Multilinear Regression: Auto dataset

Import notebook functions

```
from notebookfuncs import *
```

Import standard libraries

```
import numpy as np
import pandas as pd

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 1000)
pd.set_option("display.width", 1000)
pd.set_option("display.max.colwidth", None)
import matplotlib.pyplot as plt
from matplotlib.pyplot import subplots
import seaborn as sns
import itertools
```

New imports

```
import statsmodels.api as sm
```

Import statsmodels.objects

```
from statsmodels.stats.outliers_influence import variance_inflation_factor as

UIF
from statsmodels.stats.outliers_influence import summary_table
from statsmodels.stats.anova import anova_lm
import statsmodels.formula.api as smf
```

Import ISLP objects

```
import ISLP
from ISLP import models
from ISLP import load_data
from ISLP.models import ModelSpec as MS, summarize, poly
```

Import user functions

```
from userfuncs import *
```

Set level of significance (alpha)

```
LOS_Alpha = 0.01
```

0.01

```
Auto = load_data("Auto")
Auto = Auto.sort_values(by=["year"], ascending=True)
Auto.head()
Auto.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', '

```
Auto.shape
```

(392, 8)

Auto.describe()

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year	origi
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.0
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.979592	1.576
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.683737	0.80!
\min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000	1.000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.000000	1.000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.000000	1.000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.000000	2.000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000	3.000

- 9. This question involves the use of multiple linear regression on the Auto data set.
- (a) Produce a scatterplot matrix which includes all of the variables in the data set.

```
pd.plotting.scatter_matrix(Auto, figsize=(14, 14))
```


(b) Compute the matrix of correlations between the variables using the DataFrame.corr() method.

Auto.corr()

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year	origi
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580541	0.56!
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.345647	-0.56
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369855	-0.61
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361	-0.45
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309120	-0.58
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290316	0.212
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.000000	0.181
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.181528	1.000

(c) Use the sm.OLS() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summarize() function to print the results. Comment on the output. For instance:

Convert year and origin columns to categorical types

	mpg	cylinders	displacement	horsepower	weight	acceleration
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000

```
sns.relplot(
   Auto,
   x="year",
   y="weight",
```

```
col="origin",
hue="cylinders",
style="cylinders",
estimator="mean",
kind="line",
```


The weight of the 8-cylinder American made models show a decline from the highs of 1972. It can also be seen that American made cars are heavier than their European and Japanese counterparts especially in the most common models with 4 cylinders.

```
sns.relplot(
   Auto,
   x="year",
   y="mpg",
   col="origin",
   hue="cylinders",
   style="cylinders",
   estimator="mean",
   kind="line",
```


It can be seen that after the oil shock of 1973 and the regulations and actions taken by the US government, the mileage for American made cars rose across all models. This was, however, matched by the European and Japanese models which were already lighter and more fuel efficient.

Encode categorical variables as dummy variables dropping the first to remove multicollinearity.

```
Auto.boxplot(column="mpg", by=["oilshock", "origin"])
```

Boxplot grouped by ['oilshock', 'origin'] mpg


```
Auto_os = Auto.drop(["year"], axis=1)
Auto_os.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'origin',

```
# standardizing dataframes
Auto_os["oilshock"] = Auto_os["oilshock"].astype("category")
Auto_os = Auto_os.apply(standardize)
Auto_os.describe()
```

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration
count	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02
mean	1.812609 e-16	-1.087565e-16	-7.250436e-17	-1.812609e-16	-3.625218e-17	-8.519262e-16
std	1.001278e+00	1.001278e+00	1.001278e + 00	1.001278e + 00	1.001278e+00	1.001278e + 00

	mpg	cylinders	displacement	horsepower	weight	acceleration
min	-1.853218e+00	-1.451004e+00	-1.209563e+00	-1.520975e+00	-1.608575e+00	-2.736983e+00
25%	-8.269250 e-01	-8.640136e-01	-8.555316e-01	-7.665929e-01	-8.868535e-01	-6.410551e-01
50%	-8.927701e-02	-8.640136e-01	-4.153842e-01	-2.853488e-01	-2.052109e-01	-1.499869e-02
75%	7.125143e-01	1.483947e+00	7.782764 e-01	5.600800e- 01	7.510927e-01	5.384714e-01
max	$2.970359e{+00}$	1.483947e + 00	$2.493416e{+00}$	3.265452e + 00	$2.549061\mathrm{e}{+00}$	3.360262e+00

```
Auto_os = pd.get_dummies(
    Auto_os, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_os.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'oilshock

```
y = Auto_os["mpg"]
```

```
cols = list(Auto_os.columns)
cols.remove("mpg")
formula = " + ".join(cols)
model = smf.ols(f"mpg ~ {formula}", data=Auto_os)
results = model.fit()
results.summary()
```

Dep. Variable:	mpg	R-squared:	0.808
Model:	OLS	Adj. R-squared:	0.804
Method:	Least Squares	F-statistic:	201.7
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	3.05e-132
Time:	04:09:22	Log-Likelihood:	-232.60
No. Observations:	392	AIC:	483.2
Df Residuals:	383	BIC:	518.9
Df Model:	8		
Covariance Type:	nonrobust		

	\mathbf{coef}	std er	r t	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
Intercept	-0.4186	0.041	-10.263	0.000	-0.499	-0.338
${ m oilshock}[{ m T.1}]$	0.6363	0.048	13.204	0.000	0.542	0.731
$\operatorname{cylinders}$	-0.1382	0.073	-1.885	0.060	-0.282	0.006
displacement	0.2845	0.107	2.659	0.008	0.074	0.495
horsepower	-0.2213	0.069	-3.192	0.002	-0.358	-0.085
\mathbf{weight}	-0.5923	0.073	-8.085	0.000	-0.736	-0.448
acceleration	0.0053	0.036	0.146	0.884	-0.066	0.076
$origin_Europe$	0.3038	0.076	4.015	0.000	0.155	0.453
origin_Japan	0.3819	0.074	5.156	0.000	0.236	0.528
Omnibus:	2	0.039	Durbin-W	atson:	1.33	1
Prob(Omni	ibus): (0.000	Jarque-Be	ra (JB):	27.58	83
Skew:	(0.413	Prob(JB):		1.02e	-06
Kurtosis:	4	4.004	Cond. No	•	11.9	9

Notes:

- i. Is there a relationship between the predictors and the response? Use the anova_lm() function from statsmodels to answer this question.
- ii. Which predictors appear to have a statistically significant relationship to the response?
- iii. What does the coefficient for the year variable suggest?

anova_lm(results)

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	542.347509	2.293307e-75
cylinders	1.0	170.845795	170.845795	870.163964	1.267122 e-100
displacement	1.0	11.934469	11.934469	60.785485	6.078862e-14
horsepower	1.0	3.951021	3.951021	20.123619	9.610639 e-06
weight	1.0	17.796189	17.796189	90.640818	1.988543e-19
acceleration	1.0	0.009116	0.009116	0.046430	8.295108 e-01
origin_Europe	1.0	0.564108	0.564108	2.873155	9.088094 e-02
origin_Japan	1.0	5.218909	5.218909	26.581317	4.058867e-07
Residual	383.0	75.197253	0.196337	NaN	NaN

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

There seems to be a statistical relationship between all of the predictors and the response variable, mpg, except for acceleration.

Even though some of the categorical variables are insignificant, even if one of the levels is significant, it is advisable to retain them all in the model.

https://stats.stackexchange.com/questions/24298/can-i-ignore-coefficients-for-non-significant-levels-of-factors-in-a-linear-mode

Note: Year has been converted to a categorical variable oilshock to better capture the effects of the oil shock of 1973 on the mileage.

(d) Produce some of diagnostic plots of the linear regression fit as described in the lab. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

Before producing the diagnostic plots, let's first test for collinearity using correlation matrix and variance inflation factors.

```
Auto_os.corr(numeric_only=True)
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	origin_Europe
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.244313
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.352324
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.371633
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.284948
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.293841
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.208298
origin_Europe	0.244313	-0.352324	-0.371633	-0.284948	-0.293841	0.208298	1.000000
origin_Japan	0.451454	-0.404209	-0.440825	-0.321936	-0.447929	0.115020	-0.230157

	VIF
Feature	
oilshock[T.1]	1.149269
cylinders	10.737464
displacement	22.861475
horsepower	9.594564
weight	10.715246
acceleration	2.614133
origin_Europe	1.639338
origin_Japan	1.762590

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is displacement with a VIF of 22.861474853464927 Hence, we drop displacement from the model to be fitted.

('displacement', 22.861474853464927)

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_os.columns) + " - mpg - displacement", Auto_os
)
vifdf
```

	VIF
Feature	
oilshock[T.1]	1.139339
cylinders	6.190903
horsepower	8.641303
weight	9.024884
acceleration	2.591157
origin_Europe	1.450726
origin_Japan	1.591434

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

Linear Regression for mpg ~ cylinders + horsepower + weight + acceleration + oilshock + origin_Europe + origin_Japan

```
cols = list(Auto_os.columns)
cols.remove("mpg")
cols.remove("displacement")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_os)
```

OLS Regression Results

=======================================			
Dep. Variable:	mpg	R-squared:	0.805
Model:	OLS	Adj. R-squared:	0.801
Method:	Least Squares	F-statistic:	225.9
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	6.41e-132
Time:	04:09:23	Log-Likelihood:	-236.18
No. Observations:	392	AIC:	488.4
Df Residuals:	384	BIC:	520.1
Df Model:	7		

Covariance Type: nonrobust

==========	========	========	========	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.3890	0.040	-9.837	0.000	-0.467	-0.311
oilshock[T.1]	0.6243	0.048	12.911	0.000	0.529	0.719
cylinders	-0.0113	0.056	-0.202	0.840	-0.122	0.099
horsepower	-0.1632	0.066	-2.461	0.014	-0.294	-0.033
weight	-0.5149	0.068	-7.599	0.000	-0.648	-0.382
acceleration	-0.0038	0.036	-0.103	0.918	-0.075	0.068
origin_Europe	0.2356	0.072	3.283	0.001	0.095	0.377
origin_Japan	0.3205	0.071	4.518	0.000	0.181	0.460
==========		========			========	=====
Omnibus:		25.646	Durbin-Wa	tson:		1.305
Prob(Omnibus):		0.000	Jarque-Be	era (JB):		40.287
C1		0 450	D 1 (TD)			70 00

Skew: 0.456 Prob(JB): 1.79e-09 Kurtosis: 4.278 Cond. No. 7.67

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. df sum_sq mean_sq F PR(>F)

```
oilshock
               1.0 106.483141 106.483141 533.906720 1.149811e-74
cylinders
               1.0 170.845795 170.845795 856.621225 7.985118e-100
               1.0 12.927972
                             12.927972 64.820882
horsepower
                                                    1.039468e-14
weight
               1.0
                    20.649905 20.649905 103.538670
                                                    1.085729e-21
acceleration
               1.0 0.003626 0.003626 0.018183
                                                    8.928058e-01
origin_Europe
                                         2.168627
               1.0 0.432514
                               0.432514
                                                    1.416711e-01
origin_Japan
               1.0 4.071523 4.071523
                                         20.414626
                                                    8.312108e-06
Residual
             384.0
                    76.585524
                                0.199441
                                               NaN
```

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.917 Using the backward methodology, we suggest dropping acceleration from the new model

Linear Regression after dropping acceleration. The model now is mpg \sim cylinders + horsepower + weight + oilshock + origin_Europe + origin_Japan

OLS Regression Results

Den Werdelter

```
Dep. Variable:
                                                                         0.805
                                  mpg
                                        R-squared:
Model:
                                  OLS
                                        Adj. R-squared:
                                                                         0.802
                       Least Squares
                                        F-statistic:
Method:
                                                                         264.3
                    Sat, 28 Sep 2024
                                        Prob (F-statistic):
Date:
                                                                   3.80e-133
Time:
                             04:09:23
                                        Log-Likelihood:
                                                                       -236.19
No. Observations:
                                  392
                                       AIC:
                                                                         486.4
Df Residuals:
                                  385
                                        BIC:
                                                                         514.2
Df Model:
                                    6
```

==========		. ,		======================================		
	coef	std err	t	P> t	[0.025	0.975]
Intercept oilshock[T.1] cylinders horsepower weight origin_Europe	-0.3889 0.6245 -0.0105 -0.1585 -0.5182 0.2352	0.039 0.048 0.055 0.048 0.060 0.072	-9.849 12.935 -0.189 -3.285 -8.704 3.287	0.000 0.000 0.850 0.001 0.000 0.001	-0.467 0.530 -0.120 -0.253 -0.635 0.095	-0.311 0.719 0.099 -0.064 -0.401 0.376
origin_Japan	0.3202	0.071	4.524	0.000	0.181	0.459
Omnibus: Prob(Omnibus): Skew: Kurtosis:		25.330 0.000 0.454 4.263	Durbin-W Jarque-B Prob(JB) Cond. No	era (JB):	2	1.305 39.508 .64e-09 6.84

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
oilshock	1.0	106.483141	106.483141	535.282217	7.450502e-75
cylinders	1.0	170.845795	170.845795	858.828126	4.453195e-100
horsepower	1.0	12.927972	12.927972	64.987879	9.610211e-15
weight	1.0	20.649905	20.649905	103.805416	9.634452e-22
origin_Europe	1.0	0.434982	0.434982	2.186618	1.400323e-01
origin_Japan	1.0	4.070552	4.070552	20.462339	8.111817e-06
Residual	385.0	76.587654	0.198929	NaN	NaN

Linear Regression after dropping cylinders. The model now is mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan

```
}
)
```

OLS Regression Results

===========		========	=======================================	-======
Dep. Variable:		mpg	R-squared:	0.805
Model:		OLS	Adj. R-squared:	0.802
Method:	Le	ast Squares	F-statistic:	317.9
Date:	Sat,	28 Sep 2024	Prob (F-statistic):	2.06e-134
Time:		04:09:23	Log-Likelihood:	-236.21
No. Observations:		392	AIC:	484.4
Df Residuals:		386	BIC:	508.2
Df Model:		5		
Covariance Type:		nonrobust		
=======================================		========		
	coef	std err	t P> t [0.02!	0.975

	coef	std err	t 	P> t 	[0.025	0.975]
Intercept oilshock[T.1] horsepower weight origin_Europe origin_Japan	-0.3901 0.6250 -0.1613 -0.5245 0.2386 0.3222	0.039 0.048 0.046 0.050 0.069 0.070	-10.030 12.983 -3.510 -10.576 3.448 4.611	0.000 0.000 0.001 0.000 0.001 0.000	-0.467 0.530 -0.252 -0.622 0.103 0.185	-0.314 0.720 -0.071 -0.427 0.375 0.460
Omnibus: Prob(Omnibus): Skew: Kurtosis:		24.971 0.000 0.453 4.239	Durbin-W Jarque-B Prob(JB) Cond. No	era (JB): :		1.304 38.456 46e-09 5.60

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
oilshock	1.0	106.483141	106.483141	536.622900	4.863116e-75
horsepower	1.0	165.048555	165.048555	831.763917	2.445119e-98
weight	1.0	39.079210	39.079210	196.940090	1.939884e-36
origin_Europe	1.0	0.574647	0.574647	2.895939	8.960825e-02
origin_Japan	1.0	4.219706	4.219706	21.265252	5.446537e-06
Residual	386.0	76.594741	0.198432	NaN	NaN

We can now try and plot the diagnostics for the model.

```
TSS = np.sum((y - np.mean(y)) ** 2)
TSS
RSS = np.sum((y - results.fittedvalues) ** 2)
RSS
RSE = np.sqrt(RSS / results.df_model)
display("RSE " + str(RSE))
display("R-squared adjusted : " + str(results.rsquared_adj))
display("F-statistic : " + str(results.fvalue))
```

'RSE 3.9139428061794668'

'R-squared adjusted : 0.8020742313429469'

'F-statistic : 317.8976193276657'

display_residuals_plot(results)

There is some evidence of non-linearity and heteroskedasticity from the residuals plot above.

(e) Fit some models with interactions as described in the lab. Do any interactions appear to be statistically significant?

```
formula = " + ".join(cols)
formula += " + " + "horsepower: weight"
results = perform_analysis("mpg", formula, Auto_os)
```

```
numeric_interactions = results
models.append(
    {
        "name": "numeric_interactions",
        "model": results.model.formula,
        "R-squared adjusted": results.rsquared_adj,
    }
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.847
Model:	OLS	Adj. R-squared:	0.845
Method:	Least Squares	F-statistic:	355.8
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	1.15e-153
Time:	04:09:24	Log-Likelihood:	-187.98
No. Observations:	392	AIC:	390.0
Df Residuals:	385	BIC:	417.8
	_		

Df Model: 6 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.5631	0.038	-14.715	0.000	-0.638	-0.488
oilshock[T.1]	0.6508	0.043	15.243	0.000	0.567	0.735
horsepower	-0.3723	0.045	-8.185	0.000	-0.462	-0.283
weight	-0.4926	0.044	-11.192	0.000	-0.579	-0.406
origin_Europe	0.1565	0.062	2.535	0.012	0.035	0.278
origin_Japan	0.2061	0.063	3.278	0.001	0.082	0.330
horsepower:weight	0.2300	0.022	10.364	0.000	0.186	0.274

.242
e-10
7.09
е

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F) 1.0 106.483141 106.483141 684.553356 1.927144e-87 oilshock

```
horsepower
                   1.0 165.048555 165.048555 1061.055689 1.099814e-112
                                              251.230425 6.522402e-44
weight
                  1.0
                       39.079210
                                  39.079210
origin_Europe
                  1.0 0.574647
                                    0.574647
                                                3.694260
                                                          5.533771e-02
origin_Japan
                   1.0 4.219706
                                    4.219706
                                               27.127429
                                                          3.109409e-07
horsepower:weight
                                               107.408348
                                                          2.313061e-22
                  1.0 16.707504
                                   16.707504
Residual
                 385.0 59.887237
                                    0.155551
                                                                   NaN
                                                     {\tt NaN}
```

OLS Regression Results

Dep. Variable: R-squared: 0.861 mpg Model: OLS Adj. R-squared: 0.858 Method: F-statistic: 297.5 Least Squares Date: Sat, 28 Sep 2024 Prob (F-statistic): 3.50e-159 Time: 04:09:24 Log-Likelihood: -168.92No. Observations: 392 AIC: 355.8

nonrobust

0.1804

BIC:

Df Residuals: 383
Df Model: 8

Covariance Type:

origin_Europe

P>|t| 0.975std err [0.025 Intercept -0.5350 0.037 -14.531 0.000 -0.607 -0.463oilshock[T.1] 0.5913 0.042 14.071 0.000 0.509 0.674 0.051 -5.456 0.000 -0.381 -0.179horsepower -0.2801 oilshock[T.1]:horsepower -0.22760.088 -2.5980.010 -0.400-0.055-0.4591 0.050 -9.226 0.000 -0.557 -0.361 weight oilshock[T.1]:weight -0.0963 0.082 -1.181 0.238 -0.2570.064

0.059

3.039

0.003

391.6

0.064

0.297

origin_Japan horsepower:weight	0.1929 0.1715	0.060 3.209 0.023 7.403	0.001 0.000	0.075 0.126	0.311 0.217
Omnibus: Prob(Omnibus):	23.934 0.000	Durbin-Watson: Jarque-Bera (JB):		1.456 43.610	
Skew:	0.377	Prob(JB):	3	.39e-10	
Kurtosis:	4.450 	Cond. No. =========	=========	11.3 ======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	750.563317	2.852400e-92
horsepower	1.0	165.048555	165.048555	1163.370934	3.985476e-118
oilshock:horsepower	1.0	19.155472	19.155472	135.020381	6.081794e-27
weight	1.0	35.071635	35.071635	247.207986	2.471356e-43
oilshock:weight	1.0	0.468549	0.468549	3.302640	6.994992e-02
origin_Europe	1.0	0.971997	0.971997	6.851278	9.208817e-03
origin_Japan	1.0	2.687942	2.687942	18.946386	1.727234e-05
horsepower:weight	1.0	7.776131	7.776131	54.811293	8.507915e-13
Residual	383.0	54.336579	0.141871	NaN	NaN

```
formula = " + ".join(cols)
formula += " + " + "oilshock: horsepower"
formula += " + " + "origin_Europe: horsepower"
formula += " + " + "origin_Japan: horsepower"
formula += " + " + "origin_Europe: weight"
formula += " + " + "origin_Japan: weight"
formula += " + " + "oilshock: weight"
formula += " + " + "oilshock: horsepower"
results = perform_analysis("mpg", formula, Auto_os)
origin_interactions = results
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.855
Model:	OLS	Adj. R-squared:	0.851
Method:	Least Squares	F-statistic:	204.1
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	6.22e-152
Time:	04:09:24	Log-Likelihood:	-177.44
No. Observations:	392	AIC:	378.9
Df Residuals:	380	BIC:	426.5

Df Model: 11 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.4245	0.035	-12.121	0.000	-0.493	-0.356
oilshock[T.1]	0.5690	0.044	13.054	0.000	0.483	0.655
horsepower	-0.0708	0.048	-1.470	0.142	-0.166	0.024
oilshock[T.1]:horsepower	-0.1615	0.096	-1.687	0.092	-0.350	0.027
weight	-0.4713	0.054	-8.712	0.000	-0.578	-0.365
oilshock[T.1]:weight	-0.2333	0.087	-2.694	0.007	-0.404	-0.063
origin_Europe	0.0297	0.082	0.363	0.717	-0.131	0.191
origin_Japan	-0.0010	0.131	-0.007	0.994	-0.259	0.257
origin_Europe:horsepower	-0.5852	0.130	-4.515	0.000	-0.840	-0.330
origin_Japan:horsepower	-0.2801	0.204	-1.370	0.172	-0.682	0.122
origin_Europe:weight	0.1640	0.120	1.370	0.171	-0.071	0.399
origin_Japan:weight	-0.1326	0.245	-0.541	0.589	-0.614	0.349
Omnibus:	20.717	====== Durbin-W	atson:		1.585	
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):			32.838	
Skew:	0.373	Prob(JB)	:	7	.40e-08	
Kurtosis:	4.205	Cond. No			25.3	

Notes:

[1]	${\tt Standard}$	Errors	${\tt assume}$	that	the	${\tt covariance}$	${\tt matrix}$	of	the	errors	is	correctly	specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
oilshock	1.0	106.483141	106.483141	712.972849	3.365342e-89
horsepower	1.0	165.048555	165.048555	1105.105820	1.586816e-114
oilshock:horsepower	1.0	19.155472	19.155472	128.258155	8.134152e-26
weight	1.0	35.071635	35.071635	234.827067	1.302452e-41
oilshock:weight	1.0	0.468549	0.468549	3.137234	7.732495e-02
origin_Europe	1.0	0.971997	0.971997	6.508146	1.112920e-02
origin_Japan	1.0	2.687942	2.687942	17.997494	2.781984e-05
origin_Europe:horsepower	1.0	3.024522	3.024522	20.251113	9.040705e-06
origin_Japan:horsepower	1.0	1.977640	1.977640	13.241566	3.116551e-04
origin_Europe:weight	1.0	0.313437	0.313437	2.098659	1.482531e-01
origin_Japan:weight	1.0	0.043767	0.043767	0.293050	5.885897e-01
Residual	380.0	56.753344	0.149351	NaN	NaN

- From the above analysis, we can see that there is no significant interaction between origin and weight.
- $\bullet\,$ So we can omit them from the model.

```
formula = " + ".join(cols)
formula += " + " + "oilshock: horsepower"
formula += " + " + "origin_Europe: horsepower"
formula += " + " + "origin_Japan: horsepower"
formula += " + " + "oilshock: weight"
formula += " + " + "oilshock: horsepower"
results = perform_analysis("mpg", formula, Auto_os)
origin_interactions = results
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.854
Model:	OLS	Adj. R-squared:	0.851
Method:	Least Squares	F-statistic:	248.9
Date:	Sat, 28 Sep 2024	<pre>Prob (F-statistic):</pre>	8.18e-154
Time:	04:09:24	Log-Likelihood:	-178.67
No. Observations:	392	AIC:	377.3
Df Residuals:	382	BIC:	417.1
Df Model:	9		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.4296	0.034	-12.650	0.000	-0.496	-0.363
oilshock[T.1]	0.5693	0.043	13.280	0.000	0.485	0.654
horsepower	-0.0797	0.047	-1.689	0.092	-0.172	0.013
oilshock[T.1]:horsepower	-0.1958	0.092	-2.133	0.034	-0.376	-0.015
weight	-0.4571	0.051	-8.947	0.000	-0.558	-0.357
oilshock[T.1]:weight	-0.2019	0.084	-2.408	0.016	-0.367	-0.037
origin_Europe	0.0044	0.080	0.055	0.956	-0.153	0.162
origin_Japan	0.0750	0.084	0.892	0.373	-0.090	0.240
origin_Europe:horsepower	-0.4667	0.096	-4.884	0.000	-0.655	-0.279
origin_Japan:horsepower	-0.3682	0.101	-3.637	0.000	-0.567	-0.169
Omnibus:	20.114	 Durbin-W	atson:	=======	1.577	

 Omnibus:
 20.114
 Durbin-watson:
 1...

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 31.613

 Skew:
 0.366
 Prob(JB):
 1.37e-07

 Kurtosis:
 4.183
 Cond. No.
 10.2

Notes:

```
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
                            df
                                    sum_sq
                                               mean_sq
                                                                  F
                                                                            PR(>F)
oilshock
                           1.0 106.483141 106.483141
                                                         712.242504
                                                                      2.550768e-89
                           1.0 165.048555 165.048555 1103.973788 9.879451e-115
horsepower
oilshock:horsepower
                           1.0
                                 19.155472
                                            19.155472
                                                        128.126771
                                                                      8.220841e-26
                                                                      1.270254e-41
weight
                           1.0
                                 35.071635
                                            35.071635
                                                         234.586518
oilshock:weight
                           1.0
                                  0.468549
                                            0.468549
                                                           3.134021
                                                                      7.747196e-02
                                                           6.501479
origin_Europe
                           1.0
                                  0.971997
                                              0.971997
                                                                      1.116822e-02
origin_Japan
                           1.0
                                  2.687942
                                              2.687942
                                                          17.979058
                                                                      2.804561e-05
origin_Europe:horsepower
                           1.0
                                  3.024522
                                              3.024522
                                                          20.230368
                                                                      9.121050e-06
                                              1.977640
origin_Japan:horsepower
                           1.0
                                  1.977640
                                                          13.228002
                                                                      3.136339e-04
Residual
                         382.0
                                 57.110548
                                              0.149504
                                                                NaN
                                                                               NaN
```

• From the above analysis, it is evident that with the interaction between origin and horsepower, the interaction between oilshock and weight and horsepower is insignificant. We can drop these from the model as well.

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.852
Model:	OLS	Adj. R-squared:	0.849
Method:	Least Squares	F-statistic:	275.8
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	8.41e-154
Time:	04:09:24	Log-Likelihood:	-181.63
No. Observations:	392	AIC:	381.3
Df Residuals:	383	BIC:	417.0
Df Model:	8		
Covariance Type:	nonrobust		

=======================================	========	=======	========			=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.4267	0.034	-12.495	0.000	-0.494	-0.360
oilshock[T.1]	0.5628	0.043	13.073	0.000	0.478	0.647
horsepower	-0.0265	0.042	-0.633	0.527	-0.109	0.056
oilshock[T.1]:horsepower	-0.3804	0.051	-7.497	0.000	-0.480	-0.281
weight	-0.5231	0.043	-12.051	0.000	-0.608	-0.438
origin_Europe	0.0041	0.081	0.051	0.959	-0.155	0.163
origin_Japan	0.0877	0.084	1.039	0.299	-0.078	0.254
origin_Europe:horsepower	-0.4423	0.096	-4.626	0.000	-0.630	-0.254
origin_Japan:horsepower	-0.3589	0.102	-3.526	0.000	-0.559	-0.159
	=======	=======	=======		======	
Omnibus:	19.159	Durbin-W	atson:		1.576	
Prob(Omnibus):	0.000	Jarque-B	era (JB):		29.046	
Skew:	0.362	Prob(JB)	:	4	.93e-07	
Kurtosis:	4.119	Cond. No			9.30	
=======================================	========	=======	========	========	======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)

			_ 1	1			
0	ilshock	1.0	106.483141	106.483141	703.425918	9.826044e-89	
h	orsepower	1.0	165.048555	165.048555	1090.308104	4.259700e-114	
0	ilshock:horsepower	1.0	19.155472	19.155472	126.540737	1.468876e-25	
W	eight	1.0	35.071635	35.071635	231.682658	2.992243e-41	
0	rigin_Europe	1.0	0.792887	0.792887	5.237801	2.264506e-02	
0	rigin_Japan	1.0	2.840217	2.840217	18.762427	1.893486e-05	
0	rigin_Europe:horsepower	1.0	2.748574	2.748574	18.157033	2.563625e-05	
0	rigin_Japan:horsepower	1.0	1.881783	1.881783	12.431031	4.733982e-04	
R	esidual	383.0	57.977737	0.151378	NaN	NaN	

display_residuals_plot(results)

	df _resid	ssr	df_diff	ss_diff	F	Pr(>F)
0	386.0	76.594741	0.0	NaN	NaN	NaN
1	385.0	59.887237	1.0	16.707504	110.369506	7.218441e-23
2	383.0	54.336579	2.0	5.550658	18.333780	2.489897e-08
3	383.0	57.977737	-0.0	-3.641158	inf	NaN

pd.DataFrame(models)

```
name model

0 simple_model mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan

1 numeric_interactions mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower + weight + oilshock + origin_Europe + origin_Japan + oilshock origin_interactions mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + oilshock origin_supplementations mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + origin_supplementations mpg ~ horsepower + weight + oilshock + orig
```

(f) Try a few different transformations of the variables, such as log(X), \sqrt{X} , X2. Comment on your findings.

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.848
Model:	OLS	Adj. R-squared:	0.846
Method:	Least Squares	F-statistic:	306.8
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	5.75e-153
Time:	04:09:25	Log-Likelihood:	-186.58
No. Observations:	392	AIC:	389.2
Df Residuals:	384	BIC:	420.9
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std er	r t	P> t	[0.025	0.975]
Intercept	-0.6020	0.04	 0 -15.072	0.000	 -0.681	-0.524
oilshock[T.1]	0.6580	0.04	3 15.334	0.000	0.574	0.742
horsepower	-0.3798	0.05	4 -7.058	0.000	-0.486	-0.274
weight	-0.5069	0.05	0 -10.044	0.000	-0.606	-0.408
origin_Europe	0.1436	0.06	2 2.324	0.021	0.022	0.265
origin_Japan	0.1959	0.06	3.047	0.002	0.069	0.322
<pre>I(horsepower ** 2)</pre>	0.0976	0.02	1 4.667	0.000	0.056	0.139
<pre>I(weight ** 2)</pre>	0.1413	0.02	5.382	0.000	0.090	0.193
	=======	26.672	======== Durbin-Watso	======= on:	 1.	=== 394
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	46.	435
Skew:		0.436	Prob(JB):		8.26e	-11
Kurtosis:		4.443	Cond. No.		1	0.5

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	687.677177	1.332036e-87
horsepower	1.0	165.048555	165.048555	1065.897602	7.775452e-113
weight	1.0	39.079210	39.079210	252.376864	4.864770e-44
origin_Europe	1.0	0.574647	0.574647	3.711118	5.478894e-02
origin_Japan	1.0	4.219706	4.219706	27.251220	2.932534e-07
<pre>I(horsepower ** 2)</pre>	1.0	12.648520	12.648520	81.685220	7.946432e-18
I(weight ** 2)	1.0	4.485871	4.485871	28.970134	1.281966e-07
Residual	384.0	59.460351	0.154845	NaN	NaN

display_residuals_plot(results)

anova_lm(simple_model, squared_transformations)

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)
0	386.0	76.594741	0.0	NaN	NaN	NaN
1	384.0	59.460351	2.0	17.134391	55.327677	7.681995e-22

pd.DataFrame(models)

- Since we've standardized the variables, we cannot run log or square root transformations on the negative valued columns.
- We can reload the data and run the log and sqrt transformations on the original unstandardized data.

```
Auto = load_data("Auto")
Auto = Auto.sort_values(by=["year"], ascending=True)
Auto.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'displacement', 'year', 'displacement', 'year', 'displacement', 'year', 'year'

```
print("Minimums:")
print(Auto.min())
print("Maximums:")
print(Auto.max())
```

Minimums:

cylinders

mpg	9.0
cylinders	3.0
displacement	68.0
horsepower	46.0
weight	1613.0
acceleration	8.0
year	70.0
origin	1.0
dtype: float64	
Maximums:	
mpg	46.6

8.0

```
displacement 455.0 horsepower 230.0 weight 5140.0 acceleration 24.8 year 82.0 origin 3.0 dtype: float64
```

- From the above, we can see that the values for displacement, horsepower and weight are quite large.
- Hence, we log or square root transform only these variables.

Now let's categorize the variables

Log Transformed Model

```
Auto_log = Auto.copy(deep=True)
```

```
Auto_log["log_displacement"] = np.log(Auto_log["displacement"])
Auto_log["log_horsepower"] = np.log(Auto_log["horsepower"])
Auto_log["log_weight"] = np.log(Auto_log["weight"])
Auto_log = Auto_log.drop(
    columns=[
        "displacement",
        "weight",
        "horsepower",
        "year",
    ]
)
Auto_log.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'origin', 'oilshock', 'log_displacement', 'log_ho

Auto_log.corr(numeric_only=True)

	mpg	cylinders	acceleration	oilshock	$\log_{-displacement}$	$\log_horsepower$	log
mpg	1.000000	-0.777618	0.423329	0.521192	-0.828453	-0.817517	-0.
cylinders	-0.777618	1.000000	-0.504683	-0.273703	0.942814	0.843204	0.8
acceleration	0.423329	-0.504683	1.000000	0.195892	-0.497107	-0.698328	-0.
oilshock	0.521192	-0.273703	0.195892	1.000000	-0.268161	-0.299037	-0.
$log_displacement$	-0.828453	0.942814	-0.497107	-0.268161	1.000000	0.872149	0.9
$log_horsepower$	-0.817517	0.843204	-0.698328	-0.299037	0.872149	1.000000	0.8
\log _weight	-0.844194	0.884303	-0.401563	-0.250520	0.942850	0.873956	1.0

```
Auto_log = pd.get_dummies(
    Auto_log, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_log.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'oilshock', 'log_displacement', 'log_horsepower',

```
cols = list(Auto_log.columns)
cols.remove("mpg")
```

```
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_log)
vifdf
```

	VIF
Feature	
cylinders	9.828626
acceleration	3.304749
oilshock	1.147770
$\log_displacement$	25.969595
$\log_horsepower$	11.414709
\log _weight	16.146573
origin_Europe	1.876698
$origin_Japan$	2.097688

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is log_displacement with a VIF of 25.96959512578754 Hence, we drop log_displacement from the model to be fitted.

('log_displacement', 25.96959512578754)

```
cols.remove("log_displacement")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_log)
vifdf
```

VIF
5.535070
3.179336
1.142791
11.411764
10.608718
1.451961
1.652749

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is log_horsepower with a VIF of 11.411764499222897 Hence, we drop log_horsepower from the model to be fitted.

('log_horsepower', 11.411764499222897)

```
cols.remove("log_horsepower")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_log)
vifdf
```

	VIF
Feature	
cylinders	5.517868

	VIF
Feature	
acceleration	1.377517
oilshock	1.118666
\log _weight	5.014899
origin_Europe	1.451265
$origin_Japan$	1.608682

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

```
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_log)
```

OLS Regression Results

Dep. Variable:		mpg	R-squared			0.823	
Model:	_	OLS	Adj. R-so	-		0.821	
Method:		east Squares	F-statist			299.3	
Date:	Sat,	-	Prob (F-s		1	.36e-141	
Time:		04:09:28	Log-Like	Lihood:		-1021.3	
No. Observation	ns:	392	AIC:			2057.	
Df Residuals:		385	BIC:			2084.	
Df Model:		6					
Covariance Type	e:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	168.2416	9.696	17.351	0.000	149.177	187.306	
cylinders	0.0129	0.230	0.056	0.955	-0.440	0.465	
acceleration	0.1805	0.071	2.538	0.012	0.041	0.320	
oilshock	5.1312	0.355	14.470	0.000	4.434	5.828	
log_weight	-18.9156	1.331	-14.211	0.000	-21.533	-16.299	
origin_Europe	1.3692	0.531	2.578	0.010	0.325	2.413	
origin_Japan	1.5602	0.528	2.956	0.003	0.522	2.598	
Omnibus:		30.158	Durbin-Wa	atson:		1.253	
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Be	era (JB):		51.811	

 Skew:
 0.493
 Prob(JB):
 5.62e-12

 Kurtosis:
 4.484
 Cond. No.
 1.08e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.08e+03. This might indicate that there are strong multicollinearity or other numerical problems.

	df	sum_sq	mean_sq	F	PR(>F)
cylinders	1.0	14403.083079	14403.083079	1318.559127	2.133814e-126
acceleration	1.0	30.471304	30.471304	2.789557	9.569322e-02
oilshock	1.0	2422.051542	2422.051542	221.731566	6.308582e-40
log_weight	1.0	2639.878573	2639.878573	241.672978	1.215817e-42
origin_Europe	1.0	22.569818	22.569818	2.066199	1.514086e-01
origin_Japan	1.0	95.449335	95.449335	8.738101	3.308129e-03
Residual	385.0	4205.489819	10.923350	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.9554479. Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_log)
```

OLS Regression Results

		========					
Dep. Variable:		mpg	R-squa	red:			0.823
Model:		OLS	Adj. R	-squared:			0.821
Method:	Le	ast Squares	F-stat	istic:			360.0
Date:	Sat,	28 Sep 2024	Prob (F-statist	ic):	6	.83e-143
Time:		04:09:28	Log-Li	kelihood:			-1021.3
No. Observations:		392	AIC:				2055.
Df Residuals:		386	BIC:				2078.
Df Model:		5					
Covariance Type:		nonrobust					
		========			=====		
	coef	std err	t	P>	t	[0.025	0.975]

Intercept	167.8689	7.032	23.870	0.000	154.042	181.696
acceleration	0.1792	0.067	2.673	0.008	0.047	0.311
oilshock	5.1289	0.352	14.574	0.000	4.437	5.821
log_weight	-18.8571	0.820	-22.992	0.000	-20.470	-17.245
origin_Europe	1.3628	0.518	2.631	0.009	0.344	2.381
origin_Japan	1.5576	0.525	2.967	0.003	0.525	2.590
==========		========	=======			
Omnibus:		30.308	Durbin-Wa	atson:		1.253
<pre>Prob(Omnibus):</pre>		0.000	Jarque-B	era (JB):		52.282
Skew:		0.493	Prob(JB)	:	4	.44e-12
Kurtosis:		4.492	Cond. No			751.
==========		========	========			======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq F		PR(>F)
acceleration	1.0	4268.531557	4268.531557	391.783092	1.076057e-60
oilshock	1.0	4757.627552	4757.627552	436.674301	2.076230e-65
log_weight	1.0	10466.602734	10466.602734	960.667136	8.818191e-107
origin_Europe	1.0	24.823504	24.823504	2.278402	1.320051e-01
origin_Japan	1.0	95.884166	95.884166	8.800637	3.198611e-03
Residual	386.0	4205.523957	10.895140	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

No variables are statistically insignificant.

The model mpg ~ acceleration + oilshock + log_weight + origin_Europe + origin_Japan cannot be

```
pd.DataFrame(models)
```

	name	model
0	simple_model	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan$
1	$numeric_interactions$	mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + hor
2	$oilshock_interactions$	mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + hor
3	$origin_interactions$	mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + oils
4	$squared_transformation$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + I(harmonic formula for the content of t$
5	$log_transformation$	$\label{eq:mpg-acceleration} \operatorname{mpg} \sim \operatorname{acceleration} + \operatorname{oilshock} + \operatorname{log_weight} + \operatorname{origin_Europe} + \operatorname{origin_Japan}$

Square Root Transformed Model

```
Auto_sqrt = Auto.copy(deep=True)

Auto_sqrt["sqrt_displacement"] = np.sqrt(Auto_sqrt["displacement"])
Auto_sqrt["sqrt_horsepower"] = np.sqrt(Auto_sqrt["horsepower"])
Auto_sqrt["sqrt_weight"] = np.sqrt(Auto_sqrt["weight"])
Auto_sqrt = Auto_sqrt.drop(
    columns=[
        "displacement",
        "weight",
        "horsepower",
        "year",
    ]
)
Auto_sqrt.columns
```

```
Index(['mpg', 'cylinders', 'acceleration', 'origin', 'oilshock', 'sqrt_displacement', 'sqrt_l
```

```
Auto_sqrt.corr(numeric_only=True)
```

	mpg	cylinders	acceleration	oilshock	$sqrt_displacement$	$sqrt_horsepower$
mpg	1.000000	-0.777618	0.423329	0.521192	-0.821331	-0.802311
cylinders	-0.777618	1.000000	-0.504683	-0.273703	0.953208	0.849266
acceleration	0.423329	-0.504683	1.000000	0.195892	-0.521812	-0.696702
oilshock	0.521192	-0.273703	0.195892	1.000000	-0.284587	-0.306247
sqrt_displacement	-0.821331	0.953208	-0.521812	-0.284587	1.000000	0.886470
sqrt_horsepower	-0.802311	0.849266	-0.696702	-0.306247	0.886470	1.000000

	mpg	cylinders	acceleration	oilshock	$sqrt_displacement$	sqrt_horsepower
sqrt_weight	-0.840095	0.893465	-0.409829	-0.260664	0.939868	0.872045

```
Auto_sqrt = pd.get_dummies(
        Auto_sqrt, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_sqrt.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'oilshock', 'sqrt_displacement', 'sqrt_horsepower

```
cols = list(Auto_sqrt.columns)
cols.remove("mpg")
```

```
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_sqrt)
vifdf
```

	VIF
Feature	
cylinders	11.465746
acceleration	3.010771
oilshock	1.151324
sqrt_displacement	27.042946
sqrt_horsepower	10.615281
$sqrt_weight$	13.450552
origin_Europe	1.774827
origin_Japan	1.944729

```
identify_highest_VIF_feature(vifdf)
```

We find the highest VIF in this model is sqrt_displacement with a VIF of 27.042946454149405 Hence, we drop sqrt_displacement from the model to be fitted.

```
('sqrt_displacement', 27.042946454149405)
```

```
cols.remove("sqrt_displacement")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_sqrt)
vifdf
```

	VIF
Feature	
cylinders	5.974510
acceleration	2.934605
oilshock	1.141428
sqrt_horsepower	10.446261
$sqrt_weight$	9.963350
origin_Europe	1.450840
$origin_Japan$	1.623907

```
identify_highest_VIF_feature(vifdf)
```

We find the highest VIF in this model is sqrt_horsepower with a VIF of 10.446261176837464 Hence, we drop sqrt_horsepower from the model to be fitted.

('sqrt_horsepower', 10.446261176837464)

```
cols.remove("sqrt_horsepower")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_sqrt)
vifdf
```

	VIF
Feature	
cylinders	5.907717
acceleration	1.377206
oilshock	1.119726
$sqrt_weight$	5.331435
origin_Europe	1.446456
$origin_Japan$	1.581460

```
identify_highest_VIF_feature(vifdf)
```

No variables are significantly collinear.

```
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_sqrt)
```

OLS Regression Results

===========			
Dep. Variable:	mpg	R-squared:	0.814
Model:	OLS	Adj. R-squared:	0.811
Method:	Least Squares	F-statistic:	281.0
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	2.76e-137
Time:	04:09:30	Log-Likelihood:	-1031.4
No. Observations:	392	AIC:	2077.
Df Residuals:	385	BIC:	2105.

Df Model: 6
Covariance Type: nonrobust

==========	========		:=======			=========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	54.3622	2.396	22.687	0.000	49.651	59.073
cylinders	0.0148	0.244	0.061	0.952	-0.466	0.495
acceleration	0.1748	0.073	2.395	0.017	0.031	0.318
oilshock	5.0506	0.364	13.873	0.000	4.335	5.766
sqrt_weight	-0.6785	0.052	-13.130	0.000	-0.780	-0.577
origin_Europe	1.5511	0.544	2.851	0.005	0.481	2.621
origin_Japan	1.9033	0.537	3.544	0.000	0.847	2.959
 Omnibus:	=======	 25.773	 Durbin-V	======================================	========	1.269
Prob(Omnibus):		0.000	Jarque-H	Bera (JB):		41.514
Skew:		0.449	Prob(JB)			9.67e-10

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

803.

	df	sum_sq	mean_sq	F	PR(>F)
cylinders	1.0	14403.083079	14403.083079	1252.209748	4.496819e-123
acceleration	1.0	30.471304	30.471304	2.649187	1.044209e-01
oilshock	1.0	2422.051542	2422.051542	210.574120	2.284075e-38
sqrt_weight	1.0	2365.801178	2365.801178	205.683691	1.125346e-37
origin_Europe	1.0	24.780703	24.780703	2.154444	1.429743e-01
origin_Japan	1.0	144.484455	144.484455	12.561536	4.421781e-04

4.317

Residual 385.0 4428.321210 11.502133 NaN NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.951625. Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_sqrt)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.814
Model:	OLS	Adj. R-squared:	0.812
Method:	Least Squares	F-statistic:	338.0
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	1.43e-138
Time:	04:09:30	Log-Likelihood:	-1031.4
No. Observations:	392	AIC:	2075.
Df Residuals:	386	BIC:	2099.

Df Model: 5
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	54.3324	2.342	23.198	0.000	49.728	58.937
acceleration	0.1733	0.069	2.512	0.012	0.038	0.309
oilshock	5.0486	0.362	13.946	0.000	4.337	5.760
sqrt_weight	-0.6760	0.031	-21.968	0.000	-0.737	-0.616
origin_Europe	1.5438	0.530	2.913	0.004	0.502	2.586
origin_Japan	1.8999	0.534	3.561	0.000	0.851	2.949
===========	========	========	========		========	=====
Omnibus:		25.925	Durbin-Wa	atson:		1.269
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Be	era (JB):		41.952
Skew:		0.450	Prob(JB):		7.	77e-10
Kurtosis:		4.326	Cond. No.			783.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
df
                                                                  PR(>F)
                          sum_sq
                                       mean_sq
acceleration
                1.0
                      4268.531557
                                   4268.531557 372.068179
                                                            1.546709e-58
                                   4757.627552 414.700418
oilshock
                1.0 4757.627552
                                                            3.906846e-63
sqrt_weight
                1.0 10191.062423 10191.062423 888.307839 3.798699e-102
origin_Europe
                        27.910362
                                     27.910362
                                                            1.196386e-01
                1.0
                                                  2.432817
origin_Japan
                1.0
                       145.497978
                                    145.497978
                                                 12.682387
                                                            4.152294e-04
Residual
              386.0 4428.363596
                                    11.472445
                                                       {\tt NaN}
                                                                     {\tt NaN}
```

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.012. Using the backward methodology, we suggest dropping acceleration from the new model

```
cols.remove("acceleration")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_sqrt)
```

OLS Regression Results

=======================================			==========
Dep. Variable:	mpg	R-squared:	0.811
Model:	OLS	Adj. R-squared:	0.809
Method:	Least Squares	F-statistic:	415.3
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	1.50e-138
Time:	04:09:31	Log-Likelihood:	-1034.6
No. Observations:	392	AIC:	2079.
Df Residuals:	387	BIC:	2099.
50 11 1 7	4		

Df Model: 4
Covariance Type: nonrobust

··							
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	58.2668	1.753	33.230	0.000	54.819	61.714	
oilshock	5.1556	0.362	14.244	0.000	4.444	5.867	
sqrt_weight	-0.6999	0.029	-23.759	0.000	-0.758	-0.642	
origin_Europe	1.6530	0.532	3.108	0.002	0.607	2.699	
origin_Japan	1.8263	0.536	3.405	0.001	0.772	2.881	
===========	=======	=======	========			=====	

 Omnibus:
 31.883
 Durbin-Watson:
 1.241

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 60.472

 Skew:
 0.483
 Prob(JB):
 7.39e-14

Kurtosis: 4.664 Cond. No. 574.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
df
                                      mean_sq
                                                        F
                                                                  PR(>F)
                          sum_sq
               1.0
oilshock
                     6470.207217
                                  6470.207217
                                                556.341155 7.004177e-77
               1.0 12674.256790 12674.256790 1089.796728 1.354903e-114
sqrt_weight
origin_Europe
               1.0
                      38.907051
                                   38.907051
                                                 3.345425 6.816142e-02
origin_Japan
                      134.840521
                                   134.840521
                                                 11.594270 7.307851e-04
               1.0
Residual
              387.0 4500.781890
                                   11.629927
                                                                    {\tt NaN}
                                                      {\tt NaN}
```

pd.DataFrame(models)

_		
	name	model
0	simple_model	mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan
1	$numeric_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
2	$oilshock_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
3	$origin_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + oilshock$
4	$squared_transformation$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower + weight + oilshock + origin_Europe + origin_Iapan + I(horsepower + weight + oilshock + origin_Europe + origin_Iapan + I(horsepower + weight + oilshock + origin_Europe + origin_Iapan + I(horsepower + weight + oilshock + origin_Europe + origin_Iapan + I(horsepower + weight + oilshock + origin_Europe + origin_Iapan + I(horsepower + origin_Iapan + Iapan + Ia$
5	$\log_{transformation}$	$mpg \sim acceleration + oilshock + log_weight + origin_Europe + origin_Japan$
6	$sqrt_transformation$	$mpg \sim oilshock + sqrt_weight + origin_Europe + origin_Japan$

allDone()

<IPython.lib.display.Audio object>