

11 Publication number:

0 203 679 A2

(2)

EUROPEAN PATENT APPLICATION

- 4 Application number: 86301739.8
- ② Date of filing: 11.03.86

(a) Int. Ci.4: **C07D 403/12**, C07D 403/14, C07D 413/12, C07D 495/04, A01N 47/36, //C07D261/20,C07D231/54,(C0-7D495/04,333:00,231:00)

- Priority: 11.03.85 US 710458 30.01.86 US 822643
- Date of publication of application:
 03.12.86 Bulletin 86/49
- Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE
- Applicant: E.I. DU PONT DE NEMOURS AND COMPANY 1007 Market Street Wilmington Delaware 19898(US)
- Inventor: Pasteris, Robert James 305 Plymouth Road Fairfax Wilmington Delaware 19803(US) Inventor: Muthukrishnan, Ramamurthi 1906 Brant Road Wilmington Delaware 19810(US)
- Representative: Hildyard, Edward Martin et al Frank B. Dehn & Co. Imperial House 15-19 Kingsway London WC2B 6UZ(GB)

- Herbicidal sulfonamides.
- Tompounds of the formula

179 A

mwherein W is O or S;

Q is an aromatic tricyclic group;

R is H or CH₃; and

A is a mono-or bicyclic heterocyclic group, e. g. pyrimidyl or triazinyl;

and their agriculturally suitable salts, exhibit herbicidal activity. Some also exhibit a plant growth regulant effect.

The novel compounds may be made by a variety of synthetic routes, e. g. by reacting an appropriate sulfonyl isocyanate or isothiocyanate with an appropriate heterocyclic amine.

HERBICIDAL SULFONAMIDES

Background of the Invention

The invention relates to novel benzenesulfonamide compounds, agriculturally suitable compositions containing them, and their method-of-use as general and selective preemergent and postemergent herbicides.

1

European Patent Application (EP-A) No. 83,975 (published July 20, 1983) discloses herbicidal benzenesulfonamides of formula

5

wherein

Q is selected from various five or six-membered aromatic or partially unsaturated heterocyclic rings containing 2 or 3 heteroatoms selected from O, S or NR.

EP-A-85,476 (published August 10, 1983) discloses herbicidal benzenesulfonamides of formulae

wherein

Q is selected from various 5-membered aromatic heterocycles, and their dihydro and tetrahydro analogs, which contain one heteroatom selected from O, S or NR, or Q is a saturated or partially unsaturated 6-membered ring containing one heteroatom

selected from O or S; and

Q¹ is a 6-membered aromatic heterocycle containing one to three N atoms.

South African Patent Application 83/8416 - (published May 12, 1984) discloses herbicidal benzenesulfonamides of formula

wherein

A is an unsaturated or only partially saturated 5-or 6-membered heterocyclic ring system which is bonded through a carbon atom and contains 1, 2 or 3 heteroatoms.

3

EP-A-79,683 (published May 25, 1983) discloses herbicidal benzenesulfonamides including those of general Formula I and II:

O SO₂NHCNH(A)

<u> 11</u>

wherein

Q is O, S or SO₂;

Rz is H or C,-C3 alkyl;

R₃ is H or CH₃;

R4 is H or CH3; and

A is a pyrimidinyl or triazinyl heterocyclic ring. EP-A-107,979 (published May 9, 1984) teaches herbicidal sulfonamides of formula

w Jso₂nhcna r

35

where J is, among other values,

$$NR_2$$
 R_5 and R_3 R_4 R_5

wherein n is 0, 1 or 2.

EP-A-82,681 (published June 29, 1983) discloses herbicidal indane, 1,3-bezondioxole and 1,4-benzodioxanesulfonylureas.

South African Patent Application 83/5165 - (published January 16, 1984) discloses herbicidal sulfonylureas of the general structure shown below:

wherein

A is an unsubstituted or substituted bridge of 3 or 4 atoms which contains 1 or 2 oxygen, sulfur or nitrogen atoms and, together with the linking carbon atom, forms a non-aromatic 5-or 6-membered heterocyclic ring system, with the proviso that two oxygen atoms are separated by at least one carbon atom and that oxygen and sulfur atoms are only linked to each other if the sulfur atom takes the form of the -SO-or SO_2 -group.

Summary of the Invention

This invention pertains to novel compounds of Formula I, agriculturally suitable compositions containing them and their method of use as general and/or selective preemergent and/or postemergent herbicides or plant growth regulants.

20

I

wherein

W is O or S;

35

Q is

25

G is CH₂, CH₂CH₂, O, S, NH, NCH₃ or CH = CH;

G₁ is CH₂, CH₂CH₂ or CH = CH;

J is CH_2 , C=O, $S(O)_m$, O, NH, NCH_3 , CHOH, $CHOCH_3$, $CH(CH_3)$ or $C(CH_3)OH$;

 J_1 is CH_2 , C=0 or SO_2 ;

n and n, are independently 0 or 1;

m is 0, 1 or 2;

E is a bridge of 3 or 4 atoms containing 0 to 2 heteroatoms selected from the group consisting of oxygen, sulfur or nitrogen, wherein 1 atom of sulfur may take the form of SO or SO2, said bridge also containing 1 to 4 atoms of carbon wherein 1 atom of carbon may take the form of C=O, said bridge together with two attachment sites forming a nonaromatic heterocyclic or carbocyclic ring optionally substituted by 1 to 3 substituent groups selected from the group L, or E is a bridge of 3 or 4 atoms containing 0-1 heteroatoms of oxygen or sulfur and 0-3 heteroatoms of nigrogen, said bridge also containing 0-4 atoms of carbon, said bridge together with two attachment sites forming an aromatic heterocyclic or carbocyclic ring optionally substituted by 1 to 3 substituents selected from the group L, with the proviso that when E contains two oxygen atoms or two sulfur atoms said atoms must

be separated by at least one atom of carbon and that oxygen and sulfur are only linked to each other if the sulfur is in the form of SO or SO_2 ;

L is C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₂-C₅ haloalkoxy, halogen, N(CH₃)₂, cyano, nitro, phenyl or phenyl substituted with C₁-C₃ alkyl, C₁-C₃ haloalkyl, halogen, NO₂, C₁-C₃ alkoxy, C₁-C₃ alkylthio, C₁-C₃ alkylsulfinyl or C₁-C₃ alkylsulfonyl;

R is H or CH3;

R₁ is H₁ C₁-C₃ alkyl, C₁-C₃ haloalkyl, halogen, nitro, C₁-C₃ alkoxy, SO₂NR¹R¹¹, C₁-C₃ alkylthio, C₁-C₃ alkylsulfonyl, CO₂R¹¹ or NR _aR_b;

 R^1 is H, C_1 - C_4 alkyl, C_2 - C_3 cyanoalkyl, methoxy or ethoxy;

Ril is H, C1-C4 alkyl, or C2-C4 alkenyl; or

 R^{1} and R^{II} may be taken together as -(CH₂)₃-, --(CH₂)₄-, -(CH₂)₅-or -CH₂CH₂CCH₂CH₂-;

R III is C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, C_2 - C_4 haloalkyl, C_1 - C_3 cyanoalkyl, C_5 - C_6 cycloalkyl, C_4 - C_7 cycloalkylalkyl or C_2 - C_4 alkoxyalkyl;

R_a and R_b are independently H or C₁-C₂ alkyl;

A is
$$\begin{pmatrix} X \\ Y \\ Y \end{pmatrix}$$
, $\begin{pmatrix} X_1 \\ Y_2 \\ A-1 \end{pmatrix}$, $\begin{pmatrix} A-2 \\ A-3 \end{pmatrix}$, $\begin{pmatrix} A-3 \\ A-4 \end{pmatrix}$, $\begin{pmatrix} A-4 \\ A-4 \end{pmatrix}$, $\begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}$, $\begin{pmatrix} A_1 \\ A_2 \\ A_4 \end{pmatrix}$, $\begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}$, $\begin{pmatrix} A_1 \\ A_2 \\ A_4 \end{pmatrix}$, $\begin{pmatrix} A_1 \\ A_4 \\ A_$

X is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C2-C5 alkoxyalkyl, C2-C5 alkoxyalkoxy, amino, C₁-C₂ alkylamino or di(C₁-C₃ alkyl)amino;

9

Y is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy,

haloalkylthio, C₁-C₄ alkylthio, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino C₁-C₂ alkylamino, di(C₁-C₂ alkyl)amino, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₂-C₅ alkylthioalkyl, C₁-C₄ haloalkyl, C₃-C₅ cycloalkyl, C2-C4

alkynyl,
$$N(OCH_3)CH_3$$
. CR_4 . $CR_$

25

30

35

40

p is 2 or 3;

L, and L2 are independently O or S;

R₂ and R₃ are independently C₁-C₂ alkyl;

R₄ is H or CH₃;

Z is CH or N;

Y, is O or CH2;

X, is CH₃, OCH₃, OC₂H₅ or OCF₂H;

Y2 is H or CH3;

X2 is CH3, OCH3 or SCH3:

Y₃ is CH₃, CH₂CH₃ or CH₂CF₃;

X₃ is CH₃ or OCH₃;

X₄ is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl; and

Y4 is CH2, OCH2 OC2H5 or C1;

and their agriculturally suitable salts;

provided that

- a) when X is Cl, F, Br or I, then Z is CH and Y is OCH₃, OC₂H₅, N(OCH₃)CH₃, NHCH₃ N-(CH₃)₂ or OCF₂H;
- b) when X or Y is OCF2H, then Z is CH;
- c) n and n, cannot simultaneously be O;
 - d) when G or G, is CH2CH2 or CH=CH then n is 0;
 - e) when Q is Q, and n is 1, then E must contain at least one heteroatom selected from oxygen, sulfur or nitrogen, and
 - f) when W is S, then A is A-1, R is H, and Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CF₃, OCH₂CH = CH₂, SCH₃. OCH₂C≖CH, OCH2CH2OCH3, CH(OCH3)2

In the above definitions, the term "alkyl" used either alone or in compound words such as "alkylthio" or "haloalkyl", denotes straight chain or branched alkyl, e.g., methyl, ethyl, n-propyl, isopropyl or the different butyl isomers.

Akloxy denotes methoxy, ethoxy, n-propoxy, isopropoxy and the different butyl isomers.

Alkenyl denotes straight chain or branched alkenes, e.g., vinyl, 1-propenyl, 2-propenyl, 3-propenyl or the different butenyl isomers.

Alkynyl denotes straight chain or branched alkynes, e.g., ethynyl, 1-propynyl, 2-propynyl and the different butynyl isomers.

11

Alkylsulfonyl denotes methylsulfonyl, ethylsulfonyl or the different propylsulfonyl isomers.

Alkylthio, alkylsulfinyl, alkylamino, etc, are defined in an analogous manner.

Cycloalkyl means cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", denotes fluorine, chlorine, bromine or iodine.

The total number of carbon atoms in a substituent group is indicated by the C_I - C_J prefix where i and j are numbers from 1 to 7. For example, C_1 - C_2 alkylsulfonyl would designate methylsulfonyl through propylsulfonyl, C_2 alkoxyalkoxy would designate OCH_2OCH_3 , C_2 cyanoalkyl would designate

 CH_2CN and C_3 cyanoalkyl would designate CH_2CH_2CN and $CH(CN)CH_3$. The term C_4 - C_7 cycloalkylalkyl is meant to define cyclopropylmethyl through the cyclohexylmethyl or cyclopropylbutyl and the various structural isomers embraced therein.

Preferred for reasons of increased ease of synthesis and/or greater herbicidal efficacy are:

$$CH_2SCH_3$$
. CH_4 . CH_2R_3 . CH_2 . CH_2 . CH_2 . CH_2 . CH_2 . CH_2 . CH_3 . CH_4 . CH_4 . CH_4 . CH_5 . CH_5 . CH_6

10

15

2) Compounds of Preferred 1 where R₁ is H, CH₃, halogen, OCH₃, SCH₂ or SO₂CH₃, A is A-1; and L is halogen, CH₃, OCH₃ or phenyl.

3) Compounds of Preferred 2 where Q is

40

45

50

$$R_{1} \xrightarrow{(G)_{n_{1}}} R_{8}$$

$$R_{1} \xrightarrow{(G)_{n_{1}}} R_{9}$$

$$Q_{1}^{-3} \xrightarrow{Q_{1}^{-4}}$$

$$\begin{array}{c|c} R_{\overline{1}} & & & \\ \hline \\ (J)_{\overline{n}} & & \\ \hline \\ \underline{Q_{1}^{-5}} & & & \underline{Q_{1}^{-6}} \end{array}$$

Q₁-15

<u>Q₁-14</u>

$$R_{1} \xrightarrow{(G)_{n_{1}}} R_{12}.$$

$$R_{1}$$
 $(G)_{n_{1}}$
 $(J)_{n}$

Q₁-22

$$R_1$$
 $(G)_{n}$

Q₁-24

$$R_{1} = \begin{pmatrix} G \\ h_{1} \\ h_{n} \end{pmatrix}$$

Q2-2

 $Q_2 - 3$

$$R_{1} = \begin{pmatrix} (G_{1})_{n_{1}} \\ (J)_{n} \end{pmatrix}$$

 Q_3-2

$$R_{1} = \left(G_{1} \right)_{n_{1}} N$$

Q3-3

 R_s is H or CH_2 ;

R₆ is H, CH₂ or phenyl;

 R_7 is H or CH_3 ;

R_a is H or CH₃;

R, is H, CH, or phenyl;

R₁₀ is H or CH₂;

R₁₁ is SCH₃, OCH₃, N(CH₃)₂ or CH₃;

R₁₂ is H or CH₃;

R₁₃ is H, CH₃, OCH₃ or SCH₃; and

R₁₄ is H, Cl, Br, F, CH₃, OCH₃ or NO₂.

- 4) Compounds of Preferred 3 where X is CH_3 , OCH_3 , OCH_2CH_3 , CI, OCF_2H or OCH_2CF_3 ; and Y is CH_3 , OCH_3 , CH_2CH_3 , CH_2OCH_3 , $NHCH_3$ or $CH(OCH_3)_2$.
- 5) Compounds of Preferred 4 where n is 0.
- 6) Compounds of Preferred 4 where n, is 0.
- 7) Compounds of Preferred 5 where Q is Q₁-4, Q₁-6, Q₁-17, Q₁-18, Q₁-19, Q₁-21, Q₁-22, Q₁-23, Q₂-1 or Q₃-1.
- 8) Compounds of Preferred 6 where Q is Q_1 -2, Q_1 -3 or Q_1 -14.

Specifically preferred for reasons of greatest ease of synthesis and/or greatest herbicidal efficacy are:

- N-[(4,6-dimethoxypyridimidin-2-yl)-aminocarbonyl]-1-phenyl-1H-[1]benzothieno[3,2-C]-pyrazole-5-sulfonamide, 4,4-dioxide, m.p. 243-248°C.
- 4,5-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)-aminocarbonyl]naphth[2,1-D]isoxazole-9-sulfonamide, m.p. 189-192°C(d).
- 4,5-dihydro-N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9-sulfonamide, m.p. 186-189°C.
- 4,5-dihydro-N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)-aminocarbonyl]naphth[2,1-D]isoxazole-9-sulfonamide, m.p. 147-150°C.

Groups of compounds within the scope of Formula I include those disclosed in our copending US Patent Applications Serial Nos. 710,458 and 822,643. Copies of these Applications are available for inspection on the file of the present Application.

Detailed Description of the Invention

10 Synthesis

15

20

The compounds of Formula 1 can be prepared by one or more of the methods described below in Equations 1, 2, 3 and 4. Reagants and reaction conditions are given by way of illustration.

As shown in Equation 1, compounds of Formula 1 can be prepared by reacting a sulfonyl isocyanate or sulfonyl isothiocyanate of Formula 2 with an appropriate heterocyclic amine of Formula 3.

Equation 1

35

40

The reaction is carried out at 25°C to 100°C in an inert aprotic solvent such as methylene chloride or xylene for 0.5 to 24 hours as taught in U.S. patent 4,127,405.

Compounds of Formula 1 can also be prepared by reacting the sulfonamides of Formula 4 with a phenylcarbamate or phenylthiocarbamate of Formula 5 in the presence of DBU and in solvents such as methylene chloride or acetonitrile as taught in European Patent Application 70,804.

Equation 2

$$Q-SO_2NH_2 + PhOCN-A \xrightarrow{DBU} QSO_2NHCN-A$$

$$R \xrightarrow{CH_3CN} R$$

$$\frac{4}{R}$$

Alternatively, compounds of Formula 1 where W is O can be prepared by reacting sulfonamides of Formula 4 with a methyl carbamate of Formula 6 in the presence of an equimolar quantity of trimethylaluminum as shown in Equation 3.

Equation 3

5

$$Q-SO_2NH_2 + CH_3O\ddot{C}-N-A \xrightarrow{A1Me_3} QSO_2NH\ddot{C}N-A$$

$$\dot{R} \xrightarrow{CH_2Cl_2} \dot{R}$$

$$\frac{4}{} \qquad \underline{6} \qquad \underline{1}$$

15

The reaction is carried out at 25-40°C in a solvent such as methylene chloride, for 10-96 hours, under an inert atmosphere as taught in EP-A-83,975. The required carbamates (5) are prepared by reacting the corresponding amines (3) with dimethyl carbonate or methyl chloroformate in the presence of a strong base.

Compounds of Formula 1 can also be prepared by reacting a sulfonyl carbamate or thiocarbamate of Formula 7 with an appropriate amine of Formula 3 as shown in Equation 4.

Equation 4

The reaction is carried out at 50-100°C in a solvent such as dioxane for 0.5 to 24 hours as taught in EP-A-44,807. The required carbamates and thiocarbamates (7) can be prepared by methods, or modifications thereof known to those skilled in the art, described in South African Patent Application 82/5671 and South African Patent Application 82/5045.

As shown in Equation 5, many of the sulfonyl isocyanates of Formula 2 can be prepared by the reaction of sulfonamides of Formula 4 with phosgene, in the presence of n-butylisocyanate and a tertiary amine catalyst, such as 1,4-diazabicyclo-[2.2.2]-octane (DABCO), at reflux, in a solvent such as xylene by the method of U.S. Patent 4,238,621.

Equation 5

$$\frac{\text{COCl}_2/\text{n-BuNCO}}{\text{QSO}_2\text{NH}_2} \xrightarrow{\text{DABCO/xylene } \Delta} \text{QSO}_2\text{N=C=O}$$

Many of the sulfonyl isocyanates can be prepared from the sulfonamides by a two-step procedure involving (a) reacting the sulfonamides with n-butylisecyanate in the presence of a base such as K_2CO_3 at reflux in an inert solvent such as 2-butanone forming an <u>n</u>-butylsulfonylurea; and (b) reacting this compound with phosgene and a tertiary amine catalyst at reflux in xylene solvent. The

method is similar to a procedure taught by Ulrich and Sayigh, Newer Methods of Preparative Organic Chemistry, Vol. VI, p. 223-241, Academic Press, New York and London, W. Foerst, Ed.

Alternatively, many of the sulfonyl isocyanates of Formula 2 can be prepared by reacting the corresponding sulfony chlorides (8) with cyanic acid salt.

Equation 6

$$Q-SO_2C1 \xrightarrow{M^2OCN^{\bigcirc}} QSO_2N=C=0$$

$$\frac{8}{2}$$

5

15

20

25

The reaction is carried out at 25-100°C in an inert aprotic solvent such as acetonitrile for 0.5-24 hours in the presence of phosphorous pentoxide and an alkali metal salt such as lithium iodide according to the teachings of Japanese Patent No. 76/26,816 (Chem. Abst. 85:77892e (1976)).

Sulfonyl isothiocyanates (II, W is S) are known in the art and are prepared from the corresponding sulfonamides (IV) by reaction with carbon disulfide and potassium hydroxide followed by treament of the resulting dipotassium salt VI with phosgene. Such a procedure is described in Arch. Pharm. 299, 174 (1966).

The sulfonamides of Formula 4 of Equations 2, 3, 4, 5 and 7 are important intermediates for the preparation of compounds of this invention. As shown in Equation 7, many of the sulfonamides of Formula 4 can be prepared from the corresponding sulfonyl chlorides of Formula 8 by contacting with either anhydrous or aqueous ammonia.

Equation 7

$$Q-SO_2C1 \xrightarrow{NH_3} Q-SO_2NH_2$$

Preparation of sulfonamides from sulfonyl chlorides is widely reported in the literature, for reviews see F. Hawking and J. S. Lawrence "The Sulfonamides", H. K. Lewis and Co., London, 1950, and E. H. Northey "The Sulfonamides and Allied Compounds", Reinhold Publishing Corp., New York, 1948.

Many of the sulfonyl chlorides of Formula 8 of Equations 6 and 7 can be prepared from the corresponding amines of Formula 9 by the method shown in Equation 8.

Equation 8

45

40

$$\frac{Q-NH_2}{2} \xrightarrow{\frac{1) \text{ HONO/HCl}}{2) \text{ SO/CuCl}_2/\text{HOAc}}} \qquad Q-SO_2Cl$$

The reaction involves diazotization of the amine 9 with sodium nitrite/HCl followed by reaction of the diazonium salt with sulfur dioxide and cupric chloride in acetic acid analogous to the teachings of Yale and Sowinski, <u>J. Org. Chem.</u>, <u>25</u>, 1824 (1960).

27

Alternatively, many of the sulfonyl chlorides of Formula 8 can be prepared by a modification of the above procedure whereby the diazotization reaction is carried out in dilute sulfuric acid and the resulting diazonium salt is reacted with sulfur dioxide,

HCI and cupric chloride in a co-solvent mixture consisting of acetic acd-water (1:1) and an immiscible inert solvent such as 1-chlorobutane or methylene chloride at 0-40°C for 1-24 hours.

Some of the amines of the Formula 9 in Equation 8 can be prepared from the corresponding nitro compounds (10). The reduction reaction of Equation 9 can be run by methods known in the literature.

Equation 9

$$\begin{array}{c} Q-NO_2 & \xrightarrow{\text{Reduction}} & Q-NH_2 \\ \hline 10 & \underline{9} \end{array}$$

10 .

20

For example, the reduction can be carried out with stannous chloride or tin and hydrochloric acid either neat or in an inert solvent such as methanol at about 25° to 80°C for 0.5 to 10 hours. For details, refer to similar procedures described in G. Corsi et al., Bull. Chim. Farm., 103, 115 (1964), A. Quilico et al., Gass. Chim. Ital., 76, 87 (1946) and M Kahn and J. Polya, J. Chem. Soc., 85 (1970).

Many of the sulfonyl chlorides of Formula 8 can be prepared from the bromo compounds of Formula 11 as shown in Equation 10.

Equation 10

30

Q-Br
$$\frac{\frac{\text{ca.} -70^{\circ}}{\text{ca.} -70^{\circ}}}{2. \text{ so}_{2}^{\text{cl}_{2}}} \qquad \text{Q-so}_{2}^{\text{cl}_{2}}$$

$$\frac{\text{ll}}{2} \qquad \frac{\text{ca.} -30^{\circ}}{2} \qquad \frac{8}{2}$$

40

According to Equation 10 a lithium salt, prepared, by reaction of the bromide of Formula 11 with butyl, lithium in ether at about -70°C, is added to sulfuryl chloride in hexane at -30°C to -20°C and stirred for 0.5 to 10 hours to yield the sulfonyl chloride 8 according to the teachings of S. N. Battacharya et al., J. Chem. Soc. C. 1265 (1968).

Many of the sulfonyl chlorides of Formula 8 can be prepared from the chloro compounds of Formula 12 by the two-step sequence shown in Equation 11.

Equation 11

35

wherein RS $^{\Theta}$ M $^{\oplus}$ represents an alkyl or benzyl mercaptide salt.

The first step involves nucleophilic displacement of the chlorine atom with an alkyl or benzyl mercaptide to give an intermediate sulfide. The reaction can be carried out at 25°C to 80°C in a polar solvent such as DMF for 0.5 to 24 hours. The sulfide is then oxidatively chlorinated to the desired sulfonyl chloride 8 by the addition of molecular chlorine or a chlorine equivalent to the sulfide in the presence of water at 15° to 80°C in an aliphatic carboxylic acid solvent such as acetic acid or an inert organic solvent such as dichloroethane for 1 to 24 hours.

The tricyclic intermediates of Formulae 9, 10, 11 and 12 or known are can be prepared by one skilled in the art.

The synthesis of heterocyclic amines such as those represented by Formula 3 has been reviewed in "The Chemistry of Heterocyclic Compounds," a series published by Interscience Publ., New York and London. Aminopyrimidines are described by D. J. Brown in "The Pyrimidines", Vol. XVI of the series, mentioned above which is herein incorporated by reference. The 2-amino-1,3,5-triazines of Formula 3, where A is A-1 and Z is N, can be prepared according to methods described by E. M. Smolin and L. Rapaport in "s-Triazines and Derivatives," Vol. XIII.

Pyrimidines of Formula 3, where A is A-1 and Y is an acetal or thioacetal substituent, can be prepared by methods taught in European Patent Application No. 84,224 (published July 27, 1983).

Pyrimidines of Formula 3, where A is A-1 and Y is cyclopropyl or OCF₂H, can be synthesized according to the methods taught in South African Patent Application No. 83/7434, and South African Publication No. 82/5045 respectively.

Compounds of Formula 3, where A is A-2 or A-3, can be prepared by procedures disclosed in U.S. Patent 4,339,267.

Compounds of Formula 3, where A is A-5, can be prepared by methods taught in U.S. Patent 4,421,550.

Compounds of Formula 3, where A is A-6, can be prepared by methods taught in European Patent Application No. 94,260 (published November 16, 1983).

Agriculturally suitable salts of compounds of Formula 1 are also useful herbicides and can be prepared in a number of ways known to the art. For example, metal salts can be made by treating compounds of Formula 1 with a solution of an alkali or alkaline earth metal salt having a sufficiently basic anion (e.g., hydroxide, alkoxide, carbonate or hydride). Quaternary amine salts can be made by similar techniques. Detailed examples of such techniques are given in United States Patent 4,127,405.

The preparation of the compounds of this invention is further illustrated by the following examples.

EXAMPLES

Example 1

2-Acetyl-4-nitro 1,3-indanedione

To a solution of 100 g of 3-nitrophthalic acid in 100 mL of pyridine was added 0.8 mL of piperdine followed by 500 g of 2,4-pentanedione at room temperature. The mixture was stirred at 35-40 °C for 6 hours and then diluted with 100 mL ether. The pyridine salt was filtered off, washed with 100 ml of ether, dried, suspended in water, and acidified with 400 mL of 6N HCl. The title compound was filtered off, dried, and recrystallized from ethanol to yield 84 g of yellow crystals, m.p. 148-150 °C.

200 MHz NMR(CDCL₃) δ 7.8-8.08 (m.3H aromatic) δ 2.6 (S, CH₃)

IR(nujol) 3460, 3360, 1690 cm⁻¹.

Example 2

55

45

15

30

2-Acetyl-4-amino 1,3 indanedione

To a suspension of 20.0 g of 4-nitro-1,3-in-danedione in 100 mL tetrahydrofuran and 20 mL of ethanol, 1.0 g of 10% Pd/C catalyst was added and the mixture hydrogenated at 50 psi until three molar equivalents of hydrogen were taken up. The catalyst was filtered off and solvent was removed from the filtrate under reduced pressure. Recrystallization from ethanol afforded 14.8 g of the title compound, m.p. 126-128°.

IR(nujol) 3460, 3340, 1690 cm⁻¹.

Example 3

1-phenyl-5-aminoindenopyrazol-4-one

To a solution of 4.7 g of 4-amino-1,3-indane-dione in 500 mL ethanol was added 2 mL of phenyl-hydrazine at room temperature and the mixture was heated at reflux for 2 hours. The mixture was then cooled to room temperature and 4 mL concentrated hydrochloric acid was added. The mixture was then refluxed for an additional 2 hours. The mixture was then concentrated in vacuo and the crystals that separated were filtered off and dried, to yield 3.4 g of the title compound, m.p. 200-202°C.

200 MHz NMR (CDCI₃) δ 6.5-6.58 (m, Aromatic 2H)

7.06-7.1 (m, Aromatic 1H)

7.51-7.65 (m, Aromatic 5H)

2.26 (s, CH₃)

4.2 (br, NH₂).

IR(nujol) 3420 and 3310. 1665 cm⁻¹.

Example 4

1-phenylindenopyrazol-4-one-5-sulfonylchloride

A suspension of 36 g of aminopyrazolone of Example 3 in 130 mL concentrated hydrochloric acid and 250 mL of glacial acetic acid was cooled to 0-5°C and 10 g of sodium nitrite was added in portions while maintaining the temperature at 0-5°. After stirring for 30 minutes, the suspension was added in portions to a preformed mixture containing 200 mL acetic acid, 15 g of cuprous chloride,

and 150 mL concentrated hyrochloric acid at 10°C. The mixture was stirred at 10° for 30 minutes and then at 40-50° for 3 hours. The suspension was added to 1000 mL ice water, stirred and extracted with 250 mL of methylene chloride. The methylene chloride layer was washed with water, dilute bircarbonate solution and water and then dried. The solvent was removed under reduced pressure to yield 25 g of the crude sulfonyl chloride.

IR(nujol) 1700, 1380, 1165 cm⁻¹.

Example 5

1-phenylindenopyrazolone-4-one-5-sulfonamide

A solution of 10 g of the sulfonyl chloride prepared in Example 4 in 75 mL of tetrahydrofuran was cooled in an ice bath and treated cautiously with 40 mL of concentrated ammonium hydroxide, while maintaining the temperature at 0-5°C. The resulting suspension was stirred at room temperature for 8 hours. The solvent was then removed under reduced pressure. The residue was stirred in 500 mL water and filtered. The solids obtained were recrystallized from a mixture of acetonitrile and water to give 6.9 g of the title compound as yellow crystals, m.p. 247-249°.

200 MHz NMR(CDCL₃) δ 6.5-6.58 (m, Aromatic, 2H)

7.06-7.1 (m, Aromatic, 1H)

7.51-7.65 (m, Aromatic, 5H)

2.26 (s, CH₃)

40 4.2 (s, NH₂)

IR(nujol) 3310, 3420, 1665 cm⁻¹.

Example 6

45

50

N[(4,6-Dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]-1-phenylindenopyrazol-4-one-5-sulfonamide

To a suspension of 0.27 g of of N-phenoxycarbonyl-4,6-dimethoxy-2-aminotriazine in 20 mL of acetonitrile was added 0.327 g of the sulfonamide described in Example 5 followed by 0.2 mL of 1,8-diazabicyclo[5.4.0]-undec-7-ene. The mixture was then stirred at room temperature for 2 hours. The mixture was added to 50 mL water

containing 2 mL conc. hydrochloric acid and extracted with methylene chloride. The methylene chloride extract was dried and stripped of solvent under reduced pressure to furnish a yellow solid which was triturated with chlorobutane and filtered to give 0.12 g of yellow crystals, m.p. 152-155°.

NMR 200 MHz (CDCl₃) δ 13.2 (broad s, 1H, NH)

8.06 (s, 1H, NH)

7.2-7.6 (m, 8H, Aromatic)

4.23 (s, 3H, OCH₃)

2.38 (s, 3H, CH₃)

IR(nujol) 1725, 1710, 1360, 1170 cm⁻¹.

Example 7

5-amino-1-methylindenopyrazol-4-one

To a solution 25 g of 4-amino-1,3-indanedione, described in Example 2, in 200 mL ethanol was added 5.5 mL of methyl hydrazine at room temperature and then heated to reflux for 2 hours. The mixture was treated with 4 mL concentrated hydrochloric acid and again heated at reflux for 2 hours. The mixture was then cooled and the solvent was removed. The residue was triturated with water, filtered and dried. Recrystallization from ethanol and water yielded 18.9 g of yellow crystals, m.p. 225-227°.

NMR 200 MHz (CDCl₃) δ (m, 7.02-7.10, 1H, Aromatic)

(m, 6.5-6.6, 2H, Aromatic)

(br s, 5.32, 2H, NH₂)

(s, 3.89, 3H, NCH₃)

(s, 2.31, 3H, CH₃)

IR(nujol) 3420, 3310, 1665 cm⁻¹.

Example 8

1-Methyl-indenopyrazol-4-one 5-sulfonylchloride

A suspension of 12.5 g of the aminopyrazolone of Example 7 in 65 mL of concentrated hydrochloric acid and 125 mL of glacial acetic acid was cooled to 0 to 5° and then 5 g of sodium nitrite was added in portions while maintaining the temperature at 0-5°. After 30 minutes, the suspension was added to a preformed mixture of 100 mL glacial acetic acid, 7.5 g of cuprous chloride, and 75 mL of concentrated hydrochloric acid at 0-5°. The mixture was stirred at that temperature for 30 minutes and then was heated at 40 to 50° for 3 hours. The suspension was poured into 5000 mL ice water and extracted with 250 mL methylene chloride. The methylene chloride extract was washed with water and then dried. The solvent was stripped under reduced pressure to afford the crude sulfonyl chloride as a yellow solid.

IR(nujol) 1700, 1380, 1165 cm⁻¹.

Example 9

1-Methyl-indenopyrazol-4-one-5-sulfonamide

A solution of 5 g of the sulfonyl chloride of Example 8 in 40 mL tetrahydrofuran was cooled in an ice water bath and treated cautiously with 20 mL of concentrated ammonium hydroxide, added slowly maintaining the temperature at 0 to 5°C. The resulting suspension was stirred at room temperature for 8 hours and then stripped of the solvent under reduced pressure. The residue was stirred in 200 mL water, filtered, washed with hot ethanol and dried to afford 1.8 g of yellow crystals, m.p. 260-265°

40 NMR 200 MHz δ 7.7-7.82 (m, 3H, aromatic)

3.95 (s, 3H, NCH₂)

2.2 (s, 3H, CH₃)

IR(nujol) 3350, 3260, 1700, 1370, 1160 cm⁻¹.

Example 10

55

45

15

25

30

N-[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]methylindenopyrazol-4-one-5-sulfonamide

To a suspension of 0.2 g of N-phenoxycarbonyl-4,6-dimethoxyaminopyrimidine in 15 mL of acetonitrile was added 0.2 g of methylindenopyrazolone-5-sulfonamide, followed by the addition of 0.2 mL of 1,8-diazabicyclo[5.4.0]-undec-7-ene and the mixture was stirred at room temperature for 2 hours. The mixture was added to 50 mL water containing 2 mL concentrated hydrochloric acid and extracted with 50 mL methylene chloride. The methylene chloride extract was dried and the solvent was removed. The residue was triturated with chlorobutane, filtered and dried to give 0.21 g of the title compound, m.p. 224-230°.

NMR 200 MHz(CDCl₃) δ (s, 12.75, 1H, NH)

(s, 8.12, 1H,NH)

(m, 7.4-7.6 3H, Aromatic)

(s, 5.83, 1H, CH)

(s, 4.17, 3H, CH₃)

(s, 3.98, 3H, NCH₃)

(s, 2.27; 3H, CH₃)

IR(nujol) 1700, 1370, 1160 cm⁻¹.

Example 11

N-(1,1-Dimethylethyl)-5,6,7,8-tetrahydro-8-hydroxy-1-naphthalenesulfonamide

To a solution of 25.2 g (93.5 mmol) of a 1:1 mixture of N-(1,1-dimethylethyl)-5,6,7,8-tetrahydro-1-naphthalenesulfonamide and N(1,1dimethylethyl)-5,6,7,8-tetrahydro-2naphthalenesulfonamide in 450 mL of tetrahydrofuran at -10°C, was added dropwise 75 mL (187 mmol) of a 2.5 M solution of n-butyllithium in hexanes. After 90 minutes at this temperature the reaction mixture had turned red. The reaction mixture was cooled at -78°C and oxygen was bubbled through for 15 minutes until the red color disappeared. After an additional 15 minutes, 200 mL of 5% NaHSO₃ was added. The reaction mixture was extracted with ethyl acetate dried -

(Na₂SO₄) and the solvent was removed with a rotary evaporator. The residue was purified by flash chromatography to give 6.0 g of the title compound as a sticky solid; m.p. 100-111°C.

'H NMR (CDCl₃) δ 1.24 (s, 9H), 1.8 (m, 2H), 2.0 (m, 2H), 2.8 (m, 2H), 3.5 (d, 1H), 5.2 (br, 1H), 5.55 - (m, 1H), 7.3 (m, 2H), 7.99 (d, 1H).

Example 12

N-(1,1-Dimethylethyl)-5,6,7,8-tetrahydro-8-oxo-1-naphthalenesulfonamide

To a solution of 5.49 g (19.4 mmol) of material prepared in Example 11 in 250 mL of methylene chloride was added 8.35 g (39 mmol) of pyridiniumchlorochromate. After 3 hours the reaction mixture was diluted with ether and passed through the plug of fluorosil to give 5.3 g of the title compound as a colorless oil.

'H NMR (CDCl₃ δ 1.27 (s, 9H), 2.1 (m, 2H), 2.26 (dd, 2H), 3.00 (dd, 2H), 6.77 (br, 1H), 7.54 (m, 2H), 8.13 (dd, 1H).

Example 13

N-(1,1-Dimethylethyl)-5,6,7,8-tetrahydro-7-(hydroxymethylene)-8-oxo-1-naphthanesulfonamide

1.0 g (43,5 g-atom) of sodium was added to 25 mL of ethanol. When all of the sodium had reacted the ethanol was removed with a rotary evaporator. 25 mL of benzene was added. The reaction mixture was cooled in an ice bath and 2.5 mL of ethyl formate was added 4.82 g (17.1 mmol) of material prepared in Example 12 was added to 25 mL of benzene. The reaction mixture was allowed to stand at room temperature for 16 hours. The reaction mixture was extracted with 100 mL of water. This aqueous layer was acidified with 5% HCl and was extracted with ethyl acetate. The organic layer was dried (Na₂SO₄) and the solvent was removed with a rotary evaporator to give 4.30 g of the title compound as a yellow solid.

'H NMR (CDCl₃) δ 1.30 (s, 9H), 2.49 (t, 2H), 2.95 (t, 2H), 6.79 (br, 1H), 7.54 (m, 3H), 8.16 (d, 1H).

Example 14

N-(1,1-Dimethylethyl)-3,4-dihydronaphth((2,1-D))-isoxazole-9-sulfonamide

A mixture of 0.7 g (2.85 mmol) of material prepared in Example 13 and 0.4 g (5.8 mmol) of hydroxylamine hydrochloride was dissolved in 20 mL of acetic acid. The reaction mixture was placed in an oil bath at 125°C for 15 minutes. After cooling, water and 1-chlorobutane were added. After extraction with 1-chlorobutane, the organic layer was washed with saturated NaHCO₃, dried - (Na₂SO₄) and the solvent was removed with a rotary evaporator. The residue was purified by flash chromatography to give 0.26 g of an orange solid.

¹H NMR (CDCl₃) δ 1.21 (s, 9H), 2.78 (m, 2H), 3.10 (m, 2H), 5.73 (br, 1H), 7.48 (m, 2H), 8.15 (d, 1H), 8.27 (s, 1H).

Example 15

3,4-Dihydronaphth((2,1-D))isoxazole-9-sulfonamide

0.20 g of material prepared in Example 14 was dissolved in 5 mL of trifluoroacetic acid. After 1 hour the volatiles were removed with a rotary evaporator. The residue was purified by flash chromatography to give 0.09 g of a brown solid.

 1 H NMR (d₆-DMSO) δ 2.71 (m, 2H), 3.03 (m, 2H), 7.36 (s, 2H), 7.52 (dd, 1H), 7.62 (d, 1H), 7.90 - (d, 1H), 8.62 (s, 1H).

Example 16

N-((4,6-Dimethoxypyrimidinyl-2-yl)aminocarbonyl)-3,4-dihydronaphth((2,1-D))isoxazole-9-sulfonamide

To a solution of 45 mg of material prepared in Example 15 and 50 mg phenyl 4,6-dimethoxypyrimidin-2-yl carbamate in 1 mL of acetonitrile was added 0.027 mL of 1,8-diazabicyclo[5.4.0]undec-7-ene. After 1 hour, 1 mL of water and 0.5 mL of 5% HCl were added. The brown solid which precipitated out was collected to give 45 mg of the title compound; m.p. 189-192(d).

'H NMR (d_s-DMSO) δ 2.77 (m, 2H), 3.07 (m, 2H), 3.99 (s, 6H), 5.99 (s, 1H), 7.61 (dd, 1H), 7.79 - (d, 1H), 8.05 (d, 1H), 8.60 (s, 1H), 10.6 (br, 1H), 13.1 (br, 1H).

Using the techniques described in Equations 1-12 and Examples 1-16 the following compounds of Tables 1 through 28 can be prepared.

Unless otherwise indicated, all temperatures are in °C.

30

25

35

40

45

50

General Formulas for Tables

General Formula la

General Formula 1b

General Formula 1c

General Formula 1d

General Formula le

General Formula 1f

General Formula 1g

General Formula 1h

General Formulas for Tables (Continued)

General Formula 2a

General Formula 2b

General Formula 3a

General Formula 3b

50

General Formula 4a

General Formula 4b

General Formula 5a

General Formula 5b

General Formula 6

General Formula 7

General Formula 8

General Formula 9

General Formula 10

General Formula 11

General Formula 12

General Formula 13

General Formula 14

General Formula 15

General Formula 16

General Formula 17

51

General Formula 18

General Formula 19

General Formula 20

50

General Formula 21

53

General Formula 22

General Formula 23

General Formula 24

50

General Formula 25

General Formula 26

General Formula 27

General Formula 28

45

In general Formulas 1-28, the position of the substituent \mathbf{R}_{τ} is designated as follows:

TABLE Ia

General Formula Ia

<u>R</u> 1	<u> J</u>	<u>R</u> 6	R ₇ .	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	C=O	H	CH3	.CH ³	CH ₃	CH	226-230
H	C=O	Ĥ	CH3	CH ³	och ³	СН	
H	C=0	Н	CH ₃	OCH ³	OCH ₃	СН	242-246
H	C=O	Н	CH ₃	Cl	OCH ₃	СН	245-251
H	C=O	н	CH ₃	CH ₃	OCH ₃	N	218-221
H	C=O	Н	CH ₃	OCH ₃	OCH ₃	N	222-227
H	C=O	CH ₃	CH ₃	CH3	CH3	CH	238-240
H	C=O	CH ₃	CH ₃	CH ₃	OCH ₃	CH	238-240
H	C=O	CH ₃	CH ₃	OCH ₃	OCH ₃	СН	224-230
H	C=O	CH ₃	CH ₃	Cl	осн	CH	250-255
H	C=O	CH ₃	CH ₃	CH ₃	OCH ₃	N	232-234
H	C=0	CH ₃	CH ₃	осн ₃	OCH ₃	N	232-235
H	C=O	CH ₃	CH ₃	CH ₃	CH ₃	N	
H	C≃O	C ₆ H ₅	CH ₃	CH ₃	CH ₃	CH	212-214
H	C=0	C ₆ H ₅	CH3	OCH ₃	CH ₃	CH	185-189
H	C=O	C ₆ H ₅	CH ₃	OCH ₃	OCH ₃	CH	215-217
H	C=0	C ₆ H ₅	CH ₃	Cl	OCH ₃	CH	202-204
H	C=0	C ₆ H ₅	CH ₃	CH3	OCH ₃	N	168-171
H	C=0	C ₆ H ₅	CH ₃	OCH ₃	OCH ₃	N	152-155
H	C=0	C ₆ H ₅	CH ₃	CH ₃	CH3	N	205-208
H	C=0	С ₆ Н ₅	H	CH ₃	CH ₃	CH	
H	C=0	C ₆ H ₅	H	CH ₃	OCH ₃	CH	
H	C=0	C ₆ H ₅	H	OCH ₃	OCH ₃	CH	
H	C=0	C ₆ H ₅	H	Cl	OCH ₃	CH	
H	C=0	C ₆ H ₅	H	CH ₃	OCH ₃	N	-
H	C=0	C ₆ H ₅	H	OCH ₃	OCH ₃	N	
H	C=0	C ₆ H ₅	H	CH ₃	CH ₃	N	
H	C=O	4-C1-C ₆ H ₅	CH ₃	CH ₃	CH ₃	CH	227-231
H	C=O	4-C1-C6H5	CH ₃	CH ₃	OCH ₃	CH	236-238
H		4-C1-C ₆ H ₅				CH	248-250
H	C=0	4-C1-C6H5	CH ₃	Cl	OCH ₃	CH	229-232

59

R ₁	<u>J</u>	<u>R</u> 6	R ₇	<u>X</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H		4-C1-C6H5	CH ₃	CH ₃		N	
Н		4-C1-C6H5	CH3		_	N	206-210
Н		4-C1-C6H5	CH3	CH ₃	CH ₃	N	
Н	C=0	4-0CH ₃ -C ₆ H ₅	CH ₃	CH ₃	CH ₃	CH	
Н	C=0	4-0CH ₃ -C ₆ H ₅	CH ₃		OCH ₃	СН	
Н		4-0CH ₃ -C ₆ H ₅	CH ₃	OCH ₃		СН	228-230
Н		4-0CH ₃ -C ₆ H ₅	CH ₃	C1	OCH ₃	СН	
Н		4-0CH ₃ -C ₆ H ₅	CH ₃	CH ₃		N	
Н		4-0CH ₃ -C ₆ H ₅	CH ₃			N	
Н		4-0CH ₃ -C ₆ H ₅	CH ₃		CH ₃	N	
Н		4-SO ₂ CH ₃ -C ₆ H ₅	CH ₃	CH ₃	CH ₃	СН	172-176
H	C=0	4-SO ₂ CH ₃ -C ₆ H ₅	CH	CH ₃	осн ₃	СН	166-169
H		4-SO ₂ CH ₃ -C ₆ H ₅			OCH ₃	СН	204-208
Н		4-SO2CH3-C6H5			OCH ₃	CH	
н.		4-SO ₂ CH ₃ -C ₆ H ₅			OCH ₃	N	
H		4-SO2CH3-C6H5			_	N	104-109
H		4-SO2CH3-C6H5			CH ₃	N	
H	C=0	4-NO ₂ -C ₆ H ₅	CH ₃		CH ₃	CH	
H	C=0	4-NO ₂ -C ₆ H ₅	CH ₃		OCH ₃	CH	
H	C=0	4-NO ₂ -C ₆ H ₅	CH ₃	OCH ₃	OCH ₃	CH	
H	C=0	4-NO ₂ -C ₆ H ₅	CH ₃		OCH ₃	CH	
H	C=O	4-NO ₂ -C ₆ H ₅	CH ₃			N	
H	C=0	4-NO ₂ -C ₆ H ₅	CH ₃		OCH ₃	N	
H	C=0	4-NO ₂ -C ₆ H ₅	CH3	CH3	CH3	N	
H	C=0	4-CH ₃ -C ₆ H ₅	CH ₃	CH ₃	CH ₃	CH	
H	C=0	4-CH ₃ -C ₆ H ₅	CH3	CH ₃	OCH ₃	CH	
H	C=0	4-CH ₃ -C ₆ H ₅	CH ₃	OCH ₃	OCH ₃	CH	
H	C=0	4-CH ₃ -C ₆ H ₅	CH ₃	Cl	OCH ₃	СН	
H	C=0	4-CH ₃ -C ₆ H ₅	CH ₃	OCH ₃	CH ₃	N	
H	C=0	4-CH ₃ -C ₆ H ₅	CH ³	OCH ₃	OCH ₃	N	
H	C=O	4-CH ₃ -C ₆ H ₅	CH ₃	OH ₃	CH ₃	N	
Н	C=0	2-pyridyl	H	-	CH ₃		158-160

$\frac{R_1}{}$	J	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	C=O	2-pyridyl	H	CH ₃	OCH ₃	CH	160-164
H	C=0	2-pyridyl	H	OCH ₃	OCH ₃	СН	203-207
H	C=0	2-pyridyl	H	Cl	OCH ₃	СН	145-151
H	C=0	2-pyridyl	H	CH ₃	OCH ₃	N	135-141
H	C=0	2-pyridyl	H.	och ³	OCH ₃	N	148-153
H	C=O	2-pyridyl	H	CH3	CH3	N	
H	C=O	2-pyridyl	CH3	CH ₃	CH ³	СН	
H	C=O	2-pyridyl	CH ₃	CH ₃	OCH ₃	CH	
H	C=O	2-pyridyl	CH ₃	OCH ₃	OCH ₃	CH	
H	C=0	2-pyridyl	CH ₃	C1 J	OCH ₃	CH	
H	C=0	2-pyridyl	CH ₃	CH ₃	OCH ₃	N	
H	C=O	2-pyridyl	CH ₃	OCH ₃	OCH ₃	N	
H	C=0	2-pyridyl	CH ₃	CH ₃	CH ₃	N	
H	so ₂	2-pyridyl	CH ₃	CH	CH3	CH	
H	so ₂	2-pyridyl	CH ₃	CH ₃	OCH ₃	CH	
H	so ₂	2-pyridyl	CH ₃	OCH ₃	OCH3	CH	
H	so ₂	2-pyridyl	CH ₃	Cl	OCH ₃	CH	
H	so ₂	2-pyridyl	CH ₃	CH ₃	OCH ₃	N	
H	so ₂	2-pyridyl	CH ₃	OCH ₃	OCH ₃	N	
H	so ₂	2-pyridyl	CH ₃	CH ₃	CH3	N	
H	C=O	CH ₃	CH ₃	CH ₃	OCH ₂ CH ₃	CH	
H	C=O	CH ₃	CH ₃	CH ₃	NH ₂	CH	
H	C=0	CH ₃	CH ₃	CH ₃	NHCH ₃	CH	
H	C=0	CH ₃	CH ₃	CH ₃	N(CH ₃) ₂	CH	
H	C=0	CH ₃	CH ₃	CH ₃	CH ₂ CH ₃	CH	
H	C=0	CH ₃	CH ₃	CH ₃	CH ₂ CH ₃	CH	
H	C=0	-3	CH ₃	CH ₃	CF ₃	CH	
H	C=0	CH ₃		CH ₃		CH	
H	C=0	CH ₃			OCH ₂ CH=CH ₂	CH	
H	C=O	CH ₃			OCH2CH=CH2	CH	
H	C=0	CH ₃			och ₂ c≡ch	CH	
H	C=0			CH ₃		CH	

$\frac{R_1}{2}$	<u>J</u>	<u>R</u> 6	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p. (°C)
н	C=0	CH ₃	CH ₃	CH ₃	OCH ₂ CH ₂ OCH ₃	CH	<u> </u>
н	C=0	CH ₃	CH ₃	CH ₃	CH(OCH ₃) ₂	CH	
H	C=0	CH ₃	CH ₃	CH ₃	1,3-dioxolan-2-yl	СН	
Н	C=0	CH ₃	CH ₂	CH ₃	CH ₂ OCH ₃	СН	
H	C=0	CH ₃	CH ₃	F	OCH ₃	CH	
Н	C=0	CH ₃	CH3	Br	OCH ₃	СН	
Н	C=0	CH ₃	CH3	OCH ₂ F		CH	
H	C=0	CH ₃	CH ₃		OCH ₃	CH	
H	C=0	CH ₃	CH ₃	CF ₃	och ₃	CH	
H	C=0	CH ₃	CH ₃	CH ₃	4-methyl-1.3- dioxolan-2-yl	СН	
H	C=O	CH ₃	CH ₃	CH ₃	осн ₂ ғ	CH	
H	C=0	CH ₃	CH ₃	CH ₃	CN	CH	
H	C=0	CH ₃	CH ₃	CH ₃	CH(OCH ₂ CH ₃) ₂	CH	
H	C=O	CH3	CH ₃	CH ₃	OCF ₂ CHC1F	CH	
H	C=0	CH ₃	CH ₃	CH ₃	SCH ₂ F	CH	
H	C=0	CH ₃	CH ₃	CH ₃	OCF ₂ CHBrF	CH	
Н	C=0	CH3	CH ₃	CH ₃	OCF ₂ CHFCF ₃	CH	
H		C6H5	CH ₃	CH ₃	OCH ₂ CH ₃	CH	
H	C=O	C6H5	CH ₃	CH3	NHCH ₃	CH	
H	C=0	C ₆ H ₅	CH ₃	CH3	N(CH ₃) ₂	CH	
H		C ₆ H ₅	CH ₃	CH3	CH ₂ CH ₃	CH	
H	C=0	C ₆ H ₅	CH ₃	CH3	SCH ₃	CH	
H		C ₆ H ₅	CH3	CH ₃	och ₂ c≡ch	CH	
H		C6H5	CH ₃	CH ₃	OCH ₂ CH ₂ OCH ₃	CH	
H	C=0	^C 6 ^H 5	CH ₃	CH ₃	CH(OCH ₃) ₂	CH	
Н		C6H5.		CH ₃	SCH ₂ F	CH	
Н		C ₆ H ₅	-	_	1,3-dioxolan-2-yl	CH	
H		C ₆ H ₅	_	_	OCF ₂ CHC1F	CH	`
H		C6H5	CH ₃	CH ₃	CN	CH	
H	so ₂	H	H	CH ₃	CH ₃	CH	
H	so ₂	H	H	CH3	OCH	CH	

$\frac{R_1}{2}$	J	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	so ₂	H	H	OCH ₃	OCH ₃	СН	
H	so ₂	Н	H	Cl	OCH ₃		
Н	so ₂	Н	Н	CH ₃	OCH ₃	N	
Н	so ₂	H	H	OCH ³	OCH ₃	N	
H	so ₂	H	H	CH ₃	CH ₃	N	
H	so ₂		Н	CH ₃	CH ₃	СН	262-266
H	so ₂	CH ₃	H	CH3	OCH ₃	СН	
H	so ₂		H	OCH ₃	OCH ₃	CH	232-235
H	so ₂	CH ₃	H	Cl	OCH ₃	CH	
H	so ₂	CH3	H	CH ₃	OCH ₃		227-230
H	so ₂	CH ₃	H	осн ₃	OCH ₃	N	228-231
H	so ₂	CH ₃	H	CH ₃	CH ₃	N	
H	so ₂		H	CH ₃	CH3	CH	244-247
H		C ₆ H ₅	H	CH3	осн ₃	CH	250-253
H	so ₂	C ₆ H ₅	H	OCH ₃	осн ³	CH	243-248
H	so ₂	C ₆ H ₅	H	Cl	OCH ₃	CH	236-240
H		C ₆ H ₅		CH3	OCH ₃	N	215-226
H		C6H5		OCH ₃	OCH ₃	N	212-213
H	so ₂	C6H5	H	CH ₃	CH ₃	N	
H	so ₂	H	CH ₃	CH ₃	CH ₃	CH	
H	so ₂	H	CH ₃	CH ₃	OCH ₃	CH	
H	so ₂	H	CH3	OCH ₃	OCH ₃	CH	
H	so ₂	H	CH ₃	Cl	OCH ₃	CH	
H	so ₂	H	CH ₃	CH ³	OCH ₃	N	
H	so ₂	H	CH	OCH ₃	OCH ₃	N	
H	so ₂	H	CH3	CH ₃	CH ₃	N	
H	so ₂	CH ₃	CH ₃	CH ₃	CH ₃	CH	
H	so ₂	CH ₃	CH ₃		OCH ₃	CH	245-247
H	so ₂	CH ₃	CH ₃	OCH ₃	OCH ₃	CH	259-262
H	so ₂	CH ₃	CH3	Cl	OCH ₃	CH	
H	so ₂	CH3	CH ₃	CH ₃	OCH ₃	N	220-224
H	so ₂		CH ₃	OCH ₃	OCH ₃	N	240-243

R ₁	7	R ₆	R ₇	v	v	~	(00)
	<u>J</u>			X	<u>Y</u>	<u>Z</u>	m.p.(°C)
H				CH.3		CH	
H			_	CH ₃	OCH ₃	CH	
H				OCH ₃	OCH ₃	CH	
H			CH ₃			CH	
H			_	OCH ₃		N	217-219
H				CH ₃	OCH ₃	N	214-218
H			CH ₃		CH ₃	N	
H	NH	H	CH ₃		CH ₃	CH	
H	NH	H	CH ₃	CH ₃	OCH ₃	CH	
H	NH		CH ₃	OCH ₃	осн ₃	CH	
H	NH	H	CH ₃	Cl		CH	
H	NH	H	CH ₃	CH ₃	OCH ₃	N	
H	NH	H	CH ₃	OCH ₃	OCH ₃	N	
H	NH	H	CH ₃		CH ₃	N	
Н	NH	CH ₃	CH ₃	CH3	CH ₃	CH	
H	NH	CH3	CH ₃	CH ₃	OCH ₃	CH	
H	NH	CH3		OCH ₃		CH	
H	NH	CH3	CH3	Cl	OCH ₃	CH	
H	NH	CH3	CH ₃	CH ₃		N	
H	NH	CH ₃	CH ₃	OCH ₃	OCH ₃	N	
H	NH	CH ₃		CH ₃	CH ₃	N	
H	NH	С ₆ Н ₅	CH ₃		CH ₃	CH	
H	NH	C6H5	CH ₃	CH ₃		CH	
H	NH	C6H5	CH ₃	OCH ₃	OCH ₃	CH	
H	NH	C ₆ H ₅	CH ₃	Cl	OCH ₃	CH	
Н	NH	C ₆ H ₅		CH ₃	OCH ₃	N	
H	NH		CH ₃	OCH ₃	OCH ₃	N	
H	NH	C ₆ H ₅	CH ₃	CH ₃	CH3	N ·	•
H	so ₂	C ₆ H ₅	CH ₃	CH ₃	OCH ₂ CH ₃	СН	
Н	so ₂	C6H5	CH ₃	CH ₃	NH ₂	CH	
Н	so ₂	C ₆ H ₅	CH ₃	CH ₃	NHCH ₃	СН	
H	so ₂	C ₆ H ₅	CH ₃	CH ₃	N(CH ₃) ₂	CH	

$\frac{R_1}{2}$	<u>J</u>	R ₆	R ₇	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	so,	C6H5			CH ₂ CH ₃	CH	
H	so ₂	C H	CH,	CH3	CF ₃	CH	
H	so ₂	C'H'	CH,	CH ₃		СН	
H	50,	C'H'	CH3	CH,	OCH ₂ CH=CH ₂	СН	
H	so	C'HE	CH2	CH,	och ₂ ch≘ch	СН	
H	so,	C'HE	CH2	CH2	OCH ₂ CF ₃	СН	
H	so,	C'H	CH,	CH,	OCH ₂ CH ₂ OCH ₃	СН	
H	SO	C H	CH	CH	CH(OCH)	СН	
Н	so ₂	C ₅ H ₅	CH ³	CH3	1,3-dioxolan-2-yl	СН	
H	so ₂	C ₆ H ₅	CH3	CH3	CH ₂ OCH ₃	СН	
H	so ₂	CeHE	CH3	OCH ₃	N(CH ₃) ₂	СН	
H	so ₂	C ₆ H ₅	CH ₃	Br	OCH ₃	CH	
H	so_	CH5	CH3	OCH ₂ F	OCH ₃	СН	
H	so,	C ₆ H ₅	CH3	CF ₃	OCH ³	СН	
H	so ₂	CH5	CH3	CH3	OCH ₂ F	CH	
H	so ₂	C ₆ H ₅	CH ₃	CH ₃	CN	CH	
H	so ₂	C ₆ H ₅	CH3	CH ₃	CH(OCH ₂ CH ₃) ₂	CH	
H	so ₂	CH5	CH ₃	CH ₃	SCH ₂ F	СН	
H	so ₂	CH5	CH3	CH ₃	OCH ₂ CFBrF	CH	
Н	so ₂	CH5	CH ₃	CH ₃	OCH ₂ CHFCF ₃	CH	
H	s	CH ₃		CH ₃		CH	
H	S	_		CH ₃	NH ₂	CH	
H	S			CH ₃		CH	
H	S				N(CH ₃) ₂	CH	
H	S			CH ₃		CH	
H	S	CH ³	CH3	CH ₃	CF ₃	СН	
H	S	CH ₃	CH ₃	CH ₃	SCH ₃	СН	
H	S				OCH2CH=CHZ	CH	
H	S	CH ₃		CH ₃	och ₂ c≡ch	CH	
H	S	CH ₃	CH ₃	CH ₃	OCH ₂ CF ₃	СН	
H	S	CH ₃	_	-	OCH ₂ CH ₂ OCH ₃	СН	
H	S	CH ₃	CH ₃		CH(OCH ₃) ₂	СН	

TABLE Ia (Continued)

_		_	_			m.p.
$\frac{R_1}{}$	<u>J</u>	R ₆	R ₇	X	<u>Y</u>	<u>z (°c)</u>
H	S	CH ₃	CH3 .	CH ₃	1.3-dioxolan-2-yl	CH
H	S	CH ₃	CH ₃	CH ₃	CH ₂ OCH ₃	CH
H	S	CH ₃	CH ₃	Br	OCH ₃	CH
H	S	CH ₃	CH ₃	och ₂ f	осн ₃	CH
H	S	CH ₃	CH ₃	CF ₃	OCH ₃	CH
H	S	CH ₃	CH ₃	CH ₃	OCH ₂ F	CH
H	S	CH ₃	CH ₃	CH ₃	CN	CH
H	S	CH ₃	CH ₃	CH ₃	CH(OCH ₂ CH ₃) ₂	CH
H	S	CH ₃	CH ₃	CH ₃	OCF ₂ CHClF	СН
H	S	CH3	CH ₃	CH ₃	SCH ₂ F	CH
H	S	CH3	CH ₃	CH ₃	OCH ₂ CFBrF	CH
H	S	CH ₃	CH ₃	CH ³	OCF ₂ CHFCF ₃	CH
H	so ₂	CH ₃	CH ₃	CH ₃	OCH ₂ CH ₃	CH
H	so ₂	CH ₃	CH ₃	CH ₃	NH ₂	CH
H	so ₂	CH ₃	CH ₃	CH3	NHCH ₃	CH
H	soz	CH ₃	CH ₃	CH ₃	N(CH ₃) ₂	CH
H	502	CH ₃	CH ₃	CH3	CH ₂ CH ₃	CH
H	50 ₂	CH ₃	CH ₃	CH ₃	CF ₃	CH
H	so ₂	CH ₃	CH ₃	CH	SCH ₃	CH
Н	so ₂	CH3	CH ₃	CH ₃	OCH ₂ CH=CH ₂	CH
H	502	CH ₃	CH ₃	CH ₃	OCH ₂ C≡CH	CH
H	so ₂	CH ₃	CH ₃	CH ₃	OCH ₂ CF ₃	CH
H	so ₂	CH3	CH ₃	CH ₃	OCH ₂ CH ₂ OCH ₃	CH
H	so ₂	CH ₃	CH ₃	CH ₃	CH(OCH ₃) ₂	CH
Н	so ₂	CH ₃	CH ₃	CH ₃	1,3-dioxolan-2-yl	CH
H	so ₂				CH ₂ OCH ₃	CH
H		CH ₃			och ₃	CH
H	so ₂	CH ³	CH ₃	OCH ₂ F	OCH ₃	CH
H	so,	CH ₃		CF ₃	OCH ³	CH
H		CH ₃		CH ₃	OCH ₂ F	CH
	_	_	-			

$\frac{R_1}{}$	<u>J</u>	R ₆	<u>R_{7.}</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p. (°C)
H	so ₂	CH ³	CH _{.3}		CN	CH	707
н	so ₂	CH ₃	CH ₃	CH ³	CH(OCH ₂ CH ₃)	СН	
H	so ₂	CH ₃	CH ₃	CH ³	OCF ₂ CH C1F)	CH	
н	so	CH ₃	CH ₃	CH ³	SCH ₂ F	СН	
Н	so ₂		CH ₃	CH ₃	OCH ₂ CFBrF	CH	
Н		CH ₃	CH ₃	CH ₃	OCF ₂ CHFCF ₃	СН	
H	CH ₂	C ₆ H ₅	CH ₂	CH,	OCH ₂ CH ₃	CH	
Н	CH ₂	C ₆ H ₅	CH ₂	CH ₃	NH ₂	CH	
Н		C ₆ H ₅		CH ₃	NHCH ₃	СН	
H		C ₆ H ₅			N(CH ₃) ₂	CH	
H		C ₆ H ₅		CH ₂	CH ₂ CH ₃	CH	
н	CH ₂	C ₆ H ₅	CH	CH2	CF ₃	CH	
H		C ₆ H ₅			scH ₃	CH	
Н		C ₆ H ₅		CH,	OCH ₂ CH=CH ₂	СН	
H	CH ₂	CH5	CH3	CH3		CH	
H	CH ₂	C ₆ H ₅	CH3	CH ₃	och ₂ cf ₃	CH	
H	CH ₂	C ₆ H ₅	CH3	CH ₃	och ₂ ch ₂ och ₃	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH3	CH(OCH ₃) ₂	CH	
H	CH ₂	C6H5	CH ₃	CH3	1.3-dioxolan-2-yl	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH3	CH ₂ OCH ₃	CH	
H		C ₆ H ₅		Br	OCH ₃	CH	
H				OCH ₂ F		CH	
H		C ₆ H ₅			OCH ₃	CH	
H		C ₆ H ₅		CH ₃	OCH ₂ F	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	CN	CH	
H	CH ₂	C6H5	CH ₃	CH ₃	CH(OCH ₂ CH ₃) ₂	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	SCH ₂ F	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	OCH ₂ CFBrF	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	OCF ₂ CHFCF ₃	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	OCH ₂ CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	NH ₂	CH	

<u>R</u> 1	Ţ	<u>R</u> 6	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.
H	CH ₂	CH ³	CH ₃		NHCH ₃	CH	
н	CH ₂	CH3	CH ₃	CH3	N(CH ₃) ₂	CH	
Н	CH ₂	CH ³	CH ₃	CH ₃	CH ₂ CH ₃	CH	
н	CH ₂	CH ³	CH ₃	CH ³	CF ₃	СН	
Н	CH ₂	CH ₃	CH ₃	CH ₃	sch ₃	СН	
Н	CH ₂	CH ₃	CH ₃	CH ₃	OCH ₂ CH=CH ₂	СН	
н	CH ₂	CH ₃	CH ₃	CH ₃	och ₂ c≘ch ²	СН	
Н	CH2	CH ₃	CH ₃	CH ₃	och ₂ cF ₃	СН	
H.	CH ₂	CH ₃	CH ₃	CH ₃	och ₂ ch ₂ och ₃	CH	
H	CH ₂	CH ₃	CH3	CH ₃	CH(OCH ₃) ₂	CH	
H	CH ₂	CH ₃	CH3	CH ³	1,3-dioxolan- 2-yl	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	CH ₂ OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	Br	och ₃	CH	
H	CH2	CH ₃	CH ₃	OCH ₂ F	OCH3	CH	
H	CH ₂	CH ₃	CH ₃	CF ₃	OCH ₃	CH	
H	CH ₂	CH	CH,	CH	OCH ₂ F	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	CN	CH	
H	CH ₂	CH	CH ₃	CH ₃	CH(OCH ₂ CH ₃) ₂	CH	
H	CH ₂	CH	CH ₃	CH ₃	OCF ₂ CHC1F	CH	
Н	CH2	CH3	CH ₃	CH3	SCH ₂ F	CH	
H	CH2	CH	CH ₃	CH ₃	OCH ₂ CFBrF	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	OCF ₂ CHFCF ₃	CH	
6-CH ₃	C≃O	Н	CH ₃	CH ₃	CH3	CH	
6-CH ₃	C=O	H	CH	CH ₃	OCH ₃	CH	
6-CH ³	C=O	H	CH3	OCH ₃	OCH ₃	CH	
6-CH ₃	C=O	H	CH ₃		OCH ³	CH	
6-CH ₃	C≐O	H	CH ₃	CH ₃		N	•
6-CH ₂	C=O	H	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	C=O	H	CH ₃	CH ³	CH ₃	N	
6-CH ₃	C=0	C ₆ H ₅		CH ₃	CH ₃	СН	

<u>R</u> 1	ī.	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₂		C ₆ H ₅		CH ₃	OCH ₃	CH	
6-CH ₃			_	OCH ₃	_	CH	
6-CH ₃		• •		C1	OCH ₃	CH	
6-CH ₃			CH ₃	CH ₃	OCH ₃	N	
6-CH ₃			CH ₃			N	
6-CH ₃			_	CH ₃	CH ₃	N	
6-CH ₃			н	CH ₃	CH ₃	N	
6-CH ₃			H	CH ₃	OCH ₃	CH	
6-CH ₃		C6H5	H	OCH ₃		CH	
6-CH ₃			H	Cl	OCH ₃	CH	
6-CH ₃		C ₆ H ₅	H	CH3		N	
6-CH ₃		C ₆ H ₅	Н	OCH ₃		N	
6-CH ₃			H	CH ₃	CH ₃	N	
6-CH ₃			CH ₃		CH ₃	CH	
6-CH ₃	C=O	H	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	C=0	H	CH3	OCH ₃		CH	
6-CH ₃			CH ₃	Cl	OCH ₃	CH	
6-CH ₃	C=0	H	CH ₃		OCH ₃	N	
6-CH ₃	C=O	H	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	C=0	H	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	C=0	CH ₃	CH3		CH3	CH	
6-CH ₃	C=0	CH ₃	CH ₃		OCH ₃	CH	
6-CH ₃	C=O	CH ₃	CH ₃	OCH ³	OCH ₃	CH	
6-CH ₃	C=0	CH ₃	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	C=O	CH ₃		CH ₃	OCH ₃	N	
6-CH ₃	C=0		CH3	OCH ₃	OCH ₃	N	
6-CH ₃	C=0	CH ₃				N	
6-CH ₃ .	C=0	CH ₃	H	CH ₃	CH ₃	CH	
6-CH ₃	C=0	CH ₃	H	CH ₃	OCH ₃	CH	
6-CH ₃	C=O	CH ₃	H	OCH ₃	OCH ₃	CH	
6-CH ₃	C=O	CH ₃	H	Cl		CH	
6-CH ₃	C=0	CH ₃	H	CH ₃		N	

$\frac{R_1}{2}$	<u>J</u>	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃		CH ₃	H	OCH ₃	OCH ₃	N	
6-CH ₃		CH ₃	H	CH3	CH ₃	N	
6-CH ₃		н	H	CH ₃	OCH ₃	CH	
_	C=0	н	H	OCH ₃		CH	
_	C=O	н	H	C1	OCH ₃	СН	
6-CH ₃	C=0	н	н	CH ₃		N	
6-CH ₃	C=O	Н	н	осн ₃		N	
6-CH ₃	C=O	Н	H	CH ₃	CH ₃	N	
_		2-pyridyl	CH ₃		CH ₃	CH	
-		2-pyridyl	CH ₃	_		CH	
•		2-pyridyl	CH ₃		_	CH	
-		2-pyridyl			OCH ₃	CH	
•		2-pyridyl	CH ₃		-	N	
6-CH ₃	C=O	2-pyridyl	CH ₃			N	
6-CH ₃	C=O	2-pyridyl	CH ₃		CH ₃	N	
6-CH ₃	C=0	4-C1-C6H5			CH ₃	CH	
_		4-C1-C ₆ H ₅	-		OCH ₃	CH	
_		4-C1-C ₆ H ₅				CH	
_		4-C1-C6H5	_		OCH ₃	CH	
_		4-C1-C6H5	_		OCH ₃	N	
6-CH ₃	C=0	4-C1-C ₆ H ₅	CH ₃			N	
_		4-C1-C6H5	_	_	_	N	
6-CH ₃	C=0	4-C1-C6H5	Н	CH ₃	CH ₃	CH	
6-CH ₃	C=O	2-pyridyl	H	CH ₃	OCH ₃	CH	
6-CH ₃	C=O	2-pyridyl	Ħ	OCH ₃	OCH ₃	CH	
6-CH ₃	C=0	2-pyridyl	H	Ċ1	OCH ₃	CH	
6-CH ₃	C=O	2-pyridyl	H	CH ₃	OCH ₃	N	
6-CH ₃	C=O	2-pyridyl	H	OCH ₃	OCH ₃	N	
6-CH ₃	C=0	2-pyridyl	H	CH ₃	CH ₃	N	
6-Cl	C=O	Н	CH ₃	CH ₃	CH ₃	CH	
6-Cl	C=O	Н	CH ₃		OCH ₃	CH	
6-Cl	C=0	Н	CH3	-	-	CH	

$\frac{R_1}{}$	<u>J</u>	<u>R</u> 6	R ₇	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
	C=0	Н	CH ₃		OCH ₃	CH	
6-Cl	C=O	Н	CH ₃		OCH ₃	N	
6-Cl	C=0	H	CH ₃	och ³	OCH ₃	N	
6-Cl	C=0	Ħ	CH ₃	CH ₃	CH ₃	N	
6-Cl	C=O	C6H5	CH3	CH ₃	CH ₃	CH	
	C=O			CH ₃	OCH ³	CH	
6-C1	C=O	C ₆ H ₅	CH ₃	OCH ³	OCH ₃	CH	
	C=O		•	Cl	OCH3	CH	
6-C1	C=O	C6H5	CH3	CH ₃	OCH ₃	N	
		C ₆ H ₅		OCH ₃	och3	N	
		C6H5	•	CH ₃	CH3	N	
		C ₆ H ₅		сн ₃	CH ₃	СН	
	C=O			CH ₃	OCH ₃	CH	
	C=O	C ₆ H ₅		OCH ₃	OCH ₃	CH	
6-Cl	C=O	C ₆ H ₅	H	Cl	OCH ₃	CH	•
		C ₆ H ₅	H	CH3	OCH ₃	N	
6-Cl	C=O	C ₆ H ₅	H	OCH ₃	OCH ₃	N	
	C=0			CH ₃	CH ₃	N	
6-Cl	C=O			CH ₃	CH ₃	CH	
6-Cl	C=O	-	CH ₃	CH ₃	OCH ₃	CH	
6-C1	C=0		CH ₃	OCH ₃	OCH ₃	CH	
6-Cl	C=O	H	CH ₃	Cl	OCH ₃	CH	
6-Cl	C=0	H	CH ₃	CH ₃	OCH ₃	N	
6-C1	C=O	Н	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	C=O	H	CH ₃	CH ₃	CH ₃	N	
6-Cl	C=O	CH ₃	H	CH ₃	CH ₃	CH	
6-Cl	C=O	CH ₃	H	CH3	OCH ₃	CH	
6-Cl	C=O	CH ₃	H		OCH ₃	CH	•
6-Cl	C=0	CH ₃	CH3		_	CH	
6-Cl	C=O	_	CH ₃		OCH ₃	N	
6-C1	C=O	CH ₃	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	C=0	CH ₃	CH ₃	CH ₃	CH ₃	N	

TABLE Ia (Continued)

$\frac{R_1}{}$	<u>J</u>	R ₆	R ₇	<u>X</u>	Ā	<u>z</u>	m.p.(°C)
6-C1	C=0	CH ₃	H	CH ₃	CH ₃	CH	
6-C1	C=D	н	H	CH ₃	OCH ₃	CH	
6-Cl	C=0	H	H	OCH,	OCH3	СН	
6-C1	C=0	н	H	Cl	OCH3	СН	
6-C1	C=O	н	Н	CH ₃	осна	N	
6-Cl	C=0	н	Н	OCH ₃	OCH3	N	
6-Cl	C=O	H	H	CH3	CH ₃	N	
6-C1	C=O	2-pyridyl	CH ₃	CH3	CH ₃	CH	
6-Cl	C=O	2-pyridyl	CH ₃	CH ₃	осн ³	CH	
6-Cl	C=O	2-pyridyl	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	C=O	2-pyridyl	CH ₃	C1	OCH ₃	CH	
6-C1	C=O	2-pyridyl	CH ₃	CH ₃	OCH ₃	N	
6-Cl	C=0	2-pyridyl	CH ₃		OCH ₃	N	
6-Cl	C=0	2-pyridyl	CH ₃	CH ₃	CH ₃	N	
6-C1	C=0	4-C1- phenyl	CH ₃	CH ₃	CH ₃	СН	
6-Cl	C=0	4-Cl- phenyl	CH3	CH ₃	осн ₃	CH	
6-C1	C=0	4-Cl- phenyl	CH ₃	och ³	och3	CH	
6-Cl	C=0	4-Cl- phenyl	CH ₃	Cl	och ³	CH	
6-C1	C=0	4-C1- phenyl	CH ₃	CH3	och ₃	N	
6-C1	C=0	4-C1- phenyl	CH ₃	och ³	och ₃	N	
6-C1	C=O	4-Cl- phenyl	CH ₃	CH ₃	CH ₃	N	
6-Cl	C=O	2-pyridyl	H	CH ₃	CH ₃	CH	
6-Cl	C=0	2-pyridyl	H	CH ₃	OCH ₃	CH	
6-C1	C=0	2-pyridyl	H	OCH ₃	OCH ₃	CH	
6-C1	C=O	2-pyridyl	Н	Cl	OCH3	СН	
6-Cl	C=O	2-pyridyl	H	CH ₃	OCH ₃	N	
6-C1	C=0	2-pyridyl	H	OCH ₃	OCH ₃	N	

$\frac{R_1}{}$	<u>J</u>	R ₆	<u>R</u> 7	<u>X</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
	C=O	2-pyridyl	H				
5-NO ₂	C=O	н	сн				
5-NO2		н	CH ³				
5-NO2		Н	CH ₃	OCH ₃			
5-NO ₂		H	CH ₃	C1	OCH ₃		
5-NO ₂		H	CH ₃	CH ₃			
5-NO ₂		н	CH,	OCH,	OCH ₃		
5-NO2		н	CH ₃				
5-NO ₂		C ₆ H ₅		CH ₃			
5-NO2			_	CH ₃	_	СН	
5-NO ₂					OCH ₃		
5-NO ₂				Cl			
5-NO ₂				CH ₃		N	
5-NO ₂			CH ₃			N	
5-NO ₂				CH ₃		N	
5-NO ₂			_	CH ₃	CH3	CH	
5-NO ₂				-	осн ₃		
5-NO ₂				осн ₃			
5-NO ₂		-	CH ₃	_	_		
5-NO ₂		=		CH ₃		N	
5-NO ₂		_	CH ₃	OCH ₃	OCH ₃	N	
5-NO2	C=0	CH ₃	CH ₃	CH3	CH ₃	N	
5-SCH ₃		_		CH ₃	CH ₃	CH	
5-SCH ₃	C=0	H				CH	
5-SCH ₃	C=0	H			OCH ₃		
5-SCH ₃	C=0	H	CH_	Cl	OCH	CH	
5-SCH ₃	C=0	H	CH ₃	CH ₃	OCH ₃	N	
5-SCH3	C=0	H	CH ₃	OCH ₃	OCH ₃	N	
5-SCH ₃			CH ₃	CH3	CH ₃	N	
5-SCH ₃	C=O	С ₆ Н ₅	CH ₃	CH ₃	CH ₃	CH	
5-SCH ₃			CH	CHŽ	OCH ₃	CH	
5-SCH ₃					осн		

87

$\frac{R_1}{2}$	<u>J</u>	R ₆	<u>R</u> 7	<u>x</u>	<u>¥</u>	Z m.p.(°C)
5-SCH ₃				Cl		
5-SCH ₃			_			
5-SCH ₃		• •				
5-SCH ₃			_	_	CH ₃	N
5-SCH ₃		CH ₃	CH ₃		CH ₃	СН
5-SCH ₃			CH ₃	CH ₃	осн ₃	СН
5-SCH ₃		CH ₃	CH ₃	OCH ₃	OCH ₃	СН
5-SCH ₃					OCH ₃	
5-SCH ₃		•	CH ₃			
5-SCH ₃		CH ₃	CH ₃	OCH ₃	OCH ₃	
5-SCH ₃	C=O	CH ₃	CH ₃		CH ₃	N
_	C=O	Н	CH ₃	CH ₃	CH ₃	СН
6-F	C=O	H	CH ₃		OCH ₃	СН
6-F	C=O	H	CH ₃		OCH ₃	CH
6-F	C=0	H	CH ₃		OCH ₃	СН
6-F	C=O	Н	CH ₃	CH ₃		N
6-F	C=O	Н	CH ₃	OCH ³		N
6-F	C=0	Н	CH ₃	CH ₃	CH3	N
5-F	C=O	C ₆ H ₅			CH ₃	CH
5-F	C=O				OCH ₃	CH
5-F	C=0	C ₆ H ₅	CH ₃	OCH ₃	OCH ₃	
5-F	C=0			Cl	OCH ₃	CH
5-F	C=0	C6H5			OCH ₃	N
5-F	C=0	C ₆ H ₅	CH3	OCH ₃	OCH ₃	N
5-F	C=0	C6H5	CH3	CH ₃	CH ₃	N
6-F	C=O	C ₆ H ₅	CH ₃	CH ₃	CH ₃	СН
6-F	C=O	CH3		CH ₃	OCH ₃	CH
6-F	. C=0	CH ₃	CH3	OCH ₃		
6-F	C=0	3	CH3	ci	OCH ₃	СН
6-F	C=O		CH3	CH ₃	OCH ₃	N
6-F	C=O		CH ₃	OCH ₃	OCH ₃	N
6-F	C=O		CH2	CH ₃	CH ₂	N

$\frac{R_1}{2}$	7	R ₆	R ₇	<u>x</u>	v	7	(97)
	Ţ			Δ	Ā	<u>z</u>	m.p.(°C)
H	so ₂	CH2CH2CH3	H	OCH ₃	OCH ₃	CH	244-247
H	so ₂	CH2CH2CH3	H	CH ₃	OCH ₃	CH	
H	so ₂	CH2CH2CH3	H	Cl	OCH ₃	CH	245-250
H	so ₂	CH ₂ CH ₂ CH ₃	H	OCH ₃	OCH ₃	N	213-216
H	so ₂	CH2CH2CH3	H	CH3	OCH ₃	N	210-212
H	so ₂	CH ₂ C ₆ H ₅	H	OCH ₃	OCH ₃	CH	214-216
H	so ₂	CH ₂ C ₆ H ₅	H	CH ₃	ocH ³	CH	227-231
H	so ₂	CH ₂ C ₆ H ₅	H	CH ₃	CH ₃	CH	237-243
H	so ₂	CH ₂ C ₆ H ₅	H	OCH ₃	OCH ₃	N	221-225
H	so ₂	CH ₂ C ₆ H ₅	H	CH ₃	OCH ₃	N	237-243
H	so ₂	3-F-C ₆ H ₅	H	OCH ₃	OCH ₃	CH	208-210
H	so ₂	3-F-C ₆ H ₅	H	CH ₃	OCH ₃	CH	215-220
H	so ₂	CH ₂ C ₆ H ₅	H	Cl	OCH	CH	202-205

TABLE 1b
General Formula 1b

$\frac{R_1}{}$	<u>J</u>	R ₆	<u>x</u> 1	<u> Y </u>	m.p.(°C)
н	C=0	н	CH ₃	0	
Н	C=0	Н	OCH ₃	0	
H	C=0	H	ос ₂ н ₅	0	
H	C=O	н	OCF ₂ H	0	
H	C=O	CH ₃	CH ₃	0	
H	C=0	CH ₃	осн ₃	0	
H	C=O	CH	ос ₂ н ₅	0	
H	C=O	CH ₃	ocf ₂ H	0	
H	C=0	C6H5	CH ₃	0	
H ·	C=O	C6H5	OCH ₃	0	
H	C=O	C ₆ H ₅	oc ₂ H ₅	0	
H	C=0	C ₆ H ₅	OCF ₂ H	0	
H	C=0	CH ₃	CH ₃	CH ₂	
H	C=0	CH ₃	осн ₃	CH ₂	
H	C=O	CH ₃	OC2H5	CH2	
H	C=0	CH ₃	ocf ₂ h	CH ₂	
H	C=0	C ₆ H ₅	CH ₃	CH ₂	
H	C=0	C ₆ H ₅	OCH ₃	CH ²	
H	C=O	C ₆ H ₅	OC2H5	CH ₂	
H	C=O	C ₆ H ₅	ocf ₂ h	CH ₂	
H	so ₂	H	CH ₃	0	
H	so ₂	H	OCH ₃	0	
Н	so ₂	H	oc ₂ H ₅	0	
Н	so,	H	OCF ₂ H	0	
Н	so_2	CH ₃	CH ₃	0	
H	so ₂	CH ₃	OCH ₃	0	
Н	so ₂	CH ₃	ос ₂ н ₅	0	
H	so ₂	CH ₃	OCF ₂ H	.0	
H	so ₂	C ₆ H ₅	CH ₃	0	
H	so ₂	C6H5	OCH ₃	0	
Н	so ₂	C ₆ H ₅	ос ₂ н ₅	0	

$\frac{R_1}{}$	<u>J</u>	R ₆	$\underline{x}_{\underline{1}}$	<u>Y</u> 1	m.p.(°C)
H	so ₂	C ₆ H ₅	OCF ₂ H	0	
H	so ₂	CH ₃	CH3	CH ₂	
H	so ₂	CH ₃	OCH	CH ₂	
H	so ₂	CH ₃	OC ₂ H ₅	CH ₂	
H	so ₂	CH ₃	OCF ₂ H	CH ₂	
H	so ₂	C ₆ H ₅	CH ₃	CH ₂	
H	so ₂	C ₆ H ₅	OCH ₃	CH ₂	
H	so ₂	C ₆ H ₅	OC ₂ H ₅	CH ₂	
H	so ₂	C ₆ H ₅	OCF ₂ H	CH ₂	

•

TABLE IC
General Formula IC

$\frac{R_1}{}$	<u>J</u>	R ₆	$\underline{x_1}$	m.p.(°C)
Н	C=O	Н	CH ₃	
H	C=O	Н	OCH ₃	
Н	C=O	H	ос ₂ н ₅	
H	C=O	H	ocr ₂ H	
Н	C=0	CH ₃	CH ₃	
H	C=O	CH ₃	осн ₃	
Н	C=0	CH ₃	oc ₂ H ₅	
Н	C=O	CH ₃	ocf ₂ H	
H	C=O	C6H5	CH ₃	
H	C≃O	C ₆ H ₅	OCH ₃	
H	C=O	C ₆ H ₅	oc ₂ H ₅	
H	C=O	C ₆ H ₅	OCF ₂ H	
Н	so ₂	CH ₃	CH ₃	
H	so ₂	CH ₃	OCH ₃	
H	so ₂	CH ₃	OC2H5	
Н	so ₂	CH ₃	OCF ₂ H	
H	so ₂	С ₆ Н ₅	CH ₃	
H	so ₂	C6H5	OCH ₃	
H	so ₂	C ₆ H ₅	OC ₂ H ₅	
Н	so ₂	C ₆ H ₅	OCF ₂ H	

40 ,

TABLE Id General Formula Id

	R ₁	<u>J</u>	<u>R</u> 6	<u>x</u> 1	<u>Y</u> 2	m.p.(°C)
5	H	C=0	H	CH ₃	CH ₃	
	H	C=O	Н	осн ³	CH ₃	
	н	C=O	H	oc ₂ H ₅	CH ₃	
	H	C=0	Н	OCF ₂ H	CH ₃	
	H	C=O	CH ₃	CH ₃	H	
10	H	C=O	CH ₃	OCH ³	H	•
	H	C=O	CH ³	oc ₂ H ₅	H	
	H	C=O	CH ₃	ocf ₂ H	H	
	H	C=O		CH ₃	H	
	H	C=0	C ₆ H ₅	OCH ₃	H	
15	H	C=O	C6H5	oc ₂ H ₅	H	
	H	C=0	C6H5	OCF ₂ H	H	
	H	so ₂	CH ₃	CH ₃	CH ₃	
	H	so ₂	CH ₃	OCH ₃	CH ₃	
	H	so ₂	CH ₃	oc ₂ H ₅	CH ₃	
20	H	so ₂	CH ₃	OCF ₂ H	CH ₃	
	H	so ₂	C6H5	CH ₃	H	
	H	so ₂	C6H5	OCH ₃	H	
	H	so ₂	C6H5	oc ₂ H ₅	H	
	H	so ₂	C6H5	ocf ₂ H	H	
25						

TABLE Ie General Formula Ie

$\frac{R_1}{2}$	ī	<u>R</u> 6	<u>x</u> 2	<u>Y</u> 3	m.p.(°C)
H	C=0	— С ₆ Н ₅	CH ₃	CH ₃	<u></u>
Н	C=O	C ₆ H ₅	OCH ³	CH ₃	
н	C=0	C ₆ H ₅	scH ₃	CH ₃	
Н	C=O	6 5 H	CH ₃	с ₂ н ₅	
Н	C=O	н	OCH ₃	C ₂ H ₅	·
н	C=0	Н	SCH ₃	C ₂ H ₅	
Н	C=0	CH ₃	CH ₃	CH ₂ CF ₃	
Н	C=0	CH ₃	ocH ₃	CH ₂ CF ₃	
Н	C=0	CH ₃	SCH ₃	CH ₂ CF ₃	
H	C=O	H	CH ₃	CH ₃	
H	C=0	Н	OCH ₃	CH ₃	
Н	C=0	Н	sch ₃	CH ₃	
H	C=0	CH ₃	CH ₃	с ₂ н ₅	
H	C=O	CH ₃	OCH ₃	C ₂ H ₅	
. н	C=O	CH ₃	sch ₃	C ₂ H ₅	
H	C=O	C6H5	CH ₃	CH ₂ CF ₃	
H	C=O	C ₆ H ₅	OCH ₃	CH ₂ CF ₃	
H	C=O	C ₆ H ₅	SCH ₃	CH ₂ CF ₃	
H	C=0	СН ₃	CH3	CH ₃	
Н	C=0	CH ₃	OCH ₃	CH ₃	
H	C=0	CH ₃	scH ₃	CH ₃	
H	C=0	C6H5	CH3	C2H5	
H	C=0	C ₆ H ₅	OCH ₃	с ₂ н ₅	
H	C=0	C6H5	SCH ₃	C ₂ H ₅	
H	C=0	H	CH ₃	CH ₂ CF ₃	
H	C=0	H	OCH ₃	CH2CF3	
H	C=O	H	SCH ₂	CH, CF,	
H	so ₂	C6H5 C6H5	CH3	CH3	
H	so ₂	C ₆ H ₅	OCH ₃	CH ₃	
H	so ₂	C ₆ H ₅	SCH ₃	CH ³	
				-	

$\frac{R_1}{2}$	<u>J</u>	<u>R</u> 6	<u>x</u> 2	<u>Y</u> 3	m.p.(°C)
H	so ₂	H	CH ₃	C2H5	
H	so ₂	H	OCH ₃	с ₂ н ₅	
H	so ₂	H	SCH ₃	с ₂ н ₅	
H	so ₂	CH ₃	CH ₃	CH ₂ CF ₃	
H	so ₂	CH ₃	OCH ₃	CH ₂ CF ₃	
H	so ₂	CH ₃	SCH ₃	CH ₂ CF ₃	
H	so ₂	H	CH ₃	CH ₃	
H	so ₂	H	OCH ₃	CH ₃	
H	so ₂	H	SCH ₃	CH ₃	
H	so ₂	CH ₃	CH ₃	C2H5	
H	so ₂	CH ₃	OCH ₃	с ₂ н ₅	
н	so ₂	CH ₃	SCH ₃	с ₂ н ₅	
H	so ₂	C6H5	CH ₃	CH ₂ CF ₃	
H	so ₂	C6H5	OCH ₃	OH ₂ CF ₃	
H	so ₂	C6H5	sch ₃	CH ₂ CF ₃	
H	so ₂	CH ₃	CH ₃	CH ₃	
H	so ₂	CH ₃	OCH ₃	CH ₃	
H	so ₂	CH ³	SCH ₃	CH ₃	
H	so ₂	C6H5	CH ₃	с ₂ н ₅	
H	so ₂	C ₆ H ₅	OCH ₃	с ₂ н ₅	
Н	so ₂	с ₆ н ₅	SCH ₃	с ₂ н ₅	

TABLE If
General Structure If

<u>R</u> 1	J (R ₆	\overline{x}^3	m.p.(°C)
Н	C=0	н	CH ₃	
H	C=0	Н	OCH ₃	
H	C=O	CH ₃	CH ₃	
H	C=O	CH ₃	OCH ₃	
H	C=O	C6H5	CH ₃	
H	C=O	C ₆ H ₅	OCH ₃	
H	so ₂	н	CH ₃	
H	so ₂	Н	OCH ₃	
H	so ₂	CH ₃	CH ₃	
H	so ₂	CH ₃	OCH ₃	
H	so ₂	C6H5	CH ₃	
н	so ₂	C ₆ H ₅	OCH ₃	

TABLE Iq

General Structure Iq

$\frac{R_1}{}$	<u>G</u>	<u>J</u>	R ₆	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	C=0	H		CH ₃		
H			H		OCH ₃		
H			н		_		
H	_		H	-	•		
H	_		H		_		
H	CH ₂	C=O	H	OCH ₃			
H	_	C=O		CH ₃	CH ₃		
H	CH ₂	C=O	H	CH ₃	_		
H			H	***	осн ₃	CH	
H	CH ₂	C=O	H		•		
H	CH ₂	C=0	H		•		
H	CH ₂	C=O	Ħ	CH ₃	OCH ₃		
H	CH ₂	C=0	H		-		
H			H		CH ₃		
H	CH ₂	C=O	H				
H	CH ₂	C=0	H	CH ₃			
H				OCH ₃			,
H	CH ₂	C=O	H	Cl	-		
H	CH ₂	C=0	CH ₃	CH ₃	осн ₃	N	
H	CH ₂	C=O	CH ₃	CH ₃	CH ₃		
H	CH ₂	C=O	CH ₃	OCH ₃	OCH ₃	N	

TABLE Ih

General Structure Ih

$\frac{R_1}{}$	<u>G</u>	<u>R</u> 6	<u>R₇</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
Н	CH ₂	H			CH ₃		
н	CH ₂	H			och ₃		
н	CH ₂				OCH ₃		
H	CH ₂	н	CH ₃	Cl	OCH ₃	CH	
H	CH ₂				OCH ₃		
н	CH ₂	H	CH2	OCH,	OCH ₃	N	
Н		H	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH,	CH,	CH	
H		CH3					
Н		CH ₃	_	-	-		
н		CH ₃					
Н		CH ₃			OCH ₃		
н	_	CH ₃	-	•	-		
Н		CH ₃					
H	CH ₂	C6H5	CH ₃	CH ₃	CH ₃	CH	
н		C ₆ H ₅					
H		C ₆ H ₅					
H	CH ₂	C ₆ H ₅	CH ₃	Cl	OCH ₃	CH	
H		C6H5					
H		C ₆ H ₅					
H	CH ₂	C6H5	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	н	H	CH ₃	CH ₃	CH	
H	CH ₂	H	H		OCH ₃	CH	
H	CH ₂	H	H	OCH ₃	OCH ₃	CH	
H	CH ₂	H	Н	Cl	OCH ₃	CH	
H	CH ₂	H	H	CH ₃	OCH ₃	N	
H	CH ₂		H	OCH ₃	OCH ³	N	
H	CH ₂	H	H	CH3	CH3	N	
H	CH ₂	С ₆ Н ₅	H	CH3	CH ₃	CH	
Н		C ₆ H ₅		CH ₃	OCH ₃	CH	
Н		C ₆ H ₅		OCH ₃	och ³	CH	

R ₁	<u>G</u>	<u>R</u> 6	R ₇	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂	<u></u> С ₆ Н ₅		<u></u> Cl	OCH ₃	CH	ш.р.(С)
H	CH ₂				-		
Н	CH ₂	С ₆ Н ₅ С ₆ Н ₅		CH ₃	OCH OCH	N	
Н	CH ₂	C ₆ H ₅		OCH ³	OCH ³	N	
6-C1		CH ₃		CH ₃	CH ₃	СН	
6-C1		CH ₃	H	CH ₃	CH ₃		
6-C1		CH ₃	H	OCH ₃	осн ₃		
6-C1		CH ₃	H	C1		CH	
6-Cl	/.	CH ₃	H	CH ₃	och ₃	N	
6-C1		CH ₃		OCH ₃	OCH ₃	N	
6-C1		C ₆ H ₅		CH ₃	CH ₃		
6-C1	CH_	C ₆ H ₅		CH ₃	OCH ₃	СН	
6-C1	CH_	C ₆ H ₅		OCH ₃	OCH ₃	СН	
6-Cl	CH ₂	C ₆ H ₅			OCH ₃	CH	
6-Cl		6 5 C ₆ H ₅			OCH ₃	N	
6-Cl		C ₆ H ₅			OCH ₃	N	
H	CH ₂ CH ₂		CH ₃		CH ₃	СН	
H	CH ₂ CH ₂		CH ₃				
Н	CH ₂ CH ₂		CH ₃				
Н	CH ₂ CH ₂		CH ₃	Cl ·		CH	
H	CH ₂ CH ₂		CH ₃			N	
H	CH ₂ CH ₂		CH ₃			N	
H	CH ₂ CH ₂		CH ₃	CH ₃	CH ₃	N	
H	CH ₂ CH ₂		CH3	CH ₃		СН	
H	CH ₂ CH ₂		CH ₃	CH3	OCH ₃	CH	
H	CH ₂ CH ₂				OCH,	CH	
H	CH ₂ CH ₂	CH ₃	СН ^З	Cl	OCH3	СН	
H	CH ₂ CH ₂	CH3	CH3	CH ₃	OCH ₃	N	
H	CH ₂ CH ₂	CH ₃	CH ³	OCH	OCH	N	
H	CH ₂ CH ₂	CH ₃	CH ₃	CH	CH ₃	N	
	CH ₂ CH ₂					CH	
H	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH ₃	och ₃	СН	

$\frac{R_1}{R_1}$	<u>G</u>	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂			OCH ₃			
Н	CH ₂ CH ₂		CH ₃	-	OCH ₃		•
Н			_	CH ₃	OCH ₃	N	
н	CH ₂ CH ₂			OCH ₃		N	
Н	CH ₂ CH ₂		•		CH ₃	N.	
н	CH ₂ CH ₂		H	CH ₃	CH ₃	СН	
Н	CH ₂ CH ₂		H	CH ₃	осн _з		
H	CH ₂ CH ₂		H	och ₃	OCH ₃		
H	CH ₂ CH ₂		H	Cl	OCH ₃		
Н	CH ₂ CH ₂		H	CH ₃	OCH ₃		
H	CH ₂ CH ₂		Н	осн ₃	OCH ₃	N	
H	CH ₂ CH ₂		H	CH3	CH ₃	N	
Н	CH ₂ CH ₂			CH ₃	CH ₃	CH	
H	CH ₂ CH ₂			CH ₃	och ₃	CH	
H	CH ₂ CH ₂			OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂			Cl	OCH ₃	СН	
H	CH ₂ CH ₂			CH ₃			
H	CH2CH2			осн ₃	OCH ₃	N	
Н	CH2CH2	C ₆ H ₅	H	CH ₃	CH ₃	N	
6-Cl	CH ₂ CH ₂	CH ₃	H	CH ₃	CH ₃	СН	
6-C1	CH2CH2	CH ₃	H	CH ₃	осн ₃	CH	
6-Cl	CH2CH2	CH ₃		OCH ₃	осн ₃	CH	
6-Cl	CH ₂ CH ₂	CH ₃		Cl	осн ₃	CH	
6-Cl	CH ₂ CH ₂	CH ₃		CH ₃		N	
6-C1	CH ₂ CH ₂	CH ₃	H	OCH ₃	осн ₃	N	
6-Cl	CH ₂ CH ₂	C ₆ H ₅	H	CH ₃	CH ₃	CH	
6-C1	CH ₂ CH ₂	C ₆ H ₅	н	СН ^З	OCH ₃	CH	
6-C1	CH ₂ CH ₂	C ₆ H ₅	H	OCH ₃	OCH ₃	CH	
6-Cl	CH ₂ CH ₂	C ₆ H ₅	H	Cl	OCH ₃		
	CH ₂ CH ₂				OCH ₃	N	
	CH ₂ CH ₂			•	OCH ₃	N	
H	CH=CH		CH ₃	_	CH,	CH	

R ₁	<u>G</u>	R ₆	R ₇	<u>X</u>	¥	<u>z</u>	m.p.(°C)
H	. CH=CH				OCH ³		<u></u>
Ħ	CH=CH		CH _o	OCH_	OCH ₃	СН	
Н					OCH ₃		
Н	CH=CH				OCH ₃		
н	CH=CH				OCH ₃		
Н	CH=CH		CH ₃		•		
	CH=CH		-	_	CH ₃		
	CH=CH	3			OCH ₃		
	CH=CH	3	CH ₂	OCH_	OCH ₃	CH	
	CH=CH	3	CH ₃		OCH ₃		
H		3	_		OCH ₃		
H	CH=CH	3			OCH ₃		
H	CH=CH	3		CH ₃			
	CH=CH	3			CH ₃	CH	
H	CH=CH	C_H_	CH ₂	CH ₂	OCH,	CH	
	CH=CH						
H	CH=CH	C ₆ H ₅	CH ₃	Cl	OCH ₃		
H	CH=CH	C ₆ H ₅	CH3	CH2	OCH ₃		
H	CH=CH	C ₆ H ₅	CH3	och,	OCH,		
	CH=CH						
	CH=CH		н		CH3	CH	
H	CH=CH	H	H		OCH ₃		
H	CH=CH	Н	H				
H	CH=CH	H	H	Cl	OCH ₃		
H	CH=CH	H	H	CH3	осн ₃	N	
Н	CH=CH	H		OCH ₃	OCH ₃	N	
Н	CH=CH	H	H	CH3	CH ₃	N	
H	CH=CH	C ₆ H ₅	H	CH3	CH ₃	CH	
Н	CH=CH			CH ₃		CH	
H	CH=CH			осн ₃		CH	
H	CH=CH			Cl	OCH ₃	CH	
H	CH=CH		H	CH ₃	OCH ₃	N	•

$\frac{R_1}{2}$	<u>G</u>	R ₆	R ₇	<u>X</u>	<u>Y</u>	<u>z</u> .	m.p.(°C)
н	CH=CH	C6H5	Н	OCH ₃	OCH ₃	N	
Н	CH=CH	C6H5	Н	CH ₃	CH3	N	
6-Cl	CH=CH	CH3.	H	CH ₃		СН	
6-C1	CH=CH	CH ₃	н	CH3		СН	
6-Cl	CH=CH	CH ₃	н	-	осн3	CH	
6-C1	CH=CH	CH ₃	Н	C1	OCH ₃	СН	
6-Cl	CH=CH	CH ₃	Н	CH3	OCH ₃	N	
6-C1	CH=CH	CH ₃	Н		_	N	
6-C1	CH=CH	C ₆ H ₅	Н	CH ₃	CH ₃	CH	
6-C1	CH=CH	C ₆ H ₅	Н	CH ₃	OCH ³	CH	
6-C1	CH=CH	C6H5	H	OCH ₃	OCH ₃	CH	
6-C1	CH=CH	C6H5	H	Cl	OCH ₃	CH	
6-C1	CH=CH	C6H5	H	CH ₃	OCH ₃	N	
6-C1	CH=CH	C ₆ H ₅	H	OCH ₃	-	N	
H	CH ₂	CH ₃	Н	_		CH	
H	CH ₂	CH ₃	H	OCH ₃	CH ₃	CH	
H	CH ₂	CH ₃	H	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃	Н	OCH ₃	Cl ₃	CH	
H	CH ₂	CH ₃	H	OCH ₃	OCH ₃	N	
н	CH ₂	CH ₃	H	OCH ₃	CH ₃	N	
H	CH ₂ CH ₂	CH ³	H	OCH ₃	OCH ₃	CH	221-223(d)
H	CH ₂ CH ₂	CH ₃	Н	OCH ₃	CH3	CH	
H	CH ₂ CH ₂	_	H	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂		н	OCH ₃	Cl ₃	CH	
H	CH ₂ CH ₂	CH ₃	H	OCH ₃	CH ₃	N	
Н	CH ₂ CH ₂	CH ₃	Н	OCH ₃	OCH ₃	N	
H	CH=CH	CH ₃	H	OCH ₃	OCH ₃	CH	•
H	CH=CH	CH ₃	Н	осн ₃	CH3	CH	
H	CH=CH	CH ₃	H	CH ₃	CH ₃	CH	
Н	CH=CH	CH ₃	н	OCH ₃	Cl ₃	CH	
Н	CH=CH	CH ₃	Н	OCH ₃	OCH ₃	N	
Н	CH=CH	CH3	Ħ	OCH ₃	CH3	N	

TABLE 2a General Formula 2a

<u>R</u> 1	<u>J</u>	<u>W'</u>	R ₉	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
<u>—=</u> Н			H		CH ₃		<u></u>
	C=O			3	OCH ₃		
	C=0				OCH ₃		
	C=0			Cl	OCH ₃	CH	
	C=0				OCH ₃		
	C=0				OCH ₃	N	
	C=0			_			
			CH ₃	CH_	OCH.	СН	
	C=0		CH_	OCH_	OCH ₃	CH	
	C=0				OCH ₃		
	C=0				OCH ₃		
	C=O				OCH ₃		
	C=O				OCH ₃		
н				CH ₃		N	
H	C=O	0	_	_	CH ₃		
H	C=O	0	C ₆ H ₅				
н	C=O	0			OCH ₃		
н	C=O	0	с ₆ н ₅	_	OCH ₃		
Н			C ₆ H ₅		_		
			C ₆ H ₅				
	C=O		C ₆ H ₅				
H	C=O			CH3	CH ₃	CH	
H	C=O	S			OCH ₃	CH	
H	C=0	S	H	OCH ₃	OCH ₃	CH	
H	C=O	S	H.	Cl	OCH ₃	CH	
H	C=0	s	H	CH ₃	OCH ₃	N	
	C=O		H	OCH	OCH	N	
Н	C=0	S	H	CH ₃	CH ₃	N	
H	C=O	S	CH ₃	CH ₃	CH ₃	CH	
H	C=O	S		CH ₃		CH	
	C=0		CH ₃		OCH ₃	CH	

$\frac{R_1}{1}$	<u>J</u>	<u>W '</u>	R ₉	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H		S					
H		s	CH ₃	CH	OCH ₃		
H	C=0	s		och ₃			
H	C=O	s		CH ₃	CH ₃		
H	C=O	s	C ₆ H ₅	CH ₃	CH ₃	СН	
H	C=0	s	C ₆ H ₅	CH3	осн ₃	СН	
Н	C=0	s		OCH ₃	осн ₃		
н	C=0	S	С ₆ Н ₅	Cl	_		
Н	C=0	s	С ₆ Н ₅		J	N	
H	C=O	S	С ₆ Н ₅	осн _з		N	
H	C=O	S	с ₆ н ₅	_	CH ₃	N	
Н	CH ₂	0	CH ₃	CH3		CH	
H	CH ₂	0	CH ₃	CH ₃	осн ₃	CH	
H	CH ₂		CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	0	CH3	Cl	_		
H	CH ₂	0	CH ₃	CH ₃			
H	CH ₂	0	CH ₃	OCH ₃	och ³	N	
H	CH ₂	0	CH ₃		CH ₃	N	
H	CH ₂	S	CH ₃	CH ₃	CH ₃		
H	CH ₂	S	CH ₃	CH ₃	OCH ₃	CH	
Н	CH ₂	S	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	S	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	S	CH ₃	CH3	och ₃	N	
H	CH ₂	S	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	S	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	S	C6H5	CH ₃	CH ₃	CH	,
H	CH ₂	S	C ₆ H ₅	CH ₃	OCH	CH	,
H	CH ₂	S	C6H5	осн ₃	OCH ₃	CH	
H	CH ₂	S	C6H5	Cl	OCH ₃	CH	
H	CH ₂	S	C6H5	CH ₃	OCH ₃	N	
H	CH ₂	S	C6H5	OCH ₃	OCH ₃	N	
H	CH ₂	S	^C 6 ^H 5	CH ₃	CH ₃	N	

$\frac{R_1}{}$	<u>J</u>	W ·	R ₉	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	so ₂	0	н	CH ₃			
H	so ₂	0	H	CH3	OCH ₃	CH	
H	so ₂	0	H	OCH ₃	OCH ₃		
H	so ₂	0	H	Cl	осн ₃		
H	so ₂	0	H	CH ₃			
H	so ₂	0	H	осн ₃	OCH ₃		
H	so ₂	0	H	CH ₃	CH ₃	N	
H	so ₂	S	H	CH ₃	CH ₃	CH	
H	so ₂	S	H	CH ₃	осн ₃	СН	
Н	so ₂	S	H	осн ₃	осн ₃	CH	
H	so ₂	S	H	Cl	осн ₃		
H	so ₂	S	H	CH ₃		N	
H	so ₂	S	H	OCH ₃		N	
H	so ₂			CH ₃	CH ₃	N	
H	so ₂		CH ₃ .	CH ₃	CH3	CH	•
H	so ₂	S	CH ₃	CH ₃	OCH ₃	CH	
H	so ₂	S	CH ₃			CH	
H	so ₂	S	CH ₃	Cl	OCH ₃	CH	
H	so ₂	S	CH ₃	CH ₃	OCH ₃	N	
H	so ₂	S	CH ₃	OCH ₃	OCH ₃	N	
H	so ₂	S	CH ₃	CH ₃	CH ₃	N	
H	0	0	CH ₃	CH ₃	CH ₃	CH	
H	0	0	CH ₃	CH ₃	OCH ₃	CH	
H	0	0	CH ₃	OCH3	och ₃	CH	
H	0	0	CH ₃	Cl			
H	0	0	CH ₃	CH3	OCH ₃	N	
H	0	0	CH ₃	OCH ³	OCH ₃	N	
H	0	0	CH ₃	CH ₃	CH ₃	N	
H	0	S	3	CH ₃ .	CH ₃	CH	
H	0	S	CH ₃	CH ₃	OCH ₃	CH	
H	0	S	CH ₃	OCH ₃	OCH ₃	CH	
H	0	S	CH ₃	Cl	OCH ₃	CH	

$\frac{\mathtt{R_1}}{}$	<u>J</u>	W	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
Н	Ø	S			OCH ₃		
Н	0	S	CH3	OCH3		N	
Н	0	S	CH ₃	CH ₃	CH ₃	N	
Н	0	S	С ₆ Н ₅	CH	CH ₃	СН	
Н	0	s	C ₆ H ₅		OCH ₃	СН	
H	0	S	C ₆ H ₅	-			
H	0	S	С ₆ Н ₅	_			
н	0	S	C ₆ H ₅	CH ₃	OCH ₃	N	
Н	0	s		OCH ₃	осн ₃	N	
Н	0	S	С ₆ Н ₅	-			
6-C1	C=O	0	н	CH ₃	CH ₃	СН	
6-C1	C=O	0	H	CH ₃	осн ₃	CH	
6-Cl	C=O	0	Н	осн _з			
6-C1	C=O	0	H .	Cl	OCH ₃		
6-Cl	C=O	0		CH3 .			
£-C1	C=O	0	H	OCH ₃			
6-C1	C=0	0	H	CH ₃	CH3		
6-CH ₃	C=0	O ,	CH ₃	CH ₃			
6-CH ₃	C=O	0	CH ₃	_	OCH ₃		
6-CH ₃	C=O	0	CH ₃		_		
6-CH ₃	C=O	0	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	C=O	0	CH ₃		OCH ₃		
6-CH ₃	C=O	0	CH ₃	CH3			
6-CH ₃	C=O	0	C ₆ H ₅	CH ₃	CH ₃	CH	
6-CH ₃	C=O	0	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-CH ₃	C=0	0	C ₆ H ₅		OCH ₃		
6-CH ₃	C=O	0		Cl			
6-CH ₃	C=0	0	C ₆ H ₅	CH ₃	OCH ₃	N	
6-CH ₃	C=0	0			OCH ₃	N	
6-CH ₃	C=0		C ₆ H ₅	CH ₃	CH ₃	N	
5-NO ₂	C=0		Н	CH ₃	CH ₃	CH	
5-NO2	C=O	s	H	CH,	OCH,	CH	

$\frac{R_1}{}$	<u>J</u>	M,	R ₉	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
5-NO ₂	C=O	s	н	OCH ₃	OCH ₃		
5-NO ₂	C=O	S	н	Cl	OCH ₃		
5-NO ₂	C=O	S	Н	CH ³	OCH ₃	N	
5-NO ₂	C=O	s	H	OCH ₃		N	
5-NO ₂	C=O	S	H	CH3	CH3	N	
5-SCH ₃	C=O	s	CH ₃	CH ₃	CH ₃	CH	
5-SCH ₃	C=O	S	CH ₃	CH ₃	OCH ₃	CH	
5-SCH ₃	C=O	S	CH3	осн	осн ₃	CH	
5-SCH ₃	C=0	S	CH ₃	Cl	OCH ₃	CH	
5-SCH ₃	C=0	S	CH3	CH ₃		N	
5-SCH ₃	C=O	S	CH ₃	осн _з		N	
5-SCH ₃	C=0	S	CH ₃	CH3	CH3	N	
5-NO ₂	C=0	S	C6H5		CH ₃	CH	
5-NO ₂	C=O	S	C ₆ H ₅		OCH ₃	CH	•
5-NO ₂	C=0	s	C ₆ H ₅	OCH ₃	OCH ₃	CH	
5-NO ₂	C=0	s	C ₆ H ₅	Cl	OCH ₃	CH	
5-NO ₂	C=0	S	C ₆ H ₅		OCH ₃	N	
5-NO ₂	C=O	S	C ₆ H ₅	OCH ₃	OCH ₃	N	
5-NO ₂	C=0	S	C ₆ H ₅		CH ₃	N	
6-Cl	CH ₂	0	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH ₂	0	CH ₃	CH ₃	OCH ₃	CH	
6-C1	CH ₂	0	CH ₃	OCH ₃		CH	
6-C1	CH ₂	0	CH ₃	Cl	OCH ₃	CH	
6-C1	CH ₂	0	CH ₃	CH3	OCH ₃	N	
6-C1	CH ₂	0	CH ₃	OCH ₃	OCH	N	
6-Cl	CH ₂	0	CH ₃	CH ₃	CH3	N	
6-C1	CH ₂	S	CH ₃	CH ₃	CH3	CH	
6-C1	CH ₂	S	CH ₃	CH ₃	OCH ₃	CH	
6-Cl	CH ₂		CH ₃	OCH ₃		CH	
6-C1	CH ₂	S	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH ₂	S	CH3	CH ₃	OCH ₃	N	
6-C1	CH ₂	S	CH3	OCH ³	OCH ₃	N	

R ₁	<u>J</u>	<u>W '</u>	R ₉	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-C1	CH ₂	S	CH ₃	CH ₃	CH ₃	N	
6-C1	CH ₂	S	C ₆ H ₅	_	CH ₃	СН	
6-C1	CH ₂	S	C ₆ H ₅		осн ₃	CH	
6-Cl	CH ₂	S	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-C1	CH ₂		С ₆ Н ₅	Cl 3	OCH ₃	CH	
6-Cl	CH ₂	S	C ₆ H ₅	CH ₃		N	
6-C1	CH ₂	S	C ₆ H ₅		OCH ₃	N .	
6-C1	CH ₂	S	C ₆ H ₅	CH ₃	CH ₃	N	
6-CH ₃	so ₂	0	н	CH ₃	CH ₃	CH	
6-CH ₃	so ₂	0	H	CH ₃	OCH ₃	CH	
6-CH ₃	so ₂	0	Н	осн ₃		CH	
6-CH ₃	so ₂	0	H	Cl	OCH ₃	CH	
6-CH ₃	so ₂	0	Н	CH ₃	OCH ₃	N	
6-CH ₃	so ₂	0	H	OCH ₃		N	
6-CH ₃	so ₂	0	H	CH ₃	CH ₃	N	
6-CH ₃	so ₂	S	Н	CH ₃	CH ₃	CH	
6-CH ₃	so ₂	S	H	CH ₃	OCH ₃	CH	
6-CH ₃	so ₂	S	Н	OCH ₃	OCH ₃	CH	
6-CH ₃	so ₂	S	H	Cl .	OCH ₃	CH	
6-CH ₃	so ₂	s	H	CH ₃	och ₃	N	
6-CH ₃	so ₂	S	H	OCH ₃	OCH ₃	N	
6-CH ₃			H	CH ₃	CH ₃	N	
5-NO ₂	so ₂	S	CH ₃	CH ₃	CH ₃	CH	
5-NO ₂	so ₂	S	CH ₃	CH ₃	OCH ₃	CH	
5-NO2	so ₂	S	CH ₃	OCH ₃	OCH ₃	CH	
5-NO ₂	so ₂	S	CH ₃	Cl	OCH ₃	CH	
5-NO ₂	so ₂	S	CH ₃	CH ₃		N	
5-NO ₂	so ₂	S	CH ₃		OCH ₃	N	
5-NO ₂	so ₂	S			CH ₃	N	
6-CH ₃			CH ₃	CH ₃	CH ₃	CH	
6-CH ₃		0		CH ₃	OCH ₃	CH	
6-CH ₃	0	0	CH ₃	OCH ₃		CH	

$\frac{R_1}{L}$	<u>J</u>	M.	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-CH ₃	0	0	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	0	0	CH3	CH3	OCH ₃	N	
6-CH ₃	0	0	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	0	0	CH ₃	CH3	CH ₃	N	
6-C1	0	S	CH ₃	CH ₃	CH3	CH	
6-Cl	0	S	CH ₃	CH3	OCH ₃	CH	
6-Cl	0	S	CH ₃	OCH ₃	OCH ₃	CH	
6-Cl	0	S	CH ₃	Cl	OCH ₃	CH	
6-Cl	0	S	CH ₃	CH ₃	OCH ₃	N	
6-Cl	0	S	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	0	S	CH ₃	CH3	CH3	N	
5-NO ₂	0	S	C6H5	CH ₃	CH ₃	CH	
5-NO ₂	0	S	C6H5	CH ₃	OCH ₃	CH	
5-NO2	0	S	C6H5	OCH ₃	OCH ₃	CH	
5-NO ₂	0	S	C6H5	Cl	OCH ₃	CH	
5-NO ₂	0	S	C6H5	CH ₃	OCH ₃	N	
5-NO ₂	0	S	C6H5	OCH ₃	OCH ₃	N	
5-NO ₂	0	S	C ₆ H ₅	CH ₃	CH3	N	

TABLE 2b
General Formula 2b

$\frac{\mathtt{R_1}}{}}$	<u>G</u>	<u>w '</u>	R ₉	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	0	H	CH ₃		CH	
Н	CH ₂	0	н	CH ₃	OCH ₃		
H	CH ₂	0	Н	OCH ₃	OCH ₃		
Н	CH ₂	0	Н	Cl	_		
н	CH ₂		Н	CH ₃		N	
Н	CH ₂		н	осн ₃	OCH ₃	N	
Н	CH ₂	0	Н		CH ₃		
H	CH ₂	S	CH ₃	CH ₃	CH ₃	СН	
Н	CH ₂	S	CH ₃		och ₃	СН	
н	CH ₂		CH ₃				
H	CH ₂		CH ₃	_	OCH ₃		
H	CH ₂	S	CH ₃		-		
H	CH ₂	S		OCH ₃		N	
H	CH ₂	S	CH ₃	CH ₃	CH3	N	•
H	CH ₂				CH ₃	CH	
H	CH ₂	NH	H	CH ₃	OCH ³	CH	
H	CH ₂	NH	H	осн ₃	OCH3	CH	
H	CH ₂		Н	Cl	OCH ₃	CH	
H	CH ₂		Н	CH3			
H	CH ₂	NH	H	OCH ₃			
H	CH ₂	NH	H	CH3	CH3	N	
6-C1			H	CH ₃	CH ₃	CH	
6-Cl			H	CH ₃	OCH ₃	CH	
6-Cl	CH ₂		H	OCH ₃		CH	
6-Cl	CH ₂	0	H	Cl	OCH ₃	CH	
6-Cl	CH ₂	0	H .	CH ₃	OCH ₃	N	
6-Cl	CH ₂	0	H	OCH ₃	осн ₃	N	
6-C1	CH ₂	0	H	CH ₃	CH ₃	N	
6-C1	CH ₂	S	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH ₂		CH ₃		осн3	CH	
6-C1	CH ₂	S	CH ₃	OCH ₃		СН	

Rl	<u>G</u>	W'	R ₉	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₂	S		Cl			ш.р.(с)
6-Cl	CH ₂		_		_		
6-C1	CH.		CH ³			N	
6-C1	CH ₂	S		OCH ³		N	
6-C1	CH. S	NH	СН _З		CH ³		
6-Cl	CH 2			CH	CH ₃	CH	
6-01	CH ₂	NH		CH ₃			
6-Cl	CH ₂	NH	H	3	OCH ₃	CH	
6-01	CH ₂	NH		C1	OCH ³		
6-Cl	CH ₂	NH	H	CH ₃	OCH ₃	N	
6-Cl	CH ₂	NH		OCH ₃		N	
	CH ₂			3	CH ₃	N	
H	CH ₂	S	Н	-	OCH ³	CH	
H	CH ₂	S	H	CH ₃		CH	
H	CH ₂	S	H	CH ₃	CH ₃	CH	
H	CH ₂	S	H	CH ₃	OCH ₃	N	
Н	CH ₂	S	H	OCH ₃	OCH ₃	N	
H	CH ₂	S	H	Cl	OCH ₃	CH	
H	CH ₂	NCH ₃	H	OCH ₃	OCH ₃	CH	
H	CH ₂	NCH ₃				N	
н	CH ₂ CH ₂	0	H	CH ₃	CH3	CH	
H	CH ₂ CH ₂	0	H		OCH ₃	CH	
H	CH ₂ CH ₂		H		OCH ₃	CH	
H	CH ₂ CH ₂		H	C1	_	CH	•
H	CH ₂ CH ₂	0	H	CH3	OCH ₃	N	
Н	CH ₂ CH ₂	0	Н	OCH ₃		N	
H	CH ₂ CH ₂			CH ₃	_	N	
н	ĊH2CH2	s			CH ₃	СН	
	CH ₂ CH ₂		CH,	CH,	OCH ₃	СН	
H	CH_CH_	S	CH	OCH_	OCH_	CH	
Н	CH ₂ CH ₂ CH ₂ CH ₂	S	CH_	Cl	OCH_	СН	
H	CH_CH_	S	CH_	CH	OCH_	N	
н	CH_CH_	S	CH_	OCH_	OCH_	N	
	2 2		3	3	3		

$\frac{R_1}{2}$	<u>G</u>	M.	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂		CH ₃		CH ₃	N	
H	CH ₂ CH ₂			CH ₃	сн ₃	СН	
н	CH2CH2		H	CH3	осн ₃	СН	
H	CH ₂ CH ₂		H	осн ₃	OCH ₃		
Н	CH ₂ CH ₂		H	C1	OCH ₃		
H	CH ₂ CH ₂		H	CH ₃	OCH ₃		
Н	CH ₂ CH ₂		H				
H	CH ₂ CH ₂		H		CH ₃	N	
6-Cl	CH ₂ CH ₂	0	H	сн ³	CH ₃	CH	
	CH2CH2		H	CH ₃		CH	
6-Cl	CH ₂ CH ₂	0	H	OCH ₃	OCH ₃		
	CH ₂ CH ₂		H	C1 °	OCH ₃		
	CH ₂ CH ₂		H	CH ₃	OCH ₃		
	CH2CH2		H				
6-C1	CH ₂ CH ₂	0	H	CH ₃	CH ₃	N	
	CH ₂ CH ₂		CH ₃	CH ₃	CH ₃	CH	
6-Cl	CH2CH2	S	CH ₃		OCH ₃	CH	
6-C1	CH ₂ CH ₂ CH ₂ CH ₂	S	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	CH ₂ CH ₂	S	CH ₃	Cl	_		
6-C1	CH ₂ CH ₂	S	CH ₃	CH ₃	OCH ₃		
6-C1	CH2CH2	S	CH ₃				
	CH2CH2		CH ₃			N	
6-C1	CH2CH2	NH	H	CH	CH ₃	CH	
6-C1	CH2CH2	NH	H	CH ₃	OCH ₃	CH	
6-C1	CH ₂ CH ₂	NH	H		OCH ₃		
6-Cl	CH ₂ CH ₂		H	Cl	OCH ₃	CH	
	-CH2CH2	NH		CH ₃	OCH ₃	N	
6-Cl	CH ₂ CH ₂	NH	H	OCH ₃	OCH ₃	N	
6-Cl	CH2CH2	NH	H	CH3	CH	N	
Н	сн ₂ сн ₂ сн ₂ сн ₂	S	H	OCH ₃	OCH ₃	CH	
Н	CH ₂ CH ₂	S	H	CH ₃	OCH ₃	CH	
Н	CH2CH2	S	H	CH ₃	CH3	CH	

Rl	<u>G</u> .	<u>W ·</u>	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂		н	CH3	OCH ₃	N	
H	CH ₂ CH ₂			och ₃		N	
H	CH ₂ CH ₂			Cl	OCH ₃		
H	CH ₂ CH ₂			осн ₃		СН	
H	CH ₂ CH ₂	_	H	-		N	
H	CH=CH	0	H	CH3	CH ₃	CH	
н	CH=CH	0	H	СН ³	OCH ₃	CH	
H	CH=CH	0	H				
H	CH=CH	0	H	C1	осн ₃		
н	CH=CH	0	H	CH3	_		
H	CH=CH	0	H	OCH ₃		N	
H	CH=CH	o ·	H	CH3	CH ₃	N	
H	CH=CH	S	CH ₃	CH ₃	CH ₃	CH	
Н	CH=CH	s	CH ₃	CH ₃	OCH ₃	CH	
H	CH=CH	S	CH ₃	OCH ₃	OCH ₃	CH	
H	CH=CH	S	CH ₃		OCH ₃		
H	CH=CH	S		CH ₃		N	
H	CH=CH	s		OCH ₃		N	
H	CH=CH	S	CH ₃			N	
Н	CH=CH	NH	H	CH ₃	CH ₃	CH	
H	CH=CH	NH	H	CH ₃	OCH ₃	CH	
H	CH=CH	NH	H	OCH ₃	OCH ₃	CH	
H	CH=CH	NH	H	Cl	OCH ₃	CH	
H	CH=CH	NH	H	CH ₃		N	
H	CH=CH	NH	Н	OCH ₃	OCH ₃	N	
H	CH=CH	NH	H	CH ³	CH ₃	N	
6-C1	CH=CH	0	H	CH ₃	CH ₃	CH	
6-Cl	CH=CH	0	H	CH ₃	OCH ₃	CH	
6-C1	CH=CH	0	H	OCH	OCH ₃	CH	
6-Cl	CH=CH	0	H _.	Cl J	OCH ₃	СН	
6-C1	CH=CH	0	H	CH3	OCH ₃	N	
6-Cl	CH=CH	0	H	осн ₃	OCH ³	N	

$\frac{R_1}{}$	<u>G</u>	<u>w · </u>	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-Cl	CH=CH	0		CH ₃	CH ₃	N	
6-C1	CH=CH	S	CH ₃			CH	
6-C1	CH=CH	S	CH ₃		OCH ₃	CH	
6-Cl	CH=CH	S	CH ₃	_			
6-Cl	CH=CH	S	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH=CH	S	CH ₃	CH ₃	OCH ₃	N	
6-Cl	CH=CH	S	CH ₃	_	_	N	
6-Cl	CH=CH	S	CH ₃	CH ₃	CH ₃	N	
6-C1	CH=CH	NH	H	CH	CH ₃	CH	
6-C1	CH=CH	NH	H	CH3	OCH ₃	CH	
6-C1	CH=CH	NH	Н	осн ₃		CH	
6-C1	CH=CH	NH	H	Cl	OCH ₃	CH	
6-C1	CH=CH	NH	Н	CH ₃	OCH ₃	N	
6-Cl	CH=CH	NH	H	OCH ₃	OCH ₃	N	
6-C1	CH=CH	NH	H	CH ₃	CH ₃	N	
H	CH=CH	S	H		OCH ₃	CH	
H	CH=CH	S	H	CH ₃	OCH ₃	CH	
H	CH=CH	S	H	CH ₃	CH ₃	CH	
H	CH=CH	S	H	CH ₃	OCH ₃	N	
Н	CH=CH	S	H		OCH ₃	N	
H	CH=CH	S	H	Cl	OCH ₃	CH	
H	CH=CH	NCH ₃	H	OCH ³	OCH ₃	CH	
H	CH=CH	NCH ₃	H	CH ₃	OCH ₃	N	

TABLE 3a General Formula 3a

R ₁	<u>J</u>	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	C=0	H	CH ₃	CH ₃	СН	
H	C=0	н	CH ₃	OCH ₃	CH	
Н	C=O	H	OCH ₃	OCH ₃	СН	
Н	C=0	Н	C1	OCH ₃	СН	
H	C=0	Н	CH ₃	OCH ₃	N	
H	C=0	Н	OCH ₃	OCH ₃	N	
Н	C=0	н	CH3	CH ₃	N	
Н	C=0		CH ³	CH ₃	СН	
Н	C=0	CH ₃	CH ₃	OCH ₃	СН	
H	C=O	CH ₃	OCH ₃	OCH ₃	СН	
H	C=O	CH ₃	Cl	OCH ₃	CH	
H	C=O	CH ₃	CH ₃	OCH ₃	N	
H	C=O	CH ₃	OCH ₃	OCH ³	N	
H	C=0	CH3	CH ₃	CH ₃	N	
H	CH ₂	CH3	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	СН	•
H	CH ₂	CH ₃	OCH ₃	OCH ₃	СН	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH3	N	
H	S	H	CH ₃	CH ₃	CH	
H	S	H	CH ₃	OCH ₃	CH	
H	S	H	OCH ₃	OCH ₃	CH	
H	S	H	Cl	OCH ₃	CH	
H	S	H	CH ₃	OCH ₃	N	
H	S	H	OCH ₃	OCH ₃	N	
H	S	H	CH ₃	CH3	N	
H	so ₂	н	CH ₃	CH ₃	CH	
H	so ₂	H	CH3	OCH ₃	CH	
H	so ₂	H	CH ₃	OCH ₃	CH	

R ₁	<u>J</u>	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	so ₂	Н	OCH ₃		СН	
H	so ₂	H	Cl 3	OCH ₃	СН	
н	so ₂	Н	CH ₃	OCH ₃	N	
н	so ₂	Н	OCH ₃	OCH ₃	N	
Н	so ₂	H	CH3	CH ₃	N	
н	0 2	CH ₃	CH ₃	CH ₃	СН	
H	0	CH ₃	CH ₃	OCH ₃	СН	
Н	0	CH ₃	OCH ₃	осн ³	СН	
H	0	CH ₃	Cl	OCH ₃	CH	
H	0	CH ₃	CH ₃	OCH ₃	N	
Н	0	CH ₃	OCH ₃	OCH ₃	N	
H	0	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	C=O	Н	CH ₃	CH ₃	CH	
6-CH ₃			CH ₃	OCH ₃	CH	
6-CH ₃	C=0	H	OCH ₃	OCH ₃	CH	
6-CH ₃	C=O	H	Cl	осн ₃	CH	
6-CH ₃	C=O	H	CH ₃	OCH ₃	N	
6-CH ₃	C=O	H	OCH ₃	OCH ₃	N	
6-CH ₃	C=0		CH ₃	CH ₃	N	
6-CH ₃	C=O	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	C=0	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	C=O		OCH ₃	OCH ₃	CH	
6-CH ₃	C=0	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	C=0	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	C=0	CH ₃	OCH ₃	OCH3	N	
6-CH ₃	C=0	CH.3	CH ₃	CH ₃	N	
6-CH ₂	·CH ₂	CH	CH	CH	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃ `	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	N	

TABLE 3a (continued)

R ₁	J	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃		CH ³	CH ₃	CH ₃	N	
6-CH ₃	S	H H	CH ₃	CH ₃	CH	
6-CH ₃	s	н	CH ₃	OCH ₃		
6-CH ₃	S	H	OCH ₃	OCH ₃	CH	
6-CH ₃		H	Cl	OCH ₃		
6-CH ₃	S	H	CH ₃	OCH ₃	N	
6-CH ₃	S	H	OCH ₃		N	
6-CH ₃	s	н	CH ₃	CH ₃	N	
6-CH ₃		Ħ	CH ₃	CH ₃	СН	
6-CH ₃	so ₂	н	CH ₃	OCH ₃		
6-CH ₃			och ₃			
6-CH ₃	so ₂	Н	Cl	OCH ₃	CH	
6-CH ₃	so ₂	H	CH ₃	OCH ₃	N	
6-CH ₃	so ₂	H	och ₃		N	
6-CH ₃	so ₂	H	CH ₃	CH ₃	N	
6-CH ₃	0 ~	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	0	CH ₃	CH ₃	OCH ₃	СН	
6-CH ₃		CH ₃			CH	
6-CH ₃	0	CH3	Cl	OCH ₃	CH	
6-CH ₃	0	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	0	CH ₃	OCH ₃		N	
6-CH ₃	0	CH ₃	CH3	CH3	N	
6-C1	C=O	н	CH ₃	CH ₃	CH	
6-Cl	C=O	H	CH ₃	OCH ₃	СН	
6-C1	C=O	H	OCH ₃	OCH3	CH	
6-C1	C=O	H	Cl	OCH ₃	CH	
6-C1	C=O	H	CH ₃	OCH ₃	N	
é-C1	C=O	H	OCH ₃	OCH ₃	N	•
6-Cl	C=0	H	CH ₃	CH ₃	N	
6-Cl	C=O	CH ₃	CH ₃	CH ₃	CH	
6-C1	C=0		CH ₃	OCH ₃	CH	
6-Cl	C=O	CH ₃	OCH	OCH3	CH	

TABLE 3a (continued)

Ð		Ð				
$\frac{R_1}{}$	<u>J</u>	R ₁₀	X	Y	<u>z</u>	m.p.(°C)
6-C1	C=O	CH ₃	C1	OCH ₃	CH	
6-C1	C=Q		CH ₃	OCH ₃	N	
6-C1	C=O	CH ³	OCH ₃	OCH ₃	N	
6-C1	C=O	CH ₃	CH ₃	CH ₃	N	
6-C1	/.	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
6-C1	CH ₂	CH3	OCH ₃	OCH ₃	CH	
6-C1	CH ₂		Cl	OCH ₃	CH	
6-Cl	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-Cl	CH ₂	сн ₃	OCH ₃	OCH ₃	N	
6-C1	CH ₂	CH ₃	CH3	CH ₃	N	
6-C1	s	Н	CH ₃	CH ₃	CH	
6-C1	S	H	CH ₃	OCH ₃	CH	
6-C1	S	H	OCH ₃	OCH ³	CH	
6-C1	S	H	C1.	OCH ₃	СН	
6-C1	S	H	CH ₃	OCH ₃	N	
6-Cl	s	H	OCH ₃	OCH ₃	N	
6-C1	s	H	CH ₃	CH ₃	N	
6-C1	so ₂	Н	CH ₃	CH ₃	СН	
6-Cl	so ₂	Н	CH ₃	осн ₃	СН	
6-Cl	so ₂	H	och ₃	och ³	CH	
6-Cl	so ₂	Н	Cl	OCH ₃	СН	
6-Cl	so ₂	Н	CH ₃	OCH ₃	N	
6-C1	so ₂	Н	och ₃	OCH ₃	N	
6-Cl	so ₂	н	CH ₃	CH ₃	N	
6-Cl	0	CH ₃	CH ₃	CH ₃	CH	
6-Cl	0	CH ₃	CH ₃	OCH ₃	CH	
6-Cl	0	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	0	CH ₃	Cl	OCH ₃	CH	
6-C1	0	CH ₃	CH ₃	OCH ₃	N	
6-C1	0	CH ₃	OCH ₃	OCH ₃	N	
6-C1	0	CH ₃	CH ³	CH ₃	N	
	_	3	3	3		

TABLE 3b
General Formula 3b

$\frac{R_1}{2}$	<u>G</u> .	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	<u>———</u>	CH ³		CH.	<u>m.p.(_U/</u>
H	CH ₂	Ħ	CH ₃	OCH ₃		
Н	CH ₂	Н	OCH ₃	OCH ₃	CH	
H	CH ₂	H		OCH ₃	СН	
H	CH ₂		CH ₃	OCH ₃	N	
H	CH ₂	Н	OCH ₃	OCH ₃	N	
н	CH ₂	H	CH ₃	CH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH ³	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	СН	
Н	CH ₂	CH ₃	OCH ₃	OCH ₃	СН	
H	CH ₂	CH ₃	C1	OCH ₃	СН	
H	CH ₂	CH3	CH ³	OCH ₃	N	
H	CH ₂	CH3	OCH ₃	OCH ₃	N	
H	CH ₂	CH3	CH ₃	CH3	N	
Ħ	CH ₂		CH ³	CH ₃	CH	
H	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	CH	
H	CH ₂	C6H5	OCH ₃	OCH ₃	CH	
H		C ₆ H ₅	Cl	OCH ₃	CH	
H		C6H5	CH ₃	OCH ₃	N	
H	CH ₂		OCH ₃	OCH ₃	N	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	H	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	H	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	Н	OCH ₃	OCH3	N	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH3	OCH ₃	OCH ₃	CH	

$\frac{R_1}{}$	<u>G</u>	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂	CH ₃	Cl	осн ₃	СН	
6-CH ₃	CH ₂	CH ₃	СН	OCH ₃	N	
6-CH ₃	CH ₂	CH3	OCH ₃	OCH ₃	N	•
6-CH ₃	CH ₂	CH ₃	CH ₃	CH3	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH3	CH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	CH3	OCH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	Cl	OCH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	СН _З	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	och ₃	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	CH3	N	
6-C1	CH ₂	н	СН ₃	CH ₃	СН	
6-Cl	CH ₂	H	СН ₃	OCH ₃	CH	
6-C1	CH ₂	H	OCH ₃	OCH ₃	СН	
6-C1	CH ₂	H	Cl	OCH ₃	СН	
6-C1	CH ₂	H	CH ₃	OCH ₃	N	
6-C1	CH ₂	H	OCH ₃	OCH ₃	N	•
6-C1	CH ₂	H	CH ₃	CH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-C1	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-C1	CH ₂	CH3	OCH ₃	OCH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH3	N	
6-C1	CH ₂	C ₆ H ₅	CH ₃	CH3	CH	
6-C1	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-C1	CH ₂	C ₆ H ₅	OCH ₃		CH	
6-C1	CH ₂	C6H5	C1	OCH ₃	CH	
6-Cl	CH ₂	C6H5	CH ₃	OCH ₃	N	
6-C1	CH ₂	C ₆ H ₅	осн ₃	OCH ₃	N	
6-Cl	CH ₂	C6H5	CH ₃	CH ₃	N	

_		_				
$\frac{R_1}{1}$	<u>G</u>	R ₁₀	X	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂	H	CH ₃	CH ³	CH	
H .	CH2CH2		CH3	OCH ₃	CH	
	CH ₂ CH ₂			OCH ₃		
H	CH ₂ CH ₂		Cl	OCH ₃	CH	
H	CH ₂ CH ₂		CH3	OCH ₃	N	
H	CH ₂ CH ₂		OCH ₃		N	
H	CH ₂ CH ₂		CH ₃	CH ³	N	
H	CH ₂ CH ₂			CH ³	CH	
Н	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
Н	CH ₂ CH ₂	_	OCH ₃	-	CH	
H	CH ₂ CH ₂		Cl	OCH ₃	CH	
H	CH ₂ CH ₂		CH ₃		N	
H	CH ₂ CH ₂	-	OCH ₃	OCH ₃	N	
H	CH ₂ CH ₂	_	CH ₃	CH ₃	N	
H	CH ₂ CH ₂	_	CH ₃		CH	
H	CH ₂ CH ₂	C ₆ H ₅	CH ₃	OCH3	CH	
H	CH ₂ CH ₂				CH	
H	CH ₂ CH ₂			OCH ₃	CH	
H	CH ₂ CH ₂				N	
H	CH2CH2				N	
H	CH ₂ CH ₂		_	CH ₃	N	
6-CH ₃	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-CH ₃			CH ₃		CH	
	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
	CH ₂ CH ₂		C1	OCH ₃	CH	
_	CH ₂ CH ₂		CH ₃	OCH ₃	N	
	CH ₂ CH ₂		OCH ₃	OCH ₃	N	
	CH ₂ CH ₂			CH ₃	N	
	CH ₂ CH ₂			CH ₃	CH	
	CH2CH2				CH	
	CH ₂ CH ₂			OCH ₃	CH	
_	CH2CH2		Cl	_	CH	

R ₁	<u>G</u>	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃				OCH ₃		
-	CH ₂ CH ₂		OCH ³	_		
	CH ₂ CH ₂		CH 3	CH 3	N	
	CH ₂ CH ₂	_	CH ₃	CH ³	CH	
_	CH ₂ CH ₂		CH 3	CH ₃	CH	
	CH ₂ CH ₂			OCH OCH		
	CH ₂ CH ₂			OCH 3	СН	
				OCH 3	N	
	CH CH		_	OCH ³	N	
	CH ₂ CH ₂					
6-C1	CH ₂ CH ₂			CH ₃	N	
6-C1	2 2		CH ₃	CH ₃	CH	
6-C1	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
	CH ₂ CH ₂		OCH ₃		CH	
	CH ₂ CH ₂		Cl	OCH ₃	CH	
6-C1	CH ₂ CH ₂		CH ₃	OCH ₃		
6-C1	CH ₂ CH ₂		OCH ₃	OCH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH3	N	
6-C1	CH ₂ CH ₂		CH ₃	CH3	CH	
6-C1	CH2CH2	CH ₃	och ³	CH ₃	CH	
6-C1	CH ₂ CH ₂	_	OCH ₃	och ₃	CH	
6-C1	сн ₂ сн ₂		Cl	OCH ₃	CH	
6-C1	CH2CH2	CH ₃	CH ₃	OCH ₃	N	
6-C1	CH2CH2	CH ₃	OCH ₃	OCH ₃	N	
6-C1	CH ₂ CH ₂	CH ₃	CH ₃	CH ₃	N	
6-Cl	CH ₂ CH ₂	C6H5	CH3	CH ₃	CH	
6-Cl	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
6-Cl	CH_CH_	C_H_	OCH_	OCH.	CH	
6-C1	CH2CH2	C6H5	C1	OCH	CH	
6-C1	CH2CH2	C ₆ H ₅	CH3	OCH,	N	
6-C1	CH2CH2	C ₆ H ₅	OCH	OCH,	N	
6-C1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	С ₆ Н ₅	CH ₃	CH ³	N	
Н	CH=CH	н	CH3	CH3	CH	

<u>R</u> 1	<u>G</u>	R ₁₀	<u>X</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH=CH			OCH ₃		
H	CH=CH	H		OCH ₃		
H	CH=CH					
Н	CH=CH	Н		OCH ₃		
н	CH=CH	н	-	OCH ₃		
H	CH=CH	н	-	CH ₃	N	
H	CH=CH	CH,	CH ₃	CH ₂	CH	
H	CH=CH	CH ³	CH,	OCH,	CH	
H	CH=CH	CH3	OCH,	OCH ₃	CH	
H	CH=CH	CH ₃	Cl	OCH ₃	CH	
H	CH=CH			OCH ₃		
H	CH=CH			OCH ₃		
H .	CH=CH	CH ₃	_			
	CH=CH	_		CH ₃	CH	
H	CH=CH	C ₆ H ₅	CH ₃	осн ₃	CH	
H	CH=CH	C ₆ H ₅	OCH ₃	осн ₃	CH	
H	CH=CH					
H	CH=CH	CSHS	CH,	OCH,		
H	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	N	
	CH=CH	C6H5	CH ₃	CH3	N	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	H	OCH;	OCH ₃	CH	
6-CH ₃	CH=CH	H	Cl	OCH ₃		
6-CH ₃	CH=CH	H		OCH ₃		
6-CH ₃	CH=CH	Н	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	H	CH ₃		N	
6-CH ₃	CH=CH	CH ₃	CH ₃	CH ₃	CH	
	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
6-CH ₃	CH=CH	CH,	OCH,	OCH,	CH	
6-CH ₃	CH=CH	CH ₃	Cl	OCH3	CH	
6-CH ₃	CH=CH			OCH ₃	N	

<u>R</u> 1	C	R ₁₀	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	G G					<u> </u>
6 CH	CH=CH	CH3	CH 3	сн ₃	N	
6-CH ₃	CH=CH CH=CH	C H	CH.	CH.	CH	
6 CH	CH-CH	65 ਨੂਸ	CH3	OCH	СН	
6 04	CH=CH CH=CH	6 ¹¹ 5	OCH 3	OCH 3	CH	
6 CH	CH=CH	6115	C1	OCH OCH3	CH	
6-CH ₃	CH=CH	6"5	CI	00113	N	
6-CH ₃	CH=CH	6"5	3	00113	AT .	
6-CH ₃	CH=CH	6 ^H 5	OCH ³	CR 3	N N	
	CH=CH		CH ₃	CH 3	N	
	CH=CH		CH ₃	CH ₃	CH	
	CH=CH		CH ₃	OCH ₃	CH	
	CH=CH			OCH ₃		
	CH=CH			OCH ₃		
	CH=CH			OCH ₃		
	CH=CH		_	OCH ₃		
	CH=CH		CH ₃		N	
6-Cl	CH=CH		CH ₃			
6-C1	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
6-Cl	CH=CH	CH ₃	OCH ₃	OCH ₃		
6-Cl	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-C1	CH=CH	CH3	CH ₃	OCH ₃	N	
6-Cl	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
6-C1	CH=CH		CH ₃		N	
6-Cl	CH=CH	C6H5	CH ₃	CH ₃	CH	
6-Cl	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
	CH=CH				CH	
6-Cl	CH=CH	C ₆ H ₅		OCH ₃	CH	
6-C1	CH=CH	C6H5		OCH ₃	· N	
6-Cl	CH=CH	C ₆ H ₅		OCH ₃	N	
6-C1	CH=CH	C ₆ H ₅	_	CH ₃	N	
		0 5	3	3		

TABLE 4a General Formula 4a

<u>R</u> 1	<u>J</u>	R ₅	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
Н	C=0	H	CH ₃		CH	SEPER ST
H	C=0	Н	CH ³	OCH ₃		
H	C=0	H	OCH ₃	OCH ₃	CH	
H	C=0	H	Cl 3	OCH ₃		
H	C=0	H	CH3	OCH ₃	N	
H	C=0	H	OCH ₃	OCH ₃	N	
H	C=0	Н	CH3	CH ₃	N	
H·	C≃O	CH3	CH ₃	CH ₃	СН	
H	C=O	CH3	CH ³	OCH ₃		
H	C=O	CH ₃			СН	
H	C=O	CH3	Cl	och ³	СН	
H	C=O	CH ³		OCH ₃	N	
H	C=O	CH ₃	OCH ₃	OCH ³	N	
H	C=0	CH3	CH ₃	CH3	N	
H	CH ₂	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃		OCH ³	CH	
H	CH ₂	CH3	OCH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH3	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH3	CH ₃	N	
H	S	CH ₃	CH ₃	CH ₃	СН	
H	S	CH ₃	CH ₃	OCH ₃	CH	
H	S	CH ₃	OCH ₃	OCH ₃	CH	
H	S	CH ₃	Cl	OCH	CH	
H	S	CH ₃	CH ₃	OCH ₃	N	
H	S	CH ₃	OCH ₃	OCH ₃ .	N	
H	S	CH ₃	CH ₃	CH ₃	N	
H	so ₂	H	CH ₃	CH,	CH	
H	so ₂	H	CH ₃	OCH ₃	CH	
H	so ₂	H	OCH	OCH,	CH	

<u>R</u> 1	<u>J</u>	R ₅	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
Н	so ₂	н	Cl	осн ₃	СН	
H	so ₂	H	CH ₃	och ₃	N	
Н	so ₂	н	och ₃		N	
Н	so ₂	н	CH ₃	CH3	N	
H	so ₂			CH ₃	СН	
H	so ₂	CH ₃	CH ₃	OCH ₃	CH	
H	so ₂	CH ₃	осн ₃		CH	
H	so ₂	CH ₃	Cl	OCH ₃	CH	
H	so ₂		CH ₃	OCH,3	N	
H	so ₂				N	
H	so ₂	CH ₃	CH ₃	CH ₃	N	
Ħ	0	CH ₃	CH ₃	CH ₃	CH	
H	0	CH3	CH ₃	OCH ₃	CH	
H	0	CH ₃	OCH ₃	осн ₃	СН	
H	0	CH ₃	Cl	OCH ₃	CH	
Н	0	CH ₃	CH ₃	OCH ₃	N	
H	0	CH ₃	OCH ₃	OCH ₃	N	
H	0	CH ₃		CH ₃	N	
6-CH ₃	C=O		CH ₃	CH ₃	CH	
6-CH ₃	C=0	H	CH ₃	OCH ₃	CH	
6-CH ₃	C=0	H	OCH ₃	OCH ₃	СН	
6-CH ₃	C=0	H	Cl	OCH ₃	CH	
6-CH ₃	C=0	H	CH ₃	OCH ₃	N	
6-CH ₃	C=0	H	OCH ₃	OCH ₃	N	
6-CH ₃	C=0	H	CH ₃	CH3	N	
6-CH ₃	C=O	CH ₃	CH ₃	CH ₃	CH	
		CH ₃	CH ₃	OCH ₃	CH	
				OCH ₃		
6-CH ₃	C=O	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	C=O	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	C=O	CH ₃	осн ₃	OCH ₃	N	
6-CH ₃	C=O	CH ₃	CH ₃	CH ₃	N	

$\frac{R_1}{2}$	<u>J</u>	^R 5	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂	CH3	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	осн ³	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH3	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	OCH3	OCH ³	N	
6-CH ₃	CH ₂	CH ₃	CH3	CH ₃	N	
6-CH ₃	s	CH3	CH3	СНЗ	CH	
6-CH ₃	S	CH ₃	CH ₃	осн ₃	СН	
6-CH ₃	S	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	S	CH3	Cl	OCH ₃	CH	
6-CH ₃	S	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	S	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	S	CH3	CH ₃	CH ₃	N	•
5-NO ₂	C=0	Н	CH ₃	CH ₃	CH	
5-NO ₂	C=0	H	CH ³	OCH ₃	CH	
5-NO ₂	C=O	H	OCH ₃	OCH ₃	CH	
5-NO ₂	C=O	H	Cl	OCH ₃	CH	
5-NO ₂	C=O	H	CH ₃	OCH ₃	N	
5-NO ₂	C=O	H	OCH3	OCH ₃	N	
5-NO ₂	C=O	H	CH ₃	CH ₃	N	
5-NO ₂	C=O	CH3	CH ₃	CH ₃	CH	
5-NO ₂	C=O	CH ₃	CH ₃	OCH ₃	CH	
5-NO ₂	C=O	CH ₃	OCH ₃	OCH ₃	CH	
5-NO ₂	C=O	CH3	Cl	OCH ₃	CH	
5-NO ₂	C=O	CH ₃	CH ₃	OCH ₃	N	
	C=O	CH ₃	OCH ₃		N	
			CH ₃		N	
5-NO ₂		-	_	CH ₃	CH	
5-NO ₂	_	-	-	OCH ₃	CH	
			OCH ₃		CH	
5-NO				OCH,	CH	

$\frac{R_1}{}$	J	<u>R</u> 5	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
5-NO ₂	CH ₂	CH ₃	CH ₃	OCH ₃	N N	
5-NO ₂	CH ₂	CH ₃	och ₃	OCH ₃	N	
5-NO ₂	CH ₂	CH ₃	CH3	CH ₃	N	
5-NO ₂	S Z	CH ₃	CH ₃	CH ₃	СН	
5-NO ₂	S	CH ₃	CH ₃	och ₃	СН	
5-NO ₂	s	CH3	ocH ₃	och ₃	СН	
5-NO ₂	S	CH ₃	Cl	och ³	СН	
5-NO ₂	s	CH3	CH ₃	och3	N	
5-NO ₂	S	CH ³	OCH ₃	och ₃	N	
5-NO ₂	S	CH3	CH3	CH3	N	
6-CH ₃	so ₂	н	CH3	CH ₃	CH	
6-CH ₃	so ₂	H	CH ₃	осн ₃	СН	
6-CH ₃	so ₂	H	OCH ₃	OCH ₃	СН	
6-CH ₃	so ₂	H	C1	осн ₃	СН	
6-CH ₃	so ₂	H	CH ₃	OCH ₃	N	
6-CH ₃	so ₂	H	OCH ₃	OCH ₃	N	
6-CH ₃	so ₂	H	CH ₃	CH ₃	N	
6-CH ₃	so ₂	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	so ₂	CH ₃	CH ₃	OCH ₃	СН	
6-CH ₃	so ₂	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	so ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	so ₂	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	so ₂	CH ₃	och ₃	OCH ₃	N	
6-CH ₃	so ₂	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	0	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	0	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	0		OCH ₃	OCH ₃	CH	
6-CH ₃	0	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	0			OCH ₃	N	
6-CH ₃		CH ₃	OCH ₃	-	N	
6-CH ₃	0	CH ₃	CH ₃	CH3	N	

TABLE 4b
General Formula 4b

$\frac{R_1}{2}$	<u>G</u>	R ₅	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂	H	CH ₃	CH ₃	CH	
н	CH ₂	н	CH3	OCH ₃	CH	
Н	CH ₂	н	OCH ₃		СН	
H	CH ₂	Н	Cl 3	OCH ₃	CH	
Н	CH ₂	H	CH ₃	OCH ₃	N	•
H	CH ₂	H	OCH ₃		N	
н	CH ₂	Н	CH ₃	CH ₃	N	
Н	CH ₂	CH ₃	CH ₃	CH ₃	CH	
Н	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
Н	CH ₂	CH ₃	осн ³		CH	
H	CH ₂	OTT	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
Н	CH ₂	CH ₃	осн ₃		N	
H	CH ₂	CH ₃	CH3	CH ₃	N	
6-CH ₃	CH ₂	Н	CH ₃	CH ₃	CH	
6-CH ₃		H	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	H	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	H	CH3		N	
6-CH ₃	CH ₂	H	OCH ₃	OCH ₃	N	
6-CH ₃		H	CH3	CH ₃	N	
6-CH ₃	CH ₂	CH ₃		CH ₃	CH	
6-CH ₃	CH ₂	CH ₃		OCH ₃	CH	
6-CH ₃	CH ₂	CH3	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃		CH ₃	CH3	och ₃	N	
6-CH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
$6-CH_3$	CH ₂	CH ₃	CH ₃	CH ₃	N	
H	CH ₂ CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	H	CH ₃	OCH ₃	CH	
Н	CH ₂ CH ₂	H	OCH ₃	och ₃	CH	

$\frac{R_1}{}$	<u>G</u>	R ₅	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂		Cl	осн ₃		
Н	CH ₂ CH ₂		CH ₃		N	
H	CH ₂ CH ₂		осн ₃		N	
Н	CH ₂ CH ₂		CH3	CH ₃	N	
H	CH ₂ CH ₂			CH ₃	CH	
Н	CH ₂ CH ₂	_	CH3	осн ₃	CH	
H	CH ₂ CH ₂		OCH ₃	OCH ₃		
Н	CH ₂ CH ₂			och ³		
Н	CH ₂ CH ₂					
H	CH ₂ CH ₂		OCH ₃	OCH ₃		-
H	CH ₂ CH ₂		CH3	CH ₃	N	
6-CH ₃	CH ₂ CH ₂		CH ₃	CH3	СН	
	CH ₂ CH ₂		CH ₃	OCH ₃	СН	
6-CH ₃			OCH ₃	OCH ₃		
_	CH ₂ CH ₂		Cl	осн ₃		
6-CH ₃	CH ₂ CH ₂	H	CH ₃	осн ₃		
	CH ₂ CH ₂		OCH ₃			
6-CH ₃	CH ₂ CH ₂	H	CH3	CH3	N	
6-CH ₃	CH2CH2	CH ₃	CH ₃	CH3	CH	
6-CH ₃	сн ₂ сн ₂	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	CH2CH2	CH3	OCH ₃		CH	
6-CH ₃	CH ₂ CH ₂	CH3	Cl	OCH ₃	CH	
	сн ₂ сн ₂	CH3		OCH ₃	N	
6-CH ₃	CH2CH2	CH3	OCH ₃	OCH ₃	N	
6-CH ₃	CH2CH2	CH ₃		CH ₂	N	
H	CH=CH	H	CH ₃	CH ³	CH	
H	CH=CH	н.	CH ₃	OCH ₃	CH	
H	CH=CH	H	OCH ₃	OCH ₃	CH	
H	CH=CH	н.	Cl	OCH ₃	CH	
H	CH=CH	H	CH ₃	OCH ₃	N	
Н	CH=CH	H	OCH ₃	OCH ₃	N	
Н	CH=CH	Н	CH ₃	CH ₃	N	

<u>R</u> 1	<u>G</u>	R ₅	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH=CH	CH ₃	CH ₃	CH ₃	CH	
	CH=CH	CH ₃	CH ₃	OCH ₃	CH	
H	CH=CH			OCH ₃		
H	CH=CH			OCH ₃		
	CH=CH	CH ₃	CH ₃	OCH ₃	N	
H	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
H	CH=CH	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	CH=CH	H	CH3	CH	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	H	OCH ₃			
6-CH ₃	CH=CH	H	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	H	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	H	CH ₃	CH ₃	N	
6-CH ₃	CH=CH	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	CH=CH	CH3	CH	OCH	CH	•
6-CH ₃	CH=CH	CH ₃	OCH ₃	OCH ₃	CH	
	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	CH ₃	OCH ₃	och ³	N	
6-CH	CH=CH	CH,	CH,	CH	N	

٠.

TABLE 5a General Formula 5a

$\frac{R_1}{}$	<u>J</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	C=0	H	CH ₃	CH ₃	СН	
H	C=0	н	CH ₃	OCH ₃	СН	
H	C=0	H	och ₃	OCH ₃	СН	
H	C=O	H	Cl	OCH ₃	СН	
H	C=0	H	CH ₃	OCH ₃	N	
H	C=0	H	осн ₃	OCH ₃	N	
H	C=0	H	CH3	CH _{3.}	N	
H	C=O	CH ₃	СН ₃	CH ₃	CH	
H	C=O	CH ₃	CH ₃	OCH ₃	СН	
H	C=O	CH ₃	OCH ₃	OCH3	СН	
H	C=0	CH ₃	Cl	OCH ₃	CH	
H	C=O	CH ₃	CH ₃	осн ₃	N .	
Н	C=O	CH ₃	OCH ₃	OCH ₃	N	•
H	C=0	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	CH3	CH	CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
Н	CH ₂	CH ₃	CH ₃	CH ₃	N	
H	S	CH ₃	CH ₃	CH ₃	СН	
Н	S	CH ₃	CH ₃	OCH ₃	CH	
H	S	CH ₃	OCH ₃	OCH ₃	CH	
H	S	CH ₃	Cl	OCH ₃	CH	
H	S	CH ₃	CH ₃	осн ₃	N	
	S	CH ₃	och ₃	OCH ₃	N	
	S	CH ³	CH ₃	CH ₃	N	
Н	so ₂	CH ₃	CH ₃	CH ₃	СН	
H	so ₂	CH ₃	CH ₃	OCH ₃	CH	
Н	so ₂	CH ₃	och ³	OCH ₃	CH	

<u>R</u> 1	<u>J</u>	R ₁₂	<u>X</u>	Ā	<u>z</u>	m.p.(°C)
H	so ₂	CH3	Cl	осн ₃	CH	
H	so ₂	CH3	CH ₃	OCH3	N	
Н	so ₂	СН	OCH ₃	OCH ₃	N	
Н	soz	CH ³	CH3	CH ₃	N	
Н	NH	CH3	CH	CH ₃	СН	
Н	NH	CH ³	CH ₃	OCH ₃	CH	
Н	NH	CH ³	OCH ₃	OCH ₃	CH	
Н	NH	CH ³	Cl	OCH ₃	CH	
Н	NH	CH ₃	CH ₃	OCH ₃	N	
Н	NH	CH ₃	OCH ₃	OCH ₃	N	
н	NH	CH ³	CH3	CH3	N	
н .	0	CH3	CH ₃	CH3	CH	
Н	0	CH ₃	CH3	OCH ₃	CH	
Н	O,	CH ³	OCH ₃	OCH3	CH	
Н	0	CH ₃	Cl	OCH ₃	CH	
H	0	CH3	CH ₃	OCH ₃	N	
Н	0	CH ₃	OCH ₃	OCH ₃	N	
Н	0	CH ₃	CH ₃	CH ₃	N	
6-C1	C=O	н	CH ₃	CH ₃	CH	
6-C1	C=O	H	CH ³	OCH ₃	CH	
6-Cl	C=O	H	осн ³	OCH ₃	CH	
6-Cl	C=O	Н	C1	осн ³	СН	
6-C1	C=O	н	CH ₃	OCH ₃	N	
6-Cl	C=O	H	OCH ₃	OCH ₃	N	
6-Cl	C=O	н	CH3	CH ³	N	
6-Cl	C=O	CH ³	CH ₃	CH ₃	CH	
6-C1	C=O	CH ₃	CH3	OCH ₃	CH	•
6-C1	C=O	CH3	OCH ₃	OCH3	CH	
6-C1	C=O	CH3	Cl	OCH	CH	
6-Cl	C=O	CH ₃	CH3	OCH ₃	N	
6-C1	C=O	CH ₃	OCH ³	OCH ₃	N	
6-C1	C=O	CH ₃	CH3.	CH	N	

$\frac{R_1}{}$	<u>J</u>	R ₁₂	<u>x</u>	v	7	D D (90)
6-C1	CH ₂			Ā	<u>Z</u>	m.p.(°C)
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-Cl	CH ₂	CH ₃	CH ³	OCH ³	CH	
6-C1	Z	CH ₃		OCH ₃	CH	
6-C1	CH ₂	CH ₃	C1	OCH ₃	CH	
6-C1		CH ₃		OCH ₃	N	
	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-C1		CH ₃	CH ₃	CH ₃	CH	
6-C1		CH ₃	CH ₃	OCH ³	СН	
6-Cl		CH ₃	OCH ₃	OCH3	CH	
6-Cl		CH ₃	Cl	OCH ₃	CH	
6-Cl		CH3	CH ₃	OCH ₃	N	
6-Cl		CH ₃	OCH ₃	OCH ₃	N	
6-C1		CH ₃	CH ₃	CH ₃	N	
6-Cl	so ₂	CH ₃	CH ₃	CH ₃	CH	
6-C1	۷	CH3	CH ₃	OCH ₃	CH	
6-C1	so ₂	CH ₃	OCH3	och ₃	CH	
6-C1	so ₂	CH3	Cl	och ₃	CH	
6-C1	so ₂	CH ₃	CH3	OCH ₃	N	
6-Cl	so ₂	CH	OCH ₃	OCH ₃	N	
6-Cl	so ₂	CH ₃		CH3	N	
6-C1	NH	CH3	CH	CH3	CH	
6-Cl	NH	CH3	CH ₃	OCH ₃	CH	
6-C1	NH	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	NH	CH ₃	Cl	OCH ₃	CH	
6-Cl	NH	CH3	CH ₃	OCH ₃	N	
6-Cl	NH	CH3	осн ₃		N	
6-Cl	NH	CH ₃	CH ₃	CH ₃	N	
6-C1	0	CH ₃	CH ₃	CH ₃	CH	
6-Cl	0	CH ₃	CH ₃	OCH ₃	CH	
6-C1		CH ₃	OCH ₃	OCH ₃	CH	
6-Cl	0	CH ₃	Cl	OCH ₃	CH	
		3		-3		

181 0 203 679 182

TABLE 5a (Continued)

R₁₂ <u>J</u> m.p.(°C) X <u>Y</u> <u>z</u> OCH3 CH₃ OCH₃ 6-C1 N OCH³ 6-C1 0 N CH3 6-Cl CH₃ 0 CH₃ N

15

20

25

30

35

40

50

55

TABLE 5b
General Formula 5b

R ₁	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	Ъ	CH ³	CH ₃	CH	m.p.(C)
н	CH ₂	H	CH ₃	och ₃	СН	
Н	CH ₂	н	OCH ₃	OCH ₃	СН	
Н	CH ₂	н	Cl	OCH ₃	СН	
H	CH ₂	н	CH ₃	OCH ₃	N	
Н	CH ₂	н	OCH ₃	OCH ₃	N	
н	CH ₂	H	CH ₃	CH ₃	N	
Н	CH ₂	CH ₃		CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	och ₃	CH	
Н	CH ₂	CH G3	OCH ₃	OCH 3	CH	
Н	CH ₂	CH ₃	Cl	OCH 3	CH	
н	CH ₂	CH ₃		OCH ³	N	
н	СН ₂	CH.	3	осн _з	N	
н	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-C1	CH ₂	н	CH ₃	CH ₃	CH	
6-C1		H	CH ₃	OCH ₃	CH	
6-C1	CH ₂	н	OCH ₃	OCH ₃	CH	
6-C1	CH ₂	H	C1	och ₃	CH	
6-C1	CH ₂	н	CH ₃	OCH ₃	N	
6-C1	CH ₂	H	OCH ₃		N	
6-C1	CH ₂	Н	CH ₃	сн ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH 3	СН	
6-C1	CH ₂	CH ₃	· CH ₃	CH ₃	СН	
6-C1	CH ₂	CH3	OCH ₃	OCH ₃	СН	
6-C1	CH ₂	CH ₃	Cl	OCH ₃	СН	
	CH ₂	CH ₃		OCH ₃	N	
6-C1	CH_		OCH ₃		N	
6-Cl	CH ₂			OCH ₃	N	
Н	~		_	CH ₃	CH	
	CH ₂ CH ₂ CH ₂ CH ₂		CH CH ₃	CH ₃	СН	
H	CH ₂ CH ₂		осн ³	OCH ₃	CH	

R.	_	R				
<u>R</u> 1	<u>G</u>	R ₁₂	X	Ā	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂		Cl	осн ₃		
H	CH ₂ CH ₂		CH ³	och ₃	N	
H	CH ₂ CH ₂		OCH ₃	OCH ³	N	
H	CH ₂ CH ₂		CH3	CH ₃	N	
H	CH ₂ CH ₂			CH ₃	CH	
H	CH ₂ CH ₂			OCH ₃	CH	
H	CH ₂ CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂		Cl	OCH ₃	CH	
H	CH2CH2	CH3	CH ₃	OCH ₃	N	
H	CH ₂ CH ₂	CH3	OCH ₃	OCH ₃	N	
H	CH ₂ CH ₂		CH3	CH ₃	N	
6-C1	CH ₂ CH ₂	H	CH ₃	CH3	CH	
6-C1			CH ₃	OCH ₃	CH	
6-C1	CH ₂ CH ₂	H	OCH ₃	OCH ₃	CH	
6-Cl	CH2CH2	H	C1	OCH ₃	CH	
6-Cl	CH ₂ CH ₂	H	CH ₃	OCH ₃	N	
6-Cl	CH2CH2	H	OCH ₃		N	
6-Cl	CH ₂ CH ₂	H		CH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂	-		OCH ₃	CH	
6-Cl					CH	
6-C1	CH ₂ CH ₂		Cl	OCH ₃	CH	
6-C1	CH ₂ CH ₂			OCH ₃	N	
6-C1	CH2CH2			OCH ₃	N	
6-C1	CH ₂ CH ₂	CH ₃	CH3	CH ₃	N	
H	CH=CH	н	CH ₃	CH ₃	СН	
H	CH=CH	Н	CH ₃	осн3	CH	
H	CH=CH	н	осн ₃	осн3	CH	
H	CH=CH	H	Cl	OCH ₃	CH	
H	CH=CH	н	СН3	OCH ₃	N	
Н	CH=CH	н	OCH ₃	OCH ₃	N	
H	CH=CH	н	CH ₃	CH ₃	N	
			3	3		

$\frac{\mathtt{R_1}}{}$	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH=CH	CH ₃	CH3	CH3	CH	
H	CH=CH			OCH ₃	CH	
H	CH=CH	•			CH	
H	CH=CH	CH ₃		OCH ₃	CH	
H	CH=CH	CH ₃		OCH ₃	N	
H	CH=CH	CH ₃	•		N	
H	CH=CH	CH ₃		CH3	N	
6-C1	CH=CH	Н		CH ₃	CH	
6-Cl	CH=CH	Н		OCH	CH	
6-Cl	CH=CH	Н	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH	Н		OCH ₃	CH	
6-Cl	CH=CH	H	CH3	OCH ₃	N	
6-Cl	CH=CH	н		OCH ₃	N	
6-C1	CH=CH	H	CH ₃	CH3	N	
6-Cl	CH=CH	CH ₃		CH ₃	CH	
6-Cl	CH=CH	CH ₃	-	OCH ₃	CH	
6-Cl	CH=CH	CH ₃		•	CH	
6-Cl	CH=CH	CH3	Cl	OCH ₃		
6-C1	CH=CH	CH ₃		OCH ₃	N	
6-Cl	CH=CH.	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	CH=CH	CH ₃	CH3	CH3	N	

TABLE 6
General Formula 6

R ₁	J	¥	v	7	m m (80)
<u>_</u>	<u>J</u> C=0	X X	Ā	<u>Z</u>	m.p.(°C)
Н	C=0	CH ³	CH ³	CH	
Н	C=0	CH ³	OCH ³	CH	
Н	C=0	OCH ₃	OCH ³	CH	
		C1	OCH ₃	CH	
H	C=0	CH ₃	OCH ₃	N	•
H	C=0	och ₃	OCH ₃	N	
H	C=0	CH ₃	CH3	N	-
H	so ₂	CH ₃	CH ₃	CH	
H	so ₂	CH ₃	OCH ₃	CH	
H	so ₂	OCH ₃	OCH ₃	CH	
H	so ₂	Cl	OCH ₃	CH	
H	so ₂	CH ₃	OCH ₃	N	
H	so ₂	OCH ₃	OCH ₃	N	
H	so ₂	CH ₃	CH3	N	
H	NH	CH	CH ³	CH	
H	NH	CH ₃	OCH ₃	СН	
H	NH	OCH ₃	OCH ₃	СН	
H	NH	C1	OCH ₃	СН	
H	NH	CH3	OCH ₃	N	
H	NH	OCH ₃	OCH ³	N	
H	NH	CH ₃	CH ₃	N	
H	0	CH ₃	CH ₃	CH	
H	0	CH ₃	OCH ₃	CH	
H	0	OCH ₃	осн ₃	CH	
H	0	Cl	OCH ₃	CH	
Н	0	CH3	OCH ₃	N	
H	0	OCH ₃	OCH ₃	N	
H	0	CH ₃	CH3	N	
6-Cl	C=O	CH ₃	CH ₃	СН	
6-Cl	C=O	CH ₃	och ³	СН	
6-C1	C=0	och ³	OCH ₃	CH	

					•
<u>R</u> 1	<u>J</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-C1	C=O	Cl	OCH ₃	CH	
6-C1 .	C=O	CH ³	OCH ₃	N	
6-C1	C=O	OCH ³	OCH ³	N	
6-C1	C=O	CH3	CH3	N	
6-Cl	so ₂	CH ₃	CH3	СН	
6-C1	so ₂	CH ₃	OCH ₃	СН	
6-C1	so ₂	OCH ₃	OCH ₃	CH	
6-Cl	so ₂	Cl	OCH ₃	CH	
6-Cl	so ₂	CH ₃	осн ₃	N	
6-C1	so ₂	OCH ₃	OCH ₃	N	
6-C1	so ₂	CH ₃	CH ₃	N	
6-C1	NH	CH	CH ³	CH	
6-C1	NH	CH ₃	OCH ₃	CH	•
6-C1	NH	OCH ₃	OCH ₃	CH	
6-Cl	NH	Cl	OCH ₃	CH	
6-C1	NH	CH ₃	OCH ₃	N	
6-C1	NH	OCH ₃	OCH ₃	N	
6-C1	NH	CH ₃	CH3	N	
6-C1	0	CH ₃	CH ₃	CH	
6-C1	0	CH ₃	OCH ₃	CH	
6-C1	0	OCH ₃	OCH ₃	CH	
6-Cl	0	Cl	OCH ₃	CH	
6-Cl	0	CH3	OCH ³	N	
6-Cl	0	OCH ₃	OCH ₃	N	
6-Cl	0	CH3	CH ₃	N	
5-SCH ₃	C=O	CH ₃	CH ₃	CH	
5-SCH ₃	C=O	CH ₃	OCH ³	CH	
5-SCH ₃		OCH ₃	OCH ₃	CH	
5-SCH ₃	C=O	Cl	OCH ₃	CH	
5-SCH ₃	C=O	CH ₃	OCH3	N	
5-SCH ₃	C=0	OCH ₃	OCH ₃	N	
5-SCH ₃	C=0	CH ₃	CH ₃	N	
-		-	•		

$\frac{R_1}{}$	<u>J</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
5-SCH ₃	so ₂	CH ₃	CH ₃	СН	-
5-SCH ₃	so ₂	CH ³	OCH ₃	CH	
5-SCH ₃	so ₂	OCH ₃	OCH ₃	CH	
5-SCH ₃	so ₂	C1	OCH ₃	CH	
5-SCH ₃	so ₂	CH3	OCH ₃	N	
5-SCH ₃	so ₂	OCH ₃	OCH ₃	N	
5-SCH ₃	so ₂	CH3	CH ₃	N	
5-SCH ₃	NH	CH	CH ₃	CH	
5-SCH ₃	NH	CH3	OCH ₃	CH	
5-SCH ₃	NH	OCH ₃	OCH ₃	CH	
5-SCH ₃	NH	Cl	OCH3	CH	
5-SCH ₃	NH	CH ₃	OCH ₃	N	
5-SCH ₃	NH	OCH3	OCH ₃	N	•
5-SCH ₃	NH	CH ₃	CH ₃	N	
5-SCH ₃	0	CH ₃	CH ³	CH	
5-SCH ₃	Ο.	CH ₃	OCH ₃	CH	
5-SCH ₃	0	OCH ₃	OCH ₃	CH	
5-SCH ₃	0	Cl	OCH ₃	CH	
5-SCH ₃	0	CH3	OCH ₃	N	
5-SCH ₃	0	OCH ₃	OCH ₃	N	
5-SCH	0	CH_	CH_	N	

TABLE 7
General Formula 7

$\frac{R_1}{2}$	<u>J</u>	R ₉	R ₁₃	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
<u>—</u> Н		H		CH ₃		CH	<u></u>
H	C=0		3	•	_		
н	C=0		_	_	OCH OCH ³		
н	C=0		_	_	OCH 3		
H	C=0		OCH 3			N	
H	C=0		OCH ³				
H	C=0		_	OCH ₃	_		
H			OCH ³	_			
Н		•	SCH ₃	_			
Н		3	SCH ₃	_	OCH ³		
Н	C=0	3	-		OCH ₃		
H	C=0	_	SCH ₃		OCH ₃		
Н			SCH ₃	•			
Н	C=0 C=0	3		OCH ³			
Н		3	_	-	CH ₃	N	
	so ₂		OCH ³		_		
H	so ₂	CH ₃	_	_	OCH ₃		
H	so ₂	CH ₃	OCH ₃	•	OCH ₃		
H	so ₂		OCH ₃		J		
H				CH ₃			
H .	Z					N	
H	so ₂				CH ₃		
H	C=0		CH ₃		CH ₃	CH	
H	C=0			CH ₃	_		
H		H	CH ₃	_	OCH ₃		
H	C=O	H -	CH ₃	Cl	.3		
H	C=0		CH3		OCH ₃	N	
H		H			OCH ₃	N	
H	C=0	H		CH ₃		N	
H	so ₂			CH ₃	CH ₃	CH	
H	so ₂	H	CH ₃	CH ₃	OCH ₃	CH	
H	so ₂	H	CH ₃	OCH ₃		CH	

$\frac{R_1}{}$	<u>J</u>	R ₉	R ₁₃	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	soz	H	CH ₃		OCH ₃		
H	so ₂	н	CH ³				
Н	so ₂	н	CH ₃	OCH,	осн ₃		
Н	soz	H	CH ³	CH ³	CH ₃	N	
H	CHZ	H	OCH ₃	CH ₃	CH ₃	CH	
H	CH ₂	н	_	CH ₃		CH	
H	CH ₂	Н	OCH ₃		OCH3	CH	
H	CH ₂		OCH ₃		OCH ₃		
н	CH ₂		OCH ₃				
Н	CH ₂	H	OCH ₃			N	
H	CH ₂	H	OCH ₃		CH ₃	N	
H	CH ₂	CH ₃	SCH ₃	CH ₃	CH ₃	CH	
H	CH ₂		_			CH	
H	CH ₂		SCH ₃		OCH ₃	CH	
H	CH ₂	CH ₃		Cl	OCH ₃	CH	
H	CH ₂	CH ₃	SCH ₃			N	
H	CH ₂			OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	SCH ₃	CH ₃	CH ₃	N	
H	CH ₂	CH3	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	CH ₃	CH	
Н	CH ₂	CH3	CH ₃	CH3	OCH ₃	CH	
H	CH ₂	CH3	CH ₃	Cl	OCH	CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH ₃		CH ₃	N	
H	0	H	CH ₃	CH ₃	CH ₃	CH	
H	0	Н	CH ₃	CH ₃	OCH ₃		
H		Н			OCH ₃		
H	0		-		OCH ₃		
H		н.	CH ₃	CH ₃	OCH ₃	N	
H					OCH ₃		
H	0	H	CH3	CH ₃	CH ₃	N	

$\frac{R_1}{}$	<u>J</u>	R ₉	R ₁₃	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	0	H	OCH ₃		CH3	CH	
H	0	H	OCH ₃	_	och ₃		
H	0	H	осн ₃		OCH ₃		
H	0	Н	OCH ₃		OCH ₃		
Н	0	Н	OCH ₃				
Н	0	н	OCH ₃				
н	0	н	och ³		CH ₃		
6-CH ₃	C=O	н	OCH ₃	CH ₃	CH ₃	СН	
6-CH ₃		н	OCH ₃	CH ₂	OCH ₃	СН	•
6-CH ₃				och ₃			
6-CH ₃			осн ₃		OCH ₃		
6-CH ₃			осн ₃			N	
6-CH ₃			осн ₃	_		N	
6-CH ₃			OCH ₃	CH ₃	CH ₃	N	
6-CH ₃			scH ₃	CH ₃	CH ₃	CH	
			sch ₃	СНЗ	OCH ₃	CH	
6-CH ₃				осн _з			
6-CH ₃				_			
6-CH ₃	C=O	CH ₃	SCH ₃	CH ₃			
6-CH ₃					_		
6-CH ₃				-	CH ₃	N	
			OCH ₃	CH	CH ₃	CH	
6-CH ₃	so ₂	CH ₃	OCH ₃				
6-CH ₃	so ₂	CH ₃	OCH ₃				
6-CH ₃	so ₂	CH ₃	OCH ₃		OCH ₃	CH	
6-CH ₃	so ₂		OCH ₃		OCH ₃	N	
6-CH ₃	so ₂	CH ₃	OCH ₃	OCH ₃	OCH	N	
6-CH ₃	so ₂	CH ₃	OCH ₃	CH ₃	CH ₃	N	
6-CH ₃	C=O	H	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	C=0	H	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	C=O	H	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	C=0	H	CH ₃	Cl	OCH ₃		

$\frac{\mathtt{R_1}}{}}$	J	R ₉	R ₁₃	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	C=O	H	CH ₃		осн ₃		
6-CH ₃		H	CH ₃		_		
6-CH ₃		н	CH ³	CH ³	CH3	N	
6-CH ₃		н	CH ₃	CH ₃	CH ₃	СН	
6-CH ₃	_		CH ₃	CH ₃	OCH ₃	СН	
6-CH ₃			CH ₃	осн ₃			
6-CH ₃			CH ₃	cı	OCH ₃		
6-CH ₃	_		CH ₃	CH ₃	OCH ₃		
6-CH ₃	_		CH ₃	OCH ₃		N	
6-CH ₃			CH ₃		CH ₃	N	•
6-CH ₃	_		OCH ₃	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂		OCH ₃		OCH ₃	СН	
6-CH ₃			OCH ₃			СН	
6-CH ₃			OCH3		OCH ³		
6-CH ₃			OCH ₃		OCH ³	N	
6-CH ₃	CH ₂	H	OCH ₃	OCH ₃		N	
6-CH ₃	CH ₂		OCH ₃		CH ₃	N	
6-CH ₃				CH ₃	CH ₃	CH	
6-CH ₃				CH ₃	осн ₃	CH	
6-CH ₃ .	CH ₂		SCH ₃	осн ₃	осн ₃	CH	
6-CH ₃	CH ₂		scH ₃	Cl	OCH ₃		
6-CH ₃					_		
	CH ₂	CH3			OCH ₃	N	
6-CH ₃	CH ₂				CH ₃	N	
6-CH ₃	CH ₂			CH ₃	CH ₃	CH	
6-CH	CH	CH_	CH_	CH_	OCH_	CH	
6-CH ₃	CH ₂	CH ₃	. CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	CH3	CH ₃	Cl	OCH,	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH3	OCH	N	
6-CH ₃	CH ₂	CH3	CH ₃	осн ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	0	H	CH ₃				

$\frac{R_1}{}$	<u>J</u>	R ₉	R ₁₃	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	0	H	CH3	CH ₃			
6-CH ₃	0	H	CH ₃	OCH ₃			
6-CH ₃	0	H	CH ₃	C1	OCH ₃		
6-CH ₃	0	H	CH3	CH ₃			
6-CH ₃	0	H	CH ₃	OCH ₃		N	
6-CH ₃	0	H	CH ³	CH ₃	CH ₃	N	
6-CH ₃	0	H	OCH ₃		CH ₃	СН	
6-CH ₃	0	H	OCH ₃		осн ₃	СН	
6-CH ₃	0	H	OCH ₃	осн _з	OCH ³	CH	
6-CH ₃	0	H	OCH ₃	Cl	OCH ₃	CH	
6-CH ₃	0	Н	OCH ₃	CH3			
6-CH ₃	0	H	OCH ₃			N	
6-CH ₃	0	H	OCH ₃		CH ₃	N	
5-OCH ₃	C=0	H	OCH ₃	CH ₃	CH ₃	CH	
5-OCH ₃	C=O	H	OCH ₃	CH ₃	OCH ₃	CH	
5-OCH ₃	C=O	H	OCH ₃	OCH ₃		CH	
5-OCH ₃	C=O	H	OCH ₃	Cl	OCH ₃	CH	
5-OCH ₃	C=O	H	OCH ₃			N	
5-OCH ₃		H	OCH ₃	OCH ₃		N	
5-OCH ₃		H	OCH ₃	CH ₃	CH ₃	N	•
5-OCH ₃	C=0	CH ₃		CH ₃	CH ₃	CH	
5-OCH ₃		CH ₃	SCH3	CH ₃	OCH ₃	CH	
5-OCH ₃	C=0	CH ₃	SCH ₃	OCH ₃		CH	
5-OCH ₃	C=0	CH3	SCH ₃			CH	
5-OCH ₃	C=0	CH ₃	SCH ₃	CH ₃	OCH ₃	N	
5-OCH ₃	C=O	CH ₃	scH ₃		OCH ₃	N	
5-OCH ₃	C=O	CH ₃	SCH ₃	CH ₃	CH ₃	N	
5-OCH ₃	so ₂	CH ₃	OCH ₃	CH	CH3	CH	
5-OCH ₃	so ₂	CH ₃	OCH ₃	CH ₃	OCH ₃	CH	
5-OCH ₃	so ₂	CH ₃	OCH ₃	OCH ₃	OCH ₃	CH	
5-OCH ₃	so ₂	CH ₃	OCH ₃	Cl	OCH ₃	CH	
5-OCH3							

. 206

$\frac{R_1}{2}$	<u>J</u>	<u>R₉</u>	<u>R₁₃</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
5-OCH ₃	so,	CH ₃	OCH ₃			N	
5-OCH ₃		CH ₃	OCH ³	CH3	CH ₃	N	-
5-OCH ₃		_	CH ₃	CH ₃	CH ₃	СН	
_	C=0	н	CH3	CH ₃	OCH ₃	СН	
5-0CH ₃	C=0	н	CH ₃	OCH ₃		СН	
5-0CH ₃	C=0	H	CH ₃	Cl	OCH ₃	CH	
5-OCH ₃	C=0	H	CH ₃	CH ₃	OCH3	N	
5-0CH ₃		Н	CH3	OCH ³		N	
5-0CH ₃		H	CH ₃	CH ³	CH ₃	N	
5-0CH ₃			CH ₃	CH ³	CH ₃	СН	
5-OCH ₃	so ₂	H	CH ₃	CH ₃	OCH ₃	СН	
5-OCH ₃	so ₂	H	СН ³	осн ₃	OCH ₃	CH	
5-OCH ₃	so ₂	H	CH ³	Cl	OCH ₃	CH	
5-OCH ₃	so ₂		CH ₃	CH ³	OCH3	N	•
5-OCH ₃	so ₂	H	CH ₃	OCH ₃	OCH ₃	N	
5-OCH ₃	so ₂	H	CH ₃	CH3	CH ₃	N	
5-OCH ₃	CH ₂	H	OCH ³	CH ³	CH ₃	CH	
5-OCH ₃	CH ₂	H	OCH ³	CH3	OCH ₃	CH	
5-OCH ₃		H	OCH ³	OCH ₃	OCH ₃	CH	
5-0CH ₃		H	OCH3	Cl	OCH ₃	CH	
5-OCH ₃	CH ₂	H	OCH ³	CH3	OCH ₃	N	
5-OCH ₃	CH ₂		OCH ³	OCH ₃	OCH ₃	N	
5-OCH ₃		H	OCH ₃	CH ³	CH ₃	N	
5-OCH ₃	CH ₂	CH ₃	SCH ₃	CH ³	CH ₃	CH	
5-OCH ₃	CH ₂	CH ₃		CH ₃	OCH ₃	CH	
5-OCH ₃	CH ₂	CH ₃	SCH ₃	OCH ₃	OCH3	CH	
5-OCH ₃	CH ₂	CH ₃	SCH ₃	Cl	OCH ₃	CH	
5-OCH ₃						N	
5-OCH ₃	CH ₂	CH ₃	SCH ₃	OCH ₃	OCH ₃	N	
5-OCH ₃ 5-OCH ₃	CH ₂	CH ₃	SCH ₃	CH ₃	CH ₃	N	
5-OCH ₃	CH ₂	CH ₃	CH3	CH ₃	CH ₃	CH	
5-OCH ₃	CH ₂	CH ₃	CH ₃	CH ₃	OCH ₃	CH	

$\frac{R_1}{2}$	<u> </u>	$\frac{R_9}{}$	R ₁₃	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
5-OCH ₃		CH ₃	CH ₃				<u> </u>
5-0CH ₃	CH ₂	CH ₃	CH ³	C1	OCH ₃	CH	
5-OCH ₃		CH ₃	CH ₃	CH ₃	OCH ₃	N	
5-0CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃		N	
5-0CH ₃		CH ₃	CH ₃	CH ₃	CH ₃	N	
5-0CH ₃		н	CH ₃	CH ₃	CH ₃	СН	
5-0CH ₃		H	CH ₃	CH ₃	OCH ₃	СН	
5-0CH ₃	0	H	CH ₃	осн _з	OCH ₃	СН	
5-OCH ₃		H	CH ₃	C1	OCH ₃	CH	
5-0CH ₃		H	CH ₃	CH ₃	OCH ₃	N	
5-OCH ₃		H	CH ₃	осн _з		N	
5-OCH ₃	0	H	CH ₃	CH ₃	CH3	N	
5-0CH ₃		H	осн ₃	CH ₃	CH3	CH	
5-OCH ₃		H	OCH ₃	CH ₃	OCH ₃	CH	
5-OCH ₃	0	H	OCH ₃	OCH ₃	OCH ₃	CH	
5-0CH ₃	0	H	OCH ₃	Cl	OCH ₃	CH	
5-0CH ₃	0	H	och ³	CH ₃	осн ₃	N	
5-0CH ₃	Ò	H	OCH ₃	OCH ₃	OCH ₃	N	
5-0CH3	0	Н	OCH,	CH,	CH,	N	

TABLE 8
General Formula 8

<u>R</u> 1	<u>J</u>	R ₈	R ₁₁	<u>x</u>	<u>¥</u>	<u>z</u>	m n (90)
<u>—</u>		H	CH ₃	CH ₃			m.p.(°C)
H	C=0		CH ₃	CH ₃	OCH CH ₃	CH	
H		H	CH ₃	OCH ₃	OCH ₃	CH	
H		H	CH ₃	Cl	OCH ₃		
H			CH ₃	CH ³			
H	C=O	н	CH ₃	och ₃	OCH ₃		
H	C=0	H		CH ₃	CH ₃	N	
H	C=O	CH ₃	CH ₂	CH ³	CH ₃	CH	
H	C=O	CH ₃	CH ₃	CH ₃			
H	C=O	CH ₃	CH ³	och ₃			
H	C=O		CH ₃	Cl			
H	C=O	CH ₃		CH3			·.
H	C=O	CH3	CH3	OCH ₃			
H	C=0	CH ₃	CH ₃	CH ₃	CH ₃		
H		CH ₃		СН	CH ₃	CH	
H		CH ₃	CH ₃	CH ₃	OCH ₃	СН	
H	so ₂	CH ₃	CH ₃	OCH ₃			
H	so ₂	CH3	CH ₃	Cl			
H		CH ₃	CH ₃	CH ₃	OCH ₃	N	
H	so ₂	CH3	CH ₃	OCH ₃	OCH ₃		
H	so ₂	CH ₃	CH3	CH ₃	CH ₃		
H	C=0	CH ₃	N(CH ₃) ₂	CH ₃	CH ₃	CH	
H	C=0	CH ₃	N(CH ₃) ₂	CH3	OCH ₃	CH	
H	C=0	CH ₃	N(CH ₃)2	OCH ₃	OCH ₃	CH	
H	C=0	CH ₃	N(CH ₃) ₂	Cl	OCH ₃	CH	
H	C=0	CH ₃	N(CH ₃) ₂	CH ₃	OCH ₃	N	
H	C=0	CH ₃	N(CH ₃) ₂	OCH ₃	OCH ₃	N	
Н		CH ₃	N(CH ₃) ₂	CH ₃	CH ₃	N	
H	so ₂		CH ₃	CH ₃	CH ₃	CH	
H	so ₂		CH ₃	CH ₃	OCH ₃	CH	
Н	so ₂	H	CH ₃	OCH ₃	OCH ₃	CH	

$\frac{R_1}{}$	<u>J</u>	R ₈	R ₁₁	<u> </u>	<u>¥</u>	<u>z</u>	m.p.(°C)
Н	so ₂	н	CH ₃		OCH ₃		
H	so ₂	H	CH ³		•		
Н	so ₂	H	CH ₃	och ₃			
Н	so ₂	H	CH ₃	CH ₃	CH ₃	N	
н	C=0		OCH ₃	CH ₃	CH ₃	СН	
H	C=0	CH ₃	OCH ₃	CH ₃	och ₃	CH	
H	C=O	CH ₃	осн ₃	осн _з			
H	C=0	CH ₃	осн ₃	Cl	OCH ₃	CH	
H	C=O	CH3	OCH ₃		OCH ₃	N	
Н	C=O	CH ₃	OCH ₃				
H	C=O	CH ₃	осн ₃				
Н	so ₂	CH ₃	OCH ₃	CH3	och ₃	СН	
Н		CH ₃	OCH ₃		OCH ₃	CH	
H		CH ₃	OCH ₃		OCH ₃	CH	
H	so ₂	CH ₃		Cl			
H	so ₂	CH ₃	OCH ₃	CH ₃			
H	so ₂	CH ₃		OCH ₃	OCH ₃	N	
H	so ₂	CH ₃			CH ₃	N	
H	CH ₂	Н		CH ₃	CH ₃	CH	
H	CH ₂	H	CH3	CH ₃	OCH ₃	CH	
H	CH ₂		CH ₃	OCH ₃	OCH3	CH	
H	CH ₂	H	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	H	CH ₃	CH ₃		N	
H	CH ₂	H	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	H	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH ₃		CH	
H	CH ₂	CH ₃	CH ₃	CH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	CH3 .	OCH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	Cl	OCH ₃	CH	•
H				CH3		N	
H				CH ₃		N	
H				CH ₃		N	

TABLE 8 (Continued)

		_					
$\frac{\mathtt{R_1}}{}$	<u>J</u>	R ₈	R ₁₁	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂	CH ₃	SCH ₃	CH ₃	CH ₃	CH	
H		CH ₃			OCH ₃		
H		CH3			OCH ₃		
H		CH ₃		Cl	_		
Н		CH ₃			_		
H	CH ₂				OCH ₃		
H	CH ₂	CH ₃		_	_		
H	0	н			CH ₃		
H	0	Ħ			OCH ₃		
H	0	H			OCH ₃		
H	0	H	CH ₃		OCH ₃		
· H	0	H	_		OCH ₃		
H	0	H			OCH ₃		
H	0	H	CH ₃		CH ₃		
H	0	H	OCH ₃	CH ₃	CH ₃	CH	
H	0	H			осн ₃		
H	0	H			OCH ₃		
H	0	H	OCH ₃	Cl	осн ₃		
H	0	H			осн ₃		
H	0	H	_	_	OCH ₃		
H	0	H		CH ₃			
H	0	CH ₃			CH3	CH	
H	0	CH ₃	CH ₃	CH ₃	OCH ₃	CH	
H	0	CH ₃	CH ₃	OCH ₃	OCH ₃	CH	
H	0	CH ₃			_		
H	0	CH ₃	CH ³	CH ₃	OCH ₃		
H	. 0	CH ₃	CH ₃	OCH ₃	OCH3		
H	0	CH ₃	CH ³	CH ₃	CH ₃	N	
6-CH ₃	C=O	н `	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	C=O	H			OCH ₃	CH	
6-CH ₃	C=0	H			OCH ₃		
6-CH ₃			CH ₃				
•					5		

TABLE 8 (Continued)

$\frac{R_1}{}$	-	R ₈	R ₁₁	_	77	-	(00)
	ī			X	Ā	<u>z</u>	m.p.(°C)
6-CH ₃		H	CH ³	CH ₃			
6-CH ₃			CH ₃	OCH ₃	och3		
6-CH ₃			CH ₃	CH ₃	CH ₃	N	
6-CH ₃		CH ₃	CH3	CH ₃	CH ₃	CH	
6-CH ₃		CH3	CH ₃	CH ₃	осн ₃		
6-CH ₃		CH ₃	CH ₃	OCH ₃	OCH ₃		
6-CH ₃	C=0	CH3	CH ₃	Cl	och ³		
6-CH ₃	C=0	CH ₃	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	C=0	CH ₃	CH ₃	OCH ₃	och ³	N	
6-CH ₃				CH3	CH ₃	N	
6-CH ₃	so ₂	CH ₃	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	so ₂	CH ₃	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃				OCH ₃			
6-CH ₃		CH ₃	CH ₃	Cl	OCH ₃		
6-CH ₃	_	CH ₃	-	CH ₃	_		
6-CH ₃			CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃		-		CH ₃	CH ₃	N	
_	_		N(CH ₃) ₂	CH ₃	CH ₃	CH	
6-CH ₃	C=O	CH ₃	N(CH ₃) ₂		OCH ₃	СН	
6-CH ₃		CH3	N(CH ₃) ₂		OCH ₃		
6-CH ₃			N(CH ₃) ₂	_	OCH ₃		
6-CH ₃		CH ₃	N(CH ₃) ₂		_		
6-CH ₃							
6-CH ₃				CH ₃	CH3	N	
6-CH ₃		H	CH3	CH ₃	CH ₃	СН	
6-CH ₃	so,	H	CH ₃	CH ₃	OCH,	CH	
6-CH ₃			CH ₃		och ₃		
-6-CH ₃		н	CH ₃	_	OCH ₃		
6-CH ₃	_	н	CH ₃		och ³		
6-CH ₃			CH ₃		OCH ₃		
6-CH ₃			CH ₃	CH ₃	_		
6-CH ₃			OCH ₃	CH ₃	CH ₃	СН	

TABLE 8 (Continued)

$\frac{R_1}{}$	J	R ₈	R ₁₁	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	C=0		OCH ₃		OCH ₃	CH	<u> </u>
6-CH ₃		CH ₃	OCH ₃		-		
6-CH ₃		CH ₃			OCH ₃		
6-CH ₃		CH ₃	OCH ³	CH ₃	OCH ₃	N	
•	C=0	CH ₃			OCH ₃	N	
6-CH ₃	C=O		OCH ₃		CH ₃	N	
6-CH ₃			OCH ₃	CH ₃	CH ₃	СН	
6-CH ₃			OCH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	so_	CH ₃	OCH ₃	OCH ₃	OCH ₃	СН	
6-CH ₃		-	OCH ₃		OCH ₃	СН	
6-CH ₃	_	CH ₃			OCH ₃	N	
6-CH ₃				OCH ₃	OCH ³	N	
6-CH ₃	_	CH ₃		снз	CH ₃	N	
6-CH ₃		н	CH ₃	CH ₃	CH ₃	СН	
6-CH ₃	CH ₂	Ħ	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂		CH ₃	OCH ₃	OCH3	CH	
6-CH ₃	CH ₂	H	CH ₃	C1	OCH ₃	CH	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃			CH3	OCH ₃	OCH ₃	N	•
6-CH ₃	CH ₂	H	CH ₃	CH3	CH ₃	N	
6-CH ₃	CH ₂	CH ₃		CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH3	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃		OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂			Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃					OCH ³	N	
6-CH ₃						N	
6-CH ₃						CH	
6-CH ₃	CH ₂	CH ₃	SCH ₃	CH ₃	OCH ₃	CH	
6-CH ₃						CH	
6-CH ₃						CH	
6-CH ₃						N	

TABLE 8 (Continued)

$\frac{\mathtt{R_1}}{}$	<u>J</u>	R ₈	R ₁₁	X	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂		SCH ₃	OCH3	OCH ₃	N	
6-CH ₃		_	•	_	CH ₃		
6-CH ₃		H	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃		H	CH3	CH ₃	OCH ₃	CH	
6-CH ₃	0	H	CH ₃	OCH ₃			
6-CH ₃	0	H	CH ₃	Cl	OCH ₃		
6-CH ₃	0	H	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	0	H	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃		H	CH ³	CH ₃	CH ₃	N	
6-CH ₃	0	н	och ₃	CH ₃	CH ₃	CH	
6-CH ₃	0	H	OCH ₃		OCH ₃	CH	
6-CH ₃	0	H	och3	och3	OCH ₃	CH	
6-CH ₃	0	H	OCH ₃	Cl	OCH ₃	CH	
6-CH ₃	0	H	OCH ₃	CH ₃	OCH ₃	N	
6-CH ₃	0	H	OCH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	0	H	OCH ₃	CH ₃	CH ₃	N	
6-CH ₃	0	CH ₃	CH ₃	CH3	CH ₃	CH	
6-CH ₃		CH ₃	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	0	CH3	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	0	CH ₃	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	0	CH ₃	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	0	CH ₃	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	0	CH ₃	CH ₃	CH3	CH3	N	

TABLE 9
General Formula 9

$\frac{R_1}{}$	<u>J</u>	<u>X</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	C=0	CH ₃	CH ₃	CH	
H	C=0	CH ³	OCH ₃	CH	
H	C=0	OCH ₃	OCH ₃	CH	
H	C=0	Cl	OCH ₃	CH	
H	C=0	CH ₃	OCH ³	N	
H	C=O	OCH ₃	OCH ₃	N	
H	C=0	CH ₃	CH ₃	N	
H	S	CH ₃	CH3	CH	
H	S	CH ₃	OCH ₃	CH	
H	S	OCH ₃	OCH ₃	CH	
H	S	Cl	OCH ₃	CH	
H	S	CH ₃	OCH ₃	N	
H	S	OCH ₃	OCH ₃	N	
H	S	CH3	CH ₃	N	
H	so ₂	CH ₃	CH ₃	CH	
H	so ₂	CH ³	OCH ₃	CH	
H	so ₂	OCH ₃	OCH ₃	CH	
H	so ₂	Cl	OCH ₃	CH	
H	so ₂	CH ₃	OCH ₃	N	
H	so ₂	OCH ₃	OCH ₃	N	·
H	so ₂	CH3	CH3	N	
H	CH ₂	CH ₃	CH3	CH	
H	CH ₂	CH ₃	OCH ₃	CH	
H	CH ₂	OCH ₃	OCH ₃	CH	
H	CH ₂	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	OCH ₃	N	
H	CH ₂	OCH ₃	OCH ³	N	
H	CH ₂	CH ₃	CH ₃	N	
6-CH ₃	C=0	CH ₃	CH ₃	CH	
6-CH ₃	C=O	CH ₃	OCH ₃	CH	
6-CH ₃	C=O	OCH ₃	OCH3	СН	

TABLE 9 (Continued)

$\frac{R_1}{}$	<u>J</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	C=O	Cl	осн ₃	CH	
6-CH ₃	C=0	CH ₃	OCH ₃	N	
6-CH ₃	C=O	OCH ₃	OCH ₃	N	
6-CH ₃	C=O	CH ₃	CH3	N	
6-CH ₃	S	CH ₃	CH ₃	СН	
6-CH ₃	S	CH ₃	OCH ₃	СН	
6-CH ₃	S	OCH ₃	OCH ₃	CH	
6-CH ₃	S	Cl	осн ³	СН	
$6-CH_3$	S	CH ₃	осн ₃	N	
6-CH ₃	S	OCH ₃	OCH ₃	N	
6-CH ₃	S	CH ₃	CH ₃	N	
6-CH ₃	so ₂	CH ₃	CH ₃	CH	
6-CH ₃	so ₂	CH ₃	OCH ₃	CH	
6-CH ₃	so ₂	OCH ₃	OCH ₃	CH	
6-CH ₃	so ₂	Cl.	OCH ₃	CH	
6-CH ₃	so ₂	CH ₃	OCH ₃	N	
6-CH ₃	so ₂	OCH ₃	осн ₃	N	
6-CH ₃	so ₂	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	C1	OCH ₃	CH	
6-CH ₃	CH ₂	Cl	OCH ₃	N	
6-CH ₃	CH ₂	OCH ₃	och ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	N	

TABLE 10
General Formula 10

ъ					
$\frac{R_1}{R_1}$	<u>J</u>	X	<u>¥</u>	<u>z</u>	m.p.(°C)
H	C=0	CH ³	CH ₃	CH	
H	C=O	CH ₃	OCH ₃	CH	
H	C=0	OCH ₃	OCH3	CH	
H	C=0	Cl	OCH ₃	CH	
H	C=O	CH ₃	OCH ₃	N	
H	C=O	OCH ₃	OCH ₃	N	
H	C=O	CH3	CH ₃	N	
H	so ₂	CH3	CH ₃	CH	
H	so ₂	CH ₃	OCH ₃	CH	
H	so ₂	OCH ³	OCH ₃	CH	
H	so ₂	Cl	OCH ₃	CH	
H	so ₂	CH ₃	OCH ₃	N	
H	so ₂	OCH ₃	OCH ₃	N	
H	so ₂	CH ₃	CH ₃	N	
H	CH ₂	CH3	CH ₃	CH	
H	CH ₂	CH ₂	OCH3	CH	
H	CH ₂	OCH ₃	OCH ₃	CH	
H	CH ₂	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	осн ₃	N	.•
H	CH ₂	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH3	N	
6-CH ₃	C=O	CH ₃	CH ₃	CH	
6-CH ₃	C=O .	CH ₃	OCH ₃	CH	
6-CH ₃	C=0	OCH ₃	OCH ₃	CH	
6-CH ₃	C=O	Cl	OCH ₃	CH	
6-CH ₃	C=O	CH ₃	OCH ₃	N	
	C=O	. осн ₃	OCH ₃	N	
6-CH ₃	C=O	CH ₃	CH ₃	N	
6-CH ₃	so ₂	CH ₃	CH3	CH	
6-CH ₃	so ₂	CH ₃	och ₃	CH	
6-CH ₃	so ₂	OCH ₃	осн ₃	CH	
			-		

TABLE 10 (Continued)

$\frac{\mathtt{R_1}}{}$	<u>J</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-CH ₃	so ₂	Cl	OCH ₃	CH	
6-CH ₃	so ₂	CH ₃	OCH ₃	N	
6-CH ₃	so ₂	осн ₃	OCH ₃	N	
6-CH ₃	so ₂	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH3	CH3	N	

TABLE 11
General Formula 11

$\frac{R_1}{2}$	<u>J</u>	R ₈	<u>R₁₁</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	C=0	CH ₃	SCH	CH ₃	CH ₃	CH	
H	C=0	_		CH ³		СН	
H	C=0		scH ₃			CH	
н	C=0	•	SCH ₃	_	осн ³		
H	C=0		-			N	•
H	C=O	•	scH ₃			N	
Н	C=0	CH3	scH ₃		CH ₃	N	
Н	C=0	SCH ₃	SCH ₃	CH3	CH ₃	CH	
H	C=O	SCH ₃			OCH ₃	CH	
H	C=0					CH	
H	C=0				OCH ₃		
H	C=O	SCH ₃				N	
н		scH ₃	SCH ₃			N	
H	C=O				CH ₃	N	
H	so ₂		SCH ₃	CH ₃	CH ³	CH	
Н	so ₂		SCH ₃			CH	
H	so ₂		SCH ₃			CH	
H	so ₂	CH ₃	SCH ₃			CH	
H	so ₂	CH ₃	SCH ₃			N	
H	so ₂		_	OCH ₃		N	
H	so ₂			CH3		N	
H		CH ₃			CH ₃	CH	
H		CH ₃		CH3	OCH ₃	CH	
H		CH ₃			och ³	CH	
H		CH ₃			OCH ₃	CH	
H			scH ₃		OCH ₃	N	
H	CH ₂	CH ₃	SCH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	scH ₃	CH ₃	CH ₃	N	
H	CH ₂	CH ₃	OCH ₃	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃	OCH ₃	CH ₃	OCH ₃	CH	
H	_	CH,	_	OCH,	_	CH	

TABLE 11 (Continued)

R ₁	<u>J</u>	R ₈	R ₁₁	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H		CH ₃	OCH ₃	Cl	OCH ₃		
H	CH ₂	•	OCH ₃	CH ₃		N	
H	CH ₂		OCH ₃	och ₃	OCH ₃	N	
H	CH CH	CH ₃		CH ₃	CH ₃	N	
H	CH ₂			CH ₃	CH ₃	СН	
н	CH ₂	_		CH .	OCH ₃	СН	
н	CH ₂	CH ³	CH 3	OCH ₃	OCH ₃	CH	
Н	CH ₂	CH ₃	CH ³	C1	OCH ₃		
Н	CH ₂	CH ³	CH ³			N	
Н	CH ₂	CH ₃		CH ₃	OCH 3	N	
	CH ₂	CH ³	CH ³	CH OCH ³	CH OCH3	N	
Н	CH ₂	CH ₃	CH ₃	CH ₃	CH ³	СН	
H	C=0	3			CH ₃	CH	
H	C=0		N(CH ₃) ₂		OCH ₃	CH	
H		CH ₃					
H 	C=0	3	N(CH ₃) ₂		OCH ₃	CH	
H	C=O	3			OCH ₃		
H			N(CH ₃) ₂	OCH ₃	OCH ³	N	
H	C=0	CH ₃	N(CH ₃) ₂	CH ₃	CH ₃	N	
H	C=0		OCH ₃	CH ₃	CH3	CH	
H	C=O	CH ₃	OCH ₃	CH ₃	och ₃	CH	
H	C=0	CH ₃	OCH ₃	OCH ₃		CH	
H	C=0	CH ₃	OCH ₃	Cl	OCH ₃	CH	
H	C=O	CH ₃	OCH ₃	CH ₃	och ₃	N	
H	C=O	CH ₃	OCH ₃	OCH ₃	OCH ₃	N	
H	C≖O	CH3	OCH ₃	CH ₃	CH ₃	N	
H	so ₂	CH ₃	OCH ₃	CH ₃	CH ₃	CH	
H	so ₂	CH ₃	OCH3	CH ₃	OCH ₃	CH	
H	so ₂	CH ₃	OCH ₃	OCH ₃	OCH ₃	CH	
Н	so ₂	CH ₃	OCH ₃	Cl	OCH ₃	CH	
н	ຣ໐໌້	CH	OCH ₃	CH ₃	OCH ₃	N	
H	ຣ໐໌	CH,	OCH ₃	OCH ₃	OCH ₃	N	
H	so,	CH3	OCH ₃	CH ₃	CH ₃	N	

TABLE 11 (Continued)

R	J	<u>R</u> 8	<u>R</u> 11	<u>x</u>	<u>¥</u>	Z m.p.(°C)
6-Cl	C=O	CH3	SCH,	CH ₃		
6-C1	C=O		scH ₃		•	СН
6-C1	C=O	CH3	SCH ₃	_		
6-C1	C=O		SCH ₃	_	OCH ₃	
6-C1	C=0				_	
6-C1	C=O	CH ₃	SCH ₃			
6-C1	C=O	CH ³	SCH ₃	_	CH3	
6-Cl	C=O		SCH ₃			СН
6-C1	C=O	_	SCH ₃	_	-	СН
6-C1	C=0	-	_	_		
6-Cl	C=0		_	•	OCH ₃	CH
6-Cl	C=O	_	SCH ₃		OCH ₃	
6-C1	C=O			_		
6-Cl	C=O					
6-C1	so ₂			CH3	CH3	СН
6-Cl	so ₂				OCH ₃	СН
6-Cl	so ₂	CH ₃				
6-C1	so ₂	CH ₃	SCH ₃		OCH ₃	
6-C1	so ₂		SCH ₃			
6-C1	so ₂	CH ³		-		
6-C1	so ₂	CH ³				
6-C1	CH ₂	CH ₃	SCH ₃		CH3	CH
6-C1	CH ₂	CH ₃	scH ₃	CH ₃	OCH ₃	CH
6-C1	CH ₂	CH ³	SCH ₃	OCH ₃		
6-C1	CH ₂		SCH ₃		OCH ₃	
6-C1	CH ₂	CH ₃	SCH ₃	CH3	осн ³	
6-Cl					OCH ₃	N
6-C1	CH ₂	CH3	SCH ₃	CH ₃	CH ₃	N
5-OCH ₃	CH ₂	CH ₃	OCH ₃	CH ₃	CH ₃	СН
5-OCH ₃	CH ₂	CH3	OCH ₃	CH ₃	OCH ₃	СН
5-0CH ₃	CH ₂	CH3	OCH ₃	OCH ₃	OCH ₃	CH
5-OCH ₃						

TABLE 11 (Continued)

ъ			ъ				
$\frac{R_1}{}$	<u>J</u>	R ₈	R ₁₁	X	Y	<u>z</u>	m.p.(°C)
5-OCH ₃	CH ₂	CH ₃	OCH ₃	CH ₃	OCH ₃	N	
5-0CH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	_		
5-0CH ₃	CH ₂	CH ₃	OCH ₃	CH ₃	CH3	N	
5-0CH ₃	CH ₂	CH ₃	_	CH ₃	CH ₃	СН	
5-0CH ₃	_	CH ₃	_	CH ₃		CH	
5-0CH ₃	_	_	_	OCH ₃			
5-0CH ₃		CH ₃	-	Cl	OCH ₃		
5-0CH ₃	CH ₂	CH ₃	_	CH ₃	_		
5-0CH ₃		CH ₃		OCH ₃	_	N	
5-0CH ₃	_	-		CH ₃	CH3	N	
5-0CH ₃	C=0	CH ₃	N(CH ₃) ₂			CH	
5-0CH ₃						CH	
5-0CH ₃	C=0	CH ₃					
5-0CH ₃	C=0	CH ₃	N(CH ₃) ₂		OCH ₃		
5-OCH ₃	C=O	CH ₃	N(CH ₃) ₂	CH ₃			
5-OCH ₃					_		
5-OCH ₃	C=0	CH ₃		CH ₃	CH3	N	
5-OCH ₃	C=0	CH ₃	OCH ₃	CH ₃	CH ₃	CH	
5-0CH ₃	C=0	CH ₃	OCH ₃	CH ₃			
5-0CH ₃	C=0	CH ₃	OCH ₃	OCH ₃	осн ₃		
5-0CH ₃	C=0	CH ₃		Cl	OCH ₃		
5-OCH ₃	C=O	CH ₃	OCH ₃	CH ₃		N	
5-OCH ₃	C=0	CH ₃	OCH ₃	OCH ₃		N	
5-OCH ₃	C=0	CH ₃	OCH ₃	CH ₃	CH ₃	N	
5-OCH ₃	so,		OCH3	CH ₃	CH ₃	CH	
5-OCH ₃	so ₂	CH ₃			OCH ₃	CH	
5-0CH ₃	so ₂	CH ₃	OCH ₃			CH	
5-OCH ₃	so ₂	CH ₃	OCH ₃	Cl	OCH ₃	CH	
5-0CH ₃	so ₂	CH ₃	OCH ₃	CH ₃	OCH ₃	N	
5-0CH ₃	so ₂	CH ₃	OCH ₃	OCH ₃	OCH ₃	N	
5-0CH ₃	so ₂	CH ₃	OCH ₃	CH ₃	CH ₃		

TABLE 12 General Formula 12

<u>R</u> 1	<u>J</u>	R ₈	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
н	C=0	<u>—</u> Н	CH ₃	CH ₃	CH	
н	C≂O	Н	CH ₃	OCH ³	CH	
н	C=O	H	OCH ₃	OCH ₃	CH	
н	C=0	Н	Cl	OCH ₃	CH	
н	C=0	H	CH ₃	OCH ³	N	
н	C=O	Н	OCH ₃	OCH ₃	N	
н	C≖O	Н	CH ₃	CH ₃	N	
н	C=O	CH ₃	CH ₃	CH ₃	СН	
н	C=0	CH ₃	CH ₃	OCH ₃	СН	
н	C=0	CH ₃	OCH ₃	OCH ₃	CH	
H	C=0	CH3	Cl 3	OCH ₃	CH	
н	C=0	CH ³	CH ₃	OCH ₃	N	
н	C=O	CH ³	OCH ₃	OCH ³	N	
H	C=O	CH ₃	CH3	CH3	N	
H	so ₂	CH3	CH ₃	CH ₃	CH	
н	so ₂	CH ₃	CH ₃	OCH ₃	СН	
H	so ₂	CH ³	OCH ₃	OCH ₃	CH	
H	so ₂	CH3	Cl	OCH ₃	CH	
H	so ₂	CH ₃	CH ₃	OCH ₃	N	
H	so ₂	CH ₃	осн ₃	OCH ₃	N	
H	so ₂	CH3	CH ₃	CH ₃	N	
H	so ₂	н	CH ₃	CH ₃	CH	
H	so ₂	H	CH ₃	OCH ₃	CH	
H	so ₂	H	OCH ₃	OCH ³	CH	
H	so ₂	H	Cl	OCH ₃	CH	
H	so ₂	H	CH ₃	OCH ₃	N	
H	so ₂	H	OCH ₃		N	
H	so ₂	H	. CH ₃	CH ₃	N	
H	CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂	H	CH ₃	OCH ₃	CH	
Н	CH ₂	Н	OCH ₃	OCH ₃	СН	

TABLE 12 (Continued)

$\frac{R_1}{2}$	<u>J</u>	R ₈	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	н	Cl	OCH ₃	СН	
Н	CH ₂	H	CH ₃	OCH ₃	N	
Н	CH ₂	н	осн ₃		N	
Н	CH ₂	Н	CH ₃	CH3	N	
Н	CH ₂	CH ₃	CH ₃	CH ³	СН	
н	CH ₂	CH ₃	CH ₃	och ₃	CH	
н	CH ₂	CH ₃	och ₃		CH	
H	CH ₂	CH ₃	Cl	och3	CH	
Н	CH ₂	CH ₃	CH ₃	och ³	N	
н	CH ₂	CH ₃	och ³		N	
Ħ	CH ₂	CH ₃	CH ₃	CH3	N	
5-OCH ₃	C=0	н	CH ₃	CH ₃	CH	
S-OCH ₃	C=0	H	СН ³	осн ₃	CH	
5-0CH ₃	C=0	H	OCH ₃	OCH ₃	СН	
5-0CH ₃	C=O	H	C1	осн ³	CH	
5-0CH ₃		H	CH ₃	OCH ₃	N	
5-0CH ₃		H	OCH ₃	OCH ₃	N	
5-0CH ₃		H	CH ₃	CH3	N	
5-0CH ₃		CH ₃	CH ₃	CH ₃	CH	
5-0CH ₃	C=0	CH ₃	CH ₃	OCH ₃	CH	
5-0CH ₃		CH ₃	OCH ₃	OCH ₃	CH	
5-OCH ₃		CH ₃	Cl	OCH ₃	CH	
5-OCH ₃	C=O	CH ₃	CH ₃	OCH3	N	
5-OCH ₃	C=O		OCH ₃	OCH ₃	N	
5-OCH ₃	C=0	CH ₃	CH ₃	CH ₃	N	
5-OCH ₃	so ₂	CH ₃	CH ₃	CH ₃	CH	
5-OCH ₃	so ₂	CH ₃	.CH ₃	OCH ₃	CH	
				OCH ₃		
5-0CH ₃	so ₂			OCH ₃	CH	
				OCH ₃	N	
5-0CH ₃	so ₂	CH ₃	OCH ₃	OCH ₃	N	
	so ₂					

TABLE 12 (Continued)

$\frac{R_1}{L}$	<u>J</u>	<u>R</u> 8	<u>X</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
5-OCH ₃	so ₂	H	CH3	CH ³	CH	
5-0CH ₃	so ₂	H	CH ³	OCH ³	СН	
5-OCH ₃	so ₂	Н	OCH ³	OCH ³	CH	
5-OCH ₃	so ₂	H	Cl	OCH ₃	CH	
5-OCH ₃	so ₂	H	CH ₃	OCH ₃	N	
5-0CH ₃	so ₂	H	OCH ₃	OCH ₃	N	
5-OCH ₃	so ₂	H	CH ₃	CH ₃	N	
5-OCH ₃	CH ₂	H	CH ₃	CH ₃	CH	
5-OCH ₃	CH ₂	H	CH ₃	OCH ₃	CH	
5-OCH ₃	CH ₂	H	OCH ₃	OCH ₃	CH	
5-OCH ₃	CH ₂	H	Cl	OCH ₃	CH	
5-OCH ₃	CH ₂	H	CH3	OCH ₃	N	
5-OCH ₃	CH ₂	H	OCH ₃	OCH ₃	N	
5-OCH ₃	CH ₂	H	CH ₃	CH ₃	N	
5-OCH ₃	CH ₂	CH ₃	CH ₃	CH ₃	CH	
5-OCH ₃	CH ₂	CH ₃	CH ₃	OCH ³	CH	
5-OCH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
5-OCH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
5-OCH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	N	
5-OCH ₃	CH ₂	CH3	OCH ₃	OCH ₃	N	
5-OCH	CH	CH	CH ₂	CH_	N	

50-

TABLE 13
General Formula 13

$\frac{R_1}{2}$	<u>G</u>	R ₁₄	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂	Н	CH ₃	och ₃		
H	CH ₂	Н	OCH ₃	OCH ₃	CH	
H	CH ₂	Н	Cl	OCH ₃	CH	
H	CH ₂	н	CH ₃	OCH ₃		
н	CH ₂	н	OCH ₃			
Н	CH ₂	H	CH ₃	CH ₃	N	
Н		7-NO ₂	CH ₃	CH ₃	СН	
H		7-NO ₂	CH ₃	OCH ₃	СН	
H.	CH ₂	7-NO ₂	осн ₃			
H	CH ₂	7-NO2	Cl	осн ₃	СН	
Н		7-NO ₂	CH ₃	och ₃	N	
H		7-NO ₂	осн ₃			
H		7-NO ₂	CH ₃	CH ₃	N	
H		8-C1	CH3	CH3	CH	
H		8-C1		OCH ₃	CH	
H		8-C1		OCH ₃		
H		8-C1		осн ³		
H	CH ₂	8-C1	CH ₃		N	
H	CH ₂	8-C1	OCH ₃		N	
H	CH ₂	8-C1	CH ₃	CH ₃	N	
Н		9-0CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	9-OCH ₃	CH ₃	OCH ₃	CH	
H	CH ₂	9-OCH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	9-0CH ₃	Cl	OCH ₃	CH	
H	CH ₂	9-OCH ₃	H	OCH ₃	N	
H	CH ₂	9-0CH ₃	OCH ₃	och ₃	N	
H	CH ₂	9-0CH ₃	CH ₃	CH ₃	N	
H	CH ₂	10-CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	10-CH ₃	CH ₃	och ₃	CH	
H		10-CH ₃		och ³		

TABLE 13 (Continued)

R		R				
$\frac{R_1}{}$	<u>G</u>	R ₁₄	<u>X</u>	Ā	<u>Z</u>	m.p.(°C)
H	CH ₂	10-CH ₃		OCH ₃		
H	CH ₂	10-CH ₃		OCH ₃		
H	CH ₂	10-CH ₃	_			
H	CH ₂	10-CH ₃	CH ₃	CH ₃	N	
H	CH ₂	7-F	CH ₃	CH ₃	CH	
H	CH ₂	7-F	CH ₃	OCH ₃	CH	
H	CH ₂	7-F	OCH ₃	OCH ₃	CH	
H	CH ₂	7-F	Cl	OCH ³	CH	
H		7-F	CH ₃	OCH ₃	N	
H	CH ₂	7-F	OCH3	OCH ₃	N	
H	CH ₂		CH3	CH ₃	N	
6-C1			CH3	CH ³	CH	
6-Cl		H	CH ₃	OCH ₃	CH	
6-Cl	CH ₂	H	OCH ₃	OCH ₃	CH	•
6-Cl	CH ₂		Cl	OCH ₃		
6-Cl	CH ₂		CH ₃			
6-C1	CH ₂		осн3		N	
6-C1	CH ₂	H	CH ₃	CH ₃	N	
6-C1		8-NO ₂	CH ₃	CH ₃	CH	
6-C1		8-NO ₂			CH	
6-C1		8-NO ₂		OCH ₃	CH	
6-Cl			Cl	OCH ₃	СН	
6-C1		8-NO ₂	CH ₃	OCH ₃	N	
6-C1		8-NO ₂			N	
6-C1	CH ₂	8-NO ₂	СН ₃	CH ₃	N	
6-C1	CH ₂	9-C1	CH3	CH ₃	CH	
.6-Cl	CH ₂	9-Cl	CH ₃	OCH ₃	CH	
6-Cl		9-C1	осн3		СН	
6-Cl	_	9-C1	Cl	OCH ³	CH	
6-Cl		9-C1	CH ₃	OCH ₃	N	
6-C1	2	9-C1	OCH ₃	OCH ₃	N	
6-C1		9-Cl	CH ₃	CH ₃	N	
	2		3	3		

TABLE 13 (Continued)

R ₁	<u>G</u>	R ₁₄	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂	7-0CH ₃			CH	ш.р.(-С)
_	CH2	_		CH ³		
6-CH ₃	CH ₂	7-OCH ₃		OCH ₃		
6-CH ₃	CH ₂	7-0CH ₃		OCH ₃		
6-CH ₃		7-0CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ²	7-0CH ₃	Н	OCH ₃	N	
6-CH ₃	CH ₂	7-OCH ₃		OCH ₃	N	
6-CH ₃	CH ₂	7-0CH ₃		CH ₃	N	
6-CH ₃	CH ₂	10-CH ₃	_	CH ₃	CH	
6-CH ₃	CH ₂	10-CH3	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	10-CH ₃			CH	
6-CH ₃		10-CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	10-CH3		OCH ₃	N	
6-CH ₃		10-CH ₃	och ₃		N	
$6-CH_3$		10-CH ₃	CH ₃	CH ₃	N	
6-CH ₃		9-F	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	9-F	CH3	OCH ₃	CH	
6-CH ₃	CH ₂	9-F	och ₃	och ₃	CH	
6-CH ₃	CH ₂	9-F	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	9~F	CH ₃	och3	N	
6-CH ₃	CH ₂	9-F	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	9-F	CH ₃	CH ₃	N	
H	CH ₂ CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	H	CH3	осн ₃	CH	
H	CH ₂ CH ₂	H	осн ₃	осн ₃	CH	
H	CH ₂ CH ₂	H	Cl	OCH ₃	CH	
Н	CH ₂ CH ₂	Н	CH ₃	OCH ₃	N	
н	CH ₂ CH ₂		OCH,	OCH ₃	N	
Н		н		CH ₃	N	
Н	CH ₂ CH ₂	7-NO.	CH ₃	CH ₂	СН	
	CH_CH_	7-NO_	CH_	OCH_		
Н	CH_CH_	7-NO ₂ 7-NO ₂	OCH_	OCH_	СН	
Н	CH_CH_	7-NO ₂	C1	OCH ₃	СН	
	22	2		3	-11	

TABLE 13 (Continued)

$\frac{R_1}{}$	<u>G</u>	R ₁₄	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
<u>т</u>		7_NO	CH ₃	OCH ³	N	<u>=</u>
Н	CH ₂ CH ₂	7-NO 7-NO	OCH O3		N	
Н	CH CH	7-NO ₂	CH 3	OCH ₃	N	
Н	CH ₂ CH ₂	9-C1	CH ₃	CH ₃	CH	
	CH ₂ CH ₂		CH ₃	CH ₃	CH	
H	CH ₂ CH ₂		CH ³	OCH ₃	CH	
H		8-Cl	осн ₃	OCH 3	CH	
H	2012	8-C1		OCH ³	N	
H		8-C1	CH ₃	OCH ₃		
H	CH ₂ CH ₂		och ³	OCH ₃	N	
H	CH ₂ CH ₂	8-C1	CH ₃	CH ₃	N	
H	CH ₂ CH ₂	9-OCH ₃	CH ₃	CH ₃	CH	
H		9-OCH ₃		OCH ₃	CH	
H	CH ₂ CH ₂	9-OCH ₃	OCH ₃	OCH ₃	CH	
H	CH2CH2	9-0CH ₃	Cl	OCH ₃	CH	
Н	CH ₂ CH ₂	9-0CH ₃	H	3	N	
H	CH ₂ CH ₂	9-0CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂ CH ₂	9-OCH ₃	CH ₃	CH ₃	N	
H	CH ₂ CH ₂	10-CH ₃	CH3	CH ₃	CH	
H	CH2CH2		CH ₃	OCH ₃	CH	
H	CH ₂ CH ₂	10-CH ₃	OCH ₃	OCH ₃	CH	
н	CH ₂ CH ₂	10-CH ₃		OCH ₃	CH	
H		10-CH ₃		OCH ₃	N	
H	CH2CH2				N	
Н	CH2CH2	10-CH ₃		CH ₃	N	
H	CH ₂ CH ₂	7-F	CH ₃	CH ³	CH	
Н	CH ₂ CH ₂		CH3	осн _з		
Н	CH2CH2	7-F	OCH,	OCH3	CH	
Н	CH_CH_	7-F 7-F	Cl	och ³	CH	
Н	CH ₂ CH ₂	7-F	CH,	осн ₃	N	
н	CH ₂ CH ₂	7-F	och ₃	OCH ₃		
н	CH ₂ CH ₂ CH ₂ CH ₂	7-F	CH ₃			
6-C1	CH ₂ CH ₂	Н	CH ₃		CH	
	2 2		3	3		

TABLE 13 (Continued)

$\frac{R_1}{}$	<u>G</u>	R ₁₄	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-C1	CH ₂ CH ₂		CH ₃			
6-C1	CH ₂ CH ₂		OCH ³	OCH ₃		
6-C1			Cl.	OCH ³	СН	
6-Cl	CH ₂ CH ₂		CH ₃	OCH ₃		
6-C1			och ₃			
6-C1	CH ₂ CH ₂		CH3	CH ₃	N	
6-C1		8-NO ₂	CH ₃	CH ₃	СН	
6-C1		8-NO ₂	CH ₃	och ₃		
6-C1	CH ₂ CH ₂	_		осн ₃		
6-C1		8-NO2	C1	осн ₃		
6-C1	_	8-NO ₂	CH ₃	осн ₃		
6-C1	CH ₂ CH ₂		осн ₃			
6-C1		8-NO ₂	CH ₃	CH ₃	N	
6-C1	CH ₂ CH ₂	9-C1	CH3	CH ₃	СН	
6-Cl	CH ₂ CH ₂	9-C1	CH3	OCH ₃	CH	
6-C1	CH ₂ CH ₂	9-C1	OCH ₃			
6-Cl	CH2CH2	9-C1	Cl	och ₃	CH	
6-C1	CH2CH2	9-C1	CH ₃	OCH ₃		
	CH2CH2	9-C1	OCH ₃	OCH ₃	N	
6-C1	CH2CH2	9-C1	CH ₃	CH3	N	
6-CH ₃	CH ₂ CH ₂	7-0CH ₃		CH ₃	CH	
	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	7-0CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	7-0CH ₃	Cl	OCH ₃		
	CH ₂ CH ₂	7-0CH ₃		OCH ₃	N	
6-CH ₃	CH ₂ CH ₂	7-0CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂ CH ₂	7-0CH ₃	CH ₃	CH ₃	N	
$6-CH_3$	CH ₂ CH ₂	10-CH ₃	CH ₃	CH3	CH	
6-CH ₃	CH ₂ CH ₂	10-CH ₃	CH ₃	осн ₃	CH	
	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
	CH2CH2		Cl	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	10-CH3	CH ₃		N	

TABLE 13 (Continued)

$\frac{R_1}{2}$	<u>G</u>	R ₁₄	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂ CH ₂		OCH ₃			<u></u>
_	CH ₂ CH ₂	•		_		
6-CH ₃	CH ₂ CH ₂	9-F	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂ CH ₂	9-F	CH ₃	OCH ₃		
	CH ₂ CH ₂		OCH	OCH ₃		
	CH ₂ CH ₂			OCH ₃		
6-CH ₃	CH ₂ CH ₂	9-F	CH ₃			
6-CH ₃	CH ₂ CH ₂	9-F	OCH ₃	OCH ₃		
	CH ₂ CH ₂		CH ₃	CH ₃	N	
н	CH=CH		CH ₃	CH ₃	СН	
Н	CH=CH	Н	CH ₃	OCH ₃		
H	CH=CH	H	OCH ₃			
H	CH=CH	Н	Cl	OCH ₃		
H	CH=CH	H	CH ₃	OCH ₃		
H	CH=CH	Н	OCH3			
H	CH=CH	H	CH ₃	CH ₃		
H	CH=CH	7-NO2	CH ₃	CH ₃	CH	
H	CH=CH	7-NO2	CH ₃	OCH ₃		
H	CH=CH	7-NO2	OCH,	OCH ₃		
H	CH=CH	7-NO2	Cl			•
H	CH=CH	7-NO ₂	CH ₃			
H	CH=CH	7-NO2	OCH ₃	OCH ₃	N	
H	CH=CH		CH ₃		N	
H	CH=CH	8-C1	CH3		CH	
H	CH=CH	8-Cl	CH3	осн ₃	CH	
H	CH=CH	8-C1	осн _з	осн3	CH	
H ·	CH=CH	8-C1	Cl	OCH ₃	CH	
H	CH=CH	8-C1	CH3	OCH ₃	N	
H	CH=CH	8-C1	OCH ₃	OCH ₃	N	
H	CH=CH	8-C1	CH ₃	CH ₃	N	
H	CH=CH	9-0CH ₃		CH ₃	СН	
H	CH=CH	9-OCH ₃	CH3	OCH,	CH	

TABLE 13 (Continued)

$\frac{R_1}{2}$	<u>G</u>	R ₁₄	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
Н	CH=CH					
Н	CH=CH	•		OCH ₃		
H	CH=CH					
Н	CH=CH	3				
H	CH=CH	3				
H	CH=CH	_	CH ₃	CH ₃	СН	
Н .	CH=CH	•	CH ₃			
H	CH=CH		-	OCH ₃		
H	CH=CH	•		OCH ₃		
H	CH=CH	_		_		
H	CH=CH					
H	CH=CH	_		CH ₃	N	
H	CH=CH		CH ₃	CH3	CH	
H	CH=CH	7-F	CH3	OCH ₃	CH	
H	CH=CH	7-F	OCH ₃	OCH ₃		
H	CH=CH	7-F	Cl	OCH ₃		
H	CH=CH	7-F	CH3	OCH ₃		
H	CH=CH	7-F	OCH ₃	-		
H	CH=CH	7-F		CH3	N	
6-Cl	CH=CH	H	CH ₃	CH ₃	CH	
6-C1	CH=CH	H	CH ₃	OCH ₃	CH	
6-C1	CH=CH	H	OCH ₃	OCH ₃	CH	
6-C1	CH=CH	H	Cl	OCH ₃		
6-Cl	CH=CH	H	CH ₃	OCH ₃		
6-C1	CH=CH	H	OCH ₃	OCH ₃		
6-Cl	CH=CH	Н	CH ₃	CH ₃	N	
6-Cl	CH=CH	8-NO ₂	CH ₃	CH ₃	CH	
6-C1	CH=CH	8-NO ₂	CH ₃	OCH ₃	CH	
6-C1	CH=CH	8-NO ₂	OCH ₃	OCH ₃	СН	
6-C1	CH=CH	8-NO ₂	Cl	OCH ₃	CH	
6-Cl	CH=CH	8-NO ₂	CH ₃	осн ₃	N	
6-Cl	CH=CH	8-NO ₂	OCH ³	OCH ₃	N	

TABLE 13 (Continued)

R	<u>G</u>	R ₁₄	•	v	7	n = (82)
6-C1	면=CH	- TA	X	Ā	<u>Z</u>	m.p.(°C)
6-C1		Z	CH ₃	CH ₃	N	
			CH ₃	CH ₃	CH	
6-C1	CH=CH	9-C1		OCH ³		
6-Cl			OCH ₃	OCH ₃	CH	
6-C1	CH=CH	9-C1	Cl	OCH ₃	CH	
6-C1	CH=CH	9-Cl	CH ₃	OCH ₃	N	
6-Cl	CH=CH	9-C1	OCH ₃	OCH ₃	N	
6-C1	CH=CH	9-C1	CH ₃	CH ₃	N	
6-CH ₃	CH=CH	7-0CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	CH=CH			OCH ₃	CH	
6-CH ₃	CH=CH	7-0CH ₃	OCH ₃	OCH ₃	CH	
	CH=CH	7-0CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	7-0CH ₃	H	OCH ₃	N	
6-CH ₃	CH=CH	7-0CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	7-0CH ₃		CH ₃	N	
6-CH ₃	CH=CH	10-CH ₃	CH ₃	CH ₃	CH	
	CH=CH	10-CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	10-CH ₃		осн ₃	CH	
6-CH ₃	CH=CH			OCH ₃	CH	
6-CH ₃	CH=CH	10-CH ₃	CH ₃	OCH ₃	N	-
6-CH ₃	CH=CH	10-CH ₃	OCH3	OCH ₃	N	
6-CH ₃	CH=CH	10-CH ₃	CH3	CH ₃	N	
6-CH ₃	CH=CH		CH3	CH ₃	CH	
6-CH ₃	CH=CH	9-F	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	9-F	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	9-F	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	9-F	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	9-F	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	9-F	CH ₃	CH,	N	

TABLE 14
General Formula 14

	R							
<u>R</u>	$\frac{R_1}{}$	<u>J</u>		<u>n</u>	<u>X</u>	<u>Y</u>		m.p.(°C)
H	Н	CH ₂	N	0	CH ₃	CH ₃	CH	
H	H	CH ₂	N	0	CH ₃	OCH ₃	CH	
H	H	CH ₂	N	0	OCH ₃	OCH ₃	CH	
H	H	CH ₂			CH ₃	CH ₃	N	
H	H	CH ₂				OCH ₃		
H	Н	CH ₂			_			
H		CH ₂				CH ₃		
H		CH ₂			_	OCH ₃		
H	H	CH ₂			осн ₃			
H		CH ₂			CH ₃	CH ₃	N	
H		CH ₂				OCH ₃		
H	H	CH ₂	N	ı		OCH ₃		
H		CH ₂			_	OCH ₃		
CH ₃		C=0			OCH ₃	OCH ₃	CH	
H		C=O	CH	0	CH ₃	CH ₃	CH	
H	H	C=O	CH	0		OCH ₃		
H	H	C=O	CH	0	_	OCH ₃		
H	H	C=O	CH	0	CH ₃	-	N	
H	H	C=O	CH	0	-	OCH ₃	N	
H	H	C=0	CH	0		OCH ₃		
H	H	C=O	CH	1	CH ₃			
H	H	C=O	CH	1		OCH ₃	CH	
H	H	C=O	CH	1		OCH ₃		
H	H	C=O	CH	1		CH ₃		
Н	H	C=O	CH	1	CH ₃	OCH ₃	N	
Н	Н	C=O	CH	1	OCH ₃	OCH ₃	N	
H	H	C=O	CH	1	C1	осн ₃	CH	
Н	CH ₃	C=O	CH	1	OCH ₃	OCH ₃	CH	
Н	6-CH ₃				_	CH ₃	СН	
	6-CH ₃				_	OCH ₃	СН	
Н	6-CH ₃				-	OCH ₃	СН	
	J	~			J	9		

TABLE 14 (Continued)

<u>R</u>	$\frac{R_1}{}$	<u>J</u>	E	<u>n</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	6-CH ₃	CH2	N	0	CH,	CH ₃	N	
	6-CH ₃				-	OCH ₃	N	
H	6-CH ₃				_	_		
H	6-CH ₃				•	•		
H	6-CH ₃					-		
	6-CH ₃					_		
	6-CH ₃	_			CH ₃			
	6-CH ₃	_				OCH ₃	N	
	6-CH ₃							
H	6-CH ₃	CH ₂	N	1	Cl	_		
	6-CH ₃				OCH ₃			
H	6-CH ₃	C=0	CH	0				
H	6-ÇH ₃	· C=0	CH	0				
H .	6-CH ₃	C=O	CH	0			CH.	
H	6-CH ₃	C=0	CH	0	CH ₃	_	N	
H	6-CH ₃	C=O	CH	0			N	
H	6-CH ₃	C=0	CH	0				
H	6-CH ₃	C=0	CH	1			CH	
H	6-CH ₃	C=0	CH	1		OCH ₃	CH	
H	6-CH ₃	C=0	CH	1		_		
H	6-CH ₃	C=0	CH	1	CH ₃	_	N	•
H	6-CH ₃	C=0	CH	1			N	
H	6-CH ₃	C=0	CH	1		OCH ₃		
H	6-CH ₃	C=O	CH	1	Cl	OCH ₃	CH	
H	6-CH ₃	C=0	CH	1	OCH ₃			

TABLE 15
General Formula 15

10			ъ				
$\frac{R_1}{2}$	<u>G</u>	W'	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂	0	H	CH ₃	CH ₃	CH	
H	CH ₂	0	H	CH ₃	OCH ₃	CH	
H	CH ₂	0	H	OCH ₃	OCH ₃	CH	
Н.	CH ₂	0	H	Cl	OCH ₃	CH	
H	CH ₂	0	H	CH ₃	OCH ₃	N	
H	CH ₂	0	H	OCH ₃	OCH ₃	N	
H	CH ₂	0	H	CH ₃	CH ₃	N	
H	CH ₂	S	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	S	CH ₃		OCH ₃	CH	
H	CH ₂		CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	S	CH ₃		OCH ³	CH	
Н	CH ₂	S	CH ₃			N	
H	CH ₂		CH ₃		OCH ₃		
H	CH ₂	S	CH ₃	CH ₃		N	
H	CH ₂	NH	H	CH ₃	CH ₃	CH	
H	CH ₂	NH	H	CH ₃	OCH ₃	CH	
H	CH ₂		H	och ₃	OCH ₃	CH	
H	CH ₂	NH	Н	Cl	OCH ₃	CH	
H	CH ₂	NH	H	CH ₃			
H	CH ₂	NH	Н	OCH3	OCH ₃	N	
H	CH ₂	NH	H	CH ₃	CH ₃	N	
6-Cl	4	0	H		CH ₃	CH	
6-Cl	CH ₂	0	H	CH ₃	OCH ₃	CH	
6-C1			H	OCH ₃	OCH ₃	CH	
6-C1	CH ₂		H	Cl		CH	
6-C1	CH ₂ .	. 0	Н.	CH ₃	OCH ₃	N	
6-C1	CH ₂	0	H	OCH ₃ (OCH ₃	N	
6-Cl		0	H	CH ₃		N	
6-Cl			CH ₃	CH ₃	CH ₃	CH	
6-Cl	CH ₂		CH ₃	CH ₃	OCH3	CH	
6-Cl	CH ₂	S	CH ₃	OCH ₃	OCH ₃	CH	

TABLE 15 (Continued)

_							
$\frac{R_1}{}$	<u>G</u>	W'	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-C1	CH ₂	S		Cl	OCH ₃	CH	
6-Cl		S	CH ₃		_		
6-C1	CH ₂	s	CH ₃	осн ₃		N	
6-C1	CH ₂	s	CH ₃	CH ₃	CH ₃	N	
6-C1	CH ₂	NH	н	CH	CH ₃	СН	
6-C1	CH ₂	NH	H	CH3	OCH ₃	CH	
6-C1	CH ₂	NH	Н	_	OCH ₃		
6-C1	CH ₂	NH	H	Cl	OCH ₃		
6-C1	CH ₂	NH	H	CH ₃	осн3	N	
6-C1	CH ₂	NH	H	OCH ₃		N	
6-Cl		NH	H		CH ₃	N	
H	CH ₂	S	H	OCH ₃	OCH ₃	СН	
H	CH ₂	S	H	CH ₃		CH	
H	CH ₂	S	H	CH ₃		CH	
H	CH ₂	S	H	CH3		N	
H	CH ₂	S	H		OCH ₃	N	
H	CH ₂	S	H	Cl	OCH ₃	СН	
H	CH ₂	NCH ₃	H	OCH ₃	_	CH	
H	CH ₂	NCH ₃	H	_		N	
H	CH ₂ CH ₂		H	CH ₃	CH3	CH	
H	CH2CH2	0	H		OCH ₃	CH	
H	CH ₂ CH ₂		H		OCH ₃	CH	
H	CH2CH2	0	H	Cl	OCH ₃	CH	
H	CH ₂ CH ₂	0	H .	CH ₃		N	
H	CH2CH2	0	H	OCH ₃	OCH ₃	N	
H	CH ₂ CH ₂	0	H	CH ₃	CH ₃	N	
H	CH2CH2		CH ₃	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	S			OCH ₃	CH	
H	CH ₂ CH ₂	S	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂	S	CH ₃	Cl	OCH ₃	CH	
	CH ₂ CH ₂				OCH ₃	N	
H	CH2CH2	S	CH2	OCH,	OCH,	N	

TABLE 15 (Continued)

$\frac{R_1}{2}$	<u>G</u>	<u>w ·</u>	R ₉	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂	S		CH ₃	CH ₃	N	
H	CH ₂ CH ₂			CH ₃	CH ₃	СН	
Н	CH ₂ CH ₂		н	CH ₃	осн ₃	CH	
	CH ₂ CH ₂		H	OCH ₃	OCH ₃		
	CH ₂ CH ₂		H	Cl	осн ₃		
Н	CH ₂ CH ₂	NH	Н	CH ₃			
H	CH ₂ CH ₂	NH	Н	OCH ₃	OCH ₃		
H	CH ₂ CH ₂		н	CH ₃	CH ₃	N	
6-Cl	CH ₂ CH ₂	0	H		CH ₃	СН	
6-C1	CH ₂ CH ₂		H	CH ₃	OCH ₃	СН	
6-C1			H	OCH ₃	och ³		
6-C1	CH2CH2	0	H	Cl	осн ³	CH	
6-C1	CH ₂ CH ₂	0	Н	CH ₃			
6-C1	CH ₂ CH ₂	0	Н		осн ³		
	CH ₂ CH ₂		н	CH3	CH ₃	N	
	CH ₂ CH ₂		CH ₃		CH ₃	CH	
	CH ₂ CH ₂		CH ₃	_	OCH ₃	CH	
6-Cl	CH ₂ CH ₂	S	CH ₃				
	CH ₂ CH ₂		CH ₃	Cl	осн ₃	CH	
	CH ₂ CH ₂		CH ₃		OCH ₃	N	
	CH ₂ CH ₂		CH ₃	OCH ₃		N	
6-C1	CH ₂ CH ₂	S	CH ₃		CH ₃	N	
6-C1	CH ₂ CH ₂	NH	Н	CH	CH ₃	CH	
6-C1	CH2CH2	NH	H	CH ₃		CH	
	CH ₂ CH ₂		H	OCH ₃			
6-Cl	CH ₂ CH ₂	NH	Н	Cl	OCH ₃	CH	
6-Cl	CH ₂ CH ₂	NH	Н	CH ₃	OCH ₃	N	
	CH ₂ CH ₂				OCH ₃	N	
6 - Cl	CH CH	NILI	LI	CU	CU	NT.	
Н	CH ₂ CH ₂	S	H	OCH ₃	OCH ₃	CH	
Н	CH ₂ CH ₂ CH ₂ CH ₂	S	H	CH ₃	осн	CH	
Н	CH ₂ CH ₂	S	н	CH ₃	СН	СН	

TABLE 15 (Continued)

$\frac{R_1}{2}$	<u>G</u>	W'	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
н	CH ₂ CH ₂	S	Н	CH ₃	OCH ₃	N	
Н	CH ₂ CH ₂			och ₃		N	
н	CH ₂ CH ₂		н	Cl	OCH ₃	СН	
Н	CH ₂ CH ₂		H	OCH ₃	-	СН	
H	CH ₂ CH ₂	•	н	CH ₃		N	
H	CH=CH	0	н	CH3	CH ₃	CH	
H	CH=CH	0	H	CH ₃	осн ₃	CH	
H	CH=CH	0	H	осн _з	_	СН	
H	CH=CH	0	H	Cl	OCH ₃	CH	
H	CH=CH	0	H	CH ₃	OCH ₃	N	
H	CH=CH	0	H	OCH ₃	OCH ₃	N	
H	CH=CH	0	H	CH3	CH ₃	N	
H	CH=CH	S	CH ₃	CH ₃	CH ₃	CH	
H	CH=CH	S	CH ₃	CH ³	OCH ₃	СН	
H	CH=CH	S		OCH ₃	OCH	CH	
Н	CH=CH	S	CH ₃		OCH ₃	CH	
H	CH=CH	S		CH ₃	OCH ₃	N	
Н	CH=CH	S	CH ₃		_	N	
Н	CH=CH	S	CH ₃		CH ₃	N	
H	CH=CH	NH	Н	CH3	CH ₃	CH	
H	CH=CH	NH	H	CH ₃		CH	
H	CH=CH	NH	H		OCH ₃	CH	
H	CH=CH	NH	H	Cl	OCH ₃	CH	
H	CH=CH	NH	Н	CH ₃	OCH ₃	N	
H	CH=CH	NH	H	OCH	OCH ₃	N	
H	CH=CH	NH	Н	CH ₃	CH ₃	N	
6-C1	CH=CH	0	Н	CH ₃	CH ₃	CH	
6-C1	CH=CH	0	H	CH3	OCH ₃	CH	
6-C1	CH=CH	0	H	OCH ₃	OCH ₃	CH	
6-C1	CH=CH	0	H	Cl	OCH ₃	CH	
6-Cl	CH=CH	0	Н	CH3	OCH ₃	N	
6-Cl	CH=CH	0	Н	OCH ₃	OCH3	N	

TABLE 15 (Continued)

<u>R</u> 1	<u>G</u>	W'	R ₉	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-Cl	CH=CH	0			CH ₃		
6-C1	CH=CH	S	•	•	CH ₃		
6-C1	CH=CH	S	_	•	осн		
6-Cl	CH=CH				OCH ₃		
	CH=CH			_	_		
6-Cl	CH=CH	S	_		_		
6-C1	CH=CH	S	CH ₃		_		
6-C1	CH=CH	S	-	_			
6-Cl	CH=CH	NH	Н				
6-Cl	CH=CH	NH	H	CH ₃			
6-C1	CH=CH	NH	H		_		
6-C1	CH=CH	NH	H	_	_	CH	
6-C1	CH=CH	NH	H	CH ₃	OCH ₃		
6-C1	CH=CH	NH	H	_	OCH ₃		
6-C1	CH=CH	NH	H				
H	CH=CH	S	H	OCH ₃	OCH ₃		
H	CH=CH	S	H	CH ₃			•
H	CH=CH	S	H				
H	CH=CH	S	H		OCH ₃		
H	CH=CH	S	H	-	OCH ₃		
H	CH=CH	S	Н	Cl	OCH ₃	CH	
H	CH=CH	NCH ₃	H	OCH ₃			
H	CH=CH	NCH ₃	Н	CH ₃	OCH ₃	N	

TABLE 16
General Formula 16

R ₁	<u>G</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
н .	CH		OCH ₃	CH	
н	CH ₂	CH ₃	осн ₃	СН	
н	CH ₂	Cl	OCH ₃	CH	
Н	CH ₂		CH ₃	СН	
Н	CH ₂	OCH ₃	ocH ₃	N	
Н	CH ₂	CH ₃	och3	N	
Н	CH ₂ CH ₂			CH	
H	CH ₂ CH ₂	CH ₃	осн ₃	CH	
H	CH ₂ CH ₂	cı	OCH ₃	CH	
H	CH ₂ CH ₂	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	OCH ₃	осн ₃	N	
H	CH ₂ CH ₂	CH ₃	осн ₃	N	
Н	CH=CH	OCH ₃		CH	
H	CH=CH	OCH ₃	OCH ₃	N	
H	CH=CH	CH ₃	och ³	CH	
Н	CH=CH	CH ₃	CH ₃	CH	
H	CH=CH	CH ₃	OCH ₃	N	
H	CH=CH	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH3	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	N	
6-C1	CH ₂	OCH ₃	OCH ₃	CH	
6-C1	CH ₂	OCH ₃	OCH ₃	N	
6-C1	CH ₂	CH ₃	OCH ₃	CH	
5-OCH ₃	CH ₂	OCH ₃	OCH ₃	CH	
5-OCH ₃	CH ₂	CH ₃	OCH ₃	CH	
	CH ₂ CH ₂	OCH ₃	-	CH	
6-CH ₃	CH ₂ CH ₂	СН ₃	OCH ₃	CH	
6-Cl	CH ₂ CH ₂	OCH ³	OCH ₃	CH	
6-C1	CH ₂ CH ₂	CH ₃	OCH ₃		
5-OCH ₃	CH ₂ CH ₂	OCH ₃	OCH ₃	CH	

TABLE 16 (Continued)

$\frac{R_1}{}$	<u>G</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
5-OCH ₃	CH2CH2	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	CH ₃	OCH ₃	CH	
6-C1	CH=CH	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH	CH3	OCH ₃	CH	

TABLE 17
General Formula 17

$\frac{R_1}{2}$	<u>G</u>	R ₁₂	<u>X</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
н	CH ₂	Н	CH ₃	CH ³	СН	
Н	CH ₂	Н	CH ₃	OCH ₃	CH	
H	CH ₂	H	OCH ₃	OCH ³	СН	
Н	CH ₂	н	Cl	OCH ₃	CH	
H	CH ₂	Н	CH ₃	OCH ₃	N	
H	CH ₂	H	OCH ₃	OCH ₃	N	
H	CH ₂	H	CH ₃	CH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	осн ₃	CH	
H	CH ₂	CH ₃	OCH3	OCH ₃	CH	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH ₃	OCH ₃		N	
H	CH ₂	CH ₃	CH3	CH3	N	
H	CH ₂		CH ₃	CH ₃	CH	
H	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	CH	
H	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	CH	
Н	CH ₂	C ₆ H ₅	Cl		CH	
H	CH ₂	C6H5	CH ₃	OCH ₃	N	
H	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	N	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	H	OCH ₃	och ₃	CH	
6-CH ₃	CH ₂	H	Cl	och3	CH	
6-CH ₃	CH ₂	H	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	H	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	H	CH3.	CH ₃	N	
6-CH ₃	CH ₂	CH3	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH3	OCH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	

TABLE 17 (Continued)

$\frac{R_1}{}$	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	och ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	C6H5	CH ₃	CH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	och ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	Cl	OCH ₃	СН	
6-CH ₃	CH ₂	С ₆ Н ₅	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	CH ₃	N	
6-C1	CH ₂	Н	CH ₃	CH ₃	СН	
6-Cl	CH ₂	Н	CH ₃	OCH ₃	CH	
6-Cl	CH ₂	Н	осн ₃	OCH ₃	CH	
6-Cl	CH ₂	Н	Cl	осн ₃	CH	
6-C1	CH ₂	Н	CH ₃	OCH ₃	N	
6-C1	CH ₂	H	OCH ₃	OCH ₃	N	
6-C1	CH ₂	H	CH ₃	CH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	СН	
6-Cl	CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-Cl	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-C1	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-C1	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-Cl		C ₆ H ₅	CH ₃	CH ₃	CH	
6-Cl	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	CH .	
6-Cl	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-Cl					CH	
6-C1				OCH ₃	N	
6-Cl	CH ₂	C6H5	OCH ₃	OCH ₃	N	
6-Cl		C ₆ H ₅		CH3	N	

TABLE 17 (Continued)

_		_				
$\frac{R_1}{}$	<u>G</u>	R ₁₂	<u>x</u>	<u>Y</u> .	<u>z</u>	m.p.(°C)
Н	CH2CH2	H	CH ₃		CH	
H	CH ₂ CH ₂		CH3	OCH ₃	CH	
H	CH ₂ CH ₂			OCH ₃		
Н	CH ₂ CH ₂		Cl	OCH ₃	CH	
H	CH ₂ CH ₂		CH ₃	OCH ₃	N	
H	CH ₂ CH ₂		осн ₃		N	
H	CH ₂ CH ₂		CH ₃	CH ³	N	
H	CH ₂ CH ₂		CH ₃	CH3	CH	
Н	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
H	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂			OCH ₃	CH	
H	CH ₂ CH ₂			OCH ₃	N	
H	CH ₂ CH ₂				N	
H	CH ₂ CH ₂	_	CH3	CH ₃	N	
H	CH ₂ CH ₂		CH ₃		CH	
H	CH ₂ CH ₂			och ³	CH	
H	CH ₂ CH ₂			OCH ₃	CH	
H	CH ₂ CH ₂		_	OCH ₃	CH	
H	CH ₂ CH ₂				N	
H	CH ₂ CH ₂			och3	N	
H	CH2CH2			CH ₃	N	
6-CH ₃	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-CH ₃	CH ₂ CH ₂	H	CH ₃	OCH ₃	CH	
	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	H	Cl	OCH ₃	CH	
	CH ₂ CH ₂	H	CH ₃	OCH ₃	N	
	CH ₂ CH ₂	H	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂ CH ₂	H	CH ₃	ĊH ₃	N	
6-CH ₃	CH ₂ CH ₂	CH ₃		CH ₃	CH	
	CH ₂ CH ₂		OCH ₃	CH ₃ .	CH	
6-CH ₃	CH ₂ CH ₂	CH ₃	OCH ₃		CH	
6-CH ₃	CH ₂ CH ₂	CH3	Cl	OCH ₃	CH	

TABLE 17 (Continued)

$\frac{R_1}{1}$	<u>G</u>	R ₁₂	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
	CH ₂ CH ₂	CH				<u>m.p.(C)</u>
_		_	_	OCH ³		
	CH ₂ CH ₂ .			OCH ₃		
	CH ₂ CH ₂	-		CH ³	N	
_	CH ₂ CH ₂			CH ₃	CH	
	CH ₂ CH ₂			OCH ₃		
	CH2CH2					
	CH ₂ CH ₂			OCH ₃		
_	CH ₂ CH ₂			OCH ₃	N	
	CH ₂ CH ₂		OCH ₃	OCH ³	N	
6-CH ₃	CH ₂ CH ₂	C6H5	CH ₃	CH ₃	N	
6-Cl	CH ₂ CH ₂	Н	CH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂	Н	CH ₃	OCH ₃	CH	
6-Cl			OCH ₃	OCH ₃		
6-C1	CH ₂ CH ₂		Cl	OCH ₃		
6-Cl	CH ₂ CH ₂	Н	CH ₃			
	CH ₂ CH ₂		осн ₃			
	CH ₂ CH ₂		CH ₃	CH ₃	N	
6-C1				CH ₃	CH	
6-C1	CH ₂ CH ₂	CH ₃	OCH ₃		CH	
6-C1			OCH ₃	OCH ₃	CH	
6-Cl		CH ₃	Cl	OCH ₃	CH	
6-C1	CH ₂ CH ₂	CH ₃	CH ₃	осн ₃	N	
6-C1		-	осн ₃			
6-Cl	CH ₂ CH ₂		CH3	CH3	N	
	CH ₂ CH ₂		CH3	CH3	CH	
6-Cl	CH ₂ CH ₂			och,	CH	
6-Cl	CH ₂ CH ₂	C'H'	OCH,	OCH,	CH	
6-Cl	CH ₂ CH ₂	C ₆ H ₅	Cl	OCH,	CH	
6-C1	CH ₂ CH ₂	C'H	CH,	och,	N	
6-Cl	CH ₂ CH ₂	C'H'	OCH,	OCH	N	
6-Cl	CH ₂ CH ₂	CZH_	CH,	CH ₃	N	
Н	CH=CH		CH ₃		СН	
			3	3	-	

TABLE 17 (Continued)

$\frac{R_1}{2}$	<u>G</u>	R ₁₂	X	Y	Z	m.p.(°C)
H	CH=CH CH=CH	Н	OCH,	OCH_	CH	
Н	CH=CH	н	Cl	OCH	CH	
H	CH=CH	Н	CH	OCH_	N	
Н	CH=CH	Н	OCH,	OCH	N	
H	CH=CH CH=CH CH=CH	н	CH ₂	CH ₂	N	
Н	CH=CH	CH,	CH,	CH ₃	CH	
H	CH=CH	CH3	CH,	OCH,	СН	
H	CH=CH	CH,	OCH ₃	OCH ₃	CH	
H	CH=CH	CH	Cl	OCH	CH	
H	CH=CH CH=CH	CH ₃	CH3	OCH	N	
H	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
H	CH=CH	CH ₃	CH3	CH3	N	
H	CH=CH	C ₆ H ₅	CH3	CH	CH	
H	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
H	CH=CH	C ₆ H ₅	OCH ₃	OCH	CH	
H	CH=CH CH=CH CH=CH	C ₆ H ₅	Cl	OCH ₃	CH	
H	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	N	
H	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	N	
Н	CH=CH	C ₆ H ₅	CH ₃	CH ₃	N	
6-CH ₃	CH=CH	H	CH ₃	CH ₃	CH	
6-CH ₃	CH=CH	H	CH2	OCH,	CH	
6-CH ₃	CH≃CH	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH CH=CH	H	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	H	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	H	CH ₃	CH ₃	N	
	CH=CH		CH ₃	CH ₃	CH	
	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
6-CH ₃	CH=CH	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	CH ³	Cl	OCH ₃	CH	
	CH=CH	CH ₃	CH ₃	OCH ₃	N	

TABLE 17 (Continued)

R.	_	R				
<u>R</u> 1	<u>G</u>	12	<u>X</u>	<u>¥</u>	<u>Z</u>	m.p.(°C)
	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
-	CH=CH			CH ₃		
6-CH ₃	CH=CH	C ₆ H ₅	CH ₃	CH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	C ₆ H ₅	CH ₃	CH ₃		
	CH=CH			CH ₃		
6-C1	CH=CH	H				
	CH=CH					
	CH=CH		-	_		
6-Cl	CH=CH	H			N	
	CH=CH					
	CH=CH					
6-Cl	CH=CH	CH3		CH ₃		
	CH=CH	_	осн ₃	-		
6-Cl	CH=CH					
6-C1	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH=CH	CH3	CH	OCH ₃		
6-C1	CH=CH			OCH ₃		
6-C1	CH=CH					
6-Cl	CH=CH		CH3	CH3	CH	
6-Cl	CH=CH	C'H'	CH,	och,	CH	
	CH=CH			_	CH	
6-Cl	CH=CH	C6H5		OCH ₃	CH	
6-Cl	CH=CH	C ₆ H ₅		OCH ₃	N	
6-Cl	CH=CH	C ₆ H ₅		OCH ₃	N	
6-Cl	CH=CH	C ₆ H ₅	-	CH ₃	N	

TABLE 18
General Formula 18

R ₁	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂	Н	CH ₃	OCH ₃	СН	
н	CH ₂		och ³		СН	
H	CH ₂	Н	Cl	OCH ₃	CH	
H	CH ₂	H	CH ₃	OCH ₃	N	
H	CH ₂	Н	OCH ₃		N	
H	CH ₂		CH ₃	CH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH ₃	СН	
H	CH ₂	CH ₃	CH ₃	OCH ₃	CH	-
H	CH ₂	CH ₃	OCH ₃		CH	
Н	CH ₂		Cl	OCH ₃	CH	
Н	CH ₂	CH ₃	CH ₃	OCH ₃	N	
Н	CH ₂	CH ₃	OCH ₃		N	
Н	CH ₂		CH ₃	CH ₃	N	
н .	CH ₂			CH ₃	CH	
н	CH ₂		CH ₃	OCH ₃	CH	
Н	CH ₂	C6H5	OCH ₃	OCH ₃	CH	
н	CH ₂	C ₆ H ₅		осн ₃	CH	
H		C ₆ H ₅		осн ₃	N	
H	_	C ₆ H ₅	OCH ₃		N	
Н	CH ₂	C ₆ H ₅	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	н	CH ₃	CH ₃	CH	
	CH ₂	H	CH ₃	OCH ₃	CH	
-	CH ₂		OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	H	Cl	OCH ₃	CH	
6-CH ₃		Н	CH ₃	OCH ₃	N	
		H	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
-	_					

R ₁	<u>G</u>	R ₁₂	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-CH ₃		CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	OCH ³	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	СН	
6-CH ₃	CH ₂				CH	
6-CH ₃		C ₆ H ₅		OCH ₃	СН	
6-CH ₃	CH ₂			OCH ₃	N	
6-CH ₃	CH ₂			OCH ₃	N	
6-CH ₃	CH ₂		CH ₃	CH ₃	N	
6-C1	CH ₂	-65 H	CH ₃	CH ₃	СН	
6-C1	CH ₂	Н	CH ₃	OCH ₃	CH	
6-Cl	CH ₂	Н	OCH ₃	OCH ₃	СН	
6-C1	CH ₂	Н	Cl	OCH ₃	СН	
6-C1	CH ₂	Н	CH ₃	OCH ₃	N	
6-C1	CH ₂	Н	OCH ₃	OCH ₃	N	
6-C1	CH ₂	н	CH3	CH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	СН	
6-C1	CH ₂	CH ₃	осн ₃	СН ₃	CH	
6-Cl	CH ₂	CH ₃	осн ₃	осн ₃	CH	
6-Cl	CH ₂	CH ₃	Cl	осн ₃	CH	
6-C1	CH ₂	CH ₃	CH ₃	осн ₃	N	
6-Cl	CH ₂	CH ₃	осн ₃	осн ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH3	N	
6-Cl		C ₆ H ₅	CH ₃	CH ₃	CH	
6-C1	CH ₂	C ₆ H ₅	CH ₃	OCH	CH	
6-C1		С ₆ Н ₅			CH	
6-Cl	CH ₂	C6H5	Cl	OCH ₃	CH	
6-Cl	CH ₂	C ₆ H ₅	CH ₃	осн ³	Ń	
6-C1	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-C1		C ₆ H ₅		CH ₃	N	

TABLE 18 (Continued)

$\frac{R_1}{2}$	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	сн ₂ сн ₂		CH ₃	CH ₃	CH	
H	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
H	CH ₂ CH ₂		och3			
H	CH ₂ CH ₂		Cl 3	OCH ₃	СН	
H	CH ₂ CH ₂		CH ₃	OCH ₃	N	
H	CH ₂ CH ₂		och ₃		N	
H	CH ₂ CH ₂		CH ₃	CH ₃	N	
H	CH ₂ CH ₂		CH ₃	CH ₃	CH	
H	CH ₂ CH ₂		CH ₃	осн ₃	CH	
H	CH ₂ CH ₂		осн ₃		CH	
H	CH ₂ CH ₂		Cl	OCH ₃	CH	
H	CH ₂ CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂ CH ₂		ocH ₃		N	
Н	CH ₂ CH ₂		CH ₃	CH3	N	
H	CH ₂ CH ₂		CH ₃	CH ₃	CH	•
H	CH2CH2	-		OCH ₃	CH	
H	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
H	CH2CH2			OCH ₃	CH	
H	CH ₂ CH ₂			OCH ₃	N	
H	CH ₂ CH ₂		OCH ₃	OCH ₃	N	
H	CH ₂ CH ₂	C ₆ H ₅		CH3	N	
6-CH ₃			CH ₃	CH3	CH	
6-CH ₃	CH ₂ CH ₂		CH3	OCH ₃	CH	
6-CH ₃	CH2CH2	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH2CH2		Cl	OCH ₃	CH	
6-CH ₃	CH2CH2	H	CH ₃	OCH ₃	N	
$6-CH^3$.	CH2CH2.	. Н	OCH	OCH	N	
6-CH ₃	CH ₂ CH ₂	H	CH ₃	CH3	N	
$6-CH_3$	CH2CH2	CH ₃	CH ₃	CH3	CH	
6-CH ₃	CH2CH2	CH ₃	OCH ₃	CH ₃	CH	
6-CH ₃	CH2CH2	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂ CH ₂ CH ₂	CH ₃	C1	OCH ₃	CH	

TABLE 18 (Continued)

$\frac{R_1}{R_1}$	<u>G</u>	R ₁₂	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
						ш.р.(су
_	CH ₂ CH ₂	•	CH ₃	OCH 3		
	CH ₂ CH ₂		OCH ₃	OCH ₃	N	
6-CH ₃		-	CH ³	CH ³	CH	
_	CH ₂ CH ₂		CH ₃	CH ₃		
6-CH ₃				OCH ³		
_	CH ₂ CH ₂		_			•
6-CH ₃				OCH ₃	CH	
6-CH ₃	_			OCH ₃	N	
	CH ₂ CH ₂				N	
	CH ₂ CH ₂		CH ₃	CH ³	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-C1	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
6-Cl	CH ₂ CH ₂		OCH ₃			
	CH ₂ CH ₂		Cl	OCH ³		
6-C1	CH ₂ CH ₂		CH ₃	OCH ₃	N	
6-Cl	CH2CH2		OCH ₃		N	
	CH2CH2		CH ₃	CH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂		OCH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂	CH ₃	OCH ₃	och ₃	CH	
6-C1	CH ₂ CH ₂		Cl	OCH ₃	CH	
6-C1	CH ₂ CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-Cl	CH ₂ CH ₂	CH ₃	OCH ₃	осн ₃	N	
6-Cl	CH ₂ CH ₂		CH ₃	CH ₃	N	
6-Cl	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH3	CH	
6-Cl	CH ₂ CH ₂			осн ₃	CH	
6-Cl	CH2CH2-	C ₆ H ₅	OCH3	OCH	CH	
6-C1	CH_CH_	C_H_	Cl	OCH,	CH	
6-Cl	CH ₂ CH ₂	CEHE	CH,	OCH,	N	
6-C1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	C H E	OCH,	OCH,	N	
6-Cl	CH_CH_	C H E	CH,	CH,	N	
Н	CH=CH	H	CH ₂	CH	CH	
		•	3	3		

$\frac{R_1}{2}$	<u>G</u>	R ₁₂	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
Н	CH=CH					
	CH=CH					
H	CH=CH	н	Cl	OCH ₃	CH	
H	CH=CH	Н				
H	CH=CH	H	OCH	OCH3	N	
H	CH=CH	H	CH3	CH	N	
H	CH=CH	CH ₃	CH ₃	CH3	СН	
H	CH=CH	CH3	CH ₃	OCH ₃	CH	
H	CH=CH	CH ₃	OCH ₃	OCH	CH	
H	CH=CH		Cl			
H	CH=CH	CH3	CH3	OCH ₃	N	
H	CH=CH	CH	OCH	OCH	N	
H	CH=CH	CH	CH	CH	N	
H	CH=CH CH=CH CH=CH	C ₆ H ₅	CH ₃	CH ₃ .	CH	
H	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
H	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	CH	
H	CH=CH CH=CH CH=CH	C ₆ H ₅	Cl	OCH ₃	CH	
H	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	N	
H	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	N	
H	CH=CH	C ₆ H ₅	CH3	CH	N	
6-CH ₃	CH=CH	H	CH ₃	CH ₃	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH CH=CH CH=CH	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	H	Cl	OCH	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH			OCH ₃		
6-CH ₃	CH=CH	H	CH ₃		N	
6-CH ₃	CH=CH	CH ₃			CH	
6-CH ₃	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
$6-CH_3$	CH=CH	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	CH ₃	CH ₃	och ₃	N	

TABLE 18 (Continued)

R ₁	C	R ₁₂	¥	<u>Y</u>	7	m.p.(°C)
	<u>G</u>					<u>m.p., c7</u>
6-CH ₃	CH=CH	CH 3	OCH 3	OCH ₃	NI IA	
6-CH ₃	CH=CH	CH 3		CH ₃		
	CH=CH					
	CH=CH					
6-CH ₃	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	CH	
•	CH=CH					
	CH=CH					
6-CH ₃	CH=CH	C6H5	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	C6H5	CH ₃	CH3	N	
6-C1	CH=CH	H	CH ₃	CH ₃	CH	
6-Cl	CH=CH	H	CH ₃	OCH ₃	CH	
6-Cl	CH=CH	H	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH			OCH ₃		
6-Cl	CH=CH	H		OCH ₃		
6-Cl	CH=CH	H	OCH ₃	OCH ₃	N	
6-Cl	CH=CH			CH ₃		
6-Cl	CH=CH	CH ₃	CH ₃	CH ₃	CH	
	CH=CH			CH ₃		
6-Cl	CH=CH			OCH ₃		
6-Cl	CH=CH			OCH ₃		
6-Cl	CH=CH	CH ₃	CH ₃	OCH ₃	N	
6-Cl	CH=CH			OCH ₃		
6-Cl	CH=CH			CH3		
6-C1	CH=CH					
6-Cl	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
	CH=CH			OCH ₃	CH	
6-Cl	CH=CH			OCH ₃	CH	
6-C1	CH=CH		CH ₃	_	N	
6-C1	CH=CH		осн ₃	осн ₃	N	
6-Cl	CH=CH	C6H5	-	CH ₃	N	
		• •	-	_	•	

TABLE 19
General Formula 19

R ₁	C	R ₉	R.	**			
·-	<u>G</u>	-	R ₁₃		<u>Y</u>		m.p.(°C)
H	CH ₂	H			OCH ₃		
H	CH ²		OCH ₃	OCH ₃	OCH ₃		
H	CH ²	H	OCH ₃				
H	CH ₂	H	OCH ₃				
H	CH ₂ CH ₂		OCH ₃	OCH ₃	och ³	CH	
H	CH ₂ CH ₂		OCH ₃		OCH3		
H	CH ₂ CH ₂		осн ₃			CH	
	CH ₂ CH ₂		OCH ₃	•			
H			OCH ₃	OCH ³	OCH ₃	CH	
H	CH=CH				OCH ₃		
	CH=CH			CH ₃	_		
H	CH=CH		3	CH ₃	OCH ₃		
H	CH ₂	CH ₃	OCH ₃	OCH ₃	OCH ³		
H	CH ₂	CH ₃	OCH ₃	OCH ₃	OCH3	N	
H		сн ₃	OCH ₃	_		CH	
		CH ₃	OCH ₃	CH3	OCH ₃	N	
H	CH ₂ CH ₂		OCH ³	OCH ₃	OCH ³	CH	
H	CH2CH2	CH ₃	OCH3		OCH ₃		
H	CH2CH2	CH3	OCH ₃		OCH ₃	CH	
H	CH ₂ CH ₂	CH3	осн ₃	CH ₃			
H	CH=CH	CH ₃	осн ₃	OCH ₃	OCH ₃		
	CH=CH	CH ₃		OCH ₃			
H	CH=CH			CH ₃	OCH ₃	CH	
H	CH=CH	CH ₃	OCH ₃	CH ₃	OCH ₃	N	
H	CH=CH CH ₂	Н	CH ₃	OCH ₃	OCH ₃	CH	
Ħ	CH ₂	H			OCH ₃	CH	
H	CH2CH2	H			OCH ₃	CH	
H	CH ₂ CH ₂	H	CH3	CH3	OCH ₃	CH	
H	_				OCH ₃		
H	CH=CH		CH,	CH,	OCH ₃	N	
H	CH ₂		_	OCH	OCH ₃	CH	
	4		3	3	3		

303 **0 203 679** 304

TABLE 19 (Continued)

 $\frac{R_1}{}$ R₉ R₁₃ G X <u>Y</u> \underline{z} m.p.(°C) CH₂ H SCH₃ CH₃ OCH₃ H CH CH₂CH₂ SCH₃ OCH³ OCH₃ H H СН CH₂CH₂ CH₃ SCH₃ OCH₃ H H СН CH=CH SCH₃ OCH₃ OCH₃ H Н CH SCH₃ CH=CH OCH₃ Н Н CH₃ CH

20

25

30

35

40

45

50

55

TABLE 20 General Formula 20

<u>R</u> 1	G	R ₆	R ₇	<u>X</u>	v	7	(90)
<u></u> -	<u>G</u> СН ₂	H			Ā	<u>Z</u> CH	m.p.(°C)
H	CH ₂		CH ₃			CH	
H	CH ₂	H	CH 3	OCH 2113	OCH ³		
н	CH ₂		CH ₃	Cl 3	OCH ³		
н	CH ₂	Н	CH ₃	Cl	OCH ³		
	CH ₂		CH ₃	CH ₃			
	CH ₂		CH ³	OCH ₃	OCH ₃		
H	CH ₂	H	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH ₃	CH ₃		
H	CH ₂	CH ₃	CH ₃	CH ₃			
H 	CH ₂	CH ₃	CH ₃	OCH ₃	OCH ₃		
H 	CH ₂	CH ₃			OCH ₃		
H	CH ₂	CH ₃					
	CH ₂	CH ₃	CH3	OCH ₃			
H	CH ₂	CH3	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	^C 6 ^H 5	_	CH ₃	CH ₃	CH	
	CH ₂	C ₆ H ₅	-	CH ₃	OCH ₃	CH	
H	CH ₂	C ₆ H ₅		OCH ₃			
H		C ₆ H ₅		Cl	J	CH	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	och ³	N	
H	CH ₂	C ₆ H ₅				N	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH ₃	N	
H	CH ₂	H	Н	CH ₃	CH ₃		
H	CH ₂	H	H		OCH ₃	CH	
H	CH ₂	H	H	OCH ₃			-
H	CH2		Н	Cl	-		
H	CH ₂	H	H	CH ₃	OCH ₃	N	
H	CH ₂	H	Н	och,	осн ₃	N	
н	CH ₂	H	H	CH3	CH ₃	N	
H	CH ₂	C ₆ H ₅	H	сн	CH	CH	
H	CH ₂	C ₆ H ₅	Н	CH	OCH ₃	CH	
H	CH ₂	C ₆ H ₅	Н	ocH ³	осн ₃	CH	
	2	U J		55	3		

R ₁	<u>G</u>	<u>R</u> 6	R ₇	<u>x</u>	<u>Y</u>	Z	m.p.(°C)
H	CH ₂	 С ₆ Н ₅	H	Cl	OCH ₃	CH	
н	CH ₂	C ₆ H ₅	Н	CH ₃	OCH ₃	N	
Н	CH ₂	C ₆ H ₅	н	OCH ₃	OCH ₃	N .	
Н	CH ₂	C ₆ H ₅	Н	CH3	CH ₃	N	
6-Cl	CH ₂	CH ³	Н	CH ₃	CH ₃	СН	
6-C1	CH ₂	CH ₃	Н	CH ₃	OCH ₃	CH	
6-C1	CH ₂	CH ₃	Н	OCH ₃	осн ³	СН	
6-C1		CH ₃	Н	Cl	OCH ₃	СН	
6-Cl	CH ₂	CH ₃	Н	CH ₃	OCH ₃	N	
6-C1		CH ₃	Н	OCH ₃	OCH ₃	N	
6-C1	CH ₂	C6H5	Н	CH ₃	CH ₃	CH	
6-Cl	CH ₂	C ₆ H ₅	Н	CH ₃	OCH ₃	CH	
6-Cl		C ₆ H ₅	H	OCH ₃	OCH ₃	CH	
6-Cl	CH ₂	C6H5	Н	Cl	OCH ₃		
6-Cl	CH ₂	C ₆ H ₅	H	CH ₃	OCH ₃	N	
6-Cl		C ₆ H ₅	Н	OCH ₃	OCH3	N	
H	CH ₂ CH ₂	H	CH ₃	CH ₃	CH ₃	CH	
H	CH2CH2	H	CH ₃	CH ₃	OCH ₃	CH	
H	CH2CH2		CH3	och ₃	OCH ₃	CH	
H	CH2CH2	H	CH3	Cl	OCH ₃	CH	
H	сн ₂ сн ₂	H	CH3	CH ₃	OCH ₃	N	
H	CH2CH2	H	CH3		OCH ₃	N	
Н	CH ₂ CH ₂	H	CH3	CH3	CH ₃	N	
Н	CH2CH2	CH3	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	CH3	CH ³	CH ₃	OCH ₃	CH	
Н	CH ₂ CH ₂	CH3	CH ₃	OCH ₃		CH	
H	CH ₂ CH ₂	CH ₃	CH ₃	Cl	OCH ₃	CH	
H	CH ₂ CH ₂	CH3	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂ CH ₂	CH ₃	CH3	OCH ₃	OCH ₃	N	
H	сн ₂ сн ₂	CH ₃	CH3	CH ₃	CH ₃	N	
H	CH ₂ CH ₂	C6H5	CH ₃	CH ₃	CH ₃	CH	
Н	CH ₂ CH ₂	^C 6 ^H 5	CH ₃	CH ₃	OCH ₃	CH	

ъ		D	ъ				
$\frac{R_1}{}$	<u>G</u>	R ₆	R ₇	<u>X</u>	<u>Y</u>	<u>Z</u>	m.p.(°C)
H	CH2CH2	C6H5		OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂	C ₆ H ₅	CH ₃	Cl	OCH ₃	CH	
H	CH ₂ CH ₂						
H	CH ₂ CH ₂				OCH ₃	N	
H	CH ₂ CH ₂				CH ₃	N	
Н	CH ₂ CH ₂		н	CH ₃		CH	
H	CH ₂ CH ₂		H		OCH ₃	CH	
H	CH ₂ CH ₂		H	-	OCH ₃		
Н	CH ₂ CH ₂		H	Cl	OCH ₃		
Н	CH ₂ CH ₂		H	CH ₃	-		
	CH ₂ CH ₂					N	
н	CH ₂ CH ₂			CH3	CH ₃	N	
H	CH ₂ CH ₂			CH3	CH ₃	CH	
H	CH ₂ CH ₂				OCH ₃	CH	
H	CH ₂ CH ₂						
H	CH ₂ CH ₂			Cl	OCH ₃		
H	CH ₂ CH ₂			CH ₃	OCH ₃	N	
H	CH ₂ CH ₂					N	
H	CH ₂ CH ₂				CH ₃	N	
	CH ₂ CH ₂		H	CH ₃	CH3	CH	
	CH ₂ CH ₂	-	H		осн	CH	
	CH ₂ CH ₂				OCH ₃		
	CH ₂ CH ₂			Cl			
	CH ₂ CH ₂	_		CH ₃			
6-Cl	CH2CH2	CH ₃	H	OCH ₃			
6-Cl	CH ₂ CH ₂	C6H5	H				
6-Cl				CH3	OCH ₃	CH	
6-C1	CH ₂ CH ₂	C ₆ H ₅	H	OCH ₃	OCH ₃	CH	
	CH ₂ CH ₂				OCH ₃		
	CH ₂ CH ₂			CH ₃	OCH ₃	N	
	CH ₂ CH ₂				OCH ₃	N	
H	CH=CH	н	CH,	-	CH ₂	СН	

$\frac{R_1}{2}$	<u>G</u>	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
Н	CH=CH	H			OCH ₃		
н	CH=CH	H			осн ₃		
н	CH=CH	Н					
Н	CH=CH						
H	CH=CH						
н	CH=CH						
Н	CH=CH	CH3	CH,	CH3	CH2	CH	
H	CH=CH				осн ₃		
Н	CH=CH	9					
Н	CH=CH				OCH ₃		
Н	CH=CH						
Н	CH=CH				OCH ₃		
H	CH=CH						
	CH=CH						
H	CH=CH						-
H	CH=CH						
H	CH=CH						
H	CH=CH	C ₆ H ₅	CH ₃	CH ₃	OCH ₃	N	
H	CH≃CH	C ₆ H ₅	CH ₃	OCH ₃	OCH ₃	N	
H	CH=CH						
H	CH=CH				CH ₃	CH	
H	CH=CH	H			OCH ₃		
H	CH=CH	H		_	OCH ₃		
H	CH=CH	Н	H	Cl	OCH ₃		
H	CH=CH	H	H	CH3	OCH ₃	N	
H	CH=CH	H		OCH ₃		N	
H	CH=CH	Н	H	CH3		N	
H	CH=CH	C ₆ H ₅	H	CH ₃	CH ₃	CH	
H	CH=CH	C ₆ H ₅	н	CH ₃	OCH ₃	CH	
H	CH=CH	C ₆ H ₅	Н	OCH ₃	_	СН	
H	CH=CH			Cl	осн ₃	CH	
H	CH=CH			CH ₃	OCH ₃	N	

R ₁		R ₆	R ₇		**	_	
	<u>G</u>			X			$m.p.(^{\circ}C)$
	CH=CH	_			_	N	
	CH=CH						
	CH=CH			-	-	CH	
	CH=CH	3		_	OCH ₃		
	CH=CH	3			OCH ₃		
	CH=CH	3		Cl	OCH ₃	CH	
6-Cl	CH=CH	CH ₃	H	CH ₃	OCH ₃	N	
6-Cl	CH=CH	CH ₃	H	och ₃	OCH ₃	N	
6-Cl	CH=CH	C ₆ H ₅	H	CH ₃		CH	
6-Cl	CH=CH	C ₆ H ₅	H		OCH	CH	
6-Cl	CH=CH	CH5	Н	OCH	OCH,	CH	
6-Cl	CH=CH	C'H'	Н	C1			
6-Cl	CH=CH	C'H'	H	CH		N	
6-Cl	CH=CH	C'H'	Н	OCH,	OCH,	N	
Н	CH ₂	CH	н	OCH,	OCH ₃	CH	
	CH ₂				CH ₃ -	CH	
H		CH ₃		CH ₃	CH ₃	CH	
Н	CH ₂			C1	OCH ₃	CH	
Н	CH2	CH2	н	OCH	OCH,	N	
н	CH ₂	CH2	н	OCH	CH ₃	N	
н	CH ₂ CH ₂	CH2	н	OCH	OCH	CH	
	CH ₂ CH ₂				_	СН	
	CH ₂ CH ₂						
	CH ₂ CH ₂			Cl		СН	
	CH ₂ CH ₂		Н	OCH ³	CH_	N	
Н	CH ₂ CH ₂	-		OCH ₃		N	
Н	CH=CH					СН	
н	CH=CH	3		_		CH	
H	CH=CH	3		CH ₃		CH	
H	CH=CH	3			OCH ₃		•
Н	CH=CH	3				N	
H	CH=CH	3	н	OCH OCH ³	-	N	
-• ,	J U.I.	CH ₃	11	OCH ³	CH ³	74	

TABLE 21 General Formula 21

R		R	R				
$\frac{R_1}{2}$	<u>G</u>	<u>R</u> 6	R ₇	<u>X</u>	<u>¥</u>	<u>Z</u>	m.p.(°C)
H	CH ₂		CH ₃				
H	CH ₂		CH ₃		OCH ₃		
Н	CH ₂	H	CH ₃	och ³	_		
H	CH ₂		CH ₃	Cl		CH	
H	CH ₂	H	CH ₃	CH ₃	OCH ₃	N	
Н	CH ₂	H	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	H	CH ₃	CH3	CH ₃	N	
H	CH ₂	CH ₃					
H	CH ₂		CH ₃		осн ₃		
H	CH ₂	CH ₃	CH ₃		OCH3	CH	
H	CH ₂	CH ₃	CH ₃	-	OCH ₃		
H	CH ₂				och ₃	N	
H	CH ₂	CH ₃	CH ₃	осн ₃			
H	CH ₂		CH3		CH ₃	N	
H	CH ₂						
H	CH ₂	C6H5		CH ₃			
H	CH ₂				осн ₃		
Н	CH ₂	C ₆ H ₅			_		
H	СН ₂	C6H5		CH ₃			
H	CH ₂						
H		C6H5		CH ₃	CH ₃	N	
H	CH ₂	н	н	CH ₃	CH ₃	CH	
н	CH ₂	H	Н		OCH ₃		
H	CH ₂	Н	H		OCH ₃		
н	CH ₂	Н	Н	C1	och ₃	CH	
н	СН ₂	Н	Н	CH ₃			
н	CH ₂	н	н		OCH ₃		
Н		H	Н		CH ₃		
		C ₆ H ₅			CH ₃		
Н	CH ₂	C ₆ H ₅	Н	CH,	OCH,	СН	
Н	CH ₂	6 5 C ₆ H ₅	Н	OCH ₃		СН	
	2	6 5		3	3		

$\frac{R_1}{1}$	<u>G</u>	R ₆	<u>R</u> 7	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂	C6H5		Cl	OCH ₃		
H	CH ₂	с ₆ н ₅		CH ₃	OCH ₃	N	
H	CH ₂	C ₆ H ₅		OCH ₃	OCH ³	N	
H	CH ₂	С ₆ Н ₅		CH3	CH ₃	N	
6-C1	CH ₂	CH3	H	CH3	CH ₃	CH	
6-C1	CH ₂	CH ₃	H	CH3	OCH ₃	CH	
6-C1	CH ₂	CH ₃	H	осн ₃	OCH ₃	CH	
6-Cl	CH ₂	CH ₃	н	Cl	OCH ₃	CH	
6-Cl	CH ₂	CH ₃	Н	CH ₃	OCH ₃		
6-C1	CH ₂	CH ₃	H	OCH ₃	OCH ₃		
6-C1	CH ₂	C6H5	H	CH ₃	CH ₃	CH	
6-Cl	CH ₂	C ₆ H ₅		CH ₃	OCH ₃	CH	
6-Cl	CH ₂	C ₆ H ₅	H	OCH ₃		CH	
6-Cl	CH ₂	C ₆ H ₅		Cl	OCH ₃		
6-C1	CH ₂	C ₆ H ₅		CH ₃	OCH ₃	N	
6-C1	CH ₂	C ₆ H ₅	H	OCH ₃	OCH ₃	N	
H	CH2CH2		CH ₃		CH ₃	CH	
H	CH ₂ CH ₂		CH ₃	CH ₃	OCH ₃	CH	
H	CH ₂ CH ₂	H	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂		CH ₃	Cl	OCH ₃	CH	
H	CH ₂ CH ₂	H	CH ₃	CH3	OCH3	N	
H	CH ₂ CH ₂	H	CH ₃	OCH ³	OCH ₃	N	
H	CH ₂ CH ₂	H	CH ₃	CH3	CH ₃	N	
H	CH2CH2		CH ₃	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	CH ₃	CH ₃	CH3	OCH ₃	CH	
H	CH ₂ CH ₂	CH ₃	CH3	OCH ₃	OCH ₃	CH	
H	CH2CH2	CH	CH	Cl	OCH	CH	
H	CH ₂ CH ₂	CH ₃	CH ³	CH ₃	OCH ₃	N	
H	CH ₂ CH ₂	CH3	CH3	OCH ³	OCH.	N	
H	CH2CH2	CH3	CH3	CH ₃	CH,	N	
H	CH ₂ CH ₂	C ₅ H ₅	CH3	CH3	CH2	-CH	
H	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH3	OCH ₃	CH	

$\frac{R_1}{2}$ G $\frac{R_6}{2}$ $\frac{R_7}{2}$ X Y	<u>z</u> m.p.(°C)
H CH ₂ CH ₂ C ₆ H ₅ CH ₃ OCH ₃ OCH ₃	·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H CH ₂ CH ₂ H H CH ₃ CH ₃	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H CH ₂ CH ₂ H H OCH ₃ OCH ₃	
H CH ₂ CH ₂ H H Cl OCH ₃	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H CH ₂ CH ₂ H H CH ₃ CH ₃	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H CH_2CH_2 C_6H_5 H CH_3 OCH_3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$^{\circ}$	
H CH_2CH_2 C_6H_5 H CH_3 CH_3	N
$^{\rm H}$ $^{\rm CH_2CH_2}$ $^{\rm C}_6{}^{\rm H_5}$ $^{\rm H}$ $^{\rm CH_3}$ $^{\rm CH_3}$ $^{\rm CH_3}$ $^{\rm CH_3}$	CH
$6-C1$ CH_2CH_2 CH_3 H CH_3 CH_3 $6-C1$ CH_2CH_2 CH_3 H CH_3 OCH_3	
6-Cl CH ₂ CH ₂ CH ₃ H OCH ₃ OCH ₃	
6-C1 CH ₂ CH ₂ CH ₃ H C1 OCH ₃	
$^{6-C1}$ $^{CH}_2$ $^{CH}_2$ $^{CH}_3$ H $^{CH}_3$ $^{OCH}_3$ $^{6-C1}$ $^{CH}_2$ $^{CH}_2$ $^{CH}_3$ H $^{OCH}_3$ $^{OCH}_3$	
$^{6-C1}$ $^{CH}_2$ $^{CH}_2$ $^{C}_6$ $^{H}_5$ H $^{CH}_3$ $^{CH}_3$ $^{6-C1}$ $^{CH}_2$ $^{CH}_2$ $^{C}_6$ $^{H}_5$ H $^{CH}_3$ $^{OCH}_3$	
$6-C1$ CH_2CH_2 C_6H_5 H OCH_3 OCH_3	CH
$6-C1$ CH_2CH_2 C_6H_5 H $C1$ OCH_3	
6-C1 CH ₂ CH ₂ C ₆ H ₅ H CH ₃ OCH ₃	
$6-C1$ CH_2CH_2 C_6H_5 H OCH_3 OCH_3	N

TABLE 21 (Continued)

$\frac{R_1}{}$	<u>G</u>	R ₆	R ₇	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH=CH				осн _з		
Н	CH=CH		_	_	OCH ₃		
H	CH=CH	H			OCH ₃		
	CH=CH		3				
	CH=CH						
H	CH=CH						
н	CH=CH	CH	CH ₂	CH ₃	_	СН	
H	CH=CH	CH ₂	CH ₂	CH ₂	OCH,	СН	
Н	CH=CH	CH,	CH2	OCH,	OCH ₂	CH	
H	CH=CH	CH,	CH2	C1	OCH ₂	СН	
H	CH=CH						
	CH=CH						
	CH=CH						
	CH=CH						
	CH=CH						
H	CH=CH	C ₆ H ₅	CH ₃	OCH	OCH,	CH	
H	CH=CH	C ₆ H ₅	CH ₃	Cl	OCH3	CH	
H					OCH ₃		
H	CH=CH						
	CH=CH	C_H_	CH_				
H	CH=CH	H	н	-	CH ₃		
H	CH=CH	H	Н	CH ₃	OCH,	CH	
H	CH=CH				OCH ₃		
H	CH=CH	H	H		_		
H	CH=CH	H	Н	CH ₃	OCH ₃	N	
H	CH=CH	H	H	_	осн ₃		
H	CH=CH	H	H	CH ₃	CH ₃	N	
H	CH=CH	C6H5	H	CH ₃		CH	
H		C ₆ H ₅		_	OCH ₃	CH	•
Н	CH=CH			-	_	CH	
H	CH=CH				OCH ₃	CH	
H	CH=CH		Н	CH3	OCH,	N	

$\frac{R_1}{1}$	<u>G</u>	R ₆	R ₇	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH=CH	C ₆ H ₅					
H	CH=CH			CH3		N	
6-Cl	CH=CH		H	CH ₃	CH ₃	CH	
6-Cl	CH=CH			-	och ₃		
6-C1	CH=CH			осн ₃			
6-C1	CH=CH					CH	
6-C1	CH=CH			CH ₃	OCH ₃	N	
6-C1	CH=CH	•	H	осн ₃	OCH ₃		
6-C1	CH=CH			CH3	CH ₃		
6-C1	CH=CH	C ₆ H ₅	H	CH ₃	OCH ₃	CH	
	CH=CH			OCH,	OCH3		
	CH=CH			_	OCH ₃		
	CH=CH				OCH ³		
	CH=CH				OCH ₃		
H	CH ₂	CH ₃			OCH ₃		
H	CH ₂	CH ₃			_		
Н	CH ₂	CH ₃		CH3	CH ₃	CH	
H	CH ₂	CH ₃		C1	осн ₃	CH	
Н	CH ₂	CH ₃	H	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	H	OCH ₃	CH3		
H	CH2CH2	CH ₃					173-180(d)
H	CH2CH2	CH ₃	H				
H	CH ₂ CH ₂	CH ₃	H	CH ₃	CH ₃		
Н	CH ₂ CH ₂	CH ₃	H		OCH ₃	CH	
H	CH ₂ CH ₂	CH ₃	H	OCH ₃		N	
Н	CH ₂ CH ₂	CH ₃	H	OCH ₃	OCH ₃	N	
Н	CH=CH	CH ₃	H	OCH ₃	OCH ₃	CH	•
н	CH=CH	CH ₃	H	осн ₃	CH ₃	CH	
Н	CH=CH	CH ₃	H	CH ₃	CH ₃	CH	
Н	CH=CH	CH ₃	H	Cl	OCH	CH	
H	CH=CH	CH ₃	H	осн ₃	och ³	N	
Н	CH=CH	CH ₃	H	OCH ₃	CH ₃	N	

TABLE 22 General Formula 22

$\frac{\mathtt{R}_1}{}$	<u>X</u> .	<u>¥</u>	<u>z</u>	m.p.(°C)
H	och ₃	OCH ₃	N	
н	OCH ₃	OCH ₃	СН	
Н	CH3	OCH ₃	N	
н	CH ₃	OCH ₃	СН	
Н	cı	OCH ₃	СН	
н	CH ₃	CH3	CH	
6-CH ₃	ocH ³	och ₃	N	
6-CH ₃	OCH3	OCH ₃	CH	
6-CH ₃	CH3	OCH ₃	N	
6-CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₃	CH ₃	CH	
6-C1	OCH ₃	OCH ₃	N	
6-C1	OCH ₃	OCH ₃	CH	-
6-Cl	CH ₃	OCH ₃	N	
6-C1	CH ₃	OCH ₃	CH	
6-C1	Cl	OCH ₃	CH	
6-Cl	CH ₃	CH ₃	CH	
6-OCH ₃	och ₃	OCH ₃	N	
6-OCH ₃	och ³	OCH ₃	CH	
6-OCH ₃	CH3	OCH ₃	N	
6-OCH ₃	CH ₃	OCH ₃	CH	
6-OCH ₃	Cl	OCH ₃	CH	
6-OCH ₃	CH ₃	CH ₃	CH	
5-Cl	OCH ₃	OCH	N	
5-Cl	och ₃	OCH ₃	CH	
5-Cl	CH ₃	OCH ₃	N	
5-Cl	CH ₃	осн ₃	CH	
5-C1	Cl	OCH ₃	CH	
5-C1	CH ₃	CH ₃	CH	
5-OCH ₃	OCH ₃	OCH ₃	N	

TABLE 22 (Continued)

$\frac{R_1}{2}$	<u>x</u>	<u>Y</u>	. <u>Z</u>	m.p.(°C)
5-OCH ₃	осн ₃	och ₃	CH	
5-OCH ₃	CH3	OCH ₃	N	
5-0CH ₃	CH ₃	OCH ₃	CH	
5-0CH ₃	Cl	OCH ₃	СН	
5-OCH ₃	CH ₃	CH ₃	CH	
5-SCH ₃	OCH ₃	OCH ₃	N	
5-SCH ₃	OCH ₃	OCH ₃	CH	
5-SCH ₃	CH ₃	OCH ₃	N	
5-SCH ₃	CH ₃	OCH ₃	CH	
5-SCH ₃	Cl	OCH ₃	CH	
5-SCH ₃	CH ₃	CH ₃	СН	

TABLE 23
General Formula 23

$\frac{R_1}{}$	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	OCH ₃	och ₃	N	
H	OCH ₃	OCH ₃	СН	
н	CH3	OCH ₃	N	
H	CH ₃	OCH ³	CH	
H	Cl	OCH ₃	CH	
H	CH ₃	CH ₃	CH	
6-CH ₃	och ₃	OCH ₃	N	
6-CH ₃	OCH ₃	OCH ₃	СН	
6-CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	Cl	OCH ³	CH	
6-CH ₃	CH3	CH ₃	CH	
6-C1	OCH ₃	OCH ₃	N	
6-C1	OCH3	OCH ₃	CH	
6-Cl	CH ₃	OCH3	N	
6-C1	CH ₃	OCH ³	CH	
6-C1	Cl	OCH ₃	CH	
6-C1	CH ₃	CH ₃	CH	
6-OCH ₃	OCH ₃	OCH ₃	N	
6-OCH ₃	OCH ₃	OCH3	CH	
6-OCH ₃	CH ₃	och ³	N	
6-OCH ₃	CH ₃	OCH ₃	CH	
6-OCH ₃	Cl	OCH ₃	CH	
6-OCH ₃	CH ₃	CH ₃	CH	
5-Cl	OCH,	OCH	N	
5-Cl	och ₃	och ₃	CH	
5-Cl	CH ₃	OCH ₃	N	
5-C1	CH ₃	OCH ₃	CH	
5-Cl	Cl	OCH ₃	СН	
5-C1	CH ₃	CH ₃	CH	
5-OCH ₃	och3	OCH3	N	

TABLE 23 (Continued)

$\frac{R_1}{}$	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
5-OCH ₃	OCH ₃	OCH ₃	CH	·
5-0CH ₃	CH ₃	OCH ₃	N	
5-OCH ₃	CH ₃	OCH ₃	СН	
5-OCH ₃	Cl	OCH ₃	CH	
5-0CH ₃	CH ₃	CH ₃	CH	
5-SCH ₃	OCH ₃	OCH ₃	N	
5-SCH ₃	OCH ₃	OCH ₃	CH	
5-SCH ₃	CH ₃	OCH ₃	N	
5-SCH ₃	CH ₃	OCH ₃	CH	
5-SCH ₃	Cl	OCH ₃	CH	
5-SCH ₃	CH ₃	CH ₃	CH	

TABLE 24
General Formula 24

_		_				
$\frac{R_1}{}$	<u>G</u>	<u>R₁₀</u>	X	Ā	<u>z</u>	m.p.(°C)
H	CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂	H	CH3	OCH ₃	CH	
H	CH ₂		OCH ₃		CH	
H	CH ₂		Cl	OCH ₃	CH	
H	CH ₂	Н	CH ₃	OCH ₃	N	
H	CH ₂	H	OCH ₃	OCH ₃	N	
H	CH ₂	H	CH ₃	CH3	N	
H	CH ₂	CH ₃	CH ³	CH ₃	CH	
H	CH ₂		CH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH ₃	CH ₃	N	
H		C6H5	CH ₃	CH ₃	CH	
H		C ₆ H ₅			CH	
H		C ₆ H ₅	OCH ₃	осн ₃	CH	
H	_	C ₆ H ₅		OCH ₃	CH	
H		C ₆ H ₅		OCH ₃	N	
H		C ₆ H ₅	OCH ₃		N	
H	CH ₂		_	CH ₃	N	
6-CH ₃	CH ₂	Н	CH ₃	CH ₃	CH	
6-CH ₃		H	CH ₃	OCH ₃	CH	
6-CH ₃			OCH ₃		CH	
6-CH ₃	CH ₂	H	Cl	осн ³	CH	
6CH ₃	CH ₂	H	CH ₃	OCH ₃	N	
		н ,			N	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	н сн ₃	CH ₃	CH ₃	СН	
6-CH ₃	CH ₂	CH3	OCH ₃	CH ₃	CH	
6-CH ₃	CH ₂	CH3	OCH ₃	OCH	CH	

TABLE 24 (Continued)

<u>R</u> 1	<u>G</u>	R ₁₀	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	<u></u>
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH3	och ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂			OCH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	och ₃	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	CH ₃	N	
6-C1	CH ₂	Н	CH ³	CH ₃	CH	
6-Cl	CH ₂	H	CH3	OCH ₃	CH	
6-C1	CH ₂	H	OCH ₃	och ₃	CH	
6-C1	CH ₂	H	Cl J	осн ₃	CH	
6-C1	CH ₂	H	CH ₃	OCH ₃	N	
6-C1	CH ₂	H	OCH ₃	OCH ₃	N	
6-Cl	CH ₂	H	CH ₃	CH3	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-Cl	CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-C1	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
6-Cl	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-Cl	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	CH ₂	CH ₃	CH ₃	CH ₃	N	
6-Cl	CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH	
6-Cl	CH ₂	C ₆ H ₅		OCH ₃	CH	
6-Cl	CH ₂	C6H5	OCH ₃	OCH ₃	CH	
6-Cl	CH ₂	C6H5	Cl	OCH ₃	CH	
6-C1	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	N	
6-Cl	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-Cl		C ₆ H ₅	CH ₃	CH ₃	N	

$\frac{R_1}{}$	<u>G</u>	R ₁₀	<u>x</u>	<u>¥</u> .	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂	H	CH ₃		CH	
H	CH ₂ CH ₂			OCH ₃	CH	
H	CH ₂ CH ₂					189-192(d)
H	CH ₂ CH ₂		Cl 3	OCH ₃		
Н	CH ₂ CH ₂		CH ₃	_		
H	CH ₂ CH ₂		OCH ₃			147-150
H	CH ₂ CH ₂		_			
H	CH ₂ CH ₂		CH3	CH3	CH	
H	CH ₂ CH ₂		CH3	OCH ₃	CH	
H	CH ₂ CH ₂	-	-	OCH ₃		
H	CH ₂ CH ₂	-	_	och3		
H	CH ₂ CH ₂					
Н	CH ₂ CH ₂	-	-		N	
H	CH ₂ CH ₂	CH3	CH3	CH ₃	N	
H	CH ₂ CH ₂				CH	
H	CH ₂ CH ₂	C ₆ H ₅	CH3			
H	CH ₂ CH ₂	C H S	OCH ₃			•
H	CH ₂ CH ₂					
Н	CH ₂ CH ₂			_		
H	CH ₂ CH ₂			OCH ₃	N	
H	CH ₂ CH ₂		_		N	
	CH ₂ CH ₂		CH ₃	CH ₃	CH	
	CH ₂ CH ₂		-	OCH ₃	CH	
6-CH ₃	CH2CH2	H	OCH	осн ₃	CH	
6-CH ₃	CH ₂ CH ₂	H	Cl	OCH	CH	
	CH ₂ CH ₂		CH ₃	оснз	N	
	CH ₂ CH ₂				N	
6-CH ₃	CH ₂ CH ₂	H	CH3		N	
6-CH ₃	CH ₂ CH ₂	CH ₃	CH ₃	CH ³	CH	
6-CH ₃	CH ₂ CH ₂	CH3	OCH	CH	CH	
6-CH ₃	CH ₂ CH ₂	CH	OCH ₃		CH	
	CH ₂ CH ₂		Cl J	OCH ₃	CH	
_	- 4	•		3		

R ₁	<u>G</u>	R ₁₀	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
	CH ₂ CH ₂			осн ₃	N	
•	CH ₂ CH ₂			•	N	
_	CH ₂ CH ₂	_		CH ₃	N	
•	CH ₂ CH ₂			CH ₃	CH	
•	CH ₂ CH ₂	• •		OCH ₃		
_	CH ₂ CH ₂			_	СН	
_	CH ₂ CH ₂			OCH ₃	СН	
_	CH ₂ CH ₂			OCH ₃	N	
_	CH ₂ CH ₂				N	
-	CH ₂ CH ₂		-	CH ₃	N	
6-Cl			CH ₃	CH ₃	CH	
6-Cl		н	CH ₃	OCH ₃	CH	
6-C1		Н	OCH ₃	_	CH	• .
6-Cl	CH ₂ CH ₂	H	Cl	OCH ₃	CH	
6-C1	CH ₂ CH ₂	Н	CH ₃	OCH ₃	N	
6-C1		H.	OCH ³	OCH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-Cl		_	осн ₃	CH3	CH	
6-Cl		CH ₃	OCH ₃	OCH ₃	CH	
6-Cl	CH ₂ CH ₂		Cl	OCH ₃	CH	
6-C1	CH ₂ CH ₂		CH ₃	OCH ₃	N	
6-C1	CH ₂ CH ₂	CH ³		OCH ₃	N	
6-Cl	CH ₂ CH ₂		CH ₃	CH ₃	N	
6-C1	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂				CH	
6-Cl	CH ₂ CH ₂					
	CH ₂ CH ₂		-	-		
	CH ₂ CH ₂					
	CH ₂ CH ₂					
6-C1	CH ₂ CH ₂	C6H5	CH ₃	CH ₃	N	
Н	CH=CH		CH ₃	_	CH	

$\frac{R_1}{2}$	<u>G</u>	R ₁₀	<u>x</u>	Ā	<u>z</u>	m.p.(°C)
H	CH=CH			OCH ₃		<u>m.p.(c)</u>
H	CH=CH		OCH_	OCH ₃	CH	
H	CH=CH			OCH ₃		
H	CH=CH					
H	CH=CH		CH ₃ OCH	OCH ₃		
H	CH=CH		CH ₃			
н	CH=CH			CH ₃	CH	
Н	CH=CH	3	CH_	OCH_		
н	CH=CH	CH ₂	OCH_	OCH ₃	CH	
Н	CH=CH		Cl	OCH ₃	CH	
н	CH=CH			OCH ₃		
н	CH=CH			OCH ₃		
H	CH=CH	CH3	CH,	CH ₃	N	
	CH=CH	3	CH ₃	CH ₂	CH	
H	CH=CH			OCH ₃		-
H	CH=CH					
H	CH=CH			_		
H	CH=CH			OCH,	N	
H	CH=CH	C ₆ H ₅	OCH,	OCH,	N	
H	CH=CH	C ₆ H ₅		-		
6-CH ₃	CH=CH	H		CH ₃	CH	
	CH=CH			осн ₃		
6-CH ₃	CH=CH	H		OCH ₃		
6-CH ₃	CH=CH			OCH ₃		
6-CH ₃	CH=CH	H	CH3	OCH ³	N	
6-CH ₃	CH=CH	H	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	H	CH ₃	CH ³	N	
	CH=CH		CH3	CH ₃	CH	
6-CH ₃	CH=CH	CH ₃	OCH ₃		CH	
6-CH ₃	CH=CH		-	OCH ₃		
6-CH ₃	CH=CH	CH ₃		OCH3		
6-CH ₃	CH=CH		CH ₃			
		-	55	J		

TABLE 24 (Continued)

$\frac{R_1}{2}$	0	R,		17	_	(00)
	<u>G</u>	R ₁₀	<u>X</u>	<u>Y</u>	<u>Z</u>	m.p.(°C)
6-CH ₃	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃		3	CH ₃	CH ₃	N	
3	CH=CH	C ₆ H ₅	CH ₃	CH ₃	CH	
6-CH ₃		C ₆ H ₅		OCH ₃	CH	
6-CH ₃		C6H5	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	C6H5	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	C6H5	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	C6H5	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	C6H5	CH ₃	CH ₃	N	
6-C1	CH=CH	Н	CH ₃	CH ₃	CH	
6-Cl	CH=CH	H	CH ₃	OCH ₃	CH	
6-C1	CH=CH	Н	OCH ₃	OCH ₃	CH	
6-C1	CH=CH	H	Cl	OCH ₃	CH	
6-Cl	CH=CH	н	CH ₃	OCH ₃	N	
6-Cl	CH=CH	H	OCH ₃	OCH ₃	N	
6-Cl	CH=CH	Н	CH ₃	CH ₃	N	
6-Cl	CH=CH	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
6-Cl	CH=CH	CH ₃	OCH ₃	OCH ₃	CH	
6-C1	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH=CH	CH ₃	CH ₃	осн	N	
6-C1	CH=CH	CH ₃	OCH ₃	осн ³	N	
6-Cl	CH=CH	CH ₃	CH ₃	CH3	N	
6-C1	CH=CH	C6H5	CH ₃	CH ₃	СН	
6-Cl	CH=CH	с ₆ н ₅	CH ₃	OCH ₃	CH	
6-C1	CH=CH	С ₆ Н ₅	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH	C6H5		OCH3	CH	
6-Cl	CH=CH			OCH ₃	N	
6-Cl	CH=CH	_	OCH ³	OCH ₃	N	
6-Cl	CH=CH	CEH	CH	CH	N	

TABLE 25
General Formula 25

$\frac{R_1}{}$	<u>G</u>	R ₁₀	<u>X</u>	v	7	m.p.(°C)
H H	CH ₂	H H		<u>Υ</u>	<u>Z</u> CH	<u>m.p.(c)</u>
H		H	CH ³	CH ₃	CH	
H	CH ₂		CH ₃	OCH ³	CH	
H	CH ₂	H	OCH ₃	OCH ₃	CH	
H	CH ₂	H	Cl Cu	OCH 3		
	CH ₂		CH ₃	OCH ₃	N	
H	CH ₂	H	OCH ₃	OCH ³	N	
H	CH ₂	H	CH ₃	CH3	N	
H	CH ₂	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
H 	CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	N	
H	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
H	CH ₂	CH ₃	CH3	CH ₃	N	
H	CH ₂	C ₆ H ₅	CH ₃	CH ₃	CH	
H	CH ₂		CH ₃	OCH ₃	CH	
H	CH ₂	C6H5	OCH ³	OCH ₃	CH	
H .	CH ₂	C6H5	Cl	OCH ₃	CH	
H	CH ₂	C ₆ H ₅		OCH ₃	N	
H	CH ₂	C ₆ H ₅	och ₃	OCH ₃	N	
H	CH ₂	C ₆ H ₅	CH ₃	CH3	N	
6-CH ₃	CH ₂	H	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	H	CH ₃	OCH ₃	CH	
6-CH ₃	CH2	Н .		OCH ₃	CH	
6-CH ₃	CH ₂	H	Cl	OCH ₃	CH	
6-CH ₃		H	CH ₃	OCH ₃	N	
		H		OCH ₃	N	
		Н		CH ₃		
6-CH ₂	CH,	CH ₃	CH	CH3	CH	
6-CH ₂	CH,	CH ₃	OCH	CH,	CH	
		CH ³			CH	
3	4	ى	3	3		

$\frac{R_1}{}$	<u>G</u>	<u>R₁₀</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	CH ₃	och ₃	OCH3	N	
6-CH ₃	CH ₂	CH ₃	CH3	CH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	CH ₃	СН	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	C ₆ H ₅	OCH ₃	och ₃	CH	
6-CH ₃	CH ₂	C ₆ H ₅	Cl	осн ₃	CH	
6-CH ₃	CH ₂	C ₆ H ₅	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	C6H5	CH3	CH ₃	N	
6-Cl	CH ₂	Н	CH ₃	CH ₃	CH.	
6-Cl	CH ₂	Н	CH ₃	OCH ₃	CH	
6-Cl	CH ₂	H	OCH ₃	OCH ₃	CH	
6-Cl	CH ₂	H	Cl	OCH ₃	CH	•
6-Cl	CH ₂	H	CH ₃	OCH ₃	N	
6-C1	CH ₂	H	OCH ₃	OCH ₃	N	
6-Cl	CH ₂	H	CH3	CH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-C1	CH ₂	CH ₃	OCH ₃	осн ₃	CH	
6-Cl	CH ₂	CH ₃	Cl	осн ₃	CH	
6-Cl	CH ₂	CH ₃	CH ₃	och ³	N	
6-Cl	CH ₂	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	CH ₂	CH ₃	CH3	CH3	N	
6-Cl	CH ₂	C6H5	CH ₃	CH ₃	CH	
6-Cl	CH ₂	C6H5		OCH ³	CH	
6-C1		C ₆ H ₅	OCH ₃		CH	
6-Cl		C6H5		OCH ₃	CH	
		C ₆ H ₅		OCH ₃	N	
6-Cl	CH ₂	C6H5	OCH ₃	OCH ₃	N	
		C ₆ H ₅		CH ₃	N	

<u>R</u> 1	<u>G</u>	R ₁₀	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
Н	CH ₂ CH ₂		CH ₃	CH ₃	CH	
Н	CH ₂ CH ₂		CH	OCH ₃		
H	CH ₂ CH ₂	H	OCH,	OCH ₃	CH	
H	CH ₂ CH ₂		Cl	OCH ₃	CH	
H	CH ₂ CH ₂		CH ₃	OCH ₃	N	
H	CH ₂ CH ₂		OCH ₃	OCH ₃	N	
H	CH ₂ CH ₂		CH ₃	CH ₃	N	
H	CH ₂ CH ₂		CH ₃	CH ₃	CH	
H	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
H	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂					
H	CH ₂ CH ₂			OCH ₃	N	
H	CH ₂ CH ₂		OCH ₃		N	
H	CH ₂ CH ₂			CH3	N	
H	ÇH2CH2			CH ₃	CH	
H	CH ₂ CH ₂				CH	
H	CH ₂ CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	CH	
H	CH ₂ CH ₂				CH	
H	CH ₂ CH ₂	C6H5	CH ₃		N	
H	CH ₂ CH ₂		OCH ₃		N	
H	CH ₂ CH ₂	C ₆ H ₅		CH3	N	
	CH2CH2		CH ₃	CH ₃	CH	
	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	H	OCH ₃	OCH ₃		
	CH ₂ CH ₂		Cl	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	H	CH ₃	OCH ₃	N	
6-CH ₃	CH ₂ CH ₂	Η -	OCH	OCH	N	
6-CH ₃	CH ₂ CH ₂	H	CH ₃	CH ₃	N	
6-CH ₃	CH2CH2	CH3	CH3	CH ₂	CH	
6-CH ₃	CH ₂ CH ₂ CH ₂ CH ₂	CH ₃	OCH ₃	CH ₃	CH	
6-CH3	CH ₂ CH ₂	CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂ CH ₂	CH ₃	Cl	OCH ₃	CH	

$\frac{R_1}{2}$	<u>G</u>	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
6-CH ₃			CH ₃	OCH ₃	N	
6-CH ₃	CH ₂ CH ₂		OCH ₃	_		
6-CH ₃			СН ₃	CH ₃	N	
6-CH ₃		C ₆ H ₅	CH ₃	CH ₃	СН	
6-CH ₃				OCH ₃	CH	
6-CH ₃						
6-CH ₃			_	OCH ₃	CH	
6-CH ₃				OCH ₃	N	
_	CH ₂ CH ₂				N	
6-CH ₃				CH ₃	N	
6-Cl	CH ₂ CH ₂		CH ₃	CH ₃	СН	
6-C1	CH ₂ CH ₂		CH ₃	OCH ₃	CH	
6-Cl	CH ₂ CH ₂		OCH ₃	•	СН	
6-C1			Cl	OCH ₃		
6-C1	CH ₂ CH ₂	Н	CH ₃	OCH ₃	N	
6-Cl		Н	OCH ₃		N	
6-Cl			CH3	CH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂		OCH ₃	CH ₃	CH	
6-Cl	CH ₂ CH ₂	CH ₃	осн ₃	OCH ₃	CH	
6-Cl	CH ₂ CH ₂		Cl	OCH ₃	СН	
6-C1	CH ₂ CH ₂		CH ₃		N	
6-C1	CH ₂ CH ₂	CH3	OCH ₃	OCH ₃	N	
6-C1	CH ₂ CH ₂		CH3	CH ₃	N	
6-C1	CH ₂ CH ₂	CH5	CH ₃	CH ₃	CH	
6-C1	CH2CH2	C,H,	CH,	OCH,	CH	
6-Cl	CH ₂ CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-C1	CH ₂ CH ₂	C6H5	Cl	OCH ₃	CH	
6-Cl	CH ₂ CH ₂	CeHe	CH	OCH,	N	
6-C1	CH ₂ CH ₂ CH ₂ CH ₂	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-C1	CH ₂ CH ₂	C ₆ H ₅	CH ₃	CH ₃	N	
Н	CH=CH	H	CH ₃	CH ₃	CH	
			-			

$\frac{R_1}{2}$	<u>G</u>	R ₁₀	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
tr ·	OH CH	23	CH	OCIT	OTT	
H	CH=CH	H	OCH	OCH,	CH	
H	CH=CH CH=CH	н	Cl	OCH,	СН	
H	CH=CH	H	CH2	OCH ₃	N	
H	CH=CH	H	OCH,	OCH,	N	
	CH=CH			CH ₃		
H	CH=CH	CH3	CH3	CH3	CH	
Н	CH=CH	CH ₃	CH ₃	OCH	CH	
H	CH=CH CH=CH CH=CH	CH ₃	OCH	OCH	CH	
H	CH=CH	CH ₃	Cl	OCH ₃	CH	
H	CH=CH	CH ₃	CH ₃	OCH ₃	N	
H	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
H	CH=CH	CH_	CH_	CH_	N	
H	CH=CH	C ₆ H ₅	CH ₃	CH ₃	CH	
H	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
H	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	CH	
H	CH=CH CH=CH CH=CH	C ₆ H ₅	Cl	OCH ₃	CH	
Н	CH=CH CH=CH	C ₆ H ₅	CH ₃	OCH ₃	N	
H	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	N	
H	CH=CH	C6H5	CH ₃	CH ₃	N	
	CH=CH		CH ₃	CH3	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH3	CH	
6-CH ₃	CH=CH CH=CH	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	H	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	H	CH ₃	OCH ₃	N	
	CH=CH			OCH ₃	N	
6-CH ₃	CH=CH	H		CH ₃	N	
6-CH ₃	CH=CH	CH ₃			CH	
6-CH ₃	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
6-CH ₃	CH=CH		_	OCH ₃	CH	
	CH=CH	CH ₃		OCH ₃	CH	
	CH=CH	CH ₃		OCH ₃	N	

R		R				
<u>R</u> 1	<u>G</u>	R ₁₀	X	<u>A</u>	<u>Z</u>	m.p.(°C)
6-CH ₃	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
6-CH ₃	CH=CH	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	CH=CH	C6H5		CH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	N	
6-CH ₃	CH=CH	C ₆ H ₅		OCH ₃	N	
6-CH ₃	CH=CH		CH ₃	CH ₃	N	
6-C1	CH=CH	Н	CH ₃	CH ₃	CH	
6-Cl	CH=CH	H	CH ₃	OCH ₃	CH	
6-C1	CH=CH	Н	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH	Н	Cl	OCH ₃	CH	
6-Cl	CH=CH	H	CH ₃	OCH ₃	N	
6-Cl	CH=CH	Н	OCH ₃	OCH ₃	N	
6-Cl	CH=CH	H	CH ₃	CH ₃	N	
6-C1	CH=CH	CH ₃	CH ³	CH ₃	CH	
6-C1	CH=CH	CH ₃	OCH ₃	CH ₃	CH	
6-C1	CH=CH	CH ₃		OCH ₃	CH	
6-Cl	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-Cl	CH=CH	CH ₃	CH ₃	OCH ₃	N	
6-Cl	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
6-Cl	CH=CH	CH ₃	CH ₃	CH3	N	
6-C1	CH=CH	C6H5	CH ₃	CH ₃	CH	
6-Cl	CH=CH	C ₆ H ₅	CH ₃	OCH ₃	CH	
6-Cl	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH	C ₆ H ₅	Cl	OCH ₃	CH	
6-Cl	CH=CH		CH3	OCH ₃	N	
6-Cl	CH=CH	C ₆ H ₅	OCH ₃	OCH ₃	N	
6-Cl	CH=CH	C ₆ H ₅	CH ₃	CH ₃	N	

TABLE 26
General Formula 26

R ₁	<u>G</u>	R ₅	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂	H	CH ₃		CH	=
H	CH ₂	H				
н	CH ₂	H	сн ₃			
н	CH ₂	H	C1	OCH ₃	CH	
H	CH ₂	Н	CH ₃	OCH ₃	N	
Н	CH ₂	Н	OCH ₃		N	
Н	CH ₂	Н		CH ₃	N	
Н	CH_	CH ₃	CH ₃	CH_	СН	
H		CH ₃	CH ₃	CH ₃	CH	
н	CH ₂	CH ₃	OCH ₃	OCH ₃		
Н	CH ₂	CH ₃	Cl		CH	
Н	CH ₂	CH ₃	CH ₃	OCH ₃	N	
Н	CH ₂	CH ₃	OCH ₃		N	
Н	CH ₂	CH ₃		CH ₃	N	
6-CH ₃	CH ₂	н	CH ₃	CH ₃	CH	
6-CH ₃	CH ₂	Н	CH3	OCH ₃	CH	
6-CH ₃	CH ₂	H	OCH ₃	осн ₃	CH	
6-CH ₃	CH ₂	H	Cl	OCH ₃	CH	
6-CH ₃	CH ₂	H	CH ₃	OCH ₃	N	
6-CH ₃		H	OCH ₃	OCH ₃	N	
6-CH ₃	CH ₂	H	CH ₃	CH3	N	
6-CH ₃	CH ₂	CH ₃		CH ₃	CH	
6-CH ₃	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃		CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₂	CH ₃	Cl	OCH ₃	CH	
6-CH ₃		CH ₃	CH ₃	OCH3	N	
6-CH	CH_	CH_	OCH_	OCH_	N	
6-CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	N	
н	CH ₂ CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	H	CH ₃	OCH ₃	CH	
Н	сн ₂ сн ₂	H	OCH ₃	OCH3	СН	

TABLE 26 (Continued)

D		R				
$\frac{R_1}{}$	<u>G</u>	R ₅	<u>X</u>	Y	<u>Z</u>	m.p.(°C)
H	CH ₂ CH ₂	H	Cl	OCH ₃		
H	CH2CH2	H	CH ₃		N	
H	CH2CH2	H	OCH3	OCH ₃	N	
H	CH2CH2	H		CH ₃	N	
Н	CH2CH2	CH ₃	CH ₃	CH ₃	CH	
H	CH ₂ CH ₂	CH ₃	CH ₃	осн ₃	CH	
H	CH ₂ CH ₂			OCH ₃	CH	
H	CH ₂ CH ₂			OCH ₃	CH	
Н	CH ₂ CH ₂	CH ₃	CH ₃	OCH ₃	N	
Н	CH ₂ CH ₂	CH ₃	OCH ₃			
Н	CH ₂ CH ₂	CH ₃	CH ₃	CH ₃	N	
6-CH ₃	CH ₂ CH ₂		CH ₃	CH ₃	CH	
	CH ₂ CH ₂		CH ₃		CH	
_	CH ₂ CH ₂		OCH ₃	осн ₃		
_	CH ₂ CH ₂		Cl	OCH ₃		
_	CH2CH2		CH ₃	OCH ₃		
	CH ₂ CH ₂		OCH ₃			
-	CH ₂ CH ₂		_	CH ₃	N	
_	CH ₂ CH ₂		CH ₃	CH ₃	CH	
-	CH2CH2	-		OCH ₃	CH	
	CH ₂ CH ₂			_		
_	CH ₂ CH ₂	-		OCH ₃	CH	
_	CH ₂ CH ₂				N	
_	CH ₂ CH ₂		OCH ₃		N	
_	CH ₂ CH ₂	_	_	CH3		
H	CH=CH	н	CH ₃	CH ₃	CH	
Н	CH=CH	Н	CH ₃	OCH ₃	CH	
H	CH=CH	Н	OCH ₃	осн	CH	
Н	CH=CH	н	Cl	OCH,	CH	
Н	CH=CH	Н	CH ³	OCH ₃	N	
Н	CH=CH	H	och ₃	OCH ₃	N	
H	CH=CH	н	CH ₃	CH ₃	N	
			3	3		

TABLE 26 (Continued)

$\frac{\mathtt{R_1}}{}$	<u>G</u>	R ₅	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH=CH	CH ³	CH3	CH3	CH	
H	CH=CH			осн ₃		
H	CH=CH			OCH ₃	CH	
H	CH=CH	CH ₃	Cl	OCH ₃	CH	
H	CH=CH	CH ³	CH3	OCH ₃	N	
H	CH=CH		OCH ₃			
H	CH=CH	CH ₃	CH ₃	CH ₃		
6-CH ₃	CH=CH		CH ₃	CH ₃	CH	
6-CH ₃	CH=CH	H		OCH ₃	CH	
6-CH ₃	CH=CH	H	OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	H	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	H	CH ₃			
6-CH ₃	CH=CH	H				
6-CH ₃	CH=CH	H	CH ₃	CH3	N	
6-CH ₃	CH=CH	CH ₃	CH ₃			•
6-CH ₃	CH=CH	CH ₃	CH ₃	OCH ₃		
6-CH ₃	CH=CH		OCH ₃	OCH ₃	CH	
6-CH ₃	CH=CH	CH3	Cl	OCH ₃	CH	
6-CH ₃	CH=CH	CH ₃	CH3	OCH ₃	N	
6-CH ₃	CH=CH	CH3	OCH ₃		N	
6-CH ₃	CH=CH	CH3	CH3	CH3	N	

TABLE 27
General Formula 27

R.		R				
$\frac{R_1}{2}$	<u>G</u>	R ₁₂	X	<u>Y</u>	<u>z</u>	m.p.(°C)
H	CH ₂	H	CH ₃	CH ₃	CH	
H	CH ₂	H	CH ₃	OCH ₃	CH	
H	CH ₂	H	OCH ₃	OCH ₃	CH	
H	CH ₂	H	Cl	OCH ₃	CH	
H	CH ₂	H	CH ₃	OCH ₃	N	
H	CH ₂	H	OCH ₃	OCH ₃	N	
H	CH ₂	Н	CH3	CH ₃	N	
H	CH ₂	CH ₃	CH ³	CH ₃	CH	
H	CH ₂	CH ₃	CH ₃	OCH ₃	CH	
H	CH ₂	CH ₃	OCH	OCH ₃	CH	
H	CH ₂	CH ₃	Cl	OCH ₃	CH	
H	CH ₂	CH ₃	CH ₃	осн ₃	N	
H	CH ₂	CH ₃	OCH ₃		N	
H	CH ₂	CH ₃	CH ₃	CH ₃	N	-
6-C1	CH ₂	H	CH3	CH ₃	СН	
6-Cl	CH ₂	H	CH ₃	OCH ₃	СН	
6-C1	CH ₂	H			СН	
6-C1	CH ₂	H	Cl	OCH3	CH	
6-C1	CH2	Н	CH ₃	OCH ₃	N	
6-Cl	CH ₂	Н	осн ₃	OCH ₃	N	
6-Cl	CH ₂	H		CH ₃	N	
6-C1	CH ₂	CH ₃	CH ₃	CH ₃	CH	
6-Cl	CH ₂	CH ₃	CH3	осн ₃	CH	
6-Cl	CH	CH ₃	OCH,	OCH ₃	СН	
6-C1	CH2	CH ₃	Cl	OCH ₃	СН	
6-C1	CH ₂	CH ₃	CH ₂	OCH ₃	N	
6-Cl	CH,	CH,	осн	OCH ₃	N	
6-Cl		CH ₃	CH	CH ₃	N	
Н	сн ₂ сн ₂	H	CH ₂	CH	СН	
Н	CH ₂ CH ₂ CH ₂ CH ₂	Н	CH2	OCH_	СН	
H	CH ₂ CH ₂	Н	OCH ₃	och ³	CH	
	4 4		3	3		

TABLE 27 (Continued)

<u>R</u> 1	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH ₂ CH ₂		C1	OCH3	CH	<u></u>
Н	CH ₂ CH ₂		CH ₃	OCH ₃	N	
Н	CH ₂ CH ₂	H	OCH ₃	och ³	N	
Н	CH ₂ CH ₂	 ੇਜ਼	CH ₃	CH ₃	N	
Н				CH 3	CH	
H	CH ₂ CH ₂			OCH	CH	
Н	CH ₂ CH ₂			och ₃	CH	
H	CH ₂ CH ₂			OCH	CH	
H		_		och ³	N	
H	CH ₂ CH ₂		och ₃		N	
н	CH ₂ CH ₂ CH ₂ CH ₂			CH.3	N	
	CH ₂ CH ₂	сн ₃ н	CH ₃	CH ³	CH	
6-C1				CH ₃	CH	
	CH ₂ CH ₂		OCH ₃	OCH ₃	CH	
	CH ₂ CH ₂		Cl	OCH ₃	CH	
	CH ₂ CH ₂	 Н	CH ₃		N	
	CH ₂ CH ₂	H	OCH ₃	OCH ₃	N	
6-C1	CH ₂ CH ₂		CH ₃	CH ₃	N	
6-C1			_	CH3	CH	
	CH ₂ CH ₂		CH ₃	сн ₃	CH	
6-C1		_			CH	
• '	CH ₂ CH ₂ CH ₂ CH ₂			OCH ₃	CH	
	CH ₂ CH ₂			OCH ₃	N	
6-C1	CH ₂ CH ₂	CH	-		N	
6-C1	CH ₂ CH ₂	CH ₃		CH ₃	N	
Н	CH=CH		CH 3	CH 3	CH	
H	CH=CH	H	CH ₃	CH ₃	CH	
	-CH=CH	H	OCH ₃	OCH ₃	CH	
H	CH=CH	H	Cl	_	CH	
H	CH=CH	H	CH ₃	OCH ₃	N	
н	CH=CH	H	OCH ₃	OCH ³	N	
H	CH=CH	H	CH ₂	CH ₂	N	

TABLE 27 (Continued)

$\frac{R_1}{}$	<u>G</u>	R ₁₂	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
H	CH=CH	CH ₃	CH ₃	CH ₃	СН	
H	CH=CH	_		OCH ₃	CH	
Н	CH=CH	CH ₃	OCH ₃	OCH ₃	CH	
H	CH=CH	CH ₃		OCH ₃	CH	
H	CH=CH	CH ₃		OCH ₃	N	
H	CH=CH	CH ₃		OCH ₃	N	
H	CH=CH	CH3	CH ₃	CH3	N	
6-Cl	CH=CH	H	CH ₃	CH ₃	CH	
6-C1	CH=CH	H	CH ₃	OCH ₃	CH	
6-C1	CH=CH	H		OCH ₃	CH	
6-C1	CH=CH	H	Cl	OCH ₃	CH	
6-Cl	CH=CH	H	CH ₃	OCH ₃	N	
6-Cl	CH=CH	H	OCH ₃	OCH ₃	· N	•
6-Cl	CH=CH	H	CH ₃	CH ₃	N	
6-Cl	CH=ĊH	CH ₃	CH ₃	CH ₃	CH	
6-C1	CH=CH	CH ₃		OCH ₃	CH	
6-C1	CH=CH	CH ₃	OCH ₃	OCH ₃	CH	
6-Cl	CH=CH	CH ₃	Cl	OCH ₃	CH	
6-C1	CH=CH	CH ₃	CH ₃	OCH ₃	N	
6-C1	CH=CH	CH ₃	OCH ₃	OCH ₃	N	
6-C1	CH=CH	CH ₃	CH3	CH3	N	

TABLE 28' General Formula 28

R				
$\frac{R_1}{}$	<u>X</u>	<u>¥</u>	<u>Z</u>	m.p.(°C)
Н	OCH ₃	OCH ₃	N	
H	OCH ₃	OCH ₃	CH	
Н	CH ₃	OCH ₃	N	
H	CH ₃	OCH ₃	CH	
Н	Cl	OCH ₃	CH	
Н	CH ₃	CH ₃	CH	
6-CH ₃	och ³	OCH ₃	N	
6-CH ₃	OCH ₃	OCH ₃	CH	
6-CH ₃	CH ₃	OCH ₃	N	
6-CH ₃	CH ₃	OCH ₃	CH	
6-CH ₃	Cl	OCH ₃	CH	
6-CH ₃	CH3	CH ₃	CH	
6-C1	OCH ₃	OCH ₃	N	
6-Cl	OCH ₃	OCH ₃	CH	
6-C1	CH ₃	OCH ₃	N	
6-C1	CH ₃	OCH ₃	CH	
6-Cl	Cl	OCH ₃	CH	
6-Cl	CH ₃	CH ₃	CH	
6-0CH ₃	OCH ₃	OCH ₃	N	
6-OCH ₃	OCH ₃	OCH ₃	CH	
6-0CH ₃	CH3	OCH ₃	N	
6-0CH3	CH ₃	OCH ₃	CH	
6-OCH3	Cl	OCH ₃	CH	
6-0CH ₃	CH ₃	CH ₃	CH	
5-C1	OCH ₃	OCH ₃	N	
5-C1	OCH ₃	OCH ₃	CH	
5-C1	CH ₃	OCH ₃	N	
5-C1	CH ₃	OCH ₃	CH	
5-Cl	Cl	OCH ₃	CH	
5-Cl	CH ₃	CH ₃	CH	
5-OCH ₃	och ³	OCH ₃	N	

TABLE 28 (Continued)

$\frac{R_1}{2}$	X	<u>Y</u>	<u>z</u>	m.p.(°C)
5-OCH ₃	OCH ₃	OCH ₃	CH	
5-OCH ₃	CH ₃	OCH ₃	N	
5-0CH ₃	CH ₃	OCH ₃	CH	
5-0CH ₃	Cl	осн ₃	CH	
5-OCH ₃	CH ₃	CH ₃	CH	
5-SCH ₃	OCH ₃	OCH ₃	N	
5-SCH ₃	OCH ₃	OCH ₃	CH	
5-SCH ₃	CH ₃	OCH ₃	N	
5-SCH ₃	CH ₃	OCH ₃	CH	
5-SCH ₃	Cl	OCH ₃	CH	
5-SCH ₃	CH ₃	CH ₃	CH	

Formulations

Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emuslifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray vol-

umes of from a few liters to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain about 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% surfactant(s) and (b) about 1% to 99.9% solid or liquid inert diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

Weight Percent*

Table 29

•	Active Ingredient	Diluent(s)	Surfactant(s)
Wettable Powders	20-90	0-74	1-10
Oil Suspensions, Emulsions, Solutions, (including Emulsifiat Concentrates)		40-95	0-15
Aqueous Suspension	10-50	40-84	1-20
Dusts	1-25	70-99	0-5
Granules and Pellets	0.1-95	5-99.9	0-15
High Strength Compositions	90-99	0-10	0-2

* Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent.

Lower or higher levels of active ingredient can, of course, be present depending on the intended use and the physical properties of the compound. Higher ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, New Jersey, but other solids, either mined or manufactured, may be used. The more absorptive diluents are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable against phase separation at 0°C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publishing Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, moicrobiological growth, etc.

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are pre-

pared by wet milling (see, for example, Littler, U.S. Patent 3,060,084). Granules and pellets may be made by spraying the active material upon preformed granular carriers or by agglomeration techniques.

In the following examples, all parts are by weight unless otherwise indicated.

Example 17

13

30

Wettable Powder

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C] pyrazole-5-sulfonamide 80%

sodium alkylnaphthalenesulfonate 2%

sodium ligninsulfonate 2%

synthetic amorphous silica 3%

kaolinite 13%

The ingredients are blended, hammer-milled until all the solids are essentially under 50 microns, re-blended, and packaged.

Example 18

55

Wettable Powder

N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 50%

sodium alkylnaphthalenesulfonate 2%

low viscosity methyl cellulose 2%

diatomaceous earth 46%

The ingredients are blended, coarsely hammermilled and then air-milled to produce particles essentially all below 10 microns in diameter. The product is reblended before packaging.

Example 19

Granule

Wettable Powder of Example 18 5%

attapulgite granules 95%

(U.S.S. 20-40 mesh; 0.84-0.42 mm)

A slurry of wettable powder containing 25% solids is sprayed on the surface of attapulgite granules in a double-cone blender. The granules are dried and packaged.

Example 20

Extruded Pellet

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno[1,2-C]pyrazole-5-sulfonamide 25%

anhydrous sodium sulfate 10%

crude calcium ligninsulfonate 5%

sodium alkylnaphthalenesulfonate 1%

calcium/magnesium bensonite 59%

The ingredients are blended, hammer-milled and then moistened with about 12% water. The mixture is extruded as cylinders about 3 mm diameter which are cut to produce pellets about 3 mm long. These may be used directly after drying, or

the dried pellets may be crushed to pass a U.S.S. No. 20 sieve (0.84 mm openings). The granules held on a U.S.S. No. 40 sieve (0.42 mm openings) may be packaged for use and the fines recycled.

Example 21

Oil Suspension

N-[(4-methoxy-6-methylpyrimidin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 25%

polyoxyethylene sorbitol hexaoleate 5%

highly aliphatic hydrocarbon oil 70%

The ingredients are ground together in a sand mill until the solid particles have been reduced to under about 5 microns. The resulting thick suspension may be applied directly, but preferably after being extended with oils or emulsified in water.

Example 22

25

30

Wettable Powder

N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 20%

sodium alkylnaphthalenesulfonate 4%

s sodium ligninsulfonate 4%

low viscosity methyl cellulose 3% attapulgite 69%

The ingredients are thoroughly blended. After grinding in a hammer-mill to produce particles essentially all below 100 microns, the material is reblended and sifted through a U.S.S. No. 50 sieve (0.3 mm opening) and packaged.

Example 23

50

Low Strength Granule

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 1%

N,N-dimethylformamide 9%

attapulgite granules 90%

(U.S.S. 20-40 sieve)

The active ingredient is dissolved in the solvent and the solution is sprayed upon dedusted granules in a double cone blender. After spraying of the solution has been completed, the blender is allowed to run for a short period and then the granules are packaged.

Example 24

Aqueous Suspension

N-[(4-methoxy-6-methylpyrimidin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 40%

polyacrylic acid thickener 0.3%

dodecylphenol polyethylene glycol ether 0.5%

disodium phosphate 1%

monosodium phosphate 0.5%

polyvinyl alcohol 1.0%

water 56.7%

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

Example 25

Solution

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide, ammonium salt 5%

water 95%

The salt is added directly to the water with stirring to produce the solution, which may then be packaged for use.

Example 26

Low Strength Granule

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 0.1%

o attapulgite granules 99.9%

(U.S.S. 20-40 mesh)

The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

20 Example 27

Granule

25

30

N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 80%

wetting agent 1%

crude ligninsulfonate salt (containing 10% 5-20% of the natural sugars)

attapulgite clay 9%

The ingredients are blended and milled to pass through a 100 mesh screen. This material is then added to a fluid bed granulator, the air flow is adjusted to gently fluidize the material, and a fine spray of water is sprayed onto the fluidized material. The fluidization and spraying are continued until granules of the desired size range are made. The spraying is stopped, but fluidization is continued, optionally with heat, until the water content is reduced to the desired level, generally less than 1%. The material is then discharged, screened to the desired size range, generally 14-100 mesh - (1410-149 microns), and packaged for use.

Example 28

50

High Strength Concentrate

N-[(4-methoxy-6-methylpyrimidin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 99%

silica aerogel 0.5%

synthetic amorphous silica 0.5%

The ingredients are blended and ground in a hammer-mill to produce a material essentially all passing a U.S.S. No. 50 screen (0.3 mm opening). The concentrate may be formulated further if necessary.

Example 29

Wettable Powder

N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 90%

dioctyl sodium sulfosuccinate 0.1%

synthetic fine silica 9.9%

The ingredients are blended and ground in a hammer-mill to produce particles essentially all below 100 microns. The material is sifted through a U.S.S. No. 50 screen and then packaged.

Example 30

Wettable Powder

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 40%

sodium ligninsulfonate 20%

montmorillonite clay 40%

The ingredients are thoroughly blended, coarsely hammer-milled and then air-milled to produce particles essentially all below 10 microns in size. The material is reblended and then packaged.

Example 31

Oil Suspension

N-[(4,6-dimethoxy-1,3,5-triazln-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C] pyrazole-5-sulfonamide 35%

blend of polyalcohol carboxylic 6%

esters and oil soluble petroleum

sulfonates

xylene 59%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

Example 32

20

Dust

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 10%

attapulgite 10%

Pyrophyllite 80%

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce particles substantially all below 200 microns. The ground concentrate is then blended with powdered pyrophyllite until homogeneous.

Example 33

Emulsifiable Concentrate

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)-aminocarbonyl]-1,4-dihydro-3-methyl-4-oxo-1-phenyl-indeno [1,2-C]pyrazole-5-sulfonamide 20%

chlorobenzene 74%

sorbitan monostearate and polyoxyethylene condensates thereof 6%

The ingredients are combined and stirred to produce a solution which can be emulsified in water for application.

Utility

Test results indicate that the compounds of the present invention are highly active preemergent or postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum preand or post-emergence weed control in areas where complete control of all vegetation is desired, such as around fuel storage tanks, ammunition depots, industrial storage areas, parking lots, drive-in theaters, around billboards, highway and railroad structures. Some of the compounds have utility for selective weed control in crops such as rice, soybeans and wheat. Alternatively, the subject compounds are useful to modify plant growth.

The rates of application for the compounds of the invention are determined by a number of factors, including their use as plant growth modifiers or as herbicides, the crop species involved, the types of weeds to be controlled, weather and climate, formulations selected, mode of application, amount of foliage present, etc. In general terms, the subject compounds should be applied at levels of around 0.05 to 20 kg/ha, the lower rates being suggested for use on lighter soils and/or those having a low organic matter content, for selective weed control or for situations where only short-term persistence is required.

The compounds of the invention may be used in combination with any other commercial herbicide; examples of which are those of the triazine, triazole, uracil, urea, amide, diphenylether, carbamate and bipyridylium types.

The herbicidal properties of the subject compounds were discovered in a number of greenhouse tests. The test procedures and results follow.

TEST A

Seeds of crabgrass (<u>Digitaria</u> spp.), barnyardgrass (<u>Echinochloa crusqalli</u>), wild oats (<u>Avena fatua</u>), cheatgrass (<u>Bromus secalinus</u>), velvetleaf -(<u>Abutilon theophrasti</u>), morningglory (<u>Ipomoea</u>

spp.), cocklebur (Xanthium pennsylvanicum), sorghum, com, soybean, sugarbeet, cotton, rice, wheat, and purple netsedge (Cyperus rotundus) tubers were planted and treated preemergence with the test chemicals dissolved in a nonphytotoxic solvent. In some tests, velvetleaf and cheatgrass were not included. At the same time, these crop and weed species were treated with a soil/foliage application. At the time of treatment, the plants ranged in height from 2 to 18 cm. Treated plants and controls were maintained in a greenhouse for sixteen days, after which all species were compared to controls and visually rated for response to treatment. The ratings, summarized in Table A, are based on a numerical scale extending from 0 = no injury, to 10 = complete kill. The accompanying descriptive symbols have the following meanings:

co C = chlorosis/necrosis

B = bum

D = defoliation

E = emergence inhibition

G = growth retardation

H = formative effect

U = unusual pigmentation

X = axillary stimulation

S = albinism

6Y = abscised buds or flowers.

45

35

40

50

COMPOUNDS

Compound	R ₆	<u> </u>	<u> </u>	<u>Z</u>
1	С ₆ Н ₅ .	OCH ₃	OCH ₃	N
2	C ₆ H ₅	och ₃	CH ₃	CH
3	CH ₃	CH ₃	OCH ₃	CH
4	4-OCH ₃ -C ₆ H ₄	CH ₃	OCH ₃	CH
5	CH ₃	OCH ₃	CH ₃	N
6	CH ₃	осн ₃	OCH ₃	CH
7	CH ₃	och3	OCH ₃	N
8	CH ₃	Cl	OCH ₃	CH
9	С ₆ Н ₅	CH ₃	CH ₃	N
10	C ₆ H ₅	OCH ₃	OCH ₃	CH
11	С ₆ Н ₅	OCH3	Cl	CH
12	C ₆ H ₅	OCH ₃	CH ₃	N

COMPOUNDS (Continued)

 $\begin{array}{cccc} \underline{\text{Compound}} & \underline{\text{X}} & \underline{\text{Y}} & \underline{\text{Z}} \\ & 13 & \underline{\text{OCH}}_3 & \underline{\text{CH}}_3 & \underline{\text{CH}} \end{array}$

 Compound
 X
 Y
 Z

 14
 OCH₃
 OCH₃
 CH

 15
 OCH₃
 OCH₃
 N

50

COMPOUNDS (Continued)

0 203 679

Compound	R	<u> X</u>	<u> </u>	<u>_Z</u>
16	CH2CH2CH3	OCH ₃	OCH ₃	СН
17	CH2CH2CH3	CH ₃	OCH ₃	CH
18	CH ₃	och ₃	OCH ₃	CH
19	CH ₃	CH ₃	OCH ₃	CH
20	3-F-C ₆ H ₄	OCH ₃	OCH ₃	CH
21	3-F-C ₆ H ₄	CH ₃	OCH ₃	CH

	Compound 1	Compound 2
Rate (kg/ha)	0.4	0.4
POSTEMERGENCE		
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum	5C, 9H 10C 4C, 9H 2C, 9G 2C, 5G 3C, 9H 8G 0 3C, 9G 9C 2G 9C 5C, 9H	1C. 4G 5C, 9H 4C. 8G 0 3G 3C. 8H 3C. 7G 0 0 3C. 9H 0 6G 3C. 9H
Sugar Beets Cotton	5H 3C, 8H	4C, 9H 4C, 9H
PREEMERGENCE		
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum	2C, 7H 9H 7H 0 0 3C, 9H 5C, 9H 3C, 8G 0 5C, 9H 5C, 9H	2H 7H 5G 0 0 5C. 9H 2C. 8G 2C. 6G 8G 8H 0 2C. 7G
Sugar Beets Cotton	6G 0	3C, 8H O

	Compound 3	Compound 4
Rate (kg/ha)	0.4	0.4
POSTEMERGENCE		
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	1C, 5G 5C, 9H 5C, 9G 0 2C, 5G 3C, 9H 2C, 5G 0 3C, 8G 5C, 9H 2C, 4H 5C, 9G 5C, 9H 9C 2C, 9G	4G 2C, 5H 0 0 0 2C, 6H 0 0 0 1H 0 0 3C, 6G 5G
PREEMERGENCE		
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass	2C. 3H 9H 8H 0	3C, 5G - 3G 0
Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	2C, 5H 3C, 8G 0 3C, 9H 3C, 9G 0 5C, 9H 7C, 9H 5C, 9G 3C, 4H	3C, 9H 7G 0 5G 4G 2C, 5G 4C, 9G 8H
	,	₩

•	Compound 5	Compound 6
Rate (kg/ha)	0.4	0.4
POSTEMERGENCE		
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	0 8G, 5H 4G 0 0 8G, 3H 0 0 5G, 3H 0 5G, 3C 7G, 3H 3C 6G, 3H	5G 5C, 9H 5C, 9H 5G 0 8H 6G 0 3G 9H 3C, 7G 4C, 9G 2C, 6H 5H 8H
PREEMERGENCE	00, 311	
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	0 5G 0 0 0 5G 0 7G 3C 0 7G 5G 9C	6G 8G 8G 4G 5G 9H 4C, 9G 2C, 6G 8G 5G 0 8G 8G 8G 8G

	Compound 7	Compound 8
Rate (kg/ha)	0.4	0.4
POSTEMERGENCE		
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton PREEMERGENCE	3G 5G 3C, 5H 0 3G 0 0 0 2U, 5H 0 8G 1C, 4G 2H 5H	0 5C, 9H 5G 0 3G 2H 0 0 3H 0 3G 5G 2H 3G
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	0 5H 4G 0 3G 0 6G 0 8G 3C, 3H 0 9H 4C, 9G 5H	6G 8H 4G 0 5G 5G 0 0 2C 2C, 5G 3C, 9H 8H 9G

	Compoun	<u>d 9</u>	Compound	<u>a 10</u>
Rate (kg/ha)	0.4	0.05	0.4	0.05
POSTEMERGENCE				
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn	3C, 7G 5C, 9G 2C, 6G 0 2G 3C, 9H 2C, 8G 0 7G 3C, 8H	2C, 4H 4C, 9G 3G 0 0 3C, 8H 0 0	2C. 4G 3C. 9H 3C. 8G 0 2G 2C. 8H 2C. 8G 0 7G 3C. 9G	1C, 1H 3C, 8H 2C, 5G 0 0 2C, 7H 2C, 7G 0 2G 2C, 8H
Soybean Rice Sorghum Sugar Beets Cotton PREEMERGENCE	2G 5C, 9G 4C, 9H 4C, 9G 2C, 5H	O 2C, 6G 3C, 7H 3C, 8H 2G	2G 5C, 9G 4C, 9H 3C, 8H 3C, 8G	0 7G 2C, 9H 2C, 7H
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice	0 8H 0 0 0 2H 0 0 8G 2C, 5G 0	0 0 0 0 0 0 0 0	0 4G 1H 0 0 3C, 8H 8G 3G 8G 8H 0	0 - 0 0 0 3C, 3H 2G 0 0 0
Sorghum Sugar Beets Cotton	4G 8G 0	0 0	3C. 9G 3G 2G	2C, 6G 0

	Compou	nd 11	Compoun	d 12
Rate (kg/ha)	0.4	0.05	0.4	0.05
POSTEMERGENCE				
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum	1H 5C, 9G 3G 0 0 3C, 9H 0 0 2C, 6H 0 4C, 8H 1C, 4G	0 3C, 9H 2G 0 0 2C, 5H 0 0 0 2C, 6G 0 7G	9C 10C 5C, 9G 9C 3C, 6G 9C 4C, 9G 3G 3C, 9G 9C 2C, 7G 5C, 9G	4C, 9H 9C 3C, 9G 2C, 9G 2G 4C, 9H 4C, 9G 0 9G 9C 2G 5C, 9G 4C, 9H
Sugar Beets Cotton	3C, 6H 1C, 3G	3H 3G	10C 4C, 9H	9C. 4C. 9H
PREEMERGENCE				
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass	0 2C, 3H 0 0	0 - 0 0	9G 8H 2C, 9G 0 2C, 5G	8G 7H 4G 0 2G
Barnyardgrass Cheatgrass Wild Oats Wheat	3C, 7H 5G 0	2C, 2H 0 0	4C, 9H 5C, 9G 2C, 5G 4C, 9H	3C, 6G 6G 1C 4C, 9H
Corn Soybean Rice Sorghum Sugar Beets Cotton	6G O 6G 2C, 8H 6G O	4G 0 2G 0 2H	3C, 5G 2H 4C, 9H 5C, 9H 5C, 9G 7G	3C, 7G 0 2C, 7G 3C, 9H 5G

-	Compound 13
Rate (kg/ha)	0.4
POSTEMERGENCE	
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	O 5G,3C 6G O O 6G,3H O O 5G.3C O O 4G.3C
PREEMERGENCE	,
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Barnyardgrass Cheatgrass Wild Oats Wheat Corn Soybean Rice Sorghum Sugar Beets Cotton	
COLLOII	

	Compo	<u>und 14</u>	Compou	nd 15
Rate kg/ha	0.05	0.01	0.05	0.01
POSTEMERGENCE				
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Giant Foxtail Barnyardgrass Cheatgrass Wild Oats Wheat Corn Barley Soybean Rice Sorghum Sugar beet	9C 7H 10C 2C,8G 7G 9C 5C,9H 7G 2G 6G 5C,9G 2C,6G 4C,9G 5C,9G	2C.7G 3H 9G 9G 0 8G 7H 5G 0 4C.9G 3C.8H 3C.9G 3C.8H	4C.8G 9H 10C 9G 4G 3C.9G 10C 8G 3C.7G 0 3C.9H 4G 4C.9G 5C.9G 4C.9H 2C.9G	3C.8H 4G.9G 3C.8G 0 2C.4G 4H 2G 1C 0 3C.9H 0 4C.9H 4C.9G 2C.9H 7H
Cotton PREEMERGENCE	4C,9G	8G	90	40,99
Morningglory Cocklebur Velvetleaf Nutsedge Crabgrass Giant Foxtail Barnyardgrass Cheatgrass Wild Oats Wheat Corn Barley Soybean Rice Sorghum Sugar beet Cotton	9G 9H 9G 10E 4G 2C,9H 4C,9H 9H 2C,6G 7G 4C,9G 9G 6H 10E 4C,9H 9G	5G 5H 7G 6G 2G 3C,6G 9H 9H 2C 8G 3C,9G 3H 3C,9H 4C,9H 8G 7G	9H - 3C,8G 10E 3G 3H 9H 8H 6G 2G 8H 8G 2C,5H 9H 3C,9H 8G 9G	8G 8H 6G 0 0 0 5G 0 2C.7G 7G 5H 7H 3C.8H 8G 9G

Table A (continued)

Compo	ound 16	Compo	ound 17
0.4	0.05	0.4	0.05
0 3C,8H 3C,7G 0 0 2G 0 0 0 0 4G 0 1C 0	0 4C,9G 2C,4G 0 0 0 0 0 0 0 0	2C 4C,9G 3C,8H 0 0 0 4G 0 4G 2C,3G 0	1C 4C.9H 2C.5G 3G 0 3H 5G 0 3G 0 2C.3G
3C,8G	3C,4G 3C,4G		3C,5G 3C,5G
0 -4G 0 0 0 0 0 0 0 0 0 4G 9G 0	O 3H O O O O O O O O O O O O O O O O O O	3C 7G 2C.5G 0 0 2G 2C 0 0 0 1C 2G 5G 9G	0 2C 0 0 0 0 0 0 0 0 0 0 8G 2G
	0.4 0 3C.8H 3C.7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O	0.4 0.05 0.4 0 0 2C 3C.8H 4C.9G 4C.9G 3C.7G 2C.4G 3C.8H 0 0 0 0 0 0 0 2G 0 0 0 0 0 4G 1C 1C 2C.3G 0 0 0 4G 4G 3G 2C.2H 3C.4G 3C.3H 3C.8G 3C.4G 3C.8H 0 0 0 2C.5G 0

Table A (continued)

POSTEMERGENCE Morningglory 2G 2C.2H 1C 1C Cocklebur 3C.9G 4C.9G 2C.3G 2C.7 Velvetleaf 3C.7G 2C.5G 1C 2C Nutsedge 3G 0 0 0 Crabgrass 0 0 0 0 Giant Foxtail - - - - Barnyardgrass 0 0 0 0 Cheatgrass 0 2C.6G 0 0 Wild Oats 0 0 0 0 Wheat 0 0 0 0 Corn 2C.5G 3C.8H 0 0 Barley - - - - Soybean 1C 2C.2H 0 0 Rice 2C.5G 3C.8G 0 0 Sugar beet 3C.7G 4C.9H 0 0 Sugar beet 3C.8H 4C.9H <		Compo	ound 18	Compor	and 19
Morningglory 2G 2C,2H 1C 1C Cocklebur 3C,9G 4C,9G 2C,3G 2C,7 Velvetleaf 3C,7G 2C,5G 1C 2C Nutsedge 3G 0 0 0 Crabgrass 0 0 0 0 Giant Foxtail - - - - Barnyardgrass 0 0 0 0 Cheatgrass 0 2C,6G 0 0 Wild Oats 0 0 0 0 Wheat 0 0 0 0 Corn 2C,5G 3C,8H 0 0 Barley - - - - Soybean 1C 2C,2H 0 0 Rice 2C,5G 3C,8G 0 0 Sorghum 2C,3G 4C,9H 0 0 Sugar beet 3C,8H 4C,9H 2C,5G 0 P	Rate kg/ha	0.4	0.05	0.4	0.05
Cocklebur 3C,9G 4C,9G 2C,3G 2C,7G Velvetleaf 3C,7G 2C,5G 1C 2C Nutsedge 3G 0 0 0 Crabgrass 0 0 0 0 Giant Foxtail - - - - Barnyardgrass 0 0 0 0 Cheatgrass 0 2C,6G 0 0 Wild Oats 0 0 0 0 Wheat 0 0 0 0 Corn 2C,5G 3C,8H 0 0 Barley - - - - Soybean 1C 2C,2H 0 0 Rice 2C,5G 3C,8G 0 0 Sorghum 2C,3G 4C,9H 0 0 Sugar beet 3C,7G 4C,9G 2H 3C,9 Cotton 3C,8H 4C,9H 2C,5G 0 PREEMERGENCE Morningglory 5G 0 6G 0 </td <td>POSTEMERGENCE</td> <td></td> <td></td> <td></td> <td></td>	POSTEMERGENCE				
Morningglory 5G 0 6G 0 Cocklebur 8G 7G - 0	Cocklebur Velvetleaf Nutsedge Crabgrass Giant Foxtail Barnyardgrass Cheatgrass Wild Oats Wheat Corn Barley Soybean Rice Sorghum Sugar beet	3C,9G 3C,7G 3G 0 - 0 0 0 2C,5G - 1C 2C,5G 2C,3G 3C,7G	4C.9G 2C.5G 0 0 2C.6G 0 3C.8H - 2C.2H 3C.8G 4C.9H 4C.9G	2C,3G 1C 0 0 - 0 0 - 0 0 0 2H	2C,4G 2C 0 0 0 0 0 0 0 0 0 3C,5H
Cocklebur 8G 7G - 0	PREEMERGENCE				
Nutsedge 2C,7G 0 0 0 Crabgrass 2G 0 2C,5G 0 Giant Foxtail - - - - Barnyardgrass 2H 0 0 0 Cheatgrass 8G 0 2C,7G 0 Wild Oats 2C,5G 0 0 0	Cocklebur Velvetleaf Nutsedge Crabgrass Giant Foxtail Barnyardgrass Cheatgrass	8G 5G 2C,7G 2G - 2H 8G	7G 3G 0 0 - 0	2C,2H 0 2C,5G - 0 2C,7G	0 0 0 - 0
Wheat 8G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wheat Corn Barley Soybean Rice Sorghum Sugar beet	8G 2C,7G - 3G 3C,9G 3C,9G 4C,8G	0 0 - 0 0 0	0 2C,3G - 0 3C,7G 2C,4G 5C,8G	0 0 0 0 0

Table A (continued)

	Compound 20	Compound 21
Rate kg/ha	0.05	0.05
POSTEMERGENCE		
Morningglory	4C.8H	4C,9H
Cocklebur	10C	9C
Velvetleaf	4C,8H	4C.8H
Nutsedge	3C.7G	3C.7G
Crabgrass	0	0
Giant Foxtail	2G	3C,7G
Barnyardgrass	. 0	3C,7H
Cheatgrass Wild Oats	7G	3C,9G
Wheat	3G 5G	2C,5G 3G
Corn	1C,4G	3C,9H
Barley	3C,7G	3C,9G
Soybean	0	2G
Rice	9C	4C,9G
Sorghum	4C.9H	4C,9H
Sugar beet	9C	5C,9H
Cotton	4C,9G	9C
PREEMERGENCE		
Morningglory	2C,4G	2C,3G
Cocklebur	8H	3C,7H
Velvetleaf	8G	3C,6G
Nutsedge	0	0
Crabgrass	0	1C
Giant Foxtail	2G	2G
Barnyardgrass	2 G	0
Cheatgrass	2C,8G	3C,8G
Wild Oats	0	3C,5G
Wheat	3G	7G
Corn	4G	2C,4G 3G
Barley Soybean	4G	0
Rice	2C,2H 6G	3C,8G
Sorghum	2C.7G	3C,8H
Sugar beet	20,7G 8G	3C,8G
Cotton	2G	3G
	•	

Claims

50

1. A compound of the formula:

w Qso₂nhcna k

5

wherein

W is O or S:

Q is

10

30

G is CH_2 , CH_2CH_2 , O, S, NH, NCH₃, or CH = CH;

Ω<u>3</u>

G, is CH2, CH2CH2 or CH = CH;

J is $\text{CH}_2,\ \text{C=O},\ \text{S(O)}_m,\ \text{O},\ \text{NH},\ \text{NCH}_3,\ \text{CHOH},\ \text{CHOCH}_3,$

CH(CH₃) or C(CH₃)OH;

 J_1 is CH_2 , C=0 or SO_2 ;

n and n, are independently 0 or 1;

m is 0, 1 or 2;

E is a bridge of 3 or 4 atoms containing 0 to 2 heteroatoms selected from the group consisting of oxygen, sulfur or nitrogen, wherein 1 atom of sulfur may take the form of SO or SO₂, said bridge also containing 1 to 4 atoms of carbon wherein 1 atom of carbon may take the form of C=O, said bridge together with two attachment sites forming a non-aromatic heterocyclic or carbocyclic ring optionally substituted by 1 to 3 substituent groups selected from the group L, or E is a bridge of 3 or 4 atoms containing 0-1 heteroatoms of oxygen or sulfur and

0-3 heteroatoms of nigrogen, said bridge also containing 0-4 atoms of carbon, said bridge together with two attachment sites forming an aromatic heterocyclic or carbocyclic ring optionally substituted by 1 to 3 substituents selected from the group L, with the proviso that when E contains two oxygen atoms or two sulfur atoms said atoms must be separated by at least one atom of carbon and that oxygen and sulfur are only linked to each other if the sulfur is in the form of SO or SO₂;

L is C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₈ alkoxyalkoxy, halogen, N(CH₃)₂, cyano, nitro, phenyl or phenyl substituted with C₁-C₃ alkyl, C₁-C₃ haloalkyl, halogen, NO₂, C₁-C₃ alkoxy, C₁-C₃ alkylthio, C₁-C₃ alkylsulfinyl or C₁-C₃ alkylsulfonyl;

R is H or CH3;

R₁ is H, C₁-C₂ alkyl, C₁-C₂ haloalkyl, halogen, nitro, C₁-C₂ alkoxy, $SO_2NR^1R^{11}$, C₁-C₂ alkylthio, C₁-C₃ alkylsulfonyl, CO_2R^{111} or NR_aR_b :

R^I is H, C₁-C₄ alkyl, C₂-C₃ cyanoalkyl, methoxy or ethoxy;

RII is H, C1-C4 alkyl or C2-C4 alkenyl; or

 R^{I} and R^{II} may be taken together as -(CH₂)₂-, -(CH₂)₅-or -CH₂CH₂OCH₂CH₂-;

R^{III} is C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, C_2 - C_4 haloalkyl, C_1 - C_3 cyanoalkyl, C_5 - C_6 cycloalkylalkyl or C_2 - C_4 alkoxyalkyl;

5 R_a and R_b are independently H or C₁-C₂ alkyl;

A is
$$X_1$$
 X_1 X_1 X_2 X_2 X_3 X_4 X_4 X_2 X_3 X_4 X_5 X_4 X_4 X_4 X_5 X_5 X_4 X_5 X_5 X_5 X_4 X_4 X_5 X_5

X is H, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio, C_1 - C_4 alkylthio, halogen, C_2 - C_5 alkoxyalkyl, C_2 - C_5 alkoxyalkoxy, amino, C_1 - C_3 alkylamino or di) C_1 - C_2 xyalkyl)amino;

Y is H, C,-C, alkyl, C,-C, alkoxy, C,-C, alkylhaloal-

koxy, haloalkyithio, C_1 - C_4 alkyithio, C_2 - C_5 alkoxyalkyl, C_2 - C_5 alkoxyalkoxy, amino, C_1 - C_3 alkylamino, di(C_1 - C_3 alkyl)amino, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_2 - C_5 alkylthioalkyl, C_1 - C_4 haloalkyl, C_2 - C_5 cycloalkyl, C_2 - C_4

30

p is 2 or 3;

L, and L₂ are independently O or S;

 R_2 and R_3 are independently $C_1\text{-}C_2$ alkyl;

R4 is H or CH3;

Z is CH or N;

Y, is O or CH2;

50 X, is CH₃, OCH₃, OC₂H₅ or OCF₂H;

Y2 is H or CH3;

X₂ is CH₃, OCH₃ or SCH₃;

Y₃ is CH₃, CH₂CH₃ or CH₂CF₃;

10

15

X₃ is CH₃ or OCH₃;

X4 is CH3, OCH3, OC2H5, CH2OCH3 or CI; and

Y4 is CH3, OCH3, OC2H5 or CI;

and their agriculturally suitable salts;

provided that

a) when X is Cl, F, Br or I, then Z is CH and Y is OCH₃, OC₂H₅, N(OCH₃)CH₃, NHCH₃, N(CH₃)₂ or OCF₃H:

b) when X or Y is OCF₂H, then Z is CH;

c) n and n, cannot simultaneously be O;

d) when G or G_1 is CH_2CH_2 or CH = CH, then n is 0:

e) when Q is Q, and n is 1, then E must contain at least one heteroatom selected from oxygen, sulfur or nitrogen; and

f) when W is S, then A is A-1, R is H, and Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CF₃, SCH₃, OCH₂CH = CH₂, OCH₂C \rightleftharpoons CH, OCH₂CH₂OCH₃, CH-(OCH₃)₂,

25

30

2. Compounds of Claim 1 where W is O; G and G, are CH_2 , CH_2CH_2 or CH=CH; J is CO, SO₂ or CH_2 ; R is H; X is CH_3 , OCH_3 OCH_2CH_3 , CI, F, Br, I, OCF_2H , CH_2F , OCH_2CH_2F , OCH_2CH_2F ,

$$CH_2SCH_3$$
, CR_4 , $-C_{R_4}^{L_1R_2}$, $-C_{R_4}^{L_1R_2}$, $-C_{R_4}^{L_1CH_2}$,

or C≡CCH₃;

3. Compounds of Claim 2 where R, is H, CH₃, halogen, OCH₃, SCH₃ or SO₂CH₃; A is A-1; and L is halogen, CH₃, OCH₃ or phenyl.

4. Compounds of Claim 3 where Q is

10

5

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}$$

30

$$R_{1} = \begin{pmatrix} G & h_{1} \\ J_{1} & h_{1} \end{pmatrix}$$

$$R_{1} \xrightarrow{(G_{1})_{n_{1}N}} O$$

$$Q_{3}-2$$

R₅ is H or CH₃;

R₅ is H, CH₃ or phenyl;

R₇ is H or CH₃;

R, is H or CH3;

R, is H, CH3 or phenyl;

R₁₀ is H or CH₃;

R₁₁ is SCH₃, OCH₃, N(CH₃, N(CH₃)₂ or CH₃;

R₁₂ is H or CH₃;

R₁₃ is H, CH₃, OCH₃ or SCH₃; and

R₁₄ is H, Cl, Br, F, CH₃, OCH₂ or NO₂.

- 5. Compounds of Claim 4 where X is CH₃, OCH₃, OCH₂CH₃, CI, OCF₂H or OCH₂CF₃; and Y is CH₃, OCH₃, CH₂CH₃, CH₂OCH₃, NHCH₃ or CH(OCH₃)₂.
- 6. Compounds of Claim 5 where n is 0.
- 7. Compounds of Claim 5 where n, is 0.
- 8. Compounds of Claim 6 where Q is Q_1 -4, Q_1 -6, Q_1 -17, Q_1 -18, Q_1 -19, Q_1 -21, Q_1 -22, Q_1 -23, Q_2 -1 or Q_3 -1.
- 9. Compounds of Claim 7 where Q is Q_1 -2, Q_1 -3 or Q_1 -14.
- -10. The compound of Claim 1 which is N-[(4,6-

$$\begin{array}{c|c} R_{1} & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & &$$

dimethoxypyrimidin-2-yl)aminocarbonyl]-1-phenyl-1H-[1]benzothieno[3,2-C]pyrazole-5-sulfonamide, 4.4-dioxide.

- 11. The compound of Claim 1 which is 4,5-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-naphth[2,1-D]isoxazole-9-sulfonamide.
- The compound of Claim 1 which is 4,5-dihydro-N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9sulfonamide.
- 13. The compound of Claim 1 which is 4,5-dihydro-N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9-sulfonamide.
 - 14. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of any of claims 1 to 13 and at least one of the following: surfactant, solid of liquid diluent.
 - 15. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of any of claims 1 to 13.
 - 16. A method for regulating the growth of plants which comprises applying to the locus of such plants an effective but substantially non-phytotoxic amount of a plant growth regulant selected from compounds of any of claims 1 to 13.
- 17. A process for the preparation of a compound of claim 1 which comprises

(a) reacting a sulfonyl isocyanate or isothiocyanate of formula QSO₂NCW with an appropriate heterocyclic amine of formula

425

10

(b) reacting a sulfonamide of formula QSO_2NH_2 with a carbamate of thiocarbamate of formula

15

(c) reacting a sulfonyl carbamate or thiocarbamate of formula

with an appropriate heterocyclic amine of formula

wherein R, A and W are as defined in claim 1 45 and R' is methyl or phenyl.

18. Compounds of the formulae

wherein Q and W are as defined in claim 1.

For the contracting state: AT

1. A process for the preparation of a compound of the formula:

wherein

W is O or S;

Q is

$$\begin{array}{c|c}
R_{1} & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
\hline$$

$$\begin{array}{c|c} R_{1} & & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline$$

G is CH₂, CH₂CH₂, O, S, NH, NCH₃ or CH = CH;

G, is CH2, CH2CH2 or CH = CH;

J is CH_2 , C=0, $S(O)_m$, O, NH, NCH_3 , CHOH, $CHOCH_2$,

CH(CH₃) or C(CH₃)OH;

J, is CH_2 , C = O or SO_2 ;

n and n, are independently 0 or 1;

m is 0, 1 or 2;

E is a bridge of 3 or 4 atoms containing 0 to 2 heteroatoms selected from the group consisting of oxygen, sulfur or nitrogen, wherein 1 atom of sulfur may take the form of SO or SO₂, said bridge also containing 1 to 4 atoms of carbon wherein 1 atom of carbon may take the form of C=O, said bridge together with two attachment sites forming a non-aromatic heterocyclic or carbocyclic ring optionally substituted by 1 to 3 substituent groups selected from the group L, or E is a bridge of 3 or 4 atoms containing 0-1 heteroatoms of oxygen or sulfur and

0-3 heteroatoms of nigrogen, said bridge also containing 0-4 atoms of carbon, said bridge together with two attachment sites forming an aromatic heterocyclic or carbocyclic ring optionally substituted by 1 to 3 substituents selected from the group L, with the proviso that when E contains two oxygen atoms or two sulfur atoms said atoms must be separated by at least one atom of carbon and that oxygen and sulfur are only linked to each other if the sulfur is in the form of SO or SO₂;

L is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_8 alkoxyalkoxy, halogen, $N(CH_2)_2$, cyano, nitro, phenyl or phenyl substituted with C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, halogen, NO_2 , C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl or C_1 - C_3 alkylsulfonyl;

R is H or CH3;

R, is H, C,-C₃ alkyl, C₁-C₃ haloalkyl, halogen, nitro, C₁-C₃ alkoxy, SO₂NR^IR^{II}, C₁-C₃ alkylthio, C₁-C₃ alkylsulfonyl, CO₂R^{III} or NR $_a$ R_b;

5 R^I is H, C₁-C₄ alkyl, C₂-C₃ cyanoalkyl, methoxy or ethoxy;

RII is H, C1-C4 alkyl or C2-C4 alkenyl; or

Pl and R^{II} may be taken together as -(CH₂)₂-, -(CH₂)₄-, -(CH₂)₅-or -CH₂CH₂OCH₂CH₂-;

 R^{III} is C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, C_2 - C_4 haloalkyl, C_1 - C_3 cyanoalkyl, C_5 - C_6 cycloalkyl, C_4 - C_7 cycloalkylalkyl or C_2 - C_4 alkoxyalkyl;

Ra and Rb are independently H or C1-C2 alkyl;

A is
$$X_1$$
, X_1 , X_1 , X_2 , X_3 , X_4 , X_4 , X_2 , X_3 , X_4 , $X_$

15

X is H, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio, C_1 - C_4 alkylthio, halogen, C_2 - C_5 alkoxyalkyl, C_2 - C_5 alkoxyalkoxy, amino, C_1 - C_3 alkylamino or di(C_1 - C_3 alkyl)amino;

Y is H, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy,

haloalkylthio, C₁-C₄ alkylthio, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino, C₂-C₄ alkenyloxy, C₃-C₅ alkylthioalkyl, C₁-C₄ haloalkyl, C₃-C₅ cycloalkyl, C₂-C₄

l

55

alkynyl,
$$N(OCH_3)CH_3$$
, $\ddot{C}R_4$, C
 \ddot{R}_4
 L_2
 R_3
or $-CR_4$
:

15

20

25

30

p is 2 or 3;

L, and L2 are independently O or S;

R₂ and R₃ are independently C₁-C₂ alkyl;

R4 is H or CH3;

Z is CH or N;

Y, is O or CH2;

 X_1 is CH_3 , OCH_3 , OC_2H_5 or OCF_2H ;

Y₂ is H or CH₃;

X₂ is CH₃, OCH₃ or SCH₃;

Y3 is CH3, CH2CH3 or CH2CF3;

X₃ is CH₃ or OCH₃;

X4 is CH3, OCH3, OC2H5, CH2OCH3 or Cl; and

Y₄ is CH₃, OCH₃, OC₂H₅ or Cl;

and their agriculturally suitable salts;

provided that

- a) when X is Cl, F, Br or I, then Z is CH and Y is OCH₃, OC₂H₅, N(OCH₃)CH₃, NHCH₃, N(CH₃)₂ or OCF₂H;
- b) when X or Y is OCF2H, then Z is CH;
- c) n and n, cannot simultaneously be O;
- d) when G or G, is CH_2CH_2 or CH = CH, then n is 0;
- e) when Q is Q, and n is 1, then E must contain at least one heteroatom selected from oxygen, sulfur or nitrogen; and
 - f) when W is S, then A is A-1, R is H, and Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, C₂H₅, CF₃, SCH₃H, OCH₂CH = CH₂, OCH₂C $\stackrel{\text{\tiny max}}{=}$ CH, OCH₂CH₂OCH₃, CH-(OCH₃)₂

or CH

45

35

which comprises

(a) reacting a sulfonyl isocyanate or isothiocyanate of formula QSO₂NCW with an appropriate heterocyclic amine of formula

50 HN - A ; R

b) reacting a sulfonamide of formula QSO₂NH₂ with a carbamate or thiocarbamate of formula

(c) reacting a sulfonyl carbamate or thiocarbamate of formula

15

with an appropriate heterocyclic amine of formula

35

wherein R, A and W are as defined above and R' is methyl or phenyl.

2. A process of Claim 1 where W is O; G and G₁ are CH₂, CH₂CH₂ or CH=CH; J is CO, SO₂ or CH₂; R is H; X is CH₃, OCH₃, OCH₂CH₃, CI, F, Br,

I, OCF₂H, CH₂F, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, CF₂, CH₂Cl or CH₂Br; Y is H, CH₃, OCH₃, OC₂H₅, CH₂OCH₃, NHCH₃, N(OCH₃)CH₃, N-(CH₃)₂, CH₂CH₃, CF₃, SCH₃, OCH₂CH=CH₂, OCH₂C=CH, CH₂OCH₂CH₃, OCH₂CH₂OCH₃,

3. A process of Claim 2 where R_1 is H, CH_3 , halogen, OCH_3 , SCH_3 or SO_2CH_3 ; A is A-1; and L is halogen, CH_3 , OCH_3 or phenyl.

4. A process of Claim 3 where Q is

$$R_{1} \xrightarrow{(G)_{n}} R_{5}$$

$$R_{1} \longrightarrow \begin{pmatrix} G \\ D \\ D \\ D \end{pmatrix}_{n} \longrightarrow \begin{pmatrix} R_{6} \\ N \\ R_{7} \end{pmatrix}$$

0 203 679

$$R_{1} = \begin{pmatrix} G \\ D_{1} \end{pmatrix}_{n} \begin{pmatrix}$$

$$\frac{Q_2-2}{2}$$

$$R_{1} = \begin{pmatrix} (G_{1})_{n_{1}} \\ (J)_{n} \end{pmatrix}$$

$$R_{1} = \begin{pmatrix} G \\ h_{1} \\ h_{2} \end{pmatrix}$$

$$\frac{Q_2-3}{2}$$

$$R_{1} = \begin{pmatrix} G_{1} & \widetilde{n}_{1} \\ \widetilde{J} & \widetilde{n}_{1} \end{pmatrix}$$

R₅ is H or CH₃;

R₆ is H, CH₂ or phenyl;

R7 is H or CH2;

R_s is H or CH₃;

R, is H, CH, or phenyl

R₁₀ is H or CH₂;

R₁₁ is SCH₂, OCH₃, OCH₃, N(CH₃)₂ or CH₂;

R₁₂ is H or CH₃;

R₁₂ is H, CH₃, OCH₃ or SCH₂; and

R₁₄ is H, Cl, Br, F, CH₃, OCH₃ or NO₂.

- 5. A process of Claim 4 where X is CH₃, OCH₂, OCH₂CH₃, CI, OCF₂H or OCH₂CF₃; and Y is CH₃, OCH₃, CH₂CCH₃, NHCH₃ or CH(OCH₃)₂.
- 6. A process of Claim 5 where n is O.
- 7. A process of Claim 5 where n, is O.
- 8. A process of Claim 6 where Q is Q₁-4, Q₁-6, Q₁-17, Q₁-18, Q₁-19, Q₁-21, Q₁-22, Q₁-23, Q₂-1 or Q₃-1.
- 9. A process of Claim 7 where Q is Q₁-2, Q₁-3 or Q₁-14.
- 10. The process of Claim 1 wherein the product is N-[(4,6-dimethoxypyridin-2-yl)aminocarbonyl]-1-

phenyl-1H-[1]benzothieno[3,2-C]pyrazole-5-sulfonamide, 4,4-dioxide.

- 11. The process of Claim 1 wherein the product is 4,5-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)-aminocarbonyl]naphth[2,1-D]isoxazole-9-sulfonamide.
- The process of Claim 1 wherein the product is 4,5-dihydro-N-[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9sulfonamide.
- 13. The process of Claim 1 wherein the product is 4,5-dihydro-N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9sulfonamide.
- 14. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of Formula I as defined in any of claims 1 to 13 and at least one of the following: surfactant, solid or liquid diluent.
- 15. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of Formula I as defined in any of claims 1 to 13.
 - 16. A method for regulating the growth of plants which comprises applying to the locus of such plants an effective but substantially non-phytotoxic amount of a plant growth regulant selected from compounds of Formula I as defined in any of claims 1 to 13.

40

30

45

50

Rs is H or CH3;

R_s is H, CH₂ or phenyl;

R, is H or CH3;

R₂ is H or CH₃;

R, is H, CH, or phenyl

R, is H or CH,

R₁₁ is SCH₃, OCH₃, OCH₃, N(CH₃)₂ or CH₃;

R₁₂ is H or CH₃;

R₁₃ is H, CH₃, OCH₃ or SCH₃; and

R₁₄ is H, Cl, Br, F, CH₃, OCH₃ or NO₂.

- 5. A process of Claim 4 where X is CH₃, OCH₃, OCH₂CH₂CH₃, Cl, OCF₂H or OCH₂CF₃; and Y is CH₃, OCH₃, CH₂CH₄, CH₂OCH₄, NHCH₃ or CH(OCH₄)₃.
- 6. A process of Claim 5 where n is O.
- 7. A process of Claim 5 where n, is O.
- 8. A process of Claim 6 where Q is Q₁-4, Q₁-6, Q₁-17, Q₁-18, Q₁-19, Q₁-21, Q₁-22, Q₁-23, Q₂-1 or Q₃-1.
- 9. A process of Claim 7 where Q is Q_i -2, Q_i -3 or Q_i -14.
- 10. The process of Claim 1 wherein the product is N-[(4,6-dimethoxypyridin-2-yl)aminocarbonyl]-1-

phenyl-1H-[1]benzothieno[3,2-C]pyrazole-5-sulfonamide, 4,4-dioxide.

- The process of Claim 1 wherein the product is 4,5-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9sulfonamide.
- The process of Claim 1 wherein the product is
 4,5-dihydro-N-[(4-methoxy-6-methylpyrimidin-2-yl)-aminocarbonyl]naphth[2,1-D]isoxazole-9-sulfonamide.
- The process of Claim 1 wherein the product is 4,5-dihydro-N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]naphth[2,1-D]isoxazole-9sulfonamide.
 - 14. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of Formula I as defined in any of claims 1 to 13 and at least one of the following: surfactant, solid or liquid diluent.
- 15. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of Formula I as defined in any of claims 1 to 13.
 - 16. A method for regulating the growth of plants which comprises applying to the locus of such plants an effective but substantially non-phytotoxic amount of a plant growth regulant selected from compounds of Formula I as defined in any of claims 1 to 13.

40

30

45

50