CS150A Database

Wenjie Wang

School of Information Science and Technology

ShanghaiTech University

Dec. 23, 2024

Today:

- Analytics and ML in Data Systems:
 - Part 1
 - Data warehouse & Data Lake

Readings:

 Database Management Systems (DBMS), Chapter 25

Transaction Processing vs Analytics

Online Transaction Processing (OLTP)

- Many small queries:
 - Freq. use of indexes
 - Many writes
 - Concurrency and Logging
- Managing the "Now"
 - Source of truth
- Fairly simple queries with few predicates and relations

Online Analytics Processing (OLAP) & Data Mining/ML

- Exploratory Full Table Queries
 - e.g., Agg. Sales Per Market
 - Infrequent (but bulk) writes
 - Limited transaction processing
- Recording the history
 - What was our inventory at the end of last two quarters
- Complex queries with many predicates and many relations

Analytics & ML queries:

- What was our total sales by market last quarter?
 - Summarization
- What is our predicted sales for next quarter?
 - Forecasting
- Which users will likely leave our service?
 - Churn prediction
- If a user buys X what else are they likely to buy?
 - Collaborative filtering & Recommender Systems

Inventory

Data Everywhere

- Stored Across Multiple
 Operational OLTP Systems
 - Different formats (e.g., currency)
 - Different schemas (acquisitions ...)
 - Mission critical
 - Serving live sales traffic
 - Managing inventory
 - ... Be careful!
- Often limited historical data

We would like a consolidated, cleaned, historical snapshot of the data.

Data Warehouse

Collects and organizes historical data from multiple sources

Data is *periodically* **ETL**ed into the data warehouse:

- **Extracted** from remote sources
- Transformed to standard schemas
- Loaded into the (typically) relational system

Extracting Data from Sources

- Need to collect data from multiples sources
 - Various RDBMS vendors
 - Structured files JSON, XML

- Often done using SQL interfaces
- Validate extracted data
 - Flag corrupted records ...

Transforming "Cleaning" Data

Additional data validation and filtering

- Schema manipulation
 - Extract key fields
 - Encoding text
 - Verifying and enforcing constraints

Data normalization (time zones, currency)

Loading Data

- Data is bulk loaded into large relations
 - Fact tables ... (more on this later)
- Update:
 - Indexes
 - Metadata tables: Data about the data
 - When and how was it collected
 - Meaning of fields
 - Updating materialized views ...
- Occasionally move older data to archival storage
 - Data aging

Example Sales Data:

pname	category	price	qty	date	day	city	state	country
Corn	Food	25	25	3/30/16	Wed.	Omaha	NE	USA
Corn	Food	25	8	3/31/16	Thu.	Omaha	NE	USA
Corn	Food	25	15	4/1/16	Fri.	Omaha	NE	USA
Galaxy 1	Phones	18	30	1/30/16	Wed.	Omaha	NE	USA
Galaxy 1	Phones	18	20	3/31/16	Thu.	Omaha	NE	USA
Galaxy 1	Phones	18	50	4/1/16	Fri.	Omaha	NE	USA
Galaxy 1	Phones	18	8	1/30/16	Wed.	Omaha	NE	USA
Peanuts	Food	2	45	3/31/16	Thu.	Seoul		Korea
Galaxy 1	Phones	18	100	4/1/16	Fri.	Seoul		Korea

- Big table: many columns and rows
 - Substantial redundancy \rightarrow expensive to store and access
- Could we organize the data a little better?

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Dimension Tables

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Multidimensional "Cube" of data

Time

Date	Day
3/30/16	Wed.
3/31/16	Thu.
4/1/16	Fri.
	3/30/16 3/31/16

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Dimension Tables

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

- Sales Fact Table
 - Contains only foreign keys → Efficient
- Easy to manage Dimensions
 - Galaxy1 → Phablet: no need to update
 Fact Table
- Normalization
 - Minimizing redundancy

Multidimensional Data: Star Schema

How do we deal with semi-structured and unstructured data?

Do we really want to force a schema on load?

Data Warehouse

How do we **clean** and **organize** this data?

Depends on use ...

How do we **load** and **process** this data in a relation system?

Depends on use ... Can be difficult ... Requires thought ...

Data Lake*

*Still being defined...

[Buzzword Disclaimer]

Text/Log Data

Big Idea:

Maintain a copy of all the data in one place and *free** data consumers to choose how to transform and use it.

Origin of the Data Lake

Attributed to James Dixon, CTO of Pentaho, 2010

"If you think of a **datamart** as a store of bottled water – **cleansed** and **packaged** and **structured** for **easy consumption** – the **data lake** is a **large body of water** in a more **natural state**.

The contents of the data lake **stream in** from a source to fill the lake, and various users of the lake can come to examine, dive in, or **take samples**."

Data Lake

- Store unstructured data in raw form
 - Schema-on-Read: determine the best organization when data is used
 - Contrast: Data Warehouses are Schema-on-Load (ET<u>L</u>)
 - Plan ahead (Fact tables and Dimensions)
- Often much larger than data warehouses
- Technologies
 - Storage: Large distributed file systems (e.g., HDFS)
 - Semi-structured formats (JSON, Parquet)
 - Computation: Map-Reduce
 - Recent trend to add SQL (or SQL like) functionality
- More Agile (?):
 - Don't worry about schema & verification when loading
 - Disaggregated compute and storage → BYOF
 - bring your own compute frameworks ...
- What could go wrong?

- Cultural shift: Curate → Save Everything!
 - Signal to Noise ratio drops ...
- Limited data governance → more agile →
 - What does it contain? What are all the "fields"
 - When and how and from where was it created

 Without cleaning and verification we begin to collect a rich history of dirty data

Limited compatible with traditional tools

Data Lakes *Appear* to be Maturing

- Relational data-models + SQL:
 - **Hive:** SQL on top of Hadoop Map-Reduce
 - SparkSQL: SQL on top of Spark
- Tools are Improving:
 - Better data cleaning
 - Catalog Managers
 - Improved semi-structured "raw" data formats
- Improved data governance
 - Organization are recognizing the issues

Online Analytics Processing (OLAP)

Users interact with multidimensional data:

Constructing ad-hoc and often complex SQL queries

Using graphical tools that to construct queries

Sharing views that summarize data across important dimensions

Cross Tabulation (Pivot Tables)

Item	Color	Quantity				Item	
Desk	Blue	2			Desk	Sofa	Sum
Desk	Red	3		Blue	2	4	6
Sofa	Blue	4	Color	Red	3	5	8
Sofa	Red	5	0	Sum	5	9	14

- Aggregate data across pairs of dimensions
 - **Pivot Tables:** *graphical interface* to select dimensions and aggregation function (e.g., SUM, MAX, MEAN)
 - GROUP BY queries
- > Related to contingency tables and marginalization in stats.
- What about many dimensions?

Cube Operator

 Generalizes crosstabulation to higher dimensions.

➤In SQL:

SELECT Item, Color, **SUM**(Quantity) **AS** QtySum **FROM** Furniture **GROUP BY** *CUBE* (Item, Color);

Item	Color	Quantity
Desk	Blue	2
Desk	Red	3
Sofa	Blue	4
Sofa	Red	5

Item	Color	QtySum
Desk	Blue	2
Desk	Red	3
Desk	*	5
Sofa	Blue	4
Sofa	Red	5
Sofa	*	9
*	*	14
*	Blue	6
*	Red	8

OLAP Queries

• Slicing: selecting a value for a dimension

• Dicing: selecting a range of values in multiple dimension

OLAP Queries

• Rollup: Aggregating along a dimension

• Drill-Down: de-aggregating along a dimension

Reporting and Business Intelligence (BI)

- Use high-level tools to interact with their data:
 - Automatically generate SQL queries
 - Queries can get big!
- Common!

Knowledge Discovery in Databases (KDD)

- Process of extracting knowledge from a data
 - What does this mean?

Descriptive vs. Inferential Statistics

- Descriptive Statistics: describe the sample data
 - Example: Average sales last quarter
 - Can be **measured directly** from the database
- Inferential Statistics: estimate the population
 - Example: Expected sales next quarter
 - May be **estimated** using descriptive statistics

The Basic KDD Process

- Data Selection: What data do I need for a given task?
 - If data was already collected, how was the data collected?
- Data Cleaning: Preparing the data for a given task
 - Typically most challenging (time consuming) part.
 - Why might ETL not be enough?
- Data Mining & ML: Running algorithms to infer patterns
 - The fun part! Many tools, many options, complex tradeoffs.
- Evaluation: Verifying that patterns are significant
 - Algorithms will typically find patterns especially when none exist.

What is Machine Learning?

Study of algorithms that:

- That improve their **performance**
 - Ability to understand what you are saying
- at some task
 - Voice recognition
- through experience
 - Transcribed speech data

-- Prof. Tom Mitchell, CMU

"Machine Learning is the **second best** solution to any problem. The **first best** is of course to **solve the problem** directly."

-- Prof. Yaser S. Abu-Mostafa, *Caltech*

You use ML every day!

What machine learning do you use every day?

- Spam detection
- Voice recognition
- Face tagging on Facebook
- Ad Targeting
- Credit card fraud detection
- Others? ...

Machine Learning Lifecycle

- Typically a time consuming iterative batch process
 - Feature engineering
 - Validation

- Focus is on making fast robust predictions
 - Monitoring and tracking feedback
 - Materialization + fast model inference

Learning: Fitting the Model

Training Data

• X: Features

• Y: Label/Obs.

 Learn a function that generalizes the relationship between X and Y

Function class / Model Family
$$f_{\theta}(X) \to Y - \frac{\text{Labels}}{\text{Observations}}$$

Model Parameters

Finding the Best Parameters

$$f_{\theta}(X) \to Y$$

- Define some **objective** (e.g., prediction error)
- Search for best θ with respect to the objective

Generalization ...

Inference: Rendering Predictions

Evaluating the model on input queries:

$$f_{\hat{\theta}}(X) \to Y$$

- Online vs Offline:
 - Pre-computed **offline**: movie rankings
 - Computed **online** with each query: speech recognition
- May want to track confidence in prediction
- May require additional pre and post-processing
 - Feature lookup, content ranking, etc...

Feedback: Incorporating New Data

- After rendering a prediction we may get feedback on the results of the prediction:
 - Explicit: the correct value was "cat"
 - Implicit: the predicted animal was incorrect
 - Can be **noisy** ...

- Watch out for sample bias:
 - Model affects the data is uses for training in the future
 - Example: only play top40 songs ...

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Classification

Dimensionality

Clustering