AA/ECE/ME 548 Linear Multivariable Control Sp22 Prof Burden

today: A course logistics, Convas, etc

Thu Mar 31 MWO

I week 1 lectures

I guestions / office hours

$$\frac{CT}{x(s)}$$

$$x(s)$$

$$\dot{x} = Ax \iff x(t) = e^{At}x(0)$$

Linear systems:

$$3(0) = x(0) + y(0)$$

 $3(t) = x(t) + y(t)$

a: what can the flow of an LTI system do?

$$\vec{x} = Ax$$
: if $Av = \lambda v$ then $x(\vec{o}) = \alpha \cdot v \Rightarrow x(t) = \alpha \cdot e^{\lambda t} v$
 $\alpha \in \mathbb{R}$

so there are 2 cases: 1° if her then well and

ext looks like for
$$Av^* = \lambda^*v^*$$

so $e^{\lambda t}$ looks like $e^{\lambda t}$ or $e^{\lambda t}$ or $e^{\lambda t}$

(NL)
$$\hat{x} = f(x, u)$$
, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$

* letting
$$8x = A \cdot 8x + B \cdot 8u$$
 where $A = \partial_x f(x_0, u_0)$, $B = \partial_u f(x_0, u_0)$.
thu $x \simeq x_0 + 8x$ if $u = u_0 + 8u$
this approx. gets better as $||Sx|||$ gets smaller