IC105: Probability and Statistics

2021-22-M

Lecture 4: Statistically Independent Events

Instructor: Dr. Kuldeep Kumar Kataria

Scribe:

Example 4.1. A bowl contains 3 red and 5 blue chips. All chips that are of the same colour are identical. Two chips are drawn successively at random and without replacement. Define events

A: first draw resulted in a red chip,

B: second draw resulted in a blue chip.

Find $P(A \cap B)$, P(A) and P(B).

Solution: $P(A) = \frac{3}{8}$, $P(B|A) = \frac{5}{7}$ and

$$P(B) = P(A \cap B) + P(A^c \cap B) = P(B|A)P(A) + P(B|A^c)P(A^c) = \frac{5}{7} \times \frac{3}{8} + \frac{4}{7} \times \frac{5}{8} = \frac{35}{56}$$

Note that here the outcomes of second draw is dependent on outcome of first draw $(P(B|A) \neq P(B))$. Also,

$$P(A \cap B) = P(A)P(B|A) = \frac{3}{8} \times \frac{5}{7} = 0.2679.$$

Theorem 4.2 (Theorem of Total Probability). For a countable set Δ (that is elements of Δ can either be put in 1-1 correspondence with $\mathbb{N} = \{1, 2, \dots\}$ or with $\{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$), let $\{E_{\alpha} : \alpha \in \Delta\}$ be a countable collection of mutually exclusive (i.e., $E_{\alpha} \cap E_{\beta} = \phi$, $\forall \alpha \neq \beta$) and exhaustive (i.e., $P\left(\bigcup_{\alpha \in \Delta} E_{\alpha}\right) = 1$) events. Then, for any $E \in \mathcal{F}$,

$$P(E) = \sum_{\alpha \in \Delta} P(E \cap E_{\alpha}) = \sum_{\substack{\alpha \in \Delta \\ P(E_{\alpha}) > 0}} P(E|E_{\alpha})P(E_{\alpha}).$$

Proof. Since $P\left(\bigcup_{\alpha\in\Delta}E_{\alpha}\right)=1$, we have

$$\begin{split} P(E) &= P\left(E \bigcap \left(\bigcup_{\alpha \in \Delta} E_{\alpha}\right)\right) = P\left(\bigcup_{\alpha \in \Delta} (E \cap E_{\alpha})\right) \\ &= \sum_{\alpha \in \Delta} P(E \cap E_{\alpha}), \ \ (E_{\alpha}\text{'s are disjoint} \implies \text{their subsets } (E \cap E_{\alpha})\text{'s are disjoint}) \\ &= \sum_{\substack{\alpha \in \Delta \\ P(E_{\alpha}) > 0}} P(E \cap E_{\alpha}), \ \ (P(E_{\alpha}) = 0 \implies P(E \cap E_{\alpha}) = 0, \ \alpha \in \Delta) \\ &= \sum_{\substack{\alpha \in \Delta \\ P(E_{\alpha}) > 0}} P(E|E_{\alpha})P(E_{\alpha}). \end{split}$$

This completes the proof.

Example 4.3. A population comprises of 40% female and 60% male. Suppose that 15% of female and 30% of male in the population smoke. A person is selected at random from the population.

- (a) Find the probability that he/she is a smoker.
- (b) Given that the selected person is smoker, find the probability that he is male.

Solution: Define the events

M: selected person is a male,

 $F = M^c$: selected person is a female,

S: selected person is a smoker,

 $T = S^c$: selected person is a non-smoker.

We have P(F) = 0.4, P(M) = 0.6, $P(F \cup M) = P(F) + P(M) = 1$, P(S|F) = 0.15, P(T|F) = 0.85, P(S|M) = 0.30, P(T|M) = 0.70.

(a) By using Theorem of total probability, we get

$$P(S) = P(S \cap F) + P(S \cap M) = P(S|F)P(F) + P(S|M)P(M) = 0.15 \times 0.4 + 0.30 \times 0.6 = 0.24.$$

(b)

$$P(M|S) = \frac{P(M \cap S)}{P(S)} = \frac{P(S|M)P(M)}{P(S)} = \frac{0.30 \times 0.60}{0.24} = \frac{3}{4}.$$

Theorem 4.4 (Bayes' Theorem). Let $\{E_{\alpha} : \alpha \in \Delta\}$ be a countable collection of mutually exclusive and exhaustive events and let E be any event P(E) > 0. Then, for $j \in \Delta$ with $P(E_j) > 0$,

$$P(E_j|E) = \frac{P(E|E_j)P(E_j)}{\sum_{\substack{\alpha \in \Delta \\ P(E_\alpha) > 0}} P(E|E_\alpha)P(E_\alpha)}.$$

Proof. For $j \in \Delta$,

$$P(E_j|E) = \frac{P(E_j \cap E)}{P(E)} = \frac{P(E|E_j)P(E_j)}{\sum\limits_{\substack{\alpha \in \Delta \\ P(E_\alpha) > 0}} P(E|E_\alpha)P(E_\alpha)}, \text{ (using Theorem of total probability)}.$$

This completes the proof.

Remark 4.5. (a) Suppose that occurrence of any of the mutually exclusive and exhaustive events $\{E_{\alpha}: \alpha \in \Delta\}$ (where Δ is a countable set) may cause the occurrence of an event E. Given that the event E has occurred (i.e., given the effect), Bayes' Theorem provides the conditional probability that the event E (effect) is caused by occurrence of event E_j , $j \in \Delta$.

(b) In Bayes' Theorem $\{P(E_j): j \in \Delta\}$ are called prior probabilities and $\{P(E_j|E): j \in \Delta\}$ are called posterior probabilities.

Example 4.6. Bowl C_1 contains 3 red and 7 blue chips. Bowl C_2 contains 8 red and 2 blue chips. Bowl C_3 contains 5 red and 5 blue chips. All chips of the same colour are identical.

A die is cast and a bowl is selected as per the following schemes:

Bowl C_1 is selected if 5 or 6 spots show on the upper side,

Bowl C_2 is selected if 2,3 or 4 spots show on the upper side,

Bowl C_3 is selected if 6 spots show on the upper side.

The selected bowl is handed over to another person who drawns two chips at random from this bowl. Find the probability that:

- (a) Two red chips are drawn.
- (b) Given that drawn chips are both red, find the probability that it came from bowl C_3 .

Solution: Define the events

 A_i : selected bowl is C_i , i = 1, 2, 3, and R: the chips drawn from the selected bowl are both red.

Then $P(A_1) = \frac{2}{6} = \frac{1}{3}$, $P(A_2) = \frac{3}{6} = \frac{1}{2}$, $P(A_3) = \frac{1}{6}$. Note that $\{A_1, A_2, A_3\}$ are mutually exclusive and exhaustive.

(a)

$$P(R) = P(R|A_1)P(A_1) + P(R|A_2)P(A_2) + P(R|A_3)P(A_3) = \frac{\binom{3}{2}}{\binom{10}{2}} \times \frac{1}{3} + \frac{\binom{8}{2}}{\binom{10}{2}} \times \frac{1}{2} + \frac{\binom{5}{2}}{\binom{10}{2}} \times \frac{1}{6} = \frac{10}{27}.$$

(b)

$$P(A_3|R) = \frac{P(R|A_3)P(A_3)}{P(R)} = \frac{\binom{\binom{5}{2}}{\binom{10}{2}} \times \frac{1}{6}}{\frac{10}{27}} = \frac{1}{10}.$$

Remark 4.7. In the above example,

$$\begin{split} P(A_1|R) &= \frac{P(R|A_1)P(A_1)}{P(R)} = \frac{\binom{\frac{3}{2}}{10} \times \frac{1}{3}}{\frac{10}{27}} = \frac{3}{50}, \\ P(A_2|R) &= \frac{P(R|A_2)P(A_2)}{P(R)} = \frac{\binom{\frac{8}{2}}{10} \times \frac{1}{2}}{\frac{10}{27}} = \frac{21}{25}, \\ P(A_1|R) &= \frac{3}{50} < \frac{1}{3} = P(A_1) \iff P(A_1 \cap R) < P(A_1)P(R) \iff R \text{ has negative information about } A_1, \\ P(A_2|R) &= \frac{21}{25} > \frac{1}{2} = P(A_2) \iff P(A_2 \cap R) > P(A_2)P(R) \iff R \text{ has positive information about } A_2, \\ P(A_3|R) &= \frac{1}{10} < \frac{1}{6} = P(A_3) \iff P(A_3 \cap R) < P(A_3)P(R) \iff R \text{ has negative information about } A_3. \end{split}$$

Note that proportion of red chips in C_2 > proportion of red chips in C_i , i = 1, 3.

Independent Events:

Definition 4.8. Let $\{E_j : j \in \Delta\}$ be a collection of events.

(i) Events $\{E_j : j \in \Delta\}$ are said to be pairwise independent if for any pair of events E_α and E_β $(\alpha, \beta \in \Delta, \alpha \neq \beta)$ in the collection $\{E_j : j \in \Delta\}$, we have

$$P(E_{\alpha} \cap E_{\beta}) = P(E_{\alpha})P(E_{\beta}).$$

(ii) Events $\{E_1, E_2, \dots, E_n\}$ are said to be independent if for any subcollection $\{E_{\alpha_1}, E_{\alpha_2}, \dots, E_{\alpha_k}\}$ of $\{E_1, E_2, \dots, E_n\}$ $(k = 1, 2, \dots, n)$, we have

$$P\left(\bigcap_{j=1}^{k} E_{\alpha_j}\right) = \prod_{j=1}^{k} P(E_{\alpha_j}).$$

(iii) Let $\Delta \subseteq \mathbb{R}$ be an arbitrary index set so that $\{E_{\alpha} : \alpha \in \Delta\}$ is an arbitrary collection of events. Events $\{E_{\alpha} : \alpha \in \Delta\}$ are said to be independent if any finite subcollection of events in $\{E_{\alpha} : \alpha \in \Delta\}$ forms a collection of independent events.

Theorem 4.9. Let E_1, E_2, \ldots be collection of independent events. Then

$$P\left(\bigcap_{k=1}^{\infty} E_k\right) = \prod_{k=1}^{\infty} P(E_k).$$

Proof. Let $B_n = \bigcap_{k=1}^n E_k$, n = 1, 2, ... Then $B_n \downarrow$ and $P(\bigcap_{n=1}^\infty B_n) = \lim_{n \to \infty} P(B_n)$. But $\bigcap_{n=1}^\infty B_n = \bigcap_{k=1}^\infty E_k$ and $P(B_n) = P(\bigcap_{k=1}^n E_k) = \prod_{k=1}^n P(E_k)$. Then,

$$P\left(\bigcap_{k=1}^{\infty} E_k\right) = \lim_{n \to \infty} \prod_{k=1}^{n} P(E_k) = \prod_{k=1}^{\infty} P(E_k).$$

This completes the proof.

Remark 4.10. (i) To verify that n events E_1, E_2, \dots, E_n are independent one must verify

$$\binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^n - n - 1$$
 conditions.

For an example to conclude that three events E_1, E_2, E_3 are independent, the following four (as $2^3 - 3 - 1 = 4$) conditions must be verified:

$$P(E_1 \cap E_2) = P(E_1)P(E_2), \ P(E_1 \cap E_3) = P(E_1)P(E_3), \ P(E_2 \cap E_3) = P(E_2)P(E_3),$$

and

$$P(E_1 \cap E_2 \cap E_3) = P(E_1)P(E_2)P(E_3).$$

- (ii) Any subcollection of independent events is independent. In particular, the independence of a collection of events implies their pairwise independence.
- (iii) If E_1 and E_2 are independent events $(P(E_1) > 0, P(E_2) > 0)$, then

$$P(E_1|E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)} = \frac{P(E_1)P(E_2)}{P(E_2)} = P(E_1),$$

that is, conditional probability of E_1 given E_2 is the same as unconditional probability of E_1 .

Similarly, if E_1 , E_2 and E_3 are independent events then $P(E_1|E_2 \cap E_3) = P(E_1)$.

Example 4.11. Consider the probability space (Ω, \mathcal{F}, P) with $\Omega = \{1, 2, 3, 4\}$ and $P(\{i\}) = 1/4$, i = 1, 2, 3, 4. Let $A = \{1, 4\}$, $B = \{2, 4\}$, $C = \{3, 4\}$. Then, show that A, B and C are pairwise independent but not independent.

Solution: We have P(A) = P(B) = P(C) = 1/2. Also, $P(A \cap B) = P(A \cap C) = P(B \cap C) = P(\{4\}) = 1/4$. Thus,

$$P(A \cap B) = P(A)P(B), P(A \cap C) = P(A)P(C), P(B \cap C) = P(B)P(C),$$

which implies that A, B and C are pairwise independent. However,

$$P(A \cap B \cap C) = P(\{4\}) = 1/4 \neq 1/8 = P(A)P(B)P(C),$$

which implies that A, B and C are not independent although they are pairwise independent.

Example 4.12. Let E_1, E_2, \dots, E_n be a collection of independent events. Show that,

- (a) for any permutation $(\alpha_1, \ldots, \alpha_n)$ of $(1, \ldots, n)$, $E_{\alpha_1}, E_{\alpha_2}, \ldots, E_{\alpha_n}$ are independent;
- (b) $E_1, E_2, \ldots, E_k, E_{k+1}^c, \ldots, E_n^c$ are independent for any $k \in \{0, 1, \ldots, n-1\}$;
- (c) E_1^c and $E_2 \cup E_3^c \cup E_5$ are independent.
- (d) $E_1 \cup E_2^c$, E_3^c and $E_4 \cap E_5^c$ are independent.

Remark 4.13. When we say that the two random experiments are performed independently, it means that the events associated with two random experiments are independent.