Influence Spread in Large-Scale Social Networks – A Belief Propagation Approach

Huy Nguyen and Rong Zheng

Department of Computer Science University of Houston, TX, USA

The social media network

Agenda

- Influence Maximization in social networks
- Spread computation on DAGs
- Seed selection algorithm
- Evaluation
- Conclusion and Future Work

Influence maximization (IM) problem

- Users influence each other in a social network
 - Spreading opinion, idea, information, action ...
- Influence maximization problem (#P-Hard)
 - Find a set of k seeds that maximizes influence spread over the network
- Maximize the profit with "word-of-mouth" effect in Viral Marketing

Independent cascade model

Spread probability associated with each edge

Influence spread = expected number of influenced nodes

Traditional solution

Greedy seed selection scheme [Kempe et al. 2003]

- 1. Seed set $S = \emptyset$
- 2. Calculate incremental spread of $v, \forall v \in V$
- 3. Select u = node with max incremental spread
- 4. $S = S \cup u$
- 5. Return to step 2 until |S| = k
- As good as ~63% of the optimal solution
- Problem
 - Influence spread computation
 - Too many evaluations after each iteration

Our contributions

- Solutions to both aforementioned problems
- Too many evaluations after each iteration
 - Localizing the influence region from a node modeled by directed acyclic graphs (DAGs)
 - Minimizing the number of nodes to be evaluated
- Influence spread computation
 - Spread computation using belief propagation algorithm on Bayesian Network

Localizing spread region

 Influence spread decays quickly with distance from the source

 Localizing spread region make computation much faster while retaining accuracy

Most influence can be captured on a DAG

 DAG structure makes influence computation much easier

Belief propagation

- Technique invented by Pearl in 1982 to calculate marginals / most likely states in Bayes nets.
- Given
 - Bayes net P(w,x,y,z) = P(w)P(x)P(y|w)P(z|w,x)

- Observed variables: w, x
- Hidden variables: y, z
- Find: P(y), P(z)
- Neighbors passing "messages": I (w) think that you (z) belong in states ... with likelihood ...
- Messages passed from observed to hidden variables
 - Marginal probabilities (beliefs) could be estimated

Spread computation on DAGs

- Exact computation of influence spread is hard (#P-complete even on DAGs)
- Belief propagation algorithms calculate marginal distribution from a set of seeds
- Two BP algorithms used
 - Loopy: slow more accurate
 - Single-pass: fast less accurate

Wait, how do we convert a graph to a DAG?

Expectedly, how many people can I persuade?

DAG 1

- Any DAG has at least one topological order
- Order can be obtained from node's "distance" from a seed (a.k.a. node rank)
- 1.Introduce a super root R connected to all seeds with p = 1
- 2. Calculate a Dijkstra tree T from R
- 3. Calculate rank of all nodes on T
- 4. Augment T with edges from a lower to a higher ranked node

Node	$ S_1 $	S_2	A	B	C
$\overline{r(\text{Node})}$	0	0	0.301	0.398	0.699

DAG 2

- Build Dijkstra trees from seed nodes
- DAG 2 = union of all Dijkstra trees
- Comparing to DAG 1:
 - DAG 2 is built faster
 - Same set of nodes
 - Subset of edges

 Spread computation problem is converted to an instance of BP on a Bayesian network

Seed selection algorithm

Greedy seed selection scheme [Kempe et al. 2003]

- 1. Seed set $S = \emptyset$
- 2. Calculate incremental spread of $v, \forall v \in V$
- 3. Select u = node with max incremental spread
- 4. $S = S \cup u$
- 5. Return to step 2 until |S| = k

Estimated with BP algorithm on DAGs

Candidate set is reduced with Lazy Forward mechanism [Leskovec et al. 2007]. However, it can be further improved.

Seed selection algorithm (2)

 Only need to evaluate nodes that have overlapping influence regions with the new seed

■ A is selected as a seed → no need to evaluate B

again

 Can be used in conjunction with Lazy Forward mechanism

Evaluation overview

Our approach vs. state-of-the-art solutions: PMIA [Chen et al. 2009], CELF [Leskovec et al. 2007], and Weighted Degree

Network edge is assigned random propagation

probability $\in [0.001, 0.1]$

Influence spread result

Running time result

Conclusion and future work

- New framework to solve IM problem in social networks with BP algorithms
- Application flexibility

	DAG 1	DAG 2
Loopy	Best performance - slow	Better than DAG2-SPBP
Single-pass	Very close to DAG1-Loopy	Acceptable performance - fastest

- Future study
 - Impact of graph structure on IM algorithm selection
 - IM problem with incomplete network data

Thank you for your attention

nahuy@cs.uh.edu http://www2.cs.uh.edu/~nahuy/

