# Correction TD5 Structures de données en langage C Parcours MIPC

### Exercice 1:

1- La racine de l'arbre T : F

2-



**3-** Le nœud **G** a un seul fils gauche mais ne possède pas de fils droit. Sa suppression est simple et elle consiste à faire lier le sous arbre gauche avec le nœud K comme fils droite.

Le nœud E possède deux fils gauche et droit. Sa suppression consiste à trouver le fils le plus à gauche de son arbre droit : c'est le nœud R. Et puisque R est une feuille donc elle suffit de remplacer le nœud E par le nœud R.



# **Exercice 2:**

**1-** On ne peut pas agouter le noeud 11 (duplication)



2 - Parcours préfixé : 8 6 3 2 5 7 11 9 10 12 15 13 16 Parcours infixé : 2 3 5 6 7 8 9 10 11 12 13 15 16 Parcours Postfixé : 2 5 3 7 6 10 9 13 16 15 12 11 8

**3** – Le nœud E possède deux fils gauche (9) et droit (12). Sa suppression consiste à trouver le fils le plus à droit de son arbre gauche : c'est le nœud (10). Et puisque (10) est une feuille donc elle suffit de supprimer le nœud (10) et remplacer la valeur 11 par la valeur 10.



### Exercice 3:

- 1. Il y a 15 nœuds et 8 feuilles.
- 2. Représentation graphique de l'arbre.



3.

Parcours en ordre préfixe :  $* + + a b - c d + * e f \setminus g h$ Parcours en ordre suffixe :  $a b + c d - + e f * g h \setminus + *$ 

## Exercice 2:

Soit l'arbre binaire de recherche ABR suivante :

- 1. Insérer les éléments suivants : 2, 11, 5, 13, 16 dans l'ABR.
- 2. Afficher l'ABR sous les trois types de parcours vus en cours.
- 3. Comment peut-on supprimer le nœud 11 de l'ABR.



### **Exercice 3:**

Soit un arbre binaire étiqueté, donné par un tableau de trois lignes dans lequel pour chaque indice *i* les trois lignes contiennent dans l'ordre :

- l'étiquette du nœud i
- l'indice dans le tableau où se trouve le fils gauche du nœud i, avec par convention 0 si ce dernier n'existe pas
- l'indice dans le tableau où se trouve le fils droit du nœud i, avec par convention 0 si ce dernier n'existe pas.

| Indices | 1 | 2  | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---------|---|----|---|----|---|---|---|---|---|----|----|----|----|----|----|
| Arbre   | a | +  | b | +  | c | * | d | * | e | -  | f  | +  | g  | /  | h  |
|         | 0 | 12 | 0 | 10 | 0 | 5 | 0 | 2 | 0 | 9  | 0  | 1  | 0  | 13 | 0  |
|         | 0 | 6  | 0 | 14 | 0 | 7 | 0 | 4 | 0 | 11 | 0  | 3  | 0  | 15 | 0  |

- 1. Combien de nœuds et de feuilles possèdent cet arbre ?
- 2. Représenter graphiquement l'arbre.
- 3. Donner ses parcours en ordre préfixe, infixe et suffixe.