Weekly Report 2- Naive Bayes

Ganji Varshitha AI20BTECH11009

Introduction

Naive Bayes is a supervised learning algorithm which predicts the most probable class. It is very useful in text classification. Some of the applications include spam filtration, sentiment analysis, etc.

Why the name Naive Bayes?

It is called Bayes because it estimates the bayesian probability of a class. Let us assume a data point x has n features $A_1, A_2, \dots A_n$. The posterior probability $P(C|A_1, A_2, \dots A_n)$ where C denotes class is given by bayes theorem:

$$P(C|A_1, A_2, \dots A_n) = \frac{P(A_1, A_2, \dots A_n | C)P(C)}{P(A_1, A_2, \dots A_n)}$$
(1)

It is naive because we assume independence of features A_i when class is given. This gives likelihood $P(A_1, A_2, \dots A_n | C) = P(A_1 | C) P(A_2 | C) \dots P(A_n | C)$.

Algorithm

From the above theorem, we know that we should choose a class which maximises posterior probability i.e $P(C|A_1, A_2, \cdots A_n)$.

Since $P(A_1, A_2, \dots A_n)$ is same for all values of C, we can omit the marginal probability.

$$\hat{C} = \arg\max_{C} (P(A_1|C)P(A_2|C)\cdots P(A_n|C))P(C)$$
(2)

This is called Maximum A Posteriori estimation.