• Bijection:

Function $f: X \to Y$ is bijection if f is both surjection(on to) and injection (one to one) **Proposition**:

- 1. $f: X \to Y$ is bijection \Leftrightarrow $\exists g: Y \to X \text{ s.t. } g \circ f = id_x, f \circ g = id_y \ (id_x \to \text{identity})$
- 2. Composition Properties:
 - o Composition of two injective functions is injective.
 - o Composition of two surjective functions is surjective.
 - o Composition of two bijective functions is bijective.

• Permutation:

Permutation on set X is a bijection $f: X \to X$ If $X = \{1, 2, ..., n\}$ then, $S_n := \{\text{all permutation on } X\}$ **Proposition:**

1. if $f: X \to X$ is a permutation then $\exists f^{-1}: X \to X$ which is also permutation.

1

2. composition of two permutation is again a permutation.

• Group 5 Rules:

- 1. Closed under binary operation
- 2. associative: (ab)c = a(bc)
- 3. identity: $\exists e \in G, ea = ae = a \forall a \in G$
- 4. inverse: $\forall a \in G, \exists ! a^{-1} s.t. a^{-1} a = aa^{-1} = e$
- 5. commutative $a, b \in G, ab = ba$.
- 1,2: semigroup
- 1,2,3: monoid
- 1,2,3,4: group
- 1,2,3,4,5: Abelian group

• Equivalence Relation:

Operation \sim in Group G is equivalence if

- 1. Reflective: $g \sim g, \forall g \in G$
- 2. Symmetry: $g \sim g' \Rightarrow g' \sim g, \forall g, g' \in G$
- 3. transitive: $x \sim y, y \sim z \Rightarrow x \sim z \forall x, y, z$
- **Subgroup**: H is a subgroup of G if
 - $-H\subseteq G$
 - *H* is a group

CHECK a SUBGROUP:

- *H* ⊆ *G* (subset)
- *e* ∈ *H* (non empty)
- ∀a,b ∈ H,ab ∈ H (closed)

$$- \forall a \in H, a^{-1} \in H$$

Proper subgroup: subgroup H that is not $H \neq G$

• Order:

Order of a group: |G| = # of elements in the group. If a group is infinite, then the order is ∞

Order of an element: $g \in G$, |g| = **smallest positive integer** n, s.t. $x^n = e$ **Propositions:**

- Let $g \in G$, | < g > | = |g|
- If *H* is a subgroup of *G* then |H| | |G|. If $x \in G$, then |x| | |G|
- $\langle x \rangle := \{ x^n \mid n \in \mathbb{Z} \}$
- Conjugate: $x, g \in G$, conjugate of x by g: gxg^{-1} Conjugate class of x:= $\{gxg^{-1} \mid \forall g \in G\}$
- **ISOMORPHISMS of GROUP**: a function $f: G \to G'$ is called isomorphism if:
 - 1. f(xy) = f(x)f(y)
 - 2. *f* is one to one (injective)
 - 3. *f* is onto (surjective)

 $G \cong G'$ (group isomorphisim): $\exists f : G \to G'$ that is isomorphic. Then |G| = |G'|. **Propositions:**

- Suppose $G \cong G'$ Then G is abelian $\Leftrightarrow G'$ is abelian. (which implies that abelian group and non abelian group is not isomorphic)
- if G and G' are cyclic and |G| = |G'| then $G \cong G'$
- Let $G = (Z_n, +_n) = \{[0], [1] \cdots, [n-1]\}, G' = (Z_n, +_n) = (\{0, 1, 2, \cdots, n-1\}, +_n)$ Then $G \cong G'$ and the isomorphism can be take $[x]_n \to x$
- Cyclic: $\exists a \in G$, s.t. $\langle a \rangle = G$ such a is called a generator.

• Center of Group:

Center of a Group $G: Z(G) := \{Z \in G | gz = zg, \forall g \in G\}$ **Proposition:**

- 1. Z(G) is a subgroup of G.
- 2. If *G* is abelian, then Z(G) = G

• External direct product of Groups:

Group G, H, Define $G \times H := \{(x, y) \mid x \in G, y \in H\}$ $(x_1, y_1)(x_2, y_2) = (x_1x_2, y_1y_2)$

Proposition:

- 1. $e_{G \times H} = (e_G, e_H)$
- 2. $(x,y)^{-1} = (x^{-1}, y^{-1})$
- 3. |(x,y)| = LCM(|x|,|y|)

• Internal product of groups:

Group *G* has subgroup *H*, *K*. Defind $HK := \{xy | x \in H, y \in K\}$

NOTE: *HK* is not always a subgroup.

Proposition:

1. *H*, *K* are subgroup of *G*.

Suppose $x^{-1}yx \in K$, $\forall x \in H$, $y \in K$ Then HK is a subgroup of G.

Corollary: H, K are subgroup of abelien group G, then HK is a subgroup of G.

• Group Homomorphisms:

$$f: G \to G' \text{ if } f(xy) = f(x)f(y) \forall x, y \in G$$

Compared to isomorphism, we don't need bijection.

• Kernal and Image:

$$f: G \rightarrow G'$$
, Define:

$$Kerf := \{ g \in G \mid f(g) = e'_G \}$$

Imf :=
$$\{y \in G' \mid \exists x \in G, s.t. \ f(x) = y\} \equiv \{f(x) \mid x \in G\}$$

Lemma:

 $f: G \rightarrow G'$ be a group homomorphism.

1.
$$f(e_G) = e_{G'}$$

2.
$$f(a^n) = (f(a))^n, \forall n > 0, n \in \mathbb{Z}$$

3.
$$f(a^{-1}) = (f(a))^{-1}$$

4. From 2,3 we can conclude:
$$f(a^n) = (f(a))^n$$

Proposition:

- 1. $f: G \rightarrow G'$ be group homomorphism:
 - kerf is a subgroup of *G*
 - Imf is a subgroup of G'
- 2. If $G = \langle a \rangle$ i.e. G is a cyclic group. Then, it is enough to define homomorphism $f: G \to G'$ on a and extend to all a^n .
- 3. $f: G \to G'$ be a group homomorphism, then |f(a)| |a|

• Left Coset and Right Coset:

Definition:

Let G be a group, let H be a subgroup of G.

Left coset of H in G: $aH := \{ah \mid h \in G\}$

Right coset of *H* in *G*: $Ha := \{ha \mid h \in G\}$ **Proposition:**

$$-aH = H \text{ iff } a \in H$$

$$aH = bH \Leftrightarrow a \in bH$$

 $\Leftrightarrow b \in aH$

$$\Leftrightarrow a^{-1}b \in H$$

$$\Leftrightarrow b^{-1}a \in H$$

 $-aH \cup bH = \emptyset$ or aH = bH.

Only two posibilities. When it is \emptyset , properties above fails. When it is not \emptyset the only posibility is that aH = bH and above properties holds.

3

- $-G = \sqcup aH$ (disjoint union of left cosets.) Taking elements inside the set H won't generate new cosets. Only taking elements outside the set would generate new cosets.
- $-H < G, |aH| = |H|, \forall a \in G$

Definition: H < G, [G:H] := # of left cosets of H in G **Properties:** $|G| = [G:H] \cdot |H| \Leftrightarrow [G:H] = |G|/|H|$

In general, $aH \neq Ha$, sometimes they are the same.

• Normal Subgroup:

Definition: H < G, H is normal subgroup $\Leftrightarrow H \triangleleft G$ if $aH = Ha, \forall a \in G$.

Theorem: H < G, the following are equivalent:

- $-H \triangleleft G$
- -aH = Ha, ∀a ∈ G
- $-aHa^{-1}$ ⊆ H, $\forall a \in G$
- $-aHa^{-1}=H, \forall a \in G$

Prop: If *G* is an abelian group, then every subgroup of *G* is normal.

• Symmetric Group:

Definition: transposition is an element $\tau_{ij} = (ij)$ (permutation of length 2)

Prop: Every permutation seauence $b \in S_n$ can be written as a product of transpositions.

- Step 1: write the permutation in disjoint cycles.
- Step 2: write each cycle as a product of transpositions.

Example: $(1346)(13)(14)(16) = (3461) \Rightarrow (16)(14)(13) = (1346)$

• **Sign of permutation:** Definition: the sign of permutation σ is the parity of the number of transpositions in any decompositions.

To conclude: length of cycle is even \Rightarrow parity odd; length of cycle is odd \Rightarrow parity even.

Prop: even· even = even; even·odd = odd; odd·even = odd; odd·odd = even

• Quotient Group:

 $H \triangleleft G$ then $G/H = \{aH \mid a \in G\}$.

G/H is a group under operation: (aH)(bH) = abH. identity: $e_{G/H} = eH = H$. inverse: $(aH)^{-1} = a^{-1}H$

- Isomorphism Theorem:
 - 1. Let $f: G \to G'$ be a group homomorphism. Then $G/kerf \cong imf$
 - Let H < G, let $i : H \rightarrow G$ be i(x) = x.

Then, 1. i is a gorup homomorphism.

- 2. i is one to one.
- 3. ker(i) = e
- 4. im(i) = H.

- Let *H* \triangleleft *G*. Let *π* : *G* \rightarrow *G/H* be given as $\Pi(x) = xH$
 - Then, 1. π is a group homomorphism.
 - 2. $ker(\pi) = H$
 - 3. π is onto
 - 4. $Im(\pi) = G/H$.
- **Theorem:** f : G → G', f is a group homomorphism.
 - (a) $ker(f) \triangleleft G$
 - (b) G/kerf is a group.
 - (c) $Imf \leq G'$, Imf is a subgroup.
 - (d) $f: G \rightarrow G'$ becomes:

$$G \xrightarrow{\pi} G/kerf \xleftarrow{\overline{f}} Imf \xleftarrow{i'} G'$$
, where $\overline{f}(a \cdot kerf) = f(a)$
Then $f = i'\overline{f}\pi$, i.e. any f can be write in composition of $i\overline{f}\pi$

- 2. Let H, N < G, suppose $N \triangleleft G$, then $(H \cdot N)/N \cong H/(H \cup N)$ Proof Steps:
 - (a) HN is a subgroup of G

Proof. – Show
$$HN \subseteq G$$

 $x \in HN \Rightarrow x = yz, y \in H, z \in N$
 $y \in H, H \subseteq G \Rightarrow y \in G$
 $z \in N, N \subseteq G \Rightarrow z \in G$

Since *G* is a group, *G* is closed under operation. Therefore, $x = yz \in G$

- Show e ∈ HN

Since $e = e \cdot e$ and H, N are groups, then $e \in H, e \in N$. Therefore, $e \in HN$

- Closed under operation.

Claim: $a, b \in HN$, WTS: $ab \in HN$

By assumption $\exists h \in H, n \in N, a = hn$

By assumption $\exists h' \in H, n' \in N, b = h'n'$

Then ab = hnh'n'.

 $nh' \in Nh'$

Since $N \triangleleft G \Rightarrow nh' \in h'N$

Therefore, $\exists \hat{n} \in N \text{ s.t. } nh' = h'\hat{n}$

Then, $ab = hnh'n' = hh'\hat{n}n'$.

Since $hh' \in H$, $\hat{n}n' \in N$, $ab \in HN$.

- Closed under inversion.

Claim: $a \in HN$, WTS: $a^{-1} \in HN$

By assumption $\exists h \in H, n \in N, a = hn$

Then $a^{-1} = n^{-1}h^{-1}$

Since $n^{-1} \in N$, then $n^{-1}h^{-1} \in Nh^{-1}$

Since *N* is a normal subgroup of *G* and $h^{-1} \in G$, then $n^{-1}h^{-1} \in h^{-1}N$.

Then $\exists \hat{n} \in N \text{ s.t. } n^{-1}h^{-1} = h^{-1}\hat{n}$

Since $h \in H$ and H is a group, $h^{-1} \in H$

 $\Rightarrow a^{-1} = h^{-1}\hat{n} \text{ where } h^{-1} \in H, \hat{n} \in N$

Therefore, $a^{-1} \in HN$

(b) N is normal subgroup in HN

```
Proof. – Show N \subseteq HN
If x \in N \Rightarrow \exists n \in N, s.t. x = en
Since H is a group, then e \in H. Therefore, x \in HN
Therefore, \Rightarrow N \subseteq HN
```

- Show e ∈ N: Trivial since N is already a group by definition.
- Show N closed under operation: Trivial since N is already a group by definition.
- Show *N* closed under inverse: Trivial since *N* is already a group by definition.

- (c) HN/N is a group: This is a quotient group by definition.
- (d) $H \cap N \leq H$: Skipped In Class (trivial)
- (e) $H \cap N \triangleleft H$: Skipped In Class
- (f) $HN/N \cong H/(N \cap H)$

Proof. We define an homomorphism $f: H \to HN/N$, f(h) = hN:

$$\begin{cases} H & \xrightarrow{i} & HN \\ x & \xrightarrow{f} HN/N \xleftarrow{\pi} & HN \end{cases}$$

$$\text{Then } kerf = \{x \in H \mid f(x) = e_{HN/N}\}$$

$$= \{x \in H \mid xN = N\}$$

$$= \{x \in H \mid x \in N\}$$

$$= H \cap N$$
Use theoem A for $f \colon H/kerf \cong Imf$.
Then, $H/(H \cap N) \cong HN/N$

3. Let $K, H \triangleleft G$ (normal subgroup), suppose $K \subset H$. Then, $(G/K) / (H/K) \cong G/H$