(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

553011

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. November 2004 (11.11.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/096724 A1

(51) Internationale Patentklassifikation⁷: C03C 21/00, 23/00

(21) Internationales Aktenzeichen: PCT/EP2004/004642

(22) Internationales Anmeldedatum:

30. April 2004 (30.04.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 103 19 708.7 2. 1

2. Mai 2003 (02.05.2003) DE

(71) Anmelder und

- (72) Erfinder: HESSENKEMPER, Heiko [DE/DE]; Am Hasenborn 22, 09603 Grossschirma (DE). LANDER-MANN-HESSENKEMPER, Heide [DE/DE]; Am Hasenborn 22, 09603 Grossschirma (DE).
- (74) Anwalt: EISENFÜHR, SPEISER & PARTNER; Anna-Louisa-Karsch-Str. 2, 10178 Berlin (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL,

AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: ALKALINE GLASSES WITH MODIFIED SURFACES AND METHOD FOR PRODUCING SAME
- (54) Bezeichnung: ALKALIHALTIGE GLÄSER MIT MODIFIZIERTEN GLASOBERFLÄCHEN UND VERFAHREN ZU IHRER HERSTELLUNG
- (57) Abstract: The invention concerns alkaline glasses with modified surfaces. The invention aims at stabilizing the modified surfaces so as to substantially prevent a sodium reverse diffusion from the volume even at high temperatures and, in particular in case of flame reprocessing. Quite unexpectedly, it has been observed that the modified surface of an alkaline glass is, at high temperatures, substantially resistant to sodium reverse diffusion from the volume if the internal chemism of the surface has an aluminium concentration much higher than that of the volume. This is due to the very high negative enthalpy of formation. The invention is characterized in that the surface of such glasses is contacted with high aluminium concentrations and is heat-treated.
- (57) Zusammenfassung: Die Erfindung betrifft alkalihaltige Gläser mit modifizierten Glasoberflächen. Technische Aufgabe der Erfindung ist es, die modifizierte Glasoberfläche so zu stabilisieren, dass eine Natriumrückdiffusion aus dem Volumen auch bei höheren Temperaturen und insbesondere bei Nachbearbeitungen mit der Flamme weitgehend vermieden werden. Überraschend wurde gefunden, dass eine modifizierte Glasoberfläche eines alkalihaltigen Glases gegen eine Natriumrückdiffusion aus dem Volumen bei höheren Temperaturen weitgehend resistent ist, wenn der Chemismus innerhalb der Oberfläche eine gegenüber dem Volumen deutlich erhöhte Aluminiumkonzentration aufweist. Die Ursache kann in der sehr hohen negativen Bildungsenthalpie von Albitphasen liegen. Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass die Oberfläche dieser Gläser in Kontakt mit erhöhten Aluminiumkonzentrationen gebracht und einer thermischen Behandlung unterworfen wird.

WO 2004/096724 PCT/EP2004/004642

Alkalihaltige Gläser mit modifizierten Glasoberflächen und Verfahren zu ihrer Herstellung

Innerhalb der Anwendung von Gläsern spielen die Oberflächeneigenschaften im Hinblick auf die Wechselwirkung mit der Umgebung eine wesentliche Rolle, wobei hier insbesondere chemische und mechanische Eigenschaften zu nennen sind. Aus unterschiedlichen Gründen, die u. a. in der Schmelzbarkeit und Schmelztechnologie liegen, sind häufig relativ hohe Alkaligehalte gewünscht, die auf der anderen Seite aber zu einer Verminderung der hydrolytischen Beständigkeit und der mechanischen Eigenschaften führen. Eine bisher übliche Lösung aus diesem Dilemma ist eine Oberflächenbehandlung, die im Allgemeinen durch Entalkalisierungsprozesse beschrieben werden, wie sie zusammengefasst in [1: Glastechnische Fabrikationsfehler, H. J. Jebsen-Marwedel, R. Brückner: Springer-Verlag 1980, Seite 507-508]

WO 2004/096724 PCT/EP2004/004642

2

und in [2: Patentanmeldung Deutsches Patent- und Markenamt. Verfahren zur Herstellung von Emails, Aktenzeichen 102 46 928.8] dargestellt sind. Bei dieser Problematik der Entalkalisierung, z. B. durch Schwefelwasserdampfeinfluss etc. taucht ein grundsätzliches Problem auf, das darin begründet ist, dass für eine hohe Reaktivität im Allgemeinen hohe Reaktionstemperaturen notwendig sind, die allerdings wieder zu einer Natriumrückdiffusion aus dem Volumen an die Oberfläche führen können. Insbesondere bei späteren Behandlungsprozessen wie eine Nachbearbeitung unter der Flamme, die mit hohen Temperaturen verbundenen ist, kann die thermisch angeregte Natriumrückdiffusion aus dem Volumen zu einer signifikanten Verschlechterung der ursprünglich erreichten Eigenschaften führen.

Technische Aufgabe der Erfindung ist es, die modifizierte Glasoberfläche so zu stabilisieren, dass im Gegensatz zum Stand der Technik eine Natriumrückdiffusion aus dem Volumen auch bei höheren Temperaturen und insbesondere bei Nachbearbeitungen mit der Flamme weitgehend vermieden werden.

Überraschend wurde gefunden, dass eine modifizierte Glasoberfläche eines alkalihaltigen Glases gegen eine Natriumrückdiffusion aus dem Volumen bei höheren Temperaturen weitgehend resistent ist, wenn der Chemismus innerhalb der Oberfläche eine gegenüber dem Volumen deutlich erhöhte Aluminiumkonzentration aufweist. Die Ursache kann in der sehr hohen negativen Bildungsenthalpie von Albitphasen liegen. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass die Oberfläche dieser Gläser in Kontakt mit erhöhten Aluminiumkonzentrationen gebracht und einer thermischen Behandlung unterworfen wird. Dadurch werden thermisch stabile Oberflächenschichten erhalten, die mit den gebildeten Natriumalumosilikaten im oberflächennahen Bereich gegen eine thermisch bedingte Natriumrückdiffusion eine Resistenz besitzen, da keine Konzentrationsgradienten existieren und das Natrium in dieser mit Aluminium modifizierten Struktur fester gebunden ist.

Das Verfahren zum Aufbringen dieser Schichten wird vorzugsweise dadurch realisiert, dass aluminiumhaltige Lösungen, wie z. B. wässrige Lösungen von Aluminiumchlorid und/oder Alaun auf die Oberfläche des Glases gebracht werden z. B. durch Tauchoder Sprühverfahren, wobei anschließend dann die Glasoberfläche bis in den Bereich der Transformationstemperatur für einige Minuten erhitzt wird. Die Aluminiumverbindungen werden dabei in einer Menge von mindestens 0,1 g/m²

WO 2004/096724 PCT/EP2004/004642

3

Glasfläche eingesetzt, vorzugsweise in einer Menge von 1 bis 10 g/m² Glasfläche. Die jeweiligen Obergrenzen ergeben sich aus der Sättigungskonzentration der Aluminiumverbindungen in der Lösung. Die Glasoberfläche wird vorzugsweise in den Bereich der Transformationstemperatur ± 150 K erhitzt. Das Arbeiten mit aluminiumhaltigen Lösungen führt aufgrund des Benetzungsverhaltens teilweise zu optischen Beeinträchtigungen.

Optische Beeinträchtigungen können vermieden werden, wenn bei hohen Temperaturen das aluminiumhaltige Material sich aus der Gasphase an der Glasoberfläche niederschlägt und dabei gleichzeitig die notwendigen Verbindungen eingeht. Das Aluminiumchlorid wird dabei mindestens in einer Menge von 0,1 g/m³ kontaktierenden Volumens eingesetzt, vorzugsweise in einer Menge von 1 bis 10 g/m³. Die Obergrenze wird durch den Sättigungsdampfdruck bestimmt. Die Temperatur der Aluminiumchloridverbindungen liegt zwischen der Sublimationstemperatur von 170 °C und bis zu 600 K oberhalb der Transformationstemperatur des Glases. Die Dauer der Kontaktierung der Gläser mit Aluminiumchloridverbindungen aus der Gasphase beträgt mindestens 0,1 Sekunden bei hohen Temperaturen und bis zu einer Stunde bei niedrigen Temperaturen. Die Probentemperatur der Glasoberfläche wird nach unten durch die Temperaturwechselbeständigkeit des Glases begrenzt. Die obere Grenze kann bis 600 K oberhalb der Transformationstemperatur des Glases liegen. Beim Arbeiten mit Aluminiumchloriden in der Gasphase sind mögliche schwache Rückstände einfach auszuwaschen. Beim Einsatz von Aluminiumchlorid ist zwischen dem Einsatz mit Kristallwasser und ohne Kristallwasser zu differenzieren. Mit Kristallwasser ist eine stärkere Oberflächenmodifizierung und Steigerung der hydrolytischen Beständigkeit und der Mikrohärte der Gläser festzustellen, ohne optische Beeinträchtigung. Beim Einsatz von wasserfreiem Aluminiumchlorid sind eher erkennbare optische Beeinträchtigungen zu beobachten.

Das erfindungsgemäße Verfahren kann auch vorteilhaft hei der Röhrenglasherstellung Anwendung finden. Bei der Röhrenglasherstellung wird als Ausblasmedium mit Überdruck beim Vello- oder Dannerverfahren Luft an die Innenoberflächen der Glasröhren gebracht. Es bietet sich an, erwärmte Luft mit über 170°C zu verwenden, in der sich verdampftes AICI₃ befindet. Damit wird zunächst eine Kondensation vermieden. Dieses Gas kommt dann nach der Ziehzwiebel in den Kontakt mit der heißen Innenoberfläche des Glases, wobei dann die Modifikation der Glasoberfläche stattfinden kann. Das Gas strömt dann am kalten Ende des Rohrstranges aus der

Rohröffnung heraus und hat damit über einen Zeitraum von bis zu mehreren Minuten und von hohen Temperaturen (bis zu 600 K oberhalb Tg) bis hin zum Schneiden des Glases Zeit, mit der Glasoberfläche zu reagieren. Hierbei kann es zur Vermeidung von Kondensationen notwendig sein, die Schneidetemperatur des Rohres oberhalb von 170°C zu halten.

Beispiel 1

Als typische Ergebnisse sind im Bild 1 die hydrolytische Beständigkeit weißer Flaschen aus Kalknatronsilikatglas mit der Zusammensetzung: 71,0% SiO₂, 1,7% Al₂O₃, 0,02% Fe₂O₃, 1,3% K₂O, 15,5% Na₂O, 9,4% CaO, 2,7% MgO und 0,25 SO₃ dargestellt, wobei die Proben mit verschiedenen Mengen AlCl₃ * 6 H₂O in einem Ofen auf Temperaturen von 550°C gebracht wurden und dann dort abkühlten. Die in den Behälter eingebrachten Aluminiumchloridmengen bezogen sich auf eine angebotene Glasoberfläche von 3814 mm² und ein Volumen von 20 ml, wobei wasserfreies Aluminiumchlorid bei 180°C in die Dampf-phase übergehen sollte, bzw. nach eigenen DTA-Messungen sich das Material mit Kristallwasser erst bei Temperaturen von 203°C zersetzt. Die Behälter wurden über das Probenmaterial übergestülpt und nach 15 Minuten Behandlungszeit im Muffelofen mit abgekühlt. In der Tabelle 1 sind ver-schiedene Behandlungsschritte in ihrer Wirkung auf die hydrolytische Beständigkeit dargestellt.

Tabelle 1:

Proben- bezeichnung	Leitfähi Messung 1	gkeit μS Messung 2	Behandlung
	6,5	5,9	0,01 g AICI ₃ * 6 H ₂ O+ 4,49 µI H ₂ O
II .	12,0	6,7	0,01 g AlCl ₃ * 6 H ₂ O
111	4,1	4,2	0,0055 g AlCl ₃ + 4,49 µl H ₂ O
IV	4,2	5,2	0,0055 g AlCl ₃ + 13,3 µl H ₂ O
V	27,6	29,8	10,37 µl HCl
VI	19,0	18,0	31 µl HCl
VII	63,9	61,9	4,49 µl H₂O
VIII	65,1	61,4	13,5µl H₂O
IX	67,1	56,4	40 µl H₂O
WF20	61,2	60,4	unbehandelt

5

T = 550°C, 10 Minuten Behandlungszeit

Gemessene Leitfähigkeit:

48 h bei 90 °C im destillierten Wasser

20 ml Innenvolumen mit Al-Folie abgedeckt.

Die Bilder 2a (unbehandeltes Glas) und 2b (erfindungsgemäß behandeltes Glas) zeigten den mit einer Mikrosonde aufgenommenen Line scan über eine Länge von 30 μm mit den elementspezifischen Signalintensitäten dieses untersuchten Weißglases. Deutlich wird die Aluminiumanreicherung an der Oberfläche in einem Bereich kleiner 1 μm nach dem erfindungsgemäßen Verfahren.

Die thermische Stabilität der Schichten wird im Bild 3 verdeutlicht, aus dem auch die Behandlungsschritte hervorgehen. Nach Abschluss der Behandlung wurden die Gläser im kalten Zustand einer Flammenbehandlung unterzogen. Es zeigte sich, dass die deutlich verbesserten hydrolytischen Beständigkeiten reproduzierbar erhalten bleiben.

Beispiel 2

Bei einem Bleikristallglas wurde in einem Muffelofen eine definierte Menge (0,05g und 0,15g) AlCl₃ zusammen mit einer Glasprobe von 25 cm² in einen Korundtiegel gegeben, der mit Aluminiumfolie abgedeckt wurde. Nach einer Erhitzung auf 470°C und einer Haltezeit von 15 min bei abschließendem Ausschalten des Muffelofens und Abkühlen der Proben in dem Tiegel wurden die Gläser bezüglich der Mikrohärte analysiert. Die Ergebnisse sind im Bild 4 dargestellt und zeigen eine um gut 100% erhöhte Mikrohärte nach 150 nm Eindringtiefe, die bei noch geringeren Eindringtiefen sogar weit höhere Werte annehmen kann.

<u>Patentansprüche</u>

- Alkalihaltige Gläser mit modifizierter Glasoberfläche, gekennzeichnet dadurch, dass deren Chemismus innerhalb der Oberfläche eine gegenüber dem Volumen deutlich erhöhte Aluminiumkonzentration aufweist.
- Verfahren zur Herstellung alkalihaltiger Gläser mit modifizierter Glasoberfläche, gekennzeichnet dadurch, dass die Oberfläche dieser Gläser in Kontakt mit erhöhten Aluminiumkonzentrationen gebracht und einer thermischen Behandlung unterworfen wird.
- 3. Verfahren nach Anspruch 2, gekennzeichnet dadurch, dass die Oberfläche dieser Gläser in Kontakt mit Alaun (K Al (SO₄)₂ x 12 H₂O) und/oder AlCl₃ mit und ohne Kristallwasser gebracht und thermisch behandelt wird.
- 4. Verfahren nach Anspruch 2 und 3, gekennzeichnet dadurch, dass Aluminiumverbindungen in löslicher Form an die Oberfläche dieser Gläser durch Tauchen oder Sprühen gebracht und anschließend thermisch behandelt werden.
- 5. Verfahren nach Anspruch 2 bis 4, gekennzeichnet dadurch, dass die eingesetzten Aluminiumverbindungen einer Menge von mindestens 0,1 g/m² Glasfläche entsprechen und die Glasoberfläche anschließend in den Bereich der Transformationstemperatur ± 150 K erhitzt wird.
- 6. Verfahren nach Anspruch 2, gekennzeichnet dadurch, dass die Oberfläche dieser Gläser mit Aluminiumchloridverbindungen aus der Dampfphase 0,1 Sekunden bis zu einer Stunde lang in Kontakt gebracht wird.
- 7. Verfahren nach Anspruch 2 und 6, gekennzeichnet dadurch, dass die eingesetzten Aluminiumchloridverbindungen einer Menge von mindestens 0,1 g/m³ kontaktierenden Volumens entsprechen und die untere Probetemperatur der Glasoberfläche durch die Temperaturwechselbeständigkeit des Glases begrenzt wird und die obere Probetemperatur der Glasoberfläche bis 600 K oberhalb der Transformationstemperatur des Glases liegt.

- 8. Verfahren nach Anspruch 2 und 6, gekennzeichnet dadurch, dass die Temperatur der Aluminiumchloridverbindungen zwischen der Sublimationstemperatur von 170°C und bis zu 600 K oberhalb der Transformationstemperatur des Glases liegt.
- 9. Verfahren nach Anspruch 2 und 6, gekennzeichnet dadurch, dass bei der Röhrenglasproduktion der innere Ausblasdruck mittels einer gasförmigen Phase inklusive der Aluminiumchloridverbindungen realisiert wird und diese gasförmige Phase durch das Rohr gedrückt wird analog der Luft beim Vello- oder Dannerverfahren.

REST AVAILABLE COPY

Weiße Flasche, unbehandelt

Weiße Flasche mit AlCl₃ (wasserfrei) aus der Dampfphase bei 550 °C behandelt

Bild: 3

Hydrolytische Beständigkeit weißer Flaschen (20ml) mit AICI3*6 H2O-Pulver (0,01g) aus der Dampfphase kontaktiert bei 550 °C für 15 min

0,25 Verlauf der Mikrohärte in Abhängigkeit von der Eindringtiefe an mit AICI3 -0,15 g AICI3 / 25 cm² 0,05 g AICI3 / 25 cm² -----unbehandelte Probe 0,2 bei 470 °C behandeltem Bleiglas 0,15 Eindringtiefe in µm 0,1 0,05 30000 25000 20000 15000 10000 5000 0 smm/M ni shishorxiM

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

interional	Application No
PCT/FP2	2004/004642

		10	7/EP2004/004642	
A. CLASS IPC 7	FICATION OF SUBJECT MATTER C03C21/00 C03C23/00			
According t	o International Patent Classification (IPC) or to both national classif	ication and IPC		
	SEARCHED			
1PC /	ocumentation searched (classification system followed by classification ${\tt C03C}$			
	tion searched other than minimum documentation to the extent that			
Electronic d	lata base consulted during the international search (name of data b	pase and, where practical, sear	ch terms used)	
EPO-In	ternal, PAJ, WPI Data, INSPEC, COMP	PENDEX		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the re	Relevant to claim No.		
X	PATENT ABSTRACTS OF JAPAN vol. 0100, no. 23 (C-325), 29 January 1986 (1986-01-29) & JP 60 176952 A (ASAHI GLASS KK 11 September 1985 (1985-09-11) abstract	·),	1-4	
X	US 5 510 144 A (CORDIE PAUL) 23 April 1996 (1996-04-23) claims		1,2,5	
	er documents are listed in the continuation of box C.	Patent family member	ers are listed in annex.	
	regories of cited documents: Int defining the general state of the art which is not	*T* later document published or priority date and not in	after the international filing date	
conside	ered to be of particular relevance ocument but published on or after the international	invention	rinciple or theory underlying the	
"L" documer which is citation	ate nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified)	 *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention 		
O docume other m	nt referring to an oral disclosure, use, exhibition or neans	document is combined w ments, such combination	involve an inventive step when the ith one or more other such docu-	
later in	nt published prior to the international filing date but an the priority date claimed	in the art. *&* document member of the same patent family		
Date of the a	ctual completion of the International search	Date of mailing of the inte	mational search report	
	3 August 2004	26/08/2004		
wame and m	alling address of the ISA European Patient Office, P.B. 5818 Patentlaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Bommel,	, L	

INTERNATIONAL SEARCH REPORT

formation on patent family members

Internal Application No PC1/EP2004/004642

					21 2004/ 004042
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 60176952	Α	11-09-1985	NONE		
US 5510144	A	23-04-1996	FR	2700764 A1	29-07-1994
			AT	138627 T	15-06-1996
			CZ	9400164 A3	14-06-1995
•			DE	69400212 D1	04-07-1996
			ÐΕ	69400212 T2	23-01-1997
			DK	609116 T3	14-10-1996
			EP	0609116 A1	03-08-1994
			ES	2091096 T3	16-10-1996
			GR	3020881 T3	30-11-1996
			HU	69592 A2	28-09-1995
			JP	6279058 A	04-10-1994
			SK	6194 A3	10-08-1994