Эффективное кодирование. Кодирование для ДИБП. Кодовые слова переменной длины. Теорема кодирования. Алгоритм Хаффмена.

4.1.3. Эффективное кодирование.

Кодирование ДИБП.

Пусть ДИБП выдает буквы или символы каждые τ_s секунд. Каждый символ выбирается из конечного алфавита $A \in \{a_k\}, k=1,2,...,L$ с вероятностью $p(a_k)$. Энтропия такого источника определяется по формуле (2.4) и ограничивается сверху значением, вычисляемым по (4.5), т.е. $H(X) \leq \log_2(L)$. Как говорилось выше, знак «=» выполняется, если вероятности символов на выходе источника одинаковы и равны $p = \frac{1}{L}$.

1. Кодовые слова фиксированной длины.

Рассмотрим блоковое кодирование, которое состоит в сопоставлении уникального ряда из K двоичных символов, каждому символу источника. Так как существует L возможных символов ДИБП, то число двоичных символов кодера на один символ источника при уникальном кодировании определяется

как
$$K = \begin{cases} \log_2(L), L = 2^{\mathcal{Q}} \\ \lfloor \log_2(L) \rfloor + 1, L \neq 2^{\mathcal{Q}} \end{cases}$$
, где \mathcal{Q} - целое положительное число, $\lfloor \bullet \rfloor$ -

наибольшее целое, меньшее, чем $\log_2(L)$. K - скорость кодирования. Поскольку $H(X) \leq \log_2(L)$, то $K \geq H(X)$. Эффективность кодирования определяется отношением $\frac{H(x)}{K}$.

- А) Если $L = 2^{\varrho}$ и символы источника равновероятны, то K = H(X) и эффективность кодирования равна 1 (100%).
- Б) Если $L \neq 2^{\mathcal{Q}}$, но символы источника равновероятны, то K отличается от H(X) самое большее на 1 бит на символ.
- В) Если $\log_2(L) >> 1$, то эффективность кодирования высокая.
- Г) Если L мало, тогда эффективность кода можно повысить путем кодирования блока из J символов источника за время $J\tau_s$. Для этого надо выбрать L^J уникальных кодовых слов. Используя кодовую последовательность из K_J двоичных символов, можно образовать 2^{K_J} возможных кодовых слов, причем $K_J \ge J \log_2(L)$. Следовательно, требуется минимальное целое значение для K_J :

$$K_J = \lfloor J \log_2(L) \rfloor + 1 .$$

Теперь среднее число символов кода на один символ источника $K = \frac{K_J}{J}$. При эффективность кодирования увеличивается в J раз: $\frac{H(X)}{K} = \frac{H(X)J}{K_J}$. Взяв J достаточно большим, можно эффективность приблизить к 1.

Такие методы кодирования не приводят к искажениям, т.к. кодирование символов источника или блоков символов в кодовые слова выполняется однозначно (уникально). Эти коды называются **бесшумными**.

Теперь рассмотрим ситуацию, когда только часть L^J блоков символов источника кодируется однозначно. Например, $2^{K_J}-1$ наиболее вероятных J символьных блоков кодируется однозначно. Остальные $L^J-(2^{K_J}-1)$ блоков длины J представляются одним оставшимся кодовым словом. Такая процедура кодирования вызывает ошибку декодирования каждый раз, когда источник выдает маловероятный блок. Обозначим через p_e вероятность ошибки декодирования. Шеннон в 1948 г. доказал теорему кодирования источника.

Теорема Шеннона кодирования Д**ИБП.** Пусть X - ансамбль символов ДИБП с конечной энтропией H(X). Блоки из J символов источника кодируются в двоичные кодовые слова длины K_J . Тогда для любого $\varepsilon > 0$ p_ε можно сделать сколь угодно малой, если выполняется неравенство

$$K = \frac{K_J}{I} \ge H(X) + \varepsilon \tag{4.12}$$

и J достаточно велико.

2. Кодовые слова переменой длины.

Если символы источника не равновероятны, то более эффективно использовать кодовые слова переменной длины. Пример: код Морзе (19 век). Символам, возникающим более часто, ставятся в соответствие более короткие кодовые слова, а символам, возникающим менее часто, сопоставляются более длинные кодовые слова. Такой метод кодирования, который требует знания вероятностей появления символов источника, называется энтропийным.

Рассмотрим пример. Пусть ДИБП имеет алфавит объемом L=4, $A=\{a_1,a_2,a_3,a_4\}$. Символы появляются с вероятностями $p(a_1)=\frac{1}{2}$, $p(a_2)=\frac{1}{4}$, $p(a_3)=p(a_4)=\frac{1}{8}$. Предположим, что они кодируются следующим образом:

код 1:
$$a_1 \to 0$$
, $a_2 \to 01$, $a_3 \to 011$, $a_4 \to 111$, код 2: $a_1 \to 0$, $a_2 \to 10$, $a_3 \to 110$, $a_4 \to 111$

Пусть принимается последовательность 00100101111... Тогда декодирование кода 1 дает результат: $a_1, a_2, a_1, a_2, a_1, a_4$ или a_1, a_2, a_1, a_2, a_3 . Т.е. имеем не однозначное декодирование. По коду 2: $a_1, a_1, a_2, a_1, a_2, a_4$. Здесь существует только один вариант декодирования. Ни одно кодовое слово кода 2 не является началом (**префиксом**) другого кодового слова.

В общем, **префиксное условие** кода требует, чтобы для кодового слова длины K $(b_1....b_Mb_{M+1}....b_K)$ не существовало других кодовых слов длины M < K с элементами $(b_1....b_M)$. Это свойство делает кодовые слова однозначно декодируемыми.

Критерий оптимальности однозначно декодируемых кодов переменной длины имеет вид:

$$\overline{K} = \sum_{k=1}^{L} n_k p(a_k) = \min , \qquad (4.13)$$

где \overline{K} - среднее число бит, приходящихся на один символ источника, n_k - длина k - го кодового слова.

Теорема Шеннона кодирования ДИБП. Пусть X - ансамбль символов ДИБП с конечной энтропией H(X) и выходными символами из алфавита $A = \{a_1,, a_L\}$ с вероятностями выхода $p(a_k), k = 1, 2, ..., L$. Тогда существует возможность создать код, который удовлетворяет префиксному условию и имеет среднюю длину \overline{K} , удовлетворяющую неравенству

$$H(X) \le \overline{K} < H(X) + 1 \tag{4.14}$$

Алгоритм кодирования Хаффена.

Критерий оптимальности кодов Хаффмена – минимум средней длины кодового слова (4.13).

Рассмотрим пример. ДИБП выдает символы из алфавита объемом L=7 с вероятностями:

$$p(a_1) = 0.2, p(a_2) = 0.35, p(a_3) = 0.1, p(a_4) = 0.3, p(a_5) = 0.005, p(a_6) = 0.04, p(a_7) = 0.005$$
.

- 1) Расположить символы источника в порядке убывания (не возрастания) вероятностей.
- 2) Процесс кодирования начинается с двух наименее вероятных символов a_5, a_7 . Эти символы объединяются, причем верхней ветви присваивается «0», нижней «1» или наоборот.
- 3) Вероятности этих двух ветвей складываются, суммарному узлу присваивается вероятность 0.01.
- 4) Далее пункты 2), 3) повторяются, пока не исчерпаются символы источника. Вероятность последнего узла равна 1.

Построим кодовое дерево.

Рисунок 4.3. Кодовое дерево кода Хаффмена.

Потенциальная помехоустойчивость когерентного приема. Потенциальная помехоустойчивость ДАМ, ДФМ, ДЧМ и ДОФМ сигналов.

2.2.5. Потенциальная помехоустойчивость когерентного приема.

Качество передачи зависит от свойств и технического состояния системы, от интенсивности и характера помех.

Помехоустойчивость - способность системы противостоять влиянию помех, определяется вероятностью ошибки $P_{O\!I\!I}$. $P_{O\!I\!I}$ — вероятность неправильно принять информационный символ. При заданной интенсивности помехи $P_{O\!I\!I}$ тем меньше, чем сильнее различаются между собой сигналы, соответствующие разным сообщениям. Следовательно, необходимо выбирать сигналы с большим различием. Вероятность ошибочного приема символа $P_{O\!I\!I}$ зависит от способа приема, следовательно нужно выбрать такой способ приема, который наилучшим образом реализует различие между сигналами при заданном отношении сигнал/шум $q=10\ lg(\frac{P_c}{P_m})$.

В теории помехоустойчивости В.А. Котельникова показала, что существует предельная (потенциальная) помехоустойчивость при заданном методе модуляции, которая ни при каком способе приема не может быть превзойдена.

Приемник, реализующий потенциальную помехоустойчивость, называется *оптимальным* приемником.

Определим потенциальную помехоустойчивость для двоичной системы с аддитивным БГШ.

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E_3}{2N_0}} \right) \right]$$
 (2.33)

Таким образом, вероятность ошибки P_{OUU} тем меньше, чем больше энергия E_{2} разностного сигнала.

$$E_{s} = \int_{0}^{T} \left[S_{1}(t) - S_{2}(t) \right]^{2} dt = \int_{0}^{T} S_{1}^{2}(t) dt + \int_{0}^{T} S_{2}^{2}(t) dt - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt =$$

$$= E_{1} + E_{2} - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt.$$

Энергия E_s тем больше, чем больше суммарная энергия двух сигналов $S_1(t)$ и $S_2(t)$ $E_l + E_2$ и чем меньше корреляция между ними $\int\limits_0^T S_1(t) S_2(t) dt$.

Если $E_l=E_2=E$, $r_s=\frac{1}{E}\int\limits_0^\tau S_l(t)S_2(t)dt$ - коэффициент взаимной корреляции между $S_1(t)$ и $S_2(t)$, то $E_2=2E-2r_sE=2E(1-r_s)$ и

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E(1 - r_S)}{N_0}} \right) \right]$$
 (2.34)

Если $r_s=-1$, тогда $S_1(t)=-S_2(t)$ - противоположные сигналы, $P_{O\!I\!I\!I}$ минимальна; если $r_s=1$, тогда $S_1(t)=S_2(t)$, $P_{O\!I\!I\!I}=0.5$ - сигналы не различимы; если $r_s=0$, тогда сигналы ортогональны.

Формулы (2.33), (2.34) дают выражения для потенциальной помехоустойчивости. При заданной интенсивности помехи и энергии сигналов она зависит от типа модуляции.

2.2.6. <u>Потенциальная помехоустойчивость ДАМ, ДФМ, ДЧМ, ДОФМ</u> сигналов.

1. Двоичная амплитудная модуляция (ДАМ):

«1» передается сигналом $S_i(t) = Acos(\omega t)$, «0» передается сигналом $S_2(t) = 0$, $0 \le t \le T$.

 E_2 =0; E_1 =E, тогда по формуле (2.33) получим выражение для потенциальной помехоустойчивости:

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E}{2N_0}} \right) \right]$$
 (2.35a)

или через интеграл Лапласа $F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{V^2}{2}} dV$:

$$P_{out} = 1 - F\left(\sqrt{\frac{E}{2N_0}}\right) \tag{2.356}$$

2. Двоичная частотная модуляция (ДЧМ):

«1» передается сигналом $S_1(t) = A\cos(\omega_1 t)$, «0» передается сигналом $S_2(t) = A\cos(\omega_2 t)$, $0 \le t \le T$.

 r_s ≈ 0 ⇒ по формуле (2.34) имеем:

$$P_{out} = 0.5 \left(1 - \Phi \left(\sqrt{\frac{E}{N_0}} \right) \right) \tag{2.36a}$$

или

$$P_{out} = 1 - F\left(\sqrt{\frac{E}{N_0}}\right)$$
 (2.366)

3. Двоичная фазовая манипуляция (ДФМ):

«1» передается сигналом $S_{l}(t) = Acos(\omega t)$, «0» передается сигналом $S_{2}(t) = -Acos(\omega t)$, $0 \le t \le T$.

 $r_s = -1 \Longrightarrow$ по формуле (2.34) получим:

$$P_{out} = 0.5 \left(1 - \Phi \left(\sqrt{\frac{2E}{N_0}} \right) \right) \tag{2.37a}$$

или

$$P_{out} = I - F\left(\sqrt{\frac{2E}{N_o}}\right). \tag{2.376}$$

4. Двоичная относительная фазовая манипуляция. (ДОФМ).

Сигнал ДОФМ, в отличие от сигналов ДАМ, ДЧМ и ДФМ, записывается на интервале двух посылок [0;2T]:

$$S_{I}(t) = \begin{cases} A\cos(\omega t), 0 < t \le T, \\ A\cos(\omega(t-T)), T < t \le 2T. \end{cases}$$

$$S_{2}(t) = \begin{cases} A\cos(\omega t), 0 < t \le T, \\ -A\cos(\omega(t-T)), T < t \le 2T. \end{cases}$$

Сигнал $S_1(t)$ соответствует передаче разности фаз $\Delta \varphi = 0$, сигнал $S_2(t)$ – разности $\Delta \varphi = \pi$.

Исходное сообщение b_k (k=1,2,...), состоящее из 0 и 1, преобразуется в $J_k=2b_k-1$, т.е. в последовательность, состоящую из -1 и 1 ($0\to$ -1;1 \to 1). При формировании ДОФМ сигнала символы J_k перекодируются следующим образом:

$$J_{k}' = J_{k} \cdot J_{k-1}', \tag{2.38}$$

где $J_0' = 1$.

Тогда для получения ДОФМ сигнала достаточно умножить несущее колебание $A\cos(\omega t)$ на J_{k}' :

$$S(t) = J_{k}' \cdot A\cos(\omega t) = \pm A\cos(\omega t)$$
.

Задача. Задан непрерывный процесс $x(t) = U\cos(2\pi ft) + V\cos(4\pi ft)$. Определить интервал дискретизации T и первые 3 отсчета.