研究生算法课课堂笔记

上课日期: 10.17

第(2)节课

组长学号及姓名: 1601214477 彭广举 组员学号及姓名: 1601111289 马连韬 1601214484 王钰翔

一、滑雪问题

递归	1.	遍历整个数组,对每一个位置进行四个方向的移动判	注意可能存在重复
方法		断,取使得滑雪长度最大的方向。	计算的问题
	2.	如果该方向上的点的滑雪长度是未知的,则递归求	
		得。	
递推	1.	将整个数组排序	注意判断数组越界
方法	2.	定义辅助数组,用于记录每个数值的原始位置	
	3.	如果从最小的数值开始滑雪,则总滑雪长度为1	
	4.	从低到高,依次计算每个点在四个方向上的滑雪长	
		度,并取最大值	

二、最大连续子序列和问题

定义f(j)	以第 j 个元素结尾的子数组的和的最大值 , 即 a j 元素肯定被选中
递推方程	$max(a_j, f(j-1) + a_j)$
初始条件	f(1) = max(a1, 0)
返回值	$\max f(i), i = 1n$
时间复杂度	O(n)
空间复杂度	在递推过程中,f 的计算仅依赖于前一个值,因此可以将空间复杂度将为
	常数级别

三、最大子矩阵和问题,是最大子序列和的变种

思路	将.	二维情况降维至简单的一维问题
	1.	假设最终具有最大和的子矩阵为,第 r 行至第 k 行,第 i 列至第 j 列。
	2.	当行的起始位置 r 与 k 确定时, 只有列的起始位置 i 与 j 移动。(编者注:
		想象成拉手风琴。)如果某一列入选最大子矩阵,则它的第 r 行至第 k 行之
		间的元素都会被计算入最终的总和。

	3. 那么,可以把同一列上的全部元素求和,即将 r ~ k 行压缩为一行。则问题
	被简化为最大连续子序列和问题。一维序列为
	$[a_{r1}+\ldots+a_{k1}, \ldots, a_{ri}+\ldots+a_{ki}, \ldots, a_{rj}+\ldots+a_{kj}, \ldots, a_{rn}+\ldots+a_{kn}]$
	4. (1) 为此,可以先将第1行至第2行,第1行至第3行,第1行至r行,第
	1 行至第 k 行,第 1 行至第 n 行对应列的所有元素求和。注意计算下一行
	的结果时应该直接利用上一行的结果,以免重复计算。
	用第 1 行至第 k 行的结果减去第 1 行至第 r 行的结果,则获得第 r 行至第 k
	行各个列的求和结果。这样即可避免重复计算。
	(2) 另一种求和思路,同上计算第 1 行至第 2 行,第 1 行至第 3 行,第 1
	行至第 n 行对应列的所有元素求和。随后用同样的方法计算第 2 行至第 3
	行,第2行至第4行,第2行至第n行的求和结果。最终获得任意第r行
	到第 k 行的每列求和结果。
时间	用 O(n^2)的时间遍历起止行号,即枚举 n^2 种可能。每种可能下,用 O(n)的时
复杂度	间进行最大子序列和的计算。则总时间复杂度为 O(n^3)。
	此外,需保证压缩的过程是线性的。
空间	根据求和方法不同,为平方级别或线性级别
复杂度	

四、题目: BUY LOW, BUY LOWER

题目大意:给定一个数组 $\{a_1,a_2,...,a_j,...,a_n\}$,求不重复的最长下降子序列个数。

最长下降子序列问题:

f(j)	表示以第1个元素结尾的最长下降子序列的长度
递推方程	$f(j) = \max_{\substack{0 < i < j \\ a_i > a_j}} f(i) + 1$
初始值	f(1) = 1
返回值	$\max f(j)$

本题还需要统计个数:

g(j)	表示以第1个元素结尾的最长下降子序列的个数
递推方程	$g(j) = \sum_{\substack{0 < i < j \\ a_i > a_j \\ f(j) = f(i) + 1}} g(i)$
初始值	g(1) = 1
返回值	$\sum_{f(k)=maxf(j)}g(k)$

由于数组中存在重复值,所以可能出现重复的最长子序列,导致重复计算。如果f(i)==f(j) && $a_i==a_j$,则它们的下降子序列的位置是一样的,值也是一样的,只需要计算一次即可。

时间复杂度	$O(n^2)$ 用于求最长下降子序列, $O(n^2)$ 用于统计个数,总的时间复杂度为
	$O(n^2)$.
空间复杂度	需要保存 f 和 g 的中间结果,空间复杂度为 $0(n)$ 。

五、问题:对于一个连续数组,求两个不相交的连续子序列,使其和最大。

Given a set of n integers: $A=\{a1, a2,..., an\}$, we define a function d(A) as below:

$$d(A) = \max_{1 \leq s_1 \leq t_1 < s_2 \leq t_2 \leq n} \left\{ \sum_{i=s_1}^{t_1} a_i + \sum_{j=s_2}^{t_2} a_j \right\}$$

Your task is to calculate d(A).

原题: POJ 2479

对于长度为 n 的数组

定义 f(i)	为从1到i内的最大连续子序列和(即第一个子序列)
定义 g(i)	为从 i 到 n 段内的最大连续子序列和(即第二个子序列)

求出 f(i)及 g(i), 仅需枚举切割点的位置,即可得出最大两个连续子序列的和。

时间复杂度分析	求 f(j)和 g(j)为最大连续子序列和为题,时间复杂度为 O(n)。	
	枚举切割点的时间复杂度为 O(n)。故总的时间复杂度为 O(n)	
空间复杂度分析	需要辅助数组保存 f(i)及 g(i)的值,因此空间复杂度为 O(n)	

另外一种方法:

对于数组 v[1], v[2], ..., v[n]

定义 a(i)	前 i 个数的 1 个连续子串的最大值 ,	$a(i) = max{a(i-1)+v[i], v[i]},$
	必须包括第 i 个	a(1)=v[1]
定义 b(i)	前 i 个数的 1 个连续子串的最大值 ,	$b(i) = max{a(i), b(i-1)},$
	不必包含第 i 个	b(1)=v[1]
定义 c(i)	前 i 个数的 2 个连续子串的最大值 ,	$c(i) = max\{b(i)+v[i], c(i-1)+v[i]\},$
	必须包含第 i 个	c(2) = v[1] + v[2]

return value	max c(i), I = 2, 3,, n	
时间复杂度	均为 O(n)	
和空间复杂度		