UNCLASSIFIED

AD NUMBER

AD441983

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; 23 APR 1964. Other requests shall be referred to U.S. Naval Radiological Defense Lab., Attn: Weapons Capabilities Branch, Military Evaluations Division, San Francisco, CA 94135.

AUTHORITY

USNRDL ltr dtd 22 May 1967

UNCLASSIFIED AD 4 4 1 9 8 3

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL:
THE RISE AND EXPANSION OF THE ATOMIC CLOUD

生

1

00

by I. O. Huebsch

NOT TO BE RELEASED

U.S. NAVAL RADIOLOGIOOTSAL

DEFENSE LABORATORY

SAN FRANCISCO · CALIFORNIA · 94135

WEAPONS CAPABILITIES BRANCH S. C. Rainey, Head

MILITARY EVALUATIONS DIVISION S. C. Rainey, Acting Head

ADMINISTRATIVE INFORMATION

This work was sponsored by the Defense Atomic Support Agency under NWER Program A-7a, Subtask 10.007. It is further described as Program A-4, Problem 5, in the USNRDL Technical Program Summary for Fiscal Years 1964, 1965, and 1966 (USNRDL-PR-46, 1 Oct 1963).

DDC AVAILABILITY NOTICE

Foreign announcement and dissemination of this report by DDC is not authorized.

Engene P. Korper

Eugene P. Cooper Scientific Director

D. C. Campbell, CAPT USN Cammanding Officer and Director

12ND NROL P1 (9/63)

ABSTRACT

A water-surface-burst fallout model is being developed in three parts: (1) cloud rise and expansion, (2) particle formation, and (3) particle fall through the atmosphere. Part (1) is discussed in detail. The cloud is described by a set of equations for rate of rise, temperature, water content and other parameters, using an "entraining parcel" method. The equations allow for variations in atmospheric temperature, pressure and humidity as well as in initial cloud height, temperature, and air/water energy partition. Temperature and volume are calculated by extensions of standard meteorological equations. The key assumptions in the cloud model are:

- 1. The effective rate of flow of environmental air into the cloud per unit surface area is linearly proportional to the product of a characteristic velocity, and the ratio of cloud density to ambient density.
- 2. Cloud rise is retarded by both entrainment and an apparent eddy-viscous force, which is directly proportional to the same characteristic velocity and inversely proportional to the density ratio.
- 3. The lost kinetic energy of rise due to eddy viscosity remains in the cloud as turbulent kinetic energy, diluted by entrained air.
- 4. The characteristic velocity involved may be either the velocity corresponding to the sum of the kinetic energies of cloud rise and of turbulence, or the greater of absolute rate of cloud rise and average velocity of turbulence. Thus entrainment does not necessarily end when cloud rise ends, but continues as a turbulent diffusion.
- 5. The time required for the cloud to accelerate to its "terminal" velocity from rest is accounted for by an initial virtual mass term.

The equations have been programmed for machine computation. Comparison of numerical results with atomic-cloud observations indicates that a single empirical parameter, the entrainment constant λ , (which is the proportionality constant in assumption 1) can also be used as a measure of the rate of generation of turbulence. Correct predictions are obtained for rate of rise, cloud size, final cloud height and the late horizontal expansion of high yield clouds. This last has not previously been predicted by a cloud model. Numerical results also indicate that for low yields, the effect of initial water content of the cloud is minor compared with that of atmospheric humidity while for high yields the opposite is true.

Finally, the particle-formation and particle-fall portions of the model development are summarized.

SUMMARY PAGE

The Problem

Land-surface and sea-water-surface nuclear explosions produce different kinds of fallout. Water-surface-burst fallout particles consist mainly of sea salt and water. There is no fallout model for water-surface bursts. Until now, fallout predictions for water-surface-bursts have essentially used land-surface-burst fallout models.

Findings

NRDL is developing a water-surface-burst fallout model, in three parts. This report gives a detailed discussion of Part 1: Cloud Rise, and an Outline of Work; Part 2: Particle Formation, and Part 3: Particle Fall Through the Atmosphere. The cloud rise is described by a set of equations which specify: cloud height, size, temperature, water content, etc., as functions of time and of initial and atmospheric conditions. The equations have been programmed for machine computation and the numerical results are in general agreement with weapon-test observations of atomic clouds.

CONTENTS

		Page
ADMINISTRATIVE INFORMATION		i ii
SECTION 1 INTRODUCTION		1
1.1 PROBLEM AND OBJECTIVE		_
PREDICTION METHODS	• • •	3
SECTION 2 THE RISE OF THE ATOMIC CLOUD: DISCUSSION PROBLEMS		5
2.1 REQUIREMENTS FOR A DESCRIPTION OF CLOUD RISE . 2.2 PARCEL METHODS, LOCAL METHODS, AND SIMILARITY R	ULES .	6
2.2.1 Parcel Methods and Local Methods		6
2.3 INITIAL CLOUD CONDITIONS		8
2.3.2 Air-Water Energy Parition		9 1 0
2.4.1 Effect of Water Content on Cloud Rise 2.4.2 Effect of Water Loss on Cloud Buoyancy 2.4.3 Effect of Water Loss on the Cloud's	• • •	11
"Heat Engine"		15
2.6.1 Entrainment	 in	13 18
2.6.4 Compressibility Effects on Cloud Rise 2.7 VORTICITY AND CIRCULATION		22
2.8 SPIERICAL AND NON-SPHERICAL CLOUDS		24

Page SECTION 3 A SET OF EQUATIONS FOR CLOUD RISE						
3.1 MOMENTUM						
5.5.2.2.4						
3.3.2 Wet						
3.4 TEMPERATURE						
3.4.1 Dry						
3.4.2 Wet						
3.5 VOLUME						
3.5.1 Dry						
3.5.2 Wet						
3.6 LIQUID AND SOLID WATER CONTENT						
3.6.1 Dry						
3.6.2 Wet						
3.7 TURBULENT KINETIC ENERGY DENSITY						
3.8 MASS						
3.9 CLOUD FORM: VOLUME						
3.10 CLOUD FORM: EFFECTIVE SURFACE AREA						
3.12 THE EFFECT OF FREEZING						
3.13 COMMENTS ON THE SET OF EQUATIONS						
3.14 NUMERICAL SOLUTION OF THE EQUATIONS						
SECTION 4 OUTLINE OF FUTURE WORK ON THE WATER-SURFACE-						
BURST FALLOUT MODEL						
• It is a second as a larger to the second as a second						
4.1 THE NUCLEAR CLOUD						
4.2 PARTICLE FORMATION						
4.3 FALLOUT OF SLURRY PARTICLES						
SECTION 5 RESULTS AND CONCLUSIONS						
5.1 RESULTS						
5.2 CONCLUSIONS						
APPENDIX A SYMBOLS USED IN THE REPORT						
AZIMBIA A OLIMONO ODAD IN INDICATORI						
A.1 A NOTE ON NOTATION						
A.2 SYMBOLS USED IN THE PRESENT REPORT						
A.2 SIMBOLD USED IN THE PRESENT REPORT						
ADDERNITY D CICIO INTCHIN CICIO DELCCITA AND ENIMEATMENT.						
APPENDIX B CLOUD HEIGHT, CLOUD VELOCITY, AND ENTRAINMENT: POSSIBLE APPROACHES						
POSSIBLE APPROACHES 6						
B.1 STATIC AND QUASI-STATIC METHODS 6						
D 1 1 Statio Found 1 throtom						

	Page
B.1.2 Quasi-Static Approach or Energy Balance	63
B.2 MOMENTUM EQUATIONS	
B.2.1 Potential Flow	-
B.2.2 Drag Coefficients	67
B.2.3 Momentum Exchange and Momentum Loss	68
B.2.3.1 External Exchange	68
B.2.3.2 Internal Exchange	70
B.3 ENTRAINMENT	
	, ,
APPENDIX C PHYSICAL CONSTANTS AND ENVIRONMENTAL AND	
INITIAL CONDITIONS USED IN NUMERICAL SOLUTION	
OF THE EQUATIONS	72
C.1 PHYSICAL CONSTANTS	
C.2 ENVIRONMENTAL CONDITIONS	72
C.3 INITIAL CONDITIONS	73
APPENDIX D GLOSSARY OF COMPUTER PRINTOUT SYMBOLS	75
APPENDIX E COMPUTER PROGRAM	79
E.1 COMMENTS ON THE PROGRAM	79
E.2 PROGRAM	82
	740
REFERENCES	88

•

TABLES

		Page
1.1	Log-Normal Distributions of Radioactivity vs Particle Size	3
3.1	Computer Output for a High Yield (5 MT) Burst	41
3.2	Computer Output for a Low Yield (20 KT) Bursc	49

SECTION 1

INTRODUCTION

1.1 PROBLEM AND OBJECTIVE

Land-surface and sea-water-surface nuclear explosions* produce different kinds of fallout. Sea-water-surface burst fallout particles consist mainly of sea salt and water. Their water contents, and therefore, their masses, change during their fall. Unlike some land-surface-burst fallout particles (namely unvaporized soil particles) they do not exist as particles before the burst.

There is no fallout model for water-surface bursts. Until now, fallout predictions for water-surface bursts have been made using land-surface models, with at most minor modifications. (See Sec. 1.3)

Therefore, NRDL is developing a water-surface-burst fallout model. This report gives a detailed discussion of the rise and expansion of the atomic** cloud from a water-surface burst, and an outline of work on the other parts of the problem.

^{*}A water-surface burst is a nuclear explosion centered so close to the water surface that the fireball intersects the air-water interface, and the nuclear cloud initially contains both air and vaporized water.

^{**}The terms "atomic cloud" and "nuclear cloud" are used interchangeably in this report.

1.2 BACKGROUND AND APPROACH

Experimental data on water-surface-burst fallout is limited to cloud-rise histories and particle collections from two test shots at the Pacifi Proving Grounds. Both shots were fired on barges in relatively shallow water, and the characteristics of the fallout may have been significantly influenced by the presence of barge and bottom material. The particle-collection data are scattered, and some of them are questionable. These data are insufficient for constructing an empirical fallout model. Therefore, the present model is being developed from fundamental physical considerations using the available experimental data as guideposts.

The development has been divided into three natural interrelated parts:

- and rise and expansion. (The main subject of this report.)
- Fallout-particle formation in, and dispersion from, the cloud.
- 3. Fallout-particle fall through the atmosphere, subject to meteorological conditions.

Preliminary reports on the three parts are being published separately. The three parts will then, allowing for revision, be combined in the fallout model and computer program. Refinement and changes will be considered for incorporation into the model, as they become available.

Since the principal objective of a fallout model is to describe the arrival of radioactivity in the lower atmosphere and at the surface, Parts 1 and 2 of the development exist primarily to provide a scientific basis for this description.

This is a research fallout model. Numerical computations will show which variables have only minor effect on the results. For operational use, these results can then be approximately expressed in simplified equations, or in tables, graphs or nomograms.

Another summary of previous cloud models, including those based on the work of Machta¹, Sutton^{2,3}, and Taylor⁴, (see also the discussions in Refs. 5, 6, 7) will not be given. Instead, an attempt will be made to satisfy the present requirements for a description of cloud rise (Sec 2.1).

A completely analytic approach to cloud rise seems likely to bog down in hydrodynamics and to result in delay in delivering useful results. Therefore, this report uses a mixture of theoretical analysis and empiricism.

- 1.3 POSSIBLE INTERIM WATER-SURFACE-BURST FALLOUT PREDICTION METHODS

 The following interim methods have been used or considered for

 prediction of water-surface-burst (WSB) fallout:
- 1. Use a land-surface-burst (LSB) model such as the NRDL D-Model⁸ and accept the inaccuracies involved.
- 2. Make small adjustments on a LSB model e.g., assume a total water-surface-burst activity equal to 80% of that from an LSB.9
- 3. Use the D-Model but with a particle size distribution that simulates WSB particle arrival times and locations (at sea level), although particle mass is fixed. Table 1.1 gives typical log-normal distributions of radioactivity vs particle size, used with the D-Model for Nevada soil and coral soil, and for salt particles.

Table 1.1

	Log-Normal Dist	ributio	ns of Radioactivity	vs Particle Size
Soil	Mean Particle Diameter, μ (Microns)	Log μ	Standard Deviation of Log µ	Particle Density (gm/cm ³)
Nevada	113	2.053	0.732	2.6
Coral	162	2.209	0.424	2.6
Salt I	122	2.086	0.177	2.08
Salt II	85.5	1.932	0.168	2.08

In computing particle falling rates using the "Salt" distribution in the D-Model, the particles are taken as spheres, while Nevada and Coral particles are of irregular shape (cylinders with a 2:1 ratio of length to width).

- 4. Use the D-Model rate of rise and expansion but consider variation of water mass (and therefore, of falling rate at a given altitude) of slurry particles, using the computer program developed for Farlow's particle-fall model. If fallout particles consist of water and salt, we must not only specify the salt-mass vs activity distribution but also initial water content. (The simplest choice is that all particles are initially at sea-water concentration). This question is considered in Sec. 4.
- 5. Use the D-model, but replace its rate of rise with those calculated for a water-surface burst, using the equations of the present report.
- 6. Make the changes in the D-model described in both 4. and 5. above.

SECTION 2

THE RISE OF THE ATOMIC CLOUD: DISCUSSION OF PROBLEMS

2.1 REQUIREMENTS FOR A DESCRIPTION OF CLOUD RISE

The input to be specified consists of:

- 1. Explosion energy and energy remaining in the fireball.
- 2. Height of burst (if bursts other than those exactly at sea level are considered).
- 3. Atmospheric temperature, pressure, and humidity as functions of altitude.

The desired output consists of the following cloud properties as functions of time:

- 1. Height.
- 2. Rate of rise.
- 3. Size (vertical and horizontal diameters).
- 4. Shape (spherical, ellipsoidal, etc.).
- 5. Mass.
- 6. Volume.
- 7. Water content (vapor and liquid or solid).
- 8. Temperature (either mean or with a gradient structure).
- 9. Turbulence characteristics.

The cloud-history output is needed as input to Part 2 of the fallout model: particle formation. This may then have to feed back to Part 1, for instance if the formed salt particles have removed a large part of water content from the cloud before its maximum height is reached.

The effect of wind on cloud rise is not considered in this report. It may be considered in a later report as outlined in Sec. 4.1.

2.2 PARCEL METHODS, LOCAL METHODS, AND SIMILARITY RULES

2.2.1 Parcel Methods and Local Methods

<u>Parcel</u> methods of describing the rising cloud treat the cloud as a whole, as if all parts of the cloud had the same properties (temperature, density, etc.). Any compensating down flow of air outside the cloud is neglected.

Local methods give equations for velocity and temperature at each point in the flow fields. They are mathematically complicated even when the field has axial symmetry, and typically describe the cloud by a set of partial differential equations. (Such equations, or course, refer to mean quantities, not turbulent fluctuations at each point.)

Not only is it simpler to use an "entraining parcel" to represent the cloud, but also the extreme turbulence prevailing in the cloud makes it reasonable that the effect of entrainment is immediately averaged over the cloud. Although relative velocities of parts of the cloud are unspecified, turbulence parameters can still be used to represent the net effect of velocity fluctuations.

To sum up, local methods require numerical solution of partial differential equations, unless some similarity rules (see Sec. 2.2.2) can be devised. Any such similarity rules would restrict the ability to test the effect of variations in the atmosphere on the air/water composition of the cloud, on specific heat, etc. Such testing is one of the objectives of this "research fallout model." Parcel methods require only ordinary differential equations. Therefore, the following discussion (remainder of Sec. 2) and equations (Sec. 3) use a parcel method. Use of a parcel method does not keep us from discussing entrainment rules, viscosity analogies, etc.

2.2.2 Similarity Rules

If two sets of functions, with respect to both position and time, of velocity, density, temperature, etc., can be made identical by an appropriate choice of units of length, time, mass, and temperature,

they are said to be "similar" This similarity is lacking in the rise of clouds from explosions of different yields, even though our parcel method replaces the continuous flow field by the use of average cloud and ambient values.

- 1. The atmospheric temperature-vs-altitude gradient changes at the tropopause so that low- and high-yield clouds encounter different conditions.
- 2. Even if the atmosphere has a constant temperature gradient (as in a simple model of the troposphere) the large temperature and density differences between cloud and ambient air violate the usual approximate similarity conditions. 12 Also, variation of specific heat with temperature may be important.

Therefore no attempt is made in this report to scale cloud rise from one set of initial and atmospheric conditions to another (although it is assumed that the "characteristic length" involved in the entrainment and momentum-change processes discussed in Sec. 2.6 is proportional to cloud radius). Instead the cloud rise equations (Sec. 3) are solved numerically for each set of parameters. Approximate similarities may then be noted in the solutions.

2.2.3 Potential and Virtual Quantities

The use of potential (adiabatic equivalent) temperature is only possible if constant specific heat is assumed. (Potential temperature is the temperature air at a given height and pressure would assume if it were expanded or compressed adiabatically to some standard pressure, say sea-level pressure. If the effect of any water vapor or liquid or solid water in the air is neglected, the corresponding change of temperature with height is called a dry-adiabatic change.) Also, air entrainment and the presence of water vapor complicate the use of potential temperature. (If the presence of water in the air is taken into account, the adiabatic change of temperature with height, for saturated air, is called wet-adiabatic or saturated adiabatic. Because of the

release of latent heat of condensation, the wet-adiabatic rate of decrease of temperature, or lapse rate, is less than the dry-adiabatic lapse rate. See for instance Ref. 13.)

It is convenient to express some cloud properties in terms of virtual temperature (the temperature of dry air having the density of the actual humid air at the given temperature), when the water-vapor mass fraction of the air under consideration is small (so that, for instance, the specific heat of the air can be taken as that of dry air). But that this mass fraction is small is precisely what we cannot assume for a water-surface-burst cloud. We still need the actual temperature of the cloud, although we also use the expression for the virtual temperature, as a convenient algebraic abbreviation.

2.3 INITIAL CLOUD CONDITIONS

2.3.1 Thermodynamic Conditions

In this study, consideration of the fireball begins when it is in approximate pressure equilibrium with the atmosphere. 14,15 (After the "fireball" starts to rise, we shall call it the "cloud.") The temperature at this time (initial temperature) is 3000°K to 4000°K. By not going back to higher temperatures, we avoid having to consider air dissociation and loss of energy by thermal radiation. (The cooling of the fireball from 4000°K to 3000°K occurs in a few seconds even for a megaton shot.)

For a burst centered near the water surface, part of the fireball gas is vaporized sea water and part is atmospheric air. Immediate mixing of the air and salt-steam volumes is assumed. This mixing may be aided by the greater buoyancy (lower molecular weight) of water vapor rising into the hot air. Given the fireball energy and temperature, the airwater energy partition, and the specific heats of air and water as functions of temperature, the initial cloud radius and mass can be calculated by conservation of energy, or rather enthalpy. (Appendix 0.3, Initial Conditions.) It is assumed that the dry air and water vapor

in the cloud satisfy the perfect-gas law, but that their specific heats may vary with temperature.

In using perfect-gas theory, we are not claiming the fireball was heated reversibly; of course it was not. We are estimating the amount of stored energy. To use an analogy, we are interested not in the fuel spilled in loading a rocket, but in how much is on board.

We assume the initial cloud form is a sphere. For a water-surface burst the initial conditions could center the "spherical" fireball at water level, or, alternately, at a height equal to the initial cloud radius so that the fireball just touches the surface, or, more reasonably, somewhere between. It is only for megaton yields, for which the initial cloud radius is a kilometer or more, that this variation in initial height of cloud center is large enough to have a significant effect on final cloud height and size.

2.3.2 Air-Water Energy Partition

The calculated initial cloud size is not very sensitive to the assumed air-water energy partition. An all-air cloud has about 10% greater radius than one with a 50-50 energy partition, because the greater specific heat of water and the large latent heat of evaporation overcompensate for the smaller molecular weight of water as compared to that of air, and result in a smaller fireball.

One might expect that a check on the air-water partition could be made by observing the initial size and rate of rise of the cloud from a water-surface burst as compared with a land-surface burst or a low air burst of the same yield. But calculations with the equations in Sec. 3 indicate that for a megaton surface burst, the differences in cloud height and radius of a 50-50 burst as compared with those of a 100%-air burst near the surface, are too small to be observed on photographs, if the differences are due solely to the energy partition. Therefore, any observed differences must be due to other factors. (Different initial temperatures are one possibility.)

2.4 EFFECT OF WATER CONTENT ON THE CLOUD

2.4.1 Effect of Water Content on Cloud Rise

The importance of the sea-water content of the fireball is due to:

- 1. The accompanying sea salt which condenses and coagulates to form fallout particles (second part of this problem).
- 2. The possible additional thrust the cloud receives relatively late in its rise from release of latent heat of condensation, and of freezing. Once the rising cloud has cooled to below condensation temperature, the temperature height curve (neglecting entrainment) is wet-, not dry-, adiabatic (Sec. 2.2.3), so that the cloud then cools, and loses buoyancy, more slowly. Energy release by condensation appears to be significant only for low-yield clouds (most of whose water comes from the atmosphere). Calculations indicate that megaton clouds reach the stratosphere before cooling to the boiling point, so the extra thrust may come surprisingly late. But the water fraction of the cloud is then so small as to make the thrust insignificant, unless the cloud has a hot core or ring, which is not considered here.

The influence of the salt content of sea water (3% by mass) on cloud density, temperature, and water-vapor pressure is neglected.

Atmospheric humidity also influences cloud rise. Computations with the cloud-rise equations given later in this report indicate for a 1 KT cloud, entrained atmospheric water vapor is far more important than initial water content, while for a 1000 KT (1 MT) cloud, the opposite is true. The reason for this difference is that the cloud surface-to-volume ratio decreases as yield and cloud size increase, so that entrainment, which is proportional to this ratio (Sec. 2.6.1), becomes less influential.

Computations indicate that water-vapor condensation begins below the freezing point (273°K) for megaton clouds, so that the latent heat released may include that from the liquid-to-ice transition. A choice as to which latent heat to use is complicated by the presence of salt

and by turbulence, both of which influence the freezing point. One must ask the question: does the 15% additional latent heat of freezing influence cloud rise much? This will be tested by computation.

Possibly the radar image of a water surface burst cloud would look "denser" than that of a non-water burst. This is an interesting subject for future investigation.

2.4.2 Effect of Water Loss on Cloud Buoyancy

In the later stages of cloud rise, much of the water content is in liquid or solid form. The question arises: does all liquid and solid water remain in the cloud, or is some of this "spent fuel" jettisoned, lightening the cloud's load?

If the water-and-salt particles coagulate to a size with a sensible falling rate while the cloud is still rising (this will be discussed in detail in a later report), then there is a gain in cloud buoyancy by loss of these particles. The maximum possible influence of this effect is measured by the ratio of liquid and solid water mass to dry air mass in the cloud. A small value of the water percentage of the fireball energy partition, together with a large entrainment rate and a low-humidity atmosphere, would minimize the possible gain in buoyancy. If this fallout from the cloud takes place after the end of cloud rise, it should have little effect on cloud buoyancy because:

- 1. The cloud has gained so much air by entrainment that the water contribution to total density is small.
- 2. The cloud no longer moves as a unit. See Ref. 16, (Sec. 13, Settling of Clouds) for a criterion for this mass-subsidence problem.

2.4.3 Effect of Water Loss on the Cloud's "Heat Engine"

Can an MT cloud, rising past its equilibrium level in the stratosphere against a positive ambient temperature gradient, have lost so much of the condensed (and coagulated) water by fallout, or have entrained so much dry air, that it is then cooling dry-adiabatically? Calculations indicate this can occur, but since dry nd wet adiabatics hardly differ, at these low temperatures, the effect on cloud motion is negligible.

2.5 INFLUENCE OF VARIATION OF AMBIENT CONDITIONS

The volume and mass of a rising cloud change by two processes:

- 1. Adiabatic expansion.
- 2. Entrainment of ambient air.

How sensitive to variations in meteorological conditions are these processes? The first proc as depends on atmospheric pressure, which does not vary much (at a giv 1 altitude). For high-yield clouds, most of the second process would occur at greater altitudes where time variations of meteorological conditions are smaller than in the lower troposphere. But as mentioned in Sec. 2.4.1 low-yield clouds, on the other hand, are sensitive to ambient humidity.

While theories of atomic cloud behavior have largely been suggested by studies of cumulus cloud behavior, there re limitations on the use of such meteorological theories to describe atomic clouds. Cumulus clouds have been assumed to consist of a series of "thermals" (buoyant convective elements). The atomic cloud is a single thermal. Some orders of magnitude are quite different for atomic clouds and cumulus clouds. The initial temperature difference between a cumulus cloud and its environment is about 1°C or less. This is enough to move the cloud up, and even bounce it off the tropopause and back down several times, according to some theoretical calculations. ¹⁷ Nuclear clouds have tremendous initial temperature differences, much greater speeds of rise and, for megaton bursts, much greater sizes than cumulus clouds.

Thus, atmospheric temperature conditions are much less important in the early stages of cloud rise for nuclear clouds than for cumulus clouds. If the cloud temperature is 1000° K, it does not immediately matter whether ambient temperature is 290° K or 300° K. The assumed initial rate of rise of the cloud makes a big difference in the subsequent rise of a "thermal" on the meteorological scale 17 but has negligible influence on an nuclear cloud. Hence, we can assume that a nuclear cloud (or fireball) is still at rest when it has cooled to our initial temperature (about 3000° K). Also, unlike the case of cumulus cloud rise, ambient turbulence can be neglected, and surely so can "erosion" (evaporation at the surface of the cloud) except for very low yields or after stabilization.

2.6 A MODEL OF ENTRAINMENT AND MOMENTUM CHANGE

Several approaches to cloud rise were considered in the course of this study. These approaches included:

Static methods:

Thermal equilibrium

Potential-kinetic energy balance

Dynamic (momentum-equation) methods:

Potential flow

Drag coefficient

External or internal momentum exchange.

The various approaches are discussed in Appendix B. The internalmomentum-loss rule and the closely related entrainment rule that were adopted are discussed in this section.

2.6.1 Entrainment

It was suggested by Taylor that the rate of increase of cloud mass due to entrainment of air is proportional to surface area times absolute rate of cloud rise:

$$\frac{dm}{dt} = S \lambda |u| \beta e \qquad (2.1)$$

where m is cloud mass

t is time

S is surface area

λ is a dimensionless constant of proportionality

 $u = \frac{dz}{dt}$ is rate of rise, where

z is cloud (center) height

 ho_e is ambient (environment) density

This equation is obtained by assuming that, averaging over the cloud surface, S, the ambient air, of density f_e , flows "onto" (or into) the cloud at a rate proportional (factor λ) to the absolute value of rate of rise, |u|. (The absolute value |u| used here and later avoids negative entrainment or drag, if the cloud sinks down after overshooting

its equilibrium height.) For a spherical cloud of radius r, this leads to $dr = \lambda |dz|$ if the change in cloud density is neglected. Empirical values of λ for nuclear and other clouds range from 0.07 (Ref. 7) to 0.30 (Ref. 5) and 0.34 (Ref. 18). Theoretical and experimental work on entrainment has considered mostly cumulus clouds and turbulent jets, at about the same density and temperature as ambient air. In actuality, the rising cloud is initially about ten times as hot and one tenth as dense, as the ambient air. We propose, therefore, that the entrainment rate is also proportional to the "relative inertia" of cloud and ambient air, i.e., the density ratio f/f_e , (where f is the cloud density) so that,

$$\frac{dm}{dt} = S \lambda \frac{\rho}{\rho_e} \left| v \right|_{\rho_e} = \frac{S}{V} m\lambda \left| v \right| \qquad (2.2)$$

where

V · cloud volume

v is a characteristic velocity given by:

$$v = \sqrt{u^2 + 2E_{k_a}}$$

where E_k is the turbulent energy density (Sec. 2.6.2). This entrainment rate agrees qualitatively with the remark in Ref. 18 that "in the early stages of its motion the atomic bomb cloud behaves more as a bubble of air in water in which case there is no entrainment at all." Also, weighting the entrainment rate by the density ratio avoids the difficulty encountered by the authors of Ref. 7. So as not to cool the cloud too fast they had to make λ "surprisingly small." Then the choice of initial radius required to make the final cloud size correct was found to be "surprisingly large" and was described as an "artificial radius."

Any justification for introducing the density ratio is necessarily heuristic, but an argument for this approach can be made in mechanical terms. Suppose that a lump of cloud gas, with velocity u, collides with

a lump of stationary ambient air and imparts a velocity to it, and suppose that the corresponding momentum and kinetic energy are conserved in a collision. Momentum is not conserved in the overall cloud-atmosphere interaction, since turbulence is generated at the expense of directed motion, but we can imagine the interaction as consisting of separate momentum-transfer and momentum-dissipation processes. Suppose now that a lump of ambient air must gain a certain threshold velocity ku to be entrained, (where k is a constant), and that the lump of cloud gas remains in the cloud. We calculate the volume of ambient air V_e to which a unit volume of cloud can transfer this threshold velocity. (Actually the cloud lump may make many collisions, but we idealize the process to a single collision.) The equations for conservation of momentum and kinetic energy are, respectively,

$$\rho u = \int u' + \int e V_e ku \qquad (2.3)$$

$$\frac{1}{2}\rho u^2 = \frac{1}{2}\rho u^{2} + \frac{1}{2}\rho e^{2} V_{e} k^2 u^2$$
 (2.4)

where u' is the velocity of the cloud lump after collision.

The solution is
$$V_e = (\rho/\rho_e)(2/k - 1)$$
 (2.5)

$$u' = u (k - 1)$$
 (2.6)

(This solution has no physical meaning for k>2.)

Thus, the volume (and consequently the mass) of ambient air, that a lump of cloud of unit volume can entrain with a given threshold velocity, is proportional to the density ratio for the could also say that the distance that the lump travels before losing its momentum is proportional to form, and call this distance the "characteristic length." This length could then be considered the distance between the inside and the outside of the cloud.

In the particular case, k = 1, the threshold velocity is u itself, the entraining cloud lump is left with zero velocity, and the entrained volume is f/f_e times the entraining volume, so that the entrained mass equals the entraining mass. Now suppose that in time dt a volume of cloud gas $S \lambda |v| dt$ "flows out" of the cloud. (This is the Taylor hypothesis applied to the entraining air instead of the entrained air.) Then the entrained mass is

$$dm = \rho S \lambda |v| dt,$$
 (2.7)

so that

$$\frac{dm}{dt} = \frac{S}{V} m\lambda |V| dt \qquad (2.2)$$

as was suggested above.

More formally, we can estimate the entrainment rate by regarding momentum as a diffusible quantity. In a turbulent flow, however, ordinary molecular diffusivity is of minor importance compared with the diffusive effect of turbulence. As has been done by many investigators, we suppose the diffusive effect of turbulence can be expressed as an "eddy diffusivity" having the same dimensions as molecular diffusivity, although the eddy diffusivity is a property of the flow conditions, not of the fluid. Just as molecular diffusivity is the product of the speed and mean free path of a molecule, times a constant, we may take the eddy diffusivity to be proportional by a factor λ , to the product of the speed, ν , of a lump of cloud, and a length, ℓ . We call ν and ℓ the "characteristic speed" and "characteristic length," respectively.

Suppose the characteristic speed, v to be the speed corresponding to the total kinetic energy of a lump of cloud. This energy consists of the kinetic energy of rise and the kinetic energy of turbulence, E_k , so that

 $v = \sqrt{u^2 + E_k} \tag{2.8}$

where the positive value of the square root is taken.

Suppose the characteristic length, \mathcal{L} , to be proportional to cloud (vertical) radius, and that this length is the distance from inside to outside the cloud. Then, assuming that the rate of change of momentum per unit volume with distance along the length \mathcal{L} has the average value $\rho v/\mathcal{L}_{+}$ the total outward flow of momentum in time dt is $S(\lambda v \mathcal{L})$ ($\rho v/\mathcal{L}$) dt, (where $\lambda v \mathcal{L}$ is the eddy diffusivity), so that (dividing the momentum flow in dt by the momentum per unit volume ρv) the corresponding change in volume is $S\lambda v dt$, as assumed above in Eq. (2.2). The boundary of the cloud moves outward, as a result of this increase in volume. As outlined in Sec. 2.6.3, entrainment continues after the end of cloud rise, when there is no longer any net total cloud momentum, and now v consists entirely of the average velocity of turbulence, $\sqrt{2E_k}$

The following analogy to the entrainment process was proposed by C. F. Ksanda. Consider the rising cloud, of radius r, as a piston of the same radius. Let the cloud rise during an interval dt. The resulting environment process consists of two steps.

- (1) Neglecting expansion, an element of cross sectional area dA at the top of the cloud rises a distance dz, and sweeps out a volume dAdz₁.
- (2) Suppose that the ambient air in this volume is engulfed by the cloud. Its mass is $\mathcal{S}_e dAdz_1$. If the entrained mass is small compared to the cloud mass m, it now expands from $dAdz_1$ to $dAdz_1(\mathcal{S}_e/f)$, using the gas law at constant pressure. The total increase in cloud height in time dt is thus not dz_1 but $dz = (\mathcal{S}_e/f)dz_1$.

Representing the top surface of the cloud by its horizontal projection A, the total entrained mass is $dm = \rho_e A dz_1$, and we can write

$$\frac{dm}{dt} = \rho_e A \frac{dz_1}{dz} = \rho_e A \frac{dz_1}{dz} \frac{dz}{dt} = \rho_{Au}$$
 (2.9)

and since $m = \rho V$

$$\frac{\dim}{dt} = m \frac{A}{V} u \tag{2.10}$$

For a sphere, A = S/4 where S is the surface area. This analogy thus predicts $\lambda = .25$, which is actually in good agreement with observation. The analogy does not of course apply in the late stages of entrainment when the driving force is not cloud rise but internal turbulence, but at that time cloud and ambient densities are nearly equal.

2.6.2 Momentum Loss and Turbulent Kinetic Energy Gain

To determine momentum loss, we draw an analogy between turbulence and molecular motion, as we did for entrainment. In this case, however, we speak of eddy viscosity instead of eddy diffusivity.

Suppose that the rising cloud is retarded by the stationary ambient air, as if the latter, like the cloud, were an "eddy-viscous" fluid, with the same eddy viscosity λ v \mathcal{L} . Then the force on a unit area of cloud surface is proportional to $\mathcal{L}(u/\mathcal{L})$, where the actual velocity gradient is replaced by an average value u/\mathcal{L} . The total force is then proportional to $S_e^{\text{v}}\mathcal{L}(u/\mathcal{L})$ and the force per unit cloud mass to $(S/V)(\mathcal{L}_e/\mathcal{L})$ λ v u.

It may be argued that not the total surface area but the projected area normal to the direction of rise should be used. For a sphere, the ratios of these quantities to V are respectively 3/r and 3/4r. Furthermore, we do not know whether eddy diffusivity and eddy viscosity are the same, or merely proportional. Therefore, for

generality, we replace S/V by a constant times 1/r, combine the constant with λ and write the product as $2k_2$, so that

force per unit cloud mass =
$$2k_2 \frac{f_e}{f} = \frac{\lambda v u}{r}$$
 (2.11)

Computations indicate that when this form is used the empirically correct value of $2k_2$ is very nearly the same $\mathcal L$ appearing in the entrainment equation.

If the retarding force on the cloud were an ordinary viscous force, the kinetic energy loss due to this force would appear as increased heat, i.e. random motion of molecules. Since it is an eddy-viscous force, the lost energy appears as an increase in turbulent kinetic energy, i.e. random motion of lumps of fluid, which are supposedly mixed into the cloud. Thus, eddy viscosity does not reduce the total cloud kinetic energy, but converts some of the energy of rise to turbulent energy.

Then, neglecting entrainment, the rate of increase of turbulent kinetic energy per unit mass is equal to the rate of decrease of kinetic energy of rise due to eddy viscosity,

$$\frac{dE_k}{dt} = -k_2 \frac{\int e}{f} \frac{\lambda v u^2}{r}$$
 (2.12)

We regarded the eddy viscous momentum loss as occurring on the outside of the boundary of the cloud, in fluid of density β_e . The same final result could be obtained by regarding the momentum loss as occurring on the <u>inside</u> of the boundary, in fluid of density β_e , and with a different velocity gradient given by $w/(k\beta/\beta_e)$. This would agree with the comment in Sec. 2.6.1 that the distance that a lump of cloud travels while transferring momentum is proportional to β/β_e . This suggests that if we follow the original Taylor entrainment rule, Eq. (2.1) in Sec. 2.6.1, we should then omit the factor β_e in the eddy-viscous force.

That is, the present model gives more drag and less entrainment by the factors ρ_e/ρ and ρ/ρ_e respectively, than the "original" rule. These arguments are, however, suggestive rather than convincing, and equally plausible ones might be made to obtain other results.

Qualitatively, the net effect on cloud rise of introducing the density-ratio hypothesis is:

- 1. The cloud cools more slowly since it entrains relatively less low-altitude air and more high-altitude air whose potential temperature (Sec. 2.2.3) is higher.
 - 2. The early rate of mass increase is less.
- 3. There is relatively less drag by entrainment and relatively more by eddy viscosity, so that more turbulence is generated.

We can now equate the rate of change of cloud momentum, per unit mass, to the sum of the forces acting on the cloud.

$$\frac{d\mathbf{u}}{d\mathbf{t}} = \frac{f\dot{\mathbf{e}} - f}{f} \mathbf{g} - 2\mathbf{k}_2 \underbrace{f\dot{\mathbf{e}} |\mathbf{v}| \mathbf{u}}_{f\mathbf{r}} - \frac{1}{m} \frac{d\mathbf{m}}{d\mathbf{t}} \mathbf{u}$$
 (2.13)

Here the three terms on the right are respectively due to buoyancy (i.e. Archimedian force), drag and entrainment. In the momentum equation in Sec. 3.1 the r in the denominator of the drag term is replaced by a generalized characteristic length \mathcal{L} , which assumes different values for spherical and spheroidal clouds.

If the total drag force $\mathbf{F}_{\mathbf{D}}$ on a spherical cloud is represented by a drag coefficient $\mathbf{C}_{\mathbf{D}}$, then

$$C_D = \frac{F_D}{\pi r^2 (\rho u^2/2)}$$
 (2.14)

so that the drag force per unit cloud mass is given by

$$F_D/m = C_D \frac{3}{8r} \int_{C} u^2$$
 (2.15)

which has exactly the form of the drag term in the momentum equation, Eq. (2.13).

Finally, we can allow for the time for the cloud to accelerate from rest to terminal velocity by treating the initial motion of the (spherical) cloud as a potential flow, which sets in motion a volume of ambient air equal to one-half the initial displaced volume. All entrained fluid becomes turbulent, so that the initial cloud is presently "dissolved in turbulence" Therefore we multiply the entire right side of the momentum equation by $\frac{m}{m+m'}$, where m' is a virtual mass equal to the mass of one half the initial displaced volume. This virtual mass factor is derived in App. B.2.1.

2.6.3 Additional Effects of Turbulence

When cloud rise ends, no more kinetic energy can be transferred to turbulence. The turbulence drives the apparent horizontal expansion of the cloud which continues (for high-yield clouds) after the end of the rise, vertically stabilized by the stratospheric temperature inversion (See Sec. 2.8). In our parcel method, using the characteristic velocity:

$$v = \sqrt{u^2 + 2E_k}$$

in the entrainment equation, Eq. (2.2), this late expansion corresponds to the case u=0, $v=\sqrt{2E_k}$

If instead we chose as characteristic velocity,

 $v = \max (|u|, \sqrt{2} E_k)$, then the idealized picture would be that as cloud rise slows down, the diffusive spread of turbulence (turbulence-induced mixing) overtakes the radial entrainment flow induced by the mean flow.

During cloud rise and expansion, the turbulence influences coagulation of fallout particles in the cloud. 19 Thus, retardation of cloud rise, late horizontal expansion of cloud, and particle growth give us three check points for the constant k_2 , (Sec. 2.6.2), which governs the rate of transfer of kinetic energy from directed motion to turbulence. As noted in Sec. 2.6.2, computation indicates that $2k_2$ is related to the entrainment parameter λ , so that λ is the only independent empirical quantity in the description of the cloud. It is assumed that only a small fraction of the turbulent energy is degraded to heat by viscosity during cloud rise, i.e. relaxation time is large compared to cloud rise time. Computations of the late horizontal expansion of megaton clouds confirm this hypothesis.

2.6.4 Compressibility Effects on Cloud Rise

For yields over 15 MT, the present equations (Sec. 3), as well as potential flow methods, predict cloud-rise speeds that may be too high, if the drag coefficient or eddy-viscosity coefficient used is the same as that used for lower yields. For a 100 MT cloud, speeds as high as sonic speed, at ambient temperature, are predicted.

We have assumed that the "characteristic length" increases linearly with cloud radius. But at some large radius and speed of rise, it would seem that a small part of the boundary no longer knows what the cloud diameter is, i.e. has time to adjust itself to an increase in diameter. That is, the time for information to pass half way around the periphery is not small compared with the time for the cloud to rise a significant distance, say one radius, i.e. $\frac{\pi r}{c}$ is at least as large as of $\frac{r}{u}$, say $\frac{u}{c} \geq \frac{1}{\pi}$, where c is the speed of sound.

Compressible flow theory suggests multiplying the eddy-viscous drag by a factor $\frac{1}{\sqrt{1-M^2}}$, where M is the Mach number, M = u/c.

(A more sophisticated correction would permit M = 1.) This suggestion is heuristic, and based on calculations for slender bodies at small

angles of attack. Furthermore, even M = 2/3 only produces a 35% increase in drag, using this factor.

The local speed of sound near the boundary of the cloud is higher than in the ambient air, because of the high cloud temperature, so that the local Mach number is smaller, and the "correction" less effective. But also, the local flow speed near the cloud equator may be greater than the net upward speed, increasing the Mach number. These comments are offered only as notes for future investigation.

2.7 VORTICITY AND CIRCULATION

The details of vortex structure and cloud circulation are not considered in this study. We are not interested in vortex structure but in the total turbulent energy arising from eddy-viscous momentum loss during cloud rise. We put this energy in a "black box" and let it contribute to the characteristic velocity given by Eq. (2.8) and thus to the entrainment process. Just what vortices are in the black box does not matter. In fact, the box contains the turbulent spectrum.

We do not use a vortex model such as that of Levine. 20 In his model the bubble exchanges mass with the environment. The narrowness of the wake of atomic clouds indicates very little such exchange takes place. And even this narrow wake may just be environmental air lifted above the condensation level without mixing. For the nuclear cloud case there is no inactive portion of the cloud through which the bubble is rising, since the whole cloud is the bubble. Unlike a cumulus cloud, it is not true that "the turbulence is very likely confined to a thin layer the thickness of which is small compared with that of the bubble." Furthermore, Levine's model uses an exchange factor (See App. B.2.3). In the nuclear cloud, all the retarding ambient air is entrained, (except possibly the "initial virtual mass" in our model) so there is no loss of total kinetic energy by exchange, but only transfer from mean motion to turbulence.

2.8 SPHERICAL AND NON-SPHERICAL CLOUDS

We assume that the initial cloud form is a sphere. If and when the top of an atomic cloud reaches or passes the tropopause it is observed to flatten (by horizontal expansion, not vertical contraction) into an oblate spheroid. We represent this flattening by postulating that vertical expansion cases when the cloud center reaches the tropopause, so that the cloud becomes an oblate spheroid. The entrainment rule is unchanged. (Actually, even for clouds not passing the tropopause horizontal diameter grows somewhat more than vertical diameter.) What are the mechanics of this shape change?

1. Effects of the finite size of the cloud. The top and base of the cloud encounter different conditions. The larger the cloud, the less valid it is to approximate ambient conditions by those at altitude of the cloud center. Near the tropopause, the atmosphere has a nonlinear lapse rate. When the cloud reaches the tropopause, its top loses buoyancy more rapidly than its bottom which is still below the tropopause. Picturing the cloud as an elastic body meeting increased resistance to its rise, we can say that to conserve momentum it can only move outward. This suggests that the rate of distortion is proportional to the difference in buoyancy between its top and bottom; or better, to the rate of change of this difference with altitude. That is, a sharp increase in relative stability in the atmosphere, or roughly, $\frac{d^2T_e}{dz^2} > 0$, as at the tropopause, flattens the cloud. (Here T_e is ambient temperature.) Speculatively, $\frac{d^2T_e}{dz^2} < 0$ would produce a

vertical elongation of the cloud into a prolate spheroid. This speculation is supported by a recent meteorological cloud rise study. ²¹ A computation was made for a conditionally unstable atmosphere, and "unlike the spherical shape envisaged in bubble theories, the cloud... develops into a tall and slender current." So we should say that

distortion rate is proportional to rate of change of stability. But for a nuclear cloud only a very sharp stability change, such as at the tropopause, can affect cloud form.

2. <u>Turbulent diffusion</u>. For a high-yield cloud, the accumulated turbulent kinetic energy induces turbulent (horizontal) diffusion of cloud particles with the vertical thickness fixed by the stably stratified atmosphere. The rate of horizontal "expansion" depends on the turbulent energy density and thus on the rate of eddy-viscous momentum loss during rise. (See Sec. 2.6.2.) Low yield clouds rise more slowly, generating less turbulence, and their energy density decreases rapidly by dilution by entrained air so that such clouds hardly expand after the end of rise.

SECTION 3

A SET OF EQUATIONS FOR CLOUD RISE

The following set of equations for cloud rise uses an "entraining parcel" method (Sec. 2.2) and the entrainment and eddy-viscosity concepts discussed in Sec. 2.6. The numbered equations are those forming the set, which have been solved numerically (Sec. 3.14). The unnumbered equations are used only in deriving the numbered equations. The alternate (A) equations correspond to the hypothesis that the "characteristic length," and therefore the rates of momentum change and entrainment, do not depend on the density ratio (Sec. 2.6). The set includes "dry" (D) and "wet" (W) equations for the water vapor content, temperature, volume, and liquid or solid water content of the unsaturated and saturated cloud, respectively. The momentum, water vapor and temperature equations are suggested by those used in parcel-method cumulus cloud calculations. 17, 22

3.1 MOMENTUM

As in Eq. (2.13), we equate the rate of change of momentum to the sum of buoyancy and eddy-viscous forces,

$$\frac{d}{dt}(mu) = V (\rho_e - \rho)g - \frac{2k_2 v u}{\ell_1}m$$

where t is time

m is cloud mass

u is rate of cloud rise

V is cloud volume = m/ρ

o is cloud density

 ρ_{m} is ambient air density

g is acceleration due to gravity

ko is constant

 $v = \sqrt{u^2 + 2E_k}$, where E_k is the turbulent energy density ψ_1 is a "characteristic length" (Sec. 2.6)

Using the perfect gas law for air and water vapor since the pressure inside and outside the cloud is the same, then with appropriate weights,

$$\frac{\rho_{e}}{\rho} = \frac{Tq(x)}{T_{e}q(x_{e})} \left(\frac{1+x}{1+x+w} \right)$$

where T and T are respectively cloud and ambient temperature

q(x) may be shown to equal $\frac{1 + x/\epsilon}{1 + x}$

x and x_e are respectively, cloud and ambient "mixing ratios"

(ratios of water-vapor mass to dry air mass per unit volume)

w is the ratio of liquid and solid water mass to dry air mass in the cloud

 ϵ = 18/29, the ratio of the molecular weight of water vapor to that of dry air

 $\frac{1+x}{1+x+w} = \beta$ is the ratio of cloud gas density to total cloud density. (This term allows for the liquid and solid water content of the cloud, if any. The effect of this content is usually small.)

We use the symbols: $T^* = Tq(x)$ and $T_e^* = T_eq(x_e)$. T^* and T_e^* are thus the virtual temperatures (Sec. 2.2.3) and $T^*\beta$ is the (cloud) virtual temperature allowing for the contribution of liquid and solid water to the total cloud density.

Taking the characteristic length proportional to the density ratio so that $\ell_1 = \ell \rho_e/\rho_e$, where ℓ depends only on cloud size, then

the momentum-balance equation may be rewritten as

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{t}} = \left[\frac{\mathbf{T}^*}{\mathbf{T}\mathbf{e}^*} \beta - 1\right] \mathbf{g} - \left[\frac{2\mathbf{k}_2}{\mathbf{v}} \frac{\mathbf{T}^*}{\mathbf{T}\mathbf{e}^*} \beta + \frac{1}{\mathbf{m}} \frac{\mathrm{d}\mathbf{m}}{\mathrm{d}\mathbf{t}}\right] \mathbf{u}$$
(3.1)

Alternatively, if ℓ_1 is independent of ρ/ρ_e so that $\ell_1=\ell$,

$$\frac{d\mathbf{u}}{d\mathbf{t}} = \left[\frac{\mathbf{T}^*}{\mathbf{T_e}^*} \beta - 1 \right] \mathbf{g} - \left[\frac{2k_2 \mathbf{v}}{\ell} + \frac{1}{m} \frac{d\mathbf{m}}{d\mathbf{t}} \right] \mathbf{u}$$
 (3.1A)

Since in potential-flow theory, energy and momentum-balance statements require that the fluid mass accelerated from rest include a virtual mass equal to one half the initial displaced mass, then the entire right side of each of Eqs. (3.1) and (3.1A) must be multiplied by $\frac{m}{m + m_0} \frac{\pi}{T_0/2T_{e0}} \times \frac{\pi}{T_0}, \text{ where the subscript o indicates the initial value of each quantity. (See App. B.2.1.)}$

3.2 HEIGHT

The height, z, of the center of the cloud is given by

$$\frac{\mathrm{d}z}{\mathrm{d}t} = u \tag{3.2}$$

3.3 WATER VAPOR

3.3.1 Dry

During the "dry" (unsaturated) period no water is lost by condensation. In time dt, a mass dm of ambient air is entrained, so that, at time t + dt, the new "mixing ratio" will be given by

$$x(t + dt) = \frac{m \frac{x}{1+x} + dm \frac{x_e}{1+x_e}}{\frac{m}{1+x} + \frac{dm}{1+x_e}}$$

from which, by the definition of the derivative,

$$\frac{dx}{dt} = -\frac{1+x}{1+x_e} (x-x_e) \frac{1}{m} \frac{dm}{dt}$$
 (3.3D)

3.3.2 Wet

The cloud is now saturated, so that x_e does not influence x. Let p be the total pressure and p_w the pressure of water vapor in the cloud. Then

 $x = \frac{\epsilon_{P_{W}}}{p - p_{W}}$

From the hydrostatic equation, the gas law and the Clausius-Clapeyron equation:

$$\frac{\mathbf{d} \ \mathbf{p}_{\mathbf{W}}}{\mathbf{d} \ \mathbf{T}} = \frac{\mathbf{L} \ \mathbf{p}_{\mathbf{W}}}{\mathbf{T}}$$

where $\boldsymbol{\rho}_{\mathbf{W}}$ is the vapor density and L the latent heat of condensation, it follows that

$$\frac{1}{x}\frac{dx}{dt} = (1 + x/\epsilon)\frac{L\epsilon}{R_aT^2}\frac{dT}{dt} + (1 + x/\epsilon)\frac{g}{R_aT_e}u$$
 (3.3W)

where R is the gas constant for dry air.

3.4 TEMPERATURE

3.4.1 Dry

The specific heat of entrained air is taken as that of dry air, c_{pa}(T). For a small interval dt, the sum of the following two terms is zero (by conservation of energy):

Heat used to warm entrained air dm:

$$\left(\int_{T_{e}}^{T} c_{pa}(T) dT\right) dm$$

and

Heat absorbed in adiabatic expansion dp:

$$m \left[c_{p}(T) dT - R_{a}T^{*} \frac{dp}{p} \right]$$

where $c_p(T)$ is the weighted mean of the specific heats of air and water vapor,

$$c_{p}(T) = \frac{c_{pa}(T) + c_{pw}(T)}{1 + x}$$

The expansion term becomes, using the hydrostatic equation and the gas law,

$$m \left[c_{p}(T) dT + \frac{T^{*}}{T_{e}} gdz \right]$$

Equating the sum of the two changes to zero,

$$\frac{dT}{dt} = -\frac{g}{c_p(T)} \frac{T^*}{T_e^*} u - \frac{\int_{T_e}^{T} c_{pa}(T) dT}{c_p(T)} \frac{1}{m} \frac{dm}{dt}$$
(3.4D)

The two terms on the right give the effects on temperature of adiabatic expansion and entrainment, respectively.

3.4.2 Wet

Since the temperature of the saturated cloud is at most 373°K,

specific heats are taken as independent of temperature. As before, c_p is the weighted mean of c_{pa} and c_{pw} . For a small interval dt, the heat released by condensation: $-mLdx/(1+x)^2$, is equal to the sum of

Heat used to saturate and warm entrained air:

$$L(x - x_e) dm + c_{pa} (T - T_e) dm$$

and

Heat absorbed in expansion dp:

$$\mathbf{m} \left[\mathbf{c}_{\mathbf{p}} \ \mathbf{dT} - \mathbf{R}_{\mathbf{a}} \mathbf{T}^* \frac{\mathbf{dp}}{\mathbf{p}} \right]$$

This heat balance neglects the small heat release by cooling of liquid or solid water, -mwcdT, where c = specific heat of liquid or solid water. Performing the indicated balance, as for the "dry" heat equation and also using Eq. (3.3W), and dropping small terms of order x^2 , and taking $c_{pa} \approx c_p$,

$$\frac{dT}{dt} = -\frac{\frac{g}{c_p} \frac{T^*}{T_e^*} \left(1 + \frac{xL}{R_a T}\right) u + \left[(x - x_e) \frac{L}{c_p} + (T - T_e)\right] \frac{1}{m} \frac{dm}{dt}}{1 + \frac{L^2 \in x}{c_p R_a T^2}}$$
(3.4w)

The two terms on the right (corresponding to the two terms in the numerator) are respectively the ("wet") adiabatic and entrainment terms.

3.5 VOLUME

In a small height dz, cloud volume changes an amount dV, due to:

1. Adiabatic expansion at constant mass, $dV)_m$, and

2. Mass entrainment at constant pressure, $dV)_p$, so that

$$dV = dV)_m + dV)_p$$

To calculate each dV, the gas law, $p = \frac{m}{V} R_a q(x) T$, is used in the differential form:

$$\frac{dp}{p} = \frac{dm}{m} + \frac{dT}{T} + \frac{dq(x)}{q(x)} - \frac{dV}{V}$$

This assumes the non-gas mass fraction is small.

3.5.1 Dry

 $c_p(T)$ is the temperature-dependent weighted mean of c_{pa} and c_{pv} . For an adiabatic volume change at constant mass, dm and dq are zero and $\frac{dp}{p} = \frac{\gamma}{\gamma-1} \frac{dT}{T}$, (where γ is the ratio of specific heats of the cloud gas), so that

$$\frac{\mathrm{dV})_{\mathrm{m}}}{\mathrm{V}} = \frac{\mathrm{dT})_{\mathrm{m}}}{\mathrm{T}(\gamma - 1)} = \frac{\mathrm{dT})_{\mathrm{m}}}{\mathrm{T}} \quad \left(\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{a}}\mathrm{q}(\mathrm{x})} - 1\right)$$

Using the adiabatic term in Eq. (3.4D),

$$dV)_{m} = \frac{Vgq(x)}{T_{e}} \left(\frac{1}{R_{a}q(x)} - \frac{1}{c_{p}} \right)$$

For constant-pressure entrainment,

$$\frac{dV)_{p}}{V} = \frac{dT)_{p}}{T} + \frac{dm}{m} + \frac{dq(x)}{q(x)}$$

 $dT)_{D}$ is given by the entrainment term in Eq. (3.4D), and

$$dq = \frac{1/\epsilon - 1}{(1 + x)^2} dx$$

Adding the two volume changes,

$$\frac{dV}{dt} = V \left[\frac{g \ q(x)}{T_e} \left(\frac{1}{R_a q(x)} - \frac{1}{c_p} \right) u + \left(1 - \frac{T_e}{Tc_p} \right) \frac{1}{m} \frac{dm}{dt} \right] (3.5D)$$

$$+ \frac{1/\epsilon}{q(x) (1 + x)^2} \frac{dx}{dt}$$

3.5.2 Wet

Using the adiabatic term in Eq. (3.4W),

$$dV)_{m} = \frac{Vgq(x)}{T_{e}^{*}} \left(\frac{1}{R_{a}q(x)} - \frac{1}{c_{p}} \right) \left[\frac{1 + \frac{xL}{R_{a}t}}{1 + \frac{L^{2}\epsilon x}{c_{p}R_{a}T^{2}}} \right]$$

Using the entrainment term in Eq. (3.4W),

$$dV)_{p} = V \left[1 - \frac{(x-x_{e}) \frac{L}{c_{p}} + (T-T_{e})}{T \left(1 + \frac{L^{2} \epsilon_{x}}{c_{p} R_{a} T^{2}} \right)} \right] \frac{dm}{m}$$

where dq is neglected.

Adding the two volume changes,

$$\frac{dV}{dt} = \frac{Vgq(x)}{T_e} \left(\frac{1}{R_a q(x)} - \frac{1}{c_p} \right) \left[\frac{1 + \frac{xL}{R_a T}}{1 + \frac{L^2 \epsilon_x}{c_p R_a T^2}} \right] u$$

$$+ V \left[1 - \frac{(x - x_e) \frac{L}{c_p} + (T - T_e)}{T \left(1 + \frac{L^2 \epsilon_x}{c_p R_a T^2} \right)} \frac{1}{m} \frac{dm}{dt} \right]$$

3.6 LIQUID AND SOLID WATER CONTENT

Liquid and solid water content appear only in the wet (W) equations. If the cloud expands or warms up so much that its vapor pressure drops below saturation, then the dry equations again apply. The "wet" equations do not know about this. But if the ratio of liquid and solid water mass to dry air mass, w, drops to zero in Eq. (3.6W), a return to the "dry" equations is required.

3.6.1 Dry

Let w be the ratio of liquid and solid water mass to dry air mass, $w = m_{wi}/m_{a}$. Then,

$$\mathbf{w} = 0 \tag{3.6D}$$

3.6.2 Wet

The liquid and solid water mass can increase by

- 1. Excess of the mixing ratio of entrained air over that of the saturated cloud, and
- 2. Condensation of vapor already in the cloud, so that

$$\frac{\mathrm{dm}_{\mathbf{w}_{i}}}{\mathrm{dt}} = \frac{\mathbf{x}_{e}^{-\mathbf{x}}}{1+\mathbf{x}_{e}} \quad \frac{\mathrm{dm}}{\mathrm{dt}} - \mathbf{m}_{a} \quad \frac{\mathrm{dx}}{\mathrm{dt}}$$

By definition of w,

$$m_{a} \frac{dw}{dt} = -w \frac{dm_{a}}{dt} + \frac{dm_{w}}{dt}$$

$$= -\left[\frac{w + x - x_{e}}{1 + x_{e}}\right] \frac{dm}{dt} - m_{a} \frac{dx}{dt}$$

Substituting $m_a = \frac{m}{1 + x + w}$,

$$\frac{\mathrm{d}\mathbf{w}}{\mathrm{d}\mathbf{t}} = -\frac{1}{\beta} \left(\frac{1+\mathbf{x}}{1+\mathbf{x}_{\mathrm{e}}} \right) \left(\mathbf{w} + \mathbf{x} - \mathbf{x}_{\mathrm{e}} \right) \frac{1}{m} \frac{\mathrm{d}\mathbf{m}}{\mathrm{d}\mathbf{t}} - \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}}$$
(3.6w)

3.7 TURBULENT KINETIC ENERGY DENSITY

The energy transfer rate, or the kinetic energy loss corresponding to the k_2 (momentum loss) term in Eq. (3.1), is the rate of generation of turbulent energy per unit mass (Sec. 2.6.2, Eq. (2.12)). The gain of turbulent energy per unit mass is diluted by the increase of mass, so that the turbulent energy density $E_{\rm K}$ is given by

$$\frac{dE_{k}}{dt} = k_{2} \frac{T^{*}}{T_{e}} \beta \frac{u^{2}v}{T} - E_{K} \frac{1}{m} \frac{dm}{dt}$$
 (3.7)

Alternatively, if ℓ is independent of ρ/ρ_e ,

$$\frac{dE_k}{dt} = \frac{k_2 u^2 v}{l} - E_k \frac{1}{m} \frac{dm}{dt}$$
 (3.7A)

3.8 MASS

As discussed in Sec. 2.6.1,

$$\frac{1}{m}\frac{dm}{dt} = \frac{S}{V} \lambda v \qquad (3.8)$$

where S is cloud surface area. This is Eq. (2.2) in Sec. 2.6.1. Alternatively, if the entrainment rate is independent of density ratio,

$$\frac{1 \text{ dm}}{\text{m dt}} = \frac{S}{V} \frac{T^*}{T_e} \beta \lambda v \qquad (3.8A)$$

This follows from Eq. (2.1) in Sec. 2.6.1.

3.9 CLOUD FORM: VOLUME

For a spherical cloud

$$\mathbf{r} = \left| \frac{3V}{4\pi} \right|^{1/3} \tag{3.9}$$

where r is the radius. If a certain altitude z_T (T for tropopause) is designated such that the vertical radius remains equal to $r(z_T) = r_T$ after $z = z_T$, then for the resulting oblate spheroid

$$\mathbf{r_h} = \left(\frac{3V}{4\pi r_{\mathrm{T}}}\right)^{1/2} \tag{3.9E}$$

where r_h is the horizontal radius (major semi-axis) of the spheroid.

3.10 CLOUD FORM: EFFECTIVE SURFACE AREA

For a spherical cloud

$$S = 4\pi r^2 \tag{3.10}$$

For an oblate spheroid cloud

$$S = 2\pi r_h^2 + \pi \frac{r_T^2}{\epsilon} \ln \left(\frac{1+e}{1-e} \right)$$
 (3.10E)

where e is the eccentricity,

$$e = \sqrt{\frac{r_h^2 - r_T^2}{r_h}}$$

3.11 CHARACTERISTIC LENGTH

For the present we disregard compressibility effects (2.6.4) and take as characteristic length, λ

$$l = r$$
 (3.11)

for the sphere, and

$$Q = r_{\rm T}$$
 (3.11E)

for the spheroid.

3.12 THE EFFECT OF FREEZING

To allow for the effect of freezing, let L be the latent heat of

sublimation, when T is less than some temperature $T_{F^{\circ}}$. This neglects the liquid-to-solid heat release if condensation occurs both above and below T_{F} and the difference in vapor pressure over ice and water below $T_{F^{\circ}}$.

3.13 COMMENTS ON THE SET OF EQUATIONS

The set of equations to be solved consists of the eight differential equations (3.1) to (3.8), with the three algebraic equations (3.9) to (3.11) (or (3.9E) to (3.11E) for a spheroid) substituted in them. The initial conditions, defining equations for parameters and values of constants are given in Appendix C.

The total number of equations can be reduced by substitution. But the present extended form is more easily revised and more suitable for machine computation.

Certain equations can be divided by $u = \frac{dz}{dt}$ to give a "quasi-static" subset with z as the independent variable. Under such restrictive assumptions as constant specific heat, zero water content and the characteristic length rule, ℓ_1 independent of density ratio, as in Eq. (3.1A), an analytic solution for r(z) can be obtained. These algebraic curiosities are not discussed further in this report.

3.14 NUMERICAL SOLUTION OF THE EQUATIONS

The eight differential equations (3.1) to (3.8) with the defining equations (3.9) to (3.11) have been programmed for machine computation, using a Runge-Kutta method. The program permits the alternative density ratio assumption (use of the "A" equations) and certain other options. Appendix E gives the FORTRAN program, using the characteristic velocity $\mathbf{v} = \max \left(|\mathbf{u}|, \sqrt{2} \; \mathbf{E}_{\mathrm{K}} \right)$ as discussed in Sec. 2.6.3.

Tables 3.1 and 3.2 are sample computer outputs for two sets of initial conditions and parameter values. A modified tropical atmosphere was used. Appendix D gives a glossary of printout symbols. All quantities are in mks units, except explosion energy W in kilotons.

Table 3.1 is a sample output for a 5 MT explosion with 1/3 of the energy remaining in the initial cloud, centered to just intersect sea level. Note the late horizontal expansion of the cloud (column R).

Computations were also made for the same initial conditions and parameters as those for Table 3.1, but using the alternate equations (3.1A), (3.7A), and (3.8A), omitting the initial-virtual-mass factor, and with $k_2 = 0$, i.e. no eddy-viscous force and thus no turbulence effects. This is essentially the original Taylor hypothesis except for the sphere-spheroid transition at the tropopause. It was found that this hypothesis did not account for the late horizontal expansion of the cloud, and predicted much larger vertical oscillations of the cloud, after the cloud reached maximum height.

Table 3.2 is the output for a low yield (20 KT) shot. It shows the much lower turbulent energy density (column EK) of low yield clouds. Note also that the cloud does not reach a maximum height at about 360 sec., but continues rising slowly. This is an effect of the humid tropical atmosphere ("conditional instability") and agrees with Pacific test observations.

The numerical results are in general agreement with observations of atomic cloud radius, rate of rise and (for megaton clouds) late horizontal expansion, when k_2 is about 0.10 to 0.15 and λ about 0.20 to 0.30 (and when the initial virtual mass factor is included in the momentum equation). This indicates that (as suggested in Sec. 2.6.2) $2k_2$ is closely related to λ , so that $2k_2$ may be replaced by λ .

UST = 0.06250 K2 = 0.1250700 LAM8DA = 0.250000 C1 = 0.8000000 C2 = 0.000040
TE0 = 300.000000 CHANGE = 30.000 DST2 = 5.0000 B0 = 1091.00 B1 = 0.
A1 = 0.00650 A2 = -0.00440 A3 = -0.00220 A4 = 0. Z1 = 16500. Z2 = 22000
ZT = 16500. D0 = 1910.0 D1 = 0.03490 D2 = 0.00031300 TF = 273.0 C3 = 0.

ST	U	×	T	R	Z	EK	٧.	WT	TE
0.	0.	0.3329	3000.0	1540.	1500.	0.	0.153E	11 0.	300
1.0	15.7	0.3313	2993.8	1541.	1508.	1.	0.153E	11 0.	290
2.0	31.2	0.3265	2975.2	1544.	1531.	14.	0.154E	11 0.	290
3.0	46.4	0.3188	2944.4	1550.	1570.	71.	0.1562	11 0.	289
4.0	61.2	0.3085	2902.0	1557.	1624.	215.		11 0.	289
5.0	75.4	0-2962	2848.3	1567.	1692.	494.	0.161E	11 0.	289
6.0	88.9	0.2822	2784.2	1578.	1775.	956.	0.165E	11 0.	288
7.0	101.7	0.2671	2710.5	1591.	1870.	1635.	0.169E	11 0.	287
8.0	113.5	0.2513	2628.4	1606.	1978.	2547.	0.173E	11 0.	287
9.0	124.5	0.2353	2539.0	1621.	2097-	3689.	0.179E	11 0.	286
10.0	134.5	0-2194	2443.7	1638.	2226.	5040.	0.184E	11 0.	285
11.0	143.5	0.2039	2343.9	1656.	2365.	6562.	0.190E	11 0.	284
12.0	151.6	C.1890	2241.1	1675.	2513.	8206.	0.197E	11 0.	283
13.0	158.7	0.1749	2136-6	1694.	2668.	9917.	0.204E	11 0.	282
14.0	164.9	0.1615	2031.9	1714.		11640.		11 0.	281
15.0	170.3	0.1491	1928.2	1734.		13324.	0.218E	11 0.	280
16.0	174.8	0.1375	1826.5	1755.		14924.		11 0.	279
17.0	178.5	0.1268	1727.5	1777.	3347.	16410.		11 0.	278
18.0	181-2	0.1167	1630.2	1799.		17773.	0.244E		277
19.0	183.0	0.1073	1535.7	1821.		18975.	0.253E		275
20.0	184.0	0.0985	1444.7	1845.		19989.	0.263E		274
21.0	184.3	0.0905	1358-1	1869.		20801.		11 0.	273
22.0	184.0	0.0832	1276.4	1893.		21411.	0.284E		272
23.0	183.2	0.0765	1199.9	1919.	4445.		0.296E		271
24.0	182.0	0.0704	1128.7	1944.		22064.	0.308E		269
25.0	180.5	0.0648	1062.7	1971.		22143.	0.321E		268
26.0	178.7	0.0598	1001.8	1998.		22085.	0.334E		267
27.0	176.7	0.0553	945.9	2025.	5166.		0.348E	_	266
28.0	174.6	0.0512	894.5	2053.		21647.	0.363E		265
29.0	172.4	0.0475	847.5	2082.		21307.	0.378E		264
30.0	170.1	0.0441	804.5	2111.		20909.	0.394E		263
35.0	158.6	0.0315	638.4	2265.		18504.	0.486E		257
40.0	147.9	0.0235	530.4	2429.		16064.	0.600E		252
45.0	138.6	0.0183	457.7	2601.		13950.	0.737E	11 0.	248
50.0	130.6	0.0146	406.8	2779.		12211.	0.899E		243
55.0	123.8	0.0120	369.7	2961.	9298.	_	0.109E		239
60.0	117.9	0.0101	341.6	3146.	9902.	9648.	0.130E		235
65.0	112.8	0.0086	319.6	3334.	10478.	8705.	0.155E		231
70.0	108.3	0.0075	301.9	3523.	11031.	7923.	0.183E		228
75.0	104.3	0.0066	287.3	3713.	11562.	7268.	0.214E		224
80.0	100.7	0.0059	275.0	3904 •	12075.	6712.	0.249E		221
85.0	97.5	0.0053	264.5	4096.	12570.	6237.	0.288E		218
90.0	94.5	0.0048	255.3	4289.	13050-	5826.	0.331E		215
95.0	91.7	0.0044	247.1	4483.	13515.	5468.	0.377E		212
90.5	94.2	0.0047	254.4	4309.	13097.	5788.	0.335E		214
91.0	93.9	0.0047	253.6	4328.	13144.	5751.	0.340E	12 0.	214
91.5	93 • 6	0.0046	252.7	4347.	13191.	5714.	0.344E	12 0.	214

00 LAMBDA= 0.250000 C1= 0.8000000 C2= 0.0000400 W=0.500000E 04 F= 0.33333333 PHI= 0.50000000 0.1328 82= 0. 1091.00 81= 1.0 80= DST1 = K=2 30,000 DST2= 5.0000 16500. 22= 22000. Z3= 52000. PO= 101300. O A3=-0.00220 21= A4= 0. 273.0 C3=0. PRINT= 900.0 TF= D1 = 0.03490D2=0.00031300 RK3= 1.0 TE WT P EO EK ٧ ES T 0. 300,0 000.0 1500. 0.153E 11 0. 0.131E 10 20666449. 85159. 29728. 0. 1540. 290.2 0.132E 10 20789247. 85080. 29606. 3.691 993.8 1541. 1508. 0.153E 11 0. 1. 0. 975.2 1531. 0.154E 11 290.0 0.133E 10 21160812. 84846. 29246. 28.858 1544. 14. 93.575 0.156E 11 0. 289.8 0.136E 10 21790562. 84459. 28659. 1550. 944.4 1570. 71. 902.0 1624. 215. 0.158E 11 0. 289.4 0.139E 10 22693952. 83924. 27866. 209.868 1557. 1692. 494. 0.161E 11 0. 289.0 0.144E 10 23892050. 83250. 26892. 382.061 848.3 1567. 0.165E 11 0.150E 10 25410634. 956. 0. 288.5 82444. 25767. 606.515 784.2 1578. 1775. 0.157E 10 27278779. 0. 710.5 1591. 1870. 1635. 0.169E 11 287.8 81518. 24524. 872.629 0. 0.173E 11 287-1 0.165E 10 29526407. 80482. 23196. 628.4 1606. 1978. 2547. 1164.822 0. 286.4 0.174E 10 32180835. 79349. 1465.010 539.0 1621. 2097. 3689. 0.179E 11 21814. 0. 285.5 0.185E 10 35261790. 78131. 1755.113 5040. 0.184E 11 20408. 443.7 1638. 2226. 0.190E 11 0.197E 10 38775054. 343.9 1656. 2365. 6562. 0. 284.6 76840. 19004. 2019.158 0.197E 11 241.1 1675. 2513. 8206. 0. 283.7 0.211E 10 42704862. 75489. 17624. 2244.737 0.226E 10 47005723. 9917. 0.204E 11 74089. 2423.723 1694. 2668. 282.7 16286. 136-6 0. 0.211E 11 0. 281.6 0.242E 10 51594862. 031.9 1714. 2830. 11640. 72651. 15003. 2552.302 0. 928.2 1734. 2998. 13324. 0.218E 11 28C.5 0.261E 10 56346872. 71186. 13786. 2630.492 1755. 3170. 14924. 279.4 0.281E 10 61092443. 69704. 826.5 0.226E 11 0. 12641. 2661.354 727.5 1777. 0.235E 11 0. 68211. 2687.321 3347. 16410. 11569. 278.2 0.303E 10 65637857. 0.327E 10 69806646. 0.354E 10 73294519. 630.2 1799. 3527. 17773. 0.244E 11 0. 277.1 66718. 10558. 2685.909 3709. 18975. 535.7 1821. 0.253E 11 0. 275.9 65234. 9613. 2633.862 3893. 19989. 0.384E 10 75784028. 444.7 1845. 0.263E 11 274.7 63765. 8737. 2539.523 0. 358.1 4077. 20801. 7931. 1869. 0.273E 11 0. 273.5 0.417E 10 76996588. 62318. 2413.414 276.4 1893. 4261. 21411. 0.284E 11 272.3 0.452E 10 76737113. 60898. 7195. 2265.949 0. 199.9 1919. 4445. 21827. 0.296E 11 271.1 0.491E 10 74928842. 0. 59508. 6526. 2106.454 0.308E 11 128.7 1944. 4628. 22064. 0. 5920. 269.9 0.532E 10 71629725. 58152. 1942.640 062.7 1971. 4809. 22143. 0. 0.321E 11 268.7 0.577E 10 67025669. 56830. 5374. 1780.450 1998. 001.8 4989. 22085. 0.334E 11 0. 267.6 0.625E 10 61402925. 55545. 4883. 1624.142 2025. 945.9 0.676E 10 55106145. 5166. 21913. 0.348E 11 54297. 4441. 0. 266.4 1476.527 0.363E 11 894.5 2053. 5342. 21647. 0. 0.729E 10 48492525. 53085. 4045. 1339.247 265.3 847.5 3689. 2082. 5515. 21307. 0.378E 11 0. 264.1 0.786E 10 41891154. 51910. 1213.058 804.5 5687. 20909. 2111. 0.394E 11 0. 263.0 0.846E 10 35573844. 50771. 3371. 1098.084 638.4 0.486E 11 2265. 6509. 18504. 0. 257.7 0.1198 11 12814587. 45600. 2202. 682.996 530.4 2429. 7274. 16064. 0. 1502. 0.600E 11 0.160E 11 3760633. 41150. 432.792 252.7 7990. 13950. 0.207E 11 0.260E 11 457.7 2601. 0.737E 11 1038567. 1066. 288.990 0. 248.1 37320 -2779. 0.899E 11 8662. 12211. 406.8 0. 243.7 294205. 33991. 783. 202.580 369.7 2961. 9298. 10798. 0.109E 12 0.317E 11 591. 148.068 89100. 31071. 0. 239.6 0.378E 11 341.6 3146. 9902. 9648. 0.130E 12 0. 235.6 29260. 28488. 457. 112.073 319.6 3334. 10478. 8705. 0.155E 12 231.9 0.442E 11 10417. 26187. 360. 87.333 0. 301.9 3523. 11031. 7923. 228.3 0.509E 11 3994. 0.1838 12 24126. 288. 69.691 0. 0.2148 12 287.3 3713. 7268. 234. 11562. 0. 224.8 0.578E 11 1635. 22269. 56.726 275.0 3904. 12075. 6712. 0.249E 12 0. 221.5 0.649E 11 708. 20589. 193. 46.942 4096. 264.5 12570. 6237. 0.288E 12 0. 218.3 0.722E 11 321. 19065. 160. 39.384 255.3 4289. 13050. 5826. 0.331E 12 0.797E 11 152. 17677. 135. 33.428 0. 215.2 247.1 4483. 13515. 114. 5468. 0.377E 12 0. 0.873E 11 74. 16410. 28.651 212.1 254.4 4309. 13097. 0.335E 12

0.804E 11

0.812E 11

214.3 0.8195 11

214.9

214.6

141.

131.

122.

17545.

17414.

17285.

133.

130.

128.

32.887

32.374

31.872

5788.

5751.

5714.

253.6

252.7

4328.

4347.

13144.

13191.

0.

0.

0.

0.340E 12

0.344E 12

ST	U	x	T	R	Z	EK	٧	W	T	TE
SWITCH	TO WET						,			
96.5	91.1	0.0031	247.7	4515.	13653.	5369.	0.3858	12	0.0012	21
101.5	89.1	0.0019	242.5	4686.	14103.	5066.	0.431E	12	0.0020	20
106.5	87.4	0.0012	237.1	4861.	14544.	4799.	0.481E	12	0.0024	20
111.5	85.9	0.0007	231.6	5043.	14978.	4561.	0.537E	12	0.0027	20
116.5	84.5	0.0004	226.1	5229.	15404.	4349.	0.599E	12	0.0027	- 19
121.5	83.1	0.0002	220.8	5421.	15823.	4158.	0.667E	12	0.0027	-19
126.5	81.7	0.0001	215.6	5617.	16235.	3986.	0.742E	12	0.0026	-19
131.5	80.2	0.0001	210.7	5816.	16640.	3829.	0.824E	12	0.0025	19
SWITCH	TO ELLI	PSE, R=RH								
136.5	77.9	0.0000	206 - 2	6121-	17035.	3685.	0.913E		0.0024	-19
141.5	74.5	0.0000	202.3	6431.	17417.	3551.		13	0.0023	19
146.5	70.4	0.0000	199.0	6745.	17779.	3426.	0.111E		0.0022	19
151.5	65.7	0.0000	196.1	7059.	18120.	3307.		13	0.0021	19
156.5	60.5	0.0000	193.7	7371.	18436.	3192.	0.1325		0.0020	29
161.5	54.9	0.0000	191.7	7679.	18724.	3083.	0.144E		0.0019	29
166.5	49.1	0.0000	190.0	7981.	18985.	2977.	0.155E		0.0019	24
171.5	43.1	0.0000	188.8	8273.	19215.	2876.	0.167E		0.0018	29
176.5	37.1	0.0000	187.8	8556.	19415.	2778.		13	0.0017	29
181.5	31.0	0.0000	187-1	8826.	19586.	2683.	0.190E		0.0017	29
186.5	25.0	0.0700	186.7	9083.	19726.	2593.	0.201E		0.0016	29
191.5	19.2	0.0000	186.6	9325.	19836.	2507.	0.212E		0.0015	29
196.5	13.6	0.0000	186.7	9552.	19918.	2424.	0.222E		0.0015	29
201.5	8.2	0.0000	186.9	9763.	19972.	2345.	0.232E		0.0014	29
206.5	3.1	0.0000	187.4	9958.	20000.	2271.	0.242E		0.0014	29
211.5	-1.7	0.0000	188.0	10136.	20003.	2200.	0.250E		0.0013	20
216.5	-6.1	0.0000	188.8	10299.	19984.	2133.	0.258E		0.0013	20
221.5	-10-2	0.0000	189-7	10445.	19943.	2070.	0.266E		0.0013	20
226.5	-13.8	0.0000	190.7	10577.	19883.	2010.	0.273E		0.0012	20
231.5	-16.9	0.0000	191.8	10695.	19806.	1954.	0.279E		0.0012	20
236.5 241.5	-19.7 -21.9	0.0000	192.9 194.2	10800. 10893.	19714. 19610.	1901. 1851.	0.284E 0.289E		0.0012	20
_	-21.9	0.0000	195.4	10976.	19495.	1804.	0.293E		0.0011	20
246.5 251.5	-25.1	0.0000	196.7	11050.	19373.	1759.	0.297E		0.0011	20
256.5	-26.0	0.0000	198.0	11117.	19245.	1717.	0.3015		0.0010	20
261.5	-26.4	0.0000	199.2	11178.	19114.	1676.	0.304E		0.0010	20
266.5	-26.5	0.0000	200.5	11235.	18982.	1637.	0.308E		0.0010	20
271.5	-26.1	0.0000	201.7	11289.	18850.	1600.	0.310E		0.0009	20
276.5	-25.3	0.0000	202.8	11343.	18721.	1564.	0.313E		0.0009	20
281.5	-24.2	0.0000	203.8	11396.	18598	1529.	0.316E		0.0009	20
286.5	-22.8	0.0000	204.8	11452.	18480.	1495.	0.3198		0.0009	20
291.5	-21.1	0.0000	205.7	11510.	18370.	1462.	0.323E		0.0008	20
296.5	-19.1	0.0000	206.4	11573.	18270.	1430.	0.326E		0.0008	20
301.5	-17.0	0.0001	207.1	11641.	18179.	1398.	0.330E		0.0008	20
306.5	-14.7	0.0001	207.6	11714.	18100.	1367.	0.334E		0.0008	14
311.5	-12.3	0.0001	208.0	11795.	18033.	1337.	0.3398		0.0007	14
316.5	-9.8	0.0001	208.3	11883.	17977.	1308.	0.344E		0.0007	-11
321.5	-7.3	0.0001	208.5	11979.	17935.	1279.	0.350E		0.0007	14
326.5	-4.8	0.0001	208.6	12083.	17904.	1251.	0.356E		0.0007	14
331.5	-2.4	0.0001	208.5	12195.	17886.	1225.	0.362E		0.0007	14
336.5	-0.0	0.0001	208.4	12316.	17880.	1199.	0.370E		0.0007	14
341.5	2.2	0.0001	208 • 1	12445.	17886 -	1174.	0.377E		0.0006	14
346.5	4.3	0.0001	207.8	12583.	17902.	1149.	0.386E	13	0.0006	11
351.5	6.2	0.0001	207.4	12728.	17928.	1126.	0.395E		0.0006	11
356.5	7.9	0.0000	206.9	12881.	17963.	1104.	0.404E	13	0.0006	14
361.5	9.4	0.0000	206.4	13041.	18007.	1082.	0.414E	13	0.0006	11
366.5	10.7	0.0000	205.8	13207.	18057.	1062.	0.425E	13	0.0006	1'

	R	Z	EK	٧	W	T	TE	М		ES	Ρ	PW	EC
7.7	4515.	13653.	5369.	0.385E	12	0.0012	211.3	0.896E	11	79.	16050.	79.	27.958
2.5	4686.	14103.	5066.	0.431E		0.0020	208.3	0.973E		48.	14915.	46.	24.808
7.1	4861.	14544.	4799.	0.481E	12	0.0024	205.5	0.105E		29.	13868.	26.	22.182
1.6	5043.	14978.	4561.	0.537E	12	0.0027	202.6	0.113E		16.	12898.	14.	19.931
6.1	5229.	15404.	4349.	0.599E	12	0.0027	199.9	0.121E		9.	11999.	7.	17.964
0.8	5421.	15823.	4158.	0.667E		0.0027	197.2	0.129E		5.	11164.	4-	16.223
5.6	5617.	16235.	3986.	0.742E		0.0026	194.5	0.138E		3.	10390.	2.	14-671
0.7	5816.	16640.	3829.	0.824E	12	0.0025	193.4	0.146E	12	1.	9673.	1.	13.175
6.2	6121.	17035.	3685.	0.913E	12	0.0024	195.1	0.154E		1.	9024.	1.	11.799
2.3	6431.	17417.	3551.	0.101E	13	0.0023	196.8	0.1625		0.	8444.	0.	10.328
9-0	6745.	17779.	3426.	0.111E		0.0022	198.4	0.171E		0.	7931.	0.	8.837
6.1	7059.	18120.	3307.	0.121E		0.0021	199.9	0.179E		0.	7481.	0.	7.391
93.7	7371.	18436.	3192.	0.132E		0.0020	201.3	0.187E		0.	7089.	0.	6.039
1.7	7679.	18724.	3083.	0.144E		0.0019	202.5	0.196E		0.	6751.	0.	4.810
0.0	7981.	18985.	2977.	0.155E		0.0019	203.7	0.204E		0.	6462.	0.	3.724
8.8	8273.	19215.	2876.	0.167E		0.0018	204.7	0.212E		0.	6218.	0.	2.790
37.8	8556.	19415.	2778.	0.178E		0.0017	205.6	0.221E		0.	6014.	0.	2.007
7-1	8826.	19586.	2683.	0.190E		0.0017	206.3	0.229E		0.	5847-	0.	1.371
6.7	9083.	19726.	2593.	0.201E		0.0016	206.9	0.238E		0.	5713.	0.	0.874
6.6	9325.	19836.	2507.	0.212E		0.0015	207.4	0.246E		0.	5610.	0.	0.504
6.7	9552.	19918. 19972.	2424.	0.222E 0.232E		0.0015	207.8	0.255E		0.	5535.	0.	0.247
36.9 37.4	9763. 9958.	20000.	2345. 2271.	0.242E		0.0014	208.0 208.2	0.263E 0.272E		0.	5486. 5460.	0.	0.088 0.012
8.0	10136.	20003.	2200.	0.250E		0.0013	208.2	0.281E		0.	5458.	0. 0.	0.004
8.8	10299.	19984.	2133.	0.258E		0.0013	208.1	0.290E		0.	5475.	0.	0-048
19.7	10445.	19943.	2070.	0.2665		0.0013	207.9	0.299E	12	0.	5512.	0.	0.130
0.7	10577.	19883.	2010.	0.273E		0.0012	207.6	0-308E		0.	5567.	0.	0.237
90.7 91.8	10695.	19806.	1954.	0.279E		0.0012	207.3	0.317E		0.	5638.	0.	0.356
92.9	10800.	19714.	1901.	0.284E		0.0012	206.9	0.326E		0.	5724.	0.	0.478
94.2	10893.	19610.	1851.	0.289E		0.0011	206.4	0.335E		0.	5823.	0.	0.591
95.4	10976.	19495.	1804.	0.293E	13	0.0011	205.9	0.345E		0.	5934.	0.	0.690
96.7	11050.	19373.	1759.	0.297E		0.0011	205.4	0.354E		0.	6056.	0.	0.768
98.0	11117.	19245.	1717.	0.301E	13	0.0010	204.8	0.364E		0.	6186.	0.	0.821
99.2	11178.	19114.	1676.	0.304E	13	0.0010	204.3	0.373E		0.	6323.	0.	0.848
00.5	11235.	18982.	1637.	0.308E		0.0010	203.7	0.383E	12	0.	6465.	0.	0.847
01.7	11289.	18850.	1600.	0.310E		0.0009	203.1	0.393E	12	0.	6610.	0.	0.820
02.8	11343.	18721.	1564.	0.313E		0.0009	202.5	0.403E		0.	6754.	0.	0.771
02.8 03.8 04.8	11396.	18598.	1529.	0.316E		0.0009	202.0	0.413E		1.	6897.	0.	0.702
04.8	11452.	18480.	1495.	0.319E		0.0009	201.5	0.424E		1.	7036.	0.	0.619
05.7	11510.	18370.	1462.	0.323E		0.0008	201.0	0.434E		1.	7168.	1.	0.528
06.4	11573.	18270.	1430.	0.326E		0.0008	200.5	0.445E		1.	7292.	1.	0.433
h.(• r	11641.	18179.	1398	0.330E		0.0008	200.1	0.455E		1.	7405.	1.	0.339
07.6 08.0	11714.	18100.	1367.	0.334E		0.0008	199.8	0-466E		1.	7506.	1.	0.252
0.88	11795.	18033.	1337.	0.339E	13	0.0007	199.5	0.477E		1.	7593.	1.	0.175
08.3 08.5	11883.	17977.	1308.	0.344E		0.0007	199.3	0.488E		1.	7665.	1.	0.111
08.5	11979.	17935.	1279.	0 • 350E		0.0007	199.1	0.499E		1.	7722.	1.	0.061
00.0	12083.	17904. 17886.	1251.	0.356E		0.0007	198.9	0.510E		1.	7762.	1.	0.026
08.6 08.5 08.4 08.1	12195. 12316.	17880.	1225.	0.362E		0.0007	198.8	0.521E		1.	7786.	1.	0.006
na 1	12445.	17886.	1199. 1174.	0.370E		0.0007	198.8	0.533E		1.	7794.	1.	0.000
57. A	12583.	17902.	1149.	0.377E		0.0006	198-8	0.544E		1.	7787.	1.	0.005
07.4	12728.	17928.	1126.	0.386E		0.0006	198.9	0.555E		1.	7765.	1.	0.020
06.9	12881.	17963.	1104.	0.395E		0.0006	199.0	0.567E		1.	7730.	1.	0.040
06.4	13041.	18007.	1082	0.404E		0.0006	199.2	0.579E		1.	7684 •	1.	0.06
05.8	13207.	18057.	1062.	0.425E		0.0006	199.4	0.590E		1.	7627. 7562.	1.	0.09
		2000,0		•• 4 276	. 3	0.0006	199.6	0.602E	12	£.•	1702.	1.	0.114

ST	U	x	T	R	Z	EK	٧	WT	TE
371.5	11.7	0.0000	205.2	13379.	18113	1042.	0.436E	13 0.0006	199.8
376.5	12.5	0.0000	204.6	13556.	18177.	1023.		13 0.0006	200-1
381.5	13.1	0.0000	203.9	13737.	18238.	1005.		13 0.0006	200.4
386.5	13.4	0.0000	203.3	13922.	18304.	987.		13 0.0006	200.7
391.5	13.5	0.0000	202.6	14108.	18371.	970. 953.		13 0.0005 13 0.0005	201.0 201.3
396.5 401.5	13.4 13.1	0.0000	202.0 201.4	14296. 14485.	18439. 18505.	937.		13 0.0005 13 0.0005	201.6
406.5	12.6	0.0000	200.9	14672.	18570.	922.		13 0.0005	201.9
411.5	11.9	0.0000	200.4	14859.	18631.	906.		13 0.0005	202.1
415.5	11.1	0.0000	199.9	15043.	18689.	891.		13 0.0005	202.4
421.5	10.1	0.0000	199.5	15224.	18742.	877.	0.565E	13 0.0005	202.6
426.5	9.1	0.0000	199.2	15400.	18790.	863.		13 0.0005	202.8
431.5	7.9	0.0000	198.9	15573.	18832.	849.	_	13 0.0005	203.0
436.5	6.6	0.0000	198.6	15740.	18869.	835.		13 0.0005	203.2
441.5	5 • 3	0.0000	198.4	15901.	18899.	822.		13 0.0005	203-3
446.5	4.0	0.0000	198.3 198.3	16056. 16205.	18922. 18939.	809. 796.	0.628E 0.640E	13 0.0005 13 0.0005	203.4 203.5
451.5 456.5	2.7 1.4	0.0000	198.2	16347.	18949.	783.	0.6516	_	203.5
461.5	0.1	0.0000	198.3	16482.	18952.	771.		13 0.0004	203.5
466.5	-1.2	0.0000	198.4	16610.	18950.	759.	0.672E		203.5
471.5	-2.4	6.0000	198.6	16732.	18941.	748.	0.682E		203.5
476.5	-3.5	0.0000	198.7	16847.	18926.	737.	0.691E		203.4
481.5	-4.5	0.0000	199.0	16956.	18906.	726.	0.700E		203.3
486.5	-5.4	0.0000	199.3	17059.	18882.	715.	0.709E		203.2
491.5	-6.2	0.0000	199.6	17157.	18853.	705.	0.717E		203.1
496.5	-6.8	0.0000	199.9	17250.	18820.	695.	0.725E		203.0
501.5	-7.4	0.0000	200 - 2	17339.	18785	685.	0.732E		202.8
506.5	-7.8 -8.0	0.0000	200.6	17424. 17507.	18747. 18707.	675. 666.	0.740E		202.6
511.5 516.5	-8.2	0.0000	201.0	17587.	18667.	657.	0.754E		202.3
521.5	-8.2	0.0000	201.7	17666	18626.	648.	0.760E		202-1
526.5	-8.1	0.0000	202.0	17745.	18585.	639.	0.767E		201.9
531.5	-7.8	0.0000	202.4	17823.	18545.	631.	0.774E		201.8
536.5	-7.5	0.0000	202.7	17902.	18507.	623.	0.781E	13 0.0003	201.6
541.5	-7.0	0.0000	203.0	17983.	18471.	614.	0.788E		201-4
546.5	-6.4	0.0000	203.3	18066.	18437.	606.	0.795E		201.3
551.5	-5.8	0.0000	203.5	18151.	18407.	598.	0.803E		201-1
556.5	-5.1	0.0000	203.7	18239.	18380.	591.	0.810E		201.0
561.5	-4.3	0.0000	203.9	18331.	18356.	583.	0.819E		200-9
566.5 571.5	-3.5 -2.7	0.0000	204.0 204.1	18427. 18527.	18336. 18321.	575. 568.	0.827E 0.836E	13 0.0003 13 0.0003	200.8
576.5	-1.8	0.0000	204.1	18632	18310.	561.	0.846E	_	200.8
581.5	-1.0	C.0000	204.2	18741.	18303.	554.	0.8566		200.7
>86.5	-0.1	0.0000	204.2	18855.	18300.	547.	0.866E		200.7
591.5	0.7	0.0000	204.1	18973.	18302.	540.	0.877E		200.7
596.5	1.5	0.0000	204.0	19097.	18307.	533.	0.888E	13 0.0003	200.7
601.5	2.2	0.0000	203.9	19225.	18316.	527.	0.900E		200.7
606.5	2.9	0.0000	203.7	19357.	18329.	520.	0.913E		200.8
611.5	3.5	C.0000	203.6	19493	18345.	514.	0.926E		200.9
616.5	4.0	0.0000	203.4	19633.	18364.	508.	0.939E	_	201.0
621.5	4.5 4.9	0.0000	203 . 1 202 . 9	19776.	18386. 18409.	502 •	0.953E		201.0
626.5 631.5	5.1	0.0000	202.9	20071.	18434.	496. 490.	0.967E 0.981E		201.1 201.3
636.5	5.3	0.0000	202.4	20222.	18460.	485.	0.996E		201.4
641.5	5.4	0.0000	202.2	20374.	18487.	479.	0.101E		201.5
646.5	5.4	0.0000	201.9	20526.	18514.	474.	0.103E		201.6
651.5	5.4	0.0000	201.7	20679.	18542.	468.	0.104E	_	201.7
656.5	5.2	0.0000	201.5	20832.	18568.	463.	0.106E	14 0.0002	201.8

	R	Z	EK	V	WT	TE	М		ES	ρ	PW	EO	
	13379.	18113.	1042.	0.436E 13	0.0006	199.8	0.614E	12	1.	7490.	0.	0.138	
	13556.	18173.	1023.	0.448E 13	0.0006	200.1	0.626E		1.	7413.	0.	0.155	
		18238.	1005.	0.460E 13	0.0006	200.4	0.638E	12	1.	7332.	0.	0.168	
		18304.	987.	0.472E 13	0.0006	200.7	0.650E		1.	7250.	0.	0.174	
		18371.		0.485E 13	0.0005	201.0	0.662E		0.	7167.	0.	0.175	
	14296.	18439.	953.	0.498E 13	0.0005	201.3	0.674E		0.	7085.	0.	0.170	
	_	18505.	937.	0.511E 13	0.0005	201.6	0.686E		0.	7006.	0.	0.160	
	14672.			0.524E 13	0.0005		0.698E		0.	6930.	0.	0.146	
		18631.	906.	0.538E 13	0.0005	202.1	0.710E		0.	6859.	0.	0.129	
	15043.	18689.	871.	0.551E 13	0.0005 0.0005	202.4 202.6	0.723E 0.735E		0. 0.	6792. 6731.	0. 0.	0.111 0.391	
	15224.	18700	863.	0.565E 13 0.578E 13		202.8	0.7485		0.	6677.	0.	0.072	
	15572	18832	849.	0.5918 13	0.0005		0.760E		0.	6630.	o.	0.054	
	15740-	18869-	835.	0.604E 13	0.0005	203.2	0.773E		0.	6589.	0.	0.038	
	15901.	18899.	822.	0.616E 13	0.0005		0.786E		0.	6556.	0.	0.024	
5	16056.	18922.	809.	0.628E 13	0.0005	203.4	0.798E	12	0.	6530.	0.	0.014	
	16205.	18939.	796.	0.640E 13	0.0005	203.5	0.811E		0.	6512.	0.	0.006	
2	16347.	18949.	783.	0.651E 13	0.0004		0.824E		0.	6501.	0.	0.002	
P	16482.	18952 •	771.	0.662E 13	0.0004		0.837E		0.	6497.	0.	0.000	
r	16610.	18950.	759.	0.672E 13	0.0004		0.850E		0.	6500.	0.	0.001	
2	16732.	18941.	748.	0.682E 13	0.0004		0.863E		0.	6510.	0.	0.005	
	16847.	18926.	131.	0.6915 13	0.0004	203.4	0.876E		0. 0.	6526.	0.	0.010	
K	15043. 15224. 15400. 15573. 15740. 15901. 16056. 16347. 16482. 16610. 16732. 16847. 17550. 17339. 17424. 17507. 17587. 17587. 17587. 17587. 1745. 17902. 17983. 18066. 18151. 18239. 18331. 18427. 18632. 18741.	18003	716	0-700E 13	0.0004		0.890E 0.903E		0.	6548. 6575.	0. 0.	0.016 0.023	
P	17157	18852	705.	0.709E 13 0.717E 13	0.0004		0.903E	_	0.	6607.	0.	0.023	
5	17250-	18820.	695-		0.0004		0.910E		0.	6643.	0.	0.037	
6	17339-	18785-	685	0.732E 13	0.0004		0.943E		0.	6683.	0.	0.043	
6	17424.	18747.	675.	0.740E 13	0.0004		0.957E		0.	6725.	0.	0.047	
b	17507.	18707.	666.	0.747E 13	0.0004		0.971E		0.	6771.	0.	0.050	
3	17587.	18667.	657.	0.754E 13	0.0004	202.3	0.985E		0.	6817.	0.	0.052	
7	17666.	18626.	648.	0.760E 13	0.0004	202.1	0.999E		0.	6864.	0.	0.052	
P	17745.	18585.	639.	0.767E 13	0.0003		0.101E		0.	6912.	0.	0.050	
Ľ	17823.	18545	631.	0.774E 13		201.8	0.103E		0.	6958.	0.	0.047	
1	17902.	18507.	623.	0.781E 13			0.104E		0.	7003.	0.	0.042	
2	11703.	18427	614.	0.788E 13 0.795E 13	0.0003	201-4	0.106E 0.107E		1.	7047. 7087.	0.	0.037 0.031	
ś	18151	18407	59A	0.803E 13			0.107E		1. 1.	7124.	0.	0.025	
7	18239.	18380-	591.	0.810E 13	0.0003	201.0	0.1106		1.	7157 •	0.	0.019	
9	18331.	18356.	583.	0.819E 13		200.9	0.1116		i.	7186.	0.	0.014	
0	18427.	18336.	575.	0.827E 13	0.0003		0.113E		i.	7210.	0.	0.009	
1	18527.	18321.	568.	0.836E 13	0.0003	200.8	0.114E	13	1.	7228.	0.	0.005	
2	18632.	18310.	561.	0.846E 13	0.0003	200.7	0.116E	13		7242 •		0.002	
2	18741.	18303.	554.	0.856E 13	0.0003	200.7	0.117E	13	1.	7251.	0.	0.001	
4	100334	10300	241.	0.866E 13	0.0003	200.7	0.119E	13	1.	7254.	0.	0.000	
1	18973.	18302.	540.	0.877E 13		200.7	0.120E		1.	7252.	0.	0.000	
0	19097.	18307	533.	0.888E 13		200.7	0.122E		1.	7246.	0.	0.002	
9	19225	18316.	527.	0.900E 13			0.123E		1.	7234.	0.	0.003	
7	19357. 19493.	18329.	520.	0.913E 13	_		0.125E		1.	7218.	0.	0.006	
6	19633.	18345.	514. 508.	0.926E 13 0.939E 13			0.126E		1.	7199. 7176.	0. 0.	0.009 0.011	
ĭ	19776.	18386.	502.	0.953E 13	0.0003		0.128E 0.129E		1.	7150.	0.	0.014	
9	19923.	18409.	496.	0.967E 13	0.0003	201.0	0.1318		0.	7121.	0.	0.016	
7	20071.	18434.	490.	0.981E 13			0.132E		0.	7091.	0.	0.018	
4	20222.	18460.	485.	0.996E 13			0.134E		0.	7060.	0.	0.019	
5	20374.	18487.	479.	0.101E 14	0.0003	201.5			0.	7027.	0.	0.020	
9	20526.	18514.	474.	0.103E 14	0.0003	201.6	0.137E		0.	6995.	0.	0.020	
7		18542.	468.	0.104E 14	0.0002	201.7			0.	6963.	0.	0.019	
5	2UH32.	18568.	463.	0.106E 14	0.0002	201.8	0.140E	13	0.	6932.	0.	0.018	Z

ST	υ	X	T	R	Z	EK	V	W	IT.	TE
661.5	5.0	0.0000	201.3	20984.	18594.	458.	0.107E	14	0.0002	202
666.5	4.7	0.0000	201.1	21135.	18618.	453.	0.109E	14	0.0002	202
671.5	4.3	0.0000	200.9	21284.	18640.	448 •	0.110E	14	0.0002	202
676.5	3.9	0.0000	200.7	21430.	18661.	443.	0.112E	14	0.0002	202
681.5	3.4	0.0000	200.6	21574.	18679.	438 •	0.113E	14	0.0002	202
686.5	2.9	0.0000	200.5	21715.	18695.	434.	0.115E	14	0.0002	202
691.5	2.4	0.0000	200.4	21852.	18708.	429.	0.116E	14	0.0002	202
696.5	1.8	0.0000	200.3	21986.	18719.	424.	0.118E	14	0.0002	20
701.5	1.2	0.0000	200.3	22115.	18726.	420.	0.119E	14	0.0002	204
706.5	0.6	0.0000	200.2	22241.	18731.	415.	0.1218	14	0.0002	202
711.5	0.1	0.0000	200.2	22363.	18732.	411.	0.122E	14	0.0002	20
716.5	-0.5	0.0000	200.3	22481.	18731.	407.	0.123E	14	0.0002	202
721.5	-1.0	0.0000	200.3	22594.	18727.	402.	0.124E	14	0.0002	201
726.5	-1.6	0.0000	200.4	22704.	18721.	398•	0.126E	14	0.0002	204
731.5	-2.0	0.0000	200.5	22810.	18712.	394.	0.127E	14	0.0002	201
736.5	-2.5	0.0000	200.6	22912.	18701.	390.	0.128E	14	0.0002	201
741.5	-2.8	0.0000	200.8	23011.	18687.	386.	0.129E	14	0.0002	201
746.5	-3.2	0.0000	200.9	23108.	18672.	382.	0.130E	14	0.0002	201
751.5	-3.4	0.0000	201.1	23201.	18656.	379.	0.131E	14	0.0002	201
756.5	-3.6	0.0000	201.2	23293.	18638.	375.	0.132E	14	0.0002	201
761.5	-3.8	0.0000	201.4	23383.	18620.	371.	0-133E	14	0.0002	201
766.5	-3.9	0.0000	201.6	23471.	18600.	367.	0.134E	14	0.0002	201
771.5	-3.9	0.0000	201.7	23559.	18581.	364.	0.135E	14	0.0002	201
776.5	-3.8	0.0000	201.9	23646.	18562.	360.	0.136E	14	0.0002	201
781.5	-3.7	0.0000	202.1	23733.	18543.	357.	0.137E	14	0.0002	201
786.5 791.5	-3.6 -3.6	0.0000	202.2	23821.	18524.	354.	0.138E 0.139E	14	0.0002	201
796.5	-3.4 -3.1	0.0000	202.4 202.5	23910. 24000.	18507. 18491.	350. 347.	0.139E	14	0.0002	201
801.5	-2.8	0.0000	202.6	24092.	18476.	344.	0.141E	14	0.0002	201
806.5	-2.5	0.0000	202.7	24185.	18462.	340.	0.141E	14	0.0002	201
811.5	-2.1	0.0000	202.8	24282.	18451.	337.	0.144E	14	0.0002	201
816.5	-1.7	0.0000	202.9	24380.	18441.	334.	0.145E		0.0002	201
821.5	-1.3	0.0000	202.9	24482.	18434.	331.	0.146E		0.0002	201
826.5	-0.9	0.0000	203.0	24586.	18428.	328.	0.147E		0.0002	201
831.5	-0.5	0.0000	203.0	24694.	18425.	325.	0.149E		0.0002	201
836.5	-0.0	0.0000	203.0	24804.	18423.	322.	0.150E		0.0002	201
841.5	0.4	0.0000	202.9	24918.	18424.	319.	0.1518	14	0.0002	201
846.5	0.8	0.0000	202.9	25035.	18427.	316.	0.153E	14	0.0002	201
851.5	1.1	0.0000	202.8	25155.	18432.	313.	0.154E		0.0002	201
856.5	1.5	0.0000	202.8	25278.	18438.	310.	0.156E		0.0002	201
861.5	1.8	0.0000	202.7	25404.	18447.	308.	0.157E		0.0002	201
866.5	2.1	C.0000	202.6	25532.	18456.	305.	0.159E		0.0001	201
871.5	2.3	0.0000	202.5	25662.	18467.	302.	0.160E		0.0001	201
876.5	2.5	0.0000	202.4	25795.	18480.	300.	0.1628		0.0001	20
881.5	2.7	0.0000	202.2	25929.	18493.	297.	0.164E	14	0.0001	201
886.5	2.8	0.0000	202.1	26064.	18506.	295.	0.165E		0.0001	201
891.5	2.9	0.0000	202.0	26200.	18521.	292.	0.167E		0.0001	20:
896.5	2.9	0.0000	201.9	26337.	18535.	290.	0.169E	14	0.0001	20
901.5	2.8	0.0000	201.7	26473.	18549.	287.	0.171E	14	0.0001	20:

	R	Z	EK	٧	wT		TE	н		E\$	P	PW	E 0
.3	20984.	18594.	458.	0.107E	14 0.	0002	202.0	0.142E	13	0.	6902•	0.	0.016
1.1	21135.	18618.	453.	0.109E		0002	202.1	0.144E	13	U.	6874.	0.	0.014
9.9	21284.	18640.	448.	0.110E	14 0.	0002	202.2	0.145E	13	0.	6848.	0.	0.012
0.7	21430.	18661.	443.	0.112E	14 0.	0002	202.3	0.147E		0.	6824.	0.	0.010
0.6	21574.	18679.	438.	0.113E		0002	202.3	0.148E	13	0.	6803.	0.	0.007
0.5	21715.	18695.	434.	0.115E		0002	202.4	0.150E		0.	6785.	0.	0.005
0.4	21852.	18708.	429.	0.116E	_	0002	202.5	0.152E		0.	6770.	0.	0.003
0.3	21986.	18719.	424.	0.118E		0002	202.5	0.153E		0.	6758.	0.	0.002
P.3	22115.	18726.	420.	0.1195		0002	202.5	0.155E		0.	6749.	0.	0.001
p.2	22241.	18731.	415.	0.121E		0002	202.6	0.157E		0.	6744.	0.	0.000
0.2	22363.	18732.	411.	0.122E		0002	202.6	0.158E		0.	6742.	0.	0.000
D.3	22481.	18731.	407.	0.123E		0002	202.6	0.160E		0.	6743.	0.	0.000
0.3	22594.	18727.	402.	0.124E		0002	202.6	0.162E		0.	6748.	0.	0.001
P - 4	22704.	18721.	398.	0.126E		0002	202.5	0.163E		0.	6755.	0.	0.001
0.5	22810.	18712.	394.	0.127E		0002	202.5	0.165E		0.	6766.	0.	0.002
0.6	22912.	18701.	390.	0.128E		0002	202.4	0.167E		0.	6778.	0.	0.004
p.8	23011.	18687.	386.	0.129E		0002	202.4	0.168E		0.	6793.	0.	0.005
0.9	23108.	18672.	382.	0.130E		0002	202.3	0.170E		0.	6811.	0.	0.006
1.1	23201.	18656.	379.	0.131E		0002	202.2	0.172E		0.	6830.	0.	0.007
1 - 2	23293.	18638.	375.	0.132E		0002	202.2	0.174E		0.	6850.	0.	0.008
-4	23383.	18620.	371.	0.133E		0002	202.1	0.175E		0.	6872.	0.	0.008
1.6	23471.	18600.	367.	0.134E		0002	202.0	0.177E		0.	6894 •	0.	0.009
. 7	23559.	18581.	364.	0.135E		0002	201.9	0.179E		0.	6917.	0.	0.009
.9	23646.	18562.	360.	0.136E		0002	201.8	0.181E		0.	6939.	0.	0.009
F · 1	23733.	18543.	357.	0.137E		0002	201-7	0.182E		0.	6962.	0.	0.008
-2	23821.	18524.	354.	0.138E		0002	201.7	0.184E		0.	6983.	0.	0.007
-4	23910.	18507.	350.	0.139E		0002	201.6	0.186E		0.	7004.	0.	0.007
2.5	24000.	18491.	347.	0.140E		0002	201.5	0.188E		0.	7023.	0.	0.006
7.6	24092	18476.	344.	0.141E		0002	201.4	0.190E		0 •	7041.	0-	0.005
2 -7	24185. 24282.	18462. 18451.	340. 337.	0.143E		0002	201.4	0.191E		0.	7057.	0.	0.003
8 . 8	24380.	18441.	334.	0.144E		0002	201.3	0.193E		0.	7071.	0.	0.003
2.9	24482.	18434.	331.	0.145E 0.146E		0002	201.3	0.195E		0.	7082.	0.	0.002
. 0	24586.	18428.	328.	0.145E		0002	201.3	0.197E 0.199E		0.	7092. 7098.	0. 0.	0.001 0.000
.0	24694.	18425.	325.	0.149E			201-2			1.			0.000
	24804.	18423.	322.	0.150E		0002	201.2	0.201E 0.202E		1. 1.	7102. 7104.	0. 0.	0.000
2.9	24918.	18424.	319.	0.151E			201.2				7104.		0.000
9	25035.	18427.	316.	0.151E		0002		0.204E		0.	7100.	0.	0.000
8	25155.	18432.	313.	0.154E	14 0	0002	201.2	0.206E		0.	7094.	0.	0.000
8	25278.	18438.	310.	0.156E		0002	201.2	0.208E 0.210E		0.	7086.	0.	0.001
2.7	25404.	18447.	308.	0.157E		0002	201.3				7076.		0.001
2.6	25532	18456.	305.	0.159E		•0002 •0001	201.3	0.212E 0.214E		0.	7064.	0. 0.	0.002
2.5	25662.	18467.	302.	0.160E		_	201.4			0.	7051.	0.	0.002
2.4	25795.	18480.	300.	0.162E		.0001 .0001	201.5	0.216E 0.217E		0.	7036.	0.	0.003
2.2	25929.	18493.	297.	0.164E		.0001	201.5	0.2176		0.	7021.	0.	0.003
2.1	26064.	18506.	295.	0.165E		0001	201.5	0.219E		0.	7005.	0.	0.004
2.0	26200.	18521.	292.	0.167E		.0001	201.6	0.221E		0.	6988.	0.	0.004
. 9	26337.	18535.	290.	0.169E		.0001	201.7	0.225E		0.	6971.	0.	0.004
1.7	26473.	18549.	287.	0.171E		0001	201.8	0.227E		0.	6954.	0.	0.004
	201.00	20047	2011	31116	14 0	•000[201.0	0.2215	13	0.	0774	•	0.004

DST= 0.06250 K2= 0.1250000 LAMBOA= 0.250000 C1= 0.8000000 C2= 0.0000400 N TE0=300.000000 CHANGE= 30.000 OST2= 5.0000 B0= 1091.00 B1= 0.1328 A1= 0.00650 A2=-0.00440 A3=-0.00220 A4= 0. Z1= 16500. Z2= 22000. Z ZT 16500. D0= 1910.0 D1= 0.03490 02=0.00031300 TF= 273.0 C3=0.

ST	U	x	Ŧ	R	Z	EK	٧	WT	TE
0.	0.	0.3329	3000.0	231.	0.	0.	0.514E	08 0.	300.0
1.0	14.9	0.3230	2962.6	231.	8.	5.	0.5198		300.C
2.0	29.0	0.2963	2853.0	234.	30.	72.	0.534E	08 0.	299.8
3.0	41.3	0.2595	2679.9	237.	65.	301.	0.557E		299.6
4.0	51.5	0.2199	2458.4	241.	111.	734.	0.586E	08 0.	299.3
5.0	59.4	0.1826	2208.4	246.	167.	1314.	0.620E	08 0.	298.9
6.0	64.8	0.1503	1951.5	250.	229.	1920.	0.657E	08 0.	298.5
7.0	68.2	0.1236	1705.5	255.	296.	2443.	0.698E		298.1
8.0	69.3	.1013	1474.2	261.	365.	2821.	0.743E	08 0.	297.6
9.0	68.6	L.0834	1268.8	267.	434.	3012.	0.794E	08 0.	297.2
10.0	66.7	0.0494	1095.6	273.	502.	3035.	0.852E	08 0.	296.7
11.0	64.3	0.0586	954.5	280.	567.	2939.	0.918E		296.3
12.0	61.6	0.0503	841.4	287.	630.	2776.	0.991E		295.9
13.0	58.8	0.0439	751.6	295.	690.	2583.	0.107E		295.5
14.0	56.2	0.0389	680.1	303.	748.	2383.	0.116E	09 0.	295.1
15.0	53.7	0.0350	623.0	311.	803.	2192.	0.126E		294.8
16.0	51.4	0.0318	577.0	320.	856.	2014.			294.4
17.0	49.3	C.0293	539.7	329.	906.	1853.	0.149E	09 0.	294.1
18.0	47.4	0.0272	509.1	337.	954.	1708.	0.161E		293.8
19.0	45.6	0.0255	483.7	346.	1001.	1578.	0.174E	0 9 0.	293.5
20.0	44.0	0.0240	462.5	356.	1046.	1463.	0.188E	09 0.	293.2
21.0	42.5	C.0228	444.7	365.	1089.	1361.	0.203E	09 0.	292.9
22.0	41.2	0.0217	429.5	374.	1131.	1270.	0.219E	09 0.	292.7
23.0	39.9	0.0208	416.5	383.	1171.	1188.	0.235E		292.4
24.0	38.8	0.0200	405.2	392.	1211.	1115.	0.252E		292.1
25.0	37.7	0.0193	395.4	401.	1249.	1049.	0.269E		291.9
26.0	36.7	0.0187	386.9	409.	1286.	990.	0.288E		291.6
27.0	35.8	0.0181	379.3	418.	1322.	937.	0.307E		291.4
28.0	35.0	0.0176	372.6	427.	1358.	888.	0.326E		291.2
29.0	34.2	0.0171	366.7	436.	1392.	844.	0.346E		290.9
30.0	33.5	0.0167	361.3	444.	1426.	803.	0.367E		290.7
35.0	30.4	0.0151	341.4	485.	1585.	646.	0.479E		289.7
40.0	28.0	0.0140	328.5	525.	1731.	537.	0.605E		288.7
45.0	26.2	0.0131	319.5	562.	1867.	459.	0.743E		287.9
50.0	24.7	0.0124	313.0	597.	1994.	400.	0.892E	09 0.	287.0
55.0	23.4	0.0118	307.9	631.	2114.	355.	0.105E		286.3
60.0	22.3	0.0114	303.9	663.	2228.	318.	0.122E		285.5
65.0	21.3	0.0109	300.6	695.	2337.	288.	0.140E		284.8
70.0	20.5	0.0106	297.8	725.	2441.	264.	0.159E		284.1
75.0	19.7	0.0102	295.5	754.	2542.	243.	0.179E		283.5
80.0	19.0	0.0099	293.4	782.	2638 •	225.	0.200E	10 0.	282.9
85.0	18.3	0.0096	291.6	809.	2732.	210.	0.222E		282.2
90.0	17.8	0.0094	290.0	836.	2822.	196.	0.245E		281.7
95.0	17.2	0.0091	288.6	862.	2909.	184.	0.268E		281.1
100.0	16.7	0.0089	287.2	887.	2994.	174.	0.292E		280.5
105.0	16.2	0.0087	286.0	912.	3076.	164.	0.317E		280.0
110.0	15.7	0.0085	284.9	936.	3156.	156.	0.343E	10 0.	279.5

81= 0.1328 82= 0. 1.0 K=2 5.0000 BO-1091.00 DST1= .000 DST2= 16500. Z2= 22000. Z3= 52000. PO= 101300. A4= 0. Z1= A3=-0.00220 273.0 C3=0. PRINT= 900.0 TF= RK3= 1.0 01 = 0.0349002=0.00031300 TE PW WT M ES ED R Z ΕK ٧ 0. 300.0 300.0 299.8 299.6 299.3 298.9 298.5 298.1 297.6 297.2 296.7 0.525E 07 20666449. 0.514E 08 300.0 101300. 35362. 0.004 . 0 0. 0. 231. 8. 0.519E 08 0.5385 07 21417101. 101214. 20.171 5. 0. 34643. 231. 0. 32621. 72. 0.534E 08 0.578E 07 23784952. 140.432 100961. . 0 234. 30. 237. 301. 0.646E 07 28094935. .9 65. 0.557E 08 0. 100556. 29646. 374.041 0.748E 07 34769876. 100024. . 4 241. 111. 734. 0.586E 08 0. 26165. 645.724 0.888E 07 44018838. 0.620E 08 0. 99390. 22596. 858.308 . 4 1314. 246. 167. 0. . 5 250. 229. 1920. 0.657E 08 0.107E 08 55265278. 98685. 19241. 957.731 0. 255. 296. 2443. 0.698E 08 0.131E 08 66613828. 97934. 16263. 966.799 . 2 0.743E 08 0. 0.162E 08 75093236. 97164. 897.704 2821. 13635. 261. 365. .8 .6 3012. 0.794E 08 0. G.201E 08 76629784. 96396. 11416. 760.106 267. 434. 502. 3035. 0.852E 08 0. 0.250E 08 69518774. 95648. 9614. 606.107 273. . 5 280. 567. 2939. 0.918E 08 0. 0.308E 08 56142861. 94928. 8185. 469.316 0. 295.9 . 4 630. 2776. 0.991E 08 0.376E 08 41016207. 94241. 7061. 287. 357.671 . 6 295. 690. 2583. 0.107E 09 0. 295.5 295.1 294.8 294.4 294.1 295.5 0.454E 08 27758402. 93588. 6179. 273.427 1.1 0.542E 08 17848132. 303. 748. 2383. 0.116E 09 0. 92968. 5481. 210.763 .0 803. 2192. 0.126E 09 0. 0.640E 08 11155743. 4925. 311. 92378. 164.446 •0 •7 •1 2014-0.137E 09 0.746E 08 320. 856. 0. 294.4 294.1 293.8 293.5 293.2 292.9 292.7 292.4 292.1 291.9 6905892. 91817. 4477. 130.098 0.149E 09 329. 906. 1853. 0. 0.861E 08 4293851. 91281. 4111. 104.407 1708. 0.985E 08 2707887. 337. 954. 0.161E 09 0. 90770. 3809. 84.970 346. 1001. 1578. 0.174E 09 0. C-112E 09 1743040. 90281. 3557. 70.076 356. 1046. 1463. 0.188E 09 0. 0.126E 09 1149351. 89811. 3344. 58.514 365. 1089. 1361. 0.203E 09 0. 0.140E 09 777676. 89360. 3162. 49.422 374. 1131. 1270. 0.219E 09 0. 0.156E 09 540123. 88925. 3005. 42.182 383. 1171. 1138. 0.235E 09 0. 0.172E 09 384853. 88505. 2869. 36.350 392. 0.252E 09 0.189E 09 1211. 1115. 0. 281012. 88099. 2749. 31.598 401. 1249. 1049. 0.269E 09 0. 0.206E 09 209975. 2643. 87706. 27.687 291.6 409. 1286. 990. 0.288E 09 0.224E 09 2548. O. 160301. 87325. 24.436 937. 418. 1322. 0.307E 09 0. 291.4 0.243E 09 124833. 86954. 2464. 21.711 291.2 290.9 290.7 288.7 287.9 287.0 286.3 285.5 284.8 284.1 283.5 282.9 291.2 290.9 1358. 888. 0.326E 09 427. 0. 0.262E 09 99004. 86594. 2387. 19.406 0.346E 09 0. 436. 1392. 844. 0.281E 09 79845. 86243. 2317. 17.442 444. 1426. 803. 0.367E 09 0. 0.301E 09 65387. 85901. 2254. 15.757 1585. 485. 0.479E 09 646. 0.409E 09 0. 29029. 84305. 2003. 10.164 525. 1731. 537. 0.6055 09 0. 0.528E 09 16147. 82866. 1823. 7.033 1867. 562. 459. 0.743E 09 0. 0.656E 09 10395. 5.157 81548. 1686. 597. 3.9 3.9 0.6 7.8 5.5 3.6 0.0 8.6 7.2 1994. 400. 0.892E 09 0. 0.793E 09 7381. 80327. 1575. 3.943 2114. 355. 0.105E 10 631. 0. 0.938E 09 5609. 79186. 1483. 3.113 0.122E 10 1404. 663. 2228. 318. 0. 0.109E 10 4475. 78115. 2.518 288. 695. 2337. 0.140E 10 0. 0.125E 10 3701. 77102. 1335. 2.078 725. 2441. 264. 0.159E 10 0.141E 10 0. 3144. 76142. 1274. 754. 2542. 243. 0.179E 10 0. 0.158E 10 75228. 1219. 1.480 2728. 282.9 782. 2638. 225. 0.200E 10 0.176E 10 2406. 74356. 1170. 0. 1.271 809. 2732. 210. 0.222E 10 0. 282.2 0.194E 10 2150. 73522. 1124. 1.102 2822. 836. 196. 0.245E 10 0. 281.7 0.213E 10 1943. 72723. 1083. 0.963 862. 2909. 184. 0.268E 10 0. 1044. 0.847 281.1 0.232E 10 1771. 71956.

280.5

280.0

0. 280.0 0. 279.5

0.252E

0.272E 10

0.292E 10

10

1026.

1503.

1396.

71219.

70510.

69826.

1008.

975.

944.

0.750

0.667

0.59

887.

912.

936.

5.0

2994.

3076.

3156.

174.

164.

156.

0.292E 10

0.317E 10

0.343E 10

0.

0.

LAMBOA= 0.250000 Cl= 0.8000000 C2= 0.0000400 H=0.200000E 02 F= 0.33333333 PHI= 0.50000000

115.0	15.3	0.0083	283.9	959.	3233.	148.	0.370E 10	0.	279.0
120.0	14.9	0.0081	282.9	982.	3309.	141.	0.397E 10	0.	278.5
125.0	14.5	0.0080	282.0	1005.	3382.	135.	0.425E 10	0.	278.0
130.0	14.1	0.0078	281.2	1027.	3453.	129.	0.454E 10	0.	277.6
135.0	13.7	0.0077	280.4	1049.	3523.	124.	0.484E 10	_	277.1
								0.	27/ -
140.0	13.3	0.0075	279.6	1070-	3590.	119.	0.514E 10	0.	276.7
145.0	13.0	0.0074	278.9	1092.	3656.	114.	0.545E 10	0.	276.2
150.0	12.6	0.0072	278.2	1112.	3720.	110.	0.576E 10	0.	275.8
155.0	12.3	0.0071	277.5	1132.	3782.	106.	0.608E 10	0.	275.4
160.0	11.9	0.0070	276.9	1152.	3842.	102.	0.641E 10	0.	275.0
165.0	11.6	0.0069	276.3	1172.	3901.	98.	0-675E 10	0.	274.6
170.0	11.3	0.0068	275.8	1191.	3959.	95.	0.709E 10	0.	274.3
175.0	11.0	0.0067	275.2	1211.	4014.	92.	0.743E 10	0.	273.9
180.0	10.7	0.0066	274.7	1229.	4069.	89.	0.778E 10	0.	273.6
185.0	10.4	0.0065	274.2	1248.	4121.	86.	0.814E 10	0.	273.2
190.0	10.1	0.0064	273.7	1266.	4173.	84.	0.850E 10	0.	272.9
195.0	9.8	0.0063	273.2	1284.	4222.	81.	0.887E 10	0.	272.6
200.0	9.5	0.0062	272.8	1302.	4271.	79.	0.924E 10	0.	272.2
205.0	9.2	0.0061	272.4	1319.	4318.	77.	0.962E 10	0.	271.9
200.5	9.5	0.0062	272 - 8	1303.	4275.	79.	0.928E 10	0.	272.2
201.0	9.5	0.0062	272.7	1305.	4280.	78.	0.931E 10	0.	272.2
201.5	9.4	0.0061	272.7	1307.	4285.	78.	0.935E 10	0.	272.1
202.0	7.4	0.0061	272.6	1309.	4290.	78.	0.939E 10	0.	272.1
202.5	9.4	0.0061	272.6	1310.	4294.	78.	0.943E 10	0.	272.1
203.0	9.3	0.0061	272.5	1312.	4299.	78.	0.946E 10	0.	
203.0	7.3	0.0001	212.3	1316.	76770	10.	04770E 10	0.	272.1
	TO 1157								
SWITCH									
208.0	9.1	0.0060	272.2	1328.	4345.	75.	0.982E 10	0.0000	271.8
213.0	8.8	0.0059	271.9	1345.	4390.	73.	0.102E 11	0.0001	271.5
218.0	8.6	0.0058	271.6	1360.	4433.	71.	0.105E 11	0.0001	271.2
223.0	8.3	0.0056	271.3	1376.	4475.	69.	0.109E 11	0.0001	270.9
228.0	8.1	0.0055	271.0	1392.	4517.	68.	0.113E 11	0.0002	270.6
233.0	7.9	0.0054	270.8	1407.	4557.	66.	0.117E 11	0.0002	270.4
238.0	7.7	0.0053	270.5	1422.	4596.	64.	0.120E 11	0.0002	270.1
243.0	7.5	0.0053	270.3	1437.	4634.	63.	0.124E 11	0.0002	
									269.9
248.0	7.4	0.0052	270.0	1452.	4671.	61.	0.128E 11	0.0003	269.6
253.0	7.2	0.0051	269.7	1466.	4708.	60.	0.132E 11	0.0003	269.4
258.0	7.0	0.0050	269.5	1481.	4743.	58.	0.136E 11	0.0003	269.2
263.0	6.9	0.0049	269.2	1495.	4778.	57.	0.140E 11	0.0003	268.9
268.0	6.7	0.0048	269.0	1509.	4812.	56.	0.144E 11	0.0004	268.7
273.0	6.6	0.0048	268.7	1523.	4845.	54.	0.148E 11	0.0004	268.5
278.0	6.4	0.0047	268.5	1537.	4878.	53.	0.152E 11	0.0004	268.3
283.0	6.3	0.0046	268.3	1550.	4909.	52.	0.156E 11	0.0004	268.1
288.0	6.2	0.0046	268.1	1564.	4941.	51.	0.160E 11	0.0004	267.9
					_				
293.0	6.0	0.0045	267.9	1577.	4971.	50.	0.164E 11	0.0004	267.7
298.0	5.9	0.0044	267.7	1590.	5001.	49.	0.168E 11	0.0004	267.5
303.0	5 - 8	0.0044	267.5	1503.	5030.	48.	0.173E 11	0.0004	267.3
308.0	5.7	0.0043	267.3	1616.	5059.	47.	0.177E 11	0.0005	267.1
313.0	5.6	0.0042	267.1	1629.	5087.	46.	0.181E 11	0.0005	266.9
318.0	5.4	0.0042	266.9	1642.	5114.	45.	0.185E 11	0.0005	266.8
323.0	5.3	0.0041	266.7	1654.	5141.	44.	0.190E 11	0.0005	266.6
328.0	5.2	0.0041	266.5	1667.	5168.	43.	0.194E 11	0.0005	266.4
333.0	5.1	0.0041	266.3	1679.	5193.	43.	0.198E 11	0.0005	266.2
338.0	5.0	0.0040	266.1	1691.	5219.	42.	0.203E 11	0.0005	266.1
343.0	4.9	0.0039	266.0	1703.	5244.	41.	0.207E 11	0.0005	265.9
348.0	4.8	0.0039	205.8	1715.	5268.	40.	0.211E 11	0.0005	265.8
353.0	4.7	0.0038	265.6	1727.	5292.	40.	0.216E 11	0.0005	265.6
358.0	4.6	0.0038	265.5	1739.	5315.	39.	0.220E 11	0.0005	265.5
							_		
			<i>m</i> 1						

TE

ST U X T R Z EK

1											
1	R	Z	EK	V	wT	TE	M	ES	Ρ	PW	EC
	`	•									
					•	270 -				015	0.534
. 9	959.	3233.	148.	0.370E 10		279.0	0.313E 10	1303.	69168.	915.	0.534
. 9	982.	3309.	141.	0.397E 10		278.5	0.334E 10	1222.	68532	887.	0.480 0.433
• 0	1005.	3382 •	135.	0.425E 10	0.	278.0	0.356E 10	1150.	67919.	862.	0.392
. 2	1027.	3453.	129.	0.454E 10		277.6 277.1	0.378E 10 0.400E 10	1085. 1027.	67326.	837. 814.	0.355
. 4	1049.	3523.	124.	0.484E 10		276.7	0.423E 10	975.	66754.	792.	0.323
•6	1070.	3590.	119.	0.514E 10 0.545E 10		276.2	0.446E 10	928.	66201. 65666.	771.	0.294
1.3	1092.	3656. 3720.	114. 110.	0.576E 10		275.8	0.469E 10	884.	65148.	752.	0.268
• 2 • 5	1112. 1132.	3782.	106.	0.608E 10		275.4	0.493E 10	845.	64648.	733.	0.244
.9	1152.	3842.	102.	0.641E 10		275.0	0.517E 10	809.	64164.	715.	0.223
. 3	1172.	3901.	98.	0.675E 10		274.6	0.541E 10	775.	63696.	698.	0-204
.3 .8 .2 .7	1191.	3959.	95.	0.709E 10		274.3	0.565E 10	745.	63244.	682.	0.186
. 2	1211.	4014.	92.	0.743E 10		273.9	0.590E 10	716.	62806.	666.	0.170
. 7	1229.	4069.	89.	0.778E 10		273.6	0.615E 10	690.	62383.	652.	0.156
. 2	1248.	4121.	86.	0.814E 10		273.2	0.640E 10	666.	61973.	637.	0.143
. 7	1266.	4173.	84.	0.850E 10		272.9	0.666E 10	643.	61578.	624.	0.131
. 2	1284.	4222.	81.	0.887E 10		272.6	0.691E 10	622.	61195.	611.	0.120
.7 .2 .8	1302.	4271.	79.	0.924E 10		272.2	0.717E 10	602.	60826.	599.	0.110
. 4	1319.	4318.	77.	0.962E 10		271.9	0.743E 10	584.	60469.	587.	0.100
- 8	1303.	4275.	79.	0.928E 10	0.	272.2	0.720E 10	600.	60790.	597.	0.109
.8 .7 .7	1305.	4280.	78.	0.931E 10		272.2	0.722E 10	598.	60754.	596.	0.108
. 7	1307.	4285.	78.	0.935E 10		272.1	0.725E 10	597.	60718.	595.	0.107
. 6	1309.	4290.	78.	0.939E 10		272.1	0.727E 10	595.	60682.	594.	0.106
• 6	1310.	4294.	78.	0.943E 10		272.1	0.730E 10	593.	60646.	593.	0.105
. 5	1312.	4299.	78.	0.946E 10	0.	272.1	0.733E 10	591.	60610.	591.	0.104
	1328.	4345.	75.	0.982E 10	0.0000	271.8	0.759E 10	577.	60261	576.	0.095
. 6	1345.	4390.	73.	0.102E 11		271.5	0.785E 10	564.	60261. 59923.	561.	0.088
. 6	1360.	4433.	71.	0.105E 11	0.0001	271.2	0.812E 10	552.	59596.	548.	0.081
.2 .9 .6 .3 .0 .8	1376.	4475.	69.	0.109E 11		270.9	0.839E 10	540.	59279.	534.	0.075
. 0	1392.	4517.	68.	0.113E 11		270.6	0.866E 10	529.	58972.	522.	0.069
. 8	1407.	4557.	66.	0.117E 11		270.4	0.893E 10	518.	58674.	510.	0.064
.5	1422.	4596.	64.	0.120E 11		270.1	0.920E 10	508.	58385.	498.	0.060
. 2	1437.	4634.	63.	0.124E 11		269.9	0.948E 10	498.	58104.	487.	0.055
.0	1452.	4671.	61.	0.128E 11	0.0003	269.6	0.976E 10	488.	57831.	477.	0.052
.7	1466.	4708.	60.	0.132E 11		269.4	0.100E 11	479.	57565.	467.	0.048
.5	1481.	4743.	58.	0.136E 11	0.0003	269.2	0.103E 11	470.	57306.	457.	0.045
- 2	1495.	4778.	57.	0.140E 11		268.9	0.106E 11	462.	57054.	448.	0.042
.0	1509.	4812.	56.	0.144E 11	0.0004	268.7	0.109E 11	454.	56808.	439.	0.039
- 7	1523.	4845.	54.	0.148E 11		268.5	0.112E 11	446.	56569.	431.	0.037
- 5	1537.	4878.	53.	0.152E 11		268.3	0.115E 11	438.	56335.	422.	0.035
. 3	1550.	4909.	52.	0.156E 11		268.1	0.117E 11	431.	56108.	414.	0.033
1-1	1564.	4941.	51.	0.160E 11		257.9	0.120E 11	424.	55885.	407.	0.031
1.9	1577.	4971.	50.	0.164E 11		267.7	0.123E 11	417.	55669.	400.	0.029
.7	1590.	5001.	49.	0.168E 11		267.5	0.126E 11	411 •	55457.	393.	0.027
.5	1603.	5030.	48.	0.173E 11		267.3	0.129E 11	404.	55250.	336.	0.026
.1	1616. 1629.	5059. 5087.	47.	0.177E 11		267.1	0.132E 11	398.	55048.	379.	0.024
. 9	1642.	5114.	46. 45.	0.181E 11		266.9	0.135E 11	392.	54851.	373.	0.023
1.7	1654.	5141.	44.	0.185E 11 0.190E 11		266.8 266.6	0.138E 11 0.141E 11	387. 381.	54659. 54471.	367. 361.	0.021 0.020
. 5	1667.	5168.	43.	0.194E 11			0.144E 11	376.	54287.	355.	0.020
3.3	1679.	5193.	43.	0.198E 11		266.4 266.2	0.147E 11	370.	54108.	350.	0.019
5. i	1691.	5219.	42.	0.203E 11		266.1	0.150E 11	365.	53932.	344.	0.018
.0	1703.	5244.	41.	0.207E 11	0.0005	265.9	0.153E 11	361.	53761.	339.	0.016
9.	1715.	5268.	40.	0.211E 11	0.0005	265.8	0.156E 11	356.	53594.	334.	0.01
. 6	1727.	5292.	40.	0.216E 11		265.6	0.159E 11	351.	53431.	329.	0.014
.5	1739.	5315.	39.	0.220E 11		265.5	0.162E 11	347.	53271.	325.	0.013
								J •			

ST	U	x	T	R	Z	ΕK	٧	WT	TE
									1
363.0	4.5	0.0038	265.3	1751.	5338.	38.		11 0.0005	265.
368.0	4.4	0.0037	265.1	1762.	5360.	38.		11 0.0005	
373.0	4,3	0.0037	265.0	1774.	5382.	37.		11 0.0005	
378.0	4.2	0.0036	264.8	1785.	5403.	36.	0.238E		
383.0	4.1	0.0036	264.7	1797.	5424.	36.		11 0.0006	
388.0	4 = 0	0.0036	264.5	1808.	5444.	35.	0.248E		
393.0	3.9	0.0035	264.4	1819.	5464.	35.	0.252E	11 0.0006	
398.0	3.8	0.0035	264.3	1830.	5483.	34.		11 0.0006	
403.0	3.7	0.0035	264.1	1841-	5502•	34.		11 0.0006	
408.0	3.7	0.0034	264.0	1852.	5521.	33.		11 0.0006	
413.0	3.6	0.0034	263.9	1863.	5539.	33.		11 0.0006	
418.0	3.5	0.0034	263.7	1873.	5557.	32.		11 0.0006	
423.0	3.4	0.0033	263.6	1884.	5574.	32.		11 0.0006	
428.0	3.3	0.0033	263.5	1894.	5590.	31.		11 0.0006	
433.0	3 • 2	0.0033	263.4	1905.	5607.	31.	0.289E	11 0.0006	
438.0	3.1	0.0033	263.3	1915.	5622.	30.		11 0.0006	
443.0	3.0	0.0032	263.2	1925.	5638.	30.	0.299E	11 0.0006	
448.0	2.9	0.0032	263.0	1935.	5653.	29.	0.304E	11 0.0006	
453.0	2.8	0.0032	262.9	1946.	5667.	29.		11 0.0006	
458.0	2.8	0.0032	262.8	1956.	5681.	29.		11 0.0006	
463.0	2.7	0.0031	262.7	1965.	5695.	28.		11 0.0006	
468.0	2.6	0.0031	262.6	1975.	5708.	28.	0-323E	11 0.0006	262.
473.0	2.5	0.0031	262.5	1985.	5720.	27.	0.328E	11 0.0006	
478.0	2.4	0.0031	262.5	1995.	5733.	27.	0.333E	11 0.0005	
483.0	2.3	0.0031	262.4	2004.	5744.	27.	0.337E	11 0.0005	
488.0	2.2	0.0030	262.3	2014.	5756.	26.	0.342E	11 0.0005	
493.0	2.1	0.0030	262.2	2023.	5766.	26.	0.347E	11 0.0005	
498.0	2.0	0.0030	262.1	2033.	5777.	26.		11 0.0005	
503.0	1.9	0.0030	262.0	2042.	5787.	25.	0.357E	11 0.0005	
508.0	1.9	0.0030	262.0	2051.	5796.	25.	0.362E	11 0.0005	
513.0	1.8	0.0030	261.9	2061.	5805.	25.	0.366E	11 0.0005	
518.0	1.7	0.0029	261.8	2070.	5814.	24.	0.371E	11 0.0005	
523.0	1.6	0.0029	261.8	2079.	5822.	24.	0.376E	11 0.0005	262.2
528.0	1.5	0.0029	261.7	2088.	5830.	24.	0.3818	11 0.0005	
533.0	1.4	0.0029	261.7	2097.	5837.	24.	0.386E	11 0.0005	
538.0	1.3	0.0029	261.6	2105.	5844.	23.	0.391E	11 0.0005	262.0
543.0	1.2	0.0029	261.5	2114.	5850.	23.	0.396E	11 0.0005	
548.0	1.1	0.0029	261.5	2123.	5856.	23.	0.401E	11 0.0005	261.9
553.0	1.0	0.0029	261.4	2131.	5861.	22.	0.406E	11 0.0005	
558.0	0.9	0.0029	261.4	2140.	5866.	22.	0.411E	11 0.0005	261.9
563.0	0.8	0.0028	261.4	2148.	5870.	22.	0.415E	11 0.0005	
568.0	0.7	0.0028	261.3	2157.	5874.	22.	0.420E	11 0.0004	
573.0	0.6	0.0028	261.3	2165.	5878.	21.	0.425E	11 0.0004	
578.0	0.5	0.0028	261.3	2173.	5881.	21.	0.430E		
583.0	0.5	0.0028	261.2	2182.	5883.	21.	0.435E	11 0.0004	
588.0	0.4	0.0028	261.2	2190.	5885.	21.	0.440E	11 0.0004	
593.0	0.3	0.0028	261.2	2198.	5887.	21.	0.445E	11 0.0004	
598 0	0.2	0.0028	261.2	2206.	5888.	20.	0.450E	11 0.0004	
603.0	0.1	0.0028	261.2	2214.	5888.	20.	0.454E		
	-			_					

3 1751. 5338. 38. 0.225E 11 0.0005 265.3 0.166E 11 343. 53115. 320. 0.013 11 1762. 5360. 38. 0.229E 11 0.0005 265.2 0.169E 11 384. 52963. 316. 0.012 01 1774. 5382. 37. 0.234E 11 0.0005 265.0 0.172E 11 334. 52215. 312. 0.011 88 1785. 5403. 36. 0.238E 11 0.0006 264.9 0.173E 11 330. 52670. 308. 0.011 88 1785. 5403. 36. 0.238E 11 0.0006 264.9 0.173E 11 330. 52670. 308. 0.011 55 1808. 5444. 35. 0.252E 11 0.0006 264.6 0.181E 11 327. 52529. 304. 0.010 55 1808. 5444. 35. 0.252E 11 0.0006 264.6 0.181E 11 327. 52391. 300. 0.009 41 1819. 5464. 35. 0.252E 11 0.0006 264.6 0.181E 11 329. 52391. 300. 0.009 33 1830. 5483. 34. 0.257E 11 0.0006 264.4 0.188E 11 310. 52125. 293. 0.008 11 1841. 5502. 33. 0.256E 11 0.0006 264.4 0.188E 11 310. 52125. 293. 0.008 10 1852. 5521. 33. 0.266E 11 0.0006 264.1 0.194E 11 309. 51874. 286. 0.007 17 1873. 5557. 32. 0.275E 11 0.0006 264.0 0.197E 11 309. 51874. 286. 0.007 18 1835. 5539. 33. 0.275E 11 0.0006 264.9 0.197E 11 309. 51875. 283. 0.007 18 1845. 5574. 32. 0.280E 11 0.0006 264.9 0.200E 11 303. 51635. 279. 0.006 18 1844. 5574. 32. 0.280E 11 0.0006 263.8 0.204E 11 300. 51520. 276. 0.006 18 1845. 5502. 31. 0.285E 11 0.0006 263.8 0.204E 11 277. 51409. 273. 0.005 19 19 19 19 19 19 19 19 19 19 19 19 19 1		R	Z	€K	٧	WT	TE	м	ES	P	PW	EC
1 1762, 5380, 38, 0,229 11 0,0005 265,2 0,169 11 338, 5293, 316, 0,012 177, 5382, 37, 0,234 11 0,0005 265,0 0,172 11 334, 52815, 312, 0,011 81 1785, 5403, 36, 0,238 11 0,0006 264,9 0,175 11 330, 52670, 308, 0,011 77 1797, 5424, 36, 0,248 11 0,0006 264,7 0,178 11 327, 52529, 304, 0,010 55 1808, 5444, 35, 0,252 11 0,0006 264,5 0,184 11 312, 52391, 300, 0,009 4 1819, 5464, 35, 0,252 11 0,0006 264,5 0,184 11 312, 52391, 300, 0,009 13 1830, 5483, 34, 0,257 11 0,0006 264,5 0,184 11 319, 52255, 293, 0,008 1 1841, 5502, 34, 0,261 11 0,0006 264,6 0,181 11 313, 51998, 289, 0,008 1 1852, 5521, 33, 0,266 11 0,0006 264,0 0,197 11 316, 52125, 293, 0,008 10 1852, 5521, 33, 0,266 11 0,0006 264,0 0,197 11 300, 51573, 283, 0,007 17 1873, 5557, 32, 0,275 11 0,0006 263,9 0,200 11 303, 51635, 279, 0,006 1884, 5574, 32, 0,275 11 0,0006 263,9 0,200 11 303, 51635, 279, 0,006 1884, 5574, 32, 0,285 11 0,0006 263,7 0,207 11 295, 51520, 276, 0,006 19 195, 5607, 31, 0,289 11 0,0006 263,7 0,207 11 295, 51301, 271, 0,005 21 1925, 5638, 30, 0,294 11 0,0006 263,5 0,213 11 295, 51301, 271, 0,005 21 1925, 5638, 30, 0,294 11 0,0006 263,5 0,213 11 292, 51196, 268, 0,003 21 1925, 5638, 30, 0,294 11 0,0006 263,5 0,213 11 292, 51196, 268, 0,003 21 1925, 5638, 30, 0,294 11 0,0006 263,5 0,213 11 292, 51196, 268, 0,005 10 1935, 5657, 32, 0,304 11 0,0006 263,5 0,213 11 292, 51196, 268, 0,005 10 1935, 5653, 29, 0,304 11 0,0006 263,5 0,223 11 292, 51196, 268, 0,005 10 1935, 5653, 29, 0,304 11 0,0006 263,5 0,223 11 292, 51196, 268, 0,005 10 1935, 5635, 29, 0,304 11 0,0006 263,5 0,223 11 295, 50901, 260, 0,006 263,5 0,236 11 295, 50901, 260, 0,005 295, 295, 295, 295, 295, 295, 295, 295	1	1751.	5338.	38.	0-225E 11	0.0005	265.3	0.1668 11	343.	53115.	320.	0.013
1925, 5638. 30. 0.299E 11 0.0006	Ιí						265.2	0.169E 11				0.012
1925, 5638. 30. 0.299E 11 0.0006	Lo						265.0	0.172E 11				
1925, 5638. 30. 0.299E 11 0.0006	8						264.9	0.175E 11			308.	
1925, 5638. 30. 0.299E 11 0.0006	. 7			36.	0.243E 11	0.0006	264.7	0.178F 11	327.		304.	
1925, 5638. 30. 0.299E 11 0.0006	- 5	1808.	5444.	35.	0.248E 11	0.0006	264.6	0.181E 11	323.	52391.		
1925, 5638. 30. 0.299E 11 0.0006	4			35.			264.5	0.184E 11	319.	52256.	296.	0.009
1925, 5638. 30. 0.299E 11 0.0006	. 3	1830.	5483.	34.	0.257E 11							
1925, 5638. 30. 0.299E 11 0.0006	-1	1841.	5502.	34.	0.261E 11	0.0006	264.2	0.191E 11	313.	51998.	289.	0.008
1925, 5638. 30. 0.299E 11 0.0006	0	1852.	5521.	33.	0.266E 11							
1925, 5638. 30. 0.299E 11 0.0006	9	1863.	5539.	33.								
1925, 5638. 30. 0.299E 11 0.0006	7											
1925, 5638. 30. 0.299E 11 0.0006	6											
1925, 5638. 30. 0.299E 11 0.0006	- 5											
1925, 5638. 30. 0.299E 11 0.0006	- 4											
0 1935. 5653. 29. 0.304E 11 0.0006 263.3 0.20E 11 287. 50996. 263. 0.0004 19 1946. 5667. 29. 0.308E 11 0.0006 263.2 0.223E 11 285. 50901. 260. 0.004 18 1956. 5681. 29. 0.318E 11 0.0006 263.1 0.226E 11 282. 50808. 258. 0.004 17 1965. 5695. 28. 0.318E 11 0.0006 263.0 0.230E 11 280. 50719. 256. 0.003 6 1975. 5708. 28. 0.328E 11 0.0006 262.9 0.233E 11 278. 50633. 254. 0.003 15 1985. 5720. 27. 0.328E 11 0.0006 262.9 0.233E 11 278. 50633. 254. 0.003 15 1985. 5770. 27. 0.337E 11 0.0005 262.7 0.240E 11 276. 50550. 251. 0.003 15 1995. 5733. 27. 0.337E 11 0.0005 262.7 0.240E 11 276. 50700. 249. 0.003 16 1975. 5760. 26. 0.347E 11 0.0005 262.7 0.240E 11 277. 50373. 247. 0.002 17 2033. 5777. 26. 0.342E 11 0.0005 262.6 0.246E 11 270. 50319. 246. 0.002 18 2033. 5777. 26. 0.352E 11 0.0005 262.5 0.250E 11 288. 50248. 244. 0.002 19 2042. 5787. 25. 0.352E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 2042. 5787. 25. 0.362E 11 0.0005 262.3 0.260E 11 265. 50115. 240. 0.002 2042. 5787. 25. 0.362E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 29 2061. 5805. 25. 0.362E 11 0.0005 262.3 0.263E 11 267. 50180. 242. 0.002 2042. 5787. 26. 0.376E 11 0.0005 262.3 0.266E 11 265. 50115. 240. 0.002 2042. 5787. 26. 0.376E 11 0.0005 262.2 0.266E 11 265. 50153. 239. 0.001 29 2061. 5805. 25. 0.362E 11 0.0005 262.2 0.266E 11 265. 50153. 239. 0.001 29 2061. 5805. 25. 0.366E 11 0.0005 262.2 0.266E 11 261. 49994. 237. 0.001 28 2079. 5822. 24. 0.376E 11 0.0005 262.1 0.273E 11 259. 49886. 235. 0.001 28 2079. 5822. 24. 0.376E 11 0.0005 262.1 0.273E 11 259. 49886. 235. 0.001 29 2051. 5796. 25. 0.366E 11 0.0005 262.1 0.273E 11 259. 49886. 235. 0.001 20 20 20 20 20 20 20 20 20 20 20 20 20 2	- 3											
9 1946. 5667. 29. 0.308E 11 0.0006 263.2 0.23E 11 285. 50901. 260. 0.004 17 1965. 5681. 29. 0.313E 11 0.0006 263.1 0.226E 11 282. 50808. 258. 0.004 17 1965. 5695. 28. 0.318E 11 0.0006 263.0 0.230E 11 280. 50719. 256. 0.003 16 1975. 5708. 28. 0.323E 11 0.0006 262.9 0.233E 11 278. 50633. 254. 0.003 15 1985. 5770. 27. 0.328E 11 0.0006 262.9 0.238E 11 278. 50633. 254. 0.003 15 1985. 5770. 27. 0.338E 11 0.0005 262.7 0.240E 11 274. 50470. 249. 0.003 15 1995. 5733. 27. 0.337E 11 0.0005 262.7 0.240E 11 274. 50470. 249. 0.003 14 2004. 5744. 27. 0.337E 11 0.0005 262.7 0.240E 11 272. 50393. 247. 0.002 13 2014. 5756. 26. 0.342E 11 0.0005 262.6 0.246E 11 270. 50319. 246. 0.002 12 2023. 5766. 26. 0.342E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 12 2033. 5777. 26. 0.352E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 12 2033. 5777. 25. 0.357E 11 0.0005 262.4 0.256E 11 265. 50115. 240. 0.002 10 2042. 5787. 25. 0.357E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 18 2070. 5814. 24. 0.371E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 18 2070. 5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 264. 49939. 236. 0.001 18 2079. 5822. 24. 0.376E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 18 2079. 5822. 24. 0.376E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 18 2079. 5822. 24. 0.376E 11 0.0005 262.1 0.273E 11 259. 49886. 235. 0.001 17 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.273E 11 259. 49886. 233. 0.001 18 2079. 5830. 24. 0.391E 11 0.0005 262.0 0.280E 11 255. 49746. 231. 0.001 15 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.287E 11 255. 49602. 227. 0.000 16 2105. 5844. 22. 0.415E 11 0.0005 261.9 0.290E 11 255. 49602. 227. 0.000 18 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 255. 49602. 227. 0.000 19 2131. 5861. 22. 0.415E 11 0.0005 261.9 0.297E 11 255. 49602. 227. 0.000 19 2165. 5878. 21. 0.445E 11 0.0004 261.8 0.307E 11 268. 49467. 223. 0.000 22 2190. 5885. 21. 0.440E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 22 2190. 5885. 21. 0.440E 11 0.0004 261.8 0.307E 11 249. 4990. 224. 0.000 22 2190. 5885. 20. 0.440	- 2											
1956. 5681. 29. 0.313E 11 0.0006 263.1 0.226E 11 282. 50808. 258. 0.004												
1965. 5695. 28. 0.318E 11 0.0006 263.0 0.230E 11 230. 50719. 256. 0.003	9											
6 1975. \$708. 28. 0.323E 11 0.0006 262.9 0.233E 11 278. \$50633. 254. 0.003 1985. \$720. 27. 0.328E 11 0.0006 262.8 0.236E 11 276. \$50550. 251. 0.003 1995. \$733. 27. 0.333E 11 0.0005 262.7 0.240E 11 276. \$50550. 251. 0.003 14 2004. \$744. 27. 0.337E 11 0.0005 262.7 0.248E 11 272. \$50393. 247. 0.002 13 2014. \$756. 26. 0.342E 11 0.0005 262.6 0.246E 11 270. \$50319. 246. 0.002 14 2033. \$7766. 26. 0.347E 11 0.0005 262.5 0.250E 11 268. \$50248. 244. 0.002 15 2033. \$777. 26. 0.352E 11 0.0005 262.5 0.250E 11 268. \$50248. 244. 0.002 16 2042. \$787. 25. 0.357E 11 0.0005 262.5 0.250E 11 265. \$50115. 240. 0.002 17 2033. \$777. 26. 0.357E 11 0.0005 262.3 0.260E 11 265. \$50115. 240. 0.002 18 2070. \$5814. 24. 0.371E 11 0.0005 262.3 0.260E 11 264. \$5053. 239. 0.001 19 2061. \$5805. 25. 0.366E 11 0.0005 262.3 0.260E 11 264. \$5053. 239. 0.001 18 2070. \$5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 261. \$49939. 236. 0.001 18 2079. \$5822. 24. 0.376E 11 0.0005 262.2 0.266E 11 261. \$49939. 236. 0.001 17 2088. \$5830. 24. 0.381E 11 0.0005 262.1 0.270E 11 259. \$49886. 235. 0.001 18 2079. \$5837. 24. 0.386E 11 0.0005 262.1 0.273E 11 257. \$49789. 232. 0.001 19 2114. \$5850. 23. 0.396E 11 0.0005 262.0 0.280E 11 257. \$49789. 232. 0.001 10 2114. \$5850. 23. 0.396E 11 0.0005 262.0 0.280E 11 255. \$49705. 230. 0.001 10 2123. \$5856. 23. 0.401E 11 0.0005 262.0 0.280E 11 255. \$49705. 230. 0.001 11 2131. \$5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 255. \$49705. 230. 0.001 12 2123. \$5856. 23. 0.401E 11 0.0005 261.9 0.290E 11 253. \$49633. 228. 0.000 14 2140. \$5866. 22. 0.415E 11 0.0005 261.9 0.290E 11 250. \$49525. 225. 0.000 15 2113. \$581. 21. 0.435E 11 0.0004 261.8 0.307E 11 248. \$49490. 224. 0.000 18 2157. \$5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. \$49525. 225. 0.000 19 2182. \$5883. 21. 0.435E 11 0.0004 261.8 0.307E 11 248. \$49490. 224. 0.000 21 2182. \$5883. 21. 0.445E 11 0.0004 261.8 0.307E 11 248. \$49490. 224. 0.000 22 2190. \$5885. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. \$49490. 224. 0.000												
1985. 5720. 27. 0.328E 11 0.0006 262.F 0.236E 11 276. 50550. 251. 0.003												
1995. 5733. 27. 0.333E 11 0.0005 262.7 0.240E 11 274. 50470. 249. 0.003 275. 276. 276. 277. 0.337E 11 0.0005 262.7 0.243E 11 270. 50393. 247. 0.002 277. 0.337E 11 0.0005 262.6 0.246E 11 270. 50319. 246. 0.002 277. 0.233. 5766. 26. 0.347E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 277. 0.242. 5787. 25. 0.357E 11 0.0005 262.5 0.253E 11 267. 50180. 242. 0.002 278. 278. 278. 25. 0.357E 11 0.0005 262.5 0.256E 11 265. 50115. 240. 0.002 279. 279. 279. 279. 279. 279. 279. 279												
4 2004. 5744. 27. 0.337E 11 0.0005 262.7 0.243E 11 270. 50319. 246. 0.002 2014. 5756. 26. 0.347E 11 0.0005 262.6 0.246E 11 270. 50319. 246. 0.002 2023. 5766. 26. 0.347E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 21 2033. 5777. 26. 0.352E 11 0.0005 262.5 0.253E 11 267. 50180. 242. 0.002 2042. 5787. 25. 0.357E 11 0.0005 262.4 0.256E 11 265. 50115. 240. 0.002 2051. 5796. 25. 0.366E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 2051. 5805. 25. 0.366E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 2061. 5805. 25. 0.366E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 2070. 5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 2088. 5830. 24. 0.381E 11 0.0005 262.2 0.266E 11 259. 49886. 235. 0.001 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.273E 11 258. 49836. 233. 0.001 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 2015. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 256. 49746. 231. 0.001 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 256. 49746. 231. 0.001 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 256. 49746. 231. 0.001 2123. 5850. 23. 0.401E 11 0.0005 262.0 0.280E 11 255. 49705. 230. 0.001 2124. 5860. 22. 0.406E 11 0.0005 261.9 0.293E 11 255. 49688. 229. 0.000 21248. 5870. 22. 0.415E 11 0.0005 261.9 0.293E 11 250. 49688. 229. 0.000 21248. 5870. 22. 0.415E 11 0.0005 261.9 0.293E 11 250. 49548. 225. 0.000 21248. 5870. 22. 0.415E 11 0.0005 261.8 0.300E 11 250. 49548. 225. 0.000 2125. 5883. 21. 0.435E 11 0.0004 261.8 0.300E 11 249. 49506. 224. 0.000 21282. 5883. 21. 0.435E 11 0.0004 261.8 0.300E 11 249. 49506. 224. 0.000 21282. 5883. 21. 0.445E 11 0.0004 261.8 0.301E 11 248. 49477. 223. 0.000 22182. 5883. 21. 0.445E 11 0.0004 261.8 0.301E 11 248. 49477. 223. 0.000 22182. 5883. 21. 0.445E 11 0.0004 261.8 0.301E 11 248. 49477. 223. 0.000 22182. 5888. 20. 0.450E 11 0.0004 261.7 0.318E 11 248. 49477. 223. 0.000 22182. 5888. 20. 0.450E 11 0.0004 261.7 0.318E 11 248. 49477. 223. 0.000	- 2										251.	0.003
2014. 5756. 26. 0.342E 11 0.0005 262.6 0.246E 11 270. 50319. 246. 0.002 2023. 5766. 26. 0.347E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 2033. 5777. 26. 0.352E 11 0.0005 262.5 0.253E 11 265. 50115. 240. 0.002 2042. 5787. 25. 0.357E 11 0.0005 262.4 0.256E 11 265. 50115. 240. 0.002 2051. 5796. 25. 0.362E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 2051. 5805. 25. 0.366E 11 0.0005 262.3 0.260E 11 264. 50053. 237. 0.001 2051. 5805. 25. 0.366E 11 0.0005 262.3 0.260E 11 261. 49939. 236. 0.001 28 2070. 5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 28 2070. 5814. 24. 0.376E 11 0.0005 262.2 0.270E 11 259. 49886. 235. 0.001 28 2079. 5822. 24. 0.376E 11 0.0005 262.1 0.273E 11 259. 49886. 235. 0.001 27 2088. 5830. 24. 0.381E 11 0.0005 262.1 0.273E 11 259. 49886. 233. 0.001 27 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 27 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 25 2114. 5850. 23. 0.391E 11 0.0005 262.0 0.280E 11 255. 49746. 231. 0.001 25 2114. 5850. 23. 0.391E 11 0.0005 261.9 0.287E 11 255. 49765. 230. 0.001 25 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.291E 11 253. 49633. 228. 0.000 24 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 24 2148. 5860. 22. 0.415E 11 0.0005 261.9 0.290E 11 250. 49548. 229. 0.000 24 2148. 5860. 22. 0.415E 11 0.0005 261.9 0.290E 11 250. 49548. 225. 0.000 23 2157. 5874. 22. 0.426E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 22 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 22 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.301E 11 248. 49490. 224. 0.000 224. 2190. 5885. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 224. 2190. 5885. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 224. 2190. 5885. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 2200.												0.003
2023. 5766. 26. 0.347E 11 0.0005 262.5 0.250E 11 268. 50248. 244. 0.002 1 2033. 5777. 26. 0.352E 11 0.0005 262.5 0.253E 11 267. 50180. 242. 0.002 0 2042. 5787. 25. 0.357E 11 0.0005 262.3 0.263E 11 265. 50115. 240. 0.002 0 2051. 5796. 25. 0.362E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 9 2061. 5805. 25. 0.366E 11 0.0005 262.3 0.263E 11 262. 49994. 237. 0.001 8 2070. 5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 8 2079. 5822. 24. 0.376E 11 0.0005 262.2 0.270E 11 259. 49886. 235. 0.001 7 2088. 5830. 24. 0.381E 11 0.0005 262.2 0.270E 11 259. 49886. 235. 0.001 7 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.273E 11 258. 49836. 233. 0.001 7 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 8 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 255. 49746. 231. 0.001 8 2105. 5846. 23. 0.401E 11 0.0005 262.0 0.280E 11 255. 49746. 231. 0.001 8 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.287E 11 253. 49633. 228. 0.000 1 2148. 5870. 22. 0.411E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 1 2148. 5870. 22. 0.411E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 1 2148. 5870. 22. 0.411E 11 0.0005 261.9 0.290E 11 250. 49548. 225. 0.000 1 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.300E 11 250. 49548. 225. 0.000 1 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.300E 11 250. 49548. 225. 0.000 1 2148. 5870. 22. 0.415E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 1 2148. 5883. 21. 0.435E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.307E 11 248. 49490. 224. 0.000 2 2182. 5883. 21. 0.445E 11 0.0004 261.8 0.307E 11 248. 49490. 224. 0.000 2 2182. 5883. 21. 0.445E 11 0.0004 261.8 0.307E 11 248. 49477. 223. 0.000 2 2198. 5885. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 2 2198. 5885. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000												
.1 2033. 5777. 26. 0.352E 11 0.0005 262.5 0.253E 11 267. 50180. 242. 0.002 0.02 2042. 5787. 25. 0.357E 11 0.0005 262.4 0.256E 11 265. 50115. 240. 0.002 0.002 0.0 2051. 5796. 25. 0.362E 11 0.0005 262.3 0.260E 11 264. 50053. 239. 0.001 0.002												
.0												
.0												
.9 2061. 5805. 25. 0.366E 11 0.0005 262.3 0.263E 11 262. 49994. 237. 0.001 .8 2070. 5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 .8 2079. 5822. 24. 0.376E 11 0.0005 262.2 0.270E 11 259. 49886. 235. 0.001 .7 2088. 5830. 24. 0.381E 11 0.0005 262.1 0.273E 11 259. 49886. 233. 0.001 .7 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 .6 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 257. 49789. 232. 0.001 .5 2114. 5850. 23. 0.396E 11 0.0005 262.0 0.283E 11 255. 49746. 231. 0.001 .5 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.287E 11 254. 49668. 229. 0.000 .4 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 .4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.425E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2157. 5881. 21. 0.425E 11 0.0004 261.8 0.300E 11 250. 49525. 225. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2198. 5888. 20. 0.450E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000												0.002
.8 2070. 5814. 24. 0.371E 11 0.0005 262.2 0.266E 11 261. 49939. 236. 0.001 .8 2079. 5822. 24. 0.376E 11 0.0005 262.2 0.270E 11 259. 49886. 235. 0.001 .7 2088. 5830. 24. 0.381E 11 0.0005 262.1 0.273E 11 258. 49836. 233. 0.001 .7 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 .6 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 256. 49746. 231. 0.001 .5 2114. 5850. 23. 0.396E 11 0.0005 262.0 0.283E 11 255. 49705. 230. 0.001 .5 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.287E 11 254. 49668. 229. 0.000 .4 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 .4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2173. 5881. 21. 0.435E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2198. 5888. 20. 0.450E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000												
*** *** *** *** *** *** *** *** *** **												
.7												
.7 2097. 5837. 24. 0.386E 11 0.0005 262.1 0.276E 11 257. 49789. 232. 0.001 .6 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 256. 49746. 231. 0.001 .5 2114. 5850. 23. 0.396E 11 0.0005 262.0 0.283E 11 255. 49705. 230. 0.001 .5 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.287E 11 254. 49668. 229. 0.000 .4 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 .4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2153. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.31E 11 248. 49490. 224. 0.000 .2 2182. 5883. 21. 0.445E 11 0.0004 261.8 0.31E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000 .2 2198. 5888. 20. 0.450E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000					_							
.6 2105. 5844. 23. 0.391E 11 0.0005 262.0 0.280E 11 256. 49746. 231. 0.001 .5 2114. 5850. 23. 0.396E 11 0.0005 262.0 0.283E 11 255. 49705. 230. 0.001 .5 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.287E 11 254. 49668. 229. 0.000 .4 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 .4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.435E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000												
.5 2114. 5850. 23. 0.396E 11 0.0005 262.0 0.283E 11 255. 49705. 230. 0.001 .5 2123. 5856. 23. 0.401E 11 0.0005 261.9 0.287E 11 254. 49668. 229. 0.000 .4 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 .4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49548. 225. 0.000 .3 2173. 5881. 21. 0.435E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.440E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49467. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000					0.391F 1	1 0.0005						
.5 2123												
.4 2131. 5861. 22. 0.406E 11 0.0005 261.9 0.290E 11 253. 49633. 228. 0.000 .4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49477. 223. 0.000 .2 2190. 5885. 21. 0.445E 11												
.4 2140. 5866. 22. 0.411E 11 0.0005 261.9 0.293E 11 252. 49602. 227. 0.000 .4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.445E 11 0.0004 261.7 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.455E 11								_				
.4 2148. 5870. 22. 0.415E 11 0.0005 261.8 0.297E 11 251. 49573. 226. 0.000 .3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.440E 11 0.0004 261.7 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20.0450E 11 0.0004 <td>.4</td> <td>2140.</td> <td>5866.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000</td>	.4	2140.	5866.									0.000
.3 2157. 5874. 22. 0.420E 11 0.0004 261.8 0.300E 11 250. 49548. 225. 0.000 .3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.440E 11 0.0004 261.7 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000						1 0.0005						
.3 2165. 5878. 21. 0.425E 11 0.0004 261.8 0.304E 11 250. 49525. 225. 0.000 .3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.440E 11 0.0004 261.7 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000			5874.		0.420E 1	1 0.0004						
.3 2173. 5881. 21. 0.430E 11 0.0004 261.8 0.307E 11 249. 49506. 224. 0.000 .2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.440E 11 0.0004 261. 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000												
.2 2182. 5883. 21. 0.435E 11 0.0004 261.8 0.311E 11 248. 49490. 224. 0.000 .2 2190. 5885. 21. 0.440E 11 0.0004 261.7 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000	• 3	2173.	5881.		0.430E 1	1 0.0004						
.? 2190. 5885. 21. 0.440E 11 0.0004 261. 0.314E 11 248. 49477. 223. 0.000 .2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000	. 2	2182.	5883.									
.2 2198. 5887. 21. 0.445E 11 0.0004 261.7 0.318E 11 248. 49467. 223. 0.000 .2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000												
.2 2206. 5888. 20. 0.450E 11 0.0004 261.7 0.321E 11 247. 49460. 222. 0.000	• 2	2198.	5887.	21.								
-2 2214. 5888. 20. 0.454E 11 0.0004 261.7 0.325E 11 247. 49457. 222. 0.000		2206.	5888.	20.	0.450E 1	1 0.0004			247.	49460.		
	٠2	2214.	5888.	20.	0.454E 1	1 0.0004	261.7		247.	49457.	222.	0.000

Then the cloud model would have only one empirical parameter, λ , whose magnitude is found to be that given in earlier studies. 4, 18

Preliminary testing of the effect of atmospheric conditions on cloud rise indicates that for low yields, the initial water content of the cloud is unimportant compared with atmospheric humidity. For very high (megaton) yields the opposite is true, but the water content has only minor effect.

SECTION 4

OUTLINE OF FUTURE WORK ON THE WATER-SURFACE-BURST FALLOUT MODEL

4.1 THE NUCLEAR CLOUD

As suggested in Sec. 2.6.4, a compressibility correction for the rise of very high yield clouds may be introduced.

The effect of wind shear on cloud rise may be considered as follows: As the ratio of the wind shear between top and bottom of cloud to the rate of rise increases, the cloud is stretched, increasing the surface-to-volume ratio and therefore the entrainment rate, and damping the cloud motion.

The cloud-rise characteristics predicted by the equations using different parameter values, will be compared with nuclear cloud observations.

4.2 PARTICLE FORMATION

The atomic cloud from a sea-water-surface burst contains a large amount of water, a much smaller amount of sea salt, and a very small amount of metallic material.

As the cloud cools, the metal, salt and water condense successively. The condensed metal particles are the nuclei for particle growth. The metal-salt-water particles are called slurry particles or slurry droplets. 11

We will assume that radioactivity is distributed uniformly per unit sea salt mass. Given an estimate of metal and salt masses per unit cloud volume, the initial particle masses can be taken arbitrarily small as the rate of coagulation by Brownian movement is sensitive to the mass density, not number density for small particles. (That is, it does not

matter if we suppose the mass to consist of one particle of diameter 10^{-6} cm or a thousand particles of diameter 10^{-7} cm per unit volume, because of the rapid growth from 10^{-7} to 10^{-6} cm).

As the particles reach about 1 micron (10⁻¹cm) diameter the coagulative effect of Brownian movement decreases and coagulation by turbulence ¹⁹ must influence further particle growth. Part of this growth occurs during the dry stage of cloud rise and part during the wet (including frozen) stage.

The temperature, liquid and solid mass per unit cloud volume, and intensity of turbulence all vary with time. Hence, approximations will be needed in analyzing the coagulation process, in order to use existing steady-state theories.

It may be that large slurry particles are formed only from megaton water-surface-bursts. This follows if the rate of generation of turbulence is proportional to the cube of rate of rise, as in Eq. (3.6), Sec. 3.6. This suggests that low-yield water-surface bursts would produce relatively little fallout, since the requisite coagulative influence would be lacking.

4.3 FALLOUT OF SLURRY PARTICLES

Until now 10, 11 slurry-droplet mass-altitude-time histories have been calculated with the particles starting their fall either dry or wet (at sea water concentration) from a reasonable stabilized cloud height (say 60,000 ft for a megaton burst) and from various lesser altitudes.

When calculations for "initially wet" (i.e. at sea-water salt concentration) particles were compared with weapon test data 10, 11 it was found that particles with large salt mass came down too soon and those with small salt mass came down too late, with some crossover point at which calculated and observed times of arrival agreed.

A tentative solution to the discrepancy is as follows: in the earlier part of cloud rise, particles are being formed dry. As they

grow, some of them escape from the cloud by diffusion or gravity. The largest particles have the greatest probability of escape. Since they escape dry, they are initially lighter, and reach the ground later than wet particles with the same salt mass. The remaining "salt solution" in the cloud is diluted by the loss of salt to below sea-water salt concentration. (Entrained atmospheric moisture also contributes to this effect.) Thus, the smaller particles which stayed in the cloud longer come out wetter. Then they are larger and heavier, per unit salt mass, and reach the ground earlier than the "initially wet" particles of Refs. 10 and 11, and in better agreement with weapon test data. Farlow has offered a similar argument.

SECTION 5

RESULTS AND CONCLUSIONS

5.1 RESULTS

A model of the rise and expansion of the atomic cloud from a watersurface burst has been developed. A set of differential equations
describes the changes with time in cloud size, shape, altitude,
temperature, water content and turbulent energy density as functions
of explosion energy, initial air-water energy partition and
atmospheric conditions. The model is applicable to air bursts as
well as water surface bursts. It uses turbulence concepts which
account for the late, horizontal expansion of megaton clouds, and can
also be applied to the formation of fallout particles. The equations
have been programmed for machine computation. Numerical results indicate that with appropriate choice of parameters, the cloud model
agrees with observations of nuclear explosion clouds. This agreement
will be the subject of a separate (Classified) report.

5.2 CONCLUSIONS

The cloud model gives an adequate phenomenological description of the rise and expansion of a nuclear cloud. This description can provide thermodynamic input data for development of the second part of the water-surface burst fallout model: particle formation. It can also specify the initial altitude of particles for Part 3 of the model: particle fall through the atmosphere. Part 1 of the three-part development of the fallout model is therefore accomplished. Since Part 3 of the model has already been developed, only Part 2 remains to be developed, followed by combination of the three parts into the final model.

APPENDIX A

SYMBOLS USED IN THE REPORT

A.1 A NOTE ON NOTATION

This report uses hydrodynamics, thermodynamics and meteorology. These fields use the same symbols for different quantities; consequently, any notation used must violate some usage. For example, in meteorology x and w are used for ratios of vapor- and liquid-water mass to dry air mass, respectively. But in hydrodynamics the velocity components u, v, w correspond to the coordinates x, y, z. Since z is the usual symbol for the vertical coordinate, as in dp = $-\rho_e g$ dz, inconsistency cannot be avoided.

A.2 SYMBOLS USED IN THE PRESENT REPORT

- a horizontal semi axis of cloud
- b vertical semi axis of cloud
- Cn drag coefficient
- c specific heat of liquid or solid water; speed of sound
- cp specific heat of gas at constant pressure
- cv specific heat of gas at constant volume
- Ek turbulent kinetic energy per unit mass
- es saturation vapor pressure of water
- f fraction of explosion energy, W, contained in fireball at start of rise
- g acceleration of gravity
 - relative humidity

- k2 empirical constant (in eddy viscosity)
- L latent heat of evaporation
- characteristic length
- M molecular weight; Mach number
- m mass of cloud
- p pressure
- $q(x) \quad \frac{1+x/\epsilon}{1+x}$
- R* universal gas constant *
- R_a gas constant of air = $\frac{R}{M_B}$
- R weighted mean value of gas constant = $R_a = \frac{1 + x/\epsilon}{1 + x}$
- r radius of cloud
- S surface area of cloud
- T temperature
- T^* Tq(x), i.e. virtual temperature
- t time
- u vertical velocity
- V volume of cloud
- v characteristic velocity, $v = \sqrt{u^2 + 2 E_k}$ or max(|u|, $\sqrt{2E_k}$)
- W total explosion energy (kilotons)
- w liquid and solid water mass per unit dry air mass
- x mixing ratio (water vapor mass per unit dry air mass)
- z vertical coordinate
- α lapse rate of atmosphere = rate of decrease of temperature with height
- β ratio of gas density to total density of cloud = $\frac{1+x}{1+x+w}$
- γ ratio of specific heats c_p/c_v
- ratio of molecular weights of water and air = 18/29
- λ empirical constant (in entrainment rate)
- ρ density

fraction of fireball energy used to heat air

SUBSCRIPTS

- a air (dry air)
- e ambient (environment) conditions
- h horizontal (radius of cloud)
- o initial condition
- w water or water vapor
- wv water vapor
- w liquid and solid water (i.e. water and ice)

APPENDIX B

CLOUD HEIGHT, CLOUD VELOCITY, AND ENTRAINMENT: POSSIBLE APPROACHES

A set of cloud-rise equations must contain a momentum equation if cloud properties are to be calculated as functions of time. Without a momentum equation, some of these properties, such as size and temperature can be determined as functions of height only, and dynamical properties such as turbulence characteristics cannot be given at all. By a static or quasi-static description of cloud rise we mean one lacking a momentum equation.

B.1 STATIC AND QUASI-STATIC METHODS

Static and quasi-static methods give a maximum cloud height--i.e. tell at what altitude, but not when, to stop cloud rise.

B.1.1 Static Equilibrium

In the static-equilibrium approach, cloud rise stops when cloud temperature equals ambient temperature. Actually the cloud may have enough momentum to rise far beyond this height, meanwhile entraining more air.

B.1.2 Quasi-Static Approach or Energy Balance

While the cloud is hotter or lighter than ambient, it loses potential energy and gains kinetic energy as it rises; when it is cooler or heavier the opposite energy change takes place (for a saturated cloud, latent-heat energy release is also considered).

Using this approach, Ref. 24 calculates temperature in a nonentraining "giant thunderstorm" cloud (observed top, 70,000 ft) by balancing the two areas between the ambient and the cloud (wet adiabatic) temperature vs height curves, namely the areas above and below the intersection of the curves. The cloud picks up kinetic energy while it is warmer, and loses it (above the intersection) while it is cooler. This gives maximum height. For an (entraining) nuclear cloud, the areas would have to be weighted for variation of cloud mass with height.

Weighting the buoyancy vs height function, $\Delta p(z)$, according to cloud mass m, the cloud stops at the height z_1 for which

$$\int_{0}^{z_1} m(z) \triangle \rho(z) dz = 0$$
 (B.1)

Here $\triangle \rho = (\rho_e - \rho)/\rho_e$, where ρ_e and ρ are, respectively ambient and cloud densities. Now the cloud is denser than the environment. To find an equilibrium height, one brings the cloud down again to z_2 , for which

$$\int_{z_1}^{z_2} m \triangle \rho \, dz = 0 \tag{B.2}$$

and then repeats the integration upward to some z3, etc.

If there were no entrainment (i.e., m constant), this method would have the cloud oscillate indefinitely. Actually, m increases with time so that the amplitude of oscillation decreases. That is, entrainment exercises a braking effect. But the braking may be insufficient. Calculation with only this form of drag give excessive velocities and oscillations. (Refs. 17, 25, and calculations made with the set of equations given in this report.)

The additional drag force required can be expressed by a virtual mass, a drag coefficient, or as a coefficient of momentum exchange or momentum loss by turbulence. (Sec. 2.6.2)

The static and quasi-static approaches give minimum and maximum values of maximum cloud height, respectively. Both are energy methods and independent of time. The first disregards momentum completely. The second is an energy-integral method, and disregards any dissipative drag or friction, or either upward or downward motion.

B.2 MOMENTUM EQUATIONS

When a momentum equation is used, if the cloud is "heavier than air" its rate of rise has decreased to zero, the cloud sinks until it again runs out of momentum (as it will in a stable atmosphere even without entrainment). Thus, the cloud performs damped oscillations. With sufficient damping, no oscillations occur because zero rate of rise is approached asymptotically.

If drag other than that due to entrainment is neglected, this approach gives the same buoyancy-height history as the quasi-static balance (App. B.1.2), but also the time history which quasi-static approaches cannot provide.

In a momentum equation, rate of change of cloud momentum (which allows for mass change) is balanced against buoyancy force, and perhaps some decelerating force other than mass change. Without the additional drag, the calculated rate of cloud rise may be excessively high.

Possibilities for the additional retardation term are:

- 1. Virtual mass (potential flow theory)
- 2. Drag coefficient
- 3. Momentum-exchange or loss coefficient.

B.2.1 Potential Flow

The cloud is moving in a fluid that is neither homogeneous nor infinite, and the cloud itself is fluid, not a rigid body, and there is a dissipative loss of momentum to turbulence (Sec. 2.6.2). This suggests that use of potential flow theory for cloud rise must be modified. Nevertheless the potential flow approach may be useful.

In this problem there is not only accelerated flow, but also change in virtual mass, 26 m', due to change both in "sphere" (cloud) volume and in the ratio $T/T_e = \rho_e/\rho$, where T and T_e are, respectively, cloud and ambient temperatures.

If these two changes are considered then

$$\frac{d}{dt} \left((m + m^{\dagger}) u \right) = V (\rho_e - \rho) g$$
where $u = \frac{dz}{dt}$. (B.3)

Since, for flow around a sphere, virtual volume is one half the displaced volume, i.e., m'=(m/2) (ρ_e/ρ), then

$$\frac{du}{dt} = 2\left(\frac{T-T_e}{T+2T_e}\right)g - 2u\left(\frac{T_e}{T+2T_e}\right)\frac{1}{m}\frac{dm}{dt}$$

$$- u\left(\frac{T_e}{T+2T_e}\right)\frac{1}{m}\left(\frac{T}{T_e}\frac{dm}{dt} + m\frac{d(T/T_e)}{dt}\right)$$
(B.4)

The last of the three terms on the right, which corresponds to the change in virtual mass, was omitted in Eq. (31) of Ref. 25.

If, as discussed at the end of Sec. 2.6.2, we allow only for an initial constant virtual mass, $m' = m_0' = m_0 T_0/2T_{eo}$, then Eq. (B.3) becomes

$$\frac{du}{dt} = \frac{m}{m + m_0!} \left[\left(\frac{T}{T_e} - 1 \right) g - \frac{u}{m} \frac{dm}{dt} \right]$$
 (B.5)

The effect of the factor $m/(m+m_0!)$ in the momentum equation, Eq. (3.1), of our set of cloud rise equations (Sec. 3.1), is to avoid unrealistically high initial acceleration. In Eq. (3.1) the presence of water vapor, as well as dry air, in the cloud and in the atmosphere is taken into account, so that the temperatures T and T_e in the momentum equation are replaced by the corresponding virtual temperatures T^* and T_e^* .

The potential flow formula for rise of a bubble with a spherical leading face 4,27 agrees suprisingly well with observations of early cloud rise, for yields up to 14.5 MT. At this and higher yields there may be local transonic flow around equator of cloud and additional pressure drag. (See Sec. 2.6.4) The equation for steady-state rate of rise of an empty bubble, of radius r, is

$$u = \frac{2}{3} \sqrt{gr}$$
 (B.6)

The generalization of this to non-empty bubbles is

$$u = \frac{2}{3} \sqrt{\frac{gr(\rho_e - \rho)}{\rho_e}}$$
 (B.7)

If we accept this rate of rise as equal to the observed rate of rise, then from observed cloud rise, one could estimate the density ratio ρ/ρ_e .

For an ellipsoidal cloud, instead of horizontal radius r, the radius of curvature, r^2/b , may be used, where b is the vertical radius of the cloud.

B.2.2 Drag Coefficients

Writing a momentum equation for the cloud, with a drag term, such as given by Eq. (2.12) in Sec 2.6.2,

$$\frac{d}{dt}$$
 (mu) = $V(\rho_e - \rho) g - c_D(\frac{1}{2} \rho_e u^2)_{\pi r}^2$ (B.8)

where V is the cloud volume, so that for a sphere

$$\frac{d}{dt}(r^3\rho u) = r^3(\rho_e - \rho)g - \frac{3}{8}C_Dr^2\rho_e u^2$$
 (B.9)

If changes in r and u are neglected, then

$$u = \sqrt{\frac{8 \operatorname{gr}(\rho_{e} - \rho)}{3C_{D}\rho_{e}}}$$
 (B.10)

Note the similarity between Eq. (3.10) and the potential-flow equation, Eq. (B.7). Allowing for acceleration and mass change, since $u = \frac{dz}{dt}$,

$$r(\rho_e - \rho) g - \frac{3}{8} C_{D \rho_e} u^2 = u^2 (3\rho \frac{dr}{dz} + r \frac{d\rho}{dz}) + r\rho u \frac{du}{dz}$$
 (B.11)

The two "mass entrainment" terms in parentheses on the right side of Eq. (B.11) act as additional drag terms.

At least for yields of 100-KT and more, cloud diameter approaches or exceeds cloud height, so that in the later stages of cloud rise $\frac{dr}{dz} \geq \ 1/2.$ Since also then $\rho \approx \rho_e$ and C_D is about 0.5,

$$3 \rho \frac{d\mathbf{r}}{dz} \gg \frac{3}{8} c_D \rho_e$$

That is, the drag-coefficient term makes a minor contribution to the total drag. This is confirmed by Ref. 5. But for high yields, early in cloud rise, where we can assume initial cloud density to be about 10% that of ambient air, calculated drag coefficients (to fit observed rate of rise) may be greater than typical high-Reynolds-number values for spheres of 0.5 or less. As with the breakdown of potential flow formulas, one suspects the influence of compressibility. (Sec. 2.6.3)

In any case, the use of the drag concept is questionable. The cloud is a fluid body, and its boundary layer is largely entrained, so that although cloud momentum is lost total kinetic energy is not. This suggests the use of a momentum-exchange or loss function to describe the kinetic energy but not the exact flow pattern of the cloud. Certain entrainment and eddy-viscosity ideas lead to the same mathematical form of the momentum equation as above, but with more physical-intuitive conviction (Sec. 2.6).

B.2.3 Momentum Exchange and Momentum Loss

B.2.3.1 External Exchange. One possible momentum-exchange rule is that, per unit time, a certain fraction of cloud mass is exchanged for an

equal mass (or possibly an equal volume) of ambient air. Since the ambient air is stationary there is a net loss of cloud momentum per mass (i.e., a dilution of momentum) even though mass is not lost. Physically: a parcel of ambient air is entrained by the cloud. Part of the parcel stays in the cloud to increase cloud mass. The rest of the parcel is "mixed out," i.e. it returns to the ambient air, taking with it some of the cloud momentum.

If the "mixed-out" air has been in the cloud long enough to acquire momentum, should it not acquire heat too? The answer is: not if heat transfer requires more thorough mixing. Picture the ambient parcel as entrained and broken into two parts, and one part as ejected. The ejected part has gained momentum, but its interior is undisturbed, so no heat transfer has occurred.

What happens to the lost momentum represented by an exchange term in the momentum equation? The implication is that it is eventually dissipated in the atmosphere without perturbing cloud rise.

The treatment of exchange factor as a constant rather than velocity-dependent is appropriate to environmental turbulence. 28 For the rising atomic cloud, any environmental turbulence is negligible compared with cloud-induced turbulence as an influence on exchange coefficients. In any event, the exchange factor should be less for large than for small clouds unless increased circulation compensates for the smaller area-to-volume ratio.

A semi-theoretical justification for Anderson's 8 cloud rise equation is as follows: in Sutton's 2 diffusion type equation we take the exponent 1.88 of altitude, z, as ≈ 2 , then we get

$$z \propto t^{1/1.88} w^{(1/2)(1/1.88)}$$
, or $z \propto t^{1/2} w^{1/4}$

as in Ref. 8. Taking $1.88 \approx 2$ in Sutton's equation means assuming zero atmospheric turbulence, which is reasonable relative to cloud turbulence.

B.2.3.2 <u>Internal Exchange</u>. Suppose momentum exchange takes place "inside" the cloud rather than on its surface, or that the surface exchange is with air all of which is promptly entrained.

For surface exchange, the sequence would be: (1) internal motion causing momentum exchange near the cloud surface, (2) circulation of fluid "lumps" from front and sides to rear surface (base) of cloud, (3) entrainment of more fluid, (4) loss of momentum and of kinetic energy of rise, and (5) reentry of the randomly moving lumps into the cloud.

Putting these ideas together suggests that the exchanged momentum and the corresponding kinetic energy of directed motion are not simply dumped into the atmosphere, but go into cloud turbulence. The narrowness of the wake in nuclear-cloud photographs also suggests this internal disposal process.

The momentum is not all transferred directly to turbulent kinetic energy. Some of it must go to setting up the observed vortex circulation. But the vortex eventually disappears with degradation of its motion to turbulence, i.e., to smaller, fluctuating vortices or finally to thermal energy; so in calculating the effect of exchanged or "lost" kinetic energy of rise, or accumulated energy of turbulence, on the horizontal cloud diffusion after end of rise, we may ignore the vortex formation and breakdown as intermediate steps in the energy-conversion process.

The set of cloud-rise equations in Sec. 3 uses an internal exchange mechanism. Since this mechanism is closely related to the entrainment mechanism, the two processes are discussed together (Sec. 2.6).

B.3 ENTRAINMENT

One way to idealize entrainment is to consider it as a snowball mechanism, i.e. rolling contact entrainment. Then the question arises: how thick should the layer of air that the cloud rolls up be? Presumably it should be proportional to the ratio of cloud density to

ambient density, as discussed in Sec. 2.6.1. If, aside from that, it is constant, we get

$$\frac{1}{V} \frac{dV}{dz} \sim \frac{1}{r^2}$$

where V = cloud volume, and r = cloud radius. If thickness is inversely proportional to the two-way snowball curvature, we get

 $\frac{1}{V}~\frac{dV}{dz}=$ constant (except for the density ratio); i.e., Machta's model. 1

Another entrainment rule is that rate of cloud mass increase is proportional to rate of rise times cloud surface area. 4, 18 This rule, with modifications is used in our cloud rise equations, in Sec. 3. Since it is closely related to our model of momentum change, the two subjects are discussed together in Sec. 2.6.

APPENDIX C

PHYSICAL CONSTANTS AND ENVIRONMENTAL AND INITIAL CONDITIONS USED IN NUMERICAL SOLUTION OF THE EQUATIONS

All quantities are in the mks system, except explosion energy W, which is in kilotons (KT): $1 \text{ KT} = 4.18 \times 10^{12} \text{ joules}$.

C.1 PHYSICAL CONSTANTS

g = 9.80

 $L = 2.50 \times 10^6$ for vapor to liquid transition

 $L = 2.83 \times 10^6$ for vapor to solid transition

 $R_{\rm A} = 287$

 $\epsilon = 18/29$

C.2 ENVIRONMENTAL CONDITIONS

 $T_e = T_e$, i-1 α_1 $(z-z_{i-1})$ for the ith layer of a 4-layer atmosphere defined recursively by sea-level temperature T_{e0} , the dividing heights 0, z_1 , z_2 , z_3 , and the large rates α_1 , α_2 , α_3 , α_4 .

$$p = p_{i-1} \left(\frac{T_e}{T_e, i-1}\right) \frac{g/R_a\alpha_i}{for the ith of the 4 layers.}$$

Thus p is defined recursively. p_0 is the only independent pressure parameter, besides those specifying T_e .

 T_{eO} and p_O are the values at sea level, z=0, and not at initial height z_O , unless $z_O=0$.

Note that isothermal layers, $\alpha_i = 0$, can not be used, but can be approximated by small absolute α , say $\alpha = .0001$.

 $x_e = h_e \in e_s/p$, where h_e , relative humidity, is given by a quadratic polynomial in z for

$$z \le 10^4$$
 and is taken as 0 for $z > 10^4$

es, saturation vapor pressure, is given by the integrated Clausius - Clapeyron equation:

$$e_s = 611.(T/273)^{-5.13} e^{25.0 (T-273)/T}$$

C.3 INITIAL CONDITIONS

Values are assigned to W, f, ϕ , z_0 . These values, together with the environmental conditions, determine the initial values of m, x, V, r.

 $m_0 = m_{ao} + m_{wo}$, where

$$m_{ao} = \frac{\text{pfW} (4.18 \times 10^{12})}{\int_{T_{eo}}^{T_{o}} c_{pa}(T) dT}$$

$$m_{WO} = \frac{\oint fW (4.18 \times 10^{12})}{\int_{T_{eO}}^{T_{o}} c_{pW}(T)dT + L}$$

 c_{pa} and c_{pw} are quadratic polynomials in T whose coefficients are parameters to be specified.

Strictly, $T_{\rm e}(z_{\rm O})$ should be used in $m_{\rm aO}$ and $m_{\rm wO}$, instead of $T_{\rm eO}$, but the difference (when $z_{\rm O} \neq {\rm o}$) is unimportant because ($T_{\rm O} - T_{\rm eO}$) is large compared to ($T_{\rm e}(z_{\rm O}) - T_{\rm eO}$).

The initial values of x, V, and r are given by

$$x_0 = m_{WO}/m_{80}$$

$$v_o = mR_a T_o^*/p(z_o)$$

$$r_0 = (3V_0/4\pi)^{1/3}$$

APPENDIX D

GLOSSARY OF COMPUTER PRINTOUT SYMBOLS

Symbol in printout	Symbol in text	Comment
Output S	ymbols	
ST	t	
υ	u	
x	x	
T	T	
R	r	After SWITCH TO ELLIPSE R refers to horizontal radius, vertical radius remaining fixed
Z	z	
EK	$\mathbf{E}_{\mathbf{k}}$	
V	v	
WT	w	
TE	\mathtt{T}_{e}	
M	m	
ES	e _g	Saturation water vapor pressure at T. Values of ES printed for T>373 have no physical significance

Symbol in printout	Symbol in text	Comment
P	р	
PW	$P_{1+x/\epsilon}^{x/\epsilon}$	partial pressure of water vapor in cloud
ED	$\frac{1 + x/\epsilon}{k 2^{\frac{ x }{ y }}} \frac{T^*}{T_e^*}$	rate of loss of kinetic energy of rise due to eddy viscosity, per unit mass.
Paramete	er Symbols	
dst		Runge-Kutta step size between $t = 0$ and $t = 1$.
K2	k ₂	
LAMBDA	λ	
C1, C2, C3		Coefficients of polynomial giving
		relative humidity, he, between
W	w	z = 0, $z = 10000$: $h_e = C1 - (C2)z - (C3)z^2$
F	f	
PHI	ø	
TEO	Teo	Sea-level temperature
CHANGE		Value of ST after which Runge-Kutta
		step size changes to DST2
DST2		Runge-Kutta step size when
		ST > CHANGE

Symbol in printout	Symbol in text	Comment
BO, B1, B2		Coefficients of quadratic polynomial in T for $c_{\mbox{\scriptsize pa}}$.
DST1		Runge-Kutta step size for $1 \le ST \le CHANGE$
К		Option in program. $K = 1$, 3 select the "alternate" equations, $K = 1$, 2 select the characteristic length $\mathcal{L} = \mathbf{r}$. $K = 3$, 4 select $\mathcal{L} = 100$. This last value of \mathcal{L} is in a dummy equation in which some other value of \mathcal{L} , such as a Mach-number correction, can be inserted.
Al, A2, A3, A4	α_1 , α_2 , α_3 , α_4	Lapse rates in the 4 layers of the atmosphere
21, Z2, Z3	z ₁ , z ₂ , z ₃	Dividing altitudes of the 4-layer atmosphere
РО	p_{o}	Sea level pressure
ZT		Altitude such that if $Z > ZT$ (SWITCH TO ELLIPSE) cloud vertical radius remains constant (nominal height of tropopause)
DO, D1, D2		Coefficients of quadratic polynomial in T for $\mathbf{c}_{\mathbf{pw}}$.
TF		Freezing point used to select value of L (after SWITCH TO WET)
c 3		See Cl, C2

Symbol in printout	Symbol Text	in	Comment	
PRINT			End time	of computation
RK3			If RK3 =	1 the momentum equation
			contains	the initial virtual mass
			factor.	If RK3 = 0 this factor is
			omitted.	

APPENDIX E

COMPUTER PROGRAM

The following program (App. E-2) has been run on an IBM 7094. An IBM 704 version is also available. The program was written by David Hutchinson of C-E-I-R, Inc.*

E.1 COMMENTS ON THE PROGRAM (By David Hutchinson)

General Remarks.

The integrator used is "Illinois Library Routine D2-DRK1-45-SR" "Double Precision Floating Point Runge Kutta." Double precision was not needed; however, the routine was handy and had been checked out by the programmer at the University of Illinois in August 1963. The extra time required to do the 7094 double-precision operations is negligible compared to the time of the DERIV subroutine which is single-precision FORTRAN coded. The equations are evaluated in double precision (in the 7094 version).

In the 704 version of the integrator (which will run on a 709/90/94), the double-precision 7094 instructions have been replaced by the corresponding single-precision instructions. Now the equations are evaluated in single-precision. This will cause a slight deterioration in accuracy on long runs, but not enough to affect the number of digits printed in this problem.

Because the integrator is double-precision and was not designed to be used with FORTRAN, the FORTRAN program might look curious to some.

^{*}Now at the University of Illinois, Urbana.

All the variables and their derivatives occupy two core locations, 2n and 2n+1. The more significant part is in 2n and the less significant part, which is zero usually, is in 2n+1. This is so because the 7094 double-precision instructions require the more significant part in an even core location. Because FORTRAN II stores its arrays in decending core locations, the derivative $\frac{du}{dt}$, for example, has its more significant part put in DU(2) by the DERIV subroutine. The less significant part is zero which is put into DU(1) once and for all in the MAIN routine.

Punching the data cards.

All the data are punche in the column F fields except K which is punched in a l column I field (column 71 on card 3). At the Oakland installation of C.E.I.R. (where this program was debugged) the version II FORTRAN monitor is used and zeros are punched as 0.0. If a blank field is read (it should be read as minus zero for this program to run correctly) then the field is ignored and the value of the datum which was last read in is used. Hence, data which do not change from one run to the next need not be punched again, except for card 1 where all 7 fields must be punched each time. The five data cards are punched as follows:

Cols	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Card 1	บ	RK3	T	blank	Z	EK	dst	
Card 2	к2	λ	Cl	C2	W	F	ø	
Card 3	TEO	CHANGE	DST2	во	B1	B2	dstl	K (must be in col 71)
Card 4	Al	A2	A3	A4	Z1	Z 2	2 3	PO
Card 5	ZT	DO	Dl	DS	TF	c3	PRINT	
					1			1

4HU	CHINSON-H	UEBSCH NAVAL	RADIOLOGI	CAL LAB.	DIFFUSION	DECK
	FAP					
	COUNT	90				
DLD	OPU	U44371100U	0			
DST	OPD	460 37 110000	10			
DFA	D OPD	03017110000	0			
DFM	P OPD	U26171100U	10			
* U	DI DOUBLE	PRECISION FL	PT. RUNG	E-KUTTA-GI	L L	
	ENTRY	ORK 1				
	NOP					
# R	EPLACE THI	S CARD BY EVE	N PSEUDOP	WHEN IT B	ECOMES OPERATIVE	002
DRK	1 SXA	SR+1				
	SXA	SR+1+2				
	NZ1#	6,4				
	TRA	NEW				
	AXT	8.1				
	ŞXA	SX4,4				
EVA	L ČALL	DERIV				
	AXT	** • 2				
NLO	OP DLD	** • 2				
	DFMP	**				
	DST	**,2				13
	DLD	B+8 + 1				
	DFMP	** . 2				15
	DFAD	** , 2				016
	DFMP	A+8 • 1				
	DST	TS				
	DFAD	** . 2				19
	DST	** . 2				20
	DLD	44.2				021
	DFMP	C+8.1				
	DFAD	TS				
	DFAD	TS				
	DFAD	TS				
	DFAD	** ,2				26
	DST	** •2				27
	TIX	NLOOP • 2 • 2				028
	TIX	EVAL+1+2				029
SR	AXT	** , 1				30
	AXT	** • 2				31
SX4		## 14				32
	TRA	7.4				33
NEV		5,4				34
	STO*	614				35
	STA	NLOOP-1				036
	STA	ZQ-1				37
	ADD	4,4				38
	STA	NLOOP+4				039
	STA	NLOOP+15				040
	STA	NLOOP+16				041
	STA	ZQ 1•4				42
	CLA ADE+	5.4				43
	STA	NLOOP+8				045
	STA	NLOOP+9				045
	CLA	2.4				47
	ADD*	5.4				48
	STA	NLOOP				049
	STA	NLOOP+2				050
	STA	NLOOP+5				051
	STA	NLOOP+1U				052

```
CLA
                3,4
                NLOOP+1
       AXT
                **,1
                **,1
ZQ
       STZ
       TIX
                ZQ.1.1
       TRA
                EVAL-2
       OCT
                200400000000,145000076000
       OCT
                177453730314+144600610316
       OCT
                201665011714+146637635715
       OCT
                176525252525+143252525253
В
       OCT
                602400000000,547000000000
       OCT
                691400000000,546000000000
       OCT
                601400000000,54600000000
                602400000000,547000000000
       OCT
C
       OCT
                600400000000,545000000000
       OCT
                577453730314,544600610316
       OCT
                601665011714,546637635715
       OCT
                6004000000000,545000000000
15
       BSS
       END
       FORTRAN
C
       THIS IS THE MAIN ROUTINE
      DIMENSION PAR(37) +A(74) +Q(16) +DU(2) +DX(2) +DT(2) +DV(2) +DZ(2) +DEK(2)
     2, SMALLT(2,), DRM(2), DUMMY(4), DWT(2)
      COMMON DUMMY .A.DWT.DRM.DU.DX.DT.DV.DZ.DEK.SMALLT.Q.TE.P.P3.P1.P2.N
     2.TE1.TE2.TE3.ED.NZT.RZT.RK3.QI
      EQUIVALENCE (DUMMY(2) + WT) + (DUMMY(4) + RM)
                 , (A(2),U),(A(4),X),(A(6),T),(A(8),V),(A(10),Z),(A(12),EK
      2+Y)+(A(14)+DST)+(A(16)+RK2)+(A(18)+RL)+(A(20)+C1)+(A(22)+C2)+(A(24
     3) • W) • (A(26) • F) • (A(28) • PHI) •
      4(A(30),TEU),(A(32),CHANGE),(A(34),DST2 ),(A(36),B0), (A(38),B1),
      5 (A(40),B2),(A(42),DST1 ), (A(44),K)
      6 (A(46) - A1) - (A(48) - A2) - (A(50) - A3) - (A(52) - A4) - (A(54) - Z1) - (A(56) - Z2)
      7,(A(58),Z3),(A(60),P0),(A(62),ZT),(A(64),D0),(A(66),D1),(A(68),D2)
      8 + (A(70) + TF) + (A(72) + C3) + (A(74) > PRINT)
       INPUT THE INITIAL CONDITIONS FOLLOWED BY DST AND PARAMETERS
C
       READ INPUT TAPE 5.19.PAR
19
       FCRMAT(7F10.0/7F10.0/7F10.0.11/8F10.0/8F10.0)
                    IF T=PAR(3) IS NEGATIVE IT IS A SIGNAL TO STOP
C
       IF(PAR(3))18,4,4
       CALL DUMP
18
        DO 3 I=1,37
       IF FIELD IS BLANK USE LAST PARAMETER VALUE INPUT
 C
       IF(PAR(I))2,33,2
   33 D=PAR(1)+201400000000
В
        IF(D) 3,2,2
       A(2+1)=PAR(1)
 3
       A(2#1-1)=0.
        RK3=X
                                       PRINT THE PARAMETERS
 C
       WRITE OUTPUT TAPE6+17+(A(I)+I=14+74+2)+RK3
```

53

55

56

57

#58

59

060

061

062

63

64

65

66

67

068

069

70

71

72

054

```
FORMAT(5H1DST=F8.5.5H K2=F10.7.9H LAMBDA=F10.6.5H C1=F11.7.5H 2C2=F11.7.4H W=E12.6.4H F=F12.8.6H PHI=F12.8/
17
     3 7HO TEU=F10.6.9H CHANGE=F7.3.7H DST2=F10.4.5H B0=F11.2 .
     4 5H B1=F11.4.5H B2=E12.4.7H DS?1=F7.1.4H K=11/6H0 A1=F8.5.
     55H A2=F8.5+5H A3=F8.5+5H A4=F8.5+5H Z1=F8.0+5H Z2=F8.0+5H Z3
     6=F8.0.5H P0=F9.0/6H0 ZT=F8.0.5H D0=F8.1.5H D1=F8.5.5H D2=F10.
     78.5H TF=F8.1.5H C3=F8.6.8H PRINT=F6.1.6H RK3=F4.1/1HO)
      BN=000000000020
      FL = 0 .
      SMALLT(1)=0.
      SMALLT(2)=0.
       DWT=U.
       DRM=0.
      DU=0.
      DX=0.
      DT=0.
      DV = 0 .
      DZ=0.
      DEK=0.
      10=1
       DWT(2)=0.
       TE=TEO
       TE1=TE0-A1+Z1
       TE2=TE1-A2+(Z2-Z1)
       TE3=TE2-A3+(Z3-Z2)
       XX=9.8/287.
       P1=P0+(TE1/TE0)++(XX/A1)
       P2=P1*(TE2/TE1)**(XX/A2)
       P3=P2+(TE3/TE2)++(XX/A3)
      RMAO=PHI+F+W+4.18E12/(BO+(TO-TEO)+B1/2.+ (TO+TO-TEO+TEO)
           +B2/3. *(TO*TO*TO - TEO*TEO*TEO))
      RMW0=(1.-PHI) #F#W#4.18E12/( DO #(T0-TE0)+ D1/2.#(T0#T0-TE0#TE0)+
          D2/3. *(TO*TO*TO-TEO*TEO*TEO)+2500000.)
C
      SET INITIAL COND. FOR X
      X = RMWO/RMAO
C
                                            SET INITIAL FOR V
       P=P0+((TE0-A1+Z )/TE0)++(XX/A1)
      V=(RMAO+RMWO)+287.4TO+(1.+29.4X/18.)/ (P+(1.+X))
      SET INITIAL COND. FOR R
C
       R=(3.*V/12.5663706)**.3333333333
       RM=RMAO+RMWO
      QI=-5*RM*T*(18-+29-*X)*(1-+XE)/(TE*(18-+29-*XE)*(1-+X))
       N=1
       WT=O.
       RZT=-1.0
       WRITE OUTPUT TAPE 6. 99
                                                           •10H
99
                                   • 7H
                                                      T
       FORMAT(4H ST. 7X.4HU
                                          Х
                                              • 9H
                  .8H EK
                                  SHV
     2 9H
             Z
                                         • 8H
                                              WT
                                                    •9H
                                                           TE
                                                                 •12H
                                    P
                                          •10H
                                                   PW +9H
                                                                ED
             .10H
                      ES
                            . 8H
                                                                    /1H )
     3 M
                                       PRINT INITIAL CONDITIONS
C
       GO TO 35
       PU=U
       PX=X
       PT=T
       PZ=Z
       PEK=EK
       PV=V
       PRM=RM
```

```
C
                                   TAKE A RUNGE-KUTTA STEP
       CALL DRK1(Y.DEK(2).DST.Q(16).UN.FL)
      SMALLT(2)=SMALLT(2)+DST
                               TAKE SMALL STEPS INITIALLY
C
       IF(SMALLT(2)-1.0)8.87.88
87
       DST=DST1
       IF(RZT)888,89,89
88
89
       R=SQRTF(3.*V/(RZT*12.5663706))
       GO TO 35
888
       R=(3.*V/12.5663706)**.3333333333
35
      PW=P*X*29./(18. +29.*X)
      ES=611.* (T/273.)**(-5.13)*EXPF!(25.*(T-273.))/T)
      WRITE OUTPUT TAPE 6+16+SMALLT(2)+U+X+T+R+Z+EK+ V
11
                                                           •WT
                                                                 .TE.RM.
     2ES.P.PW.ED
      FORMAT(F6.1.F 8.1.F9.4.F8.1.F 8.0.F8.0.F7.0.E11.3.F8.4.F7.1.E11.3
16
     2 .F10.0.F9 .0.F8.0 .F12.3)
                 N=1. DRY MODE N=2. WET MODE
C
                                                 N=3. SMALL STEP DRY MODE
       IF (N-2) 150, 154, 1531
150
       IF (ES-PW) 152+152+151
152
       SAVE=DST
       DST=0.5
                      RESTORE VARIABLE VALUES AT START OF LAST STEP
C
       SMALLT(2)=SMALLT(2)-SAVE
       U=PU
       X=PX
       T=PT
       Z=PZ
       EK=PEK
       V=PV
       RM=PRM
       N=3
                          NOW TAKE SMALL STEPS UNTIL ES LESS THAN PW
       GO TO 8
1531
       IF (ES-PW)41.41.8
       DST=SAVE
       N=2
       WRITE OUTPUT TAPE 6,77
       FORMAT(14HOSWITCH TO WET)
77
       GO TO 151
154
       IF(WT+.00000001) 153,153,151
153
       N=1
       WT=0.
       DWT=0.0
       DWT(2)=0.0
       WRITE OUTPUT TAPE 6,66
       FORMAT (14HOSWITCH TO DRY)
66
                      IF RZT IS POSITIVE WE ARE IN ELLIPSOIDAL MODE
151
        IF(RZT)50,1511,1511
                                 SWITCH TO ELLIPSOIDAL IF Z LARGER THAN ZT
50
        IF(Z-ZT)1511,51,51
51
       RZT=R
        WRITE OUTPUT TAPE 6.52
        FORMAT(24H SWITCH TO ELLIPSE+ R=RH)
52
```

```
1511
       IF(SMALLT(2)-CHANGE) 14+ 15+14
15
       DST=DST2
14
       IF(ABSF(T)-10+) 1+20+20
20
       IF(R-1.) 1.21.21
       IF (SMALLT(2)-10.)22.210.210
21
210
       IF(ABSF(DU(2))-+1) 211+22+22
211
       IF (ABSF(U) -. 1) 1.22.22
       IF (SMALLT(_)-PRINT)13. 13. 1
22
13
      IF(Z-10000.*W**.25)8,8,1
      END
#
      FORTRAN
       SUBROUTINE DERIV
      THIS PROGRAM COMPUTES THE DERIVATIVES FOR DRK1
C
                            THIS PROGRAM ENTERED 4 TIMES FOR EACH R-K STEP
      DIMENSION PAR(37) +A(74) +Q(16) +DU(2) +DX(2) +DT(2) +DV(2) +DZ(2) +DEK(2)
     2.SMALLT(2).DRM(2).DUMMY(4) .DWT(2)
      COMMON DUMMY .A .DWT .DRM .DU. DX.DT .DV .DZ.DEK .SMALLT .Q.TE .P.P3.P1 .P2.N
     2.TE1.TE2.TE3.ED.NZT.RZT.RK3.QI
      EQUIVALENCE (DUMMY(2) + WT) + (DUMMY(4) + RM)
                • (A(2)•U)•(A(4)•X)•(A(6)•T)•(A(8)•V)•(A(10)•Z)•(A(12)•EK
     2.Y).(A(14).DST).(A(16).RK2).(A(18).RL).(A(20).C1).(A(22).C2).(A(24
     3) . W) . (A: 26) . F) . (A(28) . PHI) .
     4(A(30),TEU),(A(32),CHANGE)+(A(34),DST2 )+(A(36),B0), (A(38),B1),
     5 (A(40) .B2) . (A(42) .DST1 ) . (A(44) .K)
     6+(A(46)+A1)+(A(48)+A2)+(A(5U)+A3)+(A(52)+A4)+(A(54)+Z1)+(A(56)+Z2)
     7+(A(58)+Z3)+(A(6U)+PU)+(A(62)+ZT)+(A(64)+D0)+(A(66)+D1)+(A(68)+D2)
     8.(A(70).TF).(A(72).C3).(A(74).PRINT)
      DZ(2)=U
                                COMPUTE TE AND P
C
        XX=9.8/287.
        IF(Z-Z1)80.80.81
80
        TE=TEO-A1+Z
        P=PU#(TE/TE0) ##(XX/A1)
        GO TO 89
        IF(Z-Z2)82,82,83
81
82
        TE=TE1-A2+(Z-Z1)
        P=P1*(TE/TE1)**(XX/A2)
        GO (O 89
83
        IF(Z-Z3)84.84.85
        TE=TE2-A3*(Z-Z2)
        P=P2*(TE/TE2)**(XX/A3)
        GO TO 89
85
        TE=TE3-A4+(2-23)
        P=P3*(TE/TE3)**(XX/A4)
8.9
        CONTINUE
62
       IF(Z-10000.)36.36.37
37
       xE=J.
       GO TO 38
        XE = 18 \cdot *(C1 - C2 \cdot Z - C3 \cdot Z \cdot Z) \cdot *
 36
                           611.*(TE/273.)**(~5.13)*EXPF((25.*(TE-273.))/TE
      21/(P#29.)
       CPAI=BO*(T-TE)+B1/2.*(T*T-TE*TE)+B2/3.* (T*T*T-TE*TE*TE)
 38
```

```
CPW=DU + D1*T + D2*T*T
       CP=(B0+B1*T+B2* T*T + X*CPW)/(X+1.)
      QXE=( 1.+XE)/(1.+29.*XE/18.)
      QX = (1.+29.+x/18.)/(1.+x)
      QT=T/TE
       IF(RZT)35,70,70
35
       R~(3.*V/12.5663706)**.3333333333
       SV=3./R
       GO TO 49
70
       R=SQRTF(3.*V/(RZT*12.5663706))
       ECC=SQRTF(R#R-RZT#RZT )/R + 1.0E-15
       SV=3.1415926*(2.*R*R+RZT*RZT* LOGF((1.+ECC)/(1.-ECC))/ECC)/V
49
       J=K
999
        Q7= MAX1F(ABSF(U)+SQRTF(2+EK))
                                                                    DIFUSION
       GO TO (50,50,51,51).J
50
       IF(RZT)53,54,54
53
       R2=R
       GO TO 52
54
       R2=RZT
       GO TO 52
       R2=100.
52
       GO TO (60,61,60,61),J
       DRM(2)=5V+Q7+(1+29+X/18+)+T +RL
60
                                            *RM*GXE/((1.+X+WT)*TE) DIFUSION
       90=1.0
       GO TO 621
       DRM(2) = SV*RM*Q7*RL
61
                                                                    DIFUSION
       QQ = QT+QX+QXE+(1+X)/(1+X+WT)
621
       DU(2)=(9.8*(QT*QX*(1.+X)/(1.+X+WT)*QXE-1.)
                            -(QQ# Q7 #2.*RK2/R2 + DRM(2)/RM)*U 1*
     3 (RM+QI*(1.-RK3))/(RM+QI)
       M=N
       GO TO (100,101,100),M
100
       DX(2)=-(1.+x)*(x-xE)*DRM(2)/(RM*(1.+xE))
       DT(2)=-QX*QT*9.8*U/CP * QXE
                                                 - CPAI+DRM(2)/(CP+RM)
C
                                         RK2 IS K2, RL IS LAMBDA, RM IS M
      DV(2)=(9.8*QXE*
              (1./(287.*QX)-1./CP)*QX*U/TE+(1.-CPAI/(T*CP))*DRM(2)/RM +
     3 11.*DX(2)/(18.*QX*(1.+X)*(1.+X) ) )*V
       GO TO 555
C THIS IS THE WET PART
101
       Q1 = 1  + x *29  /18  
       IF(T-TF)102,103,103
102
       CL=2.83E6
       GO TO 104
       CL=2.5E6
103
104
       Q2 = CL + X/(287 + T)
       Q3 = 18.#C2/( T#29. )
       Q4 = 1. + Q2
       Q5 = 1.+ CL#03/CP
       Q6 = CL*(X-XE)/CP + T-TE
       DT(2)= (-QX+QT+9.8+Q4+U/CP +QXE -Q6+DRM(2)/RM)/Q5
       DX(2) = Q1*(Q3*DT(2) + 9.8*X*U/(287.*TE)*QXE)
      DV(2)=V*( 9.8*(1./(287.*QX)- 1./CP)*QX*Q4*U/(Q5*TE) *QXE
     1 + (1 - Q6/(T*Q5))*DRM(2)/RM)
      DWT(2)=-( 1.+X+WT)*(WT+X-XE)*DRM(2)/((1.+XE)*RM) - DX(2)
       ED=RK2* U*U*Q7 *QQ/R2
555
       DEK(2)= ED - EK+DRM(2)/RM
       RETURN
       END
```

87

REFERENCES

- 1. Machta, L., "Entrainment and the Maximum Height of an Atomic Cloud," Bull. Amer. Meteor. Soc., 37, 215-216 (June 1950).
- 2. Sutton, O. G., "The Atom Bomb Trial as an Experiment in Convection," Weather, 2, 4 (April 1947).
- 3. Sutton, O. G., "Note on 'Entrainment and the Maximum Height of an Atomic Cloud' by Lester Machta," <u>Bull. Amer. Meteor. Soc.</u>, <u>31</u>, 217-218 (June 1950).
- 4. Taylor, G. I., Dynamics of a Mass of Hot Gas Rising in Air, USAEC, MDDC-919 (1945).
- 5. Cheeseman, I. C., and Sams D., On the Rise of an Atomic Cloud, AWRE Report EO/57 (FWE-90), August 1957 (SECRET-RD).
- 6. Grossman, B. H., et al, Atomic Cloud Growth Study, (Operation Teapot Project 9.4) Armed Forces Special Weapons Project, WT-1152, October 1955 (UNCL, declassified from SECRET-RD).
- 7. Davis, C. G., Sowle, D. H., and Hamlin, D. A., <u>Theoretical Studies</u> of the Motion of Bomb Debris (U), Final Report, <u>General Dynamics</u>/
 Convair, Air Force Special Weapons Center, Report No. AFSWC-TR-61-89, October 1962 (SECRET-RD).
- 8. Anderson, A. D., "A Theory for Close-in Fallout From Land Surface Nuclear Bursts," J. Meteor., 18, 431-442 (1961).
- 9. Ford Instrument Company, Fallout Predictor, Final Report, Signal Corps Contract DA 36-039-SC-78185, 30 April 1960 (CONF.).
- 10. Baum, S., Freund, D., and Hogan, M. A., <u>Trajectories and Properties</u> of Slurry Fallout Particles From Water-Surface Nuclear Bursts, <u>USNRDL-TR-724</u>, 28 February 1964.
- 11. Farlow, N. H., "Atmospheric Reactions of Slurry Droplet Fallout,"

 J. Meteor., 17 (August 1960).
- 12. Batchelor, G. K., "The Conditions for Dynamical Similarity of Motion of a Frictionless Perfect-gas Atmosphere," Q. J. Roy. Meteor. Soc., 79, 224 (1953).

- 13. Hess, S. L., <u>Introduction to Theoretical Meteorology</u>, Holt, New York, 1959.
- 14. Brode, H. L., Theoretical Description of the Blast and Fireball for a Sea Level Megaton Explosion (U), RAND RM-2248, ≥ September 1959 (SECRET-RD).
- 15. Brickwedde, F. G., "Temperatures in Atomic Explosions" in Temperature, Vol II, 3rd Symposium on Temperature, Washington, D.C., 28-30 October 1954.
- 16. Fuks, N. A., The Mechanics of Aerosols, U. S. Dept. of Commerce, Office of Technical Services, 1958 (CWL Special Publication 4-12).
- 17. Mason, B. J. and Emig, R., "Calculations of the Ascent of a Saturated Buoyant Parcel With Mixing," Q. J. Roy. Meteor. Soc., 212-222 (1961).
- 18. Morton, B. R., Taylor, G. I., and Turner, J. S., "Turbulent Gravitational Convection From Maintained and Instantaneous Sources," Proc. Roy. Soc., A 234, 1-23 (1956).
- 19. Saffman, P. G. and Turner, J. S., "On the Collision of Drops in Clouds," J. Fluid Mech., 1 (1957).
- 20. Levine, Joseph, "Spherical Vortex Theory of Bubble-Like Motion in Cumulus Clouds," J. Meteor. 16, 653-662 (December 1959).
- 21. Ogura, Y., "The Evolution of a Moist Convective Element in a Shallow Conditionally Unstable Atmosphere, a Numerical Calculation,"
 J. Atmos. Sci. 20, 5, 407-424 (September 1963).
- 22. Austin, J. M. and Fleisher, A., "A Thermodynamic Analysis of Cumulus Convection," J. Meteor., 5, 241-243 (October 1948)
- 23. Court, A., et al, Supplemental Atmospheres, Air Force Cambridge Research Laboratories, AFCRI-62-899, September 1962.
- 24. Vonnegut, B. and Moore, C. B., "Giant Electrical Storms" in Recent Advances in Atmospheric Electricity, Proc. 2nd Conference on Atmospheric Electricity, Portsmouth, N.H., May 1958.
- 25. Rapp, R. R., and Huschke, R. E., On the Behavior of Large, Hot Bubbles in the Atmosphere (U), RAND RM-3605-DASA, June 1963 (SECRET-RD).

- 26. Milne-Thomson, L. M., Theoretical Hydrodynamics, 4th ed., Macmillan, New York, 1960.
- 27. Davies, R. M., and Taylor, G., "The Mechanics of Large Bubbles Rising Through Extended Liquids and Through Liquids in Tubes," Proc. Roy. Soc., A, 200, 375-390 (1950).
- 28. Priestley, C. H. B., <u>Turbulent Transfer in the Lower Atmosphere</u>, University of Chicago Press, Chicago, 1959.

Nuclear Weapons and Effects

INITIAL DISTRIBUTION

Copies	
	NAVY
1 2 1 2 1 1 2 3 1 1 1	Chief, Bureau of Ships (Code 320) Chief, Bureau of Ships (Code 210L) Chief, Bureau of Naval Weapons (RRRE-5) Chief, Bureau of Yards and Docks Chief of Naval Operations (Op-07T) Chief of Naval Operations (Op-07EG) Chief of Naval Operations (Op-03EG) Dir., Naval Research Laboratory Chief of Naval Research (Code 422) CO., Naval Training Device Center Dir., Naval Warfare Analysis (Inst. of Naval Studies Commandant, Marine Corps (AO3H)
	ARMY
1 1 1 1 1 1 1	Chief of Research and Development (Atomic Office) Deputy Chief of Staff for Military Operations (CBR) Chief of Engineers CO., Chemical Research Defense Laboratory CO., Army CBR Combat Dev. Command, Ft. McClellan Commander, Nuclear Defense Lab. Hq., Dugway Proving Ground Dir., USACDS Nuclear Group Dir., Corps of Engineers(Library)
	AIR FORCE
1 1 1 1	Assistant Chief of Staff Intelligence (AFCIN-3B) Dir., USAF Project RAND CG., Special Weapons Center, Kirtland AFB CG., Air Force Cambridge Research Labs. (CRT) Hq., Air Force Technical Applications Center

OTHER DOD ACTIVITIES

3	Dir., Defense Atomic Support Agency (Library)
ĭ	Commander, FC/DASA, Sandia Base (FCTG5, Library)
2	Office of Civil Defense, Washington
20	Defense Documentation Center
2	Central Intelligence Agency (NED)
1	Dir., Defense Research and Engineering
25	Division of Technical Extension, Oak Ridge
	USNRDL
60	Technical Information Division

DISTRIBUTION DATE: 25 June 1964

Naval Radiological Defense Laboratory USNRDL-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time, initial conditions and atmospheric temperature, pressure and humidity, using a parcel method. Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic	1. Atomic clouds. 2. Atmosphere. 3. Radioactive fallout. 4. Nuclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). I. Huebsch, I. O. II. Title.	Mayal Radiological Defense Laboratory USERDI-TR-741 THE DEVELORMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Ruebsch 23 April 1964 96 p. tables 26 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time, initial conditions and atmospheric temperature, pressure and humidity, using a parcel method. Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic	1. Atomic clouds. 2. Atmosphere. 3. Radiosctive fallout. 4. Ruclear explosions. 6. Surface burst. 7. Thulence. 8. Mocals (Simulation). I. Huebsch, I. O. III. Title.
(over)	UNCLASSIFIED	(over)	UNCLASSIFIED
velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on fallout particle formation and fall through the atmosphere is summarized.	nce, so that the er end of rise is Related work on mosphere is summarized,	velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on fallout particle formation and fall through the atmosphere is summarised.	nce, so that the er end of rise is Related work on mosphere is summarized,
	UNCLASSIFIED		UNCLASSIFIED

.

Naval Radiological Defense Laboratory USNROL-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time, initial conditions and atmospheric temperature, pressure and humidity, using a parcel method. Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic,	1. Atomic clouds. 2. Atmosphere. 3. Radioactive fallout. 4. Muclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). I. Huebsch, I. O. III. Title.	Neval Radiological Defense Laboratory USHRDL-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC GLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time, initial conditions and atmospheric temperature, pressure and humidity, using a parcel method. Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic (over)	1. Atomic clouds. 2. Atmosphere. 3. Radioactive fallout. 4. Muclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). II. Huebsch, I. 0. III. Title. III.
velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on fallout particle formation and fall through the atmosphere is summarized.	lence, so that the frer end of rise is Related work on atmosphere is summarized,	velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on fallout particle formation and fall through the atmosphere is summarized.	nce, so that the er end of rise is Related work on mosphere is summarized.
	UNCLASSIFIED		UNCLASSIFIED

Naval Radiological Defense Laboratory USNRDL-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time,	1. Atomic clouds. 2. Atmosphere. 3. Radioactive fallout. 4. Nuclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). II. Huebsch, I. 0.	Naval Radiological Defense Laboratory USHRDL-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time,	1. Atomic clouds. 2. Atmosphere. 3. Radioactive fallout. 4. Muclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). I. Huebsch, I. O. II. Title.
initial conditions and atmospheric temperature, pressure and humidity, using a parcel method. Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic (over)		initial conditions and atmospheric temperature, pressure and humidity, using a parcel method. Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic (over)	HI. UNCLASSIFIED
velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on	ter end of rise is Related work on	velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on	nce, so that the er end of rise is Related work on
fallout particle formation and fall through the atmosphere is summarized.	tmosphere is summarized.	fallout particle formation and fall through the atmosphere is summarized.	Mosphere is summarized,
	UNCIASSIFIED		UNCLASSIFIED

T

T

1. Atcaic clouds. 2. Atmosphere. 3. Radiosctive fallout. 4. Nuclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). I. Huebsch, I. O. III. Title.	UNCLASSIFIED	ter end of rise is Related work on Gmosphere is summarized.	Understrated
Naval Radiological Defense Laboratory USHRDE-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time, initial conditions and atmospheric temperature, pressure and humidity, using a parcel method.	Air entrainment rate is proportional to ratio of cloud density to air density times a characteristic (over)	velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on fallout particle formation and fall through the admosphere is summarized.	
1. Atomic clouds. 2. Atmosphere. 3. Radioactive fallout. 4. Nuclear explosions. 5. Surface burst. 6. Sea water. 7. Turbulence. 8. Models (Simulation). II. Title. III.	UNCLASSIFTED	ence, so that the ter end of rise is Related work on tmosphere is summarized.	UNCLASSIFIED
Naval Radiological Defense Laboratory USHKDL-TR-741 THE DEVELOPMENT OF A WATER-SURFACE-BURST FALLOUT MODEL: THE RISE AND EXPANSION OF THE ATOMIC CLOUD, by I. O. Huebsch 23 April 1964 98 p. tables 28 refs. UNCLASSIFIED Differential equations give cloud height, diameter, temperature, water content, turbulent energy density, etc., as functions of time, initial conditions and atmospheric temperature, pressure and humidity, using a parcel method.	ate of rainment rate is proportional to ratio of cloud density to air density times a characteristic (over)	velocity involving the average velocity of turbulence, so that the late horizontal expansion of high-yield clouds after end of rise is predicted. Computer program and typical output are given. Related work on fallout particle formation and fall through the atmosphere is summarized.	