DrillComparingOrdersOfGrowth-1

Tom Bohbot

September 2020

1 Ordering Running Times

1.1 n^2

1. Double the input size:

- 1) When the input size, x, is doubled it will take this program $(2x)^2$ to run.
- $2)(2x)^2 = 4x^2$
- 3) grows by a factor of 4

2. Increase the input size by one:

- 1) When the input size, x, is increased by one it will take this program $(x + 1)^2$ to run.
- 2) $(x + 1)^2 = x^2 + 2x + 1$
- 3) grows by an additional 2x + 1

1.2 n^3

1. Double the input size:

- 1) When the input size, x, is doubled it will take this program $(2x)^3$ to run.
- 2) $(2x)^3 = 8x^3$
- 3) grows by a factor of 8

2. Increase the input size by one:

- 1) When the input size, x, is increased by one it will take this program $(x + 1)^3$ to run.
- 2) $(x + 1)^3 = x^3 + 3x^2 + 3x + 1$
- 3) grows by an additional $3x^2 + 3x + 1$

$1.3 \quad 100 \text{n}^2$

1. Double the input size:

- 1) When the input size, x, is doubled it will take this program $100(2x)^2$ to run.
- 2) $100(2x)^2 = (100)4x^2 = 400x^2$
- 3) $400x^2 / 100x^2 = 4$
- 4) grows by a factor of 4

2. Increase the input size by one:

- 1) When the input size, x, is increased by one it will take $100(x + 1)^2$ to run.
- 2) $100(x + 1)^2 = 100(x^2 + 2x + 1) = (100x^2 + 200x + 100)$
- 3) grows by an additional 200x + 100

1.4 nlogn

1. Double the input size:

- 1) When the input size, x, is doubled it will take this program 2xlog2x to run.
- $2) 2x\log 2x = 2x\log x + 2x\log 2$
- 3) grows by a factor of 2 and an additional 2xlog2. If the log's base is 2, then it grows by a factor of 2 and an additional 2x.

2. Increase the input size by one:

- 1) When the input size, x, is increased by one it will take $(x+1)\log(x+1)$ to run.
- 2) $(x + 1)\log(x + 1) = x\log(x + 1) + \log(x + 1)$.
- 3) grows by an additional one unit in the first log plus log(x + 1).

1.5 2^n

1. Double the input size:

- 1) When the input size, x, is doubled it will take this program $(2)^{2x}$ to run.
- $(2)(2)^{2x} = (2)^x * (2)^x$
- 3) grows by a multiplicative factor of $(2)^x$

2. Increase the input size by one:

- 1) When the input size, x, is increased by one it will take this program 2^{x+1} to run.
- 2) $2^{x+1} = 2^x * 2^1 = 2^x * 2$
- 3) grows by a multiplicative factor of 2

2 Really Understanding Order-of-Growth

2.1 n^2

Largest Input Size n to compute results in an hour assuming a computer that can do 10^{10} operations per second:

- 1) Maximum operations per minute = $60(10^{10} = 600,000,000,000,000)$ or 600 billion.
- 2) Maximum operations per hour = 60 x maximum operations per minute = 36,000,000,000,000 or 36 trillion.
- 3) $n^2 = 36$ trillion

- 4) n = 6,000,000 or 6 million.
- 5) The maximum input size is 6,000,000.

$2.2 n^3$

Largest Input Size n to compute results in an hour assuming a computer that can do 10^{10} operations per second:

- 1) Maximum operations per minute = $60(10^{10} = 600,000,000,000)$ or 600 billion.
- 2) Maximum operations per hour = 60 x maximum operations per minute = 36,000,000,000,000 or 36 trillion.
- 3) $n^3 = 36$ trillion
- 4) n = 33,019.3
- 5) The maximum input size is 33,019.

$2.3 \quad 100n^2$

Largest Input Size n to compute results in an hour assuming a computer that can do 10^{10} operations per second:

- 1) Maximum operations per minute = $60(10^{10} = 600,000,000,000,000)$ or 600 billion.
- 2) Maximum operations per hour = 60 x maximum operations per minute = 36,000,000,000,000 or 36 trillion.
- 3) $100n^2 = 36$ trillion
- 4) $n^2 = 360$ billion
- 5) n = 600,000
- 5) The maximum input size is 600,000.

2.4 nlogn

Largest Input Size n to compute results in an hour assuming a computer that can do 10^{10} operations per second:

- 1) Maximum operations per minute = $60(10^{10} = 600,000,000,000)$ or 600 billion.
- 2) Maximum operations per hour = 60 x maximum operations per minute = 36,000,000,000,000 or 36 trillion.
- 3) nlogn = 36 trillion
- 4) Through plugging and guessing, $(2,889,069,820,989)\log(2,889,069,820,989) = (2,889,069,820,989)*12.46075804 <math>\approx 35.99$ trillion. Any input n larger than 2,889,069,820,989 has a larger runtime than 36 trillion. When approaching the correct number I observed that the log did not change from 12.46075804, so I set an equation being X*12.46075804 = 36 trillion. I quickly found my result after that.
- 5) Therefore, the maximum input size is 2,889,069,820,989.

NOTE: This is assuming log base 10.

Source for calcuator: https://dqydj.com/log-base-10-calculator/

2.5 2^n

Largest Input Size n to compute results in an hour assuming a computer that can do 10^{10} operations per second:

- 1) Maximum operations per minute = $60(10^{10} = 600,000,000,000,000)$ or 600 billion.
- 2) Maximum operations per hour = 60 x maximum operations per minute = 36,000,000,000,000 or 36 trillion.
- 3) $2^n = 36$ trillion
- $\stackrel{4}{}$) Through plugging and guessing, 2^{45} is approximately 35.18 trillion. Therefore, n cannot exceed 45 as it would then be much higher than 36 trillion.
- 5) The maximum input size is 45.

2.6 2^{2^n}

Largest Input Size n to compute results in an hour assuming a computer that can do 10^{10} operations per second:

- 1) Maximum operations per minute = $60(10^{10} = 600,000,000,000,000)$ or 600 billion.
- 2) Maximum operations per hour = $60 \times 10^{-2} \times 10^{-2$
- 4) Since we know that the largest input size for 2^n is 45, we only need to calculate for $2^n = 45$.
- 5) $2^n = 45$
- 6) $n \approx 5$
- 7) Let n = 5 as n must be a whole number.
- 8) 2^{2^5} is approximately 4.29 billion.
- 9) If 2^{2^6} was plugged in, then the result we be much higher than 36 trillion. Therefore, n cannot exceed 5
- 10) The maximum input size is 5.