Results on cloaking by transformation optics and anomalous localized resonance in elliptic geometry

Giovanni Rossanigo

October 7th, 2021

Contents

Introduction

Cloaking by transformation optics

3 Cloaking by anomalous localized resonance

Why study cloaking?

• Physical and engineering challenges and problems, such as the study and realization of metamaterials. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- cloaking by transformation optics
- ② cloaking by anomalous localized resonance CALR.

- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Why study cloaking?

• Physical and engineering challenges and problems, such as the study and realization of metamaterials. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- cloaking by transformation optics
- ② cloaking by anomalous localized resonance CALR.

- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Why study cloaking?

• Physical and engineering challenges and problems, such as the study and realization of metamaterials. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- cloaking by transformation optics;
- cloaking by anomalous localized resonance CALR.

- Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

Why study cloaking?

• Physical and engineering challenges and problems, such as the study and realization of metamaterials. [Alù, Engheta, (2005).]

Several suggestions based on metamaterials on how to achieve cloaking:

- cloaking by transformation optics;
- cloaking by anomalous localized resonance CALR.

- ullet Explicit results known only for systems with circular geometries in \mathbb{R}^2 .
- Cloaking depends on the geometry of the problem.

 $\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial \Omega, \end{cases}$$

 $\sigma = (\sigma_{ij}): \Omega \to \mathbb{R}^n$ is the unknown conductivity.

We use the Dirichlet to Neumann man

$$\Lambda_{\sigma}: u\big|_{\partial\Omega} \to (\sigma \nabla u) \cdot \bar{n}\big|_{\partial\Omega}.$$

 $\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial \Omega, \end{cases}$$

 $\sigma = (\sigma_{ij}) : \Omega \to \mathbb{R}^n$ is the unknown conductivity.

We use the Dirichlet to Neumann map

$$\Lambda_{\sigma}: u\big|_{\partial\Omega} \to (\sigma \nabla u) \cdot \bar{n}\big|_{\partial\Omega}.$$

 $\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial \Omega, \end{cases}$$

 $\sigma = (\sigma_{ij}) : \Omega \to \mathbb{R}^n$ is the unknown conductivity.

We use the Dirichlet to Neumann map

$$\Lambda_{\sigma}: u\big|_{\partial\Omega} \to (\sigma \nabla u) \cdot \bar{n}\big|_{\partial\Omega}.$$

 $\Omega \subset \mathbb{R}^n$, $n \geq 2$, bounded domain.

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial \Omega, \end{cases}$$

 $\sigma = (\sigma_{ij}) : \Omega \to \mathbb{R}^n$ is the unknown conductivity.

We use the Dirichlet to Neumann map

$$\Lambda_{\sigma}: u\big|_{\partial\Omega} \rightarrow (\sigma \nabla u) \cdot \bar{n}\big|_{\partial\Omega}.$$

 Λ_{σ} allows us to determine σ at its best at less than a change of variables.

Proposition

Let $F: \Omega \to \Omega$ be such that F(x) = x at $\partial \Omega$. Then the boundary measurements associated with σ and $F_*\sigma$ are identical, i.e. $\Lambda_{\sigma}(f) = \Lambda_{F_*\sigma}(f)$ for all f.

 $F_*\sigma$ is the push-forward of σ by the change of variables F

$$F_*\sigma(y) = \frac{1}{\det(DF(x))}DF(x)\sigma(x)(DF(x))^T.$$

→ Cloaking is possible

 Λ_{σ} allows us to determine σ at its best at less than a change of variables.

Proposition

Let $F:\Omega\to\Omega$ be such that F(x)=x at $\partial\Omega$. Then the boundary measurements associated with σ and $F_*\sigma$ are identical, i.e. $\Lambda_\sigma(f)=\Lambda_{F_*\sigma}(f)$ for all f.

 $F_*\sigma$ is the push-forward of σ by the change of variables F:

$$F_*\sigma(y) = \frac{1}{\det(DF(x))}DF(x)\sigma(x)(DF(x))^T.$$

→ Cloaking is possible!

 Λ_{σ} allows us to determine σ at its best at less than a change of variables.

Proposition

Let $F:\Omega\to\Omega$ be such that F(x)=x at $\partial\Omega$. Then the boundary measurements associated with σ and $F_*\sigma$ are identical, i.e. $\Lambda_\sigma(f)=\Lambda_{F_*\sigma}(f)$ for all f.

 $F_*\sigma$ is the push-forward of σ by the change of variables F:

$$F_*\sigma(y) = \frac{1}{\det(DF(x))}DF(x)\sigma(x)(DF(x))^T.$$

 \rightarrow Cloaking is possible!

There exists a transformation $F:\Omega\to\Omega$ such that

- F is continuous and piecewise smooth;
- $F(B_{\rho}(0)) = B_1(0)$ while $F(B_2(0)) = B_2(0)$;
- F(x) = x at the boundary $\partial B_2(0)$.

The content of $B_1(0)$ is cloaked, but its presence is known. $\rightarrow B_1(0)$ is near-cloaked.

There exists a transformation $F:\Omega\to\Omega$ such that

- F is continuous and piecewise smooth;
- $F(B_{\rho}(0)) = B_1(0)$ while $F(B_2(0)) = B_2(0)$;
- F(x) = x at the boundary $\partial B_2(0)$.

The content of $B_1(0)$ is cloaked, but its presence is known.

 $\rightarrow B_1(0)$ is near-cloaked.

Results in circular geometry

Theorem

Suppose that the shell $B_2(0) \setminus B_1(0)$ has conductivity F_*1 . If ρ is small enough, then $B_1(0)$ is nearly cloaked, i.e. there exists some constant C > 0 such that

$$\|\Lambda_{\sigma_A} - \Lambda_1\| \leq C\rho^2$$
.

The proof is based on problems with dielectric inclusions.

Dielectric inclusions

Perfect insulation problem:

$$\begin{cases} \Delta u_0^\rho = 0 & \text{in } B_R(0) \setminus \overline{B_\rho(0)}, \\ u_0^\rho = f & \text{on } \partial B_R(0), \\ \frac{\partial u_0^\rho}{\partial \overline{n}} = 0 & \text{on } \partial B_\rho(0), \end{cases}$$

Perfect conductivity problem:

$$\begin{cases} \Delta u_{\infty}^{\rho} = 0 & \text{in } B_{R}(0) \setminus \overline{B_{\rho}(0)}, \\ u_{\infty}^{\rho} = f & \text{on } \partial B_{R}(0), \\ u_{\infty}^{\rho} = c_{\infty} & \text{on } \partial B_{\rho}(0), \end{cases}$$

Calculate Λ_0^{ρ} , Λ_{∞}^{ρ} and estimate:

$$\|\Lambda_1 - \Lambda_0^{\rho}\| \leq C\rho^2$$

 $\|\Lambda_1 - \Lambda_{\infty}^{\rho}\| \le C\rho^2$

Dielectric inclusions

Perfect insulation problem:

$$\begin{cases} \Delta u_0^{\rho} = 0 & \text{in } B_R(0) \setminus \overline{B_{\rho}(0)}, \\ u_0^{\rho} = f & \text{on } \partial B_R(0), \\ \frac{\partial u_0^{\rho}}{\partial \overline{h}} = 0 & \text{on } \partial B_{\rho}(0), \end{cases}$$

Perfect conductivity problem:

$$\begin{cases} \Delta u_{\infty}^{\rho} = 0 & \text{in } B_R(0) \setminus \overline{B_{\rho}(0)}, \\ u_{\infty}^{\rho} = f & \text{on } \partial B_R(0), \\ u_{\infty}^{\rho} = c_{\infty} & \text{on } \partial B_{\rho}(0), \end{cases}$$

Calculate $\Lambda_0^{\rho}, \Lambda_{\infty}^{\rho}$ and estimate:

Dielectric inclusions

Perfect insulation problem:

$$\begin{cases} \Delta u_0^{\rho} = 0 & \text{in } B_R(0) \setminus \overline{B_{\rho}(0)}, \\ u_0^{\rho} = f & \text{on } \partial B_R(0), \\ \frac{\partial u_0^{\rho}}{\partial \overline{n}} = 0 & \text{on } \partial B_{\rho}(0), \end{cases}$$

Perfect conductivity problem:

$$egin{cases} \Delta u_{\infty}^{
ho} = 0 & ext{in } B_R(0) \setminus \overline{B_{
ho}(0)}, \ u_{\infty}^{
ho} = f & ext{on } \partial B_R(0), \ u_{\infty}^{
ho} = c_{\infty} & ext{on } \partial B_{
ho}(0), \end{cases}$$

Calculate Λ_0^{ρ} , Λ_{∞}^{ρ} and estimate:

$$\|\Lambda_1 - \Lambda_0^{\rho}\| \le C\rho^2$$
 $\|\Lambda_1 - \Lambda_{\infty}^{\rho}\| \le C\rho^2$

$$|\Lambda_1 - \Lambda^{\rho}_{\infty}|| \leq C \rho^2$$

Results in elliptic geometry I

Theorem

Assume that $f = \sum_{k \in \mathbb{Z}} f_k e^{ik\nu}$ with $f_k = 0$ for all $|k| < k_0$, and $f_{k_0} \neq 0$. Then there exists C > 0 depending only on R such that

$$\|\Lambda_1 - \Lambda_0^\rho\| \ge Ck_0|f_{k_0}|e^{2k_0\rho}$$

$$\|\Lambda_1 - \Lambda_{\infty}^{\rho}\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}.$$

With this procedure there is no cloaking in elliptic geometry!

Why? The size of the inclusions matters!

Results in elliptic geometry I

Theorem

Assume that $f = \sum_{k \in \mathbb{Z}} f_k e^{ik\nu}$ with $f_k = 0$ for all $|k| < k_0$, and $f_{k_0} \neq 0$. Then there exists C > 0 depending only on R such that

$$\|\Lambda_1 - \Lambda_0^\rho\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}$$

$$\|\Lambda_1 - \Lambda_{\infty}^{\rho}\| \geq Ck_0|f_{k_0}|e^{2k_0\rho}.$$

With this procedure there is no cloaking in elliptic geometry!

Why? The size of the inclusions matters!

Results in elliptic geometry II

Theorem

Suppose the source $f: \partial \mathcal{E}_R(0) \to \mathbb{R}$, $f \in C^I$, is high-frequency monochromatic, that is, there is a large $k_0 \in \mathbb{N}$ such that $f = f_{k_0} e^{ik_0\nu}$. Then there exists some constant C > 0 such that

$$\left\| \frac{\partial u_1}{\partial \bar{n}} - \frac{\partial u_0^{\rho}}{\partial \bar{n}} \right\|_{L^2(\partial \mathcal{E}_R(0))} \leq \frac{C}{k_0} \quad \text{and} \quad \left\| \frac{\partial u_1}{\partial \bar{n}} - \frac{\partial u_\infty^{\rho}}{\partial \bar{n}} \right\|_{L^2(\partial \mathcal{E}_R(0))} \leq \frac{C}{k_0}.$$

$$\begin{cases} \nabla \cdot (a_{\eta} \nabla u_{\eta}) = f & \text{in } \mathbb{R}^2, \\ u_{\eta} \to 0 & \text{as } |x| \to \infty. \end{cases}$$

- $a_{\eta} = A(x) + i\eta$ is the electric permittivity:
 - A(x) has a core-shell-matrix character:

$$A(x) = egin{cases} +1 & ext{in the core } \Sigma, \ -1 & ext{in the shell } B_R \setminus \Sigma, \ +1 & ext{in the matrix } \mathbb{R}^2 \setminus B_R \end{cases}$$

• $\eta > 0$ is a loss parameter:

 $\partial B_R(0)$

The source f is supported on $\partial B_a(0)$, q > R.

$$\begin{cases} \nabla \cdot (a_{\eta} \nabla u_{\eta}) = f & \text{ in } \mathbb{R}^2, \\ u_{\eta} \to 0 & \text{ as } |x| \to \infty. \end{cases}$$

 $a_{\eta} = A(x) + i\eta$ is the electric permittivity:

• A(x) has a core-shell-matrix character:

$$A(x) = egin{cases} +1 & ext{in the core } \Sigma, \ -1 & ext{in the shell } B_R \setminus \Sigma, \ +1 & ext{in the matrix } \mathbb{R}^2 \setminus B_R \end{cases}$$

• $\eta > 0$ is a loss parameter;

The source f is supported on $\partial B_q(0)$, q > R.

$$\begin{cases} \nabla \cdot (a_{\eta} \nabla u_{\eta}) = f & \text{ in } \mathbb{R}^2, \\ u_{\eta} \to 0 & \text{ as } |x| \to \infty. \end{cases}$$

 $a_{\eta} = A(x) + i\eta$ is the electric permittivity:

 A(x) has a core-shell-matrix character:

$$A(x) = egin{cases} +1 & ext{in the core } \Sigma, \ -1 & ext{in the shell } B_R \setminus \Sigma, \ +1 & ext{in the matrix } \mathbb{R}^2 \setminus B_R. \end{cases}$$

 $\eta > 0$ is a loss parameter;

The source f is supported on $\partial B_a(0)$, q > R.

$$\begin{cases} \nabla \cdot (a_{\eta} \nabla u_{\eta}) = f & \text{ in } \mathbb{R}^2, \\ u_{\eta} \to 0 & \text{ as } |x| \to \infty. \end{cases}$$

 $a_{\eta} = A(x) + i\eta$ is the electric permittivity:

 A(x) has a core-shell-matrix character:

$$A(x) = egin{cases} +1 & ext{in the core } \Sigma, \ -1 & ext{in the shell } B_R \setminus \Sigma, \ +1 & ext{in the matrix } \mathbb{R}^2 \setminus B_R. \end{cases}$$

• $\eta > 0$ is a loss parameter;

The source f is supported on $\partial B_q(0)$, q > R.

Energy of the solution:

$$\mathcal{E}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_{\eta}|^2 \, dx$$

When $\eta \to 0$

- Anomalous Localized Resonance occurs: $|\nabla u_{\eta}|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_{η} .
- Normalize the problem by $\alpha_{\eta} \in \mathbb{R}$, with $\alpha_{\eta} \to 0$
- $\alpha_{\eta} \nabla u_{\eta} \rightarrow 0$: the source f and the structure are cloaked!

Energy of the solution:

$$\mathcal{E}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_{\eta}|^2 \, dx$$

When $\eta \to 0$

- Anomalous Localized Resonance occurs: $|\nabla u_{\eta}|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_{η} .
- Normalize the problem by $\alpha_{\eta} \in \mathbb{R}$, with $\alpha_{\eta} \to 0$.
- ullet $lpha_\eta
 abla u_\eta o 0$: the source f and the structure are cloaked!

Energy of the solution:

$$\mathcal{E}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_{\eta}|^2 \, dx$$

When $\eta \rightarrow 0$

- Anomalous Localized Resonance occurs: $|\nabla u_{\eta}|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_{η} .
- Normalize the problem by $\alpha_{\eta} \in \mathbb{R}$, with $\alpha_{\eta} \to 0$.
- $\alpha_{\eta} \nabla u_{\eta} \rightarrow 0$: the source f and the structure are cloaked

Energy of the solution:

$$\mathcal{E}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_{\eta}|^2 \, dx$$

When $\eta \to 0$

- Anomalous Localized Resonance occurs: $|\nabla u_{\eta}|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_{η} .
- Normalize the problem by $\alpha_{\eta} \in \mathbb{R}$, with $\alpha_{\eta} \to 0$.
- $\alpha_{\eta} \nabla u_{\eta} \rightarrow 0$: the source f and the structure are cloaked

Energy of the solution:

$$\mathcal{E}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_{\eta}|^2 \, dx$$

When $\eta \to 0$

- Anomalous Localized Resonance occurs: $|\nabla u_{\eta}|$ diverges in a specific region while it converges smoothly outside this region. No dipedence from a_{η} .
- Normalize the problem by $\alpha_{\eta} \in \mathbb{R}$, with $\alpha_{\eta} \to 0$.
- $\alpha_{\eta} \nabla u_{\eta} \rightarrow 0$: the source f and the structure are cloaked!

Cloaking results in the litterature

Spectral theory techniques:

• Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry (core $= B_r$, shell $= B_R$) cloaking happens only if $q < R^*$, where

$$R^* = r \left(\frac{R}{r}\right)^{3/2}.$$

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).]

Milton and Nicorovici performed numerical simulations which confirm R^* .

• Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking happens only if $q < R^*$, where

$$R^* = \begin{cases} (3R - r)/2 & \text{for } R \le 3r, \\ 2(R - r) & \text{for } R > 3r, \end{cases}$$

if core = \mathcal{E}_r , shell = \mathcal{E}_R , where

$$\mathcal{E}_r = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 x} + \frac{y^2}{\cosh^2 x} < a^2 \}$$

Cloaking results in the litterature

Spectral theory techniques:

• Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry (core $= B_r$, shell $= B_R$) cloaking happens only if $q < R^*$, where

$$R^* = r \left(\frac{R}{r}\right)^{3/2}.$$

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).] Milton and Nicorovici performed numerical simulations which confirm R^* .

• Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking happens only if $q < R^*$, where

$$R^* = \begin{cases} (3R - r)/2 & \text{for } R \le 3r, \\ 2(R - r) & \text{for } R > 3r, \end{cases}$$

if core = \mathcal{E}_r , shell = \mathcal{E}_R , where

$$\mathcal{E}_r = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{1 + 2} + \frac{y^2}{1 + 2} < a^2\}.$$

Cloaking results in the litterature

Spectral theory techniques:

• Ammari, Ciraolo, Kang, Lee, Milton proved that in circular geometry (core = B_r , shell = B_R) cloaking happens only if $q < R^*$, where

$$R^* = r \left(\frac{R}{r}\right)^{3/2}.$$

[Ammari, Ciraolo, Kang, Lee, Milton, (2013).]

Milton and Nicorovici performed numerical simulations which confirm R^* .

• Chung, Kang, Kim, Lee proved that in elliptic geometry cloaking happens only if $q < R^*$, where

$$R^* = \begin{cases} (3R - r)/2 & \text{for } R \leq 3r, \\ 2(R - r) & \text{for } R > 3r, \end{cases}$$

if core = \mathcal{E}_r , shell = \mathcal{E}_R , where

$$\mathcal{E}_r = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 x} + \frac{y^2}{\sinh^2 x} < a^2 \}.$$

Variatonal methods

Khon, Lu, Schweizer, Weinsten approach based on two dual variational principles. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_{\eta} \leq \mathcal{I}_{\eta}$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_{\eta} \geq \mathcal{J}_{\eta}$, used to prove that cloaking happens.

 \leadsto based on test functions.

Variatonal methods

Khon, Lu, Schweizer, Weinsten approach based on two dual variational principles. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_{\eta} \leq \mathcal{I}_{\eta}$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_{\eta} \geq \mathcal{J}_{\eta}$, used to prove that cloaking happens.

 \leadsto based on test functions.

Variational methods

Khon, Lu, Schweizer, Weinsten approach based on two dual variational principles. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_{\eta} \leq \mathcal{I}_{\eta}$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_{\eta} \geq \mathcal{J}_{\eta}$, used to prove that cloaking happens.

 \leadsto based on test functions.

Variational methods

Khon, Lu, Schweizer, Weinsten approach based on two dual variational principles. [Khon, Lu, Schweizer, Weinsten, (2012).]

- Primal variational principles: $\mathcal{E}_{\eta} \leq \mathcal{I}_{\eta}$, used to prove that cloaking does not happen.
- Dual variational principles: $\mathcal{E}_{\eta} \geq \mathcal{J}_{\eta}$, used to prove that cloaking happens.

→ based on test functions.

Results in elliptic geometry I

Theorem (No core implies resonance for sources at any distance)

Assume that the configuration has no core (i.e. $\Sigma = \emptyset$). Let $f = F\mathcal{H}^1 \lfloor \partial \mathcal{E}_R(0)$ with $0 \neq F : \partial \mathcal{E}_R(0) \to \mathbb{R}$ be a source at a distance q > R. Then

$$\mathcal{E}_{\eta}(u_{\eta})
ightarrow +\infty \qquad ext{as } \eta
ightarrow 0.$$

→ Dual variational principle

Results in elliptic geometry II

Theorem (Non-resonance beyond R^*)

Let $\Sigma = \mathcal{E}_r(0) \subset \mathcal{E}_R(0)$ and let A(x) = +1 in Σ and $\mathbb{R}^2 \setminus \mathcal{E}_R(0)$, A(x) = -1 in $\mathcal{E}_R(0) \setminus \Sigma$.

Let $f = F\mathcal{H}^1 \lfloor \partial \mathcal{E}_q(0)$, $0 \neq F : \partial \mathcal{E}_q(0) \to \mathbb{R}$, be a source at a distance q > R with zero average and $F \in L^2(\partial \mathcal{E}_q(0))$. Then the configuration is non-resonant if $q > R^*$ where

$$R^* = (3R - r)/2$$

Thank you for the attention

Elliptic coordinates

Definition

The elliptical coordinates $(\mu, \nu) \in [0, +\infty) \times [0, 2\pi)$ on \mathbb{R}^2 are defined via

$$\begin{cases} x = a \cosh \mu \cos \nu \\ y = a \sinh \mu \sin \nu \end{cases}$$

where a > 0.

- The coordinate μ is called the elliptic radius.
- The coordinate lines are hyperbolae and ellipses.
- We define the elliptical region

$$\mathcal{E}_r(0) = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{\cosh^2 r} + \frac{y^2}{\sinh^2 r} < a^2\}.$$

The dual variational principles

Set $u_{\eta} = v_{\eta} + i/\eta w_{\eta}$, then

$$\nabla \cdot (a_{\eta} \nabla u_{\eta}) = f \iff \begin{cases} \nabla \cdot (A \nabla v_{\eta}) - \Delta w_{\eta} &= f, \\ \nabla \cdot (A \nabla w_{\eta}) + \eta^{2} \Delta v_{\eta} &= 0 \end{cases}$$

The energy becomes

$$\mathcal{E}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla u_{\eta}|^2 dx \Rightarrow \mathcal{I}_{\eta} = \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla v_{\eta}|^2 dx + \frac{1}{2\eta} \int_{\mathbb{R}^2} |\nabla w_{\eta}|^2 dx$$

- PVP: the solution of the original problem is obtained by minimizing \mathcal{E}_{η} , so we minimize \mathcal{I}_{η} with the constraint $\nabla \cdot (A \nabla v) \Delta w = f$.
- ullet DVP: we take the Legendre transform of \mathcal{I}_{η}

$$\mathcal{J}_{\eta} = \int_{\mathbb{R}^2} f \psi \, dx - \frac{\eta}{2} \int_{\mathbb{R}^2} |\nabla v|^2 \, dx - \frac{1}{2\eta} \int_{\mathbb{R}^2} |\nabla \psi|^2 \, dx$$

then we maximize \mathcal{J}_{η} with the constraint $\nabla \cdot (A \nabla \psi) + \eta \Delta v = 0$.