Modern Number Theory

Qiū Cáiyóng

Number theory is the study of integers. Modern number theory uses modern mathematics tools to study integers.

5岁才殿.

Contents

1	Uni	ique Factorization Domains	4			
	1.1	Unique factorization in ${f Z}$	5			
	1.2	Unique factorization in $k[x]$	6			
	1.3	Unique factorization in a PID	6			
	1.4	Unique factorization in Gauss integers	6			
	1.5	Unique factorization in Eisenstein integers	6			
2	Applications of Unique Factorization 7					
	2.1	Infinitely many primes in ${\bf Z}$	7			
	2.2	Arithmetic functions	7			
	2.3	Divergence of $\sum \frac{1}{p}$	7			
3	Congruence 8					
	3.1	Congruence in ${f Z}$	8			
	3.2	Congruence equations	8			
	3.3	The Chinese remainder theorem	8			
4	Primitive Roots 9					
	4.1	Primitive roots	9			
	4.2	nth power residues	9			
5	Quadratic Reciprocity 10					
	5.1	Quadratic residues	10			
	5.2	Law of quadratic reciprocity	10			
	5.3	Proof of the law of quadratic reciprocity	10			
6	Gai	uss and Jacobi Sums	11			
	6.1	Algebraic numbers and algebraic integers	11			
	6.2	The quadratic character of 2	11			
	6.3	Quadratic Gauss sums	11			
	6.4	The sign of the quadratic Gauss sum	11			
	6.5	Multiplicative characters	11			
	6.6	Gauss sums	11			
	6.7	Jacobi sums	11			

	6.8	Applications	11		
7	Cul	pic Reciprocity	12		
	7.1	Residue class rings	12		
	7.2	Cubic residue character	12		
	7.3	Proofs of the low of cubic reciprocity	12		
		The cubic character of 2			
8					
	8.1	Preliminaries	13		
	8.2	The quartic residue symbol	13		
	8.3	Law of biquadratic reciprocity	13		
	8.4	Rational biquadratic reciprocity	13		
9	Bor	ous Chapter: Constructibility of Regular Polygons	14		

Unique Factorization Domains

Arithmetics can be done in an abstract setting:

Definition 1.0.1 (Ring, domain and fields). A **ring** is a set R, together with two operations $+: R \times R \to R$ and $\times : \times R \to R$. But instead of writing +(a,b) and $\times (a,b)$, we write a+b and ab. These two operations has to satisfy the following axioms:

Associativity (a+b)+c=a+(b+c), (ab)c=a(bc) for all $a,b,c\in R$

Commutativity a + b = b + a, ab = ba for all $a, b \in R$

Identity There are two elements $0_R, 1_R \in R$ such that $0_R + a = a, 1_R a = a$ for all $a \in R$

Inverse For all $a \in R$, there is an element $-a \in R$ such that $a + (-a) = 0_R$. Distributivity a(b+c) = ab + ac for all $a, b, c \in R$.

If $a, b \in R$ are both nonzero implies that ab is nonzero, we say that the ring R is a **domain** or an **integral domain**.

If $0 \neq a \in R$ is nonzero and there is an element $a^{-1} \in R$ such that $aa^{-1} = 1_R$ then we say that a is a **unit** in R. If every nonzero element is a unit, then we say the ring R is a **field**.

 $a0_R = 0_R$ is true for any $a \in R$ and any ring R. In a ring, it is allowed that $1_R = 0_R$, although we will then have a boring ring: there is only one element $1_R = 0_R$ since $a = a1_R = a0_R = 0_R$.

Strictly speaking, what we've defined are the so-called commutative rings. If we don't require that ab = ba, then we have the notion of a general ring. But we will always assume that all rings are commutative. (Sometimes mathematicians do not even require the existence of 1_R ! Things get weird when R does not have an identity.)

Example 1.0.1. $\mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$ are rings. \mathbf{N}, \mathbf{N}_+ are not rings. $\mathbf{Q}, \mathbf{R}, \mathbf{C}$ are fields.

Example 1.0.2. If R is a ring, we define the **polynomial ring with coefficients in** R by

$$R[x] := \{ \sum_{i=0}^{n} a_i x^i : n \in \mathbf{N}, a_i \in R \}$$

Addition and multiplication is defined by

$$\left(\sum_{i=0}^{n} a_i x^i\right) + \left(\sum_{i=0}^{n} b_i x^i\right) = \sum_{i=0}^{n} (a_i + b_i) x^i$$

$$\left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{i=0}^{n} b_i x^i\right) = \sum_{i \in \mathbf{N}} \sum_{\alpha + \beta = i} a_{\alpha} b_{\beta} x^i$$

The R[x] is again a ring. For example, when $R = \mathbf{R}$ we get the ring of polynomials with real coefficients; when $R = \mathbf{C}$ we get the ring of polynomials with complex coefficients; when $R = \mathbf{Z}$ we get the ring of polynomials with integer coefficients.

By induction, (R[x])[y] is also a ring, just have two variables. We also write (R[x])[y] simply by R[x, y].

In this chapter, we studies four rings: $\mathbf{Z}, k[x], \mathbf{Z}[i], \mathbf{Z}[\omega]$. They can be treated uniformly, since all of them are of a special class of rings: UFD (Unique Factorization Domain).

(Actually, Fields are EDs (Euclidean domain), EDs are PIDs (Principal Ideal Domain), PIDs are UFDs, UFDs are domains. $\mathbf{Z}, k[x], \mathbf{Z}[i], \mathbf{Z}[\omega]$ are all Euclidean domains.)

Lemma 1.0.1 (Gauss). If R is a UFD, then so do R[x].

1.1 Unique factorization in Z

We say that a number a divides a number b is there is a number c such that b=ac. If a divides b, we use the notation a|b. For example, 2|8,3|15, but 6 / 21. We say that a number p is a prime if its only divisors are 1 and p. The first prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,\ldots$ Let $\pi(x)$ be the number of primes between 1 and x. What can be said about the function $\pi(x)$? The prime number theorem, we proved by J.Hadamard and independently Ch.J. de la Vallé Poussin says that

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\ln x}} = 1$$

The theorem of unique factorization is sometimes referred to as the fundamental theorem of arithmetic. As an illustration consider the number 180. We have $180 = 2^2 \times 3^2 \times 5$. Uniqueness in this case means that the only primes dividing 180 are 2, 3, 5 and that the exponents 2, 2, 1 are uniquely determined by 180.

Z will denote the ring of integers, i.e., the set $0 \pm 1, \pm 2, \pm 3, \ldots$, together with the usual definition of sum and product. It will be more convenient to work with **Z** rather than restricting ourselves to the positive integers. The notion of divisibility carries over with no difficulty to **Z**. We shall not consider 1 or -1 as primes, this is simply a useful convention. Note that 1 and -1 divide everything and that they are the only integers with this property. They are called the units of **Z**. Notice also that every nonzero integer divides zero.

- 1.2 Unique factorization in k[x]
- 1.3 Unique factorization in a PID
- 1.4 Unique factorization in Gauss integers
- 1.5 Unique factorization in Eisenstein integers

Applications of Unique Factorization

- 2.1 Infinitely many primes in Z
- 2.2 Arithmetic functions
- 2.3 Divergence of $\sum \frac{1}{p}$

Congruence

- 3.1 Congruence in Z
- 3.2 Congruence equations
- 3.3 The Chinese remainder theorem

Primitive Roots

- 4.1 Primitive roots
- 4.2 nth power residues

Quadratic Reciprocity

- 5.1 Quadratic residues
- 5.2 Law of quadratic reciprocity
- 5.3 Proof of the law of quadratic reciprocity

Gauss and Jacobi Sums

- 6.1 Algebraic numbers and algebraic integers
- **6.2** The quadratic character of 2
- 6.3 Quadratic Gauss sums
- 6.4 The sign of the quadratic Gauss sum
- 6.5 Multiplicative characters
- 6.6 Gauss sums
- 6.7 Jacobi sums
- 6.8 Applications

Cubic Reciprocity

- 7.1 Residue class rings
- 7.2 Cubic residue character
- 7.3 Proofs of the low of cubic reciprocity
- 7.4 The cubic character of 2

Biquadratic Reciprocity

- 8.1 Preliminaries
- 8.2 The quartic residue symbol
- 8.3 Law of biquadratic reciprocity
- 8.4 Rational biquadratic reciprocity

Bonus Chapter: Constructibility of Regular Polygons