DODATAK 2

Ako su smjerovi napona i struja kao na slici, vrijede slijedece matrice parametara i pripadne transformacije:

PARAHETRI $\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} & \begin{bmatrix} \frac{y_{22}}{\Delta y} & \frac{-y_{12}}{\Delta y} \\ \frac{-y_{21}}{\Delta y} & \frac{y_{11}}{\Delta y} \end{bmatrix} & \begin{bmatrix} \frac{\Delta h}{h_{22}} & \frac{h_{12}}{h_{22}} \\ \frac{-h_{21}}{h} & \frac{1}{h} \end{bmatrix}$ $h = \begin{bmatrix} \frac{\Delta z}{z_{22}} & \frac{z_{12}}{z_{22}} \\ \frac{-z_{21}}{z_{22}} & \frac{1}{z_{22}} \end{bmatrix} = \begin{bmatrix} \frac{1}{y_{11}} & \frac{-y_{12}}{y_{11}} \\ \frac{y_{21}}{y_{11}} & \frac{\Delta y}{y_{11}} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$ $g = \begin{bmatrix} \frac{1}{z_{11}} & \frac{-z_{12}}{z_{11}} \\ \frac{z_{21}}{z_{11}} & \frac{\Delta z}{z_{11}} \end{bmatrix} = \begin{bmatrix} \frac{\Delta y}{y_{22}} & \frac{y_{12}}{y_{22}} \\ \frac{-y_{21}}{y_{22}} & \frac{1}{y_{22}} \end{bmatrix} = \begin{bmatrix} \frac{h_{22}}{\Delta h} & \frac{-h_{12}}{\Delta h} \\ \frac{-h_{21}}{\Delta h} & \frac{h_{11}}{\Delta h} \end{bmatrix}.$ $A_{1} = \begin{bmatrix} \frac{z_{11}}{z_{21}} & \frac{\Delta z}{z_{21}} \\ \frac{1}{z_{21}} & \frac{z_{22}}{z_{21}} \end{bmatrix} = \begin{bmatrix} \frac{-y_{22}}{y_{21}} & \frac{-1}{y_{21}} \\ \frac{-\Delta y}{y_{21}} & \frac{-y_{11}}{y_{21}} \end{bmatrix} = \begin{bmatrix} \frac{-\Delta h}{h_{21}} & \frac{-h_{11}}{h_{21}} \\ \frac{-h_{22}}{h_{21}} & \frac{-1}{h_{21}} \end{bmatrix}$ $A_{2} \begin{bmatrix} \frac{x_{22}}{z_{12}} & \frac{\Delta z}{z_{12}} \\ \frac{1}{z_{12}} & \frac{z_{11}}{z_{12}} \end{bmatrix} \begin{bmatrix} \frac{-y_{11}}{y_{12}} & \frac{-1}{y_{12}} \\ \frac{-\Delta y}{y_{12}} & \frac{-y_{22}}{y_{12}} \end{bmatrix} \begin{bmatrix} \frac{1}{h_{12}} & \frac{h_{11}}{h_{12}} \\ \frac{h_{22}}{h_{12}} & \frac{\Delta h}{h_{12}} \end{bmatrix}$

DA = AD-BC

PARAMETRI h $\begin{bmatrix} \frac{g_{22}}{\Delta g} & \frac{-g_{12}}{\Delta g} \\ -\frac{c_{21}}{\Delta g} & \frac{c_{11}}{\Delta g} \end{bmatrix} \qquad \begin{bmatrix} \frac{B}{D} & \frac{\Delta A}{D} \\ -\frac{1}{D} & \frac{C}{D} \end{bmatrix} \qquad \begin{bmatrix} \frac{B}{A} & \frac{1}{A} \\ -\frac{\Delta A}{A} & \frac{C}{A} \end{bmatrix}$ $g = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} \frac{C}{A} & \frac{-\Delta A}{A} \\ \frac{1}{A} & \frac{B}{A} \end{bmatrix} \begin{bmatrix} \frac{C}{D} & \frac{-1}{D} \\ \frac{\Delta A}{D} & \frac{B}{D} \end{bmatrix}$ $A_{1} = \begin{bmatrix} \frac{1}{g_{21}} & \frac{g_{22}}{g_{21}} \\ \frac{g_{11}}{g_{21}} & \frac{\Delta g}{g_{21}} \end{bmatrix} \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad \begin{bmatrix} \frac{D}{\Delta A} \\ \frac{C}{\Delta A} \end{bmatrix}$ $\begin{array}{c} A_2 & \begin{bmatrix} \frac{-\Delta g}{g_{12}} & \frac{-g_{22}}{g_{12}} \\ \frac{-g_{11}}{g_{12}} & \frac{-1}{g_{12}} \end{bmatrix} & \begin{bmatrix} \frac{D}{\Delta A} & \frac{B}{\Delta A} \\ \frac{C}{\Delta A} & \frac{A}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C & C \\ \frac{D}{\Delta A} & \frac{A}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} & \frac{D}{\Delta A} \end{bmatrix} & \begin{bmatrix} A & C & C \\ \frac{D}{\Delta A} & \frac{D$

Oznaka A označava determinantů matrice. Na primjer:

$$\Delta z = z_{11}z_{22} - z_{12}z_{21}$$

$$\Delta A = AD - BC$$

Ako su smjerovi napona i struja kao na slici, vrijede slijedece matrice parametara i pripadne transformacije:

PARAHETRI	z	Y , h	h .	
2	z ₁₁ z ₁₂ z ₂₁ z ₂₂	$\begin{bmatrix} \frac{y_{22}}{\Delta y} & \frac{-y_{12}}{\Delta y} \\ \frac{-y_{21}}{\Delta y} & \frac{y_{11}}{\Delta y} \end{bmatrix} \begin{bmatrix} \frac{\Delta h}{h_{22}} & \frac{h_{12}}{h_{22}} \\ \frac{-h_{21}}{h_{22}} & \frac{1}{h_{22}} \end{bmatrix}$		
Y	$\begin{bmatrix} z_{22} & -z_{12} \\ \overline{\Delta z} & \overline{\Delta z} \\ -z_{21} & z_{11} \\ \overline{\Delta z} & \overline{\Delta z} \end{bmatrix}$	$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{h_{11}} & \frac{-h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\Delta h}{h_{11}} \end{bmatrix}$		
h	$\begin{bmatrix} \frac{\Delta z}{z_{22}} & \frac{z_{12}}{z_{22}} \\ \frac{-z_{21}}{z_{22}} & \frac{1}{z_{22}} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{y_{11}} & \frac{-y_{12}}{y_{11}} \\ \frac{y_{21}}{y_{11}} & \frac{\Delta y}{y_{11}} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$		
	$\begin{bmatrix} \frac{1}{z_{11}} & \frac{-z_{12}}{z_{11}} \\ \frac{z_{21}}{z_{11}} & \frac{\Delta z}{z_{11}} \end{bmatrix}$	$\begin{bmatrix} \frac{\Delta y}{y_{22}} & \frac{y_{12}}{y_{22}} \\ \frac{-y_{21}}{y_{22}} & \frac{1}{y_{22}} \end{bmatrix} \begin{bmatrix} \frac{h_{22}}{\Delta h} & \frac{-h_{12}}{\Delta h} \\ \frac{-h_{21}}{\Delta h} & \frac{h_{11}}{\Delta h} \end{bmatrix}$		
1	$\begin{bmatrix} \frac{z_{11}}{z_{21}} & \frac{\Delta z}{z_{21}} \\ \frac{1}{z_{21}} & \frac{z_{22}}{z_{21}} \end{bmatrix}$	$\begin{bmatrix} \frac{-y}{y_{21}} & \frac{-1}{y_{21}} \\ \frac{-\Delta y}{y_{21}} & \frac{-y_{11}}{y_{21}} \end{bmatrix} \begin{bmatrix} \frac{-\Delta h}{h_{21}} & \frac{-h_{11}}{h_{21}} \\ \frac{-h_{22}}{h_{21}} & \frac{-1}{h_{21}} \end{bmatrix}$		
4.	$\begin{bmatrix} \frac{z_{22}}{z_{12}} & \frac{\Delta z}{z_{12}} \\ \frac{1}{z_{12}} & \frac{z_{11}}{z_{12}} \end{bmatrix}$	$\begin{bmatrix} \frac{-y_{11}}{y_{12}} & \frac{-1}{y_{12}} \\ \frac{-\Delta y}{y_{12}} & \frac{-y_{22}}{y_{12}} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{h_{1,2}} & \frac{h_{11}}{h_{12}} \\ \frac{h_{22}}{h_{12}} & \frac{\Delta h}{h_{12}} \end{bmatrix}$		

Te 4 sagn		4	A,
2	1 "E11 E11 E11	\$ \$4 B	8 5
	[E 11 E 11]	[5 5]	[6 6]
*	\$\frac{\delta_{22}}{\varepsilon_{22}} \frac{\varepsilon_{12}}{\varepsilon_{22}}	/ 등 · 아	[4 -1]
	$\begin{bmatrix} -\epsilon_{21} & \frac{1}{\epsilon_{22}} \\ \hline \epsilon_{22} & \epsilon_{23} \end{bmatrix}$	[-1 A]	[- <u>6A</u> D B
	$\left[\begin{array}{ccc} g_{12} & -g_{12} \\ \overline{\Delta g} & \overline{\Delta g} \end{array}\right]$		\[\frac{9}{\lambda} \frac{1}{\lambda} \]
	$\begin{bmatrix} -\epsilon_{21} & \epsilon_{11} \\ \hline -\epsilon_{4} & \bar{\epsilon}_{4} \end{bmatrix}$	[-1 E	-6A C
	[= = =]	[C - AA]	[c -1]
	£2, £22	1 3 7	$\begin{bmatrix} \frac{\Delta A}{D} & \frac{B}{D} \end{bmatrix}$
*	[1 533]	[]	[2 2]
	$\begin{bmatrix} \frac{1}{4} & \frac{4}{22} \\ \frac{4}{41} & \frac{4}{421} \\ \frac{4}{41} & \frac{4}{421} \end{bmatrix}$	C D	· [52 54]
	-44 -5 11]		[A B]
	$\begin{bmatrix} -\epsilon_{11} & -\frac{1}{\epsilon_{12}} \\ \frac{-\epsilon_{11}}{\epsilon_{12}} & \frac{-1}{\epsilon_{12}} \end{bmatrix}$		[c D]

Oznaka & sznadava determinantú matrice. Na primjer:

OSNOVNE KONFIGURACIJE CETVEROPOLA I PRIPADNI PARAMETRI

DODATAK 3	[I.7	TY	V. 7	T 4.
SOUNIAL J	T	= 420	"	1,1
	L-2]	L'ev	1227	[u2

Y-PARAMETRI

$$\begin{bmatrix} u_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} u_2 \\ -I_2 \end{bmatrix}$$

Z-PARAMETRI

	Z	
0-		
0	17	
0-	The state of the s	

$$\begin{bmatrix} z_2 & z_2 \\ z_2 & z_2 \end{bmatrix}$$

$$\begin{bmatrix} z_2 & z_2 \\ z_2 & z_2 \end{bmatrix}$$

$$\begin{bmatrix} z_{1,22} & zz_{2} \\ zz_{2} & zz_{2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{Z_1} & -\frac{2}{Z_1} \\ -\frac{2}{Z_1} & \frac{2}{Z_1} + \frac{1}{2Z_2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{2}, \frac{1}{2Z_2} & -\frac{2}{Z_1} \\ -\frac{2}{Z_1} & \frac{2}{Z_1} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{Z_1 + \frac{Z_2 Z_3}{Z_2 + Z_3}} & \frac{-1}{Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}} \\ \frac{-1}{Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}} & \frac{1}{Z_3 + \frac{Z_1 Z_2}{Z_1 + Z_2}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2}, \frac{1}{2}, & -\frac{1}{2}, \\ -\frac{1}{2}, & \frac{1}{2}, \frac{1}{2}, \\ \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2Z_1} + \frac{1}{2Z_2} & -\left(\frac{1}{2Z_1} - \frac{1}{2Z_2}\right) \\ -\left(\frac{1}{2Z_1} - \frac{1}{2Z_2}\right) & \frac{1}{2Z_1} + \frac{1}{2Z_2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ \frac{1}{2}, & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \cdot \frac{Z_1}{4Z_2} & \frac{Z_1}{2} \\ \frac{1}{2Z_2} & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \frac{Z_1}{2} \\ \frac{1}{2Z_2} & 1 + \frac{Z_1}{4Z_2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_1}{Z_2} + 1 & Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2} \\ \frac{1}{Z_2} & \frac{Z_3}{Z_2} + 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_2}{Z_3} + 1 & Z_2 \\ \frac{1}{Z_1} + \frac{1}{Z_3} + \frac{Z_2}{Z_1 Z_3} & \frac{Z_2}{Z_1} + 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_2 + Z_1}{Z_2 - Z_1} & \frac{2Z_2 Z_1}{Z_2 - Z_1} \\ \\ \frac{2}{Z_2 - Z_1} & \frac{Z_2 + Z_1}{Z_2 - Z_1} \end{bmatrix}$$

$$\begin{bmatrix} Z_1 (Z_2 + Z_3) & Z_1 Z_3 \\ \hline Z_1 + Z_2 + Z_3 & \overline{Z_1 + Z_2 + Z_3} \\ \hline Z_1 Z_3 & Z_3 (Z_1 + Z_2) \\ \hline \overline{Z_1 + Z_2 + Z_3} & \overline{Z_1 + Z_2 + Z_3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_1 + Z_2}{2} & \frac{Z_2 - Z_1}{2} \\ \frac{Z_2 - Z_1}{2} & \frac{Z_1 + Z_2}{2} \end{bmatrix}$$

DEHOVNE KONFIGURACIJE CETVEROPOLA I PRIPADNI PARAMETRI

$$\begin{bmatrix} z_2 & z_2 \\ z_2 & z_2 \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{2} & \frac{1}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} \end{bmatrix} \begin{bmatrix} \frac{2}{2} & \frac{1}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} \end{bmatrix} \begin{bmatrix} \frac{2}{2} & \frac{1}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} \end{bmatrix}$$

$$\begin{bmatrix} 2Z_2 & 2Z_2 \\ & Z_1 \\ 2Z_2 & \frac{Z_1}{2} + 2Z_2 \end{bmatrix}$$

$$\begin{bmatrix} z_1 + z_2 & z_2 \\ z_2 & z_2 + z_3 \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_1(Z_2+Z_3)}{Z_1+Z_2+Z_3} & \frac{Z_1Z_3}{Z_1+Z_2+Z_3} \\ \frac{Z_1Z_3}{Z_1+Z_2+Z_3} & \frac{Z_3(Z_1+Z_2)}{Z_1+Z_2+Z_3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{51} + \frac{2}{2} & \frac{2}{2} - \frac{2}{1} \\ \frac{2}{2} & \frac{2}{2} + \frac{2}{2} \end{bmatrix}$$

DODATES :
$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} U_2 \\ -I_2 \end{bmatrix}$$

Y-PARAMETRI

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{2} & -\frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} \end{bmatrix} = \begin{bmatrix} \frac{2}{2} & -\frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{\overline{Z}_1}, \frac{1}{2\overline{Z}_2} & -\frac{2}{\overline{Z}_1} \\ -\frac{2}{\overline{Z}_1} & \frac{2}{\overline{Z}_1} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{z_{1} + \frac{z_{2}z_{3}}{z_{2} + z_{3}}} & \frac{-1}{z_{1} + z_{3} + \frac{z_{1}z_{3}}{z_{2}}} \\ \frac{-1}{z_{1} + z_{3} + \frac{z_{1}z_{3}}{z_{2}}} & \frac{1}{z_{3} + \frac{z_{1}z_{2}}{z_{1} + z_{2}}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{Z_{1}^{+}} \frac{1}{Z_{2}} & = \frac{1}{Z_{2}} \\ -\frac{1}{Z_{2}} & \frac{1}{Z_{2}^{+}} \frac{1}{Z_{2}^{-}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2Z_1} + \frac{1}{2Z_2} & -\left(\frac{1}{2Z_1} - \frac{1}{2Z_2}\right) \\ -\left(\frac{1}{2Z_1} - \frac{1}{2Z_2}\right) & \frac{1}{2Z_1} + \frac{1}{2Z_2} \end{bmatrix}^{n}$$

A-PARAHETRI

$$\left[\begin{array}{cc}1&z_1\\0&1\end{array}\right]$$

$$\begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 + \frac{Z_1}{4Z_2} & \frac{Z_1}{2} \\ \frac{1}{2Z_2} & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \frac{z_1}{2} \\ \frac{1}{2Z_2} & 1 + \frac{z_1}{4Z_2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_1}{Z_2} + 1 & Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2} \\ \frac{1}{Z_2} & \frac{Z_3}{Z_2} + 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_{2}}{Z_{3}} + 1 & Z_{2} \\ \frac{1}{Z_{1}} + \frac{1}{Z_{3}} + \frac{Z_{2}}{Z_{1}Z_{3}} & \frac{Z_{2}}{Z_{1}} + 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{Z_2 + Z_1}{Z_2 - Z_1} & \frac{2Z_2 Z_1}{Z_2 - Z_1} \\ \frac{2}{Z_2 - Z_1} & \frac{Z_2 + Z_1}{Z_2 - Z_1} \end{bmatrix}$$