Association Rules

Carlos Soares

[incluindo materiais gentilmente cedidos por Alípio Jorge, José Luís Borges e os que acompanham Han, Kamber & Pei]

reference materials

• JMM et al. ch. 6

Market Basket Analysis

historical transactions

ongoing purchase

recommend which product?

Plan

- Association rules
- Modeling
- Evaluation
- APRIORI algorithm
- Patterns beyond AR

After the lesson you should be able to

- Identify problems in which association rules can be useful
- Understand basic concepts
 - item, transaction, basket, product
 - recommendation
 - frequent itemset
 - association rule
 - support, confidence and lift
- Perform association rule mining projects using RM
- Interpret and evaluate association rules

Association

Association

~

What goes with what

Given...

- set of objects
 - typically transactions or sets of transactions
- each object is also a set (of items)

... Association Model

http://flic.kr/p/8ntacV

- identify sets of items
 (itemsets) that are
 typically associated in a
 transaction
- ... and itemsets that indicate other itemsets
- Typical examples
 - market baskets
 - credit card transactions
 - website clickstreams
 - DNA analysis

8

Plan

- Association Rules
- Modeling
 - frequent itemset mining
 - association rule mining
- Evaluation
- APRIORI algorithm
- Patterns beyond AR

Itemset Mining: Definition

- Given
 - A set of transactions $D=\{t_1, t_2, ..., t_n\}$
 - each t_i is a set of items/products
 - and a minimum support sup_{min} in [0,1]

- ... find frequent itemsets
 - ALL sets of items X such that

- support(X

Support = relative frequency of the itemset in the transactions

Association Rules: Definition

Antecedent -> Consequent

- Example: {A1, A2} → {A3}
 - read as: if the set of items A1 and A2 is observed, item A3 should also be observed
 - support (same definition as for itemsets)
 - percentage of baskets where co-occurrence is observed
 - estimates Prob(Antecedent ∪ Consequent)
 - example: Prob(A1 & A2 & A3)

confidence

- percentage of cases where the occurrence of {A1, A2} correctly anticipates the occurrence of {A3}
- estimates Prob(Consequent | Antecedent)
 - example: Prob(A3 | A1 & A2)

Association Rules: Interpretation

- {A1, A2} → {A3}
 - when items A1 and A2 are observed, item A3 is also expected

DANGER: NOT NECESSARILY CAUSAL

e.g. gas station{ newspaper} → { gas }

Mining Association Rules: Definition

Given

- a set of transactions $D=\{t_1, t_2, ..., t_n\}$
 - each t_i is a set of items/products
- a minimum support sup_{min} in [0,1]
- and a minimum confidence $conf_{min}$ in [0,1]

• ... find

- ALL rules X
 Y where X and Y are itemsets such that
- support(X \rightarrow Y) >= sup_{min}
- confidence(X → Y) >= conf_{min}

support vs confidence: support

- X → Y
- sup

- conf

support vs confidence: confidence

support vs confidence: what about Y?

Mining Association Rules: from Frequent Itemsets

- Given the frequent itemset {A,B,C}
 - and the support of all its subsets

...we can compute the confidence of the rules

$$\{B,C\} \rightarrow \{A\}$$

$$\{A,C\} \rightarrow \{B\}$$

$$\{A,B\} \rightarrow \{C\}$$

$$\{C\} \rightarrow \{A,B\}$$

$$\{B\} \rightarrow \{A,C\}$$

$$\{A\} \rightarrow \{B,C\}$$

$$\{A,C\} \rightarrow \{B,C\}$$

Plan

- Association Rules
- Modeling
- Evaluation
 - assess the interest of a rule
 - how to apply rules
- APRIORI algorithm
- Patterns beyond AR

Rule Interestingness: in General

- Interesting rule [Silberschatz & Tuzhilin]
 - unexpected: deviation from expected or believed
 - useful (actionable): estimated benefit
- Subjective interest
 - interest depends on user knowledge
 - e.g. rule is unexpected
 - ... identifies business opportunity
 - involves interesting items
 - focus on particular item (e.g., product)
- Objective interest
 - deviation from statistical independence
 - outstanding values

Trivial, inexplicable and Liseless rules rule... (2)19

Rules Interesting and Statistical Independence (1/2)

 A → B may have high support and confidence but is not interesting

```
{ jornal } → { combustivel }
    sup = 5 %
    conf = 95 %
is neither unexpected nor useful
```

- Typically
 - $-A \rightarrow B$ is interesting if A and B are not statistically independent
 - if A and B statistically independent support(A \cup B) ≈ support(A) × support(B) confidence(A \rightarrow B) ≈ confidence(Ø \rightarrow B)

Statistical Independence: an illustrative example

In which case does the presence of A give me any information about the presence of B?

Α	В	С
X		X
X		
		X
		X
X	X	
X	Χ	X
	X	
	Χ	X

Α	В	С
X		X
		X
		X
X	X	
X	X	X
X	X	
	X	X

Rules Interesting and Statistical Independence (2/2)

- Types of measures
 - ratio

$$\frac{probabilidade\,a\;posteriori}{probabilidade\,a\;priori} > 1$$

$$lift(A \to B) = \frac{confidence(A \to B)}{support(B)}$$

conviction
$$(A \rightarrow B) = \frac{\text{support}(\neg B)}{\text{lift}(A \rightarrow \neg B)}$$

difference

probabilidade a posteriori – probabilidade a priori>0

leverage

hypothesis tests

probabilidade a posteriori >> probabilidade a priori?

χ2

Rule Interestingness: Lift

$$lift(A \rightarrow B) = \frac{confiança(A \rightarrow B)}{suporte(B)}$$

- measures "informativeness" of A relative to B
- lift = 1 means A and B are independent

```
{ jornal } \rightarrow { combustível }

sup = 5 %

conf = 95 %

sup(B) = 95%
```

lift({ jornal } → { combustível }) = 1 , logo não acrescenta nada

Which Measure to Use When?

(Tan, Kumar, Sritastava @KDD' 02)

measure	range	formula
-coefficient	-11	P(A,B)-P(A)P(B)
coemercin	11	$\sqrt{P(A)P(\underline{B})(1-P(A))(1-P(B))}$
Yule's Q	-11	$P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)$
·		$P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)$
Yule's Y	-11	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
O 1 ,	1 1	$P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})$
Cohen's	-11	$\frac{\dot{P}(A,B) + P(\overline{A},\overline{B}) - \dot{P}(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
tsky-Shapiro's	$-0.25 \dots 0.25$	P(A,B) - P(A)P(B)
tainty factor	-11	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
dded value	$-0.5 \dots 1$	$\max(P(B A) - P(B), P(A B) - P(A))$
llosgen's Q	-0.330.38	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A B))$
lman-kruskal's	$0 \dots 1$	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
man Kraskars	01	$ 2-\max_{j} P(A_{j}) - \max_{k} P(B_{k}) \\ P(A_{i}, B_{i}) $
al Information	$0 \dots 1$	$\frac{\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i) P(B_J)}}{\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log}$
J-Measure	0 1	$\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log$
)-Measure	0 1	$\max(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
		$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(A B)}{P(\overline{A})})$
Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] = 0$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2})$
$\operatorname{support}$	$0 \dots 1$	P(A,B)
confidence	$0 \dots 1$	max(P(B A), P(A B))
Laplace	$0 \dots 1$	$\max(\frac{\stackrel{NP(A,B)}{+1}}{\stackrel{NP(A)+2}{NP(B)+2}}, \frac{\stackrel{NP(A,B)}{+1}}{\stackrel{NP(B)+2}{NP(B)+2}})$
Cosine	$0 \dots 1$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
		$\sqrt{P(A)P(B)}$
ence(Jaccard)	$0 \dots 1$	$\frac{\mathbf{v} \qquad P(A,B)}{P(A)+P(B)-P(A,B)}$
_confidence	$0 \dots 1$	$\frac{\stackrel{'}{P(A,B)}}{\max(P(A),P(B))}$
odds ratio	$0\ldots\infty$	
Juds Tatio	$0\dots\infty$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
Conviction	$0.5 \ldots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
lift	$0 \dots \infty$	$\frac{P(AB)}{P(A)P(B)} \xrightarrow{P(BA)}$
		$ P(A)P(B) = P(A P(A B) + P(\overline{A B}) $ $ 1 - P(A)P(B) - P(\overline{A})P(\overline{B}) $
ective strength	$0 \dots \infty$	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
χ^2	$0 \dots \infty$	$\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$

Plan

- Association rules
- Modeling
- Evaluation
- APRIORI algorithm
- Patterns beyond AR

APRIORI Algorithm

- Generation of Association Rules
 - 1. identify frequent itemsets
 - support≥ *sup_{min}*
 - 2. generate rules from frequent itemsets
 - confidence $\geq conf_{min}$
- Worst-case scenario
 - all subsets of all transactions are candidates
 - first step is the most important in AR mining
 - for computational reasons

Itemset Lattice for 5 products

Downward Closure to the Rescue!

APRIORI Example (1/3)

APRIORI Example (2/3)

A	В	C	D	Pass	2	candidates {A,B},{A,C},{B,C}
1						(,, _), (,, _), (_ , _)
1	1	1				
		1				
1	1	1	1			
	1					
1			1			
1	1	1				
		1	1			
1	1	1				frequent sets

 $sup_{min} = 0.4$ (i.e., ~4)

 ${A,B},{A,C},{B,C}$

new candidates $\{A,B,C\}$

APRIORI Example (3/3)

A	В	C	D	<u>Pass</u>		lidates B,C}		sup	_{min} = 0.4 e., ~4)
1					_ (/	, ,		(1.	e., ~4)
1	1	1							
		1							
1	1	1	1						
	1								
1			1						
1	1	1							
		1	1						
1	1	1			freque	ent sets			new candidates
	•	•	ļ	l	{A,E	3,C}			none

AR from Frequent Itemsets

- For every frequent itemset X
 - For every non-empty subsets of X, A
 - A ⇒ (X-A) is an AR if confidence is higher than the minimum

$$\frac{\text{support}(X)}{\text{support}(A)} \ge \text{conf}_{\min}$$

- Efficient rule generation
 - confidence does not have an anti-monotone property
 - ... except within the same itemset
 - i.e., confidence is non-increasing as number of items in rule consequent increases
 - given frequent itemset {A,B,C,D}

confidence(ABC \rightarrow D) \geq confidence(AB \rightarrow CD) \geq confidence (A \rightarrow BCD)

APRIORI Issues

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- A few approaches
 - FPGrowth
 - ECLAT
 - CLOSET
 - MaxMiner

Beyond AR

- Frequent pattern mining
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
- Broad applications

beyond AR: subgroup discovery

- find unusual distributions of a variable of interest
 - unusual = x2 different from the population
 - variable of interest <> target
- ...
 understandable

x1

Further Readings

Survey

 Han, J., Cheng, H., Xin, D., Yan, X., 2007. Frequent pattern mining: current status and future directions. *Data Mining* and Knowledge Discovery, 15(1), pp.55–86.

Applications

- Tom Brijs, Gilbert Swinnen, Koen Vanhoof, Geert Wets: Building an Association Rules Framework to Improve Product Assortment Decisions. Data Min. Knowl. Discov. 8(1): 7-23 (2004)
- Singh, P., Thomas, A. C., and Sepulveda, A. 2006. Market basket recommendations for the HP SMB store. SIGKDD Explor. Newsl. 8, 1 (Jun. 2006), 57-64. DOI= http://doi.acm.org/10.1145/1147234.1147243