Lecture Comprehension, Twists (Chapter 3.3.2, Part 1 of 2)

TOTAL POINTS 3

1. Any instantaneous spatial velocity of a rigid body is equivalent to the motion of the body if it were simultaneously translating along, and rotating about, a **screw** axis $\mathcal{S} = (\mathcal{S}_{\omega}, \mathcal{S}_{v}) \in \mathbb{R}^{6}$. The screw axis is a normalized representation of the direction of motion, and $\dot{\theta}$ represents how fast the body moves in that direction of motion, so that the **twist** is given by $\mathcal{V} = \mathcal{S}\dot{\theta} \in \mathbb{R}^{6}$. The normalized screw axis for full spatial motions is analogous to the normalized (unit) angular velocity axis for pure rotations.

1/1 point

The pitch h of the screw axis is defined as the ratio of the linear speed over the angular speed. Which of the following is true? Select all that apply.

If the pitch h is infinite, then $S_{\omega}=0$ and $\|S_v\|=1$.

✓ Correct

If the pitch is infinite there is no angular component to the screw axis, so S_{ω} must be zero and θ represents the linear speed along the axis, so $||S_v||$ must be 1.

- $\|$ If the pitch h is infinite, then $\|S_{\omega}\| = 1$ and S_v is arbitrary.
- If the pitch h is finite, then $S_{\omega}=0$ and $\|S_v\|=1$.
- If the pitch h is finite, then $\|S_{\omega}\| = 1$ and S_v is arbitrary.

✓ Correct

Since the pitch is finite, there is a nonzero angular component S_{ω} to the screw axis. In this case, the speed $\dot{\theta}$ along the screw axis is simply the rotation rate. There are no constraints as to what S_{v} could be.

2. You are sitting on a horizontal rotating turntable, like a merry-go-round at an amusement park. It rotates counterclockwise when viewed from above. Your body frame $\{b\}$ has an $\hat{\mathbf{x}}_b$ -axis pointing outward (away from the center of the turntable), a $\hat{\mathbf{y}}_b$ -axis pointing in the direction the turntable is moving at your location (the direction your eyes are looking), and a $\hat{\mathbf{z}}_b$ -axis pointing upward. The turntable is rotating at 0.1 radians per second, and you are sitting 3 meters from the center of the turntable. What is the screw axis $\mathcal{S} = (\mathcal{S}_\omega, \mathcal{S}_v)$ and the twist $\mathcal{V} = (\omega, v)$ expressed in your body frame $\{b\}$? All angular velocities are in radians/second and all linear velocities are in meters/second.

$$\mathcal{S} = (0, 0, 0.1, 0, 0.3, 0), \quad \mathcal{V} = (0, 0, 0.01, 0, 0.03, 0)$$

$$\circ$$
 $\mathcal{S} = (0, 0, 1, 0, 3, 0), \quad \mathcal{V} = (0, 0, 0.1, 0, 0.3, 0)$

$$\mathcal{S} = (1, 0, 0, 0, 3, 0), \quad \mathcal{V} = (0.1, 0, 0, 0, 0.3, 0)$$

1/1 point

Correct

The axis of rotation is aligned with the $\hat{\mathbf{z}}_b$ -axis, so \mathcal{S}_ω , the first three elements of \mathcal{S} , must be (0,0,1). Rotation about the turntable axis with $\theta=1$ means that the linear motion at {b}, \mathcal{S}_v , would be 3 units in the $\hat{\mathbf{y}}_b$ direction. The twist is just $\mathcal{V}=\mathcal{S}\theta$, and θ is equal to 0.1 radians/s.

A twist or a screw axis can be represented in any frame. Which of the following statements are true? Select all that apply.

1/1 point

A spatial twist is a representation of the twist in the space frame {s}, and it does not depend on a body frame {b}.

Correct

We only need to define the frame in which the twist (or screw) is being represented. No other frames matter. A "spatial twist" depends on the {s} frame.

A body twist is a representation of the twist in the body frame (b), and it does not depend on a space frame (s).

Correct

We only need to define the frame in which the twist (or screw) is being represented. No other frames matter. A "body twist" depends on the {b} frame.