CPEG 422/622 Spring 2020

Homework 7

Due May 15th at midnight (through canvas).

1. Derive the forward implication tables for 2-input NOR gate and XNOR gate, respectively.

NOR	0	1	X	D	D'
0					
1					
X					
D					
D'			,	,	

XNOR	0	1	X	D	D'
0					
1					
X					
D					
D'					

2. Find **all the test vectors** (input combinations of ABCD) that can test the stack-at-0 fault shown in the following circuit.

- 3. Find hardware Trojan taxonomy on trusthub, select a category (e.g., insertion phase, abstraction level, ...) and give an in-depth explanation in your own words.
- 4. Explore the vulnerability database on trusthub, find one CAD solution for each of hardware Trojan, logic locking, fault injection, and side-channel analysis (thus a total of four solutions). Explain each solution in your own words. What problem it aims to solve? How does it solve it?
- 5. What are the differences between logic locking and camouflaging? What are some potential attacks to each method?
- 6. Explore the Internet, explain the graph coloring problem in your own words. How it can be used to fulfill the vendor diversity requirements? Give a heuristic for solving the graph coloring problem.