

ALTA DEL SISTEMA

M. I. Lourdes Yolanda Flores Salgado yoli@unam.mx

DEPARTAMENTO DE SUPERCÓMPUTO DGTIC-UNAM

BOOTSTRAPPING

- Término utilizado para "Dar de alta un sistema" o "levantar el sistema".
- El proceso de bootstrapping está compuesto por varios pasos, que van desde la ejecución de instrucciones de hardware y termina con la operación del sistema operativo.

Paso 1. Ejecución de Instrucciones en Hardware.

Alta del Sistema

- El proceso de alta comienza en el momento que las instrucciones almacenadas en la memoria no volátil del sistema (ROM, ROS, NVRAM, Firmware) se ejecutan al presionar el interruptor en encendido.
 - Inicialización del BIOS o de la UEFI.

Paso 1. Ejecución de Instrucciones en Hardware.

Alta del Sistema

 Por medio de las instrucciones en hardware se determina la ubicación del "Programa de Boot" el cual se encuentra en alguna ubicación de un dispositivo de inicialización o arranque.

Por ejemplo:

Para un disco de arranque en el sector 0.

Paso 2. Ejecución del Programa de Boot

Alta del Sistema

 El programa de boot carga al kernel en la memoria y le otorga el control del sistema.
 Realiza un diagnóstico del Hardware para asegurar el funcionamiento de los dispositivos de arranque.

PROGRAMA DE BOOT EN LINUX

- El cargador (Boot Loader) de Linux, funciona en dos etapas:
 - 1^a. etapa
 - Reside en la MBR, EFI System Partition o sector de boot del sistema de archivos.
 - 2^a. etapa
 - Reside en /boot
 - Es común que /boot esté asociado a una partición.
- Requiere al menos especificar:
 - Para LINUX: Etiqueta, Ubicación del Kernel, Sistema de Archivos Raíz y disco RAM inicial (initrd o initramfs).
 - Para otros SO: Etiqueta, Dispositivo de Arranque.

PROGRAMA DE BOOT EN LINUX

- Principales cargadores de Linux:
 - Grub
 - Lilo
- GRUB (GNU GRand Unified Bootloader)
 - Gestor de arranque múltiple. Se utiliza para iniciar uno de dos o más sistemas operativos instalados en un mismo equipo de cómputo.
 - Soporta los sistemas de archivos ext2/ext3/ext4,
 ReiserFS, UFS y UFS2, FAT, vFAT, NTFS, HFS+, ZFS, JFS.
 - Permite protección de password.

GRUB /boot/grub/grub.conf /boot/grub/menu.lst

```
default 0
timeout 8
gfxmenu (hd0,0)/boot/message
title openSUSE 11.3
    root (hd0,0)
    kernel /boot/vmlinuz-2.6.34-12-default root=/dev/disk/by-id/ata-
ST380011A 3JV1SP46-part1 resume=/dev/disk/by-id/ata-ST380011A 3JV1SP46-part5
splash=silent quiet showopts vga=0x317
     initrd /boot/initrd-2.6.34-12-default
###Don't change this comment - YaST2 identifier: Original name: other###
title openbsd
    rootnoverify (hd0,2)
   makeactive
    chainloader +1
title Gentoo
    rootnoverify (hd0,1)
    kernel /boot/linux-2.6.36-gentoo-r5 ro root=/dev/sda2 ro
```


GRUB2 /boot/grub/grub.cfg

- Archivo autogenerado
 - update-grub2
 - grub-mkconfig -o /boot/grub/grub.cfg
- Para modificar las opciones de grub2:
 - -/etc/grub.d
 - -/etc/default/grub

Paso 3. Ejecución del Kernel

Alta del Sistema

- El kernel es el núcleo del sistema operativo UNIX. Permanece en ejecución durante todo el tiempo que el sistema se encuentre encendido.
- El archivo de kernel convencionalmente es conocido como /unix (SV) o /vmunix (BSD) y casi siempre se localiza en el directorio raíz. En el caso de Linux, el kernel suele residir en el archivo /boot/vmlinux (vmlinuz si está comprimido).
- Una vez que el kernel toma el control del sistema se prepara a sí mismo para correr y realiza: un diagnóstico detallado del hardware, inicialización de los drivers de dispositivos, montaje del sistema de archivos raíz en solo lectura (/), inicialización de sus tablas internas, (tabla de procesos, inodos, archivos, etc.)
- Una vez terminadas las actividades anteriores, el kernel ejecuta una llamada al sistema fork() y crea otro proceso que se llama init.

PASO 4. EJECUCIÓN DE LOS ARCHIVOS DE INICIO

Alta del Sistema

PROCESO init

- El proceso init. Es el Primer proceso del sistema. PID=1.
- El proceso init, es el encargado de levantar todos los demás procesos del sistema.
- En sistemas operativos con systemd, el PID=1 es systemd

COMANDO init

- El comando init entra en operación con el objetivo de ejecutar los archivos de inicialización del sistema
- En sistemas con systemd, éste permite ejecutar los archivos de inicialización del sistema.

- Ejecutan todas las actividades necesarias para que el sistema funcione en un nivel determinado. (monousuario, multiusuario).
- Es muy importante verificar que procesos se activan y cualquier modificación que se haga de ellos.

ARCHIVOS DE INICIO

UNIX BSD y SystemV

NIVELES DEL SISTEMA UNIX

BSD

- Monitor (nivel más bajo)
- Monousuario o single-user (la máquina está en stand alone)
- Multiusuario o multi-user (la máquina ya tiene usuarios)

NIVELES DEL SISTEMA UNIX

Sistema V

Nivel	Significado
0	Monitor, Shutdown o Powerdown
1	Mantenimiento (Maintenance, Single User)
S	Monousuario (Single User)
2	Multiusuario (Multi User) sin Servicios de Red
3	Multiusuario (Multi User) con Servicios de Red
4	No definido (unused)
5	Firmware
6	Reboot

Nota: En Linux RH 6 o anterior nivel 0 = Halt, Nivel S = Nivel, nivel 5 = X11 (ambiente gráfico).

BSD

/etc/rc	Algunos sistemas usan archivos adicionales de
/etc/rc.local	inicialización, como /etc/rc.boot y
	/etc/rc.single.
/etc/rc.boot	Se encarga de colocar el hostname y revisar los
	sistemas de archivos.
/etc/rc.single	El sistema está iniciando en modo monousuario, el
	control pasa al intérprete de comandos de single-
	user.

OpenBSD

/etc/rc.conf /etc/rc.d /etc/rc.local Script de inicio del sistema
Configuración de demonios
Base de datos de demonios
Archivo específico del site

SV

Linux RH 6

/etc/inittab

cc: estados : acción : comando

cc = etiqueta de 2 caracteres que identifica esa línea.

estados = contiene los nombres de los niveles para los cuales se va a aplicar esa línea. Si está en blanco, aplica para todos.

acción = de qué modo se va a procesar esa línea.

id:3:initdefault:

```
/etc/inittab
# System initialization.
si::sysinit:/etc/rc.d/rc.sysinit
10:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
13:3:wait:/etc/rc.d/rc 3
15:5:wait:/etc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6
# Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now
# When our UPS tells us power has failed
pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting
Down"
# If power was restored before the shutdown kicked in, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown
```

Cancelled"

SV / Linux Red Hat 6

/etc/rc.sysinit
/etc/rc.d/rc.sysinit

- Se encarga de activar todo lo que el sistema necesitará al momento de la inicialización. Por ejemplo:
 - Activa udev y selinux
 - Establece los parámetros del kernel definidos en /etc/sysctl.conf
 - Configura los mapas de teclado.
 - Activa las particiones de swap.
 - Define el hostname
 - Verifica el FS de root (/) y lo re-monta como lectura y escritura.
 - Activa los dispositivos RAID y LVM.
 - Monta otros FS.
 - Activa cuotas
 - Limpia archivos lock de procesos.

SV / Linux Red Hat 6

/etc/rc
/etc/rc.d/rc

- Inicializa el nivel de default del sistema definido en /etc/inittab
 - id:3:initdefault:
- El nivel de operación puede ser especificado pasándolo como argumento al bootloader o en línea de comandos al comando init.
- El comando /sbin/runlevel permite ver el nivel de operación del equipo.

SV / Linux Red Hat 6

/etc/rcX.d /etc/rc.d/rcX.d

- Cada nivel de operación tiene un correspondiente directorio.
- En este directorio hay archivos tipo liga simbólica que hacen referencia a los scripts de inicio del sistema. El argumento que reciben depende del nombre.
- Los archivos son nombrados de la siguiente forma:
 - K o S + (un número de 2 dígitos) + un nombre
 - K significa kill (matar). El argumento enviado será stop.
 - S significa start (iniciar). El argumento enviado será start.
- Los archivos K y S se ejecutan en orden alfabético.

SV / Linux Red Hat 6

```
/etc/init.d
/etc/rc.d/init.d
```

 Directorio donde residen los archivos de inicio SV del sistema.

```
/etc/rc.d/rc.local (Linux)
```

 Corre al finalizar los archivos de inicio. Se utiliza para levantar procesos locales personalizados. No es de uso común.

HERRAMIENTAS ÚTILES PARA CONFIGURAR Y CONTROLAR SERVICIOS

Linux Red Hat 6

Configurar servicios

- ntsysv
- chkconfig

Controlar servicios

- service
- chkconfig (para servicios controlados por xinetd).

EJEMPLO DE UN RC

SV

```
case "$1" in
     start)
          start
          ;;
     stop)
          stop
          ;;
     restart)
          stop
          start
     status)
          status
          ;;
     *)
          echo "Usage: $0 {start|stop|restart|status}"
          exit 1
esac
```