1

Strange particle in jets and underlying events with different models

3 1 Simulate with PYTHIA 8 sQCD with CR1 and rope

```
Parameters
   Beams:idA = 2212
   Beams:idB = 2212
   Main:numberOfEvents = 1001
   Beams:eCM = 7000.
   SoftQCD:all = on
9
10
   CR
11
   MultiPartonInteractions:pT0Ref = 2.15
12
   BeamRemnants: remnantMode = 1
   BeamRemnants:saturation = 5
14
   ColourReconnection:reconnect = on
15
   ColourReconnection:mode = 1
16
   ColourReconnection:allowDoubleJunRem = off
17
   ColourReconnection:m0 = 0.3
   ColourReconnection:allowJunctions = on
   ColourReconnection:junctionCorrection = 1.2
   ColourReconnection:timeDilationMode = 2
21
   ColourReconnection:timeDilationPar = 0.18
22
23
   Rope
24
   Ropewalk:RopeHadronization = on
   Ropewalk:doShoving = on
26
   Ropewalk:tInit = 1.5
27
   Ropewalk:deltat = 0.05
28
   Ropewalk:tShove = 0.1
29
   Ropewalk:gAmplitude = 0.
31
   Ropewalk:doFlavour = on
32
   Ropewalk:r0 = 0.5
33
   Ropewalk:m0 = 0.2
34
   Ropewalk: beta = 0.1
35
   !// Enabling setting of vertex information.
37
   PartonVertex:setVertex = on
38
   PartonVertex:protonRadius = 0.7
```

PartonVertex: emissionWidth = 0.1

Figure 1: Track η distribution.

Figure 2: $dN_{fwd}/d\eta$ (left) and $dN_{mid}/d\eta$ (right) distribution.

2 Simulate with PYTHIA 8 sQCD with CR1 and rope

References

Figure 3: Inclusive integrated yields of particles with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1606.07424v2 and arXiv:1910.14397v1)

Figure 4: Integrated yields of particles in jet with $\langle dN_{ch}/d\eta \rangle$.(Data point at 13 TeV is used hadron-strange correlation method)

Figure 5: Inclusive integrated yields ratios of strange particle to π with $\langle dN_{ch}/d\eta \rangle$. (Data taken from arXiv:1606.07424v2 and arXiv:1807.11321v2)

Figure 6: Integrated yields ratios in jet of strange particle to π with $\langle dN_{ch}/d\eta \rangle$. (Data taken from arXiv:1606.07424v2 and arXiv:1807.11321v2)

Figure 7: Inclusive integrated yields ratios with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1910.14397v1)

Figure 8: JC integrated yields ratios with $\langle dN_{ch}/d\eta \rangle$.(Data taken from arXiv:1910.14397v1)

Figure 9: Inclusive particle p_T spectra. The different acceptance with data(for PYTHIA $|\eta| < 0.75$, data |y| < 0.5)(Data taken from arXiv:2005.11120, arXiv:1204.0292v3 and arXiv:1910.14410)

Figure 10: Particle in jet p_T spectra.

Figure 11: Inclusive particle ratios with p_T distribution. (Data taken from arXiv:2005.11120)

Figure 12: Particle ratios in jet with p_T distribution. (Data taken from arXiv:2005.11120)

Figure 13: Inclusive particle ratios with p_T distribution in center and peripheral centrality bins. (Data taken from arXiv:1807.11321v2 and arXiv:1910.14397v1)

Figure 14: Particle ratios with p_T distribution in different centrality bins (CR + Rope).

Figure 15: Particle ratios with p_T distribution in different centrality bins (CR).

Figure 16: Particle ratios with p_T distribution in different centrality bins (Rope).

Figure 17: Particle ratios in jet with p_T distribution in different centrality bins (CR+Rope).

Figure 18: Particle ratios in jet with p_T distribution in different centrality bins (CR).

Figure 19: Particle ratios in jet with p_T distribution in different centrality bins (Rope).

Figure 20: Particle ratios to jet axis range (R(P, jet)) distribution. (The multi-strange hadrons (Ξ , Ω) have strong enhance at small R(P, jet))