F:
$$\mathbb{R} \to \mathbb{R}$$
 in creasing $(s=t \Rightarrow F(s) \leq F(t))$
right - cts $(\chi_n \vee \chi \Rightarrow F(x_n) \to F(x_n))$

extend to
$$f(-\infty) = \lim_{x \to \infty} f(x)$$

 $F(\infty) = \lim_{x \to \infty} F(x)$

$$M_0(\beta) = 0$$

$$M_0(\alpha, b) = F(b) - F(a)$$

$$M_0(\alpha, \infty) = F(\infty) - F(\alpha).$$

extend
$$M_0$$
 to A by $M_0\left(\bigsqcup_{j=1}^n H_j\right) = \sum_{j=1}^n M_0(H_j)$
this is well-defined.

and
$$M(A) = B_{\mathbb{R}}$$
.

Theorem: Mo is a premeasure on A.

of: Suppose
$$(E_n) \subset A$$
 is a seq. of disjoint sets

 $E_n \subseteq A$. Then $E_n \subseteq A$ is a seq. of disjoint h-intervals

 $E_n \subseteq A$. Then $E_n \subseteq A$ is a seq. of disjoint h-intervals

 $E_n \subseteq A$. Then $E_n \subseteq A$ is a seq. of disjoint h-intervals

 $E_n \subseteq A$. Then $E_n \subseteq A$ is a seq. of disjoint sets

 $E_n \subseteq A$. $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq A$.

 $E_n \subseteq$

Page 2

pf of Claus:

$$\frac{5+ep \mid :}{5+ep \mid :} \quad 5+ep \mid : \quad 5+ep \mid$$

Then
$$\forall n \in \mathbb{N}$$
, $\frac{1}{1}(a_{j},b_{j}) \subset \frac{n}{1}(a_{j},b_{j}) = (9,67,$

By monotonicity,

$$\sum_{i}^{n} M_{o}(a_{j},b_{j}) = M_{o}\left(\prod_{i}^{n}(a_{j},b_{j})\right) \leq M_{o}(a_{i}b).$$

For the other direction, let E>0.

. Since F is right cts, $\exists S > 0$ s.t. $F(a+S) - F(a) < \frac{\varepsilon}{0}.$

•
$$\forall j, 7 S_j > 0$$
 s.t. $F(b_j + S_j) - F(b_j) < \frac{S}{2^{j+1}}$.

Observe $\{(a_j, b_j+\delta_j)\}_{j=1}^{\infty}$ is an open cover of $[a+\delta_j, b]$ (compact!).

$$\exists n>0 \quad \text{s.-l.} \quad [a+8, b] \subset \bigcup_{j=1}^{N} (a_j, b_j+\delta_j)$$
.

Then

$$M_{o}(a_{1}b) = F(b) - F(a)$$

$$(F(b) - F(a+s) + \frac{\varepsilon}{2}$$

Page 3

$$= M_{0} (a+s,b] + \frac{\varepsilon}{2}$$

$$\leq M_{0} (\stackrel{\sim}{0}(a_{j},b_{j}+s_{j})) + \frac{\varepsilon}{2}$$

$$\leq \frac{N}{2} M_{0}(a_{j},b_{j}+s_{j}) + \frac{\varepsilon}{2}$$

$$= \frac{N}{2} (F(b_{j}+s_{j}) - F(a_{j})) + \frac{\varepsilon}{2}$$

$$\leq \frac{N}{2} (F(b_{j}) + \frac{\varepsilon}{2} + F(a_{j})) + \frac{\varepsilon}{2}$$

$$= \frac{N}{2} (F(b_{j}) - F(a_{j})) + \frac{\varepsilon}{2}$$

$$\leq \frac{N}{2} (F(b_{j}) - F(a_{j})) + \frac{\varepsilon}{2}$$

$$\leq \frac{N}{2} M_{0} (a_{j},b_{j}) + \frac{\varepsilon}{2}$$

$$\leq \frac{N}{2} M_{0} (a_{j},b_{j}) + \frac{\varepsilon}{2}$$

$$\leq \frac{N}{2} M_{0} (a_{j},b_{j}) + \frac{\varepsilon}{2}$$

$$(\mathbb{R}, A, \mu_{\bullet}) \longrightarrow (\mathbb{R}, P(\mathbb{R}), \mu^{\star}) \longrightarrow (\mathbb{R}, M^{\star}, \mu_{\mathsf{F}})$$

$$\stackrel{!!}{M_{\mathsf{F}}} \mu^{\star}|_{M_{\mathsf{F}}}$$

observe ACMFs. BRCMF.

Call $M_F|_{B_{I\!\!R}}$ the lebesque-Stieltjes measure assoc. to F.

 $_{\circ}$ F=id, call $\mathcal{M}_{F}=:\lambda$, lebesgue mensue. $\mathcal{L}=M_{id}$.

Observe: MF is o-finite.

$$R = \coprod (n, n+iJ),$$

$$n \in \mathbb{Z}$$

$$has finite \mu_{F}, F(n+i) - F(n).$$

Lessque mensure.

Dilation & trublation properties:

for
$$E \subset \mathbb{R}$$
, let $r = \{rx \mid x \in E\}$

$$(v, s \in \mathbb{R})$$

$$E + s = \{x + s \mid x \in E\}$$

 $\frac{1}{1}$ Suppose $E \in \mathcal{L} = \overline{B}_{R}$ for $\lambda|_{B_{R}}$.

- () Forevery rER, rEeI and 1 (rE) = |r|. 1 (E)
- (2) For every SER, E+SEL and $\lambda(E+S) = \lambda(E)$

uniquely characterizes λ by $\lambda(0,1]=1$.

Pf we'll do @ and O is in the notes.

Step 1: since \mathcal{H} is closed under $E \mapsto E + s$, and so is B_{R} , Thun $\lambda_s(E) := \lambda(E + s)$ defines a measure on B_{R} s.t. $\lambda_s = \lambda|_{B_{R}}$.

If $E \in \mathcal{H}$, then $\lambda_s(E) = \lambda(E)$.

Thus $\lambda_s = \lambda$ on A. Thus $\lambda_s = \lambda$ on all of B_R by the extension theorem.

Step 2: if $E \in L$ is λ -null then E+s is also λ -null. Pf by thw, $E \in L$ is λ -null iff $\exists N \in B_R$ s.t. $E \subset N$ and $\lambda(N) = 0$.

> Now E+s c N+s & $\lambda(N+s) = \lambda(N) = 0$ by step! So E+s \in L is $\lambda-m11$.

Now as $\mathcal{L} = \overline{B}_R$ for λ , we see $\lambda_s = \lambda$ on \mathcal{L} .

Facts:

(1) any countable set has beloes give measure 0.

Solution | [[x.]] ([x.]) = 0.

neH

1) The Counter set has lesosgne measure o uncountable