CSF 445/L-08/23.06.2025/

Prediction Connect > True

Incornect > False

Classifying data label - Positive Classifying data label - Negative Ediclass Classification.

0

If accuracy = 100%.

accuracy = precision = recall = F1 score = 1

Confusion Matrix:

Predictal Actual	Negative	Pasitive
Negative	TN	FP
Positive	FN	TP
	Re	call

Precision

& For spam detection

Raedicted Actual	Normal/ Not Span	Spam
Nermal Emal	Not pam	Normal Email detected as span
Spam Email	spam nut detected	Spam

Precision	Recull	F1
651.	651.	c51.
851.	651.	73.671.
65 d.	851	73.671.
951.	459.	61.022
1	Differen	eo Matten

Precision: How many of them are actually positive class. Recall: How accurrately it can detect the positive class.

FPR =
$$\frac{FP}{FP+TN}$$

TPR = $\frac{TP}{TP+FN}$

Precision: 1, do will not lose normal email. Recall : 1 some span may come to inbux.

Priedicts	Spam	Nonmal
Spam	TN	FP
Normal	FN	7P

Recult => Passing spam as nonmal email.

*F1 score is average of mean, hermonic mean.

$$\Rightarrow \frac{1}{m_1} + \frac{1}{m_2} = \frac{m_1 + m_2}{2m_1 m_2}$$

inverse =
$$\frac{2m_1m_2}{m_1+m_2}$$

* Parametric knowledge

* knowledge distilution.

1-10/30.06.2025/

$$Y = mn + c$$
 $Y = mn + c$
 $Y = WX + c$
 $MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_i)^n$
 $Actual$

$$L(w) = \tilde{C} = (y - wx)^{-1}$$

$$\frac{dL}{dw} = -2x(y - wx)$$

More solution is shared in a pdf.

RA, office time

$$STMW \Rightarrow 10 \text{ am} \Rightarrow 1 \text{ pm}$$
 $RA \Rightarrow 12 \text{ pm} - 5 \text{ pm}$

 $W \times Y^{T} = YW^{T}X'$

$$= (xx^{T})^{-1}x^{T}Y$$

Right singular vector

V = mxm

V = nxn

E = m×n

L-12/07.67.2025/

Over fitting:

-good of train sen set

- bad on validation set

- stant with zero error on train set.

Under-fitting:

- bad on both train and validation set.

- stant with high ennote on tridin set

L-13/09.07.2023 /

@ Bias:

- Pulynomial degree of data is 10
- but model trained as 5 on lew then 10.
- the less the degree is. the bias higher the bias is.

D Variance:

- if the model is train with a degree which is higher than the data.

Soft-margin => can ignone outlier

Hard-margin =) can't ignone, count each data.

Variance, Bias
Overfitting, Undersfitting
One Question must in viva

Midterm

23.07.2025

Lecture 1-6

- Math derivation

- Precision accuracy math

- True-False

- MC8

L-14/14.67.2025/

Decision Tree:

- work without pre-processing.
- Root node is decided by the lowest GINZ score.
 - One guertion important for midterm related to GZNZ score.

1-15/16.07.2025/

 $h = W^{T}x + b$ $W = \left\{ Q_{1}, Q_{2}, Q_{3} \dots Q_{n} \right\}$

The Why kerenel traicks?

What is variance?

* Calculate Confusim Matrin.

important for midtern - 3 derivation - logical math Midtenm

You Tube - for more learning:

Star Quest with Josh Stanmen

1-16/21.07.2025/

Framble Method:

- train 509. data first.
- then use the pretrained model with for the next sol, of data.
 - it will hyper tuned the hyper.

 parameter learned on first step.
 - speed up the training process.
- Different Cotegory of Emamble. important for midterm.

midterim upto this.