CESAR

(afinal as instruções)

Conjunto de Instruções

- 10 grupos de instruções
 - identificação pelos 4 bits mais significativos
 - tamanho
 - um byte
 - 2 bytes
- semelhante ao PDP-11

K. Thompson e D. Ritchie com um PDP-11

Identificação da instrução

Código	Tipo
0000	instrução de NOP
0001 e 0010	instruções sobre os códigos de condição
0011	instruções de desvio condicional
0100	instrução de desvio incondicional (JMP)
0101	instrução de controle de laço (SOB)
0110	instrução de desvio para subrotina (JSR)
0111	instrução de retorno de subrotina (RTS)
1000	instruções de um operando
1001 a 1110	instruções de dois operandos
1111	instrução de parada (HLT)

Instruções de 1 byte

Código	Tipo
0000	instrução de NOP
0001 e 0010	instruções sobre os códigos de condição
0011	instruções de desvio condicional
0100	instrução de desvio incondicional (JMP)
0101	instrução de controle de laço (SOB)
0110	instrução de desvio para subrotina (JSR)
0111	instrução de retorno de subrotina (RTS)
1000	instruções de um operando
1001 a 1110	instruções de dois operandos
1111	instrução de parada (HLT)

Instruções de 1 byte

Desvios

Código	Tipo
0000	instrução de NOP
0001 e 0010	instruções sobre os códigos de condição
0011	instruções de desvio condicional
0100	instrução de desvio incondicional (JMP)
0101	instrução de controle de laço (SOB)
0110	instrução de desvio para subrotina (JSR)
0111	instrução de retorno de subrotina (RTS)
1000	instruções de um operando
1001 a 1110	instruções de dois operandos
1111	instrução de parada (HLT)

Condições para desvio mnemônico BR (always) Condição de desvio sempre verdadeira 0001 BNE (Not Equal) z = 0 z = 1 0011 BPL (PLus) 0100 BMI (Minus) n = 1 0101 BVC (oVerflow Clear) v = 0 0110 BVS (oVerflow Set) v = 1 1000 BCS (Carry Set) c = 1 BGE (Greater or Equal) BLT (Less Than) 1001 n = vBGT (GreaTer) n = v and z = 0 BLE (Less or Equal) n < > v or z = 1 1101 BHI (Higher) c = 0 and z = 0 BLS (Lower or Same) 1110 c = 1 or z = 1

cccc	mnemônico	Condição de desvio			
0000	BR (always)	sempre verdadeira			
0001	BNE (Not Equal)	z = 0			
0010	BEQ (EQual)	z = 1			
0011	BPL (PLus)	n = 0			
0100	BMI (MInus)	n = 1			
0101	BVC (oVerflow Clear)	v = 0			
0110	BVS (oVerflow Set)	v = 1			
0111	BCC (Carry Clear)	c = 0			
1000	BCS (Carry Set)	c = 1			
0111	BCC (Carry Clear) BCS (Carry Set)	c = 0			

cccc	mnemônico	Condição de desvio
1001	BGE (Greater or Equal)	n = v
1010	BLT (Less Than)	n < > v
1011	BGT (GreaTer)	n = v and $z = 0$
1100	BLE (Less or Equal)	n < > v or z = 1
	complemento de	ros em representação em e 2

6-2 2-(-6) -2-(-6) 2-6 0110 0010 1110 0010 0010 1010 1010 0110 0110 0010 1110 0010 +1110 +0110 +0110 +1010 0100 1000 0100 1100 c=1 c=0 c=1 c=0	-6 - (-2)
0010 1010 1010 0110 0110 0010 1110 0010 +1110 +0110 +0110 +1010 0100 1000 0100 1100	
0110 0010 1110 0010 +1110 +0110 +0110 +1010 0100 1000 0100 1100	1010 1110
	1010 +0010
c = 1 $c = 0$ $c = 1$ $c = 0$	1100
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	c = 0 n = 1 v = 0
exemplo	

• operação anterior: (a - b)• cc disponíveis: n z v c (após operação) • c não serve (complemento de dois) • n=0 e v=0 \rightarrow a \geq b • n=0 e v=1 \rightarrow a < b • n=1 e v=0 \rightarrow a \leq b • n=1 e v=0 \rightarrow a \leq b

Instruções aritméticas Código 0000 instrução de NOP 0001 e 0010 instruções sobre os códigos de condição instruções de desvio condicional 0100 instrução de desvio incondicional (JMP) instrução de controle de laço (SOB) 0101 0110 instrução de desvio para subrotina (JSR) 0111 instrução de retorno de subrotina (RTS) 1000 1001 a 1110 instruções de dois operandos 1111 instrução de parada (HLT)

Aritméticas com um operando significado N Z С instrução cccc 0 NOT 0011 DEC t t not(t) t op ← op - 1 NEG 0100 op ← - op t t not(t) Obs: após uma subtração, C = 1 indica BORROW! not(t) – a ULA efetua operação de subtração pela soma do complemento de dois do subtraendo: neste caso o borrow e o inverso do carry

сссс	instrução	significado	N	z	С	ν
0000	CLR	op ← 0	t	t	0	0
0001	NOT	op ← NOT op	t	t	1	0
0010	INC	op ← op + 1	t	t	t	t
0011	DEC	op ← op - 1	t	t	not(t)	t
0100	NEG	op ← - op	t	t	not(t)	t
0101	TST	op ← op	t	t	0	0
	(o ciclo de e	N e Z sem armazenar scrita não é realizado, códigos de condição N	o operand	_	io se alte	ra,

Exemplos de somas - codificar

```
ADD R2,R1 R1 = R1 + R2

ADD 2000,R1 R1 = R1 + MEM(2000)

ADD R2,3000 MEM(3000) = MEM(3000) + R2

ADD 2000,3000 MEM(3000) = MEM(3000) + MEM(2000)

ADD #5,R1 R1 = R1 + 5

ADD #300,1300 MEM(1300) = MEM(1300) + 300
```

Exemplos de somas - codificar

- R1 = R1 + Topo da pilha, sem retirar da pilha ADD (R6),R1
- R1 = R1 + Topo da pilha, retirando da pilha ADD (R6)+,R1
- Somar as duas palavras do topo da pilha, e devolver o resultado para o topo da pilha

ADD (R6)+,(R6)

32