Interrogation de cours nº 5

Lundi 6 octobre 2025

Les fonctions considérées ici sont définies sur un intervalle I de \mathbb{R} d'intérieur non vide et à valeurs dans $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Définitions et énoncés (5 pts)

- 1. Expliquer ce qu'est le critère de d'Alembert pour une série numérique $\sum u_n$.
- 2. Définir avec des quantificateurs ce qu'est la convergence uniforme sur I d'une suite de fonctions $(f_n)_n$, et préciser comment cela peut se réécrire de façon concise à l'aide d'une certaine norme.
- **3.** Définir avec concision ce qu'est la convergence normale et la convergence uniforme d'une série de fonctions $\sum f_n$.
- **4.** Préciser un résultat de cours permettant d'assurer la continuité de la limite f d'une suite de fonctions $(f_n)_n$.
- **5.** Préciser un résultat de cours permettant d'assurer la dérivabilité de la limite f d'une suite de fonctions $(f_n)_n$.

Démonstrations (6 pts)

- a) Montrer que si les f_n et f sont continus et si $(f_n)_n$ converge uniformément vers f [a,b], alors $\int_a^b f_n(t) dt \to \int_a^b f(t) dt$.
- b) Montrer que si $\sum f_n$ converge normalement sur I, alors $\sum f_n$ converge uniformément sur I.
- c) (MPI) À l'aide d'une comparaison série-intégrale, montrer que la série $\sum \frac{1}{n}$ est divergente et obtenir un équivalent asymptotique de $H_n = \sum_{i=1}^n \frac{1}{k}$.
- c) (MPI*) À l'aide d'une comparaison série-intégrale, montrer que pour tout $n \in \mathbb{N}^*$, on a:

$$\left(\frac{n}{e}\right)^n e \leqslant n! \leqslant \left(\frac{n}{e}\right)^n e n$$