

Eunice Worifah Data Scientist

Fandi Yi Data Scientist

Pascal Nguyen Tang Product Manager

Shivangi Soni Data Analyst

Vivek Saahil Business Analyst

Business Context

- ♠ Airbnb provides a platform for hosts to accommodate guests with short-term lodging and tourism-related activities
- ♠ Use Case: Homeowners currently employ three types of revenue management strategies:
 - 1 Set one price for the entire year
 - 2 Airbnb's Smart Pricing tool
 - 3 A third-party intelligent pricing tool (e.g. PriceLabs or Wheelhouse)
 - *Our Prediction Model

A Stakeholders:

- Current Hosts
- Prospective Hosts
- Prospective Guests

Objectives:

- Build a model which enables:
 - Existing Airbnb Hosts to update their pricing strategy
 - New Airbnb Hosts to find the best and most competitive price for their property
 - Airbnb guests to define their budget when looking for a place to book

Hypotheses

⊗ Starbucks effect

Airbnb listings which are located in areas with a large number of Starbucks will be more expensive on average

⊗ Metro effect

Airbnb listings which are located near a subway station will be more expensive on average

A Rating of Listing

An Airbnb listing's rating does not have a significant effect on the price of the listing

Approach

O Data Acquisition
O Internal/External Sources

0

0

0

0

0

0

Data
Transformation

6 data
transformation
tasks

Data Exploration

Visualizations

Pre-Processing Flagging Missing Values Iterative Imputation Categorical Encoding Correlation Analysis Outlier Treatment Feature Selection

Model Building Unsupervised • PCA Autoencoders Supervised AutoML Random Forest •SVR, XGBoost • GBT

Hyperparameter Tuning MLFlow (Hypoeropt)/ RandomSearchCV

Deployment

Pandas UI

Docker

Data Acquisition

- Airbnb Data
 - Source: http://insideairbnb.com/get-the-data.html
- **⊗** Starbucks Data
 - https://www.starbucks.com/store-locator?place=New%20York%2C%20NY%2010001%2C%20USA
- - Source: https://catalog.data.gov/en/dataset/nyc-transit-subway-entrance-and-exit-data

Dataset statistics		Variable types	
		Variable types	
Number of variables	45	Categorical	13
Number of observations	37012	DateTime	3
Missing cells	186083	Numeric	25
Missing cells (%)	11.2%	Boolean	4
Duplicate rows	2		
Duplicate rows (%)	< 0.1%		
Total size in memory	12.7 MiB		
Average record size in memory	360.0 B		

Data Transformation & Preprocessing

△ Conducted 6 data transformation tasks:

Bathroom

Separated 'bathroom_text' (e.g. 3.5 baths) variable into 'num_bath' (3.5) and 'name_bath' (bath)

Property Type

♠ Grouped categories into larger buckets, e.g. 'Townhouse', 'Apartment', 'other', etc...

Amenities

Found the top amenities and created dummy variables

Dates

Calculated duration of listing using 'host_since' and 'date_scraped' data

Sentiment Analysis

Obtained sentiment score for descriptive values such as 'description', 'host_about', 'neighbourhood_overview'

Metro Distance

Calculated the distance in KM from the nearest metro station to Airbnb location

<u>Marging</u> Marging Marging Marging

A Flagging before imputation:

- We flagged the nan value in the dataset into the new columns ('Feature_name+indicator')
- Nan=1, valid =0

Numerical columns Imputation:

Applied iterative imputer in the sklearn package to impute the missing value in numerical cols

A Categorical columns Imputation:

- Set Nan value as the new category (ex: other, unknown)

Models and Results

Results for Unsupervised Learning Models

Autoencoder

Models and Results

Results for the models to predict price of the existing listings

- A Recursive Feature Analysis was used to conduct feature engineering
- ♠ Several models were tested
 - ♠ RMSE did not vary a lot between different models

Explainability & Feature Importance – Best Model

Results for AutoML in the best performance model:

Models and Results

Results for model to predict price of new listings

♠ All features leading to data leakage were dropped

Hypothesis Results – Starbucks Effect & Station Distance (2)

Data Exploration and Causal ML using DoWhy

- Airbnb Data: http://data.insideairbnb.com/united-states/ny/new-york-city/2021-02-04/data/listings.csv.gz
- **Starbucks Data:** https://www.starbucks.com/store-locator?place=New%20York%2C%20NY%2010001%2C%20USA

Number of Airbnbs in NY

The Distribution of the Metro Distance Across Boroughs

Price per accommod. in NY

Model 1

Number of Starbucks & Review Scores Rating

Mean value: 0.003231172176185737

p-value: 0.04047677

Inference: Significant (*)

Model 2

Closest Train Station Dist. & Review Scores Rating

Mean value: -0.002887094771580223

p-value: 0.19418372

Inference: Not Significant (.)

Model 3

Number of Starbucks & Price per accommod.

Mean value: -0.06782232293168278

p-value: 0.22349717

Inference: Not Significant (.)

Model 4

Closest Train Station Dist. & Price per accommod.

Mean value: -4.216259842350333

p-value: 0.03357141

Inference: Significant (*)

Insights and Business Implications

A Homeowner

- Pricing Strategies balanced between the host, the customers and Airbnb
- ♠ Gain an understanding of what features to add to a listing to increase value of property
- ♠ Gain an understanding of which locations to rent/purchase a home as an investment
- ♠ In our UI interface, we targeted our users to new host, host and guest.

I AM A		OUTPUT 1		
New Host • Host	Guest	Dear Host, Here is Airbnb price :)	our Estimati	on for the
NUM BEDROOM		OUTPUT 2		
3		182.0 USD		
NUM BED		102.0 000		
5				Latency: 0.00s
IS SUPERHOST				
ACCOMODATES				
7 *				
LAST REVIEW DAYS				
HOST SINCE DAYS				
	2100			
LONGITUDE (OPTIONAL)				
-74.00597				
LATITUDE (OPTIONAL)				
40.71427				
BOROUGHS				
Brooklyn				
CLEAR	SUBMIT	SCREENSHOT	GIF	FLAG

Threats to Validity

- **♠** Exogenous Shocks
 - ♠ Effect of COVID-19 on target variables: Historical data used does not reflect post-COVID shifts in demands, rating and prices
 - ♠ Effect of COVID-19 on Starbucks overlay: Due to COVID-19 restrictions on businesses, the Starbucks overlay may no longer be significant
- **⊗** Extraneous Factors
 - **Omission of other potential restaurants/shops:** The analysis did not include other restaurants or shops that may also have a similar effect than Starbucks
 - Analysis only performed on NYC: The analysis did not include other cities, for which the selected overlays may not apply

Lessons learnt & Next steps

- ♠ Importance of external data
 - Worldwide
- Outilization of standard industry tools
 - AutoML
 - MLFlow
 - Open Docker
 - AutoEncoder

Next Steps & Future Improvements:

- <u>A</u> Expand our model to different geographic locations and use post-pandemic data to enlarge our user base.
- O Docker
 - ♠ The infrastructure for Docker has been set up
 - Image containing the necessary requirements is created
 - Must test further to ensure the entire project can be run through the container

Thank You

Hypothesis Results – Rating effect on Price

