A13 Datasheet

V1.30

December 10, 2012

Revision History

Version	Date	Author	Description
V1.00	2011.12.09		Initial version
V1.10	2011.12.30		GPIOE[0]/[1]/[2] and GPIOG[0]/[1]/[2]
V 1.10	2011.12.30		are changed for INPUT only.
V1.11	2012.01.10		Pin Dimension
V1.12	2012.03.29		Revise some description
V1.20	2012.09.14		Revise some characteristics description
V1.30	2012.12.10		Revise some characteristics description

Table of Contents

Re	evisi	on History	1
Ta	ble	of Contents	2
1.	ln	troduction	5
2.	Fe	eatures	5
3.	Fu	unctional Block Diagram	9
4.	Pi	n Assignment	10
	4.1.	Pin Map	10
	4.2.	Pin Dimension	11
5.	Pi	n Description	12
	5.1.	Pin Characteristics	12
	5.2.	Multiplexing Characteristics	22
	5.3.	Power and Miscellaneous Signals	25
6.	E	ectrical Characteristics	28
	6.1.	Absolute Maximum Ratings	28
	6.2.	Recommended Operating Conditions	28
	6.3.	DC Electrical Characteristics	29
	6.4.	Oscillator Electrical Characteristics	29
	6.5.	Power up/down and Reset Specifications	30
7.	P	WM	31
	7.1.	Overview	31
	7.2.	PWM Signal Description	31
8.	A	sync Timer Controller	32
	8.1.	Overview	32
9.	S	ync Timer Controller	32
	9.1.	Overview	32
10). In	terrupt Controller	33
	10.1	. Overview	33
	10.2	2. External Interrupt Signal Description	错误!未定义书签。
11	. D	MA Controller	33
	11.1	. Overview	33

			_
12.	SDI	RAM Controller	34
1:	2.1.	Overview	34
1:	2.2.	SDRAM Signal Description	34
13.	NAI	ND Flash Controller	36
13	3.1.	Overview	36
13	3.2.	NAND Flash Controller Signal Description	37
14.	SD	3.0 Controller	38
14	4.1.	Overview	38
14	4.2.	SD3.0 Controller Signal Description	39
15.	Two	Wire Interface	40
1	5.1.	Overview	40
1	5.2.	TWI Controller Signal Description	40
16.	SPI	Interface	42
16	6.1.	Overview	42
10	6.2.	SPI Controller Signal Description	42
17.	UAI	RT Interface	43
1	7.1.	Overview	43
1	7.2.	UART Controller Signal Description	44
18.	CIR	Interface	45
18	8.1.	Overview	45
18	8.2.	CIR Controller Signal Description	45
19.	USI	B DRD Controller	46
19	9.1.	Overview	46
19	9.2.	USB DRD Controller Signal Description	46
20.	USI	B HOST Controller	47
20	0.1.	Overview	47
20	0.2.	USB HOST Controller Signal Description	47
21.	Auc	lio Codec	48
2	1.1.	Overview	48
2	1.2.	Audio Codec Signal Description	48
22.	LRA	ADC	49
2	2.1.	Overview	49

		_
22.2.	LRADC Signal Description	49
23. Tou	uch Panel Controller	50
23.1.	Overview	50
23.2.	Touch Panel Signal Description	50
24. CM	OS Sensor Interface	51
24.1.	Overview	51
24.2.	CSI Signal Description	51
25. Uni	iversal LCD/TV Timing Controller	52
25.1.	Overview	52
25.2.	LCD Signal Description	52
26. Poi	rt Controller	53
26.1.	Port Description	53
27. Dec	claration	54

1. Introduction

Allwinner Tech has expanded its processor lineup to include a new *ARM Cortex-A8* chip A13 which is even more competitive for Android tablets with higher performance (ManyCore Lite), lower power consumption, and lower total system cost. As the brains of *Android 4.0*, A13 makes multitasking smoother, apps loading more quickly, and anything you touch responds instantly. What's more important, A13 is available in *eLQFP176 package with Audio Codec and R-TP integrated*.

2. Features

CPU

- ARM Cortex-A8 Core
- 32KB Instruction Cache and 32KB Data Cache
- 256KB L2 Cache
- NEONTM SIMD Coprocessor
- RCT JAVA-Accelerations to optimize just in time(JIT) and dynamitic adaptive compilation(DAC), and reduces memory footprint up to three times

GPU

3D Graphic Engine

• Support Open GL ES 1.1/2.0 and open VG 1.1

VPU

- Video Decoding (FULL HD)
 - Support all popular video formats, including VP6/8, AVS, H.264, H.263, MPEG-1/2/4, etc

- Support 1920*1080@ 30fps in all formats
- Video Encoding
 - Support encoding in H.264 MP format
 - Up to 1920*1080@30fps

Display Processing Ability

- Four moveable and size-adjustable layers
- Support multi-format image input
- Support image enhancement processor
- Support Alpha blending /anti-flicker
- Support Hardware cursor
- Support output color correction (luminance / hue / saturation etc)

Display Output Ability

• Flexible LCD interface (CPU / Sync RGB)

Image Input Ability

Camera sensor interface (CSI)

Memory

- 16-bit SDRAM controller
 - ➤ Support DDR2 SDRAM and DDR3 SDRAM up to 533MHz
 - ➤ Memory Capacity up to 512MB
- 8-bit NAND Flash Controller with 2 CE and 2 RB signals
 - ➤ Support SLC/MLC/TLC/DDR NAND
 - ➤ 64-bit ECC

Peripherals

- One USB 2.0 DRD controller for general application and one USB EHCI/OHCI controller for host application
- Three high-speed memory controllers supporting SD version 3.0 and eMMC version 4.3
- Four UART
- Three SPI controllers
- Three Two-Wire Interfaces
- IR controller supporting CIR remoter
- 6-bit LRADC for line control
- Internal 4-wire touch panel controller with pressure sensor and 2-point touch
- Internal 24-bit Audio Codec for 2-Ch headphone and 1-Ch microphone
- PWM controller

System

- 8-Ch normal DMA and 8-Ch dedicated DMA
- Internal 48K SRAM on chip
- 6 asynchronic timers, 2 synchronic timers, 1 watchdog, and 2 AVS counters

Security

- Security System
- Support DES/3DES/AES encryption and decryption.
- Support SHA-1, MD5 message digest
- Support 160-bit hardware PRNG with 192-bit seed
- 128-bit EFUSE chip ID

Package

• eLQFP176 package

3. Functional Block Diagram

Figure 3. A13 Block Diagram

4. Pin Assignment

4.1. Pin Map

Figure 4-1. A13 eLQFP 176 Package

Pin Dimension

Figure 4-2. A13 Pin Dimension

MAX 1.60

0.15

1.50

0.74

0,23

0.18

0.18

0.14

22.20

20,20

6,00REF

5. Pin Description

5.1. Pin Characteristics

- Pin Number: Ball numbers on the bottom side associated with each signals on the bottom.
- 2. **Pin Name:** Names of signals multiplexed on each pin No. (also notice that the name of the pin is the signal name in function 0).
- 3. **Type:** signal direction
 - I = Input
 - O = Output
 - I/O = Input/Output
 - A = Analog
 - AIO = Analog Input/Output
 - PWR = Power
 - GND = Ground
- 4. **Pin Reset State:** The state of the terminal at reset (power up).
 - 0: The buffer drives VOL(pull down/pull up resistor not activated)
 - 0 (PD): The buffer drives V_{OL} with an active pull down resistor.
 - 1: The buffer drives VOH (pull down/pull up resistor not activated).
 - 1 (PU): The buffer drives V_{OH} with an active pull up resistor.
 - Z: High-impedance
 - L: High-impedance with an active pull down resistor.
 - H: High-impedance with an active pull up resistor.
- Pull Up/Down: Denotes the presence of an internal pull up or pull down resister.
 Pull up and pull down resistor can be enabled or disabled via software.
- 6. **Buffer Strength:** Drive strength of the associated output buffer.
- 7. Note that the P[B:G] in the following table stands for GPIO [B:G].

No.	Pin Name	Туре	Reset State	Pull Up/Down	Buffer Strength
	NRE	О			
1	PC5				
	NCE0	О		Pull-up	
2	PC4				
	NCE1	О		Pull-up	
3	SPI0_CS0				
	PC3				
4	VDD1_CPU	PWR			
5	VCC1	PWR			
	NCLE	О			
6	SPI0_CLK				
	PC2				
	NALE	О			
7	SPI0_MISO				
	PC1				
	NWE	О			
8	SPI0_MOSI				
	PC0				
9	VDD2_CPU	PWR			
10	PB10	I/O			
10	EINT24				
11	VDD3_CPU	PWR			
	PG9	I/O			
10	SPI1_CS0				
12	UART3_TX				
	EINT9				
10	PG10	I/O			
13	SPI1_CLK				

	UART3_RX			
	EINT10			
	PG11	I/O		
	SPI1_MOSI			
14	UART3_CTS			
	EINT11			
	PG12	I/O		
1.5	SPI1_MISO			
15	UART3_RTS			
	EINT12			
16	VDD4_CPU	PWR		
17	DZQ	A		
18	SVREF	P		
19	DDR3_D4	I/O		
20	DDR3_D6	I/O		
21	DDR3_D2	I/O		
22	DDR3_D0	I/O		
23	VCC1_DRAM	PWR		
24	DDR3_D11	I/O		
25	DDR3_D9	I/O		
26	DDR3_D13	I/O		
27	DDR3_D15	I/O		
28	DDR3_DM1	О		
29	DDR3_DM0	О		
30	VCC2_DRAM	PWR		
31	DDR3_DQS0	I/O		
32	DDR3_DQS0_N	I/O		
33	DDR3_DQS1	I/O		
34	DDR3_DQS1_N	I/O		

35	VDD1_INT	PWR		
36	DDR3_D12	I/O		
37	DDR3_D8	I/O		
38	DDR3_D14	I/O		
39	DDR3_D10	I/O		
40	DDR3_D1	I/O		
41	DDR3_D3	I/O		
42	DDR3_D7	I/O		
43	VCC3_DRAM	PWR		
44	DDR3_D5	I/O		
45	DDR3_CK	О		
46	DDR3_CK_N	О		
47	DDR3_CKE	О		
48	DDR3_A10	О		
49	DDR3_BA1	О		
50	DDR3_A12	О		
51	DDR3_A4	О		
52	DDR3_A1	О		
53	VCC4_DRAM	PWR		
54	DDR3_A6	О		
55	DDR3_A8	О		
56	DDR3_A11	О		
57	DDR3_A14	0		
58	DDR3_RAS	О		
59	DDR3_CAS	О		
60	DDR3_WE	0		
61	DDR3_BA2	О		
62	VCC5_DRAM	PWR		
63	DDR3_BA0	0		

64	DDR3_A0	0		
65	DDR3_A3	О		
66	DDR3_A2	О		
67	DDR3_A5	О		
68	DDR3_A13	О		
69	DDR3_A9	0		
70	DDR3_RST	О		
71	DDR3_A7	О		
72	DDR3_ODT	0		
73	VDD2_INT	PWR		
74	HPOUTL	0		
75	НРВР	0		
76	V33_HP	PWR		
77	HPCOM	0		
78	HPOUTR	0		
79	AGND	GND		
80	VRP	A		
81	AVCC	PWR		
82	VRA2	A		
83	VRA1	A		
84	MICIN1	I		
85	VMIC	PWR		
86	LRADC	I		
87	TPX2	I		
88	TPY2	I		
89	TPX1	I		
90	TPY1	I		
91	X24MOUT	0		
92	X24MIN	I		

93	UDM0	I/O		
94	UDP0	I/O		
95	UDM1	I/O		
96	UDP1	I/O		
97	V33_USB	PWR		
98	VDD3-INT	PWR		
99	NC			
100	VCC2	PWR		
101	TWI0-SCK	I/O		
101	PB0			
102	TWI0-SDA	I/O		
102	PB1			
103	PB2/EINT16	I/O		
104	PB4/EINT18	I/O		
105	PB15	I/O		
106	PB16	I/O		
107	SDC0_D1	I/O		
107	PF0			
100	SDC0_D0	I/O		
108	PF1			
109	VDD4_INT	PWR		
110	SDC0_CLK	I/O		
110	PF2			
111	SDC0_CMD	I/O		
111	PF3			
110	SDC0_D3	I/O		
112	PF4			
112	SDC0_D2	I/O		
113	PF5			

	CSI_PCLK	I/O		
114	SPI2_CS0			
	EINT14			
	PE0			
	CSI_MCLK	I/O		
115	SPI2_CLK			
115	EINT15			
	PE1			
	CSI_HSYNC	I/O		
116	SPI2_MOSI			
	PE2			
	CSI_VSYNC	I/O		
117	SPI2_MISO			
	PE3			
	CSI_D0	I/O		
118	SDC2_D0			
	PE4			
	CSI_D1	I/O		
119	SDC2_D1			
	PE5			
	CSI_D2	I/O		
120	SDC2_D2			
	PE6			
	CSI_D3	I/O		
121	SDC2_D3			
	PE7			
	CSI_D4	I/O		
122	SDC2_CMD			
	PE8			

CSI_D5	
PE9 CSI_D6 I/O 124 UARTI_TX PE10 CSI_D7 I/O 125 UARTI_RX PE11 LCD_VSYNC I/O PD27 LCD_HSYNC I/O PD26 LCD_DE I/O	
CSI_D6	
124	
PE10 CSI_D7 I/O 125 UART1_RX PE11 LCD_VSYNC I/O PD27 LCD_HSYNC I/O PD26 LCD_DE I/O	
CSI_D7	
125	
PE11 LCD_VSYNC I/O PD27 LCD_HSYNC I/O PD26 LCD_DE I/O	
LCD_VSYNC	
126 PD27 LCD_HSYNC I/O PD26 LCD_DE I/O	
PD27 LCD_HSYNC I/O PD26 LCD_DE I/O	
127 PD26 LCD_DE I/O	
PD26 LCD_DE I/O	
120	
128 PD25	
LCD_CLK I/O	
129 PD24	
LCD_D23 I/O	
130 PD23	
LCD_D22 I/O	
PD22	
LCD_D21 I/O	
132 PD21	
LCD_D20 I/O	
133 PD20	
LCD_D19 I/O	
134 PD19	
LCD_D18 I/O	
135 PD18	

	LCD_D15	I/O		
136		1/0		
	PD15			
137	LCD_D14	I/O		
	PD14			
138	LCD_D13	I/O		
	PD13			
139	LCD_D12	I/O		
10)	PD12			
140	LCD_D11	I/O		
140	PD11			
141	LCD_D10	I/O		
141	PD10			
142	VCC3	PWR		
143	LCD_D7	I/O		
143	PD7			
1.4.4	LCD_D6	I/O		
144	PD6			
1.45	LCD_D5	I/O		
145	PD5			
	LCD_D4	I/O		
146	PD4			
	LCD_D3	I/O		
147	PD3			
	LCD_D2	I/O		
148	PD2			
149	VDD5_INT	PWR		
	PB3	I/O		
150	EINT17			
151	PG4	I/O		

		Ì	1	1	<u> </u>
	UART1_RX				
	EINT4				
	PG3	I/O			
152	UART1_TX				
	EINT3				
153	PG2	I/O			
133	EINT2				
154	PG1	I/O			
154	EINT1				
155	PG0	I/O			
155	EINT0				
156	VDD5_CPU	PWR			
157	UBOOT	I		Pull-up	
158	NMI_N	A		No pull	
159	RESET_N	A			
160	PB18	I/O			
161	PB17	I/O			
162	NDQS	I/O			
102	PC19				
163	VCC4	PWR			
164	VDD6_CPU	PWR			
	NDQ7	I/O			
165	SDC2_D7				
	PC15				
	NDQ6	I/O			
166	SDC2_D6				
	PC14				
1.67	NDQ5	I/O			
167	SDC2_D5				

	PC13			
	NDQ4	I/O		
168	SDC2_D4			
	PC12			
169	VDD7_CPU	PWR		
	NDQ3	I/O		
170	SDC2_D3			
	PC11			
	NDQ2	I/O		
171	SDC2_D2			
	PC10			
	NDQ1	I/O		
172	SDC2_D1			
	PC9			
173	VDD8_CPU	PWR		
	NDQ0	I/O		
174	SDC2_D0			
	PC8			
	NRB1	I	Pull-up	
175	SDC2_CLK			
	PC7			
	NRB0	I	Pull-up	
176	SDC2_CMD			
	PC6			

Table 5-1 Pin Characteristic

5.2. Multiplexing Characteristics

The following tables provide a description of the A13 multiplexing on the eLQFP176 package.

NOTE: PE0/PE1/PE2/PG0/PG1/PG2 are for input only.

D .	Multiplex Function					
Port	Default	Multi1	Multi2	Multi3		
PB0	TWI0_SCK					
PB1	TWI0_SDA					
PB2	PWM			EINT16		
PB3	PB	IR_TX		EINT17		
PB4	PB	IR_RX		EINT18		
PB10	PB	SPI2_CS1		EINT24		
PB15	TWI1_SCK					
PB16	TWI1_SDA					
PB17	TWI2_SCK					
PB18	TWI2_SDA					
PC0	NWE	SPI0_MOSI				
PC1	NALE	SPI0_MISO				
PC2	NCLE	SPI0_CLK				
PC3	NCE1	SPI0_CS0				
PC4	NCE0					
PC5	NRE					
PC6	NRB0	SDC2_CMD				
PC7	NRB1	SDC2_CLK				
PC8	NDQ0	SDC2_D0				
PC9	NDQ1	SDC2_D1				
PC10	NDQ2	SDC2_D2				
PC11	NDQ3	SDC2_D3				
PC12	NDQ4	SDC2_D4				
PC13	NDQ5	SDC2_D5				
PC14	NDQ6	SDC2_D6				

PC15	NDQ7	SDC2_D7	
PC19	NDQS		
PD2	LCD_D2		
PD3	LCD_D3		
PD4	LCD_D4		
PD5	LCD_D5		
PD6	LCD_D6		
PD7	LCD_D7		
PD10	LCD_D10		
PD11	LCD_D11		
PD12	LCD_D12		
PD13	LCD_D13		
PD14	LCD_D14		
PD15	LCD_D15		
PD18	LCD_D18		
PD19	LCD_D19		
PD20	LCD_D20		
PD21	LCD_D21		
PD22	LCD_D22		
PD23	LCD_D23		
PD24	LCD_CLK		
PD25	LCD_DE		
PD26	LCD_HSYNC		
PD27	LCD_VSYNC		
PE0	CSI_PCLK	SPI2_CS0	EINT14
PE1	CSI_MCLK	SPI2_CLK	EINT15
PE2	CSI_HSYNC	SPI2_MOSI	
PE3	CSI_VSYNC	SPI2_MISO	
PE4	CSI_D0	SDC2_D0	

PE5	CSI_D1	SDC2_D1		
PE6	CSI_D2	SDC2_D2		
PE7	CSI_D3	SDC2_D3		
PE8	CSI_D4	SDC2_CMD		
PE9	CSI_D5	SDC2_CLK		
PE10	CSI_D6	UART1_TX		
PE11	CSI_D7	UART1_RX		
PF0	SDC0_D1			
PF1	SDC0_D0			
PF2	SDC0_CLK			
PF3	SDC0_CMD			
PF4	SDC0_D3			
PF5	SDC0_D2			
PG0	PG			EINT0
PG1	PG			EINT1
PG2	PG			EINT2
PG3	PG	UART1_TX		EINT3
PG4	PG	UART1_RX		EINT4
PG9	PG	SPI1_CS0	UART3_TX	EINT9
PG10	PG	SPI1_CLK	UART3_RX	EINT10
PG11	PG	SPI1_MOSI	UART3_CTS	EINT11
PG12	PG	SPI1_MISO	UART3_RTS	EINT12

Table 5-2 Multiplexing Functions

5.3. Power and Miscellaneous Signals

Many signals are available on multiple pins according to the software configuration of the multiplexing options.

1. Signal Name: The signal name

- 2. Description: Description of the signal
- 3. Type: Pin type for this specific function:

- I = Input

- O = Output

-Z = High-impedance

-A = Analog

- PWR = Power

- GND = Ground

4. Pin #: Associated ball(s) number

5.3.1. Power Domain Signal Description

Signal Name	Description	Pin Name	Pin No.				
Audio DAC Pow	er	,					
V33_HP	Headphone Power Supply	V33_HP	76				
Audio ADC Pow	Audio ADC Power						
VMIC	Microphone ADC Power Supply	VMIC	85				
USB Power							
V33_USB	USB Power Supply	UVCC	97				
IO Power	IO Power						
VCC	IO Power Supply	VCC(4)	5/100/163/142				
CPU Power							
VDD CDU		VDD2(8)	4/9/11/16/156/164/1				
VDD_CPU		VDD2(8)	69/173				
Interrupt Power							
VDD_INT	Interrupt Power Supply	VDD_INT(5)	35/73/98/109/149				
DRAM Power							

Signal Name	Description	Pin Name	Pin No.		
VCC_DRAM	DRAM Power Supply	VCC(5)	23/30/43/53/62		
Analog Power					
AVCC	CC Analog Power Supply AVCC		81		
AGND	Analog Ground	AGND	79		

Table 5-3 Power Domain Signal Description

5.3.2. Miscellaneous Signal Description

Signal	Description	Туре	Pin Name	Pin No.			
Clock	Clock						
X24MIN	Main 24MHz crystal Input for internal OSC	I	X24MIN	92			
X24MOUT	Main 24MHz crystal Output for internal OSC	О	X24MOUT	91			
Reset							
RESET_N	System Reset	I	RESET_N	159			
FIQ							
NMI_N	External Fast Interrupt Request	I	NMI_N	158			
Boot							
UBOOT	Boot Mode	I	BOOT	157			
Others							
VRP	Reference voltage	A	VRP	80			
VRA1	Reference voltage	A	VRA1	83			
VRA2	Reference voltage	A	VRA2	82			

Table 5-4 Miscellaneous Signal Description

6. Electrical Characteristics

6.1. Absolute Maximum Ratings

The absolute maximum ratings (shown in Table 6-1) are the limits beyond which a device can not be stressed without the jeopardy of device damage or a reduction of device reliability.

Symbol	Pa	rameter	Min	Max	Unit
TS	Storage Temperature		-40	125	$\mathcal C$
II/O	In/Out current for input an	d output	-40	40	mA
MEGD	EGD /	HBM(human body model)	-4K	4K	VESD
VESD	ESD stress voltage	CDM(charged device model)	250	250	VESD
VCC	DC Supply Voltage for I/O		-0.3	3.6	V
VDD	DC Supply Voltage for Internal Digital Logic		-0.3	1.32	V
VCC_ANALOG	DC Supply Voltage for An	alog Part	-0.3	3.6	V
VCC_DRAM	DC Supply Voltage for DR	AM Part	-0.3	1.98	V
VCC_USB	DC Supply Voltage for US	В РНҮ	-0.3	3.6	V
VCC_LRADC	DC Supply Voltage for LRADC		-0.3	3.0	V
VCC_HP	DC Supply Voltage for He	adphone	-0.3	3.6	V
VDD_PLL	DC Supply Voltage for PL	L	-0.3	1.32	V

Table 6-1 Multiplexing Characteristics

6.2. Recommended Operating Conditions

All A13 modules are used under the operating Conditions contained in Table 6-2.

Symbol	Parameter	Min	Тур	Max	Unit
Та	Operating Temperature[Commercial]	-20	_	+70	$\mathcal C$
VCC	DC Supply Voltage for I/O	1.7	1.8~3.3	3.6	V
VDD	DC Supply Voltage for Internal Digital Logic	1.1	1.2	1.3	V
VCC_ANALOG	DC Supply Voltage for Analog Part	2.7	3.0	3.3	V
VCC_DRAM	DC Supply Voltage for DRAM Part	1.425	1.5~1.8	1.98	V
VCC_USB	DC Supply Voltage for USB PHY	3.0	3.3	3.45	V

Table 6-2 Recommended Operating Conditions

6.3. DC Electrical Characteristics

Table 6-3 summarizes the DC electrical characteristics of A13.

Symbol	Parameter	Min	Тур	Max	Unit
VIH	High-level input voltage	0.7*VCC	/	VCC+0.3	V
VIL	Low-level input voltage	-0.3	/	0.3*VCC	V
VHYS	Hysteresis voltage	/	/	/	mV
IIH	High-level input current	/	/	10	uA
IIL	Low-level input current	/	/	10	uA
VOH	High-level output voltage	VCC-0.2	/	VCC	V
VOL	Low-level output voltage	0	/	0.2	V
IOZ	Tri-State output leakage current	-10	/	10	uA
CIN	Input capacitance	/	/	5	pF
COUT	Output capacitance	/	/	5	pF

Table 6-3 DC Electrical Characteristics

6.4. Oscillator Electrical Characteristics

The A13 contains a 24.000 MHz oscillator.

The A13 device operation requires the following input clock:

- The 24.000MHz frequency is used to generate the main source clock of the A13 device.

6.4.1. 24MHz Oscillator Characteristics

Table 6-4 lists the 24.MHz crystal specifications.

Symbol	Parameter	Min	Тур	Max	Unit
1/(tCPMAIN)	Crystal Oscillator Frequency Range		24.000		MHz
tST	Startup Time	_	_		ms
	Frequency Tolerance at 25 °C	-50	_	+50	ppm
	Oscillation Mode	Fundamental			_
	Maximum change over temperature range	-50	_	+50	ppm
PON	Drive level	_	_	50	uW
CL	Equivalent Load capacitance	_		_	pF
CL1,CL2	Internal Load capacitance(CL1=CL2)	_		_	pF
RS	Series Resistance(ESR)	_		_	Ω
	Duty Cycle	30	50	70	%
CM	Motional capacitance	_	_		pF
CSHUT	Shunt capacitance	_	_		pF
RBIAS	Internal bias resistor				МΩ

Table 6-4 24MHz Oscillator Characteristics

6.5. Power up/down and Reset Specifications

The external voltage regulator and other power-on devices must provide the processor with a specific sequence of power and resets to ensure proper operation.

7. **PWM**

7.1. Overview

The output of the PWM is a toggling signal whose frequency and duty cycle can be modulated by its programmable registers. Each channel has a dedicated internal 16-bit up counter. If the counter reaches the value stored in the channel period register, it resets. At the beginning of a count period cycle, the PWMOUT is set to activate state and count from 0x0000.

The PWM divider divides the clock (24MHz) by 1-4096 according to the pre-scalar bits in the PWM control register.

In PWM cycle mode, the output will be a square waveform; the frequency is set to the period register. In PWM pulse mode, the output will be a positive pulse or a negative pulse.

7.2. PWM Signal Description

Signal Name	Description	Туре	Pin Name
PWM	PWM output	О	PB2

Table 7. PWM Signal Description

8. Async Timer Controller

8.1. Overview

The chip implements 6 timers.

Timer 0/1/2 can take their inputs from the PLL6/6 or OSC24M. They provide the operating system's scheduler interrupt. It is designed to offer maximum accuracy and efficient management, even for systems with long or short response time. They provide 32-bit programmable overflow counter and work in auto-reload mode or no-reload mode.

The watch-dog is used to resume controller operation by generating a general reset or an interrupt request when it is disturbed by malfunctions such as noise sand system errors. It features a down counter that allows a watchdog period of up to 16 seconds.

Timer 3 is used for OS to generate a periodic interrupt.

9. Sync Timer Controller

9.1. Overview

The chip implements 2 sync timers for high-speed counter.

10. Interrupt Controller

10.1. Overview

The interrupt controller features:

- Control the nIRQ and FIQ of a RISC Processor
- 4-Level Priority Controller
- External Sources of Edge-sensitive or Level-sensitive

Since the 4-level Priority Controller allows users to define the priority of each interrupt source, so higher priority interrupts can be serviced even if a lower priority interrupt is being treated.

11. DMA Controller

11.1. Overview

There are two kinds of DMA in the chip. One is Normal DMA with 8 channels, and the other is Dedicated DMA with 8 channels.

For normal DMA, only one channel can be active and the sequence is in accordance with the priority level. As for the dedicated DMA, at most 8-channel can be active at the same time if their source or destination does not conflict.

12. SDRAM Controller

12.1. Overview

The SDRAM Controller (DRAMC) provides a simple, flexible, burst-optimized interface to all industy-standard double data rate II (DDR2) ordinary SDRAM and Double data rate III (DDR3) ordinary SDRAM. It supports up to a 512MB memory address space.

The DRAMC automatically handles memory management, initialization, and refresh operations. It gives the host CPU a simple command interface, hiding details of the required address, page, and burst handling procedures. All memory parameters are runtime-configurable, including timing, memory setting, SDRAM type, and Extended-Mode-Register settings.

The DRAMC includes following features:

- Support DDR2 SDRAM and DDR3 SDRAM
- Support different memory device power voltage of 1.5V and 1.8V
- Support DDR2/3 SDRAM of clock frequency up to DDR1066
- Support memory capacity up to 512MB
- 15 address lines and 3 bank address lines
- Data IO size can up to 16-bit for DDR2 and DDR3
- Automatically generate initialization and refresh sequences
- Runtime-configurable parameters setting for application flexibility
- Clock frequency can be chosen for different applications
- Priority of transferring through multiple ports is programmable
- Support random read or write operation

12.2. SDRAM Signal Description

Signal Name	Description	Туре
DDR3_Dx	SDRAM Data Bus Bit	I/O
DDR3_DM1	SDRAM Data Mask1	О

DDR3_DM0	SDRAM Data Mask0	О
DQS0	SDRAM Data Strobe0	I/O
DQS0_N	SDRAM Data Strobe0 Invert	I/O
DQS1	SDRAM Data Strobe1	I/O
DQS1_N	SDRAM Data Strobe1 Invert	I/O
DDR3_CK	SDRAM Clock	0
DDR3_CK_N	SDRAM Clock Invert	0
DDR3_ODT	SDRAM ODT control signal	0
DDR3_RAS	SDRAM Row Address Strobe	0
DDR3_CAS	SDRAM Colomn Address Strobe	О
DDR3_Ax	SDRAM Data Address Bit	О
DDR3_CKE	SDRAM Clock Enable	0
DDR3_WE	SDRAM Write Enable	0
DDR3_BA2	SDRAM Bank Select 2	0
DDR3_BA1	SDRAM Bank Select 1	О
DDR3_BA0	SDRAM Bank Select 0	О
DZQ	SDRAM ZQ Calibration	A
SVREF	SDRAM Reference Input	Р

Table 12. SDRAM Signal Description

13. NAND Flash Controller

13.1. Overview

The NFC supports all NAND/MLC flash memory available in the market and new types can be supported by software re-configuration as well. It can support 2 NAND flash with 3.3 V voltage supply. There are 2 separate chip select lines (CE#) to connect up to 2 flash chips with 2 R/B signals.

The On-the-fly error correction code (ECC) is built in NFC to enhance reliability. BCH is implemented to detect and correct up to 64 bits error per 512 or 1024 bytes data. The on chip ECC and parity checking circuitry of NFC frees CPU for other tasks. The ECC function can be disabled by software.

The data can be transferred by DMA or by CPU memory-mapped IO method. The NFC provides automatic timing control to read or write external Flash. The NFC maintains the proper relativity for CLE, CE# and ALE control signal lines. Three kinds of modes are supported for serial read access: Mode 0 is the conventional serial access, Mode 1 for EDO type, and Mode 2 is for extension EDO type. In addition, NFC can monitor the status of R/B# signal line.

Block management and wear leveling management are implemented in software.

The NFC features:

- Support SLC/MLC/TLC flash and EF-NAND memory
- Software configure seed to randomize engine
- Software configure method for adaptability to a variety of system and memory types
- Support 8-bit Data Bus Width
- Support 1024, 2048, 4096, 8192, 16384 bytes size per page
- Support 3.3 V voltage supply Flash

- Up to 2 flash chips which are controlled by NFC_CEx#
- Support Conventional and EDO serial access method for serial reading Flash
- On-the-fly BCH error correction code which correcting up to 64 bits per 512 or 1024 bytes
- Corrected Error bits number information report
- ECC automatic disable function for all 0xff data
- NFC status information is reported by its registers
- Support interrupt
- One Command FIFO
- Support external DMA for data transfer
- Two 256x32-bit RAM for Pipeline Procession
- Support SDR, DDR and Toggle 1.0 NAND

13.2. NAND Flash Controller Signal Description

Signal Name	Description	Туре
NCE[1:0]	NAND FLASH Chip Select bit	О
NRB[1:0]	NAND FLASH Chip Ready/Busy bit	I
NWE	NAND FLASH Chip Write Enable	О
NRE	NAND FLASH Chip Read Enable	О
NALE	NAND FLASH Chip Address Latch Enable	О
NCLE	NAND FLASH Chip Command Latch Enable	О
NDQ[7:0]	NAND FLASH Data bit	I/O
NDQS	NAND FLASH Data Strobe	I/O

Table 13. NAND Flash Controller Signal Description

14. SD3.0 Controller

14.1. Overview

The SD3.0 controller can be configured as a Secure Digital Multimedia Card controller, which simultaneously supports Secure Digital memory (SD Memo), UHS-1 Card, Secure Digital I/O (SDIO), Multimedia Cards (MMC), eMMC Card and Consumer Electronics Advanced Transport Architecture (CE-ATA).

The SD3.0 controller features:

- Support Secure Digital memory protocol commands (up to SD3.0)
- Support Secure Digital I/O protocol commands
- Support Multimedia Card protocol commands (up to MMC4.3)
- Support CE-ATA digital protocol commands
- Support eMMC boot operation and alternative boot operation
- Support Command Completion signal and interrupt to host processor and Command
 Completion Signal disable feature
- Support one SD (Verson1.0 to 3.0) or MMC (Verson3.3 to 4.3) or CE-ATA device
- Support hardware CRC generation and error detection
- Support programmable baud rate
- Support host pull-up control
- Support SDIO interrupts in 1-bit and 4-bit modes
- Support SDIO suspend and resume operation
- Support SDIO read wait

- Support block size of 1 to 65535 bytes
- Support descriptor-based internal DMA controller
- Internal 16x32-bit (64 bytes total) FIFO for data transfer
- Support 3.3 V IO pad

14.2. SD3.0 Controller Signal Description

SDCx=SDC[2,0]

Signal Name	Description	Туре
SDCx_CLK	SDx/SDIOx/MMCx Clock	О
SDCx_CMD	SDx/SDIOx/MMCx Command Line	I/O
SDCx_D	SD Card data bit	I/O

Table 14. SD3.0 Controller Signal Description

15. Two Wire Interface

15.1. Overview

This Two Wire Controller is an interface between CPU host and the serial 2-Wire bus, which supports all standard 2-Wire transfer, including Slave and Master. The communication to the 2-Wire bus is carried out on a byte-wise basis using interrupt or polled handshaking. This 2-Wire Controller can be operated in standard mode (100K bps) or fast-mode (up to 400K bps). Multiple Masters and 10-bit addressing Mode are supported for this specified application. General Call Addressing is supported in Slave mode.

The 2-Wire Controller features:

- Software-programmable for Slave or Master
- Support Repeated START signal
- Support Multi-master systems
- Support 10-bit addressing with 2-Wire bus
- Perform arbitration and clock synchronization
- Own address and General Call address detection
- Interrupt on address detection
- Support speed up to 400K bits/s ('fast mode')
- Support operation from a wide range of input clock frequencies

15.2. TWI Controller Signal Description

TWIx=TWI[2:0]

Signal Name	Description	Туре
TWIx_SCK	TWI-BUS Clock for Channel x	I/O

TWIx_SDA	TWI-BUS Data for Channel x	I/O
----------	----------------------------	-----

Table 15. TWI Controller Signal Description

16. SPI Interface

16.1. Overview

The SPI is the Serial Peripheral Interface which allows rapid data communication with less software interrupts. The SPI module contains one 8x64 receiver buffer (RXFIFO) and one 8x64 transmit buffer (TXFIFO). It can work in two modes: Master mode and Slave mode.

It features:

- Full-duplex synchronous serial interface
- Configurable Master/Slave
- 8x64 FIFO for data transmit and receive
- Configurable Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK)
- Support Dedicated DMA

16.2. SPI Controller Signal Description

SPIx=SPI[2:0]

Signal Name	Description	Туре
SPIx_CS[1:0]	SPIx Chip Select signal	I/O
SPIx_MOSI	SPIx Master data Out, Slave data In	I/O
SPIx_MISO	SPIx Master data In, Slave data Out	I/O
SPIx_CLK	SPIx Clock signal	I/O

Table 16. SPI Controller Signal Description

17. UART Interface

17.1. Overview

The UART is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

The UART contains registers to control the character length, baud rate, parity generation/checking, and interrupt generation. Although there is only one interrupt output signal from the UART, there are several prioritized interrupt types responsible for its assertion. Each of the interrupt types can be separately enabled/disabled with the control registers.

The UART has 16450 and 16550 modes of operation, which are compatible with a range of standard software drivers. In 16550 mode, transmit and receive operations are both buffered by FIFOs. In 16450 mode, these FIFOs are disabled.

The UART supports word lengths from five to eight bits, an optional parity bit and 1, 1.5 or 2 stop bits, and is fully programmable by an AMBA APB CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch register are included, together with separate transmit and receive FIFOs. Eight modem control lines and a diagnostic loop-back mode are provided.

Interrupts can be generated for a range of TX Buffer/FIFO, RX Buffer/FIFO, Modem Status and Line Status conditions.

The UART includes the following features:

- Compatible with industry-standard 16550 UARTs
- 64-Bytes Transmit and receive data FIFOs
- DMA controller interface

- Software/ Hardware Flow Control
- Programmable Transmit Holding Register Empty interrupt
- Interrupt support for FIFOs, Status Change

17.2. UART Controller Signal Description

Signal Name	Description	Туре
UART0_TX	UART0 Transmit Data signal	О
UART0_RX	UART0 Receive Data signal	I
UART1_TX	UART1 Transmit Data signal	О
UART1_RX	UART1 Receive Data signal	I
UART2_TX	UART2 Transmit Data signal	О
UART2_RX	UART2 Receive Data signal	I
UART2_CTS	UART2 Clear To Send signal	I
UART2_RTS	UART2 Request To Send signal	О
UART3_TX	UART3 Transmit Data signal	О
UART3_RX	UART3 Receive Data signal	I
UART3_CTS	UART3 Clear To Send signal	I
UART3_RTS	UART3 Request To Send signal	О

Table 17. UART Controller Signal Description

18. CIR Interface

18.1. Overview

The CIR features:

- Full physical layer implementation
- Support CIR for remote control or wireless keyboard
- Dual 8x16-bit FIFO for data transfer
- Programmable FIFO thresholds
- Support Interrupt and DMA

CIR receiver is implemented in hardware to save CPU resource. It samples the input signals on the programble frequency and records these samples into RX FIFO when one CIR signal is found on the air. The CIR receiver uses Run-Length Code (RLC) to encode pulse width, and the encoded data is buffered in a 64 levels and 8-bit width RX FIFO: the MSB bit is used to record the polarity of the receiving CIR signal (The high level is represented as 1 and the low level is represented as 0), and the rest 7 bits are used for the length of RLC. The maximum length is 128. If the duration of one level (high or low) is more than 128, another byte is used. Since there are always some noises in the air, a threshold can be set to filter the noises to reduce system loading and improve system stability.

18.2. CIR Controller Signal Description

Signal Name	Description	Туре
IR_TX	CIR Transmit Data signal	О
IR_RX	CIR Receive Data signal	I

Table 18. CIR Controller Signal Description

19. USB DRD Controller

19.1. Overview

The USB DRD is dual-role controller supporting Host and device functions. It can also be configured as a Host-only or Device-only controller, full compliant with the USB 2.0 Specification. The USB DRD can support high-speed (HS, 480-Mbps), full-speed (FS, 12-Mbps), and low-speed (LS, 1.5-Mbps) transfers in Host mode, support high-speed (HS, 480-Mbps) and full-speed (FS, 12-Mbps) in Device mode.

The USB2.0 DRD controller (SIE) features:

- 64-Byte Endpoint 0 for Control Transfer
- Support up to 5 User-Configurable Endpoints for Bulk , Isochronous, Control and Interrupt bi-directional transfers
- Support High-Bandwidth Isochronous & Interrupt transfers
- Support point-to-point and point-to-multipoint transfer in both Host and Peripheral mode

19.2. USB DRD Controller Signal Description

Signal Name	Description	Туре
UDM0	USB0 DRD DM	IO
UDP0	USB0 DRD DP	IO

Table 19. USB DRD Controller Signal Description

20. USB HOST Controller

20.1. Overview

USB Host Controller is fully compliant with the USB 2.0 specification, Enhanced Host Controller Interface (EHCI) Specification, Revision 1.0, and the Open Host Controller Interface (OHCI) Specification Release 1.0a. The controller supports high-speed, 480-Mbps transfers (40 times faster than USB 1.1 full-speed mode) using an EHCI Host Controller, as well as full and low speeds through one or more integrated OHCI Host Controllers.

It features:

- Include an internal DMA Controller for data transfer with memory.
- Comply with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0, and the
 Open Host Controller Interface (OHCI) Specification, Version 1.0a.
- Support High-Speed (HS, 480-Mbps), Full-Speed (FS, 12-Mbps), and Low-Speed (LS, 1.5-Mbps) Device.
- Support only one USB Root Port shared between EHCI and OHCI

20.2. USB HOST Controller Signal Description

Signal Name	Description	Туре
UDM1	USB1 HOST DM	IO
UDP1	USB1 HOST DP	IO

Table 20. USB Host Controller Signal Description

21. Audio Codec

21.1. Overview

The embedded Audio Codec is a high-quality stereo audio codec with headphone amplifier.

It features:

- On-chip 24-bit DAC for play-back
- On-chip 24-bit ADC for recorder
- Support analog/ digital volume control
- Support 48K and 44.1K sample family
- Support 192K and 96K sample
- Support Microphone recorder
- Stereo headphone amplifier that can be operated in capless headphone mode
- Support Virtual Ground to automatically change to True Ground to protect headphone amplifier and make function work in normal mode

21.2. Audio Codec Signal Description

Signal Name	Description	Туре
HPL	Headphone Left channel output	0
HPR	Headphone Right channel output	О
HPCOM	Headphone amplifier output	О
НРВР	Headphone Bypass output	О
MICIN1	MIC1 input	I

Table 21. Audio Codec Signal Description

22. LRADC

22.1. Overview

LRADC is 6-bit resolution and can work up to maximum conversion rate of 250Hz.

It features:

- Support APB 32-bit bus width
- Support interrupt
- Support hold key and general key
- Support single key and continue key mode
- 6-bit resolution
- Voltage input range between 0 to 2V
- Sample rate up to 250Hz

22.2. LRADC Signal Description

Signal Name	Description	Туре
LRADC	Low Resolution ADC input(6 bits)	I

Table 22. LRADC Signal Description

23. Touch Panel Controller

23.1. Overview

The controller is a 4-wire resistive touch screen controller, includes 12-bit resolution A/D converter. Especially, it provides the ability of dual touch detection. The controller through the implementation of the two A/D conversion has been identified by the location of the screen of single touch, in addition to measurable increase in pressure on the touch screen.

It features:

- 12-bit SAR type A/D converter
- 4-wire I/F
- Dual touch detect
- Touch-pressure measurement (Support program set threshold)
- Sampling frequency: 2MHz (max)
- Single-ended conversion of touch screen inputs and ratiometric conversion of touch screen inputs
- TACQ up to 262ms
- Median and averaging filter to reduce noise
- Pen down detection, with programmable sensitivity
- Support X, Y change function

23.2. Touch Panel Signal Description

Signal Name	Description	Туре
X[2:1]	Touch Panel ADC input	AI
Y[2:1]	Touch Panel ADC input	AI

Table 23. Touch Panel Signal Description

24. CMOS Sensor Interface

24.1. Overview

The CMOS Sensor Interface (CSI) features:

- 8-bit input data
- Support CCIR656 protocol for NTSC and PAL
- 3 parallel data paths for image stream parsing
- Support Received data double buffer
- Parsing bayer data into planar R, G, B output to memory
- Parsing interlaced data into planar or MB Y, Cb, Cr output to memory
- Pass raw data direct to memory
- All data transmit timing can be adjusted by software
- Luminance statistical value

24.2. CSI Signal Description

Signal Name	Description	Туре
CSI_PCLK	Camera Sensor input Pixel Clock	I
CSI_MCLK	Camera Sensor output Clock	О
CSI_HSYNC	Camera Sensor Horizontal Sync signal	I
CSI_VSYNC	Camera Sensor Verizontal Sync signal	I
CSI_D[7:0]	Camera Sensor Data Bit	I/O

Table 24. Camera sensor Signal Description

25. Universal LCD/TV Timing Controller

25.1. Overview

TCON in A13 is of high flexibility in timing configuration as well as LCD module compatibility.

25.2. LCD Signal Description

Signal Name	Description	Туре
LCD_CLK	LCD RGB Pixel Clock	I/O
LCD_DE	LCD RGB Data Enable	I/O
LCD_HSYNC	LCD RGB Horizontal Sync signal	I/O
LCD_VSYNC	LCD RGB Verizontal Sync signal	I/O
LCD_Dx	LCD Pixel Data Bit x	I/O

Table 25. LCD Signal Description

26. Port Controller

26.1. Port Description

The chip has 7 ports for multi-functional input/out pins. They are:

- Port B(PB): 10input/output port
- Port C(PC): 17 input/output port
- Port D(PD): 22 input/output port
- Port E(PE): 12 input/output port
- Port F(PF): 6 input/output port
- Port G(PG): 9 input/output port

These ports can be easily configured by software for various system configurations.

27. Declaration

This A13 datasheet is the original work and copyrighted property of Allwinner Technology ("Allwinner"). Reproduction in whole or in part must obtain the written approval of Allwinner and give clear acknowledgement to the copyright owner.

The information furnished by Allwinner is believed to be accurate and reliable. Allwinner reserves the right to make changes in circuit design and/or specifications at any time without notice. Allwinner does not assume any responsibility and liability for its use. Nor for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Allwinner. This datasheet neither states nor implies warranty of any kind, including fitness for any particular application.