Chapter VI Nonsmooth Optimization

March 11, 2023

1 Generalized Derivatives

6.1.2 Continuity of Dini derivative

For a point in \mathbb{E} , prove the function $f^-(x;.)$ is Lipschitz if f is locally Lipschitz around x.

Proof: Note that

$$|f^{-}(x;h_1) - f^{-}(x;h_2)| = |\liminf_{t \downarrow 0} \frac{f(x+th_1) - f(x)}{t} - \liminf_{t \downarrow 0} \frac{f(x+th_2) - f(x)}{t}|.$$

But, note that lim sup is sublinear and thus

 $\liminf x^r \ge \liminf x^r + y^r + \liminf -y^r \implies \liminf x^r + y^r - \liminf x^r \le \limsup y^r$.

Thus,

$$|\liminf_{t\downarrow 0} \frac{f(x+th_1) - f(x)}{t} - \liminf_{t\downarrow 0} \frac{f(x+th_2) - f(x)}{t}| \le ||h_1 - h_2||.$$

Similarly,

$$|\liminf_{t\downarrow 0} \frac{f(x+th_2) - f(x)}{t} - \liminf_{t\downarrow 0} \frac{f(x+th_1) - f(x)}{t}| \le ||h_1 - h_2||.$$

Hence, $|f^{-}(x; h_1) - f^{-}(x; h_2)| \le ||h_1 - h_2||$.

6.1.4 Surjective Dini subdifferentials

Suppose the continuous function $f: \mathbb{E} \to \mathbb{R}$ satisfies the growth condition

$$\lim_{||x|| \to +\infty} \frac{f(x)}{||x||} = +\infty. \tag{1}$$

For any element $\phi \in \mathbb{E}$, prove there is a point x in \mathbb{E} with $\phi \in \partial_- f(x)$.

Proof: Note that $\langle \phi, . \rangle - f(.)$ also satisfies 1. Thus without loss of generality suppose $\phi = 0$. Thus, we need to show f has a local minimum if f satisfies 1. Suppose not! Then let $B_i := \{x \in \mathbb{E} : ||x|| \le i\}$. Then B_i is compact and thus $f|_{B_i}$ obtains its minimum on B_i and assume it happens at $x_i \in B_i$. If $||x_i|| < i$, then x_i is a local minimum for f and we are done. Thus, suppose $||x_i|| = i$. Hence, we have $f(x_{i+1}) < f(x_i)$ by definition of x_{i+1} and the fact that $x_i \in B_{i+1}$ and also x_i is not a local minimum for $f|_{B_{i+1}}$ (and thus the strict inequality). Now note that $||x_i|| \to +\infty$ and thus $\lim_{i \to +\infty} \frac{f(x_i)}{||x_i||} = +\infty$ which is a contradiction as $f(x_i)$ is decreasing.

6.1.6. Failure of Dini calculus

Show that the inclusion

$$\partial_{-}(f+g)(x) \subseteq \partial_{-}f(x) + \partial_{-}g(x)$$

can fail for locally Lipschitz functions f and g.

Proof: Let $f(x) = ||x|| - ||x||^2$ and also $g(x) = ||x||^2$. Then we claim

$$\partial_-g(0)=\{0\}.$$

If $\phi \in \partial_{-}g(0)$ then for any ||h|| = 1, and small enough t > 0 we have

$$\langle s, th \rangle \le t^2 ||h||^2 \Rightarrow \langle s, h \rangle \le t ||h||^2 \Rightarrow \langle s, h \rangle = 0.$$

Thus, s = 0. It is clear that $0 \in \partial_- g(0)$. However, (f+g)(x) = ||x|| and hence $\partial_- (f+g)(0) = B$. Now if $\partial_- (f+g)(0) \subseteq \partial_- f(0) + \partial_- g(0)$ then $B \subseteq \partial_- f(0)$. Now, let $s \in B$ with ||s|| = 1 and hence $\langle s, ts \rangle \leq t - t^2$ for small enough t. Thus, $t \leq t - t^2$ for small enough t, which is a contradiction.

Side: Note that the function

$$f: B_{\frac{1}{2}} \subseteq \mathbb{E} \to \mathbb{R}, f(x) = \sqrt{1 - ||x||^2}$$

is Lipschitz and also has no Dini subgradient at 0. In fact, suppose $\phi \in \partial_- f(0)$ then for each h with ||h|| = 1,

$$\langle \phi, th \rangle \leq f(th) - 1$$
 for small enough $t > 0$.

But, $f(th) - 1 \le 0$ and thus $\langle \phi, h \rangle \le 0$ for all h and hence $\phi = 0$. Thus, f(th) = 1 if and only if th = 0 or h = 0.

6.1.9. Mean value theorem

• Suppose the function $f: \mathbb{E} \to \mathbb{R}$ is locally Lipschitz. For any points x and y, prove there is a real t in (0,1) satisfying

$$f(x) - f(y) \in \langle x - y, \partial_{\Diamond} f(tx + (1 - t)y) \rangle$$

• Monocity and convexity If the set C in \mathbb{E} is open and convex and the function $f: C \to \mathbb{R}$ is locally Lipschitz, prove f is convex if and only if it satisfies

$$\langle x-y,\phi-\psi\rangle\geq 0 \text{ for all } x,y\in C,\phi\in\partial_{\diamondsuit}f(x)\ \&\ \psi\in\partial_{\diamondsuit}f(y).$$

• If $\partial_{\diamondsuit} f(y) \subseteq kB$ for all points y near x, prove f has local Lipschitz constant k about x.

Proof:

- To be done!
- Suppose that f is convex on C, then $\partial_{\Diamond} f(x) = \partial f(x)$ and thus

$$f(y) \ge f(x) + \langle \phi, y - x \rangle, f(x) \ge f(y) + \langle \psi, y - x \rangle \Rightarrow \langle \phi - \psi, x - y \rangle \ge 0.$$

Conversely, suppose that the above statement holds. Then, let $\phi \in \partial_{\diamondsuit} f(x)$, note that this set is nonempty since f is locally Lipschitz on \mathbb{E} . Then,

$$f(y) - f(x) = \langle y - x, \psi \rangle$$
 for some $\psi \in f(ty + (1 - t)x)$ for some $t \in (0, 1)$.

Now it suffices to prove that $\langle y-x,\psi\rangle\geq\langle y-x,\phi\rangle$. But we have

$$\langle tx + (1-t)y - x, \psi - \phi \rangle \ge 0 \Rightarrow \langle y - x, \psi - \phi \rangle \ge 0.$$

• Let y, z be in a small neighborhood about x, then

$$f(y) - f(z) = \langle y - z, \phi \rangle$$
 for some $\phi \in \partial_{\Diamond} f(w)$ wherein w lies on the line segment $[y, z]$.

Thus,
$$|f(y) - f(x)| \le k||y - z||$$
.

6.1.11 Order statistics

Calculate the Dini, the Michel-Penot, and the Clarke directional derivatives and differentials of the function

$$x \in \mathbb{R}^n \to [x]_k$$
.

Proof:

Dini directional derivative

Suppose that

$$[x]_1 = \cdots = [x]_{l_1} > [x]_{l_1+1} = \cdots = [x]_{l_1+l_2} > \cdots > [x]_{l_1+l_2+\cdots+l_{t-1}+1} = \cdots = [x]_{l_1+\cdots+l_t}$$

and assume

$$h_{i_{1,1}} \ge h_{i_{1,2}} \ge \cdots \ge h_{i_{1,l_1}}, h_{i_{2,1}} \ge \cdots \ge h_{i_{2,l_2}}, \cdots, h_{i_{t,1}} \ge \cdots \ge h_{i_{t,l_t}},$$

wherein, for all $1 \leq j \leq t$

$$S_j := \{i_{j,l_l+\cdots+l_{j-1}+1}, \cdots, i_{j,l_l+\cdots+l_{j-1}+l_j}\} = \{l_1+\cdots+l_{j-1}+1, l_1+\cdots+l_{j-1}+2, \cdots, l_1+\cdots+l_{j-1}+l_j\}.$$

Then, for t > 0 small enough,

$$[x+th]_k = [x]_k + th_{i_{i_k}}$$
 where $k \in S_i$.

Thus, $[.]_k^-(x;h) = h_{i_{j,k}}$.

Michel-Penot directional derivative

From the above discussion we have $[.]_k^{\circ}(x;h) = h_{i_{j,1}}$ where $k \in S_j$.

6.1.12 Closed subdifferentials

• Suppose the function $f: \mathbb{E} \to (\infty, +\infty]$ is convex, and the point x lies in $\operatorname{int}(\operatorname{dom} f)$. Prove the convex subdifferential $\partial f(.)$ is closed at x; in other words, $x^r \to x$ and $\phi^r \to \phi$ in \mathbb{E} with ϕ^r in $\partial f(x^r)$ implies $\phi \in \partial f(x)$.

Suppose the real function f is locally Lipschitz around the point x in \mathbb{E} .

- For any direction h in \mathbb{E} , prove the Clarke directional derivative has the property that $-f^{\circ}(.;h)$ is lower semicontinuous at x.
- Deduce the Clarke subdifferential is closed at x.
- Deduce further the inclusion \subseteq in the Intrinsic Clarke subdifferential theorem:

$$\partial_{\circ} f(x) = \operatorname{conv}\{\lim_{r} \nabla f(x^{r}) : x^{r} \to x, x^{r} \notin S\},\$$

wherein outside of the measure zero set S, f is Gateaux differentiable.

• Show that Dini and Michel-Penot subdifferentials are not necessary closed.

Proof:

- Note that f on int(dom f) is continuous and thus closed. Hence, the proof is complete due to 4.2.8.
- We need to show for any $x^r \to x$ we have

$$\liminf_{r} -f^{\circ}(x^{r}; h) \ge -f^{\circ}(x; h) \iff \limsup_{r} f^{\circ}(x^{r}; h) \le f^{\circ}(x; h).$$

This holds if and only if

$$\limsup_{r} \limsup_{t \downarrow 0, y \to x^r} \frac{f(y+th) - f(y)}{t}.$$

Let $\epsilon > 0$, then let y^r, t_r be such that $||y^r - x^r|| \le \frac{1}{r}$ and $t_r < \frac{1}{r}$.

$$\left| \frac{f(y^r + t_r h) - f(y^r)}{t_r} - \limsup_{t \downarrow 0, y \to x^r} \frac{f(y + t h) - f(y)}{t} \right| \le \frac{\epsilon}{2^r}.$$

Then,

$$\limsup_{r} \limsup_{t \downarrow 0, u \to x^r} \frac{f(y+th) - f(y)}{t} = \limsup_{r} \frac{f(y^r + t_r h) - f(y^r)}{t_r} \le \limsup_{t \downarrow 0, u \to x} \frac{f(y+th) - f(y)}{t} = f^{\circ}(x; h)$$

• Let $x^r \to x$ and also $\phi^r \to \phi$ where $\phi^r \in \partial_{\circ} f(x^r)$. Then we wish to show that $\phi \in \partial_{\circ} f(x)$. This holds true if and only if

$$\langle \phi, h \rangle \le f^{\circ}(x; h).$$

But,

$$\langle \phi, h \rangle = \lim_{r} \langle \phi^r, h \rangle \le \limsup_{r} f^{\circ}(x^r, h) \le f^{\circ}(x; h).$$

This completes the proof.

• Note that $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\} \subseteq \partial_{\circ} f(x)$ as Clarke subdifferntials are convex and closed. Then we claim that $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\}$ is compact. In fact, $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\} \subseteq \partial_{\circ} f(x)$ and thus $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\}$ is bounded as $\partial_{\circ} f(x)$ is compact. Let $s_i = \lim_r \nabla f(x_i^r) \in \partial_{\circ} f(x)$ with $x_i^r \to x$. Let $||x_i^{r_i} - x|| < \frac{1}{i}$ and $||s_i - \nabla f(x_i^{r_i})|| < \frac{1}{i}$. Now

$$\lim_{j} \nabla f(x_j^{r_j}) = \lim_{j} s_j.$$

Thus, $\lim_j s_j \in \operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\}.$

Now let $s \in \partial_{\circ} f(x) \setminus \operatorname{conv}\{\lim_{r} \nabla f(x^{r}) : x^{r} \to x, x^{r} \notin S\}$, then there exists $\phi \in \mathbb{E}$ such that

$$\langle s, \phi \rangle < a < b \le \langle \lim_r \nabla f(x^r), \phi \rangle$$
 wherein $x^r \to x, x^r \notin S$.

Let $\phi = y - x$. Then choose $x^r \to x$ with $x^r \notin S$ and $x^r \in [x, y]$. Thus,

$$0 < b - a \le \langle \nabla f(x^r) - s, y - x \rangle.$$

We obtain a contradiction as we tend r to infinity.

2 Regularity and Strict Differentiability

6.2.6.

Prove that a unique Clarke subgradient implies regularity. Note that the function is Lipschitz about the point x.

Proof: Recall that Clarke subgradient is a unique vector ϕ if and only if

$$\lim_{y \to x, t \downarrow 0} \frac{f(y + th) - f(y)}{t} = \langle \phi, h \rangle.$$

Note that

$$f^{-}(x;h) = -\limsup_{t \downarrow 0} \frac{f((x+th) - th) - f(x+th)}{t} = -\langle \phi, -h \rangle = \langle \phi, h \rangle.$$

This completes the proof.

6.2.7 Strict differentiability

A real function f has strict derivative ϕ at a point x in $\mathbb E$ if and only if it is locally Lipschitz around x with

$$\lim_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} = \langle \phi, h \rangle$$

for all direction h in \mathbb{E} . In particular, this holds if f is continuously differentiable around x with $\nabla f(x) = \phi$.

Proof: First, suppose that f has strict derivative ϕ at x. Then if f is not locally Lipschitz around x, then for any fixed $C \in \mathbb{R}_{++}$ and for every i, there exists $y_i, z_i \in B_{\frac{1}{i}}(x)$ such that $|f(y_i) - f(z_i)| > C||y_i - z_i||$. However,

$$0 = \lim_{i \to +\infty, t \downarrow 0} \left| \frac{f(y_i) - f(z_i) - \langle \phi, y_i - z_i \rangle}{||y_i - z_i||} \right| \ge C - \limsup_{i \to +\infty} \frac{\langle \phi, y_i - z_i \rangle}{||y_i - z_i||},$$

so,

$$||\phi|| \ge \limsup_{i \to +\infty} \frac{\langle \phi, y_i - z_i \rangle}{||y_i - z_i||} \ge C,$$

which is a contradiction. Thus, f is locally Lipschitz around x. Now, fix h and let $y \leftarrow y + th$ and $z \leftarrow y$. Thus,

$$0 = \lim_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y) - t\langle \phi, h \rangle}{t} \Rightarrow \lim_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} = \langle \phi, h \rangle.$$

Conversely, suppose that

$$\lim_{y \to x, t \downarrow 0} \frac{f(y + th) - f(y)}{t} = \langle \phi, h \rangle$$

for all $\phi \in \mathbb{E}$ and also f is locally Lipschitz around x, then we wish to prove

$$\lim_{y,z\to x,y\neq z} \frac{f(y) - f(z) - \langle \phi, y - z \rangle}{||y - z||} = 0.$$

However, the above equals to,

$$\lim_{z \to x, w \in S^1, t \downarrow 0} \frac{f(z+tw) - f(z) - \langle \phi, tw \rangle}{t} = \lim_{z \to x, w \in S^1, t \downarrow 0} \frac{f(z+tw) - f(z)}{t} - \langle \phi, w \rangle = \lim_{z \to x, w \in S^1, t \downarrow 0} g(z, w, t).$$

Now suppose the above does not hold, then there exists (z_i, w_i, t_i) with $t_i \downarrow 0$ and $w_i \in S^1$ and also $||w_i|| \to ||w||$ such that $|g(z_i, w_i, t_i)| \ge \epsilon$ for some $\epsilon > 0$. However,

$$|g(z_i, w_i, t_i) - g(z_i, w, t_i)| \le ||w - w_i|| + |\langle \phi, w - w_i \rangle|.$$

However, $|g(z_i, w, t_i)| \to 0$ and thus $g(z_i, w_i, t_i) \to 0$ as desired.

Now if f is continuously differentiable then $||\nabla f||$ is bounded above in a neighborhood of x and thus

$$||f(x+h) - f(x)|| \le ||\nabla f(x+th)|| ||h|| \le C||h||,$$

for some constant C; note that $t \in (0,1)$ comes from the Taylor expansion. Now for each $t \in (0,\epsilon)$ for some small enough ϵ , there exists $t^* \in (0,t)$ such that

$$\frac{f(y+th) - f(y)}{t} = \nabla f(y+t^*h)^T h.$$

Now if $y \to x$ and $t \downarrow 0$, then the above tends to $\nabla f(x)^T h = \langle \phi, h \rangle$.

6.1.8

Prove the following results:

- $f^{\circ}(x; -h) = (-f)^{\circ}(x; h)$
- $(\lambda f)^{\circ}(x;h) = \lambda f^{\circ}(x;h)$ for $0 \le \lambda \in \mathbb{R}$.
- $\partial_{\circ}(\lambda f)(x) = \lambda \partial_{\circ} f(x)$ for all λ in \mathbb{R} .

Proof:

• Note that

$$f^{\circ}(x; -h) = \limsup_{y \to x. t \downarrow 0} \frac{f(y - th) - f(y)}{t},$$

and

$$(-f)^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{-f(y+th) + f(y)}{t} = \limsup_{y-th \to x, t \downarrow 0} \frac{-f((y-th) + th) + f(y-th)}{t}.$$

Now note that $y \to x$ is the same as $y - th \to x$.

$$(\lambda f)^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{\lambda f(y+th) - \lambda f(y)}{t} = \lambda \limsup_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} = \lambda f^{\circ}(x;h)$$

$$\partial_{\circ}(\lambda f)(x) = \{\phi : \langle \phi, h \rangle \le \lambda f^{\circ}(x; h) \ \forall h \in \mathbb{E}\}$$

6.2.9. Mixed sum rules

Suppose that the real function f is locally Lipschitz around the point x in \mathbb{E} and that the function $g: \mathbb{E} \to (infty, +\infty]$ is convex with xinint(dom g). Prove:

- $\partial_{\diamondsuit}(f+g)(x) = \nabla f(x) + \partial g(x)$ if f is Gateaux differentiable at x.
- $\partial_{\circ}(f+g)(x) = \nabla f(x) + \partial g(x)$ if f is strictly differentiable at x.

Proof:

• We have

$$(f+g)^{\diamondsuit}(x;h) = \sup_{u \in \mathbb{E}} \limsup_{t \downarrow 0} \frac{(f+g)(x+th+tu) - (f+g)(x+th)}{t}$$
$$= \langle \nabla f(x), h \rangle + \sup_{u \in \mathbb{E}} \limsup_{t \downarrow 0} \frac{g(x+th+tu) - g(x+th)}{t} = \langle \nabla f(x), h \rangle + g'(x;h).$$

Thus $\nabla f(x) + \phi \in \partial_{\diamondsuit}(f+g)(x)$ if and only if $\langle \phi, h \rangle \leq g'(x;h)$.

• We have

$$(f+g)^{\circ}(x;h) = \limsup_{y \to x, x \downarrow 0} \frac{(f+g)(y+th) - (f+g)(y)}{t}$$

$$= \limsup_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} + \limsup_{y \to x, t \downarrow 0} \frac{g(y+th) - g(y)}{t}.$$

$$= \langle \nabla f(x), h \rangle + g'(x;h).$$

Thus $\nabla f(x) + \phi \in \partial_{\circ}(f+g)(x)$ if and only if $\langle \phi, h \rangle \leq g'(x;h)$.

6.2.13 Dense Dini subgradients

Suppose the real function f is locally Liptschitz around the point x in \mathbb{E} . By considering the closet point in epi f to the point $(x, f(x) - \delta)$ (for a small real $\delta > 0$), prove there are Dini Subgradients at points arbitrary close to x.

Proof:

Lemma: Let $B_{\frac{\sqrt{2}}{2}}$ be the ball of radius $\frac{\sqrt{2}}{2}$ around the origin. Then the function $f: \mathbb{E} \to \mathbb{R}$ with $f(x) = \sqrt{1 - ||x||^2}$ is Lipschitz on $B_{\frac{\sqrt{2}}{2}}$.

Proof of Lemma: Note that

$$|\sqrt{1-||x||^2}-\sqrt{1-||y||^2}|\leq |\sqrt{1-||x||^2}-\sqrt{1-||y||^2}||\sqrt{1-||x||^2}+\sqrt{1-||y||^2}|=|||x||^2-||y||^2|\leq 2|||x||-||x||^2+||x||$$

Note that f has no Dini subgradients at 0.

Now let (y, r) to be the closest point on the epigraph from $(x, f(x) - \delta)$. We claim r = f(y). In fact, suppose that r > f(y) and therefore

$$d^2 = (r - f(x) + \delta)^2 + ||x - y||^2 \le (f(y) - f(x) + \delta)^2 + ||x - y||^2 \Rightarrow (r - f(y))(r + f(y) + 2\delta - 2f(x)) \le 0.$$

Thus, $2f(y) + 2\delta - 2f(x) \le r + f(y) + 2\delta - 2f(x) \le 0$. Thus, $f(x) - \delta \ge f(y)$. Note that if $f(y) < f(x) - \delta$, then there exists y' closed enough to y such that $f(y') \le f(x) - \delta$ and also ||x - y'|| < ||x - y||. So, $(y', f(x) - \delta)$ is closer to $(x, f(x) - \delta)$ than $(y, f(x) - \delta)$. Thus, $f(y) = f(x) - \delta$. After all, $r = f(x) - \delta$ which is a contradiction. Thus, r = f(y) and also $f(y) \ge f(x) - \delta$. Now if $y \ne x$, then choose $||x - y|| > \epsilon > 0$ small enough such that $|f(z) - f(x)| < \delta$ for all $||z - x|| < \epsilon$. Then we have

$$(f(z) - f(x) + \delta)^2 + ||x - z||^2 \ge (f(y) - f(x) + \delta)^2 + ||x - y||^2 \ge (f(y) - f(x) + \delta)^2 + ||x - z||^2.$$

Thus, $f(z) - f(x) + \delta \ge f(y) - f(x) + \delta$, or $f(z) \ge f(x)$. Thus, f is a local minimum of hence $0 \in \partial_- f(x)$. Thus suppose that x = y and $d = \delta$. Hence,

$$(f(y)-f(x)+\delta)^2+||x-y||^2 \ge \delta^2 \Rightarrow f(y)-f(x) \ge \sqrt{\delta^2-||x-y||^2}-\delta$$
 for y close enough to x.

So for y closed enough to x we have

$$f(y) - f(x) \ge \delta[\sqrt{1 - (\frac{||y - x||}{\delta})^2} - 1].$$

But, the RHS has subgradients for points arbitrary close to x.

3 Tangent Cones

6.3.1 Exact penalization

For a set $U \subseteq \mathbb{E}$, suppose that the function $f: U \to \mathbb{R}$ has Lipschitz constant L', and that the set $S \subseteq U$ is closed. For any L > L', if the point x minimizes $f + Ld_S$ on U, prove $x \in S$.

Proof: Suppose $x \in U$ is not in S and also $y \in S$ such that $||y - x|| = d_S(x)$. Then we have

$$(f + Ld_S)(x) \le (f + Ld_S)(y) = f(y) \Rightarrow Ld_S(x) \le f(y) - f(x) \le L'||y - x|| < L||y - x||.$$

Thus, $d_S(x) < ||y - x||$. This contradiction completes the proof.

6.3.3 Examples of tangent cones

For the following sets $S \subseteq \mathbb{R}^2$, calculate $T_S(0)$ and $K_S(0)$:

- $\{(x,y): y \ge x^3\}.$
- $\{(x,y): x \ge 0, y \ge 0\}.$
- $\{(x,y): x=0 \text{ or } y=0\}.$
- $\{r(\cos\theta,\sin\theta): 0 \le r \le 1, \frac{\pi}{4} \le \theta \le \frac{7\pi}{4}\}.$

6.3.4 Topology of contingent cone

Prove that the contingent cone is closed, and derive the following topological description: Suppose $x \in S$. The contingent cone $K_S(x)$ consists of those vectors h in \mathbb{E} such that there are sequences $t_r \downarrow 0$ in \mathbb{R} and $h^r \to h$ in \mathbb{E} such that $x + t_r h^r$ lies in S for all r.

Proof: Recall that

$$K_S(x) = \{h : d_S^-(x; h) = 0\}.$$

Since, $x \in S$, x is a local minimum for d_S and thus $0 \le d_S^-(s;h)$ for all $h \in \mathbb{E}$, so $T_S(x) \subseteq K_S(x)$. However, suppose $d_S^-(x;h) = 0$ and hence $\liminf_{t \downarrow 0} \frac{d_S(x+th)}{t} = 0$. Thus, there exists $t_r \downarrow 0$ such that $d_S(x+t_rh)/t_r \to 0$. Thus, if $x+t_rh^r \in S$ such that $||x+t_rh-x-t_rh^r|| \le d_S(x+t_rh)+t_r^2$. Thus, $||h-h^r|| \to 0$ and hence $h^r \to h$.

Conversely, suppose that $x + t_r h^r \in S$ and $h^r \to h$ and also $t_r \downarrow 0$. Then wish to show that $h \in K_S(x)$. Note that

$$d_S(x + t_r h) \le ||x + t_r h - x - t_r h^r|| = t_r ||h - h^r|| \Rightarrow 0 \le \liminf_{t \downarrow 0} \frac{d_S(x + t h)}{t} \le \lim_{t_r \to +\infty} \frac{d_S(x + t_r h^r)}{t_r} = 0.$$

Thus, $d_S^-(x;h) = 0$ and $h \in K_S(x)$.

6.3.5 Topology of Clarke cone

Suppose that x lies in the set $S \subseteq \mathbb{E}$.

- Prove $d_S^{\circ}(x;.) \geq 0$.
- Prove

$$d_S^{\circ}(x;h) = \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y+th)}{t}.$$

• Prove that the Clarke Tangent cone consists of those vectors h in \mathbb{E} such that for any sequence $t_r \downarrow 0$ in \mathbb{R} and $x^r \to x$ in S, there is a sequence $h^r \to h$ such that $x^r + t_r h^r$ lies in S for all r.

Proof:

• Let $h \in \mathbb{E}$, then

$$d_S^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{d_S(y+th) - d_S(y)}{t} \ge \limsup_{t \downarrow 0} \frac{d_S(x+th)}{t} \ge 0.$$

• Note that

$$d_S^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{d_S(y+th) - d_S(y)}{t} \ge \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y+th)}{t}.$$

Now fix some $\epsilon > 0$. Note that $||y'+th-y''|| \le d_S(y'+th) + \frac{1}{2}\epsilon$ and $||y-y'|| \le d_S(y) + \frac{1}{2}\epsilon$ for some $y', y'' \in S$. Thus,

$$d_S(y+th) \le ||y+th-y''|| \le d_S(y'+th) + d_S(y) + \epsilon \Rightarrow d_S(y'+th) + \epsilon \ge d_S(y+th) - d_S(y).$$

Thus,

$$\limsup_{y \to x, t \downarrow 0} \frac{d_S(y + th) - d_S(y)}{t} \le \limsup_{y' \to x \text{ in } S, t \downarrow 0} \frac{d_S(y' + th)}{t} + \epsilon.$$

Thus,

$$\limsup_{y \to x, t \downarrow 0} \frac{d_S(y + th) - d_S(y)}{t} \le \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y + th)}{t}.$$

This completes the proof.

 \bullet Suppose h has the aforementioned properties then

$$d_{S}^{\circ}(x;h) = \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_{S}(y+th)}{t} \leq \limsup_{x^{r} \to x \text{ in } S, t_{r} \downarrow 0, h^{r} \to h} \frac{||x^{r} + t_{r}h - x^{r} - t_{r}h^{r}||}{t_{r}} = 0.$$

Thus, $h \in T_S(x)$. Conversely, suppose that $d_S^{\circ}(x;h) = 0$. Then for every $x^r \to x$ and every $t_r \to 0$, we must have $\lim_{r \to +\infty} d_S(x^r + t_r h)/t_r = 0$. Let $y^r \in S$ such that $||x^r + t_r h - y^r|| \le d_S(x^r + t_r h) + t_r^2$. Suppose $h^r \in \mathbb{E}$ such that $y^r = x^r + t_r h^r$. Then $||h - h^r|| \le d_S(x^r + t_r h)/t_r + t_r$. Thus, $h^r \to h$. Since, $x^r + t_r h^r \in S$, we are done.

6.3.8 Isotonicity

Suppose $x \in U \subseteq V \subseteq \mathbb{E}$. Prove $K_U(x) \subseteq K_V(x)$, but give an example where $T_U(x) \not\subseteq T_V(x)$.

Proof: Recall that

$$K_S(x) = \{h : d_S^-(x;h) = 0\}.$$

Now we want to show that $d_U^-(x;h)=0$ implies $d_V^-(x;h)=0$. Note that

$$0 \le d_V^-(x;h) = \liminf_{t \downarrow 0} \frac{d_V(x+th)}{t} \le \liminf_{t \downarrow 0} \frac{d_U(x+th)}{t} = 0.$$

This completes the proof.

Now recall that

$$d_S^{\circ}(x;h) = \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y+th)}{t}.$$

So we wish to find $U \subseteq V$ and some $h \in \mathbb{E}$ such that

$$\limsup_{y \to x \text{ in } U, t \downarrow 0} \frac{d_U(y + th)}{t} = 0 \text{ but } \limsup_{w \to x \text{ in } V, t \downarrow 0} \frac{d_V(w + th)}{t} \neq 0.$$

Let $U = S^1$ and $V = S^1 \cup \{(x,y) : x \ge 1, y = 0\}$ and also h = (0,1) and x = (1,0). Then we first show that

$$d_U(x;h) = 0.$$

In fact, let $p_i = (x_i, y_i) \to x$ inside U, then $x_i^2 + y_i^2 = 1$ and $x_i \to 1$ and $y_i \to 0$. Note that $d_U(p_i + th) = \sqrt{x_i^2 + (y_i + t)^2} - 1$. Hence,

$$d_U^{\circ}(x;h) = \limsup_{i \to +\infty, t \to 0} \frac{x_i^2 + (y_i + t)^2 - 1}{t(\sqrt{x_i^2 + (y_i + t)^2} + 1)} = \limsup_{i \to +\infty, t \to 0} \frac{t^2 + 2ty_i}{t(\sqrt{1 + t^2 + 2ty_i} + 1)},$$

which equals to

$$\lim_{i \to +\infty, t \to 0} \frac{t + 2y_i}{\sqrt{1 + t^2 + 2ty_i} + 1} = 0.$$

Now let $p_t = (\sqrt{2t+1}, 0)$. Note that $p_t + th = (\sqrt{2t+1}, t)$ with distance $\sqrt{2t+1+t^2} - 1 = t$ to U. Hence, $d_V(p_t + th) = t$. Hence,

$$\lim_{t\downarrow 0}\frac{d_V(p_t+th)}{t}=1\leq \limsup_{w\to x \text{ in } V,t\downarrow 0}\frac{d_V(w+th)}{t}\neq 0.$$

6.4.3 Local minimizers

Consider a function $f: \mathbb{E} \to [-\infty, +\infty]$ which is finite at the point $x \in \mathbb{E}$.

- If x is local minimizer, prove $0 \in \partial_- f(x)$.
- If $0 \in \partial_- f(x)$, prove for any $\delta > 0$ that x is a strict local minimizer of the function $f(.) \delta||. x||.$

Proof:

• We know that $0 \in \partial_- f(x)$ if and only if $f^-(x;h) \ge 0$ for all $h \in \mathbb{E}$. However,

$$f^-(x;h) = \liminf_{t \downarrow 0, h' \to h} \frac{f(x+th') - f(x)}{t} \ge 0$$
 as x is a local minimizer.

• Now suppose that $0 \in \partial_- f(x)$. Then if x is not a strict local minimizer for $f() + \delta ||.||$, then there exists $x_i \to x$ such that

$$f(x_i) + \delta||x_i|| \le f(x).$$

Let $x_i = x + t_i u_i$ where $u_i = \frac{x_i - x}{||x_i - x||}$ and also $t_i = ||x_i - x|| \to 0$. Also, assume $u_i \to u$. Then

$$0 \le f^-(x; u) = \liminf_{t \downarrow 0, v \to u} \frac{f(x + tv) - f(x)}{t} \le \liminf_i \frac{f(x + t_i u_i) - f(x)}{t_i} \le \liminf_i \frac{-\delta ||x_i||}{t_i}.$$

If x = 0 then $\frac{-\delta||x_i||}{t_i} = -\delta < 0$ which is a contradiction. If $x \neq 0$, then $\liminf_i \frac{-\delta||x_i||}{t_i} = -\infty$, again a contradiction.

6.4.6. Prove a limiting sub differential sum rule for a finite number of lower semi continuous functions, with all but one being locally Lipschitz.

Proof:

Let f_1, \dots, f_k be lower semicontinuous at x and also g locally Lipschitz around x. Recall the Fuzzy sum rule:

Fuzzy sum rule: Fix $\delta > 0$. Then

$$\partial_{-}(\sum_{i=1}^{k} f_i + g)(x) \subseteq \delta B + \sum_{i=1}^{k} \partial_{-}(f_i)(U(f_i, x, \delta)) + \partial_{-}(g)(U(f_i, x, \delta)).$$

Let $\phi^r \in \partial_-(\sum_{i=1}^k f_i + g)$ and also $\phi^r_i \in \partial_-(f_i)(x^r)$ and $\psi^r \in \partial_-g(y^r)$ such that

$$||\phi^r - \sum_{i=1}^k \phi_i^r - \psi^r|| < \frac{1}{r}, \ ||x^r - x|| < \frac{1}{r}, ||f_i(x^r) - f_i(x)|| < \frac{1}{r}, ||g(y^r) - g(x)|| < \frac{1}{r}, ||y^r - y|| < \frac{1}{r}$$

Note that for all $\psi \in \partial_- g(x')$ we have $\langle \psi, v \rangle \leq C||v||$. Hence, $||\psi|| \leq C$. So, suppose that $\psi^r \to \psi$. 0

6.4.7 Limiting and Clarke sub differentials

Suppose the real function f is locally Lipschitz around the point x in \mathbb{E} .

- Use the fact that the Clarke sub differential is a closed multi-function to show $\partial_a f(x) \subseteq \partial_{\circ} f(x)$.
- Deduce from the Intrinsic Clarke sub differential theorem the property $\partial_{\circ} f(x) = \operatorname{conv} \partial_{a} f(x)$.
- Prove $\partial_a f(x) = \{\phi\}$ if and only if ϕ is the strict derivative of f at x.

Proof:

- Let $\phi \in \partial_a f(x)$, then there exists $\phi_i \in \partial_- f(x^i)$ for some $x^i \to x$ such that $\phi_i \to \phi$. Then $\phi_i \in \partial_\circ f(x^i)$ and thus $\phi \in \partial_a f(x)$ as Clarke sub differentials are closed under limit.
- Now since $\partial_{\circ} f(x)$ is convex we have conv $\partial_a f(x) \subseteq \partial_{\circ} f(x)$. On the other hand,

$$\partial_{\circ} f(x) = \operatorname{conv} \{ \lim \nabla f(x^{i}) : f \text{ is differentiable at } x^{i} \text{ and also } x^{i} \to x \} \subseteq \operatorname{conv} \{ \lim \phi_{i} : \phi_{i} \in \partial_{-} f(x^{i}) \text{ and also } x^{i} \to x \} = \operatorname{conv} \partial_{a} f(x).$$

• Note that $\partial_{\circ} f(x)$ is a singleton if and only if $\partial_a f(x)$ is a singleton.