

Production of light and intermediate-mass fragments in p+Al collisions at GeV energies

Mohammad S Sabra
USRA Science and Technology Institute
NASA Marshall Space Flight Center
Huntsville, AL 35805

Introduction

- Space environment has much of cosmic rays and radiations which are dangerous for human beings and space equipment
- Spacecraft will travel through such environment, which is different from that on Earth
- Protection from space radiation is a priority to NASA, as its future plans include extended human mission in deep space

Introduction

- One of the sources of space radiations is the Galactic Cosmic Rays (GCRs) → highly energetic particles consist of every element (90% protons, 9% α-particles, 1% nuclei of heavier elements)
- When spacecraft is bombarded by GCRs, secondary nucleons, light clusters, and intermediate-mass fragments (IMFs) are produced → contribute to dose and dose equivalent received by crews inside

Motivation

- Understanding the reaction mechanism is important in improvement and development of nuclear physics codes used in space development
- We have analyzed energy spectra of nucleons (p, d, t), light clusters (3,4,6 He), and IMFs (6,7,8,9 Li, 7,9,10 Be, 10,11 B) from the interaction of 27 Al with protons at 1.2, 1.9, and 2.5GeV
- Calculations are done using SAPTON code

Scattering And Production Theory of Nuclei (SAPTON)

- SAPTON is a modified version of the standard statistical model.
- It has a final-state interaction between the emitted fragments
- It distinguishes itself from other models in at least one important aspect:

It includes the possibility that the fragments are being emitted the ground states, excited states, as well as in the continuum.

SAPTON (cont.)

• Energy spectra for the production of a pair of fragments A_1 and A_2 in cm system is s given by

$$\frac{d^2\sigma}{d\Omega dE} \propto \int \frac{T_l(\varepsilon)\rho_1(U_1)\rho_2(U_2)}{\rho_c(U_c)} dU_1 dU_2$$

where

- $ightharpoonup T_l(arepsilon)$ is the transmission Coefficient between the pair with relative energy arepsilon
- $\triangleright \rho_1, \rho_2$ are their level densities
- $\triangleright U_1$, U_2 are their excitation energies
- $\triangleright \rho_c$, U_c are the level density and excitation energy of the composite system

Transmission Coefficient $T_l(\varepsilon)$

- $T_l(\varepsilon)$ represents the final-state interaction between the fragments in the exit channel
- It is calculated from a realistic complex optical potential

$$T_l(\varepsilon) = 1 - |S_l|^2$$

- The existence of such potential governs the dynamics of the fragmentation process entirely by dividing it into various reaction channels according to various relative angular momentum *I*-values (which are related to the impact parameter)
- This allows fragments to be emitted in ground, excited states, as well as in the continuum → fragments might be unstable while detected (similar to fission-like process)
- Other models \rightarrow fragments are emitted in their ground states.

Theory vs Experiment

Theory vs Experiment

Theory vs Experiment

Conclusions

- SAPTON reproduces energy spectra for H-isotopes reasonably well compared to data
- In SAPTON, these nucleons are emitted in all possible states with a most probable energy (ε_{prob}) controlled by nuclear potential in the exit channel ($V_N + V_C$)
- Surface coalescence stage plays a significant role in IMFs production
- While most simulation codes ignore such stage, SAPTON employs such stage using different impact parameters (I-values)

Future work

- □ Calculate production cross-sections for Li, Be and B isotopes in p+Al reaction at 1.2, 1.9, and 2.5GeV
- □ Invesitigate charge and mass distribution of fragments as a function of proton incident energy.

Thank You! Questions?

Scaling Potential

• The potential between the outgoing fragments A_1 and A_2 is represented by a complex molecular potential

$$V_N(r) = V(r) + iW(r)$$

where

$$V(r) = \frac{V_0}{1 + e^{(r - R_0)/a_0}} + V_1 e^{-\left(\frac{r}{R_1}\right)^2} + V_c(r)$$

$$W(r) = V_2 (1 + C_1 \varepsilon + C_2 \varepsilon^2) e^{-\left(\frac{r}{R_2}\right)^2}$$

$$W(r) = V_2(1 + C_1\varepsilon + C_2\varepsilon^2)e^{-\left(\frac{r}{R_2}\right)^2}$$

 V_0 , R_0 , R_1 , R_2 , R_C are functions of A_1 and A_2 .