KHAN G.S. RESEARCH CENTER

Kisan Cold Storage, Sai Mandir, Musallahpur Hatt, Patna - 6 Mob.: 8877918018, 8757354880

Time: 05 to 06 pm

ORGANIC CHEMISTRY

By: Khan Sir

कार्बनिक रसायन (Organic Chemistry)

- वह शाखा जिसमें कार्बन या उसके बड़े यौगिकों का अध्ययन करते है। कार्बनिक रसायन कहलाता है।
- ❖ जैव शिक्त सिद्धांत :─ ब्रजीलियस ने इस सिद्धांत को दिया और कहा कि प्रयोगशाला में कार्बनिक पदार्थों को नहीं बनाया जा सकता है इसके लिए दैवीयशिक्त होती है।
- ब्रजीलियस का शिष्य ओहलक ने 1828 ई. में अमोनियम साइनेट को गर्म किया तो युरिया बन गया।
- युरिया एक कार्बनिक पदार्थ है। इसके बनने से जैव शिक्त सिद्धांत का विखण्डन हो गया। वर्तमान में 4 करोड़ से अधिक कार्बनिक यौगिक हो चुके हैं चूँिक कार्बन में श्रृंखला बनाने का गुण पाया जाता है। कार्बन में अपरूपता तथा समावयता देखी जाती है।
- ❖ अपरूपता (Alloprop) :- एक ही तत्व के दो या अधिक रूप को अपरूपता कहते हैं। ग्रेफाइट तथा हिरा कार्बन के अपरूप है।

हिरा	ग्रेफाइट
] 1. इसमें SP ³ संक्रमण पाया है।	1. इसमें SP ² संक्रमण पाया
	जाता पाया जाता है।
2. यह विद्युत का कुचालक है।	2. यह विद्युत का सुचालक है।
3. यह सबसे कठोर पदार्थ है।	3. यह भंगुर होता है।
4. यह क्रिस्टलीय होता है।	4. यह भी क्रिस्टलीय होता है।

 समावयवता (Isomerism):- वैसे यौगिक जिनका सूत्र समान हो, किन्तु संरचना अलग हो उन्हें हम समावयवता कहते है।
 ब्यूटेन तथा आइसोब्यूटेन

❖ हाइड्रोकार्बन :─ वैसे यौगिक जिसमें कार्बन तथा हाइड्रोजन उपस्थित हो हाइड्रोकार्बन कहलाते हैं। ये ईंधन का कार्य करते हैं। हाइड्रोकार्बन दो प्रकार के होते हैं।

- ऐएल्केन (Alkane):- यह सबसे कम क्रियाशील होता है। इसे पैराफिन कहते है। इसमें Single Bond होता हैं। अत: यह कम क्रियाशील होता है।
- ❖ मिथेन :- CH₁

- कोयला खद्यान, दलदली भूमि, धान का खेत, जानवरों की जुगाली, प्राकृतिक गैस (Natural Gas), CNG (Compressed Natural Gas) में मेथेन पाया जाता है।
- कोयला खाद्यान में मिथेन जब वायु से क्रिया करता है तो विस्फोट कर जाता है। यह दलदल (Mars) वाले जगह पर पाया जाता है। अत: इसे Mars गैस कहते हैं।
- ightharpoonup मिथेन के यौगिक जहरीले होते हैं। जैसे— मिथाइलएल्कोहल (जहरीली शराब), मिथाइल आइसोसाइनेट (भोपाल गैस त्रासदी)। भोपाल गैस में मिथाइल आइसोसाइनाइट (CH_3NCO) जल से क्रिया कर लिया। यह घटना 3 दिसम्बर 1984 को हुई। इथेन $ightharpoonup C_2H_6
 ightharpoonup$ यह ज्वलनशील होता है। प्रोप्रेन $ightharpoonup C_2H_6$

ब्युटेन $\rightarrow C_3 \Pi_8$ ब्युटेन $\rightarrow C_4 H_{10} \rightarrow$ सिगरेट का लाइटर पेनटेन $\rightarrow C_4 H_{10}$

❖ CNG (Compresed Natural Gas) :- इसमें मिथेन को Pressure लगाकर भरा गया होता है।

- LPG (Liquified Petroleum Gas) :- इनमें प्रोपेन, ब्युटेन तथा आइसोब्युटेन मिला होता है। LPG रिसाव का पता लगाने के लिए एक दुर्गंधयुक्त गैस इथाइल मारकेप्टाइन (C,H,SH,) का प्रयोग करते हैं।
- एल्कीन (Alkin): इसमें Double Bond होता है। यह Alkane से अधिक क्रियाशील होते हैं।

एथीन $\rightarrow C_1H_1$

प्रोपीन $\rightarrow C_3H_6$

ब्युटीन $\rightarrow C_{\downarrow}H_{\downarrow}$

एल्काइन (Alkyne):- ये सबसे अधिक क्रियाशील होते हैं। इनमें Tripal Bond पाया जाता है।

एथाइन $\rightarrow C,H,$

प्रोपाइन $\rightarrow C_3H_4$

ब्युटाइन $\rightarrow C_4H_6$

एल्काइल समूह (Alkyl Group):- ये दुसरे यौगिक से आसानी से क्रिया कर लेते हैं। इनका सूत्र CnH2n+1 होता है। इन्हें Alkyl या Alkin कहते है।

मेथाइल \rightarrow CH,

एथाइल $\rightarrow C_2H_2$

प्रोपाइल \rightarrow C,H,

- क्रियात्मक समृह :- एल्कील से क्रिया करने वाले बाहरी यौगिकों को क्रियात्मक समृह कहते हैं। यह कई प्रकार के होते हैं।
 - (a) एक्कोहल \rightarrow −OH

मिथाइल एल्कोहल → CH₃OH इथाइल एल्कोहल $\rightarrow C_2H_5OH$

(b) हैलाइड → हैलोजन

मिथाइल आयोडाइड → C2H2I

मिथाइल ब्रोमाइड \rightarrow CH, Br

(c) एल्डीहाइड समूह \rightarrow – CHO

इथाइल एल्डीहाइड $\rightarrow C,H,CHO$

मिथाइल एल्डीहाइड → HCHO

ब्युटाइल एल्डीहाइड $\rightarrow C_3H_7CHO$

Carboxylic Acid → COOH

मिथाइल Carboxylic Acid → HCOOH

इथाइल Carboxylic Acid → CH, COOH

प्रोपाइल Carboxylic Acid → C2H5COOH

🗷 Note: – मिथाइल Carboxylic Acid को फॉर्मिक अम्ल कहते हैं। चिंटी, मधुमक्खी, बिंच्छु के डंक में फॉर्मिक अम्ल पाया जाता है।

ईथर :- — O — ईथर

डाई मिथाइल ईथर = CH, — O — CH,

डाई इथाइल ईथर = C_2H_5 — O — C_2H_6 Downloaded website-- W_2H_5 — O — O = O

किटोन :-—CO—

डाई मिथाइल किटोन = CH, — CO — CH, इथाइल मिथाइल किटोन = C2H3 — CO — CH3

Change Reaction :-

(1) $CH_7 - CH_7 - CH_7 - CH_3$

2 क्लोरोपेन्टेन

(2) CH_{3} - CH - CH_{2} - CH_{3} Cl Br

3 ब्रोमीन, 2 क्लोरो पेन्टेन

(3) $CH_1CHO - CH - CH - CH_2$ C1 Br

(4) (CH, -CH -C

3 ब्रोमो, 2 क्लोरो, 3 आयोडिन, 1 ब्यूटीन

2 ब्रोमीन, 2 क्लोरो, 1 हेक्सेनॉल

(5) 3 $CH_3HO - CH - C - C - CH$ C1 Br

🛂 ब्रोमो, 3 फ्लोरो, 4 क्लोरो, 1 आइन, 5 पेनटेनॉल

- Change के शुरूआत उस ओर से करते है जिस ओर Triple Bond, Double Bond तथा क्रियात्मक समूह हो।
- Triple Bond को अधिक वरीयता दी जाती है।
- IUPAC (Internation Union of Peior and Apply Chemistry) :-
- यह रासायनिक यौगिको के नामकरण की अलग विधि है। इसे अंतराष्ट्रीय मान्यता प्राप्त है। IUPAC लिखते समय इसके कुछ अलग नियम का पालन करना होता है।
- अल्कोहल –OH– → OH के लिए जोड़ा जाता है। जैसे− CH3OH → मिथेनाल

CH, CH,OH → ऐथेनॉल

(ii) एल्डीहाइंड के लिए अल शब्द जोड़ते हैं। HCHO → मिथेनल

 $C_2H_2CHO \rightarrow प्रोपेनल$

इथर के लिए ऑक्सीअल्केन का प्रयोग करते है।

 $\mathrm{CH_3} - \mathrm{O} - \mathrm{CH_3} o$ मेथाक्सी मेथेन C_2H_5 —O— C_2H_5 o इथाक्सी ऐथेन