

For more information please visit our website www.edureka.co

#

Features	Python for Data Science	Data Science Masters	AIML PGD NIT Warangal
Instructor-led LIVE Session		✓	
24/7 Doubt Clearing Support			
Capstone Project		√	
Cloud Lab			
Valid Certification			
Career Assistance			\checkmark
Alumni Status			
Number of Projects/ Assignments /Case Studies/ Hands-on	15+	50+	120+
Hours of LIVE Class	42 hours	250+ hours	420+ hours
Price	₹21,995	₹ 89,999	₹2,22,450
edureka!			

Courses	Python for Data Science	Data Science Masters	Data Science PGP by IIT Guwahati
Python Basics	\checkmark	\checkmark	\checkmark
Machine Learning	\checkmark	\checkmark	\checkmark
Statistics		\checkmark	\checkmark
Deep Learning		\checkmark	\checkmark
Natural Language Processing			
Sequence Learning			
Reinforcement Learning			\checkmark
Apache Spark and Scala		\checkmark	
Tableau		\checkmark	
Data Science using R		\checkmark	

DATA SCIENCE @edureka!

Family History	High BP		Diabetes
Yes	Yes		Yes
No	No		No
Yes	Yes		No
Yes	Yes		No

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes		Yes	100	Yes
No		No	65	No
Yes		No	75	No
Yes		No	75	No

2 Variables

Compare the Out-of-Bag error for a random forest built using 2 variables vs 3 variables and select the most accurate random forest

3 Variables

Bootstrapped Dataset: 2 Variables

Remember when we built our first tree, we only used 2 variables to make decision at each step?

Presentation - Random Forest

Classification of Out-of-Bag Dataset

Diabetes			
YES	NO		
1	4		

Diabetes			
YES	NO		
4	0		

Diabetes			
YES	NO		
3	1		

Out-of-Bag Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No

Next we do the same for all of the other Outof-Bag samples for all the trees, and finally the accuracy of random forest can be measured by the proportion of Out-of-Bag samples that were correctly classified by the algorithm

Out-of-Bag Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	No	Yes	110	Yes

Incorrectly classified Out-of-Bag samples are

known as 'Out-of-Bag Error'

- Run this out of bag sample through other trees and keep a count the label
- Label with most votes wins and is assigned, RIGHT! In this case,
 Random Forest has correctly labelled the Out-of-Bag sample

Out-of-Bag Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	No	Yes	110	Yes

Run this Out-of-Bag sample data through all the trees that were built without it

Predicted

Diabetes: YES

Predicted
Diabetes: YES

Out-of-Bag Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	No	Yes	110	Yes

Since Out-of-Bag Dataset was not used to create this tree, we can run it through and check if it correctly classifies the sample as "Yes" in Diabetes

Original Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No
Yes	Yes	Yes	100	Yes
Yes	Yes	No	75	No
Yes	No	Yes	110	Yes

Out-of-Bag Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	No	Yes	110	Yes
		†		

This is the entry that did not end up in the bootstrapped dataset and the collection of such entries as a dataset is known as "Out of Bag Dataset"

NOTE: Just in case, the original dataset were larger, we would have more than 1 entry over here

How Good is Your Model: Bootstrapped Dataset

Original Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No
Yes	Yes	Yes	100	Yes
Yes	Yes	No	75	No
Yes	No	Yes	110	Yes

Bootstrapped Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No
Yes	Yes	Yes	100	Yes
Yes	Yes	No	75	No
Yes	Yes	No	75	No

Remember! this entry (almost 1/3rd of the original dataset) was not included in the bootstrapped dataset because of the duplicate entry

Step 3 & 4: Counting the Votes for Predicting

Bootstrapped Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	Yes	No	75	?

Predict if the patient has diabetes or not

Vote Count

Diabetes			
YES	NO		
95	5		

In this case, 'YES' received most of the votes,

patient has diabetes

NOTE: Bootstrapping the data and using the aggregate to make a decision is called **Bagging**

Let's say we created 100 decision tree and this is the overall vote count of the predictions from all the decision tree. Next thing is to find out the option which received most votes

Original Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No
Yes	Yes	Yes	100	Yes
Yes	Yes	No	75	No
Yes	No	Yes	110	Yes

Using a bootstrapped sample and considering only a subset of variables at each step results in a wide variety of trees. This variety makes random forest more effective than individual decision trees

Original Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No
Yes	Yes	Yes	100	Yes
Yes	Yes	No	75	No
Yes	No	Yes	110	Yes

Recursively splitting sample at other nodes

Get back to Step 1 and repeat: Build new bootstrapped dataset and rebuild decision trees considering subset of variables at each step (ideally you have to repeat this step 100's of time)

Now we need to figure out, how to split samples at this node

Bootstrapped Dataset

Family History	Overweight	Weight (kg)	Diabetes
Yes	Yes	100	Yes
No	No	65	No
Yes	No	75	No
Yes	No	75	No

The decision tree is ready using the random subset of variables at each step

Create a decision tree (eg: Root node – High BP) using the bootstrapped dataset.

Use only a random subset of variables/column at each step

Bootstrapped Dataset

High BP	Overweight	Diabetes
Yes	Yes	Yes
No	No	No
Yes	No	No
Yes	No	No

Instead of considering all the 4 variables to figure out how to split the root node. **In this example**, consider only *2 variables* at each step

(*High BP, Overweight*).

Step 1: Create a Bootstrap Dataset contd...

Original Dataset

Bootstrapped Dataset

amily listory	High BP	Overweight	Weight (kg)	Diabetes	Family History	High BP	Overweight	Weight (kg)	
No	No	No	65	No	Yes	Yes	Yes	100	
Yes	Yes	Yes	100	Yes	No	No	No	65	
Yes	Yes	No	75	No	Yes	Yes	No	75	
Yes	No	Yes	110	Yes	Yes	Yes	No	75	

Creating a bootstrapped dataset with randomly selected sample from the original dataset

Note: 3rd and 4th randomly selected sample in the bootstrapped dataset are same

Step 1: Create a Bootstrap Dataset

Bootstrapped Dataset

The bootstrap method is a resampling technique used to estimate statistics on a population by sampling a dataset with replacement. It can be used to estimate summary statistics such as the mean or standard deviation.

The bootstrap dataset (same size as original) is created by randomly selecting samples from the original dataset.

Family History	High BP	Overweight	Weight (kg)	Diabetes
No	No	No	65	No
Yes	Yes	Yes	100	Yes
Yes	Yes	No	75	No
Yes	No	Yes	110	Yes

This is our sample dataset...

NOTE: You can pick the same sample more than once

Building a Random Forest

Step 4:

Make final prediction

Final Prediction is the one with maximum votes

Ensemble Learning: Types - Boosting

Ensemble Learning: Types - Boosting

Boosting is training a bunch of individual models in a **sequential** way. Each individual model learns from mistakes made by the previous model.

Bootstrapped Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	Yes	Yes	110	YES

Vote Count

Diabetes		
YES	NO	
95	5	

Ensemble Learning: Types - Bagging

Bootstrapping the data and using its aggregate to make a decision is known as Bagging. In other words, Bagging is training a bunch of individual models parallelly, and each model is trained by a random subset of the data.

Bootstrapped Dataset

Family History	High BP	Overweight	Weight (kg)	Diabetes
Yes	Yes	Yes	110	YES

Vote Count

Diabetes		
YES	NO	
95	5	

Presentation - Random Forest

What is Ensemble Learning?

Random forest uses Ensemble learning method in which the predictions are based on the **combined results** of various individual models

Fable of blind men and an elephant

Random Forest Analogy

Later on, Chandler asked more of his friends to advise him. Once again, his friends asked him different questions to recommend about the places.

Now after talking to all of his friends he decide to visit the place with most number of votes. the above scenario is a typical example of Random Forest Algorithm.

Trip Suggestion III

Random Forest Analogy

Every friends gave suggestion by asking him few questions

Trip Suggestion I

Trip Suggestion II

Trip Suggestion III

Random Forest Analogy

Chandler is planning for a one-year vacation trip. So in order to decide which places should he travel to, he asks his friends for their advice.

Why Random Forest?

Decision Trees are easy to build and interpret.

Then WHY Random Forest?

Decision Trees have only **one aspect,** therefore are **less accurate** and **inflexible** when it comes to **classifying new samples.**

What is Random Forest?

Random Forest is the most used supervised machine learning algorithm for classification and regression

