Лабораторная работа № 8

Модель конкуренции двух фирм

Абакумов Егор Александрович

Содержание

Теоретическое введение	5
Задание	7
Ход работы	9
Вывод	14

List of Tables

List of Figures

0.1	Код для первого случая	10
0.2	График для первого случая	11
0.3	Код для второго случая	12
0.4	График для второго случая	13

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

N — число потребителей производимого продукта.

S — доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

М – оборотные средства предприятия

au – длительность производственного цикла

р – рыночная цена товара

 $ilde{p}$ — себестоимость продукта, то есть переменные издержки на производство единицы продукции.

 δ – доля оборотных средств, идущая на покрытие переменных издержек

При пренебрежимо малых издержках уравнения динамики оборотных средств будут выглядеть следующим образом:

$$\begin{cases} \frac{dM_1}{dt} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 \\ \frac{dM_2}{dt} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 \end{cases}$$

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

Введем нормировку $t = c_1 \theta$:

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Задание

Вариант 50

1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1, описываемого следующей системой уравнений:

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2, описываемого следующей системой уравнений:

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00031) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Начальные условия:

$$M_0^1 = 6.4, M_0^2 = 4.1, p_{cr} = 20, N = 40, q = 1, \tau_1 = 20, \tau_2 = 15, \tilde{p_1} = 7, \tilde{p_2} = 9.5.$$

Замечание: значения $p_{cr}, \tilde{p_{1,2}}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N — число потребителей производимого продукта;

au – длительность производственного цикла;

p — рыночная цена товара;

 \tilde{p} – себестоимость продукта;

q – максимальная потребность одного человека в продукте в единицу времени;

 $d\theta = \frac{t}{c_1}$ – безразмерное время.

Ход работы

1. Напишем код для первого случая (иллюстр. 0.1). Здесь М_01, М_02 - капитализация первой и второй фирмы, р_сг - критическая цена, N - кол-во потребителей, q - максимальная потребность одного человека в продукте в единицу времени, t1, t2 - время производственного цикла, p1, p2 - цена товара. Функция foo моделирует систему двух уравнений, u - переменная для M, syst и res - временные технические переменные.

```
using Plots
    using DifferentialEquations
    M_01 = 6.4
   M_02 = 4.1
    p_cr = 20
   N = 40
   q = 1
    p2 = 9.5
   a1 = p_cr / (t1^2 * p1^2 * N * q)
15 a2 = p_cr / (t2^2 * p2^2 * N * q)
16 b = p_cr / (t1^2 * p1^2 * t2^2 * p2^2 * N * q)
17 c1 = (p_cr - p1) / (t1 * p1)
   c2 = (p_cr - p2) / (t2 * p2)
        du[2] = c1/c2 * u[2] - b/c1 * u[1] * u[2] - a2/c1 * u[2]^2
    syst = ODEProblem(foo, [M_01, M_02], (0.0, 12.0))
    res = solve(syst)
    plot(res, xlabel = "θ", label = ["Φирма 1" "Φирма 2"])
```

Figure 0.1: Код для первого случая

2. В результате получим график для первого случая (иллюстр. 0.2).

Figure 0.2: График для первого случая

3. Далее изменим код под второй случай, добавив эффект действия конкурента на покупателей фирмы (иллюстр. 0.3).

```
using Plots
using DifferentialEquations

M_01 = 6.4

M_02 = 4.1

p_cr = 20

N = 40

q = 1

t1 = 20

t2 = 15

p1 = 7

p2 = 9.5

a1 = p_cr / (t1^2 * p1^2 * N * q)

a2 = p_cr / (t2^2 * p2^2 * N * q)

b = p_cr / (t1^2 * p1^2 * t2^2 * p2^2 * N * q)

c1 = (p_cr - p1) / (t1 * p1)

c2 = (p_cr - p2) / (t2 * p2)

function foo(du, u, p, t)

du[1] = u[1] - b/c1 * u[1] * u[2] - a1/c1 * u[1]^2

du[2] = c1/c2 * u[2] - (b/c1 + 0.00031) * u[1] * u[2] - a2/c1 * u[2]^2

end

syst = ODEProblem(foo, [M_01, M_02], (0.0, 30.0))

res = solve(syst)

plot(res, xlabel = "0", label = ["Фирма 1" "Фирма 2"])
```

Figure 0.3: Код для второго случая

4. В результате получим следующий график (иллюстр. 0.4).

Figure 0.4: График для второго случая

Вывод

В ходе работы мы в различных условиях промоделировали конкуренцию двух фирм, получили и проанализировали графики их взаимодействия.