Homework 3

Algebraic Geometry 2021

1. Given 3 distinct points $p, q, r \in \mathbb{P}^1$, prove that there exists a unique element of $A \in \mathrm{PGL}_2(k)$ such that

$$A[0:1] = p, \quad A[1:0] = q, \quad A[1:1] = r.$$

What is the analogous statement for \mathbb{P}^n ? (Just write the statement, not the proof.)

- 2. Let Y be a separated variety, and $U \subset X$ a dense subset. If two continuous maps $f, g: X \to Y$ agree on U, then show that they must agree on X. In other words, if Y is separated, then a continuous map $U \to Y$ has at most one extension $X \to Y$.
- 3. Prove that any rational map $\mathbb{P}^1 \longrightarrow \mathbb{P}^n$ extends to a regular map.
- 4. Consider \mathbb{A}^2 as an open subset of \mathbb{P}^2 in the standard way:

$$\mathbb{A}^2 = \{ [x : y : 1] \mid x, y \in k \}.$$

For $f \in k[x,y]$, consider $C = V(f) \subset \mathbb{A}^2$. The closure of C in \mathbb{P}^2 has the form V(F) for some homogeneous polynomial $F \in k[X,Y,Z]$. Describe how to obtain F from f and prove that V(F) is indeed the closure of V(f).