

1 Exercise 9.2

Q1. In the figure given below, ABCD is a parallelogram, $AE \perp DC$ and $CF \perp AD$. If AB=16cm, AE=8cm and CF=10cm, find AD. Construction

Figure 1: Parallelogram ABCD

The following table displays the given input parameters :

Symbol	Value	Description
a	10cm	CF
b	8cm	AE
l	16cm	AB
$\angle AED$	90°	$AE \perp DC$
$\angle DFC$	90°	$\mathrm{CF}\perp\mathrm{AD}$

Table 1: Input Parameters

The lengths and angles which are to be found out are displayed in the table below along with their symbols :

Symbol	Description
c	CD
d	DE
r	AD
f	DF
θ	$\angle D$

Table 2: Unknown Parameters

The input co-ordinates of the above parallelogram is \mathbf{D} which is at the origin. The rest of the point co-ordinates can be derived based on this assumption in the following way which is shown in the table below:

Point	Co-ordinates
A	$r \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
В	$\mathbf{A} + \mathbf{C}$
\mathbf{C}	$c\mathbf{e_1}$
\mathbf{E}	$d\mathbf{e_1}$
F	$f\begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$

Table 3: Unknown Co-ordinates

Deriving the Unknown lengths and angles in terms of known and derived parameters :

1. Deriving c:

From Figure 1, c is parallel to l(AB parallel to CD).So,

$$c = l \tag{1}$$

(2)

2. Deriving d:

From $\triangle ADE$,

$$\cos \theta = \frac{DE}{AD} = \frac{d}{r} \tag{3}$$

$$\implies d = r\cos\theta \tag{4}$$

(5)(6)

3. Deriving r:

From $\triangle ADE$,

$$\sin \theta = \frac{AE}{AD} = \frac{b}{r}$$

$$\implies r = \frac{b}{\sin \theta}$$
(8)

$$\implies r = \frac{b}{\sin \theta}$$
 (8)

(9)

4. Deriving f:

From $\triangle DFC$,

$$\cos \theta = \frac{DF}{DC} = \frac{f}{c} \tag{11}$$

$$\implies f = c\cos\theta \tag{12}$$

(13)(14)

5. Finding θ :

From $\triangle DFC$,

$$\sin \theta = \frac{CF}{CD} = \frac{a}{c} \tag{15}$$

(16)

$$\implies \theta = \sin^{-1}\frac{a}{c} \tag{17}$$

(18)

(19)

From 2,5,9,13 and 18, table 2 can be modified as:

Symbol	value	Description
c	l	DC
r	$\frac{b}{\sin \theta}$	AD
d	$r\cos\theta$	DE
θ	$\sin^{-1}\frac{a}{c}$	$\angle D$
f	$c\cos\theta$	DF

Table 4: Unknown parameters in terms of known and derived parameters

Deriving co-ordinates in terms of known and derived parameters:

Based on table4, table3 can be modified as follows:

Point	Co-ordinates
A	$\frac{b}{\sin \theta} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
В	$\mathbf{A} + \mathbf{C}$
\mathbf{C}	$c\mathbf{e_1}$
\mathbf{E}	$r\cos\theta\mathbf{e_1}$
F	$c\cos\theta \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$

Table 5: Co-ordinates in terms of known and derived co-ordinates

Finding Co-ordinates:

1. Co-ordinates of A:

From 18, the value of θ is :

$$\theta = \sin^{-1}\frac{a}{c} = \sin^{-1}\frac{10}{16}$$

$$\implies \theta = 38.68^{\circ}$$
(20)

$$\implies \theta = 38.68^{\circ} \tag{21}$$

(22)

So, co-ordinates of A can be derived from table 5 and they are :

$$\mathbf{A} = \frac{8}{\sin 38.68} \begin{pmatrix} \cos 38.68 \\ \sin 38.68 \end{pmatrix} \tag{23}$$

$$\implies \mathbf{A} = \begin{pmatrix} 10\\8 \end{pmatrix} \tag{24}$$

(25)

2. Co-ordinates of B:

From table 5,co-ordinates of ${\bf B}$ are :

$$\mathbf{B} = \begin{pmatrix} 10\\8 \end{pmatrix} + \begin{pmatrix} 16\\0 \end{pmatrix} \tag{26}$$

$$\mathbf{B} = \begin{pmatrix} 26\\8 \end{pmatrix} \tag{27}$$

(28)

3. Co-ordinates of C are:

From table 5, co-ordinates of ${\bf C}$ are :

$$\mathbf{C} = ce_1 = \begin{pmatrix} c \\ 0 \end{pmatrix} \tag{29}$$

$$\implies \mathbf{C} = \begin{pmatrix} 16\\0 \end{pmatrix} \tag{30}$$

(31)

4. Co-ordinates of E:

From 9, the value of r is:

$$r = \frac{8}{\sin 38.68} = 12.8cm \tag{32}$$

(33)

From table 5, co-ordinates of ${\bf E}$ are :

$$\mathbf{E} = (12.8)\cos 38.68 \begin{pmatrix} 1\\0 \end{pmatrix} \tag{34}$$

$$\implies \mathbf{E} = \begin{pmatrix} 10\\0 \end{pmatrix} \tag{35}$$

(36)

5. co-ordinates of F:

From table 5, co-ordinates of \mathbf{F} are :

$$\mathbf{F} = (16)\cos 38.68 \begin{pmatrix} \cos 38.68 \\ \sin 38.68 \end{pmatrix} \tag{37}$$

$$\implies \mathbf{F} = \begin{pmatrix} 9.75 \\ 7.8 \end{pmatrix} \tag{38}$$

(39)

Point	Co-ordinates
A	$\binom{10}{8}$
В	$\binom{26}{8}$
C	$\begin{pmatrix} 16 \\ 0 \end{pmatrix}$
D	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
E	$\begin{pmatrix} 10 \\ 0 \end{pmatrix}$
F	$\begin{pmatrix} 9.75 \\ 7.8 \end{pmatrix}$

Table 6: Final Co-ordinates

So, the final co-ordinates of the parallelogram are displayed in the table below:

From 33, we got the length of AD = r = 12.8cm.