Ecole Nationale des Sciences et Technologies Avancées à Borj Cédria

1ère TA

09 Novembre 2021

Devoir surveillé Physique des semi-conducteurs Documents non autorisés

Durée: 1 h30

Exercice I:

- 1. Expliquer l'intérêt de l'utilisation des semi-conducteurs dans les dispositifs électroniques.
- 2. Expliquer comment on crée des porteurs libres par:
 - le dopage type P
 - le dopage type N.
- 3. Dans le cas d'un dopage type p avec une concentration de dopants N_4 ,
 - a. tracer le diagramme des bandes d'énergie dans les cas où:
 - i) les atomes dopants sont non ionisés.
 - ii) les atomes dopants sont partiellement ionisés.
 - iii) les atomes dopants sont totalement ionisés.
 - b. Décrire l'évolution de la densité des porteurs libres avec la température.
- 4. La concentration des trous et des électrons à la température T sont données par :

$$p = N_v \exp(\frac{E_v - E_F}{kT})$$

$$n = N_c \, exp(\frac{E_F - E_c}{kT})$$

Avec
$$N_v = 2(\frac{2\pi m_h^* kT}{h^2})^{3/2}$$
 et $N_c = 2(\frac{2\pi m_e^* kT}{h^2})^{3/2}$

- a. Expliquer les expressions de n et p. (Physiquement)b. Expliquer la signification de Nc, Nv.
- c. Donner la signification physique de m_h^* et m_ρ^* .
- d. Quelle est la signification physique d'E_F.

Exercice II:

Soit un semi-conducteur d'énergie de gap 1.12 eV, à l'équilibre, dopé par des atomes donneurs de concentration ND introduisant un niveau donneur d'énergie ED dans la bande interdite du semiconducteur.

Soient N_D la concentration totale d'atomes donneurs, $N_D^{^+}$ la concentration des atomes ionisés, $N_D^{^0}$ la concentration des atomes non ionisés, n la densité des électrons, p la densité des trous, E_F le niveau de Fermi.

On admet que la statistique d'occupation du niveau donneur est :

$$f_D(E) = \frac{1}{1 + \exp(\frac{E_D - E_F}{kT})}$$

Page 1/2

- 1. Donner l'expression de N_D⁰. En déduire celle de N_D⁺.
- 2. Ecrire l'équation de neutralité électrique.
- 3. Décrire l'effet de la température sur les atomes dopants et les porteurs libres.
- 4. On considère le semi-conducteur à température ambiante et à T=0K. Pour les deux cas :
 - a. Représenter le diagramme des bandes énergétiques du semi-conducteur. Justifier.
 - b. Quels sont les porteurs majoritaires et minoritaires.
 - c. Déterminer la position du niveau de fermi.
- 5. On ajoute dans ce semi-conducteur des atomes accepteurs de concentration N_A.

A température ambiante et à T=0K:

- a. Présenter le diagramme d'énergie du semi-conducteur dans le cas où N_A=N_D.
- b. Ecrire l'équation de neutralité électrique.
- c. Donner l'expression de la conductivité de ce matériau dans le cas où $N_A=N_D$, $N_D < N_A$ et $N_D << N_A$.
- 6. On éclaire une face de ce semi-conducteur par deux rayonnements électromagnétiques différents de longueurs d'ondes λ_1 =1200 nm et λ_2 = 600 nm.

Décrire ce qui se passe dans le semi-conducteur.

On note:

q la charge électrique élémentaire q=1.6 10^{-19} C Masse de l'électron dans le vide : m_0 = 9,1.10⁻³¹ Kg La masse effective de densité d'états des électrons et des trous est : m_e * = 1.06 m_0 , m_h * = 0.59 m_0 Largeur de la bande interdite de silicium à 300 k: E_g =1.12 eV La constante de Planck h=6,626.10⁻³⁴ J.s=4,134. 10^{-15} eV.s La constante de Boltzmann=8,6173324 .10⁻⁵ eV K⁻¹ Vitesse de la lumière c=3.10⁸ m/s 1eV=1,602.10⁻¹⁹ Kg.m².s⁻²