HYPERBOLIC FUNCTIONS

CIRCULAR FUNCTIONS:

From Euler's formula, we have $e^{i\theta}=\cos\theta+i\sin\theta$ and $e^{-i\theta}=\cos\theta-i\sin\theta$

$$\therefore \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

If z = x + iy is complex number, then $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

These are called circular function of complex numbers.

HYPERBOLIC FUNCTIONS:

If x is real or complex, then sine hyperbolic of x is denoted by $sinh\ x$ and is given as, $sinh\ x = \frac{e^x - e^{-x}}{2}$ and Cosine hyperbolic of x is denoted by $cosh\ x$ and is given as, $cosh\ x = \frac{e^x + e^{-x}}{2}$

From above expressions, other hyperbolic functions can also be obtained as

$$tan hx = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
, $cosechx = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$, $sech x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$, and $coth x = \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$

TABLE OF VALUES OF HYPERBOLIC FUNCTION:

From the definitions of sinh x, cosh x, tanh x, we can obtain the following values of hyperbolic function.

х	-∞	0	∞
sinh x	-∞	0	8
cosh x	8	1	8
tanh x	-1	0	1

Note: since $\tanh(-\infty) = -1$, $\tanh(0) = 0$, $\tanh(\infty) = 1$

 $\therefore |\tanh x| \le 1$

RELATION BETWEEN CIRCULAR AND HYPERBOLIC FUNCTIONS:

(i)	$\sin ix = i \sinh x$ & $\sinh x = -i \sin ix$	sinh ix = i sin x
(ii)	$\cos ix = \cosh x$	$\cosh ix = \cos x$
(iii)	tan ix = i tanh x & tanh x = -i tan ix	tanh ix = i tan x & tan x = $-i tanh ix$

FORMULAE ON HYPERBOLIC FUNCTIONS:

	CIRCULAR FUNCTIONS	HYPERBOLIC FUNCTIONS
1	$\sin(-x) = -(\sin x)$	$\sinh(-x) = -\sinh x,$
2	$\cos(-x) = (\cos x)$	$ \cosh(-x) = \cosh x $
3	$e^{ix} = \cos x + i \sin x$	$e^x = \cosh x + \sinh x$
4	$e^{-ix} = \cos x - i \sin x$	$e^{-x} = \cosh x - \sinh x$
5	$\sin^2 x + \cos^2 x = 1$	$\cosh^2 x - \sinh^2 x = 1$
6	$1 + \tan^2 x = \sec^2 x$	$\operatorname{sech}^2 x + \tanh^2 x = 1$
7	$1 + \cot^2 x = \csc^2 x$	$\coth^2 x - \operatorname{cosech}^2 x = 1$
8	$\sin 2x = 2\sin x \cos x$	$\sinh 2x = 2\sinh x \cosh x$
	$=\frac{2\tan x}{1+\tan^2 x}$	$= \frac{2 \tanh x}{1 - \tanh^2 x}$
	$\cos 2x = \cos^2 x - \sin^2 x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$
	$= 2\cos^2 x - 1$	$= 2 \cosh^2 x - 1$
9	$=1-2\sin^2x$	$= 1 + 2\sinh^2 x$
	$=\frac{1-\tan^2 x}{1+\tan^2 x}$	$=\frac{1+\tanh^2 x}{1-\tanh^2 x}$
10	$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$	$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$
11	$\sin 3x = 3\sin x - 4\sin^3 x$	$\sinh 3x = 3\sinh x + 4\sinh^3 x$
12	$\cos 3x = 4\cos^3 x - 3\cos x$	$\cosh 3x = 4\cosh^3 x - 3\cosh x$
13	$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$	$tanh 3x = \frac{3 \tanh x + \tanh^3 x}{1 + 3 \tanh^2 x}$
14	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$sinh(x \pm y) = sinh x cosh y \pm cosh x sinh y$
15	$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$cosh(x \pm y) = cosh x cosh y \pm sinh x sinh y$
16	$tan(x \pm y) = \frac{tan x \pm tan y}{1 \mp tan x tanh y}$	$tanh(x \pm y) = \frac{tanh \ x \pm tanh \ y}{1 \pm tanh \ x \ tanh \ y}$
17	$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$	$ coth(x \pm y) = \frac{-\coth x \coth y \mp 1}{\coth y \pm \coth x} $
18	$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$	$\sinh x + \sinh y = 2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2}$
19	$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$	$\sinh x - \sinh y = 2 \cosh \frac{x+y}{2} \sinh \frac{x-y}{2}$

20	$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$	$ \cosh x + \cosh y = 2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2} $
21	$\cos x - \cos y$ $= -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$	$\cosh x - \cosh y = 2 \sinh \frac{x+y}{2} \sinh \frac{x-y}{2}$
22	$2\sin x\cos y = \sin(x+y) + \sin(x-y)$	$2\sinh x \cosh y = \sinh(x+y) + \sinh(x-y)$
23	$2\cos x \sin y = \sin(x+y) - \sin(x-y)$	$2\cosh x \sinh y = \sinh(x+y) - \sinh(x-y)$
24	$2\cos x \cos y = \cos(x+y) + \cos(x-y)$	$2 \cosh x \cosh y$ $= \cosh(x + y) + \cosh(x - y)$
25	$2\sin x \sin y = \cos (x - y) - \cos(x + y)$	$2 \sinh x \sinh y = \cos h(x + y)$ $-\cos h(x - y)$

PERIOD OF HYPERBOLIC FUNTIONS:

$$sinh(2\pi i + x) = sinh(2\pi i) cosh x + cosh(2\pi i) sinh x$$

= $i sin 2\pi cosh x + cos 2\pi sinh x$
= $0 + sinh x$
= $sinh x$

Hence sinh x is a periodic function of period $2\pi i$

Similarly we can prove that $\cosh x$ and $\tanh x$ are periodic functions of period $2\pi i$ and πi .

DIFFERENTIATION AND INTRGRATION:

(i) If
$$y = \sinh x$$
, $y = \frac{e^x - e^{-x}}{2}$ $\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^x - e^{-x}}{2} \right) = \frac{e^x + e^{-x}}{2} = \cosh x$

If $y = \sinh x$, $\frac{dy}{dx} = \cosh x$

(ii) If $y = \cosh x$, $y = \frac{e^x + e^{-x}}{2}$, $\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^x + e^{-x}}{2} \right) = \frac{e^x - e^{-x}}{2} = \sinh x$

If $y = \cosh x$, $\frac{dy}{dx} = \sinh x$

(iii) If $y = \tanh x$, $y = \frac{\sinh x}{\cosh x}$
 $\therefore \frac{dy}{dx} = \frac{\cosh x \cdot \cosh x - \sinh x \cdot \sinh x}{\cosh^2 x} = \frac{1}{\cosh^2 x} = \operatorname{sech}^2 x$

If $y = \tanh x$, $\frac{dy}{dx} = \operatorname{sech}^2 x$

Hence, we get the following three results

$$\int \cosh x \, dx = \sinh x \,, \qquad \int \sinh x \, dx = \cosh x \,, \qquad \qquad \int \operatorname{sech}^2 x dx = \tanh x$$