(32) 1. Consider the single-phase full-bridge thyristor-controlled rectifier.

Let $e_{ga} = E \sin \theta_e$ where $\theta_e = \omega_e t$.

- (a) Establish an expression for θ_1 (beginning of conduction interval for diodes 1 and 2) in terms of E and V_{dc} .
- (b) Establish an expression for $i_a(\theta_e)$ over the interval $\theta_1 < \theta_e < \theta_2$.

(36) 2. Consider a dc motor supplied by a 2-quadrant chopper.

All expressions should be in terms of r_a , $\tau_a = L_{AA}/r_a$, k_v , V_S , k, T, and ω_r . You do not need to provide detailed derivations.

- (a) Express $i_a(t)$ in interval A, i.e. $i_a = ?e^{?t} + ?(1 e^{?t})$. Express I_2 .
- (b) Sketch v_a for one period indicating its value in each interval. Express its average (expression may include β .
- (c) Express $i_a(t)$ in interval B assuming t=0 at beginning of interval B, i.e. $i_a=?e^{?t}+\frac{?}{?}(1-e^{?t}).$ Express β (expression may include I_2).

Write in Exam Book Only

The upper (lower) switch of each phase leg is closed (open) for 180° and open (closed) for the other 180° . The switching of each phase leg is displaced $\pm 120^{\circ}$ relative to the other phase legs as shown above.

- (a) Sketch v_{ng} (voltage from node n to node g), v_{an} , and v_{ab} indicating their values for each of the six intervals.
- (b) Express the fundamental component of v_{ab} in the form $v_{ab}^{(1)} = ?\cos\theta_e + ?\sin\theta_e$ (expression may include π , $\sqrt{2}$, $\sqrt{3}$, ...).

Write in Exam Book Only