

12.排序

希尔排序 逆序对

邓俊辉

deng@tsinghua.edu.cn

Postage Problem

- ❖ The postage for a letter is 50F, and a postcard 35F
 - But there are only stamps of 4F and 13F available
- **❖** Possible to stamp the letter and the postcard **EXACTLY**?

❖ How about other postages?

� For each postage P , determine whether P \in $\{$ $n \cdot 4 + m \cdot 13 \mid n, m \in \mathcal{N}$ $\}$

Linear Combination

- ***** Let $g,h\in\mathcal{N}$
- lacktriangledown For any $n,m\in\mathcal{N}$, $n\cdot g+m\cdot h$ is called a <code>linear combination</code> of <code>g</code> and <code>h</code>
- ❖ Denote $\mathbf{C}(g,h) = \{ ng + mh \mid n,m \in \mathcal{N} \}$ $\mathbf{N}(g,h) = \mathcal{N} \backslash \mathbf{C}(g,h) \text{ //numbers that are NOT combinations of g and h}$ $\mathbf{x}(g,h) = max\{ \mathbf{N}(g,h) \}$ //always exists?
- ❖ Theorem: when g and h are relatively prime, we have

$$\mathbf{x}(g,h) = (g-1) \cdot (h-1) - 1 = gh - g - h$$

***e.g.** $\mathbf{x}(3,7) = 11$, $\mathbf{x}(4,9) = 23$, $\mathbf{x}(\boxed{4}, \boxed{13}) = \boxed{35}$, $\mathbf{x}(5,14) = 51$

h-sorting & h-ordered

- **♦** Let $h \in N$. A sequence S[0, n) is called h-ordered if $S[i] \le S[i+h]$ holds for 0 <= i < n-h
- **❖** A 1-ordered sequence is sorted
- ♦ h-sorting: an h-ordered sequence is obtained by
 - arranging S into a 2D matrix with h columns and
 - sorting each column respectively

Theorem K

❖ [Knuth, ACP Vol.3 p.90]

//习题解析[12-12, 12-13]

A g-ordered sequence REMAINS g-ordered after being h-sorted

Order Preservation

Lemma L

Linear Combination

- ❖ A sequence that is both g ordered and h ordered
 - is called (g, h) -ordered, which must be both

 $\lceil (g + h) \rceil$ -ordered and $\lceil (mg + nh) \rceil$ -ordered for any $m, n \in N$

Inversion

- ❖ Let S[0, n) be a (g, h) -ordered sequence, where g & h are relatively prime
- ❖ Then for all elements S[i] and S[j], we have

$$j - i \ge \mathbf{x}(g, h) + 1 = (g - 1) \cdot (h - 1)$$
 only if $S[i] \le S[j]$

❖ This implies that to the RIGHT of each element, only the next $\mathbf{x}(g,h)$ elements could be smaller

� There would be no more than $n \cdot \mathbf{x}(g,h)$ inversions altogether