Creating a Sentiment Analysis Web App

Using PyTorch and SageMaker

Deep Learning Nanodegree Program | Deployment

Now that we have a basic understanding of how SageMaker works we will try to use it to construct a complete project from end to end. Our goal will be to have a simple web page which a user can use to enter a movie review. The web page will then send the review off to our deployed model which will predict the sentiment of the entered review.

Instructions

Some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this notebook. You will not need to modify the included code beyond what is requested. Sections that begin with 'TODO' in the header indicate that you need to complete or implement some portion within them. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a # TODO: ... comment. Please be sure to read the instructions carefully!

In addition to implementing code, there will be questions for you to answer which relate to the task and your implementation. Each section where you will answer a question is preceded by a 'Question:' header. Carefully read each question and provide your answer below the 'Answer:' header by editing the Markdown cell.

Note: Code and Markdown cells can be executed using the Shift+Enter keyboard shortcut. In addition, a cell can be edited by typically clicking it (double-click for Markdown cells) or by pressing **Enter** while it is highlighted.

General Outline

Recall the general outline for SageMaker projects using a notebook instance.

- 1. Download or otherwise retrieve the data.
- 2. Process / Prepare the data.
- 3. Upload the processed data to S3.
- 4. Train a chosen model.
- 5. Test the trained model (typically using a batch transform job).
- 6. Deploy the trained model.
- 7. Use the deployed model.

For this project, you will be following the steps in the general outline with some modifications.

First, you will not be testing the model in its own step. You will still be testing the model, however, you will do it by deploying your model and then using the deployed model by sending the test data to it. One of the reasons for doing this is so that you can make sure that your deployed model is working correctly before moving forward.

In addition, you will deploy and use your trained model a second time. In the second iteration you will customize the way that your trained model is deployed by including some of your own code. In addition, your

Step 1: Downloading the data

As in the XGBoost in SageMaker notebook, we will be using the IMDb dataset MDb dataset http://ai.stanford.edu/~amaas/data/sentiment/)

Maas, Andrew L., et al. <u>Learning Word Vectors for Sentiment Analysis</u>
(http://ai.stanford.edu/~amaas/data/sentiment/). In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*.

Association for Computational Linguistics, 2011.

In []:

```
%mkdir ../data
!wget -0 ../data/aclImdb_v1.tar.gz http://ai.stanford.edu/~amaas/data/sentiment/aclImdb
_v1.tar.gz
!tar -zxf ../data/aclImdb_v1.tar.gz -C ../data
```

Step 2: Preparing and Processing the data

Also, as in the XGBoost notebook, we will be doing some initial data processing. The first few steps are the same as in the XGBoost example. To begin with, we will read in each of the reviews and combine them into a single input structure. Then, we will split the dataset into a training set and a testing set.

In [3]:

```
import os
import glob
def read imdb data(data dir='../data/aclImdb'):
    data = \{\}
    labels = {}
    for data_type in ['train', 'test']:
        data[data_type] = {}
        labels[data type] = {}
        for sentiment in ['pos', 'neg']:
            data[data_type][sentiment] = []
            labels[data_type][sentiment] = []
            path = os.path.join(data_dir, data_type, sentiment, '*.txt')
            files = glob.glob(path)
            for f in files:
                with open(f) as review:
                    data[data_type][sentiment].append(review.read())
                    # Here we represent a positive review by '1' and a negative review
 by '0'
                    labels[data_type][sentiment].append(1 if sentiment == 'pos' else 0)
            assert len(data[data_type][sentiment]) == len(labels[data_type][sentiment
]), \
                    "{}/{} data size does not match labels size".format(data_type, sent
iment)
    return data, labels
```

In [4]:

```
data, labels = read_imdb_data()
print("IMDB reviews: train = {} pos / {} neg, test = {} pos / {} neg".format(
            len(data['train']['pos']), len(data['train']['neg']),
            len(data['test']['pos']), len(data['test']['neg'])))
```

IMDB reviews: train = 12500 pos / 12500 neg, test = 12500 pos / 12500 neg

Now that we've read the raw training and testing data from the downloaded dataset, we will combine the positive and negative reviews and shuffle the resulting records.

In [5]:

```
from sklearn.utils import shuffle
def prepare_imdb_data(data, labels):
    """Prepare training and test sets from IMDb movie reviews."""
    #Combine positive and negative reviews and labels
    data_train = data['train']['pos'] + data['train']['neg']
    data_test = data['test']['pos'] + data['test']['neg']
    labels_train = labels['train']['pos'] + labels['train']['neg']
    labels test = labels['test']['pos'] + labels['test']['neg']
    #Shuffle reviews and corresponding labels within training and test sets
    data_train, labels_train = shuffle(data_train, labels_train)
    data_test, labels_test = shuffle(data_test, labels_test)
    # Return a unified training data, test data, training labels, test labets
    return data_train, data_test, labels_train, labels test
```

In [6]:

```
train_X, test_X, train_y, test_y = prepare_imdb_data(data, labels)
print("IMDb reviews (combined): train = {}, test = {}".format(len(train_X), len(test_X)
)))
```

```
IMDb reviews (combined): train = 25000, test = 25000
```

Now that we have our training and testing sets unified and prepared, we should do a quick check and see an example of the data our model will be trained on. This is generally a good idea as it allows you to see how each of the further processing steps affects the reviews and it also ensures that the data has been loaded correctly.

In [7]:

```
print(train_X[100])
print(train_y[100])
```

The ENTIRE MOVIE is flashbacks from the first Boogeyman movie as well as, inexplicably, footage from another Uli Lommel / Suzanna Love film Brainway es. It is framed with some more current (from the early 90's anyway) foota ge that is boring, poorly acted and cheaply shot. Not only is the film alm ost completely flashbacks, they REPEAT the same flashbacks throughout the film. So you see the recycled footage over and over again, as if you had n't seen it already. As if the originals weren't bad enough. I've never se en a movie so padded.... Someone was milking the last dollar out of these films. Total ripoff. And talk about padding... why do I have to write 10 l ines about this trash? If I can convey that it's garbage in 2 lines, that should be enough.

The first step in processing the reviews is to make sure that any html tags that appear should be removed. In addition we wish to tokenize our input, that way words such as entertained and entertaining are considered the same with regard to sentiment analysis.

In [8]:

```
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import *
import re
from bs4 import BeautifulSoup
def review_to_words(review):
    nltk.download("stopwords", quiet=True)
    stemmer = PorterStemmer()
    text = BeautifulSoup(review, "html.parser").get_text() # Remove HTML tags
    text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) # Convert to Lower case
    words = text.split() # Split string into words
    words = [w for w in words if w not in stopwords.words("english")] # Remove stopword
S
   words = [PorterStemmer().stem(w) for w in words] # stem
    return words
```

The review_to_words method defined above uses BeautifulSoup to remove any html tags that appear and uses the nltk package to tokenize the reviews. As a check to ensure we know how everything is working, try applying review_to_words to one of the reviews in the training set.

In [9]:

TODO: Apply review_to_words to a review (train_X[100] or any other review) print(train_X[100]) review_to_words(train_X[100])

The ENTIRE MOVIE is flashbacks from the first Boogeyman movie as well as, inexplicably, footage from another Uli Lommel / Suzanna Love film Brainway es. It is framed with some more current (from the early 90's anyway) foota ge that is boring, poorly acted and cheaply shot. Not only is the film alm ost completely flashbacks, they REPEAT the same flashbacks throughout the film. So you see the recycled footage over and over again, as if you had n't seen it already. As if the originals weren't bad enough. I've never se en a movie so padded.... Someone was milking the last dollar out of these films. Total ripoff. And talk about padding... why do I have to write 10 l ines about this trash? If I can convey that it's garbage in 2 lines, that should be enough.

```
Out[9]:
['entir',
 'movi',
 'flashback',
 'first',
 'boogeyman',
 'movi',
 'well',
 'inexplic',
 'footag',
 'anoth',
 'uli',
 'lommel',
 'suzanna',
 'love',
 'film',
 'brainwav',
 'frame',
 'current',
 'earli',
 '90',
 'anyway',
 'footag',
 'bore',
 'poorli',
 'act',
 'cheapli',
 'shot',
 'film',
 'almost',
 'complet',
 'flashback',
 'repeat',
 'flashback',
 'throughout',
 'film',
 'see',
 'recycl',
 'footag',
 'seen',
 'alreadi',
 'origin',
 'bad',
 'enough',
 'never',
 'seen',
 'movi',
 'pad',
 'someon',
 'milk',
 'last',
 'dollar',
 'film',
 'total',
 'ripoff',
 'talk',
 'pad',
 'write',
 '10',
```

'line',

```
'trash',
'convey',
'garbag',
'2',
'line',
'enough']
```

Question: Above we mentioned that review_to_words method removes html formatting and allows us to tokenize the words found in a review, for example, converting entertained and entertaining into entertain so that they are treated as though they are the same word. What else, if anything, does this method do to the input?

Answer: In addition to html formatting and tokenize of review_to_words method, it also removes stopwords such as "the", "a", "an" which we can ignore them when analyze the review.

The method below applies the review_to_words method to each of the reviews in the training and testing datasets. In addition it caches the results. This is because performing this processing step can take a long time. This way if you are unable to complete the notebook in the current session, you can come back without needing to process the data a second time.

In [10]:

```
import pickle
cache_dir = os.path.join("../cache", "sentiment_analysis") # where to store cache file
os.makedirs(cache dir, exist ok=True) # ensure cache directory exists
def preprocess_data(data_train, data_test, labels_train, labels_test,
                    cache_dir=cache_dir, cache_file="preprocessed_data.pkl"):
    """Convert each review to words; read from cache if available."""
    # If cache_file is not None, try to read from it first
    cache data = None
    if cache_file is not None:
        try:
            with open(os.path.join(cache_dir, cache_file), "rb") as f:
                cache data = pickle.load(f)
            print("Read preprocessed data from cache file:", cache_file)
            pass # unable to read from cache, but that's okay
    # If cache is missing, then do the heavy lifting
    if cache_data is None:
        # Preprocess training and test data to obtain words for each review
        #words_train = list(map(review_to_words, data_train))
        #words_test = list(map(review_to_words, data_test))
        words_train = [review_to_words(review) for review in data_train]
        words_test = [review_to_words(review) for review in data_test]
        # Write to cache file for future runs
        if cache file is not None:
            cache_data = dict(words_train=words_train, words_test=words_test,
                              labels_train=labels_train, labels_test=labels_test)
            with open(os.path.join(cache_dir, cache_file), "wb") as f:
                pickle.dump(cache data, f)
            print("Wrote preprocessed data to cache file:", cache_file)
    else:
        # Unpack data Loaded from cache file
        words_train, words_test, labels_train, labels_test = (cache_data['words_train'
],
                cache data['words test'], cache data['labels train'], cache data['label
s test'])
    return words train, words test, labels train, labels test
```

In [11]:

```
# Preprocess data
train_X, test_X, train_y, test_y = preprocess_data(train_X, test_X, train_y, test_y)
```

Read preprocessed data from cache file: preprocessed data.pkl

Transform the data

In the XGBoost notebook we transformed the data from its word representation to a bag-of-words feature representation. For the model we are going to construct in this notebook we will construct a feature representation which is very similar. To start, we will represent each word as an integer. Of course, some of the words that appear in the reviews occur very infrequently and so likely don't contain much information for the purposes of sentiment analysis. The way we will deal with this problem is that we will fix the size of our working vocabulary and we will only include the words that appear most frequently. We will then combine all of the infrequent words into a single category and, in our case, we will label it as 1.

Since we will be using a recurrent neural network, it will be convenient if the length of each review is the same. To do this, we will fix a size for our reviews and then pad short reviews with the category 'no word' (which we will label 0) and truncate long reviews.

(TODO) Create a word dictionary

To begin with, we need to construct a way to map words that appear in the reviews to integers. Here we fix the size of our vocabulary (including the 'no word' and 'infrequent' categories) to be 5000 but you may wish to change this to see how it affects the model.

TODO: Complete the implementation for the build_dict() method below. Note that even though the vocab size is set to 5000, we only want to construct a mapping for the most frequently appearing 4998 words. This is because we want to reserve the special labels 0 for 'no word' and 1 for 'infrequent word'.

In [12]:

print(train X[100])

['wow', 'unusu', 'one', 'regard', 'usual', 'first', 'movi', 'long', 'strin g', 'sequel', 'best', 'bunch', 'peopl', 'surpris', 'sequel', 'actual', 'be tter', 'tarzan', 'thought', 'movi', 'worst', 'bunch', 'least', 'first', 's ix', 'compris', 'tarzan', 'collect', 'dvd', 'packag', 'gladli', 'watch',
'sequel', 'multipl', 'time', 'sit', 'turkey', 'thank', 'sever', 'charact', 'well', 'let', 'start', 'good', 'news', 'first', 'good', 'plenti', 'actio n', 'lot', 'wild', 'anim', 'display', 'even', 'stock', 'footag', 'see', 'l ion', 'attack', 'crocodil', 'hippo', 'panther', 'name', 'see', 'sever', 'd iffer', 'tribe', 'kind', 'includ', 'pygmi', 'call', 'dwarf', 'movi', 'sin c', 'movi', 'made', 'almost', '75', 'year', 'ago', 'knock', 'realism', 'mo vi', 'long', 'ago', 'best', 'put', 'actor', 'talk', 'front', 'fake', 'back ground' 'howev' 'woissmul' 'lot' 'action' 'accord 'accor ground', 'howev', 'weissmul', 'lot', 'action', 'scene', 'great', 'shape',
'sullivan', 'make', 'well', 'built', 'handsom', 'coupl', 'ever', 'one', 'g olden', 'year', 'cinema', 'film', 'histor', 'valu', 'mani', 'sequel', 'sho w', 'tarzan', 'acquir', 'jane', 'begin', 'learn', 'english', 'languag', 'b ad', 'moment', 'jane', 'parker', 'taken', 'tarzan', 'almost', 'everi', 'sc ene', 'maureen', 'sullivan', 'hyster', 'shriek', 'scream', 'scene', 'scen
e', 'enough', 'give', 'headach', 'ruin', 'film', 'thank', 'calm', 'seque l', 'movi', 'movi', 'also', 'favor', 'great', 'white', 'hunter', 'imag', 'c', 'aubrey', 'smith', 'play', 'jane', 'father', 'neil', 'hamilton', 'har ri', 'holt', 'safari', 'guid', 'shoot', 'everi', 'anim', 'within', 'sigh t', 'whether', 'beast', 'threaten', 'peopl', 'kill', 'happi', 'particularl i', 'smith', 'anoth', 'note', 'bad', 'anyth', 'explain', 'tarzan', 'got', 'jungl', 'first', 'place', 'histori', 'footag', 'grow', 'jane', 'group', 'get', 'certain', 'point', 'africa']

In [30]:

```
import numpy as np
def build_dict(data, vocab_size = 5000):
    """Construct and return a dictionary mapping each of the most frequently appearing
words to a unique integer."""
    # TODO: Determine how often each word appears in `data`. Note that `data` is a list
of sentences and that a
           sentence is a list of words.
    word_count = {} # A dict storing the words that appear in the reviews along with ho
w often they occur
    for i in data:
        for words in i:
            if words in word count:
                word_count[words] += 1
            else:
                word_count[words] = 1
    # TODO: Sort the words found in `data` so that sorted_words[0] is the most frequent
ly appearing word and
            sorted_words[-1] is the least frequently appearing word.
    sorted_words = None
    sorted words = [item[0] for item in sorted(word count.items(), key=lambda x: x[1],
reverse=True)]
    #It provides all words sorted according to frequency.
    #It takes only words rather than their frequency number with enumarate them
    #sorted_words = sorted(word_count.items(), key = lambda item: (-item[1], item[0]))
    #This line of code sorted words as well however, it takes both words and their freq
uency number. We don't want that.
    word_dict = {} # This is what we are building, a dictionary that translates words i
nto integers
    for idx, word in enumerate(sorted_words[:vocab_size - 2]): # The -2 is so that we s
ave room for the 'no word'
        word dict[word] = idx + 2
                                                               # 'infrequent' labels
    return word dict
```

In [31]:

```
word_dict = build_dict(train_X)
```

In [32]:

print(word_dict)

{'movi': 2, 'film': 3, 'one': 4, 'like': 5, 'time': 6, 'good': 7, 'make': 8, 'charact': 9, 'get': 10, 'see': 11, 'watch': 12, 'stori': 13, 'even': 1 4, 'would': 15, 'realli': 16, 'well': 17, 'scene': 18, 'look': 19, 'show': 20, 'much': 21, 'end': 22, 'peopl': 23, 'bad': 24, 'go': 25, 'great': 26, 'also': 27, 'first': 28, 'love': 29, 'think': 30, 'way': 31, 'act': 32, 'p lay': 33, 'made': 34, 'thing': 35, 'could': 36, 'know': 37, 'say': 38, 'se em': 39, 'work': 40, 'plot': 41, 'two': 42, 'actor': 43, 'year': 44, 'com e': 45, 'mani': 46, 'seen': 47, 'take': 48, 'want': 49, 'life': 50, 'neve r': 51, 'littl': 52, 'best': 53, 'tri': 54, 'man': 55, 'ever': 56, 'give': 57, 'better': 58, 'still': 59, 'perform': 60, 'find': 61, 'feel': 62, 'par t': 63, 'back': 64, 'use': 65, 'someth': 66, 'director': 67, 'actual': 68, 'interest': 69, 'lot': 70, 'real': 71, 'old': 72, 'cast': 73, 'though': 7 4, 'live': 75, 'star': 76, 'enjoy': 77, 'guy': 78, 'anoth': 79, 'new': 80, 'role': 81, 'noth': 82, '10': 83, 'funni': 84, 'music': 85, 'point': 86, 'start': 87, 'set': 88, 'girl': 89, 'origin': 90, 'day': 91, 'world': 92, 'everi': 93, 'believ': 94, 'turn': 95, 'quit': 96, 'us': 97, 'direct': 98, 'thought': 99, 'fact': 100, 'minut': 101, 'horror': 102, 'kill': 103, 'act ion': 104, 'comedi': 105, 'pretti': 106, 'young': 107, 'wonder': 108, 'hap pen': 109, 'around': 110, 'got': 111, 'effect': 112, 'right': 113, 'long': 114, 'howev': 115, 'big': 116, 'line': 117, 'famili': 118, 'enough': 119, 'seri': 120, 'may': 121, 'need': 122, 'fan': 123, 'bit': 124, 'script': 12 5, 'beauti': 126, 'person': 127, 'becom': 128, 'without': 129, 'must': 13 0, 'alway': 131, 'friend': 132, 'tell': 133, 'reason': 134, 'saw': 135, 'l ast': 136, 'final': 137, 'kid': 138, 'almost': 139, 'put': 140, 'least': 1 'sure': 142, 'done': 143, 'whole': 144, 'place': 145, 'complet': 146, 'kind': 147, 'expect': 148, 'differ': 149, 'shot': 150, 'far': 151, 'mea n': 152, 'anyth': 153, 'book': 154, 'laugh': 155, 'might': 156, 'name': 15 7, 'sinc': 158, 'begin': 159, '2': 160, 'probabl': 161, 'woman': 162, 'hel p': 163, 'entertain': 164, 'let': 165, 'screen': 166, 'call': 167, 'tv': 1 68, 'moment': 169, 'away': 170, 'read': 171, 'yet': 172, 'rather': 173, 'w orst': 174, 'run': 175, 'fun': 176, 'lead': 177, 'hard': 178, 'audienc': 1 79, 'idea': 180, 'anyon': 181, 'episod': 182, 'american': 183, 'found': 18 4, 'appear': 185, 'bore': 186, 'especi': 187, 'although': 188, 'hope': 18 9, 'keep': 190, 'cours': 191, 'anim': 192, 'job': 193, 'goe': 194, 'move': 195, 'sens': 196, 'dvd': 197, 'version': 198, 'war': 199, 'money': 200, 's omeon': 201, 'mind': 202, 'mayb': 203, 'problem': 204, 'true': 205, 'hou s': 206, 'everyth': 207, 'nice': 208, 'second': 209, 'rate': 210, 'three': 211, 'night': 212, 'follow': 213, 'face': 214, 'recommend': 215, 'produc t': 216, 'main': 217, 'worth': 218, 'leav': 219, 'human': 220, 'special': 221, 'excel': 222, 'togeth': 223, 'wast': 224, 'everyon': 225, 'sound': 22 6, 'john': 227, 'hand': 228, '1': 229, 'father': 230, 'later': 231, 'eye': 232, 'said': 233, 'view': 234, 'instead': 235, 'review': 236, 'boy': 237, 'high': 238, 'hour': 239, 'miss': 240, 'talk': 241, 'classic': 242, 'wif e': 243, 'understand': 244, 'left': 245, 'care': 246, 'black': 247, 'deat h': 248, 'open': 249, 'murder': 250, 'write': 251, 'half': 252, 'head': 25 3, 'rememb': 254, 'chang': 255, 'viewer': 256, 'fight': 257, 'gener': 258, 'surpris': 259, 'short': 260, 'includ': 261, 'die': 262, 'fall': 263, 'les s': 264, 'els': 265, 'entir': 266, 'piec': 267, 'involv': 268, 'pictur': 2 69, 'simpli': 270, 'top': 271, 'home': 272, 'power': 273, 'total': 274, 'u sual': 275, 'budget': 276, 'attempt': 277, 'suppos': 278, 'releas': 279, 'hollywood': 280, 'terribl': 281, 'song': 282, 'men': 283, 'possibl': 284, 'featur': 285, 'portray': 286, 'disappoint': 287, 'poor': 288, '3': 289, 'coupl': 290, 'stupid': 291, 'camera': 292, 'dead': 293, 'wrong': 294, 'lo w': 295, 'produc': 296, 'either': 297, 'video': 298, 'aw': 299, 'definit': 300, 'except': 301, 'rest': 302, 'given': 303, 'absolut': 304, 'women': 30 5, 'lack': 306, 'word': 307, 'writer': 308, 'titl': 309, 'talent': 310, 'd ecid': 311, 'full': 312, 'perfect': 313, 'along': 314, 'style': 315, 'clos e': 316, 'truli': 317, 'school': 318, 'save': 319, 'emot': 320, 'sex': 32 1, 'age': 322, 'next': 323, 'bring': 324, 'mr': 325, 'case': 326, 'kille r': 327, 'heart': 328, 'comment': 329, 'sort': 330, 'creat': 331, 'perha p': 332, 'came': 333, 'brother': 334, 'sever': 335, 'joke': 336, 'art': 33

7, 'dialogu': 338, 'game': 339, 'small': 340, 'base': 341, 'flick': 342, 'written': 343, 'sequenc': 344, 'meet': 345, 'earli': 346, 'often': 347, 'other': 348, 'mother': 349, 'develop': 350, 'humor': 351, 'actress': 352, 'consid': 353, 'dark': 354, 'guess': 355, 'amaz': 356, 'unfortun': 357, 'l ight': 358, 'lost': 359, 'exampl': 360, 'cinema': 361, 'drama': 362, 'ye': 363, 'white': 364, 'experi': 365, 'imagin': 366, 'mention': 367, 'stop': 3 68, 'natur': 369, 'forc': 370, 'manag': 371, 'felt': 372, 'cut': 373, 'pre sent': 374, 'children': 375, 'fail': 376, 'son': 377, 'qualiti': 378, 'ca r': 379, 'support': 380, 'ask': 381, 'hit': 382, 'side': 383, 'voic': 384, 'extrem': 385, 'impress': 386, 'wors': 387, 'evil': 388, 'went': 389, 'sta nd': 390, 'certainli': 391, 'basic': 392, 'oh': 393, 'overal': 394, 'favor it': 395, 'horribl': 396, 'mysteri': 397, 'number': 398, 'type': 399, 'dan c': 400, 'wait': 401, 'hero': 402, 'alreadi': 403, '5': 404, 'learn': 405, 'matter': 406, '4': 407, 'michael': 408, 'genr': 409, 'fine': 410, 'despi t': 411, 'throughout': 412, 'walk': 413, 'success': 414, 'histori': 415, 'question': 416, 'zombi': 417, 'town': 418, 'realiz': 419, 'relationship': 420, 'child': 421, 'past': 422, 'daughter': 423, 'late': 424, 'b': 425, 'w ish': 426, 'credit': 427, 'hate': 428, 'event': 429, 'theme': 430, 'touc h': 431, 'citi': 432, 'today': 433, 'sometim': 434, 'behind': 435, 'god': 436, 'twist': 437, 'sit': 438, 'stay': 439, 'annoy': 440, 'deal': 441, 'ab l': 442, 'rent': 443, 'pleas': 444, 'edit': 445, 'blood': 446, 'deserv': 4 47, 'anyway': 448, 'comic': 449, 'appar': 450, 'soon': 451, 'gave': 452, 'etc': 453, 'level': 454, 'slow': 455, 'chanc': 456, 'score': 457, 'bodi': 458, 'brilliant': 459, 'incred': 460, 'figur': 461, 'situat': 462, 'self': 463, 'major': 464, 'stuff': 465, 'decent': 466, 'element': 467, 'dream': 4 68, 'return': 469, 'obvious': 470, 'order': 471, 'continu': 472, 'pace': 4 73, 'ridicul': 474, 'happi': 475, 'highli': 476, 'group': 477, 'add': 478, 'thank': 479, 'ladi': 480, 'novel': 481, 'pain': 482, 'speak': 483, 'caree r': 484, 'shoot': 485, 'strang': 486, 'heard': 487, 'sad': 488, 'polic': 4 89, 'husband': 490, 'import': 491, 'break': 492, 'took': 493, 'strong': 49 4, 'cannot': 495, 'robert': 496, 'predict': 497, 'violenc': 498, 'hilari': 499, 'recent': 500, 'countri': 501, 'known': 502, 'particularli': 503, 'pi ck': 504, 'documentari': 505, 'season': 506, 'critic': 507, 'jame': 508, 'compar': 509, 'obviou': 510, 'alon': 511, 'told': 512, 'state': 513, 'roc k': 514, 'visual': 515, 'theater': 516, 'exist': 517, 'offer': 518, 'opini on': 519, 'gore': 520, 'crap': 521, 'hold': 522, 'result': 523, 'realiti': 524, 'hear': 525, 'room': 526, 'clich': 527, 'effort': 528, 'thriller': 52 9, 'caus': 530, 'sequel': 531, 'serious': 532, 'explain': 533, 'king': 53 4, 'local': 535, 'ago': 536, 'none': 537, 'hell': 538, 'note': 539, 'allo w': 540, 'sister': 541, 'david': 542, 'simpl': 543, 'femal': 544, 'deliv': 545, 'ok': 546, 'convinc': 547, 'class': 548, 'check': 549, 'suspens': 55 0, 'win': 551, 'oscar': 552, 'buy': 553, 'huge': 554, 'valu': 555, 'sexua l': 556, 'cool': 557, 'scari': 558, 'similar': 559, 'excit': 560, 'provi d': 561, 'exactli': 562, 'apart': 563, 'avoid': 564, 'shown': 565, 'serio u': 566, 'english': 567, 'taken': 568, 'whose': 569, 'cinematographi': 57 0, 'shock': 571, 'polit': 572, 'spoiler': 573, 'offic': 574, 'across': 57 5, 'middl': 576, 'pass': 577, 'street': 578, 'messag': 579, 'silli': 580, 'charm': 581, 'somewhat': 582, 'modern': 583, 'confus': 584, 'filmmak': 58 5, 'form': 586, 'tale': 587, 'singl': 588, 'jack': 589, 'mostli': 590, 'wi lliam': 591, 'carri': 592, 'attent': 593, 'sing': 594, 'five': 595, 'subje ct': 596, 'richard': 597, 'prove': 598, 'team': 599, 'stage': 600, 'cop': 601, 'unlik': 602, 'georg': 603, 'monster': 604, 'televis': 605, 'earth': 606, 'cover': 607, 'villain': 608, 'pay': 609, 'marri': 610, 'toward': 61 1, 'build': 612, 'parent': 613, 'pull': 614, 'due': 615, 'fill': 616, 'res pect': 617, 'four': 618, 'dialog': 619, 'remind': 620, 'futur': 621, 'wea k': 622, 'typic': 623, '7': 624, 'cheap': 625, 'intellig': 626, 'atmosphe r': 627, 'british': 628, '80': 629, 'clearli': 630, 'paul': 631, 'non': 63 2, 'dog': 633, 'knew': 634, 'artist': 635, '8': 636, 'fast': 637, 'crime': 638, 'easili': 639, 'escap': 640, 'doubt': 641, 'adult': 642, 'detail': 64 3, 'date': 644, 'member': 645, 'fire': 646, 'romant': 647, 'gun': 648, 'dr ive': 649, 'straight': 650, 'beyond': 651, 'fit': 652, 'attack': 653, 'ima

g': 654, 'upon': 655, 'posit': 656, 'whether': 657, 'fantast': 658, 'pete r': 659, 'captur': 660, 'aspect': 661, 'appreci': 662, 'ten': 663, 'plan': 664, 'discov': 665, 'remain': 666, 'near': 667, 'period': 668, 'air': 669, 'realist': 670, 'mark': 671, 'red': 672, 'dull': 673, 'adapt': 674, 'withi n': 675, 'spend': 676, 'lose': 677, 'color': 678, 'materi': 679, 'chase': 680, 'mari': 681, 'storylin': 682, 'forget': 683, 'bunch': 684, 'clear': 6 85, 'lee': 686, 'victim': 687, 'nearli': 688, 'box': 689, 'york': 690, 'ma tch': 691, 'inspir': 692, 'mess': 693, 'finish': 694, 'standard': 695, 'ea si': 696, 'truth': 697, 'suffer': 698, 'busi': 699, 'space': 700, 'bill': 701, 'dramat': 702, 'western': 703, 'e': 704, 'list': 705, 'battl': 706, 'notic': 707, 'de': 708, 'french': 709, 'ad': 710, '9': 711, 'tom': 712, 'larg': 713, 'among': 714, 'eventu': 715, 'train': 716, 'accept': 717, 'ag re': 718, 'spirit': 719, 'soundtrack': 720, 'third': 721, 'teenag': 722, 'soldier': 723, 'adventur': 724, 'drug': 725, 'sorri': 726, 'famou': 727, 'suggest': 728, 'babi': 729, 'cri': 730, 'normal': 731, 'ultim': 732, 'tro ubl': 733, 'contain': 734, 'certain': 735, 'cultur': 736, 'romanc': 737, 'rare': 738, 'lame': 739, 'somehow': 740, 'disney': 741, 'mix': 742, 'gon e': 743, 'cartoon': 744, 'student': 745, 'fear': 746, 'reveal': 747, k': 748, 'kept': 749, 'attract': 750, 'appeal': 751, 'premis': 752, 'great est': 753, 'secret': 754, 'design': 755, 'shame': 756, 'throw': 757, 'cop i': 758, 'scare': 759, 'wit': 760, 'admit': 761, 'america': 762, 'relat': 763, 'particular': 764, 'brought': 765, 'screenplay': 766, 'whatev': 767, 'pure': 768, '70': 769, 'averag': 770, 'harri': 771, 'master': 772, 'descr ib': 773, 'treat': 774, 'male': 775, '20': 776, 'fantasi': 777, 'issu': 77 8, 'warn': 779, 'inde': 780, 'background': 781, 'forward': 782, 'free': 78 3, 'project': 784, 'memor': 785, 'japanes': 786, 'poorli': 787, 'award': 7 88, 'locat': 789, 'amus': 790, 'potenti': 791, 'struggl': 792, 'weird': 79 3, 'magic': 794, 'societi': 795, 'okay': 796, 'doctor': 797, 'imdb': 798, 'accent': 799, 'hot': 800, 'water': 801, 'alien': 802, '30': 803, 'expres s': 804, 'dr': 805, 'odd': 806, 'crazi': 807, 'choic': 808, 'fiction': 80 9, 'studio': 810, 'control': 811, 'becam': 812, 'masterpiec': 813, 'diffic ult': 814, 'fli': 815, 'joe': 816, 'scream': 817, 'costum': 818, 'lover': 819, 'uniqu': 820, 'refer': 821, 'remak': 822, 'vampir': 823, 'girlfrien d': 824, 'prison': 825, 'execut': 826, 'wear': 827, 'jump': 828, 'unless': 829, 'wood': 830, 'creepi': 831, 'cheesi': 832, 'superb': 833, 'otherwis': 'parti': 835, 'roll': 836, 'ghost': 837, 'mad': 838, 'public': 839, 'depict': 840, 'moral': 841, 'badli': 842, 'week': 843, 'earlier': 844, 'j ane': 845, 'dumb': 846, 'fi': 847, 'grow': 848, 'flaw': 849, 'deep': 850, 'sci': 851, 'cat': 852, 'maker': 853, 'connect': 854, 'older': 855, 'foota g': 856, 'plenti': 857, 'bother': 858, 'outsid': 859, 'stick': 860, 'gay': 861, 'catch': 862, 'plu': 863, 'co': 864, 'popular': 865, 'equal': 866, 's ocial': 867, 'disturb': 868, 'quickli': 869, 'perfectli': 870, 'dress': 87 1, '90': 872, 'era': 873, 'mistak': 874, 'lie': 875, 'ride': 876, 'previo u': 877, 'combin': 878, 'concept': 879, 'band': 880, 'rich': 881, 'survi v': 882, 'answer': 883, 'front': 884, 'sweet': 885, 'christma': 886, 'insi d': 887, 'concern': 888, 'eat': 889, 'bare': 890, 'beat': 891, 'ben': 892, 'listen': 893, 'c': 894, 'serv': 895, 'term': 896, 'german': 897, 'la': 89 8, 'meant': 899, 'stereotyp': 900, 'hardli': 901, 'law': 902, 'innoc': 90 3, 'desper': 904, 'memori': 905, 'promis': 906, 'cute': 907, 'intent': 90 8, 'variou': 909, 'inform': 910, 'steal': 911, 'brain': 912, 'post': 913, 'tone': 914, 'island': 915, 'amount': 916, 'track': 917, 'compani': 918, 'nuditi': 919, 'claim': 920, 'store': 921, '50': 922, 'flat': 923, 'hair': 924, 'univers': 925, 'land': 926, 'fairli': 927, 'danger': 928, 'scott': 9 29, 'kick': 930, 'player': 931, 'plain': 932, 'step': 933, 'crew': 934, 't oni': 935, 'share': 936, 'tast': 937, 'centuri': 938, 'achiev': 939, 'enga g': 940, 'cold': 941, 'travel': 942, 'record': 943, 'suit': 944, 'rip': 94 5, 'manner': 946, 'sadli': 947, 'wrote': 948, 'spot': 949, 'tension': 950, 'intens': 951, 'fascin': 952, 'familiar': 953, 'remark': 954, 'depth': 955, 'burn': 956, 'destroy': 957, 'histor': 958, 'sleep': 959, 'purpos': 96 0, 'languag': 961, 'ignor': 962, 'ruin': 963, 'delight': 964, 'unbeliev': 965, 'italian': 966, 'abil': 967, 'collect': 968, 'soul': 969, 'clever': 9

70, 'detect': 971, 'violent': 972, 'rape': 973, 'reach': 974, 'door': 975, 'liter': 976, 'scienc': 977, 'trash': 978, 'caught': 979, 'commun': 980, 'reveng': 981, 'creatur': 982, 'trip': 983, 'approach': 984, 'intrigu': 98 5, 'fashion': 986, 'introduc': 987, 'skill': 988, 'paint': 989, 'channel': 990, 'complex': 991, 'camp': 992, 'christian': 993, 'extra': 994, 'hole': 995, 'ann': 996, 'immedi': 997, 'mental': 998, 'limit': 999, '6': 1000, 's lightli': 1001, 'million': 1002, 'comput': 1003, 'mere': 1004, 'conclus': 1005, 'slasher': 1006, 'suddenli': 1007, 'imposs': 1008, 'crimin': 1009, 'teen': 1010, 'neither': 1011, 'physic': 1012, 'nation': 1013, 'spent': 10 14, 'respons': 1015, 'planet': 1016, 'fake': 1017, 'receiv': 1018, 'blue': 1019, 'sick': 1020, 'bizarr': 1021, 'embarrass': 1022, 'indian': 1023, '1 5': 1024, 'ring': 1025, 'pop': 1026, 'drop': 1027, 'drag': 1028, 'haunt': 1029, 'suspect': 1030, 'pointless': 1031, 'edg': 1032, 'search': 1033, 'ha ndl': 1034, 'biggest': 1035, 'common': 1036, 'hurt': 1037, 'faith': 1038, 'arriv': 1039, 'technic': 1040, 'angel': 1041, 'dad': 1042, 'genuin': 104 3, 'solid': 1044, 'f': 1045, 'awesom': 1046, 'former': 1047, 'focu': 1048, 'van': 1049, 'colleg': 1050, 'count': 1051, 'tear': 1052, 'heavi': 1053, 'wall': 1054, 'rais': 1055, 'laughabl': 1056, 'younger': 1057, 'visit': 10 58, 'excus': 1059, 'fair': 1060, 'sign': 1061, 'cult': 1062, 'key': 1063, 'motion': 1064, 'tough': 1065, 'super': 1066, 'desir': 1067, 'addit': 106 8, 'stun': 1069, 'cloth': 1070, 'exploit': 1071, 'smith': 1072, 'tortur': 1073, 'davi': 1074, 'race': 1075, 'author': 1076, 'cross': 1077, 'jim': 10 78, 'consist': 1079, 'minor': 1080, 'compel': 1081, 'focus': 1082, 'chemis tri': 1083, 'commit': 1084, 'pathet': 1085, 'park': 1086, 'tradit': 1087, 'obsess': 1088, 'frank': 1089, 'grade': 1090, '60': 1091, 'asid': 1092, 'b rutal': 1093, 'somewher': 1094, 'steve': 1095, 'rule': 1096, 'u': 1097, 'g rant': 1098, 'depress': 1099, 'explor': 1100, 'opportun': 1101, 'besid': 1 102, 'honest': 1103, 'dub': 1104, 'anti': 1105, 'intend': 1106, 'trailer': 1107, 'bar': 1108, 'regard': 1109, 'west': 1110, 'scientist': 1111, 'longe r': 1112, 'judg': 1113, 'decad': 1114, 'silent': 1115, 'creativ': 1116, 'a rmi': 1117, 'wild': 1118, 'south': 1119, 'stewart': 1120, 'g': 1121, 'dra w': 1122, 'road': 1123, 'govern': 1124, 'boss': 1125, 'ex': 1126, 'practi c': 1127, 'club': 1128, 'gang': 1129, 'surprisingli': 1130, 'motiv': 1131, 'festiv': 1132, 'london': 1133, 'green': 1134, 'redeem': 1135, 'page': 113 6, 'machin': 1137, 'display': 1138, 'aliv': 1139, 'idiot': 1140, 'militar i': 1141, 'thrill': 1142, 'repeat': 1143, 'nobodi': 1144, 'folk': 1145, '1 00': 1146, 'yeah': 1147, '40': 1148, 'garbag': 1149, 'journey': 1150, 'smi le': 1151, 'ground': 1152, 'tire': 1153, 'bought': 1154, 'mood': 1155, 'st one': 1156, 'cost': 1157, 'sam': 1158, 'mouth': 1159, 'noir': 1160, 'agen t': 1161, 'terrif': 1162, 'utterli': 1163, 'requir': 1164, 'area': 1165, 'honestli': 1166, 'sexi': 1167, 'geniu': 1168, 'report': 1169, 'humour': 1 170, 'investig': 1171, 'glad': 1172, 'enter': 1173, 'serial': 1174, 'nar r': 1175, 'passion': 1176, 'occasion': 1177, 'climax': 1178, 'marriag': 11 79, 'industri': 1180, 'studi': 1181, 'center': 1182, 'nowher': 1183, 'char li': 1184, 'demon': 1185, 'ship': 1186, 'loos': 1187, 'bear': 1188, 'hor s': 1189, 'wow': 1190, 'hang': 1191, 'graphic': 1192, 'admir': 1193, 'gian t': 1194, 'send': 1195, 'damn': 1196, 'loud': 1197, 'subtl': 1198, 'rel': 1199, 'profession': 1200, 'nake': 1201, 'blow': 1202, 'bottom': 1203, 'ins ult': 1204, 'batman': 1205, 'doubl': 1206, 'r': 1207, 'boyfriend': 1208, 'kelli': 1209, 'initi': 1210, 'frame': 1211, 'opera': 1212, 'gem': 1213, 'cinemat': 1214, 'affect': 1215, 'drawn': 1216, 'challeng': 1217, 'churc h': 1218, 'fulli': 1219, 'seek': 1220, 'nightmar': 1221, 'evid': 1222, 'l': 1223, 'j': 1224, 'arm': 1225, 'essenti': 1226, 'conflict': 1227, 'gra ce': 1228, 'christoph': 1229, 'henri': 1230, 'wind': 1231, 'narrat': 1232, 'witch': 1233, 'assum': 1234, 'hunt': 1235, 'push': 1236, 'wise': 1237, 'c hri': 1238, 'month': 1239, 'repres': 1240, 'nomin': 1241, 'sceneri': 1242, 'avail': 1243, 'hide': 1244, 'affair': 1245, 'bond': 1246, 'smart': 1247, 'thu': 1248, 'justic': 1249, 'outstand': 1250, 'interview': 1251, 'flashba ck': 1252, 'satisfi': 1253, 'presenc': 1254, 'constantli': 1255, 'bed': 12 56, 'central': 1257, 'content': 1258, 'sell': 1259, 'iron': 1260, 'everybo di': 1261, 'gag': 1262, 'hotel': 1263, 'slowli': 1264, 'hire': 1265, 'syst

em': 1266, 'charl': 1267, 'thrown': 1268, 'individu': 1269, 'hey': 1270, 'adam': 1271, 'mediocr': 1272, 'allen': 1273, 'jone': 1274, 'ray': 1275, 'lesson': 1276, 'billi': 1277, 'cameo': 1278, ' 'photographi': 1279, 'fello w': 1280, 'pari': 1281, 'strike': 1282, 'brief': 1283, 'independ': 1284, 'rise': 1285, 'absurd': 1286, 'neg': 1287, 'phone': 1288, 'impact': 1289, 'born': 1290, 'model': 1291, 'ill': 1292, 'angl': 1293, 'spoil': 1294, 'fr esh': 1295, 'abus': 1296, 'likabl': 1297, 'hill': 1298, 'discuss': 1299, 'ahead': 1300, 'sight': 1301, 'sent': 1302, 'photograph': 1303, 'occur': 1 304, 'shine': 1305, 'logic': 1306, 'blame': 1307, 'mainli': 1308, 'bruce': 1309, 'skip': 1310, 'forev': 1311, 'commerci': 1312, 'held': 1313, 'surrou nd': 1314, 'segment': 1315, 'teacher': 1316, 'blond': 1317, 'zero': 1318, 'trap': 1319, 'summer': 1320, 'satir': 1321, 'resembl': 1322, 'six': 1323, 'queen': 1324, 'fool': 1325, 'ball': 1326, 'twice': 1327, 'tragedi': 1328, 'sub': 1329, 'pack': 1330, 'reaction': 1331, 'bomb': 1332, 'will': 1333, 'protagonist': 1334, 'hospit': 1335, 'sport': 1336, 'mile': 1337, 'mom': 1 338, 'trust': 1339, 'drink': 1340, 'vote': 1341, 'jerri': 1342, 'encount': 1343, 'plane': 1344, 'current': 1345, 'program': 1346, 'al': 1347, 'statio n': 1348, 'choos': 1349, 'martin': 1350, 'celebr': 1351, 'join': 1352, 'lo rd': 1353, 'favourit': 1354, 'round': 1355, 'tragic': 1356, 'field': 1357, 'vision': 1358, 'jean': 1359, 'robot': 1360, 'arthur': 1361, 'tie': 1362, 'random': 1363, 'fortun': 1364, 'roger': 1365, 'psycholog': 1366, 'dread': 1367, 'intern': 1368, 'prefer': 1369, 'improv': 1370, 'nonsens': 1371, 'ep ic': 1372, 'highlight': 1373, 'formula': 1374, 'pleasur': 1375, 'legend': 1376, 'tape': 1377, 'dollar': 1378, '11': 1379, 'object': 1380, 'gorgeou': 1381, 'porn': 1382, 'thin': 1383, 'wide': 1384, 'fox': 1385, 'buddi': 138 6, 'influenc': 1387, 'ugli': 1388, 'ii': 1389, 'prepar': 1390, 'nasti': 13 91, 'supposedli': 1392, 'warm': 1393, 'reflect': 1394, 'progress': 1395, 'youth': 1396, 'worthi': 1397, 'unusu': 1398, 'length': 1399, 'latter': 14 00, 'crash': 1401, 'superior': 1402, 'shop': 1403, 'seven': 1404, 'childho od': 1405, 'remot': 1406, 'theatr': 1407, 'disgust': 1408, 'pilot': 1409, 'paid': 1410, 'funniest': 1411, 'convers': 1412, 'trick': 1413, 'castl': 1 414, 'fell': 1415, 'establish': 1416, 'gangster': 1417, 'rob': 1418, 'disa st': 1419, 'mine': 1420, 'ident': 1421, 'suicid': 1422, 'disappear': 1423, 'heaven': 1424, 'forgotten': 1425, 'heroin': 1426, 'decis': 1427, 'mask': 1428, 'tend': 1429, 'singer': 1430, 'partner': 1431, 'brian': 1432, 'recog n': 1433, 'alan': 1434, 'desert': 1435, 'thoroughli': 1436, 'ms': 1437, 's ky': 1438, 'p': 1439, 'stuck': 1440, 'replac': 1441, 'accur': 1442, 'marke t': 1443, 'eddi': 1444, 'danni': 1445, 'andi': 1446, 'clue': 1447, 'uncl': 1448, 'commentari': 1449, 'seemingli': 1450, 'jackson': 1451, 'devil': 145 2, 'therefor': 1453, 'pair': 1454, 'refus': 1455, 'that': 1456, 'accid': 1 457, 'fate': 1458, 'unit': 1459, 'fault': 1460, 'ed': 1461, 'river': 1462, 'afraid': 1463, 'tune': 1464, 'hidden': 1465, 'clean': 1466, 'russian': 14 67, 'stephen': 1468, 'quick': 1469, 'instanc': 1470, 'test': 1471, 'read i': 1472, 'convey': 1473, 'captain': 1474, 'irrit': 1475, 'european': 147 6, 'daniel': 1477, 'frustrat': 1478, 'insan': 1479, '1950': 1480, 'food': 1481, 'rescu': 1482, 'wed': 1483, 'chines': 1484, 'angri': 1485, 'dirti': 'lock': 1487, 'joy': 1488, 'steven': 1489, 'price': 1490, 'bland': 1 491, 'cage': 1492, 'rang': 1493, 'anymor': 1494, 'wooden': 1495, 'n': 149 6, 'jason': 1497, 'rush': 1498, 'news': 1499, '12': 1500, 'worri': 1501, 'led': 1502, 'twenti': 1503, 'board': 1504, 'martial': 1505, 'hunter': 150 6, 'cgi': 1507, 'transform': 1508, 'symbol': 1509, 'onto': 1510, 'johnni': 1511, 'x': 1512, 'piti': 1513, 'sentiment': 1514, 'invent': 1515, 'expla n': 1516, 'process': 1517, 'attitud': 1518, 'awar': 1519, 'owner': 1520, 'aim': 1521, 'target': 1522, 'energi': 1523, 'favor': 1524, 'floor': 1525, 'necessari': 1526, 'religi': 1527, 'opposit': 1528, 'blind': 1529, 'windo w': 1530, 'insight': 1531, 'chick': 1532, 'movement': 1533, 'research': 15 34, 'deepli': 1535, 'comparison': 1536, 'possess': 1537, 'mountain': 1538, 'grand': 1539, 'comed': 1540, 'rain': 1541, 'whatsoev': 1542, 'began': 154 3, 'bank': 1544, 'mid': 1545, 'shadow': 1546, 'parodi': 1547, 'princ': 154 8, 'pre': 1549, 'friendship': 1550, 'credibl': 1551, 'taylor': 1552, 'weap on': 1553, 'flesh': 1554, 'dougla': 1555, 'teach': 1556, 'protect': 1557,

'terror': 1558, 'bloodi': 1559, 'hint': 1560, 'marvel': 1561, 'drunk': 156 2, 'watchabl': 1563, 'leader': 1564, 'anybodi': 1565, 'accord': 1566, 'loa d': 1567, 'superman': 1568, 'freddi': 1569, 'brown': 1570, 'tim': 1571, 'j eff': 1572, 'seat': 1573, 'hitler': 1574, 'appropri': 1575, 'charg': 1576, 'knock': 1577, 'unknown': 1578, 'villag': 1579, 'keaton': 1580, 'enemi': 1 581, 'empti': 1582, 'media': 1583, 'unnecessari': 1584, 'england': 1585, 'strength': 1586, 'buck': 1587, 'utter': 1588, 'dare': 1589, 'wave': 1590, 'craft': 1591, 'perspect': 1592, 'nativ': 1593, 'correct': 1594, 'contras t': 1595, 'kiss': 1596, 'ford': 1597, 'anywher': 1598, 'distract': 1599, 'magnific': 1600, 'speed': 1601, 'knowledg': 1602, 'chill': 1603, 'soap': 1604, 'nazi': 1605, '1980': 1606, 'breath': 1607, 'mission': 1608, 'fred': 1609, 'ice': 1610, 'moon': 1611, 'joan': 1612, 'jr': 1613, 'crowd': 1614, 'frighten': 1615, '000': 1616, 'kate': 1617, 'soft': 1618, 'dan': 1619, 'd ick': 1620, 'hundr': 1621, 'nick': 1622, 'somebodi': 1623, 'simon': 1624, 'dozen': 1625, 'radio': 1626, 'loss': 1627, 'thousand': 1628, 'academi': 1 629, 'shakespear': 1630, 'andrew': 1631, 'sum': 1632, 'root': 1633, 'quo t': 1634, 'vehicl': 1635, 'account': 1636, '1970': 1637, 'leg': 1638, 'beh avior': 1639, 'convent': 1640, 'gold': 1641, 'regular': 1642, 'pretenti': 1643, 'compet': 1644, 'demand': 1645, 'worker': 1646, 'stretch': 1647, 'ex plos': 1648, 'candi': 1649, 'japan': 1650, 'lynch': 1651, 'notabl': 1652, 'privat': 1653, 'interpret': 1654, 'debut': 1655, 'constant': 1656, 'tarza n': 1657, 'spi': 1658, 'translat': 1659, 'sea': 1660, 'prais': 1661, 'revo lv': 1662, 'failur': 1663, 'franc': 1664, 'quiet': 1665, 'sat': 1666, 'thr eaten': 1667, 'jesu': 1668, 'ass': 1669, 'technolog': 1670, 'punch': 1671, 'met': 1672, 'aid': 1673, 'kevin': 1674, 'toy': 1675, 'higher': 1676, 'v h': 1677, 'abandon': 1678, 'mike': 1679, 'interact': 1680, 'bet': 1681, 'c ommand': 1682, 'separ': 1683, 'confront': 1684, 'site': 1685, 'gotten': 16 86, 'stunt': 1687, 'belong': 1688, 'servic': 1689, 'techniqu': 1690, 'reca l': 1691, 'cabl': 1692, 'bug': 1693, 'foot': 1694, 'freak': 1695, 'brigh t': 1696, 'african': 1697, 'jimmi': 1698, 'capabl': 1699, 'fu': 1700, 'boa t': 1701, 'clark': 1702, 'stock': 1703, 'succeed': 1704, 'presid': 1705, 'fat': 1706, 'structur': 1707, 'gene': 1708, 'spanish': 1709, 'paper': 171 0, 'kidnap': 1711, 'belief': 1712, 'whilst': 1713, 'factor': 1714, 'bob': 1715, 'complic': 1716, 'realism': 1717, 'educ': 1718, 'realis': 1719, 'att end': 1720, 'witti': 1721, 'tree': 1722, 'santa': 1723, 'assist': 1724, 'b roken': 1725, 'finest': 1726, 'smoke': 1727, 'v': 1728, 'observ': 1729, 'd etermin': 1730, 'up': 1731, 'depart': 1732, 'rubbish': 1733, 'routin': 173 4, 'domin': 1735, 'hat': 1736, 'oper': 1737, 'fame': 1738, 'lewi': 1739, 'advanc': 1740, 'kinda': 1741, 'safe': 1742, 'lone': 1743, 'foreign': 174 4, 'hook': 1745, 'morgan': 1746, 'numer': 1747, 'rank': 1748, 'shape': 174 9, 'civil': 1750, 'shallow': 1751, 'washington': 1752, 'vs': 1753, 'werewo lf': 1754, 'rose': 1755, 'gari': 1756, 'morn': 1757, 'kong': 1758, 'ordina ri': 1759, 'accomplish': 1760, 'winner': 1761, 'whenev': 1762, 'peac': 176 3, 'virtual': 1764, 'grab': 1765, 'offens': 1766, 'luck': 1767, 'h': 1768, 'welcom': 1769, 'bigger': 1770, 'unfunni': 1771, 'complain': 1772, 'acti v': 1773, 'patient': 1774, 'contriv': 1775, 'pretend': 1776, 'trek': 1777, 'con': 1778, 'dimension': 1779, 'flash': 1780, 'cain': 1781, 'wake': 1782, 'lesbian': 1783, 'dri': 1784, 'code': 1785, 'eric': 1786, 'manipul': 1787, 'statu': 1788, 'albert': 1789, 'dancer': 1790, 'guard': 1791, 'corrupt': 1 792, 'gain': 1793, 'awkward': 1794, 'signific': 1795, 'speech': 1796, 'sou rc': 1797, 'context': 1798, 'anthoni': 1799, 'sean': 1800, 'corni': 1801, 'clip': 1802, '13': 1803, 'psycho': 1804, 'religion': 1805, 'advic': 1806, 'reli': 1807, 'priest': 1808, 'theatric': 1809, 'w': 1810, 'curiou': 1811, 'addict': 1812, 'flow': 1813, 'specif': 1814, 'secur': 1815, 'asian': 181 6, 'howard': 1817, 'jennif': 1818, 'skin': 1819, 'golden': 1820, 'promot': 1821, 'organ': 1822, 'comfort': 1823, 'luke': 1824, 'core': 1825, 'cheat': 1826, 'lucki': 1827, 'cash': 1828, 'lower': 1829, 'associ': 1830, 'disli k': 1831, 'wing': 1832, 'regret': 1833, 'degre': 1834, 'frequent': 1835, 'spell': 1836, 'contribut': 1837, 'frankli': 1838, 'devic': 1839, 'balan c': 1840, 'print': 1841, 'sake': 1842, 'lake': 1843, 'forgiv': 1844, 'thom a': 1845, 'mass': 1846, 'betti': 1847, 'crack': 1848, 'gordon': 1849, 'une

xpect': 1850, 'unfold': 1851, 'invit': 1852, 'depend': 1853, 'amateur': 18 54, 'construct': 1855, 'categori': 1856, 'grown': 1857, 'anna': 1858, 'con : 1859, 'honor': 1860, 'grew': 1861, 'walter': 1862, 'intellectu': 186 3, 'matur': 1864, 'spectacular': 1865, 'mirror': 1866, 'veteran': 1867, 's udden': 1868, 'sole': 1869, 'freedom': 1870, 'demonstr': 1871, 'experien c': 1872, 'liner': 1873, 'meanwhil': 1874, 'gift': 1875, 'grip': 1876, 'ca
rd': 1877, 'robin': 1878, 'overli': 1879, 'colour': 1880, 'theori': 1881, 'oliv': 1882, 'circumst': 1883, 'brilliantli': 1884, 'sheriff': 1885, 'sec tion': 1886, 'unabl': 1887, 'crappi': 1888, 'drew': 1889, 'subtitl': 1890, 'pile': 1891, 'sheer': 1892, 'parker': 1893, 'cook': 1894, 'altern': 1895, 'laughter': 1896, 'matt': 1897, 'path': 1898, 'defin': 1899, 'relief': 190 0, 'wander': 1901, 'sinatra': 1902, 'lawyer': 1903, 'treatment': 1904, 'ac cident': 1905, 'hall': 1906, 'hank': 1907, 'captiv': 1908, 'dragon': 1909, 'gratuit': 1910, 'moor': 1911, 'halloween': 1912, 'jacki': 1913, 'barbar a': 1914, 'cowboy': 1915, 'broadway': 1916, 'kung': 1917, 'wound': 1918, 'k': 1919, 'unintent': 1920, 'wayn': 1921, 'canadian': 1922, 'surreal': 19 23, 'statement': 1924, 'spoof': 1925, 'winter': 1926, 'cheer': 1927, 'comp os': 1928, 'treasur': 1929, 'fish': 1930, 'fare': 1931, 'gonna': 1932, 'se nsit': 1933, 'victor': 1934, 'unrealist': 1935, 'emerg': 1936, 'woodi': 19 37, 'sympathet': 1938, 'ran': 1939, 'neighbor': 1940, 'driven': 1941, 'men ac': 1942, 'glass': 1943, 'topic': 1944, 'authent': 1945, 'expos': 1946, 'overlook': 1947, 'gross': 1948, 'michel': 1949, 'ancient': 1950, 'handso m': 1951, 'chief': 1952, 'contemporari': 1953, 'pleasant': 1954, 'feet': 1 955, 'network': 1956, 'comedian': 1957, 'nevertheless': 1958, 'built': 195 9, 'stranger': 1960, 'russel': 1961, 'cinderella': 1962, 'gori': 1963, 'bl ockbust': 1964, 'consider': 1965, 'earn': 1966, 'letter': 1967, 'endless': 1968, 'miser': 1969, 'underr': 1970, 'switch': 1971, 'brook': 1972, 'sol v': 1973, 'bullet': 1974, 'joseph': 1975, 'edward': 1976, 'virgin': 1977, 'convict': 1978, 'victoria': 1979, 'chosen': 1980, 'cynic': 1981, 'alex': 1982, 'scale': 1983, 'scenario': 1984, '0': 1985, 'gut': 1986, 'com': 198 7, 'curs': 1988, 'outrag': 1989, 'sword': 1990, 'juli': 1991, 'substanc': 1992, 'screenwrit': 1993, 'uk': 1994, 'wrap': 1995, 'proper': 1996, 'monke y': 1997, 'driver': 1998, 'court': 1999, 'indic': 2000, 'par': 2001, 'bir d': 2002, 'remov': 2003, 'consequ': 2004, 'rental': 2005, 'inevit': 2006, 'naiv': 2007, 'advertis': 2008, 'nanci': 2009, 'grave': 2010, 'loser': 201 1, 'roy': 2012, 'fatal': 2013, 'brave': 2014, 'le': 2015, 'bridg': 2016, 'slap': 2017, 'germani': 2018, 'invis': 2019, 'ador': 2020, 'loui': 2021, 'anger': 2022, 'provok': 2023, 'footbal': 2024, 'anderson': 2025, 'chan': 2026, 'alcohol': 2027, 'professor': 2028, 'stumbl': 2029, 'ryan': 2030, 'w illi': 2031, 'patrick': 2032, 'assassin': 2033, 'sharp': 2034, '1930': 203 5, 'australian': 2036, 'bat': 2037, 'saturday': 2038, 'refresh': 2039, 'li ber': 2040, 'ape': 2041, 'strongli': 2042, 'cell': 2043, 'trilog': 2044, 'amateurish': 2045, 'lousi': 2046, 'heck': 2047, 'deni': 2048, 'eight': 20 49, 'sin': 2050, 'justifi': 2051, 'vagu': 2052, 'san': 2053, 'resid': 205 4, 'indi': 2055, 'creator': 2056, 'terrifi': 2057, 'defeat': 2058, 'repu t': 2059, 'mini': 2060, 'sympathi': 2061, 'task': 2062, 'expert': 2063, 't ediou': 2064, 'prevent': 2065, 'endur': 2066, 'tabl': 2067, 'offend': 206 8, 'basebal': 2069, 'employ': 2070, 'trial': 2071, 'imit': 2072, 'rival': 2073, 'che': 2074, 'complaint': 2075, 'weekend': 2076, 'europ': 2077, 'ma x': 2078, 'dig': 2079, 'beach': 2080, 'pitch': 2081, 'fairi': 2082, 'murph i': 2083, 'format': 2084, 'risk': 2085, 'purchas': 2086, 'harsh': 2087, 'b ite': 2088, 'hype': 2089, 'tini': 2090, 'reminisc': 2091, 'glimps': 2092, 'nois': 2093, 'titan': 2094, 'powel': 2095, 'strip': 2096, 'north': 2097, 'prime': 2098, 'asleep': 2099, 'fals': 2100, '14': 2101, 'till': 2102, 'af rica': 2103, 'texa': 2104, 'revel': 2105, 'descript': 2106, 'destruct': 21 07, 'surfac': 2108, 'sitcom': 2109, 'uninterest': 2110, 'inner': 2111, 'sp in': 2112, 'arrest': 2113, 'excess': 2114, 'semi': 2115, 'twin': 2116, 'co ntroversi': 2117, 'maintain': 2118, 'hitchcock': 2119, 'argu': 2120, 'dino saur': 2121, 'massiv': 2122, 'makeup': 2123, 'kim': 2124, 'reject': 2125, 'ludicr': 2126, 'insist': 2127, 'stare': 2128, 'expens': 2129, 'melodram a': 2130, 'ideal': 2131, 'ala': 2132, 'forest': 2133, 'press': 2134, 'nai

l': 2135, 'subplot': 2136, 'atroci': 2137, 'host': 2138, 'ga': 2139, 'supe rnatur': 2140, 'erot': 2141, 'columbo': 2142, 'identifi': 2143, 'notch': 2 144, 'dude': 2145, 'presum': 2146, 'cant': 2147, 'closer': 2148, 'forget t': 2149, 'crude': 2150, 'plagu': 2151, 'character': 2152, 'method': 2153, 'guest': 2154, 'ear': 2155, 'landscap': 2156, 'foster': 2157, 'beast': 215 8, 'princess': 2159, 'lion': 2160, 'border': 2161, 'aunt': 2162, 'storyte l': 2163, 'birth': 2164, 'previous': 2165, 'bound': 2166, 'jungl': 2167, 'accus': 2168, 'pacino': 2169, 'urban': 2170, 'damag': 2171, 'guid': 2172, 'nude': 2173, 'chose': 2174, 'jess': 2175, 'propaganda': 2176, 'emma': 217 7, 'thirti': 2178, 'doll': 2179, 'pet': 2180, '25': 2181, 'whoever': 2182, 'mate': 2183, 'warrior': 2184, 'mainstream': 2185, 'friday': 2186, 'meri t': 2187, 'cooper': 2188, 'upset': 2189, 'poster': 2190, 'size': 2191, 'la test': 2192, 'deadli': 2193, 'exact': 2194, 'gritti': 2195, 'contest': 219 6, 'corps': 2197, 'sun': 2198, 'ton': 2199, 'contact': 2200, 'popul': 220 1, 'settl': 2202, 'warner': 2203, 'buff': 2204, 'blend': 2205, 'wilson': 2 206, '1990': 2207, 'rough': 2208, 'citizen': 2209, 'widow': 2210, 'enviro n': 2211, 'mgm': 2212, 'rat': 2213, 'overcom': 2214, 'bu': 2215, 'pitt': 2 216, 'select': 2217, 'alic': 2218, 'metal': 2219, 'lift': 2220, 'guilti': 2221, 'ted': 2222, 'particip': 2223, 'link': 2224, 'revolut': 2225, 'after noon': 2226, 'moron': 2227, 'exagger': 2228, 'johnson': 2229, 'corner': 22 30, 'prostitut': 2231, '1960': 2232, 'matrix': 2233, 'accompani': 2234, 'c orpor': 2235, 'friendli': 2236, 'sincer': 2237, 'instal': 2238, 'holm': 22 39, 'multipl': 2240, 'leagu': 2241, 'clair': 2242, 'hood': 2243, 'doom': 2 244, 'string': 2245, 'grim': 2246, 'aka': 2247, 'junk': 2248, 'examin': 22 49, 'advis': 2250, 'irish': 2251, 'campi': 2252, 'lugosi': 2253, 'defend': 2254, 'sunday': 2255, 'hip': 2256, 'blah': 2257, 'rachel': 2258, 'tight': 2259, 'icon': 2260, 'shake': 2261, 'pro': 2262, 'varieti': 2263, 'shut': 2 264, 'confid': 2265, 'directli': 2266, 'denni': 2267, 'attach': 2268, 'sul livan': 2269, 'jaw': 2270, 'medic': 2271, 'goal': 2272, 'mexican': 2273, 'legendari': 2274, 'vietnam': 2275, 'sarah': 2276, 'prior': 2277, 'truck': 2278, 'sentenc': 2279, 'courag': 2280, 'dean': 2281, 'terrorist': 2282, 'b reast': 2283, 'duke': 2284, 'bourn': 2285, 'behav': 2286, 'hong': 2287, 'p roceed': 2288, 'donald': 2289, 'un': 2290, 'yell': 2291, 'split': 2292, 'n ose': 2293, 'entri': 2294, 'gather': 2295, 'lifetim': 2296, 'concentr': 22 97, 'jerk': 2298, 'crush': 2299, 'everywher': 2300, 'buri': 2301, 'confes s': 2302, 'borrow': 2303, 'unconvinc': 2304, 'swim': 2305, 'forth': 2306, 'stolen': 2307, 'julia': 2308, 'deliveri': 2309, 'lip': 2310, 'pan': 2311, 'turkey': 2312, 'california': 2313, 'spite': 2314, 'quest': 2315, 'proud': 2316, 'hoffman': 2317, 'reward': 2318, 'china': 2319, 'flight': 2320, 'dow nright': 2321, 'offici': 2322, 'freeman': 2323, 'fabul': 2324, 'worthwhi l': 2325, 'notori': 2326, 'jon': 2327, 'betray': 2328, 'lazi': 2329, 'si r': 2330, 'jail': 2331, 'fade': 2332, 'encourag': 2333, 'inept': 2334, 'si nk': 2335, 'shower': 2336, 'lisa': 2337, 'bag': 2338, 'susan': 2339, 'imag eri': 2340, 'relev': 2341, 'bell': 2342, 'storm': 2343, 'survivor': 2344, 'cousin': 2345, 'teeth': 2346, 'retard': 2347, 'branagh': 2348, 'stab': 23 49, 'mexico': 2350, 'trade': 2351, 'facial': 2352, 'finger': 2353, 'tole r': 2354, 'hugh': 2355, 'quirki': 2356, 'summari': 2357, 'alright': 2358, 'bride': 2359, 'tremend': 2360, 'shark': 2361, 'blown': 2362, 'pose': 236 3, 'von': 2364, 'bitter': 2365, 'hyster': 2366, 'ha': 2367, 'larri': 2368, 'bone': 2369, 'address': 2370, 'scheme': 2371, 'ron': 2372, 'cruel': 2373, 'christ': 2374, 'afterward': 2375, 'ned': 2376, 'beg': 2377, 'distinct': 2 378, 'traci': 2379, 'snake': 2380, 'feed': 2381, 'tour': 2382, 'pursu': 23 83, 'thumb': 2384, 'screw': 2385, 'swear': 2386, 'mechan': 2387, 'raw': 23 88, 'chair': 2389, 'obscur': 2390, 'photo': 2391, 'stomach': 2392, 'occa s': 2393, 'argument': 2394, 'sidney': 2395, 'chain': 2396, 'southern': 239 7, 'hardi': 2398, 'heavili': 2399, 'gruesom': 2400, 'holiday': 2401, 'cabi n': 2402, 'render': 2403, 'resist': 2404, 'necessarili': 2405, 'india': 24 06, 'philip': 2407, 'indulg': 2408, 'racist': 2409, 'satan': 2410, 'unders tood': 2411, 'midnight': 2412, 'forgot': 2413, 'obnoxi': 2414, 'belov': 24 15, 'pregnant': 2416, 'lay': 2417, 'tongu': 2418, 'fourth': 2419, 'stalk': 2420, 'outfit': 2421, 'integr': 2422, 'magazin': 2423, 'slapstick': 2424,

'inhabit': 2425, 'carol': 2426, 'ticket': 2427, '17': 2428, 'garden': 242 9, 'deeper': 2430, 'restor': 2431, 'shoe': 2432, 'incid': 2433, 'devot': 2 434, 'lincoln': 2435, 'brad': 2436, 'divorc': 2437, 'guarante': 2438, 'mar ia': 2439, 'benefit': 2440, 'disbelief': 2441, 'anticip': 2442, 'undergrou nd': 2443, 'elizabeth': 2444, 'sandler': 2445, 'lili': 2446, 'slave': 244 7, 'capit': 2448, 'cring': 2449, 'bbc': 2450, 'greater': 2451, 'creation': 2452, 'mildli': 2453, 'amazingli': 2454, 'princip': 2455, 'explod': 2456, 'extraordinari': 2457, 'introduct': 2458, 'halfway': 2459, 'funnier': 246 0, 'lesli': 2461, 'enhanc': 2462, 'transfer': 2463, 'text': 2464, 'advanta g': 2465, 'wreck': 2466, 'punish': 2467, 'tap': 2468, 'extent': 2469, 'ove rwhelm': 2470, 'preview': 2471, 'horrif': 2472, 'lane': 2473, 'deliber': 2 474, 'dynam': 2475, 'east': 2476, 'plant': 2477, 'lo': 2478, 'error': 247 9, 'jessica': 2480, 'homosexu': 2481, 'sophist': 2482, 'miller': 2483, 'en su': 2484, '2000': 2485, 'vincent': 2486, 'vacat': 2487, 'basi': 2488, 'ap pli': 2489, 'miscast': 2490, 'bollywood': 2491, 'spoken': 2492, 'uncomfor t': 2493, 'reed': 2494, 'elev': 2495, 'measur': 2496, 'sleazi': 2497, 'vi a': 2498, 'steel': 2499, 'extend': 2500, 'mansion': 2501, 'mous': 2502, 'a ssign': 2503, 'breathtak': 2504, 'savag': 2505, 'blair': 2506, 'alter': 25 07, 'goofi': 2508, 'stanley': 2509, 'cathol': 2510, 'beer': 2511, 'daili': 2512, 'dentist': 2513, 'melt': 2514, 'conceiv': 2515, 'fix': 2516, 'overac t': 2517, 'hippi': 2518, 'oppos': 2519, 'succe': 2520, 'burt': 2521, 'carp ent': 2522, 'sacrific': 2523, 'everyday': 2524, 'properli': 2525, 'inspect or': 2526, 'nowaday': 2527, 'subsequ': 2528, 'circl': 2529, 'laura': 2530, 'massacr': 2531, 'block': 2532, 'neck': 2533, 'christi': 2534, 'fallen': 2 535, 'mob': 2536, 'lesser': 2537, 'access': 2538, 'portrait': 2539, 'seaga l': 2540, 'grey': 2541, 'concert': 2542, 'pool': 2543, 'fay': 2544, 'jak e': 2545, 'sinist': 2546, 'competit': 2547, 'chees': 2548, 'jewish': 2549, 'react': 2550, 'relax': 2551, 'isol': 2552, 'usa': 2553, 'immens': 2554, 'ironi': 2555, 'suitabl': 2556, 'appal': 2557, 'nine': 2558, 'chop': 2559, 'creep': 2560, 'lyric': 2561, 'spiritu': 2562, 'stink': 2563, '2006': 256 4, 'nonetheless': 2565, 'sold': 2566, 'spring': 2567, 'rage': 2568, 'reti r': 2569, 'adopt': 2570, 'shirt': 2571, 'needless': 2572, 'nut': 2573, 're duc': 2574, 'user': 2575, 'luci': 2576, 'franchis': 2577, 'showcas': 2578, 'navi': 2579, 'nurs': 2580, 'per': 2581, 'uninspir': 2582, 'bath': 2583, 'digit': 2584, 'bulli': 2585, 'stanwyck': 2586, 'asham': 2587, 'jay': 258 8, 'zone': 2589, '1940': 2590, 'laid': 2591, 'sutherland': 2592, 'oddli': 2593, 'broadcast': 2594, 'amongst': 2595, '2001': 2596, 'illustr': 2597, 'upper': 2598, 'baker': 2599, 'brando': 2600, 'stylish': 2601, 'disguis': 2602, 'throat': 2603, 'aspir': 2604, 'fulfil': 2605, '18': 2606, 'neighbor hood': 2607, 'pride': 2608, 'endear': 2609, 'pound': 2610, 'wwii': 2611, 'impli': 2612, 'wanna': 2613, 'em': 2614, 'thief': 2615, 'nobl': 2616, 'da wn': 2617, '16': 2618, 'shoulder': 2619, 'rochest': 2620, 'cinematograph': 2621, 'diseas': 2622, 'bett': 2623, 'dinner': 2624, 'coher': 2625, 'prop': 2626, 'distribut': 2627, 'albeit': 2628, 'shift': 2629, 'tens': 2630, 'b o': 2631, 'knife': 2632, 'rebel': 2633, 'snow': 2634, 'poignant': 2635, 's ilenc': 2636, 'shout': 2637, 'surf': 2638, 'contract': 2639, 'function': 2 640, 'forti': 2641, 'wash': 2642, 'matthau': 2643, 'duti': 2644, 'reunio n': 2645, 'instinct': 2646, 'silver': 2647, 'henc': 2648, 'proof': 2649, 'chuck': 2650, 'cancel': 2651, 'cannib': 2652, 'heat': 2653, 'height': 265 4, 'derek': 2655, 'eeri': 2656, 'horrend': 2657, 'elvira': 2658, 'mindles s': 2659, 'internet': 2660, 'widmark': 2661, 'absorb': 2662, 'incoher': 26 63, 'spielberg': 2664, 'alik': 2665, 'premier': 2666, 'neat': 2667, 'tor n': 2668, 'glori': 2669, 'innov': 2670, 'mill': 2671, 'etern': 2672, 'musi cian': 2673, 'greatli': 2674, 'repetit': 2675, 'pie': 2676, 'elvi': 2677, 'horrifi': 2678, 'wealthi': 2679, 'racism': 2680, 'bang': 2681, 'lovabl': 2682, 'itali': 2683, 'precis': 2684, 'homag': 2685, 'infam': 2686, 'cris i': 2687, 'fbi': 2688, 'blank': 2689, 'announc': 2690, 'diamond': 2691, 't rite': 2692, 'nelson': 2693, 'redempt': 2694, 'burton': 2695, 'britain': 2 696, 'helen': 2697, 'pat': 2698, 'happili': 2699, 'chaplin': 2700, 'flop': 2701, 'dedic': 2702, 'parallel': 2703, 'ensembl': 2704, 'resolut': 2705, 'wilder': 2706, 'hammer': 2707, 'streisand': 2708, 'cube': 2709, 'carter':

2710, 'st': 2711, 'broke': 2712, 'mar': 2713, 'plastic': 2714, 'disagre': 2715, 'factori': 2716, 'triumph': 2717, 'oil': 2718, 'conclud': 2719, 'cli mb': 2720, 'row': 2721, 'bush': 2722, 'chuckl': 2723, 'fighter': 2724, 'ma rch': 2725, 'vega': 2726, 'rocket': 2727, 'own': 2728, 'weight': 2729, 'se nsibl': 2730, 'enorm': 2731, 'mst3k': 2732, 'dump': 2733, 'wherea': 2734, 'meaning': 2735, 'spare': 2736, 'luca': 2737, 'unforgett': 2738, 'lust': 2739, 'thug': 2740, 'dane': 2741, 'boot': 2742, 'kurt': 2743, 'fifti': 274 4, 'difficulti': 2745, 'engin': 2746, 'stress': 2747, 'brand': 2748, 'bobb i': 2749, 'arnold': 2750, 'threat': 2751, 'butt': 2752, 'adequ': 2753, 'ca ricatur': 2754, 'karloff': 2755, 'dear': 2756, 'rap': 2757, 'barri': 2758, 'ego': 2759, 'arrog': 2760, 'flynn': 2761, 'swing': 2762, 'fest': 2763, 'h omeless': 2764, 'elabor': 2765, 'polish': 2766, 'journalist': 2767, 'secre tari': 2768, 'ralph': 2769, 'hamlet': 2770, 'fanci': 2771, 'grate': 2772, 'puppet': 2773, 'tool': 2774, 'unbear': 2775, 'float': 2776, 'resort': 277 7, 'induc': 2778, 'arrang': 2779, 'simpson': 2780, 'spike': 2781, 'conspir aci': 2782, 'pig': 2783, 'basement': 2784, 'exercis': 2785, 'cruis': 2786, 'guilt': 2787, 'choreograph': 2788, 'muppet': 2789, 'boll': 2790, 'philli p': 2791, 'tribut': 2792, 'ham': 2793, 'item': 2794, 'fianc': 2795, 'puzz 1': 2796, 'babe': 2797, 'ward': 2798, 'editor': 2799, 'layer': 2800, '24': 2801, 'file': 2802, 'toilet': 2803, 'document': 2804, 'tower': 2805, 'medi um': 2806, 'korean': 2807, 'stan': 2808, 'scarecrow': 2809, 'slip': 2810, 'glover': 2811, 'minim': 2812, 'slaughter': 2813, 'assur': 2814, 'larger': 2815, 'territori': 2816, 'transit': 2817, 'orient': 2818, 'librari': 2819, 'denzel': 2820, 'philosoph': 2821, 'doc': 2822, 'catherin': 2823, 'inexpli c': 2824, 'persona': 2825, 'portion': 2826, 'superfici': 2827, 'spark': 28 28, 'curti': 2829, 'walken': 2830, 'owe': 2831, 'boredom': 2832, 'sneak': 2833, 'jet': 2834, 'jeremi': 2835, 'shi': 2836, 'pg': 2837, 'wolf': 2838, 'ban': 2839, 'dorothi': 2840, 'financi': 2841, 'ambigu': 2842, 'profound': 2843, 'backdrop': 2844, 'multi': 2845, 'cusack': 2846, 'metaphor': 2847, 'whale': 2848, 'hudson': 2849, 'eleph': 2850, '2005': 2851, 'ultra': 2852, 'rave': 2853, 'union': 2854, 'elsewher': 2855, 'birthday': 2856, 'gadget': 2857, 'stiff': 2858, 'notion': 2859, 'hack': 2860, 'implaus': 2861, 'vir u': 2862, 'hawk': 2863, 'canada': 2864, 'lloyd': 2865, 'slight': 2866, 'ur g': 2867, 'poison': 2868, 'reader': 2869, 'distanc': 2870, 'bibl': 2871, '1st': 2872, 'pad': 2873, 'deriv': 2874, 'disc': 2875, 'eastwood': 2876, 'newspap': 2877, 'squar': 2878, 'superhero': 2879, 'eva': 2880, 'afford': 2881, 'restaur': 2882, 'charisma': 2883, 'button': 2884, 'montag': 2885, 'sadist': 2886, 'drown': 2887, 'skit': 2888, 'spread': 2889, 'cure': 2890, 'huh': 2891, 'essenc': 2892, 'heston': 2893, 'health': 2894, 'dealt': 289 5, 'estat': 2896, 'godfath': 2897, 'fetch': 2898, 'lab': 2899, 'maniac': 2 900, 'companion': 2901, 'muslim': 2902, 'gradual': 2903, 'peak': 2904, 'in vest': 2905, 'scoobi': 2906, 'servant': 2907, 'ritter': 2908, 'subtleti': 2909, 'alli': 2910, 'cup': 2911, 'tea': 2912, 'countless': 2913, 'gothic': 2914, 'kane': 2915, 'miik': 2916, 'iii': 2917, 'electr': 2918, 'elect': 29 19, 'heroic': 2920, 'salli': 2921, 'charismat': 2922, 'briefli': 2923, 're el': 2924, 'tender': 2925, 'ingredi': 2926, 'grandmoth': 2927, 'bud': 2928, 'neil': 2929, 'resourc': 2930, 'nuanc': 2931, 'cole': 2932, 'wannab': 2 933, 'admittedli': 2934, 'toss': 2935, 'dawson': 2936, 'punk': 2937, 'paul i': 2938, 'gate': 2939, 'stronger': 2940, 'pit': 2941, 'mild': 2942, 'stoo d': 2943, 'kubrick': 2944, 'reev': 2945, 'label': 2946, 'mafia': 2947, 'sh all': 2948, 'poverti': 2949, 'carrey': 2950, 'cox': 2951, 'terri': 2952, 'tag': 2953, 'fond': 2954, 'ian': 2955, 'updat': 2956, 'outcom': 2957, 'as sault': 2958, 'smooth': 2959, 'smash': 2960, 'easier': 2961, 'useless': 29 62, 'cardboard': 2963, 'astair': 2964, 'burst': 2965, 'bakshi': 2966, ncid': 2967, 'qualifi': 2968, 'samurai': 2969, 'divers': 2970, '2002': 297 1, 'fist': 2972, 'vulner': 2973, 'melodramat': 2974, 'increasingli': 2975, 'vari': 2976, 'sketch': 2977, 'resolv': 2978, 'exchang': 2979, 'rex': 298 0, 'brillianc': 2981, 'scratch': 2982, 'reynold': 2983, 'templ': 2984, nveni': 2985, 'insert': 2986, 'be': 2987, 'luckili': 2988, 'tame': 2989, 'suspend': 2990, 'blast': 2991, 'pin': 2992, 'meat': 2993, 'strictli': 299 4, 'soprano': 2995, 'hamilton': 2996, 'coach': 2997, 'gotta': 2998, 'nucle

ar': 2999, 'fisher': 3000, 'walker': 3001, 'seventi': 3002, 'ambiti': 300 3, 'jami': 3004, 'matthew': 3005, 'farm': 3006, 'worthless': 3007, 'close t': 3008, 'recreat': 3009, 'timeless': 3010, 'struck': 3011, 'monk': 3012, 'revers': 3013, 'convolut': 3014, 'spooki': 3015, 'cave': 3016, 'butcher': 3017, 'empir': 3018, 'eccentr': 3019, 'grasp': 3020, 'kudo': 3021, 'instan tli': 3022, 'clock': 3023, 'discoveri': 3024, 'brosnan': 3025, 'joey': 302 6, 'ninja': 3027, 'bleak': 3028, 'partli': 3029, 'cliff': 3030, 'communis t': 3031, 'fifteen': 3032, 'inconsist': 3033, 'mitchel': 3034, 'pal': 303 5, 'clown': 3036, 'eighti': 3037, 'miracl': 3038, 'declar': 3039, 'selle r': 3040, 'sidekick': 3041, 'evok': 3042, 'selfish': 3043, 'importantli': 3044, 'wipe': 3045, 'gray': 3046, 'norman': 3047, 'sloppi': 3048, 'desti n': 3049, 'aforement': 3050, 'psychiatrist': 3051, 'lifestyl': 3052, 'flaw less': 3053, 'enthusiast': 3054, '45': 3055, 'stoog': 3056, 'piano': 3057, 'seed': 3058, 'superbl': 3059, 'ho': 3060, 'websit': 3061, 'cheek': 3062, 'chew': 3063, 'debat': 3064, 'farc': 3065, 'australia': 3066, 'dash': 306 7, 'directori': 3068, 'pressur': 3069, 'wrestl': 3070, 'regardless': 3071, 'drivel': 3072, 'slice': 3073, 'soviet': 3074, 'emili': 3075, 'incompet': 3076, 'abc': 3077, 'kitchen': 3078, 'bash': 3079, 'wick': 3080, 'akshay': 3081, 'anni': 3082, 'dire': 3083, 'splatter': 3084, 'chapter': 3085, 'arti fici': 3086, 'lou': 3087, 'dave': 3088, 'boil': 3089, 'duo': 3090, 'distan t': 3091, 'seduc': 3092, 'cagney': 3093, 'suppli': 3094, 'ken': 3095, 'rec ov': 3096, 'increas': 3097, 'cameron': 3098, 'flower': 3099, 'helicopt': 3 100, 'pleasantli': 3101, 'beaten': 3102, 'jar': 3103, 'curios': 3104, 'glo w': 3105, 'mann': 3106, 'prize': 3107, 'doo': 3108, 'cia': 3109, 'judi': 3 110, 'blob': 3111, 'favour': 3112, 'drunken': 3113, 'craig': 3114, 'crave n': 3115, 'web': 3116, 'splendid': 3117, 'panic': 3118, 'ranger': 3119, 'e llen': 3120, 'perri': 3121, 'glenn': 3122, 'laurel': 3123, 'goldberg': 312 4, 'psychot': 3125, 'turner': 3126, 'hop': 3127, 'eleg': 3128, 'combat': 3 129, 'francisco': 3130, 'slightest': 3131, 'ruth': 3132, 'min': 3133, 'fal k': 3134, 'philosophi': 3135, 'gentl': 3136, 'shortli': 3137, 'flip': 313 8, 'plausibl': 3139, 'graduat': 3140, 'hatr': 3141, 'wizard': 3142, '20t h': 3143, 'alexand': 3144, 'greek': 3145, 'fx': 3146, 'rid': 3147, 'modest i': 3148, 'gandhi': 3149, 'we': 3150, 'preciou': 3151, 'tall': 3152, 'hol i': 3153, 'jealou': 3154, 'lend': 3155, 'dracula': 3156, 'fund': 3157, 'ma nhattan': 3158, 'unpleas': 3159, 'futurist': 3160, 'knight': 3161, 'lega l': 3162, 'harm': 3163, 'felix': 3164, 'ocean': 3165, 'nod': 3166, 'revi v': 3167, 'scientif': 3168, 'childish': 3169, 'ami': 3170, 'explicit': 317 1, 'thread': 3172, 'mock': 3173, 'bless': 3174, 'forbidden': 3175, 'tank': 3176, 'overdon': 3177, 'digniti': 3178, 'giallo': 3179, 'torment': 3180, 'margaret': 3181, 'broad': 3182, 'nerv': 3183, 'awe': 3184, '2004': 3185, 'thick': 3186, 'awaken': 3187, '99': 3188, 'yesterday': 3189, 'mel': 3190, 'unwatch': 3191, 'verhoeven': 3192, 'elderli': 3193, 'repeatedli': 3194, 'eve': 3195, 'fever': 3196, 'pirat': 3197, 'romero': 3198, 'lean': 3199, 'stiller': 3200, 'bin': 3201, 'absenc': 3202, 'timothi': 3203, 'royal': 32 04, 'roman': 3205, 'ambit': 3206, 'automat': 3207, 'kay': 3208, 'griffit h': 3209, 'ah': 3210, 'eas': 3211, 'rivet': 3212, 'acclaim': 3213, 'launc h': 3214, 'custom': 3215, 'politician': 3216, 'uniform': 3217, 'publish': 3218, 'stinker': 3219, 'crook': 3220, 'bathroom': 3221, 'termin': 3222, 'w arren': 3223, 'darker': 3224, 'transport': 3225, 'tomato': 3226, 'pulp': 3 227, 'phrase': 3228, 'foul': 3229, 'purpl': 3230, 'homicid': 3231, 'anti c': 3232, 'gabriel': 3233, 'wallac': 3234, 'sunshin': 3235, 'pierc': 3236, 'sixti': 3237, 'q': 3238, 'ought': 3239, 'karen': 3240, 'horrid': 3241, 'j uvenil': 3242, 'revolutionari': 3243, 'eyr': 3244, 'marin': 3245, 'packa g': 3246, 'li': 3247, 'brazil': 3248, '2003': 3249, 'viciou': 3250, 'evol v': 3251, 'awak': 3252, 'pray': 3253, 'coloni': 3254, 'choreographi': 325 5, 'contrari': 3256, 'album': 3257, 'donna': 3258, 'hollow': 3259, 'kennet h': 3260, 'saint': 3261, 'rambo': 3262, 'prom': 3263, 'conserv': 3264, 'ov err': 3265, 'blade': 3266, 'boast': 3267, 'candid': 3268, 'twelv': 3269, 'stole': 3270, 'ramon': 3271, 'kapoor': 3272, 'ireland': 3273, 'dose': 327 4, 'option': 3275, 'beatti': 3276, 'mummi': 3277, 'defi': 3278, 'nerd': 32 79, 'mildr': 3280, 'detract': 3281, 'astonish': 3282, 'natali': 3283, 'con

firm': 3284, 'trio': 3285, 'protest': 3286, 'jazz': 3287, 'global': 3288, 'flame': 3289, 'altman': 3290, 'funer': 3291, 'collabor': 3292, 'fulci': 3 293, 'kirk': 3294, 'bottl': 3295, 'bull': 3296, 'blake': 3297, 'destini': 3298, 'delici': 3299, 'spit': 3300, 'yellow': 3301, 'shade': 3302, 'mysti c': 3303, 'enterpris': 3304, 'whip': 3305, 'leap': 3306, 'audio': 3307, 't ommi': 3308, 'racial': 3309, 'nicholson': 3310, 'altogeth': 3311, 'todd': 3312, 'staff': 3313, 'fonda': 3314, 'vivid': 3315, 'adolesc': 3316, 'popco rn': 3317, 'enchant': 3318, 'pseudo': 3319, 'swedish': 3320, 'visibl': 332 1, 'meaningless': 3322, 'harder': 3323, 'neo': 3324, 'merci': 3325, 'thre w': 3326, 'reunit': 3327, 'bedroom': 3328, 'inherit': 3329, 'wire': 3330, 'exhibit': 3331, 'jew': 3332, 'leonard': 3333, 'edi': 3334, 'lawrenc': 333 5, 'crocodil': 3336, 'tip': 3337, 'voight': 3338, 'lemmon': 3339, 'decor': 3340, 'fanat': 3341, 'await': 3342, 'suspici': 3343, 'kennedi': 3344, 'bef riend': 3345, 'synopsi': 3346, 'reserv': 3347, 'respond': 3348, 'madonna': 3349, 'ruthless': 3350, 'atlanti': 3351, 'moodi': 3352, 'uneven': 3353, 'r oommat': 3354, 'bust': 3355, 'chao': 3356, 'bargain': 3357, 'ventur': 335 8, '2007': 3359, 'unsettl': 3360, 'clumsi': 3361, 'rural': 3362, 'palma': 3363, 'abysm': 3364, 'voyag': 3365, 'clint': 3366, 'centr': 3367, 'garne r': 3368, 'incident': 3369, 'bold': 3370, 'dimens': 3371, 'holli': 3372, 'bradi': 3373, 'carl': 3374, 'audit': 3375, 'neglect': 3376, 'cd': 3377, 'trail': 3378, 'tiger': 3379, 'echo': 3380, 'immigr': 3381, 'imperson': 33 82, 'hart': 3383, 'troop': 3384, 'humili': 3385, 'lit': 3386, '2nd': 3387, 'characterist': 3388, 'versu': 3389, 'ant': 3390, 'poetic': 3391, 'daddi': 3392, 'nearbi': 3393, 'elimin': 3394, 'acknowledg': 3395, 'cari': 3396, 'w ealth': 3397, 'timon': 3398, 'cuba': 3399, 'mall': 3400, 'paus': 3401, 'mi ckey': 3402, 'domest': 3403, 'jeffrey': 3404, 'pun': 3405, 'marshal': 340 6, 'prejudic': 3407, 'mistaken': 3408, 'homer': 3409, 'solo': 3410, 'cellu loid': 3411, 'infect': 3412, 'saga': 3413, 'collaps': 3414, 'repuls': 3415, 'leon': 3416, 'inan': 3417, 'inappropri': 3418, 'chest': 3419, 'milk': 3420, 'assembl': 3421, 'gear': 3422, 'ginger': 3423, 'interrupt': 3424, 't ribe': 3425, 'olivi': 3426, 'equip': 3427, 'apolog': 3428, 'cake': 3429, 'promin': 3430, '1996': 3431, 'hbo': 3432, 'harvey': 3433, 'pant': 3434, 'undoubtedli': 3435, 'coffe': 3436, 'sore': 3437, 'coat': 3438, 'maggi': 3 439, 'pot': 3440, 'retain': 3441, 'institut': 3442, 'embrac': 3443, 'jenn i': 3444, 'instant': 3445, 'florida': 3446, 'primari': 3447, 'humbl': 344 8, 'brooklyn': 3449, 'vulgar': 3450, 'airplan': 3451, 'solut': 3452, 'pe n': 3453, 'colonel': 3454, 'highest': 3455, 'aveng': 3456, 'trace': 3457, 'devast': 3458, 'exot': 3459, 'consum': 3460, 'colleagu': 3461, 'polansk i': 3462, 'furthermor': 3463, 'bowl': 3464, 'outer': 3465, 'wive': 3466, 'descend': 3467, 'dian': 3468, 'godzilla': 3469, 'sale': 3470, 'illog': 34 71, 'seduct': 3472, 'rick': 3473, 'principl': 3474, 'smaller': 3475, 'gend er': 3476, 'cope': 3477, 'linda': 3478, 'poke': 3479, 'ya': 3480, '3rd': 3 481, 'disabl': 3482, 'dutch': 3483, 'strain': 3484, '1999': 3485, 'glorio u': 3486, 'glamor': 3487, 'inferior': 3488, 'bubbl': 3489, 'secondli': 349 0, 'beneath': 3491, 'primarili': 3492, 'mixtur': 3493, 'lol': 3494, 'vas t': 3495, 'blatant': 3496, 'scope': 3497, 'devoid': 3498, 'cue': 3499, 'ya rd': 3500, 'dud': 3501, 'predecessor': 3502, 'dive': 3503, 'rabbit': 3504, 'hal': 3505, 'gundam': 3506, 'breed': 3507, 'april': 3508, 'alert': 3509, 'casual': 3510, 'museum': 3511, 'myer': 3512, 'simplist': 3513, 'pearl': 3 514, 'shirley': 3515, 'talki': 3516, 'grinch': 3517, 'senseless': 3518, 'i nvas': 3519, 'alfr': 3520, 'hideou': 3521, 'trademark': 3522, 'countrysi d': 3523, 'z': 3524, 'disjoint': 3525, 'arab': 3526, 'shelf': 3527, 'domin o': 3528, 'et': 3529, 'aggress': 3530, 'streep': 3531, 'garbo': 3532, 'har dcor': 3533, 'vanish': 3534, 'maci': 3535, 'mail': 3536, 'unhappi': 3537, 'stir': 3538, 'boom': 3539, 'obtain': 3540, 'loyal': 3541, 'slide': 3542, 'oz': 3543, 'illeg': 3544, 'sh': 3545, 'hopeless': 3546, 'defens': 3547, 'disgrac': 3548, 'stack': 3549, 'uwe': 3550, 'stellar': 3551, 'mayor': 355 2, 'robberi': 3553, 'applaud': 3554, 'robinson': 3555, 'rendit': 3556, 'ac id': 3557, 'khan': 3558, 'experiment': 3559, 'rifl': 3560, 'span': 3561, 'psychic': 3562, 'spider': 3563, 'tempt': 3564, 'wont': 3565, 'dismiss': 3 566, 'fri': 3567, 'counter': 3568, 'amanda': 3569, 'tenant': 3570, 'berli

n': 3571, 'soccer': 3572, 'emphasi': 3573, 'declin': 3574, 'craze': 3575, 'blew': 3576, 'topless': 3577, 'incomprehens': 3578, 'recruit': 3579, 'har tley': 3580, 'dicken': 3581, 'scroog': 3582, 'diana': 3583, 'grandfath': 3584, 'resurrect': 3585, 'niro': 3586, 'lumet': 3587, 'sympath': 3588, 'rat ion': 3589, 'wet': 3590, 'faster': 3591, 'goer': 3592, 'bitch': 3593, 'sib l': 3594, 'riot': 3595, 'shaw': 3596, 'intim': 3597, 'parad': 3598, 'woo': 3599, 'trashi': 3600, 'porno': 3601, 'ethnic': 3602, 'shed': 3603, 'revol t': 3604, 'justin': 3605, 'enlighten': 3606, 'hesit': 3607, 'region': 360 8, 'biographi': 3609, 'weakest': 3610, 'gap': 3611, 'wheel': 3612, 'stea m': 3613, 'nephew': 3614, 'farmer': 3615, 'patriot': 3616, 'commend': 361 jonathan': 3618, 'andr': 3619, 'mario': 3620, 'honesti': 3621, 'deale r': 3622, 'ballet': 3623, 'immort': 3624, 'wendi': 3625, 'eager': 3626, '0 0': 3627, 'worm': 3628, 'feminist': 3629, 'partial': 3630, 'rider': 3631, 'hopper': 3632, 'lena': 3633, 'ensur': 3634, 'slick': 3635, 'unreal': 363 6, 'choru': 3637, 'owen': 3638, 'kingdom': 3639, 'sappi': 3640, 'charlot t': 3641, 'hung': 3642, 'repress': 3643, 'psychopath': 3644, 'properti': 3 645, 'wore': 3646, 'snap': 3647, 'sandra': 3648, 'similarli': 3649, 'nosta lg': 3650, 'composit': 3651, 'util': 3652, 'mutant': 3653, 'franco': 3654, 'skull': 3655, 'leo': 3656, 'safeti': 3657, 'vice': 3658, 'victori': 3659, 'blunt': 3660, 'morri': 3661, 'prequel': 3662, 'macarthur': 3663, 'confi n': 3664, 'miseri': 3665, 'pattern': 3666, 'tad': 3667, 'campbel': 3668, 'recycl': 3669, 'dalton': 3670, 'thru': 3671, 'cg': 3672, 'bumbl': 3673, 'acquir': 3674, 'dust': 3675, 'compass': 3676, 'deed': 3677, 'del': 3678, 'exit': 3679, 'repli': 3680, 'montana': 3681, 'farrel': 3682, 'strand': 36 83, 'drain': 3684, 'bergman': 3685, 'whoopi': 3686, '1972': 3687, 'snl': 3 688, 'hyde': 3689, 'drum': 3690, 'valuabl': 3691, 'heartbreak': 3692, 'emp eror': 3693, 'despair': 3694, 'kyle': 3695, 'rocki': 3696, 'tail': 3697, 'bow': 3698, 'rambl': 3699, 'speci': 3700, 'rope': 3701, 'compens': 3702, 'latin': 3703, 'bonu': 3704, 'nervou': 3705, 'tonight': 3706, 'bleed': 370 7, 'chess': 3708, 'pour': 3709, 'carradin': 3710, 'oppress': 3711, 'gimmic k': 3712, 'orson': 3713, 'rotten': 3714, 'slug': 3715, 'gal': 3716, 'downh il': 3717, 'da': 3718, 'airport': 3719, 'contempl': 3720, 'romp': 3721, '3 5': 3722, 'percept': 3723, 'rapist': 3724, 'mistress': 3725, 'roth': 3726, 'wacki': 3727, 'olli': 3728, 'martian': 3729, 'radic': 3730, 'champion': 3 731, '1983': 3732, 'mislead': 3733, 'melodi': 3734, 'preach': 3735, 'perve rt': 3736, 'paltrow': 3737, 'heal': 3738, 'banal': 3739, 'pervers': 3740, 'arc': 3741, 'arguabl': 3742, 'dazzl': 3743, 'stilt': 3744, 'edgar': 374 5, 'pursuit': 3746, 'attorney': 3747, 'slash': 3748, 'belt': 3749, 'tack l': 3750, 'tooth': 3751, 'shelley': 3752, 'unpredict': 3753, 'taught': 375 4, 'programm': 3755, 'gambl': 3756, 'conneri': 3757, 'employe': 3758, 'ven geanc': 3759, 'vocal': 3760, 'tiresom': 3761, 'virginia': 3762, 'uplift': 3763, 'bela': 3764, 'plight': 3765, 'duval': 3766, 'franki': 3767, 'mart i': 3768, 'graham': 3769, 'orang': 3770, 'mesmer': 3771, 'maid': 3772, 'ch icken': 3773, 'sensat': 3774, 'poem': 3775, 'rubi': 3776, 'raymond': 3777, 'passeng': 3778, 'closest': 3779, 'cleverli': 3780, 'dixon': 3781, 'profa n': 3782, 'mute': 3783, 'swallow': 3784, 'calm': 3785, 'sirk': 3786, 'gigg l': 3787, 'inject': 3788, 'scottish': 3789, 'monologu': 3790, 'iran': 379 1, 'extens': 3792, 'suffic': 3793, 'bay': 3794, 'clone': 3795, 'amitabh': 3796, 'quarter': 3797, 'secretli': 3798, 'tube': 3799, 'climact': 3800, 'yawn': 3801, 'numb': 3802, 'habit': 3803, '1968': 3804, 'engross': 3805, 'crystal': 3806, 'whine': 3807, 'gerard': 3808, 'outing': 3809, 'paranoi a': 3810, 'volum': 3811, 'convincingli': 3812, 'lundgren': 3813, 'pokemo n': 3814, 'abraham': 3815, 'ethan': 3816, 'abort': 3817, 'junior': 3818, 'septemb': 3819, 'profess': 3820, 'earl': 3821, 'dispos': 3822, 'poetri': 3823, 'linger': 3824, 'fed': 3825, 'meander': 3826, 'trend': 3827, 'grotes qu': 3828, 'bend': 3829, 'austen': 3830, 'surpass': 3831, 'lowest': 3832, 'underst': 3833, 'taxi': 3834, 'spock': 3835, 'expand': 3836, 'backward': 3837, 'frankenstein': 3838, 'plod': 3839, 'im': 3840, 'nichola': 3841, 'ch icago': 3842, 'franci': 3843, 'richardson': 3844, 'cannon': 3845, 'househo ld': 3846, 'rant': 3847, 'literatur': 3848, 'muddl': 3849, 'waitress': 385 0, 'myth': 3851, 'lure': 3852, 'tourist': 3853, 'simplic': 3854, 'sue': 38

55, 'mundan': 3856, 'der': 3857, 'catchi': 3858, 'hum': 3859, 'descent': 3 860, 'compliment': 3861, 'eugen': 3862, 'rubber': 3863, 'nostalgia': 3864, 'greedi': 3865, 'instrument': 3866, 'stallon': 3867, 'dysfunct': 3868, 'ec onom': 3869, 'spoke': 3870, 'deaf': 3871, 'damon': 3872, 'furi': 3873, 'ir relev': 3874, 'eaten': 3875, 'mortal': 3876, 'louis': 3877, 'equival': 387 8, 'recognis': 3879, 'lang': 3880, 'cent': 3881, 'dement': 3882, 'stale': 3883, 'coast': 3884, 'map': 3885, 'phoni': 3886, 'alongsid': 3887, 'hell o': 3888, 'mankind': 3889, 'omen': 3890, 'firstli': 3891, 'duck': 3892, 'p hantom': 3893, 'carel': 3894, 'occupi': 3895, 'insur': 3896, 'dictat': 389 7, 'molli': 3898, 'sissi': 3899, 'june': 3900, 'randi': 3901, 'bacal': 390 'flee': 3903, 'recognit': 3904, 'crucial': 3905, 'likewis': 3906, 'rud e': 3907, 'onlin': 3908, 'rooney': 3909, 'ashley': 3910, 'distinguish': 39 11, 'twilight': 3912, 'lengthi': 3913, 'heel': 3914, 'newli': 3915, 'labo r': 3916, 'dreari': 3917, 'antwon': 3918, 'freez': 3919, 'bump': 3920, 'cy borg': 3921, 'damm': 3922, 'loyalti': 3923, 'daisi': 3924, 'wisdom': 3925, '1973': 3926, 'drake': 3927, 'bike': 3928, 'blackmail': 3929, 'reign': 393 0, 'grayson': 3931, 'biko': 3932, 'buffalo': 3933, 'keith': 3934, 'prey': 3935, 'exposur': 3936, 'pink': 3937, 'chronicl': 3938, 'vein': 3939, 'sta rtl': 3940, 'emphas': 3941, 'boxer': 3942, 'ridden': 3943, 'provoc': 3944, 'analysi': 3945, 'worn': 3946, 'unorigin': 3947, 'proce': 3948, 'nineti': 3949, 'approv': 3950, 'interior': 3951, 'attribut': 3952, 'incorpor': 395 3, 'barrymor': 3954, 'butler': 3955, 'baddi': 3956, 'tunnel': 3957, 'baske tbal': 3958, 'inher': 3959, 'sailor': 3960, 'predat': 3961, 'elm': 3962, 'substitut': 3963, 'indiffer': 3964, 'underli': 3965, 'nicol': 3966, 'mil lionair': 3967, 'bunni': 3968, 'meyer': 3969, 'improvis': 3970, 'undeni': 3971, 'simmon': 3972, 'er': 3973, 'belushi': 3974, 'stalker': 3975, 'unre l': 3976, 'mighti': 3977, 'condemn': 3978, 'barrel': 3979, 'fleet': 3980, 'drift': 3981, 'walsh': 3982, 'degrad': 3983, 'julian': 3984, 'hypnot': 3 985, 'robbin': 3986, 'meg': 3987, 'carla': 3988, 'othello': 3989, 'mormo n': 3990, 'marion': 3991, 'novak': 3992, 'enthusiasm': 3993, 'alarm': 399 4, 'unawar': 3995, 'disord': 3996, 'nyc': 3997, 'warmth': 3998, 'alison': 3999, 'agenda': 4000, 'hay': 4001, 'priceless': 4002, 'lampoon': 4003, 'm tv': 4004, 'firm': 4005, 'shove': 4006, 'errol': 4007, 'roof': 4008, 'edg i': 4009, 'vital': 4010, 'greed': 4011, '3d': 4012, 'reid': 4013, 'exquisi t': 4014, 'watson': 4015, 'palac': 4016, 'rukh': 4017, 'dolph': 4018, 'gla nc': 4019, 'profit': 4020, 'petti': 4021, 'sergeant': 4022, 'eastern': 402 3, 'israel': 4024, 'orlean': 4025, 'preserv': 4026, 'session': 4027, 'cou p': 4028, 'peril': 4029, 'campaign': 4030, 'thompson': 4031, 'ponder': 403 2, 'unleash': 4033, 'spain': 4034, 'angela': 4035, 'minimum': 4036, 'champ ionship': 4037, 'simultan': 4038, 'randomli': 4039, 'nun': 4040, 'testamen t': 4041, 'iraq': 4042, 'pamela': 4043, 'beatl': 4044, 'what': 4045, 'gest ur': 4046, 'drip': 4047, '13th': 4048, 'distort': 4049, 'peck': 4050, 'cro wn': 4051, 'valentin': 4052, 'showdown': 4053, 'zizek': 4054, '1933': 405 5, 'cassidi': 4056, 'calib': 4057, 'brenda': 4058, 'han': 4059, 'represen t': 4060, 'climat': 4061, 'reson': 4062, 'stake': 4063, 'perpetu': 4064, 'unimagin': 4065, 'stroke': 4066, 'scotland': 4067, 'restrain': 4068, 'cr awl': 4069, 'rout': 4070, 'buster': 4071, 'sabrina': 4072, 'valley': 4073, 'cream': 4074, 'jan': 4075, 'travesti': 4076, 'shootout': 4077, 'exposit': 4078, 'regist': 4079, 'contradict': 4080, '1984': 4081, 'bro': 4082, 'cro w': 4083, 'realm': 4084, 'quinn': 4085, 'gentleman': 4086, 'wig': 4087, 'k urosawa': 4088, 'mon': 4089, 'empathi': 4090, 'cooki': 4091, 'miyazaki': 4 092, 'din': 4093, 'fido': 4094, 'sucker': 4095, 'ustinov': 4096, 'darren': 4097, 'shoddi': 4098, 'unsatisfi': 4099, 'sammi': 4100, 'abomin': 4101, 'm onoton': 4102, 'compromis': 4103, 'demis': 4104, 'absent': 4105, 'dana': 4 106, 'warrant': 4107, 'crawford': 4108, 'businessman': 4109, 'cloud': 411 0, '1997': 4111, 'passabl': 4112, 'baldwin': 4113, 'pole': 4114, 'percei v': 4115, 'censor': 4116, 'stargat': 4117, 'geek': 4118, '1987': 4119, 'sp acey': 4120, 'josh': 4121, 'ross': 4122, 'delic': 4123, 'fuller': 4124, 'm claglen': 4125, 'wax': 4126, 'traumat': 4127, 'greg': 4128, 'pretens': 412 9, 'shaki': 4130, 'distress': 4131, 'painter': 4132, 'unseen': 4133, 'tack i': 4134, 'meryl': 4135, 'derang': 4136, 'soderbergh': 4137, 'femm': 4138,

'wholli': 4139, 'expedit': 4140, 'fog': 4141, 'reluct': 4142, 'tarantino': 4143, 'valid': 4144, 'polici': 4145, 'deceas': 4146, 'furiou': 4147, 'verb al': 4148, 'primit': 4149, 'click': 4150, 'nathan': 4151, 'judgment': 415 2, 'correctli': 4153, '1993': 4154, 'sid': 4155, 'dee': 4156, 'jewel': 415 7, 'tech': 4158, 'norm': 4159, 'accuraci': 4160, 'kumar': 4161, 'unravel': 4162, 'deniro': 4163, 'austin': 4164, 'clash': 4165, 'antonioni': 4166, 'u ncov': 4167, 'fenc': 4168, 'exclus': 4169, 'anchor': 4170, 'seal': 4171, 'fought': 4172, 'fart': 4173, 'dreck': 4174, 'slam': 4175, 'sheet': 4176, 'seldom': 4177, 'enforc': 4178, 'clerk': 4179, 'shanghai': 4180, 'crippl': 4181, 'debt': 4182, 'sunni': 4183, 'bake': 4184, 'wretch': 4185, 'mode': 4 186, '3000': 4187, 'roller': 4188, 'nicola': 4189, 'patienc': 4190, 'susta in': 4191, 'unfair': 4192, '1971': 4193, 'logan': 4194, 'trait': 4195, 'al ec': 4196, 'fabric': 4197, 'behold': 4198, 'temper': 4199, 'joel': 4200, 'wang': 4201, '2008': 4202, 'sand': 4203, 'murray': 4204, 'hallucin': 420 5, 'tax': 4206, 'ritual': 4207, 'conduct': 4208, 'malon': 4209, 'pocket': 4210, 'darn': 4211, '1995': 4212, 'vanc': 4213, 'stuart': 4214, 'consciou s': 4215, 'tactic': 4216, 'outlin': 4217, 'soup': 4218, 'divid': 4219, 'le gaci': 4220, 'phil': 4221, 'rita': 4222, 'exhaust': 4223, 'preston': 4224, 'helpless': 4225, 'penni': 4226, 'bias': 4227, 'grief': 4228, 'schedul': 4 229, 'critiqu': 4230, 'guitar': 4231, 'canyon': 4232, 'fundament': 4233, 'preposter': 4234, 'clau': 4235, 'stark': 4236, 'runner': 4237, 'despis': 4238, 'pete': 4239, 'scriptwrit': 4240, 'technicolor': 4241, 'bridget': 42 42, 'squad': 4243, 'robber': 4244, 'sweep': 4245, 'isabel': 4246, 'shell': 4247, 'alley': 4248, 'cigarett': 4249, 'bloom': 4250, 'rehash': 4251, 'lac klust': 4252, 'passag': 4253, 'marc': 4254, 'jacket': 4255, 'sniper': 425 6, 'russia': 4257, 'sugar': 4258, 'liberti': 4259, 'connor': 4260, 'flai r': 4261, 'implic': 4262, 'culmin': 4263, 'delv': 4264, 'sentinel': 4265, 'propos': 4266, 'invad': 4267, 'downey': 4268, 'vomit': 4269, 'consciou': 4270, 'newman': 4271, 'unexpectedli': 4272, 'kansa': 4273, 'drove': 4274, 'boyl': 4275, 'restrict': 4276, 'rear': 4277, 'alicia': 4278, 'agenc': 42 79, 'jodi': 4280, 'palanc': 4281, 'inabl': 4282, 'gregori': 4283, 'rod': 4 284, 'tendenc': 4285, 'arrow': 4286, 'wrench': 4287, 'pale': 4288, 'lush': 4289, 'awhil': 4290, 'horn': 4291, '22': 4292, 'behaviour': 4293, 'chainsa w': 4294, 'vet': 4295, 'rehears': 4296, 'sharon': 4297, '1936': 4298, 'asy lum': 4299, 'ladder': 4300, 'aesthet': 4301, 'rampag': 4302, 'foxx': 4303, 'improb': 4304, 'karl': 4305, 'cap': 4306, 'kolchak': 4307, 'delet': 4308, 'feat': 4309, 'tripe': 4310, 'mccoy': 4311, 'yeti': 4312, 'bacon': 4313, 'amazon': 4314, 'globe': 4315, 'sung': 4316, 'conscienc': 4317, '1978': 4 318, 'elit': 4319, 'loneli': 4320, 'shortcom': 4321, 'visitor': 4322, '19t h': 4323, 'lurk': 4324, 'hackney': 4325, 'tasteless': 4326, 'rumor': 4327, 'hungri': 4328, 'hulk': 4329, 'prank': 4330, 'suffici': 4331, 'coaster': 4 332, 'stream': 4333, '1920': 4334, 'minu': 4335, 'underneath': 4336, 'spic e': 4337, 'paradis': 4338, 'tomorrow': 4339, 'suspicion': 4340, 'financ': 4341, 'aristocrat': 4342, 'el': 4343, 'fright': 4344, 'wagner': 4345, 'ne wcom': 4346, 'filler': 4347, 'scoop': 4348, 'paramount': 4349, 'weav': 435 0, 'wildli': 4351, '1988': 4352, 'basing': 4353, 'rhythm': 4354, 'thunderb ird': 4355, 'abrupt': 4356, 'atroc': 4357, 'literari': 4358, 'entranc': 43 59, 'minist': 4360, 'beverli': 4361, 'dirt': 4362, 'iv': 4363, '75': 4364, 'grudg': 4365, 'secondari': 4366, '1939': 4367, 'curli': 4368, 'lectur': 4 369, 'impos': 4370, 'choppi': 4371, 'recogniz': 4372, 'hopkin': 4373, 'pos ey': 4374, 'immers': 4375, 'bread': 4376, '1989': 4377, 'penn': 4378, 'tea s': 4379, 'straightforward': 4380, 'smell': 4381, 'worship': 4382, 'spring er': 4383, 'tierney': 4384, 'counterpart': 4385, 'quietli': 4386, 'naught i': 4387, 'rub': 4388, 'leigh': 4389, 'ingeni': 4390, 'chamberlain': 4391, 'couch': 4392, 'standout': 4393, 'heist': 4394, 'en': 4395, 'inmat': 4396, 'wwe': 4397, 'brit': 4398, 'ram': 4399, 'paxton': 4400, 'cancer': 4401, 'c havez': 4402, 'policeman': 4403, 'moreov': 4404, 'ace': 4405, 'laurenc': 4 406, 'ratso': 4407, 'clan': 4408, 'morbid': 4409, 'sassi': 4410, 'cattl': 4411, '1986': 4412, 'watcher': 4413, 'net': 4414, 'transcend': 4415, 'mis sil': 4416, 'esther': 4417, 'yearn': 4418, 'sublim': 4419, 'injuri': 4420, 'heartfelt': 4421, 'nemesi': 4422, 'entitl': 4423, 'variat': 4424, 'lindsa y': 4425, 'convert': 4426, 'nolan': 4427, 'attenborough': 4428, 'bernard': 4429, 'duel': 4430, 'skeptic': 4431, 'quaid': 4432, 'misguid': 4433, 'enth ral': 4434, 'geni': 4435, 'puppi': 4436, '1979': 4437, 'bean': 4438, gest': 4439, 'grin': 4440, 'unexplain': 4441, 'kidman': 4442, 'uncut': 444 3, 'mytholog': 4444, 'facil': 4445, 'graini': 4446, 'characteris': 4447, 'hopelessli': 4448, 'vader': 4449, 'setup': 4450, 'enabl': 4451, 'moder': 4452, 'rosemari': 4453, 'cruelti': 4454, 'dont': 4455, 'obstacl': 4456, 'b uzz': 4457, 'poe': 4458, 'artsi': 4459, 'steadi': 4460, 'reliabl': 4461, 'out': 4462, 'bye': 4463, 'carlito': 4464, 'hk': 4465, 'tyler': 4466, 'ki tti': 4467, 'brood': 4468, 'diari': 4469, 'egg': 4470, 'spiral': 4471, 'gi na': 4472, 'hammi': 4473, 'bounc': 4474, 'narrow': 4475, 'weather': 4476, 'disastr': 4477, 'decept': 4478, 'oblig': 4479, 'fuel': 4480, 'heap': 448 1, 'hain': 4482, 'sweat': 4483, 'bronson': 4484, 'underworld': 4485, 'athl et': 4486, 'kline': 4487, 'spontan': 4488, 'effici': 4489, 'bewar': 4490, '1969': 4491, 'baffl': 4492, 'martha': 4493, 'acquaint': 4494, 'gillian': 4495, 'clueless': 4496, 'niec': 4497, 'preming': 4498, 'brendan': 4499, 'd espic': 4500, 'patricia': 4501, 'christin': 4502, 'exterior': 4503, 'fonta in': 4504, 'biker': 4505, 'preachi': 4506, 'shatter': 4507, 'candl': 4508, 'headach': 4509, 'viewpoint': 4510, 'enlist': 4511, 'mermaid': 4512, 'soon er': 4513, 'loath': 4514, 'insipid': 4515, 'virtu': 4516, 'astound': 4517, '19': 4518, 'harmless': 4519, 'rome': 4520, 'trigger': 4521, 'analyz': 452 2, 'loi': 4523, 'mayhem': 4524, 'angst': 4525, 'outlaw': 4526, 'circu': 45 27, 'goof': 4528, 'lester': 4529, 'tick': 4530, 'sleepwalk': 4531, 'dilemm a': 4532, '73': 4533, 'taboo': 4534, 'injur': 4535, 'scar': 4536, 'supre m': 4537, 'uh': 4538, 'hepburn': 4539, 'housewif': 4540, 'renaiss': 4541, 'dandi': 4542, 'stimul': 4543, 'dish': 4544, 'oldest': 4545, 'fluff': 454 6, 'hostag': 4547, 'claustrophob': 4548, 'macho': 4549, 'scorses': 4550, 'hooker': 4551, 'cassavet': 4552, 'zoom': 4553, 'camcord': 4554, 'overlon g': 4555, 'steer': 4556, 'contempt': 4557, 'guin': 4558, 'glorifi': 4559, 'redund': 4560, 'ebert': 4561, 'slimi': 4562, 'idol': 4563, 'stair': 456 4, 'phenomenon': 4565, 'filth': 4566, 'intric': 4567, 'dismal': 4568, 'imm atur': 4569, 'boston': 4570, 'salt': 4571, 'spade': 4572, 'gere': 4573, 'c orbett': 4574, 'ariel': 4575, 'foolish': 4576, 'surgeri': 4577, 'hokey': 4 578, 'bent': 4579, 'amor': 4580, 'tripl': 4581, 'whore': 4582, 'sox': 458 3, 'assert': 4584, 'faint': 4585, 'frantic': 4586, 'widescreen': 4587, 'ke en': 4588, 'flirt': 4589, 'schlock': 4590, 'cow': 4591, 'dwarf': 4592, nquer': 4593, '1981': 4594, 'perman': 4595, 'messi': 4596, 'gabl': 4597, 'beard': 4598, 'gasp': 4599, 'obligatori': 4600, 'down': 4601, 'flashi': 4602, 'flag': 4603, 'spinal': 4604, 'zane': 4605, 'preced': 4606, 'margi n': 4607, 'remad': 4608, 'joker': 4609, 'antagonist': 4610, '1976': 4611, 'naschi': 4612, 'transplant': 4613, 'fascist': 4614, 'trivia': 4615, 'shr ed': 4616, 'strongest': 4617, 'muscl': 4618, 'mutual': 4619, 'spree': 462 0, 'cohen': 4621, 'proport': 4622, 'shield': 4623, 'nolt': 4624, 'radiat': 4625, 'corman': 4626, 'rhyme': 4627, 'harold': 4628, 'astronaut': 4629, 'm ount': 4630, 'alvin': 4631, 'cush': 4632, 'info': 4633, 'boob': 4634, 'bac helor': 4635, 'instruct': 4636, 'fishburn': 4637, 'flock': 4638, 'resum': 4639, 'persuad': 4640, 'wield': 4641, 'interestingli': 4642, 'someday': 4 643, 'raj': 4644, 'barn': 4645, 'triangl': 4646, 'discern': 4647, 'carey': 4648, 'inflict': 4649, 'strive': 4650, 'scandal': 4651, 'departur': 4652, 'www': 4653, 'brush': 4654, 'sensual': 4655, 'deer': 4656, '95': 4657, 'h ara': 4658, 'claud': 4659, 'repris': 4660, 'bitten': 4661, 'mol': 4662, 'n eurot': 4663, 'vaniti': 4664, 'divin': 4665, 'off': 4666, '28': 4667, 'rit chi': 4668, 'archiv': 4669, '1945': 4670, 'danish': 4671, 'aborigin': 467 2, 'mobil': 4673, 'ish': 4674, 'anton': 4675, 'rot': 4676, 'pacif': 4677, 'clad': 4678, 'cycl': 4679, 'bate': 4680, 'senior': 4681, 'hilar': 4682, 'parson': 4683, 'hapless': 4684, 'traffic': 4685, 'fragil': 4686, 'kathry n': 4687, 'melissa': 4688, 'dim': 4689, 'axe': 4690, 'helm': 4691, 'lorett a': 4692, 'luka': 4693, 'pixar': 4694, 'undermin': 4695, 'artwork': 4696, 'frontier': 4697, 'heartwarm': 4698, 'mobster': 4699, 'casino': 4700, 'c b': 4701, 'harrison': 4702, 'vibrant': 4703, 'banter': 4704, 'carlo': 470 5, 'neill': 4706, 'recit': 4707, 'colin': 4708, 'dylan': 4709, 'cliffhan

g': 4710, 'cher': 4711, 'biblic': 4712, 'proclaim': 4713, 'miracul': 4714, 'pickford': 4715, 'dame': 4716, 'earnest': 4717, 'jade': 4718, 'wendigo': 4719, 'submit': 4720, 'prophet': 4721, 'hug': 4722, 'europa': 4723, 'timb erlak': 4724, 'estrang': 4725, 'uma': 4726, 'eli': 4727, 'toronto': 4728, 'static': 4729, 'shepherd': 4730, 'marlon': 4731, 'lucil': 4732, 'flavo r': 4733, 'nope': 4734, 'razor': 4735, 'northern': 4736, 'redneck': 4737, 'sicken': 4738, 'mason': 4739, 'blatantli': 4740, 'feast': 4741, 'alexand r': 4742, 'antholog': 4743, 'jo': 4744, 'vile': 4745, 'bondag': 4746, 'van essa': 4747, 'breakfast': 4748, 'articl': 4749, 'bikini': 4750, 'wardrob': 4751, 'mathieu': 4752, 'orphan': 4753, 'rooki': 4754, 'isra': 4755, 'htt p': 4756, 'seedi': 4757, 'akin': 4758, 'token': 4759, 'holocaust': 4760, 'illus': 4761, 'aris': 4762, 'pc': 4763, 'cerebr': 4764, 'misfortun': 476 5, 'venom': 4766, 'foil': 4767, 'lui': 4768, 'jordan': 4769, 'trier': 477 0, 'electron': 4771, 'choke': 4772, 'legitim': 4773, 'winchest': 4774, 'mi lo': 4775, 'leather': 4776, 'psych': 4777, 'tack': 4778, 'turd': 4779, 'cl inic': 4780, 'feminin': 4781, 'knightley': 4782, 'glare': 4783, 'wrestle r': 4784, 'oppon': 4785, 'ceremoni': 4786, 'deem': 4787, 'comprehend': 478 8, 'outdat': 4789, 'magician': 4790, 'shorter': 4791, 'ideolog': 4792, 'pe er': 4793, 'dudley': 4794, 'boyer': 4795, 'disregard': 4796, 'highway': 47 97, 'howl': 4798, 'affleck': 4799, 'fifth': 4800, 'linear': 4801, 'abund': 4802, 'charlton': 4803, 'retriev': 4804, 'nightclub': 4805, 'smack': 4806, 'gilbert': 4807, 'styliz': 4808, 'swept': 4809, 'audrey': 4810, 'cartoonis h': 4811, 'huston': 4812, 'frog': 4813, 'gunga': 4814, 'summar': 4815, 'ch ip': 4816, 'newer': 4817, 'plate': 4818, 'whack': 4819, 'spine': 4820, 'mi tch': 4821, 'deliver': 4822, 'greet': 4823, 'cemeteri': 4824, 'compris': 4 825, 'client': 4826, 'bastard': 4827, 'lighter': 4828, 'moe': 4829, 'energ et': 4830, 'einstein': 4831, 'senat': 4832, '4th': 4833, 'sleaz': 4834, '1 991': 4835, 'toe': 4836, 'btw': 4837, 'lifeless': 4838, 'cuban': 4839, 'br eakdown': 4840, '1994': 4841, 'lavish': 4842, 'snatch': 4843, 'monument': 4844, 'potter': 4845, 'evolut': 4846, 'goldsworthi': 4847, 'uniformli': 4 848, 'phenomen': 4849, 'tara': 4850, 'collector': 4851, 'corn': 4852, 'spa wn': 4853, 'conrad': 4854, 'bogu': 4855, 'boo': 4856, 'braveheart': 4857, 'durat': 4858, 'salman': 4859, 'mcqueen': 4860, 'replay': 4861, 'pronoun c': 4862, 'capot': 4863, 'inaccuraci': 4864, 'armstrong': 4865, 'eleven': 4866, 'judd': 4867, 'randolph': 4868, 'jule': 4869, '1977': 4870, 'cree k': 4871, 'ol': 4872, 'spectacl': 4873, 'signal': 4874, 'undead': 4875, 'i e': 4876, 'undertak': 4877, '1974': 4878, 'sorrow': 4879, 'neatli': 4880, 'constitut': 4881, 'alleg': 4882, 'outright': 4883, 'bulk': 4884, 'bori': 4885, 'firmli': 4886, 'lex': 4887, 'fluid': 4888, 'evelyn': 4889, 'health i': 4890, 'jare': 4891, 'jedi': 4892, 'clara': 4893, 'occup': 4894, 'liu': 4895, 'wtf': 4896, 'appl': 4897, 'jam': 4898, 'kazan': 4899, 'cecil': 490 0, 'trauma': 4901, 'kent': 4902, 'historian': 4903, 'embark': 4904, 'gilli am': 4905, 'luxuri': 4906, 'nina': 4907, 'belli': 4908, 'rosario': 4909, 'vignett': 4910, 'inclus': 4911, 'vain': 4912, 'blur': 4913, 'miami': 491 4, 'genet': 4915, 'sacrif': 4916, 'roar': 4917, 'curtain': 4918, 'knee': 4 919, 'cape': 4920, 'porter': 4921, 'fruit': 4922, 'abound': 4923, 'kiddi': 4924, 'unsuspect': 4925, 'decapit': 4926, 'subtli': 4927, 'sidewalk': 492 8, 'galaxi': 4929, 'bait': 4930, 'truman': 4931, 'inaccur': 4932, 'groan': 4933, 'goldblum': 4934, 'unattract': 4935, 'pioneer': 4936, 'basket': 493 7, 'propheci': 4938, 'walt': 4939, 'antonio': 4940, 'forgiven': 4941, 'rel entless': 4942, 'meal': 4943, 'miniseri': 4944, 'paula': 4945, 'conan': 49 46, 'tokyo': 4947, 'id': 4948, 'bsg': 4949, 'comb': 4950, 'pepper': 4951, 'lauren': 4952, 'spray': 4953, 'palm': 4954, 'ash': 4955, 'lanc': 4956, 'aussi': 4957, 'poker': 4958, '1985': 4959, 'congratul': 4960, 'carmen': 4961, 'mum': 4962, 'comprehens': 4963, 'asset': 4964, 'weaker': 4965, 'mo nti': 4966, 'detach': 4967, 'verg': 4968, 'masterson': 4969, 'dubiou': 497 0, 'sparkl': 4971, 'optimist': 4972, 'incorrect': 4973, 'growth': 4974, 'w eari': 4975, 'substanti': 4976, 'sophi': 4977, 'assort': 4978, 'reincarn': 4979, '21st': 4980, 'spill': 4981, 'ghetto': 4982, 'rapidli': 4983, 'omi n': 4984, 'turtl': 4985, 'cypher': 4986, 'vastli': 4987, 'casper': 4988, 'hostil': 4989, 'drone': 4990, 'handicap': 4991, 'frontal': 4992, 'hackma

```
n': 4993, 'ingrid': 4994, 'evan': 4995, 'profil': 4996, 'scarfac': 4997,
 'orchestr': 4998, 'bravo': 4999}
```

In [33]:

```
top_common_five = list(word_dict)
top_common_five[0:5]
```

Out[33]:

```
['movi', 'film', 'one', 'like', 'time']
```

Question: What are the five most frequently appearing (tokenized) words in the training set? Does it makes sense that these words appear frequently in the training set?

Answer: The five most fregent words are movi, film, one, like and time as you can see below detail.

Save word dict

Later on when we construct an endpoint which processes a submitted review we will need to make use of the word_dict which we have created. As such, we will save it to a file now for future use.

In [34]:

```
data_dir = '../data/pytorch' # The folder we will use for storing data
if not os.path.exists(data_dir): # Make sure that the folder exists
    os.makedirs(data_dir)
```

In [35]:

```
with open(os.path.join(data dir, 'word dict.pkl'), "wb") as f:
    pickle.dump(word_dict, f)
```

Transform the reviews

Now that we have our word dictionary which allows us to transform the words appearing in the reviews into integers, it is time to make use of it and convert our reviews to their integer sequence representation, making sure to pad or truncate to a fixed length, which in our case is 500.

In [36]:

```
def convert and pad(word dict, sentence, pad=500):
    NOWORD = 0 # We will use 0 to represent the 'no word' category
    INFREQ = 1 # and we use 1 to represent the infrequent words, i.e., words not appear
ing in word dict
    working_sentence = [NOWORD] * pad
    for word_index, word in enumerate(sentence[:pad]):
        if word in word_dict:
            working sentence[word index] = word dict[word]
            #print("----")
            #print(working_sentence[word_index])
        else:
            working_sentence[word_index] = INFREQ
    #print(working_sentence)
    return working_sentence, min(len(sentence), pad)
def convert_and_pad_data(word_dict, data, pad=500):
    result = []
    lengths = []
    for sentence in data:
        converted, leng = convert and pad(word dict, sentence, pad)
        result.append(converted)
        lengths.append(leng)
    return np.array(result), np.array(lengths)
```

In [37]:

```
train_X, train_X_len = convert_and_pad_data(word_dict, train_X)
test_X, test_X_len = convert_and_pad_data(word_dict, test_X)
```

As a guick check to make sure that things are working as intended, check to see what one of the reviews in the training set looks like after having been processeed. Does this look reasonable? What is the length of a review in the training set?

In [38]:

```
# Use this cell to examine one of the processed reviews to make sure everything is work
ing as intended.
#print(train_X[2])
train_X[2]
```

Out[38]:

```
array([ 573,
                476, 1576,
                               489,
                                       362, 1174,
                                                     327, 1187,
                                                                    110,
                                                                           340,
                        917,
                               535,
                                       489,
                                               65,
                                                        1, 4472,
                                                                      1, 2697, 1235,
                   1,
            1,
                                                                           955,
                        862,
                                        80,
                                               34,
            1,
                   1,
                                82,
                                                     168,
                                                               2,
                                                                     47,
         766, 1398,
                          7,
                               324,
                                        70,
                                              327,
                                                              17, 1280, 4403,
                                                        1,
         513,
                 202,
                        140,
                                  1,
                                       246,
                                              485, 1225,
                                                               1,
                                                                       1,
                                                                           653, 1431,
        3560,
                 574,
                                               25,
                                                              10,
                          1,
                               303,
                                     2062,
                                                        1,
                                                                    316,
                                                                           250, 1030,
                   1, 1489,
                                       656, 2143,
                                                       52,
                                                              89,
                                                                      1, 2124,
            1,
                                  1,
         135,
                 151,
                         52,
                                  1, 2829,
                                              184, 2349, 2606,
                                                                       6,
                                                                           248.
                                                                                   323,
           91,
                  10,
                        193,
                               325,
                                       894,
                                                1, 1571,
                                                              40, 4472,
                                                                             10,
                                                                                   128,
                                                             284, 1174,
        2236,
                 231,
                        133,
                               471,
                                        10, 1571,
                                                     249,
                                                                           250,
                                        44,
         382,
                 175, 1457,
                                  1,
                                               72,
                                                     162, 1571,
                                                                    233, 1168,
                 504, 4472,
                               277, 1319,
                                               14,
                                                     231,
                                                              11, 3464, 4248, 1280,
           39,
                 676,
                        212,
                                33,
                                       793,
                                              852, 2502,
                                                             339, 1571,
         601,
                                                                              4,
                                                                                    86,
                                86,
           10, 4472, 2632,
                                       761, 3330, 4472,
                                                             133.
                                                                    370.
                                                                           489.
                                                                                    10.
                               825, 1102, 1571,
         492,
                 346,
                        279,
                                                        1, 1009,
                                                                    104,
                                                                             61, 4472,
                                              245, 1562, 1296,
           17,
                  39,
                        698, 2125,
                                       230,
                                                                    349,
                                                                           107,
                                                                                    89,
                                                             819, 4403,
                                        27,
                                              100, 4472,
         112,
                  40,
                          1,
                                  1,
                                                                              1, 1572,
                                42,
            1, 4725,
                        243,
                                       138,
                                               27, 1174,
                                                             250,
                                                                    326,
                                                                                   530,
                                                                              1,
        4472,
                 139, 1202,
                               607,
                                       231,
                                              568, 2503,
                                                             140,
                                                                     64,
                                                                              1, 2644,
        1125,
                   1,
                          1, 1619,
                                         1, 1380,
                                                     574,
                                                               1,
                                                                     79,
                                                                           107,
                                                                                   237,
                                              184,
                                                     250, 4472,
        1500,
                  44,
                         72,
                              1074,
                                         1,
                                                                    137,
                                                                             10.
                               127, 1015, 2245,
                                                     250, 1165, 4472, 1465, 1377,
           10, 1571,
                        761,
         943, 1441,
                          4,
                               452,
                                        20, 1103, 1465,
                                                                    918,
                                                                            354,
                                                               2,
         301,
                  32, 2697, 1235, 1572,
                                                1,
                                                     187, 1489,
                                                                       1,
                                                                           238, 4057,
                                               34,
                                 17,
                                       770,
                                                      168,
           60,
               2220,
                          3,
                                                               2,
                                                                      65,
                                                                             11,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                      0,
                                                                              0,
                                                                                     0,
                                  0,
            0,
                   0,
                          0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                       0,
                                                                              0,
                                                                                     0,
                          0,
                                                0,
                                                        0,
            0,
                   0,
                                  0,
                                         0,
                                                               0,
                                                                      0,
                                                                              0,
                                                                                     0,
           0,
                          0,
                                  0,
                                                        0,
                                                                      0,
                                                0,
                                                                              0,
                   0,
                                         0,
                                                               0,
                                                                                     0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                                              0,
                                                                                     0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                              0,
                                                                                     0,
            0,
                                                0.
                                                        0.
                   0,
                          0,
                                  0,
                                         0,
                                                               0,
                                                                              0,
                                                                                     0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                       0,
                                                                              0,
                                                                                     0,
                                                                              0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                       0,
                                                                                     0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                       0,
                                                                              0,
                                                                                     0,
            0,
                                                                                     0,
                   0,
                                  0,
                                                                      0,
                                                                              0,
                          0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                0,
                                                                              0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                        0,
                                                                                     0,
                                                                       0,
                                                                              0,
            0,
                          0,
                                  0,
                                                0,
                                                        0,
                                                                                     0,
                   0,
                                         0,
                                                               0,
            0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                                     0,
                                                0,
                                                                              0,
                                  0,
                                                                      0,
            0,
                   0,
                          0,
                                         0,
                                                        0,
                                                               0,
                                                                                     0,
            0,
                   0,
                          0,
                                  0,
                                         0,
                                                0,
                                                        0,
                                                               0,
                                                                                     0,
                                                                       0,
                                                                              0,
            0,
                          0,
                                  0,
                                                0,
                                                        0,
                                                                                     0,
                   0,
                                         0,
                                                               0,
                                                                       0,
                                                                              0,
                                                0,
            0.
                          0,
                                  0,
                                                        0.
                   0,
                                         0,
                                                               0.
                                                                      0,
                                                                              0,
                                                                                     0,
                                 0,
                                                0,
                                                        0,
            0,
                   0,
                          0,
                                         0,
                                                               0,
                                                                      0,
                                                                                     0,
                                                                              0,
                                  0,
                                                        0,
            0,
                                                0,
                   0,
                          0,
                                         0,
                                                               0,
                                                                              0,
            0,
                          0,
                                  0,
                                         0])
                   0,
```

Question: In the cells above we use the preprocess_data and convert_and_pad_data methods to process both the training and testing set. Why or why not might this be a problem?

Answer: preprocess data implements bag of words process for all reviews. Besides, convert and pad data uses the data which processed in preprocess data function and convert this words as integers as 1 or 0 which means that 1 is occurs that word in review 0 is not. Thus, these process are essential for both training and test data. When we train our model with trainin data, we have to test our model with test data. To do this process, we have to implement both two functions otherwise our model doesn't works.

Step 3: Upload the data to S3

As in the XGBoost notebook, we will need to upload the training dataset to S3 in order for our training code to access it. For now we will save it locally and we will upload to S3 later on.

Save the processed training dataset locally

It is important to note the format of the data that we are saving as we will need to know it when we write the training code. In our case, each row of the dataset has the form label, length, review[500] where review[500] is a sequence of 500 integers representing the words in the review.

```
In [39]:
```

```
import pandas as pd
pd.concat([pd.DataFrame(train_y), pd.DataFrame(train_X_len), pd.DataFrame(train_X)], ax
        .to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False)
```

Uploading the training data

Next, we need to upload the training data to the SageMaker default S3 bucket so that we can provide access to it while training our model.

In [40]:

```
import sagemaker
sagemaker session = sagemaker.Session()
bucket = sagemaker session.default bucket()
prefix = 'sagemaker/sentiment_rnn'
role = sagemaker.get_execution_role()
```

```
In [41]:
```

```
input_data = sagemaker_session.upload_data(path=data_dir, bucket=bucket, key_prefix=pre
fix)
```

NOTE: The cell above uploads the entire contents of our data directory. This includes the word dict.pkl file. This is fortunate as we will need this later on when we create an endpoint that accepts an arbitrary review. For now, we will just take note of the fact that it resides in the data directory (and so also in the S3 training bucket) and that we will need to make sure it gets saved in the model directory.

Step 4: Build and Train the PyTorch Model

In the XGBoost notebook we discussed what a model is in the SageMaker framework. In particular, a model comprises three objects

- · Model Artifacts,
- · Training Code, and
- · Inference Code,

each of which interact with one another. In the XGBoost example we used training and inference code that was provided by Amazon. Here we will still be using containers provided by Amazon with the added benefit of being able to include our own custom code.

We will start by implementing our own neural network in PyTorch along with a training script. For the purposes of this project we have provided the necessary model object in the model.py file, inside of the train folder. You can see the provided implementation by running the cell below.

In [42]:

```
!pygmentize train/model.py
import torch.nn as nn
class LSTMClassifier(nn.Module):
   This is the simple RNN model we will be using to perform Sentiment Ana
lysis.
   def __init__(self, embedding_dim, hidden_dim, vocab_size):
        Initialize the model by settingg up the various layers.
        super(LSTMClassifier, self). init ()
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_i
dx=0)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim)
        self.dense = nn.Linear(in_features=hidden_dim, out_features=1)
        self.sig = nn.Sigmoid()
        self.word_dict = None
    def forward(self, x):
        Perform a forward pass of our model on some input.
        x = x.t()
        lengths = x[0,:]
        reviews = x[1:,:]
        embeds = self.embedding(reviews)
        lstm out, = self.lstm(embeds)
        out = self.dense(lstm_out)
        out = out[lengths - 1, range(len(lengths))]
        return self.sig(out.squeeze())
```

The important takeaway from the implementation provided is that there are three parameters that we may wish to tweak to improve the performance of our model. These are the embedding dimension, the hidden dimension and the size of the vocabulary. We will likely want to make these parameters configurable in the training script so that if we wish to modify them we do not need to modify the script itself. We will see how to do this later on. To start we will write some of the training code in the notebook so that we can more easily diagnose any issues that arise.

First we will load a small portion of the training data set to use as a sample. It would be very time consuming to try and train the model completely in the notebook as we do not have access to a gpu and the compute instance that we are using is not particularly powerful. However, we can work on a small bit of the data to get a feel for how our training script is behaving.

In [43]:

```
import torch
import torch.utils.data
# Read in only the first 250 rows
train_sample = pd.read_csv(os.path.join(data_dir, 'train.csv'), header=None, names=None
, nrows=250)
# Turn the input pandas dataframe into tensors
train_sample_y = torch.from_numpy(train_sample[[0]].values).float().squeeze()
train_sample_X = torch.from_numpy(train_sample.drop([0], axis=1).values).long()
# Build the dataset
train_sample_ds = torch.utils.data.TensorDataset(train_sample_X, train_sample_y)
# Build the dataloader
train_sample_dl = torch.utils.data.DataLoader(train_sample_ds, batch_size=50)
```

(TODO) Writing the training method

Next we need to write the training code itself. This should be very similar to training methods that you have written before to train PyTorch models. We will leave any difficult aspects such as model saving / loading and parameter loading until a little later.

In [44]:

```
def train(model, train loader, epochs, optimizer, loss fn, device):
    for epoch in range(1, epochs + 1):
        model.train()
        total loss = 0
        for batch in train loader:
            batch_X, batch_y = batch
            batch_X = batch_X.to(device)
            batch_y = batch_y.to(device)
            optimizer.zero_grad() # It initiates with zero of the parameter gradients
            output = model.forward(batch_X) #compute model output
            loss = loss_fn(output, batch_y) #calculate loss
            loss.backward() # compute gradients of Loss
            optimizer.step() #updates using calculated gradients
            # TODO: Complete this train method to train the model provided.
            total_loss += loss.data.item()
        print("Epoch: {}, BCELoss: {}".format(epoch, total_loss / len(train_loader)))
```

Supposing we have the training method above, we will test that it is working by writing a bit of code in the notebook that executes our training method on the small sample training set that we loaded earlier. The reason for doing this in the notebook is so that we have an opportunity to fix any errors that arise early when they are easier to diagnose.

In [45]:

```
import torch.optim as optim
from train.model import LSTMClassifier
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LSTMClassifier(32, 100, 5000).to(device)
optimizer = optim.Adam(model.parameters())
loss_fn = torch.nn.BCELoss()
train(model, train sample dl, 5, optimizer, loss fn, device)
```

```
Epoch: 1, BCELoss: 0.6925788521766663
Epoch: 2, BCELoss: 0.6839629530906677
Epoch: 3, BCELoss: 0.6769336223602295
Epoch: 4, BCELoss: 0.6693737506866455
Epoch: 5, BCELoss: 0.6604826927185059
```

In order to construct a PyTorch model using SageMaker we must provide SageMaker with a training script. We may optionally include a directory which will be copied to the container and from which our training code will be run. When the training container is executed it will check the uploaded directory (if there is one) for a requirements.txt file and install any required Python libraries, after which the training script will be run.

(TODO) Training the model

When a PyTorch model is constructed in SageMaker, an entry point must be specified. This is the Python file which will be executed when the model is trained. Inside of the train directory is a file called train.py which has been provided and which contains most of the necessary code to train our model. The only thing that is missing is the implementation of the train() method which you wrote earlier in this notebook.

TODO: Copy the train() method written above and paste it into the train/train.py file where required.

The way that SageMaker passes hyperparameters to the training script is by way of arguments. These arguments can then be parsed and used in the training script. To see how this is done take a look at the provided train/train.py file.

In [46]:

```
from sagemaker.pytorch import PyTorch
estimator = PyTorch(entry_point="train.py",
                    source dir="train",
                    role=role,
                    framework_version='0.4.0',
                    train_instance_count=1,
                    train_instance_type='ml.p2.xlarge',
                    hyperparameters={
                         'epochs': 10,
                         'hidden_dim': 200,
                    })
```

```
In [47]:
```

estimator.fit({'training': input_data})

- 'create_image_uri' will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2.
- 's3_input' class will be renamed to 'TrainingInput' in SageMaker Python SD K v2.
- 'create_image_uri' will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2.

```
2020-10-02 11:49:32 Starting - Starting the training job...
2020-10-02 11:49:34 Starting - Launching requested ML instances......
2020-10-02 11:50:48 Starting - Preparing the instances for trainin
g.....
2020-10-02 11:52:06 Downloading - Downloading input data...
2020-10-02 11:52:46 Training - Downloading the training image..bash: canno
t set terminal process group (-1): Inappropriate ioctl for device
bash: no job control in this shell
2020-10-02 11:53:10,716 sagemaker-containers INFO
                                                      Imported framework s
agemaker_pytorch_container.training
2020-10-02 11:53:10,741 sagemaker_pytorch_container.training INFO
                                                                      Bloc
k until all host DNS lookups succeed.
2020-10-02 11:53:13,793 sagemaker_pytorch_container.training INFO
                                                                      Invo
king user training script.
2020-10-02 11:53:14,017 sagemaker-containers INFO
                                                      Module train does no
t provide a setup.py.
Generating setup.py
2020-10-02 11:53:14,017 sagemaker-containers INFO
                                                      Generating setup.cfg
2020-10-02 11:53:14,017 sagemaker-containers INFO
                                                      Generating MANIFEST.
2020-10-02 11:53:14,018 sagemaker-containers INFO
                                                      Installing module wi
th the following command:
/usr/bin/python -m pip install -U . -r requirements.txt
Processing /opt/ml/code
Collecting pandas (from -r requirements.txt (line 1))
  Downloading https://files.pythonhosted.org/packages/74/24/0cdbf8907e1e3b
c5a8da03345c23cbed7044330bb8f73bb12e711a640a00/pandas-0.24.2-cp35-cp35m-ma
nylinux1_x86_64.whl (10.0MB)
Collecting numpy (from -r requirements.txt (line 2))
  Downloading https://files.pythonhosted.org/packages/b5/36/88723426b4ff57
6809fec7d73594fe17a35c27f8d01f93637637a29ae25b/numpy-1.18.5-cp35-cp35m-man
ylinux1_x86_64.whl (19.9MB)
Collecting nltk (from -r requirements.txt (line 3))
 Downloading https://files.pythonhosted.org/packages/92/75/ce35194d8e3022
203cca0d2f896dbb88689f9b3fce8e9f9cff942913519d/nltk-3.5.zip (1.4MB)
Collecting beautifulsoup4 (from -r requirements.txt (line 4))
 Downloading https://files.pythonhosted.org/packages/56/f2/6c6c7d0b5483b8
c63e837c3f5d941e511979ceb3975ca45fa3ef682df2d6/beautifulsoup4-4.9.2-py3-no
ne-any.whl (115kB)
Collecting html5lib (from -r requirements.txt (line 5))
 Downloading https://files.pythonhosted.org/packages/6c/dd/a834df6482147d
48e225a49515aabc28974ad5a4ca3215c18a882565b028/html5lib-1.1-py2.py3-none-a
ny.whl (112kB)
Collecting pytz>=2011k (from pandas->-r requirements.txt (line 1))
  Downloading https://files.pythonhosted.org/packages/4f/a4/879454d49688e2
fad93e59d7d4efda580b783c745fd2ec2a3adf87b0808d/pytz-2020.1-py2.py3-none-an
y.whl (510kB)
Requirement already satisfied, skipping upgrade: python-dateutil>=2.5.0 in
/usr/local/lib/python3.5/dist-packages (from pandas->-r requirements.txt
 (line 1)) (2.7.5)
Requirement already satisfied, skipping upgrade: click in /usr/local/lib/p
ython3.5/dist-packages (from nltk->-r requirements.txt (line 3)) (7.0)
Collecting joblib (from nltk->-r requirements.txt (line 3))
  Downloading https://files.pythonhosted.org/packages/28/5c/cf6a2b65a321c4
a209efcdf64c2689efae2cb62661f8f6f4bb28547cf1bf/joblib-0.14.1-py2.py3-none-
any.whl (294kB)
Collecting regex (from nltk->-r requirements.txt (line 3))
 Downloading https://files.pythonhosted.org/packages/93/8c/17f45cdfb39b13
d4b5f909e4b4c2917abcbdef9c0036919a0399769148cf/regex-2020.9.27.tar.gz (690
kB)
Collecting tqdm (from nltk->-r requirements.txt (line 3))
```

```
Downloading https://files.pythonhosted.org/packages/0a/0e/ea53a3d6f1eb2c
c31162c9ae89555cc26a3986e5559781f0b0df75aea5cf/tqdm-4.50.0-py2.py3-none-an
y.whl (70kB)
Collecting soupsieve>1.2; python_version >= "3.0" (from beautifulsoup4->-r
requirements.txt (line 4))
  Downloading https://files.pythonhosted.org/packages/6f/8f/457f4a5390eeae
1cc3aeab89deb7724c965be841ffca6cfca9197482e470/soupsieve-2.0.1-py3-none-an
y.whl
Requirement already satisfied, skipping upgrade: six>=1.9 in /usr/local/li
b/python3.5/dist-packages (from html5lib->-r requirements.txt (line 5))
 (1.11.0)
Collecting webencodings (from html5lib->-r requirements.txt (line 5))
  Downloading https://files.pythonhosted.org/packages/f4/24/2a3e3df732393f
ed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-
none-any.whl
Building wheels for collected packages: nltk, train, regex
  Running setup.py bdist_wheel for nltk: started
  Running setup.py bdist wheel for nltk: finished with status 'done'
  Stored in directory: /root/.cache/pip/wheels/ae/8c/3f/b1fe0ba04555b08b57
ab52ab7f86023639a526d8bc8d384306
  Running setup.py bdist wheel for train: started
  Running setup.py bdist wheel for train: finished with status 'done'
  Stored in directory: /tmp/pip-ephem-wheel-cache-o7yygk8t/wheels/35/24/1
6/37574d11bf9bde50616c67372a334f94fa8356bc7164af8ca3
  Running setup.py bdist_wheel for regex: started
2020-10-02 11:53:09 Training - Training image download completed. Training
in progress. Running setup.py bdist wheel for regex: finished with status
'done'
  Stored in directory: /root/.cache/pip/wheels/3b/ce/8a/55c7dfaf510ff2ed9c
4f52d2091eb3fca5f438969a9ed908b8
Successfully built nltk train regex
Installing collected packages: pytz, numpy, pandas, joblib, regex, tqdm, n
ltk, soupsieve, beautifulsoup4, webencodings, html5lib, train
  Found existing installation: numpy 1.15.4
    Uninstalling numpy-1.15.4:
      Successfully uninstalled numpy-1.15.4
Successfully installed beautifulsoup4-4.9.2 html5lib-1.1 joblib-0.14.1 nlt
k-3.5 numpy-1.18.5 pandas-0.24.2 pytz-2020.1 regex-2020.9.27 soupsieve-2.
0.1 tqdm-4.50.0 train-1.0.0 webencodings-0.5.1
You are using pip version 18.1, however version 20.2.3 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
2020-10-02 11:53:37,421 sagemaker-containers INFO
                                                     Invoking user script
Training Env:
{
    "additional_framework_parameters": {},
    "output intermediate dir": "/opt/ml/output/intermediate",
    "hosts": [
        "algo-1"
    "framework module": "sagemaker_pytorch_container.training:main",
    "resource config": {
        "network_interface_name": "eth0",
        "current_host": "algo-1",
        "hosts": [
            "algo-1"
        1
    },
    "module dir": "s3://sagemaker-us-east-2-451738048504/sagemaker-pytorch
```

```
-2020-10-02-11-49-31-756/source/sourcedir.tar.gz",
    "hyperparameters": {
        "hidden dim": 200,
        "epochs": 10
    "channel_input_dirs": {
        "training": "/opt/ml/input/data/training"
    "output dir": "/opt/ml/output",
    "model_dir": "/opt/ml/model",
    "current_host": "algo-1",
    "num_gpus": 1,
    "module_name": "train",
    "input_data_config": {
        "training": {
            "S3DistributionType": "FullyReplicated",
            "RecordWrapperType": "None",
            "TrainingInputMode": "File"
        }
    },
    "input_config_dir": "/opt/ml/input/config",
    "user_entry_point": "train.py",
    "job_name": "sagemaker-pytorch-2020-10-02-11-49-31-756",
    "output_data_dir": "/opt/ml/output/data",
    "input_dir": "/opt/ml/input",
    "network_interface_name": "eth0",
    "num cpus": 4,
    "log_level": 20
Environment variables:
SM USER ENTRY POINT=train.py
SM_CHANNEL_TRAINING=/opt/ml/input/data/training
SM HP EPOCHS=10
SM_NETWORK_INTERFACE_NAME=eth0
SM_MODULE_NAME=train
SM_MODEL_DIR=/opt/ml/model
SM_RESOURCE_CONFIG={"current_host":"algo-1", "hosts":["algo-1"], "network_in
terface name":"eth0"}
SM_FRAMEWORK_MODULE=sagemaker_pytorch_container.training:main
SM_OUTPUT_DATA_DIR=/opt/ml/output/data
SM NUM CPUS=4
SM_INPUT_DIR=/opt/ml/input
SM_TRAINING_ENV={"additional_framework_parameters":{},"channel_input_dir
s":{"training":"/opt/ml/input/data/training"},"current_host":"algo-1","fra
mework_module":"sagemaker_pytorch_container.training:main","hosts":["algo-
1"], "hyperparameters": {"epochs": 10, "hidden_dim": 200}, "input_config_dir": "/
opt/ml/input/config","input_data_config":{"training":{"RecordWrapperTyp
e":"None", "S3DistributionType": "FullyReplicated", "TrainingInputMode": "Fil
e"}},"input_dir":"/opt/ml/input","job_name":"sagemaker-pytorch-2020-10-02-
11-49-31-756", "log_level": 20, "model_dir": "/opt/ml/model", "module_dir": "s
3://sagemaker-us-east-2-451738048504/sagemaker-pytorch-2020-10-02-11-49-31
-756/source/sourcedir.tar.gz", "module_name": "train", "network_interface_nam
e":"eth0","num_cpus":4,"num_gpus":1,"output_data_dir":"/opt/ml/output/dat
a","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/outpu
t/intermediate", "resource_config": { "current_host": "algo-1", "hosts": [ "algo-
1"],"network_interface_name":"eth0"},"user_entry_point":"train.py"}
SM_HOSTS=["algo-1"]
SM_USER_ARGS=["--epochs","10","--hidden_dim","200"]
SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate
```

```
SM INPUT CONFIG DIR=/opt/ml/input/config
SM OUTPUT DIR=/opt/ml/output
SM INPUT DATA CONFIG={"training":{"RecordWrapperType":"None","S3Distributi
onType":"FullyReplicated","TrainingInputMode":"File"}}
SM CURRENT HOST=algo-1
SM_FRAMEWORK_PARAMS={}
PYTHONPATH=/usr/local/bin:/usr/lib/python35.zip:/usr/lib/python3.5:/usr/li
b/python3.5/plat-x86_64-linux-gnu:/usr/lib/python3.5/lib-dynload:/usr/loca
1/lib/python3.5/dist-packages:/usr/lib/python3/dist-packages
SM MODULE DIR=s3://sagemaker-us-east-2-451738048504/sagemaker-pytorch-2020
-10-02-11-49-31-756/source/sourcedir.tar.gz
SM HP HIDDEN DIM=200
SM_CHANNELS=["training"]
SM_HPS={"epochs":10,"hidden_dim":200}
SM LOG LEVEL=20
SM NUM GPUS=1
Invoking script with the following command:
/usr/bin/python -m train --epochs 10 --hidden dim 200
Using device cuda.
Get train data loader.
Model loaded with embedding_dim 32, hidden_dim 200, vocab_size 5000.
Epoch: 1, BCELoss: 0.673609234848801
Epoch: 2, BCELoss: 0.6324497449154757
Epoch: 3, BCELoss: 0.5560541511798391
Epoch: 4, BCELoss: 0.4823892463226708
Epoch: 5, BCELoss: 0.41778668578790157
Epoch: 6, BCELoss: 0.38168427773884367
Epoch: 7, BCELoss: 0.34452851329530987
Epoch: 8, BCELoss: 0.33528181971335896
Epoch: 9, BCELoss: 0.3088574372992224
Epoch: 10, BCELoss: 0.28256348201206755
2020-10-02 11:56:34,966 sagemaker-containers INFO
                                                      Reporting training S
UCCESS
2020-10-02 11:56:44 Uploading - Uploading generated training model
2020-10-02 11:56:44 Completed - Training job completed
Training seconds: 278
Billable seconds: 278
```

Step 5: Testing the model

As mentioned at the top of this notebook, we will be testing this model by first deploying it and then sending the testing data to the deployed endpoint. We will do this so that we can make sure that the deployed model is working correctly.

Step 6: Deploy the model for testing

Now that we have trained our model, we would like to test it to see how it performs. Currently our model takes input of the form review_length, review[500] where review[500] is a sequence of 500 integers which describe the words present in the review, encoded using word dict. Fortunately for us, SageMaker provides built-in inference code for models with simple inputs such as this.

There is one thing that we need to provide, however, and that is a function which loads the saved model. This function must be called model_fn() and takes as its only parameter a path to the directory where the model artifacts are stored. This function must also be present in the python file which we specified as the entry point. In our case the model loading function has been provided and so no changes need to be made.

NOTE: When the built-in inference code is run it must import the <code>model_fn()</code> method from the <code>train.py</code> file. This is why the training code is wrapped in a main guard (ie, if __name__ == '__main__':)

Since we don't need to change anything in the code that was uploaded during training, we can simply deploy the current model as-is.

NOTE: When deploying a model you are asking SageMaker to launch an compute instance that will wait for data to be sent to it. As a result, this compute instance will continue to run until you shut it down. This is important to know since the cost of a deployed endpoint depends on how long it has been running for.

In other words If you are no longer using a deployed endpoint, shut it down!

TODO: Deploy the trained model.

In [48]:

```
# TODO: Deploy the trained model
predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge')
# Because of instance limit, i deployed my model on ml.m4.xlarge instance.
```

```
Parameter image will be renamed to image uri in SageMaker Python SDK v2.
'create image uri' will be deprecated in favor of 'ImageURIProvider' class
in SageMaker Python SDK v2.
----I
```

Step 7 - Use the model for testing

Once deployed, we can read in the test data and send it off to our deployed model to get some results. Once we collect all of the results we can determine how accurate our model is.

```
In [49]:
```

```
test_X = pd.concat([pd.DataFrame(test_X_len), pd.DataFrame(test_X)], axis=1)
```

In [50]:

```
# We split the data into chunks and send each chunk seperately, accumulating the result
S.
def predict(data, rows=512):
    split_array = np.array_split(data, int(data.shape[0] / float(rows) + 1))
    predictions = np.array([])
    for array in split_array:
        predictions = np.append(predictions, predictor.predict(array))
    return predictions
```

In [51]:

```
predictions = predict(test_X.values)
predictions = [round(num) for num in predictions]
```

In [52]:

```
from sklearn.metrics import accuracy score
accuracy_score(test_y, predictions)
```

Out[52]:

0.85196

Question: How does this model compare to the XGBoost model you created earlier? Why might these two models perform differently on this dataset? Which do you think is better for sentiment analysis?

Answer: XGBoost model accuracy has been almost 0.87 while this model is 0.85. Thus we can say that XGBoost is a little bit better model however, neural networks may work much better when attributes of data and parameters are big. Both models give good results and maybe with hyperparameter tuning the results can be increased especially in this model.

(TODO) More testing

We now have a trained model which has been deployed and which we can send processed reviews to and which returns the predicted sentiment. However, ultimately we would like to be able to send our model an unprocessed review. That is, we would like to send the review itself as a string. For example, suppose we wish to send the following review to our model.

In [53]:

test review = 'The simplest pleasures in life are the best, and this film is one of the m. Combining a rather basic storyline of love and adventure this movie transcends the u sual weekend fair with wit and unmitigated charm.'

The question we now need to answer is, how do we send this review to our model?

Recall in the first section of this notebook we did a bunch of data processing to the IMDb dataset. In particular, we did two specific things to the provided reviews.

- · Removed any html tags and stemmed the input
- Encoded the review as a sequence of integers using word dict

In order process the review we will need to repeat these two steps.

TODO: Using the review_to_words and convert_and_pad methods from section one, convert test review into a numpy array test data suitable to send to our model. Remember that our model expects input of the form review_length, review[500].

In [54]:

```
# TODO: Convert test_review into a form usable by the model and save the results in tes
t_data
test_data = None
custom_test = review_to_words(test_review)
```

In [55]:

```
print(custom test)
['simplest', 'pleasur', 'life', 'best', 'film', 'one', 'combin', 'rather', 'basic', 'storylin', 'love', 'adventur', 'movi', 'transcend', 'usual', 'we ekend', 'fair', 'wit', 'unmitig', 'charm']
```

In [60]:

```
def convert_and_pad2(word_dict, sentence, pad=500):
   NOWORD = 0 # We will use 0 to represent the 'no word' category
   INFREQ = 1 # and we use 1 to represent the infrequent words, i.e., words not appear
ing in word_dict
   working sentence = [NOWORD] * pad
   for word_index, word in enumerate(sentence[:pad]):
        if word in word dict:
            working_sentence[word_index] = word_dict[word]
        else:
            working sentence[word index] = INFREQ
    return working sentence
```

In [61]:

```
test data draft = convert and pad2(word dict, custom test)
test data = [np.array(test data draft)]
```

In [62]:

print(test_data)

[array([1,	1375	, 50,	53	, 3,	4,	878,	173,	392,	682,	29,
724,	2,	4415,	275,	2076,	1060,	760,	1,	581,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,		0,		0,				0,
0,	0,	0,	0,	0,	0.	0.	0.	0,	0,	0,
0,	0,	0, 0,	0,	0, 0,	0, 0,	0, 0,	0.	α.	0.	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,		0,	0,	0,	0,	0,	0,	0,	0,	0,
0,		0,		0,						
0,		0,		0,						
0,	0,			0,	-					
0,	0,	0.	0.	0.	0.	0.	0.	0.	0,	0,
0,	0,	0,	0,	0, 0,	0, 0,	0, 0,	0, 0,	а	а	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	ø,	0,	0,	0,	0,	0,	0,	0,	ø,	ø,
0,	_		0,	ø,	0,	ø,		ø,	ø,	ø,
0,				0,						
0,				0,						
0,	ø,			0,						
0,	0,	0.	0.	0.	0.	0.	0.	0.	ø,	ø,
0,	0,	0, 0,	0,	0, 0,	0, 0,	0, 0,	0, 0,	ø,	0.	0.
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	ø,
0,		0,	0,	ø,	0,	ø,	ø,	ø,	ø,	ø,
0,		0,		0,						
0,	0,			0,						
0,	0,	0,		0,						
0,	0,	0,	0.	0.	0.	0.	0,	0,	0,	0,
0,	0,		0,	0, 0,	0, 0,	a	a	а	0.	0.
0,	0,	0,	0,	0,	0,	0, 0, 0	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,		0,	0,	0,	0,	0,	0,	0,	0,
0,		0,								
0,	0,	0,	0,	0,	0,					
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
0,	0,	0,		0,	0,	0,		0,		
0,	0,	0,	0,	0,	0,	0,	0,	0,		
0,	0,	0,	0,	0,			0,		0,	0,
0,	0,	0,	0,			0,	0,		0,	0,
0,	0,	0,	0,	0,	0,	0,	0,		0,	0,
0,	0,	0,	0,							
ø,	ø,	ø,	ø,	ø,	ø,	ø,				
0,	0,	0,	0,	0,						
0,	0,	0,		0,		0,	0,	0,	0,	0,
0,	0,	0,		0])		•	,	•	•	,
- ,	- ,	- ,	- ,	- 1 /	-					

Now that we have processed the review, we can send the resulting array to our model to predict the sentiment of the review.

In [63]:

```
predictor.predict(test_data)
```

Out[63]:

```
array(0.61214393, dtype=float32)
```

Since the return value of our model is close to 1, we can be certain that the review we submitted is positive.

Delete the endpoint

Of course, just like in the XGBoost notebook, once we've deployed an endpoint it continues to run until we tell it to shut down. Since we are done using our endpoint for now, we can delete it.

In [64]:

```
estimator.delete_endpoint()
```

estimator.delete_endpoint() will be deprecated in SageMaker Python SDK v2. Please use the delete_endpoint() function on your predictor instead.

Step 6 (again) - Deploy the model for the web app

Now that we know that our model is working, it's time to create some custom inference code so that we can send the model a review which has not been processed and have it determine the sentiment of the review.

As we saw above, by default the estimator which we created, when deployed, will use the entry script and directory which we provided when creating the model. However, since we now wish to accept a string as input and our model expects a processed review, we need to write some custom inference code.

We will store the code that we write in the serve directory. Provided in this directory is the model.py file that we used to construct our model, a utils.py file which contains the review_to_words and convert_and_pad pre-processing functions which we used during the initial data processing, and predict.py, the file which will contain our custom inference code. Note also that requirements.txt is present which will tell SageMaker what Python libraries are required by our custom inference code.

When deploying a PyTorch model in SageMaker, you are expected to provide four functions which the SageMaker inference container will use.

- model_fn: This function is the same function that we used in the training script and it tells SageMaker how to load our model.
- input fn: This function receives the raw serialized input that has been sent to the model's endpoint and its job is to de-serialize and make the input available for the inference code.
- output fn: This function takes the output of the inference code and its job is to serialize this output and return it to the caller of the model's endpoint.
- predict fn: The heart of the inference script, this is where the actual prediction is done and is the function which you will need to complete.

For the simple website that we are constructing during this project, the input_fn and output_fn methods are relatively straightforward. We only require being able to accept a string as input and we expect to return a single value as output. You might imagine though that in a more complex application the input or output may be image data or some other binary data which would require some effort to serialize.

(TODO) Writing inference code

Before writing our custom inference code, we will begin by taking a look at the code which has been provided.

In [65]:

!pygmentize serve/predict.py

```
import <u>argparse</u>
import json
import os
import pickle
import sys
import <u>sagemaker</u> containers
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from model import LSTMClassifier
from utils import review_to_words, convert_and_pad
def model_fn(model_dir):
    """Load the PyTorch model from the `model_dir` directory."""
    print("Loading model.")
    # First, load the parameters used to create the model.
    model_info = {}
    model_info_path = os.path.join(model_dir, 'model_info.pth')
    with open(model info path, 'rb') as f:
        model_info = torch.load(f)
    print("model_info: {}".format(model_info))
    # Determine the device and construct the model.
    device = torch.device("cuda" if torch.cuda.is available() else "cpu")
    model = LSTMClassifier(model_info['embedding_dim'], model_info['hidden
dim'], model_info['vocab_size'])
    # Load the store model parameters.
    model_path = os.path.join(model_dir, 'model.pth')
    with open(model_path, 'rb') as f:
        model.load_state_dict(torch.load(f))
    # Load the saved word dict.
    word_dict_path = os.path.join(model_dir, 'word_dict.pkl')
    with open(word dict path, 'rb') as f:
        model.word dict = pickle.load(f)
    model.to(device).eval()
    print("Done loading model.")
    return model
def input_fn(serialized_input_data, content_type):
    print('Deserializing the input data.')
    if content_type == 'text/plain':
        data = serialized_input_data.decode('utf-8')
        return data
    raise Exception('Requested unsupported ContentType in content type: '
+ content_type)
def output_fn(prediction_output, accept):
    print('Serializing the generated output.')
    return str(prediction output)
```

```
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')
   device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
   if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.
')
   # TODO: Process input_data so that it is ready to be sent to our mode
1.
            You should produce two variables:
              data_X - A sequence of length 500 which represents the con
verted review
             data_len - The length of the review
   data_X = None
   data len = None
   data_X = review_to_words(input_data)
   data_X, data_len = convert_and_pad(model.word_dict, data_X)
   # Using data_X and data_len we construct an appropriate input tensor.
 Remember
   # that our model expects input data of the form 'len, review[500]'.
   data_pack = np.hstack((data_len, data_X))
   data pack = data pack.reshape(1, -1)
   data = torch.from_numpy(data_pack)
   data = data.to(device)
   # Make sure to put the model into evaluation mode
   model.eval()
   # TODO: Compute the result of applying the model to the input data. Th
e variable `result` should
           be a numpy array which contains a single integer which is eith
er 1 or 0
   result = None
   with torch.no_grad(): #This provides us memory efficient. We don't nee
d to calculate gradient to backward.
        output = model.forward(data)
   output = output.to('cpu')
    result = int(np.round(output.numpy()))
   #.numpy() provides retrieve tensor object as numpy array. I have taken
this information from below link.
   #https://discuss.pytorch.org/t/how-to-transform-variable-into-numpy/10
4
```

return result

As mentioned earlier, the model fn method is the same as the one provided in the training code and the input fn and output fn methods are very simple and your task will be to complete the predict fn method. Make sure that you save the completed file as predict.py in the serve directory.

TODO: Complete the predict_fn() method in the serve/predict.py file.

Deploying the model

Now that the custom inference code has been written, we will create and deploy our model. To begin with, we need to construct a new PyTorchModel object which points to the model artifacts created during training and also points to the inference code that we wish to use. Then we can call the deploy method to launch the deployment container.

NOTE: The default behaviour for a deployed PyTorch model is to assume that any input passed to the predictor is a numpy array. In our case we want to send a string so we need to construct a simple wrapper around the RealTimePredictor class to accommodate simple strings. In a more complicated situation you may want to provide a serialization object, for example if you wanted to sent image data.

In [66]:

```
from sagemaker.predictor import RealTimePredictor
from sagemaker.pytorch import PyTorchModel
class StringPredictor(RealTimePredictor):
    def __init__(self, endpoint_name, sagemaker_session):
        super(StringPredictor, self).__init__(endpoint_name, sagemaker_session, content
_type='text/plain')
model = PyTorchModel(model_data=estimator.model_data,
                     role = role,
                     framework_version='0.4.0',
                     entry_point='predict.py',
                     source_dir='serve',
                     predictor_cls=StringPredictor)
predictor = model.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge')
Parameter image will be renamed to image_uri in SageMaker Python SDK v2.
'create image uri' will be deprecated in favor of 'ImageURIProvider' class
```

-----!

Testing the model

in SageMaker Python SDK v2.

Now that we have deployed our model with the custom inference code, we should test to see if everything is working. Here we test our model by loading the first 250 positive and negative reviews and send them to the endpoint, then collect the results. The reason for only sending some of the data is that the amount of time it takes for our model to process the input and then perform inference is quite long and so testing the entire data set would be prohibitive.

In [67]:

0.862

```
import glob
def test_reviews(data_dir='.../data/aclImdb', stop=250):
    results = []
    ground = []
    # We make sure to test both positive and negative reviews
    for sentiment in ['pos', 'neg']:
        path = os.path.join(data_dir, 'test', sentiment, '*.txt')
        files = glob.glob(path)
        files_read = 0
        print('Starting ', sentiment, ' files')
        # Iterate through the files and send them to the predictor
        for f in files:
            with open(f) as review:
                # First, we store the ground truth (was the review positive or negativ
e)
                if sentiment == 'pos':
                    ground.append(1)
                else:
                    ground.append(0)
                # Read in the review and convert to 'utf-8' for transmission via HTTP
                review_input = review.read().encode('utf-8')
                # Send the review to the predictor and store the results
                results.append(int(predictor.predict(review_input)))
            # Sending reviews to our endpoint one at a time takes a while so we
            # only send a small number of reviews
            files_read += 1
            if files_read == stop:
                break
    return ground, results
In [68]:
ground, results = test reviews()
Starting pos files
Starting neg files
```

```
In [69]:
from sklearn.metrics import accuracy_score
accuracy_score(ground, results)
Out[69]:
```

As an additional test, we can try sending the test_review that we looked at earlier.

```
In [70]:
```

```
predictor.predict(test_review)
Out[70]:
b'1'
In [76]:
print(int(predictor.predict(test_review)), "= Positive review!")
```

```
1 = Positive review!
```

#The result is 1 so our review is 'positive'

Now that we know our endpoint is working as expected, we can set up the web page that will interact with it. If you don't have time to finish the project now, make sure to skip down to the end of this notebook and shut down your endpoint. You can deploy it again when you come back.

Step 7 (again): Use the model for the web app

TODO: This entire section and the next contain tasks for you to complete, mostly using the AWS console.

So far we have been accessing our model endpoint by constructing a predictor object which uses the endpoint and then just using the predictor object to perform inference. What if we wanted to create a web app which accessed our model? The way things are set up currently makes that not possible since in order to access a SageMaker endpoint the app would first have to authenticate with AWS using an IAM role which included access to SageMaker endpoints. However, there is an easier way! We just need to use some additional AWS services.

The diagram above gives an overview of how the various services will work together. On the far right is the model which we trained above and which is deployed using SageMaker. On the far left is our web app that collects a user's movie review, sends it off and expects a positive or negative sentiment in return.

In the middle is where some of the magic happens. We will construct a Lambda function, which you can think of as a straightforward Python function that can be executed whenever a specified event occurs. We will give this function permission to send and recieve data from a SageMaker endpoint.

Lastly, the method we will use to execute the Lambda function is a new endpoint that we will create using API Gateway. This endpoint will be a url that listens for data to be sent to it. Once it gets some data it will pass that data on to the Lambda function and then return whatever the Lambda function returns. Essentially it will act as an interface that lets our web app communicate with the Lambda function.

Setting up a Lambda function

The first thing we are going to do is set up a Lambda function. This Lambda function will be executed whenever our public API has data sent to it. When it is executed it will receive the data, perform any sort of processing that is required, send the data (the review) to the SageMaker endpoint we've created and then return the result.

Part A: Create an IAM Role for the Lambda function

Since we want the Lambda function to call a SageMaker endpoint, we need to make sure that it has permission to do so. To do this, we will construct a role that we can later give the Lambda function.

Using the AWS Console, navigate to the IAM page and click on Roles. Then, click on Create role. Make sure that the AWS service is the type of trusted entity selected and choose Lambda as the service that will use this role, then click Next: Permissions.

In the search box type sagemaker and select the check box next to the AmazonSageMakerFullAccess policy. Then, click on Next: Review.

Lastly, give this role a name. Make sure you use a name that you will remember later on, for example LambdaSageMakerRole . Then, click on **Create role**.

Part B: Create a Lambda function

Now it is time to actually create the Lambda function.

Using the AWS Console, navigate to the AWS Lambda page and click on Create a function. When you get to the next page, make sure that Author from scratch is selected. Now, name your Lambda function, using a name that you will remember later on, for example sentiment analysis func. Make sure that the Python 3.6 runtime is selected and then choose the role that you created in the previous part. Then, click on Create Function.

On the next page you will see some information about the Lambda function you've just created. If you scroll down you should see an editor in which you can write the code that will be executed when your Lambda function is triggered. In our example, we will use the code below.

```
# We need to use the low-level library to interact with SageMaker since the Sage
Maker API
# is not available natively through Lambda.
import boto3
def lambda_handler(event, context):
    # The SageMaker runtime is what allows us to invoke the endpoint that we've
 created.
    runtime = boto3.Session().client('sagemaker-runtime')
    # Now we use the SageMaker runtime to invoke our endpoint, sending the revie
w we were given
    response = runtime.invoke_endpoint(EndpointName = '**ENDPOINT NAME HERE**',
# The name of the endpoint we created
                                       ContentType = 'text/plain',
# The data format that is expected
                                       Body = event['body'])
# The actual review
    # The response is an HTTP response whose body contains the result of our inf
erence
    result = response['Body'].read().decode('utf-8')
    return {
        'statusCode' : 200,
        'headers' : { 'Content-Type' : 'text/plain', 'Access-Control-Allow-Origi
n': '*' },
        'body' : result
    }
```

Once you have copy and pasted the code above into the Lambda code editor, replace the **ENDPOINT NAME HERE** portion with the name of the endpoint that we deployed earlier. You can determine the name

In [77]:

```
predictor.endpoint
```

Out[77]:

^{&#}x27;sagemaker-pytorch-2020-10-02-12-12-50-536'

Once you have added the endpoint name to the Lambda function, click on Save. Your Lambda function is now up and running. Next we need to create a way for our web app to execute the Lambda function.

Setting up API Gateway

Now that our Lambda function is set up, it is time to create a new API using API Gateway that will trigger the Lambda function we have just created.

Using AWS Console, navigate to Amazon API Gateway and then click on Get started.

On the next page, make sure that **New API** is selected and give the new api a name, for example, sentiment_analysis_api . Then, click on Create API.

Now we have created an API, however it doesn't currently do anything. What we want it to do is to trigger the Lambda function that we created earlier.

Select the Actions dropdown menu and click Create Method. A new blank method will be created, select its dropdown menu and select POST, then click on the check mark beside it.

For the integration point, make sure that Lambda Function is selected and click on the Use Lambda Proxy integration. This option makes sure that the data that is sent to the API is then sent directly to the Lambda function with no processing. It also means that the return value must be a proper response object as it will also not be processed by API Gateway.

Type the name of the Lambda function you created earlier into the **Lambda Function** text entry box and then click on Save. Click on OK in the pop-up box that then appears, giving permission to API Gateway to invoke the Lambda function you created.

The last step in creating the API Gateway is to select the Actions dropdown and click on Deploy API. You will need to create a new Deployment stage and name it anything you like, for example prod.

You have now successfully set up a public API to access your SageMaker model. Make sure to copy or write down the URL provided to invoke your newly created public API as this will be needed in the next step. This URL can be found at the top of the page, highlighted in blue next to the text Invoke URL.

Step 4: Deploying our web app

Now that we have a publicly available API, we can start using it in a web app. For our purposes, we have provided a simple static html file which can make use of the public api you created earlier.

In the website folder there should be a file called index.html . Download the file to your computer and open that file up in a text editor of your choice. There should be a line which contains **REPLACE WITH PUBLIC API URL**. Replace this string with the url that you wrote down in the last step and then save the file.

Now, if you open index.html on your local computer, your browser will behave as a local web server and you can use the provided site to interact with your SageMaker model.

If you'd like to go further, you can host this html file anywhere you'd like, for example using github or hosting a static site on Amazon's S3. Once you have done this you can share the link with anyone you'd like and have them play with it too!

Important Note In order for the web app to communicate with the SageMaker endpoint, the endpoint has to actually be deployed and running. This means that you are paying for it. Make sure that the endpoint is running when you want to use the web app but that you shut it down when you don't need it, otherwise you will end up with a surprisingly large AWS bill.

TODO: Make sure that you include the edited index.html file in your project submission.

Now that your web app is working, trying playing around with it and see how well it works.

Question: Give an example of a review that you entered into your web app. What was the predicted sentiment of your example review?

Answer: I tried lots of review to test my application. Some of my tested reviews are below.

- 1- My review was as below and result was negative. I think it is complicated review so even i am not sure it is negative or positive. "I am not sure about the movie. Some scenes are really facinating and awesome however some of them are sucks. So I don't know it is good or not. I think it depends personality. Still if you feel bored, it is not a bad choice to watch this film."
- 2- This review is real and i took it from imdb for the lord of the rings movie. The result was positive. "See this film! Greatest film ever made? How can one make a claim like that! Silly really; as silly as claiming that `The Lord of the Rings' is the greatest book ever written. Can't one simply love a story, enjoy reading it a number of times amd lose oneself in it. One CAN claim that it is the greatest work in its genre as is the film."
- 3- This review is real and i took it from rottentomatoes for lucifer tv series. The result was positive. "I can admit that I wasn't a fan of the show in the beginning. But the Devil has a way of getting under your skin-and I'm definitely looking forward to another season of Lucifer."
- 4- This review is real and i took it from rottentomatoes for lucifer tv series. The result was negative. "You'd be better served to watch any of the other detective dramas to which I've compared the lifeless "Lucifer." Just heed my warning: Stay away from this mid-season mediocrity fest."

Just an example screenshot of my trials.

Is your review positive, or negative?

Enter your review below and click submit to find out...

Review

You'd be better served to watch any of the other detective dramas to which I've compared the lifeless "Lucifer." Just heed my warning: Stay away from this mid-season mediocrity fest.

Submit

Your review was NEGATIVE!

Delete the endpoint

Remember to always shut down your endpoint if you are no longer using it. You are charged for the length of time that the endpoint is running so if you forget and leave it on you could end up with an unexpectedly large bill.

In [78]:

predictor.delete_endpoint()