CS536 Homework 4

Sequential Nondeterminism, Hoare Triples 1 & 2

Group members: (Group 67)

- Jinit Priyutkumar Parikh (A20517770) (jparikh9@hawk.iit.edu)
- Henilkumar Hareshbhai Patel(A20513297) (hpatel154@hawk.iit.edu)
- Swathi Alapati (A20521251) (salapati3@hawk.iit.edu)

Answers: -

Question 1: -

- a. $DO \equiv \text{do } x \neq 0 \rightarrow x := x-1; \ y := y+1 \ \square \ x \neq 0 \rightarrow x := x-1; \ y := y+2 \ \text{od}$ If $\sigma = \{x = \beta, \ y = \delta\}$ and $\beta \geq 2$ then there exist two possible paths to execute for single iteration
 - <DO, σ > \rightarrow <S1;DO, σ > = < x := x-1; y := y+1; DO, σ > \rightarrow <DO, σ [x \mapsto β -1, y \mapsto δ +1]> <DO, σ > \rightarrow <S2;DO, σ > = < x := x-1; y := y+2; DO, σ > \rightarrow <DO, σ [x \mapsto β -1, y \mapsto δ +2]> So after one iteration possible τ are { τ [x \mapsto β -1, y \mapsto δ +1], τ [x \mapsto β -1, y \mapsto δ +2]}
- b. We know from (a) that $\sigma_1 \in \{\tau[x \mapsto \beta 1, y \mapsto \delta + 1], \tau[x \mapsto \beta 1, y \mapsto \delta + 2]\}$. To get all possible σ_2 lets say σ_1 is $\tau[x \mapsto \beta 1, y \mapsto \delta + 1]$, then one iteration will result in $\{\tau[x \mapsto (\beta 1) 1, y \mapsto (\delta + 1) + 1], \tau[x \mapsto (\beta 1) 1, y \mapsto (\delta + 1) + 2]\} = \{\tau[x \mapsto \beta 2, y \mapsto \delta + 2], \tau[x \mapsto \beta 2, y \mapsto \delta + 3]\}$
 - if σ_1 is $\tau[x \mapsto \beta$ -1, $y \mapsto \delta$ +2], then one iteration will result in $\{\tau[x \mapsto (\beta-1)$ -1, $y \mapsto (\delta+2)$ +1], $\tau[x \mapsto (\beta-1)$ -1, $y \mapsto (\delta+2)$ +2] $\} = \{\tau[x \mapsto \beta$ -2, $y \mapsto \delta$ +3], $\tau[x \mapsto \beta$ -2, $y \mapsto \delta$ +4] $\}$

Combining both τ we get

```
\sigma_2 \in \{ \tau[x \mapsto \beta -2, y \mapsto \delta +2], \tau[x \mapsto \beta -2, y \mapsto \delta +3], \tau[x \mapsto \beta -2, y \mapsto \delta +4] \} (two \tau are same, so wrote them as one)
```

c. We can see from σ_1 and σ_2 that x gets updated to β -k, decrementing x in each iteration. For y we observed during each iteration that y is incremented 2k-n times where n is $0 \le n \le k$. So in general the set of all possible states for k iterations is

```
\Sigma' = \{ \sigma_0[x \mapsto \beta - k, y \mapsto \delta + 2k - n \mid 0 \le n \le k \}
```

Question 2: -

- a. If $\sigma \vDash \{p\}$ S $\{q\}$ and $\sigma \not\vDash p$, then $\bot \in M(S, \sigma)$ may or may not occur. (Partial correctness in state σ describes what happens if $\sigma \vDash p$, but it doesn't say $\sigma \not\vDash p$.)
- b. If $\sigma \vDash \{p\}$ S $\{q\}$ and $\sigma \not\vDash p$, then M(S, σ) $\{\bot\} \vDash q$ may or may not occur. (Partial correctness in state σ does not describes what happens if $\sigma \not\vDash$ the precondition.)
- c. If $\sigma \vDash \{p\} S \{q\}$ and $\sigma \vDash p$, then $\bot \in M(S, \sigma)$ may or may not occur. (Partial correctness in σ says that $\bot \in M(S, \sigma)$ or $M(S, \sigma) \{\bot\} \vDash q$.)
- d. If $\sigma \vDash \{p\} S \{q\}$ and $\sigma \vDash p$, then $M(S, \sigma) \{\bot\} \vDash q$ may or may not occur. (Same reason as in 2(c))
- e. If ⊨_{tot} {p} S {q} then ⊨_{tot} {p} S {T} must occur.
 (If S terminates satisfying q then it terminates satisfying true.)

- f. If $\vDash_{tot} \{p\} S \{T\}$ then $\vDash_{tot} \{p\} S \{q\}$ may or may not occur. (We can't say S terminates successfully satisfying q)
- g. If $\sigma \not\models \{p\}$ S $\{q\}$ and S is deterministic, then $\sigma \models p, \bot \notin M(S, \sigma)$, and $M(S, \sigma) \models \neg q$ must all occur simultaneously.
 - (If $\bot \notin M(S, \sigma)$ and $M(S, \sigma) \not\models q$, then the state $\in M(S, \sigma)$ must satisfy $\neg q$.)
- h. If $\bot \notin M(S, \sigma)$, $M(S, \sigma) \not\models q$, and S is deterministic, then $M(S, \sigma) \models \neg q$ **must** occur. (Since S is deterministic, $M(S, \sigma) = \text{some } \{\tau\}$; if $\tau \neq \bot$ and $\not\models q$, then it must $\models \neg q$.)
- i. If $\bot \notin M(S, \sigma)$, $M(S, \sigma) \not\models q$, and S is nondeterministic, then $M(S, \sigma) \models \neg q$ may or may not occur.
 - (As S is nondeterministic, M(S, σ) $\not\models$ q says that one of the states doesn't satisfies q and not all)
- j. If $M(S, \sigma) \not\models q, \tau \in M(S, \sigma)$, and S is nondeterministic, then $\tau \models q$ may or may not occur.
- k. If S is deterministic and $\sigma \models \{p\} S \{q\}$, then $\sigma \models \{p\} S \{\neg q\}$ may or may not occur.
- I. If $\sigma \not\models_{tot} \{p\} S \{q\}$ and S is deterministic, then $\sigma \models \{p\} S \{\neg q\}$ must occur.
- m. If $\sigma \not\models_{tot} \{p\} S \{q\}$ and S is nondeterministic, then $\sigma \models \{p\} S \{\neg q\}$ may or may not occur.
- n. If $\sigma \not\models \{p\} S \{q\}$ and S is deterministic, then $\sigma \models_{tot} \{p\} S \{\neg q\}$ must occur.
- o. If $\sigma \not\models \{p\} S \{q\}$ and S is non-deterministic, then $\sigma \models_{tot} \{p\} S \{\neg q\}$ may or may not occur.

Question 3: -

 We know that for backward assignment {P(e)} v := e {P(v)}. So in our question we want this statement

b := b+b to terminate in a state that satisfies $\{b^*c \le d-b\}$. Based on this we can say that we can start in a state which also satisfies $\{b^*c \le d-b\}$, but every occurrence of 'b' is replaced with 'b+b'. So our precondition $\{P(e)\}$ becomes

$$\{(b+b) * c \le d - (b+b)\}$$

Question 4: -

- a. $U \equiv \{1 \le m^*y \le n^*m\}$ (replacing 'x' with 'm' for backward assignment)
- b. $v \equiv \{1 \le m^*n \le n^*m \} = \{1 \le m^*n \}$
- c. $\{v\}y := n\{u\}$ ---- 1 $\{u\}x := m\{1 \le x*y \le n*m\}$ -----2

We need postcondition of 1 to match with precondition of 2. So from above we can see they are same so $\{w\}$ in $\{w\}$ y := n; x := m $\{1 \le x^*y \le n^*m\}$ will be $\{v\}$ which is $\{1 \le m^*n\}$ (or $\{1 \le m^*n \le n^*m\}$)

Question 5: -

- a. If $\sigma \models \{p\} S \{q\}$
 - Given $p_0 \rightarrow p$, $p \rightarrow p_1$, $q_0 \rightarrow q$, and $q \rightarrow q_1$. Now moving towards left strengthens the precondition and moving towards right weakens the postcondition.
 - So by strengthen precondition we get $p_0 \rightarrow p$ and by Weakening postcondition we get $q \rightarrow q_1$. Combining we get $\sigma \models \{p_0\} S \{q_1\}$
- b. $\sigma \models_{tot} \{p_0\} S \{q_1\}$ for the same reason as (a)

Question 6: -

Let's say that S is deterministic and that running S on σ yields τ . If $\tau = \bot$, then we get partial correctness in all four cases (a) - (d), so assume $\tau \neq \bot$.

- a. Yes: $\sigma \vDash \{p_1 \land p_2\}$ S $\{q_1 \land q_2\}$. If $\sigma \vDash p_1 \land p_2$, then $\sigma \vDash p_1$ and $\sigma \vDash p_2$ both holds. Hence $\sigma \vDash p_1$ which means $\tau \vDash q_1$. Similarly, $\sigma \vDash p_2$, so $\tau \vDash q_2$.
- b. Yes: $\sigma \vDash \{p_1 \lor p_2\} S \{q_1 \lor q_2\}$? $\sigma \vDash p_1 \lor p_2$ implies that at least one of $\sigma \vDash p_1$ and $\sigma \vDash p_2$ hold. If $\sigma \vDash p_1$ then $\tau \vDash q_1$, so $\tau \vDash q_1 \lor q_2$. Similarly, if $\sigma \vDash p_2$, then $\tau \vDash q_1 \lor q_2$.
- c. Yes: $\sigma \vDash \{p_1 \land p_2\}$ S $\{q_1 \lor q_2\}$? If $\sigma \vDash p_1 \land p_2$ then from (a), $\sigma \vDash q_1 \land q_2$, which implies $q_1 \lor q_2$. (Alternatively, $\sigma \vDash p_1 \land p_2$ implies $\sigma \vDash p_1$, which implies $\tau \vDash q_1$, which implies $\tau \vDash q_1 \lor q_2$.)
- d. No, $\sigma \not\models \{p_1 \lor p_2\} S \{q_1 \land q_2\}$. This can be explained by giving an example: $\models \{x > 2\} \ y := x \{y > 2\} \ and \models \{x \le 2\} \ y := x \{y \le 2\}, \ but \not\models \{x > 2 \lor x \le 2\} \ y := x \{y > 2 \land y \le 2\}$

This was assuming S was deterministic. If S is nondeterministic, then substitute $M(S, \sigma)$ for τ above.