Stwórz klase Punkt:

Punkt		
Pola (private):	Metody (public):	

Stwórz klase Odcinek:

Odcinek		
Pola (private):	Metody (public): • długość odcinka()	

Stwórz klasę Okrag:

Okrag		
Pola (private):	Metody (public): • styczność()	

Zadeklaruj przyjaźń klasy Odcinek z klasą Punkt, aby metody klasy Odcinek miały dostęp do prywatnych pól klasy Punkt.

- a) **Zainicjalizuj** tablicę 3-elementową odcinków o następujących współrzędnych końców poszczególnych odcinków: **(2 pkt)**
 - 1) (-4, 1), (6, 1)
 - 2) (0, 6), (1, 1)
 - 3) (3, 8), (-3, -2)
- b) Wyświetl długości odcinków z wcześniej utworzonej tablicy. (2 pkt)
- c) Stwórz okrąg o środku w punkcie (0, 0) i promieniu 6. Stwórz również tablicę 10000 okręgów, gdzie: współrzędne środka okręgu są losowane z zakresu x: [-20, 20], y: [-20, 20], a długość promienia z zakresu: [1; 20]. (2 pkt)
- d) Użyj metody styczność(), aby sprawdzić z iloma okręgami z tablicy styka się wewnętrznie a z iloma zewnętrznie utworzony pojedynczy okrąg. (2 pkt)
- e) Stwórz funkcję globalną wypisz(). Funkcja ma przyjmować pojedynczy obiekt dowolnej klasy (użyj przeciążenia funkcji) i wypisywać informacje o obiekcie bezpośrednio odczytując jego pola. Użyj funkcji, aby wyświetlić dane dowolnego odcinka i dowolnego okręgu. Aby wykonać to zadanie użyj deklaracji przyjaźni funkcja ma mieć dostęp do prywatnych pól klasy. (2 pkt)

Wzory:

Długość odcinka w układzie współrzędnych

Długość odcinka o końcach w punktach $A=(x_1,y_1)$ oraz $B=(x_2,y_2)$ wyraża się wzorem:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Wzór na długość odcinka można wyprowadzić z twierdzenia Pitagorasa dla trójkąta prostokątnego ABC:

$$|AB|^2 = |AC|^2 + |BC|^2$$
$$|AB| = \sqrt{|AC|^2 + |BC|^2}$$

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Źródło: matemaks.pl

Okręgi styczne wewnętrznie

Odległość między środkami okręgów $|S_1S_2|$ jest równa różnicy promieni:

$$|S_1S_2| = |R - r|$$

Okręgi styczne zewnętrznie

Odległość między środkami okręgów $|S_1S_2|$ jest równa sumie promieni:

$$|S_1S_2| = R + r$$

Źródło: matmana6.pl