

Giải gần đúng pt - Giải gần đúng phương trình bằng các phương pháp lặp

Phương pháp tính (Trường Đại học Bách khoa Hà Nội)

Giải gần đúng phương trình

§1. Khoảng phân ly nghiệm

1. Khoảng phân ly nghiệm

Xét phương trình

$$f(x) = 0 \tag{1}$$

Ta nói (a,b) là khoảng phân ly nghiệm α của phương trình nếu trong khoảng đó phương trình (1) chỉ có một nghiệm thực α duy nhất.

<u>Định lý:</u> Giả sử f(x) là hàm số liên tục trên tập $D \subset R$. Khi đó $(a,b) \subset D$ là một khoảng phân ly nghiệm của phương trình (1) nếu f(a).f(b) < 0 và f(x) đơn điệu trên (a,b)

2. Phương pháp hình học tìm khoảng phân ly nghiệm

Giả thiết f(x) là hàm số liên tục trên tập $D \subset R$. Để tìm khoảng phân ly nghiệm ta có thể tiến hành như sau:

- Khảo sát, vẽ đồ thị hàm số y = f(x). Giao điểm của đồ thị với trục hoành là điểm $x_0 \in D$. Khoảng phân ly nghiệm của phương trình (1) được chọn là lân cận về 2 phía của x_0 , nghĩa là khoảng (a,b) sao cho $a < x_0 < b$, nhưng phải kiểm tra lại điều kiện của Định lý 1 để khẳng định sự duy nhất của nghiệm.
- Trường hợp y = f(x) khó vẽ, ta viết lại phương trình (1) dưới dạng h(x) = g(x)

Khảo sát vẽ đồ thị các hàm y = h(x) và y = g(x) trên cùng một hệ trục tọa độ, hoành độ giao điểm của hai đồ thị là x_0 . Lân cận về 2 phía của x_0 sẽ là khoảng phân ly nghiệm nếu thỏa mãn Định lý 1.

§2. Phương pháp chia đôi

Tóm tắt phương pháp:

Cho phương trình f(x) = 0 giả thiết có nghiệm thực α phân li trong khoảng [a;b].

- Tính c = (a+b)/2
- nếu f(c) = 0 thì x = c là nghiệm của phương trình
- nếu f(c).f(a) < 0 thì khoảng phân ly nghiệm mới là [a;c], ngược lại là [c;b], ký hiệu là $[a_1;b_1]$
- Lặp lại bước trên n lần ta được khoảng phân ly nghiệm thu nhỏ $[a_n;b_n]$ Lấy a_n hoặc b_n làm giá trị gần đúng của α

Sai số:

$$|\alpha - a_n| \le b_n - a_n = \frac{b - a}{2^n}$$

§3. Phương pháp tiếp tuyến

Tóm tắt phương pháp:

Cho phương trình f(x) = 0 giả thiết có nghiệm thực α phân li trong khoảng [a;b].

- Bước 1: Tính f'(x), f''(x) và xét dấu của chúng (f'(x), f''(x) phải giữ nguyên dấu trên [a;b])
- Bước 2: Chọn $x_0 = a$ hoặc $x_0 = b$ thỏa mãn điều kiện

$$f(x_0).f''(x) > 0 \ \forall x \in [a;b]$$

• Bước 3: Từ xấp xỉ đầu x_0 , tính

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{x-1})}, \ n = 1, 2, \dots$$

Sau k lần lặp ta thu được $x_k \approx \alpha$ là nghiệm gần đúng của phương trình.

Sai số:

• Công thức sai số tổng quát:

$$\left| x_n - \alpha \right| \le \frac{\left| f(x_n) \right|}{m_1}$$

trong đó $0 < m_1 \le |f'(x)| \quad \forall x \in [a;b]$

• Công thức sai số phương pháp tiếp tuyến:

$$\left|x_{n}-\alpha\right| \leq \frac{M_{2}}{2m_{1}}\left|x_{n}-x_{n-1}\right|^{2}$$

với $M_2 \ge |f''(x)| \quad \forall x \in [a;b]$

§4. Phương pháp dây cung

Tóm tắt phương pháp:

Cho phương trình f(x) = 0 giả thiết có nghiệm thực α phân li trong khoảng [a;b].

- Bước 1: Tính f'(x), f''(x) và xét dấu của chúng (f'(x), f''(x) phải giữ nguyên dấu trên [a;b])
- Bước 2: Chọn $x_0 = a$ hoặc $x_0 = b$ thỏa mãn điều kiện

$$f(x_0).f''(x) > 0 \ \forall x \in [a;b]$$

Khi đó d = b hoặc d = a.

• Bước 3: Từ xấp xỉ đầu x_0 , tính

$$x_n = x_{n-1} - \frac{d - x_{n-1}}{f(d) - f(x_{n-1})} \cdot f(x_{n-1}), \ n = 1, 2, \dots$$

Sau k lần lặp ta thu được $x_k \approx \alpha$ là nghiệm gần đúng của phương trình.

Sai số:

• Công thức sai số tổng quát:

$$\left|x_{n}-\alpha\right| \leq \frac{\left|f(x_{n})\right|}{m_{1}}$$

trong đó $0 < m_1 \le |f'(x)| \quad \forall x \in [a;b]$

• Công thức sai số phương pháp dây cung:

$$\left|x_{n}-\alpha\right| \leq \frac{M_{1}-m_{1}}{m_{1}}.\left|x_{n}-x_{n-1}\right|$$

trong đó $0 < m_1 \le |f'(x)| \le M_1 \quad \forall x \in [a;b]$

§5. Phương pháp lặp đơn

Tóm tắt phương pháp:

Cho phương trình f(x) = 0 giả thiết có nghiệm thực α phân li trong khoảng [a;b].

Bước 1: Viết f(x) = 0 trong dạng x = g(x)

Bước 2: Kiểm tra điều kiện $|g'(x)| \le q < 1$

Bước 3: Chọn xấp xỉ đầu $x_0 \in [a;b]$ và tính

$$x_n = g(x_{n-1}), n = 1, 2, ...$$

Sau k lần lặp ta thu được $x_k \approx \alpha$ là nghiệm gần đúng của phương trình.

Sai số:

Công thức sai số tổng quát:

$$\left|x_{n}-\alpha\right| \leq \frac{\left|f(x_{n})\right|}{m_{1}}$$

trong đó $0 < m_1 \le |f'(x)| \quad \forall x \in [a;b]$

• Công thức sai số tiền nghiệm:

$$\left| x_n - \alpha \right| \le \frac{q^n}{1 - q} \left| x_1 - x_0 \right|$$

• Công thức sau số hậu nghiệm:

$$\left|x_n - \alpha\right| \le \frac{q}{1 - q} \left|x_n - x_{n-1}\right|$$