Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013 an den Realschulen in Bayern

Mathematik II

Name:		Vorname:																										
Klasse	:				Platzziffer:													Punkte:										
Αι	ıfgal	oe A	A 1																					На	aup	otte	ermi	n
A 1.0	massiven Edelstahlniete mit der Symmetrieachse MS. Es gilt:														D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
A 1.1				_			Volumen 9,33 mm																					
					ļ	 																ł	A A			;	⊿ B	
A 1.2	Best									die	M	ass	e d	ler	Ed	els	tah	lni	ete.	, w	enı	n 1	cm	n ³ F	Ede	lsta	ıhl	4 F

A 2.0 Die Parabel p mit dem Scheitel $S\left(-2\mid -5\right)$ hat eine Gleichung der Form $y=0,25x^2+bx+c$ mit $G=IR\times IR$ und $b,c\in IR$. Die Gerade g hat die Gleichung y=-0,5x+1 mit $G=IR\times IR$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Zeigen Sie durch Rechnung, dass die Parabel p die Gleichung $y = 0,25x^2 + x - 4$ hat.

A 2.2 Die Gerade g schneidet die Parabel p in den Punkten P und Q. Berechnen Sie die Koordinaten der Schnittpunkte P und Q.

A 2.3 Punkte $A_n\left(x\mid 0,25x^2+x-4\right)$ auf der Parabel p und Punkte $B_n\left(x\mid -0,5x+1\right)$ auf der Geraden g haben dieselbe Abszisse x und sind für -8,39 < x < 2,39 zusammen mit Punkten C_n die Eckpunkte von Dreiecken $A_nB_nC_n$. Die Punkte C_n liegen auf der Geraden g, wobei die Abszisse der Punkte C_n um 3 kleiner ist als die Abszisse x der Punkte A_n und B_n . Zeichnen Sie für $x_1 = -4$ das Dreieck $A_1B_1C_1$ und für $x_2 = 1$ das Dreieck $A_2B_2C_2$ in das Koordinatensystem zu 2.0 ein.

A 2.5 In allen Dreiecken $A_nB_nC_n$ haben die Winkel $C_nB_nA_n$ das gleiche Maß. Berechnen Sie das Maß der Winkel $C_nB_nA_n$.

2 P

3 P

2 P

A 3.0 Die nebenstehende Skizze verdeutlicht die Funktionsweise einer Bahnschranke. [MS₁] stellt die Schranke in geöffnetem Zustand dar, [MS₂] zeigt sie in geschlossenem Zustand. Der Bogen S₁S₂ beschreibt den Weg, den die Schrankenspitze beim Schließen und Öffnen zurücklegt. Der Punkt M ist der Drehpunkt der Schranke und bildet zusammen mit dem Punkt F die Strecke [MF] (Schrankenfuß).

Es gilt:

$$\overline{\text{MS}_1} = \overline{\text{MS}_2} = 7,00 \text{ m}; \ \overline{\text{S}_1 \text{S}_2} = 8,85 \text{ m}; \ \overline{\text{MF}} = 1,10 \text{ m}.$$

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 3.1 Berechnen Sie das Maß α des Winkels S_1MS_2 und sodann die Länge b des Bogens $\widehat{S_1S_2}$.

[Teilergebnis: $\alpha = 78,42^{\circ}$]

3 P

A 3.2 Herr Lute überquert mit einem 4,00 m hohen LKW den Bahnübergang. Er fährt einen halben Meter am Schrankenfuß [MF] der geöffneten Schranke vorbei. Überprüfen Sie rechnerisch, ob dabei die Schranke beschädigt wird und begründen Sie Ihre Antwort.

2 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

an den Realschulen in Bayern

Mathematik II

Aufgabe B 1

Haupttermin

B 1.0 Die nebenstehende Skizze zeigt ein Schrägbild der Pyramide ABCDS, deren Grundfläche die Raute ABCD ist. Die Spitze S der Pyramide ABCDS liegt senkrecht über dem Diagonalenschnittpunkt M der Raute ABCD.

Es gilt: AB = 7.5 cm; BD = 9 cm; MS = 6 cm.

Runden Sie im Folgenden auf zwei Stellen nach A dem Komma.

B 1.1 Zeigen Sie rechnerisch, dass für die Strecke [AC] gilt: AC = 12 cm.

Zeichnen Sie sodann das Schrägbild der Pyramide ABCDS, wobei die Strecke [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

3 P

B 1.2 Berechnen Sie das Maß des Winkels SBA sowie den Flächeninhalt A des Dreiecks ABS.

[Teilergebnis: \angle SBA = 68,94°]

4 P

B 1.3 Verlängert man die Höhe [MS] über S hinaus um x cm, so erhält man Punkte S_n. Verkürzt man gleichzeitig die Diagonale [AC] der Grundfläche von den Punkten A und C aus um jeweils $0.5 \,\mathrm{x}$ cm, so erhält man Punkte A_n und C_n mit $x \in]0;12[$ und $x \in \mathbb{R}$.

Die Punkte A,, B, C, und D sind die Eckpunkte der Grundflächen von Pyramiden $A_nBC_nDS_n$ mit den Spitzen S_n .

Zeichnen Sie die Pyramide $A_1BC_1DS_1$ für x = 2 in das Schrägbild zu 1.1 ein.

1 P

B 1.4 Zeigen Sie, dass sich das Volumen V der Pyramiden A_nBC_nDS_n in Abhängigkeit von x wie folgt darstellen lässt: $V(x) = (-1,5x^2 + 9x + 108) \text{cm}^3$. Unter den Pyramiden A_nBC_nDS_n besitzt die Pyramide A₂BC₂DS₂ das maximale Volumen. Berechnen Sie den zugehörigen Wert für x und das Volumen V_{max} der Pyramide $A_2BC_2DS_2$.

3 P

B 1.5 Das Volumen der Pyramide A₃BC₃DS₃ beträgt 70 % des Volumens der Pyramide ABCDS. Ermitteln Sie durch Rechnung den zugehörigen Wert von x.

3 P

B 1.6 Der Winkel C₄A₄S₄ der Pyramide A₄BC₄DS₄ hat das Maß 60°. Berechnen Sie den zugehörigen Wert für x.

3 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

Mathematik II

Aufgabe B 2 Haupttermin B 2.0 Die nebenstehende Skizze zeigt das gleichschenklige Trapez ABCD mit AB || CD. Es gilt: $\overline{AB} = 10 \text{ cm}$; $\overline{AD} = 6.5 \text{ cm}$; d([AB]; [CD]) = 6 cm. Runden Sie im Folgenden auf zwei Stellen nach dem Komma. B 2.1 Zeichnen Sie das Trapez ABCD mit den Diagonalen [AC] und [BD]. 2 P B 2.2 Berechnen Sie das Maß des Winkels BAD, sowie die Längen der Strecken [AC] und [CD]. [Teilergebnisse: AC = 9,60 cm; CD = 5 cm] 3 P B 2.3 Der Schnittpunkt E der Diagonalen [AC] und [BD] ist der Mittelpunkt eines Kreises k, der die Grundlinie [AB] im Punkt T berührt. Dieser Kreis schneidet die Diagonale [AC] im Punkt S und die Diagonale [BD] im Punkt R. Zeichnen Sie den Kreisbogen SR und die Punkte E und T in die Zeichnung zu 2.1 ein. 1 P B 2.4 Ermitteln Sie durch Rechnung den Flächeninhalt des Kreissektors, der durch die Strecken [RE], [ES] und den Kreisbogen SR begrenzt wird. [Ergebnisse: $\overline{ET} = 4 \text{ cm}$; $\angle AET = 51,34^{\circ}$; $A_{Sektor} = 14,34 \text{ cm}^2$] 4 P B 2.5 Bestimmen Sie rechnerisch den Umfang u der Figur, die durch die Strecken [RD], [DS] und den Kreisbogen SR begrenzt wird. [Teilergebnis: $\overline{DE} = 3,20 \text{ cm}$] 4 P B 2.6 Überprüfen Sie rechnerisch, ob der Flächeninhalt A der Figur aus 2.5 mehr als die Hälfte des Flächeninhaltes des Trapezes beträgt. 3 P