Problem Statement

- Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including
 machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs
 of all categories of people.
- There are two problems that we need to tackle:
- 1. Create a customer profile and based on the profile recommend product to him/her
- 2. Construct two-way contigency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.
- 3. Metrics will be analysing data to give insights on which products to recommend to which particular user based on its characteristics

In [5]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [6]:

```
df = pd.read_csv('aerofit_treadmill.csv')
```

In [7]:

df

Out[7]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [9]:

There are 180 data points and 9 features in the dataset df.shape

Out[9]:

(180, 9)

In [11]:

We can see there are no Null values in the dataset and data consists of object and df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64
.11		1	

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

In [17]:

df.describe(include='object')

Out[17]:

	Product	Gender	MaritalStatus
count	180	180	180
unique	3	2	2
top	KP281	Male	Partnered
freq	80	104	107

In [18]:

```
df.describe(include='int64')
```

Out[18]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

In [21]:

```
sns.histplot(data=df, x="Product")
plt.show()
```


In [22]:

```
sns.histplot(data=df, x="Age",bins=30)
plt.show()
```


In [23]:

```
sns.histplot(data=df, x="MaritalStatus")
plt.show()
```


In [24]:

```
sns.histplot(data=df, x="Gender")
plt.show()
```


Outlier Detection

• For outlier detection, we'll mainly focus on numerical data i.e. Age, Education, Usage, Fitness, Income, Miles

In [26]:

```
# We can see that there are 3 outliers but they are possible values since even some sns.boxplot(x='Age',data=df) plt.show()
```


In [28]:

```
sns.boxplot(x='Usage',data=df)
plt.show()
```


In [32]:

df[df['Usage'].isin([6,7])]

Out[32]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
154	KP781	25	Male	18	Partnered	6	4	70966	180
155	KP781	25	Male	18	Partnered	6	5	75946	240
162	KP781	28	Female	18	Partnered	6	5	92131	180
163	KP781	28	Male	18	Partnered	7	5	77191	180
164	KP781	28	Male	18	Single	6	5	88396	150
166	KP781	29	Male	14	Partnered	7	5	85906	300
167	KP781	30	Female	16	Partnered	6	5	90886	280
170	KP781	31	Male	16	Partnered	6	5	89641	260
175	KP781	40	Male	21	Single	6	5	83416	200

In [29]:

```
sns.boxplot(x='Fitness',data=df)
plt.show()
```


In [40]:

```
df[df['Fitness']==1]
```

Out[40]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
14	KP281	23	Male	16	Partnered	3	1	38658	47
117	KP481	31	Female	18	Single	2	1	65220	21

In [30]:

```
sns.boxplot(x='Income',data=df)
plt.show()
```


In [41]:

df[df['Income']>80000]

Out[41]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
159	KP781	27	Male	16	Partnered	4	5	83416	160
160	KP781	27	Male	18	Single	4	3	88396	100
161	KP781	27	Male	21	Partnered	4	4	90886	100
162	KP781	28	Female	18	Partnered	6	5	92131	180
164	KP781	28	Male	18	Single	6	5	88396	150
166	KP781	29	Male	14	Partnered	7	5	85906	300
167	KP781	30	Female	16	Partnered	6	5	90886	280
168	KP781	30	Male	18	Partnered	5	4	103336	160
169	KP781	30	Male	18	Partnered	5	5	99601	150
170	KP781	31	Male	16	Partnered	6	5	89641	260
171	KP781	33	Female	18	Partnered	4	5	95866	200
172	KP781	34	Male	16	Single	5	5	92131	150
173	KP781	35	Male	16	Partnered	4	5	92131	360
174	KP781	38	Male	18	Partnered	5	5	104581	150
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

In [31]:

```
sns.boxplot(x='Miles',data=df)
plt.show()
```


In [42]:

df[df['Miles']>190]

Out[42]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
84	KP481	21	Female	14	Partnered	5	4	34110	212
142	KP781	22	Male	18	Single	4	5	48556	200
148	KP781	24	Female	16	Single	5	5	52291	200
152	KP781	25	Female	18	Partnered	5	5	61006	200
155	KP781	25	Male	18	Partnered	6	5	75946	240
166	KP781	29	Male	14	Partnered	7	5	85906	300
167	KP781	30	Female	16	Partnered	6	5	90886	280
170	KP781	31	Male	16	Partnered	6	5	89641	260
171	KP781	33	Female	18	Partnered	4	5	95866	200
173	KP781	35	Male	16	Partnered	4	5	92131	360
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200

Insight: - In the above analysis we can see that the fitter the person, the more miles he runs and more the usage. This indicates that the Usage, Fitness and miles are highly correlated. We'll use more statistical Methods to verify this.

Checking for impact of marital Status and Age

In [47]:

sns.countplot(x='MaritalStatus',data=df,hue='Product')

Out[47]:

<AxesSubplot:xlabel='MaritalStatus', ylabel='count'>

Insight: - In the above analysis we can see that marital Status Doesn't have much impact on the usage distribution of product.

In [48]:

sns.countplot(x='Gender',data=df,hue='Product')

Out[48]:

<AxesSubplot:xlabel='Gender', ylabel='count'>

Insight: - In the above analysis we can see that Female Don't prefer to use KP781 in comparison to Male

In [70]:

```
plt.figure(figsize=(15,5))
sns.histplot(x='Age',hue='Product',data=df,multiple='dodge',bins=30)
plt.show()
```


Insight: - In the above analysis we can see that People below 25 Prefer to use KP281 whereas People at the age of 25 Prefer KP481 and there KP781 is not dominant in any age group

In [71]:

df

Out[71]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

```
In [74]:
```

```
pd.crosstab(df['Product'],df['Gender'])
```

Out[74]:

Gender	Female	Male
Product		
KP281	40	40
KP481	29	31
KP781	7	33

Insight: - In the above analysis we can see that KP781 is mostly preferred my Male

In [75]:

```
pd.crosstab(df['Product'],df['MaritalStatus'])
```

Out[75]:

Product		
KP281	48	32
KP481	36	24
KD781	23	17

In [76]:

```
pd.crosstab(df['Product'],df['Fitness'])
```

Out[76]:

Fitness	1	2	3	4	5
Product					
KP281	1	14	54	9	2
KP481	1	12	39	8	0
KP781	0	0	4	7	29

Insight: - In the above analysis we can see that Highly fit people prefer KP781 and low or medium fit people prefer KP281 and KP481

Plotting heatmap to display correlation

In [80]:

```
sns.heatmap(df.corr(),cmap='YlGnBu',annot=True)
plt.show()
```


Insight: - In the above analysis we can see observe the following points.

- 1. There is. high correlation between Fitness, Usage and Miles.
- 2. Age also plays an important role in fitness with some outliers present in the data.

In [84]:

In [87]:

crosstab_ptable = pd.crosstab(df["Product"], df["Age_bins"], margins=True, normalize
crosstab ptable

Out[87]:

Age_bins	0	1	2	3	4	5	6	7	
Product									
KP281	0.055556	0.094444	0.094444	0.061111	0.044444	0.027778	0.033333	0.011111	0.01
KP481	0.038889	0.055556	0.083333	0.016667	0.072222	0.027778	0.027778	0.000000	0.00{
KP781	0.000000	0.055556	0.066667	0.044444	0.016667	0.005556	0.011111	0.005556	0.00
All	0.094444	0.205556	0.244444	0.122222	0.133333	0.061111	0.072222	0.016667	0.022

Insight: - In the above analysis we can see observe the following points.

1. About 25% of the Product is consumed by 24-26 years age group and the Prefer the sequence in the following order KP281>KP481>KP781.

In [88]:

crosstab_ptable = pd.crosstab(df["Product"], df["Gender"], margins=True, normalize=1
crosstab_ptable

Out[88]:

Gender	Female	Male	All
Product			
KP281	0.22222	0.22222	0.44444
KP481	0.161111	0.172222	0.333333
KP781	0.038889	0.183333	0.222222
All	0.422222	0.577778	1.000000

Insight: - In the above analysis we can see observe the following points.

1.KP781 is mostly preferred by Males whereas KP281 and KP481 are almost equally liked by both male and females

In [89]:

crosstab_ptable = pd.crosstab(df["Product"], df["MaritalStatus"], margins=True, norm
crosstab_ptable

Out[89]:

MaritalStatus	Partnered	Single	All	
Product				
KP281	0.266667	0.177778	0.444444	
KP481	0.200000	0.133333	0.333333	
KP781	0.127778	0.094444	0.222222	
ΔII	0.594444	0.405556	1.000000	

Insight: - In the above analysis we can see observe the following points.

1. Partnered people are more likely to buy to a product in the following order KP281>KP481>KP781

In [91]:

crosstab_ptable = pd.crosstab(df["Product"], df["Fitness"], margins=True, normalize=
crosstab_ptable

Out[91]:

Fitness	1	2	3	4	5	All
Product						
KP281	0.005556	0.077778	0.300000	0.050000	0.011111	0.444444
KP481	0.005556	0.066667	0.216667	0.044444	0.000000	0.333333
KP781	0.000000	0.000000	0.022222	0.038889	0.161111	0.222222
All	0.011111	0.144444	0.538889	0.133333	0.172222	1.000000

Insight: - In the above analysis we can see observe the following points.

- 1.KP781 is mostly preferred by highly fit People
- 2. KP281 and KP481 are mostly preferred by low/medium fitness

In []: