(11) Veröffentlichungsnummer:

0 353 187

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89810543.2

Anmeldetag: 18.07.89

(s) Int. Cl.5: C 07 D 213/61

A 01 N 43/40, C 07 D 213/50,

C 07 D 213/70, C 07 D 213/71,

C 07 D 213/65,

C 07 D 213/85,

C 07 D 213/78, C 07 D 213/79

③ Priorität: 25.07.88 CH 2825/89 05.01.89 CH 29/89

Veröffentlichungstag der Anmeldung: 31.01.90 Patentblatt 90/05

Benannte Vertragsstaaten: AT BE CH DE ES FR GB GR IT LI LU NL SE Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH)

Erfinder: Brunner, Hans-Georg, Dr. Wannenstrasse 14 CH-4415 Lausen (CH)

(54) Neue Herbizide.

Die Erfindung betrifft neue, herbizid wirksame Cyclohexandione der Formel I oder I'

R1 und R2 unabhängig voneinander Wasserstoff; Halogen; Nitro; Cyano; C1-C4-Alkyl; C1-C4-Alkoxy; C1-C4-Alkyl-S(O)n-; COR8; C1-C4-Halogenalkoxy; oder C1-C4-Halogenalkyl; R3, R4 und R5 unabhängig voneinander Wasserstoff; C1-C4-Alkyl; oder gegebenenfalls bis zu dreifach gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, C1-C4-Alkoxy, C_1 - C_4 -Alkyl- $S(O)_n$ -, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkyl-S(O)n- oder C1-C4-Halogenalkoxy substituiertes Phenyl oder Renzvi:

R6 Wasserstoff; C1-C4-Alkyl, C1-C4-Alkoxycarbonyl; oder Cy-

ano:

R⁷ OH; oder O[⊖]M[⊕];

R8 OH; C1-C4-Alkoxy; NH2; C1-C4-Alkylamino; oder di-C₁-C₄-Alkylamino;

n 0, 1 oder 2;

M[®] ein Kationenäquivalent eines Metallions oder eines gegebenenfalls bis zu dreifach durch C1-C4-Alkyl, C1-C4-Hydroxyalkyl-, oder C1-C4-Alkoxy-C1-C4-alkyl-gruppen substituierten Ammo-

bedeutet, herbizide Mittel, Verfahren zur Herstellung neuer Verbindungen sowie neue Zwischenprodukte und deren Herstellung.

Beschreibung

Neue Herbizide

Die vorliegende Erfindung betrifft neue Cyclohexandione mit herbizider Wirkung, agrochemische Mittel, die diese Cyclohexandione enthalten, deren Verwendung zur Bekämpfung unerwünschten Pflanzenwachstums sowie Verfahren zur Herstellung der erfindungsgemässen Verbindungen. Ferner betrifft die Erfindung auch neue Zwischenprodukte und Verfahren zu deren Herstellung.

Es sind bereits zahlreiche substituierte Cyclohexan-1,3-dione mit herbizider Wirkung bekannt geworden. Diese Verbindungen befriedigen nicht immer im Hinblick auf Wirkungsstärke, Wirkdauer, Selektivität und Anwendbarkeit. Demgegenüber wurde überraschenderweise gefunden, dass die neuen Cyclohexan-1,3-dione der allgemeinen Formel 1 bzw. I' gut herbizid wirksam sind.

Die Erfindung betrifft die neuen Cyclohexan-1,3-dione der Formel I oder I'

worin

10

30

35

40

15

50

55

60

R¹ und R² unabhängig voneinander Wasserstoff; Halogen; Nitro; Cyano; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; C₁-C₄-Alkyl-S(O)_n-; COR⁸; C₁-C₄-Halogenalkoxy; oder C₁-C₄-Halogenalkyl;

R³, R⁴ und R⁵ unabhängig voneinander Wasserstoff; C₁-C₄-Alkyl; oder gegebenenfalls bis zu dreifach gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-S(O)_n-, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl-S(O)_n- oder C₁-C₄-Halogenalkoxy substituiertes Phenyl oder Benzyl;

R⁶ Wasserstoff; C₁-C₄-Alkyl, C₁-C₄-Alkoxycarbonyl; oder Cyano;

R⁷ OH; oder O[⊖]M[⊕];

R⁸ OH; C₁-C₄-Alkoxy; NH₂; C₁-C₄-Alkylamino; oder di-C₁-C₄-Alkylamino; n 0, 1 oder 2:

M[®] ein Kationenäquivalent eines Metallions oder eines gegebenenfalls bis zu dreifach durch C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl-, oder C₁-C₄-Alkoxy-C₁-C₄-alkyl-gruppen substituierten Ammoniumions bedeutet.

In den in dieser Beschreibung verwendeten Definitionen umfassen die angegebenen generischen Begriffe, sowie die durch Kombination einzelner Unterbegriffe erhältlichen Substituenten, beispielsweise die folgenden spezifischen Einzelsubstituenten, wobei diese Aufzählung keine Einschränkung der Erfindung darstellt:

Alkyl: Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sek-Butyl, i-Butyl und tert-Butyl; vorzugsweise Methyl, Ethyl und i-Propyl.

Halogen: Fluor, Chlor, Brom und Jod; vorzugsweise Fluor, Chlor und Brom; besonders bevorzugt (für R¹ und R²) Fluor und Chlor und Brom.

Halogenalkyl: Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2-Chlorethyl und 2,2,2-Trichlorethyl; vorzugsweise Trichlormethyl, Difluorchlormethyl und Dichlorfluormethyl.

Alkoxy: Methoxy, Ethoxy, Propyloxy, i-Propyloxy, n-Butyloxy, i-Butyloxy, s-Butyloxy und t-Butyloxy; vorzugsweise Methoxy.

Halogenalkoxy: Fluormethoxy, Difluormethoxy, Trifluormethoxy, 2,2,2-Trifluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2-Fluorethoxy, 2-Chlorethoxy und 2,2,2-Trichlorethoxy; vorzugsweise Difluormethoxy, 2-Chlorethoxy und Trifluormethoxy.

Alkoxycarbonyl: Methoxycarbonyl, Ethoxycarbonyl, 4-Propyloxycarbonyl, i-Propyloxycarbonyl und n-Butyloxycarbonyl; vorzugsweise Methoxycarbonyl und Ethoxycarbonyl.

Alkylthio: Methylthio, Ethylthio, Propylthio, Isopropylthio, n-Butylthio, i-Butylthio, s-Butylthio oder t-Butylthio; vorzugsweise Methylthio und Ethylthio.

Alkylsulfinyl: Methylsulfinyl, Ethylsulfinyl, n-Propylsulfinyl, i-Propylsulfinyl, n-Butylsulfinyl, sec-Butylsulfinyl, i-Butylsulfinyl; vorzugsweise Methylsulfinyl und Ethylsulfinyl.

Alkylsulfonyl: Methylsulfonyl, Ethylsulfonyl, n-Propylsulfonyl, i-Propylsulfonyl, n-Butylsulfonyl, sec-Butylsulfonyl, n-Butylsulfonyl, sec-Butylsulfonyl, i-Butylsulfonyl, vorzugsweise Methyl- und Ethylsulfonyl.

Im Hinblick auf ihre chemische Struktur können die Verbindungen der Formel I als in Position 2 acyllerte 1,3-Cyclohexandione angesehen werden. Von dieser Grundstruktur sind zahlreiche tautomere Formen ableitbar. Die Erfindung umfasst sämtliche Tautomere.

Die jeweils durch ein Semikolon voneinander abgetrennten Einzelbedeutungen der Substituenten R^1 bis R^7 sind als Untergruppen dieser Substituenten anzusehen. Die Erfindung umfasst auch die durch Streichung einer oder mehrerer dieser Untergruppen erhältlichen Definitionen der Verbindungen der Formel I.

Die Verbindungen der Formel I und I' liegen in einem Gleichgewicht beider Formen gemäss nachstehender Gleichung vor:

Im Falle der Hydroxyverbindungen ($R^7 = OH$) kann neben den drei Enolformen Ia, Ia''' bzw. Ia' auch die Triketoform Ia'' gemäss nachstehendem Tautomeriegleichgewicht auftreten:

15

45

50

55

60

65

Die Erfindung umfasst sämtliche aus der Grundstruktur I bzw. I' herleitbaren tautomeren Strukturen und deren Salze ($\mathbb{R}^7 = \mathbb{O}^{\Theta} \mathbb{M}^{\Theta}$).

Ia'

Ia'''

Darüber hinaus können die Verbindungen der Formel I bzw. I' (insbesondere durch die Reste R³ bis R6 am Cyclohexansystem) unsymmetrisch substituiert sein. Die Erfindung umfasst sowohl das Racemat als auch die angereicherten und optisch reinen Formen der jeweiligen Stereoisomeren.

Die unsymmetrisch substituierten Verbindungen der Formel I fallen, sofern nicht chirale Edukte verwendet werden, im allgemeinen bei den in dieser Anmeldung beschriebenen Verfahren als Racemate an. Die Stereoisomeren können sodann nach an sich bekannten Methoden, wie etwa fraktionierter Kristallisation nach Salzbildung mit optisch reinen Basen, Säuren oder Metallkomplexen, oder aber durch chromatographische Verfahren aufgrund physikochemikalischer Eigenschaften aufgetrennt werden.

Sowohl das Racemat als auch die stereoisomeren Formen werden von der Erfindung umfasst. Hervorzuheben sind die Verbindungen der Formel I oder I'

worin der Pyridincarbonylrest über die Position 2 des Pyridinsystems gebunden ist. Hervorzuheben sind weiterhin die Verbindungen der Formel I oder I'

worin die Reste R¹ und R² in den Positionen 3 und 5 des Pyridinsystems gebunden sind. Bevorzugt sind die Verbindungen der Formel I oder I'

I I'
worin die Reste R¹ und R² in den Positionen 3 und 5 des Pyridinringes und das Pyridincarbonylsystem über die
Position 2 des Pyridinringes gebunden sind.

Insbesondere bevorzugt sind die Verbindungen der Formel I oder I'

worin

15

20

25

30

35

40

55

R¹ Wasserstoff; Halogen; Nitro; Cyano; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; C₁-C₄-Alkyl-S(O)n-; COR8; C₁-C₄-Halogenalkyl; C₁-C₄-Halogenalkyl;

R² Wasserstoff; Halogen; Nitro; Cyano; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; C₁-C₄-Halogenalkoxy; C₁-C₄-Alkyl-S(O)_n-; oder C₁-C₄-Halogenalkyl;

R³, R⁴ und R⁵, unabhängig voneinander; Wasserstoff; C₁-C₄-Alkyl; oder gegebenenfalls bis zu dreifach gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-S(O)_n-, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl-S(O)_n- oder C₁-C₄-Halogenalkoxy substituiertes Phenyl oder Benzyl;

R⁶ Wasserstoff; C₁-C₄-Alkoxycarbonyl; oder Cyano;

R⁷ OH; oder O[⊕]M[⊕]

R8 OH; C1-C4-Alkoxy; NH2; C1-C4-Alkylamino; oder di-C1-C4-Alkylamino;

n 0, 1 oder 2;

65 M[®] ein Kationenäquivalent eines Alkali-, Erdalkali- oder Ammoniumions; Mono-C₁-C₄-alkylammonium;

Di-C1-C4-alkylammonium-; Tri-C1-C4-alkylammonium-; oder Triethanolammoniumions; bedeutet. Besonders hervorzuheben sind bei den vorgenannten Verbindungen der Formel I oder I' im Umfang der breitesten generischen Bedeutung wie auch bei den hervorgehobenen, bevorzugten und besonders 5 generischen Definitionen jeweils nachstehend genannte Untergruppen: a) Verbindungen der Formel I oder I', in denen mindestens einer der Reste R³ bis R6 Wasserstoff bedeutet, b) Verbindungen der Formel I oder I', in denen mindestens zwei der Reste R³ bis R6 Wasserstoff bedeuten. c) Verbindungen der Formel I oder I', in denen R⁶ Cyan und R⁵ Wasserstoff bedeutet, 10 d) Verbindungen der Formei I oder I', in denen R⁶ Cyan, R⁵ Wasserstoff und R³ und R⁴ unabhängig voneinander Wasserstoff oder C1-C4-Alkyl bedeutet, e) Verbindungen der Formel I oder I' in denen R6 C1-C4-Alkoxycarbonyl bedeutet, f) Verbindungen der Formel I oder I', in denen R⁷ OH bedeutet, 15 g) Verbindungen der Formel I oder I', in denen R7 OGM bedeutet, h) Verbindungen der Formel I oder I', in denen R1 Wasserstoff, Chlor, Fluor, Nitro, Trifluormethyl, Methoxy, Brom, Methylthio, Methylsulfonyl, Carboxy, Trichlormethyl oder Methyl bedeutet, i) Verbindungen der Formel I und I', in denen R² Wasserstoff, Chlor, Nitro, Methylthio, Methylsulfinyl, Methylsulfonyl, Methyl, Fluor, Trifluormethyl oder Trichlormethyl bedeutet. Insbesondere sind hervorzuheben Kombinationen der Untergruppen a) bis e) mit h) und i) sowohl als freie 20 Säure (Gruppe f)) als auch als Salze (Gruppe g)). Besonders bevorzugt sind die Verbindungen der Formel I oder I' worin R1 Wasserstoff; Fluor; Chlor; Brom; Nitro; Cyano; Methyl; Trifluormethyl; Trichlormethyl; Methoxy; Methylthio; Methylsulfinyl; Methylsulfonyl Carboxy; Carbamoyl; Methoxycarbonyl; oder Ethoxycarbonyl; R2 Wasserstoff; Fluor; Chlor; Nitro; Trifluormethyl; Trichlormethyl; Methylthio; Methylsulfinyl; oder 25 Methylsuifonyl; R³ Wasserstoff; C1-C3-Alkyl, Phenyl; Benzyl; oder Chlorphenyl; R4 Wasserstoff; oder Methyl; R5 Wasserstoff; oder Methyl; 30 R⁶ Wasserstoff; Cyan; Methyl; oder C₁-C₂-Alkoxycarbonyl; R7 OH; oder O[⊕]M[⊕] M[®] ein Kationenäquivalent des Natrium-, Lithium-, Calcium-, Trimethylammonium- oder Triethanolammoniumions bedeuten. Als Einzelverbindungen zu nennen sind 2-(3-Chlor-5-trifluormethyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-35 2-(3-Chlor-5-methylsulfonyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on. Die Verbindungen der Formel la oder la', worin die Reste R¹ bis R6 wie zuvor definiert sind und R7 OH 40 bedeutet können hergestellt werden durch a) Umsetzung von Cyclohexandionen der Formel II, worin die Reste R³ bis R6 wie zuvor definiert sind, mit einem Pyridin der Formel III, worin R1 und R2 wie zuvor definiert sind und X Halogen, vorzugsweise Chlor oder Brom, den Rest 45

und R8 C1-C4-Alkyl, Phenyl oder Benzyl bedeutet, in Gegenwart einer Base umsetzt

60

55

50

5
$$R^3$$
 R^6 R^6 R^7 R^7

oder

55

60

65

b) thermische Umlagerung eines Esters der Formel IV oder IV', worin die Reste R¹ bis R⁶ wie zuvor definiert sind

vorzugsweise in Gegenwart von Cyanid.

Die Salze der Formel Ib bzw. Ib', worin die Reste R¹ bis R6 wie zuvor definiert sind, und R7 O[©]M[®] bedeutet, können hergestellt werden durch

c) Umsetzung eines Cyclohexandions la oder la', worin R^1 bis R^6 wie zuvor definiert sind, und R^7 OH bedeutet mit einer Base V, worin B OH $^{\oplus}$ M $^{\oplus}$ bedeutet und M $^{\oplus}$ wie zuvor definiert ist

oder

Die Ester der Formel IV bzw. IV' sind wertvolle Zwischenverbindungen zur Herstellung der herbiziden Endprodukte la bzw. la' gemäss Verfahrensvariante b). Die Erfindung betrifft somit auch die neuen Ester IV oder IV'. Die Ester IV oder IV' können aber auch als Nebenprodukte bei der Acylierung gemäss Verfahrensvariante a) entstehen.

d) Weiterhin können die Verbindungen der Formel Ic oder Ic' worin einer oder mehrere der Reste R^1 bis R^6 für C_1 - C_4 -Alkyl- $S(O)_n$ - mit n=1 oder 2 steht, und die übrigen Reste wie zuvor definiert sind, hergestellt werden durch Oxidation eines Thioethers der Formel Id oder Id', worin der zu oxidierende Rest aus der Gruppe R^1 bis R^6 C_1 - C_4 -Alkyl- $S(O)_n$ - mit n=0 bedeutet und die übrigen Reste wie zuvor definiert sind

$$R^3$$
 R^4
 R^5
 R^6
 R^7
 R^1
 R^2
 R^2

Id (Thioether mit n = 0) Oxidation

$$\mathbb{R}^{7}$$
 \mathbb{R}^{7}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{5}
 \mathbb{R}^{6}
 \mathbb{R}^{6}

5

10

25

30

Ic (Sulfinyl- oder
 Sulfonylverbindung
 mit n = 1 oder 2)

Id' (Thioether mit n = 0)

Ic' (Sulfinyl- oder
 Sulfonylverbindung
 mit n = 1 oder 2)

Derartige Oxidationen sind dem Fachmann geläufig (z.B. Methodicum Chimicum, Ed. F. Korte, 9. Thieme Verlag Stuttgart 1976, Bd. 7 Seiten 696-698 und die dort genannten Literaturstellen für die Oxidation zu 65

Sulfenen und Bd. 7, Seiten 751-755 und die dort genannte Literatur für die Oxidation zu Sulfonen). Bevorzugt ist die Oxidation mit H₂O₂ und mit Persäuren, insbesondere mit 3-Chlorperbenzoesäure. Durch geeignete Wahl von Basen, Lösungsmittel sowie weiterer Reaktionsparameter, wie Temperatur, Konzentration etc. kann die O-Acylierung gemäss nachstehendem Schema zur Hauptreaktion werden:

R³— IV'

Bei der C-Acylierung gemäss Verfahrensvariante a) hat es sich als vorteilhaft erwiesen, die Umsetzung in Gegenwart geringer Mengen von Cyanid zu arbeiten. Eine geringe Cyanidkonzentration kann beispielsweise durch die Zugabe von Acetoncyanhydrin sichergestellt werden.

Die Umlagerung der Ester IV bzw. IV kann ebenfalls in vorteilhafter Weise unter Einwirkung von Cyanidionen sowie in Gegenwart einer Base erfolgen.

Obwohl die als Reaktion a) skizzierte Synthese der Verbindungen der Formel la bzw. la′ ein Verfahren beschreibt, mit welchem prinzipiell sämtliche von Formel la bzw. la′ umfassten Verbindungen herstellbar sind, kann es aus ökonomischen oder verfahrenstechnischen Gründen sinnvoll sein, bestimmte Verbindungen der Formel la bzw. la′ in andere, von Formel l bzw. l′ umfasste Derivate, zu überführen. Beispiele für derartige Umwandlungen sind, neben der Reaktion c) und d), zum Beispiel Verfahren, bei denen R⁶ für Ester-, Halogenoder Cyanoradikal steht. Diese Radikale können analog zu den nachstehend in Schema 1 gezeigten Umsetzungen (IIa → IIb, IIc oder IId) auch noch auf der Stufe der Verbindungen der Formel I durchgeführt werden. Derartige Derivatisierungsreaktionen sind dem Fachman geläufig.

Mit Vorteil führt man die obigen Umsetzungen in einem reaktionsinerten Lösungsmittel aus. Dabei kommen als inerte Lösungsmittel, Kohlenwasserstoffe, wie Benzol, Toluol oder Xylol; Ether, wie Diethylether, Methylisopropylether, Glyme, Diglyme; cyclische Ether, wie Tetrahydrofuran und Dioxan; Ketone, wie Aceton, Methylethylketon; Amide, wie Dimethylformamid, N-Methylpyrrolidon; Sulfoxide, wie Dimethylsulfoxid; oder chlorierte Kohlenwasserstoffe, wie Dichlormethan, Trichlormethan, Tetrachlormethan oder Tetrachlorethan, Alkohole, wie Methanol, Ethanol, Isopropanol, Propanol, Butanol etc. in Betracht.

Auch können mit Vorteil in einigen Fällen Lösungsmittelgemische als organische Lösungsmittel in Mischung mit Wasser Verwendung finden.

Die Reaktionstemperatur kann in weiten Grenzen variiert werden. Geeignete Reaktionstemperaturen liegen beispielsweise zwischen -20°C und der Rückflusstemperatur des Reaktionsgemisches. Vorzugsweise wird die Umsetzung bei einer Temperatur zwischen 0°C und 100°C durchgeführt.

Im Fall der Reaktionen a) und b) ist es vorteilhaft unter Basenzusatz zu arbeiten. Geeignete Basen sind u.a. Natrium-, Kalium- und Calciumhydroxid, Alkali- und Erdalkalicarbonate, Amine, wie etwa Triethylamin oder Heterocyclen, wie Pyridin, 4-Dimethylaminopyridin, DABCO sowie Alkalimetallhydride.

Die Reaktion a) und b) können auch vorteilhaft unter Phasentransfer-Bedingungen in Zweiphasensystemen durchgeführt werden. Derartige Reaktionen sind dem Fachman geläufig (z.B. beschrieben in Dehmlow und Dehmlow, Phase Transfer Catalysis, Verlag Chemie, Weinheim 1983; W.E. Keller, Phase Transfer Reactions Vol. 1 und Vol. 2, G. Thieme Verlag, Stuttgart 1986, 1987).

Die Cyclohexandione der Formel II sind entweder bekannt oder sie können analog zu literaturbekannten Verfahren hergestellt werden.

Einen generellen Zugang zu den Cyclohexandionen II ermöglicht nachstehende Malonestersynthese, in der zunächst gemäss nachstehendem Schema aus einem Aldehyd oder Keton VI und Aceton die spezifisch substituierten Cyclohexandione IIa, IIb oder IIc herstellbar;

65

5

25

40

45

50

55

Schema 1

IIa
$$\frac{\text{Verseifen}}{\text{+ decarboxylieren}}$$
 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^6 = H)

Die Verbindungen der Formel IIc, in denen die Reste R³ bis R⁵ wie zuvor definiert sind und R⁶ Cyan bedeutet, können in Abwandlung des Reaktionsschema 1 durch Michael-Addition von Cyanessigsäureester XIII, worin R⁵ wie zuvor definiert ist und R′ C₁-C₄-Alkyl bedeutet an das Keton VIII, worin R³ und R⁴ wie zuvor definiert sind, hergestellt werden.

Schema 2

CH₃ + CHR⁵
$$R^4$$
 CN R^5 R^6 VIII XIII IIc (R⁶ = CN)

Bei den Pyridincarbonsäurederivaten III sind insbesondere die Säurechloride bevorzugt.

Das Pyridin-2-carbonsäurechlorid IIIa kann in vorteilhafter Weise durch eine Pd-katalysierte Carbonylierungsreaktion gemäss nachstehendem Reaktionsschema 3 hergestellt werden:

50

65

60

Schema 3

In obigem Schema ist Hal Halogen (in erster Linie Chlor); R' C₁-C₄-Alkyl und Pd-Kat ist vorzugsweise PdCl₂(TPP)₂ ein Triphenylphoshpinkomplex des Palladiums.

Die in Schema 3 genannten Picolinsäurederivate XI, Illa und XIV sind wertvolle Zwischenprodukte für die Synthese der erfindungsgemässen Cyclohexandione I. Zum überwiegenden Teil sind diese Verbindungen neu.

Die Erfindung betrifft somit auch die neuen Picolinsäurederivate der Formel XV

R¹ × × R²

XV,

worin

25

30

35

50

Y OH; C1-C4-Alkoxy; oder Halogen; und

R¹ und R² unabhängig voneinander Halogen, Nitro; Cyano; C₁-C₄-Halogenalkyl; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; oder C₁-C₄-Alkyl-S(O)n-; und

n 0; 1; oder 2;

bedeutet,

mit der Massgabe, dass wenn Y Chlor bedeutet und der Rest R¹ in Position 3 und der Rest R² in Position 5 gebunden ist,

R¹ und R² nicht beide zusammen Chlor oder beide zusammen Methyl oder wenn R¹ für Nitro steht R² nicht Methyl bedeutet.

Bevorzugt sind die Picolinsäurederivate der Formel XV',

45 R²

XV'

worin

Y OH; C1-C4-Alkoxy; oder Halogen; und

R¹ und R² unabhängig voneinander Halogen, Nitro; Cyano; C₁-C₄-Halogenalkyl; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; oder C₁-C₄-Alkyl-S(O)n-; und

n 0; 1; oder 2;

bedeutet.

mit der Massgabe, dass wenn Y Chlor bedeutet, R¹ und R² nicht beide zusammen Chlor oder beide zusammen Methyl oder R¹ Nitro und R² Methyl bedeutet.

Besonders bevorzugt sind die Verbindungen der Formel XV', worin

Y OH; C₁-C₄-Alkoxy; oder Halogen;

R1 Wasserstoff; und

60 R² C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl; oder Cyano bedeutet.

Ebenfalls besonders bevorzugt sind die Verbindung der Formel XV', worin

Y OH; C₁-C₄-Alkoxy; oder Halogen;

R1 C1-C4-Alkoxy; C1-C4-Halogenalkyl; oder Cyano; und

R² Waserstoff

65 bedeutet.

Hervorzuheben sind bei den Verbindungen der Formel XV sowie den als bevorzugt und besonders bevorzugt genannten Verbindungen XV', die Säurechloride, das heisst diejenigen Verbindungen, in denen Y Chlor bedeutet.

5

10

30

35

40

45

50

55

60

65

Die Verbindungen der Formel I sind hochaktive Pflanzenwirkstoffe, welche sich bei geeigneten Aufwandmengen hervorragend als Selektivherbizide zur Unkrautbekämpfung in Nutzpflanzenkulturen eignen. Das heisst, bei diesen Aufwandmengen zeichnen sich die Wirkstoffe der Formel I durch gute selektiv-hebizide Eigenschaft gegen Unkräuter aus. Insbesondere Getreide, wie Roggen, Gerste, Hafer, Weizen und Mais aber auch andere Kulturpflanzen, wie Hirse, Reis, Baumwolle, Zuckerrohr oder Soja oder auch Dauerkulturen (wie etwa Reben oder Plantagen) bleiben bei niedrigen Aufwandmengen praktisch ungeschädigt. Bei gesteigerten Aufwandmengen werden die Kulturpflanzen nur geringfügig in ihrem Wachstum beeinflusst. Werden sehr hohe Aufwandmengen appliziert, entfalten die Substanzen der Formel I totalherbizide Eigenschaften. Die Aufwandmengen betragen in der Regel 0,001 bis 4 kg vorzugsweise 0,005 bis 2 kg Aktiosubstanz je Hektar.

Bei hohen Aufwandmengen können die Verbindungen der Formel I auch als Totalherbicide eingesetzt werden. Sie sind insbesondere geeignet zur Unkrautbekämpfung auf Wegen, Plätzen, Geleisanlagen oder sonstiger Flächen, auf denen eine vollständige Abtötung der dort wachsenden Pflanzen gewünscht ist.

Die selektiv-herbizide Wirkung der erfindungsgemässen Verbindungen wird sowohl bei der preemergenten als auch der postemergenten Anwendung festgestellt. Diese Wirkstoffe können daher im Vorauflaufverfahren und im Nachauflaufverfahren zur selektiven Unkrautbekämpfung gleichermassen mit gutem Erfolg verwendet werden.

In vorteilhafter Weise können die erfindungsgemässen Wirkstoffe oder Mittel auch auf das Vermehrungsgut der Kulturpflanze aufgebracht werden. Besonders zu erwähnen ist hier die Samenbeizung. Vermehrungsgut sind Samen, Stecklinge oder sonstige Teile der Pflanze, aus denen die Kulturpflanze gezogen werden kann. Das mit einer wirksamen Menge einer Verbindung der Formel I behandelte Vermehrungsgut ist ebenfalls Gegenstand der Erfindung.

Die Erfindung betrifft auch herbizide Mittel, welche einen neuen Wirkstoff der Formel I enthalten, sowie Verfahren zur pre- und postemergenten Unkrautbekämpfung.

Die Verbindungen der Formel I werden in unveränderter Form oder vorzugsweise als Mittel zusammen mit den in der Formulierungstechnik üblichen Hilfsmitteln eingesetzt und werden daher z.B. zu Emulsionskonzentraten, direkt versprühbaren oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten, auch Verkapselungen in z.B. polymeren Stoffen in bekannter Weise verarbeitet. Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Verstreuen oder Giessen werden gleich wie die Art der Mittel den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.

Die Formulierungen, d.h. die den Wirkstoff der Formel I und gegebenenfalls einen oder mehrere feste oder flüssige Streckmittel oder Zusatzstoff enthaltende Mittel, Zubereitungen oder Zusammensetzungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit Streckmitteln, wie z.B. mit Lösungsmitteln, flüssigen festen Trägerstoffen, und gegebenenfalls oberflächenaktiven Verbindungen (Tensiden).

Als Lösungsmittel wie auch als Streckmittel können in Frage kommen: Aromatische Kohlenwasserstoffe, bevorzugt die Fraktionen C₈ bis C₁₂, wie z.B. Xylolgemische oder substituierte Naphthaline, Phthalsäureester wie Dibutyl- oder Dioctylphthalat, aliphatische Kohlenwasserstoffe wie Cyclohexan oder Paraffine, Alkohole und Glykole sowie deren Ether und Ester, wie Ethanol, Ethylenglykol, Ethylenglykolmonomethyl- oder -ethylether Ketone wie Cyclohexanon, stark polare Lösungsmittel wie N-Methyl-2-pyrrolidon, Dimethylsulfoxid oder Dimethylformamid, sowie gegebenenfalls epoxidierte Pflanzenöle, wie epoxidiertes Kokosnussöl oder Sojaöl oder Wasser.

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillonit oder Attapulgit. Zur Verbesserung der physikalischen Eigenschaften können auch hochdisperse Kieselsäure oder hochdisperse saugfähige Polymerisate zugesetzt werden. Als gekörnte, adsorptive Granulatträger kommen poröse Typen wie z.B. Bimsstein, Ziegelbruch, Sepiolit oder Bentonit, als nicht sorptive Trägermaterialien z.B. Calcit oder Sand in Frage. Darüberhinaus kann eine Vielzahl von vorgranulierten Materialien anorganischer oder organischer Natur wie insbesondere Dolomit oder zerkleinerte Pflanzenrückstände verwendet werden.

Als oberflächenaktive Verbindungen kommen je nach der Art des zu formulierenden Wirkstoffes der Formel I nichtionogene, kation-und/oder anionaktive Tenside mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. Unter Tensiden sind auch Tensidgemische zu verstehen.

Geeignete anionische Tenside können sowohl sog. wasserlösliche Seifen als auch wasserlösliche synthetische oberflächenaktive Verbindungen sein.

Als Seifen seien die Alkali-, Erdalkali- oder gegebenenfalls substituierte Ammoniumsalze von höheren Fettsäuren (C_{10} - C_{22}), wie z.B. die Na- oder K-Salze der Oel- oder Stearinsäure, oder von natürlichen Fettsäuregemischen, die z.B. aus Kokosnuss- oder Talgöl gewonnen werden können, genannt. Ferner sind auch die Fettsäuremethyl-taurinsalze zu erwähnen.

Häufiger werden jedoch sogenannte synthetische Tenside verwendet, insbesondere Fettsulfonate, Fettsulfate, sulfonierte Benzimidazolderivate oder Alkylarylsulfonate.

Die Fettsulfonate oder -sulfate liegen in der Regel als Alkali-, Erdalkali- oder gegebenenfalls substituierte Ammoniumsalze vor und weisen einen Alkylrest mit 8 bis 22 C-Atomen auf, wobei Alkyl auch den Alkylteil von

Acylresten einschliesst, z.B. das Na- oder Ca-Salz der Ligninsulfonsäure, des Dodecylschwefelsäureesters oder eines aus natürlichen Fettsäuren hergestellten Fettalkoholsulfatgemisches.

Hierher gehören auch die Salze der Schwefelsäureester und Sulfonsäuren von Fettalkohol-Ethylenoxid-Addukten. Die sulfonierten Benzimidazolderivate enthalten vorzugsweise 2-Sulfonsäuregruppen und einen Fettsäurerest mit 8 bis 22 C-Atomen. Alkylarylsulfonate sind z.B. die Na-, Ca- oder Triethanolaminsalze der Dodecylbenzolsulfonsäure, der Dibutylnaphthalin sulfonsäure oder eines Naphthalinsulfonsäure-Formaldehydkondensationsproduktes.

Ferner kommen auch entsprechende Phosphate wie z.B. Salze des Phosphorsäureesters eines p-Nonylphenol-(4-14)-Ethylenoxid-Adduktes oder Phospholipide in Frage.

Als nicht ionische Tenside kommen in erster Linie Polyglykoletherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage, die 3 bis 10 Glykolethergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen, 20 bis 250 Ethylenglykolethergruppen und 10 bis 100 Propylenglykolethergruppen enthaltenden Polyethylenoxidaddukte an Polypropylenglykol, Ethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette, die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Ethylenglykoleinheiten.

Als Beispiele nichtionischer Tenside seien Nonylphenolpolyethoxyethanole, Ricinusölpolyglykolether, Polypropylen-Polyethylenoxidaddukte, Tributylphenoxypolyethoxyethanol, Polyethylenglykol und Octylphenoxypolyethoxyethanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyethylensorbitan wie das Polyoxyethylensorbitan-trioleat in

Bei den kationischen Tenside handelt es sich vor allem um quaternäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Ethylsulfate vor, z.B. das Stearyltrimethylammonium-chlorid oder das Benzyldi(2-chlorethyl)-ethylammoniumbromid.

Die in der Formulierungstechnik gebräuchlichen Tenside sind u.a. in folgenden Publikationen beschrieben: "1986 International Mc Cutcheon's Emulsifiers & Detergents" Glen Rock, N.J., USA, 1986; H. Stache, "Tensid-Taschenbuch", 2. Auflage., C. Hanser Verlag, München, Wien, 1981;

M. and J. Ash. "Encyclopedia of Surfactants", Vol. I-III, Chemical Publishing Co., New York, 1980-1981.

Die Wirkstoffzubereitungen enthalten in der Regel 0,1 bis 95 %, insbesondere 0,1 bis 80 % Wirkstoff der Formel I, 1 bis 99,9 % eines oder mehrerer fester oder flüssiger Zusatzstoffe und 0 bis 25 % eines Tensides. Insbesondere setzen sich bevorzugte Formulierungen folgendermassen zusammen: (% = Gewichtspro-

zent).

10

20

35

50

55

60

65

Emulgierbare Konzentrate:

Aktiver Wirkstoff: 1 bis 20 %, bevorzugt 5 bis 10 % oberflächenaktive Mittel: 5 bis 30 %, vorzugsweise 10 bis 20 % flüssige Trägermittel: 50 bis 94 %, vorzugsweise 70 bis 85 %

Stäube:

Aktiver Wirkstoff: 0,1 bis 10 %, vorzugsweise 0,1 bis 1 % 99,9 bis 90 %, vorzugsweise 99,9 bis 99 %

Suspensions-Konzentrate:

Aktiver Wirkstoff: 5 bis 75 %, vorzugsweise 10 bis 50 % Wasser: 94 bis 25 %, vorzugsweise 88 bis 30 % oberflächenaktives Mittel: 1 bis 40 %, vorzugsweise 2 bis 30 %

oberflächenaktives Mittel: Benetzbares Pulver:

Aktiver Wirkstoff: 0,5 bis 90 %, vorzugsweise 1 bis 80 % oberflächenaktives Mittel: 0,5 bis 20 %, vorzugsweise 1 bis 15 % festes Trägermittel: 5 bis 95 %, vorzugsweise 15 bis 90 %

Granulate:

Aktiver Wirkstoff: 0,5 bis 30 %, vorzugsweise 3 bis 15 % festes Trägermittel: 99,5 bis 70 %, vorzugsweise 97 bis 85 %

Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel. Die Anwendungsformen können bis hinab zu 0,001 % an Wirkstoff verdünnt werden.

Die Mittel können auch weitere Zusätze wie Stabilisatoren, Entschäumer, Viskositätsregulatoren, Bindemittel, Haftmittel sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten. Die nachfolgenden Beispiele erläutern die Erfindung.

H. Herstellungsbeispiele

5

H.1. Verbindungen der Formel I

H.1.1. Umsetzungen mit Cyclohexandionen der Formel II

10

H.1.1.1. 2-(3-Chlor-5-trifluormethyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on

Zu einer Lösung von 2,2 g (20 mMol) 1,3-Cyclohexandion und 7 ml (50 mMol) Triethylamin in 25 ml Dichlormethan werden 4,9 g (20 mMol) 3-Chlor-5-trifluormethylpyridin-2-carbonsäurechlorid getropft, wobei die Temperatur auf 35°C ansteigt. Anschliessend wird 15 Stunden bei Raumtemperatur ausgerührt. Die schwarze Suspension wird mit 250 ml Dichlormethan verdünnt, bei 0-5° mit 1N HCl auf pH 1 gestellt und 2x mit H₂O gewaschen. Das Produkt wird danach mit NaHCO₃-Lösung 5 % extrahiert, kalt mit 37 %-iger HCl ausgefällt, genutscht und getrocknet. Man isoliert 4,0 g (63 %) der Titelverbindung der Formel

15

25

20

als Kristalle vom Smp. 102-105°C (Verb. Nr. 1.005).

H.1.1.2. 2-(5-Trifluormethylpyrid-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on

30

Zu einer Lösung von 9,5 g (85 mMol) 1,3-Cyclohexandion und 24 ml (170 mMol) Triethylamin in 85 ml Dichlormethan werden bei 20-25° C 20,4 g (85 mMol) 5-Trifluormethylpyridin-2-carbonsäurechlorid zugetropft. Nach 4 Stunden Rühren bei Raumtemperatur werden 0,8 ml Acetoncyanhydrin zugegeben und weitere 15 Stunden gerührt. Die Reaktionslösung wird mit 200 ml Dichlormethan verdünnt, bei 0-5°C mit HCl 1N auf pH 1 gestellt, 2x mit Wasser gewaschen und mit NaHCO3-Lösung 5 % extrahiert. Diese wird mit Dichlormethan gewaschen, mit HCl 37 % auf pH 1 gestellt, das ausgefallene Produkt genutscht und getrocknet.

35

Man isoliert 17,2 g (71 %) der Titelverbindung der Formel

40

als Kristalle von Smp. 95-97°C (Verb. Nr. 1.010).

Analog zu dem vorstehenden Herstellungsverfahren können die Verbindungen der Tabelle 1 synthetisiert werden:

45

H.1.1.3. 2-(3-Chlor-5-methylthio-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on

4,4 g (0,048 Mol) 1,3-Cyclohexandion und 10,6 g (0,048 Mol) 3-Chlor-5-methylthiopyridin-2-carbonsäurechlorid werden analog H.1.1.1. umgesetzt und gereinigt.

50

Man isoliert 7,2 g (50,4 %) der Titelverbindung der Formel

55

60

als Kristalle vom Smp. 113°C (Zers.) (Verb. Nr. 1.018).

H.1.1.4. (3-Chlor-5-methylsulfonyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on

Zu einer Suspension von 10,2 g (40 mMol) 3-Chlor-5-methylsulfonyl-pyridin-2-carbonsäurechlorid in 80 ml Dichlormethan wird bei 0-5°C eine Lösung von 5,6 g (50 mMol) 1,3-Cyclohexandion und 14 ml (100 mMol)

Triethylamin in 50 ml Dichlormethan getropft. Nach 3 Stunden Rühren bei Raumtemperatur werden 0,5 ml Acetoncyanhydrin zur so erhaltenen Suspension gegeben. Anschliessend wird 3 Stunden bei Raumtemperatur ausgerührt. Die dunkelbraune Suspension wird mit 200 ml Dichlormethan verdünnt, bei 0-5°C mit 1N HCl auf pH 1 gestellt und 2x mit H₂O gewaschen. Das Produkt wird danach mit NaHCO₃-Lösung 5 % extrahiert, kalt mit HCl 37 % ausgefällt, genutscht und getrocknet.

Man isoliert 10,4 g (78.9 %) der Titelverbindung der Formel

10

15

20

25

35

40

45

50

55

60

65

als weisse Kristalle vom Smp. >200°C (Zers.) (Verb. Nr. 1.020).

H.1.2.1. Herstellung von 2-(3-Chlor-5-methylsulfonyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on

Zu einer Lösung von 3 g (0,01 Mol) 2-(3-Chlor-5-methylthiopyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on in 25 ml Dichlormethan wird unter Kühlung bei 20-30° C eine Lösung von 4,1 g (0,02 Mol) 3-Chlorperbenzoesäure 85 % in 50 ml Dichlormethan getropft. Anschliessend wird 4 Stunden bei Raumtemperatur gerührt. Die gelbe Suspension wird von der Chlorbenzoesäure abfiltriert und am Rotavapor eingedampft. Die resultierende Masse wird mit 50 ml Ether verrieben, genutscht und getrocknet.

Man isoliert 1,8 g (51,6 %) der Titelverbindung der Formel

als Kristalle vom Smp. 150°C (Zers.) (Verb. Nr. 1.020).

Tabelle 1
Verbindungen der Formel

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys. Daten
1.001	Cl	Cl	н	Н	H	н	Fp. 144-146°C
1.001	Cl	н	н	н	H	Н	
1.002	Н	Cl	н	H	H	Н	Fp. 106-107°C
1.003	H	Н	н	H	H	н	Harz
1.005	Cl	CF ₃	н	Н	H	н	Fp. 102-105°C
1.006	NO ₂	н	н	H	H	H	
1.007	Н	NO ₂	н	H	H	H	•
1.008	NO2	Cl	н	H	н	H	
1.009	CF ₃	Н	н	H	Н	H	• _
1.010	H	CF ₃	н	H	H	H	Fp. 95-97°C
1.011	OCH ₃	Н	Н	H	Н	H	
1.012	CN	н	H	H	н	H	
1.013	OCH ₃	Cl	Н	Н	H	Н	
1.014	CN	Cl	Н	н	Н	H	
1.015	Br	C1	Н	н	н	H	1
1.016	SCH ₃	Cl	H	н	H	H	1
1.017	SO ₂ CH ₃	Cl	н	Н	H	H	
1.018	Cl	SCH ₃	н	н	Н	H	Fp. >113°C(Zers)
1.019	Cl	SOCH ₃	н	H	Н	H	Fp. 134-136°C
1.020	Cl	SO2CH3	Н	Н	H	H	Fp. >150°C(Zers)
1.021	SOCH ₃	Cl	н	н	Н	H	
1.022	SO ₂ CH ₃	н	H	н	Н	H	
1.023	Н	SO2CH3	H	H	н	H	
1.024	Н	CH ₃	H	н	H	Н	
1.025	Cl	F	Н	l H	H	H	Fp. 113-115°C
1.026	Н	CF ₃	Н	н	H	н	
1.027	F	F	Н	Н	H	Н	
1.028	F	CF ₃	Н	н	H	H	
1.029	CF ₃	F	н	H	H	H	
1.030	Н	CCl ₃	н	Н	H	H	
1.031	CC1 ₃	н	н	H	Н	Н	
1.032	Cl	CCl ₃	н	H	Н	Н	
1.033	CC13	Cl	Н	H	H	Н	
1.034	CH ₃	Н	Н	H	Н	H	117 10/90
1.035	Cl	Cl	CH ₃	H	H	Н	Fp. 117-124°C
1.036	C1	H	CH ₃	Н	Н	H	
1.037	н	Cl	CH ₃	Н	Н	H	
1.038	н	H	CH ₃	Н	Н	Н	n 02 1020G
1.039	Cl	CF ₃	CH ₃	н	Н	H	Fp. 93-103°C
1.040	NO ₂	H	CH ₃	Н	H	Н	
1.041	Н	NO ₂	CH ₃	Н	1 н	Н	1

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys	. Daten
1.042	NO ₂	Cl	CH ₃	н	н	Н		
1.043	CF ₃	Н	CH ₃	н	Н	H		_
1.044	Н	CF ₃	CH ₃	Н	н	H	Fp.	99-101°C
1.045	OCH 3	Н	CH ₃	н	н	H		
1.046	CN	н	CH ₃	н	H	H		
1.047	OCH ₃	Cl	CH ₃	н	H	H	ļ	
1.048	CN	Cl	CH ₃	н	H	H		
1.049	Br	Cl :	CH ₃	Н	H	H		
1.050	SCH ₃	C1	CH ₃	H	H	Н		
1.051	SO ₂ CH ₃	Cl	CH ₃	H	H	Н		
1.052	Cl	SCH ₃	CH ₃	H	H	H		
1.053	Cl	SOCH ₃	CH ₃	H	H	H		
1.054	Cl	SO ₂ CH ₃	CH ₃	H	H	H	1	
1.055	SOCH ₃	Cl	CH ₃	H	H	Н		
1.056	SO ₂ CH ₃	H	CH ₃	Н	H	H		•
1.057	H	SO ₂ CH ₃	CH ₃	H	Н	Н		
1.058	Н	CH ₃	CH ₃	Н	H	H		
1.059	Cl	F	CH ₃	Н	H	Н		
1.060	H	CF ₃	CH ₃	Н	H	H		
1.061	F	F	CH ₃	Н	H	H		
1.062	F	CF ₃	CH ₃	H	H	H		
1.063	CF ₃	F	CH ₃	H	H	H		
1.064	H	CCl ₃	CH ₃	H	H H	н		
1.065	CC1 ₃	H	CH ₃	H	н	H		
1.066	Cl	CCl ₃	CH ₃	H	H	H		
1.067	CCl ₃	Cl	CH ₃	H	H	H		
1.068	CH ₃	H	CH ₃	H	H	H		
1.069	Cl	Cl	C ₂ H ₅	H	H	н		
1.070	Cl	H	C ₂ H ₅	H	н	H	1	
1.071	H	Cl H	C ₂ H ₅	H	н	н	1	
1.072	H Cl	CF ₃	C ₂ H ₅	H	н	Н		
1.073	1	H	C ₂ H ₅	H	н	н	1	
1.074	NO ₂	NO ₂	C ₂ H ₅	Н	Н	Н		
1.075	NO ₂	Cl	C ₂ H ₅	н	н	н	Į	
1.076 1.077	CF ₃	Н	C ₂ H ₅	н	н	н	-	
1.078	H	CF ₃	C ₂ H ₅	Н	н	н	-	
1.079	OCH ₃	H	C ₂ H ₅	н	H	н		
1.080	CN	H	C ₂ H ₅	н	н	Н		
1.081	OCH 3	Cl	C ₂ H ₅	н	н	н		
1.082	CN	Cl	C ₂ H ₅	Н	н	H		
1.083	Br	Cl	C ₂ H ₅	н	H	Н		
1.084	SCH ₃		C ₂ H ₅	н	н	H		
1.085	SO ₂ CH ₃	1	C2H5	н	н	Н		
1.086	Cl	SCH ₃	C ₂ H ₅	н	н	H		
1.087	Cl	SOCH ₃	C ₂ H ₅	н	Н	Н		
1.088	Cl	SO ₂ CH ₃	C ₂ H ₅	Н	Н	H		
1.089	SOCH ₃	C1	C ₂ H ₅		H	H		
1.090	SO2CH3		C ₂ H ₅		H	Н		
1.091	н	SO ₂ CH			H	Н		
1.092	н	CH ₃	C ₂ H ₅		Н	Н		
1.093	Cl	F	l C ₂ H ₅	H	Н	H	ł	

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys.	Daten
1.094	Н	CF ₃	C ₂ H ₅	н	Н	н		
1.095	F	F	C ₂ H ₅	Н	H	Н		
1.096	F	CF ₃	C ₂ H ₅	н	H	н		
1.097	CF ₃	F	C ₂ H ₅	H	H	н		
1.098	Н	CCl ₃	C ₂ H ₅	H	H	н		
1.099	CC1 ₃	Н	C ₂ H ₅	H	н	н		
1.100	Cl	CCl ₃	C ₂ H ₅	H	н	н		
1.101	CCl ₃	Cl	C ₂ H ₅	H	н	Н		
1.102	CH ₃	н	C ₂ H ₅	H	н	Н		
1.103	Cl	Cl	n-C ₃ H ₇	H	н	H	ļ	
1.104	Cl	н	n-C3H7	н	н	Н		÷
1.105	н	Cl	n-C ₃ H ₇	H	H	H	l	
1.106	н	H	n-C ₃ H ₇	H	H	Н	ļ	
1.107	Cl	CF ₃	n-C ₃ H ₇	H	H	H		
1.108	NO2	н	n-C ₃ H ₇	H	H	H		
1.109	н	NO ₂	n-C ₃ H ₇	Н	Н	H	İ	
1.110	NO ₂	Cl	n-C ₃ H ₇	Н	Н	H		
1.111	CF ₃	H	n-C ₃ H ₇	н	Н	H		
1.112	Н	CF ₃	n-C ₃ H ₇	H	н	H		
1.113	OCH ₃	Н	n-C ₃ H ₇	н	Н	H		
1.114	CN	Н	n-C ₃ H ₇	H	Н	H		
1.115	OCH ₃	Cl	n-C ₃ H ₇	Н	Н	Н		
1.116	CN	Cl	n-C ₃ H ₇	H	Н	H		
1.117	Br	Cl	n-C3H7	H	H	H		
1.118	SCH ₃	Cl	n-C ₃ H ₇	Н	Н	H	1	
1.119	SO ₂ CH ₃	Cl	n-C ₃ H ₇	Н	Н	H	İ	
1.120	Cl	SCH ₃	n-C ₃ H ₇	Н	H	H		
1.121	Cl	SOCH ₃	n-C ₃ H ₇	Н	H	H H		
1.122	Cl	SO ₂ CH ₃	n-C ₃ H ₇	Н	Н	H		
1.123	SOCH ₃	Cl	n-C ₃ H ₇	H	Н	1		
1.124	SO ₂ CH ₃	Н	n-C ₃ H ₇	Н	Н	H H		
1.125	H	SO ₂ CH ₃	4	Н	Н	Н		
1.126	H	CH ₃	n-C ₃ H ₇	Н	Н	Н		
1.127	Cl	F	n-C ₃ H ₇	H	H	H	1	•
1.128	н	CF ₃	n-C ₃ H ₇	H	H	Н	1	
1.129	F	F	n-C ₃ H ₇	н	н	н		
1.130	F	CF ₃	n-C ₃ H ₇	H	н	н	Ì	•
1.131	CF ₃	F	n-C ₃ H ₇	H	н	н		
1.132	H	CCl ₃	n-C ₃ H ₇	н	н	н	1	
1.133	CCl ₃	H CCl ₃	n-C ₃ H ₇	Н	н	Н		
1.134	CC1 ₃	Cl	n-C ₃ H ₇	н	Н	н		
1.135 1.136	CH ₃	H	n-C ₃ H ₇	Н	н	Н	-	
1.137	Cl	Cl	i-C ₃ H ₇	н	Н	н		
1.138	cl	Н	i-C ₃ H ₇	Н	Н	н		
1.139	Н	Cl	i-C ₃ H ₇	H	н	н		-
1.140	Н	Н	i-C ₃ H ₇	н	н	H		
1.141	Cl	CF ₃	i-C ₃ H ₇	н	н	H	Fp.	72-75°C
1.142	NO ₂	н	i-C ₃ H ₇	н	H	H		
1.143	H	NO ₂	i-C ₃ H ₇	L L	Н	Н		
1.144	NO2	C1	i-C ₃ H ₇	H	H	H		
1.145	CF ₃	Ìн	i-C ₃ H ₇	Н	l H	H	I	

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	Re	phy	s. Daten
1.146	н	CF ₃	i-C ₃ H ₇	Н	н	Н	Fp.	103-106°C
1.147	OCH ₃	Н	i-C ₃ H ₇	н	H	H	-	
1.148	CN	н	i-C ₃ H ₇	н	H	H		
1.149	OCH ₃	Cl	i-C ₃ H ₇	н	H	H		
1.150	CN	Cl	i-C ₃ H ₇	н	Н	H		
1.151	Br	Cl	i-C ₃ H ₇	н	H	H		
1.152	SCH ₃	Cl	i-C ₃ H ₇	н	H	Н		
1.153	SO2CH3	Cl	i-C ₃ H ₇	н	H	H		
1.154	Cl	SCH ₃	i-C ₃ H ₇	н	H	H		
1.155	Cl	SOCH ₃	i-C ₃ H ₇	Н	Н	H	ļ	
1.156	Cl	SO ₂ CH ₃	i-C ₃ H ₇	н	H	H		
1.157	SOCH ₃	C1	i-C ₃ H ₇	н	H	Н		•
1.158	SO ₂ CH ₃	н	i-C ₃ H ₇	·H	Н	н		
1.159	Н	SO ₂ CH ₃	i-C ₃ H ₇	Н	H	н		
1.160	н	CH ₃	i-C ₃ H ₇	н	H	н		
1.161	Cl	F	i-C ₃ H ₇	н	H	н		
1.162	н	CF ₃	i-C ₃ H ₇	н	н	H		
1.163	F	F	i-C ₃ H ₇	н	н	Н		
1.164	F	CF ₃	i-C ₃ H ₇	н	н	H		
1.165	CF ₃	F	i-C ₃ H ₇	Н	н	Н		
1.166	н	CCl ₃	i-C ₃ H ₇	н	н	H		
1.167	CC1 ₃	н	i-C ₃ H ₇	н	н	н		
1.168	Cl	CCl ₃	i-C ₃ H ₇	н	н	н		
1.169	CC1 ₃	Cl	i-C ₃ H ₇	Н	H	Н		
1.170	CH ₃	Н	i-C ₃ H ₇	Н	н	Н		
1.171	Cl	Cl	n-C ₃ H ₇	Н	Н	COOC2H5		
1.172	Cl	н	n-C ₃ H ₇	H	н	COOC ₂ H ₅		
1.173	Н	Cl	n-C ₃ H ₇	н	Н	COOC ₂ H ₅		
1.174	Н	н	n-C ₃ H ₇	н	н	COOC ₂ H ₅		
1.175	Cl	CF ₃	n-C ₃ H ₇	н	н	COOC 2 H 5		
1.176	NO ₂	Н	n-C ₃ H ₇	н	н	COOC ₂ H ₅		
1.177	Н	NO ₂	n-C ₃ H ₇	н	Н	COOC ₂ H ₅		
1.178	NO ₂	Cl	n-C ₃ H ₇	н	н	COOC ₂ H ₅		
1.179	CF ₃	Н	n-C ₃ H ₇	н	н	COOC 2 H 5		
1.180	Н	CF ₃	n-C ₃ H ₇	Н	Н	COOC 2 H 5		
1.181.	OCH ₃	Н	n-C ₃ H ₇	н	н	COOC ₂ H ₅		
1.182	CN	н	n-C ₃ H ₇	н	н	COOC ₂ H ₅		
1.183	OCH ₃	Cl	n-C3H7	н	н	COOC 2H 5		
1.184	CN	Cl	n-C ₃ H ₇	Н	н	COOC 2 H 5		
1.185	Br	Cl	n-C ₃ H ₇	H	Н	COOC ₂ H ₅		
1.186	SCH ₃	Cl	n-C ₃ H ₇	н	н	COOC 2 H 5		
1.187	SO ₂ CH ₃	Cl	n-C ₃ H ₇	н	н	COOC 2 H 5		
1.188	Cl	SCH ₃	n-C ₃ H ₇	н	Н	COOC 2 H 5	;	
1.189	Cl	SOCH ₃	n-C ₃ H ₇	H	н	COOC 2 H 5	;	
1.190	Cl	SO ₂ CH ₃	n-C ₃ H ₇	н	н	COOC ₂ H ₅	5	
1.191	SOCH ₃	Cl	n-C ₃ H ₇	H	н	COOC ₂ H ₅	5	
1.192	SO ₂ CH ₃	н	n-C ₃ H ₇	H	H	COOC ₂ H ₅	;	
1.193	Н	SO ₂ CH ₃	n-C ₃ H ₇	H	Н	COOC ₂ H ₅		
1.194	н	CH ₃	n-C ₃ H ₇	H	н	COOC ₂ H ₅	5	
1.195	Cl	F	n-C ₃ H ₇	н	H	COOC ₂ H ₅		
1.196	Н	CF ₃	n-C ₃ H ₇	H	Н	COOC ₂ H ₅		
1.197	F	F	n-C ₃ H ₇	H	H	COOC ₂ H ₅	5	

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys. Daten
1.198	F	CF ₃	n-C ₃ H ₇	н	H	COOC ₂ H ₅	
1.199	CF ₃		n-C ₃ H ₇	H	H	COOC ₂ H ₅	
1.200	Н	1	n-C ₃ H ₇	н	H	COOC ₂ H ₅	
1.201	CCl ₃	н	n-C ₃ H ₇	н	H	COOC ₂ H ₅	
1.202	Cl	CC1 ₃	n-C ₃ H ₇	Н	H	COOC ₂ H ₅	
1.203	CCl ₃	Cl	n-C ₃ H ₇	H	H	COOC ₂ H ₅	
1.204	CH ₃	н	$n-C_3H_7$	H	H	COOC ₂ H ₅	
1.205	Cl	Cl	i-C ₃ H ₇	H	H	COOCH ₃	
1.206	Cl	н	i-C ₃ H ₇	H	H	COOCH 3	
1.207	Н	Cl	i-C ₃ H ₇	H	H	COOCH ₃	
1.208	Н	н	i-C ₃ H ₇	Н	H	COOCH 3	
1.209	Cl	CF ₃	$i-C_3H_7$	н	H	COOCH 3	Fp. 91-92°C
1.210	NO ₂	H	i-C ₃ H ₇	н	H	COOCH 3	
1.211	Н	NO ₂	i-C ₃ H ₇	Н	H	COOCH ₃	
1.212	NO ₂	Cl	i-C ₃ H ₇	н	н	COOCH ₃	
1.213	CF ₃	H	i-C ₃ H ₇	н	н	COOCH ₃	
1.214	Н	CF ₃	i-C ₃ H ₇	н -	н	COOCH ₃	
1.215	OCH ₃	Н	i-C ₃ H ₇	н	н	COOCH ₃	
1.216	CN	Н	i-C ₃ H ₇	н	H	COOCH ₃	·
1.217	OCH ₃	Cl	i-C ₃ H ₇	н	H	COOCH ₃	
1.218	CN	Cl	i-C ₃ H ₇	н	н	COOCH ₃	
1.219	Br	Cl	i-C ₃ H ₇	н	н	COOCH ₃	
1.220	SCH ₃	Cl	i-C ₃ H ₇	Н	H	COOCH ₃	
1.221	SO ₂ CH ₃	Cl	i-C ₃ H ₇	н	н	COOCH ₃	
1.222	Cl	SCH ₃	i-C ₃ H ₇	н	Н	COOCH ₃	
1.223	Cl	SOCH ₃	i-C ₃ H ₇	н	H	COOCH ₃	
1.224	Cl	SO ₂ CH ₃	i-C ₃ H ₇	н	H	COOCH ₃	
1.225	SOCH ₃	Cl	i-C ₃ H ₇	н	Н	COOCH ₃	
1.226	SO ₂ CH ₃	Н	i-C ₃ H ₇	Н	н	COOCH ₃	
1.227	H	SO ₂ CH ₃	i-C ₃ H ₇	j H	Н	COOCH ₃	
1.228	H	CH ₃	i-C ₃ H ₇	H	Н	COOCH ₃	
1.229	Cl	F	i-C ₃ H ₇	H	Н	COOCH 3	
1.230	H	CF ₃	i-C ₃ H ₇	H	H	COOCH ₃	
1.231	F	F	i-C ₃ H ₇	H	H	COOCH ₃	
1.232	F	CF ₃	i-C ₃ H ₇	н	H	COOCH ₃	
1.233	CF ₃	F	i-C ₃ H ₇	Н	Н	COOCH ₃	
1.234	H	CCl ₃	i-C ₃ H ₇	Н	H	COOCH ₃	}
1.235	CCl ₃	н	i-C ₃ H ₇	H	H	COOCH ₃	
1.236	Cl	CCl ₃	i-C ₃ H ₇	Н	Н	COOCH ₃	
1.237	CCl ₃	Cl	i-C ₃ H ₇	H	Н	COOCH ₃	
1.238	CH ₃	H	i-C ₃ H ₇	Н	Н	COOCH ₃	Ì
1.239	Cl	Cl	CH ₃	H	H	COOCH ₃	
1.240	Cl	H	CH ₃	Н	Н	COOCH ₃	
1.241	Н	Cl	CH ₃	Н	Н	COOCH ₃	
1.242	H	H	CH ₃	Н	Н	COOCH ₃	
1.243	Cl	CF ₃	CH ₃	Н	Н	COOCH ₃	
1.244	NO ₂	H	CH ₃	H	H	COOCH3	
1.245	Н	NO ₂	CH ₃	H	Н	COOCH3	
1.246	NO ₂	Cl	CH ₃	H	Н	COOCH 3	
1.247	CF ₃	Н	CH ₃	Н	Н	COOCH ₃	
1.248	H	CF ₃	CH ₃	H	H H	COOCH ₃	
1.249	1 OCH 3	l H	CH ₃	ı n	11 1	10000113	•

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys	s. Daten
1.250	CN	н	CH₃	Н	Н	COOCH 3		
1.251	OCH ₃	Cl	CH ₃	н	H	COOCH ₃		
1.252	CN	Cl	CH ₃	H	H	COOCH ₃		
1.253	Br	Cl	CH ₃	н	H	COOCH 3		
1.254	SCH ₃	Cl	CH ₃	Н	H	COOCH ₃		
1.255	SO ₂ CH ₃	Cl	CH ₃	н	H	COOCH ₃		
1.256	C1	SCH ₃	CH ₃	H	H	COOCH ₃		
1.257	Cl	SOCH ₃	CH ₃	H	H	COOCH ₃		
1.258	Cl	SO ₂ CH ₃	CH ₃	H	H	COOCH ₃		
1.259	SOCH ₃	Cl	CH ₃	H	H	COOCH ₃	1	
1.260	SO ₂ CH ₃	Н	CH ₃	H	Н	COOCH 3		
1.261	H	SO ₂ CH ₃	CH ₃	H	H	COOCH 3		
1.262	H	CH₃	CH ₃	H	H	COOCH ₃		
1.263	Cl	F	CH ₃	H	H	COOCH ₃		_
1.264	H	CF ₃	CH ₃	H	H	COOCH ₃		
1.265	F	F	CH ₃	H	H	COOCH ₃		
1.266	F	CF ₃	CH ₃	H ·	H	COOCH ₃		
1.267	CF ₃	F	CH ₃	H	H	COOCH ₃	1	
1.268	H	CCl ₃	CH ₃	Н	Н	COOCH ₃		
1.269	CCl ₃	H	CH ₃	Н	Н	COOCH ₃	1	
1.270	Cl	CCl ₃	CH ₃	H	H	COOCH ₃		
1.271	CC1 ₃	Cl	CH ₃	H	Н	COOCH ₃		
1.272	CH ₃	H	CH ₃	Н	H	COOCH ₃	F	131-133°C
1.273	Cl	Cl	CH ₃	CH ₃	H	H	rp.	131-133 '0
1.274	Cl	H	CH₃	CH ₃	H	H H		
1.275	H	Cl	CH ₃	CH ₃	H H	Н		
1.276	H Cl	H	CH₃	CH ₃	H	H	Fn	95-98°C
1.277 1.278	NOz	CF ₃	CH ₃ CH ₃	CH ₃	н	H	Lb.)
1.278	H H	H NO ₂	CH ₃	CH ₃ CH ₃	н	H		
1.280	NO ₂	Cl	CH ₃	CH ₃	H	H		
1.281	CF ₃	H	CH ₃	CH ₃	H	Н		
1.282	H	CF ₃	CH ₃	CH ₃	Н	H		
1.283	OCH ₃	H	CH ₃	CH ₃	н	н		
1.284	CN	н	CH ₃	CH ₃	H	Н		
1.285	OCH ₃	c1	CH ₃	CH ₃	H	H		
1.286	CN	Cl	CH ₃	CH ₃	H	Н	ł	
1.287	Br	Cl	CH ₃	CH ₃	Н	Н	İ	
1.288	SCH ₃	Cl	CH ₃	CH ₃	Н	Н		
1.289	SO ₂ CH ₃	Cl	CH ₃	CH ₃	Н	Н		
1.290	Cl	SCH ₃	CH ₃	CH ₃	н	Н		
1.291	Cl	SOCH ₃	CH ₃	CH ₃	н	н		
1.292	Cl	SO ₂ CH ₃	CH ₃	CH ₃	н	н		
1.293	SOCH ₃	Cl	CH ₃	CH ₃	н	Н		
1.294	SO ₂ CH ₃	H	CH ₃	CH ₃	Н	н		
1.295	H	SO ₂ CH ₃		CH ₃	Н	Н		
1.296	Н	CH ₃	CH ₃	CH ₃	Н	Н		
1.297	Cl	F	CH ₃	CH ₃	Н	Н		
1.298	Н	CF ₃	CH ₃	CH ₃	Н	н		
1.299	F	F	CH ₃	CH ₃	н	Н	Ì	
1.300	F	CF ₃	CH ₃	CH ₃	н	Н		
1.301	CF ₃	F	CH ₃	CH ₃	H	н		

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys.	Daten
1.302	Н	CCl ₃	CH ₃	CH ₃	Н	н		
1.303	CCl ₃	Н	CH ₃	CH ₃	H	н		-
1.304	C1	CCl ₃	CH ₃	CH ₃	Н	H		
1.305	CCl ₃	Cl	CH ₃	CH ₃	H	н		
1.306	CH ₃	н	CH ₃	CH ₃	H	н		
1.307	Cl	Cl	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.308	Cl	н	CH ₃	CH ₃	н	COOC ₂ H ₅		
1.309	H	Cl	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.310	H	Н	CH ₃	CH ₃	H	COOC ₂ H ₅		
1.311	Cl	CF ₃	CH ₃	CH ₃	н	COOC ₂ H ₅		
1.312	NO ₂	H	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.313	H H	NO ₂	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.314	NO ₂	Cl Cl	CH ₃	CH ₃	Н	COOC ₂ H ₅		
	CF ₃	Н	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.315	1 .	CF ₃	CH ₃	CH ₃	н	COOC ₂ H ₅		
1.316	H	H H	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.317	OCH ₃		CH ₃	CH ₃	H	COOC ₂ H ₅		
1.318	CN	H		CH ₃	н	COOC ₂ H ₅		
1.319	OCH ₃	Cl	CH ₃		н	COOC ₂ H ₅		•
1.320	CN	Cl	CH₃	CH ₃	H	COOC ₂ H ₅		
1.321	Br	Cl	CH ₃	CH ₃	H	COOC ₂ H ₅	-	
1.322	SCH ₃	Cl	CH ₃	CH ₃	1	COOC ₂ H ₅]	
1.323	SO ₂ CH ₃	C1	CH ₃	CH ₃	H	COOC ₂ H ₅		
1.324	Cl	SCH ₃	CH ₃	CH ₃	H		Ì	
1.325	C1	SOCH ₃	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.326	Cl	SO ₂ CH ₃	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.327	SOCH ₃	Cl	CH ₃	CH ₃	Н	COOC ₂ H ₅	ļ	
1.328	SO ₂ CH ₃	Н	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.329	Н	SO ₂ CH ₃	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.330	Н	CH ₃	CH ₃	CH ₃	н	COOC ₂ H ₅	1	
1.331	Cl	F	CH ₃	CH ₃	H	COOC ₂ H ₅		
1.332	н	CF ₃	CH ₃	CH ₃	H	COOC ₂ H ₅		
1.333	F	F	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.334	F	CF ₃	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.335	CF ₃	F	CH ₃	CH ₃	Н	COOC ₂ H ₅	1	
1.336	Н	CCl ₃	CH ₃	CH ₃	H	COOC ₂ H ₅		
1.337	CCl ₃	н	CH ₃	CH ₃	H	COOC ₂ H ₅		
1.338	Cl	CCl ₃	CH ₃	CH ₃	Н	COOC ₂ H ₅		
1.339	CC1 ₃	Cl	CH ₃	CH ₃	н	COOC ₂ H ₅		
1.340	CH ₃	H	CH ₃	CH ₃	н	COOC ₂ H ₅	:[
1.341	Cl	Cl	C ₆ H ₅	н	н	н	ļ	
1.342	Cl	Н	C ₆ H ₅	н	н	Н		
1.343	H	Cl	C ₆ H ₅	н	Н	н	1	
1.344	н	H	C ₆ H ₅	н	н	н		
1.345	C1	CF ₃	C ₆ H ₅	Н	н	н	Fp.>1	50°C(Zers)
1.346	NO ₂	H	C ₆ H ₅	Н	Н	н	1	
1.347	H	NO ₂	C ₆ H ₅	н	Н	н	1	
	NO ₂	Cl	C ₆ H ₅	н	н	Н	1	
1.348		H	C ₆ H ₅	н	н	H		
1.349	CF ₃	CF ₃	C ₆ H ₅	H	н	Н		
1.350	Н	H H	C ₆ H ₅	H	н	H		
1.351	OCH 3 CN	H	C ₆ H ₅	н	н	Н		
1.352		Cl	C ₆ H ₅	н	Н	н		
1.353	OCH ₃	, OT	. 00112		• ••			

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys.	Daten
1.354	CN	Cl	C ₆ H ₅	Н	Н	Н		
1.355	Br	Cl	C ₆ H ₅	н	Н	Н		
1.356	SCH ₃	Cl	C ₆ H ₅	Н	Н	Н		
1.357	SO ₂ CH ₃	Cl	C ₆ H ₅	н	н	н		
1.358	Cl	SCH ₃	C ₆ H ₅	н	Ħ	H		
1.359	Cl	SOCH ₃	C ₆ H ₅	H	Н	H		
1.360	Cl	SO ₂ CH ₃	C ₆ H ₅	H ·	Н	Н		
1.361	SOCH ₃	Cl	C ₆ H ₅	Н	H	Н		
1.362	SO ₂ CH ₃	н	C ₆ H ₅	Н	H	Н		
1.363	Н	SO ₂ CH ₃	C ₆ H ₅	н	Н	H		
1.364	н	CH ₃	C ₆ H ₅	н	H	H		
1.365	Cl	F	C ₆ H ₅	н	H	Ħ		
1.366	Н	CF ₃	C ₆ H ₅	н	н	Н		
1.367	F	F	C ₆ H ₅	н	H	H		
1.368	F	CF ₃	C ₆ H ₅	Н	Н	н		
1.369	CF ₃	F	C ₆ H ₅	н	Н	н		
1.370	н	CCl ₃	C ₆ H ₅	н	н	н		
1.371	CCl ₃	н	C ₆ H ₅	н	н	н		
1.372	Cl	CCl ₃	C ₆ H ₅	н	н	н		
1.373	CC1 ₃	Cl	C ₆ H ₅	H	н	Н		
1.374	CH ₃	Н	C ₆ H ₅	н	н	н	i	
1.375	Cl	Cl	H	н	CH ₃	CH ₃		
1.376	Cl	н	Н	H	CH ₃	CH ₃		
1.377	н	Cl	Н	Н	CH ₃	CH ₃		
1.378	н	н	н	H	CH ₃	CH ₃		
1.379	Cl	CF ₃	н	н	CH ₃	CH ₃		
1.380	NO ₂	Н	н	н	CH ₃	CH ₃		
1.381	Н	NO2	н	Н	CH ₃	CH ₃		
1.382	NO ₂	Cl	Н	н	CH ₃	CH ₃		
1.383	CF ₃	H	н	н	CH₃	CH ₃		
1.384	н	CF ₃	н	н	CH ₃	CH ₃		
1.385	OCH ₃	H	H	н	CH ₃	CH ₃		
1.386	CN	Н	н	н	CH ₃	CH ₃		
1.387	OCH ₃	Cl	н	н	CH ₃	CH ₃		
1.388	CN	Cl	H	н	CH ₃	CH ₃		
1.389	Br	Cl	н	н	CH ₃	CH ₃		
1.390	SCH ₃	Cl	H	Н	CH ₃	CH ₃	1	
1.391	SO ₂ CH ₃	Cl	H	H	CH ₃	CH ₃		
1.392	Cl	SCH ₃	H	H	CH ₃	CH ₃		
1.393	Cl	SOCH ₃	H	H	CH ₃	CH ₃		
1.394	Cl	SO ₂ CH ₃	H	H	CH ₃	CH ₃		
1.395	SOCH ₃	Cl	Н	H	CH ₃	CH ₃		
1.396	SO ₂ CH ₃	H	H	H	CH ₃	CH ₃		
1.397	H	SO ₂ CH ₃	H	H	CH ₃	CH ₃		
1.398	Н	CH ₃	H	H	CH ₃	CH ₃		
1.399	Cl	F	H	н	CH ₃	CH ₃		
1.400	H	CF ₃	Н	H	CH ₃	CH ₃		
1.401	F	F	H	H	CH ₃	CH ₃		
1.402	F	CF ₃	Н	Н	CH ₃	CH ₃		
1.403	CF ₃	F	H	Н	CH ₃	CH ₃		
1.404	H	CCl ₃	H	H	CH ₃	CH ₃		
1.405	CCl ₃	l H	H	Н	l CH ₃	CH ₃	1	

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys. Date	n
1.406	Cl	CCl ₃	н	н	CH ₃	CH₃	•	
1.407	CCl ₃	Cl	н	Н	CH ₃	CH ₃		
1.408	CH ₃	Н	н	н	CH ₃	CH ₃		
1.409	Cl	Cl	C ₆ H ₅ -CH ₂ -	н	н	H		
1.410	Cl	Н	C6H5-CH2-	Н	н	н		
1.411	Н	Cl	C ₆ H ₅ -CH ₂ -	H	H	H		
1.412	Н	н	C ₆ H ₅ -CH ₂ -	н	H	Н		
1.413	Cl	CF ₃	C ₆ H ₅ -CH ₂ -	Н	H	H		
1.414	NO ₂	н	C ₆ H ₅ -CH ₂ -	H	Н	H		
1.415	н	NO ₂	C ₆ H ₅ -CH ₂ -	н	H	H		
1.416	NO ₂	Cl	C ₆ H ₅ -CH ₂ -	H	н	Н		
1.417	CF ₃	н	C ₆ H ₅ -CH ₂ -	H	н	н		
1.418	н	CF ₃	C ₆ H ₅ -CH ₂ -	H	н	н		
1.419	OCH ₃	Н	C ₆ H ₅ -CH ₂ -	H	н	H		
1.420	CN	H	C6H5-CH2-	H	н	н		
1.421	осн₃	Cl	C ₆ H ₅ -CH ₂ -	H	H	Н		
1.422	CN	Cl	C6H5-CH2-	H	H	н		
1.423	Br	Cl	C ₆ H ₅ -CH ₂ -	н	H	H		
1.424	SCH ₃	Cl	C ₆ H ₅ -CH ₂ -	H	Н	H		
1.425	SO ₂ CH ₃	Cl	C ₅ H ₅ -CH ₂ -	н	Н	H		
1.426	Cl	SCH ₃	C ₆ H ₅ -CH ₂ -	Н	Н	Н		
1.427	Cl	SOCH ₃	C ₆ H ₅ -CH ₂ -	Н	н	Н		
1.428	Cl	SO ₂ CH ₃	C6H5-CH2-	H	н	н		
1.429	SOCH ₃	Cl	C6H5-CH2-	H	Н	Н		
1.430	SO ₂ CH ₃	н	C6H5-CH2-	H	Н	н		
1.431	н	SO ₂ CH ₃	C6H5-CH2-	H	H	Н	1	
1.432	н	CH ₃	C6H5-CH2-	Н	H	H		
1.433	Cl	F	C6H5-CH2-	н	H	H		
1.434	н	CF ₃	C6H5-CH2-	н	H	H		
1.435	F	F	C ₆ H ₅ -CH ₂ -	н	H	H		
1.436	F	CF ₃	C ₆ H ₅ -CH ₂ -	Н	H	H		
1.437	CF ₃	F	C ₆ H ₅ -CH ₂ -	H	H	H		
1.438	н	CCl ₃	C ₆ H ₅ -CH ₂ -	H	н	H		
1.439	CC1 ₃	н	C ₆ H ₅ -CH ₂ -		Н	Н		
1.440	Cl	CCl ₃	C ₆ H ₅ -CH ₂ -	н	H	H		
1.441	CC1 ₃	Cl	C6H5-CH2-	H	H	H		
1.442	CH ₃	H	C ₆ H ₅ -CH ₂ -	· H	н	H] ·	
1.443	Cl	Cl	4-C1-C6H4	H	н	H		
1.444	Cl	H	4-C1-C6H4		H	H		
1.445	Н	Cl	4-Cl-C ₆ H ₄		Н	H		
1.446	Н	H	4-C1-C6H4		н	H		
1.447	Cl	CF ₃	4-C1-C ₆ H ₄		Н	Н		
1.448	NO ₂	н	4-Cl-C ₆ H ₄		Н	Н		
1.449	н	NO ₂	4-Cl-C ₆ H ₁		Н	Н		
1.450	NO ₂	Cl	4-Cl-C ₆ H	· ·	н	Н		
1.451	CF ₃	H	4-C1-C6H		Н	H		
1.452	H	CF ₃	4-C1-C6H		Н	Н		
1.453	OCH ₃	H	4-C1-C6H		H	Н		
1.454	CN	H	4-C1-C6H	. 1	H	Н		
1.455	OCH ₃	Cl	4-Cl-C ₆ H		H	Н		
1.456	CN	Cl	4-C1-C ₆ H		H	H		
1.457	Br	Cl	4-C1-C ₆ H	μl H	Н	Н	1	

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys.	Daten
1.458	SCH ₃	Cl	4-C1-C6H4	Н	н	Н		
1.459	SO ₂ CH ₃		4-C1-C6H4	н	н	H		
1.460	C1	SCH ₃	4-C1-C6H4	н	н	Н		
1.461	C1	SOCH ₃	4-C1-C6H4	н	H	н		
1.462	Cl	SO2CH3	4-C1-C6H4	н	H	H		
1.463	SOCH ₃	Cl	4-C1-C6H4	H	Н	н		
1.464	SO ₂ CH ₃	Н	4-C1-C6H4	H	н	н	•	
1.465	Н	SO ₂ CH ₃	4-C1-C6H4	H	н .:	- H		
1.466	H	CH ₃	4-C1-C6H4	Н	H	H		
1.467	Cl	F	4-C1-C6H4	H	H	H		
1.468	H	CF ₃	4-C1-C6H4	н	н	H	1	
1.469	F	F	4-C1-C6H4	H	H	H		•
1.470	F	CF ₃	4-C1-C6H4	H	н	н		
1.471	CF ₃	F	4-C1-C6H4	H	н	H		
1.472	Н	CCl ₃	4-C1-C6H4	H	н	H		•
1.473	CC13	н і	4-C1-C6H4	H	Н	H		
1.474	Cl	CCl ₃	4-C1-C6H4	Н	н	н		
1.475	CCl ₃	C1	4-C1-C6H4	H	н	Н		
1.476	CH ₃	н	4-C1-C6H4	Н	н	н		
1.477	C1	cı	CH ₃	Н	CH ₃	н		
1.478	Cl	н	CH ₃	н	CH3	H		
1.479	Н	Cl	CH ₃	Н	CH ₃	Н		
1.480	н	н	CH ₃	н	CH ₃	н		
1.481	Cl	CF ₃	CH ₃	н	CH ₃	н	}	
1.482	NO2	Н	CH ₃	н	CH ₃	H		
1.483	Н	NO ₂	CH ₃	н	CH ₃	н		
1.484	NO ₂	Cl	CH ₃	н	CH ₃	н		
1.485	CF ₃	Н	CH ₃	н	CH ₃	н		
1.486	Н	CF ₃	CH ₃	Н	CH ₃	Н		
1.487	OCH ₃	Н	CH ₃	н	CH ₃	н		
1.488	CN	н	CH ₃	Н	CH ₃	н		
1.489	OCH ₃	Cl	CH ₃	н	CH ₃	Н		
1.490	CN	Cl	CH ₃	н	CH ₃	н		
1.491	Br	Cl	CH ₃	н	CH ₃	Н	ŀ	
1.492	SCH ₃	Cl	CH ₃	н	CH ₃	H		
1.493	SO ₂ CH ₃	Cl	CH ₃	н	CH ₃	Н		
1.494	Cl	SCH ₃	CH ₃	н	CH ₃	Н		
1.495	Cl	SOCH ₃	CH ₃	н	CH ₃	н		
1.496	Cl	SO ₂ CH ₃	CH ₃	H	CH ₃	Н		
1.497	SOCH ₃	Cl	CH ₃	н	CH ₃	н		
1.498	SO ₂ CH ₃	н	CH ₃	н	CH ₃	н		
1.499	н	SO ₂ CH ₃	1	Н	CH ₃	н		
1.500	н	CH ₃	CH ₃	Н	CH ₃	н		
1.501	Cl	F	CH ₃	Н	CH ₃	Н		
1.502	н	CF ₃	CH ₃	H	CH ₃	Н		
1.503	F	F	CH ₃	H	CH ₃	н		
1.504	F	CF ₃	CH ₃	н	CH ₃	н		
1.505	CF ₃	F	CH ₃	н	CH ₃	Н		
1.506	н	CC1 ₃	CH ₃	н	CH ₃	н		
1.507	CC1 ₃	Н	CH ₃	Н	CH ₃	Н		
1.508	Cl	CCl ₃	CH ₃	Н	CH ₃	н		
1.509	CC13	Cl	CH ₃	Н	CH ₃	l H	1	

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys. Daten
1.510	CH ₃	Н	CH ₃	н	СН₃	н	
1.511	Cl	Cl	н	н	н	CN	
1.512	Cl	Н	н	н	H	CN	
1.512	Н	Cl	н	H	Н	CN	
1.514	H	н	Н	н	H	CN	
1.515	Cl	CF ₃	Н	H	H	CN	
1.516	NO ₂	Н	Н	н	H	CN	
1.517	H H	NO ₂	Н	H	H	CN	
1.517	NO ₂	Cl	Н	H	H	CN	
1.518	CF ₃	Н	H	Н	н	CN	
1.520	H	CF ₃	H	Н	н	CN	
1.521	OCH ₃	H	H	н	н	CN	
	CN	н	H	Н	Н	CN	į
1.522 1.523	OCH ₃	Cl	H	Н	Н	CN	İ
1.524	CN	Cl	H	Н	н	CN	
1.525	Br	Cl	н	н	H	CN	
	SCH ₃	Cl	н	Н	н	CN	
1.526 1.527	SO ₂ CH ₃	Cl	H	H	н	CN	
1.528	C1	SCH ₃	н	н	н	CN	
1.528	Cl	SOCH ₃	н	н	н	CN	
	Cl	SO ₂ CH ₃	н	Н	Н	CN	
1.530	SOCH ₃	Cl	н	н	Н	CN	
1.531	SO ₂ CH ₃	Н	H	н	н	CN	
1.532 1.533	H	SO ₂ CH ₃	н	Н	Н	CN	
1.534	H	CH ₃	н	Н	н	CN	
1.535	Cl	F	н	н	н	CN	
1.536	H	CF ₃	н	Н	н	CN	
1.537	F	F	н	н	н	CN	
1.538	F	CF ₃	н	н	Н	CN	
1.539	CF ₃	F	Н	Н	Н	CN	
1.540	H	CCl ₃	Н	Н	н	CN	
1.541	CCl ₃	H	Н	H	н	CN	
1.542	Cl	CC1 ₃	Н	H	н	CN	
1.543	CCl ₃	Cl	Н	Н	н	CN	
1.544	CH ₃	H	н	H	Н	CN	
1.545	Cl	Cl	CH ₃	н	Н	CN	
1.546	Cl	Н	CH ₃	Н	Н	CN	•
1.547	H	Cl	CH ₃	н	н	CN	
1.548	H	Н	CH ₃	н	н	CN	
1.549	Cl	CF ₃	CH ₃	Н	H	CN	
1.550	NO ₂	Н	CH ₃	н	н	CN	
1.551	H	NO ₂	CH ₃	н	н	CN	
1.552	NO ₂	Cl	CH ₃	н	H	CN	ì
1.553	CF ₃	H	CH ₃	н	н	CN	
1.554	Н	CF ₃	CH ₃	н	н	CN	
1.555	OCH 3	Н	CH ₃	Н	н	CN	
1.556	CN	н	CH ₃	н	н	CN	
1.557	OCH 3	Cl	CH ₃	н	Н	CN	
1.558	CN	Cl	CH ₃	Н	Н	CN	
1.559	Br	Cl	CH ₃	Н	н	CN	
1.560	SCH ₃	L	CH ₃	н	Н	CN	
1.561	SO ₂ CH ₃		CH ₃	н	Н	CN	I

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	phys. Daten
1.562	Cl	SCH ₃	CH₃	Н	Н	CN	
1.563	Cl	SOCH ₃	CH ₃	н	H	CN	
1.564	Cl	SO ₂ CH ₃	CH ₃	н	H	CN	
1.565	SOCH ₃	C1	CH ₃	н	H	CN	
1.566	SO ₂ CH ₃	н	CH ₃	н	H	CN	
1.567	Н	SO ₂ CH ₃	CH₃	Н	H	CN	
1.568	Н	CH ₃	CH ₃	H	H	CN	
1.569	Cl	F	CH ₃	Н	H	CN	
1.570	Н	CF ₃	CH ₃	Н	Н	CN	
1.571	F	F	CH ₃	Н	Н	CN	
1.572	F	CF ₃	CH ₃	H	Н	CN	
1.573	CF ₃	F	CH ₃	Н	Н	CN	
1.574	H	CCl ₃	CH ₃	H	н	CN	•
1.575	CCl ₃	H	CH ₃	Н	Н	CN	
1.576	Cl	CCl ₃	CH ₃	H	н	CN	_
1.577	CCl ₃	Cl	CH ₃	H	н	CN	
1.578	CH ₃	H	CH ₃	н	н	CN	
1.579	Cl	Cl	C ₆ H ₅	H.	H	COOCH ₃	
1.580	Cl	H	C ₆ H ₅	н	Н	COOCH ₃	
1.581	H	Cl	C ₆ H ₅	H	H	COOCH ₃	
1.582	H	H	ľ	H	H	COOCH ₃	
1.583	Cl	CF ₃	C ₆ H ₅	i	Н	COOCH ₃	Fp. >180°
1.303		Cr 3	C ₆ H ₅	Н	11	COOCH3	Zers.
1.584	NO ₂	н	C ₆ H ₅	н	н	COOCH ₃	
1.585	Н	NO ₂	C ₆ H ₅	н	н	COOCH ₃	
1.586	NO ₂	Cl	C ₆ H ₅	н	н	COOCH ₃	
1.587	CF ₃	Н	C ₆ H ₅	Н	н	COOCH ₃	
1.588	н	CF ₃	C ₆ H ₅	н	н	COOCH ₃	
1.589	OCH ₃	н	C ₆ H ₅	н	H	COOCH 3	
1.590	CN	н	C ₆ H ₅	н	Н	COOCH 3	
1.591	OCH ₃	Cl	C ₆ H ₅	н	Н	COOCH ₃	
1.592	CN	Cl	C ₆ H ₅	H	Н	COOCH 3	
1.593	Br	Cl	C ₆ H ₅	Н	н	COOCH 3	
1.594	SCH ₃	Cl	C ₆ H ₅	H	Н	COOCH ₃	
1.595	SO ₂ CH ₃	Cl	C ₆ H ₅	Н	H	COOCH 3	
1.596	C1	SCH ₃	C ₆ H ₅	Н	н	COOCH 3	
1.597	Cl	SOCH ₃	C ₆ H ₅	н	Н	COOCH ₃	
1.598	Cl	SO ₂ CH ₃	C ₆ H ₅	н	н	COOCH ₃	
1.599	SOCH ₃	Cl	C ₆ H ₅	Н	Н	COOCH ₃	
1.600	SO ₂ CH ₃	Н	C ₆ H ₅	н	Н	COOCH ₃	
1.601	H	SO ₂ CH ₃		Н	Н	COOCH ₃	
1.602	H	CH ₃	C ₆ H ₅	н	Н Н	COOCH ₃	1
1.603	Cl	F	C ₆ H ₅	н	н	COOCH ₃	
1.604	H	CF ₃	C ₆ H ₅	н	H	COOCH ₃	
1.605	F	F	C ₆ H ₅	н	н	COOCH ₃	1
1.606	F	CF ₃	C ₆ H ₅	Н	H	COOCH ₃	
1.607	CF ₃	F	C ₆ H ₅	Н	H	COOCH ₃	
1.607	H H	CCl ₃	•		H	COOCH ₃	
1.609	CCl ₃	t .	C ₆ H ₅	H		COOCH ₃	
	Cl	H CCl ₃	C ₆ H ₅	H	H		
1.610	1		C ₆ H ₅	H	H	COOCH 3	
1.611	CCl ₃	C1	C ₆ H ₅	H	Н	COOCH 3	
1.612	CH ₃	H	C ₆ H ₅	Н	l H	COOCH ₃	ı

Verb. Nr.	R ¹	R ²	R ³ .	R ⁴	R ⁵	R ⁶	phys. Daten	
1.613	Н	SCH ₃	Н	Н	Н	H	Fp. >140° Z	5
1.614	н	SOCH ₃	H	H	H	H	,	
1.615	н	SO ₂ CH ₃	H	H	H	H	_	
1.616	CO₂H	Н	H	H	H	H	Fp. >150° Z	
1.617	CO2H	н	CH ₃	Н	H	H		10
1.618	CO2H	Н	H	C ₃ H ₇ (i)	н	H		
1.619	CO2H	н	H	Phenyl	Н	H		
1.620	CO ₂ CH ₃	Н	H	н	н	H		
1.621	CO ₂ C ₂ H ₅	н	H	Н	H	н		
1.622	CO2NH2	н	H	Н	Н	Н		15
1.623	CN	н	H	H	H	H	·	
1.624	CO2H	CH ₃	H	н	H	H		
1.625	CO2CH3	CH ₃	H	н	H	H		
1.626	CO ₂ H	C ₂ H ₅	Н	н	Н	H		20
1.627	CO ₂ CH ₃	C ₂ H ₅	H	н	Н	H		
1.628	CO2CH3	Br	H	Н	H	Н		
1.629	CO ₂ H	Br	H	H	Н	H		
1.630	ci	CF ₃	CH₃	CH ₃	CH ₃	H	Fp. 65-70°C	25
1.631	Н	CF ₃	CH₃	CH ₃	CH ₃	H		20
1.632	Cl	OCH ₃	Н	H	Н	H		
1.633	Cl	SC ₂ H ₅	н	Н	Н	H		
1.634	Cl	SOC ₂ H ₅	н	н	H	н		
1.635	Cl	SO ₂ C ₂ H ₅	Н	н	H	H		<i>30</i>
1.636	SC ₂ H ₅	Cl	Н	H	Н	н		
1.637	SOC ₂ H ₅	Cl	Н	Н	H	H		
1.638	SO2C2H5	Cl	H	Н	H	Н		
1.639	н	SO2C2H5	н	H	H	Н	}	35
1.640	Cl	SO ₂ C ₃ H ₇ (i)	Н	H	н	H		-
1.641	Cl	SOC ₃ H ₇ (i)	н	н	H	Н		
1.642	Cl	SC ₃ H ₇ (i)	Н	н	H	Н		
1.643	C1	OCH ₃	н	н	H	Н		
1.644	Cl	$OC_3H_7(i)$	н	H	H	н		40
1.645	Cl	Br	н	н	Н	H		
1.646	н	OCH ₃	н	I н	Н	l H	Fp. 79-85°C	

H.1.2. Herstellung von Salzen der Formel I

H.1.2.1. Natriumsalz von 2-(3-Chlor-5-trifluormethylpyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on

3,2 g 2-(3-Chlor-5-trifluormethylpyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on werden in 20 ml Methanol gelöst, mit 0,54 g Natriummethylat versetzt und 15 min bei Raumtemperatur gerührt. Danach wird am Rotationsverdampfer zur Trockne eingeengt. Der Rückstand wird mit Diethyläther verrieben, abfiltriert und getrocknet.

45

50

65

Man isoliert in quantitativer Ausbeute die Titelverbindung der Formel

als farblosen Festkörper (Verb. No. 2.006). Analog zu vorstehenden Herstellungsverfahren können die Salze der Tabelle 2 synthetisiert werden.

Tabelle 2

Verbindungen der Formel

phys. Daten			V-0-1			farbloser Festkörper		·		-					
₩.	Na	Li	1/2 Ca ^{2®}	NH(CH ₃) ₃	NH(C2H5OH)3	Na⊕	Li	1/2 Ca ^{2⊕}		NH(C2H5OH)3 [⊕]	Na	Li	1/2 ca ^{2⊕}	NH(CH ₃) ₃	$^{\oplus}$ NH(C ₂ H ₅ OH) ³
R ⁶	Н	H	н	Н	н	н	Ħ	н	н	Ħ	Н	н	н	н	н
R5	н	Ħ	н	Ħ	н	Ħ	Ħ	н	н	н	н	Ħ	н	н	H
₩ 	Ħ	Ħ	Ħ	Ħ	H	Ħ	н	щ	Ħ	Ħ	H	H	н	н	— #
R³	H	н	Ħ	н	н	н	н	н	H	Ħ	Ħ	Ħ	ж	Ħ	#
R2	C1	CJ	ប	CJ	Cl	CF3	CF3	CF 3	CF3	CF3	Ħ	н	н	H	
R1	CJ	CJ	CJ	C1	CJ	CJ	CJ	CJ	CJ	CJ.	NO2	NO ₂	NO2	NO2	NO ₂
Verb. Nr.	2.001	2.002	2.003	2.004	2.005	2.006	2.007	2.008	2.009	2.010	2.011	2.012	2.013	2.014	2.015

Verb. Nr.	R1	R ²	R ₃	R.	R5	Ré	₩	phys. Daten
				:	5	מ	e N	
2.016	Ħ	NO2	Ę	=	=	=	⊕	-
2.017	Ħ	NO2	Ħ	Ħ	Ħ	Ħ	L_1°	
2.018	н	NO2	н	н	H	H	1/2 Ca ^{2©}	
2.019	Ħ	NO2	H	Ħ	н	н	NH(CH ₃) ₃	
2.020	Ħ	NO2	H	Ħ	н	E	NH(C2H5OH)3	
2.021	н	н	Ħ	н	Н	Ħ	Na ⊕	
2.022	н	H	Ħ	н	Ħ	Ħ	Li	
2.023	Ħ	н	Ħ	н	H	Ħ	1/2 Ca ^{2©}	
2.024	×	н	#	Ħ	Ħ	Ħ	NH(CH ₃) ₃	
2.025	Ħ	н	Ħ	н	Ħ	Ħ	NH(C2H5OH)3	
2.026	CJ	CC13	Ħ	Ħ	Ħ	Ξ	Na	
2.027	CJ	cc13	н	Ħ	Ħ	Ħ	Li 28	
2.028	CJ	CC13	Ħ	н	Ħ	Ħ	1/2 Ca	
2.029	CJ	CC13	Ħ	Ħ	# 	Ħ	NH(CH ₃) ₃	
2.030	CJ	CC13	m	H	н	н	NH(C ₂ H ₅ OH) ₃	
2.031	ഥ	CF3	Ħ	Ħ	н	Ħ	Na ®	
2.032	ഥ	CF3	Ħ	Ħ	Ħ	н	Li	
2.033	1 24	CF3	Æ	Ħ	H	н	1/2 Ca	
2.034	ഥ	CF3	н	Ħ	Ħ	H	NH(CH ₃) ₃	
2.035	į.,	CF3	H	Ħ	Ħ	Ħ	NH(C ₂ H ₅ OH) ₃	
2.036	C1	CJ	CH3	I	Ħ	æ	.Na ⊕	
2.037	CJ	_ c1	CH3	# _	H	H	Li	

Verb. Nr.	R	R ²	R³	# _*	R5	Re	₩.	phys. Daten
2.038	C1	C1	CH3	H	Ħ	I	1/2 Ca	
2,039	C1	เว	CH3	H	н	#	NH(CH ₃) ₃	
2.040	C1	CJ	CH3	Ħ	н	Ħ	NH(C ₂ H ₅ OH) ₃	
2.041	.CJ	CF3	CH3	н	н	E	Na ⊕	
2.042	[3	CF3	CH3	н	н	Ħ	Li	
2.043	CJ	CF_3	CH3	Ħ	Ħ	Ħ	1/2 Ca ^{2©}	
2.044	CJ	CF3	CH3	##	ж	Ħ	NH(CH ₃) ₃	
2.045	C1	CF3	CH3	Ħ	H	E	NH(C2H5OH)3	
2.046	NO2	н	CH ₃	Ħ	E	Ħ	Na .	
2.047	NO2	H	CH3	Ħ	#	# 	Li" ?*	Jun 1
2.048	NO2	Ħ	CH3	Ħ	Ħ	H	1/2 Ca ^{2©}	
2.049	NO2	H	CH3	# 	H	н	NH(CH ₃) ₃	
2.050	NO2	н	CH3	Ħ	#	н	NH(C2H5OH)3	
2.051	н	NO2	CH3	Ħ	щ	ш	Na ®	
2.052	ж	NOz	CH3	ж	H	H	Li 20	
2.053	н	NO2	CH3	н	H	#	1/2 Ca ²	ra -1
2.054	#	NO2	CH3	н	Ħ	Ħ	NH(CH ₃) ₃	
2.055	#	NO2	CH3	н	ж	Ħ	NH(C ₂ H ₅ OH) ₃	•
2.056	н	#	CH3	H	н	田	Na 💮	
2.057	Ħ	Ħ	CH3	н	H	щ	Li 2#	
2.058	Ħ	Ħ	CH ₃	#	H	Ħ	1/2 Ca 🐣	
2.059	H	H _	CH ₃	н —	ш· —	H —	NH(CH ₃) ₃	

R ⁴ R ⁵
сн3 Н Н
снз н н
CH ₃ H H
снз н н
CH ₃ H H
СН3 Н
n-C ₃ H ₇ H
n-C3H7 H
n-C3H7 H
n-C3H7 H
n-C ₃ H ₇ H
n÷C3H7 H
n-C3H, H
n-C ₃ H ₇ H
п-С3Н, Н
п-С3Н7 Н
n-C ₃ H, H

Verb. Nr.	R1	R ²	R3	R ⁴	R5	ж	₩	phys. Daten
2.082	NO2	H	n-C3H7	H	Ħ	Ħ	Li	
2.083	NO2	æ	n-C ₃ H ₇	н	Ħ	н	1/2 Ca ^{2⊕}	
2.084	NO2	Ħ	n-C3H7	H	×	н	NH(CH ₃) 3	
2.085	NO2	щ	n-C3H7	H	Ħ	н	NH(C2H5OH)3	
2.086	×	NO2	n-C3H7	Ħ	н	H	Na ⊕	
2.087	ж	NO2	n-C3H7	H	Ħ	H	Li	
2.088	н	NO2	n-C3H7	H	ж	н	1/2 Ca ^{2©}	
2.089	ж	NO2	n-C ₃ H ₇	H	Ħ	Ħ	NH(CH ₃) ₃	
2.090	H	NO2	n-C3H7	н	н	Ħ	NH(C2H5OH)3	
2.091	Ħ	#	n-C ₃ H ₇	H	Ħ	Ħ	Na •	
2.092	ш	Ħ	n-C ₃ H ₇	Ħ	н	Ħ	Li	- 110
2.093	н	н	n-C ₃ H ₇	Ħ	Ħ	Ħ	1/2 Ca ^{2®}	
2.094	н	н	n-C ₃ H ₇	Ħ	щ	н	NH(CH ₃) ₃	
2.095	ж	н	n-C3H7	H	Ħ	Ħ	NH(C2H5OH)3	
2.096	CJ	CC13	n-C3H7	H	Ħ	Ħ	Na ©	
2.097	CJ	CCl3	n-C ₃ H ₇	н	Ħ	Ħ	Li	
2.098	ប	CC13	n-C ₃ H ₇	H	Ħ	Ħ	1/2 Ca ^{2©}	····
2.099	CJ	CC13	n-C ₃ H ₇	н	H	Ħ	NH(CH ₃) ₃	
2.100	CJ	CC13	n-C ₃ H ₇	Н	H	H	NH(C ₂ H ₅ OH) ₃	
2.101	ഥ	CF 3	n-C ₃ H ₇	Н	H	н	Na 💮	•
2.102	ř.	CF3	n-C3H7	Н	Ħ	н	Li	
2.103	Ē.	CF3	n-C3H7	н	H	H	1/2 Ca ²	

Verb. Nr.	R1	. R ²	R³	R [‡] .	R ₅	Re	W⊕	phys. Daten
2.104	FE4	CF3	n-C3H7	H	Ħ	н	NH(CH ₃) ₃	
2.105	ŀ٠	CF_3	n-C ₃ H ₇	H	H	н	NH(C ₂ H ₅ OH) ₃	
2.106	CJ	C1	1-C3H7	Н	н	н	Na Na	
2.107	CJ	CJ	1-C3H7	Ħ	н	н	Li	
2.108	CJ	CJ	i-C3H7	Н	н	=	1/2 Ca	
2.109	CJ	C1	1-C3H7	н	н	н	NH(CH ₃) ₃	
2.110	CJ	CJ	i-C3H7	Н	н	×	NH(C2H5OH)3	
2.111	CJ.	CF 3	i-C3H7	Ħ	Ħ	Ħ	Na B	
2.112	ប	CF3	i-C ₃ H ₇	н	Ħ	æ	Li	
2.113	CI	CF3	i-C3H7	н	н	Ħ	1/2 Ca ^{2⊕}	
2.114	CJ	CF3	i-C3H7	Ħ	н	Ħ	NH(CH ₃) ₃	
2.115	CJ	CF 3	i-C ₃ H ₇	н	Ħ	Ħ	NH(C ₂ H ₅ OH) ₃	
2.116	NO2	н	i-C3H7	H	н	Ħ	Na	
2.117	NO2	H	i-C3H7	Ħ	H	=	Li	
2.118	NO2	Ħ	i-C3H7	H	н	Ħ	1/2 Ca ^{2©}	
2.119	NO2	ж	i-C3H7	н	Ħ	н	NH(CH ₃) ₃	ė _{ras} ė
2.120	NO2	н	i-C3H7	Ħ	Ħ	Ħ	NH(C2H5OH)3	
2.121	н	NO2	i-C3H7	н	Ħ	н	Na ⊕	
2.122	н	NO2	1-C3H7	н	Ħ	н	Li^{θ}	
2.123	H	NO2	1-C3H7	Ħ	Ħ	н	1/2 Ca ^{2©}	
2.124	ш —	NO2	i-C3H7	н	=	н	NH(CH ₃) ₃	

R1	\mathbb{R}^2	R³	# ,	R ⁵	R ⁶	$^{\oplus}$	phys. Daten
1	NO ₂	i-C ₃ H ₇	Ħ	н	Н	NH(C2H5OH)3	
	Н	i-C3H7	н	H	Ħ	Na⊕	
	Ħ	i-C3H7	H	Ħ	Ħ	Li⊕	
	Ħ	i-C ₃ H ₇	Н	Ħ	Ħ	1/2 Ca ^{2⊕}	
	н	i-C ₃ H ₇	н	Ħ	н	NH(CH₃)₃	
	н	i-C ₃ H ₇	Н	н	H	NH(C2H5OH)3	
	CCl3	i-C ₃ H ₇	Н	Ħ	Ħ	Na Na	
	cc13	i-C3H7	Ħ	ж	н	$_{ m Li}^{\oplus}$	
	CC13	i-C3H7	H	×	Н	1/2 Ca ^{2⊕}	
	CCl3	i-C ₃ H ₇	Ħ	Ħ	H	NH(CH ₃) ₃	
	CCl3	1-C3H7	Ħ	н	H	NH(C2H5OH)3	
	CF3	i-C ₃ H ₇	н	н	H	Na O	
	CF3	i-C3H7	н	н	н	$ ext{Li}^{\oplus}$	
	CF_3	i-C3H7	н	н	н	1/2 ca ^{2©}	
	CF3	1-C3H7	Н	н	н	NH(CH ₃) ₃	
	CF3	1-C3H7	н	Ħ	Ħ	NH(C2H5OH)3	
	C1	CeHs	н	н	н	Na	
	C1	CeHs	н	н	н	Li	
	CJ	CeH5	н	н	Ħ		
	c1	CeHs	Н	Н	н	NH(CH ₃) ₃	
	C1	CeHs	н	н	ш	NH(C ₂ H ₅ OH) ₃	
	CF_3	CeHs	н	ш	H	_ Na ⊕	

Verb. Nr.	R1	R ²	R³	R ⁺	R ⁵	R ⁶	W⊕ W	phys. Daten
2.147	C1	CF3	CeHs	н	н	н	Li^{\oplus}	
2.148	c1	CF 3	CeHs	Ħ	Ħ	н	1/2 Ca ^{2⊕}	
2.149	C1	CF 3	CeHs	Ħ	Ħ	Ħ	NH(CH₃)₃	
2.150	c1	CF3	CeHs	Ħ	н	Ħ	NH(C ₂ H ₅ OH) ₃	
2.151	NO2	ж	CeHs	Ħ	н	Ħ	Na	
2.152	NO2	н	CeH5	н	н	н	$\mathrm{Li}^{\oplus}_{\hat{j}_{\hat{i}}}$	
2.153	NO2	Ħ	CeHs	Ħ	Ħ	Ħ	1/2 Ca ^{2⊕}	
2.154	NO2	н	CeHs	Ħ	н	ж	NH(CH ₃) ₃	
2.155	NO2	Ħ	CeHs	Ħ	Ħ	Ħ	NH(C2H5OH)3	
2.156	Ħ	NO2	CeH5	H	н	E	Na	
2.157	н	NO2	CeH5	Ħ	н	Ħ	Li^{\oplus}	
2.158	Ħ	NO2	C ₆ H ₅	Ħ	н	Ħ	1/2 Ca ^{2©}	
2.159	×	NO2	CeH5	H	Ħ	н	NH(CH ₃) ₃	
2.160	Ħ	NO2	CeHs	H	#	H	NH(C ₂ H ₅ OH) ₃	
2.161	н	Ħ	CeHs	H	н	Ħ	Na ⊕	
2.162	н	н	CeHs	H	H	Ħ	Γ_1^{\oplus}	
2,163	H	Ħ	C ₆ H ₅	=	Ħ	Ħ	1/2 Ca ^{2⊕}	
2.164	н	н	CeH5	Ħ	Ħ	Ħ	NH(CH ₃) ₃	
2.165	н	н	CeHs	н	н	Ħ	NH(C2H5OH)3	
2.166	CJ	CC13	CeHs	н	н	н	Na B	
2,167	CJ	CCl3	CeHs	н	H	Ħ	Li	
2.168	CJ	cc13	CeH5	н	н —	# 	1/2 Ca ^{2©}	

Verb. Nr.	R1	R ²	R³	R‡	R5	Re	⊕ ¥	phys. Daten
2.169	C1	CC13.	CeHs	Ħ	H	H	NH(CH ₃) ₃	
2.170	Cl	CCl3	CeHs	н	Ħ	Ħ	NH(C2H5OH)3	
2.171	Ŀ	CF 3	CeHs	н	Ħ	H	Na⊕	
2.172	۲	CF3	CeHs	н	Ħ	Ħ	Li⊕	
2.173	ř.	CF 3	CeHs	Н	Ħ	H	1/2 Ca ^{2⊕}	
2.174	ĬΞ	CF3	CeHs	н	Æ	H	NH(CH ₃) ₃	
2.175	í-	CF3	CeHs	Н	H	H	NH(C2H5OH)3	
2.176	C1	CJ	СН3	CH3	Ħ	H	Na⊕	
2.177	CJ	CJ	CH3	CH3	æ	Ħ	$ ext{Li}^{\oplus}$	
2.178	CJ	Ü	CH3	CH3	н	Н	1/2 Ca ^{2⊕}	
2.179	CJ	C1	CH3	CH ₃	н	н	NH(CH ₃) ₃	
2.180	CJ	C1	CH3	CH3	н	Н	NH(C ₂ H ₅ OH) ₃	
2.181	Cl	CF_3	CH3	CH3	н	н	Na⊕	
2.182	CJ	CF3	CH3	CH3	Ħ	н	Li 🏵	•
2.183	CJ	CF3	CH3	CH3	н	Н	1/2 Ca ^{2⊕}	
2.184	G	CF3	CH3	CH3	н	н	NH(CH ₃) ₃	
2.185	CJ	CF_3	CH3	CH3	Ħ	Щ,	NH(C ₂ H ₅ OH) ₃	
2.186	NO2	н	CH3	CH3	Ħ	н	Na⊕	
2.187	NO2	н	CH3	CH3	Ħ	H	$ ext{Li}^{\oplus}$	
2.188	NO2	Ħ	CH3	СН3	H	Н	1/2 Ca ^{2⊕}	
2.189	NO2	Ħ	CH3	CH3	Н	Н	NH(CH ₃) ₃	
2.190	NO2	Ħ	CH3	CH3	=	н	NH(C ₂ H ₅ OH) ₃	

R1 F	رت	R ²	R ³	R#	R ⁵	R ⁶	¥.	phys. Daten
H NO ₂ CH ₃		CH ₃		CH3	Ħ	Н	Na D	
H NO ₂ CH ₃		CH3		CH3	Ħ	H	Li^{\oplus}	
H NO ₂ CH ₃		CH3		СН3	н	Ħ	1/2 Ca ^{2®}	
H NO ₂ CH ₃		CH3		CH ₃	н	Ħ.	NH(CH ₃) ₃	
H NO ₂ CH ₃		CH3		СН3	н	Ħ	NH(C2H50H)3	
H H CH3		CH3		CH3	н	Ħ	Na •	
H H CH ₃	<u>.</u>	CH3		CH_3	Ħ	Ħ	$\stackrel{\oplus}{\mathrm{Li}}^{\oplus}$	
H H CH3		CH3		CH3	н	Ħ	1/2 Ca ^{2⊕}	
H H CH ₃	***	CH3		CH3	Ħ	Ħ	NH(CH ₃) ₃	
H H CH3		CH3		CH3	Ħ	н	NH(C2H50H)3	
Cl CCl ₃ CH ₃		CH3		CH3	Ħ	H	Na ⊕	
Cl CCl ₃ CH ₃		CH3		CH3	H	Ħ	Li	
Cl CCl ₃ CH ₃		CH3		CH3	H	Ħ	1/2 Ca ^{2®}	
Cl CCl ₃ CH ₃		CH3		CH3	н	Ħ	NH(CH ₃) ₃	
Cl CCl ₃ CH ₃		CH3		CH3	Ħ	н	NH(C2H50H)3	·
F CF3 CH3		CH3		CH3	Ħ	н	Na ⊕	
F CF3 CH3		CH3		CH3	H	H	Li [©]	
F CF3 CH3		CH3		CH3	Ħ	Ħ	1/2 Ca ^{2©}	
F CF3 CH3		CH3		CH3	Ħ	н	NH(CH ₃) ₃	
F CF3 CH3	· ·	CH3	-	CH3	н	н	NH(C ₂ H ₅ OH) ₃	
C1 CH ₃		CH3		н	CH3	н	Na ⊕	-
C1 C1 CH ₃		CH3		н	CH3	H	Li e	

Verb. Nr.	R1	R ²	R ³	Ж *	R5	ጼ	⊕W	phys. Daten
2.213	CJ	CI.	CH3	×	CH3	Н	1/2 Ca ^{2⊕}	
2.214	CJ	CJ	СН3	Ħ	CH3	н		
2.215	CJ	CJ	CH3	Ħ	CH3	н	NH(C2H5OH)3	
2.216	C1	CF 3	CH3	Н	CH3	Ħ	Na⊕	
2.217	CJ	CF 3	СН3	Н	CH3	Ħ	Li^{\oplus}	
2.218	C1	CF 3	CH3	Н	CH3	Ħ	1/2 Ca ^{2⊕}	
2.219	CJ	CF3	СН3	н	СН3	н		
2.220	CJ	CF3	CH3	н	CH3	ш	NH(C2H5OH)3 [⊕]	
2,221	NO2	н	CH3	Н	CH3	н	Na	
2.222	NO2	Ħ	CH3	Н	CH3	×	$\text{Li}^{igoplus}$	
2.223	NO2	н	CH3	ж	СН3	Ħ	1/2 Ca ^{2⊕}	
2.224	NO2	Ħ	CH3	н	СН3	=	NH(CH ₃) ₃	
2.225	NO2	н	CH3	н	СН3	н	NH(C2H5OH)3	
2.226	н	NO2	CH3	н	CH3	н	Na Na	
2.227	Ħ	NO2	CH3	Ħ	CH3	н	Li^{\oplus}	
2.228	Ħ	NO2	CH3	I	СН3	н	1/2 Ca ^{2⊕}	
2.229	Ħ	NO2	CH3	Ħ	CH3	н		
2.230	Ħ	NO2	CH3	Ħ	CH3	Ħ	NH(C2H5OH)3 [⊕]	
2.231	н	н	CH3	ш	CH3	н	Na	
2.232	Н	Ħ	CH3	Ħ	CH3	н	Li O	
2.233	н	H	CH3	H	CH3	н	1/2 Ca ^{2⊕}	
2.234	ш	ш	CH ₃	H	CH3	н	NH(CH3)3 [⊕]	

R1	R ²	R³	R ⁴	R ⁵	R ⁶	₩	phys. Daten
н н снз	CH3		Ħ	CH3	Н	NH(C ₂ H ₅ OH) ₃	
Cl CCl ₃ CH ₃	CH3		ш	CH3	н	Na ⊕	
Cl CCl ₃ CH ₃	CH3		ш	CH3	н	Li	
Cl CCl ₃ CH ₃	CH3		Ħ	CH3	н	1/2 Ca ^{2©}	
C1 CCl3 CH3	CH3		н	CH3	н	NH(CH ₃) ₃	
C1 CCl3 CH3	CH3		н	CH3	н	NH(C ₂ H ₅ OH) ₃	
F CF3 CH3	CH3		н	CH3	н	Na	
F CF3 CH3	CH3		H	CH3	н	$\text{Li}^{\oplus}_{\mathfrak{I}^{\otimes}}$	
F CF3 CH3	CH3		н	CH3	E	1/2 Ca ^{2⊕}	
F CF3 CH3	CH3		н	CH3	Ħ	NH(CH ₃) ₃	
F CF3 CH3	CH3		н	CH3	Ħ	NH(C ₂ H ₅ OH) ₃	
С1 С1 Н	=		н	Ħ	CN	Na ⊕	
сл сл н	H		H	Ħ	CN	Lit e	
сл сл н	ж		н	н	CN	1/2 Ca ^{2©}	
сл сл н	H		H	н	CN	NH(CH ₃) ₃	
сл сл н	H		н	H	CN	NH(C2H5OH)3	
Cl CF3 H	H		Н	Ħ	CN	Na ⊕	
CI CF3 H	=		н	н	CN	Li [©]	
Cl CF3 H	Ħ		н	н	CN	1/2 Ca ^{2©}	•
Cl CF3 H	#		Ħ	Ħ	CN	NH(CH ₃) ₃	104 M-104 M-104
Cl CF3 H	H		н	н	CN	NH(C2H5OH)3	مرسنو رسم د
NO ₂ H H	#		Н —	H	CN	_ Na ⊕	

Verb. Nr.	R ₁	R ²	R³	₽.	R ⁵	Re	₩	phys. Daten
2.257	NO2	H	H	Н	H	CN	Li	
2.258	NO2	н	н	н	Н	CN	1/2 Ca ^{2⊕}	
2.259	NO2	H	Н	Ħ	Ħ	CN	NH(CH₃)₃ [⊕]	
2.260	NO2	н	н	Ħ	Ħ	CN	NH(C ₂ H ₅ OH) ₃	
2.261	Ħ	NO2	н	Ħ	Ħ	CN	Na ©	
2.262	E	NO ₂	н	Ħ	Ħ	CN	$ ext{Li}^{igoplus}_{j_{\widehat{n}}}$	
2.263	m	NO ₂	н	æ	Ħ	CN	1/2 Ca ^{2⊎}	
2.264	н	NO2	Ħ	ж	=	CN	NH(CH ₃) ₃	
2.265	H	NO2	н	Ħ	H	CN	NH(C ₂ H ₅ OH) ₃	
2.266	H	Ħ	Ħ	Ħ	Ħ	CN	Na Na O	
2.267	H	Ħ	н	×	Ħ	CN	Li }	
2.268	Ħ	Ħ	н	Ħ	н	CN	1/2 Ca ^{2©}	
2.269	н	ж	Ħ	Ħ	н	CN	NH(CH ₃) ₃	
2.270	Н	#	н	Ħ	н	CN	NH(C2H5OH)3	
2.271	C1	CC13	Ħ	н	н	CN	Na ©	
2.272	23	CC13	Ħ	H	н	CN	Li	
2.273	C1	CC13	Ħ	н	н	CN	1/2 Ca ^{2©}	
2.274	C1	CC13	н	Ħ	н	CN	NH(CH ₃) ₃	
2.275	CJ	CC13	出	н	н	CN	NH(C2H5OH)3	
2.276	<u>F-1</u>	CF3	н	н	H	CN	Na B	
2.277	<u></u>	CF3	Ħ	н	н	CN	Li	
2.278	— H	CF3	=	н	Н	CN	1/2 Ca ^{2©}	

Verb. Nr.	R1	\mathbb{R}^2	R³	R ⁴	R5	Re	*	phys. Daten
2.279	Íτ	CF3	H	H	Ħ	CN	NH(CH ₃) ₃	
2.280	ы	CF_3	н	Н	н	CN	NH(C ₂ H ₅ OH) ₃	
2,281	CJ	CJ	Ħ	н	н	CN	Na⊕	
2.282	C1	CJ	н	н	н	CN	$ ext{Li}^{\oplus}_{\hat{j},\hat{i}}$	
2.283	CJ	CJ	ж	н	н	CN	1/2 Ca ^{2⊕}	
2.284	c1	CJ	н	н	н	CN	NH(CH ₃)₃	
2.285	C1	CJ	Ħ	н	н	CN	NH(C2H5OH)3	
2.286	CJ	CF3	Н	Ħ	н	CN	Na B	
2.287	C1	CF 3	н	Ħ	н	CN	Li [⊕]	
2.288	C1	CF3	Ħ	Ħ	Ħ	CN	1/2 Ca ^{2⊎}	
2.289	CJ	CF3	Ħ	H	Ħ	CN	NH(CH ₃) ₃	
2.290	CJ	CF3	Ħ	H	Ħ	CN	NH(C2H5OH)3	
2.291	NO2	H	CH3	н	Ħ	CN	Na ⊕	
2.292	NOz	H	CH3	H	Ħ	CN	Li [©]	
2.293	NO2	н	CH3	H	Ħ	CN	1/2 Ca ^{2⊕}	
2.294	NO2	н	CH3	н	н	CN	NH(CH ₃) ₃	
2.295	NO2	Ħ	CH3	Ħ	Ħ	CN	NH(C ₂ H ₅ OH) ₃	
2.296	H	NO2	CH3	н	н	CN	Na B	
2.297	Ħ	NO2	CH3	н	Ħ	CN	$_{ m Li}^{\oplus}$	
2.298	н	NO2	CH3	Н	H	CN	1/2 Ca	
2.299	E	NO2	CH3	н	H	CN	ŅH(CH³)³	
2.300	# 	NO2	CH ₃	н	H	CN	NH(C2H5OH)3	

H CH ₃ H H CH ₃ H CCH ₃ CH ₃ H CCL ₃ CH ₃ H CCL ₃ CH ₃ H CCL ₃ CH ₃ H CCL ₃ CH ₃ H CCL ₃ CH ₃ H CCL ₃ CH ₃ H CCL ₃ CH ₃ H CC ₇ CH ₃ CH CC ₈ CH ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H	Verb. Nr.	R1	R ²	R³	₽ ,	R5	R ⁶	⊕ W	phys. Daten	Daten
H CH3 H H H H CH3 H CH3 H CH3 H H CH3 H H H H		H	H	CH3	Ħ	H	CN	Na Na		
H CH ₃ H H H H CLH ₃ CH ₃ H H CH ₃ H H CH ₃ H H H CCL ₃ CH ₃ H H H CCL ₃ CH ₃ H H H CCL ₃ CH ₃ H H H CCL ₃ CH ₃ H H H CCL ₃ CH ₃ H H H CCL ₃ CH ₃ H H H CCL ₃ CH ₃ H H H H CCL ₃ CH ₃ H H H H CCL ₃ CH ₃ CH ₃ H H H CCL ₃ CH ₃ CH ₃ H H H CCL ₃ CH ₃ CH ₃ H H H CCL ₃ CH ₅ -CH ₂ - H H H CCL ₃ Ch ₅ -CH ₂ - H H H CCL ₃ Ch ₅ -CH ₂ - H H H CCC ₃ Ch ₅ -CH ₂ - H H H CCC ₃ Ch ₅ -CH ₂ - H H H CCC ₃ Ch ₅ -CH ₂ - H H H CCC ₃ Ch ₅ -CH ₂ - H H H CCC ₃ Ch ₅ -CH ₂ - H H H H H H H H H H H H H H H H H H H		Ħ	H	CH3	н	Ħ	CN	$ ext{Li}^{igoplus}_{oldsymbol{\lambda}_{i}}$		
H CH3 H H CC13 CH3 H H CF3 CH3 H H CT C6H5-CH2- H H C1 C6H5-CH2- H H		H	н	CH3	Ħ	Ħ	CN	1/2 Ca ²⁰		
CCl ₃ CH ₃ H H H CCl ₃ CCl ₃ CH ₃ H H CCl ₃ CCl ₃ CH ₃ H H H CCl ₃ CCl ₃ CH ₃ H H H CCl ₃ CH ₃ H H H CCl ₃ CH ₃ H H H CCl ₃ CH ₃ H H H CCl ₃ CH ₃ H H H CCl ₃ CH ₃ CH ₃ H H H CCl ₃ CH ₃ CH ₃ H H H CCl ₃ CH ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H H H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H H H H CCl ₃ C ₆ H ₅ -CH ₂ - H H H H H H H H H H H H H H H H H H H		Ħ	H	CH3	Ħ	×	CN	NH(CH ₃) ₃		
CCl3 CH3 H H CCl3 CH3 H H CCl3 CH3 H H CCl3 CH3 H H CCl3 CH3 H H CF3 CH4 H H CI C6H5-CH2- H H CI<		H	н	CH3	H	Ħ	CN	NH(C ₂ H ₅ OH) ₃		
CC13 CH3 H H CC13 CH3 H H CC13 CH3 H H CC13 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CT C6H5-CH2- H H C1 C6H5-CH2- H H	_	CJ	CCl 3	СН3	н	Ħ	CN	Na Na		
CC13 CH3 H H CC13 CH3 H H CC13 CH3 H H CF3 CH4 H H C1 C6H5-CH2- H H	_	CJ	CC13	СН3	Ħ	Ħ	CN	Li		
CCL13 CH3 H H CCL3 CH3 H H CF3 CH5-CH2- H H C1 C6H5-CH2- H H	_	CJ	CC13	CH3	Ħ	Ħ	CN	1/2 Ca ^{2⊕}		
CCL3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CT C6H5-CH2- H H C1 C6H5-CH2- H H		Cl	CC13	CH3	Ħ	Ħ	CN	NH(CH ₃) ₃		
CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH5-CH2- H H C1 C6H5-CH2- H H		C1	CC13	CH3	Ħ	Ħ	CN	NH(C2H5OH)3		
CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH3 H H CF3 CH5-CH2 H H C1 C6H5-CH2 H H		F4	CF3	CH3	Ħ	#	CN	Na		
CF3 CH3 H H CF3 CH3 H H CF3 CH5 CH3 H H C1 C6H5-CH2- H H H		Ē4	CF3	СН3	н	Ħ	CN	$\mathrm{Li}^{\oplus}_{\hat{j},\hat{i}}$		
CF3 CH3 H H CF3 CH3 H H C1 C6H5-CH2- H H		Ŀ	CF3	CH3	H	н	CN	1/2 Ca ^{2®}		
CF3 CH3 H H C1 C6H5-CH2- H H		14	CF 3	CH3	Ħ	н	CN	NH(CH ₃) ₃	<u></u>	
C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H		[*	CF3	CH3	Ħ	н	CN	NH(C2H5OH)3		
C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H		CJ	CJ	CeH5-CH2-	Ħ	H	н	Na Na		
C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H C1 C ₆ H ₅ -CH ₂ - H H CF ₃ C ₆ H ₅ -CH ₂ - H H		Cl	CJ	CeH5-CH2-	Ħ	н	Ħ	$_{ m Li}^{\oplus}$		
C1 C ₆ H ₅ -CH ₂ - H C1 C ₆ H ₅ -CH ₂ - H CF ₃ C ₆ H ₅ -CH ₂ - H		C1	CI	CeH5-CH2-	H	н	н	1/2 Ca ^{2©}		
C1 C ₆ H ₅ -CH ₂ - H CF ₃ C ₆ H ₆ -CH ₂ - H		C1	CI	C6H5-CH2-	H	Ħ	н	NH(CH ₃) ₃		
CF ₃ C ₆ H ₅ -CH ₂ - H		C1	CI	CeH5-CH2-	H	Ħ	н	NH(C2H5OH)3		
_		CJ	CF3	CeHs-CH2-	H	н	Н	Na⊕		
CF3		CJ	CF3	C6H5-CH2-	Ħ	н	ш	Li e		

42

i

Verb. Nr.	R1	\mathbb{R}^2	R³	R⁴	R5	Re	⊕ ~	phys. Daten
2.323	C1	CF3	C ₆ H ₅ -CH ₂ -	Н	н	H	1/2 Ca ^{2⊕}	
2.324	C1	CF_3	CeH5-CH2-	н	Ħ	н	NH(CH₃)₃⊕	
2.325	C1	CF3	CeHs-CH2-	H	Ħ	н	NH(C2H5OH)3	
2.326	NO2	н	CeH5-CH2-	н	Ħ	н	Na Da	
2.327	NO2	Н	CeHs-CH2-	Ħ	Ħ	Н	$ ext{Li}^{\oplus}_{\widetilde{\Omega}_{i}}$	
2.328	NO ₂	н	CeHs-CH2-	н	Ħ	H	1/2 Ca ^{2⊕}	
2.329	NO2	н	CeHs-CH2-	н	Ħ	Н	NH(CH₃)₃	
2.330	NO2	Ħ	C ₆ H ₅ -CH ₂ -	н	Ħ	н	NH(C2H5OH)3	
2.331	ж	NO2	CeH5-CH2-	н	Ħ	н	Na	
2.332	Ħ	NO2	CeHs-CH2-	Ħ	Ħ	н	$ ext{Li}^{\oplus}$	
2.333	н	NO2	CeH5-CH2-	×	Ħ	н	1/2 Ca ^{2⊕}	
2.334	H	NOz	CeHs-CH2-	Ħ	Ħ	н	NH(CH ₃) ₃	
2.335	Ħ	NO ₂	CeHs-CH2-	н	Ħ	н	NH(C2H5OH)3	
2.336	Ħ	н	CeHs-CH2-	H	н	н	Na O	
2.337	Ħ	H	C6H5-CH2-	Ħ	Ħ	н	Li^{\oplus}	
2.338	Ħ	Ħ	CeHs-CH2-	н	н	н	1/2 Ca ^{2⊕}	
2.339	н	H	CeH5-CH2-	н	н	н	NH(CH ₃) ₃	
2.340	н	Ħ	C6H5-CH2-	Ħ	Ħ	н	NH(C ₂ H ₅ OH) ₃	
2.341	CJ	CCl3	C6H5-CH2-	н	Ħ	н	Na B	
2.342	C1	CCl3	C6H5-CH2-	H	H	Ħ	$\stackrel{\oplus}{\operatorname{Li}}_{\stackrel{\circ}{\circ}}$	
2.343	CJ	CCl3	CeHs-CH2-	H	н	Ħ	1/2 Ca ^{2©}	
2.344	c1	CCl3	CeH5-CH2-	н	H .	H	NH(CH ₃) ₃	

Verb. Nr.	\mathbb{R}^1	R ²	R³	R ⁴	₩ ₅	Re	⊕ _W	phys. Daten
2.345	C1	CC13	CeHs-CH2-	Н	н	Н	NH(C ₂ H ₅ OH)₃	
2.346	ഥ	CF 3	CeHs-CH2-	н	Ħ	Ħ	Na⊕	
2.347	Ŀ	CF3	CeH5-CH2-	Ħ	Ħ	H	Li^{\oplus}	
2.348	ഥ	CF 3	CeH5-CH2-	н	Ħ	н	1/2 Ca ^{2⊕}	
2.349	ഥ	CF 3	CeH5-CH2-	н	Ħ	н	NH(CH ₃) ₃ ⊕	
2.350	Ŀı	CF_3	CeHs-CH2-	Ħ	Ħ	н	NH(C ₂ H ₅ OH) ₃	
2.351	C1	C1	CeHs	Ħ	н	сооснз	Na Na	
2.352	CI	C1	C ₆ H ₅	н	н	сооснз	Li^{\oplus}	
2.353	CJ	C1	C ₆ H ₅	н	Н	сооснз	1/2 Ca ^{2⊕}	
2.354	C]	CJ	CeHs	Ħ	Ħ	сооснз	NH(CH ₃) ₃ ⊕	
2.355	CI	C1	CeHs	H	Ħ	сооснз	NH(C2H5OH)3	
2.356	CJ	CF_3	CeHs	Ħ	Ħ	соосн3	Na	
2.357	CJ	CF_3	CeHs	н	Ħ	сооснз	Li ⊕	
2.358	C1	CF3	C6H5	Ħ	н	сооснз	1/2 Ca ^{2⊕}	
2.359	Cl	CF 3	C6H5	Ħ	н	сооснз	NH(CH3)3⊕	
2.360	CI	CF 3	CeHs	н	H	сооснз	NH(C2H5OH)3	
2.361	NO2	н	CeHs	н	H	сооснз	Na	
2.362	NO2	н	CeHs	н	Ħ	сооснз	$^{ m Li}^{\oplus}$	
2.363	NO2	н	C ₆ H ₅	Ħ	н	сооснз	1/2 Ca ^{2⊕}	
2.364	NO2	Ħ	CeHs	Ħ	Н	сооснз	NH(CH ₃) ₃ ⊕	
2.365	NO2	#	C ₆ H ₅	H	H	cooch ₃	NH(C ₂ H ₅ OH) ₃	

Verb. Nr.	 R [‡]	R ²	Ж3	₩.	R5	Re	W⊕ W	phys. Daten
2,366	H	NO2	CeHs	H	H	COOCH3	Na⊕	
2,367	н	NO2	CeHs	н	н	сооснз	Li⊕	
2.368	н	NO2	CeH5	Ħ	н	C00CH3	1/2 ca ^{2⊕}	
2.369	н	NO2	CeH5	Ħ	н	сооснз	NH(CH₃)₃ ©	
2.370	#	NO2	CeHs	н	Ħ	сооснз	NH(C ₂ H ₅ OH) ₃	
2.371	н	H	CeHs	н	н	COOCH3	Na ©	
2.372	Ħ	Ħ	CeHs	Ħ	Ħ	сооснз	$ ext{Li}^{\oplus}_{j_{\otimes}}$	
2.373	Ħ	н	CeHs	н	н	сооснз	1/2 Ca ^{2©}	-
2.374	¤	H	CeHs	Ħ	н	сооснз	NH(CH ₃) ₃	
2.375	Ħ	Ħ	CeHs	н	ш	COOCH3	NH(C2H5OH)3	
2.376	CJ	CCl3	CeHs	н	E	COOCH3	Na B	
2.377	CJ	cc13	CeH5	н	H	сооснз	$_{ m Li}^{\oplus}$	
2.378	CI	CC13	CeH5	н	Ħ	COOCH3	1/2 Ca ^{2®}	
2.379	CJ	CC13	CeH5	н	Ħ	C00CH3	NH(CH ₃) ₃	
2.380	CJ	CC13	CeHs	н	Ħ	COOCH 3	NH(C2H2OH)3	
2.381	P4	CF 3	CeHs	Ħ	H	C00CH3	Na	
2.382	ഥ	CF 3	CeHs	Ħ	н	соосн3	Li^{\oplus}	
2.383	ᄄ	CF3	CeHs	E	=	COOCH3	1/2 ca ^{2@}	
2.384	뚄	CF3	CeHs	Ħ	H	COOCH3	NH(CH ₃) ₃	
2.385	<u></u>	CF3	CeHs	ш	H —	COOCH 3	NH(C ₂ H ₅ OH) ₃	
	4	A	<i>3</i> : 4		30	<i>2</i> :	18 20	5
50 55	•	15			n	5		

H.2.1. Herstellung der Pyridincarbonsäurehalogenide der Formel II

H.2.1.1. Herstellung von 5-Trifluormethylpyridin-2-carbonsäurechlorid

Zu einer Suspension von 22,9 g (0,1 Mol) 5-Trifluormethylpyridin-2-carbonsäure-Kalium-Salz und 10 Tropfen

DMF in 250 ml Toluol werden 9,8 ml (0,11 Mol) Oxalylchlorid getropft, wobei die Temperatur auf 40°C ansteigt
und eine lebhafte Gasentwicklung einsetzt. Anschliessend wird 2 Stunden bei 40°C gerührt. Die hellbraune
Suspension wird danach am Rotavapor eingedampft, mit 250 ml Aether abs. verrührt, filtriert und erneut

60

65

Man isoliert 17,8 g (85 %) der Titelverbindung der Formel

5

10

15

20

30

35

45

als braunes Oel (Verb. Nr. 3.078).

H.2.1.2. Herstellung von 3-Chlor-5-trifluormethyl-pyridin-2-carbonsäureethylester

216 g (1 Mol) 2,3-Dichlor-5-trifluormethylpyridin, 16,7 g [PdCl₂ (PPh₃)₂] und 420 ml (3 Mol) Triethylamin werden in 3,3 l Ethanol unter CO-Atmosphäre bei 50 bar und 100° C 14 Stunden gerührt. Anschliessend wird bei 40° C am Rotavapor eingedampft. Die so erhaltene Masse wird mit 2 l Aether verrührt, vom Triethylamin-Hydrochlorid abfiltriert und am Rotavapor eingedampft. Man erhält 245 g eines braunen Oels welches an Kieselgel mit Essigester/Hexan (1:9) gereinigt wird.

Man isoliert 206,8 g (81,6 %) der Titelverbindung der Formel

als gelbes Oel (Verb. Nr. 3.005).

H2.1.3. Herstellung von 3-Chlor-5-trifluormethylpyridin-2-carbonsäure

76 g (0,3 Mol) 3-Chlor-5-trifluormethylpyridin-2-carbonsäureethylester werden mit 165 ml (0,33 Mol) 2N NaOH 6 Stunden gerührt. Die entstandene Lösung wird 2 mal mit Methylenchlorid gewaschen. Die wässrige Lösung wird danach mit Salzsäure 37 % auf pH 1 gestellt und das Produkt abgenutscht und im Vakuum bei Raumtemperatur getrocknet.

Man isoliert 65 g (96 %) der Titelverbindung der Formel

als weisse Kristalle vom Smp. 135°C (Zers.) (Verb. Nr. 3.039).

H.2.1.4. Herstellung von 3-Chlor-5-trifluormethylpyridin-2-carbonsäurechlorid

16,9 g (75 mMol) 3-Chlor-5-trifluormethylpyridin-2-carbonsäure werden in 75 ml Hexan suspendiert. Nach Zugabe von 2 Tropfen DMF werden 7 ml (80 mMol) Oxalylchlorid in 25 ml Hexan zugetropft. Anschliessend wird 4 Stunden bei 50°C gerührt, bis die Gasentwicklung beendet ist. Die Reaktionslösung wird filtriert und am Rotavapor eingedampft.

Man isoliert 18 g (98 %) der Titelverbindung der Formel

50 als gelbes Oel (Verb. Nr. 3.073).

Analog zu den vorstehenden Herstellungsverfahren können die Verbindungen der Tabelle 3 synthetisiert werden.

H.2.1.5. Herstellung von 3,5-Dichlor-pyridin-2-carbonsäure-ethylester

250 g (1,3 Mol) 2,3,5-Trichlorpyridin 95 % werden nach der Vorschrift H.2.1.2. umgesetzt und gereinigt.

Man isoliert 147 g (51,5 %) der Titelverbindung als gelbes Oel der Formel

als gelbes Oel (Verb. Nr. 3.139).

H.2.1.6. Herstellung von 3-Chlor-5-methylthio-2-carbonsäure-ethylester

In eine Suspension von 17.9 g (0,16 Mol) Kalium-tert.-butylat und 4,8 g Polyäthylenglykol 1500 in 480 ml Toluol werden bei 25-30°C 8,6 g (0,18 Mol) Methylmercaptan eingeleitet. Anschliessend wird 15 Minuten bei 35°C gerührt. Die entstandene weisse Suspension wird auf -30°C abgekühlt und mit 35,2 g (0,16 Mol) 3,5-Dichlor-pyridin-2-carbonsäure-ethylester versetzt, auf 20-25°C aufwärmen lassen und bei dieser Temperatur 15 Stunden gerührt. Das Reaktionsbemisch wird vom Kaliumchlorid abfiltriert und am Rotavapor eingedampft. Man erhält 41 g eines gelben Oels, welches an Kieselgel mit Petrolether/Ether (3:1) gereinigt wird.

Man isoliert 16 g (43,3 %) der Titelverbindung der Formel

ais gelbes Oel (Verb. Nr. 3.018).

H.2.1.7. Herstellung von 3-Chlor-5-methylthiopyridin-2-carbonsäure

22 g (0,095 Mol) 3-Chlor-5-methylthiopyridin-2-carbonsäureethylester werden analog H.2.1.3. umgesetzt und gereinigt.

Man isoliert 18,3 g (94,7 %) der Titelverbindung der Formel

als weisse Kristalle (Verb. Nr. 3.052).

H.2.1.8. Herstellung von 3-Chlor-5-methylthiopyridin-2-carbonsäurechlorid

9,8 g (0,048 Mol) 3-Chlor-5-methylthiopyridin-2-carbonsäure werden in 65 ml Hexan und 25 ml Dichlorethan suspensiert. Nach Zugabe von 2 Tropfen DMF und Aufwärmen auf 55°C werden 4,9 ml (0,055 Mol) Oxalylchlorid zugetropft. Anschliessend wird 4 Stunden bei 55°C gerührt, bis die Gasentwicklung beendet ist. Die Reaktionslösung wird filtriert und am Rotavapor eingedampft.

Man isoliert 10,6 g (99,5 %) der Titelverbindung der Formel

als gelbe, wachsartige Kristalle (Verb. Nr. 3.086).

H.2.2. 3-Chlor-5-methylsulfonyl-pyridin-2-carbonsäure-ethylester

Zu einer Lösung von 16,2 g (70 mMol) 3-Chlor-5-methylthiopyridin-2-carbonsäure-ethylester in 50 ml Dichlormethan werden 44 g (140 mMol) 3-Chlorperbenzoesäure 55 % in 150 ml Dichlormethan so zugetropft, dass die Temperatur 30°C nicht übersteigt. Nach 15 Stunden Rühren bei Raumtemperatur werden zur Vervollständigung der Reaktion nochmals 19 g (70 mMol) 3-Chlorperbenzoesäure 55 % in 75 ml Dichlormethan zur entstandenen Suspension getropft. Anschliessend wird 3 Stunden bei Raumtemperatur ausgerührt. Die weisse Suspension wird mit ca. 200 ml Dichlormethan verdünnt und von der ausgefallenen 3-Chlorbenzoesäure abfilt riert. Die entstandene Lösung wird mit NaHCO₃-Lösung 5 % und mit Wasser gewaschen. Die Lösung wird am Rotavapor eingedampft.

Man isoliert 15,3 g (83 %) der Titelverbindung der Formel:

als Kristalle vom Smp. 90-93°C (Verb. Nr. 3.017).

10

15

20

30

35

45

50

H.2.2.2. 3-Chlor-5-methylsulfonyl-pyridin-2-carbonsäure

Zu einem Gemisch von 55 ml (55 mMol) NaOH 1N und 5,5 ml Ethanol werden 13,2 g (50 mMol) 3-Chlor-5-methylsulfonyl-pyridin-2-carbonsäure-ethylester gegeben, wobei die Temperatur auf 32°C ansteigt. Anschliessend wird 3 Stunden bei Raumtemperatur ausgerührt. Die Lösung wird mit 150 ml H₂O verdünnt, 2x mit Dichlormethan gewaschen und dann bei 0-5°C mit HCl 37 % stark sauer gestellt. Das ausgefallene Produkt wird abfiltriert, mit wenig Eiswasser gespü It und getrocknet.

Man isoliert 10,4 g (88,3 %) der Titelverbindung der Formel

als Kristalle vom Smp. >150°C (Zers.) (Verb. Nr. 3.051).

H.2.2.3. 3-Chlor-5-methylsulfonyl-pyridin-2-carbonsäurechlorid

9,9 g (42 mMol) 3-Chlor-5-methylsulfonyl-pyridin-2-carbonsäure werden in 100 ml Toluol mit 4,4 ml (60 mMol) Thionylchlorid 2 Stunden am Rückfluss gekocht. Die braune Suspension wird am Rotavapor eingedampft.

Man isoliert 10,4 g (97,5 %) der Titelverbindung der Formel

25

30

35

40

45

50

55

60

65

als braunes Wachs (Verb. Nr. 3.086).

Tabelle 3

Verbindungen der Formel

Verb. Nr.	R ¹	R²	Y	phys. Daten
3.001	Cl	Cl	OC ₂ H ₅	Oel
3.002	Cl	н	OC ₂ H ₅	Oel
3.003	Н	Cl	OC ₂ H ₅	Fp. 56-58°C
3.004	H	Н	OC ₂ H ₅	
3.005	Cl	CF ₃	OC ₂ H ₅	Oel
3.006	NO2	Н	OC ₂ H ₅	
3.007	н	NO ₂	OC ₂ H ₅	Fp. 89-91°C
3.008	NO ₂	Cl	OC ₂ H ₅	·
3.009	CF ₃	н	OC ₂ H ₅	
3.010	H	CF ₃	OC ₂ H ₅	Fp. 43-45°C
3.011	OCH ₃	н	OC ₂ H ₅	•
3.012	CN	н	OC ₂ H ₅	
3.013	OCH ₃	Cl	OC ₂ H ₅	
3.014	CN	Cl	OC ₂ H ₅	
3.015	Br	Cl	OC ₂ H ₅	
3.016	SCH ₃	Cl	OC ₂ H ₅	Fp. 77-80°C
3.017	SO ₂ CH ₃	Cl	OC ₂ H ₅	Fp. 90-93°C
3.018	Cl	SCH ₃	OC ₂ H ₅	Oel
3.019	Cl	SOCH ₃	OC ₂ H ₅	
3.020	Cl	SO ₂ CH ₃	OC ₂ H ₅	
3.021	SOCH ₃	Cl	OC ₂ H ₅	
3.022	SO ₂ CH ₃	н	OC ₂ H ₅	
3.023	Н	SO ₂ CH ₃	OC ₂ H ₅	
3.024	Н	CH ₃	OC ₂ H ₅	Oel
3.025	Cl	F	OC ₂ H ₅	Oel
3.026	н	CF ₃	OC ₂ H ₅	İ
3.027	F	F	OC ₂ H ₅	
3.028	F	CF ₃	OC ₂ H ₅	
3.029	CF ₃	F	OC ₂ H ₅	
3.030	Н	CCl ₃	OC ₂ H ₅	
3.031	CCl ₃	н	OC ₂ H ₅	
3.032	Cl	CCl ₃	OC ₂ H ₅	
3.033	CCl ₃	Cl	OC ₂ H ₅	
3.034	CH ₃	н	OC ₂ H ₅	
3.035	Cl	C1	ОН	Fp. 157°C (Zers.)
3.036	Cl	Н	OH	Fp. >125°C (Zers.)
3.037	н	Cl	ОН	Fp. 135°C (Zers.)
3.038	н	Н	ОН	
3.039	Cl	CF ₃	ОН	Fp. 135°C (Zers.)
3.040	NO ₂	Н	он	
3.041	H	NO ₂	ОН	
3.042	NO ₂	Cl	ОН	
3.043	CF ₃	Н	он	Fp. 129-131°C
3.044	Н	CF ₃	ОН	

EP 0 353 187 A2

Verb. Nr.	R ¹	R ²	Y	phys. Daten
3.045	OCH ₃	Н	ОН	
3.046	CN	н	ОН	
3.047	OCH₃	C1	ОН	
3.048	CN	Cl	ОН	
3.049	Br	C1	ОН	
3.050	SCH ₃	Cl	ОН	
3.051	SO ₂ CH ₃	Cl	ОН	Fp. >150°C (Zers.)
3.052	Cl	SCH ₃	ОН	fest "
3.053	Cl	SOCH ₃	ОН	1000
3.054	Cl	SO ₂ CH ₃	ОН	
3.055	SOCH ₃	Cl	ОН	
3.056	SO ₂ CH ₃	н	ОН	
3.057	H	SO ₂ CH ₃	ОН	
3.058	H	CH ₃	OH	Fp. >135°C (Zers.)
3.059	Cl	F	OH	Fp. >143°C (Zers.)
3.060	Н	CF ₃	OH	1p. /1+3 0 (Zers.)
3.061	F	F	OH	
3.062	F	CF ₃	OH	
3.063	CF ₃	F	OH	
3.064	H	CCl3	OH	
3.065	CCl ₃	H	OH	
3.066	C1	CCl ₃	OH	
3.067	CC1 ₃	Cl	OH	
3.068	CH ₃	Н	OH	
3.069	Cl	Cl	Cl	Fp. 54-56°C
3.070	Cl	H	Cl	fest
3.071	H	Cl	C1	fest
3.072	H	H	Cl	0-1
3.073 3.074	Cl	CF ₃	Cl	Oel
3.075	NO ₂	H	Cl	
	H	NO ₂	Cl	
3.076	NO ₂	C1	Cl	
3.077	CF ₃	H	Cl	0el
3.078	H	CF ₃	Cl	Oel
3.079	OCH ₃	H	Cl	
3.080	CN	H	Cl	
3.081	OCH ₃	Cl	Cl	
3.082	CN	CT	C1	1
3.083	Br	C1	C1	
3.084	SCH ₃	C1	Cl	
3.085	SO ₂ CH ₃	C1	Cl	_
3.086	Cl	SCH ₃	C1	fest
3.087	Cl	SOCH ₃	C1	
3.088	Cl	SO ₂ CH ₃	C1	
3.089	SOCH ₃	C1	Cl	
3.090	SO ₂ CH ₃	Н	C1	
3.091	H	SO ₂ CH ₃	C1	
3.092	H	CH ₃	Cl	Oel
3.093	Cl	F	Cl	Oel
3.094	H	CF ₃	Cl	1

Verb. Nr.	R ¹	R ²	Y 1	phys. Daten	
3.095	F	F	Cl		5
3.096	F	CF ₃	Cl		
3.097	CF ₃	F	Cl		
3.098	H	CCl ₃	Cl		
3.099	CCl ₃	Н	Cl		40
3.100	Cl	CCl ₃	Cl		10
3.101	CCl ₃	Cl	Cl		
3.102	CH ₃	H	C1		
3.103	Cl	OCH ₃	OC ₂ H ₅		
3.104	Cl	OCH ₃	он [fest	15
3.105	Cl	OCH ₃	Cl	fest	
3.106	н	OCH ₃	OC ₂ H ₅		
3.107	н	OCH ₃	ОН		
3.108	H	OCH ₃	Cl		20
3.109	H	OC ₃ H ₇ (i)	OC ₂ H ₅		20
3.110	н	OC ₃ H ₇ (i)	OH		
3.111	H	OC ₃ H ₇ (i)	Cl		
3.112	H	OCH ₃	OCH ₃	Fp. 27-74°C	
3.113	Н	SCH ₃	OC ₂ H ₅	Fp. 46-48°C	<i>25</i>
3.114	Н	SCH₃	OH	Fp. 159-160°C	
3.115	H	SCH ₃	Cl	fest	
3.116	Cl	SC ₂ H ₅	ОН		
3.117	Cl	SC ₂ H ₅	OC ₂ H ₅		<i>30</i>
3.118	Cl	SC ₂ H ₅	Cl		
3.119	C1	SOC ₂ H ₅	ОН		
3.120	C1	SOC ₂ H ₅	OC ₂ H ₅		
3.121	Cl	SOC ₂ H ₅	Cl		05
3.122	Cl	$SO_2C_3H_7(i)$	OH		<i>35</i>
3.123	Cl	SOC ₃ H ₇ (i)	ОН		
3.124	Cl	SC ₃ H ₇ (i)	ОН		
3.125	Cl	$SO_2C_3H_7(i)$	OC ₂ H ₅		
3.126	Cl	SOC ₃ H ₇ (i)	OC ₂ H ₅		40
3.127	Cl	SC ₃ H ₇ (i)	OC ₂ H ₅		
3.128	Cl	$SO_2C_3H_7(i)$	Cl		
3.129	Cl	SOC ₃ H ₇ (i)	Cl		
3.130	C1	SC ₃ H ₇ (i)	Cl		45
3.131	Cl	OC ₃ H ₇ (i)	OH	·	-,0
3.132	Cl	OC ₃ H ₇ (1)	OC ₂ H ₅		
3.133	Cl	OC ₃ H ₇ (i)	Cl	- 60 7007	
3.134	SCH ₃	SCH ₃	OC ₂ H ₅	Fp. 60-70°C	
3.135	Cl	Br	ОН		50
3.136	Cl	Br	OC ₂ H ₅		
3.137	Cl	Br	Cl	70.7/00	
3.138	Cl	OCH ₃	OCH ₃	Fp. 72-74°C	
3.139	l cı	l Cl	COOC ₂ H ₅	l Oel	<i>55</i>

F. Formulierungsbeispiele

Beispiel F 1.: Formulierungsbeispiele für Wirkstoffe der Formel I

(% = Gewichtsprozent)

	a) Emulsions- konzentrate	a)	b)	c)
5	Wirkstoff gemäss Tabelle 1 oder 2	20 %	40 %	50 %
Ü	Ca-Dodecylbenzol- sulfonat	5 %	8 %	5,8 %
10	Ricinusöl-polyethy- lenglykolether (36 Mol EO)	5 %	-	-
	Tributylphenoyl-poly- ethylenglykolether (30 Mol EO)	-	12 %	4,2 %
	Cyclohexanon	-	15 %	20 %
15	Xylolgemisch	70 %	25 %	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

	b) Lösungen	a)	b)	c)
	Wirkstoff gemäss Tabelle 1 oder 2	80 %	10 %	5 %
<i>25</i>	Ethylenglykol-mono- methylether	20 %	-	-
	Polyethylenglykol MG 400	-	70 %	•••
30	N-Methyl-2- pyrrolidon	-	20 %	5 %
	Epoxidiertes Kokosnussöl	-	-	90 %

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

	c) Granulate	a)	b)
	Wirkstoff gemäss Tabelle 1 oder 2	5 %	10 %
40	Kaolin	94 %	-
. •	Hochdisperse Kieselsäure	1 %	
	Attapulgit	-	90 %

Der Wirkstoff wird gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

	d) Stäubemittel	a)	b)	c)
50	Wirkstoff gemäss Tabelle 1 oder 2	2 %	5 %	8 %
	Hochdisperse Kieselsäure	1 %	5 %	5 %
	Talkum	97 %	-	10 %
	Kaolin	-	90 %	77 %
<i>55</i>				

Durch inniges Vermischen der Trägerstoffe mit dem Wirkstoff erhält man gebrauchsfertiges Stäubemittel.

65

60

20

A Compiler on the control of the con	a)	b)		
e) Spritzpulver	a)	b)		
Wirkstoff gemäss Tabelle 1 oder 2	20 %	60 %		
Na-Ligninsulfonat	5 %	5 %		5
Na-Laurylsulfat	3 %	6 º/o		
Octylphenolpolyethylen-	-	2 %		
glykolether (7-8 Mol EO)	T 0/-	07.0%		
Hochdisperse Kieselsäure	5%	27 %		10
Kaolin	67 %	-		
Der Wirkstoff wird mit den Zu erhält Spritzpulver, die sich mit	satzstoffer Wasser zu	n gut vermi r Suspensi	scht und in einer geeigneten Mühle gut vermahlen. Man on jeder gewünschten Konzentration verdünnen lassen.	15
f) Extruder Granulat				
Wirkstoff gemäss Tabelle 1 oc	ier 2	10 %		
Na-Ligninsulfonat		2 %		
Carboxymethylcellulose		1 %		20
Kaolin		87 %		
Der Wirkstoff wird mit den 2 Gemisch wird extrudiert und a	Zusatzstof nschliesse	fen vermis nd im Luft	cht, vermahlen und mit Wasser angefeuchtet. Dieses strom getrocknet.	25
g) Umhüllungs-Granulat				
		3 %		
Wirkstoff gemäss Tabelle 1 od	der 2	3 %		
Polyethylenglykol (MG 200)		94 %		30
Kaolin		34 90		00
Der fein gemahlene Wirkstof gleichmässig aufgetragen. Auf	f wird in e diese Wei	inem Misc se erhält r	her auf das mit Polyäthylenglykol angefeuchtete Kaolin nan staubfreie Umhüllungs-Granulate.	
h) Suspensions-Konzentrat				35
Wirkstoff gemäss Tabelle 1 o	der 2	40 %		
Ethylenglykol		10 %		
Nonylphenolpolyethylenglykole (15 Mol EO)	ether	6 %		40
Na-Ligninsulfonat		10 %		
Carboxymethylcellulose		1 %		
37 %ige wässrige Formaldehy		0,2 %		
Silikonöl in Form einer 75 %i	gen	0,8 %		45
wässrigen Emulsion		32 %		
Wasser		32 90		
Der fein gemahlene Wirks Suspensions-Konzentrat, aus Konzentration hergestellt werd	welchem	durch Ver	Zusatzstoffen innig vermischt. Man erhält so ein dünnen mit Wasser Suspensionen jeder gewünschten	50
B. Biologische Beispiele				
Beispiel B 1: Pre-emergente I	Herbizid-W	irkung		<i>55</i>
Im Cowächshaus wird unmitt	telhar nach	ı der Einsaa	at der Versuchspflanzen in Saatschalen die Erdoberfläche	
mit einer wässrigen Dispersion	der Wirks	toffe, erhal	ten aus einem 25% igen Emulsionskonzentrat behandelt.	
Es werden unterschiedliche	Aufwandme	engen Wirk	substanz/Hektar getestet. Die Saatschalen werden im uftfeuchtigkeit gehalten und der Versuch nach 3 Wochen	
	2 50-70 40	relativer Lu	intedchingken genaten und der versuch hash s westen.	60
ausgewertet. Die Herbizidwirkung wird da	bei in eine	m neunstu	figen (1 = vollständige Schädigung der Versuchpflanze,	
9 = keine Herbizidwirkung a	n der Ve	rsuchspfla	nze) Boniturschema im Vergleich zur unbehandelten	
Kontrollaruppe ausgewertet.				
Boniturnoten von 1 bis 4 (ins	besonder	e von 1 bis	3) weisen auf eine gute bis sehr gute Herbizidwirkung hin. is 9) weisen auf eine gute Toleranz (insbesondere bei	65
Boniturnoten von 6 bis 9 (in:	spesonaer	e von / D	is a) weisen au eine gute Toleranz (misbosoniacre bor	

Kulturpflanzen) hin. Die Testresultate für Verbindung Nr. 1.005 sind in Tabelle 4 zusammengefasst.

Tabelle 4

_	Testpflanze	Aufwandmenge [g/ha]					
5		2000	1000	5000	250	125	60
	Gerste	7	7	9	9	9	9
	Weizen	8	9	9	9	9	9
	Mais	8	9	9	9	9	9
10	Sorghum	7	8	9	9	9.	9
	Abutilon	1	1	2	2	2	5
	Chenopodi- um Sp.	1	1	1	1	1	1
15	Solanum nigrum	1	1	1	1	2	3
	Veronica Sp.	1	1	1	1	4	6

20

Beispiel B 2: Post-emergente Herbizid-Wirkung

Eine Anzahl Unkräuter, sowohl monokotyle wie dikotyle, werden nach dem Auflaufen (im 4- bis 6-Blattstadium) mit einer wässrigen Wirkstoffdispersion in einer Dosierung von 250 g bis 2 kg Wirksubstanz pro Hektar auf die Pflanzen gespritzt und diese bei 24°-26°C und 45-60 % relativer Luftfeuchtigkeit gehalten. 15 Tage nach der Behandlung wird der Versuch nach dem in Beispiel B1 beschriebenen Boniturschema ausgewertet.

Die Testresultate für Verbindung 1.005 sind in Tabelle 5 zusammengestellt.

Tabelle 5

<i>30</i>	Testpfianze	Aufwandmenge [g/ha]				
		2000	1000	5000	250	
	Gerste	9	9	9	9	
<i>35</i>	Weizen	8	9	9	9	
	Mais	8	9	9	9	
	Sorghum	7	8	9	9	
	Reis (trocken)	7	8	9	9	
40	Abutilon	1	1	2	3	
	Chenopodium Sp.	1	1	1	2	
	Solanum nigrum	1	1	1	2	
	Sinapis	2	2	3	3	

45

Beispiel B 3: Herbizidwirkung für Wasserreis (paddy)

Die Wasserunkräuter Echinochloa crus galli und Monocharia vag. werden in Plastikbechern (60 cm² Oberfläche, 500 ml Volumen) ausgesät. Nach der Saat wird bis zur Erdoberfläche mit Wasser aufgefüllt. 3 Tage nach der Saat wird der Wasserspiegel bis leicht über die Erdoberfläche erhöht (3-5 mm). Die Applikation erfolgt 3 Tage nach der Saat mit einer wässrigen Emulsion der Prüfsubstanzen durch eine Spritzung auf die Gefässe mit einer Aufwandmenge von 60 bis 250 g AS pro Hektar. Die Pflanzenbecher werden dann im Gewächshaus unter optimalen Wachstumsbedingungen für die Reisunkräuter aufgestellt, d.h. bei 25°-30° C und hoher Luftfeuchtigkeit. Die Auswertung der Versuche findet 3 Wochen nach Applikation statt. Die Verbindungen gemäss Tabelle 1 schädigen dabei die Unkräuter, nicht aber den Reis.

55

Patentansprüche

1. Cyclohexan-1,3-dione der Formel I oder I'

60

worin

R¹ und R² unabhängig voneinander Wasserstoff; Halogen; Nitro; Cyano; C_1 - C_4 -Alkyl; C_1 - C_4 -Alkoxy; C_1 - C_4 -Alkyl-S(O)_n-; COR⁸; C_1 - C_4 -Halogenalkoxy; oder C_1 - C_4 -Halogenalkyl;

R³, R⁴ und R⁵ unabhängig voneinander Wasserstoff; C₁-C₄-Alkyl; oder gegebenenfalls bis zu dreifach gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-S(O)_n-, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl-S(O)_n- oder C₁-C₄-Halogenalkoxy substituiertes Phenyl oder Benzyl;

R⁶ Wasserstoff; C₁-C₄-Alkyl, C₁-C₄-Alkoxycarbonyl; oder Cyano;

R⁷ OH; oder O[⊖]M[⊕];

R8 OH; C1-C4-Alkoxy; NH2; C1-C4-Alkylamino; oder di-C1-C4-Alkylamino;

n 0, 1 oder 2;

M[®] ein Kationenäquivalent eines Metallions oder eines gegebenenfalls bis zu dreifach durch C₁-C₄-Alkyl, C₁-C₄-Hydroxyalkyl-, oder C₁-C₄-Alkoxy-C₁-C₄-alkyl-gruppen substituierten Ammoniumions bedeutet.

2. Cyclohexandion gemäss Anspruch 1 der Formel I oder I'

worin die Reste \mathbb{R}^1 und \mathbb{R}^2 in den Positionen 3 und 5 des Pyridinringes und das Pyridincarbonylsystem über die Position 2 des Pyridinringes gebunden sind.

3. Cyclohexandione der Formel I oder I' worin

R1 Wasserstoff; Fluor; Chlor; Brom; Nitro; Cyano; Methyl; Trifluormethyl; Trichlormethyl; Methoxy; Methylthio; Methylsulfinyl Methylsulfonyl Carboxy; Carbamoyl; Methoxycarbonyl; oder Ethoxycarbonyl; R2 Wasserstoff; Fluor; Chlor; Nitro; Trifluormethyl; Trichlormethyl; Methylthio; Methylsulfinyl; oder Methylsulfonyl;

R³ Wasserstoff; C₁-C₃-Alkyl, Phenyl; Benzyl; oder Chlorphenyl;

R4 Wasserstoff; oder Methyl;

R5 Wasserstoff; oder Methyl;

R6 Wasserstoff; Cyano; Methyl; oder C1-C2-Alkoxycarbonyl;

R⁷ OH; oder O[⊖]M[⊕]

M[®] ein Kationenäquivalent des Natrium-, Lithium-, Calcium-, Trimethylammonium- oder Triethanolammoniumions

bedeuten, gemäss Anspruch 1 oder 2.

4. 2-(3-Chlor-5-trifluormethyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on oder 2-(3-Chlor-5-methyl-sulfonyl-pyridin-2-yl-carbonyl)-cyclohex-1-en-1-ol-3-on als Verbindung der Formel I gemäss Anspruch 1.

5. Verfahren zur Herstellung von Cyclohexandionenen der Formel I oder I', worin die Reste R¹ bis R⁶ wie in einem der Ansprüche 1 bis 3 definiert sind und R⁷ OH bedeutet, gekennzeichnet durch

a) die Umsetzung von Cyclohexandionen der Formel II, worin die Reste R³ bis R⁶ wie zuvor definiert sind, mit einem Pyridin der Formel III, worin R¹ und R² wie zuvor definiert sind und X Halogen, vorzugsweise Chlor oder Brom, den Rest

$$O-C-OR^8$$
, oder $O-C-P-R^2$

und R⁸ C₁-C₄-Alkyl, Phenyl oder Benzyl bedeutet, in Gegenwart einer Base

65

5

10

15

20

40

45

50

oder

55

60

65

b) die thermische Umlagerung eines Esters der Formel IV oder IV', worin die Reste ${\rm R}^{\rm 1}$ bis ${\rm R}^{\rm 6}$ wie zuvor definiert sind

6. Verfahren zur Herstellung von Salzen der Cyclohexandione der Formel I oder I',worin die Reste R^1 bis R^6 und M wie in einem der Ansprüche 1 bis 3 definiert sind und R^7 $O^{\Theta}M^{\Theta}$ bedeutet, gekennzeichnet durch die Umsetzung eines Cyclohexandions la oder Ia', worin R^1 bis R^6 wie zuvor definiert sind, und R^7 OH bedeutet mit einer Base V, worin B OH $^{\Theta}M^{\Theta}$ und M^{Θ} wie zuvor definiert ist

oder

7. Verfahren zur Herstellung von Verbindungen der Formel Ic oder Ic' gemäss Anspruch 1, worin einer oder mehrere der Reste R 1 bis R 6 für C $_1$ -C $_4$ -Alkyl-S(O) $_n$ - mit n = 1 oder 2 steht, und die übrigen Reste wie zuvor definiert sind, gekennzeichnet durch die Oxidation eines Thioethers der Formel Id oder Id', worin der zu oxidierende Rest aus der Gruppe R^1 bis R^6 C_1 - C_4 -Alkyl- $S(O)_n$ - mit n=0 bedeutet und die übrigen Reste wie zuvor definiert sind

Id (Thioether mit n = 0) Oxidation

5

25

30

45

60

65

Ic' (Sulfinyl- oder Id' (Thioether mit n = 0) Sulfonylverbindung mit n = 1 oder 2)

8. Verfahren zur Herstellung von Pyridin-2-carbonsäureestern der Formel XI, worin R¹ und R² wie in einem der Ansprüche 1 bis 4 definiert ist und R' C1-C4-Alkyl bedeutet, gekennzeichnet durch die Umsetzung eines Halogenpyridins der Formel X, worin Hal Halogen bedeutet und R1 und R2 wie zuvor definiert sind mit Kohlenmonoxid und einem Alkohol R'OH in Gegenwart eines Pd-Katalysators

$$R^1$$
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

9. Verbindungen der Formel IV oder IV',

worin die Reste R1 bis R6 wie in einem der Ansprüche 1 bis 3 definiert sind.

10. Picolinsäurederivate der Formel XV

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

worin

5

10

15

20

25

30

35

40

45

50

55

60

YOH; C1-C4-Alkoxy; oder Halogen; und

R¹ und R² unabhängig voneinander Halogen, Nitro; Cyano; C₁-C₄-Halogenalkyl; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; oder C₁-C₄-Alkyl-S(O)n; und

n 0; 1; oder 2;

bedeutet,

mit der Massgabe, dass

wenn Y Chlor bedeutet und der Rest R1 in Position 3 und der Rest R2 in Position 5 gebunden ist,

R¹ und R² nicht beide zusammen Chlor oder beide zusammen Methyl oder wenn R¹ für Nitro steht R²

nicht Methyl bedeutet.

11. Verfahren zur Herstellung von Verbindungen der Formel IV oder IV' gemäss Anspruch 9 durch die O-Acylierung eines Cyclohexandions der Formel II, worin R³ bis R6 wie zuvor definiert sind, mit einem Pyridin der Formel III, worin R¹ und R² wie zuvor definiert sind und X Halogen, vorzugsweise Chlor oder Brom, den Rest

und R8 C1-C4-Alkyl, Phenyl oder Benzyl bedeutet,

- 12. Herbizides Mittel, enthaltend eine Verbindung der Formel I gemäss einem der Ansprüche 1 bis 4 neben weiteren Hilfs- und/oder Trägerstoffen.
- 13. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, dass man eine Verbindung der Formel I gemäss Anspruch 1 bis 4 oder ein Mittel gemäss Anspruch 12 auf die zu bekämpfende Pflanze oder deren Lebensraum einwirken lässt.
- 14. Saatgut gekennzeichnet durch einen herbizid wirksamen Gehalt an einer Verbindung der Formel I gemäss einem der Ansprüche 1 bis 4.