

Roteamento Dinâmico

João Carlos Lopes Fernandes Abril/2018

Cisco Networking Academy® Mind Wide Open®

A evolução dos protocolos de roteamento dinâmico:

Protocolos IGP

Protocolos EGP

Protocolos de roteamento do vetor de Protocolos de roteamento Link-state Vetor de caminho distância

Classful	RIP	IGRP			EGP
Classless	RIPv2	EIGRP	OSPFv2	IS-IS	BGPv4
IPv6	RIPng	EIGRP para IPv6	OSPFv3	IS-IS para IPv6	BGPv4 para IPv6

- Funções dos protocolos de roteamento:
 - -Compartilhar informações entre roteadores de forma dinâmica.
 - -Atualizar automaticamente a tabela de roteamento quando há alterações de topologia.
 - -Determinar o melhor caminho até o destino.

Routers Dynamically Pass Updates

- O finalidade de um protocolo de roteamento é:
 - -Descobrir redes remotas
 - -Manter informações de roteamento atualizadas
 - -Escolher o melhor caminho até a rede de destino
 - -Habilidade de encontrar um novo melhor caminho se o caminho atual não estiver mais disponível

Routing Protocol Operation

Routing protocols are used to exchange routing information between the routers.

Componentes de um protocolo de roteamento Algoritmo

No caso de protocolos de roteamento, o algoritmo é usado para obter informações de roteamento e determinar o melhor caminho

Mensagens do protocolo de roteamento

Essas mensagens são utilizadas para descobrir vizinho e realizar troca de informações de roteamento

Routing Protocol Operation

Routing protocols are used to exchange routing information between the routers.

- Operações de um protocolo de roteamento
 - •O roteador envia e recebe mensagens de roteamento em suas interfaces.
 - •O roteador compartilha mensagens e informações de roteamento com outros roteadores que estão usando o mesmo protocolo de roteamento.
 - •Os roteadores trocam informações de roteamento para aprender redes remotas.
 - Quando um roteador detecta uma alteração de topologia, o protocolo de roteamento pode anunciar essa alteração a outros roteadores.

IMPORTANTE: Para entender a operação e os conceitos do protocolo de roteamento dinâmico e usá-lo em redes reais, é necessário ter um conhecimento sólido do endereçamento IP e da criação de sub-redes

- Vantagens do roteamento estático
 - -Fácil de configurar
 - -Não há necessidade de muitos recursos (CPU, Memórias, ...)
 - -Mais fácil para o administrador entender
 - "Seguro"
- Desvantagens do roteamento estático
 - -Alterações na rede exigem uma reconfiguração manual pelo administrador da rede
 - -Não é propícia para redes grandes
 - -A configuração é propensa a erros

- Vantagens do roteamento dinâmico
 - •O administrador tem menos trabalho para manter a configuração ao adicionar ou excluir redes.
 - •Os protocolos reagem automaticamente às alterações de topologia.
 - A configuração é menos propensa a erros.
 - Mais escalável, o crescimento da rede não costuma ser um problema.
- Desvantagens do roteamento dinâmico
 - •São usados recursos de roteador (ciclos de CPU, memória e largura de banda de link).
 - •São necessários mais conhecimentos de administrador para configuração, verificação e solução de problemas.

Roteamento dinâmico em comparação com roteamento estático

	Roteamento dinâmico	Roteamento estático
Complexidade de configuração	Geralmente independente do tamanho da rede	Aumenta com o tamanho da rede
Conhecimento administrativo necessário	Conhecimentos avançados necessários	Nenhum conhecimento adicional necessário
Mudanças na topologia	Adaptáveis automaticamente às mudanças na topologia	Intervenção do administrador necessária
Dimensionando	Adequado para topologias simples e complexas	Adequado para topologias simples
Segurança	Menos seguro	Mais seguro
Uso de recursos	Utiliza CPU, memória e largura de banda de link	Nenhum recurso adicional necessário
Previsibilidade	A rota depende da topologia atual	A rota para o destino é sempre a mesma

Protocolos de roteamento dinâmico são agrupados de acordo

 Sistema Autônomo (Autonomous System) é um grupo de roteadores sobre o controle de uma única autoridade administrativa.

- Tipos de protocolos de roteamento:
 - -Interior Gateway Protocols (IGP)

Usados para roteamento dentro de um sistema autônomo

-Exterior Gateway Protocols (EGP)

Utilizado para roteamento entre sistemas autônomos

Protocolos de roteamento EGP em comparação com IGP

 IGP: Comparação entre protocolos de roteamento Vetor de Distância & Estado de Enlace

Vetor de Distância

- rotas são anunciadas como vetores de distância e direção.
- Visão incompleta da topologia da rede.
- -Geralmente, atualizações periódicas.

Estado de Enlace

- Uma visão completa da topologia da rede é criada.
- Atualizações não são periódicas.

Protocolos de Roteamento Classful

NÃO enviam a máscara de sub-rede nas atualizações de roteamento

Protocolos de roteamento Classiess

Enviam a máscara de subrede nas atuailzações de roteamento.

Classful vs. Classless Routing

Classful: Subnet mask is the same throughout the topology

Classless: Subnet mask can vary in the topology

 Convergência é definida como sendo o momento no qual as tabelas de todos os roteadores então em um estado de consistência

Comparing Convergence

Slower Convergence: RIP and IGRP Faster Convergence: EIGRP and

OSPF

Métrica

Valor utilizado pelo protocolo de roteamento para determinar quais rotas são melhores que outras.

Metrics

- Métricas usadas em protocolos de roteamento IP
 - -Largura de Banda
 - -Custo
 - -Atraso
 - -Contagem de Saltos
 - -Carga
 - -Confiabilidade

Hop count vs. Bandwidth

RIP chooses shortest path based on hop count. OSPF chooses shortest path based on bandwidth.

- O campo métrica na tabela de rotamentos
- Metrica usada por cada protocolo de roteamento
 - -RIP contagem de salto
 - -IGRP & EIGRP Largura de Banda (usada por padrão), Atraso (usada por padrão), Carga, Confiabilidade
 - -IS-IS & OSPF Custo, Largura de Banda (Implementação da Cisco)

Metric in the Routing Table

Balanceamento de Carga

Esta é a habilidade de um roteador distribuir pacotes entre múltiplos caminhos de mesmo custo.

Balanceamento de carga em caminhos de custo iguais


```
R2#show ip route
(**saída do comando omitida**)

R 192.168.6.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0/0
[120/1] via 192.168.4.1, 00:00:26, Serial0/0/1
```

Propósito da métrica

Valor calculado utilizado para determinar o melhor caminho até um destino

Propósito da Distância Administrativa (Administrativa Distance)

Valor numérico que especifica a preferência por rota de certa origem Comparando distâncias administrativas

 Identificando a Distância Administrativa (Administrative Distance - AD) na tabela de roteamento

Primeiro número entre os colchetes na tabela de roteamento


```
R2#show ip route

<output omitted>

Gateway of last resort is not set

D     192.168.1.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0
C     192.168.2.0/24 is directly connected, Serial0/0/0
C     192.168.3.0/24 is directly connected, FastEthernet0/0
C     192.168.4.0/24 is directly connected, Serial0/0/1
R     192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1
D     192.168.6.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0
R     192.168.7.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1
R     192.168.8.0/24 [120/2] via 192.168.4.1, 00:00:08, Serial0/0/1
```

```
R2#show ip rip database
192.168.3.0/24 directly connected, FastEthernet0/0
192.168.4.0/24 directly connected, Serial0/0/1
192.168.5.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.6.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.7.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.8.0/24
[2] via 192.168.4.1, Serial0/0/1
```

Protocolos de Roteamento Dinâmicos

Distâncias Administrativas Padrão

Origem da rota	Distância administrativa
Conectado	0
Estática	1
Rota sumarizada EIGRP	5
BGP externo	20
EIGRP interno	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP externo	170
BGP interno	200

Rotas diretamente conectadas

AD padrão é 0

Rotas Estáticas

A distância administrativa de uma rota estática tem como valor **padrão 1**

```
R2#show ip route 172.16.3.0
Routing entry for 172.16.3.0/24
Known via "static", distance 1, metric 0 (connected)
Routing Descriptor Blocks:
* directly connected, via Serial0/0/0
Route metric is 0, traffic share count is 1
```

Rotas Diretamente Conectadas

-Aparecem imediatamente na tabela de roteamento quando uma interface é configurada

Resumo

- Protocolos de Roteamento Dinâmico realizam as seguintes funções
 - -Compartilham informações dinamicamente entre roteadores
 - -Atualizam automaticamente a tabela de roteamento quando há alterações de topologia
 - -Determina o melhor caminho até um destino
- Protocolos de Roteamento são agrupados em
 - -Interior gateway protocols (IGP)
 - -Exterior gateway protocols(EGP)
- Tipos de IGP
 - -Protocolos de roteamento Classless estes protocolos incluem a máscara de sub-rede nas atualizações de roteamento
 - -Protocolos de roteamento Classful estes protocolos não incluem a máscara de sub-rede na atualizações de roteamento

Resumo

- Métricas são usadas pelo protocolos de roteamento dinâmico para calcular o melhor caminho até um destino.
- Distância Administrativa é um valor inteiro utilizado para indicar a preferência na utilização de uma determinada rota
- Componentes de uma tabela de roteamento incluem:
 - -Origem da rota
 - -Distância administrativa
 - -Métrica

