131072-word × 8-bit High Speed CMOS Static RAM

The Hitachi HM628128 is a CMOS static RAM organized 128-kword \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.8 μ m Hi-CMOS process technology.

It offers low power standby power dissipation; therefore, it is suitable for battery back-up systems. The device, packaged in a 525-mil SOP (460-mil body SOP) or a 600-mil plastic DIP, or a 8×20 mm TSOP with thickness of 1.2 mm, is available for high density mounting. The TSOP package is suitable for cards, and reverse type TSOP is also provided.

Features

- High speed: fast access time 70/85/100/120 ns (max)
- · Low power
 - -Standby: 10 µW (typ) (L/L-L/L-SL version)
 - -Operation: 75 mW (typ)
- · Single 5 V supply
- · Completely static memory
 - -No clock or timing strobe required
- · Equal access and cycle times
- Common data input and output: Three state output
- · Directly TTL compatible: All inputs and outputs
- Capability of battery back up operation (L/L-L/L-SL version) (2 chip selection for battery back up)

Ordering Information

Type No.	Access time	Package	Туре No.	Access time	Package
HM628128P-7	70 ns	600-mil,	HM628128FP-7	70 ns	525 mil,
HM628128P-8	85 ns	32-pin plastic	HM628128FP-8	85 ns	32-pin plastic
HM628128P-10	100 ns	DIP (DP-32)	HM628128FP-10	100 ns	SOP (FP-32D)
HM628128P-12	120 ns		HM628128FP-12	120 ns	GG. (GED)
HM628128LP-7	70 ns		HM628128LFP-7	70 ns	
HM628128LP-8	85 ns		HM628128LFP-8	85 ns	
HM628128LP-10	100 ns		HM628128LFP-10	100 ns	
HM628128LP-12	120 ns		HM628128LFP-12	120 ns	
HM628128LP-7SL	70 ns		HM628128LFP-7SL	70 ns	_
HM628128LP-8SL	85 ns		HM628128LFP-8SL	85 ns	
HM628128LP-10SL	100 ns		HM628128LFP-10SL	100 ns	
HM628128LP-12SL	120 ns		HM628128LFP-12SL		
HM628128T-7	70 ns	8mm × 20mm	HM628128R-7	70 ns	8mm × 20 mm
HM628128T-8	85 ns	32-pin TSOP	HM628128R-8	85 ns	32-pin TSOP
HM628128T- 10	100 ns	(normal type)	HM628128R-10	100 ns	(reverse type)
HM628128T- 12	120 ns	(TFP-32D)	HM628128R- 12	120 ns	(TFP-32DR)
HM628128LT-7	70 ns	_	HM628128LR-7	70 ns	
HM628128LT-8	85 ns		HM628128LR-8	85 ns	
HM628128LT-10	100 ns		HM628128LR-10	100 ns	
HM628128LT-12	120 ns		HM628128LR-12	120 ns	
HM628128LT-7L	70 ns	_	HM628128LR-7L	70 ns	
HM628128LT-8L	85 ns		HM628128LR-8L	85 ns	
HM628128LT-10L	100 ns		HM628128LR-10L	100 ns	
HM628128LT-12L	120 ns		HM628128LR-12L	120 ns	
HM628128LT-7SL	70 ns		HM628128LR-7SL	70 ns	_
HM628128LT-8SL	85 ns		HM628128LR-8SL	85 ns	
HM628128LT-10SL	100 ns		HM628128LR-10SL	100 ns	
HM628128LT-12SL	120 ns		HM628128LR-12SL	120 ns	

Pin Arrangement

Pin Description

Pin name	Function	Pin name	Function
A0-A16	Address	OE .	Output enable
1/00-1/07	Input/output	NC	Not connected
CS1	Chip select 1	V _{CC}	Power supply
CS2	Chip select 2	V _{SS}	Ground
WE	Write enable		

Block Diagram

Truth Table

WE	CS1	CS2	ŌĒ	Mode	V _{CC} current	Dout pin	Cycle
x	Н	x	х	Not selected	I _{SB} , I _{SB1}	High-Z	_
×	х	L	x	 	I _{SB} , I _{SB1}	High-Z	***
Н	L	Н	Н	Output disable	I _{CC}	High-Z	
Н	L	Н	L.	Read	lcc	Dout	Read cycle
L	L	H	Н	Write	Icc	D _{IN}	Write cycle (1)
L	L	н	L		Icc	D _{IN}	Write cycle (2)

Note: x: H or L

Absolute Maximum Ratings

Parameter	Symbol Value		Unit
Voltage on any pin relative to V _{SS}	V _T	-0.5° to +7.0	٧
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Note: -3.0 V for pulse half-width ≤ 30 ns

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	٧
	V _{SS}	0	0	0	٧
Input high (logic 1) voltage	V _{tH}	2.2		6.0	٧
Input low (logic 0) voltage	V _{IL}	– 0.3*		0.8	٧

Note: -3.0 V for pulse half-width ≤ 30 ns

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current	Hul	_		2	μА	V _{IN} = V _{SS} to V _{CC}
Output leakage current	Hol			2	μА	$\overline{\text{CS1}} = \text{V}_{\text{IH}} \text{ or CS2} = \text{V}_{\text{IL}}$ or $\overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or WE} = \text{V}_{\text{IL}},$ $\text{V}_{\text{VO}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$
Operating power supply current: DC	lcc	_	15	35	mA	$\overline{CS1} = V_{IL}$, $CS2 = V_{IH}$, others = V_{IH}/V_{IL} , $I_{VO} = 0$ mA
Operating power supply current	l _{CC1}		45	70	mA	Min. cycle, duty = 100%, CS1 = V _{IL} , CS2 = V _{IH} , others = V _{IH} /V _{IL} I _{I/O} = 0 mA
	lcc2		15	30	mA	Cycle time = 1 μ s, duty = 100%, I_{VO} = 0 mA, $\overline{CS1} \le 0.2$ V, $CS2 \ge V_{CC} - 0.2$ V, $V_{IH} \ge V_{CC} - 0.2$ V, $V_{IL} \le 0.2$ V
Standby power supply current: DC	I _{SB}	_	1	3	mA	CS1 = V _{IH} , CS2 = V _{IH} or CS2 = V _{IL}
Standby power supply	I _{SB1}	_	0.02	2	mA	V _{IN} ≥ 0 V,
current (1): DC		_	2*2	100*2	μА	CS1 ≥ V _{CC} – 0.2 V, CS2 ≥ V _{CC} – 0.2 V or
			2*3	50*3	μА	0 V ≤ CS2 ≤ CS2 = V _{IL}
Output low voltage	V _{OL}			0.4	V	l _{OL} = 2.1 mA
Output high voltage	V _{OH}	2.4	_		V	l _{OH} = -1.0 mA

Note: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, Ta = +25°C and specified loading.

2. These characteristics are guaranteed only for L-version.

3. These characteristics are guaranteed only for L-L/L-SL version.

Capacitance (Ta = 25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	_	8	рF	V _{IN} = 0 V
Input/output capacitance	C _{I/O}	_	_	10	pF	V _{I/O} = 0 V

Note: These parameters are sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted)

Test Conditions:

• Input pulse levels: 0.8 V to 2.4 V

• Input and output timing reference: 1.5 V

• Input rise and fall times: 5 ns

• Output load: 1 TTL gate and C_L (100 pF) (Including scope and jig)

Read Cycle

		TM020120-7		NM020120-0		TIMO20120-10		1111020120-12			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
Read cycle time	t _{RC}	70	_	85		100		120	_	ns	
Address access time	t _{AA}	_	70		85	_	100		120	ns	
Chip selection (CS1) to output valid	t _{CO1}		70		85	_	100	_	120	ns	
Chip selection (CS2) to output valid	1 _{CO2}		70		85		100		120	ns	
Output enable (OE) output valid	toE		35		45		50	-	60	ns	
Chip selection (CS1) to output in low-Z*1,2,3	t _{LZ1}	10	_	10	_	10		10		ns	
Chip selection (CS2) to output in low-Z*1,2,3	t _{LZ2}	10		10		10		10		ns	
Output enable (OE) to output in low-Z*1,2,3	^t OLZ	5		5		5	_	5	_	ns	
Chip deselection (CS1) to output in high-Z ¹ ,2,3	t _{HZ1}	0	25	0	30	0	35	0	45	ns	
Chip deselection (CS2) to output in high-Z ^{1,2,3}	t _{HZ2}	0	25	0	30	0	35	0	45	ns	
Output disable (OE) to output in high-Z ^{1,2,3}	tонz	0	25	0	30	0	35	0	45	ns	
Output hold from address change	t _{OH}	10		10	_	10	_	10		ns	

HM628128-7 HM628128-8 HM628128-10 HM628128-12

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

 At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.

3., These parameters are sampled and not 100% tested.

Read Timing Waveform

Write Cycle

HM628128-7 HM628128-8 HM628128-10 HM628128-12

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	twc	70	_	85	_	100	_	120	_	ns
Chip selection to end of write	tcw	60	_	75	_	80	_	85	_	ns
Address setup time	tas	0	_	0	_	0		0	_	ns
Address valid to end of write	t _{AW}	60	_	75	_	80	_	85	_	ns
Write pulse width	t _{WP}	50	_	55	_	60		70	_	ns
Write recovery time*1	twn	5	_	5	_	5	_	10		ns
		10	_	10	_	10	_	15	_	ns*1
Write to output in high-Z*2	t _{wHZ}	0	25	0	30	0	35	0	40	ns
Data to write time overlap	tow	30	_	35	_	40	_	45	_	ns
Write hold from write time	^t DH	0	_	0		0	_	0	_	ns
Output active from end of write*1	tow	5	_	5	_	5	_	5	_	ns

Notes: 1. This value is measured from CS2 going low to the end of write cycle.

^{2.} This parameter is sampled and not 100% tested.

Write Timing Waveform (1) (OE Clock)

Notes: 1. A write occurs during the overlap of a low $\overline{CS1}$, a high CS2, and a low \overline{WE} .

A write begin at the latest transtion among $\overline{CS1}$ going low, CS2 going high and \overline{WE} going low. A write end at the earliest transition among $\overline{CS1}$ going high, CS2 going low and \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.

- 2. t_{CW} is measure from the later of CS1 going low or CS2 going high to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- t_{WR} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.
- During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- If CS1 goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.

Write Timing Waveform (2) (OE Fixed Low)

Notes: 1. A write occurs during the overlap of a low CS1, a high CS2, and a low WE. A write begins at the latest transition amon CS1 going low, CS2 going high and WE going low. A write ends at the earliest transition among CS1 going high, CS2 going low and WE going high. twp is measured from the beginning of write to the end of write. twp must satisfy the following equation to avoid a problem of data bus contention. twp ≥ tow min + twpz max

- t_{CW} is measure from the later of CS1 going low or CS2 going high to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- t_{WR} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.
- During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- If CS1 goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
- 7. Dout is the same phase of the latest written data in this write cycle.
- 8. Dout is the read data of next address.
- If CS1 is low and CS2 is high during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.

Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C)

(These characteristics are guaranteed only for L, L-L, and L-SL version.)

Parameter	Symbol		Min	Тур	Max	Unit	Test conditions*4
V _{CC} for data retention	V _{DR}		2.0	_	_	٧	$\overline{\text{CS1}} \ge \text{V}_{\text{CC}} - \text{0.2V}, \text{CS2} \ge \text{V}_{\text{CC}} - \text{0.2 V}, \text{or 0 V} \le \text{CS2} \le \text{0.2 V}, \text{V}_{\text{in}} \ge$
Data retention current	ICCDR	L	_	1	50°1	μA	V _{CC} = 3.0 V, V _{in} ≥ 0 V, CS1 ≥
		L-L	_	1	30*2	μA	$V_{CC} - 0.2 \text{ V, } CS2 \ge V_{CC} - 0.2 $ V. or $0 \text{ V} \le CS2 \le 0.2 \text{ V}$
		L-SL		1	15*3	μΑ	V, 01 0 V 5 032 5 0.2 V
Chip deselect to data t _{CDR} retention time			0	_		ns	See retention waveform
Operation recovery time	t _R	•	5	_	_	ms	

- Notes: 1. 20 μ A max at Ta = 0 to 40°C
 - 2. 6 μA max at Ta = 0 to 40°C
 - 3. 3 μA max at Ta = 0 to 40°C
 - 4. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, and Din buffer. If CS2 controls data retention mode, V_{in} levels (address, WE, OE, CS1, I/O) can be in the high impedance state. if CS1 controls data retention mode, CS2 must be CS2 ≥ V_{CC} 0.2 V or 0 V ≤ CS2 ≤ 0.2 V. The other input levels (address, WE, OE, I/O) can be in the high impedance state.

Low V_{CC} Data Retention Timing Waveform (1) (CS1 Controlled)

Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)

Supply Current vs. Supply Voltage (1)

Supply Current vs. Supply Voltage (2)

Supply Current vs. Supply Voltage (3)

Supply Current vs. Ambient Temperature (1)

1.3 V_{CC} = Supply current I_{CC2} (normalized) 5.0 V 1.2 1.1 1.0 0.9 0.8 0.7 0 20 40 60 80 Ambient temperature Ta (C)

Supply Current vs. Ambient Temperature (2)

Supply Current vs. Ambient Temperature (3)

Access Time vs. Supply Voltage

Access Time vs. Ambient Temperature

Standby Current vs. Supply Voltage

Standby Current vs. Ambient Temperature

Supply Current vs. Frequency (Read)

Supply Current vs. Frequency (Write)

Input Low Voltage vs. Supply Voltage

Input High Voltage vs. Supply Voltage

Output Higet vs. Output High Voltage

Output Low Current vs. Output Low Voltage

Access Time vs. Load Capacitance