Kinematics & Dynamics of Machinery (ME 3320)

Recitation - 2

GTA: Shishir Khanal, khanshis@isu.edu

۱.	Agen	da:	
	•	Revision(Linkage,	Mobility)

- Droblems(Mahility)
- Problems(Mobility)

^						
2.	$\boldsymbol{\omega}$	ev	10	\mathbf{I}	n	•
∠ .	1	CV	13	ıv		

- What is the mobility of a 4-bar Linkage?
- If the mobility is equal to "2", that means we need to control variables for a given mechanism.
- What are the 6 steps that are essential in the derivation of the vector equation for the position analysis of a 4-bar linkage?

 What are the two ways of finding the dependent variables in a 4-bar linkage problem?

1.	 	 	
2			

- What idea is the 'distance constraint' method based on?
- What idea is the 'loop equations' based on?

3. Problems:

• The linkage shown below is a kinematic sketch of a closing door mechanism with given dimensions. The acceptable value of the prismatic joint is: 5 < t < 15.

Calculate the Mobility of this linkage	
What are the coordinates of points A, B	& D?

- 3) For the defined reference frame and given $\boldsymbol{\theta}$, perform the position analysis:
 - 3. a) Using the distance constraint method, compute the dependent variable $t(\theta)$ analytically as an explicit function of the input angle θ . Consider the length of \overline{AB} as the fixed distance.

3. b) Formulate the loop equation and solve it to find the explicit equation for dependent variable $\beta(\theta)$
(This problem will return in Recitation-3)

 Demo: There are several applications of Linkage design around us. One common application is given below:

- 1. What is this part called?
- 2. What is its relevance in the Kinematics class?
- 3. Can you suggest any approaches to use this to balance between holding and squeezing?

(Demo: Run the system using a potentiometer)

Bibliography:

• Dr. Deemyad's Notes

Miscellaneous:

- For avid googlers:
 - o Watts Linkage
 - Pantograph
 - o Ornithopter
 - o Compliant Mechanism
- If you like 3D models:
 - o Thangs.com
 - o Thingiverse.com
- Even Ironman uses 4-bar Linkage!