PROPIONITRILE DERIVATIVE, LIQUID CRYSTAL COMPOSITION AND LIQUID CRYSTAL DISPLAY ELEMENT

Publication number: JP10095761

Publication date: 1998-04-14

Inventor: FUJITA ATSUKO; MATSUI SHUICHI; TAKEUCHI

HIROYUKI; MIYAZAWA KAZUTOSHI; TAMURA NORIHISA; HACHITANI NORIHISA; NAKAGAWA

ETSUO

Applicant: CHISSO CORP

Classification:

- international: C07C255/35; C07C255/37; C07C255/38; C07D239/26;

C07D319/06; C09K19/12; C09K19/14; C09K19/18; C09K19/20; C09K19/30; C09K19/34; C09K19/42; C09K19/44; C09K19/46; G02F1/13; C07C255/00; C07D239/00; C07D319/00; C09K19/10; C09K19/30; C09K19/34; C09K19/42; C09K19/44; C09K19/46; G02F1/13; (IPC1-7): C07C255/35; C07C255/37; C07C255/38; C07D239/26; C07D319/06; C09K19/12; C09K19/14; C09K19/18; C09K19/20; C09K19/30; C09K19/34; C09K19/42; C09K19/44; C09K19/46;

G02F1/13

- european:

Application number: JP19970186008 19970627

Priority number(s): JP19970186008 19970627; JP19960187004 19960628

Report a data error here

Abstract of **JP10095761**

PROBLEM TO BE SOLVED: To obtain the novel subject compound which manifests specific liquid crystal characteristics by combination of kinds of rings and connection groups and has excellent properties as a liquid crystal composition, for example, the low viscosity and wide liquid crystal temperature range and is useful in clocks and electronic calculators. SOLUTION: This novel compound is represented by formula I (n1 and n2 are each 0 or 1; A1, A2 and A3 are each 1,4-phenylene; Z1, Z2 and Z3 are each a single bond, ethylene, ethenylene; R is a 1-10C saturated hydrocarbon group; X1 and X2 are each F, Cl or H), typically 3-fluoro-4-cyanoethynyl-1-(trans-4- propylcyclohexyl)benzene. The compound of formula I is prepared, for example, in the case that Z1, Z2 and Z3 are esters, by reaction of a halogenated ethynylene represented by formula II with 1 equivalent amount to a largely excessive amount, based on the substrate, of a metal cyanide as a cyanidation reagent in an aprotic polar solvent. The reaction temperature is preferably near the boiling point of the solvent form the view point of the reaction rate and 1-200mol% of an acid is added as an additive in order to increase the yield of the objective compound.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-95761

(43)公開日 平成10年(1998) 4月14日

(51) Int.Cl. ⁶	識別記号	F I
C 0 7 C 255/35		C 0 7 C 255/35
255/37		255/37
255/38		255/38
C 0 7 D 239/26		C 0 7 D 239/26
319/06		319/06
		審査請求 有 請求項の数32 FD (全 55 頁) 最終頁に続く
(21)出願番号	特願平9-186008	(71) 出願人 000002071
		チッソ株式会社
(22)出願日	平成9年(1997)6月27日	大阪府大阪市北区中之島 3 丁目 6 番32号
		(72)発明者 藤田 敦子
(31)優先権主張番号	特願平8-187004	千葉県千葉市緑区鎌取町2856番地1 ライ
(32)優先日	平8 (1996) 6 月28日	プアート春の道 6 棟804
(33)優先権主張国	日本(JP)	(72)発明者 松井 秋一
		千葉県市原市辰巳台東2丁目17番地
		(72)発明者 竹内 弘行
		千葉県市原市辰巳台東2丁目17番地
		(72)発明者 宮沢 和利
		千葉県市原市ちはら台3丁目27番地7
		(74)代理人 弁理士 髙木 千嘉 (外2名)
		最終頁に続く

(54) 【発明の名称】 プロピオロニトリル誘導体、液晶組成物および液晶表示素子

(57)【要約】 (修正有)

【課題】 広液晶温度レンジ、他液晶との良好な相溶性、低粘性、大誘電率異方性などの液晶特性を保持し、 大弾性定数比を付与可能な新規液晶性化合物、これを含有する液晶組成物と液晶表示素子を提供する。

【解決手段】 液晶性化合物は一端にプロピオロニトリル基をもつ2~4環化合物プロピオロニトリル誘導体で、好ましくはプロピオロニトリル基の結合するフェニレン環のプロピオロニトリル基の側位の一方/両方がF及び/又はClで置換され、他の環は独立してトランスー1,4ーシクロへキシレン、未置換/FまたはCl置換の1,4ーフェニレン、1,3ーピリミジンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルをあり、環連結基は独立して単結合、1,2ーエチニレン、1,2ーエテニレン、1,2ーエチニレン、カルボニルオキシ、オキシカルボニル、メチレンオキシ、オキシメチレン、1,4ープチレンまたは1,4ープテニレンであり、一端の基は鎖中にエーテル結合を1以上有してもよく、1以上の日が下で置換されてもよいC1~10の飽和/不飽和の脂肪族炭化水素基である。

【特許請求の範囲】

【請求項1】 一般式(1)

$$R \longrightarrow A1 \longrightarrow 21 \longrightarrow \left(A2 \longrightarrow 22\right) \longrightarrow \left(A3 \longrightarrow 23\right) \longrightarrow \left(A3 \longrightarrow 23\right) \longrightarrow CN$$
 (1)

(式中、nlおよびn2は、それぞれ独立して0または1で あり; A1、A2およびA3は、それぞれ独立して1,4-フ ェニレン、1個または2個のフッ素原子で置換された 1,4-フェニレン、トランス-1,4-シクロヘキシレ ン、1.3 - ジオキサン - 2.5 - ジイルまたは 1.3 -ピリミジン-2、5-ジイルを表し; Z1、Z2およびZ3 は、それぞれ独立して単結合、エチレン基、エテニレン 基、エチニレン基、カルボニルオキシ基、オキシカルボ ニル基、メチレンオキシ基、オキシメチレン基、1,4 -ブチレン基または1,4-ブテニレン基を表し;R は、炭素数1~10の飽和脂肪族炭化水素基、炭素数2 ~10の不飽和炭化水素基、鎖中に1以上のエーテル結 合(-0-)を有する炭素数1~10の飽和または不飽和の 脂肪族炭化水素基、または鎖中に1以上のフッ素原子を 含む炭素数1~10の飽和または不飽和のフッ素置換脂 肪族炭化水素基を表し;そしてX1およびX2は、それぞれ 独立してF、ClまたはHを表す、ただし、n1=n2=0、 Z1が単結合、エチレン基、カルボニルオキシ基またはオ キシカルボニル基、かつRがアルキル基またはアルコキ シ基の場合、ならびにn1=1、n2=0または1、Z1およ び22が単結合またはエチレン基、23がエチレン基、かつ Rがアルキル基またはアルコキシ基の場合には、X1、X2 の少なくとも一方はFまたはClである)で表わされるプ ロピオロニトリル誘導体。

【請求項2】 一般式(1)中、n1=n2=0である請求項 1記載のプロピオロニトリル誘導体。

【請求項3】 一般式(1)中、n1=1、n2=0である請求項1記載のプロピオロニトリル誘導体。

【請求項4】 一般式(1)中、n1=n2=1である請求項 1記載のプロピオロニトリル誘導体。

【請求項5】 一般式(1)中、Rが炭素数2~10のアルケニル基である請求項1記載のプロピオロニトリル誘導体。

【請求項6】 一般式(1)中、Rが炭素数2~10のアルケニル基であり、かつX1およびX2が共にHである請求項1記載のプロピオロニトリル誘導体。

【請求項7】 一般式(1)中、n1=n2=0であり、Rが 炭素数2~10のアルケニル基である請求項1記載のプ ロピオロニトリル誘導体。

【請求項8】 一般式(1)中、n1=1、n2=0であり、 Rが炭素数2~10のアルケニル基である請求項1記載 のプロピオロニトリル誘導体。

【請求項9】 一般式(1)中、nl=n2=0であり、Z1が

単結合、Rが炭素数2~10のアルケニル基である請求項1記載のプロピオロニトリル誘導体。

【請求項10】 一般式(1)中、nl=1、n2=0であり、Z1が単結合、Rが炭素数2~10のアルケニル基である請求項1記載のプロピオロニトリル誘導体。

【請求項11】 一般式(1)中、X1およびX2のいずれか 一方または両方がFおよび/またはC1であり、Rが炭素 数 $1\sim10$ のアルキル基である請求項1記載のプロピオ ロニトリル誘導体。

【請求項12】 一般式(1)中、21、22および23のうちいずれか一つがエチレン基、1,4-プチレン基、オキシメチレン基またはメチレンオキシ基であり、他が単結合またはエチレン基である請求項1記載のプロピオロニトリル誘導体。

【請求項13】 一般式(1)中、nl=n2=0であり、Z1がエチレン基、1,4ープチレン基、オキシメチレン基またはメチレンオキシ基である請求項1記載のプロピオロニトリル誘導体。

【請求項14】 一般式(1)中、nl=1、n2=0であり、Z1およびZ2のいずれか一方がエチレン基、1,4ーブチレン基、オキシメチレン基またはメチレンオキシ基であり、他方が単結合またはエチレン基である請求項1記載のプロピオロニトリル誘導体。

【請求項15】 一般式(1)中、nl=n2=1であり、2 1、22および23のうちいずれか一つがエテニレン基、1, 4ープテニレン基またはエチニレン基であり、他が単結 合またはエチレン基である請求項1記載のプロピオロニ トリル誘導体。

【請求項16】 一般式(1)中、n1=n2=0であり、Z1がエテニレン基、1,4-ブテニレン基またはエチニレン基である請求項1記載のプロピオロニトリル誘導体。 【請求項17】 一般式(1)中、n1=1、n2=0であり、Z1およびZ2のいずれか一方がエテニレン基、1,4-ブテニレン基またはエチニレン基であり、他方が単結合またはエチレン基である請求項1記載のプロピオロニトリル誘導体。

【請求項18】 一般式(1)中、n1=n2=1であり、Z1、Z2およびZ3のうちいずれか一つがカルボニルオキシ基またはオキシカルボニル基、他が単結合またはエチレン基である請求項1記載のプロピオロニトリル誘導体。 【請求項19】 一般式(1)中、n1=n2=1であり、Z1、Z2およびZ3のうちいずれか一つはカルボニルオキシ基またはオキシカルボニル基、他が単結合またはエチレ ン基であり、X1およびX2のいずれか一方または両方がF である請求項1記載のプロピオロニトリル誘導体。

【請求項20】 一般式(1)中、n1=n2=0であり、Z1 がカルボニルオキシ基またはオキシカルボニル基である 請求項1記載のプロピオロニトリル誘導体。

【請求項21】 一般式(1)中、nl=n2=0であり、Z1 がカルボニルオキシ基またはオキシカルボニル基であり、X1およびX2のいずれか一方または両方がFである請求項1記載のプロピオロニトリル誘導体。

【請求項22】 一般式(1)中、n1=1、n2=0であり、Z1、Z2のいずれか一方がカルボニルオキシ基またはオキシカルボニル基、他方が単結合またはエチレン基である請求項1記載のプロピオロニトリル誘導体。

【請求項23】 一般式(1)中、n1=1、n2=0であり、Z1、Z2のどちらか一方がカルボニルオキシ基またはオキシカルボニル基、他方が単結合またはエチレン基であり、X1およびX2のいずれか一方または両方がFである請求項1記載のプロピオロニトリル誘導体。

【請求項24】 一般式(1)中、n1=n2=0であり、A1 がトランス-1,4-シクロヘキシレンである請求項1

$$R_1 + \left(\begin{array}{c} \\ \\ \\ \end{array} \right)_a Z4 + \left(A4 - Z5 \right)_b + \left(\begin{array}{c} (F) \\ \\ (F) \end{array} \right)$$

(式中、 a は 1 または 2 、 b は 0 または 1 であり、A4はトランスー 1,4 ーシクロヘキシレン、または未置換もしくは 1 個または 2 個の F で置換された 1,4 ーフェニレン; Z4およびZ5は、それぞれ独立してエチレン基、エテニレン基または単結合; R1は炭素数 $1 \sim 1$ 0 のアルキル基; X5は-F、 $-CF_3$ 、 $-OCF_3$ 、 $-OCF_2$ Hまたは-Cl;

(式中、c、d、eおよびfはそれぞれ独立して0また は1であり、A5、A6およびA7はそれぞれ独立してトラン スー1,4-シクロヘキシレン、未置換もしくは1個ま たは2個のFで置換された1,4-フェニレン、1,3-ジオキサン-2,5-ジイルまたは1,3-ピリミジン-2,5-ジイル、A8はトランス-1,4-シクロヘキシレ ン、または未置換もしくは1個または2個のFで置換さ れた1,4-フェニレン; 26、27および28は、それぞれ 独立してエチレン基、エテニレン基、エチニレン基、1 -ブテン-3-イニレン基、カルボニルオキシ基または 単結合; R2は鎖中に1以上のエーテル結合を有していて もよい炭素数10までの飽和または不飽和の脂肪族炭化 水素基、R3は-CN、-F、-OCF₃、-OCF₂H、-CF₃、-CF。H、-CFH。または鎖中に1以上のエーテル結合を有し ていてもよい炭素数10までの飽和または不飽和の脂肪 族炭化水素基である)で表わされる化合物よりなる群か ら選択される少なくとも1種からなることを特徴とする 液晶組成物。

記載のプロピオロニトリル誘導体。

【請求項25】 一般式(1)中、nl=n2=0であり、Al がフッ素置換1,4-フェニレンである請求項1記載の プロピオロニトリル誘導体。

【請求項26】 一般式(1)中、nl=1、n2=0であり、Alおよび/またはA2がトランス-1,4-シクロへキシレンである請求項1記載のプロピオロニトリル誘導体

【請求項27】 一般式(1)中、nl=1、n2=0であり、Alおよび/または<math>A2が1, 4-フェニレンである請求項1記載のプロピオロニトリル誘導体。

【請求項28】 請求項1記載の一般式(1)で表わされるプロピオロニトリル誘導体から選択される少なくとも1種を含有する少なくとも二成分からなることを特徴とする液晶組成物。

【請求項29】 第一成分が請求項1記載の一般式(1)で表わされるプロピオロニトリル誘導体から選択される少なくとも1種、および第二成分が一般式(2)

【化2】

(2)

(F)はFまたはHを表す)で表わされる化合物群から選択される少なくとも1種からなることを特徴とする液晶組成物

【請求項30】 第一成分が請求項1記載の一般式(1)で表わされるプロピオロニトリル誘導体から選択される少なくとも1種、および第二成分が、一般式(3)

 $R2-(-A5-Z6-)_{c}-(-A6-Z7-)_{d}-(-A7-Z8-)_{c}-A8-(-C00-)_{f}-R3$ (3)

【請求項31】 第一成分が請求項1記載の一般式(1)で表わされるプロピオロニトリル誘導体より選択される少なくとも1種、ならびに第二成分が請求項29記載の一般式(2)で表わされる化合物および請求項30記載の一般式(3)で表わされる化合物よりなる群から選択される少なくとも1種からなることを特徴とする液晶組成物。

【請求項32】 請求項28から31のいずれかに記載 の液晶組成物を用いて構成される液晶表示素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は新規なプロピオロニトリル誘導体からなる液晶性化合物、この液晶性化合物 を含有する液晶組成物、およびこの液晶組成物を用いた 液晶表示素子に関する。

[0002]

【従来の技術】液晶物質の光学異方性及び誘電異方性などの特性を利用した表示素子は、時計、電卓等に広く利

用されている。液晶相にはネマチック液晶相、スメクチック液晶相、コレステリック液晶相があるが、実用的にはネマチック相がもっとも一般的である。この場合の表示方式としては、TN(ねじれネマチック)型、DS(動的散乱)型、GH(ゲスト・ホスト)型、DAP(配向相変形)型等がある。これらに使われる液晶性化合物が今までに数多く開発されたが、単一の化合物のままで表示素子に封入されて実用化された例はない。表示素子用の液晶材料としては、室温を中心とした広い温度範囲で液晶相を示し、使用される環境下で、水分、光、熱、空気等や電場、電磁放射に対して安定であり、表示素子を駆動させるに十分な物理的性質を持つことが必要である。

【0003】液晶材料に求められる光学異方性、誘電異方性および電気伝導度等の物性値は表示方式および素子の形状に依存する。特に近年高品位の液晶ディスプレイに用いられているSTN方式に用いられる液晶材料は、高い急峻性を有しかつ早い応答速度を示す良好な表示を得るために、液晶組成物は弾性定数比(k₃/k₁)および誘電異方性値が大きく、かつ、低粘度に設定しなくてはならない。

【0004】しかしながら、同時にこれらの条件を満たす単体化合物は未だ知られておらず、現在のディスプレイに使用されている液晶材料は各々の特性を有する液晶性化合物の混合物で構成された組成物である。諸特性にばらつきのある単体化合物を混合すると周波数依存性、温度依存性が大きくなり各使用環境下で均一な表示を得ることが困難である。そこで周波数依存性、温度依存性を極力小さくした、良好な特性を有するSTN方式による表示を得るためには、大きな弾性定数比を有し、大きな消化を変に近い光学的異方性値を有し、広い液晶温度レンジを有し、他の液晶との相溶性が高く、安定でしかも応答速度を損なわないように低粘度を有する化合物が重要な鍵になっている。

【0005】大きな弾性定数比および大きな誘電異方性 値を有し、比較的に低粘度の液晶化合物として、下記式 (A)に示すようなアルケニル化合物 (特開昭59-176221 号公報) が一般に知られているが、この化合物はネマチ ック液晶温度範囲が比較的に狭く、液晶組成物の一成分 とする場合にはこれを補うように高透明点を有する化合 物と併用する必要がある。しかしながら、一般に高透明 点を有する化合物は高粘度を示すため、上記アルケニル 化合物の添加は組成物全体の粘度が高くなる結果とな る。一方、下記式(B) (式中、Rは炭素数1~8のアル キル基を表す) に示すシンナムニトリル誘導体(特開昭 55-9012号公報)も液晶化合物として知られているが、 特に光に対する安定性が乏しい。下記式(C)(式中、R は炭素数1~9のアルキル基またはアルコキシ基を表 す) に示すプロピオロニトリル誘導体(特開昭58-1105 27号公報) は広い液晶レンジおよび比較的大きな誘電異 方性値、弾性定数比を有するが十分であるとはいえな

いし

【0006】 【化3】

[0007]

【発明が解決しようとする課題】本発明は、液晶組成物の成分としての優れた性質、すなわち広い液晶温度レンジ、大きな誘電異方性値を有し、他の液晶化合物との相溶性に優れ、組成物の低粘性などの性質を保持し、かつ大きな弾性定数比を与えることが可能な新規液晶性化合物を提供することを目的とする。また、この液晶性化合物を含有する液晶組成物およびこの組成物から構成される液晶表示素子を提供することを別の目的とする。

[0008]

【課題を解決するための手段】本発明者らは、前記目的を達成するべく鋭意研究した結果、前記式(C)のプロピオロニトリル誘導体の環の種類およびそれらの連結基の組み合わせ、ならびに環の置換基および置換位を変えた一群の化合物が特異な液晶特性を示すことを見出し、本発明を完成した。

【0009】本発明は、下記一般式(1)で表され、式中 のn1およびn2はそれぞれ独立して0または1;A1、A2お よびA3はそれぞれ独立して1,4-フェニレン、1個ま たは2個のFで置換された1,4-フェニレン、トラン ス-1.4-シクロヘキシレン、1.3-ジオキサンー $2.5 - \sqrt{3} + \sqrt$ ル; Z1、Z2およびZ3はそれぞれ独立して単結合、エチレ ン基、エテニレン基、エチニレン基、カルボニルオキシ 基、オキシカルボニル基、メチレンオキシ基、オキシメ チレン基、1,4-ブチレン基または1,4-ブテニレン 基:Rは炭素数が10までの飽和または不飽和の脂肪族 炭化水素基、鎖中に1以上のエーテル結合を有する炭素 数が10までの飽和または不飽和の脂肪族炭化水素基、 または1以上のFを含む炭素数が10までの飽和または 不飽和のフッ素置換脂肪族炭化水素基;X1およびX2はそ れぞれ独立してF、ClまたはHを表す、ただし、n1= n2=0、Z1が単結合、エチレン基、カルボニルオキシ基 またはオキシカルボニル基、かつRがアルキル基または アルコキシ基の場合、ならびにnl=1、n2=0または 1、Z1およびZ2が単結合またはエチレン基、Z3がエチレ ン基、かつRがアルキル基またはアルコキシ基の場合に は、X1、X2の少なくとも一方はFまたはClであるプロピ

オロニトリル誘導体である。 【0010】

$$R \longrightarrow A1 \longrightarrow Z1 \longrightarrow \left(A2 \longrightarrow Z2\right) \longrightarrow \left(A3 \longrightarrow Z3\right) \longrightarrow CN \tag{1}$$

【0011】また、別の本発明は、前記一般式(1)で表わされるプロピオロニトリル誘導体の少なくとも1種を含有する、少なくとも二成分からなることを特徴とする液晶組成物、さらに詳しくは第一成分が前記一般式(1)で表されるプロピオロニトリル誘導体の少なくとも1種、第二成分が下記一般式(2)で表される化合物群より

選択される少なくとも1種および/または一般式(3)で表される化合物群より選択される少なくとも1種からなる液晶組成物、ならびにこれらの液晶組成物を用いて構成される液晶表示素子である。

(2)

【0012】 【化5】

$$R_1$$
 $\left(\begin{array}{c} \\ \\ \\ \end{array} \right)_a$ $Z4$ $\left(A4 - Z5 \right)_b$ $\left(\begin{array}{c} (F) \\ \\ (F) \end{array} \right)$

【0013】一般式(2)中、aは1または2、bは0または1であり、A4はトランスー1, 4 -シクロヘキシレン、または未置換もしくは1 個または2 個のF で置換された1, 4 -フェニレン; 24および25は、それぞれ独立

 $R2-(-A5-Z6-)_{c}-(-A6-Z7-)_{d}-(-A7-Z8-)_{e}-A8-(-C00-)_{f}-R3$

一般式(3)中、c、d、eおよびfはそれぞれ独立して0または1であり; A5、A6およびA7はそれぞれ独立してトランス-1, 4-シクロヘキシレン、未置換もしくは1個または2個のFで置換された1, 4-フェニレン、1, 3-ジオキサン-2, 5-ジイルまたは1, 3-ピリミジン-2, 5-ジイル; A8はトランス-1, 4-シクロヘキシレン、または未置換もしくは1個または2個のFで置換された1, 4-フェニレン; Z6、Z7およびZ8は、それぞれ独立してエチレン基、エテニレン基、エチニレン基、1-プテン-3-イニレン基、カルボニルオキシ基または単結合; R2は鎖中に1以上のエーテル結合を有していてもよい炭素数10までの飽和または不飽和の

【 0 0 1 4 】)_e-A8-(-C00-)_f-R3 (3) 脂肪族炭化水素基;R3は-CN、-F、-OCF₃、-OCF ₂H、-CF₃、-CF₂H、-CFH₂または鎖中に1以上のエー

テル結合を有していてもよい炭素数10までの飽和また

は不飽和の脂肪族炭化水素基である。

してエチレン基、エテニレン基または単結合; R1は炭

素数1~10のアルキル基; X5は-F、-CF₃、-OC

 F_3 、 $-0CF_2$ Hまたは-C1; (F)はFまたはHを表す。

[0015]

【発明の実施の形態】本発明のプロピオロニトリル誘導体は、一般式(1)で表され、式中の、n1、n2、A1、A2、A3、Z1、Z2、Z3、R、X1およびX2は前記と同じ意味を表わす。

[0016]

【化6】

$$R - A_1 - Z_1 - \left(A_2 - Z_2\right) - \left(A_3 - Z_3\right) - Z_3 - Z_2 - C_N$$
 (1)

【0017】一般式(1)中のRは、直鎖状または分岐鎖状の炭素数1~10の飽和脂肪族炭化水素基、鎖中に1または2の不飽和基、たとえばエテニレン基またはエチニレン基を含有する直鎖状または分岐鎖状の炭素数2~10の不飽和脂肪族炭化水素基、鎖中に1以上のエーテル結合(-0-)を含有する炭素数1~10の飽和または不飽和の脂肪族炭化水素基、もしくは鎖中に1以上のFを含む炭素数1~10の飽和または不飽和のフッ素置換脂肪族炭化水素基である。

【0018】飽和脂肪族炭化水素基はいわゆるアルキル基であり、たとえばエチル基、メチル基、nープロピル基、iープロピル基、ベンチル基、2ーメチルプチル基、ヘキシル基、2ーメチルペンチル基、3ーメチルペンチル基、カクチル、2ーエチルヘキシル、3ーメチルヘプチル基、ノニル基、デシル基などが挙げられる。不飽和脂肪族炭化水素基は、アルケニル基、アルキニル基、アルカジエニル基などであり、たとえばビ

ニル基、アリル基、1ープテニル基、3ープテニル基、3ーメチルー1ープテニル基、1ーペンテニル基、3ーペンテニル基、4ーメチルー3ーペンテニル基、3ーノネニル基、エチニル基、プロピニル基、1ープチニル基、ブタジエニル基、1,5ーヘキサジエニル基などが挙げられる。

【0019】鎖中にエーテル結合を有する飽和脂肪族炭 化水素基は、前記アルキル鎖中に1以上のエーテル結合 を有するアルコキシ基、アルコキシアルキル基、アルコ キシアルコキシ基などであり、たとえばメトキシ基、エ トキシ基、イソプロポキシ基、ブトキシ基、ペンチルオ キシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチ ルオキシ基、2-エチルヘキシルオキシ基、ノニルオキ シ基、デシルオキシ基、メトキシメチル基、メトキシエ チエル基、エトキシメチル基、プロポキシメチル基、プ ロポキシプロピル基、エトキシメトキシ基、プロポキシ エトキシ基などが挙げられる。鎖中にエーテル結合を有 する不飽和脂肪族炭化水素基は、前記アルケニル鎖、ア ルキニル鎖中に1以上のエーテル結合を有するアルケニ ルオキシ基、アルキニルオキシ基、アルケニルオキシア ルキル基などであり、たとえばアリルオキシ基、2-ブテ ニルオキシ基、ペンテニルオキシ基、プロピニルオキシ 基、アリルオキシメチル基などが挙げられる。

【0020】さらに飽和または不飽和のフッ素置換脂肪

族炭化水素基は、前記飽和または不飽和の脂肪族炭化水素基またはエーテル結合を有する飽和または不飽和脂肪族炭化水素基の鎖中にフッ素原子を有するフルオロアルキル基、フルオロアルケニル基、フルオロアルコキシ基、フルオロアルコキシアルキル基、フルオロアルケニルオキシ基などであり、たとえばフルオロメチル基、ジフルオロメチル基、トリフルオロエチル基、バーフルオロエチル基、2,2-ジフルオロビニル基、4-フルオロニチル基、2,2-ジフルオロビニル基、4-フルオロー3-ブテニル基、4,4-ジフルオロー3-ブテニル基、リフルオロメトキシ基、トリフルオロメトキシ基、トリフルオロメトキシメチル基、3-フルオロ-1-プロペニルオキシ基などが挙げられる。

【0021】一般式(1)で表されるプロピオロニトリル誘導体は、式中のn1およびn2が共に0である下記一般式(1a)で表わされる2環化合物、n1が1、n2が0である下記一般式(1b)で表わされる3環化合物、ならびにn1およびn2が共に1である下記一般式(1c)で表わされる4環化合物に大別できる。一般式(1a)、(1b)および(1c)中、A1、A2、A3、Z1、Z2、Z3、R、X1およびX2は前記と同じ意味を表わす。

[0022]

【化7】

$$R - AI - Z_1 - CN$$

$$X1$$

$$X1$$

$$X1$$

$$CN$$

$$X1$$

$$CN$$

$$(1a)$$

$$X1$$

$$CN$$

$$X1$$

$$CN$$

$$X1$$

$$CN$$

$$(1b)$$

$$X1$$

$$CN$$

$$(1c)$$

【0023】一般式(1a)で表わされる2環化合物は、プロピオロニトリル誘導体の中でもその液晶温度レンジを室温付近に持ち、粘度が低く、また液晶組成物の構成成分とした場合、結晶が析出しにくい優れた材料である。さらに2環化合物を用いた液晶ディスプレイは他の、より環数の大きな化合物を用いた場合より速い応答速度で表示を行うことができる。2環化合物のより具体的な例を、式(1a-1)~(1a-28)に示す。式中、Rは前記と同じ意味を表わし、Alkylは炭素数1~10のアルキル基、Alkenylは炭素数2~10のアルケニル基、(F)はFまたはHを表わす。

[0024]

【化8】

【0025】 【化9】

【0026】一般式(1b)で表わされる3環化合物は、高い透明点を有し、他の液晶性等号物と良好な相溶性を有し、液晶組成物の良好な急峻性を得るために必要な大きな弾性定数比を有する。3環化合物のより具体的な例を、式(1b-1)~(1b-81)に示す。式中、R、Alkyl、Alkenylおよび(F)は前記と同じ意味を表わす。

【0027】 【化10】

(1c-1)

(1c-2)

(1c-3)

(1c-4)

【0032】一般式(1c)で表わされる4環化合物は、い ずれも非常に高い透明点を有し、大きな弾性定数比を有 し、比較的大きな光学異方性値を示すので組成物の構成 成分として極めて重要である。 4 環化合物のより具体的 な例を、式(1c-1)~(1c-33)に示す。式中、A1、A2、A 3、Alkyl、Alkenyl、Rおよび(F)は前記と同じ意味を表 わす。

[0033] 【化15】

$$R - A1 - A2 - A3 - CN$$
 (1c-14)

$$R - \underbrace{A1} - \underbrace{A2} - \underbrace{A3} - \underbrace{CN}$$
 (1c-16)

$$R - \underbrace{A1} - \underbrace{A2} - \underbrace{A3} - \underbrace{CN}$$
 (1c-18)

$$R - A1 - A2 - A3 - CN$$
(10-19)

$$R - A1 - A2 - A3 - O - CN$$

$$(10-21)$$

$$R - A1 - A2 - C0 - CN$$
 (1c-23)

 $R - \underbrace{A1} - \underbrace{A2} - \underbrace{CN}$ (10-24)

【0035】 【化17】

$$R - A1 - A2 - A3 - CN$$

$$R - A1 - A2 - A3 - CN$$

$$(1c-26)$$

$$R - \underbrace{A1} - \underbrace{A2} - \underbrace{A3} - \underbrace{CN}$$
 (10-27)

$$R - A1 - A2 - CN \qquad (10-28)$$

$$R - A1 - A2 - CN \qquad (10-29)$$

$$R - A1 - A2 - O - A3 - CN$$
 (1c-30)

$$\begin{array}{c|c}
R - A1 - A2 - CN & (1c-31) \\
\hline
(F) & CN & (1c-31)
\end{array}$$

$$R - A1 - A2 - A3 - CN \qquad (1c-32)$$

(10-33) (10-

してプロピオロニトリル誘導体の物性値を所望の値に調整することができるので、良好な特性を有する液晶組成物の成分として好適に使用することができる。

【0037】一般式(1)中、末端基Rがアルキル基またはアルケニル基である前記例示した式1a-1~5および15~19、1b-1~5、16~20および31~34、ならびに1c-1~13で表される化合物は、いずれも高い透明点、大きな弾性定数比、大きな誘電異方性、大きな光学異方性値を有し、液晶材料の構成要素として優れている。特に1a-3~5および17~19、1b-3~5、18~20、33および34、ならびに1c-3、4、7、8、11および12の化合物は大きな弾性定および低い粘度を有していてSTN方式の表示材料として有用である。

【0038】また、一般式(1)中、連結基21、22および23のいずれかにエチレン基、1,4ープチレン基または1,4ープテニレン基を含む前記例示した式1a-7、11、12、21、25および26、1b-6、10、11、21、25、26、36、40、41、47、53、54、56、60、61、65、71、72、74、78および79、ならびに1c-15、19、20、26、32および33で示される化合物は、いずれも高い相溶性と液晶表示に応用する際に好ましい広いネマチック液晶相を有するので有用である。

【0039】一般式(1)中、高度に共役した部分構造を有する化合物である前記例示した式1a-6、8、15~19、20、22および26、1b-5、7、16~20、22、26、30、31~43、45、46、48、55、57、64、66および73~81、ならびに1c-5~12、14、16、25、27で示される化合物は広い液晶温度レンジと特に大きな光学異方性値を有し、セル厚を薄くしたディスプレイ用の液晶材料として有用である。特に1a-20および22、ならびに1b-20、22、35、37、55、73および75は比類なく大きな光学異方性の値を有し、高分子分散型液晶表示素子に用いられる材料の構成要素としても有用である。

【0040】一般式(1)中、連結基21、22および23のいずれかにオキシカルボニル基またはカルボニルオキシ基を含むか、または環A1、A2およびA3のいずれかが1,3ージオキサンー2,5ージイルまたは1,3ーピリミジンー2,5ージイルである前記例示した式1a-13、14、27および28、1b-12、13、14、15、27、28、29、30、42、43、44、45、51、52、58、59、62、63、69、70、76、77、80および81、ならびに1c-12~13、21、22、23、24で示されるエステル誘導体、ピリミジン誘導体、ジオキサン誘導体は特に大きな誘電異方性の値を有し、低電圧駆動ディスプレイ用の液晶材料として優れている。さらにシクロヘキサン環をその骨格に含む前記例示した式1a-1~14、1b-1~30および46~72、ならびに1c-1~13は液晶温度レンジが広く他の液晶との相溶性に優れている。

【0041】一般式(1)で表わされるプロピオロニトリル誘導体は、プロピオロニトリル基が結合するフェニル環のプロピオロニトリル基に隣接位の炭素の一方または

両方をFで置換することができ、このようなフッ素含有 化合物は誘電異方性値が大きいのでSTN用の液晶組成 物の構成要素としてその駆動電圧を低く設定する目的で 有用である。フェニル環がフッ素原子で置換されていな い化合物はフッ素含有化合物に比較して高い透明点を液 晶組成物に持たせることができる。

【0042】本発明の一般式(1)で表されるプロピオロニトリル誘導体は、下記A~Cに示すいずれかの方法で合成することができる。

A-1. 一般式(1)中のZ1、Z2およびZ3がいずれもエステ ル結合

(カルボニルオキシ基またはオキシカルボニル基)ではな

い場合;一般式(1)中のZ1、Z2およびZ3がそれぞれ独立 して単結合、エチレン基、エテニレン基、エチニレン 基、メチレンオキシ基、オキシメチレン基、1,4ーブ チレン基または1,4ーブテニレン基であり; n1、n2、 R、A1、A2、A3、X1およびX2は前記と同じ意味を表すプロピオロニトリル誘導体は、下記一般式(4)で表され、 式中のX3がC1、BrまたはIであり、n1、n2、R、A1、A 2、A3、Z1、Z2、Z3、X1およびX2は前記と同じ意味を表すハロゲン化エチニレンをシアノ化剤を用いてシアノ化 することによって得られる。

[0043]

【化18】

$$R - A_1 - Z_1 - \left(A_2 - Z_2\right) + \left(A_3 - Z_3\right) + \left(A_3 - Z_3\right$$

【0044】この反応は通常非プロトン性極性溶媒中、シアノ化剤として金属シアン化物、好ましくはシアン化ナトリウム、シアン化銅、シアン化カリウムなどを用いて行われる。金属シアン化物の使用量は基質に対して1当量ないし大過剰の範囲であるが、後処理を考慮すると1~3当量の範囲が好ましい。非プロトン性極性溶媒としてはテトラヒドロフラン、ジメチルホルムアミド、アセトニトリル、アセトン、ジオキサン、Nーメチルピロリドン等が好ましく、特にテトラヒドロフラン、ジメチルホルムアミド、Nーメチルピロリドンが好収率が得られるので好ましい。本反応の反応温度は室温から選択する溶媒の沸点の領域から選択されるが、反応が速やかに進行する点で、溶媒の沸点近傍が好ましい。また本反応は反応を速やかに進行せしめ、収率を上昇させる目的で

添加物を加えることもできる。添加物としては、臭化リチウム、塩化リチウム、臭化ナトリウム、ヨウ化ナトリウム等の塩類が好ましく、添加物の添加量は反応基質の1~200モル%の範囲から選択される。

【0045】本反応における原料物質である一般式(4)で表されるハロゲン化エチニレンは、DE4027458号明細書に記載の方法または下記反応式(式中、21、22、23、n1、n2、R、A1、A2、A3、X1およびX2は前記と同じ意味を表す)に示す方法を用いて、反応式中に一般式(5)で表されるアルデヒド化合物から容易に合成することができる。

[0046]

【化19】

$$R \cdot A_1 \cdot Z_1 + A_2 \cdot Z_2 + A_3 \cdot Z_3 + A_4 \cdot Z_3 + CHO$$

$$(5)$$

$$X_2$$

$$CBr_4, PPh_3$$

$$CH_2Cl_2$$

R-A1-Z1+A2-Z2+A3-Z3+人(0047)A-2. 一般式(1)中のZ1、Z2およびZ3のパイプルかがエステル結合

(カルボニルオキシ基またはオキシカルボニル基)である場合;前記一般式(1)で表され、式中のZ1、Z2およびZ3のいずれかがカルボニルオキシ基またはオキシカルボニル基であり、他がそれぞれ独立して単結合、エチレン基、エテニレン基、エチニレン基、メチレンオキシ基、オキシメチレン基、1,4ーブチレン基または1,4ーブテニレン基であるプロピオロニトリル誘導体は、下記一般式(6)で表されるカルボン酸化合物と一般式(7)で表されるアルコール化合物とのエステル化反応、もしくは下記一般式(8)で表されるアルコール化合物と一般式

X2 Bé)で表されるカルボン酸化合物(一般式(6)~(9)において、n'1、n"1、n'2およびn"2は0または1、かつn'1+n"1=1、n'2+n"2=1であり、R、A1、A2、A3、X1およびX2は前記と同じ意味を表す)とのエステル化反応により得られる。このエステル化反応として、最も一般的なトルエン、キシレン等の反応自体に不活性な溶媒中、酸触媒の存在下に、共沸によって脱水させながら行う方法、非プロトン性極性溶媒中、塩基の存在下にDCC等の脱水縮合剤を用いる方法などを採用することができ、基質に適した方法を採用する。

[0048]

【化20】

$$R \longrightarrow A1 \longrightarrow \left(Z_1 \longrightarrow A_2\right) \longrightarrow \left(Z_2 \longrightarrow A_3\right) \longrightarrow COOH$$
 (6)

$$HO \longrightarrow \left(A_2 \longrightarrow Z_2 \xrightarrow{n} \bigcap_{n=1}^{N} A_3 \longrightarrow Z_3 \xrightarrow{n=2} X_1 \longrightarrow CN \right)$$

$$R - A_1 - \left(Z_1 - A_2 \right) - \left(Z_2 - A_3 \right) - OH$$
 (8)

HOOC
$$-\left(A_2 - 22\right) + \left(A_3 - 23\right) + \left(A_3 - 23\right)$$

【0049】また別法として、前記一般式(6)で表されるカルボン酸化合物または一般式(9)で表されるカルボン酸化合物を反応に不活性な溶媒中、ハロゲン化チオニル等のハロゲン化剤を用いて下記一般式(10)または(11)(一般式(10)および(11)において、X4はC1、BrまたはIを表し、n'1、n"1、n'2、n"2、R、A1、A2、A3、Z1、Z2、Z3、X1およびX2は前記と同じ意味を表す)で表される酸ハロゲン化物とした後、それぞれ前記一般式

(7)または一般式(8)で表されるアルコール化合物によってエステル化し合成することもできる。この場合には反応に不活性な溶媒中、無触媒あるいは塩基の存在下に脱ハロゲン化水素処理して目的とする一般式(1)で表されるプロピオロニトリル誘導体の1種を得る。

【0050】 【化21】

$$R \longrightarrow A1 \longrightarrow \left(Z_1 \longrightarrow A2 \xrightarrow{n'1} \left(Z_2 \longrightarrow A3 \xrightarrow{n'2} COX_4\right)\right)$$
(10)

$$X4CO - \left(A2 - Z2\right) - \left(A3 - Z3\right) - CN$$

$$(11)$$

【0051】本反応における原料物質である前記一般式(7)および(9)で表されるアルコール化合物は、後述するCの方法を応用するかあるいはそれ自体公知の方法により容易に得られる。一方、前記一般式(6)および(8)で表されるカルボン酸化合物は、たとえば特表平4-501275号公報、特表平4-503523号公報または特開昭59-122440号公報に記載の方法によって得られる。

【0052】B. 一般式(1)において分子内にプロピオロニトリル基以外の不飽和結合を含まない場合;一般式(1)で表され、式中のZ1、Z2およびZ3がそれぞれ独立して単結合、エチレン基、カルボニルオキシ基、オキシカルボニル基、メチレンオキシ基、オキシメチレン基または1,4一ブチレン基、かつRが飽和脂肪族炭化水素基、酸素含有飽和脂肪族炭化水素基またはフッ素置換飽和脂肪族炭化水素基であるプロピオロニトリル誘導体は、下記一般式(12)で表されるシンナムニトリル誘導体に臭素を反応させて下記一般式(13)で表されるジブロモ化合物とした後、塩基を用いて脱臭化水素処理すること

により得ることができる (一般式(12)および(13)中にお いて、n1、n2、A1、A2、A3、X1およびX2は前記と同じ意 味を表す)。一般式(12)で表されるシンナムニトリル誘 導体の一般式(13)で表されるジブロモ化合物への臭素化 反応は、たとえばクロロホルム、四塩化炭素、ジクロロ エチレン、ジクロロメタン等の反応に不活性な溶媒中、 常温下に、シンナムニトリル誘導体に対して1当量以上 の臭素を添加反応させる。前記一般式(13)で表されるジ ブロモ化合物は、テトラヒドロフラン、ジオキサン、ト ルエン、ベンゼン等の反応自体に不活性な溶媒中、ジア ザビシクロウンデセン、カリウムブトキシド、水素化ナ トリウム等の塩基をジプロモ化合物に対して1当量以上 添加反応させることによって一般式(1)で表されるプロ ピオロニトリル誘導体化合物とすることができる。一般 式(12)で表されるシンナムニトリル誘導体は、下記式(1 4) に示すように前記一般式(5) で表されるアルデヒド化 合物を非プロトン性極性溶媒中、ジエチルシアノメチル ホスホネートと水素化ナトリウムを作用させることによ って得られる。

$$R - A_{1} - Z_{1} - \left(A_{2} - Z_{2}\right) + \left(A_{3} - Z_{3}\right) + \left(A_$$

【0054】C.分子内に熱的に不安定な部分構造を含まない場合;下記一般式(15)で表される酸ハロゲン化物に、シアノメチレントリフェニルホスホランを、たとえばベンゼン、トルエン、モノクロロベンゼン、ニトロベンゼン等の反応に不活性な溶媒中で反応させて、下記一般式(16)で表されるホスホラン誘導体(一般式(15)および(16)中において、n1、n2、A1、A2、A3、Z1、Z2、Z3、R、X1およびX2は前記一般式(1)の定義と同じ意味を表す)を得た後、これを減圧下、たとえば200~300

℃に加熱して、熱分解することにより一般式(1)で表されるプロピオロニトリル誘導体を得ることができる。本 反応の原料である一般式(15)で表される酸ハロゲン化物 は、前記一般式(5)で示されるアルデヒド誘導体を酸化 して得られたカルボン酸誘導体をハロゲン化チオニル等 のハロゲン化剤と反応させることにより得ることができ る。

[0055] 【化23】

$$R \longrightarrow A1 \longrightarrow Z1 \longrightarrow \left(A2 \longrightarrow 22 \xrightarrow{n_1} A3 \longrightarrow Z3 \xrightarrow{n_2} X1 \longrightarrow COX3 \right)$$

$$R \longrightarrow A1 \longrightarrow Z1 \longrightarrow \left(A2 \longrightarrow Z2 \xrightarrow{n_1} A3 \longrightarrow Z3 \xrightarrow{n_2} X1 \longrightarrow PPh_3 \right)$$

$$X1 \longrightarrow A1 \longrightarrow Z1 \longrightarrow \left(A2 \longrightarrow Z2 \xrightarrow{n_1} A3 \longrightarrow Z3 \xrightarrow{n_2} X1 \longrightarrow PPh_3 \right)$$

$$X1 \longrightarrow A1 \longrightarrow Z1 \longrightarrow \left(A2 \longrightarrow Z2 \xrightarrow{n_1} A3 \longrightarrow Z3 \xrightarrow{n_2} X1 \longrightarrow PPh_3 \right)$$

$$X2 \longrightarrow PPh_3 \longrightarrow PPh_3$$

【0056】本発明のプロピオロニトリル誘導体の具体 例を、表1~24に示す。 【0057】 【表1】

表 1

No.	R	A1-Z1	n1	n2	X1	X2	
1	CH ₃	→	0	0	F	н	
2	n-C ₃ H ₇	-	0	O	F	Н	C N ₫51.5℃、N I ₫96.9℃
3	n-C ₃ H ₇	→	0	0	F	F	C I 点66.9℃、N I 点49.1℃
4	n-C ₇ H ₁₅	- √>-	0	0	F	Н	
5	CH ₃ OCH ₂	- Ō-	0	0	F	Н	
6	CH ₂ =CH	→	0	0	н	Ħ,	C N点66.8℃、N I 点122.7℃
7	CH ₂ =CHCH ₂ CH ₂	-	0	0	Н	Н	C N点65.4℃、N I 点134.9℃
8	CH ₂ =CHCH ₂ CH ₂	− Ō−	0	0	F	F	C N点58.3℃、N 1点80.4℃
.9	CH ₂ =CH-(CH ₂) ₂ -CH=CH		0	0	.Н.	н	
10	CH ₂ =CHCH ₂ O	-()-	0	0	F	H	

【0058】 【表2】

表 2

No.	R	A1-Z1	n1	n2	X1	X2		
11	CH ₃	()	С	0	F	Н	•	
12	n-C ₃ H ₇	√ }	0	0	F	н		
13	n-C₅H ₁₁	− (<u>¯</u>)_	0	0	F	Н		
14	n-C ₇ H ₁₅	√ 5⁄-	0	0	F	н		
15	CH₃OCH₂	-(Ō)-	0	0	F	н		
16	CH ₂ =CH	-	. 0	0	н	Н		
17	CH ₂ =CHCH ₂ CH ₂		0	0	F	н		
18	CH3CH=CH-(CH2)2	₹	0	0	Н.	н .		
19	CH ₂ =CH-(CH ₂) ₂ -CH=CH	-	0	0	Н	н		
20	CH ₂ =CHCH ₂ O	$\overline{}$	0	0	F	н .		

【0059】 【表3】

							•				
											CN点60.4℃、NI点128.2℃
			•								CN #6
Ì	×	I	I	Ţ	r	I	Ι	I	I	I	I
	×	ιL	L.	I	щ	ц	r	щ	I	I	u.
	ո1 ո2	0	0	0	0	0	0	0	0	0	0
	n .	. 0	•	0	0	0	0	0	0	0	0
	A1-Z1	\$	\	\$	-0cH2	CH,O	OCH2	CH ₂ O	7	ϕ	
	æ	CH ₃	r-C3H,	n-C ₅ H ₃₁	n-C ₂ H _{1S}	£ E	nC ₃ H ₇	11-C3H11	n-C,H16	ę.	n.C ₃ H ₇
	Š	23	ผ	23	24	52	56	27	28	53	8

【表4】

[0060]

表 4

No.	R	A1-Z1	n1	n2	X1	X2
31	CH ₂ =CH	-⟨>_	0 -	0	н	Н
32	CH ₂ =CH(CH ₂) ₂	\leftarrow	0	0	. F	Н
33	CH3CH=CH(CH2)2		0	0	н	Н
34	CH ₂ ≖CH	–——OCH₂	0	0	F	н
35	CH ₂ =CH(CH ₂) ₂	— СН₂О	0	0	F	Н
36	CH3CH=CH(CH2)2	→——och₂	0	0	н	Н
37	CH2=CH	— Сн₂о	0	0	F	н
38	CH ₂ =CH(CH ₂) ₂	- ○-\-	0	0	Н	Н
39	CH3CH=CH(CH2)2	→	0	0	н	Н
40	CH2=CHCH2O	-	0	0	F	Н

[0061]

【表5】

[0062]

表 6

No.	R	A1-Z1	n1	A2-Z2	п2	X1	X2
51	CH ₃	-(_)-	1		0	F	. H
52	n-C ₃ H ₇	─	1		0	Н	н
53	n-C ₅ H ₁₁	-(F)	1	- O-_	0	F	H
54	n-C ₇ H ₁₅	-(5)-	1	-√D-OCH2	0	Н	н
55	CH ₃ OCH ₂	-	1	-{_}_CH₂O	0	F	н
56	CH ₂ =CH	-	1	→C-ocH ₂	0	Н	н
57	CH ₂ =CHCH ₂ CH ₂	$\overline{}$	1	—————————————————————————————————————	0	F	н
58	CH3CH=CH-(CH2)2	─	1	\leftarrow	0	Н	Н
59	CH ₂ =CH-(CH ₂) ₂ -CH≖CH	- -	· KI		0	Н	Н
60	CH2=CHCH2O	-	1		0	F	н

[0063]

【表7】

表 7

No.	А	A1	-Z1	n1	A2-Z2	n2	X1	X2
61	CH ₃	\prec		1	, - -	0	F	Н
62	n-C ₃ H ₇		<u> </u>	1	-	0	F	н
63	n-C₅H ₁₁	\neg	$\succ_{\mathbb{L}}$	1		0	н	Н
64	n-C ₇ H ₁₅		>- OCH2	1	-	0	F	н
65	CH3OCH2		≻cH2o	1	·	0	F	н
66	CH ₂ =CH	\neg	\vdash	1	-	0	Н	Н
67	CH ₂ =CHCH ₂ CH ₂	\neg	≻-СН ⁵ О	1	-	0	F	н .
68	CH ₃ CH≃CH-(CH ₂) ₂	\neg	<u> </u>	- 1	- ()-	0	Н	Н
69	CH ₂ =CH-(CH ₂) ₂ -CH=CH	\neg	<u> </u>	1	-	0	Н	н
70	CH ₂ ≈CHCH ₂ O		=	1	-	0	F	н

[0064]

【表8】

表 8

No.	R	A1-Z1	n1	A2-Z2	n2	X1	X2
71	CH ₃	-	1 .	-\(\bar{\rightarrow}\)	0	F	н
72	n-C ₃ H ₇		1	─ ◯─	0	Н	Н
73	n-C ₅ H ₁₁		1	→	0	۴	н
74	n-C ₇ H ₁₅	()-OCH2	1	-(<u>_</u>	0	F	н
75	CH3OCH2	-{CH2O	1	- \$	0	F	F
76	CH ₂ =CH	→C)-OCH ₂	1	$\overline{}$	0	Н	Н
77	CH ₂ =CHCH ₂ CH ₂	→CH ^s O	1	(-)	0	F	н
78	CH ₃ CH≖CH-(CH ₂) ₂	→	1	-	0	Н	н
79	CH ₂ =CH-(CH ₂) ₂ -CH=CH		1	-(-)-	0	Н	Н
80	CH ₂ =CHCH ₂ O	-	1	-	0	F	н

[0065]

【表9】

表 9

No.	R	A1-Z1	n1	A2-Z2	n2	Χ1	X2
81	CH ₃	-	1		0	F	Н
82	n-C ₃ H ₇	-	1	~ <u>~</u>	0	F	Н
83	n-C ₅ H ₁₁	-	1	→	0	F	Н
84	n-C7H ₁₅	-	1		.0	F	Н
85	CH3OCH2	-	1.	→ ○-	0	F	н
86	CH ₂ =CH	-	1	- (O	Н	Н .
87	СН3СН=СН	-	1	-	0	Н	Н
88	CH3CH=CH-(CH2)2	→ ○	1	- -	0	Н	н
88	CH ₂ =CH-(CH ₂) ₂ -CH=CH	-	1	-	0	Н	Н
90	CH ₂ =CHCH ₂ O	→	1	→	0	F	н .

[0066]

【表10】

表 10

No.	R	A1-Z1	ก1	A2-Z2	n2	X1	X2
91	CH ₃	-	1	~ ~	0	F	Н
92	n-C ₃ H ₇	-(_)-	1	(_)-	Ο,	F	Н
93	n-C ₅ H ₁₁	-	1	-	o	F	н
94	n-C ₇ H ₁₅	$\rightarrow \bigcirc$	1		0	F	H _.
95	CH ₃ OCH ₂	$\overline{}$	1	→	O	F	н
96	CH ₂ =CH	-(_)-	1	→	0	н	н
97	CH ₂ =CHCH ₂ CH ₂	-(_)-	1	-	0	F	н
98	CH3CH=CH-(CH2)2	$\overline{}$	1	→	0	Н	н
99	CH2=CH-(CH2)2-CH=CH	$\overline{}$	1	→	0	н	н
100	CH ₂ =CHCH ₂ O	$-\bigcirc$	1	→	0	F	н

[0067]

【表11】

表 11

No.	R	A1-Z1	n 1	A2-Z2	n2	A3-Z3	X1	X2
101	CH ₃	~ ()-	1	-	1	-(5)-	F	Н
102	n-C ₃ H ₇	-	1		1	-	F	н
103	л-C ₅ H ₁₁	\leftarrow	1	-	1	-(-)-	F	F
104	n-C ₇ H ₁₅	→	1	$\overline{}$	1		F	н
105	CH3OCH2	-	1	$\overline{}$	1	─	F	н
106	CH ₂ =CH	\leftarrow	1	- ()-	1	→	Н	н
107	CH2=CHCH2CH2	→	1	→	1	- -	F	н
108	CH ₃ CH=CH-(CH ₂) ₂	-	1	─	1	_	н	н
109	CH ₂ =CH-(CH ₂) ₂ -CH=0	ЭH- - ()-	1	$\rightarrow \bigcirc$	1	-	н	н
110	CH2=CHCH2O	-	1		1		F	н

[0068]

【表12】

表 12

No.	R .	A1-B1 n1 A2-Z2 n2 A3-Z3	X1 X2
111	CH ₃		F H.
112	∩-C ₃ H ₇		F H
113	n-C ₅ H ₁₁		D F F
114	л-С ₇ Н ₁₅	-{	₂ F H
115	CH ₃ OCH ₂		F H
116	CH ₂ ≃CH		н н
117	CH ₂ =CHCH ₂ CH ₂	-0-1-0-1-0-	F Н
118	CH3CH=CH-(CH2)2		н н
119	CH ₃ CH≖CH-(CH ₂) ₂		нн
120	CH ₂ =CHCH ₂ O		FН

[0069]

【表13】

表 13

No.	Ŕ	A1-Z1 n1	A2-Z2	n2 A3-Z3	X1 X2
121 CH	13	- 1		1 -	FН
122 n-0	C₃H ₇	1		1 ——————	F H
123 n-0	C₅H ₁₁	- 1	→	1 -	F F
124 n-0	C7H15	1	-C→OCH ₂	1 -	F H
125 CH	I ₃ OCH ₂		→OCH ₂	1 —————————————————————————————————————	FН
126 сн	l ₂ =CH	- √ 1	-{_}CH⁵O	1 -	н н
127 CH	IZ=CHCH2CH2	- 1	-CH ₂ O	1 —	FН
128 сн	3CH=CH-(CH ₂) ₂	- ← 1		1 — —	н н .
129 CH	3CH≃CH-(CH ₂)2	1	-	1 ————	н н
30 СН	₂ =CHCH ₂ O	- 1	~>\	1 —————————————————————————————————————	FН

[0070]

【表14】

表 14

No.	Я	A1-Z1 n1 A2-Z2	n2 A3-Z3	X1 X2
131	СН3	-(-)-1-(-)-	1 -{>-	F H ·
132	n-C ₃ H ₇		1 ——————	F H ·
133	n-C ₅ H ₁₁	-{-}- 1 -{-\	1 —	F F
134	n-C ₇ H ₁₅	-{-}- 1 -{-}-OCH₂	1 -{	FН
135	CH3OCH2		1 —	FН
136	CH ₂ =CH	-√- 1 -√	1 —	нн
137	CH2=CHCH2CH2	(-) 1(-)CH ₂ O	1 —	FН
138	CH3CH=CH-(CH2)2		1 ————	н н
139	CH ₃ CH=CH-(CH ₂) ₂	-(-)- 1 -(-)- ₋	1 -	н н
140	CH2=CHCH2O		1 -{-}	FН

[0071]

【表15】

表 15

No.	Pl Pl	A1-Z1	n1	n2	X1	X2		-
141	CH ₃		0	0	·F	Н		
142	n-C ₃ H ₇		0	0	F	н		
143	n-C ₅ H ₁₁	 Coo	0	0	F	F		
144	n-C ₇ H ₁₅		0	0	F	Н		
145	CH ₃ OCH ₂	→ -coo	0	0	F	н		
146	CH ₂ =CH		0	0	Н	Н		
147	CH ₂ =CHCH ₂ CH ₂		0	0	F	н	•	
148	CH ₃ CH=CH-(CH ₂) ₂		0	0	Н	н		
149	CH ₂ =CH-(CH ₂) ₂ -CH=CH		0	0	н	н		
150	CH2=CHCH2O		0	0	F	Н		

[0072]

【表16】

表 16

No.	R	A1-Z1	n1	n2	X1	X2	
151	CH3O	-(∑-∞0	0	0 .	F	н	
152	n-C ₃ H ₇	-	0	0	F	Н	•
153	n-C ₃ H ₇	- (∑)-coo	0	0	F	н	CN点 76.5℃、N I 点107.7℃
154	n-C ₃ H ₇	-(_) -coo	٥	0	F	F	
155	C₅H ₁₁	- √}-∞∞	0	0	F	F	
156	CH ₂ =CH	− (o	0	н	н	
157	CH₂=CHCH₂CH₂	(_) -coo	0	0	F	Ή	•
158	CH3CH=CH-(CH2)2	-√->-coo	0	0	н	Н	
159	CH2=CH-(CH2)2-CH=CH	-	0	0	н	н	
160	CH ₂ =CHCH ₂ O	- √_>coo		0	F	Н	

[0073]

【表17】

K 17

		(254℃ (分解)					•			
		CN点90.9℃、NI点254℃(分解)								
×	I	I	I	I	I	I	I	I	I	r
X X X2	ш	ட	LL.	Ц,	ட	I	ш	I	I	LL.
걷		0	0	0	0	0	0	0	٥	0
A2-22	000-	°∞-		\bigcirc	000	000 	\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	000		000
1.0	-	-	-	-	-	-	-	-	_	-
A1-Z1	¢	¢	¢	¢	¢	¢	¢	¢	¢	\Diamond
Œ	СН3	ቡር ₃ Η ₇	n-C ₅ H ₁₁ .	n-C ₇ H ₁₅	СН3ОСН2	CH ₂ =CH	CH2=CHCH2CH2	CH ₃ CH=CH-(CH ₂) ₂	CH2=CH-(CH2)2-CH=CH	CH ₂ =CHCH ₂ O
S.	161	162	. 163	164	165	166	167	168	169	170
						【表 1	8]			ı

[0074]

表 18

No.	R	A1-Z1	n1	. A2-Z2	n2	X1	X2
170	CH ₃	-() _F	1		0	F	Н
171	п-C ₃ H ₇	(5)-	1	- €	0	Н	H
172	n-C ₅ H ₁₁	()	1		0	F	F
173	n-C ₇ H ₁₅	-(5)-	1	-(_) -coo	0	F	н
174	CH₃OCH₂	- (_)-	1	-(_) -coo	O	F	Н
175	CH ₂ =CH .	- -	1		0	н	Н
176	CH₂≖CHCH₂CH₂	$\overline{}$	1		0	F	Н
177	CH3CH=CH-(CH2)2	$\overline{}$	1	—————————————————————————————————————	0	Н	Н .
178	CH ₂ =CH-(CH ₂) ₂ -CH=CH	-(_)-	1		0	Н	н
180	CH ₂ =CHCH ₂ O	-(_)-	1	− ()-coo	0	F	н

[0075]

【表19】

· 表 19

No.	R	A1-Z1	ni	A2-Z2	n2	X1	X2
181	CH ₃		1	, - ()-	0	F	. н
182	n-C ₃ H ₇	$-\sqrt{}-\infty$	1		0	F	Н
183	n-C ₅ H ₁₁		1	→	0	F	Н
184	n-C ₇ H ₁₅		1	→ >	0	F	Н
185	CH ₃ OCH ₂	- €}-coo	1	-	0	F	Н
186	CH ₂ =CH	- ∞∞	1	-	0	Н	н
187	CH ₂ =CHCH ₂ CH ₂	→ -coo	1	-	0	F	н
188	CH3CH=CH-(CH2)2	- C00	1	-	0	Н	Н
189	CH ₂ =CH-(CH ₂) ₂ -CH=CH	- C 00	1	-	0	Н	н
190	CH2≃CHCH2O		1	-	0	F	н

[0076]

【表20】

表 20

No.	В	A1-Z1	n1	A2-Z2	n2	X1	1 X2
191	CH ₃		1		0	F	Н
192	n-C ₃ H ₇	-(_) -coo	1	- -	0	Н	Н
193	n-C ₅ H ₁₁	-C00	1	- (<u>-</u>)-	0	F	F .
194	n-C ₇ H ₁₅	- (□}-coo	1	- - -	0	F	н .
195	CH ₃ OCH ₂	-√ }-coo	1	-(5)-	0	F	F.
196	CH ₂ =CH		1	- ○	0	н	Н
197	CH ₂ =CHCH ₂ CH ₂	- -	1	- (_)-	0	F	Н
198	CH ₃ CH=CH-(CH ₂) ₂		1	$\overline{}$	0	н	Н
199	CH ₂ =CH-(CH ₂) ₂ -CH=CH		1	- (_)-	0	н	Н .
200	CH ₂ =CHCH ₂ O	√ }-∞0	1	~(¯)~	0	F	Н

[0077]

【表21】

表 21

No. R	A1-Z1	n1	A2-Z2	n2	A3-Z3	X1	X2
201 СН ₃		1	-	1	- -	F	Н
202 n-C ₃ H ₇	-	1	-(-)-coo	1		F	Н
203 n-C ₅ H ₁₁	→	1	-	1	-(_)-coo	F	F
204 n-C ₇ H ₁₅	-coo	1	~~~	1	-	F	н
205 CH ₃ OCH ₂	-	1	- C -coo	1	(-) _F	۶	Н
206 CH ₂ =CH	$\overline{}$	1	- -	1	-(5-000	н	Н
207 CH ₂ =CHCH ₂ CH ₂		1	-	1	-	F	Н
208 CH3CH=CH-(CH2)2	-	1	-(_) -coo	1	-	н	н
209 CH3CH=CH-(CH2)2	-	1	→	1	-(-)-coo	Н	Н
210 CH ₂ =CHCH ₂ O		1	-	1	-	F	Н

[0078]

【表22】

表 22

No.	R	A1-Z1	n1	A2-Z2	n2	A3-Z3	X1	X2
211	СН3	- () -coo	1	→	1	→	F	н
212	n-C ₃ H ₇		1		1	- (_)-	F	Н
213	п-С ₅ Н ₁₁		1	-	1	-(_)-coo	F	F .
214	n-C7H15	-{_}-∞∘	1		1	- (_)-	F	Н
215	CH ₃ OCH ₂		1	- C00	1	-(<u>_</u>	F	н
216	CH ₂ =CH	$-\bigcirc$	1	- (<u>-</u>)-	1	√5-∞	н	н
217	CH2=CHCH2CH2	- €>-coo	1	-	1	-	F	Н
218	CH3CH=CH-(CH2)2	_	1	-	1	-	Н	H ·
219	CH ₃ CH=CH-(CH ₂) ₂	-	1	-	1		н	Н
220	CH ₂ =CHCH ₂ O	- (∑)-coo	1		1		F	Н
	- •					[#00]		

[0079]

【表23】

表 23

No.	R	A1-Z1	n1	n2	X1	X2	 	-
221	СН3	-{°}-	. 0	0	F	Н		
222	n-C ₃ H ₇	-{_v	. 0	0	F	Н		
223	n-C ₅ H ₁₁	- ₹%–	0	0	F	F		
224	n-C ₇ H ₁₅	- ⟨°}-	0	0	F	н		
22 5	CH3OCH5	-{"}-	0	0	F	н		
226	СН ₂ =СН	-{°}−	0	0	н	н		
227	CH₂=CHCH₂CH₂	- ₹°	O	0	F	Н	ė	
228	CH3CH=CH-(CH2)2	- {%−	0	0	Н	Н		
229	CH ₂ =CH-(CH ₂) ₂ -CH=CH	-<}-	0	0	н	Н		
230	CH₂≖CHCH₂O	-{}-	0	0	F	Н		

[0080]

【表24】

表 24

No.	R	A1-Z1 n1	A2-Z2	n2	A3-Z3	X1 X2	
231	CF ₃	→ •	- .	0	•	FΗ	
232	n-C ₃ F ₇	- ← 0	-	0	-	нн	
233	CFH ₂ O	1	√	0	•	FF	
234	CF2HCH2CH2	- 1	- (<u>-</u>)-	0	•	FΗ	
235	CF ₃ OCH ₂	1		0	•	F ·H	
236	CF ₂ =CH	- ← 0		0	_	нн	
237	CF2=CHCH2CH	2	-	0	•	FΗ	
238	CF ₃	- 1		0	-	нн	
239	CF₂HCH₂	1	-(_)-	0	•	н н	
240	CF3CH2CH2O	1		1	-	FΗ	

【0081】本発明の液晶組成物は前記詳述した一般式(1)で表されるプロピオロニトリル誘導体の少なくとも1種を含有する少なくとも2成分からなる組成物である。第二成分はプロピオロニトリル誘導体の別の1種でもよいが、好ましくはプロピオロニトリル誘導体以外の液晶性化合物の少なくとも1種からなる組成物である。これらの組成物において前記プロピオロニトリル誘導体を0.1~99.9重量%の割合で含有することが、優良な特性を発現せしめるために好ましい。

【0082】さらに詳しくは、本発明の液晶組成物は、第一成分として前記一般式(1)で表されるプロピオロニ

トリル誘導体の少なくとも1種を含有し、第二成分として前記一般式(2)で表される化合物群から選択される少なくとも1種および/または前記一般式(3)で表される化合物群から選択される少なくとも1種を含有する組成物である。

【0083】一般式(2)で表される化合物は、より具体的には下記一般式(2a)、(2b)および(2c)(式中、a、Z4、Z5、R1、X5および(F)は前記と同じ意味を表す)で表される液晶性化合物である。

[0084]

【0085】上記一般式(2a)、(2b)および(2c)に含まれる化合物の好適な具体例として、それぞれ(2a-1)~(2a-15)、(2b-1)~(2b-48)および(2c-1)~(2c-55)を挙げることができる。これらの式中においてR1は前記と同じ意

味を表す。 【0086】 【化25】

【0087】 【化26】

$$R_1$$
 \longrightarrow F $(2b-2)$

$$R_1$$
 CF_3 (2b-7)

$$R_1$$
 CF_3 (2b-9)

$$R_1$$
—OCF₃ (2b-11)

$$R_1$$
 OCF₂H (2b-13)

į.

[0089]

-32-

[0090]

$$R_1$$
 — OCF_2H (2b-43)

 R_1 — OCF_2H (2b-44)

 R_1 — OCF_2H (2b-45)

 R_1 — CF_2H (2b-45)

 R_1 — CF_2H (2b-46)

 R_1 — CF_2H (2b-47)

 R_1 — CF_2H (2b-47)

[0091] [化30]

[0092]

-35-

[0093] [化32]

[0094]

$$R_1$$
 OCF_3 $(2c-43)$
 R_1 OCF_3 $(2c-44)$
 R_1 OCF_2 $(2c-45)$
 R_1 OCF_2 $(2c-45)$
 R_1 OCF_2 $(2c-47)$
 R_1 OCF_2 $(2c-48)$
 R_1 OCF_2 $(2c-49)$
 R_1 OCF_2 $(2c-50)$
 R_1 OCF_2 $(2c-51)$
 R_1 OCF_2 $(2c-51)$
 R_1 OCF_2 $(2c-52)$
 R_1 OCF_2 $(2c-52)$
 R_1 OCF_2 $(2c-53)$
 R_1 OCF_2 $(2c-54)$

【0095】これらの一般式(2a)~(2c)で表される化合物は、誘電率異方性値が正を示し、熱安定性や化学的安定性が非常に優れている。

【0096】一般式(3)で表される化合物は、より具体

的には下記一般式(3a)、(3b)、(3c)、(3d)および(3e)で 表すことができる。

[0097]

【化34】

$$R_2 \left(\frac{1}{\sqrt{A7 - Z8}} \right)_c A6 - Z7 \left(A7 - Z8 \right)_c A8 - CN$$
 (3a)

$$R_2 \longrightarrow R_2 \longrightarrow R_2$$

$$R_2 + \left(\sum_{c} A6 - Z7 \right)_{d} \left(A7 - Z8 \right)_{e} \left(F \right)$$

$$(F)$$

$$(Sc)$$

$$R_2 - A5 - Z6 - A8 - \left(-COO - \frac{1}{f}R_3\right)$$
 (3d)

$$R_2 - A5 - Z6 - A6 - Z7$$
 $28 - A8 - R_3$ (3e)

【0098】前記一般式(3a)において、cおよびeは0 または1、環A8は未置換もしくは末端基-CNが結合し た炭素原子を4位として3位および/または5位がFで 置換された1,4-フェニレンまたはトランス-1,4-シクロヘキシレン、環A6はトランス-1,4-シクロヘ キシレン、1,4-フェニレンまたは1,3-ジオキサン -2,5-ジイル、環A7はトランス-1,4-シクロヘキシレン、1,4-フェニレンまたは1,3-ピリミジンー 2,5-ジイル、連結基27および28はエチレン基、カル ボニルオキシ基または単結合を表し、末端基R2は炭素数 1~10の飽和脂肪族炭化水素基、炭素数2~10の不 飽和脂肪族炭化水素基または鎖中に1以上のエーテル結 合を有する炭素数1~10の飽和または不飽和の脂肪族 炭化水素基を表す。一般式(3a)で表されるさらに具体的 な化合物を(3a-1)~(3a-24)に示す。これらの式中にお いてR2は上記と同じ意味を表す。

【0099】 【化35】

【0101】前記一般式(3b)において、dは0または 1、R2は炭素数 $1\sim10$ のアルキル基、(F)はFまたは Hを表す。より具体的な化合物を(3b-1) \sim (3b-3)に示す。これらの式中においてR2は上記と同じ意味を表す。 【0102】

【化37】

$$R_2 \longrightarrow F$$
 (3b-2)

[0104]

【化38】

【0105】 【化39】

$$R_2 \longrightarrow O \longrightarrow O \longrightarrow OCF_3 \qquad (3c \cdot 16)$$

$$R_2$$
 CF_3 (3c-18)

$$R_2$$
 CF_3 $(3c-19)$

【0106】前記一般式(3d)において、fは0またば 1、環A5はトランス-1,4-シクロヘキシレン、1,3-ピリミジン-2,5-ジイルまたは1,4-フェニレン、環A8はトランス-1,4-シクロヘキシレンまたは 1,4-フェニレンであり、連結基26はエチニレン基、カルボニルオキシ基、エチレン基、1,2-エチニレン-3,4-エテニレン基または単結合、末端基R2およびR 3はそれぞれ独立して炭素数1~10の飽和脂肪族炭化水素基または鎖中に1以上のエーテル結合を有する炭素数1~10の飽和または不飽和の脂肪族炭化水素基を表す。一般式

(3d)で表されるさらに具体的な化合物を(3d-1)~(3d-8)に示す。これらの式中においてR2は上記と同じ意味を表す。

[0107]

【化40】

$$R_2 \longrightarrow R_3$$
 (3d-1)

$$H_2$$
 H_3 (3d-2)

$$R_2 \longrightarrow R_3$$
 (3d-3)

$$R_2$$
 (3d-4)

$$R_2$$
 (3d-5)

$$R_2$$
 R_3 (3d-6)

$$R_2$$
 R_3 (3d-7)

【0108】前記一般式(3e)において、eは0または 1、環A5はトランスー1,4-シクロヘキシレン、1,4 ーフェニレンまたは1,3-ピリミジン-2,5-ジイ ル、環A6はトランス-1,4-シクロヘキシレン、未置 換もしくは1以上のFで置換された1,4-フェニレ ン、または1,3-ピリミジン-2,5-ジイル、環A8は トランスー1、4ーシクロヘキシレンまたは1、4ーフェ ニレンであり、連結基26および28はそれぞれ独立してカ ルボニルオキシ基、エチレンまたは単結合、橋Z7はエテ ニレン基、エチニレン基、カルボニルオキシ基または単 結合、末端基R2およびR3はそれぞれ独立して炭素数1~ 10の飽和脂肪族炭化水素基、炭素数2~10の不飽和 脂肪族炭化水素基または鎖中に1以上のエーテル結合を 有する炭素数1~10の飽和または不飽和の脂肪族炭化 水素基を表す。一般式(3e)で表されるさらに具体的な化 合物を(3e-1)~(3e-13)に示す。これらの式中においてR 2は上記と同じ意味を表す。

[0109]

【化41】

$$R_2$$
 R_3
 R_3
 R_4
 R_3
 R_4
 R_5
 R_5
 R_7
 R_7

【0110】前記一般式(3a) ~(3c)で表される化合物は、誘電率異方性値が正でその値が大きく、組成物成分として特にしきい値電圧を小さくする目的で使用される。また、粘度の調整、屈折率異方性値の調整および液晶相温度範囲を広げる等の目的や、さらに急峻性を改良する目的にも使用される。

【0111】また一般式(3d)および(3e)で表される化合物は、誘電率異方性値が負かまたは若干正である化合物である。特に一般式(3d)で表される化合物は、主として粘度低下および/または屈折率異方性値調整の目的で使用され、また、一般式(3e)で表される化合物は透明点を高くする等のネマチックレンジを広げる目的および/または屈折率異方性値調整の目的で使用される。特にSTN表示方式および通常のTN表示方式用の液晶組成物を調製する場合には、不可欠な化合物である。

【0112】本発明の液晶組成物は、全組成物基準で前記一般式(1)で表されるプロピオロニトリル誘導体から選択される少なくとも1種0.1~99.9重量%、および一般式(2)で表される化合物から選択される少なくとも1種1~99重量%、好ましくは10~97重量%、さらに好ましくは40~95重量%を含有する。

【0113】本発明の別の液晶組成物、たとえば、通常

のTN表示方式及びSTN表示方式用の液晶組成物の場合には全組成物基準で前記一般式(1)で表されるプロピオロニトリル誘導体から選択される少なくとも1種0.1~99.9重量%、一般式(3)で表される化合物から選択される少なくとも1種1~99重量%、好ましくは10~97重量%、さらに好ましくは40~95重量%を含有する。またこの組成物においては一般式(3)で表される化合物の一部を、一般式(2)で表される化合物と置き換えてもよい。

【0114】前記本発明の液晶組成物は、さらに、しきい値電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値および粘度等を調整する目的で、公知の化合物を第三成分として含有することもできる。

【0115】本発明の液晶組成物をTFT液晶表示素子に用いることによって、急峻性および視野角が改善される。また一般式(1)で表される化合物は低粘性化合物であるので、これを用いた液晶表示素子の応答速度が大幅に改善される。

【0116】本発明の液晶組成物は、それ自体慣用な方法で調製される。一般には、種種の成分を高い温度で互いに溶解させる方法がとられている。しかし、液晶が溶解する有機溶媒に溶かし混合したのち、減圧下溶媒を留

去しても良い。

【0117】また、本発明の液晶組成物を液晶表示素子 用の液晶材料として使用する場合、適当な添加物によっ て意図する用途に応じた改良がなされ、最適化される。 このような添加物は当業者によく知られており、文献等 に詳細に記載されている。通常、液晶のらせん構造を誘 起して、必要なねじれ角を調整し、逆ねじれ(リバースツイスト)を防止するキラルドープ剤として、下記式(C-1)~(C-8)に示すような光学活性化合物が添加される。

【0118】

$$C_2H_5$$
- CH_2O - CN (C-1)

$$C_2H_5$$
 C_1
 C_2
 C_3
 C_4
 C_5
 C_7
 C

$$C_6H_{13}$$
 C_{H_3} C_{H_3} C_5H_{11} (C-3)

$$C_3H_7$$
 CH_2 CH_2 CH_5 (C-5)

$$H_3C$$
 H_3C
 CH_3
 CH_3

【0119】また、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系およびテトラジン系等の二色系色素を添加してゲストホスト(GH)モード用の液晶組成物として使用できる。あるいは、ネマチック液晶をマイクロカプセル化して作成したNCAPや液晶中に三次元網目状高分子を作成したポリマーネットワーク液晶表示素子(PDLCD)に代表されるポリマー分散型液晶表示素子(PDLCD)用の液晶組成物としても使用できる。そのほか複屈折制御(ECB)モードや動的散乱(DS)モード用の液晶組成物としても使用できる。

[0120]

【実施例】以下、本発明を実施例によりさらに詳しく説明する。

A. プロピオロニトリル誘導体の合成 実施例1 3-フルオロ-4-シアノエチニル-1(トランス-4-プロピルシクロヘキシル) ベンゼン (化合物番号2) の合成

3-フルオロー4ーエチニルー1ー(トランスー4ープロピルシクロへキシル)ベンゼン15mmolをテトラヒドロフラン5mlに溶解してー78℃に冷却し、nーブチルリチウム30mmolを滴下した。滴下終了後、反応液をさらに2時間撹拌し、ヨウ素20mmolのテトラヒドロフラン3ml溶液を滴下した。滴下終了後、反応液を室温まで昇温し、チオ硫酸ナトリウム水溶液に投じた。これをペプタンで抽出し、得られた有機層を水洗した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮した。得られた黄色油状物をシリカゲルカラムクロマトグラフィーを用いて単離精製し、無色結晶を得た。このものは各種機器分析の結果、3-フルオロー4ーヨードエチニルー1ー(トランスー4ープロピルシクロへキシル)ベンゼンであることを確認した。

【0121】得られた3-フルオロ-4-ヨードエチニ ルー1-(トランス-4-プロピルシクロヘキシル)ベン ゼン10mmolをテトラヒドロフラン3mlに溶解し、シア ン化銅11mmolおよび臭化リチウム3mmolを加えて加熱 環流下に5時間撹拌した。反応液に塩化第二鉄の6N塩 酸飽和溶液10mlを加えて室温下に1時間撹拌した。撹 拌終了後、反応液をトルエンで抽出し、有機層を水洗し た後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮し た。得られた褐色油状物をシリカゲルカラムクロマトグ ラフィーで単離精製し、無色油状物を得た。これをエタ ノールから再結晶して無色結晶を得た。このものは各種 機器分析の結果、表類化合物であることを確認した。上 記と同様の方法により、表1~24に示す化合物のう ち、化合物番号1~5、11~15、21~29、41 ~ 45 , $51 \sim 55$, $61 \sim 65$, $71 \sim 75$, $81 \sim$ 85, 91~95, 101~105, 111~114, 121~125、131~135および221~240 の化合物を合成することができる。

【0122】実施例2 3-フルオロ-4-シアノエチニル-1-(4-プロピルフェニル)カルボニルオキシベンゼン(化合物番号153)の合成

3-フルオロー4ーシアノフェノール100mmolをジメチルホルムアミド200mlに溶解し、溶液を氷冷下撹拌しながら、ジメチルブチルシリルクロリド110mmolおよびイミダゾール110mmolを加え、徐々に室温まで昇温し、さらに3時間撹拌した。溶液を水に投じ、トルエンで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に濃縮して無色油状物を得た。これを減圧下に蒸留して、2-フルオロー4ージメチルブチルシリルオキシベンゾニトリル100mmolを得た。

【0123】得られた2-フルオロ-4-ジメチルブチ ルシリルオキシベンゾニトリル72mmolをトルエン10 Omlに溶解し、-70℃に冷却しながら、水素化ジイソ ブチルアルミニウムのトルエン溶液 (1M) 100mlを 滴下した。滴下終了後、反応液を同温で1時間撹拌した 後、塩化アンモニウム溶液に投じ、トルエンで抽出し た。有機層を無水硫酸マグネシウムで乾燥した後、減圧 下に濃縮して2-フルオロー4-ジメチルブチルシリル オキシベンズアルデヒド26 mmolを黄色油状物として得 た。このものは精製することなく次反応に使用した。得 られた2-フルオロ-4-ジメチルブチルシリルオキシ ベンズアルデヒド26mmolを塩化メチレン50mlに溶解 し、トリフェニルホスフィン110mmolおよび四臭化炭 素52mmolの塩化メチレン溶液を氷冷下に滴下し、さら に同温で1時間撹拌した。反応液から未溶物を除去し、 減圧下に濃縮して黄色油状物を得た。これをシリカゲル カラムクロマトを用いて精製し、2-フルオロー4-ジ メチルブチルシリルオキシフェニルー2,2-ジブロモ エチレン26 mmolの無色油状物を得た。

【0124】1-(2-フルオロ-4-ジメチルブチル

シリルオキシフェニル)-2,2-ジブロモエチレン26 mmolをテトラヒドロフラン50mlに溶解し、-70℃に 撹拌しながらn-ブチルリチウム(1.6M)134mlを 滴下した。滴下終了後、反応液を3時間撹拌した後、沃 素30mmolのテトラヒドロフラン溶液10mlを滴下し、 徐々に室温まで昇温した。撹拌終了後、溶液をチオ硫酸 ナトリウム溶液に投じ、ヘプタンで抽出した。有機層を 無水硫酸マグネシウムで乾燥した後、減圧下に濃縮して を褐色固体を得た。これをシリカゲルカラムクロマトグ ラフィーで精製して1-(2-フルオロ-4-ジメチル プチルシリルオキシフェニル) - 2 - ヨードエチン 2 5m molを黄色固体として得た。 1-(2-フルオロー4-ジ メチルプチルシリルオキシフェニル) - 2 - ヨードエチ ン25mmolをテトラヒドロフラン50mlに溶解した後、 シアン化銅およびリチウムブロミドを加えて加熱環流 下、3時間反応させた。反応終了後、溶液を塩化鉄の塩 酸溶液に投じ、トルエンで抽出した。有機層を無水硫酸 マグネシウムで乾燥した後、減圧下に濃縮して 2-フ ルオロー4ーヒドロキシフェニルプロピオロニトリル2 Omnolを無色固体として得た。

【0125】2ーフルオロー4ーヒドロキシフェニルプロピオロニトリル20mmolと4ープロピル安息香酸クロリド21mmolとを塩化メチレン50mlに溶解し、氷冷下撹拌しながらピリジン25mmolを滴下し、さらに3時間撹拌した。反応液に水を加えた後、トルエンで抽出した。有機層を水洗した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮して褐色油状物を得た。これをシリカゲルカラムクロマトグラフィーで精製した後、エタノールから再結晶して表題化合物8mmolを得た。上記と同様の方法により、表1~24に記載の化合物のうち、化合物番号141~220の化合物を合成することができる。

【0126】実施例3 4-[2-[トランス-4-(3-ブテニル)シクロヘキシル] エチル] フェニルプロ ピオロニトリル (化合物番号32) の合成 4-[2-[トランス-4-(3-プテニル)シクロヘキ シル] エチル] ベンゾニトリル42mmolをトルエン10 Omlに溶解し、氷冷下に撹拌しながら水素化イソブチル アルミニウムのトルエン溶液(1M)45mlを滴下した。 反応液を室温でさらに2時間撹拌した後、塩化アンモニ ウム水溶液に投じ、トルエンで抽出した。有機層を水洗 した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮 し、無色油状物として4- [2-[トランス-4-(3 ープテニル)シクロヘキシル] エチル] ベンズアルデヒ ド35mmolを得た。このものは精製することなく次反応 に使用した。塩化メチレン100mlに四臭化炭素10mm olおよびトリフェニルホスフィン138mmolを溶解した 中に、4- [2-[トランス-4-(3-プテニル)シク ロヘキシル] エチル] ベンズアルデヒド35mmolの塩化 メチレン溶液を滴下した。滴下終了後、反応液を室温下 に3時間撹拌し、反応系から未溶物を除去して濃縮した。得られた褐色油状物をシリカゲルカラムクロマトグラフィーで精製し、2′,2′ージブロモー4ー[2ー[トランスー4ー(3ープテニル)シクロヘキシル]エチル]スチレン30mmolを無色結晶として得た。

【0127】2',2'-ジブロモー4ー〔2ー〔トラ ンス-4-(3-ブテニル)シクロヘキシル] エチル] ス チレン30mmolを テトラヒドロフラン100mlに溶解 し、n-ブチルリチウムのヘキサン溶液 (1.6M) 37. 5回を氷冷下に滴下した。滴下終了後、反応液にヨウ素 のテトラヒドロフラン溶液を滴下し室温まで徐々に昇温 し、3時間撹拌した。反応終了後、溶液をチオ硫酸ナト リウム溶液に投じ、ヘプタンで抽出した。有機層を水洗 した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮 して褐色油状物を得た。これをシリカゲルカラムクロマ トグラフィーで精製し、2-[4-[2-[トランスー 4-(3-ブテニル)シクロヘキシル] エチル] フェニ ル] ヨードエチン18 mmolを無色結晶として得た。2-[4-[2-[トランス-4-(3-プテニル)シクロへ キシル] エチル] フェニル] ヨードエチン13.7 mmol をテトラヒドロフランに溶解し、臭化リチウム 1 mmolお よびシアン化銅22mmolを加え加熱環流下、5時間反応 させた。反応終了後、溶液を塩化第二鉄の6N塩酸溶液 に投じ、トルエンで抽出した。有機層を水洗した後、無 水硫酸マグネシウムで乾燥し、減圧下に濃縮して褐色油 状物を得た。これをシリカゲルカラムクロマトグラフィ ーで単離精製し、エタノールから再結晶して表題化合物 4.1 mmol を得た。上記と同様の方法により、表 1~2 4に記載の化合物のうち、化合物番号6~10、16~ $20, 31 \sim 39, 46 \sim 49, 56 \sim 59, 66 \sim 6$ 9, $76 \sim 79$, $86 \sim 90$, $96 \sim 100$, $106 \sim$ 110, 116~119, 126, 127, 129, 1 30、136、137、139および140の化合物を 合成することができる。

【0128】実施例4 3-フルオロ-4-[2-(4-プロピルフェニル)エチニル]フェニルプロピオロニトリル(化合物番号30)の合成

3-フルオロー4-ブロモヨードベンゼン33mmol、ヨウ化銅0.6 mmolおよびジクロロビストリフェニルホスフィンパラジウム1.1 mmolをジエチルアミン100mlに溶解し、アルゴン気流下に撹拌しながら4-プロピルフェニルアセチレン33mmolを滴下した。滴下終了後、さらに室温で2時間撹拌し、水中に投じた。これをヘプタンで抽出した後、水洗し、減圧下に濃縮して褐色油状物を得た。これをシリカゲルカラムクロマトグラフィーで単離精製し、2-フルオロー4-[2-(4-プロピルフェニル)エチニル]ブロモベンゼン33mmolを淡黄色油状物として得た。2-フルオロー4-[2-(4-プロピルフェニル)エチニル]ブロモベンゼン33mmol、ョウ化銅1.2 mmolおよびジクロロビストリフェニル

ホスフィンパラジウム1.2 mmolをジエチルアミン100mlに溶解し、アルゴン気流下に撹拌した。反応液にトリメチルシリルアセチレン50mmolのジエチルアミン溶液20mlを滴下し、室温下に5時間撹拌した。撹拌終了後、反応液に水を加え、ヘプタンで抽出した。有機層を水洗した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮して褐色油状物を得た。これをシリカゲルカラムクロマトグラフィーを用いて単離精製し、1-[2-フルオロ-4-[2-(4-プロピルフェニル)エチニル]フェニル]-2-トリメチルシリルアセチレン7gを無色固体として得た。

【0129】1-[2-フルオロ-4-[2-(4-プ ロピルフェニル)エチニル]フェニル] -2-トリメチ ルシリルアセチレン22molおよび水酸化カリウム10 gをエタノール100mlおよび水10mlに溶解し、40 ℃に撹拌しながら6時間撹拌した。撹拌終了後、反応液 を希塩酸に投じ、トルエンで抽出した。有機層を水洗し た後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮し て、褐色油状物を得た。これをシリカゲルカラムクロマ トグラフィーを用いて単離精製し、2-フルオロー4-[2-(4-プロピルフェニル)エチニル] フェニルアセ チレン5.7gを無色固体として得た。2ーフルオロー 4- [2-(4-プロピルフェニル)エチニル] フェニル アセチレン22mmolをテトラヒドロフラン50mlに溶解 し-78℃で撹拌しながらn-ブチルリチウム(1.6 M) 30mlを滴下した。滴下終了後、反応液を2時間撹 拌し、ヨウ素28mmolのテトラヒドロフラン溶液50ml を滴下し、室温まで昇温した後、チオ硫酸ナトリウム溶 液に投じ、ヘプタンで抽出した。有機層を水洗した後、 無水硫酸マグネシウムで乾燥し、減圧下に濃縮して褐色 油状物を得た。これをシリカゲルカラムクロマトグラフ ィーで単離精製して1-〔2-フルオロー4-〔2-(4ープロピルフェニル)エチニル]フェニル]-2-ヨ ードアセチレン22mmolを黄色結晶として得た。1-[2-フルオロー4-[2-(4-プロピルフェニル)エ チニル] フェニル] -2-ヨードアセチレン22mmol、 臭化リチウム2gおよびシアン化銅56mmolをテトラヒ ドロフラン100mlに溶解し、加熱還流下、5時間撹拌 した。反応終了後、反応液を塩化第二鉄の6N塩酸溶液に 投じ、トルエンで抽出した。有機層を水洗した後、無水 硫酸マグネシウムで乾燥し、減圧下に濃縮して褐色油状 物を得た。これをシリカゲルカラムクロマトグラフィー を用いて単離精製し、エタノールから再結晶して表題化 合物 0.6 gを無色結晶として得た。上記と同様の方法 により、表1~24に記載の化合物のうち、化合物番号 30, 40, 50, 60, 70, 80, 115, 12 0、128および138の化合物を合成することができ る。

【0130】B. 液晶組成物

本発明のプロピオロニトリル誘導体を含有する液晶組成

物のネマチック相転移温度(T _{NI})、20℃に	おける牡産	$V_{th} = 2.13 \text{ (V)}$			
(η_{20}) 、25 $^{\circ}$ における屈折率異方性(Δ n)		V _{th} -2.13 (V) 【0134】実施例7			
ける誘電率異方性 ($\Delta \epsilon$) およびしきい値電圧		CH ₂ =CHC ₂ H ₄ -Hx-Be-Tr-CN(化合物No. 7) 10. 0%			
定した実施例を以下に示す。	(V _{th} /200	3-Hx-Be(F)-Tr-CN (化合物No. 2) 9. 0			
【0131】実施例中、化合物の化学構造を	下記の略号	CH ₂ =CHC ₂ H ₄ -Hx-Be-CN	10. 0%		
を用いて表すが、末端基がアルキル基の場合		CH ₃ CH=CHC ₂ H ₄ -Hx-Be-CN 13. 0			
のみを表示した。	1010// 3/1 3/1	3-Hx-Hx-4	11.0%		
Hx: トランスー1, 4 ーシクロヘキシレン		3-Hx-Hx-5	10.0%		
Be: 1, 4 - フェニレン		3-Hx-Hx-Be-1 10. 0			
Be(F)およびBe(F, F):3位F置換および3,5位F	置換 1.4	3-Hx-Be (F) -Tr-Be-2 7. 0%			
ーフェニレン	E.V	3-Hx-Be (F)-Tr-Be-3 7. 0%			
Py: 1,3-ピリミジン-2,5-ジイル		3-Hx-Be (F) -Tr-Be-4	7.0%		
Do: 1,3-ジオキサン-2,5-ジイル		3-Hx-C ₂ H ₄ -Be-Tr-Be-3	6.0%		
Tr:エチニレン基		T _{NI} =111.7 (℃)			
【0132】実施例5		$\eta = 15.6 \text{ [mPa·s]}$			
3-Hx-Be(F)-Tr-CN(化合物No. 2)	17.0%	Δ n = 0. 164			
3-Hx-Be-CN	15.0%	$\Delta \epsilon = 8.1$			
3-Hx-Be-OC ₂ H ₅	5.0%	$V_{th} = 2.20 \text{ (V)}$			
3-Hx-Hx-4	11.0%	【0135】実施例8			
3-Hx-Hx-5	5.0%	CH ₂ =CHC ₂ H ₄ -Hx-Be(F, F)-Tr-CN(化合物No. 8)	8.0%		
5-Hx-Hx-2	4.0%	3-Hx-Be-CN	20.0%		
3-Hx-Hx-Be-1	10.0%	CH ₂ =CHC ₂ H ₄ -Hx-Be-CN	9.0%		
3-Hx-Hx-Be-3	16.0%	3-Hx-Hx-4	9.0%		
3-Hx-Be(F)-Tr-Be-2	5.0%	2-Be-Tr-Be-1	10.0%		
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%	2-Be-Tr-Be-3	8.0%		
3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%	3-Hx-Hx-Be-1	8.0%		
3-Hx-C ₂ H ₄ -Be-Tr-Be-4	4.0%	3-Hx-Hx-Be-OCH ₃	5.0%		
$T_{NI} = 104.8 \ (^{\circ}C)$		3-Hx-Hx-Be-F	4.0%		
$\eta = 14.0 \text{ (mPa·s)}$		3-Hx-Hx-Be-3	7.0%		
$\Delta n = 0.137$		$3-Hx-C_2H_4-Be-Tr-Be-2$	4.0%		
$\Delta \epsilon = 7.8$		3 -Hx- C_2 H $_4$ -Be-Tr-Be- 3	4.0%		
$V_{th} = 2.23 \text{ (V)}$		$3-Hx-C_2H_4-Be-Tr-Be-4$	4.0%		
【0133】実施例6		T _{NI} =81.3 (℃)			
3-Hx-Be(F)-Tr-CN(化合物No. 2)	15.0%	$\eta = 13.1 \text{ [mPa·s]}$			
$CH_3CH=CHC_2H_4-Be-COO-Be(F, F)-CN$	3.0%	$\Delta n = 0.155$			
3-Hx-Be-CN	14.0%	$\Delta \epsilon = 7.1$			
3 -Hx-Be- 0 C $_2$ H $_5$	7.0%	$V_{th}=1.96 (V)$			
3-Hx-Hx-4	11.0%	【0136】実施例9			
3-Hx-Hx-5	5.0%	3-Be-C00-Be(F)-Tr-CN (化合物No. 153)	12.0%		
5-Hx-Hx-2	4.0%	3-Hx-Be-C00-Be(F)-Tr-CN(化合物No. 162)	8.0%		
3-Hx-Hx-Be-1	10.0%	$C_3H_7OCH_2$ -Be-COO-Be(F)-CN	12.0%		
3-Hx-Hx-Be-3	16.0%	2-Hx-Be-CN	12.0%		
3-Hx-Be(F)-Tr-Be-2	3.0%	3-Hx-Be-CN	19.0%		
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%	3-Hx-Be-0C ₂ H ₅	7. 0%′		
3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%	3-Hx-Hx-Be-1	7.0%		
3-Hx-C ₂ H ₄ -Be-Tr-Be-4	4.0%	3-Hx-Hx-Be-OCH ₃	4.0%		
$T_{NI} = 100.2 \ (^{\circ}C)$		3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%		
$\eta = 14.7 \text{ (mPa·s)}$		3-Hx-C ₂ H ₄ -Be-Tr-Be-3	3. 0%		
$\Delta n = 0.132$		3-Hx-C ₂ H ₄ -Be-Tr-Be-4	3. 0%		
$\Delta \epsilon = 8.8$	•	2-Hx-Hx-Be-CN	4. 0%		

3-Hx-Hx-Be-CN	5.0%	2-Hx-Be (F) -CN	8. 0%
$T_{NI} = 91.4 \text{ (°C)}$	0.070	5-Py-Be-F	3. 0%
$\eta = 33.7 \text{ [mPa·s]}$		3-Py-Be (F) -F	3.0%
$\Delta n = 0.163$		3-HxBe-0C ₂ H ₅	10.0%
$\Delta \epsilon = 20.9$		3-Hx-Hx-4	10.0%
$V_{th} = 1.13 \text{ (V)}$		2-Be-Tr-Be-OCH ₃	10.0%
【0137】実施例10		3-Hx-Hx-Be-1	10.0%
3-Be-Tr-Be(F)-Tr-CN(化合物No. 30)	10.0%	3-Hx-Hx-Be-3	14.0%
3-Hx-Be-CN	20.0%	3-Hx-Hx-Be-OCH ₃	4.0%
1-Be-Tr-Be-3	8.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%
2-Be-Tr-Be-1	10.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%
2-Be-Tr-Be-OCH ₃	1.6%	T _{NI} =69.2 (°C)	
3-Be-Tr-Be-OCH ₃	1.6%	$\eta = 17.6 \text{ [mPa·s]}$	
4-Be-Tr-Be-OCH ₃	1.6%	$\Delta n = 0.133$	
4-Be-Tr-Be-OC ₂ H ₅	1.6%	$\Delta \epsilon = 10.3$	
5-Be-Tr-Be-OCH ₃	1.6%	$V_{th} = 1.40 \text{ (V)}$	
3-Hx-Hx-Be-1	11.0%	【0140】実施例13	
3-Hx-Hx-Be-3	9.0%	CH ₂ =CHC ₂ H ₄ -Hx-Be(F,F)-Tr-CN(化合物No.8)	10.0%
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%	3-Hx-Be-CN	20.0%
3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%	3-Hx-Be(F)-CN	5.0%
3-Hx-C ₂ H ₄ -Be-Tr-Be-4	4.0%	2-Hx-Hx-Be (F) -CN	7.0%
3-Hx-Be(F)-Tr-Be-2	6.0%	3-Hx-Hx-Be (F) -CN	7.0%
3-Hx-Be(F)-Tr-Be-3	6.0%	3-Hx-Hx-4	10.0%
T _{NI} =98.1 (℃)		3-Hx-Be-OC ₂ H ₅	11.0%
$\eta = 16.3 \text{ (mPa·s)}$		3-Hx-Hx-Be-1	7.0%
$\Delta n = 0.220$		3-Hx-Hx-Be-OCH ₃	4.0%
$\Delta \epsilon = 7.3$		3-Hx-Hx-Be-3	4.0%
$V_{th} = 2.07 \text{ (V)}$		3 -Hx- C_2 H ₄ -Be-Tr-Be-2	3.0%
【0138】実施例11		3 -Hx- C_2 H ₄ -Be-Tr-Be- 3	3.0%
3-Hx-Be(F)-Tr-CN(化合物No. 2)	10.0%	$3-Hx-C_2H_4-Be-Tr-Be-4$	3.0%
2-Hx-Be(F)-CN	10.0%	CH ₃ OCH ₂ -Hx-Be-Be-Hx-3	6.0%
3-Hx-Be(F)-CN	10.0%	$T_{NI}=101.0 (\%)$	
3-Hx-Be- 0 C ₂ H ₅	10.0%	$\eta = 20.3 \text{ (mPa·s)}$	
3-Hx-Hx-4	10.0%	$\Delta n = 0.134$	
2-Be-Tr-Be-OCH ₃	10.0%	$\Delta \epsilon = 9.1$	
3-Hx-Hx-Be-1	8.0%	$V_{th}=1.91 (V)$	
3-Hx-Hx-Be-3	16.0%	【0141】実施例14	
3-Hx-Hx-Be-OCH ₃	4.0%	3-Be-Tr-Be(F)-Tr-CN(化合物No.30)	13.0%
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%	3-Hx-Be-CN	15.0%
3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%	CH ₂ =CHC ₂ H ₄ -Hx-Be-CN	9.0%
3-Hx-Hx-Be-CN	4.0%	$CH_3CH=CHC_2H_4-Be-COO-Be(F, F)-CN$	2.0%
$T_{NI}=88.7 \ [^{\circ}C]$		3-Hx-Hx-С00-СН ₃	2.0%
$\eta = 16.1 \text{ (mPa·s)}$		3-Hx-Hx-4	9.0%
$\Delta n = 0.136$		2-Be-Tr-Be-1	10.0%
$\Delta \varepsilon = 7.7$		2-Be-Tr-Be-3	6. 0%
$V_{th} = 1.86 \text{ (V)}$		3-Hx-Hx-Be-1	5. 0%
【0139】実施例12		3-Hx-Hx-Be-OCH ₃	5. 0%
CH ₂ =CHC ₂ H ₄ -Hx-Be (F, F)-Tr-CN(化合物No. 8)	8.0%	3-Hx-Be-Be-F	5. 0%
CH ₃ CH=CHC ₂ H ₄ -Be-COO-Be (F, F) -CN	4.0%	3-Hx-Hx-Be-3	15. 0%
C ₃ H ₇ OCH ₂ -Be-COO-Be(F)-CN	8.0%	3-Hx-C00-Be-C00-Be-2	2.0%

3-Hx-C00-Be-C00-Be-F	2.0%	C ₃ H ₇ OCH ₂ -Be-COO-Be(F)-CN	6.0%
T _{NI} =84.2 (°C)	2.070	2-Hx-Be-CN	12. 0%
$\eta = 16.6 \text{ (mPa·s)}$,	3-Hx-Be-CN	16. 0%
$\Delta n = 0.170$		2-Hx-Hx-Be-CN	4.0%
$\Delta \epsilon = 8.7$		3-Hx-Hx-Be-CN	5. 0%
V _{th} =1.69 (V)		4-Hx-Hx-Be-CN	4.0%
【0142】実施例15		5-Hx-Hx-Be-CN	4.0%
3-Be-COO-Be(F)-Tr-CN (化合物No. 153)	11.0%	3-Hx-Be-0C ₂ H ₅	10.0%
CH ₂ =CHC ₂ H ₄ -Hx-Be-Tr-CN(化合物No. 7)	11.0%	3-Hx-Hx-Be-1	7.0%
3-Hx-Be-0C ₂ H ₅	3.0%	3-Hx-Hx-Be-OCH ₃	4.0%
2-Be-Tr-Be-OCH ₃	6.8%	$3-Hx-C_2H_4-Be-Tr-Be-2$	4.0%
3-Be-Tr-Be-OCH ₃	6.8%	3-Hx-C ₂ H ₄ -Be-Tr-Be-3	3.0%
4-Be-Tr-Be-OCH ₃	6.8%	3-Hx-C ₂ H ₄ -Be-Tr-Be-4	3.0%
4-Be-Tr-Be-OC ₂ H ₅	6.8%	T _{NI} =90.4 (℃)	
5-Be-Tr-Be-OCH ₃	6.8%	$\eta = 28.5 \text{ (mPa·s)}$	
3-Hx-Hx-Be-OCH ₃	3.0%	$\Delta n = 0.155$	
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	2.0%	$\Delta \epsilon = 19.0$	
3 -Hx- C_2 H ₄ -Be-Tr-Be- 3	3.0%	$V_{th} = 1.20 \text{ (V)}$	
3-Hx-C ₂ H ₄ -Be-Tr-Be-4	3.0%	【0145】実施例18	
3-Hx-Be(F)-Tr-Be-2	6.0%	3-Be-C00-Be(F)-Tr-CN(化合物No.153)	10.0%
3-Hx-Be(F)-Tr-Be-3	6.0%	$C_3H_7OCH_2$ -Be-COO-Be(F)-CN	8.0%
3-Hx-Be(F)-Tr-Be-4	6.0%	$C_5H_{11}OCH_2$ -Be-COO-Be (F) -CN	4.0%
2-Py-Be-Hx-3	4.0%	$CH_3CH=CHC_2H_4-Be-COO-Be(F, F)-CN$	10.0%
3-Py-Be-Hx-3	4.0%	$C_2H_5OCH_2$ - Hx - Be - COO - Be (F) - CN	2.0%
3-Py-Be-Be-2	4.0%	3-Hx-Be(F)-C00-Be(F)-CN	
T _{NI} =108.8 (℃)		2-Hx-Be-C00-Be (F, F) -CN	2.0%
$\eta = 27.4 \text{ (mPa·s)}$		3-Hx-Hx-COO-Be-F	5.0%
$\Delta n = 0.246$		5-Hx-Hx-C00-Be-F	4.0%
$\Delta \epsilon = 9.6$		3-Hx-Be-C00-Be-F	6.0%
$V_{th} = 1.93 \text{ (V)}$		3-Hx-Be-0C ₂ H ₅	10.0%
【0143】実施例16		3-Hx-Hx-4	10.0%
CH ₂ =CHC ₂ H ₄ -Hx-Be-Tr-CN (化合物No. 7)	9.0%	3-Hx-Hx-Be-1	8. 0%
3-Hx-Be-COO-Be(F)-Tr-CN(化合物No. 162)	10.0%	3-Hx-Hx-Be-3	10.0%
CH ₃ CH=CHC ₂ H ₄ -Hx-Be-CN	9.0%	3-Hx-Hx-Be-OCH ₃	4. 0%
3-Hx-Be-CN	14.0%	3-Hx-Be (F) -CH=CH-Be-2	5. 0%
CH ₃ OCH ₂ -Hx-Be-CN	8.0%	$T_{NI}=99.0$ (°C)	
C ₂ H ₅ OCH ₂ -Hx-Be-CN	4.0%	$\eta = 36.8 \text{ [mPa·s]}$	
3-Hx-Hx-4	10.0%	$\Delta n = 0.135$	
CH ₃ OCH ₂ -Hx-Hx-5	8.0%	$\Delta \epsilon = 23.6$	
2-Be-Tr-Be-OCH ₃	11.0%	$V_{th}=1.10$ (V)	
3-Hx-Hx-Be-1	8.0%	【0146】実施例19	10.004
3-Hx-Hx-Be-3	9.0%	CH ₂ =CHC ₂ H ₄ -Hx-Be-Tr-CN(化合物No. 7)	10.0%
$T_{NI} = 84.0 \ (^{\circ}C)$		3-Hx-Be(F)-Tr-CN (化合物No. 2)	7.0%
$\eta = 16.8 \text{ (mPa·s)}$		2-Hx-Be (F) -CN	10.0%
$\Delta n = 0.143$		3-Hx-Be (F) -CN	10.0%
$\Delta \varepsilon = 12.0$ $V = 1.64 (V)$		5-Hx-Be (F) -CN	9.0%
V _{th} =1.64 [V] 【0144】実施例17		2-Be-C00-Be-CN 3-Be-C00-Be-CN	10. 0% 4. 0%
3-Be-C00-Be(F)-Tr-CN(化合物No. 153)	12.0%	3-be-coo-be-cn 2-Hx-Hx-Be (F) -CN	4.0% 9.0%
CH ₃ CH=CHC ₂ H ₄ -Be-COO-Be (F, F) -CN	6.0%	3-Hx-Hx-Be (F) -CN	12. 0 %
ongon-one ₂ n ₄ be coo-be(r, r)-on	0.070	O ITY ITY DE (I / OI)	12.070

3-Py-Be-Be-F	8.0%	$\Delta n = 0.130$	
2-Hx-Hx-Be-CN	3.0%	$\Delta \varepsilon = 5.4$	
3-Hx-Hx-Be-CN	3.0%	V _{th} =2.47 (V)	
3-Hx-Be-COO-Be-Be-CN	3.0%	【0149】実施例22	
5-Hx-Hx-C00-Be-Be-CN	2.0%	3-Be-C00-Be(F)-Tr-CN(化合物No. 153)	10.0%
$T_{NI}=91.5$ (°C)		3-Do-Be-CN	10.0%
$\eta = 52.8 \text{ (mPa·s)}$		4-Do-Be-CN	12.0%
$\Delta n = 0.164$		5-Do-Be-CN	8.0%
$\Delta \epsilon = 19.3$		5-Py-Be (F) -F	10.0%
$V_{th} = 1.00 \text{ (V)}$		2-Py-Be-2	1. 4%
【0147】実施例20		3-Py-Be-2	1. 3%
3-Hx-Be(F)-Tr-CN (化合物No. 2)	13.0%	4-Py-Be-2	1. 3%
CH ₂ =CHC ₂ H ₄ -Hx-Be(F,F)-Tr-CN(化合物No.8)	10.0%	$3-Hx-C00-Be-OC_4H_9$	5.0%
2-Be-Be-CN	8.0%	4-Hx-C00-Be-0C ₂ H ₅	3. 7%
4-Be-Be-CN	6.0%	$3-Hx-COO-Be-OC_2H_5$	3.1%
3-Hx-Hx-Be-F	5.0%	10-Be-C00-Be-2	2.5%
2-Hx-Hx-Be-CN	4.0%	5-Hx-C00-Be-1	3. 7%
3-Hx-Hx-Be-CN	6.0%	4-Hx-C00-Be-4	5.0%
5-Py-Be-F	6.0%	3-Hx-Hx-Be-OCH ₃	4.0%
3-Py-Be-Be-F	6.0%	3-Hx-Hx-Be-3	13.0%
2-Be-Tr-Be-OCH ₃	2.0%	2-Py-Be-Hx-3	6.0%
2-Hx-Hx-Be-1	6.0%	T _{NI} =63.5 (℃)	
3-Hx-Hx-Be-1	8.0%	$\eta = 30.2 \text{ (mPa·s)}$	
3-Hx-Hx-Be-3	15.0%	$\Delta n = 0.123$	
3-Hx-Hx-Be-OCH ₃	5.0%	$\Delta \epsilon = 15.6$	
T _{NI} =105.6 (°C)		$V_{th} = 1.25 \text{ (V)}$	
$\eta = 21.6 \text{ (mPa·s)}$		【0150】実施例23	
$\Delta n = 0.169$		3-Be-C00-Be(F)-Tr-CN (化合物No. 153)	6.0%
$\Delta \epsilon = 11.3$		CH ₂ =CHC ₂ H ₄ -Hx-Be-Tr-CN(化合物No. 7)	4. 0%
V _{th} =1.66 (V)		3-Be-C00-Be (F) -CN	8. 0%
【0148】実施例21		5-Py-Be-CN	8.0%
3-Hx-Be-C00-Be(F)-Tr-CN(化合物No. 162)	11.0%	CH ₂ =CH-Hx-Be-CN	4. 0%
3-Hx-Be-OC ₂ H ₅	14.0%	CH ₃ CH=CH-Hx-Be-CN	4. 0%
3-Hx-Be-0C ₄ H ₉	13.0%	5-Hx-CH=CH ₂	10. 0%
3-Py-Be-4	3.1%	3-Hx-Hx-C ₂ H ₄ CH=CH ₂	7. 0%
4-Py-Be-4	3. 1%	3-Hx-Hx-C ₂ H ₄ CH=CHCH ₃	7. 0%
6-Py-Be-4	3. 2%	CH ₂ =CH-Hx-Hx-Be-1	8.0%
3-Py-Be-5	3. 2%	CH ₂ =CHC ₂ H ₄ -Hx-Hx-Be-1	15. 0%
4-Py-Be-5	3. 2%	3-Hx-Hx-C00-Be (F) -F	5.0%
6-Py-Be-5	3. 2%	3-Hx-Be-Tr-Be-1	5.0%
6-Py-Be-0C ₅ H ₁₁	4.0%	3-Hx-Be-Tr-Be-2	5.0%
6-Py-Be-0C ₆ H ₁₃	4.0%	3-Hx-Be-Tr-Be-3	4. 0%
- I		$T_{NI} = 101.0 \ (^{\circ}C)$	4.070
6-Py-Be-OC ₇ H ₁₅	4.0% 4.0%	$\eta = 15.8 \text{ [mPa·s]}$	
6-Py-Be-0C ₈ H ₁₇			
2-Hx-Hx-Be-1	4.0%	$\Delta n = 0.143$	
3-Hx-Hx-Be-1	8.0%	$\Delta \varepsilon = 11.1$	
3-Hx-Hx-Be-3	10.0%	V _{th} =1.86 (V)	
3-Hx-Hx-Be-OCH ₃	5.0%	【0151】実施例24	E 00/
T _{NI} =78.8 (°C)		CH ₂ =CHC ₂ H ₄ -Hx-Be-Tr-CN(化合物No. 7)	5. 0%
$\eta = 35.3 \text{ (mPa·s)}$		7-Hx-Be (F, F) -F	4.0%

3-Hx-C ₂ H ₄ -Hx-Be (F, F) -F	12.0%	5-Hx-Hx-C ₂ H ₄ -Be(F, F)-F	7.0%
$4-Hx-C_2H_4-Hx-Be(F, F)-F$	10.0%	T _{NI} =82.4 (°C)	
$5-Hx-C_2H_4-Hx-Be(F, F)-F$	10.0%	$\eta = 25.0 \text{ (mPa·s)}$	
3-Hx-Hx-Be (F, F)-F	10.0%	Δ n = 0.093	
3-Hx-Hx-C ₂ H ₄ -Be (F, F)-F	11.0%	$\Delta \epsilon = 7.6$	
5-Hx-Hx-C ₂ H ₄ -Be (F, F) -F	10.0%	$V_{th}=1.60 \text{ (V)}$	
3-Hx-Be-Be(F, F)-F	12.0%	【0154】実施例27	
5-Hx-Be-Be (F, F) -F	12.0%	3-Be-Tr-Be(F)-Tr-CN(化合物No. 30)	10.0%
3-Hx-Hx-Be-Be (F, F) -F	2.0%	3-Hx-Be-Cl	7.0%
5-Hx-Hx-C ₂ H ₄ -Be-Be (F, F) -F	2.0%	4-Hx-C ₂ H ₄ -Be-Be(F)-F	3.0%
$T_{NI} = 78.9$ (°C)		2-Hx-Be-Be (F) -F	6.0%
$\eta = 26.9 \text{ (mPa·s)}$		3-Hx-Be-Be (F) -F	6.0%
$\Delta n = 0.097$		5-Hx - Be-Be (F) -F	12.0%
$\Delta \epsilon = 9.2$		2-Hx-Hx-Be-Cl	5.0%
$V_{+b} = 1.53 \text{ (V)}$		4-Hx-Hx-Be-Cl	10.0%
【0152】実施例25		5-Hx-Hx-Be-Cl	4.0%
CH ₂ =CHC ₂ H ₄ -Hx-Be (F, F)-Tr-CN(化合物No. 8)	15.0%	3-Hx-Be-Be (F, F) -F	17.0%
7-Hx-Be (F, F)-F	5.0%	5-Hx-Be-Be (F, F) -F	12.0%
$3-Hx-C_2H_4-Hx-Be(F,F)-F$	9.0%	5-Hx-C ₂ H ₄ -Be-Be (F, F) -F	5. 0%
4-Hx-C ₂ H ₄ -Hx-Be (F, F)-F	8.0%	3-Hx-Hx-Be-1	3.0%
5-Hx-C ₂ H ₄ -Hx-Be (F, F)-F	8.0%	T _{NI} =93.7 (°C)	
3-Hx-Hx-C2H4-Be(F, F)-F	10.0%	$\eta = 24.9 \text{ (mPa·s)}$	
3-Hx-Be-Be(F, F)-F	9.0%	$\Delta n = 0.160$	
5-Hx-Be-Be (F, F) -F	9.0%	$\Delta \epsilon = 7.8$	
3-Hx-Hx-Be (F, F)-F	6.0%	V _{tb} =1.60 (V)	
4-Hx-Hx-Be (F, F)-F	5.0%	【0155】実施例28	
3-Hx-Be-C00-Be (F, F) -F	3. 0%	3-Be-C00-Be(F)-Tr-CN(化合物No. 153)	5. 0%
5-Hx-Be-C00-Be (F, F) -F	3.0%	5-Hx-C00-Be-F	2.0%
3-Hx-Hx-C00-Be (F, F) -F	10.0%	7-Hx-C00-Be-F	2.0%
T _{NI} =68.2 (°C)		2-Hx-Hx-Be (F) -F	10.0%
$\eta = 25.4 \text{ [mPa·s]}$		3-Hx-Hx-Be (F) - F	10.0%
$\Delta n = 0.105$		5-Hx-Hx-Be (F) -F	10.0%
$\Delta \epsilon = 13.7$		2-Hx-Be-Be (F) -F	7.0%
$V_{th} = 1.17 \text{ (V)}$		3-Hx-Be-Be(F)-F	7.0%
【0153】実施例26		5-Hx-Be-Be (F) -F	14.0%
3-Hx-Be(F)-Tr-CN (化合物No. 2)	7.0%	2-Hx-Be-Be-F	4.0%
3-Hx-Be-C00-Be(F)-Tr-CN(化合物No. 162)	6.0%	3-Hx-Be-Be-F	4.0%
5-Hx-C ₂ H ₄ -Be (F) -F	4.0%	5-Hx-Be-Be-F	3.0%
7-Hx-Be (F) -F	7.0%	3-Hx-Be-Be(F, F)-F	5.0%
2-Hx-Hx-Be (F) -F	9.0%	5-Hx-Be-Be(F, F)-F	10.0%
3-Hx-Hx-Be (F)-F	9.0%	3-Hx-Be-0C ₂ H ₅	7.0%
5-Hx-Hx-Be (F) -F	9.0%	T _{NI} =87. 4 (°C)	
2-Hx-C ₂ H ₄ -Hx-Be (F) -F	4.0%	$\eta = 25.7 \text{ (mPa·s)}$	
3-Hx-C ₂ H ₄ -Hx-Be (F) -F	2.0%	$\Delta n = 0.121$	
5-Hx-C ₂ H ₄ -Hx-Be (F) -F	4.0%	$\Delta \epsilon = 7.8$	
3-Hx-C ₂ H ₄ -Hx-Be (F, F)-F	6.0%	$V_{th} = 1.72 \text{ (V)}$	
4-Hx-C ₂ H ₄ -Hx-Be (F, F)-F	5.0%	【0156】実施例29	
5-Hx-C ₂ H ₄ -Hx-Be (F, F)-F	5. 0%	CH ₂ =CHC ₂ H ₄ -Hx-Be(F, F)-Tr-CN(化合物No. 8)	7.0%
3-Hx-Hx-Be (F, F) -F	8.0%	5-Hx-Be-F	12.0%
3-Hx-Hx-C ₂ H ₄ -Be (F, F) -F	8.0%	6-Hx-Be-F	9.0%
2 4	-		

2-Hx-Hx-Be-OCF ₃	7.0%	$\eta = 19.0 \text{ (mPa·s)}$	
3-Hx-Hx-Be-OCF ₃	11.0%	$\Delta n = 0.151$	
4-Hx-Hx-Be-OCF ₃	7.0%	$\Delta \epsilon = 10.3$	
5-Hx-Hx-Be-OCF ₃	10.0%	$V_{th} = 1.40 \text{ (V)}$	
3-Hx-Be-Be (F) -F	13.0%	【0159】実施例32	
5-Hx-Be-Be (F) -F	10.0%	CH ₃ CH=CH-Hx-Hx-Be-Tr-CN(化合物No. 87)	10. 0%
3-Hx-Hx-C ₂ H ₄ -Be-OCF ₃	4.0%	CH ₂ =CHC ₂ H ₄ -Hx-Be-CN	11.0%
5-Hx-Hx-C ₂ H ₄ -Be-OCF ₃	4.0%	CH ₃ CH=CHC ₂ H ₄ -Hx-Be-CN	10.0%
3-Hx-Be (F) -Be-Hx-3	2.0%	CH ₃ OCH ₂ -Hx-Be-CN	10.0%
5-Hx-Be (F) -Be-Hx~3	2.0%	2-Hx-Be-CN	5. 0%
			5.0%
5-Hx-Be (F) -Be-Hx-5	2.0%	3-Hx-Be-CN 3-Hx-Hx-4	11.0%
T _{NI} =99.4 (°C)			
$\eta = 16.1 \text{ (mPa·s)}$		2-Be-Tr-Be-OCH ₃	4. 2%
$\Delta n = 0.109$		3-Be-Tr-Be-OCH ₃	4. 2%
$\Delta \epsilon = 6.1$		4-Be-Tr-Be-OCH ₃	4. 2%
V _{th} =1.94 (V)		4-Be-Tr-Be-0C ₂ H ₅	4. 2%
【0157】実施例30		5-Be-Tr-Be-OCH ₃	4. 2%
3-Hx-Be(F)-Tr-CN(化合物No. 2)	6. 0%	3-Hx-Hx-Be-CN	5. 0%
5-Hx-Be-F	5. 0%	5-Hx-Hx-Be-CN	5. 0%
7-Hx-Be-F	6.0%	3-Hx-Hx-Be-1	4. 0%
2-Hx-Hx-Be-OCF ₃	8.0%	3-Hx-Hx-Be-F	3.0%
3-Hx-Hx-Be-OCF ₃	9.0%	【0160】実施例33	
5-Hx-Hx-Be-OCF ₃	11.0%	5-Be-C00-Be(F, F)-Tr-CN(化合物No. 155)	12.0%
3-Hx-Hx-Be-OCF ₂ H	5.0%	$CH_3CH=CHC_2H_4-Be-COO-Be(F, F)-CN$	6.0%
5-Hx-Hx-Be-OCF ₂ H	4.0%	$C_3H_7OCH_2$ -Be-COO-Be(F)-CN	6.0%
3-Hx-Hx-Be (F, F)-0CF ₂ H	7.0%	2-Hx-Be-CN	12.0%
5 -Hx-Hx-Be (F, F) -0 CF $_2$ H	13.0%	3-Hx-Be-CN	19.0%
$3-Hx-Hx-C_2H_4-Be(F)-F$	11.0%	2-Hx-Hx-Be-CN	4.0%
5 -Hx-Hx- C_2 H ₄ -Be(F)-F	5.0%	3-Hx-Hx-Be - CN	5.0%
3-Hx-Hx-C00-Be(F)-F	5.0%	4-Hx-Hx-Be-CN	4.0%
5-Hx-Hx-C00-Be (F) -F	5.0%	5-Hx-Hx-Be-CN	4.0%
T _{NI} =101.0 (°C)		3-Hx-Be-OC ₂ H ₅	7.0%
$\eta = 21.1 \text{ (mPa·s)}$		3-Hx-Hx-Be-1	7.0%
$\Delta n = 0.093$		3-Hx-Hx-Be-OCH ₃	4.0%
$\Delta \epsilon = 7.0$		$3-Hx-C_2H_4-Be-Tr-Be-2$	4.0%
$V_{th} = 2.11 \text{ (V)}$		3-Hx-C ₂ H ₄ -Be-Tr-Be-3	3.0%
 【0158】実施例31		$3\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-4}$	3.0%
3-Be-C00-Be(F)-Tr-CN (化合物No. 153)	10.0%	【0161】実施例34	
3-Hx-Be-COO-Be(F)-Tr-CN(化合物No. 162)	5.0%	CH ₃ 0-Be-C00-Be(F)-Tr-CN(化合物No.151)	4.0%
3-Hx-Be(F)-CN	5.0%	5-Hx-CH=CH-Hx-Be-Tr-CN (化合物No. 63)	3.0%
CH ₂ =CH-Hx-Be-CN	10.0%	CH ₂ =CH-Hx-CH=CH-Hx-Be-Tr-CN(化合物No. 66)	3.0%
CH ₃ CH=CH-Hx-Be-CN	10.0%	3-Hx-Be-CN	20.0%
2-Be-Tr-Be-OCH ₃	10.0%	1-Be-Tr-Be-3	5.0%
3-Hx-Be-OC ₂ H ₅	10.0%	2-Be-Tr-Be-1	10.0%
CH ₂ =CHC ₂ H ₄ -Hx-Hx-3	5.0%	3-Hx-Hx-4	11.0%
CH ₂ =CH-Hx-Hx-4	5.0%	3-Hx-Hx-Be-1	11.0%
CH ₂ =CH-Hx-Hx-Be-1	10.0%	3-Hx-Hx-Be-3	9.0%
CH ₃ CH=CHC ₂ H ₄ -Hx-Be-Be-2	10.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%
3-Hx-Hx-Be-1	10.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4. 0%
T _{NI} =83.1 (℃)		3-Hx-C ₂ H ₄ -Be-Tr-Be-4	4.0%
IAT 2 - 5		2 4	

3-Hx-Be(F)-Tr-Be-2	6.0%	$3-Hx-C_2H_4-Be-Tr-Be-3$	4.0%
3-Hx-Be(F)-Tr-Be-3	6.0%	$3-Hx-C_2H_4-Be-Tr-Be-4$	4.0%
【0162】実施例35		3-Hx-Be(F)-Tr-Be-2	6.0%
3-Be-C00-Be(F, F)-Tr-CN(化合物No. 154)	6.0%	3-Hx-Be(F)-Tr-Be-3	6.0%
5-Be-C00-Be(F,F)-Tr-CN(化合物No.155)	4.0%	T _{NI} =94.8 (℃)	
3-Hx-Be(F,F)-Tr-CN (化合物No. 3)	5.0%	$\eta = 14.0 \text{ (mPa·s)}$	
3-Hx-Be-CN	17.0%	$\Delta n = 0.166$	
3 -Hx-Be-OC $_2$ H $_5$	4.0%	$\Delta \epsilon = 7.2$	
3-Hx-Hx-4	11.0%	$V_{th} = 2.13 \text{ (V)}$	
3-Hx-Hx-5	5.0%	【0166】上記組成物100部にキラ	ルドープ剤C-
2-Hx-Hx-Be-1	2.0%	4を0.8部添加したときのピッチは11	. 2 μ mであっ
3-Hx-Hx-Be-1	10.0%	た。	
3-Hx-Hx-Be-3	15.0%	【0167】実施例39	
3-Hx-Be(F)-Tr-Be-2	5.0%	CH ₂ =CH-Hx-Be-Tr-CN	7.0%
3-Hx-Be(F)-Tr-Be-3	4.0%	5-Py-Be-F	4.0%
$3-Hx-C_2H_4-Be-Tr-Be-2$	4.0%	3-Py-Be (F) -F	4.0%
3 -Hx- C_2 H $_4$ -Be-Tr-Be- 3	4.0%	2-Be-Be-CN	5.0%
$3\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-4}$	4.0%	4-Be-Be-CN	4.0%
【0163】実施例36		2-Py-Be-2	2.0%
CH ₂ =CH-Hx-Be-Tr-CN	15.0%	3-Py-Be - 2	2.0%
3-Hx-Be-CN	20.0%	4-Py-Be - 2	2.0%
5-Hx-Be-CN	31.0%	6-Py-Be-OC ₅ H ₁₁	3.0%
7-Hx-Be-CN	21.0%	6-Py-Be-OC ₆ H ₁₃	3.0%
7-Hx-Be-Be-CN	13.0%	6-Py-Be-OC ₇ H ₁₅	3.0%
T _{NI} =75.0 (°C)		6-Py-Be-OC ₈ H ₁₇	3.0%
$\eta = 23.6 \text{ (mPa·s)}$		3-Py-Be-Be-F	6.0%
$\Delta n = 0.155$		4-Py-Be-Be-F	6.0%
$\Delta \epsilon = 13.1$		5-Py-Be-Be-F	6. 0%
V th = 1.58 (V)		3-Hx-Hx-Be-1	6.0%
【0164】実施例37		3-Hx-Hx-Be-3	6.0%
3-Hx-Be(F,F)-Tr-CN	15.0%	2 -Hx- C_2 H ₄ -Be-Tr-Be- 2	4.0%
3-Hx-Be-CN	20.0%	$2\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-3}$	4. 0%
5-Hx-Be-CN	31.0%	2 -Hx- C_2 H $_4$ -Be-Tr-Be-4	5. 0%
7-Hx-Be-CN	21.0%	$3-Hx-C_2H_4-Be-Tr-Be-2$	5. 0%
7-Hx-Be-Be-CN	13.0%	$3\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-}3$	5.0%
T _{NI} =66.0 (°C)		$3\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-4}$	5. 0%
$\eta = 26.4 \text{ (mPa·s)}$		T _{NI} =97.7 (℃)	
$\Delta n = 0.145$		$\eta = 33.1 \text{ (mPa·s)}$	
$\Delta \epsilon = 15.2$		$\Delta n = 0.206$	
$V_{th} = 1.44 \text{ (V)}$		$\Delta \epsilon = 6.6$	
【0165】実施例38		$V_{th} = 2.24 \text{ (V)}$	
CH ₂ =CH-Hx-Be-Tr-CN	5.0%	【0168】実施例40	
$CH_3CH=CHC_2H_4-Be-COO-Be(F,F)-CN$	5.0%	CH ₂ =CH-Hx-Be-Tr-CN	7. 0%
3-Hx-Be-CN	20.0%	$C_2H_5OCH_2$ -Be-COO-Be(F)-CN	5. 0%
1-Be-Tr-Be-3	5.0%	${ m C_3H_70CH_2}$ -Be-COO-Be(F)-CN	12.0%
2-Be-Tr-Be-1	10.0%	$C_5H_{11}OCH_2$ -Be-COO-Be(F)-CN	4.0%
3-Hx-Hx-4	11.0%	$CH_3CH=CHC_2H_4-Be-COO-Be(F, F)-CN$	14.0%
3-Hx-Hx-Be-1	11.0%	3-Hx-Be-0C ₂ H ₅	10.0%
3-Hx-Hx-Be-3	9.0%	3-Hx-Hx-4	3.0%
$3\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-2}$	4.0%	3-Hx-Hx-Be-F	3. 0%

3-Hx-Hx-Be-1	3.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-4	5.0%
3-Hx-Hx-Be-OCH ₃	4.0%	T _{NI} =96.2 (°C)	
3-Hx-Be-COO-Be-F	4.0%	$\eta = 14.9 \text{ (mPa·s)}$	
3-Hx-Hx-C00-Be-F	7.0%	$\Delta n = 0.141$	
5-Hx-Hx-C00-Be-F	7.0%	$\Delta \epsilon = 10.7$	
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%	$V_{th} = 1.98 \text{ (V)}$	
3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%	【0171】実施例43	
3-Hx-C ₂ H ₄ -Be-Tr-Be-4	4.0%	3-Hx-Be(F, F)-Tr-CN	5.0%
3-Hx-Be(F)-Tr-Be-2	5.0%	$C_2H_5OCH_2$ -Be-COO-Be(F)-CN	5.0%
T _{NI} =88.9 (°C)		C ₃ H ₇ OCH ₂ -Be-COO-Be(F)-CN	5.0%
$\eta = 38.9 \text{ (mPa·s)}$		C ₄ H ₉ OCH ₂ -Be-COO-Be (F) -CN	5.0%
$\Delta n = 0.150$		C ₅ H ₁₁ OCH ₂ -Be-COO-Be (F) -CN	5.0%
$\Delta \epsilon = 28.1$		2-Hx-Hx-Be (F) -C	15.0%
$V_{th} = 1.01 \text{ (V)}$		3-Hx-Hx-Be (F) -C	15.0%
【0169】実施例41		3-Hx-Be(F)-Tr-Be-2	4.0%
CH ₂ =CH-Hx-Be-Tr-CN	7.0%	3-Hx-Be(F)-Tr-Be-3	4.0%
2-Hx-Be-CN	5.0%	3-Hx-Be(F)-Tr-Be-4	4.0%
3-Hx-Be-CN	12.0%	3-Hx-Hx-Be-1	8.0%
3-Hx-Be-0C ₂ H ₅	12.0%	3-Hx-Hx-Be-OCH ₃	4.0%
2-Be-Tr-Be-1	3.0%	T _{NI} =79.8 (℃)	
3-Hx-Hx-Be-1	8.0%	$\eta = 82.9 \text{ (mPa·s)}$	
3-Hx-Hx-Be-F	4.0%	$\Delta n = 0.166$	
3-Hx-Hx-Be-OCH ₃	5.0%	$\Delta \epsilon = 32.0$	
3-Hx-Hx-Be-3	10.0%	$V_{th} = 0.84 \text{ (V)}$	
3-Hx-Hx-C00-Be-F	4.0%	【0172】実施例44	
5-Hx-Hx-COO-Be-F	4.0%	3-Hx-Be(F,F)-Tr-CN	7.0%
2-Hx-Hx-Be (F) -F	7.0%	$C_2H_5OCH_2$ -Be-COO-Be (F)-CN	5.0%
3-Hx-Hx-Be (F) - F	7.0%	$C_3H_7OCH_2$ -Be-COO-Be(F)-CN	12.0%
5-Hx-Hx-Be (F) -F	7.0%	$C_5H_{11}OCH_2$ -Be-COO-Be (F) -CN	4.0%
3-Hx-Hx-Be (F, F) -F	5.0%	$CH_3CH=CHC_2H_4$ -Be-COO-Be(F, F)-CN	10.0%
T _{NI} =100.9 (°C)		3-Hx-Hx-C00CH ₃	10.0%
$\eta = 18.1 \text{ (mPa·s)}$		3 -Hx-Be- 0 C $_2$ H $_5$	16.0%
$\Delta n = 0.110$		7-Hx-C00-Be-F	2.0%
$\Delta \epsilon = 6.0$		3-Hx-Hx-C00-Be-F	2.0%
$V_{th} = 2.15 \text{ (V)}$		5-Hx-Hx-C00-Be-F	2.0%
【0170】実施例42		3-Hx-Be-C00-Be-F	4.0%
CH ₂ =CH-Hx-Be-Tr-CN	5.0%	$C_2H_5OCH_2$ -Hx-Be-COO-Be(F)-CN	2.0%
3-Hx-Be(F,F)-Tr-CN	5.0%	3-Hx-Be(F)-COO-Be(F)-CN	2. 0%
3-Be-C00-Be (F) -CN	8.0%	3-Hx-Be-C00-Be(F, F)-CN	2.0%
3-Hx-Be-CN	8.0%	3-Hx-Hx-Be-F	4.0%
CH ₂ =CH-Hx-Be-CN	8.0%	3-Hx-Hx-Be-OCH ₃	4.0%
CH ₃ CH=CH-Hx-Be-CN	3.0%	3-Hx-Hx-Be-3	8.0%
$3\text{-Hx-Be-OC}_2\text{H}_5$	3.0%	3-Hx-C00-Be-C00-Be-F	2. 0%
$3\text{-Hx-Hx-C}_2\text{H}_4\text{CH=CH}_2$	14.0%	3-Hx-C00-Be-C00-Be-1	2. 0%
$3\text{-Hx-Hx-C}_2\text{H}_4\text{CH=CHCH}_3$	7.0%	T _{NI} =70.1 (°C)	
CH_2 = CHC_2H_4 - Hx - Hx - Be -1	10.0%	$\eta = 36.0 \text{ (mPa·s)}$	
3-Hx-Hx-Be-1	5.0%	$\Delta n = 0.121$	
3-Hx-Hx-C00-Be-F	7.0%	$\Delta \epsilon = 25.9$	
3-Hx-C ₂ H ₄ -Be-Tr-Be-2	6.0%	$V_{th} = 0.95 \text{ (V)}$	
3-Hx-C ₂ H ₄ -Be-Tr-Be-3	6.0%	【0173】実施例45	

CH ₂ =CH-Hx-Be-Tr-CN	6.0%	CH ₂ =CH-Hx-Be-Tr-CN		
2-Hx-Hx-Be (F) -F	2.0%	3-Hx-Be(F)-Tr-CN	5. 0%	
3-Hx - Hx-Be (F) - F	2.0%	3-Hx-Be(F, F)-Tr-CN	2. 0%	
5-Hx-Hx-Be (F) -F	2.0%	$CH_3CH=CHC_2H_4$ -Be-COO-Be(F, F)-CN	6.0%	
2-Hx-Be-Be (F) -F	6.0%	3-Hx-Be-0C ₂ H ₅	4.0%	
3-Hx-Be-Be (F) - F	6.0%	3-Hx-Hx-CH=CF ₂	18.0%	
5-Hx-Be-Be (F) -F	4.0%	5-Hx-Hx-CH=CF ₂	20.0%	
2 -Hx- C_2 H ₄ -Be-Be (F)-F	9.0%	CF ₂ =CH-Hx-Hx-Be-1	8. 0%	
3-Hx - C ₂ H ₄ -Be-Be (F)-F	9.0%	CF ₂ =CHC ₂ H ₄ -Hx-Hx-Be-1	10.0%	
3-Hx-Be-Be (F, F) -F	25.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-2	4.0%	
5-Hx - Be-Be (F, F) -F	19.0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-3	4.0%	
$\mathrm{CH_3OCH_2} ext{-Hx-Be-Be-Hx-4}$	5.0%	$3\text{-Hx-C}_2\text{H}_4\text{-Be-Tr-Be-4}$	4. 0%	
CH ₃ OCH ₂ -Hx-Be-Be-Hx-4	5.0%	3-Hx-Be(F)-Tr-Be-2	5. 0%	
T _{NI} =97.3 (℃)		T _{NI} =100.4 (℃)		
$\eta = 34.1 \text{ (mPa·s)}$		$\eta = 11.2 \text{ (mPa·s)}$		
$\Delta n = 0.141$		$\Delta n = 0.136$		
$\Delta \epsilon = 8.1$		$\Delta \epsilon = 7.9$		
$V_{th} = 1.85 \text{ (V)}$		$V_{th} = 2.14 \text{ (V)}$		
【0174】実施例46		【0176】実施例48		
CH ₂ =CH-Hx-Be-Tr-CN	6.0%	CH ₂ =CH-Hx-Be-Tr-CN	2.0%	
3-Hx-Be(F,F)-Tr-CN	6.0%	3-Hx-Be(F)-Tr-CN	11.0%	
3-Hx-C ₂ H ₄ -Hx-Be(F, F)-F	7.0%	3-Hx-Be(F,F)-Tr-CN	2.0%	
5-Hx-C ₂ H ₄ -Hx-Be(F, F)-F	8.0%	$CH_3CH=CHC_2H_4-Be-COO-Be(F, F)-CN$	6.0%	
3-Hx-Hx-Be (F, F) -F	10.0%	${ m CH_2=CHC_2H_4-Hx-Hx-CH=CF_2}$	35. 0%	
4-Hx-Hx-Be (F, F) -F	5.0%	5-Hx-Hx-CH=CF ₂	3. 0%	
3-Hx-Hx-C ₂ H ₄ -Be(F, F)-F	3.0%	CF ₂ =CH-Hx-Hx-Be-1	8. 0%	
5-Hx-Hx-C ₂ H ₄ -Be(F, F)-F		$CF_2 = CHC_2H_4 - Hx - Hx - Be - 1$ 18.		
3-Hx-Be-Be(F, F)-F	15. 0%	$3-Hx-C_2H_4-Be-Tr-Be-2$ 4.		
5-Hx-Be-Be (F, F) -F	15. 0%	3-Hx-C ₂ H ₄ -Be-Tr-Be-3 4.		
3-Hx-Be-C00-Be(F, F)-F	2.0%	$3-Hx-C_2H_4-Be-Tr-Be-4$		
4-Hx-Be-C00-Be(F, F)-F	2.0%	3-Hx-Be(F)-Tr-Be-2	3.0%	
5-Hx-Be-C00-Be(F, F)-F	2.0%	T _{NI} =100.7 (℃)		
3-Hx-Hx-C00-Be(F, F)-F	10.0%	$\eta = 10.7 \text{ (mPa·s)}$		
4-Hx-Hx-C00-Be(F, F)-F	3.0%	$\Delta n = 0.132$		
5-Hx-Hx-C00-Be(F, F)-F	3.0%	$\Delta \epsilon = 8.1$		
T _{NI} =79.0 (℃)		$V_{th} = 2.09 \text{ (V)}$		
$\eta = 29.5 \text{ (mPa·s)}$		【0177】C.特性比較試験		
$\Delta n = 0.110$		実施例49		
$\Delta \epsilon = 13.7$		第一成分の異なる下記組成1および組成	2について、特	
$V_{th} = 1.57 \text{ (V)}$		性比較試験を行った。各化合物は前記と	同じ略号を用い	
【0175】実施例47		て表示した。		
	組成成分	組成1 組成2		
	3-Hx-Be-Tr-CN	1 5 wt%		
·	3-Hx-Be(F)-Tr-CN(化合物No. 2)	1 5 wt%		
	3-Hx-Be-CN	2 Owt% 2 Owt%		
	5-Hx-Be-CN	3 1 wt% 3 1 wt%		
	7-Hx-Be-CN	2 1 wt% 2 1 wt%		
	5-Hx-Be-Be-CN	1 3 wt% 1 3 wt%		
【0178】測定結果を				
- C - C - MACINIA	At Layer man and a second seco	4-19		

組成 1

組成 2

特性項目

T_{NI}	(\mathcal{C})	76.8	72.7
η (m	Pa·s]	26.5	23.0
Δ n	(-)	0.150	0.150
Δε	(-)	12.0	13.5
Vth	(V)	1.63	1.43

[0179]

【発明の効果】本発明によれば、液晶成分としての優れた性質、すなわち、広い液晶温度レンジ、他の液晶との良好な相溶性、低粘性、大きな誘電率異方性といった性

質を保ちながら、大きな弾性定数比を与えることが可能な新規液晶性化合物、これを含む液晶組成物および該組成物から構成される液晶表示素子を提供することができる

フロントペー	ジの続き				
(51) Int. Cl. ⁶	,	識別記号	FΙ		
C 0 9 K	19/12		C 0 9 K	19/12	
	19/14			19/14	
	19/18			19/18	
	19/20			19/20	
	19/30			19/30	
	19/34			19/34	
	19/42			19/42	
	19/44			19/44	
	19/46			19/46	
G 0 2 F	1/13	500	G 0 2 F	1/13	5 0 0
(72)発明者	田村 典央		(72)発明者	蜂谷	典久
	千葉県市原市	八幡海岸通り1963- 4		千葉県	具市原市青葉台2丁目5番地
			(72)発明者	中川	悦男
				千葉リ	表市原市五井8890番地