네트워크 비용 계산 수정내용

- 현재 코딩되어 있는 코드: 파란색 (추정)
- 수정 코드: 빨간색

- ※ Dispatch와 oper_speed는 4_transit_route_oper_info.csv의 값
- ※ transfer_time은 2_Node.csv의 값

<IVTT>

마을버스 탑승시간비용(TownBusIVTT)

- (1/TownBusSpeed)*마을버스탑승거리
- (TownBusTimeCost/TownBusSpeed)*마을버스탑승거리

버스 탑승시간비용(BusIVTT)

- (1/oper_speed)*버스탑승거리
- (BusTimeCost/oper_speed)*버스탑승거리

전철 탑승시간비용(TrainIVTT)

- (1/oper_speed)*전철탑승거리
- (TrainTimeCost/oper_speed)*전철탑승거리

네트워크 비용 계산 수정내용

- 현재 코딩되어 있는 코드: 파란색 (추정)
- 수정 코드: 빨간색

- ※ Dispatch와 oper_speed는 4_transit_route_oper_info.csv의 값
- ※ transfer_time은 2_Node.csv의 값

<OVTT>

초기대기시간비용

- 첫 수단이 마을버스: 1/TownBusDispatchesPerHour
- 첫 수단이 버스, 전철: 1/Dispatch
- 첫 수단이 마을버스: WaitTimeCost/(**2***TownBusDispatchesPerHour)
- 첫 수단이 버스, 전철: WaitTimeCost /(**2***Dispatch)

환승시간비용

- transfer_time/60
- (transfer_time/60)* TransferTimeCost

초기대기시간비용

- 환승하는 수단이 마을버스: 1/TownBusDispatchesPerHour
- 환승하는 수단이 버스, 전철: 1/Dispatch
- 환승하는 수단이 마을버스: WaitTimeCost/(2*TownBusDispatchesPerHour)
- 환승하는 수단이 버스, 전철: WaitTimeCost /(**2***Dispatch)

GenerationBestResult.csv 에 컬럼 추가

GenerationBestResult.csv 에 아래 노란색 변수를 추가로 출력

Ge	erationBestResult.	CSV		± .10=110	마을버스 노선	마을버스		
	Α	В	С	총 이용자 비용	총 운영비용	총 노선 길이	G	
1	GenerationNumber	Fitness	ObjectFunctionValue	TotalUserCost	OperatorCost	TotalRouteDistance	ChromosomeName	
2	1	181.787169	54532.36163				Chromosome17	
3	2	193.876161	51791.85224				Chromosome2	
4	3	282.549295	34997.36734				Chromosome8	
_		202 5 40205	24007.26724				CI 0	

#_ShortestPath_#.csv

Order	Cost	TrainIVTT	BusIVTT	TownBuslVTT	OVTT	TrafficVolume	Path	
1	0.409333	0	0	0.259333	0.15	10	152	Cost * TrafficVolume = UserCost
1	0.800349	0.205682	0	0.194667	0.4	10	1563	
1	0.806682	0.205682	0	0.201	0.4	10	1564	모든 OD pair의 UserCost 총합 : TotalUserCost
								エ는 OD pail in UserCost of in TotaloserCost

Operator Cost 추가사항

◆ 계산된 모든 od pair의 경로r 별 이용자비용 $(C_{U,odr})$ 을 합산하고 운영비용 (C_O) 를 합산하여 네트워크 비용(Z)을 산출한다.

네트워크
$$\Omega$$
에서 발생하는 비용 : $Z(\Omega) = \left(\sum_r \sum_{o,d \in N} C_{\mathrm{U},odr} \right) + C_{\mathrm{O}}$

 $\sum_{r}\sum_{o.d \in N} C_{\mathrm{U},odr}$: 앞서 계산된 모든 od pair의 경로r 별 이용자비용 ($\mathrm{C}_{\mathrm{U},\mathrm{odr}}$) 합산

 C_{O} : 네트워크 Ω 의 마을버스 총 운영 비용 \rightarrow 마을버스 노선 k 별로 운영비용을 산출하고 모든 마을버스 노선k에 대해서 합산

마을버스 운영비용(원/대·km) (
$$\lambda_b$$
) \longrightarrow 고정 값으로 입력됨 \bigstar 예시로 돌릴 때는 1600원/대·km 로 입력

 $C_{\rm O} = \sum_k \left(2 \times \text{마을버스 운영비용}(\ell^2/\text{ri·km}) \times \text{마을버스노선 } k \text{ 의 배차횟수}(\text{마을버스})(\text{ri/시간}) \times \text{마을버스노선 } k \text{ 의 편도 노선길이}(km)\right)$

$\langle \text{네트워크}\Omega \text{ 의 마을버스 총 운영 비용 (수정)} \rangle$

 $C_{\text{O}} = \sum_{k} (2 \times \text{마을버스 운영비용}(원/대·km) \times \text{마을버스노선 } k$ 의 배차횟수(마을버스)(대/시간) × 마을버스노선 k의 편도 노선길이(km) + 노선k고정비용)

노선k고정비용: RouteFixCost

RouteFixCost 는 노선1개당 발생하는 고정비용 예시) RouteFixCost = 100,000원/1개노선

RouteFixCost 는 연구자가 입력하는 값, UserInput.csv에서 입력