18.S997 (FALL 2017) PROBLEM SET 2

- 1. Let the half-graph H_n be the bipartite graph on 2n vertices $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ with edges $\{a_ib_j : i \leq j\}$.
 - (a) For every $\epsilon > 0$, explicitly construct an ϵ -regular partition of H_n into $O(1/\epsilon)$ parts.
 - (b) Show that there is some c > 0 such that for every sufficiently small $\epsilon > 0$, every integer k and sufficiently large multiple n of k, every partition of the vertices of H_n into k equal-sized parts contains at least ck pairs of parts which are not ϵ -regular.
- 2. Show that there is some absolute constant C>0 such that for every $\epsilon>0$, every graph on n vertices contains an ϵ -regular pair of vertex subsets each with size at least δn , where $\delta=2^{-\epsilon^{-C}}$.
- 3. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that every graph on n vertices contains an ϵ -regular subset of vertices of size at least δn . (Here a vertex subset X is called an ϵ -regular set if the pair (X,X) is ϵ -regular, i.e., for all $A,B \subset X$ with $|A|,|B| \geq \epsilon |X|$, one has $|d(A,B)-d(X,X)| \leq \epsilon$.)
- 4. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that if $A \subset [n]$ has fewer than δn^2 many triples $(x, y, z) \in A^3$ with x + y = z, then there is some $B \subset A$ with $|A \setminus B| \le \epsilon n$ such that B is sum-free, i.e., there do not exist $x, y, z \in B$ with x + y = z.
- 5. Show that the number of triangle-free graphs on n labeled vertices is $2^{(1/4+o(1))n^2}$.
- 6. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that every K_4 -free graph on n vertices with at least $(\frac{1}{8} + \epsilon)n^2$ edges contains an independent set of size at least δn .
- 7. For this problem you may assume either the tetrahedron¹ removal lemma for 3-uniform hypergraphs or its following corollary:

A 3-uniform hypergraph with n vertices, where every hyperedge is contained in a unique tetrahedron, has $o(n^3)$ hyperedges.

Deduce that if $A \subset [N]^2$ contains no axes-aligned squares (i.e., four points of the form (x,y), (x+d,y), (x,y+d), (x+d,y+d), where $d \neq 0$), then $|A| = o(N^2)$.

8. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that if an n-vertex graph G satisfies

$$|e(X,Y) - p|X||Y|| \leq \delta p^2 n \sqrt{|X||Y|} \qquad \text{ for all } X,Y \subset V(G)$$

for some $0 , then the number of triangles in G is at least <math>(1 - \epsilon)p^3\binom{n}{3}$.

9. Let G be an n-vertex d-regular graph. Suppose n is divisible by k. Color the vertices of G with k colors (not necessarily a proper coloring) such that each color appears exactly n/k times. Suppose that all eigenvalues, except the top one, of the adjacency matrix of G are at most d/k in absolute value. Show that there is a vertex of G whose neighborhood contains all k colors.

Problem set complete. Some hints on next page (but try the problems yourself first)

 $^{^1\}mathrm{A}$ tetrahedron is the set of all 3-element subsets of a 4-element vertex set—think the faces of a geometric tetrahedron

HINTS

- 5. You may find the following estimate helpful: (ⁿ/_k)^k ≤ (ⁿ/_k) ≤ (^{ne}/_k)^k for all 1 ≤ k ≤ n.
 6. Given an ϵ'-regular pair of vertex sets with edge-density slightly above 1/2, find either a K₄ or a large independent set.
- 7. Compare to the proof in class for Szemerédi's theorem for 4-term APs. Re-parameterize the square using 4 variables so that each point of the square uses exactly 3 of the 4 variables.