W4 – Eksperyment niezawodnościowy

Henryk Maciejewski Marek Woda

Badania niezawodnościowe i analiza statystyczna wyników

1. Co to są badania niezawodnościowe i jak się je prowadzi

2. Sposoby prezentacji danych z eksperymentu

 Sposoby wyznaczanie rozkładu zmiennej losowej na podstawie danych z eksperymentu

Co to są badania niezawodnościowe i jak się je przeprowadza

Celem badań jest określenie rozkładu zmiennej losowej opisującej czas życia elementu.

Czas życia określamy zwykle na podstawie eksperymentu.

zmienna losowa T
– określająca
model niezawodnościowy
elementu

Pojęcia podstawowe i stosowana terminologia

Populacja – zbiór wszystkich elementów danego rodzaju

<u>Próba losowa</u> – wybrane w pewien sposób niektóre elementy populacji, opisane przez wektor:

$$T = T_1, T_2, ..., T_n$$

T_i - zmienna losowa, czas życia i-tego elementu (1≤i≤ n)

<u>Badanie</u> – sposób uzyskania wiedzy o elementach z próby losowej, wynikiem badania jest

$$t_1, t_2, ..., t_n$$

t_i – realizacja zmiennej losowej T_i

<u>Statystyka</u> – funkcja wektora losowego

$$S(T) = S(T_1, T_2, ..., T_n)$$

Przeprowadzanie badań niezawodnościowych

- Pobranie próby losowej
- Notowanie chwil uszkodzeń kolejnych elementów, z jednoczesnym sprawdzaniem czy nie jest spełnione kryterium zakończenia badania

Kryteria zakończenia badania:

- Uszkodzenie wszystkich n elementów próby losowej (badanie pełne)
- Przekroczenie dopuszczalnego czasu badania T_{test} (próba obcięta, Type I censoring, time-censored test)
- Uszkodzenie zadanej liczby (k<n) elementów (próba obcięta, Type II censoring, failure-censored test)
- Uszkodzenie zadanej liczby elementów k lub przekroczenie dopuszczalnego czasu badania $T_{\rm test}$

Wynik badania niezawodnościowego

Dla próby pełnej – zbiór realizacji czasów życia:

$$t_1 < t_2 < ... < t_n$$

• Dla próby obciętej:

t₁ < t₂ < ... < t_k – czasy życia zmierzone dla k elementów, które uległy uszkodzeniu

T₁,...,T_{n-k} – czasy pracy n-k elementów, które do końca testu nie uległy uszkodzeniu

Przyspieszone badania niezawodności: jeśli w warunkach nominalnych nie jest możliwe w realnym czasie przeprowadzenie eksperymentu, wówczas wymusza się szybsze wystąpienie uszkodzeń przez zwiększenie poziomu stresu, a następnie odwzorowuje się wyniki badań na warunki nominalne.

Sposoby prezentacji danych z eksperymentu

Histogram

Budowa histogramu:

- Wyznaczamy zakres rysowania
- Podział zakresu rysowania na równe przedziały
- Wyznaczenie dla każdego przedziału liczby należących do niego danych (lub częstości)
- Narysowanie wykresu słupkowego

Przykład

Z rozkładu normalnego o parametrach μ = 10 i σ = 2, wylosowano n = 100 liczb. Wpływ liczby m przedziałów na wygląd histogramu.

Dystrybuanta empiryczna

Funkcja określona następująco:

$$\hat{F}_n(t) = \begin{cases} 0 & t \le t_1 \\ \frac{k}{n} & t_k < t \le t_{k+1} \\ 1 & t > t_n \end{cases}$$

Przykład

Z rozkładu normalnego o parametrach μ = 10 i σ = 2, wylosowano N liczb. Jak wygląda dystrybuanta empiryczna dla różnych N?

Twierdzenie (Gliwienko-Cantelli)

Jeśli F(t) jest dystrybuantą, z której pobrano próbę losową i niech

$$D_n = \sup_{-\infty < t < +\infty} \left| \hat{F}_n(t) - F(t) \right|$$

Wówczas

$$P\left(\lim_{n\to\infty}D_n=0\right)=1$$

Dystrybuanta empiryczna zbiega się do teoretycznej z prawdopodobieństwem 1.

Wyznaczanie rozkładu zmiennej losowej na podstawie danych z eksperymentu

Sformułowanie zadania estymacji parametrycznej

Zakładamy że wektor $T = T_1, T_2, ..., T_n$ opisujący próbę losową został pobrany z parametrycznej rodziny rozkładów

$$\{F_{\theta} : \theta \in \Theta\}$$

przy czym wartość parametru (parametrów) θ identyfikującego rozkład nie jest znana.

Jak wyznaczyć nieznany parametr θ na podstawie próby losowej?

Estymacja θ metodą największej wiarogodności Metodę podał R.A. Fisher

Jako wartość parametru θ przyjąć wartość $\hat{\theta}$, która maksymalizuje funkcję wiarogodności:

$$L(t_1, t_2, \dots, t_n, \theta) = \prod_{i=1}^n f(t_i, \theta)$$

gdzie $f(t,\theta)$ – gęstość rozkładu populacji.

Estymacja heta metodą największej wiarogodności

W przypadku <u>prób obciętych</u>, parametr $\hat{\theta}$ wyznaczamy poprzez maksymalizację wyrażenia:

$$L(t_1, t_2, ..., t_k, T_1, T_2, ..., T_{n-k}, \theta) =$$

$$= \prod_{i=1}^{k} f(t_i, \theta) \cdot \prod_{j=1}^{n-k} \left(1 - F(T_j, \theta)\right)$$

gdzie $f(t,\theta)$ – gęstość, $F(t,\theta)$ - dystrybuanta rozkładu populacji.

Komputerowe metody analizy wyników badań niezawodnościowych

Procedurę zilustrujemy przykładem (czasy życia transformatorów):

- zarejestrowano następujące czasy życia t
- censor = 0 oznacza czas do awarii,
- censor = 1 oznacza czas pracy do zakończenia badania, element nie uległ awarii.

Jaki jest rozkład zmiennej losowej opisującej czas życie elementu?

Narzędzia:

- Uniwersalne oprogramowanie matematyczne (np. Matlab, R)
- Specjalistyczne oprogramowanie do analizy danych (np. system SAS firmy SAS Institute)

t	censor
14219	1
14251	1
14277	1
14277	1
14277	1
14277	1
14323	1
14324	1
14383	1
14403	1
14961	1
15029	1
15129	1
15129	1
15129	1
15174	1
15187	1
15187	1
15192	1
14130	0
10795	0
8558	0
10667	0
6153	0
11795	0
9265	0
5685	0
8151	0
11599	0
5403	0
8618	0
10468	0
8711	0
12132	0
9917	0
9664	0
5372	0
3565	0
9141	0
7753	0
9327	0
5834	0

Przykładowa procedura (dane obcięte)

 Sporządzić <u>wykres probabilistyczny</u> dla wybranych rozkładów prawdopodobieństwa (np. Weibulla, wykładniczego, ...)

2. Jeśli dane pochodzą z danego rozkładu, wówczas naniesione na wykres probabilistyczny powinny ułożyć się <u>mniej więcej wzdłuż linii prostej</u>.

3. Wyznaczamy parametry rozkładu (np. metodą największej wiarogodności).

Wykres probabilistyczny dla danego rozkładu – uzyskujemy przez przeskalowanie osi t i F(t) tak żeby dystrybuanta dla tego rozkładu była linią prostą.

Np. dla rozkładu wykładniczego $F(t)=1-\exp(-\lambda t)$, zachodzi $\log(1-F(t))=-\lambda t \rightarrow stąd w układzie współrzędnych (t, <math>\log(1-F(t))$) dystrybuanta dla tego rozkładu jest linią.

W praktyce często stosujemy log przy podstawie 10.

Przykład – analiza czasu życia transformatorów Zakładamy rozkład wykładniczy

t	censor
14219	1
14251	1
14277	1
14277	1
14277	1
14277	1
14323	1
14324	1
14383	1
14403	1
14961	1
15029	1
15129	1
15129	1
15129	1
15174	1
15187	1
15187	1
15192	1
14130	0
10795	0
8558	0
10667	0
6153	0
11795	0
9265	0
5685	0
8151	0
11599	0
5403	0
8618	0
10468	0
8711	0
12132	0
9917	0
9664	0
5372	0
3565	0
9141	0
7753	0
9327	0
5834	0

Zakładamy rozkład Weibulla

Analiza wyników

- Stwierdzamy, że dla rozkładu Weibulla dane "układają się" wzdłuż linii prostej – wybieramy więc ten rozkład
- Wyznaczamy parametry rozkładu (metoda największej wiarogodności):

Shape =
$$2.367$$

• Wartość średnia dla tego rozkładu:

$$E(T) = 27539$$

Przykładowa procedura (dane pełne)

- Sporządzić histogram dla zarejestrowanych danych.
- Na podstawie kształtu histogramu założyć możliwy rozkład prawdopodobieństwa czasu życia.
- Dla wytypowanego rozkładu wyznaczyć parametry (np. metodą największej wiarogodności).
- Sprawdzić jakość dopasowania (<u>goodness-of-fit</u>), poprzez weryfikację hipotezy H0 o zgodności danych z założonym rozkładem.

Procedura testowa:

jeśli p-value < 0.05 – wówczas odrzucamy hipotezę o zgodności przyjętego rozkładu z danymi. Należy wtedy poszukać innego rozkładu.

 Możemy również posłużyć się wykresami probabilistycznymi – jak w przykładzie dla prób obciętych.

<u>Przykład – analiza próby pełnej</u>

Zakładamy rozkłady:

- Wykładniczy
- Weibulla
- Lognormalny

Analiza nieparametryczna

- Nie zakładamy, że czas życia należy do parametrycznej rodziny rozkładów
- Wyznaczamy estymatory nieparametryczne funkcji niezawodności, intensywności uszkodzeń itd. bezpośrednio z próby (obciętej).
- Narzędzie komputerowe proc lifetest (system SAS)

t	censor
14219	1
14251	1
14277	1
14277	1
14277	1
14277	1
14323	1
14324	1
14383	1
14403	1
14961	1
15029	1
15129	1
15129	1
15129	1
15174	1
15187	1
15187	1
15192	1
14130	0
10795	0
8558	0
10667	0
6153	0
11795	0
9265	0
5685	0
8151	0
11599	0
5403	0
8618	0
10468	0
8711	0
12132	0
9917	0
9664	0
5372	0
3565	0
9141	0
7753	0
9327	0
5834	0

Analiza nieparametryczna

Przykład dla transformatorów – cd

t	censor
14219	1
14251	1
14277	1
14277	1
14277	1
14277	1
14323	1
14324	1
14383	1
14403	1
14961	1
15029	1
15129	1
15129	1
15129	1
15174	1
15187	1
15187	1
15192	1
14130	0
10795	0
8558	0
10667	0
6153	0
11795	0
9265	0
5685	0
8151	0
11599	0
5403	0
8618	0
10468	0
8711	0
12132	0
9917	0
9664	0
5372	0
3565	0
9141	0
7753	0
9327	0
5834	0

t	censor
14219	1
14251	1
14277	1
14277	1
14277	1
14277	1
14323	1
14324	1
14383	1
14403	1
14961	1
15029	1
15129	1
15129	1
15129	1
15174	1
15187	1
15187	1
15192	1
14130	0
10795	0
8558	0
10667	0
6153	0
11795	0
9265	0
5685	0
8151	0
11599	0
5403	0
8618	0
10468	0
8711	0
12132	0
9917	0
9664	0
5372	0
3565	0
9141	0
7753	0
9327	0
5834	0

t	censor
14219	1
14251	1
14277	1
14277	1
14277	1
14277	1
14323	1
14324	1
14383	1
14403	1
14961	1
15029	1
15129	1
15129	1
15129	1
15174	1
15187	1
15187	1
15192	1
14130	0
10795	0
8558	0
10667	0
6153	0
11795	0
9265	0
5685	0
8151	0
11599	0
5403	0
8618	0
10468	0
8711	0
12132	0
9917	0
9664	0
5372	0
3565	0
9141	0
7753	0
9327	0
5834	0