Mathematics 4MB3/6MB3 Mathematical Biology

http://www.math.mcmaster.ca/earn/4MB3

2019 ASSIGNMENT 3

Group Name: The Plague Doctors

Group Members: Sid Reed, Daniel Segura, Jessa Mallare, Aref Jadda

This assignment is due in class on Monday 25 February 2019 at 9:30am.

Analysis of the standard SIR model with vital dynamics

Consider the standard SIR model with vital dynamics,

$$\frac{dS}{dt} = \mu N - \frac{\beta}{N} SI - \mu S \tag{1a}$$

$$\frac{dI}{dt} = \frac{\beta}{N}SI - \gamma I - \mu I \tag{1b}$$

$$\frac{dR}{dt} = \gamma I - \mu R \tag{1c}$$

where S, I and R denote the numbers of susceptible, infectious and removed individuals, respectively, and N = S + I + R is the total population size. The *per capita* rates of birth and death are the same (both are equal to μ). As usual, β is the transmission rate and γ is the recovery rate.

(a) Since equations (1) represent all changes in the size of each population compartment, the net change in the total population should be the sum of the change in each compartment, i.e. the sum of all equations (1). If the sum of all equations (1) is zero, $\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0$, the change in total population size must be zero and the total population size N must be constant.

$$\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = \mu N - \frac{\beta}{N}SI - \mu S + \frac{\beta}{N}SI - \gamma I - \mu I + \gamma I - \mu R \tag{2}$$

$$= \mu N - \mu S - \mu I - \mu R \left(-\frac{\beta}{N} SI + \frac{\beta}{N} SI\right) \left(-\gamma I + \gamma I\right) \tag{3}$$

$$=\mu(N-(S+I+R))\tag{4}$$

Since N = S + I + R, i.e. the sum of all population compartments is equal tot the total population size, 4 evaluates to 0. Thus the sum of population changes in all population compartments is 0 and the total population size remains constant.

Definition 1. Forward Invariant Set

Given a dynamical system $\dot{x} = f(x)$, a solution $x(t, x_0)$ with initial condition x_0 , a set $\Delta = \{x \in \mathbb{R} \mid \phi(x) = 0\}$ for some positive definite function $\phi(x)$ is forward invariant if $x_0 \in \Delta \implies x(t, x_0) \in \Delta \ \forall \ t \geq 0$.

Since the population size has been shown to be constant and equal to N, the function $\phi(S, I, R) = N - (S + I + R)$ is always equal to zero, given any initial condition.

Definition 2. Biologically Meaningful States

Define the set $\Delta = \{(S, I, R) \mid 0 \leq S, I, R \text{ and } \phi(S, I, R) = 0\}$ where $\phi(S, I, R) = N - (S + I + R)$, to be the set of biologically meaningful states for this model.

Once the total population is equal to N, it will remain equal to N in all subsequent time steps due to the population size constancy. If all initial conditions are defined such that they satisfy $\phi(S, I, R) = 0$, then they can only evolve towards other states that satisfy $\phi(S, I, R) = 0$ due to the constant population size. Thus if the set Δ is defined to include all initial conditions x_0 that have a total population equal to N (i.e. all 3-tuples of positive integers $x_0 = (S, I, R)$ such that $\phi(S, I, R) = 0$), then they must necessarily include all possible time steps for solutions to the dynamical system with initial condition x_0 , since the total population must remain constant over all time.

(b) Set the following variables:

$$S_p = \frac{S}{N} \tag{5a}$$

$$I_p = \frac{I}{N} \tag{5b}$$

$$R_p = \frac{R}{N} \tag{5c}$$

$$N_p = \frac{N}{N} = 1 \tag{5d}$$

Then substituting equations 5 into equations (1)

$$\frac{dS_p}{dt} = \mu N_p - \frac{\beta}{N_p} S_p I_p - \mu S_p$$

$$= \mu 1 - \frac{\beta}{1} S_p I_p - \mu S_p$$

$$= \frac{1}{N} (\mu - \beta S I - \mu S)$$

$$= \frac{1}{N} \frac{dS}{dt}$$
(6)
$$\frac{dI_p}{dt} = \frac{\beta}{N_p} S_p I_p - \gamma I_p - \mu I_p$$

$$= \frac{\beta}{1} S_p I_p - \gamma I_p - \mu I_p$$

$$= \frac{1}{N} (\beta S I - \gamma I - \mu I)$$

$$= \frac{1}{N} \frac{dI}{dt}$$
(7)
$$\frac{dR_p}{dt} = \gamma I_p - \mu R_p$$

$$= \frac{1}{N} (\gamma I - \mu R)$$

$$= \frac{1}{N} \frac{dR}{dt}$$
(8)

From equations 6,7 and 8 it is clear that the proportional equations are equivalent to the original equations (1) scaled by a constant factor of $\frac{1}{N}$, and thus will retain the same dynamical behaviour.

(c) First we express dt in terms of τ

$$\tau = t(\gamma + \mu)$$

$$d\tau = dt(\gamma + \mu)$$

$$\frac{d\tau}{dt} = (\gamma + \mu)$$

$$\frac{d\tau}{dt} \frac{d}{d\tau} = \frac{d}{dt}$$

$$(\gamma + \mu) \frac{d}{d\tau} = \frac{d}{dt}$$

$$\frac{d}{d\tau} = \frac{1}{(\gamma + \mu)} \frac{d}{dt}$$
(9)

Next we isolate γ, β, μ ,

$$\varepsilon = \frac{\mu}{\gamma + \mu}$$

$$\varepsilon(\gamma + \mu) = \mu \qquad \gamma + \mu = \frac{\mu}{\varepsilon}$$

$$\varepsilon\gamma + \varepsilon\mu = \mu$$

$$\varepsilon\gamma = \mu(1 - \varepsilon)$$

$$\gamma = \frac{\mu}{\varepsilon}(1 - \varepsilon)$$

$$\gamma = (\gamma + \mu)(1 - \varepsilon)$$
(10)

From (2b) it follows that
$$\beta = (\gamma + \mu)\mathcal{R}_0$$
 (11)

From (2c) it follows that
$$\mu = (\gamma + \mu)\varepsilon$$
 (12)

Next, expressing $\frac{dS}{dt}$ in terms of τ using 9 and substituting equations 10,11 and 12 gives

$$\frac{dS}{d\tau} = \frac{1}{\gamma + \mu} \frac{dS}{dt}$$

$$= \frac{1}{\gamma + \mu} [\mu - \beta SI - \mu S]$$

$$= \frac{1}{\gamma + \mu} [\mu (1 - S) - \beta SI]$$

$$= \frac{1}{\gamma + \mu} [\varepsilon(\gamma + \mu)(1 - S) - (\gamma + \mu)\mathcal{R}_0 SI]$$

$$= \frac{1}{\gamma + \mu} [\gamma + \mu [\varepsilon(1 - S) - \mathcal{R}_0 SI]$$

$$= \varepsilon(1 - S) - \mathcal{R}_0 SI$$
(14)

Solving for $\frac{dI}{d\tau}$ using 9, 10, 11 and 12 gives

$$\frac{dI}{d\tau} = \frac{1}{\gamma + \mu} \frac{dI}{dt}$$

$$= \frac{1}{\gamma + \mu} [\beta SI - \gamma I - \mu I]$$

$$= \frac{1}{\gamma + \mu} [(\gamma + \mu) \mathcal{R}_0 SI - (\gamma + \mu)(1 - \varepsilon)I - (\gamma + \mu)\varepsilon I]$$

$$= \frac{1}{\gamma + \mu} (\gamma + \mu) [\mathcal{R}_0 SI - (1 - \varepsilon)I - \varepsilon I]$$

$$= \mathcal{R}_0 SI - (1 - \varepsilon)I - \varepsilon I$$

$$= \mathcal{R}_0 SI - (1 - 2\varepsilon)I$$
(15)

Finally, solving for $\frac{dR}{d\tau}$ using 9, 10, 11 and 12 gives

$$\begin{split} \frac{dR}{d\tau} &= \frac{1}{\gamma + \mu} \frac{dR}{dt} \\ &= \frac{1}{\gamma + \mu} [\gamma I - \mu R] \\ &= \frac{1}{\gamma + \mu} [(\gamma + \mu)(1 - \varepsilon)I - (\gamma + \mu)\varepsilon R] \\ &= \frac{1}{\gamma + \mu} (\gamma + \mu)[(1 - \varepsilon)I - \varepsilon R] \\ &= (1 - \varepsilon)I - \varepsilon R \end{split}$$

The biological meanings of τ , \mathcal{R}_0 and ε are

- \bullet τ is the average proportion of the population infected
- \mathcal{R}_0 is the number of secondary infections per infection
- ε is the mortality rate for the infected.

One reason these are good choices for non-dimensionalizing equations because they do not create more complex equations than the originals. They all also have clear biological interpretations, making it easier to understand the biological relationships represeted by any mathematical reasoning done with them. In the UK the morality rate from penumonia between 2001-2010 was estimated to be 0.0214% of people[1]. Ebola Virus Diesase is estimated by the WHO to have an average case fatality rate of 50%[2]. The CDC estimates measles to have a mortality rate between 0.1% to 0.2% [3].

- (d) tmp
- (e) tmp
- (f) tmp
- (g) tmp
- (h)
- (i)
- (j)
- (k) There are no diseases that display recurrent epidemics for which the SIR model with vital dynamics is adequate to explain the observed epidemic dynamics. From results in parts (g) and (h), given that $\mathcal{R}_0 > 1$ (such that an epidemic occurs) the EE is GAS and that for all initial conditions, I(0) > 0, S(0) > 0, the system approaches the EE with damped oscillations. Additionally, by observing the Jacobian evaluated at the EE, the complex eigenvalues have negative real part and non-zero imaginary part, implying that the dynamics are always oscilatory. Thus recurrent epidemics with no evidence of damping out (like measles) cannot be explained by the SIR model with vital dynamics.

References

- 1. Foundation, B. L. Pneumonia Statistics https://statistics.blf.org.uk/pneumonia.
- 2. Organization, W. H. Ebola Virus Disease https://statistics.blf.org.uk/pneumonia.
- 3. Control, C. F. D. & Prevention. *Measles (Rubeola)* https://www.cdc.gov/measles/about/complications.html.

— END OF ASSIGNMENT —

Compile time for this document: February 26, 2019 @ 21:07