INSTALLATION RESTORATION PROGRAM

FINAL

Installation Restoration Program
Site Investigation Report
Volume II: Appendices

183rd Fighter Group
Illinois Air National Guard, Capital Airport
Springfield, Illinois

FEBRUARY 1996

HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM Environmental Restoration and Waste Management Programs

Oak Ridge, Tennessee 37831-7606
managed by MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average "mour per response, including the time for insleaving instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the infliction of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to a shington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis High May, Suite 1204, Arrington, 24, 22202-4102, and to the Office of Management and Budget, Paperwork Reduction Projectio(1404-0188), Washington, DC 20503.

Oavis Highway, Suite 1204 Arrington, 74, 22202-430			
.1. AGENCY USE ONLY (Leave blank)	2. REPORTED Tuary 1996	3. RESORTIHVESTAN	PLINATE SOMERED
4 Site IANO Stigation Report, Illin Group, Capital Airport, Spring			5. FUNDING NUMBERS
6. AUTHOR(S) NA			
7. PERFORMING ORGANIZATION NAM The Earth Technology Corp. Oak Ridge, TN 37850	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
	ing memberahan pengahan dia	en e	1
9. SPONSORING MONITORING AGENC ANG/CEVR 3500 Fetchet Avenue Andrews AFB MD 20762-515			10. SPONSORING MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
Approved for public release; distribution is unlimited			12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) Site Investigation Report, Illin Illinois, Volume II - Appendice sites (Site 1 - POL Storage Are Installation Restoration Progranalyzed. Surface water and sthe dissolved hydrocarbon plus Remedial Investigation to define recommended for Site 2.	es. This is the second volues, and Site 2 - Old Fire Tam. Soil and groundwate sediment samples were come using existing monitor	ume of a two volume raining Area) were i r samples were colle llected from Site 2 a ring wells was recom	site investigation report. Two nvestigated under the cted from both sites and nd analyzed. Monitoring of mended for Site 1. A
en e			
14. SUBJECT, TERMS Installation Restoration Progr Compensation and Liability A Illinois Air National Guard; Sp	ct (CERCLA); Air Nationa	ronmental Response al Guard; Site Invest	igation, 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. UnRELESSINED	SECURITY CLASSIFICATION OF THIS PAGELassified	19. SECURITY CLASSIFIED	CATION 20. LIMITATION OF ABSTRACT

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- **8lock 3.** Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- **Block 5.** <u>Funding Numbers</u>. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract

PR - Project

G - Grant PE - Program TA - Task WU - Work Unit

Element

Accession No.

- **Block 6.** Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- **Block 7.** <u>Performing Organization Name(s) and Address(es)</u>. Self-explanatory.
- Block 8. <u>Performing Organization Report</u>
 <u>Number</u>. Enter the unique alphanumeric report
 number(s) assigned by the organization
 performing the report.
- Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- Block 10. <u>Sponsoring/Monitoring Agency</u> Report Number. (If known)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement</u>. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

- **Block 13.** Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
- **Block 14.** Subject Terms. Keywords or phrases identifying major subjects in the report.
- **Block 15.** <u>Number of Pages</u>. Enter the total number of pages.
- **Block 16.** <u>Price Code</u>. Enter appropriate price code (NTIS only).
- Blocks 17. 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

FINAL

VOLUME II: APPENDICES

INSTALLATION RESTORATION PROGRAM SITE INVESTIGATION REPORT

183rd FIGHTER GROUP
ILLINOIS AIR NATIONAL GUARD, CAPITAL AIRPORT
SPRINGFIELD, ILLINOIS

Submitted to:

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND

Submitted by:

HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM LOCKHEED MARTIN ENERGY SYSTEMS Oak Ridge, Tennessee 37831

for the:

U. S. DEPARTMENT OF ENERGY

Prepared by:

THE EARTH TECHNOLOGY CORPORATION
Oak Ridge, Tennessee 37830

FEBRUARY 1996

TABLE OF CONTENTS

SITE INVESTIGATION REPORT 183rd FIGHTER GROUP ILLINOIS AIR NATIONAL GUARD, CAPITAL AIRPORT SPRINGFIELD, ILLINOIS

TABLE OF CONTENTS

^				٠			
	^	^	۰		^	-	۰
S	C	u	Ł	ı	u		1

APPENDIX A:	Field Change Request Forms
APPENDIX B:	Groundwater Elevation Measurements and Aquifer Test Data B-1
APPENDIX C:	Boring Logs, Geotechnical Data, and Well Construction Forms C-1
APPENDIX D:	Soil Gas, Groundwater and Soil Screening Results D-1
APPENDIX E:	On-site Field GC Soil Analytical Results E-1
APPENDIX F:	Quality Assurance/Quality Control Evaluation F-1
APPENDIX G:	Fixed Base Laboratory Data Validation Summaries and Data G-1
APPENDIX H:	Groundwater Development, and Soil and Groundwater Sampling
	Forms
APPENDIX I:	Surveying Data
APPENDIX J:	Investigation Derived Waste: Analytical Results J-1

Appendix A: Field Change Request Forms

Field Change Request Log

Project name <u>CAPI ta 1 5</u> L	Project number 91/657-03

Field change request No.	Level of change*	Activity	Date Initiated	Final Disposition	Remarks
/	Minc	50il SAUPING	11-13	Approved-verbal	•
2	Minc	50:1 BORINO	11-13	APPROVED - 11	
3	Min C	DECON	11-13	APPROVE d_11	
4	Min C	SAMPling	11-13	Approved_11	
5	Min C	SAMPLING GW SAMPLING	1-16-93		
		•			
	·				
-		-			
	, etca				
	•				
					<u>.</u>

^{*} Min C (= minor change)

Maj C (= major change)

MPI (= major project impact)

Field Change No. _

Page of
· ·
ancital et
PROJECT CAPITAL SI
PROJECT NO. 911657-03
APPLICABLE DOCUMENT: FIAT SAmpling and Analysis Plan Capital September 1992
DESCRIPTION: September 1992
Pg 2-26 2.5.1 Soil Borings - soil
samples will be obtained at a foot intervals
rather than 5 foot intervals
Shallow) aroundwater (~ 10 ft) 2 foot interests
will provide more information on distribution
of Contaminants.
RECOMMENDED DISPOSITION: SAMPLE EVERY 2 FOST INTERVALS
SAMPLE PURY 2 toot intervals
IMPACT ON PRESENT AND COMPLETED WORK:
NONE
FINAL DISPOSITION:
· · · · · · · · · · · · · · · · · · ·
REQUESTED BY: FIELD / PROJECT MANAGER: QOOK: & MCKOO /PM
APPROVALS: HAZWRAP PROJECT MANAGER:

Field Change No. 2

Page of
PROJECT CApital SI
PROJECT NO. 911657-03
APPLICABLE DOCUMENT: Final SAP CAPITAL SEPTEMBER 1992
DESCRIPTION:
Pg 2-26 2.5.1 Soil Borings - Samples will be obtained by driving a 3in ID - 300 pound
will be obtained by driving a 3in ID - 300 pound
hammer, or pushing the split spoon if possible.
REASON:
1 geology Allows, pushing the spoon railer
If geology Allows, pushing the spoon rather than druing it is appropriate. Information can still be obtained regarding relative denouty, etc.
3411 be obtained regulating relative density, etc.
RECOMMENDED DISPOSITION: Split spoon will be pushed where,
appropriate
IMPACT ON PRESENT AND COMPLETED WORK:
·
FINAL DISPOSITION:
REQUESTED BY: FIELD / PROJECT MANAGER: Soon 9 McKee / PM
APPROVALS:
HAZWRAP PROJECT MANAGER:

Field Change No.

Page of
PROJECT CAPITAL SI
PROJECT NO. 91/657-03
APPLICABLE DOCUMENT: FINAL SI SAP September 1992
Table 2-4 Decon procedures.
feplace hexage ruse with methanol rinse
REASON: This change complès with New HAZWRAP dece PROCEDURES
RECOMMENDED DISPOSITION: Adopt news decon procedure
IMPACT ON PRESENT AND COMPLETED WORK:
FINAL DISPOSITION:
REQUESTED BY: FIELD / PROJECT MANAGER: Jun & McKee / PM
APPROVALS: HAZWRAP PROJECT MANAGER:

Field Change No. _

Page of
PROJECT <u>Capital</u> 5I
PROJECT NO. 911657-03
APPLICABLE DOCUMENT: Field Change Request #1
DESCRIPTION:
Change sampling frequency from every Z feet to continuously
Lat to continuous lu
REASON:
Water table is so shallow continuous sampling enables field crew to more accurately obtain samples above the water table.
enables tield crew to more accurately obtain samples
Above the wark table.
RECOMMENDED DISPOSITION:
Adopt change
IMPACT ON PRESENT AND COMPLETED WORK:
FINAL DISPOSITION:
REQUESTED BY:
REQUESTED BY: FIELD / PROJECT MANAGER: Quan Mkee / PM
APPROVALS:
HAZWRAP PROJECT MANAGER:

	Field Change No.
	Page of
\overrightarrow{m}	
PROJECT SITE Investigation Peneral	Capital
PROJECT NO. 9/1/057-03	
APPLICABLE DOCUMENT: 5I WP	
DESCRIPTION:	
ONE SAMPLE PER WILL STOVIA BE O	petained; however
Well # CSIMWaGWI should	be resampled
for semivolatiles.	
DE LCOU	
Loss of SURRogate d-phenol.	This results in
the state positive bits avalifi	red L (LOW) and
tos 5 of surrogate d-phenol. The state positive hits qualification from the grantitation limits income	Isable (R).
RECOMMENDED DISPOSITION: RESample well Crimw20w1	l Cor semi
volatiles only.	
IMPACT ON PRESENT AND COMPLETED WORK:	
menimal. Full crew is in we	cisi tu so no
mobilesation costs. There will	be a slight
delay in completion of final	data analysis
but this impact is minimal	
FINAL DISPOSITION:	
	· · · · · · · · · · · · · · · · · · ·
REQUESTED BY: FIELD / PROJECT MANAGER: Slaw MCKee Pr	M
APPROVALS: HAZWRAP PROJECT MANAGER:	

Appendix B: Groundwater Elevation Measurements and Aquifer Test Data

The Earth Technology Corporation

Potentiometric Level Measurement (Tape, Electric Sounder)

ō

Drawing of Well and Measuring Point Airput Authority Stainless Screen Type PE-PUC, DW Stainless Step Elevation Difference between Ground Surface and Measuring Point-Project No. 9/1657 OWNER Capted Well Depth. Elevation of Measuring Pointž State Permit No. Casing Type PZ-PVC, B Notch Use of Water-Project Name Capital Airport me/1# Elevation of Ground Surface Screened/Open Intervals Date of Completion Aquifer(s) Screened — Previous Static Level Well Designation Ритр Туре — Location __ Diameter --

Rome (s - soil 2 Soil Burrels Pull 1 Bmoth 2 Soil Barrels full JM-1105 Remarks りで Burne 1 mg/ 2 Pull Recorded PHC ピチ -ニ = 4 Instrument Type And Number 575.63 518.87 577.86 576,37 81818 577.36 Level Above MSL Water Water Level Below Grosnd Surface Inskument Correction 588.08 Correction 583.05 586.39 586.81 885.4 5,85.0 Tape Reading at Water 8.43 Mark 6.87 5.69 803 9.21 Kape Reading At ModSuring Point 702 WM 102mh My 203 70024 PZ 203 10231 (24 Hr. Clock) 1357 123 13/6 13/0 13/8 13/3 76-6-21 Date (Mo. Da. Yr) 76-1-21 26-6-21 26-4-20 26-2-21 12-7-92

Checked by ___

Comments

Form F-1004 9/1/91

B-1

The Earth Technology Corporation

Ş

Potentiometric Level Measurement (Tape, Electric Sounder)

Project Name Capital Aichert	Well Designation A State Permit No. A Owner ILL ALGE 153 of Take Date of Correlation 12-7-92. Use of Water Well Depth under often to Go Bonk Diameter 2" Casing Type 2 PLC, MW Stankes Screen Type 2-PLC, MW Stankes Screen Broke Screen Brokes Screen Brokes Screen Brokes Screen Brokes Screen Brokes Brokes Date Brokes Brokes Screen Brokes Br	Aquifer(s) Screened Pump Type	Elevation of Ground Surface Elevation Difference between Ground Surface and Magning Daise

Drawing of Well and Measuring Point

		PZORMO#	Depth to water	<u>اور</u>		B			Diawing (Drawing of Well and Measuring Point
Date (Mo. Da. Yr)	Time (24 Hr. Clock)	Tape Reading At Measuring Point	Tape Reading at Water Mark	M.P. Correction	Instrument	Water Level Below Ground	Water Level Above	Instrument Type And Number	Recorded	Remarks
13.7-93 1339	1339	DZ 103	,10%	582.50			576.49		DAC	25.00
(6-6-6)	1343	(37-92 1343 MW 102	4.34	582,41			578.17			15 11 35 11 35
19.7.61	1346	1346 PZ 101	[4.04	582.48			576.34		=	12 11 2
Ch-L.C	1355	1355 mm 101	2.11	580.78			573.67		1	15-11 Ber 11/5
12 7-92	135%	12 7-92 1356 PC 103	7.51	583.5			575.93		= =	0 4 1 0 0 1 5 0 1 4 0
12-7-22 1401		501WM	7.04	583.00			575.76		1.	المراز المرازد
12-7-92 1404	17241	mw1 c4	7.25	583.15			574.9		=	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12-7-82 1406 PC164	140,0	P.C169	6.38	583.78			577,5		-	F 3-65
										(M) (M)

Comments __

Checked by __

Form F-1004 9/1/91

B-2

Monitoring well 101 slug in

S/N SDEE-03A-SN-3230 Block

Program: STEP TEST

Readings: 134
Start Time 14:32:54
Start Date 04/16
Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

Time	Chnl 1	
14:32:54	6.7932	-0.0169
14:32:56	7.1481	0.338
14:32:58	7.0411	0.231
14:33:00	7.0016	0.1915
14:33:02	6.9509	0.1408
14:33:04	6.9678	0.1577
14:33:06	6.9059	0.0958
14:33:08	6.9284	0.1183
14:33:10	6.9284	0.1183
14:33:12	7.1030	0.2929
14:33:14	6.9171	0.107
14:33:16	7.1256	0.3155
14:33:18	6.9509	0.1408
14:33:20	6.8946	0.0845
14:33:22	6.9059	0.0958
14:33:24	6.9002	0.0901
14:33:26	6.8946	0.0845
14:33:28	6.8890	0.0789
14:33:30	6.8890	0.0789
14:33:32	6.8890	0.0789
14:33:34	6.8890	0.0789
14:33:36	6.8833	0.0732
14:33:38	6.8833	0.0732
14:33:40	6.8777	0.0676
14:33:42	6.8777	0.0676
14:33:44	6.8777	0.0676

14:33:46	6.8721	0.062
14:33:48	6.8721	0.062
14:33:50	6.8721	0.062
14:33:52	6.8721	0.062
14:33:54	6.8721	0.062
14:33:56	6.8721	0.062
14:33:58	6.8608	0.0507
14:34:00	6.8552	0.0451
14:34:02	6.8552	0.0451
14:34:04	6.8552	0.0451
14:34:06	6.8552	0.0451
14:34:08	6.8552	0.0451
14:34:10	6.8552	0.0451
14:34:12	6.8552	0.0451
14:34:14	6.8495	0.0394
14:34:16	6.8495	0.0394
14:34:18	6.8495	0.0394
14:34:20	6.8495	0.0394
14:34:22	6.8495	0.0394
14:34:24	6.8439	0.0338
14:34:26	6.8439	0.0338
14:34:28	6.8439	0.0338
14:34:30	6.8439	0.0338
14:34:32	6.8439	0.0338
14:34:34	6.8439	0.0338
14:34:36	6.8439	0.0338
14:34:38	6.8383	0.0282
14:34:40	6.8383	0.0282
14:34:42	6.8383	0.0282
14:34:44	6.8383	0.0282
14:34:46	6.8383	0.0282
14:34:48	6.8383	0.0282
14:34:50	6.8383	0.0282
14:34:52	6.8383	0.0282

14:35:02	6.8326	0.0225
14:35:12	6.8326	0.0225
14:35:22	6.8326	0.0225
14:35:32	6.8270	0.0169

14:35:42	6.8270	0.0169
14:35:52	6.8270	0.0169
14:36:02	6.8214	0.0113
14:36:12	6.8214	0.0113
14:36:22	6.8214	0.0113
14:36:32	6.8214	0.0113
14:36:42	6.8214	0.0113
14:36:52	6.8214	0.0113
14:37:02	6.8214	0.0113
14:37:12	6.8214	0.0113
14:37:22	6.8214	0.0113
14:37:32	6.8157	0.0056
14:37:42	6.8157	0.0056
14:37:52	6.8157	0.0056
14:38:02	6.8157	0.0056
14:38:12	6.8157	0.0056
14:38:22	6.8157	0.0056
14:38:32	6.8157	0.0056
14:38:42	6.8157	0.0056
14:38:52	6.8157	0.0056
14:39:02	6.7932	-0.0169
14:39:12	6.7932	-0.0169
14:39:22	6.7932	-0.0169
14:39:32	6.7932	-0.0169
14:39:42	6.7932	-0.0169
14:39:52	6.7932	-0.0169
14:40:02	6.7932	-0.0169
14:40:12	6.7932	-0.0169
14:40:22	6.7932	-0.0169
14:40:32	6.7932	-0.0169
14:40:42	6.7932	-0.0169
14:40:52	6.7932	-0.0169
14:41:02	6.7932	-0.0169
14:41:12	6.7932	-0.0169
14:41:22	6.7932	-0.0169
14:41:32	6.7932	-0.0169
14:41:42	6.7932	-0.0169
14:41:52	6.7932	-0.0169
14:42:02	6.7932	-0.0169
14:42:12	6.7932	-0.0169
14:42:22	6.7932	-0.0169
14:42:32	6.7932	-0.0169
14:42:42	6.7932	-0.0169
14:42:52	6.7932	-0.0169

		-6.8101
		-6.8101
		-6.8101
		-6.8101
		-6.8101
		-6.8101
14:43:22	6.7932	-0.0169
14:43:52	6.7932	-0.0169
14:44:22	6.7932	-0.0169
14:44:52	6.7932	-0.0169
14:45:22	6.7932	-0.0169
14:45:52	6.7876	-0.0225
14:46:22	6.7876	-0.0225
14:46:52	6.7876	-0.0225
14:47:22	6.7932	-0.0169
14:47:52	6.7932	-0.0169
14:48:22	6.7932	-0.0169
14:48:52	6.7932	-0.0169
14:49:22	6.7932	-0.0169
14:49:52	6.7932	-0.0169
14:50:22	6.7932	-0.0169
14:50:52	6.7932	-0.0169
14:51:22	6.7932	-0.0169
14:51:52	6.7932	-0.0169
14:52:22	6.7932	-0.0169
14:52:52	6.7988	-0.0113
14:53:22	6.8101	0
14:53:52	6.8101	0
14:54:22	6.8157	0.0056
14:54:52	6.8045	-0.0056
14:55:22	6.8157	0.0056
14:55:52	6.8101	0
Test 1 ab	ted at	

Monitoring Well MW101 slug ou

S/N SDEE-03A-SN-3230 Block

Program: STEP TEST

Readings: 127

Start Time 14:57:34

Start Date 04/16

Range: 0010 PSI

Channels: 1

Units:

Ft-H2O

Step 1

Interval 00:00:02

Time	Chnl 1	Drawdow
14:57:34	5.7399	1.0533
14:57:36	5.9877	0.8055
14:57:38	6.1792	0.614
14:57:40	6.3426	0.4506
14:57:42	6.4440	0.3492
14:57:44	6.5116	0.2816
14:57:46	6.5566	0.2366
14:57:48	6.5848	0.2084
14:57:50	6.6073	0.1859
14:57:52	6.6242	0.169
14:57:54	6.6355	0.1577
14:57:56	6.6468	0.1464
14:57:58	6.6580	0.1352
14:58:00	6.6637	0.1295
14:58:02	6.6749	0.1183
14:58:04	6.6749	0.1183
14:58:06	6.6806	0.1126
14:58:08	6.6862	0.107
14:58:10	6.6918	0.1014
14:58:12	6.6975	0.0957
14:58:14	6.6975	0.0957
14:58:16	6.7031	0.0901
14:58:18	6.7031	0.0901
14:58:20	6.7087	0.0845
14:58:22	6.7087	0.0845
14:58:24	6.7144	0.0788

14:58:26	6.7144	0.0788
14:58:28	6.7200	0.0732
14:58:30	6.7200	0.0732
14:58:32	6.7256	0.0676
14:58:34	6.7256	0.0676
14:58:36	6.7256	0.0676
14:58:38	6.7256	0.0676
14:58:40	6.7313	0.0619
14:58:42	6.7313	0.0619
14:58:44	6.7313	0.0619
14:58:46	6.7369	0.0563
14:58:48	6.7369	0.0563
14:58:50	6.7369	0.0563
14:58:52	6.7369	0.0563
14:58:54	6.7425	0.0507
14:58:56	6.7425	0.0507
14:58:58	6.7425	0.0507
14:59:00	6.7425	0.0507
14:59:02	6.7425	0.0507
14:59:04	6.7425	0.0507
14:59:06	6.7481	0.0451
14:59:08	6.7481	0.0451
14:59:10	6.7481	0.0451
14:59:12	6.7538	0.0394
14:59:14	6.7481	0.0451
14:59:16	6.7538	0.0394
14:59:18	6.7313	0.0619
14:59:20	6.7313	0.0619
14:59:22	6.7313	0.0619
14:59:24	6.7313	0.0619
14:59:26	6.7313	0.0619
14:59:28	6.7313	0.0619
14:59:30	6.7313	0.0619
14:59:32	6.7313	0.0619
01		6.7932
Step 2	00.00.10	6.7932
Interval	00:00:10	6.7932
Readings	48	6.7932
Timo	Chal 1	6.7932
Time	Chnl 1	6.7932
14:59:42 14:59:52	6.7369 6.7425	0.0563 0.0507
14.59.52 15:00:02	6.7425 6.7425	0.0507
15:00:02	6.7425 6.7425	0.0507
15.00.12	0.7423	0.0507

15:00:22	6.7481	0.0451
15:00:32	6.7481	0.0451
15:00:42	6.7538	0.0394
15:00:52	6.7538	0.0394
15:01:02	6.7538	0.0394
15:01:12	6.7538	0.0394
15:01:22	6.7594	0.0338
15:01:32	6.7594	0.0338
15:01:42	6.7594	0.0338
15:01:52	6.7594	0.0338
15:02:02	6.7594	0.0338
15:02:12	6.7594	0.0338
15:02:22	6.7594	0.0338
15:02:32	6.7650	0.0282
15:02:42	6.7650	0.0282
15:02:52	6.7650	0.0282
15:03:02	6.7650	0.0282
15:03:12	6.7650	0.0282
15:03:22	6.7650	0.0282
15:03:32	6.7707	0.0225
15:03:42	6.7707	0.0225
15:03:52	6.7707	0.0225
15:04:02	6.7707	0.0225
15:04:12	6.7707	0.0225
15:04:22	6.7707	0.0225
15:04:32	6.7763	0.0169
15:04:42	6.7763	0.0169
15:04:52	6.7763	0.0169
15:05:02	6.7763	0.0169
15:05:12	6.7819	0.0113
15:05:22	6.7819	0.0113
15:05:32	6.7819	0.0113
15:05:42	6.7819	0.0113
15:05:52	6.7819	0.0113
15:06:02	6.7819	0.0113
15:06:12	6.7819 6.7810	0.0113 0.0113
15:06:22 15:06:32	6.7819 6.7819	0.0113
15:06:42	6.7819	0.0113
15:06:52	6.7819	0.0113
15:07:02	6.7819	0.0113
15:07:02	6.7819	0.0113
15:07:12	6.7819	0.0113
15:07:22	6.7819	0.0113
10.07.02	0.7013	0.0110

	6.7932
	6.7932
00:00:30	6.7932
40	6.7932
	6.7932
Chnl 1	6.7932
6.7819	0.0113
6.7819	0.0113
6.7876	0.0056
6.7876	0.0056
6.7876	0.0056
6.7876	0.0056
6.7876	0.0056
6.7932	0
6.7932	0
6.7932	0
6.7932	0
6.7932	0
6.7932	0
6.7932	0
6.8101	-0.0169
0.3098	
0.2478	
0.2196	
0.2027	
ted at	
	40 Chnl 1 6.7819 6.7819 6.7876 6.7876 6.7876 6.7876 6.7876 6.7932

Monitoring Well MW103 slug in no.2

S/N SDEE-03A-SN-3230 Block 1

Program: STEP TEST

Readings: 164 Start Time 08:14:22 Start Date 04/16 Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

Time	Chnl 1	Drawdown
08:14:22	9.8631	0.9688
08:14:24	9.7955	0.9012
08:14:26	9.7392	0.8449
08:14:28	9.6885	0.7942
08:14:30	9.6491	0.7548
08:14:32	9.6153	0.721
08:14:34	9.5871	0.6928
08:14:36	9.5590	0.6647
08:14:38	9.5364	0.6421
08:14:40	9.5139	0.6196
08:14:42	9.4914	0.5971
08:14:44	9.4745	0.5802
08:14:46	9.4519	0.5576
08:14:48	9.4350	0.5407
08:14:50	9.4181	0.5238
08:14:52	9.3956	0.5013
08:14:54	9.3843	0.49
08:14:56	9.3674	0.4731
08:14:58	9.3505	0.4562
08:15:00	9.3336	0.4393
08:15:02	9.3224	0.4281
08:15:04	9.3111	0.4168
08:15:06	9.2942	0.3999
08:15:08	9.2829	0.3886
08:15:10	9.2717	0.3774
08:15:12	9.2660	0.3717

08:15:14	9.2548	0.3605
08:15:16	9.2435	0.3492
08:15:18	9.2323	0.338
08:15:20	9.2210	0.3267
08:15:22	9.2154	0.3211
08:15:24	9.2041	0.3098
08:15:26	9.1985	0.3042
08:15:28	9.1872	0.2929
08:15:30	9.1816	0.2873
08:15:32	9.1759	0.2816
08:15:34	9.1647	0.2704
08:15:36	9.1590	0.2647
08:15:38	9.1534	0.2591
08:15:40	9.1478	0.2535
08:15:42	9.1421	0.2478
08:15:44	9.1365	0.2422
08:15:46	9.1309	0.2366
08:15:48	9.1252	0.2309
08:15:50	9.1196	0.2253
08:15:52	9.1140	0.2197
08:15:54	9.1083	0.214
08:15:56	9.1083	0.214
08:15:58	9.1027	0.2084
08:16:00	9.0971	0.2028
08:16:02	9.0914	0.1971
08:16:04	9.0914	0.1971
08:16:06	9.0858	0.1915
08:16:08	9.0858	0.1915
08:16:10	9.0802	0.1859
08:16:12	9.0745	0.1802
08:16:14	9.0745	0.1802
08:16:16	9.0689	0.1746
08:16:18	9.0633	0.169
08:16:20	9.0633	0.169
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-8.8943
Step 2	00.00.40	-8.8943
Interval	00:00:10	-8.8943
Readings	48.0000	39.1057
T:	Ohal d	-8.8943
Time	Chnl 1	-8.8943
08:16:30	9.0464	0.1521
08:16:40	9.0351	0.1408
08:16:50	9.0295	0.1352
08:17:00	9.0182	0.1239

08:17:10	9.0069	0.1126
08:17:20	9.0013	0.107
08:17:30	8.9957	0.1014
08:17:40	8.9957	0.1014
08:17:50	8.9957	0.1014
08:18:00	8.9900	0.0957
08:18:10	8.9844	0.0901
08:18:20	8.9788	0.0845
08:18:30	8.9731	0.0788
08:18:40	8.9731	0.0788
08:18:50	8.9675	0.0732
08:19:00	8.9562	0.0619
08:19:10	8.9562	0.0619
08:19:20	8.9506	0.0563
08:19:30	8.9506	0.0563
08:19:40	8.9562	0.0619
08:19:50	8.9562	0.0619
08:20:00	8.9562	0.0619
08:20:10	8.9562	0.0619
08:20:20	8.9562	0.0619
08:20:30	8.9506	0.0563
08:20:40	8.9506	0.0563
08:20:50	8.9506	0.0563
08:21:00	8.9506	0.0563
08:21:10	8.9506	0.0563
08:21:20	8.9506	0.0563
08:21:30	8.9506	0.0563
08:21:40	8.9450	0.0507
08:21:50	8.9393	0.045
08:22:00	8.9393	0.045
08:22:10	8.9337	0.0394
08:22:20	8.9337	0.0394
08:22:30	8.9337	0.0394
08:22:40	8.9337	0.0394
08:22:50	8.9281	0.0338
08:23:00	8.9281	0.0338
08:23:10	8.9281	0.0338
08:23:20	8.9281	0.0338
08:23:30	8.9281	0.0338
08:23:40	8.9281	0.0338
08:23:50	8.9281	0.0338
08:24:00	8.9281	0.0338
08:24:10	8.9224	0.0281
08:24:20	8.9224	0.0281

	***	-8.8943
Step 3		-8.8943
Interval	00:00:30	-8.8943
Readings	40.0000	31.1057
****		-8.8943
Time	Chnl 1	-8.8943
08:24:50	8.9337	0.0394
08:25:20	8.9337	0.0394
08:25:50	8.9337	0.0394
08:26:20	8.9281	0.0338
08:26:50	8.9393	0.045
08:27:20	8.9393	0.045
08:27:50	8.9393	0.045
08:28:20	8.9393	0.045
08:28:50	8.9393	0.045
08:29:20	8.9337	0.0394
08:29:50	8.9281	0.0338
08:30:20	8.9281	0.0338
08:30:50	8.9281	0.0338
08:31:20	8.9281	0.0338
08:31:50	8.9224	0.0281
08:32:20	8.9224	0.0281
08:32:50	8.9224	0.0281
08:33:20	8.9224	0.0281
08:33:50	8.9224	0.0281
08:34:20	8.9168	0.0225
08:34:50	8.9224	0.0281
08:35:20	8.9168	0.0225
08:35:50	8.9168	0.0225
08:36:20	8.9224	0.0281
08:36:50	8.9224	0.0281
08:37:20	8.9224	0.0281
08:37:50	8.9224	0.0281
08:38:20	8.9224	0.0281
08:38:50	8.9224	0.0281
08:39:20	8.9168	0.0225
08:39:50	8.9112	0.0169
08:40:20	8.9112	0.0169
08:40:50	8.9168	0.0225
08:41:20	8.9112	0.0169
08:41:50	8.9112	0.0169
08:42:20	8.8999	0.0056
08:42:50	8.9055	0.0112
08:43:20	8.8999	0.0056

08:43:50	8.8999	0.0056
08:44:20	8.9112	0.0169
	***	-8.8943
Step 4		-8.8943
Interval	00:02:00	-8.8943
Readings	5.0000	-3.8943
		-8.8943
Time	Chnl 1	-8.8943
08:46:20	8.9055	0.0112
08:48:20	8.9055	0.0112
08:50:20	8.8999	0.0056
08:52:20	8.8999	0.0056
08:54:20	8.8999	0.0056
		-8.8943
Step 5		-8.8943
Interval	00:03:00	-8.8943
Readings	10.0000	1.1057
		-8.8943
Time	Chnl 1	-8.8943
08:57:20	8.8943	0
09:00:20	8.9112	0.0169
09:03:20	8.8943	0
09:06:20	8.8830	-0.0113
09:09:20	8.8605	-0.0338
09:12:20	8.8661	-0.0282
09:15:20	8.8774	-0.0169
09:18:20	8.8830	-0.0113
09:21:20	8.8830	-0.0113
09:24:20	8.8830	-0.0113
ه مر ه در دان با با با با با با		-8.8943
Step 6		-8.8943
Interval	00:50:00	-8.8943
Readings	1.0000	-7.8943
		-8.8943
Time	Chnl 1	-8.8943
10:14:20	8.8492	-0.0451



#### Monitoring Well MW103 sliug out no.2

#### S/N SDEE-03A-SN-3230 Block 1

Program: STEP TEST

Readings: 147 Start Time 11:00:37 Start Date 04/16 Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

	Time	Chni 1	Drawdown
	11:00:37	8.7422	0.0451
	11:00:39	8.8042	-0.0169
	11:00:41	8.8154	-0.0281
	11:00:43	7.4579	1.3294
	11:00:45	7.6381	1.1492
-	11:00:47	7.7339	1.0534
	11:00:49	7.8128	0.9745
	11:00:51	7.8916	0.8957
	11:00:53	7.9592	0.8281
	11:00:55	8.0099	0.7774
	11:00:57	8.0719	0.7154
	11:00:59	8.1169	0.6704
	11:01:01	8.1564	0.6309
	11:01:03	8.2071	0.5802
	11:01:05	8.2409	0.5464
	11:01:07	8.2803	0.507
	11:01:09	8.3085	0.4788
	11:01:11	8.3479	0.4394
	11:01:13	8.3704	0.4169
	11:01:15	8.3930	0.3943
	11:01:17	8.4211	0.3662
	11:01:19	8.4380	0.3493
	11:01:21	8.4605	0.3268
	11:01:23	8.4774	0.3099
	11:01:25	8.4943	0.293
	11:01:27	8.5169	0.2704

11:01:29	8.5225	0.2648
11:01:31	8.5450	0.2423
11:01:33	8.5507	0.2366
11:01:35	8.5619	0.2254
11:01:37	8.5676	0.2197
11:01:39	8.5845	0.2028
11:01:41	8.5901	0.1972
11:01:43	8.6014	0.1859
11:01:45	8.6070	0.1803
11:01:47	8.6126	0.1747
11:01:49	8.6239	0.1634
11:01:51	8.6295	0.1578
11:01:53	8.6352	0.1521
11:01:55	8.6352	0.1521
11:01:57	8.6408	0.1465
11:01:59	8.6464	0.1409
11:02:01	8.6521	0.1352
11:02:03	8.6577	0.1296
11:02:05	8.6577	0.1296
11:02:07	8.6633	0.124
11:02:09	8.6690	0.1183
11:02:11	8.6690	0.1183
11:02:13	8.6746	0.1127
11:02:15	8.6746	0.1127
11:02:17	8.6802	0.1071
11:02:19	8.6802	0.1071
11:02:21	8.6859	0.1014
11:02:23	8.6859	0.1014
11:02:25	8.6859	0.1014
11:02:27	8.6915	0.0958
11:02:29	8.6971	0.0902
11:02:31	8.6971	0.0902
11:02:33	8.6971	0.0902
11:02:35	8.6971	0.0902
04		8.7873
Step 2	00.00.10	8.7873
Interval	00:00:10	8.7873
Readings	48.0000	-39.2127
Time	Chal 1	8.7873
11:02:45	Chnl 1 8.7084	8.7873 0.0789
11:02:45	8.7084 8.7140	0.0789
11:02:55	8.7140 8.7253	0.0733
11:03:05	8.7253 8.7309	0.0564
11.03.15	0.7309	U.U304

11:03:25	8.7309	0.0564
11:03:35	8.7366	0.0507
11:03:45	8.7366	0.0507
11:03:55	8.7422	0.0451
11:04:05	8.7478	0.0395
11:04:15	8.7478	0.0395
11:04:25	8.7535	0.0338
11:04:35	8.7535	0.0338
11:04:45	8.7535	0.0338
11:04:55	8.7535	0.0338
11:05:05	8.7591	0.0282
11:05:15	8.7591	0.0282
11:05:25	8.7591	0.0282
11:05:35	8.7647	0.0226
11:05:45	8.7647	0.0226
11:05:55	8.7647	0.0226
11:06:05	8.7704	0.0169
11:06:15	8.7704	0.0169
11:06:25	8.7704	0.0169
11:06:35	8.7704	0.0169
11:06:45	8.7704	0.0169
11:06:55	8.7704	0.0169
11:07:05	8.7760	0.0113
11:07:15	8.7760	0.0113
11:07:25	8.7760	0.0113
11:07:35	8.7760	0.0113
11:07:45	8.7816	0.0057
11:07:55	8.7816	0.0057
11:08:05	8.7816	0.0057
11:08:15	8.7816	0.0057
11:08:25	8.7816	0.0057
11:08:35	8.7816	0.0057
11:08:45	8.7873	0
11:08:55	8.7816	0.0057
11:09:05	8.7816	0.0057
11:09:15	8.7816	0.0057
11:09:25	8.7816	0.0057
11:09:35	8.7873	0
11:09:45	8.7816	0.0057
11:09:55	8.7816	0.0057
11:10:05	8.7816	0.0057
11:10:15	8.7816	0.0057
11:10:25	8.7816	0.0057
11:10:35	8.7816	0.0057

*******	****	8.7873
Step 3		8.7873
Interval	00:00:30	8.7873
Readings	40.0000	-31.2127
	-	8.7873
Time	Chnl 1	8.7873
11:11:05	8.7816	0.0057
11:11:35	8.7816	0.0057
11:12:05	8.7873	0
11:12:35	8.7816	0.0057
11:13:05	8.7873	0
11:13:35	8.7873	0
11:14:05	8.7873	0
11:14:35	8.7873	0
11:15:05	8.7816	0.0057
11:15:35	8.7873	0
11:16:05	8.7873	0
11:16:35	8.7873	0
11:17:05	8.7873	0
11:17:35	8.7816	0.0057
11:18:05	8.7873	0
11:18:35	8.7873	0
11:19:05	8.7873	0
11:19:35	8.7873	0
11:20:05	8.7873	0
11:20:35	8.7873	0
11:21:05	8.7873	0
11:21:35	8.7873	0
11:22:05	8.7873	0
11:22:35	8.7873	0
11:23:05	8.7873	0
11:23:35	8.7929	-0.0056
11:24:05	8.7873	0
11:24:35	8.7929	-0.0056
11:25:05	8.7873	0
11:25:35	8.7873	0
11:26:05	8.7873	0
11:26:35	8.7873	0
11:27:05 11:27:35	8.7873 9.7816	0 0057
11:27:35	8.7816 8.7929	0.0057 -0.0056
11:28:35	8.7929 8.7816	0.0057
11:29:05	8.7253	0.0057
11:29:35	8.7478	0.0395
11.23.00	0.7-770	0.0030

11:30:05 8.7422 0.0451

Test 1 ab ted at

## Monitoring Well MW104 slug in

#### S/N SDEE-03A-SN-3230 Block 1

Program: STEP TEST

Readings: 92

Start Time 15:28:54 Start Date 04/16 Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

Time	Chnl 1	Drawdown
15:28:54	8.4155	1.1717
15:28:56	8.9957	1.7519
15:28:58	7.3847	0.1409
15:29:00	9.1252	1.8814
15:29:02	7.4128	0.169
15:29:04	6.9397	-0.3041
15:29:06	13.563	6.3192
15:29:08	7.8747	0.6309
15:29:10	10.319	3.0752
15:29:12	8.6746	1.4308
15:29:14	7.5255	0.2817
15:29:16	7.8522	0.6084
15:29:18	8.0381	0.7943
15:29:20	8.162	0.9182
15:29:22	8.3817	1.1379
15:29:24	8.2972	1.0534
15:29:26	8.7591	1.5153
15:29:28	8.1902	0.9464
15:29:30	8.4099	1.1661
15:29:32	8.4211	1.1773
15:29:34	9.9814	2.7376
15:29:36	8.8605	1.6167
15:29:38	8.8436	1.5998
15:29:40	8.8436	1.5998
15:29:42	8.8323	1.5885

15:29:44	8.8267	1.5829
15:29:46	8.8211	1.5773
15:29:48	8.2183	0.9745
15:29:50	8.4155	1.1717
15:29:52	7.9029	0.6591
15:29:54	8.9055	1.6617
15:29:56	8.8323	1.5885
15:29:58	8.8211	1.5773
15:30:00	8.8042	1.5604
15:30:02	8.7816	1.5378
15:30:04	7.655	0.4112
15:30:06	7.948	0.7042
15:30:08	8.0888	0.845
15:30:10	8.1902	0.9464
15:30:12	8.2747	1.0309
15:30:14	8.3197	1.0759
15:30:16	8.3535	1.1097
15:30:18	8.3761	1.1323
15:30:20	7.7621	0.5183
15:30:22	4.3823	-2.8615
15:30:24	0.5013	-6.7425
15:30:26	0.5013	-6.7425
15:30:28	0.5013	-6.7425
15:30:30	0.5013	-6.7425
15:30:32	0.4956	-6.7482
15:30:34	0.49	-6.7538
15:30:36	0.4844	-6.7594
15:30:38	0.4055	-6.8383
15:30:40	2.6474	-4.5964
15:30:42	4.557	-2.6868
15:30:44	6.8552	-0.3886
15:30:46	7.3847	0.1409
15:30:48	8.4549	1.2111
15:30:50	8.5	1.2562
15:30:52	8.4549	1.2111
04		-7.2438
Step 2	00.00.10	-7.2438
Interval	00:00:10 48	-7.2438
Readings	40	40.7562 -7.2438
Time	Chnl 1	-7.2438 -7.2438
15:31:02	8.1789	0.9351
15:31:12	8.4436	1.1998
15:31:12	8.4774	1.2336
13.31.22	0.4//4	1.2000

15:31:32	8.1676	0.9238
15:31:42	8.0888	0.845
15:31:52	8.438	1.1942
15:32:02	7.5199	0.2761
15:32:12	7.9874	0.7436
15:32:22	9.4576	2.2138
15:32:32	8.1395	0.8957
15:32:42	7.6212	0.3774
15:32:52	7.3678	0.124
15:33:02	7.4185	0.1747
15:33:12	7.379	0.1352
15:33:22	7.3565	0.1127
15:33:32	7.3396	0.0958
15:33:42	7.3283	0.0845
15:33:52	7.3171	0.0733
15:34:02	7.3114	0.0676
15:34:12	7.3002	0.0564
15:34:22	7.2945	0.0507
15:34:32	7.2833	0.0395
15:34:42	7.2833	0.0395
15:34:52	7.272	0.0282
15:35:02	7.2664	0.0226
15:35:12	7.2664	0.0226
15:35:22	7.2551	0.0113
15:35:32	7.2495	0.0057
15:35:42	7.2495	0.0057
15:35:52	7.2438	0
15:36:02	7.2382	-0.0056
15:36:12	7.2438	0
Test 1 ab	ted at	





#### Monitoring Well MW104 slug out

S/N	SDEE-03	Block
****		
Program:	STEP TES	T
Readings		
_	15:41:26	
Start Date		
	0010 PSI	
Channels		
Units:		
Step 1		
	00:00:02	
Readings		
Time	Chnl 1	Drawdown
15:41:26	7.1875	-0.0394
15:41:28		
	5.8187	
	6.0159	
15:41:34	6.2243	
15:41:36	6.3764	
15:41:38	6.5623	
15:41:40		0.4788
15:41:42	6.7425	
15:41:44	6.8045	0.3436
15.71.77	6 R045	0.3436

6.8495 6.8777

6.9059

6.9228

15:41:46

15:41:48 15:41:50

15:41:52

15:42:16

0.2986

0.2704

0.2422

0.2253

0.1408

7.0073

15:42:18	7.0073	0.1408
15:42:20	7.0129	0.1352
15:42:22	7.0129	0.1352
15:42:24	7.0185	0.1296
15:42:26	7.0185	0.1296
15:42:28	7.0242	0.1239
15:42:30	7.0242	0.1239
15:42:32	7.0298	0.1183
15:42:34	7.0298	0.1183
15:42:36	7.0298	0.1183
15:42:38	7.0298	0.1183
15:42:40	7.0298	0.1183
15:42:42	7.0354	0.1127
15:42:44	7.0411	0.107
15:42:46	7.0411	0.107
15:42:48	7.0411	0.107
15:42:50	7.0411	0.107
15:42:52	7.0523	0.0958
15:42:54	7.0523	0.0958
15:42:56	7.0467	0.1014
15:42:58	7.0523	0.0958
15:43:00	7.0467	0.1014
15:43:02	7.0523	0.0958
15:43:04	7.058	0.0901
15:43:06	7.0523	0.0958
15:43:08	7.058	0.0901
15:43:10	7.0523	0.0958
15:43:12	7.058	0.0901
15:43:14	7.058	0.0901
15:43:16	7.0636	0.0845
15:43:18	7.058	0.0901
15:43:20	7.058	0.0901
15:43:22	7.0636	0.0845
15:43:24	7.0805	0.0676
0. 0		7.1481
Step 2		7.1481
Interval	00:00:10	7.1481
Readings	48	-40.8519
		7.1481
Time	Chnl 1	7.1481
15:43:34	7.0861	0.062
15:43:44	7.0861	0.062
15:43:54	7.0918	0.0563
15:44:04	7.1199	0.0282

15:44:14	7.1199	0.0282
15:44:24	7.1256	0.0225
15:44:34	7.1256	0.0225
15:44:44	7.1312	0.0169
15:44:54	7.1312	0.0169
15:45:04	7.1312	0.0169
15:45:14	7.1368	0.0113
15:45:24	7.1368	0.0113
15:45:34	7.1368	0.0113
15:45:44	7.1368	0.0113
15:45:54	7.1312	0.0169
15:46:04	7.1368	0.0113
15:46:14	7.1368	0.0113
15:46:24	7.1368	0.0113
15:46:34	7.1368	0.0113
15:46:44	7.1425	0.0056
15:46:54	7.1425	0.0056
15:47:04	7.1425	0.0056
15:47:14	7.1481	0
15:47:24	7.1481	0
15:47:34	7.1481	0
15:47:44	7.1425	0.0056
15:47:54	7.1481	0
15:48:04	7.1537	-0.0056
15:48:14	7.1537	-0.0056
15:48:24	7.1481	0
15:48:34	7.1481	0
15:48:44	7.1481	0
15:48:54	7.1481	0
15:49:04	7.1481	0
15:49:14	7.1481	0
15:49:24	7.1481	0
15:49:34	7.1481	0
15:49:44	7.1481	0
15:49:54	7.1481	0
15:50:04	7.1481	0
15:50:14	7.1481	0
15:50:24	7.1481	0
15:50:34	7.1481	0
15:50:44	7.1481	0
15:50:54	7.1481	0
15:51:04	7.1481	0
15:51:14	7.1481	0
15:51:24	7.1481	0

		7.1481
Step 3		7.1481
Interval	00:00:30	7.1481
Readings	40	-32.8519
	***	7.1481
Time	Chnl 1	7.1481
15:51:54	7.1481	0
15:52:24	7.1481	0
15:52:54	7.1481	0
15:53:24	7.1481	0
15:53:54	7.1481	0
15:54:24	7.1481	0
15:54:54	7.1481	0
15:55:24	7.1481	0
15:55:54	7.1481	0
15:56:24	7.1537	-0.0056
15:56:54	7.1481	0
15:57:24	7.1481	0
15:57:54	7.1481	0
15:58:24	7.1481	0
15:58:54	7.1481	0
15:59:24	7.1481	0
15:59:54	7.1481	0
16:00:24	7.1537	-0.0056
16:00:54	7.1481	0
16:01:24	7.1481	0
16:01:54	7.1481	0
16:02:24	7.1368	0.0113
16:02:54	7.1425	0.0056
Test 1 ab	ted at	



## Monitoring Well MW201 slug out

#### S/N SDEE-03A-SN-3230 Block 1

Program: STEP TEST

Readings: 122 Start Time 17:52:14 Start Date 04/16 Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

****		
Time	Chni 1	Drawdown
17:52:14	4.3880	0.9801
17:52:16	4.5795	0.7886
17:52:18	4.7090	0.6591
17:52:20	4.8104	0.5577
17:52:22	4.9006	0.4675
17:52:24	4.9794	0.3887
17:52:26	5.0414	0.3267
17:52:28	5.0864	0.2817
17:52:30	5.1202	0.2479
17:52:32	5.1484	0.2197
17:52:34	5.1653	0.2028
17:52:36	5.1822	0.1859
17:52:38	5.1935	0.1746
17:52:40	5.2047	0.1634
17:52:42	5.2160	0.1521
17:52:44	5.2216	0.1465
17:52:46	5.2329	0.1352
17:52:48	5.2385	0.1296
17:52:50	5.2442	0.1239
17:52:52	5.2498	0.1183
17:52:54	5.2498	0.1183
17:52:56	5.2611	0.107
17:52:58	5.2611	0.107
17:53:00	5.2611	0.107
17:53:02	5.2723	0.0958
17:53:04	5.2723	0.0958

17:53:06	5.2780	0.0901
17:53:08	5.2836	0.0845
17:53:10	5.2836	0.0845
17:53:12	5.2892	0.0789
17:53:14	5.2949	0.0732
17:53:16	5.2949	0.0732
17:53:18	5.2949	0.0732
17:53:20	5.3005	0.0676
17:53:22	5.2949	0.0732
17:53:24	5.3005	0.0676
17:53:26	5.3005	0.0676
17:53:28	5.3118	0.0563
17:53:30	5.3118	0.0563
17:53:32	5.3118	0.0563
17:53:34	5.3118	0.0563
17:53:36	5.3118	0.0563
17:53:38	5.3174	0.0507
17:53:40	5.3118	0.0563
17:53:42	5.3174	0.0507
17:53:44	5.3230	0.0451
17:53:46	5.3174	0.0507
17:53:48	5.3174	0.0507
17:53:50	5.3174	0.0507
17:53:52	5.3287	0.0394
17:53:54	5.3287	0.0394
17:53:56	5.3287	0.0394
17:53:58	5.3287	0.0394
17:54:00	5.3287	0.0394
17:54:02	5.3287	0.0394
17:54:04	5.3343	0.0338
17:54:06	5.3343	0.0338
17:54:08	5.3343	0.0338
17:54:10	5.3343	0.0338
17:54:12	5.3343	0.0338
		5.3681
Step 2		5.3681
Interval	00:00:10	5.3681
Readings	48.0000	-42.6319
		5.3681
Time	Chnl 1	5.3681
17:54:22	5.3399	0.0282
17:54:32	5.3399	0.0282
17:54:42	5.3456	0.0225
17:54:52	5.3512	0.0169

17:55:02	5.3512	0.0169
17:55:12	5.3512	0.0169
17:55:22	5.3456	0.0225
17:55:32	5.3512	0.0169
17:55:42	5.3512	0.0169
17:55:52	5.3568	0.0113
17:56:02	5.3568	0.0113
17:56:12	5.3625	0.0056
17:56:22	5.3625	0.0056
17:56:32	5.3625	0.0056
17:56:42	5.3625	0.0056
17:56:52	5.3625	0.0056
17:57:02	5.3681	0
17:57:12	5.3681	0
17:57:22	5.3681	0
17:57:32	5.3681	0
17:57:42	5.3681	0
17:57:52	5.3681	0
17:58:02	5.3625	0.0056
17:58:12	5.3625	0.0056
17:58:22	5.3681	0
17:58:32	5.3681	0
17:58:42	5.3681	0
17:58:52	5.3681	0
17:59:02	5.3681	0
17:59:12	5.3681	0
17:59:22	5.3681	0
17:59:32	5.3681	0
17:59:42	5.3681	0
17:59:52	5.3681	0
18:00:02	5.3681	0
18:00:12	5.3681	0
18:00:22	5.3681	0
18:00:32	5.3681	0
18:00:42	5.3681	0
18:00:52	5.3681	0
18:01:02	5.3681	0
18:01:12	5.3681	0
18:01:22	5.3681	0
18:01:32	5.3681	0
18:01:42	5.3681	0
18:01:52	5.3681	0
18:02:02	5.3681	0
18:02:12	5.3681	0

	***	5.3681
Step 3		5.3681
Interval	00:00:30	5.3681
Readings	40.0000	-34.6319
********		5.3681
Time	Chnl 1	5.3681
18:02:42	5.3681	0
18:03:12	5.3625	0.0056
18:03:42	5.3456	0.0225
18:04:12	5.3568	0.0113
18:04:42	5.3512	0.0169
18:05:12	5.3512	0.0169
18:05:42	5.3512	0.0169
18:06:12	5.3512	0.0169
18:06:42	5.3456	0.0225
18:07:12	5.3456	0.0225
18:07:42	5.3456	0.0225
18:08:12	5.3512	0.0169
18:08:42	5.3512	0.0169
18:09:12	5.3512	0.0169
Test 1 ab	ted at	



## Monitoring Well MW 201 slug in

#### S/N SDEE-03A-SN-3230 Block

Program: STEP TEST

Readings: 116 Start Time 17:36:25 Start Date 04/16

Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

Time	Chnl 1	Drawdow
17:36:25	5.3456	-0.1689
17:36:27	7.5311	2.0166
17:36:29	7.0974	1.5829
17:36:31	5.8300	0.3155
17:36:33	5.7906	0.2761
17:36:35	5.7680	0.2535
17:36:37	5.7568	0.2423
17:36:39	5.7511	0.2366
17:36:41	5.7455	0.231
17:36:43	5.7399	0.2254
17:36:45	5.7342	0.2197
17:36:47	5.7286	0.2141
17:36:49	5.7173	0.2028
17:36:51	5.7173	0.2028
17:36:53	5.7117	0.1972
17:36:55	5.7117	0.1972
17:36:57	5.7117	0.1972
17:36:59	5.7061	0.1916
17:37:01	5.7004	0.1859
17:37:03	5.7004	0.1859
17:37:05	5.6892	0.1747
17:37:07	5.6892	0.1747
17:37:09	5.6835	0.169
17:37:11	5.6779	0.1634
17:37:13	5.6723	0.1578
17:37:15	5.6723	0.1578
17:37:17	5.6666	0.1521

17:37:19	5.6666	0.1521
17:37:21	5.6610	0.1465
17:37:23	5.6610	0.1465
17:37:25	5.6554	0.1409
17:37:27	5.6497	0.1352
17:37:29	5.6497	0.1352
17:37:31	5.6497	0.1352
17:37:33	5.6441	0.1296
17:37:35	5.6441	0.1296
17:37:37	5.6385	0.124
17:37:39	5.6385	0.124
17:37:41	5.6328	0.1183
17:37:43	5.6328	0.1183
17:37:45	5.6328	0.1183
17:37:47	5.6272	0.1127
17:37:49	5.6272	0.1127
17:37:51	5.6272	0.1127
17:37:53	5.6216	0.1071
17:37:55	5.6216	0.1071
17:37:57	5.6216	0.1071
17:37:59	5.6159	0.1014
17:38:01	5.6159	0.1014
17:38:03	5.6159	0.1014
17:38:05	5.6159	0.1014
17:38:07	5.6103	0.0958
17:38:09	5.6103	0.0958
17:38:11	5.6103	0.0958
17:38:13	5.6047	0.0902
17:38:15	5.6047	0.0902
17:38:17	5.6047	0.0902
17:38:19	5.6047	0.0902
17:38:21	5.5990	0.0845
17:38:23	5.5990	0.0845
		-5.5145
Step 2		-5.5145
Interval	00:00:10	-5.5145
Readings	48.0000	42.4855
		-5.5145
Time	Chnl 1	-5.5145
17:38:33	5.5934	0.0789
17:38:43	5.5934	0.0789
17:38:53	5.5878	0.0733
17:39:03	5.5821	0.0676
17:39:13	5.5765	0.062

17:39:23	5.5709	0.0564
17:39:33	5.5709	0.0564
17:39:43	5.5709	0.0564
17:39:53	5.5652	0.0507
17:40:03	5.5596	0.0451
17:40:13	5.5652	0.0507
17:40:23	5.5596	0.0451
17:40:33	5.5596	0.0451
17:40:43	5.5596	0.0451
17:40:53	5.5596	0.0451
17:41:03	5.5540	0.0395
17:41:13	5.5483	0.0338
17:41:23	5.5540	0.0395
17:41:33	5.5483	0.0338
17:41:43	5.5483	0.0338
17:41:53	5.5483	0.0338
17:42:03	5.5371	0.0226
17:42:13	5.5427	0.0282
17:42:23	5.5427	0.0282
17:42:33	5.5427	0.0282
17:42:43	5.5371	0.0226
17:42:53	5.5427	0.0282
17:43:03	5.5371	0.0226
17:43:13	5.5371	0.0226
17:43:23	5.5314	0.0169
17:43:33	5.5371	0.0226
17:43:43	5.5314	0.0169
17:43:53	5.5314	0.0169
17:44:03	5.5314	0.0169
17:44:13	5.5258	0.0113
17:44:23	5.5314	0.0169
17:44:33	5.5258	0.0113
17:44:43	5.5258	0.0113
17:44:53	5.5258	0.0113
17:45:03	5.5258	0.0113
17:45:13	5.5258	0.0113
17:45:23	5.5258	0.0113
17:45:33	5.5202	0.0057
17:45:43	5.5202	0.0057
17:45:53	5.5202	0.0057
17:46:03	5.5202	0.0057
17:46:13	5.5202	0.0057
17:46:23	5.5202	0.0057
		-5.5145

Step 3		-5.5145
Interval	00:00:30	-5.5145
Readings	40.0000	34.4855
		-5.5145
Time	Chnl 1	-5.5145
17:46:53	5.5145	0
17:47:23	5.5145	0
17:47:53	5.5145	0
17:48:23	5.5145	0
17:48:53	5.5089	-0.0056
17:49:23	5.5145	0
17:49:53	5.5145	0
17:50:23	5.5089	-0.0056
Test 1 ab	ted at	



## Monitoring Well MW203 slug out

## S/N SDEE

Program: STEP TEST

Readings: 122 Start Time 17:52:14 Start Date 04/16 Range: 0010 PSI

Channels: 1

Units: Ft-H2O

Step 1

Interval 00:00:02

Time	Chnl 1	Drawdown
17:52:14	4.388	0.9801
17:52:16	4.5795	0.7886
17:52:18	4.7090	0.6591
17:52:20	4.8104	0.5577
17:52:22	4.9006	0.4675
17:52:24	4.9794	0.3887
17:52:26	5.0414	0.3267
17:52:28	5.0864	0.2817
17:52:30	5.1202	0.2479
17:52:32	5.1484	0.2197
17:52:34	5.1653	0.2028
17:52:36	5.1822	0.1859
17:52:38	5.1935	0.1746
17:52:40	5.2047	0.1634
17:52:42	5.2160	0.1521
17:52:44	5.2216	0.1465
17:52:46	5.2329	0.1352
17:52:48	5.2385	0.1296
17:52:50	5.2442	0.1239
17:52:52	5.2498	0.1183
17:52:54	5.2498	0.1183
17:52:56	5.2611	0.107
17:52:58	5.2611	0.107
17:53:00	5.2611	0.107
17:53:02	5.2723	0.0958
17:53:04	5.2723	0.0958
17:53:06	5.2780	0.0901

17:53:08	5.2836	0.0845
17:53:10	5.2836	0.0845
17:53:12	5.2892	0.0789
17:53:14	5.2949	0.0732
17:53:16	5.2949	0.0732
17:53:18	5.2949	0.0732
17:53:20	5.3005	0.0676
17:53:22	5.2949	0.0732
17:53:24	5.3005	0.0676
17:53:26	5.3005	0.0676
17:53:28	5.3118	0.0563
17:53:30	5.3118	0.0563
17:53:32	5.3118	0.0563
17:53:34	5.3118	0.0563
17:53:36	5.3118	0.0563
17:53:38	5.3174	0.0507
17:53:40	5.3118	0.0563
17:53:42	5.3174	0.0507
17:53:44	5.3230	0.0451
17:53:46	5.3174	0.0507
17:53:48	5.3174	0.0507
17:53:50	5.3174	0.0507
17:53:52	5.3287	0.0394
17:53:54	5.3287	0.0394
17:53:56	5.3287	0.0394
17:53:58	5.3287	0.0394
17:54:00	5.3287	0.0394
17:54:02	5.3287	0.0394
17:54:04	5.3343	0.0338
17:54:06	5.3343	0.0338
17:54:08	5.3343	0.0338
17:54:10	5.3343	0.0338
17:54:12	5.3343	0.0338
Ct 0		5.3681
Step 2	00:00:10	5.3681
Interval	00:00:10	5.3681
Readings 4	+0	5.3681
Timo	Chnl 1	5.3681
Time 17:54:22		5.3681
17.54.22	5.3399	0.0282
17.54.32 17:54:42	5.3399 5.3456	0.0282
17.54.42 17:54:52	5.3512	0.0225
17.54.52 17:55:02	5.3512 5.3512	0.0169
17.00.02	J.3312	0.0109

17:55:12	5.3512	0.0169
17:55:22	5.3456	0.0225
17:55:32	5.3512	0.0169
17:55:42	5.3512	0.0169
17:55:52	5.3568	0.0113
17:56:02	5.3568	0.0113
17:56:12	5.3625	0.0056
17:56:22	5.3625	0.0056
17:56:32	5.3625	0.0056
17:56:42	5.3625	0.0056
17:56:52	5.3625	0.0056
17:57:02	5.3681	0
17:57:12	5.3681	0
17:57:22	5.3681	0
17:57:32	5.3681	0
17:57:42	5.3681	0
17:57:52	5.3681	0
17:58:02	5.3625	0.0056
17:58:12	5.3625	0.0056
17:58:22	5.3681	0
17:58:32	5.3681	0
17:58:42	5.3681	0
17:58:52	5.3681	0
17:59:02	5.3681	0
17:59:12	5.3681	0
17:59:22	5.3681	0
17:59:32	5.3681	0
17:59:42	5.3681	0
17:59:52	5.3681	0
18:00:02	5.3681	0
18:00:12	5.3681	0
18:00:22	5.3681	0
18:00:32	5.3681	0
18:00:42	5.3681	0
18:00:52	5.3681	0
18:01:02	5.3681	0
18:01:12	5.3681	0
18:01:22	5.3681	0
18:01:32	5.3681	0
18:01:42	5.3681	0
18:01:52	5.3681	0
18:02:02	5.3681	0
18:02:12	5.3681	0
		5.3681

Step 3		5.3681
Interval	00:00:30	5.3681
Readings	40	5.3681
**********		5.3681
Time	Chnl 1	5.3681
18:02:42	5.3681	0
18:03:12	5.3625	0.0056
18:03:42	5.3456	0.0225
18:04:12	5.3568	0.0113
18:04:42	5.3512	0.0169
18:05:12	5.3512	0.0169
18:05:42	5.3512	0.0169
18:06:12	5.3512	0.0169
18:06:42	5.3456	0.0225
18:07:12	5.3456	0.0225
18:07:42	5.3456	0.0225
18:08:12	5.3512	0.0169
18:08:42	5.3512	0.0169
18:09:12	5.3512	0.0169
Test 1 ab	ted at	



## Monitoring Well MW203 slug in

#### S/N SDEE Block

Program: STEP TEST

Readings: 129 Start Time: 16:41:29 Start Date: 04/16 Range: 0010 PSI

Channels: 1 Units: Ft-H2O

Step 1

Interval 00:00:02 Readings 60

Time	Chnl 1	Drawdown
16:41:29	9.9983	-0.0337
16:41:31	10.0090	-0.023
16:41:33	10.0150	-0.017
16:41:35	13.4230	3.391
16:41:37	11.8680	1.836
16:41:39	11.0170	0.985
16:41:41	10.9720	0.94
16:41:43	10.9500	0.918
16:41:45	10.9100	0.878
16:41:47	10.8710	0.839
16:41:49	10.8370	0.805
16:41:51	10.8030	0.771
16:41:53	10.7750	0.743
16:41:55	10.7470	0.715
16:41:57	10.7250	0.693
16:41:59	10.6910	0.659
16:42:01	10.6630	0.631
16:42:03	10.6400	0.608
16:42:05	10.6170	0.585
16:42:07	10.6010	0.569
16:42:09	10.5840	0.552
16:42:11	10.5670	0.535
16:42:13	10.5500	0.518
16:42:15	10.5330	0.501
16:42:17	10.5220	0.49
16:42:19	10.5050	0.473

16:42:21	10.4940	0.462
16:42:23	10.4820	0.45
16:42:25	10.4650	0.433
16:42:27	10.4540	0.422
16:42:29	10.4430	0.411
16:42:31	10.4320	0.4
16:42:33	10.4200	0.388
16:42:35	10.4090	0.377
16:42:37	10.4030	0.371
16:42:39	10.3920	0.36
16:42:41	10.3810	0.349
16:42:43	10.3750	0.343
16:42:45	10.3640	0.332
16:42:47	10.3530	0.321
16:42:49	10.3410	0.309
16:42:51	10.3410	0.309
16:42:53	10.3360	0.304
16:42:55	10.3250	0.293
16:42:57	10.3190	0.287
16:42:59	10.3080	0.276
16:43:01	10.3020	0.27
16:43:03	10.2910	0.259
16:43:05	10.2910	0.259
16:43:07	10.2850	0.253
16:43:09	10.2800	0.248
16:43:11	10.2740	0.242
16:43:13	10.2680	0.236
16:43:15	10.2630	0.231
16:43:17	10.2570	0.225
16:43:19	10.2510	0.219
16:43:21	10.2510	0.219
16:43:23	10.2400	0.208
16:43:25	10.2400	0.208
16:43:27	10.2340	0.202
040		-10.032
Step 2	00.00.10	-10.032
Interval	00:00:10 48.0000	-10.032 37.968
Readings	46.0000	-10.032
Time	Chni 1	-10.032
16:43:37	10.2120	0.18
16:43:47	10.2120	0.163
16:43:57	10.1930	0.165
16:44:07	10.1780	0.146
10.74.07	10.10/0	J. 135

16:44:17	10.1560	0.124
16:44:27	10.1500	0.118
16:44:37	10.1330	0.101
16:44:47	10.1330	0.101
16:44:57	10.1270	0.095
16:45:07	10.1160	0.084
16:45:17	10.1110	0.079
16:45:27	10.1050	0.073
16:45:37	10.1050	0.073
16:45:47	10.0990	0.067
16:45:57	10.0940	0.062
16:46:07	10.0880	0.056
16:46:17	10.0880	0.056
16:46:27	10.0820	0.05
16:46:37	10.0770	0.045
16:46:47	10.0820	0.05
16:46:57	10.0770	0.045
16:47:07	10.0770	0.045
16:47:17	10.0710	0.039
16:47:27	10.0650	0.033
16:47:37	10.0650	0.033
16:47:47	10.0710	0.039
16:47:57	10.0600	0.028
16:48:07	10.0650	0.033
16:48:17	10.0600	0.028
16:48:27	10.0540	0.022
16:48:37	10.0600	0.028
16:48:47	10.0600	0.028
16:48:57	10.0540	0.022
16:49:07	10.0540	0.022
16:49:17	10.0540	0.022
16:49:27	10.0540	0.022
16:49:37	10.0540	0.022
16:49:47	10.0540	0.022
16:49:57	10.0540	0.022
16:50:07	10.0490	0.017
16:50:17	10.0540	0.022
16:50:27	10.0490	0.017
16:50:37	10.0490	0.017
16:50:47	10.0490	0.017
16:50:57	10.0490	0.017
16:51:07	10.0490	0.017
16:51:17	10.0490	0.017
16:51:27	10.0430	0.011

		-10.032
Step 3		-10.032
Interval	00:00:30	-10.032
Readings	40.0000	29.968
		-10.032
Time	Chnl 1	-10.032
16:51:57	10.0490	0.017
16:52:27	10.0430	0.011
16:52:57	10.0430	0.011
16:53:27	10.0430	0.011
16:53:57	10.0430	0.011
16:54:27	10.0370	0.005
16:54:57	10.0370	0.005
16:55:27	10.0370	0.005
16:55:57	10.0370	0.005
16:56:27	10.0370	0.005
16:56:57	10.0320	0
16:57:27	10.0370	0.005
16:57:57	10.0320	0
16:58:27	10.0370	0.005
16:58:57	10.0320	0,
16:59:27	10.0260	-0.006
16:59:57	10.0320	0
17:00:27	10.0320	0
17:00:57	10.0320	0
17:01:27	10.0320	0
17:01:57	10.0200	-0.012
Test 1 ab	ted at	

Appendix C: Boring Logs, Geotechnical Data, and Well Construction Forms



## **BOREHOLE LOG**

Project Name: Capital Air National Guard - Illinois

Borehole Location: Site	e 1							
				Elevation and Datur	n: Land:	580.98 ′		
Drilling Agency: Rho	odes and Assoc.	Driller: $F$ .	Campbell	Date Started: 1	2/2/92	Date Finish	ed: 12/2/92	
Drilling Equipment: CM	1E-75	Completion: 1. Depth (feet)	5	Rock Depth (feet)	:			
Method of Drilling: Hol	llow Stem Auger			Number of Samples: NA	Dist.: NA	Undist.: N.	A Core: NA	
Borehole Size (inches): 10.2	25"			Water Depth 572.85	First: 8'	Compl.: N.	A 24 hrs.	
Completion Information:	Completed as	s MW		Logged By:		Checked By:		
				Jack Brie	gel ————		Pat Lay	
		∠og			Ť	i e		
Depth (feet) Number Type Blow Count Drilling Time	S/B* S/B* S/B* Geologic Unit	Graphic USCS or Rock Type		Description		Well Construction Diagram	Remarks	
5 — O/	/0	CH/GC	odor.  1'; Clay; brown	avel; dark brown; mo		Top 1 Native artifice		



# Monitoring Well Construction Log - Flush Mount

Project Name: Capital auport. 183 dTF6	Project Number: 911657	Date: 12-2-92
Well Tellmons ANG- MW 101	Well ID: MW101	Sheet 1 of 1
Driller: F. Campbell	Borehole Diameter (In): { 0 / 4	Тстая Deptin (ft): 15 '
Drilling Agency: Rhodes + Assoc.	Date Staned: [2-2-92-	Depth to Water (ft): 8.27 BSS
Drilling Equipment: CME -75	Date Finished: 12-72	Elevation and Datum: 580.78 To
Drilling Method: hollow stem anger	Logged by: JS Knegel	Checked by: PH Can
Drilling Fluid: home	Number of Samples: Number of Samples:	Date: 12 -14 -72

PROTECTIVE CSG Material / Type:

				Diameter: N/A	
				. 1/ 0	Weep Hole (Y / N)
				GUARD POSTS (Y (N))	
	Elev.			No.: Type: N/A	
	Height			SURFACE PAD . ,	· · · · · · · · · · · · · · · · · · ·
	_			Composition and Size: 2/x2/ 3al	irete
	GS Elev	_ `			
Geologic	GS Height	0.00'		RISER PIPE Type: Schedule 304 Stan	ress Steel
	Depth BGS	Elev.		Diameter: 2'1	
		BGS		Total Length (TOC to TOS):	
	<del></del> .			Ventilated Cap (D/ N)	
	0.2'			GROUT	
				Composition and Proportions: >> 2+1aud	cement
	j	्र श्रीतीय -		1.3	
1 1				Tremied (Y (N)	
				Interval BGS:	
			$\bowtie \bowtie$	CENTRALIZERS	
	1,5'			Depth(s) N/A	
				SEAL	
		1.5 pellets		Type: wyoming pentonite p	165
				Source:	. •
	3'	<u> </u>		Setup / Hydration Time:	. Vol. Fluid Added 2.5 9 a
				Tremied (Q/R)	
	4.2'	•	<b>:::</b>	FILTER PACK	,
			::: <del>:</del>	Type: Colorado Silica zo/40 g	re le
		İ		Amt Used: 5 100 # bags	
İ	<u> </u>			Tremied (Y /N)	
	Colvo grada Colondo Silica	0.010 "cont. would 5 is . Street	***	Source:	······································
1		3,7,30		Gr. Size Dist.:	
			:::	Type: HSSC - Schedule 304 con Diameter: 2.0"	t. womel
		14.2'		Plemann Z. O''	
1	14.4	14.2		Size Size and Time: 0.010 " - Con	<u>√</u> .
	1 1 1 1			Slot Size and Type: 0.0/0" - con Interval BGS: 4.2'-14.2'	
1	15'	<u>'</u>		WELL FOOT (M/N)	
	13	<b>↑</b>		Interval BGS: 14.2 - 14.4	Length
		M/A		Bottom Cap (Y)/ N)	-
	TD: /5'	Borehole —	النونونونون مرار	BACKFILL PLUG	
		Dia.	104	Material: None	
				Setup / Hydration Time;	Form F-1023

Tremied (Y / N)

9/1/91



## **BOREHOLE LOG**

Project Name: Capital Air National Guard - Illinois

Proj	ect l	Vui	nbe	r: <u>9</u>	11657	***************************************		Fie	ld Lo	g of Borehole	Number:	MW102		Sheet	
Bôrehole Location: Site 1						Elevation and Datum: Land: 582.61									
Drilling Agency: Rhodes and Assoc. Driller: F. Campbell					Date Started: 12/2/92 Date Finished: 12/2		12/2/92								
Drill	Drilling Equipment: CME-75						Completion: Depth (feet)	15	Rock Depth: (feet)						
Meth	od of	f Dı	illing	3:	Hollow	Stem Aug	ger			70	Number of Samples: NA	Dist.: NA		t.: NA	Core: NA
Bore	hole	Size	(inc	hes):	10.25"			····	•	***************************************	Water Depth 578.31'	First:	Comp	l.: NA	24 hrs.
Com	Completion Information: Completed as MW				Logged By: Checked By:		· · · · · · · · · · · · · · · · · · ·								
											Jack Br	iegel		Pat	Lay
~^		Т	npl	es	Field A	nalysis		Log					<u>.</u> <u>6</u> _		
Depth (feet)	Number	Type	Blow Count	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Rei	marks
5					0/0				CH ML	Same as above,	but WET.				al at surface. 15'.



# Monitoring Well Construction Log - Flush Mount

<u> </u>	<del>_</del>	
Project Name: Capital Curport - 183rd TFG	Project Number: 911657	Date: 12-2-92
Well Thinois ANC	Well ID: MW102	Sheet 1 of 1
Driller: Flond Campbell	Borenole Diameter (in): 1014	Total Depth (ft):
Drilling Agency: Rhodes + Assoc.	Date Started: 12-2-92	Depth to Water (ft):
Drilling Equipment: CME - 75	Date Finished: 12-2-92	Elevation and Datum: 580. 4 70
Drilling Method: hollow stem anger	Logged by: JS Briegel	Checked by:
Drilling Fluid:	Number of Samples:	Date: 12-14-97
	PROTECTIVE CSG	

Material / Type:

				Diameter:/c.	
				Depth BGS:	Weep Hole (Y / N)
				GUARD POSTS (Y (N)	
	Elev.			No.:Type:	
	Height			SURFACE PAD	
	GS Elev.			Composition and Size 2/ Sch	reti
Geologic	GS Height	0.00		RISER PIPE	Vice starl
	Depth BGS	Elev.	2:27	Type: Schedule 324 Star. Diameter: 21	71622 Heel
	!	oth BGS-		Total Length (TOC to TOS):	
		J 500		Ventilated Cap (Y) N)	
	0.2'			GROUT	
				Composition and Proportions: Doztlan	d ce ment
	ĺ	. day		) ,3′ ′	
				Tremied (Y /(1)	i
				Interval BGS: 1.5	
				CENTRALIZERS NA	
	1.5'		333	Depth(s)	<u></u>
		bunamina		SEAL \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,
		ambonite		Type: wyoming bentmite pelle	<u> </u>
	3'	<b>V</b>	=	Source:	25.4
	9	<b></b>		Setup / Hydration Time:	Vol. Fluid Added 2.5 مر ال
	3.2'			Tremled (Y /(1))	
		<b>1</b>		FILTER PACK Time Colorado Silica 20/40 gr	ale
				Type: Colorado Silica 20/40 gr Ame Used: 4 100 # bage	
				Tremied (Y (N))	
	Colorado si	iice Cont. wine would		Source:	
•	20/40 900	.de 0.010" 5.5.5cueu		Gr. Size Dist:	
				SCREEN	
		/3.2	<b>:::</b>	Type: HSSC - Schedula 304 Diameter: 2"	continuous would
		13,2		Diameter: 2 "	
	13.4'	_		Slot Size and Type: 0.010 "  Slot Size and Type: 3.2 - /3.2	
		<b>\</b>			
	15'		<b>*******</b>	WELL FOOT (Y/N) Interval BGS: /3.2 -/3.4	Length 0,2
		Mone		Bottom Cap (D/N)	Lengun
	TD: 15		<u> </u>	BACKFILL PLUG	
		Borehole ———— Dia.	10/4"	Material: None	
		Uid.		Setup / Hydration Time:	Form F-1023
				Tremied (Y / N)	9/1/91



Proje	ect N	lun	nbe	r: <u>91</u>	1657			Fie	ld Lo	g of Borehole	Number:	MW103		Sheet	<u></u>
Borel	hole l	Loca	ition	:	Site 1			-			Elevation and Datu	m: Land:	583.20		
Drilli	ing A	gen	ey:		Rhodes	and Asso	c.	Driller:	F	. Campbell	Date Started:	12/3/92	Date Fin	ished:	12/3/92
Drilli	ing E	quip	men	t:	CME-75	5	1				Completion: Depth (feet)	15	Rock De	pth:	
Meth	od of	Dr	lling	<u>;</u> ;	Hollow	Stem Aug	ger				Number of 1 Samples:	Dist.: NA	Undist.:	NA	Core: NA
Borel	hole S	Size	(inc	hes):	10.25"						Water Depth 575.74	First:	Compl.:	NA	24 hrs.
Comp	pletio	n In	forn	nation:		Comp	leted a	s MW			Logged By:		Checked	Ву:	
											Jack Brid	egel		Pat .	Lay
<u>-</u> ^		7	ıple	es	Field A	nalysis		Log	T				ë E		
Depth (feet)	Number	Type	Blow Count	Orilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Ren	narks
-					0/0				СН	O'; Clay; light t silt.	orown to brown; with	trace of	FC CF	tive soil	s at surface.
5   1   1   1   1				0939	0/0				СН	Same as above,	but light brown; ver	y moist.	Dr. 33'-	ive Shell 5' at 09:	by Tube from
10 —									СН	Same as above.			cut	tings.	rom auger
												·	110	9=15'.	



Project Name: Capital airport 1835d TFG III AND	Project Number: 911657	Date: 12-3-92
Well MW 103	Well ID: MW103	Sheet 1 of 1
Driller: Flond Campbell	Borehole Diameter (In): 10'4	Total Depth (ft): 15
Drilling Agency: Phodes and assis	Date Started: 12-3-42	Depth to Water (ft): 7.15 By
Drilling Equipment: CM6-75	Date Finished: 12-3-92	Elevation and Datum: 76C 5 83,66
Drilling Memod: hollow stem anger	Logged by: US Breezel	Checked by:
Drilling Fluid:	Number of Samples: —	Date: 12-14-92

PROTECTIVE CSQ Material / Type:

				Depth BGS: /c	Weep Hole (Y / N)
				GUARD POSTS (Y/M)	***************************************
	Elev			No.:Type:	
	Height			SURFACE PAD	ı. <del>-</del>
	GS Elev.			Composition and Size: $2' \times 2' - 5$	atrett
Geologic	GS Height	0.00'		Type: schedule 304 star	nless steel
	Depth BGS	Elev. 0.2		Diameter: 2 11	
*	D	epth BGS D-2		Total Length (TOC to TOS): 4'	
	<del>- '</del>		4 👭	Ventilated Cap (()/ N)	
<b>'</b>	0.2			GROUT	1
				Composition and Proportions: portland c	enent
	ţ	. 🚔	4 🐼		
				Tremied (Y/N)	
				Interval BGS:	
			4 🐼	CENTRALIZERS	
	2'		200	Depth(s) N≎ N∈	· · · · · · · · · · · · · · · · · · ·
				SEAL	A. 11. 1.
		bentonite		Type: wyoming bentonte	pa lers
	3.5'	<b>V</b>		Source:	0.0
	3.3	<b>A</b>			Val. Fluid Addea 2.5 qF
	4.2			Tremled (Y.N)	
		<b>1</b>		Type: Coloredo Silica 20/	to grade
				Amt Used: 5 100 The back	<u> </u>
				Tremied (Y (N)	
	70140	1012 814 0		Source:	
-	Silica	שונה לוסו השתאט השתאט		Gr. Size Dist.:	
		5.5TER SULAN		SCREEN	
	Ì	11101		Type: sehedule 304 stainless	steel
		14,2		Diameter: Z n	
	14,4'			Sior Size and Type: 0.510" - (cont.	wine mound)
1				Interval BGS: 4,2-14.2	
	115' -		AXAXXXX	INTERVAL BGS: 14. Z 14.4	Length 2"
		NONE	<b>******</b>		Length 2"
	TD: 15'	▼ 🔯	868688 86888	Bottom Cap(Y) N) BACKFILL PLUG	
		Borehole -	014	Material: NonE	
		Dia.	<u> </u>	Setup / Hydration Time:	
				Tremed (Y / N)	Form F-1023 9/1/91



**BOREHOLE LOG** Project Name: Capital Air National Guard - Illinois MW104 Project Number: 911657 Field Log of Borehole Number: Sheet _1_ of _1_ Land: 582.45 ' Site 1 Borehole Location: Elevation and Datum: Rhodes and Assoc. Driller: F. Campbell 12/3/92 12/3/92 Drilling Agency: Date Started: Date Finished: Completion: Depth (feet) Rock Depth: **CME-75** 15 Drilling Equipment: (feet) Number of Hollow Stem Auger Method of Drilling: Dist.: NA Undist.: NA Core: NA Samples: NA Water Depth 575.32 10.25" Borehole Size (inches): First: Compl.: NA 24 hrs. Logged By: Checked By: Completed as MW Completion Information: Jack Briegel Pat Lay Well Construction Diagram Samples Field Analysis Log Depth (feet) USCS or Rock Type PID (ppm) S/B* Orilling Time FID (ppm) S/8* Geologic Unit Blow Count Graphic Description Remarks Number Type 0'; Clay; light brown to brown; no odor. Ty Till Native soil at surface. Same location as SB107. No HNu values logged for this well. Same as above, but WET; has fuel odor. Fuel odors from cuttings below 6'. 10 Same as above. 15 TD=15'.



	<del></del>	
Project Name: Capital airport 183rd TFG IIIA	Ni Project Number: 911657	Date: 12-3-92
WHI MWIOY	Well ID: MW104	Sheet of
Driller: Floyd Compbell	Borenole Diameter (in): (D/4	Total Depth (ft): /5
Drilling Agency: Rhodes and assoc	Date Started: 12-3-92	Depth to Water (ft): (0.64 \$700
Drilling Equipment: CME 7 S	Date Finished: 12-3-92	Elevation and Datum: 582.15
Drilling Mernod: ho I was stem aneer	Logged by: J 5 Bregel	Checked by: DAC
Drilling Fluid: None	Number of Samples:	Date: 12-14-72

PROTECTIVE CSQ Material / Type:

		Diameter:
		Depth BGS: Weep Hole (Y / N)
		GUARD POSTS (Y (N))
	Elev	No.:Type:
	Height	SURFACE PAD  Composition and Size: 2'x 2' _ Schete
	GS Elev.	Composition and Size:
Geologic	GS Height 0.00'	RISER PIPE Schedule 304 S. Steel
	Depth BGS Elev.	Diameter Z'
	Depth BGS	Total Length (TOC to TOS): 3.5
		Ventilated Cap (YM) JSIS 12-3-92
'	0.3	GROUT
, †		Composition and Proportions: partland cement
		Tremled (Y /(N))
1		Tremled (Y/6) /, 5 /
		CENTRALIZERS
	),5	Depth(s)
	wyoming	SEAL myoning bentomite
	nontonite	lype:
	3'	Setup / Hydration Time: Vol. Fluid Added 2.5 an 11
		Tremied (Y (N))
	3.8'	FILTER PACK
		Typo: Colorado silica 20/40 grade
		Amt Used: 5 100 = bags
	Screen !!!	Tremied (Y (N)
	since 2/40 slots	Gr. Size Dist.:
	720 15-1-65	SCREEN
į	13.8'	Typo: Schedule 304 Stainless Steel
	13.8'	Slot Size and Type: 0.010" Cont. wine would
	(13.8)	3,8'-13,8'
	15	WELL FOOT (Y(M) sucen had small corp on it
	None	Interval BGS:Length
	TD: 15	Bottom Cap (Y N)
	Borehole	BACKFILL PLUG  Material: NONE
	Dia.	Setup / Hydration Time: Form F-1023
		Tremied (Y / N)



Proje	ect N	luml	oer: _	911657	<del></del>		Fiel	ld Lo	g of Borehole	Number:	PZ102		Sheet <u>1</u> of <u>1</u>
Borel	hole L	ocati	on:	Site 1						Elevation and Datu	m: Land	: <i>583.6</i>	
Drilli	ng Ag	gency	:	Rhodes	and Asso	c.	Driller:	F	. Campbell	Date Started: 1	1/21/92	Date 1	Finished: 11/21/92
Drilli	ng Eq	Juipm	ent:	CME-75	5					Completion: 1 Depth (feet)	2	Rock (feet)	Depth:
Meth	od of	Drilli	ng:	Hollow	Stem Aug	ger				Number of Samples: NA	Dist.: NA	Undis	t.: NA Core: NA
Borel	hole S	ize (i	nches):	10.25"						Water Depth 576.42	First:	Comp	l.: NA 24 hrs.
Com	pletion	n Info	rmation	:	Comp	leted as	s piezo	omete	•	Logged By:		Check	ed By:
										Jack Brie	gel		Pat Lay
<u>-</u>		amı		T	nalysis		og	J		<i>:</i>		ion	
Depth (feet)	Number	Type	Drilling	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type	·	Description		Well Construction Diagram	Remarks
5			1013					CH CH	brown; odor. A  4'-6'; not logge  6'; Clay; dark t  soft; slig  6.3'; Clay; ligh  6.7'; Clay; mot	oots; moist. ; mottled dark brown with gravel; medium artificial fill material. d.  brown; with gravel; we ghtly moist. t brown; with gravel; tded light to dark grey ightly moist; no fuel	stiff; no  with roots;  stiff y; with		Lithology not logged 0'-2', 4'-6', 7'-12'.  Split Spoon sample 2'-4'; 18" retrieved.  Split Spoon sample 6'-8'; 12" retrieved.



Project Name: Capital Chiaport 183rd TFG	Project Number: 911657	Date: [1-21-92
Well ILL ANG PZ 102	Well ID: PZ102	Sheet of
Driller: T. Campbell	Borenole Diameter (In): 0/4	Total Depth (m):
Drilling Agency: Rhoades and assoc.	Date Started: 11-21-92	Depth to Water (ft): 7.57 873€
Drilling Equipment CM5 75	Date Finished: 11-21-92	Elevation and Datum: 583.5
Drilling Method: Hollow Stem augor	Logged by: ) S Brugel	Checked by: PUCA
Drilling Fluid: No Ne.	Number of Samples:	Date: 12-14-97
	PROTECTIVE CSG	

Material / Type:

				Depth 8GS:	Weep Hale (Y / N)
				GUARD POSTS (Y/N)	
	Elev			No.:Type:	
	Height			SURFACE PAD	-
	GS Elev.			Composition and Size: 2'X 2' Sakreto	<u></u>
Geologic	GS Height	0.00		RISER PIPE	
	Depth BGS	Elev. O.2	2-2-	Type: PVC Schedelo 40	
		• • • • • • • • • • • • • • • • • • • •	ستو ا	Diameter.	
		epth BGS OP	Š XX	100 E 100).	
·	0.2			Ventilated Cap (🕜 / N) GROUT	
		· ·		Composition and Proportions: Doctland Come	ent
				3. feet	· · · · · · · · · · · · · · · · · · ·
				Tomical (V / ND)	
			9 📖	Interval BGS: 3,5/-0,4/	
			4 (88)	CENTRALIZERS	
				Depth(s)	
	3.5	4		1	
		1.5' pellets		Type: Whoming Bostowite 15	O# Ducket
		[1.5 Pelet)		$\mathcal{L}$	
	5.0		=======================================	Setup / Hydration Time:	
		<b>1</b>			Fluid Added
	7.0'	+		Tremied (Y/N) FILTER PACK	
		T		Type: Colocado Silica 20/40	Stade
				AMIL Used: 3 100# basis	-0x
				Tremled (Y 4 N)	
	20/404	800le 0.010 staffed	##	Source:	
	Silica	PVC		Gr. Size Dist.:	
				SCREEN	
.				Type: Schodule to PVC	
				Diameter24	
	12.0'	+		Slot Size and Type: 0.010 5 lotted	
				Interval BGS: / - / 2	
	12.0	A	200000	WELL FOOT (FL)N)	
		Na		איעו	ngth
`	TD:12.0	<u> </u>		Bottom Cap (Y / N)	
	10.12.0	Borehole	01/4	BACKFILL PLUG Material: N/a	
,•		Dia.	0.4		
				Setup / Hydration Time:	Fcrm F-1023
				Tremied (Y / N)	9/1/91



				11657					9 201011010	e Number: SB101 / PZ103 Sheet 1 of 2  Elausian and Datum. Land: 582.70				
Borel	iole L	ocation	n:	Site 1						Elevation and Datenin.				
Drilli	ng Ag	ency:		Rhodes of	and Asso	c.	Driller:	F	. Campbell	Date Started:	11/17/92	Date 1	11/17/92	
Drilli	ng Eq	uipme	nt:	CME-75	Ī					Completion: Depth (feet)	22	Rock (feet)	Depth:	
Meth	od of l	Drillin	g:	Hollow	Stem Aug	ger				Number of Samples: NA	Dist.: NA	Undis	t.: NA	Core: NA
Boreh	nole Si	ze (inc	ches):	10.25"						Water Depth 576.44	First:	Comp	l.: NA	24 hrs.
Comp	oletion	Infor	mation:		Comp	leted a	s piezo	omete	·	Logged By:		Check	ed By:	
										Jack Br	iegel		Pat	Lay
	S	ampl	es	Field A	nalysis		Log	·		1	<del></del>	6		
Depth (feet)	Number	Type Blow Count	Orilling Time	PID (ppm) S/8*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Re	marks
			1333	2/0					brown;	nottled dark brown with gravel and org ; medium stiff; slig!	anic		Split Spoo retrieved	on sample 0'-2'; 20".
- - -		A A A A A A A A A A A A A A A A A A A	1400	2/0				CL	3'; Grading to l				Split Spooretrieved	on sample 2'-4'; 24".
5-			1407	1/0					<del>-</del>	own; with clays; ve			retrieved : Split Spoo	on sample 6'-8';
- - -			1416	1/0				МН	8'; Saturated fro	om 8' to 9'.			retrieved : Split Spooretrieved :	on sample 8'-10';
10 —			1425	1/0					- 10'; Clay; brow medium	n, no longer mottle stiff.	d; with silt;		Split Spoo 10'-12'; r	on sample etrieved 24".
- - -			1433	1/0				СН		to wet; with abunda ning and nodules.	nt black		Split Spoo 12'-14'; r	on sample etrieved 24".
15 —			1442	1/0					<del>-</del>	to medium stiff to s	iff.		Split Spoo 14'-16'; r	on sample etrieved 24".
-		AND AND AND AND AND AND AND AND AND AND	1451	1/0				СН	16'; Grading to 16.5'; Medium -				Split Spoo 16'-18'; n	on sample etrieved 18".
-			1500	2/0				sw		ish grey; with clay a coarse, subang to su			Split Spoo 18'-20'; r	on sample etrieved 24".



Project Number:	911657	Field Log of Borehole Number:	SB101 / PZ103	Sheet _	2	of	2
-y		<del>_</del>					

		Sar	ηρΙ	es	Field A	nalysis	L	.og			6	
Depth (feet)	Number	Type		Orilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Uni†	Graphic	USCS or Rock Type	Description	Well Construction Diagram	Remarks
				1517	0/0					_20'; Clay; greyish brown; with sand and gravel; very hard.		Split Spoon sample 20'-21.5'; retrieved 18".
		7							CL -	_ graver, very maid.		No sample had fuel odors.
	1									_		TD=21.5'.
	7											
										<del>-</del> -		
25 -										<u>-</u>		
										-		
:										_ 		
] -					ŀ				}	<del>-</del> -		
-	}									<del>-</del>		
-										-		
30 -				]					ļ	<del>-</del>		
-			Ì						}	- -		
-			ļ							<u>-</u>		
-	]				ĺ				-	<del>-</del>		
-	]								-	-		
-								}	}	- -		
35 —	]									<u>-</u>		
_									-	-		
-	1								F	-		
-					2					- - ·		
-									E	-		
-										-		
40 — -			ł			,			-	-		
-	1											
-								,	-	•		
_	}								F			
_												ļ
45 —					-					· -		
-									}	-		
										-		



Project Name: Capital Airgan (+ 183 nd tactich	Project Number: 911 65 7	Date: 11 - 17 92
Well ILL FAG PZ103	Well ID: PZ 103	Sheet / of /
Onlier: F. Campbell	Borenole Diameter (in): 01/4"	Total Depth (ft):
Drilling Agency: Rhoudes and Ussoe.	Date Started: 11-21-92	Depth to Water (ft): (e .)
Drilling Equipment CME 75	Date Finished: 11-21-92	Elevation and Datum: 582-50
Drilling Method: Hollow Stem Ruger	Logged by: K Bruese	Checked by: 7 H Lay
Drilling Fluid:	Number of Samples:	Date: 12-14-92

PROTECTIVE CSG Material / Type:

				Diameter: W &	
				Depth BGS:	Weep Hote (Y / N)
				GUARD POSTS (Y/N)	
	Elev.			No.:Type:	
	Height			SURFACE PAD	
	GS Elev.	` `		Composition and Size: 2 12 52km	eli
Geologic	GS Height	0.00		RISER PIPE	<b>)</b>
		Elev. 0.2' [	2-2-	Type: PVC SKRedWe 42	<u></u>
	Depth BGS	Elev. O. Y	سنو ا	Ulameter.	
	Dep	oth BGS 0.4	<b>8</b> 888	Total Length (TOC to TOS):	
	0.2			Ventilated Cap (0 / N)	
		N.		GROUT	·· - 4
				Composition and Proportions: poetland	emel.
				3.6	
		<b>I</b> ⊗	V (XX)	Tremied (Y (N))	
				Interval BGS: 0.4 - 4.0	
		i	4 IX	CENTRALIZERS	
	4'			Depth(s)	
				SEAL	
	}	1.5' sellets		Type: wearing Routowite	1-20-pul
				Source:	
	5.5	<b>A</b>		Setup / Hydration Time:	Vol. Fluid Added 3 50
i [				Tremied (Y / N)	Ü
	- 'ه. ي	- T	<b>::</b> :	FILTER PACK	•
				Type: Caloredo Silica 201	40 grade
				AME Used: 10-100# Bage	
	ļ			Tremied (Y (N)	
	20/40 820 5.11.Ca	D012 8vc	::: <u>:</u>	Source:	
	S.lica	<u>2194000</u>		Gr. Size Dist:	
	1			SCREEN	
				Type: DVC Sandul 40	
				Diemeter 2"	
	11/			Siot Size and Type: 3.010 slot col	
				Interval BGS: (p' - 11'	
	16'	<u> </u>	and the factories	WELL FOOT ((Y) M)	
		10/40 grade		Interval BGS: 1'-16	Length 5
1	FD: // / P	12 11 Stock	<b>******</b>	Bottom Cap (V) N)	
	TD: 16'	Borehole -	7.114	BACKFILL PLUG	
		Dia.	10/4	Material: Ab	
		Jia. L		Setup / Hydration Time:	Fcm F-1023
				Tremied (Y / N)	9/1/91



Project Name: Capital Air National Guard - Illinois SB102 Sheet 1 of 1Field Log of Borehole Number: _ Project Number: Land: 584.20 ° Borehole Location: Site 1 Elevation and Datum: 11/18/92 11/18/92 Rhodes and Assoc. F. Campbell Date Finished: Driller: Date Started: Drilling Agency: Completion: Depth (feet) Rock Depth: 12 CME-75 Drilling Equipment: (feet) Number of Hollow Stem Auger Dist.: NA Undist.: NA Core: NA Method of Drilling: Samples: NA Water 10.25" First: Compl.: NA 24 hrs. Borehole Size (inches): Depth (ft): NA Logged By: Checked By: Grouted w/ cement/bent. Completion Information: P. Lay Jack Briegel Well Construction Diagram Log Field Analysis Samples USCS or Rock Type PID (ppm) S/B* ow Count Drilling Time FID (ppm) S/B* Graphic Description Remarks Number Geologi Unit Type 0'; Clay; dark brown to brown; with silt; with 0848 gravel and brick fragments; abundant Split Spoon sample 0'-2'; organic material; plastic; moist. 24" retrieved. Artificial fill to 5' of depth. CL10900 0/0 Split Spoon sample 4'-6'; 5'; Silt; mottled light brown and grey; with 24" retrieved. clay; medium stiff; medium plasticity; very moist; no odor. MLBelow 6.5', cuttings have fuel odor. 8'; Clay; brown; with silt; very moist; fuel 0912 3/0 odor. Split Spoon sample 8'-10'; 24" retrieved. 9'; Grading to greyish brown. 50/0 CL 200/0 10'; Clayey Silt/Silty Clay; greyish brown; 0935 200/0 very moist; strong fuel odor. Split Spoon sample 10'-12'; 24" retrieved. TD=12'. 300/0 15



Project Name: Capital Air National Guard - Illinois SB103 Field Log of Borehole Number: Project Number: Sheet 1 of 1Land: 584.80 Site 1 Borehole Location: Elevation and Datum: Rhodes and Assoc. F. Campbell 11/18/92 11/18/92 Driller: Date Finished: Drilling Agency: Date Started: Completion: Depth (feet) Rock Depth: CME-75 12 Drilling Equipment: (feet) Number of Hollow Stem Auger Method of Drilling: Dist.: NA Undist.: NA Core: NA Samples: NA Water 10.25" Borehole Size (inches): First: Compl.: NA 24 hrs. Depth (ft): NA Logged By: Checked By: Completion Information: Grouted w/ cement/bent. Jack Briegel P. Lay Well Construction Diagram Field Analysis Samples Log USCS or Rock Type ow Count Drilling Time FID (ppm) S/B* Geologic Uni† (ppm) Graphic Description Remarks Number Type PID S 1002 0'; Clay; dark brown; with silt and gravel; with abundant organics; moist. Split Spoon sample 0'-2'; 6" retrieved. CL Electric line found at 4'. 4'; Grading to mottled brown to light brown; 1014 3/0 without gravel; to medium stiff; slightly Split Spoon sample 4'-6'; 18" retrieved. CL7'; Same as above, but with fuel odor. Driller noted fuel odor from cuttings. 1026 13/0 8.5'; Same as above, but stiff and moist; has Split Spoon sample 8'-10'; fuel odor. 24" retrieved. 80/0 10'; Silty Clay; grey to light brown; very moist; 1035 50/0 CL strong fuel odor. Split Spoon sample 10'-12'; 24" retrieved. 100/0 TD=12. 15



Proj	ect N	Jum	ber	: <u>9</u>	11657			Fie	ld Lo	g of Borehole	Number:	SB104		Sheet	of	_1
Bore	hole I	Locat	tion:		Site 1						Elevation and Date	ım: Land	583.7	8 ′		
Drill	ing A	genc	y:		Rhodes	and Asso	oc.	Driller	: 1	F. Campbell	Date Started:	11/18/92	Date	Finished:	11/18	3/92
Drilli	ing E	quipr	nent	:	CME-75	5					Completion: Depth (feet)	12	Rock (feet)	Depth:		
Meth	od of	Dril	ling:	·	Hollow	Stem Au	ger				Number of Samples: NA	Dist.: NA	Undis	st.: NA	Core: N	A
Borel	nole S	Size (	inch	es):	10.25"						Water Depth (ft): NA	First:	Comp	ol.: NA	24 hrs.	
Com	pletion	n Inf	orma	ition:		Grou	ted w/	cemen	t/beni	•	Logged By:		Checl	ked By:		
											Jack Brid	egel		P.	Lay	
-0	S		ples	3	Field A	nalysis		Log	T		<u> </u>	And the second	į. E	,		
Depth (feet)	Number	Type		Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Rei	narks	
ja -		SCOTIFICATION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	1	231	1/0				CL	brown;	d reddish brown and with silt; abundant or ; medium stiffness; s	rganic		Split Spoo 18" retriev	n sample 0'	'-2';
5 —			1	239	7/0				CL	4'; Same as abo very mo	ve, but dark brown; ist; fuel odor.	plastic;		Fuel odor cuttings. Split Spoot 18" retriev	n sample 4'	'-6';
10 —		Live and a second and a second as		249 305	150/0 100/0 45/0				CL	brown to soft; ver	Clayey Silt; mottled reddish brown; mod y moist; fuel odor. wn; moderately stiff odor.	lerately		18" retriev Split Spoor		
15					35/0									TD=12'.		



BOREHOLE LOG Project Name: Capital Air National Guard - Illinois Field Log of Borehole Number: SB105 PZ104 Sheet  $\underline{1}$  of  $\underline{1}$ Project Number: 911657 Land: 583.98 Site 1 Borehole Location: Elevation and Datum: 11/18/92 Drilling Agency: Rhodes and Assoc. Driller: F. Campbell Date Started: 11/18/92 Date Finished: Completion: Rock Depth: **CME-75** 15 Drilling Equipment: Depth (feet) (feet) Number of Hollow Stem Auger Method of Drilling: Dist.: NA Undist.: NA Core: NA Samples: NA Water 10.25" Borehole Size (inches): First: Compl.: NA 24 hrs. Depth 577.71 Logged By: Checked By: Completed as piezometer Completion Information: Pat Lay Jack Briegel Field Analysis Samples Log Construction Diagram Count FID (ppm) S/B* USCS or Rock Type Drilling Time PID (ppm) S/B* Graphic Description Remarks Number Geologi Unit 30 TrDrilled as SB105.

Split Spoon sample 0'-2';

B" retrieved. 1330 0'; Clay; mottled brown to dark brown; with minor gravel; with abundant organic debris; plastic; moist. Artificial fill. 1'; Clay; native soil. CH 4'; Silt; mottled light brown to brown; with 1347 4/0 clay; fairly soft; wet. Split Spoon sample 4'-6'; 21" retrieved. MH 8'; Clay; light brown to brown; very soft; 1358 110/0 moist. Split Spoon sample 8'-10'; 8.5'; Silty Clay/Clayey Silt; grey to greyish 24" retrieved. brown; very moist to wet; strong fuel CH 10 1420 30/0 10'; Clay/Silty Clay; greyish brown; stiff; Split Spoon sample 10'-12'; 24" retrieved. Had medium stiff to stiff; moist; fuel odor. fuel sheen. Lithology not logged 12'-15'. 15 TD=15'.



_		<del></del>	·
F	Project Name: Caketal Augost 183kd TRG	Project Number: 911657	Date: 1-21-92
- 1		Well ID: P= 104	Sheet ] of ]
- 1	Oriller: T Eamabell	Borehole Diameter (In): \( \begin{align*} \begin{align*} 0 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 &	Total Depth (ft):
		Date Started: 11 - 21 - 92	Depm to Water (ft):
		Date Finished: 11-21-92	Elevation and Datum:
	rilling Method: Hollow Stern auzer	Logged by: ) S Breach	CHECKED BY: D & Can
- 1	rilling Fluid:	Number of Samples:	Date: /2-14-92

PROTECTIVE CSQ Material / Type:

				U	/4E/119(8).	<del></del>
				٥	Pepth 8GS:	Weep Hole (Y / N)
				G	NARD POSTS (Y (N))	
	Elev.				lo.:Type:	
	Height			S	URFACE PAD	
	GS Elev.			c	omposition and Size: 2/x 2/ Saka of	<u>te.</u>
Gaelogia		0.00		R	ISER PIPE	
Geologic	GS Height	, , , , ,	1	Ty	ypo: FVC schedule 40	·
	Depth BGS	Elev. 0.2	كنزا سهما	Di	ype: Saketasse (5)	
	De	epth BGS 6.4		To	pizal Length (TOC to TOS): 0,2 ' - 4,2 '	4/
	<del></del>			Ve	entilated Cap (Y) N)	
·	0.2				ROUT	
		. etia		C	omposition and Proportions: Foethand Co	emour
		· —.				· · · · · · · · · · · · · · · · · · ·
				Tr	remied (Y/E) remail BGS: 0.4'-1.5'	
				int	rerval BGS: 5,4 - 1,5	
				Cŧ	ENTRALIZERS	
	11.5			De	epth(s) ————————————————————————————————————	
				SE	EAL	41
		1.5 pellets		Ту	po: Wyoming Bertonite 1	Sur Pail
		<b>*</b>			ource: \$	
	3.6	Ā		Se	tup / Hydration Time:	Vol. Fluid Adde <del>d 2: 5 ح</del>
	444			Tre	emied (Y/N)	
	4,5	<b>A</b>			LTER PACK	
				Ty	po Silva 20/40 Gradu	
					nt Used: 2 - 100 # Bags	
				Tre	mied (Y (N))	
	=01408	DIO SIGHT			urce: Colosodo	
	371762				. Size Dist:	
				SC -	PVC Scheelule 46	
					<b>—</b>	<del></del>
	14.5			Dia	emeter 2010 Stoffact	
				510	evel BGS: 42'-14.2'	
		<u> </u>		WE	ELL ECOT (V) M	
	15	<b>A</b>		inte	mal BGS: 14.2 - 15	Length O.8
		NONE		Bot	ttorn Cap(X) N)	
	TD:/5/		1		CXFILL PLUG	
		Borehole — <b>&gt;</b> Dia.	104	Mai	(enal:	
		Dia.	لـــــن	Set	tup / Hydration Time:	50m 5 1022

Tremied (Y / N)

9/1/91



Proje	ect N	luml	ber: _9	011657		********	Fie	ld Lo	g of Borehole	Number:	SB106	,	Sheet	<u>1</u> of <u>1</u>
Borel	nole I	Locati	on:	Site 1						Elevation and Da	tum: Land	582.20	0 1	
Drilli	ng A	gency	:	Rhodes	and Asso	oc.	Driller	. <i>F</i>	. Campbell	Date Started:	11/19/92	Date I	Finished:	11/19/92
Drilli	ng E	quipm	ent:	CME-75	5					Completion: Depth (feet)	8	Rock (feet)	Depth:	
Meth	od of	Drilli	ng:	Hollow	Stem Aug	ger				Number of Samples: NA	Dist.: NA	Undis	t.: NA	Core: NA
Borel	ole S	Size (i	nches):	10.25"						Water Depth (ft): NA	First:	Comp	i.: NA	24 hrs.
Comp	oletio	n Info	rmation		Grou	ted w/	cement	t/bent.		Logged By:		Check	ed By:	
										Jack Br	riegel 			Lay
<b>د</b> ^	5	Samp			nalysis		Log					i e		
Depth (feet)	Number	Type	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Rei	narks
1		A CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTO	0945	2/0				CL	gravel. 0.5'; Gravel; w	n to dark brown; wi Topsoil. ith clay and sand; a material; artificial t	bundant		Split Spoo 12" retriev	n sample 0'-2'; ved.
		Maria Maria	1002	4/0				GW	3.5'; Gravel; bi	rown; with sand; cr	umbly; no		12" retriev	
5 — - -		AND STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	1015	75/0 30/0					WET.	change to grey; str	ong fuel		Split Spoo 12" retriev	n sample 4'-6'; ed.
- -	,	AND AND AND AND AND AND AND AND AND AND	1013	30/0		·		ML CL	odor in	cuttings.	ong ruo.		Split Spoo 24" retriev	n sample 6'-8';
10													TD=8'.	



Project Name: Capital Air National Guard - Illinois SB107 Project Number: 911657 Sheet 1 of _ Field Log of Borehole Number: Land: 582.50 1 Site 1 Elevation and Datum: Borehole Location: 11/19/92 11/19/92 Rhodes and Assoc. F. Campbell Driller: Date Started: Date Finished: Drilling Agency: Rock Depth: Completion: Depth (feet) 8 CME-75 Drilling Equipment: (feet) Number of Hollow Stem Auger Dist.: NA Undist.: NA Core: NA Method of Drilling: Samples: NA Water 10.25" Compl.: NA 24 hrs. Borehole Size (inches): First: Depth (ft): NA Logged By: Checked By: Grouted w/ cement/bent. Completion Information: Jack Briegel Pat Lay Well Construction Diagram Log Samples Field Analysis FID (ppm) S/B* Geologic Unit USCS or Rock Type ow Count PID (ppm) Graphic Description Remarks Number S/B* 0'; Clay; dark brown to brown; with silt, 1104 1/0 gravel, and abundant organic debris; Split Spoon sample 0'-2'; 18" retrieved. moderately stiff to stiff; moist; no odor. CL1115 4/0 Split Spoon sample 2'-4'; 24" retrieved. 3.5'; Grading to very moist; with wood fragments; to medium stiff; plastic. 1119 6/0 Split Spoon sample 4'-6'; 24" retrieved. 5'; Clay; greenish grey; with silt; medium stiff; plastic; moist; slight fuel odor. 1136 15/0 CL 6.5'; Grading to greenish brown. Split Spoon sample 6'-8'; 24" retrieved. 10/0 7.5'; Clayey Silt/Silty Clay; medium stiff; CL/ 8/0 ML slight fuel odor. TD=8'. 10 15



						g of Borehole		
ation:	Site 1						Elevation and Datum:	d: <b>582.68</b> ′
ісу:	Rhodes	and Asso	c.	Driller:	F	. Campbell	Date Started: 11/20/92	Date Finished: 11/21/92
pment:	CME-7	5					Completion: 12 Depth (feet)	Rock Depth: (feet)
rilling:	Hollow	Stem Aug	ger				Number of Samples: NA Dist.: NA	Undist.: NA Core: NA
(inches):	10.25"						Water 576.22 First:	Compl.: NA 24 hrs.
nformatio	n:	Comp	leted a	s piezo	meter	•	Logged By:  Jack Briegel	Checked By:  Pat Lay
nples	Field A	nalysis	I	_og			<u> </u>	6
Slow Count Drilling	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description	Construction Bemarks  Uiagram  Emarks
100-	9 8/0 4 5/0 6 6/0	<b>u</b>			СН	organic brick ch odor.  Same as above, depth. 5'; Clay; light to medir 6.5'; Clayey Sil moderat	debris; trace of gravel and ips; medium stiff; moist; no but slightly moist.  probably artificial fill to this brown with minor mottling; soft im soft; plastic.  it; mottled light brown to grey; ely soft; wet.	TDrilled as SB108.  Split Spoon sample from TV TV TV TV TV TV TV TV TV TV TV TV TV
	mples  tunod 095	ment: CME-73 illing: Hollow (inches): 10.25"  formation:  nples Field A  continue and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a	ment: CME-75  iilling: Hollow Stem Aug  (inches): 10.25"  formation: Comp  nples Field Analysis  tuno Graph Comp  1004 5/0  1016 6/0	ment: CME-75  illing: Hollow Stem Auger  (inches): 10.25"  formation: Completed a.  nples Field Analysis  inches and analysis  on one of the complete and analysis  one of the complete and analysis  one of the complete and analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the complete analysis  one of the com	ment: CME-75  iilling: Hollow Stem Auger  (inches): I0.25"  formation: Completed as pieze  inples Field Analysis Log  imples Fiel	ment: CME-75  iilling: Hollow Stem Auger  (inches): 10.25"  Completed as piezometer  nples Field Analysis Log  imples Field Analysis Completed as piezometer  imples Field Analysis Log  imples Field Analysis Completed as piezometer  imples Field Analysis Log  imples Field Analysis Completed as piezometer  imples Field Analys	illing: Hollow Stem Auger  (inches): 10.25"  The state of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem of the stem	Completion:   12   Depth (feet)   12



Project Name: Capital Areport 183rd Tra	Project Number: Cill ( 57)	Date:[1-Z1-9Z
WHITLL ANG PZ 101	Well ID: PZ 101	Sheet 1 of 1
Driller: F. Campbell	Borenole Diameter (in): 01/4 h	Total Depth Discip-04-42- (ft): 12-11.9
Drilling Agency: Rhoades and Assoc.	Date Started:     -2  -92	Depth to Water (ft): 4.24
Drilling Equipment CMs 75	Date Finished: 11 - 21 - 92	Elevation and , Datum: 582.4% To
Drilling Method: Hollow Stem auger	Logged by: )5 Breezel	Checked by: Pil La
Drilling Fluid: none.	Number of Samples:	Date: 12-14-92

				PROTECTIVE CSG	
				Material / Type; /	•
_				Diameter: N/Q	
<del>-</del> >				Depth BGS: NG:	Weep Hole (Y / N)
				GUARD POSTS (YLU)	
	Elev			No.:Type:	
	Height			SURFACE PAD	•
		— ` <u>`</u>		Composition and Size 2 x2 Sukrut	
	GS Elev.	_ `			
Geologic	GS Height	0.00'	<u> </u>	Type: Schedule to PVC  Diameter: 2"	
	Depth BGS	Elev. 0.2		Diameter 21	
	Depth	BGS 0 4		Total Length (TOC to TOS): 5.7	
	<del></del>	, ,		Ventilated Cap (Y/N)	
1	0.2			GROUT	
				Composition and Proportions: Doct and	L cement
1		· 🚓		Composition and Proportions: Doct laws	3.67
				Tremied (Y (N))	
				Interval BGS: 4	
				00,000 1, 17000	
				Depth(s)	
	4.0'	<b>A</b>			
		SOF BENDA		Type: Layoning Berrow.(2 pe	ellets
		1.3 pellets			
	5.3'	<u>,                                    </u>		Setup / Hydration Time:	Val. Elvid Addad 5.50
		<b>1</b>			- Val. Fibita Added
	16.9	† <b>- - - -</b> -		Tremied (Y/N) FILTER PACK	
		1 T		Tune Colorado Silica 2	0/40 mades
				Type: Colorado Silica 2: Ami Used: 3 Bags 100 to	Ach
				Tremied (Y /(N)	
	porto prese	0.010 States		Source:	
	Colouneo Silica	les de conqui		Gr. Size Dist.:	
		11.L 12.1H-92		SCREEN	
1				Type: Sandule 40 PVC	
	<del>-11.9</del>	119-		No 2"	
	ta Down			Slot Size and Type: 0.010 Slotte	<del>2</del>
	12. D Q W , 92			Interval BGS: [4.9'-119'	
	12.0	Y	939333333	WELL FOOT (Y/M)	
		N/a		Interval BGS: 11.9 - 120	Length D.
'	TD: 2 = (	<b> </b>		Bottom Cap(Y) N)	
	TD; 2.0	Borehole		BACKFILL PLUG	
		Dia.	104	Material:	
				Setup / Hydration Time:	Fcm F-1023
				Tremied (Y / N)	9/1/91



Proje	ect N	vur	nbe	r: <u>9</u>	11657			Fie	ld Lo	g of Borehole	Number:	MW201		Sheet	<u>_1</u> of <u>_1</u>
Borel	hole I	Loca	ition	:	Site 2						Elevation and D	atum: Land	584.1	11'	
Drilli	ng A	gen	cy:		Rhodes	and Asso	c.	Driller:	F	. Campbell	Date Started:	12/1/92	Date	Finished:	12/1/92
Drilli	ng E	quip	men	t:	CME-75						Completion: Depth (feet)	15	Rock (feet)	Depth:	
Meth	od of	Dr	illing	;:	Hollow	Stem Aug	ger				Number of 2 Samples: NA	Dist.: NA	Undis	t.: NA	Core: NA
Borel	nole S	Size	(inc	hes):	10.25"						Water Depth 575.79	/ First:	Comp	ıl.: NA	24 hrs.
Com	oletio	n In	forn	nation:		Comp	leted (	as MW			Logged By:	Lay	Check	ced By: Jack Bi	riegel
		San	nple	es	Field A	nalysis		Log			<u> </u>		6	T	
Depth (feet)	Number	Type	Blow Count	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Ren	narks
5 — 10 — 15 — 15 — 20				1040	2/0				CL CL	debris (i asphalt of stiffness 2'; Clay; light b trace of 4'; Clay; dark b silt; soft 5'; Silt; light br slightly	prown; with silt; we roots, worms, etc. chunks; low to me brown; with organ silt; stiff; dry; no prown; with organ; slightly moist; no odor.  orange brown; so	); with dium  ic debris; with odor.  ic debris; with o odor.  silt; stiff;		Cored 0'-2 Top 1.5' is Cored 4'-6	'; 12' retrieved.  artificial fill.  '; 18" retrieved.  nay be artificial



# Monitoring Well Construction Log - Above Ground

Project Name: Capital aurport 183rd 776	Project Number: 911657	Date: 17-1-92
Well Illinois ANG- MW 201	Well ID: MW 20 1	Sheet 1 of 1
Driller: F. Campbell	Borehole Diameter (in): 1014	Total Depth (ft): / 5
Drilling Agency: Rhodes and assoc.	Date Started: 12-1-92	Depth to Water (ft):
Drilling Equipment CME -75	Date Finished:  2-1-92	Elevation and Datum: 586.81
Drilling Method: Wollow stem anger	Logged by: JSBriegel/ P. Lay	Checked by: Pil Ca
Drilling Fluid:	Number of Samples:	Date: 12 - 14 - 97
	PROTECTIVE CSG	

				Diameter: 6' Square	
	Elev			Diameter: G Square  Depth BGS: C/	Weep Hole(T) N)
	Height			GUARD POSTS (Y/N)	
	-			No.: 3 Type: Steel	
	Elev.		}	SURFACE PAD	
	Height 2.7			Composition and Size: 2'x2' Sck	Lote
	GS Elev.	<u></u>		RISER DIDE	
Geologic	GS Height	0.00'		Time: stainless steel - Sche	dule 304
-	D==45 DOO			Diameter: 2"	
	Depth BGS	N.		Total Length (TOC to TOS): 3.1	
		\		Ventilated Cap (Y)N)	·
		. Anna		GROUT	
		· · · · · · · · · · · · · · · · · · ·		Composition and Proportions: 20 84 1006	CEMANT
		×.		Tremied (Y (N))	
				interval BGS:	
			₩ ₩	CENTRALIZERS	
	l'			Depth(s) home	
		·		SEAL	,
		bentonite pellets		Typo: wyoming bentomite pelle	<u> </u>
	2.5'	<b>*</b>		Source:	
	2.5	<b>†</b>		Setup / Hydration Time:	ol. Fluid Added 2 galls
	4.1'	+		Tremied (Y/N)	
		1		FILTER PACK Time: Colonado Silica Zo/40	o en de
				Type: Colorado Silica Zo/40 AMIL Used: 4-100+ bags	
				Tremled (Y (N))	
	Sand	Screen		Source: —————	
	2.5-15'	4.1-14.2		Gr. Size Dist.;	
1				SCREEN Type: Stainless sheek - Sche	1.0 304
		14.2'		Diameter 2"	307
	14.4'			Sigt Size and Type: 0.010	
				Interval BGS: 4.1' - 14.2'	
	15'	YA	XXXXXX	WELL FOOT (V) N) Interval BGS: 14.2 - 14.4'	0.71
		NA			Length
	TD: 15'			Bortom Cap (Y)/ N)  BACKFILL PLUG	·
	<del></del>	Borehole	1054	Material: NONE	
		Dia. 'L	<del></del>	Setup / Hydration Time:	Fac- C 100
				Tremied (Y / N)	Form F-1024



Project Name: Capital Air National Guard - Illinois MW202 Project Number: 911657 Sheet _1_ of _1_ Field Log of Borehole Number: Land: 580.35 4 Site 2 Borehole Location: Elevation and Datum: Rhodes and Assoc. Driller: F. Campbell 12/1/92 12/1/92 Date Started: Date Finished: Drilling Agency: Completion: Depth (feet) Rock Depth: **CME-75** 13 Drilling Equipment: (feet) Number of Hollow Stem Auger Method of Drilling: Dist.: NA Undist.: NA Core: NA Samples: NA Water Depth 577.41' 10.25" Borehole Size (inches): Compl.: NA 24 hrs. First: Logged By: Checked By: Completed as MW Completion Information: Pat Lay/Jack Briegel Jack Briegel Well Construction Diagram Samples Log Field Analysis ow Count Drilling Time FID (ppm) S/B* USCS or Rock Type Geologic Unit (ppm) Graphic Description Remarks Number PID ( 1400 0/0 0'; Clay; dark brown; with organic debris and fill material; soft; moist; no odor. Cored 0'-2'; 18" retrieved. 2'; Clay; light to dark brown; with organic debris and fill material; medium stiff to stiff; slight odor. CH Possibly artificial fill to 4.5' below surface. 4'; Clay; brown; soft; moist; no odor. 1422 2/0 4.5'; Silt; mottled light grey to brown; medium stiff to stiff; with clay; very moist; odor. Cored 4'-6'; 24" retrieved. Grading to grey. MH 10 Same as above. MH TD=13'.



# Monitoring Well Construction Log - Above Ground

Project Name: Capital Curport 183rd TFG	Project Number: 911657	Date: 12-1-92
Well Illinois ANG MW202	Well ID: MW 202	Sheet _ l _ of _ l
Driller: F. Campbell	Borehole Diameter (in): ( )/4	Total Depth (ft): 13
Drilling Agency: Rhodes + Assoc	Date Staned: 12-1-92	Depth to Water (ft): 5.82
Drilling Equipment CME - 75	Date Finished: 12-1-92	Elevation and Datum: 583.08 70
Drilling Method: hollow stem anger	Logged by: P. Lay I JSBriege	
Drilling Fluid:	Number of Samples:	Date: 12-14-92

PROTECTIVE CSQ

			Material / Type: // Sq ua &	
	Elev		Depth BGS: Weep Hole @/ N	-
	Height	_	GUARD POSTS (D'N)	,
	•		No: 3 Type: Stee	
	Elev.		CURPAGE	•
	Height + 2.7		Composition and Size: 2/x2/Sakrete	_
	GS Elev. <u>555;24</u>			
Geologic	GS Height	0.00'	RISER PIPE Type: Stainless Steel Schedule 504 Diameter: 2"	_
	Dooth BOD		Diameter: Z"	-
	Depth BGS		Total Length (TOC to TOS): 4, 7	<u>-</u>
			Ventilated Cap (Y) N)	
			GROUT	۷.,
			Composition and Proportions: Poetland Cement	-
				-
			Tremied (Y/®) Interval BGS: 0,5	
			•	•
			Depth(s) No we	
	0.5	<b>A</b>		•
		Bentonite	True wyoming bentonite pellet	
		pellets	Type: Source:	•
	7.0'	Y	Setup / Hydration Time: Vol. Fluid Added 3 9	اله
			Tremled (Y (N))	
	2.0'+	<del>-</del>		
			Type: Colora do Silica 20/10 grade	
			Type: Colora do Silica 20/40 grade  Ame Used: 4 100 # bago	
			Tremled (Y /N)	
	SAND	3-12 :::	Source:	
	2-13		Gr. Size Dist.:	
		#	Type: Standless Steel Schoolide 304	
			Diameter 2"	
	12.2'		Slot Size and Type: 0.010 "	
	72.2		Interval BGS: 2 - 1 2 '	
	12.2'		WELL FOOT (Y) N)	
	[12.2]	<b>↑</b> [ [ [ ]	Interval BGS: 12-12.2 Length 0.2	
		no re	Bottom Cap (Y) N)	
	TD: 13	Borehole	BACKFILL PLUG  Managaria: NONE	<del></del>
		Dia.	(VIE.LOT) Q	
			Setup / Hydration Time: Form F-1024	
			Tremied (Y / N) 9/1/91	



Proje	ect N	lun	nbe	r: <u>91</u>	1657			Fie	ld Lo	g of Borehole	Number:	MW203		Sheet	_1_ of _1_
Borel	hole I	Loca	tion	:	Site 2						Elevation and Datum: Land: 585.08				
Drilli	ing A	gen	cy:		Rhodes (	and Asso	c.	Driller:	F	. Campbell	Date Started:	12/2/92	Date 1	Finished:	12/2/92
Drilli	ing E	quip	men	t:	CME-75	. "					Completion: Depth (feet)	15	Rock (feet)	Depth:	
Meth	Method of Drilling: Hollow Stem Auger								Number of Samples: NA 1	Dist.: NA	Undis	t.: NA	Core: NA		
Borel	hole S	Size	(inc	hes):	10.25"						Water Depth 579.47	First:	Comp	l.: NA	24 hrs.
Com	pletio	n In	forn	nation:		Comp	leted a	s a M	W.		Logged By:		Check	red By:	
											Jack Bri	egel		Pat	Lay
		П	ıple	es		nalysis	Î	Log	1				ا ن		
Depth (feet)	Number	Type	Blow Count	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Ren	narks
-										0'; Clay; dark	brown; with minor s nt organic debris; no	ilt; odor.			
=					0/0				СН	-					
-					0,0		,			<del> -</del>  -					
-				0834						4': Same as abo	ove, but without orga	anic			
5-				0034						debris; moist.	mottled light brown	to brown;		Shelby Tu	be driven 4' to
-		Щ								-				6'.	
-										-					
-					į				СН	<del>-</del>					
- 					0/0									No fuel od	or from
10 —														cuttings.	
<u>-</u>										-					
									•	-					
-									,	-					
-									СН	-					
15 —														TD=15'.	
_ _										-					
-										-					
-										<u> </u>					
-										<del>-</del>					
-	-									-				}	



# Monitoring Well Construction Log - Above Ground

Project Name: Cap vtal Cuport - 183rd TFG	Project Number: 911657	Dare: (7-2-92 ·
Well Illinois ANG- MW 203	Well ID: MW203	Sheet _ ( of _ \
Driller: Floyd Compbell	Borehole Diameter (in): [ D 1/4	Total Depth (ft): 15
Drilling Agency: Phodes + Assoc	Date Started: 12-2-92	Depth to Water (ft): 5.99
Drilling Equipment CME - 75	Date Finished: 12-2-92	Elevation and Datum: 588.08
Drilling Method: hollow-stem anger	Logged by: Breeze	Checked by: PH Can
Drilling Fluid: None	Number of Samples:	Date: 12-14-92

PROTECTIVE CSQ

			Material / Type:  Off Square:	
	Elev		Diameter: 39 un. PC  Depth BGS: 6 8 11	Weep Hole ((b) N)
	Height		GUARD POSTS (T) N)	T MARK LINE (D. 1.7)
	Elev.	<u> </u>	No: 3 Type: Stee!	
	Height 2,5'		SURFACE PAD	
	GS Elev. <u>555.55</u>		Composition and Size: 2/x2 ( Satisfe	<u>:te</u>
Geologic	0.00		RISER PIPE	
Geo.52-	GS Height 0.00°		Type: Standersteel Schodule	<u>. 384</u>
	Depth BGS	M WY	Diameter: 2" Total Lenoth (TOC to TOS): 6.5	
	<u> </u>	M M	Total Length (TOC to TOS):	
			GROUT N	·
			Composition and Proportions: Dortland Con	nent
			Tremied (Y (N))	
1 1	V V		CENTRALIZERS	
		À W	Depth(s)	
1	wyoming		SEAL	
1 1	bandonite pellets		Type: wyoming bentonite pel	lets
	3′		Source:	ol. Fluid Added 3 scullo 1
	<b>†</b>		Setup / Hydration Time: Vol Tremied (Y (N))	1. Fluid Added - Senor
	4+		EII TED GACY	
,			Type: Colorado Silica Zo/40 a Amt Used: 4 100# bags	male
			Tremied (Y N) -	
	Columbo silica Cont wine would		Source: ————————————————————————————————————	
	5 creen			2
			Type: HSSC Schedule 304 cont	- wire would
	14'			
	14.2'		Slot Size and Type: 0.010"	
}	<u> </u>			
ļ	15		WELL FOOT (Y (N) /4 - /4.2' Interval BGS: /4 - /4.2'	_ength0,2/_
	TD: 15		Bottom Cap (Y) N)	×
	Borehole ——	104	BACKFILL PLUG None	
	Dia. 'L	<u> </u>	Material: Setup / Hydration Time:	
	•		arian injuration in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Form F-1024

Tremled (Y / N)

9/1/91



Project Name: Capital Air National Guard - Illinois PZ202 Sheet  $\underline{1}$  of  $\underline{1}$ Project Number: Field Log of Borehole Number: Land: 585.6 1 Site 2 Borehole Location: Elevation and Datum: Rhodes and Assoc. Driller: F. Campbell 11/23/92 11/23/92 Date Started: Date Finished: Drilling Agency: Completion: Depth (feet) Rock Depth: **CME-75** 13 Drilling Equipment: (feet) Number of Hollow Stem Auger Dist.: NA Undist.: NA Core: NA Method of Drilling: Samples: NA Water Depth 578.82 10.25" 24 hrs. Borehole Size (inches): First: Compl.: NA Logged By: Checked By: Completed as piezometer Completion Information: Jack Briegel P. Lay Samples Field Analysis Log Construction Diagram USCS or Rock Type ow Count PID (ppm) S/B* FID (ppm) S/B* Description Remarks Graphic Number Geologi Unit 0'; Clay; brown to dark brown; with silt; 1122 TSplit Spoon sample 0'-2';
T24" retrieved. medium stiff; medium plasticity; CLmoist; no fuel odor. Possible artificial 2'; Lithology not logged 2'-6'. Cuttings do not smell of fuel. 6'; Clay with silt as above. 1135 0/0 CL/ 6.5'; Clay with silt/Silt with clay; mottled light Split Spoon sample 6'-8'; ML brown and reddish orange brown; 24" retrieved. medium soft; plastic; wet; no fuel odor. 8'; Cuttings not logged 8'-13'. 10 No fuel odors detected in cuttings while drilling. TD=13'.



Project Name: Capital O. e post	Project Number: 911657	Date: // - 23-92
WH P Z 202 FTA	Well ID: PZ 202	Sheet of
Driller: F. Canplell	Borenole Diameter (in): \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Тотая Deptri (ft): 19.1
Drilling Agency: Rhoads and Cissoc.	Date Started:   1-23-92	Depth to Water (ft): 6.82
Drilling Equipment CMS 75	Date Finished: 11-23-92	Elevation and Datum: 555.00 To
Drilling Method: Hollow Stem anger		Checked by:
Drilling Fluid: No re	Number of Samples: 2	Date: 12-14-92
	PROTECTIVE CSG	

Material / Type: Diameter:

				Depth 8GS:	Weep Hole (Y / N)
				GUARD POSTS (Y/N)	
	Elev			No.:Type:	
	Height	windows and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		SURFACE PAD	_
	GS Elev	`		Composition and Size 2/x2/52 Kre-	<u> </u>
Geologic	GS Height	0.00		RISER PIPE Typo: PVC Schedule 40	
	Depth BGS	Elev. 0.4	2-2-	Type:	
	Dep 200	opth BGS O. Le		Total Length (TOC to TOS): (6.5	
		Spair Buss		Ventilated Cap (Y) N)	
1	0.4			GROUT	
		N. C.		Composition and Proportions: Poetland Ce	ment
		<i>***</i>		3.7 ′	
		i i		Tremied (Y N)	
		N. Carlotte		Interval BGS: G.6 - 4.3	
				CENTRALIZERS	
	4.3			Depm(s)	
				SEAL	
	İ	1.5 peilets		Type: Wyoming Pellets 1-5	0 = Pail
		(1.5 parato		Source:	
	5.8	<u> </u>		Setup / Hydration Time:Vo	d. Fluid Added . S Gra
				Tremied (Y / N)	
	Phy 7.8			FILTER PACK	
	124, 6,9			Type: Colorado Silica 20	140 Grade
				Amt Used: 3 100# Bags	
				Tremied (Y (N)	
				Source:	
	<u> </u>			Gr. Size Dist:	
	••			SCREEN BYCC Sheedy to 40	
		15.8 V		Type: PVC schedule 40 Diameter 2"	
	13.1	- 1 - Pr 12-14-42		SIN SIZE and Type: 0.010 SLOTE OF ST	-voland.
	<u> </u>			Interval BGS: (e.9'-11.9'	
	13/			HELL FROM ANIA	,
	<u> </u>	<b>↑</b> ₩		Interval BGS: 12.1-13	Length 0.9
		<b> </b>		Bottom Cao (2) N)	
	TD: /3'	Borehole		BACKFILL PLUG	
		Dia.		Material:	···
				Setup / Hydration Time/	Fcm F-1023
				Tremied (Y / N)	9/1/91



**BOREHOLE LOG** Project Name: Capital Air National Guard - Illinois PZ203 Field Log of Borehole Number: _ **Project Number:** Sheet <u>1</u> of <u>1</u> Land: 585.5 ' Site 2 Borehole Location: Elevation and Datum: Rhodes and Assoc. 11/23/92 Driller: F. Campbell Date Finished: 11/23/92 Drilling Agency: Date Started: Completion: Depth (feet) Rock Depth: **CME-75** 13 Drilling Equipment: (feet) Number of Hollow Stem Auger Dist.: NA Undist.: NA Core: NA Method of Drilling: Samples: NA Water Depth **576.34** 10.25" Borehole Size (inches): First: Compl.: NA 24 hrs. Logged By: Checked By: Completed as piezometer Completion Information: P. Lay Jack Briegel Well Construction Diagram Samples Field Analysis Log Depth (feet) PID (ppm) S/B* USCS or Rock Type ow Count FID (ppm) S/B* Geologic Unit Drilling Time Graphic Description Remarks Number Ty Ty Split Spoon sample 0'-2'; Ty 24" retrieved. 0'; Clay; dark brown; with silt; abundant 1356 organic debris (roots); plastic; moist; no odor. CL4'; Same as above. 6'; Same as above. 1417 2/0 6.5'; Silt; mottled light brown to grey; with Split Spoon sample 6'-8'; clay and minor sand; soft; wet. 24" retrieved. ML8'; Lithology not logged 8'-13'. No fuel odors detected in samples. TD=13'.

Project Name: Capital Arport 1837 TRG	Project Number: 0 911657	Date: 11-23-92
WON PZ 203 CL FTA	Well ID: 72-15-12	Sheet ] of ]
Driller: F. Campbell	Borenole Diameter (In): 0/4	Total Depth (ft): //, 4/
Drilling Agency: Rhoades and Osson.	Date Started: /1-23-92	Depth to Water (ft): 9,75
Drilling Equipment Cms 75	Date Finished: // -23 -9 2	Elevation and Datum: 585.1478
Drilling Method: Hollow Stem auger	Logged by: 15 Brieges	Checked by PALas
Drilling Fluid: NONA	Number of Samples: 2	Date: /2 -/5-92

PROTECTIVE CSG

		•		Material / Type:	
				Diameter: Na	
				Depth BGS:	Weep Hole (Y / N)
				GUARD POSTS (Y/N)	
	Elev	<del></del>		No.:Type:	
	Height	<del></del> \.		SURFACE PAD Composition and Size: 2 / 22 / 5 ak	1.
	GS Elev			Composition and Size:	ce+2.
Geologic	GS Height	0.00		RISER PIPE Type: PVC Schedule 4	D
	Depth BGS	Elev. 6.2	2-2-	Type: 2 // Diameter: 2 //	
	Depin Bee	oth BGS O.4		Total Length (TOC to TOS): 0.2 - 6	.2
#5	Det	our bos		Ventilated Cap (()/ N)	·
	0.2			GROUT	
Ī				Composition and Proportions: Poetland	cement
				3.11	•
				Tremled (Y/N)	
				Interval BGS: 0,4-3.5	
				CENTRALIZERS	
	3.51		2.000	Depth(s)	
				SEAL .	
		1.5 fallets		Type: whoming Bentonite	1-50# Pa./
		▼		Source:	<u>```</u>
				, ·	Vol. Fluid Added 2.5 Sa
	le.2 -			Tremied (Y / N)	
	<u>Q</u>			Type: Colorada 20/40.	== do 51.00
1				Amt Used: 4 100 # 60 4 5	Sabo Sara
1		arc stated		Tremied (Y(N))	
Ì	20/40 800	0.010 Studd		Source:	
	Silica	5.1.4		Gr. Size Dist.:	
		912-15-62		SCREEN	
				Type: DVC Schedule 40	
		U. 2▼		Diameter 2"	
	11.4			Slot Size and Type: 0.0/D Slo Had	2 Studged
		•		Interval BGS: Le. 2'- LL. 2'	
	/3/	<b>_</b>		WELL FOOT (Y) N)	Lengtr <i>l. 6</i>
		NONE		Interval BGS: // 4 - /3 Bottom Cao (Y) N)	Cungut
	TD:/3		<u> </u>	BACKFILL PLUG	
		Borehole	014	Material:	
		Dia.		Setup / Hydration Time:	Fcm F-1023
				Tremied (Y / N)	9/1.91



Proje	ect Nun	ıber: _9	011657			Fie	ld Lo	f Borehole Nun	nber: SB201				1 <u>1</u> of <u>2</u>
Borel	hole Loca	tion:	Site 2					Elev	Elevation and Datum: Land: 584.1				
Drilli	ing Agenc	y:	Rhodes	and Asso	c.	Driller:	F	Campbell Date	e Started: 1	1/17/92	Date	Finished:	11/17/92
Drilli	ing Equip	ment:	CME-75	5					mpletion: 2 oth (feet)	26	Rock (feet	k Depth:	
Meth	od of Dri	lling:	Hollow	Stem Aug	ger				mber of nples: NA	Dist.: NA	Und	ist.: NA	Core: NA
Borel	hole Size	(inches):	10.25"						ter 575.79°	First:	Con	npl.: NA	24 hrs.
Comp	pletion Inf	ormation:		Сотр	leted as	s piezo	mete		ged By:	-	Che	cked By:	
									Jack Brie	egel		Pat	Lay
	Sam	ples	Field A	nalysis	I	og					<b>6</b>	T	
Depth (feet)	Number Type	Blow Count Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type	Des	escription		Well Construction	Rei Rei	marks
10 —	III WII WII WII WII WII	0820 0820 0838 0840 0852 0900 0910 0921 0930	0/0 0/0 4/0 4/0 4/0 6/0 7/0 10/0 7/0 9/0 8/0				CL CH	medium stiff; fill.  .5'; no more brick fill.  .5'; Grading to mediant of the stiff; Grading to less silustiff.  .5'; Grading to less silustiff; Grading to very  .5'; Grading to very  .5'; Clay; with silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt; silt	d brick fragment slithtly moist. A fragments. fragments. fragments. fium plasticity; to lity. from moist. saturated. fragments. saturated. fragments. saturated. fragments. saturated. fragments with the moist saturated fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown; high plasticity fragments from the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the light brown in the	ts; Artificial  o moist.		Drilled as Split Spood 22" retriev  Split Spood 24" retriev  Split Spood 24" retriev  Split Spood 18" retriev  Split Spood 10'-12'; 2  Split Spood 12'-14'; 2  Split Spood 14'-16'; 2  Split Spood 14'-16'; 2	on sample 0'-2'; ved.  on sample 2'-4'; ved.  on sample 4'-6'; ved.  on sample 6'-8'; ved.  on sample 8'-10'; ved.  on sample 4" retrieved.  on sample 4" retrieved.  on sample 4" retrieved.  on sample 4" retrieved.
-		0958	8/0				СН	brown; gradin	ng to with gravel im plasticity.			Split Spoo	



Project Name: Capital Air National Guard - Illinois

Project Number: 911657 Field Log of Borehole Number: SB201/PZ201 Sheet 2 of 2

			np l	es	Field A	nalysis	Ĺ	og			5	
Depth (feet)	Number	Type	Blow Count	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type	Description	Well Construction Diagram	Remarks
25	Number	adh_ ////////////////////////////////////	-	1013 1026 1040	#8/S 7/0 7/0 5/0	FID (ppm S/B*	Geologic	Graphic	USCS OF CT Rock Type	Description  20'; Clay; with silt as above; hard; very stiff.  23.5'; With trace gravel(?).  24'; Gravelly Clay; brown to light brown; with sand and poorly sorted, subrounded RF/chert gravel; very hard; slightly moist; no fuel odor.		Remarks  Split Spoon sample 20'-22'; 24" retrieved.  Split Spoon sample 22'-24'; 18" retrieved.  Split Spoon sample 24'-26'; 18" retrieved.  TD=26'.  No fuel odors in any samples or cuttings.
45												



Project Name: Capital apport STA	Project Number: 911657	Date: 11-21-92
Well ILL ANG PZ201 (SB305)	Well ID: 72201	Sheet 1 of 1
	Borehole Diameter (in): 1014	Total Depth (ft): 14,8
Drilling Agency: Rhoader and assoc.	Date Started: [1 - 21 - 9 2	Depth to Water (ft): 8. 43
Drilling Equipment 75	Date Finished: 11-21-92	Elevation and Datum: 586.29
Drilling Method: Hollow Stem auer	Logged by: PA Can	Checked by: P# Ca
Drilling Fluid:	Number of Samples:	Date: / 2 - 14 - 9 Z
	PROTECTIVE CSG	

Material / Type:

				Diameter:	
				Depth 8GS:	Weep Hole (Y / N)
				GUARD POSTS (Y (N)	
	Elev			No.:Type:	
	Height			SURFACE PAD	10
	GS Elev.	· •		Composition and Size: 2 × 2 50 50	<del>10</del>
Canlagia		0.00		RISER PIPE	
Geologic			10.00	Typo: Prc Shedule 40	
"	Depth BGS	Elev. Orland	ختا ه	Diameter: 2''	
	De	epth BGS 0, 3	2502	Total Length (TOC to TOS): - 4. /	
	0.1			Ventilated Cap ((Y) N)	
İ	<u> </u>			GROUT 2 a Ll	Camas +
,				Composition and Proportions: Poetland	Cemen
				3.1	
			4 🐼	Tremled (Y (N)	
			4 📖	IIII 633.	
]				CENTRALIZERS	
	3.8		A A A	Depth(s)	
				SEAL MOMILIE RONTONITE	1.50 4 00 1
		1.5 peliet		Type: Com 1.2 Ren-01116	1 30 + Pacit
		<u> </u>	~ <u>~</u>	Source:	25
	5.3	<b>A</b>		Setup / Hydration Time:	Vol. Fluid Added
1	9.8			Tremied (Y/N)	
	1.6			FILTER PACK	140 Grass
1			::: <b>:</b>	Type: Colocado Silica 20 Amt Used: 4 - 100# Bags.	7.0
	Ì		#	Tremied (Y/N)	
]	12-/5	radic Puc Slotted		Source:	
	عداده عداده		<b>:::</b>	Gr. Size Dist.:	
				SCREEN	
				Type: PYC Schedule 40	
	15	14.8		2 <i>(</i> /	
	14:86			Slot Size and Type: O. DIO Sin Hed	(Student)
	74.00 PAC 1	2.1472		Slot Size and Type: 0.010 Sin Hed Interval BGS: 9.8 - 14.8	
	15	<u> </u>	10110111111111111111111111111111111111	WELL FOOT (Y LAD)	
	13			Interval BGS:	Length
' [	77.15	NONE		Bottom Cap (Y / N)	
	TD: 15	Borehole		BACKFILL PLUG	
		Dia.	014	Material:	
				Setup / Hydration Time:	Form F-1023
				Tremied (Y / N)	9/1/91



Proj	ect Nu	mber:	91	1657			Fie	ld Lo	g of Borehole	Number:	SB202		Sheet _1_ of _1_		
Borehole Location: Site 1									Elevation and Datum: Land: 586.6						
Drilling Agency: Rhodes and Assoc.					c.	Driller	; <i>F</i>	. Campbell	Date Started:	11/19/92	Date 1	Finished: 11/19/92			
Drill	Drilling Equipment: CME-75									Completion: Depth (feet)	10	Rock Depth: (feet)			
Meth	Method of Drilling: Hollow Stem Auger								Number of Samples: NA	Dist.: NA	Undis	t.: NA Core: NA			
Bore	Borehole Size (inches): 10.25"									Water Depth (ft): NA	First:	Comp	l.: NA 24 hrs.		
Completion Information: Grouted w							cement	t/bent		Logged By:		Checked By:			
										Jack B	riegel 		Pat Lay		
<b>c</b> ^	Sar	nples			nalysis		Log	T				ا و			
Depth (feet)	Number			PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Remarks		
*. · · _		13	350	3/0						orown; with gravel roots, sticks); stiff; o odor.			Split Spoon sample 0'-2'; 6" retrieved.		
-			101	4/0						bove, but moist. bove, but dry and l	Split Spoon sample 2'-4'; 12" retrieved.				
5 — -			i47 i00	2/0					brown;	tled light brown an with silt and plant a stiff; moderate pla moist.	roots;		Split Spoon sample 4'-6'; 24" retrieved. Lab analyses done.		
-									7'; Same as abo	ve, but moist.		Split Spoon sample 6'-8'; 18" retrieved. Lab analyses done.			
-		15	06						8.5'; Clay; mottled light brown to brown; with silt; plastic; moist to wet; no fuel odor.  9.5'; Grading to light grey; slightly moist.				Split Spoon sample 8'-10'; 24" retrieved.		
15 —										ngit grey, snginy	, indist.		TD=10'.		



Project Name: Capital Air National Guard - Illinois **SB203** Project Number: 911657 Sheet <u>1</u> of <u>1</u> Field Log of Borehole Number: Land: 585.4 ° Site 1 Borehole Location: Elevation and Datum: Rhodes and Assoc. Driller: F. Campbell 11/19/92 11/19/92 Drilling Agency: Date Started: Date Finished: Completion: Depth (feet) Rock Depth: **CME-75** 8 Drilling Equipment: (feet) Number of Method of Drilling: Hollow Stem Auger Dist.: NA Undist.: NA Core: NA Samples: NA Water Depth (ft): NA 10.25" Borehole Size (inches): First: Compl.: NA 24 hrs. Logged By: Checked By: Completion Information: Grouted w/ cement/bent. Jack Briegel Pat Lay Well Construction Diagram Field Analysis Samples Log Type USCS or Rock Type Drilling Time PID (ppm) S/B* FID (ppm) S/B* Geologic Unit Graphic Description Remarks Number 30 1525 0'; Clay; dark brown; minor silt; abundant organic matter; moderate plasticity; Split Spoon sample 0'-2'; very moist. Artificial fill to 6.5'. 18" retrieved. CL1540 1/0 Split Spoon sample 2'-4'; 24" retrieved. 3.5'; Same as above, but angular rock and 1549 1/0 brick fragments common; moderately soft; moist. Split Spoon sample 4'-6'; 24" retrieved. CL 1600 1/0 6.5'; Silt; mottled light brown and grey; with Split Spoon sample 6'-8'; clay; medium stiff; plastic; moist. 24" retrieved. 7.5'; Wet. No fuel odors detected. TD=8'. 10



Proje	ect N	lumb	oer: <u>9</u>	11657	····		Fie	ld Lo	g of Borehole	Number:	SB204		Sheet	<u> </u>
Borel	nole I	ocatio	on:	Site 2						Elevation and Da	tum: Land	: <b>586.5</b>	/	
Drilling Agency:  Drilling Equipment:				Rhodes	and Asso	c.	Driller: F. Campbell			Date Started:	11/20/92	Date Finished: 11/20/		
Drilli	ng Eo	quipm	ent:	CME-75	5					Completion: 8 Depth (feet)		Rock (feet)	Depth:	
Meth	od of	Drilli	ng:	Hollow	Stem Aug	ger				Number of Samples: NA	Dist.: NA	Undist.: NA Core: NA		
Borel	Borehole Size (inches): 10.25"  Completion Information: Grouted w/ cement/bent.									Water Depth (ft): NA	First:	Comp	l.: NA	24 hrs.
Comp	oletion	n Info	rmation:		Groui	ted w/	cement	/bent		Logged By:	Checked By:			
										Jack Br	iegel			Lay
Jepth feet)	Samples			Field A	nalysis		Log			1		io c		
Depth (feet)	Number	Type Blow Count	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Ren	narks
5	Z	WIWIIWIII BIO	1409 1418 1505	3/0 4/0 6/0 7/0	FII	99	9	CL CL	matter; plasticit  3'; Clay; mottle minor s debris; odor.  4'; Same as abc 5'; Clay; mottle brown; nodules no fuel  6.5'; Clayey Sii	n; with gravel and o medium stiff; mode y; moist.  ed brown and light to the stiff; slightly moist; sove; with brick fragged light brown and rowith minor silt; trace; medium stiff; plass odor.  lt/Silt; mottled light brown; saturated.	orown; r organic no fuel ments. eddish e iron oxide tic; moist;		Split Spoon 12" retriev  Split Spoon 18" retriev  Split Spoon 18" retriev	n sample 2'-4'; yed.  n sample 4'-6'; yed.  n sample 6'-8';
<u>,                                    </u>						,			••					



neet <u>1</u> of _			SB205	Number:	g of Borehol	d Log	Fiel			1657	r: <u>91</u>	mbe	t Nu	roje				
	·.1′	584.1	n: Land:	Elevation and Datur	Site 2							Borehole Location:						
ed: 11/21/92	te Finished:	Date I	1/21/92	Date Started: 1	Rhodes and Assoc. Driller: F. Campbell							Drilling Agency:						
:	ck Depth: et)	Rock (feet)		Completion: 8 Depth (feet)								Drilling Equipment:						
A Core: NA	dist.: NA	Undis	Dist.: NA	Number of Samples: NA				ger	Stem Aug	Hollow !	;;	Method of Drilling:						
A 24 hrs.	Comp	First:	Water Depth (ft): NA						10.25"	hes):	(incl	le Size	Boreh					
•	ecked By:	Check		Logged By:		/bent	cement	ed w/	Grout		nation:	Completion Information						
Pat Lay			gel	Jack Brie														
<u> </u>		<u>.</u>		ndana			Log		nalysis	Field A	es	nple	Sar					
Remarks	E Rei	Well Construction Diagram		Description		USCS or Rock Type	Graphic	Geologic Unit	FID (ppm) S/B*	PID (ppm) S/B*	Orilling Time	Blow Count	Number Type	(feet)				
Spoon sample 0'-2' etrieved.			ice	brown; with silt and tra with organic matter.		CL				1/0	1426		-					
Spoon sample 2'-4'. etrieved.	Split Spoo 18" retriev		with silt;	ed light brown to grey; a stiff; plastic to mediu	fragmer - 3'; Clay; mottle - medium					2/0	1437	1437						
Spoon sample 4'-6' etrieved.	Split Spoo 24" retriev		el odor.	no fuel odor.  ove, but wet; soft.  o slightly siltier; no fue	5'; Same as at	CL				2/0	1502			5 —				
	24" retriev			led light brown and gred minor sand; medium pist; no fuel odor.	clay ar	ML				-, -								
el odors detected any samples or					- - - - - -									0				
														5 —				
														5 —				



Proj	ect N	lumb	er: <u>9</u>	11657			Fie	ld Lo	g of Borehole	Number:	SB206	<del></del>	Sheet _	<u></u>	<u>I</u>
Borehole Location: Site 2										Elevation and Date	um: Land	: <i>583.6</i>	0'		
Drill	Drilling Agency: Rhodes and Assoc. Driller: F. Campbell								Date Started:	11/22/92	Date 1	Date Finished: 11/22/92			
Drill	Drilling Equipment: CME-75									Completion: Depth (feet)	8	Rock Depth: (feet)			
Meth	Method of Drilling: Hollow Stem Auger										Dist.: NA	Undis	Undist.: NA Core: NA		
Bore	Borehole Size (inches): 10.25"										First:	Comp	l.: NA	24 hrs.	
Com	Completion Information: Grouted w/ cement/bent.									Depth (ft): NA Prist. Compr.: NA 24 ms.  Logged By: Checked By:					
Jack Briegel											egel	Pat Lay			
-0	S	amp		Field A	nalysis						<u>.</u> 5_				
Depth (feet)	Number	Type Blow Count	Drilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Rem	arks	
,		A DANA SANA	1328	2/0					0'; Clay; brown plastic; 1'; Grading to	n; with silt and organ very moist. light grey and brown tly moist to dry; stiff	mottled;		Split Spoon 18" retrieved	sample 0'-2';	
-		AND AND AND AND AND AND AND AND AND AND	1342	4/0 4/0 90/0				CL	-	el odor in cuttings an	d sample.		Split Spoon 18" retrieved	sample 2'-4'; d.	
5 —		A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	1411	70/0				ML CH	5'; Silt; greyish strong f	brown; with clay; rr uel odor. a; plastic; moist.	ooist;		Split Spoon : 12" retrieved	sample 4'-6'; 1.	
-		A STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF THE STANDARD OF		90/0				ML	_ _6.5'; Silt; grey;	with minor clay and trong fuel odor.	sand; very		24" retrieved	sample 6'-8';	
10													TD=8'.		



## **BOREHOLE LOG**

Project Name: Capital Air National Guard - Illinois

Proj	ect N	Vun	nbe	r: <u>9</u>	11657			Fie	ld Lo	g of Borehole	Number:	SB207		Sheet	_1_ of _1_
Bore	hole l	Loca	tion	:	Site 2	· · · · · · · · · · · · · · · · · · ·					Elevation and Datu	m: Land	584.4	•	
Drilli	ng A	gen	y:		Rhodes	and Asso	c.	Driller	F	. Campbell	Date Started:	1/22/92	Date 1	Finished:	11/22/92
Drilli	ng E	quip	men	t:	CME-75	•					Completion: 8	3	Rock (feet)	Depth:	
Meth	od of	Dri	lling	 ;:	Hollow	Stem Au	ger				Number of Samples: NA	Dist.: NA	Undis	t.: NA	Core: NA
Borel	ole S	Size	(inc	hes):	10.25"				•		Water Depth (ft): NA	First:	Comp	1.: NA	24 hrs.
Com	oletio	n In	form	nation:		Grou	ted w/ o	cemen	t/bent	•	Logged By:  Jack Brie	egel	Check	ced By: <i>Pat</i>	Lay
	9	San	ıple		Field A	nalysis		Log				·	<u> </u>	}	
Depth (feet)	Number	1	u Count	Orilling Time	PID (ppm) S/B*	FID (ppm) S/B*	Geologic Unit	Graphic	USCS or Rock Type		Description		Well Construction Diagram	Ren	narks
_		1		1449	0/0					0'; Clay; brown	to dark brown; with debris; very moist.				n sample 0'-2'; d.
-   -   -		A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH		1456	0/0				CL	and orga	to light brown; with			Split Spoor 9" retrieve	n sample 2'-4'; d.
5 —		Santo Santo	_	1508	30/0					4.5'; Silt; grey	moist; no fuel odor. so greyish brown; wind (?); very moist; s			Split Spoor 18" retriev	n sample 4'-6'; ed.
-		Service and		1517	200/0 60/0				ML	6.5'; Same as a	pove to TD, but wet.			Split Spoor 24" retriev	n sample 6'-8'; ed.
-					100/0				-					TD=8'.	
10 —										<del>-</del> 					
-			.						}	- - -					
										<del>-</del>					
15 — —										<del>-</del> -					
										<u>-</u>  -					
										<del>-</del> - -		•			



Engineers & Geologists

February 10, 1993

Ms. Jean McKee

The Earth Technology Corporation

673 Emory Valley Road Oak Ridge, TN 37830

Re: Laboratory Test Results

Capital Airport

Air National Guard Facility

Springfield, Illinois

Dear Ms. McKee:

Enclosed are the results of the laboratory tests performed on two (2) Shelby Tube samples from the above mentioned project.

Sample No. 1 came from Boring CS2-MW3 at 4.0 to 6.0 feet. Sample No. 2 is from Boring CS1-MW3 at 3.0 to 5.0 feet. Each of these samples appeared relatively similar in color and texture, consisting of a light brown silty clay.

To determine the actual composition of the materials, a partial size analysis (sieve and hydrometer) was performed on representative portions of each sample. From this data, a grain size curve was developed and is enclosed for your review. To determine the plasticity characteristics of the soils, a set of Atterberg limits was performed which provided a unified soils classification of CL for each sample, indicating a low plasticity clay. The results of these tests along with the specific gravity for each sample are included on the laboratory test data sheets attached for your use.

To determine the coefficient of permeability, a laboratory falling head permeability test was conducted on selected portions of each sample. As part of this test, the in-situ density in pounds per cubic foot and natural moisture content are also The results of these measurements are as follows:

Sample No.	Wet Unit Weight (pcf)	Moisture Content (%)	Dry Unit Weight (pcf)	Coefficient of Permeability (cm/sec)
CS2-MW3 (4.0-6.0)	113.6	28.9	88.2	$1.27 \times 10^{-6}$
CS1-MW3 (3.0-5.0)	122.3	27.2	96.2	$8.09 \times 10^{-7}$

Laboratory Test Results Capital Airport Air National Guard Facility Springfield, Illinois February 10, 1993 Page 2

The results of the clay mineralogy you requested are shown on the following table.

#### Mineralogical Analyses of Sample - CS2-MW3 (4.0-6.0)

Particle Size				Mineralogy**		
Distribution*	Quartz	Feldspar	Mica	Montmorillonite	<b>Ka</b> olinite	Vermiculite
Sand (4.7%)	78.3%	12.1%	6.0%		3.6%	
Silt (71.8%)	78.3%	12.1%	6.0%		3.6%	
Clay (24.5%)	0.1%		9.1%	78.7%	9.1%	3.0%
Whole Sample***	59.0%	2.7%	11.3%	19.3%	6.8%	0.7%

#### Mineralogical Analyses of Sample - CS1-MW3 (3.0-5.0)

Particle Size				Mineralogy**		
Distribution*	Quartz	Feldspar	Mica	Montmorillonite	Kaolinite	Vermiculite
Sand (2.4%)	79.4%	8.8%	5.9%		5.9%	
Silt (70.7%)	79.4%	8.8%	5.9%		5.9%	`
Clay (26.9%)			5.6%	82.9%	8.6%	2.9%
Whole Sample ***	58.1%	6.5%	5.7%	22.3%	6.6%	0.8%

- The particle size distribution is only an estimation as this procedure was not taken to completion and was performed only to improve on the estimation of the mineralogical composition of the whole sample.
- ** Mineralogy of the sand is assumed to be the same as the silt fraction.
- *** Mineralogy of the whole sample is a weighted average.

In addition, a Cation Exchange Capacity analysis was conducted on portions of each sample. The results of this analysis are shown below.

Sample No.	Test <u>Results</u>	Test <u>Units</u>	Detection <u>Limit</u>	Test <u>Method</u>
CS2-MW3 (4.0-6.0)	15	meg/100 gm	1	MSA II 2
CS1-MW3 (3.0-5.0)	13	meg/100 gm	1	MSA II 2

Laboratory Test Results
Capital Airport
Air National Guard Facility
Springfield, Illinois
February 10, 1993
Page 3

We appreciate this opportunity to be of service to you on this project. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

RHODES AND ASSOCIATES, INC.

Darrin K. Darnell

Manager, Materials Testing

DKD/db

Attachment





## LABORATORY TEST RESULTS

# RHODES AND ASSOCIATES SOIL AND GEOLOGICAL CONSULTANTS

PROJECT - NATIONAL GUARD ARMORY

LOCATION - SPRINGFIELD ILLINOIS

BORING - CS2-MW3

SAMPLE - 1

DEPTH - 4.0-6.0

## SIEVE ANALYSIS -

## TOTAL DRY WEIGHT OF SAMPLE - 342.5

SIEVE	WEIGHT	PERCENT	PERCENT	SIEVE
SIZE	RETAINED	RETAINED	PASSING	DIAMETER
NO.4	0	0.0	100.0	4.760
ND.10	.1	0.0	100.0	2.000
NO.40	.6	0.2	99 <b>.</b> 8	0.425
ND.100	4.2	1.2	98.6	0.150
ND.200	2.3	0.7	97.9	0.075

#### HYDROMETER ANALYSIS -

SPECIFIC GRAVITY - 2.68
MASS OF SOIL - 50
ZERO CORRECTION - 6
MENISCUS CORRECTION - 1

ELAPSED	HYDROMETER	TEMP	PERCENT	PARTICAL
TIME	READING	(c)	FINER	DIAMETER
1	50	24	<b>89.</b> 2	.036
2	46	24	81.3	.027
5	38	24	<b>65.</b> 4	.018
15	30	24	49.5	.011
30	26	24	41.6	.0081
60	23	24	· 35.6	.0059
348	20	22	28.7	.0025
1457	18.5	20	24.7	.0013

## CLASSIFICATION -

LIQUID LIMIT - 43 PLASTICITY INDEX - 18
PLASTIC LIMIT - 25 ACTIVITY INDEX - 0.67

UNIFIED - CL AASHTO - A-7-5 ( 20 )
PERCENT GRAVEL - 0.0 PERCENT GRAVEL - 0.0
PERCENT SAND - 2.1 PERCENT SAND - 2.1
PERCENT FINES - 97.9 PERCENT SILT - 70.9
PERCENT CLAY - 27.0

## LABORATORY TEST RESULTS

# RHODES AND ASSOCIATES SOIL AND GEOLOGICAL CONSULTANTS

PROJECT - NATIONAL GUARD ARMORY

LOCATION - SPRINGFIELD ILLINOIS

BORING - CS1-MW3

SAMPLE - 2

DEPTH - 3.0-5.0

#### SIEVE ANALYSIS -

## TOTAL DRY WEIGHT OF SAMPLE - 585

SIEVE	WEIGHT	PERCENT	PERCENT	SIEVE
SIZE	RETAINED	RETAINED	PASSING	DIAMETER
NO.10	0	0.0	100.0	2.000
ND.40	.7	0.1	99.9	0.425
NO.100	1.7	0.3	99.6	0.150
NO.200	2.5	0.4	99.2	0.075

## HYDROMETER ANALYSIS -

SPECIFIC GRAVITY - 2.70
MASS OF SOIL - 50
ZERO CORRECTION - 2
MENISCUS CORRECTION - 1

ELAPSED	HYDROMETER	TEMP	PERCENT	PARTICAL
TIME	READING	(⊂)	FINER	DIAMETER
1	50	24	96 <b>.</b> 8	.036
2	46	24	88.9	.027
5	37 <b>.</b> 5	24	72.1	.018
15	29.5	24	56 <b>.</b> 2	-011
30	25	24	47.3	.0081
60	22	24	41.4	.0059
120	21.5	24	40.4	.0042
1223	18.5	20	32.5	.0014
1654	18	20	31.6	-0012

## CLASSIFICATION -

LIQUID LIMIT - 43 PLASTICITY INDEX - 20 PLASTIC LIMIT - 23 ACTIVITY INDEX - 0.58

UNIFIED - CL

PERCENT GRAVEL - 0.0

PERCENT SAND - 0.8

PERCENT SAND - 0.8

PERCENT SAND - 0.8

PERCENT SAND - 0.8

PERCENT SILT - 64.9

PERCENT CLAY - 34.3

Appendix D: Soil Gas, Groundwater and Soil Screening Results

Table 1

Soil-Gas, Groundwater, and Soil Analytical Results

Capital Municipal Airport Springfield, Illinois

Sample	Probe Hole	Depth			Concentration (µg/L	n (ug/L)		Comments
I.D.	Number	(fcet)	1,1-DCE	Total 1,2-DCE	1,1,1-TCA	Benzene	TCE	
Blank-01	Ν	Ϋ́	ND (3)	ND (4)	ND (4)	ND (E)		QC-System Blank
3lank-02	NA	Ν	ND (3)	ND (4)	ND (4)	ND (I)		QC-Tubing Blank
CASL-04	S1-01	3-5	ND (3)	ND (4)	ND (4)	ND (I)		Soil
CASL-05	S1-01	9-11	ND (3)	ND (4)	ND (4)	ND (I)		Soil
CASL-06	S1-02	4-6	ND (3)	ND (4)	ND (4)	ND (E)		Soil
CASL-07	S1-03	4-6	ND (3)	ND (4)	ND (4)	ND (I)		Soil
CAGW-08	S1-04	ς.	ND (3)	ND (4)	ND (4)	ND (I)		Groundwater
CASL-09	S1-05	1-3	Ϋ́Z	NA	NA	YZ		Not Analyzed
CAGW-10	S1-05	\$	Ϋ́	Ϋ́N	ΥN	Ϋ́	NA	Not Analyzed
3lank-03	Ν	Ϋ́	ND (3)	ND (4)	ND (4)	ND(I)		QC-System Blank
CASG-11	S2-01	7	ND (3)	ND (4)	ND (4)	ND (I)		Soil-Gas
CASL-12	S2-01	4-6	ND (3)	ND (4)	ND (4)	ND (I)		Soil
CASG-13	S2-01	10	ND (3)	ND (4)	ND (4)	SD CD		Soil-Gas
CASG-14	S2-02	10	ND (3)	ND (4)	ND (4)	ND (I)		Soil-Gas
CASL-15	S2-03	9-11	ND (3)	ND (4)	ND (4)	ND(I)		Soil
CASL-16	S2-04	9-11	ND (3)	ND (4)	ND (4)	ND (I)		Soil
CASG-17	S2-0 <b>2</b>	10	ND (3)	ND (4)	ND (4)	ND (I)		Soil-Gas
CASG-18	S2-06	7	ND (3)	ND (4)	ND (4)	ND (I)		Soil-Gas

Table 1 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

	1																		
Comments		Soil	Groundwater	Soil	Soil	Soil-Gas	Soil-Gas	Soil-Gas	Groundwater	Soil-Gas	Groundwater	Soil-Gas	Soil-Gas	Ground Water	Soil-Gas	Groundwater	Groundwater	Groundwater	Soil-Gas
	TCE	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	74	ND (4)	ND (4)	ND (4)	S C S	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)
1 (µg/L)	Benzene	34	17318	NDCE	ND CE	ND(E)	ND(I)	1083	162	ND (I)	ND CE	NDCE	ND (I)	ND (E)	ND CE	224	ND(E)	ND (E)	ND (I)
Concentration (µg/L)	1,1,1-TCA	99	41059	ND (4)	ND (4)	ND (4)	ND (4)	631	979	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)
	Total 1,2-DCE	ND (4)	537	ND (4)	ND (4)	ND (4)	ND (4)	3504	2247	ND (4)	26	31	ND (4)	ND (4)	ND (4)	94	1026	ND (4)	ND (4)
	1,1-DCE	4	364	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	324	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)
Depth	(leet)	~	10	9-11	9-11	10	7	S	10	10	10	10	7	\$	10	10	10	10	7
Probe Hole	Number	S2-06	S2-06	S2-07	S2-08	S2-09	S2-10	S2-10	S2-10	S2-11	S2-12	S2-13	S2-14	S2-14	S2-14	S2-15	S2-16	S2-17	S2-18
Sample	I.D.	CASL-19	CAGW-20	CASL-21	CASL-22	CASG-23	CASG-24	CASG-25	CAGW-26	CASG-27	CAGW-28	CASG-29	CASG-30	CAGW-31	CASG-32	CAGW-33	CAGW-34	CAGW-35	CASG-36

Table 1 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

Sample	Probe Hole	Depth			Concentration (µg/L)	n (µg/L)		Comments
I.D.	Number	(lcet)	1,1-DCE	Total 1,2-DCE	1,1,1-TCA	Benzene	TCE	
CAGW-37	S2-18	S	ND (3)	7		ND (1)	ND (4)	Groundwater
CAGW-38	S2-18	10		316		s.	ND (4)	Groundwater
CASL-39	S2-19	10		ND (4)		ND (1)	ND (4)	Soil
CASG-40	S2-20	10	ND (3)	ND (4)	ND (4)	ND (I)	ND (4)	Soil-Gas
CAGW-41	S2-21	10		ND (4)		ND (I)		Groundwater
CAGW-42	S2-22	01		ND (4)		ND (I)		Groundwater
CASL-43	S2-23	1-3		ND (4)		ND (I)		Soil
<b>CASG-44</b>	S2-23	S		ND (4)		ND CE		Soil-Gas
CAGW-45	S2-23	10		ND (4)		ND CE		Groundwater
3lank-04	NA V	Ν		ND (4)		ND (E)		QC-System Blanl
3Jank-05	NA	Ν		ND (4)		ND (1)		QC-System Blan
CASG-46	S2-24	10		ND (4)		ND (E)		Soil-Gas
<b>AGW-47</b>	S2-25	10		ND (4)		ND (I)		Groundwater
CASL-48	S2-26	10		ND (4)		ND (I)	ND (4)	Soil
CASG-49	S2-27	7		ND (4)		ND (I)		Soil-Gas
3ASG-50	S2-27	Š		ND (4)		ND (1)		Soil-Gas
CAGW-51	S2-27	10		ND (4)		ND (I)		Groundwater
<b>CASG-52</b>	S2-28	10		ND (4)		SPC		Soil-Gas

Table 1 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

Capital Municipal Airport Springfield, Illinois

November 3 - 7, 1992

	rione more	nebtu			Concentration (ug/L)	n (ug/L)		Comments
I.D.	Number	(feet)	1,1-DCE	Total 1,2-DCE	1,1,1-TCA	Benzene	TCE	
CASG-53	S2-29	2		ND (4)	ND (4)		ND (4)	Soil-Gas
3ASG-54	S2-30	ۍ		ND (4)	ND (4)		ND (5)	Soil-Gas
3ACW-55	S2-31	10		73	NO (4)		ND (4)	Groundwater
3ASL-56	S1-05	1-3	ND (3)	ND (4)	ND (4)	ND (E)	ND (4)	Soil
3ASL-57	S1-05	4-6		ND (4)	ND (4)		SD (4)	Soil
ASL-58	S1-05	9-11		ND (4)	ND (4)		ND (4)	Soil
ASL-59	S1-06	9-11		17	ND (4)		ND (4)	Soil
3ASG-60	S2-32	<b>.</b>		ND (4)	ND (4)		ND (4)	Soil-Gas
:ASG-61	S2-33	ς.		ND (4)	ND (4)		ND (4)	Soil-Gas
:ASG-62	S2-34	S		ND (4)	ND (4)		ND (4)	Soil-Gas
ASG-63	S2-35	ۍ		ND (4)	ND (4)		ND (4)	Soil-Gas
:ASG-64	S2-36	S		ND (4)	ND (4)		ND (4)	Soil-Gas
:ASG-65	S2-36	7		ND (4)	ND (4)		ND (4)	Soil-Gas
3ASG-66	S2-36	10		ND (4)	ND (4)		ND (4)	Soil-Gas
Jank-06	Ϋ́	Ϋ́		ND (4)	ND (4)		ND (4)	OC-System Blank
3ASL-67	S2-37	9-11		ND (4)	ND (4)		ND (4)	Soil
3ASL-68	S2-38	9-11		209	801		, 69	Soil
3AGW-69	S2-39	10		1424	ND (4)		ND (4)	Groundwater

Table 1 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

November 3-7, 1992

Sample	Probe Hole	Depth			Concentration (119/1.)	n (nø/L)		Sucumo
1.D.	Number	(lcet)	1,1-DCE	1,1-DCE Total 1,2-DCE 1,1,1-TCA Benzene	1,1,1-TCA	Benzene	TCE	Comments
CASL-70 CASL-71 CASL-72 Blank-07	S2-16 S2-16 S2-40 NA	1-3 4-6 NA	ND (3) ND (3) ND (3) ND (3)	25 ND (4) 1625 ND (4)	ND (4) 494 ND (4) ND (4)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND (4) ND (4) (4) (4) (4) (4)	Soil Soil Soil QC-System Blank
D N N	duplicate analysis not applicable	nalysis ible						

NA not applicable

ND not detected at lower quantifiable limit indicated in parentheses

QC quality control

µg/L

1,1-DCE 1,1-dichloroethylene

Total 1,2-DCE cis- and trans- 1,2-dichloroethylene

1,1,1-TCA 1,1,1-trichloroethane

TCE trichloroethylene

Table 2

Soil-Gas, Groundwater, and Soil Analytical Results

November 3 - 7, 1992

		-				(i)		
I.D.	Number	(lcet)	Toluene	PCE	Ethylbenzene	Total Xylenes	TVOC	
lank-01	Y.	Z	S CIN	S CIN	S CIN	60 018	6 01	
llank-02	V IX	. · ·			(5) (A)	(z) (N)	(7) QV	CC-System Blank
70-VIDIO	W.	¥Z.	(Z) (N)	(o) ND (e)	ND (2)	ND (2)	ND (2)	QC-Tubing Blank
ASE-04	(S1-01	3-5	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
ASL-05	(S1-01	9-11	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
3ASL-06	S1-02	4-6	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
ASL-07	S1-03	<del>4</del> -6	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
AGW-08	S1-04	ς.	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Groundwater
ASL-09	S1-05	I-3	ΥN	Y.	AN	X X	N N	Not Analyzed
AGW-10	S1-05	S	Ϋ́Ν	N A	NA	Y X	Ϋ́	Not Analyzed
Jank-03	Ϋ́	NA	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	OC-System Blank
:ASG-11	S2-01	7	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
ASL-12	S2-01	4-6	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
:ASG-13	S2-01	10	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
:ASG-14	S2-02	10	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
ASL-15	S2-03	9-11	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
CASL-16	S2-04	9-11	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
ASG-17	S2-05	10	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
ASG-18	S2-06	7	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas

Table 2 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

Sample	Probe Hole	Depth			Concentration (µg/L	(g/L)		Comments
I.D.	Number	(leet)	Toluene	PCE	Ethylbenzene	Total Xylenes	TVOC	
CASL-19	S2-06	40	ND (2)	(9) QN	ND (2)	ND (2)	104	Soil
AGW-20	S2-06	10	5649	4878	1620	2132	75002	Groundwater
ASL-21	S2-07	9-11	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
ASL-22	S2-08	9-11	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil
ASG-23	S2-09	10	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
ASG-24	S2-10	7	ND (2)	(9) QIX	ND (2)	ND (2)	ND (2)	Soil-Gas
ASG-25	S2-10	S	099	(9) QN	ND (2)	ND (2)	22472	Soil-Gas
AGW-26	S2-10	10	1839	970	841	707	53445	Groundwater
ASG-27	S2-11	10	ND (2)	(9) QN	ND (2)	ND (2)	2	Soil-Gas
AGW-28	S2-12	10	ND (2)	(9) QN	ND (2)	ND (2)	54	Groundwater
ASG-29	S2-13	10	<b>∞</b>	(9) QN	13	42	456	Soil-Gas
ASG-30	S2-14	7	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
AGW-31	S2-14	S	ND (2)	(9) QN	29	82	481	Groundwater
ASG-32	S2-14	10	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas
AGW-33	S2-15	10	ND (2)	(9) QN	ND (2)	ND (2)	12879	Groundwater
AGW-34	S2-16	10	817	954	783	342	10751	Groundwater
AGW-35	S2-17	10	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Groundwater
<b>CASG-36</b>	S2-18	7	ND (2)	(9) QN	ND (2)	ND (2)	ND (2)	Soil-Gas

Table 2 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

Capital Municipal Airport Springfield, Illinois

Comments		Groundwater	Groundwater	Soil	Soil-Gas	Groundwater	Groundwater	Soil	Soil-Gas	Groundwater	QC-System Blank	OC-System Blank	Soil-Gas	Groundwater	Soil	Soil-Gas	Soil-Gas	Groundwater	Soil-Gas
	TVOC	7	88	œ	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	67	ND (2)	ND (2)
(µg/L)	Total Xylenes	ND (2)	ND (2)	28	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	. 9	ND (2)	ND (2)
Concentration (p	Ethylbenzene	ND (2)	ND (2)	12	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)
	PCE	-	_		(9) QN		-					-		-					
	Tolucne				ND (2)														
Depth	(lcct)	٠,	10	10	10	10	10	<u>1-3</u>	'n	10	Ϋ́	NA	10	10	9-11	7	\$	10	10
Probe Hole	Number	S2-18	S2-18	S2-19	S2-20	S2-21	S2-22	S2-23	S2-23	S2-23	۲X	ΥN	S2-24	S2-25	S2-26	S2-27	S2-27	S2-27	S2-28
Sample	I.D.	CAGW-37	CAGW-38	CASL-39	CASG-40	CAGW-41	CAGW-42	CASL-43	CASG-44	CAGW-45	Blank-04	Blank-05	CASG-46	CAGW-47	CASL-48	CASG-49	CASG-50	CAGW-51	CASG-52

Table 2 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

Capital Municipal Airport Springfield, Illinois

chaman	Comments		( :: E	Soil-Gas	Soil-Gas	Groundwater	County atel	lioc	Soil	T.O.S.	100	3011	Soil-Gas	Soil-Gas	Coil Gos	Soli-Oas	Soil-Gas	Soil-Gas	Soil Co.	Sour-Cas	Soil-Gas	OC-System Blank	Soil	100	3011	Groundwater
	TVOC		90	, i	ND (2)	25	S CN	(a) (c)	ND (2)	ND (2)	<b>,</b>	2	(7) ON	<b>SD</b> (2)	ND (2)		(7) ON	ZD (2)	ND (2)		(7) ON	ND (2)	ND (2)	3120	15014	1707
(g/L)	Total Xylenes		23	לי עוא	(7) (N)	ND (2)	ND (2)		(2) CM	ND (2)	ND (2)	S CEN		ND (2)	ND (2)	S CN	(4) (4)	ND (2)	ND (2)	S CIN	(2) (E)	ND (2)	ND (2)	336	1521	1
Concentration (µg/L)	Ethylbenzene		ND (2)	NO CN	(a) (c)	ND (2)	ND (2)	(C) QN		(7) QNI	ND (2)	ND (2)		(7) CN	ND (2)	ND (2)		(7) (2)	ND (2)	ND(2)		(Z) (Z)	ND (2)	75	1015	
100	FCE.	9	(9) AN	9 Q Q			(9) ON	(9) QN	(S) CIN		(Q) CN	(9) QN	<b>S</b> CN		(o) CN	(9) QN	S CIN		(a) Car	(9) (N)	8D (8)		(a) (a)	152	296	
Tolling	roncue	(C) CHY	(7) QN	ND (2)	SCN		(7) QN	ND (2)	ND CO			ND (2)	ND (2)	200	(Y) (E)	(7) QN	ZD (2)	) CN		(7) (N)	ND(2)	S CN	(4) (5)	110	872	
Depth	1771	4	٠ 4	n	10	1-1		9	9-11	9-11		, c	n	47	•	٠ د	'n	7	2	2 ;	Ϋ́Z	9-11	0-11	11,	2	
Probe Hole Number		S2-29	62-30	05-30	SZ-31	SI-05	50-12		21-05	S1-06	52-33	76 76	25-33	S2-34	\$2-35	20 13	06-76	S2-36	S2-36		NA	S2-37	S2-38	\$22.30	(6-30	
Sample 1.D.		CASG-53	CASG-54	O V CITY C	CACWOAD	CASL-56	CASL-57	07 17 40	00-704-70	CASL-59	CASG-60	CASGAI		CASG-62	CASG-63	CASG-64	100000	CASG-65	CASG-66	Riont Oc	O Viella Co	CAST-67	CASL-68	CAGW-69		

Table 2 (Cont'd)

Soil-Gas, Groundwater, and Soil Analytical Results

Capital Municipal Airport Springfield, Illinois

November 3 - 7, 1992

	Comments		Soil Soil	QC-System Blank
		TVOC	236 5340 24920	ND (2)
( )/01	48/12)	Total Xylenes	64 1405 2036	ND (2)
Concentration	Companie de la la la la la la la la la la la la la	Ethylbenzene	ND (2) 112 2207	ND (2)
		PCE	ND (6) 68 1920	9) PR
	F	rornene	ND (2) ND (2) 1611	ND (2)
Depth	(60.0)	(1991)	1-3 4-6 4-6	NA V
Sample Probe Hole	Number	Laminori	S2-16 S2-16 S2-40	WN
Sample	_		CASL-70 CASL-71 CASL-72 Blank-07	

duplicate analysis D NA ND QC μg/L PCE TVOC

not applicable

not detected at lower quantifiable limit indicated in parentheses

quality control

micrograms per Liter of headspace vapor analyzed

tetrachloroethylene

total volatile organic compounds

Appendix E: On-site Field GC Soil Analytical Results

## THE EARTH TECHNOLOGY CORPORATION

## SPRINGFIELD, ILLINOIS PROJECT

## CONCENTRATIONS IN PARTS PER BILLION

SAMPLE #	DCE	BENZ	TCE	TOLENE	PCE	ETHYLBENZ	MP XYLE	O XYLEN
NOVEMBER 16, SPRINGFIELD,	1992 ILLIN	OIS						
LOW STANDARD MIDDLE STAND HIGH STAND BLANK 201-1 201-3	6 600 600 ND ND	80 800 0 ND ND	9 90 900 0 BMDL BMDL	16 160 1600 0 BMDL ND	10 100 1000 0 BMDL 43	16 160 1600 0 ND ND	16 160 1600 0 ND ND	16 160 1600 0 BMDL ND
201-7.5 201-11 201-17 201-25 MIDDLE STAND BLANK 101-11 101-55 101-3	ND ND ND 60 ND ND ND	ND ND ND 80 ND BMDL ND	ND BMDL ND ND 83 ND ND ND ND	ND ND ND 151 ND ND ND	ND ND ND 92 ND ND ND	ND ND ND 150 ND ND ND	ND ND ND 154 ND ND ND ND	ND ND ND 155 ND ND ND
101-19 STANDARD STANDARD STANDARD BLANK CSB 106-1 CSB 106-7.5 CSB 107-1 CSB 107-35 CSB 107-6 CSB 107-7 DUP CSB 107-7 DUP STANDARD CSB 202-3.5 CSB 202-10		ND 8 80 800 ND ND 2 ND BMDL BMDL 3 ND ND ND ND	ND 900 900 ND 3 8 30 ND ND 13 262 286 8 ND ND	ND 16 160 1600 ND 13 16 11 ND ND 48 430 496 16 ND ND	ND 100 1000 1000 ND 6 4 29 ND ND 21 368 418 9 ND ND	ND 16 160 1600 ND 10 14 474 226 ND 56 552 638 16 ND ND	ND 16 160 1600 ND ND ND ND ND ND ND ND ND ND	ND 16 160 1600 ND 14 14 586 ND ND 56 932 1044 16 ND ND
STANDARD MIDDLE STAND HIGH STAND SB 102-1 SB 102-5 SB 102-8 SB102-11.5 BLANK SB103-5 SB103-8 SB103-11 BLANK	600 600 ND ND ND ND ND ND ND	8 80 800 ND ND ND ND ND ND ND	9 900 900 ND ND ND 5400 ND ND ND 960 ND	16 1600 1600 BMDL ND ND 6060 ND ND BMDL 5376 ND	10 1000 1000 ND ND 7284 ND BMDL ND 13306	16 160 1600 ND ND ND 5648 ND ND ND ND	16 160 1600 ND ND ND 3284 ND ND ND ND ND	16 160 1600 ND ND ND 9672 ND 6 ND 20928

SAMPLE #	DCE	BENZ	Z TCE	TOLEN	E PCE	ETHYLBEN	MP XYLE	O XYLEN
NOVEMBER 16 SPRINGFIELI								
CP2 203-1.5 CP2 203-7.5 LOW STANDAR MIDDLE STAN HIGH STAND BLANK CS2 205-7.5 CS2 205-7.5 CSB 206-6 BLANK CSB 206 7.5	5 ND 6 ND 60 60 600 ND ND ND ND ND ND	MD BMDL 8 80 800 ND 8 8 ND ND ND ND	ND ND 9 90 900 ND 90 106 5550 ND 13365	ND ND 16 1600 1600 ND 328 376 8415 ND 13250	ND ND 100 1000 ND 33 41 2715 ND 9600 ND	ND ND 16 160 1600 ND 106 140 5145 ND 10260 ND	ND ND 16 16 1600 ND ND ND 4005 ND	ND ND 16 160 1600 ND 152 216 8685 ND 15315
BLANK CSB 207-7.5 LOW STANDAR		ND 8	26775 9	ND 48330 16	4485 9	13215 16	ND 7050 16	ND 18030 16

ND - NOT DETECTED BMDL - BELOW METHOD DETECTION LEVEL

	SAMPLE #	DCE	BENZ	TCE	TOLENE	PCE	ETHYLBENZ	MP XYLE	O XYLEN
	NOVEMBER 16TH SPRINGFIELD,								
	SB 104 1.5 SB 104-4.5 SB 104-12 BLANK LOW STANDARD SB 105-1 SB 105-5 SB 105-9 BLANK SB 105-11 BLANK LOW STANDARD MIDDLE STAND HIGH STAND HIGH STAND BLANK CBS 203-3.5 CSB 203-6 CSB 203-8 CSB 108-3.5 CSB 108-3.5 CSB 108-3.5	ND ND ND ND ND ND ND ND ND ND ND ND ND N	BMDL ND ND ND ND ND ND ND 80 800 ND 2 2 BMDL BMDL BMDL	ND ND 1170 9 ND ND 8610 158 ND 900 900 ND ND ND ND	ND ND 732 ND 16 ND 1560 ND 126 ND 160 1600 BMDL BMDL BMDL BMDL ND	BMDL 33 1696 ND 9 ND 1980 ND 108 ND 100 100 100 100 ND ND ND	6 29 1688 ND 14 ND 14 ND 244 ND 16 160 1600 1600 ND ND ND ND ND ND	8 30 912 ND 16 ND 16 ND 6 ND 16 160 1600 ND ND ND ND ND ND ND ND ND ND 16 ND 16 ND ND 16 ND ND ND ND ND ND ND ND ND ND ND ND ND	18 42 2370 ND 14 ND 8320 ND 250 ND 16 160 1600 ND ND ND ND
1	CSB 108-7.5 CSB 203-8 CSB 203-8 DUP CSB 203 3.5 SPIKE	68 65 53	88 84 67	102 94 67	169 159 100	109 99 64	153 138 76	171 164 71	166 153 71
	STANDARD MIDDLE STAND HIGH STAND BLANK CSB 108-7.5 CSB 204-3.5 CSB 204-5.5 CSB 204-7.5 CP2 102-3 CP2 102-7 CP2 102-7 LOW STANDARD	6 600 600 ND ND ND ND ND ND ND	8 80 800 ND BMDL 2 2 2 ND ND ND ND	9 900 900 ND ND ND ND ND ND	16 1600 1600 ND BMDL BMDL BMDL BMDL ND ND ND	10 100 1600 ND BMDL ND ND ND ND ND ND	16 160 1600 ND ND ND ND ND ND ND ND	16 1600 1600 ND ND ND ND ND ND ND ND	16 160 1600 ND ND ND BMDL ND ND ND ND
`	LOW STANDARD MIDDLE STAND HIGH STAND BLANK CSB 5-3.5 CSB 206-1 CSB 206-4 BLANK CSB 207-2.4 CP2 202-1.5 CP2 202-7.5 CP2 202-7.5 DISTANDARD	60 600 ND ND ND ND ND ND ND ND ND	8 800 800 ND BMDL ND ND ND ND BMDL ND	9 900 900 MD BMDL ND 1019 ND ND ND ND	16 1600 ND BMDL ND 3540 ND ND ND ND	10 1000 1000 ND ND ND 1360 ND ND ND ND ND	16 1600 1600 ND ND ND 3034 ND ND ND ND	16 1600 1600 ND ND ND 881 ND ND ND ND	16 1600 1600 ND ND ND 5420 ND ND ND ND ND

Amatysis (1'	1084 GD (unstlem	Analysis Report
	3 6 5 (Vm Ut .)	Timb Printed: Nov.46,92 12:10 Eample Timb: Nov.16.52 11:46
	3 14 14 14 14 14 14 14 14 14 14 14 14 14	Integrator Method Clupe U.
	•	GC Method:  Det Flow 10 ml/min  B/F Flow 10 ml/min  Aux Flow 4 C  Aut Temp 2 C  Max Gain 100  Analysis Time 55010 500
		Peak         Repo.           Pk Compound Name         Ancording R.T           1 diknown         60.00 mVS         16.0           2 beanswe         34.7 mVS         23.           3 trans doe         3.000 PPB1         33.           4 beanswe         1.001 PPB1         40.           5 bas         7.600 PPB1         79.           6 tolegae         10.01 PPB1         170.           7 pas         10.07 PPB1         185.1           8 othyleonrone         16.07 PPB1         364.4           9 diplomase         16.00 PPB1         343.7
7 S	•	
		PSM1 = Alarm 1 PFM2 = Alarm2
		low standard soit samples syringe injection 180 at Epringfield, Illinois LARTH TUCH.
	E-4	Truces day Xylames Isanisans Tilaens Pur Elvil nosm

6.30

Tue Tolumne

. Pace

Ethylpontene

9 1 >	* w	*** ****	(×	7 5 100 aV)	Time Printed: Nov 16.92 13:03 Sample Time: Nov 16,92 13:04
		4,			Integrator Mounoc  2.556 Up 1.000 mV/Sec  2.576 Dean 2.000 mV/Sec  Min Area 0.500 mVSec  Min Height 0.072 mV  Analysic Delay 10.0 scc  Window Percent 5.00 %
10				•	DC Method  Dot Flow 10 ml/min  B/F Flow 10 ml/min  Cas Flow 0 ml/min  Doen Temp 40 C
198					Amb Temp 31 C Max Bain 100 C Amalysis Time 1500 sec
			٠		Pock repot
		·			
J. 100					
:					: ppm: = A.arm: 1
5(2).					low of and and solve of any lex synthys injection 150 ul Spring field, Illinois Shire TEC::
					Trans dos Xylenes  kensens Tal Taluene Fac





<del></del> -						
9	ু > .	4i	, ,	(). 1	10 10 mV)	Time Printed: Nov 17.72 08:54 Bample Time: Nov 17.72 08:38
	<u>*</u>	Z _V				Integrator Mothed Slope Up 2.000 mV/Sec Slope Down 2.000 mV/Sec Min Area 0.500 mVSec Min Height 0.653 mV Analytis Delay 10.0 sec Window Percent 5.00 %
130						6C Methoc
175				•	. ,	Det Flow 10 ml/min D/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 5 Fab Temp 5 Kex Gain 10v.
7	•					Analysis Time 450.0 sec
240						Peak appoint PK Compound Name area/Conc R.T I Unknown 01.30 mVS 16.1 Unknown 07.5 mVS 23.1 Unknown 6.600 PPB1 33.5
376						4 benzene
						10 o xylene 156 PPD1 361.7
.450						
	•			•		
530						PPM1 = Alarm 1 PPM2 = Alarm2 obsoderd soil camples
						syringe injection 150 ul Coringfield, Illinois EARTH TECK.
250	·					Trans doo Xyaenes  Berzeno Too Toounine Pue Ethylberzone
1777						data for the first tent of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Section of the Secti

<b>Y</b>	12		కు		jan Kaar	<u></u> .()		Nime Printed: No	
-	· .			6.36	1.	F.aV)	:	Lample Time: No	3V 17,92 08:38
	<b>-</b> 5	Ā					The second of the second of the profession	Integrator Slope Up Slope Down Min Firea Min Height Analysis Dolay Window Percent	- Method 2.000 mV/GeV 5.000 mV/GeC 0.500 mV6eC 0.403 mV 10.0 sec 5.00 %
								GO Met	
								Dat Flow SVF Flow Gus Flow Oven Temp Amb Temp	10 ml/min ; 10 ml/min 0 ml/min 40 C 20 C
							:	Tor Guila Artalyeus Time	1001 10010 sac
							100000000000000000000000000000000000000	Peak Composand Name Unknown Unknown Chans Otto Ushickno Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act Column Act	Telest   Content   R. 18
						•	:		
							k		
								PPM1 = Alarm 1	PPM2 = Alarm2
		. •			•		9 3	standard Soll Samples Syringe Injection Syring/ield, Illi Mark TOOK.	
•				٠.				Frank due Johnens Foetaane	XY10hes





.116	es a de de	<b>.</b>	: .			م د خاکیم			V. 1	activity.	Grand John Raport
\$		4		: 	<u>-</u>	12	()	16 / 100	Q (	20 uV)	Time Printed: Nov 17,92 11:20 Cample Time: Nov 17,92, 11:06
45								1.		•	Integrator • Method Slope Up 2.000 mV/Sec Clope Dewn 6.000 mV/Sec Min Area 0.500 mVSec Min Height , 0.745 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130	-										GC Method
								•			Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C
195		•				,					Amb Temp 3 C C Max Gain 1000 Analysis Time 650.0 sec
240											Peak Report Pk Compound Name Area/Conc R.T 1 Unknown 58.8; mVS 14.3
200		•			ě	•	٠		. •		
325											
		•									
390											
, ,											
1455	•										
		٠									*
520					•						
											blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585		•		,		,					Trans doe Xylenes
•	•						•				Banzene Tac Taluene Pac
<b>5</b> 0											Ethylbenzene

	An	aly	eis	₩Ÿ			105+	<b>6</b> 0	Fi	ari <b>a t</b>	. i c	11	Analysis Report
q			1		2	-	3	<b>(</b> );	Ľį	10	ωV	5	Time Printed: Nov 17,92, 13:56 Sample Time: Nov 17,92 13:45
55											•		Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.774 mV Analysis Delay 10.0 sec
													Window Percent 5.00 %
13	0				٠	•	٠						SC Method Det Flow 10 ml/min B/F Flow 10 ml/min
									•				Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C
7.9	5	•	•										Max Gain 1000 Analysis Time 650.0 sec
24	0						٠				•		Peak Report Pk Compound Name Area/Conc R. 1 Unknown 114.6 mVS 15 2 Unknown 8.805 mVS 254
	2		•		٠,		•	•	٠	•			2 0000 000
5.7		·											·
					•								
59,	ر.				٠								~
-													
173	3										•		
			٠		•				•	•			
***							•		٠				· ·
	)											i	CSB-201-7.5 0852
	-		٠		٠.		•						soil samples syringe injection 150 ul Springfield, Illinois EnRTH TECH.
3	(	•											Trans dce Xylenes Senzene Tce Toluene
, <b>5</b> C	<b>(</b> )												Pce Ethylbenzene

A:	nal/	ر) لا يو			1004			·	a on	Analysis Report
9		1	·	2	 3	(×	Ġ,		5 mV)	<ul> <li>Time Printed: Nov 17,92 14:13</li> <li>Sample Time: Nov 17,72 - 14:02</li> </ul>
65				•				·		Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec
2				•						Min Height 0.748 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130		• .								Det Flow 10 ml/min B/F Flow 10 ml/min
.95							•			Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Bain 1000 Amalysis Time 650.0 sec
										Peak Report  PK Compound Name Area Conc R.  1 Unknown 115. mV3 15
3	••							. •		2 tue 0.29 ppb <b>S1</b> 3 Unknown 4.90 mVS <b>25</b> 5
a designate has the party of the second									٠	3
70						٠	•			
95										·
										<b>₽</b>
20	,				٠					CSB-201-11 0910 soil samples syringe injection 150 ul
Q 5		•	,	•						Springfield, Illinois EARTH TECH.
10	•					•			•	Trans dee Xylenes Benzone T. o Tutuene Fro Ethylbenzene

<del></del>	គឺរា	al)	/sis	#11			1004	GC	Fu	nctio	r,	Analysis Report
(			1		2	_	3	<b>(</b> R	Ą	10 mV	5)	Time Printed: Nov 17,92 - 14:42 Sample Time: Nov 17,72 14:31
٤.	3	2										Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.777 mV Analysis Delay 10.0 sec Window Percent 3.75.00 %
1.	 \$○											GC Method
				•		•		•	•			. Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
1 1 C	5					-						Oven Temp 40 E Amb Temp 52 C Max Gain 1000 Analysis Time 550.0 sec
26			·							•		Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 124.3 mVS 15.4 2 Unknown 3.67/ mVS 37.0
120	3	٠	•			•			٠	•		2 Unknown 3.67/ mVS 37.0 3 Unknown 5.91/ mVS 254.4
	7 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may 1 may		•								٠	
	5									٠		
29	ō											
		•	•				•				•	
			•		•							
45	5	•							•			
			•				•					
52	Ŏ.											
			·		. *.				•			CSB-201-17 0950 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
50		•	,		•		,					Trans dce Xylenes
		- •		•			•	•			!	Renzene Toe Toluene Poe
65	0											Ethylbenzene

	Arr a	15	515	W4.2	· -		100)	ŒŒ	Fu	msti	on	Analysis Report
3	•		1	,	2	<del></del>	3	( :K	7.	10 m	5 V)	Gample Time: Nov 17,92 15:01
65	2					,						Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mV/Sec Min Height 0.337 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130	,											OC Method
	•	•		٠	•				•			Dot Flow 10 ml/min D/F Flow 10 ml/min Aux Flow 0 ml/min
1.05	5											Oven Temp 40 C Amb Temp 32 C Max Bain 1000 Analysis Time 450.0 sec
												Peak Report
24	उ				·							Pk Compound Name         Area/Sonc         R.T.           1 Unknown         135.3 mVS         15.7           2 Unknown         0.205 mVS         36.3           3 Unknown         27.67 mVS         254.7
							•					
3.15												
ت ادت	٠			٠				٠				
												} } !
370												
	,				•	٠	•	•	•		•	
				•							٠	
455										•		
	•		•	•		•	•	•		•	•	
			. •								-	<b>*</b>
520										٠		CSB-201-R5 1048
d cap to making a cap to the hardware.												soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
545							•		•		,	Trans doe Xylenes
	4,•											Benzone Tue Toluene Pue
650	ē						•					

Trans dce Benzene

Slope Down			alysis Réport	År	tion	Fun	⊦ GC	105+	 ι¦ 	# i,4	y 5 1 5	nal	
Integrator Mathed Slope Up 2.500 Slope Down 7.500 r Nin Area 0.500 r Min Area 0.500 r Min Height 0.872 r Analysis Delay 10.0 r Window Percent 5.00 r  It of Compound Name 1 r Aux Flow 0 r Aux Flow 0 r Oven Temp 40 r Ama Cain 1000 Analysis Time 650.0 s  Peak Report Peak Report Report Unknown 71.2 mx  Soil samples Syringe injection 150 ul Springfield, Illinois EARTH TECH.					uV)			12	 8		4	<del></del>	0
Det Flow 10 m B/F Flow 0 m Aux Flow 0 m Oven Temp 40 C Amb Temp 33 C Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 s  Peak Report Pk Compound Name Area/Cor 1 Unknown 71.2 m  325  325  520  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.	mv/Sec mv/Sec mvSec mv mv	2.500 7.500 0.500 0.872 10.0	Slope Up Slope Down Min Area Min Height Analysis Delay	A C. Married II. Comp. Married II. Comp.	1		·				and the second		65
B/F Flow 10 m Aux Flow 0 m Aux Flow 0 m Aux Flow 10 m Oven Temp 40 C Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 s  Peak Repor: Pk Compound Name Area/Con 1 Unknown 71.24 m  260  325  325  390  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.		1ethod	GC M			•							130
Pk Compound Name Area/Cor 1 Unknown 71.2 mV  325  390  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.	ml/min ml/min C C	10 0 40 33 1000	B/F Flow Aux Flow Oven Temp Amb Temp Max Gain				•		·				195
1 Unknown 71.2 mV  325  390  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.		ık Report	Pea										
520  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.					•								
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.							•						
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.													455
i l	<b>.</b> 1		soil samples syringe injection Springfield, Ill									٠	520
Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene	? <b>5</b>	Xylenes	Benzene Tce Toluene Pce									-	585

ı

ļ

ı

ı

9	1	 2	3 <b>–</b>	<b>(</b> ):	4	10	mΥ	5	Time Printed: NSV-17,92 17,47 Sample Time: Nov 17,92 17,37
55							ļ		Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.803 mV Analysis Delay 10.0 sec Window Percent 5.00 %
. 3 <u>0</u>					•				GC Method
2			-						Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 53 C
175						٠,			Max Gain 1000 Analysis Time 650.0 sec
260	3						-		Peak Report Pk Compound Name Area/Conc R. 1 Unknown 127.5 mVS 15 2 toluene 47.6 PPB1 128 3 Unknown 317.2 mVS 242
:									
325	·								; ;
!									
5 <b>9</b> 0									
							•		
155									
			٠		٠				PPM1 = Alarm 1 PPM2 = Alarm2
520		•							CSB-101- 3 1348 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
85				 -					Trans dce Xylenes Benzene Tce Toluene

	Jala		#16		 	+ GC		אט כ.		Analysis Report .
<b>()</b>		1		2 	 3	( x	4	10	m∨ )	
65				·					1	Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.885 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130							•			GC Method
175	•	•								Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000
										Analysis Time 650.0 sec
260	2								•	Peak Report Pk Compound Name Area/Conc R. 1 Unknown 118.2 mVS 15 2 Unknown 408.7 mVS 242
325										
390		·								
455					·					
520					·		٠			CSB-101-5.5 1400 soil samples syringe injection 150 ul Springfield, Illinois
585	•							E-26	<b>3</b>	EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

ı

9	1	2		3		4		5	i	Time Printed:	Nov 17,92	17:13
1					( ×		10 n	n∨) 1	!		Nov 17,92	
<i>\$</i>		•						Ŧ			or Method	
5 <u>i</u>									;	Slope Up Slope Down	2.500 7.500	mV/Sec mV/Sec
Ż				•	•					Min Area	0.500	mVSec
)									i !	Min Height	0.824	m∨
	٠			•					-	Analysis Delay Window Percent		sec %
30										GC M	ethod	
									t F	Det Flow	10	ml/min
į									!	B/F Flow	10	ml/min
:									i 1	Aux Flow Oven Temp	0 40	ml/min C
:									1	Amb Temp	33	C
95										Max Gain	1000	
•										Analysis Time	650.0	sec
1									: !=:	Pea	k Report	-
							•			Compound Name Unknown	Area/Do 122.6 o	
နှံဝ									12	Unknown	0.133	
4								•		benzene	0.200	opb 61
									14	Unknown	4.03° r	nVS 25
1									1			
: 25												
-, -			•				•		İ			
•									1			
•									i			
:									1			
70							,					
•										•		
:								•	1			
55									1 1			
i					•		•		1			
1												
•						•			!			
: 									ì			
20							•		C	SB-101-11 14	02	
:									; 5	oil samples		
}										yringe injecti: pringfield, Il		•
!										ARTH TECH.	* *11012	
B5									-		V 1	
•					•				•	rans dce enzene	Xylenes	•
									T	ce		
										oluene		
50						E.	-27			ce thylbenzene		
						-	/		<u></u>	COLATORNARIOS		

..

Ethylbenzene



Trans dce Xylenes
Benzene
Tce
Toluene
Pce
Ethylbenzene

E-30

650

E-31

650

Benzene Tce Toluene Pce

Ethylbenzene

Xylenes

Trans dce Xylenes
Benzene
Tce
Toluene
Pce
Ethylbenzene

EARTH TECH.

585

650

	+1	a 1 /	د ـ ـ	Hill	,	 1054	بان	۲, ۲	al i C	tic	ا] ا	Analysis Report
1	<b>r</b>		1		2	3	<u>(</u> ×	4	10	m۷		Time Printed: Nov 18,92 12:27 Sample Time: Nov 18,92 12:16
65	مر'					2 .						Integrator-Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.765 mV Analysis Delay 10.0 sec Window Percent 5.00 %
13	0				_	•						GC Method
19	5							•				Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000
												Analysis Time 650.0 sec
260	0						÷			•		Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 606.4 mVS 15.8 2 Unknown 5.769 mVS 23.8
325	5					-	,					
											4	
390	5								•			
								•				
455	5			·								
											,	*
520	)		-									SB-102-5 0900
			,		· •.							soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	5		•	•								Trans dce Xylenes Benzene Tce Toluene
650	)					•						Pce Ethylbenzene

mal le #11	105+ BC Function	Amalysis Report
	3 4 5 (x 10 mV) 1	* Time Printed: Nov 18,92 12:43 Sample Time: Nov 18,92 12:32
65	•	Integrator Method Stope Up 1.500 mV/Sec Slope Down 4.500 mV/Sec, Min Area 0.500 mVSec Min Height 0.592 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130		GC Method
195 3	-	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 sec
; ; : t .		Peak Report
260 4		Pk Compound Name         Area/Conc         R.T.           1 Unknown         96.36 mVS         16.1           2 Unknown         1.597 mVS         24.0           3 Unknown         237.8 mVS         179.1           4 Unknown         2.541 mVS         256.0
325		
370		
· ·		,
455		· · · · · · · · · · · · · · · · · · ·
D2U		SB-102-8 0912 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585 650		Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

<b>PPMI</b>	= A	larm	1	PPM2	=	Alar	m2

5.617 VSec 552.1

SB-102-1.5 0935 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.

21 Unknown

Trans dce Xylenes
Benzene
Tce
Toluene
Pce
Ethylbenzene

19

20

52¢

58\$

65¢

		4		8		12		16 - 100	00 (	20 JV)	Time Printed: Nov 18,92 14:27 Sample Time: Nov.18,92 14:15
65	·		2								Integrator Method Slope Up 2.000 mV/Sec. Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.740 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130					,			,•			GC Method
				·				÷			Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C
195	•					•	•		٠	•	Max Gain 1000 Analysis Time 650.0 sec
260						•		·	•		Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 88.51 mVS 16.5 2 Unknown 2.475 mVS 24.6 3 Unknown 4.69; mVS .258.1
325				. •							•
390		·			·			·			
455											
520				•							blank soil samples syringe injection 150 ul
585	•				•	•	er.				Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene
50											Pce Ethylbenzene

Ar	naly	sis	#17			105+	GC	Fu	ים חו	tio	1	Analysis Report
9		1 		2		3	(×	4	10	mν	5 )	Time Frinted: NBV 18,92 14:54 Sample Time: NBV-48;92 14:32
65										1		Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec
						•					•	Min Height 0.816 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130		•			•			.•			•	Det Flow 10 ml/min B/F Flow 12 ml/min
195						• .					•	Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000
3		•	•		•	•	•	•	٠.		•	Analysis Time 650.0 sec
260										•		Pk Compound Name     Area/Conc     R.T.       1 Unknown     148.7 mVS     15.9       2 Unknown     6.625 mVS     161.2       3 pce     0.34 ppb     188.4
												4 Unknown 9.0% mVS 259.7 5 o xylene 3.228 ppb 370.0
325											•	
5 390											•	
370												
455										•	-	
								,			•	
520		٠										SB-103-5 soil samples
585		٠		•								syringe injection 150 ul Springfield, Illinois EARTH TECH.
303	٠. م					,			•			Trans dce Xylenes Benzene Tce Toluene
550	,		÷.			· ,		•				Pce Ethylbenzene

			#15						4116		1 1	Analysis Report
9		1		2		3	(×	4	10	mΥ		Time Printed: Nov 18,92 15:01 Sample Time: Nov 18,92 14:50
.5		2		•			·			1	•	Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.742 mV Analysis Delay 10.0 sec
3		ż		٠				•				Analysis Delay 10.0 sec Window Percent 5.00 %
.30												GC Method
4												Det Flow 10 ml/min B/F Flow 10 ml/min
5		-										Aux Flow 0 ml/min Oven Temp 40 C
.95												Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 sec
1												Peak Report
60										•		Pk Compound Name Area/Conc R. 1 Unknown 203.2 mVS 15 2 Unknown 1.474 mVS 23
6				٠				٠	•			3 Unknown 3.037 mVS 104 4 toluene 0.900 ppb 134 5 Unknown 4.270 mVS 161
]		•				•		٠				6 Unknown 4.919 mVS 258
25	i											
1		-										
90												
1	-	•		*		•	•	٠				
Ì												
55			•									
		•		•				•		,		
20					•					,		55 407 5
			٠									SB-103-8 soil samples
		•				•				,		syringe injection 150 ul Springfield, Illinois EARTH TECH.
85	•				,	-	٦.					Trans dce Xylenes Benzene
												Toluene
{ <b>5</b> 0		•										Pce Ethylbenzene
7 ~ ———							·			E-4	2	

Ап	naly	5 i 5	#26	5		105	GC	Func	tior	Analysis Report
9		4	نست	8	,	12	(×	16	20 uV)	Time Printed: Nov-18,92 16:58 Sample Time: Nov 18,92 16:40
65		•								Integrator Method Slope Up . 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0,500 mVSec Min Height 0.786 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130								•		GC Method
195			•	•		•		•		Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000
										Analysis Time 650.0 sec
260	2								• ,	Peak Report Pk Compound Name Area/Conc R.7 1 Unknown 55.95 mVS 16. 2 Unknown 291.3 mVS 242.
		•		•		•				
525	÷									
ļ		•				•				
90					ē					
		٠		• .				•		
55		. •	• ,		•		•			<b>S</b> ₀
		•		•		•			•	
20			··	· •.	٠					blank soil samples syringe injection 150 ul
						•		•	-	Springfield, Illinois EARTH TECH.
85 .	•.			٠			•.	: .		Trans dce Xylenes Benzene Tce
-								•	•	Toluene . Pce
\$0									E-46	Ethylbenzene

	Αn	aly	sis	#27	,		105+	GC	Fu	ınc.	tio	n	Analysis Report
9	_		1		2 ,		3	( ×	4	10	m∨	5	Time Printed: No <b>0~18,92</b> 17:15 Sample Time: Nov 18,92 17:03
65	3			2									Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mV/Sec Min Height 0.779 mV Analysis Delay 10.0 sec Window Percent 5.00 %
13	4								•				GC Method
	() (5	•		٠								•	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C
19	5	6										•	Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 sec
26	ю (										•		Peak Report Pk Compound Name Area/Conc R.T 1 Unknown 122.8 mVS 15. 2 Unknown 47.81 mVS 23.
	ק 8		•			•		•					3 benzene 0.21 ppb 61. 4 Unknown 3.3 mVS 104. 5 Unknown 13.22 mVS 161. 6 pce 0.321 ppb 187.
32	5	9					·						7 Unknown 28,48 mVS 260. 8 ethylbenzene 3,164 ppb 295. 9 m,p xylenes 4.092 PPB1 315. 10 o xylene 8.965 PPB1 369. 11 Unknown 12.12 mVS 399.
39	10 0				٠								12 Unknown - 4.127 mVS 462.
	11							•			•		
45	5		. •		•			•					la .
	12								•				
52	0		•	<i>:</i>					•				PPM1 = Alarm 1
58	5				<i>.</i>								soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
	<b>,</b>	·•.				•		,					Trans dce Xylenes Benzene Tce Toluene
650	)									ł	E-4	7	Pce Ethylbenzene

	Ana	175	15	# 41	ك ــــــــــــــــــــــــــــــــــــ		105+	6L	۲۱ ا	TUCE	10	n	Analysis Report
9			2		4		6	(×	8	10		0	Time Printed: Nov 15,92 17:34 Sample Time: Nov 15,92 17:21
	-	,				1							
65			<u>-</u>		4	<u>i</u>							Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec
	<u> </u>	<u>6</u> =7	_5			<b>&gt;-</b>							Min Height 6.0.848 mV Analysis Delay 10.0 sec Window Percent 5.00 %
		-9-						_	•				Window Percent 5.00 %
13	م ہ	7						10	)				GC Method
1 +	_/ `	11	•	•	•	•	•	•	•	•	•	•	Det Flow 10 ml/min
		-											B/F Flow 10 ml/min
1 1				<u> </u>	2		-						Aux Flow O ml/min Oven Temp 40 C
				4	. 2								Oven Temp 40 C Amb Temp 33 C
19	5	13											Max Gain 1000
	ر مسمور			•		•	•	٠		٠		•	Analysis Time 650.0 sec
1													
										•	•		Peak Repor
	1												Pk Compound Name Area Conc R.T
	Λ.												1 Unknown 176. 455 15.
240	: (د	14											2 Unknown 2.712 mus 23.6
	/												3 Unknown 2.371 mys 31. 4 Unknown 62.55 mys 36.
	ĺ												5 Unknown 49.72 mVS 40.0
	15		•		•				•			•	6 Unknown 33.15 mVS 44.
													7 Unknown 69.00 mVS 53.
32	5												8 Unknown 683.1 mVS 74.4
	16		•	•	•		•	•	•	•			9 Unknown 16.57 mVS 89.4
1 4													10 Unknown 462.4 mVS 104.3
	17				٠								11 Unknown 209.4 mVS 115.
	18												12 Unknown 565.0 mVS 161.4 13 pce 16.46 PPB1 187.0
390													13 pce 16.46 PPB1 187.0 14 Unknown 209.0 mVS 252.3
H				• •		•							15 ethylbenzene 14.57 PPB1 293.8
1	19												16 m,p xylenes 15.07 PPB1 319.3
											•		17 Unknown 9.713 mVS 348.6
1			•		•		•		•				18 o xylene 20.72 PPB1 367.6
i													19 Unknown 28.31 mVS 397.6
45	. i												20 Unknown . 7.505 mVS 462.0
2	20												
1			•									•	
520	<b>1</b>												PPM1 = Alarm 1 PPM2 = Alarm2
					٠.	•	•		•	•		•	SB-104-4.5
													soil samples
													syringe injection 150 ul
												j	Springfield, Illinois
365							ч					}	EARTH TECH.
	1	,		•	*	* •		•	•	•			Trans dce Xylenes
													Benzene
1		•					•						Tce
													Toluene Pce
550										E-	48	- 1	Ethylbenzene
										_	. •	,	



0-		•									
4		1		2 <b>-</b>		3	( x		10 m	5 (V)	Time Printed: Nov 18,92 18:40 Sample Time: Nov 18,92 18:28
65								1			Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.792 mV
		÷						٠.			Min Height 0.792 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130	•					,					GC Method Det Flow 10 ml/min
and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th											Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C
.95											Max Gain 1000 Analysis Time 650.0 sec
											Peak Report Pk Compound Name Area/Conc R. 1 Unknown 85.05 mVS 16
60			•				•				
									•		
25 25											·
	•	•		•	٠	•	•	•	•	٠	
İ		÷									
! <b>9</b> 0									,		
									•		
						٠					h.
55						•	•				
1		į.									
20	٠	•	•		-	•		•	,		blank soil samples syringe injection 150 ul
						٠,٠					Springfield, Illinois EARTH TECH.
85		٠	•		•	•	•	•		•	Trans dce Xylenes Benzene Tce
						,		· E·	-50		Toluene Pce

. .

	An	aly	sis	#3	32			]	105+	- G	С	F	יט כ	: t	io	٦	Analysis Report
9	<b>&gt;</b>		2			4			6	(	×	8	10	) 1	10 mV		
65	Y		4 5				1	2		·							Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.785 mV Analysis Delay 10.0 sec Window Percent 5.00 %
13	50															•	GC Method
19	5	? 6															Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 650.0 sec
												•		•			Peak Report
24	0 8											`		٠			Pk Compound Name       Area/Conc       R.         1 Unknown       157.6 mVS       15         2 trans dce       7.428 PPB1       34         3 Unknown       0.493 mVS       56         4 benzene       8.614 PPB1       62
	P		-			,										-	5 tce 9.116 PPB1 B1 6 toluene 16.20 PPB1 135
32		10				-				٠		•					7 pce 9.381 PPB1 194 8 Unknown 5.310 mVS 260 9 ethylbenzene 13.57 PPB1 287 10 m,p xylenes 16.03 PPB1 308 11 o xylene 13.85 PPB1 373
39	0	11		•													
															•		
			•			•			•			•					
45	5					•				•		,		•		:	
			-														PPM1 = Alarm 1 PPM2 = Alarm2
52	0					, <b>.</b> .				•		٠					standard soil samples
50		· <u>-</u>							-	•		ė				•	syringe injection 150 ul Springfield, Illinois EARTH TECH.
58	, <b>D</b>	٠					٠						E	-5	1		Trans dce Xylenes Benzene Tce Toluene Pce

Ana	alysis	#33	105+ GC	Func	tion An	alysis Report
9	1	2	3 - (×	4	5 mV)	Time Printed: Nov 18,92 19:21 Sample Time: Nov 18,92 19:07,
65				·	1	Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 2.500 mV/Sec Min Height 0.500 mV Analysis Delay 10.0 sec
			•	`•	-	Window Percent 5.00 %
130			, .			GC Method  Det Flow 10 ml/min  B/F Flow 10 ml/min
			,			Aux Flow O ml/min Oven Temp 40 C Amb Temp 32 C
195						Max Gain 1000 Analysis Time 650.0 sec
260					P)	Peak Report k Compound Name Area/Conc R.T. Unknown 135.6 mVS 16.0 Unknown 3.697 mVS 259.2
2						
		٠	•			
325		. , .				
					, spin	
390			• .			•
455						S
520						
						SB-105-1 soil samples syringe injection 150 ul. Springfield, Illinois
585			<b>4</b> , **			EARTH TECH.
	. •			E-5		Trans dce Xylenes Benzene . Tce Toluene Pce

•

A	naly	sis	#34			105+	GC	Fi	unctio	Analysis Report
9		1		2		3 <del>-</del>	( ×	4	10 mV	Time Printed: Nov 18,92 19:55 Sample Time: Nov 18,92 19:28
65)	3	•	·		٠					Integrator Method Slope Up 2,000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.764 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130	-								,	GC Method Det Flow 10 ml/min
195										B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 650.0 sec
260 5								•		Peak Report  Pk Compound Name Area/Conc R.T  1 Unknown 148.7 mVS 15.  2 Unknown 0.542 mVS 31.  3 Unknown 1.025 mVS 56.  4 Unknown 3.275 mVS 152.
325										5 Unknown 4.096 mVS 259.
	•						•		·	· · · · · · · · · · · · · · · · · · ·
390			•				.*			
455							·			· · · · · · · · · · · · · · · · · · ·
520										
	••				•				•	SB-105-5 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	٠								E-53	Trans dce Xylenes Benzene Tce Toluene

	Analys	sis #	3	105+	_GC	Func	tion	Analysis Report
		2	4	6	(×	8	10 mV)	Time Printed: Nov 18,92 23:03 Sample Time: Nov 18,92 22:50
65	3	2	4					Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.845 mV Analysis Delay 10.0 sec Window Percent 5.00 %
13	0 \$		10	9				GC Meshad
19	1:	12	14		. 1	11		Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000
	16	•	•		·		•	Analysis Time 650.0 sec
26								Peak Report  Pk Compound Name Area/Conc R.T.  1 Unknown 17.51 mVS 16.0  2 Unknown 624.7 mVS 26.4  3 Unknown 96.39 mVS 31.1  4 Unknown 1.334 VSec 37.1
32	)18 5 19							5 Unknown 1.207 VSec 40.3 6 Unknown 1.459 VSec 44.6 7 Unknown 1.805 VSec 53.3 8 Unknown 7.493 VSec 66.6 9 tce 287.1 PPB1 81.3 10 Unknown 1.623 VSec 89.7
39	20				·.			11 Unknown       8.034 VSec 104.5         12 Unknown       203.8 mVS 115.2         13 toluene       51.82 PPB1 128.6         14 Unknown       5.690 VSec 162.0         15 pce       115.8 PPB1 186.6         16 Unknown       876.4 mVS 199.2
45	5 .		•					17 Unknown 18 ethylbenzene 19 m,p xylenes 20 o xylene 21 Unknown 22 Unknown 23 Unknown 3.180 VSec 259.4 164.4 PPB1 294.5 168.1 PPB1 315.2 278.9 PPB1 368.3 361.2 mVS 399.3 361.2 mVS 500.0
52	23	•	· ·		•			24 Unknown 205.7 mVS 555.4 PPM1 = Alarm 1 PPM2 = Alarm2  SB-105-4 1:15 dilution soil samples
585	24 <b>.</b> 5		·		•			soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
	٠	•				E-54	1	Trans dce Xylenes Benzene Tce Toluene

O:	2		4		6			4	
			"1 <del>. ===</del>	<del>,</del>		۲)_	8 100	10 0 uV	Sample Time: Nov 18,92 23:09
65		·							Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.875 mV Analysis Delay 10.0 sec
<b>&gt;</b>	·		·		•				Window Percent 5.00 %
130	٠				•				GC Method  Det Flow 10 ml/min  B/F Flow 10 ml/min
195	٠				•				Aux Flow O ml/min Oven Temp 40 C Amb Temp 33 C
	,			•	•			•	Max Gain 1000 Analysis Time 650.0 sec
24.0									Peak Report Pk Compound Name Area/Conc R.7 1 Unknown 34.11 mVS 16.
260 .	•					•		•	
325									
390				a.					
								•	
	•				•				· ·
155				•					
520			·.		٠				blank
: •			•			a.*		٠	soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	÷	•		ē	•	•		E-55	Trans dce Xylenes Benzene Tce

	niia i y	515	# /		,		نا +د		וחמו		Analysis Report	
9		4 - -	L	8		12	(	16 ×	10	20 mV		
						•		,			Integrator Method .	
	<==						3				Slope Up 2.500 mV/Se	
6\$	-<			4							Slope Down : 7.500 mV/Se	) C
		· · · · · · · · · · · · · · · · · · ·	-		- '	•	•	•	•		Min Area 0.500 mVSec	-
}-											Min Height 0.838 mV	
- !	-	>	7	,				•			Analysis Delay 10.0 sec	
7	~				8			•			Window Percent 5.00 %	
130		10			9						GC Method	
L			•	•	•	•	11	•	•		Det Flow 10 ml/mi	
	_ ~_	12									B/F Flow 10 ml/mi	ก
	_	مر <u>د کارک</u> ر									Aux Flow O ml/mi	n
	سمد			14		•					Oven Temp 40 C	
<u> </u>	_										Amb Temp 33 C	
95	5	>15									Max Gain 1000	
	ستستحسر		•				٠		•	•	Analysis Time 650.0 sec	
											Peak Report	
П		•		•		•		•			•	R.
											1	15
\$0											J.	24
7		$\mathcal{I}_{16}$		•	•			•				30
!	No.	10									,	36
-	-{											40
ļ	)17										i	44
l	11											
; 25	,										I .	<b>5</b> 3.
Ξ					•					٠.	i e	<del>6</del> 6.
٤	18										1	80.
	/										i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	88
	}											04
	1											20
į	<b>4</b> 9											28
<del>?</del> C	į									_	14 Unknown 1.204 VSec 1	61.
i	1.	•				•	•			•	15 pce 53.92 PPB1 1	86.
1	/20										16 Unknown 1.008 VSec 2	58.
1	<i>f</i>										17 ethylbenzene 122.0 PPB1 2	93.
11				•				•			· ·	18.
Ħ											19 o xylene 125.3 PPB1 3	
55	į.											96
	<i>)</i>	٠	•	•	•	•	*	•	•	•		59.
	/21										i ·	97
1	. – <del>-</del>	,-									1	50
7	22	•	•	•.		•				·	PPM1 = Alarm 1 PPM2 = Alar	m2
70					,	,	•				SB-105-11	
											soil samples	
j											syringe injection 150 ul	
1	3·	•		•		٠	~ ·	•			Springfield, Illinois	
IJ.	-										EARTH TECH.	
35 							•				. Trans dce Xylenes	
1											Benzene	•
4											Tce	
7										6	1 1 5	

2 1 3 5 Time Printed: Nov 19,92 09:32 10 mV) (× Sample Time: Nov 19,92 09:17 1 2 Integrator Mathod 2.000 カジノコジェ Sloce Up 65 Slope Down 6.000 mV/Sec Min Area 0.500 mVSec . Min Height 0.671 mV Analysis Delay 10.0 SEC Window Percent 5.00 % . GC Method Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow ml/min Û 40 C Oven Temp Amb Temp 31.  $\Box$ Max Gain 1000 Analysis Time 650.4 Peak Repor Pk Compound Name Area Conc R.T. |7 1 Unknown 107.9 mVS 16.2 250 2 trans dce 5.000 PPB1 33.1 ,3 benzene 8.000 PPB1 41.2 4 9.000 PPB1 79.6 tree 5 toluene 16.00 PPB1 133.0 10.00 PPB1 190.4 16 bce 7 Unknown 4.07 mVS 238.4 325 ethylbenzene 16.0. PPB1 285.3 16.00 PPB1 306.1 9 m,p xylenes 16.3 PPB1 366.6 10 o xylenes ,1 Ū 390 455 PPM2 = Alarm2PPM1 = Alarm 1 520 standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH. 585 Trans dce Xylenes Benzene Tce Toluene Pre 65Q Ethy1benzene

5		1	,	2	<del></del> -	3	(×	4		5 mV)	Time Printed: Nov 19,92 12:00 Sample Time: Nov 19,92 11:47
55, 5	2								1		Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec' Min Area 0.500 mVSec Min Height 0.783 mV Analysis Delay 10.0 sec Window Percent 5.00 %
) 130											GC Method
7 8 9 195	10										Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 37 C Max Gain 1000 Analysis Time 650, sec
ſ											
240 111 12 325 390											Peak Repo Pk Compound Name
:											
155										•	
;											PPM1 = Alarm 1 PPM2 = Alarm2
520											CSB-106-1 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
505	•										Trans dce Xylenes Benzene Tce
<b>5</b> 0											Toluene Poe Ethylbenzene

-	An.	aly	sis	#6			105	+ 60	r	uric	tiu	fi	Analysis Report .
	) 		1	,	2		3	Ċ×	4	10	mΥ	5	Time: Printed: Nov 19,92 - 12:18 Sample Time: Nov 19,92 12:07
65	100 - A	3 4 5 6 7 8	2			·					1		Integrator Method Slope Up 2.000 mV/Sec, Slope Down 6.000 mV/Sec' Min Area 0.500 mVSec Min Height 0.777 mV, Analysis Delay 10.0 sec Window Percent 5.00 %
13	ŠO.	10											GC Method
	11	13							•				Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 37 C Max Gain 1000 Analysis Time 450.0 sec
20	14	į									•		Peak Report           Pk Compound Name         Are/Conc         R.T.           1 Unknown         189.5 mVS         14.0           2 Unknown         2.840 mVS         23.7           3 Unknown         5.071 mVS         36.0           4 Unknown         3.149 mVS         40.0           5 Unknown         1.494 mVS         44.0           6 Unknown         8.922 mVS         51.1           7 benzene         1.017 PPB1         61.6           8 Unknown         36.80 mVS         66.0           9 tce         4.236 PPB1         80.4
3	17 0												10 Unknown       33.12 mVS       103.4         11 toluene       8.017 PPB1       133.0         12 Unknown       13.91 mVS       160.6         13 pce       2.188 PPB1       185.6         14 Unknown       17.14 mVS       258.6         15 eihylbenzene       7.189 PPB1       290.1         16 m.p.xylenes       13.23 PPB1       310.5         17 o xylenes       7.028 PPB1       370.5
45	5					•							•
52					. •								PPM1 = Alarm 1 PPM2 = Alarm2  CSB-106-4 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
650	•	·····											Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

		iliariara import
0 2 4	6 9 10 (x 10 mV)	Time Frinted: Nov 17,92 12:39 Sample Time: Nov 17,92 12:27
65 4		Integrator Method Slope Up 2.500 mV/Sec, Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.783 mV Analysis Delay 10.0 sec Window Percent 5.00 %
9 130 10		GC Method
11 12 13 195 14 15	•	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 sec
16		Peak Report. Pk Compound Name Area/Conc R.T.
260	17	1 Unknown     189.0 mV9     15.0       12 Unknown     2.300 mV9     23.0       3 Unknown     2.701 mV9     30.4
325	•	14     Unknown     7.276 mVS     36.4       5     Unknown     11.41 mVS     40.1       6     Unknown     38.44 mVS     53.5       7     Unknown     74.77 mVS     71.2       8     tce     14.86 PPB1     81.4
119		9
390		14 pce     14.45 PPB1 187.2       15 Unknown     179.4 mVS 19B.4       16 Unknown     115.9 mVS 222.4       17 Unknown     1.775 VSec 260.2
455		18 ethylbenzene       237.2 PPB1 294.1         19 Unknown       248.3 mVS 325.0         20 o xylenes       292.6 PPB1 368.0         21 Unknown       679.8 mVS 396.2         22 Unknown       1.065 VSec 460.8
		23 Unknown 817.7 mVS 518.0  PPM1 = Alarm 1 PPM2 = Alarm2
520		CSB-106-7.5 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585/ - - - - 		Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

					-	
6	1	2	3 <del></del>	4 (×	10 mV)	Time Printed: Nov 19,92 15:21 Sample Time: Nov 19,92 14:32
65,3	2	•			1	Integrator Method Slope Up 42:500 mV/Sec Slope Down 7:500 mV/Sec Min Area 0:500 mVSec Min Height 0:775 mV Analysis Delay 10:0 sec Window Percent 5:00 %
130				,		GC Method
195					•	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 53 C
173			•	•		Max Gain 1000 Analysis Time 650.0 sec
240				·		Peak Report  Pk Compound Name Area/Jonc R.T.  1 Unknown 116.0 mVS 16.0  2 Unknown 0.81 mVS 23.7
		•	•			3 benzene 0.300 ppb 61.7
325						
				•		i 1
390						
455						: !
					•	
520						
		·				CSB-107-3.5 soil samples syringe injection 150 ul
						Springfield, Illinois EARTH TECH.
585	•					Trans dce Xylenes Benzene Tce Toluene
<b>65</b> 0	•			σ,		Pce Ethylbenzene
,					,	

Ar	nalys	sis	#12		105+	GC	Fu	unctio	on	Analysis Report
6		1	. 2		3 _	(×	4	10 m'	.5 V)	Time Printed: Nov 19,92 15:45 Sample Time: Nov 19,92 15:34
		2 3							ļ	Integrator Method Slope Up 2.000 mV/Sec
65>	4 5 -4			·				٠		Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.860 mV
	5 8									Analysis Delay 10.0 sec Window Percent 5.00 %
130	9									GC Method
	<u></u>		• •					•		Det Flow 10 ml/min
ΙK	12									B/F Flow 10 ml/min Aux Flow 0 ml/min
1 / 2	13						٠		٠	Oven Temp 40 C
1 1					-					Amb Temp 33 C
195	>,_	4								Max Gain 1000
1 1/	14									Analysis Time 650.0 sec
;										Peak Report
1										Pk Compound Name Area/Conc R.T.
300										1 Unknown 140.0 mVS 15.7
260	, J. E.									<ul><li>2 Unknown</li><li>2.500 mVS</li><li>23.0</li><li>30.00 mVS</li><li>30.0</li></ul>
· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									4 Unknown 10.74 mVS 36.4
$\exists  \exists \langle$										5 Unknown 13.01 mVS 40.1
``````````````````````````````````````	)16									6 Unknown 7.608 mVS 53.1
										7 benzene 1.405 PPB1 62.0
325										-8 Unknown 16.21 mVS 71.6
										79 tce 6.469 PPB1 82.1 310 Unknown 6.526 mVS 106.0
A = A										11 Unknown 22.80 mVS 114.4
1	.7									12 toluene 23.76 PPB1 133.0
1 1										13 Unknown 34.75 mVS 161.4
395					•					14 pce 10.51 PPB1 188.7
1	_				•					15 Unknown 98.20 mVS 261.8
1 1/4	.8									16 ethylbenzene 28.10 PPB1 295.2
1 7										17 o xylenes 27.92 PPB1 350.6 18 Unknown 40.45 mVS 399.6
										18 Unknown 40.45 mVS 399.6 19 Unknown 45.88 mVS 462.0
455								•		:20 Unknown 8.450 mVS 505.6
A	.9				•	•				***
			•							PPM1 = Alarm 1 PPM2 = Alarm2
520	20	•								CSB-107-6
										soil samples
			•							syringe injection 150 ul
				•						Springfield, Illinois EARTH TECH.
585										Trans dce Xylenes
										Benzene
	•					*				Tce
1.1	-			** *					-	Toluena
490										Pce Ethylhanzana
650										Ethylbenzene

* * *

Anal	lysis #17		105+	GC	Func	tion	Ana	lysis Report			_
°	1	2	3	( ×	4 100	5 mV)	:	Time Printed:   Sample Time:	Nov 19,92 Nov 19,92		
	2					•	i	Integrate	or Method	4	
7	-						;	Slope Up	2.000		3.6
65	<del>`</del> Z						1	Slope Down	<b>4.00</b> 0	mV/Se	
F	5=							Min Area	0.500	mVSec	
4					•		i	Min Height	0.87	mV Sec	•
	<u></u>						i	Analysis Delay		25C	
								Window Percent		%	
130	<del>2</del> 10 9						1	GC M	≅ುವರ		
! !	>	,	11				i	Det Flow	10	ml/mi	.n
	£2							B/F Flow	10	m1/mi	
							:	Aux Flow	C	m1/mi	
		14	,					Oven Temp	41	C	
-	$ \leftarrow$							Amb Temp	<b>3</b> %	E	
195	<u>&gt;</u> 15					•	į	Max Gain	1000		
	5	•	•	•		*	:	Analysis Time	<b>450.</b>	Ļ,≥ C	
	16							Peal	< Report	·····	-
· •			·				₽k	Compound Name	Ares/C	ם חכ	R.T.
	<b></b> .						1	Unknown	161.9	aVS	15.1
26€	-						:2	Unknown	78.78		23.4
	17 کئے		•		•		3	Unknown		mVS	30.5
مر ا	ستمسم						4	Unknown		mVS	36.6
							5	Unknown	101.	mVS	40.4
71	.8				•		6	Uriknown .	67.62		44.6
							7	Unknown.	289.3		53.5
325\							8	Unknown	1.503		74.5
/19	•	•					9	tce	130.7		81.7
							10	Unknown	474.0		87.8
							11	Unknown	1.832		04.6
			•			*		Unknown	762.8		16.0
/2	<b>!</b> O							toluene		PPB1 1	
390/						-		Unknown		VSec 1	
		. ,			•			pce		PPB1 1	
)2	1							Unknown		VSec 2	
								Unknown	3.675		
+ M	•		•		•		1	ethylbenzene	275.6		
1 1								Unknown	698.6		22.7
455							1	o xylenes	466.3		
			•	•	-			Unknown	1.353		
/22							- 1	Unknown	985.9		63.2
	•							Unknown	1.051		
	•	•			*	•	i	Unknown	23.77		53.5
23							1	PPM1 = Alarm 1		= Alar	
520	•					•		SB-107-7 dupli	cate		<del></del>
111.							5	oil samples			
Pa	•						=	yringe injectio	n 150 u	1	
							9	pringfield, Ill	inois		
585			, ,				E	ARTH TECH.			
					·			rans dce	Xylenes	<u>.</u>	
							i n	enzena	,	-	

Denzene

Analysis #19	1081 60	. Curretzon	Analysis neport
0 1 2	3 ( )	4 5 100 mV)	Time Printed: Nov 17,92 18:06 Sample Time: Nov 19,92 17:55
65 4			Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.883 mV Analysis Delay 10.0 sec Window Percent 5.00 % -
130 10	9		GC Method
195	11 - 14	•	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 31 C Max Gain 1000 Analysis Time 650.0 sec
16			Peak Ruport
240 18 325 19 20 390 21 455			Peak 30pc 12 Pk Compound Name Area/Conc R.T. 1 Unknown 191.8 mVS 16.2 2 Unknown 34.04 mVS 30.5 4 Unknown 186.0 mVS 36.1 5 Unknown 167.4 mVS 40.4 6 Unknown 82.16 mVS 44.6 7 Unknown 317.5 mVS 53.6 8 Unknown 1.772 VSec 74.6 9 tce 142.8 PPB1 81.6 10 Unknown 553.3 mVS 90.6 11 Unknown 2.081 VSec 104.6 12 Unknown 819.1 mVS 116.1 13 toluene 248.1 PPB1 130.1 14 Unknown 819.1 mVS 116.1 15 pce 209.2 PPB1 188.6 14 Unknown 4.727 VSec 162.6 15 pce 209.2 PPB1 188.6 16 Unknown 4.727 VSec 200.6 17 Unknown 4.040 VSec 201.6 18 m;p xylenes 319.0 PPB1 296.1 19 Unknown 4.040 VSec 261.6 20 o xylenes 522.4 PPB1 369.6 21 Unknown 1.402 VSec 401.6 22 Unknown 1.054 VSec 464. 23 Unknown 1.07 VSec 501. 24 Unknown 19.90 mVS 554.6 PPM1 = Alarm 1 PPM2 = Alarm2
529 24 585			CSB-107-7 duplicate soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
640			Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

£ 11.1	,					4.						Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro
0		2		4	-		ట	(×	8	10	10 mV)	Time Printed: Nov 19,92 18:29 Sample Time: Nov 19,92 18:17
65	3 = 4				2	1		·				Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.841 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130												GC Method
195		•		•					•			Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 4: C Amb Temp 3: C Max Gain 100: Analysis Time 450.0 sec
260	7											Peak         Report           Pk         Compound Name         Area/Conc         R.T           1         Unknown         243.1 mVS         17.           2         trans dce         7.556 PPB1         34.           3         benzene         7.933 PPB1         62.           4         tce         8.282 PPB1         81.           5         toluene         16.24 PPB1         135.
325	<b>.</b>											6 pce 9.431 PPB1 194. 7 Unknown 771.8 mVS 244. 8 ethylbenzene 16. PPB1 292. 9 m,p xylenes 15.97 PPB1 313. 10 o xylenes 15.98 PPB1 374.
390	10							,	-			
455	·			·				·				
520									•			PPM1 = Alarm 1 PPM2 = Alarm2
												standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	•		-					•				Trans dce Xylenes Benzene Toluene Pce
650							,			•		Ethylbenzene

Analy	/515	#15	105+	<u>.</u> ر	ن آ	110 <b>110</b> 0	Analysis Report
9	1	2	3	(×	4	5 10 mV)	Time Printed: Nov 19,92 16:41 Sample Time: Nov 19,92 16:30
55	•		1	·			Integrator Method Slope Up 2:000 mV/Sec Slope Down 6:000 mV/Sec Min Area 0:500 mVSec
		·			٠		Min Height 0.845 mV Analysis Delay 10.0 sec Window Percent 5.00 %
30					,		GC Method
							Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow G ml/min Oven Temp 4% C Amb Temp 5% C
95							Max Gain 1000 Analysis Time 550.0 sec
							Peak Kaport Pk Compound Name Area/Conc R. 1 Unknown 119.1 mVS 16
<b>4</b> 0						. • .	
•							
<u> </u>							
1			·		,		
90			,				
! !							
<b>5</b> 5							
				•		. •	
							•
20 .							CSB-207-10 soil samples
		· .	,				syringe injection 150 ul Springfield, Illinois EARTH TECH.
85							Trans doe Xylenes Benzene Toe
<b>&gt;</b> .							Pce Ethylbenzene

ر ـ تحت ۱ ۳۹۱			4 = 4				COOK A TOTAL TO CONTROL OF THE
9	1	2	3	( ×	4	5 10 mV)	Time Printed: Nov 19,92 16:25 . Sample Time: Nov 19,92 16:14
65					٠	1	Integrator Method Slope Up 21500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.833 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130							GC Method Det Flow 10 ml/min
			ē.				B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 43 C
195		٠			•		Amb Temp 33 C Max Gain 1000 Analysis Time 650.0 sec
260							Peak Report Pk Compound Name Area/Conc R.T 1 Unknown 144.7 mVS 14.
			,			•	
i							
325							
1							
3 <b>7</b> 0							
<b>\$</b>							
	•						· · · · · · · · · · · · · · · · · · ·
455	•						
			,				
520							CSB-202-3.5
					٠		soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585			•		•		Trans dce Xylenes Benzene Tce Toluene
6 <b>5</b> 0							Pce Ethylbenzene

0	<b>-</b>	4	8		12 — .	1월, (호 150	20 (V)	
65				·	1			Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mV/Sec Min Height 0.480 mV Analysis Delay 10.0 sec
					•			Window Percent 5.00 %
130						• ,		GC Mathod
								Det Flow 0 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
; ;								Oven Temp 40 C Amb Temp 28 C
195	•		•	-				Max Gain 1000 Analysis Time 650.0 sec
								Peak Report Pk Compound Name Area/Conc R 1 Unknown 71.48 mVS 1
260								
į								
3 <b>2</b> 5								
:				•	•			
:								
3 <b>9</b> 0								
					•			
!					ė.		,	
! 155								
								y.
ļ								
520								
			•	٠	•		•	ស្ន <b>ុសស្</b> soil samples syringe injection 150 ul
		•	٠			•		Springfield, Illinois EARTH TECH.
, cp J				٠			•	Trans dce Xylenes Benzene
!						÷	•	Tce Toluene
ali								Pce Ethylbenzene

Ana	lysis #	2,	105+	GC	FL	inction	Analysis Report
() 	1	2 - ,	3	<b>(</b> >:	4	10 mV	Time Printed: Nov 20,92 07:08 Sample Time: Nov 20,92 08:53
45	3 === 4	1					Integrator Method Slope Up 1.500 mV/Sec' Slope Down 4.500 mV/Sec Min Area 0.500 mVSec Min Height 0.643 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130							GC Method
195	5						Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Dven Temp 40 C Amb Temp 50 C Max Gain 1000 Analysis Time 65000 sec
240							Peak Report  Pk Compound Name Area/Conc R.T.  1 Unknown 82.65 mVS 16.1  2 trans dce 6.000 PPB1 33.6  3 bonzene 8.001 PPB1 61.6
7 525		• .					4 tce 9.000 PPB1 77.7 5 toluene 16.00 PPB1 132.2 6 pce 16.00 PPB1 190.0 7 ethylbenzene 16.00 PPB1 283.4 8 m.p xylenes 16.00 PPB1 305.0 9 u xylene 16.00 PPB1 366.0
<i>P</i> 390							
455			·			,	
			•				PPM1 = Alarm 1 PPM2 = Alarm2
520							standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
<b>585</b> •							Trans due Xylenes Benzene Tue Toluene Pue Ethylbenzene

O.	1	2	3		4		5	Time Printed: Nov 20,92 09:21
		<b>-</b> 1	-	( ×	·	10	m∨)	Sample Time: Nov 20,92 08:53
			<u> </u>				2	Integrator Method
<i>t</i> = :								Slope Up 1.500 mV/Sec
65								Slope Down 4.500 mV/Sec Min Area 0.500 mVSec
	<del></del> 4							Min Height 0.663 mV
								Analysis Delay 10.0 sec
								Window Percent 5.00 %
130					•			GC Method
	)							Det Flow 10 ml/min B/F Flow 1 ml/min
Ì								Aux Flow ml/min
			•				•	Oven Temp 40 C
105								Amb Temp C C
195	>∠.		•					Max Gain 1000 Analysis Time 451.0 sec
	0							Hadysis time out, 7 sec
								Peak Report Pk Compound Name Area/Conc R.T
•								1 Unknown 82.65 mVS 16.3
260								2 trans dce 83.35 mVS 33.0
								3 benzene
7								5 toluene 33.77 mVS 132.0
$\mathbb{K}$								6 pce 76.0 mVS 190.0
:)8 705								7 ethylbenzene 28.4" mVS 283.4
325								8 m,p xylenes 32.28 mVS 305.8 9 p xylene 22.72 mVS 366.0
								: 22.72 m/d 300.0
Å								!
P								•
3 <b>9</b> 0						,		•
:								
İ								
:			•				•	:
455	, ,							
į								
			•		•			PPM1 = Alarm 1 PPM2 = Alarm2
520				·				
		•						standard soil samples
į		<b>*</b> .						syringe injection 150 ul
; ;			•		-		•	Springfield, Illinois
; 585								EARTH TECH.
•						•	•	Trans dce Xylenes
1								Benzene Tce
: i		•						i Toluene
								Pce
, <b>5</b> 0								Ethylbenzene

° -	1	2		3	<b>(</b> ×	4 100	5 mV)	Time Printed: Nov.20,92 09:50 Sample Time: Nov 20,92 09:31
? 1					( ^	100	m v )	Sample (The: Nev 20,72 07:51
65		—————————————————————————————————————	·	3				Integrator Method , Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.679 mV Analysis Delay 10.0 sec
	•	•						Window Percent 5.00 %
: 13્0						•		GC Method
	<u>=</u> 5	•					•	Det Flow 10 ml/min B/F Flow 10 ml/min
İ								Aux Flow 0 ml/min
				•		•		Oven Temp 40 C
195	_							Amb Temp 31 C Max Gain 1000
سنسسر.	== ₆				٠	•		Analysis Time 650.0 sec
<i>i</i>								Peak Report
							•	Pk Compound Name Area/Conc R.
i								11 Unknown 111.5 mVS 16
_မ ှင့်								2 trans dce 60.0 PPB1 34
į.								3 benzene 80.00 PPB1 61 4 tce 70.00 PPB1 79
								5 toluene 140.0 PPB1 133
7								6 pce 100.0 PPB1 190
								7 ethylbenzene 160.0 PPB1 285
25 8								#8 m,p xylenes 160.0 PPB1 304 #9 o xylene 160.0 PPB1 367
								i
<u> </u>								: : :
: 79 390								
1		•		*	•		•	
							• .	
								1
55								1
			•	•				<b>.</b> ∤
								1
ţ								
; 20								PPM1 = Alarm 1 PPM2 = Alarm2
! !			•					standard
1		•						soil samples syringe injection 150 ul
								syringe injection 150 ul Springfield, Illinois EARTH TECH.
85								Trans dce Xylenes
ļ								Benzene : XyTenes
							,	· Tce
!								Toluene Pce
ទុំព						_	-76	Ethylbenzene

H





Ana	lys	sis	#7			105+	· GC	Fun	ctio	n	Analysis Report
0		4		8		12	(×	16 100		o }	Time Printed: Nov 20,92 11:01 Sample Time: Nov 20,92 10:42
65			÷		·						Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.693 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130						v					GC Method
								•			Det Flow
195 2											Max Gain 1000 Analysis Time 650.0 sec
											Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 55.02 mVS 16.4
260	-										2 pce 0.27 ppb 192.0
325											
						·	·	•	•		
<b>39</b> 0											
<b>45</b> 5											
											•
						•		•		•	
520				•	•				•		blank soil samples
			٠	•				,			syringe injection 150 ul Springfield, Illinois EARTH TECH.
585									•		Trans dce Xylenes Benzene
. •							•				Toe Toluene
<b>65</b> 0											Pce Ethylbenzene

An	alysis	#10	105+	GC	Fur	nct:	ion	Analysis Report
4	1	, 2 ==	3	(×	4	lo 1	5 n∨)	Time Printed: Nov 20,92 11:46 Sample Time: Nov 20,92 11:34
65, 2						1		Integrator Method Slope Up 2.000 mV/Sec, Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.731 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130					•			GC Method Det Flow 10 ml/min
3					•			B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C
195								Amb Temp 33 C Max Gain 1000 Analysis Time 450.0 sec
260		·						Peak Dopor:  Pk Compound Name Area/Conc R.T.  Unknown 98.80 mVS 16.0  benzene 0.71 ppb 61.6  toluene 0.79 ppb 134.6
								; ; ;
325								
390	-							; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
!					*			
455			•					
					•			
520								CSB-203-3.5 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	•							Trans dce Xylenes Benzene Tce Toluene
50								Pce Ethylbenzene

<u> Ans</u>	alysis	+11	1054	تات	Function	Analysis Report
o- 	1	2	3	<b>(</b> ×		Time Printed: Nov 20,92 12:02 Sample Time: Nov 20,92, 11:51
65, 4	2				1	Integrator-Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.736 mV Amalysis Delay 10.0 sec Window Percent 5.00 %
130 5					•	GC Method  Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
195						Oven Temp 40 C Amb Temp 33 C Max Gain 1000 L Analysis Time 650.0 sec
260						Peak         Report           Pk         Compound Name         Area/Conc         R.T.           1         Unknown         95.60 mVS         16.1           2         Unknown         1.15% mVS         23.7           3         Unknown         0.54% mVS         30.7           4         benzene         0.76% ppb         61.7           5         toluene         1.07% ppb         134.8
325						
370 370 4 4						
455					• .	y
520				-		CSB-203-6 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585 450	•					Trans dce Xylenes Benzene Tice Toluene Pce Ethylbenzene

9		1	•	2		3		4		5	Time Printed: Nov 20,92 12:19
			<del></del> >				( ):		10 n	iV)	Sample Time: Nov. 20,72 12:0
-	ر ح							1			Integrator Method
٠-	3 -										Slope Up 2.000 mV/Se
5.	_										Slope Down 6.000 mV/Ser
۵ متو							•			•	Min Area 0.500 mVSec
											Min Height 0.735 mV
4											Analysis Delay 10.0 sec
											Window Percent 5.00 %
											window Percent 5:00 %
30											GC Method
•		•				•	•	•		•	Det Flow 10 ml/mir
5											B/F Flow 16 ml/mir
!											Aux Flow 0 ml/mir
i											Oven Temp 60 C
:											Amb Temp UD C
95											Max Gain 11 0
;											Analysis Time 650.0 sec
:											Company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the compan
:											Peak Report
											Pk Compound Name Area Conc F
:									•		1 Unknown 120. mVS 1
40											2 Unknown 0.710 mVS 2
}	•									•	3 Unknown 3.37 mVS 4
											4 benzene 0.935 ppb 6
:											5 toluene 1.24% ppb 13
;											.6 m,p xylenes 2.700 ppb 31
											7 o xylene 1.9%8 ppb 37
25	۵										•
,											•
											!
17											:
70 70											•
											<u> </u>
:											1
i											; !
1											
:									•		· · · · · · · · · · · · · · · · · · ·
55											: }
:					٠						
:											
!											
:											
:											
20										*	CSB-203-8
l											soil samples
											syringe injection 150 ul
İ											Springe Injection 150 di
Ì											EARTH TECH.
15											
!	•			•	*			,		•	Trans dce Xylenes
•											Benzene
										!	Tce
											Taluene
										ł	. raidene Pce

Ana	lysi	E #1	13			105+	oc.	Fu	ın ci	tic	n n	Analysis Report
<u> </u>	1		,	2		3	(×	4	10	m∨	5	Time Printed: Nov 20,92 12:35 Sample Time: Nov 20,92 12:24
65 2												Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.735 mV. Analysis Delay 10.0 sec Window Percent 5.00 %
130												GC Method
					٠			· <b>.</b>	-		٠	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow C ml/min
195								٠				Oven Temp 40 C Amb Temp 30 C Max Gain 100:
												Analysis Time 650. sec
260												Peak Rept t Pk Compound Name Art./Conc R.T. 1 Unknown 98.17 mVS 16.1 2 benzene 0.364 ppb 61.5
:												
				•							•	
325											.•	
;												
: 390 :											,	
455										•		
455								٠	,		•	
												•
520												
					•				•			CSB-108-3.5 soil samples syringe injection 150 ul Springfield, Illinois
585												EARTH TECH.  Trans dce Xylenes
•						•	••				•	Benzene Tce Toluene
5 <b>5</b> 0												Pce Ethylbenzene

9		1		2		3	(×	4	10	5 mV)	<ul> <li>Time Printed: Nov 20,92 12: Sample Time: Nov 20,92 12:</li> </ul>	
		·	-				( //		1		Integrator Method :	
.5 12							•				Slope Up 2.000 mV/Sc Slope Down 6.000 mV/Sc Min Area 0.500 mVSec	ec j
											Min Height 0.803 mV Analysis Delay 10.0 sec Window Percent 5.00 %	
.30											GC Method	
	•	٠	٠		•	٠		•	٠	•	Det Flow       10 ml/m.         B/F Flow       10 ml/m.         Aux Flow       0 ml/m.	in
!										•	Oven Temp 40 C Amb Temp 30 C	• • •
.95											Max Gain 1000 Analysis Time 450,0 sec	
											Peak Report Pk Compound Name Area/Conc	R.
; :60											1 Unknown 110.1 mVS 2 benzene 0.350 ppb	16
·												
! 25												
	,								•			
•												٠
<b>9</b> 0												
:	•						•		•	•		
										÷		
55										•		
	٠											
20 20				·							CSB-108-3.5 duplicate	
											soil samples syringe injection 150 ul	
				•.				•			Springfield, Illinois EARTH TECH.	
85											Trans due Xylenes Benzene	
	•										Tce Toluene	
[											Pce Ethylbenzene	

6		1		2	-	3	( ×	4		m∨ !		Time Printed: Nov 20,92 13:14 Sample Time: Nov 20,92 13:03
55,2		,										Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.756 mV Analysis Delay 10.0 sec
		•		•		•		•				Window Percent 5.00 %
130								•				Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 10 C Amb Temp 33 C Max Gain 1000
:							-				-	Analysis Time 650.0 sec
260											P 1 2	Peak Report k Compound Name Area/Conc R.T Unknown 103.9 mVS 16.0 benzene 0.51/ ppb 41.0
525								•	•			
						÷						
: 590 :												
											;	
; 155										,		
		•		ü	•	٠						
												<b>5</b>
320	٠	٠				•						CSB-108-5.5 soil samples
		٠	•	•				٠				syringe injection 150 ul Springfield, Illinois EARTH TECH.
85							• •					Trans dce Xylenes Benzene

Analy	ysis #.			F GC	Fi	אט כ ,	tion	Analysis Report
<b>←</b>	1	2	3 <b>-</b>	(×	4	10	5 mV)	
65,			1.					Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.757 mV Analysis Delay 10. sec Window Percent 5.0 %
130		,						GC Method
·	·							Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 30 C
195							_	Max Gain 1000 Analysis Time 450.1 sec
:							•	Peak Repor
် : :2 <b>ဝ</b> ပ်								Pk Compound Name Area/Conc R.T 1 Unknown 112.7 mVS 16. 2 benzene 0.77 ppb 61. 3 toluene 70.00 PPB1 129.
* · · · · · · · · · · · · · · · · · · ·								
25								
90								
t								
e e								
<b>55</b>	•			•				
		•	•					
20		٠		•				PPM1 = Alarm 1 PPM2 = Alarm2
•				s.				CSB-108-7.5 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
<b>9</b> 5								Trans dce Xylenes Benzene Tce
						E-8	36	Toluene

E-88

650

Pce

Ethylbenzene

455

520

585

650

Time Printed: Nov 21,92° 09:06 Sample Time: Nov 21,92° 08:43

Integrator Method mV/Sec Slope Up 2.000 Slope Down 4.000 mV/Sec 0.500 Min Area mVSec Min Height 0.683 mV. Analysis Delay 10.0 SEC Window Percent 5.00 %

GC Method Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow ml/min Oven Temp 4 C 7:0 C Amb Temp 1010 Max Gain Analysis Time 550.0 sec

Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 71.72 mVS 16.1 36.13 mVS 32. trans dce 60. 42.1. mVS benzene 57.02 mVS 78. tice 5 34.17 mVS toluene 131. pce ۍ . 37. 7 mVS 187.0 .7 ethylbenzene 31.15 mVS 278. m,p xylenes 28.05 mVS 298.. 23.02 mVS u xylenes 361.0

PPM1 = Alarm 1 PPM2 = Alarm2

standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.

Trans dce Xylenes
Benzene
Tce
Toluene
Pce
Ethylbenzene

Analysis #2	10S+ GC Funct	tion Analysis Report
0 1 '2 7,	3 4 (× 100	5 Time Printed: Nov 21,92 09:26 mV) Sample Time: Nov 21,92 09:11
65 3	2	Integrator Method Slope Up 1.500 mV/Sec Slope Down 4.500 mV/Sec Min Area 0.500 mVSec Min Height 0.451 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130		GC Method
5	· · · · ·	Det Flow in ml/min B/F Flow ml/min Aux Flow ml/min Oven Temp 40 C Amb Temp 31 C
195	• • • •	Max Bain 1000 Analysis Time 650.0 sec
		Peak Report
260		Pk Compound Name Area/Conc R.T.  1 Unknown 97.30 mVS 16.3 2 trans dce 60.00 PPB1 33.8 3 benzene 80.00 PPB1 61.1 4 tce 70.00 PPB1 79.4
)7   ) _B   325		5 toluene 140.0 PPB1 132.9 6 pce 100.0 PPB1 187.0 7 ethylbenzene 160.0 PPB1 284.0 8 m,p xylenes 160.0 PPB1 305.6 9 o xylenes 160.0 PPB1 365.6
9 3 <b>7</b> 0		
455		
		PPM1 = Alarm 1 PPM2 = Alarm2
520		
		standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585		Trans dce Xylenes Benzene Tce Toluene
650		Pce Ethylbenzene



A	naly	515	<b>#</b> 7			105+	_ದಿ೦	Fun	ctio	וזכ	Analysis Report
0		4	,	6		12	(×	16 100			
65											Integrator Method Slope Up 2.000 mV/Set Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.724 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130											GC Method
195					٠			•			Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 02 C Max Gain 1000
											Analysis Time 550.0 sec
-260											Peak Report Pk Compound Name Area/Conc R.T 1 Unknown 57.4 mVS 16.
										٠	
325					·						
390						·					
455		٠							•		
520											
	·			•		,	•				standard BLANK soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	•										Trans dce Xylenes Benzene Tce Toluene
650			ě		:					.	Pcc Ethylbenzene

<b>o-</b>	1	• 2	3	(×	4	10 mV)	Time Printed: Nov 21,92. 11:16 Sample Time: Nov 21,92 11:05
1		**********		( ×		10 110)	***
<b>65</b> , 2					•	·	Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.706 mV Analysis Delay 10.0 sec
							Window Percent 5.00 %
3					•		Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
195 4				·			Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 650.0 sec
260	·			·		•	Peak Report Pk Compound Name Area/Conc R. 1 Unknown 84.6 mVS 16 2 benzene 0.37 ppb 61 3 toluene 0.87 ppb 134 4 pce 0.272 ppb 192
325							
1					٠		· · · · · · · · · · · · · · · · · · ·
: 370							· · ·
;							
<b>45</b> 5				•			
!							
520							CSB-108-7.5 soil samples
		. •	٠		٠		syringe injection 150 ul Springfield, Illinois EARTH TECH.
585							Trans dce Xylenes Benzene Tce Toluene

	Àn	aly	sis	#10		105+	GC	FL	inct	Liun	Analysis Report
:	9		1 	·	2	3	(×	4	10	3 (Vm	
6	5/3	3	- C1 .				·				Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.774 mV Analysis Delay 10.0 sec
	-		•					•		•	Window Percent 5.00 %
1	30										GC Method Det Flow 10 ml/min
	4							•			B/F Flow 10 ml/min Aux Flow ml/min Oven Temp CC C Amb Temp CC C
1	95		·								Max Gain 10.5 Analysis Time 550.0 sec
. 20	£0										Peak Report  Pk Compound Name Area Conc R.T.  1 Unknown 72.81 mVS 16.2  2 Unknown 27.80 mVS 23.7  3 benzene 0.74 ppb 61.6
	!										4 toluene 1.07 ppb 134.6 5 o xylenes 1.400 ppb 370.6
3:	25										
39	; ; <b>?</b> O										
45											
			. ·								
52	20	•									CSB-204-5.5 soil samples syringe injection 150 ul Springfield, Illinois
650	,	•						-		•	EARTH TECH.  Trans due Xylenes Benzene Tue Toluene Puu Ethylbenzene

			4	-	8	<del>. ,</del>	12 	( ::	16 100	20 0 uV)	Time Printed: Nov 21,92 13:08 Sample Time: Nov 21,92 12:57
Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow ml/min Oven Temp 4 C Max Cain 100. Analysis Time 30.0 sec  Peak Report Pk Compound Name Area/Conc R.1 Unknown \$3.21 mVS 16.  1 Unknown \$3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.  1 Unknown S3.21 mVS 16.	45	yaran da da da da da da da da da da da da da					3				Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec, Min Area 0.500 mVSec Min Height 0.776 mV Analysis Delay 10.0 sec
B/F Flow 10 ml/min Aux Flow ml/min Dven Temp A C Amb Temp C C Amb Temp C C Ama Gain 100 Analysis Time 300.0 sec  Peak Report Pk Compound Name Area/Conc R.1 1 Unknown 53.21 myS 16.  260  blank soil samples syringe injection 150 ul Springfield, Illinois CARTH TECH.  Trans doe Xylenes Benzene Toe Toluone	130										
Analysis Time 550.0 sec  Peak Report PR Compound Name Area/Conc R.1 1 Unknown 53.21 mVS 16.  325  326  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dic Xylenes Benzene Tice Toluene									•		B/F Flow 10 ml/min Aux Flow 5 ml/min Oven Temp 45 C Amb Temp 5 C
Pk Compound Name Area/Conc R.1 1 Unknown 53.21 mVS 16.  325  326  520  blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	173	•		-							
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene											Pk Compound Name Area/Conc R.1
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	240						٠				; ;
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	:										
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	:						•				!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	325										
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	1										i ·
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	•									•	
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	390								,		
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene	:										
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  Trans dce Xylenes Benzene Tce Toluene											•
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  585  Trans dce Xylenes Benzene Tce Toluene	455									•	
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  585  Trans dce Xylenes Benzene Tce Toluene											
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  585  Trans dce Xylenes Benzene Tce Toluene	•						•				
blank soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.  585  Trans dce Xylenes Benzene Tce Toluene	520										
Trans de Xylenes Benzene Tce Toluene		•			•				·		soil samples syringe injection 150 ul Springfield, Illinois
Toluene	585							٠.			Benzene
1 · · · F** 1 · · ·	1								ř		Toluene

Ana	lysis t	14	105+ 6	CF	unction	Analysis Report
9-	1	. 2	3 (	<b>4</b> ×	10 mV)	Time Printed: Nov 21,92, 13:24 Sample Time: Nov 21,92, 13:13
65 3	2					Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.300 mVSec Min Height 0.760 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130						GC Method
4				•	· ·	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
195				•		Dven Temp 4. C Amb Temp 35 C Max Gain 1000
			•	•		Analysis Time 500.0 sec
260						Peak Report  Pk Compound Name Area/Conc R.T.  1 Unknown 108.4 mVS 16.0  2 Unknown 0.793 mVS 23.2  3 benzene 0.990 ppb 41.0  4 toluene 1.040 ppb 134.0
325						
390						
					·	•
455				•		
		·	·			•
520			·			CSB-204-3.5 soil samples
3		٠.				syringe injection 150 ul Springfield, Illinois EARTH TECH.
585 - 450	·					Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

.Anal	ysis	#17			105+	GC	FL	יון ב	tion	Analysis Report
() -	1	,	2	wet	3	( x	4	10	m∨)	Time Printed: Nov 21,92 14:27 Sample Time: Nov 21,92 14:16
65					•					Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.846 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130										GC Method Det Flow 10 ml/min
										B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 53 C
195										Max Gain 1000 . Analysis Time 550.0 sec
										Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 111. mVS 16.0
260										
: :										
375										
390										
455									•	
	٠			-						
520			•.				,			Cpz-102-3 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585										Trans dce Xylenes Benzene Tce Toluene
650	•									Pce Ethylbenzene



<u>Anal</u>	ysis ai ^s	) 	100, 60	iunction	Analysis Report
0	1	2	3 L×	4 5 10 mV)	Time Printed: Nov 21,92 15:01 Sample Time: Nov 21,92 14:50
65			•	1 2	Integrator Method Slope Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mVSec Min Height 0.856 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130					GC Method
				•	Det Flow 10 ml/min B/F Flow 1: ml/min Aux Flow 6 ml/min Oven Temp 4 C
195					Amb Temp 10 C Max Gain 1000 Analysis Time 550.0 sec
260					Peak Report  Pk Compound Name Area/Conc R.T  1 Unknown 161.7 mVS 15.  2 Unknown 82.9 mVS 29.
; 1					
325					
; ; ;					
390					
i i				•	
455				•	
520					Epz-102-7 duplicate soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585					Trans dce Xylenes Benzene Tce Toluene Pce Ethylbenzene

EARTH TECH.

1				50 a	And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o
	4, 	 12	9.2 18. 1000	20 29)	Time Printed: Nev 22,77   11:28   Cample Time: Nev 22,72   10:57
2.8					Integrator Method  Compactify 2000 mV/Sec  Siepe Down 6.000 mV/Sec  Min Area 0.500 mV/Sec  Min Height 0.705 mV  Anal, sis Dola; 10.0 sec  Window Percent 5.00 %
195			•	•	BC Nothed  Del Flow 10 ml/min  D/F Flow 10 ml/min  Aux Flow 6 ml/min  d/en Tomp 40 C  Amb Temp 32 C  Aux Cain 1000
0.00					Pash Report  Pash Report  Pash Report  1 Lamber Area/sam A.T  2 Lamber 98.04 aVE in.
7.7.2.   1.   1.   1.   1.   1.   1.   1.   1					
5				•	
520					tlat edil samples egringe injection 150 el Epringitals, Illineia Entre TECH.
585 450					Trans die Xylends Bendere Tek Takens Transmis Transmis

		rin Fair	V 48		## ###################################	Time Printee: Nov 22,92 12:45 . Eample Tame: Nov 22,92 12:31
				• •		Integrator hethod  Lipe Up 2.000 mV/Cec  Lipe Up 0.000 mV/Sec  Min Area 0.500 mV/Sec  Min Jeigh/ 0.725 mV  Analysis Devay 10.0 sec  bildox Percent 5.00 %
130		 · .		•		CC Method  Def Fice 10 mi/min  D/F Fick 10 mi/min  Aux Fick 0 mi/min  Oven Temp 40 C  Amb Yemp 32 C
	<b>.</b>					Max Sain 1000 Analysis Time 550.0 see
						Pack Repure   Proceeding   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   Procedure   P
						5
					• .	
515						FPM1 = Alarm 1 PPM2 = Alarm2
	•					standard spil samples syringe injection 150 cl Springfield, Illinoid Each, TECh.
						Thans due Xylones Landens The This is a second of the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones Than the Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sylones The Sy
1550		, .				Physicaentheme

्				·····	25		2,		en uz	Time Printed: Nov 52,92 12:50 .
						<u>,</u>		1.0 1.	ac/)	* Sample Tame: Nov 22,92   12:51
5°		1.2		Part 10 ; Miles Million					<del>.</del>	littigrator Mathod  Diopi Up 2.000 mV/Gec  Blop: Down 0.000 mV/Sec  Min Arec 0.500 mV/Sec  Min Height 0.725 mV  Analysis Dolay 10.0 sec  Window Percent 5.00 %
1240									•	00 Method Dit Flow 10 ml/min
	5 6						•			B/F Flow 10 ml/min Aux Flow 0 ml/min Cven Temp 40 C Amb Temp 32 C Max Caix 1000
										rotalysis Time 250.0 wed
hab.								•		Deak Report
25	· · · · · · · · · · · · · · · · · · ·									S
•										1
42.00										: : : i
570					•					PFM1 + Alama 1 PFM2 = Alama2
								٠		standard edil eamples syringe injection 150 ul Springfield, Illinois EARTH TECH.
525			•		•	•		·		Trans dee Xylenes Bensene
	•					÷.`				Too Tolueno Pu- Linylbenzeno
<u> </u>			<del></del>	· 					106	;

Waster and			يواجرنا فرزيكن الكسابة لاستمراء الأ
	<u>.</u>	4 (8 100 mV)	Time Crinted: Nov 22,92 13:13 Cample Time: Nov 22,92, 12:56
		<del></del>	Integrator Method Lispe Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mV/Sec Min Haight 0.742 mV Amalysis Delay 10.0 sec Window Percent 5.00 %
115			00 Method
1.77		•	Det Flow 10 mi/min  DF Flow 10 ml/min  Nux Flow 5 ml/min  Oven Temp 40 C  Amb Temp 30 C  Max Gain 1000  Analysis Time 45010 sec
24		• .	Frank   Paper
37			
and and and and and and and and and and			
020			FPM1 = Alarm 1 FPM2 = AlarmT standard
	·		ecil samples eyringe injection 150 et Springfield, Illinois EARTH TECH.
535			Thank don Xylkned Donaene To
10.30			Trouverse Pro- t Drong The Leader

(j Fa	2	 4.3	n 14 140	\$10 84 AV	• Tame Printed: Nov 22,72 13:35 Sample Tame: Nov 22,72 13:26
				3 2 2 2 5	ladegrator Method  Slepe Up 2.000 mV/Sec  Glope Down 6.000 mV/Sec  Min from 0.500 mVSec  Mon height 0.810 mV  analysis belay 10.0 sec  Winder Percent 5.00 %
175				ے 	GC Method  Dob Flow 10 ml/min  D/F Flow 10 ml/min  Aux Flow 0 ml/min  Seen Temp 40 C  Flow 33 C  Flow Data 1000  Analysis Time 450.0 Sec
7.35				-	Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report   Peak Report
					:
					ppmi = Alarm 1 PPM2 = Alacm5
					scandard sail samples syringe injection 150 ul Springtield, Illinois EARTH TSON.
105 254					Thans die Yylenes Dente de Yylenes The Constant Touristant

Description   New 20.52   Letting atom Marchael   Letting atom Marchael   Letting atom Marchael   Letting atom Marchael   Letting atom   7.500 m   Marchael   7.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchael   1.500 m   Marchae		 	
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp	-		Films Pranted: Nov 22,92: 15:11 Dample Time: Nov 22,92 14:47
Det Flow			Cloud Up 2.300 mV/2ch hiller Dewn 7.500 mV/2cc Min Area 0.500 mVSac Min Height 0.550 mV Analysis Delay 10.0 sed
And Temp 300 Compared to the Analysis Time 650.0 s  Food Report PR Component Form Analysis Time 650.0 s  PR Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100.0 mV Component Form Analysis at 100	130	•	Dut Flav 10 ml/min P/F Flow 10 ml/min Path Flow 0 ml/min
PM Eumpound Name Arta/Con 1 Unition 1 Colo my 2 Diminent 3.142 my 14	175		And Temp 33 C Max Gain 1000 Analysis Time 450.0 sec
TPM1 = Alarm 1 PPM2 = 6  520  CD2 - ODS - 3.5  soil samples  S/ringe injection 150 ul  Springfiele, Illinois  EARTH TECH.	lie C	•	PK Cumposed Name         Acca/Conc         R.T           1 Unhamm         170.0 mVC         16.0           2 binzene         3.202 mVC         62.0
TPMI = Alarm 1 PPMZ = 6  520  CD2 - ODS - 3.5  soil samples  s/ringe injection 150 ul Springfiele, Illinois EARTH TECH.			n
TPMI = Alarm 1 PPMZ = 6  520  CD2 - ODS - 3.5  soil samples  s/ringe injection 150 ul Springfiele, Illinois EARTH TECH.			NO PAM VALUES
PPM1 = Alarm 1 PPM2 = 6  520  CS2-CD5-3.5  s:il samples  syringe injection 150 ul  Springfield, Illinois  EARTH TECH.	3.0		
FPM1 = Alarm 1 PPM2 = 4  520		•	
evil samples  Syringe injection 150 ul  Springfield, Illinois  EARTH TECH.	520		PPM1 = Alarm 1 PPM2 = Alarm2
			stil samples Syringe injection 150 ul Springfield, Illinois
Transduo Xylenes Entrena Tua Voludio	E)	•	Particular Communication (Communication Communication Comm

All toward and a second			interest with American Company
	ů.	7 50 20 av)	Fine Printed: Nev DI,7I - 10:10 Sample Time: Nov D2,92 15:31
	<del>-</del>		Integrator Machea Clope Up 2.000 mV/Gel Clope Bawn 6.000 mV/Sec Min area 0.500 mV/Sec Machea 0.500 mV/Sec Machea 0.500 mV/Sec Machea 0.500 mV/Sec Machea 0.700 mV Machea 0.700 mV Machea 0.700 mV Machea 0.500 MV
1200 20			80 Method
195 13	<b>-</b>		Det Flow
			Analysis Time 450.0 se
$+1/\lambda_{12}$			!
5.24			PPML = Glarm 3: PPMD = Alarm2 .
			DOW-ORS-WAR-7.5 supticate soil samples syrings injection 150 ul Springfield, Illinote DUNTE TECH.
			Trans des Xylones Sunzone Too Yolocho Denylochrone

Today and and Yar Today S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Straight S. Str

		. ;	<del>,</del>		1.60.		1 34.	, ;		A .	
	/,				12					•	That Palacete Nov 22,72 16:00 Comple Time: Nov-22,72 17:50
			•			·				the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	Integration Method  Disp. Up
130										:	OC Method
							, <b>-</b>			:	Dist Flow
1175	•								•		Gven Temp 40 C 7b Temp 73 C 777 Seta 1006
											All lyald Tame LOGIO sec
										<del></del>	flesk Henrich
					,			•		12	Constructed takens         Argu/Conc         1.1           Subsection         57.59 m/C         14.           Colors and         18.05 m/C         20.
										:	
										!	
										!	
										:	
								,		· · ·	
A <b>i</b> b H										; ; ; ;	
			٠						ř		
											Jann Gli camples Grangfield, lllingin ANG TECH.
535	•			٠							States deed Ny Leines Gradenia Gradenia
450								E-11	e		Supplied to the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contr



.4 .*			A San Carlotte Commence of the
7			Cuas a Timer New May 20,70 - Gorda Cuas a Timer New May 20,70 - Gorda
		•••	Discourant Factorial  Discourant Open Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Commun
· · · · · · · · · · · · · · · · · · ·	•		en versioner
			21 Blue 1923 - 114
ed a		•	AND TRANSCOLLEGY FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE FRANCE
· · · · · · · · · · · · · · · · · · ·			
			•
		•	
C 3			:
		,	i alwak <b>ara</b> Kabuli asapita Lagarunga indepresan di 56 a Kabulia, dalah di Immala Lahita 1770 a
·			
		<b>.</b>	
		E-118	



Value 1 Villagia (Anti-	100% CO Finaliza	Marchyana Report
	3 / W m/y	Timo Pranted: Nay 12:97 Object Sumple Time: Nov 12,72 02:51
65		Integrator Method Sippe Up 2.500 mV/Sec Slope Down 7.500 mV/Sec Min Area 0.500 mV@ec Min Alght 0.884 mV Analyzis Belay 10.0 bec Unicow Parcent 5.00 %
<u></u>	•	60 Morned
		Disc Flow 10 ml/min D.F Flow 1 ml/min Commo 5 5 Cant Temp 5 5 Cant Temp 5 5 Cant Temp 5 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 6 5 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp 7 6 Cant Temp
		jas i kyteme — IS.Ai PPEI 375.
		PFM1 - Alarm 1 FPM2 - Alarm2
5 <b>2</b> 0		standard soit samples syringe injection 150 ul Springfield, Illinois ENTH TECH.
		Takho doe Xylones Evacono Platacat Pro Tetylocaneno
	E-120	now to a try to deal of the best of best

7	1	2	3	():	4 1	Za O	.5 7)	Time Printed: Now.23.92 10:27 Sample Time: Nov 23.92 10:06
5.5	4			•	. 1	3		Integrator Method Slope Up 1.500 mV/Sec Slope Down 4.500 mV/Sec Min Area 0.500 mVSec Min Height 0.675 mV Analysis Delay 10.0 sec Window Percent 5.00 %
50			÷	*	•			GC Methad But Flow 16 ml/min B/F Flow 16 ml/min Aux Flow 0 ml/min Oven Temp 4 C Amb Temp 5 CT
	n. :		٠	•		. ,		Max Sain 1000 Anal cas Time 450, sec
le O	·							Peak Repo.         Pk Compound Name       Arc. Zonc       R.T         1 Unknown       70.13 mVS       16.         2 Unknown       0.000 PPB1       33.         3 trans doe       6.000 PPB1       41.         4 benzene       0.000 PPB1       41.
\\ \frac{1}{2}	•	·						5 toe 7.000 PPB1 80. 6 tolueno 16.00 PPB1 134. 7 pas 10.00 PPB1 191. 8 echylbenzene 16.00 PPB1 285. 9 m.p.xylenes 14.00 PPB1 306. 10 chylbene 16.00 PPB1 309.
E				•		•		
20								PPM1 = Alarm 1 PPM2 = Alarm2
		•					i	standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TEEM.
	,			*				Trans due Xylenes Benzeno Tuo Tolueno Poc

Anuly	sis de:		1054	SC	Fant	tico	Analysis Report
(p	1	<u></u>	3	( A	4 10 1	5 (N)	Time Printed: Now.23,92 10:34 Sample Time: Nov 25,92 10:04
65	4 5				3		Integrator Method Slope Up 1.500 mV/Sec Slope Down 4.500 mV/Sec Min Area 0.500 mV/Sec Min Height 0.675 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130					•		GC Method
٤							Det Flow 10 mi/min B/F flow 10 ml/min Aux Flow 0 ml/min Oven Temp 40 C
	·		·				Amb Temp 3 C Max Gain 100 Analysis Time 600. sec
2.00							Feak Report  Pk Compound Name And Conc R.T.  1 Unknown 90.03 mVS 14.2  2 Unknown 95 mVS 23.5  3 trans doe 91.52 mVS 33.5  4 benzene 9.5. mVS 41.5  5 tus 94.32 mVS 80.0
7							6 toluenc 32.60 mVS 134.6 7 pcc 66.16 mVS 191.8 8 ethylbenzene 26.72 mVS 285.1 9 m,p xylenes 32.35 mVS 306.7 10 a xylene 23.00 mVS 367.3
有量型						• .	
520							PPM1 = Alarm 1 PPM2 = Alarm2
5.05			•				scandard soil samples syringe injection 150 cl Springfield, Illinoic EARTH TECH.
565		• •	. <del>.</del>				Trans dce Xylenos Bonzone Toe Toluone Free
650	•				E-1	22	Ethylbenzene

0		1		2	<del></del>	3		$\mathcal{L}_{\Gamma}$	<del></del>	5	Time Printed: Now-23,92 10:53
7	1	.1-				-	(::	1.0		1	Sample Time: Nov 23.92 10:40
-					<del></del>			3		.	Integrator Method • Slope Up 1.500 mV/Sec
. <b>5</b>								ټ			Slope Down 4.500 mV/Sec
				•		4	·	,	•		Min Area 0,500 mVSec Min Height 0.682 mV
				5,		•					Analysis Delay ' 10.0 sec
								•		i	Window Percent 5.00 %
r40		<b>—</b>		٠	•		•	٠.			8C Method Det Flow 10 ml/min
		į.								1	B/F Flow 10 ml/min Aux Flow 0 ml/min
		•								1	Oven Temp 40 C
195-											Max Gain 100%
سسم		<del></del>								-	Amalysis Time (50.) sec
Ī		*				٠			•		Peak Report Pk Compound Name Arel Conc. R.S
240					-					1	1 Unknown 154.1 mVS 16 2 Unknown 5.1.2 mVS 23
	•							•			3 trans dce 60.00 PPB1 34
	<b>)</b>										4 benzeno 30.00 PPB1 <b>61</b> 5 tos 90.00 PPB1 <b>80</b>
+	0										6 toluene 160.0 PPB1 134. 7 pue 100.0 PPB1 191.
52/	9				-						8 ethylbenzene 160.6 PPB1 284.
ř											7 m,p xylanes 160.0 PPB1 300. 10 d xylana 160.0 PPB1 365.
)]]) 576	្										
[	•					•	٠		•		•
							•	٠	•		
155		•		•		•	•			.	•
										Ì	•
		•		•		•				• [	PPM1 = Alarm 1 PPM2 = Alarm2
520			.•			•					
				•.						}	standard soil samples
				•							syringe injection 150 ul Springfield, Illinois
30 F											EARTH TECH.
	•	v	٠		•	٠	٠.				Trans dee Xylenes Demzene
											· Tce Toluene
1										1	Pod

	7	1	1	•			to val	<b>\</b> #	4 100	2 (∨m (	• Time Printed: Nov 23,92 10:58. Sample Time: Nov 23,92 - 10:40
6							4				Integrator Mached Clope Up 1.500 mV/Sec Slope Down 4.500 mV/Sec Min Area 0.500 mV/Sec Min Height 0.632 mV Analysis Delay 10.0 sec Window Percent 5.00 %
13	្រ										GC Method
	55		<b>&gt;</b>	<u> </u>		·			•		Det Flow 1 ml/min 18/F Flow 1 ml/min Aux Flow 0 ml/min Oven Temp 10 C Amb Temp 10 C Max Gain 1000 Amalysis Time 250.6 sec
											Peak Topon Pk Compound Name Archiconc R. 1 Unknown 131. mVS 14 2 Unknown 5.2 mVS 23 3 trans dec 900.1 mVS 34
		} ?									4 bensone 575 mVS 61 5 tue 500. mVS 80 6 boluene 741 5 mVS 134 7 pue 1.0-4 VSec 191 8 ethylbenzene 500.7 mVS 286 9 m,p kylones 565.3 mVS 308 10 u kylone 396.4 mVS 345
29				-							
45	5	•									
			٠						•	-	PPM1 = Alarm 1 PPM2 = Alarm2
52					•						standard soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
: HI	5) •••						•	٠. خ			Trans. dec Xylones Fenzene Too Yoluone Fee Ethylbenzene

<u> An</u>	redys	ib	812			100+	60	Tυ	ات. د	Lun	Analysis Report .
4		1	·	2	-	3	(ж	4	10 1	5 .nV.)	Time Printed: Nov 23,92 - 12:05 Sample Time: Nov 23,92 11:52
45											Integrator Method Stope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mV/Sec
4										,	Min Height 0.712 mV. Analysis Delay 10.0 sec Window Percent, 5.00 %
130	•			·	•	٠		•			Dot Flow 10 ml/min B/F Flow 10 ml/min
											Aux Flow O ml/min Oven Temp 40 C Amb Temp 33 C
195	٠	•							•		Max Gain 1000 Analysis Time 650.0 sec Peak Report
240											Tk Compound Name Area/Conc R.T 1 Unknown 138.7 mV8 15.5 2 Unknown 1.534 mVS 23.5
				•							3 benzene       0.754 ppb       61.8         4 tra       0.940 ppb       80.4         5 teluene       0.378 ppb       134.3
325	·						•				
290											
455	•	•				•					
520										,	• ,
				•				-			CGB-5-3.5 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
595	•						.:		٠		Trans dce Xylenes  Benzene Tce Toluewe
<b>15</b> 0											Poe Ethylwanzene

#H	144 1 7		417								Analysis Report
5		1	, 	2	_	J	( x	4	10 n	5 (V)	Time Printed: Nov 23,72 12:20 Sample Time: Nov 23,72 12:07
65	2				•		·				Integrator Method Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.706 mV Analysis Delay 10.0 sec Window Percent 5.00 %
130											GC Method
	•		٠	•	٠		•		٠	•	Dat Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
175			·			•					Oven Temp 40 C Amb Temp 33 C hax Gain 1000 Analysis Time 550.0 sec
											Peak Report
Z40			·								Pk Compound Name Area/Conc R.T 1 Unknown 117.6 mVS 16. 2 Unknown 0.692 mVS 23.
				,		٠				•	
125							,				
						•				i	
390											
	•	•				,	٠	•		•	
155			•		•			•			
520											
		٠	•	•	٠	•		٠		٠	DSB-204-1 scil samples
				•				•			syringe injection 150 ul Springfield, Illinois EARTH TECH.
525	* <b>e</b>								٠		Trans des Xylenes Benzene Toa
				•		٠				٠	. Toluene Poe
ទៀ											This Danzene

	<u>-</u>	4	,	8		12		16 <u>-</u> 100	Ф ц	20 W)	Time Printed: Nov 23,92 - 13:04 Sample Time: Nov 23,92 12:55
65					,				<u>.</u>		Integrator Method Clope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec' Min Area 0.500 mVSec Min Height 0.710 mV Analysis Delay 10.0 sec
		٠		,		•		•		•	Window Percent 5.00 %
130								•	٠		Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
175										•	Oven Temp 47 C Amb Temp 50 C Max Gain 1503
											Analysis Time 650.; sec
240						٠			•		Peak Report  Pk Compound Name Arrea/Conc R.7  1 Unknown 89.30 mVS 16.
•		٠	•		•	٠		,		•	
l i				•						•	
340											
!											
390 											
		,				•					
495										•	
	•		•	•	•	•	•		•	٠	
540						·	•			•	blank
				٠٠.							suil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
						•		•			Trans dce Xylones
305	•						•.				Benzone Tor

E-133

	الدقا	lysie	4110		1084	ű.	 	diction	Analysis Report
G	<b>-</b>	1		2	3 <del>-</del>	(×			
65		2							Integrator Method Slupe Up 2.000 mV/Sec Slope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Height 0.713 mV Analysis Delay 10.0 sec Window Percent 5.00 %
1.3	o				• . •				GC Method Det Flow 10 ml/min B/F Flow 10 ml/min
1	5					•			Aux Flaw 0 ml/min Even Temp 40 C Amb Temp 33 C Max Gain 1000 Analysis Time 450.0 sec
24:	D .							•	Peak Report  Pk Compound Name Area/Conc R.T.  1 Unknown 128.3 mVS 16.2  2 Unknown 1.711 mVS 23.3
	ā <u>.</u>								
39					•				
13	<u>.</u>								
5	i,								
		:	•	· ·			•		CPZ-202-7.5 soil samples syringe injection 150 ul Springfield, Illinois EARTH TECH.
585	; €,≠					v.	•		Trans dde Xylenes Fonzene Tue Toluene . Poe
490									Ethylbenzene

Display   Down   C.000 mV/Scc   Ellin fires   C.000 mV/Scc   Ellin fires   C.000 mV/Scc   Ellin fires   C.000 mV/Scc   Ellin fires   C.000 mV/Scc   Ellin fires   Dolon   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires   Ellin fires	Atro i	N & 2 &		1.C.5.	1 2/5	The control of the control	°andyses Report
			 3				Time Printed: Nov 22,72 14.10 Campie Time: No. 23,72 14.07
Det flow							Siepe Up 2.000 mV/Sec. Clope Down 6.000 mV/Sec hin fred C.500 mVSec Min height 0.724 mV 1
### ### ##############################	.30 .30						
Peak Report Pro Compound Name Area/Conte R 1 data non 2007 aVS 1  20  CPD CDC 7.5 suplicate dati Lappace Do Lago Injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis injection 150 al Dis i		•					B/F Flow 10 ml/min flow Flow 0 ml/min Gven Temp 40 C Ant Temp 33 C Mix Gain 1000
The Computate Name Area/Conc R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 catheren 200 R 1 cathere	!						
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna	1 1 140			•		•	Fre Compagna Name - Ares/Conc R.
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna	:						
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna	:						
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna	<u> </u>						
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna	1	٠		•			
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna	; ;						
CPC CDT 7.5 eaplicate  Enti Lamples  Evaluation 150 ul  Colin, Lucid, Lilinota  Entro. Tron.  Trons du Xylinota  Bonnesse  Tolumna					`		
CPD 200 7.5 eqplicate  dril lamples  py.igo injection 150 al  Dy ing floid, biling to  Entry TCOH.  Thomas dell Xylhedu  Sommente  Too  Tolare  Too  Tolare  Too  Tolare  Too  Tolare  Too	)   						i
CPL CROC 7.5 Suplicate  dril Lampies  Ev. Lago injection 150 of  During field, liling to  Enter: Troh.  The section Xylveri  Bolizone  The  Taluene  The							
CPL CROC 7.5 Suplicate  dril Lampies  Ev. Lago injection 150 of  During field, liling to  Enter: Troh.  The section Xylveri  Bolizone  The  Taluene  The	:					•	
CPD ROT 7.5 suplicate  and lampies  by ango injection 180 of  Cpring finding willnote  CATT. TECH.  Types don	ed m Fulls }						
CPD ROT 7.5 suplicate  and lampies  by ango injection 180 of  Cpring finding willnote  CATT. TECH.  Types don	!						
CPC CDC 7.5 caplicate  and lampies  ay, angle injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cpc injection 150 al  Cp							
Exit Lampies Ex. Lago injection 150 of Extinction 150 of Exit TOOM.  Thomas deal Xylandi Bonner Too The	240						070-200 7.5 @uslicate
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s							mull mamples my angle injection 150 of During field, willingth
Talletone							Banadere
r = r + r	050			٠			- Talucas

- E-135

	الأناء سيمعاذ		) AC+ 0	Colonia.	1 10 111	Bound of the part to
	1	er to	2	Na Za	5 0 aV)	Tamo Palaced. Nov 23,92 14:42 Bemple Time: Nov-23,92 14:31
					#	integrator Memnos (lope Up 2.000 nV/Suc) Clope Down 6.000 mV/Sec Min Area 0.500 mVSec Min Weight 0.768 mV Analysis Delay 10.0 sec Under Forcent 5.00 %
130				•		CO Merchae
	£					Doi: Flow
						Poak Report
1:30	·				-	### Disposed Name Arwi/Conc R.J.  Li Unknown 117.6 mVS 16.  Ed Grand dee 1.406 mVC 22.  D Uname dee 1.407 PPB1 34.  Educating 3.441 PPB1 41.  Educating 10.10 PPB1 80.1  Ed Woldene 17.32 PPB1 134.
						7   Geo
1						t t
						forms = Alara 1 Preson Alacano
		•				standard stal samples syringe injection 150 ul Springficid, lilinois ENRIU TEOM.
	·		•		•	Truspo are Aviones Securities
   840   840				E-	100	Talena   Sand   English and a

	سم و داده		11			., 				~~· .	الله التنظير الماء المعتدد المائية المعتدد المائية
			,	·		eng Sum	<u>, , , , , , , , , , , , , , , , , , , </u>	÷,	10 141	a V)	* Time Printes: Nov 23,72 15.60 Sumple Time: Nov 23,72 14.49
								. **			Untegrator Mithod  Claps Up 2.000 my/Sec  Class Down 6.000 mV/Sec  Man Area 6.500 mV/Sec  Min heaght 6.786 mV  Analysis Delay 10.0 sec  Window Percent 5.00 %
130				•		•					CC Method  Dot Flow 10 ml/min
								•			L/F Flow
175		•			•					×	Max Bain 1000 Anclysic Time 630.0 sec
; ; ; ;											Peat Report  Fix Compound Name Area/Conv. firs  [1 Unknown 105.8 2/0 10  12 Unknown 1.641 2/0 10
1										•	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
•											
To Line											
:											
776											!
											! !
452									•		
				•				•		•	
				•						•	
540										-	OFF-703 115 esil samples syringe injection 180 al
				•.						٠	Springfield, Illinois EARTH TECH:
		-			•	٠					Trans dec Xylenco Benzone
4 <b>:</b> 0	•					•					Tell Yeldens Has Dankens

	<u>.</u>		Z	(3) 20 mV2	* Time Printed: Nov 23,92 15:15 Sample Time: Nov 23,92 15:04
					Integrator Method Clope Up 2.000 mV/Sec Clope Down 6.000 mV/Sec Min Area 0.500 mV/Sec Min Height 0.776 mV Analysis Devay 10.0 sec Window Percent 5.00 %
0					CC Method  Dat Flow 10 ml/min  E/F Flow 10 ml/min  Ada Flow 0 ml/min  Oven Temp 40 C  Mus Gain 1000  Fatalyses Yime 65010 ver
					Peak Topunt Ok Gumpound Name Arau/Cunc R.1 I thensun 104.9 mVS 15. 2 Genzeno <b>0.342 ppb 62.</b>
**************************************		1 .			
	,				
40					Cra-IoT-7.5 soil wamples syrings injection 180 al Caranglists, Illinois

Trans dos Balvelle Хуlonав

			_
			_
			-

Appendix F: Quality Assurance/Quality Control Evaluation

## APPENDIX F: DATA QUALITY ASSESSMENT

#### F.1 Introduction

A standardized QA/QC program was followed during the SI at ILANG, Capital Airport to ensure that analytical results accurately represent the environmental conditions at the sites. The SI was conducted using the Hazardous Waste Remedial Actions Program (HAZWRAP) Level C QC requirements (i.e., U.S. Environmental Protection Agency [EPA] Level III) described in Requirements For Quality Control Of Analytical Data (DOE/HWP-65/R1, July 1990) and the guidelines and specifications described in the SI Work Plan.

A total of 57 environmental samples were taken at the ILANG, Capital Airport. The environmental samples consisted of 37 soil, 17 water, and 3 sediment samples. In addition to the environmental samples 26 QC samples were taken. The QC samples included 6 field duplicates, 6 equipment rinseates, 6 field blanks, and 12 trip blanks. A summary of the number of samples taken at each site, sample matrix, and analysis performed on the samples is presented in Table F-1.

## F.1.1 Data Quality Objectives

Data quality objectives (DQOs) are qualitative and quantitative statements which specify the quality of the data required to support decisions during remedial response activities. The following sections summarize the qualitative and quantitative DQOs for precision, accuracy, representativeness, comparability, and completeness (PARCC) obtained during the SI. Quantitative goals for the PARCC parameters precision, accuracy, and completeness were established in the ILANG Capital Airport QAPP. The numerical goal for the PARCC parameters precision, accuracy, and completeness was 90%.

# F.1.1.1 Precision

Precision refers to the level of agreement among repeated measurements of the same characteristic, under a given set of conditions. Precision is expressed quantitatively as the measure of the variability of a group of measurements compared to their average value. Precision was defined as the reproducibility, or degree of agreement, among replicate measurements of the same quantity. For this project, the precision of the analytical and sampling techniques were assessed through the collection and analysis of field duplicate samples and the performance of analytical replicates. A DQO of 90% was established for the during the ILANG, Capital Airport SI. The closer the numerical values of the measurements are to each other, the more precise the measurement. Analytical precision was expressed as the percentage of the difference between results of duplicate samples for a given compound or element. Relative percent difference (RPD) was calculated as:

Table F-1 Summary of Analytical Program

Sample Source	Matrix	VOC SW846* 8010/8020 ¹	SVOC CLP 3/90**	TAL Metals CLP 3/90***	PCB/ Pesticides CLP 3/90**
Site 1	Soil Water	17 8	17 8	17 ² 16 ^{2,3}	2 1
Site 2	Soil Water Sediment	15 9 3	15 9 3	15 18³ 3	15 9 3
Facility Background	Soil	6	6	6	6
Total	Soil Water Sediment	38 17 3	38 17 3	38 34 ³ 3	23 10 3
Field Duplicates	Soil Water Sediment	4 2 0	4 2 0	4 4 0	3 1 0
Equipment Rinseates	Water	6	6	6	5
Trip Blanks	Water	12	-	-	-
Field Blanks	Water	6	6	6	6

^{*} SW846 refers to United States Environmental Protection Agency (USEPA), "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods," SW-846, 3rd Edition, November 1986.

$$RPD = \frac{Abs(C_1 - C_2)}{\frac{C_1 + C_2}{2}} X 100$$

^{**} CLP 3/90 refers to "USEPA Contract Laboratory Program (CLP), Statement of Work for Organics Analysis, Multi-Media, Multi-Concentration," Document No. OLM01.8, March 1990.

^{***} CLP 3/90 refers to "USEPA CLP, Statement of Work for Inorganics Analysis, Multi-Media, Multi-Concentration," Document No. ILM02.1, March 1990.

SW846 8010/8020 analysis was performed on all water samples, SW846 8240 was performed on all soil samples. Confirmation was performed for those samples containing compounds greater than detection levels.

Lead only at Site 1.

Filtered and unfiltered water samples were collected.

Where;

 $C_1$  = Concentration of the compound or element in the sample

C₂ = Concentration of the compound or element in the duplicate/replicate.

Overall precision was composed of both analytical and sampling precision. Analytical precision was determined using matrix spike/matrix spike duplicate (MS/MSD) analysis. Sampling precision was determined using field duplicate sample analyses. MS/MSD and duplicate sample analysis was conducted on samples collected for volatile organic compound (VOC), semi-volatile organic compound (SVOC), target analyte list (TAL) metals, and Pesticides/PCB analyses during the ILANG, Capital Airport SI.

The laboratory prepared MS/MSD samples by selecting 1 sample in 20 and splitting the sample into 2 additional aliquots. One aliquot was screened, to obtain an estimate of the concentrations of the parameters of interest before analysis. The remaining aliquot was split and spiked with known quantities of the parameters of interest before analysis. The RPD between the spike results was calculated and used as an indication of the analytical precision for the VOC, SVOC, and Pesticide/PCB analyses performed. Duplicate samples for TAL metal analyses were prepared by subdividing 1 sample of every 20 samples received and analyzing both samples of the duplicate pair. The RPD between the two detected concentrations was calculated and used as an indication of the analytical precision for the analyses performed.

Six of 130 RPD values calculated from the water VOC analyses exceeded control limit of 20% Three of 67 RPD values calculated from the soil VOC analyses for analytical precision. exceeded the appropriate control limits for analytical precision. Control limits for the matrix spike/matrix spike duplicate RPDs for water and soil VOCs are detailed in Tables F-2 and F-3. One of 11 RPD water values calculated from the SVOC analyses exceeded the appropriate control limits for analytical precision. Zero of 44 soil RPD values calculated from the SVOC analyses exceeded the appropriate control limits for analytical precision. Control limits for the matrix spike/matrix spike duplicate RPDs for water and soil SVOCs are detailed in tables F-4 and F-5. Fourteen of 24 calculated RPD soil values for Pesticides/PCBs were outside of advisory control limits. Six of 12 calculated water RPD values for Pesticides/ PCBs were outside of advisory control limits. Control limits for the matrix spike/matrix spike duplicate RPDs for water and soil Pesticides/PCBs are detailed in tables F-6 and F-7. Six of 55 RPD soil values calculated from TAL metals analyses were outside advisory control limits of 20%. Five of 47 RPD water values calculated from TAL metals analyses were outside advisory control limits of 20%. The RPD control limits for the sample spike and duplicate analysis for water and soil TAL metals are detailed in tables F-8 and F-9.

The results for soil are considered to have little impact on the environmental data quality and considered more likely to be the result of the regional matrix variability. Water RPD values which exceeded control limits are most likely due to the unequal distribution of suspended minute particulates that could not be evenly distributed by well development procedures and mixing procedures since the analytical QC results do not indicate a systemic laboratory problem. The MS/MSD results indicate that overall 41 of the 390 RPD values calculated exceeded the relative criteria. This indicates a 90% laboratory precision.

TABLE F-2 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD	Number Within Limits	Number Outside I imits
8010										
Bromodichloromethane	9	101-121	42-172	9	0	က	4-13	20	က	0
Bromobenzene	9	66-113	06-09	φ	0	ო	6-9	20	ဗ	0
Bromoform	9	80-158	13-159	9	0	က	6-0	20	က	0
Bromomethane	9	76-125	1-144	9	0	ო	4	20	က	0
Bromochloromethane	4	84-98	4-133	4	0	2	9-0	20	2	0
Carbon tetrachloride	9	94-100	43-143	9	0	က	1-5	20	ო	0
2-Chloroethlyvinyl eter	9	0	14-186	0	9	ო	0	20	က	0
Chloroefhane	9	0-125	46-137	4	2	ო	0-5	20	ო	0
Chloroform	9	90-100	49-133	9	0	က	9-0	20	က	0
Cholorbenzene	9	91-141	38-150	9	0	က	7-16	20	က	0
Chloromethane	9	0-119	1-193	4	7	ო	0-12	20	က	0
2-Chlorotoluene	4	74-98	60-140	4	0	2	5-11	20	7	0
4-Chlorotoluene	4	93-104	60-140	4	0	2	2-8	20	7	0
1,2-Dibromoethane	4	91-110	24-191	4	0	2	7	20	7	0
Dibromochloromethane	9	85-118	24-191	9	0	3	1-7	20	က	0

TABLE F-2 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
8010										
Dibromomethane	9	85-105	42-172	9	0	က	7-18	20	ဇ	0
1,2-Dichlorobenzene	4	89-105	1-208	4	0	2	10-12	20	2	0
1,3-Dichlorobenzene	4	93-104	7-187	4	0	2	2-11	20	2	0
1,4-Dichlorobenzene	4	95-125	42-143	4	0	2	0-3	20	7	0
1,1-Dichloroethane	9	90-105	47-132	9	0	က	-7-12	20	က	0
1,2-Dichloroethane	9	85-107	51-147	9	0	က	-7-3	20	က	0
1,1-Dichloroethene	9	65-113	28-167	9	0	က	1-39	20	7	₩
trans-1,2-Dichloroethene	9	88-103	38-155	9	0	က	2-8	50	က	0
1,2-Dichloropropane	9	89-103	44-156	9	0	2	2-0	50	က	0
cis-1,3,Dichloropropene	9	86-106	22-178	4	0	က	0-14	20	2	0
trans-1,3,- Dichloropropene	9	94-118	22-171	9	0	က	34	20	ဗ	0
Methylene Chloride	9	0-104	25-162	4	7	ო	0-31	20	7	-
1,1,2,2- Tetrachloroethane	ဖ	94-144	8-184	ဖ	0	က	6-9	20	က	0
1,1,1,2. Tetrachloroethane	ဖ	90-97	38-150	ဖ	0	ო	2-9	20	ო	0

TABLE F-2 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
-	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
8010										
Tetrachloroehtene	ဖ	94-104	26-162	9	0	ო	-1-7	20	က	0
1,1,1-Trichloroethane	9	85-100	41-138	9	0	ო	6-0	20	က	0
1,1,2-Trichloroethane	9	90-178	39-136	4	0	က	4	20	က	0
Trichloroethene	9	38-106	35-146	9	0	ო	2-7	20	က	0
Trichlorofluoromethane	7	92-94	17-181	7	0	τ-	2	20	-	0
1,2,3,-Trichloropropane	4	80-108	60-140	4	0	2	5-10	20	7	0
Vinyl Chloride	ဖ	81-125	26-163	9	0	က	0-25	20	7	-
8020										
Benzene	9	83-97	39-150	9	0	ю	1-16	20	က	0
Ethyl benzene	ဖ	70-133	37-162	9	0	က	3-16	20	က	0
Chlorobenzene	9	71-141	38-150	9	0	ო	3-16	20	က	0
Methyl-tert-butyl-ether	4	20-90	28-167	4	0	2	10-14	20	2	0
Styrene	4	63-106	32-160	4	0	2	6-0	20	2	0
Toluene	9	78-102	46-148	9	0	က	3-15	20	က	0
1,4-Dimethylbenzene	4	69-88	55-135	4	0	2	7-12	20	2	0
1,3-Dimethylbenzene	4	69-118	55-135	4	0	2	7-16	20	2	0

TABLE F-2 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No.	Percent	Percent	Number	Number		200 miles (1990)			
	Analyses	Recovery	Recovery	Within	Outside	MSD Total			Number	Number
		Ranges	Limits	Control Limits	Control Limits	No. Analyses	Range RPD	RPD Limits	Within Limits	Outside Limits
8020										
1,2-Dimethylbenzene	4	72-89	55-135	4	0	က	10-17	20	က	0
m,o-Xylene	7	123-188	32-162	-	+	-	42	20	0	-
1,2-Dichlorobenzene	ဖ	67-171	1-208	9	0	ო	7-20	20	က	0
1,3-Dichlorobenzene	မ	70-181	7-187	9	0	က	7-22	50	2	Ψ-
1,4-Dichlorobenzene	9	72-186	42-143	4	2	3	7-21	20	2	-

TABLE F-3 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
8010										
Bromodichloromethane	2	94-102	42-172	7	0	<b>~</b>	œ	20	-	0
Bromobenzene	7	94-109	06-09	2	0	~	15	20	-	0
Bromoform	2	109-123	13-159	7	0	τ-	12	20	-	0
Bromomethane	2	87-105	1-144	7	0	-	19	20	-	0
Bromochloromethane	7	109-116	4-133	7	0	-	9	20	-	0
Carbon tetrachloride	2	87-102	43-143	2	0	-	16	20	-	0
2-Chloroethlyvinyl eter	2	94-116	14-186	2	0	<b>~</b>	21	20	-	0
Chloroethane	2	94-105	46-137	7	0	₹~	1	20	-	0
Chloroform	7	84-91	49-133	7	0	-	æ	20	-	0
Cholorbenzene	2	94-109	38-150	2	0	<del>-</del>	15	20	-	0
Chloromethane	2	65-116	1-193	2	0	-	26	20	0	-
2-Chlorotoluene	7	87-102	60-140	2	0	-	16	20	-	0
4-Chilorotoluene	2	94-102	60-140	7	0	-	80	20	-	0
1,2-Dibromoethane	2	123-131	24-191	7	0	-	မွ	20	-	0
Dibromochloromethane	2	102-109	24-191	2	0	+	7	20	·-	0

TABLE F-3 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
-	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD	Number Within Limits	Number Outside Limits
8010										
Dibromomethane	2	116-138	42-172	2	0	_	17	20	-	0
1,2-Dichlorobenzene	2	87-94	1-208	7	0	_	80	20	-	0
1,3-Dichlorobenzene	2	73-94	7-187	2	0	-	25	20	-	0
1,4-Dichlorobenzene	7	80-87	42-143	7	0	-	80	20	<del></del>	0
1,1-Dichloroethane	7	87-94	47-132	7	0	_	80	20	<del>-</del>	0
1,2-Dichloroethane	7	109	51-147	7	0	-	0	20	<b>~</b> -	0
1,1-Dichloroethene	7	87-94	28-167	7	0	_	11	20	<del>-</del>	0
trans-1,2-Dichloroethene	2	87-102	38-155	2	0	7-	16	20	-	0
1,2-Dichloropropane	2	87-102	44-156	2	0	<b>—</b>	16	20	-	0
cis-1,3,Dichloropropene	7	96-103	22-178	2	0	~	7	20	-	0
trans-1,3,- Dichloropropene	8	93-100	22-171	8	0	~	<b>L</b>	70	-	0
Methylene Chloride	7	117-131	25-162	7	0	~	∞	20	-	0
1,1,2,2- Tetrachloroethane	7	109-138	8-184	7	0	<del>-</del>	30	, oz	<del></del>	0
1,1,1,2- Tetrachioroethane	2	94-109	38-150	2	0	-	15	20	-	0

TABLE F-3 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPO Limits	Number Within Limits	Number Outside Limits
8010										
Tetrachloroehtene	7	87-102	26-162	2	0	<del>-</del>	16	20	-	0
1,1,1-Trichloroethane	7	108-115	41-138	2	0	<b>-</b>	9	20	<del>-</del>	0
1,1,2-Trichloroethane	7	102-109	39-136	2	0	<b>-</b>	7	20	<b>~</b>	0
Trichloroethene	7	87-94	35-146	2	0	<b>-</b>	æ	20	-	0
1,2,3,-Trichloropropane	7	109-160	60-140	2	0	-	38	20	0	-
Vinyl Chloride	7	91-109	26-163	2	0	-	18	20	-	0
8020										
Benzene	7	80-94	39-150	2	0	<b>4</b>	16	20	-	0
Ethyl benzene	7	80-94	37-162	2	0	-	16	20	-	0
Chlorobenzene	2	80-94	38-150	7	0	~	16	20	-	0
Methyl-tert-butyl-ether	2	103-107	28-167	7	0	Ψ-	4	20	τ-	0
Styrene	2	80-94	32-160	7	0	Ψ-	16	20	~	0
Toluene	2	76-91	46-148	2	0	-	18	20	-	0
1,4-Dimethylbenzene	2	80-94	55-135	7	0	-	16	20	-	0
1,3-Dimethylbenzene	2	80-94	55-135	2	0	1	16	20	1	0

TABLE F-3 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD VOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
8020										
1,2-Dimethylbenzene	2	79-93	55-135	2	0	-	16	50	-	0
1,2-Dichlorobenzene	7	72-86	1-208	7	0	-	18	20	<del></del>	0
1,3-Dichlorobenzene	7	73-94	7-187	7	0	<del>-</del>	25	20	0	-
1,4-Dichlorobenzene	7	76-91	42-143	2	0	-	18	20	-	0
GCMIS										
1,1-Dichloroethene	80	57-105	59-172	<b>&amp;</b>	0	4	3-13	22	4	0
Trichloroethene	80	61-107	62-137	80	0	4	1-9	24	4	0
Benzene	80	77-106	66-142	æ	0	4	2-10	21	4	0
Toluene	&	75-121	59-139	œ	0	4	2-10	24	4	0
Chlorobenzene	8	73-104	60-133	8	0	4	1-12	21	4	0

TABLE F-4 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD SEMIVOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside
Phenol	2	65-67	11-89	2	0	<del></del>	က	42	<b>-</b>	0
2-Chlorophenol	2	62-67	27-123	2	0	<b>+</b> -	80	40	-	0
1,4-Dichlorobenzene	2	59	36-97	7	0	τ-	0	28	-	0
n-Nitroso-di-n-propylamine	2	80-86	41-116	7	0	<del>-</del>	7	38	-	0
1,2,4-Trichlorobenzene	7	63	38-98	7	0	<del>-</del>	0	28	-	0
4-Chloro-3-methylphenol	7	73-80	23-97	2	0	<b>←</b>	6	42	-	0
Ancenapthene	7	64-71	46-118	7	0	-	10	31	-	0
4-Nitrophenol	7	80-100	10-80	_	-	-	22	20	-	0
2,4-Dinitrotoluene	2	73-78	24-96	2	0	<b>~</b>	7	38	-	0
Pentachlorophenol	2	100	9-103	7	0	-	0	20	•	0
Pyrene	2	45-80	26-127	2	0	1	99	31	0	-

wp/capital/ISh.415-July 7, 1994

TABLE F-5 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD SEMIVOLATILE ORGANIC COMPOUNDS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

1.

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
loud (	α	30.74	26 ₋₀₀	a	c	,	6,0	30	•	•
2-Chlorophenol	o &	43-61	25-102	ာ ထေ	0	1 4	3-17	20 20	4 4	<b>&gt;</b> 0
1,4-Dichlorobenzene	8	37-64	28-104	œ	0	4	0-22	27	4	0
n-Nitroso-di-n-propylamine	∞	39-95	41-126	7	-	4	4-35	38	4	0
1,2,4-Trichlorobenzene	&	40-67	38-107	ထ	0	4	0-20	23	4	0
4-Chloro-3-methylphenol	&	45-81	26-103	œ	0	4	0-28	33	4	0
Ancenapthene	∞	43-71	31-137	∞	0	4	5-18	19	4	0
4-Nitrophenol	&	39-77	11-114	∞	0	4	0-21	20	4	0
2,4-Dinitrotoluene	<b>&amp;</b>	20-71	28-89	7	-	4	0-33	47	4	0
Pentachlorophenol	80	35-90	17-109	ထ	0	4	3-18	47	4	0
Pyrene	8	41-83	35-142	8	0	4	11-32	36	4	0

TABLE F-6 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD PESTICIDES/ PCB ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD	Number Within	Number Outside
gamma- BHC	4	22-118	56-123	က	+	7	0-137	15	-	-
Heptachior	4	12-110	40-131	က	-	7	3-161	50	•	-
Aldrin	4	16-142	40-120	င	-	2	3-142	22	₩-	<b>←</b>
Dieldrin	4	19-145	52-126	က	-	2	1-145	18	~	-
Endrin	4	0-200	56-121	က	₹	2	21-200	21	-	-
4-4-DDT	4	15-156	38-127	3	1	2	27-156	27	-	-

wp/capital/19h.415-July 7, 1994

TABLE F-7 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD PESTICIDES/ PCB ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy					Precision			
	 Total No. Analyses	Percent Recovery	Percent Recovery	Number Within	Number Outside	MSD Total			Number	Number
	 . 27.29	Ranges	Limits	Control	Control	No. Analyses	Range RPD	RPD Limits	Within Limits	Outside Limits
				:						
gamma- BHC	<b>∞</b>	2-88	46-127	S	က	4	6-177	20	7	7
Heptachlor	80	4-124	35-130	7	-	4	7-182	31	2	2
Aldrin	∞	4-100	34-132	9	2	4	0-178	43	7	2
Dieldrin	∞	0-156	31-134	ဇ	2	4	108-200	38	0	4
Endrin	∞	5-134	42-139	9	2	4	0-182	45	-	င
4-4'-DDT	80	0-180	23-134	9	2	4	0-200	50	2	2

TABLE F-8 LABORATORY QUALITY CONTROL SUMMARY: WATER MS/MSD METALS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

		Accuracy				:	Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
Aluminum	8	105-120	75-125	7	0	2	5-176	20	-	_
Antimony	8	93-97	75-125	7	0					
Arsenic	7	94-102	75-125	7	0	2	4-52	50	-	-
Barium	٧	97-104	75-125	2	0	2	4-60	50	-	-
Beryllium	8	101-108	75-125	7	0					
Cadmium	8	96-88	75-125	2	0					
Calcium	0					7	4-6	20	7	0
Chromium	7	98-104	75-125	2	0					1
Cobalt	<b>~</b>	96-104	75-125	2	0	-	200	20	0	-
Copper	7	54-91	75-125	-	-					
Iron	7	81-115	75-125	2	0	2	6-192	20	-	-
Lead	7	61-79	75-125	-	-	-	200	20	0	-
Magnesium	0					2	2-4	20	2	0
Manganese	8	75-77	75-125	2	0	2	5	20	2	0
Mercury	7	86-91	75-125	7	0					
Nickel	α	97-102	75-125	7	0					
Selenium	8	80-90	75-125	7	0					
Silver	8	66-06	75-125	2	0					
Sodium	0					2	1-3	20	7	0
Thallium	7	59-77	75-125	-	-					
Vanadium	8	96-104	75-125	2	0	-	200	20	-	-
Zinc	7	97-104	75-125	c	c	c	97-200	Ç	c	c

wp/capital/t6h.415-July8, 1994

wp/capital/t7h.415-July8, 1994

TABLE F-9 LABORATORY QUALITY CONTROL SUMMARY: SOIL MS/MSD METALS ILANG, CAPITAL AIRPORT, SPRINGFIELD, ILLINOIS

9 2 4

ř,

		Accuracy				,	Precision			
	Total No. Analyses	Percent Recovery Ranges	Percent Recovery Limits	Number Within Control Limits	Number Outside Control Limits	MSD Total No. Analyses	Range RPD	RPD Limits	Number Within Limits	Number Outside Limits
Aluminum	7	92-97	75-125	2	0	5	1-22	35	5	0
Antimony	ស	12-97	75-125	7	က	-	200	35	0	-
Arsenic	2	52-99	75-125	4	-	4	2-25	35	4	0
Barium	22	85-91	75-125	2	0	S.	0-15	35	ស	0
Beryllium	22	96-103	75-125	ഥ	0	က	1-200	35	7	-
Cadmium	S.	80-104	75-125	2	0	-	26	35	_	0
Calcium	0					2	1-6	35	2	0
Chromium	വ	93-108	75-125	ស	0	ю	7-9	35	က	0
Cobalt	2	90-102	75-125	ß	0	ю	1-8	35	က	0
Copper	ις.	94-101	75-125	S	0	S.	9-0	35	2	0
Iron	8	92-101	75-125	2	0	ស	3-52	35	4	· -
Lead	2	-305-93	75-125	က	7	S.	10-115	35	က	7
Magnesium	0					ស	4-0	35	ம	0
Manganese	2	68-303	75-125	ო	2	2	1-34	35	ß	0
Mercury	വ	105-120	75-125	S	0	0				
Nickel	4	92-102	75-125	D.	0	4	4-200	35	2	7
Potassium	0					മ	0-13	35	2	0
Selenium	വ	0-74	75-125	0	S	-	200	35	0	-
Silver	2	26-98	75-125	ß	0	1	25	35	-	0
Sodium	0					വ	0-40	35	4	-
Thallium	ស	75-106	75-125	ស	0	-	15	35	-	0
Vanadium	က	92-107	75-125	വ	0	ო	7-11	35	က	0
Zinc	2	79-93	75-125	2	0	5	0-25	35	മ	0

# **Field Replicates**

Field replicates were used as a measure of the sampling precision at the ILANG, Capital Airport. The field replicate for each soil analyses was obtained from the adjacent sleeve and water samples were split into different sample containers upon sampling. Four replicated soil pairs and two replicate water pairs were used to evaluate sample collection reproducibility and matrix variability at ILANG Capital Airport. Field RPD values were calculated for compounds and elements detected above the CRDL in one of the replicate pairs.

Three of 3 soil RPD values calculated exceeded the 35% control limit. The one water RPD value calculated for VOCs was greater than 20 percent. The RPD's values that exceeded the 35% ranged from 38% to 100%. None of the 3 soil RPD values calculated for SVOCs exceeded 35% limit. There were no SVOCs detected above the CRDL in any of the sample duplicate pair. Twenty-one of the 49 soil RPD calculated for metals were greater than 35%. The RPDs that exceeded the 35% limit ranged between 43% to 200%. Eleven of the 25 water RPD values calculated for metals were greater than 20%. The RPDs that exceeded the 20% limit ranged from 43% to 199%. Five soil RPD values were calculated for PCB/Pesticides. All of the calculated values exceeded the control limit of 35%. The RPDs ranged from 103% to 171%. All the PCB/Pesticides values were calculated from one sample/duplicated pair (CF-SB2-SS0.5-1 and CF-SB4-SS0.5-1). Overall these results indicate that 41 of the 86 RPD values calculated from the sample/duplicate pairs exceeded their respective control limits of 35% for soil samples and 20% for aqueous samples. This indicates a sampling precision of 52%. This is considered to have had some impact on the environmental data quality. A complete discussion of all replicate samples is presented in section F.2.4.

As a result of the analytical and sampling precision an overall precision of 83% was obtained. These results are considered to have little impact on the environmental data quality and may be the result of the variability of the soil matrix.

## F.1.1.2 Accuracy

Accuracy was defined as the degree of difference between measured or calculated values and the true value. The closer the numerical value of the measurement approaches the true value, or actual concentration, the more accurate the measurement. Analytical accuracy is expressed as the percent recovery of a compound or element that has been added to the environmental sample at a known concentration before analysis. The following equation was used to calculate percent recovery:

$$\Re R = \frac{A_r - A_0}{A_f} X 100$$

Where:  $A_r = \text{Total compound or element concentration detected in the spiked sample}$ 

Final Site Investigation Report, ILANG, Capital Airport

version.000

- A_o = Concentration of the compound or element detected in the unspiked sample
- A_f = Concentration of the compound or element added to the sample

*Laboratory accuracy was qualitatively assessed by evaluating the following laboratory QC information: sample holding times, method blank, tuning and mass calibration (gas chromatography/mass spectrometry [GC/MS] only), surrogate recovery (GC/MS only), internal standard (GC/MS only), Laboratory Control Sample (LCS) and method blank spike recovery, and initial and continuing calibration results calculated from all analyses conducted on environmental samples. Laboratory accuracy was quantitatively assessed by evaluating the %R of MS/MSD.

#### **Percent Recoveries**

Thirteen of 260 water percent recoveries were outside the control limits for MS/MSD analyses conducted on the samples collected and analyzed for VOCs. Established control limits for VOC percent recovery values are presented in tables F-2 and F-3. Four of the eight water percent recovery values reported zero percent recovery for the spiked analytes. It appears that laboratory procedures rather than matrix interferences may have influenced the percent recoveries, since numerous QC problems were noted in the sample delivery group reporting zero percent spike recoveries. Zero of 134 soil percent recoveries values were outside the control limits for MS/MSD analyses conducted on the samples collected and analyzed for * VOCs. The outliers noted for VOC analysis were all below acceptance criteria in the range between 0%-38% recovery. All supporting VOC QC information cited above was also 🛪 qualitatively evaluated with respect to the analytical accuracy DQO. Four of the environmental samples collected for VOC analysis were analyzed one day beyond the applicable holding times, a number of second column confirmation runs were performed outside of holding times, and some compounds failed precision criteria during calibration. Detects for one aqueous sample delivery group analyzed for VOCs by SW-846 8010/8020 were not confirmed by GC methods as required. The detects were confirmed by GC/MS. The GC/MS method was capable of confirming those compounds which were detected by 8010/8020at concentrations above 2 ppb. A comparison of this data to data obtained from a later sampling event from the same location and employing a second column GC confirmation, indicated comparable results for compounds requiring second column confirmation. Eight VOC data points were rejected for use because the data was qualified "R" indicating unreliable results due to surrogate or internal standard recoveries. These results are not considered to have any adverse impact on the environmental data quality.

Two of 88 calculated percent recovery values was outside the control limits for the MS/MSD analyses conducted on the soil samples collected and analyzed for SVOCs. One of the 22 calculated percent recovery values were outside the control limits for the MS/MSD analyses conducted on the water samples collected and analyzed for SVOCs. Established control limits for SVOC percent recovery values are presented in tables F-4 and F-5. The SVOC outliers reported recoveries of 20-100%. All supporting SVOC QC information cited above was also qualitatively evaluated with respect to the analytical accuracy DQO. Two samples within an

aqueous sample delivery group reported poor surrogate recoveries for spiked compounds. Due to the lack of additional samples for reanalysis, one sample was not initially reanalyzed to confirm the possible matrix effect. In order to obtain additional sample for analysis, an additional sample was obtained, from the field, at a later date and reanalyzed. This resample reported acceptable surrogate recoveries. The second sample was diluted and reanalyzed and reported low but acceptable surrogate recoveries indicating a matrix effect. Seven SVOC samples reported internal standards which exceeded QC limits for area counts. The seven samples were reanalyzed and reported similar results which were attributed to matrix effects. Three other samples also reported internal standard area counts outside QC limits. Two of these samples were not reanalyzed due to laboratory error. The one sample which was reanalyzed did not indicate acceptable internal standard area counts on the re-analysis. The laboratory error in not reanalyzing the samples which indicated internal area counts outside QC limits and erratic results in the reanalysis of other samples resulted in the qualification of compounds as unusable. Seventy-three SVOC data points were rejected for use because the data was qualified "R" indicating unreliable results due to surrogate or internal standard recoveries. Numerous samples analyzed for SVOCs indicated detectable levels of common laboratory contaminants; these samples have been qualified "B" for blank contamination. These results are considered to have some impact on the environmental data quality.

Thirteen of 88 target analyte metals soil percent recovery values from the matrix spike analysis conducted on the soil samples exceeded recovery limits of 75-125 percent for soil. Three of 38 target analyte metal water percent recovery values from the matrix spike analyses conducted on the water samples exceeded recovery limits of 75-125 percent. Established control limits for VOC percent recovery values are presented in tables F-4 and F-5. The outliers noted for TAL metals analysis were mixed high and low. The range of outliers noted for TAL metals were -304%-132% exceeding control limits of 75%-125%. All supporting target analyte metals QA information cited above were also qualitatively evaluated with respect to the analytical accuracy DQO. These results are not considered to have any adverse impact on the environmental data quality.

Fifteen of 48 soil percent recovery values for MS/MSD values obtained for Pesticide/PCB analysis were outside control limits listed in tables F-6 and F-7. Six of 24 water percent recovery values for MS/MSD values obtained for Pesticide/PCB analysis were outside control limits. All supporting Pesticide/PCB QA information cited above also was qualitatively evaluated with respect to the analytical accuracy DQO. Surrogate recoveries for numerous PCB samples were outside control limits. Since these surrogates are advisory, no action was taken. During PCB calibration, some compounds fell outside established retention windows; but the samples were bracketed by compliant QA standards, and no action was taken. All PCB outliers noted were low with a range from 0%- 44% recovery falling below the control limit range of 40%-127% recovery. The above results are not considered to have any adverse impact on the environmental data quality.

A total of 10% of all calculated percent recovery values for soil and 6 of the percent recovery values for water exceeded control limits indicating that on average 92% accuracy was achieved. Sampling accuracy was maximized by adherence to the strict QA program presented in the SI QAPP. All procedures (i.e., soil boring installation, soil samples collection procedures, and health monitoring equipment calibration and operation) used during the SI were documented as standard operating procedures (SOPs). Field QA blanks (i.e., trip blanks, field blanks, and equipment rinseates) were prepared such that all samples represented the particular site from which they were collected, and assessed any cross-contamination that may have occurred. The environmental samples associated with the appropriate field QA samples were qualified based on the potential contaminants contained in the field QA samples.

### Trip blanks

Methylene chloride was detected at concentrations greater than the contract required quantitation limit (CRQL) in three trip blanks C-TB4, C-TB5, and C-TB12. These concentrations could not be attributed to the laboratory environment, and as a result, all concentrations of methylene chloride detected in the associated environmental samples at levels less than 10 times the trip blank concentration were considered blank contamination and were qualified accordingly. A complete discussion of field QC results is presented in section F.2.

### Field Blanks

Levels of chloroform, bromenated compounds, lead, arsenic, nickel, and chromium were detected in selected field blanks collected during the SI. Field blank C-FB2, C-FB4, and C-FB5 contained bromodichloromethane, chloroform, and dibromochloromethane. The bromenated compounds are attributed to the potable water source. Since these compounds and elements were also detected in associated environmental samples the concentrations detected which were less than five times the concentration detected in the associated blank were considered as estimates and were qualified "B" accordingly. The concentrations of lead and arsenic in C-FB4 and C-FB6 are considered to have contributed to levels seen in the associated environmental samples. A complete discussion of field QC results is presented in section F.2.

# **Equipment Rinseates**

Lead was detected above the method detection limit in one equipment rinseate, C-ER1, collected during the SI. VOCs were detected at low concentrations in the equipment rinseates. C-ER10 contained toluene and C-ER1 contained acetone. No SVOCs or PCB/pesticides were detected in equipment rinseates. A complete discussion of field QC results is presented in section F.2.

Based on an evaluation of the compounds detected in the field QC blanks overall field accuracy is deemed acceptable, except where noted.

# F.1.1.3 Representativeness

Representativeness was defined as the degree to which the data accurately and precisely represent a characteristic of a population, parameter variations at a sampling location, a process condition, or an environmental condition. Sample representativeness was ensured during the SI by collecting sufficient samples of a population medium, properly distributed with respect to location and time. Representativeness was assessed by reviewing the drilling and sample collection methods used during the ILANG, Capital Airport SI, and evaluating the RPD values calculated from the duplicate samples and the concentrations of interferents detected in the field and laboratory QC blanks. The reproducibility of a representative set of samples reflects the degree of homogeneity of the sampled medium, as well as the effectiveness of the sampling techniques.

Soil samples were collected from two sites (Sites 1 and 2). All borings were advanced with a truck-mounted drilling rig using continuous-flight hollow stem augers. A minimum of two soil samples were collected for laboratory analysis from each soil boring. One sample was collected from just below the ground surface and the second from unsaturated soils just above the water table. A third and fourth sample were sometimes collected based on photoionization detector (PID) results and lithology. Samples were obtained using a split-spoon sampler equipped with stainless steel liners. Blow counts recording relative soil density were noted. Split-spoon samples were field-logged according to the Unified Soil Classification System (USCS) and field-screened with a PID meter and field GC for VOC concentrations. The boring was backfilled with a cement/bentonite slurry. The borings were marked at the surface and surveyed. Soil cuttings were placed in 55-gal drums for later analysis as required for disposal 2 of the soil. Surface water samples were collected by directly filling the sample containers with pond water. Filtered samples for metals analyses were collected using a decontaminated Teflon® bailer and a disposable, 0.45 um filter. Groundwater samples were obtained after development of each well. The monitoring wells were allowed to recharge, purged, and then sampled. The volume of water in each well casing was calculated prior to purging. As required, 4 to 5 casing volumes were removed from each well during the purging process. A decontaminated Teflon® bailer was used to remove the stagnant groundwater from each well. Color, degree of turbidity, odor and other physical properties of the water were recorded during development. Additionally, measurement of the pH, temperature, and conductivity of the groundwater were obtained before and after purging, and prior to sampling. These data were collected to ensure a representative groundwater sample was being collected.

Based on the evaluation of the factors described above and summarized in section F .3 the samples collected during the SI are considered to be representative of the environmental conditions at ILANG, Capital Airport.

# F.1.1.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another and is limited to the other PARCC parameters, because only when precision and accuracy are know can one data set be compared to another. To optimize comparability, only the specific methods and protocols that were specified in the SI QAPP were used to collect and analyze samples during the SI. By using consistent sampling and analysis procedures, all data sets are comparable within the two sites at Ilang Capital Airport, between the two sites, or among ANG facilities nationwide. This consistency ensures that remedial action decision and priorities are based on a consistent data base.

All samples collected for VOC and SVOC analysis were analyzed using the SW-846 8010/8020 (aqueous), SW-846 8240(soils) and the 3/90 CLP SOW respectively. Samples collected for metals were analyzed using CLP methods.

Based on the precision and accuracy assessment presented above, the data collected during the SI are considered to be comparable with the data collected during previous investigations.

# F.1.1.5 Completeness

Completeness was defined as the percentage of valid data obtained from a measurement system. DQOs for completeness are to meet a level of 85% usable data. Usable data, is data that has not been rejected during the data validation process. Based on the evaluation of the laboratory QC results for the 8,754 data points presented in Appendix G, these data were considered equal to 99 percent, and as such, were used as the basis of all recommendations presented in this report. Eight VOC, 73 SVOC, and 13 TAL data points were rejected for use because the data was qualified "R" indicating unreliable results due to surrogate and internal standard recoveries. The VOC and SVOC data points which were qualified "R" are presented in Table F-10.

Based on the evaluation of the laboratory QC results 99 percent of the total environmental data collected during the SI were used as the basis of all recommendations presented in this report. A complete list of all data points obtained during the SI is included in Appendix G.

# F.2 Field Quality Control Assessment

Twelve trip blanks, 6 field blanks, 6 equipment rinseates, and 6 field replicates were collected and analyzed by the same SOPs and methods used for the 57 environmental samples. Tables F-11 contains a cross-reference of the associated field QC samples.

Table F-10 Data Points Qualified "R" ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
/an	ng/l	ng/I	1/gn	ng/l	ng/l	ng/l	ng/l	ng/l	l/gn	1/gn	ng/l	ng/l	ng/l	ng/l	ug/l	ug/l	ng/l	ng/l	ug/l	ng/l	ng/l	l/gn	l/gn	ng/l	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
~	~	~	~	~	~	~	~	~	~	~	~	~	<b>~</b>	~	~	<b>~</b>	~	~	~	~	~	~	~	~	≃	~	<b>~</b>	~	~	~	~	~
10.0000	10.0000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	1.0000	1.0000	10.0000	1.0000	1.0000	410.0000	410.0000	410.0000	1000.0001	410.0000	1000.0000	410.0000	410.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	1.3700	1.8400	18.2000	54.1000	1.0100	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000
1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Chlorophenol	2-Methylphenol	4-Methylphenol	Hexachloroethane	N-Nitrosodi-N-Propylamine	Phenol	bis(2-Chloroethyl) ether	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Chlorophenol	2-Methylphenol	4-Methylphenol	Hexachloroethane	N-Nitrosodi-N-Propylamine	Phenol	bis(2-Chloroethyl) ether	1,1,1-Trichloroethane	1,2-Dichloroethane	Chloroethane	Tetrachloroethylene	1,1,1-Trichloroethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene
CS1-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS2-MW1-GWI	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW3-GW1	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6
MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW1	MW2	MW2	MW2	MW3	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6

Table F-10 Data Points Qualified "R" ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8010/8020
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/l
~	~	~	~	~	×	<b>~</b>	~	~	~	~	~	æ	~	~	~	~	~	~	æ
410.0000	410.0000	1000.0000	410.0000	1000.0000	1000.0000	410.0000	410.0000	1000.0001	1000.0001	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1.0000
0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.1000
2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylphenol	2-Nitroaniline	3-Nitroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	16-4-6 Acenaphthylene	Diethyl phthalate	Dimethyl phthalate	Hexachlorocyclopentadiene	Hexachloroethane	N-Nitrosodi-N-Propylamine	Phenol	bis(2-Chloroethyl) ether	1,4-Dichlorobenzene
CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SB6-4-6	CS2-SW2
SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SW2

Table F-11 Associated QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

		ER4	ER1	ER1	ER1	ER2	ER2	ER2	ER4	ER4	ER1	ER1	ER1	ER1	ER1	ER2	ER2	ER2	ER4	ER10	ER4	ER10	ER4	ER4	ER10	ER4	ER10	ER4	<b>ER10</b>	ER4	ER10	ER4	ER10	ER4	FR10	FR2	FR2	FD 7	E03	ER3	
2		FB2	FB2	FB2	FB2	FB2	FB2	FB2	FB4	FB4	FB2	FB2	FB2	FB2	FB2	FB2	FB2	FB2	FB4	FB6	FB4	FB6	FB4	FB4	FB6	FB4	FB6	FB4	FB6	FB4	FB6	FB4	FB6	FB4	FBG	FB2	FR2	FR	FB3	FB2	
	APLES	<b>FB</b> 1	FB1	FB1	FB1	FB1	FB1	FB1	FB3	FB3	FB1	FB1	FB1	FB1	FB1	FB1	FB1	F81	FB3	FB5	FB3	FB5	FB3	FB3	FB5	FB3	FB5	FB3	FB5	FB3	FB5	FB3	FB5	FB3	FB5	181	19	FB -	. H	<u> 18</u>	
	OC SAMPLES	TB1	TB1	<b>TB</b> 1	<b>TB1</b>	TB2	TB2	TB3	TB8	TB8	TB1	TB1	TB1	TB1	TB1	<b>TB</b> 1	TB2	TB3	TB10	TB11	TB10	TB11	TB10	TB10	TB11	TB10	TB11	TB10	TB11	TB10	TB11	TB10	TB12	TB10	TB12	TB2	TB2	TB3	TB4	TB4	
	COLLECT DATE	11/18/92	11/18/92	11/18/92	11/18/92	11/19/92	11/19/92	11/20/92	12/03/92	12/03/92	11/18/92	11/18/92	11/18/92	11/18/92	11/18/92	11/19/92	11/19/92	11/20/92	12/06/92	04/14/93	12/06/92	04/14/93	12/06/92	01/20/93	04/14/93	12/06/92	04/14/93	12/06/92	04/14/93	12/06/92	04/14/93	12/06/92	04/15/93	12/06/92	04/15/93	11/19/92	11/19/92	11/20/92	11/21/92	11/22/92	
	MATRIX	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	SOIL	SOIL	SOIL	SOIL	SOIL	
	SAMPLEID	CS1-SB2-0.5-1	CS1-SB3-0-0.5	CS1-SB4-0-0.5	CS1-SB5-025	CS1-SB6-0-0.5	CS1-SB7-0-0.5	CS1-SB8-0-0.5	CS1-SS1	CS1-SS2	CS1-SB2-5-5.5	CS1-SB3-4.5-5	CS1-SB4-0.5-1	CS1-SB4-5.5-6	CS1-SB5-4.5-5	CS1-SB6-4-6	CS1-SB7-5-5.5	CS1-SB8-5-5.5	CS1-MWI-GWI	CS1-MW1-GW2	CS1-MWI-GW1-F	CS1-MWI-GWZ-F	CS1-MW2-GW1	CS1-MW2-GWI	CS1-MW2-GWZ	CS1-MWZ-GW1-F	CS1-MWZ-GWZ-F	CS1-MW3-GW1	CS1-MW3-GW2	CS1-MW3-GW1-F	CS1-MW3-GW2-F	CS1-MW4-GW1	CS1-MW4-GW2	CS1-MW4-GW1-F	CS1-MW4-GW2-F	CS2-SB2-0-0.5	CS2-SB3-0.5-1	CS2-SB4-0-0.5	CS2-SB5-0.5-1	CS2-SB6-0.5-1	
	LOCATOR	CS1	CS:	csı	CSI	CST	is :	CSI	CSI	CSI	cs.	CS1	CS1	CSI	CSI		-2 -2		is:	CSI	CSI	CSI	CS1	cs1	CS1	cs1	CSI	- S	CSI	rs:	<u> </u>	CS.	CS:	CSI	CS1	CS2	CS2	CS2	CS2	CS2	

Table F-11 Associated QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	ER3	ER4	ER2	ER2	ER2	ER2	ER3	T G	ER3	ER4	ER4	ER4	ER4	ER10	ER10	ER4	ER10	ER10	ER4	ER10	ER10			ER4	ER4	ER4	ER4	ER11	ER11	ER11		ER1	ER11	ER11	ER4
	FB2 FB4	FB4	FB2	FB2	FB2	FB2	£85	182 EB 2	FB2	FB4	FB4	FB4	FB4	FB6	FB6	FB4	FB6	FB6	FB4	FB6	FB6			FB4	FB4	FB4	FB4	FB6	FB6	FB6		FB6	FB6	FB6	FB4
MPLES	FB1 FB3	FB3	Æ 8	<u> </u>	F81	<b>18</b>	<u> </u>	5 5	<u> </u>	FB3	FB3	FB3	FB3	FB5	FB5	FB3	FB5	FB5	FB3	FB5	FB5			FB3	FB3	FB3	FB3	FB5	FB5	FB5		FB5	FB5	FB5	FB3
OC SAMPLES	TB4 TB8	1B8	TB2	182 182	TB2	TB3	184	TB. T	184	TB7	TB7	TB7	TB10	TB10	TB10	TB10	TB10	TB10	TB10	TB11	TB11			TB6	TB6	TB6	TB6	TB32	TB32	TB32		TB32	TB32	TB32	TB6
DATE																																			
COLLECT DATE	11/22/92 12/03/92 12/03/92	12/03/92	11/19/92	11/19/92	11/19/92	11/20/92	11/21/92	11/22/92	11/22/92	12/02/92	12/02/92	12/02/92	12/05/92	04/13/93	04/13/93	12/06/92	04/14/93	04/15/93	12/05/92	04/13/93	04/13/93	04/13/93	04/13/93	12/01/92	12/01/92	12/01/92	12/01/92	04/19/93	04/19/93	04/19/93	04/19/93	04/19/93	04/19/93	04/19/93	12/01/92
										F	F	<b>-</b>	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER												
MATRIX	SOIL	SOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SUBSOIL	SEDIMENT	SEDIMENT	SEDIMENT	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	WATER	WATER	WATER	WATER	SOIL	SOIL	SOIL	SOIL	SUBSOIL	SUBSOIL	SUBSOIL	WATER
LEID	7-0-2 1	2RE	2-5.5-6 2-7-7-5	2-7.5-8	3-6.5-7	4-5-5.5	5-4-4.5	7-2-4	7-4.5-5	_	2	5	CS2-MW1-GW1	CS2-MW1-GW2	CS2-MW1-GW2-F	CS2-MW2-GW1	CS2-MW2-GW2	CS2-MW2-GW2-F	CS2-MW3-GW1	CS2-MW3-GWZ	CS2-MW3-GW2-F	CS2-MW4-GW2	CS2-MW4-GW2-F	5	2	2	*	-SS0-1	CF-SB2-SS0.5-1	CF-SB3-SS0.5-1	CF-SB4-SS0.5-1	CF-SB1-SS2.5-3	CF-SB2-SS2.5-3	CF-SB3-SS2-2.5	V1-F
SAMPLEID	CS2-SB7-0-2 CS2-SS1 CS2-SS2	CS2-SS2RE	CS2-SB2-5.5-6	CS2-SB2-7.5-8	CS2-SB3-6.5-7	CS2-SB4-5-5.5	CS2-SB5-4-4.5	CS2-SB7-2-4	CS2-SB7-4.5-5	CS2-SD1	CS2-SD2	CS2-SD3	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-MV	CS2-SWI	CS2-SW2	CS2-SW3	CS2-SW4	CF-SB1-SS0-1	CF-SB2	CF-SB3	CF-SB4	CF-SB1	CF-SB2	CF-SB3	CS2-SW1-F
~-																																			
LOCATOR	CS2 CS2 CS2	32	22 22	. 22	32	25	7.	3 6	22	32	\$2	52	52	52	25	52	52	52	52	52	52	22	22	52	22	25	52	11	U	ti	Ŀ	U	ti	U	22
_	ប ប ប	ű	ΰČ	ັັ	ర	ΰò	jį	טֿ נֿ	ű	ű		წ =₋ე		Ö	Ü	Ű	ŭ	Ö	ΰ	Ű	Ű	Ö	Ö	Ö	Ö	ΰ	Ű	ิ	๋	๋	๋	๋	ับ	บ	Ö

# Table F-11 Associated QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	######################################
	181 184 184 184 184 184 184 184 184 184
MPLES	683 683 683 683 683 683 683
OC SAMPLES	TB6 TB6 TB10 TB10
COLLECT DATE	12/01/92 12/01/92 12/01/92 R 12/05/92 R 12/05/92
MATRIX	WATER WATER WATER GROUNDWATER GROUNDWATER
SAMPLEID	CS2-SW2-F CS2-SW3-F CS2-SW4-F CS2-MW1-GW1-F CS2-MW2-GW1-F CS2-MW3-GW1-F
LOCATOR	CS2 CS2 CS2 CS2 CS2 CS2

### F.2.1 Trip Blanks

Twelve trip blanks were prepared and analyzed by Compuchem Laboratory in North Carolina and Pace Laboratories in New York. The blanks were prepared in the labs using American Society for Testing and Materials (ASTM) Type II water. The trip blanks were stored with the unused sample bottles and returned to the laboratory with each cooler containing environmental samples to be analyzed for VOCs. Methylene chloride was detected at concentrations greater than the contract required quantitation limit (CRQL) in three trip blanks C-TB4, C-TB5, and C-TB12. Table F-12 summarizes the concentrations of the VOCs detected in the trip blanks collected during the SI field effort.

### F.2.2 Field Blanks

Six field blanks were collected to provide baseline analytical data for the water used for equipment decontamination. Field blanks were taken for the ASTM Type II water used and the potable water used in the steam cleaner and as decontamination water. Field blanks were collected by randomly selecting sample containers from the supply, filling them with water from the sample source, and then preserving as appropriate for the required analysis.

The blanks were analyzed in the same manner as the associated environmental samples. Levels of chloroform, bromenated compounds, lead, arsenic, nickel, and chromium were detected in selected field blanks prepared during the SI. Table F-12 summarizes the concentrations of elements detected in the field blanks collected at Capital ANG. The ILANG, Capital Airport SI was conducted in two sampling events separate field blanks were obtained for each sampling event. The low levels of compounds and elements detected in the field blanks are not considered to have contributed to any levels seen in the associated environmental samples, with the potential exception of the concentrations of lead and arsenic in C-FB4 and C-FB6.

# F.2.3 Equipment Rinseates

Six equipment rinseates were prepared from rinseates of equipment used to obtain environmental samples. The equipment rinseates were prepared by pouring ASTM Type II water through or over sampling equipment which had been decontaminated. The equipment rinseates were preserved as appropriate for the required analysis and analyzed using the same methods as the associated environmental samples. Lead was detected above the method detection limit in one equipment rinseate, C-ER1, collected during the SI. VOCs were detected at low concentrations in the equipment rinsates. C-ER10 contained toluene and C-ER1 contained acetone. No SVOCs or PCB/pesticides were detected in equipment rinseates. Table F-12 summarizes the concentrations of elements detected in the equipment rinseates collected at Capital ANG Base.

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

		DZO PACE	DZO PACE	DACE PACE		_							DZO PACE		DZO PACE	DACE PACE		DZO PACE									DZO PACE	020 PACE		DZO PACE	DZO PACE	DZO PACE	DZO PACE	
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	0010100
ug/1	ng/l	l/gn	l/gu	ug/1	l/gn	ug/1	ug/l	l/gn	l/gu	ug/1	l/gu	l/gu	l/gn	l/gu	l/gu	l/gn	ug/1	I/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gu	l/gn	l/gu	l/gu	l/gu	
5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	2.0000 U	10.0000 U	5.0000 U	10.0000 U	0.0000	10.0000 U	5.0000 U	5.0000 U	2.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	2.0000 U	5.0000 U	10.0000 U	10.0000 U	0.0000 B	5.0000 U	5.0000 U	5.0000 U	5 0000 11
0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	8.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	39.0000	0.0000	0.0000	0.0000	0.000
1,1,1-Trichloroethane	1,1,2,2-1 etrachloroethane	1,1,2-1 richloroethane	1,1-Dichloroethane	I, I-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene
C-ER1		C-ERI	C-EKI	C-EKI	C-ER1	C-ER1	C-ERI	C-ER1	C-ERI	C-ER1	C-ER1	C-ER1	C-ER1	C-ER1	C-ERI	C-ER1	C-ER1	C-ER1	C-ERI	C-ER1	C-ERI	C-ER1	C-ERI	C-ERI	C-ER1	C-ERI	C-EKI	C-ER1	C-ER1	C-ER1	C-ERI	C-ERI	C-ER1	C-ERI
EQUIP. RINSATE	FOLID PINSATE			FOUR PINSAIE	EQUIP. KINSATE	EQUIP. RINSATE						EQUIP. KINSATE	EQUIP. KINSATE			EQUIP. KINSAIE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. KINSATE				EQUIP. KINSATE			EQUIP. KINSATE		EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	<b>~</b> 1	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	CLP PACE	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
1/3n	ug/l	ug/I	ug/l	ng/l	ug/l	ug/I	ug/l	ug/1	ug/1	ug/1	ng/I	l/gn	ug/I	ug/l	ug/I	ug/1	ug/1	ug/l	ug/I	ug/I	l/gn	l/gu	ng/l	ng/1	l/gn	ug/l	ug/l	ng/l	ng/l	ng/I	ug/1	ug/1	ng/1	ug/1	ug/l
10.0000 U	10.0000 U	5.0000 U	0.0000 L	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U
0.0000	0.0000	0.0000	3.3000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000
Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Lead	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	C-ERI 2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Mcthylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene
C-ER1	C-ER1	C-ER1	C-ERI	C-ER1	C-ER1	C-ER1	C-ER1	C-ERI 2,	C-ER1	C-ERI	C-ER1	C-ERI	C-ER1	C-ER1	C-ERI	C-ER1	C-ER1	C-ER1	C-ER1	C-ER1	C-ERI	C-ERI	C-ERI	C-ERI		C-ER1	C-ERI	Ť	C-ERI	C-ERI	C-ER1	C-ER1	. C-ER1	C-ER1	C-ER1
EQUIP. RINSATE	EQUIP. RINSATE															EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

CLP 3/90 PACE	CLP 3/90 PACE	CLP 3/90 PACE	3/90	CLP 3/90 PACE	CLP 3/90 PACE	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	9/90	3/90	3/90		3/90	3/90	3/90	CLP 3/90 PACE	3/90	CLP 3/90 PACE	CLP 3/90 PACE	CLP 3/90 PACE	CLP 3/90 PACE	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	_
l/gu	ug/l	ng/l	l/gn	l/gn	l/gn	ug/l	ug/l	ug/l	ug/I	ug/l	ug/1	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ng/l	ug/l	ug/l	ug/l	ng/l	ug/1	ug/I	ug/1	ug/1	ug/l	ug/l	ug/I	ug/l	ug/l	l/gn
10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	0.0000 J	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	0.0000 B	1.0000 U	1.0000 U	1.0000 U	1.0000 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	1.0000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.0000	0.000	0.000	0.0000	0.0000
Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi)perylene	Benzo(k) fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane
C-ER1	C-ERI	C-ERI	C-ERI	CERI	C-ERI	C-ER1	C-ER1	C-ERI	C-ER1	C-ER1	C-ERI	C-ERI	C-ER1	C-ER1	C-ER1	C-ER1	C-ERI	C-ER1	C-ER1	C-ER1	C-ERI	C-ERI	C-ER1	C-ER1	C-ER1	C-ERI	C-ER1			C-ERI	C-ERI	C-ER10	C-ER10	C-ER10	C-ER10
EQUIP. RINSATE	EQUIP. KINSAIE	EQUIP. KINSAIE	EQUIP. KINSATE	EQUIP. KINSAIE	EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	3/90 COMPLICHEM	3/90 COMPUCHEM	3/90 СОМРИСНЕМ	3/90 СОМРИСНЕМ	3/90 СОМРИСНЕМ	3/90 СОМРИСНЕМ	3/90 СОМРИСНЕМ	3/90 COMPUCHEM	3/90 COMPUCHEM	3/90 COMPUCHEM	3/90 COMPUCHEM	3/90 COMPLICHEM	3/90 СОМРИСНЕМ
CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	a 15	G C	Δ. Σ	<u> </u>	CLP CLP		CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/	CLP 3/
ug/l	ug/l	l/gn	l/gn	l/gn	l/gn	ug/l	ug/l	ug/l	l/gn	ug/l	l/gu	ug/1	ug/1	ug/l	ug/I	ug/1	ug/l	l/an	ng/l	ne/1	l/an	ng/l	ug/l	ug/l	l/gn	l/gn	l/gn	l/gn	I/gn	l/gn	l/gn	ug/l	ug/l	ug/I	l/gn
0.0000 ()B	46.0000 U	3.0000 U	5.0000 U	2.0000 U	5.0000 U	156.0000 U	10.0000 U	0000.6	25.0000 UJ	0.0000 ()B	2.0000 UL	476.0000 U	0000°9	0.2000 U	31.0000 U	2240.0000 U	3.0000 U	10.0000 U	0.0000 ()B	4.0000 U	7.0000 U	0.0000 OJ	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U
81.6000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	37.2000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	339.0000	0.0000	0.000	8.5000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	C-ER102,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene
C-ER10	C-ERIO	C-EKIO	C-EKIO	C-EKIO	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ERIO	C-EKIO	C-ERIO	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-ER10	C-EKIO	C-ER102,2'-	C-ERIO	C-ERIO	C-EK10	C-EKIO	C-ER10	C-ER10	C-ER10	C-ER10
EQUIP. RINSATE	EQUIP. KINSAIE		EQUIP. RINSAIE								EQUIP. KINSAIE														EQUIP. RINSAIE		EQUIP. RINSAIE			EQUIF. KINSAIE					EQUIP. KINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

3/90 3/90 3/90 3/90	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM	3/90	3/90 3/90 3/90 3/90	3/90 3/90 3/90 3/90 3/90	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM
l/gu l/gu l/gu l/gu	1/8n 1/8n 1/8n 1/8n	1/8n 1/8n 1/8n	l/gu Ngu I/gu I/gu	/8n  /8n  /8n  /8n  /8n	l/gu l/gu l/gu l/gu l/gu
10.0000 U 25.0000 U 10.0000 U 10.0000 U 25.0000 U	10.0000 U 10.0000 U 25.0000 U 10.0000 U	10.0000 U 10.0000 U 25.0000 U 25.0000 U	10.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U 10.0000 U 10.0000 U 10.0000 U 0.0000	10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U
0.0000	0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 3.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol	4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene	Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	Benzo(ghi)perylene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate	Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene
	C-ERIO C-ERIO C-ERIO C-ERIO C-ERIO		C-ER10 C-ER10 C-ER10 C-ER10	C-ER10 C-ER10 C-ER10 C-ER10 C-ER10	C-ER10 C-ER10 C-ER10 C-ER10 C-ER10 C-ER10
	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE			EQUIP. KINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM	3/90	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM		PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM	PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM
ug/l ug/l ug/l	ug/1 ug/1 ug/1	ngu Ngu Ngu Ngu	ug/1 ug/1 ug/1 ug/1	1/gu 1/gu 1/gu 1/gu	rgn Ng/I Ng/I Ngn I/gn	1/8n 1/8n 1/8n 1/8n 1/8n 1/8n
10.0000 U 10.0000 U 10.0000 U	10.0000 U 10.0000 U 10.0000 U	25.0000 U 25.0000 U 10.0000 U 10.0000 U	10.0000 U 10.0000 U 0.0000 B 0.1000 U	0.1000 U 0.0500 U 0.0500 U 0.0500 U	0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.0500 U	0.5000 U 1.0000 U 2.0000 U 1.0000 U 1.0000 U 1.0000 U
0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 2.0000 0.0000 0.0000	0.0000	0.000 0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000 0.0000 0.0000
Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone	N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene	Pentachlorophenol Phenanthrene Phenol Pyrene	bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 4,4'-DDD 4,4'-DDE	4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II	Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone Heptachlor	Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260
C-ER10 C-ER10 C-ER10	C-ER10 C-ER10 C-ER10 C-ER10			C-ER10 C-ER10 C-ER10 C-ER10 C-ER10	C-ER10 C-ER10 C-ER10 C-ER10 C-ER10	C-EK10 C-EK10 C-EK10 C-EK10 C-EK10 C-EK10
	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

SW8010 COMPUCHEM	l/gn	0.4000 U	0.0000	Dibromomethane	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	l/gn	0.3000 U	0.000	Dibromochloromethane	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/l	0.3500 U	0.0000	Chloroform	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/l	0.5000 U	0.000	Chloroethane	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	1/gn	0.3500 U	0.0000	Chlorobenzene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ng/l	0.3500 U	0.0000	Carbon Tetrachloride	C-ER10	
SW8010 COMPUCHEM	l/gn	0.5000 U	0.000	Bromoform	C-ER10	
SW8010 COMPUCHEM	ug/I	0.4000 U	0.0000	Bromodichloromethane	C-ER10	
SW8010 COMPUCHEM	l/gu	0.2500 U	0.000	Bromochloromethane	C-ER10	
SW8010 COMPUCHEM	ug/1	0.8500 U	0.000	Bromobenzene	C-ER10	
SW8010 COMPUCHEM	l/gu	0.3500 U	0.000	4-Chlorotoluene	C-ER10	
SW8010 COMPUCHEM	l/gn	0.2500 U	0.0000	2-Chlorotoluene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/1	0.4000 U	0.000	2-Chloroethylvinyl ether	C-ER10	
SW8010 COMPUCHEM	ug/1	0.2000 U	0.000	1,4-Dichlorobenzene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/l	0.2500 U	0.0000	1,3-trans-Dichloropropylene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/1	0.3000 U	0.0000	1,3-cis-Dichloropropylene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/1	0.2000 U	0.0000	1,3-Dichlorobenzene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/1	0.3000 U	0.0000	1,2-trans-Dichloroethylene	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	ug/I	0.3000 U	0.0000	1,2-Dichloropropane	C-ER10	EQUIP. RINSATE
SW8010 COMPUCHEM	l/gn	0.2500 U	0.000	1,2-Dichloroethane	C-ER10	
	ug/1	0.3000 U	0.0000	1,2-Dichlorobenzene	C-ER10	EQUIP.
	ug/I	0.3500 U	0.000	1,2-Dibromoethane	C-ER10	
SW8010 COMPUCHEM	ug/l	0.3500 U	0.0000	1,2,3-Trichloropropane	C-ER10	EQUIP.
SW8010 COMPUCHEM	ug/I	0.3500 U	0.000	1,1-Dichloroethylenc	C-ER10	
SW8010 COMPUCHEM	l/gn	0.3500 U	0.0000	1,1-Dichloroethane	C-ER10	
SW8010 COMPUCHEM	ug/l	0.2500 U	0.0000	1,1,2-Trichloroethane	C-ER10	
SW8010 COMPUCHEM	ug/l	0.4000 U	0.0000	1,1,2,2-Tetrachloroethane	C-ER10	
SW8010 COMPUCHEM	ug/1	0.3500 U	0.000	1,1,1-Trichloroethane	C-ER10	
SW8010 COMPUCHEM	ug/l	0.3500 U	0.0000	1,1,1,2-Tetrachlorocthane	C-ER10	
PCB-CLP COMPUCHEM	ug/I	0.0500 U	0.000	gamma-Chlordane	C-ER10	
PCB-CLP COMPUCHEM	ug/1	0.0500 U	0.000	gamma-BHC	C-ER10	
PCB-CLP COMPUCHEM	ug/1	0.0500 U	0.000	delta-BHC	C-ER10	
PCB-CLP COMPUCHEM	ug/1	0.0500 U	0.000	beta-BHC	C-ER10	
PCB-CLP COMPUCHEM	ug/I	0.0500 U	0.000	alpha-Chlordane	C-ER10	
PCB-CLP COMPUCHEM	ug/1	0.0500 U	0.000	alpha-BHC	C-ER10	
PCB-CLP COMPUCHEM	ug/1	5.0000 U	0.0000	Toxaphene	C-ER10	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	SW8020 COMPUCHEM	8010/8020 PACE						8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE				
ug/1	ug/l	ug/l	ng/l	ng/l	ng/l	ng/l	ng/1	ng/l	ng/l	l/gn	ng/l	ng/l	ng/l	I/gu	ug/l	ug/I	ug/I	ug/1	ug/l	ug/1	ug/l	ug/l	ug/1	ug/l	ug/1	l/gu	l/gu	l/gn	ug/l	ug/l	ug/l	ug/l	l/an	l/an	l/gn
0.4500 U	0.5000 U	0.0000 L	0.3000 U	0.3000 U	0.5500 U	0.1500 U	0.2000 U	0.2000 U	0.5000 U	0.1500 U	0.3500 U	0.2500 U	0.2000 U	5.0000 U	0.2500 U	0.0000	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U
0.000	0.0000	0.4500	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	1.1000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000
Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	1,2-Dichlorobenzene	1,2-Dimethylbenzene	1,3-Dichlorobenzene	1,3/1,4-Dimethylbenzene	1,4-Dichlorobenzene	Benzene	Chlorobenzene	Ethylbenzene	Methyl-t-Butyl Ether	Styrene	Toluene	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	I, 3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene
C-ER10	C-EK10	C-EKIO	C-ER10	C-EKIO	C-EKIO	C-EKIO	C-ERIO	C-EKIO	C-ERIO	C-EKIO	C-ER10	CERIO	C-EKIO	C-ERIO	C-EKIO	C-ER10	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-EK2	C-EK2			C-EK2	C-EK2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2
EQUIP. RINSATE	EQUIP. KINSALE	EQUIP. KINSAIE	EQUIP. KINSALE	EQUIF. KINSATE	ECOIL. MINSAIE		EQUIP. KINSAIE		EQUIF. KINSAIE	EQUIP. KINSALE	EQUIP. KINSAIE	EQUIF. MINSATE	EQUIP. MINSAIE												EQUIP. KINSAIE		EQUIP. KINSAIE	ECOIP. KINSAIE					EQUIP. RINSATE		EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	G D	G. I.	d'ID	d ID	CLP
1/gn	l/gn	l/gn	ng/1	ug/1	ug/l	ug/l	ng/l	ug/l	ug/l	ng/l	ug/l	ug/l	ug/l	ug/I	ug/1	l/gn	ug/I	ng/l	ug/l	l/gn	ng/l	l/gn	ng/l	ug/l	ug/I	ug/l	ug/l	ng/l	ng/l	ne/l	l/an	ns/l	l/an	l/an	ug/I
5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	0.000	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	0.0000	13.0000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	0.0000	4.0000 U	2.0000 U	3.0000 U	0.0000	1.0000 U	0.0000	0.0000	0.2000 Ü	0.0000	80.0000 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	15.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	14.2000	0.000	0.000	0.000	0.0000	0.0000	190.0000	0.000	0.0000	0.000	74.6000	0.000	72.5000	1.3000	0.000	3.2000	0.0000
Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium
C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2
																						•	<b>(</b>												
EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. KINSALE													EQUIP.		EQUIP.		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE						EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 OC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30
ug/l ug/l l/gu l/gu l/gu	l/gu l/gu l/gu l/gu	l/gu l/gu l/gu l/gu	1,20 1,20 1,20 1,20 1,20 1,20 1,20	ugu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu
1.0000 U 3.0000 U 0.0000 U 1.0000 U 2.0000 U 0.0000	10.0000 U 10.0000 U 10.0000 U 10.0000 U 25.0000 U	10.0000 U 10.0000 U 10.0000 U 25.0000 U 10.0000 U	10.0000 U 25.0000 U 10.0000 U 10.0000 U 25.0000 U	25.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 25.0000 U 25.0000 U 10.0000 U
0.0000 0.0000 139.0000 0.0000 20.0000 0.0000	0.0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0
Sclenium Silver Sodium Thallium Vanadium Zinc 1,2,4-Trichlorobenzene	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol	C-ER2 2,4.0- Inchlorophenol C-ER2 2,4-Dichlorophenol C-ER2 2,4-Dimethylphenol C-ER2 2,4-Dimitrophenol C-ER2 2,4-Dimitrotoluene C-ER2 2,6-Dimitrotoluene	2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3.3'-Dichlorobenzidine	4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline A-Nitroaniline Acenaphthene
C-ER2 C-ER2 C-ER2 C-ER2 C-ER2 C-ER2 C-ER2	C-ER2 C-ER2 C-ER2 C-ER2 2,	C-ER2 C-ER2 C-ER2 C-ER2 C-ER2	C-ER2 C-ER2 C-ER2 C-ER2 C-ER2 C-ER2 C-ER2	
	*			
	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE		EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 PCB-CLP
l/gu 1/gu 1/gu 1/gu	l/gu 1/gu 1/gu	l/gu 1/gu 1/gu 1/gu	rgn I/8n I/8n I/8n	1/8n 1/8n 1/8n 1/8n 1/8n	l/gu l/gu l/gu l/gu l/gu
10.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U U 0.0000 U U 0.0000 U U U 0.0000 U U U 0.0000 U U U U	10.0000 U 10.0000 U 10.0000 U 10.0000 U 25.0000 U	10.0000 U 10.0000 U 10.0000 U 10.0000 U 0.0000 B 0.1000 U
0.000.0 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.800	0.0000 0.0000 0.0000 0.0000 0.0000	0000 0000 0000 0000 0000 0000 0000	0000.0 0000.0 0000.0 0000.0 0000.0	0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate	Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate	Hexachlorobutadiene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane	N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol	Phenauthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate 4,4'-DDD
C-ER2 C-ER2 C-ER2 C-ER2 C-ER2	C-ER2 C-ER2 C-ER2 C-ER2 C-ER2	C-ER2 C-ER2 C-ER2 C-ER2 C-ER2	C - ER2 C - ER2 C - ER2 C - ER2 C - ER2	C C C C C C C C C C C C C C C C C C C	C-EK2 C-ER2 C-ER2 C-ER2 C-ER2 C-ER2
EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. EQUIP. EQUIP. EQUIP.	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/1	l/gu	ug/l	ug/1	ug/l	l/gn	ug/1	ug/l	l/gu	ug/l	ug/l	ug/l	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	ug/l	ug/l	ug/l	ng/l	ug/l	ug/I	ug/l	l/gn	l/gn	ug/1	l/gn	l/gn	l/gn	l/gn	ng/l	1/gn	l/gn	l/gn
Ω	n	n	Ω	Ω	n	n	n	n	n	n	n	n	n	D	ח	n	n	n	n	Ω	n	D	n	n	n	ם	ם	ם	D	ם	ח	ח	ם	'n	Ω
0.1000	0.0500	0.0500	0.0500	0.1000	0.1000	0.1000	0.1000	0.1000	0.0500	0.0500	0.5000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	5.0000	2.0000	2.0000	5.0000	2.0000	5.0000	5.0000	2.0000	2.0000	2.0000
0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016		PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene
C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER2	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3
EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE														EQUIP. RINSATE		EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP
1/gn	ug/l ug/l	l/gn	l/gn	l/gn	l/gn	ngn	ug/1	l/gn	l/gn	l/gn	l/gn	ug/1	l/gn	ug/1	1/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/1	1/gn	I/gu	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l
5.0000 U	5.0000 U	10.0000 U	5.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	0.0000 B	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	0.0000	0.0000	1.0000 U	0.0000	1.0000 U	1.0000 U	0.0000	4.0000 U
0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	12.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	241.0000	36.1000	0.0000	2.3000	0.0000	0.0000	337.0000	0.0000
1,3-cis-Dichloropropylene	1,3-trails-Dichloropropyicite 1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium
C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	· C-ER3	C-ER3	C-ER3
EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE		EQUIP. RINSATE	1 EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	DACE	DACE	DACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CI D	a 13	ָבָבָּה בייבי	2 D	CI.P	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/I	ng/J	. e. [/øii	[/sn	1/611	1/611	l/an	ug/l	ug/l	ug/l	ug/1	ug/1	l/gn	l/gn	ng/1	l/gu	ug/1	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	ug/1	l/gu	ug/l	ug/1	ug/l	ug/l	ug/1	l/gn	ng/l	ug/l	l/gu	1/gn	l/gu
2.0000 U	3.0000 U	0.0000	1.0000 U	0.0000	0.0000	0.2000 Ü	0.0000	0.0000	1.0000 U	3.0000 U	0.0000 ()	1.0000 U	2.0000 U	0.0000	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U
0.0000	0.0000	384.0000	0.0000	685.0000	2.8000	0.000	9.1000	180.0000	0.0000	0.000	390.0000	0.000	0.0000	13.3000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	00000
Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	I,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	C-EK3 2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol		3-Nitroaniline
C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-EK3	C-ER3	C-ER3	C-ER3	C-EK3 2,	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-EK3	C-EK3	C-EK3	C-EK3	C-EK3	C-ER3	C-EK3	C-ER3	C-ER3	C-ER3	C-EK3
EQUIP. RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	KINSATE	KINSATE	KINSATE	KINSAIE	KINSATE	KINSATE	KINSAIE	KINSAIE	KINSATE	KINSATE	RINSATE	RINSATE	KINSATE	KINSA LE	RINSAIE	RINSAIE	KINSALE	KINSAIE	KINSATE	KINSALE	KINSATE	KINSATE	EQUIP. KINSATE	KINSAIE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30
Vân Vân Vân Vân Vân Vân Vân Vân Vân	I/Sn I/Sn I/Sn I/Sn I/Sn I/Sn
10,0000 U 10,0000 U 10,0000 U 25,0000 U 10,0000 U 10,0000 U 10,0000 U 10,0000 U 10,0000 U 10,0000 U 10,0000 U 10,0000 U 10,0000 U	0.0000 01 0.0000 01 0.0000 01 0.0000 01 0.0000 01 0.0000 01 0.0000 01
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4-Chloro-3-methyl phenol 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene	Fluoraninene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorochane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene
C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3	C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3 C-ER3
EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	PACE	PACE	PACE	DACE	TACE TACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	CLP 3/90		CLP 3/90				CLF 3/90	ביייין איני	PCB-CLP	PCB-CLP	PCB-CLP		PCB-CLF	PCB-CLI	PCR-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020
	ug/1	ug/l	ug/l	: 6  /øll	1,95	1/80	ug/1	1/Sin	ug/I	ug/I	ng/l	ug/I	1/9/1		 1/8n	ug/1	1/3n	ug/l	l/an	ng/l	ng/1	ug/1	ug/1	ug/l	ng/l	ng/1	ug/l	ng/l	ug/1	l/gn	l/gn	l/gu	ug/l	ng/l	l/gn	ug/l
•	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10 0000 01	11 0000 01	a 0000 0	2 0000:0	0.1000	0.1000	0 0001.0	0 0500	0.0500	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.0500 U	0.0500 U	0.5000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	5.0000 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	1.0000 U
	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	1 0000	2000	0000	00000	0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether		4.4'-DDD	4.4'-DDF	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1,2-Tetrachloroethane
	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-ER3	C-EK3	C-EK3	C-EK3	C-EK3	C-EK3	C-ER3	C-ER3	C-EK3	C-ER3	C-EK3	C-ER4
	EQUIP. RINSATE		EQUIP. KINSATE			EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE														EQUIP. KINSALE						EQUIP. KINSALE	EQUIP. KINSAIE	EQUIP. RINSATE	EQUIP. KINSALE	EQUIF. MINSAIE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020
1/gu 1/gu 1/gu 1/gu 1/gu	l/an l/an l/an l/an	1/gu 1/gu 1/gu 1/gu	1/gu 1/gu 1/gu 1/gu	1/gu 1/gu 1/gu 1/gu	I/gu I/gu I/gu I/gu I/gu
1.0000 R 1.0000 U 1.0000 U 1.0000 U 1.0000 U	1.0000 U 1.0000 U 1.0000 U 1.0000 U	D 0000.1 D 0000.1 D 0000.1 D 0000.1	1.0000 U 1.0000 U 1.0000 U 10.0000 U	1.0000 U 1.0000 U 1.0000 U 1.0000 U 10.0000 U	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
1.0700 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.000.0	0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene	i,2-Dichlorocthane 1,2-Dichloropropane 1,2-trans-Dichlorocthylene 1,3-Dichlorobenzene 1 4-Dichlorobenzene	2-Chloroethylvinyl ether Benzyl Chloride Bromobenzene Bromodichloromethane	Bromoformenane Bromoform Carbon Tetrachloride Chlorobenzene Chlorothane	Chloroform Dibromochloromethane Dibromomethane Ethylbenzene Methyl bromide	Methylene chloride Tetrachloroethylene Trichloroethylene Trichlorofluoromethane Vinyl chloride meta- and para-Xylenes ortho-Xylene
C-ER4 C-ER4 C-ER4 C-ER4 C-ER4 C-ER4	C-ER4 C-ER4 C-ER4 C-ER4	C-ER4 C-ER4 C-ER4 C-ER4 C-ER4	C-ER4 C-ER4 C-ER4 C-ER4	C-ER4 C-ER4 C-ER4 C-ER4 C-ER4	C-ER4 C-ER4 C-ER4 C-ER4 C-ER4 C-ER4
	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE		EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE		EQUIP. KINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
	ng/l	l/gn	ug/1	ug/l	ug/1	ug/l	ug/1	ug/1	ug/l	ug/1	ug/1	ug/1	ug/l	ug/I	ug/1	ug/1	ug/1	ug/l	ug/1	ug/1	ug/I	ug/1	l/gu	l/gn	ng/l	l/gn	ug/1	ug/l	l/gn	l/gu	ug/1	l/gn	ng/l	ug/1	ng/l	ug/1
	12.0000 U	13.0000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	0.0000	4.0000 U	2.0000 U	3.0000 U	0.0000	1.0000 U	0.0000	0.0000	0.2000 U	2.0000 U	80.0000 U	1.0000 U	3.0000 U	0.0000	1.0000 U	2.0000 U	0.000	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U
1	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	137.0000	0.0000	0.0000	0.000	39.4000	0.000	26.7000	1.8000	0.000	0.000	0.000	0.0000	0.000	132.0000	0.0000	0.000	20.3000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
•	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	C-ER4 2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene
	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4 2,2	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4
TEASING GIIIO	TOTAL MINSAIE																																	EQUIP. RINSATE		EQUIP. KINSATE

Table F-12 OC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
1/gn 1/gn	ug/1 1/2/1	ug/l	ug/l	ug/l	l/gu	l/gn	l/gn	l/gn	ng/l	l/gn	ug/1	ug/l	ng/1	ug/l	l/gu	l/gu	ug/l	ug/1	1/gn	ug/1	ug/l	ng/l	l/gn	l/gn	ug/1	1/gn	ng/l	ng/l	l/gn	l/gn	l/gu	ug/1	ug/1
10.0000 U 25.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U
0.0000	00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
2-Chlorophenol 2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene 2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene
C-ER4 C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4
EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE		EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90			CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
l/gn	ug/l	ug/1	ug/l	ug/1	ug/l	ug/l	1/gn	1/gn	ug/l	ug/1	l/gn	1/gn	I/gu	ug/1	l/gn	l/gn	I/gn	ug/l	ngn	ug/1	l/gu	l/gu	ug/1	l/gu	1/gn	l/gn	1/gn	l/gn	1/gn	ug/1	ug/1	l/gu	l/gn	l/gn	ug/1
10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	0.0000 B	0.1000 U	0.1000 U	0.1000 U	0.0500 U	0.0500 U	0.0500 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.0500 U	0.0500 U	0.5000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U
0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000
Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248		PCB-1260
C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4
	EQUIP. RINSATE					EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
1/80	-8- [/an	ug/l	ug/1	ug/l	ug/l	ng/l	l/gn	l/gu	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	1/gn	l/gn	ug/1	l/gn	ug/1	1/8n	l/gn	ug/l	ug/l	l/gn	l/gn	ug/l	ng/1	ng/l	ug/l	l/gn	ng/l	l/gn	ng/l	ng/l	l/Bn .
5.0000 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	S.0000 U	5.0000 U	10.0000 U	5.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U
0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготобогт	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide
C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-ER4	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1
EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD		FIELD							FIELD BLANK	FIELD BLANK	FIELD BLANK								FIELD BLANK		FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

1	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	מסעם	DACE	PACE	DACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	DACE	PACE	1701
000070100	0708/0108	8010/8070	8010/8070	0708/0108	0708/0108	8010/8070	8010/8070	8010/8020	0709/0109	3 5	ב ב	ב ב מיני	ב ב	. T	CLP	7 D	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	d D	CL.P 3/90	C1 D 3/00	CEL 2/30	CLF 3/90	
	ng/I	I/Sn	1/gn	ug/I	ngu 1/8n	1/8n	1/8n	ng/l	ug/1	ng/l	ug/1	ug/1	./9°.	1/611	1/3n	1/611	ug/l	l/an	ug/l	ug/1	ug/l	ug/l	ug/1	l/gn	l/gn	l/gn	ug/1	l/gn	l/gn	ug/1	l/an	l/an	1/011	e/1	ug/l	ò
11 0000 01	a 0000 c	0.000 S	5 0000	2 0000 5	5 0000	10 0000 01	0.000.01	5 0000 11	0000	13 0000 11	1 0000 1	0.0000	1.0000 U	1.0000 U	0.0000	4.0000 U	2.0000 U	0.0000	0.000	1.0000 UL	0.0000	0.0000	0.2000 U	0.0000	0.0000	1.0000 U	3.0000 U	0.0000	1.0000 U	2.0000 U	0.0000	10.0000 U	10.0000 U	10,0000 1	10,0000 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 0000 0	0000	0000	00000	00000	00000	00000	00000	0000	440 0000	00000	0.0000	58,6000	0.0000	0.0000	769.0000	0.0000	0.0000	5.7000	511.0000	0.0000	1400.0000	4.4000	0.0000	5.1000	402.0000	0.0000	0.0000	265.0000	0.0000	0.0000	39.2000	0.0000	0.0000	0.0000	0.0000	
Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	
C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-F81	C-F81	C-FBI	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	
FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK					FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLAIN	FIELD BLAINK	FIELD BLAIN	FIELD BLAIN	FIELD BLANK		FIELD BLANK	FIELD BLANK		FIELD BLANK	

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	ug/l ug/l ug/l ug/l
10.0000 U 25.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U 0.0000 10.0000 U 10.0000 U 0.0000
00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0.7000 0.0000 0.0000 2.0000
C-FB1 2,2'-Oxybis(1-Chloropropane) C-FB1 2,4,6-Trichlorophenol C-FB1 2,4-Dimethylphenol C-FB1 2,4-Dimitrophenol C-FB1 2,4-Dimitrophenol C-FB1 2,4-Dimitrophenol C-FB1 2,4-Dimitrophenol C-FB1 2-Chloronaphthalene C-FB1 2-Chloronaphthalene C-FB1 2-Methylnaphthalene C-FB1 2-Methylnaphthalene C-FB1 2-Methylnaphthalene C-FB1 2-Methylnaphthalene C-FB1 2-Methylnaphthalene C-FB1 3,3'-Dichlorobenzidine C-FB1 3,3'-Dichlorobenzidine C-FB1 4-Bromophenyl phenol C-FB1 4-Chloro-3-methyl phenol C-FB1 4-Chloro-3-methyl phenol C-FB1 4-Chloro-3-methyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 4-Chlorophenyl phenol C-FB1 Bernzo(a)anthracene C-FB1 Benzo(a)pyrene C-FB1 Benzo(b)fluoranthene C-FB1 Benzo(b)fluoranthene	Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate
	C-FB1 C-FB1 C-FB1 C-FB1
	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/l l/gu l/gu	ug/1 ug/1	1/gu	l/su	ug/1	ug/1	1/gn	ug/1	l/gn	l/gn	ug/1	ng/l	ug/1	ug/I	ng/l	l/gu	l/gn	l/gu	ug/1	ug/l	l/gu	ug/1	ng/l	l/gn	ng/l	l/gn	l/gu	l/gu	l/gn	ug/1	ug/I	ug/1	ug/1
10.0000 U 10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	0.0000 B	0.1000 U	0.1000 U	0.1000 U	0.0500 U	0.0500 U	0.0500 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.0500 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	1.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzofuran	Diethyl phthalate	Dimethyl phthalate Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor
C-FB1 C-FB1 C-FB1	C-FBI		C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1
FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK	FIELD BLANK			FIELD BLANK												-	-														FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP PCB-CLP	PCB-CLP PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
1/gu 1/gu	1/gu 1/gu 1/gu	l/an	ng/l	l/gu l/on	1,87 1,80	ng/l	ng/l	l/gn	ng/l	ug/1	ug/l	ug/1	ng/l	l/gn	1/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ug/1	ug/1	l/gn	ug/1	ug/I	l/gn	ug/1	1/gn
0.0500 U 0.5000 U 1.0000 U	2.0000 U 1.0000 U 1.0000 U	1.0000 U 1.0000 U	1.0000 U	5.0000 U 0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	2.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	15.0000
Heptachlor epoxide Methoxychlor PCB-1016	PCB-1221 PCB-1232 PCB-1242	PCB-1248 PCB-1254	PCB-1260	Toxaphene alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichlorocthylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane
C-FB1 C-FB1	C-FB1 C-FB1 C-FB1	C-FB1 C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB1	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK														FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

DAG	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8070	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	G.P.	4	G. D.	CLP
l/on	l/an	l/øn	1/8n	1/611		-6'-	ne/}	l/an	l/an	ug/l	ug/1	ug/l	l/gn	ng/l	ug/l	ng/l	ug/l	ug/I	ug/l	ug/I	ug/l	ug/l	ug/I	ug/l	ug/l	l/gn	ug/l	l/gn	l/gn	l/gn	, ug/1	ug/I	ug/I	1/611	1/3n	ug/1
5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	0.0000	0.0000	5.0000 U	10.0000 U	10.0000 U	0.0000 B	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	0.0000	13.0000 U	1.0000 U	0.0000	1.0000 U	1.0000 U	0.0000	0.0000.0	2.0000 U	0.0000	0.0000	1.0000 U	0.000	0.0000	0.0000	0.0000	0.0000	_	_
0.0000	0.0000	0.0000	0.0000	0.0000	46.0000	4.0000	0.0000	0.0000	0.0000	13.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0000.099	0.0000	0.0000	15.0000	0.0000	0.0000	20700.0000	6.4000	0.0000	17.7000	893.0000	0.0000	19500.0000	9.5000	0.2400	4.3000	3640.0000	0.000	0.0000
Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver
C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-F82	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2
FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK			FIELD BLANK	FIELD BLANK	FIELD BLANK					FIELD BLANK	FIELD BLAIN	FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLANK					FIELD BLANK	FIELD BLANK		FIELD BLAIN	FIELD BLANK					FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
GLP	<u>.</u>	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
1/gn	ug/1	ng/I	ug/1	l/gu	1/gn	ng/l	ug/1	l/gu	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gu	ng/l	ug/1	l/gn	ug/1	ng/1	l/gn	ug/1	l/gn	l/gn	ug/l	l/gu	l/gn	l/gn	l/gn	l/gn
0.0000	_	0.000	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U
15900.0000	3.1000	31.3000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Sodium Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
C-FB2 C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2			C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2
FIELD BLANK FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK		G FIELD BLANK	FIELD		FIELD BLANK	FIELD BLANK			FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK								FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP
Lgu Lgu Lgu Lgu Lgu Lgu Lgu Lgu Lgu Lgu	1/gn 1/gn 1/gn
10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U	0.0500 U 0.0500 U 0.0500 U
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.0000 0.0000 0.0000
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-octyl phthalate Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzo(unan Diethyl phthalate Fluoranthene Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Phenanthrene Phenanthrene Phenanthrene Phenol Phenanthrene Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol	Aldrin Dieldrin Endosulfan I
今日 10 10 10 10 10 10 10 10 10 10	C-FB2 C-FB2 C-FB2
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD	FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/I	l/gu	l/gu	l/gu	ug/I	ug/l	ug/l	ug/1	ug/l	l/gn	l/gn	ng/l	ng/l	l/gu	ug/l	ng/l	l/gu	l/gu	l/gn	l/gn	ug/l	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gu	l/gu	l/gn
0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.0500 U	0.0500 U	0.5000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	5.0000 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U
0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether
C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB2	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3
FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	d To	GLP GLP	CLP
ug/l	ug/1	ug/I	ug/l	ug/1	ug/l	ug/l	ug/1	ug/l	ug/l	ug/I	l/gn	l/gn	ng/l	ng/l	ug/1	ug/1	ug/1	ug/l	ug/I	ng/l	ug/1	ug/l	ng/l	ug/I	ug/1	ug/1	l/gn	ug/l	ug/1	ug/l	l/gn	ug/1	ug/l	ng/l	ug/l	l/gn
10.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	12.0000 U	13.0000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	0.0000	4.0000 U	2.0000 U	3.0000 U	0.0000	1.0000 U	0.0000	1.0000 U
0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	29.0000	0.0000	0.0000	0.000	18.4000	0.000	17.2000	0.0000
2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese
C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3
FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK				FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK			FIELD BLANK	FIELD BLANK					FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLAIN			FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK

3

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE BACE BACE BACE BACE BACE BACE BACE B
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP
0.2000 U 0.0000 U 1.0000 U 3.0000 U 1.0000 U 2.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U
0.0000 2.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mercury  Nickel  Potassium  Selenium  Silver  Sodium  Thallium  Vanadium  Zinc  1,2-4-Trichlorobenzene  1,3-Dichlorobenzene  1,4-Dichlorobenzene  1,4-Dichloropenzene  2,4,5-Trichlorophenol  2,4-5-Trichlorophenol  2,4-5-Trichlorophenol  2,4-Dimitrophenol  3,4-Dimitrophenol  4-Nitroaniline  4-Chloro-amethyl phenol  4-Chloroaniline  4-Chloroaniline  4-Chloroaniline  4-Nitroaniline  4-Nitroaniline  4-Nitroaniline  4-Nitroaniline  4-Nitroaniline
つ
HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
1/gu 1/gu	ug/1 ug/1	ug/1 ne/1	ug/l	l/gn	l/gu	ng/1	ug/l	l/gn	l/gn	ng/l	ng/1	ug/l	l/gn	ng/l	l/gn	l/gn	1/gn	ug/1	ng/l	l/gn	l/gn	ug/l	l/gn	l/gn	ng/1	l/gn	l/gn	ug/l	ug/1	ug/1	l/gu	l/gn
0.1000 U 0.1000 U 0.0500 U	0.0500 U 0.0500 U	0.1000 U	0.1000 U	0.1000 U	0.1000 U	0.0500 U	0.0500 U	0.5000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	5.0000 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	2.0000 U	5.0000 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.0000
4,4'-DDE 4,4'-DDT Aldrin	Dieldrin Endosulfan I	Endosulfan II Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor			PCB-1232	PCB-1242	PCB-1248		PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene
C-FB3 C-FB3 C-FB3	C-FB3 C-FB3	C-FB3 C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB3	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4
		FIELD BLANK FIELD BLANK	FIELD BLANK								FIELD BLANK						FIELD BLANK				FIELD BLANK											FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE	PACE
8010/8020 8010/8020 8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	G.P	CLP	9	(T.P	CLP
ug/1 ug/1 ug/1	ug/1	ug/I ug/I	ng/l	ng/l	ug/l	ng/l	ug/l	1/gn	ug/I	ug/I	l/gn	ng/l	ng/l	ug/l	l/gu	ng/l	l/gn	ug/I	ug/l	ug/1	ug/I	ug/l	ug/l	ug/l	ug/I	ug/1	ug/1	ug/]	ug/l	ug/l	1/611	l/an	ug/l
5.0000 U 5.0000 U 5.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U	0.0000	5.0000 U	5.0000 U	0 0000	0 00000	10.000 0	0.000	0.0000	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	0.0000	0.0000	0.0000	0.0000	1.0000 U	1.0000 U	0.000	4.0000 U	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	15.0000	0.000	0.000	90000	00000	0.000	49.0000	4.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	30.4000	16.8000	2.1000	11.3000	0.0000	0.0000	20600.0000	0.0000	2.3000
1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	bromodichloromethane	Dromolorm Dissiled	Carbon Tetrachloride	Chlorobenzene	Chlorosthana	Chloroform	District Company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of t	Dioromocnioromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt
C-FB4 C-FB4 C-FB4	C-FB4 C-FB4	C-FB4	C-FB4	7-FB4	7-F84	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-EBA	C-LD	ל-נים	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-F84	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4
FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK		FIELD BLANK	FIELD RI ANK	FIFT D RI ANK				FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK							FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
GLP GLP	338	ਰੇ ਦੇ	CLP	CLP	CLP	CLP	ב ב	ਰ ਹੋ	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
1/gu 1/gu	l/an	ug/1 ug/1	l/gn	ug/l	ug/l	ng/l	1/gn 1/2::	ug/l	ug/1	l/gn	l/gn	l/gu	ug/1	ug/l	ng/l	l/gn	ng/l	l/gn	ng/l	ng/1	1/gn	1/gn	l/gn	l/gn	1/gn	l/gu	l/gn	l/gn	1/gn	l/gn	l/gu	ug/l
0.0000	0.0000	0.2000 U	0.0000	0.0000	1.0000 R	3.0000 U	0.0001	0.0000	0.000	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U
335.0000 603.0000 3.5000	17900.0000	0.0000	4.1000	3280.0000	0.0000	0.000	0000.00	2.8000	23.3000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
Copper Iron	Magnesium	Mercury	Nickel	Potassium	Selenium	Silver	mnilleyL	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol
C-FB4 C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-F84	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4		C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4
FIELD BLANK FIELD BLANK FIELD BI ANK						FIELD BLANK			FIELD BLANK	FIELD	FIELD BLANK	FIELD					FIELD BLANK		FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DAG	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90				
ug/l	ug/l	ug/l	l/gn	l/Zn	ug/l	ug/1	ug/1	ng/l	1/an	ng/l	ng/l	ug/1	ug/l	l/gn	l/gn	ug/l	ug/l	ug/1	ug/1	ug/1	ug/1	ug/1	ng/l	ug/1	ug/1	ug/1	ug/l	l/gn	l/gu	ug/l	ug/l	ug/I	l/an	. G-  /on	1/8n	l/gu
10.0000 U	10.0000 U	10.0000 U	25.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	0.0000 B	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25,0000 11	10.0000 U	10.0000 U
0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.6000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000
4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol
C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4
FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK				FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

CLP 3/90 PACE CLP 3/90 PACE CLP 3/90 PACE	G G	PCB-CLP PACE PCB-CLP PACE		PCB-CLP PACE			PCB-CLP PACE			PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	PCB-CLP PACE	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM
1/gn 1/gu 1/gu 1/an	1,95 1/gn 1/gn	ug/1 ug/1	1/gn	ug/l	ug/1	ng/l	ug/I	ug/1	, l/gn	ug/l	ug/1	ug/1	ug/l	l/gn	ug/l	ug/l	ug/l	l/gn	ug/l	ug/l	l/gu	ug/l	ug/l	l/gn	ng/l	ng/l	ug/1	l/gn	l/gu
10.0000 U 10.0000 U 10.0000 U	0.1000 U 0.1000 U	0.1000 U 0.0500 U	0.0500 U	0.1000 U	0.1000 U	0.1000 U	0.1000 0	0.0500 U	0.0500 U	0.5000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	5.0000 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	2.0000 U	1.0000 U	2.0000 U	1.0000 U	1.0000 U
0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000
Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate	4,4'-DDD 4,4'-DDE	4,4'-DDT Aldrin	Dieldrin Endosultan I	Endosulfan II	Endosulfan sulfate	Endrin eldebede	Endrin kelone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane
C-FB4 C-FB4 C-FB4 C-FB4	C-FB4 C-FB4	C-FB4 C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB4	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK			FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

ILANG, 183rd FG, Capitial Airport, Springfield, Illinois Table F-12 QC Samples

8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 СОМРИСНЕМ	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	3010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 СОМРИСНЕМ	_	8010/8020 COMPUCHEM							
æ	ĕ	ĕ	ŏ.	ŏ	ŏ	ŏ	ŏ	ŏ	ĕ	ĕ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	æ	<b>∞</b>	æ	ŏ	æ	ĕ	ŏ	ŏ	<b>∞</b>	ĕ	ŏ	ŏ	ŏ	ŏ	ĕ	ŏ	ŏ	ŏ	ŏ
ug/l	ug/1	ug/1	l/gu	ug/1	ug/1	ug/l	l/gu	l/gu	ug/1	ug/1	ug/l	ug/l	l/gn	ug/l	l/gn	ug/1	ug/l	ug/1	ug/1	ug/l	l/gu	l/gn	ng/l	ug/I	ug/l	ng/l	l/gn	l/gn	ug/1	ug/1	ug/1	ug/1	ug/1	ug/1	ug/1	. I/Sn
n o	n o	D 0	ے 0	n 0	n 0	D 0	n 0	ממ	n o	n o	n o	n o	n 0	n Q	n o	n 0	n 0	n 0	n o	n o	D 0	n 0	n 0	n 0	n o	n 0	n o	n o	n 0	n 0	n 0	n o	n o	n o	n o	D 0
2.0000	2.0000	1.0000	1.000	2.0000	2.0000	1.000	2.0000	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	1.0000	1.0000	2.0000	2.0000	1.0000	1.0000	2.0000	2.0000	1.0000	1.0000	2.0000	8.0000	5.0000	5.0000	8.0000	8.0000	5.000	8.0000	2.0000	2.0000	1.0000
0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000
1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichlorocthane	1,1-Dichloroethylene	1,1-Dichloroethylene	1,2-Dibromo-3-Chloropropane	1,2-Dibromo-3-Chloropropane	1,2-Dibromomethane	1,2-Dibromomethane	1,2-Dichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethane	1,2-Dichloropropane	1,2-Dichloropropane	1,2-cis-Dichloroethylene	1,2-cis-Dichloroethylene	1,2-trans-Dichloroethylene	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	1,4-Dichlorobenzene	2-Butanone	2-Butanone	2-Hexanone	2-Hexanone	2-Propanone	2-Propanone	4-Methyl-2-pentanone	4-Methyl-2-pentanone	Benzene	Benzene
C-FB5	C-FBS	C-FB5	C-FB5				C-FB5	C-FBS	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FBS	C-FB3	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5							
NK N	¥ .	¥ .	¥2.	¥ 2.	Y.	¥ \$	Y.	¥ E	¥Z :	¥ :	Y !	¥.	¥ X	¥ ž	42	¥.	¥	¥.	¥ :	¥.	¥	Y :	¥ X	¥	¥ 2.	¥ \$	42	¥ .	¥	¥	¥ ÷	¥ ;	¥ :	¥;	¥:	¥ Z
FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK			FIELD BLANK	FIELD BLANK	FIELD BLANK		FIELD BLANK	FIELD BLANK					FIELD BLANK	FIELD BLANK	FIELD BLANK				FIELD BLANK	FIELD BLANK							FIELD BLANK			FIELD BLANK
														F-	68	3																				

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM		8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM		8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM	• • • • • • • • • • • • • • • • • • • •	8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM	8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM 8010/8020 COMPUCHEM
ug/1 ug/1 ug/1	ug/l l/gu ug/l	ug/1 ug/1 ug/1 ug/1	ug/1 ug/1 ug/1 ug/1	ug/l l/gu l/gu l/gu	ug/1 ug/1 ug/1 ug/1	ug/l ug/l ug/l ug/l	ug/1 ug/1 ug/1 ug/1 ug/1
2.0000 U 1.0000 U 0.0000	2.0000 U 1.0000 U 1.0000 U	2.0000 U 2.0000 U 1.0000 U 2.0000 U	1.0000 U 2.0000 U 0.0000 J 0.0000 J	0.0000 0.0000 2.0000 U 1.0000 U		0.0000 B 2.0000 U 1.0000 U 2.0000 U	2.0000 U 1.0000 U 2.0000 U 1.0000 U 2.0000 U 2.0000 U
0.0000 0.0000 9.0000 6.0000	0.0000	0.000	0.0000 0.0000 20.0000 30.0000	4.0000 2.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.7000	5.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000
Bromochloromethane Bromochloromethane Bromodichloromethane Bromodichloromethane	Bromoform Bromoform Carbon Disulfide	Carbon Distince Carbon Tetrachloride Carbon Tetrachloride Chlorobenzene Chlorobenzene	Chlorocthane Chlorocthane Chloroform Chloroform	Dibromochloromethane Dibromochloromethane Ethylbenzene Ethylbenzene	Methyl bromide Methyl bromide Methyl chloride Methyl chloride Methylene chloride	Methylene chloride Slyrene Styrene Styrene Tetrachloroethylene Tetrachloroethylene	Toluene Trichloroethylene Trichloroethylene Vinyl chloride Vinyl chloride Xylenes (TOTAL)
C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5	C FBS C FBS C FBS C FBS	C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5 C-FB5
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK					FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

8010/8020 COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM	CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM
	/8n  /8n  /8n  /8n  /8n  /8n  /8n
1.0000 U 0.0000 U 3.0000 U 3.0000 U 5.0000 U 5.0000 U 9.0000 U 25.0000 U 25.0000 U 0.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U 31.0000 U	10.0000 U 10.0000 U 25.0000 U 10.0000 U 10.0000 U 25.0000 U 10.0000 U 10.0000 U
0.0000 129.0000 0.0000 18.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Xylenes (TOTAL) Aluminum Antimony Arsenic Barium Cadmium Cadmium Chromium Chromium Chober Icad Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium L2,4-Trichlorobenzene	1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-G-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrophenol 2,6-Dimitrotoluene 2,6-Dimitrotoluene 2,6-Dimitrotoluene
C	C-F85 C-F85 C-F85 C-F85 C-F85 C-F85 C-F85 C-F85 C-F85
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD	

ILANG, 183rd FG, Capitial Airport, Springfield, Illinois Table F-12 QC Samples

CLP 3/90COMPUCHEM CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM	CLP 3/90COMPUCHEM
1/gn 1/gn	ug/l	ng/l ng/l	ug/l	l/gn	ng/l	ug/l	ng/1	ng/l	ug/l	ug/1	ug/l	ug/l	l/gn	ug/l	ug/1	ng/l	l/gn	ug/l	ug/1	ug/1	ug/1	ug/1	l/gn	ug/1	ug/1	l/gn	ng/l	ug/I	ug/1	ug/l	ng/l	ng/1	l/gn
10.0000 U 25.0000 U	10.0000 U	25.0000 U 10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U
0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylnanhthalene	2-Methylphenol	2-Nitroaniline 2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene
C-FB5 C-FB5 C-FB5	C-FB5	C-F35	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5	C-FB5
FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	_	FIELD BLANK	_	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ ССТР 3/90СОМРИСНЕМ РСВ-СГРСОМРИСНЕМ	PCB-CLPCOMPUCHEM PCB-CLPCOMPUCHEM PCB-CLPCOMPUCHEM
Ugu Ilgu Ilgu Ilgu Ilgu Ilgu Ilgu Ilgu Il	ug/l ug/l ug/l
10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U 0.1000 U	1.0000 U 5.0000 U 0.0500 U
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.0000
Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrobenzene Pentachlorophenol Phenanthrene Phenol Phenol Pyrene bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroethyy) methane bis(2-Chloroeth	PCB-1260 Toxaphene alpha-BHC
2	C-FBS C-FBS C-FBS
HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK HELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PCB-CLPCOMPUCHEM PCB-CLPCOMPUCHEM PCB-CLPCOMPUCHEM PCB-CI PCOMPICHEM	SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM			SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM		SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM
1/gu 1/gu 1/gu	l/an l/an l/an	l/an l/an l/an l/an	1/3n 1/3n 1/3n	1/gn 1/gn 1/gn 1/gn 1/gn	1/gu 1/gu 1/gu 1/gu	1/8n 1/8n 1/8n 1/8n 1/8n
0.0500 U 0.0500 U 0.0500 U 0.0500 U	0.0500 0.7000 0.7000 0.7000 0.8000	0.7000 0.7000 0.7000 0.7000 0.7000 0.7000	0.6000 U 0.5000 U 0.6000 U 0.6000 U	0.6000 U 0.5000 U 0.4000 U 0.8000 U 0.5000 U	1.7000 U 0.5000 U 0.0000 L 1.0000 U 0.7000 U	1.0000 U 0.0000 0.0000 L 0.8000 U 1.0000 U
0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 8.4000 0.0000 0.0000	0.0000 24.0000 1.4000 0.0000 0.0000 0.2300
alpha-Chlordane beta-BHC delta-BHC gamma-BHC	gamma-Chlordane 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,3-Trichloropropane 1,2-Dibromoethane	1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-trans-Dichloroethylene 1,3-Dichlorobenzene	1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Chloroethylvinyl ether 2-Chlorotoluene 4-Chlorotoluene	Bromobenzene Bromochloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene	Chlorocthane Chloroform Dibromochloromethane Dibromomethane Methyl bromide Methyl chloride Methylene chloride
C-FB5 C-FB5 C-FB5 C-FB5	C-FBS C-FBS C-FBS C-FBS	C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5 C-FB5 C-FB5
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

		020	CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM CLP COMPUCHEM	
ug/1 ug/1 ug/1 ug/1	1/8n 1/8n 1/8n 1/8n 1/8n	l/gu l/gu l/gu l/gu gu l/gu	1,80 1,81 1,81 1,81 1,81 1,91	l/gu l/gu l/gu l/gu l/gu l/gu l/gu l/gu
0.6000 U 0.6000 U 1.1000 U 0.2000 U	0.5000 U 0.1500 U 0.3500 U 0.2500 U 0.2000 U	0.2500 U 0.0000 J 0.0000 U 46.0000 U 5.0000 U	2.0000 U 5.0000 U 156.0000 U 9.0000 U 25.0000 U 0.0000 ()B	476.000 U 6.0000 U 0.2000 U 31.0000 U 3.0000 U 10.0000 U 7.0000 U 7.0000 U
0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 27.1000 35.7000	0.0000 0.0000 0.0000 0.0000 0.0000 345.0000 0.0000 0.0000
Tetrachloroethylene Trichloroethylene Vinyl chloride 1,2-Dichlorobenzene 1,2-Dimethylbenzene 1 3-Dichlorobenzene	1,3/1,4-Dimethylbenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Ethylbenzene Methyl-t-Butyl Ether	Styrene Styrene Toluene Aluminum Antimony Arsenic Barium	Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead	Magnesium Manganese Marcury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc
C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB5 C-FB5 C-FB5	C-FB5 C-FB5 C-FB6 C-FB6 C-FB6 C-FB6	C FB6 C FB6 C FB6 C FB6 C FB6 C FB6	C FB6 C FB6 C FB6 C FB6 C FB6 C FB6 C FB6 C FB6
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM	3/90	3/90 3/90 3/90 3/90	3/90 3/90 3/90 3/90 3/90	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM	3/90 3/90 3/90 3/90 3/90	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM
0   /8n      /8n				0   /8n 0   /8n 0   /8n 0   /8n		1/gn 1/gn 1/gn 1/gn 1/gn 1/gn
10.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U 25.0000 U 10.0000 U 10.0000 U	10.0000 U 25.0000 U 10.0000 U 10.0000 U	10.0000 U 25.0000 U 10.0000 U 25.0000 U 10.0000 U	10.0000 U 25.0000 U 10.0000 U 10.0000 U 10.0000 U	10.0000 U 25.0000 U 25.0000 U 10.0000 U 10.0000 U	10.0000 U 10.0000 U 10.0000 U 10.0000 U
0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0,000 0,000 0,000 0,000 0,000 0,000
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol	3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chlorophenyl phenyl ether	4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene
C-FB6 C-FB6 C-FB6 C-FB6	C-FB6 2,2 C-FB6 C-FB6 C-FB6	C-FB6 C-FB6 C-FB6 C-FB6 C-FB6	C-FB6 C-FB6 C-FB6 C-FB6 C-FB6	C-FB6 C-FB6 C-FB6 C-FB6 C-FB6		C-FB6 C-FB6 C-FB6 C-FB6
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK		FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM
	1/gn 1/gn 1/gn 1/gn 1/gn 1/gn
	0.1000 U 0.0500 U 0.0500 U 0.1000 U 0.1000 U 0.1000 U
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Carbazole Chrysene Chrysene Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene N-Nitrosodi-N-Propylamine N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Phenol Phenol Phenol Phenol Pyrene bis(2-Chloroethyl) ether bis(2-Chloroethyl) ether bis(2-Chloroethyl) ether bis(2-Chloroethyl) ether bis(2-Chloroethyl) ether bis(2-Chloroethyl) phthalate	4,4-DD I Aldrin Dicldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde
	2017-7 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 2018-6 20
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM
	1/8n 1/8n 1/8n 1/8n 1/8n 1/8n
0.1000 U 0.0500 U 0.0500 U 1.0000 U 1.0000 U 1.0000 U 1.0000 U 1.0000 U 1.0000 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U	0.3000 U 0.3000 U 0.2000 U 0.2500 U 0.2000 U 0.4000 U 0.3500 U
00000 0 00000 0 00000 0 00000 0 00000 0	0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0
Endrin ketone Heptachlor epoxide Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1254 PCB-1254 PCB-1254 PCB-1254 PCB-1260 Toxaphene alpha-Chlordane beta-BHC gamma-Chlordane beta-BHC gamma-Chlordane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	1,2-Dichloropropane 1,2-trans-Dichloroethylene 1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 2-Chloroethylvinyl ether 2-Chloroethylvinyl ether 4-Chlorotoluene
	647-2 647-2 647-2 647-2 647-2 647-2 647-2 647-2 647-2 647-2
FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK	FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK FIELD BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

C-FB6         Bromochlocomethane         0,0000         0,2500         U         ug/I         Swy8010           C-FB6         Bromochlocomethane         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         Carbon Tarachloride         0,0000         0,5300         U         ug/I         Swy8010           C-FB6         Carbon Chlorochane         0,0000         0,5300         U         ug/I         Swy8010           C-FB6         Chlorochane         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         Dibromochloromethane         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         Mchlyl chloride         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         Mchlyl chloride         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         Tetrachorochlylene         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         Tetrachorochlylene         0,0000         0,5000         U         ug/I         Swy8010           C-FB6         L-Dichlorocheracne         0,0000         0,5000         U	FIELD BLANK	C-FB6	Bromobenzene	0.0000	0.8500 U	1/611	SW8010 COMPLICHEM	IFM
HELD BLANK         CFB6         Bromodistinomethane         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000         0,0000	FIELD BLANK	C-FB6	Bromochloromethane	0.0000	0.2500	. (a)		
PERD BLANK         CFB6         Remondrum         0.0000         0.5000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.9000         0.	FIELD BLANK	C-FB6	Bromodichloromethane	0000	0 4000	1/8/1 1/8/1		
File D B LANK   C-FB6		C-FB6	Вготобогт	0.000	0 5000 11	1/2n	•	
FHELD BLANK         CFB6         Chlorobenzore         0,000         0,3500         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Chlorochame         0,000         0,3500         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Dhromochame         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Dhromochame         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Dhromochame         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Methyl bromide         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Tratablorochlydren         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         Tratablorochlydren         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         L12-Disclorobenzare         0,000         0,300         U ug/l         SW0010 COMPTO           FHELD BLANK         CFB6         L12-Disclorobenzare         0,000         0,300         U ug/l         SW0010 COMPTO <tr< td=""><td></td><td>C-FB6</td><td>Carbon Tetrachloride</td><td>0000</td><td>0.3500</td><td>1/80</td><td>•</td><td></td></tr<>		C-FB6	Carbon Tetrachloride	0000	0.3500	1/80	•	
PHELD BLANK         CPB6         Chlorocathane         0.000         0.500         ugil         swootlO COMPTO           PHELD BLANK         C-PB6         Chlorocathane         0.000         0.500         ugil         swootlO COMPTO           PHELD BLANK         C-PB6         Dhromonedhane         0.000         0.300         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         Dhromonedhane         0.000         0.300         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         Medhyl chorde         0.000         0.500         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         Medhyl chorde         0.000         0.300         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         Trachelorochlylene         0.000         0.300         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         1.2-Dichlorochlylene         0.000         0.300         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         1.2-Dichlorochlylene         0.000         0.300         ugil         swwootlO COMPTO           PHELD BLANK         C-PB6         1.2-Dichlorochlylene         0.000         0.300         ugil         swwootlO COMPTO		C-FB6	Chlorohenzene	0000	11 0036.0	1/gn	-	E I
HELD BLANK         CHRS         Chicoroform         CORNID         UNID         UNID         SWR010         CONNID           HELD BLANK         C-FB6         Dibromacelloromethrae         0.0000         0.3000         U         UVI         SWR010         CONPUG           HELD BLANK         C-FB6         Dibromacelloromethrae         0.0000         0.4500         U         UVI         SWR010         CONPUG           HELD BLANK         C-FB6         Methyl chioride         0.0000         0.4500         U         UVI         SWR010         CONPUG           HELD BLANK         C-FB6         Methyl chioride         0.0000         0.5000         U         UVI         SWR010         CONPUG           HELD BLANK         C-FB6         Tracklorocchiylere         0.0000         0.5000         U         UVI         SWR010         CONPUG           HELD BLANK         C-FB6         Tracklorocchiylere         0.0000         0.5000         U         UVI         SWR010         CONPUG           HELD BLANK         C-FB6         1.2-Dimethylerazere         0.0000         0.5000         U         UVI         SWR020         CONPUG           HELD BLANK         C-FB6         1.3-Dichlorocchizere         0.0000         0		C-FR6	Chloroethane	0.000	0 0005 0	1/Sn	_	E
HELD BLANK         CFBG         Dibromochicomethane         0.0000         0.3000         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         Methyl bromide         0.0000         0.3000         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         Methyl bromide         0.0000         0.4500         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         Methyl bromide         0.0000         0.5000         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         Transhloredhylene         0.0000         0.5000         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         Transhloredhylene         0.0000         0.5000         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         Transhloredhylene         0.0000         0.5000         U ug/I         SW8010 COMPIO           HELD BLANK         CFBG         1,2-Dichlorebrazee         0.0000         0.5000         U ug/I         SW8020 COMPIO           HELD BLANK         CFBG         1,2-Dichlorebrazee         0.0000         0.5000         U ug/I         SW8020 COMPIO           HELD BLANK         CFBG         1,4-Dichlorebrazee         0.0000         0.5000         U ug/I         SW8020		C-FR6	Chloroform	0,000	0.00000	l/gu	-	EM
HELD BLANK   C-FB6		C-FR6	Dibromochlomethan	0,000	0.3300	1/gn	-	HEM
THELD BLANK         CFBG         Mothly I choride         0.0000         0.4500         U         ug/I         SW8010 COMPUIC           FHELD BLANK         CFBG         Methyl chloride         0.0000         0.5000         U         ug/I         SW8010 COMPUIC           FHELD BLANK         C-FBG         Tetrachlorochlylene         0.0000         0.3000         U         ug/I         SW8010 COMPUIC           FHELD BLANK         C-FBG         Tetrachlorochlylene         0.0000         0.3000         U         ug/I         SW8010 COMPUIC           FHELD BLANK         C-FBG         Tetrachlorochlylene         0.0000         0.3000         U         ug/I         SW8010 COMPUIC           FHELD BLANK         C-FBG         1,2-Dichlorocherzene         0.0000         0.2000         U         ug/I         SW8020 COMPUIC           FHELD BLANK         C-FBG         1,3-Dichloroberzene         0.0000         0.2000         U         ug/I         SW8020 COMPUIC           FHELD BLANK         C-FBG         1,3-Dichloroberzene         0.0000         0.2000         U         ug/I         SW8020 COMPUIC           FHELD BLANK         C-FBG         1,3-Dichloroberzene         0.0000         0.2000         U         ug/I         SW8020 COMPUIC		OC LDS	Distriction	0.000	0.3000 0	l/gn	-	TEM
FIELD BLANK   C-FB6		C-FB6		0.0000	0.4000 U	l/gn	_	HEM
FIELD BLANK         CFB6         Metally entonide         0.0000         0.5000         U         ug/I         SW8010 COMPUG           FIELD BLANK         CFB6         Tretachlorocthylene         0.0000         0.3000         U         ug/I         SW8010 COMPUG           FIELD BLANK         CFB6         Tretachlorocthylene         0.0000         0.3000         U         ug/I         SW8010 COMPUG           FIELD BLANK         CFB6         T.2-Dichlorobenzene         0.0000         0.1500         U         ug/I         SW8010 COMPUG           FIELD BLANK         CFB6         1.2-Dichlorobenzene         0.0000         0.1500         U         ug/I         SW8020 COMPUG           FIELD BLANK         CFB6         1.2-Dichlorobenzene         0.0000         0.5000         U         ug/I         SW8020 COMPUG           FIELD BLANK         CFB6         1.3-I.4-Dichlorobenzene         0.0000         0.5000         U         ug/I         SW8020 COMPUG           FIELD BLANK         CFB6         1.4-Dichlorobenzene         0.0000         0.5000         U         ug/I         SW8020 COMPUG           FIELD BLANK         CFB6         1.4-Dichlorobenzene         0.0000         0.5000         U         ug/I         SW8020 COMPUG		ر وتار آ	Methyl bromide	0.0000	0.4500 U	ng/l		TEM
FIELD BLANK         C-FRO         Methylene chloride         0.2660         0.0000         B         ug/1         SW8010 COMPUG           FIELD BLANK         C-FRO         Trichlorocthylene         0.0000         0.3000         U         ug/1         SW8010 COMPUG           FIELD BLANK         C-FRO         Trichlorocthylene         0.0000         0.1500         U         ug/1         SW8010 COMPUG           FIELD BLANK         C-FRO         1.2-Dichlorobenzene         0.0000         0.1500         U         ug/1         SW8010 COMPUG           FIELD BLANK         C-FRO         1.3-Dichlorobenzene         0.0000         0.2000         U         ug/1         SW8020 COMPUG           FIELD BLANK         C-FRO         1.3-Dichlorobenzene         0.0000         0.2000         U         ug/1         SW8020 COMPUG           FIELD BLANK         C-FRO         1.3-Dichlorobenzene         0.0000         0.3500         U         ug/1         SW8020 COMPUG           FIELD BLANK         C-FRO         LA-Dichlorobenzene         0.0000         0.2500         U         ug/1         SW8020 COMPUG           FIELD BLANK         C-FRO         Medryt-Buyl Eher         0.0000         0.2500         U         ug/1         SW8020 COMPUG	FIELD BLANK	C-F86	Methyl chloride	0.0000	0.5000 U	ug/l		<b>JEM</b>
PIELD BLANK         C-FB6         Trichathorethylene         0,0000         0,3000         U ug/I         SW8010 COMPUG           FIELD BLANK         C-FB6         Trichathorethylene         0,0000         0,3000         U ug/I         SW8010 COMPUG           FIELD BLANK         C-FB6         1,2-Diniothylenzene         0,0000         0,1500         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         1,2-Diniothylbenzene         0,0000         0,2000         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         1,3-Diniothylbenzene         0,0000         0,2000         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         1,3/1-Diniothylbenzene         0,0000         0,2000         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         1,3/1-Diniothylbenzene         0,0000         0,2000         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         Ehylbenzene         0,0000         0,2000         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         Ehylbenzene         0,0000         0,2000         U ug/I         SW8020 COMPUG           FIELD BLANK         C-FB6         Mchyl-Lauly Ehrer         0,0000         0,2000 <th< td=""><td>FIELD BLANK</td><td>C-FB6</td><td>Methylene chloride</td><td>0.2600</td><td>0.0000 B</td><td>ug/l</td><td></td><td>HEM</td></th<>	FIELD BLANK	C-FB6	Methylene chloride	0.2600	0.0000 B	ug/l		HEM
PIELD BLANK         C-FB6         Trichloroethylene         0,0000         0,3000         U ug/l         \$W8010 COMPUD           FIELD BLANK         C-FB6         Vinyl ethoride         0,0000         0,1500         U ug/l         \$W8010 COMPUD           FIELD BLANK         C-FB6         1,2-Direlhorobenzene         0,0000         0,2000         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         1,3-Direlhorobenzene         0,0000         0,2000         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         1,3-Direlhorobenzene         0,0000         0,1500         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         1,4-Direlhorobenzene         0,0000         0,1500         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         Chlorobenzene         0,0000         0,2500         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         Ethylbenzene         0,0000         0,2500         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         MethylBuyl Ether         0,0000         0,2500         U ug/l         \$W8020 COMPUD           FIELD BLANK         C-FB6         MethylBuyl Ether         0,0000         0,5000         U ug/		C-FB6	Tetrachloroethylene	0.000	0.3000 U	ug/1		HEM
PHELD BLANK         C-FB6         Vinyl chloride         0,0000         0,5500         U         ug/l         SW8010 COMPUD           FHELD BLANK         C-FB6         1,2-Dichlorobenzene         0,0000         0,5500         U         ug/l         SW8020 COMPUD           FHELD BLANK         C-FB6         1,3-Dichlorobenzene         0,0000         0,2000         U         ug/l         SW8020 COMPUD           FHELD BLANK         C-FB6         1,3-Dichlorobenzene         0,0000         0,2000         U         ug/l         SW8020 COMPUD           FHELD BLANK         C-FB6         1,4-Dichlorobenzene         0,0000         0,2500         U         ug/l         SW8020 COMPUD           FIELD BLANK         C-FB6         1,4-Dichlorobenzene         0,0000         0,2500         U         ug/l         SW8020 COMPUD           FIELD BLANK         C-FB6         Methyl-Buyl Elber         0,0000         0,2500         U         ug/l         SW8020 COMPUD           FIELD BLANK         C-FB6         Methyl-Buyl Elber         0,0000         0,2500         U         ug/l         SW8020 COMPUD           FIELD BLANK         C-FB6         Methyl-Buyl Elber         0,0000         0,0000         U         ug/l         SW8020 COMPUD		C-FB6	Trichloroethylene	0.0000	0.3000 U	l/gu		1EM
HELD BLANK         C-FB6         1,2-Dichlorobenzene         0,0000         0,1500         U g/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         1,2-Dichlorobenzene         0,0000         0,2000         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         1,3/1,4-Dimethylbenzene         0,0000         0,5000         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         1,4-Dichlorobenzene         0,0000         0,1500         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         LA-Dichlorobenzene         0,0000         0,2500         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         Chlorobenzene         0,0000         0,2500         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         Methyl-Lavyl Eher         0,0000         0,2000         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         Methyl-Lavyl Eher         0,0000         0,2000         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         Methyl-Lavyl Eher         0,0000         0,2000         U ug/1         SW8020 COMPUQ           FIELD BLANK         C-FB6         Methyl-Lavyl Eher         0,0000         0,2000		C-FB6	Vinyl chloride	0.000	0.5500 U	ug/l		1EM
BLANK         C-FB6         1.2-Dimethylbenzene         0.0000         0.2000         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         1,3-Dielhorbenzene         0.0000         0.2000         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         1,3-Dielhorbenzene         0.0000         0.1500         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         1,4-Dielhorbenzene         0.0000         0.1500         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         Chlorbenzene         0.0000         0.2500         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         Ethylbenzene         0.0000         0.2500         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         MethylBuyl Ether         0.0000         0.2500         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         MethylBuyl Ether         0.0000         0.2500         U         ug/I         SW8020         COMPUG           BLANK         C-FB6         MethylBuyl Ether         0.0000         0.2500	_ '	C-FB6	1,2-Dichlorobenzene	0.0000	0.1500 U	ug/1	-	IEM
DBLANK         C-FB6         1,3-Dichlorobenzene         0,0000         0,2000         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         1,3/1,4-Dinchlybenzene         0,0000         0,5000         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         1,4-Dichlorobenzene         0,0000         0,5000         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         Chlorobenzene         0,0000         0,2500         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         Chlorobenzene         0,0000         0,2500         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         Methyl-L-Buyl Eiker         0,0000         0,2000         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         Methyl-L-Buyl Eiker         0,0000         0,2000         U         ug/I         SW8020 COMPUQ           DBLANK         C-FB6         Methyl-L-Buyl Eiker         0,0000         0,2000         U         ug/I         SW8020 COMPUQ           DBLANK         C-FBI         1,1,1-Trichlorochane         0,0000         0,0000         0,000         U         ug/I         SW8020 COMPUQ           B	FIELD BLANK	C-FB6	1,2-Dimethylbenzene	0.0000	0.2000 U	ug/l	_	1EM
BLANK         C-FB6         1,31,4-Dimethylbenzene         0.0000         0.5000         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         1,4-Diehlorobenzene         0.0000         0.1500         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         Chlorobenzene         0.0000         0.2500         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         Eliylbenzene         0.0000         0.2500         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         Methyl-L-Buyl Eher         0.0000         0.2500         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         Methyl-L-Buyl Eher         0.0000         0.2500         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         Methyl-L-Buyl Eher         0.0000         0.2500         U         ug/1         SW8020 COMPUQ           D BLANK         C-FB6         T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-	FIELD BLANK	C-FB6	1,3-Dichlorobenzene	0.0000	0.2000 U	ug/I	_	1EM
D. BLANK         C-FB6         1,4-Dichlorobenzene         0.0000         0.1500         U         ug/I         SW8020 COMPUC           D. BLANK         C-FB6         Chlorobenzene         0.0000         0.3500         U         ug/I         SW8020 COMPUC           D. BLANK         C-FB6         Elthylbenzene         0.0000         0.2000         U         ug/I         SW8020 COMPUC           D. BLANK         C-FB6         Methyl-LBuyl Elher         0.0000         0.0000         U         ug/I         SW8020 COMPUC           D. BLANK         C-FB6         Methyl-LBuyl Elher         0.0000         0.2500         U         ug/I         SW8020 COMPUC           D. BLANK         C-FB6         Methyl-LBuyl Elher         0.0000         0.0000         U         ug/I         SW8020 COMPUC           D. BLANK         C-FB6         J.1.1-Trichlorochane         0.0000         0.0000         U         ug/I         SW8020 COMPUC           BLANK         C-TB1         1.1.2-Trichlorochane         0.0000         5.0000         U         ug/I         SW8020 COMPUC           BLANK         C-TB1         1.1.Dichlorochane         0.0000         5.0000         U         ug/I         SW8020 COMPUC           BLANK	FIELD BLANK	C-FB6	1,3/1,4-Dimethylbenzene	0.000	0.5000 U	ug/1		1EM
BLANK         C-FB6         Benzene         0.0000         0.3500         U         ug/I         SW8020 COMPUC           D BLANK         C-FB6         Chlorobenzene         0.0000         0.2500         U         ug/I         SW8020 COMPUC           D BLANK         C-FB6         Eltyblenzene         0.0000         0.2000         U         ug/I         SW8020 COMPUC           D BLANK         C-FB6         Methyl-I-Buyl Ether         0.0000         0.2500         U         ug/I         SW8020 COMPUC           D BLANK         C-FB6         Jil-I-Trichlorochlane         0.0000         0.0000         U         ug/I         SW8020 COMPUC           BLANK         C-TBI         1,1,2-Trichlorochlane         0.0000         5.0000         U         ug/I         S010/8020           BLANK         C-TBI         1,1-Dichlorochlane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TBI         1,1-Dichlorochlane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TBI         1,1-Dichlorochlane         0.0000         5.0000         U         ug/I         8010/8020           C-TBI         1,2-Dichlorochlane <t< td=""><td>FIELD BLANK</td><td>C-FB6</td><td>1,4-Dichlorobenzene</td><td>0.000</td><td>0.1500 U</td><td>ug/1</td><td></td><td>IEM</td></t<>	FIELD BLANK	C-FB6	1,4-Dichlorobenzene	0.000	0.1500 U	ug/1		IEM
BLANK         C-FB6         Chlorobenzene         0.0000         0.2500         U         ug/1         SW8020         COMPUG           D BLANK         C-FB6         Ethylbenzene         0.0000         0.2000         U         ug/1         SW8020         COMPUG           D BLANK         C-FB6         Methyl-t-Buyl Ether         0.0000         0.2500         U         ug/1         SW8020         COMPUG           D BLANK         C-FB6         Tollene         0.6100         0.2500         U         ug/1         SW8020         COMPUG           BLANK         C-FB6         Tollene         0.6100         0.0000         U         ug/1         SW8020         COMPUG           BLANK         C-TB1         1,1,1-Trichlorocthane         0.0000         0.0000         U         ug/1         8010/8020           BLANK         C-TB1         1,1-Dichlorocthane         0.0000         5.0000         U         ug/1         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/1         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/1         8010/8020      <	FIELD BLANK	C-FB6	Benzene	0.0000	0.3500 U	ug/1		1EM
BLANK         C-FB6         Ethylbenzene         0.0000         0.2000         U         ug/I         SW8020 COMPUO           D BLANK         C-FB6         Methyl-t-Butyl Ether         0.0000         5.0000         U         ug/I         SW8020 COMPUO           D BLANK         C-FB6         Toltene         0.0000         0.2500         U         ug/I         SW8020 COMPUO           BLANK         C-FB6         Toltene         0.6100         0.0000         U         ug/I         SW8020 COMPUO           BLANK         C-TB1         1,1.1-Trichlorocthane         0.0000         5.0000         U         ug/I         SW8020 COMPUO           BLANK         C-TB1         1,1.2-Trichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1-Dichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene	FIELD BLANK	C-FB6	Chlorobenzene	0.0000	0.2500 U	ug/1		IEM
SEANK         C-FB6         Methyl-t-Butyl Ether         0.0000         5.0000         U         ug/l         SW8020 COMPUC           S BLANK         C-FB6         Styrene         0.0000         0.2500         U         ug/l         SW8020 COMPUC           S BLANK         C-FB6         Toluene         0.6100         0.0000         S.0000         U         ug/l         SW8020 COMPUC           BLANK         C-TB1         1,1,1-Trichlorocthane         0.0000         S.0000         U         ug/l         S010/8020           BLANK         C-TB1         1,1,2-Trichlorocthane         0.0000         S.0000         U         ug/l         S010/8020           BLANK         C-TB1         1,1-Dichlorocthane         0.0000         S.0000         U         ug/l         S010/8020           BLANK         C-TB1         1,2-Dichlorocthane         0.0000         S.0000         U         ug/l         S010/8020           BLANK         C-TB1         1,2-Dichlorocthane         0.0000         S.0000         U         ug/l         S010/8020           BLANK         C-TB1         1,2-Dichlorocthane         0.0000         S.0000         U         ug/l         S010/8020           BLANK         C-TB1 <t< td=""><td>FIELD BLANK</td><td>C-FB6</td><td>Ethylbenzene</td><td>0.0000</td><td>0.2000 U</td><td>ng/l</td><td></td><td>HEM</td></t<>	FIELD BLANK	C-FB6	Ethylbenzene	0.0000	0.2000 U	ng/l		HEM
DELANK         C-FB6         Styrene         0.0000         0.2500         U         ug/I         SW8020 COMPUT           DELANK         C-FB6         Toluene         0.6100         0.0000         U         ug/I         SW8020 COMPUT           BLANK         C-TB1         1,1,1-Trichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1,2-Trichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1-Dichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorocthane	FIELD BLANK	C-FB6		0.0000	5.0000 U	l/gn		IEM
DELANK         C-FB6         Toluene         0.6100         0.0000         ug/I         SW8020 COMPUG           BLANK         C-TB1         1,1,1-Trichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1,2-Trichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1-Dichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1-Dichlorochylene         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorochylene         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,3-Dichlorobenzene         0.00	FIELD BLANK	C-FB6	Styrene	0.000	0.2500 U	ug/1		HEM
BLANK         C-TB1         1,1,1-Trichlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,1,2,2-Tetrachlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,1,Dichlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,1-Dichlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorochlane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichloropenzene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,3-Dichloro	FIELD BLANK	C-FB6	Toluene	0.6100	0.000	l/gn	SW8020 COMPUCE	IEM
BLANK         C-TB1         1,1,2,2-Tetrachlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1,2-Trichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1-Dichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorochane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorochylene         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichloropane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/I         8010/8020	TRIP BLANK	C-TB1	1,1,1-Trichloroethane	0.000	5.0000 U	ug/1	8010/8020 P	ACE
BLANK         C-TB1         1,1,2-Trichlorocthane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,1-Dichlorocthane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichloroptopane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorobenzene         0.0000         5.0000         U         ug/l         8010/8020	TRIP BLANK	C-TB1	1,1,2,2-Tetrachloroethane	0.000	5.0000 U	ug/1		ACE
BLANK         C-TB1         1,1-Dichlorocthane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,1-Dichlorocthylene         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichlorocthylene         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,2-Dichloroptopane         0.0000         5.0000         U         ug/I         8010/8020           BLANK         C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/I         8010/8020	TRIP BLANK	C-TB1	1,1,2-Trichloroethane	0.0000	5.0000 U	l/gn		ACE
BLANK         C-TB1         1,1-Dichloroethylene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichloroethane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichloroethylene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichloroptopane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/l         8010/8020	TRIP BLANK	C-TB1	1,1-Dichloroethane	0.0000	5.0000 U	l/gu		ACE
BLANK         C-TB1         1,2-Dichlorobenzene         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichlorocthane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,2-Dichloroptropane         0.0000         5.0000         U         ug/l         8010/8020           BLANK         C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/l         8010/8020	TRIP BLANK	C-TB1	1,1-Dichloroethylene	0.0000	5.0000 U	ug/l		ACE
C-TB1         1,2-Dichlorocthane         0.0000         5.0000         U         ug/1         8010/8020           C-TB1         1,2-Dichloroptropane         0.0000         5.0000         U         ug/1         8010/8020           C-TB1         1,2-Dichloroptropane         0.0000         5.0000         U         ug/1         8010/8020           C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/1         8010/8020	TRIP BLANK	C-TB1	1,2-Dichlorobenzene	0.0000	5.0000 U	ng/l		ACE
C-TB1         1,2-Dichloroethylene         0.0000         5.0000         U         ug/1         8010/8020           C-TB1         1,2-Dichloropropane         0.0000         5.0000         U         ug/1         8010/8020           C-TB1         1,3-Dichlorobenzene         0.0000         5.0000         U         ug/1         8010/8020	TRIP BLANK	C-TB1	1,2-Dichloroethane	0.0000	5.0000 U	ug/1		ACE
C-TB1 1,2-Dichloropropane 0.0000 5.0000 U ug/1 8010/8020 C-TB1 1,3-Dichlorobenzene 0.0000 5.0000 U ug/1 8010/8020	TRIP BLANK	C-TB1	1,2-Dichloroethylene	0.0000	5.0000 U	l/an		ACE
BLANK C-TB1 1,3-Dichlorobenzene 0.0000 5.0000 U ug/l 8010/8020	TRIP BLANK	C-TB1	1,2-Dichloropropane	0.0000	5.0000 U	ng/l		ACE.
	TRIP BLANK	C-TB1	1,3-Dichlorobenzene	0.0000	5.0000 1	1/ou		ACE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020 8010/8020 8010/8020	8010/8020 8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/l Ug/l Ug/l	ug/1 ug/1	ug/l	ug/l	ug/l	ug/I	ug/l	l/gn	ug/l	ug/l	ug/l	ug/l	l/gu	l/gn	l/gn	ng/l	ug/1	l/gn	ng/I	ng/l	ng/l	ug/1	ng/l	ug/l	ug/l	ug/I	ng/l	ug/1	ug/1	ug/l	l/gn	l/gn	ug/l
5.0000 U 5.0000 U 5.0000 U	10.0000 U 5.0000 U	10.0000 U	10.0000 U	0.0000 5	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	0.0000 B	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	1.0000 U	1.0000 R	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U
0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0000.69	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	1.7500	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Memyi-z-pentanone Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane
C-TB1 C-TB1 C-TB1	C-TB1 C-TB1	C-TB1	C-TB1	C-TB1	C-TBI	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB1	C-TB10	C-TB10	C-TB10	C-TB10	C-TB10	C-TB10	C-TB10	C-TB10	C-TB10
TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP	TRIP	2 TRIP BLANK	•	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

7,7	1,2-Dichloropropane 1,2-trans-Dichlorocthylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloroethylvinyl ether Benzene Benzyl Chloride	0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 U 1.0000 U 1.0000 U 1.0000 U 1.0000 U	1/3n 1/3n 1/3n 1/3n 1/3n	
C-TB10 C-TB10 C-TB10	Вгото	0.0000	1.0000 U 1.0000 U 1.0000 U	1/gu 1/gu 1/gu	
	Caroon retractionide Chlorobenzene Chloroethane Chloroform Dibromochloromethane	0.000 0.000 0.000 0.000 0.000	1.0000 U 1.0000 U 10.0000 U 1.0000 U	1/gn 1/gn 1/gu 1/gn	8010/8020 PACE 8010/8020 PACE 8010/8020 PACE 8010/8020 PACE
	Dibromomethane Ethylbenzene Methyl bromide Methyl chloride Methylcne chloride Tetrachloroethylene	0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 U 1.0000 U 10.0000 U 1.0000 U 1.0000 U	l/an l/an l/an l/an	8010/8020 PACE 8010/8020 PACE 8010/8020 PACE 8010/8020 PACE 8010/8020 PACE 8010/8020 PACE
Tr	Toluenc Trichloroethylene Trichlorofluoromethane Vinyl chloride meta- and para-Xylenes ortho-Xylene	0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 U 1.0000 U 1.0000 U 1.0000 U 1.0000 U	l/gu l/gu l/gu l/gu	
1,1,1, 1,1,2, 1,1,2, 1, 1,1,2, 1,2, 1,2	1,1,1,2-Tetrachlorocthane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethylene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dichloropropane 1,2-Dichlorobenzene	0.000.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.3500 U 0.3500 U 0.4000 U 0.2500 U 0.3500 U 0.3500 U 0.3500 U	J/Sn I/Sn I/Sn I/Sn I/Sn	

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

	SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM		SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM	SW8010 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM
ug/l ug/l ug/l ug/l	ug/l ug/l ug/l ug/l ug/l	l/gn l/gn l/gn l/gn l/gn	1/gu 1/gu 1/gu 1/gu 1/gu	l/gu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu 1
0.2500 U 0.3000 U 0.2000 U 0.2000 U	0.2500 U 0.2000 U 0.4000 U 0.2500 U 0.3500 U	0.2500 U 0.4000 U 0.5000 U 0.3500 U 0.3500 U 0.5000 U	0.3000 U 0.4000 U 0.4500 U 0.5000 U 0.3000 U	0.5500 U 0.1500 U 0.2000 U 0.2000 U 0.5000 U 0.3500 U 0.2500 U 5.0000 U 5.0000 U 0.2500 U
0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.2100 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1,2-Dichloroethane 1,2-Dichloropropane 1,2-trans-Dichloroethylene 1,3-cis-Dichlorobenzene 1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Chloroethylvinyl ether 2-Chlorotoluene 4-Chlorotoluene Bromobenzene	Bromochloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chlorocthane Chloroform	Dibromochloromethane Dibromomethane Methyl bromide Methyl chloride Methylene chloride Tetrachloroethylene Trichloroethylene	Vinyl chloride 1,2-Dichlorobenzene 1,2-Dimethylbenzene 1,3-Dichlorobenzene 1,4-Dimethylbenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Ethylbenzene Ethylbenzene Attyl-t-Butyl Ether Styrene Toluene
		C-TB10 C-TB10 C-TB10 C-TB10 C-TB10	C-TB10 C-TB10 C-TB10 C-TB10 C-TB10	C-TB10 C-TB10 C-TB10 C-TB10 C-TB10 C-TB10 C-TB10 C-TB10
TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

8010/8020 COMPUCHEM 8010/8020 COMPICHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	8010/8020 COMPUCHEM
l/gu  /an	ug/l	ug/l	ug/1	ug/1	l/gn	l/gn	l/gn	ug/1	ug/l	l/gn	ng/1	ug/1	l/gn	ug/1	l/gn	ug/1	l/gn	ug/1	ug/1	ug/1	ug/l	l/gn	ng/l	ug/1	ug/l	l/gn	l/gn	ug/l	ng/l	ug/l	ng/l	ug/1	l/gn	ug/l	1/gn
1.0000 U 1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	0.0000 B	1.0000 U	1.0000 U	1.0000 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.8000	0.0000	0.000	0.0000
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	C-15111, 2-Dioromo-3-Chioropropane	1,2-Dibromomethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-cis-Dichloroethylene	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Tolucne
C-TB11	C-TB11	C-TBII	C-1811	C-15111,2:	C-1811	C-1811	C-TBII	C-TBII	C-1811	C-11811	C-TBII			(-1811)		C-1811	C-TB11	C-TB11	C-TB11	C-TB11	C-11811	C-TBII	C-TBII	C-TBII	C-TBII	C-1811	C-1811	C-IBII	C-1811	C-1811	CTBII	C-11811	C-TB11	C-TB11	C-TB11
TRIP BLANK	TRIP BLANK	TDID DI ANV	TRIP BLAIN	TDID DI ANV	TDID DI ANIV	TDID DI ANIV	TDID BI AND	TRIP BLAIN	TDID DI ANIV	TRIP BLAIN	TOID DI ANIV	TOTO DE ANY	TOID DI ANIV	Tolo bi ANV	TOID DI ANY	Thir blank	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TELENK	TDID DI ANIV	TDID DI AND	TOTO DE ANY	TOTO DE ANY	TOTO DI ANIV	Thir blain	TRIP BLAIN	TRIP BLAIN	TRIP BLANK	TRIP BLANK	I KIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

8010/8020 COMPUCHEM 8010/8020 COMPUCHEM	8010/8020 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	SW8010 COMPUCHEM	-	SW8010 COMPUCHEM
l/gu l/on	1,80 1,81	ug/1	l/gn	ug/1	ug/1	ug/I	l/gn	l/gn	ng/1	1/gn	ng/1	ng/l	l/gn	ng/l	l/gn	ug/1	ug/1	l/gn	l/gn	ng/l	ug/l	ng/l	ug/l	l/gn	l/gn	l/gn	ng/l	ug/l	ng/l	ng/l	l/gn	ug/l	ug/l	ug/l	ug/l
1.0000 U	1.0000 U	0.3500 U	0.3500 U	0.4000 U	0.2500 U	0.3500 U	0.3500 U	0.3500 U	0.3500 U	0.3000 U	0.2500 U	0.3000 U	0.3000 U	0.2000 U	0.3000 U	0.2500 U	0.2000 U	0.4000 U	0.2500 U	0.3500 U	0.8500 U	0.2500 U	0.4000 U	0.5000 U	0.3500 U	0.3500 U	0.5000 U	0.3500 U	0.3000 U	0.4000 U	0.4500 U	0.5000 U	1.0000 U	0.3000 U	0.3000 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
Trichloroethylene Vinyl chloride	Xylenes (TOTAL)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Trichloroethylene
C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11	C-TB11
TRIP BLANK TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	•	TRIP BLANK		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

SW8010 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM SW8020 COMPUCHEM			SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM SW8010 COMPUCHEM	
1/gn 1/gn 1/gn 1/gn 1/gn	Ligu Ligu Ligu Ligu Ligu Ligu	I/an I/an I/an I/an I/an I/an	1/8n 1/8n 1/8n 1/8n 1/8n 1/8n	I/Bn I/Bn I/Bn I/Bn I/Bn
0.5500 U 0.1500 U 0.2000 U 0.2000 U 0.5000 U	0.3500 U 0.2500 U 0.2500 U 5.0000 U 0.2500 U 0.3500 U	0.4000 U 0.2500 U 0.3500 U 0.3500 U 0.3500 U 0.0000	0.2500 U 0.3000 U 0.2000 U 0.3000 U 0.2500 U 0.2500 U	0.2500 U 0.3500 U 0.8500 U 0.2500 U 0.4000 U 0.5000 U 0.3500 U
0.0000	0.0000 0.0000 0.0000 0.0000 0.1500 0.2000	0.0000 0.0000 0.0000 0.0000 0.0000 0.2900	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vinyl chloride 1,2-Dichlorobenzene 1,2-Dimethylbenzene 1,3-Dichlorobenzene 1,3/1,4-Dimethylbenzene 1,4-Dichlorobenzene	Benzene Chlorobenzene Ethylbenzene Methyl-t-Butyl Ether Styrene Toluene 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,3-Trichloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene	1,2-Dichloroethane 1,2-Dichloropropane 1,2-trans-Dichloroethylene 1,3-cis-Dichloropropylene 1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Chloroethylvinyl ether	2-Chlorotoluene 4-Chlorotoluene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene
C-TB11 C-TB11 C-TB11 C-TB11 C-TB11	C-TB11 C-TB11 C-TB11 C-TB11 C-TB11 C-TB11 C-TB12	C-TB12 C-TB12 C-TB12 C-TB12 C-TB12 C-TB12		C-TB12 C-TB12 C-TB12 C-TB12 C-TB12 C-TB12 C-TB12
TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

ane 0.0000	Chloroform 0.2800			mide	oride						1,2-Dimethylbenzene 0.0000		1,4-Dichlorobenzene 0.0000	Benzene 0.0000	Chlorobenzene 0.0000	nzene			l oluene 0.0000		1,1,2-Trichloroethane 0.0000							1,3-cis-Dichloropropyiene 0.0000		_		none
Chloroethane		Dibromo				ž	ਸ ਹ	<b>-</b>	(	1.2-1	1,2-1	3/1,4-D	1,4-D		Ĭ		Methyl.			,2,2-Tetr	1,1,2-T	1,1-I	1,1-D;	1,2-D	1,2	U-7,1	1-7:1	 -cis-De	1 4-F	:	-Chlore	
	C-TB12		C-TB12	C-TB12					•		C-1812 1,2-D		C-TB12 1,4-D	C-TB12				C-TB12	C-1812 C-182 111-E	1,1,	C-TB2 1,1,2-T				C-TB2 1,2-			 C-162 1,3-cis-Die	1,3-uall	•		C-TB2

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/1	ug/l	ug/l	ug/I	ug/l	ug/l	ug/l	ng/I	ug/l	l/gn	ug/1	ug/l	l/gu	ng/I	ug/1	ug/I	ug/l	ug/1	ug/1	ng/l	l/gn	l/gn	ng/I	ug/l	ng/I	ug/l	ng/l	ug/1	ug/l	ug/l	l/gn
10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	0.0000 B	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U
0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	69.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000
2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготобот	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether
C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB2	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-1183	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3
TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	IKIP BLANK	IKIP BLANK	TRIP BLANK	IKIP BLANK	TRIP BLANK	IKIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	IKIP BLANK	TRIP BLANK	TKIP BLANK	TRIP BLANK	IRIP BLANK	TRIP BLANK	TRIP BLANK	I KIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
l/an	1/du	ug/l	ug/l	ug/l	ug/l	ng/l	ug/l	ng/1	ug/l	1/gn	1/gn	ng/l	ng/l	l/gn	ug/1	ug/I	ug/l	l/gn	ug/l	ngu	ng/l	ug/1	ug/l	ng/l	ug/1	1/gn	l/gn	l/gn	ug/l	l/gu	l/gn	ug/l	l/gn	ng/l	ug/l	l/gn
10.0000 U	10,0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	0.0000 B	S.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	17.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000
2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acctate	Vinyl chloride	Xylenes (TOTAL)	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone
C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB3	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4	C-TB4
TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	•	TRIP BLANK	•	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/l	ug/1	ug/1	l/gn	ug/l	ug/l	ng/I	ng/l	ug/l	ug/l	ug/1	ug/1	l/gn	ug/1	ug/l	l/gn	ug/l	ug/l	ug/l	l/gn	l/gn	ug/l	ug/l	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	l/gn	ug/l	ug/1	ug/l	ug/l
5.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	0.0000	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U
0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	2.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000
2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготогот	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	I, I-Dichloroethane	I, I-Dichloroethylene	1,2-Dichlorobenzene	I,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	I,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene
C-TB4	C-TB4	C-TB4	C-1 B4	C-184	C-184	C-184	C-TB4	C-184	C-T84	C-TB4	C-TB4	C-184	C-184	C-184	C-184	C-184	C-184	C-TB4	C-TB4	C-TB4	C-184	C-184	C-184	C-185	C-185	C-185	C41-5	C-183	C-1185	C-183	C-1185	C-1185	C-TBS	C-TBS	C-TBS	C-TBS
TRIP BLANK	TRIP BLANK	TRIP BLAIN	TOID DI ANIV	This braid	TDID DI AKIV	TRIP BLAIN	TRIP BLAINA	Thir blain	TRIP BLAING	TRIP BLAIN	TOID BI ANY	This beam		TDID DI ANIV	-	TOID DI ANIV	TRIF BLAIN	TRIP BLANK	TRIP BLANK	TRIP BLAINE	TOID DI ANY	TDID DI ANIV	TDID DI ANIV	TOTAL BLANK	TDID DI ANIV	TOID BI ANY	TOID BI ANK	TOTO DE ANY	TOTO BI ANY	This beata	TRIP BLAIN	TRIF BLAIN	TRIP BLANK	TRIF BLAIN	TRIP BLANK	I KIP BLAINK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020
	1/gn 1/gn
5.0000 U 10.0000 U 10.0000 U 10.0000 U 5.0000 U 5.0000 U 5.0000 U 5.0000 U 10.0000 U 5.0000 U 5.0000 U 6.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U 10.0000 U	1.0000 U 1.0000 U
2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
2-Eutanone 2-Chloroethylvinyl ether 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Chloroethane Chloroethane Chloroethane Ethylbenzene Methyl bromide Methyl bromide Methyl chloride Styrene Trichloroethylene Trichloroethylene Vinyl Acetate Vinyl Acetate Vinyl Acetate Vinyl Acetate 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane	1,1-Dichloroethylene 1,1-Dichloroethylene
2000 2000 2000 2000 2000 2000 2000 200	C-TB6 C-TB6
ANK ANK ANK ANK ANK ANK ANK ANK ANK ANK	ANK ANK
TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	DACE	PACE	DACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8000	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/l	ug/l	l/gn	ug/l	ug/l	ug/l	ug/l	1/gn	1/8'n	ng/I	ug/l	l/gn	ug/l	l/gn	ug/l	ug/l	l/gn	1/gn /1	1/3n 1/an	1/gn	ug/1	ug/I	ug/l	ng/l	ug/l	1/gu	1/2n		1/an	1/8n 1/an	1/9n	1/8n	ug/]	ug/l
1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	00001	1.0000	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000 U	1.0000	1.0000 U	1.0000 U	10.0000 U	10.0000 U	1.0000 U	0.0000	1.0000 U	0.0000	11 0000 1	1,0000	1 0000 1	10,00001	10.0000 U	1.0000	1.0000 U	1.0000 U
0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000
opane	ane	je	2	<b>a</b> ) (		ı) e		6)	v	•)	e)																					2	
1,2,3-Trichloropropan	1,2,3-Trichloropropan	1,2-Dichlorobenzen	1,2-Dichlorobenzen	1,2-Dichloroethane	1,2-Dichlorocthand	1,2-Dichloropropan	1,2-trans-Dichloroethylene	1,2-trans-Dichloroethylene	1,3-Dichlorobenzen	1,3-Dichlorobenzene	1,4-Dichlorobenzen	1,4-Dichlorobenzene	1-Chlorohexane	1-Chlorodexane	2 Chloroethylvinyl ether	z-chloroethylvinyl etner	Benzene	Benzyl Chloride	Benzyl Chloride	Bromobenzene	Bromobenzene	Bromodichloromethane	December of Processing	Bromoform	Carbon Tetrachloride	Carbon Tetrachloride	Chlorobenzene	Chlorobenzene	Chloroethane	Chloroethane	Chloroform	Chlorofor	Dibromochloromethane
	-			C-1 Bo 1,2-Dichloroethane	-	-	1,2-tr	C-TB6 1,2-trans-Dichloroethylene		-		_	C-1 B6 1-Chlorohexane	, Chlo.				Benzyl				C-TB6 Bromodichloromethane			Carbon T	C-TB6 Carbon Tetrachloride	C-TB6 Chlorobenzene	C-TB6 Chlorobenzene	C-TB6 Chloroethane	C-TB6 Chloroethane	C-TB6 Chloroform		C-TB6 Dibromochloromethane

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020 8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/1 ug/1	1/gn	ug/l ug/l	l/gn	ng/l	l/gn	l/gn	ng/I	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/an
n n 000	D = 0	5 5 8 8	0.0000 U	0.0000 U	0.0000 U	0.0000 U	D 00	n 00	n 00	n 00	D 0000	n 000	D 0000	n 00	n 00	n 000	n 00	n 00	n 00	n 00	n 00	n 000	n 000	n 000	n 000	n 000	D 000	n 000	n 00	n 000	n 000	n 000	n 000	n 000
1.0000	1.0000	1.0000	10.0	10.0	10.0	10.0	1.0000	1.0000	1.0000	1.0000	1.00	1.0000	1.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000
Dibromochloromethane Dibromomethane	Dibromomethane Fitylbenzene	Ethylbenzene	Methyl bromide	Methyl bromide	Methyl chloride	Methyl chloride	Methylene chloride	Methylene chloride	Tetrachloroethylene	Tetrachloroethylene	Toluene	Toluene	Trichloroethylene	Trichloroethylene	Trichlorofluoromethane	Trichlorofluoromethane	Vinyl chloride	Vinyl chloride	meta- and para-Xylenes	meta- and para-Xylenes	ortho-Xylene	ortho-Xylene	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene
C-TB6 C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB6	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7
TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	•	TRIP BLANK	•	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

8010/8020 PACE	8010/8020 PACE		8010/8020 PACE	8010/8020 PACE			8010/8020 PACE				8010/8020 PACE		8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	8010/8020 PACE	
ug/l	ug/1	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	l/gu	l/gn	1/gn	l/gn	ug/1	l/gn	ug/1	ug/l	l/gn	l/gu	ug/1	ug/l	ug/1	ug/l	l/gn	ug/l	ug/l	ug/l	ug/l	ug/I	ug/I	W 1 1
5.0000 U	10.0000 U	5.0000 U	10.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	10.0000 U	10.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	5.0000 U	11 0000
0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	
1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	<b>Bromodichloromethane</b>	Вготоботи	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chlorocthane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acctate	Vinyl chloride	Xylenes (TOTAL)	1,1,1-Trichloroethane	1,1,2,2-Tetrachlorocthane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1 3. Dichlorohanzana
C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB7	C-TB8	C-TB8	5-188 	C-TB8	C-TB8	C-TB8	C-TB8	C-TB8	C-TB8	TR8
TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	I KIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020
1/3n 1/3n 1/3n 1/3n 1/3n 1/3n 1/3n 1/3n	1/gu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu
5.0000 U 6.0000 U 10.0000 U 10.0000 U 10.0000 U 5.0000 U 5.0000 U 5.0000 U 5.0000 U 5.0000 U 5.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U 6.0000 U	5.0000 U 5.0000 U 10.0000 U 10.0000 U 5.0000 U 2.0000 U 2.0000 U 2.0000 U 2.0000 U 2.0000 U 2.0000 U 2.0000 U
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0
1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chlorothane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Methylene chloride Styrene Tetrachloroethylene	Toluene Trichloroethylene Vinyl Acetate Vinyl Acetate Vinyl ethoride Xylenes (TOTAL) 1,1,2,2-Tetrachloroethane 1,1,2,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-trans-Dichloroethylene 1,3-trans-Dichloroethylene 1,3-trans-Dichloroethylene 1,3-trans-Dichloroethylene
200 200 200 200 200 200 200 200 200 200	CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CTB: 9 CT
TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

PACE				PACE										PACE											) IdMo	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEN	COMPOCHEM	CLP		COMPUCHEM	COMPUCHEM	COMPUCHEM
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CI.P 0.10		_	_						•	1 T
ug/l	ug/l	ng/l	ug/l	ng/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ng/l	l/gn	l/gn	ug/l	ng/l	ng/l	l/gn	ug/1	ug/l	ug/l	ug/1	1/611	. %- ng/l	l/an	g.	-8- 1/an	l/an	l/an	. Poli	1,61,	n n		ug/I	ugu !'e'i	ug/l ug/l
15.0000 U	1.0000 U	0000.9	5.0000 U	3.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	1.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	2.0000 U	1.0000 U	5.0000 U	2.0000 U	2.0000 U	0.0000	_	3.0000 U	5.0000 U	2,0000 1	11 0000 5	156.0000	10 0000 01	9 0000 1	_	
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	91.4000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0000	00000	00000	34.9000
2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготобогт	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron
CTB-9	CTB-9	CTB-9	CTB-9	C.I.B-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	C18-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	CTB-9	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11
TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLAIN	Thir blain	TRIP BLANK	IKIP BLANK	IKIP BLANK	IKIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	This bi anic	This bi Ang	TOTAL PLAIN	TRIP BLANK	Thin by Any	Thir BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	I KIP BLANK	TRIP BLANK	TRIP BLANK	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE COMPUCHEM	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

СОМРИСНЕМ СLP	COMPUCHEM COMPUCHEM COMPUCHEM CLP	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	CLP COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM	3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM	3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM	3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM	3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM 3/90 COMPUCHEM
CLP ug/l	CLP CLP ug/l		CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/1 U	ug/1 ug/1 ug/1 U	ug/1 ug/1 ug/1 ug/1	18/1 1/20 1/20 1/20	1/gu 1/gu 1/gu	. 187 187 187 187 187	ug/l l/gu l/gu l/gu	ug/1 ug/1 ug/1 ug/1
2.0000 UL 476.0000	6.0000 U 0.2000 U 31.0000 U 2240.0000	3.0000 U 10.0000 U 0.0000 ()B 4.0000 U		10.0000 U 10.0000 U 25.0000 U 10.0000 U	10.0000 U 10.0000 U 25.0000 U 10.0000 U	10.0000 U 10.0000 U 25.0000 U 10.0000 U 25.0000 U	10.0000 U 10.0000 U 25.0000 U 10.0000 U
0.0000	0.0000	0.0000 0.0000 414.0000 0.0000	7.8000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
Lead Magnesium	Manganese Mercury Nickel Potassium	Sclenium Silver Sodium Thallium	Zinc 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	1,4-Dichlorobenzene -Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	GPA-ER11 2-Chloronaphthalene GPA-ER11 2-Chlorophenol GPA-ER112-Methyl-4,6-Dinitrophenol GPA-ER11 2-Methylnaphthalene GPA-ER11 2-Methylphenol GPA-ER11 2-Nitroaniline	GPA-ER11 2-Nitrophenol GPA-ER11 3,3'-Dichlorobenzidine GPA-ER11 3-Nitroaniline GPA-ER14-Bromophenyl phenyl ether GPA-ER11 4-Chloro-3-methyl phenol
GPA-ER11 GPA-ER11	GPA-ER11 GPA-ER11 GPA-ER11	GPA-ER11 GPA-ER11 GPA-ER11 GPA-ER11	GPA-ER11 GPA-ER11 GPA-ER11 GPA-ER11	GPA-ER!1 GPA-ER!1'-C GPA-ER!1 GPA-ER!1	GPA-ER11 GPA-ER11 GPA-ER11 GPA-ER11	GPA-ER11 GPA-ER11 GPA-ER112-N GPA-ER11 GPA-ER11	GPA-ER11 GPA-ER11 GPA-ER11 GPA-ER14-B1 GPA-ER11 4
EQUIP. RINSATE EQUIP. RINSATE COMPUCHEM	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE COMPUCHEM	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE		EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE	EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE EQUIP. RINSATE

ILANG, 183rd FG, Capitial Airport, Springfield, Illinois Table F-12 QC Samples

CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM		3/90	CLP 3/90 COMPUCHEM	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	3/90	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	3/90	3/90	3/90	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM	3/90	3/90	CLP 3/90 COMPUCHEM	CLP 3/90 COMPUCHEM
l/gn	ug/l	ug/l	ng/l	ug/1	ug/l	ug/l	ug/1	ug/l	ug/l	ug/l	ng/l	ug/1	ug/1	ng/l	ng/l	l/gn	ug/1	ng/l	l/gn	ug/1	ug/1	l/gn	ng/1	ug/l	ng/1	1/gn	ug/1	ug/1	l/gn	ug/1	ug/1	ug/l	ug/1	ug/l	ug/1	1/gn
10.0000 U	10.0000 U	10.0000 U	25.0000 U	25.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	10.0000 U	25.0000 U	10.0000 U	10.0000 U
0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000
4-Chloroaniline	GPA-ER14-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	GPA-ER11Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	GPA-ERI N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	<b>Pentachlorophenol</b>	Phenanthrene	Phenol
GPA-ER11	GPA-ER14-C	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-EKII	GPA-ERII	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ERIIHe	GPA-ER11	GPA-ER11	GPA-ERII	GPA-ERIN-I	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11	GPA-ER11
EQUIP. RINSATE		EQUIP. RINSATE		EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE			EQUIP. KINSATE	EQUIP. KINSAIE		6 EQUIP. RINSATE		EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. KINSAIE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. KINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE	EQUIP. RINSATE

Table F-12 QC Samples ILANG, 183rd FG, Capitial Airport, Springfield, Illinois

GPA-ER11 GPA-ER1bis(2-Chlorocthoxy)methane GPA-ER11 bis(2-Chlorocthyl) ether GPA-ER11 bis(2-Ethylhexyl)phthalate GPA-ER11 GPA-ER11 4,4'-DDE GPA-ER11	yrene         0.0000           ethane         0.0000           ether         0.0000           thalate         0.0000           -DDD         0.0000           -DDT         0.0000	10.0000 U 10.0000 U 10.0000 U 10.0000 U 0.1000 U	l/gu l/gu l/gu	CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM CLP 3/90 COMPUCHEM PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM PCR-CT P COMPUCHEM
; <i>-</i>		0.0500 0.0500 U	l/gu	PCB-CLP COMPUCHEM
End	<b>-</b>	0.0500 U 0.0500 U	ug/l l/gu 	PCB-CLP COMPUCHEM
GPA-ER11 Endosulfan II	n II 0.0000 fate 0.0000	0.1000 U 0.1000 U	ng/l ng/l	PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM
GPA-ER11 Endrin aldehyde	Endrin 0.0000 lehyde 0.0000	0.1000 U 0.1000 U	l/gu	PCB-CLP COMPUCHEM
		0.1000 U	ng/l	PCB-CLP COMPUCHEM
GPA-ER11 Heptachlor GPA-ER11 Heptachlor	lor 0,0000 ide 0,0000	0.0500 U 0.0500 U	ug/1 ug/1	PCB-CLP COMPUCHEM PCB-CLP COMPUCHEM
_		0.5000 U	ng/1	PCB-CLP COMPUCHEM
GPA-ER11 PCB-1016	0.0000	1.0000 U	1/gu	PCB-CLP COMPUCHEM
		1.0000 U	ug/l	PCB-CLF COMFOCATION PCB-CLP COMPUCHEM
	242 0.0000	1.0000 U	ng/l	PCB-CLP COMPUCHEM
		1.0000 U	ug/l	PCB-CLP COMPUCHEM
		1.0000 U	ng/l	PCB-CLP COMPUCHEM
		1.0000 U	ng/l	PCB-CLP COMPUCHEM
		5.0000 U	l/gn	PCB-CLP COMPUCHEM
l alpha		0.0500 U	ng/l	PCB-CLP COMPUCHEM
alpha-Chlo		0.0500 U	ng/l	PCB-CLP COMPUCHEM
l beta		0.0500 U	ng/l	PCB-CLP COMPUCHEM
delta		0.0500 U	ng/l	PCB-CLP COMPUCHEM
gamma		0.0500 U	ng/l	PCB-CLP COMPUCHEM
GPA-ER11 gamma-Chlord	rdane 0.0000	0.0500 U	ug/l	PCB-CLP COMPUCHEM

### F.2.4 Field Replicates

One replicate environmental sample was collected for every 10 environmental samples, as required by DOE/HWP-65. Sample collection reproducibility and media variability were measured in the laboratory by the analysis of field replicates. Field RPD values were calculated for all compounds and elements detected above the contract required detection limits (CRDLs) in one or both of the replicate pair samples. The RPD value of the detected compound or parameter was reviewed to assess the sample collection reproducibility and matrix variability. A total of 37 soil samples, 17 water samples, 3 sediment samples, four soil replicate samples and two duplicate water samples were collected.

Increased percent differences were expected for all analytes detected in soil samples, since all samples remained in stainless sleeves (i.e., not mixed) after the sampling equipment was retrieved from the borehole. The field replicate for each soil analyses was obtained from the adjacent sleeve and water samples were split into different sample containers upon sampling.

Three of 3 soil RPD values calculated exceeded the 35% control limit. The one water RPD value calculated for VOCs was greater than 20 percent. The RPD's values that exceeded the 35% ranged from 38% to 120%. None of the soil RPD values calculated for SVOCs exceeded the 35% limit. There were no SVOCs detected above the CRDL in the sample duplicate pair. Twenty-one of the 49 soil RPD calculated for metals were greater than 35%. The RPDs that exceeded the 35% limit ranged between 43% to 200%. Eleven of the 25 water RPD values calculated for metals were greater than 20%. The RPDs that exceeded the 20% limit ranged from 43% to 199%. Five soil RPD values were calculated for PCB/Pesticides. All of the calculated values exceeded the control limit of 35%. The RPDs ranged from 103% to 171%. . All the PCB/Pesticides values were calculated from one sample/duplicated pair (CF-SB2-SS0.5-1 and CF-SB4-SS0.5-1). Overall these results indicate that 41 of the 86 RPD values calculated from the sample/duplicate pairs exceeded their respective control limits of 35% for soil samples and 20% for aqueous samples. This is considered to have had some impact on the environmental data quality and may be the result of the variability of the soil matrix. Table F-13 summarizes the concentrations of elements detected in the replicate environmental samples collected at the ILANG, Capital Airport.

#### F.3 LABORATORY QUALITY CONTROL ASSESSMENT

All environmental samples collected at Capital ANG Base were analyzed using the 3/90 EPA CLP SOW for GC/MS analyses and EPA solid waste test methods and general chemical methodology from the following references:

- Statement of Work For Organic Analysis, Multi-Media, Multi-Concentration, EPA Contract Laboratory Program, 3/90, OLM01.8 (SVOCs and Pesticides/PCBs)
- Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods, SW-846, Third Edition, September 1986, with 1989 revisions (VOCs)

Final Site Investigation Report, ILANG, Capital Airport

version.000

Table F-13 Sample and Duplicate Pairs ILANG, 183rd FG, Capital Airport, Springfield, Illinois

LABORATORY	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
	00000	000000				
METHOD	<b>a</b> a a a a a			PCB-CLP PCB-CLP PCB-CLP PCB-CLP	88 33 33 33 33 33 33 33 33 33	
UNITS						10000000000000000000000000000000000000
QUALIFIER	- د	<b>=</b> = ¬	, ¥ ¬ ¬	-	. د د	רצר כ
ROL		0.00 0.00 0.00 0.00 0.00 0.00	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000 000 000		
RESULT	33.40 50.60 11800.00 5.50 165.00	0.76 3460.00 14.30 6.50 12.30 15800.00	2340.00 973.00 16.70 1340.00	25.00 2.30 0.32 17.00	130.00 74.00 14.80 1390.00 8.30 107.00 0.61 34.10 48.40	19.40 5.40 15.40 9.30 10000.00 452.00
ANALYTE	Vanadium Zinc Aluminum Arsenic Barium	Beryllium Carcium Chromium Cobar Copper Iron	Manganesium Manganese Nickel Potassium	2-Propanone gamma-Chlordane Heptachlor Heptachlor epoxide	bis(2-Ethylhexyl)phthalate 2,2-Oxybis(1-Chloropropane) Nickel Potassium Arsenic Barium Beryllium Vanadium Zinc	Chromium Cobalt Copper Lead Magnesium Manganese Iron
SAMPLEID	CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1	CF-584-580.5-1 CF-584-580.5-1 CF-584-580.5-1 CF-584-580.5-1 CF-584-580.5-1 CF-584-580.5-1	CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1	CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1	CF-SB4-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1	CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1
LOCATOR	SB4 SB4 SB4 SB4 SB4	884 884 884 884 884 884	S S S 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S S S S S S S S S S S S S S S S S S S	SB4 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2	SB2 SB2 SB2 SB2 SB2 SB2 SB2

Table F-13 Sample and Duplicate Pairs ILANG, 183rd FG, Capital Airport, Springfield, Illinois

LABORATORY	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM PACE PACE	PACE PACE PACE
METHOD	CLP 8240 PCB-CLP PCB-CLP PCB-CLP PCB-CLP	CLP 380 CLP 380 CLP 380 CLP 380	CLP 380 CLP 380 CLP 380 CLP 380 CLP 380	CLP 380 CLP 380 CLP 380 CLP 380 CLP 380		35555
UNITS	ngka ngka ngka ngka ngka	ng/kg ng/kg ng/kg ng/kg	מאלפו הפאלפו הפאלפו הפאלפו הפאלפו	10/40 10/40 10/40 10/40		mg/kg mg/kg mg/kg
QUALIFIER	7	ا د		ن	סרר רסר	ר א א
RESULT RDL	14800.00 0.00 17.00 0.00 9.90 0.00 260.00 0.00 1.00 0.00 29.00 0.00	0.0		•	17.50 0.00 0.00 0.00 1400.00 0.00 134.00 0.00 782.00 0.00 78.00 0.00 29.00 0.00 57.70 0.00 0.23 0.00	8 6
ANALYTE	Aluminum 2-Propanone alpha-Chlordane Dieldrin Heptachlor gamma-Chlordane	Heptachlor epoxide bis(2-Ethylhexyl)phthalate Diethyl phthalate Di-n-butyl phthalate 1,4-Dichlorobenzene	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Indeno(1,2,3-c,d)pyrene	1,4-Dichlorobenzene Lead Fluoranthene Chrysene Di-n-butyl phthalate	Manganese 4,4'-DDT Aluminum Barium Iron Manganese bis(2-Ethylhexyl)phthalate Fluorarthene Sodium Thallium	Zinc Potassium Arsenic Barium
SAMPLEID	CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1	CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1	CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05	CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05	CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-8B2-75-8 CS2-8B2-75-8 CS2-8B2-75-8 CS2-8B2-75-8 CS2-8B2-75-8 CS2-8B2-75-8	CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8
LOCATOR	\$82 \$82 \$82 \$82 \$82 \$82 \$82	SB2 SB2 SB4 SB4 SB4 SB4	SB4 SB4 SB4 SB4 SB4 SB4	SB4 SB4 SB4 SB4 SB4	MWT MWT MWT MWT SB2 RE SB2 RE SB2 SB2 SB2 SB2 SB2 SB2 SB2	SB2 SB2 SB2 SB2

Table F-13 Sample and Duplicate Pairs ILANG, 183rd FG, Capital Airport, Springfield, Illinois

LABORATORY	PACE PACE PACE	PACE PACE	PACE PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE
METHOD	4 d d	CLP CLP CLP 3/90	CLP 3/90 CLP CLP	ਰੇ ਹੋ ਹੋ ਹੋ ਹੋ	<b>1</b> 2 2 3 3 3	CLP CLP CLP 3/90	<b>.</b>	<b>5</b> 5 5 5 5	224 CLP CLP
UNITS	mg/kg mg/kg mg/kg	mg/kg mg/kg ug/kg	ug/kg mg/kg mg/kg	#9/kg #9/kg #9/kg	9749 9749 9749 9749	mg/kg mg/kg ug/kg		9%6 9%6 9%6 9%6 9%6	ugkg mgkg mgkg mgkg
QUALIFIER	ר ר כ	¥ .	¬ C	1	ᆔᅩᆇᆇ		с 1	ר כ ש	. C .
RESULT RDL		2870.00 0.00 3.30 0.00 25.00 0.00	8 9	. 8	888		00 00	38.20 0.00 2.50 0.00 61.00 0.00 34.20 0.00 62.70 0.00	8 6
ANALYTE	Cobait Lead Magnesium	Manganese Silver Fluoranthene	bis(2-Ethylhexyl)phthalate Aluminum Beryllium	Chromium Copper Iron	Nickel Magnesium Manganese Potassium	Arsenic Barium Lead Di-n-butyl phthalate	Aluminum Beryllium Calcium Chromium Copper Iron	Nickel Silver Sodium Vanadium Zinc	2-Butanone Arsenic Beryllium Calcium Chromium Barium
SAMPLEID	CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8	CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8	CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8	CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8 CS2-SB2-75-8	CS2-SB2-75-8 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75	CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75	CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75	CS2-SB2-1-19 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75 CS2-SB2-7-75	CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4
LOCATOR	\$82 \$82 \$82	\$82 \$82 \$82	\$82 \$82 \$83	\$82 \$82 \$82 \$83	7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28		882 882 882 882 883	582 582 582 582 582	SB7 SB7 SB7 SB7 SB7 SB7

Table F-13 Sample and Duplicate Pairs ILANG, 183rd FG, Capital Airport, Springfield, Illinois

LABORATORY	u C	TACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	TO A C	PACE	DAC E	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	10 <b>4</b> G	775
METHOD	ō	<u>ا</u> د	<u>,</u>	ָבָּ בּ	D D	CL _P	<u>م</u>	CLP P	G IS	G IS	C P	<u>a</u>	CLP 3/90	CLP	CLP P	G.P	S.P.	CLP.	CL _P	S.	CLP	S.P	CLP	다.	CLP	CLP	CLP 3/90	CLP D	OLP P	CLP	ᄗ	CLP	디	CLP	CL _P	CLP	C.P	<u>a</u> 5	٥	ļ
UNITS	a de ca		DY/GIT	D W	<b>3</b> 0/80	mg/kg	mg/kg	ma/kg	ma/ka	ma/ka	ma/ka	ma/ka	nayka	ma/ka	ma/kg	ma/ka	ma/ka	ma/ka	mg/kg	ma/ka	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	Von	/dn	<b>V</b> Bn	Vân	/Bn	VBn	Van	Van	Van	/on	Von	you	5
QUALIFIER	_	1 5	3						ш	C	:		7	_1		0	;						ш			٦	7	0		0							7		C C	>
JLT RDL	000			6	- -	0	0.00	00.00	00.0 00.0		00.0	14400.00 0.00	00.00	00.00	0.00	0.00	0.00	218000.00 0.00		11400.00 0.00	_	00.00			2			;	8	9	3			8		_	1.00	00.00	00.00	
RESULT	15.60	130	24.70	4700	)6.7-	3670.00	279.00	20.90	1400.00	0.20	28.20	1440	190.00	101.00	8.00	0.25	1,60	2180	11.60	1140	7770.00	664.00	1130.00	13.50	5020.00	41.90	36.00	67.70	084/	2.10	3830	27.60	7530	3820	35.30	7770.00	0.00	200.00	69.30	
ANALYTE	Lead	Silver	Conner	con			Manganese	Nickel	Potassium	Thallium	Vanadium	Aluminum	Diethyl phthalate	Barium	Arsenic	Beryllium	Cadmium	Calcium	Chromium	lron	Magnesium	Manganese	Potassium	Vanadium	Aluminum	Lead	Acenaphthylene	Barrum, Dissolved	Carciarri, Dissolved	Lead, Dissolved	Maying Stuff, Cissolved	Manganese, Dissolved		Magnesium	Manganese	Sodium	Lead	Aluminum	Barium	
SAMPLEID	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	7 6 200 600	CS2-301-2-4	4-7-19C-7CO	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CSZ-SB/-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CSZ-SB/-0-2	C52-5W4	500 C3C	CS2-5W4	#MS-250	CS2-5VV4	CSZ-3W4	CSZ-SW4	CSZ-SW4	CSZ-SW4	CS2-SW4	CS2-SW4	CS2-SW4	
LOCATOR	SB7	SB7	SB7	SB7	CB7	207	100	SB7	SB7	<b>SB7</b>	SB7	SB7	SB7	SB7	S87	287	S <b>B7</b>	S <b>B</b> 7	S <b>B7</b>	287	SB7	287	SB7	28/	28/	28/	28/	2004	787	SW4	200	DW4	1	2004	2004	SW4	SW4	SW4	SW4	:

Table F-13 Sample and Duplicate Pairs ILANG, 183rd FG, Capital Airport, Springfield, Illinois

LABORATORY	PACE PACE PACE PACE PACE PACE PACE PACE
METHOD	CCP CCP CCP CCP CCP CCP CCP CCP CCP CCP
UNITS	
QUALIFIER	c c c r cc r cre r
RDL	
RESULT	77.30 81700.00 1.00 41800.00 42.80 5.60 48.60 8530.00 0.00 40600.00 226.00 14.00 76.10 80200.00 2230.00 18.50 245.00 11.10 4020.00 3.80 87400.00 9.63
ANALYTE	Bartum, Dissolved Calcium, Dissolved Lead, Dissolved Magnesium, Dissolved Manganese, Dissolved Nickel, Dissolved Manganese Sodium Lead Manganese Sodium Calcium Iron Manganese Manganese Manganese Vanadium Atrenic Calcium Arsenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic Calcium Atrenic
SAMPLEID	CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-SW3 CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-GWZ CSZ-WW4-WZ
LOCATOR	S S S S S S S S S S S S S S S S S S S

■ Requirements for Quality Control of Analytical Data, HAZWRAP, DOE/HWP-65/R1 6/90 (VOCs)

HAZWRAP Level C documentation was required and submitted by the laboratory for all analyses. All data were validated and qualified using the guidelines and specifications described in the following documents:

- Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses, EPA Contract Laboratory Program, June 1991, (Region III modifications. June 1992) (SVOCs and Pesticides/PCBs)
- Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, EPA Contract Laboratory Program, February 1988 (target analyte metals)
- Requirements for Quality Control of Analytical Data, Hazardous Waste Remedial Actions Program (DOE/HWP-65/R1), July 1990 (VOC)

All data validation qualifiers used were applied to the data as required by the forementioned guidelines. A complete summary of all data obtained and the qualifiers applied to that data is presented in Appendix G.

Appendix G: Fixed Base Laboratory Data Validation Summaries and Data

Capital ANG
Springfield Illinois

Volatile Organic Data Validation SW 846 8010/8020

Sampling Dates: November 1992

Samples contained in SDG# PACE 8010/8020 (no SDG# given to this group)

CS1-MW4-GW1 CS2-MW2-GW1 CS2-MW3-GW1 CS1-MW1-GW1

#### Overview

Fifteen water samples were analyzed by SW 846 8010/8020 methodology. Numerous laboratory problems were encountered during the qualification of the data resulting in the non-use of some data points.

#### Summary

All samples were initially analyzed for all compounds by GC column analysis. Detects noted in the initial analysis, which required second column confirmation by GC, were not confirmed by GC methods. GC/MS methods were used to confirm the detects noted on the initial GC analysis. The GC/MS methodology with a detection limit of 2 ppb could not confirm the low levels of some compounds detected by the GC method.

The QA/QC level was HAZWRAP level C for all samples.

### **Major Problems**

Major problems were noted in the analytical method used for the confirmation analysis of the fifteen water samples. The confirmation of the low-level detects, less than 2 ppb, was not possible using GC/MS methods used for confirmation of the initial GC detects. The initial detects of compounds identified by GC which were lower than the detection limit of the GC/MS method were qualified as unusable "R". The following samples contained compounds detected in the initial 8010/8020 analysis which were below 2 ppb and were not detected in the GC/MS analysis:

CS2-MW2-GW1 1,2-dichloroethene and trichloroethene

CS2-MW1-GW1 1,1,1-trichloroethane CS2-MW3-GW1 1,1,1-trichloroethane

The GC/MS method was able to confirm one detect for vinyl chloride in sample CS2-MW2-GW1. No other compounds were confirmed by the use of the GC/MS method.

#### **Minor Problems**

#### **Holding Times**

All samples were initially analyzed within 14 days of the sample date except for C-TB11 which exceeded holding time by nine days. Dilutions and reanalysis of samples requiring confirmation if initial detects were performed outside of holding times for C-FB6, and CS2-MW2-GW1DL. No qualifiers were attached to the data as a result of missed holding times.

### Calibrations

On initial and continuing calibrations numerous compounds failed precision criteria (%RSD, %D). Many of these compounds grossly exceeded required precision criteria (bromomethane 64%, bromobenzene 46%, chloroethane 47%, and chloromethane 80%). No corresponding compounds were detected in any of the samples analyzed. Retention time shifts were noted in continuing calibrations on December 11th and 15th. Continuing calibration on December 15th reported that all compounds failed %D criteria. Relative response factors for all compounds were above 0.05. Sample CS2-MW2-GW1 exceeded calibration ranges for vinyl chloride, tetrachloroethane, and ethyl benzene on the initial analysis. The samples was diluted to bring the compounds into calibration ranges and was reanalyzed. The results in the initial analysis which exceeded calibration ranges were qualified "E". The reanalysis of the analytes were within calibration range. Based on the above statements and professional judgement the quantitation limits for all compounds were qualified "UJ".

#### Matrix Spike

Chloromethane, chloroethane, o-xylene and 2-chloroethyl-vinylether were not detected in the matrix spike/matrix spike duplicate analyses. The non-detection of these compounds may be due to the low concentration of compound added and the length of time between addition of the spikes and analysis. No qualifiers were attached to the data.

#### Blanks

No target analytes were detected in the method blanks except for the December 15th blank in which methylene chloride was detected. This analyte was not detected in any of the associated samples.

#### **GC/MS Summary**

Since GC/MS methods were used to confirm the GC detects the data obtained from the GC/MS was validated according to corresponding GC/MS criteria. The GC/MS method was only able to confirm one detected value for vinyl chloride in sample CS2-MW2-GW1. The GC/MS analysis did not confirm detects noted in the 8010/810 analysis which were within the method detection limit of the GC/MS for the following samples and compounds:

Sample	Compound	GC Result	GC/MS Result
CS2-MW2-GW1	benzene	5.63	ND
	ethylbenzene	2.6	ND
	tetrachloroethane	54.1	ND
CS1-MW4-GW1	benzene	7.17	ND
	ethylbenzene	6.42	ND

## Samples in SDG# Pace 8010/8020 Confirmed by GC/MS:

C-ER4 CS2-MW1-GW1

CS2-MW3-GW1

C-TB10

C-TB6 CS1-MW4-GW1

CS2-MW2-GW1

#### **Overview**

Seven water samples for SDG# 8010/8020 were validated for semi-volatile organic compounds analyzed using CLP 3/90 methodology.

## Summary

All samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

#### Major Problems

None.

#### Minor problems

#### **Holding Times**

All samples were analyzed within recommended holding times.

#### Surrogates

All samples met required surrogate recovery criteria.

#### Internal Standards

All samples reported internal standard within QC limits for area counts and retention times.

Data Validation Capital First Round Pace Labs Version #002/MSB

### Calibration Criteria

Several compounds failed precision criteria (RSD <30%, %D<25) during initial and/or continuing calibrations. No compounds corresponding to compounds failing precision criteria were detected in the samples. The quantitation limits for non-detects were not qualified.

#### <u>Blanks</u>

No target analytes were detected in the method blanks.

# Matrix Spike

Matrix spike/matrix spike duplicate analysis was not performed for the samples analyzed by GC/MS. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois

Volatile Organic Data Validation SW 846 8240

Sampling Dates: December 1992

## Samples in SDG# CS2SD1:

C-TB7	C-FB3	C-FB4	C-TB8
CS2-SS1	CS2-SS2	CS1-SS1	CS1-SS2
CS2-SD2	CS2-SD3	CS2-SD1	

# **Overview**

Seven soil samples and four water samples were validated for volatile organic compounds analyzed using SW 846 8240 methodology.

# Summary

All samples were successfully analyzed for target compounds. QA/QC level was HAZWRAP level C for all samples.

# **Major Problems**

None.

### **Minor Problems**

### Holding times

All samples were analyzed within allowed holding time.

### Surrogates

All surrogate recoveries for all samples met required QC limits and no qualifiers were attached to the data.

# Internal Standards

All sample met QC limits for internal standards and area counts.

Data Validation Capital First Round Pace Version #002/MSB

### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified. Blanks

The following sample was found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and was qualified "B":

SAMPLE	COMPOUND
CS1-SS1	Methylene chloride

### Matrix Spike

Sample CS2-SD1 was designated as the soil QC sample. There were no relative percent difference values and one spike recovery outside QC limits. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois

Volatile Organic Data Validation SW 846 8240

Sampling Dates: April 1993

#### Samples in SDG# CS1SB2:

CS2-SB2-0-0.5	CS1-SB2-0.5-1	CS2-SB2-5.5-6	CS1-SB2-5-5.5
CS2-SB2-7-7.5	CS2-SB2-7.5-8	CS1-SB3-0-0.5	CS2-SB3-0.5-1
CS1-SB3-4.5-5	CS2-SB3-6.5-7	CS1-SB4-0-0.5	CS1-SB5-0.25
CS1-SB4-0.5-1	CS1-SB4-5.5-6	CS1-SB5-4.5-5	CS1-SB6-0-0.5
CS1-SB6-4-6	CS1-SB7-0-0.5	CS1-SB7-5-5.5	C-ER1

# **Overview**

Nineteen soil samples and one water sample were validated for volatile organic compounds analyzed using SW 846 8240 methodology.

#### **Summary**

All samples were successfully analyzed for target compounds. QA/QC level was HAZWRAP level C for all samples.

### Major Problems

None.

### Minor Problems

#### Holding times

Sample CS1-SB4-5.5-6 was analyzed one day out of allowed holding time. No qualifiers were added to the data as a result of exceeding holding time by one day

#### Surrogates

Sample CS1-SB4-0-0.5 had 2 or more surrogate recovery values which failed to meet QC criteria. The surrogates were mixed high and low. The sample was reinjected and identical surrogate recoveries were reported indicating a possible matrix effect. Quantitation limits for this sample were qualified "UL" and positive results were qualified "L" for biased low.

# Internal Standards

Sample CS1-SB4-0-0.5 had three internal standards which exceeded QC limits for area counts. Reanalysis was performed as required and acceptable area counts were reported.

### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

### **Blanks**

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
CS1-SB2-5-5.5	Methylene chloride
CS1-SB4-0-0.5	Methylene chloride
CS1-SB3-0-0.5	Methylene chloride
CS1-SB4-5.5-6	Methylene chloride
CS1-SB5-4.5- <u>6</u>	Methylene chloride
CS2-SB2-5.5-6	Methylene chloride
CS2-SB3-0.5-1	Methylene chloride
CS2-SB3-6.5-7	Methylene chloride
CS2-SB2-0-0.5	Methylene chloride
C-ER1	Methylene chloride, Acetone
CS1-SB5-0.25	Methylene chloride, Acetone
CS1-SB6-0-0.5	Methylene chloride, Acetone
CS1-SB7-5-5.5	2-Butanone
CS2-SB5-0-0.5	Methylene chloride

SAMPLE	COMPOUND
CS2-SB5-4-4.5	Methylene chloride
CS2-SB6-0.5-1	Methylene chloride
CS2-SB7-0-2	Methylene chloride

# Matrix Spike

Sample CS1-SB2-5.5-6 was designated as the soil QC sample. There were no relative percent difference values and one spike recovery outside QC limits. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois
Volatile Organic Data Validation SW 846 8010/8020
Sampling Dates: April 1993

Samples in SDG # 339A:

CS1-MW2-GW2 CS1-MW3-GW2

CS1-MW4-GW2

CS2-MW2-GW2

CS1-MW1-GW2

C-FB5

C-FB6

C-TB11

C-TB12

C-ER10

## **Overview**

Ten water samples were analyzed by SW 846 8010/8020 methodology. Five samples were QA/QC samples (trip blanks, field blanks, and equipment blanks). Eight samples were groundwater samples.

## Summary

The samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

#### **Major Problems**

### **Minor Problems**

#### Holding Times

Almost all of the primary analysis for this SDG were analyzed outside holding times. Some samples reported the presence of target compounds above the CRDL and the required second column confirmation which were performed outside of holding times. No qualifiers were added to the data if the second column holding times were not grossly exceed. Samples CS2MW2GW2, C-FB5, CER10, C-TB11, and CS2MW2GW2DL were analyzed from 9 to 13 days out of allowed holding times. These samples were initially analyzed within holding times by GC/MS. The summary of the GC/MS analysis in covered in SDG summary # 14. Comparison of the GC/MS data and the 8010/8020 data indicates differences in concentrations detected. Results reported in the 8010/8020 analysis were generally lower than the concentrations reported in the initial GC/MS analysis. This indicated that there may have been a loss of contaminant concentrations due to exceeding holding times. For sample

CS2MW2GW2 detected vinyl chloride in both the 8010/8020 and GC/MS analysis and the results compared well. Sample C-FB5 indicated a loss of chloroform reported at 30 ppb in the initial GC/MC analysis. The latter 8010/8020 analysis reported a non-detect for chloroform. While the trend of the loss of contaminant concentrations is not clear-cut, based on professional judgement, the positive results reported in the 8010/8020 analysis for samples CS2-MW2-GW2, C-FB5, and C-ER10, which exceeded holding times, were qualified "L" for biased low.

#### Calibrations

On initial and continuing calibrations several compounds failed precision criteria (%RSD, %D). Positive results for the compounds were qualified "J". The quantitation limits were not qualified.

Sample CS2MW2GW2 exceeded the calibration range for vinyl chloride and was reanalyzed at a 5 times dilution factor to bring the sample results within the analytical range.

## Surrogates

Sample CS1MW1GW2 reported low surrogate recovery on the initial analysis of the sample. The sample was diluted and reanalyzed reporting acceptable surrogate recoveries.

### Spike Recoveries

The initial analysis for the MS/MSD sample associated with SDG 339A was analyzed within holding time. However, the laboratory reportedly used the wrong sample for the initial analysis and the MS/MSD analysis was reanalyzed outside holding times using the correct sample. Spike recovery for 2-CEVE (0%) exceeded %RSD criteria in the matrix spike/matrix spike duplicate analyses. This compound was not detected in the corresponding analysis and no qualifiers were attached to the data.

# Method Blanks

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
CS1MW1GW2	Methylene chloride, Methyl-t- butyl-ether
CS2MW2GW2	1,1,1-Trichloroethane
C-FB5	1,2-Dichlorobenzene
CS2MW4GW2	Methylene chloride
C-TB10	Methylene chloride
CS1MW3GW2	Methylene chloride

### GC/MS Summary

Since GC/MS methods were used for the initial analysis the data obtained from the GC/MS was validated according to corresponding GC/MS criteria. A summary of this data is contained in SDG # 14.

No other problems were encountered during the validation process.

### Capital ANG

Springfield Illinois

Volatile Organic Data Validation SW 846 8240

Sampling Dates: November 1992

### Samples in SDG# CS2SB4:

CS2-SB4-0-0.5	CS2-SB4-5-5.5	CS2-SB5-0.5-1
CS2-SB5-4-4.5	CS2-SB6-0.5-1	CS2-SB6-4-6
CS2-SB7-0-2	CS2-SB7-2-4	CS2-SB7-4.5-5
CS1-SB8-0-0.5	CS1-SB8-5-5.5	C-ER2
C-ER3	C-FB1	C-FB2.

# <u>Overview</u>

Eleven soil samples and four water samples were validated for volatile organic compounds analyzed using SW 846 8240 methodology.

#### Summary

All samples were successfully analyzed for target compounds. QA/QC level was HAZWRAP level C for all samples.

### **Major Problems**

None.

### **Minor Problems**

#### Holding times

Sample CS2-SB7-4.5-5 was analyzed one day out of allowed holding time. No qualifiers were added to the data as a result of exceeding holding time by one day.

### Surrogates

Sample CS2-SB4-5-5.5 had 2 or more surrogate recovery values which failed to meet QC criteria. The sample was reinjected and identical surrogate recoveries were reported indicating a possible matrix effect. Quantitation limits for this sample were qualified "UL" and positive results were qualified "L" for biased low.

Data Validation Capital First Round Pace Labs Version #001/MSB

### Internal Standards

Sample CS2-SB4-0-0.5 exceeded QC criteria for all internal standards. This sample was also selected for the MS/MSD sample and reported identical results for internal standards on the unspiked run indicating a matrix effect. No reanalysis of the sample was performed, quantitation limits for this sample were qualified "UL" and positive results were qualified "L" for biased low.

### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

Sample CS2-SB6-4-6 exceeded the calibration range for xylene and was reanalyzed under the medium level soil criteria and again exceeded calibration ranges. No further dilutions were preformed. The result for that sample was qualified "E" for exceeding the calibration range of the method.

#### **Blanks**

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
CS2-SB4-0-0.5	Methylene chloride, 2-Butanone, Acetone
CS2-SB4-5-5.5	Methylene chloride, 2-Butanone, Acetone
CS2-SB5-0.5-1	Methylene chloride
CS2-SB5-4-4.5	Methylene chloride
CS2-SB6-0.5-1	Methylene chloride
CS2-SB7-0-2	Methylene chloride

SAMPLE	COMPOUND
C-ER3	Methylene chloride
C-FB1	Methylene chloride
C-FB2	Methylene chloride

# Matrix Spike

Sample CS2-SB4-0-0.5 was designated as the soil QC sample. There were no relative percent difference values and one spike recovery outside QC limits. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois
Semi-Volatile Organic Data Validation CLP 3/90
Sampling Date December 1992

# Samples in SDG# CS1SB2:

CS2-SB2-0-0.5	CS1-SB2-0.5-1	CS2-SB2-5.5-6	CS1-SB2-5-5.5
CS2-SB2-7-7.5	CS2-SB2-7.5-8	CS1-SB3-0-0.5	CS2-SB3-0.5-1
CS1-SB3-4.5-5	CS2-SB3-6.5-7	CS1-SB4-0-0.5	CS1-SB4-0.25
CS1-SB4-0.5-1	CS1-SB4-5.5-6	CS1-SB5-4.5-5	CS1-SB6-0-0.5
CS1-SB6-4-6	CS1-SB7-0-0.5	CS1-SB7-5-5.5	C-ER1

# **Overview**

Nineteen soil samples and one water sample for SDG# CS1SB2 were validated for semi-volatile organic compounds analyzed using CLP 3/90 methodology.

### Summary

All samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

# **Major Problems**

None.

# Minor problems

# **Holding Times**

All samples were analyzed within recommended holding times.

#### Surrogates

All samples met required surrogate recovery criteria.

#### Internal Standards

CS1-SB6-0-0.5 reported one internal standard (perylene) which exceeded QC limits for area counts. Reanalysis of the sample reported five internal standards exceeding QC limits. Quantitation limits were qualified "UJ" and detects were qualified "J" due to unacceptable laboratory control.

Sample CS2-SB2-7.5-8 reported one internal standard (chrysene) which exceeded QC limits for area counts. Reanalysis reported similar results were reported indicating acceptable laboratory control. Quantitation limits for the compounds corresponding to the respective internal standards were qualified "UJ" and detected results were qualified "J".

Sample CS2-SB3-6.5-7 reported one internal standard (perylene) which exceeded QC limits for area counts. Reanalysis reported similar results were reported indicating acceptable laboratory control. Quantitation limits for the compounds corresponding to the respective internal standards were qualified "UJ" and detected results were qualified "J".

### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

#### **Blanks**

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
CS1-SB6-0-0.5	Bis(2-ethylhexyl)phthalate
CS1-SB4-0-0.5	Bis(2-ethylhexyl)phthalate
CS2-SB2-0-0.5	Bis(2-ethylhexyl)phthalate
CS1-SB5-4.5-5	Bis(2-ethylhexyl)phthalate
CS1-SB5-4.5-6	Bis(2-ethylhexyl)phthalate

SAMPLE	COMPOUND
CS1-SB2-0.5-1	Bis(2-ethylhexyl)phthalate
CS1-SB4-0.5-1	Bis(2-ethylhexyl)phthalate
CS2-SB3-6.5-7	Bis(2-ethylhexyl)phthalate
CS1-SB6-4-6	Bis(2-ethylhexyl)phthalate
CS1-SB5-0.25	Bis(2-ethylhexyl)phthalate
CS1-SB6-5-5.5	Bis(2-ethylhexyl)phthalate
CS2-SB2-5.5-6	Bis(2-ethylhexyl)phthalate
CS1-SB7-5-5.5	Bis(2-ethylhexyl)phthalate
CS2-SB2-7.5-5	Bis(2-ethylhexyl)phthalate
CS2-SB2-7.5-8	Bis(2-ethylhexyl)phthalate
CS1-SB3-0-0.5	Bis(2-ethylhexyl)phthalate
CS2-SB3-0.5-1	Bis(2-ethylhexyl)phthalate
CS1-SB8-0-0.5	Bis(2-ethylhexyl)phthalate
CS1-SB8-5-5.5	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SB4-0-0.5	Bis(2-ethylhexyl)phthalate
CS2-SB4-5-5.5	Bis(2-ethylhexyl)phthalate
CS2-SB7-0-2	Bis(2-ethylhexyl)phthalate
CS2-SB7-2-4	Bis(2-ethylhexyl)phthalate
CS2-SB7-55.5	Bis(2-ethylhexyl)phthalate
C-ER1	Bis(2-ethylhexyl)phthalate

# Matrix Spike

Sample CS1-SB2-5.5-6 was designated as the soil QC sample. There were no relative percent difference values or spike recoveries outside QC limits. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois
Semi-Volatile Organic Data Validation CLP 3/90
Sampling Date December 1992

# Samples in SDG# CS2SB4:

CS2-SB4-0-0.5	CS2-SB4-5-5.5	CS2-SB5-0.5-1
CS2-SB5-4-4.5	CS2-SB6-0.5-1	CS2-SB6-4-6
CS2-SB7-0-2	CS2-SB7-2-4	CS2-SB7-4.5-5
CS1-SB8-0-0.5	CS1-SB8-5-5.5	C-ER2
C-ER3	C-FB1	C-FB2

#### <u>Overview</u>

Eleven soil samples for and four water samples SDG# CS2SB4 were validated for semi-volatile organic compounds analyzed using CLP 3/90 methodology.

### Summary

All samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

### Major Problems

None.

# Minor problems

### **Holding Times**

All samples were analyzed within recommended holding times.

#### Surrogates

Sample CS2-SB6-4-6 indicated 5 surrogate recovery values at 0% (three required and two advisory surrogates). No reanalysis of the sample was performed indicating that the lab had failed to perform satisfactorily. Therefore, non-detects in both the acid and base neutral fractions were qualified "R" non-usable and detected compounds were qualified "L" for biased low.

Data Validation Capital First Round Pace Version #002/MSB

### Internal Standards

Sample CS2-SB6-4-6 indicated all internal standards outside area recovery limits. No reanalysis of the sample was performed. Since the area counts indicated an abrupt loss in sensitivity the quantitation limits for the corresponding compounds in both acid and base/neutral fractions were qualified "R".

Samples CS2-SB6-0.5-1 and CS2-SB7-0-2 reported two internal standards outside area recovery limits. No reinjection of the sample was preformed. The compounds corresponding to the internal standards were qualified "UJ" for quantitation limits and "J" for positive results.

#### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

Sample CS2-SB6-4-6 exceeded the calibration range for naphthalene. No dilution and reanalysis of the sample was performed. The value reported for naphthalene was qualified "J" for estimated.

#### Blanks

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
C-ER2	Bis(2-ethylhexyl)phthalate
C-ER3	Bis(2-ethylhexyl)phthalate
C-FB1	Bis(2-ethylhexyl)phthalate
C-FB2	Bis(2-ethylhexyl)phthalate
CS2-SB5-0.5-1	Di-n-butylphthalate

Transport for a consistent to seek the first or the	
SAMPLE	COMPOUND
CS2-SB4-0-0.5	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SB4-5-5.5	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS7-SB7-0-2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SB7-2-4	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SB7-5-5.8	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SB6-0.5-1	Di-n-butylphthalate, Di-n- butylphthalate
CS1-SB8-0-0.5	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS1-SB8-5-5.5	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SB4-0-0.5	Bis(2-ethylhexyl)phthalate
CS2-SB4-5-5.5	Bis(2-ethylhexyl)phthalate
CS2-SB7-0-2	Bis(2-ethylhexyl)phthalate
CS2-SB7-2-4	Bis(2-ethylhexyl)phthalate
CS2-SB7-55.5	Bis(2-ethylhexyl)phthalate

# Matrix Spike

Sample CS2-SB4-0-0.5 was designated as the soil QC sample. There were no relative percent difference values and one spike recovery outside QC limits. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois
Semi-Volatile Organic Data Validation CLP 3/90
Sampling Date December 1992

# Samples in SDG# CS2SD1:

CS1-SS1 CS1-SS2 CS2-SD3 CS2-SD1.

CS2-SD1 CS2-SD2 CS2-SS1 C-FB3 C-FB4

### **Overview**

Nine water samples for SDG# CS2-SD were validated for semi-volatile organic compounds analyzed using CLP 3/90 methodology.

# Summary

All samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

# - Major Problems

None.

#### Minor problems

### **Holding Times**

All samples were analyzed within recommended holding times.

#### Surrogates

All samples met required surrogate recovery criteria.

### Internal Standards

Samples CS2-SS2 reported an internal standard which exceeded QC limits for area counts. Reanalysis was performed and similar results were reported indicating acceptable laboratory control. Quantitation limits for the compounds corresponding to the respective internal standards were qualified "UJ" and detected results were

qualified "J".

# Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

# **Blanks**

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

	<del></del>
SAMPLE	COMPOUND
CS1-SS1	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS1-SS2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SD1	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SD2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SD3	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SS1	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SS2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
C-FB3	Di-n-butylphthalate
C-FB4	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate

# Matrix Spike

Spike Recovery and Relative percent differences met required QC criteria for all spiked compounds. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois
Semi-Volatile Organic Data Validation CLP 3/90
Sampling Date December 1992

# Samples in SDG# S2-SW1:

CS1-MW1-GW1	CS1-MW2-GW1	CS1-MW3-GW1
CS1-MW4-GW1	CS1-MW1-GW1	CS2-MW2-GW1
CS2-MW3-GW1	CS2-SW1-GW1	CS2-SW2-GW1
CS2-SW3-GW1	CS2-SW4-GW1	C-ER4

#### **Overview**

Twelve water samples for SDG# S2-SW1 were validated for semi-volatile organic compounds analyzed using CLP 3/90 methodology.

#### Summary

All samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

#### **Major Problems**

None.

# Minor problems

#### **Holding Times**

All samples were analyzed within recommended holding times.

#### <u>Surrogates</u>

Sample CS1-MW4-GW1 reported zero percent surrogate recovery for phenol. A dilution of the sample and reanalysis was performed to confirm a possible matrix effect. The reanalysis indicated acceptable surrogate recovery but detection limits were raised to unacceptable levels. The quantitation limits for the compounds corresponding to the acid fraction were qualified "R" due to zero percent recovery of the surrogate. Positive results were qualified "J".

Data Validation Capital First Round Pace Version #002/MSB Sample CS1-MW2-GW1 reported zero percent surrogate recovery for phenol. A dilution of the sample and reanalysis was not performed to confirm a possible matrix effect due to the lack of sample. The well was resampled and the reanalysis of the second sample confirmed low surrogate recoveries but reported > 10% recovery for phenol. The quantitation limits of the initial analysis of CS1-MW2-GW1, corresponding acid fraction was qualified "R" due to zero percent surrogate recovery.

#### Internal Standards

The following samples reported internal standards which exceeded QC limits for area counts: CS1-MW2-GW1, and CS2-MW3-GW1

CS1-MW2-GW1, and CS2-MW3-GW1 reported internal area counts outside QC limits for perylene. Reanalysis of both samples was performed and reported similar results were reported which may be attributed to matrix effects. Quantitation limits for compound corresponding to the respective internal standards were qualified "UJ" and detected results were qualified "J" for both samples.

#### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

#### Blanks

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
CS1-MW1-GW1	Bis(2-ethylhexyl)phthalate
CS1-MW3-GW1	Bis(2-ethylhexyl)phthalate
CS1-MW4-GW1	Bis(2-ethylhexyl)phthalate
CS2-MW2-GW1	Bis(2-ethylhexyl)phthalate
CS2-MW3-GW1	Bis(2-ethylhexyl)phthalate
CS2-SW1	Di-n-butylphthalate

SAMPLE	COMPOUND
CS2-SW2	Di-n-butylphthalate
CS2-SW3	Di-n-butylphthalate
CS2-SW4	Di-n-butylphthalate
C-ER4	Bis(2-ethylhexyl)phthalate

# Matrix Spike

The following analytes were detected outside the control limits for the matrix spike/matrix spike duplicate analysis: 4-nitrophenol (SR) and pyrene (RPD). No qualifiers were attached to the data due to MS/MSD exceeding QC limits.

Capital ANG
Springfield Illinois
Semi-Volatile Organic Data Validation
Sampling Date December 1992

# Samples in SDG# CS2SD1:

CS2-SD1	CS2-SD2	CS2-SD3	CS2-SS1
CS1-SS1	CS1-SS2	<b>CS2-SS1</b>	CS2-SS2
C-FB3	C-FB4		

# **Overview**

Nine water samples for SDG# CS2-SD were validated for semi-volatile organic compounds analyzed using CLP 3/90 methodology.

#### Summary

All samples were successfully analyzed for target compounds. The QA/QC level was HAZWRAP level C for all samples.

# Major Problems

None.

#### Minor problems

# **Holding Times**

All samples were analyzed within recommended holding times.

#### Surrogates

All samples met required surrogate recovery criteria.

#### Internal Standards

Samples CS2-SS2 reported an internal standard which exceeded QC limits for area counts. Reanalysis was performed and similar results were reported indicating

acceptable laboratory control. Quantitation limits for the compounds corresponding to the respective internal standards were qualified "UJ" and detected results were qualified "J".

#### Calibration Criteria

Several compounds failed precision criteria (RSD < 30%, %D < 25) during initial and/or continuing calibrations. Detects for these compounds were qualified "J" for estimated. The quantitation limits for non-detects were not qualified.

#### **Blanks**

The following samples were found to contain less than 10 times the maximum associated blank concentration of common laboratory contaminants and were qualified "B":

SAMPLE	COMPOUND
CS1-SS1	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS1-SS2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SD1	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SD2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SD3	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SS1	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
CS2-SS2	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate
C-FB3	Di-n-butylphthalate
C-FB4	Bis(2-ethylhexyl)phthalate, Di-n- butylphthalate

# Matrix Spike

Sample CS2-SD! was designated as the matrix spike sample, spike recovery and relative percent differences met required QC criteria for all spiked compounds. No qualifiers were attached to the data.

Capital ANG
Springfield Illinois
Pesticides/PCBs Data Validation CLP 3/90
Sampling Dates: April 1993

# Samples in SDG# 5

C-ER10 C-FB5 C-FB6

CS1-MW1-GW2 CS1-MW2-GW2 CS1-MW3-GW2 CS1-MW4-GW2 CS2-MW1-GW2 CS2-MW2-GW2 CS2-MW4-GW2 CS2-MW3-GW2

#### **Overview**

Eight water samples and three QC samples were analyzed according to EPA CLP SOW for Analysis of PCBs and Pesticides.

# Summary

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

# **Major Problems**

None

#### Minor Problems

#### Surrogate Recoveries

There were a number of samples for which advisory surrogate recoveries were outside control limits on both columns. Since these surrogates are only advisory and all other surrogates were within control limits no qualifiers were attached to the data.

Samples with low surrogate recoveries include C-FB6, CS2MW4GW2, and CS2MW3GW2.

# Calibration

There were some compounds which fell outside retention time windows for the resolution check. The expansion of the retention times were small and all samples analyzed were bracketed by compliant standards. No qualifiers were attached to the data as a result of slightly increased retention times.

# Matrix Spike

All spike recovery values and RPDs were within QC limits.

No other problems were noted.

Capital ANG
Springfield Illinois
Pesticide/PCB Data Validation CLP 3/90
Sampling Dates: December 1992

# Samples in SDG# CS2SW1:

CS2-MW1-GW1 CS2-MW2-GW1 CS2-MW3-GW1 CS2-SW2 CS2-SW3 CS2-SW4 CS2-SW1 C-ER4

#### **Overview**

Seven water samples and one QC sample were analyzed according to EPA CLP SOW for Analysis of PCBs and Pesticides.

#### **Summary**

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

# <u>Major Problems</u>

None

#### Minor Problems

#### Surrogate Recoveries

All of the water samples reported advisory surrogate recoveries outside control limits on both columns. Since these surrogates are only advisory no qualifiers were attached to the data.

Water samples with low surrogate recoveries include C-ER4, CS2-MW1-GW1, CS2-MW2-GW1, CS2-MW3-GW1, CS2-SW2, CS2-SW3, CS2-SW4, and CS2-SW1.

# Calibration

There were some compounds that fell outside retention time windows for the resolution check. The expansion of the retention times (max of 0.05 min) were small and all samples analyzed were bracketed by compliant standards. No qualifiers were attached to the data as a result of slightly increased retention times.

# Matrix Spike

All RPD values and spike recovery values exceeded allowed QC limits. Sample CS2-SW1 was designated as the matrix spike sample. No qualifiers were attached to the data as a result of exceeding QC values for spike recovery and RPD.

Capital ANG
Springfield Illinois
Pesticides/PCBs Data Validation CLP 3/90
Sampling Dates: April 1993

# Samples in SDG# CS1SB2:

CS2-SB2-0-0.5	CS2-SB2-5.5-6	CS2-SB2-7-7.5
CS2-SB2-7.5-8	CS2-SB3-0.5-1	CS2-SB3-6.5-7

#### Overview

Six soil samples were analyzed according to EPA CLP SOW for Analysis of PCBs and Pesticides.

#### Summary

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

# **Major Problems**

None

# **Minor Problems**

#### Surrogate Recoveries

There were a number of samples for which advisory surrogate recoveries were outside control limits. Since these surrogates are only advisory and all other surrogates were within control limits no qualifiers were attached to the data.

Samples with low surrogate recoveries include CS2-SB2-0-0.5, CS2-SB2-5.5-6, CS2-SB2-7-7.5, CS2-SB2-7.5-8, CS2-SB3-0.5-1, and CS2-SB3-6.5-7.

# Calibration

There were some compounds that fell outside retention time windows for the resolution check. The expansion of the retention times were small and all samples analyzed were bracketed by compliant standards. No qualifiers were attached to the data as a result of slightly increased retention times.

# Matrix Spike

All spike recovery values and RPDs were within allowed QC limits except for gama-BHC which indicated a low percent recovery and dieldrin which also reported a low percent recovery.

Sample CS2-SB2-5.5-6 was designated as the matrix spike sample.

No other problems were noted.

Capital ANG
Springfield Illinois
Pesticide/PCB Data Validation CLP 3/90
Sampling Dates: December 1992

#### Samples in SDG# CS2SD1:

C-FB3 C-FB4

CS1-SS1 CS1-SS2 CS2-SD2 CS2-SD3

CS2-SS1 CS2-SS2 CS2-SD1

#### **Overview**

Five sediment samples and two QC sample were analyzed according to EPA CLP SOW for Analysis of PCBs and Pesticides.

# **Summary**

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

# **Major Problems**

None

#### **Minor Problems**

# Surrogate Recoveries

All of the water samples reported advisory surrogate recoveries outside control limits on both columns except for sample CS1-SS2. Since these surrogates are only advisory no qualifiers were attached to the data.

Water samples with low surrogate recoveries include: C-FB3,. C-FB4, CS1-SS1, CS2-SD2, CS2-SD3, CS2-SS1, CS2-SS2, and CS2-SD1.

#### Calibration

There were some compounds that fell outside retention time windows for the resolution check. The expansion of the retention times (max of 0.05 min) were small and all samples analyzed were bracketed by compliant standards. No qualifiers were attached to the data as a result of slightly increased retention times.

#### Matrix Spike

All RPD values and spike recovery values exceeded allowed QC limits. Sample CS2-SW1 was designated as the matrix spike sample. No qualifiers were attached to the data as a result of exceeding QC values for spike recovery and RPD.

Capital ANG
Springfield Illinois
Pesticide/PCB Data Validation CLP 3/90
Sampling Dates: December 1992

# Samples in SDG# CS2SB4:

C-ER2	C-ER3	C-FB1	C-FB2
CS2-SB4-0-0.5	CS2-SB4-5-5.5	CS2-SB5-0.5-1	CS2-SB5-4-4.5
CS2-SB6-0.5-1	CS2-SB6-4-6	CS2-SB7-0-2	CS2-SB7-2-4
CS2-SB7-4 5-5			

#### <u>Overview</u>

Nine soil samples and four water samples were analyzed according to EPA CLP SOW for Analysis of PCBs and Pesticides.

#### Summary

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

# Major Problems

None

#### **Minor Problems**

#### Surrogate Recoveries

There were a number of soil samples for which advisory surrogate recoveries were outside control limits. Since these surrogates are only advisory and all other surrogates were within control limits no qualifiers were attached to the data.

Soil samples with low surrogate recoveries include CS2-SB4-0-0.5, CS2-SB4-5-5.5, CS2-SB5-0.5-1, CS2-SB5-4-4.5, CS2-SB6-0.5-1, CS2-SB6-4-6, CS2-SB7-0-2, CS2-SB7-2-4, and CS2-SB7-4.5-5

All water samples met advisory surrogate recovery control limits.

#### Calibration

There were some compounds that fell outside retention time windows for the resolution check. The expansion of the retention times (max of 0.05 min) were small and all samples analyzed were bracketed by compliant standards. No qualifiers were attached to the data as a result of slightly increased retention times.

#### Matrix Spike

All RPD values and 5 spike recovery values exceeded allowed QC limits. Sample CS2-SB2-5.5-6 was designated as the matrix spike sample. No qualifiers were attached to the data as a result of exceeding QC values for spike recovery and RPD.

Capital ANG
Springfield Illinois
Inorganic Data Validation CLP TAL
Sampling Dates: November 1992

Samples in SDG #: CS2-SW1

CS2-MW2-GW1 CS2-MW3-GW1 CS2-SW2

CS2-SW3 CS2-SW4 C-ER4

CS1-MW1-GW1F CS1-MW2-GW1F CS1-MW3-GW1F CS1-MW4-GW1F

CS2-MW2-GW1F CS2-MW3-GW1F CS2-SW1F CS2-SW2F

CS2-SW3F CS2-SW4F

## Overview

Seven water samples for total and dissolved TAL metals, four water samples for total and dissolved lead, and one QC water sample were analyzed according to EPA CLP SOW for Inorganic Analysis (TAL metals). Four water samples, CS1-MW1-GW1, CS1-MW2-GW1, CS1-MW3-GW1, and CS1-MW4-GW1 were analyzed for lead only, total and dissolved.

#### **Summary**

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

#### **Major Problems**

None

#### **Minor Problems**

#### Holding Times

All samples were analyzed within recommended holding times.

# <u>Blanks</u>

The following elements were reported in the method blanks or field blanks associated with the SDG: aluminum, antimony, arsenic calcium, iron, lead, manganese, nickel, sodium, and zinc. Sample results less than five times the maximum concentration found in the associated blank samples were qualified for blank contamination. The reported results are biased high due to blank contamination and have been qualified

# Initial Calibration and Continuing Calibration

All calibration results fall within the control limits of 90-110%.

#### Laboratory Control Samples

All laboratory control samples were reported to be within specified control limits.

#### Serial Dilution

One serial dilution was performed and no analytes reported greater than 10% difference in the serial analysis.

#### Matrix Spike

Sample CS2-SW1 was used for the spike/duplicate analysis. The laboratory reported that there was insufficient sample volume to perform the spike/duplicate analysis according to the protocol. In order to perform the analysis all volumes, sample and reagent, were cut in half so no dilution factor would be introduced. Lead and selenium were outside the spike control limits of 75-125% with 132% and 44% recoveries respectively. Results lower than the IDL of 3 for lead were not qualified and are acceptable for use. Results for lead greater than the IDL were qualified "K" for biased high unless overruled by the "B" qualifier. Results for selenium were qualified "L", biased low, non-detects for selenium were qualified "UL". The positive results and quantitation limits were qualified as follows:

CASE	ANALYTE	RECOVERY	QUALIFIER
CS2-SW1	Lead <idl Lead&gt;IDL Se<idl Se&gt;IDL</idl </idl 	High High Low Low	K UL L

#### ICP Interferences Check Samples

All ICS recovery values were within +/- 20%.

# Capital ANG Springfield Illinois Inorganic Data Validation CLP TAL Sampling Dates: November 1992

Samples in SDG # CS2-SD1

CS2-SS2	CS1-SS1	CS1-SS2	
CS2-SD1	CS2-SD2	CS2-SD3	CS2-SS1

C-FB3 C-FB4

#### Overview

Seven soil samples and two QC water samples were analyzed according to EPA CLP SOW for Inorganic Analysis (TAL metals). Two soil samples, CS1-SS1 and CS1-SS2, were analyzed for lead only.

# Summary

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

# Major Problems

None

#### **Minor Problems**

# **Holding Times**

All samples were analyzed within recommended holding times.

#### **Blanks**

The following elements were reported in the method blanks or field blanks associated with the SDG: nickel and antimony. Sample results less than five times the maximum concentration found in the associated blank samples were qualified for blank contamination. The reported results are biased high due to blank contamination and have been qualified "B".

# Initial Calibration and Continuing Calibration

All calibration results fall within the control limits of 90-110%.

#### Laboratory Control Samples

All laboratory control samples were reported to be within specified control limits of except for barium selenium and zinc which reported a % recovery of 39.6, 59.4, and 236, respectively. Results greater than the IDL for barium and selenium were qualified "L" due to the LCS recovery value for falling below QC limits. Results less than the IDL were qualified "UL".

#### Serial Dilution

One serial dilution was performed and zinc reported greater than 10% difference in the serial analysis. Positive results greater than 50 times the IDL were qualified "J" unless superseded by qualifier "B".

#### Matrix Spike

Sample CS2-SB4-0-0.5 was used for the spike/duplicate analysis. Antimony and selenium were outside the spike control limits of 75-125% with 12.5% and 0.0% recoveries respectively. Sine the spike recovery was below 30 % for both antimony and selenium, results lower than the IDL of 13 for antimony and 1 for selenium were qualified "R" unusable, none-detects were qualified "UL", and results greater than the IDL were qualified "L" for low. The positive results and quantitation limits were qualified as follows:

CASE	ANALYTE	RECOVERY	QUALIFIER
CS2-SB4	An>IDL An <idl nd="" se="">IDL Se<idl nd<="" td=""><td>Low Low Low Low</td><td>7 R 7 L R 7</td></idl></idl>	Low Low Low Low	7 R 7 L R 7

#### ICP Interferences Check Samples

All ICS recovery values were within +/-20%.

Capitial ANG
Springfield Illinois
Inorganic Data Validation CLP TAL
Sampling Dates: November 1992

Samples in SDG #: B2-0.5

CS2-SB2-0-05	CS1-SB2-0.5-1	CS2-SB2-5.5-6	CS2-SB2-7-7.5
CS2-SB2-7.5-8	CS1-SB3-0-0.5	CS2-SB3-0.5-1	CS1-SB3-4.5-5
CS2-SB3-6.5-7	CS1-SB4-0.5-1	CS1-SB4-5.5-6	CS1-SB5-0.25
CS1-SB4-4.5-5	CS1-SB6-0-0.5	CS1-SB6-4-6	CS1-SB7-0-0.5
CS1-SB7-5-5.5			

#### <u>Overview</u>

Thirteen soil samples and one QC water sample for lead, and six soil samples for TAL metals were analyzed according to EPA CLP SOW for Inorganic Analysis (TAL metals). Samples CS2-SB3-6.5-7, CS2-SB2-0-05, CS2-SB2-5.5-6, CS2-SB2-7-7.5, CS2-SB2-7.5-8, and CS2-SB3-0.5-1 were analyzed for TAL metals. Samples CS1-SB4-0.5-1, CS1-SB4-5.5-6, CS1-SB5-0.25, CS1-SB4-4.5-5, CS1-SB6-0-0.5, CS1-SB6-4-6, CS1-SB7-0-0.5. CS1-SB7-5-5.5 were analyzed for lead.

#### **Summary**

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

#### **Major Problems**

None

#### Minor Problems

#### Holding Times

All samples were analyzed within recommended holding times.

#### Blanks

The following elements were reported in the method blanks or field blanks associated with the SDG: iron, nickel, and zinc. All sample results were greater than five times the maximum concentration found in the associated blank samples. No qualifiers were attached to the data as a result of blank contamination.

Data Validation/Capital First Round Pace Labs Version 002/MSB

# Initial Calibration and Continuing Calibration

All calibration results fall within the control limits of 90-110%.

# **Laboratory Control Samples**

All laboratory control samples were reported to be within specified control limits.

#### Serial Dilution

One serial dilution was performed. Nickel reported greater than 10% difference in the serial analysis. No positive results greater than 50 times the IDL were reported therefore no qualifiers were attached to the data.

#### Matrix Spike

Sample CS2-SB2-5.5-6 was used for the spike/duplicate analysis. Antimony, arsenic lead, manganese and selenium were outside the spike control limits of 75-125% with 11.1%, 222%, 4%, 4 29.3%, and 61.1% recoveries, respectively. Arsenic and manganese duplicate results were outside control limits. Results lower than the IDL of 13 for antimony were qualified "UL" and results greater than the IDL were qualified "L". Results for arsenic greater than the IDL were qualified "K" for biased high unless overruled by the "B" qualifier. Results for arsenic less than the IDL were not qualified and are acceptable for use, Results for lead above the IDL of 3 were qualified "L" for low. No results for lead below the IDL were reported so no data was qualified "R". Results for manganese greater than the IDL of 1 were qualified "K" for biased high unless overruled by the "B" qualifier. Results for manganese less than the IDL were not qualified and are acceptable for use, Results for selenium greater than the IDL of 1 were qualified "L", biased low, non-detects for selenium were qualified "UL". The positive results and quantitation limits were qualified as follows:

CASE	ANALYTE	RECOVERY	QUALIFIER
B-0.5	Antimony < IDL Antimony > IDL Arsenic < IDL Arsenic > IDL Lead < IDL Lead > IDL Manganese < DL Manganese > DL Se < IDL Se > IDL	Low Low High High Low High High Low Low	UL L K UL L

# ICP Interferences Check Samples

All ICS recovery values were within  $\pm$  - 20%.

Capital ANG
Springfield Illinois
Inorganic Data Validation CLP TAL
Sampling Dates April 1993

Samples in SDG # : 136116D

CS1-MW1-GW2 CS1-MW2-GW2 CS1-MW3-GW2 CS1-MW4-GW2 CS2-MW2-GW2 CS2-MW1-GW2F CS2-MW3-GW2F CS2-MW4-GW2F

#### Overview

Seven water samples for, total or dissolved TAL metals were analyzed according to EPA CLP SOW for Inorganic Analysis (TAL metals). One water sample, CS1-MW4-GW2, was analyzed for lead only.

# Summary

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

#### **Major Problems**

None

#### **Minor Problems**

# **Holding Times**

All samples were analyzed within recommended holding times.

#### Blanks

The following elements were reported in the method blanks or field blanks associated with the SDG: aluminum, arsenic calcium, iron, magnesium, and sodium. Sample results less than five times the maximum concentration found in the associated blank samples were qualified for blank contamination. The reported results are biased high due to blank contamination and have been qualified "B".

# Initial Calibration and Continuing Calibration

All calibration results fall within the control limits of 90-110%.

## Laboratory Control Samples

All laboratory control samples were reported to be within specified control limits.

# Serial Dilution

One serial dilution was performed and reported copper had greater than 10% difference in the five-fold serial dilution. No positive results greater than 50 times the IDL were reported and accordingly no qualifiers were attached.

#### Matrix Spike

Sample CS2-MW2-GW2 was used for the spike/duplicate analysis. Thallium was outside the spike control limits of 75-125% recovery with 59% recovery. Results lower than the IDL of 4 for were qualified "UL", biased low, detects for selenium above the IDL were qualified "L". The positive results and quantitation limits were qualified as follows:

CASE	ANALYTE	RECOVERY	QUALIFIER
13611D	Th <idl< td=""><td>Low</td><td>UL</td></idl<>	Low	UL
	Th>IDL	Low	L

#### ICP Interferences Check Samples

All ICS recovery values were within +/- 20%.

Capital ANG
Springfield Illinois
Inorganic Data Validation CLP TAL
Sampling Dates April 1993

Samples in SDG # : 713662

 CF-SB2-SS05

CF-SB2-SS25

CF-SB3-SS05

CF-SB3-SS22

CF-SB4SS05

#### **Overview**

Seven soil samples were analyzed according to EPA CLP SOW for Inorganic Analysis (TAL metals).

#### Summary

All analytes were successfully analyzed. The QA/QC level was HAZWRAP Level C for all samples.

#### **Major Problems**

None

# **Minor Problems**

# **Holding Times**

All samples were analyzed within recommended holding times.

#### Blanks

The following elements were reported in the method blanks or field blanks associated with the SDG: aluminum, iron, and sodium. Sample results less than five times the maximum concentration found in the associated blank samples were qualified for blank contamination. The reported results are biased high due to blank contamination and have been qualified "B".

#### Initial Calibration and Continuing Calibration

All calibration results fall within the control limits of 90-110%.

#### **Laboratory Control Samples**

All laboratory control samples were reported to be within specified control limits.

#### Serial Dilution

One serial dilution was performed and zinc exceeded the 10% difference allowed in the five-fold serial dilution. No positive results greater than 50 times the IDL of 3 were reported and accordingly no qualifiers were attached.

#### Matrix Spike

Sample CF-SB1-SS01 was used for the spike/duplicate analysis. Antimony, arsenic and selenium were outside the spike recovery control limits of 75-125% with 52%, 51.6% and 73.6% recovery, respectively. Manganese spike recovery exceeded control limits also , but all sample results were greater than 4 times the spike concentration. No qualifiers were attached to the data due to high spike recovery of manganese. Results lower than the IDL of 46 for antimony were qualified "UL", detects for antimony above the IDL were qualified "L". No Results above the IDL were reported for antimony. Results lower than the IDL of 3 for arsenic were qualified "UL", detects for arsenic above the IDL were qualified "L". Results lower than the IDL of 5 for selenium were qualified "UL", detects for selenium above the IDL were qualified "L". The positive results and quantitation limits were qualified as follows:

CASE	ANALYTE	RECOVERY	QUALIFIER
713662	An <idl< td=""><td>Low</td><td>UL</td></idl<>	Low	UL
	An>IDL	Low	L
	As <idl< td=""><td>Low</td><td>UL</td></idl<>	Low	UL
	As>IDL	Low	L
	Mg <idl Mg&gt;IDL</idl 	Low Low	
	Se <idl< td=""><td>Low</td><td>UL</td></idl<>	Low	UL
	Se>IDL	Low	L

# **Duplicates**

Duplicate analysis of CF-SB1-SS01 reported all analytes within 35% on the duplicate analysis except for lead and manganese. Sample results for these analytes were qualified "J" for estimated.

# ICP Interferences Check Samples

All ICS recovery values were within +/- 20%.

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	<b>-</b> :	<b>)</b>	D	D	Ω	Ω	Ω	Ω	Ω	Ω	n	ſ	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	Ω	Ω	Ω	Ω	Ω	n
6.0000	12.0000	9.0000	90000	0000.9	0000.9	9.0000	9.0000	9.0000	9.0000	12.0000	19.0000	0.0000	19.0000	9.0000	9.0000	12.0000	9.0000	9.0000	9.0000	12.0000	9.0000	9.0000	9.0000	00009	12.0000	0.0000	9.0000	0000'9	9.0000	9.0000	12.0000	12.0000
0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	40.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	21.0000	0.000	0.000	0.000	0.000	0.000	0.0000
	1, 1, 2, 2-1 etrachloroethane	I, I, 2- I richloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	2-Butanone	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride
CF-SB1-SS0-1	CF-581-550-1	CF-581-550-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1
SB1																																

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

СОМРИСНЕМ	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
8240	CLP	CLP	CLP	CLP	CLP	CLP	G.P.	G.P.	CLP	CLP	CLP	CLP	CLP	CLP	d L)	<u> </u>	Q. [.]	4 L)		1 D	<u>a</u> []	<u> </u>	CI.P	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI P 3/90	CI.P 3/90	CLP 3/90	CI P 3/90	CLP 3/90
ug/kg	mg/kg	mo/ko	mø/kø	mø/kø	mg/kg	mo/ko	mg/kg	mo/ko	mø/kø	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	uø/kø	ug/kg	uo/ko	no/ko	ug/kg													
Ω		ΩΓ	1		Ω	Ω			С	;		_		ſ	Ω	•	•	UI.	n	) () () ()		)		n	Ω	Ω	n	n	Ω	Ω	n	n
9.0000	0.000	11.3000	8.1000	0.000	0.4900	1.2000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.1200	0.000	0.000	0.7400	2.5000	0.0000	0.9800	0.000	0.0000	400.0000	400.0000	400.0000	400.000	400.000	970.0000	400.0000	400.000	400.000
0.0000	1500.0000	0.000	0.0000	111.0000	0.0000	0.000	3480.0000	14.7000	6.3000	12.3000	4200.0000	15.1000	2520.0000	617.0000	0.0000	12.0000	1600.0000	0.0000	0.0000	128.0000	0.0000	27.3000	48.8000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
rotal)	Aluminum 11	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium 3	Chromium	Cobalt	Copper	Iron 14	Lead		Manganese		Nickel	Potassium 1	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol
CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1
SB1	281	SBI	SB1	SBI	SB1	SB1	SBI	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SBI	SB1	SBI	SBI	SB1	SB1	SB1	SB1	SB1							

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	ממת ממ מ
400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	400.0000 400.0000 400.0000 0.0000 400.0000 400.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	0.0000 0.0000 0.0000 54.0000 0.0000 0.0000
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitrophenol Acenaphthene Acenaphthylene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene	Benzo(gni)perylene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate
CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1	CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	400.0000 970.0000 400.0000 400.0000 400.0000 20.0000 10.0000 10.0000 20.0000 20.0000 20.0000 20.0000 20.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene	Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 4,4'-DDD 4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone
CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1	CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1
SB1 SB1 SB1 SB1 SB1 SB1 SB1 SB1 SB1	S S S S S S S S S S S S S S S S S S S

# Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
PCB-CLP PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	םם	'n	Ω	Ω	n	Ω	D	D		Ω	n	Ω	Ω	D	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	n	Ω	n	_	n	Ω	D
10.0000	200.0000	200.000	200.0000	200.000	200,000	200.0000	1000.0001	10.0000	0.0000	10.0000	10.0000	10.0000	10.0000	0000'9	12.0000	0000'9	0000'9	9.0000	0000'9	0000'9	9.0000	9.0000	0000'9	12.0000	19.0000	0.0000	19.0000	9.0000	9.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	1.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	120.0000	0.0000	0.000	0.0000
Heptachlor Heptachlor epoxide Methoxychlor	PCB-1016 PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1, 1, 2-Trichloroethane	1, I-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	2-Butanone	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane
CF-SB1-SS0-1 CF-SB1-SS0-1 CF-SB1-SS0-1	CF-SB1-SS0-1 CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS0-1	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3							
SB1 SB1 SB1	SB1 SB1	SB1	SB1	SB1	SBI	SB1	SB1	SB1	SBI	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1	SB1							

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
8240 8240 8240 8240 8240 8240 8240 8240	
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
12.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 12.0000 6.0000 6.0000 11.5000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	2.3000 0.0000 0.0000 0.0000 0.0000 0.1300
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 6.5000 4050.0000 2.8000 699.0000 32.2000 0.0000
Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methyl chloride Styrene Trichloroethylene Trichloroethylene Trichloroethylene Trichloroethylene Animony Arsenic Barium Beryllium Cadmium Cadmium Calcium	Cobalt Copper Iron Lead Magnesium Manganese Mercury
CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3	CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3 CF-SB1-SS2.5-3
SB1 SB1 SB1 SB1 SB1 SB1 SB1 SB1 SB1 SB1	SB1 SB1 SB1 SB1 SB1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
-	D	ΩΓ	Ŋ	()B	Ω	0		n	Ω	n	Ω	Ω	Ω	n	n	Ω	Ω	Ω	Ω	n	n	Ω	Ω	D	Ω	Ω	Ω	Ω	Ω	n	n	D
7.8000	561.0000	0.7500	2.5000	0.000	1.0000	0.0000	0.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0000.066	410.0000	410.0000	410.0000	990.0000	410.0000	410.0000	410.0000	410.0000	0000.066	410.0000	410.0000	990.0000	410.0000	410.0000	990.0000	410.0000	410.0000	410.0000	410.0000
0.0000	0.0000	0.0000	0.000	109.000	0.0000	9.3000	15.4000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000
Nickel 0.0000	Potassium 0.0000	Selenium 0.0000		10		dium	Zinc 15.4000	1,2,4-Trichlorobenzene 0.0000				propane)	_	lou		lol				alene		phenol	alene	lo			3,3'-Dichlorobenzidine 0.0000	3-Nitroaniline 0.0000	ether (	4-Chloro-3-methyl phenol 0.0000	4-Chloroaniline 0.0000	4-Chlorophenyl phenyl ether 0.0000
Nickel	Potassium	Selenium	Silver	Sodium 10	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	ether

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

СОМРИСНЕМ	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
CLP 3/90	CLP 3/90	CLP 3/90						CLP 3/90					CLP 3/90	CLP 3/90	CI.P 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90					
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ue/ke	ag//an	up/kp	ug/ko	ug/kg
n	n	Ω	Ω	Ω	Ω	n	n	n	n	Ω	n	D	n	n	n	n	Ω	n	n	Ω	Ω	Ω	Ω	Ω	n	n	n	n	Ω	n	n	n
410.0000	0000.066	990.000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	990.0000
0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol
CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SBI-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SBI-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3	CF-SB1-SS2.5-3
SB1	281	281	SB1	281	281 281	SB1	SBI	SB1	SB1	SB1	SBI	SB1	SB1	SBI	SB1	SB1	SBI	SB1	SB1	SB1	SB1	SB1	SB1	SBI	SB1	SBI	SBI	SB1	SB1	SB1	SB1	SB1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
בּ	<b>)</b> D	Ω	Ω	;	n	י כ	⊃	n	ם	n	ח	n	D	n	ב	n	ם	n	D	Ω	D	n	n	n	Ω	Ω	Ω	ר	n	n	D
410.0000	410.000	410.0000	410.0000	0.0000	4.1000	4.1000	4.1000	2.1000	4.1000	2.1000	4.1000	4.1000	4.1000	4.1000	4.1000	2.1000	2.1000	21.0000	41.0000	83.0000	41.0000	41.0000	41.0000	41.0000	41.0000	210.0000	2.1000	2.1000	2.1000	2.1000	2.1000
0.0000	3 00	8	Ω.	♀ :	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	0	_	0	_	_		_
	0.000	0.0000	0.000	120.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000
Phenanthrene Dhamal		hloroethoxy)methane	,	lhexyl)phthalate 1			DT		Dieldrin 0.000	Endosulfan I 0.000	Endosulfan II 0.000	Endosulfan sulfate 0.000	Endrin 0.000	Endrin aldehyde 0.000	Endrin ketone 0.0000		Heptachlor epoxide 0.0000	ılor								Toxaphene 0.0000	alpha-BHC 0.000	alpha-Chlordane 0.0000	beta-BHC 0.0000		gamma-BHC 0.0000
CF-SB1-SS2.5-3 Phenanthrene	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene		alpha-Chlordane		delta-BHC	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
PCB-CLP 8240 8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg 110/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg
n	םם	n	n	n	D	n	D	D	n	-	n	ם	n	D	n	n	n	n	Ω	n	n	Ω	n	B	Ω	Ω	Ω	Ω	Ω
2.1000 6.0000 12.0000	6.0000	6.0000	9.0000	0000'9	9.0000	0000.9	90000	12.0000	19.0000	0.000	19.0000	9.0000	9.0000	12.0000	90000	0000'9	0000'9	12.0000	0000'9	0000'9	0000'9	0000'9	12.0000	0.000	6.0000	0000'9	6.0000	9.0000	12.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	17.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	13.0000	0.0000	0.0000	0.0000	0.0000	0.0000
lane	1,1,2-Trichloroethane 0.0000 1,1-Dichloroethane 0.0000	9					ichloropropylene			_	l-2-pentanone	Benzene 0.0000	Bromodichloromethane 0.0000			loride	<u>o</u>	<b>Q</b>		romethane	Ethylbenzene 0.0000			Methylene chloride 13.0000	Styrene 0.0000	Tetrachloroethylene 0.0000	Toluene 0.0000	Trichloroethylene 0.0000	Vinyl Acetate 0.0000
gamma-Chlordane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		1,1-Dichloroethylene	l 1,2-Dichloroethane	1,2-Dichloroethylene	I,2-Dichloropropane	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	2-Butanone	l 2-Hexanone	l 2-Propanone	l 4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	l Dibromochloromethane	l Ethylbenzene	Methyl bromide	Methyl chloride	l Methylene chloride	Styrene	I Tetrachloroethylene			

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
\$ \$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg
12.0000 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 400.0000 400.0000 400.0000 970.0000 400.0000
0.0000 0.0000 0.0000 8.3000 107.0000 0.6100 0.6100 15.4000 17.600.0000 17600.0000 17600.0000 17600.0000 1390.0000 0.0000 0.0000	w 4
Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic Barium Cadmium Cadmium Calcium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Selenium Silver	Vanadium Zinc 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol
CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1	CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1
\$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82	SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	СОМРИСНЕМ
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	Ω	n	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n	n	D	n	Ω	Ω	Ω	Ω	Ω	n	Ω	n	Ω	'n	Ω	Ω	D	D	n
400.0000	970.0000	400.0000	400.0000	400.000	400.000	970.0000	400.0000	400.0000	970.0000	400.0000	400.000	970.0000	400.0000	400.000	400.0000	400.0000	400.0000	970.0000	970.0000	400.0000	400.0000	400.0000	400.0000	400.000	400.0000	400.0000	400.000	400.0000	400.0000	400.0000	400.0000	400.0000
0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate
CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1	CF-SB2-SS0.5-1
SB2	282	SBZ	SB2	SB2	SBZ	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SBZ	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	SB2

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90 CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ng/kg	ug/kg	ug/kg no/ko	ug/kg	ug/kg na/ka	ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	חחם		00=	n	D E	n	םם	ם	n :	D <b>-</b> ,	n	Ω	n	n		n	Ω	Ω	Ω	Ω
400.0000 400.0000 400.0000 400.0000	400.0000 400.0000 400.0000	400.0000 400.0000 400.0000	400.0000	400.0000	400.0000	970.0000	400.0000	400.0000	400.0000	400.0000 0.0000	20.0000	20.000	20.0000	10.000	0.000	10.000	20.000	20.000	20.0000	20.0000
				•	, ,	•	•	•	•	•										
0.0000 0.0000 0.0000 0.0000	0.0000	0.0000		_	0.000.0		0.0000			0.0000	0.000	0.000	0.000	0.000	260.0000	0.000	0.000	0.0000	0.0000	0.0000
a,h)anthracene uran hthalate phthalate		Hexachlorocyclopentadiene 0.0000  Hexachloroethane 0.0000  Indeno(1.2.3-c.d)nyrene 0.0000	0.0000	0.0000		nenol 0.0000		0.0000	hane 0.0000	bis(2-Chloroethyl) ether 0.0000 bis(2-Ethylhexyl)phthalate 160.0000			4,4'-DDT 0.0000		36	Endosulfan I 0.0000	Endosulfan II 0.0000	Endosulfan sulfate 0.0000	Endrin 0.0000	Endrin aldehyde 0.0000
Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	Fluorene Hexachlorobenzene Hexachlorobutadiene	e L	Isophorone 0.0000	N-Nitrosodiphenylamine 0.0000	0.0000	Pentachlorophenol 0.0000	threne 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Pyrene 0.0000	bis(2-Chloroethoxy)methane 0.0000	91		4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin 26	Endosulfan I	Endosulfan II		Endrin	

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CL	8240 8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
ם מממ ממממממ מ	
20.0000 0.0000 100.0000 200.0000 200.0000 200.0000 200.0000 10.0000 10.0000 10.0000 10.0000 6.0000 6.0000	13.0000 6.0000 6.0000 6.0000 6.0000 6.0000 13.0000 19.0000 6.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor PCB-121 PCB-1221 PCB-1242 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Toxaphene alpha-BHC alpha-BHC gamma-BHC gamma-BHC gamma-Chlordane beta-BHC gamma-Chlordane	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-trans-Dichloropropylene 1,3-trans-Dichloropropylene 2-Butanone 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene
CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1 CF-SB2-SS0.5-1	CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3
\$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82	SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
8240 8240 8240 8240 8240 8240 8240 8240	មិទិទិទិទិទិទិទិទិទិទិទិទិទិទិទិទិទិទិទ
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	00 6
6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	0.0000 1.3000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 0.0000 3060.0000 18.8000 17.0000 26500.0000 28.2000 3210.0000
Bromodichloromethane Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorotorm Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic Barium	Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese
CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3	CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3
\$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82	SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP CLP CLP CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
n con nonna	
0.1300 0.0000 0.0000 0.7700 2.6000 1.0000 0.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000	1000.0000 420.0000 420.0000 420.0000 1000.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000
25.8000 25.8000 0.0000 0.0000 138.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dimethylohenol	2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Nitrophenol 3-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol
CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3	CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3

СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ	СОМРИСНЕМ
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90
8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ug/kg ug/kg
	D D
420.0000 1000.0000 1000.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000	420.0000
00000 00000 00000 00000 00000 00000 0000	0.0000
4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Di-n-butyl phthalate Di-n-butyl phthalate Di-n-ctyl phthalate Di-n-ctyl phthalate Di-n-ctyl phthalate Di-n-ctyl phthalate Hexachlorofuran Diethyl phthalate Fluoranthene Hexachlorobutadiene Hexachlorocethane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine	Naphthalene Nitrobenzene
CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB2-SS2.5-3	CF-SB2-SS2.5-3 CF-SB2-SS2.5-3
SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2 SB2	SB2 SB2

СОМРИСНЕМ	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CL.P	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCR-CLP	PCR-CI P	PCB-CLP
ug/kg ug/kg	ug/kg uø/kø	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
D D :	ם כ	n	Ω	-	D	n	Ω	Ω	D	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	n	n
1000.0000 420.0000	420.0000	420.0000	420.0000	0.0000	4.2000	4.2000	4.2000	2.2000	4.2000	2.2000	4.2000	4.2000	4.2000	4.2000	4.2000	2.2000	2.2000	22.0000	42.0000	85.0000	42.0000	42.0000	42.0000	42.0000	42.0000	220.0000	2.2000	2.2000	2.2000	2.2000
0.0000	0.0000	0.0000	0.0000	130.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Pentachlorophenol Phenanthrene	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC
	-		، م	ٔ م	4	4	4	~	_	ш	ш	щ	ш	ш		_	_													
CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SR2-SC2.5-3			_	_	•						_				_		_	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3	CF-SB2-SS2.5-3

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
PCB-CLP PCB-CLP 8240 8240	8240 8240	8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg n9/kg	ug/kg ug/kg ug/kg	ug/kg	ug/kg uø/kø	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	פפפ	n	D D	n	Ω	Ω	n	n	ſ	n	n	Ω	n	D	Ω	Ω	n	-	n	n	Ω	n	В	n	Ω	Ω	n
2.2000 2.2000 6.0000 12.0000	6.0000	6.0000	6.0000 6.0000	6.0000	9.0000	9.0000	12.0000	19.0000	0.0000	19.0000	0000'9	0000.9	12.0000	9.0000	0000'9	0000'9	12.0000	0.0000	9.0000	9.0000	9.0000	12.0000	0.0000	9.0000	9.0000	9.0000	9.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	14.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	1.0000	0.0000	0.000	0.0000	0.000	150.0000	0.000	0.0000	0.000	0.0000
gamma-BHC gamma-Chlordane 1,1,1-Trichloroethane		1,1-Dichloroethylene	1,2-Dichloroethane 1,2-Dichloroethylene	1,2-Dichloropropane	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	2-Butanone	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	<b>Bromodichloromethane</b>	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene
CF-SB2-SS2.5-3 CF-SB2-SS2.5-3 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1	CF-SB3-SS0.5-1 CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1 CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1	CF-SB3-SS0.5-1
SB2 SB2 SB3 SB3	SB3 SB3	SB3	SB3 SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg
12.0000 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	400.0000 400.0000 400.0000 400.0000 970.0000
0.0000 0.0000 0.0000 14500.0000 8.6000 78.1000 0.5600 0.5600 1910.0000 27.8000 14.6000 2940.0000 352.0000 0.0000 1210.0000 0.0000 0.0000 0.0000 142.0000 0.0000 0.0000	_
Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol
CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1	CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1
\$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$  \$\text{SB3}\$	SB3 SB3 SB3 SB3 SB3 SB3

CF-SB3-SS0.5-1	2,4-Dichlorophenol	0.0000	400.0000	Ω	ug/kg	CLP 3/90	COMPUCHEM
2,4-Dimethylphenol		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
2,4-Dinitrophenol		0.000	970.000	Ω	ug/kg	CLP 3/90	COMPUCHEM
2,4-Dinitrotoluene		0.000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
2,6-Dinitrotoluene		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
2-Chloronaphthalene		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
2-Chlorophenol		0.0000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
2-Methyl-4,6-Dinitrophenol	lou	0.0000	970.0000	n	ug/kg	CLP 3/90	COMPUCHEM
2-Methylnaphthalene		0.0000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
2-Methylphenol		0.000	400.000	Ω	ug/kg	CLP 3/90	COMPUCHEM
2-Nitroaniline		0.0000	970.000	n	ug/kg	CLP 3/90	COMPUCHEM
2-Nitrophenol		0.000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
3,3'-Dichlorobenzidine		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
3-Nitroaniline		0.000	970.000	n	ug/kg	CLP 3/90	COMPUCHEM
4-Bromophenyl phenyl ether	ıer	0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
4-Chloro-3-methyl phenol		0.0000	400.000	Ω	ug/kg	CLP 3/90	COMPUCHEM
4-Chloroaniline		0.0000	400.000	Ω	ug/kg	CLP 3/90	COMPUCHEM
4-Chlorophenyl phenyl ether	ıer	0.0000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
4-Methylphenol		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
4-Nitroaniline		0.0000	970.0000	n	ug/kg	CLP 3/90	COMPUCHEM
4-Nitrophenol		0.0000	970.0000	D	ug/kg	CLP 3/90	COMPUCHEM
Acenaphthene		0.0000	400.000	Ω	ug/kg	CLP 3/90	COMPUCHEM
Acenaphthylene		0.0000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
Anthracene		0.0000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
Benzo(a)anthracene		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
Benzo(a)pyrene		0.0000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
Benzo(b)fluoranthene		96.0000	0.0000		ug/kg	CLP 3/90	COMPUCHEM
Benzo(ghi)perylene		0.000	400.000	D	ug/kg	CLP 3/90	COMPUCHEM
Benzo(k)fluoranthene		96.0000	0.000		ug/kg	CLP 3/90	COMPUCHEM
Butyl benzyl phthalate		0.0000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
Carbazole		0.000	400.000	n	ug/kg	CLP 3/90	COMPUCHEM
Chrysene		56.0000	0.000		ug/kg	CLP 3/90	COMPUCHEM
Di-n-butyl phthalate		0.0000	400.0000	Ω	ug/kg	CLP 3/90	COMPUCHEM

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg
	מממ ממממ,
400.0000 400.0000 400.0000 60.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000	4.0000 4.0000 6.0000 6.0000 4.0000 4.0000 4.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrobenzene Pentachlorophenol Phenol Phenol Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether	4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin
CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1	CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1
SSB3 SSB3 SSB3 SSB3 SSB3 SSB3 SSB3 SSB3	

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ
	8240 8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
4.0000 4.0000 0.0000 0.0000 40.0000 40.0000 40.0000 40.0000 2.1000 2.1000 2.1000 2.1000 2.1000 2.1000 2.1000	6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 13.0000 19.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Endrin aldehyde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Toxaphene alpha-BHC alpha-Chlordane beta-BHC gamma-Chlordane	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-cis-Dichloropropylene 1,3-cis-Dichloropropylene 2-Butanone 2-Hexanone 2-Propanone 2-Propanone 4-Methyl-2-pentanone
CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1 CF-SB3-SS0.5-1	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5
SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3	SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
8240 8240 8240 8240 8240 8240	8240 8240 8240 8240 8240	8240 8240 8240 8240 8240 8740	8240 8240 8240 CLP CLP	
ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
			n n n r	00 0 55
6.0000 13.0000 6.0000 6.0000 6.0000	6.0000 6.0000 6.0000 6.0000	0.000 0.000 0.000 0.000 0.000 0.000	13.0000 13.0000 6.0000 0.0000 11.6000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000	0.0000	120.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 18300.0000 14.3000	114.0000 0.6200 0.0000 2500.0000 23.1000 6.2000 17.5000 22100.0000 16.3000 3810.0000
Benzene Bromodichloromethane Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene	Chlorochane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide	Methylene chloride Styrene Tetrachloroethylene Toluene Trichloroethylene	Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic	Barnum Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium
CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5
SB3 SB3 SB3 SB3 SB3 SB3	SB3 SB3 SB3 SB3 SB3	SB3 SB3 SB3 SB3 SB3	SB3 SB3 SB3 SB3 SB3 SB3	SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP CLP CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg
0.0000 0.1300 0.0000 0.0000 0.7600 2.5000 0.0000 1.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 410.0000 410.0000 1000.0000 410.0000
263.0000 0.0000 0.0000 0.0000 166.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
benzene nzene nzene nzene nzene nzene nzene nzene nzene nzene nzene alenel tol menol tol menol tol menol alene alene	2-Metnylpnenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol
CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5
SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3	SB3 SB3 SB3 SB3 SB3

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
18	ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 1000.0000 1000.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 410.0000 410.0000
00000 00000 00000 00000 00000 00000 0000	0.0000
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Dienzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-butyl phthalate Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate Hexachlorobuzene Hexachlorobuzene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene	N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene
CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5	CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB3-SS2-2.5
\$\\\ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$ \text{SB}\$	SB3 SB3 SB3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg
	סמממם
410.0000 410.0000 410.0000 410.0000 410.0000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 2.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.10000 4.10000 4.10000 4.10000 4.10000 4.10000 4.10000	41.0000 210.0000 2.1000 2.1000 2.1000
	(4
	0.0000 0.0000 0.0000 0.0000
ne 0.0000 ophenol 0.0000 one 0.0000 coethoxy)methane 0.0000 coethyl) ether 0.0000 lhexyl)phthalate 160.0000 one 0.0000 one 0.0000 ehyde 0.0000 ehyde 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000 one 0.0000	
Nitrobenzene         0.0000           Pentachlorophenol         0.0000           Phenol         0.0000           Pyrene         0.0000           Pyrene         0.0000           bis(2-Chloroethoxy)methane         0.0000           bis(2-Ethylhexyl)phthalate         160.000           4,4'-DDD         0.0000           4,4'-DDT         0.0000           Aldrin         0.0000           Endosulfan II         0.0000           Endosulfan II         0.0000           Endrin aldehyde         0.0000           Heptachlor         0.0000           Heptachlor epoxide         0.0000           PCB-121         0.0000           PCB-1221         0.0000           PCB-1232         0.0000           PCB-1248         0.0000           PCB-1248         0.0000	0.0000 0.0000 0.0000 0.0000

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИСНЕМ СОМРИ	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
PCB-CLP PCB-CLP PCB-CLP 8240 8240 8240 8240 8240 8240 8240 8240	8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg
	n O
2.1000 2.1000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 12.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	0.0000 6.0000 6.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	22.0000 0.0000 0.0000 0.0000
delta-BHC gamma-BHC gamma-Chlordane 1, 1, 1-Trichloroethane 1, 1, 2, 2-Tetrachloroethane 1, 1, 2-Trichloroethane 1, 1-Dichloroethylene 1, 1-Dichloroethylene 1, 2-Dichloroethylene 1, 2-Dichloropropane 1, 2-Dichloropropane 1, 3-cis-Dichloropropylene 2-Butanone 2-Butanone 2-Hexanone 2-Hexanone Benzene Bromodichloromethane Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroform Dibromochloromethane Ethylbenzene Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride	Methylene chloride Styrene Tetrachloroethylene Toluene
CF-SB3-SS2-2.5 CF-SB3-SS2-2.5 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1	CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1
\$\frac{883}{884}\$ \$\frac{884}{884}\$	SB4 SB4 SB4 SB4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM
8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90																									
ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	uø/kø	ug/kg	ug/kg																						
Ω	D	n	D		UL	٦		0	Þ			0			-		-	n	-		UL	D	(B)	D			D	D	D	n		Ω
9.0000	12.0000	12.0000	9.0000	0.000	11.4000	0.0000	0.000	0.0000	1.2000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.1200	0.0000	0.000	0.7400	2.5000	0.0000	0.9900	0.0000	0.000	400.0000	400.0000	400.000	400.0000	0.000	970.0000
0.0000	0.0000	0.0000	0.000	1800.0000	0.0000	5.5000	165.0000	0.7600	0.0000	3460.0000	14.3000	6.5000	12.3000	5800.0000	17.9000	2340.0000	973.0000	0.0000	16.7000	1340.0000	0.000	0.000	113.0000	0.0000	33.4000	50.6000	0.000	0.0000	0.0000	0.000	74.0000	0.0000
Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	1	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron 1.	Lead		Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol
CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1

\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\text{SB4}\$
\$\tex

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8 18/K8	ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 970.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	400.0000 400.0000 400.0000 400.0000 400.0000
00000 00000 00000 00000 00000 00000 0000	0.0000 0.0000 0.0000 0.0000 0.0000
ether nol ether	
2,4,6-Trichlorophenol 2,4-Dimlethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrotoluene 2,6-Dimitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dimitrophenol 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl etl 4-Chloro-3-methyl phenol 4-Chloro-3-methyl phenol 4-Chlorophenyl phenyl etl 4-Chlorophenyl phenyl etl 4-Chlorophenyl phenyl etl 4-Chlorophenyl phenyl etl 4-Chlorophenyl phenyl etl 4-Chlorophenyl phenyl etl 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthene Acenaphthylene Banzo(a)anthracene	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene
2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitropluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dinitroph 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline 4-Bromophenyl phenyl 4-Chloro-3-methyl phenyl 4-Chlorophenyl phenyl 4-Chlorophenyl phenyl 4-Chlorophenyl phenyl 4-Chlorophenyl phenyl 4-Chlorophenyl phenyl 4-Chlorophenyl phenyl 4-Methylphenol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	CF-SB4-SS0.5-1 Benzo(a)pyrene CF-SB4-SS0.5-1 Benzo(b)fluoranthene CF-SB4-SS0.5-1 Benzo(ghi)perylene CF-SB4-SS0.5-1 Benzo(k)fluoranthene CF-SB4-SS0.5-1 Butyl benzyl phthalate CF-SB4-SS0.5-1 Carbazole CF-SB4-SS0.5-1 Chrysene

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
CLP 3/90	CLP 3/90			CLP 3/90		CLP 3/90	CLP 3/90	CI.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCR-CI P	PCB-CI P	PCR-CLP	PCR-CI P	PCR-CI P	PCB-CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	uo/ko	no/ko	no/ko	110/kg	us/ko	ug/kg
Ω	n	ח	Ω	n	Ω	D	n	n	Ω	Ω	n	Ω	Ω	Ω	ם	n	Ω	Ω	Ω	n	Ω	n	Ω	ſ	Ω	Ω	Ω	n		Π	n	D
400.0000	400.0000	400.0000	400.0000	400,000	400.000	400.000	400.000	400,0000	400.0000	400.000	400.000	400.0000	400.000	400.000	400.0000	400.0000	400.0000	970.0000	400.0000	400.000	400.0000	400.000	400.000	0.000	4.0000	4.0000	4.0000	2.1000	0.000	2.1000	4.0000	4.0000
0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	130,0000	0.0000	0.0000	0.0000	0.0000	59.0000	0.0000	0.0000	0.0000
Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate
CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1
	ا ت ا	<u></u> フ	บ i	フ i	יט ו	Ċ	ט	Ü	บ	ָל כ	ひ	ບ ວ	ָט י	Ü	บ	Ü	์ ว	บ	ים	Ū	ن ا	Ö	Ö	Ü	ט	O	O	ט	ひ	Ü	ט	Ü

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	l/gn	l/gu	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	ng/l	l/gn	l/gn	ug/l	1/gn
מממ	:	ם כ	D:	<b>&gt;</b>	n	Ω	Ω	n	n		n	n	n		m	n	n	ſŊ	n	n	n	n	n	n	n	n	ſΩ
4.0000 4.0000 4.0000	0.0000	40.0000	82.0000	40.0000	40.000	40.0000	40.0000	210.0000	2.1000	0.0000	2.1000	2.1000	2.1000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0000	0.3200	0.0000	0.0000	0000	0.0000	0.0000	0.000.0	0.0000	0.0000	1.1000	0.000	0.000	0.000.0	2.3000	0.000.0	0.000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000	0.000	0.000.0	0.000	0.000.0	0.0000
Endrin Endrin aldehyde Endrin ketone	oxide	PCB-1016	PCB-1221	PCB-1232 PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene
CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF-SB4-SS0.5-1	CF-SB4-SS0.5-1 CF-SB4-SS0.5-1 CF SB4 SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CF-SB4-SS0.5-1	CSI-MWI-GWI	CSI-MWI-GWI	CS1-MW1-GW1	CS1-MW1-GW1	CS1-MW1-GW1	CSI-MWI-GWI	CS1-MW1-GW1	CS1-MW1-GW1	CS1-MW1-GW1	CS1-MW1-GW1	CSI-MWI-GWI	CSI-MWI-GWI	CS1-MW1-GW1
SB4 SB4 SB4	SB4 SB4 SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	MW1	MWI	MWI	MWI	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MWI

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 CLP CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
1/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1/8n	//gu  /gu  /gu  /gu  /gu	l/an l/an l/an l/an l/an l/an l/an l/an
5555555555555	355555555	
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	10.0000 10.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 10.0000 10.0000 10.0000 25.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1-Chlorohexane 2-Chloroethylvinyl ether Benzene Benzyl Chloride Bromobenzene Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroform Dibromochloromethane	Methyl bromide Methyl chloride Methylene chloride Tetrachloroethylene Trichloroethylene Trichlorofluoromethane	meta- and para-Xylenes ortho-Xylene Lead 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Coxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol
CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI	CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI	CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI
MWI MWI MWI MWI MWI MWI MWI MWI MWI MWI	MW1 MW1 MW1 MW1 MW1	MW1 MW1 MW1 MW1 MW1 MW1

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	Van Van Van Van Van Van Van
10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000.0000.00000.00000.00000.00000.0000
2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrotoluene 2,6-Dimitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dimitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenol 4-Chloro-3-methyl phenol 4-Chlorophenyl phenol 4-Chlorophenyl phenol 6-Chlorophenyl phenol 7-Nitroaniline 7-Nitrophenol 7-Nitrophenol 7-Nitrophenol 7-Nitrophenol 7-Nitrophenol 7-Nitrophenol 7-Nitrophenol 7-Nitrophenol	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate
CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI	CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI CSI-MWI-GWI
MWI MWI MWI MWI MWI MWI MWI MWI MWI MWI	MW1 MW1 MW1 MW1 MW1 MW1 MW1

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
CLP 3/90			_		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI P 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90		CLP	CLP	CLP	CLP	G.P.	d D	<u>a</u> <u>D</u>	G 15	CLP
J/an ſ	l/an [	J ug/l	J ug/l	J ug/l	J ug/I	J ng/l	J ug/l	J ug/l	J ug/l	J ug/l	J ug/l	J ug/I	J ug/1	J ng/I	Jan f	J ug/l	J/an f	Jan f	J ug/l	J ug/l	J ug/1	3 ug/1	3 ug/1	l/an	J ug/I	l/gn	1/3n (	78 no. (	78. J no. [	l/an	1/an [	l/gn (
00	00	00	00	00	00	00	00	1 00	00	00	00	00	00	00	00	00	00	00	00	00	00	90 E	90 E	<b>1</b>	00	00	00	00	00	00	00	00
10.0000	10.0000	-	10.0000	10.0000	10.000	10.000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.000	10.0000	10.0000	25.0000	10.000	10.0000	10.0000	10.000	10.0000	0.000	1.0000	0.000	46.000	0.0000	0.0000	2.0000	5.0000	0.0000	10.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	e 0.0000	0.0000	0.0000	0.0000	ne 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	ne 0.0000	0.0000	2.0000	0.0000	2370.0000	0.0000	18.8000	164.0000	0.0000	0.0000	70800.0000	0.0000	11.2000
Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	<b>Pentachlorophenol</b>	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	Lead	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt
3W1				_	_	_	_	_	_	_	_	7	<u>۷</u> 1	W1	<b>₩</b> 1	W	W1	W1	3W1	3W1	3W1	GW1	GW1-F	GW2	3W2	3W2	3W2	3W2	W2	W2	W2	W2
CS1-MW1-GW1	CS1-MW1-GW1	CS1-MW1-GW1	CSI-MWI-GWI	CSI-MWI-GWI	CS1-MW1-GW1	CS1-MW1-GW1	CSI-MWI-GWI	CSI-MWI-GWI	CS1-MW1-GW1	CSI-MWI-GWI	CS1-MW1-GWI	CS1-MW1-GW1	CSI-MWI-GWI	CSI-MWI-GWI	CS1-MW1-GW1	CS1-MW1-GW1	CS1-MW1-GW1	CS1-MW1-GW1	CSI-MWI-GWI	CSI-MW1-GW1	CSI-MWI-GWI	CS1-MW1-GW1	CS1-MW1-GW1-F	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
មិចិចិចិចិ	36666	:   <b>6 6 6</b> 6	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	//8n  /8n  /8n		// Sn  / Sn  / Sn	/8n  /8n  /8n  /8n	// Sn
U L	יממממ	n D			
25.0000 0.0000 0.0000 0.0000 0.2000	31.0000 2240.0000 3.0000 10.0000	7.0000 0.0000	10.0000 10.0000 10.0000	10.0000 25.0000 10.0000 10.0000 25.0000	10.0000 10.0000 10.0000 25.0000 10.0000 10.0000
0.0000 5770.0000 7.1000 34600.0000 1570.0000 0.0000	0.0000	0.000 0.0000 0.0000 18.3000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sium 3	E E	-		2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol
CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2	CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2	CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2	CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2	CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2	CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2 CSI-MWI-GW2
MW1 MW1 MW1 MW1 MW1	MW1 MW1 MW1	MW1 MW1 MW1	MW1 MW1 MW1	MW1 MW1 MW1 MW1 MW1	MW1 MW1 MW1 MW1 MW1 MW1

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	
l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	ug/l	l/gn	l/gu	l/gn	ug/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	ug/l	ug/l	ug/l	ug/I	l/gn	ng/l	l/gu
n	n	n	n	Ω	D	Ω	Þ	ב	n	n	D	Ω	Ω	D	n	Ω	D	Ω	n	Ω	Ω	Ω	Ω	D	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω
10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.000	10.0000	10.0000	10.000	10.000	10.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000.0	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene
CSI-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2
S 8	-ISO	CS1-I	CS1-	is:		CSI-	CSI-	CS1-	CS1-	CSI-	CS1-	CS1-	CS1-	CSI-	CS1.	CS1-	CSI	CSI	CSI	S	CS	S	CS	S	CSI	CSI	CSI	CSI	CS1	CSI	CSI	CSI

	3/90 COMPUCHEM 3/90 COMPUCHEM		/90 СОМРИСНЕМ	/90 COMPUCHEM	/90 СОМРИСНЕМ	790 COMPUCHEM		/90 COMPUCHEM	90 СОМРИСНЕМ	790 COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	O COMPUCHEM	о сомриснем	O COMPUCHEM	0 COMPUCHEM	10 COMPUCHEM	O COMPUCHEM	10 COMPUCHEM	10 COMPUCHEM	10 COMPUCHEM	O COMPUCHEM	10 COMPUCHEM	
CLP	ug/i CLP 3/ ug/i CLP 3/		ug/l CLP 3/90	ug/l CLP 3/	-			_				ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	ug/l SW8010	_
D:	מס	Ω	Ω	Ω	Ω	Ω	.n	n	n	В	ſ	n	n	ſŊ			ſΩ	'n	ñ	ñ	ñ	ſŊ	'n	m	ß	ā	ñ	Ω	n	m	ñ
	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	0.0000		0.3500	0.4000	0.2500	0.3500	0.3500	0.3500	0.3500	0.3000	0.2500		0.3000	0.2000	0.3000	0.2500	0.2000	0.4000	0.2500	0.3500	0.8500	0.2500
-	imine 0.0000 ie 0.0000		0.0000	0.000	0.000	0.000	0.000		ır 0.0000	late 5.0000	ane 0.0000	0.000	ane 0.0000	0.000	0.000		00000	0.0000	0.000	0.000	0.000	lene	0.0000	ene 0.0000	ylene 0.0000	0.000	or 0.0000	0.000	0.000	0.000	0.000
Isophorone	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	<b>Pentachlorophenol</b>	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthal	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethyl	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	d	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane
CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	
SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	
ug/l	ug/l	ug/l	l/gn	ng/l	l/gn	ng/l	l/gn	ug/l	ug/l	l/gn	ng/l	l/gn	l/gn	l/gn	ng/I	l/gn	ng/I	ug/I	ug/l	ng/l	ng/l	ng/l	ng/l	ng/l	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	ug/I	ng/l	
ñ	n	m	m	ſ	ñ	m	n	'n	Б	8	ſΩ	n	m	В	ſŊ	m	ñ	m	n	5	m	m	m	m	()B	Ω	В	0	Ω	n	æ	Ω	
0.4000	0.5000	0.3500	0.3500	0.5000	0.3500	0.3000	0.4000	0.4500	0.5000	0.0000	0.3000	0.3000	0.5500	0.000	0.2000	0.2000	0.5000	0.1500	0.3500	0.2500	0.2000	5.0000	0.2500	0.2500	0.0000	46.0000	0.000	0.0000	2.0000	5.0000	0.000	10.0000	
0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.1500	0.000	0.000	0.0000	0.0720	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	58.8000	0.0000	13.0000	167.0000	0.000	0.000	117000.0000	0.0000	
Bromodichloromethane	Вготобогт	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	1,2-Dichlorobenzene	1,2-Dimethylbenzene	1,3-Dichlorobenzene	1,3/1,4-Dimethylbenzene	1,4-Dichlorobenzene	Benzene	Chlorobenzene	Ethylbenzene	Methyl-t-Butyl Ether	Styrene	Toluene	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	
CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CSI-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CSI-MWI-GW2	CS1-MW1-GW2	CS1-MW1-GW2	CSI-MWI-GW2-F	CS1-MW1-GW2-F	CSI-MWI-GW2-F	CS1-MW1-GW2-F	CS1-MW1-GW2-F	CS1-MW1-GW2-F	CS1-MW1-GW2-F	CSI-MWI-GW2-F	
MW1	MW1	MW1	MW1	MWI	MW1	MW1	MW1	MW1	MW1	MW1	MWI	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MWI	MW.	MWI	MWI	MW.	W W	MW1	MW1	MWI	MW1	MW1	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP CLP	G G	G &	C C	CLP	CLP	CLP	GLP CLP	CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/l ug/l ug/l	/gn //gn	ug/1	ug/l ug/l	l/gn	l/gn	ng/l	ug/I	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn
001	В	D:	<b>)</b>	Ω	D	m E	ח		m	n	n	n	n	n	n	n	n	5	Б	n	n	m	n	n	n	n
0.0000	2.0000 0.0000 0.0000	0.2000	31.0000 2240.0000	3.0000	10.0000	0.0000	7.0000	0.000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10.0000
9.4000 0.0000 5530.0000	0.0000 57000.0000 2680.0000	0.0000	0.0000	0.0000	0.0000	0,000	0.0000	39.8000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cobalt Copper Iron	Lead Magnesium Manyanese	Mercury	nickei Potassium	Selenium	Silver	Sodium	Vanadium	Zinc	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2-Chloroethylvinyl ether	Benzene	Benzyl Chloride	Bromobenzene
CSI-MWI-GW2-F CSI-MWI-GW2-F CSI-MWI-GW2-F	CSI-MWI-GW2-F CSI-MWI-GW2-F CSI-MWI-GW2-F	CS1-MW1-GW2-F	CSI-MWI-GW2-F	CS1-MW1-GW2-F	CS1-MW1-GW2-F	CSI-MWI-GW2-F	CSI-MW1-GW2-F	CSI-MW1-GW2-F	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1
MW1 MW1 MW1	MW1 MW1	MWI	MWI	MWI	MW1	MM	MWI	MW1	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
l/an l/an l/an l/an l/an l/an l/an l/an	l/gu l/gu l/gu l/gu l/gu l/gu l/gu
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	10.0000 10.0000 10.0000 10.0000 10.0000 25.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
omethane chloride ane de de loride hylene romethane e a-Xylenes robenzene robenzene e enzene	cenzene cenzene cenzene cenzene l-Chloropropane) rophenol rophenol
Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chlorochane Chlorochane Chloroform Dibromomethane Ethylbenzene Methyl bromide Methyl bromide Tetrachloroethylene Trichloroethylene ,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chlorol 2,2'-Oxybis(1-Chlorol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol
Bromodichlor Bromoform Carbon Tetrac Chlorobenzen Chloroethane Chlorocthane Chloroform Dibromochlor Dibromochlor Dibromochlor Dibromochlor Dibromochlor Tetrachloroetf Toluene Trichloroethy Trichloroethy Trichlorofluor Vinyl chloride meta- and par ortho-Xylene Lead 1,2,4-Trichlor 1,2,4-Trichlor 1,2,4-Trichlor 1,2,4-Trichlor 1,2,4-Trichlor 1,2,4-Trichlor 1,2,4-Trichlor	CS1-MW2-GW1 1,3-Dichlorob CS1-MW2-GW1 1,4-Dichlorob CS1-MW2-GW1 1,4-Dichlorob CS1-MW2-GW1 2,2'-Oxybis(1- CS1-MW2-GW1 2,2'-Oxybis(1- CS1-MW2-GW1 2,4,5-Trichlor CS1-MW2-GW1 2,4,5-Trichlor CS1-MW2-GW1 2,4,5-Trichlor CS1-MW2-GW1 2,4,5-Trichlor

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	
CLP 3/90		CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90							CLP 3/90	
l/an	ng/l	ng/l	ug/1	ng/l	l/gn	l/gn	ng/l	ug/1	l/gn	l/gn	ug/1	ng/l	l/gn	l/gn	ug/l	l/gn	ng/l	ug/l	l/gn	l/gn	ng/l	ug/I	l/gn	l/gn	ng/l	ug/l	l/gn	l/gn	l/gu	l/gn	l/gn	)
Ω	Ω	Ω	Ω	D	n	Ω	Ω	Ω	Ω	D	D	Ω	n	~	D	n	D	n	n	<b>~</b>	Ω	n	n	n	n n	Ω	Ω	n	Ω	Ω	n	
10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	
2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chloronaphthalene	2-Chlorophenol	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylnaphthalene	2-Methylphenol	2-Methylphenol	2-Nitroaniline	2-Nitroaniline	2-Nitrophenol	2-Nitrophenol	3,3'-Dichlorobenzidine	3,3'-Dichlorobenzidine	3-Nitroaniline	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	
CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	
MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	2011

PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
10.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Methylphenol 4-Nitroaniline 4-Nitrophenol 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Carbazole Carbazole Chrysene Chrysene
CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI CSI-MW2-GWI
MW2  MW2  MW3  MW3  MW3  MW3  MW3  MW3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		
l/gn	l/gn	l/gn	ng/l	ng/l	ng/l	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	l/gn	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	ug/l	l/gn	l/gn	ng/l	ng/l	ng/l
n	n	n	n	D	D	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	n	n	Ω	Ω	n	~	m	n	n	n	n	~	n	n	n	Ω
10.0000	10.000	10.000	10.000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.000	10.000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.000	10.000	10.000	10.0000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000
Di-n-butyl phthalate	Di-n-octyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzo(a,h)anthracene	Dibenzofuran	Dibenzofuran	Diethyl phthalate	Diethyl phthalate	Dimethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluoranthene	Fluorene	Fluorene	Hexachlorobenzene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorobutadiene	<b>Hexachlorocyclopentadiene</b>	Hexachlorocyclopentadiene	Hexachloroethane	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-c,d)pyrene	Isophorone	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	N-Nitrosodiphenylamine	Naphthalene	Naphthalene
CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GWI	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GW1	CSI-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GW1	CS1-MW2-GW1	CSI-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1	CS1-MW2-GW1
MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2

PACE PACE PACE PACE PACE PACE PACE PACE	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	
	ug/l ug/l ug/l ug/l ug/l ug/l ug/l
10.0000 25.0000 25.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 10.0000 25.0000 0.0000 0.0000 0.2000 31.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.0000 1230.0000 0.0000 0.0000 113.0000 0.0000 0.0000 0.0000 0.0000	73500.0000 0.0000 0.0000 780.0000 4.2000 38400.0000 117.0000 0.0000
Nitrobenzene Nitrobenzene Pentachlorophenol Pentachlorophenol Phenanthrene Phenanthrene Phenol Phrenol Pyrene Dis(2-Chloroethoxy)methane Dis(2-Chloroethyl) ether Dis(2-Chloroethyl) ether Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)phthal	Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury
CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW1 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2	CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2
MW2  MW2  MW2  MW2  MW2  MW2  MW2  MW2	MW2 MW2 MW2 MW2 MW2 MW2 MW2

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM	СОМРИСНЕМ	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	сомриснем
C C C C C C C C C C C C C C C C C C C	d d d	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		
l/gu l/gu l/gu	//gn //gn	l/gu	l/gn	l/gn	ng/I	l/gn	l/gn	ng/l	ng/l	l/gn	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	ng/I	l/gn	l/gu	l/gn	l/gn	l/gn	ng/l	l/gn
חחח		ם ס	n	ם	) <b>)</b>	Ω	n	Ω	n	D	D	D	Þ	n	D	Þ	n	n	Ω	Ω	Ω	Ω	D	n	Ω
2240.0000 3.0000 10.0000 0.0000	7.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.000	10.000	25.0000	10.000	10.000	10.000	10.000	25.0000	10.000	10.000	25.0000	10.000	10.000	25.0000	10.000	10.000	10.000	10.0000	10.0000
0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000	0.000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000
n 1060	Thallium Vanadium Zinc	4-Trichlorobenzene Dichlorobenzene		1,4-Dichlorobenzene	(aum)	2,4,6-Trichlorophenol		lo	2,4-Dinitrophenol		2,6-Dinitrotoluene	alene		2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	oi	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol
CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2	CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2	CS1-MW2-GW2 CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CSI-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2	CS1-MW2-GW2
CS1-N CS1-N CS1-N CS1-N	CS1-M CS1-M CS1-M	CS1-N CS1-N	CS1-	- S	CSI-	CS1-	CS1-	CS1-	CS1-	CS1-	CSI-	CS1-	CS1-	CS1-	CS1-	CS1-	CS1-	CS1-	CS1	CSI	CSI	CSI-	CS1-	CS1-	CS1-

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

CSI-MW2-GW2	4-Nitroaniline	0.0000	25.0000	n:	l/gn		СОМРИСНЕМ
CS1-MW2-GW2	4-INIU OPIICIOI	0.000	25.0000	<b>)</b> :	l/gn		COMPUCHEM
COL MAN CWA	Accidational	0.000	10.000	<b>-</b>	ng/l	CLP 3/90	COMPUCHEM
CAT-IMW2-GW2	Acenaphthylene	0.0000	10.0000	⊃	ng/l		COMPUCHEM
2w2-2wiw-1c2	Anthracene	0.0000	10.000	D	ng/l	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Benzo(a)anthracene	0.000	10.0000	Þ	l/gn	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Benzo(a)pyrene	0.0000	10.000	D	ug/l	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Benzo(b)fluoranthene	0.0000	10.0000	D	ng/1	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Benzo(ghi)perylene	0.0000	10.0000	Ω	ng/l	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	Benzo(k)fluoranthene	0.0000	10.0000	Ω	1/Zn	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Butyl benzyl phthalate	0.000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Carbazole	0.0000	10.000	n	ng/l	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	Chrysene	0.0000	10.0000	n	ug/l	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	Di-n-butyl phthalate	0.0000	10.0000	n	ng/I	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Di-n-octyl phthalate	0.0000	10.000	D	ng/l	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	Dibenzo(a,h)anthracene	0.0000	10.0000	ם	1/3n	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	Dibenzofuran	0.0000	10.0000	Ω	ng/l	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	Diethyl phthalate	0.0000	10.0000	Ω	ng/l	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Dimethyl phthalate	0.000	10.0000	D	l/gn	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Fluoranthene	0.0000	10.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Fluorene	0.0000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Hexachlorobenzene	0.0000	10.0000	Þ	ng/l	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Hexachlorobutadiene	0.000	10.0000	D	ng/l	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	<b>Hexachlorocyclopentadiene</b>	0.0000	10.0000	n	ug/1	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Hexachloroethane	0.0000	10.000	n	ug/l	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Indeno(1,2,3-c,d)pyrene	0.000	10.0000	Ω	ng/l	CLP 3/90	COMPUCHEM
CSI-MW2-GW2	Isophorone	0.0000	10.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	N-Nitrosodi-N-Propylamine	0.000	10.0000	n	l/an	CLP 3/90	COMPLICHEM
CS1-MW2-GW2	N-Nitrosodiphenylamine	0.0000	10.000	Ω	l/an	CL.P 3/90	COMPLICHEM
CS1-MW2-GW2	Naphthalene	0.0000	10.0000	Ω	ng/1	CLP 3/90	COMPUCHEM
CS1-MW2-GW2	Nitrobenzene	0.0000	10.0000	D	ng/l		COMPLICHEM
CS1-MW2-GW2	Pentachlorophenol	0.0000	25.0000	n	J/an		COMPLICHEM
CS1-MW2-GW2	Phenanthrene	0.0000	10.0000	Ω	l/gn		COMPUCHEM

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010
l/gn	l/gn	ug/l	ng/l	l/gn	l/gn	l/gn	ug/l	ug/l	l/gn	ug/l	l/gn	ng/l	ug/1	l/gn	ug/1	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	ug/l	ug/l	l/gn	J/gn
n	Ω	Ω	Ω	8	D	D	n	Ω	ם	D	Ω	D	n	Ω	n	Ω	D	D	n	Ω	n	Ω	Ω	n	n	Ω	D	D	n	n	n	Ω
10.0000	10.0000	10.0000	10.0000	0.0000	0.3500	0.3500	0.4000	0.2500	0.3500	0.3500	0.3500	0.3500	0.3000	0.2500	0.3000	0.3000	0.2000	0.3000	0.2500	0.2000	0.4000	0.2500	0.3500	0.8500	0.2500	0.4000	0.5000	0.3500	0.3500	0.5000	0.0000	0.3000
0.0000	_																															
0.0	0.0000	0.0000	0.0000	4.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
Phenol 0.0	Pyrene 0.0000	bis(2-Chloroethoxy)methane 0.0000	bis(2-Chloroethyl) ether 0.0000	<b>9</b> 2	iane		1,1,2,2-Tetrachloroethane 0.0000	1,1,2-Trichloroethane 0.0000			1,2,3-Trichloropropane 0.0000		9	1,2-Dichloroethane 0.0000	1,2-Dichloropropane 0.0000	lylene		<b>1</b> e	opylene	1,4-Dichlorobenzene 0.0000	nyl ether	2-Chlorotoluene 0.0000	Ð	Bromobenzene 0.0000		Bromodichloromethane 0.0000	Bromoform 0.0000	Carbon Tetrachloride 0.0000	Chlorobenzene 0.0000	Chloroethane 0.0000	Chloroform 0.0000	Dibromochloromethane 0.0000
		ane	bis(2-Chloroethy1) ether	bis(2-Ethylhexyl)phthalate	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1, 1, 2, 2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform		Chlorobenzene	Chloroethane	Chloroform	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
SW8010 SW8010 SW8010 SW8010 SW8010 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 CLP CLP CLP CLP	មិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិន
	Van Van Van Van Van Van Van
	0 B B B B B B B B B B B B B B B B B B B
0.4000 0.4500 0.5000 0.3000 0.3000 0.5000 0.2000 0.2500 0.2500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000	5.0000 0.0000 10.0000 25.0000 0.0000 0.0000 0.2000
0.0000 0.0000 0.4700 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 8.4000 0.0000 43.6000 0.0000
Dibromomethane Methyl bromide Methyl chloride Methylene chloride Tetrachloroethylene Trichloroethylene Vinyl chloride 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3/1,4-Dimethylbenzene 1,3/1,4-Dimethylbenzene Benzene Chlorobenzene Benzene Chlorobenzene Benzene Chlorobenzene Antimony Arsenic Barium Beryllium	Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese
CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2 CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F	CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F CSI-MW2-GW2-F
MW2 MW2 MW2 WW2 WW3 WW3 WW3 WW3 WW3 WW3 W	MW2 MW2 MW2 MW2 MW2 MW2 MW2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
l/gn	l/gu	l/gn	ng/l	l/gn	l/gn	ug/l	ug/l	ug/l	ug/l	l/gn	l/gn	ng/l	ng/l	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	l/gn	ug/l	l/gn	l/gn
Ω	n	n	n	89	TI	n	0	S	n	m	n	Ω	n	Ω	UJ	UJ	Ω	Ω	Ω	n	n	Ω	n	n	n	Ω	m	n	n	Ω	Ω	n
31.0000	2240.0000	3.0000	10.0000	0.000	4.0000	7.0000	0.000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.000	1.0000	1.0000
0.0000	0.0000	0.000	0.0000	11300.0000	0.0000	0.0000	12.7000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2-Chloroethylvinyl ether	Benzene	Benzyl Chloride	Bromobenzene	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane
CS1-MW2-GW2-F	CS1-MW2-GW2-F	CS1-MW2-GW2-F	CS1-MW2-GW2-F	CS1-MW2-GW2-F	CS1-MW2-GW2-F	CSI-MW2-GW2-F	CS1-MW2-GW2-F	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GWI	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CSI-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1
MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MM3	MW3	MW3	MM3	MM3	MM3	MW3	MM3	MW3	MW3	MW3	MM3	MM3	MW3	MW3	MW3	MW3	MW3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 CLP 3/90 CLP	CLP 3/30 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	Van Van Van Van Van
1.0000 10.0000 10.0000 1.0000 1.0000 1.0000 1.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 25.0000 10.0000 25.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Dibromomethane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Tetrachloroethylene Trichloroethylene Trichlorofluoromethane Vinyl chloride meta- and para-Xylenes ortho-Xylene Lead 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4-5-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol	2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine
CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1	CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1 CSI-MW3-GW1

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
Van Van Van Van Van Van Van Van Van Van	Van Van Van Van Van
25.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 10.0000 10.0000 10.0000
00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0	0.0000 0.0000 0.0000 0.0000 0.0000
iline henyl phenyl ether 3-methyl phenol aniline phenyl phenyl ether phenol iline enol hene hylene ne inthracene oyrene fluoranthene i)perylene i)perylene i)perylene i,phthalate a,h)anthracene uran hthalate phthalate phthalate en	Fluorene 0.0000  Hexachlorobenzene 0.0000  Hexachlorobutadiene 0.0000  Hexachlorocyclopentadiene 0.0000  Hexachlorocethane 0.0000  Indeno(1,2,3-c,d)pyrene 0.0000
3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthylene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene Di-n-butyl phthalate Di-n-butyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate Dimethyl phthalate Dimethyl phthalate	

Ħ	Ħ	) <del>[1</del>	判	判	Ħ	Ħ	H	<del>H</del>	H	H	Ħ	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	OMPLICHEM	COMPLICHEM	сомриснем
PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	Ö	CO	Ö	ָבָּ בּ	Ö	Ĉ	<u></u>	00	SOS	Ö	OS	Ö	O _O	Ö	CO	Ö	Ö	O	֖֖֖֖֖֖֖֓֞֞֞֝֞֞֞֝֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	<u></u>	000
CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP	CLP	CLP	CLP		CLP	CLP	CLP	CLP	CLP	CLP	d I	- L	CLP								
					_																					7						
ng/l	ug/l	ng/l	ng/l	ng/l	l/gn	ng/l	l/gn	ug/I	ng/l	ng/I	ng/I	ug/I	l/gn	ug/l	ug/l	ug/l	ug/l	ug/1	ug/l	ng/l	ug/l	ng/l	ug/l	ng/l	ng/l	l/gn	ug/I	ug/I	ng/l	nø/l	ne/I	ng/I
Ω	n	Ω	Ω	D	n	Ω	Ω	n	Ω	В	8	В	n	()B	C	Þ	n		Ω	Ω	NF	-	ļ			Ω	Ω	D	Ω	Ω	I	n
0.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	0.0000	1.0000	0.000	46.0000	0.000.0	0.0000	2.0000	5.0000	0.0000	10.0000	9.0000	25.0000	0.0000	0.0000	0.000	0.0000	0.2000	31.0000	0000	3.0000	10.0000	0.0000	4.0000
10.	10.	10.	10.	. 25.	.01	10.	10.	10.	10.	Ö	<del>-</del> i	0	46.	Ö	Ö	2.	5.	0	10.	.6	25.	O.	0	Ö	Ö	o	31.	2240.0000	3.	10.	Ö	4
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.5000	0.0000	758.0000	0.0000	3.4000	101.0000	0.0000	0.0000	79000.0000	0.0000	0.0000	0.0000	438.0000	7.8000	40300.0000	32.0000	0.0000	0.0000	0.0000	0.0000	0.0000	7670.0000	0.0000
opyłamine	lamine							bis(2-Chloroethoxy)methane	ether	hthalate								,-						7								
N-Nitrosodi-N-Propył	N-Nitrosodiphenylami	lene	zene	Pentachlorophenol	ırene			loroethox	bis(2-Chloroethyl) ether	nylhexyl)p		E	Š			r.	u		E					шn	se			E	_			_
N-Nitros	N-Nitros	Naphthalene	Nitrobenzene	Pentachl	Phenanthrene	Phenol	Pyrene	bis(2-Ch	bis(2-Ch	bis(2-Et	Lead	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadminm	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium
3-GW1	3-GW1	3-GW1	3-GW1	3-GW1	3-GW1	3-GW1	3-GW1	3-GW1	3-GW1	3-GWI	3-GW1-F	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2	3-GW2
CSI-MW3-GW	CS1-MW3-GW1	CS1-MW3-GW1	CS1-MW3-GW1	CSI-MW3-GWI	CSI-MW3-GW1	CS1-MW3-GW1	CSI-MW3-GWI	CS1-MW3-GW1	CS1-MW3-GWI	CS1-MW3-GWI	CS1-MW3-GW1-F	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2								
MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	сомриснем
CLP CLP CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
//gu  /gu  /gu	l/gu I/gu	1/gn 1/gn	1/gn 1/gn	l/gn	l/gn	ug/1 ug/1	l/gn	ng/l	1/gn 1/an	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/1	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	n n	םם	'n	):	o	Ω	D :	ם ם	n	n	n	D	n	כ	D	n	n	n	Ω	n	n	Ω
7.0000 0.0000 10.0000	10.0000	25.0000	10.0000	25.0000	10.0000	10.0000	10.0000	25.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.000	25.0000	25.0000	10.000	10.0000	10.0000
0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000	0.0000	0.0000 0.0000	0.0000	0.000	0.0000	0.000.0	0.000.0	0.0000	0.000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000
Vanadium         0.0000           Zinc         10.7000           1,2,4-Trichlorobenzene         0.0000           1,2-Dichlorobenzene         0.0000	propane)	lou				2-Chloronaphthalene 0.0000		phenol	2-Methylnaphthalene 0.0000 2-Methylphenol 0.0000			benzidine		ether	hyl phenol		phenyl ether	4-Methylphenol 0.0000	4-Nitroaniline 0.0000	4-Nitrophenol 0.0000	Acenaphthene 0,0000	Acenaphthylene 0.0000	Anthracene 0.0000
dium 1 I-Trichlorobenzene Dichlorobenzene	1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		2,4-Dinitrophenol		2,o-Dinitrololuche 2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	alene	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol			

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
		CLP 3/90	CLP 3/90	CLP 3/90							CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI P 3/90	CL P 3/90	CL P 3/90	CI P 3/90	CLP 3/90	CI.P 3/90	CI.P 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CI P 3/90					
l/gn	ng/l	l/gn	l/gn	ng/l	l/gn	ng/l	l/an	. β.    /øn	ng/l	ug/l	l/øn	l/an	l/gn	l/an	1/611	//an	1/8n	1/an	l/an	l/an	1/3n	l/an	ug/l	ng/I	ug/l	ng/l	nø/l	l/an	l/an	1/611	1/an	ug/l
D	Þ	Þ	n	n	Ω	n	Ω	n	n	Ω	Ω	n	Ω	Ω	) D	n	n	n	n	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	D	Ω	n	) <u> </u>	a a
10.0000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	25.0000	10.000	10.0000	10.0000	10.000	10,000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000
Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate
CSI-MW3-GW2	CSI-MW3-GWZ	CSI-MW3-GWZ	CSI-MW3-GW2	CSI-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2
MW3	MW 5	c w Ivi	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MM3	MW3	MW3	MW3	MW3	MW3	MM3	MM3	MW3	MW3	MW3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010
l/an	ug/l	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	ug/l	l/gn	l/gn	l/gn
n	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	D	Ω	n	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	n	n	Ω	n	Ω	Ω	D	Ω		n
0.3500	0.3500	0.4000	0.2500	0.3500	0.3500	0.3500	0.3500	0.3000	0.2500	0.3000	0.3000	0.2000	0.3000	0.2500	0.2000	0.4000	0.2500	0.3500	0.8500	0.2500	0.4000	0.5000	0.3500	0.3500	0.5000	0.3500	0.3000	0.4000	0.4500	0.5000	0.000	0.3000
0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.1700	0.0000
1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1, 1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene
CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CSI-MW3-GW2	CS1-MW3-GW2	CS1-MW3-GW2
MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM
SW8010 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 CLP CLP CLP CLP CLP CLP CLP CLP CLP CLP	CLP CLP CLP
	1/8n 1/8n 1/8n
0.3000 0.5500 0.1500 0.2000 0.2000 0.2000 0.2500 0.2500 0.2500 0.2500 0.0000 46.0000 2.0000 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2000 0.2000 0.2000 0.2000	2240.0000 3.0000 10.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 8700.0000
Trichloroethylene Vinyl chloride 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Limethylbenzene 1,3-Lichlorobenzene Benzene Chlorobenzene Benzene Chlorobenzene Ethylbenzene Methyl-t-Butyl Ether Styrene Toluene Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Cadmium Chromium Chromium Chanium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Cobalt Copper Iron Lead	rotassium Selenium Silver Sodium
CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2 CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F	CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F
MW3  MW3  MW3  MW3  MW3  MW3  MW3  MW3	MW3 MW3 MW3

COMPUCHEM COMPUCHEM	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
G G G	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ng/l ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gu	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn
n n	m	n	n	n	M	ſΩ	m	n	n	n	n	m	m	n	n	5	M	'n	m	ſ	'n	n	n	m	m	n	n	n	Б	m
4.0000 7.0000 3.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	10.0000	1.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000
Thallium Vanadium Zinc	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1, 1, 2, 2-Tetrachloroethane	1,1,2-Trichloroethane	1, 1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2-Chloroethylvinyl ether	Benzene	Benzyl Chloride	Bromobenzene	<b>Bromodichloromethane</b>	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride
CSI-MW3-GW2-F CSI-MW3-GW2-F CSI-MW3-GW2-F	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1
MW3 MW3 MW3	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

MW4	CS1-MW4-GW1	Tetrachloroethylene	0000	1 0000		//	0010100	5
MW4	CS1-MW4-GW1	Toluene	0.000	1 0000	3 E	1/8/n	9010/9020	rACE
MW4	CS1-MW4-GW1	Trichloroethylene	0.0000	1.0000	3 🖹	18/1 10/1	8010/8020	PACE
MW4	CS1-MW4-GWI	Trichlorofluoromethane	0.0000	1.000	S =	1/8'1 1/4'1	8010/8020	1 A C E
MW4	CS1-MW4-GW1	Vinvl chloride	0.0000	1,000	3 E	ug/1	9010/9020	PACE TO TE
MW4	CS1-MW4-GW1	meta- and nara-Xvlenes	0000	0000	3 5	1/8n	9010/9020	FACE
MW4	CS1-MW4-GW1	ortho Verlano	00000	1.0000	3 :	ug/1	8010/8070	PACE
MWA	TWD-WW-ISS		0.000	0000.	3	ng/l	8010/8020	PACE
141 141 1411/4	C31-IVIW4-GW1	Lead	6.7000	0.000	¥	ng/l	CLP	PACE
MW4	CSI-MW4-GW1	1,2,4-Trichlorobenzene	0.0000	10.000	n	ng/l	CLP 3/90	PACE
MW4	CSI-MW4-GW1	1,2-Dichlorobenzene	0.000	10.0000	~	ug/I	CLP 3/90	PACE
MW4	CS1-MW4-GW1	1,3-Dichlorobenzene	0.0000	10.000	~	ng/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	1,4-Dichlorobenzene	0.000	10.0000	~	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,2'-Oxybis(1-Chloropropane)	0.0000	10.0000	n	ug/1	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,4,5-Trichlorophenol	0.0000	25.0000	Ω	ug/l	CLP 3/90	PACE
MW4	CSI-MW4-GW1	2,4,6-Trichlorophenol	0.0000	10.000	n	ug/I	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,4-Dichlorophenol	0.0000	10.000	Ω	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,4-Dimethylphenol	0.0000	10.0000	Ω	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,4-Dinitrophenol	0.000	25.0000	Ω	l/gn	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,4-Dinitrotoluene	0.0000	10.0000	Ω	ng/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2,6-Dinitrotoluene	0.0000	10.0000	Ω	ng/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2-Chloronaphthalene	0.000	10.0000	Ω	ug/I	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2-Chlorophenol	0.0000	10.0000	~	ng/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2-Methyl-4,6-Dinitrophenol	0.0000	25.0000	Ω	ug/I	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2-Methylnaphthalene	0.0000	10.0000	Ω	ug/1	CLP 3/90	PACE
MW4	CSI-MW4-GW1	2-Methylphenol	0.0000	10.000	<b>X</b>	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	2-Nitroaniline	0.0000	25.0000	Ω	ug/1	CLP 3/90	PACE
M W 4	CS1-MW4-GW1	2-Nitrophenol	0.0000	10.0000	Ω	ng/l	CLP 3/90	PACE
MW4	CSI-MW4-GW1	3,3'-Dichlorobenzidine	0.0000	10.000	Ω	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	3-Nitroaniline	0.0000	25.0000	Ω	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	4-Bromophenyl phenyl ether	0.0000	10.000	Ω	l/gn	CLP 3/90	PACE
MW4	CS1-MW4-GW1	4-Chloro-3-methyl phenol	0.0000	10.000	n	ug/l	CLP 3/90	PACE
MW4	CS1-MW4-GW1	4-Chloroaniline	0.0000	10.000	Ω	ng/1	CLP 3/90	PACE
MW4	CS1-MW4-GW1	4-Chlorophenyl phenyl ether	0.0000	10.0000	Ω	ng/l	CLP 3/90	PACE
						)		1

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90		CLP 3/90			CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90		
ug/1	l/gu	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	ng/l	l/gn	l/gn	ng/l	ng/l	l/gn	ug/l	l/gn	ug/l	ng/l	l/gn	ng/l	l/gn	l/gn	ug/1
~	Ω	Ω	n	n	n	Ω	n	n	n	Ω	D	Ω	n		ח	Ω	Ω	ח	Ω	n	ח	Ω	Ω	n	~	Ω	D	~	Ω		Ω	n
10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	0.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.000	10.0000	0.0000	10.0000	25.0000
0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	3.0000	0.0000	0.0000
4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol
CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CSI-MW4-GWI	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1	CS1-MW4-GW1
MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4

MW4 MW4	CSI-MW4-GW1 CSI-MW4-GW1	Phenanthrene Phenol	0.0000	10.0000	D &	ug/l ug/l	CLP 3/90 CLP 3/90	PACE PACE
MW4	CS1-MW4-GW1	Pyrene	0.0000	10.0000	Ω	l/gn	CLP 3/90	PACE
MW4	CS1-MW4-GW1	bis(2-Chloroethoxy)methane	0.0000	10.0000	Ω	l/gn	CLP 3/90	PACE
MW4	CS1-MW4-GW1	bis(2-Chloroethyl) ether	0.0000	10.0000	~	ng/l	CLP 3/90	PACE
MW4	CSI-MW4-GWI	bis(2-Ethylhexyl)phthalate	1.0000	0.0000	മ	ng/l	CLP 3/90	PACE
MW4	CSI-MW4-GWI-F	Lead	0.000	1.0000	В	l/gn	CLP	PACE
MW4	CS1-MW4-GW2	Lead	0.000	2.0000	n	ug/l	CLP	COMPUCHEM
MW4	CS1-MW4-GW2	1,2,4-Trichlorobenzene	0.0000	10.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	1,2-Dichlorobenzene	0.0000	10.0000	Ω	ng/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	1,3-Dichlorobenzene	0.0000	10.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	1,4-Dichlorobenzene	0.0000	10.0000	Ω	ug/1	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2,2'-Oxybis(1-Chloropropane)	0.0000	10.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	2,4,5-Trichlorophenol	0.0000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	2,4,6-Trichlorophenol	0.000	10.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2,4-Dichlorophenol	0.0000	10.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2,4-Dimethylphenol	0.000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2,4-Dinitrophenol	0.0000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2,4-Dinitrotoluene	8.0000	0.0000		ng/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2,6-Dinitrotoluene	0.0000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	2-Chloronaphthalene	0.0000	10.0000	D	ng/l	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	2-Chlorophenol	0.0000	10.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2-Methyl-4,6-Dinitrophenol	0.0000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2-Methylnaphthalene	3.0000	0.0000		1/gn	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	2-Methylphenol	0.000	10.0000	D	1/gn	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	2-Nitroaniline	0.000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	2-Nitrophenol	0.0000	10.000	Ω	ug/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	3,3'-Dichlorobenzidine	0.000	10.0000	D	ug/1	CLP 3/90	COMPUCHEM
MW4	CSI-MW4-GW2	3-Nitroaniline	0.000	25.0000	Þ	ug/1	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	4-Bromophenyl phenyl ether	0.0000	10.0000	n	ug/l		COMPUCHEM
MW4	CS1-MW4-GW2	4-Chloro-3-methyl phenol	0.000	10.000	n	ug/l		COMPUCHEM
MW4	CS1-MW4-GW2	4-Chloroaniline	0.0000	10.000	n	ng/l	CLP 3/90	COMPUCHEM
MW4	CS1-MW4-GW2	4-Chlorophenyl phenyl ether	0.000	10.0000	Û	l/gn	CLP 3/90	COMPUCHEM

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			CLP 3/90
	1/8n 1/8n 1/8n	1/gn 1/gn 1/on	1/gn 1/gn 1/gn	ug/l ug/l	l/gn ng/l	1/gn 1/gn	ng/l ng/l	1/gn 1/gn	ng/l	l/gn	1/gn 1/o11	l/gu	ng/l	ng/l	l/gn
			Ď	חם	D	ם כו	) D	חם	Þ	D;	<b>&gt;</b> =	n		n	Ω
10.0000 25.0000 25.0000 10.0000 10.0000	10.0000 10.0000 10.0000	10.0000	0.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	0.0000	10.0000	25.0000
0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	11.0000	0.0000	0.0000
4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole	Chrysene Di-n-butyl phthalate	Di-n-octyl phthalate Dibenzo(a,h)anthracene	Dibenzofuran Diethyl phthalate	Dimethyl phthalate Fluoranthene	riuorene Hexachlorobenzene	Hexachlorobutadiene Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol
								<b>6)</b> 6)	~	2 5	v 6	7	~	2	5
CS1-MW4-GW2 CS1-MW4-GW2 CS1-MW4-GW2 CS1-MW4-GW2 CS1-MW4-GW2 CS1-MW4-GW2	CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2	CS1-MW4-GW2 CS1-MW4-GW2 CS1-MW4-GW2	CS1-MW4-GW2 CS1-MW4-GW2	CS1-MW4-GW2 CS1-MW4-GW2	CSI-MW4-GW2 CSI-MW4-GW2	CSI-MW4-GW2 CSI-MW4-GW2	CSI-MW4-GW2	CS1-MW4-GW2 CS1-MW4-GW2	CS1-MW4-GW2	CSI-MW4-GW2	CSI-MW4-GW2	CS1-MW4-GW2	CS1-MW4-GW2	CSI-MW4-GW2	CSI-MW4-GW2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
l/gu l/gu l/gu l/gu l/gu l/gu l/gu l/gu	1/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1/8n
10.0000 10.0000 10.0000 10.0000 0.0000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.0500 0.0500	1.0000 2.0000 1.0000 1.0000 1.0000 5.0000 0.0500 0.0500 0.0500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Chloroethyl) ether 4,4'-DDD 4,4'-DDF Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endos	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Toxaphene alpha-BHC alpha-BHC delta-BHC gamma-BHC
CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2	CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2
MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4	MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4 MW4 4

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
PCB-CLP SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010	SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010
/8n	ng/l ng/l ng/l ng/l ng/l ng/l
0.0500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3000 0.2000 0.2000 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500	0.5000 0.3500 0.3500 0.0000 0.3000 0.4000 0.5000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000 0.0000 0.0000 0.2300 0.0000 0.0000 0.0000
ordane rachloroethane loroethane rachloroethane loroethane oethane oethane obenzene obenzene opropane optropane ichloroethylene ichloropylene ichloropylene ichloropylene obenzene aloropropylene ichloropylene ichloroptylene obenzene obenzene obenzene optropylene ichloroptylene obenzene obenzene obenzene obenzene obenzene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropylene optropyl	Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Methyl bromide Methyl chloride Methylene chloride
CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2	CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2 CSI-MW4-GW2
MW4 MW4 MW4 MW4 MW4 MW4 MW4 MW4 MW4 MW4	MW4 MW4 MW4 MW4 MW4 MW4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240 8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg /kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	חח	D :	D =	ם ם	Ω	n	n	n	8	Ω	Ω	D	Ω	Ω	n	n	ب	Ω	Ω	Ω	Ω	n	Ω	n	Ω	Ω	D	ם
12.0000 6.0000 6.0000	6.0000	6.0000	6.0000	6.0000	0000'9	9.0000	12.0000	12.0000	0.000	0000'9	0000'9	9000.9	9.0000	12.0000	12.0000	0000'9	0.000	400.0000	400.000	400.000	400.0000	400.000	1000.0000	400.0000	400.000	400.000	1000.0000	400.0000
0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0000.9	0.0000	0.000	0.0000	0.000.0	0.0000	0.0000	0.0000	17.3000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
pentanone oromethane		loride	Chlorobenzene 0.0000		Dibromochloromethane 0.0000	Ethylbenzene 0.0000			ne chloride		Tetrachloroethylene 0.0000		lene			Xylenes (TOTAL) 0.0000		ne				propane)	_	2,4,6-Trichlorophenol 0.0000		2,4-Dimethylphenol 0.0000	lou	2,4-Dinitrotoluene 0.0000
4-Methyl-2-pentanone Benzene Bromodichloromethane	l Bromoform I Carbon Disulfide	Carbon Tetrachloride		Chloroform	I Dibromochloromethane	Ethylbenzene	Methyl bromide	1 Methyl chloride	1 Methylene chloride	l Styrene	l Tetrachloroethylene	l Toluene	I Trichloroethylene	Vinyl Acetate	I Vinyl chloride	l Xylenes (TOTAL)	l Lead	I, 2, 4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1 2,2'-Oxybis(1-Chloropropane)	1 2,4,5-Trichlorophenol	1 2,4,6-Trichlorophenol			2,4-Dinitrophenol	ene

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 0.0000
•	
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 44.0000
ohenol le enol yl ether	Benzo(b)fluoranthene 0.0000 Benzo(ghi)perylene 0.0000 Benzo(k)fluoranthene 0.0000 Carbazole 0.0000 Chrysene 0.0000 Di-n-butyl phthalate 0.0000 Di-n-octyl phthalate 0.0000 Dibenzo(a,h)anthracene 0.0000 Dibenzofuran 0.0000
2,6-Dinitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitrophenol Acenaphthene Acenaphthylene Acenaphthylene Benzo(a)anthracene Benzo(a)pyrene	thene ene thene thalate liate liate hracene

PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	8240 8240 8240 8240
ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg	ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	6.0000 6.0000 6.0000
30.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	0.0000
Dimethyl phthalate  Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene O.0000 Indeno(1,2,3-c,d)pyrene O.0000 N-Nitrosodiphenylamine O.0000 N-Nitrosodiphenylamine O.0000 Naphthalene Nitrobenzene Pentachlorophenol Phenol Phenol Phenol Phenol Phenol I,1,1-Trichloroethane O.0000 1,1,2-Tetrachloroethane O.0000 1,1,1-Dichloroethane O.0000 1,1-Dichloroethane O.0000 1,1-Dichloroethane O.0000 1,2-Dichloroethane O.0000	ylene opylene
6	ylene opylene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ug/kg	ug/kg uø/kø	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ם מ	⊃ <b>m</b>	n	n	n	Ω	Þ	D	Ω	n	Ω	Ω	n	Ω	Ω	В	n	Ω	Ω	n	Ω	n	n	<u>ا</u>	n	Ω	Þ		n	D	Ω
13.0000	13.0000 0.0000	13.0000	0000.9	0000.9	0000.9	0000.9	0000.9	0000.9	13.0000	90009	0000.9	0000.9	13.0000	13.0000	0.0000	0000'9	0000'9	0000.9	0000.9	13.0000	13.0000	00009	0.0000	420.0000	420.0000	420.0000	0.0000	420.0000	1000.0000	420.0000
0.0000	0000.	0.0000	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	2	2	2	8	8	000
	0.0	0.0	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0000.9	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	18.2000	0.000	0.000	0.000	75.0000	0.000	0.000	0.0000
2-Chloroethylvinyl ether	2-Propanone 1.0	entanone		oromethane			loride	ē	ē		romethane				me chloride		oroethylene		ene			Xylenes (TOTAL) 0.00		ne		1,3-Dichlorobenzene 0.000	1,4-Dichlorobenzene 75.000	2,2'-Oxybis(1-Chloropropane) 0.000		2,4,6-Trichlorophenol 0.00
CS1-SB2-5-55 2-Butanone CS1-SB2-5-55 2-Chloroethylvinyl ether	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Lead	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	zene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90				
ug/kg	ug/kg no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
D:	<b>)</b>	n	n	n	Ω	D	n	D	D	n	n	n	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	
420.0000	420.0000 1000.0000	420.0000	420.0000	420.0000	420.0000	1000.0000	420.0000	420.0000	1000.0001	420.0000	420.0000	1000.0000	420.0000	420.0000	420.0000	420.0000	420.0000	1000.0000	1000.0001	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000
0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	33.0000
2,4-Dichlorophenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate
5-55	0 10	55	-55	-55	-55	-55	-55	-55	-55	5-55	5-55	5-55	5-55	5-55	5-55	5-55	5-55	-5-55	-5-55	5-55	2-5-55	-5-55	5-55	5-55	:-5-55	5-55	:-5-55	-5-55	5-55	5-55	-5-55
CS1-SB2-5-55	CS1-SB2-5-55 CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55	CS1-SB2-5-55

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 8240 8240 8240 8240 8240 8240 8240
ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	By Ban By Ban By Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Bay Ban Ban Bay Ban Ban Ban Ban Ban Ban Ban Ban Ban Ban
420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000	420.0000 420.0000 420.0000 0.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodiphenylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene
CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55	CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB2-5-55 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05
\$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82 \$82	SB2 SB2 SB2 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3 SB3

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ng/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg
D :	ם ס	Ω	D	n	Ω	n	n	D	Ω	Ω	Ω	n	n	n	Ω	n	Ω	n	n	8	n	Ω	Ω	Ω	Ω	Ω	Ω	٦	n	n	Ω
6.0000	6.0000	9.0000	12.0000	0000.9	12.0000	12.0000	12.0000	0000.9	90009	0000.9	0000.9	0000.9	0000.9	12.0000	0000.9	0000.9	0000'9	12.0000	12.0000	0.0000	0000.9	0000.9	0000.9	00009	12.0000	12.0000	9.0000	0.0000	410.0000	410.0000	410.0000
0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	9.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	22.5000	0.000	0.0000	0.0000
1,3-Dichlorobenzene		1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Lead	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene
CS1-SB3-0-05 CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05
SB3 SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

9 3/90 PACE	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	3/90	00/6
ug/kg CLP					-	ug/kg CLP	_				ug/kg CLP					ig/kg CLP	ug/kg CLP						ug/kg CLP									
n D	n	n D	n	n D	n n	n O	n O	n n	n n	n D	n D	n O	n D	n D	n D	n D	n n	ח	n O	n	מ	n O	n D	n n	n D	n D	n O	n A	ח	n O	ח	=
410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	1000.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	410.0000	410.0000	410,0000	1000.0000	1000.0001	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410,000
0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0000
	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene
CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05
SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	CLP 3/90 CLP 3/90	CLP 3/90	CLF 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	ם ב	n I	) <b>,</b>	n	Ω	D	n	Ω	n	ח	n	Ω	Ω	n	Ω	Ω	n	n	Ω	Ω	D	D	_	n	Ω	D	n	n
410.0000 410.0000 410.0000	0.0000	410.0000	0.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.0000	0000.9	0000.9	0000'9	0000.9	9.0000
0.0000	24.0000	0.0000	67.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	79.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Butyl benzyl phthalate Carbazole Chrysene	Di-n-butyl phthalate Di-n-octyl phthalate	Dibenzo(a,h)anthracene Dibenzofiran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene
CS1-SB3-0-05 CS1-SB3-0-05 CS1-SB3-0-05	CS1-SB3-0-05 CS1-SB3-0-05	CS1-SB3-0-05 CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-0-05	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5
SB3 SB3 SB3	SB3 SB3	SB3 SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240 8240	8240 8240 8240	8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg ug/kg ng/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg ~	ug/kg /c	ug/kg ng/kg	us/ko no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n		n	ככ	n	n	<b>)</b> ;	) <b>=</b>	<b>=</b>	) <b>=</b>	n	n	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	D	Ω	Ω	Ω	כ	Ω
6.0000	6.0000 6.0000	00009	6.0000 12.0000	6.0000	12.0000	12.0000	00009	0000.9	00009	9.0000	9.0000	0000'9	12.0000	0000.9	9.0000	9.0000	12.0000	12.0000	0000'9	0000'9	0000.9	9.0000	9.0000	12.0000	12.0000	00009
0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethylene	1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene 2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	Z-Fropanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)
CS1-SB3-45-5 CS1-SB3-45-5 CS1-SB3-45-5	CS1-5B3-45-5 CS1-SB3-45-5 CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-5B3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5	CS1-SB3-45-5
SB3 SB3 SB3	SB3 SB3	SB3	SB3	SB3	SB3	SR3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg
0.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	1000.0000 11000.0000 410.0000 410.0000
17.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000
Lead       17.2000         1,2,4-Trichlorobenzene       0.0000         1,2-Dichlorobenzene       0.0000         1,4-Dichlorobenzene       0.0000         2,2'-Oxybis(1-Chloropropane)       0.0000         2,4,5-Trichlorophenol       0.0000         2,4-Dimitrophenol       0.0000         2,4-Dimitrophenol       0.0000         2,4-Dimitrophenol       0.0000         2,6-Dimitrophenol       0.0000         2-Chlorophenol       0.0000         2-Methylphenol       0.0000         2-Methylphenol       0.0000         2-Methylphenol       0.0000         2-Nitrophenol       0.0000         3,3'-Dichlorobenzidine       0.0000         4-Bromophenyl phenyl ether       0.0000         4-Chloro-3-methyl phenol       0.0000         4-Chlorophenyl phenyl ether       0.0000         4-Methylphenol       0.0000         4-Methylphenol       0.0000           4-Methylphenol       0.0000	ie acene
<b>6</b>	4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 1000.0000 410.0000 410.0000 410.0000 6.0000 6.0000
222222222222222222222222222222222222222	
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Benzo(a)pyrene Benzo(b)fluoranthene 0.000 Benzo(k)fluoranthene 0.000 Butyl benzyl phthalate 0.000 Carbazole Chrysene 0.000 Di-n-butyl phthalate 0.000 Dibenzofuran 0.000 Diethyl phthalate 0.000 Diethyl phthalate 0.000 Hexachlorobutadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 Hexachlorocyclopentadiene 0.000 N-Nitrosodiphenylamine 0.000 Naphthalene	e ethoxy)methane ethyl) ether exyl)phthalate
diene diene 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	8240 8240 8240 8240 8240 8240 8240
18 / 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	5555 <b>m</b> 555
6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 12.0000 12.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	6.0000 6.0000 12.0000 0.0000 6.0000 6.0000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Cis-Dichloropropylene 1,3-Cis-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene	Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene
CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05	CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05
SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4	SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
6.0000 12.0000 12.0000 6.0000 410.0000 410.0000 410.0000 410.0000 410.0000 1000.0000 410.0000 410.0000	410.0000 410.0000 410.0000 1000.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 1000.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ane  AL)  2  2  2  2  2  2  2  2  2  2  2  2  2	2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Chlorophenol 2-Methyll-4,6-Dinitrophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 0.0000 2-Nitrophenol 3,3'-Dichlorobenzidine 0.0000 3-Nitroaniline 0.0000 4-Bromophenyl phenyl ether 0.0000 4-Chlorophenyl phenyl ether 0.0000 4-Chlorophenyl phenyl ether 0.0000 4-Chlorophenyl phenyl ether 0.0000 4-Nitrophenol 0.0000
Trichloroethylene Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Lead 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ugks ugks ugks ugks ugks ugks ugks ugks	ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 0.0000 0.0000 0.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 410.0000 410.0000 1000.0000 410.0000 610.0000 0.0000
0.0000 0.0000 29.0000 45.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 48.0000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Di-n-otyl phthalate Eluoranthene Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-c,d)pyrene Isophorone	N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol
CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05	CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05 CS1-SB4-0-05
	8 8 8 8 8 8 8 8

PACE PACE PACE	PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90	8240 8240 8240	8240 8240	8240 8240	8240	8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg "	ug/kg "	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	ממס	ממ	םם	n	ם ב	o	m	D	D;	D 5	o D	Ω	Ω	n	D :	) :	⊃:	<b>)</b> :	<b>)</b>	n	n	D	Ω	D
410.0000 410.0000 0.0000	6.0000	6.0000	6.0000 6.0000	0000.9	6.0000	6.0000	6.0000	9.0000	12.0000	6.0000	12.0000	12.0000	900009	9000.9	6.0000	6.0000	0.0000	6.0000	12.0000	0000.9	90000	0000'9	12.0000	12.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0,000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000
oxy)methane /l) ether  )phthalate	oethane ane					lene	ylene			<b>L</b> .														
bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethylene	1,2-Dichlorobenzene 1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroemylvinyl emer 2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromotorm	Carbon Tetrachlogide	Chlorohoman	Chloroethans	Chicago	Chioroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride
CS1-SB4-0-05 bis(2-Chloroetho CS1-SB4-0-05 bis(2-Chloroethy CS1-SB4-0-05 bis(2-Ethylhexy) CS1-SB4-05-1 1.1.1-Trichloroe	1	,	CS1-SB4-05-1 1,2-Dichlorobenzene CS1-SB4-05-1 1,2-Dichloroethane		CSI-SB4-05-1 1,2-Dichloropropane CSI-SB4-05-1 1 3-Dichloropenzene				CS1-SB4-US-1 2-Butanone	2-Unioroemyr					CS1-SB4-U3-1 Bromotorm							Ethylbenzene	Methyl bromi	CS1-SB4-05-1 Methyl chloride

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
ממממת מממנממממם	
6.0000 6.0000 6.0000 12.0000 12.0000 6.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	990.0000 400.0000 400.0000 400.0000 990.0000 400.0000 400.0000 400.0000 400.0000 400.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	000000000000000000000000000000000000000
e e e e e e e e e e e e e e e e e e e	2,4-Dinitrophenol       0.0000         2,4-Dinitrotoluene       0.0000         2,6-Dinitrotoluene       0.0000         2-Chlorophenol       0.0000         2-Methyl-4,6-Dinitrophenol       0.0000         2-Methylphenol       0.0000         2-Nitroaniline       0.0000         2-Nitrophenol       0.0000         3,3'-Dichlorobenzidine       0.0000         4-Sromophenyl phenyl ether       0.0000         4-Chloroaniline       0.0000
hylene hylene lene lene TAL)  robenzene benzene benzene benzene conzene rophenol rophenol phenol	2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 990.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-butyl phthalate Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate Fluoranthene	Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene
CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1	CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1
S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B 4 S S B	S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4 S B 4

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 8240 8240 8240 8240 8240 8240 8240 824	8240 8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
990.0000 400.0000 400.0000 400.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000	1600.0000 1600.0000 3200.0000 3200.0000 3200.0000 3200.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000 1600.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane	1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane
CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-05-1 CS1-SB4-55-1 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6	CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6
SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4	SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
1600.0000 3200.0000 3200.0000 1600.0000 1600.0000 1600.0000 1600.0000 3200.0000 3200.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000	430.0000 430.0000 430.0000 430.0000 1100.0000 430.0000 430.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
966	Ň
Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl Acetate Vinyl Acetate Vinyl Acetate Vinyl chloride Xylenes (TOTAL) 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dimitronhenol 2,4-Dimitronhenol	erne fitrophenol ene sidine
le 96(	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Witroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
1100.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000	0.0000 430.0000 430.0000 430.0000 430.0000 430.0000 430.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	220.0000 0.0000 0.0000 44.0000 0.0000 0.0000 0.0000
3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro3-methyl phenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Carbazole Chrysene Di-n-butyl phthalate Di-n-cytyl phthalate Di-n-cytyl phthalate Di-n-cytyl phthalate	Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocythane Indeno(1,2,3-c,d)pyrene Isophorone
CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6	CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6 CS1-SB4-55-6
\$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{8B4}\$ \$\frac{8B4}{	SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	n	o	Ω	Ω	Ω	n	<b>m</b>	n	D	D	D	n	n	D	D	D	n	D	n	n	Ω	Ω	n	B	Ω	n	D	n	Ω
430.0000 430.0000 0.0000	430.0000	430.0000	430.0000	430.0000	430.0000	430.0000	0.0000	00009	9.0000	9.0000	9.0000	9.0000	0000.9	0000.9	9.0000	0000'9	000009	000009	000009	0000	12.0000	9.0000	12.0000	0.000	12.0000	9.0000	9.0000	9.0000	0000.9
0.0000 0.0000 230.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	75.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.0000	0.0000	0.000	0.0000	0.0000	0.0000
N-Nitrosodi-N-Propylamine 0.0000 N-Nitrosodiphenylamine 0.0000 Naphthalene 230.0000	Nitrobenzene 0.0000	5			oxy)methane	/l) ether	late			thane			a						ropropylene	obenzene		vivinyl ether			4-Methyl-2-pentanone 0.0000	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000	Carbon Disulfide 0.0000
N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene		Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	<u>o</u>

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	CLP 3/30 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
6.0000 6.0000 6.0000 6.0000 6.0000 12.0000 6.0000 6.0000 6.0000 12.0000 12.0000 12.0000 9.0000 12.0000 11.0000 9.0000 11.0000 11.0000 9.0000 9.0000 9.0000 11.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000	410.0000 410.0000 1000.0000 410.0000 410.0000 1000.0000 410.0000
•	
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	0.0000
e propane)	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrotoluene 2,6-Dimitrotoluene 0.0000 2-Chloronaphthalene 0.0000 2-Chlorophenol 2-Methylaphthalene 0.0000
- 4	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,6-Dimitrotoluene 2,6-Dimitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dimitrophenol 2-Methylnaphthalene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
8	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg
410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	0.0000 410.0000 410.0000 0.0000 410.0000 410.0000 410.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	27.0000 0.0000 0.0000 34.0000 0.0000 55.0000 0.0000 0.0000
2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitrophenol Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene	Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene
CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025	CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025
SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5	SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	8240 8240 8240 8240 8240 8240 8240 8240
18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 410.0000 410.0000 410.0000 1000.0000 0.0000 410.0000 0.0000 0.0000 6.0000 6.0000 6.0000 6.0000 6.0000	6.0000 6.0000 6.0000 6.0000 6.0000 12.0000 12.0000 12.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chlorocthoxy)methane bis(2-Chlorocthyl) ether bis(2-Ethylhexyl)phthalate 1,1,2,2-Tetrachlorocthane 1,1,2,2-Trichlorocthane 1,1,2,2-Trichlorocthane 1,1-Dichlorocthane 1,1-Dichlorocthane 1,1-Dichlorocthane 1,1-Dichlorocthane 1,1-Dichlorocthane 1,1-Dichlorocthane 1,1-Dichlorocthane	1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-trans-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 2-Propanone 4-Methyl-2-pentanone
CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB5-025 CS1-SB	CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5 CS1-SB5-45-5
SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5	SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5 SB5

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	<b>)</b> ;	0	n	D	n	ם	D	Ω	D	n	Ω	ſ	Ω	D	D	Ω	Ω	n	Ω	H	Ω	Ω	Ω		Ω	D	n	ם	Ω	Ω	Ω	n
6.0000	6.0000	0.000	9.0000	0000.9	9.0000	12.0000	0000.9	9.0000	9.0000	12.0000	12.0000	0.0000	9.0000	0000.9	9.0000	9.0000	12.0000	12.0000	9.0000	0.0000	410.0000	410.0000	410.0000	0.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	1000.0001	410.0000	410.0000
0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	4.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	14.2000	0.0000	0.0000	0.000	44.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Benzene	Dramofe		Carbon Disultide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Lead	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene
CS1-SB5-45-5	CS1-SB3-45-5	C-C+-C05-100	C-C4-2B3-42-C	CSI-585-45-5	CSI-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CSI-SB5-45-5	CSI-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5	CS1-SB5-45-5
SB5	SRS	500	cas	SBS	SBS	SBS	SBS	SBS	SBS	SBS	SB5	SB5	SB5	SBS	SBS	SBS	SBS	SB5	SB5	SBS	SB5	SBS	SB5	SBS	SBS	SBS	SBS	SBS	SBS	SBS	SBS	SBS

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			CLP 3/90		
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	D	Ω	Ω	Ω	A	Ω	D	n	n	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	n	n	Ω	Ω	n	Ω	Ω	Ω	n	n	Ω	Ω		D
410.0000	410.0000	1000.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.000	410.0000
0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	130,0000	0.0000
alene			2-Methylnaphthalene 0.0000				senzidine .		4-Bromophenyl phenyl ether 0.0000			4-Chlorophenyl phenyl ether 0.0000		4-Nitroaniline 0.0000	4-Nitrophenol 0.0000	Acenaphthene 0.0000	Acenaphthylene 0.0000	Anthracene 0.0000	Benzo(a)anthracene 0.0000		Benzo(b)fluoranthene 0.0000			Butyl benzyl phthalate 0.0000	Carbazole 0.0000		Di-n-butyl phthalate 0.0000	Di-n-octyl phthalate 0.0000	Dibenzo(a,h)anthracene 0.0000	Dibenzofuran 0.0000	Diethyl phthalate 130,0000	Dimethyl phthalate 0.0000
2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate			Diethyl phthalate 1	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 8240 8240 8240 8240 8240 8240 8240 824
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg
410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 0.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
00000 00000 00000 00000 00000 00000 0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fluoranthene Fluorene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-c,d)pyrene Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophorone Isophoro	<b>7</b>
thene e lorobenzene lorobutadiene lorocyclopentadiene lorocyclopentadiene lorocyclopentadiene lorochane 1,2,3-c,d)pyrene one sodi-N-Propylamine sodiphenylamine nzene lorophenol threne	bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroptropane 1,3-Cis-Dichloroptropane 1,3-Cis-Dichloroptropane 1,3-Cis-Dichloroptropane 1,3-Cis-Dichloroptropylene 1,3-Cis-Dichloroptropylene 1,3-Cis-Dichloroptropylene 1,3-Cis-Dichlorobenzene 2-Butanone

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	8	n	D	n	Ω	Ω	n	Ω	Ω	n	D	D	n	D	В	n	n	Ω	n	Ω	Ω	Ω	L	n	n	Ω	Ω	Ω	Ω	Ω	Ω
6.0000	0.000	12.0000	0000'9	9.0000	9000.9	9.0000	9.0000	0000.9	12.0000	0000.9	900009	900009	12.0000	12.0000	0.0000	0000.9	9.0000	9.0000	9.0000	12.0000	12.0000	900009	0.0000	400.000	400.000	400.0000	400.0000	400.000	1000.0000	400.000	400.0000
0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	2.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	21.9000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000
2-Chloroethylvinyl ether 2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	<b>Bromodichloromethane</b>	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Lead	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol
CS1-SB6-0-05 CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05	CS1-SB6-0-05
SB6 SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 400.0000 400.0000 1000.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000	400.0000 1000.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2,4-Dimethylphenol       0.0000         2,4-Dinitrophenol       0.0000         2,4-Dinitrotoluene       0.0000         2,6-Dinitrotoluene       0.0000         2-Chlorophenol       0.0000         2-Methyl-4,6-Dinitrophenol       0.0000         2-Methylphenol       0.0000         2-Nitroaniline       0.0000         2-Nitrophenol       0.0000         3,3'-Dichlorobenzidine       0.0000         4-Bromophenyl phenyl ether       0.0000         4-Chloro3-methyl phenol       0.0000         4-Chlorophenyl phenyl ether       0.0000         4-Methylphenol       0.0000         4-Wethylphenol       0.0000	cene cene cene 3 cene 3 cene 3 cene 3 cene 3 cene 3 cene atlate atlate atlate
ne rophenol ne dine enyl ether enyl ether enyl ether	4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	8240 8240 8240	8240 8240 8240 8240 8240
ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg	ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 5.0000 5.0000	5.0000 5.0000 5.0000	5.0000 5.0000 5.0000 5.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	0.0000 0.0000 0.0000	0.0000
Dibenzo(a,h)anthracene 0.0000 Dibenzofuran 0.0000 Disthyl phthalate 74.0000 Dimethyl phthalate 0.0000 Fluoranthene 0.0000 Fluoranthene 0.0000 Hexachlorobutadiene 0.0000 Hexachlorocyclopentadiene 0.0000 Hexachlorocyclopentadiene 0.0000 N-Nitrosodi-N-Propylamine 0.0000 N-Nitrosodi-N-Propylamine 0.0000 N-Nitrosodiphenylamine 0.0000 Pentachlorophenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000 Phenol 0.0000		
Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Horachlorochane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrobenzene Pentachlorophenol Phenanthrene Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol Phenol	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	8240 8240 CLP CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg mg/kg ug/kg ug/kg
	מממרטמ
5.0000 5.0000 11.0000 11.0000 11.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000	11.0000 5.0000 0.0000 350.0000 350.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	0.0000 0.0000 7.1000 0.0000 0.0000 59.0000
1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroethane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methyl chloride Styrene Tetrachloroethylene Toluene Trichloroethylene Trichloroethylene Vinyl Accetate	Vinyl chloride Xylenes (TOTAL) Lead 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene
CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646 CS1-SB646	CS1-SB64-6 CS1-SB64-6 CS1-SB64-6 CS1-SB64-6 CS1-SB64-6 CS1-SB64-6 CS1-SB64-6
SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6	SB6 SB6 SB6 SB6 SB6 SB6

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90				CLP 3/90
ug/kg ug/kg ug/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	n I	ם ס	n	Ω	n	Ω	Ω		Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n			ſ	n	Ω	Ω
350.0000 890.0000 350.0000	350.0000	890.0000	350.0000	350.0000	350.0000	350.0000	890.0000	0.0000	350.0000	890.0000	350.0000	350.0000	890.0000	350.0000	350.0000	350.0000	350.0000	350.0000	890.0000	890.0000	350.0000	350.0000	350.0000	0.0000	0.000	0.0000	350.0000	350.0000	350.0000
0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	210.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	35.0000	33.0000	38.0000	0.0000	0.0000	0.0000
Chloropropane) phenol phenol					alene		phenol	2-Methylnaphthalene 210.0000	2-Methylphenol 0.0000			3,3'-Dichlorobenzidine 0.0000		ıer	hyl phenol		phenyl ether	10	4-Nitroaniline 0.0000		Acenaphthene 0.0000	Acenaphthylene 0.0000	Anthracene 0.0000	Benzo(a)anthracene 35.0000	Benzo(a)pyrene 33.0000	Benzo(b)fluoranthene 38.0000	Benzo(ghi)perylene 0.0000		Butyl benzyl phthalate 0.0000
2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	enzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	lene	Benzo(k)fluoranthene	thalate

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω			n	ם		D	Ω		D	D	D	D	Ω	Ω	ח	Ω	D		Ω	n		n		n	Ω	В	D	Ω	n	D	Ω	Ω
350.0000	0.0000	0.0000	350.0000	350.0000	0.0000	350.0000	350.0000	0.0000	350,0000	350.0000	350.0000	350.0000	350.0000	350.0000	350.0000	350.0000	350,0000	0.0000	350,0000	890.0000	0.0000	350.0000	0.0000	350.0000	350.0000	0.0000	0000.9	9.0000	00009	00009	0000.9	0000'9
0.0000	41.0000	20.0000	0.0000	0.0000	19.0000	0.000	0.000	86.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	230.0000	0.0000	0.000	150.0000	0.000	82.0000	0.000	0.0000	130.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000
Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene
CS1-SB6-4-6	Cs1-550-4-0	CS1-580-4-0	CS1-SB6-4-6	CS1-586-4-6	CSI-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CSI-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CS1-SB6-4-6	CSI-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05
SB6	980	900	280	080	250	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB/	SB7	SB7	SB7	SB7	SB7

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240	8240	8240	8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg
n	n	Ω	ם ב	o <b>=</b>	n	Ω	n	Ω	Ω	n	n	n	n	Ω	n	D	Ω	Ω	Ω	n	Ω	n	Ω	n	n	Ω	Ω	Ω	Ω	1
6.0000	9.0000	9.0000	90009	9.000	13.0000	9.0000	13.0000	13.0000	13.0000	0000.9	9.0000	9.0000	9.0000	9.0000	0000.9	13.0000	9.0000	9.0000	9.0000	13.0000	13.0000	9.0000	0000.9	0000.9	0000.9	9.0000	13.0000	13.0000	9.0000	0.0000
			•																											
0.0000	0.000	0.0000	0.0000	0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	53.9000
		enzene		oropropyicae		2-Chloroethylvinyl ether 0.0000			4-Methyl-2-pentanone 0.0000	Benzene 0.0000	oromethane			loride	Ģ	Chloroethane 0.0000		Dibromochloromethane 0.0000			Methyl chloride 0.0000			oroethylene	Toluene 0.0000	Trichloroethylene 0.0000	Vinyl Acetate 0.0000	Vinyl chloride 0.0000	Xylenes (TOTAL) 0.0000	Lead 53.9000
1,2-Dichloroethane 1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	opropylene	1,3-uans-Dichlorophopy tene	2-Butanone		2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготобогт	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene				AL)	•

1	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE			PACE	PACE	PACE	PACE	PACE	PACE		PACE	PACE	PACE	PACE	PACE	PACE	PACE		
			CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90				CLP 3/90
A	ug/kg	ug/kg /i	ug/kg ng/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
-	) <b>:</b>	) <b>:</b>		<b>=</b>	ם ח	n	n	Ω	D	Ω	n	Ω	Ω	Ω	n	Ω	n	Ω	Ω	n	n	n	n :	n	Ω	D	Ω	n	n			
430 0000	430,0000	430.0000	430 0000	430,0000	1100.0000	430.0000	430.0000	430.0000	1100.0000	430.0000	430.0000	430.0000	430.0000	1100.0000	430.0000	430.0000	1100.0000	430.0000	430.0000	1100.0000	430.0000	430.0000	430.0000	430.0000	430.0000	1100.0000	1100.0000	430.0000	430.0000	0.0000	0.0000	0.0000
0000	0000.0	0000	0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	39.0000	210.0000	270.0000
ene				=																												
1.2.4-Trichlorobenzene	1 2-Dichlorohenzene	1.3-Dichlorobenzene	1.4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	Z,6-Dinitrotoluene	2-Chloronaphthalene			2-Methylnaphthalene	2-Methylphenol	2-Nitroaniine	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene		Benzo(a)anthracene	Benzo(a)pyrene
CS1-SB7-0-05 1.2.4-Trichlorohenz	_	-	_								2,6-Umitrotoluen	2-Chloronaphthal	Z-Chlorophenol	2-Methyl-4,6-Dir	2-Methylnaphtha			2-Nitrophenol	3,3'-Dichlorober	C31-3B/-0-03 3-Nitroaniline			4-Chloroanilme	4-Chlorophenyl r		•				Anthracene		CS1-SB7-0-05 Benzo(a)pyrene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	
CI.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8240	8240	
uø/kø	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
		n					Ω		Ω		Ω		Ω	Ω	Ω	Ω	Ω	_	Ω	Ω	n	n	Ω	n		Ω		Ω	Ω		Ω	n	
0.0000	0.0000	430.0000	0.0000	0.0000	0.0000	0.0000	430.0000	0.0000	430.0000	0.0000	430.0000	0.000	430.0000	430.0000	430.0000	430.0000	430.0000	0.0000	430.0000	430.0000	430.0000	430.0000	430.0000	1100.0000	0.0000	430.0000	0.000	430.0000	430.0000	0.0000	9.0000	00009	
550.0000	100.0000	0.0000	23.0000	42.0000	290.0000	50.0000	0.000	98.0000	0.0000	70.0000	0.000	410.0000	0.0000	0.000	0.0000	0.0000	0.000	270.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	260.0000	0.000	410.0000	0.000	0.000	760.0000	0.0000	0.0000	
Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	
CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-0-05	CS1-SB7-5-55	CS1-SB7-5-55	
SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	8240 8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 13.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	6.0000 6.0000 13.0000 13.0000 6.0000 6.0000 6.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Cis-Dichloropropylene 1,3-Cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 2-Propanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene	Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene Toluene Trichloroethylene
CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55 CSI-SB7-5-55	CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55 CS1-SB7-5-55
SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 CLP 3/90 CLP	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
13.0000 13.0000 6.0000 0.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000	1000.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Lead 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,2-Dinitrophenol 2,2-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitrophenol 4-Nitrophenol
A A A A A A A A A A A A A A A A A A A	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
CS1-SB7-5-55 V; CS1-SB7-5-55 V; CS1-SB7-5-55 L, CS1-SB7-5-55 1, CS1-SB7-5-55 1, CS1-SB7-5-55 1, CS1-SB7-5-55 1, CS1-SB7-5-55 1, CS1-SB7-5-55 1, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2, CS1-SB7-5-55 2	

PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000	420.0000 420.0000 420.0000 1000.0000 420.0000 420.0000 420.0000
00000 00000 00000 00000 00000 00000 0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-octyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Eluoranthene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(butyl phthalate Dibenzo(butyl phthalate Eluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane
CS1-SB7-5-55 Acenaphthylene CS1-SB7-5-55 Benzo(a)anthracene CS1-SB7-5-55 Benzo(a)pyrene CS1-SB7-5-55 Benzo(b)fluoranthene CS1-SB7-5-55 Benzo(b)fluoranthene CS1-SB7-5-55 Benzo(b)fluoranthene CS1-SB7-5-55 Benzo(k)fluoranthene CS1-SB7-5-55 Carbazole CS1-SB7-5-55 Carbazole CS1-SB7-5-55 Di-n-butyl phthalate CS1-SB7-5-55 Diethyl phthalate CS1-SB7-5-55 Diethyl phthalate CS1-SB7-5-55 Diethyl phthalate CS1-SB7-5-55 Diethyl phthalate CS1-SB7-5-55 Fluoranthene CS1-SB7-5-55 Hexachlorobutadiene CS1-SB7-5-55 Hexachlorocyclopentadiene CS1-SB7-5-55 Hexachlorocyclopentadiene CS1-SB7-5-55 Hexachlorocyclopentadiene CS1-SB7-5-55 Indeno(1,2,3-c,d)pyrene CS1-SB7-5-55 Indeno(1,2,3-c,d)pyrene CS1-SB7-5-55 Indeno(1,2,3-c,d)pyrene CS1-SB7-5-55 Indeno(1,2,3-c,d)pyrene CS1-SB7-5-55 Indeno(1,2,3-c,d)pyrene	N-Nitrosodiphe Naphthalene Nitrobenzene Pentachloropher Phenanthrene Phenol Pyrene bis(2-Chloroeth

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 8240	8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n <b>a</b> n	D =	<b>)</b>	Ω	Ω	n	n	Ω	n	Ω	Ω	n	Ω	D	n	D	Ω	n	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	ח
420.0000 0.0000 6.0000	6.0000	0000.9	6.0000	0000'9	90000	9.0000	0000'9	0000'9	9000.9	9.0000	9.0000	12.0000	9.0000	12.0000	12.0000	12.0000	90000	0000'9	9.0000	9.0000	9.0000	90000	12.0000	9000.9	9.0000	9.0000	12.0000	12.0000	0000.9
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
/l) ether l)phthalate 18 ethane	1,1,2,2-Tetrachloroethane 0.0000		1,1-Dichloroethylene 0.0000							1,3-trans-Dichloropropylene 0.0000			/lvinyl ether		2-Propanone 0.0000	4-Methyl-2-pentanone 0.0000	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000		Carbon Tetrachloride 0.0000	e	ē	Chloroform 0.0000	Dibromochloromethane 0.0000	Ethylbenzene 0.0000	Methyl bromide 0.0000	Methyl chloride 0.0000	Methylene chloride 0.0000
bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 1,1,1-Trichloroethane	lane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготобогт	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	nethane	Ethylbenzene			ide

PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240	8240 8240 CLP CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg mg/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	ם בי בי	ממממ	חחח		
6.0000 6.0000 6.0000 6.0000	6.0000 6.0000 0.0000 410.0000	410.0000 410.0000 410.0000 1000.0000	410.0000 410.0000 410.0000 1000.0000	410.0000 410.0000 410.0000 1000.0000	410.0000 1000.0000 410.0000 1000.0000 410.0000 410.0000 410.0000
0.0000	30.4000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl Acetate	Xylenes (TOTAL) Lead 1,2,4-Trichlorobenzene	1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol	2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylnaphthalene	2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chloroaniline 4-Chlorophenyl phenyl ether
CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05	CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05	CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05	CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05	CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05	CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05
SB8 SB8 SB8 SB8 SB8	SB8 SB8 SB8 SB8	SB8 SB8 SB8 SB8	SB8 SB8 SB8	SB8 SB8 SB8 SB8 SB8	X X B X X B X X B X X B X X B X X B X X B X X B X X B X X B X X B X X B X X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B X B

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 1000.0000 410.0000 0.0000 0.0000 410.0000 410.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000
0.0000 0.0000 0.0000 0.0000 26.0000 180.0000 200.0000 0.0000 0.0000 270.0000 270.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene Di-n-butyl phthalate	Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Naphthalene Pentachlorophenol
CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05 CS1-SB8-0-05	CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05 CSI-SB8-0-05
SB8 SB8 SB8 SB8 SB8 SB8 SB8 SB8 SB8 SB8	S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S B S S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

3/90 PACE				3/90 PACE	3/90 PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CLP	CLP	CLP	CLP					8240				8240				8240			8240			8240		8240	8240					
J ug/kg	U ug/kg	ug/kg	U ug/kg	U ug/kg	B ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	B ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg
0.0000	410.0000	0.0000	410.0000	410.0000	0.0000	0000'9	9000.9	0000'9	9.0000	0000'9	0000.9	900009	0000.9	0000'9	9.0000	9.0000	0000.9	0000.9	13.0000	0000'9	13.0000	0.000	13.0000	0000'9	0000.9	0000.9	0000'9	0000'9	0000'9	13.0000	9.0000	0000'9
240.0000	0.000	480.0000	0.0000	0.000.	48.0000	0.000.0	0.000	0.000.0	0.000	0.0000	0.0000	0.0000	0.000.0	0.000	0.0000	0.000.0	0.000	0.0000	0.0000	0.0000	0.0000	15.0000	0.000	0.000.0	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000
		480	0	0	<del>4</del> 8	0	_	•			•	_		_	0	0	0	_	0	C	_	17	0	0	0	o.	ö	ŏ.	0.0	ö	0	0
Phenanthrene	Phenoi	-	lane	/l) ether	late 4	thane	lane	thane		1,1-Dichloroethylene						1,3-cis-Dichloropropylene 0		openzene	,	ylvinyl ether			l-2-pentanone		oromethane		<u>e</u>	loride	<u>e</u>	Chloroethane 0.	Chloroform 0	Dibromochloromethane 0
		Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate 4	1, 1, 1-Trichloroethane	1,1,2,2-Tetrachloroethane	1, 1, 2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromotorm	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	nethane

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
6.0000 13.0000 13.0000 6.0000 6.0000 6.0000 13.0000 13.0000 420.0000 420.0000 420.0000 420.0000 420.0000	1100.0000 420.0000 420.0000 420.0000 1100.0000 420.0000 420.0000 420.0000 1100.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ride lene lene ae AL) Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene Azene	2,4-Dinitrophenol       0.0000         2,4-Dinitrotoluene       0.0000         2,6-Dinitrotoluene       0.0000         2-Chloronaphthalene       0.0000         2-Methyl-4,6-Dinitrophenol       0.0000         2-Methylhaphthalene       0.0000         2-Methylphenol       0.0000         2-Nitroaniline       0.0000         3,3'-Dichlorobenzidine       0.0000         3-Nitroaniline       0.0000
Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene Trichloroethylene Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Lead 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol	ol ne ne alene initrophenol alene nzidine

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	D	n	n	n	n	n	n	Ω	n	n	Ω	n	n	n	Ω	Ω	Ω	В	Ω	Ω	n	Ω	Ω	n	Ω	Ω	n	Ω	Ω	Ω	n	Ω
420.0000	420.0000	420.0000	420.0000	420,0000	1100.0000	1100.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000
_	_	_	_			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	56.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000
4-Bromophenyl phenyl ether 0.0000	_	_	_	_		4-Nitrophenol 0.0000		lene		cene		ē			Butyl benzyl phthalate 0.0000	Carbazole 0.0000			ıalate	inthracene		Diethyl phthalate 0.0000		iene				Hexachlorocyclopentadiene 0.0000	Hexachloroethane 0.0000	Indeno(1,2,3-c,d)pyrene 0.0000		N-Nitrosodi-N-Propylamine 0.0000
4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	-Propylamine

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	B	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	n	Ω	Ω	Ω	n	n	Ω	D	D	D
420.0000	420.0000	420.0000	1100.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000	0000.9	0000'9	0000'9	0000'9	9.0000	9.0000	0000'9	0000.9	9.0000	0000.9	9.0000	9.0000	9.0000	12.0000	9.0000	12.0000	12.0000	12.0000	9.0000	9.0000	9.0000	9.0000	0000'9
0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	57.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ohenylamine		Nitrobenzene 0.0000	enoi	threne	Phenol 0.0000		hoxy)methane		late		lane	ne			6)						opylene	1,4-Dichlorobenzene 0.0000		ylvinyl ether			4-Methyl-2-pentanone 0.0000	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000	Carbon Disulfide 0.0000	Carbon Tetrachloride 0.0000
N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	3-5-55 bis(2-Ethylhexyl)phthalate	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	l 1,3-Dichlorobenzene	l 1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	l 2-Chloroethylvinyl ether	l 2-Hexanone	1 2-Propanone	1 4-Methyl-2-pentanone	1 Benzene	1 Bromodichloromethane	1 Bromoform	1 Carbon Disulfide	

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg	uø/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	nø/kø	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	D	n	Ω	D	D	Ω		Þ	Ω	D	n	Ω	Ω	ם		n	ם	Ω		Ω	Ω	n	n	n	D	n	Ω	D	D	D	Þ	Ω
6.0000	12.0000	6.0000	0000.9	0000'9	12.0000	12.0000	0.0000	6.0000	00009	00009	6.0000	12.0000	12.0000	0000.9	0.000	400.000	400.000	400.000	0.0000	400.0000	990.000	400.000	400.0000	400.000	990.000	400.0000	400.000	400.000	400.000	990.000	400.000	400.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	13.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	14.9000	0.0000	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Lead	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol
CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CSI-SSI	CS1-SSI	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CS1-SS1	CSI-SSI	CS1-SS1	CSI-SSI	CS1-SS1	CS1-SS1	CS1-SS1
SS1	SSI	SS1	SS1	SSI	SS1	SSI	SS1	SS1	SSI	SS1	SS1	SS1	SSI	SSI	SSI	SS1	SSI	SSI	SS1	SSI	SSI	SSI	SSI	SSI	SS1	SSI	SSI	SSI	SSI	SSI	SSI	SS1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE . PACE . PACE . PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90			CLP 3/90		CLP 3/90
ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ססססס		חחם	-					Ω		В	Ω		Ω		Ω			n	n	Ω
990.0000 400.0000 400.0000 990.0000	400.0000	400.0000 990.0000 990.0000	0.0000	0.0000	0.0000	0.0000	0.0000	400.0000	0.0000	0.0000	400.0000	0.0000	400.0000	0.0000	400.0000	0.000	0.0000	400.0000	400.0000	400.0000
•																				
0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	24.0000 23.0000	82.0000	490.0000	510.0000	640.0000	0.0000	98.0000	60.0000	0.0000	190.0000	0.000	34.0000	0.000	1100.0000	41.0000	0.000	0.0000	0.0000
2-Nitroaniline       0.0000         2-Nitrophenol       0.0000         3,3'-Dichlorobenzidine       0.0000         3-Nitroaniline       0.0000         4-Bromophenyl phenyl ether       0.0000	hyl phenol phenyl ether	4-Methylphenol 0.0000 4-Nitroaniline 0.0000 4-Nitrophenol 0.0000	Acenaphthene 24.0000 Acenaphthylene 23.0000	Anthracene 82,0000 Renzo(a)anthracene 460,0000		<b>a</b> )	thene	ryl phthalate	Carbazole 98.0000 Chrysene 610.0000	I phthalate		ınthracene		<b>a</b>	halate	Fluoranthene 1100.0000	Fluorene 41.0000	Hexachlorobenzene 0.0000	Hexachlorobutadiene 0.0000	Hexachlorocyclopentadiene 0.0000
2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether	4-Chloroaniline 4-Chlorophenyl phenyl ether			٧	Benzo(a)pyrene	thene	Benzo(k)fluoranthene	Butyl benzyl phthalate		Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene		l Hexachlorobutadiene	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 0.0000 400.0000 400.0000 400.0000 0.0000 400.0000 0.0000 400.0000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000	3.9000 3.9000 3.9000 2.0000 20.0000 39.0000 39.0000 39.0000
360.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Hexachloroethane         0.0000           Indeno(1,2,3-c,d)pyrene         360.0000           Isophorone         0.0000           N-Nitrosodi-N-Propylamine         0.0000           N-Nitrosodiphenylamine         0.0000           Naphthalene         0.0000           Phenarchlorophenol         0.0000           Phenal         0.0000           Phenol         0.0000           Pyrene         970.0000           bis(2-Chloroethoxy)methane         0.0000           bis(2-Ethylhexyl)phthalate         320.0000           4,4'-DDE         0.0000           Aldrin         0.0000           Endosulfan I         0.0000           Endosulfan II         0.0000           Endosulfan II         0.0000           Endosulfan II         0.0000	xide
oethane 9,3-c,d)pyrene 8 6 6i-N-Propylamine diphenylamine ne ne ophenol 55 ene roethoxy)methane rroethyl) ether lhexyl)phthalate 32 n I n I n II	Endrin Endrin aldehyde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor PCB-1016 PCB-1221 PCB-1221 PCB-1242

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
חממ	n n	Ď	Ω	Ω	Ω	Ω	Ω	n	n	Ω	n	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	D	Ω	n	Ω	Ω	n	n	n	<b>D</b>
39.0000 39.0000 200.0000	2.0000	2.0000	2.0000	2.0000	2.0000	0000.9	0000.9	0000.9	0000'9	0000.9	0000.9	0000'9	0000.9	0000.9	0000'9	9.0000	0000.9	9.0000	12.0000	0000.9	12.0000	12.0000	12.0000	9.0000	9.0000	0000.9	9.0000	9.0000	0000'9
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
	aipha-BHC 0.0000 aipha-Chlordane 0.0000			gamma-BHC 0.0000			1, 1, 2, 2-Tetrachloroethane 0.0000	1,1,2-Trichloroethane 0.0000	1,1-Dichloroethane 0.0000							opropylene	ne	1,4-Dichlorobenzene 0.0000		2-Chloroethylvinyl ether 0.0000	2-Hexanone 0.0000	2-Propanone 0.0000	4-Methyl-2-pentanone 0.0000	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000	Carbon Disulfide 0.0000	Carbon Tetrachloride 0.0000	Chlorobenzene 0.0000
PCB-1254 PCB-1260 Toxaphene	rdane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1, 1, 1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform			

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg
12.0000 6.0000 6.0000 12.0000 12.0000 6.0000 6.0000 6.0000 12.0000 12.0000 6.0000 12.0000 12.0000	410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 1000.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Chloroethane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Lead 1,2,4-Trichlorobenzene	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrotoluene 2,6-Dimitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dimitrophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline
CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2	CS1-552 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582 CS1-582
SS2 SS2 SS2 SS2 SS2 SS2 SS2 SS2 SS2 SS2	\$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
בי בי	Д	<u>а</u>	۵	Ъ	Ь	4	<u>a</u>	۵.	4	4	4	<u>a</u>	4	<u>~</u>	<u>a</u>	4	4	Д	Д	Д	Д	ď	Д	Д	Д	4	4	4	<u>~</u>	۵.	Д
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	LP 3/90	LP 3/90	CLP 3/90	CLP 3/90	<b>CLP 3/90</b>	LP 3/90	<b>CLP 3/90</b>	LP 3/90	CLP 3/90	LP 3/90	LP 3/90	LP 3/90	CLP 3/90	LP 3/90	LP 3/90	LP 3/90	CLP 3/90	LP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	
	U	Ü	U	U	U	U	U	U	U	U	U	J	J	U	U	U	J	U	J	U	U	U	U	J	J	U	O	U	J	U	J
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ıg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
55	n	ם	n	n	n	n	n	n	n	n	_	n	_	_	n	_	n	n	_	В	n	n	n	_	n	_	n	n	n	n	b
																													_		
410.0000	1000.0001	410.0000	410.0000	410.0000	410.0000	410.0000	0000.000	1000.0001	410.0000	410.0000	0.000	410.0000	0.0000	0.000	410.0000	0.0000	410.0000	410.0000	0.000	0.0000	410.0000	410.0000	410.0000	0.000	410.0000	0.000	410.0000	410.0000	410.0000	410.0000	410.0000
410	1000	410	. 410	410	410	410	1000	1000	410	410	0	410	0	0	410	0	410	410	0	0	410	410	410	0	410	0	410	410	410	410	410
0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000.0	0.0000	0.000	0.0000	41.0000	0.0000	27.0000	55.0000	0.0000	33.0000	0.000	0.0000	51.0000	91.0000	0.0000	0.0000	0.000	28.0000	0.0000	82.0000	0.0000	0.0000	0.000.0	0.0000	0.0000
		ther	~								4		2	S		E.			S	6				2		<b>∞</b>				ne	
enzidine		/l phenyl ether	nyl phenc		phenyl ether							cene		thene	/lene	inthene	hthalate			alate	nalate	hracene		ite	ate			zene	diene	lopentadiene	Je
. ڪ		4-Bromophenyl	4-Chloro-3-methal	4-Chloroaniline	4-Chlorophenyl	4-Methylphenol	aniline	phenol	hthene	Acenaphthylene	ene	Benzo(a)anthrac	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)peryl	Benzo(k)fluoran	Butyl benzyl ph	ole	ne	1 phd	Di-n-octyl phtha	Dibenzo(a,h)anthracene	ofuran	Diethyl phthalat	Dimethyl phthalate	thene	ē	Hexachlorobenz	Hexachlorobutadiene	Hexachlorocycle	Hexachloroethane
2-Nitrophenol 3,3'-Dichloro	3-Nitroaniline	4-Brom	4-Chlor	4-Chlor	4-Chlor	4-Meth	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenap	Anthracene	Benzo(8	Benzo(8	Benzo(	Benzo(1	Benzo(	Butyl b	Carbazole	Chrysene	Di-n-bu	Di-n-oc	Dibenze	Dibenzofuran	Diethyl	Dimeth	Fluoranthene	Fluorene	Hexach	Hexach	Hexach	Hexach
CS1-SS2 CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2	CS1-SS2
చ చ	ర	ర	೮	ర	బ	ర	ర	ర	೮	ຽ	ర	೮	೮	ర	ິບ	ర	ర	ິບ	ర	ິບ	ຽ	೮	೮	ర	೮	ర	ర	ర	ర	ర	೮
SS2 SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2 CS1-SS2	N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 4,4'-DDE 4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan II	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	410.0000 410.0000 410.0000 410.0000 0.0000 410.0000 410.0000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000	18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PACE PACE PACE PACE PACE PACE PACE PACE
CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2 CSI-SS2		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.1000 4.1000 2.0000 2.0000 41.0000 41.0000 41.0000 41.0000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		PACE PACE PACE PACE PACE PACE PACE PACE

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP R010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 CLP CLP CLP CLP CLP CLP CLP CLP CLP CLP	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	mg/l mg/l mg/l
41.0000 200.0000 2.0000 2.0000 2.0000 2.0000 2.0000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.1300 0.1000 0.1000 0.1000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0000
000000000000000000000000000000000000000	0.0000
a a a a a a a a a a a a a a a a a a a	2,4-Dinitrotoluene       0.000         2-Methylphenol       0.000         3-Methylphenol       0.000         4-Methylphenol       0.000
PCB-1260 Toxaphene alpha-BHC alpha-BHC delta-BHC gamma-Chlordane 1,1-Dichloroethylene 1,2-Dichloroethane 2-Butanone Benzene Carbon Tetrachloride Chloroform Tetrachloroethylene Trichloroethylene Vinyl chloride Arsenic Barium Cadmium Chromium Cadmium Chromium Lead Mercury Selenium Silver 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CL.P 3/90	CLP 3/90	
mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
D	D	n	D	Ω	Ω	n	n	n	D		Ω	ח	-		Ω	Ω		Ω	D	n	D	D	Ω	n	n	n	n	Ω	Ω	Ω	Ω	Ω
0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0500	0.0500	0.0200	0.0500	0.0500	0.0002	0.0500	0.0200	0.1000	0.1000	0.1000	0.1300	0.1000	0.1000	0.1000	0.1000	0.1000
0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0230	0.0000	0.0000	0900.0	0.1000	0.0000	0.0000	0.2400	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000
Hexachloro-1,3-Butadiene	Hexachlorobenzene	Hexachloroethane	Nitrobenzene	Pentachlorophenol	Pyridine	1,1-Dichloroethylene	1,2-Dichloroethane	2-Butanone	Benzene	Carbon Tetrachloride	Chlorobenzene	Chloroform	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dinitrotoluene	2-Methylphenol	3-Methylphenol	4-Methylphenol	Hexachloro-1,3-Butadiene	Hexachlorobenzene
CS1D-B5	CS1D-B5	CS1D-B5	CS1D-B5	CSID-B5	CSID-B5	CSID-MW4	CSID-MW4	CSID-MW4	CSID-MW4	CSID-MW4	CSID-MW4	CS1D-MW4	CS1D-MW4	CSID-MW4	CS1D-MW4	CSID-MW4	CS1D-MW4	CS1D-MW4	CSID-MW4	CS1D-MW4	CSID-MW4	CSID-MW4	CS1D-MW4	CSID-MW4	CSID-MW4	CSID-MW4	CSID-MW4	CS1D-MW4	CS1D-MW4	CS1D-MW4	CS1D-MW4	CS1D-MW4
B5	B2	B5	B5	£ }	82	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

MW4	CS1D-MW4	Hexachloroethane	0.0000	0.1000	D	mg/l	CLP 3/90	PACE
MW4	CS1D-MW4	Nitrobenzene	0.0000	0.1000	n	mg/l	CLP 3/90	PACE
MW4	CS1D-MW4	Pentachlorophenol	0.000	0.1000	Ω	mg/l	CLP 3/90	PACE
MW4	CS1D-MW4	Pyridine	0.0000	0.1000	Ω	mg/l	CLP 3/90	PACE
MW1	CS2-MW1-GW1	1,1,1,2-Tetrachloroethane	0.0000	1.0000	n	l/gn	8010/8020	PACE
MWI	CS2-MW1-GW1	1,1,1-Trichloroethane	1.3700	1.0000	~	ng/l	8010/8020	PACE
MWI	CS2-MW1-GW1	1,1,2,2-Tetrachloroethane	0.0000	1.0000	n	ng/l	8010/8020	PACE
MWI	CS2-MW1-GWI	1,1,2-Trichloroethane	0.000	1.0000	n	ng/l	8010/8020	PACE
MWI	CS2-MW1-GW1	1,1-Dichloroethane	0.0000	1.0000	n	ng/l	8010/8020	PACE
MW1	CS2-MW1-GW1	1,1-Dichloroethylene	0.000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	1,2,3-Trichloropropane	0.000	1.0000	n	ng/l	8010/8020	PACE
MW1	CS2-MW1-GW1	1,2-Dichlorobenzene	0.000	1.0000	n	l/gn	8010/8020	PACE
MWI	CS2-MW1-GW1	1,2-Dichloroethane	0.0000	1.0000	n	l/gn	8010/8020	PACE
MWI	CS2-MW1-GW1	1,2-Dichloropropane	0.000	1.0000	n	l/gn	8010/8020	PACE
MWI	CS2-MW1-GW1	1,2-trans-Dichloroethylene	0.000	1.0000	n	ng/l	8010/8020	PACE
MWI	CS2-MW1-GW1	1,3-Dichlorobenzene	0.000	1.0000	n	ng/l	8010/8020	PACE
MW1	CS2-MW1-GW1	1,4-Dichlorobenzene	0.0000	1.0000	m	ng/l	8010/8020	PACE
MW1	CS2-MW1-GW1	1-Chlorohexane	0.0000	1.0000	n	ng/l	8010/8020	PACE
MWI	CS2-MW1-GW1	2-Chloroethylvinyl ether	0.0000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Benzene	0.0000	1.0000	n	l/gn	8010/8020	PACE
MWI	CS2-MW1-GW1	Benzyl Chloride	0.0000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Bromobenzene	0.0000	10.0000	m	l/gn	8010/8020	PACE
MW1	CS2-MW1-GWI	Bromodichloromethane	0.0000	1.0000	m	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Bromoform	0.0000	1.0000	m	ng/l	8010/8020	PACE
MW1	CS2-MW1-GW1	Carbon Tetrachloride	0.000	1.0000	5	ug/l	8010/8020	PACE
MW1	CS2-MW1-GW1	Chlorobenzene	0.000	1.0000	n	ng/l	8010/8020	PACE
MWI	CS2-MW1-GWI	Chloroethane	0.0000	10.000	n	ng/l	8010/8020	PACE
MW1	CS2-MW1-GW1	Chloroform	0.0000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Dibromochloromethane	0.0000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GWI	Dibromomethane	0.0000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Ethylbenzene	0.0000	1.0000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Methyl bromide	0.0000	10.000	n	l/gn	8010/8020	PACE
MW1	CS2-MW1-GW1	Methyl chloride	0.000	10.0000	Ω	ng/l	8010/8020	PACE

PACE	PACE	PACE	PACE	PACE	PACE	, PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90
l/gn	ng/l	ug/l	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	ug/l	ug/l	l/gn	l/gn	l/gn	ug/I	l/gn	ng/l	l/gn	l/gn	ug/l	ng/l	ug/l	ug/l	ug/l	l/gn	ug/I	ug/I	ug/l	ug/I	ug/l	l/gn
Ω	5	5	n	n	n	5	5		ם	0		n	ם			0	0		¥			n	0	0	ΩΓ	Ω	•	Ω	0	;	Ω	Ω
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.000	13.0000	0.000	0.000	1.0000	1.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.2000	0.0000	0.000	10.000	3.0000	0.000	1.0000	0.000	0.0000	10.000	10.0000
0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	20400.0000	0.0000	3.8000	221.0000	0.000	0.0000	99400.0000	29.2000	8.9000	14.6000	15100.0000	8.9000	49000.0000	200.0000	0.0000	9.1000	3550.0000	0.0000	0.0000	10000.0000	0.0000	39.5000	61.5000	0.0000	0.0000
Methylene chloride	Tetrachloroethylene	Toluene	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride	meta- and para-Xylenes	ortho-Xylene	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene
CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GWI	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GWI	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1	CS2-MW1-GW1
MW1	MWI	MWI	MWI	MWI	MWI	MWI	MW1	MW1	MWI	MW1	MW1	MWI	MW1	MWI	MWI	MW1	MWI	MW1	MWI	MWI	MWI	MW1	MWI	MW1	MW1							

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	l/gu l/gu l/gu l/gu
10.0000 10.0000 25.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 10.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000 0.0000 0.0000 0.0000 0.0000
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 3-Mitroaniline 3-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenol 4-Chlorophenol 4-Chlorophenol 4-Chlorophenol 5-Nitrophenol 6-Nitrophenol 7-Nitrophenol 7-Nitrophenol 8-Nitrophenol 8-Nitrophenol 8-Nitrophenol 8-Nitrophenol 8-Nitrophenol 8-Nitrophenol	Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene
CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1	CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1 CS2-MW1-GW1
WW WW WW WW WW WW WW WW WW WW WW WW WW	MW1 MW1 MW1 MW1 MW1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

CS2-MW1-GW1 Dis CS2-MW1-GW1 En CS2-MW1-GW1 En CS2-MW1-GW1 En	Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate	0.0000	0.0500 0.0500 0.1000 0.1000	מממ	1/gn 1/gn 1/gn	PCB-CLP PCB-CLP PCB-CLP	PACE PACE PACE
Endrin Endrin aldehyd	ıyde	0.0000	0.1000	חח	1/gn 1/gn	PCB-CLP PCB-CLP	PACE
Endrin ketone Heptachlor	<u>o</u>	0.0000	0.1000	חם	ug/1 ug/1	PCB-CLP PCB-CLP	PACE PACE
Heptachlor epoxide	poxide	0.0000	0.0500	n	l/gn	PCB-CLP	PACE
Meunoxychior PCB-1016		0.0000	1.0000	) D	ug/1 ug/1	PCB-CLP	PACE
PCB-1221		0.0000	2.0000	Ω	l/gn	PCB-CLP	PACE
PCB-1232		0.0000	1.0000	<b>D</b> ;	l/gu	PCB-CLP	PACE
PCB-1242 PCB-1248		0.0000	1.000	<b>)</b>	1/gn	PCB-CLP	PACE
PCB-1254		0.0000	1.0000	0 0	ug/I	PCB-CLP	PACE
PCB-1260		0.0000	1.0000	D	ng/l	PCB-CLP	PACE
oxaphene		0.0000	5.0000	n	l/gn	PCB-CLP	PACE
alpha-BHC		0.0000	0.0500	D	ng/I	PCB-CLP	PACE
alpha-Chlordane	<u>o</u>	0.0000	0.0500	י ב	ng/l	PCB-CLP	PACE
beta-BHC		0.0000	0.0500	בם	l/gn	PCB-CLP	PACE
gamma-BHC		0.0000	0.0500	o	ng/l	PCB-CLP	PACE
gamma-Chlord	lane	0.0000	0.0500	Ω	ug/l	PCB-CLP	PACE
Aluminum		35.5000	0.0000	()B	ng/l	CLP	PACE
Antimony		0.0000	13.0000	D	ng/l	CLP	PACE
Arsenic		0.0000	1.0000	D	ng/l	CLP	PACE
<b>Barium</b>		103.0000	0.000	0	l/gn	CLP	PACE
Beryllium		0.0000	1.0000	D	ng/l	CLP	PACE
Cadmium		0.0000	1.0000	ם	l/gn	CLP	PACE
Calcium		93600.0000	0.0000		ng/l	CLP	PACE
Chromium		0.000	4.0000	n	l/gn	CLP	PACE
Cobalt		0.0000	2.0000	Þ	ng/l	CLP	PACE

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

	ACE	PACE	ACE	ACE	PACE	PACE	PACE	ACE	ACE	PACE	PACE	PACE	ACE	PACE	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
	P/	P/	/d	` <b>'</b>		. A	. A	ď	) d	P.	P.	P/	P/	P/	ŭ	<i>.</i> 0	ŭ	ŭ	ŏ	Ŭ	ŭ	Ö	Ö	Ö	ŭ	ŭ	Ö	ŭ	ŭ	ŭ	ŭ	ŭ	Ö
	CLP           CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP															
	l/gn	l/gn	ug/l	ng/l	ne/l	ng/l	ug/I	ug/1	ug/I	ug/l	ug/l	ug/1	ng/l	ng/l	ng/l	ug/l	ug/I	l/gn	ng/l	ng/l	ug/l	ug/l	l/gn	ug/l	l/gn	ug/l	ug/1	ng/l	ng/l	ug/l	ug/l	ng/l	l/gn
	n	()B	B		8	D	n	OB	NF OF	n	В	Ω	Ω	В	В	D	0	0	n	Ω		D	D	OL.	ľ	0F	В		n	n	n	n	Ω
	3.0000	0.0000	0.000	0.000	0.0000	0.2000	2.0000	0.0000	1.0000	3.0000	0.0000	1.0000	2.0000	0.0000	0.000	46.0000	0.0000	0.0000	2.0000	5.0000	0.0000	10.0000	9.0000	25.0000	0.0000	0.0000	0.0000	0.0000	0.2000	31.0000	2240.0000	3.0000	10.0000
	0.0000	77.8000	7.4000	44000.0000	54.6000	0.0000	0.0000	1540.0000	0.0000	0.0000	9510.0000	0.0000	0.0000	20.3000	1400.0000	0.0000	3.4000	134.0000	0.0000	0.0000	100000.0000	0.0000	0.0000	0.0000	782.0000	2.7000	49600.0000	87.3000	0.0000	0.0000	0.0000	0.0000	0.0000
7	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver
1 71110 71111 000	CSZ-MWI-GWI-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MW1-GW1-F	CS2-MWI-GWI-F	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2
1777	MM	MWI	MW1	MW1	MW1	MWI	MW1	MW1	MW1	MW1	MW1	MW1	MWI	MW1	MW1	MWI	MW1	MW1	MW1	MW1	MWI	MWI	MW1	MW1	MW1	MWI	MW1	MWI	MW1	MW1	MW1	MW1	MW1

MWI	CS2-MW1-GW2		0000.00901	0.0000	В	l/gu	CLP	COMPUCHEM
MW1	CS2-MWI-GW2	Thallium	0.000	4.0000	ב	ng/l	CLP	COMPUCHEM
MWI	CS2-MW1-GW2	Vanadium	0.000	7.0000	n	ng/l	CLP	COMPUCHEM
MW1	CS2-MW1-GW2	Zinc	25.0000	0.0000	æ	l/gn	CLP	COMPUCHEM
MW1	CS2-MW1-GW2	1,2,4-Trichlorobenzene	0.0000	10.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	1,2-Dichlorobenzene	0.000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
MWI	CS2-MW1-GW2	1,3-Dichlorobenzene	0.0000	10.0000	n	ug/l		COMPUCHEM
MW1	CS2-MW1-GW2	1,4-Dichlorobenzene	0.000	10.0000	n	ug/l		COMPUCHEM
MW1	CS2-MW1-GW2	2,2'-Oxybis(1-Chloropropane)	0.0000	10.0000	n	ng/l		COMPUCHEM
MW1	CS2-MW1-GW2	2,4,5-Trichlorophenol	0.0000	25.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2,4,6-Trichlorophenol	0.000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2,4-Dichlorophenol	0.0000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2,4-Dimethylphenol	0.000	10.0000	n	ug/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2,4-Dinitrophenol	0.0000	25.0000	Ω	ng/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2,4-Dinitrotoluene	0.0000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2,6-Dinitrotoluene	0.0000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MWI	CS2-MWI-GW2	2-Chloronaphthalene	0.0000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2-Chlorophenol	0.000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2-Methyl-4,6-Dinitrophenol	0.000	25.0000	n	ug/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2-Methylnaphthalene	0.0000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2-Methylphenol	0.000	10.0000	Ω	ng/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2-Nitroaniline	0.000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	2-Nitrophenol	0.000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	3,3'-Dichlorobenzidine	0.0000	10.0000	n	ng/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	3-Nitroaniline	0.000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MWI	CS2-MW1-GW2	4-Bromophenyl phenyl ether	0.000	10.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	4-Chloro-3-methyl phenol	0.000	10.0000	Ω	ng/l	CLP 3/90	COMPUCHEM
MWI	CS2-MW1-GW2	4-Chloroaniline	0.0000	10.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	4-Chlorophenyl phenyl ether	0.000	10.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	4-Methylphenol	0.0000	10.0000	n	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	4-Nitroaniline	0.0000	25.0000	Ω	l/gn	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	4-Nitrophenol	0.000	25.0000	Ω	ug/l	CLP 3/90	COMPUCHEM
MW1	CS2-MW1-GW2	Acenaphthene	0.0000	10.0000	Ω	l/gu		COMPUCHEM

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
ug/l ug/l l/gu	ug/1 ug/1 ug/1	1/gn 1/an	l/gn	l/gn	l/gn l/øn	l/gn	1/gn	ug/1 ug/1	ng/l	l/gn	l/gn	l/gn	ug/I	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	ug/l	l/gn
חחח	כככ	םם	םם	) D	D D	Ω	ם :	o	D	Ω	D	בכ	o p	n	Ω	n	Ω	n	n	Ω	Ω	Ω	Ω
10.0000	10.0000 10.0000 10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Acenaphthylene Anthracene Benzo(a)anthracene	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	Benzo(k)fluoranthene Butyl benzyl phthalate	Carbazole Chrysene	Di-n-butyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene Hexachlorochana	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane
CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2	CSZ-MWI-GWZ CSZ-MWI-GWZ CSZ-MWI-GWZ	CS2-MW1-GW2 CS2-MW1-GW2	CS2-MW1-GW2 CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2 CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CSZ-MWI-GWZ	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CSZ-MWI-GWZ	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MWI-GW2	CS2-MW1-GW2	CS2-MW1-GW2
MW1 MW1 MW1	MW1 MW1	MW1 MW1	MW1 MW1	MW1	MW1	MWI	M M	MW1	MW1	MM	MM	MM MW I	MW1	MW1	MW1	M N	I M M	IME	I M I	MWI	MM	MWI	MW1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
CLP 3/90 CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	SW8010	SW8010	SW8010
ug/l ug/l	ug/l	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	ng/l	l/gn	ug/1	l/gn	ng/l	l/gn	l/gn	ug/l	ng/1	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ug/l	l/gn	ng/l	l/gn	l/gn	ng/l	l/gn
U	n	n		Ω	Ω	Ω	n	Ω	n	n	n	В	n	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	n	n	Ω	n	Ω	Ω	Ω	n	n	Ω
10.0000	0.1000	0.1000	0.000	0.0500	0.0500	0.0500	0.1000	0.1000	0.1000	0.1000	0.1000	0.0000	0.0500	0.5000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.3500	0.3500	0.4000
0.0000	0.0000	0.0000	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1,2-Tetrachloroethane	1, 1, 1-Trichloroethane	1,1,2,2-Tetrachloroethane
CS2-MW1-GW2 CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2
MW1 MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MWI	MW1	MWI	MW1	MW1	MW1	MW1	MWI	MW1	MW1						

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8020
l/gn l	l/gn 1	1/gn (	l/gu l	1/gn 1	l/gn [	J ug/1	l/gu l	l ug/l	l ug/l	1/gn 1	1/gn [	l/gu [	l/gn 1	[/an [	//an [	l/gn /	]/an	1/an [	l ug/1	1/an /	1/an /	l/gu l	l/gn l	1/gn 1	l/gn l	l/gu l	l/gn 1	//an /	/an	1/on	1/8n	
D	D	ם	ם	D	D	Ω	ם	ח	n	Ω	D	ח	n	D	ב	n	D	Ω	D	n	n	D	n	D	ח	D	ח	D	Ω		n	Þ
0.2500	0.3500	0.3500	0.3500	0.3500	0.3000	0.2500	0.3000	0.3000	0.2000	0.3000	0.2500	0.2000	0.4000	0.2500	0.3500	0.8500	0.2500	0.4000	0.5000	0.3500	0.3500	0.5000	0.3500	0.3000	0.4000	0.4500	0.5000	1.0000	0.3000	0.3000	0.5500	0.1500
0.0000	0.0000	0.0000	0.000	00000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000
1,1,2-Trichloroethane	1, 1-Dichloroethane	1, 1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Вготобогт	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	1,2-Dichlorobenzene
CS2-MW1-GW2	CS2-MWI-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MWI-GW2	CS2-MWI-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MWI-GW2	CS2-MWI-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CSZ-MWI-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MWI-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2	CS2-MW1-GW2
MW1	M W	MW!	MW1	MW.	I MW	I M M	MWI	MW!	MM	I M W	I M W	M M	MM	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW.	I M M	MM	MW.	MW.	- Σ	MWI	MW1	MW1	MW1	MWI

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ 020 СОМРИСНЕМ	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	СОМРИСНЕМ
ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l SW8020 ug/l CLP ug/l CLP	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
	m	'n
0.2000 0.2000 0.5000 0.1500 0.2500 0.2500 0.2500 0.2500 0.2500 3.0000	0.0000 2.0000 6.0000 10.0000 25.0000 0.0000 0.0000 0.2000 0.2000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	3.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	91.8000 0.0000 0.0000 0.0000 0.0000 7.4000 17.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
1,2-Dimethylbenzene 1,3-Dichlorobenzene 1,3/1,4-Dimethylbenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Ethylbenzene Methyl-t-Butyl Ether Styrene Toluene Aluminum Antimony Arsenic	Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	Zinc
CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2 CS2-MW1-GW2	CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F CS2-MW1-GW2-F	CS2-MW1-GW2-F
MW1 MW1 MW1 MW1 MW1 MW1 MW1 MW1 MW1 MW1	MW 1 WW 1 WW 1 WW 1 WW 1 WW 1 WW 1 WW 1	MWI

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
l/gu	ng/l	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	ug/l	l/gn	ug/l	l/gn	l/gn	ng/l	l/gn	l/gn	ug/l	ug/l	ug/1	ug/l	ug/l	ug/l	l/gn	l/gn
<b>5</b>	n	n	m	n	m	n	ſΩ	~	m	n	n	m	n	n	m	m	n	n	n	m	ſΩ	~	m	n	n		n	n	n	~	n	n
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	10.0000	1.0000	1.0000	1.0000	1.0000
0.0000	0.000	0.000.0	0.000.0	0.000.	0.000.0	0.000	0.0000	1.8400	0.0000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000.0	0.000	0.0000	18.2000	0.0000	0.0000	0.000	11.6000	0.000	0.0000	0.000.0	54.1000	0.000	1.1500
	0	0	0	0	0	0										_		_												Y)		
1,1,1,2-Tetrachloroethane		lane	ne	frane	hylene	ne	enzene			ylene		enzene		2-Chloroethylvinyl ether		<b>e</b>		Bromodichloromethane		Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Ethylbenzene	Methyl bromide	Methyl chloride		Tetrachloroethylene 5	Toluene	Trichloroethylene
	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	l 1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	l 1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	l 1-Chlorohexane	1 2-Chloroethylvinyl ether	I Benzene	l Benzyl Chloride	l Bromobenzene	Bromodichloromethane	Bromoform	_		_		_	_		_		Methylene chloride	Tetrachloroethylene		CS2-MW2-GW1 Trichloroethylene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020 8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
l/gu  /gu	ug/1 ug/1	ng/l	ug/l	ng/l	ng/l	l/gn	l/gn	ng/l	ug/1	ng/l	ng/l	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	ug/1	ng/l	l/gn	l/gn	ng/l
B E	33		()B	0		0	Ω			0			¥			Ω	0		nr	n		Ω			Ω	Ω	Ω	Ω	Ω	n
1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	10.0000	3.0000	0.0000	1.0000	0.0000	0.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000
0.0000	0.0000	43700.0000	17.5000	7.6000	376.0000	1.7000	0.000	107000.0000	55.5000	23.9000	33.7000	39000.0000	25.6000	62000.0000	3040.0000	0.000	33.7000	5100.0000	0.0000	0.0000	16400.0000	0.0000	87.8000	106.0000	0.0000	0.0000	0.0000	0.0000	ne) 0.0000	0.0000
Trichlorofluoromethane Vinyl chloride meta- and nara-Xylenes	ortho-Xylene	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol
CS2-MW2-GW1 CS2-MW2-GW1 CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1
MW2 MW2 MW2																														

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90
l/an	l/gn	ng/l	ug/1	1/gn	ng/I	ng/l	ng/l	ug/I	ug/l	l/gn	ug/1	ng/l	ng/l	l/gn	ng/l	ng/l	ng/l	l/gn	ng/I	ng/l	ng/l	ng/l	ng/l	ng/I	ng/l	l/gn	ug/1	ug/1	ng/l	ng/l	l/gn
Ω	Ω	Ω	Ω	Ω	D	D;	) <b>:</b>	) <b>=</b>	n	n	Ω	D	Ω	D	Ω	Ω	)	ב כ	D	Þ	D		) ;	)	n	Ω	n	n	Ω	Ω	Ω
10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.000	0000.01	10,0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.000	10.000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000
0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000
phenol	henol	lol					honol							her	_	•	ther														
2,4,6-Trichlorophenol	2,4-Dichloropher	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Umitrotoluene	2-Chioronaphthalene	2-Cinotophicaol 2-Methyl-4 6-Dinitronhenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl pheno	4-Chloroaniline	4-Chlorophenyl phenyl e	4-Methylphenol	4-Nitroaniline	4-Nitrophenol		Acenaphthylene	Anthracene Denzo(e) anthroping	Delizo(a)anunacene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene		Butyl benzyl phthalate	Carbazole	Chrysene
		l 2,4-Dimethylp		1 2,4-Dinitrotolu	2,6-Dinitrotolu	CS2-IM W 2-G W 1 Z-Chioronaphthalene							3-Nitroaniline			CS2-MW2-GW1 4-Chloroaniline				· 	Acenaphthene						_	l Benzo(k)fluora	Butyl benzyl p		CS2-MW2-GW1 Chrysene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 U ug/l CLP 3/90 CLP 3/90 U ug/l CLP 3/90 CLP 3/90 U ug/l CLP 3/90 CLP 3/90 U ug/l CLP 3/90 CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l CLP 3/90 U ug/l Ug/l Ug/l Ug/l Ug/l Ug/l Ug/l Ug/l U	CS2-MW2-GW1 CS2-MW2-GW1 CS2-MW2-GW1	Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo(a,h)anthracene	0.8000	0.0000	n	1/gn 1/gn 1/gn	CLP 3/90 CLP 3/90	PACE PACE
Diethyl phthalate	-GW1	Dibenzofuran	0.0000	10.0000	n	ng/l	CLP 3/90	PACE
Fluoranthene	2-GW1	Diethyl phthalate	0.0000	10.0000	):	ng/l	CLP 3/90	PACE
Hexachlorobenzene	GW1	Dimemyl primarae Fluoranthene	0.000	10.000	o <b>=</b>	ng/l	CLP 3/90	PACE
Hexachlorobenzene         0.0000         10.0000         U ug/l         CLP 3/90           Hexachlorobutadiene         0.0000         10.0000         U ug/l         CLP 3/90           Hexachlorocyclopentadiene         0.0000         10.0000         U ug/l         CLP 3/90           I Hexachlorocyclopentadiene         0.0000         10.0000         U ug/l         CLP 3/90           I Hexachlorocyclopentadiene         0.0000         10.0000         U ug/l         CLP 3/90           I Indeno(1,2,3-c,d)pyrene         0.0000         10.0000         U ug/l         CLP 3/90           I Sophorone         0.0000         10.0000         U ug/l         CLP 3/90           N-Nitrosodiphenylamine         0.0000         10.0000         U ug/l         CLP 3/90           Nitrobenzene         0.0000         10.0000         U ug/l         CLP 3/90           Nitrobenzene         0.0000         10.0000         U ug/l         CLP 3/90           Phenol         0.0000         10.0000         U ug/l         CLP 3/90           Phenol         0.0000         10.0000         U ug/l         CLP 3/90           Phenol         0.0000         10.0000         U ug/l         CLP 3/90           bis(2-Ethylhexyl)phthalate	2-GW1	Fluorene	0.0000	10.0000	o D	ug/I ug/I	CLP 3/90	PACE
Hexachlorobutadiene         0.0000         10.0000         U ug/I         CLP 3/90           Hexachlorocyclopentadiene         0.0000         10.0000         U ug/I         CLP 3/90           Indeno(1,2,3-c,d)pyrene         0.0000         10.0000         U ug/I         CLP 3/90           Indeno(1,2,3-c,d)pyrene         0.0000         10.0000         U ug/I         CLP 3/90           Indeno(1,2,3-c,d)pyrene         0.0000         10.0000         U ug/I         CLP 3/90           N-Nitrosodip-N-Propylamine         0.0000         10.0000         U ug/I         CLP 3/90           N-Nitrosodiphenylamine         0.0000         10.0000         U ug/I         CLP 3/90           Nitrobenzene         0.0000         10.0000         U ug/I         CLP 3/90           Nitrobenzene         0.0000         10.0000         U ug/I         CLP 3/90           Phenalthrene         0.0000         10.0000         U ug/I         CLP 3/90           Phenol         0.0000	2-GW1	Hexachlorobenzene	0.0000	10.0000	n	ng/l	CLP 3/90	PACE
Hexachlorocyclopentadiene         0.0000         10.0000         U ug/l         CLP 3/90           Hexachlorocyclopentadiene         0.0000         10.0000         U ug/l         CLP 3/90           Indeno(1,2,3-c,d)pyrene         0.0000         10.0000         U ug/l         CLP 3/90           Insophorone         0.0000         10.0000         U ug/l         CLP 3/90           N-Nitrosodiphenylamine         0.0000         10.0000         U ug/l         CLP 3/90           N-Nitrosodiphenylamine         0.0000         10.0000         U ug/l         CLP 3/90           N-Nitrosodiphenylamine         0.0000         10.0000         U ug/l         CLP 3/90           N-Nitrobenzene         0.0000         10.0000         U ug/l         CLP 3/90           Netachlorophenol         0.0000         10.0000         U ug/l         CLP 3/90           Phenardhrene         0.0000         10.0000         U ug/l         CLP 3/90           Pyrene         0.0000         10.0000         U ug/l         CLP 3/90           bis(2-Chlorocthoxy)methane         0.0000         10.0000         U ug/l         CLP 3/90           bis(2-Ethylhexyl)phthalate         0.0000         0.0000         U ug/l         CLP 3/90           4,4'-D	/2-GW1	Hexachlorobutadiene	0.0000	10.0000	Ω	ng/l	CLP 3/90	PACE
Hexachloroethane	/2-GW1	Hexachlorocyclopentadiene	0.0000	10.0000	n	ng/l	CLP 3/90	PACE
Indeno(1,2,3-c,d)pyrene	V2-GW1	Hexachloroethane	0.000	10.0000	n	l/gn	CLP 3/90	PACE
Isophorone	V2-GW1	Indeno(1,2,3-c,d)pyrene	0.0000	10.0000	Ω	l/gn	CLP 3/90	PACE
N-Nitrosodi-N-Propylamine   0.0000   10.0000   U   ug/l   CLP 3/90     N-Nitrosodiphenylamine   0.0000   10.0000   U   ug/l   CLP 3/90     N-Nitrosodiphenylamine   0.0000   10.0000   U   ug/l   CLP 3/90     Nitrobenzene   0.0000   10.0000   U   ug/l   CLP 3/90     Pentachlorophenol   0.0000   10.0000   U   ug/l   CLP 3/90     Phenauthrene   0.0000   10.0000   U   ug/l   CLP 3/90     Phenauthrene   0.0000   10.0000   U   ug/l   CLP 3/90     Pyrene   0.0000   10.0000   U   ug/l   CLP 3/90     Dis(2-Chloroethyl) ether   0.0000   10.0000   U   ug/l   CLP 3/90     Dis(2-Ethylhexyl)phthalate   0.0000   0.1000   U   ug/l   PCB-CLP     A,4'-DDT   Aldrin   0.0000   0.1000   U   ug/l   PCB-CLP     Dieldrin   0.0000   0.0500   U   ug/l   PCB-CLP     Endosulfan II   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan II   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan II   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan II   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Endosulfan sulfate   0.0000   0.1000   U   ug/l   PCB-CLP     Pyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene   Dyrene	V2-GW1	Isophorone	0.000	10.0000	Ω	l/gn	CLP 3/90	PACE
N-Nitrosodiphenylamine	W2-GW1	N-Nitrosodi-N-Propylamine	0.000	10.0000	Ω	l/gn	CLP 3/90	PACE
I         Naphthalene         0.0000         10.0000         U ug/l         CLP 3/90           I         Nitrobenzene         0.0000         10.0000         U ug/l         CLP 3/90           I         Pentachlorophenol         0.0000         25.0000         U ug/l         CLP 3/90           I         Phenanthrene         0.0000         10.0000         U ug/l         CLP 3/90           I         Pyrene         0.0000         10.0000         U ug/l         CLP 3/90           I         bis(2-Chlorocthoxy)methane         0.0000         10.0000         U ug/l         CLP 3/90           I         bis(2-Chlorocthyl) ether         0.0000         10.0000         U ug/l         CLP 3/90           I         bis(2-Ethylhexyl)phthalate         0.0000         0.0000         U ug/l         CLP 3/90           I         4,4-DDE         0.0000         0.1000         U ug/l         PCB-CLP           I         4,4-DDE         0.0000         0.1000         U ug/l         PCB-CLP           I         Aldrin         0.0000         0.1000         U ug/l         PCB-CLP           I         Endosulfan II         0.0000         0.1000         U ug/l         PCB-CLP           I <td>W2-GW1</td> <td>N-Nitrosodiphenylamine</td> <td>0.000</td> <td>10.0000</td> <td>D</td> <td>l/gn</td> <td>CLP 3/90</td> <td>PACE</td>	W2-GW1	N-Nitrosodiphenylamine	0.000	10.0000	D	l/gn	CLP 3/90	PACE
1         Nitrobenzene         0.0000         10.0000         U         ug/l         CLP 3/90           1         Phenachlorophenol         0.0000         25.0000         U         ug/l         CLP 3/90           1         Phenarthrene         0.0000         10.0000         U         ug/l         CLP 3/90           1         Phenol         0.0000         10.0000         U         ug/l         CLP 3/90           1         Pyrene         0.0000         10.0000         U         ug/l         CLP 3/90           1         bis(2-Chloroethoxy)methane         0.0000         10.0000         U         ug/l         CLP 3/90           1         bis(2-Chloroethyl) ether         0.0000         10.0000         U         ug/l         CLP 3/90           1         bis(2-Chloroethyl) ether         0.0000         0.1000         U         ug/l         CLP 3/90           1         bis(2-Ethylhexyl)phthalate         0.0000         0.1000         U         ug/l         PCB-CLP           1         4,4'-DDE         0.0000         0.1000         U         ug/l         PCB-CLP           1         A,4'-DDE         0.0000         0.0500         U         ug/l         PCB-CLP	W2-GW1	Naphthalene	0.0000	10.0000	n	l/gn	CLP 3/90	PACE
Pentachlorophenol	W2-GW1	Nitrobenzene	0.000	10.0000	Ω	l/gn	CLP 3/90	PACE
Phenanthrene	W2-GW1	Pentachlorophenol	0.0000	25.0000	Ω	l/gn	CLP 3/90	PACE
Phenol	W2-GW1	Phenanthrene	0.000	10.000	Ω	ug/l	CLP 3/90	PACE
Pyrene         0.0000         10.0000         U ug/I         CLP 3/90           bis(2-Chloroethoxy)methane         0.0000         10.0000         U ug/I         CLP 3/90           bis(2-Ethylhexyl)phthalate         0.0000         10.0000         U ug/I         CLP 3/90           4,4'-DDB         0.0000         0.1000         U ug/I         PCB-CLP           4,4'-DDE         0.0000         0.1000         U ug/I         PCB-CLP           Addrin         0.0000         0.0500         U ug/I         PCB-CLP           Dieldrin         0.0000         0.0500         U ug/I         PCB-CLP           Endosulfan I         0.0000         0.0500         U ug/I         PCB-CLP           Endosulfan II         0.0000         0.0500         U ug/I         PCB-CLP           Endosulfan II         0.0000         0.0500         U ug/I         PCB-CLP           Endosulfan sulfate         0.0000         0.1000         U ug/I         PCB-CLP	W2-GW1	Phenol	0.000	10.000	n	l/gn	CLP 3/90	PACE
bis(2-Chloroethoxy)methane 0.0000 10.0000 U ug/1 CLP 3/90 CLP 3/90 bis(2-Chloroethyl) ether 0.0000 10.0000 U ug/1 CLP 3/90 CLP 3/90 0.0000 0.1000 U ug/1 CLP 3/90 CLP 3/90 0.0000 0.1000 U ug/1 PCB-CLP PCB-CLP A/4'-DDT 0.0000 0.1000 U ug/1 PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/1 PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/1 PCB-CLP PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/1 PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CL	W2-GW1	Pyrene	0.000	10.0000	Ω	l/gn	CLP 3/90	PACE
bis(2-Chloroethyl) ether 0.0000 10.0000 U ug/l CLP 3/90 CLP 3/90 4,4*-DDD 0.0000 0.1000 U ug/l PCB-CLP 4,4*-DDT 0.0000 0.1000 U ug/l PCB-CLP PCB-CLP 0.0000 0.1000 U ug/l PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP Endosulfan II 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP	W2-GW1	bis(2-Chloroethoxy)methane	0.0000	10.0000	Ω	ug/l	CLP 3/90	PACE
bis(2-Ethylhexyl)phthalate 0.7000 0.0000 B ug/l CLP 3/90 4.4'-DDD 0.0000 0.1000 U ug/l PCB-CLP 0.0000 0.1000 U ug/l PCB-CLP 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP Dieldrin 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP Endosulfan II 0.0000 0.0500 U ug/l PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP	W2-GW1	bis(2-Chloroethy1) ether	0.000	10.000	Ω	l/gn	CLP 3/90	PACE
4,4'-DDD         0.0000         0.1000         U         ug/l         PCB-CLP           4,4'-DDE         0.0000         0.1000         U         ug/l         PCB-CLP           Addrin         0.0000         0.0500         U         ug/l         PCB-CLP           Dieldrin         0.0000         0.0500         U         ug/l         PCB-CLP           Endosulfan I         0.0000         0.0500         U         ug/l         PCB-CLP           Endosulfan II         0.0000         0.1000         U         ug/l         PCB-CLP           Endosulfan sulfate         0.0000         0.1000         U         ug/l         PCB-CLP	W2-GW1	bis(2-Ethylhexyl)phthalate	0.7000	0.000	8	l/gn	CLP 3/90	PACE
4,4'-DDE         0.0000         0.1000         U         ug/l         PCB-CLP           1         4,4'-DDT         0.0000         0.1000         U         ug/l         PCB-CLP           1         Aldrin         0.0000         0.0500         U         ug/l         PCB-CLP           1         Endosulfan I         0.0000         0.0500         U         ug/l         PCB-CLP           1         Endosulfan II         0.0000         0.1000         U         ug/l         PCB-CLP           1         Endosulfan sulfate         0.0000         0.1000         U         ug/l         PCB-CLP	<b>N2-GW1</b>	4,4'-DDD	0.000	0.1000	Ω	ug/l	PCB-CLP	PACE
1         4,4"-DDT         0.0000         0.1000         U         ug/I         PCB-CLP           1         Aldrin         0.0000         0.0500         U         ug/I         PCB-CLP           1         Dieldrin         0.0000         0.0500         U         ug/I         PCB-CLP           1         Endosulfan II         0.0000         0.1000         U         ug/I         PCB-CLP           1         Endosulfan sulfate         0.0000         0.1000         U         ug/I         PCB-CLP	W2-GW1	4,4'-DDE	0.0000	0.1000	Ω	l/gn	PCB-CLP	PACE
I Aldrin         0.0000         0.0500         U         ug/l         PCB-CLP           I Dieldrin         0.0000         0.0500         U         ug/l         PCB-CLP           I Endosulfan II         0.0000         0.1000         U         ug/l         PCB-CLP           I Endosulfan sulfate         0.0000         0.1000         U         ug/l         PCB-CLP	W2-GW1	4,4'-DDT	0.0000	0.1000	D	ug/l	PCB-CLP	PACE
Dieldrin	W2-GW1	Aldrin	0.0000	0.0500	Ω	l/gn	PCB-CLP	PACE
Endosulfan I	N2-GWI	Dieldrin	0.0000	0.0500	ח	ng/l	PCB-CLP	PACE
Endosulfan II 0.0000 0.1000 U ug/l PCB-CLP 0.0000 0.1000 U ug/l PCB-CLP	W2-GW1	Endosulfan I	0.0000	0.0500	Ω	ug/l	PCB-CLP	PACE
Endosulfan sulfate 0.0000 0.1000 U ug/l PCB-CLP	W2-GW1	Endosulfan II	0.0000	0.1000	n	l/gn	PCB-CLP	PACE
	N2-GW1	Endosulfan sulfate	0.000	0.1000	n	ug/l	PCB-CLP	PACE

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE PACE	PACE	PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE	PACE	
PCB-CLP PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP PCB-CT P	PCR-CL	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	CLP	GLP GLP	a D	<u>م</u> ک	a )	CLP								
1/gn 1/gn 1/gn	l/gn l/gn	ug/l ug/l	l/gn	ug/! ug/1	ug/l	l/gn	l/gn l/on	1/8n	ug/l	l/gn	ug/l	l/gn	l/gn	ng/l	ug/l	l/gn	l/gn	l/gn	ng/l	ug/l	ug/l	ng/l	l/an	l/an	1/8n	ng/l	,
n	ממ	חח	D:	ם ם	D	D:	) <b>:</b>	) D	D	D	n	ם	n	()B	()B	()B	0	ם	Ω		Ω	0B	Þ	<b>E</b>	<u> </u>	ì	
0.1000	0.0500	0.5000	2.0000	1.0000	1.0000	1.0000	5.0000	0.0200	0.0500	0.0500	0.0500	0.0500	0.0500	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	0.0000	4.0000	0.000	3.0000	0.000	0.000	0.0000	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	38.4000	17.4000	4.7000	127.0000	0.0000	0.0000	100000.0000	0.0000	4.6000	0.0000	189.0000	2.4000	52700.0000	
Endrin Endrin aldehyde Endrin ketone	Heptachlor Heptachlor epoxide	Methoxychlor PCB-1016	PCB-1221 PCR-1232	PCB-1242	PCB-1248	PCB-1254 BCB 1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	
CS2-MW2-GW1 CS2-MW2-GW1 CS2-MW2-GW1	CS2-MW2-GW1 CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1 CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1	CSZ-MWZ-GWI	CS2-MW2-GW1	CS2-MW2-GW1	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CSZ-MWZ-GWI-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	CS2-MW2-GW1-F	
MW2 MW2 MW2	MW2 MW2	MW2	MW2 MW2	MW2	MW2	MW2 CWM	MW2	MW2	MW2	MW2	ZWW.	MW2	MW2	MW2	MW2	MW2	MW2	7 M W	MW2								

PACE PACE PACE PACE PACE	PACE PACE PACE	COMPUCHEM	COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
		8010/8020 8010/8020	8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020	8010/8020 8010/8020	8010/8020 8010/8020	8010/8020 8010/8020	8010/8020	8010/8020	8010/8020 8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
//8n  /8n  /8n  /8n	l/gu N/gu	l/gu  /gu  /	1/gn 1/gn 1/on	/gn //gn	l/gu l/gu	1/gn 1/gn	ug/l ug/l	1/gn 1/an	ng/l	1/gn 1/gn	l/gu	l/gn	l/gu	1/8n 1/8n
0 0 0 0	D B	םםם	) <b>)</b>	כככ	חם	> <b>-</b>	חמ	חם	D:	o	D	D:	<b>D 5</b>	ם ם
0.0000 0.2000 2.0000 0.0000 3.0000	1.0000 2.0000 0.0000	4.0000	4.0000 4.0000	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000	21.0000 21.0000	21.0000	21.0000	4.0000	4.0000
2510.0000 0.0000 2100.0000 0.0000 0.0000 7300.0000	0.0000 0.0000 23.3000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Manganese         2510.0000           Mercury         0.0000           Nickel         0.0000           Potassium         2100.000           Selenium         0.0000           Silver         0.0000           Sodium         17300.0000	n m	-Trichloroethane,,2-Tetrachloroethane	1,1-Dichloroethane 0.0000	opropane		1,2-cis-Dichloroethylene 0.0000	1,2-trans-Dichloroethylene 0.0000 1,3-Dichlorobenzene 0.0000	ylene povlene	obenzene	2-Butanone 0.0000 2-Hexanone 0.0000		1-2-pentanone	Benzene 0.0000	<u> 2</u>
inm 210	Thallium Vanadium Zinc	-Trichloroethane,,2-Tetrachloroethane	1,1,2-111Cinotoeulane 1,1-Dichloroethane	1,2-Dibromoethane	1,2-Dichlorobenzene 1,2-Dichloroethane	ene	ıylene		1,4-Dichlorobenzene		2-Propanone	4-Methyl-2-pentanone	o and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	Bromodichloromethane

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	СОМРИСНЕМ
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	d D	CLP	CLP
l/gn	l/gn	1/8n ng/l	ug/l	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	ng/l	ng/l	l/an	/ΔII	l/gn
n:	<b>&gt;</b> =	o D		Ω	Ω	n	n	Ω	æ	Ω	Ω	Ω			Ω	_	n	0		n	Ω		n		UL	-	В			Ω	n
4.0000	4.0000 4.0000	4.0000	0.000	4.0000	4.0000	4.0000	4.0000	4.0000	0.000	4.0000	4.0000	4.0000	0.000	0.000	4.0000	0.000	46.0000	0.000	0.000	2.0000	5.0000	0.000	10.0000	0.0000	25.0000	0.000	0.000	0.000	0.000	0.2000	31.0000
2 9			•														_	_	_												_
0.0000	0.000	0.0000	10.0000	0.0000	0.0000	0.0000	0.000	0.000	3.0000	0.0000	0.0000	0.0000	3.0000	86.0000	0.0000	2250.0000	0.0000	8.1000	244.0000	0.000	0.000	112000.0000	0.000	9.9000	0.0000	3040.0000	6.1000	60100.0000	2720.0000	0.0000	0.0000
Bromoform 0.000	ride	Chlorobenzene 0.0000			romethane				ene chloride	_	oroethylene		ane	Vinyl chloride 86.0000	TOTAL)	1 225	ny				T T		mn	Cobalt 9.9000	per	Iron 3040.0000	Lead 6.1000	Magnesium 60100.0000	Manganese 2720.0000		
	Carbon Tetrachloride		Chloroethane 1	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl chloride	Xylenes (TOTAL)	Aluminum 225	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium 11	Chromium	Cobalt	Copper	Iron	Lead				

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
ਰ ਦੇ ਦੇ ਦ	CLP CLP	CLP CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
l/gu l/gu l/gu	l/gu l/gu	l/gu l/gu	ug/l no/l	l/gu	ľ/gn	l/gn l/on	ng/l	l/gn	l/gn	l/gn	l/gn l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn
ם ח		<b>2</b> D	ם ב	n	D:	<b>D D</b>	'n	Ω	D	n:	0 0	Ω	Ω	n	Ω	Ω	ם	n	D	D	D	D	D	Ω
2240.0000 3.0000 10.0000 0.0000	0.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.000	10.0000	25.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000
8888																								
8888	2.3000	0000.	0000	0000.	00000	0000	0000.0	0000.	0000.	00000	0000	0000.	0000.	0000.0	0000.	0000.	0000.	0000.	0000.	0000.	0000.	0000.	0000.0	0000.
n 1860	ium dium	Linc 36.6000 1,2,4-Trichlorobenzene 0.0000	1,2-Dichlorobenzene 0.0000		propane)	2,4,5-1 richlorophenol 0.0000 2,4,6-Trichlorophenol 0.0000		2,4-Dimethylphenol 0.0000	2,4-Dinitrophenol 0.0000		2-Chloronaphthalene 0.0000	2-Chlorophenol 0.0000	2-Methyl-4,6-Dinitrophenol 0.0000	2-Methylnaphthalene 0.0000	2-Methylphenol 0.0000		2-Nitrophenol 0.0000	3,3'-Dichlorobenzidine 0.0000	3-Nitroaniline 0.0000	4-Bromophenyl phenyl ether 0.0000	4-Chloro-3-methyl phenol 0.0000	4-Chloroaniline 0.0000	4-Chlorophenyl phenyl ether 0.0000	4-Methylphenol 0.0000
Potassium Selenium Silver Sodium	Thallium Vanadium	Linchiorobenzene		1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)		2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene				2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol		ether	

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/l	ng/l	ng/l	ng/l	ng/l	ng/1	ng/l	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	ng/l	ng/l	ug/l	ng/l	ug/l	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l
Ω	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	n	Ω	n		Ω	Ω	n	Ω	n	Ω	Ω	Ω	n	Ω	Ω	n	Ω	n	Ω	n	D	n	n
25.0000	25.0000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	0.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000
0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	1.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene
CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2
MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
J ug/l	J ng/l	J ug/l	3 ug/1	J/gn (	J ug/l	J ug/l	J ug/l	J ug/l	J ug/l	J ug/l	J ug/l	J ug/1	ng/l	J ug/I	J ug/l	J ug/l	J ug/l	J ug/l	J ug/l	J ug/I	J ug/I	J ug/l	J ug/1	J ug/l	J ug/l	J ug/l	J ug/I	J ug/I	J ug/I	J ug/I	l/gu [
10.0000	10.0000	0.0000	0.0000 E	0.1000	0.1000	0.1000 L	0.0500	0.0500 L	0.0500	ס.1000	0.1000	0.1000 L	0.0000	0.1000 L	0.0500 L	0.0500 L	0.5000 L	1.0000	2.0000 L	1.0000	0000.1	ר 0000	1.0000 L	ו.0000	5.0000 L	0.0500 L	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
0.0000		-						0.0000	0.0000	0.0000	0.0000	0.0000	0.0027 0.0	0.0000	0.0000		0.0000		0.0000 2.0		0.0000	0.0000	0.0000	0.0000	0.0000 5.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Phenol 0 Pyrene 0	hloroethoxy)methane		lhexyl)phthalate			DT		Dieldrin 0	Endosulfan I 0	Endosulfan II 0	Endosulfan sulfate 0.		Endrin aldehyde 0.	Endrin ketone 0.	Heptachlor 0	oxide	ılor							PCB-1260 0.		alpha-BHC 0.	alpha-Chlordane 0.	beta-BHC 0.	delta-BHC 0.	gamma-BHC 0.	gamma-Chlordane 0.
CS2-MW2-GW2 CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CSZ-MWZ-GWZ	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2
•	S	ပ (	U t	ا ز	ا ک	ڻ ا	Ŭ	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ŭ	Ü	Ü	Ü	O	O	0	U	0	0	O	U	Ų	Ü	ŭ	Ŭ	O

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	СОМРИСНЕМ
SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010
ug/l	ng/l	ng/l	l/gn	ng/l	ng/l	ng/l	ng/l	ng/l	ug/l	l/gn	ng/l	ng/l	ug/l	ng/l	ng/I	ng/l	ng/l	ng/l	l/gn	ng/l	ng/l	l/gn	ug/l	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	ug/l	ug/l	ug/1
n	œ	n	n	כ	n	n	Ω	n	٦	D	٦	Ω	Ω	D	n	n	D	D	Ω	Ω	Ω	Ω	Ω	Ω	J	٦	n	n	Ω	n	-	Ω
0.7000	0.0000	0.8000	0.5000	0.7000	0.7000	0.7000	0.7000	0.6000	0.000	0.6000	0.000	0.4000	0.6000	0.5000	0.4000	0.8000	0.5000	0.7000	1.7000	0.5000	0.8000	1.0000	0.7000	0.7000	0.000	0.000	0.6000	0.8000	0.9000	1.0000	0.0000	0.6000
0.0000	0.6200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.7000	0.000	0.4800	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.0000	0.0760	0.0000	0.000	0.0000	0.0000	1.7000	0.0000
1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene
CS2-MW2-GW2	CSZ-MWZ-GWZ	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2	CS2-MW2-GW2
MW2	ZWM.	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2	MW2

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM
SW8010 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020	SW8020 SW8020 SW8020 CLP CLP CLP		ਹੈ ਹੈ
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	ug/l ug/l ug/l ug/l ug/l ug/l	/ gn 1/ gn 1/ gn 1/ gn 1/ gn 1/ gn 1/ gn 1/ gn 1/ gn	ng/l ng/l
L C C C C C C C C C C C C C C C C C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<b>9</b>
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2000	5.0000 0.2500 0.0000 46.0000 0.0000 2.0000	25.0000 10.0000 9.0000 25.0000 2.0000 0.0000 0.2000 31.0000 3.0000	0.0000
1.8000 78.0000 0.1500 0.0000 0.0000 1.5000 0.0000 0.0000	0.0000 0.0000 0.0000 69.4000 7.1000 135.0000	115000.0000 0.0000 0.0000 1450.0000 63900.0000 2760.0000 0.0000 0.0000	0.000.0091
Trichloroethylene Vinyl chloride 1,2-Dichlorobenzene 1,2-Dimethylbenzene 1,3-Dichlorobenzene 1,3/1,4-Dimethylbenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Ethylbenzene	Methyl-t-Butyl Ether Styrene Toluene Aluminum Antimony Arsenic Barium Beryllium	Calcium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Sodium
CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2	CS2-MW2-GW2 CS2-MW2-GW2 CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F	CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW2-GW2-F	CS2-MW2-GW2-F
MW2 MW2 MW2 MW2 MW2 MW2 MW2	MW2 MW2 MW2 MW2 MW2 MW2	MW2 MW2 MW2 MW2 MW2 MW2 MW2 MW2	MW2

	8010/8020 PACE 8010/8020 PACE 8010/8020 PACE 8010/8020 PACE 8010/8020 PACE
	ug/l ug/l ug/l ug/l
	333353
4.0000 3.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 10.0000 10.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
Thallium Vanadium Zinc 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2-Jichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Chloroethylene 1,2-Chloroethylvinyl ether Benzene 1-Chlorohexane 2-Chloroethylvinyl ether Benzyl Chloride Bromodichloromethane Bromoform Carbon Tetrachloride Chloroenzene Chloroethane Chloroethane Chloroethane Chloroform	Dibromomethane Ethylbenzene Methyl bromide Methyl chloride
CS2-MW2-GW2-F CS2-MW2-GW2-F CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1	CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1
MW2 MW3 MW3 MW3 MW3 MW3 MW3 MW3 MW3	MW3 MW3 MW3 MW3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 CLP CLP CLP CLP CLP CLP CLP CLP CLP CLP
BBBBBB GOODD OOO M DDOJD DO
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 15.7000 1.1000 145.0000 0.0000 2.8000 5.8000 4450.0000 4450.0000 105.0000 0.0000 1.5000 0.0000 0.0000 10.0000 10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Tetrachloroethylene Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride meta- and para-Xylenes ortho-Xylene Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Calcium Calcium Chromium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Calcium Chromium Calcium Thanganese Magnesium Magnesium Selenium Selenium Silver Sodium Thallium Vanadium Zinc 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene
CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1
MW3  MW3  MW3  MW3  MW3  MW3  MW3  MW3

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			CLP 3/90	
l/gu l/gu	ug/l	l/gn	l/gn	ng/l	l/gn	l/gn	ng/l	l/gn	ug/I	ng/1	ng/l	ug/1	ug/1	l/gn	ug/1	ng/1	l/gn	ng/l	ug/1	ug/1	ng/l	l/gn	ug/l	ng/l	ug/1	ug/l	ng/l	ng/l	ng/l	ug/I
חחם	n	n :	D :	n i	D :	D	n	n	n	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	D	Ω	Ω	n	n	n	n	5
10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.000	25.0000	10.000	10.000	10.0000	10.000	10.000	25.0000	25.0000	10.000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000
0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000
1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4.5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Unitrophenol	2,4-Dinitrotoluene	2,0-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene
CS2-MW3-GW1 CS2-MW3-GW1 CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CSZ-MW3-GW1	CSZ-IMIWS-GWI	CSZ-MW3-GW1	1 M D-5 M M-7CD	CSZ-MW3-GWI	CSZ-MW3-GWI	CSZ-MW3-GWI	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1	CS2-MW3-GW1
MW3 MW3 MW3	MW3	MW3	MW3	MAY/2	MW3	C M INI	MW 5	CWM	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MM3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/I	ug/I	ug/I	ng/l	ng/l	ng/l	ug/l	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	ug/1	ug/l	l/gn	l/gn	l/gn
Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	n	n	Ω	Ω	Ω	Ω	m	Ω	Ω	n	n	Ω	Ω	n	Ω	n	n	n	മ	Ω	Ω	U	n	D
10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.000	10.0000	10.0000	10.0000	10.0000	0.0000	0.1000	0.1000	0.1000	0.0500	0.0500
8	0	. 0	0		0	0	_	0	0	0	0	0	0	0	Q	0	ç	0	0	0	0	2	0	0	0	0	0	0	0	_	0	0
0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	3.0000	0.000	0.000	0.000	0.000	0.0000
Butyl benzyl phthalate 0.00	•	Chrysene 0.000	Di-n-butyl phthalate 0.000	Di-n-octyl phthalate 0.000	Dibenzo(a,h)anthracene 0.0000		Diethyl phthalate 0.0000	halate	Fluoranthene 0.000	Fluorene 0.000	Hexachlorobenzene 0.000		clopentadiene	lane	Indeno(1,2,3-c,d)pyrene 0.000		ine	shenylamine			lenol	Phenanthrene 0.000	Phenol 0.000	Pyrene 0.000	thoxy)methane	thyl) ether	lhexyl)phthalate			4,4'-DDT 0.000	Aldrin 0.000	Dieldrin 0.000
phthalate	•	1 Chrysene	l Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	l Diethyl phthalate	1 Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	I N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	l bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	1 4,4'-DDD		4,4'-DDT	l Aldrin	_

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE
	មិចិចិចិចិ
	Van Van Van Van
	מממ ממ
0.0500 0.1000 0.1000 0.1000 0.1000 0.0500 0.0500 1.0000 1.0000 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	1.0000 1.0000 0.0000 4.0000 2.0000 3.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.0000 0.0000 0.0000 0.0000 0.0000
Endosulfan I Endosulfan II Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin setone Heptachlor Heptachlor PCB-1016 PCB-1221 PCB-1221 PCB-1232 PCB-1242 PCB-1254 PCB-1254 PCB-1260 I Toxaphene Alpha-BHC gamma-BHC gamma-Chlordane beta-BHC Bartum Antimony Arsenic	ium ium aium t t
Endosulfan I Endosulfan II Endosulfan S Endrin aldeh Endrin aldeh Endrin aldeh Heptachlor ej Methoxychlo PCB-1016 PCB-1221 PCB-1221 PCB-1222 PCB-12248 PCB-1248 PCB-1254 PCB-1260 Toxaphene alpha-BHC delta-BHC gamma-Chlord beta-BHC gamma-Chlord Aluminum Antimony Arsenic Barium	Beryllium Cadmium Calcium Chromium Cobalt
CS2-MW3-GW1 Endoss CS2-MW3-GW1 Endoss CS2-MW3-GW1 Endrin CS2-MW3-GW1 Endrin CS2-MW3-GW1 Endrin CS2-MW3-GW1 Endrin CS2-MW3-GW1 Endrin CS2-MW3-GW1 Heptac CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 PCB-1 CS2-MW3-GW1 Alpha-CS2-MW3-GW1 Gamma CS2-MW3-GW1 Eamma CS2-MW3-GW1 Eamma CS2-MW3-GW1-F Arseni CS2-MW3-GW1-F Arseni CS2-MW3-GW1-F Arseni CS2-MW3-GW1-F Arseni	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
CLP	G G	CLP           CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP											
//gn	ug/I ug/I	ng/l	ug/l	ng/l	ng/I	l/gn	l/gn	ng/l	ng/l	ug/1	ng/l	ng/l	ng/l	l/gn	l/gn	ng/l	ng/l	ng/l	l/gn	ug/l	ng/l	ng/l	ug/1	ng/l	ng/l	ng/l	ug/l	ng/l	ng/l	l/gn	l/gn
()B	á		n	n	()B	NF	Ω	В	D	D	В	-	Ω	0		D	Ω		n	n	NF	-	NF			n	Ω	n	Ω	n	В
0.0000	0.0000	0.0000	0.2000	2.0000	0.000	1.0000	3.0000	0.0000	1.0000	2.0000	0.0000	0.0000	46.0000	0.000	0.000	2.0000	5.0000	0.0000	10.0000	00006	25.0000	0.000	2.0000	0.000	0.0000	0.2000	31.0000	2240.0000	3.0000	10.000	0.0000
51.1000	42400.0000	67.5000	0.0000	0.0000	1590.0000	0.0000	0.0000	8210.0000	0.0000	0.0000	20.6000	4370.0000	0.0000	3.7000	258.0000	0.0000	0.0000	109000.00001	0.0000	0.0000	0.0000	2270.0000	0.0000	54000.0000	311.0000	0.000	0.0000	0.0000	0.0000	0.0000	10400.0000
Iron	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium
CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW1-F	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2
MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MW3	MW3	MW3	MM3	MW3	MW3	MW3

	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	СОМРИСНЕМ
	CLP	CLP	CLP	CLP 3/90								CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90						
	l/gn	l/gn	ng/l	ug/l	ng/I	l/an	ug/l	ug/l	l/an	l/gn	ug/l	ng/l	l/gn	l/gn	ug/I	ug/l	l/gn	ng/l	ug/1	ng/l	l/gn	l/gn	ug/l	l/gn	l/gn	ug/l	l/gn	l/gn	ug/I	ug/l	ng/I	ng/l	l/gn
)	Ω	0	B	n	Ω	n	Ω	Ω	Ω	n	D	Ω	n	D	D	Ω	Ω	D	Ω	<b>n</b> .	n	n	n	Ω	n	Ω	Ω	n	Ω.	Ω	Ω	D	D
	4.0000	0.0000	0.000	10.000	10.0000	10.000	10.0000	10.000	25.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.000	10.0000	25.0000	10.000	10.0000	25.0000	10.000	10.0000	10.0000	10.000	10.000	25.0000	25.0000	10.0000	10.0000
	0.0000	12.6000	51.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000.0	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000
:	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	hyl phe	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene
	CS2-MW3-GW2	CS2-MW3-GW2	CSZ-MW3-GWZ	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CSZ-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
/8n	l/gu l/gu l/gu l/gu l/gu
10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 25.0000 10.0000 0.0000 10.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	0.0000 0.0000 3.0000 0.0000 0.0000
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-ctyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine	Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane
CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW3-CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW3-CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW3-CS2-MW3-GW2 CS2-MW3-GW3-CS2-MW3-GW3-CS2-MW3-GW2	CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2
MW3  MW3  MW3  MW3  MW3  MW3  MW3  MW3	MW3 MW3 MW3 MW3 MW3 MW3

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8020	SW8020
ug/l	l/gn	ng/I	ug/I	1/8/1 110/1	1/3n	g	ng/l	l/gn	l/gn	ug/1	l/gn	l/gn	l/gn	ug/l	ug/l	ug/l	ug/l	ug/l	l/gn	l/gn	l/gn	l/gu	l/gn	l/gn	l/gn	l/an	ug/l	ug/1	l/an	ug/l	ug/1
D:		<b>=</b>	<b>=</b>	) <b>=</b>	'n	n	<b>n</b>	ח	Ω	Ω	Ω	n	Ω	Ω	n	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	В	Ω	Ω	n		D
0.3500	0.3500	0.2200	03000	0.2500	0.3000	0.3000	0.2000	0.3000	0.2500	0.2000	0.4000	0.2500	0.3500	0.8200	0.2500	0.4000	0.5000	0.3500	0.3500	0.5000	0.3500	0.3000	0.4000	0.4500	0.5000	0.0000	0.3000	0.3000	0.5500	0.0000	0.2000
0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.5600	0.0000
1,1-Dichloroethane	1,1-Dichiologuiyiene	1.2-Dibromoethane	1.2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Bromochloromethane	<b>Bromodichloromethane</b>	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	1,2-Dichlorobenzene	1,2-Dimethylbenzene
CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CSZ-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CSZ-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2	CS2-MW3-GW2
MW3 MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MM3	MW3	MW3	MW3	MW3

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 SW8020 CLP CLP			
Van Van Van Van Van Van Van Van			/8n  /8n  /8n  /8n  /8n
	0 0 0 0 0 0	0 OB	
0.2000 0.5000 0.1500 0.3500 0.2500 0.2500 0.2500 0.0000 46.0000	5.0000 5.0000 5.0000 0.0000	9.0000 25.0000 0.0000 2.0000 6.0000 0.2000	31.0000 2240.0000 3.0000 10.0000 4.0000 7.0000 3.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	87.4000 0.0000 0.0000 79200.0000	0.0000 0.0000 8.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1,3-Dichlorobenzene 1,3/1,4-Dimethylbenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Ethylbenzene Methyl-t-Butyl Ether Styrene Toluene Aluminum Antimony Arsenic	Barium Beryllium Cadmium Calcium Chromium	Copalt Copper Iron Lead Magnesium Manganese Mercury	Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc
CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2 CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F	CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F	CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F	CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW3-GW2-F CS2-MW4-GW2-F
MW3 MW3 MW3 MW3 MW3 MW3 MW3 MW3 MW3	MW3 MW3 MW3 MW3	MW3 MW3 MW3 MW3 MW3	MW3 MW3 MW3 MW3 MW3 MW3 MW3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPUCHEM	СОМРИСНЕМ
CLP	CLP	CLP	CLP	d.D	G.P	CI.P	CLP CLP	d I	CLP	CL _P	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90						
I/an U	() ug/1	l/an	U ug/l	U ug/l	ug/l	I/an n	U ug/l	Ω ne/l	J ng/l	L ug/I	l/gn	ug/l	U ug/l	U ug/l	U ug/l	U ug/I	U ug/l	ng/I	U ug/l	() ug/l	B ug/I	U ug/l	U ug/l	U ug/l	U ug/l	U ug/l	U ug/l	U ug/I	U ug/l	U ug/l	U ug/l	I/gn O
46.0000	0.000	0.000	2.0000	2.0000	0.000	10.0000	00006	25.0000	0.0000	0.000	0.000	0.000	0.2000	31.0000	2240.0000	3.0000	10.000	0.000	4.0000	0.000	0.000	10.0000	10.0000	10.000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	25.0000	10.0000
0.0000	3.8000	217.0000	0.0000	0.0000	87400.0000	0.0000	0.0000	0.0000	2230.0000	9.2000	44300.0000	245.0000	0.0000	0.000	0.0000	0.0000	0.0000	9150.0000	0.0000	11.1000	32.4000	0.0000	0.0000	0.0000	0.0000	pane) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium .	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	pro	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene
CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CSZ-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2	CS2-MW4-GW2
MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	WW 4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4

Di-n-octyl phthalate         0.0000         10.0000         U         ug/l         CLP 3/90         COMPUCHEM           Dibenzo(a,h)anthracene         0.0000         10.0000         U         ug/l         CLP 3/90         COMPUCHEM           Dibenzofuran         0.0000         10.0000         U         ug/l         CLP 3/90         COMPUCHEM           Diethyl phthalate         0.0000         10.0000         U         ug/l         CLP 3/90         COMPUCHEM

COMPUCHEM COMPUCHEM COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPLICHEM	COMPLICHEM	COMPLICHEM	COMPUCHEM
CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CL P	PCB-CLP
ug/l ug/l 1/gu	l/gu	ug/l	l/gn	l/gn	ng/l	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/1	l/an	ug/l	l/an	/an	l/gn
חחח	םם	סס	D	D	D	ם	ם	ם	Ω	Ω	n	Ω	Ω	Ω	Ω	В	Ω	n	n	n	Ω	Ω	Ω	Ω	Ω	n	Ω	<b>8</b>	Ω
10.0000	10.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	0.0000	0.1000	0.1000	0.1000	0.0500	0.0500	0.0500	0.1000	0.1000	0.1000	0.1000	0.1000	0.0000	0.0500
0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	2.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0022	0.0000
Dimethyl phthalate 0.0000 Fluoranthene 0.0000 Fluorene 0.0000	Hexachlorobenzene 0.0000 Hexachlorobutadiene 0.0000	adiene		3-c,d)pyrene		ine	henylamine			loue	ıthrene			ane		lhexyl)phthalate			DT					Endosulfan sulfate 0.0000	Endrin 0.0000	Endrin aldehyde 0.0000	Endrin ketone 0.0000	Heptachlor 0.0022	Heptachlor epoxide 0.0000
Dimethyl phthalate Fluoranthene Fluorene		Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenoi	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate		Endrin aldehyde			

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUC	COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM COMPUCHEM
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010	SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010
	l/gu l/gu l/gu l/gu l/gu l/gu
0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.2500 0.3000 0.2000 0.2500 0.2500 0.2500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000
Methoxychlor PCB-1016 PCB-1221 PCB-1242 PCB-1248 PCB-1248 PCB-1254 PCB-1256 Toxaphene alpha-BHC alpha-Chlordane beta-BHC gamma-Chlordane 1, 1, 1, 2-Tetrachloroethane 1, 1, 2-Trichloroethane 1, 1-Dichloroethane 1, 1-Dichloroethane 1, 1-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane	1,2-Dichloroptopane 1,2-frans-Dichloroptopane 1,3-Dichlorobenzene 1,3-cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Chloroethylvinyl ether 2-Chlorotoluene
CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2	CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2 CS2-MW4-GW2
MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4 MW 4	

COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM	COMPUCHEM
SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8010	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	SW8020	CLP	CLP	CLP	CLP	CLP
l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	ug/1	l/gn	ng/l	l/gn	1/gn	l/gn	ng/l				l/gn								
n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	В	Ω	Ω	Ω		Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	ō	Ω	Ω	ō	Ω
0.3500	0.8500	0.2500	0.4000	0.5000	0.3500	0.3500	0.5000	0.3500	0.3000	0.4000	0.4500	0.5000	0.000	0.3000	0.3000	0.5500	0.0000	0.2000	0.2000	0.5000	0.1500	0.3500	0.2500	0.2000	2.0000	0.2500	0.2500	0.0000	46.0000	3.0000	0.0000	2.0000
0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.2200	0.0000	0.000	0.000	0.6300	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0006.09	0.000	0.0000	88.7000	0.0000
iene	<u>e</u>	nethane	omethane		hloride				methane	ō			ide	sne			ne	ene	ne	penzene	zene				Ether							
4-Chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	1,2-Dichlorobenzene	1,2-Dimethylbenzene	1,3-Dichlorobenzene	1,3/1,4-Dimethylbenzene	1,4-Dichlorobenzene	Benzene	Chlorobenzene	Ethylbenzene	Methyl-t-Butyl Ether	Styrene	Toluene	Aluminum	Antimony	Arsenic	Barium	Beryllium
				_	_			_									_	_	_						_		•	•	•	•		CS2-MW4-GW2-F Beryllium

MW4	CS2-MW4-GW2-F	Cadmium	0.0000	5.0000	D	l/an	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Calcium	97200.0000	0.0000	æ	l/gn	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Chromium	0.0000	10.0000	Ω	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Cobalt	0.0000	0000.6	ם	ug/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Copper	0.0000	25.0000	Π	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F		6.1000	0.000	()B	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Lead	0.0000	2.0000	n	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Magnesium	49400.0000	0.0000	В	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Manganese	18.5000	0.000		ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	È	0.0000	0.2000	Ω	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Nickel	0.0000	31.0000	Ω	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Potassium	0.0000	2240.0000	Ω	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	mn	0.0000	3.0000	Ω	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Silver	0.0000	10.0000	n	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Sodium	10900.0000	0.0000	В	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Thallium	0.0000	4.0000	ΩΓ	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Vanadium	0.0000	7.0000	D	ng/l	CLP	COMPUCHEM
MW4	CS2-MW4-GW2-F	Zinc	0.0000	3.0000	D	l/gn	CLP	COMPUCHEM
SB2	CS2-SB2-0-05	1, 1, 1-Trichloroethane	0.0000	9.0000	n	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,1,2,2-Tetrachloroethane	0.0000	9.0000	ם	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,1,2-Trichloroethane	0.0000	9.0000	Ω	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,1-Dichloroethane	0.0000	9.0000	n	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,1-Dichloroethylene	0.0000	9.0000	D	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,2-Dichlorobenzene	0.0000	9.0000	n	ug/kg	8240	PACE
SB2	CS2-SB2-0-05		0.0000	0000.9	D	ug/kg	8240	PACE
SB2	CS2-SB2-0-05		0.0000	9.0000	n	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,2-Dichloropropane	0.0000	9.0000	Ω	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,3-Dichlorobenzene	0.0000	9.0000	D	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,3-cis-Dichloropropylene	0.0000	9.0000	D	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,3-trans-Dichloropropylene		9.0000	Ω	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	1,4-Dichlorobenzene	0.0000	9.0000	n	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	2-Butanone	0.0000	12.0000	n	ug/kg	8240	PACE
SB2	CS2-SB2-0-05	2-Chloroethylvinyl ether	0.0000	0000'9	Ω	ug/kg	8240	PACE

	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI P 3/90	CI.P 3/90	
•	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ue/ke	ug/kg	ng/kg
)		_	-	×	Ω	ш	¥	<u>, 1</u>	C	0	:			n	Ω	Ω		n	n	Ω	n	Ω	Ω	n	n	n	D	n	n	Ω	n	, D	n
	0.0000	0.000	0.000	0.000	0.1300	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	400.000	400.000	400.0000	0.0000	400.0000	1000.0000	400.0000	400.0000	400.000	1000.0000	400.000	400.000	400.000	400.0000	1000.0001	400.0000	400.0000	1000.0000	400.0000	400.0000
	700.0000	3.1000	380.0000	871.0000	00000	16.4000	290.0000	2.6000	1.2000	54.9000	9.2000	27.6000	51.0000	0.0000	0.0000	0.000	41.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000
	1770		Magnesium 5380.0000	Manganese 871.0000	λ.		Potassium 1290.0000	mn				dium		ne			4	propane)		lou	lenol .	o <u>l</u>				alene		Jinitrophenol	alene	lo	2-Nitroaniline 0.0000		3,3'-Dichlorobenzidine 0.0000
•	177C	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene 4	2,2'-Oxybis(1-Chloropropane)	2,4,3-1 richlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Umethylphenol	2,4-Dinitrophenol		2,0-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	enzidine

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90
ug/kg ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	D:	<b>&gt;</b>	Ω	Ω	n	n		n			Ω		Ω	Ω			Ω	Ω	Ω	_	Ω		Ω	Ω	Ω	n	n	ſ	D
1000.0000 400.0000 400.0000	400.0000	400.000	1000.0000	1000.0001	400.000	400.0000	0.000	400.000	0.000	0.000	400.0000	0.000	400.000	400.000	0.000	0.000	400.000	400.000	400.0000	0.000	400.000	0.000	400.000	400.000	400.000	400.000	400.000	0.0000	400.0000
0.0000	0.0000	0.0000	0.0000	0.000.0	0.000	0.0000	34.0000	0.000	43.0000	43.0000	0.0000	46.0000	0.0000	0.0000	58.0000	22.0000	0.0000	0.0000	0.0000	14.0000	0.000.0	97.0000	0.000.0	0.000.0	0.000	0.000	0.0000	26.0000	0.0000
3-Nitroaniline 4-Bromophenyl phenyl ether 6.0000 4-Chloro-3-methyl phenol 6.0000	at one lock	4-Chlorophenyl phenyl eurer 0.0000 4-Methylphenol 0.0000				Acenaphthylene 0.0000	Anthracene 34.0000	Benzo(a)anthracene 0.0000	Benzo(a)pyrene 43.0000	<u>.</u>		•	Butyl benzyl phthalate 0.0000	Carbazole 0.0000		Di-n-butyl phthalate 22.0000		ınthracene			Dimethyl phthalate 0.0000	iene			diene	Hexachlorocyclopentadiene 0.0000		,3-c,d)pyrene	
3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol	at one lock	4-Callotophenyl pnenyl eurer 4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	opentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
400.0000 400.0000 400.0000 400.0000 0.0000 0.0000 400.0000 0.0000 4.1000 2.1000 4.1000 4.1000 4.1000 4.1000 4.1000 2.1000 4.1000 4.1000 2.1000 4.1000 4.1000	41.0000 82.0000 41.0000 41.0000 41.0000 210.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Chloroethyl) phthalate 4,4'-DDD 4,4'-DDT Aldrin Dieldrin Endosulfan II Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor Heptachlor Methoxychlor	1016 1221 1242 1248 1254 1260 hene
N-Nitroso N-Nitroso Naphthale Nitrobenz Pentachlor Phenanthr Phenol Pyrene bis(2-Chlo bis(2-Ethy 4,4'-DDD 4,4'-DDT Aldrin Dieldrin Endosulfa Endosulfa Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at Endrin at	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-12560 Toxaphene
	CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1 CS2-SB2-0-05 PCB-1

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	n	Ω	n	Ω	n	Ω	n	Ω	Ω	n	n	Ω	n	Ω	Ω
2.1000	2.1000	2.1000	2.1000	2.1000	2.1000	9.0000	9.0000	9.0000	9.0000	0000.9	0000.9	9.0000	9.0000	0000.9	9.0000	0000.9	0000.9	0000.9	13.0000	9.0000	13.0000	13.0000	13.0000	9.0000	0000.9	0000.9	9.0000	9.0000	0000.9	13.0000	9.0000	0000.9
0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000
alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane
CS2-SB2-0-05	CS2-SB2-0-05	CS2-SB2-0-05	CS2-SB2-0-05	CS2-SB2-0-05	CS2-SB2-0-05	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	rACE PAGE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP	a. D	d d	CLP	d. I.	G. P.	d D	ָבָּ בַּ	֡֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	כרג										
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mo/ko	mo/ko	mg/ng mg/kg	mg/kg
Ω	Ω	Ω	æ	Ω	Ω	Ω	Ω	Ω	n	Ω		UĽ	×	L	C	Þ			-			٦	-	×	Ω	Ħ	×	NF.		<b>C</b>	> <b>=</b>	)	
9.0000	13.0000	13.0000	0.0000	0000.9	9.0000	6.0000	6.0000	13.0000	13.0000	6.0000	0.000	2.6000	0.0000	0.000	0.000	0.2000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.1300	0.0000	0.0000	0.2000	0.0000	0.0000	0.2000	00000	0.000
0.0000	0.0000	0.0000	4.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	17500.0000	0.0000	6.7000	251.0000	0.9400	0.0000	2070.0000	23.4000	13.7000	31.9000	39000.0000	23.8000	3100.0000	2230.0000	0.0000	38.2000	2200.0000	0.0000	3.5000	66.5000	0.0000	41 6000	11.0000
Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	
CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	
SB2	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SBZ	SB2	SB2	SBZ	SB2	SB2	SBZ	SB2	SB2	SB2	SB2	SB2	SBZ	SBZ	SBZ	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP 3/90	CLP 3/90		CLP 3/90				CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90						
mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	Ω	Ω	n		Ω	n	Ω	n	Ω	n	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω
0.0000	410.0000	410.0000	410.0000	0.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	1000.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0001	1000.0000	410.0000	410.0000	410.0000	410.0000
72.4000	0.000	0.0000	0.0000	0000.09	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
Zinc 72.4000	1,2,4-Trichlorobenzene 0.0000		1,3-Dichlorobenzene 0.0000	v	Thloropropane)		2,4,6-Trichlorophenol 0.0000	2,4-Dichlorophenol 0.0000	ol				2-Chloronaphthalene 0.0000		phenol		2-Methylphenol 0.0000	2-Nitroaniline 0.0000		3,3'-Dichlorobenzidine 0.0000		her	4-Chloro-3-methyl phenol 0.0000	4-Chloroaniline 0.0000	phenyl ether	oi	4-Nitroaniline 0.0000	4-Nitrophenol 0.0000	Acenaphthene 0.0000	Acenaphthylene 0.0000	Anthracene 0.0000	Benzo(a)anthracene 0.0000
			1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyi phenyl ether	4-Methylphenol	4-Nitroaniline					

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLF 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP
ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ng/kg	ug/kg no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg
חממ	<b>)</b>	Ω	D;	) <b>;</b>	o =	) <b>=</b>	n	n	Ω	Ω	Ω	Ω	Ω	Ω	n	D	Ω	D	D	n	D	D	n	n	D	Ω	n	8	n
410.0000	410.0000	410.0000	410.0000	410.0000	410,000	410.000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.0000	4.1000
0.0000	0.0000	0.0000	0.000	0.000	0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	100.000	0.0000
Benzo(a)pyrene  Benzo(b)fluoranthene  0.0000 Benzo(ghi)pervlene	thene	ryl phthalate		Di-n-hutyl nhthelete 0.0000		ene		es	halate	iene				diene		3-c,d)pyrene		N-Nitrosodi-N-Propylamine 0.0000				ienol	ithrene	Phenol 0.0000		oxy)methane		Thexy1)phthalate	4,4'-DDD 0.0000
	Benzo(k)fluoranthene	Butyl benzyl phthalate		Din-hityl ahtholate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	n	Ω		Ω	n	n	n	D	n	n	-	n	Ω	n	Ω	n	n	n	n	Ω	n	n	D	Ω	n	Ω	Ω	n	Ω	n	n	n
4.1000	4.1000	2.1000	0.0000	2.1000	4.1000	4.1000	4.1000	4.1000	4.1000	2.1000	0.0000	21.0000	41.0000	82.0000	41.0000	41.0000	41.0000	41.0000	41.0000	210.0000	2.1000	2.1000	2.1000	2.1000	2.1000	2.1000	0000'9	0000'9	9.0000	9.0000	9.0000	9.0000
0.0000	0.0000	0.0000	1.0000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.5000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1, 1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene
CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-55-6	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75
SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	I ACE	PACE	PACE	יויערו
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	0770	8240	2 I.J	ij
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	no/ko	20/20	ug/ng no/ko	mo/ko	e, ve
Ω	n	n	Ω	n	Ω	Ω	Ω	Ω	D	D	n	n	n	Ω	n	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	Ω	n	Ω	n	=	=	)	
6.0000	9.0000	0000.9	9.0000	9.0000	0000.9	0000.9	13.0000	6.0000	13.0000	13.0000	13.0000	9.0000	0000'9	9000.9	0000.9	6.0000	0000'9	13.0000	6.0000	6.0000	9.0000	13.0000	13.0000	0000.9	6.0000	6.0000	9.0000	0000'9	13.0000	13,000	6.000	0.000	1
0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	12700.0000	
1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	<b>Bromodichloromethane</b>	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum 1	
CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	
SB2	SBZ	SB2	SBZ	282	SBZ	SBZ	SB2	SB2	SB2	SB2	SBZ	SBZ	SBZ	SB2	SB2	SB2	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
<u>a.</u>	2 I	CLP CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
mø/kø	mo/ko	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
OL.	<u> </u>	: 1	C	Ď			ſ			_	1	×	Ω	П	×	OL		0	D			n	n	Ω	n	Ω	Ω	D	D	n	D	Ω
2.6000	0.000	0.0000	0.0000	0.2000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1400	0.0000	0.0000	0.1900	0.0000	0.0000	0.1900	0.0000	0.0000	420.0000	420.0000	420.0000	420.0000	420.0000	1000.0000	420.0000	420.0000	420.0000	1000.0001	420.0000
0.0000	6.4000	138.0000	0.8600	0.0000	2370.0000	21.1000	12.2000	26.4000	900.000	22.1000	3150.0000	1170.0000	0.0000	38.2000	1300.0000	0.0000	2.5000	61.0000	0.0000	34.2000	62.7000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium 2	Chromium	Cobalt	Copper		Lead	Magnesium 3	Manganese 1	Mercury	Nickel	Potassium 1	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene
CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75
SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	n	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	n	Ω	Ω	n	n	Ω	Ω	n	Ω	n	Ω	Ω	Ω	Ω	D	n		Ω	n	Ω	Ω
420.0000	420.0000	420.0000	1000.0000	420.0000	420.0000	1000.0000	420.0000	420.0000	1000.0000	420.0000	420.0000	420.0000	420.0000	420.0000	1000.0000	1000.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000	420.0000	420.0000	420,0000	420.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	26.0000	0.0000	0.0000	0.0000	0.0000
2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate
CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75	CS2-SB2-7-75
SB2	SB2	SBZ	SB2	SBZ	SB2	SBZ	SB2	SBZ	SB2	SBZ	SB2	SBZ	SBZ	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SBZ	SB2	SBZ	SB2	SB2	SB2	SB2	SB2	SB2

PACE PACE PACE	PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90	CLF 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
במכם:	000	בכ	<b>)</b>	Ω	n	<b>)</b> :	o :	o =	o D	n	Ω	n	В	Ω	n	n	Ω	n	Ω	Ω	D	n	Ω	n	Ω	D
420.0000 420.0000 420.0000	420.0000 420.0000 420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420 0000	420.0000	420.0000	420.0000	420.0000	0.000	4.2000	4.2000	4.2000	2.1000	4.2000	2.1000	4.2000	4.2000	4.2000	4.2000	4.2000	2.1000	2.1000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0000	0.0000	0.000	0.0000	0.0000	150.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000
nlate	Hexachlorocyclopentadiene 0.0000 Hexachlorocyclopentadiene 0.0000			-Propylamine	shenylamine		<b>.</b>	Pentachlorophenol U.VOOU Phenanthrene 0.0000		Pyrene 0.0000	hoxy)methane	hyl) ether	lhexyl)phthalate 15			4,4'-DDT 0.0000		Dieldrin 0.0000		Endosulfan II 0.0000	Endosulfan sulfate 0.0000	Endrin 0.0000	Endrin aldehyde 0.0000	Endrin ketone 0.0000	Heptachlor 0.0000	Heptachlor epoxide 0.0000
halate	nexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene		Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	lenoi	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate 15	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate		Endrin aldehyde	Endrin ketone		xide

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CL	8240 8240 8240 8240 8240 8240 8240 8240
ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
21.0000 42.0000 42.0000 42.0000 42.0000 210.0000 2.1000 2.1000 2.1000 2.1000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	6.0000 6.0000 6.0000 12.0000 12.0000 12.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Toxaphene alpha-BHC gamma-BHC gamma-BHC gamma-Chlordane 11,1,2,2-Tetrachloroethane 11,1,2-Trichloroethane 11,1,2-Trichloroethane 11,1,2-Dichloroethane 11,1-Dichloroethane 11,2-Dichloroethane	, 3-Dichlorobenzene , 3-cis-Dichloropropylene , 3-trans-Dichloropropylene , 4-Dichlorobenzene
Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1250 Toxaphene alpha-BHC alpha-BHC gamma-BHC gamma-Chlordane beta-BHC gamma-Chlordane 1,1,2,2-Tetrachloroeth 1,1,2,2-Tetrachloroeth 1,1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	1,3-Dichlorobenzene 1,3-cis-Dichloropropy 1,3-trans-Dichloroprop 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl eth 2-Hexanone 2-Propanone 4-Methyl-2-pentanone
	CS2-SB2-75-8 1,3-Dichlor CS2-SB2-75-8 1,3-cis-Dich CS2-SB2-75-8 1,3-trans-Di CS2-SB2-75-8 1,4-Dichlor CS2-SB2-75-8 2-Butanone CS2-SB2-75-8 2-Chloroeth CS2-SB2-75-8 2-Hexanone CS2-SB2-75-8 2-Propanone CS2-SB2-75-8 2-Propanone

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP												
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Ω	D	Ω	D	D	D	D	n	D	n	Ω	Ω	В	Ω	D	Þ	D	D	Þ	D		ď	×	J	0	D			<u>-</u>			J	ſ
9.0000	0000.9	9.0000	0000.9	0000.9	0000.9	12.0000	0000.9	0000.9	0000.9	12.0000	12.0000	0.000	0000.9	0000.9	0000.9	9.0000	12.0000	12.0000	0000.9	0.0000	2.4000	0.000	0.0000	0.000	0.1800	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000
0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	2.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	18000.0000	0.0000	15.6000	292.0000	0.7600	0.0000	3000.0000	22.8000	33,3000	31.1000	38000.0000	23.2000	3250.0000
Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium
CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8
SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
G G G	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLF 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90		
mg/kg mg/kg mg/kg	mg/kg mg/kg	mg/kg mo/ko	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg "	ug/kg	ug/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Z D E	d K	C	0		;	<b>)</b> :	o <b>=</b>	o D	Ω	Ω	Ω	Ω	<b>:</b>	o :	<b>)</b> =	ם ם	Ω	Ω	Ω	Ω	Ω	Ω	m	n	Ω	Ω
0.0000	0.1900	0.000 0.000 0.000	0.0000	0.0000	0.0000	410.0000	410,0000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410,000	410.0000	1000.0001	410.0000	410.0000	1000.000	410.0000	410.0000	1000.0000	410.0000	410.0000
870.0000 0.0000 41.3000	0.0000	3.3000 57.7000	0.2300	41.9000	71.0000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000
e 287	ium 212 um	Sodium 57.7000	1	dium	•	1,2,4-11Ichlorobenzene 0.0000	zene		propane)		phenol	loue	10	<u> </u>		Je		phenol	alene	lo l			benzidine	3-Nitroaniline 0.0000	er	4-Chloro-3-methyl phenol 0.0000
nese 287	Selenium 212	Sulver Sodium 5	Thallium	Vanadium	Teightomban	1,2,4-11tcmlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	loue	2.4-Dimethylphenol	2,4-Duntrophenol	2,4-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	hyl phenol

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90. CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 1000.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
e  I phenyl ether  I e  acene  anthene  ylene  halate  halate  alate  2	Hexachlorobenzene 0.0000 Hexachlorobutadiene 0.0000 Hexachlorocyclopentadiene 0.0000 Hexachloroethane 0.0000 Indeno(1,2,3-c,d)pyrene 0.0000 Isophorone 0.0000 N-Nitrosodi-N-Propylamine 0.0000 N-Nitrosodiphenylamine 0.0000
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate Eluoranthene Fluoranthene	iii ne

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CL P	PCB-CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	n	Ω	n	IJ	n	Ω	ī	Ω	Ω	Ω	Ω	D	Ω	n	Ω	Ω	Ω	n	Ω	n	D	n	Ω	n	Ω	n	D	n	D	D	Þ	Ω
410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.0000	4.1000	4.1000	4.1000	2.1000	4.1000	2.1000	4.1000	4.1000	4.1000	4.1000	4.1000	2.1000	2.1000	21.0000	41.0000	82.0000	41.0000	41.0000	41.0000	41.0000	41.0000	210.0000	2.1000	2.1000	2.1000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	82.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane		bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC
CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8	CS2-SB2-75-8
SB2	SBZ	282	SBZ	282	SBZ	SB2	SB2	SB2	SB2	SBZ	SBZ	SBZ	SBZ	SBZ	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2	SB2

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ug/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ~	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
מממ	םם	ם ס	ם	Ω	D	ם	Ω	D	Ω	n	D	n	Ω	Ω	Ω	n	Ω	n	Ω	Ω	n	n	Ω	Ω	n	n	D	ם	Ω
2.1000 2.1000 2.1000	6.0000	0000.9	9.0000	0000'9	9.0000	0000.9	0000'9	9.0000	9.0000	9.0000	9.0000	9.0000	13.0000	9.0000	13.0000	13.0000	13.0000	0000.9	9.0000	90000	9.0000	9.0000	9.0000	13.0000	9.0000	9.0000	0000.9	13.0000	13.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
	1,1,1-Trichloroethane 0.0000	ethane			ızene					1,3-cis-Dichloropropylene 0.0000	pylene			2-Chloroethylvinyl ether 0.0000	2-Hexanone 0.0000	2-Propanone 0.0000	4-Methyl-2-pentanone 0.0000	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000	Carbon Disulfide 0.0000	Carbon Tetrachloride 0.0000	Chlorobenzene 0.0000	Chloroethane 0.0000	Chloroform 0.0000	Dibromochloromethane 0.0000	Ethylbenzene 0.0000	Methyl bromide 0.0000	Methyl chloride 0.0000
delta-BHC gamma-BHC gamma-Chlordane	ane	1,1,2-Trichloroethane	l 1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone		1 4-Methyl-2-pentanone	1 Benzene	Bromodichloromethane	Bromoform	Ð	loride	1 Chlorobenzene			nethane			

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE	PACE	PACE														
8240	8240	8240	8240	8240	8240	8240	8240	CLP	G.P.	CLP CLP	CLP	CLP	CLP	CI.P	ر د ه	CLP	GI.P	d I	a 1	CI.P	d'ID	d i	C C	CLP	CLP	CLP	d. D	d L	<u>a</u>	<u>a</u> <u>1</u>	CI P 3/90	CLP 3/90
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	me/ke	mø/kø	mg/kg	mg/kg	mø/kø	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mø/kø	mø/kø	mo/ko	110/ko	ug/kg
æ	Ω	n	n	n	n	Ω	D		UL	¥	J	C	Ð			_			1	-	×	D	Ħ	×	_	С	· C	· ⊃		<b>C</b>	· =	n
0.0000	0000.9	9.0000	90000	0000.9	13.0000	13.0000	9.0000	0.0000	2.4000	0.0000	0.0000	0.0000	0.1800	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1300	0.000	0.0000	0.0000	0.000	0.0000	0.1800	0.0000	0.0000	420,0000	420.0000
2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	12700.0000	0.0000	8.8000	162.0000	0.7200	0.0000	3600.0000	16.4000	11.1000	15.7000	19400.0000	27.5000	2370.0000	1160.0000	0.0000	17.4000	1390.0000	0.4100	1.4000	45.9000	0.000	33.2000	54.0000	0.0000	0.0000
Methylene chloride	Styrene	Tetrachloroethylene	Toluene	I richloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene
CS2-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1
SB3	283	5B3	583	263	583	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

PACE PACE PACE PACE PACE	PACE PACE PACE	PACE PACE	PACE PACE	PACE	PACE PACE	PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90
ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg //.e	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ם ממ		חח	חם	n	ם ם	n	םם	Ω	n	ם ב	כס	n	n	n	n	Ω	Ω	n	Ω	ם
420.0000 0.0000 420.0000 11100.0000 420.0000	420.0000 420.0000 1100.0000 420.0000	420.0000	420.0000	420.0000	420.0000 1100.0000	420.0000	420.0000 1100.0000	420.0000	420.0000	420.0000	420.0000	1100.0000	1100.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000
0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000
1,3-Dichlorobenzene 0.0000 1,4-Dichlorobenzene 56.0000 2,2'-Oxybis(1-Chloropropane) 0.0000 2,4,5-Trichlorophenol 0.0000 2,4,6-Trichlorophenol 0.0000	henol nol suele			2-Methylnaphthalene 0.0000		;	3,3'-Dichlorobenzidine 0.0000 3-Nitroaniline 0.0000	her			4-Methylphenol 0.0000		4-Nitrophenol 0.0000	Acenaphthene 0.0000	Acenaphthylene 0.0000	Anthracene 0.0000	Benzo(a)anthracene 0.0000		<b>J</b>	Benzo(ghi)perylene 0.0000
gropane)	2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol	1 2,6-Dinitrotoluene 1 2-Chloronaphthalene		1 2-Methylnaphthalene		1 2-Nitrophenol	enzidine enzidine	l 4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol		4-Methylphenol	l 4-Nitroaniline	l 4-Nitrophenol	1 Acenaphthene	l Acenaphthylene	I Anthracene	l Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI.P 3/90	CI P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
Ω	Ω	n	ח		Ω	Ω	Ω	Ω	n	n	Ω	n	n	D	n	D	Ω	n	ח	ם	D	n	D	Ω	n	n	n	В	n	D	n	Ω	
420.0000	420.0000	420.0000	420.0000	0.000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	1100.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000	4.2000	4.2000	4.2000	2.1000	
0.0000	0.0000	0.0000	0.000	26.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	170.0000	0.0000	0.0000	0.0000	0.0000	
Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	
CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CSZ-SB3-05-1	CS2-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CSZ-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	CS2-SB3-05-1	
SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	253	SB3	5B3	263	SBS	<b>SB3</b>	SB3	SB3	SB3	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE	PACE PACE	PACE PACE PACE
PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG-CLP PG	8240 8240	8240 8240	8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg ug/kg
כת כתכ תמכתכתכת בתתכתכת	ככ	ם מ	000
0.0000 2.1000 4.2000 4.2000 4.2000 2.1000 2.1000 42.0000 42.0000 42.0000 42.0000 2.1000 2.1000 2.1000 2.1000 2.1000 6.0000 6.0000	6.0000 6.0000	6.0000	6.0000 6.0000 6.0000
12.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000
1 Iane		ylene izene	1,2-Dichloroethane 0.0000 1,2-Dichloropropane 0.0000 0.0000
Dieldrin Endosulfan I Endosulfan II Endosulfan III Endosulfan sulfate Endrin aldehyde Endrin aldehyde Endrin aldehyde Endrin betone Heptachlor Heptachlor PCB-1016 PCB-1221 PCB-1221 PCB-1242 PCB-1242 PCB-1254 PCB-1254 PCB-1260 Toxaphene alpha-BHC alpha-Chlordane beta-BHC gamma-Chlordane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethylene 1,2-Dichlorobenzene	ane ylene pane

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg
n	n	Ω	Ω	n	D	D	n	Þ	n	Ω	n	n	Ω	n	n	n	n	n	Ω	n	В	n	n	n	D	D	n	n		ΠΓ	×	_
0000.9	9.0000	0000.9	0000'9	13.0000	9.0000	13.0000	13.0000	13.0000	0000.9	00000	000009	0000.9	9.0000	0000.9	13.0000	9.0000	9.0000	0000'9	13.0000	13.0000	0.000	0000.9	0000.9	0000'9	0000.9	13.0000	13.0000	9.0000	0.0000	2.2000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	5.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9100.0000	0.0000	2.8000	61.6000
		opylene	openzene		vivinyl ether			l-2-pentanone		oromethane			loride	ē	ย		romethane				ne chloride		oroethylene		lene			Xylenes (TOTAL) 0.0000	Aluminum 9100.0000	Antimony 0.0000	Arsenic 2.8000	Barium 61.6000
1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Вготобогт	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE
CLP 3/80 CLP 3/80 CLP 3/80 CLP 3/80 CLP 3/80 CLP 3/80 CLP 3/80 CLP 3/80	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg
0.0000 0.1700 0.0000 0.0000 0.0000 0.0000 0.0000 0.1300 0.0000 0.0000 0.0000 0.0000 0.0000 420.0000 420.0000 420.0000	420.0000 1000.0000 420.0000 420.0000 420.0000
0.3100 0.0000 14.9000 6.4000 12.2000 13.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000
4640 1690 1690 1690 1700 1800 1800 1800 1800 1800 1800 180	2,4-Dimethylphenol       0.0000         2,4-Dinitrophenol       0.0000         2,4-Dinitrotoluene       0.0000         2,6-Dinitrotoluene       0.0000         2-Chloronaphthalene       0.0000         2-Chlorophenol       0.0000
Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Ly,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 3,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 3,4-Dichlorophenol	- e

	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CI P 3/90	CL P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CL.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ē	<b>)</b> ;	<b>)</b>	Þ	ב	ם	n	n	n	מ	Ò	n	ח	ם	ב	ם	D	Ω	'n	m	í	'n	C)	Ω	Ω	n		ſΩ	ſΩ	n	Ω	Ω	Ω	n
1000 0000	1000,0000	420.0000	420.0000	1000.0000	420.0000	420.0000	1000.0000	420.0000	420.0000	420.0000	420.0000	420.0000	1000.0000	1000.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000
0000	9000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	35.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2-Methyl-4.6-Dinitrophenol	2-Mothylpophthalon	2-iviculy mapping in a control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	z-Memyiphenol	Z-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene
CS2-SB3-65-7	CS2-CR3-65-7	1-59-585-65J	7-C0-C0C-7C2	CSZ-SB3-63-7	CSZ-SB3-63-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7
SB3	SR3	CR3	COS	cac	253	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	283	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg	ug/kg ug/kg ug/kg ug/kg ug/kg
420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000 420.0000	4.0000 4.0000 2.0000 20.0000 40.0000 80.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ulorobenzene ulorobutadiene ulorocyclopentadiene ulorocthane (1,2,3-c,d)pyrene sodi-N-Propylamine sodiphenylamine alene nnzene ulorophenol threne hloroethoxy)methane hloroethyl) ether thylhexyl)phthalate DD DD DD DT Iffan II Iffan II Iffan II	Endrin         0.0000           Endrin aldehyde         0.0000           Endrin ketone         0.0000           Heptachlor         0.0000           Methoxychlor         0.0000           PCB-1016         0.0000           PCB-1221         0.0000
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorochane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 4,4'-DDF 4,4'-DDF 4,4'-DDF 6,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan II Endosulfan sulfate	ehyde one r epoxide ılor

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	DACE	PACE	PACE	race
PCB-CLP	PCB-CL.P	PCB-CLP	PCB-CL.P	PCB-CLP	PCR-CI P	PCR-CI P	PCR-CI P	PCR-CI P	PCR-CL P	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	0470
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	no/ko	up/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	uo/ko	no/ko	10/kg	ug/kg ng/kg	46/48 119/49	gu/gn
D	Ω	D	Ω	n	D	n	) )	n	D	Ω	Ω	n	m	ñ	m	m	n	n	n	n	n	n	m	'n	В	m	ſŊ	В	fil	; <u>=</u>	S =	3 =	3
40.0000	40.000	40.000	40.000	40.000	200.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	0000'9	9.0000	9.0000	0000.9	0000.9	0000.9	0000'9	0000'9	9.0000	0000'9	0000'9	0000.9	9.0000	0.0000	0000.9	12.0000	0.000	12.0000	6.000	0000.9	0000	2000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	19.0000	0.0000	0.000	4.0000	0.0000	0.000	0.0000	0.000	)
PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1, 1, 2-Trichloroethane	1, 1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether		2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	!
CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB3-65-7	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	
SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB3	SB4	SB4	B4	SB4	SB4	SB4	SB4	SB4	1 PA	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	CLP CLP CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	mg/kg mg/kg mg/kg
	U
6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	0.0000 0.1200 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 150.0000 150.0000 133.9000 17200.0000 95.4000	959.0000 0.0000 15.3000
Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Styrene Tetrachloroethylene Trichloroethylene Trichloroethylene Vinyl Acetate Vinyl Acetate Vinyl Acetate Vinyl chloride Styrene Trichloroethylene Toluene Trichloroethylene Toluene Trichloroethylene Chunlium Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Cadmium Cadmium Calcium Lead Magnesium	Manganese Mercury Nickel
CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05	CS2-SB4-0-05 CS2-SB4-0-05 CS2-SB4-0-05
SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4	SB4 SB4 SB4

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90			CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	
me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	In	C	OB)	3	i	×	D	Ω	n		n	n	Ω	n	n	n	D	n	Ω	n	n	Ω	n	Ω	n	Ω	Ω	n	Ω	Ω	Ω	Ω
0.0000	0.2000	0.0000	0.0000	0.000	0.000	0.000	390.0000	390.0000	390.0000	0.0000	390.0000	970.0000	390.0000	390.0000	390.0000	970.0000	390.0000	390.0000	390.0000	390.0000	970.0000	390.0000	390.0000	970.0000	390.0000	390.0000	970.0000	390.0000	390.0000	390.0000	390.0000	390.0000
1430.0000	0.0000	1.5000	226.0000	0.2600	23.9000	93.0000	0.0000	0.0000	0.0000	59.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Potassium 1-	Selenium	Silver		Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine		4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol
CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05
SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg
970.0000 970.0000 390.0000 390.0000 390.0000 390.0000 390.0000 0.0000 390.0000 390.0000 390.0000 390.0000 390.0000 390.0000 390.0000 390.0000 390.0000 390.0000 390.0000	390,0000 390,0000 390,0000 390,0000 970,0000
	8888888
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ne lene lene lene hracene rene oranthene i phthalate ohthalate an halate hthalate butadiene cyclopentadiene ethane 3-c,d)pyrene	iine
4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Di-nectyl phthalate Dibenzofuran Diethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-c,d)pyrene	i-N-Propylamine iphenylamine e ne ne phenol

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	
	CLP 3/30	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCR-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CL.P	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CL.P	PCB-CL P	PCR-CI P	PCB-CI P	PCB-CLP	
No.	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	
Ĭ	<b>.</b>	<b>-</b>	ם	n	В	n	D	ח	D	n	Ω	ם	Ω	D	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	D	D	n	Ω	ח	n	Þ	ם	'n	Ď	
300 0000	320.0000	0.0000	390.000	390.0000	0.0000	3.9000	3.9000	3.9000	1.9000	3.9000	1.9000	3.9000	3.9000	3.9000	3.9000	3.9000	1.9000	1.9000	19.0000	39.000	78.0000	39.0000	39.0000	39.0000	39.0000	39.0000	190.000	1.9000	1.9000	1.9000	1.9000	1.9000	1.9000	
0000	0.0000	110.0000	0.0000	0.000	50.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	
Phenoi	Disconti	ryrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	
CS2-SB4-0-05	50 0 Pd3 C37	CO-0-407-753	C32-384-0-03	CSZ-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	CS2-SB4-0-05	
SB4	CBA	100	100	0.84 0.17	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ħ	5	ī	'n	n	n	5	Ħ	5	m	m	n	n	В	n	n	8	ľ	n	n	'n	n	n	n	'n	n	ī	n	m	n	В	m	'n
0000.9	9.0000	9.0000	9.0000	9.0000	90000	9.0000	9.0000	9000.9	9.0000	9.0000	9000.9	90000	0.0000	9.0000	12.0000	0.0000	12.0000	9.0000	90000	90000	90000	900009	9.0000	12.0000	0000.9	90000	9000.9	12.0000	12.0000	0.0000	9000.9	0000.9
0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	2.0000	0.0000	0.000	1.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	18.0000	0.0000	0.0000
1,1,1-Trichloroethane	1, 1, 2, 2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene
CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55	CS2-SB4-5-55
SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4	SB4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
	CLP CLP CLP CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg
	O B B C C C C C C C C C C C C C C C C C
6.0000 12.0000 12.0000 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.2200 0.0000 410.0000 410.0000 0.0000
0.0000 0.0000 0.0000 0.0000 15200.0000 7.6000 83.0000 0.8400 0.8400 19.6000 7.2000 23.2000 24600.0000 253.0000 0.0000 253.0000 1140.0000	1.6000 52.8000 0.0000 32.9000 64.4000 0.0000 0.0000 100.0000
Toluene Trichloroethylene Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Silver Sodium Thallium Vanadium Zinc 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane)
CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55	CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55 CS2-SB4-5-55
SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4	SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4 SB4

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
1000.0000 410.0000 410.0000 1000.0000 410.0000 410.0000 410.0000 1000.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 1000.0000 1000.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000
00000 00000 00000 00000 00000 00000 0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrotoluene 2,6-Dimitrotoluene 2,6-Dimitrotoluene 2-Chlorophenol 2-Methyl-4,6-Dimitrophenol 2-Methylphenol 2-Witrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline	4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole
2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrace Benzo(a)pyrene Benzo(b)fluorant Benzo(k)fluorant Benzo(k)fluorant Benzo(k)fluorant Benzo(k)fluorant Benzo(k)fluorant
	CS2-SB4-5-55 4-Methy CS2-SB4-5-55 4-Nitroal CS2-SB4-5-55 4-Nitroal CS2-SB4-5-55 Acenaph CS2-SB4-5-55 Acenaph CS2-SB4-5-55 Benzo(a) CS2-SB4-5-55 Benzo(a) CS2-SB4-5-55 Benzo(a) CS2-SB4-5-55 Benzo(b) CS2-SB4-5-55 Benzo(c) CS2-SB4-5-55 Benzo(c) CS2-SB4-5-55 Benzo(c) CS2-SB4-5-55 Benzo(c) CS2-SB4-5-55 Carbazol

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
D	æ	n	n	Ω	n	Ω	Ω	Ω	Ω	n	n	n	n	Ω	n	n	n	n	Ω	Ω	n	n	n	n	В	Ω	Ω	Ω	Ω	n	D	Ω
410.0000	0.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.000	4.1000	4.1000	4.1000	2.0000	4.1000	2.0000	4.1000
0.0000	55.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000	0.000.0	0.0000	64.0000	0.000	0.000.0	0.0000	0.000	0.0000	0.000	0.000
																Ų	Ç	•	_	_	_	•			Ó	0	0	0	0			
Chrysene	Di-n-butyl phthalate		Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	,	Propylamine	ohenylamine			enol	threne		•	oxy)methane	yl) ether	lhexyl)phthalate			DT		Dieldrin		Endosulfan II
		Di-n-octyl phtha	Dibenzo(a,h)an									Hexachloroetha	Indeno(1,2,3-c,	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin		Endosulfan I	CS2-SB4-5-55 Endosulfan II

PACE PACE PACE PACE PACE PACE PACE PACE	PACE
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CL	8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg
	D ,
4.1000 4.1000 2.0000 2.0000 2.0000 2.0000 41.0000 41.0000 41.0000 2.0000 2.0000 2.0000 2.0000 2.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000	7.0000
00000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0.0000
Endosulfan sulfate         0.0           Endrin aldehyde         0.0           Endrin ketone         0.0           Heptachlor         0.0           Heptachlor         0.0           Methoxychlor         0.0           PCB-1221         0.0           PCB-1232         0.0           PCB-1248         0.0           PCB-1249         0.0           PCB-1240         0.0           PCB-1248         0.0           PCB-1249         0.0           PCB-1240         0.0           BCB-1254         0.0           PCB-1260         0.0           BCB-1260         0.0           BCB-1260         0.0           Bcan-1260         0.0           Bcan-1260         0.0           Bcan-1260         0.0           Bcan-1260         0.0           Bcan-1260         0.0           Bcan-126	1,3-trans-Dichloropropylene 0.000
ulfate yde e e coxide r r r r r r r r r r r r r r r r r r r	oropropylene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP	CLP	CI.P	CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
n	Ω	n	n	n	Ω	n	n	ר	Ω	n	ח	n	n	n	n	n	n	æ	n	Ω	n	n	n	n	n		_		_1	· C	>	
7.0000	13.0000	7.0000	13.0000	13.0000	13.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	13.0000	7.0000	7.0000	7.0000	13.0000	13.0000	0.000	7.0000	7.0000	7.0000	7.0000	13.0000	13.0000	7.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9090.0000	2.7000	23.1000	404.0000	0.4700	1.9000	85300.0000
1,4-Dichlorobenzene 0.0000		2-Chloroethylvinyl ether 0.0000		2-Propanone 0.0000	l-2-pentanone	Benzene 0.0000	oromethane	Bromoform 0.0000		loride	<u>n</u>	a)		omethane			Methyl chloride 0.0000			oroethylene		lene			OTAL)	Aluminum 9090.0000	Antimony 2.7000	Arsenic 23.1000	Barium 404.0000	Beryllium 0.4700	Cadmium 1.9000	Calcium 85300.0000
1,4-Dichlorobenzene	1 2-Butanone	1 2-Chloroethylvinyl ether	2-Hexanone	1 2-Propanone	l 4-Methyl-2-pentanone	1 Benzene	1 Bromodichloromethane	l Bromoform	I Carbon Disulfide	l Carbon Tetrachloride	1 Chlorobenzene	1 Chloroethane	l Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	1 Methyl chloride	1 Methylene chloride	1 Styrene	1 Tetrachloroethylene	I Toluene	1 Trichloroethylene	l Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	I Aluminum 909	1 Antimony	1 Arsenic 2				

PACE PACE PACE	PACE PACE	PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP CLP		CLP		CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
mg/kg mg/kg mg/kg	mg/kg mg/kg mg/ko	mg/kg	mg/kg me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
0	7	;	D m		ΠΓ	0	()B	0	۵	4 ⊃	n	n	n	n	D	Ω	n	n	ב	כ	ם	ם	n	n	n	n
0.0000	0.000.0	0.0000	0.1300 0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000 440.0000	440.0000	440.0000	440.0000	440.0000	1100.0000	440.0000	440.0000	440.0000	1100.0000	440.0000	440.0000	440.0000	440.0000	1100.0000	440.0000	440.0000
8888				_	_	_					_				_	_	_	_	_	_					_	_
24.3000 7.5000 23.2000	486.000C 780.000C	715.0000	0.0000	590,0000	0.0000	0.9700	105.0000	0.2000	22.3000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000
omium alt per	Lead 486.0000 Magnesium 4780.0000	11	Mercury 0.0000 Nickel 15.6000	Potassium 1590.0000	mn		<b>X</b>		Vanadium 22.3000	20 -Trichlorobenzene	1,2-Dichlorobenzene 0.0000			propane)		phenol		Ю				alene		2-Methyl-4,6-Dinitrophenol 0.0000	alene	2-Methylphenol 0.0000
wn	I Lead Magnesium	Manganese	<u> </u>	l Potassium	Selenium	Silver	l Sodium 1(	l hallium	mnip	1,2,4-Trichlorobenzene	l 1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1 2,2'-Oxybis(1-Chloropropane)	1 2,4,5-Trichlorophenol	1 2,4,6-Trichlorophenol	1 2,4-Dichlorophenol	l 2,4-Dimethylphenol	2,4-Dinitrophenol	l 2,4-Dinitrotoluene	1 2,6-Dinitrotoluene	1 2-Chloronaphthalene	1 2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90		CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90			
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
D	Ω	⊃	n	n	n	Ω	D	D	n	n	n	D	D	D	n	Ω	Ω	D	n	n	n	В	ר	D	D	D	Ω	n	Ω	D	Ω	Ω
1100.0000	440.0000	440.0000	1100.0000	440.0000	440.0000	440.0000	440.0000	440.0000	1100.0000	1100.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	0.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000	440.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000.0	0.000	0.000	0.000	0.000	48.0000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000
		3,3'-Dichlorobenzidine 0.0000		phenyl ether	hyl phenol		phenyl ether	lo				Acenaphthylene 0.0000		ene		ē	ene	thene	cyl phthalate			•	late	nthracene		e)	halate	ene		Hexachlorobenzene 0.0000	Hexachlorobutadiene 0.0000	Hexachlorocyclopentadiene 0.0000
2-Nitroaniline	1 2-Nitrophenol	1 3,3'-Dichlorobenzidine	1 3-Nitroaniline	4-Bromophenyl phenyl ether	1 4-Chloro-3-methyl phenol	1 4-Chloroaniline	4-Chlorophenyl phenyl ether	l 4-Methylphenol	4-Nitroaniline	4-Nitrophenol	1 Acenaphthene	I Acenaphthylene	l Anthracene	Benzo(a)anthracene	l Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Upbenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	l Fluoranthene	l Fluorene	Hexachlorobenzene	Hexachlorobutadiene	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
440.0000 440.0000 440.0000 440.0000 440.0000 440.0000 440.0000 440.0000 440.0000 440.0000 42000 4.2000	2.1000 4.2000 2.1000 4.2000 4.2000 4.2000 2.1000 2.1000 2.1000 42.0000 42.0000 42.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate 4,4'-DDD 4,4'-DDE	Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan III Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone Heptachlor Heptachlor PCB-1016 PCB-1221 PCB-1221 PCB-1242
CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1	CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1 CS2-SB5-05-1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg
D		ם	Ω	Ω	n	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	D	n	n	n	n	Ω	n	n	Ω
42.0000	0.000	210.0000	2.1000	2.1000	2.1000	2.1000	2.1000	2.1000	900009	9.0000	9.0000	9.0000	9.0000	9000.9	9.0000	0000.9	0000.9	0000'9	9.0000	0000.9	0000'9	12.0000	0000'9	12.0000	12.0000	12.0000	0000'9	0000'9	9.0000	9.0000	0000'9	0000.9
0.0000	770.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PCB-1254 0.0000	PCB-1260 770.0000	Toxaphene 0.0000	alpha-BHC 0.0000	ordane						ıane	Je	1,1-Dichloroethane 0.0000		4)			pane		opropylene	oropropylene	1,4-Dichlorobenzene 0.0000		ylvinyl ether			l-2-pentanone	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000	Carbon Disulfide 0.0000	loride	Chlorobenzene 0.0000
PCB-1254	PCB-1260	Toxaphene	l alpha-BHC	1 alpha-Chlordane	l beta-BHC	l delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform		Carbon Tetrachloride	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	mg/kg mg/kg mg/kg mg/kg
	n n
6.0000 6.0000 12.0000 12.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	0.0000 0.0000 0.2100 0.5700
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13700.0000 0.0000 121.0000 17.1000 9.7000 18.4000 17.1000 9.7000 18.4000 17.1000 9.7000 17.1000 9.7000 18.4000 17.1000 9.7000 17.1000 9.7000	21.9000 1070.0000 0.0000 0.0000
Chloroethane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methyl chloride Styrene Trichloroethylene Trichloroethylene Vinyl Acetate Vinyl Acetate Vinyl Acetate Vinyl Acetate Vinyl Acetate Chromium Antimony Arsenic Barium Beryllium Calcium Calcium Calcium Calcium Calcium Lead Magnesium Manganese Mercury	Nickel Potassium Selenium Silver
CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445 CS2-SB5 445	CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45
\$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{885}\$ \$\frac{885}{	SB5 SB5 SB5 SB5

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
G C C	CLP CI P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLF 3/30	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CI.P 3/90		
mg/kg mg/kg mg/kg	mg/kg uo/ko	ug/kg	ug/kg	ug/kg	ug/kg "	ug/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
()B U	<b>a</b> D	n	Ω	<b>)</b> ;	⊃;	<b>)</b>	> <b>=</b>	) )	Ω	n	Ω	n	Ω	n ·	Ω	Ω	Ω	n	Ω	Ω	n	n	n	n	Ω	D	D	Ω
0.0000	0.0000 410.0000	410.0000	410.0000	410.0000	410.000	1000.0000	410 0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	1000.000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	1000.0000	410.0000
91.9000 0.0000 29.0000	54.2000 0.0000	0.0000	0.0000	0.0000	0.000	0,000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
m ium dium	Linc 54.2000 1,2,4-Trichlorobenzene 0.0000				2.4 5-Trickloroshanol						ene	alene		phenol	alene	lo.		;	senzidine	•	er	hyl phenol		phenyl ether	0	4-Nitroaniline 0.0000	4-Nitrophenol 0.0000	Acenaphthene 0.0000
m ium dium	Linc 1,2,4-Trichlorobenzene	1,2-Dichlorobenzene		1,4-Dichlorobenzene	2,2 -Oxyois(1-Cillotopane)	2.4.6-Trichlorophenol		2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol		2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	Z-Nitrophenol	enzidine	3-INITOANIIINE	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug kg ug kg ug kg ug kg ug kg ug kg ug kg ug kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-cytyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane
CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45	CS2-SB5 4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-SB5-4-45 CS2-S

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	PCB-CLF	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240
ug/kg	ug/kg ng/kg	us/ks	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	Ξ	ה ה	Ω	n	ם	D	D	n	ם	n	D	n	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n	D	ח	n	n	Ω	Ω	n	Ω
410.0000	0.0000	4.1000	4.1000	2.1000	4.1000	2.1000	4.1000	4.1000	4.1000	4.1000	4.1000	2.1000	2.1000	21.0000	41.0000	82.0000	41.0000	41.0000	41.0000	41.0000	41.0000	210.0000	2.1000	2.1000	2.1000	2.1000	2.1000	2.1000	0000.9	00009	0000'9
0.0000	0.000	90	8	8	8	8	8	8	8	2	2	2	2	2	0	0	9	8	8	0	2	2	0	0	0	C	_	_	0	Õ	8
•	480.0	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.00	0.0	0.00	0.00	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.0000	0.0000	0.0000	0.0000
•	pninalate 48							ılfan sulfate		de	one		oxide	nlor										ordane			gamma-BHC 0.0000	) e		lane (	Ū
l) ether	ors(z-emymexy)/pnmajate 4c 4,4'-DDD		4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosultan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane (	1,1,1-Trichloroethane (	1,1,2,2-Tetrachloroethane (	Ū

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ממ	D	n	n	n	n	n	n	n	n	n	Ω	n	Ω	Ω	Ω	n	n	n	Ω	n	Ω	Ω	n	Ω	n	В	n	Ω	n	n	n
6.0000	0000.9	0000.9	9.0000	9.0000	0000.9	0000.9	9.0000	9.0000	12.0000	0000.9	12.0000	12.0000	12.0000	9.0000	9.0000	0000.9	0000.9	9.0000	9.0000	12.0000	9.0000	0000.9	0000.9	12.0000	12.0000	0.0000	0000.9	0000.9	9.0000	9000.9	12.0000
0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	8.0000	0.000	0.0000	0.000	0.0000	0.0000
1, 1-Dichloroethane 1, 1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate
CS2-SB6-05-1 CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1
SB6 SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
	8240	8240	CLP	CLP	CLP	CLP	d'IJ	ð	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90																	
•	ug/kg	ug/kg	mg/kg	me/ke	mg/kg	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
)	ם	Ω		_		1	<b>C</b>	Þ			0			u			Ω			N	<b></b> 3	()B	0	•	×	n	n	n	n	Ω	n	Ω	n
	12.0000	0000.9	0.0000	0.000	0.0000	0.000	0.000	0.2400	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.1500	0.0000	0.0000	0.1700	0.0000	0.0000	0.000	0.0000	0.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000
	0.0000	0.0000	16700.0000	3.2000	10.5000	146.0000	0.6100	0.0000	3350.0000	21.6000	10.5000	25.3000	29100.0000	69.7000	2840.0000	670.0000	0.0000	21.5000	2030.0000	0.0000	2.6000	60.7000	0.2600	38.9000	82.1000	0.000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
	Vinyl chloride	(OTAL)	Aluminum 16	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium 3	Chromium	Cobalt	ser .	Iron 29	Lead	7	Manganese	Mercury	Nickel	e .	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol
	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1	CS2-SB6-05-1
	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SB6	SBo	SB6	SB6	SBe	SB6	SB6	SB6

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg	ug/kg ug/kg ug/kg ug/kg
	G a G c G
410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 410.0000 0.0000 410.0000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 37.0000 0.0000
henol nol ene ene alene lalene l initrophenol halene l iphenyl ether thyl phenol e cene e cene nuthene	Butyl benzyl phthalate 0.0000 Carbazole 0.0000 Chrysene 0.0000 Di-n-butyl phthalate 37.0000 Di-n-octyl phthalate 0.0000
2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dimitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chloroaniline 4-Nitrophenol Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	ryl phthalate   phthalate 3 phthalate

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	410.0000 1000.0000 410.0000 410.0000 410.0000 0.0000 8.2000 8.2000 4.1000 8.2000 4.1000 8.2000 8.2000 8.2000 8.2000 8.2000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
anthracene late halate razene ttadiene clopentadiene hane c,d)pyrene A-Propylamine henylamine	Nitrobenzene         0.0000           Pentachlorophenol         0.0000           Phenanthrene         0.0000           Pyrene         29.0000           bis(2-Chloroethoxy)methane         0.0000           bis(2-Ethylhexyl)phthalate         470.0000           4,4'-DDD         0.0000           A,4'-DDE         0.0000           Aldrin         0.0000           Dieldrin         0.0000           Endosulfan I         0.0000           Endosulfan II         0.0000           Endrin aldehyde         0.0000           Endrin aldehyde         0.0000
Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine	ophenol ene ophenol an I n II n sulfate ehyde

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg ng/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
םמפ	ח	ם ם	n	Ω	n	n		D	n	Ω	n	Ω	Ω	n	Ω	n	Ω	Ω	n	Ω	Ω	ח	n	n	n	n	ב	כ	n
8.2000 4.1000	41.0000	82.0000 160.0000	82.0000	82.0000	82.0000	82.0000	0.0000	410.0000	4.1000	4.1000	4.1000	4.1000	4.1000	4.1000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	1500.0000	3100.0000	1500.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1200.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
Endrin ketone Heptachlor Hentachlor enoxide	Methoxychlor	PCB-1016 PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	, 1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	,2-Dichloropropane	,3-Dichlorobenzene	,3-cis-Dichloropropylene	,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether
西土土	Med		PCE	PCB	PCE	PC	PCI	To	alpl	alb	bet	del	gan	gan	1,1	1,1	1,1	<u>-</u> ,		<u>``</u>	<b>—</b> ;	<u>:</u>	<u>``</u>		<b>–</b>	<b>–</b>	<u>`</u> `	<b>5</b> -	7
CS2-SB6-05-1 E ₁ CS2-SB6-05-1 H ₁ CS2-SB6-05-1 H ₁		CS2-SB6-05-1 PCE	CS2-SB6-05-1 PCE	_	_				_															-	-	_			CS2-SB6-4-6 2.

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	240 2240 CLP CLP CLP CLP CLP CLP
<b>ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg</b>	ug/kg ug/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	UL UL OO OO OO OO OO OO OO OO OO OO OO OO OO
3100.0000 3100.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000 1500.0000	3100.0000 0.0000 2.9000 0.0000 0.0000 0.2200 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 73000.0000 7570.0000 0.0000 2.5000 69.3000 0.2800 0.0000 38900.0000 13.9000 7.9000
2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chlorochoromethane Ethylbenzene Methyl bromide Methyl chloride Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl Acetate	Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt
CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB6 4-6 CS2-SB	CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6
SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6	SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
L CO CC C C C C C C C C C C C C C C C C	0 K K K K K K D D
0.0000 0.0000 0.0000 0.1400 0.0000 0.0000 0.2000 0.2000 0.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000	1000.0000 410.0000 410.0000 410.0000 1000.0000 410.0000 410.0000 410.0000
24300.0000 21.6000 23700.0000 1090.0000 16.5000 875.0000 0.0000 110.0000 20.6000 34.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 2400.0000 0.0000 0.0000
3.7	24
Iron Lead Magnesium 237 Manganese IC Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Li.2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimethylphenol	nol eene ene halene li Dinitrophenol halene
243 237 10 16 e	2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/kg ug/kg ug/kg ug/kg ug/kg
RRTUU UUUUUUURRRRRUUUR	טטאאטט
1000.0000 410.0000 410.0000 410.0000 1000.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 410.0000 610.0000 610.0000 610.0000 610.0000	0.0000 410.0000 410.0000 410.0000 410.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	200.0000 0.0000 0.0000 0.0000 0.0000
3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Dibenzofuran Diethyl phthalate Dibenzofuran Diethyl phthalate	Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone
CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6	CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6 CS2-SB6-4-6
SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6 SB6	SB6 SB6 SB6 SB6 SB6 SB6

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
<b>KD-DD K-DR-DDDDDDD</b>	
410.0000 410.0000 0.0000 410.0000 0.0000 410.0000 4.1000 4.1000 2.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000	4.1000 4.1000 2.1000 2.1000 41.0000 41.0000 41.0000 41.0000 41.0000 210.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5300.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Propylamine 530 nol 59 (oxy)methane 15 (yl) ether 97 fate	Endrin aldehyde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor PCB-1016 PCB-1221 PCB-1222 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1250 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PCB-1260 PC
sodi-N-Propylamine sodiphenylamine alene sizene sizene silorophenol silorophenol solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solutrene solut	Endrin aldehyde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor PCB-121 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 Toxaphene

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP 8240 8240 8240 8240 8240 8240	8240 8240 8240 8240 8240	8240 8240 8240 8240 8240	8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	00000		
2. 1000 2. 1000 2. 1000 6. 0000 6. 0000 6. 0000 6. 0000 6. 0000 6. 0000	6.0000 6.0000 6.0000 6.0000	11.0000 6.0000 11.0000 11.0000 6.0000	6.0000 6.0000 6.0000 11.0000 6.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
alpha-BHC alpha-Chlordane beta-BHC delta-BHC gamma-Chlordane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene	opropobenz obenz ichlor obenz	2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane	Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane
CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB64-6 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2
SB6 SB6 SB6 SB6 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	មិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិន
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	()B ()B ()B
6.0000 11.0000 0.0000 6.0000 6.0000 11.0000 11.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5700 0.1900 0.1900
0.0000 0.0000 7.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5020.0000 8.0000 101.0000 1.6000 218000.0000	11.6000 4.7000 16.9000 11400.0000 41.9000 7770.0000 664.0000 11.5000 0.0000 0.0000 120.0000 13.5000
Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene Trichloroethylene Vinyl Acetate Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium
CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90	CLP 3/90
mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
<b>_</b>	n	n	n	Ω	Ω	Ω	Ω	n	n	n	Ω	n	n	n	n	Ω	n	n	n	M	Ω	Ω	Ω	n	n	Ω	n	Ω	n	ſ	n	5
0.0000	370.0000	370.0000	370.0000	370.0000	370.0000	940.0000	370.0000	370.0000	370.0000	940.0000	370.0000	370.0000	370.0000	370.0000	940.0000	370.0000	370.0000	940.000	370.0000	370.0000	940.0000	370.0000	370.0000	370.0000	370.0000	370.0000	940.000	940.000	370.0000	0.0000	370.0000	370.0000
2																																
112.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	36.0000	0.0000	0.0000
_	ne	zene	izene		hloropropane)	phenol	lol		2,4-Dimethylphenol 0.0000			ne	alene		initrophenol	alene	lo			benzidine		phenyl ether	hyl phenol	•	phenyl ether	<u></u>		4-Nitrophenol 0.0000		lene 3		Benzo(a)anthracene 0.0000
Zinc 1	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene 3	Anthracene	

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
55555				000000	
370.0000 370.0000 370.0000 370.0000	370.0000 370.0000 370.0000 370.0000	370.0000 370.0000 370.0000	370.0000 370.0000 370.0000 370.0000	370.0000 370.0000 370.0000 370.0000 370.0000	940.0000 370.0000 370.0000 370.0000 370.0000 3.7000
0.0000	0.0000 37.0000 0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 70.0000
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Butyl benzyl phthalate	Caroazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo(a.h)anthracene	Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene	Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene	Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate 4,4'-DDD
CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2	CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2 CS2-SB7-0-2
SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CL.P	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	Ω	D	n	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	U	Ω	Ω	Ω	Ω	Ω	n	Ω	n	n	ם	Ω	n
3.7000	3.7000	1.9000	3.7000	1.9000	3.7000	3.7000	3.7000	3.7000	3.7000	1.9000	1.9000	19.0000	37.0000	75.0000	37.0000	37.0000	37.0000	37.0000	37.0000	190.0000	1.9000	1.9000	1.9000	1.9000	1.9000	1.9000	2.0000	5.0000	2.0000	5.0000	2.0000	5.0000
0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene
CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB1-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-0-2	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4
SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB/	SB7	SB7	5B7	SB7	SB7	SB/	SB7	SB7	SB7	SB7	SB7	SB/	SB7	SB7	SB7	SB7	SB7							

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	8240 8240 8240 8240 8240 8240 8240 CLP
ugks ugks ugks ugks ugks ugks ugks ugks	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
5.0000 5.0000 5.0000 5.0000 5.0000 11.0000 11.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000	5.0000 5.0000 5.0000 5.0000 11.0000 5.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 14400.0000
1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,3-Cis-Dichlorobenzene 1,3-trans-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone Benzene Bromodichloromethane Bromoform Carbon Disulfide Carbon Disulfide Chlorobenzene Chloroethane Chloroethane Chloroethane Ethylbenzene Chloroethane Chloroethane Chloroethane Ethylbenzene Methyl bromide Methyl bromide	e e e
CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24	CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4
SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	a, IO	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ΩΓ		_	0	n			В			J			Ω			UL	0	OB OB	· C	:	B	n	Ω	D	Ω	n	n	n	Ω	n	Ω	D
2.4000	0.0000	0.000	0.0000	0.1800	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.1000	0.000	0.000	0.2000	0.000	0.0000	0.0000	0.0000	0.0000	360.0000	360.0000	360.0000	360.0000	360.0000	910.0000	360.0000	360.0000	360.0000	910.0000	360.0000
0.0000	10.3000	102.0000	0.5200	0.0000	2850.0000	20.5000	10.1000	21.7000	17900.0000	15.6000	670.0000	279.0000	0.000	20.9000	1400.0000	0.0000	1.3000	182.0000	0.2000	28.2000	62.1000	0.0000	0.0000	0.000							0.000	0.0000
Antimony	Arsenic	Barium	Beryllium	Ħ		Chromium	Cobalt	Copper	Iron 17	Lead	_	sse	Mercury	Nickel	Potassium 1	mn	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene
CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4	CS2-SB7-2-4
SB7	SB/	SB7	SB7	2B/	SB/	SB7	SB7	SB7	SB7	SB7	SB/	SB7	SB7	SB7	SB7	SB/																

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 187 kg 18	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000 360,0000	360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline 4-Nitrophenol	Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Diènzo(a,h)anthracene
CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24	CS2-SB7-2-4 A CS2-SB7-2-4 B CS2-SB7-2-4 B CS2-SB7-2-4 B CS2-SB7-2-4 B CS2-SB7-2-4 B CS2-SB7-2-4 B CS2-SB7-2-4 C CS2-SB7-2-4 C CS2-SB7-2-4 C CS2-SB7-2-4 C CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D CS2-SB7-2-4 D

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000 360.0000	0.0000 3.6000 3.6000 1.8000 1.8000 3.6000 3.6000 3.6000 1.8000 1.8000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	92.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Phenol Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate 4,4'-DDD 4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II Endrin alfahyde Endrin ketone Heptachlor Heptachlor epoxide
CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24	CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4 CS2-SB7-2-4
SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE
PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CL	8240 8240 8240 8240 8240 8240 8240 8240
ugkg ugkg ugkg ugkg ugkg ugkg ugkg ugkg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
18.0000 36.0000 36.0000 36.0000 36.0000 1.8000 1.8000 1.8000 31.0000 31.0000 31.0000 31.0000 31.0000 31.0000	31.0000 31.0000 31.0000 31.0000 62.0000 62.0000 62.0000
00000 00000 00000 00000 00000 00000 0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1248 PCB-1248 PCB-1254 PCB-1256 Toxaphene alpha-BHC alpha-Chlordane beta-BHC gamma-BHC gamma-Chlordane 1,1,2,2-Tetrachloroethane 1,1,2,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-cis-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 2-Propanone 4-Methyl-2-pentanone
CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-24 CS2-SB7-25 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5	CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5
\$87 \$87 \$87 \$87 \$87 \$87 \$87 \$87 \$87 \$87	SB7 SB7 SB7 SB7 SB7 SB7 SB7

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP												
ug/kg	ug/kg na/ka	ug/ng no/ko	us/ks no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
n:	<b>&gt;</b> =	<b>=</b>	) <u> </u>	'n	n	Ω	D		Ω	ם	Ω	Ω	ם	n	Ω	n	D			JD.	0	٦.	0	Þ			0B	æ		_	
31.0000	31.0000	31,000	31.0000	31.0000	62.0000	31.0000	31.0000	0.0000	62.0000	62.0000	31.0000	31.0000	31.0000	31.0000	31.0000	62.0000	62.0000	0.0000	0.000	2.2000	0.0000	0.0000	0.0000	0.1700	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000
0.0000	0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	210.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1000.0000	11900.0000	0.0000	6.2000	115.0000	0.6200	0.0000	3290.0000	19.4000	5.7000	19.3000	16400.0000	21.2000	3760.0000
Benzene Bromodickloromothers	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium
CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5	CS2-SB7-45-5
SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7	SB7

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE
មិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិនិន	CLP CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30 CLP 3/30
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg mg/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg
U B O O O O O O O O O O O O O O O O O O	<b>m</b> D D D D E	0000000	ממממממ ממ
0.0000 0.1300 0.0000 0.1900 0.0000 0.0000	0.0000 0.0000 420.0000 420.0000 420.0000 1000.0000	420.0000 420.0000 1000.0000 420.0000 420.0000	420.0000 0.0000 420.0000 1000.0000 420.0000 1000.0000 420.0000
150.0000 0.0000 16.7000 1060.0000 0.9000 205.0000 0.2800	29.6000 61.4000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	Vanadium Zinc 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,4 5-Trichlorophanol	2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	2-Curorophienol 2-Methyl-4,6-Dinitrophenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol
CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5	CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5	CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5	CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5 CS2-SB7-45-5
SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7	SB7 SB7 SB7 SB7 SB7 SB7 SB7 SB7

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CI P 3/90	CL 3/30	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90				CLP 3/90
ug/kg	uo/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	Ω	o D	Ω	n	n	n	n	n	n	Ω	n	n	Ω	n	n	8	Ω	n	_	ſ	Ω	Ω	Ω	n	Ω	Ω	Ω	n	Ω	n	Ω	
420.0000	420.0000	420.0000	1000.0000	1000.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000	420.0000	420.0000	0.0000	0.000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	420.0000	0.0000
0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	20.0000	0.000	0.000	30.0000	35.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	770.0000
4-Chloroaniline	4-Chlorophenyl phenyl ether		4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene
		4-Methylphenol		C.52-587-45-5 4-Nitrophenol		•	7	,	Benzo(a)pyrene			Benzo(k)fluoran	Butyl benzyl ph				Di-n-octyl phtha	Dibenzo(a,h)antl										Indeno(1,2,3-c,d				CSZ-SB1-45-5 Naphthalene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg
420.0000 1000.0000 0.0000 420.0000 420.0000 420.0000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 2.1000 2.1000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.20000	2.1000 2.1000 2.1000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Chloroethyl) ether bis(2-Chloroethyl) phthalate 4,4'-DDD 4,4'-DDE 4,4'-DDE Aldrin Dieldrin Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Prepachlor Prepachlor Prepachlor PCB-1016 PCB-1221 PCB-1221 PCB-1242 PCB-1248 PCB-1254 PCB-1260	<u>o</u>
Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy) bis(2-Chloroethyl) e bis(2-Chloroethyl) e bis(2-Ethylhexyl)ph 4,4'-DDD 4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I	alpha-BHC alpha-Chlordan beta-BHC
	CS2-SB7-45-5 alpha-BHC CS2-SB7-45-5 alpha-Chlordan CS2-SB7-45-5 beta-BHC

PACE PACE	PACE	PACE	PACE	PACE	race	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP	PCB-CLP	8240	8240	8240	0470	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg ng/kg	18/18 11/2:	ug/kg ng/kg	110/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ם מ	<b>)</b> :	<b>&gt;</b>	<b>&gt;</b>	) <b>=</b>	) <b>:</b>	> <b>=</b>	) <b>=</b>	o D	n	n	n	n	n	n	n	n	n	D	Ω	Ω	Ω	n	Ω	Ω	n	D	n	D	D	Ω
2.1000	2.1000	10.000	10.0000	10,000	10.000	10.000	10,000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	19.0000	10.0000	19.0000	19.0000	19.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	19.0000	10.0000	10.0000	10.0000	19.0000	19.0000
0.0000	0.000	0.000	0.000	0000	0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000
delta-BHC gamma-BHC	gamma-Cniordane	1 1 2 2-Tetrachloroethane	1, 1, 2, 2-1 cuavillotoculalic	1.1-Dichloroethane	1 1-Dichloroethylene	1.2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride
CS2-SB7-45-5 CS2-SB7-45-5	C-52-5B/-45-5 C-62-6D1	CS2-5D1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1
SB7 SB7 SB7	SD.	SDI	SD1	SD1	SD1	SDI	SDI	SD1	SD1	SD1	SD1	SD1	SD1	SD1	SD1	SDI	SD1	SD1	SD1	SD1	SD1	SD1	SD1	SD1	SD1	SDI	SDI	SD1	SD1	SD1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240	8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90
ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg
םמם	םם	n	n	n	n		ΩΓ	0		0	D		J	0						Ω			ΩΓ	n	0	n		_	n	Ω
10.0000	10.000	10.0000	19.0000	19.0000	10.0000	0.000	4.8000	0.000	0.000	0.0000	0.3700	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.1900	0.000	0.000	2.8000	1.1000	0.000	0.2800	0.000	0.0000	640.0000	640.0000
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	17700.0000	0.0000	4.2000	194.0000	0.7900	0.0000	64300.0000	22.6000	8.6000	23.3000	22700.0000	21.9000	8080.0000	614.0000	0.0000	21.8000	2170.0000	0.0000	0.0000	166.0000	0.0000	38.4000	72.6000	0.0000	0.0000
Methylene chloride Styrene Tetechloroetyslene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene
CS2-SD1 CS2-SD1 CS2-SD1	SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1
S CS S	CSZ-SD	CS2	CSZ	CSZ	CS2	CS	CS?	CS	CS	CS	CS	CS	CS	CS:	CS	SS	S	CS	ပ	ຽ	ပ	ပ	ပ	S	ပ	Ş	S	బ	S	ິບ

PACE PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLF 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg ng/kg	ug/kg	ug/kg	ug/kg "	ug/kg /i.e	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ng/kg ng/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n n:	ים כ	ם ם	D :	<b>&gt;</b> =	n	Ω	<b>:</b>	<b>)</b>	o	Ω	n	<b>)</b>	) <b>=</b>	םם	n	Ω	Ω	n	n	n	n	Ω	n	Ω	D
640.0000 0.0000 640.0000	640.0000	640.0000 640.0000	1600.0000	640.0000	640.0000	640.0000	1600.0000	640.000	1600.0000	640.0000	640.0000	1600.0000	640.0000	640.0000	640.0000	640.0000	1600.0000	1600.0000	640.0000	640.0000	640.0000	640.0000	640.0000	640.0000	640.0000
8888										_					_		_	_						_	
0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000
13. propane)	phenol	o 5		2,6-Dinitrotoluene 0.0000	Je		2-Methyl-4,6-Dinitrophenol 0.0000				benzidine	0.0000 4-Bromonhenyl nhenyl ether	thyl phenol		l phenyl ether	- lo				lene	Anthracene 0.0000	cene		nthene	Benzo(ghi)perylene 0.0000
<u>E</u>	2,4,6-Trichlorophenol	2,4-Dicniorophenol 2,4-Dimethylphenol		2,4-Dinitrololuene 1 2,6-Dinitrololuene	1 2-Chloronaphthalene	I 2-Chlorophenol		2-Methyline of 2-Methyline of 1	2-Nitroaniline	1 2-Nitrophenol	enzidine	1 3-initroanime 1 4-Bromonhenyl nhenyl ether	1 4-Chloro-3-methyl phenol	1 4-Chloroaniline	1 4-Chlorophenyl phenyl ether	1 4-Methylphenol	4-Nitroaniline	1 4-Nitrophenol	1 Acenaphthene	l Acenaphthylene	1 Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	1 Benzo(b)fluoranthene	lene

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	D	Ω	n	В	Ω	Ω	Ω		n		n	n	D	Ω	n	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	D		Ω	Ω	В	Ω	Ω	Ω	Ω
640.0000	640.0000	640.0000	640.0000	0.000	640.0000	640.0000	640.0000	0.0000	640.0000	0.000	640.0000	640.0000	640.0000	640.000	640.0000	640.0000	640.0000	640.0000	640.0000	640.0000	640.0000	1600.0000	640.0000	640.0000	0.000	640.0000	640.0000	0.0000	6.3000	6.3000	6.3000	3.1000
0.0000	0.0000	0.0000	0.0000	110.0000	0.000	0.0000	0.0000	230.0000	0.0000	46.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	46.0000	0.0000	0.0000	1100.0000	0.000	0.0000	0.0000	0.0000
Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin
CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1	CS2-SD1
SD1	SD1	SD1	SD1	SD1	SDI	SD1	SD1	SD1	SD1	SDI	SD1	SD1	SDI	SDI	SD1	SD1	SD1	SD1	SD1	SDI	SD1	SD1	SD1	SDI	SD1	SDI	SD1	SD1	SD1	SD1	SD1	SDI

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CLP PGB-CL	PCB-CLP 8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
6.3000 6.3000 6.3000 6.3000 6.3000 3.1000 3.1000 63.0000 63.0000 63.0000 63.0000 63.0000 3.1000 3.1000 3.1000	3.1000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor PCB-1221 PCB-1221 PCB-1242 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1254 PCB-1254 PCB-1254 PCB-1260 Toxaphene alpha-BHC alpha-BHC delta-BHC gamma-BHC	gamma-Chlordane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene
CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1 CS2-SD1	CS2-SD1 CS2-SD2 CS2-SD2 CS2-SD2 CS2-SD2 CS2-SD2 CS2-SD2 CS2-SD2 CS2-SD2
8	SD1 SD2 SD2 SD2 SD2 SD2 SD2 SD2 SD2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240 8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP
ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg
ממ	<b>&gt;</b>	n	D	Ω	Ω	Ω	Ω	n	D	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	n	Ω	n	Ω	Ω	Ω	Ω		ΩΓ		
7.0000	7.0000	13.0000	7.0000	13.0000	13.0000	13.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	13.0000	7.0000	7.0000	7.0000	13.0000	13.0000	7.0000	7.0000	7.0000	7.0000	7.0000	13.0000	13.0000	7.0000	0.000	2.5000	0.0000	0.0000
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	7350.0000	0.000	2.6000	59.9000
1,3-Dichlorobenzene 1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene 1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	<b>Bromodichloromethane</b>	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium
CS2-SD2 CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2
SD2 SD2 SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
GLP GLP	t t	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
mg/kg mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
0	J	0						Ω		0	nr nr	n	0	Þ		-	Ω	Ω	D		Ω	n	n	n	n	n	n	n	n	Ω
0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.1300	0.000	0.0000	2.0000	0.5800	0.000	0.2000	0.000	0.0000	440.0000	440.0000	440.0000	0.0000	440.0000	1100.0000	440.0000	440.0000	440.0000	1100.0000	440.0000	440.0000	440.0000	440.0000
0.3500	10.5000	5.4000	8.9000	200.0000	20.0000	530.0000	321.0000	0.0000	11.0000	352.0000	0.000	0.0000	81.5000	0.000	18.3000	31.5000	0.0000	0.0000	0.0000						0.0000			0.0000	0.0000	0.0000
Beryllium Cadmium	ium		Jet.			_	Manganese 3	<u>~</u>		Potassium 8	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol
CS2-SD2 CS2-SD2 CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CSZ-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2
SD2 SD2 SD2	SD2	SD2	202	700	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2	SD2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	בכ	<b>)</b>	n	Ω	Ω	Ω	Ω	Ω	Ω	n	n	D	D					n		Ω	Ω		8	n	D	n	n	n	_	Ω
1100.0000	440.0000	440.0000	440.0000	1100.0000	440.0000	440.0000	440.0000	440.0000	440.0000	1100.0000	1100.0000	440.0000	440.0000	0.0000	0.0000	0.0000	0.0000	440.0000	0.0000	440.0000	440.0000	0.0000	0.0000	440.0000	440.0000	440.0000	440.0000	440.0000	0.0000	440.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	43.0000	190.0000	240.0000	190.0000	0.0000	290.0000	0.0000	0.0000	250.0000	88.0000	0.0000	0.0000	0.000	0.0000	0.0000	350.0000	0.0000
2-Methyl-4,6-Dinitrophenol 2-Methylnaphthalene	2-Methylphenol	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene
CS2-SD2 CS2-SD2	CS2-SD2	CS2-SD2 CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2	CS2-SD2

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	ה ב	Þ.	Þ	1	) :	<b>)</b>	D :	D	D	Ω		n		D	Ω	B	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n	Ω	n	Ω	Ω	Ω	Ω
440.0000	440.0000	440.0000	440.0000	0.0000	440.0000	440.0000	440.0000	440.0000	440.0000	1100.0000	0.0000	440.0000	0.0000	440.0000	440.0000	0.000	4.4000	4.4000	4.4000	2.2000	4.4000	2.2000	4.4000	4.4000	4.4000	4.4000	4.4000	2.2000	2.2000	22.0000	44.0000	88.0000
0.0000	0.0000	0.0000	0.0000	130.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	200.0000	0.0000	490.0000	0.0000	0.0000	840.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
Ð	:	ene			;	<u> </u>																										
Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	N Niterocki N D	N NEW COOL-IN-Propylamine	N-Nitrosodiphenylamine	Naphulaiene		Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane		bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosultan II	Endosultan sultate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221
CS2-SD2 Hexachlorobenzen									Nitrobenzene	Pentachlorophen					bis(2-Chloroeth	bis(2-Ethylhexy											_,		Heptachlor epox			CS2-SD2 PCB-1221

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	n	ח	D	D	D	D	D	D	n	Ω	Ω	Ω	n	n	כ	n	D	D	Ω	n	n	n	n	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω
44.0000	44.0000	44.0000	44.0000	44.0000	220.0000	2.2000	2.2000	2.2000	2.2000	2.2000	2.2000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	15.0000	8.0000	15.0000	15.0000	15.0000	8.0000	8.0000	8.0000
0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PCB-1232 0.0000	PCB-1242 0.0000	PCB-1248 0.0000		PCB-1260 0.0000			ordane			gamma-BHC 0.0000			ane						1,2-Dichloroethylene 0.0000			ropropylene	loropropylene	_		ylvinyl ether		2-Propanone 0.0000	4-Methyl-2-pentanone 0.0000	Benzene 0.0000	Bromodichloromethane 0.0000	Bromoform 0.0000
		PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-cis-Dichloropropylene	1,3-trans-Dichloropropylene	1,4-Dichlorobenzene	2-Butanone	2-Chloroethylvinyl ether	2-Hexanone		ntanone		Bromodichloromethane	

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	n n n n n n
8.0000 8.0000 15.0000 8.0000 8.0000 15.0000 8.0000 8.0000 8.0000 15.0000 15.0000	2.8000 0.0000 0.0000 0.2200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.7600 0.0000 5580.0000 32.6000 16.4000 26.5000 26.5000 37.800.0000 37.800000 37.5000
Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methylene chloride Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl Acetate Vinyl chloride Xylenes (TOTAL) Aluminum	Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel
CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3	CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3 CSZ-SD3
SD3 SD3 SD3 SD3 SD3 SD3 SD3 SD3 SD3 SD3	SD3 SD3 SD3 SD3 SD3 SD3 SD3 SD3 SD3 SD3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	UL		0	Ω		-	Ω	D	n		n	Ω	D	n	D	D	D	Ω	D	D	Ω	D	Ω	n	n	D	D	n	D	n	D	n
0.0000	0.3000	0.0000	0.0000	0.3000	0.0000	0.0000	510.0000	510.0000	510.0000	0.0000	510.0000	1300.0000	510.0000	510.0000	510.0000	1300.0000	510.0000	510.0000	510.0000	510.0000	1300.0000	510.0000	510.0000	1300.0000	510.0000	510.0000	1300.0000	510.0000	510.0000	510.0000	510.0000	510.0000
520.0000	0.0000	4.0000	82.8000	0.0000	29.6000	53.3000	0.0000	0.0000	0.0000	98.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000
Potassium 1520.0000	Selenium 0.0000	Silver 4.0000	~		dium		openzene			enzene	propane)	phenol	lot	lona	ol		ene		alene		<b>Dinitrophenol</b>	alene	lo			benzidine	3-Nitroaniline 0.0000	4-Bromophenyl phenyl ether 0.0000	4-Chloro-3-methyl phenol 0.0000	4-Chloroaniline 0.0000	4-Chlorophenyl phenyl ether 0.0000	4-Methylphenol 0.0000
Potassium	Selenium	Silver	Sodium Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	_

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
•CI.P 3/90	CI.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg	ug/ke	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
n	D	Ω	Ω	n	n	Ω	D	Ω	Ω	Ω	ם	D	В	ם	n	Ω		Ω	n	Ω	Ω	Ω	n	Ω	Ω	D	Ω	D	Ω	Ω	Ω	D.
1300.0000	1300.0000	510.0000	510.0000	210.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	0.0000	510.0000	510.0000	510.0000	0.000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	510.0000	1300.0000	510.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	310.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	zyl ph	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene
CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CSZ-SD3	CS2-SD3	CS2-SD3	CSZ-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3	CS2-SD3
SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SU3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3	SD3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY/Ba BY	By/Sa nS/YS nS/YS nS/YS nS/YS nS/YS nS/YS nS/YS
\$10.0000 \$10.0000 \$10.0000 0.0000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000	51.0000 51.0000 51.0000 51.0000 260.0000 2.6000 2.6000 2.6000 2.6000 2.6000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate 4,4'-DDD 4,4'-DDT Aldrin Dieldrin Endosulfan II Endosulfan II Endosulfan II Endrin aldehyde Endrin ketone Heptachlor Heptachlor PCB-1016 PCB-1221	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Toxaphene alpha-BHC delta-BHC gamma-BHC gamma-Chlordane
CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3 CS2-SD3	C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3 C.S.2-S.D.3
S S S S S S S S S S S S S S S S S S S	803 803 803 803 803 803 803

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
8240 8240 8240 8240 8240 8240 8240 8240	8240 8240 8240 8240 8240 8240 8240 8240
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000	6.0000 12.0000 12.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 12.0000 12.0000 6.0000 6.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
bethane hloroethane bethane hane hylene hane hylene opane opropylene oropropylene nzene	nyl ether tanone nethane loride loride cride ride
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloroethylene 1,3-Dichloropropane 1,3-Cis-Dichloropropylene 1,3-trans-Dichloropropylene 1,3-trans-Dichloropropylene 1,4-Dichlorobenzene 2-Butanone	2-Chloroethylvinyl ethe 2-Hexanone 2-Propanone 4-Methyl-2-pentanone Benzene Bromodichloromethane Bromoform Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroethane Ethylbenzene Methyl bromide Methyl chloride Methyl chloride Styrene Tetrachloroethylene
	CS2-SS1 2-Chloroethylviu CS2-SS1 2-Hexanone CS2-SS1 2-Propanone CS2-SS1 4-Methyl-2-pent CS2-SS1 Benzene CS2-SS1 Bromodichloron CS2-SS1 Bromodichloron CS2-SS1 Carbon Disulfid CS2-SS1 Carbon Tetrachl CS2-SS1 Chlorobenzene CS2-SS1 Chlorobenzene CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Dibromochloron CS2-SS1 Benzene CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroform CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethane CS2-SS1 Chloroethal

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	
8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
n	D	Ω	Ω	D		ΩΓ			0	D		J	0						Ω			NF	, O	0	Ω		J	Ω	Ω	D	n	n	
9.0000	9.0000	12.0000	12.0000	9.0000	0.0000	2.6000	0.0000	0.0000	0.0000	0.2000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.1200	0.000	0.0000	0.2200	0.0000	0.0000	0.2200	0.0000	0.0000	410.0000	410.0000	410.0000	410.0000	410.0000	
0.0000	0.000	0.0000	0.0000	0.0000	10600.0000	0.0000	7.5000	74.6000	0.4200	0.0000	13600.0000	18.7000	9.1000	17.4000	22000.0000	15.6000	8700.0000	576.0000	0.0000	17.1000	1100.0000	0.000	1.0000	104.0000	0.000	30.2000	38.3000	0.000	0.0000	0.0000	0.0000	o.0000 (at	
Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	
CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	CS2-SS1	
SSI	SSI	SSI	SS1	SSI	SS1	SSI	SS1	SSI	SS1	SS1	SS1	SS1	SS1	SSI	SS1	SS1	SS1	SS1	SS1	SS1	SS1	SS1	SSI	SS1	SS1	SS1	SS1	SS1	SSI	SS1	SSI	SS1	

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90		CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg "	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Ω	D	Ω	n	D :	o :	⊃ ;	⊃:	o :	O :	D	n	n	n	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	n	n
1000.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	1000.0000	410.0000	410.0000	1000.0001	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000
0.000.0	8	8	8	8 8	3 8	3 8	3 8	3 8	3 8	2 ;	2	2	2	8	8	8	8	8	8	8	8	8	8	8	8	8	0	0	S	2	8	8
0.	0.000	0.000	0.000	0.0000	0.000	0.000	0.000		0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000
2,4,5-Trichlorophenol 0.0				2.4-Dinitrophenol 0.00				1.000	intropnenoi	alene	0			benzidine		phenyl ether	hyl phenol		phenyl ether	lo				lene		ene		e e		Benzo(k)fluoranthene 0.000	zyl phthalate	Carbazole 0.00
2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol		2.4-Dinitrophenol	2 6-Dinitrofolium	2.C-Duintountelle		2-Methyl 4 6 Dinitary	2 Moterial -4,0-Dimirophenol	2-ivietnylnaphthalene	in in in in in in in in in in in in in i	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8240	8240 8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	8240	CLP	CLP	CLP	CLP	CLP	CLP	CLP
ug/kg	ug/kg no/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ם	) <b> </b>	Þ	Ω	n	n	n	Ω	D	n	Ω	Ω	Ω	Ω	D	n	Þ		ם	n	n	D	n	D	D		_1			0	Þ	
6.0000	6.0000	12.0000	12.0000	12.0000	9.0000	9.0000	9.0000	9.0000	9.0000	0000'9	12.0000	9.0000	9.0000	9.0000	12.0000	12.0000	0.0000	9.0000	9.0000	0000'9	9.0000	12.0000	12.0000	9.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1800	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.000	10.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	12600.0000	2.5000	7.3000	189.0000	0.7000	0.0000	3960.0000
1,4-Dichlorobenzene	2-Chloroethylvinyl ether	2-Hexanone	2-Propanone	4-Methyl-2-pentanone	Benzene	<b>Bromodichloromethane</b>	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Vinyl Acetate	Vinyl chloride	Xylenes (TOTAL)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium
CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2
SS2 SS2	SS2	SS2	SS2	SS2	SS2	SS2	SSS	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SSZ	SSZ	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE				PACE					PACE		•					
CLP	CLP	CLP	G.	CLP	CLP	CI.P	CI.P	d I	G.P.	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
mg/kg	mg/kg	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	OL mg/kg		) mg/kg	U mg/kg	mg/kg	mg/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg	U ug/kg
00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	•	•	0.0000	0.1700	0.0000	0.0000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
J		_				_	_		_	_				_		4	000 410.0000	000 410.0000	900 410.0000		000 1000.0000				000 1000 0000	000 410.0000			000 410.0000	000.0001	000 410.0000
17.6000	11.7000	22.6000	21500.0000	95.10	1920.0000	1410.0000	0.1400	20.1000	2240.000	0.1900	1.8000	75.3000	0.000	32.4000	113.000	ne 0.0000	0.000	0.000	0.000	hloropropane) 0.0000		_					0.000	0.000	0.0	nitrophenol 0.0000	0.000
Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloro	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	4-Dichlorophenol	2,4-Dimethylphenol	4-Dinitrophenol	4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrol	2-Methylnaphthalene
ָב	ŭ	ŏ	Irc	ے	X	X	Σ	Ż	Pc	Se	Si	So	Ė	Š	Zi	<u></u>	1,	1,	<b>.</b>	2,	2,	2,	2,	2,	2,	2,	2,	2-	-5	2-	2-
CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2
SSZ	SS2	SS2	22	SS2	23	2	SS2	2	2	2	2	2	SS2	22	22	SS2	23	2	23	22	2	22	SS2	22	22	SS2	22 :	SSS	SSZ	2	SS2

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/kg ug/kg us/ko	ug/kg	ug/kg ng/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
חחח	n	· D	ם מ	n	Ω	Ω	Ω	n	Ω	Ω	Ω	m	ſΩ	n	ũ	Ω	n		В	n	ß	Ω	n	D		Ω	Ω	Ω	n
1000.0000 410.0000 410.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	1000.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.0000	0.0000	410.0000	410.0000	410.0000	410.0000	410.0000	0.0000	410.0000	410.0000	410.0000	410.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	29.0000	56.0000	0.0000	0.0000	0.0000	0.000	0.000	41.0000	0.000	0.0000	0.0000	0.0000
2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene
CS2-SS2 CS2-SS2 CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2
SS2 SS2 SS2	SSS	SS2 SS2	SS2	SS2	SS2	<b>SS2</b>	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2	SS2

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCR-CI P	PCR-CI P	PCR-CLI	PCB-CLP
ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg "	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	110/kg	us/ko	ug/kg
n m	Ω	n	n :	<b>)</b>	ם :	<b>&gt;</b>	;	)	;	D	D	В	n	n	Ω			Ω	n	Ω	Ω	Ω	D	Ω		n	ם	n	5	î	n
410.0000	410.0000	410.0000	410.0000	410.0000	410.0000	1000.0000	0.000	410.0000	0.000	410.0000	410.0000	0.0000	4.1000	4.1000	4.1000	0.0000	0.000	2.1000	4.1000	4.1000	4.1000	4.1000	4.1000	2.1000	0.0000	21.0000	41.0000	82.0000	41.0000	41,0000	41.000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	78.0000	0.000	26.0000	0.000	0.0000	780.0000	0.0000	0.0000	0.0000	0.6300	38.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	5.1000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
ethane .3-c,d)pyrene		N-Nitrosodi-N-Propylamine 0.0000				Phenonthron	7	•		ioxy)memane	ıyl) ether	lhexyl)phthalate			DT					ılfan sulfate		qe	one		oxide	ılor	PCB-1016 0.0000	PCB-1221 0.0000	PCB-1232 0.0000	PCB-1242 0.0000	PCB-1248 0.0000
Hexachloroethane Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine		Niza Langue		Penachione Phenonthrone	Dhand	Discool	Lico Ottoned	Us(z-Cnioroeutoxy)methane	ois(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232		

PACE PACE	PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP	PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/l	l/gn	l/gn	ng/l	ng/l	ug/l	ng/l	ng/1	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	ug/1	l/gn	l/gn	ng/l	ug/l	l/gn	ng/l	l/gn	l/gn	ug/l
בכם:	o		D	D	n		n	n	n	n	n	5	m	n	m	m	m	ſΩ	n	m	n	Ω	m	ũ	n	5	n	S	n	m
41.0000	2.1000	0.000	2.1000	2.1000	2.1000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000
0.0000	0.0000	0.6800	0.0000	0.0000	0.0000	2.4000	0.0000	1.1100	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
PCB-1254 PCB-1260	i oxapnene alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2-Chloroethylvinyl ether	Benzene	Benzyl Chloride	Bromobenzene	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform
CS2-SS2 CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SS2	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1
\$\$2 \$\$2 \$\$2	2S2 SS2	SS2	225	SSZ	SS2	SS2	SWI	SWI	SW1	SWI	SWI	SWI	SWI	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SWI	SW1	SW1	SW1	SW1	SWI	SW1	SW1

PACE PACE PACE PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8
V
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 14.1000 1.4000 75.2000 0.0000 0.0000 0.0000 0.0000 1.1000 39.7000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Dibromochloromethane Ethylbenzene Methyl bromide Methyl chloride Methyl chloride Methylene chloride Tetrachloroethylene Trichloroethylene Aluminum Antimony Arsenic Barium Cademium Cademium Cobalt Copper Iron Lead Manganese Manganese Mercury Nickel Potassium Selenium Silver
CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1 CS2-SW1
SW1 SW1 SW1 SW1 SW1 SW1 SW1 SW1 SW1 SW1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	
ug/l ug/l	ug/1	ug/1 ug/1	ng/l	ng/l	l/gn	ug/l	ng/l	ng/l	ng/l	ug/l	ug/l	ug/l	l/gn	l/gn	ug/l	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	ug/l	l/gn	ng/l	ng/1
חח	∞ =	) D	Ω	Ω	D	D	D	D	D	D	D	D	Ω	D	D	n	Ω	Ω	Ω	Ω	Ω	Ω	D	Ω	Ω	n	n	n	n	Ω
1.0000	0.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000
0.0000	37.1000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
ium dium	Zinc 37.1000	enzene	1,3-Dichlorobenzene 0.0000	enzene	propane)				이	noi			2-Chloronaphthalene 0.0000		phenol	2-Methylnaphthalene 0.0000			2-Nitrophenol 0.0000	3,3'-Dichlorobenzidine 0.0000		4-Bromophenyl phenyl ether 0.0000			4-Chlorophenyl phenyl ether 0.0000			4-Nitrophenol 0.0000	Acenaphthene 0.0000	Acenaphthylene 0.0000
Thallium Vanadium	L.Trichlombenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	l 2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	1 2,4-Dimethylphenol	l 2,4-Dinitrophenol	l 2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	l 2-Chlorophenol	l 2-Methyl-4,6-Dinitrophenol	l 2-Methylnaphthalene	l 2-Methylphenol	l 2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline		1 4-Chloro-3-methyl phenol	I 4-Chloroaniline	I 4-Chlorophenyl phenyl ether					je Je

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CLP 3/90			CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		
ug/I	l/an	l/an	ug/I	ug/I	ug/I	ng/l	ng/I	l/an	l/an	ug/l	l/gn	l/gn	l/gn	l/gn	ug/I	ug/I	ug/l	ng/l	ug/I	ng/l	ug/l	ng/l	ng/l	ug/l	l/gn	l/gn	ug/l	ug/l	ug/l	ug/I	ug/1	ug/l
n	n	D	Ω	n	Ω	Ω	n	D	æ	n	n	D	D	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	n	Ω	Ω	Ω	Ω	n	n	Ω	n	Ω
10.0000	10.000	10.000	10.000	10.000	10.0000	10.000	10.000	10.000	0.0000	10.0000	10.0000	10.000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.000	10.000	10.0000	10.0000	10.000	10.000	10.000	25.0000	10.000	10.0000	10.000	10.000	10.0000
0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000	0.8000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether
CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SWI	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1
SWI	SWI	SW1	SWI	SWI	SWI	SWI	SWI	SWI	SW1	SW1	SWI	SWI	SW1	SWI	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SWI	SWI	SWI	SWI	SWI	SWI	SWI	SW1	SWI	SWI	SWI

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	CLP	CLP	CLP	CLP
l/an	ng/l	l/gn	l/gn	ng/I	ug/I	l/gn	ng/l	l/gn	ug/l	ng/l	ug/1	ng/l	ug/l	ng/l	ng/l	l/gn	ug/I	ng/l	ug/l	ng/l	ng/l	ng/I	ng/l	l/gn	ng/1	l/gn	ng/I	l/gn	ug/l	l/gn	ug/l	l/gn
æ	Ω	Ω	n	D	D	n	n	D	D	Ω	ם	n	n	ם	D	Ω	Ω	D	n	Ω	n	ם	n	Ω	Ω	Ω	Ω	ם	()B	Þ	Ω	0
0.0000	0.1000	0.1000	0.1000	0.0500	0.0500	0.0500	0.1000	0.1000	0.1000	0.1000	0.1000	0.0500	0.0500	0.5000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0000	13.0000	1.0000	0.0000
0.8000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.0000	26.2000	0.0000	0.000	72.8000
bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	Aluminum	Antimony	Arsenic	Barium
CS2-SW1	CS2-SW1	CS2-SWI	CS2-SW1	CS2-SWI	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SWI	CS2-SW1	CS2-SWI	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SWI	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SW1	CS2-SWI-F	CS2-SW1-F	CS2-SW1-F	CS2-SW1-F
SWI	SW1	SWI	SW1	SWI	SW1	SWI	SWI	SWI	SW1	SW1	SW1	SW1	SW1	SW1	SWI	SW1	SWI	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SWI	SW1	SW1	SW1	SW1

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE	PACE PACE PACE	PACE PACE PACE
	C C C	CLP CLP	G G G G	CLP 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020
l/gu l/gu l/gu l/gu	//gn //gn //gn	l/gu  /gu	/8n  /8n	/8n  /8n  /8n	//Sn //Sn //Sn	//gn //gn //gn	l/gn l/gn ng/l
n n OB	B B	0 0 0 D		m 5555	3335	3333	U R U
1.0000 1.0000 0.0000 2.0000 0.0000	0.0000 0.0000 0.0000	0.2000 0.0000 0.0000	3.0000 0.0000 1.0000	0.0000 1.0000 1.0000 1.0000	1.0000	1.0000 1.0000 1.0000	1.0000
0.0000 0.0000 76300.0000 0.0000 19.0000	38.0000 4.8000 39200.0000 38.6000	0.0000 3.4000 1810.0000 0.0000	0.0000 10800.0000 0.0000 0.0000	28.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 0.0000	0.0000 2.1000 0.0000
llium nium 763 ium 763 mium alt	3920 se 3920	Mercury         0.0000           Nickel         3.4000           Potassium         1810.0000           Selenium         0.0000	r ım 1080 ium dium	Zinc       28.0000         1,1,1,2-Tetrachloroethane       0.0000         1,1,1-Trichloroethane       0.0000         1,1,2,2-Tetrachloroethane       0.0000         1,1,2-Trichloroethane       0.0000	ഉ	lylene	1,3-Dichlorobenzene 0.0000 1,4-Dichlorobenzene 2.1000 1-Chlorohexane 0.0000
m n 163 um	Lead Magnesium 3920 Manganese 3	um 181	Silver Sodium Thallium Vanadium	2.,2-TetrachloroethaneTrichloroethane .,2-TetrachloroethaneTrichloroethane		1,2-Dichloroenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-trans-Dichloroethylene	ızene ızene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE	PACE PACE PACE PACE	PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE
8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 8010/8020 8010/8020 8010/8020	8010/8020 8010/8020 CLP CLP CLP	មិទិទិទិទិទ
l/gu l/gu l/gu l/gu l/gu l/gu	1/gn 1/gn 1/gn 1/gn 1/gn	l/gu  /gu  /gu  /gu	ug/l ng/l ng/l ng/l l/gu	ng/l ng/l l/gu l/gu l/gu
55555555	355555	555555		90 00 00
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	10,000 1,000 1,000 1,000 10,000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 0.0000 13.0000 1.0000 0.0000	1.0000 1.0000 0.0000 2.0000 0.0000
0.0000	0000 0000 0000 0000 0000 0000 0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 217.0000 0.0000 74.1000	0.0000 0.0000 78400.0000 4.6000 0.0000
2-Chloroethylvinyl ether Benzene Benzyl Chloride Bromobenzene Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene	Chloroemane Chloroform Dibromochloromethane Dibromomethane Ethylbenzene Methyl bromide	Methylene chloride Tetrachloroethylene Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride	meta- and para-Xylenes ortho-Xylene Aluminum Antimony Arsenic Barium	Beryllium Cadmium Calcium Chromium Cobalt
CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2	CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2	CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2	CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2	CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2
SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2	5 W 2 S W 2 S W 2 S W 2 S W 2 S W 2 S W 2	SW2 SW2 SW2 SW2 SW2	SW2 SW2 SW2 SW2 SW2 SW2	SW2 SW2 SW2 SW2 SW2

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP	CLP	d d	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
ug/1	ng/l	ug/I	ug/I	l/gn	ng/l	ug/I	ng/l	ng/I	ug/l	ug/I	ug/1	ug/1	ug/l	ng/l	ug/l	ug/l	ug/l	ng/l	ug/I	ug/I	ug/l	ug/I	ug/l	ug/1	ug/l	ug/I	ug/I	ug/I	ug/I	ug/I	ug/I	ug/1
<b>~</b>				Ω	Ω	()B	ΩΓ	Ω		Ω	Ω	В	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω
0.0000	1.0000	0.0000	0.000	0.2000	2.0000	0.000	1.0000	3.0000	0.0000	1.0000	2.0000	0.0000	10.0000	10.000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000
255.0000	0.000	39700.0000	47.3000	0.000	0.0000	576.0000	0.0000	0.0000	8260.0000	0.0000	0.0000	20.6000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000						0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
Iron	Lead	Magnesium 39	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium 8	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine
CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2	CS2-SW2
SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	Van Van Van Van Van Van Van
25.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3-Nitroaniline 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene Di-n-butyl phthalate	Dibenzo(a, h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone
CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2	CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2 CS2-SW2
SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2	SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2 SW2

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90	CI.P 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP
ug/I	l/an	ng/l	ng/l	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	ng/I	l/gn	ng/l	ug/l	ug/l	ug/l	ng/l	ng/l	ng/l	ug/l	l/gn	l/gn	ng/l	ug/l	l/gn	l/gn	l/gn	l/gn	ug/l	ng/l	ng/l	ng/l	ng/l
n	n	ם	D	Ω	D	n	n	n	D	æ	n	Ω	n	n	n	n	n	n	n	Ω	n	Ω	Ω	D	n	D	n	Ω	Ω	Ω	Ω	Ω
10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	0.0000	0.1000	0.1000	0.1000	0.0500	0.0500	0.0500	0.1000	0.1000	0.1000	0.1000	0.1000	0.0500	0.0500	0.5000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000
nine																											_	0	_	_		
N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenoi	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Ethylhexyl)phthalate	4,4'-DDD	4,4'-DDE	4,4 -DDI	Aldrin	Dieldrin	Endosulfan I	Endosultan II	Endosultan sultate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221				PCB-1254 (	PCB-1260	Toxaphene
N-Nitrosodi-N-F	N-Nitrosodipher	Naphthalene							bis(2-Chloroeth)	bis(2-Ethylhexyl																	PCB-1232	PCB-1242	PCB-1248	PCB-1254		CS2-SW2 Toxaphene

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	8010/8020	8010/8020	8010/8020	8010/8020
l/gu l/gu	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	ng/l	ng/l	ug/l	ng/l	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	l/gn	l/gn	ng/l	ug/l	l/gn	l/gn	l/gn	l/gn
ממ	Ω	Ω	Ω	n	()B	n	Ω	0	n	n		Ω	n	()B	()B	n			n	Ω	()B	ΠΓ	n	В	Ω	D	В	n	5	ñ	5
0.0500	0.0500	0.0500	0.0500	0.0500	0.000	13.0000	1.0000	0.000	1.0000	1.0000	0.000	4.0000	2.0000	0.000	0.000	1.0000	0.000	0.0000	0.2000	2.0000	0.000	1.0000	3.0000	0.000	1.0000	2.0000	0.000	1.0000	1.0000	1.0000	1.0000
0.0000	8	8	8	8	8	00	8	8	8	8	8	8	8	8	8	8	8	000	8	00	8	8	8	8	8	2	2	2	2	8	8
0 0	0.0000	0.00	0.0000	0.0000	22.5000	0.000	0.00	72.30	0.00	0.00	77400.00	0.00	0.00	9.10	34.90	0.00	39400.00	39.70	0.00	0.00	876.00	0.000	0.00	8370.0000	0.00	0.00	22.900	0.0000	0.000	0.0000	0.00
alpha-BHC 0.0				lordane	<b>e</b>	Antimony 0.000	Arsenic 0.00	Barium 72.30		Cadmium 0.00		ını	Cobalt 0.00	Copper 9.10	Iron 34.90	Lead 0.00	Magnesium 39400.00	Manganese 39.70		Nickel 0.00	_	WI WI	Silver 0.00			Vanadium 0.000	Zinc 22.900	1,1,1,2-Tetrachloroethane 0.000	1,1,1-Trichloroethane 0.000	1,1,2,2-Tetrachloroethane 0.000	
alpha-BHC alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium						

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020
ug/l	l/an	ug/l	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	ug/I	ng/I	ng/l	ug/l	ng/l	l/gn	l/gn	ng/l	l/gn	ng/l	ne/l	ng/l	ng/l	l/gu
n	n	U	U	m	n	n	n	n	n	U	U	n	U	n	m	m	m	n	U	m	UJ	m	UJ	n	U	m	n	U	U	n	U	M
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	1.0000	1.0000	1.0000	1.0000	10.0000	10.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000
1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-trans-Dichloroethylene	1,3-Dichlorobenzene	1,4-Dichlorobenzene		2-Chloroethylvinyl ether	Benzene	Benzyl Chloride	Bromobenzene	Bromodichloromethane	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Dibromochloromethane	Dibromomethane	Ethylbenzene	Methyl bromide	Methyl chloride	Methylene chloride	Tetrachloroethylene	Toluene	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride	meta- and para-Xylenes	ortho-Xylene
CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CSZ-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3
SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CI.P	GF G	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90
l/øn	1/3n	l/gn	l/gn	ng/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	ug/l	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l
	C	ò	0	Ω	Ω		Ω	Ω	()B	B				Ω	Ω	()B	NF	Ω		Ω	Ω	()B	n	Ω	n	Ω	n	Ω	Ω	Ω	Ω	D
0.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	4.0000	2.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.2000	2.0000	0.0000	1.0000	3.0000	0.0000	1.0000	2.0000	0.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	25.0000
206.0000	14.0000	0.0000	76.1000	0.000	0.000	80200.0000	0.0000	0.000	3.1000	257.0000	0.000	40600.0000	48.6000	0.0000	0.000	557.0000	0.0000	0.0000	8530.0000	0.000	0.000	19.2000	0.0000	0.000	0.0000			0.000		0.0000	0.000	0.0000
Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol
<b>SS2-SW3</b>	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3	CS2-SW3
Ö	CS:	S	S	ິ	೮	ຽ	క్ర	ర	ర	ర	ర	ິ	೮	ິບ	೮	ర	೮	೮	ŭ	Ü	Ü	O	O	Ü	Ü	Ü	Ü	Ü	ŭ	ర	ర	೮

PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	PACE PACE PACE PACE PACE
	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90
	/8n  /8n  /8n  /8n
10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 0.0000 10.0000 10.0000
000000000000000000000000000000000000000	00000
00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0	0.0000 0.0000 1.0000 0.0000 0.0000
otoluene aphthalene henol 4,6-Dimitrophenol aphthalene henol line anol orobenzidine line henyl phenyl ether 3-methyl phenol niline henyl phenyl ether henol henyl phenyl ether henol niline anol henyl phenyl ether henol henyl phenyl ether henol line enol line snol lene snol lene sylene e nthracene yyene luoranthene yyene	Carbazole 0.0000 Chrysene 0.0000 Di-n-butyl phthalate 1.0000 Di-n-octyl phthalate 0.0000 Dibenzo(a,h)anthracene 0.0000
ene ene alene l linitrophenol alene l phenyl ether thyl phenol cene trene anthene anthene anthalate	Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenzo(a,h)anthracene

PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	PACE PACE PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP	PCB-CLP PCB-CLP PCB-CLP PCB-CLP PCB-CLP
	Van Van Van
10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 0.1000 0.1000 0.1000 0.0500	0.1000 0.1000 0.1000 0.1000 0.0500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	0.0000
Diethyl phthalate  Dimethyl phthalate  Choron Fluoranthene Fluoranthene Fluoranthene Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Indeno(1,2,3-c,d)pyrene Indeno(1,2,3-c,d)pyrene O.0000 N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine O.0000 Pyrene Pentachlorophenol Pyrene bis(2-Chlorocthyl) ether Dis(2-Chlorocthyl) ether O.0000 4,4'-DDE 4,4'-DDE 4,4'-DDE Aldrin O.0000 Dieldrin Endosulfan I O.0000	Endosulfan II       0.0000         Endrin       0.0000         Endrin aldehyde       0.0000         Endrin ketone       0.0000         Heptachlor       0.0000
Diethyl phthalate Dimethyl phthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorochane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin Dieldrin Endosulfan I	II sulfate shyde

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE
	Van Van Van Van Van Van Van
<b>8</b> 000000000000000000000000000000000000	90 00 00 00 00 00
0.0500 1.0000 1.0000 1.0000 1.0000 1.0000 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	81700.0000 0.0000 9.8000 115.0000 0.0000 42.8000 5.6000 1300.0000
Heptachlor epoxide Methoxychlor PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1248 PCB-1254 PCB-1260 Toxaphene alpha-BHC alpha-BHC alpha-BHC delta-BHC delta-BHC Aluminum Antimony Arsenic Barium Beryllium Cadmium	Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel
CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3 CS2-SW3	CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F CS2-SW3-F

PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	PACE
CLP CLP CLP CLP CLP CLP CLP CLP	8010/8020 8010/8020
\(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\fra	l/gu
20moom5555555555555555555555555555555555	55
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000
1.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	88
1.1000 9980.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0000
Selenium Silver Sodium Thallium Vanadium  Lin, 1, 2-Tetrachloroethane 1, 1, 2-Trichloroethane 1, 2, 3-Trichloroethane 1, 2-Dichloroethane 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethylene 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1,	
um  n  998  2-Tetrachloroethane Trichloroethane Trichloroethane ichloroethane ichloroethane ichloroethane ichloroethane ichloroethylene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichloromethylene ichlorobenzene ichlorobenzene ichlorobenzene ichlorobenzene ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane	lane

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	DACE	PACE
8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	8010/8020	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP	CI.P	d 10	ם ב	GLP GLP
l/gn	ug/l	ng/l	ng/l	ng/l	ng/l	ng/l	ng/l	ug/I	ug/l	l/gn	ng/l	ng/l	ng/l	ug/1	l/gu	ng/l	ng/l	ug/l	l/gn	ng/1	ng/l	l/gn	ng/l	ng/l	ug/l	ng/l	ng/l	ug/l	l/an	l/on	1,61 1,011	l/gn
ñ	C)	5	5	n	n	n	n	n	r)		Ω	D	0	D	n		Ω	Ω	n	æ				Ω	Ω	0B	OL.	n	В	Ω	=	) <b>E</b>
10.0000	10.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	13.0000	1.0000	0.0000	1.0000	1.0000	0.0000	4.0000	2.0000	3.0000	0.0000	1.0000	0.0000	0.0000	0.2000	2.0000	0.0000	1.0000	3.0000	0.0000	1.0000	2.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	200.0000	0.0000	0.0000	69.3000	0.0000	0.0000	75300.0000	0.0000	0.0000	0.0000	255.0000	0.0000	38200.0000	35.3000	0.0000	0.0000	533.0000	0.0000	0.0000	7770.0000	0.0000	0.0000	20.1000
			proethylene			omethane	•	ra-Xylenes	ne	n 2(	y.					7530	mn		)er			382	sse	ድ		n 2	mn		TT	Thallium 0.0000	Vanadium 0.0000	Zinc 20.1000
	Memyl chloride	Methylene chloride	Tetrachloroethylene	Toluene	Inchloroethylene	Trichlorofluoromethane	Vmyl chloride	meta- and para-Xylenes	ortho-Xylene	. Aluminum 20	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium 7530	Chromium	Cobalt	Copper	Iron	Lead	. Magnesium 382	Manganese	Mercury	Nickel	. Potassium 5	Selenium	Silver	Sodium 77			

PACE PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90	CLP 3/90		CLP 3/90
ug/1 ug/1	ug/l ug/l	ug/I	l/gn	ug/1 ug/1	ug/l	l/gn	l/gn	l/gn	l/gn	l/gu	l/gn	l/gn	l/gn	l/gu	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	ng/l	ng/l	l/gn	l/gn	l/gn	ng/l	l/gn	ng/l
םממ	ם ח	Ω	ם:	) )	Ω	Ω	n	Ω	n	n	Ω	Ω	Ω	n	n	Ω	Ω	Ω	Ω	n	n	n	n	n	n	D	n	Ω
10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000	25.0000	25.0000	10.0000	10.0000	10.0000	10.0000	10.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000.0	0.000	0.0000	0.000	0.000	0.000.0	0.000	0.000	0.000	0.000	0.000	0.000.0	0.0000	0.000	0.0000	0.000	0.000	0.0000
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methyl-4,6-Dinitrophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4-Bromophenyl phenyl ether	4-Chloro-3-methyl phenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
SW4 SW4 SW4	SW4 SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	2S2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4
CS2-SW4 CS2-SW4 CS2-SW4	CS2-SW4 CS2-SW4	CSZ	CS2	CSZ	CS2	CS2	CS2	CS	CS	CSZ	CS	CSZ	CS2	CSZ	CSZ	CSZ	CS2	CS:	CS	CS	CS	CS:	CS	CS	CS:	CSZ	CSZ	CS:

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90 CLP 3/90	CLP 3/30 CLP 3/90 PCB-CLP PCB-CLP
Van Van Van Van Van Van Van		Van Van Van
		Ba
10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	0.0000 0.1000 0.1000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000
. 9	liene re re re re re re re re re re re re re r	
Benzo(b)fluoranthene Benzo(k)fluoranthene Butyl benzyl phthalate Carbazole Chrysene Di-n-butyl phthalate Di-n-ocyl phthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Diethyl phthalate	Fluorene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-c,d)pyrene Isophorone N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyt) ether	bis(2-Ethylhexyl)phthalate 4,4'-DDD 4,4'-DDE
CS2-SW4 Benzo(b)fluoranthene CS2-SW4 Benzo(ghi)perylene CS2-SW4 Butyl benzyl phthalate CS2-SW4 Carbazole CS2-SW4 Chrysene CS2-SW4 Di-n-butyl phthalate CS2-SW4 Di-n-butyl phthalate CS2-SW4 Di-noctyl phthalate CS2-SW4 Di-noctyl phthalate CS2-SW4 Dibenzo(a,h)anthracer CS2-SW4 Dibenzofuran CS2-SW4 Dibenzofuran CS2-SW4 Dibenzofuran CS2-SW4 Dibenzofuran CS2-SW4 Dipenzofuran CS2-SW4 Fluoranthene		bis(2-Ethylhex) 4,4'-DDE 4,4'-DDE

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE	PACE
PCB-CLP PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP PCB-CI P	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	PCB-CLP	CLP	CLP	CLP	CLP	CLP	CLP	CLP
1/gu 1/gu	1,8n 1/8n 1/8n	ug/l	ng/l	ng/I	ug/I	ng/l	ug/1	l/gn	l/gn	ng/l	ng/l	ng/l	l/gn	l/gn	l/gn	l/gn	ng/l	ug/l	ug/l	l/gn	l/gn	ug/l	ug/1	ug/1	ug/l	ug/1	ug/l	ug/l
חממ	חח	Ω	n:	<b>D D</b>	ņ	Ω	В	Ω	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	0B	0B	D	С	Þ	Ω	
0.1000	0.0500	0.1000	0.1000	0.1000 0.1000	0.0500	0.0500	0.0000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0000	0.000	1.0000	0.0000	1.0000	1.0000	0.0000
0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.0620	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	16.2000	13.2000	0.000	67.7000	0.0000	0.0000	75800.0000
4,4'-DDT Aldrin Dieldrin	Endosulfan I Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC	gamma-Chlordane	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium
CS2-SW4 CS2-SW4 CS2-SW4	CS2-SW4 CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4	CS2-SW4-F	CS2-SW4-F	CS2-SW4-F	CS2-SW4-F	CS2-SW4-F	CS2-SW4-F	CS2-SW4-F
SW4 SW4 SW4	SW4 SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4

Appendix G Fixed Base Laboratory Data ILANG, 183rd FG, Capital Airport, Springfield, Illinois

PACE PACE PACE PACE PACE PACE PACE PACE	PACE PACE PACE
รีริธิธิธิธิธิธิธิธิธิธิธิธิธิธิธิธิธิธิ	G G G
	ng/l ng/l ng/l
0 B B B B B B B B B B B B B B B B B B B	D
4.0000 3.0000 0.0000 0.0000 0.0000 0.2000 0.0000 1.0000 3.0000	1.0000 2.0000 0.0000
0.0000 0.0000 0.0000 12.6000 2.1000 38300.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 24.4000
Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	i nailium Vanadium Zinc
CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F CS2-SW4-F	CS2-SW4-F CS2-SW4-F CS2-SW4-F
SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4	SW4 SW4

Appendix H: Groundwater Development, and Soil and Groundwater Sampling Forms



### Soil / Sediment Sampling Record

Project Name 183rd TFG, ILLINOIS ANCI Location Back ground outside fence boundary Recorded By PH Lay Date April 19, 1993 Site Rock Ground	Project Number 911657  Sample Number CF - 581- 556-1  CF - 581 - 55 25 - 3  Duplicate Number  Checked by  Date
Sampling Equipment	

Sampling Point (s	
	Base Futruces
	Planes
	Gate 6
·	+-+ Facility Background
	+ CFACBG-I



### Soil / Sediment Sampling Record

-	1993		Project Number Q     657  CF: 552-550.5-1'  Sample Number CF: 552-557.5-3'  Duplicate Number CF: 584-550.5-1'  Checked by  Date
Sampling Equipments	<b>⊠</b> Soil	☐ Sediment	☐ Rock
	ple Type Description		11 0001511.41
		- 1' Clay w/ mmon	sut 2.5.3 sutoclas
C	olor <u>promo</u>		Drow
	dor <u>none</u>		None
· D	epth <u>().S-1'</u>	2.5-3'	
N	umber of Samples _	2+ Dup = 3	

Comments HISW = Com



Form F-1026 9/1/91



### Soil / Sediment Sampling Record

Project Name 183rd TPG, TLL ANG  Location ON West Side of Base And  Recorded By Ptly  Date 4-19-93  Site Bash Stroud	Project Number 411657  CF- 583 55 0.5-1  Sample Number CF-583 55 2.5-3  Duplicate Number  Checked by  Date
Sile Seen Sil Ame	
Sampling EquipmentSoil	nent  Rock
Odornone	Sty-Brown none
Number of Samples  Comments to u = Oppu mont	e operant notified



3

Page 1 of /

	Well Information	Fairfame
Project Name (apite ) Areaset Project No 911 657	Number Mw101	
(Well Mouth)	Location 51+e /	Bailer No 78
Vater	Datum +OC	Pump No
Fer my to Total Gal. Extracted / 8	Elev. Datum Point 580.78	Interface Probe
1,/3	Ground Elev. 581.08	Sounder No
	Well Diameter 2"	nH Meter No 0
3	Well Depth 14'	Conductivity M
Specific Capacity (gpm/ft. drawdown) After Hrs.	Well Material Stangeless Stel	Thermometer

Equipment Information		Bailer No. 78-Flow	Pump No. A. A.	Interface Probe No.	Sounder No.	pH Meter No. Cambridge Sweet Str. 13.1	Conductivity Meter No. #9269	Thermometer No.	
	•			١.					1

Time (24 hr.)	Flow Rate (gpm)	Water Temp. In Co	된	Cond. µmhos/cm	Dissolved Oxygen mg/l	Turbidity	Settleable Solids (ml)	Gallons Dev./Purge Before Meas.	Water Level (feet)	Remarks (e.g. water clarity)
0838	1	山。かり	7.39	וסית	1	1	1			
0902		47.2 F	7.41	983	,		1	- \	1	nithed magazinements
2913	1	47.706	7.48	1040	ī	(	,	0	,	no hudes on her a
0927		48.1°F	7.39	1012	١	١	١	15	,	4 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100 by 100
0935		1		1	1			18	6,53'	that of the grant of the
								}		A. (1.01. A.)
tsss	26.9-21	55°F	7.49	1	1	I	1	chree	7.90	Chr. F. C. 1991 + 14 C. (1
6963		53° E	1.5.1	1	1	)	1	5		
		)							,	
										100
										44 COOK 11
										و مردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد المردد ال
										Joseph o John of the state of
										Tardy - english

Notes: 1 ft length of 4" = 0.087 ft3 or 0.65 gal 1 ft r of 2" = 0.022 ft3 or 0.16 gal

Recorded By 15 (Prus g. Checked By 24 Lear

Date 12-5-92

Form F-1003 3/15/92



Project Name Capital airport  Location Spring Redd Illinois  Sample Number CSI-MWI-GWI  Duplicate Number	Project Number 911657  Site 5.41, POL Area  Recorded By JSBruecel  Date 17-6-97  Checked By PHC  Date 12-14-92
Aquifer Parameters	
Before Sampling: pH 7.49 EC	Temperature55
After Sampling: pH EC	Temperature

Sampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle I.D.s
V O Cs		_	HC1	2 40-ml	
SVOC	_	-	NONE	1 liter	
Pb			HN03	500 ml	
Pb.		7	HNOS	500 ml	
note- filtere	d lead	sa	mple-	QSI-MWL	GWIF
			==		<u> </u>
·					
					·

Fire Care Transmitter GROUNE	WATER SAMP	Sample ID: CS1-mw1-6w2
WEATHER CONDITIONS COOL WIN	MON Capital A	1
REVIEWED BY:		
PURGING DEVICE  Type Device? Bacter  How was the device decontaminated?	electrol How	PLING DEVICE  Device? Bailer  was the device decontaminated? See logbook  was the line decomaminated? ded.cated  ch well was previously sampled?
Depth to bottom of well (it.)  Depth to water surface (ft.)  Length of water (ft.)	1.4' Con 7.66 166-16.3=7.04 Add 15 17.4-14-93 1.12	e started 1444 Finished 1452  time purged 5.5 sel , 5 mell red  ments on Well Recovery — od . +73 seed .  ditional Comments
INAPL (ft.)  IN-SITU TESTING  Date: 4/14/13  Time: 1444  Water Level  Well Volume Purged (gal.)  Turbidity  Odor  Organic Vapor (ppm)  pH (units)  Conductivity (u mhos)  Vater Temperature (°C)  DATE: 4/14/13  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timble 1/15  Timb	5.5 — SI. SI. SI. SI. — — — — — — — — — — — — — — — — — — —	3
Notes: 1 ff. length of 4° Turbidity choices:	= 0.087 N ² or 0.65 gal clear, turbid, opaque	1 ft_length 2° = 0.022 ft ³ or 0.16 gal Revision Date: 2-8-91

TETC 154

Page 1

Project Name Capital Girport Project No. 911657	Well Information Number	
(Ambient)	Location SHe /	Baller
Product) 4.06 8112 (	Datum TOC	Pum
	Elev. Datum Point Sを2.41	Inter
Water Column Length 8.94 Well Volumes Extracted 12.73	Ground Elev. 582 GI	Soun
Disposition of Discharge Water Pola Tank of Decay area.	Well Diameter 2"	M Ha
0	Well Depth 13.2	Cond
Specific Capacity (gpm/ft. drawdown) After Hrs.	Well Material Stankers Steel	Therr

	- <del> </del>
Equipment Information	Baller No. TEP(sv. Pump No. Interface Probe No. Sounder No. Central Scanfele. Conductivity Meter No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermometer No. Thermomet

Time (24 hr.)	Flow Rate (gpm)	Water Temp. In C°	Hd	Cond. µmhos/cm	Dissolved Oxygen mg/l	Turbidity	Settleable Solids (ml)	Gallons Dev./Purge Before Meas.	Water Level (feet)	Remarks (e.g. water clarity)
1000	1	46.0	7.38	66.9	1	1	1	Start 1	4.06	Start of doing home . +
1032	1	47.2°F 7.41	7.41	711	1	(	1	2	(	Only thought it
1040	ŗ	46.3°F 7.49	7.49	730	Ţ	٢	٢	Ь	(	no hundra car boon ocher. Sheen
Lh0]		47.20 6 7.95	7.95	740		ŧ	1	14	\	water 15 stephen how
1053	1	(	1		(	(	1	6	1	ester 13 rellence
							•			bonces du che 19
										gallins
C4140	1	48.206 7.48	7.48	١		-	١	} r45	4,10	stut of once -
0955		51.9°F	7.43	•				7	Ì	weth is claim to
										St. the high no hydrocular
										1890

Notes: 1 ft length of  $4^{\circ} = 0.087 \text{ ft}^{3}$  or 0.65 gal of  $2^{\circ} = 0.022$  ft 3 or 0.16 gal 1111

Date (2-5 Recorded By - 15 Checked By P44

12-6-9 ZForm F-1003

Date 12-14-9)



Project Name Capital august	Project Number 911657
Location MW102 - Springfield,	Site 1, PoL
<u> </u>	Recorded By 15 Briegel
Sample Number <u>(SI-MW2-GWI</u>	Date 12-6-92
Duplicate Number	Checked By Pt Lea
	Date 12-14-72
Aquifer Parameters	

Before Sampling: pH 7.48 EC ______ Temperature 48.27

After Sampling: pH 7.57 EC ____ Temperature 48°F

ampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle
VOC		/	HCI	2 40-ml	
Stoc		1	None	1 Liter	
lead		-	1+003	500 ml	
lead.	<u> </u>	7	HN03	500 ml	
filtered	lead s	en	e = CS	-mwz-0	-W(F
	1				
	ļ				
	-				
<del></del>		<del></del>			
		<del>                                     </del>			

The Carte Treatme begy	GROUND	WATER	SAMPI	ING s	ample ID	CSI-m	2-6m
PROJECT NAME 1831 WELL NO. MW102 WEATHER CONDITIONS PERSONNEL P.L. REVIEWED BY:	LOCATION LOCATION	ON Capita	l aire	D: 91165 DOA, SP HTTEMP: 4	ringhe	DATE: 4:14.	
EQUIPMENT USED:							
PURGING DEVICE  Type Device?   How was the device decomposition  How was the line decomposition  Which well was previous	eminated? Sec	Toolsack	Type C How w	LING DEVICE Device? Banas the device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device device	contaminate		•
Well diameter (in.)  Stickup (ft.)  Depth to bottom of well (included to bottom)  Depth to water surface (ft.)  Length of water (ft.)	i.) : <u>1</u>	.4' BGL .1' BTOC 2.3'	Volum	e purged 102	D.5 sol	inlahed 1014 Swall was	
(gal.) Amount of sediment at			Sampi	ee Collected:	Start _	1310	
bottom of well (ft.)  LNAPL (ft.)	DNAPL (fl.)				Finish .	1322	- <del></del>
IN-SITU TESTING	Date: 414 93 Time: 1026		4-14-93	4.14.93			
Water Level	11/	<u> </u>		12'			
Well Volume Purged (gal.	) <u>0</u> 51.4+	Seal Significan	1 <u>0.5 c.                                   </u>	10.5 Slight		<del></del>	
Turbidity	Mon C	•	DOUG SAME	Done			
Organic Vapor (ppm)				<u> </u>			<del></del>
pH (unite)	7.58	7.30	7.33	8.18			
Conductivity (u mnos)	466	485	452	460			
Water Temperature (°C)	56.5	54.1	52,5	548			
Notes: 1 ff. le	ngth of 4°	= 0.087 m ³ or 0.6	5 gaL	1 ft. length 2	r = 0.022 π ² (	or 0.16 gai	

TETC154

Not**⇔:** 

1 ft. length of 4°

Turbidity choices:

= 0.087 m³ or 0.65 gaL

clear, turbid, opeque

Revision Date: 2-8-91

Page_____ of___

	Well Information	Equipment Inform
ject Name (AC) tack Chill 1987 Project No 711 (657)	Number MW103	•
Jent)	Location Site (	Baller Ma tel 67
Static Levels 7, 15 (Preduct) (Water)	Datum Bis. Hate TOS	Pumo No.
mp [] /Ball X Rate (2.2.65 Gal law) Total Gal. Extracted (5	Elev. Datum Point 553.60	Interface Probe No.
Water Column Length (a. 多多) Well Volumes Extracted 17.33	Ground Elev. 583, 26	Soundar No
Disposition of Discharge Water Poly townk of Treen coop.	Well Diameter 2 "	DH Meter No Com
C	Well Depth 14.2	Conductivity Meter No.
Specific Capacity (gpm/ft. drawdown) After Hrs.	Well Material Stanless Stanl	Thermometer No.

			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3	
Equipment Information	Baller No. teffen	Pump No. Interface Probe No.	Sounder No.	pH Meter No.	Thermometer No.

Time (24 hr.)	Flow Rate (gpm)	Water Temp. In C°	Ηd	Cond. µmhos/cm	Dissolved Oxygen mg/l	Turbidity NTU	Settleable Solids (ml)	Gallons Dev./Purge Before Meas.	Water Level (feet)	Remarks (e.g. water clarity)
0830		48.90	7.35 905	309				. 0	7.15	Trapid Main 1 Ma adia ashara
0858		9.7h	7.41	968				ورا		The property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property o
6160		419,3	137	903				-		Creating to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st
0938		48.8	J.36	89.6				8		1000 The Art of the 10
									7.455	A CANADA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MAR
<u>0</u> 9ιο	26.9-21	52.8° F	7.44	ì			,	Str. 4. F pure 7.14	Le 7.14	26-9-21 passand
9160		55.48	7.57	7	1	١	(	5	1	7. 10 5 7 5 Cl
										water is . Os. t
										if the land we also
Notes: 1 ft le	Notes: 1 ft length of 4" = 0.087 ft3 or 0.65 nal	187 ft3 or 0.65	leo					0,0		10 U 11

H-10

Notes: 1 ft length of 4" = 0.087 ft3 or 0.65 gal of 2" = 0.022 ft 3 or 0.16 gal 1111

Checked By 15 Rungal Recorded By PLan

12-5-92 Form F-1003 Date 12-14-92 Date



Project Name Capital Airport  Location Spring Reld, Illinois  MW103  Sample Number CS1-mw3-Gwi  Duplicate Number time 1046	Project Number 911657  Site Site - POL and  Recorded By J Strucyl  Date 12-692  Checked By PALAN  Date 13-14-92
Aquifer Parameters  Refore Sampling: pH 7.44 FC	52 -0
Before Sampling: pH EC	Temperature 52.8°
After Sampling: pH 7.48 EC	Temperature 53.2° F

Sampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle
VOC	_		Hei	2 40 ml	
SVOC			NONÉ	1 liter	
tend			HNO3	500 ml	
lead		7	14003	500 m 1	-
	····				
· pote had	Samp	le	thent was	filtered	
	CSI-	MW	3-GWIF		
	······································				
					·

GROUNDWATER SA	Sample ID: CS1 - MW3 Guz
WEATHER CONDITIONS COOL LONG	JOB NO: 911657 DATE: 4-14-93 R airport Springfold, ILL  AMBIENT TEMP: 456
PERSONNEL JSB KM, PL  REVIEWED BY:	
EQUIPMENT USED:	
PURGING DEVICE  Type Device?  Build  How was the device decontaminated?  Soo lasheds  How was the line decontaminated?  Which well was previously purged?	SAMPLING DEVICE  Type Device? RoleT  How was the device decontaminated? Sacloshock  How was the line decontaminated? Addicated  Which well was previously sampled?
NITIAL WELL VOLUME  Well diameter (in.)  Stickup (it.)  Depth to bottom of well (it.)  Depth to water surface (it.)  Langth of water (it.)  Volume of water (it.)  (gai.)  Amount of sediment at bottom of well (it.)  LNAPL (it.)  DNAPL (it.)	PURGING  Time started 1410 Finished 142Ce  Volume purged Scals ~ 5 mall val  Comments on Well Recovery mod.  Additional Comments  Samples Collected: Start 1510  Finish 1515
IN-SITU TESTING Date: 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93 4/14/93	493 4-4-93
Odor	6.t <u>51.</u>

*See logoch

Notes:

1 ft. length of 4*

Turbidity choics:

= 0.087 ft³ or 0.65 gaL

clear, turpid, opaqua

1 ft. length 2° = 0.022 ft³ or 0.16 gal

Revision Date: 28-91

3

0 | Page 1

Well Information	Location 5.4e / Pat	Datum TOS	Elev. Datum Point 582.75	Ground Elev. 582,45	Well Diameter < ≥ ".	Well Depth 13.4%	Well Material Strules Steal	School, to and
1830 150	Project Name Carry Carry Project No 111 62 /	10.64 BTOK	N Hale O.43 and mind Total	- Well	Disposition of Discharge Water 72 The Tark of Decen one	9	Specific Capacity (apm/ft: drawdown) After Hrs	(S)

Equi	Baller No.	Fump No.	Sounder !	pH Meter	Conductiv	Thermom	
Well Information	Location 5.4e / Pol	Elev. Datum Point 582.15	Ground Elev. 582.45	Well Diameter	Well Depth 13.8'	Well Material Stanles Steal	Cot Later Of the South
	_						

		٠,	, (	<u></u>								
Remarks (e.g. water clarity)	chit of tenetogousent	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	Land is white they are	at 12 sellons	5 trut of proces	Water is Clean - cl. Anytid	hydro entire ofer				
Water Level (feet)	6.64	1		,		6.93						
Gallons Dev./Purge Before Meas.	Shut 1 6.64	9	4	اج		purze	ک,					
Settleable Solids (ml)	1	١	١	١		1	\			-		
Turbidity NTU	١	,	•	1		l	•			,		
Dissolved Oxygen mg/l	,	١	•	•		l	•					
Cond. µmhos/cm	120	175		712		-	•					
Η	7.50	141	7.39	7.37		7.39	7.21					
Water Temp. In C°	J.8'15	1.15	9'517	4.6		. 48.6°F	83.2°F					
Flow Rate (gpm)						15-9-21						
Time (24 hr.)	الاطح	007/	015	57.71		1315	1327					
	⊔_1 3											

Notes: 1 ft length of 4" = 0.087 ft³ or 0.65 gal of 2" = 0.022 ft 3 or 0.16 gal 1111

Recorded By JS Breen at Checked By

Date 12.14.92 Date 12-492

Form F-1003 3/15/92



Project Name Capital Aleport	Project Number 91/657
Location Springfield Illinois	Site 1 PoL
mw 104	Recorded By JS Brace
Sample Number CS 1 - M W 4 - G 431	Date 12-6-97
Duplicate Number 6 me 1327	Checked By PA Ca
	Date 12 - 14-9 B
Aquifer Parameters	

After Sampling: pH 7.21 EC _____ Temperature 53.2 °F

Before Sampling: pH 7.39 EC ___

___ Temperature <u>48.6°F</u>

ampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle I.D.s
Voc		_	HC L	2 your	
SVOC			NOUS NOUS	( lifer 500 mL	
1 . (1		7	HNO,	500 mL	
Note lea	d san	ol e	that was 5	altered was	
l '	mole	CS 1	-mw4-Gw	1	
	·				
	-				

E The Larm Transmany GROUNI	DWATER S	AMPLING [	Sample ID: CS 1-MW-602
PROJECT NAME 18354 TF6	CILLED ANGB	JOB NO: 9116	57 DATE: 4-15-93
WELL NO. MW104 LOCA		-	ingiela Ill. Sitel
WEATHER CONDITIONS Steady	• •		n 480
PERSONNEL TSB KM		_	
REVIEWED BY:			
EQUIPMENT USED:			
PURGING DEVICE		Sampling Device	
Type Device? Bailer		Type Device?	Barler
How was the device decontaminated?	e lassook	How was the device	decontaminated? Sew laponic
How was the line decontaminated?	dicated	How was the line de	contaminated? ded cated
Which well was previously purged?		Which well was prev	doubly sampled? See lashack
INITIAL WELL VOLUME		PURGING	
Weil diameter (in.)	, <i>u</i> 	- Time started	658 Finished 1100
Stickrup (ft.)	TCK down	Volume purged	5 gal ~ 4 well vol
Depth to bottom of well (ft.)	.8	Comments on Well F	lecovery <u>seed</u>
Depth to water surface (ft.)	.83		
Length of water (ft.)	7.67	Additional Comment	• ··· <u> </u>
Volume of water (ft3)	. !		
(gai.)	1.3		
Amount of sediment at bottom of well (ft.)	_	Samples Collected:	Stan 1122
LNAPL (fL) DNAPL (fL)			Finiah 1200
IN-SITU TESTING Date: 4-15-93	4-15-93		
Time: 1050	1100		
Water Level . 5,83			
Well Volume Purged (gal.)	_5		
Turbidity mod	mod _		
Odor <u>petrol</u> .	mad		
Organic Vapor (ppm)			
pH (unite) 11.05	10.33		
Conductivity (µ mhos) 948	896		
Water Temperature (°C) 52.6	49.6		
Notes: 1 ft. length of 4°	= 0.087 h ³ or 0.65 ga	L 1 ft. length	2" = 0.022 m ³ or 0.16 gai
Turbidity choices:	clear, turbid, opaqu	Re Re	vision Date: 2-8-91

TETC184

3

Page 1 of

Bailer No. Teflow Pump No. Interface Probe No. Sounder No. PH Meter No. Conductivity Meter No. Thermometer No.	Remarks (e.g. water clarity)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 3 1000 3 1000 10 10 10 10 10 10 10 10 10 10 10 1	5 4	1.3040.	14-5-21 857	10 1	mark, brown			
17 (586.81)	Water Level (feet)		,86,				11.08	+-				
Well Information Number	Gallons Dev./Purge Before Meas.		in traps	0)	4	8	Shart	٠,	)			
	Settleable Solids (ml)		١	ı	١	,	1	1				
(Well Mouth) (Water) (S) (2 %)	Turbidity NTU		l	1		)	}					
411657 xtracted xtracted 17 wn) After	Dissolved Oxygen mg/l		1	(		\	<b>.</b>	1				
(Ambient)  (Ambient)  (Product)  Total Gal. Extracted  Well Volumes Extracted  Hank on longe	Cond. µmhos/cm		590	و ٧	583	८९ ल	}	)				
TZ Ancel blen A	Н		7.39	7.26	7.97	/ج.۲	7.48	7.51				
	Water Temp. In C°	,	49,20	2015	ار م اکا م	8' 6 17	7.8.27 45.8.6	7°9. PH			•	
Project Name Control Kooper 1 1835 PID/FID Readings (Am. Static Levels 10.5 6 Property Disposition of Discharge Water Poly Factorial Part Capacity Capacity	Flow Rate (gpm)		1				26-5-21	12-5-52				
Project Name Con the PID/FID Readings Static Levels Fump ID /Ball/R Rate Water Column Length Disposition of Discharg	Time (24 hr.)	(	1150	(310	1881	1234	0121	1225				

Date 12 -14-92 Date 12-4-92 Recorded By JS Brees Checked By 74 L

Notes: 1 ft length of 4" = 0.087 ft3 or 0.65 gal

of 2" = 0.022 ft 3 or 0.16 gal

1111

Form F-1003 3/15/92

H-16



Project Name 183rd TFG Illinois ANC	Project Number 911657
Location Sik 2 - FTA	Site Capital airport
Sample Number CS2-MWI-GWI	Recorded By JS Brugst  Date 12-5-92
Duplicate Number N/A	Checked By PA Ca
	Date 12-14-72

Aquifer Parameters	
Before Sampling: pHEC	Temperature <u> </u>
After Sampling: pH EC	Temperature

Sampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle I.D.s
VOC's			HCI	2-40 MI	
SVOCS		_	NONE	1 liter	
PCB/Peshcides		_	NONE	1 liter	_
		_	HN03	500 ml	
TAL metals		2	4203	500 m1	_
filtered metals	<u>Cs:</u>	2 - M	WI- GWIF		
					·
-					

=	7700	LIM	Technology
=	200	-	-

### GROUNDWATER SAMPLING Sample ID: GS 2-

ئــ	C	8	2	m	س	4	<u>-6,</u>	27	Þ	4
	^	_	~				_			•

	Sample ID. OB - HIGH-BEE							
PROJECT NAME 183rd TFG, 11LINDIS ANG	JOB NO: 911657 DATE: 413-93							
1 · · · · · · · · · · · · · · · · · · ·	airport, Springfuld, 124.							
WEATHER CONDITIONS OVER CEST COOL 500	AMBIENT TEMP: 500							
PERSONNEL P. Lay, J. Briegel								
REVIEWED BY:								
EQUIPMENT USED:								
PURGING DEVICE	SAMPLING DEVICE							
Type Device? Lefion bailer	Type Device? bull							
How was the device decontaminated? See log book	How was the device decontaminated? Sex (6) book							
How was the line decontaminated?	How was the line decontaminated?							
Which well was previously purged?	Which well was previously sampled?							
INITIAL WELL VOLUME	PURGING							
Well diameter (in.)	Time started 1300 Finished 1312							
SICKUP (PL) 2.7' Shekup	Volume purged ~5 gallons							
Depth to bottom of well (ft.)	Comments on Well Recovery							
Depth to water surface (ft.)	recovers quickly.							
Langth of water (ft.) 14.4 + 2.7 - 10.8' = 6.3'	· Additional Comments · Quelinate Saugh							
Volume of water (ft3)	Alested mwzot							
(gai.) 6.3 × 0.17 = 1.07 gal								
Amount of sediment at bottom of well (n.)	Samples Collected: Start /515							
LNAPL (ft.) DNAPL (ft.)	Finish							
IN-SITU TESTING Date: 4/13/43 4/13/13 4/1	3/53							
Time: 1300 1312 151	<u> </u>							
Water Level 10.8 11.7 11.0	<u> </u>							
Well Volume Purged (gal.) D 5 9 1/5								
\$1	thereid							
	~							
Organic Vapor (ppm)								
	<del>2</del> 7							
Conductivity (u mnos) 628 613 60:  Water Temperature (C) *F 54.3° 53.2* 54.								
Notes: 1 ft. length of 4° = 9.087 ft ³ or 0.65 gal								
Turbidity choices: clear, turbid, epaque	Revision Date: 2-8-91							

3

9 Page 1

	Well Information
Project Name Capital Wirport 183" [Hoproject No. 71165]	Number MW 202
PID/FID Readings (Well Mouth)	Location Sile 2 - FTA
Static Levels 5.62 (ATDC (Product) Nov3 (Water)	Datum 7°C
otal Gal. Extracted 2	Elev. Datum Point 583, 38
9. 08' Well	Ground Elev. 581,38 1244
Disposition of Discharge Water po by how to be an area was	Well Dlameter
7447	Well Depth 12.2
Specific Capacity (gpm/ft. drawdown) After Hrs.	Well Material Stan (exc # oc )

Equipment Information	Baller No. Teflow		Thermometer No.
Well Information Number NW 202	Location Sik 2 - FTA Datum 70C	Elev. Datum Point SS3. 28 / STC STC STC STC STC STC STC STC STC STC	Well Material Stand less stoc
Gental auput 18314 The Project No. 911657	S. G Z ( Ambient) (Well Mouth) (Well Mouth)	A Rate C.S. 306   N.N. Total Gal. Extracted 20 ength 9.08   Well Volumes Extracted 13 scharge Water Potal Park Con de an exact respectively.	(gpm/ft. drawdown) After Hrs.

	•			_		<del>-,</del>	_	<del></del>			_	 	
Remarks (e.g. water clarity)	That of De weeden	Petroleum odok no sheen	D.STING Potenting	noticethy less the 1. 1	18 - NO. 02 - XI	Shat h m	0000 J. J. 2000	(2000)	Clos K Sl. L. (-0	by doce I am a der	d*		
Water Level (feet)	5.82					1.57							
Gallons Dev./Purge Before Meas.	=	9	ائ	3 /		Shut	7						C
Settleable Solids (ml)						1							
Turbidity NTU						1	•						
Dissolved Oxygen mg/l													
Cond. µmhos/cm	657	039	P 39	にっか		)							
Hd	14.1	ነን,	7.31	15.6		7.44	7.53						
Water Temp. In C°	51.0	7.67	49.9	٦, ٦, ٩		47.8°	48.4						
Flow Rate (gpm)						12-6-97							
Time (24 hr.)	1355	9/4/	1433	16.21		1511	(348						

Notes: 1 ft length of  $4^{\circ} = 0.087 \text{ ft}^{3}$  or 0.65 gal of  $2^* = 0.022$  ft 3 or 0.16 gal

Recorded By __ Checked By

Date 12-4-52, Date 12-14-92

Form F-1003 3/15/92



Project Name TLL ANG 183rd TEG (Capital)	Project Number 911657
Location MW 202 - Site 2 - PT4	Site Site 2-FTA
Sample Number	Recorded By Sonegel  Date 12-6-92
Duplicate Number	Checked By PH Lan
	Date

Aquifer Parameters		
Before Sampling: pH 7.44	# EC	Temperature 47.8%
After Sampling: pH	2 EC	Temperature

ampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle
VDC's	-		ACL	a. Home	
Svocs	_		NONE	1 liter	
PCB/PESTICIDES			NONE	1 liter	
	^	-	HNOZ	500 m.L	_
TAL motals		7	4403	500 mc	
Filtered meta	<u> 15</u>	C52.	-mw2-Gu	) I F	

GROUNDWATER SAMPLING Sample ID: CSZ - MWZ-GWZ
WELL NOMW202 LOCATION Capital august Springfield, 122.  WEATHER CONDITIONS OVERCAGT COOL AMBIENT TEMP: 42.8
PERSONNEL PALON TS Brosel
REVIEWED BY:
EQUIPMENT USED:
PURGING DEVICE -
Type Device? Lotton Bayler Type Device? Letton Bayler
How was the device decontaminated? See logically How was the device decontaminated? See logically
How was the line decontaminated? ded.ca.led How was the line decontaminated?
Which well was previously purged? MWZO Which well was previously sampled?
INITIAL WELL VOLUME PURGING
Well diameter (in.) 2 Time started 0925 Finished 0940
Stickup (TL) 2.7' Strckup Volume purged 7.5 gal ~ Guedl vds
Depth to bottom of well (ft.) 12.2 Comments on Well Recovery moderate
Depth to water surface (ft.) 397/BTGC
Langth of water (ft.) 8.23 . Additional Comments
Volume of water (ft3) ~ 0.1 8
(gal.) ~ 1.3 Z
Amount of sediment at bottom of well (ft.)  Samples Collected: Start 1050  Pac 4-14-63
LNAPL (RL) DNAPL (RL) Finlan 4055 U40
IN-SITU TESTING Date: 4/14/93 4/14/93 4/14/93
Time: 0925 0940 1140
Water Level 3.97
Well Volume Purged (gal.) Thirfed 7.5 7.5
Odor Slight moderatodor
Organic Vapor (ppm)
pH (units) 7.87 7.60 7.70
Conductivity (# mnos) 784 737 728
Water Temperature (*\$) 55.5 53.8 54.3
Notes: 1 ft. langth of 4° = 0.087 ft ³ or 0.65 gal. 1 ft. langth 2° = 0.022 ft ³ or 0.16 gal.  Turbidity choices: clear, turbid, opaque Revision Date: 2-8-91

TETC154

3

0 Page___1

Number NW 203	Datum	Elev. Datum Point + 2.5 (588.02)	S Ground Elev. 585 .52	Well Dlameter み"	Well Depth 14.2	Hrs. Well Material 5.54e1	
Project No GII 657	(Product) No.Je (Water)		, Well	2		(gpm/ft. drawdown) Atter H	
Project Name Con hal Con pert	2.99	Pump [] /Ball X Rate 0.3 your		Disposition of Discharge Water Po い		Specific Capacity	

Equipment information	Baller No. Letto		Conductivity Mater No. Canbridge	Thermometer No. 49209
Well Information	ocation FTh atum T. 0 . C.s نخ	lev. Datum Point + 2.5 (588.02) iround Elev. 58.5.	Vell Dlameter 요"	1011 Material 5.5 Lee 1

Remarks (e.g. water clarity)		المرسط المراورة والمسلم	0 0	., 11	Ass her decision land a decision	10 c L	· 12-5-92	mater is store the built	Was I day				Date 17-4-92 Form	Date 12-14-72
Water Level (feet)	4 49'	- -	)	,	)		9.18						72824	,
Gallons Dev./Purge Before Meas.	]  1	9	12	3-	3		beginning of	5.2					Recorded By JS Proces	Checked By A La
Settleable Solids (ml)	1	,	•	١	١		ı						Recorded	Checked
Turbidity	,	,	1	1									<u>-</u>	, +
Dissolved Oxygen mg/l	,	1	,		,		\						مر بملئ	wall we taken
Cond. µmhos/cm	1	SHS	563	521	1		788*						one meter not	المعرال المعرادة
Η	į	244		7.32	)	2,4%	877	7.52						gal
Water Temp. In C°	*	440	46,94	47.1	)		47,8F 748	51.1° F					Notes: 1 ft length of 4" = 0.087 ft3 or 0.65 gal	of 2" = 0.022 ft 3 or 0.16 gal
Flow Rate (gpm)		1	•		(		1			-			ngth of 4" = 0.0	
Time (24 hr.)	530/	(635	اه یم	5011	1110		1146	(185					Notes: 1 ft ler	= -

will no true



### Groundwater Sampling Record

Project Name Capital Amport 183rd TF.  Location Spring Field, ±111no15  Sample Number CS2-MW3-GW1  Duplicate Number	Groject Number 911457  Site 183 d TFG Sile 2  Recorded By JSAnelel  Date 12-5-92  Checked By PA Can  Date 12-14-92
Aquifer Parameters  Before Sampling: pH EC  After Sampling: pH EC	Temperature

Sampling Information  Analytical Parameter	Sampling Depth	√ If Field Filtered	Preservation Method	Volume Required	Sample Bottle I.D.s
VOCs			HCI	2 40-m1	_
SIOCS	_	_	NONE	1 liter	
PCB/Pest	~	_	NONE	1 liter	-
TAL metals		_	HNOZ	500 ml	
TAL metals		)	HN03	500 ml	
hole- Hi	Hered				
	<u> </u>	2 - N	LW3-GWIF		
			·		
· · · · · · · · · · · · · · · · · · ·					
·					

GROUNDWATER SAMPLING (52-Mu3-6) Sample ID: ILLINOIS ANGOENO: 91165 LOCATION Capital cool WEATHER CONDITIONS AMBIENT TEMP: REVIEWED BY: EQUIPMENT USED: PURGING DEVICE SAMPLING DEVICE tetion bailer Type Device? ._ How was the device decontaminated? See log book How was the device decontaminated? How was the line decontaminated? How was the line decontaminated? Which well was previously purged? Which well was previously sampled? PURGING INITIAL WELL VOLUME Time started well dia Comments on Well Recovery Mad to Depth to bottom of well (ft.) 8.65 Depth to water surface (ft.) 14,2+2.5-8.65= Additional Comments Length of Water (ft.) Volume of water (ft3) 8.05 y 0.17 - 1.37 galls (gai.) Amount of sediment at bottom of well (ft.) Samples Collected: Finish LNAPL (TL) DNAPL (IL) 4/13/93 7/13193 Date: IN-SITU TESTING 1334 Time: Water Level Well Volume Purged (gal.) Slight Turbidity 10 ME Odor Organic Vapor (ppm) 6.56 7.21 pH (units) 4106 Conductivity (# mhos) 53.8° 53,2 Water Temperature (* 🛱 1 ft, length 2" = 0.022 ft or 0.16 gal = 0.057 R³ or 0.65 gaL 1 ft. length of 4° clear, turpid, opaque Revision Date: 28-91 Turbidity choics:

16.7- 8.45 . 8.051

H-24

TE IC 154

Appendix I: Surveying Data

#### C:\COGO\923503\TOPO.PRN Mon Nov 30 14:54:25 1992

FT排	1	N=	1163174.070	E=	641005.980	EL=	595.01	PNT11
FT#	2	N=	1160814.055	E=	641097.520	EL=		PNT10
PT#		N=	1140806.210		643816.620	EL=		DOME
PT#		N=	1163144.826	E=	641040.089	EL=		
F'T#	5	N=	1159859.970	E=	640410.435	EL=		114 TF
PT#	6	N=	1158783.020	E=	639662.460	EL=		114 TF
PT#	7	N=	1158940.295	E=	639676.865	EL=	582.48	PZ-101
			1158940.295	E=	639676.865	EL=	582.8	SB 108
FT#	8	N=	1158852.345	E=	639733.180	EL=	583.5	SB 104
FT#	9	N=	1158888.380	E=	639765.850	EL=	583.78	FZ-104
		-	1158888.380	E=	639765.850	EL=	583.9	SB 105
FT#	10	N=	1158898.235	E=	639839.460	EL=	582.2	SB 106
PT#	11	N=	1158827.630	E=	639944.950	EL=	582.50	PZ-103
			1158827.638	E=	639944.950	EL=	582.8	SB 101
戶丁井	12	N=	1158831.175	E=	639822.950	EL=	584.2	SB 102
戶下井	13	N=	1158806.495	E=	639801.495		584.8	SB 103
戸丁井	1.4	N=	1158679.730	E=	639790.220	EL=	583.50	PZ-102
			1158679.730	E=	639790.220		583.6	GROUND
FT#	15	N=	1158770.925	E=	639726.630	EL.=	582.5	SB 107
PT#	16	N=	1157271.690	E=	638187.540	EL=		114 TP
PT#	17	M=	1154900.855	E=	637571.860			114 TF
PT#	18	N=	1154869.295	E.=	437600 <b>.6</b> 30		586.29	PZ-201
			1154869.295	E=	637600.638		586.6	SB 201
PT#	19	N=	1154814.935	E=	637644.370		586.6	SB 202
FT#	20	M==	1154743.515	E=	637621.400	EL=	585.4	SB 203
FT#	21	N=	1154884.075		637710.710		586.5	SB 204
F'T#	22	N=	1154782.000	E=	637693.925		584.4	SB 207
F'T#	23	N=	1154732.670	E=	637740.595		584.1	SB 205
FT#	24	N=	1154680.670	E=	637755.290		583.6	SB 206
FT#	25	N=	1154691.440	E=	637863.315		585.14	PZ-203
		N=	1145691.440		637863.315		585.5	GROUND
PT#	26	M=	1154812.190		637766.690		585.00	PZ-202
		N==	1154812.190	E=	637766.690		585.6	GROUND
F'T#	27	N=	1154815.640	E=	637709.690	EL=		SG6

### C:\C0000\928503\TOPU2.PMN Mon Jan 04 09:32:33 1990

PT#	28 N=	1158731.350	=	6399ti.535	EL=	581.74	SS102
FT#	29 N=	1158742.400	<u> </u>	639846,030	E1.=	563.00	HULOS
戶丁券	XO N≔	1158670.290	E.=	639705,195	F! ==	580.78	MINICO 1
FT#	31 N=	1158659.625	<u> </u>	639716.275	Ei_=	581.97	58101
产生并	32 N=	1156766.670	Ē.	539725.290	= 1	582.15	MW104
PTH	33 N=	1158933.125	E=	639825.770	El =	582.41	MW102
严丁锋	34 N=	1154895.876	F. ==	637742.687	<u> </u>	588,08	MMSOS
经工程	35 N=	1154784.488	£=	637569.098	EL=	586.56	88201
#14	36 N=	1154675 241	产车	637665.793	<u> </u>	583.08	MW202
FT#	37 N≠	1154603.852	=	537619.818	EL=	576.63	SD203
114	T8 h=	1154613,548	≝=	637690.922	E 1 ===	573.80	SDROL
€ . 4 <b>1</b>	70 W=	1154545,404	E	637825.211	El	576.60	S0202
戶了辦	40 N=	1154628,109	<u> ==</u>	637838.818	EL =	586.81	MW201
FT#	41 N=	1154746.179	Em	637893.557	EL=	586.59	55202

	177-01	TO-01	(	11 /23 /92	72 77	
000	0	نے ق		acer cont	いた。	5
		)	.   .		Į.	
0025	21-18		1			
B. K.				584.54	1/2" B	(
	i	90.10		2	0 0 0	ن ز
	0 61.6	0.00		24.4	stra inlet 64,2 31	· 多し、51 日本。
		1	5.35	5 85.12 34 84	Guard Aloron &	17.8
	2.96 5	588.d			Eds o truck	
			6.26	6.26 581.83		
	5.35 5	581.13				
4.6.m.			2,45	584.53	100	12 cide 10-1
	2.40 5	586.93			! .	
			5.11	581.82	1 .	
	4.23 Se	593.05	i			
	1		2.93	525.12		
	4.84 59	589.96				
В.М.		. (	5.44	534.52		
Boair	0211GS @ d	今下区	مسد			
1. b.m.		)	4.	484.53		
	458	591.11				
P2103			9.0	52.50		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
crnd/sh loi	18 101)		<del>ن</del> .ع	582.8		
· ・						
36 to6			6.6	592.2		
1						
SB 102			ر و.	584 2		
		·				
		_	-			

1-3

21-10025	_	_			_
こことと			-		2
-	0		•		
· .	59111				
	)				
58,103		<u>ئ</u>	5848		
				1	
SB 101		3.0	582.5		
PZ 102		اق	523,50		
grnd		7.5	583.5		
7					
56 104		٦	5825		
PE 104		7.33	583.78		
(301815) Suns.		7,7	583,9		
PZ 101		8.63	532.12		
(30/38) Jus		8.3	592.3	4.1	
7					
4		P.5.9	584.52		
				The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
1					
					- Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte - Carlotte

12 1814

	26   83   43		<u> </u>
92001-73			
50KINGS	3		
Z.K.	583.82	0+05 st 3-0+0	3th 20t00 Txm, -C' left
2.64 591	1		) edge
1. P. m.	5,39 588.07	SW Bolt light pole @ S.E Con	10 0 5 E Con
1.1	!	Apron	
			-
CR 204	2.7 586.5		
58201	2.10 50,6,0		
PZ 201	2.89 536.29		
58 202	2.65 595.6		
. 56 203	3.8 5854		
		•	
98,207	4.8 584,4		
		• • • • • • • • • • • • • • • • • • • •	
- 56 205	5.1 594.1		
58, 20ta	5.68 583,6		
1			
Dang water Fil	11.60 57253		
12" RCG @ Bord	(2.10 577.03		
18 CMP Dond	<u> </u>		
_	_		

204 Lb. 2041 28.77  4 b. 20  558 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 20  568 . 2		_			
2041.21 1.11 2.20 591.21 20.41  4.8.4. 2.20 591.21 2.49  8.1.4. 2.27 590.34  9r.nd  9r.nd  9r.nd  9r.nd  7.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  2.27 590.34  9r.nd  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1.8.m.  1					
2.27 590.34 3.20 591.21 8.11. 2.27 590.34 7.8.m. 2.27 590.34 9rnd 9rnd 9rnd 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 4.8 7.8.m. 5.20 7.8.m. 5.20	284	छ			
4.6m. 3.20 591.21 1.11 2.24 2.20 592.34 4.8 2.20 592.34 4.8 2.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20					~v
1.11 3.20 591.21 2.49 2.21 2.21 2.24 4.8 2.20 2.24 4.8 2.20 2.27 2.02 2.20 2.20 2.20 2.20 2.20	our tall across nd	20.41	28.27		
8:M. 2.20 591.21 T.B.M. 2.27 590.34 grad PZ 200 PZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ	t.bm	11.1	1. 88.		
8.m. 2.27 260.34 T.B.M. 2.27 590.34 gend 4.8 PZ 2002 5.34 FZ 2003 5.20 FSM 2.27	3.50		10,00		
1.B.M. 2.27 590.34 grad grad 7.202 5.34 4.8 PZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203 FZ 203	-		58878 (5888		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T.B.M. 2.27 590.34  grad grad 7.20 7.24  grad 7.20 7.20 7.20 7.20 7.20 7.20 7.20					
T.B.M. 2.27 590.34  grad  grad  Fe 203  Fe 203  TEM  TEM  2.27  4.8  5.20  TEM  2.27					
grhd Pz 202 9rnd Pz 203 F 203 F 203 F 203 F 203 F 203 F 203	:		58801		
grhd PZ 202 9rnd PZ 203 FZ 203 FZ 203 FZ 203 FZ 203	1				<del>-</del>
4.8 4.8 5.20 5.20				The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
5.34 4.8 5.20 2.21	dehd	4.7	5356		
3.4.8	P2 202	5.34	585.00		<u></u>
4.8 5.20 2.21					-
03.67	gend	4.8	585.5		** <u>***</u>
7.27	PE 203	5.50	585,14		
L2.2					2 2 2
	15M	<del>-                                    </del>	523,07		-
					7
			A		
		:			قة
			·		<b></b>

	(2/0/19)	
92001-13	4	61
	100 to	‡ ‡
2.1e   .		•
	584.53	
8.01 512.00	09,	
201MM	19.203 19.01	
	i	
MW 103	9,60583,00	
73°C-		
101 PXW	10.45582.15	
MY 101	81.085 28.11	
	8.07 584,53	
1		
John St.		
	538.0	-
243 590.50	.50	
M.W. 203	242, 583.08	
M.V. 202	7.45 583,05	
	:	
M.V. 801	3.69 886.81	
		1

	12/1/192		
1-13			. Q2
55.55	ع ا		
#	590.50	middle	
# 3	1387576.63	whom the	
# 2	13.90 516.60	east end	
	• •		
	(47 6830)		
	588.07		
55 62.2	<b>5</b> 8 ⊙.3 <i>¢</i>		
55-201	2 R.D. K.R., S.W.		
0.6.200			
777-c C	5,215%		
	Vo. 882 .07		
	-		

1-8

للافترار

\ (\$1\$)\\$82-4183

'DEC 10 .35:35 CN1 INC'

C:\C060\923503\TOPO.FRN Mon Nov 30 14:54:25 1992 92001-73 产工非 1 N= 1163174.070 E= 641005.980 EL= 595.01 PNT11 PT# 2 N= 1160814.055 E= 641097.520 EL= PNT10 PT# 3 N= 1140806.210 E= 643816.620 EL= DOME PTH 4 N= 1163144.826 E= 641040.089 EL= FT# 5 N= 1159859.970 E= 640410.435 EL= 114 TP 1-17# 6 N= 115878%.020 Em 659662.460 EL# 114 TF FT# 7 N= 1158940.295 E= PZ-101 639676.865 EL= 582.48 1158940.295 E= 639676.865 EL= 582.8 SB 108 PT# 8 N= 1158852.345 E= 639733.180 EL= 583.5 SB 104 PT# 9 N= 1158888.380 E= 639765.850 EL= 583.78 FZ-104 1158888.380 E= 639765.850 EL= 583.9 SB 105 FT# 10 N= 1158898.235 E= 639839.460 EL= 582.2 SB 106 种干件 11 N= 1158827.630 E= 639944.950 EL= 582.50 PZ-103 1159827.638 E= 639944.950 EL# 582.8 SB 101 护工徒 12 N= 1158831.175 E= 639822.950 EL= 584.2 SB 102 FT# 13 N= 1158806.495 E= 639801.495 EL= 584.8 SB 103 FTH 14 N= 1158679.730 E= 639790.220 EL= 583.50 FZ-102 1150679.730 E= 639790.220 EL= 583.4 GROUND FT# 15 N= 1158770.925 E= SB 107 639726.630 EL# 582.5 FT# 16 N≈ 1157271.690 E= 638187.540 EL= 114 TF FT# 17 N= 1154900.855 E= 637571.860 EL= 114 TP PTH 18 N= 1154869.295 E= 637600.630 EL= 586.29 PZ-201 1154869.295 Em 637600.638 EL= 586.6 SB 201 PTE 19 N= 1154814.935 E= 637644.370 EL= 586.6 SB 202 严了非 20 N= 1154743.515 E= 637621.400 EL= 585.4 SB 203 FI# 21 N= 1154884,075 E= 637710.710 EL= 586.5 SB 204 41.1 22 N= 1154782.000 E= 637693.925 EL= 534.4 SB 207 十丁井 23 N= 1154732.670 E= 637740.595 EL= 584.1 SB 205 干了井 24 N= 1154680.670 E= 637755.290 EL= 583.6 SB 206 FT排 25 N= 1154691.440 E= 637863.315 EL= 585.14 PZ-203 N= 1145691.440 E= 585.5 637863.315 EL= GROUND PT# 26 N= 1154812.190 E= 637766.690 EL= 585.00 PZ-202

N≈

27 N=

FT#

1154812.190 E=

1154815.640 E=

637766.690 EL=

637709,690 EL=

585.6

GROUND

SG6



58103

P2102 - 58101 P2103

SB102

Capital - Boring Piezometer locations

1-11

Appendix J: Investigation Derived Wastes: Analytical Results

Lab: PACE

sults	MW4 CS1D-MW4 04-DEC-92
Table J-1 Data Summary Table: Investigation Derived Waste TCLP Results Illinois Air National Guard, 183rd TFG, Capital Airport, Springfield, Illinois	MW2 CS2D-MW2 04-DEC-92
Investigation Derive d TFG, Capital Airpo	DECON CDECON 04-DEC-92
Summary Table: I	B7 CS2D-B7 04-DEC-92
Table J-1 Data Illinois Air N	B5 CS1D-B5 04-DEC-92
	Locator: Sample ID: Collection Date:
mh1HE928-4	

Jun 16, 1993 05:28

	Sample ID:	CS1D-B5	)-B5 C 92	CS2D-B7	)-B7	CDECON	NOX	CS2D-MW2	MW2	CS1D-MW4
	Collection Date.	04-DE	C-32	04-D	.C-92	04-DE	C-92	04-DE	C-92	04-DEC-92
	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	OUAL	RESULT
METALS (CLP 3/90)	3/90)									
Arsenic	V6n	20	Q	20	Q	20	QN	20	Q	50
Barlum	<b>1/60</b>	160		290		170		250		240
Cadmium	<b>√00</b>	20	2	20	Q	20	Q	20	S	50
Chromium	/Bn	20	2	20	Q	20	Q	20	Q	20
Çeşî	/ <b>0</b> n	20	2	20	Q	20	QN ON	50	2	20
Mercury	/bn	0.2	2	0.5	Q	0.2	QN	0.2	2	0.5
Selenium	<b>VBn</b>	20	2	20	Ñ	20	Q	20	2	20
Silver	/bn	70	2	20	용	20	8	20	Q	20

Lab: PACE

Value was determined by the Method of Standard Additions (MSA) Post-digestion spike for furnace AA analysis is out of control limits

Data is unreliable

_ g & v ≥

Concentration or quantitation limit is biased low Indicates compound was analyzed for but not detected

Compound or analyte detected in field or lab blank Duplicate analysis not within control limits

Concentration is estimated

Value is between IDL and the CRDL

Indicates analyte concentration exceeds the calibrated range of the GCMS

Concentration or quantitation limit is biased high

Spike sample recovery not within control limits

Greater than 25% difference between the two GC columns. Lower value is reported. Compound was analyzed for but not detected Repeat analysis □ M X Z G ₩ ⊃

mh1HE928-4

Table J-1 Data Summary Table: Investigation Derived Waste TCLP Results Illinois Air National Guard, 183rd TFG, Capital Airport, Springfield, Illinois

Jun 16, 1993 05:28

CS2D-MW2 MW2

WW4

CS1D-MW4 04-DEC-92

04-DEC-92

04-DEC-92 DECON

04-DEC-92 CS2D-B7 87

04-DEC-92 CS1D-B5 **B**2

Locator: Sample ID: Collection Date:

RESULT

QUAL

QUAL

RESULT QUAL RESULT

QUAL

RESULT

UNITS

June 16,1993 6:50am

Run Completed: Template File:

Report Summary

c:\928.acs 6by2.tst

Number of Billable Pages: 2

Data File:

QUAL RESULT

Indicates analyte concentration exceeds the calibrated range of the GCMS Value is between IDL and the CRDL

Concentration or quantitation limit is biased high Spike sample recovery not within control limits

Greater than 25% difference between the two GC columns. Lower value is reported.

Repeat analysis

5 M X Z Z Z Z D

Compound was analyzed for but not detected

Lab: PACE

Value was determined by the Method of Standard Additions (MSA) Post-digestion spike for furnace AA analysis is out of control limits

Indicates compound was analyzed for but not detected

Data is unreliable

2 a a ≥

Compound or analyte detected in field or lab blank Concentration or quantitation limit is biased low

Concentration is estimated

Duplicate analysis not within control limits

Science & Engineering, Inc.

TO: ATTN:	EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 37830 MS. JEAN MCKEE	TION			REPORT DATE: DATE RECEIVED: PROJECT NUMBER: P.O. NUMBER:	<u>::</u>	03-10-93 03-04-93 592-5939 93-PR-0040-0R1 93-PR-0042-0R1	
H H H H	CLIENT PROJECT NAME:	CAPITAL ANG 183R	183RD TFG					H H H H H
# 	ESE SAMPLE SAMPLE DATE	 	11318*1 03/04/93	11318*2 03/04/93		; ; ; ; ; ; ;		
	DESCRIPTION	UNITS	FB-202 S01L	FB-203 S01L	METHOD NO.	DATE ANALYZED	ANALYST	
	PESTICIDES					; ; ;		 
j-4	BHC, ALPHA	UG/L	< 0.50	< 0.50	8080	03-00-03	FWM	
	BHC, BETA	1/50	•	0	8080	-60-	FWM	
	BHC, DELTA	UG/L	•	0	8080	03-09-93	FWM	
	BHC, GAMMA(LINDANE)	7/90 06/L	< 0.50	0	8080	03-09-93	FWM	
	A DRIN	7/h/L	0.50	< 0.50	8080	- 1	E.E.	
	ALDKIN HEDTACHIOD EROVIDE	7/50 100/L	< 0.50	< 0.50	8080	03-09-93	FWM	
	FUNDOUS EVOLUE	U4/L	< 0.50 . 0.50	< 0.50	8080	03-09-93	E MM	
	DIFIDEIN	7/0/L	< 0.50 1.0	< 0.50	0808	03-09-93	MM.	
	4.4'-DDE	06/L 116/1	\ \ \ - - -	). 	0808	03-09-93	T Z	
	ENDRIN	1/50 06/L	) · · · · · · · · · · · · · · · · · · ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0000	03-09-93	E ME	
	ENDOSULFAN II	UG/L	< 1.0	< 1.0	8080	03-09-93	E M	
		NG/L	< 1.0	< 1.0	8080	03-09-93	FWM	
	ENDOSULFAN SULFAIE 4 4'-DDT	06/L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< 1.0	8080		FWM	
	METHOX VCHI OD	7/90 11/71	0.1	0.1 >	8080	03-09-93	E MA	
	FINDALCHEOK FNDRIN KFTONF	7/90 116/1	) ( \ \	< 5.0	0808		E MM	
	ALPHA-CHLORDANE	09/L	) V	0.1.	8080	03-09-93	F WM	
	GAMMA-CHLORDANE	1/50	< 5.0	< 5.0	0808		E WE	
	TOXAPHENE	UG/L	< 10	< 10	8080	6	FWM	
							{	ζ

Report Approved by:

Project Manager

Science & Engineering, Inc.

ORPORATION	DAD	30
EARTH TECHNOLOGY CORPORATION	673 EMORY VALLEY ROAD	3E, TN 37830
EARTH TE	673 EMOF	OAK RIDGE,
T0:		,

93-PR-0040-0RI 93-PR-0042-0RI 592-5939 03-10-93 03-04-93 REPORT DATE:

DATE RECEIVED:

PROJECT NUMBER:

P.O. NUMBER:

9 CAPITAL ANG 183RD TFG ATTN: MS. JEAN MCKEE

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANALYST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<b>.</b>	WM.	××	W.	FWM	MM	MM
		DATE	עווער ו לבט						03-09-93 F		_
		METHOD		0	8080	8080	8080	8080	8080	8080	8080
	11318*2 03/04/93	FB-203 WATER		\ \ \ \ \ \ \ \ \ \	) ; ; ;	) ( \	0.0	, s.u	< 3.0	70	10
	11318*1 03/04/93	FB-202 WATER		< 5.0	5.0	, ^ 	· ·	\ \	10.0	27 >	2
		UNITS		NG/L	N6/L	1/9/1	1/5/1	7/50 NG/1		1/50	
1	ESE SAMPLE SAMPLE DATE	DESCRIPTION	PCB'S	ARUCLOR-1016	AKUCLUK-1221	AROCLOR-1232	AROCLOR-1242	AROCLOR-1248	AROCLOR-1254	AROCLOR-1260	

J-5

Report Approved by:

Project Manager

11318*3 03/04/93 CAPITAL ANG 183RD TFG < 0.050 FB-205 WATER UNITS MG/L TO: EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 37830 ATTN: MS. JEAN MCKEE CLIENT PROJECT NAME: ESE SAMPLE SAMPLE DATE DESCRIPTION LEAD, TCLP

03-10-93 03-04-93 REPORT DATE: DATE RECEIVED: PROJECT NUMBER:

592-5939

93-PR-0041-0R1 P.O. NUMBER:

ANALYST

**ANALYZED** 

DATE

METHOD NO.

ELZ

03-05-93

6010

Report Approved by:

J-6



# Springfield Metro Sanitary District

3017 N. Eighth St. • R.R. #12 • Springfield, IL 62707 • (217) 528-0491 • Fax 528-0497

#### **Board of Trustees**

December 16, 1992

Frank G. Madonia President

Lowell H. Fraim Vice President

Rudolph S. Shoultz Clerk

Richard T. Ciotti Trustee

James H. McGrath Trustee

Bruce Stratton Attorney

Gerald L. Peters
Executive Director

Robert A. Alvey District Engineer

Roger C. Andrew Operations Manager

Dale E. Dey Office Manager

Paul Ed Vehovic Treasurer Major James Lund Air National Guard 183rd Tactical Fighter Group 3101 J. David Jones Parkway Capital Airport Springfield, IL 62707

RE: DISCHARGE OF 1100 GALLONS OF WATER COLLECTED FROM GROUND SURVEY OF POTENTIALLY CONTAMINATED SOIL

Dear Major Lund:

The Springfield Metro Sanitary District is in receipt of analysis results from samples taken from water used to rinse drilling equipment. This equipment used to determine if soils on the base had been contaminated with any petroleum products.

Analyses indicated there were no excursions with District limits.

The District will allow the discharge of the approximately 1100 gallons of water into the sanitary sewer system. The designated discharge location will be the manhole approximately 100 feet east of the P-18 Building. This sewer line is 6 inches in diameter. Discharge of the water to the sewer will have to be monitored so as not to overload the line.

Please find enclosed a copy of the discharge location and a copy of the analyses results.

If you have any questions or comments please contact me at the District.

Yery truly yours,

Leigh Wm. Seaborn Pretreatment Coordinator

LWS:mo enclosure

cc: Mr. Jack Briegel

_																				
12-15-92 : 12-07-92 R: 592-5939 93G-P0015-0		ANALYST	, , , , , , , , , , , , , , , , , , ,	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM
REPORT I DATE REC PROJECT P.O. NUM	124 144 145 146 147 147 147 147 147 147 147 147 147 147	DATE ANALYZED	# # # # # # # # # # # # # # # # # # #	7	-13-	-13-	-13-	-13-	-13-	12-13-92	-13-	-13-	2-13-	2-13-	-13-	-13-	-13-	7	-13-	-13-
		METHOD NO.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270
	10252*1 12/06/92	CTANKS WATER	1 1 1 1 1 1 1 1 1 1	< 10	< 50	< 10	< 10		< 50	< 10			< 10				< 10		< 10	
<b>1</b>	) ;	UNITS	; ! ! ! ! !	7/9n	7/9/ 06/F	UG/L	UG/L	NG/L	N6/L	1/9N	1/g/ 100/L	1/g/I	UG/L	UG/L	UG/L	NG/L	1/9N	NG/L	1/9n	NG/L
TO: EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 ATTN: MS. JEAN MCKEE	ESE SAMPLE SAMPLE DATE	DESCRIPTION	BASE-NEUTRALS (Cont'd)	2-CHLORONAPHTHALENE	2-NITROANILINE	DIMETHYL PHTHALATE	ACENAPHTHYLENE	2,6-DINITROTOLUENE	3~NITROANILINE	ACENAPHTHENE	UIBENZOFURAN	Z,4-DINIIROIOLUENE	UJEIHYL PHIHALAIE	4-CHLOROPHENYLPHENYL ETHER	FLUORENE	4-NITROANILINE	N-NITROSODIPHENYLAMINE	4-BROMOPHENYLPHENYL ETHER	HEXACHLOROBENZENE	PHENANTHRENE
TO: ATTN:			 		J-	8														

Report Approved by:



8901 North Industrial Road Peoria, II, 61615-1589 Phone (309) 692-4422 Lab Fax (309) 692-5232

592-5939 93G-P0015-0R1

TO: ATTN:					REPORT DATE: 12-15-92 DATE RECEIVED: 12-07-92 PROJECT NUMBER: 592-5939 P.O. NUMBER: 93G-P001	TE: VED: IMBER: IR:	12-15-92 12-07-92 592-5939 93G-P001
H U U U U U	ESE SAMPLE SAMPLE DATE	11 11 11 11 11 11 11 11 11 11	10252*1 12/06/92			 	11 81 81 81 81 81 81 81
	DESCRIPTION	UNITS	CTANKS WATER	METHOD DATE NO. ANAL	DATE ANALYZED	ANALYST	<b>-</b>

BASE-NEUTRALS					 
BIS(2-CHLOROETHYL) ETHER	UG/L	< 10	8270	12-13-92	PEM
1,3-DICHLOROBENZENE	7/9n	< 10	8270	12-13-92	PEM
1,4-DICHLOROBENZENE	UG/L	< 10	8270	12-13-92	PEM
BENZYL ALCOHOL	NG/L	< 10	8270	12-13-92	PE
1,2-DICHLOROBENZENE	UG/L	< 10	8270	12-13-92	PEM
BIS(2-CHLOROISOPROPYL) ETHER		< 10	8270	12-13-92	PEM
N-NITROSODI-N-PROPYLAMINE	UG/L	< 10	8270	12-13-92	PEM
HEXACHLOROETHANE	NG/L	< 10	8270	12-13-92	PEM
NITROBENZENE	UG/L	< 10	8270	12-13-92	PEM
ISOPHORONE	<b>N</b> 6/L	< 10	8270	12-13-92	PEM
BIS(2-CHLOROETHOXY) METHANE	7/9n	< 10	8270	12-13-92	PEM
1,2,4-TRICHLOROBENZENE	NG/L	< 10	8270	12-13-92	PEM
NAPHTHALENE	NG/L	< 10	8270	12-13-92	PEM
4-CHLOROANILINE	UG/L	< 10	8270	12-13-92	PEM
HEXACHLOROBUTADIENE	NG/L	< 10	8270	12-13-92	PEM
2-METHYLNAPHTHALENE	NG/L	< 10	8270	12-13-92	PEM
HEXACHLOROCYCLOPENTADIENE	NG/L	< 10	8270	12-13-92	PEM

592-5939 12-07-92 12-15-92

DATE RECEIVED:

SAMPLE DATE

**ESE SAMPLE** 

DESCRIPTION

EARTH TECHNOLOGY CORPORATION

10:

673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 MS. JEAN MCKEE

2/06/92

10252*1

METHOD NO.

CTANKS WATER

UNITS

PESTICIDES/PCBs (Cont'd)

AROCLOR-1016

AROCLOR-1221

REPORT DATE:

Engineering, Inc.

Environmental Science & 8080 8080 8080 8080 8080 8080

0.50 0.50 0.50 0.50 0.50 0.10 0.10

1/9A 1/9A 1/9A 1/9A 1/9A 1/9A

AROCLOR-1232 AROCLOR-1242

AROCLOR-1248 AROCLOR-1254 AROCLOR-1260 Report Approved by:

Pr%ject Manager

Environmental	Science &	Engineering, Inc	
3	3		A CHI CONT C MANAGEM

93G-P0015-0R1 592-5939 12-07-92 ANALYST P.O. NUMBER: REPORT DATE: DATE ANALYZED METHOD NO. 10252*1 12/06/92 CTANKS WATER EARTH TECHNOLOGY CORPORATION ESE SAMPLE SAMPLE DATE DESCRIPTION 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 MS. JEAN MCKEE ATTN: T0:

į																				
! ! !	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ	JAZ
                     	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92	12-11-92
	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080	8080
	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.50	< 0.10	< 0.50	< 0.50	< 1.0
	1/90	NG/L	1/50	UG/L	1/90	7/90	1/9n	1/90	1/9n	7/9n	1/90	UG/L	7/90	UG/L	1/90	UG/L	1/90	NG/L	1/90	7/9n
PESTICIDES/PCBs	BHC, ALPHA	BHC, BETA	BHC, DELTA	BHC, GAMMA (LINDANE)	HEPTACHLOR		HEPTACHLOR EPOXIDE	ENDOSULFAN I	DIELDRIN	4,4'-DDE	ENDRIN	ENDOSULFAN II	4,4,-000	ENDOSULFAN SULFATE	4,4'-DDT	METHOXYCHLOR	ENDRIN KETONE	ALPHA-CHLORDANE	GAMMA-CHLORDANE	TOXAPHENE

Report Approved by:

Janel A. Woodin Project Manager Engineering, Inc.

Environmental Science &

2-07-92 2-15-92 DATE RECEIVED: REPORT DATE:

EARTH TECHNOLOGY CORPORATION

<u>.</u>0

673 EMORY VALLEY ROAD

OAK RIDGE, TN 38401

MS. JEAN MCKEE

592-5939 PROJECT NUMBER:

93G-P0015-0R1 P.O. NUMBER:

_____

**ANALYST** ANALYZED DATE METHOD NO. 12/06/92 10252*1 CTANKS WATER UNITS SAMPLE DATE DESCRIPTION **ESE SAMPLE** 

EM 12-13-92 12-13-92 12-13-92 12-13-92 12-13-92 12-13-92 12-13-92 12-13-92 12-13-92 2-13-92 2-13-92 2-13-92 2-13-92 2-13-92 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 BIS(2-ETHYLHEXYL) PHTHALATE BUTYL BENZYL PHTHALATE 3,3'-DICHLOROBENZIDINE NDENO(1,2,3-CD) PYRENE BASE-NEUTRALS (Cont'd) JIBENZO(A,H)ANTHRACENE DI-N-BUTYL PHTHALATE BENZO(K) FLUORANTHENE BENZO(A) PYRENE JI-N-OCTYL PHTHALATE BENZO(B) FLUORANTHENE **BÉNZO(A)ANTHRACENE 3ENZO(GHI)PERYLENE** FLUORANTHENE ANTHRACENE CHRYSENE PYRENE

Report Approved by:

2-13-92

	# # # # # # # # # # # # # # # # # # #		 																-	
JATE: 12-15-92 SEIVED: 12-07-92 NUMBER: 592-5939 IBER: 93G-P0015-0R1		ANALYST		DEM	E S	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM		ELZ
REPORT C DATE REC PROJECT P.O. NUN	21 11 11 11 11 11 11 11 11 11 11 11 11 1	DATE ANALYZED		12-13-92	2	12-13-92	12-13-92	-13-		_	13-	13-	13-	13-	13-	13-	12-13-92	12-13-92		12-15-92
	14 14 14 14 14 14 14 14 14 14 14 14	METHOD NO.		8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270		239.2
	10252*1 12/06/92	CTANKS WATER	*	> 10	< 10	< 10	< 10	< 10	< 10	< 50	< 10	< 10	< 10	< 50	< 50	< 50	< 50	< 50		0.008
1		UNITS	f [ ] ] ] ! !	1/90	1/9n	UG/L	NG/L	NG/L	UG/L	NG/L	NG/L	7/9n	NG/L	7/90	NG/L	7/9N	NG/L	NG/L		J/9W
EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 MS. JEAN MCKEE		DESCRIPTION	ACIDS	PHENOL	2-CHLOROPHENOL	2-METHYL PHENOL	4-METHYL PHENOL	2-NITROPHENOL	2,4-DIMETHYLPHENOL	BENZOIC ACID	2,4-DICHLOROPHENOL	4-CHLORO-3-METHYL PHENOL	2,4,6-TRICHLOROPHENOL	2,4,5-TRICHLOROPHENOL	2,4-DINITROPHENOL	4-NITROPHENOL	2-METHYL-4,6-DINITROPHENOL	PENTACHLOROPHENOL		LEAD
TO:						J- 1	3												,	

Report Approved by:

Environmental

ATTN:

10:

592-5939 2-01-92 2-15-92 PROJECT NUMBER: DATE RECEIVED: REPORT DATE:

93G-P0015-0R1 P.O. NUMBER:

ANALYST ANALYZED DATE METHOD NO. 12/06/92 10252*1 CTANKS WATER UNITS SAMPLE DATE DESCRIPTION ESE SAMPLE

VOLATILE ORGANIC COMPOUNDS (Cont'd)

8240 8240 8240 8240 8240 8240 16/1 1/90 CIS-1,3-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE DIBROMOCHLOROMETHANE

RICHLOROETHENE

12-08-92 12-08-92

2-08-5 2-08-52

BENZENE

7/9n ne/r

1/90 06/L 06/L 06/L 06/L 7/90 TRANS-1,3-DICHLOROPROPENE BROMOFORM

4-METHYL-2-PENTANONE 2-HEXANONE

ELP

2-08-92

8240

2-08-92

2-08-5

12-08-92 12-08-92 12-08-92

8240 8240 8240 2-08-92 2-08-92 2-08-92

8240 8240 8240

**ETRACHLOROETHENE** 

1, 1, 2, 2-TETRACHLOROETHANE

CHLOROBENZENE

ETHYLBENZENE

XYLENES, TOTAL STYRENE

7/90 1/90 1/90 1/90 1/90 CIS-1,2-DICHLOROETHENE

2-08-92 2-08-92 8240

Report Approved by:

Project Manager

J-14



8901 North Industrial Road Phone (309) 602-4422 Engineering, Inc.

EARTH TECHNOLOGY CORPORATION

10:

673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 MS. JEAN MCKEE

ATTN: 

Lab Fax (309) 692-5232 Peoria, IL 61615-1589

12-15-92 12-07-92 DATE RECEIVED: REPORT DATE:

592-5939 PROJECT NUMBER:

93G-P0015-0R1 P.O. NUMBER:

ANALYST ANALYZED DATE **METHOD** 12/06/92 10252*1 **CTANKS** SAMPLE DATE DESCRIPTION ESE SAMPLE

EP ELP ELP ELP EP ELP ELP ELP 12-08-92 12-08-92 12-08-92 12-08-92 12-08-92 12-08-92 2-08-92 2-08-92 2-08-92 2-08-92 2-08-52 2-08-92 2-08-92 2-08-92 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 VOLATILE ORGANIC COMPOUNDS FRANS-1,2-DICHLOROETHENE 1, 1, 1-TRICHLOROETHANE BROMOD I CHLOROME THANE CARBON TETRACHLORIDE 1,2-DICHLOROPROPANE 1,1-DICHLOROETHENE I, 1-DICHLOROETHANE 1,2-DICHLOROETHANE METHYLENE CHLORIDE CARBON DISULFIDE VINYL CHLORIDE VINYL ACETATE CHLOROMETHANE BROMOMETHANE CHLOROETHANE CHLOROFORM 2-BUTANONE ACETONE

Report Approved by:

Project Manager



## **Springfield Metro Sanitary District**

3017 N. Eighth St. • R.R. #12 • Springfield, IL 62707 • (217) 528-0491 • Fax 528-0497

#### **Board of Trustees**

Prank O. Madonia President

Lowell H. Fraim Vice President

Rudolph S. Shoultz Clerk

Richard T. Cioni Trusice

James H. McGrath

Bruce Stratton Attorney

Trustee

Gerald L. Peters Executive Director

Robert A. Alvey District Engineer

Roger C. Andrew
Operations Manager

Dale E. Doy Office Manager

Paul Ed Vehovic Treasurer May 12, 1993

Mr. Jack Briegel

The Earth Technology Corp.

683 Emory Valley Road

Oak Ridge, Indiana 37830

RE: DISCHARGE OF PURGE WATER FROM

AIR NATIONAL GUARD (SPRINGFIELD, ILLINOIS)

Dear Mr. Briegel:

The Springfield Metro Sanitary District is in receipt of analyses results from samples taken from monitoring wells located at the Air National Guard Base in Springfield, Illinois.

Analysis indicated no excursions with District limitations. Mr. Gary Wolfe of the Illinois EPA (IEPA) stated that because there is such a small amount of water (50 gallons) to be discharged no IEPA permit will be required.

The District will allow the discharge of the water into the sanitary sewer system only.

Very truly yours,

Leigh Wm. Seaborn

Pretreatment Coordinator

LWS:mo

8901 North Industrial Road Peoria, II, 61615-1589 Phone (309) 692-4422 Lab Fax (309) 692-5232

An IEPA Contract Laboratory

TO: EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 ATTN: MS. JEAN MCKEE

PAGE NUMBER: 2
REPORT DATE: 04-28-93
DATE RECEIVED: 04-17-93
PROJECT NUMBER: 592-5939

CLIENT PROJECT NAME: CAPITAL ANG, SPRINGFIELD, IL CLIENT PROJECT NUMBER: 911657-03

*1 /93	ANALYST
	METHOD DATE NO. ANALYZED
	METHOD NO.
12013*1 04/16/93	CPURGE WATER
	UNITS
ESE SAMPLE SAMPLE DATE	DESCRIPTION

;         	FTJ	FLJ	FTJ	CJF
	04-19-93	04-21-93	04-20-93	04-22-93
	150.1	405.1	160.2	350.3
	7.38	4	54	0.14
	UNITS	MG/L	MG/L	MG/L
OTHER PARAMETERS	Н	800	TSS (RESIDUE, SUSP.)	NITROGEN, AMMONIA

Report Approved by: Wightie Mr. Wurkery

Project Manager

Phone (309) 692-4422

PROJECT NUMBER: 592-5939

DATE RECEIVED:

PAGE NUMBER: REPORT DATE:

04-28-93 04-17-93

Engineering, Inc. Environmental Science &

EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 MS. JEAN MCKEE ATIN: T0:

CAPITAL ANG, SPRINGFIELD, IL 911657-03 CLIENT PROJECT NUMBER: CLIENT PROJECT NAME:

**ANALYST** ELZ ELZ ELZ ELZ DAB ELZ 04-21-93 04-21-93 04-21-93 04-21-93 ANALYZED DATE METHOD NO. 200.7 200.7 200.7 200.7 245.2 200.7 200.7 0.010
0.010
0.050
0.0002
0.020
0.015 04/16/93 0.005 12013*1 CPURGE Water UNITS MG/L MG/L MG/L MG/L MG/L MG/L ESE SAMPLE SAMPLE DATE DESCRIPTION CHROMIUM CADMIUM METALS COPPER LEAD

04-19-93 04-21-93 04 - 21 - 93

MERCURY

J-18

NICKEL

Report Approved by: Tickie M. Woodin (Assaya Project Manager

Engineering, Inc. Environmental Science &

Lab Fax (309) 692-5232 Peoria, IL 61615-1589 8901 North Industrial Road Phone (309) 692-4422 PAGE NUMBER:

04-17-93 PROJECT NUMBER: 592-5939 04-28-93 DATE RECEIVED: REPORT DATE:

> 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401 MS. JEAN MCKEE ATTN:

EARTH TECHNOLOGY CORPORATION

T0:

CAPITAL ANG, SPRINGFIELD, IL CLIENT PROJECT NAME:

911657-03 CLIENT PROJECT NUMBER:

ANALYST ANALYZED DATE METHOD NO. 04/16/93 12013*1 CPURGE WATER UNITS SAMPLE DATE DESCRIPTION ESE SAMPLE

ELP ELP ELP 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04-21-93 04 - 21 - 93VOLATILE ORGANIC COMPOUNDS (Cont'd) UG/L TRANS-1,3-DICHLOROPROPENE ,1,2,2-TETRACHLOROETHANE CIS-1,3-DICHLOROPROPENE CIS-1,2-DICHLOROETHENE 1,1,2-TRICHLOROETHANE DIBROMOCHLOROMETHANE ETRACHLOROETHENE RICHLOROETHENE HLOROBENZENE ETHYLBENZENE BROMOFOŘM BÉNZENE OLUENE

Report Approved by: Vickie M. Woodin of Rasportar Project Manager

J-19

Engineering, Inc. Environmental Science &

04-28-93 PAGE NUMBER: REPORT DATE:

04-17-93 DATE RECEIVED:

PROJECT NUMBER: 592-5939

CAPITAL ANG, SPRINGFIELD, IL 911657-03 CLIENT PROJECT NAME: CLIENT PROJECT NUMBER: EARTH TECHNOLOGY CORPORATION 673 EMORY VALLEY ROAD OAK RIDGE, TN 38401

ATTN: MS. JEAN MCKEE

10:

	<b>-</b>
	ANALYST
	DATE ANAL YZED
	METHOD NO.
12013*1 04/16/93	CPURGE WATER
	UNITS
ESE SAMPLE SAMPLE DATE	DESCRIPTION

: 	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP	ELP
	04-21-93	04 - 21 - 93	04-21-93	04 - 21 - 93	04 - 21 - 93	04 - 21 - 93	04 - 21 - 93	04 - 21 - 93	04 - 21 - 93	04-21-93	04-21-93	04 - 21 - 93	04-21-93	04-21-93	04-21-93	04-21-93	04-21-93	04 - 21 - 93	04-21-93
	624	624	624	624	624	624	624	624	624	624	624	624	624	624	624	624	624	624	624
	< 10	< 10	< 10	< 10	< 50	< 50	< 50	< 10	< 10	< 5	< 2	< 5	< 5	< > 5	< 5	<b>&gt;</b> 2	< 5	<b>&gt;</b> 2	< 5
	UG/L	NG/L	NG/L	NG/L	1/9n	7/9n	NG/L	NG/L	NG/L	NG/L	NG/L	7/9n	NG/L	NG/L	7/9n	NG/L	NG/L	NG/L	. 7/9n
VOLATILE ORGANIC COMPOUNDS	1.1	BROMOMETHANE	VINYL CHLORIDE	CHLOROETHANE	ACROLEIN		2-CHLOROETHYLVINYL ETHER	DICHLORODIFLUOROMETHANE	IRICHLOROFLUOROMETHANE	METHYLENE CHLORIDE	1,1-DICHLOROETHENE	1,1-DICHLOROETHANE	TRANS-1, 2-DICHLOROETHENE		1,2-DICHLOROETHANE	,	CARBON TETRACHLORIDE	BROMODICHLOROMETHANE	1,2-DICHLOROPROPANE

Report Approved by: Mind M. Woodin Janel A. Woodin Project Manager

J-20