Exact and approximate modeling in the behavioral setting

Ivan Markovsky

PhD defense presentation

1 February 2005

Overview

- 1. Illustrative example
- 2. Approximate modeling via misfit minimization
- 3. Structured total least squares
- 4. Exact system identification
- 5. Approximate system identification
- 6. Insights and contributions

Basic problem: data → model

given: data (e.g., measurements of an experiment)

$$\mathscr{W} := \{ w(1), \dots, w(T) \}$$

- i) a linear static model \mathscr{B}_1
- find: ii) a quadratic static model \mathscr{B}_2 that best fits \mathscr{W}
 - iii) an LTI dynamic model \mathcal{B}_3

LTI — linear time-invariant

Basic problem: data → model

- What is a model? (in particular, linear, quadratic, LTI)
- What does it mean "the model fits the data well"?
- How to measure the fitting accuracy and find optimal models?

goals: find algorithms that realize the mappings

$$\mathscr{W}\mapsto\mathscr{B}_1,\quad \mathscr{W}\mapsto\mathscr{B}_2,\quad \mathscr{W}\mapsto\mathscr{B}_3,\qquad \text{with }\mathscr{B}_1,\ \mathscr{B}_2,\ \mathscr{B}_3 \text{ "optimal"}$$

implement these algorithms in a ready to use software

Example with 2 variables and 8 data points

$$w(1) = \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \ w(2) = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \ w(3) = \begin{bmatrix} 5 \\ 8 \end{bmatrix}, \dots, \ w(8) = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

Linear static model

a (nontrivial) linear static model in \mathbb{R}^2 is a line through (0,0)

Quadratic static model

a (nondegenerate) quadratic static model in \mathbb{R}^2 is an ellipse

the data \mathcal{W} is viewed now as a vector time series $w = (w(1), \dots, w(8))$ (note that in this case the ordering of the data points is important)

we look for a first order LTI model with one input

a first order LTI model with one input can be represented by a

scalar difference equation with one time lag

$$R_0 w(t) + R_1 w(t+1) = 0$$
, for $t = 1, 2, ..., 7$, where $R_0, R_1 \in \mathbb{R}^{1 \times 2}$

let $R_1 =: \begin{bmatrix} Q_1 & -P_1 \end{bmatrix}$ and suppose that $P_1 \neq 0$, then

 w_1 is an input (free) and w_2 is an output (bound)

consider the model
$$\mathcal{B}_3$$
: $\begin{bmatrix} 0.13 & 1.22 \end{bmatrix} w(t) - \begin{bmatrix} 0.44 & 1 \end{bmatrix} w(t+1) = 0$

data w a particular trajectory \hat{w} of \mathscr{B}_3

the data w and the trajectory \hat{w} of \mathcal{B}_3 visualized in the plane

Summary

- A model is a subset of the data space. (behavior of the model) linear static model: subspace of $\mathbb{R}^{\mathbb{W}}$, $\mathbb{W} := \dim \left(w(t) \right)$ quadratic static model: hyperbola, parabola, or ellipsoid in $\mathbb{R}^{\mathbb{W}}$ finite dim. LTI model: shift-invariant closed subspace of $(\mathbb{R}^{\mathbb{W}})^{\mathbb{Z}}$ next
- What does it mean "the model fits the data well"?
- How to measure the fitting accuracy and find optimal models?

Fitting accuracy (static case)

consider a given model $\mathscr{B} \subseteq \mathbb{R}^{\mathbb{W}}$ and data $\mathscr{W} = \{w(1), \dots, w(T)\}$ the misfit (w.r.t. to the norm $\|\cdot\|$) between \mathscr{B} and \mathscr{W} is defined as

$$M(\mathcal{W}, \mathcal{B}) := \min_{\hat{w}(1), \dots, \hat{w}(T) \in \mathcal{B}} \sqrt{\sum_{t=1}^{T} \|w(t) - \hat{w}(t)\|^2}$$

the model $\mathscr B$ fits the data $\mathscr W$ "well" if the misfit $M(\mathscr W,\mathscr B)$ is "small"

note: $M(\mathcal{W}, \mathcal{B}) = 0 \iff \mathcal{B} \text{ is an exact model for } \mathcal{W}$

Example: linear static model

Example: quadratic static model

Fitting accuracy (dynamic case)

consider a given model $\mathscr{B}\subseteq (\mathbb{R}^{\mathtt{w}})^T$ and data $w=\left(w(1),\ldots,w(T)\right)$

misfit (w.r.t. to the norm $\|\cdot\|$) between \mathscr{B} and w is defined as

$$M(w,\mathscr{B}) := \min_{\hat{w} \in \mathscr{B}} \|w - \hat{w}\|$$

the model $\mathscr B$ fits the data w "well" if the misfit $M(w,\mathscr B)$ is "small"

note: $M(w, \mathcal{B}) = 0 \iff \mathcal{B} \text{ is an exact model for } w$

Example: linear dynamic model

$$M(\mathcal{W}, \mathcal{B}_3) = \min_{\hat{w} \in \mathcal{B}_3} ||w - \hat{w}|| = 3.5144$$

Optimal approximate model

M — given model class, in the example

- i) all lines in \mathbb{R}^2 passing through (0,0)
- ii) all ellipses in \mathbb{R}^2
- iii) all first order LTI systems with one input

find the model \mathscr{B}^* in \mathscr{M} that best fits the data

$$\mathscr{B}^* := \arg\min_{\mathscr{B} \in \mathscr{M}} M(\mathscr{W}, \mathscr{B})$$

the models \mathcal{B}_1 , \mathcal{B}_2 , and \mathcal{B}_3 are optimal; they are computed by algorithms and software that treat the general case

Summary

- the model ${\mathscr B}$ fits the data ${\mathscr W}$ "well" if the misfit $M({\mathscr W},{\mathscr B})$ is small
- $M(\mathcal{W}, \mathcal{B})$ is a quantitative measure of the model quality
- $\bullet \ \mathscr{B}^* = \arg\min_{\mathscr{B} \in \mathscr{M}} M(\mathscr{W}, \mathscr{B}) \ \text{is an optimal model for } \mathscr{W} \ \text{in } \mathscr{M}$ next
- ullet find algorithms for the computation of \mathscr{B}^*

Approximation problems $AX \approx B$

many classical approximation problems are of the type:

given A and B, solve for X, an overdetermined system $AX \approx B$

typically there is no exact solution \rightsquigarrow basic idea: modify A and B

$$A + \Delta A =: \hat{A}, \ B + \Delta B =: \hat{B}$$
, so that $\hat{A}X = \hat{B}$ is solvable

in addition, preserve the structure (if any) of $\begin{bmatrix} A & B \end{bmatrix}$ in $\begin{bmatrix} \hat{A} & \hat{B} \end{bmatrix}$

typical structures in A and B are block-Hankel and block-Toeplitz

Examples of static approximation problems

in static approximation problems $AX \approx B$, A and B are unstructured the modification of A or B might be forbidden, i.e., $\Delta A = 0$ or $\Delta B = 0$ in this case, we say that A or B is fixed (exact)

classical examples:

- 1. Least squares A fixed, B unstructured
- 2. Data least squares -A unstructured, B fixed
- 3. Total least squares A and B unstructured (line fitting model \mathcal{B}_1)

Examples of dynamic approximation problems

4. Finite Impulse Response system identification

A block-Toeplitz (blocks #inputs $\times \#$ outputs), B unstructured

5. Impulse response approximation

 $\begin{bmatrix} A & B \end{bmatrix}$ block-Hankel, block size: #inputs $\times \#$ outputs

6. Global total least squares

(diff. eqn. fitting, model \mathcal{B}_3)

 $\begin{bmatrix} A & B \end{bmatrix}$ block-Hankel, block size: #time series \times #variables

7. Output error identification

A fixed, B block-Hankel, block size: #time series $\times \#$ outputs

LTI model fitting \simple block-Hankel structure

consider the vector difference equation

$$R_0w(t) + R_1w(t+1) + \cdots + R_lw(t+l) = 0$$

for $t = 1, \dots, T - l$, it is equivalent to the system of equations

$$[R_0 \quad R_1 \quad \cdots \quad R_l] \begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-l) \\ w(2) & w(3) & w(4) & \cdots & w(T-l+1) \\ w(3) & w(4) & w(5) & \cdots & w(T-l+1) \\ \vdots & \vdots & \vdots & \vdots \\ w(l+1) & w(l+2) & w(l+3) & \cdots & w(T) \end{bmatrix} = 0$$

block-Hankel structured matrix

Unification

static problems — unstructured dynamic problems — block-Toeplitz/Hankel structure

question: How to unify these approximation problems?

answer: the right formalization turns out to be what is called

the structured total least squares (STLS) problem

STLS—tool for approximation by static and dynamic linear models $(\mathcal{B}_1 \text{ and } \mathcal{B}_3 \text{ but not } \mathcal{B}_2 \text{ are computed by solving STLS problems})$

Structured total least squares

structure specification \mathscr{S} : parameters \mapsto structured matrices

STLS problem: given structure \mathcal{S} , parameter p, and rank n, find

$$\hat{p}_{\mathrm{stls}} = \arg\min_{\hat{p}} \|p - \hat{p}\|$$
 subject to $\mathrm{rank} \big(\mathscr{S}(\hat{p}) \big) \leq n$

perturb p as little as necessary, so that the perturbed structured matrix $\mathscr{S}(\hat{p})$ becomes rank deficient with rank at most n

$$\operatorname{rank} \big(\mathscr{S}(\hat{p}) \big) \leq n \quad \iff \quad \exists \; X \in \mathbb{R}^{n \times \bullet} \; \operatorname{such \; that} \; \mathscr{S}(\hat{p}) \left[\begin{matrix} X \\ -I \end{matrix} \right] = 0$$

Efficient computation

double minimization problem

$$\min_{X} \left(\min_{\hat{p}} \|p - \hat{p}\| \quad \text{subject to} \quad \mathscr{S}(\hat{p}) \begin{bmatrix} X \\ -I \end{bmatrix} = 0 \right)$$

minimizing analytically over p gives the equivalent problem

$$\min_{X} \left(\mathscr{S}(p) \begin{bmatrix} X \\ -I \end{bmatrix} \right)^{\top} \Gamma^{-1}(X) \left(\mathscr{S}(p) \begin{bmatrix} X \\ -I \end{bmatrix} \right)$$

 $\Gamma(X)$ is block-banded and Toeplitz for a large class of structure specifications $\mathscr S$ that includes in particular all examples listed before

the structure of Γ allows efficient cost function and gradient evaluation \rightsquigarrow efficient local optimization algorithms

Advantages over alternative algorithms

- flexible structure specification
- easily generalized to
 - diagonal weighting in the cost function
 - regularization
- software implementation is available

recognizing the structure of Γ encapsulates core computational problem:

Cholesky factorization of block-banded and Toeplitz matrix

we use software from SLICOT in order to solve this core problem

Summary

- STLS optimal data fitting by structured linear models
- exploiting the structure \rightsquigarrow efficient algorithms for optimal modeling

Exact identification

given: a vector time series

$$w = (w(1), \dots, w(T))$$

generated by an LTI system ${\mathscr B}$

find: the system \mathscr{B} back from the data w

note: the given data is exact and the identified system fits exactly w the time horizon T is much larger than the order n of \mathscr{B}

Algorithms for exact identification

- 1. $w \mapsto \text{difference equation } R$
- 2. $w \mapsto \text{impulse response } H$
- 3. $w \mapsto \text{input/state/output representation } (A, B, C, D)$

3.a.
$$w \mapsto R \mapsto (A, B, C, D)$$
 or $w \mapsto H \mapsto (A, B, C, D)$

- 3.b. $w \mapsto \text{observability matrix} \mapsto (A, B, C, D)$
- 3.c. $w \mapsto \text{state sequence} \mapsto (A, B, C, D)$

Persistency of excitation

a condition for solvability of the exact identification problem

definition: the sequence $u = (u(1), \dots, u(T))$ is

persistently exciting of order L

if the Hankel matrix

$$\mathcal{H}_{L}(u) := \begin{bmatrix} u(1) & u(2) & u(3) & \cdots & u(T-L+1) \\ u(2) & u(3) & u(4) & \cdots & u(T-L+2) \\ u(3) & u(4) & u(5) & \cdots & u(T-L+3) \\ \vdots & \vdots & \vdots & & \vdots \\ u(L) & u(L+1) & u(L+2) & \cdots & u(T) \end{bmatrix}$$

is of full row rank

Fundamental Lemma

Let \mathscr{B} be controllable and let $w := (u, y) \in \mathscr{B}|_{[1,T]}$. Then, if u is persistently exciting of order L+n, where n is the order of \mathscr{B} ,

$$\operatorname{image} \left(\begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-L+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-L+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-L+3) \\ \vdots & \vdots & \vdots & \vdots \\ w(L) & w(L+1) & w(L+2) & \cdots & w(T) \end{bmatrix} \right) = \mathscr{B}|_{[1,L]}$$

- \implies with L=l+1, where l is the lag of \mathscr{B} , the FL gives conditions for identifiability, namely "u persistently exciting of order l+1+n"
- \implies under the conditions of the FL, any L samples long trajectory of \mathscr{B} can be obtained as $\mathscr{H}_L(w)g$, for certain $g \rightsquigarrow \text{algorithms}$

Example $w \mapsto$ impulse response H

under the conditions of FL, there is G, such that $H=\mathscr{H}_t(y)G$ the problem reduces to the one of finding a particular G

$$\left[\begin{array}{c} \mathcal{H}_{l+t}(u) \\ \hline \mathcal{H}_{l+t}(y) \end{array} \right] G = \left[\begin{array}{c} 0 \\ \begin{bmatrix} l \\ 0 \end{bmatrix} \\ \hline 0 \\ H \end{array} \right] \begin{array}{c} \leftarrow \quad l \text{ zero samples} \\ \leftarrow \quad t \text{ samples long impulse} \\ \hline \leftarrow \quad l \text{ zero samples} \\ \leftarrow \quad t \text{ samples impulse response} \end{array} \right.$$

block algorithm:

- 1. solve the system of equations in blue for *G*
- 2. substitute G in the equations in red $\rightsquigarrow H$

Simulation example $w \mapsto \text{impulse response } H$

 \mathscr{B} is of order n=4, lag l=2, with m=2 inputs, and p=2 outputs w is a trajectory of \mathscr{B} with length T=500

estimation error $e = ||H - \hat{H}||_{F}$ and execution time for three methods

method	error, e	time, sec.
block algorithm	10^{-14}	0.293
iterative algorithm	10^{-14}	0.066
${ t impulse}^*$	0.059	0.584

 $^{^{}st}$ from System Identification Toolbox of Matlab

Summary

- deterministic subspace algorithms are implementations of the FL $w\mapsto \text{obsv.}$ matrix $\mapsto (A,B,C,D)$ MOESP-type algorithms $w\mapsto \text{state}$ sequence $\mapsto (A,B,C,D)$ N4SID-type algorithms
- the FL reveals the meaning of the oblique and orthogonal projections computation of special responses from data
- the FL gives identifiability conditions that are verifiable from w

LTI approximate modeling

 \mathscr{B} — "true" (high order) model w — observed response h — observed impulse resp. $\hat{\mathscr{B}}$ — approximate (low order) \hat{w} — response of $\hat{\mathscr{B}}$ model \hat{h} — impulse resp. of $\hat{\mathscr{B}}$

STLS as a kernel subproblem

SVD-based methods:

balanced model reduction, subspace identification, and Kung's alg. use the singular value decomposition in order to find a rank deficient matrix $\mathcal{H}(\hat{w})$ approximating a given full rank matrix $\mathcal{H}(w)$

note that SVD is suboptimal in terms of the misfit criterion $\|w - \hat{w}\|_{\ell_2}^2$

STLS-based methods:

optimal approximation according to the misfit criterion need initial approximation (e.g., from SVD-based method) iterative improvement of heuristic suboptimal solution

Data sets from DAISY

#	Data set name	T	m	p	\overline{l}
1	Data of a simulation of the western basin of Lake Erie	57	5	2	1
2	Data of Ethane-ethylene destillation column	90	5	3	1
3	Data of a 120 MW power plant	200	5	3	2
4	Heating system	801	1	1	2
5	Data from an industrial dryer (Cambridge Control Ltd)	867	3	3	1
6	Data of a laboratory setup acting like a hair dryer	1000	1	1	5
7	Data of the ball-and-beam setup in SISTA	1000	1	1	2
8	Wing flutter data	1024	1	1	5
9	Data from a flexible robot arm	1024	1	1	4

Data sets from DAISY (cont.)

#	Data set name	T	m	p	\overline{l}
10	Data of a glass furnace (Philips)	1247	3	6	1
11	Heat flow density through a two layer wall	1680	2	1	2
12	Simulation data of a pH neutralization process	2001	2	1	6
13	Data of a CD-player arm	2048	2	2	1
14	Data from a test setup of an industrial winding process	2500	5	2	2
15	Liquid-saturated steam heat exchanger	4000	1	1	2
16	Data from an industrial evaporator	6305	3	3	1
17	Continuous stirred tank reactor	7500	1	2	1
18	Model of a steam generator at Abbott Power Plant	9600	4	4	1

Simulation setup

the approximations obtained by the following methods are compared:

```
stls — misfit minimization method
```

pem — the prediction error method (Identification Toolbox)

subid — robust combined subspace algorithm

(initial approximation for stls and pem is the result of subid)

a model $\hat{\mathscr{B}}$ is obtained from w_{id} — the first 70% of the data w we consider output error identification, *i.e.*, the input is assumed exact and compare the misfit $M(w_{\mathrm{val}}, \hat{\mathscr{B}})$ on the last 30% of the data w and the execution time for computing $\hat{\mathscr{B}}$

Simulation results — output error

Simulation results — execution time

Simulation results — scatter plot misfit vs time

Summary

- STLS is a kernel problem for approximate LTI modeling approx. realization, model reduction, system ident., etc.
- a single algorithm can solve a large variety of problems
- the software implementation can solve problems with a few thousands data points (T < 10000), a few outputs (p < 10), and a few time lags (l < 10)

Insights

- models are sets of allowed outcomes from a universum of outcomes
 the representation free (behavioral) setting gives a notion of equivalence
- apriori fixed input/output partition (e.g., AX = B) \leadsto "nongeneric problems" kernel and image representations do not suffer from this shortcoming
- ullet a convenient repr. for LTI model is polynomial matrix in one variable \leadsto kernel representation \equiv difference equation representation
- the EIV model $\mathscr{W} = \mathscr{W} + \mathscr{W}$, $\mathscr{W} \in \mathscr{B}$, $\mathscr{W} \sim \mathsf{N}(0, \sigma^2 V)$ is not as convincing starting point as the deterministic misfit $\mathscr{W} = \mathscr{W} + \Delta \mathscr{W}$

Contributions

- \bullet new formulation and efficient solution method of the STLS problem software implementation and C and $M_{\rm ATLAB}$
- adjusted least squares estimation of elipsoids
 suboptimal in the misfit sense but very effective and efficient
- identifiability condition and algorithms for exact identification
- balanced model identification algorithms
- equivalence of the classical and errors-in-variables Kalman filters
- application of STLS for approximate system identification

Thesis contents

Weighted total least squares Chapter 2

Structured total least squares Chapter 3

Fundamental matrix and ellipsoid estimation Chapters 4 and 5

Exact system identification Chapters 7 and 8

Errors-in-variables Kalman filtering Chapter 9

Approximate system identification Chapter 10

Current and planned future work

- recursive identification methods
- extend the misfit framework with unobserved (latent) variables
- find link with the prediction error methods
- algorithms for STLS problems using kernel and image representations