Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

20 января 2019 г.

1 Введение

Эти лекции были рассказаны студентам групп M3334–M3337, M3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 5

Изоморфизм Карри-Ховарда (завершение), Унификация

2.1 Изоморфизм Карри-Ховарда

Определение 2.1. Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M : \sigma$ влечет $|\Gamma| \vdash \sigma$ т.е. $|\{x_1 : \Theta_1 \ldots x_n : \Theta_n\}| = \{\Theta_1 \ldots \Theta_n\}$
- 2. Если $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M : \sigma$, где $\Delta = \{x_\sigma : \sigma \mid \sigma \in \Gamma\}$

Пример. $\{f:\alpha\to\beta,\,x:\beta\}\vdash f\,x:\beta$ Применив, изоморфизм Карри-Ховарда получим: $\{\alpha\to\beta,\,\beta\}\vdash\beta$

 \mathcal{A} оказательство. $\Pi.1$ доказывается индукцией по длине выражения

1.
$$\Gamma$$
, $x : \Theta \vdash x : \Theta \Rightarrow_{KH} |\Gamma|, \Theta \vdash \Theta$

2. $\frac{\Gamma, \ x : \tau_1 \vdash P : \tau_2}{\Gamma \vdash \lambda x. \ P : \tau_1 \to \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma|, \tau_1 \vdash \tau_2}{|\Gamma| \vdash \tau_1 \to \tau_2}$

3.
$$\frac{\Gamma \vdash P : \tau_1 \to \tau_2 \qquad \Gamma \vdash Q : \tau_1}{\Gamma \vdash P \ Q : \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma| \vdash \tau_1 \to \tau_2 \qquad |\Gamma| \vdash \tau_1}{|\Gamma| \vdash \tau_2}$$

П.2 доказывается аналогичным способом но действия обратные.

Т.е. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот. □

Определение 2.2. Расширенный полином:

$$E(p, q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p, q), & \text{if } p, q \neq 0 \end{cases}$$

где C — константа, p_1, p_2, p_3 — выражения, составленные из *, +, p, q и констант.

Пусть $v=(\alpha\to\alpha)\to(\alpha\to\alpha)$, где α -произвольный тип и пусть $F\in\Lambda$, что $F:v\to v\to v$, то существует расширенный полином E, такой что $\forall a,\ b\in\mathbb{N}$ $F(\overline{a},\ \overline{b})=_{\beta}$ $\overline{E(a,\ b)},$ где \overline{a} -черчевский нумерал.

Теорема 2.1. У каждого терма в просто типизируемом λ исчислении существует расширенный полином.

Утверждение 2.1. Типы черчевских нумералов

- 1. $0: \lambda f \lambda x. x: a \rightarrow b \rightarrow b$
- 2. $1: \lambda f \lambda x. f x: (a \rightarrow b) \rightarrow a \rightarrow b$
- 3. $2: \lambda f \lambda x. f(f x): (a \rightarrow a) \rightarrow a \rightarrow a$
- 4. $\forall i, i \geq 2 \quad \lambda f \lambda x. f(\dots(f x)) : (a \rightarrow a) \rightarrow a \rightarrow a$

 \mathcal{A} оказательство. Пункты 1,2,3- очевидно. Рассмотрим более подробно пункт 4:

Разберем нумерал и рассмотрим два последних шага —

$$\underbrace{ \begin{array}{c} f: a \to b \vdash x: a \\ \hline f: a \to b \vdash fx: b \\ \hline f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash fx: a \\ \hline f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx)) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ f(\ \ldots \ (fx): \bot) \end{array} }_{} \quad \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f \ \lambda x. \ \underbrace{ \begin{array}{c} f: a \to b \vdash f(fx): \bot \\ \hline \\ \lambda f$$

на шаге 3 становится понятно, что $f:a \rightarrow a$ и x:a

Утверждение 2.2. Основные задачи типизации λ исчисления

- 1. Проверка типа—выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ терма M и типа σ (для проверки типа обычно откидывают σ и рассматривают п.2).
- 2. Реконструкция типа—можно ли подставить вместо ? и $?_1$ в $?_1 \vdash M$: ? подставить конкретный тип σ в ? и контекст Γ в $?_1$.
- 3. Обитаемость типа—пытается подобрать, такой терм M и контекст Γ , что бы было выполнено $\Gamma \vdash M : \sigma$.

Определение 2.3. Алгебраический терм Выражение типа

$$\Theta ::= a \mid (f_k \Theta_1 \cdots \Theta_n)$$

где a-переменная, $(f_k \Theta_1 \cdots \Theta_n)$ -применение функции

2.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$ Система уравнений в алгебраических термах

Определение 2.4. Система уравнений в алгебраических термах

$$\left\{egin{aligned} \Theta_1 &= \sigma_1 \ dots \ \Theta_n &= \sigma_n \end{aligned}
ight.$$
где Θ_i и σ_i — термы

Определение 2.5. $\{a_i\} = A$ -множество перменных, $\{\Theta_i\} = T$ -множество термов.

Определение 2.6. Подстановка—отображение вида: $S_0: A \to T$, которое является решением в алгебраических термах.

 $S_0(a)$ может быть либо $S_0(a) = \Theta_i$, либо $S_0(a) = a$.

Доопределим S на все T т.е. $S: T \to T$, где

- 1. $S(a) = S_0(a)$
- 2. $S(f(\Theta_1 \cdots \Theta_k)) = f(S(\Theta_1) \cdots S(\Theta_k))$

S то же самое что и много if'ов либо map строк.

Определение 2.7. Решить уравнение в алгебраических термах—найти такое S, что $S(\Theta_1) = S(\Theta_2)$

Пример.

Заранее обозначим: a, b — переменные f, g, h — функции

- 1. f(a(gb)) = f(he)d имеет решение S(a) = he и S(d) = gb
 - (a) $S(f \ a \ (g \ b)) = f \ (h \ e) \ (g \ b)$
 - (b) S(f(h e) d) = f(h e) (g b)
 - (c) f(he)(gb) = f(he)(gb)
- 2. f a = g b—решений не имеет

Таким образом, что бы существовало решение необходимо равенство строк полученной подстановки.

2.3 Алгоритм Унификации. Определения

- 1. Система уравнений E_1 эквивалентна E_2 , если они имеют одинаковые решения(унификаторы).
- 2. Любая система E эквивалентна некторому уравнению $\Sigma_1 = \Sigma_2$.

Доказательство. Возьмем функциональный символ f, не использующийся в E,

$$E = \begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$

это же уравнение можно записать как $-f\Theta_1\ldots\Theta_n=f\sigma_1\ldots\sigma_n$

Если существует подстановка S такая, что

$$S(\Theta_i) = S(\sigma_i) \ \forall \ i, \text{ To } S(f \ \Theta_1 \dots \Theta_n) = f \ S(\sigma_1) \dots S(\sigma_n)$$

Обратное аналогично.

3. Рассмотрим операции

(а) Редукция терма

Заменим уравнение вида
$$-f_1$$
 $\Theta_1\dots\Theta_n=f_1$ $\sigma_1\dots\sigma_n$ на систему уравнений $\Theta_1=\sigma_1$:
$$\Theta_n=\sigma_n$$

(b) Устранение переменной

Пусть есть уравнение $x = \Theta$, заменим во всех остальных уравнениях переменную x на терм Θ .

Утверждение 2.3. Эти операции не изменяют множества решений.

 \mathcal{A} оказательство. Пункт a — доказан выше, докажем теперь пункт b :

Пусть есть решение вида
$$T=\begin{cases} a=\Theta_a\\ \vdots \end{cases}$$
 и уравнение вида f a ... z $=$ Θ_c , тогда, $T(f$ a ... z) $=$ f $T(a)$... $T(z)$, которое в свою очередь является f Θ_a ... $T(z)$

Определение 2.8. Система уравнений в разрешеной форме если

- 1. Все уравнения имеют вид $a_i = \Theta_i$
- 2. Каждый из a_i входит в систему уравнений только раз

Определение 2.9. Система несовместима если

- 1. существует уравнение вида $f \Theta_1 \dots \Theta_n = g \sigma_1 \dots \sigma_n$, где $f \neq g$
- 2. существует уравнение вида $a=f\Theta_1\ldots\Theta_n$, причем a выходит в какой-то из Θ_i

2.4 Алгоритм унификации

- 1. Пройдемся по системе, выберем такое уравнение, что оно удовлетворяет одному из условий:
 - (a) Если $\Theta_i = a_i$, то перепишем, как $a_i = \Theta_i$, Θ_i —не переменная
 - (b) $a_i = a_i$ удалим
 - (c) $f \Theta_1 \dots \Theta_n = f \sigma_1 \dots \sigma_n$ применим редукцию термов
 - (d) $a_i = \Theta_i \Pi$ рименим подстановку переменной подставим во все остальне уравнения Θ_i вместо a_i (Если a_i встречается в системе где-то еще)
- 2. Проверим разрешима ли система, совместима ли система (два пункта несовместимости)
- 3. повторим пункт 1

Утверждение 2.4. Алгоритм не изменяет множетва решений

Утверждение 2.5. Несовместная система не имеет решений

Утверждение 2.6. Если система имеет решение, то его разрешеная форма единствена

Утверждение 2.7. Система в разрешеной форме имеет решение:

$$\begin{cases} a_1 = \Theta_1 \\ \vdots \\ a_n = \Theta_n \end{cases}$$
 имеет решение –
$$\begin{cases} S_0(a_1) = \Theta_1 \\ \vdots \\ S_0(a_n) = \Theta_n \end{cases}$$

Утверждение 2.8. Алгоритм всегда закначивается

Доказательство. По индукции, выберем три числа $\langle x \, y \, z \rangle$, где

x-количество переменных, которые встречаются строго больше одного раза в левой части некоторого уравнения (b не повлияет на x, а a повлияет в уравнении $f(a(ga)b) = \Theta)$,

у- количество функциональных символов в системе,

z-количество уравнеий типа a=a и $\Theta=b$, где Θ не переменная.

Определим отношение \leq между двумя кортежами, как $\langle x_1 y_1 z_1 \rangle \leq \langle x_2 y_2 z_2 \rangle$ если верно одно из следующих условий:

- 1. $x_1 < x_2$
- 2. $x_1 = x_2 \& y_1 < y_2$
- 3. $x_1 = x_2 \& y_1 = y_2 \& z_1 < z_2$

Заметим, что операции (a) и (b) всегда уменьшают z и иногда уменьшают x.

Операция (c) всегда уменьшает y иногда x и, возможно, увеличивает z.

Операция (d) всегда уменьшает x, и иногда увеличивает y.

Очевидно, что с каждой операцией a-d данная тройка уменьшается и так как $x,y,z\geq 0$, то данный алгоритм завершится за конечное время.

Пример.

Исходная система

$$E = \left\{ \begin{array}{c} g(x_2) = x_1 \\ f(x_1, h(x_1), x_2) = f(g(x_3), x_4, x_3) \end{array} \right\}$$

Применим пункт (c) ко второму уравнению верхней системы получим:

$$E = \left\{ \begin{array}{l} g(x_2) = x_1 \\ x_1 = g(x_3) \\ h(x_1) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (d) ко второму уравнению верхней системы (оно изменит 10е уравнение) получим:

$$E = \left\{ \begin{array}{l} g(x_2) = g(x_3) \\ x_1 = g(x_3) \\ h(g(x_3)) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (c) ко первому ур-ию и пункт (a) к третьему уравнению верхней системы

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (b) к последнему уравнению и получим систему в разрешеной форме

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \end{array} \right\}$$

Решение системы:

$$S = \left\{ \begin{array}{c} (x_1 = g(x_3)) \\ (x_2 = x_3) \\ (x_4 = h(g(x_3)))) \end{array} \right\}$$

Определение 2.10. $S \circ T$ -композиция подстановок, если $S \circ T = S(T(a))$

Определение 2.11. S—наиболее общий унификатор, если любое решение (R) системы X может быть получено уточнением: $\exists T: R = T \circ S$

Утверждение 2.9. Алгоритм дает наиболее общий унификатор системы, если у нее есть решения. Если решений нет алгоритм окончится неудачей.

Доказательство. Рассмотрим решение в разрешеной форме S и какое-то другое решение R

- 1. Если $S \equiv R$, то тогда T = S
- 2. Иначе R— не является решением в разрешеной форме и так как множество решений не изменяется и решение в разрешеной форме единственно, то сведя R к S (например алгоритмом унификации) получим какое-то решение T, которым будет ответом

3 Лекция 6

Реконструкция типов в просто типизированном лямбда-исчислении, комбинаторы

3.1 Алгоритм вывода типов

Пусть есть: ? $\vdash A$: ?, хотим найти пару \langle контекст, тип \rangle **Алгоритм:**

1. Рекурсия по структуре формулы Построить по формуле A пару $\langle E, \tau \rangle$, где

E-набор уравнений, τ -тип A

2. Решение уравнения, получения подстановки S и из решения E и S (τ) получение ответа

6

Т.е. необохимо свести вывод типа к алгоритму унификации.

Пункт 3.1. Рассмотрим 3 случая

Обозначение \rightarrow — алгебраический тип

- 1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой конекст, α_A -новая переменная нигде не встречавшаяся до этого в формуле
- 2. $A \equiv P Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \to (\tau_Q \alpha_A)\}, \alpha_A \rangle$, где α_A -новая переменная
- 3. $A \equiv \lambda x.P \implies \langle E_P, \alpha_x \rightarrow \tau_P \rangle$

Пункт 3.2. Алгоритм унификации

Рассмотрим E—набор уравнений, запишем все уравнения в алгебраическом виде т.е. $\alpha \to \beta \Leftrightarrow \to \alpha \beta$, затем применяем алгоритм унификации.

Лемма 3.1. Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma \vdash M : \rho$, то существует:

- 1. S-решение E_M тогда $\Gamma = \{x : S(\alpha_x) \mid x \in FV(M)\}$, FV-множество свободных переменных в терме M, α_x переменная полученная при разборе терма M $\rho = S(\tau_M)$
- 2. Если S— решение E_M , то $\Gamma \vdash M : \rho$,

Доказательство. индукция по структуре терма M

- (a) Если $M \equiv x$, то так как решение существует, то существует и $S(\alpha_x)$, что: $\Gamma, x: S(\alpha_x) \vdash x: S(\alpha_x)$
- (b) Если $M \equiv \lambda x$. P, то по индукции уже известен тип P, контекст Γ и тип x, тогда:

$$\frac{\Gamma, x : S(\alpha_x) \vdash P : S(\alpha_P)}{\Gamma \vdash \lambda x. P : S(\alpha_x) \to S(\alpha_P)}$$

(c) Если $M \equiv P Q$, то по индукции:

$$\frac{\Gamma \vdash P : S(\alpha_P) \equiv \tau_1 \to \tau_2}{\Gamma \vdash P Q : \tau_2} \frac{\Gamma \vdash Q : S(\alpha_Q) \equiv \tau_1}{\Gamma \vdash P Q : \tau_2}$$

 $\langle \Gamma, \rho \rangle$ — основная пара для терма M, если

- 1. $\Gamma \vdash M : \tau$
- 2. Если $\Gamma' \vdash M : \tau'$, то сущесвтует $S : S(\Gamma) \subset \Gamma'$

Пример.

7

Рассмотрим терм: $\lambda f \ \lambda x. \ f(f(x))$, построим и пронумеруем его дерево разбора:

1.
$$E_1 = \langle \{\}, \alpha_x \rangle$$

2.
$$E_2 = \langle \{\}, \alpha_f \rangle$$

3.
$$E_3 = \langle \{\}, \alpha_f \rangle$$

4.
$$E_4 = \langle \{\alpha_f = \rightarrow (\alpha_x \alpha_1)\}, \alpha_1 \rangle$$

5.
$$E_5 = \left\langle \left\{ \begin{array}{l} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{array} \right\}, \, \alpha_2 \right\rangle$$

6.
$$E_6 = \left\langle \left\{ \begin{array}{l} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{array} \right\}, \, \alpha_x \to \alpha_2 \right\rangle$$

7.
$$E_7 = \left\langle \left\{ \begin{array}{l} \alpha_f = \to (\alpha_x \alpha_1) \\ \alpha_f = \to (\alpha_1 \alpha_2) \end{array} \right\}, \ \alpha_f \to (\alpha_x \to \alpha_2) \right\rangle$$

$$E = \left\{ \begin{matrix} \alpha_f = \to & (\alpha_x & \alpha_1) \\ \alpha_f = \to & (\alpha_1 & \alpha_2) \end{matrix} \right\}$$
, решим полученную систему:

1. Решим сисетму:

(a)
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$

(b)
$$\left\{ \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \right\}$$

(c)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

- 3. $\Gamma = \{\}$, так как в заданной формуле нет свободных переменных
- 4. тип терма $\lambda f \lambda x. f(f(x))$ является результат подстановки $S(\to \alpha_f (\alpha_x \to \alpha_2))$, получаем $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

3.2 Сильная и слабая нормализации

Определение 3.1. Если существует последовательность редукций, приводящая терм M в нормальную форму, то M—слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

Определение 3.2. Если не существует бесконечной последовательности редукций терма M, то терм M- сильно нормализуем.

Утверждение 3.1.

1. $KI\Omega$ — слабо нормализуема

Пример.

Перепишем $KI\Omega$ как $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$, очевидно, что этот терм можно средуцировать двумя разными способами:

- (а) Сначала редуцируем красную скобку
 - i. $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$
 - ii. $((\lambda y. (\lambda x. x)))(((\lambda x. x x)(\lambda x. x x)))$
 - iii. $(\lambda x. x)$

Видно, что в этом случае количество шагов конечно.

- (b) Редуцируем синюю скобку. Очевидно, что комбинатор Ω не имеет нормальной формы, тогда понятно, что в этом случае терм $KI\Omega$ никогда не средуцируется в нормальную форму.
- 2. Ω не нормализуема
- 3. II— сильно нормализуема

Лемма 3.2. Сильная нормализация влечет слабую.

3.3 Выразимость комбинаторов

Утверждение 3.2. Любое λ выражение можно записать с помощью комбинаторов S и K, где

$$S = \lambda x \lambda y \lambda z. (x z) (y z) : (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

$$K = \lambda x \lambda y. x : a \rightarrow b \rightarrow a$$

Утверждение 3.3. Комбинаторы S и K являются аксиомами в ИИВ

Утверждение 3.4. Соотношение комбинаторов с λ исчислением:

- 1. T(x) = x
- 2. T(PQ) = T(P) T(Q)

3.
$$T(\lambda x.P) = K(T(P)), x \notin FV(P)$$

4.
$$T(\lambda x.x) = I$$

5.
$$T(\lambda x \lambda y.P) = T(\lambda x. T(\lambda y.P))$$

6.
$$T(\lambda x.P Q) = S T(\lambda x.P) T(\lambda x.Q)$$

Утверждение 3.5. Альтернативный базис:

1.
$$B = \lambda x \ \lambda y \ \lambda z . \ x \ (y \ z) \ : \ (a \ \rightarrow \ b) \ \rightarrow \ (c \ \rightarrow \ a) \ \rightarrow \ c \ \rightarrow \ b$$

2.
$$C = \lambda x \lambda y \lambda z. ((x z) y) : (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$$

3.
$$W = \lambda x \lambda y$$
. $((x y) y)$: $(a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b$