

Advanced Text Analysis for Business (IDS-566)

Lecture 2 Jan 26, 2018

Course Overview

- Instructor
 - Ehsan M. Ardehaly PhD, ehsan@uic.edu
 - Office hours: 4:45 5:45 pm F, BLC L270
 - Teacher assistant: 4:00 5:00 pm W, BLC L270
- Objectives:
 - Text mining
 - Applications for business decisions
 - Study of machine learning concepts
 - Design and implementation of text mining approaches

Course Overview

- Suggested text books:
 - Fundamentals of Predictive Text Mining (2nd Edition), Sholom M. Weiss, Nitin Indurkhya, Tong Zhang, 2015
 - Mining Text Data, Charu C. Aggarwal and ChengXiang Zhai, Springer, 2012
 - Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeff Ullman

• Grading:

Final exam: 40%

• 3 Assignments: 60% (3 x 20%)

Course Assignments

- Grade: 20%
- Loading textual data
- Building models
- Analysis
- Suggested programming language
 - Python 3
 - Scientific packages (e.g. scikit-learn)

Assignment policy

- Please read university regulations:
 - https://grad.uic.edu/university-regulations
- All assignment you turn must be done by you alone.
- The first violation will result in a failing grade for that assignment.
- The second will result in a failing grade for the course.
- Late Submission Policy:
 - 4% per hour
- Grade dispute:
 - Within 7 days of the receipt of the grade

Agenda

- Lexical analysis
 - Tokenization, Regular Expression
 - Unigram, Bigram, N-gram
 - Stop words
- Document to term matrix:
 - Vectorization
 - TF-IDF
- Sparse matrix:
 - LIL matrix, CSR matrix, CSC matrix
- Sentiment Analysis:
 - Lexicons

Lexical Analysis

- Text is unstructured
- Computer models need structure
- Solution:
 - Driving patterns from text
 - Creating structured data

Tokenization

Sequence of characters → Sequence of terms

- Example:
 - Input: "Hello world!"
 - Word as a token:
 - Output: "hello", "world"
 - Separate by space:
 - Output: "Hello", "world!"

Tokenization

- Separating by special characters:
 - Space, tab, new-line, ...
 - What about Unicode?
 - Slow

Tokenization

- Separating by special characters:
 - Space, tab, new-line, ...
 - What about Unicode?
 - Slow
- Solution:
 - Using regular expression (regexp)
 - Python: package 're'

Regular Expression

- A sequence of characters that define a search pattern:
 - Find operation
 - Find and replace operation
 - Find and split operation
- Example:
 - [\n'()] → Match space, new-line, single quote, parenthesis
 - \w+ → Match alphanumeric with length more than 1

Regular Expression use cases

- Tokenization to words:
 - \w\w+
- Recognizing URLs
 - http[s]?://(?:[a-zA-Z]|[0-9]|[\$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+
- Recognizing hashtags (or mentions)
 - (?<=^|(?<=[^a-zA-Z0-9-_\.]))#([A-Za-z]+[A-Za-z0-9]+)

Unigram term

- Single word in sentence
- Without any space (or enter, tab, ...)
- Without special characters (!, ?, ...)
- Converting to lower case (optional)
- Sample: "this", "is", "i"

Bigram, n-gram

- Bigram: Contiguous sequence of two unigrams.
 - Example: "this is", "is my", "have you", "text mining"
- N-gram: Contiguous sequence of N unigrams.
 - 3-gram: "text mining course"
 - 4-grams: "the president of us"
 - 5-grams: "the president of united states"

Tokenization to unigrams

- Input:
- "If I have enough money, I will go to Japan"
- Output:
- "if", "i", "have", "enough", "money", "i", "will", "go", "to", "japan"

Tokenization to bigrams

- Input:
- "If I have enough money, I will go to Japan"
- Output:
- "if i", "i have", "have enough", "enough money", "money i", "i will", "will go", "go to", "to japan"

Unique unigram tokens:

- Input:
- "If I have enough money, I will go to Japan"
- Unique unigrams:
- "if", "i", "have", "enough", "money", "will", "go", "to", "japan"

Stop-words

- We often remove stop-words in tokenization.
- Some samples:
 - am, but, as, did, I, if, into, some, than, up, to, your, ...

Document

- Each sample of textual data:
 - Document 1: Shipment of gold damaged in a fire.
 - Document 2: Delivery of silver arrived in a silver truck.
 - Document 3: Shipment of gold arrived in a truck.
- Tokenization: unigram, lowercased, more than 1 letter.
 - arrived, damaged, delivery, fire, gold, in, of, shipment, silver, truck

Document to Term Matrix (DTM)

Each sample of textual data:

Document 1: Shipment of gold damaged in a fire.

Document 2: Delivery of silver arrived in a silver truck.

Document 3: Shipment of gold arrived in a truck.

Tokenization: unigram, lowercased, more than 1 letter. arrived, damaged, delivery, fire, gold, in, of, shipment, silver, truck

Doc	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D1	0	1	0	1	1	1	1	1	0	0
D2	1	0	1	0	0	1	1	0	2	1
D3	1	0	0	0	1	1	1	1	0	1

Count Vectorization vs. Binary Vectorization

Count vectorization (term frequency):

Doc	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D1	0	1	0	1	1	1	1	1	0	0
D2	1	0	1	0	0	1	1	0	2	1
D3	1	0	0	0	1	1	1	1	0	1

Binary vectorization:

Doc	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D1	0	1	0	1	1	1	1	1	0	0
D2	1	0	1	0	0	1	1	0	1	1
D3	1	0	0	0	1	1	1	1	0	1

Inverse Document Frequency

Term Frequency (TF):

Doc	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D1	0	1	0	1	1	1	1	1	0	0
D2	1	0	1	0	0	1	1	0	2	1
D3	1	0	0	0	1	1	1	1	0	1

Inverse Document frequency (IDF) and log(IDF):

	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
IDF	3/2	3/1	3/2	3/1	3/2	3/3	3/3	3/2	3/1	3/2
log(IDF)	.41	1.1	.41	1.1	.41	0	0	.41	1.1	.41

Smoothing IDF

$$idf = \log \frac{N}{DF}$$
 Smoothing $idf = 1 + \log \frac{N+1}{DF+1}$

	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
IDF	3/2	3/1	3/2	3/1	3/2	3/3	3/3	3/2	3/1	3/2
log(IDF)	.41	1.1	.41	1.1	.41	0	0	.41	1.1	.41
Smooth	1.29	1.69	1.29	1.69	1.29	1	1	1.29	1.69	1.29

TF-IDF

TF:

Doc	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D1	0	1	0	1	1	1	1	1	0	0
D2	1	0	1	0	0	1	1	0	2	1
D3	1	0	0	0	1	1	1	1	0	1

IDF:

	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
Smooth	1.29	1.69	1.29	1.69	1.29	1	1	1.29	1.69	1.29

$$tf.idf = tf(1 + \log \frac{N+1}{DF+1})$$

Doc	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D1	0	1.69	0	1.69	1.29	1	1	1.29	0	0
D2	1.29	0	1.29	0	0	1	1	0	3.39	1.29
D3	1.29	0	0	0	1.29	1	1	1.29	0	1.29

Normalizing TF-IDF

- Normalizing term vector
- Term vector: $\begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$

• L1:
$$\left[\frac{x_1}{\sum x_i} \quad \frac{x_2}{\sum x_i} \quad \dots \quad \frac{x_n}{\sum x_i}\right]$$

• L2:
$$\left[\frac{x_1^2}{\sum x_i^2} \quad \frac{x_2^2}{\sum x_i^2} \quad \dots \quad \frac{x_n^2}{\sum x_i^2}\right]$$

Storing Document to Term Matrix

- Normal array:
 - Dense
 - Most of cells are zero
 - To much memory
 - To many matrix operations

Storing Document to Term Matrix

- Normal array:
 - Dense
 - Most of cells are zero
 - To much memory
 - To many matrix operations
- Solution:
 - Sparse Matrix

Zipf's law

- Empirical law:
 - There are many rate words
 - There are a small number of extremely frequent words
- Let f_i be the frequency of the i-th most common term:
- $f_i \propto \frac{1}{i}$
- Or
- $f_i \propto i^{-b}$

Sparse Matrix

Lists of lists (LIL)

Good for incremental matrix construction

Compressed Sparse Row (CSR)

Good for row operations

Compressed Sparse Column (CSC)

Good for column operations

LIL Matrix

Good for incremental matrix construction

```
\bullet \begin{bmatrix} 3 & 0 & 0 & 3 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
```

- Data: [[3, 3], [2, 1], [1]]
- Rows: [[0, 3], [1, 2], [1]]

CSR Matrix

• Good for row operations

$$\bullet \begin{bmatrix} 3 & 0 & 0 & 3 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- Data: [3, 3, 2, 1, 1]
- Indices: [0, 3, 1, 2, 1]
- Index pointer: [0, 2, 4, 5]

CSC Matrix

Good for columns operations

$$\bullet \begin{bmatrix} 3 & 0 & 0 & 3 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- Data: [3, 2, 1, 1, 3]
- Indices: [0, 1, 2, 1, 0]
- Index pointer: [0, 1, 3, 4, 5]

Example

• X[2, 4] = 5 \leftarrow Good for LIL matrix

- Z = X.dot(Y)
 - X: CSR matrix
 - Y: CSC matrix

Sentiment Analysis

7m 🗸

Congrats to @KingJames of the @cavs on joining the exclusive 30,000 Career Points Club!

#ThisIsWhyWePlay #AllForOne C

1.1K

Sentiment Analysis

Classification of documents/messages by sentiment

- Applications:
 - Recommendation systems
 - Opinion mining
 - Customer relation management
 - Market sentiment

Approaches

- Lexicons
 - Dictionary base
 - General purpose
- Machine learning
 - Learning from data
 - Customized to the application

Lexicon approach

- Dictionary of words with score
- Example: AFINN http://neuro.imm.dtu.dk/wiki/AFINN
 - crying -2
 - excited 3
 - hell -4
 - winner 4
 - smiled 2

AFINN lexicons

• Congrats to @KingJames of the @cavs on joining the exclusive 30,000 Career Points Club!

• Congrats: 2

• Exclusive: 2

• Average score: 2 > 0

Challenges

- I do not dislike cabin cruisers. (Negation handling)
- Disliking watercraft is not really my thing. (Negation, inverted word order)
- I'd really truly love going out in this weather! (Possibly sarcastic)