JP2001261954

Title: FLAME-RETARDANT LOW-SPECIFIC GRAVITY UNSATURATED POLYESTER RESIN COMPOSITION

Abstract:

PROBLEM TO BE SOLVED: To obtain a flame-retardant low-specific gravity unsaturated polyester resin composition attaining reduction in specific gravity while retaining excellent characteristics such as flame retardance, dimensional accuracy, heat resistance, mechanical strength, moldability, etc., which are imparted to a conventional flame-retardant unsaturated polyester composition has. SOLUTION: This flame-retardant low-specific gravity unsaturated polyester resin composition is characterized by comprising >=300 pts.wt. of aluminum hydroxide as an inorganic filler and 30-70 pts. wt. of a hollow filler based on 100 pts.wt. of an unsaturated polyester resin and a crosslinking agent.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-261954 (P2001-261954A)

(43)公開日 平成13年9月26日(2001.9.26)

(51) Int.Cl.⁷
C 0 8 L 67/06
C 0 8 K 3/22
7/22

FI C08L 67/06 C08K 3/22 7/22 テーマコート*(参考) 4 J 0 0 2

審査請求 未請求 請求項の数2 OL (全 6 頁)

特顧2000-70607(P2000-70607) (71)出願人 00018/068 (21)出顧番号 昭和高分子株式会社 東京都千代田区神!日錦町3丁目20番地 平成12年3月14日(2000.3.14) (22) 出顧日 (72)発明者 山根 邦夫 兵庫県揖保郡太子町太田1982-6 (72)発明者 松原 玲 兵庫県姫路市東今宿3-3-7 マリッチ 今宿303 (72)発明者 山本 哲 兵庫県館野市龍野町日山16 (74)代理人 10005/874 弁理士 曾我 道照 (外6名)

最終頁に続く

(54) 【発明の名称】 難燃性低比重不飽和ポリエステル樹脂組成物

酸別記号

(57)【要約】

【課題】 従来の難燃性不飽和ポリエステル組成物が有する難燃性、寸法精度、耐熱性、機械的強度、成形性等の優れた特性を保持したまま、低比重化が達成された難燃性低比重不飽和ポリエステル樹脂組成物を提供すること。

【解決手段】 不飽和ポリエステル樹脂及び架橋剤100重量部に対して無機充填材として水酸化アルミニウム300重量部以上及び中空フィラー30~70重量部を含むことを特徴とする難燃性低比重不飽和ポリエステル樹脂組成物。

【特許請求の範囲】

【請求項1】 不飽和ポリエステル樹脂及び架橋剤100重量部に対して無機充填材として水酸化アルミニウム300重量部以上及び中空フィラー30~70重量部を含むことを特徴とする難燃性低比重不飽和ポリエステル樹脂組成物。

【請求項2】 中空フィラーの耐圧強度が2100×10⁴ N/m²以上であり、かつ真比重が0.3~0.6の範囲にある請求項1に記載の難燃性低比重不飽和ポリエステル樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は難燃性低比重不飽和ポリエステル樹脂組成物に関するものである。さらに詳しくは、本発明は成形品比重が1.6以下でありながら難燃性を有し、かつ寸法精度、耐熱性、機械的強度、成形性にすぐれた難燃性低比重不飽和ポリエステル樹脂組成物に関するものである。

[0002]

【従来の技術】従来、難燃性の不飽和ポリエステル樹脂 組成物 (バルクモールディングコンパウンド) はその優 れた寸法精度、難燃性、耐熱性、機械的強度、成形性に より〇A機器、事務機器のシャーシ等、寸法精度が厳し く難燃性が必要とされる分野に広く用いられている。

【0003】しかしながら、従来の難燃性不飽和ポリエステル樹脂組成物は寸法精度、難燃性、機械的強度、耐熱性に優れた成形物を硬化成形により得られる一方で、これらの優れた特性を保つための無機充填材及び繊維補強材の含有量から成形物比重が高くなるという問題点が見られた。また、熱可塑性樹脂に比べても成形物比重が高くなる事から、これまで利用範囲が制限されてきた。一般のHBグレードBMCにおいては、中空フィラーを自由に添加できるため、容易に低比重化が可能であるが、難燃性BMCにおいては、ある一定量の水酸化アルミニウムの添加が必要であるので低比重化が困難であった。

[0004]

【発明が解決しようとする課題】本発明の目的は、従来の難燃性不飽和ポリエステル組成物が有する難燃性、寸法精度、耐熱性、機械的強度、成形性等の優れた特性を保持したまま、低比重化が達成された難燃性低比重不飽和ポリエステル樹脂組成物を提供することにある。

[0005]

【課題を解決するための手段】本発明者らは上記の目的を達成せんがため、鋭意研究を重ねた結果、不飽和ポリエステル樹脂に水酸化アルミニウムと中空フィラーを特定の割合で添加することにより、比重が小さく、かつ優れた難燃性、寸法精度、耐熱性、機械的強度、成形性を有する不飽和ポリエステル樹脂組成物が得られることを見出し、本発明を完成するに至った。

【0006】即ち、本発明は、不飽和ポリエステル樹脂及び架橋剤100重量部に対して無機充填材として水酸化アルミニウム300重量部以上及び中空フィラー30~70重量部を含むことを特徴とする難燃性低比重不飽和ポリエステル樹脂組成物を提供するものである。また本発明は、中空フィラーの耐圧強度が2100×10⁴ N/m²以上であり、かつ真比重が0.3~0.6の範囲にある前記の難燃性低比重不飽和ポリエステル樹脂組成物を提供するものである。

【0007】本発明に用いる不飽和ポリエステル樹脂については、その種類は特に限定されるものではない。多価アルコールと不飽和多塩基酸および飽和多塩基酸を重縮合させたもので、通常成形材料として使用されているものであれば、適宜なものを用いることができる。また不飽和ポリエステルの一部としてビニルエステル樹脂、ジアリルフタレート樹脂をブレンドしてもよい。

【0008】不飽和ポリエステルを形成する多価アルコールとしては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、グリセリン等が示される。

【0009】不飽和多塩基酸としては、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等が、また飽和多塩基酸としては無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等が例示される。

【0010】架橋剤については、上記の不飽和ポリエステルと重合可能な重合性二重結合を有しているものであれば適宜なものを用いることができる。このようなものとしては、例えばスチレンモノマー、ジアリルフタレートモノマー、ジアリルフタレートプレポリマー、メタクリル酸メチル、トリアリルイソシアヌレート等が例示される。その使用量は不飽和ポリエステルおよび架橋剤100重量部中25~70重量部、好ましくは35~65重量部である。

【0011】本発明に用いる無機充填材は、水酸化アルミニウムであり、その形状等に特に制限はないが平均粒径 1.8μ m $\sim 50\mu$ mのものが望ましい。 1.8μ m未満であると粘度が高くなり、製造ができず、 50μ mを超えると材料の流動性が悪く、成形性が悪くなる。望ましくは粒度分布がブロードなピークのものが高充填化には良い。

【0012】水酸化アルミニウムの配合量は、不飽和ポリエステル樹脂及び架橋剤100重量部に対して300重量部以上とするのがよい。配合量が300重量部より少ないと難燃性が付与されない。好ましくは、不飽和ポ

リエステル樹脂及び架橋剤100重量部に対して350~450重量部配合されるのがよい。

【0013】その他の無機充填材として炭酸カルシウム、ワラストナイト、クレー、タルク、マイカ、無水ケイ酸等の粉末状物が必要に応じて用いることができるが、その配合割合は、無機充填剤全体に対し、10重量%未満が望ましい。

【0014】本発明で使用される中空フィラーとしては、特に制限はなく、ガラスバルーン、シリカバルーン、アルミナバルーン等を例示することができる。中空フィラーの性状としては、耐圧強度2100×10 4 N/m 2 以上で真比重が0.3 4 0.6の範囲のものが好ましい。さらに好ましくは、耐圧強度2100×10 4 N/m 2 であり、かつ真比重が0.35 4 0.55の範囲のものがよい。耐圧強度が2100×10 4 N/m 2 未満であると製造時、成形時に破壊され成形品比重が小さくならない。真比重が0.3未満であると粘度が上昇するため水酸化アルミニウムの添加量を減らすこととなり難燃性が付与できなくなり、また、成形性が悪くなることがある。逆に真比重が0.6を超えると比重が小さくならなくなる傾向がある。

【0015】中空フィラーの配合量としては、不飽和ポリエステル樹脂及び架橋剤100重量部に対して対して30~70重量部とするのがよい。70重量部を超えると粘度が上昇するため水酸化アルミニウムの添加量を減らすこととなり難燃性が付与できず、また成形性の点で不都合が生じる。逆に30重量部より少ない場合は得られる成形物の比重が高くなる。好ましい配合量は、40~60重量部である。

【0016】本発明においては、上記の各成分に加えて、低収縮剤、硬化剤、離型剤、増粘剤、繊維強化材、顔料等を必要に応じて用いることができる。また、水酸化アルミニウムを300重量部以上添加し、中空フィラーの添加が困難な場合は必要に応じて減粘剤を用いることができる。

【0017】低収縮剤としてはポリスチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、スチレンーブタジエン系ゴム等低収縮剤として一般に使用されている熱可塑性ポリマーを一種または二種以上使用することができる。

【0018】硬化剤は、例えば過酸化物の中から適宜なものを用いることができる。例えばt-ブチルパーオキシオクトエート、ベンゾイルパーオキサイド、1,1ージtーブチルパーオキシー3,3,5ートリメチルシクロヘキサン、tーブチルパーオキシイソプロピルカーボネート、tーブチルパーオキシベンゾエート、ジクミルパーオキサイド、ジtーブチルパーオキサイド等を例示することができる。

【0019】離型剤としては、例えばステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン

酸アルミニウム、ステアリン酸マグネシウム、カルナバ ワックス等を適宜な割合で使用することができる。

【0020】増粘剤としては酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、酸化カルシウム等の 金属酸化物およびイソシアネート化合物が例示される。 増粘剤は必ずしも使用しなくてもよい。

【0021】繊維強化材としては繊維長1.5~25mm程度に切断したチョップドストランドガラスが用いられる。またパルプ繊維、テトロン(登録商標)繊維、ビニロン繊維、カーボン繊維、アラミド繊維、ワラストナイト等の有機無機繊維を使用することができる。

【0022】以上のような成分によって構成される、本発明の難燃性低比重不飽和ポリエステル樹脂組成物においては、その製造方法には格別の限定はないが、例えば圧縮成形、トランスファー成形、射出成形等を採用し、所望の成形品を得ることができる。その成形品は比重1.6と低比重で優れた難燃性を示し、寸法精度、耐熱性、機械的強度等においても優れたものを得る事ができ

[0023]

る。

【実施例】以下、実施例、比較例によって本発明を詳細 に説明するが、本発明は下記例によって限定されるもの ではない。

【0024】(実施例1~10)表1に示す配合組成でそれぞれの配合成分を、双碗型ニーダを用いて混練し、不飽和ポリエステル樹脂組成物を得た。ここで使用した不飽和ポリエステルは、フマル酸/プロピレングリコール/水素化ビスフェノールA=100モル/80モル/20モルの配合比の物で、架橋剤としてのスチレンモノマー含有量が45重量%であった。

【0025】この組成物について成形収縮率、比重、難燃性、成形性、製造可否の評価を行った。試験、評価の方法は次の通りである。

【0026】(1)成形収縮率

JIS・K6911に規定される収縮円盤を、成形温度 150℃、成形圧力10MPa、成形時間3分で圧縮成 形を行い、JIS・K6911に基づいて成形収縮率を 算出した。

【0027】(2)比重

(2)-1圧縮成形品の比重

成形温度150℃、成形圧力10MPa、成形時間3分で圧縮成形によりJIS・K6911に規定される収縮円盤を成形、試験片を切り出し、JIS・K6911に基づいて比重を測定した。

(2)-2射出成形品の比重

テストボックス(360×120×25mm、壁の厚み:長辺側4mm、短辺側5mm、底面3mm)を、成形温度160℃、射出圧力30MPa、成形時間2分で新潟鉄工所製射出成形機NNT250PSCH 7000を用いて射出成形、試験片を切り出し、JIS・K6

911に基づいて比重を測定した。図1は、本試験に用いたテストボックスの平面図であり、図2は、図1のA-A 線の断面図である。

【0028】(3)難燃性

UL94(20mm垂直燃焼試験:94V-0)に規定される試験片を、成形温度150℃、成形圧力10MPa、成形時間3分で圧縮成形を行ない、UL94(20mm垂直燃焼試験:94V-0)に基づいて難燃性の測定を行なった。評価方法は、表中の記号として、◎:成形品厚さ1.2mm以下でV-0、○:成形品厚さ3mm以下でV-0、×:成形品厚さ3mm以上でV-0もしくはV-0に達しないもの、で行なった。

【0029】(4)成形性

上記の(2)-2射出成形品の比重の欄で説明したテス

トボックスを、成形温度160℃、射出圧力30MPa、成形時間2分で新潟鉄工所製射出成形機NNT250PSCH7000を用いて射出成形を行い、レベリング、光沢、充填性を目視で評価した。評価方法は、表中の記号として、◎:非常に良好、○:良好、△:やや劣る、×:不良、で行なった。

【0030】これらの測定評価の結果を表1に示した。 この表1に示した通り、いずれの実施例においても、製 造時、成形時における中空フィラーの破壊が極めて少な く安定して1.6以下の成形品比重で、優れた難燃性、 成形性、寸法精度を有す成形物が得られた。

[0031]

【表1】

		実施例 1	実施例 2	実施例 3	实路例 4	実施例 5	実施例 6	実施例7
不飽和ポリエステル樹脂		65	55	55	55	55	55	55
ポリスチレン40wt%溶液**		75	75	75	76	75	75	75
セ・プチルバーオキ シベンゾエート		3	3	3	3	3	3	3
水量化アルミニウム(平均粒子性 B μm)		350	350	350	300	400	350	250
ガラスパル・ン		30	50	70	50	50		
(当任強度 2200×10°N/	m', 真比重 0.45)	1	i	1		1		
ガラスパル・ン							50	
(耐压速度 2200×10°N/	a', 真比重 0.30)	l	i	1	•	l	ļ	1
ガラスパル・ン				_			 	50
(意任強急 2200×10°H/	'm2, 真比量 0.60)	!	j	l			1	1 .
ステアリン酸亜鉛		8	8	8	8	8	8	8
ガラスチョップ(5.5mm)		70	70	70	70	70	70	70
カ・ボンブラック		2	2	. 2	2	2	2	2
成形収留率 (%)		0.02	0.00	-0.03	0.01	-0.02	0.00	0.00
成形品比立	圧縮成影品	1.55	1.48	1,43	1.45	1.48	1.45	1.53
	射出成形品	1.59	1.51	1.47	1.49	1.51	1.48	1.56
验燃性"		• •	0	0	0	0	0	0
成形性3)	レベリング	0	0	0	0	0	0	0
	光沢	0	0	6	0	0	•	0
	充填性	0	6	•	0	0	0	0
製造可否		ग	.	a)	可	न	ब	-

【表2】

[0032]

蹇 (終去) 1

		实施例8	実施例 9	実施例10				
不飽和ポリエステル鉄脂		55	55	55				
ポリステレン40wt%溶液")		75	75	75				1
モープチルパーオキシベンゾエート		1 3	3	3	!	1		1
水酸化アルミニウム(平均粒子径 8μm)		350	300	350		l l		
ガラスパルーン		50	30					l
《耐圧強度 2200×10 ⁴ H/m ² 。 真比集 0.25) ガラスパルーン 《耐圧強度 2200×10 ⁴ H/m ² , 真比量 0.73)				50	·			
ステアリン陸亜鉛		8	8	8				l
ガラスチョップ (6. Omm)		50	50	50	1			
カーポンプラック		2	2	2				
成形収縮率 (%)		0.00	0.03	0.01				
成形品比重	丘翰成形品	1.43	1.50	1.57				
AUC MILL E	射出成形品	1.47	1.56	1.60				
建 基性		9	0	0				
成形住	レベリング	0	Ö	ŏ	-			
	光沢	0	Ö	Ö				
	充填性	0	ō	ō				
製造可否		可	ग	ग				

- 〇:非常に良好
 - O: 847

 - Δ: ヤヤ劣る ×: 不良

【0033】(比較例1~8)比較例1~8は、実施例 1~10と同様にして、表2に示す配合組成でそれぞれ の配合成分を、双碗型ニーダを用いて混練し、不飽和ポ リエステル樹脂組成物を得、同様に成形収縮率、比重、 難燃性、成形性、製造可否の評価を行った。

【0034】これらの測定評価の結果を表2に示した。 表2から明らかなように、中空フィラーの配合量が上記 の特定範囲外の不飽和ポリエステル樹脂組成物では、成 形性、難燃性が著しく悪化、逆に不足した場合は成形品 比重において満足したものが得られなかった。中空フィ

Æ

ラーの耐圧強度が上記の特定値未満である不飽和ポリエ ステル樹脂組成物では、製造時、成形時に中空フィラー が破壊され成形品比重が大きくなり、配合量を増量した 不飽和ポリエステル樹脂組成物では難燃性において満足 したものが得られなかった。

【0035】水酸化アルミニウム配合量が、上記の特定 部数から不足した不飽和ポリエステル樹脂組成物では、 難燃性が著しく悪化した。

[0036]

【表3】

		比较到1	比较例2	比較例3	比較例 4	比較例 5	比較例 6	比較例7	比較例
不飽和ポリエステル樹脂		55	55	55	55	55	55	55	55
ポリスチレン40wt%溶液'' tープチルパーオキシベンゾェート		75	75	15	75	75	75	75	75
水酸化アルミニウム (平均粒子径84		3	3	3	3	3	3	3	3
m) (+347,47		350	350	300	270	350	350	350	250
ガラスパルーン		20	60	80	80				
(耐圧強度 2200×10 ⁴ H/m², 実比低 0.45) ガラスパルーン						50	70	100	100
(耐圧強定 1800×10 ⁴ N/m ² , 英比重 0.45) ステアリン厳亜鉛		8 70	8 70	8 70	8 70	6 70	.8	8	. 8
ガラスチョップ(6.0min) カーボンブラック		2	2	2	2	2	70 2	70 2	70 2
成形収制率 (%)		0.03		-0.02	0.00	0.02	0.01		0.00
成形品比重	圧縮成形品	1.62		1.45	1.42	1.67	1.63		1.58
	射出成形品	1.66	-	1.48	1.45	1.70	1.66		1.56
算版性		0		0	×	6	6		× ×
成形性	レベリング	0		Δ	0	ā	ŏ		- -
	光沢	0		0	Ö	o o	0		×
	克填性	0		×	×	Ó	Ö		-
製造可否		可	03	9	=	PI	हो	耆	- ह

[0037]

【発明の効果】本発明によれば、従来の難燃性不飽和ポ リエステル組成物が有する難燃性、寸法精度、耐熱性、 機械的強度、成形性等の優れた特性を保持したまま、低 比重化が達成された難燃性低比重不飽和ポリエステル樹 脂組成物が提供され、該組成物は、従来の技術では得ら れなかった低い比重と優れた難燃性、寸法精度が得られ ることから、〇A機器、事務機器のシャーシ等、寸法精

度が厳しく難燃性と軽量化が要求される分野に極めて有用である。

【図面の簡単な説明】

【図1】実施例で用いたテストボックスの平面図である。

【図2】図1のA-A'線の断面図である。

【図2】

【図1】

フロントページの続き

(72) 発明者 野中 里美 埼玉県児玉郡上里町七本木3501-5 Fターム(参考) 4J002 CF221 DE146 DE147 DJ007 DL007 FA107 FD016 FD017 FD136