Expresión: ab*ab*

Autómata finito no determinista

Autómata finito determinista

Simbolos:
$$\{a, b\}$$

e-closure($\{0\}$) = $\{0\}$ = A
move(A, a) = $\{1\}$
e-closure($\{1\}$) = $\{1,2,4\}$ = B
move(A, b) = $\{\}$ = E
move(B, a) = $\{5\}$

 $move(B, b) = {3}$

 $move(D, a) = \{5\}$

 $move(D, b) = {3}$

 $move(E, a) = \{\} = E$ $move(E, b) = \{\} = E$

 $move(C, a) = \{\} = E$ $move(C, b) = \{7\}$

e-closure($\{7\}$) = $\{6,7,8\}$ = C

e-closure($\{5\}$) = $\{5,6,8\}$ = C

e-closure({3}) = {2,3,4} = D

D-State

Autómata finito no determinista

Autómata finito determinista Símbolos: {a,b,c}

move(D, c) = $\{\}\}$ = E move(E, a) = $\{\}\}$ = E move(E, b) = $\{\}\}$ = E move(E, c) = $\{\}\}$ = E

Expresión: $(a|\epsilon)b(a+)c$? Reescribiendo:

Autómata finito determinista Símbolos: {a,b, c}

```
e-closure({0}) = {0,1,3,4,5} = A
 move(A, a) = \{2\}
e-closure({2}) = {2, 5} = B
 move(A, b) = \{6\}
e-closure({6}) = {6} = C
 move(A, c) = \{\} = G
 move(B, a) = \{\} = G
 move(B, b) = \{6\}
e-closure({6}) = C
 move(B, c) = \{\} = G
 move(C,a) = \{7\}
e-closure({7}) = {7,8,10,11,13,14,15} = D
 move(C, b) = \{\} = G
 move(C, c) = \{\} = G
 move(D, a) = \{9\}
e-closure({9}) = {8, 9, 10, 11, 13, 14, 15} = E
 move(D, b) = \{\} = G
 move(D, c) = \{12\}
e-closure({12}) = {12, 15} = F
 move(E, a) = {9}
e-closure({9}) = {8, 9, 10, 11, 13, 14, 15} = E
 move(E, b) = \{\} = G
 move(E, c) = \{12\}
e-closure({12}) = {12, 15} = F
 move(F, a) = \{\} = G
 move(F, b) = f = G
 move(F, c) = \{\} = G
```


Expresión: (a|b)*a(a|b)(a|b)

Autómata finito no determinista

Autómata finito determinista

Símbolos: {a, b}

