

Conhecimento e Raciocínio

Licenciatura em Engenharia Informática: 2º ano - 2º semestre

2017/2018

Ficha de Trabalho nº 3

Redes Neuronais: NNToolBox do Matlab

Bibliografia

Material de apoio disponível no Moodle.

Mathworks site: http://www.mathworks.com/help/toolbox/nnet/

1. Neural Network Data Manager

A janela de edição da NNtoolbox disponibiliza uma interface gráfica para criar e testar redes neuronais. Explore as funcionalidades desta ferramenta realizando os exemplos descritos nos slides NNTool_DM_Ficha3.pdf.

2. Funções da NNToolBox

Para além da interface gráfica, o Matlab possui funções próprias para criar, inicializar, treinar e simular redes neuronais. Para exemplificar o uso dessas funções, nesta ficha serão implementadas as seguintes redes:

- i) Perceptrão semelhante ao da aula anterior (rede monocamada).
- ii) Rede neuronal multicamada do tipo feedforward.

A descrição das funções está feita de forma mais detalhada o ficheiro **resumoNNtool.pdf** que se encontra no Moodle.

As funções mais importantes e necessárias para a realização desta ficha de trabalho são:

- perceptron¹: cria uma rede neuronal tipo perceptrão nome_rede = perceptron
 - Por defeito, a função de ativação é a *hardlim* e a função de treino é a *learnp* (podem ser indicadas alternativas utilizando os argumentos opcionais da função *perceptron*)
- feedforwardnet²: cria uma rede neuronal tipo feedforward nome_rede = feedforwardnet
 - Por defeito, cria uma rede neuronal com uma camada escondida com 10 nós (a arquitetura por defeito pode ser alterada utilizando os argumentos opcionais da função);
 - Os inputs e outputs não são indicados neste ponto. A sua dimensão será automaticamente configurada mais tarde durante o processo de treino (também podem ser configurados explicitamente através da função configure);

1

¹ Versões do Matlab anteriores à release R2010b devem usar a função *newp* (ver help para detalhes de utilização).

² Versões do Matlab anteriores à release R2010b devem usar a função *newff* (ver help para detalhes de utilização).

- Funções de ativação por defeito: camadas escondidas (tansig) e saída (purelin);
- Algoritmo de treino: *trainln*.
- train: treina a rede neuronal nome_rede = train(nome_rede, input, target)
- sim: testa/simula a rede neuronal out = sim(nome_rede, input)
- view: visualizar a rede neuronal view(nome rede)

Para mais detalhes sobre estas funções faça: >> help nome da função

3. Implementação de um perceptrão com as funções da NNToolBox

- a) Edite o ficheiro **perceptrao3a.m** disponibilizado no Moodle. Usando as funções da NNToolBox descritas no início desta ficha complete o código:
 - Defina os targets para as funções lógicas OR, NAND, XOR. Analise a resposta do utilizador na variável log_op e use a instrução switch ... case para proceder à inicialização dos diferentes targets.
 - Crie uma rede neuronal do tipo perceptrão
 - Defina o n° de épocas = 100 (nome_da_rede.trainParam.epochs = 100)
 - Treine a rede criada
 - Teste a rede, usando os mesmos dados de entrada
- b) Execute a função e teste a sua funcionalidade para as funções AND, OR, NAND e XOR. Analise e comente os resultados obtidos.

4. Implementação de uma rede feedforward com 2 camadas usando a NNtool

- a) O exercício anterior e o realizado na aula passada mostraram que a função XOR não pode ser aprendida com um perceptrão de uma camada. Para tentar resolver problema vai ser implementada uma rede neuronal com duas camadas. Edite o ficheiro **rn3b.m** disponibilizado no Moodle e use as funções da NNToolBox para completar o código:
 - Defina os targets para as funções lógicas OR, NAND, XOR. Analise a resposta do utilizador na variável **log_op** e use a instrução switch ... case para proceder à inicialização dos diferentes targets.
 - Crie uma rede neuronal do tipo feedforward com uma camada escondida com 10 nós;
 - Ajuste os seguintes parâmetros da rede (nos restantes devem ser usados os valores por defeito):
 - o Função de ativação da camada de saída: tansig
 - o Função de treino: traingdx
 - o Número de épocas de treino: 100
 - o Todos os exemplos de input devem ser usados no treino

- Treine a rede criada
- Teste a rede, usando os mesmos dados de entrada
- b) Execute a função e teste a sua funcionalidade para as funções AND, OR, NAND e XOR. Analise e comente os resultados obtidos.
- c) Altere a função de treino para a *trainlm*: Repita os testes efectuados na alínea 4b) e analise eventuais diferenças em relação aos resultados obtidos anteriormente.

5. Rede Neuronal para verificação de paridade par

Implemente uma função paridade par para quatro entradas binárias.

Num problema de paridade par com N entradas, a rede deve devolver 1 se um número par de inputs tiver o valor 1. Caso contrário, devolve o valor 0.

- a) Execute as seguintes tarefas:
 - a. Inicialize matriz de **entrada** com as várias possibilidades para 4 entradas.
 - b. Crie a variável target correspondente
 - c. Use as funções da **nntool** para inicializar o perceptrão, treinar e testar. Use diferentes funções de activação. O perceptrão conseguiu aprender?
 - d. Use agora uma rede neuronal com <u>uma camada escondida</u> para resolver este problema.
 - Experimente diferentes topologias e analise os resultados obtidos.