

Banco de Dados I

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Profa. Rebeca Schroeder Freitas Prof. Fabiano Baldo

Álgebra Relacional

Modelo Relacional - Manipulação

Categorias de linguagens de manipulação:

- Formais: Álgebra Relacional & Cálculo Relacional
- Comerciais: SQL (baseadas nas formais)

Linguagens formais – Características

- ➤ Orientadas a conjuntos
- ➤ Linguagens de base devem ter no mínimo um poder de expressão equivalente ao de uma linguagem formal
- ➤ Fechamento resultados de consultas são relações

Álgebra Relacional

Linguagem procedural

- Expressões definem uma execução sequencial de operadores
- A execução de cada operador produz uma relação

Classificação de operadores

- > Fundamentais
 - Unários: seleção, projeção
 - Binários: produto cartesiano, união e diferença
- ➤ <u>Derivados</u>
 - Binários: intersecção, junção e divisão
- Especiais: renomeação, atribuição e alteração

Álgebra Relacional

Exemplo de Esquema Relacional

Ambulatórios (<u>nroa</u>, andar, capacidade)

Médicos (<u>codm</u>, CPF, nome, idade, cidade, especialidade, nroa)

Pacientes (codp, CPF, nome, idade, cidade)

Consultas (codm, codp, data, hora, doenca)

Funcionários (codf, CPF, nome, idade, cidade, salário)

Ferramenta online

http://dbis-uibk.github.io/relax/calc.htm

base do esquema acima na página

Seleção

- Retorna tuplas que satisfazem um predicado
- Notação: $\sigma_{predicado}$ (relação) (sigma)
- Operadores de comparação: =, <, <=, >, >=, ≠
- Operadores lógicos: ∧ (and) ∨ (or) ¬ (not)
- Exemplo: $\sigma_{z \ge 2}(R)$

X	у	Z
1	1	1
2	2	2
2	3	3

X	у	Z
2	2	2
2	3	3

Seleção

- Buscar os dados dos pacientes que estão com 'sarampo'
- Buscar os dados dos médicos 'Ortopedista' com mais de 55 anos
- Buscar os dados de todas as consultas, exceto aquelas marcadas para os médicos CRM 102401 e 100985
- Buscar os dados dos ambulatórios do quarto andar. Estes ambulatórios devem ter capacidade superior ou igual a 50 ou o número do ambulatório deve ser superior a 410.

Projeção

Retorna um ou mais atributos de interesse

```
• Notação: \pi_{lista\_nomes\_atributos} (relação) (pi)
```

• Elimina automaticamente duplicatas

• Exemplo: $\pi_{x,y}(R)$

R	X	у	Z
	1	1	1
	2	2	2
	2	2	3

X	у
1	1
2	2

Projeção

- Buscar nome e especialidade de todos os médicos
- Buscar o número dos ambulatórios do terceiro andar
- Buscar o código dos médicos e as datas das consultas para os pacientes com código 00003 e 00008
- Buscar os números dos ambulatórios com capacidade igual ou superior a 20, exceto aqueles do segundo andar

Produto Cartesiano

- Retorna todas as combinações de tuplas de duas relações
 R₁ e R₂
- Grau do resultado: $grau(R_1) + grau(R_2)$
- Cardinalidade do resultado: $card(R_1) * card(R_2)$
- Notação:

relação1 × relação2

(cross joint)

resultado

• Exemplo: $(R1 \times R2)$

<i>R</i> 1	X	у	Z
	1	1	1
	2	2	2
	3	3	3

R2	W	у
	1	1
	2	2

X	R1y	z	w	R2y
1	1	1	1	1
1	1	1	2	2
2	2	2	1	1
2	2	2	2	2
3	3	3	1	1
3	3	3	2	2

Produto Cartesiano

- Buscar o **nome** dos médicos que têm/tiveram consulta marcada e as **datas** das suas consultas
- Buscar o nº e a capacidade dos ambulatórios do 3º andar e o nome dos médicos 'Ortopedista' que atendem neles
- Buscar entre as consultas que estão/foram marcadas para o período da manhã (07:00-12:00) a partir do ano de 2010, o nome do médico, paciente e a data da consulta
- Buscar o **nome** e **salário** dos funcionários de 'Florianopolis' que estão internados como pacientes e têm/tiveram consulta marcada com 'Psiquiatra'

Atribuição

- Armazena o resultado de uma expressão algébrica em uma variável de relação
- Possibilita processamento de consulta por etapas
- Notação: nomeVariavel = ExpressaoAlgebrica (assignment)

• Exemplo:

```
R1 = \pi_{codm, data} (Consultas)
R2 = \pi_{codm, nome} (Medicos)
\pi_{codm, data} (\sigma_{Consultas.codm=Medicos.codm} (R1 X R2))
```


Atribuição

- Buscar o nome e a idade dos Pacientes que são de 'São Bento do Sul' utilizando atribuição
- Buscar os pacientes que tiveram consultas agendadas no período da tarde (13:00 e 19:00), mostrando o **nome** do paciente, o **nome** do médico que lhe atendeu e o **número** do ambulatório onde este médico atua.

Otimização Algébrica

• Antecipação de seleções

Realizar filtragens horizontais
 Filtrar colunas o mais cedo possível

 π Pacientes.codp, cpf, nome, data, hora (Pacientes × Consultas) VS

 $(\pi \text{ codp, cpf, nome (Pacientes)}) \times (\pi \text{ codp, data, hora (Consultas)})$

Otimização Algébrica

Antecipação de predicados

Realizar filtragens verticais
 Filtrar linhas o mais cedo possível

σ Consultas.codp = Pacientes.codp ∧ Consultas.data < '2010/01/01' (Consultas × Pacientes)

 σ Consultas.codp = Pacientes.codp ((σ data < '2010/01/01' (Consultas)) × Pacientes)

Otimização Algébrica

• Identificar sub expressões (comuns)

- Evitar repetir execução múltiplas de mesma operação
 Usar variável de relação para armazenar resultados
 [mais comum para múltiplas consultas]
- Expressão fica visualmente mais legível
 [(-) pode usar espaço extra de forma desnecessária]

```
R1 = \sigma Pacientes.codp = Consultas.codp ((\pi codp, nome, idade Pacientes)
 \times (\pi codm, codp, data Consultas))
 R2 = \sigma Consultas.codm = Medicos.codm (R1 \times \pi codm, nome, idade Medicos)
 \pi Pacientes.nome, Pacientes.idade, Medicos.nome, Medicos.idade (R2)
```


Renomeação

- Altera o nome de uma relação ou de seus atributos
- Notação: (rho)
 - renomear relação: $\rho_{novoNomeRelação}$ (Relação)
 - renomear colunas: $\rho_{novo1 \leftarrow orig1, novo2 \leftarrow orig2}$ (Relação)
- Exemplo: $(R \times \rho_{N1}(R))$

$$\rho_{a \leftarrow x, b \leftarrow y}(R)$$

R	X	у
	1	2
	3	4

resultado

R.x	R.y	N1.x	N1.y
1	2	1	2
1	2	3	4
3	4	1	2
3	4	3	4

R.a	R.b
1	2
3	4

Renomeação

- Apresente a relação de todos os funcionários que são de 'Joinville' simplificando o nome da relação para F (ao invés de Funcionarios ex: F.codf, F.cpf, F.nome)
- Apresentar uma listagem das consultas mostrando apenas o código do médico, o código do paciente e a doença, com o cabeçalho: medico, paciente, problema

Otimização usando Renomeação

Resolva:

 Buscar o número dos ambulatórios onde pelo menos dois médicos de Joinville dão atendimento:

```
\pi M.nroa (\sigma M.codm \neq Medicos.codm \wedge M.nroa = Medicos.nroa (\sigma cidade='Joinville' (Medicos) \times \sigma cidade='Joinville' (\rho M (Medicos)) )) melhorando...
```

```
R1 = \pi \text{ codm}, nroa (\sigma \text{ cidade='Joinville'} (\rho \text{ M (Medicos)}))

\pi \text{ M.nroa} (\sigma \text{ M.codm} \neq \text{R2.codm} \land \text{ M.nroa} = \text{R2.nroa} (R1 \times (\rho \text{ R2 (R1)})))
```

Nota: e se fosse preciso mostrar os nomes dos médicos?

Otimização

- Buscar o número dos ambulatórios com capacidade superior à capacidade do ambulatório de número 211
- Buscar o nome e o CPF dos funcionários que recebem salários iguais ou inferiores ao salário do funcionário com CPF '05432105412'
- Buscar pares de **nomes** de médicos diferentes que têm consultas marcadas nas mesmas datas. Apresentar os pares de nomes e a data em comum.

União, Diferença e Intersecção

- Operam somente sobre duas relações compatíveis
 - grau (R_1) = grau (R_2)
 - domínio atributo a_i de R_1 = domínio atributo b_i de R_2
- Resultado:
 - Grau: grau (R_1) [= grau (R_2)]
 - Atributos: nomes dos atributos de R1 (relação esquerda)

União

- Retorna a união das tuplas de duas relações
- Elimina duplicatas automaticamente

 R_2

- Notação: $relacao_1 \cup relacao_2$
- Exemplo: $(R_1 \cup R_2)$

R_1	X	у
1	1	2
	3	4
	2	4

Diferença

- Retorna as tuplas que estão em R₁ e não estão em R₂
- Notação: $relacao_1$ $relacao_2$
- Exemplo: $(R_1 R_2)$

 R_2

R_1	X	У
1	1	2
	3	4
	2	4

у
3
4
2
5

X	у
2	4

Intersecção

- Retorna as tuplas comuns entre R₁ e R₂
- Notação: $relacao_1 \cap relacao_2$
- Exemplo: $(R_1 \cap R_2)$

 R_2

R_1	X	У
1	1	2
	3	4
	2	4

X	у
1	2
3	4

União, Diferença e Intersecção

Resolva: (usando união, diferença e intersecção)

- Buscar **nome** e **CPF** dos médicos e dos pacientes cadastrados no hospital
- Buscar **nome**, **CPF** e **idade** dos médicos, pacientes e funcionários que residem em 'Joinville'
- Buscar número dos ambulatórios onde nenhum médico dá atendimento
- Buscar **nome** e **CPF** dos funcionários que recebem salários abaixo de R\$ 1.200 e não são pacientes
- Buscar **nome** e **CPF** dos pacientes que tiveram alguma consulta marcada em 2015 e em 2016.

Junção (Join)

- Retorna a combinação de tuplas de duas relações R₁ e R₂ que satisfazem um predicado.
- Tipos de junção:
 - Junção Natural
 - Junções Externas
 - Junção externa à esquerda
 - Junção externa à direita
 - Junção externa completa
 - Semi-Junção
 - Anti-Junção

Junção Natural (Natural Join)

• Junção em que a igualdade é predefinida entre todos os atributos que apresentam o mesmo nome nas relações (similar a um produto cartesiano condicional)

• Notação: $relacao_1 \bowtie_{(condição)} relacao_2$

• Exemplo: $(R_1 \bowtie_{(R1.y = R2.y)} R_2)$

 R_2

R_1	X	у	Z
1	1	1	1
	1	1	2
	2	2	3

X	у	Z	W
1	1	1	7
1	1	2	7
2	2	3	4

Junção Natural (Natural Join)

• Exemplo: $(R_1 \bowtie R_2)$

R_1	X	у	Z
1	1	1	1
	1	1	2
	2	2	3

2	X	у	W
	1	1	3
	2	4	2

resultado

X	у	Z	W
1	1	1	3
1	1	2	3

• Exemplo: $(R_1 \bowtie R_2) = (R_1 \times R_2)$

R_1	X	у	Z
1	1	1	1
	1	2	5

R_2	w	t
L	7	1
	4	2

X	у	Z	W	t
1	1	1	7	1
1	1	1	4	2
1	2	5	7	1
1	2	5	4	2

Junção Natural

- Buscar o **número** e a **capacidade** dos ambulatórios do terceiro andar e o **nome** dos médicos que atendem neles.
- Buscar o **nome** e o **salário** dos funcionários de 'Florianopolis' e 'Joinville' que tiveram consulta marcada no ano de 2015.
- Buscar o **número** e o **andar** dos ambulatórios onde nenhum médico atende.
- Buscar o **número** dos ambulatórios que estão no mesmo andar do ambulatório 311 e possuem capacidade superior.

- Junção em que as tuplas de uma ou ambas as relações que não são combinadas são mesmo assim preservadas
- Tipos:
 - Junção Externa à Esquerda (left [outer] join)
 - apenas tuplas da relação à esquerda são preservadas
 - Notação: $relacao_1 \bowtie_{(condição)} relacao_2$
 - Junção Externa à Direita (right [outer] join)
 - apenas tuplas da relação à direita são preservadas
 - Notação: $relacao_1 \bowtie_{(condição)} relacao_2$
 - Junção Externa Completa (full [outer] join)
 - tuplas de ambas as relações são preservadas
 - Notação: $relacao_1 \bowtie_{(condição)} relacao_2$

 R_2

• Exemplos:

R_1	Х	у	Z
	1	1	1
	2	1	2
	3	3	3
	5	5	5

X	а	b
1	7	3
2	4	2
4	4	4

• Exemplos:

$$(R_1 \bowtie R_2)$$

Х	у	Z	а	b
1	1	1	7	3
2	1	2	4	2
3	3	3	-	-
5	5	5	-	-
4	-	-	4	4

$$(R_1 \bowtie_{(R1.x = R2.x)} R_2)$$

X	у	Z	а	b
1	1	1	7	3
2	1	2	4	2
3	3	3	-	-
5	5	5	-	-

$$(R_1 \bowtie R_2)$$

X	у	Z	а	b
1	1	1	7	3
2	1	2	4	2
4	-	-	4	4

- Buscar o **nome**, **especialidade** de todos os médicos e, para aqueles que têm consultas marcadas, mostrar a **data** de suas consultas também.
- Buscar os **números** de todos os ambulatórios e, para aqueles nos quais existe algum médico que dá atendimento, exibir o seu **código** e **nome**
- Mostrar em uma relação o **CPF** e o **nome** de todos os pacientes e funcionários. Para os funcionários, listar também o **salário**. Quando um funcionário for também paciente mostrar apenas uma vez o **CPF**, **nome** e **salário**.

Semi-Junção (Semi Join)

• Versão de junção semelhante à Junção Natural. Difere apenas no fato de que são preservadas apenas as colunas da relação à esquerda (*left semi join*) ou da relação à direita (*right semi join*)

• Notação: $relacao_1 \times relacao_2$ $relacao_1 \times relacao_2$

Semi-Junção (Semi Join)

• Exemplos:

Nome	ld	Dept
Alfredo	3415	Finanças
Beto	2241	Vendas
Carla	3401	Finanças
Djenifer	2202	Produção

Dept	Gerente
Produção	Zelia
Vendas	Yury
Admin	Willy

$$(R_1 \ltimes R_2)$$

Nome	ld	Depto
Beto	3401	Vendas
Djenifer	2202	Produção

$$(R_1 \rtimes R_2)$$

Dept	Gerente
Produção	Zelia
Vendas	Yury

Anti-Junção (Anti Join)

• Junção similar a Junção Natural, mas preservam-se apenas as tuplas da relação da esquerda que possuem valor(es) na(s) coluna(s) comum(s) que não aparecem na relação da direita.

- Notação: $relacao_1 > relacao_2$
- Pode ser escrito como:

$$R \triangleright S = R - (R \ltimes S)$$

Anti-Junção (Anti Join)

• Exemplos:

Nome	ld	Dept
Alfredo	3415	Finanças
Beto	2241	Vendas
Carla	3401	Finanças
Djenifer	2202	Produção

Dept	Gerente
Produção	Zelia
Vendas	Yury
Admin	Willy

$$(R_1 \triangleright R_2)$$

Nome	ld	Depto
Alfredo	3415	Finanças
Carla	3401	Finanças

$$(R_2 \triangleright R_1)$$

Dept	Gerente
Admin	Willy

Ordenar (Order by)

 Ordena os resultados baseado em uma ou mais colunas em ordem crescente ou decrescente

tau

Notação:

 $\tau_{\text{[coluna ordem]}}(relacao_1)$

Resultado

- Ordem pode assumir valores: asc, desc
- A lista de *coluna ordem* deve ser separada por vírgula

R_1	X	у	z
	1	2	а
	4	1	b
	2	3	С
	2	5	С

$$\tau_{x desc, y asc}(R_1)$$

X	у	Z
4	1	b
2	3	С
2	5	С
1	2	а

Agrupar (Group by)

 Agrupa os resultados e permite a realização de alguma função sobre o agrupamento (contagem, soma, ...)

gamma

• Notação:
$$\gamma_{\text{[função(coluna) -> novo_nome]}}(relacao_1)$$

- Função pode ser: count() ou sum()
- A lista de agrupamentos deve ser separada por vírgula

R_1	Х	у	Z
	1	2	а
	4	1	b
	2	3	С
	2	5	С

$$\gamma_{count(x)->qtd, sum(y)->somay}(R_1)$$

Resultado

qtd	somaY
4	11

Semi-Junção, Anti-Junção, Ordenação e Agrupamento

- Listar **CPF**, **nome** e **cidade** dos pacientes que tiveram 'sarampo' usando Semi-Junção.
- Listar o **nome** e a **idade** dos funcionários que nunca foram pacientes no hospital (ou seja, não possuem registro como pacientes) ordenado pela idade (crescente) e caso a idade seja igual ordenar pelo nome (decrescente).
- Calcular qual é a capacidade máxima do hospital considerando os ambulatórios registrados.
- Contar quantos ambulatórios não possuem um médico atendendo.

Divisão

- Operação entre duas relações
 - Dividendo (grau m + n)
 - Divisor (grau n)
- Grau "n": atributos de mesmo nome nas relações
- Grau "m" ou quociente: atributos da relação dividendo cujos valores associam-se com TODOS os valores da relação divisor

• Notação: $relacao_1 \div relacao_2$

OBS: No RELAX, procure deixar as colunas em comum por último.

Divisão

• Exemplos:

R_1	Х	у	Z
	1	1	1
	1	2	1
	2	1	1
	2	2	2
	3	1	3

$$R_2$$

 R_3

$$R_1 \div R_3$$
 $x \quad z$
 $1 \quad 1$

OBS: No RELAX, ocorre problema ao usar uma coluna intermediária (ex: R₃:y). O sistema utiliza como se fosse a última coluna

Divisão

- Buscar o código dos médicos que têm/tiveram consultas com todos os pacientes
- Buscar o CPF, nome e idade dos pacientes que têm/tiveram consultas marcadas com todos os médicos
- Buscar o nome e o CPF dos pacientes que têm consultas marcadas com todos os médicos que atendem nos ambulatórios do segundo andar
- Verificar se todos os médicos 'Ortopedistas' atendem no mesmo ambulatório e, em caso positivo, mostrar o número e o andar deste ambulatório.

Atualização de Relações

• Exclusão

– Notação: relação <=== relação - expressãoConsulta relação <=== expressãoConsulta</p>

• Inclusão

Notação: relação <=== relação ∪ Expr
 onde Expr é um conjunto de tuplas

Alteração

- Notação: $\delta_{\{nome_atributo < === Expr\}}$ (relação) (delta) onde Expr é uma expressão aritmética ou um valor constante

Atualização de Relações

Exemplos:

R_1	X	у	z
	1	1	1
	2	1	3

a)
$$R_1 = R_1 - (\sigma_{x=1} R_1)$$

b) $R_2 = (\sigma_{t=2} R_2)$

c)
$$R_1 = R_1 \cup \{(1,2,2),(1,2,3)\}$$

d) temp =
$$\pi_w$$
 ($\sigma_{t=2} R2$)
 $R_1 = R_1 \cup (\text{temp} \times \{(3,3)\})$

e)
$$\delta_{x < --x+1} R_1$$

f) $temp = \sigma_{t=2} R_2$
 $R_2 = R_2 - temp$
 $\delta_{w < --w-1} temp$
 $R_2 = R_2 \cup temp$

Atualização de Relações

- Incluir registro de consulta para a paciente "Maria Goncalves Silva" no dia 02/03/2017 as 09:45, com a médica "Fernanda Jaicobson" e diagnóstico "gripe"
- O médico de código 100985 precisou transferir as suas consultas do dia 30/08/2016 para o dia 03/09/2016
- Remover os registros de consultas que não possuem uma doença associada, ou seja, doença = '-'