(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 15 septembre 2005 (15.09.2005)

PCT

(10) Numéro de publication internationale WO 2005/085732 A1

- (51) Classification internationale des brevets⁷: F27B 7/20
- (21) Numéro de la demande internationale :

PCT/FR2005/050074

- (22) Date de dépôt international: 7 février 2005 (07.02.2005)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 0450351 25 février 2004 (25.02.2004) FR
- (71) Déposant (pour tous les États désignés sauf US) : L'AIR LIQUIDE, SOCIETE ANONYME A DIRECTOIRE

ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE [FR/FR]; 75, quai d'Orsay, F-75321 Paris Cedex 07 (FR).

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): LUCAS, Nicolas [FR/FR]; 23, allée des Alouettes, F-78200 Magnanville (FR). ZAMUNER, Bernard [FR/FR]; 20, Square Robinson, F-92330 Sceaux (FR).
- (74) Mandataire: VESIN, Jacques; L'air Liquide S.A., Direction Propriété Intellectuelle, 75, quai d'Orsay, F-75321 Paris Cedey 07 (FR).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT,

[Suite sur la page suivante]

- (54) Title: METHOD FOR PROCESSING ALUMINIUM IN A ROTARY OR REVERBERATING FURNACE
- (54) Titre: PROCEDE DE TRAITEMENT D'ALUMINIUM DANS UN FOUR ROTATIF OU REVERBERE

- (57) Abstract: The invention relates to a method for processing aluminium in a furnace consisting in introducing an aluminium-containing material and possibly one or several types of salt into the furnace, melting said material by heating with the aid of at least one burner supplied with a combustive material and fuel in such a way that a molten aluminium possibly covered with a slag containing, in particular alumina and at least one salt is produced and in measuring a carbon monoxide and/or hydrogen concentration in the furnace atmosphere or in a smoke at the exit of the furnace. Oxygen content in the combustive material supplying at least one burner is greater than 10 % by volume, preferably greater than 21 % by volume. The inventive method also involves a final phase of reduction of the molten aluminium oxydation during which the fuel flow rate is substantially constant while the injected combustive flow rate is controlled at a value ranging from 3 to 15 % by volume which is greater than a CO concentration in the furnace and/or in the smoke without control.
- (57) Abrégé: L'invention concerne un procédé de traitement d'aluminium dans un four dans lequel on introduit dans le four un matériau contenant de l'aluminium et éventuellement un ou plusieurs sels, on réalise la fusion de ce matériau par apport de chaleur à l'aide d'au moins un brûleur alimenté en comburant et en combustible, de manière à obtenir

WO 2005/085732 A

WO 2005/085732 A1

AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

de l'aluminium fondu éventuellement recouvert d'un laitier comportant notamment de l'alumine et au moins un sel, et on mesure la concentration en monoxyde de carbone et/ou en hydrogène dans l'atmosphère du four ou dans les fumées en sortie du four. Le comburant qui alimente au moins un brûleur comporte plus de 10% volume d'oxygène, de préférence plus de 21% vol. d'oxygène, et le procédé comporte une phase finale de réduction de l'oxydation de l'aluminium fondu au cours de laquelle le débit de comburant est sensiblement constant tandis que le débit de combustible injecté dans au moins un brûleur est fonction de la concentration en monoxyde de carbone régulée à une valeur comprise entre 3% et 15% vol., supérieure à la concentration en CO dans le four et/ou les fumées en absence de régulation.

Procédé de traitement d'aluminium dans un four rotatif ou réverbère

La présente invention concerne un procédé de traitement d'aluminium dans un four dans lequel on introduit dans le four au moins un matériau contenant de l'aluminium et éventuellement un ou plusieurs sels et/ou du laitier et/ou des crasses recyclées, on réalise la fusion de ce matériau par apport de chaleur à l'aide d'au moins un brûleur alimenté en comburant et en combustible, de manière à obtenir de l'aluminium fondu éventuellement recouvert d'un laitier comportant notamment de l'alumine, et on mesure la concentration en monoxyde de carbone et/ou en hydrogène dans l'atmosphère du four ou dans les fumées en sortie du four.

10

5

Dans le domaine de la fusion de l'aluminium secondaire, on réalise celle-ci dans un four rotatif ou un four dit à réverbération. Bien que ce procédé de fusion puisse être continu, la fusion est le plus souvent réalisée en discontinu : les matériaux sont chargés dans le four, en un ou plusieurs cycles successifs avant de couler le métal fondu vers son lieu d'utilisation. Pour cela, le métal fondu doit avoir une température d'environ 740°C. Au-delà de 750°C, la vitesse d'oxydation de l'aluminium fondu augmente considérablement, de manière presque exponentielle.

15

Au cours d'un cycle de fusion, on peut d'abord distinguer la période initiale, lorsque les matériaux sont solides, qui permet l'absorption d'une grande quantité de chaleur, la fusion de l'aluminium ayant lieu à environ 660°C.

20

25

Quelque soit le type de four utilisé, on constate l'existence d'un laitier ou de « crasses » à la surface du métal liquide. On distingue habituellement d'une part, les crasses dites « noires » qui sont un mélange de sels (le cas échéant, si le procédé utilise du sel), de différents composés organiques résiduels solides (hydrocarbures polycycliques aromatiques, suies, ...) qui proviennent de la pyrolyse des matériaux organiques, et plus généralement, non métalliques, présents initialement dans la charge, d'oxyde d'aluminium et d'aluminium emprisonné dans l'oxyde, et d'autre part les crasses dites « blanches », composées uniquement d'oxydes d'aluminium et d'aluminium, produites dans les fours traitant des charges « propres » constituées exclusivement d'alliages métalliques destinés à être fondus. Il est à noter que la production de « crasses noires » s'accompagnent de l'émission dans les fumées de grande quantités de composés organiques volatiles (COV), riches en hydrocarbures imbrûlés.

30

35

Ce laitier ou ces crasses renferment une quantité de métal perdu ou oxydé encore appelés « pertes au feu » qui représentent une perte de matière non négligeable pour le producteur d'aluminium et qu'il convient de réduire au minimum afin d'augmenter la rentabilité du procédé de fusion. Pour réduire cette oxydation, il est

connu de maintenir la température du bain d'aluminium fondu à une valeur inférieure à environ 750°C. Mais cette méthode reste empirique car des points chauds peuvent apparaître à la surface engendrant des oxydations localisées.

D'autres solutions connues visent à éviter l'oxydation en réduisant le contact de la surface du métal avec un oxydant.

Ainsi le document JP 58-227706 propose d'utiliser la mesure des teneurs en CO et en H2 contenus dans les fumées pour s'assurer que, sur un four de fusion de métaux non-ferreux, les brûleurs installés fonctionnent en mode sous-stoechiométrique dans une plage de valeurs du rapport du débit d'oxydant au débit de combustible allant de 95 à 100 %, une partie du combustible n'étant pas consommée.

Le document EP 962 540 décrit un procédé de combustion en vue de la fusion d'un métal dans un four, dans lequel un gaz riche en oxygène est envoyé dans le four, au-dessus de la flamme d'un brûleur, au contact du métal liquide.

Le brûleur fonctionnant en sous-stoechiométrie, produit une flamme réductrice qui fait écran entre le gaz riche en oxygène et la surface du métal fondu.

Le document US 5 563 903 décrit un procédé dans lequel un gaz neutre ou réducteur fait écran entre la surface du métal aluminium fondu et une zone de combustion située dans la partie supérieure du four.

Le document US 3 759 702 décrit un procédé dans lequel la fusion a lieu initialement à l'air libre, avec un brûleur mobile au-dessus de la surface des matériaux à fondre. La flamme du brûleur est légèrement sous-stoechiométrique, donc réductrice.

Toutes ces méthodes donnent des résultats approximatifs et sont appliquées pendant toute la durée de la fusion et pas uniquement lorsqu'il existe un risque d'oxydation de l'aluminium.

Il existe à ce jour un besoin pour définir un procédé de traitement de l'aluminium qui soit applicable même si la première phase n'engendre pas de crasses « noires » et donc de fortes émissions de COV, tout en limitant l'oxydation de l'aluminium au cours de la phase finale du procédé.

Le procédé selon l'invention permet de résoudre le problème posé et réduire la formation d'oxydes d'aluminium.

Il est caractérisé en ce que le comburant qui alimente au moins un brûleur comporte plus de 10 % vol. d'oxygène, de préférence au moins 21 % vol. O₂, et en ce que le procédé comporte une phase finale de réduction de l'oxydation de l'aluminium au cours de laquelle le débit de comburant est sensiblement constant tandis que le débit de combustible injecté dans au moins un brûleur est fonction de la concentration en monoxyde de carbone et/ou en hydrogène dans l'atmosphère ou les fumées, ou

10

5

15

20

25

30

35

vice-versa (c'est-à-dire que le débit de combustible est sensiblement constant et le débit de comburant est fonction de la concentration en CO et/ou H₂ comprise dans les mêmes limites que celles définies ci-après), cette concentration en monoxyde de carbone et/ou en hydrogène étant comprise entre 3 % vol. et 15 % vol. (par vice-versa, on entend la possibilité selon laquelle le débit de combustible est constant et où le débit de comburant est fonction de la concentration en CO et/ou H₂).

De préférence, le comburant comporte plus de 88 % vol. en O₂, de préférence plus de 95 % vol. en O₂. Plus préférentiellement le comburant est de l'oxygène industriellement pur.

Le combustible peut être un hydrocarbure quelconque ou un fioul léger ou lourd (avec un système de pulvérisation de fioul adapté dans le brûleur) : de préférence on utilise le gaz naturel, le méthane, le propane, etc... Le rapport volumique oxygène sur combustible est maintenu entre 1 et 5, de préférence entre 1,5 et 3.

Selon une variante de l'invention, la concentration en CO et/ou H₂ est maintenue sensiblement constante pendant toute cette phase de réduction d'oxydation à une valeur comprise entre 6 % et 10 % vol. (la valeur de consigne C2 au cours de cette phase finale sera donc de préférence fixée à une valeur comprise dans cette plage).

En général, la phase de réduction d'oxydation est précédée par une phase de combustion des COV au cours de laquelle sensiblement tous les produits organiques présents dans le matériau sont détruits par pyrolyse, suivie éventuellement (mais non nécessairement) par une phase de stabilisation.

De préférence, la phase de combustion des COV se termine lorsque la valeur du ratio R des débits volumiques respectivement d'oxygène contenu dans le comburant et de combustible au cours de cette phase, devient inférieur à une valeur seuil S, définie ci-après. En général, afin de s'affranchir des fluctuations passagères, on maintiendra les conditions de cette phase de combustion des hydrocarbures encore pendant une durée Δt (comprise entre 5% et 20% de la phase de combustion des hydrocarbures considérée) de manière à confirmer le passage d'une valeur de R < S, avant de passer dans la deuxième phase en changeant la valeur de consigne (qui passe d'une valeur C1 à une valeur C2) du CO mesuré dans le four ou les fumées, (compte tenu des fluctuations possibles des variations de la concentration en CO, comme exemplifié sur la fig. 2, par exemple). Cette phase de durée Δt sera appelée ciaprès phase de détection

Selon un mode préférentiel de l'invention, le procédé comportera deux phases (qui peuvent se répéter plusieurs fois avant la coulée de l'aluminium liquide)

10

5

15

20

25

30

35

10

15

20

25

30

35

éventuellement séparées par une phase de détection généralement courte, destinée à s'assurer que la destruction des produits organiques est terminée.

De préférence, au cours de la première phase, la concentration en CO dans l'atmosphère du four et/ou des fumées, sera comprise entre 0,1 % vol et 5 % vol (valeur de consigne C1). La limite inférieure est en fait déterminée de telle manière que l'on ait au plus 1000 ppm d'oxygène dans les fumées (ou l'atmosphère).

En général, on a constaté qu'une valeur de CO de l'ordre de 0,5 % vol. était appropriée. Au cours de cette première phase, le but recherché est d'obtenir le moins possible de CO dans l'atmosphère, c'est-à-dire de régler la valeur de consigne C1 de la concentration en CO à la valeur la plus faible possible dans l'intervalle 0,1 à 5 % vol, tout en conservant une atmosphère non oxydante dans le four.

En l'absence de contrôle, la concentration en CO et/ou H₂ se trouve au-delà de la valeur de consigne C1 choisie ci-dessus. Inversement, au cours de la phase finale, la concentration en H₂ et/ou CO (en l'absence d'application de l'invention) est inférieure à la valeur de consigne C2, et l'un des buts de l'invention est d'augmenter cette concentration.

Ainsi dans la phase initiale, il convient en général grâce à la régulation sur la valeur de consigne C1, de diminuer cette concentration en CO et/ou H_2 , tandis que dans la phase finale, la régulation sur la valeur de consigne C2, d'augmenter la concentration en CO et/ou H_2 .

Le passage d'une phase à l'autre est basé selon l'invention, par la détection d'une variation durable du ratio R ((débit volumique d'oxygène)/(débit volumique de combustible) = R) passant d'une valeur supérieure au seuil S à une valeur inférieure au seuil S.

Le seuil S du ratio R est défini par des essais préalables sur le four où l'invention sera mise en oeuvre, de la façon suivante :

- on fixe la valeur de consigne C1 sur laquelle on va réguler la concentration en CO dans les fumées et/ou l'atmosphère (grâce à une variation du ratio R) à la valeur la plus faible possible pour le four testé, sa charge (habituelle) et le détecteur de CO utilisé (généralement une diode laser selon l'invention). Cette valeur est souvent de l'ordre de 0,1 % vol. Le four ayant une charge telle que traitée habituellement, on régule la valeur de CO sur cette valeur de consigne très basse : le ratio des débits volumiques oxygène/combustible va, après un certain temps, se stabiliser. Le ratio R auquel on obtient cette stabilisation sera le seuil S défini ci-avant.

Ainsi dans le procédé selon l'invention, on procède durant la première phase (de combustion des composés organiques volatiles COV) à une régulation du CO et/ou

10

15

20

25

30

35

H₂ autour d'une valeur de consigne comprise entre 0,1 % vol et 5 % vol (0,5 % est souvent satisfaisant) et on mesure le ratio R défini ci-dessus. Lorsque R diminue et devient inférieur à S, on continue à réguler, en général, sur la valeur de consigne C1, puis après quelques instants (après être sûr que l'on a bien changé de phase, c'est-à-dire que tous les COV sont brûlés) on change la valeur de consigne pour une nouvelle valeur de consigne C2, comprise entre 3 % et 15 % vol., de préférence entre 6 et 10 % vol., début de la phase finale au cours de laquelle le ratio R va rester inférieur à S jusqu'à la coulée du métal liquide.

On peut, au contraire après une certaine durée en phase finale, réintroduire des déchets d'aluminium (.... boîtes, etc...) de manière à ré-engendrer une phase initiale au cours de laquelle on va à nouveau réguler autour de la valeur de consigne C1, puis comme précédemment réguler ensuite autour de la valeur de consigne C2.

Selon une variante de l'invention ne comportant qu'une phase finale (charge propre sans émission de COV), on réalise une régulation directement sur une valeur C2, comprise entre 3 % et 15 % vol. de CO, valeur C2 supérieure à la concentration en CO dans le même four avec la même charge, en l'absence de régulation sur une valeur de consigne par le CO et/ou le H₂.

La phase de réduction d'oxydation de l'aluminium se termine par réintroduction dans la four d'une nouvelle charge de matériau contenant de l'aluminium, ou bien par la coulée d'aluminium liquide vers son point d'utilisation.

Le matériau contenant de l'aluminium dans le cadre de l'invention pourra être notamment, par exemple de l'aluminium en lingot, des copeaux de tournage de pièces en aluminium, des boîtes de boissons, de conserves, des rebuts, des chutes de production, des crasses, du laitier contenant de l'aluminium, et d'une manière générale tout matériau contenant de l'aluminium. Bien entendu, l'invention s'applique également aux fours de maintien en température de l'aluminium liquide.

L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, donnés à titre d'exemple non limitatif, conjointement avec les figures qui représentent :

- la figure 1, une vue schématique d'un four avec un seul brûleur représenté, l'analyse des fumées et le contrôle du brûleur ;
- la figure 2, un diagramme explicatif des phases I et II d'un procédé selon l'invention ;
- la figure 3, un graphique explicitant les variations de (CO) en fonction du temps illustrant les phases (ou sous-phases) du procédé selon l'invention ;

La figure 1 est une vue schématique d'un four 1 (vu en coupe) et du système de contrôle selon l'invention.

10

15

20

25

30

35

Un brûleur 10 crée une flamme 2 qui chauffe et fond le métal 3, sous forme liquide. Les fumées 4 issues du four 1 et résultant de la combustion, notamment du brûleur sont évacuées par le conduit 18, dans lequel sont placés des détecteurs 5 et 6 (connues en soi) de CO et/ou de H2 respectivement permettant de mesurer la concentration en CO et/ou H2 dans lesdites fumées. Le signal issu de chacun des détecteurs 5 et 6 est transmis par l'intermédiaire de la ligne de connexion à un ensemble de contrôle 8 dont le fonctionnement sera expliqué ci-après. Le brûleur 10 est alimenté respectivement en comburant 13 et combustible 14 par l'intermédiaire de vannes commandées (débitmètres massiques, par exemple) respectivement 12 et 11 permettant de délivrer un débit adapté de comburant et de combustible au brûleur. Ce débit est commandé par le dispositif de contrôle 8, par l'intermédiaire de la ligne de connexion 15. Les lignes de connexion 17 et 16 transmettent la mesure de l'ouverture des vannes 12 et 11 au système de contrôle 8, qui reçoit également une information de température du métal fondu 3 par l'intermédiaire d'un capteur. Le système de contrôle 8 comporte un réglage du point de consigne de la concentration en CO (et/ou H2), qui peut être modifié en fonction du temps, notamment pour passer de la valeur C1 à la valeur C2.

Selon que la mesure de la concentration en CO et/ou H₂ transmise par les capteurs 5 et/ou 6 au dispositif de contrôle 8 est supérieure ou inférieure audit point de consigne, celui-ci engendre un signal de commande via la connexion 15 aux vannes commandées 12 et 11 qui régulent l'injection du comburant 13 et du combustible 14 pour obtenir une réduction ou une augmentation de la concentration en monoxyde de carbone et/ou hydrogène dans les fumées.

Sur la figure 2 sont représentées les variations typiques du ratio R (le débit de comburant ou préférentiellement le débit de combustible est maintenu constant) et celles de la concentration de CO et/ou H₂ dans les fumées dans le cadre de la gestion à deux phases du cycle de fusion décrite précédemment. Lors de la phase I, la consigne du CO et/ou H₂ est fixée à la valeur C1 comprise entre 0,1 % et 5 % vol alors qu'en phase II, cette consigne est réglée à la valeur C2, sensiblement élevée, entre 3 % et 15 % avec dans tous les cas dans un même cycle successif de phases I et II C1 ≠ C2 et C1 < C2 (si l'on avait C1 = C2, on aurait alors une seule phase). En début de fusion, afin d'asservir le CO et/ou H₂ à la consigne, le régulateur augmente la valeur du ratio R afin de fournir en excès le comburant pour brûler les COV. La production de COV par la charge et leur combustion atteint un maximum puis diminue pour devenir nulle en fin de phase I. La ratio R suit cette tendance en passant par un maximum, noté R_MAX avant de décroître en phase I. Compte tenu de la consigne C1, lorsque les

10

15

20

25

30

35

COV sont presque entièrement consommés, le ratio R franchit nécessairement et définitivement le seuil S, défini précédemment, avant d'atteindre un minimum, noté R_MIN . Lorsque le ratio R atteint le seuil S, il reste en effet une faible quantité de COV dans la charge qui engendre un niveau de CO et/ou H_2 inférieur à la consigne C1. A partir de cet instant, le régulateur contrôle le ratio R en le diminuant davantage (production de CO et/ou H_2 par le brûleur), afin de compenser l'écart par rapport à cette consigne C1. Tous les COV sont brûlés lorsque le ratio atteint R_MIN . Il est alors temps de changer de stratégie de contrôle car la phase II commence. L'invention consiste à utiliser l'instant t1 de franchissement du seuil S couplé à une durée de détection Δt comprise entre 5 % et 20 % de la phase I de fusion considérée (qui se termine à l'instant t1) pour engendrer un changement de stratégie de contrôle, à l'instant t2 défini par t2 = t1 + Δt . A cet instant, la valeur de consigne devient égale à C2.

Selon une variante de l'invention, on peut détecter, inversement, l'introduction de nouveaux matériaux dans le four et basculer, de la phase de limitation de l'oxydation à celle de combustion des COV. En effet, si l'on considère un chargement d'aluminium lors de la phase II, il y a dégagement de COV lié à une charge et le régulateur contrôle le ratio R en l'augmentant (diminution de la production de CO et/ou H₂ par le brûleur), afin de compenser l'écart par rapport à cette consigne C2. De la même façon, le ratio R dépasse le seuil S à un instant t3 donné, indiquant que le procédé physique est dans la phase I, ainsi le changement de stratégie de contrôle, commandé par l'indicateur, à lieu à l'instant t4 défini par t4 = t3 + ½t. A cet instant t4, la consigne est donc ramenée à la valeur C1 définie ci-dessus. Pour l'ensemble de contrôle du procédé, la fin de la phase II est donc l'instant t4.

Exemple de réalisation :

Dans un four rotatif équipé d'un brûleur de 13 MW, on réalise le chargement de 27 tonnes de sel et de 27 tonnes de déchets d'aluminium, on chauffe la charge jusqu'à consommer 2550 Nm³ de gaz naturel, puis on charge à nouveau 65 tonnes de déchets d'aluminium (dans cet exemple, ce sont des boîtes de boisson) et on chauffe la charge jusqu'à consommer 850 Nm³ de gaz naturel supplémentaire. Ensuite, on charge à nouveau 35 tonnes de déchets d'aluminium (tournures d'aluminium) et on chauffe la charge jusqu'à consommation de 1350 Nm³ de gaz naturel supplémentaire, on réalise ensuite la coulée de 99 tonnes d'aluminium, on procède alors au réchauffage des sels et crasses présents dans le four jusqu'à la consommation totale de 5500 Nm³ de gaz naturel. Ensuite, on procède à la coulée de l'aluminium restant dans le four : 9 tonnes d'aluminium.

Sur la figure 3 sont représentées des variations du CO mesuré dans les fumées et celles du ratio R, défini précédemment, lors de la fusion des deux chargements d'aluminium décrits ci-dessus. Sur ces courbes, on voit clairement l'effet du changement automatique de stratégie. En effet, l'indicateur selon l'invention pilote le changement de phase au milieu de la fusion à l'instant t2 car la première charge est constituée de canettes de boissons recouvertes de peinture, donc fortement chargées en composés organiques. D'autre part, lors de la fusion de la seconde charge, moins riche en composés organiques (tournures d'aluminium), l'indicateur contrôle le changement de phase en t'2 peu après le début de la phase, optimisant ainsi le démarrage de la stratégie de contrôle adaptée à la phase II. Cet indicateur permet de diminuer les pertes par oxydation quel que soit le type de charge en entrée du four comme le montre le tableau ci-après :

		Type de matériau	Unité	Procédé sans	Procédé selon
		chargé		régulation	l'invention
Poids oxydé	d'aluminium	boîtes	kg	1800	1750
Poids oxydé	d'aluminium	toumures	kg	2000	1750

15

5

10

快出

10

15

20

25

30

35

REVENDICATIONS

- 1. Procédé de traitement d'aluminium dans un four dans lequel on introduit dans le four un matériau contenant de l'aluminium et éventuellement un ou plusieurs sels, on réalise la fusion de ce matériau par apport de chaleur à l'aide d'au moins un brûleur alimenté en comburant et en combustible, de manière à obtenir de l'aluminium fondu éventuellement recouvert d'un laitier comportant notamment de l'alumine et au moins un sel, et on mesure la concentration en monoxyde de carbone CO et/ou en hydrogène H₂ dans l'atmosphère du four ou dans les fumées en sortie du four, caractérisé en ce que le comburant qui alimente au moins un brûleur comporte plus de 10 % volume d'oxygène, de préférence plus de 21 % vol. d'oxygène, et en ce que le procédé comporte une phase finale de réduction de l'oxydation de l'aluminium fondu au cours de laquelle le débit de comburant est sensiblement constant tandis que le débit de combustible injecté dans au moins un brûleur est fonction de la concentration en monoxyde de carbone et/ou de l'hydrogène dans l'atmosphère ou les fumées, ou viceversa, cette concentration en monoxyde de carbone et/ou en hydrogène étant régulée sur une valeur de consigne C2 comprise entre 3 et 15 % vol.
- 2. Procédé selon la revendication 1, caractérisé en ce que le comburant comporte plus de 88 % vol. en O₂, de préférence plus de 95 % vol. en O₂.
- 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le comburant est de l'oxygène industriellement pur.
- 4. Procédé selon la revendication 1, caractérisé en ce que le combustible est choisi parmi le gaz naturel, les hydrocarbures, le fioul léger ou lourd.
- 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le rapport volumique oxygène sur combustible est maintenu entre 1 et 5, de préférence 1,5 et 3.
- 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la concentration en monoxyde de carbone et/ou en hydrogène est maintenue sensiblement constante pendant toute cette phase de réduction d'oxydation à une valeur C2 comprise entre 3 % et 15 %, de préférence 6 à 10 % vol.
- 7. Procédé selon les revendications 1 à 6, caractérisé en ce que la phase de réduction d'oxydation est précédée par une phase de combustion des hydrocarbures au cours de laquelle sensiblement tous les produits organiques présents dans le matériau sont détruits par pyrolyse.
- 8. Procédé selon la revendication 7, caractérisé en ce que la phase de combustion des hydrocarbures est considérée comme terminée lorsque la valeur

WO 2005/085732 PCT/FR2005/050074

5

10

10

mesurée du ratio R du débit volumique d'oxygène divisé par le débit volumique de combustible devient inférieure à une valeur S prédéterminée..

- 9. Procédé selon les revendications 7 et 8, caractérisé en ce qu'une phase de stabilisation se déroule avec une concentration CO et/ou H2 mesurée régulée sur la valeur de consigne C1, cette phase se terminant lorsque le ratio R atteint son minimum.
- 10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la phase de réduction d'oxydation de l'aluminium se termine par réintroduction dans la four d'une nouvelle charge de matériau contenant de l'aluminium.
- 11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la mesure de CO est réalisée à l'aide d'une diode laser.
- 12. Utilisation d'une diode laser pour la mesure du CO dans un procédé selon l'une au moins des revendications précédentes.

Q.

FIG.1

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 F27B7/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-In	ternal, PAJ		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Α	PATENT ABSTRACTS OF JAPAN vol. 0092, no. 71 (C-311), 29 October 1985 (1985-10-29) & JP 60 121235 A (FURUKAWA DENK KK), 28 June 1985 (1985-06-28) abstract	I KOGYO	1–11
A	US 6 247 416 B1 (BEAUDOIN PHILI 19 June 2001 (2001-06-19) column 1, line 10 - line 61 column 4, line 23 - line 41 	PPE ET AL)	1-11
X Furth	ner documents are listed in the continuation of box C.	χ Patent family members are listed i	n annex.
"A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or moments, such combination being obvious in the art. "&" document member of the same patent	the application but every underlying the considered to be considered to be cument is taken alone elaimed invention eventive step when the ore other such docuurs to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
1	5 June 2005	23/06/2005	
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Lombois, T	
orm PCT/ISA/2	210 (second sheet) (January 2004)		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2005/050074

		PC1/FR2005/0500/4
· · · · · ·	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	[Delayartha elejar Na
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PAGET M W ET AL: "A novel burner retrofit used to increase productivity in an aluminium rotary furnace" INTERNATIONAL SYMPOSIUM RECYCLING OF METALS AND ENGINEERED MATERIALS, XX, XX, 1990, pages 671-678, XP002089284 page 673, paragraph 2 page 675, paragraph 3 page 676, line 7 - line 8	1-11
Α	WO 02/20859 A (SUMMER HERIBERT) 14 March 2002 (2002-03-14) page 1 - page 2	1-11
A	EP 1 243 663 A (LINDE AG) 25 September 2002 (2002-09-25) paragraph '0008! - paragraph '0009!; claims 1,2	1-11
A	US 5 563 903 A (JEBRAIL FATEMEH F ET AL) 8 October 1996 (1996-10-08) column 1, line 30 - line 40	1-11
A	EP 0 962 540 A (LINDE AG) 8 December 1999 (1999-12-08) column 1, line 35 - column 2, line 7	1-11
X	MIHALCEA R M ET AL: "DIODE LASER SENSOR FOR MEASUREMENTS OF CO, CO2, AND CH4 IN COMBUSTION FLOWS" APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 36, no. 33, 20 November 1997 (1997-11-20), pages 8745-8752, XP000725233 ISSN: 0003-6935 Fig. 1, paragraphe de conclusion en particulier p.8752, colonne de gauche	12
X	DOCQUIER N ET AL: "Combustion control and sensors: a review" PROGRESS IN ENERGY AND COMBUSTION SCIENCE, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 28, no. 2, 2002, pages 107-150, XP004332227 ISSN: 0360-1285 Paragraphe 5; conclusion, Fig. 1	12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/FR2005/050074

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 60121235 A	28-06-1985	NONE	
US 6247416 B1	19-06-2001	FR 2777075 A1 EP 0949477 A1 JP 11325738 A US 6582096 B1	08-10-1999 13-10-1999 26-11-1999 24-06-2003
WO 0220859 A	14-03-2002	AT 409269 B WO 0220859 A2 AT 15332000 A AU 7948801 A BR 0107178 A EP 1337676 A2 US 2004012129 A1	25-07-2002 14-03-2002 15-11-2001 22-03-2002 02-07-2002 27-08-2003 22-01-2004
EP 1243663 A	25-09-2002	DE 10114179 A1 AT 289363 T DE 50202257 D1 EP 1243663 A2	26-09-2002 15-03-2005 24-03-2005 25-09-2002
US 5563903 A	08-10-1996	BR 9602755 A CA 2178864 A1 CN 1143684 A ,C DE 69610947 D1 DE 69610947 T2 EP 0748993 A1 ES 2151622 T3	13-10-1999 14-12-1996 26-02-1997 21-12-2000 31-05-2001 18-12-1996 01-01-2001
EP 0962540 A	08-12-1999	DE 19824573 A1 EP 0962540 A1	09-12-1999 08-12-1999

RAPPORT DE RECHERCHE INTERNATIONALE

de Internationale No PCT/FR2005/050074

A. CLA	SSEMEN	T DE L'O	BJET DE	LA	DEMANDE
CIB	7 F	27B7/	′20		

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 C22B F27B B27B

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, PAJ

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	PATENT ABSTRACTS OF JAPAN vol. 0092, no. 71 (C-311), 29 octobre 1985 (1985-10-29) & JP 60 121235 A (FURUKAWA DENKI KOGYO KK), 28 juin 1985 (1985-06-28) abrégé	1-11
A	US 6 247 416 B1 (BEAUDOIN PHILIPPE ET AL) 19 juin 2001 (2001-06-19) colonne 1, ligne 10 - ligne 61 colonne 4, ligne 23 - ligne 41	1-11

Voli la sulle du cadre o pour la fin de la liste des documents	Les documents de families de Drevets sont indiques en annexe
° Catégories spéciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent	T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe
"E" document antérieur, mais publié à la date de dépôt international	ou la théorie constituant la base de l'invention X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
postérieurement à la date de priorité revendiquée Date à laquelle la recherche internationale a été effectivement achevée	&" document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale
15 juin 2005	23/06/2005
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Lombois, T

RAPPORT DE RECHERCHE INTERNATIONALE

	DOCUMENTS CONSIDERES COMME PERTINENTS o Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	PAGET M W ET AL: "A novel burner retrofit used to increase productivity in an aluminium rotary furnace" INTERNATIONAL SYMPOSIUM RECYCLING OF METALS AND ENGINEERED MATERIALS, XX, XX, 1990, pages 671-678, XP002089284 page 673, alinéa 2 page 675, alinéa 3 page 676, ligne 7 - ligne 8	1-11
Α .	WO 02/20859 A (SUMMER HERIBERT) 14 mars 2002 (2002-03-14) page 1 - page 2	1–11
Α	EP 1 243 663 A (LINDE AG) 25 septembre 2002 (2002-09-25) alinéa '0008! - alinéa '0009!; revendications 1,2	1-11
Α	US 5 563 903 A (JEBRAIL FATEMEH F ET AL) 8 octobre 1996 (1996-10-08) colonne 1, ligne 30 - ligne 40	1-11
Α	EP 0 962 540 A (LINDE AG) 8 décembre 1999 (1999-12-08) colonne 1, ligne 35 - colonne 2, ligne 7	1-11
X	MIHALCEA R M ET AL: "DIODE LASER SENSOR FOR MEASUREMENTS OF CO, CO2, AND CH4 IN COMBUSTION FLOWS" APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 36, no. 33, 20 novembre 1997 (1997-11-20), pages 8745-8752, XP000725233 ISSN: 0003-6935 Fig. 1, paragraphe de conclusion en particulier p.8752, colonne de gauche	12
X	DOCQUIER N ET AL: "Combustion control and sensors: a review" PROGRESS IN ENERGY AND COMBUSTION SCIENCE, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 28, no. 2, 2002, pages 107-150, XP004332227 ISSN: 0360-1285 Paragraphe 5; conclusion, Fig. 1	12

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-12

Revendications 1-11: Procédé de traitement d'aluminium Revendication 12: Utilisation d'une diode laser pour la mesure de CO

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n° PCT/FR2005/050074

Cadre II Observations – lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherch (suite du point 2 de la première feuille)
Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:
Les revendications nos se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:
2. Les revendications nos se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:
3. Les revendications nos sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).
Cadre III Observations – lorsqu'il y a absence d'unité de l'invention (suite du point 3 de la première feuille)
L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:
1. revendications: 1-12
Revendications 1-11: Procédé de traitement d'aluminium Revendication 12:
Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.
2. Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.
3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n os
4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n os
Remarque quant à la réserve Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposan Le palement des taxes additionnelles n'était assorti d'aucune réserve.

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-12

Revendications 1-11: Procédé de traitement d'aluminium Revendication 12: Utilisation d'une diode laser pour la mesure de CO

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Delitaride Internationale No
PCT/FR2005/050074

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
JP 60121235 A	28-06-1985	AUCUN	
US 6247416 B1	19-06-2001	FR 2777075 A1 EP 0949477 A1 JP 11325738 A US 6582096 B1	08-10-1999 13-10-1999 26-11-1999 24-06-2003
WO 0220859 A	14-03-2002	AT 409269 B WO 0220859 A2 AT 15332000 A AU 7948801 A BR 0107178 A EP 1337676 A2 US 2004012129 A1	25-07-2002 14-03-2002 15-11-2001 22-03-2002 02-07-2002 27-08-2003 22-01-2004
EP 1243663 A	25-09-2002	DE 10114179 A1 AT 289363 T DE 50202257 D1 EP 1243663 A2	26-09-2002 15-03-2005 24-03-2005 25-09-2002
US 5563903 A	08-10-1996	BR 9602755 A CA 2178864 A1 CN 1143684 A ,C DE 69610947 D1 DE 69610947 T2 EP 0748993 A1 ES 2151622 T3	13-10-1999 14-12-1996 26-02-1997 21-12-2000 31-05-2001 18-12-1996 01-01-2001
EP 0962540 A	08-12-1999	DE 19824573 A1 EP 0962540 A1	09-12-1999 08-12-1999