5. Intervall- und Bereichsschätzer

- Intervallschätzung
- Konstruktionsprinzip f
 ür Konfidenzintervalle
- Konfidenzintervalle für Erwartungswert
- Konfidenzintervall für die Varianz
- Zusammenfassung

0

Bisher: Verwendung von Stichprobenergebnissen zur **Punkt**schätzung $\hat{\theta}$ eines unbekannten Parameters θ (bzw. einer unbek. Kennzahl) der Grundgesamtheit.

Bisher: Verwendung von Stichprobenergebnissen zur **Punkt**schätzung $\hat{\theta}$ eines unbekannten Parameters θ (bzw. einer unbek. Kennzahl) der Grundgesamtheit.

Bisher: Verwendung von Stichprobenergebnissen zur **Punkt**schätzung $\hat{\theta}$ eines unbekannten Parameters θ (bzw. einer unbek. Kennzahl) der Grundgesamtheit.

 \hookrightarrow **Folgerung:** Schätzwert $\hat{\theta}$ und geschätzter Parameter θ stimmen (so gut wie) nie überein!

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 1

Bisher: Verwendung von Stichprobenergebnissen zur **Punkt**schätzung $\hat{\theta}$ eines unbekannten Parameters θ (bzw. einer unbek. Kennzahl) der Grundgesamtheit.

- \hookrightarrow **Folgerung:** Schätzwert $\hat{\theta}$ und geschätzter Parameter θ stimmen (so gut wie) nie überein!
- \hookrightarrow **Jetzt:** Angabe eines **Schätzintervals** $[G_u, G_o]$ in dem sich der unbekannte Parameter θ mit (kontrollierbarer) Überdeckungswahrscheinlichkeit (1α) , $\alpha \in (0,1)$ befindet.¹

Bisher: Verwendung von Stichprobenergebnissen zur **Punkt**schätzung $\hat{\theta}$ eines unbekannten Parameters θ (bzw. einer unbek. Kennzahl) der Grundgesamtheit.

- \hookrightarrow **Folgerung:** Schätzwert $\hat{\theta}$ und geschätzter Parameter θ stimmen (so gut wie) nie überein!
- \hookrightarrow **Jetzt:** Angabe eines **Schätzintervals** $[G_u, G_o]$ in dem sich der unbekannte Parameter θ mit (kontrollierbarer) Überdeckungswahrscheinlichkeit (1α) , $\alpha \in (0,1)$ befindet.¹

 \hookrightarrow Je größer α (je kleiner die vorgegebene Überdeckungswahrscheinlichkeit) ist, desto kleiner darf das Intervall sein.

- \hookrightarrow Je größer α (je kleiner die vorgegebene Überdeckungswahrscheinlichkeit) ist, desto kleiner darf das Intervall sein.
- \hookrightarrow Je kleiner α (je größer die vorgegebene Überdeckungswahrscheinlichkeit) ist, desto größer muss das Intervall sein.

- \hookrightarrow Je größer α (je kleiner die vorgegebene Überdeckungswahrscheinlichkeit) ist, desto kleiner darf das Intervall sein.
- \hookrightarrow Je kleiner α (je größer die vorgegebene Überdeckungswahrscheinlichkeit) ist, desto größer muss das Intervall sein.

Zweiseitiges $(1 - \alpha)$ -Konfidenzintervall

Ein (zweiseitiges) $(1-\alpha)$ -Konfidenzintervall (KI) $[G_u,G_o]$ zur Irrtumswahrscheinlichkeit $\alpha \in (0,1)$, wird gebildet aus Schätzstatistiken

$$G_u = g_u(X_1, \dots, X_n)$$
 und $G_o = g_o(X_1, \dots, X_n)$

wenn folgende Voraussetzungen erfüllt sind

$$P(G_u \leq G_o) = 1 \text{ und } P(\theta \in [G_u; G_o]) \geq 1 - \alpha.$$

3

Zweiseitiges $(1 - \alpha)$ -Konfidenzintervall

Ein (zweiseitiges) $(1 - \alpha)$ -Konfidenzintervall (KI) $[G_u, G_o]$ zur Irrtumswahrscheinlichkeit $\alpha \in (0, 1)$, wird gebildet aus Schätzstatistiken

$$G_u = g_u(X_1, \dots, X_n)$$
 und $G_o = g_o(X_1, \dots, X_n)$

wenn folgende Voraussetzungen erfüllt sind

$$P(G_u \leq G_o) = 1 \text{ und } P(\theta \in [G_u; G_o]) \geq 1 - \alpha.$$

Einseitige $(1 - \alpha)$ -Konfidenzintervalle

Ein einseitiges $(1 - \alpha)$ -Konfidenzintervall $] - \infty$; G_o liegt vor, wenn

$$P(\theta \leq G_o) \geq 1 - \alpha$$

Ein einseitiges $(1-\alpha)$ -Konfidenzintervall $[G_u; \infty[$ liegt vor, wenn

$$P(\theta \geq G_u) \geq 1 - \alpha$$

3

 \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o}=g_{u/o}(X_1,\ldots,X_n)$, die von den Stichprobenvariablen abhängen.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o} = g_{u/o}(X_1, \dots, X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o}=g_{u/o}(X_1,\ldots,X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:
 - $\Box \{\theta \in [G_u, G_o]\}$

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o} = g_{u/o}(X_1, \dots, X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

$$\square \{\theta \in [G_u, G_o]\} = \{\omega \in \Omega : G_u(\omega) \leq \theta, G_o(\omega) \geq \theta\}$$

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o}=g_{u/o}(X_1,\ldots,X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

$$\square \{\theta \in [G_u, G_o]\} = \{\omega \in \Omega : G_u(\omega) \le \theta, G_o(\omega) \ge \theta\}$$

$$\Box \{\theta \leq G_o\}$$

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o} = g_{u/o}(X_1, \dots, X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

$$\square \{\theta \in [G_u, G_o]\} = \{\omega \in \Omega : G_u(\omega) \le \theta, G_o(\omega) \ge \theta\}$$

$$\Box \{\theta \leq G_o\} = \{\omega \in \Omega : G_o(\omega) \geq \theta\}$$

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o} = g_{u/o}(X_1, \dots, X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

$$\square \ \{\theta \in [G_u, G_o]\} = \{\omega \in \Omega : G_u(\omega) \le \theta, G_o(\omega) \ge \theta\}$$

$$\Box \{\theta \leq G_o\} = \{\omega \in \Omega : G_o(\omega) \geq \theta\}$$

$$\Box \{\theta \geq G_u\}$$

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o} = g_{u/o}(X_1, \dots, X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

$$\square \{\theta \in [G_u, G_o]\} = \{\omega \in \Omega : G_u(\omega) \leq \theta, G_o(\omega) \geq \theta\}$$

$$\Box \{\theta \leq G_o\} = \{\omega \in \Omega : G_o(\omega) \geq \theta\}$$

$$\Box \{\theta \geq G_u\} = \{\omega \in \Omega : G_u(\omega) \leq \theta\}$$

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o}=g_{u/o}(X_1,\ldots,X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:

$$\square \ \{\theta \in [G_u, G_o]\} = \{\omega \in \Omega : G_u(\omega) \le \theta, G_o(\omega) \ge \theta\}$$

$$\square \{\theta \leq G_o\} = \{\omega \in \Omega : G_o(\omega) \geq \theta\}$$

$$\Box \{\theta \geq G_u\} = \{\omega \in \Omega : G_u(\omega) \leq \theta\}$$

 \hookrightarrow Die Überdeckungs-WS $1-\alpha$ ist eine (vorgegebene) Eigenschaft des konkreten Schätzverfahrens. Mit Mindest-WS $1-\alpha$ wird ein Intervall (z.B. $[g_u(x_1,\ldots,x_n),\ g_o(x_1,\ldots,x_n)])$ generiert, das den wahren Wert θ überdeckt.

- \hookrightarrow Die Intervallgrenzen sind Zufallsvariablen $G_{u/o} = g_{u/o}(X_1, \dots, X_n)$, die von den Stichprobenvariablen abhängen.
- \hookrightarrow Die Schreibweisen der Ereignisse suggerieren, dass θ die ZV ist, zu der eine WS berechnet wird. Tatsächlich handelt es sich um folgende Ereignisse:
 - $\square \{\theta \in [G_{\mu}, G_{\rho}]\} = \{\omega \in \Omega : G_{\mu}(\omega) \leq \theta, G_{\rho}(\omega) \geq \theta\}$
 - $\Box \{\theta \leq G_o\} = \{\omega \in \Omega : G_o(\omega) \geq \theta\}$
 - $\Box \{\theta > G_{u}\} = \{\omega \in \Omega : G_{u}(\omega) < \theta\}$
- \hookrightarrow Die Überdeckungs-WS 1 α ist eine (vorgegebene) Eigenschaft des konkreten Schätzverfahrens. Mit Mindest-WS $1-\alpha$ wird ein Intervall (z.B. $[g_u(x_1,\ldots,x_n),\ g_o(x_1,\ldots,x_n)])$ generiert, das den wahren Wert θ überdeckt.
- → Im stetigen Modellen für die Grundgesamtheit wird das KI so angesetzt, dass die Mindest-WS $1-\alpha$ exakt eingehalten wird.
- \hookrightarrow Zweiseitige KI werden oftmals symmetrisch angesetzt, d.h. $P(\theta > G_o) \leq \frac{\alpha}{2}$, $P(\theta < G_u) \leq \frac{\alpha}{2}$ (im stetigen Fall: $u = \frac{\alpha}{2}$ ").

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

5

5.2 Konstruktionsprinzip für Konfidenzintervalle

1. Bestimme einen Punktschätzer $T_n = T(X_1, ..., X_n)$ für θ (z. B. mittels ML, MM, ...).

5

5.2 Konstruktionsprinzip für Konfidenzintervalle

- 1. Bestimme einen Punktschätzer $T_n = T(X_1, ..., X_n)$ für θ (z. B. mittels ML, MM, ...).
- 2. Lege das (zweiseitige) Konfidenzintervall fest mit

$$G_u = T_n - t \cdot A_n$$
 und $G_o = T_n + t \cdot A_n$

wobei t > 0 und $A_n = a(X_1, \dots, X_n) > 0$ eine geeignete Statistik ist.

- 1. Bestimme einen Punktschätzer $T_n = T(X_1, ..., X_n)$ für θ (z. B. mittels ML, MM, ...).
- 2. Lege das (zweiseitige) Konfidenzintervall fest mit

$$G_u = T_n - t \cdot A_n$$
 und $G_o = T_n + t \cdot A_n$

wobei t > 0 und $A_n = a(X_1, \dots, X_n) > 0$ eine geeignete Statistik ist.

Es gilt
$$\theta \in [T_n - t \cdot A_n; T_n + t \cdot A_n] \Leftrightarrow -t \leq \frac{T_n - \theta}{A_n} \leq t$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 5

- 1. Bestimme einen Punktschätzer $T_n = T(X_1, ..., X_n)$ für θ (z. B. mittels ML, MM, ...).
- 2. Lege das (zweiseitige) Konfidenzintervall fest mit

$$G_u = T_n - t \cdot A_n$$
 und $G_o = T_n + t \cdot A_n$

wobei t > 0 und $A_n = a(X_1, \dots, X_n) > 0$ eine geeignete Statistik ist.

Es gilt
$$\theta \in [T_n - t \cdot A_n; T_n + t \cdot A_n] \Leftrightarrow -t \leq \frac{T_n - \theta}{A_n} \leq t$$

3. Wähle t>0 derart, dass gilt $P_{\theta}\left(-t\leq \frac{T_{n}-\theta}{A_{n}}\leq t\right)\stackrel{!}{=}1-lpha$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 5

- 1. Bestimme einen Punktschätzer $T_n = T(X_1, ..., X_n)$ für θ (z. B. mittels ML, MM, ...).
- 2. Lege das (zweiseitige) Konfidenzintervall fest mit

$$G_u = T_n - t \cdot A_n$$
 und $G_o = T_n + t \cdot A_n$

wobei t > 0 und $A_n = a(X_1, \dots, X_n) > 0$ eine geeignete Statistik ist.

Es gilt
$$\theta \in [T_n - t \cdot A_n ; T_n + t \cdot A_n] \Leftrightarrow -t \leq \frac{T_n - \theta}{A_n} \leq t$$

3. Wähle t>0 derart, dass gilt $P_{\theta}\left(-t\leq rac{T_{n}- heta}{A_{n}}\leq t
ight)\stackrel{!}{=}1-lpha$ (bzw. $\stackrel{!}{pprox}1-lpha$)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- 1. Bestimme einen Punktschätzer $T_n = T(X_1, ..., X_n)$ für θ (z. B. mittels ML, MM, ...).
- 2. Lege das (zweiseitige) Konfidenzintervall fest mit

$$G_u = T_n - t \cdot A_n$$
 und $G_o = T_n + t \cdot A_n$

wobei t > 0 und $A_n = a(X_1, \dots, X_n) > 0$ eine geeignete Statistik ist.

Es gilt
$$\theta \in [T_n - t \cdot A_n; T_n + t \cdot A_n] \Leftrightarrow -t \leq \frac{T_n - \theta}{A_n} \leq t$$

3. Wähle t>0 derart, dass gilt $P_{\theta}\left(-t\leq \frac{T_{n}-\theta}{A_{n}}\leq t\right)\stackrel{!}{=}1-\alpha$ (bzw. $\stackrel{!}{pprox}1-\alpha$)

Typische Wahl für A_n : Schätzer für den Standardfehler von T_n , so dass der Bruch (zumindest approximativ) eine Standardisierung von T_n darstellt.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

6

Übung: Zeigen Sie, dass gilt:

$$\theta \in [T_n - t \cdot A_n; T_n + t \cdot A_n] \quad \Leftrightarrow \quad -t \le \frac{T_n - \theta}{A_n} \le t$$

 $\hookrightarrow t > 0$ ist (meist) $(1 - \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).

- $\hookrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- \hookrightarrow A_n ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).

- $\hookrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- $\hookrightarrow A_n$ ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

- $\hookrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- $\hookrightarrow A_n$ ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- $\hookrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- \hookrightarrow A_n ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- \square Fall "linksseitig unbeschränkt":] $-\infty$; G_o] mit $G_o = T_n + t \cdot A_n$
- \Box Erläuterung: Die Schätzung T_n für θ muss nach oben etwas ausgeweitet werden, um θ mit ausreichender WS zu "überdecken".

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- $\hookrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- \hookrightarrow A_n ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- \square Fall "linksseitig unbeschränkt":] $-\infty$; G_o] mit $G_o = T_n + t \cdot A_n$
- \Box Erläuterung: Die Schätzung T_n für θ muss nach oben etwas ausgeweitet werden, um θ mit ausreichender WS zu "überdecken".
- $\Box P(G_o \ge \theta) = 1 \alpha$, d.h. $P(T_n + t \cdot A_n \ge \theta) = 1 \alpha$

- $\Rightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- $\hookrightarrow A_n$ ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- Fall "linksseitig unbeschränkt":] $-\infty$; G_o] mit $G_o = T_n + t \cdot A_n$
- Erläuterung: Die Schätzung T_n für θ muss nach oben etwas ausgeweitet werden, um θ mit ausreichender WS zu "überdecken".
- $\Box P(G_0 \geq \theta) = 1 \alpha$, d.h. $P(T_n + t \cdot A_n \geq \theta) = 1 \alpha$
- \Box Es gilt $T_n + t \cdot A_n \ge \theta \Leftrightarrow T_n \theta \ge -t \cdot A_n \Leftrightarrow \frac{T_n \theta}{A} \ge -t$.

Festlegung der Größen t, A_n im KI $[T_n - t \cdot A_n, T_n + t \cdot A_n]$

- $\leftrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- $\hookrightarrow A_n$ ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- Fall "linksseitig unbeschränkt":] $-\infty$; G_o] mit $G_o = T_n + t \cdot A_n$
- Erläuterung: Die Schätzung T_n für θ muss nach oben etwas ausgeweitet werden, um θ mit ausreichender WS zu "überdecken".
- $\Box P(G_0 > \theta) = 1 \alpha$, d.h. $P(T_0 + t \cdot A_0 > \theta) = 1 \alpha$
- \Box Es gilt $T_n + t \cdot A_n \ge \theta \Leftrightarrow T_n \theta \ge -t \cdot A_n \Leftrightarrow \frac{T_n \theta}{A} \ge -t$.
- \square Also wird gefordert: $P(\frac{T_n-\theta}{A_n} \geq -t) \stackrel{!}{=} 1 \alpha$

Festlegung der Größen t, A_n im KI $[T_n - t \cdot A_n, T_n + t \cdot A_n]$

- $\leftrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- $\hookrightarrow A_n$ ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- Fall "linksseitig unbeschränkt":] $-\infty$; G_o] mit $G_o = T_n + t \cdot A_n$
- Erläuterung: Die Schätzung T_n für θ muss nach oben etwas ausgeweitet werden, um θ mit ausreichender WS zu "überdecken".
- $\Box P(G_0 \geq \theta) = 1 \alpha$, d.h. $P(T_n + t \cdot A_n \geq \theta) = 1 \alpha$
- \Box Es gilt $T_n + t \cdot A_n \ge \theta \Leftrightarrow T_n \theta \ge -t \cdot A_n \Leftrightarrow \frac{T_n \theta}{A} \ge -t$.
- \square Also wird gefordert: $P(\frac{T_n-\theta}{\Lambda} \geq -t) \stackrel{!}{=} 1 \alpha$
- Bei stetigen Modellen ist das i.d.R. gleichwertig zu $P(\frac{T_n-\theta}{A_n} \leq -t) \stackrel{!}{=} \alpha$

Festlegung der Größen t, A_n im KI $[T_n - t \cdot A_n, T_n + t \cdot A_n]$

- $\hookrightarrow t > 0$ ist (meist) $(1 \frac{\alpha}{2})$ -Quantil einer symmetrischen "Standardverteilung" (oft approximiert durch Anwendung des zentralen Grenzwertsatzes).
- \hookrightarrow A_n ist (meist konsistenter) Schätzer für den Standardfehler $\sqrt{var(T_n)}$ (wird als empirischer Standardfehler bzw. ebenfalls als Standardfehler bezeichnet).
- \hookrightarrow In Ausnahmefällen ist A_n zufallsunabhängig (KI mit fester Breite).

Analog bei einseitigen KI oder unsymmetrischen Intervallgrenzen.

- \square Fall "linksseitig unbeschränkt":] $-\infty$; G_o] mit $G_o=T_n+t\cdot A_n$
- \Box Erläuterung: Die Schätzung T_n für θ muss nach oben etwas ausgeweitet werden, um θ mit ausreichender WS zu "überdecken".
- $\square P(G_o \ge \theta) = 1 \alpha, \text{ d.h. } P(T_n + t \cdot A_n \ge \theta) = \underline{1} \alpha$
- $\Box \text{ Es gilt } T_n + t \cdot A_n \geq \theta \Leftrightarrow T_n \theta \geq -t \cdot A_n \Leftrightarrow \frac{T_n \theta}{A_n} \geq -t.$
- \square Also wird gefordert: $P(\frac{T_n-\theta}{A_n}\geq -t)\stackrel{!}{=} 1-\alpha$
- \square Bei stetigen Modellen ist das i.d.R. gleichwertig zu $P(\frac{T_n-\theta}{A_n}\leq -t)\stackrel{!}{=}\alpha$
- \Box -t ist also das α -Quantil der Stichprobenverteilung von $\frac{T_n-\theta}{A_n}$, welche meist approximativ nicht mehr von θ abhängt (ZGS).

Übung: Wie lautet der entsprechende Ansatz für ein rechtsseitig unbeschränktes $(1-\alpha)$ -Konfidenzintervall $[G_n; \infty[$

Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Gesucht ist ein (zweiseitiges) Konfidenzintervall für den Erwartungswert μ .

Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Gesucht ist ein (zweiseitiges) Konfidenzintervall für den Erwartungswert μ .

Erster Fall: σ ist bekannt

Ein bekannter Punktschätzer für μ ist das arithmetische Mittel $T_n = \bar{X}$. Es gilt:

Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Gesucht ist ein (zweiseitiges) Konfidenzintervall für den Erwartungswert μ .

Erster Fall: σ ist bekannt

Ein bekannter Punktschätzer für μ ist das arithmetische Mittel $T_n = \bar{X}$. Es gilt:

$$X_1 + \dots + X_n \sim \mathcal{N}(n\mu, n\sigma^2) \Rightarrow \bar{X} = \frac{X_1 + \dots + X_n}{n} \sim \mathcal{N}(\mu, \sigma^2/n)$$

 $\Rightarrow \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \quad (\star)$

Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Gesucht ist ein (zweiseitiges) Konfidenzintervall für den Erwartungswert μ .

Erster Fall: σ ist bekannt

Ein bekannter Punktschätzer für μ ist das arithmetische Mittel $T_n = \bar{X}$. Es gilt:

$$X_1 + \dots + X_n \sim \mathcal{N}(n\mu, n\sigma^2) \Rightarrow \bar{X} = \frac{X_1 + \dots + X_n}{n} \sim \mathcal{N}(\mu, \sigma^2/n)$$

 $\Rightarrow \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \quad (\star)$

(*) enthält den unbekannten Parameter μ ; die Verteilung von (*) ist unabhängig von μ .

Das KI kann in der Form $[T_n - t \cdot A_n; T_n + t \cdot A_n]$ mit $T_n = \bar{X}$ und $A_n = \sigma/\sqrt{n}$ gewählt werden. Seine Breite ist dann zufallsunabhängig $2t \cdot \sigma/\sqrt{n}$.

Zur Festlegung von t in $[T_n - t \cdot A_n; T_n + t \cdot A_n]$:

 \hookrightarrow Es gilt

$$1 - \alpha \stackrel{!}{=} P(\bar{X} - t\sigma/\sqrt{n} \le \mu \le \bar{X} + t\sigma/\sqrt{n}) = P\left(-t \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le t\right)$$
$$= \Phi(t) - \Phi(-t) = 2\Phi(t) - 1$$

 \hookrightarrow Dabei gilt $2\Phi(t) - 1 = 1 - \alpha \Leftrightarrow \Phi(t) = 1 - \alpha/2$

Zweiseitiges KI für μ , wenn σ^2 bekannt

$$[G_u; G_o] = \left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \; \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

mit $z_{1-\alpha/2}$, d.h. dem $(1-\alpha/2)$ -Quantil der Standardnormalverteilung.

z.B. mit R und
$$\alpha = 0.01 \rightarrow z_{1-\alpha/2} = z_{0.995} = 2.575 \rightarrow qnorm(0.995)$$

 \hookrightarrow Bestimme die Breite $b_{\mathsf{KI}} = G_o - G_u$ des Konfidenzintervalls

$$[G_u ; G_o] = \left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

 \hookrightarrow Bestimme die Breite $b_{KI} = G_o - G_u$ des Konfidenzintervalls

$$[G_u ; G_o] = \left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

 \hookrightarrow Was passiert, wenn wir α klein oder groß machen? Was passiert, wenn wir den Stichprobenumfang n gegen unendlich laufen lassen?

 \hookrightarrow Bestimme die Breite $b_{KI} = G_o - G_u$ des Konfidenzintervalls

$$[G_u; G_o] = \left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

 \hookrightarrow Was passiert, wenn wir α klein oder groß machen? Was passiert, wenn wir den Stichprobenumfang n gegen unendlich laufen lassen?

$$b_{\mathsf{KI}} = G_{\mathsf{o}} - G_{\mathsf{u}} = \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} - \left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
$$= 2 \cdot z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}.$$

 \hookrightarrow Bestimme die Breite $b_{KI} = G_o - G_u$ des Konfidenzintervalls

$$[G_u ; G_o] = \left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

 \hookrightarrow Was passiert, wenn wir α klein oder groß machen? Was passiert, wenn wir den Stichprobenumfang n gegen unendlich laufen lassen?

$$b_{\mathsf{KI}} = G_{\mathsf{o}} - G_{\mathsf{u}} = \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} - \left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
$$= 2 \cdot z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}.$$

- \hookrightarrow Effekt von α (bei festem n).
 - \square α klein \Rightarrow Breite nimmt zu
 - \square α groß \Rightarrow Breite nimmt ab.

 \hookrightarrow Bestimme die Breite $b_{KI} = G_o - G_u$ des Konfidenzintervalls

$$[G_u ; G_o] = \left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

 \hookrightarrow Was passiert, wenn wir α klein oder groß machen? Was passiert, wenn wir den Stichprobenumfang n gegen unendlich laufen lassen?

$$b_{\mathsf{KI}} = G_{\mathsf{o}} - G_{\mathsf{u}} = \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} - \left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
$$= 2 \cdot z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}.$$

- \hookrightarrow Effekt von α (bei festem n).
 - $\sqcap \alpha \text{ klein} \Rightarrow \text{Breite nimmt zu}$
 - \square α groß \Rightarrow Breite nimmt ab.
- \hookrightarrow Bei konstantem α nimmt die Breite für wachsendes n ab. d.h.

$$\lim_{n\to\infty} 2\cdot z_{1-\alpha/2}\cdot \frac{\sigma}{\sqrt{n}} = 2\cdot z_{1-\alpha/2}\cdot \sigma \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0.$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 11

Fiktives Zahlenbeispiel zur Monatsmiete von Studenten in MS

- \hookrightarrow n=144, \bar{X} =300
- \hookrightarrow Annahme: $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Annahme: $\sigma = 100$ ist bekannt (?).
- \hookrightarrow ges.: Zweiseitiges Konfidenzintervall für μ , $\alpha=0.05$

Kaltmiete Miete inklusive Nebenkosten

Übung: Bestimmen Sie das zweiseitige Konfidenzintervall für μ ($\alpha = 0.05$) gegeben n = 144, $\bar{X} = 300$, $\sigma = 100$.

Übung: Wie groß müsste n mindestens sein, um zu einem Signifikanzniveau $\alpha=0.05$ ein zweiseitiges Konfidenzintervall für μ max. Breite 20 zu erhalten?

Übung: Verifizieren Sie Ihr Ergebnis, indem Sie zunächst das entsprechende Konfidenzintervall und anschließend dessen Breite ermitteln.

Nominacine interval and dissemble in design brette entire in the interval and dissemble in the i

Einseitiges Konfidenzintervall $[G_u; \infty[$ für μ bei bekanntem σ^2

$$1 - \alpha = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{1-\alpha}\right) = P\left(\mu \ge \bar{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Einseitiges Konfidenzintervall $[G_u; \infty]$ für μ bei bekanntem σ^2

$$1 - \alpha = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{1-\alpha}\right) = P\left(\mu \geq \bar{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

$$\hookrightarrow$$
 Also $G_u = \bar{X} - z_{1-lpha} \cdot rac{\sigma}{\sqrt{n}}$

$$\hookrightarrow$$
 Analog mit oberer Grenze: $KI = \left] - \infty \; ; \; \bar{X} + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}} \right]$

- \hookrightarrow n=144, \bar{X} =300, Annahme: $X_1, \ldots, X_n \stackrel{u.i.v}{\sim} \mathcal{N}(\mu, 100^2)$.
- \hookrightarrow ges.: Einseitiges oberes Konfidenzintervall für μ , $\alpha \in \{0.01, 0.05, 0.10\}$

$$\hookrightarrow \text{ F\"{u}r allgemeines }\alpha\colon \qquad -\infty < \mu \leq \bar{X} + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}} = 300 + z_{1-\alpha} \cdot \frac{100}{\sqrt{144}}$$

 $\hookrightarrow z_{0.99} \approx 2.326$, $z_{0.05} \approx 1.645$, $z_{0.9} \approx 1.282$

- \hookrightarrow n=144, \bar{X} =300, Annahme: $X_1, \ldots, X_n \stackrel{u.i.v}{\sim} \mathcal{N}(\mu, 100^2)$.
- \hookrightarrow ges.: Einseitiges oberes Konfidenzintervall für μ , $\alpha \in \{0.01, 0.05, 0.10\}$

$$\hookrightarrow \text{ Für allgemeines } \alpha \text{:} \qquad \qquad -\infty < \mu \leq \bar{X} + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}} = 300 + z_{1-\alpha} \cdot \frac{100}{\sqrt{144}}$$

- $\hookrightarrow z_{0.99} \approx 2.326$, $z_{0.05} \approx 1.645$, $z_{0.9} \approx 1.282$
- \rightarrow Für α = 0.01: $-∞ < μ ≤ 300 + 2.326 \cdot \frac{100}{\sqrt{144}} = 319.38$

- \hookrightarrow n=144, \bar{X} =300, Annahme: $X_1, \ldots, X_n \stackrel{u.i.v}{\sim} \mathcal{N}(\mu, 100^2)$.
- \hookrightarrow ges.: Einseitiges oberes Konfidenzintervall für μ , $\alpha \in \{0.01, 0.05, 0.10\}$

$$\hookrightarrow \text{ Für allgemeines } \alpha \text{:} \qquad -\infty < \mu \leq \bar{X} + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}} = 300 + z_{1-\alpha} \cdot \frac{100}{\sqrt{144}}$$

- $\hookrightarrow z_{0.99} \approx 2.326$, $z_{0.05} \approx 1.645$, $z_{0.9} \approx 1.282$
- \rightarrow Für α = 0.01: $-∞ < μ ≤ 300 + 2.326 \cdot \frac{100}{\sqrt{144}} = 319.38$
- \rightarrow Für $\alpha = 0.05$: $-\infty < \mu \le 300 + 1.645 \cdot \frac{100}{\sqrt{144}} = 313.71$

- \hookrightarrow n=144, \bar{X} =300, Annahme: $X_1, \ldots, X_n \stackrel{u.i.v}{\sim} \mathcal{N}(\mu, 100^2)$.
- \hookrightarrow ges.: Einseitiges oberes Konfidenzintervall für μ , $\alpha \in \{0.01, 0.05, 0.10\}$

$$\hookrightarrow \text{ Für allgemeines } \alpha \text{:} \qquad -\infty < \mu \leq \bar{X} + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}} = 300 + z_{1-\alpha} \cdot \frac{100}{\sqrt{144}}$$

- $\hookrightarrow z_{0.99} \approx 2.326$, $z_{0.05} \approx 1.645$, $z_{0.9} \approx 1.282$
- → Für α = 0.01: $-∞ < μ ≤ 300 + 2.326 \cdot \frac{100}{\sqrt{144}} = 319.38$
- → Für α = 0.05: $-∞ < μ ≤ 300 + 1.645 \cdot \frac{100}{\sqrt{144}} = 313.71$
- \rightarrow Für $\alpha = 0.1$: $-\infty < \mu \le 300 + 1.282 \cdot \frac{100}{\sqrt{144}} = 310.68$

- \hookrightarrow n=144, \bar{X} =300, Annahme: $X_1, \ldots, X_n \stackrel{u.i.v}{\sim} \mathcal{N}(\mu, 100^2)$.
- \hookrightarrow ges.: Einseitiges oberes Konfidenzintervall für μ , $\alpha \in \{0.01, 0.05, 0.10\}$

$$\hookrightarrow \text{ Für allgemeines } \alpha \text{:} \qquad -\infty < \mu \leq \bar{X} + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}} = 300 + z_{1-\alpha} \cdot \frac{100}{\sqrt{144}}$$

- $\hookrightarrow z_{0.99} \approx 2.326$, $z_{0.05} \approx 1.645$, $z_{0.9} \approx 1.282$
- \rightarrow Für α = 0.01: $-∞ < μ ≤ 300 + 2.326 \cdot \frac{100}{\sqrt{144}} = 319.38$
- → Für α = 0.05: $-∞ < μ ≤ 300 + 1.645 \cdot \frac{100}{\sqrt{144}} = 313.71$
- → Für α = 0.1: $-∞ < μ ≤ 300 + 1.282 \cdot \frac{100}{\sqrt{144}} = 310.68$
- \hookrightarrow Beachte wiederum: Je größer α , desto kleiner die vorgegebene Überdeckungs-WS, desto kleiner das KI.

 $X_1,\ldots,X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu,\sigma^2)$. Wir suchen erneut Konfidenzintervallschätzung für μ .

 $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen erneut Konfidenzintervallschätzung für μ .

Zweiter Fall: σ ist unbekannt

Konstruktion einer Zufallsvariablen, die den wahren Parameter enthält, mit bekannter Verteilung, die unabhängig ist vom unbekannten Parameter.

$$(\star\star) \quad \frac{\bar{X}-\mu}{S/\sqrt{n}} = \frac{\bar{X}-\mu}{S} \cdot \sqrt{n} \sim t_{n-1} \text{ mit } S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

 $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen erneut Konfidenzintervallschätzung für μ .

Zweiter Fall: σ ist unbekannt

Konstruktion einer Zufallsvariablen, die den wahren Parameter enthält, mit bekannter Verteilung, die unabhängig ist vom unbekannten Parameter.

$$(\star\star)\quad \frac{\bar{X}-\mu}{S/\sqrt{n}} = \frac{\bar{X}-\mu}{S}\cdot\sqrt{n} \sim t_{n-1} \text{ mit } S = \sqrt{\frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{n-1}}$$

- \hookrightarrow **Beachte**: Der Ausdruck unterscheidet sich von jenem bei bekannter Varianz σ^2 nur durch die Ersetzung eben jener Varianz durch die Schätzung S^2 .
- → Das Konfidenzintervall ist dann von der Form

$$[G_u; G_o] = [T_n - t \cdot S/\sqrt{n}; T_n + t \cdot S/\sqrt{n}]$$

mit einem geeigneten Wert t>0 und zufallsabhängiger Breite $B=2tS/\sqrt{n}$.

16

 \hookrightarrow Für die Bestimmung von t muss die Verteilung (**) verwendet werden, dazu zwei Exkurse:

Exkurs 1: χ^2 -Verteilung

Seien $X_1, \ldots, X_n \stackrel{u.i.v.}{\sim} \mathcal{N}(0,1)$. Dann heißt die Verteilung der Zufallsvariablen

$$Z:=X_1^2+\ldots+X_n^2$$

Chi-Quadrat Verteilung mit *n* Freiheitsgraden, Symbol χ_n^2 .

Seien $X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(0,1)$. Dann heißt die Verteilung der Zufallsvariablen

$$Z:=X_1^2+\ldots+X_n^2$$

Chi-Quadrat Verteilung mit *n* Freiheitsgraden, Symbol χ_n^2

→ Ihre Dichte lässt sich durch Faltung bestimmen

$$f_n(z) = \begin{cases} \frac{z^{n/2 - 1} \cdot e^{-z/2}}{2^{n/2} \cdot \Gamma(n/2)} & , \text{ falls } z > 0 \\ 0 & , \text{ falls } z \le 0 \end{cases} \text{ mit } \Gamma(t) = \int_0^\infty x^{t-1} \cdot e^{-x} dx$$

Seien $X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(0,1)$. Dann heißt die Verteilung der Zufallsvariablen

$$Z:=X_1^2+\ldots+X_n^2$$

Chi-Quadrat Verteilung mit n Freiheitsgraden, Symbol χ^2_n .

→ Ihre Dichte lässt sich durch Faltung bestimmen

$$f_n(z) = \begin{cases} \frac{z^{n/2 - 1} \cdot e^{-z/2}}{2^{n/2} \cdot \Gamma(n/2)} & , \text{ falls } z > 0 \\ 0 & , \text{ falls } z \le 0 \end{cases} \text{ mit } \Gamma(t) = \int_0^\infty x^{t-1} \cdot e^{-x} dx$$

 \hookrightarrow Momente: E(Z) = n und var(Z) = 2n

Seien $X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(0,1)$. Dann heißt die Verteilung der Zufallsvariablen

$$Z:=X_1^2+\ldots+X_n^2$$

Chi-Quadrat Verteilung mit *n* Freiheitsgraden, Symbol χ_n^2

→ Ihre Dichte lässt sich durch Faltung bestimmen

$$f_n(z) = \begin{cases} \frac{z^{n/2 - 1} \cdot e^{-z/2}}{2^{n/2} \cdot \Gamma(n/2)} & , \text{ falls } z > 0 \\ 0 & , \text{ falls } z \le 0 \end{cases} \text{ mit } \Gamma(t) = \int_0^\infty x^{t-1} \cdot e^{-x} dx$$

- \hookrightarrow Momente: E(Z) = n und var(Z) = 2n
- → Dichte, Verteilungs-, Quantilfunktion mit R: dchisq(), pchisq(), qchisq()

Seien $X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(0,1)$. Dann heißt die Verteilung der Zufallsvariablen

$$Z:=X_1^2+\ldots+X_n^2$$

Chi-Quadrat Verteilung mit n Freiheitsgraden, Symbol χ_n^2

→ Ihre Dichte lässt sich durch Faltung bestimmen

$$f_n(z) = \begin{cases} \frac{z^{n/2-1} \cdot e^{-z/2}}{2^{n/2} \cdot \Gamma(n/2)} & , \text{ falls } z > 0 \\ 0 & , \text{ falls } z \le 0 \end{cases} \text{ mit } \Gamma(t) = \int_0^\infty x^{t-1} \cdot e^{-x} dx$$

- \hookrightarrow Momente: E(Z) = n und var(Z) = 2n
- → Dichte, Verteilungs-, Quantilfunktion mit R: dchisq(), pchisq(), qchisq()

Für
$$X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu, \sigma^2)$$
 gilt: $T = \sum_{i=1}^n (X_i - \bar{X})^2 / \sigma^2$ ist χ^2_{n-1} -verteilt.

Seien $X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(0,1)$. Dann heißt die Verteilung der Zufallsvariablen

$$Z:=X_1^2+\ldots+X_n^2$$

Chi-Quadrat Verteilung mit *n* **Freiheitsgraden**, Symbol χ_n^2 .

→ Ihre Dichte lässt sich durch Faltung bestimmen

$$f_n(z) = \begin{cases} \frac{z^{n/2 - 1} \cdot e^{-z/2}}{2^{n/2} \cdot \Gamma(n/2)} & , \text{ falls } z > 0 \\ 0 & , \text{ falls } z \le 0 \end{cases} \text{ mit } \Gamma(t) = \int_0^\infty x^{t-1} \cdot e^{-x} dx$$

- \hookrightarrow Momente: E(Z) = n und var(Z) = 2n
- \hookrightarrow Dichte, Verteilungs-, Quantilfunktion mit R: dchisq(), pchisq(), qchisq()

Für
$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu,\sigma^2)$$
 gilt: $T=\sum_{i=1}^n (X_i-\bar{X})^2/\sigma^2$ ist χ^2_{n-1} -verteilt.

Heuristik für
$$\mu = 0, \sigma = 1$$
: $Z = \underbrace{\sum_{i=1}^{n} X_i^2}_{\sim \chi_n^2} = \underbrace{\sum_{i=1}^{n} (X_i - \bar{X})^2}_{\sim \chi_{n-1}^2} + \underbrace{n\bar{X}^2}_{\sim \chi_1^2} = T + (\underbrace{\sqrt{n}\bar{X}}_{\sim \mathcal{N}(0,1)})^2$

Dichte der χ^2 -Verteilung - Visualisierung

- \hookrightarrow für kleine *n* linkssteil
- \hookrightarrow für n > 100 Normalverteilungsapproximation: $Z \stackrel{approx.}{\sim} \mathcal{N}(n, 2n)$

Exkurs 2: t-Verteilung

Seien X und Z unabhängig, $X \sim \mathcal{N}(0,1), Z \sim \chi_n^2$. Die Verteilung der ZV

$$T:=\frac{X}{\sqrt{Z/n}}$$

heißt t-Verteilung mit n Freiheitsgraden, Symbol: t_n

Exkurs 2: t-Verteilung

Seien X und Z unabhängig, $X \sim \mathcal{N}(0,1), Z \sim \chi_n^2$. Die Verteilung der ZV

$$T:=\frac{X}{\sqrt{Z/n}}$$

heißt t-Verteilung mit n Freiheitsgraden, Symbol: t_n

 \hookrightarrow Die Dichte berechnet sich z.B. mit dem Dichtetransformationssatz aus der gemeinsamen Dichte der Zufallsvariablen $X\sqrt{Z}$ und X/\sqrt{Z}

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \cdot \pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

Exkurs 2: *t*-Verteilung

Seien X und Z unabhängig, $X \sim \mathcal{N}(0,1), Z \sim \chi_n^2$. Die Verteilung der ZV

$$T:=\frac{X}{\sqrt{Z/n}}$$

heißt t-Verteilung mit n Freiheitsgraden, Symbol: t_n

 \hookrightarrow Die Dichte berechnet sich z.B. mit dem Dichtetransformationssatz aus der gemeinsamen Dichte der Zufallsvariablen $X\sqrt{Z}$ und X/\sqrt{Z}

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \cdot \pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

$$\hookrightarrow E(T) = 0 \text{ und } var(T) = \frac{n}{n-2} \text{ (für } n \ge 3)$$

Exkurs 2: t-Verteilung

Seien X und Z unabhängig, $X \sim \mathcal{N}(0,1), Z \sim \chi^2_n$. Die Verteilung der ZV

$$T:=\frac{X}{\sqrt{Z/n}}$$

heißt t-Verteilung mit n Freiheitsgraden, Symbol: t_n

 \hookrightarrow Die Dichte berechnet sich z.B. mit dem Dichtetransformationssatz aus der gemeinsamen Dichte der Zufallsvariablen $X\sqrt{Z}$ und X/\sqrt{Z}

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \cdot \pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

- $\hookrightarrow E(T) = 0$ und $var(T) = \frac{n}{n-2}$ (für $n \ge 3$)
- \hookrightarrow Dichte, Verteilungs- und Quantilfunktion mit R: dt(...), pt(...), qt(...)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Exkurs 2: *t*-Verteilung

Seien X und Z unabhängig, $X \sim \mathcal{N}(0,1), Z \sim \chi_n^2$. Die Verteilung der ZV

$$T:=\frac{X}{\sqrt{Z/n}}$$

heißt t-Verteilung mit n Freiheitsgraden, Symbol: t_n

 \hookrightarrow Die Dichte berechnet sich z.B. mit dem Dichtetransformationssatz aus der gemeinsamen Dichte der Zufallsvariablen $X\sqrt{Z}$ und X/\sqrt{Z}

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \cdot \pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

- $\hookrightarrow E(T) = 0 \text{ und } var(T) = \frac{n}{n-2} \text{ (für } n \ge 3)$
- \hookrightarrow Dichte, Verteilungs- und Quantilfunktion mit R: dt(...), pt(...), qt(...)

Für $X_1,\ldots,X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu,\sigma^2)$ sind \bar{X} und S st.u. und es gilt $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Dichte der t-Verteilung - Visualisierung

- \hookrightarrow für $n \to \infty$ Konvergenz zur Normalverteilung, ab n = 30 Approximation gut

 $X_1,\ldots,X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu,\sigma^2)$. Wir suchen erneut Konfidenzintervallschätzung für μ , diesmal aber für unbekanntes σ Aufgrund der Exkurse gilt:

$$1 - \alpha = P\left(-t_{1-\alpha/2; n-1} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{1-\alpha/2; n-1}\right)$$

$$= P\left(-t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}} \le \bar{X} - \mu \le t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}}\right)$$

$$= P\left(\bar{X} - t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}}\right)$$

 $X_1,\ldots,X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu,\sigma^2)$. Wir suchen erneut Konfidenzintervallschätzung für μ , diesmal aber für unbekanntes σ Aufgrund der Exkurse gilt:

$$1 - \alpha = P\left(-t_{1-\alpha/2; n-1} \leq \frac{\bar{X} - \mu}{S/\sqrt{n}} \leq t_{1-\alpha/2; n-1}\right)$$

$$= P\left(-t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}} \leq \bar{X} - \mu \leq t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}}\right)$$

$$= P\left(\bar{X} - t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{1-\alpha/2; n-1} \cdot \frac{S}{\sqrt{n}}\right)$$

Somit lautet das zugehörige Konfidenzintervall:

$$\left[\bar{X} - t_{1-\alpha/2;\,n-1} \cdot \frac{S}{\sqrt{n}}, \bar{X} + t_{1-\alpha/2;\,n-1} \cdot \frac{S}{\sqrt{n}}\right]$$

$$\mathsf{mit}\ b_{\mathsf{KI}} = 2 \cdot t_{1-\alpha/2;\, n-1} \cdot \tfrac{\mathsf{S}}{\sqrt{n}}$$

Approximative Konfidenzintervalle für μ

Bei beliebiger Verteilung der Grundgesamtheit lassen sich die Verteilungen von

(*)
$$\frac{\bar{X} - \mu}{\sigma} \cdot \sqrt{n}$$
 und (**) $\frac{\bar{X} - \mu}{S} \cdot \sqrt{n}$

für großes n ("Faustregel" n > 30) durch die Standardnormalverteilung approximieren!

Approximative Konfidenzintervalle für μ

Bei beliebiger Verteilung der Grundgesamtheit lassen sich die Verteilungen von

(*)
$$\frac{\bar{X} - \mu}{\sigma} \cdot \sqrt{n} \text{ und (**)} \quad \frac{\bar{X} - \mu}{S} \cdot \sqrt{n}$$

für großes n ("Faustregel" n > 30) durch die Standardnormalverteilung approximieren!

Wir erhalten für bekanntes σ^2

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

Approximative Konfidenzintervalle für μ

Bei beliebiger Verteilung der Grundgesamtheit lassen sich die Verteilungen von

(*)
$$\frac{\bar{X} - \mu}{\sigma} \cdot \sqrt{n}$$
 und (**) $\frac{\bar{X} - \mu}{S} \cdot \sqrt{n}$

für großes n ("Faustregel" n > 30) durch die Standardnormalverteilung approximieren!

Wir erhalten für bekanntes σ^2

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

und für unbekanntes σ^2

$$\left[\bar{X}-z_{1-\alpha/2}\cdot\frac{S}{\sqrt{n}},\;\bar{X}+z_{1-\alpha/2}\cdot\frac{S}{\sqrt{n}}\right]$$

Übung: (Anteilswertschätzung) X_1, \ldots, X_n seien u.i.v. Bin(1, p)-verteilt. Bestimmen Sie ein approximatives zweiseitiges $(1 - \alpha)$ -Konfidenzintervall für p auf Grundlage des Schätzers \bar{X} .

1. Stellen Sie das KI mit dem Ansatz (**) der vorigen Folie dar.

2. Führen Sie S (bzw. zunächst $(n-1)S^2$) auf \bar{X} zurück und vereinfachen Sie die Ausdrücke im KI so weit wie möglich. Hinweis: $X_i = X_i^2$ (warum?)

5.4 Konfidenzintervall für die Varianz

 \hookrightarrow Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen jetzt eine Konfidenzintervallschätzung für σ^2 , dabei sei μ unbekannt.

- \hookrightarrow Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen jetzt eine Konfidenzintervallschätzung für σ^2 , dabei sei μ unbekannt.
- \hookrightarrow Nach Exkurs 1 gilt: $\frac{n-1}{\sigma^2}\cdot S^2\sim \chi^2_{n-1}$, d.h. mit dem lpha-Quantil q_lpha zu χ^2_{n-1}

$$1 - \alpha = P\left(q_{\alpha/2} \leq \frac{n-1}{\sigma^2} \cdot S^2 \leq q_{1-\alpha/2}\right)$$

- \hookrightarrow Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen jetzt eine Konfidenzintervallschätzung für σ^2 , dabei sei μ unbekannt.
- \hookrightarrow Nach Exkurs 1 gilt: $\frac{n-1}{\sigma^2}\cdot S^2\sim \chi^2_{n-1}$, d.h. mit dem lpha-Quantil q_lpha zu χ^2_{n-1}

$$1 - \alpha = P\left(q_{\alpha/2} \le \frac{n-1}{\sigma^2} \cdot S^2 \le q_{1-\alpha/2}\right)$$
$$= P\left(\frac{q_{\alpha/2}}{(n-1) \cdot S^2} \le \frac{1}{\sigma^2} \le \frac{q_{1-\alpha/2}}{(n-1) \cdot S^2}\right)$$

- \hookrightarrow Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen jetzt eine Konfidenzintervallschätzung für σ^2 , dabei sei μ unbekannt.
- \hookrightarrow Nach Exkurs 1 gilt: $\frac{n-1}{\sigma^2}\cdot S^2\sim \chi^2_{n-1}$, d.h. mit dem lpha-Quantil q_lpha zu χ^2_{n-1}

$$1 - \alpha = P\left(q_{\alpha/2} \le \frac{n-1}{\sigma^2} \cdot S^2 \le q_{1-\alpha/2}\right)$$

$$= P\left(\frac{q_{\alpha/2}}{(n-1) \cdot S^2} \le \frac{1}{\sigma^2} \le \frac{q_{1-\alpha/2}}{(n-1) \cdot S^2}\right)$$

$$= P\left(\frac{(n-1) \cdot S^2}{q_{1-\alpha/2}} \le \sigma^2 \le \frac{(n-1) \cdot S^2}{q_{\alpha/2}}\right)$$

- \hookrightarrow Seien $X_1, \ldots, X_n \overset{u.i.v}{\sim} \mathcal{N}(\mu, \sigma^2)$. Wir suchen jetzt eine Konfidenzintervallschätzung für σ^2 , dabei sei μ unbekannt.
- \hookrightarrow Nach Exkurs 1 gilt: $\frac{n-1}{\sigma^2}\cdot S^2\sim \chi^2_{n-1}$, d.h. mit dem lpha-Quantil q_lpha zu χ^2_{n-1}

$$1 - \alpha = P\left(q_{\alpha/2} \le \frac{n-1}{\sigma^2} \cdot S^2 \le q_{1-\alpha/2}\right)$$

$$= P\left(\frac{q_{\alpha/2}}{(n-1) \cdot S^2} \le \frac{1}{\sigma^2} \le \frac{q_{1-\alpha/2}}{(n-1) \cdot S^2}\right)$$

$$= P\left(\frac{(n-1) \cdot S^2}{q_{1-\alpha/2}} \le \sigma^2 \le \frac{(n-1) \cdot S^2}{q_{\alpha/2}}\right)$$

Ein zweiseitiges (1
$$-\alpha$$
)-KI für σ^2 ist $\left[\frac{(n-1)\cdot S^2}{q_{1-\alpha/2}}; \frac{(n-1)\cdot S^2}{q_{\alpha/2}}\right]$

 \hookrightarrow Schätzer T_n für eine unbekannte Kennzahl θ einer Grundgesamtheit treffen (fast) nie den tatsächlichen Wert von θ , allenfalls approximativ oder unverfälscht mit geringem Standardfehler.

- \hookrightarrow Schätzer T_n für eine unbekannte Kennzahl θ einer Grundgesamtheit treffen (fast) nie den tatsächlichen Wert von θ , allenfalls approximativ oder unverfälscht mit geringem Standardfehler.
- \hookrightarrow $(1-\alpha)$ -Konfidenzintervalle für θ überdecken den tatsächlichen Wert von θ mit (approximativer) Wahrscheinlichkeit $1-\alpha$, geben also eine "statistische" Genauigkeit der (ursprünglichen) Schätzung.

- \hookrightarrow Schätzer T_n für eine unbekannte Kennzahl θ einer Grundgesamtheit treffen (fast) nie den tatsächlichen Wert von θ , allenfalls approximativ oder unverfälscht mit geringem Standardfehler.
- $\hookrightarrow (1-\alpha)$ -Konfidenzintervalle für θ überdecken den tatsächlichen Wert von θ mit (approximativer) Wahrscheinlichkeit $1-\alpha$, geben also eine "statistische" Genauigkeit der (ursprünglichen) Schätzung.
- \hookrightarrow Zweiseitige Konfidenzintervalle für θ ergeben sich oft aus dem Ansatz

$$P(-t \leq (T_n - \theta)/A_n \leq t) \stackrel{!}{=} 1 - \alpha$$

wobei t approximativ Quantil einer Standardverteilung ist, und Auflösung der beiden Ungleichungen nach θ .

- \hookrightarrow Schätzer T_n für eine unbekannte Kennzahl θ einer Grundgesamtheit treffen (fast) nie den tatsächlichen Wert von θ , allenfalls approximativ oder unverfälscht mit geringem Standardfehler.
- \hookrightarrow $(1-\alpha)$ -Konfidenzintervalle für θ überdecken den tatsächlichen Wert von θ mit (approximativer) Wahrscheinlichkeit $1-\alpha$, geben also eine "statistische" Genauigkeit der (ursprünglichen) Schätzung.
- \hookrightarrow Zweiseitige Konfidenzintervalle für heta ergeben sich oft aus dem Ansatz

$$P(-t \leq (T_n - \theta)/A_n \leq t) \stackrel{!}{=} 1 - \alpha$$

wobei t approximativ Quantil einer Standardverteilung ist, und Auflösung der beiden Ungleichungen nach θ .

25

 \hookrightarrow Die Breite eines $(1-\alpha)$ -KI ist abhängig von α und n, i.d.R. ist sie auch stichprobenabhängig.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- \hookrightarrow Schätzer T_n für eine unbekannte Kennzahl θ einer Grundgesamtheit treffen (fast) nie den tatsächlichen Wert von θ , allenfalls approximativ oder unverfälscht mit geringem Standardfehler.
- \hookrightarrow $(1-\alpha)$ -Konfidenzintervalle für θ überdecken den tatsächlichen Wert von θ mit (approximativer) Wahrscheinlichkeit $1-\alpha$, geben also eine "statistische" Genauigkeit der (ursprünglichen) Schätzung.
- \hookrightarrow Zweiseitige Konfidenzintervalle für θ ergeben sich oft aus dem Ansatz

$$P(-t \leq (T_n - \theta)/A_n \leq t) \stackrel{!}{=} 1 - \alpha$$

wobei t approximativ Quantil einer Standardverteilung ist, und Auflösung der beiden Ungleichungen nach θ .

- \hookrightarrow Die Breite eines $(1-\alpha)$ -KI ist abhängig von α und n, i.d.R. ist sie auch stichprobenabhängig.
- \hookrightarrow Ausblick: Es bestehen enge Zusammenhänge zwischen KI und statistischen Tests (siehe nächstes Kapitel).