$a\geq 1$ とする.xy 平面において,不等式 $0\leq x\leq \pi/2$, $1\leq y\leq a\sin x$ によって定められる領域の面積を S_1 ,不等式 $0\leq x\leq \pi/2$, $0\leq y\leq a\sin x$, $0\leq y\leq 1$ によって定められる領域の面積を S_2 とする. S_2-S_1 を最大にするような a の値と, S_2-S_1 の最大値を求めよ.

[解] グラフの概形は下図である.

 $y = a \sin x$ と y = 1 の交点の x 座標 t として

$$a\sin t = 1$$
 $0 < t \le \frac{\pi}{2}$ $\cdots \textcircled{1}$

である.以下 $\cos t = c$, $\sin t = s$ とおく. まず,

$$S = \int_0^{\pi/2} a \sin x \, dx = a$$

とおく. 題意から

$$S_1 = \int_t^{\pi/2} (a\sin x - 1) \, dx$$

である .
$$f(a) = S_2 - S_1$$
 は

$$f(a) = S - 2S_1$$

$$= a - 2ac + \pi - 2t$$

$$= \frac{1}{s} - \frac{2c}{s} - 2t + \pi \qquad (\because \mathbb{1})$$

である.これをg(t)とおく.

$$g'(t) = \frac{-c}{s^2} + \frac{2}{s^2} - 2$$
$$= \frac{2-c}{s^2} - 2$$
$$= \frac{c(2c-1)}{1-c^2}$$

ゆえ,下表を得る.

t	0		$\pi/3$		$\pi/2$
f'		+	0	_	0
$\int f$		7	$\pi/3$	7	

従って,求める最大値は $t=\pi/3$ の時の $\pi/3$ である.このとき(1)から

$$a = \frac{2\sqrt{3}}{3}$$

である...(答)