

FIG. 1

09/214851

FIG.2A

LOCUS HSU22027 7215 bp DNA PRI 22-OCT-1995
 DEFINITION Human cytochrome P450 (CYP2A6V2) gene, complete cds.
 ACCESSION U22027
 NID g1008461
 KEYWORDS human.
 SOURCE Homo sapiens
 ORGANISM Eukaryota; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 7215)
 AUTHORS Fernandez-Salguero, P., Hoffman, S.M., Cholerton, S., Mohrenweiser, H., Raunio, H., Rautio, A., Pelkonen, O., Huang, J.D., Evans, W.E., Idle, J.R. et.al.
 TITLE A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles
 JOURNAL Am. J. Hum. Genet. 57 (3), 651-660 (1995)
 MEDLINE 95397851 /
 REFERENCE 2 (bases 1 to 7215)
 AUTHORS Fernandez-Salguero, P.
 TITLE Direct Submission
 JOURNAL Submitted (01-MAR-1995) Pedro Fernandez-Salguero, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20894, USA
 FEATURES Location/Qualifiers
 Source 1..7215
 /organism="Homo sapiens"

09/214851

FIG.2A CONT.

```

5'UTR          782..790
join (791..970, 1237..1399, 2115..2264, 2499..2659,
      3207..3383, 4257..4398, 4873..5060, 5577..5718, 6308..6489)

/gene=CYP2A6V2:
/codon_start=1
/product=cytochrome P450"
/db_xref -PID:g1008462"
/translation=MLASGMLLVALLACLTVMVLMSVWQQRKSKGKLPPGPPTPLPFIG
NYLQLNTEQMYNSLMKISERYGPVFTIHLGPRRVVLCGHDAVREALVDOAEEFSGRG
EQATFDWVFKGYGVVFSGNGERAQQLLRFIAITLRLDFGVGKRGIEERIQEESGFLIEAI
RSTHGANIIDPTFFLSRTVSNNVISIVFGDRFDYKDKEFLSLLRMMLGIFQFTSTSTGQ39
LYEMFSSVMKHLPGPQQAFQQLLQGLEDFIAKKVEHNQRTLDPNSPRDFIDSFLIRMQ59
EEEKNPNTEFYLKNLMMSTLNLFIAQTEVSTTLGYGFLLLMMKHPEVEAKVHEEIDRV
IGKNRQPKFEDRAKMPYMEAVIDEIQRFGDVIPMSLARRVKKDTKFRDFFLPKGIEVF
PMLGSVLRDLRFFSNPDRDNPOHFLGEKGQFKKRDAFVPFSSIRKRNCFGEGLARMEI.F
LFFFITVMQNFRLKSSQS PKDIDVSPKHHVGFAТИPRNYTMSFL.PR

exon          791..970
/gene=CYP2A6V2:
/number=1
1237..1399
exon          /gene=CYP2A6V2:
/number=2
2115..2264
exon

```

09/214851

4/59

FIG.2A CONT.

```
/gene=CYP2A6V2:  
/number=3  
2499..2659  
exon  
  
/gene=CYP2A6V2:  
/number=4  
3207..3383  
exon  
  
/gene=CYP2A6V2:  
/number=5  
4256..4398  
exon  
  
/gene=CYP2A6V2:  
/number=6  
4873..5060  
exon  
  
/gene=CYP2A6V2:  
/number=7  
5577..5718  
exon  
  
/gene=CYP2A6V2:  
/number=8  
6308..6489  
exon  
  
/gene=CYP2A6V2:  
/number=9  
6490..6744  
3' UTR  
BASE COUNT  
ORIGIN
```

09/214851

5/59

FIG.2A CONT.

09/214851

6/59

FIG.2A CONT.

09/214851

7/59

FIG. 2A CONT.

09/214851

8/59

FIG.2A CONT.

4021 tccttagagg agtctggtag gatctaggcc ccctttctc caccctgcgg tcttgccccca
 4081 aagagaggtc gaggggtgtg ggatttgcgt agactcgagt ctgtgttagat ctgggggtcc
 4141 cctctgacc cccatggtc tgaacctaaag aatggaaatggat ccatgggggtg aacccttaaga
 4201 tggtgcctg aggtcaagca ggaggtaggt tgccttaaag ccccctctcc cttcaggagg
 4261 agaagaaccc caaacggag ttctacttga agaacctgtat gatgaggcacy ttgaacctct
 4321 tcattgcagg caccgagacg gtcagcacca ccctgacta tggttttta ctgctcatga
 4381 agcaccaga aggcagggt aaggctggag ggggacggaa gtggaggggcc ccagaccctc
 4441 aaaattcccc ttgcacttgtt gcaatgtccc cacctgtccc agatcccggg accctgtagac
 4501 gtgacttgtt gtccagagac aggcaacat tcagctggta ggcatcagct gagtctcatt
 4561 agatattaaa atattaaaa ttgtctgcact gatttgtcag tcacttctgt cccaaaggccca
 4621 ctgagtgccc actgcccgtt ccaccgggtc atccctaag ttcctccctg tgcctccct
 4681 gtgattctgg cacaacctgg ttaacaggat cctactccaa caatgcgaat ggtgtatgtc
 4741 tggtttgtta tgaatgtct acttcgggtc atcccggtt cataggcggg ggcattttcat
 4801 ttgcctatcc ggactatcat ttccctgtctt gagaccctta gatactaaa cacaatcccc
 4861 ctccctcccc agccaaaggcc catgaggaga ttgacagagt gatcggcaag aaccggcagc
 4921 ccaagtttga ggacccggcc aagatggccct atgagtttgg cccgcaggat agtgtccac
 4981 gatttgaga cgtgatcccc atcccaatcc cttccatcc ccccccaccc ccagactacg
 5041 ggattttttt cctccctaaag gtgcataccg cccgcaggat cttctagacc ctgtccact
 5101 cccctctctg tgcctccagc atcccaatcc cttccatcc cgttccacct ttccacttag
 5161 ccctcaatca gtcaaaaaaacttccccaa ccaccacatc ccccccaccc
 5221 acacttcgatc tctccagact ctttgcataa ctttgcataa ggagaatcaa acacatgttc
 5281 ccaaaatcc tatcttaaga aacagaagcc ccctttccat tcggccctttt gtcatagggya
 5341 cagaaatctc agttccccc aactccctgcc tagaaggaca tggaccccat gtctcccaa

09/214851

9/59

FIG.2A CONT.

5401 cttccctgttt cagagatgtg aaccttctat cccccaaagg t ctc ccctc tag agtgtcccaa
 5461 ttcccattgcc tgcccaacttcc cctcaaccggg gcaccctagt tccccctcca gcccctgtgt
 5521 actctcaaca atcccccaac ccgcctcatc acatacacct tcctcctccc tcccaggcca
 5581 tagaagtgtt ccctatgttg ggctccgtgc tgagagacct cagggtttcc tccaaacccc
 5641 gggactttcaa tcccagcac ttccctgggtg agaaggggca gtttaagaag cgtgtatgtt
 5701 ttgtgcccctt ctccatcagt cttccatcgtt aagaaaccac tggtggtgc caggcttact actcacacca
 5761 gcaggggcct cccttacca gttccctctt ctggccgtta gccttagtatt tccccagctt
 5821 ggcaagtttcc tgttagcaat ctaccgtcga gccacccagg attttttcc gatactccct taactaccaa
 5881 gcaccctgtt cctgtggccca ggcaaaaggaa aaggaaacat cttccatcgtt
 5941 ggaaaaacca aaggccaggag agaatcagag attttttcc ctaggttcac acaggaggatt
 6001 cttagcatc cttaaaagg agatgacggc acagcaggcc atattttggaa gttcttatct
 6061 gggggaaagg ggtatctaaa cttccatgtt ggacacccgtt gggcttcacc tccacccctc
 6121 ttgggtcatct ttgggtcac tcaaggaaac tgggtcaag gagggtcaag ggtttttttcc
 6181 ttaaagtctc ttagggccat atattccacc cttccatcgtt gggcttcacc gttttttcc
 6241 tcgggtactgg ggcggaggctg cacttgatgtt ttccggagaa ggcctggcca gtaaggactt
 6301 tcctcaggaa aaggaaactgttccggaggctg tttccggaggctg ggcgggttggaa
 6361 ttcaccaccc aacacgtgg ctttccacgg atcccacgg actacaccat gactttcc
 6421 gtgttccccc aacacgtgg aacacgtgg gttttccacgg atcccacgg actacaccat
 6481 ccccgcttag cgagggtgtt ggcgggttggaa gaggggccaa gttttccacgg
 6541 ggccaaagacc gggcttggaa gggcttggaa gggcttggaa
 6601 aaggggcttgg aggtttttttccgg gttttttccgg
 6661 ggtgtttccgg agttttttccgg agttttttccgg aacccttaca ttatgtatgtt aaggactata

10/59

09/214851

FIG.2A CONT.

6721 ataataggcgt ctgttatttc ctgaggcacgt acccccgtgt caccgttgtt caaaaaacccat
6781 tgcacgctca cctaatttgc cacaaaaccc cttcgaaagg ggcgttcatg cccattttac
6841 acgtgacaaa actggggctt agaaaaggttt ctctgtatgtc tcacaacaaca taagtggcca
6901 gaaaatctgc gaacacagat ctgtggccat aggcttctag acagatctt aaaaaggcacc
6961 tattcctcac gcaaaaacagt ttagtataga atcacatggc ctgaacatcc ctgtccgggg
7021 gagttccccca gagacctggg gggtggttgc cctgcccata ctgcacacat gcccacactc
7081 tcacctactc aacatgttgt gactaccgg gtgttaatctg tgcttgctac cagataaggc
7141 cactgttagcc cattcagagt cagcccgagg acacaacggg acatgtactgg acatacaggg
7201 tcagttccatt aacaa

09/214851

FIG.2B

LOCUS HSP452B6 1415 bp RNA PRI 29 - MAY - 1992
 DEFINITION Human mRNA FOR CYTOCHROME P-450IIB6.
 ACCESSION X13494
 NID 935206
 KEYWORDS Cytochrome; cytochrome P450IIB6.
 SOURCE human.
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 1415)
 AUTHORS Miles, J.S.
 TITLE Direct Submission
 JOURNAL Submitted (10-NOV-1988) Miles J.S., Imperial Cancer Research Fund,
 Lab of Molecular Pharmacology and Drug Metabolism, Hugh Robson
 Building, George Square, Edinburgh, EH8 9XD
 REFERENCE 2 (bases 1 to 1415)
 AUTHORS Miles, J.S., McLaren, A.Q. and Wolf, C.R.
 TITLE Alternative splicing in the human cytochrome P450IIB6 gene
 generates a high level of aberrant messages
 JOURNAL Nucleic Acids Res. 17 (20), 8241-8255 (1989)
 MEDLINE 90045947
 COMMENT The sequence is a compilation of genomic and cDNA clones. * map:
 chromosomal location=19q12-13.2;
 Data kindly reviewed (13-NOV-1989) by Miles, J.S.
 FEATURES Location/Qualifiers

12/59

09/214851

FIG.2B CONT.

```

source          1..1415
                /organism="Homo sapiens"
9..110          /note=exon 1, partial"
                111..273
                /note=exon 2"
                274..423
                /note=exon 3"
                424..584
                /note=exon 4"
                585..761
                /note=exon 5"
                762..903
                /note=exon 6"
                904..1091
                /note=exon 7"
                1092..1233
                /note=exon 8"
                1234..1415
                /note=exon 9", coding region"
                341 a   430 c   328 g   316 t
BASE COUNT
ORIGIN          1 gaattccggcc ctgcacccat gaccggctcc caccagggcc ccgcacctcg cccctttgg

```

13/59

09/214851

FIG.2B CONT.

61 gaaaccttgcagatggat agaaggaggcc tactcaaata ctttcgtagg ttccgagaga
 121 aatatggggacgtcttcacg gtacacactgg gacccaggcc cttgtgtcatg ctgtgtggag
 181 tagagggccat acggaggccc cttgtggaca addctggggc cttctctggc cggggaaaaa
 241 tcgccccatgtcgaccatttc tgccggat atgggtgtat ctttgccaat ggaaacccgt
 301 ggaagggtgttc tggggatcc tctgttgacca ctatggggaa cttcgggatg ggaaaggcga
 361 gtgtggggaa gggatccatggggggctc agtgtctgtat agaggaggctt cggaaatcca
 421 agggggccct catggaccccc acctttcctt tccagttccat taccccaac atcatctgtc
 481 ccatcggttttggaaaaacgat tttccactacc aagatcaaaga gttccctgaaag atgtgtaaat
 541 tgttcttacca gacttttca ctcatcagct ctgttatcgg ccagctgtt gagctcttct
 601 ctggcttctt gaaatacttt cctggggcac acaggcaagt ttacaaaaac ctgcaggaaaa
 661 tcaatgttta cattggccac agtgtggaga agcaccgtga aaccctggac cccaggcccc
 721 ccaaggacccatcgacacc tacctgttcc acatgtggaaa agagaaatcc aacgcacaca
 781 gtgaatttcg ccaccagaac ctcacccatca acacgttcc gctctttt gctggactq
 841 agaccaccag caccacttc cgctacggct tcctgtctcat gctcaaaataccctcatgttg
 901 cagagagatctacaggat attqaacagg tgattggcc acatcgccct ctagtgccttcc
 961 atgaccggc caaaatggca tacacagg cagtcatcta tgatgttccatggggacttcc
 1021 accttgttccc catgggtgtg ccccacattg tcacccaaca caccaggcttc ctaggttccat
 1081 tcatccccaa ggacacagaa gtatttctca tccttgaggcac tgctctccat gatgtgtgtg
 1141 actttgaaaaa accagacgcc ttcaatcttg accacccatcc gatgtccat gatttgttcc
 1201 aaaaagactgaa agcttttatac cccttctccat ccacccatccatggggacttcc
 1261 tcgccccggc ggaatgttc ctclttttca ccacccatccatggggacttcc
 1321 gccccggc cccagaagac atcgatctga cacccacagaa gttgtggatgtg
 1381 ccccaacata ccagatccgc ttccctggccc gctgaa

09/214851

14/59

FIG.3

15/59

09/214851

FIG.4A

09/214851

FIG. 4B

17/59

09/214851

18/59

09/214851

FIG.7A

FIG.7B

09/214851

20/59

FIG.8A

FIG.8B

09/214851

A9700506
09/214851

09/214851

23/59

CYP2A6 Antisense Knockdown
in HepG2 Cells

FIG.12

09/214851

25/59

FIG. 13

26/59

FIG.14A.

K20 K27 L18 L19 L20 L23 L24 L25 L26 L27 15 30 75 100

FIG.14B.

L29 L30 L31 L32 L33 L34 L36 L38 L39 L40 15 30 75 100

FIG.14C.

L41 L43 L44 L45 L47 L60 L61 L62 L63 L64 15 30 75 100

27/59

09/214851

FIG. 15

09/214851

FIG. 16

29/59

09/214851

FIG. 17

09/214851

31/59

09/214851

FIG. 19

32/59

09/214851

FIG.20

09/214851

09/214851

09/214851

35/59

FIG.23A

36/59

Pilocarpine

Nicotine

4,4'-Methylene bis[2-chloroaniline]

6-Aminochrysene

 α -Naphthoflavone

FIG.23B

09/214851

37/59

About 80% activity left at 0.05 mM concentration

70% inhibition at
0.5 mM concentration

FIG.23C

09/214851

FIG.24A

The SAS System
 Experiment BC1; Pharmacokinetics of nicotine
 Revised analysis of kinetics based on re-assays
 Does treatment affect AUC?

Compound assayed=COTININE

Dependent Variable:	AUC		Mean Square	F Value	Pr > F
Source		DF	Sum of Squares		
Model	7	10578731978	151124745	4.66	0.0397
Error	6	1944298022	324049670		
Corrected Total	13	12523030000			
R-Square		C.V.	Root MSE		AUC Mean
	0.844742	19.80871	18001.38		90876.07
DF	Type I SS	Mean Square	F Value	Pr > F	
Source	10548143898	1758023983	5.43	0.0294	
SUBJ	30588081	30588081	0.09	0.7690	
TREATMNT					
Least Squares Means					
TREATMNT		AUC			
Methoxsalen10-50		L.SMEAN			
Placebo		92354.2010			
		89397.9447			

FIG.24B

The SAS System
 Experiment BC1; Pharmacokinetics of nicotine
 Revised analysis of kinetics based on re-assays
 Does treatment affect AUC?

----- Compound assayed=NICOTINE -----

Dependent Variable: AUC

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	54879492.87	7839927.55	5.14	0.0317
Error	6	9143654.02			
Corrected Total	13	64023146.88			

R-Square
0.857182

C.V.
17.22829

39/59

DF	Type I SS	Mean Square	F Value	Pr > F
6	23085554.55	3847592.43	2.52	0.1422
1	31793938.32	31793938.32	20.86	0.0038

Least Squares Means

TREATMNT	AUC
SUBJ	LSMEAN
TREATMNT	Methoxsalen10-50 Placebo

09/214851

PCT/CA97/00506

40/59

09/214851

41/59

09/214851

FIG.26

09/214851

FIG.27

09/214851

FIG.28A

09/214851

44/59

FIG.28B

09/214851

FIG.28C

FIG.29

Inhibitor	Ki	% Inhibition at 10 uM	% Inhibition at 100 uM	% Inhibition at 150 uM
coumarin	2 uM (n=4)	65 (n=1)	90 (n=1)	85 +/- 11 (SD, n=31)
7-methoxycoumarin	2.5 uM (n=1)	40 (n=1)	60 (n=3)	_____
7-methylcoumarin	15 uM*	20 (n=1)	70 (n=3)	_____
7-ethoxycoumarin	>100 uM*	10 (n=1)	20 (n=3)	_____
7-hydroxycoumarin	200 uM	_____	25 (n=1)	_____
diethylthiocarbamic acid	14.5 uM (n=1)	_____	_____	_____
pilocarpine	0.1 uM	_____	70 (n=3)	_____
naringenin	4.3 uM (n=1)	30 (n=1)	_____	_____
methoxsalen	0.02 uM (n=1)	_____	10 (n=1)	_____
naringin	.100 uM*	_____	30 (n=1)	_____
buproprion	_____	20 (n=1)	_____	20 +/- 16 (SD, n=30)
ophenadrine	_____	_____	_____	3 +/- 11 (SD, n=30)
troleandomycin	_____	_____	_____	_____

all nicotine concentrations were at the Km value for colinine formation in their respective livers
 * estimated from screening studies with 10 and 100 uM inhibitor concentrations

FIG.30A

Ki Values for the Inhibition of the CYP2A6 Substrate Coumarin to 7-Hydroxycoumarin Metabolism by various compound

Inhibitor	Human liver	Monkey liver
methoxsalen	0.29 uM	1.69 uM
nicotine	100.1 uM	24.1 uM
pilocarpine	0.9 uM	0.9 uM

FIG.30B

49/59

Effect of Various Compounds on Cotinine Formation

% control cotinine formation

Inhibitor	10 uM	100 uM
coumarin	35	10
naringenin	70	30
7-methylcoumarin	80	30
7-methoxycoumarin	60	40
bupropion	80	70
7-ethoxycoumarin	90	80

FIG.30C

50/59

FIG.30D

51/59

Dixon Plot of 7-Methoxycoumarin Inhibition of Nicotine to Cotinine Formation in K28 Human Liver Microsomes

FIG.31

09/214851

52/59

Dixon Plot of Methoxsalen Inhibition of Nicotine to Cotinine Formation with 10 Minute Preincubation in K28 Human Liver Microsomes

FIG.32

09/214851

53/59

Cornish-Bowden Plot of Methoxsalen Inhibition of Nicotine to Continine Formation
with 10 Minute Pre-incubation in K28 Human Liver Microsomes

FIG.33

09/214851

54/59

Effect of Pre-incubation Time of Methoxsalen (100 nM) on the Inhibition of Nicotine (30 μ M) to Cotinine Formation in K26 Human Liver Microsomes

FIG.34

55/59

09/214851

Dixon Plot of Naringenin Inhibition of Nicotine to Cotine Formation with 10 minute Preincubation in K26 Human Liver Microsomes

FIG.35

09/214851

56/59

F I G U R E T E N

Dixon Plot of Diethyldithiocarbamic Acid Inhibition of Nicotine to Cotinine Formation with 10 Minute Preincubation in K26 Human Liver Microsomes

FIG. 36

Comparsion Between Morning and Afternoon Testing Sessions

FIG.37

59/59

09/214851

FIG.39

Metabolism of Nicotine over one hour
Mean and s.d., seven subjects

FIG. 38