

Objetivos da Disciplina

- Fornecer uma base sólida sobre tipos de dados e as operações associadas aos tipos.
- <u>Definir</u> os objetos que constituem o dado e as operações aplicáveis fazendo uso das estruturas de dados estáticas básicas: **lista, pilhas, filas e árvores.**
- <u>Demonstrar</u> os principais algoritmos para construção, consulta e manipulação de estrutura da dados que envolvam ordenação e pesquisa.
- Orientar sobre quando e como aplicar corretamente as estruturas de dados para resolver problemas computacionais.

Quais estratégias você usa para solucionar os seus problemas?

DEPENDE DO PROBLEMA

Solução lógica

A lógica é um dos passos iniciais para a construção de um programa.

OQUE É LÓGICA?

- "Estudo dos processos válidos e gerais pelos quais atingimos a verdade".
- "Ciência das leis do pensamento".
- "Parte da filosofia que estuda as leis do raciocínio."

Todo homem é mortal. Sócrates é homem, logo, Sócrates é mortal

João, ministro da educação, é acusado de corrupção e defende-se dizendo: 'Esta acusação é um disparate'.

Vamos fazer um rápido exercício!

- 1. Falácia do espantalho
- 2. Você também (tu quoque)
- 3. Incredulidade pessoal
- 4. Ônus da prova
- 5. Apelo à popularidade
- 6. Apelo à autoridade
- 7. Escocês de verdade
- 8. Falsa dicotomia
- 9. Falácia anedótica
- 10. O atirador de elite do texas
- 11. Meio termo
- 12. Falsa causalidade
- 13. Apelo à emoção

Algoritmo: Conjunto de passos que definem como uma tarefa é realizada.

O algoritmo não é a solução do problema, mas uma forma de solucioná-lo.

Assim, podemos criar diferentes algoritmos usando diferentes abordagens.

Programa: Uma representação de um algoritmo. Interação.

desenvolver um programa

O estudo dos algoritmos foi originalmente um assunto da matemática.

Euclidean Algorithm

$$M = 48 / N = 30$$

$$48 / 30 = 1 (R = 18)$$

$$M = 30 / N = 18$$

$$30/18 = 1 (R = 12)$$

$$M = 18 / N = 12$$

$$18/12 = 1 (R = 6)$$

$$M = 12 / N = 6$$

$$12/6 = 0 (R = 0)$$

Então MDC(48,30) = 6

Método criado por Euclides por volta de 300 a.C.

Description: This algorithm assumes that its input consists of two positive integers and proceeds to compute the greatest common divisor of these two values.

Procedure:

- Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.
- Step 2. Divide M by N, and call the remainder R.
- Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2; otherwise, the greatest common divisor is the value currently assigned to N.

Formas de representação de algoritmos:

- Descrição narrativa
- Fluxograma convencional

Os algoritmos são expressos diretamente em linguagem natural - português/inglês!

- Usar somente um verbo por frase
- Imaginar que você está desenvolvendo um algoritmo para quem nunca desenvolveu
- Usar frases curtas e simples
- Ser objetivo
- Usar palavras que n\u00e3o tenham sentido d\u00fabio

- 1. Início de programa
- 2. Leia os valores de A e B
- 3. Se A e B forem maiores que zero a) Calcula o valor da média aritmética simples a partir da fórmula [média = (A+B)/2] b) Imprime o valor da média
- 4. Senão imprime "os valores devem ser positivos"
- 5. Fim do programa

1. Faça um algoritmo narrativo que peça ao usuário para digitar três valores positivos e imprima a soma deles.

Caneta na mão!

FLUXOGRAMA

2. Faça uma descrição narrativa que descreva o cálculo da média final de um aluno que realiza três provas no semestre. É considerado "aprovado" se a média for igual ou superior a 7,00, senão "reprovado".

Caneta na mão!

- 1. Início de programa
- 2. Leia os valores de A, B e C
- 3. Se A, B e C forem maiores que zero a)Calcula o valor da soma a partir da fórmula [soma = (A + B + C)] b)Imprime o valor da soma
- 4. Senão imprime "os valores devem ser positivos"
- 5. Fim do programa

FLUXOGRAMA

Representação gráfica que emprega formas geométricas padronizadas para indicar as diversas ações e decisões que devem ser executadas (ISO 9000).

FLUXOGRAMA

Terminal

- Utilizado para representar o início e/ou fim do fluxo lógico de um programa.
- De forma mais genérica, representa o início e o fim da resolução de um problema.

FLUXOGRAMA

Linha Básica

- Utilizada com setas nas extremidades para representar direção do fluxo, facilitando sua leitura,
- De uma maneira mais genérica, representa a passagem de dados ou controles.

FLUXOGRAMA

Entrada Manual

• Representa dados, de qualquer tipo de mídia que podem ser alimentados manualmente (teclado, mouse, etc.)

FLUXOGRAMA

Dados

• Representa dados de uma forma genérica, sendo em entrada ou saída dos mesmos uma vez que foram identificados.

FLUXOGRAMA

Processo

• Representa de forma genérica quaisquer tipos de processos, designando um trabalho específico ou um conjunto de operações que tem como objetivo a mudança de valor, formato ou localização de uma informação.

FLUXOGRAMA

Exibição

• Usado em dados cuja mídia seja de qualquer tipo onde a informação seja mostrada para uso humano, tais como monitores de vídeo, indicadores, telas, etc.

FLUXOGRAMA

Desvio condicional

- Representar uma decisão ou um desvio
- Pode ter uma série de saídas alternativas, uma única das quais deverá ser ativada como consequência da avaliação das condições internas ao símbolo.

FLUXOGRAMA

Anotação

- 1. Início de programa
- 2. Leia os valores de A e B
- 3. Se A e B forem maiores que zero a) Calcula o valor da média aritmética simples a partir da fórmula [média = (A+B)/2]
 - b) Imprime o valor da média
- 4. Senão imprime "os valores devem ser positivos"
- 5. Fim do programa

FLUXOGRAMA

2. Faça um fluxograma que descreva o cálculo da média final de um aluno que realiza três provas no semestre. É considerado "aprovado" se a média for igual ou superior a 7,00, senão "reprovado".

Caneta na mão!

FLUXOGRAMA

3. Faça um fluxograma que descreva a leitura de três valores inteiros positivos e imprima a soma deles.

Caneta na mão!

FLUXOGRAMA

4. Faça um fluxograma que descreva a nota de um aluno a ser calculada a partir da seguinte formula expressa pela Equação abaixo:

$$AV_1 = \left(\left(\frac{AP_{1^{\underline{a}}mn} + AP_{2^{\underline{a}}mn} + AP_{3^{\underline{a}}mn} + AP_{4^{\underline{a}}mn}}{4} \right) * 0,4 \right) + (NP * 0,6)$$

AP – Atividade Prática

Subscrito "1^amn": "primeira maior nota". Os demais subscritos seguem a ordem representada pelo número.

Programa: Uma representação de um

algoritmo. Interação.

eXtreme Programming (XP) Boas práticas do XP:

1. Programação em pares: programadores

- programador codifica enquanto o outro faz sugestões pertinentes
- papéis podem ser trocados com alguma frequência para otimizar o processo
- a programação ganha em qualidade, pois ambos acompanham o desenvolvimento do código
- um segundo olhar está sempre mais apto a identificar falhas

Estrutura Condicional e Operadores

Tipos de Variáveis

Tipo de Dados	Representação
Caracter	char
Inteiro	inteiro
Real	float
Cadeia de caracteres	string

Escrita e Leitura

Função	Descrição
print/printf	permite apresentar na tela os valores de qualquer tipo
	de dado, ou imprimir uma sequência de caracteres.
input/scanf	Usada para efetuar a leitura de valores do teclado.

Estrutura de Condição 1 (if - else)

```
// 5 Alternatives to this
if (condition) {
  // do stuff
} else if (otherCondition) {
  // do something else
} else {
  //Default
```

A variável, na condição, será avaliada. Se ela for maior ou igual a 0 (zero), as instruções de soma e impressão serão executadas. Senão, será executado uma instrução de impressão.

Estrutura de Condição 1 (if - else) - Operadores

I – Operador de igualdade (=)

Comum à maioria das linguagens, este operador (=) faz a variável da esquerda assumir o valor da variável, constante ou expressão da direita. Exemplo:

$$var = var + 2;$$

Estrutura de Condição 1 (if - else) - Operadores

II – Operadores aritméticos

Operador	Descrição	Exemplo		
*	Multiplicação	var = var * 2;		
/	Divisão	var = var / 2;		
%	Resto	var = var % 2;		
+	Adição	var = var + 2;		
_	Subtração	var = var - 2;		

Estrutura de Condição 1 (if - else) - Operadores

III – Operadores relacionais

Eles avaliam o relacionamento entre duas expressões e dão o resultado 1 se verdadeiro ou 0 se falso.

Operador	Descrição Exemplo	
<	Menor que	if (var < 10)
<=	Menor ou igual if (var <= 10)	
>	Maior que if (var > 0)	
>=	Maior ou igual if (var >= 0)	
==		
!=	Diferente	if (var != 0)

Estrutura de Condição 1 (if - else) - Operadores

IV – Operadores lógicos

Usados normalmente com expressões booleanas, isto é, expressões que retornam verdadeiro ou falso (1 ou 0), para fins de testes em declarações condicionais.

Ope	erador	Descrição	Exemplo
&&	and	E lógico	if (var < 10 && var > 0) if (var < 10 and var > 0)
	or	OU lógico	if (var1 > 10 var2 > 0) if (var1 > 10 or var2 > 0)

VAMOS PROGRAMAR!!!

Faça um programa que leia a distância em *Km* e a quantidade de litros de gasolina consumidos por um carro em um percurso. Calcule o consumo em *Km/l* (distancia/qtd_consumo_gasolina) e escreva uma mensagem de acordo com a tabela abaixo:

Consumo	(Km/l)	Mensagem
Menor que	7	Venda esse carro!!!
Entre	7 e 10	Existem opções de carro mais econômicos. Considere a troca do veículo!!!
Entre	10 e 13	Carro econômico!!!
Maior que	13	Super econômico!!!

- 1. Tipos de variáveis (char, integer, float, string)
- 2. Operadores aritméticos (multiplicação, divisão, resto, adição, subtração)
- 3. Operadores relacionais (menor que, menor ou igual, maior que, maior ou igual, igual, diferente)
- 4. Operadores lógicos
- 5. Estrutura de condição