

Mathématiques 1

MP C

CONCOUNS CENTRALE-SUPÉLEC

4 heures

Calculatrices autorisées

Dans tout le problème, \mathbb{R}^2 est muni du produit scalaire euclidien canonique noté \langle , \rangle et de la norme $\| \|$ associée. Si Ω est un ouvert non vide de \mathbb{R}^2 et si $(k,n) \in (\mathbb{N}^*)^2$, on note $C^k(\Omega,\mathbb{R}^n)$ l'espace des fonctions de classe C^k de Ω dans \mathbb{R}^n .

Si $f \in C^1(\Omega, \mathbb{R}^n)$, la différentielle de f au point p de Ω est notée $\mathrm{d} f_p$; sa matrice relativement aux bases canoniques de \mathbb{R}^2 et de \mathbb{R}^n est appelée matrice jacobienne de f en p et est notée Jacf(p).

Si f est dans $C^2(\Omega, \mathbb{R})$, on dit que f vérifie (1) si et seulement si

$$\forall (x,y) \in \Omega, \qquad \frac{\partial^2 f}{\partial x^2}(x,y) \times \frac{\partial^2 f}{\partial y^2}(x,y) - \left(\frac{\partial^2 f}{\partial x \partial y}(x,y)\right)^2 = 1 \tag{1}$$

On note \mathcal{P}_2 l'ensemble des fonctions polynomiales de degré ≤ 2 de \mathbb{R}^2 dans \mathbb{R} c'est-à-dire les applications de \mathbb{R}^2 dans \mathbb{R} de la forme

$$(x,y) \mapsto ax^2 + bxy + cy^2 + dx + ey + f$$
 où $(a,b,c,d,e,f) \in \mathbb{R}^6$.

Le but principal du problème est de montrer que les solutions de (1) sur \mathbb{R}^2 appartiennent à \mathcal{P}_2 .

I Les équations de Cauchy-Riemann

Soient f et g dans $C^1(\mathbb{R}^3, \mathbb{R})$ vérifiant les équations, dites de Cauchy-Riemann,

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$$
 et $\frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$

On définit deux fonctions sur $\mathbb{R}^*_+ \times \mathbb{R}$ par

$$\forall (r,\theta) \in \mathbb{R}_+^* \times \mathbb{R}, \qquad \widetilde{f}(r,\theta) = f(r\cos\theta, r\sin\theta) \quad \text{et} \quad \widetilde{g}(r,\theta) = g(r\cos\theta, r\sin\theta)$$

Pour $n \in \mathbb{Z}$, on note \mathcal{E}_n l'espace des fonctions f de $\mathcal{C}^2(\mathbb{R}_+^*,\mathbb{C})$ telles que

$$\forall t \in \mathbb{R}_+^*, \qquad t^2 f''(t) + t f'(t) - n^2 f(t) = 0$$

I.A -

I.A.1) Exprimer
$$\frac{\partial \widetilde{f}}{\partial r}(r,\theta)$$
 et $\frac{\partial \widetilde{f}}{\partial \theta}(r,\theta)$ en fonction de $r,\theta,\frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta)$ et $\frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta)$.

I.A.2) Pour tout
$$(r,\theta) \in \mathbb{R}_+^* \times \mathbb{R}$$
, montrer $\frac{\partial \widetilde{f}}{\partial r}(r,\theta) = \frac{1}{r} \times \frac{\partial \widetilde{g}}{\partial \theta}(r,\theta)$ et $\frac{\partial \widetilde{g}}{\partial r}(r,\theta) = -\frac{1}{r} \times \frac{\partial \widetilde{f}}{\partial \theta}(r,\theta)$.

I.B — Pour $\alpha \in \mathbb{R}$, soit φ_{α} la fonction de \mathbb{R}_{+}^{*} dans \mathbb{R} définie par

$$\forall t \in \mathbb{R}_+^*, \qquad \varphi_\alpha(t) = t^\alpha$$

- I.B.1) Pour tout $n \in \mathbb{Z}^*$, déterminer les réels α tels que φ_{α} appartienne à \mathcal{E}_n .
- I.B.2) Déterminer \mathcal{E}_n pour $n \in \mathbb{Z}$. On discutera séparément le cas n = 0.
- I.C Pour $n \in \mathbb{Z}$, soient $c_{n,f}$ et $c_{n,g}$ les fonctions de \mathbb{R}_+^* dans \mathbb{C} définies par

$$\forall r \in \mathbb{R}_{+}^{*}, \quad \begin{cases} c_{n,f}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widetilde{f}(r,\theta) e^{-in\theta} d\theta \\ c_{n,g}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widetilde{g}(r,\theta) e^{-in\theta} d\theta \end{cases}$$

I.C.1) Montrer que $c_{n,f}$ est de classe C^1 sur \mathbb{R}_+^* et vérifie

$$\forall r \in \mathbb{R}_+^*, \qquad (c_{n,f})'(r) = \frac{in}{r} c_{n,g}(r)$$

I.C.2) Montrer que $c_{n,f}$ appartient à \mathcal{E}_n et que $c_{n,f}$ est bornée au voisinage de 0. En déduire l'existence de $a_n \in \mathbb{C}$ tel que

$$\forall r \in \mathbb{R}_+^*, \qquad c_{n,f}(r) = a_n r^{|n|}$$

I.C.3) En énonçant précisément le théorème utilisé, établir

$$\forall (r,\theta) \in \mathbb{R}_+^* \times \mathbb{R}, \qquad \widetilde{f}(r,\theta) = \lim_{p \to \infty} \sum_{n=-p}^p a_n r^{|n|} e^{in\theta}$$

- I.D Dans cette question, on suppose que les fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont bornées sur \mathbb{R}^2 .
- I.D.1) Si $n \in \mathbb{Z}$, montrer que la fonction $(c_{n,f})'$ est bornée sur \mathbb{R}_+^* .
- I.D.2) Montrer que les fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont constantes.

II Quelques solutions de (1)

Si I est un intervalle de \mathbb{R} , on dit que $u \in \mathcal{C}^1(I,\mathbb{R})$ vérifie (II.1) sur I si et seulement si

$$\forall t \in I, \quad u(t) (u(t) + 2t u'(t)) = -1$$
 (II.1)

- II.A Déterminer les fonctions de \mathcal{P}_2 vérifiant (1) sur \mathbb{R}^2 .
- II.B En énonçant précisément le théorème utilisé, montrer, si (t_0, u_0) est dans $(\mathbb{R}^*)^2$, l'existence d'un intervalle ouvert I de \mathbb{R} contenant t_0 et d'une fonction $u \in C^1(I, \mathbb{R})$ telle que u soit solution de (II.1) sur I et vérifie $u(t_0) = u_0$.
- II.C Soit J un intervalle ouvert non vide de \mathbb{R} . Existe-t-il une fonction polynomiale solution de (II.1) sur J?
- II.D Soient J un intervalle ouvert non vide de \mathbb{R} , $\Omega(J) = \{(x,y) \in \mathbb{R}^2, xy \in J\}$, w dans $C^2(J,\mathbb{R})$ et W la fonction définie par

$$\forall (x,y) \in \Omega(J), \qquad W(x,y) = w(xy)$$

- II.D.1) Montrer que $\Omega(J)$ est un ouvert non vide.
- II.D.2) Montrer que W est dans $C^2(\Omega(J), \mathbb{R})$ et que l'on a équivalence entre
- i. W vérifie (1) sur $\Omega(J)$,
- ii. w' vérifie (II.1) sur J.
- II.D.3) Montrer que W est la restriction à $\Omega(J)$ d'une fonction de \mathcal{P}_2 si et seulement si w est affine.
- II.E Soient Ω un ouvert non vide de \mathbb{R}^2 , f dans $C^2(\Omega, \mathbb{R})$ vérifiant (1) sur Ω, $(a, b) \in \mathbb{R}^2$, $\Omega_{a,b}$ l'image de Ω par la translation de vecteur (a, b) et $f_{a,b}$ la fonction définie sur $\Omega_{a,b}$ par

$$\forall (x, y) \in \Omega_{a,b}, \qquad f_{a,b}(x, y) = f(x - a, y - b)$$

Montrer que $f_{a,b}$ vérifie (1) sur $\Omega_{a,b}$.

II.F — Si (x_0, y_0) est dans \mathbb{R}^2 , montrer qu'il existe un ouvert U de \mathbb{R}^2 contenant (x_0, y_0) tel que l'ensemble des fonctions de $\mathcal{C}^2(U, \mathbb{R})$ vérifiant (1) sur U et ne coïncidant sur U avec aucun élément de \mathcal{P}_2 soit infini.

III Un critère de difféomorphisme

III.A – Rappeler la définition d'un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 et le théorème caractérisant un tel difféomorphisme parmi les applications de classe \mathcal{C}^1 de \mathbb{R}^2 dans \mathbb{R}^2 .

Dans la suite de cette partie, on considère $\alpha \in \mathbb{R}_+^*$ et $F \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R}^2)$. On suppose que pour tout $(p, h) \in \mathbb{R}^2 \times \mathbb{R}^2$

$$\langle dF_p(h), h \rangle \geqslant \alpha \|h\|^2$$

Le but de cette partie est de montrer que F est un C^1 -difféomorphisme.

III.B – Soient p et q dans \mathbb{R}^2 .

III.B.1) Vérifier

$$F(q) - F(p) = \int_0^1 dF_{p+t(q-p)}(q-p) dt$$

III.B.2) Montrer

$$\langle F(q) - F(p), q - p \rangle \geqslant \alpha ||q - p||^2$$

III.C – Soient $a \in \mathbb{R}^2$ et G^a l'application de \mathbb{R}^2 dans \mathbb{R} définie par

$$\forall p \in \mathbb{R}^2, \qquad G^a(p) = ||F(p) - a||^2$$

III.C.1) Si p et h sont dans \mathbb{R}^2 , calculer $dG^a_p(h)$.

III.C.2) Montrer que $G^a(p) \to +\infty$ quand $||p|| \to +\infty$.

III.C.3) En déduire que G^a atteint un minimum global sur \mathbb{R}^2 en un point v_0 .

III.C.4) Montrer que $F(p_0) = a$.

III.D – Montrer que F réalise un C^1 -difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .

IV Le théorème de Jörgens

Soit f dans $C^2(\mathbb{R}^2, \mathbb{R})$ vérifiant (1) sur \mathbb{R}^2 .

Pour
$$(x,y) \in \mathbb{R}^2$$
, soient $u(x,y) = x + \frac{\partial f}{\partial x}(x,y)$, $v(x,y) = y + \frac{\partial f}{\partial y}(x,y)$ et $F(x,y) = (u(x,y),v(x,y))$.

On suppose dans les questions IV.A et IV.B que $\frac{\partial^2 f}{\partial x^2}(x,y) > 0$ pour tout $(x,y) \in \mathbb{R}^2$.

 $IV.A - Si(x,y) \in \mathbb{R}^2$, montrer que Jac $F(x,y) - I_2$ (où I_2 désigne la matrice identité d'ordre 2) est symétrique positive. En déduire que F est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .

Dans la suite, soient, pour $(x,y) \in \mathbb{R}^2$, $r(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)$, $s(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y)$ et $t(x,y) = \frac{\partial^2 f}{\partial y^2}(x,y)$ de sorte que, pour tout $(x,y) \in \mathbb{R}^2$, r(x,y) > 0 et r(x,y) $t(x,y) - s(x,y)^2 =$

IV.B -

IV.B.1) Montrer qu'il existe deux fonctions φ et ψ dans $\mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad \begin{cases} \varphi(u(x,y), v(x,y)) = x - \frac{\partial f}{\partial x}(x,y) \\ \psi(u(x,y), v(x,y)) = -y + \frac{\partial f}{\partial y}(x,y) \end{cases}$$

IV.B.2) Calculer $\frac{\partial \varphi}{\partial u}(u(x,y),v(x,y))$, $\frac{\partial \varphi}{\partial v}(u(x,y),v(x,y))$, $\frac{\partial \psi}{\partial u}(u(x,y),v(x,y))$ et $\frac{\partial \psi}{\partial v}(u(x,y),v(x,y))$ (que l'on abrégera en $\frac{\partial \varphi}{\partial u}$, $\frac{\partial \psi}{\partial v}$ et $\frac{\partial \psi}{\partial v}$) en fonction de r(x,y), s(x,y) et t(x,y) (que l'on abrégera en r, s et t). IV.B.3) Montrer que $\frac{\partial \varphi}{\partial u}$ et $\frac{\partial \varphi}{\partial v}$ sont bornées sur \mathbb{R}^2 .

IV.B.4) Montrer, en utilisant la première partie, que $\frac{\partial \varphi}{\partial u}$ et $\frac{\partial \varphi}{\partial u}$ sont constantes.

IV.B.5) En déduire que r, s et t sont constantes.

IV.C – Montrer que les seules fonctions de $\mathcal{C}^2(\mathbb{R}^2,\mathbb{R})$ vérifiant (1) sur \mathbb{R}^2 appartiennent à \mathcal{P}_2 .

• • • FIN • • •