Employees, department and locations table are given in excel format sqlassignment.xlsx

1. Write a query to find the name (first_name, last_name) and the salary of the employees who have a higher salary than the employee whose last_name='Bull'.

```
SELECT FIRST_NAME, LAST_NAME, SALARY
FROM employees
WHERE SALARY >
(SELECT salary FROM employees WHERE last_name = 'Bull');
```

2. Write a query to find the name (first_name, last_name) of all employees who works in the IT department.

SELECT first_name, last_name FROM employees
WHERE manager_id in (select employee_id
FROM employees WHERE department_id
IN (SELECT department_id FROM departments WHERE location_id
IN (select location_id from locations where country_id='US')));

3. Write a query to find the name (first_name, last_name) of the employees who have a manager and worked in a USA based department.

Hint: Write single-row and multiple-row subqueries

SELECT first_name, last_name FROM employees
WHERE manager_id in (select employee_id
FROM employees WHERE department_id
IN (SELECT department_id FROM departments WHERE location_id
IN (select location_id from locations where country_id='US')));

4. Write a query to find the name (first_name, last_name) of the employees who are managers.

SELECT first_name, last_name FROM employees WHERE (employee_id IN (SELECT manager_id FROM employees));

5. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary.

SELECT first_name, last_name, salary FROM employees WHERE salary > (SELECT AVG(salary) FROM employees);

6. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is equal to the minimum salary for their job grade.

SELECT first_name, last_name, salary
FROM employees
WHERE employees.salary = (SELECT min_salary
FROM jobs
WHERE employees.job_id = jobs.job_id);

7. Write a query to find the name (first_name, last_name), and salary of the employees who earns more than the average salary and works in any of the IT departments.

SELECT first_name, last_name, salary FROM employees WHERE department_id IN

(SELECT department_id FROM departments WHERE department_name LIKE 'IT%')

AND salary > (SELECT avg(salary) FROM employees);

8. Write a query to find the name (first_name, last_name), and salary of the employees who earns more than the earning of Mr. Bell.

SELECT first_name, last_name, salary

FROM employees

WHERE salary >

(SELECT salary FROM employees WHERE last_name = 'Bell') ORDER BY first_name;

9. Write a query to get the department name and number of employees in the department.

SELECT department_name AS 'Department Name',

COUNT(*) AS 'No of Employees'

FROM departments

INNER JOIN employees

ON employees.department_id = departments.department_id GROUP BY departments.department_id, department_name ORDER BY department name;

10. Write a query to get 3 maximum salaries.

SELECT DISTINCT salary
FROM employees a
WHERE 3 >= (SELECT COUNT(DISTINCT salary)
FROM employees b
WHERE b.salary >= a.salary)
ORDER BY a.salary DESC;

11. Write a query to get 3 minimum salaries.

SELECT DISTINCT salary
FROM employees a
WHERE 3 >= (SELECT COUNT(DISTINCT salary)
FROM employees b

```
WHERE b.salary <= a.salary)
ORDER BY a.salary DESC;
```

12. Write a query to get nth max salaries of employees.

SELECT *
FROM employees emp1
WHERE (1) = (
SELECT COUNT(DISTINCT(emp2.salary))
FROM employees emp2
WHERE emp2.salary > emp1.salary);

13. Write a query to find the addresses (location_id, street_address, city, state_province, country_name) of all the departments. Hint: Use NATURAL JOIN.

SELECT location_id, street_address, city, state_province, country_name FROM locations
NATURAL JOIN countries;

14. Write a query to find the name (first_name, last name), department ID and name of all the employees.

SELECT first_name, last_name, department_id, department_name FROM employees
JOIN departments USING (department_id);

15. Write a query to find the name (first_name, last_name), job, department ID and name of the employees who works in London.

SELECT e.first_name, e.last_name, e.job_id, e.department_id, d.department_name

FROM employees e

JOIN departments d

ON (e.department_id = d.department_id)

JOIN locations I ON

(d.location_id = l.location_id)

WHERE LOWER(l.city) = 'London';

16. Write a query to find the employee id, name (last_name) along with their manager_id and name (last_name).

```
SELECT e.employee_id 'Emp_Id', e.last_name 'Employee', m.employee_id 'Mgr_Id', m.last_name 'Manager'
FROM employees e
join employees m
ON (e.manager_id = m.employee_id);
```

17. Write a query to display the department name, manager name, and city.

```
SELECT d.department_name, e.first_name, l.city
FROM departments d

JOIN employees e
ON (d.manager_id = e.employee_id)

JOIN locations I USING (location_id);
```

18. Write a query to display the job title and average salary of employees.

```
SELECT job_title, AVG(salary)
FROM employees
NATURAL JOIN jobs
GROUP BY job_title;
```

19. Write a query to display job title, employee name, and the difference between salary of the employee and minimum salary for the job.

```
SELECT job_title, first_name, salary-min_salary 'Salary - Min_Salary' FROM employees NATURAL JOIN jobs;
```

20. Write a query to display the job history that were done by any employee who is currently drawing more than 10000 of salary.

```
SELECT jh.* FROM job_history jh
JOIN employees e
ON (jh.employee_id = e.employee_id)
WHERE salary > 10000;
```

21. Write a query to display department name, name (first_name, last_name), hire date, salary of the manager for all managers whose experience is more than 15 years.

SELECT first_name, last_name, hire_date, salary, (DATEDIFF(now(), hire_date))/365 Experience FROM departments d JOIN employees e ON (d.manager_id = e.employee_id) WHERE (DATEDIFF(now(), hire_date))/365>15;