Algorytmy i struktury danych

Algorytmy przybliżone i dokładne Problem komiwojażera

Problem komiwojażera

Problem komiwojażera (travelling salesman problem – TSP)

Komiwojażer ma odwiedzić n miast.

Przez każde z miast ma przejechać dokładnie jeden raz.

Dane są odległości między każdą parą miast.

Celem jest znalezienie najkrótszej drogi łączącej wszystkie miasta.

Problem optymalizacyjny

- Problem komiwojażera jest problemem optymalizacyjnym.
- Dla problemu optymalizacyjnego poszukujemy rozwiązania, które spełnia ograniczenia problemu i minimalizuje (bądź maksymalizuje) funkcję celu.
- W problemie komiwojażera:
 - Rozwiązanie ma postać ciągu liczb reprezentujących miasta; kolejność liczb w ciągu określa kolejność odwiedzania miast.
 - Rozwiązanie nie może zawierać powtarzających się wartości; czasem nałożone jest wymaganie na wartość elementu początkowego i/lub końcowego.
 - Funkcją celu jest długość trasy, która jest minimalizowana.

Algorytm dokładny

- Algorytm dokładny znajduje najlepsze możliwe rozwiązanie problemu optymalizacyjnego.
- Najlepsze możliwe rozwiązanie problemu nazywane jest rozwiązaniem optymalnym.
- Algorytm dokładny (optymalny) dla problemu komiwojażera:
 - 1. Wygeneruj wszystkie możliwe kolejności odwiedzania n miast;
 - Dla każdej kolejności wyznacz długość trasy przejazdu;
 - 3. Wybierz najkrótszą trasę.
- lacksquare Złożoność algorytmu dokładnego $oldsymbol{O}(oldsymbol{n}!)$.
- Taki algorytm można zostosować tylko dla problemów o niewielkich rozmiarach.
- W praktyce spotykane są zwykle złożone problemy o dużych rozmiarach, dla których nie istnieją algorytmy dokładne o złożoności wielomianowej. Aby rozwiązać takie problemy, projektowane są algorytmy przybliżone.

Algorytm przybliżony - heurystyka

Algorytmy przybliżone nazywane są heurystykami.

- **Heurystyka** nie gwarantuje znalezienia rozwiązania optymalnego.
- Heurystyka znajduje rozwiązanie przybliżone (gorsze od optymalnego) w "rozsądnym" czasie (heurystyka powinna być efektywna - mieć złożoność wielomianową).
- Heurystyka często daje rozwiąznia dość bliskie optymalnym, ale mogą się również pojawiać wyniki bardzo odległe od optimum.

Algorytm zachłanny

- Przykładem heurystyki jest algorytm zachłanny (greedy algorithm).
- Ogólnie, algorytm zachłanny polega na sukcesywnej budowie rozwiązania poprzez podejmowanie w każdym kroku najlepszej w danym momencie decyzji.
 Rozwiązanie konstruowane jest od "zera".
- Algorytm zachłanny dla problemu komiwojażera algorytm najbliższego sąsiada.
 - 1. Ustaw jedno z miast (wskazane lub wybrane losowo) jako bieżące miasto;
 - 2. Dodaj do trasy przejazdu to z nieodwiedzonych miast, do którego odległość z miasta bieżącego jest najmniejsza, po czym ustaw nowo dodane miasto jako bieżące;
 - 3. Powtarzaj krok 2 aż do chwili, gdy wszystkie miasta zostaną odwiedzone.
- lacksquare Złożoność obliczeniowa algorytmu zachłannego $O(n^2)$.
- Powyższy algorytm nie jest uniwersalny pasuje tylko dla problemu komiwojażera.

Poprawa rozwiązania

- Gdy znane jest jakieś rozwiązanie przybliżone problemu (otrzymane np. za pomocą algorytmu zachłannego), to można je spróbować poprawić stosując inny algorytm heurystyczny.
- Na przykład można by zastosować taki algorytm:
 - 1. Przeszukaj sąsiedztwo bieżącego rozwiązania.
 - Jeżeli w sąsiedztwie znajduje się rozwiązanie lepsze od bieżącego, to zaakceptuj je jako bieżące i wróć do kroku 1.
 - 3. Jeżeli w sąsiedzwie nie ma rozwiązania lepszego niż bieżące, to zakończ proces przeszukiwań.

Startując z zaznaczonego punktu i przeszukując jego sąsiedztwo, algorytm może utknąć w lokalnym optimum

Sąsiad danego rozwiązania jest tworzony przez małą zmianę tego rozwiązania (niewiele się od niego różni).

- Aby móc uciec z lokalnego optimum, lepszy byłby algorytm taki:
 - 1. Przeszukaj sąsiedztwo bieżącego rozwiązania.
 - 2. Jeżeli w sąsiedztwie znalezione zostało rozwiązanie lepsze od bieżącego, to zaakceptuj je jako bieżące i idz do kroku 4.
 - 3. Jeżeli w sąsiedzwie nie zostało znalezione rozwiązanie lepsze niż bieżące, to zaakceptuj gorsze rozwiązanie pod pewnymi warunkami.
 - 4. Jeżeli kryterium stopu jest spełnione to zakończ, w przeciwnym przypadku idź do kroku 1.

Metaheurystyka

- Algorytmem, który przez wykonanie ruchu do rozwiązania gorszego niż bieżące, pozwala na ucieczkę z lokalnego optimum, jest na przykład algorytm symulowanego wyżarzania (SW, ang. simulated annealing, SA).
- Algorym SW jest przedstawicielem algorytmów metaheurystycznych.
- Metaheurystyki są to uniwersalne heurystyki, bazujące często na analogiach do procesów ze świata rzeczywistego (fizyki, chemii, biologii), które można interpretować w kategoriach optymalizacji.
 - Np wyżarzanie:
 - wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje
 - powolne zmniejszanie temperatury do chwili, w której cząsteczki ułożą się wzajemnie i osiągną (ang. ground state) temperaturę zerową
 - przeciwieństwo hartowania

Algorytm SW – schemat

- Algorytm symulowanego wyżarzania jest procedurą iteracyjną.
- Startuje on z pewnego rozwiązania początkowego i w każdej kolejnej iteracji tworzy nowe rozwiązanie przez wprowadzenie małej zmiany w bieżącym rozwiązaniu (czyli tworzy sąsiada bieżącego rozwiązania).
- Jeżeli nowe rozwiązanie jest lepsze od bieżącego, to jest ono akceptowane i przyjmowane jako bieżące rozwiązanie w następnej iteracji.
- Jeżeli nowe rowiązanie jest gorsze niż poprzednie , to jest ono akceptowane z prawdopodobieństwem $P=e^{-\Delta/T}$, które jest malejącą funkcją Δ/T , gdzie
 - □ *T* jest parametrem nazywanym temperaturą,
 - Δ jest różnicą miedzy funkcjami oceny (np. długością trasy dla TSP) dla nowego i poprzedniego rozwiązania.

Algorytm SW - idea

- Algorytm startuje z wysoką wartością temperatury.
- Czyli na początku procesu optymalizacji prawdopodobieństwo akceptacji gorszegp rozwiązania jest duże -> algorytm przegląda duże obszary przestrzeni rozwiązań i identyfikuje te obszary, w których występują dobrej jakości rozwiązania.
- Wraz z postępem procesu optymalizacji, temperatura jest stopniowo obniżana -> maleje prawdopodobieństwo akceptacji gorszego rozwiązania, a algorytm skupia się na obiecujących obszarach.
- Jeżeli nowe rozwiązanie jest dużo gorsze od niż bieżące, to wartość Δ jest duża -> takie rozwiązanie jest akkceptowane z małym prawdopodobieństwem.
- Kiedy nowe rozwiązanie jest w niewielkim stopniu gorsze od bieżącego, to wartość Δ jest mała -> nowe rowiązanie jest akceptowane z dużym prawdopodobieństwem.

$$P = e^{-\Delta/T}$$

Ocena jakości rozwiązań algorytmów heurystycznych

Względne odchylenie od optimum.

$$\delta = \frac{S - S_{opt}}{S_{opt}} 100\%$$

gdzie

S – wartość funkcji celu dla rozwiązania uzyskanego za pomocą badanego algorytmu heurystycznego S_{opt} – wartość funkcji celu dla rozwiązania optymalnego

 Względna poprawa rozwiązania (porównanie z wynikami otrzymanymi za pomocą innej heurystyki).

$$\sigma = \frac{S_h - S}{S_h} 100\%$$

gdzie

S - wartość funkcji celu dla rozwiązania otrzymanego za pomocą badanego algorytmu heurystycznego S_h - wartość funkcji celu dla rozwiązania otrzymanego za pomocą innego (gorszego) algorytmu heurystycznego

Przykład

Tabela odległości między miastami:

- (odległość od miasta i do miasta j)
- Zakładamy, że komiwojażer startuje z miasta 1 i nie wraca do miasta macierzystego.

j	1	2	3	4	5
1	0	36	96	36	15
2	40	0	86	5	26
3	7	69	0	83	24
4	18	68	8	0	73
5	30	79	69	30	0

- Algorym dokładny (AD) rozważane są wszystkie możliwe kolejności miast, liczba możliwości = 4!
 - Rozwiązanie (optymalne) trasa: 1,2,4,3,5
 - Długość trasy d_{AD} = 73

Liczba miast, n = 5

Kolejność	Długość trasy
1,2,3,4,5	36+86+83+73 = 278
1,3,2,4,5	96+69+5+73 = 243
1,2,4,3,5	36+5+8+24= 73

- Algorytm zachłanny (AZ) algorytm najbliższego sasiada
 - Rozwiązanie (przybliżone) trasa: 1,5,4,3,2
 - Długość trasy $d_{AZ} = 122$

Dodane miasto	Aktualna długość trasy	
1	0	
5	0+15 = 15	
4	15+30 = 45	
3	45+8 = 53	
2	53 + 69 = 122	
Długość trasy:	122	

Przykład. Ocena jakości rozwiązań algorytmów heurystycznych

■ Względne odchylenie od optimum

(Porównanie rozwiązania otrzymanego przez algorytm zachłanny z rozwiązaniem optymalnym)

Dla algorytmu zachłannego:

$$\delta_{AZ} = \frac{d_{AZ} - d_{AD}}{d_{AD}} 100\% = \frac{122 - 73}{73} 100\% = 67.12\%$$

Względne odchylenie od optimum rozwiązania otrzymanego za pomocą algorytmu zachłannego wynosi 67.12%.

Przykład. Ocena jakości rozwiązań algorytmów heurystycznych

Tałóżmy, że podjęta została próba poprawienia rozwiązania otrzymanego algorytmem zachłannym przez zastosowanie algorytmu SW, w wyniku której otrzymano trasę przejazdu komiwojażera: 1,5,2,4,3 o długości $d_{ASW}=107$.

■ Względna poprawa rozwiązania

(Porównanie rozwiązania otrzymanego algorytmem symulowanego wyżarzania z rozwiązaniem wyznaczonym przez algorytm zachłanny)

Dla algorytmu SW:

$$\sigma_{ASW} = \frac{d_{AZ} - d_{ASW}}{d_{AZ}} 100\% = \frac{122 - 107}{122} 100\% = 12.30\%$$

Względna poprawa rozwiązania (wyznaczonego przez algorytm zachłanny) uzyskana przez zastosowanie algorytmu symulowanego wyżarzania wynosi 12.3%.