COL 351: Analysis and Design of Algorithms

Lecture 13

String Matching Problem

Given: String $S = [s_1, ..., s_n]$ and a pattern $P = [p_1, ..., p_k]$,

represented as arrays of size n, k. (Here k < n).

Find: Does there exists a sub-string of S that is identical to P.

Example:

S = "cuckoo hashing is efficient"

P = "hash"

Yes

S = "cuckoo hashing is efficient"

P = "hash-table"

No

String Matching Problem

Given: String $S = [s_1, ..., s_n]$ and a pattern $P = [p_1, ..., p_k]$,

represented as arrays of size n, k. (Here k < n).

Find: Does there exists a sub-string of S that is identical to P.

Example:

S = "cuckoo hashing is efficient"

P = "hash"

Yes

String Matching Problem

Given: String $S = [s_1, ..., s_n]$ and a pattern $P = [p_1, ..., p_k]$, represented as arrays of size n, k. (Here k < n).

Find: Does there exists a sub-string of S that is identical to P.

```
For i = 1 to n:

Flag = True

For j = 1 to k:

If S[i + j - 1] \neq P[j] then

Flag = False

If (Flag) Return True

Return False
```

$$O(nk)$$
 time algorithm

Special Scenario: All characters in "pattern P" are different!

Special Scenario: All characters in "pattern P" are different!

```
i, j \leftarrow 1;
While (i \le n):
If S[i] = P[j]):
If (j = k): Return True Increment i and j by 1;
Else:
j \leftarrow 1;
Increment i by 1;
Return False;
```

O(n) time algorithm for special scenario

An Example where P has repeated characters

Remark: Key Idea to obtain Linear time algorithm is <u>Pattern preprocessing</u>.

Sub-Problem

Given: Pattern $P = [p_1, ..., p_k]$.

Find: Table of size *k* satisfying

Table [i] = Length of longest non-trivial prefix of P[1, i] that is also a suffix of P[1, i]

PROPER

Examples:

i	1	2	3	4	5	6
P[i]	A	В	C	A	В	В
Table[i]	0	0	0	1	2	0

i	1	2	3	4	5	6	7	8	9
P[i]	A	A	В	A	A	В	A	A	A
Table[i]	0	1	0	1	2	3	4	5	2

Sub-Problem

Table[i] = Length of longest (non-trivial) common prefix and suffix of P[1, i]

Lemma: For any $i \ge 1$, we have $\underline{\text{Table}[i+1]} \le 1 + \underline{\text{Table}[i]}$.

Proof Sketch:

(H. W.)

Prefix Suffix subproblem

Table[i] = Length of longest (non-trivial) common prefix and suffix of P[1, i]

Lemma: Suppose $L \ge 1$ satisfy that L-length prefix and suffix of P[1, i] are identical.

Then, the length of longest common prefix-suffix of P[1, i] of size just smaller than L is "Table[L]".

Proof Sketch:

If
$$\delta_1 = \delta_2$$
 and $\delta_3 = \delta_4$, then $\delta_3 = \delta_5$

We will study this example to understand the intuition for an $\mathrm{O}(k)$ time algorithm to solve our sub-problem.

i 3 5 6 8 9 10 11 12 P[i]X X X X X X X ZX X A X X X | X |X Table[i] 3 5 3 9 10 0

Example

- 1) We have computed Table values upto an index i = 23.
- 2) Note Table [23] = 11. Thus, 11 is length of longest identical suffix-prefix of P[1, 23].
- 3) Now, $Z = P[11+1] \neq P[23+1] = A$, so, Table[23+1] cannot be 12. We compute length of longest identical suffix-prefix of P[1, 23] smaller than 11. This is just P[11] = 5.
- Again, Y = P[5+1] ≠ P[23+1] = A.
 Therefore, we compute length of longest identical suffix-prefix of P[1, 23] smaller than 5.
 This is just P[5] = 2.
- 5) Compare P[2+1] and P[23+1]. Both are A. Thus, Table[23+1] is 2+1=3.

Prefix Suffix subproblem

Table[i] := Length of longest (non-trivial) common prefix and suffix of P[1, i]

Lemma: Suppose Table is computed for indices 1 to i.

Let len = Table[i] and suppose $P[i+1] \neq P[len+1]$.

Then, Table[i+1] can be computed as follows:

Recursively update len=Table[len] until either P[i+1]=P[len+1] or len=0.

- —If len becomes 0, then Table[i+1] must be 0.
- -If len > 0, then Table[i+1] must be one larger than current value of len.