1. Definition of ring

1.3

Let R be a ring, and let S be any set. Explain how to endow the set R^S of set-functions $S \to R$ of two operations +, so as to make R^S into a ring, such that R^S is just a copy of R if S is a sigleton.

Proof. The construction is straight forward, for any $f, g \in \mathbb{R}^S$, let:

$$f + g : S \to R, s \mapsto f(s) + g(s)$$

 $fg : S \to R, s \mapsto f(s)g(s)$

1.12

Just as complex numbers may be viewed as combinations a+bi, where $a,b \in \mathbb{R}$, and i satisfies the relation $i^2=1$ (and commutes with \mathbb{R}), we may construct a ring \mathbb{H} by considering linear combinations a+bi+cj+dk where $a,b,c,d \in \mathbb{R}$, and i,j,k commute with \mathbb{R} and satisfy the following relations:

$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$$

Addition in \mathbb{H} is defined componentwise, while multiplication is defined by imposing distributivity and applying the relations. For example,

$$(1+i+j)(2+k) = 12+i2+j2+1k+ik+jk = 2+2i+2j+kj+i = 2+3i+j+k$$

- (i) Verify that this prescription does indeed define a ring.
- (ii) Compute (a + bi + cj + dk)(a bi cj dk), where $a, b, c, d \in \mathbb{R}$.
- (iii) Prove that \mathbb{H} is a division ring Elements of \mathbb{H} are called quaternions. Note that $\mathbb{Q}_8 := \{\pm 1, \pm i, \pm j, \pm k\}$ forms a subgroup of the group of units of \mathbb{H} ; it is a noncommutative group of order 8, called the quaternionic group.
- (iv) List all subgroups of \mathbb{Q}_8 , and prove that they are all normal.
- (v) Prove that \mathbb{Q}_8 , D_8 are not isomorphic.

Proof. The proof is as follows:

(i) It's obviously the set \mathbb{H} forms an abelian group where $0 \in \mathbb{R}$ is the identity and each element a+bi+cj+dk has addition inverse -a-bi-cj-dk. For multiplication, the operation is close and has identity 1, and distribution law is nativaly true because multiplication is defined in this way.

(ii)

$$(a + bi + cj + dk)(a - bi - cj - dk)$$

$$= a^{2} - (bi + cj + dk)^{2}$$

$$= a^{2} - (-b^{2} - c^{2} - d^{2} + bcij + bdik + cdjk + bcji + bdki + cdkj)$$

$$= a^{2} + b^{2} + c^{2} + d^{2}$$

(iii) To prove that \mathbb{H} is a division ring, it suffices to show that each element is an unit. According to (i), we have

$$(a + bi + cj + dk)(a - bi - cj - dk) = a^2 + b^2 + c^2 + d^2$$

and:

$$(a - bi - cj - dk)(a + bi + cj + dk) = a^{2} + (-b)^{2} + (-c)^{2} + (-d)^{2}$$

Thus, the multiplication inverse of a + bi + cj + dk is $(a - bi - cj - dk)/(a^2 + b^2 + c^2 + d^2)$

(iv) Since the order of \mathbb{Q}_8 is 8, the only possible size of the subgroup of \mathbb{Q}_8 could only be 2 and 4. For the first case, it's impossible since no element of \mathbb{Q}_8 has order of 2. For the second case, recall that there are only two possible structure of group with order 4:

The first one is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, with means there are four elements of order 2, which is impossible as explained before.

The second one is isomorphic to \mathbb{Z}_4 , generated by an element of order 4. Thus, subgroups of 4 are exactly $\{i, -1, -i, 1\}$ or $\{j, -1, -j, 1\}$, $\{k, -1, -k, 1\}$. For any element g of \mathbb{Q}_8 , we have gig^{-1} is still an element of this subgroup. Thus this subgroup is normal.

(v) TODO

1.13

Verify that the multiplication defined in R[x] is associative.

Proof. We have to prove for any $f(x), g(x), h(x) \in R[x], (f(x)g(x))h(x) = f(x)(g(x)h(x))$. Suppose that:

$$f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{i=0}^{m} b_i x^i, h(x) = \sum_{i=0}^{l} c_i x^i$$

Then for (f(x)g(x))h(x) the coefficient of x^p is:

$$\sum_{i+j=p} (fg)_i h_j = \sum_{i+j=p} (fg)_i c_j = \sum_{i+j=p} (\sum_{k+l=i} a_k b_l) c_j \stackrel{!}{=} \sum_{k+l+j=p} a_k b_l c_j$$

Similarly, for f(x)(g(x)h(x)), the coefficient of x^p is:

$$\sum_{i+j=p} f_i(gh)_j = \sum_{i+j=p} f_i(\sum_{k+l=j} b_k c_l) \stackrel{!}{=} \sum_{i+k+l=p} a_i b_k c_l$$

Note that the equation labeled with ! is induced by the associativity and distributive law of R itself. \Box

1.14

Let R be a ring, and let $f(x), g(x) \in R[x]$ be nonzero polynomials. Prove that

$$\deg(f(x) + g(x)) \le \max(\deg(f(x)), \deg(g(x))).$$

Assuming that R is an integral domain, prove that

$$\deg(f(x)q(x)) = \deg(f(x)) + \deg(q(x)).$$

Proof. Let $n = \deg(f(x) + g(x))$, then $\exists f_i \neq 0, i \geq n$ or $\exists g_i \neq 0, i \geq n$. Thus $\max(\deg(f(x)), \deg(g(x))) \geq \deg(f(x) + g(x))$

For the second part, let $n = \deg f(x), m = \deg g(x)$, then $(fg)_{n+m} = f_n g_m \neq 0$. And for any i > n+m, we must have $(fg)_i = 0$ as $f_i = 0, i > n$ and $g_i = 0, i > m$. \square

1.15

Prove that R[x] is an integral domain if and only if R is an integral domain

Proof. If R[x] is an integral domain, then R is an integral domain as R can be viewed as element of R[x]. If R is integral domain, then

$$deg(fg) = deg f + deg g >= max(deg f, deg g) \ge 0$$

when deg f, deg $g \ge 0$. Thus R[x] is an integral domain. \square

1.16

Let R be a ring, and consider the ring of power series R[[x]]

- (i) Prove that a power series $a_0 + a_1x + a_2x^2 + \dots$ is a unit in R[[x]] if and only if a_0 is a unit in R. What is the inverse of 1x in R[[x]]?
- (ii) Prove that R[[x]] is an integral domain if and only if R is.

Proof. The proof is as follows:

(i) If $a_0 + a_1x + a_2x^2 + ...$ has inverse, let the inverse be $b_0 + b_1x + b_2x^2 + ...$, then we have

$$1 = (a_0 + a_1x + a_2x^2 + \dots)(b_0 + b_1x + b_2x^2 + \dots)$$

= $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$

We must have $a_0b_0 = 1$, similarly we have $b_0a_0 = 1$. Thus indicates a_0 is an unit.

On the other hand, if a_0 has inverse, we formally write the inverse of f as: $f^{-1} = b_0 + b_1 x + b_2 x^2 + \dots$ Thus $f f^{-1} = 1$ implies the following equations:

$$a_0b_0 = 1$$

$$a_0b_1 + a_1b_0 = 0$$

$$a_0b_2 + a_1b_1 + a_2b_0 = 0$$

$$a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 = 0$$

g is constructed by solve these equations:

$$b_0 = a_0^{-1}$$

$$b_1 = -a_0^{-1} a_1 b_0$$

$$b_2 = -a_0^{-1} (a_1 b_1 + a_2 b_0)$$
...

$$b_k = -a_0^{-1} (\sum_{i=1}^k a_i b_{k-i})$$

This indicates f is an unit.

(ii) If $f, g \in R[[x]]$ and $f, g \neq 0$. Then write them in the following form:

$$f = x^{p}(a_{p} + a_{p+1}x + \ldots), g = x^{q}(b_{q} + b_{q+1}x + \ldots)$$

Then $fg = x^{p+q}(a_pb_q + ...) \neq 0$. In addition, R is Commutative indicates R[[x]] is also commutative, thus R[[x]] is an integral domain.

2. Category Ring

2.3

Let S be a set, and consider the power set ring $\mathscr{P}(S)$ (Exercise 1.2), and the ring $(\mathbb{Z}/2\mathbb{Z})^S$ you constructed in Exercise 1.3. Prove that these two rings are isomorphic. (Cf. Exercise I.2.11.)

Proof. First note that $\mathscr{P}(S)$ and $(\mathbb{Z}/2\mathbb{Z})^S$ are isomorphic in **Set**. For each $f \in (\mathbb{Z}/2\mathbb{Z})$, maps f to $\varphi(f)$ by the following subset of S:

$$\varphi(f) = \{ s \in S \mid f(s) = [1]_2 \}$$

Then it's easy to show that φ is both bijective and a ring homomorphim, therefore a ring isomorphism. \square

2.6

Let $\alpha: R \to S$ be a fixed ring homomorphism, and let $s \in S$ be an element commuting with $\alpha(r)$ for all $r \in R$. Then there is a unique ring homomorphism $\overline{\alpha}: R[x] \to S$ extending α , and sending x to s

Proof. Define $\overline{\alpha}$ as follows:

$$\overline{\alpha}(\sum_{i>0} a_i x^i) = \sum_{i>0} \alpha(a_i) s^i$$

To prove this is a ring homomorphism, we need to show that $\overline{\alpha}$ maintains both addition and multiplication (and send identity to identity, which is obvious). Addition is easy to verify, for multiplication, it is worthy noted s commutes with $\alpha(r), r \in R$ makes it maintains multiplication:

$$\overline{\alpha}((\sum_{i\geq 0} a_i x^i)(\sum_{i\geq 0} b_i x^i)) = \overline{\alpha}(\sum_{i\geq 0} (\sum_{k+l=i} a_k b_l) x^i) = \sum_{i\geq 0} \alpha(\sum_{k+l=i} a_k b_l) s^i$$

$$\overline{\alpha}(\sum_{i\geq 0} a_i x^i) \overline{\alpha}(\sum_{i\geq 0} b_i x^i) = (\sum_{i\geq 0} \alpha(a_i) s^i)(\sum_{i\geq 0} \alpha(b_i) s^i)$$

$$= \sum_{i\geq 0} (\sum_{k+l=i} \alpha(a_k) s^k \alpha(b_l) s^l)$$

$$= \sum_{i\geq 0} (\sum_{k+l=i} \alpha(a_k) \alpha(b_l) s^i)$$

$$= \sum_{i\geq 0} (\alpha(\sum_{k+l=i} a_k b_l) s^i)$$

$$= \overline{\alpha}((\sum_{i>0} a_i x^i)(\sum_{i>0} b_i x^i))$$

Note that ! is true because s commutates with all $\alpha(a_k)$ and $\alpha(b_l)$. The uniqueness of $\overline{\alpha}$ comes from the fact that $\overline{\alpha}$ is homomorphism, and $\overline{\alpha}(r) = \alpha(r), \overline{\alpha}(x) = s$. \square

NOTE Example 2.2 asks for particular situation, where a ring homomorphism $\varphi: \mathbb{Z}[x] \to S$ extends the unique homomorphism $f: \mathbb{Z} \to S, n \mapsto n1_S$ and sends x to any element of S doesn't necessarily consider the commutativity of S. The answer is clean here, any element $s \in S$ must commutes with the image of f since $s(n1_S) = ns = (n1_S)s$

2.9

The center of a ring R consists of the elements a such that ar = ra for all $r \in R$. Prove that the center is a subring of R. Prove that the center of a division ring is a field.

Proof. Denote the center of R as Z(R), then for any $s, t \in Z(R), r \in R$, we have r(s-t) = rs - rt = sr - tr = (s-t)r, which indicates that $s-t \in Z(R)$. Thus, Z(R) is an addition subgroup of R.

Moreover, $\forall s, t \in Z(R), r \in R$, we have (st)r = s(tr) = s(rt) = (sr)t = (rs)t = r(st). Thus $rs \in Z(R)$, indicating Z(R) is closed under multiplication. The associativity and distributive law natively holds in Z(R). And $1_R \in Z(R)$ obviousl. In conclusion, Z(R) is a subring of R.

If R is a division ring, for any $s \in Z(R)$, we must prove that $s^{-1} \in Z(R)$. Actually, for any $s \in Z(R)$, $r \in R$, $sr = rs \Rightarrow rs^{-1} = s^{-1}r$. Thus $s^{-1} \in Z(R)$. And Z(R) is obviously commutative, and therefore a field. \square

2.10

The *centralizer* of an element a of a ring R consists of the elements $r \in R$ such that ar = ra. Prove that the centralizer of a is a subring of R, for every $a \in R$. Prove that the center of R is the intersection of all its centralizers. Prove that every centralizer in a division ring is a division ring.

Proof. To prove the centralizer of $a \in R$ is a subring of R basically follows the same way as exercise 2.9 does.

For the second part, if $s \in Z(R)$, then r commutes with any element $r \in R$, thus $s \in \operatorname{Cen}_R(r), r \in R$. and $s \in \bigcap_{r \in R} \operatorname{Cen}_R(r)$, indicating $Z(R) \subseteq \bigcap_{r \in R} \operatorname{Cen}_R(r)$. On the other hand, any element of $\bigcap_{r \in R} \operatorname{Cen}_R(r)$ must commute with any element of R, thus belongs to Z(R). In conclusion,

$$Z(R) = \bigcap_{r \in R} \operatorname{Cen}_R(r).$$

For the third part, it suffices to show that if r commutes with a then so does r^{-1} . It is done in exercise 2.9 already. \square

2.11

Let R be a division ring consisting of p^2 elements, where p is a prime. Prove that R is commutative.

Proof. Assume that R is not commutative, consider the center of R, denoted as Z(R). Then $Z(R) \neq R$. Note that Z(R) is an addition subgroup of R, Then it must have |Z(R)| = p since |Z(R)| divides |R|, which is p^2 .

Consider one element $r \in R, r \notin Z(R)$, and its centralizer, denoted as $\operatorname{Cen}_R(r)$, then since $r \notin Z(R)$, it means $\operatorname{Cen}_R(r) \neq R$. And exercise 2.10 indicates $\operatorname{Cen}_R(r)$ is a subring of R, thus $|\operatorname{Cen}_R(r)| = p$.

Exercise 2.10 also shows that $Z(R) \subseteq \operatorname{Cen}_R(r)$, their cardinality equals to each other means $Z(R) = \operatorname{Cen}_R(r)$. However, it's obvious that $r \in \operatorname{Cen}_R(r)$ but $r \notin Z(R)$, a contradiction.

In conclusion, we must have Z(R)=R and R is therefore commutative, further more, it's a field. \square

NOTE In fact, any finite division ring is commutative, thus a field. But the proof used here seems hard to extend to more complex condition, i.e. the case of arbitary integer. Actually, it's even hard to extend this method to $p^n, n \geq 3$ case: |Z(R)| might be p^3 and $\operatorname{Cen}_R(r)$ might be p^2 and no contradictions so far.

2.12

Consider the inclusion map $\iota: \mathbb{Z} \to \mathbb{Q}$. Describe the cokernel of ι in \mathbf{Ab} , and its cokernel in \mathbf{Ring} (as defined by the appropriate universal property in the style of the one given in § II.8.6)

Proof. Before we describe the cokernel requested above, we will review what these concepts(and kernel) means in category conception:

Kernel Let G, H be group and $f: G \to H$ is a group homomorphism.

Then Consider the following category: \mathscr{K}_{φ} : The object of \mathscr{K}_{φ} is one group S associated one morphism j, such that the following diagram holds:

$$S \xrightarrow{j} G \xrightarrow{f} H$$

And the morphism between (j_1, S_1) and (j_2, S_2) is the following diagram:

And ker φ is defined to be the final object of \mathscr{K}_{φ} . That is, the following diagram holds:

And ker f exists as ker $f = \{g \in G \mid f(g) = 0\}$. It's easy to verify such set is a subgroup of G and this subgroup associated with the injection homomorphism satisfies the universal property of ker.

Cokernel Conceptually, cokernel just reverse all arrows in the above diagram. Let G, H be groups and $f: G \to H$ is a group homomorphism, consider the category \mathscr{C}_f of which objects and morphisms are following diagrams:

And coker f is an initial object in this category, that is, the following diagram

holds:

As we have proved before, in \mathbf{Grp} , $\operatorname{coker} f$ is H/N, where N is the smallest normal subgroup that contains $\operatorname{Im} f$. In particular, $\operatorname{coker} f = H/\operatorname{Im} f$ in \mathbf{Ab} .

If we replace groups with rings and group homomorphisms with ring homomorphisms, we can naturally get the definition of kernel and cokernel in **Ring**.

Now back to the problem itslef,coker ι in \mathbf{Ab} , as stated, is \mathbb{Q}/\mathbb{Z} . The associated π is $\pi(q) = q + \mathbb{Z}$. And coker ι in \mathbf{Ring} is $(0, \{0\})$. Actually if (j, S) where S is a ring and j is a ring homomorphism from \mathbb{Q} to S, if it satisfies $j \circ \iota = 0$. Then we have:

$$j(\frac{p}{q}) = j(pq^{-1}) = j(p)j(q)^{-1} = j(\iota(p))j(\iota(q)) = 0(p)0(q)^{-1} = 0$$

Thus j maps each element to be 0 in S, thus S could only be $\{0\}$ since $1_S = f(1_{\mathbb{Q}}) = 0$. This indicates there is only one object in this category, and coker ι is this object. \square

2.13

Verify that the 'componentwise' product $R_1 \times R_2$ of two rings satisfies the universal property for products in a category, given in § I.5.4

Proof. $(R_1 \times R_2, \pi_1, \pi_2)$ is the product of R_1 and R_2 , where $\pi_1(r_1, r_2) = r_1$ and $\pi_2(r_1, r_2) = r_2$. It's easy to show that π_1, π_2 are ring homomorphisms, we must show that the following diagrams holds:

For (R, f_1, f_2) , defines $\varphi: R \to R_1 \times R_2, r \mapsto (f_1(r), f_2(r))$. Then the diagram is commutative. To prove the uniqueness, consider another ring homomorphism $\varphi': R \to R_1 \times R_2$ makes this diagram commutes, then $\varphi'(r) = (r_1, r_2)$. Further we have $f_1(r) = \pi_1(\varphi(r)) = \pi_1(r_1, r_2) = r_1, f_2(r) = \pi_2(\varphi(r)) = \pi_2(r_1, r_2) = r_2$. Thus $\varphi(r) = (f_1(r), f_2(r))$, the uniqueness is proved.

In conclusion, $(R_1 \times R_2, \pi_1, \pi_2)$ is the product of R_1 and R_2 . \square

2.16

Prove that there is (up to isomorphism) only one structure of ring with identity on the abelian group $(\mathbb{Z}, +)$.