Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 4

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- \bullet Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

		Parrett)
1.	$2(2+\sqrt{3}) = 4 + 2\sqrt{3}$ $4 + 2\sqrt{3} - 2\sqrt{3} = 4$	2p
	$4 + 2\sqrt{3} - 2\sqrt{3} = 4$	3 p
2.	f(4) = 8 $f(-4) = 0$	2p
	f(-4) = 0	2p
	f(4) + f(-4) = 8	1p
3.	$7^{2x} = 7^2$	2p
	x=1	3p
4.	$\frac{10}{100} \cdot 1000 = 100$	2p 3p
	Prețul după scumpire este 1100 de lei	
5.	$AB = \sqrt{(4-4)^2 + (1-3)^2}$	3p
	AB = 2	2p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$	2 p
	$\sin 135^\circ = \frac{\sqrt{2}}{2}$	2 p
	$\lfloor \frac{2}{\sqrt{2}} \rfloor$	1n
	$\sin 45^\circ - \sin 135^\circ = 0$	1p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} = -1 - 4 =$	3p
	=-5	2 p
b)	Pentru $m = -2$ avem $A + B = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -2 & -1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$A \cdot B = \begin{pmatrix} 2m - 1 & m + 2 \\ m + 2 & 3m + 1 \end{pmatrix}$	3p
	$ \begin{pmatrix} 2m-1 & m+2 \\ m+2 & 3m+1 \end{pmatrix} = \begin{pmatrix} 9 & 7 \\ 7 & 16 \end{pmatrix} \Leftrightarrow m=5 $	2p
2.a)	$f(-1) = (-1)^3 + 2 \cdot (-1)^2 + (-1) =$	2p
	=-1+2-1=0	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

1

b)	Câtul este <i>X</i> +1 Restul este 0	2p 3p
	$x_1 + x_2 + x_3 = -2$, $x_1 x_2 + x_2 x_3 + x_1 x_3 = 1$	2p
	$x_1^2 + x_2^2 + x_3^2 = (-2)^2 - 2 \cdot 1 = 2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

2022	(30 de p	
1.a)	$f'(x) = x' + 10' - \left(\frac{11}{x}\right)' = 1 - 11 \cdot \left(-\frac{1}{x^2}\right) =$	3р
	$=1+\frac{11}{x^2}=\frac{x^2+11}{x^2}$, pentru orice $x \in (0,+\infty)$	2p
b)	$x \in (0, +\infty) \Rightarrow x^2 + 11 > 0$	3 p
	$f'(x) = \frac{x^2 + 11}{x^2} \Rightarrow f'(x) > 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este crescătoare pe $(0, +\infty)$	2p
c)	$f''(x) = -\frac{22}{x^3}$, pentru orice $x \in (0, +\infty)$	2 p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este concavă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{1}^{2} f'(x) dx = f(x) \Big _{1}^{2} =$	3p
	= f(2) - f(1) = 3	2 p
b)	$\int_{1}^{2} \frac{f(x)}{x} dx = \int_{1}^{2} \left(x + \frac{9}{x}\right) dx =$	2p
	$= \left(\frac{x^2}{2} + 9\ln x\right) \Big _{1}^{2} = \frac{3}{2} + 9\ln 2$	3p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} (x^{2} + 9 - x^{2})^{2} dx =$	2p
	$=\pi \cdot 81x \Big _{0}^{1} = 81\pi$	3p