Mathematik I – Lineare Algebra

Vorlesung 10

Wolfgang Globke

7. November 2019

Wiederholung

Definition

Eine Menge R mit zwei Verknüpfungen $+: R \times R \to R$ und $\cdot: R \times R \to R$ wird Ring genannt, wenn folgendes gilt:

- R bildet zusammen mit + eine abelsche Gruppe.
- ② Die Verknüpfung \cdot auf R ist assoziativ.
- Segelten die Distributivgesetze

$$x \cdot (y + z) = x \cdot y + x \cdot z$$
 und $(x + y) \cdot z = x \cdot z + y \cdot z$

für alle $x, y, z \in R$.

Existiert außerdem ein neutrales Element 1 für \cdot , so heißt R ein Ring mit Eins.

Die Menge

$$R^{\times} = \{x \in R \mid \text{ es gibt } x^{-1} \in R \text{ mit } xx^{-1} = 1 = x^{-1}x\}$$

wird die Einheitengruppe von R genannt.

Definition

Ein kommutativer Ring mit Eins K wird Körper genannt, wenn gilt:

$$\mathbb{K}^{\times} = \mathbb{K} \setminus \{0\}.$$

4.4 Matrizen

Von den linearen Gleichungssystemen kennen wir beliebige $m \times n$ -Matrizen (m Zeilen, n Spalten):

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{n2} & \cdots & a_{mn} \end{pmatrix}.$$

In diesem Abschnitt wollen wir das algebraische Eigenleben der $m \times n$ -Matrizen erforschen

Die Menge der $m \times n$ -Matrizen mit Einträgen aus einem Körper $\mathbb K$ wird mit $\mathbb K^{m \times n}$ bezeichnet.

Addition von Matrizen

Wir können zwei Matrizen $A, B \in \mathbb{K}^{m \times n}$ koeffizientenweise addieren:

$$A + B = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}.$$

Die Nullmatrix

$$O = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

ist das neutrale Element der Addition, und das additiv Inverse von $A \in \mathbb{K}^{m \times n}$ ist

$$-A = \begin{pmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{pmatrix}.$$

Matrizenmultiplikation

Wir sind bereits mit der Multiplikation von 2×2 -Matrizen vertraut:

$$AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}.$$

Allgemein soll bei der Multiplikation AB von Matrizen folgendes geschehen:

- Es sei $A \in \mathbb{K}^{m \times n}$ und $B \in \mathbb{K}^{p \times q}$.
- Jede einzelne Spalte von B soll wie ein Vektor mit der Matrix A multipliziert werden.
- Dazu ist notwendig, dass die Spaltenzahl n von A gleich der Zeilenzahl p von B ist, n = p.
- Das Produkt AB hat dann eine Spalte f
 ür jede der q Spalten von B und jede Spalte hat soviele Zeilen wie A, also m.

Wir können das Matrizenprodukt C = AB von $A \in \mathbb{K}^{m \times n}$ und $B \in \mathbb{K}^{n \times q}$ bilden. Dann ist $C \in \mathbb{K}^{m \times q}$ und hat Koeffizienten $(1 \le i \le m, 1 \le j \le q)$

$$c_{ij} = (a_{i1} \quad \cdots \quad a_{in}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_{i1}b_{1j} + \ldots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} ? & ? & ? & ? \\ ? & ? & ? & ? \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & ? & ? & ? \\ ? & ? & ? & ? \end{pmatrix}$$
$$16 = 1 \cdot 1 + (-1) \cdot 0 + 3 \cdot 5$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & ? & ? \\ ? & ? & ? & ? \end{pmatrix}$$
$$9 = 1 \cdot 2 + (-1) \cdot (-1) + 3 \cdot 2$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & 8 & ? \\ ? & ? & ? & ? \end{pmatrix}$$
$$8 = 1 \cdot 3 + (-1) \cdot (-2) + 3 \cdot 1$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & 8 & 8 \\ ? & ? & ? & ? \end{pmatrix}$$
$$8 = 1 \cdot 0 + (-1) \cdot 1 + 3 \cdot 3$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & 8 & 8 \\ 22 & ? & ? & ? \end{pmatrix}$$
$$22 = 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 5$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & 8 & 8 \\ 22 & 12 & ? & ? \end{pmatrix}$$
$$12 = 2 \cdot 2 + 0 \cdot (-1) + 4 \cdot 2$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & 8 & 8 \\ 22 & 12 & 10 & ? \end{pmatrix}$$
$$10 = 2 \cdot 3 + 0 \cdot (-2) + 4 \cdot 1$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 16 & 9 & 8 & 8 \\ 22 & 12 & 10 & 12 \end{pmatrix}$$
$$12 = 2 \cdot 0 + 0 \cdot 1 + 4 \cdot 3$$

Aufgabe (5 Minuten)

Berechne die Matrizenprodukte

0

$$\begin{pmatrix} 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$$

2

$$\begin{pmatrix} 1 & 1 & 3 \\ 4 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$$

6

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} (2 \quad 0 \quad -1)$$

Matrizenmultiplikation

Matrizenmultiplikation ist assoziativ, d.h. für alle $A \in \mathbb{K}^{m \times n}$, $B \in \mathbb{K}^{n \times q}$, $C \in \mathbb{K}^{q \times r}$ gilt

$$A(BC) = (AB)C \in \mathbb{K}^{m \times r}$$
.

Es gelten die Distributivgesetze

$$(A+B)C = AC + BC$$
 für $A, B \in \mathbb{K}^{m \times n}, C \in \mathbb{K}^{n \times q}$

und

$$A(B+C) = AB + AC$$
 für $A \in \mathbb{K}^{m \times n}$, $B, C \in \mathbb{K}^{n \times q}$.

Beweis des zweiten Distributivgesetzes:

Ist
$$D = A(B + C)$$
 und $E = AB + AC$, so ist

$$d_{ij} = \sum_{k=1}^{n} a_{ik} (b_{kj} + c_{kj})$$

$$= \sum_{k=1}^{n} (a_{ik} b_{kj} + a_{ik} c_{kj})$$

$$= \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right) + \left(\sum_{k=1}^{n} a_{ik} c_{kj}\right) = e_{ij}.$$

Matrix-Vektor-Multiplikation

Ein Vektor $x \in \mathbb{K}^n$ kann als $n \times 1$ -Matrix $x \in \mathbb{K}^{n \times 1}$ aufgefasst werden.

Ein lineares Gleichungssystem

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

 \vdots
 $a_{m1}x_1 + a_{n2}x_2 + \dots + a_{mn}x_n = b_m.$

ist also nichts anderes, als die Gleichung Ax = b,

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

Transponierte Matrix

Ist

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{K}^{m \times n},$$

so ist die transponierte Matrix

$$A^{\top} = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{K}^{n \times m}$$

Es gilt:

- $A^{\top} + B^{\top} = (A+B)^{\top}.$
- \bullet $(AB)^{\top} = B^{\top}A^{\top}$.
- $(A^{-1})^{\top} = (A^{\top})^{-1}$ falls $A \in \mathbb{K}^{n \times n}$ invertierbar ist.

Quadratische Matrizen

Ring der quadratischen Matrizen

Eine Matrix $A \in \mathbb{K}^{n \times n}$ heißt quadratische Matrix.

Das Produkt zweier quadratische Matrizen $A, B \in \mathbb{K}^{n \times n}$ ist erneut eine quadratische Matrix $AB \in \mathbb{K}^{n \times n}$.

Satz 4.6

Die Menge $\mathbb{K}^{n \times n}$ mit der komponentenweisen Addition und der Matrizenmultiplikation ist ein Ring mit Eins.

Beweis

- Die Addition ist assoziativ und kommutativ, da sie es in den einzelnen Komponenten ist.
- Wir haben gesehen, dass O∈ K^{n×n} das neutrale Element für + ist, und die Matrix -A das additiv Inverse zu A∈ K^{n×n}.
 Also bildet K^{n×n} mit + eine abelsche Gruppe.
- Wir haben bereits festgestellt, dass die Multiplikation assoziativ ist und mit + die Distributivgesetze erfüllt.
- Das neutrale Element für die Multiplikation ist die $n \times n$ -Einheitsmatrix

$$I_n = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}.$$

Somit ist $\mathbb{K}^{n \times n}$ ein Ring mit Eins.

Ring der quadratischen Matrizen

 $\mathbb{K}^{n \times n}$ ist *kein* kommutativer Ring, denn z.B.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Inverse Matrizen

Eine Matrix $A \in \mathbb{K}^{n \times n}$ heißt invertierbar, wenn es eine Matrix $A^{-1} \in \mathbb{K}^{n \times n}$ gibt, so dass gilt:

$$AA^{-1} = I_n = A^{-1}A.$$

Nicht jede Matrix ist invertierbar. Hätte z.B.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

ein Inverses A^{-1} , so gälte

$$e_1 = I_2 e_1 = A^{-1} A e_1 = A^{-1} \cdot 0 = 0,$$

ein Widerspruch.

Die Einheitengruppe von $\mathbb{K}^{n\times n}$ ist die schon bekannte Gruppe

$$(\mathbb{K}^{n\times n})^{\times} = \mathbf{GL}(n,\mathbb{K})$$

der invertierbaren $n \times n$ -Matrizen.

Inverse Matrizen

Wie bestimmt man, ob eine Matrix $A \in \mathbb{K}^{n \times n}$ invertierbar ist?

• Wir wollen festellen ob eine Matrix $X \in \mathbb{K}^{n \times n}$ mit

$$AX = I_n$$

existiert.

• Sind x_1, x_2, \ldots, x_n die Spalten von X, so gilt bei spaltenweiser Betrachtung der obigen Gleichung

$$AX = A(x_1|x_2|\cdots|x_n) = (Ax_1|Ax_2|\cdots|Ax_n) = (e_1|e_2|\cdots|e_n) = I_n,$$

wobei e_1, e_2, \dots, e_n die Spalten der Einheitsmatrix (Einheitsvektoren) sind.

• Wir haben also *n* simultane lineare Gleichungssysteme

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n$$

zu lösen, um X zu bestimmen.

- Beobachtung:
 - Bei diesen LGSen unterscheiden sich nur die rechten Seiten.
 - Für die gewählten Umformungsschritte im Gauß-Algorithmus ist aber nur die linke Seite relevant.
 - Wir können also für jedes LGS die gleiche Folge von Operationen anwenden (d.h. alle LGSe simultan lösen).
 - Ein Inverses existiert genau dann, wenn alle LGSe lösbar sind (dann sind die Lösungen eindeutig und liefern die Spalten von X).

Beispiel: Inverses berechnen

Aufgabe (10 Minuten)

Bestimme das Inverse der Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 1 & 0 & 2 \end{pmatrix}.$$

Schreibe dazu die simultanen LGSe in der Form

$$(A|I_3) = \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & -1 & 4 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{array}\right).$$

Nachlesen

Beutelspacher, Lineare Algebra Abschnitte 9.1, 6.1, 6.2, 2.1, 2.2 5 Vektorräume und lineare Abbildungen

5.1 Vektorräume

Vektorrechnung

Wir haben bereits in der Ebene \mathbb{R}^2 gesehen, dass wir Vektoren addieren und mit Skalaren multiplizieren können.

Zwei naheliegende Verallgemeinerungen:

- lacktriangle Ersetze den Skalarkörper $\mathbb R$ durch einen beliebigen Körper $\mathbb K$.
- **3** Betrachte *n*-dimensionale Vektoren für beliebiges $n \in \mathbb{N}$.

Die Verallgemeinerung führt zum n-dimensionalen Standardraum \mathbb{K}^n über dem Körper \mathbb{K} .

Analog zu \mathbb{R}^2 können wir hier Vektoren addieren und mit Skalaren aus \mathbb{K} multiplizieren.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}, \qquad \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}, \ \lambda \in \mathbb{K}.$$

Die Rechenregeln von \mathbb{R}^2 übertragen sich entsprechend auf \mathbb{K}^n .

Es gibt allerdings auch Mengen, die ähnliche Rechenregeln zulassen, ohne im Entferntesten wie \mathbb{K}^n auszusehen ... auf den ersten Blick.

Es sei V die Menge der periodischen Funktionen auf dem Intervall [0,2].

Es sei V die Menge der periodischen Funktionen auf dem Intervall [0,2]. Wir können $f,g\in V$ punktweise addieren und mit Skalaren in $\mathbb R$ multiplizieren:

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda f(x).$$

Das Ergebnis ist wieder eine periodische Funktion in V.

Es sei V die Menge der periodischen Funktionen auf dem Intervall [0, 2]. Wir können $f, g \in V$ punktweise addieren und mit Skalaren in \mathbb{R} multiplizieren:

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda f(x).$$

Das Ergebnis ist wieder eine periodische Funktion in V.

Es sei V die Menge der periodischen Funktionen auf dem Intervall [0, 2]. Wir können $f, g \in V$ punktweise addieren und mit Skalaren in \mathbb{R} multiplizieren:

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda f(x).$$

Das Ergebnis ist wieder eine periodische Funktion in V.

Es sei V die Menge der periodischen Funktionen auf dem Intervall [0,2]. Wir können $f,g\in V$ punktweise addieren und mit Skalaren in $\mathbb R$ multiplizieren:

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda f(x).$$

Das Ergebnis ist wieder eine periodische Funktion in V.

In der Signalverarbeitung ist zu beobachten, dass Signale sich additiv überlagern (Superpositionsprinzip).

Vektorräume

Wir verallgemeinern den Standardraum \mathbb{K}^n daher noch weiter:

Definition

Es sei $\mathbb K$ ein Körper. Eine Menge V mit einer Addition $+: V \times V \to V$ und einer Skalarmultiplikation $\cdot: \mathbb K \times V \to V$ heißt $\mathbb K$ -Vektorraum (oder Vektorraum über $\mathbb K$), wenn sie die folgenden Eigenschaften hat:

- V1 Mit der Addition + bildet V eine abelsche Gruppe.
- V2 Für alle $\lambda, \mu \in \mathbb{K}$ und $x, y \in V$ gilt:
 - (a) $1 \cdot x = x$.
 - (b) $\lambda(\mu x) = (\lambda \mu)x$.
 - (c) $(\lambda + \mu)x = \lambda x + \mu x$.
 - (d) $\lambda(x+y) = \lambda x + \lambda y$.

Das neutrale Element $0 = 0_V \in V$ für die Addition wird als Nullvektor bezeichnet.

Beispiel 1: Der Standardraum

Wir haben den Standardraum \mathbb{K}^n bereits kennengelernt.

Die Vektorraumaxiome V1 und V2 erfüllt \mathbb{K}^n , da die entsprechenden Eigenschaften komponentenweise im Körper \mathbb{K} gelten.

Als Spezialfall erhalten wir, dass der Körper $\mathbb K$ als eindimensionaler Vektorraum $\mathbb K^1$ über sich selbst aufgefasst werden kann.

Beispiel 2: Polynome

Der Ring der Polynome $\mathbb{K}[x]$ mit Koeffizienten aus \mathbb{K} kann als \mathbb{K} -Vektorraum aufgefasst werden.

- V1 gilt bereits, da $\mathbb{K}[x]$ ein Ring ist.
- V2 folgt auch aus den Ringeigenschaften, wenn wir die Polynommultiplikation auf konstante Polynome vom Grad 0 (also \mathbb{K}) einschränken.

Beispiel 3: Unendliche Folgen

Anstelle der endlichen Tupel in \mathbb{K}^n kann man unendliche Folgen $x = (x_i)_{i \in \mathbb{N}} = (x_1, x_2, x_3, ...)$ betrachten.

Es bezeichne \mathbb{K}^{∞} die Menge aller unendlichen Folgen mit Einträgen aus \mathbb{K} . Mit komponentenweise Addition und Skalarmultiplikation ist \mathbb{K}^{∞} ein \mathbb{K} -Vektorraum (analog zu \mathbb{K}^n).

Beispiele 4: Matrizen

Der Ring der Matrizen $\mathbb{K}^{m \times n}$ ist ein Vektorraum, mal wieder mit komponentenweisen Addition und Skalarmultiplikation.

Wir können sogar $\mathbb{K}^{m \times n}$ und den Standardraum \mathbb{K}^{mn} miteinander identifizieren:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \\ \vdots \\ a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Beispiel 5: Funktionsräume

Es sei X eine Menge und

$$V = \{ f : X \to \mathbb{K} \}$$

die Menge der Abbildungen von X nach \mathbb{K} .

Wir können Addition und Skalarmultiplikation in V definieren durch

$$(f+g)(x) = f(x) + g(x), \quad (\lambda f)(x) = \lambda f(x)$$

 $mit \ \lambda \in \mathbb{K}, \ x \in X \ und \ f, g \in V.$

Damit ist V ein \mathbb{K} -Vektorraum.

Beispiel 6: Lösungsmengen

Es sei ein homogenes LGS Ax=0 gegeben für $A\in\mathbb{K}^{m\times n}$ mit Lösungsmenge $\mathcal{L}\subset\mathbb{K}^n$.

Dann ist \mathcal{L} ein Vektorraum mit der Addition und Skalarmultiplikation von \mathbb{K}^n . Zu zeigen ist nur für alle $\lambda \in \mathbb{K}$ und $x, y \in \mathcal{L}$:

- $x + y \in \mathcal{L}$: A(x + y) = Ax + Ay = 0 + 0 = 0.
- $\lambda x \in \mathcal{L}$: $A(\lambda x) = \lambda(Ax) = \lambda 0 = 0.$