L'histoire de 0x5f3759df

Clément Villain

E.I.S.T.I.

December 2, 2015

Fast inverse square root

Figure: Code source de Quake III Arena

Prérequis: Représentation des nombres

Figure: Réprésentation IEEE 754: float

- Valeur d'un float $x = 2^e(1+m)$ avec e = E B et B = 127
- Réprésentation entière: X = M + LE avec $m = \frac{M}{L}$ et $L = 2^{23}$

Des mathématiques

Calcul de $\frac{1}{\sqrt{x}}$

1. Passage au log₂:

$$y = \frac{1}{\sqrt{x}} \operatorname{donc} \log_2(y) = -\frac{1}{2} \log_2(x)$$

2. Réprésentation flottante:

$$\log_2(1+m_y) + e_y = -\frac{1}{2}(\log_2(1+m_x) + e_x)$$

3. DL du *log*₂:

$$m_y + \sigma + e_y \simeq -\frac{1}{2}(m_x + \sigma + e_x)$$

4. Réprésentation entière:

$$m = \frac{M}{L}$$
 et $e = E - B$

5. Finalement:

$$I_{y} \simeq \frac{3}{2}L(B-\sigma) - \frac{1}{2}I_{x}$$

Des mathématiques

Comment choisir σ

Pour $\sigma = 0.0450465$

Figure: Approximation de $log_2(1+x)$

Notre nombre magique

Rappel:

$$I_{y} \simeq \frac{3}{2}L(B-\sigma) - \frac{1}{2}I_{x}$$

$$i = 0x5f3759df - (i >> 1);$$

Figure: Application de la formule

Conclusion

Performance

Figure: Qualité de l'approximation

Efficace, rapide et généralisable

C'est fini!

En espérant vous voir nombreux pour les talks fin janvier !

