Network Attacks Insight/Overview

Simona Buchovecká, Tomáš Čejka

Faculty of Information Technology, CTU in Prague simona.buchovecka@fit.cvut.cz, tomas.cejka@fit.cvut.cz

February 21, 2021

Section 1

Evolution

History of Attacks

Present, Discussion

- Ransomware
- Wireless attacks (KRACK)
- IoT botnets (Mirai)
- Philips hue
- Cryptominers
- Hardware attacks (CPU arch: Spectre, meltdown, cache attacks)
- "side-channel attacks"

Botnets

- Infected devices, synchronized, collaborating
- Different ways of communication:
 - Central Command&Control (C&C / C2) servers (channels: IRC, ICQ, HTTP, favicon, DNS)
 - P2P botnets
- Usually fastflux domains

Section 2

Classification

Attack Vector / Indicator of Compromise

Attack Vector describe how an attack can be performed and what it exploits.

Indicator of compromise in computer forensics is an artifact observed on a network or in an operating system that with high confidence indicates a computer intrusion.

Examples: Fragmented packets exploiting buffer overflow vulnerability in some particular software; packets with spoofed srcip with 123/UDP dstport sent to an NTP server.

Ways of Classification

There are many different classification methodologies.

Hansman et al.: Based on dimensions:

- 1st dimension to categorise the attack based on attack vector,
- 2nd dimension based on attack targets,
- 3rd dimension covers vulnerabilities and exploits that attack uses,
- 4th dimension deals with attacks having payloads or effects beyond themselves,
- other dimensions can be added.

There are many taxonomies of attack techniques, e.g., https://attack.mitre.org/ is popular.

Example of taxonomy

Brief List of Attack Types

- Information Gathering:
 - Scanning (vertical/horizontal)
 - OSINT (Open Source Intelligence), *INT
- Credential Stealing
 - Phishing
 - Brute-force attacks (dictionary attacks)
- Communication intercept
 - Man-in-the-Middle
 - Poisoning
 - Hijacking
- Service/operation disruption
 - (D)DoS
 - Starvation
 - De-authentication/Connection resetting
- Data Exfiltration
 - Covert Channels
 - Tunnels / VPNs

Section 3

Related Topics

Forms of Protection

- Access Control
- Authentication
- Confidentiality
- Integrity
- Non-repudiation

Sources of Security Threats

- Design Philosophy
- Weaknesses in Network Infrastructure and Communication Protocols
- Rapid Growth of Cyberspace
- The Growth of the Hacker Community
- Vulnerability in Operating System Protocol
- The Invisible Security Threat: The Insider Effect
- Social Engineering
- Physical Theft

Security Threat Motives

- Terrorism
- Military Espionage
- Economic Espionage
- Targeting the National Information Infrastructure
- Vendetta/Revenge
- Hate (National Origin, Gender, and Race)
- Notoriety
- Greed
- Ignorance

Section 4

Observation & Monitoring

Attack Observation via Monitoring

General Classification

- Host-Based (system logs, auditing tools, ...)
- Network-Based

Interaction in the network

- Active (ping, iperf, traceroute, Atlas RIPE, PerfSonar)
- Passive

Attack Observation via Monitoring

Monitoring data unit

- Counter
 - High-level information (total numbers of packets/bytes/errors, packet loss)
 - e.g. SNMP, Network Telemetry
- Packet
 - "Raw data"
 - Deep Packet Inspection (DPI)
 - Pattern matching
- Flow
 - high-level overview, communication of devices without full content
 - aggregation

IP Flow

An IP Flow, also called a Flow, is defined as a set of IP packets passing an Observation Point in the network during a certain time interval. All packets that belong to a particular Flow have a set of common properties derived from the data contained in the packet and from the packet treatment at the Observation Point.

(Cisco Systems NetFlow Services Export Version 9)

Classification of IP Flows

- uni-flow
 - unidirectional communication between srcip and dstip
- bi-flow
 - bidirectional
 - pairing flow records in time
 - advantage: requests and responses are matched before analysis

Packet point of view

1 0.000000	172.16.0.8	64.13.134.52	TCP	58	36050	443	36050 → 443 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
2 0.001539	172.16.0.8	64.13.134.52	TCP	58	36050	143	36050 → 143 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
3 0.001597	172.16.0.8	64.13.134.52	TCP	58	36050	3306	36050 → 3306 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
4 0.001650	172.16.0.8	64.13.134.52	TCP	58	36050	199	36050 → 199 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
5 0.001703	172.16.0.8	64.13.134.52	TCP	58	36050	111	36050 → 111 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
6 0.001755	172.16.0.8	64.13.134.52	TCP	58	36050	1025	36050 → 1025 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
7 0.001807	172.16.0.8	64.13.134.52	TCP	58	36050	995	36050 → 995 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
8 0.001861	172.16.0.8	64.13.134.52	TCP	58	36050	587	36050 → 587 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
9 0.001913	172.16.0.8	64.13.134.52	TCP	58	36050	53	36050 → 53 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
10 0.001965	172.16.0.8	64.13.134.52	TCP	58	36050	5900	36050 → 5900 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
11 0.063797	64.13.134.52	172.16.0.8	TCP	60	53	36050	53 → 36050 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1380
12 0.065271	172.16.0.8	64.13.134.52	TCP	58	36050	21	36050 → 21 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
13 0.065341	172.16.0.8	64.13.134.52	TCP	58	36050	113	36050 - 113 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
14 0.126832	64.13.134.52	172.16.0.8	TCP	68	113	36050	113 → 36050 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
15 0.129000	172.16.0.8	64.13.134.52	TCP	58	36050	80	36050 → 80 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
16 0.129075	172.16.0.8	64.13.134.52	TCP	58	36050	139	36050 → 139 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
17 0.189975	64.13.134.52	172.16.0.8	TCP	68	80	36050	80 - 36050 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1380
18 0.191518	172.16.0.8	64.13.134.52	TCP	58	36050	3389	36050 → 3389 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
19 0.191589	172.16.0.8	64.13.134.52	TCP	58	36050	23	36050 → 23 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
20 1.202878	172.16.0.8	64.13.134.52	TCP	58	36051	23	36051 → 23 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
21 1.202974	172.16.0.8	64.13.134.52	TCP	58	36051	3389	36051 → 3389 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
22 1.203041	172.16.0.8	64.13.134.52	TCP	58	36051	139	36051 → 139 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
23 1.203111	172.16.0.8	64.13.134.52	TCP	58	36051	21	36051 → 21 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
24 1.203176	172.16.0.8	64.13.134.52	TCP	58	36051	5900	36051 → 5900 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
25 1.203241	172.16.0.8	64.13.134.52	TCP	58	36051	587	36051 - 587 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
26 1.203316	172.16.0.8	64.13.134.52	TCP	58	36051	995	36051 → 995 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
27 1.203381	172.16.0.8	64.13.134.52	TCP	58	36051	1025	36051 → 1025 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
28 1.203446	172.16.0.8	64.13.134.52	TCP	58	36051	111	36051 → 111 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
29 1.203514	172.16.0.8	64.13.134.52	TCP	58	36051	199	36051 → 199 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
30 1.203581	172.16.0.8	64.13.134.52	TCP	58	36051	3306	36051 → 3306 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
31 1.203651	172.16.0.8	64.13.134.52	TCP	58	36051	143	36051 - 143 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
32 1.203716	172.16.0.8	64.13.134.52	TCP	58	36051	443	36051 → 443 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
33 1.402807	172.16.0.8	64.13.134.52	TCP	58	36050	1723	36050 → 1723 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
34 1.402891	172.16.0.8	64.13.134.52	TCP	58	36050	993	36050 → 993 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
35 1.402958	172.16.0.8	64.13.134.52	TCP	58	36050	110	36050 → 110 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
36 1.403023	172.16.0.8	64.13.134.52	TCP	58	36050	8080	36050 - 8080 [SYN] Seq=0 Win=4096 Len=0 MSS=1460
37 1.403088	172.16.0.8	64.13.134.52	TCP	58	36050	1720	36050 → 1720 [SYN] Seq=0 Win=4096 Len=0 MSS=1460

(wireshark)

Some Abbreviations

```
    srcip Source IP
    dstip Destination IP
    srcport Source port of transport protocol
    dstport Destination port of transport protocol
    proto Transport protocol (according to proto field in Network protocol header)
```

Flow point of view

```
TIMEFIRST
            TIMELAST
                       SRCIP: SRCPORT -> DSTIP: DSTPORT
                                                      PROTO FLG
                                                                 PKTS
8:09
      8:09
            46.28.11.24:123 -> 10.0.1.15:42958 UDP
                                                                  76
8:09
      8:09
            10.0.1.15:42958 -> 46.28.11.24:123 UDP
                                                                  76
8:09
      8:09
             0.0.0.0:0
                          -> 224.0.0.1:0
                                                                  32
                                                    2 . . . . . . 1
8:09
      8:09
            10.0.1.1:53
                          -> 10.0.1.15:46187
                                                IJDP
                                                               344
8:10
      8:10
            10.0.1.1:0
                          -> 10.0.1.15:0
                                               ICMP
                                                     . . . . . . 199
                                                                 208854
8:10
            10.0.1.15:46501
                             -> 10.0.1.1:53
                                                UDP
                                                     . . . . . . 2
                                                                  126
8:10
           10.0.1.15:0
                          -> 10.0.1.1:2048
                                               TCMP
      8:10
                                                     . . . . . . 199
                                                                  208854
8:10
      8:10
            10.0.1.15:50645 -> 10.0.1.1:53
                                               UDP
                                                                  124
                                                     . . . . . . 2
8:10
                                                UDP
      8:10
            10.0.1.1:53
                          -> 10.0.1.15:55978
                                                                  344
8:10
      8:11
            10.0.1.1:0
                          -> 10.0.1.15:0
                                               TCMP
                                                                 3256202
                                                     . . . . . . 3096
8:10
      8:11
            10.0.1.15:0 -> 10.0.1.1:2048
                                               ICMP
                                                     ..... 3096
                                                                  3256202
8:10
                                                TCP
                                                    .AP... 2484
                                                                 835296
      8:11
            10.0.1.1:22
                          -> 10.0.1.15:34974
8:10
      8:11
            10.0.1.15:34974 -> 10.0.1.1:22
                                                TCP
                                                    .AP... 1903
                                                                 99652
8:11
      8:11
            10.0.1.1:53
                             -> 10.0.1.15:56957
                                                   UDP
                                                                     242
      8:12 10.0.1.220:5353 -> 224.0.0.251:5353 UDP
                                                                     6665
8:09
```

Alert point of view

```
{"Category": ["Malware"], "Node": [{"AggrWin": "00:05:00", "SW": ["
    Nemea", "urlblacklistfilter"], "Type": ["Flow", "Blacklist"], "
    Name": "cz.cesnet.nemea.urlblacklist"}], "EventTime":
    "2018-09-28T17:28:24Z", "Description": "URL: 'vseccz.weebly.com
    ' (listed: Malware Domains) was requested by 146.102.131.199.",
     "Format": "IDEAO", "CeaseTime": "2018-09-28T17:28:41Z", "
    CreateTime": "2018-09-28T17:30:58Z", "Note": "URL: 'vseccz.
    weebly.com' was found on blacklist(s): Malware Domains.", "
    Source": [{"InFlowCount": 4, "Proto": ["tcp"], "Hostname": "
    vseccz.weebly.com", "InByteCount": 3136, "InPacketsCount": 30,
    "IP4": ["199.34.228.53"], "Type": ["OriginBlacklist"], "Port":
    [443]}, {"IP4": ["146.102.131.199"], "Proto": ["tcp"]}], "
    DetectTime": "2018-09-28T17:28:41Z", "Ref": ["http://mirror1.
    malwaredomains.com/files/justdomains"], "ID": "aaf1206b-f7e7
    -419a-898b-72447a1ed72c"}
```

Alert point of view

Incident point of view in IODEFv2 — ex. C2 domains from a given campaign

https://tools.ietf.org/html/rfc7970#section-7.2

```
<IndicatorData>
  <Indicator>
    <IndicatorID name="csirt.example.com" version="1">G90823490
        IndicatorID>
    <Description > C2 domains </Description >
    <StartTime > 2014-12-02T11:18:00-05:00/StartTime >
    <Observable>
      <BulkObservable type="fqdn">
      <BulkObservableList>
        kj290023j09r34.example.com
        09ijk23jfj0k8.example.net
        klknjwfjiowjefr923.example.org
        oimireik79msd.example.org
      </BulkObservableList>
    </BulkObservable>
  </Observable>
</Indicator>
</IndicatorData>
```

Section 5

Closing Words

(Recommended) Resources

- Simon Hansman, Ray Hunt: *A taxonomy of network and computer attacks*, 2005, https://doi.org/10.1016/j.cose.2004.06.011.
- N. Hoque, Monowar H. Bhuyan, R.C. Baishya, D.K. Bhattacharyya, J.K. Kalita: Network attacks: Taxonomy, tools and systems, 2014, https://doi.org/10.1016/j.jnca.2013.08.001.

Questions?