i) jeśli
$$z=a+bi$$
 oraz $w^2=z,$ to $w=\pm\left(\frac{b}{\sqrt{2(|z|-a)}}+i\sqrt{\frac{|z|-a}{2}}\right),$

ii) 360° stopni to 2π radianów, 180° stopni to π radianów, itd.,

		0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
iii)	sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

iv)
$$\sin(-\varphi) = -\sin(\varphi)$$
, $\cos(-\varphi) = \cos(\varphi)$,

v)
$$\sin(\frac{\pi}{2} \pm \varphi) = \cos \varphi$$
, $\sin(\pi \pm \varphi) = \mp \sin \varphi$,

vi)
$$\cos\left(\frac{\pi}{2} \pm \varphi\right) = \mp \sin \varphi$$
, $\cos(\pi \pm \varphi) = -\cos \varphi$,

vii) jeśli
$$x^n = r(\cos \varphi + i \sin \varphi), r \neq 0$$
, to

$$x_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), \quad k = 0, \dots, n - 1,$$

viii) jeśli
$$ax^2 + bx + c = 0$$
, to $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- ix) odwzorowanie liniowe $f: U \to U$ symetria $\iff f \circ f = id_V$, wtedy symetria względem im(f + id) wzdłuż $\ker(f + id)$,
- x) odwzorowanie liniowe $f\colon U\to U$ rzut $\iff f\circ f=f,$ wtedy rzut na imfwzdłuż kerf,