#### Gliederung

- 2. Wahrscheinlichkeitstheorie
- 2.1 Grundbegriffe
- 2.2 Wahrscheinlichkeitsverteilungen
  - 2.2.1 Hypergeometrische Verteilung
  - 2.2.2 Binomialverteilung
  - 2.2.3 Normalverteilung
  - 2.2.4 Standardnormalverteilung

#### Was ist was?

- Verbindung von beschreibender und schließender Statistik
- Wahrscheinlichkeitsrechnung: Zuordnung von Zahlen zu bestimmten Ereignissen (Auskunft über die Wahrscheinlichkeit ihres Eintreffens)



- Zufallsexperiment (z.B. das Werfen eines Würfels)
- Merkmal (Zufallsvariable, z.B. die Augenzahl)
- Merkmalsausprägungen (Elementarereignisse, z.B. die ganzen Zahlen von 1 bis 6)
- Ereignis (Teilmenge des Wertebereichs, z.B. die geraden Zahlen)

#### Was ist was?

 Jedem Ereignis E wird die Wahrscheinlichkeit seines Eintreffens Pr(E) zugeordnet

#### Es gilt:

- $0 \le Pr(E) \le 1$
- Pr(unmögliches Ereignis) = 0
- Pr(sicheres Ereignis) = 1

#### Rechnen mit Wahrscheinlichkeiten

Beispiel 17: Schatztruhenlotto (10 Mio. Lose)

| Anzahl pro Serie | "Gewinn" in Euro             |
|------------------|------------------------------|
| 10 x             | Eine Schatztruhe voller Gold |
| 13 x             | 30.000                       |
| 20 x             | 3.000                        |
| 60 x             | 1.000                        |
| 130 x            | 300                          |
| 3.000 x          | 100                          |
| 7.000 x          | 60                           |
| 20.000 x         | 30                           |
| 70.000 x         | 9                            |
| 290.000 x        | 6                            |
| 642.000 x        | 3                            |
| 1.140.000 x      | 1,50                         |
| 7.827.767 x      | (Niete) 0                    |

Alle Fälle sind gleich wahrscheinlich

Berechnung von Wahrscheinlichkeiten mit der Abzählregel: "günstige" durch "mögliche" Ereignisse

#### Rechnen mit Wahrscheinlichkeiten

- Beispiel 17: Schatztruhenlotto (10 Mio. Lose)
- Pr(x = "Schatztruhe") = <sup>10</sup>/<sub>10 Mio</sub> = 0.000001
   → in durchschnittlich nur einem von
   1 Millionen Fällen wird das Ereignis eintreffen
- $Pr(x = 1,50) = \frac{1.140.000}{10 \text{ Mio}} = 0,114 \rightarrow \text{in}$ durchschnittlich 11 von 100 Fällen...

| $Pr(x \ge 3) =$   | 642.000+290.000++10 | _ | 1.032.233     | = 0.10 | 2       |
|-------------------|---------------------|---|---------------|--------|---------|
| $\Gamma(X \ge 3)$ | 10 Mio              | _ | 10 <i>Mio</i> | - 0,10 | <i></i> |

•  $Pr(x \ge 3) = 1$ - Pr(x<3) = 1-0.897=0.103 (Gegenwahrscheinlichkeit)

#### x ... Auszahlungsbetrag

| Anzahl pro Serie | "Gewinn" in Euro             |
|------------------|------------------------------|
| 10 x             | Eine Schatztruhe voller Gold |
| 13 x             | 30.000                       |
| 20 x             | 3.000                        |
| 60 x             | 1.000                        |
| 130 x            | 300                          |
| 3.000 x          | 100                          |
| 7.000 x          | 60                           |
| 20.000 x         | 30                           |
| 70.000 x         | 9                            |
| 290.000 x        | 6                            |
| 642.000 x        | 3                            |
| 1.140.000 x      | 1,50                         |
| 7.827.767 x      | (Niete) 0                    |

#### Rechnen mit Wahrscheinlichkeiten

Beispiel 17: Schatztruhenlotto (10 Mio. Lose)

#### Bedingte Wahrscheinlichkeit:

- unter der Bedingung das man keine Niete hat, wie hoch ist die Wahrscheinlichkeit, dass man mindestens 3 Euro gewinnt?
- $Pr(x \ge 3 \mid x \ne 0) = \frac{1.032.233}{2.172.233} = 0.475$

#### x ... Auszahlungsbetrag

| Anzahl pro Serie | "Gewinn" in Euro             |
|------------------|------------------------------|
| 10 x             | Eine Schatztruhe voller Gold |
| 13 x             | 30.000                       |
| 20 x             | 3.000                        |
| 60 x             | 1.000                        |
| 130 x            | 300                          |
| 3.000 x          | 100                          |
| 7.000 x          | 60                           |
| 20.000 x         | 30                           |
| 70.000 x         | 9                            |
| 290.000 x        | 6                            |
| 642.000 x        | 3                            |
| 1.140.000 x      | 1,50                         |
| 7.827.767 x      | (Niete) 0                    |

#### Rechnen mit Wahrscheinlichkeiten

- Lotto 6 aus 49: Alle möglichen Zahlenkombinationen sind gleich wahrscheinlich → Abzählregel: "günstige" durch "mögliche"
- Mögliche: Anzahl verschiedener 6er Gruppen bei 49 Kugeln

$$\binom{49}{6} = \frac{49!}{6!(49-6)!} = 13.983.816$$
 Möglichkeiten

Sprich: "49 über 6"; 49! = "49 Fakultät"



- Günstige: Anzahl der abgegebenen Tipps
- x... Anzahl der "Richtigen" bei einem ausgefüllten Tipp

$$Pr(x = "richtige Sechserreihe") = \frac{1}{13.983.816} = 0,000000072$$

#### Rechnen mit Wahrscheinlichkeiten

- Fakultät
  - Jede natürliche Zahl n hat eine Fakultät. Sie ist das Produkt der natürlichen Zahlen, die kleiner oder gleich der Zahl n sind.
  - Man schreibt sie als n! = 1 · 2 · 3 ·...· (n-1) · n und liest sie n Fakultät.
  - Es ist zweckmäßig, 1! = 1 und auch 0! = 1zu definieren.

```
0!=1 5!=120 10!=3.628.800

1!=1 6!=720 11!=39.916.800

2!=2 7!=5.040 12!=479.001.600

3!=6 8!=40.320 13!=6.227.020.800

4!=24 9!=362.880 14!=8,717829120*10<sup>10</sup>
```

#### Rechnen mit Wahrscheinlichkeiten

- Bestimmung von Wahrscheinlichkeiten von unabhängigen Ereignissen
- Bsp. 2 Würfel: Wie hoch ist die Wahrscheinlichkeit 2 Sechsen zu würfeln?
- Beide Würfel unabhängig voneinander; bei jedem Würfel Abzählregel
  - 1. Würfel:  $Pr(x=6) = \frac{g \ddot{u}nstige\ Ereignisse}{m\ddot{o}gliche\ Ereignisse} = \frac{1}{6}$
  - 2. Würfel:  $Pr(x=6) = \frac{g \ddot{u}nstige\ Ereignisse}{m\ddot{o}gliche\ Ereignisse} = \frac{1}{6}$
  - Gesamtwahrscheinlichkeit:  $\frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$



#### Allgemeines

- Große Ähnlichkeit mit deskriptiver Statistik
  - Diskrete und stetige Merkmale
  - Tabellarisch und graphisch darstellbar
  - Wahrscheinlichkeitsverteilung Häufigkeitsverteilung
  - Kennzahlen: Erwartungswert Mittelwert, etc.

#### Hypergeometrische Verteilung

- Urnenmodell
  - Zufälliges Ziehen ohne Zurücklegen (Bsp: Lotto) einer Stichprobe von n Kugeln aus einer Grundgesamtheit von N Kugeln
  - = Art der Stichprobenziehung, die Rückschlüsse von der Stichprobe auf die Grundgesamtheit ermöglicht
  - Anwendung: z.B. in der Qualitätskontrolle



### Hypergeometrische Verteilung

- Beispiel 18: Wahrscheinlichkeiten im Urnenmodell 1
  - N = 10 Kugeln, A = 4 weiße,
     N A = 6 schwarze Kugeln
  - n = 3 werden gezogen
- Wie wahrscheinlich ist es, dass unter den 3 gezogenen Kugeln genau eine weiße Kugel ist? → x = Anzahl der gezogenen weißen Kugeln



Pr(x=1) = 0.5

### Hypergeometrische Verteilung

Beispiel 18: Wahrscheinlichkeiten im Urnenmodell 1



- N = 10 Kugeln, A = 4 weiße, N − A = 6 schwarze Kugeln
- n = 3 werden gezogen
- Wie wahrscheinlich ist es, dass unter den 3 gezogenen Kugeln genau eine weiße Kugel ist? → x = Anzahl der gezogenen weißen Kugeln → alternativer Rechenweg über Abzählregel:
  - Alle Kombinationen der 10 Kugeln gleich wahrscheinlich (Kugeln mit den Nummern 1,2,3; 1,2,4; 1,2,5...) → Abzählregel
  - Mögliche Kombinationen (Binomialkoeffizient):  $\binom{10}{3} = \frac{10!}{3!(10-3)!} = 120$

#### Hypergeometrische Verteilung

- Beispiel 18: Wahrscheinlichkeiten im Urnenmodell 1
  - Günstige Kombinationen: Eine weiße Kugel mit zwei schwarzen kombinieren → gedankliche Zerlegung in 2 Urnen mit nur weißen, bzw. schwarzen Kugeln
  - → Für eine weiße unter den drei gezogenen Kugeln muss eine der 4 weißen Kugeln gezogen werden
  - → Für zwei schwarze unter den drei gezogenen Kugeln müssen 2 der 6 schwarzen Kugeln gezogen werden weiß
  - $\rightarrow$  Gesamtzahl der Möglichkeiten  $\binom{4}{1} \cdot \binom{6}{2} \leftarrow$  schwarz

• Pr(x=1) = 
$$\frac{\binom{4}{1} \cdot \binom{6}{2}}{\binom{10}{3}} = \frac{4 \cdot 15}{120} = 0.5$$

• Pr(x=0), Pr(x=2) und Pr(x=3)?

## <u>Wahrscheinlichkeitsverteilungen</u>

#### Hypergeometrische Verteilung

 Verallgemeinerung: N Kugeln, A weiße, N-A schwarze, n werden zufällig gezogen, x ... gezogene weiße Kugeln, n-a gezogene schwarze Kugeln

$$\Pr(x = a) = \frac{\binom{A}{a} \cdot \binom{N - A}{n - a}}{\binom{N}{n}}$$

Theoretischer Mittelwert µ der gezogenen weißen Kugeln:

$$\mu = n \cdot \frac{A}{N}$$

In Bsp. 18: 
$$\mu = 3 \cdot \frac{4}{10} = 1.2$$

Theoretische Varianz σ²:

$$\sigma^2 = n \cdot \frac{A}{N} \cdot \left(1 - \frac{A}{N}\right) \cdot \frac{N - n}{N - 1}$$

$$\sigma^2 = n \cdot \frac{A}{N} \cdot \left( 1 - \frac{A}{N} \right) \cdot \frac{N - n}{N - 1} \quad \text{In Bsp. 18: } \sigma^2 = 3 \cdot \frac{4}{10} \cdot \left( 1 - \frac{4}{10} \right) \cdot \frac{10 - 3}{10 - 1} = 0,56$$

### Hypergeometrische Verteilung

Beispiel 18: Wahrscheinlichkeiten im Urnenmodell 1



| x = a | Pr(x = a) |
|-------|-----------|
| 0     | 0,167     |
| 1     | 0,5       |
| 2     | 0,3       |
| 3     | 0,033     |
|       | 1         |

$$\bar{x} = \sum_{i=1}^k x_i \cdot p_i = 1.2$$

$$s^2 = \sum_{i=1}^k (x_i - \bar{x})^2 \cdot p_i = 0.56$$



Achtung: Fläche unter der Kurve = 1 = Gesamtsumme der Wahrscheinlichkeiten aller Ereignisse

#### Binomialverteilung

- Urnenmodell
  - Zufälliges Ziehen mit Zurücklegen: Vor der Ziehung einer neuen Kugel wieder derselbe Urneninhalt
  - = Art der Stichprobenziehung, die Rückschlüsse von der Stichprobe auf die Grundgesamtheit ermöglicht
  - Anwendung bei unabhängigen Wiederholungen ein und desselben Versuchs

DHBW Thilo Klein: Statistik

### Binomialverteilung

- Beispiel 19: Wahrscheinlichkeiten im Urnenmodell 2
  - N = 10 Kugeln, A = 4 weiße,
     N A = 6 schwarze Kugeln

     4/10
  - n = 3 werden gezogen

 Wie wahrscheinlich ist es, dass unter den 3 gezogenen Kugeln genau eine weiße Kugel ist? → x = Anzahl der gezogenen weißen Kugeln



6/10

6/10

6/10

#### Binomialverteilung

Beispiel 19: Wahrscheinlichkeiten im Urnenmodell 2



- N = 10 Kugeln, A = 4 weiße, N − A = 6 schwarze Kugeln
- n = 3 werden gezogen
- Die Gesamtwahrscheinlichkeit für eine gezogene weiße Kugel ist daher

$$3 \cdot 0.144 = 0.432$$

• Allgemein: 
$$Pr(x=1) = {3 \choose 1} \cdot 0.4^{1} \cdot 0.6^{2} = 0.432$$

#### Binomialverteilung

- Verallgemeinerung: N Kugeln, A weiße, n werden zufällig gezogen,  $\pi = A/N$  und  $1 \pi = 1 A/N$
- x = Anzahl der gezogenen weißen Kugeln

$$\Pr(x = a) = \binom{n}{a} \cdot \pi^a \cdot (1 - \pi)^{n - a}$$

- Theoretischer Mittelwert μ der gezogenen weißen Kugeln:

$$\mu = n \cdot \pi$$

In Bsp. 19: 
$$\mu = 3 \cdot \frac{4}{10} = 1.2$$

Theoretische Varianz σ²:

$$\sigma^2 = n \cdot \pi \cdot (1 - \pi)$$

In Bsp. 19: 
$$\sigma^2 = 3 \cdot \frac{4}{10} \cdot \left(1 - \frac{4}{10}\right) = 0.72$$

### Hypergeometrische Verteilung

Beispiel 18: Wahrscheinlichkeiten im Urnenmodell 2



| x = a | Pr(x = a) |
|-------|-----------|
| 0     | 0,216     |
| 1     | 0,432     |
| 2     | 0,288     |
| 3     | 0,064     |
|       | 1         |

$$\bar{x} = \sum_{i=1}^k x_i \cdot p_i = 1,2$$

$$s^2 = \sum_{i=1}^k (x_i - \bar{x})^2 \cdot p_i = 072,$$



Achtung: Fläche unter der Kurve = 1 = Gesamtsumme der Wahrscheinlichkeiten aller Ereignisse

#### Binomialverteilung

Vergleich Hypergeometrische Verteilung und Binomialverteilung

| x = a | Pr(x = a) (Hypergeometrisch) | Pr(x = a) (Binomialverteilung) |
|-------|------------------------------|--------------------------------|
| 0     | 0,167                        | 0,216                          |
| 1     | 0,5                          | 0,432                          |
| 2     | 0,3                          | 0,288                          |
| 3     | 0,033                        | 0,064                          |

- →Binomialverteilung mit höherer Wahrscheinlichkeit keine weiße Kugel zu ziehen, aber eine höhere Wahrscheinlichkeit 3 weiße Kugeln zu ziehen
- →WICHTIG: Binomialverteilung als Näherungslösung für Hypergeometrische Verteilung bei großen Grundgesamtheiten und kleinen Stichproben (Verhältnisse in Urne ändern sich kaum wenn statt 1.000 schwarzer Kugeln, 999 schwarze Kugeln sind)

DHBW Thilo Klein: Statistik

#### Normalverteilung

- Bisherige Verteilungen waren für diskrete Merkmale (Lotto, farbige Kugeln) → viele andere Merkmale sind aber stetig (Messgrößen, Alter, Gewicht)
- Graphische Darstellung als Dichte f(x)

#### Normalverteilung





Angabe der Wahrscheinlichkeiten für Intervalle, da bei stetigen Merkmalen die Wahrscheinlichkeit eines bestimmten Wertes (z.B. 175.26546cm) nahe 0 ist

#### Normalverteilung



- Anschaulichere Darstellung durch Glockenkurve
- Eigenschaften der Dichte
  - Dichte ist eine Verteilung eines Merkmals → Kennzahlen wie z.B. Mittelwert und Varianz
  - Fläche zwischen Dichte und Achse muss in jedem Intervall der Wahrscheinlichkeit dieses Intervalls entsprechen
  - Fläche unter der Dichtekurve = 1
     → Summe der Wahrscheinlichkeit aller Ereignisse
  - Berechnung von Wahrscheinlichkeiten = Berechnen von Flächen

#### Normalverteilung



- Eigenschaften der Dichte der Normalverteilung
  - Erwartungswert (Mittelwert) µ ist der häufigste Wert
  - Abweichungen vom Mittelwert werden unwahrscheinlich(er)
  - Symmetrie der Dichte um den Mittelwert herum
  - Mathematisch vollständig beschreibbar mit Mittelwert und Standardabweichung

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}}$$

#### Normalverteilung

Verteilungen mit unterschiedlichem Mittelwert und Standardabweichung



#### Normalverteilung

- Beispiel 21: Funktionsdauer von Taschenrechnern
  - Funktionsdauer x ist normalverteilt mit Erwartungswert  $\mu = 120$  h und Varianz  $\sigma^2 = 100$ . Wie wahrscheinlich ist es, dass die Funktionsdauer eines Rechners
  - a. Höchstens 135 h
  - b. Mehr als 135 h
  - c. Mehr als 105 h
  - d. Höchstens 105 h beträgt?

#### Normalverteilung

Beispiel 21: Funktionsdauer von Taschenrechnern



Idee: Berechnung der Fläche unter der Dichte bis zum Punkt x<sub>0</sub>=135

→ Entspricht der Wahrscheinlichkeit das die Lebensdauer ≤ 135h ist

$$Pr(x \le x_0) = \int_{-\infty}^{x_0} f(x) dx = \int_{-\infty}^{x_0} \frac{1}{\sqrt{2\pi} \cdot 10} \cdot e^{-\frac{1}{2} \cdot \frac{(x_0 - 120)^2}{100}} dx = \int_{-\infty}^{135} \frac{1}{\sqrt{2\pi} \cdot 10} \cdot e^{-\frac{1}{2} \cdot \frac{(135 - 120)^2}{100}} dx$$

#### Standardnormalverteilung

- Problem bei Aufgaben wie Bsp. 21 ist, dass diese bestimmte aber verschiedene Erwartungswerte und Varianzen haben → allgemeines Integral was sich kompliziert berechnen lässt
- Idee: Entwicklung einer einfachen Variante der Normalverteilung Standardnormalverteilung mit  $\mu = 0$  und  $\sigma^2 = 1$ .



$$f(u) = \frac{1}{\sqrt{2\pi} \cdot 1} \cdot e^{-\frac{1}{2} \cdot \frac{(u-0)^2}{1}}$$

$$f(u) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot u^2}$$

#### Standardnormalverteilung

- Beispiel 22: Berechnung Standardnormalverteilung
  - Ein stetiges Merkmal u ist normalverteilt mit Erwartungswert  $\mu=0$  und Varianz  $\sigma^2=1$ . Wie hoch ist die Wahrscheinlichkeit dafür, dass ein Messwert
  - a. Höchstens 1
  - b. Größer als 1
  - c. Größer als -1
  - d. Höchstens -1 ist?

#### Standardnormalverteilung

Beispiel 22: Berechnung Standardnormalverteilung



Idee: Berechnung der Fläche unter der Dichte bis zum Punkt u<sub>0</sub>=1 Entspricht der Wahrscheinlichkeit das der Messwert ≤ 1 ist

→ Die Lösung dieses Integrals ist tabelliert

$$Pr(u \le u_0) = \int_{-\infty}^{u_0} f(u) du = \int_{-\infty}^{u_0} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot u_0^2} du = \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot 1^2} du$$

#### Standardnormalverteilung

Bis 1. Nachkommastelle von u

2. Nachkommastelle von u

| u   | 0      | 0,01   | 0,02   | 0,03   | 0,04   | 0,05   | 0,06   | 0,07   | 0,08   | 0,09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0,0 | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160 | 0,5199 | 0,5239 | 0,5279 | 0,5319 | 0,5359 |
| 0,1 | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557 | 0,5596 | 0,5636 | 0,5675 | 0,5714 | 0,5754 |
| 0,2 | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948 | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141 |
| 0,3 | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331 | 0,6368 | 0,6406 | 0,6443 | 0,6480 | 0,6517 |
| 0,4 | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700 | 0,6736 | 0,6772 | 0,6808 | 0,6844 | 0,6879 |
| 0,5 | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054 | 0,7088 | 0,7123 | 0,7157 | 0,7190 | 0,7224 |
| 0,6 | 0,7258 | 0,7291 | 0,7324 | 0,7357 | 0,7389 | 0,7422 | 0,7454 | 0,7486 | 0,7518 | 0,7549 |
| 0,7 | 0,7580 | 0,7612 | 0,7642 | 0,7673 | 0,7704 | 0,7734 | 0,7764 | 0,7794 | 0,7823 | 0,7852 |
| 0,8 | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7996 | 0,8023 | 0,8051 | 0,8079 | 0,8106 | 0,8133 |
| 0,9 | 0,8159 | 0,8186 | 0,8212 | 0,8238 | 0,8264 | 0,8289 | 0,8315 | 0,8340 | 0,8365 | 0,8389 |
| 1,0 | 0,8413 | 0,8438 | 0,8461 | 0,8485 | 0,8508 | 0,8531 | 0,8554 | 0,8577 | 0,8599 | 0,8621 |
| 1,1 | 0,8643 | 0,8665 | 0,8686 | 0,8708 | 0,8729 | 0,8749 | 0,8770 | 0,8790 | 0,8810 | 0,8830 |
| 1,2 | 0,8849 | 0,8869 | 0,8888 | 0,8907 | 0,8925 | 0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015 |
| 1,3 | 0,9032 | 0,9049 | 0,9066 | 0,9082 | 0,9099 | 0,9115 | 0,9131 | 0,9147 | 0,9162 | 0,9177 |
|     |        |        |        |        |        |        |        |        | _      |        |

Pr(u≤1,00)=0,841

[Anmerkung: Bei stetigen Merkmalen gilt:  $Pr(u \le 1) = Pr(u < 1)$ ] da Pr(u = 1) = 0

#### Standardnormalverteilung

Beispiel 22b: Pr(u>1) → Gegenwahrscheinlichkeit zu Pr(u≤1)



$$Pr(u>1) = 1 - Pr(u \le 1)$$
  
= 1 - 0,841 = 0,159

#### Standardnormalverteilung

Beispiel 22c: Pr(u≥-1)





$$Pr(u \ge -1) = Pr(u \le +1)$$
  
= 0,841

#### Standardnormalverteilung

Beispiel 22d: Pr(u≤-1)





$$Pr(u \le -1) = Pr(u \ge +1)$$
  
= 1 - Pr(u \le +1)  
= 0,159

#### Standardnormalverteilung



u ist standardnormalverteilt mit Erwartungswert  $\mu = 0$ und Varianz  $\sigma^2 = 1$ 

#### Standardnormalverteilung

- Beispiel 21: Funktionsdauer von Taschenrechnern
  - Funktionsdauer x ist normalverteilt mit Erwartungswert  $\mu = 120$  h und Varianz  $\sigma^2 = 100$ . Wie wahrscheinlich ist es, dass die Funktionsdauer eines Rechners
  - a. Höchstens 135 h
  - b. Mehr als 135 h
  - c. Mehr als 105 h
  - d. Höchstens 105 h beträgt?

#### Standardnormalverteilung

Beispiel 21a: Pr(x≤135)

Standardisierung: 
$$u_0 = \frac{x_0 - \mu}{\sigma} = \frac{135 - 120}{10} = 1,5$$





$$Pr(x \le 135) = Pr(u \le 1,5) = 0,933$$

#### Standardnormalverteilung

Beispiel 21b: Pr(x>135)

Standardisierung: 
$$u_0 = \frac{x_0 - \mu}{\sigma} = \frac{135 - 120}{10} = 1,5$$





$$Pr(x>135) = Pr(u>1,5)$$

$$Pr(u>1,5)=1-Pr(u\leq1,5)=0,067$$

#### Standardnormalverteilung

Beispiel 21c: Pr(x>105)

Standardisierung: 
$$u_0 = \frac{x_0 - \mu}{\sigma} = \frac{105 - 120}{10} = -1,5$$

$$Pr(x>105) = Pr(u>-1,5) = Pr(u<+1,5) = 0,933$$

Beispiel 21d: Pr(x≤105)

Standardisierung: 
$$u_0 = \frac{x_0 - \mu}{\sigma} = \frac{105 - 120}{10} = -1,5$$

$$Pr(x \le 105) = Pr(u \le -1,5) = Pr(u \ge +1,5) = 1 - Pr(u \le 1,5) = 1 - 0,933 = 0,067$$

#### Anwendung Standardnormalverteilung

Beispiel 23: Wahrscheinlichkeit in Intervallen

Wahrscheinlichkeit dass die Funktionsdauer der Taschenrechner zwischen 105 und 135 Stunden liegt



#### Anwendung Standardnormalverteilung

Beispiel 23: Wahrscheinlichkeit in Intervallen





$$\Pr(105 \le x \le 135) = \Pr(x \le 135) - \Pr(x \le 105)$$
  
Standardisierungen  $u_0 = \frac{135 - 120}{10} = 1,5$  und  $u_u = \frac{105 - 120}{10} = -1,5$ 

$$Pr(u \le 1,5) - Pr(u \le 1,5) = Pr(u \le 1,5) - (1 - Pr(u \le 1,5)) = 0.933 - (1 - 0.933) = 0.866$$

#### Anwendung Standardnormalverteilung

- Übersicht Rechenregeln
  - Gegenwahrscheinlichkeit

$$Pr(u>u_0) = 1-Pr(u\leq u_0)$$

Negative Werte

$$Pr(u \le -u_0) = Pr(u > u_0)$$
$$= 1 - Pr(u \le u_0)$$

Intervalle

$$Pr(u_1 \le u \le u_2) =$$

$$Pr(u \le u_2) - Pr(u \le u_1)$$













#### Anwendung Standardnormalverteilung

 Beispiel 24: Berechnen von Intervallen mit bestimmter Wahrscheinlichkeit

Funktionsdauer x<sub>0</sub> die mit einer Wahrscheinlichkeit von 0,95 *unterschritten* wird



#### Anwendung Standardnormalverteilung

 Beispiel 24: Berechnen von Intervallen mit bestimmter Wahrscheinlichkeit

Funktionsdauer x<sub>0</sub> die mit einer Wahrscheinlichkeit von 0,95

unterschritten wird



0,04

$$Pr(x \le x_0) = Pr(u \le u_0) = 0.95 \rightarrow u_0 = ? \rightarrow x_0 = ?$$

1. Ablesen von u<sub>0</sub> aus Standardnormalverteilung

|     | ų  | 0      | 0,01   | 0,02   | 0,03   | 0,04   | 0,05   | 0,06   | 0,07   | 0,08   | 0,09   |
|-----|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ( 1 | ,6 | 0,9452 | 0,9463 | 0,9474 | 0,9485 | 0,9495 | 0,9505 | 0,9515 | 0,9525 | 0,9535 | 0,9545 |

2. "Destandardisieren" durch Umstellung der Standardisierungsformel nach x<sub>0</sub>

$$1,65 = \frac{x_0 - 120}{10} \rightarrow x_0 = 1,65 \cdot 10 + 120 = 136,5$$

### Anwendung Standardnormalverteilung

 Beispiel 25: Berechnen von symmetrischen Intervallen mit bestimmter Wahrscheinlichkeit

Was ist die Obergrenze und Untergrenze der Funktionsdauer die von 95% der Taschenrechner erreicht werden?



Um den Erwartungswert symmetrisches Intervall → Untergrenze x<sub>u</sub> und Obergrenze x<sub>o</sub>, in dem die Wahrscheinlichkeit 0,95 beträgt

#### Anwendung Standardnormalverteilung

Was ist die Obergrenze und Untergrenze der Funktionsdauer die von 95% der Taschenrechner erreicht werden?



- 1. Ablesen von  $u_0$  aus Standardnormalverteilung  $Pr(x \le x_0) = 0.975 \rightarrow Pr(u \le u_0) = 0.975 \rightarrow u_0 = 1.96$
- 2. Destandardisieren  $\rightarrow x_0$  $1,96 = \frac{x_0 - 120}{10} \rightarrow x_0 = 1,96 \cdot 10 + 120 = 139,6$
- 3. Verteilung symmetrisch um den Mittelwert  $\rightarrow$   $x_u$   $x_u = 120 (139.6 120) = 100.4$

#### Anwendung Standardnormalverteilung

- Große Bedeutung der Normalverteilung
  - Viele natürliche Merkmale sind normalverteilt
  - Andere Verteilungen konvergieren bei großen Stichproben gegen die Normalverteilung
  - Summen von Zufallsvariablen sind normalverteilt.

#### Anwendung Standardnormalverteilung

- Beispiel 26: Annäherung der Hypergeometrischen Verteilung an die Normalverteilung
- x=Anzahl defekte Schrauben in einer Stichprobe, π=0,4 defekte Schraube



#### Anwendung Standardnormalverteilung

Beispiel 26: Annäherung der Hypergeometrischen Verteilung an die

Normalverteilung

- n = 100



- Zentraler Grenzwertsatz der Statistik: Erwartungswert und theoretische Varianz dieser hypergeometrischen Verteilung entsprechen jenen einer Normalverteilung
- → Diese Info kann genutzt werden um von der Stichprobe auf die Grundgesamtheit zurückzuschließen (Kapitel 3)

### Anwendung Standardnormalverteilung

- Summe von unabhängigen Zufallsvariablen sind normalverteilt

Bsp. Würfelsumme zweier Würfel

| Würfelsumme | Kombinationen                | Pr   |
|-------------|------------------------------|------|
| 2           | 1+1                          | 1/36 |
| 3           | 1+2; 2+1                     | 2/36 |
| 4           | 1+3; 2+2; 3+1                | 3/36 |
| 5           | 1+4; 2+3; 3+2; 4+1           | 4/36 |
| 6           | 1+5; 2+4; 3+3; 4+2; 5+1      | 5/36 |
| 7           | 1+6; 2+5; 3+4; 4+3; 5+2; 6+1 | 6/36 |
| 8           | 2+6; 3+5; 4+4; 5+3; 6+2      | 5/36 |
| 9           | 3+6; 4+5; 5+4; 6+3           | 4/36 |
| 10          | 4+6; 5+5; 6+4                | 3/36 |
| 11          | 5+6; 6+5                     | 2/36 |
| 12          | 6+6                          | 1/36 |

→ Symmetrische Verteilung um den Mittelwert 7 zu erwarten

### Anwendung Standardnormalverteilung

Bsp. Würfelsumme zweier Würfel







#### n=10



