Applied Quantitative Investment Management

Lecture 1: Introduction and Python setup

Anton Vorobets

Agenda

How the book and this course is different (Preface)

 Introduction to the investment framework and its core methods (Chapter 1.1)

- Preparing for the next lecture(s).
- Setting up a proper Python development environment, so you can explore the code.

My experience

Professional:

2021-present: Founder & CEO @ Fortitudo Technologies

2016-2021: Portfolio Construction and Asset Allocation @

Danske Bank Asset Management

2015-2016: Equity Derivatives Strategy @ Nordea Markets

2011-2015: Teaching Assistant in Mathematics, Statistics and

Econometrics @ Aarhus University and University of Southern

Denmark

Education:

MSc Quantitative Finance and Machine Learning,
Aarhus University and University of Copenhagen

Substack:

LinkedIn:

Scientific quality of finance and economics academia

Finance and economics academia is exactly wrong

Exactly wrong Approximately correct

Problem with mean-variance, Black-Litterman, etc.

Market representation

$$R = \begin{pmatrix} R_{1,1} & R_{1,2} & \cdots & R_{1,I} \\ R_{2,1} & R_{2,2} & \cdots & R_{2,I} \\ \vdots & \vdots & \ddots & \vdots \\ R_{S,1} & R_{S,2} & \cdots & R_{S,I} \end{pmatrix} \quad p = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_S \end{pmatrix}$$

$$p_s \in (0,1]$$
 $\sum_{s=1}^{S} p_s = 1$

$$\mu \in \mathbb{R}^I \quad \Sigma \in \mathbb{R}^{I \times I}$$

Market representation

	DM Gov	Corp IG	Corp HY	EM Gov	DM Equities	EM Equities	Private Equity	Infrastructure	Real Estate	Hedge Funds	Put option	р	q
0	-2.901372	1.515755	7.243079	9.858614	27.987974	-7.091294	12.952589	0.607117	-2.051072	10.892261	-1.875000	0.01	0.009528
1	-4.033522	-5.507238	-17.472262	-18.084804	-20.901868	-42.943386	-24.630603	-4.877102	-6.808599	-8.255685	9.026868	0.01	0.010300
2	-2.112649	3.396251	3.433316	-2.171095	-0.207091	-24.640181	-4.598131	10.126871	-2.997219	2.751281	-1.875000	0.01	0.007035
3	4.953209	3.406907	27.820853	4.436701	25.658191	46.631981	75.017185	1.123291	10.170868	26.980165	-1.875000	0.01	0.002785
4	4.077621	-2.803989	1.067991	1.161560	19.527465	10.567691	27.660339	-4.110836	3.671376	10.251468	-1.875000	0.01	0.017757
5	5.028862	7.579274	14.766076	6.974784	-0.907956	-21.555335	5.031809	3.706813	-1.695980	0.211889	-1.875000	0.01	0.008335
6	-2.700348	-0.810961	-9.501812	-6.684766	1.070018	-6.555039	2.339627	6.119593	3.027697	5.498058	-1.875000	0.01	0.007617
7	3.976312	5.930553	4.328590	1.981325	13.535295	21.631855	-0.783067	11.487004	0.858899	10.237277	-1.875000	0.01	0.014521
8	-4.416313	-4.715980	-8.971976	-6.600808	-0.293693	-4.104135	17.010508	-14.610564	3.032070	3.442459	-1.875000	0.01	0.010635
9	2.115861	6.387309	14.575082	15.427097	11.223288	29.653759	29.527585	10.523831	5.674087	9.411179	-1.875000	0.01	0.018593
10	0.035257	1.025236	-5.285266	0.624084	-10.851014	-30.276292	-20.482211	-2.739756	0.922560	-6.129087	-1.023986	0.01	0.004728
11	1.974382	1.414184	16.825757	-2.814275	11.233995	19.782523	15.896183	-2.049651	0.240350	13.847232	-1.875000	0.01	0.012243
12	5.280698	0.871584	11.513783	3.309399	25.206057	18.720860	81.037608	9.508263	24.317649	19.498595	-1.875000	0.01	0.009221
13	2.257190	0.978109	4.755107	3.687936	1.943316	-2.218547	-11.355873	8.983795	6.558238	2.958365	-1.875000	0.01	0.013361

Views and stress-testing with Entropy Pooling

$$q = \underset{x}{\operatorname{argmin}} \left\{ x^{T} \left(\ln x - \ln p \right) \right\}$$

s.t.
$$Gx \le h$$
 $Ax = b$
$$x > 0 \sum_{s=1}^{S} x_s = 1$$

$$\mu_{BL} = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1} \left[(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q \right]$$
$$\Sigma_{BL} = \Sigma + \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]$$

Quick Entropy Pooling example

Sequential Entropy Pooling

Causal and predictive views and stress-testing

Causal and predictive views and stress-testing

Time- and State-Dependent Resampling

State probability vectors

Portfolio optimization

$$e^{\star} = \text{mean-CVaR}(e, R, q, \mathcal{E})$$

s.t.
$$v^T e + TC(\Delta e) = 1$$

$$e \in \mathcal{E} \subseteq \mathbb{R}^I$$

$$w^* = \text{mean-variance}(w, \mu, \Sigma, \mathcal{W})$$

s.t.
$$\sum_{i=1}^{I} w_i = 1$$

$$w \in \mathcal{W} \subseteq \mathbb{R}^I$$

Conclusions

 All methods operate on fully general distributions and their associated joint probability vectors.

 Not trivial to generate realistic market scenarios, but possible to do much better than the normal distribution.

• Stylized market facts presented in Chapter 2.

Market simulation framework and methods in Chapter 3.

Setting up Python

 Miniconda for package and environment management, ideally through Windows Subsystem for Linux (WSL).

• VS Code as the editor (Jupyter Notebook extension).

Git and GitHub for version control.

GitHub course repository:
 https://github.com/fortitudo-tech/pcrm-book