

www.**eritecampinas**.com.br

PROFESSOR DANILO

ATIVIDADE AVALIATIVA 4° BIMESTRE

ONDULATÓRIA - ITINERÁRIO - 07/10/2024

NOTA:

NOME:

ATIVIDADE AVALIATIVA 2 – 4° BIMESTRE

Parte 1 - Experimental

OBJETIVO

Medir o poder rotatório da sacarose.

A primeira parte desta atividade consiste em coletar dados experimentais e não irá compor a nota desta atividade.

Assim, os alunos que faltarem não serão penalizados por isso e os dados experimentais serão compartilhados.

Primeiramente, vamos produzir uma solução de água com sacarose. A solubilidade máxima da sacarose em água é dada pelo gráfico a seguir:

Curva de Solubilidade da sacarose em água

Figura 1: Curva de solubilidade da sacarose em água

Para termos certeza de que vamos conseguir dissolver a sacarose com facilidade, vamos escolher um valor para a massa de sacarose por massa de água bem inferior à solubilidade dada pelo gráfico acima.

1. VALOR ESCOLHIDO DE MASSA DE SACAROSE POR MASSA DE ÁGUA:

Concentração (C)______ g sacarose/ ml de água

Assume que a densidade da água é de 1 g/ml.

Agora, precisamos medir as dimensões do aquário para determinar o volume de água que vamos preparar de solução.

2. DIMENSÕES DO AQUÁRIO. EM DECÍMETROS:

Comprimento interno do aquário (L):	dm
Largura interna do aquário (W):	dm
Altura de água (H):	dm

Agora, vamos determinar a massa de sacarose que vamos utilizar para a solução. Para isso, resolva os exercícios número 1 e 2.

3. VOLUME DE ÁGUA UTILIZADO, EM MILITROS:

Volume de água (V)_____ ml

4. MASSA DE SACAROSE (MEDIDO NA BALANÇA) UTILIZADO NESSE EXPERIMENTO:

Massa de sacarose (ms)_____ ml

Uma vez tendo a solução, podemos determinar o poder rotatório do açúcar $[\alpha]^{\!T}_\lambda.$ Nessa nossa representação, λ representa o comprimento de onda do laser que vamos utilizar e ${\it T}$ a temperatura, em °C (graus Célsius) da água durante o experimento. Anote estes dados abaixo:

5.	COMPRIMENTO DE ONDA DO LASE UTILIZADO	(EN
	NANÔMETROS):	•

Comprimento de onda do laser (λ)_____ nm

6. TEMPERATURA DA SOLUÇÃO

Temperatura da solução (T)_____°C

Com isso podemos escrever o poder rotatório $[\alpha]_{\lambda}^{T}$ da sacarose com os valores do comprimento de onda e da temperatura.

7. PODER ROTATÓRIO DA SACAROSE $[\alpha]_{\lambda}^{T}$ PARA AS CONDIÇÕES DO EXPERIMENTO:

[α]–

A **lei de Biot** nos fornece uma relação entre o ângulo de rotação α (em graus) no campo eletromagnético causado pela solução de substância oticamente ativa (no nosso caso, a sacarose), o poder rotatório da substância de estudo $[\alpha]_{\lambda}^{T}$ para determinado comprimento de onda λ e temperatura T, a distância percorrido pela luz L na solução (em decímetro) e a concentração da substância oticamente ativa C (em g/ml). Esta relação (**lei de Biot**) é apresentada abaixo:

$$\alpha = [\alpha]_{b}^{T} \times L \times C$$
 [Lei de Biot]

Vamos determinar o poder rotatório da sacarose a partir de dois valores de L, pois podemos virar o aquário. Para ajudar com os cálculos, vamos colocar abaixo os dados que já temos:

8. DADOS OBTIDOS ATÉ AGORA:

 L_1 ____ dm L_2 ____ dm C ____ g/ml

Vamos efetuar as medidas dos ângulos de rotação para os dois comprimentos. Para isso, devemos verificar no nosso polarímetro qual a posição para que a intensidade do laser, ao passar pelo filtro polarizador, seia mínima.

Usando o transferidor acoplado ao experimento, indique se tivemos que rotacionar o transferidor no sentido horário ou antihorário e de quanto tivemos que rotacionar (α_0).

9. SENTIDO DE ROTAÇÃO DO TRASNFERIDOR E ÂNGULO INICIAL

Sentido de rotação: _____

Por fim, com o aquário posicionado adequadamente, meça as posições angulares ($\alpha_{\textit{final1}}$ e $\alpha_{\textit{final2}}$) do transferidor para ambos os comprimentos considerados no experimento.

10. POSIÇÕES ANGULARES COM A SOLUÇÃO

 $lpha_{ extit{final1}}$ ______

www.**eritecampinas**.com.br

PROFESSOR DANILO ATIVIDADE AVALIATIVA 4° I	BIMESTRE ONDULATÓRIA	A – ITINERÁRIO – 07/10/2024
No exercício 3, determine os valores dos ângulos de rotação para cada um dos comprimentos utilizados e termine de resolver os		1 ponto
exercícios avaliativos a seguir.	7. Para $[\alpha]_{598}^{20} = +66,5$, qual a c	or da luz utilizada? Considere a
Barta O. Francisco and Patient	tabela a seguir para responder a	esta pergunta.
Parte 2 – Exercícios avaliativos	Cor da luz	Frequência da cor (10 ¹⁴ Hz)
	Violeta	6,70 a 7,50
1 ponto	Anil	6,00 a 6,89
1. Com base no item 2 da Parte 1 – Experimental, determine o	Azul	5,70 a 5,99
volume de água a ser utilizado no experimento, em mililitros (ml).	Verde	5,30 a 5,69
volume de agua a ser dunzado no experimento, em ministros (mi).	Amarela	5,00 a 5,29
	Alaranjada	4,80 a 4,99
	Vermelha	4,00 a 4,79
	Note e adore:	
1 ponto	A velocidade da luz é 3·10 ⁸ m 1 nm = 10 ⁻⁹ m; A relação entre comprimento de e a sua frequência é:	e onda, velocidade de uma onda
 Com base no exercício 2 e no item 2 da Parte 1 – Experimental, determine a massa de sacarose que vamos utilizar no experimento. 	Em unidades do Sistema Intern	λ·f; nacional, a velocidade é em m/s, metros (m) e a frequência em
1 ponto 3. Com base nos exercícios anteriores e nas medidas obtidas na Parte 1 – Experimental, determine os ângulos de rotação (α_1 para L_1 e α_2 para L_2).	 8. Considere uma solução de [α]₅₉₈²⁰ = +66,5, o comprimento pangulo de rotação obtido foi de dessa solução. 	ercorrido pela luz foi de 1 dm e d
 1 ponto 4. Com base na lei de Biot, determine a unidade de medida de [α]^T_λ. 5. Com base nas instruções dos exercícios anteriores, determine 	9. Se o comprimento da soluçã rotação poderá ser superior a 1 erro de medida. Digamos qu concentração de sacarose de u dessa amostra for de 1 g/ml e [o mínimo dessa solução para dar n	80 °C e isso pode acarretar un le estamos querendo medir a lima amostra. Se a concentração x1 ²⁰ ₅₉₈ = +66,5, qual o comprimento
o valor experimental de $[\alpha]_{\lambda}^{T}$ para as condições do presente experimento. Lembre-se que foram feitas duas medidas. As próximas 5 questões são baseadas em dados coletados de fontes externas e servirão de base para comparar com nosso resultado experimental	10. O resultado do exercício an conseguimos determinar de eletromagnético sofreu quando oticamente ativa. Assim, suponí seja de 200° para uma concenta [α] ₅₉₈ = +66,5 e um comprimer	quantas voltas o campo em uma solução de substância ha que o ângulo de rotação rea tração também real de 1 g/ml o
nosso resultado experimental. 1 ponto 6. Na literatura, é possível encontrar que o poder rotatório para a sacarose $[\alpha]_{598}^{20} = +66,5$, nas mesmas unidades que trabalhamos	rotação que pensaríamos estar que calcularíamos? Esse resulta porquê o professor sugeriu u açúcar.	medindo e qual a concentração do complementa a justificativa de

neste experimento. Qual a temperatura e comprimento de onda a que se refere este poder rotatório?