

PAR2801-Q32P

Low-energy Bluetooth 5.0 Module

DISCLAIMER AND COPYRIGHT NOTICE

Information in this document, including URL references, is subject to change without notice.

This document is provided "As if" with no whatsoever, including any warranty of merchantability, noninfringement, fitness for any purpose, or any warranty otherwise arising out of any proposal, specification or samples.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Bluetooth logo and symbol belong to the Bluetooth SIG Inc.

The Wi-Fi Alliance Member Logo is a trademark of the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright by ITON Technology Corp. All rights reserved.

Table of Contents

Table of Contents	2
1 Device Overview	3
1.1 Features	3
1.2 Applications	3
1.3 Descriptions	3
1.4 Functional Block Diagram	3
2 Pin Configuration and Functions	5
2.1 Module Pin Diagram with Parts Placement	
2.2 Pinout Description	5
3 Specification	8
3.1 Absolute Maximum Rating	8
3.2 Recommended Operating Conditions	8
3.3 RF Characteristics	8
3.4 Power Consumption Summary	9
4 Application, Implementation, and Layout	10
4.1 Application Diagram	10
4.2 Typical Application Circuit	10
4.3 Layout Guideline	11
5 Mechanical and Package	11
5.1 Recommended PCB Footprint	11
5.2 Package Information	12
6 Thermal Reflow	12
7 Revision History	13

1 Device Overview

1.1 Features

- Qualified Bluetooth Low Energy V5.0 slave device
- Cortex-M0 32-bit MCU with max. 32 MHz clock rate
- Low power and excellent performance 2.4 GHz transceiver
- 2 channels 10-bit SAR ADC
- 128 KB flash, 80 KB SRAM, and 24 KB ROM
- 16 MHz and 32.768 kHz crystal oscillator circuit
- Communication interfaces supported
 - Two I2C master
 - Two 2/4-wire SPI master
 - Two UART
- Digital peripherals
 - Three LED drive IO
 - Three PWM channels
- PCB antenna with 50 ohm impedance and an optional RF pin to connect to an external antenna
- 4 dBm maximum transmitting power
- -93 dBm receiving sensitivity
- No shielding cover

1.2 Applications

- HID peripherals
- Health and fitness wearable devices
- Interactive entertainment devices

- Home and industrial automation
- Security / Proximity applications

1.3 Descriptions

The PAR2801-Q32P module is a BLE module built around PixArt Cortex-M0 core BLE 5.0 SoC PAR2801 QN-GHVC chip. It integrates 128 KB on-chip flash and 80 KB SRAM. The peripherals include 18 GPIOs multiplexed with PWM, I2C, UART, ADC and SPI interfaces.

1.4 Functional Block Diagram

The PAR2801QN-GHVC chip has integrated an ARM® Cortex®-M0 processor, a BLE 4.0 baseband control core ROM, Flash, Bluetooth Modem, Radio Transceiver, on-chip Balun for the BLE application.

ITON Technology Corp.

Figure 1. Functional Block Diagram of PAR2801QN-GHVC Chip

Figure 2. Block Diagram of PAR2801-Q32P

ITON Technology Corp. Page 4 of 13

2 Pin Configuration and Functions

2.1 Module Pin Diagram with Parts Placement

Figure 3. Pin Diagram of PAR2801-Q32P

2.2 Pinout Description

2.2.1 Pinout Description

Pin	Name	Pin Type	Description
1	GND	Power	Ground
2	VBAT	Power	Input power pin, connecting to a battery or an external power source. Recommended to add decoupling capacitor, 10 µF. Keep PCB trace as short and wide as possible.
3	GND	Power	Ground
4	GPIO16	BiDir	GPIO, MouseKey_B5, PWM0, or LED0 I2C: Data IO, I2C_SDA1
5	GPIO15	BiDir	GPIO, MouseKey_B4, PWM1, or LED1 I2C: Clock output, I2C_SCL1
6	GPIO14	BiDir	GPIO, MouseKey_CPI, PWM2, or LED2
7	GPIO13	BiDir	GPIO, MouseKey_Middle
8	GPIO12	BiDir	GPIO, MouseKey_Right
9	GPIO11	BiDir	GPIO, MouseKey_Left
10	GPIO10	BiDir	GPIO, Motion_Wake_Up as motion detect for external sensor, Active

ITON Technology Corp. Page 5 of 13

			1
			_Low
			GPIO
11	GPIO8	BiDir	SPI4W: Master, Chip Select, SPI_CSN
			SPI3W: Master, Chip Select, SPI_CSN
			GPIO
12	GPIO7	BiDir	SPI4W: Master, Data_input, SP_DI
			SPI3W: Master, Data_IO, SPI_DIO
			I2C: Data_IO, I2C_SDA0
			GPIO
13	GPIO6	BiDir	SPI4W: Master, Clock output, SPI_CLK
			SPI3W: Master, Clock output, SPI_CLK
			I2C: Clock output, I2C_SCL0
			GPIO
14	GPIO3	BiDir	SPI4W: Master, Data input, SPI_DI_1
			UART: UART_RTS0
			GPIO, PWM0, or LED0
15	GPIO2	BiDir	SPI4W: Master, Clock output, SPI_CLK_1
			UART: UART_CTS0
			GPIO, PWM1, or LED1
16	GPIO1	BiDir	Analog Input_1
10	0.101		I2C: Data IO, I2C_SDA1
			UART: UART_TXD1
			GPIO, PWM2, or LED2
17	GPIO0	BìDir	Analog Input_0
''	0.100	2.2	I2C: Clock output, I2C_SCL0
			UART: UART_RXD0
18	NC		
40	RST	In	Active low signal at least 10 ms for HW reset. The module has add a RC
19	RSI	""	POR circuit (R=100 k, C=100 nF) connected to VDDIO power domain.
			GPIO, PWM0, or LED0
20	GPIO26	BiDir	I2C: Clockoutput, as I2C_SCL0,
			UART: UART_RXD0
			GPIO, PWM2, or LED2
21	GPIO27	BiDir	I2C: Data IO, as I2C_SDA0
			UART: UART_TXD0
			GPIO, or Key_Z2
22	GPIO23	BiDir	I2C: Data IO, as I2C_SDA1
			UART: UART_TXD1
			GPIO, or Key_Z1
23	GPIO22	BiDir	I2C: Clock output, I2C_SCL1
			UART: UART_RXD1
24	NC		
25	NC		
	<u> </u>	<u> </u>	

26	NC		
27	NC		
28	NC		
29	GND	Power	Ground
30	GND	Power	Ground
31	RF	BiDir	2.4 GHz transceiver RF port. Default connected to PCB antenna in the module.
32	GND	Power	Ground

2.2.2 IO Multiplexing Modes

GPIO#	0	1	2	3	4	5
GPIO0	GPIO0	Analog Input0		I2C_SCL1	UART_RXD1	PWM2/LED2
GPIO1	GPIO1	Analog Input1		I2C_SDA1	UART_TXD1	PW12/LED1
GPIO2	GPIO2	M_SPICK_1			UART_CST0	PWM0/LED0
GPIO3	GPIO3	M_SPIDI_1			UART_RTS0	
GPIO6	GPIO6	M_SPICK_0	M_SPICK_0	I2C_SCL0		
GPIO7	GPIO7	M_SPIDI_0	M_SPI_IO_0	I2C_SDA0		
GPIO8	GPIO8	M_SPICSN_0	M_SPICSN_0			
GPIO10	GPIO10	MOTION_Wake_UP				
GPIO11	GPIO11	MouseKey(BL)				
GPIO12	GPIO12	MouseKey(BR)				
GPIO13	GPIO13	MouseKey(BM)				
GPIO14	GPIO14	MouseKey(CPI)				PWM2/LED2
GPIO15	GPIO15	MouseKey(B4)		I2C_SCL1		PWM1/LED1
GPIO16	GPIO16	MouseKey(B5)		I2C_SDA1		PWM0/LED0
GPIO22	GPIO22	MouseKey(Z1)		I2C_SCL1	UART_RXD1	
GPIO23	GPIO23	MouseKey(Z2)		I2C_SDA1	UART_TXD1	
GPIO26	GPIO26			I2C_SCL0	UART_RXD0	PWM0/LED0
GPIO27	GPIO27		_	I2C_SDA0	UART_TXD0	PWM2/LED2

ITON Technology Corp. Page 7 of 13

3 Specification

3.1 Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Unit	Note
VBAT Voltage	V _{BAT3V}	-0.4	V _{BAT} + 0.3	V	
FOD	EOD		2	1.3.7	Class 2 on all pins, as per human body
ESD	ESD _{HBM}		2	kV	model. JESD22-A114E with 15 sec internal.

3.2 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	V	Note
Supply Voltage	V _{BAT3V}	1.9	3.0	3.6	V	Including ripples.
Storage Temperature	Ts	-40	-	85	°C	
Operating Temperature	TJ	-20	-	70	°C	

3.3 RF Characteristics

3.3.1 Transmitter Specification

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit
Frequency Range	FR _{TX}		2402	-	2480	MHz
Max. Output Power	P _{O, MAX}		-		4	dBm
Default Output Power	Po, def			0		dBm
Output Power Adjust Range	P _{O, ADJ}		-30		4	dBm
Output Power Variation	PO, VAR	All channels TX power variation		2.0		dBm
TX 20 dB Bandwidth	BW _{20dB}				1150	kHz
1st Adjacent Channel Power	P _{AJC1}				-20	dBc
2 nd Adjacent Channel Power	P _{AJC2}				-40	dBc
Delta F1 Frequency Deviation	f1 _{AVG}		225		275	kHz
Delta F2 Frequency Deviation	f2 _{AVG}		185			kHz
AVG Delta F2/Delta F1	f _{AVG}	Δf2AVG/Δf1AVG	0.8			
Frequency Offset	F _{OFFSET}		-150		150	kHz
Carrier Frequency Drift	CF _{DRIFT}				50	kHz
Carrier Frequency Drift rate	CF _{DRIFT_Rate}				20	kHz/50 µs
2 nd Harmonics Power Level	Har _{2nd}	@Pout = 0 dBm			-40	dBm

ITON Technology Corp. Page 8 of 13

3 rd Harmonics Power Level	Har _{3rd}	@Pout = 0 dBm			-45	dBm	
---------------------------------------	--------------------	---------------	--	--	-----	-----	--

Notes:

Electrical characteristics are measured under BLE specification and recommended operating conditions.

3.3.2 Receiver Specification

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit
Frequency Range	FR _{TX}		2402	-	2480	MHz
Maximum Input Power	RX _{MAX}	With PER < 30.8%		0		dBm
Ideal Signal Sensitivity	SEN _{IDEAL}			-93		dBm
Dirty Signal Sensitivity	SEN _{DIRTY}			-90		dBm
C/I and Selectivity						
C/I Co-Channel	C/I _{co}			9		dB
C/I Adjacent +1 MHz	C/I _{1M}			-1		dB
C/I Adjacent +2 MHz	C/I _{2M}			-35		dB
C/I Adjacent ≥ +3 MHz	C/I _{3M}		-40	-48		dB
C/I Image Channel	C/I _{IMG}			-25		dB
C/I Image + 1 M Channel	C/I _{IMG+1M}			-35		dB
Inter-Modulation Performance					1	
IMD Performance	IMD	3 rd , 4 th and 5 th offset channel	-24			dBm
Blocking Performance						
Blocking 30 MHz ~ 2000 MHz	P _{BLK_30~2000MHz}		-10			dBm
Blocking 2003 MHz ~ 2399 MHz	P _{BLK_2003~2399MHz}		-30			dBm
Blocking 2484 MHz ~ 2497 MHz	P _{BLK_2484~2497MHz}		-30			dBm
Blocking 3000 MHz ~ 12.75 GHz	P _{BLK_3~12.75GHz}		-10			dBm

Notes:

Electrical characteristics are measured under BLE specification and recommended operating conditions.

3.4 Power Consumption Summary

Parameters	Condition	Min.	Тур.	Max.	Unit
Supply Current @DTM-TX RF	@V _{BAT3V} = 3 V		10.0		mA
Supply Current @ DTM-RX	@V _{BAT3V} = 3 V		13.5		mA

ITON Technology Corp. Page 9 of 13

4 Application, Implementation, and Layout

4.1 Application Diagram

Figure 4. Bluetooth Transmission Application

4.2 Typical Application Circuit

Figure 5. Typical Application Circuit

Note:

VDD: 1.9 V ~ 3.6 V; Recommended VDD: 3.0 V

ITON Technology Corp. Page 10 of 13

4.3 Layout Guideline

- 1. It is recommended to place the module at the edge of the main board. The PCB antenna should be oriented towards the outside of the board and away from interference sources such as DC-DC.
- 2. The PCB antenna area in the main board should be free of all layers of copper, and there should be no wiring.

5 Mechanical and Package

5.1 Recommended PCB Footprint

L: 12.20 mm \pm 0.13 mm; W: 21.00 mm \pm 0.13 mm; H:1.8 mm \pm 0.2 mm

Figure 6. Recommended PCB Footprint of PAR2801-Q32P

ITON Technology Corp. Page 11 of 13

5.2 Package Information

Figure 7. Brief Packaging Process of PAR28011-Q32P Modules

6 Thermal Reflow

Referred to IPC/JEDEC standard.

Peak temperature: <250 °C

Number of times: ≤2

Figure 8. Recommended Reflow for Lead Free Solder

Note: The module is recommended not to go through reflow oven twice.

ITON Technology Corp. Page 12 of 13

7 Revision History

Version	Change Content	Reviser	Date
V1.0	The initial version	Lei Wang	2018.11.02
V1.1	Updated Bluetooth version	Lei Wang	2019.04.26
V1.2	Modified English version	Lei Wang	2019.08.08
V1.3	Updated the block diagram and application diagram of the module	Lei Wang	2019.11.11
V2.0	Changed the Storage Temperature	Lei Wang	2020.06.01

