Solution to Exercises - Week 8 Intelligent Systems Programming

Exercise 1

The recursive call structure of constructing the ROBBD of $\neg x_1 \land (x_2 \Leftrightarrow \neg x_3)$ using the ordering $x_1 < x_2 < x_3$ is shown in Figure 1 and the resulting ROBBD is shown in Figure 2.

Figure 1: The recursive call structure of BUILD for $\neg x_1 \land (x_2 \Leftrightarrow x_3)$

The final content of the unique table is given in Figure 3.

Exercise 2

When we are looking at an expression t which is a conjunctions of variables and negated variables, we know that if the evaluation of the variable we are branching

Figure 2: The ROBDD for $\neg x_1 \land (x_2 \Leftrightarrow x_3)$

ID	variable	low	high
0	4	-	-
1	4	-	-
2	3	0	1
3	3	1	0
4	2	2	3
5	1	4	0

Figure 3: The table for $\neg x_1 \land (x_2 \Leftrightarrow x_3)$

on results in false, then the whole expression will evaluate to false. To improve the BUILD we can therefore do the following:

```
BuildConj(t) return Build'Conj(t, 1)
```

where BUILD'CONJ(t, i) is described in the following pseudo code:

```
\begin{aligned} & \textbf{BUILD'CONJ}(t,i) \\ & \textbf{if } i > n \\ & \textbf{if } t \text{ is false} \\ & \textbf{return 0} \\ & \textbf{else} \\ & \textbf{return 1} \\ & \textbf{else} \\ & \textbf{if } x_i \text{ is unnegated in } t \\ & v_0 \leftarrow 0 \\ & v_1 \leftarrow \text{BUILD'CONJ}(t[1/x_i], i+1) \\ & \textbf{else} \\ & v_0 \leftarrow \text{BUILD'CONJ}(t[0/x_i], i+1) \\ & v_1 \leftarrow 0 \\ & \textbf{return MK}(i, v_0, v_1) \end{aligned}
```

Exercise 3

The ROBBDs of x and $x \Rightarrow y$ is shown in Figure 4 and the table of nodes after these have been build is shown in Figure 5.

Figure 4: The ROBDDs for x and $x \Rightarrow y$

ID	variable	low	high
0	3	-	-
1	3	-	-
2	1	0	1
3	2	0	1
4	1	1	3

Figure 5: The table after building ROBBDs for x and $x \Rightarrow y$

Running the APPLY results in the structure in Figure 6. The table after running

Figure 6: The recursive calls of Apply

the algorithm is still the one shown in Figure 5. The resulting ROBBD is shown in Figure 7; it is easily seen that

$$x \lor (x \Rightarrow y) \equiv x \lor \neg x \lor y \equiv \top.$$

Figure 7: Resulting ROBBD from $x \lor (x \Rightarrow y)$

Exercise 4

The recursive call structure of constructing the ROBBDs of $\neg(x_1 \land x_3)$ and $x_2 \land x_3$ using the ordering $x_1 < x_2 < x_3$ is shown in Figure 10 and the resulting ROBBDs is shown in Figure 8.

Figure 8: The ROBDDs for $\neg(x_1 \land x_3)$ and $x_2 \land x_3$

ID	variable	low	high
110	variable	10 W	mgn
0	4	-	-
1	4	-	-
2	3	1	0
3	1	1	2
4	3	0	1
5	2	0	4

Figure 9: The table after construction of ROBBDs for $\neg(x_1 \land x_3)$ and $x_2 \land x_3$

The content of the unique table after constructing these ROBBDs is given in Figure 9.

Using APPLY to construct the ROBBD for $\neg(x_1 \land x_3) \lor (x_2 \land x_3)$ results in the recursive call structure given in Figure 11. The resulting ROBBD is shown in Figure 12.

Figure 10: The recursive call structure of Build for $\neg(x_1 \land x_3)$ and $x_2 \land x_3$

Figure 11: The recursive call structure of APPLY for $\neg(x_1 \land x_3) \lor (x_2 \land x_3)$

Figure 12: The ROBDD for $\neg(x_1 \land x_3) \lor (x_2 \land x_3)$