DIAGONALIZAZIOA

1. ariketa

Enuntziatua:

Izan bedi matrize erreala

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

- a) Lortu A matrizearen polinomio karakteristikoa.
- b) Konprobatu Cayley-Hamilton-en teorema betetzen dela
- c) Lortu A matrizearen balio propioak bere anizkoiztasun aljebraikoa adieraziz, eta elkartutako azpiespazio propioak, bakoitzaren oinarri bat emanez
- d) Posible bada, diagonalizatu A matrizea, arrazoitu erantzuna.

Ebazpena

- a) Lortu A matrizearen polinomio karakteristikoa.
 - A matrizea definitu:

$$ln[*]:= \left| A = \{ \{1, 0, 2\}, \{-1, -1, -1\}, \{0, 0, -1\} \} \right|$$

$$Out[*]:= \left| A = \{ \{1, 0, 2\}, \{-1, -1, -1\}, \{0, 0, -1\} \} \right|$$

$$\{\{1,0,2\},\{-1,-1,-1\},\{0,0,-1\}\}$$

Polinomio karakteristikoa:

$$(-1-\lambda)\left(-1+\lambda^2\right)$$

$$In[*]:=$$

$$p2[\lambda_{-}] = CharacteristicPolynomial[A, \lambda]$$

$$polinomio característico$$

$$Out[*]=$$

$$1 + \lambda - \lambda^2 - \lambda^3$$

- b) Konprobatu Cayley Hamilton en teorema betetzen dela
 - Cayley Hamilton en teorema egiaztatzen dela konprobatu:

```
In[0]:=

IdentityMatrix[3] + A - MatrixPower[A, 2] - MatrixPower[A, 3]

matriz identidad potencia matricial potencia matricial
```

Out[0]=

- c) Lortu A matrizearen balio propioak bere anizkoiztasun aljebraikoa adieraziz, eta elkartutako azpiespazio propioak, bakoitzaren oinarri bat emanez.
 - Balio propioak:

```
In[\circ]:= Solve[p[\lambda] == 0, \lambda] resuelve
```

Out[•]=

$$\{\,\{\lambda
ightarrow - \mathbf{1}\}$$
 , $\,\{\lambda
ightarrow - \mathbf{1}\}$, $\,\{\lambda
ightarrow \, \mathbf{1}\}\,\}$

Balio propioak eta bektore propioak:

In[•]:= s = Eigensystem[A]

[autovalores y autove]

Out[•]=

 $\{\{-1, -1, 1\}, \{\{-1, 0, 1\}, \{0, 1, 0\}, \{-2, 1, 0\}\}\}$

- λ_1 = -1 balio propioari elkartutako azpiespazio propioa: $V(\lambda_1)$ =L{(-1,0,1),(0,1,0)}
 - λ_2 = 1 balio propioari elkartutako azpiespazio propioa: $V(\lambda_2) = L\{(-2,1,0)\}$
- d) Posible bada, diagonalizatu A matrizea, arrazoitu erantzuna.
 - A matrizea diagonalizagarria da, balio propioen anizkoiztasun geometrikoa eta aljebrakoa bat direlako. Are gehiago, bektore propioz osatutako \mathbb{R}^3 -ren oinarri bat $\{(-1,0,1),(0,1,0),(-2,1,0)\}$ da.
 - Ondorioz P eta D matrizeak ondorengoak dira:

```
In[•]:= p = Transpose[s[2]] transposición
```

Out[•]=

```
\{ \{-1, 0, -2\}, \{0, 1, 1\}, \{1, 0, 0\} \}
```

In[•]:= MatrixForm [p]

_forma de matriz

Out[•]//MatrixForm=

```
\begin{pmatrix}
-1 & 0 & -2 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{pmatrix}
```

```
{{-1,0,0}, {0,-1,0}, {0,0,1}}
```

2. ariketa

Enuntziatua:

Izan bedi matrize erreala $A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix}$

- a) Lortu A matrizearen polinomio karakteristikoa.
- b) Konprobatu Cayley-Hamilton-en teorema betetzen dela
- c) Lortu A matrizearen balio propioak bere anizkoiztasun aljebraikoa adieraziz, eta elkartutako azpiespazio propioak, bakoitzaren oinarri bat emanez.
- d) Posible bada, diagonalizatu A matrizea, arrazoitu erantzuna

Ebazpena:

- a) Lortu A matrizearen polinomio karakteristikoa. Cayley-Hamilton-en teorema betetzen al da?
 - A matrizea definitu:

Polinomio karakteristikoa:

 $In[\cdot]:=$ $p[\lambda_{-}] = Det[A - \lambda * IdentityMatrix[3]]$ [determinante] matriz identidad

Out[•]=

 $6 + 7 \lambda - \lambda^3$

ln[*]:= $p2[\lambda_{]} = CharacteristicPolynomial[A, <math>\lambda$]

[polinomio característico]

Out[•]=

 $6 + 7 \lambda - \lambda^3$

- b) Konprobatu Cayley-Hamilton-en teorema betetzen dela
 - Cayley Hamilton en teorema egiaztatzen dela konprobatu:

6 * IdentityMatrix[3] + 7 * A - MatrixPower[A, 3]
| matriz identidad | potencia matricial

Out[•]=

 $\{\{0,0,0\},\{0,0,0\},\{0,0,0\}\}$

- c) Lortu A matrizearen balio propioak bere anizkoiztasun aljebraikoa adieraziz, eta elkartutako azpiespazio propioak, bakoitzaren oinarri bat emanez.
 - Balio propioak eta bektore propioak:

s = Eigensystem[A]
[autovalores y autove

Out[•]=

Out[0]=

Out[0]=

$$\{\{3, -2, -1\}, \{\{2, 0, 1\}, \{-1, 0, 2\}, \{0, 1, 0\}\}\}$$

■ Balio propioak:

In[•]:= **S[1]**

 ${3, -2, -1}$

Bektore propioak:

In[•]:= **s[2]**

 $\{\{2,0,1\},\{-1,0,2\},\{0,1,0\}\}$

- λ_1 = 3 balio propioari elkartutako azpiespazio propioa: $V(\lambda_1) = L\{(2,0,1)\}$
 - λ_2 = -2 balio propioari elkartutako azpiespazio propioa: $V(\lambda_2)$ =L{(-1,0,2)}
- λ_3 = -1 balio propioari elkartutako azpiespazio propioa: $V(\lambda_3)$ =L{(0,1,0)}
- d) Posible bada, diagonalizatu A matrizea, arrazoitu erantzuna.
 - A matrizea diagonalizagarria da, balio propioen anizkoiztasun geometrikoa eta aljebrakoa bat direlako. Are gehiago, bektore propioz osatutako \mathbb{R}^3 -ren oinarri bat $\{(2,0,1),(-1,0,2),(0,1,0)\}$ da.
 - Ondorioz P eta D matrizeak ondorengoak dira:

In[•]:= MatrixForm[p]
forma de matriz

Out[•]//MatrixForm=

 $\begin{pmatrix}
2 & -1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 0
\end{pmatrix}$

Out[•]=

 $\{\{3,0,0\},\{0,-2,0\},\{0,0,-1\}\}$

In[•]:= MatrixForm[d]

_forma de matriz

Out[•]//MatrixForm=

 $\begin{pmatrix}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{pmatrix}$

d == Inverse[p].A.p
matriz inversa

Out[•]=

True