1\| \geqslant 1/2$.

Обозначим через \mathbf{L}_2 линейное nodnpocmpancmeo в \mathbf{L} — линейную оболочку векторов $\mathbf{x}_1,\,\mathbf{x}_2$.

Если $\mathbf{L} = \mathbf{L}_2$, то теорема доказана.

Если же $\mathbf{L} \neq \mathbf{L}_2$, то по теореме Φ . Рисса при $\varepsilon = 1/2$ в \mathbf{L} найдётся такой элемент \mathbf{x}_3 , что, во-первых, $\|\mathbf{x}_3\| = 1$ и, во-вторых, расстояние от этого элемента до всех элементов подпространства \mathbf{L}_2 будет больше 1/2, т.е., в частности, $\|\mathbf{x}_3 - \mathbf{x}_1\| \geqslant 1/2$ и $\|\mathbf{x}_3 - \mathbf{x}_2\| \geqslant 1/2$.

Продолжая процесс дальше, мы на каждом шаге этого процесса имеем только ∂se возможности: либо npu некотором n подпространство \mathbf{L}_n , построенное как линейная оболочка — множество scex линейных комбинаций элементов $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$, получаемых на каждом шаге элементов пространства \mathbf{L} , совпадает с \mathbf{L} : $\mathbf{L} = \mathbf{L}_n$, процесс построения новых векторов обрывается на данном шаге и теорема, таким образом, dokasaha.

Либо процесс *продолжается бесконечно*, т.е. для *всякого* n имеет место *вторая* возможность: $\mathbf{L} \neq \mathbf{L}_n$, и тогда по теореме Φ . Рисса при $\varepsilon = 1/2$ в \mathbf{L} найдётся такой элемент \mathbf{x}_{n+1} , что, во-первых, $\|\mathbf{x}_{n+1}\| = 1$ и, во-вторых, расстояние от этого элемента до *всех* элементов подпространства \mathbf{L}_n будет больше 1/2, т.е., в частности, $\|\mathbf{x}_{n+1} - \mathbf{x}_1\| \geqslant 1/2$, и $\|\mathbf{x}_{n+1} - \mathbf{x}_2\| \geqslant 1/2$, и так далее: $\|\mathbf{x}_{n+1} - \mathbf{x}_n\| \geqslant 1/2$.

В этом случае мы **эффективно** строим **бесконечную** последовательность векторов из пространства $\mathbf{L} - \{\mathbf{x}_k\}$ такую, что во-первых, $\|\mathbf{x}_k\| = 1$ и, во-вторых, расстояние от этого элемента до всех элементов подпространства \mathbf{L}_k будет больше 1/2, т.е., в частности, $\|\mathbf{x}_k - \mathbf{x}_m\| \geqslant 1/2$ при m < k.

Но, указанная таким образом *ограниченная* последовательность $\{\mathbf x_k\}$ не может содержать бесконечной фундаментальной подпоследовательности, что противоречит компактности единичной сферы пространства $\mathbf L$.

Банаховы пространства

Определение 40. *Полное* линейное нормированное пространство называется **банаховым** пространством (**B-пространством**).

Если линейное нормированное пространство *неполно*, то, в силу теоремы о пополнении (параграф 4 главы 1), его можно *пополнить*.

Вообще говоря, *пополнение* линейного нормированного пространства не обязано быть *линейным* пространством.

Однако, можно показать, что среди пополнений *обязательно* есть *банахово* пространство с *нормой*, согласованной с первоначальной, в том смысле, что ее значения на части этого пространства, соответствующей *пополняемому* пространству \mathbf{X} , *совпадают* со значениями, даваемыми *первоначальной* нормой.

Определение 41. Пусть $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k, \ldots$ некоторые элементы банахова пространства \mathbf{X} .

Выражение

$$\sum_{k=1}^{\infty} \mathbf{x}_k$$

формально представляющее из себя **бесконечную** сумму всех элементов множества $\{\mathbf{x}_k\}$, $k=1,2,3,\ldots$, называется **рядом**, составленным из элементов $\{\mathbf{x}_k\}$.

"Параллельно" с $\pmb{pядом}$ $\sum\limits_{k=1}^{\infty} \mathbf{x}_k$ рассмотрим для каждого n $\pmb{\kappa one u-}$

$$\mathbf{s}_n = \sum_{k=1}^n \mathbf{x}_k \; ,$$

которая **называется** n-ой **частичной суммой** ряда $\sum\limits_{k=1}^{\infty}\mathbf{x}_{k}$.

Определение 42. Pяд $\sum\limits_{k=1}^{\infty}\mathbf{x}_{k}$ называется cходящимся κ элементу \mathbf{x} , если последовательность частичных сумм этого ряда $\{\mathbf{s}_{n}\}$ = $\left\{\sum\limits_{k=1}^{n}\mathbf{x}_{k}\right\}$ cходится κ \mathbf{x} , m.e.

$$\|\mathbf{s}_n - \mathbf{x}\|_{\mathbf{X}} \to 0 \quad npu \quad n \to \infty.$$

 $m{\mathcal{G}}$ лемент \mathbf{x} пространства \mathbf{X} , κ которому сходится последовательность $\{\mathbf{s}_n\}$ частичных сумм ряда $\sum\limits_{k=1}^\infty \mathbf{x}_k$, называется суммой \mathbf{p} ряда $\sum\limits_{k=1}^\infty \mathbf{x}_k$.

В силу *полноты* пространства \mathbf{X} для сходимости *последователь*ности частичных сумм $\{\mathbf{s}_n\}$, $n=1,2,3,\ldots$, ряда $\sum_{k=1}^{\infty}\mathbf{x}_k$ необходимо и достаточно, чтобы эта последовательность была фундаментальной.

Сделанное выше замечание позволяет сформулировать *достаточное* условие сходимости рядов из элементов в *банаховом* пространстве.

Утверждение 21 (Обобщённый признак К. Вейерштрасса). Пусть все элементы $\{ \mathbf{x}_k \}$, $k=1,2,3,\ldots$, ряда $\sum_{k=1}^{\infty} \mathbf{x}_k$ мажорируются числами $\{ \alpha_k \}$, $k=1,2,3,\ldots$, т.е. для всех $k=1,2,3,\ldots$ имеет место неравенство

$$\|\mathbf{x}_k\|_{\mathbf{X}} \leqslant \alpha_k$$
.

Пусть числовой ряд

$$\sum_{k=1}^{\infty} \alpha_k \ ,$$

составленный из **неотрицательных** чисел α_k , **сходится**.

Tогда pяд $\sum_{k=1}^{\infty} \mathbf{x}_k$ cходится в банаховом пространстве \mathbf{X} κ некоторому его элементу \mathbf{x} .

Доказательство. Неравенство

$$\|\mathbf{s}_{n+p} - \mathbf{s}_n\|_{\mathbf{X}} = \|\mathbf{x}_{n+1} + \mathbf{x}_{n+2} + \cdots + \mathbf{x}_{n+p}\|_{\mathbf{X}} \leqslant \alpha_{n+1} + \alpha_{n+2} + \cdots + \alpha_{n+p}$$
 показывает, что в силу *критерия Коши* для *числового* ряда $\sum_{k=1}^{\infty} \alpha_k$, правая часть этого неравенства $\sum_{k=n+1}^{n+p} \alpha_k \to 0$ при $n \to \infty$, $\forall p > 0$ и, следовательно, *последовательность* $\mathbf{s}_n = \sum_{k=1}^{n} \mathbf{x}_k$ *частичных сумм* ряда $\sum_{k=1}^{\infty} \mathbf{x}_k$ *фундаментальна* в \mathbf{X} .

Поэтому в пространстве \mathbf{X} *существует* такой элемент \mathbf{x} , что $\mathbf{x} = \lim_{n \to \infty} \mathbf{s}_n$.

Этот **элемент**
$$\mathbf{x}$$
 и будет $\pmb{cyммой}$ ряда $\sum\limits_{k=1}^{\infty}\mathbf{x}_{k}$.

Упражнения и задачи к параграфу 1.

- 1. Доказать *бесконечномерность* пространства $\mathbb{C}_{\mathbb{L}_2}\left[\mathbf{a},\mathbf{b}\right]$.
- 2. Множество **M** в *линейном* пространстве **X** называется *вы- пуклым*, если оно вместе с любыми своими точками **x**, **y** содержит все точки $\mathbf{z} = \alpha \mathbf{x} + \beta \mathbf{y}$, такие, что $\alpha \geqslant 0$, $\beta \geqslant 0$, $\alpha + \beta = 1$, или, выражаясь *геометрическим* языком, целиком содержит *отрезок*, концами которого являются точки **x** и **y**.

Показать, что любой *шар* в линейном *нормированном* пространстве является *выпуклым* множеством.

- 3*. Доказать, что *аксиома треугольника* в определении линейного н*ормированного* пространства и условие *выпуклости единичного шара* этого пространства *эквивалентные* утверждения.
 - 4. Пусть e_1, e_2, \ldots, e_n базис n-мерного линейного пространства \mathbf{X} . Тогда всякий элемент $\mathbf{x} \in \mathbf{X}$ имеет единственное разложение:

$$\mathbf{x} = \sum_{j=1}^{n} \alpha_j e_j .$$

Показать, что каждая из формул

$$\|\mathbf{x}\|_I = \max_{1 \leqslant j \leqslant n} |\alpha_j|$$

И

$$\|\mathbf{x}\|_{II} = \sum_{j=1}^{n} |\alpha_j|$$

определяет *норму* в пространстве ${\bf X}$.

5. Доказать, что **нормы** $\|\mathbf{x}\|_{I}$ и $\|\mathbf{x}\|_{II}$ в **любом конечномерном** линейном пространстве \mathbf{X} , введённые в предыдущем упражнении, **эк-вивалентны** (см. определение 39).

2.2 Линейные операторы

Определение и примеры

Определение 43. $\Pi y cmv$ X u Y ∂sa линейных нормированных пространства.

Отображение A из X в Y называется линейным оператором, если для любых $\mathbf{x}_1,\,\mathbf{x}_2\in X$ и любых $\alpha,\,\beta\in\mathbb{R}^1$:

$$\mathbf{A}(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) = \alpha \mathbf{A} \mathbf{x}_1 + \beta \mathbf{A} \mathbf{x}_2.$$

Пример 1. Оператор \mathbb{O} определяется следующим условием: каждому элементу \mathbf{x} пространства \mathbf{X} этот оператор ставит в соответствие нулевой элемент $\mathbb{O}_{\mathbf{X}}$ этого пространства так, что по определению справедлива запись: $\mathbb{O}\mathbf{x} \stackrel{def}{=} \mathbb{O}_{\mathbf{X}}, \ \forall \, \mathbf{x} \in \mathbf{X}$.

Пример 2. Оператор \mathbb{E} определяется следующим условием: каждому элементу \mathbf{x} этот оператор ставит в соответствие тот же самый элемент \mathbf{x} этого же пространства так, что по определению справедлива запись: $\mathbb{E}\mathbf{x} \stackrel{def}{=} \mathbf{x}$, $\forall \mathbf{x} \in \mathbf{X}$.

Пример 3. Оператор Λ определяется следующим условием: при некотором заранее фиксированном числе λ каждому элементу \mathbf{x} этот оператор ставит в соответствие элемент $\lambda \cdot \mathbf{x}$ этого же пространства:

$$\mathbf{\Lambda}\mathbf{x} \stackrel{def}{=} \lambda \cdot \mathbf{x}$$
.

Пример 4. Пусть $\alpha(t)$ непрерывная на отрезке $[\mathbf{a}, \mathbf{b}]$ функция одного вещественного переменного t, т.е. некоторый фиксированный *эле-мент* пространства $\mathbb{C}[\mathbf{a}, \mathbf{b}]$.

Для всякого элемента \mathbf{x} пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ определим оператор \mathbf{A} (умножения на функцию) $\alpha\left(t\right)$ следующим условием: каждому элементу $\mathbf{x} \stackrel{def}{=} x\left(t\right)$ этот оператор ставит в соответствие элемент $\alpha\left(t\right) \cdot \mathbf{x}$ этого же пространства, т.е. $\mathbf{A}\mathbf{x} \stackrel{def}{=} \alpha\left(t\right) \cdot \mathbf{x}, \quad \forall \, \mathbf{x} \in \mathbf{X} = \mathbb{C}\left[\mathbf{a},\mathbf{b}\right].$

Непрерывность и ограниченность линейного оператора.Норма оператора

 ${f Teopema~9.~}$ Линейный оператор ${f A}$, непрерывный в точке ${f x}_0\in {f X}$ непрерывен в любой другой точке линейного пространства ${f X}$.

Доказательство. Действительно, пусть ${\bf A}$ непрерывен в точке ${\bf x}_0$, то есть $\forall \, \varepsilon > 0 \,, \, \exists \, \delta \, ({\bf x}_0, \, \varepsilon) \,$ такое, что:

$$\|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}_0\|_{\mathbf{Y}} \leqslant \varepsilon$$
, если $\|\mathbf{x} - \mathbf{x}_0\|_{\mathbf{X}} \leqslant \delta$ (1)

Если \mathbf{u}, \mathbf{v} *любые* точки \mathbf{X} , то, обозначая $\mathbf{x} = (\mathbf{u} - \mathbf{v}) + \mathbf{x}_0$ и используя *линейность* \mathbf{A} , из (1) получим:

$$\|\mathbf{A}(\mathbf{u} - \mathbf{v} + \mathbf{x}_0) - \mathbf{A}\mathbf{x}_0\|_{\mathbf{Y}} \leqslant \varepsilon$$
, если $\|(\mathbf{u} - \mathbf{v} + \mathbf{x}_0) - \mathbf{x}_0\|_{\mathbf{X}} \leqslant \delta$.

То есть:

$$\|\mathbf{A}\mathbf{u} - \mathbf{A}\mathbf{v}\|_{\mathbf{Y}} \leqslant \varepsilon$$
, если $\|\mathbf{u} - \mathbf{v}\|_{\mathbf{X}} \leqslant \delta$.

Но, справедливость этих неравенств, как раз, и означает *непрерыв-* **ность** оператора $\bf A$ в точке $\bf u$ (или $\bf v$).

В дальнейшем мы будем опускать нижние индексы у знака *нормы*, указывающие на *пространство*, в котором она определена, если это ясно из контекста.

$$\|\mathbf{A}\mathbf{x}\| \leqslant \mathbf{M} \cdot \|\mathbf{x}\|$$
.

Множество всех таких возможных постоянных **М ограничено снизу** нулем и, поэтому, имеет **нижнюю грань**.

Утверждение 22.

$$\|\mathbf{A}\| = \sup_{\|\mathbf{x}\| = 1} \|\mathbf{A}\mathbf{x}\|.$$

 \mathcal{A} оказательство. Обозначим правую часть этого предполагаемого равенства через \mathbf{L} .

Из *ограниченности* \mathbf{A} следует $\|\mathbf{A}\mathbf{x}\| \leqslant \|\mathbf{A}\| \cdot \|\mathbf{x}\|$ и поэтому $\mathbf{L} \leqslant \|\mathbf{A}\|$.

С другой стороны

$$\left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} \right\| = 1$$
, и потому: $\|\mathbf{A}\mathbf{x}\| = \left\| \mathbf{A} \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \right\| \cdot \|\mathbf{x}\| \leqslant \mathbf{L} \|\mathbf{x}\|$.

Следовательно $\|\mathbf{A}\| \leqslant \mathbf{L}$.

Окончательно:
$$\|\mathbf{A}\| = \mathbf{L} = \sup_{\|\mathbf{x}\| = 1} \|\mathbf{A}\mathbf{x}\|$$
.

Оказывается, что свойства *ограниченности* и *непрерывности* линейного оператора не являются *независимыми*.

Теорема 10. Ограниченный линейный оператор **A** непрерывен и, наоборот, непрерывный линейный оператор **A** ограничен.

Доказательство. Действительно, в силу **ограниченности** ${\bf A}$,

$$\forall \varepsilon > 0, \quad \|\mathbf{A}\mathbf{x}\| \leqslant \|\mathbf{A}\| \cdot \|\mathbf{x}\| \leqslant \varepsilon,$$

если

$$\|\mathbf{x}\| \leqslant \frac{\varepsilon}{\|\mathbf{A}\|}$$
.

Но это означает непрерывность **A** в точке \mathbb{O} , а, поэтому, и в \mathbf{n} любой точке пространства \mathbf{X} .

Доказательство обратного утверждения проведем от противного.

Пусть **A** непрерывен в \mathbb{O} , но не ограничен.

Тогда найдется последовательность точек $\{\mathbf x_n\}$, $\|\mathbf x_n\|=1$, такая, что:

$$\|\mathbf{A}\mathbf{x_n}\| \geqslant n, \quad n = 1, \dots$$

Последовательность

$$\mathbf{y}_n = \frac{\mathbf{x}_n}{n}$$

сходится к \mathbb{O} при $n \to \infty$, но $\|\mathbf{A}\mathbf{y}_n\| \geqslant 1$, $n = 1, \ldots$

 Θ то npomusopeчum непрерывности $\mathbf A$ в точке $\mathbb O$. \square

Линейный оператор в \mathbb{R}^n_{\max}

Пример 5. В линейной алгебре показывается, что любое линейное отображение \mathbf{A} пространства \mathbb{R}^n в пространство \mathbb{R}^m задается матрицей \mathcal{A} , имеющей n столбцов и m строк:

$$\mathcal{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Действие этого оператора на **элемент** $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ **определяется** как **умножение матрицы** \mathcal{A} на **столбец** (x_1, \dots, x_n) по известному из линейной алгебры классическому правилу.

Введем в пространствах \mathbb{R}^n и \mathbb{R}^m норму:

$$\|\mathbf{x}\| = \max_{i} |x_i|.$$

Утверждение 23. Оператор A, порожденный матрицей $\{a_{ij}\}$, — линейный ограниченный оператор из \mathbb{R}^n_{\max} в \mathbb{R}^n_{\max} .

 \mathcal{A} оказательство. Действительно, образ элемента $(x_1,\ldots,x_n)\in\mathbb{R}^n$ есть элемент $(y_1,\ldots,y_m)\in\mathbb{R}^m$, где

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad \|\mathbf{y}\| = \max_i \left| \sum_{j=1}^n a_{ij} x_j \right| \leqslant \max_i \left(\sum_{j=1}^n |a_{ij}| \right) \cdot \|\mathbf{x}\|.$$

Отсюда:

$$\|\mathbf{A}\| \leqslant \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) \tag{2}$$

Покажем, что npaeas часть неравенства равна его neou части.

Пусть **максимум** в правой части (2) **достигается** на индексе $i_0 \in \{1, \ldots, m\}$.

Рассмотрим **элемент** \mathbb{R}^n , определенный следующим образом: $x_j = sgn\left(a_{i_0j}\right)$, где $sgn\left(\cdot\right)$ означает **знак** соответствующего элемента матрицы.

Ясно, что $\|\mathbf{x}\| = 1$. Кроме того:

$$y_{i_0} = \sum_{j=1}^n |a_{i_0j}|$$
, а $|y_i| \leqslant \sum_{j=1}^n |a_{ij}|$ при $i \neq i_0$.

Следовательно:

$$\max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) = \|\mathbf{y}\| = \|\mathbf{A}\mathbf{x}\| \leqslant \|\mathbf{A}\| \leqslant \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$

Линейный интегральный оператор, действующий из $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ в $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$

Пример 6. Рассмотрим в пространстве $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ *интегральный оператор*, действующий по формуле:

$$\mathbf{A}\mathbf{x} \stackrel{def}{=} \mathbf{A}x(t) = \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t, s)x(s) ds, \quad \mathbf{a} \leqslant s, t \leqslant \mathbf{b}.$$

Функция $\mathcal{K}\left(t,\,s\right)$ называется **ядром** интегрального оператора.

Мы предполагаем функцию $\mathcal{K}(t,s)$ непрерывной на множестве $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$.

Выше определённый интегральный оператор, обычно, называют интегральным оператором *Фредгольма*.

Непосредственно из свойств интеграла следует **линейность** введенного оператора.

Кроме того:

$$\left| \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t, s) x(s) \, ds \right| \leq \|\mathbf{x}\| \cdot \max_{\mathbf{a} \leq t \leq \mathbf{b}} \int_{\mathbf{a}}^{\mathbf{b}} |\mathcal{K}(t, s)| \, ds .$$

 ${\it Ouenka}$, полученная в правой части неравенства, не зависит от t и поэтому:

$$\|\mathbf{A}\mathbf{x}\| \leq \max_{\mathbf{a} \leq t \leq \mathbf{b}} \int_{\mathbf{a}}^{\mathbf{b}} |\mathcal{K}(t, s)| ds \cdot \|\mathbf{x}\|,$$

И

$$\|\mathbf{A}\| \leq \max_{\mathbf{a} \leq t \leq \mathbf{b}} \int_{\mathbf{a}}^{\mathbf{b}} |\mathcal{K}(t, s)| ds$$
 (3)

Замечание. Можно показать, что оценка (3) является mочной: норма оператора $\mathbf A$ равна правой части ouehku (3).

Пример неограниченного оператора

Пусть \mathbf{X} линейное подпространство в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right],$ состоящее из всех непрерывно дифференцируемых функций.

Линейное подпространство \mathbf{X} — линейное *нормированное пространство* с *нормой*, наследуемой из $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.

Рассмотрим оператор дифференцирования

$$\mathbf{A}\mathbf{x} \stackrel{def}{=} \frac{d}{dt} [x(t)] .$$

 $m{Onepamop}$ $m{A}$, очевидно, $m{\upmunuee}$. Покажем, что $m{onepamop}$ $m{A}$ $m{\mueospahuueh}$, как оператор из $m{X}$ в $m{\mathbb{C}}\left[m{a},m{b}
ight]$.

В самом деле, *множество* элементов

$$\mathbf{x}_n \stackrel{def}{=} x_n(t) \equiv \sin nt, \quad n = 1, 2, 3, \dots,$$

пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ при

$$n > \frac{\pi}{2\max\{|\mathbf{a}|, |\mathbf{b}|\}},$$

принадлежит $e\partial u u u u u v$ с фере пространства \mathbf{X} с центром в нуле: $\mathbb{O} \stackrel{def}{=} x(t) \equiv 0$.

Если же к указанным функциям применить оператор \mathbf{A} , то соответствующие *образы* указанных элементов $\mathbf{A}\mathbf{x}_n$ *не* будут *ограничены все* сразу, при достаточно большом n, никакой фиксированной постоянной:

$$\|\mathbf{A}\mathbf{x}_n\|_{\mathbb{C}[\mathbf{a},\mathbf{b}]} = \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| \frac{d}{dt} \left[x_n \left(t \right) \right] \right| = \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| n \cdot \cos nt \right| = n \cdot \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| \cos nt \right| = n \to \infty.$$

Заметим, что рассматривая оператор дифференцирования $\frac{d}{dt}$, как оператор действующий из пространства $\mathbb{D}_1[\mathbf{a},\mathbf{b}]$, являющегося собственной частью $\mathbb{C}[\mathbf{a},\mathbf{b}]$, в $\mathbb{C}[\mathbf{a},\mathbf{b}]$, мы получим *ограниченный* оператор,

т.к.

$$\left\| \frac{d}{dt} \mathbf{x} \right\|_{\mathbb{C}\left[\mathbf{a}, \mathbf{b}\right]} = \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} \left| \frac{d}{dt} \left[x \left(t \right) \right] \right| \leqslant \left\| \mathbf{x} \right\|_{\mathbb{D}_{1}\left[\mathbf{a}, \mathbf{b}\right]},$$

в силу чего

$$\left\| \frac{d}{dt} \right\|_{\mathbb{D}_1[\mathbf{a}, \mathbf{b}] \to \mathbb{C}[\mathbf{a}, \mathbf{b}]} \leq 1.$$

Вполне непрерывные операторы

Определение 45. Линейный оператор A, действующий из линейного нормированного пространства X в линейное нормированное пространство Y, называется вполне непрерывным (компактным) оператором, если образ любой ограниченной в X последовательности $\{x_n\}$ содержит сходящуюся в Y подпоследовательность.

Пример. Любой *линейный* оператор, действующий из пространства \mathbb{E}^m в пространство \mathbb{E}^n , — *вполне непрерывен*.

Действительно, линейный оператор \mathbf{A} является *ограниченным* и потому всякое *ограниченное* в пространстве \mathbb{E}^m множество \mathbf{M} переводит в *ограниченное* в пространстве \mathbb{E}^n множество $\mathbf{N} = \mathbf{A}(\mathbf{M})$.

А в силу **конечной** размерности n пространства \mathbb{E}^n , множество \mathbf{N} , **компактно** в пространстве \mathbb{E}^n для **всякого** ограниченного множества \mathbf{M} , что и означает **полную непрерывность** оператора \mathbf{A} , т.к. в \mathbb{E}^n **всякая** последовательность Коши сходится.

Пример. Рассмотрим *интегральный оператор Фредгольма* из примера 6.

Если ядро $\mathcal{K}(t,s)$ этого оператора **непрерывно** на множестве $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$, то оператор Фредгольма является **вполне непрерывным** оператором из пространства $\mathbb{C}[\mathbf{a},\mathbf{b}]$ в $\mathbb{C}[\mathbf{a},\mathbf{b}]$.

Действительно, пусть

$$y(t) = \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t, s) x(s) ds.$$

Рассмотрим в пространстве $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ шар радиуса r — множество \mathbf{M}_r элементов этого пространства таких, что $\|\mathbf{x}\|_{\mathbb{C}[\mathbf{a}, \mathbf{b}]} \leqslant r$.

Обозначим
$$\mathbf{K} = \max_{[\mathbf{a}, \mathbf{b}] \times [\mathbf{a}, \mathbf{b}]} |\mathcal{K}(t, s)|$$
. Тогда

$$\max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} |y(t)| \leqslant \mathbf{K} \cdot |\mathbf{b} - \mathbf{a}| \cdot \max_{\mathbf{a} \leqslant s \leqslant \mathbf{b}} |x(s)|,$$

а потому:

$$\|\mathbf{y}\|_{\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]} = \max_{\mathbf{a} \leqslant t \leqslant \mathbf{b}} |y(t)| \leqslant \|\mathbf{A}\| \cdot r,$$

что означает pавномерную ограниченность всех функций из образа $\mathbf{A}\left(\mathbf{\,M}_{r}\right)$.

Т.к. функция $\mathcal{K}(t,s)$ непрерывна на компакте $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$, то, в силу утверждения 16 главы 1, эта функция равномерно непрерывна на указанном компакте, а потому $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ такое, что, в частности:

$$|\mathcal{K}(t_1, s) - \mathcal{K}(t_2, s)| < \frac{\varepsilon}{r \cdot |\mathbf{b} - \mathbf{a}|},$$
 если $|t_1 - t_2| < \delta(\varepsilon),$
 $t_1, t_2 \in [\mathbf{a}, \mathbf{b}], \quad \forall s \in [\mathbf{a}, \mathbf{b}].$

Поэтому все функции y(t) из образа $\mathbf{A}(\mathbf{M}_r)$ равностепенно непрерывны, т.е. $\forall \, \varepsilon > 0 \;\; \exists \, \delta \left(\varepsilon \right) > 0 \;\;$ такое, что:

$$|y(t_1) - y(t_2)| = \left| \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t_1, s) x(s) ds - \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t_2, s) x(s) ds \right| \leqslant \int_{\mathbf{a}}^{\mathbf{b}} |\mathcal{K}(t_1, s) - \mathcal{K}(t_2, s)| \cdot |x(s)| ds < \varepsilon.$$

Поэтому, если $\|\mathbf{x}\|_{\mathbb{C}[\mathbf{a},\mathbf{b}]} \leqslant r$, то функции, **определяемые** интегралом (1), согласно теореме Арцела (см. § 5, главы 1) образуют подмножество, которое **компактно** в $\mathbb{C}[\mathbf{a},\mathbf{b}]$.

В силу полноты пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, из этого следует **полная непре- рывность** рассматриваемого интегрального оператора.

Утверждение 24. Всякий вполне непрерывный оператор A непрерывен.

Доказательство. Действительно, множество $\{ \mathbf{A} \mathbf{x} : \| \mathbf{x} \| = 1 \}$ компактно в \mathbf{Y} и, поэтому, ограничено, то есть $\exists \, \mathbf{C} > 0 :$

$$\sup_{\|\mathbf{x}\|=1}\|\mathbf{A}\mathbf{x}\| < \mathbf{C}.$$

Следовательно оператор **А** *ограничен* и, поэтому, *непрерывен*.

Упраженения и задачи к параграфу 2.

- 1. Показать, что *линейный* оператор, действующий из \mathbf{X} в \mathbf{Y} , переводит *нуль* пространства $\mathbf{X} \mathbb{O}_{\mathbf{X}}$, в *нуль* пространства $\mathbf{Y} \mathbb{O}_{\mathbf{Y}}$.
- 2. Показать, что в пространстве \mathbb{R}^n можно ввести **норму** по формуле:

$$\|\mathbf{x}\| = \sum_{i=1}^{n} |x_i|.$$

Показать, что *норма линейного оператора* **A** примера (1) в этом случае дается равенством:

$$\|\mathbf{A}\| = \max_{j} \left(\sum_{i=1}^{n} |a_{ij}| \right)$$

<u>Указание</u>. Использовать в рассуждениях *элемент* пространства \mathbb{R}^n вида: $(0, \ldots, 0, 1, 0, \ldots, 0)$, где 1 стоит на месте с номером j_0 , на котором *достигается* максимум правой части оценки.

3. Показать, что *линейный оператор* **A**, действующий из *евкли- дова* пространства \mathbb{E}^n в аналогичное \mathbb{E}^m , *норма* которого определяется формулой (1), имеет следующую *оценку* нормы:

$$\|\mathbf{A}\| \leqslant \left(\sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}^{2}\right)^{1/2}.$$

- 4^{*} . Доказать **точность** оценки (3), в случае $\mathcal{K}\left(t,\,s\right)\geqslant0$.
- 5. Найти **норму** оператора \mathbf{A} , действующего на каждый элемент $\mathbf{x} = x(t)$ в пространстве \mathbb{L}_2 по формуле $\mathbf{A}\mathbf{x} = t \cdot x(t)$.
- 6. Найти **норму** оператора \mathbf{A} , действующего на каждый элемент $\mathbf{x} = x(t)$ в пространстве $\mathbb{C}[\mathbf{1},\mathbf{2}]$ по формуле $\mathbf{A}\mathbf{x} = t^2 \cdot x(1)$.
- 7. Найти *норму* оператора \mathbf{A} , действующего на каждый элемент $\mathbf{x} = x(t)$ в пространстве $\mathbb{C}\left[\mathbf{0},\mathbf{1}\right]$ по формуле $\mathbf{A}\mathbf{x} = \int\limits_{\mathbf{0}}^{\mathbf{1}} \mathcal{K}\left(t,s\right) x(s) \, ds$, если $\mathbf{\textit{ядро}}$ этого интегрального оператора имеет вид: $\mathcal{K}\left(t,s\right) = t \cdot s$.
- 8. Доказать *линейность* и найти *норму* оператора \mathbf{A} , действующего на каждый элемент $\mathbf{x} = (x_1, x_2, \dots, x_n, \dots)$ в пространстве ℓ_2 по формуле: $\mathbf{y} = \mathbf{A}\mathbf{x} = (x_2, \dots, x_{n+1}, \dots)$.
- 9. Доказать *линейность* и найти *норму* функционала f, действующего на каждый элемент $\mathbf{x}=(x_1,\,x_2,\,\ldots,x_n,\,\ldots)$ в пространстве $\ell_{\mathbf{2}}$

по формуле:

$$f(\mathbf{x}) = \sum_{k=1}^{\infty} \frac{x_k}{k}$$
.

- 10. Доказать **линейность** и оценить **норму** функционала f, действующего на каждый элемент $\mathbf{x} = x(t)$ в пространстве $\mathbb{C}\left[\mathbf{0},\mathbf{1}\right]$ по формуле: $f\left(\mathbf{x}\right) = \int\limits_{0}^{\frac{1}{2}} x\left(t\right)dt \int\limits_{1}^{1} x\left(t\right)dt$.
- 11. Доказать *линейность* и *оценить норму функционала* f, действующего на каждый элемент $\mathbf{x} = x(t)$ в пространстве $\mathbb{C}\left[\mathbf{0},\mathbf{1}\right]$ по формуле: $f\left(\mathbf{x}\right) = \mathbf{a} \cdot x\left(0\right) + \mathbf{b} \cdot x\left(1\right)$, где \mathbf{a} , \mathbf{b} некоторые *фиксированные* вещественные числа.
- Пространство линейных операторов.
 Линейные операторные уравнения и обратные операторы

Линейное пространство линейных операторов

Пусть ${\bf A}$ и ${\bf B}$ два *линейных* оператора, определенных в *линейном* пространстве ${\bf X}$ и действующих в *линейное* пространство ${\bf Y}$.

Тогда, естественным образом можно определить *линейные* операторы $\mathbf{C} \stackrel{def}{=} \mathbf{A} + \mathbf{B}$ и $\mathbf{D} \stackrel{def}{=} \lambda \cdot \mathbf{A}$ (или $\lambda \cdot \mathbf{B}$), где λ произвольное $\partial e \ddot{u} c m e u m e n b h o e u u c n o.$

Определение 46. Именно, по определению:

$$(\mathbf{A} + \mathbf{B}) \mathbf{x} \stackrel{def}{=} \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{x} .$$

$$(\lambda \cdot \mathbf{A}) \mathbf{x} \stackrel{def}{=} \lambda (\mathbf{A} \mathbf{x}) .$$

Определение 47. Можно также определить нулевой оператор О:

$$\mathbf{O}\mathbf{x} \stackrel{def}{=} \mathbb{O}, \quad \forall \, \mathbf{x} \in \mathbf{X}$$

и **противоположный** оператор $(-\mathbf{A})$ κ (произвольному) линейному оператору \mathbf{A} :

$$(-\mathbf{A})\mathbf{x} \stackrel{def}{=} -(\mathbf{A}\mathbf{x}), \quad \forall \mathbf{x} \in \mathbf{X}.$$

Утверждение 25. Совокупность всех **линейных операторов**, действующих из ${\bf X}$ в ${\bf Y}$, — образует **линейное пространство** — ${\bf L}$ (${\bf X}$, ${\bf Y}$).

Доказательство сформулированного утверждения состоит в непосредственной проверке выполнения всех аксиом, определяющих *линейное пространство*.

Мы рекомендуем, чтобы читатель самостоятельно проверил *все* восемь аксиом из определения линейного пространства и таким образом *убедился* в справедливости сформулированной теоремы.

Норма в линейном пространстве линейных операторов

Утверждение 26. Если X и Y — линейные нормированные пространства, то множество линейных ограниченных операторов, действующих из X в Y, само является линейным нормированным пространством, норма каждого элемента которого есть введенная нами в параграфе 2 норма линейного оператора.

Полученное **линейное нормированное пространство** будем **обо-** \mathbf{z} \mathbf{H} \mathbf{u} \mathbf{u}

cmea L(X, Y), введенного выше.

Доказательство сформулированного утверждения состоит в непосредственной проверке выполнения для $\mathbf{L}_{\mathbf{O}}$ (\mathbf{X},\mathbf{Y}) всех 3-х аксиом, определяющих линейное *нормированное* пространство.

Читателю мы рекомендуем самостоятельно провести *все* необходимые рассуждения.

Сопряжённое пространство к линейному пространству

Особо отметим частный случай пространства $\mathbf{L}_{\mathbf{O}}$ ($\mathbf{X},\,\mathbf{Y}$), в котором в качестве $\,\mathbf{Y}\,$ фигурирует пространство \mathbb{E}^1 .

Определение 48. Пространство $\mathbf{L}_{\mathbf{O}}\left(\mathbf{X},\,\mathbb{E}^{1}\right)$ называется пространством, сопряжённым κ \mathbf{X} , u, обычно, обозначается \mathbf{X}^{*} .

 $m{9}$ лементы пространства $m{X}^*$ — всевозможные **непрерывные** (ограниченные) линейные функционалы над $m{X}$.

Для пространства \mathbf{X}^* , сопряжённого к заданному *линейному нор-мированному пространству* \mathbf{X} , справедливо одно очень важное свойство — такое пространство всегда *полно*.

Отмеченное свойство вытекает из значительно более общего факта:

 ${f Teopema~11.~}$ $Ecлu~{f Y}-{f bahaxoso}~npocmpahcmso,~mo~u~{f L_O}~({f X},{f Y})-{f bahaxoso}~npocmpahcmso.$

Доказательство. Действительно, пусть $\{A_n\}$ фундаментальная последовательность операторов из пространства $L_{\mathbf{O}}(\mathbf{X},\mathbf{Y})$, то есть

$$\lim_{m,n\to\infty} \|\mathbf{A}_m - \mathbf{A}_n\| = 0 \tag{1}$$

Тогда $\forall \mathbf{x} \in \mathbf{X}$: $\lim_{m,n\to\infty} \|\mathbf{A}_m \mathbf{x} - \mathbf{A}_n \mathbf{x}\| = 0$, в силу чего последовательность $\{\mathbf{A}_n \mathbf{x}\}$ фундаментальна в \mathbf{Y} .

В силу *полноты* Y, последовательность $\{A_nx\}$ $\forall x \in X$ *схо-* $\partial umcs$ в Y к некоторому его *элементу*, вообще говоря, зависящему от элемента x.

Таким образом, $\forall \mathbf{x} \in \mathbf{X}$ выше определено (предельное) *отображение*, которое мы обозначим через \mathbf{A} и которое, в силу своего определения, действует из \mathbf{X} в \mathbf{Y} .

По определению отображения $\bf A$, используя свойства предельного перехода в линейном нормированном пространстве, получим:

$$\mathbf{A} (\lambda \mathbf{x} + \mu \mathbf{y}) = \lim_{n \to \infty} \mathbf{A}_n (\lambda \mathbf{x} + \mu \mathbf{y}) = \lim_{n \to \infty} (\lambda \mathbf{A}_n \mathbf{x} + \mu \mathbf{A}_n \mathbf{y}) =$$

$$= \lambda \lim_{n \to \infty} \mathbf{A}_n \mathbf{x} + \mu \lim_{n \to \infty} \mathbf{A}_n \mathbf{y} = \lambda \mathbf{A} \mathbf{x} + \mu \mathbf{A} \mathbf{x},$$

что и означает *линейность* получившегося отображения ${f A}$.

В силу $\pmb{\phi}$ ундаментальности последовательности $\{ \mathbf{A}_n \}$, нормы всех операторов \mathbf{A}_n ограничены в совокупности:

$$\exists \mathbf{C} > 0 \quad \|\mathbf{A}_n\| \leqslant \mathbf{C}, \quad \forall n = 1, 2, \dots$$

Далее, в силу непрерывности нормы:

$$\|\mathbf{A}\mathbf{x}\| = \lim_{n \to \infty} \|\mathbf{A}_n\mathbf{x}\| \leqslant \mathbf{C} \|\mathbf{x}\|,$$

что означает $\emph{ограниченность}$ отображения \mathbf{A} .

Поэтому, сконструированное нами *отображение* ${\bf A}$ будет принадлежать ${\bf L_O}$ (${\bf X},{\bf Y}$) .

Остается доказать, что последовательность операторов $\{A_n\}$ схо-

дится при $n \to \infty$ к построенному выше оператору ${\bf A}$:

$$\lim_{n \to \infty} \| \mathbf{A}_n - \mathbf{A} \| = 0 \tag{2}$$

Зафиксируем $\varepsilon>0$. В силу (1) при достаточно больших m и n , $(m,n\geqslant N\left(\varepsilon\right))$:

$$\|\mathbf{A}_m - \mathbf{A}_n\| \leqslant \varepsilon \|\mathbf{x}\|$$

Перейдем в этом неравенстве к пределу при $m \to \infty$.

В результате будем иметь неравенство:

$$\|\mathbf{A_n} - \mathbf{A}\| \leqslant \varepsilon \|\mathbf{x}\|$$
 при $n \geqslant N(\varepsilon)$,

которое доказывает соотношение (2), а с ним и наше утверждение.

Следствие 5. Так как \mathbb{E}^1 — **банахово** пространство, то, в силу доказанного утверэндения, $\mathbf{X}^* = \mathbf{L_O}\left(\mathbf{X}, \mathbb{E}^1\right)$ — **всегда банахово**, независимо от того **полно** \mathbf{X} или нет.

Поточечная сходимость в пространстве линейных операторов

В *линейном нормированном пространстве* операторов $\mathbf{L_O}$ (\mathbf{X}, \mathbf{Y}), кроме стандартной сходимости операторов *по норме*, часто приходится рассматривать и другой вид сходимости операторов, который называется *поточечной* сходимостью операторов в $\mathbf{L_O}$ (\mathbf{X}, \mathbf{Y}).

Определение 49. Последовательность операторов $\{A_n\}$, $n=1,2,3,\ldots$ из пространства $L_{\mathbf{O}}(\mathbf{X},\mathbf{Y})$ сходится поточечно κ оператору $\mathbf{A} \in L_{\mathbf{O}}(\mathbf{X},\mathbf{Y})$, если $\forall \mathbf{x} \in \mathbf{X}$:

$$\|\mathbf{A}_n\mathbf{x} - \mathbf{A}\mathbf{x}\|_{\mathbf{Y}} \to 0$$
, $npu \ n \to \infty$.

Для поточечной сходимости операторов соответствующим образом определяются и фундаментальные (относительно поточечной сходимости) последовательности операторов $\{A_n\}$, $n=1,2,3,\ldots$, из пространства $L_{\mathbf{O}}(\mathbf{X},\mathbf{Y})$.

Замечание. Очевидно, что в пространстве операторов $\mathbf{L_O}(\mathbf{X}, \mathbf{Y})$ из сходимости последовательности операторов $\{\mathbf{A}_n\}$, $n=1,2,3,\ldots$, *по норме* к оператору \mathbf{A} , следует *поточечная* сходимостью этой же последовательности операторов $\{\mathbf{A}_n\}$ к тому же самому оператору \mathbf{A} в $\mathbf{L_O}(\mathbf{X}, \mathbf{Y})$.

Обратное заключение *неверно*, что показывает нижеследующий

Пример. В линейном нормированном пространстве ℓ_2 рассмотрим **последовательность** операторов $\{\mathbf{P}_n\}$, $n=1,2,3,\ldots$, определяемых для всякого элемента $\mathbf{x} \stackrel{def}{=} (x_1,\ldots,x_n,\ldots)$ пространства ℓ_2 следующим образом:

$$\mathbf{P}_n\mathbf{x} \stackrel{def}{=} (x_1, \dots, x_n, 0, 0, \dots) \stackrel{def}{=} \mathbf{x}_n .$$

T.K. $\mathbf{x} \in \ell_{\mathbf{2}}$, to

$$\|\mathbf{x} - \mathbf{P}_n \mathbf{x}\|_{\ell_2} \stackrel{def}{=} \| (0, \dots, 0, x_{n+1}, x_{n+2}, \dots) \|_{\ell_2} = \left(\sum_{j=n+1}^{\infty} x_j^2 \right)^{1/2} \to 0$$

при $n \to \infty$, что, как раз, и означает, что *последовательность* операторов $\{ \mathbf{P}_n \}$ *поточечно* сходится к *единичному* оператору \mathbf{E} в пространстве ℓ_2 , переводящему всякий элемент пространства \mathbf{x} из ℓ_2 снова в этот же элемент \mathbf{x} :

$$\mathbf{P}_n\mathbf{x} \to \mathbf{E}\mathbf{x} = \mathbf{x}$$
 при $n \to \infty$.

Однако, сходимость последовательности операторов $\{P_n\}$ по норме к тому же единичному оператору E не имеет места, т.е.

$$\|\mathbf{E} - \mathbf{P}_n\|_{\mathbf{L}_{\mathbf{O}}(\ell_2, \ell_2)} \not\to 0$$
 при $n \to \infty$,

т.к. при **любом** n , например, для вектора $\mathbf{e}_{n+1} \stackrel{def}{=} (0, \dots, 0, 1, 0, \dots)$ из $\ell_{\mathbf{2}}$, где 1 стоит на месте с номером n+1 , имеем:

$$\|\mathbf{E}\mathbf{e}_{n+1} - \mathbf{P}_n\mathbf{e}_{n+1}\|_{\ell_2} = \|\mathbf{e}_{n+1} - \mathbb{O}\|_{\ell_2} = \|\mathbf{e}_{n+1}\|_{\ell_2} = 1.$$

Поэтому, для $\boldsymbol{\mathit{ecex}}$ n

$$\|\mathbf{E} - \mathbf{P}_n\|_{\mathbf{L_O}(\ell_2, \ell_2)} = \sup_{\|\mathbf{x}\|_{\ell_2} = 1} \|\mathbf{E}\mathbf{x} - \mathbf{P}_n\mathbf{x}\|_{\ell_2} \ge \|\mathbf{E}\mathbf{e}_{n+1} - \mathbf{P}_n\mathbf{e}_{n+1}\|_{\ell_2} = 1 \not\to 0.$$

Произведение операторов и обратный оператор

Определение 50. Если X, Y, Z - mpu линейных пространства, оператор A действует из X в Y, а B — оператор, действующий из Y в Z, то можно определить произведение (композицию) операторов A и B:

$$\mathbf{C}\mathbf{x} = \mathbf{B}(\mathbf{A}\mathbf{x})$$
.

Tаким образом, оператор C действует из X в Z и будет **линейным** оператором, если **линейны** оба оператора A и B.

Определение 51. Оператор ${\bf C}$, действующий из ${\bf Y}$ в ${\bf X}$ называется обратным к оператору ${\bf A}$, действующему из ${\bf X}$ в ${\bf Y}$,

если:

$$\mathbf{CAx} = \mathbf{x}, \qquad \forall \mathbf{x} \in \mathbf{X}$$
 (3)
$$\mathbf{ACy} = \mathbf{y}, \qquad \forall \mathbf{y} \in \mathbf{Y}$$

Утверждение 27. *Обратный* оператор, если он **существует**, — **един**ственен.

Доказательство. Действительно, если ${\bf D}$ некоторый другой обратеный к ${\bf A}$, то , в силу второго из равенств (3): ${\bf D}({\bf AC}){\bf y}={\bf Dy}$, а, в силу первого равенства (3) $({\bf DA}){\bf Cy}={\bf Cy}$, следовательно ${\bf Cy}={\bf Dy}, \ \forall {\bf y}\in {\bf Y}$, что означает совпадение операторов ${\bf D}$ и ${\bf C}$.

Обратный к ${\bf A}$ оператор, который выше, в формуле (3) был обозначен ${\bf C}$, обычно **обозначается** символом ${\bf A}^{-1}$.

Теорема 12. Существование обратного оператора к оператору **А** эквивалентно однозначной разрешимости операторного уравнения:

$$\mathbf{A}\mathbf{x} = \mathbf{y}, \quad \forall \, \mathbf{y} \in \mathbf{Y} \tag{4}$$

Доказательство. Действительно, пусть ${\bf A}$ имеет **обратный** — ${\bf A}^{-1}$.

Тогда $\forall \mathbf{y} \in \mathbf{Y}$ элемент $\mathbf{A}^{-1}\mathbf{y}$, **очевидно**, является решением уравнения (4). Покажем, что это решение — **единственное**.

В самом деле, в противном случае, пусть \mathbf{z} — какое-либо решение (4), отличное от $\mathbf{A}^{-1}\mathbf{y}$.

Тогда:

$$\mathbf{A}\left(\,\mathbf{A}^{-1}\mathbf{y}\,-\,\mathbf{z}\,\right) \,=\, \mathbb{O}\,\,.$$

Подействовав на это равенство оператором A^{-1} , получим:

$$\mathbf{A}^{-1}\mathbf{y} - \mathbf{z} = \mathbb{O}$$
 или $\mathbf{z} = \mathbf{A}^{-1}\mathbf{y}$.

Пусть теперь уравнение $\ (4)$ однозначно разрешимо при любом $\mathbf{y} \in \mathbf{Y}$.

Обозначим это решение $\mathbf{C}(\mathbf{y})$.

Покажем, что $\mathbf{C}(\mathbf{y}) - \boldsymbol{\imath}$ инейное отображение.

Действительно, $\forall \mathbf{y_1}, \mathbf{y_2} \in \mathbf{Y}$, рассмотрим линейную комбинацию $\alpha \mathbf{y_1} + \beta \mathbf{y_2}$.

Тогда $\mathbf{C}(\alpha \mathbf{y_1} + \beta \mathbf{y_2}) - \mathbf{e} \partial \mathbf{u} \mathbf{n} \mathbf{c} \mathbf{m} \mathbf{e} \mathbf{e} \mathbf{n} \mathbf{n} \mathbf{e} \mathbf{e}$ решение уравнения (4) с правой частью $\alpha \mathbf{y_1} + \beta \mathbf{y_2}$.

Ho, из **линейности A** следует, что $\alpha \, \mathbf{Cy_1} \, + \, \beta \, \mathbf{Cy_2} - peшение$ этого же уравнения.

Поэтому, в силу $e\partial u h cm e e h h o cm u$ решения уравнения (4) :

$$\mathbf{C} (\alpha \mathbf{y_1} + \beta \mathbf{y_2}) = \alpha \mathbf{C} \mathbf{y_1} + \beta \mathbf{C} \mathbf{y_2},$$

и, следовательно, $\mathbf{C} - \boldsymbol{\imath}$ инейный оператор.

Непосредственно проверяется, что оператор ${\bf C}$ удовлетворяет условиям (3), то есть ${\bf C}={\bf A}^{-1}$.

Достаточное условие ограниченности обратного оператора

Если ${\bf X}$ и ${\bf Y}$ линейные нормированные пространства, то можно ставить вопрос о непрерывности (ограниченности) обратного оператора ${\bf A}^{-1}$.

Теорема 13. Пусть A линейное отображение линейного нормированного пространства X ha линейное нормированное пространство Y такое, что для некоторого m>0 выполнено условие:

$$\|\mathbf{A}\mathbf{x}\| \geqslant \mathbf{m} \cdot \|\mathbf{x}\|, \quad \forall \, \mathbf{x} \in \mathbf{X}$$
 (5)

Тогда **существует** обратный оператор \mathbf{A}^{-1} и, кроме того, справедлива следующая **оценка нормы** этого **обратного** оператора:

$$\|\mathbf{A}^{-1}\| \leqslant 1/\mathbf{m}$$
.

Заметим, что сам оператор \mathbf{A} не предполагается *непрерывным*. Доказательство. Действительно, так как \mathbf{A} — отображение \boxed{na} \mathbf{Y} , то $\forall \mathbf{y} \in \mathbf{Y}$, уравнение (4) *имеет* решение, которое, в силу (5), *единственно*.

Следовательно оператор ${\bf A}^{-1}$ существует.

Полагая в (5) $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$, получим:

$$\|\mathbf{A}^{-1}\mathbf{y}\| \leqslant 1/\mathbf{m} \cdot \|\mathbf{y}\|$$
,

что и означает утверждаемую *оценку нормы* обратного оператора. \square

Пример. Пусть $\mathbf{Y} = \mathbb{C}\left[\mathbf{a}, \mathbf{b}\right]$, а пространство $\mathbf{X} - \mathit{лине}$ йное подпространство в $\mathbb{C}\left[\mathbf{a}, \mathbf{b}\right]$, состоящее из дифференцируемых функций, обращающихся в 0 в точке $t = \mathbf{a}$.

Под **A** будем понимать *оператор*, ставящий в соответствии $\phi y n \kappa - u u u$, определенной на $[\mathbf{a}, \mathbf{b}], -e e n p o u s e o d h y o$.

То есть:

$$\mathbf{A} x(t) = x'(t), \quad x(\mathbf{a}) = 0.$$

 $m{Omoбражениe}$ $m{A}$ есть отображение $m{m{\mu a}}$ $\mathbb{C}\left[m{a},m{b}
ight],$ то есть уравнение

$$x'(t) = y(t), \quad x(\mathbf{a}) = 0$$

 ${\it umeem}$ решение при любой $y(t) \in \mathbb{C}\left[{f a},{f b}
ight].$

Оно, *очевидно*, дается формулой:

$$x(t) = \int_{\mathbf{a}}^{t} y(\tau) d\tau .$$

Кроме того, выполнено и условие (5).

Действительно, $\forall \mathbf{f} \in \mathbb{C} [\mathbf{a}, \mathbf{b}]$, справедливо неравенство:

$$\frac{1}{\mathbf{b} - \mathbf{a}} \left\| \int_{\mathbf{a}}^{t} f(\tau) d\tau \right\| \leqslant \|\mathbf{f}\|_{\mathbb{C}[\mathbf{a}, \mathbf{b}]}.$$

Подставим в него, вместо f , — x'(t) , и получим неравенство (5) с

$$\mathbf{m} = \frac{1}{\mathbf{b} - \mathbf{a}} \, .$$

Сам оператор $\mathbf{A}\,x(t)=x'(t)$ не является **непрерывным** на \mathbf{X} , что было показано ранее в п. 2.2 .

Теорема Банаха об обратном операторе

В следующем утверждении линейное нормированное пространство ${\bf X}$, на котором задан *линейный* оператор ${\bf A}$, предполагается *банаховым*, и оператор ${\bf A}$ действует в это же самое пространство ${\bf X}$.

Теорема 14 (*C. Банах*). Пусть **A ограниченный линейный** оператор, действующий из **банахова** пространства \mathbf{X} в \mathbf{X} и $\|\mathbf{A}\| < 1$.

Tогда оператор (${f E}-{f A}$) **имеет ограниченный обратный** и при этом:

$$\left\| \left(\mathbf{E} - \mathbf{A} \right)^{-1} \right\| \leqslant \frac{1}{1 - \|\mathbf{A}\|}.$$

Здесь под Е понимается тождественный оператор:

$$\mathbf{E}\mathbf{x} = \mathbf{x}, \quad \forall \, \mathbf{x} \in \mathbf{X} \,.$$

Доказательство. Проверим выполнение в случае **теоремы Банаха** условий **теоремы** 8.

Рассмотрим операторное уравнение:

$$(\mathbf{E} - \mathbf{A})\mathbf{x} = \mathbf{y}$$

Его можно записать в виде:

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{B}\mathbf{x} \tag{6}$$

В силу условия: $\|\mathbf{A}\| < 1$, оператор в **правой части** уравнения (6) **сэкимающий** $\forall \mathbf{y} \in \mathbf{X}$, и уравнение (6) **имеет единственное** решение.

Поэтому *отображение* (${f E}-{f A}$) является отображением $[{m na}]$ ${f X}$. Кроме того, в силу неравенства из утверждения 2 § 1 :

$$\| (\mathbf{E} - \mathbf{A}) \mathbf{x} \| = \| \mathbf{x} - \mathbf{A} \mathbf{x} \| \ge | \| \mathbf{x} \| - \| \mathbf{A} \| \cdot \| \mathbf{x} \| | = (1 - \| \mathbf{A} \|) \cdot \| \mathbf{x} \|,$$

то есть для оператора $(\mathbf{E} - \mathbf{A})$ справедливы условия **теоремы** 8 , где постоянная $\mathbf{m} = 1 - \|\mathbf{A}\|$.

Теорема Банаха доказана.

Следствием теоремы Банаха является следующее

Утверждение 28. Пусть оператор A, действующий из банахова пространства X $\boxed{\mathbf{B}}$ линейное нормированное пространство Y, имеет ограниченный обратный A^{-1} , и \mathbf{B} линейный непрерывный оператор из \mathbf{X} в \mathbf{Y} и его норма удовлетворяет неравенству:

$$\|\mathbf{A}^{-1}\| \cdot \|\mathbf{B}\| < 1 \tag{7}$$

Tогда оператор $\mathbf{A} + \mathbf{B}$ также имеет **ограниченный обратный**, **определяемый** формулой:

$$\left(\mathbf{A} + \mathbf{B}\right)^{-1} = \left(\mathbf{E} + \mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{A}^{-1}, \qquad (8)$$

 $ec{e}$ $\mathbf{E}-\mathbf{e} oldsymbol{\partial} u$ ничный оператор в \mathbf{X} .

 \mathcal{A} оказательство. Действительно, оператор $(\mathbf{E} + \mathbf{A}^{-1}\mathbf{B})$ удовлетворяет условиям meopemы Bahaxa и, поэтому, имеет ofpamhый (из \mathbf{X} в \mathbf{X}).

Формула (8) проверяется *непосредственно*, с учетом того, что:

$$\mathbf{A} + \mathbf{B} = \mathbf{A} \big(\mathbf{E} + \mathbf{A}^{-1} \mathbf{B} \big) .$$

Если $\mathbf{Y}-\pmb{\delta a \mu a xo go}$ пространство, то $\pmb{\delta b a m \mu u u}$ к $(\mathbf{A}+\mathbf{B})$ допускает, при условии (7), также и такое $\pmb{n ped c ma g n e u u}$:

$$\left(\mathbf{A} + \mathbf{B}\right)^{-1} = \mathbf{A}^{-1} \left(\mathbf{E} + \mathbf{B} \mathbf{A}^{-1}\right)^{-1},$$

где $\mathbf{E} - e \partial u h u \mathcal{U} h \mathcal{U}$ оператор в \mathbf{Y} .

Собственные значения и спектр линейного оператора

Определение 52. Элемент $\mathbf{x} \neq \mathbb{O}$ линейного пространства \mathbf{X} , в котором действует оператор \mathbf{A} , называется собственным элементом, если для некоторого действительного числа λ выполнено равенство:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{9}$$

Число λ называется **собственным значением**, соответствующим **собственному элементу** \mathbf{x} .

Определение 53. Значение параметра λ называется **регулярным** для оператора \mathbf{A} , если при этом значении λ существует **ограниченный** обратный оператор по отношению к оператору $(\lambda \mathbf{E} - \mathbf{A})$.

Этот оператор $-(\lambda \mathbf{E} - \mathbf{A})^{-1} \stackrel{def}{=} \mathbf{R}^{\mathbf{A}}_{\lambda}$, называется **резольвен-**той оператора \mathbf{A} , а множество регулярных значений λ называется **резольвентным** множеством оператора \mathbf{A} .

Mножество значений параметра λ , **не являющихся регуляр- ными**, образуют **спектр** оператора **A**.

Таким образом, все *собственные значения* λ оператора \mathbf{A} *вхо-дят* в *спектр* этого оператора, т.к. при таком значении λ $\ker(\lambda\,\mathbf{E}\,-\,\mathbf{A})\stackrel{def}{=}\big\{\,\mathbf{x}\in\mathbf{X}\,\,\big|\,\,(\lambda\,\mathbf{E}\,-\,\mathbf{A})\,\mathbf{x}\,=\,\mathbb{O}\,\big\}\neq\big\{\mathbb{O}\big\}\,,$ и, поэтому, оператор $(\lambda\,\mathbf{E}\,-\,\mathbf{A})$ *необратим*.

Пример 1. Рассмотрим в пространстве $\mathbb{C}[0,1]$ оператор **А** *умно- жения* на независимую *переменную* t , определяемый для *всякого*

элемента $\mathbf{x} \equiv x(t)$ этого пространства формулой:

$$\mathbf{A}\mathbf{x} = t \cdot x(t) .$$

Рассмотрим в пространстве $\mathbb{C}[0,1]$ операторное уравнение:

$$(\lambda \mathbf{E} - \mathbf{A}) \mathbf{x} = \mathbf{y}, \ \mathbf{y} \in \mathbb{C} [\mathbf{0}, \mathbf{1}],$$
 или $\lambda x(t) - t x(t) = y(t)$ (10)

 $\mathbf{1}^{\circ}$. Если значение λ лежит *вне отрезка* $[\mathbf{0},\mathbf{1}]$, то это *уравнение* имеет *единственное* решение при любой *функции* $y\left(t\right)\in\mathbb{C}\left[\mathbf{0},\mathbf{1}\right]$:

$$x(t) = \frac{1}{\lambda - t} y(t) .$$

Эта формула определяет ограниченный оператор $(\lambda \mathbf{E} - \mathbf{A})^{-1} \stackrel{def}{=} \mathbf{R}^{\mathbf{A}}_{\lambda}$ для $\forall y(t) \in \mathbb{C} [\mathbf{0}, \mathbf{1}]$, поэтому все значения λ_0 из **дополнения** отрезка $[\mathbf{0}, \mathbf{1}]$ являются **регулярными** для рассматриваемого оператора, и принадлежат **резольвентному** множеству оператора \mathbf{A} .

 ${f 2}^\circ$. Все значения λ_0 из *отрезка* $[{f 0},{f 1}]$ принадлежат *спектру* рассматриваемого оператора ${f A}$, т.к., если в качестве правой части уравнения (10) взять *любую* непрерывную на отрезке $[{f 0},{f 1}]$ функцию y(t), такую, что в точке $t=\lambda_0:y(\lambda_0)=a\neq 0$, то, уравнение (10) не имеет решения $x(t)\in {\Bbb C}[{f 0},{f 1}]$, т.к. левая часть равна нулю при $t=\lambda_0$, а правая часть не равна нулю в силу условия $y(\lambda_0)=a\neq 0$.

В заключение заметим, что \boldsymbol{uu} одно значение λ_0 из отрезка $[\mathbf{0},\mathbf{1}]$ не является собственным значением для оператора \mathbf{A} .

Пример 2. Пусть пространство, в котором действует оператор \mathbf{A} , есть $\mathbf{X} = \mathbb{E}^n$, а сам оператор \mathbf{A} задан квадратной *симметричной* матрицей $\mathcal{A} = (a_{ij}), \quad i, j = 1, 2, \dots, n$.

Тогда уравнение, определяющее **резольвенту**, в рассматриваемом случае имеет вид:

$$(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1$$
...
$$a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = y_n$$

т.е. является системой **n** алгебраических уравнений относительно **n** неизвестных (x_1,\ldots,x_n) с симметричной матрицей $\mathcal{A}=(a_{ij}),$ $i,j=1,2,\ldots,n,$ и правой частью $(y_1,\ldots,y_n).$

- 1° . Если значение λ не является корнем характеристического уравнения матрицы системы, то определитель этой системы отмичен от нуля и система имеет единственное решение при любой правой части $(y_1, \ldots, y_n) \in \mathbb{E}^n$, что означает регулярность всякого такого значения λ , т.к. в данном случае существует резольвента, порождённая обратной к $(\lambda \mathcal{E} \mathcal{A})$ матрицей, где \mathcal{E} единичная матрица.
- 2° . Если значение λ является корнем характеристического уравнения матрицы системы, то определитель этой системы равен нулю и система перестаёт быть разрешимой для любой правой части, т.е. в рассматриваемом случае оператор $(\lambda \mathbf{E} \mathbf{A})$, определяемый матрицей $(\lambda \mathcal{E} \mathcal{A})$, необратим.

Поэтому все корни характеристического многочлена матрицы системы являются точками спектра оператора ${f A}$.

В рассматриваемом случае *каждый корень характеристического многочлена* матрицы будет *собственным значением оператора* **A** ,

порождённого матрицей $\mathcal{A} = (a_{ij}), i, j = 1, 2, \dots, n$.

Упражнения и задачи к параграфу 3.

- 1. Как onpedeляются элементы $-\mathbf{A}$ и $\mathbb O$ в линейном npo-cmpa+cmse линейных операторов \mathbf{L} (\mathbf{X} , \mathbf{Y})?
- 2. Показать выполнение *аксиом нормы* в *линейном простран- стве* линейных ограниченных операторов $L_{O}(X,Y)$.
- 3. Показать, что произведение *линейных ограниченных* операторов есть *линейный ограниченный* оператор и его *норма* не превосходит произведения *норм* сомножителей.
- 4. Показать, что оператор *дифференцирования*, заданный на линейном *подпространстве* дифференцируемых функций из $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ с условием $x(\mathbf{a}) = 0$ и *действующий* \mathbb{B} $\mathbb{C}[\mathbf{a}, \mathbf{b}]$, не является *непрерывным*.

<u>Указание</u>. Рассмотреть *последовательность* функций: $x_n(t) = 1/n \sin n(t - \mathbf{a})$.

- 5. Показать, что *в условиях* теоремы Банаха оператор $(\mathbf{E} \mathbf{A})^{-1}$ может быть *представлен* в виде ряда: $\sum_{n=0}^{\infty} \mathbf{A}^n$, *сходящегося* в смысле *нормы* пространства операторов $\mathbf{L}_{\mathbf{O}}(\mathbf{X}, \mathbf{X})$.
- 6. Пусть **A** вполне непрерывный оператор из X в X, а оператор B принадлежит $L_O(X,X)$.

 \mathcal{A} оказать, что $\mathbf{A}\mathbf{B}$ и $\mathbf{B}\mathbf{A}$ вполне непрерывные операторы из \mathbf{X} в \mathbf{X} .

7. В пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ задан **интегральный** оператор $\mathbf{A}\mathbf{x}=\int\limits_{\mathbf{a}}^{\mathbf{b}}\mathcal{K}\left(t,s\right)\!x\left(s\right)ds$, и **последовательность интегральных** опе-

раторов $\{\mathbf{A}_n\mathbf{x}\} = \left\{\int_{\mathbf{a}}^{\mathbf{b}} \mathcal{P}_n(t,s)x(s)\,ds\right\}$, где ядро $\mathcal{K}(t,s)$ интегрального оператора \mathbf{A} непрерывно на квадрате $\mathbf{a}\leqslant t,s\leqslant \mathbf{b}$, а \mathbf{a} непрерывно последовательности операторов $\{\mathbf{A}_n\}$ являются полиномами степени n, удовлетворяющими условию:

$$\max_{\mathbf{a} \leqslant t, s \leqslant \mathbf{b}} |\mathcal{K}(t, s) - \mathcal{P}_n(t, s)| \to 0 \text{ при } n \to \infty.$$

Сходятся ли операторы $\{A_n\}$ к оператору A и, если сходятся, то определить тип сходимости: **по норме** или **поточечно**?

8. В пространстве $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ задан *интегральный* оператор $\mathbf{A}\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t,s)x(s)\,ds$, и *последовательность интегральных* операторов $\{\mathbf{A}_n\mathbf{x}\} = \left\{\int_{\mathbf{a}_n}^{\mathbf{b}_n} \mathcal{K}(t,s)x(s)\,ds\right\}$, где ядра $\mathcal{K}(t,s)$ интегрального оператора \mathbf{A} и последовательности операторов $\{\mathbf{A}_n\}$ непрерывны на квадрате $\mathbf{a} \leqslant t, s \leqslant \mathbf{b}$, а соответствующие отрезки $[\mathbf{a}_n, \mathbf{b}_n]$ и $[\mathbf{a}, \mathbf{b}]$ удовлетворяют условию: $[\mathbf{a}_n, \mathbf{b}_n] \subset [\mathbf{a}, \mathbf{b}]$ и $\mathbf{a}_n \to \mathbf{a}$, $\mathbf{b}_n \to \mathbf{b}$ при $n \to \infty$.

Сходятся ли операторы $\{A_n\}$ к оператору A и, если сходятся, то определить тип сходимости: **по норме** или **поточечно**?

9. Пусть операторы \mathbf{A} и \mathbf{B} в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ определены формулами: $\mathbf{A}\mathbf{x}=t\cdot x\left(t\right),\ \mathbf{B}\mathbf{x}=\int\limits_{0}^{\mathbf{t}}x\left(\tau\right)d\tau$.

Будут ли операторы А и В перестановочны?

10. Пусть операторы \mathbf{A} , \mathbf{B} и \mathbf{C} в пространстве $\mathbb{C}[\mathbf{a}, \mathbf{b}]$ определены формулами: $\mathbf{A}\mathbf{x} = t^2x(t)$, $\mathbf{B}\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{t}} x(\tau) d\tau$ и $\mathbf{C}\mathbf{x} = x(\mathbf{a}) + t \cdot x(\mathbf{b})$.

Какие из указанных операторов являются *вполне непрерывными*?

11. Пусть оператор ${\bf A}$ в пространстве $\ell_{\bf 2}$ определен формулой: ${\bf A}{\bf x}=\sum_{j=1}^{\infty}\frac{x_j}{2j}$.

Показать, что оператор ${\bf A}$ *вполне непрерывный*, если его рассматривать как оператор действующий из пространства $\ell_{\bf 2}$ в ${\mathbb E}^1$.

- 12. Имеет ли оператор \mathbf{A} , действующий на каждый элемент $\mathbf{x} = x(t)$ в пространстве $\mathbb{C}\left[\mathbf{0},\mathbf{1}\right]$ по формуле $\mathbf{A}\mathbf{x} = \int\limits_{\mathbf{0}}^{\mathbf{t}} x\left(\tau\right)d\tau$ собственные значения и собственные векторы ?
- 13*. Показать, что для операторного уравнения $\mathbf{A}\mathbf{x} \lambda\mathbf{x} = \mathbf{y}$, где $\mathbf{A}\mathbf{x} = \int\limits_{\mathbf{a}}^{\mathbf{t}} \mathcal{K}\left(t,s\right) x\left(s\right) ds$, **оператор Вольтерра**, а ядро $\mathcal{K}\left(t,s\right)$ **интегрального** оператора \mathbf{A} непрерывно на квадрате $\mathbf{a} \leqslant t, s \leqslant \mathbf{b}$, все значения параметра $\lambda \neq 0$ **регулярны**, т.е. интегральное уравнение $\int\limits_{\mathbf{a}}^{\mathbf{t}} \mathcal{K}\left(t,s\right) x\left(s\right) ds = \lambda x\left(t\right)$ имеет лишь **тривиальное** решение.
- 14. Показать, что если значение параметра λ *регулярно* для оператора \mathbf{A} , то это же значение λ будет *регулярным* и для оператора $\mathbf{A} + \mathbf{B}$, если $\|\mathbf{B}\|$ достаточно *мала*.
- 15. Каковы **собственные функции интегрального оператора Фредгольма** $\mathbf{A}\mathbf{x} = \int\limits_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t,s)x(s)\,ds\,,\,\, \mathbf{c}\,\,\mathbf{ядром}\,\,\mathcal{K}(t,s) = \cos{(t+s)}$ **на промежутках**:
 - a). $[a, b] = [0, \pi]$
 - б). $[\mathbf{a}, \mathbf{b}] = [\mathbf{0}, \frac{\pi}{2}]$?

Глава 3

Гильбертово пространство.

Линейные отображения

гильбертовых пространств

3.1 Определение гильбертова пространства.

Простейшие свойства

Пространство со скалярным произведением

Определение 54. Линейное пространство X называется пространством со скалярным произведением, если любым двум элементам $u, v \in X$ поставлено в соответствии число (элемент \mathbb{R}^1), называемое скалярным произведением этих элементов и обозначаемое (u, v), таким образом, что выполнены следующие условия — аксиомы скалярного произведения:

1° . - $A\kappa cuoma$ cummempuu:

$$(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u}).$$

 $\mathbf{2}^{\circ}$. - $A\kappa cuo$ ма линейности:

$$(\lambda \mathbf{u} + \mu \mathbf{v}, \mathbf{z}) = \lambda (\mathbf{u}, \mathbf{z}) + \mu (\mathbf{v}, \mathbf{z}).$$

 ${f 3}^{\circ}$. - $A\kappa cuo$ ма невырожденносmu:

$$(\mathbf{u},\mathbf{u})\geqslant 0,$$
 и из условия: $(\mathbf{u},\mathbf{u})=0,$ следует, что $\mathbf{u}=\mathbb{O}$.

Из условий $\mathbf{1}^{\circ} - \mathbf{3}^{\circ}$ легко получаются

Неравенство Коши - Буняковского:

$$|(\mathbf{u}, \mathbf{v})| \leqslant \sqrt{(\mathbf{u}, \mathbf{u})} \cdot \sqrt{(\mathbf{v}, \mathbf{v})}$$
 (1)

Неравенство треугольника:

$$\sqrt{(\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v})} \leqslant \sqrt{(\mathbf{u}, \mathbf{u})} + \sqrt{(\mathbf{v}, \mathbf{v})}$$
 (2)

Докажем неравенство (1).

Пусть λ — действительное число.

B силу свойств $\mathbf{1}^{\circ} - \mathbf{3}^{\circ}$:

$$(\mathbf{u} + \lambda \mathbf{v}, \mathbf{u} + \lambda \mathbf{v}) = (\mathbf{u}, \mathbf{u}) + 2\lambda (\mathbf{u}, \mathbf{v}) + \lambda^2 (\mathbf{v}, \mathbf{v}) \geqslant 0.$$

Ввиду **неотрицательности** выписанного **квадратичного**, относительно λ , **трехчлена**, его **дискриминант неположителен**, то есть:

$$(\mathbf{u}, \mathbf{v})^2 \leqslant (\mathbf{u}, \mathbf{u}) \cdot (\mathbf{v}, \mathbf{v}) \tag{3}$$

Неравенство (3) **эквивалентно** неравенству (1), а неравенство (2), — простое **следствие** неравенства (1).

Действительно:

$$(\mathbf{u} + \mathbf{v}, \, \mathbf{u} + \mathbf{v}) = (\mathbf{u}, \, \mathbf{u}) + 2(\mathbf{u}, \, \mathbf{v}) + (\mathbf{v}, \, \mathbf{v}) \leqslant (\mathbf{u}, \, \mathbf{u}) + 2|(\mathbf{u}, \, \mathbf{v})| + (\mathbf{v}, \, \mathbf{v}) \leqslant$$
$$\leqslant (\mathbf{u}, \, \mathbf{u}) + 2\sqrt{(\mathbf{u}, \, \mathbf{u})}\sqrt{(\mathbf{v}, \, \mathbf{v})} + (\mathbf{v}, \, \mathbf{v}) = \left(\sqrt{(\mathbf{u}, \, \mathbf{u})} + \sqrt{(\mathbf{v}, \, \mathbf{v})}\right)^{2}$$

Свойства $1^{\circ} - 3^{\circ}$ *скалярного произведения* и неравенства (1) и (2) позволяют ввести в линейном пространстве со скалярным произведением *норму* любого элемента **u** этого *пространства* по формуле:

$$\|\mathbf{u}\| = \sqrt{(\mathbf{u}, \mathbf{u})} \tag{4}$$

Очевидно, что для нормы, порождаемой скалярным произведением, справедливо *тождество параллелограмма*:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$$

Определение 55. *Полное* пространство со скалярным произведением называется гильбертовым пространством.

Приведем несколько примеров *линейных пространств со скаляр- ным произведением*.

Примеры пространств со скалярным произведением

Пример 1. *Пространство* \mathbb{E}^n — примера 1 § 1 главы I является *линейным пространством со скалярным произведением*, определяемым формулой:

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i \cdot y_i \tag{5}$$

Так как это пространство nonho, то оно — zunb6epmoso.

Пример 2. Пространство ℓ_2 — (пример 3 § 1 главы I), — гильбертово, а скалярное произведение в нем задается формулой:

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{\infty} x_i \cdot y_i \tag{6}$$

Так как:

$$|x_i y_i| \leq \frac{1}{2} (x_i^2 + y_i^2), \quad \forall i,$$

и, по определению пространства ℓ_2 , ряды $\sum_{i=1}^{\infty} x_i^2$, $\sum_{i=1}^{\infty} y_i^2$ **сходятся**, то ряд (6) сходится **абсолютно** и правая часть (6) определена корректно.

Аксиомы $1^{\circ} - 3^{\circ}$ скалярного произведения, *очевидно*, выполнены.

Пример 3. Линейное пространство непрерывных на отрезке [a, b] функций становится пространством со скалярным произведением, если последнее определить формулой:

$$(\mathbf{x}, \mathbf{y}) = \int_{a}^{b} x(t) \cdot y(t) dt$$
 (7)

Полученное пространство совпадает с рассматриваемым нами ранее пространством $\mathbb{C}_{\mathbb{L}_2}[\mathbf{a},\mathbf{b}]$ из примера 7 § 1 главы I .

Это пространство не полно и, следовательно, не гильбертово.

Любое линейное пространство со скалярным произведением можно пополнить так, что пополнение станет гильбертовым пространством, причем скалярное произведение в пополняемом пространстве будет совпадать со скалярным произведением в гильбертовом пространстве (точнее на подмножестве этого гильбертова пространства изометричном пополняемому пространству) (см. § 4 главы I).

Пример 4. Рассмотрим *пополнение* неполного пространства со скалярным произведением, сконструированного в предыдущем примере.

Среди его возможных пополнений будет пространство $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right],\;\;$ введённое в § 4 главы 1 . Это пространство — $\emph{гильбертово}.$

Скалярное произведение в нём определяется формулой (7), интеграл в которой понимается *в смысле Лебега*. (См. § 4 главы I, или, более подробно, [1], [7]).

Слабая сходимость

в пространстве со скалярным произведением

В *любом* линейном пространстве со скалярным произведением справедливо

Утверждение 29. Скалярное произведение (x, y) является непрерывной функцией своих аргументов в смысле сходимости, пороженной нормой (4).

To ecmь:

$$\lim_{n\to\infty} (\mathbf{x}_n, \mathbf{y}_n) = (\mathbf{x}, \mathbf{y}), \qquad (8)$$

если:

$$\lim_{n\to\infty} \|\mathbf{x}_n - \mathbf{x}\| = 0, \quad \lim_{n\to\infty} \|\mathbf{y}_n - \mathbf{y}\| = 0.$$

Доказательство утверждения (8) следует из цепочки неравенств:

$$\left| \left(\mathbf{x}_{n}, \mathbf{y}_{n} \right) - \left(\mathbf{x}, \mathbf{y} \right) \right| \leqslant \left| \left(\mathbf{x}_{n}, \mathbf{y}_{n} - \mathbf{y} \right) - \left(\mathbf{y}, \mathbf{x} - \mathbf{x}_{n} \right) \right| \leqslant$$
$$\leqslant \left\| \mathbf{x}_{n} \right\| \cdot \left\| \mathbf{y}_{n} - \mathbf{y} \right\| + \left\| \mathbf{y} \right\| \cdot \left\| \mathbf{x}_{n} - \mathbf{x} \right\|.$$

Т.к. последовательнось $\{ \| x_n \| \}$ *ограничена*, то правая часть последнего неравенства стремится к 0 при $n \to \infty$.

Утверждение 30. Частным случаем утверждения 29 является следующее **предельное** равенство:

$$\forall \mathbf{y} \in \mathbf{X} : \quad \lim_{n \to \infty} (\mathbf{x}_n, \mathbf{y}) = (\mathbf{x}, \mathbf{y}) , \qquad (9)$$

если:

$$\lim_{n\to\infty} \|\mathbf{x}_n - \mathbf{x}\| = 0.$$

Обратить это утверждение нельзя:

из справедливости соотношения (9) для последовательности $\{\mathbf{x}_n\}$ $\forall \mathbf{y} \in \mathbf{X}$, вообще говоря, не следует сходимость \mathbf{x}_n к \mathbf{x} по норме. Определение 56. Последовательность элементов $\{\mathbf{x}_n\}$ в линейном пространстве со скалярным произведением называется слабо сходящейся к элементу \mathbf{x} , если выполнено условие (9).

Пример 5. Примером слабо сходящейся (но не сходящейся сильно, т.е. в смысле нормы), последовательности, является последовательность элементов пространства ℓ_2 из примера 5 § 2 главы I:

$$\mathbf{x}_n = (0, \ldots, 0, 1, 0, \ldots, 0 \ldots),$$

где 1 стоит на n-ом месте.

Эта nocледовательность cлабо cxodumcs к \mathbb{O}_{ℓ_2} в ℓ_2 . Действительно:

$$\forall \mathbf{y} = (y_1, y_2, \dots, y_n, \dots) \in \ell_{\mathbf{2}}, \quad (\mathbf{x}_n, \mathbf{y}) = y_n \to 0 \text{ при } n \to \infty.$$

Утверждение 31. *Слабо сходящаяся последовательность* имеет только один слабый предел.

 \mathcal{A} оказательство. Действительно, пусть $\{\mathbf{x}_n\}$ имеет $\partial \boldsymbol{\epsilon} \boldsymbol{a}$ слабых предела \mathbf{x} и \mathbf{z} .

Из (9) следует, что $(\mathbf{z}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{y}$ или $(\mathbf{x} - \mathbf{z}, \mathbf{y}) = 0$. Полагая $\mathbf{y} = \mathbf{x} - \mathbf{z}$, получим в силу свойства 3° *скалярного* произведения: $\mathbf{x} = \mathbf{z}$.

Ортогональность и замкнутость множеств в пространстве со скалярным произведением

Определение 57. Два элемента **x**, **y**, принадлежащие **линейному** пространству со скалярным произведением, называются ортогональными, если:

$$(\mathbf{x}, \mathbf{y}) = 0$$

Утверждение 32. Пусть $\mathbf{x} - \boldsymbol{\phi}$ иксированный элемент линейного пространства со скалярным произведением \mathbf{X} .

Mножество ${f L}$ элементов пространства ${f X}$, **ортогональных** фиксированному **элементу** ${f x}$, является **замкнутым подпространством** в ${f X}$.

Доказательство. То, что ${\bf L}-$ **линеал**, т.е. линейное подпространство в ${\bf X}$, сразу следует из свойств $1^\circ-3^\circ$ скалярного произведения.

Замкнутость L немедленно следует из утверждения (9) о **непрерывности** скалярного произведения.

Важным примером *подпространства* в любом *линейном пространстве со скалярным произведением* является множество $\mathbf{L}_{\{\xi\}_1^N}$, состоящее из *всевозможных линейных комбинаций* $N<\infty$ *линейно независимых* элементов ξ_1,\ldots,ξ_N , то есть множество вида:

$$\{c_1 \xi_1 + \cdots + c_N \xi_N\}$$
, (10)

где $c_1, \ldots, c_N - npouзвольные$ действительные числа.

 $m{\Pi}$ од $m{n}$ рос $m{m}$ ранс $m{m}$ во $m{L}_{\{m{\xi}\}_1^N}$, обычно, называют линейной оболочкой системы элементов $\{m{\xi}_1,\,\dots\,,m{\xi}_N\}$.

Утверждение 33. *Множеество* (10) замкнутое подпространство в **X**.

Это утверждение было доказано в главе II (§ 1 следствие 3) для произвольных линейных нормированных пространств.

Ниже мы приведём ещё одно доказательство сформулированного утверждения, использующее *специфику* пространств *со скалярным произведением*. Оно интересно само по себе. Кроме того, возможно, что читатель не ознакомился с содержанием соответствующих страниц параграфа 1 главы II, помеченных знаком •.

То, что множество (10) — *линейное подпространство* в \mathbf{X} , — *очевидно*. Покажем его *замкнутость*.

Если элемент $\mathbf{z} \in \mathbf{X}$ имеет вид (10), то соответствующие коэф-фициенты c_1, \ldots, c_N однозначно определяются набором скалярных произведений:

$$(\mathbf{z}, \boldsymbol{\xi}_1), \ldots, (\mathbf{z}, \boldsymbol{\xi}_N)$$
.

Действительно, пусть:

$$\mathbf{z} = c_1 \boldsymbol{\xi}_1 + \dots + c_N \boldsymbol{\xi}_N . \tag{11}$$

Умножая cкалярно правую и левую часть этого равенства последовательно на $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_N$, получим совокупность равенств:

$$c_{1}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{1}) + \cdots + c_{N}(\boldsymbol{\xi}_{N}, \boldsymbol{\xi}_{1}) = (\mathbf{z}, \boldsymbol{\xi}_{1})$$

$$\cdots + \cdots + \cdots = \cdots$$

$$c_{1}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{N}) + \cdots + c_{N}(\boldsymbol{\xi}_{N}, \boldsymbol{\xi}_{N}) = (\mathbf{z}, \boldsymbol{\xi}_{N}),$$

$$(12)$$

которую можно рассматривать, как cucmemy линейных алгебраиче- $c\kappa ux$ уравнений относительно c_1, \ldots, c_N .

 $\pmb{Mampuua}$ $\pmb{\mathcal{G}}$ системы (12) называется $\pmb{Mampuue}$ $\pmb{\mathcal{I}}$ $\pmb{\Gamma}$ \pmb{Pama} \pmb{cu} \pmb{cmemb} элементов $\pmb{\xi}_1, \ldots, \pmb{\xi}_N$.

f Утверждение f 34. $\it Onpedenument$ матрицы $\it \Gamma$ рама $\it det \, {\cal G} \,
eq 0$.

Доказательство. Действительно, если $\det \mathcal{G} = 0$, то имеется линейная зависимость между столбиами матрицы Грама.

Представим предполагаемую зависимость в виде:

$$d_1 \cdot \begin{pmatrix} (\boldsymbol{\xi}_1, \boldsymbol{\xi}_1) \\ \vdots \\ (\boldsymbol{\xi}_1, \boldsymbol{\xi}_N) \end{pmatrix} + d_2 \cdot \begin{pmatrix} (\boldsymbol{\xi}_2, \boldsymbol{\xi}_1) \\ \vdots \\ (\boldsymbol{\xi}_2, \boldsymbol{\xi}_N) \end{pmatrix} + \dots + d_N \cdot \begin{pmatrix} (\boldsymbol{\xi}_N, \boldsymbol{\xi}_1) \\ \vdots \\ (\boldsymbol{\xi}_N, \boldsymbol{\xi}_N) \end{pmatrix} = \mathbb{O},$$

где $\mathbb{O}-$ **нуль-элемент** $\mathbb{R}^{\mathbf{N}}$.

То есть:

$$(d_1 \cdot \boldsymbol{\xi}_1 + \dots + d_N \cdot \boldsymbol{\xi}_N, \, \boldsymbol{\xi}_1) = 0$$

$$\dots + \dots + \dots = \dots$$

$$(d_1 \cdot \boldsymbol{\xi}_1 + \dots + d_N \cdot \boldsymbol{\xi}_N, \, \boldsymbol{\xi}_N) = 0$$

Умножим i -ую строчку этих равенств на d_i и просуммируем по i от 1 до N .

Получим: $(d_1 \boldsymbol{\xi}_1 + \cdots + d_N \boldsymbol{\xi}_N, d_1 \boldsymbol{\xi}_1 + \cdots + d_N \boldsymbol{\xi}_N) = 0.$

Откуда следует, что: $d_1 \, \boldsymbol{\xi}_1 + \cdots + d_N \, \boldsymbol{\xi}_N = \mathbb{O}$, то есть элементы $\{ \boldsymbol{\xi}_i \}$ линейно зависимы, вопреки нашему предположению об их независимости.

Поэтому $\det \mathcal{G} \neq 0$ и существует **обратная** матрица \mathcal{G}^{-1} .

Коэффициенты $\{c_i\}$ в равенстве (1) и его **правая часть** связаны следующим соотношением:

$$\mathbf{c} = \mathcal{G}^{-1} \begin{pmatrix} (\mathbf{z}, \boldsymbol{\xi}_1) \\ \vdots \\ (\mathbf{z}, \boldsymbol{\xi}_N) \end{pmatrix} , \tag{13}$$

где

$$\mathbf{c} = (c_1, \ldots, c_N).$$

Из (13) следует *замкнутость линеала* (линейного пространства) (10).

Действительно, пусть \mathbf{z}_k , $k=1,2,\ldots-$ **последовательность** элементов линеала (10) и $\lim_{k\to\infty}\|\mathbf{z}_k-\mathbf{z}\|=0$.

Нужно показать, что элемент $\mathbf{z} \in \mathbf{X}$ также *имеет представление* (10) с *некоторым* набором коэффициентов (c_1, \ldots, c_N) .

Рассмотрим последовательность элементов из пространства \mathbb{R}^N вида:

$$\left(egin{array}{c} \left(\mathbf{z}_1,oldsymbol{\xi}_1
ight) \ dots \ \left(\mathbf{z}_1,oldsymbol{\xi}_N
ight) \end{array}
ight), \quad \ldots \quad , \left(egin{array}{c} \left(\mathbf{z}_k,oldsymbol{\xi}_1
ight) \ dots \ \left(\mathbf{z}_k,oldsymbol{\xi}_N
ight) \end{array}
ight), \quad \ldots \quad \left(egin{array}{c} \left(\mathbf{z}_k,oldsymbol{\xi}_N
ight) \end{array}
ight)$$

Так как $\mathbf{z}_k \to \mathbf{z}$, при $k \to \infty$, то, в силу *непрерывности* скалярного произведения:

$$\lim_{k \to \infty} (\mathbf{z}_k, \boldsymbol{\xi}_i) = (\mathbf{z}, \boldsymbol{\xi}_i), \quad i = 1, 2, \dots, N.$$
 (14)

Введем в пространстве \mathbb{R}^N *норму*, как в примере 1 § 2 главы II . Тогда, из представлений \mathbf{z}_k в виде: $\sum\limits_{i=1}^N c_i^{(k)} \boldsymbol{\xi}_i$, следует, что: $\boldsymbol{\mathcal{G}}^{-1}$

будет *линейным ограниченным* оператором в этом вспомогательном пространстве.

Поэтому из (14) будет следовать **покомпонентная** сходимость при $k \to \infty$, коэффициентов $c_i^{(k)}$, $i=1,2,\ldots N$, к **некоторым** значениям. Пусть эти **предельные** коэффициенты будут c_1 , ,..., c_N и $\mathbf{w} = \sum\limits_{i=1}^N c_i \, \boldsymbol{\xi}_i$. Из неравенства: $\|\mathbf{z}_k - \mathbf{w}\| \leqslant \sum\limits_{i=1}^N \left| c_i^{(k)} - c_i \right| \cdot \|\boldsymbol{\xi}_i\|$ и **сходимости** $c_i^{(k)} \to c_i$, при $k \to \infty$, $\forall i=1,\ldots,N$, следует что: $\lim_{k \to \infty} \|\mathbf{z}_k - \mathbf{w}\| = 0$.

Ho, по предположению: $\lim_{k \to \infty} \| \mathbf{z}_k - \mathbf{z} \| = 0$.

Поэтому $\mathbf{z} = \mathbf{w} = \sum_{i=1}^{N} c_i \, \boldsymbol{\xi}_i$ и *замкнутость* линеала (10) доказана.

Рассуждая аналогично, можно установить *полноту* линейного *под-* npocmpahcmea (10), независимо от того полно obsemnousee рассматриваемое подпространство npocmpahcmeo X или нет.

Упраженения u задачи к параграфу 1.

- 1. Проверить выполнение аксиом $1^{\circ}-3^{\circ}$ для (4) .
- 2. Доказать *полноту подпространства* $\mathbf{L}_{\{\xi\}_1^N}$ (10).
- 3. Можно ли ввести в пространстве \mathbb{R}^1 *скалярное произведение* по формуле: $(x,y) = x \cdot y$?
- 4. Доказать, что в любом линейном пространстве со скалярным произведением справедливо тождество параллелограмма:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$

 5^* . Пусть в *линейном нормированном* пространстве **X** для любой пары его элементов **x**, **y** справедливо *тождество параллелограмма*.

 \mathcal{A} оказать, что функция двух переменных $\mathbf{x}, \mathbf{y} \in \mathbf{X}$:

$$(\mathbf{x}, \mathbf{y}) \stackrel{def}{=} \frac{1}{4} \left(\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 \right)$$

определяет $c\kappa a$ лярное nроизвеdение в пространстве X.

3.2 Теорема о проекции

на замкнутое выпуклое множество и некоторые ее следствия

Теорема о проекции

Напомним данное выше

Определение 58. *Множество* ${\bf Q}$, лежащее в линейном пространстве ${\bf X}$, называется выпуклым, если $\forall {\bf x}, {\bf y} \in {\bf Q}$ отрезок: $\alpha \, {\bf x} + (1-\alpha) \, {\bf y}$, $0 \leqslant \alpha \leqslant 1$, также принадлежит ${\bf Q}$.

Теорема 15. Пусть ${f Q}$ замкнутое выпуклое множество в гиль- бертовом пространстве ${f H}$ и ${f w}$ — некоторый фиксированный элемент ${f H}$.

Cущeствует eдинственный элемент $\mathbf{z} \in \mathbf{Q}$ такой, что:

$$\|\mathbf{z} - \mathbf{w}\| = \inf_{\mathbf{u} \in \mathbf{Q}} \|\mathbf{u} - \mathbf{w}\| = \min_{\mathbf{u} \in \mathbf{Q}} \|\mathbf{u} - \mathbf{w}\|$$

 $egin{array}{lll} egin{array}{lll} egin{array} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{l$

 \mathcal{A} оказательство. Пусть $\{\mathbf x_n\}$ последовательность элементов $\mathbf Q$ и

$$\lim_{n\to\infty} \|\mathbf{x}_n - \mathbf{w}\| = \inf_{\mathbf{u}\in\mathbf{Q}} \|\mathbf{u} - \mathbf{w}\| = d$$

Такая последовательность всегда *существует*, по определению **inf**.

Покажем, что при наших предположениях существует *предел* этой последовательности.

Равенство *параллелограмма*, примененное к элементам $\mathbf{x}_n - \mathbf{w}$ и $\mathbf{x}_m - \mathbf{w}$, дает:

$$\left\| \frac{\mathbf{x}_m - \mathbf{x}_n}{2} \right\|^2 = \frac{1}{2} \left(\left\| \mathbf{x}_m - \mathbf{w} \right\|^2 + \left\| \mathbf{x}_n - \mathbf{w} \right\|^2 \right) - \left\| \frac{\mathbf{x}_m + \mathbf{x}_n}{2} - \mathbf{w} \right\|^2$$
(1)

Если $m, n \to \infty$, то $\lim_{m \to \infty} \|\mathbf{x}_m - \mathbf{w}\| = \lim_{n \to \infty} \|\mathbf{x}_n - \mathbf{w}\| = d$.

В силу выпуклости ${f Q}$:

$$\frac{\mathbf{x}_m + \mathbf{x}_n}{2} \in \mathbf{Q}$$
 и поэтому $\left\| \frac{\mathbf{x}_m + \mathbf{x}_n}{2} - \mathbf{w} \right\|^2 \geqslant d^2$

Следовательно, при достаточно больших m, n, правая часть (1) будет меньше любого наперед заданного положительного ε .

И, таким образом, последовательность $\{ \mathbf{x}_n \}$ *фундаментальна* в **H** .

Так как пространство \mathbf{H} *гильбертово*, то последовательность $\{\mathbf{x}_n\}$ *имеет предел* \mathbf{z} , который, в силу *замкнутости* \mathbf{Q} , принадлежит \mathbf{Q} .

В силу **непрерывности нормы** $\|\mathbf{z} - \mathbf{w}\| = d$.

Покажем *единственность* такого элемента **z**.

Пусть $\mathbf{z}_1 \in \mathbf{Q}$ *отпичный* от \mathbf{z} элемент, на котором достигается *минимум* расстояния до \mathbf{w} .

Подставляя в равенство (1) \mathbf{z} и \mathbf{z}_1 вместо \mathbf{x}_m и \mathbf{x}_n , получим:

$$\|\mathbf{z} - \mathbf{z}_1\| \leqslant 0,$$

и, следовательно, $z = z_1$.

Теорема полностью доказана.

Условия, определяющие проекцию

Получим теперь *необходимое* (и *достаточное*) условие, которому должна удовлетворять *метрическая проекция*.

Пусть $\mathbf{z}_{\mathbf{w}}$ метрическая проекция элемента \mathbf{w} на \mathbf{Q} .

В силу onpedeления $\mathbf{z_w}$, и выпуклости множества \mathbf{Q} , имеем $\forall\,\mathbf{u}\in\mathbf{Q}$:

$$\|\mathbf{w} - ((1 - \lambda) \mathbf{z}_{\mathbf{w}} + \lambda \mathbf{u})\|^2 \geqslant \|\mathbf{w} - \mathbf{z}_{\mathbf{w}}\|^2, \quad 0 \leqslant \lambda \leqslant 1,$$

или

$$\|\mathbf{w} - \mathbf{z}_{\mathbf{w}} + \lambda (\mathbf{z}_{\mathbf{w}} - \mathbf{u})\|^2 \geqslant \|\mathbf{w} - \mathbf{z}_{\mathbf{w}}\|^2, \quad 0 \leqslant \lambda \leqslant 1$$
 (2)

Раскрывая левую часть неравенства (2), получим:

$$2\lambda (\mathbf{w} - \mathbf{z}_{\mathbf{w}}, \mathbf{z}_{\mathbf{w}} - \mathbf{u}) + \lambda^{2} (\mathbf{z}_{\mathbf{w}} - \mathbf{u}, \mathbf{z}_{\mathbf{w}} - \mathbf{u}) \geqslant 0.$$

Откуда:

$$(\mathbf{w} - \mathbf{z}_{\mathbf{w}}, \mathbf{z}_{\mathbf{w}} - \mathbf{u}) \geqslant -\frac{\lambda}{2} (\mathbf{z}_{\mathbf{w}} - \mathbf{u}, \mathbf{z}_{\mathbf{w}} - \mathbf{u})$$
.

Т.к. λ *произвольное* число из [0,1], то это неравенство может выполняться только, если:

$$(\mathbf{z}_{\mathbf{w}} - \mathbf{w}, \mathbf{z}_{\mathbf{w}} - \mathbf{u}) \leqslant 0, \quad \forall \mathbf{u} \in \mathbf{Q}$$
 (3)

Следовательно, неравенство (3) **необходимое** условие, которому должна удовлетворять **метрическая проекция**.

Покажем, что $\mathbf{z_w}$ *единственный* элемент \mathbf{Q} для которого неравенство (3) выполнено.

Пусть $\mathbf{z}_1 \in \mathbf{Q}$, $\mathbf{z}_1 \neq \mathbf{z}_{\mathbf{w}}$, и, аналогично (3) :

$$(\mathbf{z}_1 - \mathbf{w}, \mathbf{z}_1 - \mathbf{u}) \leqslant 0, \quad \forall \mathbf{u} \in \mathbf{Q}$$
 (4)

Из (3), (4) следует, что:

$$(\mathbf{w} - \mathbf{z}_{\mathbf{w}}, \mathbf{z}_1 - \mathbf{z}_{\mathbf{w}}) \leqslant 0$$
 и $(\mathbf{z}_1 - \mathbf{w}, \mathbf{z}_1 - \mathbf{z}_{\mathbf{w}}) \leqslant 0$.

Складывая эти неравенства, получим:

$$(\mathbf{z}_1 - \mathbf{z}_{\mathbf{w}}, \mathbf{z}_1 - \mathbf{z}_{\mathbf{w}}) \leqslant 0.$$

Следовательно $\mathbf{z}_1 = \mathbf{z}_{\mathbf{w}}$.

Поэтому выполнение условия:

$$(\mathbf{z} - \mathbf{w}, \mathbf{z} - \mathbf{u}) \leqslant 0, \quad \forall \mathbf{u} \in \mathbf{Q},$$

для какого-либо элемента $\mathbf{z} \in \mathbf{Q}$, означает, что $\mathbf{z} = \mathbf{z_w}$ и условие (3) не только *необходимое*, но и *достаточное* условие, которому должна удовлетворять *метрическая проекция*.

Проекция на подпространство

Важным частным случаем **замкнутого выпуклого** множества в **гиль- бертовом** пространстве **H** является всякое его **замкнутое подпро- странство** $\mathbf{L}_{\{\boldsymbol{\xi}\}_1^N}$ (10) § 1, которое мы, для простоты, обозначим \mathbf{H}_1 .

Пусть w произвольный элемент ${f H}$.

Найдем его npoeкцию на nodnpocmpaнство \mathbf{H}_1 .

Заметим, что какой бы элемент \mathbf{h} из nodnpocmpa+cmsa \mathbf{H}_1 мы бы ни взяли, элементы $\mathbf{z_w} + \mathbf{h}$ и $\mathbf{z_w} - \mathbf{h}$ npu+adnexam этому же nodnpocmpa+cmsy.

Подставляя эти элементы вместо \mathbf{u} в неравенство (3), имеем:

$$(\mathbf{w} - \mathbf{z}_{\mathbf{w}}, \mathbf{h}) \leqslant 0$$
 и $(\mathbf{w} - \mathbf{z}_{\mathbf{w}}, -\mathbf{h}) \leqslant 0$.

А это возможно только в том случае, когда выполняется следующее условие *ортогональности*:

$$(\mathbf{w} - \mathbf{z}_{\mathbf{w}}, \mathbf{h}) = 0, \quad \forall \mathbf{h} \in \mathbf{H}_1$$
 (5)

Пусть

$$\mathbf{z_w} = \sum_{i=1}^{N} c_i \, \boldsymbol{\xi}_i \tag{6}$$

Из условия *ортогональности* (5) легко получить систему линейных алгебраических уравнений для коэффициентов разложения (6).

Действительно:
$$\left(\mathbf{w} - \sum\limits_{i=1}^{N} c_{i} \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{j}\right) = 0 \;, \quad j = 1, \ldots, N \;,$$
 или

$$\sum_{i=1}^{N} c_i \left(\boldsymbol{\xi}_i, \, \boldsymbol{\xi}_j \right) = \left(\mathbf{w}, \, \boldsymbol{\xi}_j \right) , \quad j = 1, \dots, N$$
 (7)

Матрица этой системы — уже знакомая нам $\emph{mampuцa}\ \emph{\Gamma}\emph{pama}\ \emph{G}$.

В § 1 мы установили, что $\emph{onpedenument}$ $\emph{det } \mathcal{G} \neq 0$.

Поэтому, pewus систему (7), мы по формуле (6) haudem искомую npoekuuw.

Неравенство Бесселя

Задача нахождения $npoeku_iuu$ на nodnpocmpahcmeo $\mathbf{L}_{\{\boldsymbol{\xi}\}_1^N}$, порожденное системой линейно независимых элементов $\boldsymbol{\xi}_1,\ldots,\boldsymbol{\xi}_N$, упрощается, если система $\{\boldsymbol{\xi}_i\}_{i=1}^N$ opmohopmupoeaha, то есть:

$$\parallel oldsymbol{\xi}_i \parallel \ = \ 1, \quad i \ = \ 1, \, \dots, N, \quad$$
 и $\left(oldsymbol{\xi}_i, oldsymbol{\xi}_j \right) \ = \ 0 \quad$ при $i \
eq \ j \ .$

В этом случае матрица Грама $\mathcal{G} = \mathcal{E} - e\partial u h u u h a s$, и

$$c_i = (\mathbf{w}, \boldsymbol{\xi}_i) , \quad i = 1, \dots, N$$
 (8)

Кроме того: $\|\mathbf{z}_{\mathbf{w}}\|^2 = \sum_{i=1}^{N} (\mathbf{w}, \boldsymbol{\xi}_i)^2$.

B силу (5) $\mathbf{w} - \mathbf{z}_{\mathbf{w}}$ и $\mathbf{z}_{\mathbf{w}}$ *ортогональны*.

Поэтому:

 $\|\mathbf{w}\|^2 = \|\mathbf{w} - \mathbf{z}_{\mathbf{w}}\|^2 + \|\mathbf{z}_{\mathbf{w}}\|^2$, и, следовательно, $\|\mathbf{z}_{\mathbf{w}}\|^2 \leqslant \|\mathbf{w}\|^2$, то есть:

$$\sum_{i=1}^{N} (\mathbf{w}, \boldsymbol{\xi}_i)^2 \leqslant \|\mathbf{w}\|^2$$
(9)

Неравенство (9) называется **неравенством Бесселя**.

Оно справедливо для **любого** элемента **гильбертова** пространства \mathbf{H} и **любой** (конечной) **ортонормированной** системы его элементов.

Замечание. Теорема *о проекции* и рассмотренные нами ее следствия остаются справедливыми в любом *линейном пространстве со скалярным произведением*, если предположить *полноту* **Q**, как *метрического* пространства.

Действительно, используемая в доказательстве теоремы последовательность \mathbf{x}_n принадлежит \mathbf{Q} и *полнота* этого множества обеспечивает корректность последующих рассуждений.

Т.к. подпространство $\mathbf{L}_{\{\xi\}_1^N}$ (10) § 1 **полно** в любом **линейном пространстве со скалярным произведением**, то **неравенство Бесселя** (9) справедливо независимо от полноты **объемлющего** пространства \mathbf{H} .

Ортонормированные системы

в пространстве со скалярным произведением

Следствием теоремы о проекции и замечания в конце предыдущего пункта является следующее

Утверждение 35. В любом бесконечномерном линейном пространстве X со скалярным произведением, в частности, гильбертовом, существует счетная ортонормированная система элементов.

Доказательство. Действительно, возьмем произвольный **ненулевой** элемент $\boldsymbol{\xi}_1 \in \mathbf{X}$ и **нормируем** его, то есть, образуем элемент:

$$\mathbf{e}_1 = rac{oldsymbol{\xi}_1}{\|oldsymbol{\xi}_1\|}$$
 .

По условию cyщecmsyem элемент $\boldsymbol{\xi}_2$ линейно независимый от \mathbf{e}_1 . Спроектируем его на nodnpocmpaнcmso $\{c_1\,\mathbf{e}_1\}$, nopocedenhoe элементом \mathbf{e}_1 .

Элемент $\boldsymbol{\xi}_2 - (\boldsymbol{\xi}_2, \, \mathbf{e}_1) \cdot \mathbf{e}_1$ будет, в силу (5) и (8), **ортогона**-лен \mathbf{e}_1 .

Обозначим

$$\mathbf{e}_2 \,=\, rac{oldsymbol{\xi}_2 \,-\, (\,oldsymbol{\xi}_2,\, \mathbf{e}_1\,)}{\paralleloldsymbol{\xi}_2 \,-\, (\,oldsymbol{\xi}_2,\, \mathbf{e}_1\,)\,\parallel} \;.$$

Имеем:

$$\|\mathbf{e}_1\| = \|\mathbf{e}_2\| = 1$$
 и $(\mathbf{e}_1, \mathbf{e}_2) = 0$.

Элементы ${\bf e}_1$ и ${\bf e}_2$, по предположению, порождают nodnpocmpan- cmso в ${\bf X}$, не cosnadaющee с ${\bf X}$.

Возьмем элемент $\boldsymbol{\xi}_3$, **линейно независимый** с \mathbf{e}_1 и \mathbf{e}_2 , и спроектируем его на **подпространство** $\{\mathbf{e}_1,\mathbf{e}_2\}$, порождаемое \mathbf{e}_1 и \mathbf{e}_2 .

 $\pmb{Hopмupye}$ м разность между $\pmb{\xi}_3$ и его проекцией на $\{\, {\bf e}_1,\, {\bf e}_2\,\}$ и обозначим эту $\pmb{hopмupoвahhyo}$ $\pmb{pashocmb}$ через \pmb{e}_3 .

Элементы $\mathbf{e}_1,\,\mathbf{e}_2,\,\mathbf{e}_3$ *взаимноортогональны* и *нормированы*, по построению.

В силу предположенной *бесконечномерности* ${\bf X}$, этот процесс можно продолжать *неограниченно*.

Результатом его будет *ортогональная* система элементов $\{\mathbf e_i\}_{i=1}^\infty$ из $\mathbf X$.

Замечание. Применённый при доказательстве утверждения 35 способ построения ортонормированной системы векторов $\{\mathbf{e}_i\}_{i=1}^{\infty}$ в бесконечномерном линейном пространстве \mathbf{X} со скалярным произведением, называется *процессом ортогонализации Грама - Шмидта*.

Если *пространство* со скалярным произведением *конечномерно* (конкретно — N-мерно), то примененная нами конструкция приводит к построению *ортонормированного базиса* такого пространства, исходя из произвольной *линейно независимой системы* $\{\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \dots, \boldsymbol{\xi}_N\}$ элементов этого пространства.

Ряды Фурье в гильбертовом пространстве

Пусть теперь $\mathbf{H}-$ *бесконечномерное гильбертово* пространство и $\{\mathbf{e}_i\}_{i=1}^{\infty}$ *счетная ортонормированная система* его элементов.

Пусть \mathbf{x} — некоторый элемент пространства \mathbf{H} .

Сопоставим элементу \mathbf{x} формальный $p \mathbf{s} \boldsymbol{\vartheta}$

$$\sum_{i=1}^{\infty} (\mathbf{x}, \, \mathbf{e}_i) \cdot \mathbf{e}_i \tag{10}$$

Этот ряд, обычно, называется pядом $\Phi ypьe$ элемента \mathbf{x} по системе $\{\mathbf{e}_i\}_{i=1}^\infty$.

В силу неравенства ${\it Eeccens} - (9)$, — числовой ряд

$$\sum_{i=1}^{\infty} (\mathbf{x}, \, \mathbf{e}_i)^2 \tag{11}$$

сходится.

Обозначим

$$\mathbf{S}_n \stackrel{def}{=} \sum_{i=1}^n (\mathbf{x}, \mathbf{e}_i) \cdot \mathbf{e}_i$$

— **частичную сумму** ряда Фурье $\sum_{i=1}^{\infty} (\mathbf{x}, \mathbf{e}_i) \cdot \mathbf{e}_i$.

Так как система $\{\mathbf e_i\}_{i=1}^\infty$ ортонормирована, то $\forall\, n,\, p\geqslant 1$

$$\|\mathbf{S}_{n+p} - \mathbf{S}_n\|^2 = \sum_{i=n+1}^{n+p} (\mathbf{x}, \mathbf{e}_i)^2$$

Из этого равенства и из сходимости ряда (11) немедленно следует сходимость ряда Фурье (10).

Равенство Парсеваля и полнота системы элементов $\{\mathbf e_i\}_{i=1}^\infty$

Обозначим сумму ряда Фурье $(10) - \mathbf{S}(\mathbf{x})$.

Вообще говоря, $\mathbf{S}(\mathbf{x}) \neq \mathbf{x}$.

Для теории и приложений важно знать, когда сумма ряда Фурье $\mathbf{S}(\mathbf{x})$ элемента \mathbf{x} пространства \mathbf{H} совпадает с \mathbf{x} и возможен ли случай такого совпадения для \mathbf{scex} элементов \mathbf{x} пространства \mathbf{H} .

Рассмотрим тождество

$$\mathbf{x} = \mathbf{S}(\mathbf{x}) + [\mathbf{x} - \mathbf{S}(\mathbf{x})] \tag{12}$$

Справедливо равенство:

$$\|\mathbf{S}(\mathbf{x})\|^2 = \sum_{i=1}^{\infty} (\mathbf{x}, \mathbf{e}_i)^2$$
(13)

Действительно, из opmohopmupoванности системы $\{\mathbf{e}_i\}_{i=1}^{\infty}$ следует:

$$\|\mathbf{S}_n\|^2 = \sum_{i=1}^n (\mathbf{x}, \mathbf{e}_i)^2$$
 (14)

Так как последовательность $\mathbf{S}_n = \sum_{i=1}^n (\mathbf{x}, \mathbf{e}_i) \cdot \mathbf{e}_i$ сходится к $\mathbf{S}(\mathbf{x})$, то, в силу *непрерывности* нормы в гильбертовом пространстве, из равенства (14) следует:

$$\lim_{n\to\infty} \|\mathbf{S}_n\|^2 = \|\mathbf{S}(\mathbf{x})\|^2,$$

и, следовательно, равенство (13) справедливо.

Непосредственно устанавливается справедливость тождества

$$(\mathbf{x}, \mathbf{S}(\mathbf{x})) = \|\mathbf{S}(\mathbf{x})\|^2,$$

из которого следует ортогональность $\mathbf{S}\left(\mathbf{x}\right)$ и $\mathbf{S}\left(\mathbf{x}\right)-\mathbf{x}$.

Из (12) имеем

$$\|\mathbf{x}\|^2 = \|\mathbf{S}(\mathbf{x})\|^2 + \|\mathbf{x} - \mathbf{S}(\mathbf{x})\|^2$$
.

С учетом (13) это тождество можно переписать так:

$$\|\mathbf{x}\|^2 - \sum_{i=1}^{\infty} (\mathbf{x}, \mathbf{e}_i)^2 = \|\mathbf{x} - \mathbf{S}(\mathbf{x})\|^2.$$

Таким образом, мы доказали

Утверждение 36. Для справедливости равенства:

$$S(x) = x$$

необходимо и **достаточно**, чтобы выполнялось **равенство Парсеваля**:

$$\|\mathbf{x}\|^2 = \sum_{i=1}^{\infty} (\mathbf{x}, \mathbf{e}_i)^2$$
 (15)

Утверждение 37. Для того, чтобы равенство Парсеваля было справедливо для любого \mathbf{x} пространства \mathbf{H} , необходимо и достаточно, чтобы в \mathbf{H} не существовало ненулевого элемента, ортогонального всем $\{\mathbf{e}_i\}_{i=1}^{\infty}$.

Доказательство. Достаточность.

Пусть такого элемента нет, но в ${\bf H}$ существует элемент ${\bf y}$, для которого равенство Парсеваля не справедливо.

Тогда ненулевой элемент $\mathbf{y} - \mathbf{S}(\mathbf{y})$, очевидно, будет ортогонален всем $\{\mathbf{e}_i\}_{i=1}^\infty$.

Получаем противоречие.

Необходимость.

Пусть равенство Парсеваля выполнено для любого $\mathbf{x} \in \mathbf{H}$, но существует ненулевой элемент $\mathbf{h} \neq \mathbb{O}_{\mathbf{H}}$, ортогональный всем $\{\mathbf{e}_i\}_{i=1}^{\infty}$.

Очевидно, что $\mathbf{S}(\mathbf{h}) = \mathbb{O}_{\mathbf{H}}$.

Из равенства Парсеваля (15) следует, что $\|\mathbf{h}\| = 0$.

И, таким образом, мы снова получили противоречие.

Замечание. Выполнимость условия утверждения 37 (7), целиком зависит только от свойств системы $\{\mathbf e_i\}_{i=1}^\infty$.

Определение 59. Ортонормированная система $\{\mathbf{e}_i\}_{i=1}^{\infty}$, для которой в \mathbf{H} не существует ненулевого элемента, ортогонального всем элементам этой системы, называется полной.

Утверждение 37 можно сформулировать так.

Для того, что бы *равенство Парсеваля* было справедливо для любого $\mathbf{x} \in \mathbf{H}$, *необходимо* и *достаточно* чтобы система $\{\mathbf{e}_i\}_{i=1}^\infty$ была *полной*.

Теорема об ортогональном разложении

Следующее утверждение также является следствием теоремы о проекции и часто используется. Оно называется *теоремой об ортогональном разложении* или *теоремой Б. Леви*.

Утверждение 38. Пусть **H** гильбертово пространство и \mathbf{H}_1 его замкнутое подпространство.

Любой элемент $\mathbf{z} \in \mathbf{H}$ допускает **представление**:

$$\mathbf{z} = \mathbf{z}_1 + \mathbf{z}_2 \,, \tag{16}$$

 $\it rde$ ${f z}_1\in {f H}_1$, $\it a$ ${f z}_2$ $\it opmozohaльно$ ${f H}_1$.

Обе части разложения (16) определяются по ${\bf z}$ однозначно. Доказательство. Действительно, спроектируем ${\bf z}$ на ${\bf H}_1$ и обозначим эту проекцию ${\bf pr}_{{\bf H}_1}({\bf z})$.

Так как $\mathbf{H}_1 - nodnpocmpaнcmso$, то определяющее проекцию неравенство (3) превращается в равенство (5) :

$$\left(\mathbf{z}\,-\,\mathbf{pr}_{\mathbf{H}_1}(\mathbf{z}),\,\mathbf{h}\,\right)\,=\,0,\quad\forall\,\mathbf{h}\,\in\,\mathbf{H}_1\;.$$

Следовательно элементы $\mathbf{pr}_{\mathbf{H}_1}(\mathbf{z})$ и $\mathbf{z} - \mathbf{pr}_{\mathbf{H}_1}(\mathbf{z})$ *ортогональны*, и \mathbf{z} допускает *представление* (16), в котором:

$$\mathbf{z}_1 = \mathbf{pr}_{\mathbf{H}_1}(\mathbf{z}), \quad \mathbf{z}_2 = \mathbf{z} - \mathbf{pr}_{\mathbf{H}_1}(\mathbf{z}).$$

Предположим, что существует *другое* ортогональное разложение:

$$\mathbf{z} = \mathbf{w}_1 + \mathbf{w}_2, \quad \mathbf{w}_1 \in \mathbf{H}_1, \quad \mathbf{w}_2 \perp \mathbf{H}_1.$$

Тогда:

$$\mathbf{z}_1 - \mathbf{w}_1 + \mathbf{z}_2 - \mathbf{w}_2 = \mathbb{O}.$$

Так как $\mathbf{z}_1 - \mathbf{w}_1 \in \mathbf{H}_1$, а \mathbf{z}_2 и \mathbf{w}_2 *ортогональны* \mathbf{H}_1 , то из этого равенства следует:

$$\|\mathbf{z}_1 - \mathbf{w}_1\|^2 + \|\mathbf{z}_2 - \mathbf{w}_2\|^2 = 0$$
,

и, следовательно $\mathbf{z}_1 = \mathbf{w}_1, \ \mathbf{z}_2 = \mathbf{w}_2$.

Утверждение 39. Множество элементов ${\bf H}$, ортогональных фиксированному линейному подпространству ${\bf H}_1$, ${\bf H}_1\subset {\bf H}$, является замкнутым подпространством в ${\bf H}$.

Замечание. Частный случай этого утверждения, когда \mathbf{H}_1 порождено единственным элементом \mathbf{x} доказан в § 1.

Общий случай составляет содержание задачи 3 к этому параграфу и *рассматривается* аналогично.

Определение 60. Множество элементов пространства ${\bf H}$, ортогональных фиксированному линейному подпространству ${\bf H}_1$, ${\bf H}_1\subset {\bf H}$, есть подпространство, обычно обозначаемое ${\bf H}_1^\perp$.

Оно называется **ортогональным дополнением** κ **H**₁ .

С использованием нового обозначения, равенство (16) можно символически записать в виде: $\mathbf{H} = \mathbf{H}_1 \oplus \mathbf{H}_1^{\perp}$.

Это равенство нужно понимать так: *любое* подпространство \mathbf{H}_1 гильбертова пространства \mathbf{H} порождает разложение \mathbf{H} в сумму (в смысле равенства (16)) двух ортогональных друг другу подпространств, одно из которых совпадает с \mathbf{H}_1 .

Теорема об общем виде линейного функционала

Одним из следствий теоремы об ортогональном разложении является теорема *об общем виде линейного непрерывного функционала* в *гильбертовом пространстве*.

Теорема 16 (Φ . Pucc). Любой линейный функционал $\ell(\mathbf{x})$, определенный в **гильбертовом** пространстве \mathbf{H} , имеет вид:

$$\ell(\mathbf{x}) = (\mathbf{x}, \mathbf{x}_{\ell}) , \qquad (17)$$

где элемент $\mathbf{x}_{\ell} \in \mathbf{H}$ и **единственным** образом определяется по $\ell\left(\mathbf{x}\right)$.

При этом:

$$\|\,\ell\,\| \,=\, \|\,\mathbf{x}_\ell\,\|\,\,.$$

Доказательство. Рассмотрим в \mathbf{H} множество \mathbf{N}_{ℓ} элементов, на которых функционал $\ell\left(\mathbf{x}\right)$ обращается в 0.

В силу $\emph{nuhe\"uhocmu}$ и $\emph{henpepывноcmu}$ функционала ℓ множество \mathbf{N}_ℓ — лине\"иное $\emph{nodnpocmpancmeo}$ в \mathbf{H} .

Рассмотрим $\mathbf{N}_{\ell}^{\perp}-$ ортогональное дополнение $\mathbf{N}_{\ell}^{}$ в $\mathbf{H}_{}$.

 $m{N}$ юбые два элемента из \mathbf{N}_ℓ^\perp линейно зависимы, то есть npo-cmpahcmso \mathbf{N}_ℓ^\perp одномерно.

Действительно, пусть \mathbf{z}_1 и \mathbf{z}_2 два различных элемента из \mathbf{N}_ℓ^\perp .

Тогда $\ell\left(\mathbf{z}_{1}\right) \neq 0, \ell\left(\mathbf{z}_{2}\right) \neq 0$ и элемент $\mathbf{w} = \ell\left(\mathbf{z}_{1}\right)\mathbf{z}_{2} - \ell\left(\mathbf{z}_{2}\right)\mathbf{z}_{1} \in \mathbf{N}_{\ell}^{\perp}$.

C другой стороны, ovenudho: $\ell\left(\mathbf{w}\right)=0$ и поэтому $\mathbf{w}\in\mathbf{N}_{\ell}$.

Ho, в силу *ортогональности* \mathbf{N}_ℓ и \mathbf{N}_ℓ^\perp у них нет общих точек, кроме точки \mathbb{O} .

Поэтому $\mathbf{w} = \mathbb{O}$ и элементы \mathbf{z}_1 и \mathbf{z}_2 линейно зависимы.

Пусть \mathbf{e}_0 элемент \mathbf{N}_ℓ^\perp такой, что: $\|\mathbf{e}_0\| = 1$.

Любой элемент \mathbf{H} может быть представлен в виде: $\mathbf{x} = \mathbf{x}_{\mathbf{N}_\ell} + \mathbf{x}_{\mathbf{N}_\ell^\perp}$, где $\mathbf{x}_{\mathbf{N}_\ell}$ и $\mathbf{x}_{\mathbf{N}_\ell^\perp}$ — проекции \mathbf{x} на соответствующие nodnpocmpan-cmea.

В силу формул (8): $\mathbf{x}_{\mathbf{N}_{\ell}^{\perp}} = (\mathbf{x}, \mathbf{e}_0) \cdot \mathbf{e}_0$.

Следовательно:

$$\ell\left(\mathbf{x}\right) = \left(\mathbf{x}, \mathbf{e}_{0}\right) \cdot \ell\left(\mathbf{e}_{0}\right) = \left(\mathbf{x}, \mathbf{x}_{\ell}\right),$$
 где $\mathbf{x}_{\ell} = \ell\left(\mathbf{e}_{0}\right) \cdot \mathbf{e}_{0}$

Кроме того:

$$\|\ell\| = \sup_{\|\mathbf{x}\|=1} |\ell(\mathbf{x})| = \sup_{\|\mathbf{x}\|=1} |(\mathbf{x}, \mathbf{x}_{\ell})| \leq \|\mathbf{x}_{\ell}\|.$$

Ho:

$$\ell\left(\frac{\mathbf{x}_{\ell}}{\parallel\mathbf{x}_{\ell}\parallel}\right) \,=\, \left(\frac{\mathbf{x}_{\ell}}{\parallel\mathbf{x}_{\ell}\parallel},\mathbf{x}_{\ell}\right) \,=\, \parallel\mathbf{x}_{\ell}\parallel\,,$$

и, следовательно: $\|\ell\| = \|\mathbf{x}_{\ell}\|$.

Предположим, что $\mathbf{x}' \neq \mathbf{x}_{\ell}$ и также порождает представление того же самого линейного функционала (17) : $\ell(\mathbf{x}) = (\mathbf{x}, \mathbf{x}')$.

Тогда для $\forall \mathbf{x} \in \mathbf{H} : (\mathbf{x}, \mathbf{x}' - \mathbf{x}_{\ell}) = 0$.

Полагая в последнем равенстве $\mathbf{x} = \mathbf{x}' - \mathbf{x}_\ell$, получаем, что $\mathbf{x}' = \mathbf{x}_\ell$ и, тем самым, теорема Ф. Рисса полностью доказана.

Упражнения и задачи κ параграфу 2.

- 1. Объяснить, почему nodnpocmpaнcmso $\mathbf{L}_{\{\boldsymbol{\xi}\}_1^N}$ (10) из § 1 является sыпуклым множеством.
- 2. Показать, что любая (*конечная*) *ортонормированная* система *линейно независима*.
- 3. Доказать приведенное в тексте параграфа утверждение о том, что \mathbf{H}_1^{\perp} всегда является *замкнутым*, независимо от *замкнутости* или *незамкнутости* \mathbf{H}_1 .
 - 4. Показать, что система функций

$$\left\{\frac{1}{\sqrt{\pi}}\sin n\,t\right\},\quad n=1,\,2,\,\ldots\,,$$

является (*бесконечной*) *ортонормированной* системой в пространстве $\mathbb{L}_2[-\pi,\pi]$, но она *не полна* в этом пространстве.

- 5. Показать, что любая счетная ортонормированная последовательность в пространстве со скалярным произведением слабо cxodumcs к \mathbb{O} .
- 6^* . Доказать, что *любое* сепарабельное гильбертово пространство **H** *непрерывно изоморфно* пространству ℓ_2 .

3.3 Спектральное представление симметричного вполне непрерывного оператора в гильбертовом пространстве

Сопряжённый оператор к линейному оператору

Пусть ${\bf A}$ *линейный непрерывный* оператор, действующий из *гиль-* ${\it бертовa}$ пространства ${\bf H}_1$ в *гильбертово* пространство ${\bf H}_2$.

Если $\mathbf{y}-\boldsymbol{\phi}$ иксированный элемент \mathbf{H}_2 , а элемент \mathbf{x} пробегает $\boldsymbol{em}\ \mathbf{H}_1$, то выражение $\ell_{\mathbf{A}}\left(\mathbf{x}\right)\stackrel{def}{=}\left(\mathbf{A}\mathbf{x},\,\mathbf{y}\right)_{\mathbf{H}_2}$, определяет линейный функционал $\ell_{\mathbf{A}}$ в пространстве \mathbf{H}_1 .

Так как $|(\mathbf{A}\mathbf{x},\mathbf{y})| \leqslant ||\mathbf{A}|| ||\mathbf{x}|| ||\mathbf{y}||$, то этот функционал *огра-*

По теореме Ф. Рисса о представлении линейного непрерывного функционала, функционал $\ell_{\mathbf{A}}\left(\mathbf{x}\right)$ может быть представлен в виде:

$$(\mathbf{A}\mathbf{x}, \mathbf{y})_{\mathbf{H}_2} = (\mathbf{x}, \mathbf{z})_{\mathbf{H}_1} , \qquad (1)$$

где ${f z}$ — некоторый **фиксированный** элемент ${f H}_1$, **однозначно** определенный оператором ${f A}$ и элементом ${f y}$.

Равенство (1) позволяет ${\it каждому}$ элементу ${\it y} \in {\it H_2}$ поставить в соответствие некоторый элемент ${\it z} \in {\it H_1}$.

Это соответствие, *очевидно*, линейно, кроме того, по теореме о представлении: $\|\ell_{\mathbf{A}}\| = \|\mathbf{z}\|$.

С другой стороны, по определению нормы функционала:

$$\|\ell_{\mathbf{A}}\| = \sup_{\|\mathbf{x}\|=1} |\ell_{\mathbf{A}}(\mathbf{x})| = \sup_{\|\mathbf{x}\|=1} |(\mathbf{A}\mathbf{x}, \mathbf{y})| \leq \|\mathbf{A}\| \|\mathbf{y}\|.$$

Поэтому:

$$\|\mathbf{z}\| \leqslant \|\mathbf{A}\| \|\mathbf{y}\| \tag{2}$$

и, следовательно, равенство (1) порождает *линейный ограниченный* оператор из \mathbf{H}_2 в \mathbf{H}_1 .

Этот оператор называется *сопряженным* к оператору \mathbf{A} и обозначается \mathbf{A}^* . Таким образом, в равенстве (1) : $\mathbf{z} = \mathbf{A}^*\mathbf{y}$.

Из (2) следует, что $\|\mathbf{A}^*\| \leqslant \|\mathbf{A}\|$.

Положим в (1) $\mathbf{y} = \mathbf{A}\mathbf{x}$, тогда $\forall \mathbf{x} \in \mathbf{H}_1$:

$$(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x})_{\mathbf{H}_2} = (\mathbf{x}, \mathbf{A}^*\mathbf{A}\mathbf{x})_{\mathbf{H}_1}$$

и $\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{x}, \mathbf{A}^*\mathbf{A}\mathbf{x}) \leqslant \|\mathbf{A}^*\| \|\mathbf{A}\| \|\mathbf{x}\|^2$ и, следовательно: $\|\mathbf{A}\|^2 \leqslant \|\mathbf{A}^*\| \|\mathbf{A}\|$.

Откуда $\|\mathbf{A}\| \leqslant \|\mathbf{A}^*\|$, то есть **нормы оператора** \mathbf{A} и его **сопряженного** \mathbf{A}^* **всегда совпадают**: $\|\mathbf{A}^*\| = \|\mathbf{A}\|$.

Самосопряжённый оператор в гильбертовом пространстве

Определение 61. Если пространства \mathbf{H}_1 и \mathbf{H}_2 совпадают, то сопряженный оператор \mathbf{A}^* действует в том же пространстве, что и оператор \mathbf{A} .

B этом случае для **некоторых** операторов **A** может оказаться, что **A*** и **A** совпадают.

Если такое **совпадение** имеет место, то оператор **А** называют **самосопряженным**.

Определение 62. Линейный оператор A, действующий в линейном пространстве со скалярным произведением X (не обязательно полном) называется симметричным, если:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbf{X} : (\mathbf{A}\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{A}\mathbf{y}) \tag{3}$$

Из определения *самосопряженного* оператора в *гильбертовом* пространстве следует, что для *непрерывного* оператора в гильбертовом пространстве, из *симметричности* следует *самосопряженность* и, *наоборот*.

Поэтому для *ограниченных* линейных операторов в гильбертовом пространстве термины *симметричный* и *самосопряженный* характеризуют одно и тоже *свойство* оператора и они взаимозаменяемы.

Собственные векторы оператора в гильбертовом пространстве

Остальная часть этого параграфа посвящена исследованию $\it cummem-puчного$ (самосопряженного) $\it snone$ $\it henpepushoro$ оператора $\it A$ в $\it cunb fepmosom$ пространстве $\it H$.

Согласно параграфу 3 главы II, мы называем элемент $\mathbf{x} \neq \mathbb{O}$ пространства \mathbf{H} , в котором действует оператор \mathbf{A} , *собственным* $\mathbf{sekmopom}$ (или элементом), если для некоторого действительного числа λ выполнено равенство:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{4}$$

Число λ называется собственным значением оператора ${f A}$, соответствующим собственному вектору ${f x}$.

Утверждение 40. Множество собственных векторов линейного непрерывного оператора ${\bf A}$, соответствующих фиксированному собственному значению ${\bf A}$, образуют подпространство в ${\bf H}$, а абсолютная величина любого собственного значения не превышает $\|{\bf A}\|$.

Доказательство этого утверждения *непосредственно* следует из (4).

Существование собственного вектора у вполне непрерывного оператора

Собственные векторы существуют не у всякого линейного ограниченного оператора в \mathbf{H} . Однако справедлива

Теорема 17. У любого симметричного (самосопряженного) вполне непрерывного оператора **A**, действующего в гильбертовом пространстве **H** и отличного от оператора **O**, существует ненулевое собственное значение и соответствующий ему собственный вектор.

Доказательство. Рассмотрим функционал: $\Phi(\mathbf{x}) = (\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x})$. Поскольку \mathbf{A} линейный ограниченный оператор, то:

$$\sup_{\|\mathbf{x}\|=1} \Phi(\mathbf{x}) = \|\mathbf{A}\|^2.$$

По определению **верхней грани**, существует последовательность $\{\mathbf{x}_n\}$, $\|\mathbf{x}_n\|=1$, такая, что: $\lim_{n\to\infty}\Phi\left(\mathbf{x}_n\right)=\|\mathbf{A}\|^2$.

Поскольку **A** *вполне непрерывен*, последовательность $\{ \mathbf{A} \mathbf{x}_n \}$ содержит *сходящуюся* подпоследовательность.

Ей соответствует *подпоследовательность* последовательности $\{\mathbf x_n\}$, которую мы *обозначим* $\{\mathbf f_n\}$.

Тогда:
$$\lim_{n\to\infty}\Phi\left(\mathbf{f}_n\right) = \|\mathbf{A}\|^2, \|\mathbf{f}_n\| = 1,$$
и

$$\lim_{n \to \infty} \mathbf{A} \mathbf{f}_n = \mathbf{z}, \quad (\mathbf{z}, \mathbf{z}) = \lim_{n \to \infty} \Phi(\mathbf{f}_n) = \|\mathbf{A}\|^2$$
 (4)

Рассмотрим выражение:

$$\|\mathbf{A}^{2}\mathbf{f}_{n} - \|\mathbf{A}\|^{2} \cdot \mathbf{f}_{n}\|^{2} = (\mathbf{A}^{2}\mathbf{f}_{n}, \mathbf{A}^{2}\mathbf{f}_{n}) - 2\|\mathbf{A}\|^{2} \cdot (\mathbf{A}^{2}\mathbf{f}_{n}, \mathbf{f}_{n}) + \|\mathbf{A}\|^{4}$$
(5)

В силу (4) и cummempuчнocmu оператора A:

$$\lim_{n\to\infty} (\mathbf{A^2}\mathbf{f}_n, \mathbf{A^2}\mathbf{f}_n) = (\mathbf{Az}, \mathbf{Az}) ,$$

$$\lim_{n\to\infty} (\mathbf{A^2}\mathbf{f}_n, \mathbf{f}_n) = \lim_{n\to\infty} (\mathbf{Af}_n, \mathbf{Af}_n) = (\mathbf{z}, \mathbf{z}) = \|\mathbf{A}\|^2 .$$

Поэтому *правая часть* равенства (5) имеет *предел* при $n \to \infty$ равный:

$$(\mathbf{Az}, \mathbf{Az}) - \|\mathbf{A}\|^4 \leqslant 0 \tag{6}$$

Левая часть равенства (5), очевидно, имеет тот же **предел**.

В силу *положительности* обеих частей равенства (5) при любом $n=1,\,2,\,\ldots,\,$ неравенство (6) выполняется, как равенство:

$$\lim_{n\to\infty} \left\| \mathbf{A}^2 \mathbf{f}_n - \| \mathbf{A} \|^2 \cdot \mathbf{f}_n \right\| = 0.$$

В силу (4), отсюда следует $\boldsymbol{cxodumocmb}$ последовательности $\{\mathbf{f}_n\}$ к некоторому элементу \mathbf{f} , $\|\mathbf{f}\|=1$, и:

$$\mathbf{A^2f} - \|\mathbf{A}\|^2 \cdot \mathbf{f} = \mathbb{O} \tag{7}$$

Равенство (7) можно записать в виде:

$$\Big(\, \mathbf{A} \, + \, \| \, \mathbf{A} \, \| \cdot \mathbf{E} \, \Big) \cdot \Big(\, \mathbf{A} \, - \, \| \, \mathbf{A} \, \| \cdot \mathbf{E} \, \Big) \mathbf{f} \, = \, \mathbb{O} \, ,$$

или:

$$\left(\mathbf{A} + \|\mathbf{A}\| \cdot \mathbf{E}\right) \cdot \left(\mathbf{Af} - \|\mathbf{A}\| \cdot \mathbf{f}\right) = \mathbb{O}.$$

Последнее равенство возможно только в том случае, если выполнено хотя бы одно из условий:

 ${f 1}^\circ$. ${f f}-co6cm$ венный вектор ${f A}$ (с co6cmвенным значением $\lambda = \|{f A}\|$),

 $\mathbf{2}^{\circ}$. $\left(\mathbf{Af} \ - \ \| \mathbf{A} \| \cdot \mathbf{f}
ight) - coбственный вектор оператора <math>\mathbf{A}$ (с собственным значением $\lambda = - \| \mathbf{A} \|$).

Теорема доказана.

Теорема о спектральном разложении вполне непрерывного оператора

Так как *любое* собственное значение по модулю не превосходит $\| \mathbf{A} \|$, *доказательство* теоремы демонстрирует у всякого самосопряжённого вполне непрерывного оператора \mathbf{A} наличие хотя бы одного собственного *вектора* с собственным *значением* $\lambda_1: |\lambda_1| = \| \mathbf{A} \|$.

Пусть \mathbf{e}_1 нормированный собственный вектор с собственным значением $-\|\mathbf{A}\|$ или $\|\mathbf{A}\|$.

В силу теоремы *об ортогональном разложении* из § 2, пространство \mathbf{H} можно представить в виде: $\mathbf{H} = \{\mathbf{e}_1\} \oplus \{\mathbf{e}_1\}^{\perp} = \{\mathbf{e}_1\} \oplus \mathbf{H}_1$, где *подпространство* \mathbf{H}_1 — *ортогональное дополнение* к *одномерному подпространству* $\{\mathbf{e}_1\}$ в \mathbf{H} , и, поэтому, само является *гильбертовым* пространством.

Кроме того nodnpocmpaнcmso \mathbf{H}_1 uhsapuahmho относительно

действия оператора \mathbf{A} , то есть: $\mathbf{A}(\mathbf{H}_1) \subseteq \mathbf{H}_1$.

Действительно, если $\mathbf{z} \in \mathbf{H}_1$, то есть $(\mathbf{z}, \mathbf{e}_1) = 0$, то:

$$(\mathbf{Az}, \mathbf{e}_1) = (\mathbf{z}, \mathbf{Ae}_1) = \lambda_1 \cdot (\mathbf{z}, \mathbf{e}_1) = 0.$$

В силу сказанного, оператор ${\bf A}$ можно теперь рассматривать как оператор, ${\it deŭcmeyouuu}$ лишь в ${\bf H}_1$, и повторить предыдущие рассуждения.

Таким образом, если $\mathbf{A}\big(\mathbf{H}_1\big) \neq \mathbb{O}$, получим новый **нормированный** собственный вектор \mathbf{e}_2 с некоторым собственным значением λ_2 .

При этом, т.к. $\mathbf{H}_1 \subset \mathbf{H}$, то: $|\lambda_1| \geqslant |\lambda_2|$ и \mathbf{e}_2 ортогонален \mathbf{e}_1 .

Далее можно рассмотреть nodnpocmpaнcmso $\{e_1, e_2\}$, порожденное векторами e_1 и e_2 , и его opmozohanbhoe dononhehue в H, подпространство H_2 : $H = \{e_1, e_2\} \oplus H_2$.

Аналогично доказательству u h a p u a h m h o c m u \mathbf{H}_1 относительно \mathbf{A} , можно показать u h a p u a h m h o c m u \mathbf{H}_2 относительно \mathbf{A} .

Рассматривая оператор ${\bf A}$, как оператор из ${\bf H}_2$ в ${\bf H}_2$, если ${\bf A}({\bf H}_2) \neq {\mathbb O}$, можно получить *нормированный собственный вектор* ${\bf e}_3$ с *собственным значением* λ_3 .

При этом: $\left|\lambda_1\right|\geqslant \left|\lambda_2\right|\geqslant \left|\lambda_3\right|$ и $\mathbf{e}_1,\,\mathbf{e}_2,\,\mathbf{e}_3-$ взаимно ортогональны.

Этот *процесс выделения ортонормированных собственных век- торов* оператора **А** можно *продолжать* и дальше.

При этом образуется последовательность собственных векторов: $\mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n, \, \dots$, и соответствующая последовательность

собственных значений: $\lambda_1, \lambda_2, \cdots, \lambda_n, \cdots$, такая, что:

$$|\lambda_1| \geqslant |\lambda_2| \geqslant |\lambda_3| \geqslant \cdots \geqslant |\lambda_n| \geqslant \cdots$$
 (8)

Утверждение 41. Какое бы число $\delta > 0$ мы ни взяли, последовательность (8) содержит лишь **конечное** число членов λ_k , таких, что: $\lambda_k \geqslant \delta$.

Доказательство. Действительно, пусть утверждение не верно, тогда \exists **бесконечная** система $\{\mathbf{e}_n\}$ **ортонормированных собственных векторов** оператора \mathbf{A} и

$$\|\mathbf{A}\mathbf{e}_m - \mathbf{A}\mathbf{e}_n\|^2 = \|\lambda_m \mathbf{e}_m - \lambda_n \mathbf{e}_n\|^2 = \lambda_m^2 + \lambda_n^2 \geqslant 2\delta^2 \qquad (9)$$

для всех натуральных m и n.

Но, неравенство (9), **очевидно**, противоречит **полной непрерыв- ности** оператора **A** .

Из этого утверждения следует:

- ${f 1}^{\circ}$. Каждому *собственному значению* соответствует лишь *конечное* число *линейно независимых собственных элементов* оператора ${f A}$.
- ${f 2}^{\circ}$. *Последовательность* собственных чисел, *не равных* 0 , $\{\lambda_n\}$, *или сходится* к 0 , *или содержит* лишь *конечное* число членов.

Если *последовательность* собственных чисел *бесконечна*, то ей соответствует *бесконечная* (счетная) *последовательность* ортонормированных *собственных векторов* $\{\mathbf{e}_n\}$.

Пусть ${\bf x}$ некоторый элемент пространства ${\bf H}$ и $\{{\bf e}_i\}$ ортонормированная система собственных векторов оператора ${\bf A}$, для которых $|\lambda_i|>0$.

В § 2 мы показали, что

$$\mathbf{x} = \sum_{i} (\mathbf{x}, \mathbf{e}_i) \mathbf{e}_i + \mathbf{h}$$

и \mathbf{h} ортогонален всем $\{\mathbf{e}_i\}$.

Покажем, что оператор \mathbf{A} переводит элемент \mathbf{h} в $\mathbb{O}_{\mathbf{H}}$, то есть $\mathbf{h} \in \mathbf{ker A}$. Действительно, элемент \mathbf{h} ортогонален всем $\{\mathbf{e}_i\}$ и, следовательно, $\forall N \geqslant 1$ подпространству $\mathbf{H}_N \subseteq \mathbf{H}$, порожденному элементами $\{\mathbf{e}_i\}$, $i=1,2,\ldots,N$.

Это означает, что $\mathbf{h} \in \bigcap_N \mathbf{H}_N^{\perp}$.

Каждое подпространство \mathbf{H}_N^{\perp} инвариантно относительно действия оператора \mathbf{A} .

По построению, норма оператора ${\bf A}$ относительно пространства ${\bf H}_N^\perp$ не превосходит $|\lambda_N|$.

Пусть ненулевых λ_i конечное число — N.

Тогда оператор $\, {f A} \,$ переводит все элементы подпространства $\, {f H}_N^\perp$ в ${\Bbb O}_{f H}$.

(В противном случае мы могли бы выполнить ещё один шаг процесса и получить ещё один *ненулевой* собственный элемент.)

Поэтому, в рассматриваемом случае: $\mathbf{h} \in \mathbf{ker}\mathbf{A}$.

Если число ненулевых λ_i бесконечно, то при $\mathbf{h} \in \bigcap_{i=1}^{\infty} \mathbf{H}_i^{\perp}$ справедливо неравенство: $\|\mathbf{Ah}\| \leqslant |\lambda_i|$.

Т.к. $\lim_{i\to\infty} |\lambda_i| = 0$, то $\|\mathbf{Ah}\| = 0$ и снова $\mathbf{h} \in \ker \mathbf{A}$. Сказанное выше можно представить в виде теоремы:

Теорема 18 (о спектральном разложении). Любой симметричный вполне непрерывный оператор в гильбертовом пространстве $\mathbf H$ имеет конечную или счетную систему ортонормированных собственных векторов $\{\mathbf e_i\}$ с ненулевыми собственными значениями λ_i .

Любой элемент $\mathbf{x} \in \mathbf{H}$ может быть представлен в виде:

$$\mathbf{x} = \sum_{i} (\mathbf{x}, \mathbf{e}_{i}) \mathbf{e}_{i} + \mathbf{h}, \quad \epsilon \partial e \quad \mathbf{A}\mathbf{h} = \mathbb{O}_{\mathbf{H}}, \quad u$$
$$\mathbf{A}\mathbf{x} = \sum_{i} \lambda_{i} \cdot (\mathbf{x}, \mathbf{e}_{i}) \cdot \mathbf{e}_{i}$$
(10)

Равенство (10) называется **спектральным разложением** оператора $\bf A$.

Доказанная теорема обобщает известное утверждение *линейной алеебры* о том, что *симметричная* матрица имеет в *некотором* ортогональном базисе *диагональный вид*.

Из утверждений этой теоремы следует, что *ортонормированная система собственных векторов* с *ненулевыми* собственными значениями симметричного вполне непрерывного оператора \mathbf{A} *полна* в \mathbf{H} *тогда и только тогда*, когда: $\ker \mathbf{A} = \mathbb{O}_{\mathbf{H}}$.

Упражнения и задачи к параграфу 3.

- 1. Показать, что любой *непрерывный* оператор в *евклидовом* пространстве \mathbb{E}^n *вполне непрерывен*.
- 2. Пусть для всякого $\mathbf{x}=(\alpha_1,\,\alpha_2,\,\ldots\,,\,\alpha_n,\,\ldots)\in\ell_2\,,\,\,$ оператор \mathbf{A} действует по формуле:

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{\infty} \frac{\alpha_j}{2j}$$

Показать, что оператор $\mathbf{A}-$ *вполне непрерывный* оператор из ℓ_2 в \mathbb{E}^1 .

- 3. Доказать, что $\mathbf{\Lambda}\mathbf{u}\mathbf{h}\mathbf{e}\ddot{\mathbf{u}}\mathbf{h}\mathbf{u}\ddot{\mathbf{u}}$ оператор \mathbf{A} , действующий из \mathbb{E}^n в \mathbb{E}^n , $\mathbf{c}\mathbf{u}\mathbf{m}\mathbf{m}\mathbf{e}\mathbf{m}\mathbf{p}\mathbf{u}\mathbf{u}\mathbf{e}\mathbf{h}$ тогда и только тогда, когда $\mathbf{c}\mathbf{u}\mathbf{m}\mathbf{m}\mathbf{e}\mathbf{m}\mathbf{p}\mathbf{u}\mathbf{u}\mathbf{h}\mathbf{a}$ представляющая его $\mathbf{m}\mathbf{a}\mathbf{m}\mathbf{p}\mathbf{u}\mathbf{u}\mathbf{a}$.
- 4. Выписать conpяженный оператор к оператору \mathbf{A} в \mathbb{E}^2 , onpedensemony матрицей: $\begin{pmatrix} 1 & 4 \\ 5 & 2 \end{pmatrix}$.
 - 5. Показать, что $(\mathbf{A}^*)^* = \mathbf{A}$ и $(\mathbf{A}^*\mathbf{A})^* = \mathbf{A}^*\mathbf{A}$.
- 6. Проверить, что если \mathbf{A} и \mathbf{A}^* сопряжённые друг другу операторы, то $\mathbf{A} + \mathbf{A}^*$, $\mathbf{A}\mathbf{A}^*$ и $\mathbf{A}^*\mathbf{A} \mathbf{camoconp}$ яжённые операторы и $\|\mathbf{A}\mathbf{A}^*\| = \|\mathbf{A}^*\mathbf{A}\| = \|\mathbf{A}\|^2$.
- 7. Пусть в *сепарабельном гильбертовом* пространстве \mathbf{H} задана *полная* система $\{\mathbf{e}_i\},\ i=1,2,\ldots,\$ *ортонормированных* векторов.

Тогда всякому элементу $\mathbf{x} \in \mathbf{H}$ соответствует его $p \mathbf{a} \partial \Phi p \mathbf{b} \mathbf{e}$ относительно системы $\{\mathbf{e}_i\}$, $i=1,\,2,\,\ldots$: $\mathbf{x} \stackrel{def}{=} \sum_{i=1}^{\infty} c_i \cdot \mathbf{e}_i$

Оператор \mathbf{A} действующий на всякий элемент $\mathbf{x} \in \mathbf{H}$ по формуле: $\mathbf{A}\mathbf{x} \stackrel{def}{=} \sum_{i=1}^\infty \lambda_i \cdot c_i \cdot \mathbf{e}_i$, называется оператором *нормального* типа.

Показать, что оператор *нормального* типа в гильбертовом пространстве будет иметь *ограниченный* обратный *тогда* и *только тогда*, когда *существует* такая постоянная величина $\gamma > 0$, что выполняется неравенство: $\inf_{n} |\lambda_n| \geqslant \gamma$.

- 8. Показать, что оператор *нормального* типа в гильбертовом пространстве (см. определение в упражнении 7) будет *вполне непрерывным* тогда и только тогда, когда выполняется равенство: $\lim_{n\to\infty} \lambda_n = 0$.
 - 9^* . Показать, что для всякого *ограниченного* оператора **A**, действу-

ющего в cenapaбельном cenapaбельном cenapaбельном пространстве cenapaбельном пространстве cenapaбельном пространстве cenapafe ce

<u>Указание</u>. В соответствии с задачей 6 § 2, любое сепарабельное гильбертово пространство **H** непрерывно изоморфно пространству ℓ_2 . Поэтому всякой "паре" векторов $\mathbf{x}, \mathbf{y} \stackrel{def}{=} \mathbf{A} \mathbf{x} \in \mathbf{H}$, отвечает при указанном изоморфизме "пара" векторов $\mathbf{\check{x}} = (\alpha_1, \alpha_2, \dots, \alpha_n, \dots) \in \ell_2$ и $\mathbf{\check{y}} = (\beta_1, \beta_2, \dots, \beta_n, \dots) \in \ell_2$, которая и определяет действие оператора \mathcal{A} в пространстве ℓ_2 по формуле: $\mathcal{A}\mathbf{\check{x}} = (\beta_1, \beta_2, \dots, \beta_n, \dots) \in \ell_2$.

- 10. Показать, что оператор \mathcal{A} в пространстве ℓ_2 , построенный в предыдущей задаче для заданного оператора \mathbf{A} , будет *вполне непрерывным* тогда и только тогда, когда вполне непрерывным будет исходный оператор \mathbf{A} .
- 11. Пусть в cenapaбельном cuльбертовом пространстве \mathbf{H} задана nonhas система $\{\mathbf{e}_i\},\ i=1,2,\ldots,\ opmonopmuposahhus$ векторов.

Показать, что тогда всякий **линейный** оператор $\mathbf{A}: \mathbf{H} \to \mathbf{H}$ может быть задан бесконечной **матрицей** $\mathcal{A} = (a_{ij}),$ **определяемой** равенством: $\mathbf{h}_j = \mathbf{A}\mathbf{e}_j = \sum_{i=1}^\infty a_{ij}\mathbf{e}_i$.

Написать формулы для вычисления **элементов** (a_{ij}) матрицы \mathcal{A} .

12. Пусть в сепарабельном гильбертовом пространстве \mathbf{H} задана полная система $\{\mathbf{e}_i\}$, $i=1,2,\ldots,$ ортонормированных векторов. Пусть $\mathbf{A}:\mathbf{H}\to\mathbf{H}$ ограниченный оператор. Показать, что тогда $\exists \mathbf{K}\in\mathbb{R}^1_+$, что для $\forall\,(x_1,\ldots,x_m)$ и $\forall\,(y_1,\ldots,y_n)$ имеет место

неравенство:

$$\left| \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j \right|^2 \leqslant \mathbf{K} \cdot \sum_{i=1}^{m} x_i^2 \sum_{j=1}^{n} y_j^2$$

13. Пусть в cenapaбельном cuльбертовом пространстве \mathbf{H} задана nonhas система $\{\mathbf{e}_i\},\ i=1,2,\ldots,\ opmohopmupoвahhus$ векторов.

Пусть $\exists \mathbf{K} \in \mathbb{R}^1_+$, что для $\forall (x_1, \dots, x_m)$ и $\forall (y_1, \dots, y_n)$ имеет место неравенство:

$$\left| \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j \right|^2 \leqslant \mathbf{K} \cdot \sum_{i=1}^{m} x_i^2 \sum_{j=1}^{n} y_j^2$$

Показать, что тогда оператор $\mathbf{A}: \mathbf{H} o \mathbf{H} - \emph{orpahuvehhый}.$

14. Пусть в cenapaбельном cuльбертовом пространстве \mathbf{H} задана nonhas система $\{\mathbf{e}_i\},\ i=1,2,\ldots,\ opmoнopмupoвahhus$ векторов.

Пусть $\mathbf{A}: \mathbf{H} \to \mathbf{H}$ *ограниченный* оператор.

Получить оценку снизу нормы оператора А:

$$\sup_{i} \left\{ \sum_{j=1}^{\infty} a_{ij}^{2} \right\} \leqslant \|\mathbf{A}\|_{\mathbf{H}}^{2}$$

15. Показать, что оператор ${\bf A}$, заданный бесконечной **матрицей** ${\cal A}=(a_{ij})$ относительно **полной** системы $\{{\bf e}_i\},\ i=1,2,3,\ldots,$ **ортонормированных** векторов $\{{\bf e}_j\}$ в **сепарабельном гильбертовом** пространстве ${\bf H}$, и действующий по формуле ${\bf A}{\bf e}_j=\sum\limits_{i=1}^\infty a_{ij}{\bf e}_i$ вполне непрерывен, если $\sum\limits_{i=1}^\infty\sum\limits_{j=1}^\infty a_{ij}^2<\infty$.

3.4 Примеры самосопряженных вполне непрерывных операторов в пространстве $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$

Пример 1

Пусть $\mathcal{K}(t,s)$ *непрерывная* на множестве $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$ функция двух переменных.

Из свойств интеграла (Лебега) следует, что для любого элемента x(s) из пространства $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$ корректно определена функция

$$y(t) = \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t, s) x(s) ds$$
 (1)

Утверждение 42. Интеграл в правой части (1) определяет линейный оператор из $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$ в $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$ и этот оператор вполне непрерывен.

Рассмотрим *ограниченное* в пространстве $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$ *множество* \mathbf{M}_r элементов $\mathbf{x} \equiv x(s)$:

$$\mathbf{M}_r: \int_{\mathbf{a}}^{\mathbf{b}} x^2(s) \, ds \leqslant r^2$$

Обозначим $\mathbf{K} = (\mathbf{b} - \mathbf{a})^{1/2} \cdot r$.

Тогда, в силу неравенства **Коши - Буняковского**:

$$\int_{\mathbf{a}}^{\mathbf{b}} |x(s)| ds \leqslant (\mathbf{b} - \mathbf{a})^{1/2} \cdot \left[\int_{\mathbf{a}}^{\mathbf{b}} x^{2}(s) ds \right]^{1/2} \leqslant \mathbf{K}$$

Покажем, что образ множества $\mathbf{M}_r \subset \mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$ — множество $\mathbf{A}\left(\mathbf{M}_r\right)$, компактно в пространстве $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, а тогда u в пространстве $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$.

Действительно, т.к функция $\mathcal{K}(t,s)$ непрерывна на компакте $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$, то, в силу утверждения 16 главы 1, эта функция равномерно непрерывна на указанном компакте, а потому $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) > 0$ такое, что, в частности:

$$|\mathcal{K}(t_1, s) - \mathcal{K}(t_2, s)| < \frac{\varepsilon}{\mathbf{K}},$$
 если $|t_1 - t_2| < \delta(\varepsilon)$, $t_1, t_2 \in [\mathbf{a}, \mathbf{b}], \quad \forall s \in [\mathbf{a}, \mathbf{b}]$

Поэтому все функции y(t) из множества $\mathbf{A}(\mathbf{M}_r)$, во-первых, \pmb{pas} ностепенно непрерывны, т.е. $\forall \, \varepsilon > 0 \, \, \exists \, \delta \left(\varepsilon \right) > 0 \, \,$ такое, что:

$$\left| y\left(t_{1}\right) - y\left(t_{2}\right) \right| = \left| \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}\left(t_{1}, s\right) x\left(s\right) ds - \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}\left(t_{2}, s\right) x\left(s\right) ds \right| \leqslant \int_{\mathbf{a}}^{\mathbf{b}} \left| \mathcal{K}\left(t_{1}, s\right) - \mathcal{K}\left(t_{2}, s\right) \right| \cdot \left| x\left(s\right) \right| ds < \varepsilon$$

$$(2)$$

А, во-вторых, *ограничены* одной и той же *константой*:

$$\left| \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t,s) x(s) ds \right| \leqslant \sqrt{\int_{\mathbf{a}}^{\mathbf{b}} \left| \mathcal{K}(t,s) \right|^{2} ds} \cdot \int_{\mathbf{a}}^{\mathbf{b}} \left| x(s) \right|^{2} ds \leqslant$$

$$\leqslant \| \mathbf{x} \|_{\mathbb{L}_{2}} \cdot \max_{[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]} \left| \mathcal{K}(t,s) \right| \cdot \sqrt{\mathbf{b} - \mathbf{a}}$$

$$(3)$$

Поэтому, если $\|\mathbf{x}\|_{\mathbb{L}_2} \leqslant r$, то функции, *определяемые* интегралом (1), согласно теореме Арцела (см. § 5, главы 1) образуют подмножество, которое *компактно* в $\mathbb{C}[\mathbf{a}, \mathbf{b}]$.

В свою очередь, каждая такая функция порождает *элемент* $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$ (§ 4 главы 1) и, следовательно, *интегральный оператор* (1) порождает *отображение* \mathbf{A} из $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$ в $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$.

В силу свойства *линейности интеграла*, это отображение *линейное*.

Пусть Y(t) элемент $\mathbb{L}_2[\mathbf{a}, \mathbf{b}]$, содержащий функцию y(t), равную значению интеграла в правой части (1).

Если последовательность функций $\{y_n(t)\}$ фундаментальна в $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, то последовательность элементов $\{Y_n(t)\}\in\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$ фундаментальна в $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$.

Действительно:

$$\|\mathbf{Y}_{m} - \mathbf{Y}_{n}\|_{\mathbb{L}_{2}}^{2} = \int_{\mathbf{a}}^{\mathbf{b}} \left[y_{m}(t) - y_{n}(t)\right]^{2} ds \leqslant \|\mathbf{y}_{m} - \mathbf{y}_{n}\|_{\mathbb{C}}^{2} \cdot (\mathbf{b} - \mathbf{a})$$
(4)

Так как функции y(t), получающиеся при отображении \mathbf{A} из элементов $\mathbb{L}_2[\mathbf{a},\mathbf{b}]$, принадлежащих шару: $\|\mathbf{x}\|_{\mathbb{L}_2} \leqslant r$, образуют, как мы установили, **компактное** множество в $\mathbb{C}[\mathbf{a},\mathbf{b}]$, то, в силу (4), образ шара $\|\mathbf{x}\|_{\mathbb{L}_2} \leqslant r$ при отображении \mathbf{A} **компактен** в $\mathbb{L}_2[\mathbf{a},\mathbf{b}]$ и, следовательно, **интегральный оператор** (1) — **линейный вполне непрерывный** оператор из $\mathbb{L}_2[\mathbf{a},\mathbf{b}]$ в $\mathbb{L}_2[\mathbf{a},\mathbf{b}]$.

Утверждение 43. Если $\mathcal{K}(t,s) = \mathcal{K}(s,t)$, то полученный оператор будет **симметричным** (самосопряженным) в $\mathbb{L}_2[\mathbf{a},\mathbf{b}]$.

Доказательство. Действительно, если $\mathbf{z} \in \mathbb{L}_2[\mathbf{a}, \mathbf{b}]$, то:

$$(\mathbf{z}, \mathbf{A}\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} \left(z(t) \cdot \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t, s) x(s) ds \right) dt =$$

$$= \int_{\mathbf{a}}^{\mathbf{b}} x(s) \cdot \left(\int_{\mathbf{a}}^{\mathbf{b}} z(t) \mathcal{K}(t, s) dt \right) ds = (\mathbf{x}, \mathbf{A}\mathbf{z})$$
(5)

Последнее равенство справедливо в силу предположенной **независимо-** cmu значений функции $\mathcal{K}(t,s)$ от перестановки ее аргументов.

Замечание. При выводе равенства (5) мы воспользовались возможностью в нашем случае *переставлять* пределы интегрирования в *повторном* интеграле Лебега (см. [1], [7]).

Пример 2

Пусть f(t) непрерывная на отрезке $[\mathbf{0}, \boldsymbol{\pi}]$ функция.

Рассмотрим *дифференциальное* уравнение

$$-y'' = f (6)$$

с *краевыми условиями*

$$y\left(\mathbf{0}\right) = y\left(\boldsymbol{\pi}\right) = 0.$$

Решение **краевой задачи** (6) можно выразить **в квадратурах**, т.е. представить в виде интегралов от заданной функции f(t).

Действительно, *общее решение* дифференциального уравнения (6) записывается в виде:

$$y(t) = -\int_{0}^{t} \int_{0}^{s} f(\tau) d\tau ds + \mathbf{C}t + \mathbf{C}_{1},$$

где C, C_1 — произвольные постоянные.

Для выполнения *дополнительных условий* нужно, чтобы:

$$\mathbf{C}_1 = 0 , \qquad \left(y \left(\mathbf{0} \right) = 0 \right) ,$$

И

$$\mathbf{C} = \frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{s} f(\tau) d\tau ds , \qquad (y(\pi) = 0) .$$

Таким образом:

$$y(t) = -\int_{0}^{t} \int_{0}^{s} f(\tau) d\tau ds + \frac{t}{\pi} \int_{0}^{\pi} \int_{0}^{s} f(\tau) d\tau ds$$
 (7)

В *повторных* интегралах правой части этого равенства можно *по- менять* порядок интегрирования.

Произведя эту операцию, получим:

$$y(t) = \int_{0}^{t} f(\tau)(\tau - t) d\tau + \frac{t}{\pi} \int_{0}^{\pi} f(\tau)(\pi - \tau) d\tau$$

Это равенство можно записать в виде:

$$y(t) = \int_{0}^{\pi} \mathcal{K}(t, \tau) f(\tau) d\tau , \qquad (8)$$

где

$$\mathcal{K}(t,\tau) = \begin{cases} \tau - t + \frac{t}{\pi}(\pi - \tau), & \tau \leq t \\ \frac{t}{\pi}(\pi - \tau), & \tau > t \end{cases}$$

ИЛИ

$$\mathcal{K}(t,\tau) = \begin{cases} \tau \left(1 - \frac{t}{\pi}\right), & \tau \leq t \\ t \left(1 - \frac{\tau}{\pi}\right), & \tau > t \end{cases}$$

 ${\it Ядро}$ интегрального оператора $(8)-{\it K}(t, au),$ называется функцией ${\it \Gamma}$ рина краевой задачи (6) .

 $m{\Phi}$ ункция $m{\Gamma}$ рина, во-первых, $m{c}$ имметрична относительно своих аргументов $t, \, au$, а, во-вторых, $m{h}$ ерывна всюду на компакте $[m{0}, m{\pi}] imes [m{0}, m{\pi}]$, и, в-третьих, удовлетворяет $m{y}$ еловию $m{J}$ ипшица по первому аргументу (см. задачу 1 к этому параграфу).

Поэтому (см. пример 1) — интегральный оператор, определяемый формулой (8), является вполне непрерывным симметричным оператором из \mathbb{L}_2 [0, π] в \mathbb{L}_2 [0, π] и для него справедлива доказанная в § 3 теорема о спектральном разложении.

В этом конкретном случае можно явно найти *собственные функции* и соответствующие им *ненулевые собственные значения*.

Действительно, искомые *собственные функции* оператора (8) удовлетворяют равенству:

$$\int_{0}^{\pi} \mathcal{K}(t, s) y(s) ds = \lambda \cdot y(t)$$
(9)

Каждую конкретную функцию $y(s) \in \mathbb{L}_2 [0, \pi]$ интегральный оператор (8) переводит в **непрерывную** функцию и, следовательно, **любой** собственный элемент соответствующего оператора — **непрерывная** на $[0,\pi]$ функция (точнее **класс** эквивалентных функций, — элемент пространства $\mathbb{L}_2 [0,\pi]$, содержащий непрерывную функцию).

Но, если y(s) непрерывна, то, в силу построения оператора (8), интеграл в левой части (9) дважды дифференцируем по t.

Если **обозначить** его через $z\left(t\right),$ то в силу $\left(7\right)$:

$$-z''(t) = y(t), \quad z(\mathbf{0}) = z(\pi) = 0.$$

В силу $(9): y(\mathbf{0}) = y(\pi) = 0.$

Кроме того, из (9) следует, что:

$$z^{''}(t) = \lambda \cdot y^{''}(t) .$$

Следовательно, $\pmb{nenynesue}$ λ и $y\left(t\right)$ должны быть $\pmb{nempusu}$ $\pmb{anbhumu}$ решениями следующей $\pmb{\kappa paesou}$ \pmb{sadauu} , называемой $\pmb{sadaueu}$ $\pmb{IIImypma}$ - $\pmb{Juysunns}$:

$$-\lambda y''(t) = y(t), \quad y(\mathbf{0}) = y(\boldsymbol{\pi}) = 0 \tag{10}$$

Нетрудно видеть, что при $\lambda\leqslant 0$ **нетривиального** решения задачи (10) **не существует**.

При $\lambda > 0$ *общее решение* дифференциального уравнения из (10) имеет вид:

$$y(t) = \mathbf{C_1} \sin \frac{t}{\sqrt{\lambda}} + \mathbf{C_2} \cos \frac{t}{\sqrt{\lambda}}$$

Так как y(0) = 0, то $C_2 = 0$.

Удовлетворение второго **краевого условия** $y\left(oldsymbol{\pi} \right) = 0$ возможно, если:

$$\sin\frac{\pi}{\sqrt{\lambda}} = 0$$
, r.e. $\frac{\pi}{\sqrt{\lambda}} = n\pi$, $n = 1, 2, \dots$

Отсюда:

$$\lambda_n = \frac{1}{n^2}, \qquad n = 1, 2, \dots$$

Одномерное пространство, порожденное каждым таким *собствен- ным значением*, имеет вид:

$$\{c \cdot \sin n t\}$$
.

Т.к.:

$$\| \sin n t \|_{\mathbb{L}_2[0,\pi]} = \int_0^{\pi} \sin^2 n t \, dt = \frac{\pi}{2} ,$$

то система $\left\{\sqrt{\frac{2}{\pi}}\sin n\,t\right\}$, $n=1,\,2,\,\ldots$ — ортонормированная система собственных функций оператора (8) и $\forall \,\mathbf{f} \in \mathbb{L}_2 \,[\mathbf{0}, \boldsymbol{\pi}]$:

$$\int_{0}^{\pi} \mathcal{K}(t, s) f(s) ds = \frac{2}{\pi} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{2}} \cdot \left(\int_{0}^{\pi} f(s) \sin ns \, ds \right) \cdot \sin nt$$

 \pmb{Mo} показать, что полученная ортонормальная система \pmb{no} на В \mathbb{L}_2 $[\mathbf{0}, \pmb{\pi}]$.

Для этого нужно убедиться, что $\mathbf{\textit{ядрo}}$ оператора $(8) - \mathbf{kerA}$, — содержит только $\mathbf{\textit{нулевой элемент}} \mathbb{O}$ или $\mathbf{\textit{непосредственно}}$ установить, что в \mathbb{L}_2 $[\mathbf{0}, \boldsymbol{\pi}]$ нет $\mathbf{\textit{ненулевыx}}$ элементов, $\mathbf{\textit{ортогональныx всем}}$ функциям $\sin n \, t, \, n = 1, \, 2, \, \dots$

В последнем можно убедиться, используя некоторые результаты о сходимости *стандартных рядов Фурье*.

Мы не будем на этом останавливаться.

Упражнения и задачи κ параграфу 4.

- 1. Проверить *симметричность функции Грина* в (8) и выполнение *условия Липшица* по первому аргументу.
- 2. Не используя явный вид решения $\mathbf{\it sadauu}\ \mathbf{\it Штурмa}$ $\mathbf{\it Лиувилля}$ (10), показать, что $\mathbf{\it nobue}$ два ее решения, с разными λ_i , $\mathbf{\it opmozo-hanbhu}$.

3.5 Линейные уравнения с вполне непрерывным симметричным оператором

Представление решения

Рассмотрим *операторное* уравнение в **гильбертовом** пространстве ${\bf H}$:

$$\lambda \mathbf{x} - \mathbf{A}\mathbf{x} = \mathbf{y} \,, \tag{1}$$

где **А** *вполне непрерывный симметричный* оператор, λ — некоторое действительное *число*.

Используя доказанную в § 3 теорему *о спектральном разложении* оператора \mathbf{A} , можно получить *явное* представление решения уравнения (1) через *собственные значения* и *собственные элементы* оператора \mathbf{A} .

Пусть $\{\lambda_i\}$ последовательность **ненулевых** собственных значений оператора \mathbf{A} и $\{\mathbf{e}_i\}$ соответствующая последовательность **ортонор-мированных** собственных элементов.

Любой элемент ${\bf x}$ пространства ${\bf H}$ допускает, согласно теореме о спектральном разложении § 3, представление:

$$\mathbf{x} = \sum_{i} \mathbf{c_i} \, \mathbf{e_i} + \mathbf{h}, \quad \mathbf{h} \in \mathbf{kerA} ,$$
 (2)

где \mathbf{c}_i и элемент \mathbf{h} однозначно определяются по \mathbf{x} .

Поэтому, **любое** решение уравнения (1) имеет представление в виде (2).

Представим элемент y в виде:

$$\mathbf{y} \, = \, \sum_i \left(\, \mathbf{y}, \, \mathbf{e}_i \,
ight) \cdot \mathbf{e}_i \, + \, \mathbf{pr}_{\mathbf{ker A}}(\, \mathbf{y} \,
ight)$$

В силу (1):

$$\lambda \, \mathbf{h} \, + \, \lambda \, \cdot \, \sum_{i} \mathbf{c}_{i} \, \mathbf{e}_{i} \, - \, \sum_{i} \lambda_{i} \cdot \mathbf{c}_{i} \cdot \mathbf{e}_{i} \, = \, \sum_{i} \left(\, \mathbf{y}, \, \mathbf{e}_{i} \,
ight) \cdot \mathbf{e}_{i} \, + \, \mathbf{pr}_{\mathbf{kerA}}(\, \mathbf{y} \,)$$

Учитывая *ортогональность* $\ker \mathbf{A}$ и *подпространства*, образованного всеми \mathbf{e}_i , получим:

$$\lambda \mathbf{h} = \mathbf{pr_{kerA}}(\mathbf{y}), \qquad \sum_{i} \mathbf{c}_{i} (\lambda - \lambda_{i}) \cdot \mathbf{e}_{i} = \sum_{i} (\mathbf{y}, \mathbf{e}_{i}) \cdot \mathbf{e}_{i}$$
 (3)

Зависимость решения уравнения (1) от параметра λ

Рассмотрим несколько **возможеных** случаев **взаимного** расположения значений параметра λ и собственных значений оператора \mathbf{A} - $\{\lambda_i\}$.

$$\mathbf{1}^{\circ}$$
. $\lambda \neq \mathbf{0}$ и $\lambda \neq \lambda_{\mathbf{i}}$, $i=1,2,\ldots$

Из равенств (3) можно *однозначно* определить *неизвестный* элемент \mathbf{h} и *коэффициенты* \mathbf{c}_i .

Именно:

$$\mathbf{h} = rac{\mathbf{pr_{kerA}(y)}}{\lambda}; \qquad \mathbf{c}_i = rac{(\mathbf{y}, \mathbf{e}_i)}{\lambda - \lambda_i}$$

Решение уравнения (1) можно записать в виде:

$$\mathbf{x} = \frac{\mathbf{pr_{kerA}}(\mathbf{y})}{\lambda} + \sum_{i} \frac{(\mathbf{y}, \mathbf{e}_{i}) \cdot \mathbf{e}_{i}}{\lambda - \lambda_{i}}$$
(4)

Так как, по предположению $\lambda \neq 0$ и $\lambda \neq \lambda_i$, $i=1,2,\ldots$, то:

$$d = \inf_{i} |\lambda - \lambda_{i}| \neq 0$$

Действительно:

$$|\lambda - \lambda_i| \geqslant ||\lambda| - |\lambda_i||$$

Если число **ненулевых** λ_i **конечно**, то правая часть этого неравенства ограничена снизу положительной постоянной.

Поэтому в рассматриваемом случае $d \neq 0$.

Если число **ненулевых** λ_i **бесконечно**, то $\lim_{i \to \infty} \lambda_i = 0$.

В этом случае выберем столь большое $N\,,\,\,\,\,$ чтобы при $i\geqslant N\,$ выполнялось неравенство:

$$\left| \left| \lambda \right| - \left| \lambda_i \right| \right| \geqslant \frac{\left| \lambda \right|}{2}$$

Таким образом для $i\geqslant N$

$$|\lambda - \lambda_i| \geqslant \frac{|\lambda|}{2}$$

Для оставшихся в рассматриваемом случае номеров i < N правая часть нужного неравенства ограничена снизу некоторой положительной величиной, т.к. $\lambda \neq \lambda_i, i=1,2,\ldots$

Поэтому, и в случае бесконечного числа **ненулевых** $\lambda_i, -d \neq 0$.

Итак, в случае $\mathbf{1}^{\circ}$, можно утверждать, что уравнение (1) имеет $e\partial u h cm e e h h o e$ решение при $n h o o m y \in \mathbf{H}$.

Это решение может быть представлено в виде (4).

Согласно § 3 главы II , оператор $(\lambda \, {f E} - {f A})$, в этом случае, имеет ${\it ofpamhu\"u} - (\lambda \, {f E} - {f A})^{-1}$.

Из представления (4) следует его *ограниченность*. Более того, *норма* этого оператора равна:

$$\max\left(\frac{1}{|\lambda|}, \frac{1}{d}\right) ,$$

(см. задачу 1 к этому параграфу).

 $\mathbf{2}^{\circ}$. $oldsymbol{\lambda}
eq \mathbf{0}$, но $oldsymbol{\lambda}$ $oldsymbol{cosnadaem}$ с $oldsymbol{odhum}$ из $oldsymbol{cosconsehhux}$ значений $oldsymbol{\lambda_{i_0}}$.

В этом случае, равенствам (3) можно удовлетворить только, если выполнено условие:

$$(\mathbf{y}, \{\mathbf{e}_{\mathbf{i_0}}\}) = 0 \tag{5}$$

Здесь $\{{\bf e}_{i_0}\}$ конечное множество линейно независимых собственных векторов оператора ${\bf A}$, соответствующих собственному значению λ_{i_0} .

При выполнении условия (5), равенства (3) удовлетворяются, если:

$$\mathbf{h} = \frac{\mathbf{pr_{kerA}(y)}}{\lambda}$$
; $\mathbf{c}_i = \frac{(\mathbf{y}, \mathbf{e}_i)}{\lambda - \lambda_i}$, если $\lambda_i \neq \lambda_{i_0}$; \mathbf{c}_i -произвольно, если $\lambda_i = \lambda_{i_0}$

Решение уравнения (1), в рассматриваемом случае, имеет вид:

$$\mathbf{x} = \frac{\mathbf{pr_{kerA}}(\mathbf{y})}{\lambda} + \sum_{i,\lambda_i \neq \lambda_{i_0}} \frac{(\mathbf{y}, \mathbf{e}_i) \cdot \mathbf{e}_i}{\lambda - \lambda_i} + \sum_{i,\lambda_i = \lambda_{i_0}} \mathbf{c}_i \cdot \mathbf{e}_i$$
 (6)

Из (6) видно, что, в случае **2**°, совокупность решений уравнения (1) образует *подмножество* (гиперплоскость) в пространстве **H**, являющееся *суммой конечномерного подпространства* и некоторого *фиксированного* элемента **H**.

Упомянутое конечномерное подпространство есть множество решений уравнения (1) с правой частью $\mathbf{y} = \mathbb{O}_{\mathbf{H}}$ при $\lambda = \lambda_{i_0}$.

$$3^{\circ}$$
 . $\lambda = 0$.

В этом, в некотором смысле, *особом* случае, из первого равенства (3) следует, что $\mathbf{pr_{kerA}}(\mathbf{y}) = \mathbb{O}$ и, поэтому, для разрешимости уравне-

ния (1) **необходимо**, чтобы его правая часть **у** была бы **ортого- нальна kerA** .

Остальные условия (3), очевидно, выполняются при:

$$\mathbf{c}_i = -\frac{(\mathbf{y}, \mathbf{e}_i)}{\lambda_i},$$

и *любое* решение уравнения (1) должно иметь вид:

$$-\sum_{i}rac{\left(\mathbf{\,y},\,\mathbf{e}_{i}\,
ight) }{\lambda_{i}}$$

Однако, этот p n d будет определять n e m e m H только, если:

$$\sum_{i} \frac{(\mathbf{y}, \mathbf{e}_{i})^{2}}{\lambda_{i}^{2}} < \infty \tag{7}$$

Условие (7) выполнено для **любого** $\mathbf{y} \in \mathbf{H}$, если существует лишь **конечное** число отличных от 0 **собственных значений**.

Последнее заведомо справедливо, *например*, тогда, когда пространство \mathbf{H} , в котором рассматривается операторное уравнение (1), *конечномерно*.

В *общем случае* условие *сходимости* ряда в левой части (7), — *дополнительное* (помимо условия ортогональности ядру оператора **kerA**) условие *на правую часть* уравнения (1), *обеспечивающее* его *разрешимость*.

Упраженения и задачи κ параграфу 5.

1. Показать, что в случае $\ \mathbf{1}^{\circ}\$ *норма обратного* оператора $\ \left(\lambda\,\mathbf{E}-\mathbf{A}\,\right)^{-1}$ равна:

$$\max\left(\frac{1}{|\lambda|}, \frac{1}{d}\right) .$$

2. Пусть **А** *линейный ограниченный* оператор в **Н**.

Согласно определению § 3 главы II, оператор $\mathbf{R}_{\lambda} = (\lambda \, \mathbf{E} - \mathbf{A})^{-1}$, если он *непрерывен*, называется *резольвентой* оператора \mathbf{A} , а множество *чисел* λ , для которых резольвента *существует*, называется *резольвентным множеством* оператора \mathbf{A} .

Показать, что pезольвентное множество omкрыто в \mathbb{E}^1 .

3. Дополнительное к резольвентному множеству оператора ${\bf A}$ множество точек действительной оси называется спектром (§ 3 главы II) оператора ${\bf A}$.

Описать $cne \kappa mp$ $sno {\it n}{\it h}e$ $ne \kappa mp$ $ne \kappa m$

<u>Указание</u>. Отдельно рассмотреть случаи **конечномерного** и **беско- нечномерного** пространств \mathbf{H} .

3.6 Линейные уравнения с произвольным вполне непрерывным оператором в гильбертовом пространстве

Уравнения с оператором, обладающим замкнутой областью значений

Пусть ${f B}-$ линейный ограниченный оператор в гильбертовом пространстве ${f H}$.

Утверждение 44. Ортогональное дополнение κ множеству значений оператора ${\bf B}-{\bf B}({\bf H})$, - есть ${\bf ker}{\bf B}^*$, то есть:

$$\mathbf{B}(\mathbf{H})^{\perp} = \mathbf{ker} \mathbf{B}^*$$

Доказательство. Действительно, если $\mathbf{z} \in \mathbf{B}(\mathbf{H})^{\perp}$, то $\forall \mathbf{x} \in \mathbf{H}$:

$$(\mathbf{B}\mathbf{x}, \mathbf{z}) = (\mathbf{x}, \mathbf{B}^*\mathbf{z}) = 0.$$

Так как \mathbf{x} *произвольный* элемент \mathbf{H} то, поэтому, $\mathbf{B}^*\mathbf{z} = \mathbb{O}_{\mathbf{H}}$ и $\mathbf{z} \in \mathbf{ker}\mathbf{B}^*$.

Наоборот, если $\mathbf{z} \in \mathbf{ker} \mathbf{B}^*$, то из равенства соответствующих $\mathbf{c} \kappa \mathbf{a}$ лярных произведений следует, что:

$$(\mathbf{B}\mathbf{x},\,\mathbf{z}\,)\,=\,0\,\,,$$

 $\forall \mathbf{x} \in \mathbf{H}, \text{ то есть } \mathbf{z} \in \mathbf{B}(\mathbf{H})^{\perp}.$

Если $\mathbf{B}(\mathbf{H}) - \boldsymbol{\mathit{замкнутоe}}$ множество, то, по теореме *об ортого-* нальном разложении, (см. утверждение 2 § 2 главы III):

$$\mathbf{H} = \mathbf{B}(\mathbf{H}) \oplus \mathbf{ker} \mathbf{B}^* \tag{1}$$

Поэтому, для оператора **В** с *замкнутой* областью *значений*, операторное уравнение:

$$\mathbf{B}\mathbf{x} = \mathbf{y} \tag{2}$$

разрешимо $mor\partial a$ и morько $mor\partial a$, когда $\ \mathbf{y}\ \ opmoroнaльнo}$ $\ \mathbf{a}\partial py$ \mathbf{B}^* .

Замкнутость области значений оператора $(\lambda \, {f E} \, - \, {f A}) \, ,$ где $\, {f A} \,$ вполне непрерывный оператор в $\, {f H} \,$ и $\, \lambda \, \neq \, 0 \,$

Нашей ближайшей целью будет установление $\pmb{\mathit{замкнутости}}$ области $\pmb{\mathit{значений}}$ оператора $\pmb{\mathsf{B}}$ вида $(\lambda\,\pmb{\mathsf{E}}-\pmb{\mathsf{A}})$, где $\lambda\neq 0$ и $\pmb{\mathsf{A}}$ $\pmb{\mathit{snonhe}}$ $\pmb{\mathit{непрерывный}}$ оператор в $\pmb{\mathit{гильбертовом}}$ пространстве $\pmb{\mathsf{H}}$.

Предварительно установим *замкнутость* области *значений* линейного непрерывного оператора \mathbf{B} , действующего в *пространстве* \mathbb{E}^n .

В этом случае оператор $\, {f B} \,$ описывается квадратной ${\it mampuųe \it u} \,$ размера $n \times n \,,\,\,\,$ которую мы будем обозначать $\, {\it B} \,.\,\,$

Из линейной алгебры известно (теорема Кронекера - Капелли), что разрешимость уравнения вида (2) в линейном пространстве \mathbb{R}^n связана с рангом расширенной матрицы (\mathcal{B} ; \mathbf{b}) этой системы.

Если $\mathbf{r}_1-\pmb{p}$ анг расширенной матрицы $(\mathcal{B};\mathbf{b})$ совпадает с $\mathbf{r}-$ рангом матрицы $\mathcal{B}:\mathbf{r}_1=\mathbf{r}$, то система разрешима.

В *противном* случае разрешимости *нет*.

Очевидно, что операторное уравнение (2) в *пространстве* \mathbb{E}^n разрешимо тогда и только тогда, когда оно разрешимо в *линейном* пространстве \mathbb{R}^n .

Предположим, что множество $\mathbf{B}\left(\mathbb{E}^{n}\right)$ не замкнуто и ранг \mathcal{B} равен \mathbf{r} .

Тогда, для некоторой npedeльной точки y множества $\mathbf{B}(\mathbb{E}^n)$, pahz матрицы $(\mathcal{B};\mathbf{y})$ больше \mathbf{r} , то есть в pacuupehhoй матрице найдется nodматрица размера $(\mathbf{r}+\mathbf{1})\times(\mathbf{r}+\mathbf{1})$ с определителем he paehhm 0.

Так как определитель **непрерывная** функция **элементов** матрицы, то и в **расширенной** матрице $(\mathcal{B}; \tilde{\mathbf{y}})$, где $\|\tilde{\mathbf{y}} - \mathbf{y}\|_{\mathbb{E}^n}$ достаточно **мала**, **определитель** соответствующей **подматрицы** будет отличен от 0 и система линейных уравнений, соответствующая уравнению (2), будет **неразрешима** для **всех** правых частей $\tilde{\mathbf{y}}$, **близких** по норме \mathbb{E}^n к \mathbf{y} .

Но, это противоречит тому, что $\mathbf{y}-npedeльная$ точка области paspewumocmu.

Итак, область **значений любого линейного** (непрерывного) оператора \mathbf{B} в \mathbb{E}^n **замкнута** и справедливо равенство (1).

Связь между сопряжёнными уравнениями второго рода (случай операторов конечного ранга)

Пусть $\{\mathbf e_k\}$ и $\{\boldsymbol \psi_k\}$, $k=1,\ldots,N$, — две **линейно независи**-**мые системы** элементов пространства $\mathbf H$.

Эти системы позволяют $onpedenum_b$ линейный оператор в пространстве \mathbf{H} :

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^{N} (\mathbf{x}, \boldsymbol{\psi}_k) \cdot \mathbf{e}_k$$
 (3)

Область *значений* оператора $\bf A$ лежит в *конечномерном подпро- странстве*, образованном системой $\{{\bf e}_k\}$.

Поэтому такие операторы часто называют *операторами конечного ранга*.

Непосредственно проверяется, что

$$\mathbf{A}^* \mathbf{y} = \sum_{k=1}^{N} (\mathbf{y}, \mathbf{e}_k) \cdot \boldsymbol{\psi}_k$$
 (4)

Кроме того, как оператор \mathbf{A} , так и оператор \mathbf{A}^* *вполне непрерывны* (см. упражнение 1 к этому параграфу).

Пусть $\mathbf{B} = \lambda \mathbf{E} - \mathbf{A}$, $\lambda \neq 0$, где \mathbf{A} задается равенством (3).

В дальнейших рассуждениях будем, **без ограничения общности**, считать $\lambda = 1$.

Из определения conpяженного оператора henocpedcmвенно следует (с учетом соглашения: $\lambda=1$), что $\mathbf{B}^*=\mathbf{E}-\mathbf{A}^*$.

Рассмотрим три *тесно связанные* между собой операторных уравнения:

$$\mathbf{B}\mathbf{x} = \mathbf{x} - \mathbf{A}\mathbf{x} = \mathbf{y} \,, \tag{5}$$

$$\mathbf{x} - \mathbf{A}\mathbf{x} = \mathbf{O} \,, \tag{6}$$

$$\mathbf{z} - \mathbf{A}^* \mathbf{z} = \mathbb{O} . \tag{7}$$

В силу (3), *решение* уравнения (5), если оно существует, *должено* иметь вид:

$$\mathbf{x} = \mathbf{y} + \sum_{i=1}^{N} c_i \, \mathbf{e}_i \,, \tag{8}$$

где c_i некоторые числа.

Подставляя выражение (8) в уравнение (5), будем иметь:

$$\sum_{k=1}^{N} c_k \mathbf{e}_k - \sum_{i=1}^{N} \sum_{k=1}^{N} c_i (\mathbf{e}_i, \boldsymbol{\psi}_k) \cdot \mathbf{e}_k = \mathbf{A} \mathbf{y} = \sum_{k=1}^{N} (\mathbf{y}, \boldsymbol{\psi}_k) \cdot \mathbf{e}_k$$

или:

$$\sum_{k=1}^{N} \left(c_k - \sum_{i=1}^{N} c_i \left(\mathbf{e}_i, \boldsymbol{\psi}_k \right) - \left(\mathbf{y}, \boldsymbol{\psi}_k \right) \right) \cdot \mathbf{e}_k = \mathbb{O}.$$

Так как $\{\mathbf{e}_k\}$, по предположению, *линейно независимы*, то отсюда следует:

$$c_k - \sum_{i=1}^{N} c_i \left(\mathbf{e}_i, \boldsymbol{\psi}_k \right) = (\mathbf{y}, \boldsymbol{\psi}_k), \quad k = 1, \dots, N$$
 (9)

Мы получили cucmemy линейных алгебраических уравнений с mam- $puue\ddot{u}$:

$$a_{ik} = \boldsymbol{\delta}_{ik} - (\mathbf{e}_i, \boldsymbol{\psi}_k)$$

для нахождения **коэффициентов** в формуле (8), где $\boldsymbol{\delta}_{ik}$ — символ Кронекера:

$$\boldsymbol{\delta}_{ik} = \begin{cases} 1, & i = k, \\ 0, & i \neq k. \end{cases}$$

Линейное операторное уравнение (5) и система линейных алеебраических уравнений (9) эквиваленты в том смысле, что у принадлежит образу пространства ${\bf H}$ при действии на него оператора $({\bf E}-{\bf A})$:

$$\mathbf{y} \in \{ (\mathbf{E} - \mathbf{A}) (\mathbf{H}) \},$$

тогда и **только тогда**, когда **разрешима** система (9) и **каждое** решение (9) порождает **решение** (5) и, **наоборот**.

Точно также, *система* (9) с *нулевыми* правыми частями и *уравнение* (6) *эквивалентны* в том же смысле.

Рассуждая аналогично тому, как это мы это делали при выводе системы (9), можно получить систему линейных алгебраических уравнений, эквивалентную операторному уравнению (7).

Действительно, если решение **z** уравнения (7) *существует*, то оно должно иметь \boldsymbol{eud} :

$$\mathbf{z} = \sum_{k=1}^{N} c_k \, \boldsymbol{\psi}_k$$

И

$$\sum_{i=1}^{N} c_i \boldsymbol{\psi}_i - \sum_{i=1}^{N} \left(\sum_{k=1}^{N} c_k \boldsymbol{\psi}_k, \, \mathbf{e}_i \right) \cdot \boldsymbol{\psi}_i \, = \, \mathbb{O}$$

В силу *линейной независимости* системы $\left\{oldsymbol{\psi}_i
ight\}$:

$$c_i - \sum_{k=1}^{N} c_k (\boldsymbol{\psi}_k, \mathbf{e}_i) = 0, \quad i = 1, \dots, N,$$
 (10)

и полученная таким образом *система линейных алгебраических уравнений эквивалентна операторному* уравнению (7).

Матрицы систем (9) и (10) сопряжены.

Рассмотрим эквивалентное системе (9) операторное уравнение в пространстве \mathbb{E}^n .

Для его разрешимости (а, следовательно, и разрешимости системы (9)) **необходимо** и **достаточно**, чтобы столбец правых частей (9), рассматриваемый как элемент \mathbb{E}^n , был ортогонален в \mathbb{E}^n всем решениям однородного сопряжённого уравнения (10) (утверждение 44, применительно к уравнению (9)).

Упомянутое *условие ортогональности* имеет вид:

$$\sum_{k=1}^{N} (\mathbf{y}, \boldsymbol{\psi}_k) \cdot c_k = 0 , \qquad (11)$$

где $\{c_k\}_{k=1}^N - \mathbf{любоe}$ решение уравнения (10).

Условие (11) можно переписать в виде:

$$\left(\mathbf{y}, \sum_{k=1}^{N} c_k \boldsymbol{\psi}_k\right) = 0 \tag{12}$$

Но *элемент*

$$\mathbf{z} = \sum_{k=1}^{N} c_k \, \boldsymbol{\psi}_k \; ,$$

где $\{c_k\}$ — решение (10), **удовлетворяет** уравнению (7), то есть **принадлежит ker** ($\mathbf{E} - \mathbf{A}^*$) и, наоборот, любое решение (7) имеет такой вид.

В силу всего сказанного, условие: **у** *ортогонально* $\ker (\mathbf{E} - \mathbf{A}^*)$, — *необходимо* и *достаточно* для *разрешимости* уравнения (5) с оператором **A**, определяемым формулой (3).

Другими словами, область **значений** оператора $(\mathbf{E} - \mathbf{A})$ **совпа-** $\mathbf{\partial}$ **ает** с **ортогональным дополнением** к $\mathbf{ker}(\mathbf{E} - \mathbf{A}^*)$, и, поэтому $\mathbf{\partial}$ **замкнута**.

Кроме этого, размерности $\ker (\mathbf{E} - \mathbf{A})$ и $\ker (\mathbf{E} - \mathbf{A}^*)$ совпадают, так как в силу взаимооднозначного соответствия между решениями уравнений (6) и (7), и решениями соответствующих
систем линейных алгебраических уравнений, любая совокупность
линейно независимых решений (6) или (7) порождает совокупность линейно независимых решений систем линейных алгебраических уравнений и, наоборот.

В частности, операторное уравнение

$$\mathbf{x} - \mathbf{A}\mathbf{x} = \mathbf{y} ,$$

с оператором **A** вида (3), *разрешимо* \forall **y** \in **H** *тогда* и *только тогда*, когда *не существует нетривиальных* решений *однородно- го* уравнения:

$$\mathbf{x} - \mathbf{A}\mathbf{x} = \mathbb{O}$$
.

Связь между сопряжёнными уравнениями второго рода (общий случай)

Оказывается, что утверждения о разрешимости уравнения (5) справедливы не только для уравнений с оператором \mathbf{A} конечного ранга, но и для уравнений (5), в которых \mathbf{A} произвольный вполне непрерывный оператор в \mathbf{H} .

Предпошлем дальнейшему несколько простых замечаний.

- ${f 1}^{\circ}$. Так как любой *вполне непрерывный* оператор ${f A}$ переводит *ограниченное* множество в *компактное* и оператор ${f A}^{*}$ *ограничен* и, поэтому, переводит *сходящиеся* последовательности в *сходящиеся*, то оператор ${f A}^{*}{f A}$ *вполне непрерывен*.
 - 2° . Кроме того A^*A *симметричен* (см. упражнения к § 3).
 - 3° . Наконец: $\mathbf{ker} \mathbf{A}^* \mathbf{A} = \mathbf{ker} \mathbf{A}$.

Действительно, если $\mathbf{z} \in \mathbf{kerA}$, то есть $\mathbf{Az} = \mathbb{O}$, то и $\mathbf{A}^*\mathbf{Az} = \mathbb{O}$.

Наоборот, если $\mathbf{A}^*\mathbf{A}\mathbf{z}=\mathbb{O}$, то $(\mathbf{A}^*\mathbf{A}\mathbf{z},\mathbf{z})=(\mathbf{A}\mathbf{z},\mathbf{A}\mathbf{z})=0$, т.е. $\mathbf{A}\mathbf{z}=\mathbb{O}$, и $\mathbf{z}\in\mathbf{kerA}$.

В силу сказанного, для вполне непрерывного симметричного оператора $\mathbf{A}^*\mathbf{A}$ справедливо утверждение теоремы о спектральном разложении § 3 этой главы.

В частности, **любой** элемент $\mathbf{x} \in \mathbf{H}$ допускает разложение:

$$\mathbf{x} = \sum_{i} (\mathbf{x}, \boldsymbol{\psi}_{i}) \cdot \boldsymbol{\psi}_{i} + \mathbf{h} , \qquad (13)$$

где ψ_i- ортонормированная система собственных элементов ${f A}^*{f A}$ с **ненулевыми** собственными значениями λ_i и ${f h}\in {f ker}{f A}^*{f A}={f ker}{f A}$.

Подействовав на равенство (13) оператором ${\bf A}$, будем иметь такое представление оператора ${\bf A}$:

$$\mathbf{A}\mathbf{x} = \sum_{i} (\mathbf{x}, \, \boldsymbol{\psi}_{i}) \cdot \mathbf{A}\boldsymbol{\psi}_{i} \tag{14}$$

Справа здесь стоит $\boldsymbol{cxodsuyu\bar{u}cs}$ (или обрывающийся) \boldsymbol{psd} элементов гильбертова пространства \mathbf{H} .

Рассмотрим теперь nocnedosameльность операторов $\{A_N\}$:

$$\mathbf{A}_{N}\mathbf{x} = \sum_{i=1}^{N} (\mathbf{x}, \boldsymbol{\psi}_{i}) \cdot \mathbf{A}\boldsymbol{\psi}_{i}$$
 (15)

Система элементов $\mathbf{A}\psi_i$ ортогональна.

Действительно:

$$(\mathbf{A}\boldsymbol{\psi}_i, \mathbf{A}\boldsymbol{\psi}_j) = (\boldsymbol{\psi}_i, \mathbf{A}^*\mathbf{A}\boldsymbol{\psi}_j) = \lambda_j \cdot (\boldsymbol{\psi}_i, \boldsymbol{\psi}_j) = 0, \quad \forall i, j \quad (16)$$

Следовательно, она *линейно независима* и формула (15) определяет оператор *конечного ранга* (вида (3)).

Из (16) следует также, что все *ненулевые собственные значения* оператора $\mathbf{A}^*\mathbf{A}$ *больше* нуля.

Нетрудно проверить, что

$$\lim_{N \to \infty} \| \mathbf{A} - \mathbf{A}_N \| = 0 \tag{17}$$

Действительно:

$$\left\| \left(\mathbf{A} - \mathbf{A}_N \right) \mathbf{x} \right\|^2 = \left\| \sum_{i=N+1}^{\infty} \sqrt{\lambda_i} \left(\mathbf{x}, \, oldsymbol{\psi}_i
ight) rac{\mathbf{A} oldsymbol{\psi}_i}{\sqrt{\lambda_i}} \, \right\|^2$$

Из (16) следует, что последовательность

$$\left\{rac{\mathbf{A}oldsymbol{\psi}_i}{\sqrt{\lambda_i}}
ight\}$$

ортонормирована.

Поэтому (см. $\S 2$):

$$\left\| \sum_{i=N+1}^{\infty} \sqrt{\lambda_i} (\mathbf{x}, \, \boldsymbol{\psi}_i) \, \frac{\mathbf{A} \boldsymbol{\psi}_i}{\sqrt{\lambda_i}} \right\|^2 = \sum_{i=N+1}^{\infty} \lambda_i \, (\mathbf{x}, \, \boldsymbol{\psi}_i)^2 \leqslant \lambda_{N+1} \, \sum_{i=1}^{\infty} (\mathbf{x}, \, \boldsymbol{\psi}_i)^2 \leqslant \lambda_{N+1} \cdot \| \, \mathbf{x} \, \|^2$$

Отсюда

$$\|\mathbf{A} - \mathbf{A}_N\| \leqslant \lambda_{N+1}$$
,

и, так как:

$$\lim_{N\to\infty}\lambda_{N+1} = 0 ,$$

равенство (17) справедливо.

Рассмотрим теперь уравнения (5)-(7), в которых ${\bf A}$ произвольный ${\bf \it enone}$ ный ${\bf \it enone}$ непрерывный оператор в ${\bf H}$.

Выберем N таким, чтобы $\|\mathbf{A} - \mathbf{A}_N\| < 1$ и *обозначим*:

$$\mathbf{A} - \mathbf{A}_N = \mathbf{C}_N.$$

Уравнения (5), (6) можно переписать в виде:

$$(\mathbf{E} - \mathbf{C}_N) \mathbf{x} - \mathbf{A}_N \mathbf{x} = \mathbf{y}; \qquad (\mathbf{E} - \mathbf{C}_N) \mathbf{x} - \mathbf{A}_N \mathbf{x} = \mathbb{O}$$
 (18)

В силу *теоремы Банаха* (§ 3 главы II), оператор ($\mathbf{E} - \mathbf{C}_N$) имеет *непрерывный обратный*, и, поэтому, уравнения (18) можно переписать в *эквивалентном* виде:

$$\mathbf{x} - (\mathbf{E} - \mathbf{C}_N)^{-1} \mathbf{A}_N \mathbf{x} = (\mathbf{E} - \mathbf{C}_N)^{-1} \mathbf{y} = \mathbf{y}_1 ; \mathbf{x} - (\mathbf{E} - \mathbf{C}_N)^{-1} \mathbf{A}_N \mathbf{x} = 0$$
(19)

Ho оператор $\left(\mathbf{E} - \mathbf{C}_N\right)^{-1}\mathbf{A}_N$ является оператором **конечного** ранга.

Это следует из формулы (15) и *линейной независимости* элементов $(\mathbf{E} - \mathbf{C}_N)^{-1} \cdot \mathbf{A} \psi_i$ (см. упражнения к этому параграфу).

В силу доказанного ранее, область значений оператора $\left(\mathbf{E}-\left(\mathbf{E}-\mathbf{C}_N\right)^{-1}\mathbf{A}_N\right)$ замкнута.

Теперь мы можем доказать $\emph{замкнутость}$ и $\emph{области}$ $\emph{значений}$ $(\mathbf{E}-\mathbf{A})\,,$ где \mathbf{A} $\emph{произвольный вполне непрерывный}$ оператор.

Действительно, пусть \mathbf{y} npedeльная точка области значений $\{(\mathbf{E}-\mathbf{A})\,(\mathbf{H})\}$.

Так как оператор $\left(\mathbf{E}-\mathbf{C}_{N}\right)^{-1}$ *непрерывен*, то точка

 $\mathbf{y}_1 = \left(\mathbf{E} - \mathbf{C}_N
ight)^{-1} \mathbf{y} - npe$ дельная для области значений оператора $\left(\mathbf{E} - \left(\mathbf{E} - \mathbf{C}_N
ight)^{-1} \mathbf{A}_N
ight)$.

A так как последняя **замкнута**, то первое уравнение (19) с правой частью $\mathbf{y}_1 = \left(\mathbf{E} - \mathbf{C}_N\right)^{-1}\mathbf{y}$ **разрешимо**.

Но, оно *эквивалентно* уравнению (18) с правой частью \mathbf{y} .

Поэтому \mathbf{y} принадлежит *области значений* $(\mathbf{E} - \mathbf{A})$ и, следовательно, эта область *замкнута*.

Поэтому уравнение (5) с *вполне непрерывным* оператором ${\bf A}$ разрешимо $mor\partial a$ и morbko $mor\partial a$, когда элемент ${\bf y}$ opmorohanen ${\bf ker}\,(\,{\bf E}\,-\,{\bf A}^*\,)\,.$

Так как второе уравнение (18) **эквивалентно** второму уравнению (19), то *пространство* $\ker (\mathbf{E} - \mathbf{A})$ *конечномерно*.

 $m{Pasmephocmb}$ пространства $m{\ker}\left(f{E}-f{A}
ight)$ совпадает с $m{pasmepho}$ совпадает с $m{pasmepho}$ пространства $m{\ker}\left(f{E}-\left(f{E}-f{C}_N
ight)^{-1}f{A}_N
ight)$.

Сопряженное уравнение ко второму уравнению (19) имеет вид:

$$\mathbf{z} - \mathbf{A}_N^* \left[\left(\mathbf{E} - \mathbf{C}_N \right)^{-1} \right]^* \mathbf{z} = \mathbf{z} - \mathbf{A}_N^* \left[\left(\mathbf{E} - \mathbf{C}_N^* \right)^{-1} \right] \mathbf{z} = \mathbf{0}$$
 (20)

Мы воспользовались при этом соотношениями справедливыми для любых непрерывны x операторов \mathbf{A} и \mathbf{B} в пространстве \mathbf{H} :

$$(\mathbf{A}\mathbf{B})^* = \mathbf{B}^*\mathbf{A}^*$$
 и $(\mathbf{A}^{-1})^* = (\mathbf{A}^*)^{-1}$

(см. упражнения к этому параграфу).

Поэтому размерность $\ker (\mathbf{E} - \mathbf{A})$ совпадает с размерностью пространства решений уравнения (20).

Но, между решениями уравнения (20) и решениями уравнения (7) можно установить **взаимнооднозначное** соответствие при помощи оператора ($\mathbf{E} - \mathbf{C}_N^*$).

Действительно, если **z** какое-либо **решение** уравнения (20), то:

$$\mathbf{w} = (\mathbf{E} - \mathbf{C}_N^*)^{-1} \mathbf{z}$$

удовлетворяет уравнению:

$$\mathbb{O} = (\mathbf{E} - \mathbf{C}_N^*)\mathbf{w} - \mathbf{A}_N^*\mathbf{w} = (\mathbf{E} - \mathbf{A}^*)\mathbf{w}$$

и, наоборот.

Поэтому, pasmephocmu $\ker\left(\mathbf{E}-\mathbf{A}\right)$ и $\ker\left(\mathbf{E}-\mathbf{A}^*\right)$ cosna- danom для любого snone henpephshozo оператора \mathbf{A} .

Результаты нашего анализа можно представить в виде

Теорема 19. Для любого вполне непрерывного оператора ${\bf A}$ в гильбертовом пространстве ${\bf H}$:

- 1°. Операторное уравнение (5) разрешимо тогда и только тогда, когда его правая часть ортогональна пространству решений уравнения (7).
- 2° . *Размерности* пространств решений уравнений (6) и (7) конечны и равны.
- ${f 3}^{\circ}$. Уравнение (5) **разрешимо** $\forall {f y} \in {f H}$ **тогда** и **только тогда**, когда уравнение (6) имеет **лишь нулевое** решение.

Доказанную теорему, обычно, связывают с именами ${\it \Phi pedeonema}$ и ${\it Pucca}$.

Упражнения и задачи к параграфу 6.

1. Доказать *полную непрерывность* оператора A, задаваемого равенством (3).

- 2. Проверить *сопряженность* операторов (3) и (4).
- 3. Показать, что любой *ограниченный* оператор **В** переводит *ком- пактное* множество в *компактное*.
- 4. Если ${\bf A}$ и ${\bf B}$ *ограниченные линейные* операторы, то $({\bf AB})^* = {\bf B}^* {\bf A}^*$. Если ${\bf A}^{-1}$ *существует* и *ограничен*, то ${\bf A}^*$ имеет *ограничен*ный обратный и $({\bf A}^{-1})^* = ({\bf A}^*)^{-1}$.
- 5. Показать, что в **бесконечномерном** гильбертовом пространстве **Н вполне непрерывный** оператор **не может** иметь **ограниченного обратного**.

<u>Указание</u>. Рассмотреть соотношение: $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E}$.

- 6. Показать *полную непрерывность* оператора A^* , *сопряженного* к *вполне непрерывному* A.
- 7. Каковы собственные функции интегрального оператора Фредгольма $\mathbf{A}\mathbf{x} = \int\limits_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t,s)x(s)\,ds$, с ядром $\mathcal{K}(t,s) = \cos(t+s)$ на промежутке $[\mathbf{a},\mathbf{b}] = [\mathbf{0},\boldsymbol{\pi}]$?
- 8. Каковы собственные функции интегрального оператора Фредгольма $\mathbf{A}\mathbf{x} = \int\limits_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t,s)x(s)\,ds$, с ядром $\mathcal{K}(t,s) = \cos(t+s)$ на промежутке $[\mathbf{a},\mathbf{b}] = \left[\mathbf{0},\frac{\pi}{2}\right]$?
 - 9. Решить *интегральное* уравнение

$$x(t) = \int_{0}^{\pi} \cos(t + s) x(s) ds + 1$$

Глава 4

Нелинейные отображения линейных нормированных пространств

4.1 Дифференциальное и интегральное исчисление для абстрактных функций

Определения производной и интеграла от абстрактных функций

Определение 63. Функцией числового аргумента со значениями в линейном нормированном пространстве мы будем называть отображение числового множества из \mathbb{E}^1 в линейное нормированное пространство \mathbf{X} .

Для краткости, будем называть такие отображения **абстракт- ными функциями** и, иногда, использовать для них, в целях сокращения записи, обозначение: А-функция.

Так как любое подмножество \mathbb{E}^1 является **метрическим про- странством**, то можно говорить о **непрерывности** абстрактной функ-

ции **в** некоторой **точке** множества ее определения (см. § 4 главы 1).

Если *множество определения* функции в \mathbb{E}^1 *открыто*, то можно определить *производную* абстрактной функции \boldsymbol{e} любой *точке* этого множества, аналогично тому, как это делается в математическом анализе для *обычных* функций одного переменного.

Определение 64. Пусть $\mathbf{x}(t)$ — абстрактная функция, определенная на интервале (\mathbf{a}, \mathbf{b}) из \mathbb{E}^1 .

Элемент \mathbf{z} называется производной $\mathbf{x}(t)$ в точке $t_0 \in (\mathbf{a}, \mathbf{b})$, если:

$$\lim_{\Delta t \to o} \left\| \frac{\mathbf{x} (t_0 + \Delta t) - \mathbf{x} (t_0)}{\Delta t} - \mathbf{z} \right\|_{\mathbf{X}} = 0.$$

Как и в случае обычной функции одного переменного, элемент \mathbf{z} обозначается $\mathbf{x}'(t_0)$.

Взятие производной от произвольной *линейной комбинации абстрактных функций* производится по тем же правилам, что и дифференцирование *линейной комбинации обычных функций*.

Напротив, так как элементы *линейного нормированного пространства*, вообще говоря, нельзя *умножать* и *делить* друг на друга, то нельзя говорить о дифференцировании *произведения* и *частного* абстрактных функций.

Обсудим некоторые факты, связанные с *интегрированием* абстрактных функций.

 переменного, как предел (если он существует) соответствующих *интегральных сумм*.

Можно показать, что *непрерывная* на *отрезке* $[{f a},{f b}]$ ${\cal A}$ -функция uhmezpupyema.

Соответствующий интеграл, как и в случае обычных функций, обозначается $\int_{\bf a}^{\bf b} {\bf x} \left(t \right) dt$, и является некоторым *элементом* пространства ${\bf X}$.

Свойства интегралов от абстрактных функций

Свойства *операции интегрирования* абстрактных функций *анало- гичны* таковым же для *обычных* функций.

 $\mathbf{1}^{\circ}$. $\mathit{Линейность}$ операции интегрирования:

$$\int_{\mathbf{a}}^{\mathbf{b}} (\lambda \cdot \mathbf{x}(t) + \mu \cdot \mathbf{y}(t)) dt = \lambda \cdot \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}(t) dt + \mu \cdot \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{y}(t) dt$$

Это равенство справедливо, если интегралы в *правой* и *левой* его части *существуют*.

В частности, оно справедливо для непрерывных \mathcal{A} -функций.

 $\mathbf{2}^{\circ}$. Ouehka интеграла от абстрактной функции:

$$\left\| \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}(t) dt \right\| \leqslant \int_{\mathbf{a}}^{\mathbf{b}} \| \mathbf{x}(t) \| dt \tag{1}$$

Неравенство (1) справедливо при условии *существования* соответствующих интегралов.

В частности, оно справедливо для непрерывных \mathcal{A} -функций.

Утверждения 1° и 2° *следуют* из *непосредственно* проверяемых соотношений для *интегральных сумм* и последующего *предель*-

ного перехода.

Связь между операциями дифференцирования и интегрирования и интегрирования абстрактных функций такая же, как и для обычных функций.

Замечание. Следует иметь в виду, что для абстрактных функций, вообще говоря, не справедливы *теоремы о промежуточных значениях*, например, теоремы *Ролля* и *Лагранжа*.

В силу этого, непосредственное перенесение *доказательств* соответствующих теорем о связи операций интегрирования и дифференцирования *не всегда возможно*.

3° . Теорема Ньютона - Лейбница.

Для обычных функций справедливо:

Утверждение 45. Ecnu = x(t) непрерывно дифференцируема на отрезке $[\mathbf{a}, \mathbf{b}]$, mo:

$$\int_{\mathbf{a}}^{\mathbf{b}} x'(t) dt = x(\mathbf{b}) - x(\mathbf{a})$$
 (2)

Соотношение (2) для *обычных* функций чаще всего доказывается с использованием утверждения:

Утверждение 46. Для любой **непрерывной** на **отрезке** [a,b] функции x(t) справедливо равенство:

$$\left(\int_{\mathbf{a}}^{t} x(\tau) d\tau\right)' = x(t) \tag{3}$$

Из равенства (3) следует (2), если учесть, что для *обычных* функций из равенства: x'(t) = 0, $\forall t \in [\mathbf{a}, \mathbf{b}]$ *следует*, что: x(t) = const.

Последнее *утверждение* есть *следствие* из *теоремы Ролля*, которая, как мы отметили выше, для *А*-функций *несправедлива*.

Поэтому, хотя равенство (3) **легко** доказать для произвольной абстрактной функции (см. упражнения к этому параграфу), **непосредственный** переход от (3) к (2) **невозможен**.

Чтобы *обойти* это препятствие, поступим следующим образом.

Пусть **f** *любой* элемент *сопряженного* к **X** *пространства* \mathbf{X}^* , то есть любой *линейный непрерывный функционал* на \mathbf{X} .

Тогда, рассматривая интеграл, как предел интегральных сумм, в силу непрерывности \mathbf{f} для любой *непрерывной* на *отрезке* $[\mathbf{a},\mathbf{b}]$ абстрактной функции $\mathbf{x}(t)$:

$$\mathbf{f}\left(\int_{\mathbf{a}}^{\mathbf{b}}\mathbf{x}\left(t\right)dt\right) = \int_{\mathbf{a}}^{\mathbf{b}}\mathbf{f}\left(\mathbf{x}\left(t\right)\right)dt$$
(4)

Рассмотрим *обычную* функцию на отрезке $[\mathbf{a}, \mathbf{b}] : z(t) = \mathbf{f} \left(\mathbf{x}(t) \right)$. Если $\mathbf{x}(t)$ *дифференцируема* в точке t, то: $z'(t) = \mathbf{f} \left(\mathbf{x}'(t) \right)$ (проверяется *непосредственно*).

Если $\mathbf{x}'(t)$ непрерывна на $[\mathbf{a}, \mathbf{b}]$, то и z'(t) непрерывна на $[\mathbf{a}, \mathbf{b}]$ и для нее выполняется утверждение теоремы Ньютона - Лейбница:

$$\int_{\mathbf{a}}^{\mathbf{b}} z'(t) dt = z(\mathbf{b}) - z(\mathbf{a})$$

Но, это означает, что:

$$\mathbf{f}\left(\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}'(t) dt\right) = \mathbf{f}\left(\mathbf{x}(\mathbf{b})\right) - \mathbf{f}\left(\mathbf{x}(\mathbf{a})\right), \quad \forall \mathbf{f} \in \mathbf{X}^*$$
 (5)

Отсюда ${\it c.nedyem}$ соотношение (2), если учесть

Утверждение 47. Eсли ${\bf X}-$ линейное нормированное пространство ${\bf x}^*$, - сопряженное ${\bf x}$ нему пространство, то из условия ${\bf f}({\bf x})=0$, $\forall {\bf f}\in {\bf X}^*$, следует, что ${\bf x}={\mathbb O}_{\bf x}$.

Само это *утверждение* — следствие *теоремы Хана - Банаха* о продолжении линейных функционалов (см., например, [2]).

Если **X** линейное нормированное пространство со скалярным произведением, то равенство (5), в силу теоремы Ф. Рисса (§ 2 главы III), можно записать в виде:

$$\left(\mathbf{y}, \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}'(t) dt\right) = (\mathbf{y}, \mathbf{x}(\mathbf{b}) - \mathbf{x}(\mathbf{a})), \quad \forall \mathbf{y} \in \mathbf{X}.$$

Полагая в этом соотношении: $\mathbf{y} = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}'(t) dt - \mathbf{x}(\mathbf{b}) - \mathbf{x}(\mathbf{a})$, приходим к равенству (2).

Оценка разности значений абстрактной функции

Равенство (2) и неравенство (1) позволяют получить *оценку* разности значений *абстрактной* функции через её производную.

Именно, если $\mathbf{x}'(t)$ непрерывна на $[\mathbf{a}, \mathbf{b}]$, то:

$$\|\mathbf{x}(\mathbf{b}) - \mathbf{x}(\mathbf{a})\| \le \int_{\mathbf{a}}^{\mathbf{b}} \|\mathbf{x}'(t)\| dt \le (\mathbf{b} - \mathbf{a}) \cdot \max_{\mathbf{a} \le t \le \mathbf{b}} \|\mathbf{x}'(t)\|$$
 (6)

Для *обычных* функций одного переменного оценка (6) может быть *уточнена* (теорема о промежуточном значении Лагранжа).

Однако, как мы уже отмечали, такое уточнение в *общем случае невозможно*.

Упражнения и задачи к параграфу 1.

1. Привести *пример* невыполнения утверждения *теоремы Ролля* для *абстрактных* функций.

<u>Указание</u>. Рассмотреть *отображение* из \mathbb{E}^1 в \mathbb{E}^2 .

- 2. Доказать *соотношение* (3) для произвольной непрерывной абстрактной функции.
- 3. Показать справедливость pasencmea (4) (для nenpepushoŭ абстрактной функции $\mathbf{x}(t)$).

4.2 Дифференцирование нелинейных отображений

Дифференцируемость по Фреше

Пусть $\mathbf{F}(\mathbf{x})$ — отображение из линейного нормированного пространства \mathbf{X} в линейное нормированное пространство \mathbf{Y} .

Определение 65. Отображение (оператор) F(x) называется сильно дифференцируемым (дифференцируемым по Фреше) в точке $\mathbf{x} \in \mathbf{X}$, если существует линейный ограниченный оператор \mathbf{A} , такой, что:

$$\mathbf{F}(\mathbf{x} + \mathbf{h}) - \mathbf{F}(\mathbf{x}) = \mathbf{A}\mathbf{h} + \omega(\mathbf{x}, \mathbf{h}), \quad \lim_{\|\mathbf{h}\| \to 0} \frac{\|\omega(\mathbf{x}, \mathbf{h})\|}{\|\mathbf{h}\|} = 0$$
 (1)

Onepamop ${f A}$, в этом случае, называется npoussodhoй ${f \Phi}pewe$ отображения ${f F}$ в move ${f x}$.

 $egin{aligned} \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} \end{aligned}$ называется $egin{aligned} \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} & \mathcal{P}_{n} \end{aligned}$ ражения $egin{aligned} \mathbf{F}_{n} & \mathcal{P}_{n} & \mathcal{P}_{$

Для производной Фреше — \mathbf{A} , и дифференциала Фреше — \mathbf{Ah} , часто используются обозначения: $\mathbf{F}'(\mathbf{x})$ и $d\mathbf{F}(\mathbf{x},\mathbf{h})$ — coomsem-cmsehho.

Утверждение 48. Может существовать только один линейный непрерывный оператор, удовлетворяющий соотношению (1).

Доказательство. Действительно, пусть ${\bf B}$ линейный оператор, отличный от ${\bf A}$, для которого также выполнено соотношение (1), но возможно, с другим остатком $\omega_1({\bf x},{\bf h})$.

Тогда:

$$(\mathbf{A} - \mathbf{B}) \mathbf{h} = \omega(\mathbf{x}, \mathbf{h}) - \omega_1(\mathbf{x}, \mathbf{h})$$
 (2)

Зафиксируем *элемент* \mathbf{h} и рассмотрим *семейство* элементов $t \cdot \mathbf{h}$. Из (2) следует:

$$(\mathbf{A} - \mathbf{B}) \mathbf{h} = \frac{\omega(\mathbf{x}, t\mathbf{h}) - \omega_1(\mathbf{x}, t\mathbf{h})}{t}$$

В силу (1):

$$\lim_{t \to 0} \left\| \frac{\omega(\mathbf{x}, t \mathbf{h})}{t} \right\| \leqslant \lim_{t \to 0} \left(\frac{\|\omega(\mathbf{x}, t \mathbf{h})\|}{\|t \mathbf{h}\|} + \frac{\|\omega_1(\mathbf{x}, t \mathbf{h})\|}{\|t \mathbf{h}\|} \right) \cdot \|\mathbf{h}\| = 0$$

Поэтому: $\mathbf{Ah} = \mathbf{Bh}$.

Отсюда, ввиду произвольности $\, {f h} \, , \,$ следует: $\, {f A} \, = \, {f B} \, . \,$

Замечание. Существование производной Фреше у нелинейного оператора $\mathbf{F}(\mathbf{x})$ во многих случаях позволяет использовать в окрестности точки \mathbf{x} вместо полного нелинейного оператора $\mathbf{F}(\mathbf{x})$ его аффинную часть — $\mathbf{F}(\mathbf{x})+\mathbf{F}'(\mathbf{x})\mathbf{h}$, так как результат действия

 $a\phi\phi$ инного оператора $\mathbf{F}(\mathbf{x}) + \mathbf{F}'(\mathbf{x})\mathbf{h}$ аппроксимирует (тем точнее, чем меньше $\parallel \mathbf{h} \parallel$) результат действия оператора $\mathbf{F}(\mathbf{x}+\mathbf{h})$.

При переходе к $\partial pyzoŭ$ точке $\mathbf{x_1}$ пространства \mathbf{X} $omoбражение \mathbf{F}$ moжеm остаться $\partial u \phi \phi$ еренцируемым, но при этом, вообще говоря, $\mathbf{F}'(\mathbf{x_1}) \neq \mathbf{F}'(\mathbf{x})$.

Пример 1 — дифференцируемость по Фреше отображения из \mathbb{E}^n в \mathbb{E}^1

Пусть $\mathbf{F}(\mathbf{x})$ *отображение* из \mathbb{E}^n в \mathbb{E}^1 , задаваемое функцией n переменных: $F(x_1,\ldots,x_n)$.

Если в некоторой *окрестности* точки $\mathbf{x}=(x_1,\ldots,x_n)$ *существуют непрерывные частные производные* $F'_{x_i}(x_1,\ldots,x_n),$ $i=1,\ldots,n,$ то, как известно из курса *математического анализа*:

$$F\left(x_1+h_1,\ldots,x_n+h_n
ight)-F\left(x_1,\ldots,x_n
ight)\ =\ =\left[F'_{x_1}\left(x_1,\ldots,x_n
ight)\cdot h_1+\cdots+F'_{x_n}\left(x_1,\ldots,x_n
ight)\cdot h_n
ight]\ +\ \omega\left(x_1,\ldots,x_n;h_1,\ldots,h_n
ight)\,,$$
причем:

$$\lim_{\sqrt{h_1^2 + \dots + h_n^2} \to 0} \frac{|\omega(x_1, \dots, x_n; h_1, \dots, h_n)|}{\sqrt{h_1^2 + \dots + h_n^2}} = 0.$$

Равенство (3), в рассматриваемом случае, *полностью* соответствует *определению* (1).

Линейный (относительно h) функционал:

$$F'_{x_1}(x_1, \ldots, x_n) \cdot h_1 + \cdots + F'_{x_n}(x_1, \ldots, x_n) \cdot h_n = (\ell(\mathbf{x}), \mathbf{h})$$

в обычном *математическом анализе* называется *дифференциалом* функции \mathbf{F} в точке (x_1,\ldots,x_n) и обозначается $d\,\mathbf{F}\,(\,x_1,\ldots,x_n\,)$.

Определение 66. B равенстве (3) участвует набор частных производных: $\left\{F'_{x_1}, \ldots, F'_{x_n}\right\}$.

Этот **набор** называется **градиентом** функции $F(x_1, ..., x_n)$, u, таким образом, **градиент** это **элемент** пространства \mathbb{E}^n .

Градиент зависит от точки $(x_1,\ldots,x_n)\in\mathbb{E}^n$.

Возникающее отображение из \mathbb{E}^n в \mathbb{E}^n : $(x_1, \dots, x_n) \to \{F'_{x_1}, \dots, F'_{x_n}\}$ называется **градиентным отображением**.

Пример 2 — дифференцируемость по Фреше отображения из \mathbb{E}^n в \mathbb{E}^m

Пусть $\mathbf{F}(\mathbf{x})$ отображение из пространства \mathbb{E}^n в пространство \mathbb{E}^m .

Оно задается набором функций:

$$\mathbf{F}(\mathbf{x}) = \begin{cases} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{cases}$$
(4)

Если в некоторой *окрестности* точки $\mathbf{x} = (x_1, \dots, x_n)$ *существуют* непрерывные *частные производные* всех *функций* из (4), то из (3) *легко* получить, что:

$$\mathbf{F}(\mathbf{x}+\mathbf{h})-\mathbf{F}(\mathbf{x}) = \begin{pmatrix} f'_{1x_1} & \cdots & f'_{1x_n} \\ \cdots & \cdots & \cdots \\ f'_{mx_1} & \cdots & f'_{mx_n} \end{pmatrix} \cdot \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} + \omega(x_1, \dots, x_n; h_1, \dots, h_n),$$

$$\lim_{\|\mathbf{h}\|_{\mathbb{E}^n} \to 0} \frac{\|\omega(\mathbf{x}; \mathbf{h})\|_{\mathbb{E}^m}}{\|\mathbf{h}\|_{\mathbb{E}^n}} = 0.$$

Таким образом, в рассматриваемом случае, *производной Фреше* будет *линейный оператор* из \mathbb{E}^n в \mathbb{E}^m , *порожденный матрицей* частных производных от компонент отображения $\mathbf{F} - \{f_1, \ldots, f_m\}$.

Определение 67. Матрица, составленная из частных производных от компонент отображения $\mathbf{F} - \{f_1, \dots, f_m\}$, называется матрицей Якоби отображения $\mathbf{F}(\mathbf{x})$ (4) в точке $\mathbf{x} = (x_1, \dots, x_n)$.

Пример 3 — дифференцируемость по Фреше отображения из $\mathbb{C}[\mathbf{a},\mathbf{b}]$ в $\mathbb{C}[\mathbf{a},\mathbf{b}]$

Пусть $g\left(s, au\right)-\pmb{\phi}$ ункция 2-х переменных, определенная и **непре-**рывная в полосе: $\mathbf{a}\leqslant s\leqslant \mathbf{b}\,,\ -\infty<\tau<\infty\,.$

Кроме того, пусть cyщecmsyem частная производная $g_{\tau}'(s,\tau)$, для которой выполнено ycnosue~ Липшица:

 $|g_{\tau}'(s, \tau_1) - g_{\tau}'(s, \tau_2)| \leqslant \mathbf{L} \cdot |\tau_1 - \tau_2|$, где постоянная \mathbf{L} не зависит от $s, \tau_1, \tau_2: \mathbf{a} \leqslant s \leqslant \mathbf{b}, -\infty < \tau_1, \tau_2 < \infty$.

Рассмотрим onepamop, действующий из $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ в $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ no npa-euny:

$$\mathbf{F}(\mathbf{x}) = g(s, x(s)) \tag{5}$$

Оператор (5) **дифференцируем по Фреше** в любой **точке** $x(s) \in \mathbb{C}[\mathbf{a}, \mathbf{b}]$ и его **дифференциал Фреше** в **точке** x(s) :

$$dF(\mathbf{x}, \mathbf{h}) = g'_{\tau}(s, x(s)) \cdot h(s) \tag{6}$$

Доказательство. Действительно, используя *теорему Лагранжа* при

фиксированном s:

$$g(s, x(s) + h(s)) - g(s, x(s)) = g'_{\tau}(s, x(s) + \theta \cdot h(s)) \cdot h(s) =$$

$$= g'_{\tau}(s, x(s)) \cdot h(s) + [g'_{\tau}(s, x(s) + \theta \cdot h(s)) - g'_{\tau}(s, x(s))] \cdot h(s) =$$

$$= g'_{\tau}(s, x(s)) \cdot h(s) + \omega(\mathbf{x}, \mathbf{h}), \quad 0 \leq \theta(s) \leq 1.$$

В силу сделанных относительно функции g предположений:

$$\|\omega(\mathbf{x}, \mathbf{h})\|_{\mathbb{C}[\mathbf{a}, \mathbf{b}]} \leqslant \mathbf{L} \cdot \max_{\mathbf{a} \leqslant s \leqslant \mathbf{b}} h^2(s) = \mathbf{L} \cdot \|\mathbf{h}\|_{\mathbb{C}[\mathbf{a}, \mathbf{b}]}^2$$

Таким образом, равенство (6) справедливо.

Дифференциалы Фреше п-го порядка

Если npous водная $\Phi pewe$ отображения $\mathbf{F}(\mathbf{x})$ cywecm by em на некотором $nod mho жес вес \mathbf{X}$ (в частности, во всех точках \mathbf{X}), то можно рассмотреть omo fpa жени e:

$$\mathbf{x} \, \overset{\mathbf{F}'\,(\mathbf{x})}{\longrightarrow} \, \mathbf{L}_{\mathbf{O}} \, \left(\, \mathbf{X}, \, \mathbf{Y} \right) \, ,$$

где $\mathbf{L_O}\left(\mathbf{X},\mathbf{Y}\right)-$ пространство линейных непрерывных операторов из \mathbf{X} в \mathbf{Y} .

Так как $\mathbf{L_O}(\mathbf{X}, \mathbf{Y})$ само является *линейным нормированным пространством* (см. глава II), то можно, *аналогично* (1), ввести понятие *второй производной Фреше* отображения $\mathbf{F}(\mathbf{x})$:

$$(\mathbf{F}')'(\mathbf{x}) = \mathbf{F}''(\mathbf{x})$$

Следует помнить, что $\mathbf{F}''\left(\mathbf{x}\right)-$ **линейный оператор** из \mathbf{X} в $\mathbf{L_{O}}$ (\mathbf{X},\mathbf{Y}).

Поэтому peзультатом операции $\mathbf{F}''(\mathbf{x})$ будет не элемент пространства \mathbf{X} , а nuneйный nepamop из npocmpancma $\mathbf{L_O}(\mathbf{X},\mathbf{Y})$!

Отправляясь от второй производной Фреше отображения $\mathbf{F}(\mathbf{x})$, можно определить троизводные $\mathbf{\Phi}$ и т.д. \mathbf{n} производные $\mathbf{\Phi}$ реше $\mathbf{F}(\mathbf{x})$. Более подробно смотри, например, [5, глава II].

Дифференцируемость отображения по Гато

Пусть отображение $\mathbf{F}(\mathbf{x})$ имеет *производную* (*Фреше*) в *точке* \mathbf{x} . Зафиксируем элемент \mathbf{h} и рассмотрим *А-функцию* $\mathbf{F}(\mathbf{x}+t\,\mathbf{h})$. Из (1) имеем (если $t\neq 0$):

$$\frac{\mathbf{F}\left(\mathbf{x}+t\,\mathbf{h}\right)\,-\,\mathbf{F}\left(\mathbf{x}\right)}{t}\,=\,\mathbf{A}\mathbf{h}\,+\,\frac{\omega\left(\mathbf{x},\,t\,\mathbf{h}\right)}{t}$$
и

$$\lim_{t \to 0} \left\| \frac{\omega(\mathbf{x}, t\mathbf{h})}{t} \right\| = \lim_{t \to 0} \|\mathbf{h}\| \frac{\|\omega(\mathbf{x}, t\mathbf{h})\|}{\|t\mathbf{h}\|} = 0$$

Поэтому абстрактная функция $\mathbf{F}(\mathbf{x}+t\,\mathbf{h})$ имеет производную в точке t=0 и

$$\frac{d}{dt} \left(\mathbf{F} \left(\mathbf{x} + t \mathbf{h} \right) \right) \Big|_{t=0} = \mathbf{A} \mathbf{h}$$
 (7)

Формула (7) бывает удобна при вычислении производной.

Bыражение в левой части равенства (7) может uметь cмысл и в том случае, когда отображение \mathbf{F} не uмеет в точке \mathbf{x} производной Φ pewe.

Определение 68. Выражение $\frac{d}{dt}(\mathbf{F}(\mathbf{x}+t\mathbf{h}))\Big|_{t=0}$, если оно определено для любого $\mathbf{h} \in \mathbf{X}$, называется дифференциалом Гато отображения \mathbf{F} в точке \mathbf{x} , или слабым дифференциалом отображения $\mathbf{F}(\mathbf{x})$. Как мы только что *показали*, из существования *производной Фреше следует* существование *дифференциала Гато*.

Обратная импликация, вообще говоря, *не справедлива*.

Вариация отображения (\mathbf{b}) по направлению (\mathbf{h})

Определение 69. При фиксированных \mathbf{x} u \mathbf{h} , $\|\mathbf{h}\| = 1$, рассмотрим

$$\lim_{t \to +0} \frac{\mathbf{F}(\mathbf{x} + t\mathbf{h}) - \mathbf{F}(\mathbf{x})}{t}$$

Предельный **элемент** (из Y), если он **существует**, называется **вариацией** отображения F в **точке** x по **направлению** h.

Из существования дифференциала Гато вытекает существование вариации по любому направлению, но обратное, вообще говоря, не верно.

Предположим, что отображение \mathbf{F} непрерывно дифференцируемо по Фреше на множестве в пространстве \mathbf{X} , содержащем отрезок, соединяющий точки \mathbf{a} и \mathbf{b} в \mathbf{X} .

Рассмотрим абстрактную функцию:

$$\varphi(t) = \mathbf{F}((1-t)\mathbf{a} + t\mathbf{b}) = \mathbf{F}(\mathbf{a} + t(\mathbf{b} - \mathbf{a})), \ \mathbf{0} \leqslant t \leqslant \mathbf{1}$$

Утверждение 49. Φ ункция $\varphi\left(t\right)$ имеет непрерывную производную на отрезке $\left[\mathbf{0},\mathbf{1}\right]$.

При этом:

$$\varphi'(t) = \mathbf{F}'(\mathbf{a} + t(\mathbf{b} - \mathbf{a}))(\mathbf{b} - \mathbf{a})$$
(8)

3 decb $\mathbf{F}'-npouseod \mathbf{has}$ **Фреше** отображения \mathbf{F} .

Доказательство. Действительно:

$$\varphi(t + \Delta t) - \varphi(t) = \mathbf{F} \left(\mathbf{a} + t \left(\mathbf{b} - \mathbf{a} \right) + \Delta t \left(\mathbf{b} - \mathbf{a} \right) \right) - \mathbf{F} \left(\mathbf{a} + t \left(\mathbf{b} - \mathbf{a} \right) \right) =$$

$$= \mathbf{F}' \left(\mathbf{a} + t \left(\mathbf{b} - \mathbf{a} \right) \right) \cdot \Delta t \left(\mathbf{b} - \mathbf{a} \right) + \omega \left(\mathbf{a} + t \left(\mathbf{b} - \mathbf{a} \right), \Delta t \left(\mathbf{b} - \mathbf{a} \right) \right),$$

причем, в силу (1), $\|\omega\| \to 0$, если $\Delta t \to 0$.

Деля обе части этого равенства на Δt и переходя к пределу при $\Delta t \to 0$, получим равенство (8).

Оценка остатка при дифференцировании по Фреше

Так как мы предположили **непрерывную дифференцируемость** ${\bf F}$, то $\varphi'(t)$ — **непрерывная функция** t и, в силу равенства (2) , имеем:

$$\varphi(1) - \varphi(0) = \mathbf{F}(\mathbf{b}) - \mathbf{F}(\mathbf{a}) = \int_{\mathbf{0}}^{1} \mathbf{F}'(\mathbf{a} + t(\mathbf{b} - \mathbf{a})) \cdot (\mathbf{b} - \mathbf{a}) dt$$
 (9)

Если $\mathbf{F}'(\mathbf{x})$ непрерывна по \mathbf{x} на множестве, включающем отрезок между точками \mathbf{a} и \mathbf{b} , $\|\mathbf{F}(\mathbf{x})\|$ непрерывна и во всех точках такого отрезка выполнено неравенство:

$$\|\mathbf{F}'(\mathbf{x})\| \leqslant \mathbf{N}_1,$$
 (10)

где N_1 *не зависит* от x, то из (9) следует:

$$\| \mathbf{F}(\mathbf{b}) - \mathbf{F}(\mathbf{a}) \| \leqslant \mathbf{N}_1 \cdot \| \mathbf{b} - \mathbf{a} \|$$

Замечание. Эта *оценка* — *аналог оценки* (6) для *абстрактных* функций.

Предположим теперь, что $\mathbf{F}'(\mathbf{x})$ не только *непрерывно* зависит от \mathbf{x} , но *на множестве*, включающем *отрезок* $[\mathbf{a}, \mathbf{b}]$, выполнено *условие Липшица*:

$$\|\mathbf{F}'(\mathbf{x}) - \mathbf{F}'(\mathbf{y})\| \leqslant \mathbf{N}_2 \cdot \|\mathbf{x} - \mathbf{y}\|$$
 (11)

В этом случае, из (9) следует:

$$\mathbf{F}(\mathbf{b}) - \mathbf{F}(\mathbf{a}) = \mathbf{F}'(\mathbf{a}) \cdot (\mathbf{b} - \mathbf{a}) + \int_{0}^{1} \left[\mathbf{F}'(\mathbf{a} + t(\mathbf{b} - \mathbf{a})) - \mathbf{F}'(\mathbf{a}) \right] \cdot (\mathbf{b} - \mathbf{a}) dt,$$

и, с учетом (11):

$$\left\| \int_{0}^{1} \left[\mathbf{F}' \left(\mathbf{a} + t(\mathbf{b} - \mathbf{a}) \right) - \mathbf{F}' \left(\mathbf{a} \right) \right] \left(\mathbf{b} - \mathbf{a} \right) dt \right\| \leq \mathbf{N}_{2} \| \mathbf{b} - \mathbf{a} \|^{2} \int_{0}^{1} t \, dt = \frac{\mathbf{N}_{2}}{2} \| \mathbf{b} - \mathbf{a} \|^{2}$$

$$\tag{12}$$

Сравнивая равенства (12) и (1), мы видим, что предположение (11) ведет к эффективной *оценке* остаточного члена ω в определении npo- useodhoù отображения F.

Упражнения и задачи κ параграфу 2.

- 1. Показать, что в **гильбертовом** пространстве **H функционал** (\mathbf{x}, \mathbf{x}) **дифференцируем по Фреше**. Найти его **дифференциал**.
- 2. Показать, что в любом линейном нормированном пространстве функционал нормы $\|\mathbf{x}\|$ не дифференцируем по Фреше в мочке $\mathbf{x} = \mathbb{O}$, но имеет в этой точке вариацию по всем направлениям.

 $\underline{\text{Указание}}$. Показать, что функционал $\|\mathbf{x}\|$ не дифференцируем по $\pmb{\Gamma}$ ато в точке $\mathbf{x}=\mathbb{O}$.

3. Пусть ${\bf A}-$ ограниченный оператор, действующий из линейного нормированного пространства ${\bf X}$ в ${\bf X}$, а отображение ${\bf F}({\bf x})$ из ${\bf X}$ в ${\bf X}$ дифференцируемо по Фреше в точке ${\bf x}$.

Показать, что *отображение* $\mathbf{F}_1 \stackrel{def}{=} \mathbf{AF}(\mathbf{x})$ также будет *диффе- ренцируемо по Фреше* в *точке* \mathbf{x} . Чему равна $\mathbf{F}_1'(\mathbf{x})$?

4. Пусть $\mathcal{K}(t,s)$ **непрерывная** функция на $[\mathbf{a},\mathbf{b}] \times [\mathbf{a},\mathbf{b}]$, а функция g(u,v) удовлетворяет условиям примера 3.

Показать, что нелинейный *интегральный оператор*, определяемый формулой:

$$\mathbf{F}(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} \mathcal{K}(t, s) \cdot g(s, x(s)) dt,$$

как оператор из $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$ в $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$, *дифференцируем по Фреше* в любой *точке пространства* $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$. Чему равна $\mathbf{F}'\left(\mathbf{x}\right)$?

5. Объяснить почему справедливо неравенство (10).

4.3 Метод Ньютона

Предварительные построения

Метод Ньютона — это процесс последовательных приближений (*ume- paционный процесс*), предназначенный для (приближенного) *peшения операторного уравнения*:

$$\mathbf{F}\left(\mathbf{x}\right) = \mathbf{O}, \tag{1}$$

где ${f F}$ нелинейный оператор из линейного нормированного пространства ${f X}$ в линейное нормированное пространство ${f Y}$.

Будем предполагать:

- 1° . Существует решение \mathbf{x}^{*} уравнения (1).
- ${f 2}^{\circ}$. Оператор ${f F}$ дифференцируем по Фреше и всюду в ${f X}$ выполнено условие $\ (11)$ из $\S\ 2$.
- ${f 3}^{\circ}$. Выполнено ${f yc}$ ловие ${f pery}$ лярнос ${f mu}$ и, то есть ${f one}$ ратор ${f F}'$ непрерывно ${f ofparmum}$ в каждой ${f move}$ ${f x}\in {f X}$, и, кроме того существует постоянная m>0 такая, что:

$$\|\mathbf{F}'(\mathbf{x})^{-1}\| < \mathbf{m}, \quad \forall \mathbf{x} \in \mathbf{X}$$
 (2)

Пусть \mathbf{x}_0 — какая-либо точка \mathbf{X} .

Уравнение (1) можно, *очевидно*, представить в виде:

$$\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) = \mathbb{O} \tag{3}$$

Процесс Ньютона основан на следующих интуитивных соображениях.

- ${f 1}^{\circ}$. Если ${f x}_0$ достаточна близка к ${f x}^*$, то решение уравнения (3), относительно ${f h}$, имеет малую норму.
 - $\mathbf{2}^{\circ}$. В силу $\partial u \phi \phi$ еренцируемости \mathbf{F}

$$\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) \approx \mathbf{F}(\mathbf{x}_0) + \mathbf{F}'(\mathbf{x}_0)\mathbf{h}$$
 (4)

Это npuближенное равенство тем moчнее, чем $меньше \parallel \mathbf{h} \parallel$.

3°. В силу (4) можно пытаться (приближенно) определить *решение* уравнения (3), решая *линейное* относительно **h** *операторное уравнение*:

$$\mathbf{F}(\mathbf{x}_0) + \mathbf{F}'(\mathbf{x}_0)\mathbf{h} = \mathbb{O}$$
 (5)

- $\mathbf{4}^{\circ}$. В силу npednoложения 3° , уравнение (5) имеет eduh-embehhoe решение: $\mathbf{h}_{0}=-\mathbf{F}'\left(\mathbf{x}_{0}\right)^{-1}\mathbf{F}\left(\mathbf{x}_{0}\right)$
- $\mathbf{5}^{\circ}$. Можно ожидать, что элемент $\mathbf{x}_1 = \mathbf{x}_0 \mathbf{F}'(\mathbf{x}_0)^{-1}\mathbf{F}(\mathbf{x}_0)$ будет \mathbf{nyu} приближать решение \mathbf{x}^* , чем \mathbf{nava} льный элемент \mathbf{x}_0 .
- $\mathbf{6}^{\circ}$. Заменяя \mathbf{x}_0 на \mathbf{x}_1 и рассуждая аналогично, можно найти элемент $\mathbf{x}_2 = \mathbf{x}_1 \mathbf{F}'\left(\mathbf{x}_1\right)^{-1}\mathbf{F}\left(\mathbf{x}_1\right)$

Итерационный процесс Ньютона

Вообще, если \mathbf{x}_n найдено, то можно найти \mathbf{x}_{n+1} по правилу:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{F}'(\mathbf{x}_n)^{-1}\mathbf{F}(\mathbf{x}_n)$$
 (6)

Определение 70. Рекуррентная последовательность (6) называется итерационным процессом Ньютона (методом Ньютона) для приближенного решения уравнения (1).

Проанализируем возможность cxodumocmu этой последовательности к решению уравнения (1).

Теорема 20. Если выполнены предположения $1^{\circ} - 3^{\circ}$, то справедлива оценка:

$$\|\mathbf{x}_{n+1} - \mathbf{x}^*\| \leqslant \frac{2}{\mathbf{m}\mathbf{N_2}} \cdot \left\| \frac{\mathbf{m}\mathbf{N_2}}{2} (\mathbf{x_0} - \mathbf{x}^*) \right\|^{2^{n+1}}$$
 (7)

B частности, если

$$\|\mathbf{x_0} - \mathbf{x}^*\| < \frac{2}{\mathbf{mN_2}}, \tag{8}$$

то последовательность (6) **сходится** κ \mathbf{x}^* .

Доказательство. Действительно:

$$\|\mathbf{x_{n+1}} - \mathbf{x}^*\| \leq \|\mathbf{x_n} - \mathbf{x}^* + \mathbf{F}'(\mathbf{x_n})^{-1} [\mathbf{F}(\mathbf{x}^*) - \mathbf{F}(\mathbf{x_n})]\|$$
 (9)

Разность $\mathbf{F}\left(\mathbf{x}^{*}\right)-\mathbf{F}\left(\mathbf{x_{n}}\right)$ представим согласно (12) из § 2 , то есть:

$$\mathbf{F}(\mathbf{x}^*) - \mathbf{F}(\mathbf{x}_n) = \mathbf{F}'(\mathbf{x}_n) (\mathbf{x}^* - \mathbf{x}_n) + \omega,$$
 где $\|\omega\| \leqslant \frac{\mathbf{N_2}}{2} \cdot \|\mathbf{x}^* - \mathbf{x}_n\|$.

Используя это представление в неравенстве (9), получим:

$$\|\mathbf{x}_{n+1} - \mathbf{x}^*\| \leqslant \frac{\mathbf{m} \mathbf{N_2}}{2} \cdot \|\mathbf{x}^* - \mathbf{x}_n\|^2$$

Оценивая аналогично предыдущему $\|\mathbf{x}^* - \mathbf{x}_n\|$ через $\|\mathbf{x}^* - \mathbf{x}_{n-1}\|$, и так далее, раз за разом повторяя рассуждения, получим:

$$\|\mathbf{x}_{n+1} - \mathbf{x}^*\| \leq \frac{\mathbf{m}\mathbf{N_2}}{2} \cdot \left(\frac{\mathbf{m}\mathbf{N_2}}{2}\right)^2 \cdot \|\mathbf{x}^* - \mathbf{x}_n\|^4 \leq$$

$$\leq \cdots \leq \left(\frac{\mathbf{m}\mathbf{N_2}}{2}\right)^{1+2+2^2+\cdots+2^n} \cdot \|\mathbf{x}^* - \mathbf{x}_0\|^{2^{n+1}} =$$

$$= \frac{2}{\mathbf{m}\mathbf{N_2}} \cdot \left\|\frac{\mathbf{m}\mathbf{N_2}}{2} \left(\mathbf{x}^* - \mathbf{x}_0\right)\right\|^{2^{n+1}}$$

Оценка (7) доказана. Условие (8), **очевидно**, обеспечивает **схо- димость** \mathbf{x}_n к \mathbf{x}^* при $n \to \infty$.

Простые примеры показывают *отсутствие сходимости* последовательности (6), если величина $\|\mathbf{x}_0 - \mathbf{x}^*\|$ не согласована с величинами \mathbf{m} и $\mathbf{N_2}$.

При нарушении условия peryлярности (2), процесс Ньютона может оказаться neocymecmeumum.

Название **метод Ньютона** заимствовано у **классического** метода нахождения **корня** уравнения f(x) = 0, где f(x) -**обычная** функция **числового** переменного x.

В этом случае f может рассматриваться как omoбражениe \mathbb{E}^1 в \mathbb{E}^1 , а npouecc (6) имеет вид:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Этот *итеративный процесс* решения уравнения f(x) = 0, называемый также *методом касательных*, традиционно связывают с именем *Ньютона*.

Упражнения и задачи к параграфу 3.

- 1. Для *отображения* f из \mathbb{E}^1 в \mathbb{E}^1 показать на примере *отсутствие сходимости* последовательности (6) даже при наличии *регулярности*, если начальное приближение x_0 выбрано *далеко* от *корня* x^* .
- 2. Привести *пример функции* f и выбора *начального приближе*-*ния* x_0 таких, что процесс Ньютона *не осуществим* (начиная с x_0).

4.4 Экстремальные задачи

в нормированных пространствах

Предварительные соображения и основные определения

Пусть $\Phi\left(\mathbf{x}\right)$ вещественный *функционал*, заданный на *линейном нормированном пространстве* \mathbf{X} .

Рассмотрим его значения на некотором подмножестве $\mathbf{M} \subseteq \mathbf{X}$.

Определение 71. Элемент $\mathbf{x}_0 \in \mathbf{M}$ называется точкой (элементом) локального максимума функционала $\Phi(\mathbf{x})$ на \mathbf{M} , если существует число r>0 такое, что:

$$\mathbf{\Phi}\left(\mathbf{x}_{0}\right) \geqslant \mathbf{\Phi}\left(\mathbf{x}\right) \tag{1}$$

для вcex \mathbf{x} , принадлежащих $\mathbf{S}(\mathbf{x}_0, r) \cap \mathbf{M}$.

Eсли неравенство (1) выполняется в $\mathbf{S}(\mathbf{x}_0, r) \cap \mathbf{M}$ при **лю- бом** r, то \mathbf{x}_0 называется точкой **глобального максимума** функционала $\mathbf{\Phi}(\mathbf{x})$ на \mathbf{M} .

Определение 72. Если знак неравенства в (1) поменять на противоположный, сохранив при этом все прочие предположения, получится определение локального и глобального минимума функционала $\Phi(\mathbf{x})$ на \mathbf{M} соответственно.

Необходимые условия экстремума

Рассмотрим более подробно случай, когда $\, {f M} \,$ $\, {f выпуклое} \, {f множе} \, {f cmeo} \, {f B} \, {f X} \, , \,$ в частности, когда $\, {f M} \, = \, {f X} \, .$

Пусть $\mathbf{x}_0 \in \mathbf{M}$ точка *локального максимума* функционала $\mathbf{\Phi}$ и \mathbf{z} некоторая, отличная от \mathbf{x}_0 , точка \mathbf{M} .

Тогда *отрезок* $\mathbf{x}_0 + t \cdot \frac{\mathbf{z} - \mathbf{x}_0}{\|\mathbf{z} - \mathbf{x}_0\|}$, $0 \leqslant t \leqslant \|\mathbf{z} - \mathbf{x}_0\|$ *целиком* принадлежит \mathbf{M} (в силу выпуклости \mathbf{M}).

Рассмотрим **числовую** функцию: $\varphi(t) = \Phi\left(\mathbf{x}_0 + t \frac{\mathbf{z} - \mathbf{x}_0}{\|\mathbf{z} - \mathbf{x}_0\|}\right)$.

В силу (1) **функция** $\varphi(t)$ имеет **локальный максимум** по t в точке t=0.

Предположим, что $\varphi\left(t\right)$ имеет в точке t=0 одностороннюю производную $\varphi_{+}'\left(0\right)$.

Поскольку $\varphi(t)$ **убывает**, по крайней мере, на достаточно **малом** отрезке $[\mathbf{0},\mathbf{t_1}]$, то:

$$\varphi'_{+}(0) \leqslant 0 \tag{2}$$

В силу определения *вариации* по направлению (§ 2), условие (2) означает *неположительность* вариации функционала Φ в *точ*ке \mathbf{x}_0 по направлению $\mathbf{h} = \frac{\mathbf{z} - \mathbf{x}_0}{\|\mathbf{z} - \mathbf{x}_0\|}$.

Будем, ∂ ля краткости, называть указанное выше \mathbf{h} , где \mathbf{z} — некоторая точка \mathbf{M} , — направлением, ведущим в \mathbf{M} из точки \mathbf{x}_0 .

Из (2) следует, что, если \mathbf{x}_0 точка локального максимума Φ на \mathbf{M} , и существует вариация Φ в точке \mathbf{x}_0 по некоторому направлению \mathbf{h} , ведущему в \mathbf{M} из \mathbf{x}_0 , то необходимо:

$$\mathbf{Var} \left[\mathbf{\Phi} \left(\mathbf{x}_0, \mathbf{h} \right) \right] \leqslant 0 \tag{3}$$

В частности, если функционал Φ дифференцируем по Φ реше, то:

$$\mathbf{\Phi}'(\mathbf{x}_0)(\mathbf{h}) \leqslant 0 \tag{4}$$

на *любом* направлении \mathbf{h} , *ведущем* из \mathbf{x}_0 в \mathbf{M} .

Если \mathbf{x}_0 внутренняя точка \mathbf{M} , то из (4) следует, что линейный функционал $\Phi'\left(\mathbf{x}_0\right)\left(\mathbf{h}\right)$ неположителен для любого $\mathbf{h}\in\mathbf{X}$.

Поэтому:

$$\mathbf{\Phi}'(\mathbf{x}_0)(\mathbf{h}) \equiv 0 \tag{5}$$

В случае, когда $\mathbf{X} = \mathbf{H} \ (\mathbf{H} - \boldsymbol{\imath} \boldsymbol{u} \boldsymbol{n} \boldsymbol{b} \boldsymbol{\delta} \boldsymbol{e} \boldsymbol{p} \boldsymbol{m} \boldsymbol{o} \boldsymbol{s} \boldsymbol{o}$ пространство) $\boldsymbol{n} \boldsymbol{u} \boldsymbol{h} \boldsymbol{e} \boldsymbol{u} \boldsymbol{h}$ функционал $\Phi' \ (\mathbf{x}_0) \ (\mathbf{h}) \$ можно представить в виде $\boldsymbol{c} \boldsymbol{\kappa} \boldsymbol{a} \boldsymbol{n} \boldsymbol{s} \boldsymbol{p} \boldsymbol{h} \boldsymbol{o} \boldsymbol{s} \boldsymbol{o}$ $\boldsymbol{p} \boldsymbol{o} \boldsymbol{u} \boldsymbol{s} \boldsymbol{e} \boldsymbol{d} \boldsymbol{e} \boldsymbol{h} \boldsymbol{u} \boldsymbol{s}$: $\Phi' \ (\mathbf{x}_0) \ (\mathbf{h}) = \ (\mathbf{w} \ (\mathbf{x}_0), \mathbf{h})$.

Элемент $\mathbf{w}(\mathbf{x}_0)$, "представляющий" по теореме Рисса линейный функционал $\Phi'(\mathbf{x}_0)(\mathbf{h})$ в гильбертовом пространстве \mathbf{H} , называется **градиентом функционала** $\Phi'(\mathbf{x}_0)$ и обозначается $\mathbf{grad}\,\Phi(\mathbf{x}_0)$.

Условия (4) и (5) можно поэтому представить в виде:

$$(\operatorname{grad}\Phi(\mathbf{x}_0), \mathbf{h}) \leqslant 0 \tag{6}$$

ИЛИ

$$\operatorname{grad}\Phi\left(\mathbf{x}_{0}\right) = 0\tag{7}$$

Т.к. $\mathbf{h} = \frac{\mathbf{z} - \mathbf{x}_0}{\|\mathbf{z} - \mathbf{x}_0\|}$, то из (6), следует неравенство:

$$(\operatorname{grad} \Phi (\mathbf{x}_0), \mathbf{z} - \mathbf{x}_0) \leq 0, \quad \forall \mathbf{z} \in \mathbf{M},$$

являющееся *необходимым условием максимума*.

Если теперь \mathbf{x}_0 *точка минимума* $\mathbf{\Phi}$ на \mathbf{M} (локальная или глобальная), то аналогичные рассуждения приведут нас к *необходимым* условиям *минимума* вида (3)-(5), но *знаки неравенств* нужно заменить на *противоположные*.

Следующие ниже примеры 1 и 2 служат кратким *введением* в *математическую дисциплину*, называемую *вариационным исчислением*.

Пример 1 — простейшая задача классического вариационного исчисления

Рассмотрим в *пространстве* $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$ (оно определено в примере 5 § 1 главы I) *непрерывно дифференцируемых* функций на *отрезке* $[\mathbf{a}, \mathbf{b}]$ *интегральный* функционал:

$$\mathbf{\Phi}(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} f(s, x(s), x'(s)) ds$$
 (8)

Предположим, что, во-первых, *порождающая функция* f(s, u, v) непрерывна по s, u, v в области $\Omega: \{ \mathbf{a} \leqslant s \leqslant \mathbf{b} \, ; \, -\infty < u, \, v < -\infty \}$, во-вторых, *обладает* в точках этой области непрерывными частными производными f'_u , f'_v и, кроме того, во всех точках области Ω выполнены неравенства:

$$|f'_{u}(s, u_{1}, v_{1}) - f'_{u}(s, u_{2}, v_{2})| \leq \mathbf{L} \cdot (|u_{1} - u_{2}| + |v_{1} - v_{2}|),$$

 $|f'_{v}(s, u_{1}, v_{1}) - f'_{v}(s, u_{2}, v_{2})| \leq \mathbf{L} \cdot (|u_{1} - u_{2}| + |v_{1} - v_{2}|),$

в которых nocmoshhas Липшица L he sasucum ot s, u, v .

Утверждение 50. При сделанных предположениях функционал (8) дифференцируем по Фреше всюду в $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$.

$$\Phi(\mathbf{x} + \mathbf{h}) - \Phi(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} \int_{\mathbf{d}}^{1} \frac{d}{dt} [f(s, x(s) + th(s), x'(s) + th'(s))] dt ds =$$

$$= \int_{\mathbf{0}}^{1} \int_{\mathbf{a}}^{\mathbf{b}} [f'_{u}(s, x(s) + th(s), x'(s) + th'(s))h(s) + f'_{v}(s, x(s) + th(s), x'(s) + th'(s))h'(s)] ds dt$$

Отсюда:
$$\Phi(\mathbf{x} + \mathbf{h}) - \Phi(\mathbf{x}) =$$

$$= \int_{\mathbf{a}}^{\mathbf{b}} [f'_{u}(s, x(s), x'(s)) h(s) + f'_{v}(s, x(s)x'(s)) h'(s)] ds +$$

$$+ \int_{\mathbf{a}}^{\mathbf{b}} \left\{ \int_{\mathbf{a}}^{\mathbf{b}} [f'_{u}(s, x(s) + t h(s), x'(s) + t h'(s)) - f'_{u}(s, x(s), x'(s))] h(s) ds + \right.$$

$$+ \int_{\mathbf{a}}^{\mathbf{b}} [f'_{v}(s, x(s) + t h(s), x'(s) + t h'(s)) - f'_{v}(s, x(s), x'(s))] h'(s) ds +$$

$$= \ell(\mathbf{x}) + \omega(\mathbf{x}, \mathbf{h})$$

Из предположенной **непрерывности** f'_u и f'_v следует, что линейный функционал $\ell(\mathbf{x})$ в этом равенстве — **непрерывный линейный функционал** в $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$, а $|\omega(\mathbf{x}, \mathbf{h})|$ нетрудно **оценить** с использованием неравенств (12) из § 2 этой главы: $|\omega(\mathbf{x}, \mathbf{h})| \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)|\} ds dt \leqslant \int_0^1 t \int_{\mathbf{a}}^{\mathbf{b}} \{\mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h'(s)| + \mathbf{L}(|h(s)| + |h'(s)|) |h(s)| + \mathbf{L}(|h(s)| + |h'(s)| + |h'(s$

Полученные оценки показывают $\partial u\phi\phi$ еренцируемость по Φ реше ϕ ункционала (8) в пространстве $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$.

При этом его *дифференциал Фреше* в *точке* $x\left(s\right)$ определяется формулой:

$$d\Phi(\mathbf{x}, \mathbf{h}) = \int_{\mathbf{a}}^{\mathbf{b}} \{ f'_u(s, x(s), x'(s)) h(s) + f'_v(s, x(s), x'(s)) h'(s) \} ds$$

Если теперь $x_0(s)$ элемент $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$, на котором достигается локальный минимум (или максимум) функционала (8), то согласно условию (5), $d\Phi(\mathbf{x}_0, \mathbf{h}) \stackrel{\equiv}{}_{\mathbf{h}} 0$, или $\forall \mathbf{h} \in \mathbb{D}_1[\mathbf{a}, \mathbf{b}]$:

$$\int_{\mathbf{a}}^{\mathbf{b}} \{ f'_u(s, x(s), x'(s)) h(s) + f'_v(s, x(s), x'(s)) h'(s) \} ds = 0$$
 (9)

Хотя пространство $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$ не является гильбертовым, тем не менее, необходимое условие экстремума, и в этом случае, удается свести к условию (9), аналогичному условию (7), — к операторному уравнению, которому должна удовлетворять экстремальная точка \mathbf{x}_0 .

Нам понадобится следующее вспомогательное

Утверждение 51. Если f(s) **непрерывная** на отрезке $[\mathbf{a}, \mathbf{b}]$ функции $h(s) \in \mathbb{C}[\mathbf{a}, \mathbf{b}]$ выполнено равенство:

$$\int_{\mathbf{a}}^{\mathbf{b}} f(s)h(s) ds = 0 , \qquad (10)$$

то $f(s) \equiv 0$ на $[{\bf a}, {\bf b}]$ и это утверждение останется справедливым, если в (10) использовать только те функции $h(s) \in \mathbb{C}[{\bf a}, {\bf b}]$, для которых $h({\bf a}) = h({\bf b}) = 0$.

 \mathcal{A} оказательство. Действительно, пусть $f(s) \neq 0$ в некоторой **точке** $s_0 \in [\mathbf{a}, \mathbf{b}]$.

Так как f(s) **непрерывна** на $[{f a},{f b}]$, то **найдется** некоторый **интервал** $({f c},{f d})\subseteq [{f a},{f b}]$, на котором $f(s)\neq 0$ и потому сохраняет знак.

Будем теперь в качестве функции h(s) в (10) рассматривать только такие функции, которые всюду, вне (\mathbf{c}, \mathbf{d}) , равны 0.

Очевидно, внутри (\mathbf{c}, \mathbf{d}) можно подобрать значения h(s) так, чтобы h(s), во-первых, была **непрерывна** на всём отрезке $[\mathbf{a}, \mathbf{b}]$ и, во-вторых, на некотором внутреннем интервале $(\mathbf{c_1}, \mathbf{d_1}) \subset (\mathbf{c}, \mathbf{d})$, сколь угодно мало отличающемся от последнего, **совпадала** с f(s).

Тогда равенство (10) **не выполнено**, следовательно, наше **предпо- ложение противоречит условию** утверждения.

Рассмотрим теперь тождество (9).

Обозначим для краткости:

$$f'_{u}(s, x_{0}(s), x'_{0}(s)) = m(s); \qquad f'_{v}(s, x_{0}(s), x'_{0}(s)) = n(s)$$

В силу наших предположений $m\left(s\right)$ и $n\left(s\right)$ непрерывны на отрезке $\left[\mathbf{a},\mathbf{b}\right]$.

Тождество (9) в этих обозначениях примет вид:

$$\int_{\mathbf{a}}^{\mathbf{b}} \left[m(s) h(s) + n(s) h'(s) \right] ds \equiv 0, \quad \forall \mathbf{h} \in \mathbb{D}_{1} \left[\mathbf{a}, \mathbf{b} \right]$$
 (11)

Такое равенство возможно только, если $m\left(s\right)$ и $n\left(s\right)$ подчинены некоторым **дополнительным** условиям.

Обозначим:
$$M\left(s\right) = \int\limits_{\mathbf{a}}^{s} m\left(\tau\right) d\tau$$
.

Тождество (11) можно переписать в виде:

$$\int_{\mathbf{a}}^{\mathbf{b}} \left[M'(s) \cdot h(s) + n(s) \cdot h'(s) \right] ds \equiv 0.$$

Учтем, что $M(\mathbf{a})=0$ и, интегрируя по частям первое слагаемое под знаком интеграла в (11), получим:

$$\int_{\mathbf{a}}^{\mathbf{b}} M'(s) \cdot h(s) ds = M(s) \cdot h(s) \Big|_{\mathbf{a}}^{\mathbf{b}} - \int_{\mathbf{a}}^{\mathbf{b}} M(s) \cdot h'(s) ds.$$

Поэтому, предыдущее тождество перепишется в виде:

$$M(\mathbf{b}) \cdot h(\mathbf{b}) + \int_{\mathbf{a}}^{\mathbf{b}} [n(s) - M(s)] \cdot h'(s) ds \equiv 0.$$

Здесь h'(s) -**любая непрерывная** функция и h(s) любая ее **первообразная**.

В частности, это тождество должно удовлетворяться при $h(s) \equiv 1$.

Но, это возможно **только**, если: $M(\mathbf{b}) = 0$.

Учтя это условие, мы видим, что тождество (11) свелось к интегральному соотношению:

$$\int_{\mathbf{a}}^{\mathbf{b}} \left[n(s) - M(s) \right] \cdot h'(s) ds \equiv 0$$
 (12)

Кроме этого, должно быть: $M(\mathbf{a}) = M(\mathbf{b}) = 0$, а так как h'(s) **любая непрерывная** функция, то в силу утверждения 51 :

$$n(s) - M(s) \equiv 0 \quad \text{Ha}[\mathbf{a}, \mathbf{b}], \qquad (13)$$

и дополнительно: $M(\mathbf{a}) = M(\mathbf{b}) = 0$.

Поэтому $n\left(s\right)$ обязана быть **дифференцируемой** и:

$$n'(s) \equiv M'(s) \equiv m(s)$$
.

Кроме того, из (13) следует, что: $n(\mathbf{a}) = n(\mathbf{b}) = 0$.

Окончательно, из тождества (13) мы получаем такое **следствие**: Если $x_0(s)$ — **экстремальная точка** функционала (8), то **функ**-

uus $x_0(s)$ необходимо удовлетворяет дифференциальному уравнению:

$$f'_{x}(s, x(s), x'(s)) - \frac{d}{ds}[f'_{x'}(s, x(s), x'(s))] = 0$$
 (14)

и условиям:

$$f'_{x'}(\mathbf{a}, x(\mathbf{a}), x'(\mathbf{a})) = f'_{x'}(\mathbf{b}, x(\mathbf{b}), x'(\mathbf{b})) = 0$$

на концах отрезка $[\mathbf{a}, \mathbf{b}]$.

Дифференциальное уравнение (14) называется $\it ypashenue M$ $\it pa$ для функционала (8).

Пример 2 — задача вариационного исчисления с закреплёнными концами

Рассмотрим теперь функционал (8) с теми же, что и раньше условиями на *порождающую функцию* f, но будем искать условия его (локального) *минимума* на *подмножестве* $\mathbf{M} \subset \mathbb{D}_1[\mathbf{a}, \mathbf{b}]$, которое состоит из функций $\mathbb{D}_1[\mathbf{a}, \mathbf{b}]$ с *фиксированными* в концах \mathbf{a} и \mathbf{b} значениями: $x(\mathbf{a}) = A$, $x(\mathbf{b}) = B$.

Henocpedcmвенно проверяется выпуклость множества M .

Поэтому, для **минимизирующего элемента** должно выполняться условие (4) .

Учитывая полученную в примере 1 формулу для *производной Фре-* me функционала (8), видим, что в movemem munumyma $x_0(s)$ должны выполняться условия:

$$\int_{\mathbf{a}}^{\mathbf{b}} \{ f'_u(s, x_0(s), x'_0(s)) \cdot h(s) + f'_v(s, x_0(s), x'_0(s)) \cdot h'(s) \} ds \leq 0, \quad (15)$$

$$x_0(\mathbf{a}) = A, \quad x_0(\mathbf{b}) = B,$$

для $oldsymbol{\mathit{ecex}}\ \partial ony oldsymbol{\mathit{cmumux}}\ \mathbf{\mathit{hanpas}} \ \mathbf{\mathit{hehu}}\ddot{\mathbf{\mathit{u}}}\ \mathbf{\mathit{h}}\ ,\ \ \mathrm{\mathit{T.e.}}\ \mathit{\mathit{udy}}\ \mathit{\mathit{udx}}\ \mathit{\mathit{u}}$ з $\mathbf{\mathit{x}}_0$ в $\mathbf{\mathit{M}}$.

А для того, чтобы *направление* **h** *вело* бы в \mathbf{M} , *очевидно*, нужно потребовать, чтобы:

$$h(\mathbf{a}) = h(\mathbf{b}) = 0, \quad \mathbf{h} \in \mathbb{D}_1[\mathbf{a}, \mathbf{b}]$$
 (16)

Очевидно, что если $\ \mathbf{h}$ *допустимо*, то и *направление* — $-\mathbf{h}$, — также *допустимо*.

Следовательно, *неравенство* в (15) должно удовлетворяться, как *равенство*.

Мы получили **необходимое** условие минимума, по виду совпадающие с (9), но с **дополнительными** краевыми условиями в (15) и (16). Преобразуем равенство (15) аналогично тому, как мы преобразовывали равенство (9).

Учитывая краевые условия, мы получим соотношение вида (12) в котором h'(s) уже **не произвольная** непрерывная функция, а такая, **первообразная** которой удовлетворяет сразу двум **дополнительным** условиям: $h(\mathbf{a}) = 0$ и $h(\mathbf{b}) = 0$.

Из (12), в этом случае, уже **не следует** условие: M(s) = n(s). Но, как мы увидим ниже, из (12) **следует, в этом случае**, что:

$$n(s) - M(s) \equiv const$$
 (17)

Покажем справедливость следующего утверждения.

Утверждение 52. *Если* f(s) -**непрерывная** на отрезке $[\mathbf{a}, \mathbf{b}]$ ϕ ункция u

$$\int_{\mathbf{a}}^{\mathbf{b}} f(s) \cdot h'(s) ds = 0, \quad h(s) \in \mathbb{D}_{1}[\mathbf{a}, \mathbf{b}], \quad h(\mathbf{a}) = 0, h(\mathbf{b}) = 0, \quad (18)$$

$$mo: \quad f(s) \equiv const.$$

Доказательство. **Легко** показать, что условие (18), определяющее справедливость заключения утверждения 52, можно заменить на эквивалентное ему:

$$\int_{\mathbf{a}}^{\mathbf{b}} f(s) g(s) ds = 0 \tag{19}$$

для любой **непрерывной** функции $g\left(s\right)$ такой, что: $\int\limits_{a}^{b}g\left(s\right)ds=0$.

Действительно, любая допустимая в условиях утверждения функция $h\left(s\right)$ имеет вид: $h\left(s\right)=\int\limits_{\mathbf{a}}^{s}g\left(au\right)d au$, где $g\left(au\right)$ — произвольная **непрерывная** на $\left[\mathbf{a},\mathbf{b}\right]$ функция.

Тогда условие $h\left(\mathbf{a}\right)=0$, очевидно, выполнено, а условие $h\left(\mathbf{b}\right)=0$ эквивалентно условию: $\int\limits_{-\mathbf{b}}^{\mathbf{b}}g\left(\tau\right)d\tau\,=\,0\;.$

Теперь покажем, что из $\ (19)$ $\ cnedyem$ заключение утверждения 52 , т.е. что $\ f\left(s\right) \equiv const$.

Пусть f(s) — **непрерывная** функция, для которой выполнено (19) . **Очевидно**:

$$\int_{\mathbf{a}}^{\mathbf{b}} \left[f(s) - \frac{1}{\mathbf{b} - \mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} f(\tau) d\tau \right] ds = 0$$
 (20)

Пусть теперь $\ell(s)$ любая **непрерывная** функция.

Ее можно представить в виде: $\ell(s) = \lambda(s) + \int_{\mathbf{a}}^{\mathbf{b}} \ell(\tau) d\tau$,

где
$$\lambda(s) = \ell(s) - \frac{1}{\mathbf{b}-\mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} \ell(\tau) d\tau$$
, и $\int_{\mathbf{a}}^{\mathbf{b}} \lambda(s) ds = 0$.

Рассмотрим тождество:

$$\int_{\mathbf{a}}^{\mathbf{b}} \left[f(s) - \frac{1}{\mathbf{b} - \mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} f(\tau) \, d\tau \right] \ell(s) \, ds =$$

$$= \int_{\mathbf{a}}^{\mathbf{b}} \left[f(s) - \frac{1}{\mathbf{b} - \mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} f(\tau) \, d\tau \right] \lambda(s) \, ds + \frac{1}{\mathbf{b} - \mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} \ell(\tau) \, d\tau \cdot \int_{\mathbf{a}}^{\mathbf{b}} \left[f(s) - \frac{1}{\mathbf{b} - \mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} f(\tau) \, d\tau \right] \, ds$$
В **правой части** этого равенства **первое** слагаемое равно 0 в си-

лу (19), а **второе** — в силу (20).

Поэтому: $\int\limits_{\mathbf{a}}^{\mathbf{b}} \left[f\left(s\right) - \frac{1}{\mathbf{b} - \mathbf{a}} \int\limits_{\mathbf{a}}^{\mathbf{b}} f\left(\tau\right) d\tau \right] \ell\left(s\right) ds = 0$ для **любой непре- рывной** на $\left[\mathbf{a}, \mathbf{b}\right]$ функции $\ell\left(s\right)$.

Тогда, в силу утверждения 51 наша функция f(s) должна удовлетворять uhmerpaльному уравнению:

 $f(s) - \frac{1}{\mathbf{b} - \mathbf{a}} \int_{\mathbf{a}}^{\mathbf{b}} f(\tau) d\tau = 0$, с ядром $\mathcal{K}(s, \tau) = \frac{1}{\mathbf{b} - \mathbf{a}}$ на $[\mathbf{a}, \mathbf{b}] \times [\mathbf{a}, \mathbf{b}]$, которое является, таким образом, интегральным уравнением с оператором конечного ранга (N = 1) (см. (3), § (6) главы III).

Непрерывным решением такого уравнения могут быть **только постоянные** функции $f(s) \equiv const$, т.е. утверждение 52 доказано.

Вернемся к равенству (12) при краевых условиях в (15) и (16). Из только что доказанного утверждения 52, получаем (17).

Отсюда, как и в примере 1, следует **дифференцируемость** $n\left(s\right)$ и равенство $n'\left(s\right)=m\left(s\right).$

Следовательно, **минимизирующий элемент** $x_0(s)$ и в этом случае должен удовлетворять **уравнению Эйлера** (14).

Дополнительные условия на решение этого уравнения — **краевые** условия, содержащиеся в (15).

Упраженения и задачи κ параграфу 4.

- 1. Пользуясь рассуждениями примеров 1 и 2 получить $\mathbf{neo}\mathbf{f}\mathbf{xo}\mathbf{d}\mathbf{u}$ - \mathbf{mbe} условия $\mathbf{muhumyma}$ функционала (8) при одном $\mathbf{dononhumenb}$ - \mathbf{nom} условии: $x(\mathbf{a}) = 0$.
- 2. Показать, что в случае ${\bf b} {\bf a} = 1$ из условия (18) **утвер- жедения** 52 **следует**, что: $f(s) \equiv 0$.
- 3. В **гильбертовом** пространстве **H** найти **градиент** функционала: $\Phi\left(\mathbf{x}\right) = \frac{1}{2}(\mathbf{x}, \mathbf{x}) + (\mathbf{c}, \mathbf{x}) \text{ , где } \mathbf{c} \text{ некоторый } \boldsymbol{\textit{фиксированный}} \text{ элемент } \mathbf{H} \text{ .}$

Литература

- [1] А. Н. Колмогоров, С. В. Фомин Элементы теории функций и функционального анализа. М. "Физматлит". 2006г.
- [2] Л. А. Люстерник, В. И. Соболев Краткий курс функционального анализа. М. "Высшая школа". 1982г.
- [3] В. А. Треногин Функциональный анализ. М. "Физматлит". 2002г.
- [4] Л. Э. Эльсгольц Вариационное исчисление. М. "URSS". 2006г.
- [5] А. Д. Иоффе, В. М. Тихомиров Теория экстремальных задач. М. "Наука". 1974г.
- [6] В. А. Треногин, Б. М. Писаревский, Т. С. Соболева Задачи и упражнения по функциональному анализу. М. "Физматлит". 2002г.
- [7] А. А. Кириллов, А. Д. Гвишиани Теоремы и задачи функционального анализа. М. "Наука". 1988г.

Оглавление

Π	ПРЕДИСЛОВИЕ		
1	Mea	грические пространства	9
	1.1	Определение и примеры метрических пространств	9
		Метрическое пространство \mathbb{E}^1	10
		Метрическое пространство \mathbb{E}^n	11
		Метрическое пространство ℓ_{2}	14
		Метрическое пространство $\mathbb{C}\left[\mathbf{a},\mathbf{b} ight]$	15
		Метрическое пространство $\mathbb{D}_k\left[\mathbf{a},\mathbf{b}\right]$	16
		Метрическое пространство $\mathbb{C}_{\mathbb{L}_2}\left[\mathbf{a},\mathbf{b} ight]$	18
		Подпространство метрического пространства	19
		Полезные неравенства	19
	1.2	Сходимость. Замкнутые и открытые множества	
		в метрическом пространстве	22
		Сходимость последовательности в метрическом пространстве	22
		Предельные точки и замкнутые множества	25
		Открытые и замкнутые множества в метрическом простран-	
		стве	29

	Дополнение множества в метрическом пространстве	30
	Сепарабельные метрические пространства	32
1.3	Полные метрические пространства	35
	Фундаментальные последовательности в метрическом про-	
	странстве	35
	Свойство полноты метрического пространства	37
	Пример 1 — полнота метрического пространства \mathbb{E}^n	37
	Пример 2 — полнота метрического пространства $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$.	38
	Пример 3 — полнота метрического пространства ℓ_{2}	39
	Пример 4 — неполного метрического пространства	41
	Пример 5 — полнота метрического пространства $\mathbb{D}_k\left[\mathbf{a},\mathbf{b}\right]$	42
1.4	Пополнение метрических пространств	48
	Изометрия метрических пространств и пополнение	48
	Пополнение пространства рациональных чисел $[{f 0},{f 1}]$	51
	Пополнение пространства \mathbb{R}^Φ	51
	Пространство $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$, как пополнение пространства $\mathbb{C}_{\mathbb{L}_2}\left[\mathbf{a},\right.$	b] 52
1.5	Отображения метрических пространств.	
	Принцип сжатых отображений	57
	Отображения метрических пространств	57
	Непрерывность отображения метрических пространств	59
	Операторные уравнения в метрических пространствах	62
	Принцип сжимающих отображений	62
	Пример 1 — уравнение (3) в \mathbb{E}^1	65

$_{\mathbf{max}}^{n}$ 65
не-
67
71
71
72
73
74
ран-
77
80
89
89
89
92
92
92
92 93

	Определение линейного нормированного пространства (ЛНП)101
	Непрерывность нормы и операций сложения и	
	умножения на числа в линейном нормированном про-	
	странстве	102
	Изоморфизм конечномерных пространств	
	данного числа измерений •	104
	Теорема Ф. Рисса •	110
	Конечномерность и компактность •	112
	Банаховы пространства	115
2.2	Линейные операторы	118
	Определение и примеры	118
	Непрерывность и ограниченность линейного оператора.	
	Норма оператора	119
	Линейный оператор в $\mathbb{R}^n_{\mathbf{max}}$	122
	Линейный интегральный оператор, действующий из $\mathbb{C}\left[\mathbf{a},\mathbf{b} ight]$	
	в $\mathbb{C}\left[\mathbf{a},\mathbf{b} ight]$	124
	Пример неограниченного оператора	125
	Вполне непрерывные операторы	126
2.3	Пространство линейных операторов.	
	Линейные операторные уравнения и	
	обратные операторы	130
	Линейное пространство линейных операторов	130
	Норма в линейном пространстве линейных операторов	131
	Сопряжённое пространство к линейному пространству	132

		Поточечная сходимость в пространстве линейных операторо	в134
		Произведение операторов и обратный оператор	136
		Достаточное условие ограниченности обратного оператора	138
		Теорема Банаха об обратном операторе	140
		Собственные значения и спектр линейного оператора	143
3	Гил	ъбертово пространство.	
	Ли	нейные отображения	
	гил	ъбертовых пространств	149
	3.1	Определение гильбертова пространства.	
		Простейшие свойства	149
		Пространство со скалярным произведением	149
		Примеры пространств со скалярным произведением	151
		Слабая сходимость	
		в пространстве со скалярным произведением	153
		Ортогональность и замкнутость множеств в пространстве	
		со скалярным произведением	155
	3.2	Теорема о проекции	
		на замкнутое выпуклое множество	
		и некоторые ее следствия	160
		Теорема о проекции	160
		Условия, определяющие проекцию	162
		Проекция на подпространство	163
		Неравенство Бесселя	164

	Ортонормированные системы в пространстве со скалярным	
	произведением	166
	Ряды Фурье в гильбертовом пространстве	167
	Равенство Парсеваля и полнота системы элементов $\{\mathbf e_i\}_{i=1}^\infty$	168
	Теорема об ортогональном разложении	171
	Теорема об общем виде линейного функционала	173
3.3	Спектральное представление	
	симметричного вполне непрерывного оператора	
	в гильбертовом пространстве	176
	Сопряжённый оператор к линейному оператору	176
	Самосопряжённый оператор в гильбертовом пространстве	177
	Собственные векторы оператора в гильбертовом простран-	
	стве	178
	Существование собственного вектора у вполне непрерывно-	
	го оператора	179
	Теорема о спектральном разложении вполне непрерывного	
	оператора	181
3.4	Примеры самосопряженных вполне непрерывных операто-	
	ров в пространстве $\mathbb{L}_2\left[\mathbf{a},\mathbf{b}\right]$	189
	Пример 1	189
	Пример 2	192
3.5	Линейные уравнения с вполне непрерывным	
	симметричным оператором	197
	Представление решения	197

		Зависимость решения уравнения (1) от параметра λ 1	98
	3.6	Линейные уравнения с произвольным	
		вполне непрерывным оператором	
		в гильбертовом пространстве	02
		Уравнения с оператором, обладающим замкнутой областью	
		значений	02
		Замкнутость области значений оператора $(\lambda {f E} - {f A}),$ где	
		${f A}$ вполне непрерывный оператор в ${f H}$ и $\lambda eq 0$. 2	03
		Связь между сопряжёнными уравнениями второго рода (слу-	
		чай операторов конечного ранга)	05
		Связь между сопряжёнными уравнениями второго рода (об-	
		щий случай)	09
4	Ноп	инейные отображения линейных нормированных про-	
-1	1100		
	стря	энств	17
	-		17
	-	Дифференциальное и интегральное исчисление	
	-	Дифференциальное и интегральное исчисление для абстрактных функций	17
	-	Дифференциальное и интегральное исчисление для абстрактных функций	17
	-	Дифференциальное и интегральное исчисление для абстрактных функций	17 17
	-	Дифференциальное и интегральное исчисление для абстрактных функций	17 17 19
	-	Дифференциальное и интегральное исчисление для абстрактных функций	17 17 19 22
	-	Дифференциальное и интегральное исчисление для абстрактных функций	17 17 19 22
	4.1	Дифференциальное и интегральное исчисление для абстрактных функций	17 17 19 22 23
	4.1	Дифференциальное и интегральное исчисление для абстрактных функций 2 Определения производной и интеграла от абстрактных функций 2 Свойства интегралов от абстрактных функций 2 Оценка разности значений абстрактной функции 2 Дифференцирование нелинейных отображений 2	17 17 19 22 23
	4.1	Дифференциальное и интегральное исчисление для абстрактных функций 2 Определения производной и интеграла от абстрактных функций 2 Свойства интегралов от абстрактных функций 2 Оценка разности значений абстрактной функции 2 Дифференцирование нелинейных отображений 2 Дифференцируемость по Фреше 2	17 17 19 22 23 23

	Дифференцируемость по Фреше отображения из $\mathbb{C}\left[\mathbf{a},\mathbf{b}\right]$
	в $\mathbb{C}[\mathbf{a}, \mathbf{b}]$
	Дифференциалы Фреше п-го порядка
	Дифференцируемость отображения по Гато
	Вариация отображения (в точке (\mathbf{x}) по направлению (\mathbf{h}))230
	Оценка остатка при дифференцировании по Фреше 231
4.3	Метод Ньютона
	Предварительные построения
	Итерационный процесс Ньютона
4.4	Экстремальные задачи
	в нормированных пространствах
	Предварительные соображения и основные определения 237
	Необходимые условия экстремума
	Простейшая задача классического вариационного исчисления 241
	Задача вариационного исчисления с закреплёнными концами 246