Exercise 13.3. Show that a commutative ring with cancellation has no zero-divisors.

Proof. Let R a commutative ring with cancellation. For any element $a \ b \in R$ such that ab = 0, if both a and b are zero, then trivial. Suppose $a \neq 0$, then ab = a0 implies b = 0.

Exercise 13.5. Show that every non-zero element in Z_n is either zero-divisor or unit.

Proof. For any non-zero element $k \in \mathbb{Z}_n$, let $d = \gcd(k, n)$.

• If $d \neq 1$, then there is q such that kq = lcm(k, n), therefore k is a zero-divisor.

• If d=1, then $k\in U(n)$, therefore k is a unit.

Exercise 13.7. Let R be a finite commutative ring with unity. Prove that every non-zero element in R is either a zero-divisor or a unit.

Proof. For any non-zero element $a \in R$, consider the mapping $f(b) = ab : R \to R$. If f is onto, then there is $a^{-1} \in R$ such that $f(a^{-1}) = aa^{-1} = 1$. If f is not onto, then f is not one-to-one (since R is finite), therefore there are distinct b and c such that f(b) = ab = ac = f(c). Then a(b-c) = 0 where $b-c \neq 0$, therefore a is a zero-divisor.

Exercise 13.20. Show that Z_n has a non-zero nilpotent element iff n is divisible by square of some prime.

Proof. Newline please!!

- (\Rightarrow) Let a be non-zero nilpotent element, therefore $a^2 = 0$. We know n divides a^2 (since $a^2 \cdot 1 = 0$), that is, $nz = a^2$. Let $d = \gcd(a, n)$, then dx = a and dy = n for some $x \ y \in \mathbb{N}$. Then $dyz = d^2x^2 \to yz = dx^2$, note that x is coprime to y since they are come from \gcd and z is integer, we know y divides d, that is, d = yk. Therefore $dy = y^2k = n$, for any prime factor p of y, p^2 divides n.
- (\Leftarrow) Since n is divisible by square of some prime, then $n=p^2q$ where p is prime. Then $(pq)^2=p^2q^2=nq$.

Exercise 13.34. Let R be a finite integral domain, then $|R| = p^k$ where p is prime.

Proof. If p and q divide |R| where p and q are distinct prime, then there are $a \ b \in R$ such that |a| = p and |b| = q. Now, $(q \cdot a)(p \cdot b) = (pq) \cdot (ab) = (p \cdot a)(q \cdot b) = 0$. Note that $q \cdot a$ and $p \cdot b$ are non-zero, since p and q are distinct prime, therefore q is a zero divisor and q is no longer a integral domain. \square

Exercise 13.35. Let F be a field of order p^n where p is prime. Prove that $\operatorname{char} F = p$.

Proof. Since F is an Abelian group under addition, then there is $a \in F$ such that |a| = p, that is, $p \cdot a = 0$. Then $(p \cdot a)a^{-1} = p \cdot (aa^{-1}) = p \cdot 1 = 0$. For any 1 < q < p, $q \cdot 1 \neq 0$, cause it implies that q divides p, which is unacceptible. Therefore |1| = p, and then char F = p.

Exercise 13.47. Let R be a commutative ring without zero-divisors. Show that all the non-zero elements of R have the same order under addition.

Proof. If R has no non-zero element of finite order, then trivial. Now, let $a \in R$ a non-zero element of minimum order, say, |a| = n. Then for any non-zero element $b \in R$, we have $(n \cdot a)b = a(n \cdot b) = 0b = 0$. Since a is non-zero, therefore $n \cdot b = 0$, and n is the minimum, so |b| = n.

Exercise 13.48. Suppose that R is a commutative ring without zero-divisors. Show that char R is 0 or some prime.

Proof. Newline please!!

- If R = 0, TODO!
- Let $a \in R$ a non-zero element, by Exercise 13.47, if $|a| = \infty$, then char R = 0. So we suppose |a| = n, then all non-zero element of R have order n. If n is not prime and is divisible by some prime p, then n = pq, and $(p \cdot a)(q \cdot a) = (pq) \cdot a^2 = n \cdot a^2 = 0$. Note that $p \cdot a$ and $q \cdot a$ are non-zero since p < |a| and q < |a|. Therefore, char R has to be some prime.

Exercise 13.64. Let F a finite field with n element. Prove that $x^{n-1} = 1$ for all non-zero $x \in F$.

Proof. Since F is a field, all elements except 0 forms a group under multiplication, say, F^* , then $|F^*| = n - 1$. Therefore for any non-zero element in F (which is also in F^*), $x^{n-1} = 1$.