$$Ker(j) = \{ a \in \mathbb{R} : a = 0 \iff ta = 0 \text{ for some } t \in S \}$$

Additionally

(1)
$$\forall I \in R \text{ ideal}, \quad \{\frac{\alpha}{5} : \frac{\alpha \in I}{s \in S}\} =: S^{-1}I \subseteq S^{-1}R$$

And $S^{-1}I = (j(I))$

(2) Every ited
$$\tilde{I}$$
 of $S'R$ is of this form, i.e. $\tilde{I} = S'I$ for some $\tilde{I} \in R$ in fact, $\tilde{I} = \tilde{J}^{-1}(\tilde{I})$, so $\tilde{I} = S^{-1}(\tilde{J}'(\tilde{I}))$

More properties of I ~ S'I: I, I, C R ideals.

(1) (1)
$$S^{-1}(I_1 + I_2) = S^{-1}I_1 + S^{-1}I_2$$

(2) $S^{-1}(I_1 \cap I_2) = S^{-1}I_1 \cap S^{-1}I_2$
(3) $S^{-1}(I_1 \cdot I_2) = S^{-1}I_1 \cdot S^{-1}I_2$

Doof is easy, use generators.

$$(I)$$
 S'I = S'R \iff InS $\neq \emptyset$

Proof:
$$(\Leftarrow)$$
 Pick any $\alpha \in I_nS$. Then
$$1 = \frac{1}{\alpha} \cdot \alpha \in S^{-1}I \Rightarrow S^{-1}I = S^{-1}R.$$

(
$$\Rightarrow$$
) Know 1 e S'I. write $1 = \frac{1}{1} = \frac{\alpha}{s}$ for some a eI, s e S. by defin, \exists tes s.t. $t(s-\alpha) = 0$. but ts e S mu ta e I So $ts = ta$ and so $\exists nS \ni ts = ta$.

If I deal I in R we have
$$j'(S'I) = \{reR : treI \text{ for smetes }\}$$

If: pick $rej''(S'I) \iff j(r) = \frac{r}{i} eS'I = \frac{a}{1} = \frac{a}{5} \text{ for some } a \in I, s \in S.$

So $f(rs-a) = 0 \Leftrightarrow (ts)r = faeI.$

Proof pick
$$\frac{\alpha_1}{S_1}$$
, $\frac{\alpha_2}{S_2} \in S^1R$ w/ $\frac{\alpha_1\alpha_2}{S_1S_2} \in S^1P$. So we can find $P \in P$, $S \in S$ s.t. $\frac{\alpha_1\alpha_2}{S_1S_2} = \frac{P}{S} \iff tS\alpha_1\alpha_2 = tPS_1S_2$ for som tes.

Step2 $\hat{P} = S^{-1}R \implies j^{-1}(\hat{P}) \notin R$ is prine ideal and $P \cap S = 4$.

Pf it suffices to show $P \subseteq P$ it suffices to show $P \subseteq P$.

Clearly $P \subseteq J^{-1}(S^{-1}P)$ for the other inclusion,

Pick $Y \in J^{-1}(S^{-1}P) \iff \forall Y \in P$ for some $Y \in S$.

Since $P \cap S = \emptyset$, we conclude $Y \in P$.

why it \longrightarrow Finally, $S'(j'\tilde{p}) = \tilde{p}$ (this is true for any \tilde{p} ideal) softices

Theree $P \longmapsto S'P$ are inverse to each other. $j'(p) \longleftarrow \tilde{p}$

A this correspondence breaks for non-prime iteals. i.e. $j^{-1}(S^T I) \neq I$ for some I with $I \cap S$.

 $\underline{E_{\mathbf{Y}}}: \mathbb{R} = K(\mathbf{X}, \mathbf{Y})$ for some field K.

S = R \ (X) which is multiplicatively closed

I = (xy)

 $S^{-1}R = \left\{ \frac{f(x,y)}{g(x,y)} : g \text{ is NOT div. by } x \right\}$

Yes. YxeI so Xej-1(s-1) but X&I.

Ex: In fact,
$$\int_{-1}^{1} (S^{-1}I) = (X) \neq (Xy) = I$$

practice

1+!