Digital Communications SSY125, Lecture 7

Analysis of Linear Modulations (Chapter 6)

Christian Häger Slides prepared by Alexandre Graell i Amat

November 13, 2022

$$y = x + n$$
,

$$y = x + n$$

AWGN channel,

$$y = x + n$$

• $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_s .

$$y = x + n$$
,

- $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_s .
- $|\mathcal{X}| = M \longrightarrow m = \log M$ bits per symbol.

$$y = x + n$$

- $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_s .
- $|\mathcal{X}| = M \longrightarrow m = \log M$ bits per symbol.

$$y = x + n$$

- $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_s .
- $|\mathcal{X}| = M \longrightarrow m = \log M$ bits per symbol.
- $n_i \sim \mathcal{CN}(0, 2\sigma^2)$, $\sigma^2 = N_0/2$.

$$y = x + n$$

- $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_s .
- $|\mathcal{X}| = M \longrightarrow m = \log M$ bits per symbol.
- $n_i \sim \mathcal{CN}(0, 2\sigma^2)$, $\sigma^2 = N_0/2$.
- The energy per information bit is

$$\mathsf{E}_\mathsf{b} =$$

$$y = x + n$$

- $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_s .
- $|\mathcal{X}| = M \longrightarrow m = \log M$ bits per symbol.
- $n_i \sim \mathcal{CN}(0, 2\sigma^2)$, $\sigma^2 = N_0/2$.
- The energy per information bit is

$$\mathsf{E}_{\mathsf{b}} = \frac{\mathsf{E}_{\mathsf{s}}}{\log M}.$$

• Based on y, infer u optimally

• Based on y, infer u optimally \longrightarrow Based on y infer x optimally.

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error → maximum a posteriori (MAP) decoding rule,

$$\hat{m{x}}_{\mathsf{MAP}} =$$

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error → maximum a posteriori (MAP) decoding rule,

$$\hat{\boldsymbol{x}}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}).$$

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error → maximum a posteriori (MAP) decoding rule,

$$\hat{\boldsymbol{x}}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}).$$

• If all sequences x are equiprobable, the MAP decoding rule boils down to

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error → maximum a posteriori (MAP) decoding rule,

$$\hat{\boldsymbol{x}}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}).$$

• If all sequences x are equiprobable, the MAP decoding rule boils down to the maximum likelihood (ML) decoding rule,

$$\hat{m{x}}_{\mathsf{ML}} =$$

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error → maximum a posteriori (MAP) decoding rule,

$$\hat{\boldsymbol{x}}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}).$$

• If all sequences x are equiprobable, the MAP decoding rule boils down to the maximum likelihood (ML) decoding rule,

$$\hat{\boldsymbol{x}}_{\mathsf{ML}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{y}|\boldsymbol{x}).$$

• If the channel is memoryless: symbol-by-symbol decoder that makes an independent decision on each received symbol y_i ,

$$\hat{x} = \arg\max_{x \in \mathcal{X}} p(y|x).$$

ullet If the channel is memoryless: symbol-by-symbol decoder that makes an independent decision on each received symbol y_i ,

$$\hat{x} = \arg\max_{x \in \mathcal{X}} p(y|x).$$

For transmission over the Gaussian channel (and equiprobable symbols),

• If the channel is memoryless: symbol-by-symbol decoder that makes an independent decision on each received symbol y_i ,

$$\hat{x} = \arg\max_{x \in \mathcal{X}} p(y|x).$$

For transmission over the Gaussian channel (and equiprobable symbols),

$$\hat{x} = \arg \max_{x \in \mathcal{X}} p(y|x)$$
$$= \arg \min_{x \in \mathcal{X}} |y - x|^2,$$

• If the channel is memoryless: symbol-by-symbol decoder that makes an independent decision on each received symbol y_i ,

$$\hat{x} = \arg\max_{x \in \mathcal{X}} p(y|x).$$

• For transmission over the Gaussian channel (and equiprobable symbols),

$$\hat{x} = \arg \max_{x \in \mathcal{X}} p(y|x)$$
$$= \arg \min_{x \in \mathcal{X}} |y - x|^{2},$$

i.e., it is optimal to select, among all possible constellation symbols $x \in \mathcal{X}$, the one at minimum Euclidean distance to the received value y.

• If the channel is memoryless: symbol-by-symbol decoder that makes an independent decision on each received symbol y_i ,

$$\hat{x} = \arg\max_{x \in \mathcal{X}} p(y|x).$$

• For transmission over the Gaussian channel (and equiprobable symbols),

$$\hat{x} = \arg \max_{x \in \mathcal{X}} p(y|x)$$
$$= \arg \min_{x \in \mathcal{X}} |y - x|^2,$$

i.e., it is optimal to select, among all possible constellation symbols $x \in \mathcal{X}$, the one at minimum Euclidean distance to the received value y.

The evaluation of a modulation scheme is based on three parameters:

• The error probability (symbol error probability or bit error probability);

- The error probability (symbol error probability or bit error probability);
- The E_b/N₀ required to achieve such probability of error, and

- The error probability (symbol error probability or bit error probability);
- The E_b/N₀ required to achieve such probability of error, and
- The spectral efficiency R =

- The error probability (symbol error probability or bit error probability);
- The E_b/N₀ required to achieve such probability of error, and
- The spectral efficiency $R = \log M$.

The Union Bound

Given a number of events E_1, \ldots, E_N

$$\mathsf{Pr}\!\left(igcup_{i=1}^n E_i
ight) \leq$$

where $E_i \cup E_j$ stands for the union of the events E_i and E_j .

The Union Bound

Given a number of events E_1, \ldots, E_N

$$\Pr\left(\bigcup_{i=1}^n E_i\right) \le \sum_{i=1}^n \Pr(E_i),$$

where $E_i \cup E_j$ stands for the union of the events E_i and E_j .

For
$$Z \sim \mathcal{N}(\mu, \sigma^2)$$
,

$$Pr(Z > \beta) =$$

For
$$Z \sim \mathcal{N}(\mu, \sigma^2)$$
,

$$\Pr(Z > \beta) = Q\left(\frac{\beta - \mu}{\sigma}\right),$$

where $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp(-\tau^2/2) d\tau$ is the tail probability of the standard normal distribution.

For $Z \sim \mathcal{N}(\mu, \sigma^2)$,

$$\Pr(Z > \beta) = Q\left(\frac{\beta - \mu}{\sigma}\right),$$

where $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp(-\tau^2/2) d\tau$ is the tail probability of the standard normal distribution.

For $Z \sim \mathcal{N}(\mu, \sigma^2)$,

$$\Pr(Z > \beta) = Q\left(\frac{\beta - \mu}{\sigma}\right),$$

where $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp(-\tau^2/2) d\tau$ is the tail probability of the standard normal distribution.

• Q(-x) = 1 - Q(x).

For $Z \sim \mathcal{N}(\mu, \sigma^2)$,

$$\Pr(Z > \beta) = Q\left(\frac{\beta - \mu}{\sigma}\right),$$

where $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty \exp\left(-\tau^2/2\right) d\tau$ is the tail probability of the standard normal distribution.

- Q(-x) = 1 Q(x).
- For $0 < a \ll b < c$,

$$Q(a) + Q(b) + Q(c) \approx Q(a)$$
.

Symbol Error Probability of BPSK

• $\mathcal{X}=\{\mathsf{X}_1,\mathsf{X}_2\}\subset\mathbb{R}$, where $\mathsf{X}_1=-\sqrt{\mathsf{E}_\mathsf{s}}$ and $\mathsf{X}_2=\sqrt{\mathsf{E}_\mathsf{s}}.$

Symbol Error Probability of BPSK

- $\mathcal{X} = \{X_1, X_2\} \subset \mathbb{R}$, where $X_1 = -\sqrt{\mathsf{E_s}}$ and $X_2 = \sqrt{\mathsf{E_s}}$.
- The received signal is

$$y = x + n$$
,

where $n \sim \mathcal{N}(0, \sigma^2)$.

- $\mathcal{X} = \{X_1, X_2\} \subset \mathbb{R}$, where $X_1 = -\sqrt{\mathsf{E_s}}$ and $X_2 = \sqrt{\mathsf{E_s}}$.
- The received signal is

$$y = x + n$$

where $n \sim \mathcal{N}(0, \sigma^2)$.

• For equiprobable symbols, $\hat{x} = X_2$ if y > 0 and $\hat{x} = X_1$ otherwise.

- $\mathcal{X} = \{X_1, X_2\} \subset \mathbb{R}$, where $X_1 = -\sqrt{\mathsf{E_s}}$ and $X_2 = \sqrt{\mathsf{E_s}}$.
- The received signal is

$$y = x + n$$

where $n \sim \mathcal{N}(0, \sigma^2)$.

• For equiprobable symbols, $\hat{x} = X_2$ if y > 0 and $\hat{x} = X_1$ otherwise.

$$P_{\rm s}^{\rm BPSK} =$$

- $\mathcal{X} = \{X_1, X_2\} \subset \mathbb{R}$, where $X_1 = -\sqrt{\mathsf{E_s}}$ and $X_2 = \sqrt{\mathsf{E_s}}$.
- The received signal is

$$y = x + n$$
,

where $n \sim \mathcal{N}(0, \sigma^2)$.

• For equiprobable symbols, $\hat{x} = X_2$ if y > 0 and $\hat{x} = X_1$ otherwise.

$$\begin{split} P_{\mathrm{s}}^{\mathrm{BPSK}} &= \sum_{x \in \mathcal{X}} \Pr(\hat{x} \neq x | x) P(x) \\ &= \Pr(\mathsf{X}_2 | \mathsf{X}_1) P(\mathsf{X}_1) + \Pr(\mathsf{X}_1 | \mathsf{X}_2) P(\mathsf{X}_2) \\ &= \frac{1}{2} \Pr(\mathsf{X}_2 | \mathsf{X}_1) + \frac{1}{2} \Pr(\mathsf{X}_1 | \mathsf{X}_2), \end{split}$$

If $X = X_1$, $Y \sim$

If
$$X = \mathsf{X}_1$$
, $Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)$

If
$$X=\mathsf{X}_1,\ Y\sim\mathcal{N}(-\sqrt{\mathsf{E}_\mathsf{s}},\sigma^2)$$
, hence
$$\mathsf{Pr}(\hat{x}=\mathsf{X}_2|x=\mathsf{X}_1)=$$

If
$$X={\sf X}_1$$
, $Y\sim \mathcal{N}(-\sqrt{\sf E_s},\sigma^2)$, hence
$$\Pr(\hat{x}={\sf X}_2|x={\sf X}_1\,)=\Pr(Y>0|X={\sf X}_1\,)$$

If
$$X=\mathsf{X}_1$$
, $Y\sim\mathcal{N}(-\sqrt{\mathsf{E_s}},\sigma^2)$, hence
$$\Pr(\hat{x}=\mathsf{X}_2|x=\mathsf{X}_1)=\Pr(Y>0|X=\mathsf{X}_1)\\ =\Pr(Y>0)\big|_{Y\sim\mathcal{N}(-\sqrt{\mathsf{E_s}},\sigma^2)}$$

If
$$X = \mathsf{X}_1$$
, $Y \sim \mathcal{N}(-\sqrt{\mathsf{E}_{\mathsf{s}}}, \sigma^2)$, hence
$$\begin{split} \mathsf{Pr}(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) &= \mathsf{Pr}(Y > 0 | X = \mathsf{X}_1) \\ &= \mathsf{Pr}(Y > 0) \big|_{Y \sim \mathcal{N}(-\sqrt{\mathsf{E}_{\mathsf{s}}}, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{\sqrt{\mathsf{E}_{\mathsf{s}}}}{\sigma}\bigg) \end{split}$$

If
$$X = \mathsf{X}_1$$
, $Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)$, hence
$$\begin{split} \mathsf{Pr}(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) &= \mathsf{Pr}(Y > 0 | X = \mathsf{X}_1) \\ &= \mathsf{Pr}(Y > 0) \Big|_{Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{\sqrt{\mathsf{E_s}}}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_s}}{\mathsf{N_0}}}\bigg) \end{split}$$

If
$$X = \mathsf{X}_1$$
, $Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)$, hence
$$\begin{split} \mathsf{Pr}(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1 \,) &= \mathsf{Pr}(Y > 0 | X = \mathsf{X}_1 \,) \\ &= \mathsf{Pr}(Y > 0) \big|_{Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{\sqrt{\mathsf{E_s}}}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_s}}{\mathsf{N_0}}}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_b}}{\mathsf{N_0}}}\bigg). \end{split}$$

If
$$X = X_1$$
, $Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)$, hence

$$\begin{split} \Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1 \,) &= \Pr(Y > 0 | X = \mathsf{X}_1 \,) \\ &= \Pr(Y > 0) \big|_{Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{\sqrt{\mathsf{E_s}}}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_s}}{\mathsf{N_0}}}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_b}}{\mathsf{N_0}}}\bigg). \end{split}$$

Due to symmetry, $\Pr(\hat{x} = \mathsf{X}_1 | x = \mathsf{X}_2) = \Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1)$, and

$$P_{\text{s}}^{\text{BPSK}} = Q\!\left(\sqrt{\frac{2\mathsf{E}_{\text{s}}}{\mathsf{N}_{0}}}\right) = Q\!\left(\sqrt{\frac{2\mathsf{E}_{\text{b}}}{\mathsf{N}_{0}}}\right).$$

For BPSK,
$$d_{\rm E}({\rm X}_1,{\rm X}_2)=|{\rm X}_1-{\rm X}_2|=2\sqrt{{\rm E_s}}$$
, hence

$$P_{\rm s}^{\rm BPSK} = {
m Q} \Bigg(\sqrt{rac{d_{
m E}^2({
m X}_1,{
m X}_2)}{2{
m N}_0}} \Bigg).$$

For BPSK,
$$d_{\rm E}({\rm X}_1,{\rm X}_2)=|{\rm X}_1-{\rm X}_2|=2\sqrt{{\rm E_s}}$$
, hence

$$P_{\rm s}^{\rm BPSK} = {\rm Q} \Biggl(\sqrt{\frac{d_{\rm E}^2({\rm X}_1,{\rm X}_2)}{2{\rm N}_0}} \Biggr). \label{eq:Pspsk}$$

For BPSK,
$$d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 - \mathsf{X}_2| = 2\sqrt{\mathsf{E}_\mathsf{s}}$$
, hence

$$P_{\rm s}^{\rm BPSK} = {\rm Q} \Bigg(\sqrt{\frac{d_{\rm E}^2({\rm X}_1,{\rm X}_2)}{2{\rm N}_0}} \Bigg). \label{eq:Pspsk}$$

In the general case...

• Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_E(X_1, X_2) = |X_1 - X_2|$. Assume $x \in \mathcal{X} = \{X_1, X_2, \dots, \}$ is transmitted and we receive y = x + n.

For BPSK, $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 - \mathsf{X}_2| = 2\sqrt{\mathsf{E}_\mathsf{s}}$, hence

$$P_{\rm s}^{\rm BPSK} = {
m Q} \Bigg(\sqrt{rac{d_{
m E}^2({
m X}_1,{
m X}_2)}{2{
m N}_0}} \Bigg).$$

- Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 \mathsf{X}_2|$. Assume $x \in \mathcal{X} = \{\mathsf{X}_1,\mathsf{X}_2,\dots,\}$ is transmitted and we receive y = x + n.
- Let \(\tilde{y} \) be the projection of \(y \) onto the straight line between \(X_1 \) and \(X_2 \).
 Then.

$$\Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) =$$

For BPSK, $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 - \mathsf{X}_2| = 2\sqrt{\mathsf{E}_{\mathsf{s}}}$, hence

$$P_{\rm s}^{\rm BPSK} = {
m Q} \Biggl(\sqrt{rac{d_{
m E}^2({
m X}_1,{
m X}_2)}{2{
m N}_0}} \Biggr).$$

- Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 \mathsf{X}_2|$. Assume $x \in \mathcal{X} = \{\mathsf{X}_1,\mathsf{X}_2,\dots,\}$ is transmitted and we receive y = x + n.
- Let \(\tilde{y} \) be the projection of \(y \) onto the straight line between \(X_1 \) and \(X_2 \).
 Then.

$$\Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) = \Pr\left(\tilde{Y} > \frac{d_{\mathsf{E}}(\mathsf{X}_1, \mathsf{X}_2)}{2}\right) \Big|_{\tilde{Y} \sim \mathcal{N}(0, \sigma^2)}$$

For BPSK, $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 - \mathsf{X}_2| = 2\sqrt{\mathsf{E}_\mathsf{s}}$, hence

$$P_{\rm s}^{\rm BPSK} = {
m Q} \Biggl(\sqrt{rac{d_{
m E}^2({
m X}_1,{
m X}_2)}{2{
m N}_0}} \Biggr).$$

- Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 \mathsf{X}_2|$. Assume $x \in \mathcal{X} = \{\mathsf{X}_1,\mathsf{X}_2,\dots,\}$ is transmitted and we receive y = x + n.
- Let \(\tilde{y} \) be the projection of \(y \) onto the straight line between \(X_1 \) and \(X_2 \).
 Then.

$$\begin{aligned} \Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) &= \Pr\bigg(\tilde{Y} > \frac{d_{\mathsf{E}}(\mathsf{X}_1, \mathsf{X}_2)}{2}\bigg) \bigg|_{\tilde{Y} \sim \mathcal{N}(0, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{d_{\mathsf{E}}(\mathsf{X}_1, \mathsf{X}_2)}{2\sigma}\bigg) \end{aligned}$$

For BPSK, $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 - \mathsf{X}_2| = 2\sqrt{\mathsf{E}_{\mathsf{s}}}$, hence

$$P_{\rm s}^{\rm BPSK} = {
m Q} \Biggl(\sqrt{rac{d_{
m E}^2({
m X}_1,{
m X}_2)}{2{
m N}_0}} \Biggr).$$

- Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_E(X_1, X_2) = |X_1 X_2|$. Assume $x \in \mathcal{X} = \{X_1, X_2, \dots, \}$ is transmitted and we receive y = x + n.
- Let \tilde{y} be the projection of y onto the straight line between X_1 and X_2 . Then.

$$\begin{split} \Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) &= \Pr\bigg(\tilde{Y} > \frac{d_\mathsf{E}(\mathsf{X}_1, \mathsf{X}_2)}{2}\bigg) \bigg|_{\tilde{Y} \sim \mathcal{N}(0, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{d_\mathsf{E}(\mathsf{X}_1, \mathsf{X}_2)}{2\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{d_\mathsf{E}^2(\mathsf{X}_1, \mathsf{X}_2)}{2\mathsf{N}_0}}\bigg). \end{split}$$

For BPSK, $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 - \mathsf{X}_2| = 2\sqrt{\mathsf{E}_\mathsf{s}}$, hence

$$P_{\rm s}^{\rm BPSK} = {
m Q} \Biggl(\sqrt{rac{d_{
m E}^2({
m X}_1,{
m X}_2)}{2{
m N}_0}} \Biggr).$$

In the general case...

- Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2) = |\mathsf{X}_1 \mathsf{X}_2|$. Assume $x \in \mathcal{X} = \{\mathsf{X}_1,\mathsf{X}_2,\dots,\}$ is transmitted and we receive y = x + n.
- Let \tilde{y} be the projection of y onto the straight line between X_1 and X_2 . Then,

$$\begin{split} \Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) &= \Pr\bigg(\tilde{Y} > \frac{d_\mathsf{E}(\mathsf{X}_1, \mathsf{X}_2)}{2}\bigg) \bigg|_{\tilde{Y} \sim \mathcal{N}(0, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{d_\mathsf{E}(\mathsf{X}_1, \mathsf{X}_2)}{2\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{d_\mathsf{E}^2(\mathsf{X}_1, \mathsf{X}_2)}{2\mathsf{N}_0}}\bigg). \end{split}$$

Pr(x̂ = X₂|x = X₁) depends on d_E(X₁, X₂) ⇒ Construct constellations with high distance between constellation points!

Symbol Error Probability of 4-QAM

• $\mathcal{X} = \{X_1, X_2, X_3, X_4\}$ with $\alpha = \sqrt{E_s/2}$ such that the average energy per symbol is E_s .

Symbol Error Probability of 4-QAM

- $\mathcal{X} = \{X_1, X_2, X_3, X_4\}$ with $\alpha = \sqrt{E_s/2}$ such that the average energy per symbol is E_s .
- The ML decision is

Symbol Error Probability of 4-QAM

- $\mathcal{X} = \{X_1, X_2, X_3, X_4\}$ with $\alpha = \sqrt{E_s/2}$ such that the average energy per symbol is E_s .
- The ML decision is

$$\hat{x} = \begin{cases} \mathsf{X}_1 & \text{if } y_{\mathsf{I}} < 0 \text{ and } y_{\mathsf{Q}} > 0 \\ \mathsf{X}_2 & \text{if } y_{\mathsf{I}} > 0 \text{ and } y_{\mathsf{Q}} > 0 \\ \mathsf{X}_3 & \text{if } y_{\mathsf{I}} > 0 \text{ and } y_{\mathsf{Q}} < 0, \\ \mathsf{X}_4 & \text{if } y_{\mathsf{I}} < 0 \text{ and } y_{\mathsf{Q}} < 0 \end{cases}$$

where $y_{\rm I}$ and $y_{\rm Q}$ are the in-phase and quadrature components of y.

$$P_{\mathrm{s}}^{4\mathrm{QAM}} = \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) =$$

$$P_{\mathsf{s}}^{4\mathsf{QAM}} = \mathsf{Pr}(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \mathsf{Pr}(Y_{\mathsf{I}} > 0 \, \cup \, Y_{\mathsf{Q}} < 0 | \mathsf{X}_1)$$

$$\begin{split} P_{\rm s}^{\rm 4QAM} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1 \,) = \Pr(Y_{\rm I} > 0 \, \cup \, Y_{\rm Q} < 0 | \mathsf{X}_1 \,) \\ &= \Pr(Y_{\rm I} > 0 | \mathsf{X}_1 \,) + \Pr(Y_{\rm Q} < 0 | \mathsf{X}_1 \,) - \Pr(Y_{\rm I} > 0 \, \cap \, Y_{\rm Q} < 0 | \mathsf{X}_1 \,) \end{split}$$

$$\begin{split} P_{\mathrm{s}}^{4\mathrm{QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

If X_1 is transmitted, $Y_1 \sim$

and $Y_{\mathsf{Q}} \sim$

$$\begin{split} P_{\text{s}}^{\text{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\text{I}} > 0 \, \cup \, Y_{\text{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\text{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\text{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\text{I}} > 0 \, \cap \, Y_{\text{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\text{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\text{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\text{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\text{Q}} < 0 | \mathsf{X}_1), \end{split}$$

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

$$\Pr(Y_{\mathsf{I}}>0|\mathsf{X}_1\,)=$$

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

$$\Pr(Y_{\mathsf{I}} > 0 | \mathsf{X}_1) = \Pr(Y_{\mathsf{I}} > 0) \Big|_{Y_{\mathsf{I}} \sim \mathcal{N}(-\alpha, \sigma^2)}$$

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

$$\Pr(Y_{\mathsf{I}} > 0 | \mathsf{X}_1) = \Pr(Y_{\mathsf{I}} > 0) \big|_{Y_{\mathsf{I}} \sim \mathcal{N}(-\alpha, \sigma^2)} = \mathsf{Q} \bigg(\frac{\alpha}{\sigma} \bigg)$$

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

$$\Pr(Y_{\mathsf{I}} > 0 | \mathsf{X}_1) = \Pr(Y_{\mathsf{I}} > 0) \Big|_{Y_{\mathsf{I}} \sim \mathcal{N}(-\alpha, \sigma^2)} = \mathsf{Q}\bigg(\frac{\alpha}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_0}}\bigg),$$

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

If X_1 is transmitted, $Y_1 \sim \mathcal{N}(-\alpha, \sigma^2)$ and $Y_Q \sim \mathcal{N}(\alpha, \sigma^2)$. Thus,

$$\Pr(Y_{\mathsf{I}} > 0 | \mathsf{X}_1) = \Pr(Y_{\mathsf{I}} > 0) \Big|_{Y_{\mathsf{I}} \sim \mathcal{N}(-\alpha, \sigma^2)} = \mathsf{Q}\bigg(\frac{\alpha}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_0}}\bigg),$$

By symmetry, $Pr(Y_Q < 0|X_1) = Pr(Y_I > 0|X_1)$, and

$$P_{\rm s}^{\rm ^{4QAM}} = 2 {\rm Q} \Bigg(\sqrt{\frac{2{\rm E}_{\rm b}}{{\rm N}_{\rm 0}}} \Bigg) - \Bigg({\rm Q} \Bigg(\sqrt{\frac{2{\rm E}_{\rm b}}{{\rm N}_{\rm 0}}} \Bigg) \Bigg)^2. \label{eq:ps_s_q_approx}$$

Upper Bound on the Symbol Error Probability

For general constellations, the exact symbol error probability $P_{\rm s}$ is hard to compute

Upper Bound on the Symbol Error Probability

For general constellations, the exact symbol error probability $P_{\rm s}$ is hard to compute \longrightarrow Use union bound to compute an upper bound

$$P_{s}^{(M)} =$$

$$P_{s}^{(M)} = \sum_{i=1}^{M} \Pr(\hat{x} \neq \mathsf{X}_{i} | x = \mathsf{X}_{i}) P(\mathsf{X}_{i})$$

$$P_{s}^{(M)} = \sum_{i=1}^{M} \Pr(\hat{x} \neq \mathsf{X}_{i} | x = \mathsf{X}_{i}) P(\mathsf{X}_{i})$$
$$= \frac{1}{M} \sum_{i=1}^{M} \Pr(\hat{x} \neq \mathsf{X}_{i} | x = \mathsf{X}_{i})$$

$$P_{s}^{(M)} = \sum_{i=1}^{M} \Pr(\hat{x} \neq X_{i} | x = X_{i}) P(X_{i})$$

$$= \frac{1}{M} \sum_{i=1}^{M} \Pr(\hat{x} \neq X_{i} | x = X_{i})$$

$$= \frac{1}{M} \sum_{i=1}^{M} \Pr\left(\bigcup_{j \neq i} \{\hat{x} = X_{j} | x = X_{i}\}\right)$$

$$\begin{split} P_{\mathrm{s}}^{(M)} &= \sum_{i=1}^{M} \Pr(\hat{x} \neq \mathsf{X}_i | x = \mathsf{X}_i) P(\mathsf{X}_i) \\ &= \frac{1}{M} \sum_{i=1}^{M} \Pr(\hat{x} \neq \mathsf{X}_i | x = \mathsf{X}_i) \\ &= \frac{1}{M} \sum_{i=1}^{M} \Pr\left(\bigcup_{j \neq i} \{\hat{x} = \mathsf{X}_j | x = \mathsf{X}_i\} \right) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \Pr(\hat{x} = \mathsf{X}_j | x = \mathsf{X}_i). \end{split}$$

Using

$$\Pr(\hat{x} = \mathsf{X}_j | x = \mathsf{X}_i) = \mathsf{Q}\left(\sqrt{\frac{d_\mathsf{E}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}}\right)$$

the symbol error probability of an M-ary constellation can be upperbounded as

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q}\left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}}\right).$$

Upper bound on $P_{\rm s}$ for 4-QAM

$$P_{\mathrm{s}}^{4\mathrm{QAM}} \leq \frac{1}{4} \sum_{i=1}^{4} \sum_{j \neq i} \mathrm{Q}\!\left(\sqrt{\frac{d_{\mathrm{E}}^{2}(\mathrm{X}_{i},\mathrm{X}_{j})}{2\mathrm{N}_{0}}}\right)$$

Upper bound on P_s for 4-QAM

$$\begin{split} P_{\mathrm{s}}^{4\mathrm{QAM}} & \leq \frac{1}{4} \sum_{i=1}^{4} \sum_{j \neq i} \mathrm{Q} \Bigg(\sqrt{\frac{d_{\mathrm{E}}^2(\mathrm{X}_i, \mathrm{X}_j)}{2\mathrm{N}_0}} \Bigg) = \sum_{j=2}^{4} \mathrm{Q} \Bigg(\sqrt{\frac{d_{\mathrm{E}}^2(\mathrm{X}_1, \mathrm{X}_j)}{2\mathrm{N}_0}} \Bigg) \\ & = \mathrm{Q} \Bigg(\sqrt{\frac{d_{\mathrm{E}}^2(\mathrm{X}_1, \mathrm{X}_2)}{2\mathrm{N}_0}} \Bigg) + \mathrm{Q} \Bigg(\sqrt{\frac{d_{\mathrm{E}}^2(\mathrm{X}_1, \mathrm{X}_3)}{2\mathrm{N}_0}} \Bigg) + \mathrm{Q} \Bigg(\sqrt{\frac{d_{\mathrm{E}}^2(\mathrm{X}_1, \mathrm{X}_4)}{2\mathrm{N}_0}} \Bigg). \end{split}$$

Upper bound on P_s for 4-QAM

$$\begin{split} P_{\mathrm{s}}^{4\mathrm{QAM}} & \leq \frac{1}{4} \sum_{i=1}^{4} \sum_{j \neq i} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \Bigg) = \sum_{j=2}^{4} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_1, \mathsf{X}_j)}{2\mathsf{N}_0}} \Bigg) \\ & = \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_1, \mathsf{X}_2)}{2\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_1, \mathsf{X}_3)}{2\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_1, \mathsf{X}_4)}{2\mathsf{N}_0}} \Bigg). \end{split}$$

Using
$$d_{\mathsf{E}}^2(\mathsf{X}_1,\mathsf{X}_2) = d_{\mathsf{E}}^2(\mathsf{X}_1,\mathsf{X}_4) = ||\alpha(-1+j) - \alpha(1+j)||^2 = 4\alpha^2 = 2\mathsf{E_s}$$
 and $d_{\mathsf{E}}^2(\mathsf{X}_1,\mathsf{X}_3) = ||\alpha(-1+j) - \alpha(1-j)||^2 = 8\alpha^2 = 4\mathsf{E_s}$,

Upper bound on P_s for 4-QAM

$$\begin{split} P_{\text{s}}^{\text{4QAM}} & \leq \frac{1}{4} \sum_{i=1}^{4} \sum_{j \neq i} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \Bigg) = \sum_{j=2}^{4} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_j)}{2\mathsf{N}_0}} \Bigg) \\ & = \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_2)}{2\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_3)}{2\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_4)}{2\mathsf{N}_0}} \Bigg). \\ \text{Using } d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_2) = d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_4) = ||\alpha(-1+j) - \alpha(1+j)||^2 = 4\alpha^2 = 2\mathsf{E}_{\text{s}} \text{ and } \\ d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_3) = ||\alpha(-1+j) - \alpha(1-j)||^2 = 8\alpha^2 = 4\mathsf{E}_{\text{s}}, \\ P_{\text{s}}^{4\mathsf{QAM}} \leq 2\mathsf{Q} \Bigg(\sqrt{\frac{\mathsf{E}_{\text{s}}}{\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{2\mathsf{E}_{\text{s}}}{\mathsf{N}_0}} \Bigg). \end{split}$$

ullet For large M, even the union bound may be difficult to compute

For large M, even the union bound may be difficult to compute →
Derive an approximation.

For large M, even the union bound may be difficult to compute →
Derive an approximation.

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q} \left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \right).$$

For large M, even the union bound may be difficult to compute →
Derive an approximation.

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q} \left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \right).$$

• The dominant terms are the ones with smaller $d_{E}(X_{i}, X_{j})$

• For large M, even the union bound may be difficult to compute \longrightarrow Derive an approximation.

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q} \left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \right).$$

- The dominant terms are the ones with smaller d_E(X_i, X_j)
- Let

$$d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i) = \min_{\mathsf{X}_j \neq \mathsf{X}_i} d_{\mathsf{E}}(\mathsf{X}_i,\mathsf{X}_j)$$

and $A_{\min}(X_i)$ the number of constellation points at distance $d_{\mathsf{E},\min}(\mathsf{X}_i)$ from X_i (nearest neighbors of X_i).

• For large M, even the union bound may be difficult to compute \longrightarrow Derive an approximation.

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q} \left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \right).$$

- The dominant terms are the ones with smaller d_E(X_i, X_j)
- Let

$$d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i) = \min_{\mathsf{X}_j \neq \mathsf{X}_i} d_{\mathsf{E}}(\mathsf{X}_i,\mathsf{X}_j)$$

and $A_{\min}(X_i)$ the number of constellation points at distance $d_{\mathsf{E},\min}(X_i)$ from X_i (nearest neighbors of X_i). Then,

$$P_{\rm s}^{(M)} pprox rac{1}{M} \sum_{i=1}^{M} A_{\min}({\sf X}_i) {\sf Q} \Biggl(\sqrt{rac{d_{\sf E,min}^2({\sf X}_i)}{2{\sf N}_0}} \Biggr).$$

ullet Further approximate $P_{
m s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

ullet Further approximate $P_{
m s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

Then,

$$P_{\rm s}^{(M)} pprox rac{1}{M} \sum_{i=1}^{M} A_{\min}({\sf X}_i) {\sf Q} \Biggl(\sqrt{rac{d_{\sf E, min}^2({\sf X}_i)}{2{\sf N}_0}} \Biggr)$$

ullet Further approximate $P_{
m s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

Then,

$$\begin{split} P_{\mathsf{s}}^{(M)} &\approx \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2(\mathsf{X}_i)}{2\mathsf{N}_0}} \Bigg) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) \end{split}$$

ullet Further approximate $P_{
m s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

Then,

$$\begin{split} P_{\mathrm{s}}^{(M)} &\approx \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2(\mathsf{X}_i)}{2\mathsf{N}_0}} \Bigg) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) \\ &= \Bigg(\frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \Bigg) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) \end{split}$$

 \bullet Further approximate $P_{\rm s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

Then,

$$\begin{split} P_{\mathrm{s}}^{(M)} &\approx \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2(\mathsf{X}_i)}{2\mathsf{N}_0}} \Bigg) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) \\ &= \Bigg(\frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \Bigg) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) = \bar{A}_{\min} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg), \end{split}$$

where $\bar{A}_{\min} = \frac{1}{M} \sum_{i=1}^{M} A_{\min}(X_i)$ is the average number of nearest neighbors.

ullet Further approximate $P_{
m s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

Then,

$$\begin{split} P_{\mathrm{s}}^{(M)} &\approx \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2(\mathsf{X}_i)}{2\mathsf{N}_0}} \Bigg) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) \\ &= \Bigg(\frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \Bigg) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) = \bar{A}_{\min} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg), \end{split}$$

where $\bar{A}_{\min} = \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i)$ is the average number of nearest neighbors.

• Requires only knowledge of \bar{A}_{\min} and $d_{\mathsf{E},\min}$!

Nearest Neighbor Approximation for squared M-QAM

For squared M-QAM constellations, there are 4 constellation points with 2 neighbors, $4(\sqrt{M}-2)$ points with 3 neighbors and the remaining points have 4 neighbors, hence $\bar{A}_{\min}=4-4/\sqrt{M}$. Furthermore, $d_{\mathsf{E},\min}=\sqrt{\frac{6\mathsf{E}_{\mathsf{s}}}{M-1}}$. Hence,

$$\begin{split} P_{\rm s}^{M{\rm QAM}} &\approx \bigg(4 - \frac{4}{\sqrt{M}}\bigg) {\rm Q}\bigg(\sqrt{\frac{3{\rm E_s}}{(M-1){\rm N_0}}}\bigg) \\ &= \bigg(4 - \frac{4}{\sqrt{M}}\bigg) {\rm Q}\bigg(\sqrt{\frac{3{\rm E_b}\log M}{(M-1){\rm N_0}}}\bigg). \end{split}$$

Nearest Neighbor Approximation of P_s of QAM

Nearest Neighbor Approximation of P_s of QAM

• The power efficiency decreases with M.

Nearest Neighbor Approximation of P_s of QAM

- The power efficiency decreases with M.
- The spectral efficiency increases with M.

• The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.

- The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.
- Let

$$\mathsf{L}(x) = (b_1(x), \dots, b_m(x))$$

be the m-bit labeling associated to constellation symbol $x \in \mathcal{X}$.

- The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.
- Let

$$\mathsf{L}(x) = (b_1(x), \dots, b_m(x))$$

be the m-bit labeling associated to constellation symbol $x \in \mathcal{X}$.

- The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.
- Let

$$\mathsf{L}(x) = (b_1(x), \dots, b_m(x))$$

be the m-bit labeling associated to constellation symbol $x \in \mathcal{X}$.

• Example: L(+1) = (1, 1, 0), L(+5) = (1, 0, 1).

- The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.
- Let

$$\mathsf{L}(x) = (b_1(x), \dots, b_m(x))$$

be the m-bit labeling associated to constellation symbol $x \in \mathcal{X}$.

- Example: L(+1) = (1, 1, 0), L(+5) = (1, 0, 1).
- ullet The bit error probability $P_{
 m b}$ of an M-ary constellation is given by

$$P_{\rm b} = \frac{1}{m} \sum_{i=1}^{m} \Pr(i \text{th bit in error})$$

- The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.
- Let

$$\mathsf{L}(x) = (b_1(x), \dots, b_m(x))$$

be the m-bit labeling associated to constellation symbol $x \in \mathcal{X}$.

- Example: L(+1) = (1, 1, 0), L(+5) = (1, 0, 1).
- The bit error probability P_b of an M-ary constellation is given by

$$P_{\mathsf{b}} = \frac{1}{m} \sum_{i=1}^{m} \mathsf{Pr}(i\mathsf{th} \; \mathsf{bit} \; \mathsf{in} \; \mathsf{error}) = \frac{1}{m} \sum_{i=1}^{m} p_{i}.$$

Bit Error Probability of 4-QAM with Gray and Lexicographic Labeling

• e_{b_i} : event that bit i is decoded in error.

ullet \mathbf{e}_{b_i} : event that bit i is decoded in error.

$$p_1=\mathsf{Pr}(\mathsf{e}_{b_1})$$

• e_{b_i} : event that bit i is decoded in error.

$$p_1 = \Pr(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) P(x)$$

e_{b_i}: event that bit i is decoded in error.

$$p_1 = \mathsf{Pr}(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \mathsf{Pr}(\mathsf{e}_{b_1}|x) P(x) = \frac{1}{4} \sum_{x \in \mathcal{X}} \mathsf{Pr}(\mathsf{e}_{b_1}|x)$$

e_{b_i}: event that bit i is decoded in error.

$$\begin{split} p_1 &= \mathsf{Pr}(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \mathsf{Pr}(\mathsf{e}_{b_1}|x) P(x) = \frac{1}{4} \sum_{x \in \mathcal{X}} \mathsf{Pr}(\mathsf{e}_{b_1}|x) \\ &= \frac{1}{4} (\mathsf{Pr}(\mathsf{e}_{b_1}|\mathsf{X}_1) + \mathsf{Pr}(\mathsf{e}_{b_1}|\mathsf{X}_2) + \mathsf{Pr}(\mathsf{e}_{b_1}|\mathsf{X}_3) + \mathsf{Pr}(\mathsf{e}_{b_1}|\mathsf{X}_4)) \end{split}$$

• e_{ba}: event that bit i is decoded in error.

$$\begin{split} p_1 &= \Pr(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) P(x) = \frac{1}{4} \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) \\ &= \frac{1}{4} (\Pr(\mathsf{e}_{b_1}|\mathsf{X}_1) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_2) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_3) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_4)) \\ &= \frac{1}{4} (\Pr(b_1(\hat{x}) = 0|\mathsf{X}_1) + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_2) \\ &\quad + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_3) + \Pr(b_1(\hat{x}) = 0|\mathsf{X}_4)), \end{split}$$

e_{b_i}: event that bit i is decoded in error.

$$\begin{split} p_1 &= \Pr(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) P(x) = \frac{1}{4} \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) \\ &= \frac{1}{4} (\Pr(\mathsf{e}_{b_1}|\mathsf{X}_1) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_2) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_3) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_4)) \\ &= \frac{1}{4} (\Pr(b_1(\hat{x}) = 0|\mathsf{X}_1) + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_2) \\ &\quad + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_3) + \Pr(b_1(\hat{x}) = 0|\mathsf{X}_4)), \end{split}$$

• All terms are Q $\left(\sqrt{\frac{2\mathsf{E}_{\mathsf{b}}}{\mathsf{N}_{\mathsf{0}}}}\right)$, thus $p_1 = \mathsf{Q}\left(\sqrt{\frac{2\mathsf{E}_{\mathsf{b}}}{\mathsf{N}_{\mathsf{0}}}}\right)$.

e_{b_i}: event that bit i is decoded in error.

$$\begin{split} p_1 &= \Pr(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) P(x) = \frac{1}{4} \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) \\ &= \frac{1}{4} (\Pr(\mathsf{e}_{b_1}|\mathsf{X}_1) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_2) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_3) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_4)) \\ &= \frac{1}{4} (\Pr(b_1(\hat{x}) = 0|\mathsf{X}_1) + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_2) \\ &\quad + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_3) + \Pr(b_1(\hat{x}) = 0|\mathsf{X}_4)), \end{split}$$

- All terms are Q $\left(\sqrt{\frac{2\mathsf{E}_{\mathsf{b}}}{\mathsf{N}_{\mathsf{0}}}}\right)$, thus $p_1 = \mathsf{Q}\left(\sqrt{\frac{2\mathsf{E}_{\mathsf{b}}}{\mathsf{N}_{\mathsf{0}}}}\right)$.
- By symmetry, $p_2 = p_1$, hence,

$$P_{\rm b}^{\rm 4QAM-Gray} = \frac{1}{2}(p_1 + p_2) = {\rm Q}\Bigg(\sqrt{\frac{2{\rm E}_{\rm b}}{{\rm N}_0}}\Bigg). \label{eq:pb}$$

$$p_1 = Q\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_0}}\right)$$

$$p_2 =$$

$$\begin{aligned} p_1 &= \mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right) \\ p_2 &= 2\mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right) \! \left(1 - \mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right)\right). \end{aligned}$$

$$\begin{aligned} p_1 &= \mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right) \\ p_2 &= 2\mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right) \! \left(1 - \mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right)\right). \end{aligned}$$

Thus,

$$P_{\mathrm{b}}^{4\mathrm{QAM-Lex}} = \frac{1}{2}(p_1+p_2) = \frac{3}{2}\mathrm{Q}\!\left(\sqrt{\frac{2\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{0}}}}\right) - \left(\mathrm{Q}\!\left(\sqrt{\frac{2\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{0}}}}\right)\right)^2.$$

$$\begin{split} p_1 &= \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\bigg) \\ p_2 &= 2\mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\bigg)\bigg(1-\mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\bigg)\bigg). \end{split}$$

Thus,

$$P_{\mathrm{b}}^{\mathrm{4QAM-Lex}} = \frac{1}{2}(p_1 + p_2) = \frac{3}{2} \mathrm{Q} \Bigg(\sqrt{\frac{2 \mathrm{E_b}}{\mathrm{N_0}}} \Bigg) - \Bigg(\mathrm{Q} \Bigg(\sqrt{\frac{2 \mathrm{E_b}}{\mathrm{N_0}}} \Bigg) \Bigg)^2.$$

• Due to the lack of symmetry, $p_1 \neq p_2$.

Bit Error Probability for 4-QAM

Bit Error Probability of M-ary Constellations

• For general M-ary constellations and arbitrary labelings, the computation of P_b is cumbersome \longrightarrow Nearest neighbor approximation.