

Instituto Federal de Educação, Ciência e Tecnologia do Ceará PPGER — PPGCC

Aula 4: Técnicas básicas de PDI - Parte 2

Visão Computacional

Prof. Dr. Pedro Pedrosa

pedrosarf@ifce.edu.br

brotessorbequosa.com

Aula anterior:

- Operações pixel a pixel
- Operações de vizinhança
- Hisograma e operações com Histograma

Conteúdo desta aula:

- Operações de conjunto
- Transformações Geométricas
- Processamento de Imagens com Vetor e Matriz
- Filtros Estatísticos
- Decomposição em planos de bit

Operações

de conjuntos

Operações de conjuntos

 $a \in A$

 $a \notin A$

 $A \subseteq B$

$$C = A \cup B$$

$$D = A \cap B$$

$$A \cap B = \emptyset$$

$$C = A \cup B$$

$$A^c = \{ w | w \notin A \}$$

Figura 2.31 (a) Dois conjuntos de coordenadas, A e B, em um espaço 2-D. (b) A união de A e B. (c) A interseção de A e B. (d) O complemento de A. (e) A diferença entre A e B. Em (b)-(e) as áreas em cinza representam os elementos resultantes da operação de conjuntos indicada.

Figura 2.32 Conjunto de operações envolvendo imagens em escala de cinza. (a) Imagem original. (b) Negativo obtido da complementação do conjunto. (c) União de (a) com uma imagem constante. (Imagem original: cortesia da G.E. Medical Systems.)

Operações de conjunto

- União
- Intersecção
- Subtração
- Complemento

Figura 2.28 Angiografia por subtração digital. (a) Imagem máscara. (b) Uma imagem ativa. (c) Diferença entre (a) e (b). (d) Imagem da diferença realçada. (Figuras (a) e (b): cortesia do Instituto de Ciência de Imagem, Centro Médico da Universidade de Utrecht, Holanda.)

Figura 2.30 (a) Imagem digital de uma radiografia odontológica. (b) Máscara com duas regiões de interesse para isolar dentes com obturações (branco corresponde a 1 e preto corresponde a 0). (c) Produto de (a) com (b).

Operações lógicas

- OR (OU)
- AND (E)
- NOT (NÃO)
- XOR (Ou Exclusivo)

Figura 2.33 Ilustração de operações lógicas envolvendo pixels de frente (brancos). O preto representa binários "0s" e o branco, binários "1s". As linhas tracejadas são mostradas somente para referência. Elas não fazem parte dos resultados.

Transformações Geométricas

Transformações Geométricas

$$(x,y) = T\{(v,w)\}$$

Transformada de Wolberg (1990)

$$[x \ y \ 1] = [v \ w \ 1] T$$

$$[x \quad y \quad 1] = \begin{bmatrix} v & w & 1 \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$

Tabela 2.2 Transformações afins baseadas na Equação 2.6-23.

Nome da transformação	Matriz afim, T	Equações coordenadas	Exemplo
ldentidade	1 0 0 0 1 0 0 0 1	x = v $y = w$	Y X
Escala	$\begin{bmatrix} c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = c_{\chi} v$ $y = c_{y} w$	
Rotação	$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = v \cos \theta - w \sin \theta$ $y = v \sin \theta + w \cos \theta$	
Translação	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$	$x = v + t_x$ $y = w + t_y$	
Cisalhamento (vertical)	$\begin{bmatrix} 1 & 0 & 0 \\ s_v & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = v + s_v w$ $y = w$	
Cisalhamento (horizontal)	$\begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x = v$ $y = s_h v + w$	11

Transformações Geométricas

Figura 2.36 (a) Uma imagem de 300 dpi da letra T. (b) Imagem rotacionada a 21° utilizando a interpolação do vizinho mais próximo para atribuir valores de intensidade aos pixels transformados espacialmente. (c) Imagem rotacionada a 21° utilizando a interpolação bilinear. (c) Imagem rotacionada a 21° utilizando a interpolação bicúbica. As seções ampliadas mostram detalhes de borda para os três métodos de interpolação.

Processamento de imagens

Vetores e matrizes

Processamento Digital de Imagens

Vetores e Matrizes

Figura 2.38 Formação de um vetor a partir de valores de pixels correspondentes em três imagens de componentes RGB.

- Nesta abordagem, cada pixel é um vetor de 3 valores inteiros (R, G, B)
- Pode-se ter uma estrutura com
 - 3 matrizes de igual tamanho (1 para R, 1 para G, 1 para B)
 - 1 matriz de vetores (Cada posição da matriz será um vetor de tamanho 3)

Vetorização de uma imagem

Estrutura que salva toda a matriz da imagem em um único vetor.

Imagem Original

Imagem Vetorizada

Processamento de imagens

Decomposição em planos de bit

- Muitas vezes é importante ressaltar a contribuição de certos bits da imagem.
- Uma imagem em nível de cinza representada em 8 bits (0-255). Pode-se perceber que a imagem pode ser dividida em 8 planos de bits.

Figura 3.13 Representação em planos de bits de uma imagem de 8 bits.

Exemplo

Imagem original

Exemplo

Figura 3.14 (a) Uma imagem em escala de cinza de 8 bits com dimensões 500 × 1.192 pixels. (b) a (i) Planos de bits 1 a 8, com o plano de bits 1 correspondendo ao bit menos significativo. Cada plano de bits é uma imagem binária.

Exemplo

Figura 3.15 Imagens reconstruídas utilizando (a) planos de bits 8 e 7; (b) planos de bits 8, 7 e 6; e (c) planos de bits 8, 7, 6 e 5. Compare (c) com a Figura 3.14(a).

Fig 3.14. a)Imagem original.

Fig 3.15. c)Bits 8,7,6,5.

Processamento de imagens

Transformações de Intensidade

Transformação de intensidade

Figura 3.3 Algumas funções básicas de transformação de intensidade. Todas as curvas foram ajustadas para o intervalo mostrado.

- T = função linear
 - Transformação identidade
 - Negativo da imagem
- T = função logarítmica
 - Transformação log ou log- inversa
- T = função exponencial
 - Potência n-ésima ou nésima raiz

Negativo

Figura 2.34 Função de transformação de intensidade utilizada para obter o negativo de uma imagem de 8 bits. As setas tracejadas mostram a transformação de um valor arbitrário de entrada com intensidade z_0 em um valor correspondente de saída s_0 .

• Regra geral $f(x,y) = (2^{n}-1) - g(x,y)$

N é o número de bits

- Pixel de 1 bit (binário):
 f(x,y) = 1 g(x,y)
 - 0 passa para 11 passa para 0
- Pixel de 8 bits (0-255) f(x,y) = 255 - g(x,y)

Negativo

Usa-se para realçar detalhes em branco ou cinza escondidos em imagens predominantemente escuras.

Negativo – exemplo:

Um exemplo de aplicação é a mamografia digital. O negativo possibilita uma melhor visualização de uma pequena lesão do seio.

Imagem Original

Negativo

Controle do contraste

Um exemplo de função que possibilita o controle do contraste é dado por:

$$s = c.r+b$$

em que

- **b** é o ajuste de brilho
 - b>0 aumenta o brilho
 - b<0 diminui o brilho
- o **c** é o controlador de contraste
 - $\theta > 45$: aumenta o contraste
 - θ <45 : diminui o contraste

Correção de brilho

$$s = T(r) = r + b$$

Controle de brilho – exemplo:

Correção de contraste

 $S = C \cdot r + b$

Adaptação Dinâmica

Escalamento Linear Min/Max
 Os níveis de cínza são colocados no intervalo 0-255 através da expressão

Transformação Logarítmica

 As curvas logarítmicas são utilizadas para ampliar uma faixa pequena de níveis de cinza em uma faixa mais larga de saída através da expressão:

$$s = c \log(1+r)$$

- Esta transformação expande os valores escuros, contudo, ao mesmo tempo, comprime os valores de alta intensidade.
- Importância:
 - Espectro de Fourier (valores até 10⁶) e
 deve-se exibir em 256 níveis

Transformação Exponencial

• Uma função de transformação exponencial é dada por:

$$s = c (r)^{\gamma}$$

Figura 3.6 Plotagens da equação $s = cf^{\gamma}$ para vários valores de γ (c = 1 em todos os casos). Todas as curvas foram ajustadas para se adequar à faixa mostrada.

Dependendo do valor de γ a função de transformação irá se comportar de maneira diferente

Para valores de gama γ

- Fracionários (entre 0 e 1): alargam uma faixa estreita escura, comprimindo a faixa clara.
- Inteiros maiores que 1: estreitam uma faixa estreita escura, alargando a faixa clara.

Correção de Gamma

Exemplo:

$$s = c(r).\gamma$$

Correção de Gamma

Exemplo NMR

A imagem de ressonância magnética é predominantemente escura,
 é necessário expandir os níveis de cinza escuros, ou seja γ < 1

Osso fraturado

 $\gamma = 0.6$ c = 1

 $\gamma = 0.4$ c = 1

c = 1

Figura (a) Ressonância magnética de um osso fraturado (b) – (d) resultados da transformação $s=cr^{\gamma} com (b)\gamma=0.6 (c)\gamma=0.6 e (d)\gamma=0.6$

Correção de Gamma

Imagem original

 $\gamma = 4$

 $\gamma = 3$

 $\gamma = 5$

Exemplo em imagens aéreas

- Nesta aplicação, a imagem, os detalhes aparentam um borramento, isto devido ao baixo contraste entre os objetos, sendo necessário um ajuste com γ > 1
- Ao aumentar muito o gamma, alto contraste com áreas muito escuras.

Encaminhamentos

- Dúvidas?
- Exemplos no matlab
 - www.dropbox.com/sh/77g6r25d3u7csls/AAAHbCZmCTKtWcghD90CiWQba?dl=0
- Exemplos utilizando Opencv em C++
 - Foram apresentados nos slides anteriores
 - www.dropbox.com/sh/bj87uim9vxenpzj/AADAC0kq6KkVtHly-K5vS3aVa?dl=0
- Próximo assunto
 - Realce e filtragem no domínio espacial

