Department of Computer Science and Engineering (CSE) BRAC University

Lecture 8

CSE250 - Circuits and Electronics

SUPERPOSITION PRINCIPLE

Purbayan Das, Lecturer Department of Computer Science and Engineering (CSE) BRAC University

Linearity property

- *Linearity* is the property of an element describing a linear relationship between cause and effect. The property is a combination of both the *homogeneity* (scaling) property and the *additivity* property.
- Homogeneity property
 For a resistor, for example, Ohm's law

For a resistor, for example, Ohm's law relates the input i to the output v as v = iR. If the current is increased by a constant k, then the voltage increases correspondingly by k; that is, kv = (ki)R.

- Additivity property
 If applying $v_1 \& v_2$ separately to a resistor gives rise to currents $i_1 \& i_2$ respectively, then applying $(v_1 + v_2)$ should give rise to the current $(i_1 + i_2)$.
- A *linear circuit* is one whose input and output are related by a straight line. A linear circuit will be a *linear system* if the straight line passes through the origin. A linear circuit obeys the Superposition or Additivity property.

Superposition Principle

- The *superposition principle* states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.
- Keep in mind that superposition is based on linearity. For this reason, it is not applicable to the effect on power due to each source.

$$P_{Total}^2 \neq P_1^2 + P_2^2 + ... + P_N^2$$

 If the power value is needed, the current through (or voltage across) the element must be calculated first using superposition.

Steps to Apply Superposition Principle:

- 1. Turn off all independent sources e xcept one source. Find the output (voltage or current) due to that active source using the techniques covered in Chapters 2 and 3.
- 2. Repeat step 1 for each of the other independent sources.
- 3. Find the total contribution by adding algebraically all the contributions due to the independent sources.

Killing independent sources

 In superposition principle, we consider one independent source at a time while all other independent sources are turned off. This implies that we replace every voltage source by 0 V (or a short circuit), and every current source by 0 A (or an open circuit).

Dependent sources are left intact because they are controlled by circuit

variables.

Example 1

Use Superposition Principle to find v_r .

There are two independent and one dependent sources. The principle requires determine the individual contributions of the two independent sources to the node voltage v_r . If v_r' and v_x'' are the contributions from the 25 V voltage source and 5 A current source respectively, then

$$v_{x} = v_{x}^{\prime} + v_{x}^{\prime\prime}$$

Example 1: 25 V source is active

- The 5 A current source has been replaced by an open circuit. The notation v_x is replaced by v_{γ}' .
- > Different circuit solving techniques (nodal analysis or mesh analysis or source transformation or voltage division) can be applied to solve for v_x' . Nodal analysis may be the easiest one.
- \triangleright KCL at the node v_x' ,

$$\frac{v_x' - 25}{20} + \frac{v_x'}{4} = 0.1v_x'$$

Simplification yields, $v_x' = 6.25 V$

Example 1: 5 A source is active

- The 25 V voltage source has been replaced by a short circuit. The notation v_x is replaced by $v_{\rm r}^{\prime\prime}$.
- \triangleright KCL at the node v_x'' ,

$$\frac{v_x^{\prime\prime}}{20} + \frac{v_x^{\prime\prime}}{4} = 5 + 0.1v_x^{\prime\prime}$$

Simplification yields, $v_x^{\prime\prime}=25\,V$

So, according to the Superposition Principle,

$$v_x = v_x' + v_x''$$

 $\Rightarrow v_x = 6.25 + 25 = 31.25 V$

Using the Superposition Theorem, find v_o .

 $\underline{\text{Ans}}: v_0 = 16 V$

• Find *I* in the circuit using the Superposition Principle.

Ans: $i_0 = 0.375 A$

• Use Superposition Principle to solve for i_0 and v_0 .

Ans: $i_0 = 0.2 + 0.1 = 0.3 A$; $v_0 = -2.5 - 30 V = -32.5 V$

• Use the Superposition Principle to find i_o and v_o .

<u>Ans</u>: $i_0 = 1.8 A$; $v_0 = 18 V$

• Use Superposition Principle to solve for v_x .

 $\underline{\text{Ans}}: \boldsymbol{v}_{x} = -16 \, \boldsymbol{V}$

Practice Problems

- Additional recommended practice problems: <u>here</u>
- Other suggested problems from the text book: <u>here</u>

Thank you for your attention

