Lecture 2 Segment 2

Summary statistics

Summary statistics

- Important concepts
 - Central tendency (mean, median, mode)
 - Variability (standard deviation and variance)
 - Skew
 - Kurtosis

Wine tasting!

Example

- Suppose that 30 wine experts rated the overall quality of 4 different wines on a scale of 1-10
 - Higher scores indicate higher quality

Four histograms

Four density plots

Summary statistics from R

```
> # Descriptive statistics for the variables in the dataframe called ratings
> describe(ratings)
                    sd median trimmed mad min max range skew kurtosis
        var n mean
RedTruck
         1 30 5.50 2.26
                                5.50 2.22
                                                    9 0.00
                                                              -0.810.41
                              5.50 3.71 1 10 9 0.00 -1.34 0.53
                          5.5
WoopWoop 2 30 5.50 2.92
                          5.0 4.96 1.48 1 10
                                                    9 0.33
HobNob
         3 30 5.03 2.01
                                                             -0.01 0.37
                          6.0
                                6.04 1.48
                                                    9 -0.33
                                                              -0.01 0.37
FourPlay
         4 30 5.97 2.01
```

• Measure of central tendency: a measure that describes the center point of a distribution. A good measure of central tendency is representative of the entire distribution.

- Mean: the average, $M = (\Sigma X)/N$
- Median: the middle score (the score below which 50% of the distribution falls)
- Mode: the score that occurs most often

- Mean (average) is the best measure of central tendency when the distribution is normal
 - Average GPA
 - Average SAT
 - Average rating (e.g., wine ratings)

- Median (middle score) is preferred when there are extreme scores in the distribution
 - Median household income
 - Median reaction time
 - Median GPA?
 - May be best representative of overall performance if distribution of grades is skewed

- Mode is the score that occurs most often
 - The peak of a histogram
 - The most "popular" score
 - Again, GPA?
 - "I mostly got As in college"

Variability

- A measure that describes the range and diversity of scores in a distribution
 - Standard deviation (SD): the average deviation from the mean in a distribution
 - $\frac{\text{Variance}}{\text{SD}^2} = \left[\Sigma (X M)^2 \right] / N$

Variance

- Variation is natural and observed in all species and that's good! See Darwin:
 - On the Origin of Species (1859)
 - Variation Under Domestication (1868)

Linsanity!

Jeremy Lin (10 games)

Points per game	(X-M)	(X-M) ²
28	5.3	28.09
26	3.3	10.89
10	-12.7	161.29
27	4.3	18.49
20	-2.7	7.29
38	15.3	234.09
23	0.3	0.09
28	5.3	28.09
25	2.3	5.29
2	-20.7	428.49
M = 227/10 = 22.7	M = 0/10 = 0	M = 922.1/10 = 92.21

Results

- M = mean = 22.7
- SD = standard deviation = 9.6
- $SD^2 = variance = 92.21$

Notation

- M = mean
- SD = standard deviation
- SD² = variance (also known as MS)
 - MS stands for Mean Squares
 - SS stands for Sum of Squares

Lin vs. Kobe

10 games

9 games

```
> # Descriptive statistics for the variables in the dataframe called ppg
> describe(ppg)
     var n mean sd median trimmed mad min max range skew kurtosis se
Lin     1 9 25.00 7.47     26     25.00 2.97 10 38     28 -0.33     -0.14 2.49
Bryant     2 9 26.67 7.86     27     26.67 7.41 10 36     26 -0.82     -0.36 2.62
```

Summary statistics: Review

- Important concepts
 - Central tendency (mean, median, mode)
 - Variability (standard deviation and variance)
 - Skew
 - Kurtosis

Summary statistics: Review

Descriptive statistics (formulae to know)

$$- M = (\Sigma X) / N$$

$$-SD^2 = [\Sigma(X - M)^2] / N$$

$$-SD^2 = [\Sigma(X - M)^2] / (N - 1)$$

Image in slide 3 was retrieved from http://www.delawareonline.com/blogs/secondhelpings/uploaded_images/redwinegl-758416.JPG

Image in slide 15 is from Nathaniel S. Butler, NBAE/Getty Images.

Image in slide 19 is from John Angelillo, API.

© 2012 Andrew Conway