Actividad 3: Notación de orden.

Diego Javier Mora Cortés

7 de Noviembre 2022

CUCEI - INGENIERÍA INFORMÁTICA **Algoritmia**

Profesor: David Alejandro Gómez Anaya

Índice

1.	Afirmaciones de orden
	1.1. $n^2 \in O(n^3)$
	1.2. $n^2 \in \Omega(n^3)$
	1.3. $2^n \in \Theta(2^{n+1})$
	1.3. $2^n \in \Theta(2^{n+1})$
2.	Desarrollar algoritmos partiendo de una complejidad
	2.1. O (<i>n</i>)
	2.2. $\Omega(1)$
	2.1. $O(n)$
3.	Evaluar algoritmos según complejidad
	3.1. Algoritmo 1
	3.1. Algoritmo 1
	3.3. Algoritmo 3

1. Afirmaciones de orden

 $\dot{\epsilon}$ Cuáles de las siguientes afirmaciones son verdaderas y cuales son falsas? Demuestre sus respuestas.

1.1.
$$n^2 \in O(n^3)$$

$$n^2 \le cn^3$$

$$1 \le \frac{cn^3}{n^2}$$

$$1 \le cn$$

Verdadero, para cualquier c>0 y $n_0=1$

1.2.
$$n^2 \in \Omega(n^3)$$

$$n^2 \geq cn^3$$

$$1 \geq \frac{cn^3}{n^2}$$

$$1 \geq cn$$

$$\frac{1}{c} \geq n$$
 vemos que: máx $\frac{1}{c} = 1$
$$1 \geq n$$

Falso, para cualquier $c \geq 1, n_0 = 2$

1.3. $2^n \in \Theta(2^{n+1})$

$$2^n \in \mathcal{O}(2^{n+1})$$
$$2^n \le c2^{n+1}$$
$$\frac{2^n}{2^n} \le \frac{c2^{n+1}}{2^n}$$
$$1 \le 2c$$

Verdadero para cualquier $c \geq \frac{1}{2}$ y $n_0 = 1$

$$2^n \in \Omega(2^{n+1})$$
$$2^n \ge c2^{n+1}$$
$$\frac{2^n}{2^n} \ge \frac{c2^{n+1}}{2^n}$$
$$1 \ge 2c$$

Verdadero para cualquier $c \leq \frac{1}{2}$ y $n_0 = 1$

1.4. $n! \in \Theta(n+1)!$

$$n! \in \Omega((n+1)!)$$

$$n! \ge c(n+1)!$$

$$\frac{n!}{n!} \ge \frac{c(n+1)!}{n!}$$

$$1 \ge c(n+1)$$

$$1 \ge cn + c$$

$$\lim_{n \to \infty} 1 \ge \lim_{n \to \infty} cn + c$$

$$1 \ge \infty + c$$

Falso para cualquier $c \in \mathbb{R}^+$

2. Desarrollar algoritmos partiendo de una complejidad

Para las siguientes notaciones de orden, dicte algoritmos que con que su complejidad pertenezca a las notaciones. Calcule la complejidad de sus algoritmos y demuestre la pertenencia a las notaciones.

2.1. O(n)

Entrada: $a[n], q, s \in \mathbb{N}$

Salida: imprime: $a[i] \mid q y s$ son factores

Algorithm 1 Factores en arreglo

- 1: for $i \leftarrow 0$, i < n, i + + do
- 2: if $a[i] \mod q == 0$ and $a[i] \mod s == 0$ then
- 3: **imprime:** a[i]
- 4: end if
- 5: end for

Complejidad

$$T(n) = 2 + \sum_{i=0}^{n-1} (10)$$

$$T(n) = 2 + (n - 1 - 0 + 1)(10)$$

$$T(n) = 2 + (n)(10)$$

$$T(n) = 10n + 2$$

$$T(n) \in O(n)$$

Entrada: $a, b \in \mathbb{N}$ Salida: a + b

Algorithm 2 Suma dos

1: resultado $\leftarrow a + b$ 2: **return** resultado

Complejidad

$$T(n) = 3$$

$$T(n)\in\Omega(1)$$

2.3. $\Theta(\log_2(n))$

Entrada: $n \in \mathbb{N}$

Salida: p | potencia de 2 menor mas cercana a n

Algorithm 3 Potencia cercana

- 1: *p* ← 1
- 2: $cont \leftarrow 0$
- 3: while p < n do
- 4: $p \leftarrow 2 \cdot p$
- 5: cont + +
- 6: end while
- 7: return cont

Complejidad

$$T(n) = 4 + \sum_{1}^{\log_2(n)} (4)$$

$$T(n) = 4 + (\log_2(n) - 1 + 1)(4)$$

$$T(n) = 4 + 4 \cdot \log_2(n)$$

$$T(n) = 4 \cdot \log_2(n) + 4$$

$$T(n) \in \Theta(\log(n))$$

3. Evaluar algoritmos según complejidad

De los siguientes algoritmos, analice su complejidad temporal, determine y demuestre las notaciones O grande, Omega mayúscula y Theta que definen la complejidad de cada algoritmo.

3.1. Algoritmo 1

Algorithm 4 Primer algoritmo

```
1: for i \leftarrow 0, i < n, i + + do
2: for j \leftarrow 0, j < n, j + + do
3: b \leftarrow A[j][i]
4: A[j][i] \leftarrow A[i][j]
5: A[i][j] \leftarrow b
6: end for
7: end for
```

Complejidad

$$T_1(n)$$
: líneas 2-6

$$T_1(n) = 2 + \sum_{j=0}^{n-1} (11)$$

$$T_1(n) = 2 + (n - 1 - 0 + 1)(11)$$

$$T_1(n) = 2 + 11 \cdot n$$

$$T_1(n) = 11n + 2$$

$$T(n) = 2 + \sum_{i=0}^{n-1} (T_1(n))$$

$$T(n) = 2 + (n - 1 - 0 + 1)(T_1(n))$$

$$T(n) = 2 + (n)(T_1(n))$$

$$T(n) = 11n^2 + 2n + 2$$

Comparaciones

$$T(n) \in \Omega(n)$$

$$11n^{2} + 2n + 2 \ge cn \text{ para } n_{0} = 1, c = 1$$

$$T(n) \in \Theta(n^{2})$$

$$11n^{2} + 2n + 2 \in \Omega(n^{2})$$

$$11n^{2} + 2n + 2 \ge cn^{2} \text{ para } n_{0} = 1, c = 1$$

$$11n^{2} + 2n + 2 \le C(n^{2})$$

$$11n^{2} + 2n + 2 \le cn^{2} \text{ para } n_{0} = 1, c = 15$$

$$T(n) \in O(n^{3})$$

$$11n^{2} + 2n + 2 \le cn^{3} \text{ para } n_{0} = 1, c = 15$$

3.2. Algoritmo 2

Algorithm 5 Segundo algoritmo

```
1: for i \leftarrow 1, i \leq n, i + + do

2: for j \leftarrow 1, j \leq i, j + + do

3: sum + +

4: end for

5: for k \leftarrow 1, k \leq n, k + + do

6: A[k] = k - 1

7: end for

8: end for
```

Complejidad

$$T_1(n)$$
: líneas 2-4

$$T_{1}(n) = 2 + \sum_{j=1}^{i} (3)$$

$$T_{1}(n) = 2 + (3)(i - 1 + 1)$$

$$T_{1}(n) = 3 \cdot i + 2$$

$$T_{2}(n) : \text{líneas 5-7}$$

$$T_{2}(n) = 2 + \sum_{k=1}^{n} (5)$$

$$T_{2}(n) = 2 + (n - 1 + 1)(5)$$

$$T_{2}(n) = 5n + 2$$

$$T(n) = 2 + \sum_{i=1}^{n} (T_{1}(n) + T_{2}(n))$$

$$T(n) = \sum_{i=1}^{n} ((3i + 2) + (5n + 2))$$

$$T(n) = \sum_{i=1}^{n} (5n + 4) + \sum_{i=1}^{n} (3i)$$

$$T(n) = n(5n + 4) + \frac{3n(n + 1)}{2}$$

$$T(n) = 5n^{2} + 4n + \frac{3n^{2} + 3n}{2}$$

$$T(n) = \frac{10n^{2} + 8n + 3n^{2} + 3n}{2}$$

$$T(n) = \frac{13n^{2} + 11n}{2}$$

Comparaciones

$$T(n) \in \Omega(1)$$

$$\frac{13n^2+11n}{2} \ge cn$$
 para $n_0=1, c=1$

$$T(n) \in \Theta(n^2)$$

$$\frac{13n^2 + 11n}{2} \in \Omega(n^2)$$

$$\frac{13n^2 + 11n}{2} \ge cn^2$$
 para $n_0 = 1, c = 1$

$$\frac{13n^2+11n}{2}\in \mathcal{O}(n^2)$$

$$\frac{13n^2 + 11n}{2} \le cn^2$$
 para $n_0 = 1, c = 12$

e.g:
$$\frac{13+11}{2} \le 12$$

e.g:
$$12 \le 12$$

 $T(n) \in O(n^3)$

$$\frac{13n^2 + 11n}{2} \le cn^3$$
 para $n_0 = 1, c = 12$

3.3. Algoritmo 3

Algorithm 6 Tercer algoritmo

```
1: for i \leftarrow 0, i < n, i + + do
2: c \leftarrow i
3: while c > 1 do
4: x \leftarrow a + b
5: c \leftarrow c/2
6: end while
7: end for
```

Complejidad

 $T_1(n)$: líneas 3-6

$$T_{1}(n) = 1 + \sum_{i=1}^{\log_{2}(i)} (5)$$

$$T_{1}(n) = 5 \lfloor \log_{2}(i) \rfloor + 1$$

$$T(n) = 2 + \sum_{i=1}^{n} (3 + T_{1}(n))$$

$$T(n) = 2 + \sum_{i=1}^{n} (5 \log_{2}(i) + 4)$$

$$T(n) = 2 + 5 \cdot \sum_{i=1}^{n} (\log_{2}(i)) + \sum_{i=1}^{n} (4)$$

$$T(n) = 2 + 5 \cdot \sum_{i=1}^{n} (\log_{2}(i)) + \sum_{i=1}^{n} (4)$$

$$T(n) = 2 + 5 \cdot \log_{2}(n!) + 4n$$
Dada la aproximacion de Stirling's log(n!) = $n \log(n) - n + \Theta(\log n)$
tenemos:
$$T(n) = 2 + 5 \cdot (n \log(n) - n + \log n + 4n$$

$$T(n) = 2 + 5n \log(n) - 5n + 5 \log n + 4n$$

$$T(n) = 5n \log(n) + 5 \log n - n + 2$$

Comparaciones

$$T(n) \in \Omega(n)$$

$$5n\log(n) + 5\log n - n + 2 \ge cn$$
 para $n_0 = 1, c = 1$
 $T(n) \in \Theta(n\log(n))$

$$5n\log(n) + 5\log n - n + 2 \in \Omega(n\log(n))$$

$$5n \log(n) + 5 \log n - n + 2 \ge n \log(n)$$
 para $n_0 = 1, c = 1$
 $5n \log(n) + 5 \log n - n + 2 \in O(n^2)$

$$5n\log(n) + 5\log n - n + 2 \le cn^2$$
 para $n_0 = 1, c = 12$

$$T(n) \in O(n^2)$$

$$5n\log(n) + 5\log n - n + 2 \le cn^3$$
 para $n_0 = 2, c = 10$