Branch: CSE/IT

Batch: Hinglish

Theory of Computation Finite Automata

DPP-04

[MCQ]

- 1. Consider following two statements:
- S₁: Every DFA can be converted into equivalent NFA
- S_2 : NFA design is easy because NFA help us to write a program.

Which of the following is correct?

- (a) S_1 only.
- (b) S_2 only.
- (c) Both S_1 and S_2 are correct.
- (d) Both are incorrect.

[MSQ]

- **2.** Which of the following statements is/are correct about finite automaton?
 - (a) Finite automata represent only finite language.
 - (b) Finite automata represents only infinite language.
 - (c) Transition function in NFA is $Q \times \sum |\bigcup \{\epsilon\} = 2^{Q}$
 - (d) Every regular language is finite.

[MCQ]

3. From each state, how many transition are possible in DFA for each input symbol?

- (a) Exactly 1
- (b) At least 1
- (c) Exactly 2
- (d) Al least 2

[MCQ]

- **4.** Consider following two statements:
- S₁: If every state is final state in DFA, then L(DFA) = $\sum_{i=1}^{\infty}$
- S_2 : If every state is non-final state in DFA, then L(DFA) =
 - $\{\in\}$
 - (a) S_1 only.
 - (b) S_2 only.
 - (c) Both S_1 and S_2 are correct.
 - (d) Both are incorrect.

[MCQ]

- 5. For $L = \{(a + b)^2\}$, how many states are required in minimal DFA?
 - (a) 2
- (b) 3
- (c) 4
- (d) 1

Answer Key

(a) 1.

2. **(c)**

3. (a)

(a) (c)

5.

Hints and solutions

1. (a)

- Every DFA can be converted into equivalent and Vice versa.
- DFA help us to write a program.

2. (c)

- Finite automata represents regualr set, regular set can be finite or infinite.
- Transition function in NFA is $Q \times \sum |\bigcup \{ \epsilon \} = 2^{Q}$
- Regular language can be finite or infinite.

3. (a)

From each state, exactly one transition is possible in the DFA for each input symbol.

4. (a)

 $L(DFA) = \sum^{*} = (a+b)^{*}$ a,b

 $L(DFA) = \phi = \{ \}$ Hence, only statement (1) is correct.

5. (c)

Number of states = 4.

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

