Семинар 19

Задачи:

1. Задачник. §40, задача 40.6

2. Задачник. §40, задача 40.9

3. Пусть $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ линейный оператор заданный матрицей

$$A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$$

(а) Найдите собственные значения и базисы корневых подпространств.

(b) Покажите, что все пространство раскладывается в прямую сумму корневых и найдите проекторы на каждое корневое подпространство вдоль суммы оставшихся.

4. Пусть $\phi: V \to V$ обратимый оператор в комплексном векторном пространстве. Выразите все собственные значения оператора $\phi^2 - \phi^{-1}$ через собственные значения ϕ .

5. Найдите комплексные собственные значения следующих матриц

6. Пусть $\varphi, \psi \colon V \to V$ – два линейных оператора, где V – векторное пространство над полем \mathbb{C} .

(а) Напомним, что $[\varphi, \psi] = \varphi \psi - \psi \varphi$ называется коммутатором. Покажите, что если $\mathrm{rk}[\varphi, \psi] \leqslant 1$, то для φ и ψ существует общий ненулевой собственный вектор. (Указание: постарайтесь найти общее инвариантное подпространство и воспользуйтесь индукцией по размерности пространства).

(b) Приведите пример операторов $\varphi, \psi \colon V \to V$ на некотором пространстве таких, что $\mathrm{rk}[\varphi, \psi] = 2$ и у них нет общего собственного вектора.