6/6/2019 Print View

5 of 19

Regression Assumptions and Diagnostics

- Linear regression can only be performed when a set of assumptions are satisfied.
- Excel can perform regressions but has limited ability to test the assumptions.
- R has diagnostics to determine if the assumptions are met.

13 of 19

Linear Regression Assumptions

- The relationship between X and Y is linear.
- If there are multiple X variables, they are not correlated (no multicollinearity).
- The error terms (distance from the data point to the predicted line):
 - Have zero mean and constant variance (no heteroscedasticity)
 - Are independent (no serial correlation)
 - Are normally distributed (includes no outliers)

Each of these will be explained in the video for each assumption and diagnostic test.

6/6/2019 Print View

14 of 19

Diagnostics and Solutions

Assumption	Diagnostic	Solution
Linearity	Ramsey	Transformation
No multicollinearity	Variance inflation factor	Combine variables or drop one
Heteroscedasticity	Breusch-Pagan	Transformation
No serial correlation	Durbin-Watson	Time series analysis
Normality/Outliers	Bonferroni outlier test	Drop outliers

Regression Assumption: Linearity

For linear regression, the data must be from a linear relationship.

2 of 10

Linear vs. Nonlinear Relationship Illustration

Diagnostics and Solutions

- Diagnostic test:
 - Ramsey Regression Equation Specification Error Test (RESET) (1969)
- Solution:
 - Take a transformation of the data (e.g., logarithm, square, square root, or inverse).
 - Advanced techniques (i.e., Box-Cox for Y variables, Box-Tidwell for X variables) help determine the appropriate transformation.

Regression Assumption: Collinearity

Each pair of X variables must not be correlated.

2 of 10

Not Correlated vs. Correlated: Illustration

Diagnostics and Solution

- Diagnostic test:
 - Variance inflation factor (VIF)
- Solution:
 - Drop one of the variables.
 - Use advanced techniques (e.g., factor analysis) to combine variables into one factor.

Regression Assumption: Heteroscedasticity

- Residuals (error terms) are the difference between the regression line and the data point.
- The error terms must have zero mean and constant variance.

3 of 12

Heteroscedasticity, Illustrated

• Is there a pattern?

6 of 12

Heteroscedasticity, Illustrated (cont.)

- Is there a pattern?
- Variance increases as X increases (i.e., variance is not constant).

7 of 12

Diagnostics and Solutions

- Diagnostic test:
 - Breusch-Pagan test of heteroscedasticity

- Solution:
 - A transformation usually fixes this problem (e.g., logarithm, square, square root, or inverse).
 If the problem still occurs after a transformation, Huber regression corrects for the error.

Regression Assumption: Serial Correlation

- Error terms must not be related to each other.
- Serial correlation often occurs with time-series data.

3 of 7

Diagnostics and Solutions

- Diagnostic test:
 - Durbin-Watson test of serial correlation
- Solution:
 - Advanced techniques include rho differencing and ARCH.

Regression Assumption: Serial Correlation

- Outliers are data points that are significantly different from the other points.
- An influential outlier can twist the regression line away from its true position.

5 of 10

Diagnostics and Solutions

- Diagnostic test:
 - Bonferroni outlier test
- Solution:
 - If the data point is clearly an outlier, drop the bad data point.
 - Always report that outliers are dropped from the analysis.

Data Mining

- Data mining is a data exploration process that searches for patterns or relationships within data.
- Techniques combine machine learning, statistics, and database systems.
- Some approaches include decision trees, logistic regression, perceptrons, and neural networks.
- Data mining requires new features in R, including installation of the Rattle package.

Benford's Law

- Accountants and auditors use data mining techniques to detect fraud.
 - o One technique relies on Benford's law.
- Benford's law states that in financial data, small digits appear more often than larger digits at the beginning of a number.
 - E.g., 30% of all financial numbers begin with the number 1; fewer than 5% begin with the number 9.

4 of 7

Benford's Law Illustration

• If the initial digits in the data do not match the frequency specified by Benford's law, the numbers are likely fraudulent.

Decision Trees

- Decision trees identify which variables are most important for making decisions or predictions.
- The technique removes noise (entropy) and identifies which variables contribute the most information.
- The result is a set of rules that can assist in decision making.

4 of 8

Decision Tree Illustration: Weather Forecasting

 A simple decision tree can help predict if it will rain tomorrow.

