Using Random Forest to prepare a model on fraud data

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn import preprocessing
from sklearn.metrics import accuracy_score,confusion_matrix
```

In [2]: fraud_data=pd.read_csv('Fraud_check.csv')
 fraud_data

Out[2]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

In [3]: fraud_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Undergrad	600 non-null	object
1	Marital.Status	600 non-null	object
2	Taxable.Income	600 non-null	int64
3	City.Population	600 non-null	int64
4	Work.Experience	600 non-null	int64
5	Urban	600 non-null	object
dt vn	es: int64(3), obi	ect(3)	

dtypes: int64(3), object(3)
memory usage: 28.2+ KB

In [4]: fraud_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Undergrad	600 non-null	object
1	Marital.Status	600 non-null	object
2	Taxable.Income	600 non-null	int64
3	City.Population	600 non-null	int64
4	Work.Experience	600 non-null	int64
5	Urban	600 non-null	object
1.1	' ' (4/2) '	. (2)	

dtypes: int64(3), object(3)
memory usage: 28.2+ KB

In [5]: fraud_data.duplicated().sum()

Out[5]: 0

In [6]: fraud_data.describe(include='all')

Out[6]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
count	600	600	600.000000	600.000000	600.000000	600
unique	2	3	NaN	NaN	NaN	2
top	YES	Single	NaN	NaN	NaN	YES
freq	312	217	NaN	NaN	NaN	302
mean	NaN	NaN	55208.375000	108747.368333	15.558333	NaN
std	NaN	NaN	26204.827597	49850.075134	8.842147	NaN
min	NaN	NaN	10003.000000	25779.000000	0.000000	NaN
25%	NaN	NaN	32871.500000	66966.750000	8.000000	NaN
50%	NaN	NaN	55074.500000	106493.500000	15.000000	NaN
75%	NaN	NaN	78611.750000	150114.250000	24.000000	NaN
max	NaN	NaN	99619.000000	199778.000000	30.000000	NaN

In [7]: corr=fraud_data.corr()
corr

Out[7]:

	Taxable.Income	City.Population	Work.Experience
Taxable.Income	1.000000	-0.064387	-0.001818
City.Population	-0.064387	1.000000	0.013135
Work.Experience	-0.001818	0.013135	1.000000

In [8]: sns.heatmap(corr,annot=True) plt.show()

In [9]: fraud_data

Out [9]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
		•••				
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

```
In [10]: sns.countplot(x='Marital.Status',data=fraud_data)
plt.grid(True)
plt.show()

sns.countplot(x='Urban',data=fraud_data)
plt.grid(True)
plt.show()

sns.countplot(x='Undergrad',data=fraud_data)
plt.grid(True)
plt.show()
```


In [11]: nt('minimum_value : ' , fraud_data['Taxable.Income'].min() ,'\n maxi

minimum_value : 10003
maximun_value : 99619

```
In [12]: #Converting Target variable 'Sales' into categories Low, Medium and
fraud_data['Taxable.Income'] = pd.cut(x=fraud_data['Taxable.Income']
             fraud_data['Taxable.Income']
Out[12]: 0
                       Good
             1
                       Good
             2
                       Good
             3
                       Good
             4
                       Good
                        . . .
             595
                       Good
                       Good
             596
             597
                       Good
                       Good
             598
```

Name: Taxable.Income, Length: 600, dtype: category
Categories (2, object): ['Risky' < 'Good']</pre>

In [13]: fraud_data.head()

Good

599

Out[13]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	Good	50047	10	YES
1	YES	Divorced	Good	134075	18	YES
2	NO	Married	Good	160205	30	YES
3	YES	Single	Good	193264	15	YES
4	NO	Married	Good	27533	28	NO

```
In [14]: sns.countplot(fraud_data['Taxable.Income'])
    plt.grid(True)
    plt.show()
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [15]: fraud_data['Taxable.Income'].value_counts()

Out[15]: Good 476 Risky 124

Name: Taxable.Income, dtype: int64

In [16]: fraud_data = pd.get_dummies(fraud_data,columns = ["Taxable.Income"]

In [17]: fraud_data.head()

Out[17]:

	Undergrad	Marital.Status	City.Population	Work.Experience	Urban	Taxable.Income_Good
0	NO	Single	50047	10	YES	
1	YES	Divorced	134075	18	YES	
2	NO	Married	160205	30	YES	
3	YES	Single	193264	15	YES	
4	NO	Married	27533	28	NO	-

```
In [18]: #subscription to the term deposit
    plt.figure(figsize=(10,6))
    plt.pie(fraud_data['Taxable.Income_Good'].value_counts(),labels=['G
    plt.title('Pie Chart')
    plt.show()
```

Pie Chart

In [21]: #encoding categorical fraud_data label_encoder = preprocessing.LabelEncoder() fraud_data['Undergrad'] = label_encoder.fit_transform(fraud_data['Ufraud_data['Taxable.Income_Good'] = label_encoder.fit_transform(fraud_data['Marital.Status'] = label_encoder.fit_transform(fraud_data['Urban'] = label_encoder.fit_transform(fraud_data['Urban'])

Out [21]:

	Undergrad	Marital.Status	City.Population	Work.Experience	Urban	Taxable.Income_Gc
0	0	2	50047	10	1	
1	1	0	134075	18	1	
2	0	1	160205	30	1	
3	1	2	193264	15	1	
4	0	1	27533	28	0	
•••						
595	1	0	39492	7	1	
596	1	0	55369	2	1	
597	0	0	154058	0	1	
598	1	1	180083	17	0	
599	0	0	158137	16	0	

600 rows × 6 columns

Data Preparation

```
In [22]: X=fraud_data.drop('Taxable.Income_Good',axis=1)
y=fraud_data[['Taxable.Income_Good']]
```

Spliting and Handling imbalanced data

```
In [23]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.
```

```
In [24]: plt.figure(figsize=(10,6))
#train data
ax1 = plt.subplot(121)
line1=plt.pie(y_train.value_counts(),labels=['Good','Risky'],explod
plt.title('Pie Chart train data')

#test data
ax2 = plt.subplot(122)
line2=plt.pie(y_test.value_counts(),labels=['Good','Risky'],explode
plt.title('Pie Chart test data')
plt.show()
```


Model Building

```
In [27]: rf_classifier = RandomForestClassifier(random_state=38)
    rf_classifier.fit(X_train,y_train)

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_14422/5
    93298316.py:2: DataConversionWarning: A column-vector y was passed
    when a 1d array was expected. Please change the shape of y to (n_s
    amples,), for example using ravel().
    rf_classifier.fit(X_train,y_train)
```

Out [27]:

```
RandomForestClassifier
RandomForestClassifier(random_state=38)
```

Grid SearchCv

```
In [29]: #new Model
     rf_classifier_1 = RandomForestClassifier(criterion = 'entropy', rand
     rf_classifier_1.fit(X_train, y_train)
     /var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_14422/9
     95457025.py:3: DataConversionWarning: A column-vector y was passed
     when a 1d array was expected. Please change the shape of y to (n s
     amples,), for example using ravel().
      rf_classifier_1.fit(X_train, y_train)
Out [29]:
                   RandomForestClassifier
     RandomForestClassifier(criterion='entropy', max_depth=2, random_s
      tate=38)
In [30]: y_pred_train = rf_classifier_1.predict(X_train)
     y_pred_test = rf_classifier_1.predict(X_test)
In [31]:
     y_pred_test
1, 1,
          1, 1,
         1, 1,
         1, 1,
         1, 1,
         1, 1,
         1, 1,
         1, 1,
          1, 1])
In [32]: | accuracy_score(y_train,y_pred_train)
Out[32]: 0.7935323383084577
In [33]: |confusion_matrix(y_train,y_pred_train)
```

0,

83], 0, 319]])

Out[33]: array([[

In [34]: print('Classification Report:\n',classification_report(y_train,y_pr

Classification Report: precision recall f1-score support 0.00 0 0.00 0.00 83 1 0.79 1.00 0.88 319 0.79 402 accuracy macro avg 0.40 0.50 0.44 402 0.63 0.79 0.70 402 weighted avg

/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi fication.py:1344: UndefinedMetricWarning: Precision and F-score ar e ill-defined and being set to 0.0 in labels with no predicted sam ples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py:1344: UndefinedMetricWarning: Precision and F-score ar
e ill-defined and being set to 0.0 in labels with no predicted sam
ples. Use `zero division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py:1344: UndefinedMetricWarning: Precision and F-score ar
e ill-defined and being set to 0.0 in labels with no predicted sam
ples. Use `zero_division` parameter to control this behavior.
 warn prf(average, modifier, msg start, len(result))

In [35]: accuracy_score(y_test,y_pred_test)

Out[35]: 0.7929292929292929

In [36]: confusion_matrix(y_test,y_pred_test)

 In [37]: print('Classification Report:\n',classification_report(y_test,y_pre

Classification	Report: precision	recall	f1-score	support
0 1	0.00 0.79	0.00 1.00	0.00 0.88	41 157
accuracy macro avg weighted avg	0.40 0.63	0.50 0.79	0.79 0.44 0.70	198 198 198

/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi fication.py:1344: UndefinedMetricWarning: Precision and F-score ar e ill-defined and being set to 0.0 in labels with no predicted sam ples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py:1344: UndefinedMetricWarning: Precision and F-score ar
e ill-defined and being set to 0.0 in labels with no predicted sam
ples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py:1344: UndefinedMetricWarning: Precision and F-score ar
e ill-defined and being set to 0.0 in labels with no predicted sam
ples. Use `zero_division` parameter to control this behavior.
 warn prf(average, modifier, msg start, len(result))

_warn_pri(average, modifier, msg_start, ten(resuct))

In []:	In [[]:	:				
---------	------	-----	---	--	--	--	--