Exhibit C to the Supplemental Declaration of Dr. Richard Blanchard (declaration filed under seal)

ADVANTEST. Japan

ABOUT ADVANTEST INVESTORS

PRODUCTS & SUPPORT NEWS

ENVIRONMENT

CAREERS

<-- HOME

Electronic Measuring Instruments

Products

IC Test Systems

- Products
- GETsolution

E-Beam Lithography

- Products
- Technology Introduction

Service

- Lease/Finance
- Re-sale

Brochure Request

Request Form

T5761/T5761ES

Memory Test System

Parallel Test for up to 512 NAND Flash Memory Devices

T5761ES

Demand for NAND flash memory continues to rise dramatically, propelled by an insatiable demand for consumer gadgetry, including computerized devices, cellular telephones, portable music players, digital video appliances, and car navigation systems. And, the geometric bit growth and multi level cell technology in data flash drives longer test times while the consumer market drives a commodity price point, demanding further reductions in the overall cost of test. The T5761 memory test system answers these calls with significant reductions in test time, and with its 512-device parallel test capability, per-site architecture, Error Code Correction (ECC), and real-time test programming functionality, the system also affords greatly reduced test costs.

Improving throughput with 512-device parallel test and ECC

With its per-site architecture, which allows testing of 2 DUTs NAND flash memories in parallel within a site, the T5761 provides the capability to parallel-test up to 512 devices. As a result, test can be performed independently for each device, and at a high rate of throughput. This model's support for ECC, a device feature previously difficult to support without significant test time impact, provides for shorter test times, along with significantly improved yields. Real time ECC support is a must for the shrinking geometry and bit density of newer NAND Flash

Case 5:07-cv-04330-RMW Document 126-2 Filed 11/30/2007 Page 3 of 78

A compact engineering station

The T5761ES (Engineering Station) brings cost reduction capabilities to test program development and evaluation of small quantities of devices. The T5761ES offers the performance and functionality of the T5761, but within a compact form factor. With this engineering station, device evaluation and the deployment of test programs into volume-production is now simplified.

Using FutureSuite®, with multi-language support

FutureSuite allows program development and evaluation/analysis making maximal use of per-site architecture. It delivers full coverage extending from the design stage through volume production. Also, FutureSuite, with its multi-language support, enables the user to program either in the C-based MCI (multi control interface) language or in ATL, providing a compatible syntax to the industry's most common memory platforms.

Major Specifications

Model Number:	T5761	T5761ES		
Target Devices:	FLASH memory, EPROM, etc.			
Simultaneous Testing:	Up to 512 devices	Up to 16 devices		
Test speed:	66 MHz			

FutureSuite is registered trademark in Japan, US and other countries licensed by ADVANTEST CORPORATION.

Products

Case 5:07-cv-04330-RMW

Document 126-2 Filed 11/30/2007

Page 4 of 78

Legal | Privacy Policy | Sitemap | Contact | © Copyright 2007 ADVANTEST CORPORATION

General Description

The MAX9971/MAX9972 four-channel, ultra-low-power, pin-electronics ICs include, for each channel, a threelevel pin driver, a window comparator, a passive load, and force-and-sense Kelvin-switched parametric measurement unit (PMU) connections. The driver features a -2.2V to +5.2V voltage range, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The window comparator features 500MHz equivalent input bandwidth and programmable output voltage levels. The passive load provides pullup and pulldown voltages to the device-under-test (DUT).

Two grade versions are available, A grade and B grade. The A-grade version provides tight gain and offset matching for the driver and comparator, allowing reference levels to be shared across multiple channels. It also provides tighter tolerance of the load resistance values. The B-grade version is for system designs that incorporate independent reference levels for each channel.

Low-leakage, high-impedance, and terminate controls are operational configurations that are programmed through a 3-wire, low-voltage, CMOS-compatible serial interface. High-speed PMU switching is realized through dedicated digital control inputs.

These devices are available in an 80-pin. 12mm x 12mm body, 1.0mm pitch TQFP with an exposed 6mm x 6mm die pad on the bottom of the package (MAX9972), and the top of the package (MAX9971), for efficient heat removal. The MAX9971/MAX9972 are specified to operate over the 0°C to +70°C commercial temperature range, and feature a die temperature monitor output.

Applications

NAND Flash Testers

DRAM Probe Testers

Low-Cost Mixed-Signal/System-on-Chip (SOC)

Active Burn-In Systems

Structural Testers

Features

♦ Small Footprint—Four Channels in 0.3in²

♦ Low-Power Dissipation: 325mW/Channel Typical

♦ High Speed: 300Mbps at 3V_{P-P}

♦ -2.2V to +5.2V Operating Range

♦ Active Termination (3rd-Level Drive)

♦ Integrated PMU Switches

♦ Passive Load

♦ Low-Leak Mode: 20nA max

♦ Low Gain and Offset Error

♦ Lead-Free Package Available

Pin Configurations appear at end of data sheet.

Ordering Information and Selector Guide

PART	ACCURACY GRADE	PIN-PACKAGE	PKG CODE	HEAT EXTRACTION
MAX9971ACCS*	А	80 TQFP-IDP†	_	Тор
MAX9971BCCS*	В	80 TQFP-IDP†	_	Тор
MAX9972ACCS*	А	80 TQFP-EP††	C80E-4	Bottom
MAX9972BCCS	В	80 TQFP-EP††	C80E-4	Bottom

^{*}Future product—contact factory for availability.

Note: All devices are specified over the 0°C to +70°C operating temperature range.

All versions available in both leaded and lead-free packaging. Specify lead-free by adding the "+" symbol at the end of the part number when ordering.

MIXIM

[†]IDP = Inverted die pad.

^{††}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

0.3V to +9.4V
6.25V to +0.3V
+15.7V
0.3V to +5V
0.3V to +9.4V
Vss to VDD
Vss to VDD
V _{SS} to V _{DD}
0.3V to +5V

DUT_, CMPH_, CMPL_ Short-Circuit Duration	Continuous
DHV_, DLV_, DTV_ to Each Other	Vss to VDD
CHV_, CLV_ to DUT	Vss to VDD
DOUT to GND	0.3V to +5V
TEMP Short-Circuit Duration	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
80-Pin TQFP-EP (derate 35.7mW/°C above +7	70°C)2857mW
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
DRIVER (all specifications apply when DUT_ = DHV_, DUT_ = DTV_, or DUT_ = DLV_)							
DC CHARACTERISTICS							
Voltage Range				-2.2		+5.2	V
Gain		Measured at 0 and 3V	A grade	0.995	1	1.005	V/V
Gairi		Measured at 0 and 3v	B grade	0.95		1.05	V/V
Gain Temperature Coefficient					50		ppm/°C
Offset		$V_{DHV} = 2V, V_{DLV} = 0,$	A grade			±7	mV
Oliset		V _{DTV} _ = 1V	B grade			±100	IIIV
Offset Temperature Coefficient					±250		μV/°C
Power-Supply Rejection Ratio	PSRR	V _{DD} , V _{SS} independently variange	aried over full			18	mV/V
Maximum DC Drive Current	I _{DUT} _			±40		±90	mA
DC Output Resistance		$I_{DUT} = \pm 10$ mA (Note 2)		48.5	49.5	50.5	Ω
DC Output Resistance Variation		I_{DUT} = -40mA to +40mA				2.5	Ω
		DHV to DLV and DTV: V _{DLV} = V _{DTV} = +1.5V, V _{DHV} = -2.2V, +5.2V				5	
DC Crosstalk		DLV to DHV and DTV: V _{DHV} = V _{DTV} = +1.5V, V _{DLV} = -2.2V, +5.2V				5	mV
		DTV to DHV and DLV: V _{DHV} = V _{DLV} = +1.5V, V _{DTV} = -2.2V, +5.2V				5	
Linearity France		0 to 3V (Note 3)				±5	mV
Linearity Error		Full range (Note 4)				±15	mV

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS		
AC CHARACTERISTICS (Note 5)									
Dynamic Output Current		(Note 1)		40			mA		
Drive-Mode Overshoot, Undershoot, and Preshoot		200mV to 4V _{P-P} sw	ing (Note 6)		5% +10		mV		
Towns Made Coiks		V _{DHV} = V _{DTV} = 1	V, V _{DLV} _ = 0		25		ma\/		
Term-Mode Spike		$V_{DLV} = V_{DTV} = 0$, V _{DHV} = 1V		25		- mV		
High-Impedance-Mode Spike		$V_{DLV} = -1.0V, V_{DH}$	_{IV_} = 0		25		mV		
1 light-impedance-wode Spike		$V_{DLV} = 0$, $V_{DHV} =$	= 1V		25		IIIV		
Prop Delay, Data to Output					2		ns		
Prop-Delay Temperature Coefficient					10		ps/°C		
Prop-Delay Match, t _{LH} vs. t _{HL}					30		ps		
Prop-Delay Skew, Drivers Within Package					150		ps		
Prop-Delay Change vs. Pulse		Relative to 12.5ns pulse	3V _{P-P} , 40MHz, PW = 4ns to 21ns		20		ps		
Width			1V _{P-P} , 40MHz, PW = 2.5ns to 23.5ns		90				
Prop-Delay Change vs. Common- Mode Voltage		$1V_{P-P}$, $V_{DLV} = 0$ to $V_{DLV} = 1V$	3V, relative to delay at		80		ps		
Prop Delay, Data to High Impedance		V _{DHV} = +1.5V, V _D directions	LV_ = -1.5V, both	1.8			ns		
Prop Delay, Data to Term		V _{DHV} = +1.5V, V _D both directions	LV_ = -1.5V, V _{DTV} _ = 0,		1.6		ns		
Minimum Voltage Swing		(Note 7)	(Note 7) 25			mV			
		$V_{DHV} = 0.2V, V_{DLV}$	v_ = 0, 20% to 80%		0.7				
		$V_{DHV} = 1V, V_{DLV}$	= 0, 20% to 80%		0.7				
		$V_{DHV} = 3V, V_{DLV}$	= 0, 10% to 90%	1.5	2.0	2.5	1		
Rise/Fall Time		$V_{DHV} = 4V, V_{DLV}$ $R_{L} = 500\Omega, 10\% \text{ to}$			2.6		ns		
		V _{DHV} = 5V, V _{DLV} = 0, R _L = 500Ω, 10% to 90%			3.4				
Rise/Fall-Time Matching		$V_{DHV} = 1V \text{ to } 5V$			±5		%		
		200mV, $V_{DHV} = 0$.	2V, V _{DLV} = 0	1.8					
Minimum Pulse Width (Note 8)		1V, V _{DHV} = 1V, V _{DLV} = 0			2.4		ns		
		$3V$, $V_{DHV} = 3V$, V_{D}	DLV_ = 0		3.3				

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, V_{LDV}$ temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COMPARATOR (Note 9)	•						•
DC CHARACTERISTICS (driver i	n high-imped	lance mode)					
Input Voltage Range				-2.2		+5.2	V
Differential Input Voltage		V _{DUT_} - V _{CHV_} , V _{DUT_} - V _{CL}	V_	-7.4		+7.4	V
Hysteresis		V _{CHV} = V _{CLV} = 1.5V			8		mV
Input Offset Voltage		V _{DUT} = 1.5V	A grade			±10	mV
Input Onset Voltage		VDU1_ = 1.5V	B grade			±100	IIIV
Input Offset Temperature Coefficient					25		μV/°C
Common-Mode Rejection Ratio	CMRR	V _{DUT} = 0 and 3V		60			dB
		V _{DUT} _ = 1.5V				±5	
Linearity Error (Note 10)		V _{DUT} _ = -2.2V, +5.2V		İ		±10	mV
Power-Supply Rejection Ratio	PSRR	V _{DUT} = 1.5V, supplies indevaried over full range	ependently			5	mV/V
AC CHARACTERISTICS (Note 1	1)			•			l
Equivalent Input Bandwidth		Terminated (Note 12)			500		MHz
Equivalent input bandwidth		High impedance (Note 13)			300		IVIITIZ
Propagation Delay					3.9		ns
Prop-Delay Temperature Coefficient					4		ps/°C
Prop-Delay Match, tLH to tHL					120		ps
Prop-Delay Skew, Comparators Within Package		Same edges (LH and HL)			200		ps
Prop-Delay Dispersions vs. Common-Mode Voltage		0 to 4.9V			20		200
(Note 14)		-1.9V to +4.9V			30		ps
Prop-Delay Dispersions vs. Overdrive		$V_{CHV} = V_{CLV} = 0.1V \text{ to } 0.9$ $V_{DUT} = 1V_{P-P}, \text{ tr} = 1$ $V_{DUT} = 1V_{P-P}, \text{ tr} = 1$	Ops, 10% to		220		ps
Prop-Delay Dispersions vs. Pulse Width		2ns to 23ns pulse width, relapulse width	ative to 12.5ns		±60		ps
Prop-Delay Dispersions vs. Slew Rate		0.5V/ns to 2V/ns			50		ps

/U/IXI/U

Filed 11/30/2007

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC OUTPUTS							
Reference Voltages COMPHI and COMPLO		(Note 15)		0		+3.6	V
Output High Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPHI} = 1V	COMPHI at			±50	mV
Output Low Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPLO} = 0V	COMPLO at			±50	mV
Output Resistance		ICHV_ = ICLV_ = ±10mA	4	40	50	60	Ω
Current Limit					25		mA
Rise/Fall Time		20% to 80%, V _{CHV} = 1 load = T-line, 50Ω, > 1r			0.7		ns
PASSIVE LOAD							
DC CHARACTERISTICS (R _{DUT_2}	≥ 10M Ω)						
LDV_ Voltage Range				-2.2		+5.2	V
Gain				0.99		1.01	V/V
Gain Temperature Coefficient					0.02		%/°C
Offset						±100	mV
Offset Temperature Coefficient					0.02		mV/°C
Power-Supply Rejection Ratio	PSRR				10		mV/V
Output Resistance		$I_{DUT} = \pm 0.2 \text{mA},$	A grade	7.125	7.5	7.875	kΩ
Tolerance—High Value		$V_{LDV} = 1.5V$	B grade	4.200	6.0	7.875	K22
Output Resistance		$I_{DUT} = \pm 0.1 \text{mA},$	A grade	1.90	2.0	2.10	kΩ
Tolerance—Low Value		$V_{LDV} = 1.5V$	B grade	1.05	1.5	2.10	N32
Switch Resistance Variation		Relative to 1.5V	0 to 3V		±10		- %
Switch nesistance variation		Theialive to 1.5v	Full range		±30		/0
Maximum Output Current		$V_{LDV} = -2V$, $V_{DUT} = +$	+5V		±4		mA
(Note 16)		$V_{LDV} = +5V, V_{DUT} =$	-2V		±4		MA
Linearity Error, Full Range		Measured at -2.2V, +1. (Note 16)	5V, and +5.2V			±25	mV
AC CHARACTERISTICS							
Settling Time, LDV_ to Output		V_{LDV} = -2V to +5V step, R_{DUT} = 100k Ω (Note 17)			0.5		μs
Output Transient Response		V _{LDV} = +1.5V, V _{DUT} wave at 1MHz, R _{DUT} =			20		ns

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PMU SWITCHES (FORCE_, SENS	SE_, PMU_)					
Voltage Range			-2.2		+5.2	V
Force Switch Resistance		VFORCE_ = 1.5V, IPMU_ = ±10mA			40	Ω
Force Cuitale Cornelies		V _{PMU} = 6.2V, V _{FORCE} set to make I _{FORCE} = 30mA	25			A
Force Switch Compliance		V _{PMU} = -3.2V, V _{FORCE} set to make I _{FORCE} = -30mA	25			mA
Force Switch Resistance		0 to 3V		±10		%
Variation (Note 18)		Full range		±30		/0
Sense Switch Resistance			700	1000	1300	Ω
Sense Switch Resistance Variation		Relative to 1.3V, full range		±30		%
PMU_ Capacitance		Force-and-sense switches open		5		рF
FORCE_ Capacitance				5		рF
SENSE_ Capacitance				0.2		рF
FORCE_ External Capacitance		Allowable external capacitance		2		nF
SENSE_ External Capacitance		Allowable external capacitance		1		nF
FORCE_ and SENSE_ Switching Speed		Connect or disconnect		10		μs
PMU_ Leakage		FORCE EN_ = SENSE EN_ = 0, VFORCE_ = VSENSE_ = -2.2V to +5.2V		±0.5	±5	nA
TOTAL FUNCTION						
DUT_						
Leakage, High-Impedance Mode		Load switches open, VDUT_ = +5.2V, VCLV_ = VCHV_ = -2.2V, VDUT_ = -2.2V, VCLV_ = VCHV_ = +5.2V, full range			2	μА
Leakage, Low-Leakage Mode		Full range		±1	±20	nA
Low-Leakage Recovery Time		(Note 19)		10		μs
Combined Constitutes		Term mode		2		, r
Combined Capacitance		High-impedance mode		5		pF
Load Resistance		(Note 20)		1		GΩ
Load Capacitance		(Note 20)		12		nF

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP M	AX	UNITS		
VOLTAGE REFERENCE INPUTS (DHV_, DTV_, DLV_, DATA_, RCV_, CHV_, CLV_, LDV_, COMPHI, COMPLO)								
Input Bias Current				±	100	μΑ		
Input Bias Current Temperature Coefficient				±200		nA/°C		
Settling to Output		0.1% of full-scale step		10		μs		
DIGITAL INPUTS (DATA_, RCV_	, LD, DIN, SC	LK, CS)	•			· · · · ·		
Input High Voltage		(Note 21)	V _L / 2 + 0.2	+	3.6	V		
Input Low Voltage		(Note 21)	-0.3		/ 2 -).2	V		
Input Bias Current				1	00	μΑ		
SERIAL DATA OUTPUT (DOUT)								
Output High Voltage		I _{OH} = -1mA	V _L - 0.4	\	/L	V		
Output Low Voltage		I _{OL} = 1mA	0	+	0.4	V		
Output Rise and Fall Time		$C_L = 10pF$		1.1		ns		
SCLK to DOUT Delay		C _L = 10pF	tDН	tı	CLK - OS 2ns	ns		
SERIAL-INTERFACE TIMING (N	ote 22)							
SCLK Frequency				Ę	50	MHz		
SCLK Pulse-Width High	tсн		10			ns		
SCLK Pulse-Width Low	t _{CL}		10			ns		
CS Low to SCLK High Setup	tcsso		3.5			ns		
SCLK High to CS Low Hold	t _{CSH0}		0			ns		
CS High to SCLK High Setup	tcss1		3.5			ns		
SCLK High to $\overline{\text{CS}}$ High Hold	tCSH1		15			ns		
DIN to SCLK High Setup	t _{DS}		3.5			ns		
DIN to SCLK High Hold	t _{DH}		1			ns		
$\overline{\text{CS}}$ High to $\overline{\text{LOAD}}$ Low Setup	tCLL		6			ns		
LD Low Hold Time	t _{LDW}		5			ns		
LD High to Any Activity			0			ns		
V _L Rising to $\overline{\text{CS}}$ Low		Power-on delay		2		μs		
TEMP SENSOR								
Nominal Voltage		T _J = +27°C		3.00		V		
Temperature Coefficient				+10		mV/°C		
Output Resistance				500		Ω		

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0, VLDV = 0, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C. All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply Voltage	V_{DD}	(Note 23)	7.6	8	8.4	V
Negative Supply Voltage	V _{SS}	(Note 23)	-5.25	-5	-4.75	V
Logic Supply Voltage	VL		2.3		3.6	V
Positive Supply Current	I _{DD}	f _{OUT} = 0MHz		97	120	mA
Negative Supply Current	ISS	f _{OUT} = 0MHz		99	120	mA
Logic Supply Current	IL			0.15	0.30	mA
Static Power Dissipation		f _{OUT} = 0MHz		1.3	1.5	W
Operating Power Dissipation		f _{OUT} = 100Mbps (Note 24)		1.4		W

- All minimum and maximum specifications are 100% production tested except driver dynamic output current, which is guaranteed by design. All specifications are with DUT_ and PMU_ electrically isolated, unless otherwise noted.
- Note 2: Nominal target value is 49.5 Ω . Contact factory for alternate trim selections within the 45 Ω to 55 Ω range.
- Note 3: Measured at 1.5V, relative to a straight line through 0 and 3V.
- Measured at end points, relative to a straight line through 0 and 3V. Note 4:
- Note 5: DUT_ is terminated with 50Ω to ground, $V_{DHV} = 3V$, $V_{DLV} = 0$, $V_{DTV} = 1.5V$, unless otherwise specified. DATA_ and RCV_logic levels are VHIGH = 2V, VLOW = 1V.
- Note 6: Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot is any aberration in the signal before it reaches 10% of its swing.
- At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the Note 7:
- At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_. Note 8:
- Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- Note 10: Relative to a straight line through 0 and 3V.
- Note 11: Unless otherwise noted, all propagation delays are measured at 40MHz, V_{DUT} = 0 to 1V, V_{CHV} = V_{CLV} = +0.5V, t_R = t_F = 500ps, Z_S = 50Ω , driver in term mode with V_{DTV} = +0.5V. Comparator outputs are terminated with 50Ω to GND. Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.
- Note 12: Terminated is defined as driver in drive mode and set to zero volts.
- **Note 13:** High impedance is defined as driver in high-impedance mode.
- **Note 14:** V_{DUT} = 200mV_{P-P}. Propagation delay is compared to a reference time at 1.5V.
- Note 15: The comparator meets all its timing specifications with the specified output conditions when the output current is less than 15mA, V_{COMPHI} > V_{COMPLO}, and V_{COMPHI} - V_{COMPLO} ≤ 1V. Higher voltage swings are valid but AC performance may degrade.
- Note 16: LOAD EN LOW = LOAD EN HIGH = 1.
- **Note 17:** Waveform settles to within 5% of final value into load $100k\Omega$.
- Note 18: IPMU = ±2mA at VFORCE = -2.2V, +1.5V, and +5.2V. Percent variation relative to value calculated at VFORCE = +1.5V.
- Note 19: Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_.
- Note 20: Load at end of 2ns transmission line; for stability only, AC performance may be degraded.
- Note 21: The driver meets all of its timing specifications over the specified digital input voltage range.
- Note 22: Timing characteristics with VLOGIC = 3V.
- Note 23: Specifications are simulated and characterized over the full power-supply range. Production tests are performed with power supplies at typical values.
- **Note 24:** All channels driven at $3V_{P-P}$, load = 2ns, 50Ω transmission line terminated with 3pF.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Pin Description

PIN								
MAX9972	MAX9971	NAME	FUNCTION					
1	60	DATA1	Channel 1 Multiplexer Control Input. Selects driver 1 input from DHV1 or DLV1 in drive mode. See Table 1 and Figure 2.					
2	59	RCV1	Channel 1 Multiplexer Control Input. Sets channel 1 mode to drive or receive. See Table 1 and Figure 2.					
3, 8, 13, 18, 51	10, 43, 48, 53, 58	GND	Analog Ground					
4	57	CMPH1	Channel 1 High-Side Comparator Output					
5	56	CMPL1	Channel 1 Low-Side Comparator Output					
6	55	DATA2	Channel 2 Multiplexer Control Input. Selects driver 2 input from DHV2 or DLV2 in drive mode. See Table 1 and Figure 2.					
7	54	RCV2	Channel 2 Multiplexer Control Input. Sets channel 2 mode to drive or receive. See Table 1 and Figure 2.					
9	52	CMPH2	Channel 2 High-Side Comparator Output					
10	51	CMPL2	Channel 2 Low-Side Comparator Output					
11	50	CMPL3	Channel 3 Low-Side Comparator Output					
12	49	CMPH3	Channel 3 High-Side Comparator Output					
14	47	RCV3	Channel 3 Multiplexer Control Input. Sets channel 3 mode to drive or receive. See Table 1 and Figure 2.					
15	46	DATA3	Channel 3 Multiplexer Control Input. Selects driver 3 input from DHV3 or DLV3 in drive mode. See Table 1 and Figure 2.					
16	45	CMPL4	Channel 4 Low-Side Comparator Output					
17	44	CMPH4	Channel 4 High-Side Comparator Output					
19	42	RCV4	Channel 4 Multiplexer Control Input. Sets channel 4 mode to drive or receive. See Table 1 and Figure 2.					
20	41	DATA4	Channel 4 Multiplexer Control Input. Selects driver 4 input from DHV4 or DLV4 in drive mode. See Table 1 and Figure 2.					
21	40	DHV4	Channel 4 Driver High Voltage Input					
22	39	DLV4	Channel 4 Driver Low Voltage Input					
23	38	DTV4	Channel 4 Driver Termination Voltage Input					
24	37	CHV4	Channel 4 Threshold Voltage Input for High-Side Comparator					
25	36	CLV4	Channel 4 Threshold Voltage Input for Low-Side Comparator					
26	35	DHV3	Channel 3 Driver High Voltage Input					
27	34	DLV3	Channel 3 Driver Low Voltage Input					
28	33	DTV3	Channel 3 Driver Termination Voltage Input					
29	32	CHV3	Channel 3 Threshold Voltage Input for High-Side Comparator					
30	31	CLV3	Channel 3 Threshold Voltage Input for Low-Side Comparator					
31	30	DGND	Digital Ground Connection					
32	29	DOUT	Serial-Interface Data Output					
33	28	LD	Load Input. Latches data from the serial input register to the control register on rising edge. Transparent when low.					

_Pin Description (continued)

	INI		
	IN	NAME	FUNCTION
MAX9972	MAX9971	DIN	Control laterators Details and
34	27	DIN SCLK	Serial-Interface Data Input
35	26	CS	Serial Clock Chip Soloot
36	25		Channel 4 PMIL Sansa Connection
37	24	SENSE4	Channel 4 PMU Sense Connection
38	23	FORCE4	Channel 4 PMU Force Connection
39	22	SENSE3	Channel 3 PMU Sense Connection
40	21	FORCE3	Channel 3 PMU Force Connection
41	20	TEMP	Temperature Sensor Output
42, 47, 52, 56, 60	1, 5, 9, 14, 19	V_{DD}	Positive Power-Supply Input
43	18	DUT4	Channel 4 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 4.
44	17	PMU4	Channel 4 Parametric Measurement Connection. PMU switch I/O node for channel 4.
45, 50, 53, 57	4, 8, 11, 16	V _{SS}	Negative Power-Supply Input
46	15	VL	Logic Power-Supply Input
48	13	DUT3	Channel 3 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 3.
49	12	PMU3	Channel 3 Parametric Measurement Connection. PMU switch I/O node for channel 3.
54	7	PMU2	Channel 2 Parametric Measurement Connection. PMU switch I/O node for channel 2.
55	6	DUT2	Channel 2 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 2.
58	3	PMU1	Channel 1 Parametric Measurement Connection. PMU switch I/O node for channel 1.
59	2	DUT1	Channel 1 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 1.
61	80	FORCE2	Channel 2 PMU Force Connection
62	79	SENSE2	Channel 2 PMU Sense Connection
63	78	FORCE1	Channel 1 PMU Force Connection
64	77	SENSE1	Channel 1 PMU Sense Connection
65	76	COMPLO	Comparator Output-Low Voltage Reference Input
66	75	COMPHI	Comparator Output-High Voltage Reference Input
67	74	LDV4	Channel 4 Load Voltage Input
68	73	LDV3	Channel 3 Load Voltage Input
69	72	LDV2	Channel 2 Load Voltage Input
70	71	LDV1	Channel 1 Load Voltage Input
71	70	CLV2	Channel 2 Threshold Voltage Input for Low-Side Comparator
72	69	CHV2	Channel 2 Threshold Voltage Input for High-Side Comparator
73	68	DTV2	Channel 2 Driver Termination Voltage Input
74	67	DLV2	Channel 2 Driver Low Voltage Input
75	66	DHV2	Channel 2 Driver High Voltage Input
76	65	CLV1	Channel 1 Threshold Voltage Input for Low-Side Comparator
77	64	CHV1	Channel 1 Threshold Voltage Input for High-Side Comparator
78	63	DTV1	Channel 1 Driver Termination Voltage Input
79	62	DLV1	Channel 1 Driver Low Voltage Input
80	61	DHV1	Channel 1 Driver High Voltage Input
_	_	EP	Exposed Pad. Leave unconnected or connect to VSS.

Figure 1. Block Diagram

Document 126-2

Detailed Description

The MAX9971/MAX9972 are four-channel, pin-electronics ICs for automated test equipment that include, for each channel, a three-level pin driver, a window comparator, a passive load, and a Kelvin instrument connection (Figure 1). All functions feature a -2.2V to +5.2V operating range and the drivers include both highimpedance and active-termination (3rd-level drive) modes. The comparators feature programmable output voltages, allowing optimization for different CMOS interface standards. The loads have selectable output resistance for optimizing DUT current loading. The Kelvin paths allow accurate connection of an instrument with ±25mA source/sink capability. Additionally, the MAX9971/MAX9972 offer a low-leakage mode that reduces DUT_leakage current to less than 20nA.

The MAX9971/MAX9972 are available in two grades. The A-grade devices provide tighter tolerances for driver gains and offsets, comparator offsets, and load resistor values. This allows reference levels to be shared across multiple channels in cost-sensitive systems. The B-grade devices are intended for system designs that incorporate independent reference levels for each channel.

Each of the four channels feature single-ended CMOScompatible inputs, DATA_ and RCV_, for control of the driver signal path (Figure 2). The MAX9971/MAX9972 modal operation is programmed through a 3-wire, lowvoltage CMOS-compatible serial interface.

Output Driver

The driver input is a high-speed multiplexer that selects one of three voltage inputs; DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_, and mode-control bit TERM (Table 1). DATA_ and RCV_ are single-ended inputs with threshold levels equal to V_L / 2. Each channel's threshold levels are independently generated to minimize crosstalk.

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 2, Table 1). High-speed input RCV_ and mode-control bits TERM and LLEAK control these modes. In high-impedance mode, the bias current at DUT is less than 2uA over the -2.2V to +5.2V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 20nA, and signal tracking slows.

The nominal driver output resistance is 50Ω . Custom resistance values from 45Ω to 51Ω are possible; consult factory for further information.

Table 1. Driver Channel Control Signals

	ERNAL ECTIONS		RNAL OL BITS	DRIVER OUTPUT	DRIVER MODE
RCV_	DATA_	TERM	LLEAK	001101	WODL
0	0	Χ	0	DUT_ = DLV_	Drive
0	1	Χ	0	DUT_ = DHV_	Drive
1	Х	0	0	High Impedance	Receive
1	Х	1	0	DUT_ = DTV_	Receive
Х	Х	Х	1	Low Leak	Low Leakage

Figure 2. Multiplexer and Driver Channel

Comparators

The MAX9971/MAX9972 provide two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (see Figure 1). Comparator outputs are a logical result of the input conditions, as indicated in Table 2.

The comparator output voltages are easily interfaced to a wide variety of logic standards. Use buffered inputs COMPHI and COMPLO to set the high and low output voltages. For correct operation, COMPHI should be greater than or equal to COMPLO. The comparator 50Ω output impedance provides source termination (Figure 3).

Passive Load

The MAX9971/MAX9972 channels each feature a passive load consisting of a buffered input voltage, LDV_, connected to DUT_ through two resistive paths (Figure 1). Each path connects to DUT_ individually by a switch controlled through the serial interface. Programming options include none (load disconnected), either, or both paths connected. The resistor values vary depending on the accuracy grade of the device, as shown in Table 3. The loads facilitate fast open/short testing in conjunction with the comparator, and pullup of open-drain DUT_ outputs.

Parametric Switches

Each of the four MAX9971/MAX9972 channels provides force-and-sense paths for connection of a PMU or other DC resource to the device-under-test (Figure 1). Each force-and-sense switch is independently controlled though the serial interface providing maximum application flexibility. PMU_ and DUT_ are provided on separate pins allowing designs that do not require the parametric switch feature to avoid the added capacitance of PMU_. It also allows PMU_ to connect to DUT_ either directly or with an impedance-matching network.

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port places the MAX9971/MAX9972 into a very-low-leakage state (see the *Electrical Characteristics* table). This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK control is independent for each channel.

When DUT_ is driven with a high-speed signal while LLEAK is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* table indicates device behavior under this condition.

Table 2. Comparator Logic

DUT_ > CHV_	_> CHV_ DUT_> CLV_ CI		CMPL_
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Figure 3. Complementary 50Ω Comparator Outputs

Table 3. Passive Load Resistance Values

ACCURACY GRADE	HIGH RESISTOR ($k\Omega$)	LOW RESISTER ($k\Omega$)
А	7.5	2
В	6	1.5

Temperature Monitor

Each device supplies a single temperature output signal, TEMP, that asserts a nominal 3.43V output voltage at a +70°C (343K) die temperature. The output voltage increases proportionately with temperature at a rate of 10mV/°C. The temperature sensor output impedance is 500Ω , typical.

Document 126-2

Quad, Ultra-Low-Power, 300Mbps ATE **Drivers/Comparators**

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9971/MAX9972 modes (Figure 4). Control data flow into a 12-bit shift register (MSB first) and are latched when $\overline{\text{CS}}$ is taken high. Data from the shift register are then loaded to the per-channel control latches as determined by bits D8-D11, and indicated in Figure

4 and Table 4. The latches contain the six mode bits for each channel of the device. The mode bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel. Transfer data asynchronously from the input registers to the channel registers by forcing \overline{LD} low. With \overline{LD} always low, data transfer on the rising edge of \overline{CS} .

Figure 4. Serial Interface

Table 4. Control Register Bit Functions

DIT	NAME	NAME FUNCTION		BIT STATE		
BIT	DII IVAIVIL	FUNCTION	0	1	STATE	
0	TERM	Term Mode Control	High Impedance	Term Mode	0	
1	LLEAK	Assert Low-Leakage Mode	Term Mode	Low Leakage	0	
2	SENSE EN	Enable Sense Switch	Disabled	Enabled	0	
3	FORCE EN	Enable Force Switch	Disabled	Enabled	0	
4	LOAD EN LOW	Enable Low Load Resistor	Disabled	Enabled	0	
5	LOAD EN HIGH	Enable High Load Resistor	Disabled	Enabled	0	
6	_	Unused	X	X	0	
7	_	Unused	X	X	0	
8	CH1	Update Channel 1 Control Register	Disabled	Enabled	1	
9	CH2	Update Channel 2 Control Register	Disabled	Enabled	1	
10	CH3	Update Channel 3 Control Register	Disabled	Enabled	1	
11	CH4	Update Channel 4 Control Register	Disabled	Enabled	1	

Figure 5. Serial-Interface Timing

Heat Removal

With adequate airflow, no external heat sinking is needed under most operating conditions. If excess heat must be dissipated through the exposed paddle, solder it to circuit board copper (MAX9972) or use an external heat sink (MAX9971). The exposed paddle must be either left unconnected, isolated, or connected to Vss.

Power Minimization

To minimize power consumption, activate only the needed channels. Each channel placed in low-leakage mode saves approximately 240mW.

Pin Configurations

Chip Information

_Package Information

TRANSISTOR COUNT: 5728
PROCESS: BICMOS

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

22 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

News Release

FOR IMMEDIATE RELEASE

Nextest Showcases a Range of Test Solutions at SEMICON/West 2007

SAN FRANCISCO, California—July 16, 2007—Nextest Systems Corporation (NASDAQ: NEXT), a leading manufacturer of automatic test equipment (ATE) for cost-sensitive semiconductors, announced that it will exhibit a wide range of test solutions at SEMICON/West this year. The conference is being held at the Moscone West Convention Center in San Francisco, California, July 17-19, 2007. The conference provides a venue for semiconductor equipment makers to promote their company, products and services, to chip-making companies from around the world.

Showcased in Nextest's booth #8441, at SEMICON/West this year, are test solutions that demonstrate the Magnum's product family test systems; ranging from 256 pins, up to 7680 pins, and capable of testing a variety of devices, including: NAND, SOC, and logic semiconductors.

MAGNUM GrandeTM 7680-pin Test System

To address the industry-wide concern over escalating test costs and capacity requirements, Nextest will demonstrate Magnum's unique architecture that provides customers with the flexibility to add functionality and pin count without system downtime, or software reconfiguration.

At Semicon/West 2005, Magnum displayed 320 devices in parallel. At that same show in 2006, that number soared to 720 parts in parallel. This year, Magnum Grande's 7,680 I/O pin test system will be integrated with a Mirae Model 530 handler—capable of testing 960 NAND flash devices in parallel. To date, this is the highest number of devices being tested in parallel.

--more--

MAGNUM SVTM 1024-pin Test System

Demonstrating Magnum's logic test capability, the Magnum SV is a production test system targeted at FPGA devices. This system is the ideal solution for test requirements of high pin count devices in parallel and provides a flexible pattern architecture for logic and memory test on-the-fly. Also being demonstrated is Nextest's logic Wavetool software that dramatically reduces test program development time.

MAGNUM iCP-EVTM 128-pin Test System

Also on display, the Magnum ICP-EV will be integrated with an Interaction IAOPT-15ONE Illuminator. Focused at the CMOS Image Sensor (CIS) market, Magnum iCP-EV offers CIS manufacturers a low-cost engineering alternative for program development and debug. Due to the system's small physical size, engineering can perform the necessary work in an office environment, prior to moving devices to the Magnum iCP for volume-production testing. This innovative approach allows for a smooth transition to test CIS devices in parallel and is a much more cost-effective method over utilizing expensive, "large-iron" test equipment. CIS devices are being utilized in numerous consumer products such as cell phones, still cameras, web cams, PDA's, and security cameras.

ABOUT NEXTEST

Nextest Systems Corporation is a low-cost leader in the design and manufacture of automatic test equipment (ATE) for Flash memory and System-On-Chip semiconductors. Nextest's products address the growing demand from manufacturers for ATE with increased throughput, functionality and reliability, while reducing time to market and cost of test. Nextest has shipped over 1,800 systems to more than 60 semiconductor companies worldwide. Further information is available at www.nextest.com.

###

Nextest Agency Contact:
GEM Design & Public Relations
Connie Graybeal-Berar
408.529.4694
cberar@mac.com

News Release

FOR IMMEDIATE RELEASE

Nextest Showcases a Range of Test Solutions at SEMICON/West 2007

SAN FRANCISCO, California—July 16, 2007—Nextest Systems Corporation (NASDAQ: NEXT), a leading manufacturer of automatic test equipment (ATE) for cost-sensitive semiconductors, announced that it will exhibit a wide range of test solutions at SEMICON/West this year. The conference is being held at the Moscone West Convention Center in San Francisco, California, July 17-19, 2007. The conference provides a venue for semiconductor equipment makers to promote their company, products and services, to chip-making companies from around the world.

Showcased in Nextest's booth #8441, at SEMICON/West this year, are test solutions that demonstrate the Magnum's product family test systems; ranging from 256 pins, up to 7680 pins, and capable of testing a variety of devices, including: NAND, SOC, and logic semiconductors.

MAGNUM GrandeTM 7680-pin Test System

To address the industry-wide concern over escalating test costs and capacity requirements, Nextest will demonstrate Magnum's unique architecture that provides customers with the flexibility to add functionality and pin count without system downtime, or software reconfiguration.

At Semicon/West 2005, Magnum displayed 320 devices in parallel. At that same show in 2006, that number soared to 720 parts in parallel. This year, Magnum Grande's 7,680 I/O pin test system will be integrated with a Mirae Model 530 handler—capable of testing 960 NAND flash devices in parallel. To date, this is the highest number of devices being tested in parallel.

--more--

MAGNUM SVTM 1024-pin Test System

Demonstrating Magnum's logic test capability, the Magnum SV is a production test system targeted at FPGA devices. This system is the ideal solution for test requirements of high pin count devices in parallel and provides a flexible pattern architecture for logic and memory test on-the-fly. Also being demonstrated is Nextest's logic Wavetool software that dramatically reduces test program development time.

MAGNUM iCP-EVTM 128-pin Test System

Also on display, the Magnum ICP-EV will be integrated with an Interaction IAOPT-15ONE Illuminator. Focused at the CMOS Image Sensor (CIS) market, Magnum iCP-EV offers CIS manufacturers a low-cost engineering alternative for program development and debug. Due to the system's small physical size, engineering can perform the necessary work in an office environment, prior to moving devices to the Magnum iCP for volume-production testing. This innovative approach allows for a smooth transition to test CIS devices in parallel and is a much more cost-effective method over utilizing expensive, "large-iron" test equipment. CIS devices are being utilized in numerous consumer products such as cell phones, still cameras, web cams, PDA's, and security cameras.

ABOUT NEXTEST

Nextest Systems Corporation is a low-cost leader in the design and manufacture of automatic test equipment (ATE) for Flash memory and System-On-Chip semiconductors. Nextest's products address the growing demand from manufacturers for ATE with increased throughput, functionality and reliability, while reducing time to market and cost of test. Nextest has shipped over 1,800 systems to more than 60 semiconductor companies worldwide. Further information is available at www.nextest.com.

###

Nextest Agency Contact:
GEM Design & Public Relations
Connie Graybeal-Berar
408.529.4694
cberar@mac.com

Quad, Ultra-Low-Power, 300Mbps ATE **Drivers/Comparators**

General Description

The MAX9971/MAX9972 four-channel, ultra-low-power, pin-electronics ICs include, for each channel, a threelevel pin driver, a window comparator, a passive load, and force-and-sense Kelvin-switched parametric measurement unit (PMU) connections. The driver features a -2.2V to +5.2V voltage range, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The window comparator features 500MHz equivalent input bandwidth and programmable output voltage levels. The passive load provides pullup and pulldown voltages to the device-under-test (DUT).

Two grade versions are available, A grade and B grade. The A-grade version provides tight gain and offset matching for the driver and comparator, allowing reference levels to be shared across multiple channels. It also provides tighter tolerance of the load resistance values. The B-grade version is for system designs that incorporate independent reference levels for each channel.

Low-leakage, high-impedance, and terminate controls are operational configurations that are programmed through a 3-wire, low-voltage, CMOS-compatible serial interface. High-speed PMU switching is realized through dedicated digital control inputs.

These devices are available in an 80-pin. 12mm x 12mm body, 1.0mm pitch TQFP with an exposed 6mm x 6mm die pad on the bottom of the package (MAX9972), and the top of the package (MAX9971), for efficient heat removal. The MAX9971/MAX9972 are specified to operate over the 0°C to +70°C commercial temperature range, and feature a die temperature monitor output.

Applications

NAND Flash Testers

DRAM Probe Testers

Low-Cost Mixed-Signal/System-on-Chip (SOC)

Active Burn-In Systems

Structural Testers

Features

♦ Small Footprint—Four Channels in 0.3in²

♦ Low-Power Dissipation: 325mW/Channel Typical

♦ High Speed: 300Mbps at 3V_{P-P}

♦ -2.2V to +5.2V Operating Range

♦ Active Termination (3rd-Level Drive)

♦ Integrated PMU Switches

♦ Passive Load

♦ Low-Leak Mode: 20nA max

♦ Low Gain and Offset Error

♦ Lead-Free Package Available

Pin Configurations appear at end of data sheet.

Ordering Information and Selector Guide

PART	ACCURACY GRADE	PIN-PACKAGE	PKG CODE	HEAT EXTRACTION
MAX9971ACCS*	А	80 TQFP-IDP†	_	Тор
MAX9971BCCS*	В	80 TQFP-IDP†	_	Тор
MAX9972ACCS*	А	80 TQFP-EP††	C80E-4	Bottom
MAX9972BCCS	В	80 TQFP-EP††	C80E-4	Bottom

^{*}Future product—contact factory for availability.

Note: All devices are specified over the 0°C to +70°C operating temperature range.

All versions available in both leaded and lead-free packaging. Specify lead-free by adding the "+" symbol at the end of the part number when ordering.

MIXIM

[†]IDP = Inverted die pad.

^{††}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

0.3V to +9.4V
6.25V to +0.3V
+15.7V
0.3V to +5V
0.3V to +9.4V
Vss to VDD
Vss to VDD
V _{SS} to V _{DD}
0.3V to +5V

DUT_, CMPH_, CMPL_ Short-Circuit Duration	Continuous
DHV_, DLV_, DTV_ to Each Other	Vss to VDD
CHV_, CLV_ to DUT	Vss to VDD
DOUT to GND	0.3V to +5V
TEMP Short-Circuit Duration	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
80-Pin TQFP-EP (derate 35.7mW/°C above +7	70°C)2857mW
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DRIVER (all specifications apply	when DUT_	= DHV_, DUT_ = DTV_, or	DUT_ = DLV_)				
DC CHARACTERISTICS							
Voltage Range				-2.2		+5.2	V
Gain		Measured at 0 and 3V	A grade	0.995	1	1.005	V/V
Gairi		Measured at 0 and 3v	B grade	0.95		1.05	V/V
Gain Temperature Coefficient					50		ppm/°C
Offset		$V_{DHV} = 2V, V_{DLV} = 0,$	A grade			±7	mV
Oliset		V _{DTV} _ = 1V	B grade			±100	IIIV
Offset Temperature Coefficient					±250		μV/°C
Power-Supply Rejection Ratio	PSRR	V _{DD} , V _{SS} independently varied over full range				18	mV/V
Maximum DC Drive Current	I _{DUT} _			±40		±90	mA
DC Output Resistance		$I_{DUT} = \pm 10$ mA (Note 2)		48.5	49.5	50.5	Ω
DC Output Resistance Variation		I_{DUT} = -40mA to +40mA				2.5	Ω
		DHV to DLV and DTV: V _{DLV} = V _{DTV} = +1.5V, V _{DHV} = -2.2V, +5.2V				5	
DC Crosstalk		DLV to DHV and DTV: V _{DHV} = V _{DTV} = +1.5V, V _{DLV} = -2.2V, +5.2V				5	mV
		DTV to DHV and DLV: V _{DHV} = V _{DLV} = +1.5V, V _{DTV} = -2.2V, +5.2V				5	
Linearity France		0 to 3V (Note 3)				±5	mV
Linearity Error		Full range (Note 4)				±15	mV

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All temperature coefficients measured at T_J = +50^{\circ}C \ to +100^{\circ}C, unless otherwise noted.) (Note 1)$

Document 126-2

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
AC CHARACTERISTICS (Note 5)	•			•			•	
Dynamic Output Current		(Note 1)		40			mA	
Drive-Mode Overshoot, Undershoot, and Preshoot		200mV to 4V _{P-P} swing (Note 6)		5% +10		mV		
Tayra Mada Cailea		V _{DHV} = V _{DTV} = 1	V, V _{DLV} _ = 0		25		.,	
Term-Mode Spike		$V_{DLV} = V_{DTV} = 0$, V _{DHV} = 1V		25		mV	
High-Impedance-Mode Spike		$V_{DLV} = -1.0V, V_{DHV} = 0$			25		mV	
Tilgit-impedance-wode Spike		$V_{DLV} = 0$, $V_{DHV} =$	= 1V		25		1110	
Prop Delay, Data to Output					2		ns	
Prop-Delay Temperature Coefficient					10		ps/°C	
Prop-Delay Match, t _{LH} vs. t _{HL}					30		ps	
Prop-Delay Skew, Drivers Within Package				150			ps	
Prop-Delay Change vs. Pulse		Relative to 12.5ns pulse	3V _{P-P} , 40MHz, PW = 4ns to 21ns		20			
Width			1V _{P-P} , 40MHz, PW = 2.5ns to 23.5ns		90		ps	
Prop-Delay Change vs. Common- Mode Voltage		$1V_{P-P}$, $V_{DLV} = 0$ to $V_{DLV} = 1V$	3V, relative to delay at		80		ps	
Prop Delay, Data to High Impedance		$V_{DHV} = +1.5V, V_{D}$ directions	LV_ = -1.5V, both		1.8		ns	
Prop Delay, Data to Term		$V_{DHV} = +1.5V, V_{D}$ both directions	LV_ = -1.5V, V _{DTV} _ = 0,		1.6		ns	
Minimum Voltage Swing		(Note 7)		') 25			mV	
		$V_{DHV} = 0.2V, V_{DL}$	v_ = 0, 20% to 80%		0.7			
		V _{DHV} = 1V, V _{DLV} = 0, 20% to 80%			0.7			
		$V_{DHV} = 3V, V_{DLV}$	= 0, 10% to 90%	1.5	2.0	2.5		
Rise/Fall Time		V _{DHV} = 4V, V _{DLV} = 0, R _L = 500Ω, 10% to 90%			2.6		ns	
		V _{DHV} = 5V, V _{DLV} = 0, R _L = 500Ω, 10% to 90%		3.4				
Rise/Fall-Time Matching		$V_{DHV} = 1V \text{ to } 5V$			±5		%	
		200mV, V _{DHV} _ = 0.	2V, V _{DLV} _ = 0		1.8			
Minimum Pulse Width (Note 8)		1V, V _{DHV} = 1V, V _{DLV} = 0 3V, V _{DHV} = 3V, V _{DLV} = 0			2.4		ns	
					3.3			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
COMPARATOR (Note 9)								
DC CHARACTERISTICS (driver	in high-imped	lance mode)						
Input Voltage Range				-2.2		+5.2	V	
Differential Input Voltage		V _{DUT_} - V _{CHV_} , V _{DUT_} - V _{CLV_}		-7.4		+7.4	V	
Hysteresis		V _{CHV} = V _{CLV} = 1.5V			8		mV	
1			A grade			±10	.,	
Input Offset Voltage		V _{DUT} _ = 1.5V	B grade			±100	mV	
Input Offset Temperature Coefficient					25		μV/°C	
Common-Mode Rejection Ratio	CMRR	V _{DUT} = 0 and 3V		60			dB	
		V _{DUT} _ = 1.5V				±5	.,	
Linearity Error (Note 10)		V _{DUT} _ = -2.2V, +5.2V				±10	mV	
Power-Supply Rejection Ratio	PSRR	V _{DUT} = 1.5V, supplies varied over full range			5	mV/V		
AC CHARACTERISTICS (Note 1	1)			1			•	
Facility of a set for set & David ship		Terminated (Note 12)			500		MHz	
Equivalent Input Bandwidth		High impedance (Note 13)			300			
Propagation Delay					3.9		ns	
Prop-Delay Temperature Coefficient					4		ps/°C	
Prop-Delay Match, tLH to tHL					120		ps	
Prop-Delay Skew, Comparators Within Package		Same edges (LH and HL)			200		ps	
Prop-Delay Dispersions vs.		0 to 4.9V			20			
Common-Mode Voltage (Note 14)		-1.9V to +4.9V			30		ps	
Prop-Delay Dispersions vs. Overdrive		V _{CHV} = V _{CLV} = 0.1V to 0.9V, V _{DUT} = 1V _{P-P} , t _R = t _F = 500ps, 10% to 90% relative to timing at 50% point			220		ps	
Prop-Delay Dispersions vs. Pulse Width		2ns to 23ns pulse width, relative to 12.5ns pulse width			±60		ps	
Prop-Delay Dispersions vs. Slew Rate		0.5V/ns to 2V/ns			50		ps	

/U/IXI/U

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

Document 126-2

PARAMETER	SYMBOL	CONDIT	TIONS	MIN	TYP	MAX	UNITS	
LOGIC OUTPUTS								
Reference Voltages COMPHI and COMPLO		(Note 15)		0		+3.6	V	
Output High Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPHI} = 1V	COMPHI at			±50	mV	
Output Low Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPLO} = 0V	COMPLO at			±50	mV	
Output Resistance		ICHV_ = ICLV_ = ±10mA	4	40	50	60	Ω	
Current Limit					25		mA	
Rise/Fall Time		20% to 80%, V _{CHV} = 1 load = T-line, 50Ω, > 1r			0.7		ns	
PASSIVE LOAD								
DC CHARACTERISTICS (R _{DUT_2}	≥ 10M Ω)							
LDV_ Voltage Range				-2.2		+5.2	V	
Gain				0.99		1.01	V/V	
Gain Temperature Coefficient					0.02		%/°C	
Offset						±100	mV	
Offset Temperature Coefficient					0.02		mV/°C	
Power-Supply Rejection Ratio	PSRR				10		mV/V	
Output Resistance		$I_{DUT} = \pm 0.2 \text{mA},$	A grade	7.125	7.5	7.875	kΩ	
Tolerance—High Value		$V_{LDV} = 1.5V$	B grade	4.200	6.0	7.875	K77	
Output Resistance		$I_{DUT} = \pm 0.1 \text{mA},$	A grade	1.90	2.0	2.10	kΩ	
Tolerance—Low Value		$V_{LDV} = 1.5V$	B grade	1.05	1.5	2.10	N32	
Switch Resistance Variation		Relative to 1.5V	0 to 3V		±10		0/	
Switch nesistance variation		Theialive to 1.5v	Full range		±30		%	
Maximum Output Current		$V_{LDV} = -2V$, $V_{DUT} = +$	+5V		±4		mA	
(Note 16)		V _{LDV} = +5V, V _{DUT} = -2V			±4		MA	
Linearity Error, Full Range		Measured at -2.2V, +1. (Note 16)			±25	mV		
AC CHARACTERISTICS								
Settling Time, LDV_ to Output		V_{LDV} = -2V to +5V step, R_{DUT} = 100k Ω (Note 17)			0.5		μs	
Output Transient Response		V _{LDV} = +1.5V, V _{DUT} wave at 1MHz, R _{DUT} =			20		ns	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
PMU SWITCHES (FORCE_, SENS	SE_, PMU_)					
Voltage Range			-2.2		+5.2	V
Force Switch Resistance		VFORCE_ = 1.5V, IPMU_ = ±10mA			40	Ω
Force Cuitch Cornelies		V _{PMU} = 6.2V, V _{FORCE} set to make I _{FORCE} = 30mA	25			A
Force Switch Compliance		V _{PMU} = -3.2V, V _{FORCE} set to make I _{FORCE} = -30mA	25			mA
Force Switch Resistance		0 to 3V		±10		%
Variation (Note 18)		Full range		±30		70
Sense Switch Resistance			700	1000	1300	Ω
Sense Switch Resistance Variation		Relative to 1.3V, full range		±30		%
PMU_ Capacitance		Force-and-sense switches open		5		рF
FORCE_ Capacitance				5		рF
SENSE_ Capacitance				0.2		рF
FORCE_ External Capacitance		Allowable external capacitance		2		nF
SENSE_ External Capacitance		Allowable external capacitance		1		nF
FORCE_ and SENSE_ Switching Speed		Connect or disconnect		10		μs
PMU_ Leakage		FORCE EN_ = SENSE EN_ = 0, VFORCE_ = VSENSE_ = -2.2V to +5.2V		±0.5	±5	nA
TOTAL FUNCTION						
DUT_						
Leakage, High-Impedance Mode		Load switches open, VDUT_ = +5.2V, VCLV_ = VCHV_ = -2.2V, VDUT_ = -2.2V, VCLV_ = VCHV_ = +5.2V, full range			2	μА
Leakage, Low-Leakage Mode		Full range		±1	±20	nA
Low-Leakage Recovery Time		(Note 19)		10		μs
Combined Consoitance		Term mode		2		م ا
Combined Capacitance		High-impedance mode		5		pF
Load Resistance		(Note 20)		1		GΩ
Load Capacitance		(Note 20)		12		nF

/U/IXI/U

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_{L} = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_{J} = +75^{\circ}C. \ All \$ temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

Document 126-2

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP I	ИΑХ	UNITS
VOLTAGE REFERENCE INPUTS	(DHV_, DTV_	, DLV_, DATA_, RCV_, CHV_, CLV_, LDV_	, COMPHI,	COMPLO)		
Input Bias Current				±	100	μΑ
Input Bias Current Temperature Coefficient				±200		nA/°C
Settling to Output		0.1% of full-scale step		10		μs
DIGITAL INPUTS (DATA_, RCV_	, LD, DIN, SC	LK, CS)				-
Input High Voltage		(Note 21)	V _L / 2 + 0.2	-	+3.6	V
Input Low Voltage		(Note 21)	-0.3		_ / 2 - 0.2	V
Input Bias Current					100	μΑ
SERIAL DATA OUTPUT (DOUT)						
Output High Voltage		I _{OH} = -1mA	V _L - 0.4		VL	V
Output Low Voltage		I _{OL} = 1mA	0	-	+0.4	V
Output Rise and Fall Time		C _L = 10pF		1.1		ns
SCLK to DOUT Delay		C _L = 10pF	t _{DH}		CLK - t _{DS} 2ns	ns
SERIAL-INTERFACE TIMING (No	ote 22)		•			
SCLK Frequency					50	MHz
SCLK Pulse-Width High	tCH		10			ns
SCLK Pulse-Width Low	t _{CL}		10			ns
CS Low to SCLK High Setup	tcsso		3.5			ns
SCLK High to CS Low Hold	tCSH0		0			ns
CS High to SCLK High Setup	tcss1		3.5			ns
SCLK High to CS High Hold	tCSH1		15			ns
DIN to SCLK High Setup	t _{DS}		3.5			ns
DIN to SCLK High Hold	tDH		1			ns
CS High to LOAD Low Setup	tCLL		6			ns
LD Low Hold Time	t _{LDW}		5			ns
LD High to Any Activity			0			ns
V _L Rising to $\overline{\text{CS}}$ Low		Power-on delay		2		μs
TEMP SENSOR						
Nominal Voltage		$T_J = +27^{\circ}C$		3.00		V
Temperature Coefficient				+10		mV/°C
Output Resistance				500		Ω

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0, VLDV = 0, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C. All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

Document 126-2

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply Voltage	V_{DD}	(Note 23)	7.6	8	8.4	V
Negative Supply Voltage	V _{SS}	(Note 23)	-5.25	-5	-4.75	V
Logic Supply Voltage	VL		2.3		3.6	V
Positive Supply Current	I _{DD}	f _{OUT} = 0MHz		97	120	mA
Negative Supply Current	ISS	f _{OUT} = 0MHz		99	120	mA
Logic Supply Current	IL			0.15	0.30	mA
Static Power Dissipation		f _{OUT} = 0MHz		1.3	1.5	W
Operating Power Dissipation		f _{OUT} = 100Mbps (Note 24)		1.4		W

- All minimum and maximum specifications are 100% production tested except driver dynamic output current, which is guaranteed by design. All specifications are with DUT_ and PMU_ electrically isolated, unless otherwise noted.
- Note 2: Nominal target value is 49.5 Ω . Contact factory for alternate trim selections within the 45 Ω to 55 Ω range.
- Note 3: Measured at 1.5V, relative to a straight line through 0 and 3V.
- Measured at end points, relative to a straight line through 0 and 3V. Note 4:
- Note 5: DUT_ is terminated with 50Ω to ground, $V_{DHV} = 3V$, $V_{DLV} = 0$, $V_{DTV} = 1.5V$, unless otherwise specified. DATA_ and RCV_logic levels are VHIGH = 2V, VLOW = 1V.
- Note 6: Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot is any aberration in the signal before it reaches 10% of its swing.
- At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the Note 7:
- At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_. Note 8:
- Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- Note 10: Relative to a straight line through 0 and 3V.
- Note 11: Unless otherwise noted, all propagation delays are measured at 40MHz, V_{DUT} = 0 to 1V, V_{CHV} = V_{CLV} = +0.5V, t_R = t_F = 500ps, Z_S = 50Ω , driver in term mode with V_{DTV} = +0.5V. Comparator outputs are terminated with 50Ω to GND. Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.
- Note 12: Terminated is defined as driver in drive mode and set to zero volts.
- **Note 13:** High impedance is defined as driver in high-impedance mode.
- **Note 14:** V_{DUT} = 200mV_{P-P}. Propagation delay is compared to a reference time at 1.5V.
- Note 15: The comparator meets all its timing specifications with the specified output conditions when the output current is less than 15mA, V_{COMPHI} > V_{COMPLO}, and V_{COMPHI} - V_{COMPLO} ≤ 1V. Higher voltage swings are valid but AC performance may degrade.
- Note 16: LOAD EN LOW = LOAD EN HIGH = 1.
- **Note 17:** Waveform settles to within 5% of final value into load $100k\Omega$.
- Note 18: IPMU = ±2mA at VFORCE = -2.2V, +1.5V, and +5.2V. Percent variation relative to value calculated at VFORCE = +1.5V.
- Note 19: Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_.
- Note 20: Load at end of 2ns transmission line; for stability only, AC performance may be degraded.
- Note 21: The driver meets all of its timing specifications over the specified digital input voltage range.
- Note 22: Timing characteristics with VLOGIC = 3V.
- Note 23: Specifications are simulated and characterized over the full power-supply range. Production tests are performed with power supplies at typical values.
- **Note 24:** All channels driven at $3V_{P-P}$, load = 2ns, 50Ω transmission line terminated with 3pF.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Pin Description

PIN			FUNCTION		
MAX9972	MAX9971	NAME	FUNCTION		
1	60	DATA1	Channel 1 Multiplexer Control Input. Selects driver 1 input from DHV1 or DLV1 in drive mode. See Table 1 and Figure 2.		
2	59	RCV1	Channel 1 Multiplexer Control Input. Sets channel 1 mode to drive or receive. See Table 1 and Figure 2.		
3, 8, 13, 18, 51	10, 43, 48, 53, 58	GND	Analog Ground		
4	57	CMPH1	Channel 1 High-Side Comparator Output		
5	56	CMPL1	Channel 1 Low-Side Comparator Output		
6	55	DATA2	Channel 2 Multiplexer Control Input. Selects driver 2 input from DHV2 or DLV2 in drive mode. See Table 1 and Figure 2.		
7	54	RCV2	Channel 2 Multiplexer Control Input. Sets channel 2 mode to drive or receive. See Table 1 and Figure 2.		
9	52	CMPH2	Channel 2 High-Side Comparator Output		
10	51	CMPL2	Channel 2 Low-Side Comparator Output		
11	50	CMPL3	Channel 3 Low-Side Comparator Output		
12	49	CMPH3	Channel 3 High-Side Comparator Output		
14	47	RCV3	Channel 3 Multiplexer Control Input. Sets channel 3 mode to drive or receive. See Table 1 and Figure 2.		
15	46	DATA3	Channel 3 Multiplexer Control Input. Selects driver 3 input from DHV3 or DLV3 in drive mode. See Table 1 and Figure 2.		
16	45	CMPL4	Channel 4 Low-Side Comparator Output		
17	44	CMPH4	Channel 4 High-Side Comparator Output		
19	42	RCV4	Channel 4 Multiplexer Control Input. Sets channel 4 mode to drive or receive. See Table 1 and Figure 2.		
20	41	DATA4	Channel 4 Multiplexer Control Input. Selects driver 4 input from DHV4 or DLV4 in drive mode. See Table 1 and Figure 2.		
21	40	DHV4	Channel 4 Driver High Voltage Input		
22	39	DLV4	Channel 4 Driver Low Voltage Input		
23	38	DTV4	Channel 4 Driver Termination Voltage Input		
24	37	CHV4	Channel 4 Threshold Voltage Input for High-Side Comparator		
25	36	CLV4	Channel 4 Threshold Voltage Input for Low-Side Comparator		
26	35	DHV3	Channel 3 Driver High Voltage Input		
27	34	DLV3	Channel 3 Driver Low Voltage Input		
28	33	DTV3	Channel 3 Driver Termination Voltage Input		
29	32	CHV3	Channel 3 Threshold Voltage Input for High-Side Comparator		
30	31	CLV3	Channel 3 Threshold Voltage Input for Low-Side Comparator		
31	30	DGND	Digital Ground Connection		
32	29	DOUT	Serial-Interface Data Output		
33	28	ĪD	Load Input. Latches data from the serial input register to the control register on rising edge. Transparent when low.		

_Pin Description (continued)

Р	IN					
MAX9972	MAX9971	NAME	FUNCTION			
34	27	DIN	Serial-Interface Data Input			
35	26	SCLK	Serial Clock			
36	25	CS	Chip Select			
37	24	SENSE4	Channel 4 PMU Sense Connection			
38	23	FORCE4	Channel 4 PMU Force Connection			
39	22	SENSE3	Channel 3 PMU Sense Connection			
40	21	FORCE3	Channel 3 PMU Force Connection			
41	20	TEMP	Temperature Sensor Output			
42, 47, 52, 56, 60	1, 5, 9, 14, 19	V _{DD}	Positive Power-Supply Input			
43	18	DUT4	Channel 4 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 4.			
44	17	PMU4	Channel 4 Parametric Measurement Connection. PMU switch I/O node for channel 4.			
45, 50, 53, 57	4, 8, 11, 16	V _{SS}	Negative Power-Supply Input			
46	15	VL	Logic Power-Supply Input			
48	13	DUT3	Channel 3 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 3.			
49	12	PMU3	Channel 3 Parametric Measurement Connection. PMU switch I/O node for channel 3.			
54	7	PMU2	Channel 2 Parametric Measurement Connection. PMU switch I/O node for channel 2.			
55	6	DUT2	Channel 2 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 2.			
58	3	PMU1	Channel 1 Parametric Measurement Connection. PMU switch I/O node for channel 1.			
59	2	DUT1	Channel 1 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 1.			
61	80	FORCE2	Channel 2 PMU Force Connection			
62	79	SENSE2	Channel 2 PMU Sense Connection			
63	78	FORCE1	Channel 1 PMU Force Connection			
64	77	SENSE1	Channel 1 PMU Sense Connection			
65	76	COMPLO	Comparator Output-Low Voltage Reference Input			
66	75	COMPHI	Comparator Output-High Voltage Reference Input			
67	74	LDV4	Channel 4 Load Voltage Input			
68	73	LDV3	Channel 3 Load Voltage Input			
69	72	LDV2	Channel 2 Load Voltage Input			
70	71	LDV1	Channel 1 Load Voltage Input			
71	70	CLV2	Channel 2 Threshold Voltage Input for Low-Side Comparator			
72	69	CHV2	Channel 2 Threshold Voltage Input for High-Side Comparator			
73	68	DTV2	Channel 2 Driver Termination Voltage Input			
74	67	DLV2	Channel 2 Driver Low Voltage Input			
75	66	DHV2	Channel 2 Driver High Voltage Input			
76	65	CLV1	Channel 1 Threshold Voltage Input for Low-Side Comparator			
77	64	CHV1	Channel 1 Threshold Voltage Input for High-Side Comparator			
78	63	DTV1	Channel 1 Driver Termination Voltage Input			
79	62	DLV1	Channel 1 Driver Low Voltage Input			
80	61	DHV1	Channel 1 Driver High Voltage Input			
_	_	EP	Exposed Pad. Leave unconnected or connect to VSS.			

Figure 1. Block Diagram

Document 126-2

Detailed Description

The MAX9971/MAX9972 are four-channel, pin-electronics ICs for automated test equipment that include, for each channel, a three-level pin driver, a window comparator, a passive load, and a Kelvin instrument connection (Figure 1). All functions feature a -2.2V to +5.2V operating range and the drivers include both high-impedance and active-termination (3rd-level drive) modes. The comparators feature programmable output voltages, allowing optimization for different CMOS interface standards. The loads have selectable output resistance for optimizing DUT current loading. The Kelvin paths allow accurate connection of an instrument with ±25mA source/sink capability. Additionally, the MAX9971/MAX9972 offer a low-leakage mode that reduces DUT_leakage current to less than 20nA.

The MAX9971/MAX9972 are available in two grades. The A-grade devices provide tighter tolerances for driver gains and offsets, comparator offsets, and load resistor values. This allows reference levels to be shared across multiple channels in cost-sensitive systems. The B-grade devices are intended for system designs that incorporate independent reference levels for each channel.

Each of the four channels feature single-ended CMOS-compatible inputs, DATA_ and RCV_, for control of the driver signal path (Figure 2). The MAX9971/MAX9972 modal operation is programmed through a 3-wire, low-voltage CMOS-compatible serial interface.

Output Driver

The driver input is a high-speed multiplexer that selects one of three voltage inputs; DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_, and mode-control bit TERM (Table 1). DATA_ and RCV_ are single-ended inputs with threshold levels equal to V_L / 2. Each channel's threshold levels are independently generated to minimize crosstalk.

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 2, Table 1). High-speed input RCV_ and mode-control bits TERM and LLEAK

control these modes. In high-impedance mode, the bias current at DUT_ is less than $2\mu A$ over the -2.2V to +5.2V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 20nA, and signal tracking slows.

The nominal driver output resistance is 50Ω . Custom resistance values from 45Ω to 51Ω are possible; consult factory for further information.

Table 1. Driver Channel Control Signals

EXTERNAL CONNECTIONS				DRIVER OUTPUT	DRIVER MODE
RCV_	DATA_	TERM	LLEAK	001101	MODE
0	0	Χ	0	DUT_ = DLV_	Drive
0	1	Χ	0	DUT_ = DHV_	Drive
1	Х	0	0	High Impedance	Receive
1	Х	1	0	DUT_ = DTV_	Receive
Х	Х	Χ	1	Low Leak	Low Leakage

Figure 2. Multiplexer and Driver Channel

Comparators

The MAX9971/MAX9972 provide two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (see Figure 1). Comparator outputs are a logical result of the input conditions, as indicated in Table 2.

The comparator output voltages are easily interfaced to a wide variety of logic standards. Use buffered inputs COMPHI and COMPLO to set the high and low output voltages. For correct operation, COMPHI should be greater than or equal to COMPLO. The comparator 50Ω output impedance provides source termination (Figure 3).

Passive Load

The MAX9971/MAX9972 channels each feature a passive load consisting of a buffered input voltage, LDV_, connected to DUT_ through two resistive paths (Figure 1). Each path connects to DUT_ individually by a switch controlled through the serial interface. Programming options include none (load disconnected), either, or both paths connected. The resistor values vary depending on the accuracy grade of the device, as shown in Table 3. The loads facilitate fast open/short testing in conjunction with the comparator, and pullup of open-drain DUT_ outputs.

Parametric Switches

Each of the four MAX9971/MAX9972 channels provides force-and-sense paths for connection of a PMU or other DC resource to the device-under-test (Figure 1). Each force-and-sense switch is independently controlled though the serial interface providing maximum application flexibility. PMU_ and DUT_ are provided on separate pins allowing designs that do not require the parametric switch feature to avoid the added capacitance of PMU_. It also allows PMU_ to connect to DUT_ either directly or with an impedance-matching network.

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port places the MAX9971/MAX9972 into a very-low-leakage state (see the *Electrical Characteristics* table). This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK control is independent for each channel.

When DUT_ is driven with a high-speed signal while LLEAK is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* table indicates device behavior under this condition.

Table 2. Comparator Logic

DUT_ > CHV_	DUT_ > CLV_	СМРН_	CMPL_
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Figure 3. Complementary 50Ω Comparator Outputs

Table 3. Passive Load Resistance Values

ACCURACY GRADE	HIGH RESISTOR ($k\Omega$)	LOW RESISTER ($k\Omega$)
А	7.5	2
В	6	1.5

Temperature Monitor

Each device supplies a single temperature output signal, TEMP, that asserts a nominal 3.43V output voltage at a +70°C (343K) die temperature. The output voltage increases proportionately with temperature at a rate of 10mV/°C. The temperature sensor output impedance is 500Ω , typical.

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9971/MAX9972 modes (Figure 4). Control data flow into a 12-bit shift register (MSB first) and are latched when $\overline{\text{CS}}$ is taken high. Data from the shift register are then loaded to the per-channel control latches as determined by bits D8-D11, and indicated in Figure

4 and Table 4. The latches contain the six mode bits for each channel of the device. The mode bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel. Transfer data asynchronously from the input registers to the channel registers by forcing \overline{LD} low. With \overline{LD} always low, data transfer on the rising edge of \overline{CS} .

Document 126-2

Figure 4. Serial Interface

Table 4. Control Register Bit Functions

BIT	NAME	FUNCTION	BIT S	TATE	POWER-UP
БП	NAME	FUNCTION	0	1	STATE
0	TERM	Term Mode Control	High Impedance	Term Mode	0
1	LLEAK	Assert Low-Leakage Mode	Term Mode	Low Leakage	0
2	SENSE EN	Enable Sense Switch	Disabled	Enabled	0
3	FORCE EN	Enable Force Switch	Disabled	Enabled	0
4	LOAD EN LOW	Enable Low Load Resistor	Disabled	Enabled	0
5	LOAD EN HIGH	Enable High Load Resistor	Disabled	Enabled	0
6	_	Unused	X	Х	0
7	_	Unused	X	X	0
8	CH1	Update Channel 1 Control Register	Disabled	Enabled	1
9	CH2	Update Channel 2 Control Register	Disabled	Enabled	1
10	CH3	Update Channel 3 Control Register	Disabled	Enabled	1
11	CH4	Update Channel 4 Control Register	Disabled	Enabled	1

Figure 5. Serial-Interface Timing

Heat Removal

With adequate airflow, no external heat sinking is needed under most operating conditions. If excess heat must be dissipated through the exposed paddle, solder it to circuit board copper (MAX9972) or use an external heat sink (MAX9971). The exposed paddle must be either left unconnected, isolated, or connected to Vss.

Power Minimization

To minimize power consumption, activate only the needed channels. Each channel placed in low-leakage mode saves approximately 240mW.

Pin Configurations

Pin Configurations (continued)

Chip Information

_Package Information

TRANSISTOR COUNT: 5728
PROCESS: BiCMOS

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

22 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

The Future of Test

About Tanisys

Support / Contact Us

Careers

M550 for Flash Model 500 for Flash

M1K for DDR

>> see a sales sheet

M550

Flash Test System

Tanisys Continues To Lead The Way In Flash Card Test

Tanisys Technology, the leader in flash card test equipment, drives high volume Flash card manufacturing to a new level. The M550 Flash test system, built on the success of the Model 500, is designed for fully automated testing of SD, MMC, and Memory Stick Flash cards. Custom solutions for other card types or NAND device are also available. With increasing demand for NAND Flash products coupled with constant price pressure, highly parallel testing is critical. With the M550, Tanisys is setting a new standard for Flash test by providing the capability to test 320+ cards in parallel. The M550 test system offers world-class test economics while providing the highest test coverage in the industry. Tanisys test systems continue to be the choice of industry leading Flash card manufacturers worldwide.

Flexibility By Design

Tanisys Technology designed the M550 with flexibility and scalability in mind using the versatile, patented Distributed Network Architecture (DNA™). As the building block of advance parallel test solutions, DNA enables the user to seamlessly transition from engineering development to high-volume production. In combination with high-performance M550 hardware, DNA provides virtually unlimited scalability that allows the user to add capacity as needed a capability not found in other platforms.

Configurations To Meet Demand

Whether your needs are for engineering development, qualification, or volume production, the M550 test system fits the requirement. As a single or dual blade engineering system, the M550-E can be used to develop your test program in an office or lab environment. It is also the right solution for product qualification or low volume production. For high volume manufacturing requirements, the M550 is available in a multiple blade production chassis. The production test system was designed utilizing a modular approach, which allows the user to add capacity to a single system as product volume increases. The M550 test system is currently available in configurations to support 320 Flash cards with the expansion capability to support more than 640 cards.

FEATURES

- · Support for SD, MMC, Memory Stick through Protocol Engines
- Complete independence between tester electronics via Tanisys' Distributed Network Architecture™
- Modular / Scalable architecture supports expansion to meet capacity needs
- Effortless migration from single site to multi-site applications
- · Configurations to support from 6 to beyond 512 DUT's
- · Development and Production configurations available
- · Automated solutions for high volume manufacturing
- World wide support, including local applications engineering and on-site spares

Case 5:07-cv-04330-RMW Document 126-2 Filed 11/30/2007 Page 56 of 78 Production Ready

Whether you choose your own handler or ask Tanisys to provide a turnkey solution, the M550 test system facilitates easy migration to automated environments. The M550 production configuration includes a manipulator that is designed to work with handlers from leading suppliers. With vast experience in developing handler control and production user interface software, Tanisys provides custom solutions to meet your manufacturing needs. Whatever your plan for production, the M550 is backed by Tanisys expertise and our extensive global support network.

Worldwide Support

Tanisys offers technical support to production facilities around the globe through our partnerships in Korea, Japan, Taiwan, China, Singapore and Europe. Services include sales and distribution, full technical support, applications engineering, and spares coverage the same world-class, hands-on support provided to customer in North America.

Home About Tanisys | Support/Contact Us | Model 550 | Model 500 | M1K

Toll-free phone: 800-533-1744 International/direct: 01 512-335-4440 © 2004 Tanisys Technology, Inc. all rights reserved. Tanisys, the Tanisys logo and Distributed Network Architecture are Trademarks of Tanisys Technology, Inc.

All other names are property of their respective owners.

is a product of Tanisys Technology © 2004

Quad, Ultra-Low-Power, 300Mbps ATE **Drivers/Comparators**

General Description

The MAX9971/MAX9972 four-channel, ultra-low-power, pin-electronics ICs include, for each channel, a threelevel pin driver, a window comparator, a passive load, and force-and-sense Kelvin-switched parametric measurement unit (PMU) connections. The driver features a -2.2V to +5.2V voltage range, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The window comparator features 500MHz equivalent input bandwidth and programmable output voltage levels. The passive load provides pullup and pulldown voltages to the device-under-test (DUT).

Two grade versions are available, A grade and B grade. The A-grade version provides tight gain and offset matching for the driver and comparator, allowing reference levels to be shared across multiple channels. It also provides tighter tolerance of the load resistance values. The B-grade version is for system designs that incorporate independent reference levels for each channel.

Low-leakage, high-impedance, and terminate controls are operational configurations that are programmed through a 3-wire, low-voltage, CMOS-compatible serial interface. High-speed PMU switching is realized through dedicated digital control inputs.

These devices are available in an 80-pin. 12mm x 12mm body, 1.0mm pitch TQFP with an exposed 6mm x 6mm die pad on the bottom of the package (MAX9972), and the top of the package (MAX9971), for efficient heat removal. The MAX9971/MAX9972 are specified to operate over the 0°C to +70°C commercial temperature range, and feature a die temperature monitor output.

Applications

NAND Flash Testers

DRAM Probe Testers

Low-Cost Mixed-Signal/System-on-Chip (SOC)

Active Burn-In Systems

Structural Testers

Features

♦ Small Footprint—Four Channels in 0.3in²

♦ Low-Power Dissipation: 325mW/Channel Typical

♦ High Speed: 300Mbps at 3V_{P-P}

♦ -2.2V to +5.2V Operating Range

♦ Active Termination (3rd-Level Drive)

♦ Integrated PMU Switches

♦ Passive Load

♦ Low-Leak Mode: 20nA max

♦ Low Gain and Offset Error

♦ Lead-Free Package Available

Pin Configurations appear at end of data sheet.

Ordering Information and Selector Guide

PART	ACCURACY GRADE	PIN-PACKAGE	PKG CODE	HEAT EXTRACTION
MAX9971ACCS*	А	80 TQFP-IDP†	_	Тор
MAX9971BCCS*	В	80 TQFP-IDP†	_	Тор
MAX9972ACCS*	А	80 TQFP-EP††	C80E-4	Bottom
MAX9972BCCS	В	80 TQFP-EP††	C80E-4	Bottom

^{*}Future product—contact factory for availability.

Note: All devices are specified over the 0°C to +70°C operating temperature range.

All versions available in both leaded and lead-free packaging. Specify lead-free by adding the "+" symbol at the end of the part number when ordering.

MIXIM

[†]IDP = Inverted die pad.

^{††}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

0.3V to +9.4V
6.25V to +0.3V
+15.7V
0.3V to +5V
0.3V to +9.4V
Vss to VDD
Vss to VDD
V _{SS} to V _{DD}
0.3V to +5V

DUT_, CMPH_, CMPL_ Short-Circuit Duration	Continuous
DHV_, DLV_, DTV_ to Each Other	Vss to VDD
CHV_, CLV_ to DUT	Vss to VDD
DOUT to GND	0.3V to +5V
TEMP Short-Circuit Duration	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
80-Pin TQFP-EP (derate 35.7mW/°C above +7	70°C)2857mW
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
DRIVER (all specifications apply	when DUT_	= DHV_, DUT_ = DTV_, or	DUT_ = DLV_)				
DC CHARACTERISTICS							
Voltage Range				-2.2		+5.2	V
Gain		Measured at 0 and 3V	A grade	0.995	1	1.005	V/V
Gairi		Measured at 0 and 3v	B grade	0.95		1.05	V/V
Gain Temperature Coefficient					50		ppm/°C
Offset		$V_{DHV} = 2V, V_{DLV} = 0,$	A grade			±7	mV
Oliset		V _{DTV} _ = 1V	B grade			±100	IIIV
Offset Temperature Coefficient					±250		μV/°C
Power-Supply Rejection Ratio	PSRR	V _{DD} , V _{SS} independently variange			18	mV/V	
Maximum DC Drive Current	I _{DUT} _			±40		±90	mA
DC Output Resistance		$I_{DUT} = \pm 10$ mA (Note 2)		48.5	49.5	50.5	Ω
DC Output Resistance Variation		I_{DUT} = -40mA to +40mA				2.5	Ω
		DHV to DLV and DTV: V _{DLV} = V _{DTV} = +1.5V, V _{DHV} = -2.2V, +5.2V				5	
DC Crosstalk		DLV to DHV and DTV: V _{DHV} = V _{DTV} = +1.5V, V _{DLV} = -2.2V, +5.2V				5	mV
		DTV to DHV and DLV: V _{DHV} = V _{DLV} = +1.5V, V _{DTV} = -2.2V, +5.2V				5	
Linearity France		0 to 3V (Note 3)				±5	mV
Linearity Error		Full range (Note 4)				±15	mV

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All temperature coefficients measured at T_J = +50^{\circ}C \ to +100^{\circ}C, unless otherwise noted.) (Note 1)$

Document 126-2

PARAMETER	SYMBOL	COI	NDITIONS	MIN	TYP	MAX	UNITS	
AC CHARACTERISTICS (Note 5)	•			•			•	
Dynamic Output Current		(Note 1)		40			mA	
Drive-Mode Overshoot, Undershoot, and Preshoot		200mV to 4V _{P-P} sw	ing (Note 6)		5% +10		mV	
Tayra Mada Cailea		V _{DHV} = V _{DTV} = 1	V, V _{DLV} _ = 0		25		, na\/	
Term-Mode Spike		$V_{DLV} = V_{DTV} = 0$, V _{DHV} = 1V		25		mV	
High-Impedance-Mode Spike		$V_{DLV} = -1.0V, V_{DH}$	_{IV_} = 0		25		mV	
Tilgit-impedance-wode Spike		$V_{DLV} = 0$, $V_{DHV} =$	= 1V		25		IIIV	
Prop Delay, Data to Output					2		ns	
Prop-Delay Temperature Coefficient					10		ps/°C	
Prop-Delay Match, t _{LH} vs. t _{HL}					30		ps	
Prop-Delay Skew, Drivers Within Package					150		ps	
Prop-Delay Change vs. Pulse Width	Delay Change vs. Pulse	Relative to 12.5ns	3V _{P-P} , 40MHz, PW = 4ns to 21ns		20			
		pulse	1V _{P-P} , 40MHz, PW = 2.5ns to 23.5ns		90		ps	
Prop-Delay Change vs. Common- Mode Voltage		$1V_{P-P}$, $V_{DLV} = 0$ to $V_{DLV} = 1V$	3V, relative to delay at		80		ps	
Prop Delay, Data to High Impedance		V _{DHV} = +1.5V, V _{DLV} = -1.5V, both directions			1.8		ns	
Prop Delay, Data to Term		$V_{DHV} = +1.5V, V_{D}$ both directions	LV_ = -1.5V, V _{DTV} _ = 0,		1.6		ns	
Minimum Voltage Swing		(Note 7)			25		mV	
		$V_{DHV} = 0.2V, V_{DL}$	v_ = 0, 20% to 80%		0.7			
		$V_{DHV} = 1V, V_{DLV}$	= 0, 20% to 80%		0.7]	
		$V_{DHV} = 3V, V_{DLV}$	= 0, 10% to 90%	1.5	2.0	2.5		
Rise/Fall Time		$V_{DHV} = 4V, V_{DLV}$ $R_{L} = 500\Omega, 10\% \text{ to}$			2.6		ns	
		V _{DHV} = 5V, V _{DLV} = 0, R _L = 500Ω, 10% to 90%			3.4			
Rise/Fall-Time Matching		V _{DHV} _ = 1V to 5V			±5		%	
		200mV, V _{DHV} _ = 0.	2V, V _{DLV} _ = 0	1.8				
Minimum Pulse Width (Note 8)		1V, V _{DHV} = 1V, V _{DLV} = 0			2.4		ns	
		$3V$, $V_{DHV} = 3V$, $V_{DHV} = 3V$	$DLV_{-} = 0$		3.3			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COMPARATOR (Note 9)							
DC CHARACTERISTICS (driver	in high-imped	lance mode)					
Input Voltage Range				-2.2		+5.2	V
Differential Input Voltage		V _{DUT_} - V _{CHV_} , V _{DUT_} -	V _{CLV} _	-7.4		+7.4	V
Hysteresis		V _{CHV} = V _{CLV} = 1.5V			8		mV
1			A grade			±10	.,
Input Offset Voltage		V _{DUT} _ = 1.5V	B grade			±100	- mV
Input Offset Temperature Coefficient					25		μV/°C
Common-Mode Rejection Ratio	CMRR	V _{DUT} = 0 and 3V		60			dB
		V _{DUT} _ = 1.5V				±5	.,
Linearity Error (Note 10)		V _{DUT} _ = -2.2V, +5.2V				±10	mV
Power-Supply Rejection Ratio	PSRR	V _{DUT} = 1.5V, supplies varied over full range	independently			5	mV/V
AC CHARACTERISTICS (Note 1	1)			•			•
Facility of a set for set & David ship		Terminated (Note 12)			500		NAL I-
Equivalent Input Bandwidth		High impedance (Note	13)		300		MHz
Propagation Delay					3.9		ns
Prop-Delay Temperature Coefficient					4		ps/°C
Prop-Delay Match, tLH to tHL					120		ps
Prop-Delay Skew, Comparators Within Package		Same edges (LH and HI	L)		200		ps
Prop-Delay Dispersions vs.		0 to 4.9V			20		
Common-Mode Voltage (Note 14)		-1.9V to +4.9V			30		ps
Prop-Delay Dispersions vs. Overdrive		V _{CHV} = V _{CLV} = 0.1V to 0.9V, V _{DUT} = 1V _{P-P} , t _R = t _F = 500ps, 10% to 90% relative to timing at 50% point			220		ps
Prop-Delay Dispersions vs. Pulse Width		2ns to 23ns pulse width pulse width		±60		ps	
Prop-Delay Dispersions vs. Slew Rate		0.5V/ns to 2V/ns		50		ps	

/U/IXI/U

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

Document 126-2

PARAMETER	SYMBOL	CONDIT	TIONS	MIN	TYP	MAX	UNITS
LOGIC OUTPUTS							
Reference Voltages COMPHI and COMPLO		(Note 15)		0		+3.6	V
Output High Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPHI} = 1V	COMPHI at			±50	mV
Output Low Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPLO} = 0V	COMPLO at			±50	mV
Output Resistance		ICHV_ = ICLV_ = ±10mA	4	40	50	60	Ω
Current Limit					25		mA
Rise/Fall Time		20% to 80%, V _{CHV} = 1 load = T-line, 50Ω, > 1r			0.7		ns
PASSIVE LOAD							
DC CHARACTERISTICS (R _{DUT_2}	≥ 10M Ω)						
LDV_ Voltage Range				-2.2		+5.2	V
Gain				0.99		1.01	V/V
Gain Temperature Coefficient					0.02		%/°C
Offset						±100	mV
Offset Temperature Coefficient					0.02		mV/°C
Power-Supply Rejection Ratio	PSRR				10		mV/V
Output Resistance		$I_{DUT} = \pm 0.2 \text{mA},$	A grade	7.125	7.5	7.875	kΩ
Tolerance—High Value		$V_{LDV} = 1.5V$	B grade	4.200	6.0	7.875	N22
Output Resistance		$I_{DUT} = \pm 0.1 \text{mA},$	A grade	1.90	2.0	2.10	kΩ
Tolerance—Low Value		$V_{LDV} = 1.5V$	B grade	1.05	1.5	2.10	N32
Switch Resistance Variation		Relative to 1.5V	0 to 3V		±10		%
Switch nesistance variation		Theialive to 1.5v	Full range		±30		/0
Maximum Output Current		$V_{LDV} = -2V$, $V_{DUT} = +$	+5V		±4		mA
(Note 16)		$V_{LDV} = +5V, V_{DUT} =$	-2V		±4		MA
Linearity Error, Full Range		Measured at -2.2V, +1.5V, and +5.2V (Note 16)				±25	mV
AC CHARACTERISTICS							
Settling Time, LDV_ to Output		$V_{LDV_{-}}$ = -2V to +5V step, $R_{DUT_{-}}$ = 100k Ω (Note 17)			0.5		μs
Output Transient Response		V _{LDV} = +1.5V, V _{DUT} wave at 1MHz, R _{DUT} =			20		ns

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PMU SWITCHES (FORCE_, SENS	SE_, PMU_)		•			•
Voltage Range			-2.2		+5.2	V
Force Switch Resistance		VFORCE_ = 1.5V, IPMU_ = ±10mA			40	Ω
Force Cuitch Corpolices		V _{PMU} = 6.2V, V _{FORCE} set to make I _{FORCE} = 30mA	25			να Λ
Force Switch Compliance		V _{PMU} = -3.2V, V _{FORCE} set to make I _{FORCE} = -30mA	25			mA
Force Switch Resistance		0 to 3V		±10		%
Variation (Note 18)		Full range		±30		/0
Sense Switch Resistance			700	1000	1300	Ω
Sense Switch Resistance Variation		Relative to 1.3V, full range		±30		%
PMU_ Capacitance		Force-and-sense switches open		5		рF
FORCE_ Capacitance				5		рF
SENSE_ Capacitance				0.2		рF
FORCE_ External Capacitance		Allowable external capacitance		2		nF
SENSE_ External Capacitance		Allowable external capacitance		1		nF
FORCE_ and SENSE_ Switching Speed		Connect or disconnect		10		μs
PMU_ Leakage		FORCE EN_ = SENSE EN_ = 0, VFORCE_ = VSENSE_ = -2.2V to +5.2V		±0.5	±5	nA
TOTAL FUNCTION						
DUT_						
Leakage, High-Impedance Mode		Load switches open, VDUT_ = +5.2V, VCLV_ = VCHV_ = -2.2V, VDUT_ = -2.2V, VCLV_ = VCHV_ = +5.2V, full range			2	μА
Leakage, Low-Leakage Mode		Full range		±1	±20	nA
Low-Leakage Recovery Time		(Note 19)		10		μs
Combined Conscitones		Term mode		2		r.F
Combined Capacitance		High-impedance mode		5		рF
Load Resistance		(Note 20)		1		GΩ
Load Capacitance		(Note 20)		12		nF

/U/IXI/U

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS					
VOLTAGE REFERENCE INPUTS (DHV_, DTV_, DLV_, DATA_, RCV_, CHV_, CLV_, LDV_, COMPHI, COMPLO)											
Input Bias Current					±100	μΑ					
Input Bias Current Temperature Coefficient				±200		nA/°C					
Settling to Output		0.1% of full-scale step		10		μs					
DIGITAL INPUTS (DATA_, RCV_,	LD, DIN, SCI	LK, CS)									
Input High Voltage		(Note 21)	V _L / 2 + 0.2		+3.6	V					
Input Low Voltage		(Note 21)	-0.3		V _L / 2 - 0.2	٧					
Input Bias Current					100	μΑ					
SERIAL DATA OUTPUT (DOUT)											
Output High Voltage		I _{OH} = -1mA	V∟ - 0.4		VL	V					
Output Low Voltage		I _{OL} = 1mA	0		+0.4	V					
Output Rise and Fall Time		$C_L = 10pF$		1.1		ns					
SCLK to DOUT Delay		C _L = 10pF	tDН		tSCLK - tDS - 2ns	ns					
SERIAL-INTERFACE TIMING (Not	te 22)										
SCLK Frequency					50	MHz					
SCLK Pulse-Width High	tch		10			ns					
SCLK Pulse-Width Low	tCL		10			ns					
CS Low to SCLK High Setup	tcsso		3.5			ns					
SCLK High to CS Low Hold	tCSH0		0			ns					
CS High to SCLK High Setup	tcss1		3.5			ns					
SCLK High to $\overline{\text{CS}}$ High Hold	tCSH1		15			ns					
DIN to SCLK High Setup	t _{DS}		3.5			ns					
DIN to SCLK High Hold	tDH		1			ns					
CS High to LOAD Low Setup	tcll		6			ns					
LD Low Hold Time	t _{LDW}		5			ns					
LD High to Any Activity			0			ns					
V_L Rising to \overline{CS} Low		Power-on delay		2		μs					
TEMP SENSOR											
Nominal Voltage		$T_J = +27^{\circ}C$		3.00		V					
Temperature Coefficient				+10		mV/°C					
Output Resistance				500		Ω					

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0, VLDV = 0, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C. All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

Document 126-2

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply Voltage	V_{DD}	(Note 23)	7.6	8	8.4	V
Negative Supply Voltage	V _{SS}	(Note 23)	-5.25	-5	-4.75	V
Logic Supply Voltage	VL		2.3		3.6	V
Positive Supply Current	I _{DD}	f _{OUT} = 0MHz		97	120	mA
Negative Supply Current	ISS	f _{OUT} = 0MHz		99	120	mA
Logic Supply Current	IL			0.15	0.30	mA
Static Power Dissipation		f _{OUT} = 0MHz		1.3	1.5	W
Operating Power Dissipation		f _{OUT} = 100Mbps (Note 24)		1.4		W

- All minimum and maximum specifications are 100% production tested except driver dynamic output current, which is guaranteed by design. All specifications are with DUT_ and PMU_ electrically isolated, unless otherwise noted.
- Note 2: Nominal target value is 49.5 Ω . Contact factory for alternate trim selections within the 45 Ω to 55 Ω range.
- Note 3: Measured at 1.5V, relative to a straight line through 0 and 3V.
- Measured at end points, relative to a straight line through 0 and 3V. Note 4:
- Note 5: DUT_ is terminated with 50Ω to ground, $V_{DHV} = 3V$, $V_{DLV} = 0$, $V_{DTV} = 1.5V$, unless otherwise specified. DATA_ and RCV_logic levels are VHIGH = 2V, VLOW = 1V.
- Note 6: Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot is any aberration in the signal before it reaches 10% of its swing.
- At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the Note 7:
- At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_. Note 8:
- Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- Note 10: Relative to a straight line through 0 and 3V.
- Note 11: Unless otherwise noted, all propagation delays are measured at 40MHz, V_{DUT} = 0 to 1V, V_{CHV} = V_{CLV} = +0.5V, t_R = t_F = 500ps, Z_S = 50Ω , driver in term mode with V_{DTV} = +0.5V. Comparator outputs are terminated with 50Ω to GND. Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.
- Note 12: Terminated is defined as driver in drive mode and set to zero volts.
- **Note 13:** High impedance is defined as driver in high-impedance mode.
- Note 14: V_{DUT} = 200mV_{P-P}. Propagation delay is compared to a reference time at 1.5V.
- Note 15: The comparator meets all its timing specifications with the specified output conditions when the output current is less than 15mA, V_{COMPHI} > V_{COMPLO}, and V_{COMPHI} - V_{COMPLO} ≤ 1V. Higher voltage swings are valid but AC performance may degrade.
- Note 16: LOAD EN LOW = LOAD EN HIGH = 1.
- **Note 17:** Waveform settles to within 5% of final value into load $100k\Omega$.
- Note 18: IPMU = ±2mA at VFORCE = -2.2V, +1.5V, and +5.2V. Percent variation relative to value calculated at VFORCE = +1.5V.
- Note 19: Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_.
- Note 20: Load at end of 2ns transmission line; for stability only, AC performance may be degraded.
- Note 21: The driver meets all of its timing specifications over the specified digital input voltage range.
- Note 22: Timing characteristics with VLOGIC = 3V.
- Note 23: Specifications are simulated and characterized over the full power-supply range. Production tests are performed with power supplies at typical values.
- **Note 24:** All channels driven at $3V_{P-P}$, load = 2ns, 50Ω transmission line terminated with 3pF.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Pin Description

PIN							
MAX9972	MAX9971	NAME	FUNCTION				
1	60	DATA1	Channel 1 Multiplexer Control Input. Selects driver 1 input from DHV1 or DLV1 in drive mode. See Table 1 and Figure 2.				
2	59	RCV1	Channel 1 Multiplexer Control Input. Sets channel 1 mode to drive or receive. See Table 1 and Figure 2.				
3, 8, 13, 18, 51	10, 43, 48, 53, 58	GND	Analog Ground				
4	57	CMPH1	Channel 1 High-Side Comparator Output				
5	56	CMPL1	Channel 1 Low-Side Comparator Output				
6	55	DATA2	Channel 2 Multiplexer Control Input. Selects driver 2 input from DHV2 or DLV2 in drive mode. See Table 1 and Figure 2.				
7	54	RCV2	Channel 2 Multiplexer Control Input. Sets channel 2 mode to drive or receive. See Table 1 and Figure 2.				
9	52	CMPH2	Channel 2 High-Side Comparator Output				
10	51	CMPL2	Channel 2 Low-Side Comparator Output				
11	50	CMPL3	Channel 3 Low-Side Comparator Output				
12	49	CMPH3	Channel 3 High-Side Comparator Output				
14	47	RCV3	Channel 3 Multiplexer Control Input. Sets channel 3 mode to drive or receive. See Table 1 and Figure 2.				
15	46	DATA3	Channel 3 Multiplexer Control Input. Selects driver 3 input from DHV3 or DLV3 in drive mode. See Table 1 and Figure 2.				
16	45	CMPL4	Channel 4 Low-Side Comparator Output				
17	44	CMPH4	Channel 4 High-Side Comparator Output				
19	42	RCV4	Channel 4 Multiplexer Control Input. Sets channel 4 mode to drive or receive. See Table 1 and Figure 2.				
20	41	DATA4	Channel 4 Multiplexer Control Input. Selects driver 4 input from DHV4 or DLV4 in drive mode. See Table 1 and Figure 2.				
21	40	DHV4	Channel 4 Driver High Voltage Input				
22	39	DLV4	Channel 4 Driver Low Voltage Input				
23	38	DTV4	Channel 4 Driver Termination Voltage Input				
24	37	CHV4	Channel 4 Threshold Voltage Input for High-Side Comparator				
25	36	CLV4	Channel 4 Threshold Voltage Input for Low-Side Comparator				
26	35	DHV3	Channel 3 Driver High Voltage Input				
27	34	DLV3	Channel 3 Driver Low Voltage Input				
28	33	DTV3	Channel 3 Driver Termination Voltage Input				
29	32	CHV3	Channel 3 Threshold Voltage Input for High-Side Comparator				
30	31	CLV3	Channel 3 Threshold Voltage Input for Low-Side Comparator				
31	30	DGND	Digital Ground Connection				
32	29	DOUT	Serial-Interface Data Output				
33	28	LD	Load Input. Latches data from the serial input register to the control register on rising edge. Transparent when low.				

_Pin Description (continued)

В	IN				
MAX9972	MAX9971	NAME	FUNCTION		
34	27	DIN	Serial-Interface Data Input		
35	26	SCLK	Serial Clock		
36	25	CS	Chip Select		
37	24	SENSE4	Channel 4 PMU Sense Connection		
38	23	FORCE4	Channel 4 PMU Force Connection		
39	22	SENSE3	Channel 3 PMU Sense Connection		
40	21	FORCE3	Channel 3 PMU Force Connection		
41	20	TEMP	Temperature Sensor Output		
42, 47, 52, 56, 60	1, 5, 9, 14, 19	V _{DD}	Positive Power-Supply Input		
43	18	DUT4	Channel 4 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 4.		
44	17	PMU4	Channel 4 Parametric Measurement Connection. PMU switch I/O node for channel 4.		
45, 50, 53, 57	4, 8, 11, 16	V _{SS}	Negative Power-Supply Input		
46	15	VL	Logic Power-Supply Input		
48	13	DUT3	Channel 3 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 3.		
49	12	PMU3	Channel 3 Parametric Measurement Connection. PMU switch I/O node for channel 3.		
54	7	PMU2	Channel 2 Parametric Measurement Connection. PMU switch I/O node for channel 2.		
55	6	DUT2	Channel 2 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 2.		
58	3	PMU1	Channel 1 Parametric Measurement Connection. PMU switch I/O node for channel 1.		
59	2	DUT1	Channel 1 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 1.		
61	80	FORCE2	Channel 2 PMU Force Connection		
62	79	SENSE2	Channel 2 PMU Sense Connection		
63	78	FORCE1	Channel 1 PMU Force Connection		
64	77	SENSE1	Channel 1 PMU Sense Connection		
65	76	COMPLO	Comparator Output-Low Voltage Reference Input		
66	75	COMPHI	Comparator Output-High Voltage Reference Input		
67	74	LDV4	Channel 4 Load Voltage Input		
68	73	LDV3	Channel 3 Load Voltage Input		
69	72	LDV2	Channel 2 Load Voltage Input		
70	71	LDV1	Channel 1 Load Voltage Input		
71	70	CLV2	Channel 2 Threshold Voltage Input for Low-Side Comparator		
72	69	CHV2	Channel 2 Threshold Voltage Input for High-Side Comparator		
73	68	DTV2	Channel 2 Driver Termination Voltage Input		
74	67	DLV2	Channel 2 Driver Low Voltage Input		
75	66	DHV2	Channel 2 Driver High Voltage Input		
76	65	CLV1	Channel 1 Threshold Voltage Input for Low-Side Comparator		
77	64	CHV1	Channel 1 Threshold Voltage Input for High-Side Comparator		
78	63	DTV1	Channel 1 Driver Termination Voltage Input		
79	62	DLV1	Channel 1 Driver Low Voltage Input		
80	61	DHV1	Channel 1 Driver High Voltage Input		
_		EP	Exposed Pad. Leave unconnected or connect to VSS.		

Figure 1. Block Diagram

Document 126-2

Quad, Ultra-Low-Power, 300Mbps ATE **Drivers/Comparators**

Detailed Description

The MAX9971/MAX9972 are four-channel, pin-electronics ICs for automated test equipment that include, for each channel, a three-level pin driver, a window comparator, a passive load, and a Kelvin instrument connection (Figure 1). All functions feature a -2.2V to +5.2V operating range and the drivers include both highimpedance and active-termination (3rd-level drive) modes. The comparators feature programmable output voltages, allowing optimization for different CMOS interface standards. The loads have selectable output resistance for optimizing DUT current loading. The Kelvin paths allow accurate connection of an instrument with ±25mA source/sink capability. Additionally, the MAX9971/MAX9972 offer a low-leakage mode that reduces DUT_leakage current to less than 20nA.

The MAX9971/MAX9972 are available in two grades. The A-grade devices provide tighter tolerances for driver gains and offsets, comparator offsets, and load resistor values. This allows reference levels to be shared across multiple channels in cost-sensitive systems. The B-grade devices are intended for system designs that incorporate independent reference levels for each channel.

Each of the four channels feature single-ended CMOScompatible inputs, DATA_ and RCV_, for control of the driver signal path (Figure 2). The MAX9971/MAX9972 modal operation is programmed through a 3-wire, lowvoltage CMOS-compatible serial interface.

Output Driver

The driver input is a high-speed multiplexer that selects one of three voltage inputs; DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_, and mode-control bit TERM (Table 1). DATA_ and RCV_ are single-ended inputs with threshold levels equal to V_L / 2. Each channel's threshold levels are independently generated to minimize crosstalk.

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 2, Table 1). High-speed input RCV_ and mode-control bits TERM and LLEAK control these modes. In high-impedance mode, the bias current at DUT is less than 2uA over the -2.2V to +5.2V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 20nA, and signal tracking slows.

The nominal driver output resistance is 50Ω . Custom resistance values from 45Ω to 51Ω are possible; consult factory for further information.

Table 1. Driver Channel Control Signals

	ERNAL ECTIONS		RNAL OL BITS	DRIVER OUTPUT	DRIVER MODE
RCV_	DATA_	TERM	LLEAK	001101	MODE
0	0	Χ	0	DUT_ = DLV_	Drive
0	1	Χ	0	DUT_ = DHV_	Drive
1	Х	0	0	High Impedance	Receive
1	Х	1	0	DUT_ = DTV_	Receive
Х	Х	X	1	Low Leak	Low Leakage

Figure 2. Multiplexer and Driver Channel

Comparators

The MAX9971/MAX9972 provide two independent highspeed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (see Figure 1). Comparator outputs are a logical result of the input conditions, as indicated in Table 2.

The comparator output voltages are easily interfaced to a wide variety of logic standards. Use buffered inputs COMPHI and COMPLO to set the high and low output voltages. For correct operation, COMPHI should be greater than or equal to COMPLO. The comparator 50Ω output impedance provides source termination (Figure 3).

Passive Load

The MAX9971/MAX9972 channels each feature a passive load consisting of a buffered input voltage, LDV_, connected to DUT_ through two resistive paths (Figure 1). Each path connects to DUT_ individually by a switch controlled through the serial interface. Programming options include none (load disconnected), either, or both paths connected. The resistor values vary depending on the accuracy grade of the device, as shown in Table 3. The loads facilitate fast open/short testing in conjunction with the comparator, and pullup of open-drain DUT_ outputs.

Parametric Switches

Each of the four MAX9971/MAX9972 channels provides force-and-sense paths for connection of a PMU or other DC resource to the device-under-test (Figure 1). Each force-and-sense switch is independently controlled though the serial interface providing maximum application flexibility. PMU_ and DUT_ are provided on separate pins allowing designs that do not require the parametric switch feature to avoid the added capacitance of PMU_. It also allows PMU_ to connect to DUT_ either directly or with an impedance-matching network.

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port places the MAX9971/MAX9972 into a very-low-leakage state (see the *Electrical Characteristics* table). This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK control is independent for each channel.

When DUT_ is driven with a high-speed signal while LLEAK is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* table indicates device behavior under this condition.

Table 2. Comparator Logic

DUT_ > CHV_	DUT_ > CLV_	СМРН_	CMPL_
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Figure 3. Complementary 50Ω Comparator Outputs

Table 3. Passive Load Resistance Values

ACCURACY GRADE	HIGH RESISTOR ($k\Omega$)	LOW RESISTER ($k\Omega$)
А	7.5	2
В	6	1.5

Temperature Monitor

Each device supplies a single temperature output signal, TEMP, that asserts a nominal 3.43V output voltage at a +70°C (343K) die temperature. The output voltage increases proportionately with temperature at a rate of 10mV/°C. The temperature sensor output impedance is 500Ω , typical.

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9971/MAX9972 modes (Figure 4). Control data flow into a 12-bit shift register (MSB first) and are latched when \overline{CS} is taken high. Data from the shift register are then loaded to the per-channel control latches as determined by bits D8–D11, and indicated in Figure

4 and Table 4. The latches contain the six mode bits for each channel of the device. The mode bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel. Transfer data asynchronously from the input registers to the channel registers by forcing $\overline{\text{LD}}$ low. With $\overline{\text{LD}}$ always low, data transfer on the rising edge of $\overline{\text{CS}}$.

Figure 4. Serial Interface

Table 4. Control Register Bit Functions

ВІТ	NAME	FUNCTION	BIT STATE		POWER-UP
			0	1	STATE
0	TERM	Term Mode Control	High Impedance	Term Mode	0
1	LLEAK	Assert Low-Leakage Mode	Term Mode	Low Leakage	0
2	SENSE EN	Enable Sense Switch	Disabled	Enabled	0
3	FORCE EN	Enable Force Switch	Disabled	Enabled	0
4	LOAD EN LOW	Enable Low Load Resistor	Disabled	Enabled	0
5	LOAD EN HIGH	Enable High Load Resistor	Disabled	Enabled	0
6	_	Unused	X	Х	0
7	_	Unused	Х	Х	0
8	CH1	Update Channel 1 Control Register	Disabled	Enabled	1
9	CH2	Update Channel 2 Control Register	Disabled	Enabled	1
10	CH3	Update Channel 3 Control Register	Disabled	Enabled	1
11	CH4	Update Channel 4 Control Register	Disabled	Enabled	1

Figure 5. Serial-Interface Timing

Heat Removal

With adequate airflow, no external heat sinking is needed under most operating conditions. If excess heat must be dissipated through the exposed paddle, solder it to circuit board copper (MAX9972) or use an external heat sink (MAX9971). The exposed paddle must be either left unconnected, isolated, or connected to Vss.

Power Minimization

To minimize power consumption, activate only the needed channels. Each channel placed in low-leakage mode saves approximately 240mW.

Pin Configurations

Pin Configurations (continued)

Chip Information

_Package Information

TRANSISTOR COUNT: 5728
PROCESS: BICMOS

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

22 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600