WL-TR-93-4090

AD-A273 741

THE MECHANICAL PROPERTY DATA BASE FROM AN AIR FORCE/INDUSTRY COOPERATIVE TEST PROGRAM ON ADVANCED ALUMINUM ALLOYS (7064 AND CW67)

MARY ANN PHILLIPS and STEVEN R. THOMPSON Materials Engineering Branch Systems Support Division

AUGUST 1993

Interim Report for Period December 1986 - May 1990

Approved for public release; distribution is unlimited.

Materials Directorate
Wright Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, Ohio 45433-7734

93 12 13 066

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This Technical report has been reviewed and is approved for publication.

_71	LUL	illnx	Theles	ريور
MARY	AN	PHILLI	PS, Project Bn	gineer
Engine	erine	and Desig	n Data	_

Materials Engineering Branch

STEVEN R. THOMPSON, Project Engineer

Engineering and Design Data Materials Engineering Branch

Accesion For

THEODORE J. REINHART, Chief Materials Engineering Branch Systems Support Division

Materials Directorate

THOMAS D. COOPER, Chief Systems Support Division

Materials Directorate
Wright Laboratory

DTIC	ounced	*
By Dist.ib	ution /	
А	vailability	Codes
Dist	Avail ar Spec	
A-1		

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WL/MLSE, WPAFB, OH 45433-7734 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

The first of the state of the s 3. REPORT TYPE AND DATES COVERED INTERIM 12/01/86--05/01/90 2. REPORT DATE 1. AGENCY USE ONLY Leave August 1993 4. TITLE AND SUBTITLE
The Mechanical Property Data Base from an Air Force/ 5. FUNDING NUMBERS Industry Cooperative Test Program on Advanced Aluminum PE 62102F PR 2418 1 Alloys (7064 and CW67) 07 TA 6. AUTHOR(S) WU 03 Mary Ann Phillips Steven R. Thompson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Materials Directorate WL-TR-93-4090 Wright Laboratory Air Force Materiel Command Wright Patterson AFB OH 45433-7718 9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER Materials Directorate Wright Laboratory WL-TR-93-4090 Air Force Materiel Command Wright Patterson AFB OH 45433-7718

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT	12b. DISTRIBUTION CODE	i
Approved for Public Release; Distribution is unlimited.		
i e e e e e e e e e e e e e e e e e e e		!

13. ABSTRACT (Maximum 200 words)

A mechanical property data base on Kaiser produced second generation P/M alloys 7064 forging and extrusion and Alcoa produced P/M alloys CW67 sheet, plate, forging and extrusion was generated. Mechanical property data consisted of tension, compression, shear, bearing and fracture toughness values. Fatigue, fatigue crack growth and spectrum fatigue crack growth data were generated.

14. SUBJECT	TERMS			15. NUMBER OF PAGES
CW 67	tension	bearing	spectrum	130
7064	compression	n fatigue	R-curve	16. PRICE CODE
P/M	shear	fracture toughness		
17. SECURIT	CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclass	sified	Unclassified	Unclassified	UL
NSN 7540-01-	-280-5500		S	tandard Form 298 (Rev. 2-89)

TABLE OF CONTENTS

SECT	ION			PAGE
1.	INTRODUCTI	ON		1
2.	MATERIALS A	AND TESTS		3
3.	PRESENTATIO	ON		4
4.	RESULTS AN	D DISCUSSIO	ON	5
5 .	CONCLUSION	NS		6
APPENDICES				
	APPENDIX N	7064	EXTRUSION	7
	APPENDIX O	7064	FORGING	24
	APPENDIX P	CW67	SHEET	48
	APPENDIX Q	CW67	PLATE	65
	APPENDIX R	CW67	EXTRUSION	70
	APPENDIX S	CW67	FORGING	100

LIST OF FIGURES

FIGURE		PAGE
N1	Fatigue Results for 7064-T74511 Extrusion (Longitudinal Orientation) LTV	17
N2	Fatigue Crack Growth Rate Data for Two 7064-T74511 Extrusion Specimens (L-T). Air Force.	18
N3	Fatigue Crack Growth Rate Data for Two 7064-T74511 Extrusion Specimens (T-L). Air Force.	19
N4	Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force.	20
N5	Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion. Air Force.	21
N6	FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force.	22
N7	FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion. Air Force.	23
O1	Fatigue Data for 7064-T74 Forging (Longitudinal Orientation, R=0.1, Kt=1 and Kt=3). LTV.	40
02	Fatigue Data for 7064-T74 Forging (Longitudinal Orientation, R=-1.0, and Kt=1). McDonnell Aircraft Company.	42
O3	Fatigue Crack Growth Rate Data for 7064-T74 Forging (T-L Orientation, WOL Type Specimen). McDonnell Aircraft Company.	43
04	Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force.	44
O5	Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging. Air Force.	45
06	FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force.	46
07	FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging. Air Force.	47
P1	R-Curve Data for CW67 Sheet (L-T Orientation).	58
P2	R-Curve Effective Crack Length Adjusted for Plastic Zone	58

FIGURE		PAGE
Р3	Fatigue Crack Growth Rate Data for CW67 Sheet (L-T Orientation, R=0.1, Lab Air and RT) McDonnell Aircraft Company.	61
P4	Fatigue Crack Growth Rate Data for CW67 Sheet (L-T Orientation,, R=0.33, Lab Air and RT,. McDonnell Aircraft Company.	62
P5	Fatigue Crack Growth Rate Data for CW67 Sheet (T-L Orientation, R=0.1, Lab Air and RT). McDonnell Aircraft Company.	63
P6	Fatigue Crack Growth Rate Data for CW67 Sheet (T-L Orientation, R=0.33, Lab Air and RT). McDonnell Aircraft Company.	64
Ql	R-Curve Data for CW67 Plate (L-T Orientation). Martin Marietta.	67
Q2	R-Curve Effective Crack Length Adjusted for Plastic Zone Data for CW67 Plate (L-T Orientation). Martin Marietta.	67
R1	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and R=0.1). McDonnell Aircraft Company.	79
R2	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and R=0.33). McDonnell Aircraft Company.	80
R3	Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and R=0.1). McDonnell Aircraft Company.	81
R4	Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and R=0.33). McDonnell Aircraft Company.	82
R5	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation). Air Force.	83
R6	Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation). Air Force.	84
R7	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and High Humidity). Air Force.	85
R8	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and Specimen GLT-1). LTV.	86
R9	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and Specimen GLT-2). LTV.	87
R10	Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and Specimen GLT-3). LTV.	88
R11	Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and Specimen GTL-1). LTV.	89
R12	Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and Specimen GTL-2), LTV.	90

FIGURE		PAGE
R13	Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and Specimen GTL-3). LTV.	91
R14	Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for CW67 Extrusion (CSP-2). Air Force.	92
R15	Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-2) Air Force.	93
R16	Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for CW67 Extrusion (CSP-4). Air Force.	94
R17	Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-4). Air Force.	95
R18	FALSTAFF Spectrum Fatigue Crack Length vs Flights (CSP-1). Air Force.	96
R19	FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-1). Air Force.	97
R20	FALSTAFF Spectrum Fatigue Crack Length vs Flights (CSP-3). Air Force.	98
R21	FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-3). Air Force.	99
S1	Fatigue Crack Growth Rate Data for CW67 Forging (L-T Orientation). Air Force.	110
S2	Fatigue Crack Growth Rate Data for CW67 Forging (T-L Orientation). Air Force.	111
S 3	Fatigue Crack Growth Rate Data for CW67 Forging (S-T Orientation). Air Force.	112
S4	Comparison of CW67 Forging and 7050 Plate Mini-TWIST Spectrum Fatigue Crack Growth Rate Data. Air Force.	113
S 5	Comparison of CW67 Forging and 7050 Plate FALSTAFF Spectrum Fatigue Crack Growth Rate Data Air Force	114

LIST OF TABLES

TABLE		PAGE
N1	Tensile Results at t/2 Location for Kaiser 7064-T745 Extrusion, Longitudinal Orientation	8
N2	Tensile Results at t/2 Location for Kaiser 7064-T74511 Extrusion, Long Transverse Orientation	8
N3	Compression Results at t/2 Location for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation	\$
N4	Compression Results at t/2 location for Kaiser 7064-T74511 Extrusion, Long Transverse Orientation	9
N5	Iosipescu Shear Results for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation	10
N6	Iosipescu Shear Results for Kaiser 7064-T74511 Extrusion, Long Transverse Orientation	10
N7	Bearing Results for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation and e/D=1.5	11
N8	Bearing Results for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation and e/D=2.0	12
N9	Bearing Results for Kaiser 7064-T74511 Extrusion, Long Transverse Orientation and e/D=2.0	12
N10	Fracture Toughness Results for Kaiser 7064-T74511 Extrusion, L-T Orientation	13
N11	Fracture Toughness Results for Kaiser 7064-T74511 Extrusion, T-L Orientation	14
N12	Fatigue Results with Kt=1.0 and R=0.1 for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation	15
N13	Fatigue Results with Kt=3.0 and R=0.1 for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation	16
O1	Tensile Results at t/2 Location for Kaiser 7064-T74 Forging, Longitudinal Orientation	25
02	Tensile Results at t/2 Location for Kaiser 7064-T74 Forging, Long Transverse Orientation	26
O3	Tensile Results at t/2 Location for Kaiser 7064-T74 Forging, Short Transverse Orientation	27

TABLE		PAGE
04	Compression Results at t/2 Location for Kaiser 7064-T74 Forging, Longitudinal Orientation	28
O5	Compression Results at t/2 Location for Kaiser 7064-T74 Forging, Long Transverse Orientation	29
O 6	Slotted Shear Results for Kaiser 7064-T74 Forging, Longitudinal Orientation	30
07	Amsler Double Shear Results for Kaiser 7064-T74 Forging, L-T Orientation	30
O8	Iosipescu Shear Results for Kaiser 7064-T74 Forging, Longitudinal Orientation	31
O9	Iosipescu Shear Results for Kaiser 7064-T74 Forging, Long Transverse Orientation	31
010	Bearing Results for Kaiser 7064-T74 Forging, Longitudinal Orientation and e/D=1.5	32
011	Bearing Results for Kaiser 7064-T74 Forging, Long Transverse Orientation and e/D=1.5	32
012	Bearing Results for Kaiser 7064-T74 Forging, Longitudinal Orientation and e/D=2.0	33
O13	Bearing Results for Kaiser 7064-T74 Forging, Long Transverse Orientation and e/D=2.0	33
O14	Fracture Toughness Results for Kaiser 7064-T74 Forging, L-T Orientation	34
O15	Fracture Toughness Results for Kaiser 7064-T74 Forging, T-L Orientation	35
O16	Fracture Toughness Results for Kaiser 7064-T74 Forging, S-T Orientation	36
O17	Fracture Toughness Results for Kaiser 7064-T74 Forging, S-L Orientation	37
O18	Fatigue Results for Kaiser 7064-T74 Forging (Longitudinal Orientation, Kt=1.0 and R=0.1)	38
O19	Fatigue Results for Kaiser 7064-T74 Forging (Longitudinal Orientation, Kt=3.0 and R=0.1)	39
O20	Fatigue Results for Kaiser 7064-t74 Forging (Longitudinal Orientation, Kt=1.0 and R=-1.0)	41

TABLE		PAGE
P1	Tensile Results for Alcoa CW67 Sheet, Longitudinal Orientation	49
P2	Tensile Results for Alcoa CW67 Sheet, Long Transverse Orientation	49
P3	Compression Results for Alcoa CW67 Sheet, Longitudinal Orientation	50
P4	Compression Results for Alcoa CW67 Sheet, Long Transverse Orientation	50
P5	Slotted Shear Results for Alcoa CW67 Sheet, Longitudinal Orientation	51
P6	Bearing Results for Alcoa CW67 Sheet, Longitudinal Orientation and e/D=1.5	52
P7	Bearing Results for Alcoa CW67 Sheet, Long Transverse Orientation and e/D=1.5	52
P8	Bearing Results for Alcoa CW67 Sheet, Longitudinal Orientation and e/D=2.0	53
P9	Bearing Results for Alcoa CW67 Sheet Long Transverse Orientation and e/D=2.0	53
P10	R-Curve Data for Alcoa CW67 Sheet, Specimen 32 and L-T Orientation	54
P11	R-Curve Data for Alcoa CW67 Sheet, Specimen 33 and L-T Orientation	55
P12	R-Curve Data for Alcoa CW67 Sheet Specimen 34 and T-L Orientation	56
P13	R-Curve Data for Alcoa CW67 Sheet, Specimen 35 and T-L Orientation	57
P14	R-Curve Data Associated with Figures P1 and P2 (Specimen 1)	59
P15	R-Curve Data Associated with Figures P1 and P2 (Specimen 2)	60
Q1	Tensile Results for Alcoa CW67 Plate, Longitudinal Orientation	66
Q2	Tensile Results for Alcoa CW67 Plate, Long Transverse Orientation	66
ന്ദ	R-Curve Data Associated with Figures O1 and O2 (Specimen 1)	68

TABLE		PAGE
Q4	R-Curve Data Associated with Figures Q1 and Q2 (Specimen 2)	69
R1	Tensile Results for Alcoa CW67 Extrusion, Longitudinal Orientation	71
R2	Tensile Results for Alcoa CW67 Extrusion, Long Transverse Orientation	71
R3	Compression Results for Alcoa CW67 Extrusion, Longitudinal Orientation	72
R4	Compression Results for Alcoa CW67 Extrusion, Long Transverse Orientation	72
R5	Iosipescu Shear Results for Alcoa CW67 Extrusion, Longitudinal Orientation	73
R6	Iosipescu Shear Results for Alcoa CW67 Extrusion, Long Transverse Orientation	73
R7	Amsler Double Shear Results for Alcoa CW67 Extrusion L-S Orientation	74
R8	Bearing Results for Alcoa CW67 Extrusion, Longitudinal Orientation and e/D=1.5	75
R9	Bearing Results for Alcoa CW67 Extrusion, Long Transverse Orientation and e/D=1.5	75
R10	Bearing Results for Alcoa CW67 Extrusion, Longitudinal Orientation	76
	and e/D=2.0	
R11	Bearing Results for Alcoa CW67 Extrusion, Long Transverse Orientation and e/D=2.0	76
R12	Fracture Toughness Results for Alcoa CW67 Extrusion L-T Orientation	77
R13	Fracture Toughness Results for Alcoa CW67 Extrusion T-L Orientation	77
R14	Fracture Toughness Results for Alcoa CW67 Extrusion S-T Orientation	78
R15	Fracture Toughness Results for Alcoa CW67 Extrusion S-L Orientation	78
S1	Tensile Results for Alcoa CW67 Forging, Longitudinal Orientation	101
S2	Tensile Results for Alcoa CW67 Forging, Long Transverse Orientation	101

TABLE		PAGE
S 3	Tensile Results for Alcoa CW67 Forging, Short Transverse Orientation	102
S4	Compression Results for Alcoa CW67 Forging, Longitudinal Orientation	103
S 5	Compression Results for Alcoa CW67 Forging, Long Transverse Orientation	103
S 6	Compression Results for Alcoa CW67 Forging Short Transverse Orientation	104
S7	Pin Shear Results for Alcoa CW67 Forging, Longitudinal Orientation	105
S8	Pin Shear Results for Alcoa CW67 Forging, Long Transverse Orientation	105
S 9	Bearing Results for Alcoa CW67 Forging	106
S10	Fracture Toughness Results for Alcoa CW67 Forging, L-T Orientation	107
S 11	Fracture Toughness Results for Alcoa CW67 Forging, L-S Orientation	107
S12	Fracture Toughness Results for Alcoa CW67 Forging, T-L Orientation	108
\$13	Fracture Toughness Results for Alcoa CW67 Forging, T-S Orientation	108
\$14	Fracture Toughness Results for Alcoa CW67 Forging,	109

PREFACE

This report was prepared by the Materials Engineering Branch (WL/MLSE), Systems Support Division, Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, under Project 2418, "Metallic Structural Materials," Task 241807, "Systems Support," Work Unit 24180703, "Engineering and Design Data."

The authors would like to thank the participants Lockheed GA, LTV TX, Martin Marietta LA, McDonnell Aircraft Company MO and the Air Force.

INTRODUCTION

High performance aerospace systems are dependent on materials that are lighter, have improved mechanical properties, and/or offer a cost savings. Aluminum alloys that met these criteria were the newly developed aluminum-lithium alloys and the second generation powder metallurgy alloys.

In 1985, the Air Force along with the aerospace community found it important to investigate the potential of these promising aluminum alloys. A cooperative program was formed by the Wright Laboratory Materials Directorate, Systems Support Division, and a number of aerospace industries. The Air Force would obtain the test material from the producers, compile the test data, and submit reports to the participants. The participants agreed to support the program by performing mechanical property tests which includes tension, compression, bearing, shear, fracture toughness, and fatigue related properties (S/N, da/dn). The Air Force elected to perform spectrum fatigue crack growth testing on most alloys. A list of participants is shown in the following table.

This interim report contains the powder metallurgy (P/M) aluminum alloys: 7064-T74511 extrusion, and 7064-T74 forging produced by Kaiser and CW67 sheet, plate, extrusion, and forging produced by Alcoa. Comparisons to other materials and ranking of materials are generally avoided since each potential application may be based on different evaluation criteria.

TABLE

PARTICIPANTS AND ADVANCED ALUMINUM ALLOYS
IN THE COOPERATIVE TEST PROGRAM

				ALUMINUM LITHIUM ALLOYS			PAM ALUMINUM ALI												
	P	PECHINEY ALCON INCOMAP! ALCON REY			REYNOLDS	YNOLDS KAISER ALCO		0	OA										
PARTICIPANTS	2091 - T3 Sheet (0.063*T)	2091-T351 Plate (0.420°T)	2091 - 16 Forging	8090-T651 T Extrusion	8090-T651 Extrusion	6090-T8771 Plate (1.75T)	PM IN905XL Forging	PM ALBOSKI, Forging	E	2091 - T3 Sheet (0.144-T)	3	1 1	Weldalle 049 RX815 Plate (0.57)	7064-174511 Extrusion	7064-T74 Forging	CW67 Sheel (0.063°T)	CW67 Plate (0.40°T)	CW67 Extrusion	CW67 Forping
Air Force WPAFB, OH		*			×	×	×	×	×	×	×	×	×	×	×		}	×	×
Army, MA	Ì		}		}							×	×						
AVCO, TN	ļ		1						×						}			1	
Boeing, WA	×	×	×	X											j				
Douglas Aircraft, CA	}							×	×	x	×	×	×						
General Dynamics, CA	×	×							×	×	×		×		}				
General Dynamics, TX	×	*	×	×		}	x		×	×	×	×			}				
Grumman Aerospace, NY	×	! K		1	×		×							x	×			×	×
Jet Propulsion, CA								×					×						
Lockheed, CA	×			×				×	×		×				}				
Lockheed, GA			*		×	}			×	*					×				×
LTV. TX	×	}		×			x	×	×			×		x	×			×	
Martin Marietta, LA	×	×	×	×	×	×	×	×	×	×	×	×		x	×	×	×	×	×
McDonnell Douglas Astro, CA	j									×			×						
McDonnell Douglas Helicopter, AR				j I				×											
McDonnell Douglas Missile Sys, MO						1							×		}				
McDonnell Aircraft, MO	×						×	×	×						×	×			×
NASA, VA					×		x	×					×						
Naval Air Development Center	1	k	}	×			i	×			×				}				×
Northrop, CA	×	k :	×		×	×	×	×	×	×	×	×	×				1		
Sikorsky, CT							×	}	×						×		×		×
Sundstrand, IL	}					}							x						
Wyman-Gordon	1							×							1		(

MATERIALS AND TESTS

The Kaiser P/M aluminum alloys 7064-T74511 1 inch x 4 inch x 48 inch extrusion and 7064-T74 1.6 inch x 4 inch x 18 inch forging were received in December 1986. The Alcoa P/M aluminum alloys were received on various dates: CW67 0.063-inch sheet and 0.4-inch plate April 1989, CW67 1.5 inch x 4.5 inch x 36 inch extrusion August 1987 and CW67 2.5 inch x 6 inch x 18 inch hand forging October 1988.

The 7064 extrusion was tested by LTV, Martin Marietta and the Air Force. Forged 7064 was tested by Lockheed, LTV, Martin Marietta, McDonnell Aircraft Company, and the Air Force. CW67 sheet was tested by Martin Marietta and McDonnell Aircraft Company. Only Martin Marietta tested CW67 plate. LTV, McDonnell Aircraft Company and the Air Force tested the CW67 Extrusion material. CW67 forging was tested by Martin Marietta and the Air Force.

Mechanical properties (tension, compression, shear, bearing and fracture toughness), fatigue, and constant amplitude fatigue crack growth tests were generated according to ASTM standards, unless otherwise specified.

Spectrum fatigue crack growth rate tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

PRESENTATION

Each participant compiled a data package which contained the data they generated. Some of these data packages contain discussions, and in other cases, only the data were provided. The tensile, compression, shear and bearing are in tabular form. Fatigue and toughness values are shown in tabular and graphical form. Fatigue crack growth and spectrum fatigue crack growth are in graphical form.

RESULTS AND DISCUSSION

The data generated by the participants on the 7064 extrusion, 7064 forging, CW67 sheet, CW67 plate, CW67 extrusion and CW67 forging are in the appendices. The table lists the P/M aluminum alloy, form, and the appendix where the data can be found in the following table.

TABLE CONTENTS OF APPENDICES

P/M Aluminum Alloy	Form	Appendix
7064-T74511	Extrusion	N
7064-T74	Forging	0
CW67	0.063" Sheet	P
CW67	0.40" Plate	Q
CW67	Extrusion	R
CW67	Forging	S

CONCLUSIONS

Five aerospace laboratories participated in generating data on the 7064 and CW67 P/M aluminum alloys for the cooperative test program. These data combined with previous interim reports on the Air Force/Industry Cooperative Test Program on Advance Aluminum Alloys provide an extensive data base on advanced aluminum alloys.

APPENDIX N

7064-T74511 EXTRUSION 1"X4"X48"

TABLE N1

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	MODULUS (MSI)
LTV	RT	LONG	85.8	79.4	12.2	21.6	10.0
			87.5	81.7	12.3	19.3	9.7
			87.7	82.2	14.3	22.3	10.3
AIR FORCE	RT	LONG	82.2	75.8	10.5	18.0	
			80.7	73.9	11.3	24.3	
			81.2	74.7	12.0	25.6	
MARTIN	RT	LONG	91.6	86.5	18.0	27.5	9.8
MARIETTA,			90.5	85.3	20.0	30.6	9.4
LOUISIANA			90.2	85.0	19.0	31.0	9.7
		AVERAGE	86.4	80.5	14.4	24.5	9.8
	STANDARD I	EVIATION	4.2	4.8	3.6	4.6	0.3

TABLE N2

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ultimate Strength (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	MODULUS (MSI)
LTV	RT	L TRANS	83.0 85.3 85.5	76.6 79.6 80.2	9.0 8.5 11.0	11.8 19.1 22.7	9.2 10.4 10.4
AIR FORCE	RT	L TRANS	79.2 78.3 79.1	72.8 72.0 72.6	10.0 10.7 11.3	21.6 25.6 27.8	
MARTIN MARIETTA, LOUISIANA	RT	L TRANS	88.8 89.2 88.0	82.7 83.2 82.7	8.0 9.0 10.0	7.8 2.0 16.1	
		AVERAGE	84.0	78.0	9.7	17.2	10.1
	STANDARD DE	EVIATION	4.3	4.6	1.2	8.6	0.5

TABLE N3

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
LTV	RT	LONG	97.4	14.8
			79.8	10.3
			83.0	11.8
AIR FORCE	RT	LONG	83.3	
			81.6	
			82.5	
MARTIN	RT	LONG	87.1	11.1
MARIETTA,			86.0	11.1
LOUISIANA			86.9	11.1
		AVERAGE	85.3	11.7
	STANI	DARD DEVIATION	5.2	1.6

TABLE N4

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
LTV	RT	L TRANS	82.7 82.9 82.8	10.8 11.8 11.2
AIR FORCE	RT	L TRANS	83.3 81.8 84.1	
MARTIN MARIETTA, LOUISIANA	RT	L TRANS	87.3 86.1 86.6	11.4 11.3 11.9
		AVERAGE	84.2	11.4
	STANI	DARD DEVIATION	2.0	0.4

TABLE N5

IOSIPESCU SHEAR RESULTS FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	ORIENTATION	ULTIMATE STRENGTH (KSI)
LTV	LONG	49.7 51.0 50.9
	AVERAGE	50.5
	STANDARD DEVIATION	0.7

TABLE N6

IOSIPESCU SHEAR RESULTS FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	ORIENTATION	ULTIMATE STRENGTH (KSI)
LTV	L TRANS	50.4 49.8 50.2
	AVERAGE	50.1
	STANDARD DEVIATION	0.3

TABLE N7
BEARING RESULTS FOR KAISER

7064-T74511 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	LONG	1.5	124.5 134.4 129.8	93.9 111.9 108.2
		AVERAGE	129.6	104.7
	STANDA	RD DEVIATION	5.0	9.5

TABLE N8

BEARING RESULTS FOR KAISER

7064-T74511 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	LONG	2.0	159.5 169.5	122.7 122.2
AIR FORCE	LONG	2.0	160.8	117.0 139.5
AIR FORCE	20110	2.0	166.7 162.3	125.3 120.0
		AVERAGE	163.7	124.5
	STANDAI	RD DEVIATION	3.8	7.9

TABLE N9 BEARING RESULTS FOR KAISER

7064-T74511 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
AIR FORCE	L TRANS	2.0	164.2 159.3 163.5	123.8 114.7 115.6
		AVERAGE	162.3	118.0
	STANDA	ED DEVIATION	2.7	5.0

TABLE N10

FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	ORIENTATION	KIC (KSI IN^0.5)	Kq (KSI IN^0.5)	COMMENT
LTV	L-T		32.6	(1)
			33.5	(1)
			29.6	(1)
AIR FORCE	L-T		29.5	(2)
			27.9	(2)
			28.8	(2)
MARTIN	L-T	24.2		VALID
MARIETTA,			26.3	(3)
LOUISIANA			25.2	(3)
	AVERAGE	24.2	29.2	
	STANDARD DEVIATION		2.8	

- (1): INVALID DUE TO TEST SPECIMEN FRACTURE SURFACE VIOLATED KIC REQUIREMENTS
- (2): INVALID DUE TO SURFACE CRACK LENGTH/AVERAGE CRACK LENGTH > 1.1
- (3): INVALID DUE TO CRACK SIZE DID NOT EXCEED PLASTIC ZONE SIZE

TABLE N11

FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	ORIENTATION	KIC (KSI IN^0.5)	Kq (KSI IN^0.5)	COMMENT
LTV	T-L	24.6 25.0 25.2		VALID VALID VALID
AIR FORCE	T-L	23.5 24.1 23.8		VALID VALID VALID
MARTIN MARIETTA, LOUISIANA	T-L	17.1 17.1	10.2	(1)
	AVERAGE STANDARD DEVIATION	22.6	10.2	

^{(1):} INVALID DUE TO PRECRACKING LOADS WERE TOO HIG.I

TABLE N12 FATIGUE RESULTS WITH Kt=1.0 AND R=0.1 FOR KAISER 7064-T74511 EXTRUSION

COMPANY	ORIENTATION	LIMIT STRESS (KSI)	CYCLES TO FAILURE
LTV	Long	65.6	13,900
		65.0	1,800
		56.6	23,400
		47.9	49,900
		47.9	75,700
		47.8	318,100 #
		45.0	6,500
		43.5	2,000,000 *
		39.4	38,500
		39.1	93,100 #
		37.0	193,900
		35.0	113,000
		30.0	800,000 *
		25.2	2,300,000 *

^{(*):} INDICATES A RUN OUT TEST (#): INDICATES SPECIMEN FAILED IN THE THREADS

TABLE N13

FATIGUE RESULTS WITH Kt=3.0 AND R=0.1 FOR

KAISER 7064-T74511 EXTRUSION

COMPANY	ORIENTATION	LIMIT STRESS (KSI)	CYCLES TO FAILURE
LTV	LONG	43.5 34.8	5,100 10,800
		32.6	
			19,700
		31.3	23,500
		30.5	66,200
		28.3	39,300
		26.1	56,700
		26.1	40,400
		24.4	72,000
		23.9	3,000,000 *
		23.5	1,998,100
		21.8	2,000,000 *
		21.7	3,000,000 *
		20.0	2,000,000 *
		17.4	3,000,000 *

(*): INDICATES A RUN-OUT TEST

FIGURE N1. FATIGUE RESULTS FOR 7064-T74511 EXTRUSION (LONGITUDINAL ORIENTATION). LTV.

FIGURE N2. FATIGUE CRACK GROWTH RATE DATA for Two 7064-T74511 Extrusion Specimens. (L-T ORIENTATION). AIR FORCE.

FIGURE N3. FATIGUE CRACK GROWTH RATE DATA for Two 7064-T74511 Extrusion Specimens. (T-L ORIENTATION). AIR FORCE.

Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force. FIGURE N4.

FIGURE N5. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion.

Air Force.

FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force. FIGURE N6.

FIGURE N7. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion.
Air Force.

APPENDIX O

7064-T74 HAND FORGING 1.6"X4"X18"

TABLE 01

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (*)	MODULUS (MSI)
MCAIR,	RT	LONG	80.0	74.0	13.0		
ST. LOUIS			80.0	73.0	14.0		
			81.5	75.0	11.0		
			80.5		13.0		
LOCKHEED,	RT	LONG	77.2	69.7			9.9
GEORGIA			81.9	75.0			11.2
			81.0	75.2			10.5
			84.9	79.0			10.6
			81.5	74.7			10.2
			81.1	74.1			10.1
			80.0	74.0			10.1
			84.1	78.4			9.9
			80.6	73.6			10.3
			80.5	74.3			10.1
MARTIN	RT	LONG	79.5	71.4	5.0	41.6	10.1
MARIETTA,			79.4	70.9	12.0	44.0	10.2
LOUISIANA			78.6	70.6	14.0	37.9	10.1
LTV	RT	LONG	80.6	74.3	13.3	32.4	9.4
			79.1	72.6	13.7	29.8	9.5
			78.7	71.7	15.4	38.9	9.5
			82.0	75.9	10.6	31.0	9.7
		AVERAGE	80.6	73.9	12.3	36.5	10.1
	STANDARD DI	EVIATION	1.8	2.3	2.8	5.5	0.4

TABLE 02

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	TEST TEMP (DEGREES F)		STRENGTH (KSI)	STRENGTH (KSI)	(%)		MODULUS (MSI)
MCAIR,	RT	L TRANS	80.0				
ST. LOUIS			80.0	72.5	9.0		
			80.5	73.0			
			80.0	72.5	8.0		
LOCKHEED,	RT	L TRANS	83.0	77.1			10.8
GEORGIA			80.2	73.3			9.6
			80.5	73.7			9.9
			78.9	72.9			10.0
			79.9	73.0			10.7
			79.9	72.5			9.7
			78.6	71.8			10.6
			79.8	71.3			10.6
			78.0	71.4			10.2
			78.9	70.6			10.4
MARTIN	RT	L TRANS	78.5		6.0		10.0
MARIETTA,			79.2	71.3	8.0	10.2	10.0
LOUISIANA			77.5	69.1	13.0	32.7	10.0
LTV	RT	L TRANS	77.8	70.9	8.0	15.3	9.5
			78.1	70.6	10.0	19.3	9.7
			77.8	68.8	8.0	11.7	10.0
			77.2	68.7	7.0	9.7	10.3
		AVERAGE	79.3	71.8	8.5	15.0	10.1
	STANDARD D	EVIATION	1.3	1.9	1.8	8.9	0.4

TABLE 03

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	FLONG (%)	RA (%)	Modulus (MSI)
MCAIR, ST. LOUIS	RT	S TRANS	82.5 83.0 81.5 82.0	77.0 76.5 75.0 76.0	10.0 6.0 6.0 7.0		
		AVERAGE	82.3	76.1	7.3		
	STANDARD D	EVIATION	0.6	0.9	1.9		

TABLE 04

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCAIR,	r t	LONG	75.5	11.2
ST. LOUIS			77.5	11.5
			75.0	10.8
LOCKHEED,	RT	LONG	76.6	10.6
GEORGIA			78.0	
			83.4	10.4
			79.9	10.6
			83.5	
			78.5	
			78.1	10.5
MARTIN	RT	LONG	76.4	11.0
MARIETTA,			77.2	11.0
LOUISIANA			75.3	10.9
LTV	RT	LONG	80.4	11.5
			77.7	11.4
			76.4	12.5
			79.6	11.8
		11000 cc	70.0	
		AVERAGE	78.2	11.1
	STANI	DARD DEVIATION	2.5	0.6

TABLE 05

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCAIR,	RT	L TRANS	75.0	11.2
ST. LOUIS	• ` •		76.5	11.8
SI. LOUIS			76.0	11.9
LOCKHEED,	RT	L TRANS	72.9	
GEORGIA	•••		80.5	
GEORGIA			75.3	11.2
			78.3	11.3
			77.7	
			73.8	9.8
			72.0	9.7
MARTIN	RT	L TRANS	76.4	11.2
MARIETTA,	•••		76.1	11.1
LOUISIANA			76.1	11.1
		L TRANS	77.9	11.1
LTV	RT	L IKANS	76.8	
			78.7	
			74.9	11.7
		AVERAGE	76.2	11.2
	STAN	DARD DEVIATION	2.1	0.7

TABLE 06

SLOTTED SHEAR RESULTS FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	ULTIMATE STRENGTH (KSI)
MCAIR, ST. LOUIS	LONG	53.5 47.5 46.5
	AVERAGE	49.2
	STANDARD DEVIATION	3.8

TABLE 07

AMSLER DOUBLE SHEAR RESULTS FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	ULTIMATE STRENGTH (KSI)
LOCKHEED, GEORGIA	L-T	50.0 51.8 50.4
	AVERAGE	50.7
	STANDARD DEVIATION	0.9

TABLE 08

IOSIPESCU SHEAR RESULTS FOR

KAISER 7064-T74 HAND FORGINGS

СОМРАНУ	ORIENTATION	ULTIMATE STRENGTH (KSI)
LTV	LONG	50.5 52.5 48.0 48.9 51.5 51.3 51.7
	AVERAGE	50.6
	STANDARD DEVIATION	1.5

TABLE 09

IOSIPESCU SHEAR RESULTS FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	ULTIMATE STRENGTH (KSI)
LTV	l trans	50.2 51.3 51.2 52.7 49.5 53.7 51.8
	AVERAGE	51.5
	STANDARD DEVIATION	1.4

TABLE 010

BEARING RESULTS FOR KAISER

7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	●/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
1 VOARBBU	LONG	1.5	137.0	116.0
LOCKHEED,	LONG	1.3		
GEORGIA			115.0	105.0
			139.0	114.0
LTV	LONG	1.5	132.8	112.4
			132.4	112.1
			137.7	115.9
		AVERAGE	132.3	112.6
	STANDA	RD DEVIATION	8.9	4.1

TABLE 011
BEARING RESULTS FOR KAISER
7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	L TRANS	1.5	134.3 135.2 139.1 138.5	116.6 114.7 116.5 117.1
		AVERAGE	136.8	116.2
	STANDA	RD DEVIATION	2.4	1.1

TABLE 012
BEARING RESULTS FOR KAISER
7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	•/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCAIR,	LONG	2.0	148.0	
ST. LOUIS			149.0	117.0
			143.0	112.0
LOCKHEED,	LONG	2.0	168.0	135.0
GEORGIA			169.0	123.0
			170.0	126.0
LTV	LONG	2.0	165.1	131.9
			170.6	143.1
			176.1	137.5
		AVERAGE	162.1	128.2
	STANDAL	RD DEVIATION	12.0	10.6

TABLE 013

BEARING RESULTS FOR KAISER

7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCAIR,	L TRANS	2.0	149.0	119.0
ST. LOUIS			149.0	116.0
			151.0	119.0
LTV	L TRANS	2.0	173.0	135.9
			172.1	134.6
			171.8	135.0
			168.1	142.8
		AVERAGE	162.0	128.9
	STANDA	RD DEVIATION	11.7	10.6

TABLE 014 FRACTURE TOUGHNESS RESULTS FOR KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	KIC (KSI IN^0.5)	Kq (KSI IN^0.5)	COMMENT
MCAIR, ST. LOUIS	L-T	24.1 27.5		VALID VALID
LOCKHEED, GEORGIA	L-T	26.0 29.0		VALID VALID
MARTIN MARIETTA, LOUISIANA	L-T		27.2 23.6	(1) (1)
LTV	L-T		24.1 26.4 29.4	(2)(3) (2)(3) (2)
	AVERAGE	26.7	26.1	
	STANDARD DEVIATION	2.1	2.4	

^{(1):} INVALID DUE TO a/W=0.552 > 0.55

^{(2):} INVALID DUE TO TEST SPECIMEN FRACTURE SURFACE VIOLATED KIC REQUIREMENTS

^{(3):} INVALID DUE TO Kmax PRECRACK > 0.6 Kg

TABLE 015 FRACTURE TOUGHNESS RESULTS FOR KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	KIC (KSI IN^0.5)	Kq (KSI IN^0.5)	CONHENT
MCAIR, ST. LOUIS	T-L	17.8 17.0		VALID VALID
MARTIN MARIETTA, LOUISIANA	T-L		18.7	(1)
LTV	T-L	27.9	30.2 21.1	(2) (3) VALID
	AVERAGE	20.9	23.3	
	STANDARD DEVIATION	6.1	6.1	

^{(1):} INVALID DUE TO a/W=0.552 > 0.55 (2): INVALID DUE TO TEST SPECIMEN FRACTURE SURFACE

VIOLATED KIC REQUIREMENTS

^{(3):} INVALID DUE TO Kmax PRECRACK > 0.6 Kg

TABLE 016 FRACTURE TOUGHNESS RESULTS FOR KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	KIC (KSI IN^0.5)	Kq (KSI IN^0.5)	COMMENT
MCAIR, ST. LOUIS	s-T	19.9	20.3	(1),(2) VALID
MARTIN MARIETTA, LOUISIANA	s-T		15.8 14.3	(1) (1)
	AVERAG	E 19.9	16.8	
	STANDARD DEVIATION	N 0.0	3.1	

^{(1):} INVALID DUE TO SURFACE TRACE/AVERAGE CRACK ERROR VALUE > VALID REQ (2): AVERAGE CRACK/W VALUE LESS THAN VALID REQUIREMENT

TABLE 017

FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	KIC (KSI IN^0.5)	Kq (KSI IN^0.5)	COMMENT
MARTIN MARIETTA, LOUISIANA	S-L	16.7 15.0	19.3	(1)
	AVERAG	E 15.9	19.3	
	STANDARD DEVIATION	N 1.2	0.0	

(1): INVALID DUE TO a/W=0.552 > 0.55

TABLE 018

FATIGUE RESULTS WITH Kt=1.0 AND R=-1.0 FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	LIMIT STRESS (KSI)	CYCLES TO FAILURE
MCAIR,	LONG	60.0	2,270
ST. LOUIS		55.0	5,140
		50.0	10,750
		45.0	18,150
		40.0	86,100
		35.0	206,670
		30.0	2,560,000 *
		25.0	1,000,000 *

(*): INDICATES A RUN OUT TEST

TABLE 019

FATIGUE RESULTS WITH Kt=1.0 AND R=0.1 FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	LINIT STRESS (KSI)	CYCLES TO FAILURE
LTV	LONG	50.0	11,600
		46.1	15,100
		44.9	17,400
		44.0	12,100
		43.0	28,200
		42.9	18,800
		41.7	28,000
		40.9	28,300
		40.1	10,700
		39.7	7,400
		36.9	24,700
		36.0	285,600
		35.2	18,000
		34.4	318,700
		33.2	3,000,000 *

(*): INDICATES A RUN-OUT TEST

FIGURE O1. FATIGUE DATA for 7064-T74 Hand Forgings (Longitudinal Orientation R=0.1, Kt=1 and Kt=3). LTV.

TABLE 020

FATIGUE RESULTS WITH Kt=3.0 AND R=0.1 FOR

KAISER 7064-T74 HAND FORGINGS

COMPANY	ORIENTATION	LIMIT STRESS (KSI)	CYCLES TO FAILURE
LTV	LONG	36.1	9,800
		33.7	9,900
		32.8	24,500
		30.5	18,900
		28.0	19,600
		27.5	17,400
		27.0	67,100
		26.5	368,300
		26.4	38,100
		26.3	138,700
		26.0	983,800
		26.0	3,000,000 *
		25.6	1,000,000 *
		24.1	1,000,000 *
		22.5	55,500

(*): INDICATES A RUN-OUT TEST

FIGURE O2. FATIGUE DATA FOR 7064-T74 HAND FORGINGS (Longitudinal Orientation, R=-1.0, and Kt=1). McDonnell Aircraft Company.

@ DENOTES THAT DATA POINT IS INVALID PER ASTH 847-89, PARAGRAPH 8.6.4.

FIGURE O3. FATIGUE CRACK GROWTH RATE DATA for 7064-T74 Forging (T-L Orientation, WOL Type Specimen).
McDonnell Aircraft Company.

Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force. FIGURE 04.

FIGURE O5. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging.
Air Force.

FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force. FIGURE 06.

FIGURE 07. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging.
Air Force.

APPENDIX P

CW67 SHEET 0.063"X16"X48"

TABLE P1

TENSILE RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN	RT	LONG	81.5	77.5	8.0	10.0	9.8
MARIETTA,			81.9	78.7	7.0	10.0	9.7
LOUISIANA			82.9	79.5		6.7	9.8
MCDONNELL	RT	LONG	80.0	77.0	6.0		10.0
DOUGLAS			80.0	77.5	8.0		10.4
			81.0	78.5	6.0		10.0
		AVERAGE	81.2	78.1	7.0	8.9	10.0
	STANDARD	DEVIATION	1.1	0.9	1.0	1.9	0.3

TABLE P2

TENSILE RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (\$)	E (MSI)
MARTIN	RT	L TRANS	83.5	80.8		6.7	9.9
MARIETTA,			83.9	82.0	3.0	3.3	10.0
LOUISIANA			83.7	80.5	2.0	6.7	10.1
MCDONNELL	RT	L TRANS	87.5	83.0	4.0		10.3
DOUGLAS			86.5	82.0	5.0		10.3
			86.5	82.0	5.0		10.4
		AVERAGE	85.3	81.7	3.8	5.6	10.2
	STANDARD	DEVIATION	1.8	0.9	1.3	2.0	0.2

TABLE P3
COMPRESSION RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCDONNELL DOUGLAS	RT	LONG	72.0	11.2 11.5 10.3
		AVERAGE	72.0	11.0
	STAN	DARD DEVIATION	0.0	0.6

TABLE P4
COMPRESSION RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCDONNELL DOUGLAS	RT	L TRANS		10.3 10.8 11.2
		AVERAGE		10.8
	STAN	DARD DEVIATION		0.5

TABLE P5 SLOTTED SHEAR RESULTS FOR ALCOA CW67 SHEET (0.063" X 16" X 48")

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
MCDONNELL DOUGLAS	LONG	31.0 30.0 29.3
	AVERAGE	30.1
	STANDARD DEVIATION	0.9

TABLE P6

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCDONNELL DOUGLAS	LONG	1.5	117.1 124.3 125.5	101.3 107.7 111.1
		AVERAGE	122.3	106.7
	STANDARD	DEVIATION	4.5	5.0

TABLE P7

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCDONNELL DOUGLAS	L TRANS	1.5	127.1 126.1 126.6	112.0 108.9 112.9
		AVERAGE	126.6	111.3
	STANDARD I	DEVIATION	0.5	2.1

TABLE P8

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCDONNELL DOUGLAS	LONG	2.0	169.4 162.0 163.5	148.8 116.3 139.5
		AVERAGE	165.0	134.9
	STANDARD I	DEVIATION	3.9	16.7

TABLE P9

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCDONNELL DOUGLAS	L TRANS	2.0	166.1 168.5 166.2	146.4 146.6 146.4
		AVERAGE	166.9	146.5
	STANDARD 1	DEVIATION	1.4	0.1

R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 32) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 32

MATERIAL DESCRIPTION: CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: L-T

YIELD STRENGTH: 77.7 RSI
SPECIMEN THICKNESS: 0.071 IN
SPECIMEN WIDTH: 3.999 IN

SPECIMEN IS INVALID PER ASTM E561-86, PARA. 7.5

APPLIED LOAD (lbs)	PHYSICAL CRACK LENGTH (1n)	Kr (UNCORRECTED) (psi /in)	EFFECTIVE CRACK LENGTH (in)	Kr (CORRECTED) (psi √in)
1.025 1.050 1.250 1.325 1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.600 1.650 1.700	1.519 1.523 1.533 1.592 1.610 1.613 1.638 1.638 1.642 1.660 1.662 1.663 1.667 1.667 1.678 1.684 1.706 FAILURE	49,842 51,181 61,348 67,582 70,986 72,406 74,930 76,245 77,762 80,039 81,493 82,874 85,818 89,128 92,202 94,972	1.591 1.599 1.649 1.739 1.777 1.788 1.831 1.840 1.856 1.894 1.910 1.924 1.963 2.022 2.092	52,248 53,808 66,212 74,594 79,483 81,590 85,575 87,675 90,199 94,283 96,969 99,627 105,834 114,190 124,368

^{***} Indicates that the equation for Kr (Corrected) did not converge to a solution.

R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 33) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 33

MATERIAL DESCRIPTION:

CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION:

L-T

YIELD STRENGTH:

77.7 KSI

SPECIMEN THICKNESS: SPECIMEN WIDTH: 0.071 IN 4.002 IN

APPLIED LOAD (lbs)	PHYSICAL CRACK LENGTH (1n)	Kr (UNCORRECTED) (psi /in)	EFFECTIVE CRACK LENGTH (in)	Kr (CGRRECTED) (psi /in)
920 940 1,000 1,020 1,060 1,100 1,140 1,180	1.509 1.533 1.545 1.548 1.565 1.569 1.573 FAILURE	44,397 46,088 49,395 50,476 53,059 55,188 57,349	1.565 1.594 1.615 1.622 1.648 1.659	46,045 47,956 51,743 52,997 56,048 58,602 61,243

R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 34) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 34

MATERIAL DESCRIPTION: CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: T-L

YIELD STRENGTH: 82.3 KSI SPECIMEN THICKNESS: 0.071 IN SPECIMEN WIDTH: 4.002 IN

APPLIED	PHYSICAL	Kr	EFFECTIVE	Kr
LOAD	CRACK	(UNCORRECTED)	CRACK	(CORRECTED)
(15.5)	LENGTH	(LENGTH	(201 (12)
(1bs)	(in)	(psi √in)	(1n)	(psi √in)
820	1.514	39,692	1.553	40,712
840	1.514	40,660	1.555	41,761
860	1.516	41,677	1.559	42,867
880	1.519	42,754	1.565	44,046
900	1.519	43,726	1.567	45,113
920	1.524	44,843	1.575	46 348
940	1.524	45,818	1.577	47,430
960	1.525	46,811	1.580	48,537
1,000	1.525	48,762	1.585	50,730
1.020	1.526	49,786	1.590	51,892
1,040	1.526	50,762	1.593	53,005
1,060	1.526	51,738	1.595	54,125
1,080	1.529	52,786	1.601	55,336
1,120	1.529	54,741	1.607	57,616
1,140	1.532	55,832	1.613	58,902
1,160	1.534	56,893	1.619	60,164
1,180	1.534	57,874	1.622	61,338
1,180	1.534	57,874	1.622	61,338
1,200	1.534	58,854	1.626	62,520
1.220	1.541	60,117	1.638	64,063
1,260	1.544	62,210	1.648	66,648
1,280	1.546	63,272	1.654	67,979
1,300	1.546	64,260 65,331	1.659	69,228
1,320	1.548	65,321	1.665	70,584
1,340	1.562	66,926	1.686	72,682
1,380	1.562	68,923	1.695 1.711	75,318
1,400	1.571	70,341	2	77,245
1,420	1.575	71,552	1.722	78,913
1,440	1.578	72,679	1.735	80,485
1,460	1.578 FAILURE	73,689	1,735	81,907
1,468	FAILURE			

R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 35) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 35

MATERIAL DESCRIPTION: CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: T-L

YIELD STRENGTH: 82.3 KSI SPECIMEN THICKNESS: 0.071 IN SPECIMEN WIDTH: 4.001 IN

APPLIED	PHYSICAL	Kr	EFFECTIVE	Kr
LOAD	CRACK	(UNCORRECTED)	CRACK	(CORRECTED)
	LENGTH	•	LENGTH	, ,
(1bs)	(in)	(psi √in)	(in)	(psi √in)
800	1.501	38,420	1.537	39,340
860	1.505	41,420	1.548	42,585
880	1.505	42,383	1.550	43,636
900	1.505	43,346	1.552	44,692
920	1.505	44,310	1.555	45,753
940	1.507	45,320	1.559	46,871
960	1.507	46,284	1.561	47,943
980	1.507	47,248	1.563	49,021
1,000	1.509	48,260	1.568	50,158
1,020	1.509	49,225	1.570	51,248
1,040	1.514	50,363	1.579	52,544
1,060	1.517	51,449	1.585	53,788
1,080	1.517	52,419	1.588	54,906
1,100	1.521	53,526	1.595	56,191
1,120	1.521	54,499	1.598	57,328
1,140	1.521	55,472	1.602	58,471
1.160	1.521	56,445	1.605	59,623
1,180	1.523	57,482	1.610	60,860
1,200	1.523	58,456	1.613	62,031
1,220	1.523	59,430	1.617	63,210
1,240	1.523	60,405	1.620	64,398
1,260	1.643	66,427	1.765	72,199
1,280	1.643	67,482	1.770	73,588
1,300	1.643	68,536	1.775	74,994
1,320	1.650	69,917	1.789	76,881
1,340	1.665	71,679	1.813	79,365
1,360	1.665	72,749	1.818	80,873
1,380	1.671	74,137	1.832	82,893
1,388	FAILURE			

FIGURE P1. R-CURVE DATA for CW67 0.063 Inch Sheet (L-T Orientation). Martin Marietta.

FIGURE P2. R-CURVE EFFECTIVE CRACK LENGTH ADJUSTED for PLASTIC ZONE (L-T Orientation).

Martin Marietta.

TABLE P14 R-CURVE DATA ASSOCIATED WITH FIGURES P1 AND P2 (SPECIMEN 1)

Load, kips	Half Crack Length (a) inch	Half Crack Length, (a + rho) inch	Correspond Toughnes: Not Adjusted	ing Fracture s. ksi √inch Adjusted for Plasticity
0	2.485	2.485	0.0	0.0
2.50	2.485	2.487	8.3	7.8
4.25	2.485	2.490	14.1	13.2
6.40	2.500	2.512	21.3	21.4
8.45	2.520	2.541	28.3	28.4
11.10	2.535	2.571	37.3	37.6
13.35	2.565	2.619	45.2	45.8
16.30	2.615	2.698	55.9	56.9
19.25	2.615	2.733	66.1	67.7
20.75	2.645	2.785	71.8	73.8
21.50	2.710	2.866	75.6	77.9
22.15	2.710	2.893	78.1	80.7
22.60	2.800	2.982	81.2	84.0
23.00	2.865	3.060	83.9	87.0
22.85	3.105	3.327	88.3	92.9
22.90	3.365	3.620	94.0	99.5

Thickness = .058 inches Yield Strength = 78.6 ksi Specimen Width = 15.50 inches

TABLE P15

R-CURVE DATA ASSOCIATED WITH FIGURES P1 and P2
(SPECIMEN 2)

Load, kips	Half Crack Length (a), inch	Half Crack Length (a + rho), inch	Correspondi <u>Toughness</u> Not Adjusted	ng Fracture s. ksi √inch Adjusted for Plasticity
0 2.8 5.4 8.2 10.8 13.5 16.0 19.3 20.2 21.8 23.7 24.4 24.7 25.1 26.1 26.5 27.2 27.4 27.6	2.490 2.490 2.490 2.525 2.535 2.555 2.555 2.590 2.625 2.685 2.685 2.780 2.780 2.780 2.870 2.975 3.075 3.100	2.490 2.492 2.496 2.540 2.562 2.597 2.615 2.680 2.688 2.742 2.829 2.839 2.945 2.945 3.065 3.109 3.205 3.321 3.353	0.0 8.2 15.8 24.2 31.9 40.1 47.5 57.4 60.5 65.9 72.7 74.9 77.6 78.9 83.8 85.8 89.6 92.4	0.0 7.7 15.8 24.3 32.1 40.5 48.1 58.9 61.8 67.5 74.9 77.2 80.1 81.5 86.9 89.1 94.4 97.7

Thickness = 0.066 inches Yield Strength = 78.6 ksi Specimen Width = 15.50 inches

FIGURE P3. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 Sheet (L-T Orientation, R=0.1, Lab Air, Room Temperature and Specimen #6) McDonnell Aircraft Company.

FIGURE P4. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 Sheet (L-T Orientation, R=0.33, Lab Air, Room Temperature and Specimen #7). McDonnell Aircraft Company.

#4 - INVALID DATA PER ASTM E647-88

FIGURE P5. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 Sheet (T-L Orientation, R=0.1, Lab Air, Room Temperature and Specimen #4). McDonnell Aircraft Company.

FIGURE P6. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 " Sheet (T-L Orientation, R=0.33, Lab Air, Room Temperature and Specimen #5). McDonnell Aircraft Company.

APPENDIX Q

CW67 PLATE 0.4"X16"X48"

TABLE Q1

TENSILE RESULTS FOR ALCOA

CW67 PLATE (0.4" X 16" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN MARIETTA, LOUISIANA	RT	LONG	81.8 81.1 82.0	79.1 77.2 78.4	11.0 13.0 12.5	18.1 23.1 24.7	9.8 9.8 9.9
		AVERAGE	81.6	78.2	12.2	22.0	9.8
	STANDARD	DEVIATION	0.5	1.0	1.0	3.4	0.1

TABLE Q2

TENSILE RESULTS FOR ALCOA

CW67 PLATE (0.4" X 16" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN MARIETTA, LOUISIANA	RT	L TRANS	88.8 87.8 86.9	84.6 83.8 83.6	6.0 6.0 6.5	5.6 6.1 6.6	9.9 10.3 10.1
		AVERAGE	87.8	84.0	6.2	6.1	10.1
	STANDARD	DEVIATION	1.0	0.5	0.3	0.5	0.2

FIGURE Q1. R-CURVE DATA for CW67 0.4 INCH PLATE (L-T ORIENTATION).

Martin Marietta.

FIGURE Q2. R-CURVE EFFECTIVE CRACK LENGTH ADJUSTED for Plastic Zone Data for CW67 0.4 Inch Plate (L-T Orientation).

Martin Marietta.

TABLE Q3

R-CURVE DATA ASSOCIATED WITH FIGURES Q1 AND Q2
(SPECIMEN 1)

Load, kips	Half Crack Length (a), inch	Half Crack Length (a + rho), inch	Correspondi <u>Toughness</u> Not Adjusted	ng Fracture s. ksi vinch Adjusted for Plasticity
0	2.475	2.475	0.0	0.0
16.1	2.475	2.476	7.8	7.3
34.3	2.500	2.507	16.8	16.8
50.2	2.503	2.546	24.7	24.8
50.2	2.506	2.576	24.7	25.0
68.5	2.507	2.596	34.0	34.3
86.6	2.600	2.650	43.4	43.9
103.4	2.650	2.724	52.5	53.3
108.0	2.680	2.762	55.2	56.2
114.8	2.735	2.831	59.2	60.7

Thickness = 0.396 inches Yield Strength = 78.2 ksi Specimen Width = 15.49 inches

TABLE Q4

R-CURVE DATA ASSOCIATED WITH FIGURES Q1 and Q2
(SPECIMEN 2)

Load, kips	Half Crack Length (a), inc	Half Crack Length (a + rho), inch	Correspond <u>Toughnes:</u> Not Adjusted	ing Fracture s. ksi √inch Adjusted for Plasticity
0 15.0 29.9 45.5 60.1 75.2 90.3 91.5 100.6 104.3 108.1 110.5 116.3 121.1 123.8 127.1 129.0 129.0 129.0	2.500 2.500 2.535 2.535 2.535 2.535 2.560 2.570 2.580 2.590 2.610 2.610 2.610 2.630 2.675 2.740 3.060 3.120 3.270 3.320	2.501 2.540 2.548 2.558 2.596 2.609 2.634 2.656 2.682 2.688 2.691 2.721 2.777 2.850 3.196 3.264 3.425 3.481 3.481	0.0 7.3 14.6 22.2 29.3 36.9 44.4 44.4 49.8 51.8 53.7 54.9 58.1 61.2 63.6 70.5 72.5 75.1 76.5	0.0 6.8 13.6 22.3 29.5 37.2 44.8 45.7 50.5 52.6 54.6 55.9 59.2 62.4 65.0 72.2 74.4 77.1 78.6

Thickness = 0.396 inches Yield Strength = 78.2 ksi Specimen Width = 15.50 inches

APPENDIX R

CW67 EXTRUISION 1.5"X4.5"X36"

TABLE R1

TENSILE RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
LTV	RT	LONG	86.4 85.9 85.9 85.5 86.1	81.3 81.3 81.3 78.6 80.4	10.5 11.4 12.3 12.3 11.7		10.2 10.0 9.9 9.4 9.5
AIR FORCE	RT	LONG	89.1 86.2 85.5	84.9 81.5 80.6	10.0 9.5 15.2	28.0 27.0 28.7	
MCAIR	RT	LONG	86.0 83.0 82.5	81.5 79.0 77.5	10.0 14.0 12.0	35.0 38.0 36.0	14.3 13.4 13.7
		AVERAGE	85.6	80.7	11.7	32.1	11.3
	STANDARD	DEVIATION	1.7	1.9	1.7	4.7	2.1

TABLE R2 TENSILE RESULTS FOR ALCOA CW67 EXTRUSION

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
LTV	RT	L TRANS	80.9 81.0 81.6 80.9 80.9		10.0 12.0 11.2 9.1 10.9		10.0 11.1 12.9 11.0 12.9
AIR FORCE	RT	L TRANS	82.5 83.1 82.3	77.4 78.2 76.7			
MCAIR	RT	L TRANS	81.5 81.0 81.5	76.5 72.0 76.0	10.0	27.0	14.0 :4.0 13.6
		AVERAGE	81.6	75.0	10.8	29.2	12.4
	STANDARD	DEVIATION	0.8	2.5	1.8	5.8	1.5

TABLE R3

COMPRESSION RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCAIR	RT	LONG	78.5 80.0 79.5	10.8 10.9 11.0
		AVERAGE	79.3	10.9
	STAN	DARD DEVIATION	0.8	0.1

TABLE R4

COMPRESSION RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCAIR	RT	L TRANS	80.0 74.0 79.0	11.2 10.8 10.8
		AVERAGE	77.7	10.9
	STAN	DARD DEVIATION	3.2	0.2

TABLE R5

IOSIPESCU SHEAR RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
LTV	LONG	49.8 50.0 49.9 48.1 48.7 50.7
	AVERAGE	49.5
	STANDARD DEVIATION	1.0

TABLE R6

IOSIPESCU SHEAR RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
LTV	L TRANS	51.5 51.2 51.5 48.9 48.6 51.0
	AVERAGE	50.5
	STANDARD DEVIATION	1.3

TABLE R7

AMSLER DOUBLE SHEAR RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	SH EA R STRENGTH (KSI)	
MCAIR	L - S	52.1 48.3	
		48.5	
	AVERAGE	49.6	
	STANDARD DEVIATION	2.1	

TABLE R8

BEARING RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	LONG	1.5	124.0 123.0 126.0	103.0 104.0 106.0
MCAIR	LONG	1.5	126.9 122.9	112.1 107.2
		AVERAGE	124.6	106.5
	STANDARD	DEVIATION	1.8	3.6

TABLE R9
BEARING RESULTS FOR
ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	L TRANS	1.5	122.0 123.0	109.0 108.0
			129.0	112.0
MCAIR	L TRANS	1.5	123.7 121.7	107.4 105.7
		AVERAGE	123.9	108.4
	STANDARD I	DEVIATION	3.0	2.3

TABLE R10

BEARING RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	LONG	2.0	158.0 155.0 156.0	118.0 126.0 121.0
MCAIR	LONG	2.0	174.2 171.0	144.4 139.0
		AVERAGE	162.8	129.7
	STANDARD	DEVIATION	9.0	11.5

TABLE R11
BEARING RESULTS FOR
ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
LTV	L TRANS	2.0	153.0 162.0	122.0 129.0
			156.0	124.0
MCAIR	L TRANS	2.0	170.7	141.3
			171.1	140.5
		AVERAGE	162.6	131.4
	STANDARD I	DEVIATION	8.3	9.1

TABLE R12

FRACTURA FOUGHNESS RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	KIC (KSI in^0.5)	Kq (KSI in^0.5)	COMMENT
LTV	L-T	24.1		VALID
		22.4		VALID
		21.7		VALID
AIR FORCE	L-T	45.3		VALID
		46.9		VALID
		44.1		VALID
MCAIR	L-T	29.4		VALID
		29.0		VALID
	AVERAGE	32.9		
	STANDARD DEVIATION	10.8		

TABLE R13

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	KIC (KSI in^0.5)	Kq (KSI in^0.5)	Comment
LTV	T-L	******	38.5 36.1 42.2	(1) (1) (1)
AIR FORCE	T-L	26.7 27.2		VALID VALID
MCAIR	T-L	18.5 18.8		VALID VALID
	AVERAGE	22.8	38.9	
	STANDARD DEVIATION	4.8	3.1	

(1): INVALID DUE TO UNSYMMETRIC CRACK FRONT CURVATURE

TABLE R14

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATI		KIC in^0.5)	(KSI i	Kq n^0.5)	COMMENT
MCAIR	S-T		20.5			VALID
			21.2			VALID
	AVER	RAGE	20.9			
	STANDARD DEVIAT	CION	0.5			

TABLE R15

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 EXTRUSION

COMPANY	ORIENTATION	KIC (KSI in^0.5) ()	Kq KSI in^0.5)	COMMENT
MCAIR	S-L	33.0		VALID
	AVERAGE	33.0		
	STANDARD DEVIATION	0.0		

• 32 • 32 - INVALID DATA PER ASTM E647-88

FIGURE R1. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation, R=0.1, Lab Air and Room Temperature). McDonnell Aircraft Company.

33
 33 - INVALID DATA PER ASTM E647-88

FIGURE R2. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation, R=0.33, Lab Air and Room Temperature). McDonnell Aircraft Company.

34
 34 - INVALID DATA PER ASTM E647-88

FIGURE R3. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation, R=0.1, Lab Air and Room Temperature). McDonnell Aircraft Company.

• 35 • 35 - INVALID DATA PER ASTM E647-88

FIGURE R4. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation, R=0.33, Lab Air and Room Temperature). McDonnell Aircraft Company.

FIGURE R5. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation).
Air Force.

FIGURE R6. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation).
Air Force.

FIGURE R7. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation and High Humidity).

Air Force.

FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (L-T Orientation, Specimen GLT-1). LTV. FIGURE R8.

FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (L-T Orientation, Specimen GLT-2). LTV. FIGURE R9.

FATIGUE CRACK GROWTH RATE DATA for CW67 Extrution. (L-T Orientation, Specimen GLT-3). LTV. FIGURE R10.

FIGURE R11. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (T-L Orientation, Specimen GLT-1). LTV.

SPECIMEN GTL-2

FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (T-L Orientation, Specimen GLT-2). LTV. FIGURE R12.

FIGURE R13. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation, Specimen GLT-3). LTV.

FIGURE R14. Mini-TWIST Spectrum Fatigue Cracklength vs Flights Data for CW67 Extrusion. Air Force.

FIGURE R15. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.
Air Force.

FIGURE R16. Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for CW67 Extrusion. Air Force.

FIGURE R17. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force.

FIGURE R18. FALSTAFF Spectrum Fatigue Crack Length vs Flights.
Air Force.

FIGURE R19. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force.

FIGURE R20. FALSTAFF Spectrum Fatigue Crack Length vs Flights.
Air Force.

FIGURE R21. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force.

APPENDIX S CW67 HAND FORGING 2.5"X6"X18"

TABLE S1

TENSILE RESULTS FOR

ALCOA CW67 FORGING

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN MARIETTA, LOUISIANA	RT	LONG	87.2 83.1 85.0	84.0 75.9 82.5	13.0 15.0 14.0	29.6 39.7 27.6	
AIR FORCE	RT	LONG	88.0 82.2 85.4 84.6	83.6 78.6 80.7 80.1	13.0 13.8 12.7 12.1	39.7 47.9 34.5 46.9	
		AVERAGE	85.1	80.8	13.4	38.0	
	STANDARD	DEVIATION	2.1	2.9	1.0	7.9	

TABLE S2
TENSILE RESULTS FOR
ALCOA CW67 FORGING

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN	RT	L TRANS	79.1	73.4	12.0	17.6	
MARIETTA,			78.8	73.0	14.0	25.5	
LOUISIANA			79.4	74.0	17.0	42.5	
AIR FORCE	RT	L TRANS	82.4	77.2	13.9	40.1	
			83.0	77.0	10.2	25.3	
			83.2	77.2	13.5	38.9	
			82.3	75.4	13.0	32.6	
		AVTRAGE	81.2	75.3	13.4	31.8	
	STANDARD	DEVIATION	2.0	1.9	2.1	9.3	

TABLE S3
TENSILE RESULTS FOR

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MARTIN MARIETTA, LOUISIANA	RT	S TRANS	78.7 77.9 77.5	72.4 71.5 70.8	12.0 11.0 14.0	32.7 32.7 36.0	
AIR FORCE	RT	S TRANS	85.7 43.8	79.3 43.8	6.8 9.1	18.1 23.1	
		AVERAGE	72.7	67.6	10.6	28.5	
	STANDARD	DEVIATION	16.5	13.7	2.7	7.6	

TABLE S4

COMPRESSION RESULTS FOR

ALCOA CW67 FORGING

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MARTIN	RT	LONG	82.9	10.6
MARIETTA,			81.9	10.6
LOUISIANA			81.4	10.6
AIR FORCE	RT	LONG	81.0	
			79.4	
			77.3	
			76.4	
		AVERAGE	80.0	10.6
	STAN	DARD DEVIATION	2.4	0.0

TABLE S5

COMPRESSION RESULTS FOR

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MARTIN MARIETTA, LOUISIANA	RT	L TRANS	78.6 78.8 79.6	10.8 11.0 11.0
AIR FORCE	RT	L TRANS	81.6 82.5 81.5 80.0	
		AVERAGE	80.4	10.9
	STAN	DARD DEVIATION	1.5	0.1

TABLE S6

COMPRESSION RESULTS FOR

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MARTIN MARIETTA, LOUISIANA	RT	s trans	80.1 82.1 80.2	10.7 10.8 10.8
		AVERAGE	80.8	10.8
	STANI	DARD DEVIATION	1.1	0.1

PIN SHEAR RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
AIR FORCE	LONG	50.0 50.1 50.2 49.8
	AVERAGE	50.0
	STANDARD DEVIATION	0.2

TABLE S8

PIN SHEAR RESULTS FOR

OMPANY ORIENTATION		SHEAR STRENGTH (KSI)
AIR FORCE	L TRANS	49.2 49.8 49.5 49.7
	AVERAGE	49.5
	STANDARD DEVIATION	0.3

TABLE S9

BEARING RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIENTATION	e/D	ULT.	BEARING STRENGTH (KSI)	BEARING YIELD STRENGTH (KSI)
AIR FORCE	LONG	1.5		137.9 137.3 131.2	
	STANDARD	AVERAGE DEVIATION		135.5 3.7	120.0
	L TRANS	1.5		136.0 137.4 132.4	123.0 130.5 128.2
	STANDARD	AVERAGE DEVIATION		135.2 2.6	127.2 3.8
	LONG	2.0		165.5 164.9 162.7	
	STANDARD	AVERAGE DEVIATION		164.3 1.5	100.0 20.5
	L TRANS	2.0		166.4 168.1 162.1	103.1 117.5 99.9
	STANDARD	AVERAGE DEVIATION		165.5 3.1	106.8 9.4

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIE	NOITATION	(KSI	KIC in^0.5)	(KSI	Kq in^0.5)	COMMENT
MARTIN MARIETTA,	L	- T		44.8		35.9	VALID INVALID(1)
LOUISIANA							\ \ \ \
AIR FORCE	L	- T				28.8	INVALID(2)
						34.4	INVALID(2)
		AVERAGE		44.8		33.0	
	STANDARD D	EVIATION		0.0		3.8	

(1): a/W > 0.55(2): EXCESSIVE CRACK FRONT CURVATURE

TABLE S11

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIENTATION	KIC (KSI in^0.5) (KS	Kq SI in^0.5)	COMMENT
MARTIN MARIETTA, LOUISIANA	L - S	38.6	46.7 52.5	INVALID(1) INVALID(1) VALID
	AVERAGE	38.6	49.6	
	STANDARD DEVIATION	0.0	4.1	

(1): a/W > 0.55

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIENTATIO	(KSI in^0.5)	Kq (KSI in^0.5)	COMMENT
MARTIN MARIETTA, LOUISIANA	T - L	25.0 21.6		VALID VALID
AIR FORCE	T - L		21.0 18.6 22.5	<pre>INVALID(1) INVALID(1) INVALID(1)</pre>
	AVERA	GE 23.3	20.7	
	STANDARD DEVIATI	ON 2.4	2.0	

(1): EXCESSIVE CRACK FRONT CURVATURE

TABLE S13

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIEN	TATION	(KSI	KIC in^0.5)	(KSI	Kq in^0.5)	COMMENT
MARTIN MARIETTA, LOUISIANA	T	- S		21.3	# -	23.5	VALID INVALID(1)
		AVERAGE		21.3		23.5	
	STANDARD DE	NOITAIV		0.0		0.0	

(1): a/W > 0.55

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 FORGING

COMPANY	ORIENTATION	KIC	Kq	COMMENT
		(KSI in^0.5)	(KSI in^0.5)	
AIR FORCE	S - T		20.9	INVALID(1)
			25.3	INVALID(1)
			23.6	INVALID(1)
	AVERAGE		23.3	
	STANDARD DEVIATION		2.2	

(1): EXCESSIVE CRACK FRONT CURVATURE

FIGURE S1. Fatigue Crack Growth Rate Data for CW67 Forging (L-T Orientation). Air Force.

FIGURE S2. Fatigue Crack Growth Rate Data for CW67 Forging (T-L Orientation). Air Force.

FIGURE S3. Fatigue Crack Growth Rate Data for CW67 Forging (S-T Orientation). Air Force.

FIGURE S4. Comparison of CW67 Forging and 7050 Plate Mini-TWIST Spectrum Fatigue Crack Growth Rate Data (L-T Orientation).

Air Force.

FIGURE S5. Comparison of CW67 Forging and 7050 Plate FALSTAFF Spectrum Fatigue Crack Growth Rate Data (L-T Orientation).

Air Force.