

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年 3月19日
Date of Application:

出願番号 特願2003-076164
Application Number:

[ST. 10/C] : [JP2003-076164]

出願人 株式会社小松製作所
Applicant(s):

2004年 1月23日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願

【整理番号】 P03-017

【提出日】 平成15年 3月19日

【あて先】 特許庁長官殿

【国際特許分類】 B62D 55/32

B24B 19/00

【発明者】

【住所又は居所】 大阪府枚方市上野3丁目1-1 株式会社小松製作所大
阪工場内

【氏名】 山本 定嗣

【発明者】

【住所又は居所】 大阪府枚方市上野3丁目1-1 株式会社小松製作所大
阪工場内

【氏名】 前田 和生

【特許出願人】

【識別番号】 000001236

【氏名又は名称】 株式会社小松製作所

【代表者】 坂根 正弘

【代理人】

【識別番号】 100097755

【弁理士】

【氏名又は名称】 井上 勉

【手数料の表示】

【予納台帳番号】 025298

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9723506

【プルーフの要否】 不要

【書類名】

明細書

【発明の名称】

履帶リンク研磨装置および履帶走行装置

【特許請求の範囲】

【請求項 1】 履帶式走行車両における履帶の巻装状態で、履帶リンクの踏面を研磨する研磨板が、その踏面に接触するように配置されていることを特徴とする履帶リンク研磨装置。

【請求項 2】 前記研磨板は、トラックフレーム上部に配置されることを特徴とする請求項 1 に記載の履帶リンク研磨装置。

【請求項 3】 前記研磨板は、トラックフレームに対して脱着容易に装着されるようにする請求項 1 または 2 に記載の履帶リンク研磨装置。

【請求項 4】 前記研磨板は、取付位置調整可能に配置される請求項 1 または 2 に記載の履帶リンク研磨装置。

【請求項 5】 前記研磨板は、研磨材を配する研削面が、前記履帶リンクの 1 リンク以上に平行する状態で当接するように配置されている請求項 1 ~ 4 のいずれかに記載の履帶リンク研磨装置。

【請求項 6】 履帶式走行車両における駆動輪と遊動輪との間に無端状に巻装される履帶に対し、その履帶リンクの踏面を研磨する履帶リンク研磨装置が組込まれていることを特徴とする履帶走行装置。

【請求項 7】 前記履帶リンク研磨装置は、研削面が平面に形成された研磨板を用いる構成である請求項 6 に記載の履帶走行装置。

【発明の詳細な説明】**【0001】****【発明の属する技術分野】**

本発明は、油圧ショベル、ブルドーザなど建設機械、その他産業用機械の走行体に履帶を装備された装軌式車両における履帶リンクの研磨装置および研磨装置が組込まれてなる履帶走行装置に関するものである。

【0002】**【従来の技術】**

従来、装軌式作業車両における履帶走行装置では、その走行用履帶が、車体フ

レームの前後に配される駆動輪と遊動輪との間で履帯リンクを無端状に巻き掛けられて、その接地側にては複数の下部転輪によって保持され、非接地側では上部転輪によって保持されて、駆動輪のスプロケットによって巻き掛け駆動されている。

【0003】

このような履帶走行装置にあっては、走行中、下部転輪、上部転輪、遊動輪と履帯リンクの踏面とが転動接触している間に、その踏面が平らに摩耗せず、波状に摩耗する現象が発生する。このような偏摩耗の発生する要因は、例えば図9（a）にて示されるように、走行する地面Gが軟弱で沈み易く土砂が履帯に付着し易いような場所で走行中に、履帯リンク50の踏面51と遊動輪55との接触面D、Dですべりが生じると付着する土砂が介在して摩耗する。また、図9（b）に示されるように、前記同様に地面Gが柔らかく沈み易い状態であると、下部転輪56位置で履帯リンク50の踏面51両端部で土砂の付着が伴うと、すべりの発生時摩耗が生じる。要するに軟弱地面を走行することが多いと、履帯52が沈みやすいので遊動輪55や下部転輪56との接触部で部分摩耗が激しくなり、図9（c）に例示するように履帯リンク50の踏面51での波状摩耗53が生じる。そして、その波状に摩耗する状態が大きくなってくると、路面の固い安定したところを走行する時に車体振動の原因となり、かつ前記のような現象が顕著になると、騒音を発生して環境に影響を及ぼすことになる。したがって、履帯リンク50の踏面51の波状摩耗が激しくなるとリンクを交換しなければならず経済性を損なうことになる。

【0004】

一方、履帯リンクの摩耗による問題点を改善する手段については、余り具体的な方策が提案されていない。例えば、特許文献1によってトラックリンク（履帯リンク）およびトラックローラ（下部転輪）の踏面の摩耗に応じてトラックローラの鍔部を研磨して、その鍔部がトラックリンクの連結ピンボスと接触するのを防止することで、履帯リンクの使用を長める装置が開示されている。

【0005】

【特許文献1】

実開平1-125286号公報

【0006】

【発明が解決しようとする課題】

しかしながら、特許文献1によって知られる対策は、リンクが全般的に摩耗する場合を想定したもので、相対的に摩耗する転輪側で、踏面が摩耗することにより当初の鍔部のみがそのままの寸法を維持することを、踏面の摩耗に合わせて研磨して対処させるものであって、本願発明において解決しようとする課題に対しては、不適応な技術である。また、前述のように、履帶リンクの波状に摩耗する偏摩耗に対する改善策は見当たらず、リンクの交換によるほかないという状況にあり、ランニングコストを低減させることについては未だ解決されるに至っていないのが現状である。

【0007】

本発明は、このような状況に鑑みてなされたもので、運転を続けながら、波状などの偏摩耗が発生する初期に踏面を正常な状態に研磨修正して長期使用できるようにする履帶リンク研磨装置を提供することを目的とするものである。

【0008】

【課題を解決するための手段および作用・効果】

前述された目的を達成するために、第1発明による履帶リンク研磨装置は、履帶式走行車両における履帶の巻装状態で、履帶リンクの踏面を研磨する研磨板が、その踏面に接触するように配置されていることを特徴とするものである。

【0009】

本発明によれば、履帶式走行車両として通常の走行作業を行うと同時に、履帶リンクの踏面の偏摩耗を研磨板によって修正され、偏摩耗を生じさせずして走行時の車体の振動を防止することができるという効果を奏する。

【0010】

前記発明において、前記研磨板はトラックフレーム上部に配置されることを特徴とするものである（第2発明）。こうすると、研磨板の装着位置の確保が容易で、その脱着や位置調整が容易であるという利点がある。また、前記研磨板は、トラックフレームに対して脱着容易に装着されるようにするのがよい（第3発明

)。こうすると、研磨板の交換や研摩を要しないときには取外すことができ、無駄な摩耗や抵抗の増加を防止することができる。

【0011】

また、前記発明において、前記研磨板は、取付位置調整可能に配置されるのがよい（第4発明）。こうすることにより、無駄な摩耗や研摩に伴う抵抗の増加を防止するとともに、摩耗操作の最適位置に調整することが可能になるという利点がある。

【0012】

さらに、前記発明において、前記研磨板は、研磨材を配する研削面が、前記履帶リンクの1リンク以上に平行する状態で当接するように配置されているのがよい（第5発明）。このように構成することで、履帶リンクの踏面を正常状態に修正して履帶を円滑な走行移動させることができるという効果が得られる。

【0013】

次に、第6発明による履帶走行装置は、履帶式走行車両における駆動輪と遊動輪との間に無端状に巻装される履帶に対し、その履帶リンクの踏面を研摩する履帶リンク研磨装置が組込まれていることを特徴とするものである。

【0014】

本発明によれば、履帶走行装置が駆動されて走行車両が走行する際、履帶リンク研磨装置によって履帶リンクの踏面が研摩され、履帶リンクは偏摩耗が生じないようにされつつ駆動されるので、円滑な駆動走行がなされるという利点がある。

【0015】

前記第6発明において、前記履帶リンク研磨装置は、研削面が平面に形成された研磨板を用いられる構成であるのが好ましい（第7発明）。このように構成すれば、常に研磨板と接触する履帶リンクの踏面が平面に修正されて偏摩耗の発生を予防できることになる。

【0016】

【発明の実施の形態】

次に、第1発明による履帶リンク研磨装置とそれを組み込まれた第6発明の履

帶走行装置の具体的な実施の形態につき、図面を参照しつつ説明する。

【0017】

図1には本発明にかかる履帶走行装置を備える作業機械車両の一実施形態を表わす側面図が示されている。図2には履帶走行装置の要部を表わす正面図が、図3には図2の上側履帯部分を除いて表わす平面図が、図4には研摩板の要部拡大断面図（a）と研摩板の取着構造部の断面図（b）が、それぞれ示されている。

【0018】

本実施形態の履帶走行装置10は、図1に示されるように、例えばブルドーザーのような不整地を走行して作業する作業機械1の足回り（下部走行体）として用いられるものであり、トラックフレーム11の両側で、そのトラックフレーム11の両端部に配置される駆動輪12と遊動輪13との間で無端状に巻き掛けられる履帯14と、その履帯14の接地走行を維持する複数の下部転輪15と、履帯14の緊張力を保持させる上部転輪16とを備えている。そして、トラックフレーム11の上部に支持されて履帯14を構成する履帯リンク14aの踏面14bの偏摩耗を修正する履帯リンク研摩装置20を具備したものである。

【0019】

前記履帯リンク研摩装置20は、トラックフレーム11の上面で走行方向に所要の間隔で配設されている上部転輪16、16の間にて、そのトラックフレーム11上で所要の間隔にて走行方向に形成された二箇所の取付座17、17に立設される取付ブラケット25、25により、両基端部ボス23、23を支持されるベースフレーム22と、そのベースフレーム22の上面に形成される研削層28とによってなる研摩板21である。

【0020】

前記研摩板21のベースフレーム22は、その幅寸法Bが履帯リンク14aの外幅寸法よりも広い寸法にされ、長さ寸法Lが履帯リンク14aの一ピッチPより長い（この実施形態では約1.5ピッチ）寸法の上面24を持つようになされている。また、このベースフレーム22は、上面24よりも下がった位置で両基端部にそれぞれ形成される幅方向に分割された基端部ボス23、23間に、前記取付座17上に固着されている取付ブラケット25を介挿位置させて、その取

付ブラケット25とともに前記取付ボス23、23の支持孔に取付軸26を挿通して着脱可能に取着されている。前記ベースフレーム22の上面24には、研削層28が一体に形成され、その研削層28によって走行時に履帶リンク14aの踏面14bを連続して研磨するようにされている。

【0021】

前記ベースフレーム22の上面に形成される研削層28は、例えば超硬粒子分散材を含む超硬質材を溶接肉盛して粗面に形成されている。そして、その研削層28は所要寸法のブロックで配置される。また、研削層28の配置は、図3に示されるように、ちょうど履帶リンク14aの踏面が通過する位置に配列される。なお、前記研削層28を形成する超硬質材料の溶接肉盛については、全面的に平坦な肉盛ではなく、履帶リンク14aの走行方向に交差するようにして筋状に盛付ける構成であるのが好ましい。こうしておくことにより、その研削層28の表面に多数の筋（山28a）と溝28bが交互に形成される（図4（a）参照）ので、その溶接肉盛による山28aによってリンクの踏面が研磨され、研磨屑が溝28bによって排出されることになるので、効果的である。

【0022】

このように構成される履帶リンク研磨装置20は、その研磨板21上面に形成されている研削層28が、上部転輪16、16間に移動する履帶14の履帶リンク14a踏面が接触する高さに取付けられて使用に供される。なお、研磨板21は、この取付け状態で前記上部転輪16、16間に掛かる履帶14に研削層28表面がほぼ平行するように配置されている。

【0023】

このようにして履帶走行装置10に組み込まれている履帶リンク研磨装置20は、作業機械1が走行する過程において、駆動輪12と遊動輪13に巻き掛けられて駆動走行する履帶14が、トラックフレーム11の上側に移動すると、上部転輪16、16間において前述のように配置されている研磨板21の上部を通過する際に、履帶リンク14aの踏面が研削層28上を擦過して研磨されることになる。この際、研削層28に対して履帶リンク14aの踏面は、擦れ合う状態で移動することになるので、激しく研削されることなく、擦過する状態を繰返す

ことにより偏摩耗の発生を予防する作用が付加される。また、研磨板 21 が配置される場所においては、上部転輪 16, 16 によって履帯リンク 14a がほぼ緊張状態に保たれて、かつその履帯リンク 14a の 1 ピッチ以上の距離で研削層 28 の面に接触することになるので、当該研磨部分を通過するときその踏面が常に平坦に維持されて研磨作用を受け、踏面 14b を平坦に修正することになる。したがって、従来軟弱な地面を走行する際に発生している遊動輪 13、あるいは下部転輪 12 との接触での局部摩耗の進行を防止して波状摩耗（偏摩耗）の発生による車体振動や騒音の発生となる原因を除去くことができるのである。

【0024】

本実施形態の履帯リンク研磨装置 20 は、基本的にトラックフレーム 11 に対して取外し可能な構成とされているので、研磨操作が必要でない場合には、取付ブラケット 25 と基端部ボス 23 とに挿通支持させている取付軸 26 を抜き取ることにより研磨板 21 を取外して保管すればよい。こうすれば、履帯リンク 14a の無駄な摩耗や、研磨操作による抵抗の増加を防止でき、必要時のみ研磨操作を行わせるようにすることができる。

【0025】

なお、前記研磨板 21 による研磨操作の不要な場合、前述のようにその研磨板 21 を撤去するのに代えて、前記ベースフレーム 22 の基端部ボスと取付ブラケットとを貫通させる取付軸 26 による取着構造部において、例えば図 4 (b) に示されるように、その取着構造部における取付ブラケット 25A の軸支部ボス 25a を二股に形成して、ベースフレーム 22 の基端部ボス 23A をその取付ブラケット 25A の軸支部ボス 25a, 25a の間に介挿させるようにされ、取付軸 26A の中間部を偏心させて、その偏心部 26a を前記基端部ボス 23A の軸孔に挿入させて支持する構造とする。こうすれば、その取付軸 26A を回転させて偏心部 26a を変位させることにより、偏心量 a を大きくしておくことで研磨板 21 をその偏心量 a × 2 倍の高さ寸法上下方向に大きく移動させることができるので、履帯リンク 14a の踏面 14b と研削層 28 との接触を断つて不使用状態に移行させることができる。

【0026】

また、このような取付軸26Aに偏心部26aを設ける構成とすれば、研摩板21の研削層28と履帶リンク14aの踏面14bとの接触状態の調整操作を行う場合にも、取付軸26Aの回動によって高さ位置の調整が容易にできる。この場合、その取付軸26Aの外端部には回転操作が容易なように、例えば軸端部26bをやや長くして六角形に形成し、レンチによって回転力を伝達できるようになるとともに、その軸端部26bの一部にねじ部26cを刻設して廻り止めナット26dを螺合させ、このナット26dを取付ブラケット25Aの軸支部ボス25a外端面に接触させてロックできる構成とすることで、取付軸26Aの回転角度を任意の状態で決めることが可能になる。また、このような操作はトラックフレーム11の外側で行えるので作業性も容易となる。

【0027】

次に、図5には、履帶リンク研磨装置の他の実施形態を表わす側面図が示されている。図6は、図5の平面図である。

【0028】

この実施形態の履帶リンク研磨装置20Aは、前述の研磨板21の配置に加えて遊動輪13側に別途研磨板21Aが配置される構成である。その研磨板21Aは、基本構成において前述の研磨板21と同様で、その支持構造がやや異なる以外は変わりがない。したがって、構造的に異なる部分についてのみ説明し、前記同様の部分については、前記実施形態と同一の符号を付して詳細な説明を省略する。

【0029】

研磨板21Aは、所要寸法のベースフレーム22Aが走行方向の一端に基端部ボス23を付着されて、トラックフレーム11の上面に取付ブラケット25により前記同様に取付軸26で貫通支持され、前記ベースフレーム22A上面に形成される研削層28が、遊動輪から離れて一方の上部転輪16に受けられる傾斜状態にある履帶14の履帶リンク14aの踏面14bと接触して研磨するように配置されている。

【0030】

このように構成される履帶リンク研磨装置20Aでは、上部における中央位置

および傾斜移動部に研摩板21, 21Aが複数個所で配置されるので、より一層の研摩修正が行える。また、傾斜位置の研摩板21Aは、遊動輪13から離れて上部転輪16に至る間での履帶のだれを防止して張力維持のガイドを兼ねる役目をも果たす。なお、この傾斜位置の研摩板21Aは、不使用時にその軸着支持部で取付軸26を回動させることにより履帶リンクとの接触を断つようになることが可能である。また、前述のように偏心軸を採用すれば、同様の操作で研摩位置から退避させることができる。

【0031】

図7には、履帶リンク研摩装置の他の実施形態の側面図が示されている。この実施形態の履帶リンク研摩装置20Bは、前述のトラックフレーム11上面中央部に設置された研摩板21に加えて、上部転輪16, 16と遊動輪13側および駆動輪12側との巻き掛けられる履帶14が傾斜状態で移動する部分に、研摩板21Aおよび21Bが配置される構成のものである。これらは、前記実施形態で説明した傾斜して片側の基端部にて、その基端部ボス23と取付ブラケット25とを取付軸26により支持されるようになっており、実質的に前述のものと同様の構成である。したがって、異なる部分のみ説明し、同一部分については同一の符号を付して説明は省略する。

【0032】

この履帶リンク研摩装置20Bでは、駆動輪12側の履帶傾斜張架部分に対してその傾斜に対応するように、所要寸法の研摩板21Bは、基端部ボス23をトラックフレーム11上に立設される取付ブラケット25により、取付軸26にて片側の基端部を取着されるベースフレーム22Bの他端部を、下側から支持部片29にて補助的にトラックフレーム11に取付けられている。その他の構造は前記研摩板21Bと変わらない。

【0033】

このように構成される履帶リンク研摩装置20Bでは、履帶14の遊動輪13と駆動輪12との間における非接地側ではほぼその全区間に研摩板21, 21A, 21Bが配置されるので、移動に伴う張力で履帶リンク14aの踏面14bが各研摩板21, 21A, 21Bの研削層28と摺動摩擦によって研摩され、偏摩耗

の発生を未然に防止する操作が迅速に行える。したがって、研磨速度が高まれば、例えすべてを撤去するほかに、いずれか1または2個所を選択的に残して操作することもできる。なお、傾斜位置にある研磨板21A, 21Bはいずれも履帶のだれを防止して張力維持のガイドを兼ねる役目をも果たす。

【0034】

さらに、図8には、履帶リンク研磨装置の他の実施形態の平面図（a）と側面図（b）が示されている。

【0035】

この実施形態の履帶リンク研磨装置20Cは、基本的に前記第1の実施形態のものと同様であるが、その研磨板21Cの支持構成が異なっている。この研磨板21Cは、トラックフレーム11上に設けられる上部転輪16が本来2個配置されているのを、その一方を省略して、代わりの位置に取付ブラケット25Cを設け、この取付ブラケット25Cにて所要寸法のベースフレーム22Cの中央下部に設けられるボス31を貫通する支持軸32の端部を支持して巻き掛けられる履帶14の履帶リンク14aの踏面14bに研磨板21Cが接触するように配置されている。

【0036】

ベースフレーム22Cの上面には、履帶リンク14aの両側の踏面14bが接触して研磨できるように、前述の研磨板と同様の超硬粒子分散材を含む硬質材が溶接肉盛されて表面を粗面に形成されており、この実施形態ではベースフレーム22Cのほぼ全長にわたりブロック化させずに研削層28'が設けられている。

この研削層28'は、両端の曲面部まで延長して設けられ、その研削層28'に履帶リンク14aの踏面14bが接触する最初の位置から無理なく研磨されるようになされている。ただし、これに限定されるものではなく、研削層の配置については前述のブロック的配置とすることもできる。

【0037】

この実施形態の履帶リンク研磨装置20Cにあっては、前述の履帶リンク研磨装置と同様に、走行する履帶リンク14aが研削層28'の上面を擦過することにより研磨されるのであり、その作用効果については前述のものと同様である。

なお、不使用時には撤去するほか、例えば支持軸を前述の偏心軸のように構成すれば、その偏心量によって研摩位置から下に変位させて接触を断つようにすることができる。

【0038】

以上の説明においては、それぞれの実施形態について個々に説明したが、必要に応じて、例えば研摩板上の研削層の配列などをブロック化したり、連続配置にすることは任意なし得るものである。また、片持ち構造にされる部分を両端部で支持するように構成することもできる。さらに、研摩板の研削層については、硬質材の溶接肉盛によるもののかに、硬質材料による鏝目のような構造のものを配置することもできる。

【図面の簡単な説明】

【図1】

図1は、本発明にかかる履帶走行装置を備える作業機械車両の一実施形態を表わす側面図である。

【図2】

図2は、履帶走行装置の要部を表わす正面図である。

【図3】

図3は、図2の上側履帯部分を除いて表わす平面図である。

【図4】

図4は、研摩板の要部拡大断面図（a）と研摩板の取着構造部の断面図（b）である。

【図5】

図5は、履帯リンク研摩装置の他の実施形態を表わす側面図である。

【図6】

図6は、図5の平面図である。

【図7】

図7は、履帯リンク研摩装置の他の実施形態を表わす側面図である。

【図8】

図8は、履帯リンク研摩装置の他の実施形態の平面図（a）と側面図（b）で

ある。

【図9】

図9は、従来の履帯リンクの波状摩耗の発生原因となる摩耗現象の説明図で、(a)は遊動輪との接触部での態様を、(b)は下部転輪との接触部での態様を、それぞれ表わし、(c)は波状摩耗したリンクを表わす図である。

【符号の説明】

1	作業機械
1 0	履帯走行装置
1 1	トラックフレーム
1 2	駆動輪
1 3	遊動輪
1 4	履帯
1 4 a	履帯リンク
1 4 b	踏面
1 5	下部転輪
1 6	上部転輪
2 0, 2 0 A, 2 0 B, 2 0 C	履帯リンク研摩装置
2 1, 2 1 A, 2 1 B, 2 1 C	研摩板
2 2, 2 2 A, 2 2 B, 2 2 C	ベースフレーム
2 3, 2 3 A	基端部ボス
2 5, 2 5 A, 2 5 C	取付ブラケット
2 6, 2 6 A	取付軸
2 6 a	偏心部
2 6 b	取付軸の軸端部
2 6 c	ねじ部
2 6 d	ナット
2 8, 2 8'	研削層
3 2	支持軸

【書類名】

図面

【図 1】

本発明にかかる履帯走行装置を備える作業機械車両の
一実施形態を表わす側面図

【図 2】

履帯走行装置の要部を表わす正面図

【図3】

図2の上側履帶部分を除いて表わす平面図

【図4】

【図 5】

履帶リンク研摩装置の他の実施形態を表わす側面図

【図6】

図5の平面図

【図7】

履帶リンク研磨装置の他の実施形態を表わす側面図

【図 8】

【図 9】

従来の履帶リンクの波状摩耗の発生原因となる
摩耗現象の説明図

【書類名】 要約書

【要約】

【課題】 運転を続けながら、波状などの偏摩耗が発生する初期に踏面を正常な状態に研磨修正して振動などの発生を防ぎ、長期使用できるようにする。

【解決手段】 履帯式走行車両における履帯 14 の巻装状態で、履帯リンク 14 a の踏面 14 b を研磨する研磨板 21 が、前記踏面 14 b に接触するように配置されている。こうして、履帯式走行車両として通常の走行作業を行うと同時に、履帯リンク 14 a の踏面 14 b の偏摩耗を研磨板 21 によって修正され、偏摩耗を生じさせずして走行時の車体の振動を防止することができる。

【選択図】 図 2

特願 2003-076164

出願人履歴情報

識別番号 [000001236]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録

住 所 東京都港区赤坂二丁目3番6号
氏 名 株式会社小松製作所