Документация к "Моделирование и визуализация динамических электромагнитных полей"

29 ноября 2020 г.

Оглавление

1	Математическая модель		
	1.1	Электрическое поле	2
	1.2	Магнитное поле	•
	1.3	Гравитационное поле	٠

Глава 1

Математическая модель

В данной программе реализовано три вида полей: электрическое, магнитное и гравитационное. Каждое из полей влияет на все тела, присутсвующие в симуляции, а также этображаются диаграммы напряженностей этих полей.

Движение всех материальных точек ограничивается одной плоскостью, однако пространство счиитается трёхмерным, за счёт чего реализовано магнитное поле.

1.1 Электрическое поле

Электрическое взаимодействие реализовано следующим образом: Каждая материальная точка, находящаяся на сцене, обладает зарядом и создаёт электрическое поле, напряженность которого задаётся формулой:

$$\bar{E} = k \frac{q}{|\bar{r}|^3} \cdot \bar{r}$$

где E - напряженность поля в данной точке, создаваемая данным заярдом; k - электричсекая постоянная; q - величина звряда; r - вектор с началом в точке с зарядом и концом в исследуемой точке пространства.

Взаимодействие передаётся следующим образом:

сила взаимодействия материальной точки с зарядом q_1 на материальную точку с зарядом q_2 равна $F=k\frac{q_1q_2}{|\bar r|^3}\cdot \bar r$, где $\bar r$ - вектор, с началом в точке с зарядом q_1 и концом в точке с зарядом q_2

1.2 Магнитное поле

$$\bar{B} = \frac{\mu_0}{4\pi} \frac{q(\bar{\upsilon} \times \bar{r})}{|\bar{r}|^3}$$

$$\bar{F} = \frac{\mu_0}{4\pi} \frac{q_1 q_2}{|\bar{r}|^3} \cdot (\upsilon_2 \times (\bar{\upsilon_1} \times \bar{r}))$$

1.3 Гравитационное поле

$$\bar{g} = G \frac{m}{|\bar{r}|^3} \cdot \bar{r}$$