本节内容

最短路径

Floyd算法

王道考研/CSKAOYAN.COM

Robert W. Floyd

罗伯特·弗洛伊德 (1936-2001) Robert W. Floyd

4 1978年图灵奖得主

- Floyd算法 (Floyd-Warshall算法)
- 堆排序算法

Floyd算法:求出每一对顶点之间的最短路径

使用动态规划思想,将问题的求解分为多个阶段

对于n个顶点的图G,求任意一对顶点 Vi -> Vj 之间的最短路径可分为如下几个阶段:

#初始:不允许在其他顶点中转,最短路径是?

#0: 若允许在 V₀ 中转,最短路径是? #1: 若允许在 V₀、V₁ 中转,最短路径是? #2: 若允许在 V₀、V₁、V₂ 中转,最短路径是?

...

#n-1: 若允许在 V₀、V₁、V₂..... V_{n-1} 中转, 最短路径是?

王道考研/CSKAOYAN.COM

#0: 若允许在 V₀ 中转, 最短路径是? ——求 A(0) 和 path(0)

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 *A*^(k)和 *path*^(k)保持原值

$$\begin{split} &A^{(-1)}[2][I] > A^{(-1)}[2][\theta] + A^{(-1)}[\theta][I] = 11 \\ &A^{(\theta)}[2][I] = 11 \\ &path^{(\theta)}[2][I] = \theta; \end{split}$$

王道考研/CSKAOYAN.COM

#0: 若允许在 V₀ 中转,最短路径是? --求 A(0) 和 path(0)

#1: 若允许在 V_{0、}V₁中转,最短路径是? ——求 A⁽¹⁾和 path⁽¹⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 *A*^(k)和 *path*^(k)保持原值

$$\begin{split} &A^{(0)}[\theta][2] > A^{(0)}[\theta][1] + A^{(0)}[1][2] = 10 \\ &A^{(I)}[\theta][2] = 10 \\ &\text{path}^{(I)}[\theta][2] = I; \end{split}$$

王道考研/CSKAOYAN.COM

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A(1) 和 path(1)

		V0	V1	V2
A ⁽¹⁾ =	V0	0	6	10
	V1	10	0	4
	V2	5	11	0

		V0	V1	V2
path ⁽¹⁾ =	VO	-1	-1	1
	V1	-1	-1	-1
	V2	-1	0	-1

#2: 若允许在 V_{0、}V_{1、}V₂ 中转,最短路径是? ——求 A⁽²⁾ 和 path⁽²⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path^(k)[i][j] = k

否则 A(k) 和 path(k) 保持原值

 $A^{(1)}[I][0] > A^{(1)}[I][2] + A^{(1)}[2][0] = 9$ $A^{(2)}[I][0] = 9$ $path^{(2)}[I][0] = 2;$

王道考研/CSKAOYAN.COM

否则 A(k) 和 path(k) 保持原值

目前来看,各 顶点间的最短 路径长度		VO	V1	V2	两个间的
A (1) =	VO	0	6	10	-
A (·) =	V1	10	0	4	pa
	V2	5	11	0	

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 A⁽²⁾和 path⁽²⁾

		V0	V1	V2
A ⁽²⁾ =	V0	0	6	10
	V1	9	0	4
	V2	5	11	0

		VO	V1	V2
path ⁽²⁾ =	V0	-1	-1	1
	V1	2	-1	-1
	V2	-1	0	-1

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path(k)[i][j] = k

否则 A(k) 和 path(k) 保持原值

从A⁽⁻¹⁾和 path⁽⁻¹⁾ 开始,经过 n 轮递推,得到 A⁽ⁿ⁻¹⁾和 path⁽ⁿ⁻¹⁾

根据 A⁽²⁾ 可知,V1到V2 最短路径长度为 4, 根据 path⁽²⁾ 可知,完整路径信息为 V1_V2

根据 A⁽²⁾ 可知,V0到V2 最短路径长度为 10, 根据 path⁽²⁾ 可知,完整路径信息为 V0_V1_V2

根据 A⁽²⁾ 可知,V1到V0 最短路径长度为 9, 根据 path⁽²⁾ 可知,完整路径信息为 V1_V2_V0

王道考研/CSKAOYAN.COM

Floyd算法核心代码

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path(k)[i][j] = k

否则 A(k) 和 path(k) 保持原值

		V0	V1	V2
Λ_	V0	0	6	13
A =	V1	10	0	4
	V2	5	∞	0

#初始:不允许在其他顶点中转,最短路径是?

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

$$A^{(-1)} = \begin{cases} v_0 & 0 & \infty & 1 & \infty & 10 \\ v_1 & \infty & 0 & \infty & 1 & 5 \\ v_2 & \infty & 1 & 0 & \infty & 7 \\ v_3 & \infty & \infty & \infty & 0 & 1 \\ v_4 & \infty & \infty & \infty & \infty & 0 \end{cases}$$

$$path^{(-1)} = \begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

#0: 若允许在 V₀ 中转,最短路径是? ——求 A(□) 和 path(□)

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

path^(k)[i][j] = k 否则 A^(k)和 path^(k)保持原值

		VO	V1	V2	V3	V4
	V0	0	∞	1	∞	10
A (-1) =	V1	∞	0	∞	1	5
A(-1) =	V2	∞	1	0	∞	7
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

$$path(-1) = \begin{cases} v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{cases}$$

#0: 若允许在 Vo 中转,最短路径是? ——求 A(0) 和 path(0)

		V0	V1	V2	V3	V 4
path ⁽⁰⁾ =	VO	-1	-1	-1	-1	-1
	V1	-1	-1	-1	-1	-1
	V2	-1	-1	-1	-1	-1
	V3	-1	-1	-1	-1	-1
	V4	-1	-1	-1	-1	-1

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

		V0	V1	V2	V3	V 4
	V0	0	∞	1	∞	10
A ⁽⁰⁾ =	V1	∞	0	∞	1	5
A(*) =	V2	∞	1	0	∞	7
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#1: 若允许在 Vo、V₁中转,最短路径是? ——求 A⁽¹⁾ 和 path⁽¹⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 *A*^(k)和 *path*^(k)保持原值

 $\mathbf{A}^{(0)} = \begin{array}{c} \mathbf{V0} & \mathbf{V1} & \mathbf{V2} & \mathbf{V3} & \mathbf{V2} \\ \mathbf{V0} & 0 & \infty & 1 & \infty & 10 \\ \mathbf{V1} & \infty & 0 & \infty & 1 & 5 \\ \mathbf{V2} & \infty & 1 & 0 & \infty & 7 \\ \mathbf{V3} & \infty & \infty & \infty & 0 & 1 \\ \mathbf{V4} & \infty & \infty & \infty & \infty & 0 \end{array}$

 $path^{(0)} = \begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$

#1: 若允许在 V_{0、}V₁中转,最短路径是?——求 A⁽¹⁾和 path⁽¹⁾

 $\mathbf{A}^{(0)}[2][3] > \mathbf{A}^{(0)}[2][{}^{\mathbf{1}}] + \mathbf{A}^{(0)}[{}^{\mathbf{1}}][3] = 2$

 $A^{(1)}[2][3] = 2$

path(1)[2][3] = 1;

 $A^{(0)}[2][4] > A^{(0)}[2][1] + A^{(0)}[1][4] = 6$

 $A^{(1)}[2][4] = 6$

 $path^{(1)}[2][4] = 1;$

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

A ⁽⁰⁾ =	V0	0	∞	1	∞	10
	V1	∞	0	∞	1	5
	V2	∞	1	0	∞	7
	V 3	∞	∞	∞	0	1
	V4	∞	∞	∞	∞	0

V0 V1 V2 V3 V4

$$path^{(0)} = \begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

#1: 若允许在 V_{0、}V₁中转,最短路径是? ——求 A⁽¹⁾ 和 path⁽¹⁾

		VU	VЦ	72	V٤	۷4
path ⁽¹⁾ =	V0	-1	-1	-1	-1	-1
	V1	-1	-1	-1	-1	-1
	V2	-1	-1	-1	1	1
	V3	-1	-1	-1	-1	-1
	VA	_1	_1	_1	_1	_1

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

V0 V1 V2 V3 V4

#2: 若允许在 V₀、V₁、V₂中转,最短路径是?——求 **A**⁽²⁾和 path⁽²⁾

王道考研/CSKAOYAN.COM

V0 V1 V2 V3 V4

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $\mathbf{A}^{(k)}[i][j] = \mathbf{A}^{(k-1)}[i][k] + \mathbf{A}^{(k-1)}[k][j];$ $\mathsf{path}^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

		V0	V1	V2	V3	V 4
	V0	0	∞	1	∞	10
	V1	∞	0	∞	1	5
$A^{(1)} =$	V2	∞	1	0	2	6
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#2: 若允许在 V₀、V₁、V₂中转,最短路径是?——求 A⁽²⁾和 path⁽²⁾

 $A^{(1)}[0][1] > A^{(1)}[0][2] + A^{(1)}[2][1] = 2$ $A^{(2)}[0][1] = 2$; path⁽²⁾[0][1] = 2;

 $A^{(1)}[\theta][3] > A^{(1)}[\theta][2] + A^{(1)}[2][3] = 3$ $A^{(2)}[\theta][3] = 3$; path⁽²⁾[\theta][\theta][3] = 2;

 $A^{(1)}[\theta][4] > A^{(1)}[\theta][2] + A^{(1)}[2][4] = 7$ $A^{(2)}[\theta][4] = 7$; path⁽²⁾[\theta][4] = 2;

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

V0 V1 V2 V3 V4

#2: 若允许在 V_0 、 V_1 、 V_2 中转,最短路径是? ——求 $A^{(2)}$ 和 path $^{(2)}$

$$\mathbf{A}^{(2)} = \begin{array}{c|cccc} & \text{V0 V1 V2 V3 V4} \\ \hline \mathbf{V0} & 0 & \mathbf{2} & 1 & 3 & 7 \\ \hline \mathbf{V1} & \infty & 0 & \infty & 1 & 5 \\ \hline \mathbf{V2} & \infty & 1 & 0 & \mathbf{2} & 6 \\ \hline \mathbf{V3} & \infty & \infty & \infty & 0 & 1 \\ \hline \mathbf{V4} & \infty & \infty & \infty & \infty & 0 & 0 \end{array}$$

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

#3: 若允许在 V_{0、}V_{1、}V_{2、}V₃中转,最短路径是? ——求 A⁽³⁾ 和 path⁽³⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

否则 *A*^(k)和 *path*^(k)保持原值

 path⁽²⁾ = | V0 V1 V2 V3 V4 | V0 -1 | 2 | -1 | 2 | 2 | | 2

#3: 若允许在 V₀、V₁、V₂、V₃中转,最短路径是? ——求 **A**⁽³⁾和 path⁽³⁾

 $A^{(2)}[\theta][4] > A^{(2)}[\theta][3] + A^{(2)}[3][4] = 4$ $A^{(3)}[\theta][4] = 4$; path⁽³⁾[\textit{\textit{0}}][4] = 3;

 $A^{(2)}[I][4] > A^{(2)}[I][3] + A^{(2)}[3][4] = 2$

 $A^{(3)}[1][4] = 2$; path $^{(3)}[1][4] = 3$;

 $A^{(2)}[2][4] > A^{(2)}[2][3] + A^{(2)}[3][4] = 3$

 $A^{(3)}[2][4] = 3$; path $^{(3)}[2][4] = 3$;

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

 $\mathbf{A}^{(2)} = \begin{array}{c|cccc} & \text{V0 V1 V2 V3 V4} \\ \text{V0 0 } & \text{2 } & \text{1 } & \text{3 } & \text{7} \\ \hline \text{V1 } & \text{∞ } & \text{0 } & \text{∞ } & \text{1 } & \text{5} \\ \hline \text{V2 } & \text{∞ } & \text{1 } & \text{0 } & \text{2 } & \text{6} \\ \hline \text{V3 } & \text{∞ } & \text{∞ } & \text{∞ } & \text{0 } & \text{1} \\ \hline \text{V4 } & \text{∞ } & \text{∞ } & \text{∞ } & \text{∞ } & \text{0} \end{array}$

#3: 若允许在 V_{0、}V_{1、}V_{2、}V₃中转,最短路径是? ——求 A⁽³⁾和 path⁽³⁾

 $\mathbf{A}^{(3)} = \begin{bmatrix} & \mathsf{V0} & \mathsf{V1} & \mathsf{V2} & \mathsf{V3} & \mathsf{V4} \\ \mathsf{V0} & 0 & 2 & 1 & 3 & 4 \\ \mathsf{V1} & \infty & 0 & \infty & 1 & 2 \\ \mathsf{V2} & \infty & 1 & 0 & 2 & 3 \\ \mathsf{V3} & \infty & \infty & \infty & 0 & 1 \\ \mathsf{V4} & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$

 $path^{(3)} = \begin{cases} v0 & v1 & v2 & v3 & v4 \\ v0 & -1 & 2 & -1 & 2 & 3 \\ \hline v1 & -1 & -1 & -1 & -1 & 3 \\ v2 & -1 & -1 & -1 & 1 & 3 \\ \hline v3 & -1 & -1 & -1 & -1 & -1 \\ \hline v4 & -1 & -1 & -1 & -1 & -1 \end{cases}$

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

V0 V1 V2 V3 V4

#4: 若允许在 V_0 、 V_1 、 V_2 、 V_3 、 V_4 中转,最短路径是? ——求 $A^{(4)}$ 和 path $^{(4)}$

```
for(int i=0; i<n; i++) { //遍历整个矩阵, i为行号, j为列号
for (int j=0; j<n; j++) {
    if (A[i][j]>A[i][k]+A[k][j]) { //以 vk 为中转点的路径更短
        A[i][j]=A[i][k]+A[k][j]; //更新最短路径长度
        path[i][j]=k; //中转点
    }
}
```

王道考研/CSKAOYAN.COM

V0 V1 V2 V3 V4

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#4: 若允许在 V_{0} 、 V_{1} 、 V_{2} 、 V_{3} 、 V_{4} 中转,最短路径是? ——求 $A^{(4)}$ 和 path $^{(4)}$

不能解决的问题

Floyd 算法不能解决带有"负权回路"的图(有负权值的边组成回路),这种图有可能没有最短路径

王道考研/CSKAOYAN.COM

知识点回顾与重要考点

	BFS 算法	Dijkstra 算法	Floyd 算法
无权图	✓	✓	✓
带权图	×	V	✓
带负权值的图	×	×	✓
带负权回路的图	×	×	×
时间复杂度	O(V ²)或O(V + E)	O(V ²)	O(V ³)
通常用于		求带权图的单源最 短路径	

注:也可用 Dijkstra 算法求所有顶点间的最短路径,重复 [V] 次即可,总的时间复杂度也是O([V]⁹)