INGENIERÍA DE SOFTWARE I

Unidad V

Tema: Metodologías ágiles. RUP Ágil

UNTDF - 2020

Rational Unified Process (RUP)

Inicialmente UP (Booch, Jacobson, Rumbaugh)

Desarrollado como RUP por Rational Adquirido por IBM

RUP. Claves para el Desarrollo de SW

Herramientas

p.e. Rational Rose

Proceso

p.e. Rational Unified Process

RUP (Proceso Unificado de Rational)

- RUP es un marco de referencia de procesos:
- Influenciado por patrones de proceso y de análisis
- Captura muchas buenas prácticas del Desarrollo de SW
- Provee un enfoque disciplinado para asignar tareas y responsabilidades dentro de una organización,
- RUP es un producto desarrollado y mantenido por Rational Software (IBM)
- Brinda una guía para el uso óptimo y efectivo de UML
- Tiene soporte de herramientas que automatizan gran parte del proceso
- Las actividades de RUP crean y mantienen Modelos
- Permite una variedad de configuraciones según las necesidades y el tipo de proyecto

Ingeniería de Software I, 2020

Proceso de Desarrollo RUP

- El Proceso RUP (Proceso Unificado de Rational) no es simplemente un proceso, sino un marco de trabajo extensible que puede ser adaptado a organizaciones o proyectos específicos. El RUP puede usarse en un estilo muy tradicional de cascada o de una manera ágil
- RUP Ágil: Es una versión simplificada de RUP. Este describe de una manera simple y fácil de entender la forma de desarrollar aplicaciones de software usando técnicas ágiles y conceptos que aún se mantienen válidos en RUP.
- RUP contempla el uso de prácticas adoptadas por las metodologías ágiles, como es el Desarrollo Iterativo e Incremental

.

RUP. Prácticas del desarrollo ágil

- RUP y el desarrollo iterativo.
 - En este enfoque el desarrollo se organiza en una serie de miniproyectos cortos de duración fija llamados iteraciones.
 - El resultado de cada iteración es un sistema que puede ser probado, integrado y ejecutado.
 - Cada iteración incluye sus propias actividades de análisis, diseño, implementación y pruebas.
- El ciclo de vida iterativo se basa en la ampliación y refinamientos sucesivos del sistema mediante múltiples iteraciones.
- El sistema crece a lo largo del tiempo en cada iteración, por lo cual el enfoque es iterativo e incremental

RUP. Iteraciones

- El resultado de cada iteración:
 - Es un sistema ejecutable, pero incompleto.
 - No es un prototipo experimental o desechable, sino un subconjunto del sistema final.
- Cada iteración:
- En general aborda nuevos requerimientos y amplía el sistema incrementalmente.
- Puede centrarse en otras cuestiones, por ejemplo, mejorar el rendimiento en lugar de extender el sistema con nuevas funcionalidades.

RUP. Características

Proceso Conducido por los Casos de Uso

Proceso Iterativo e Incremental

Proceso Centrado en la Arquitectura

RUP. Conducido por Casos de Uso

Capturar, definir y validar los casos de uso

Realizar los casos de uso

Verificar que se satisfacen correctamente los casos de uso

RUP. Proceso Iterativo e incremental

- Evolución de prototipos ejecutables que se muestran a los usuarios y clientes
- En cada iteración se reproduce el ciclo de vida en cascada a menor escala
- Los objetivos de una iteración se establecen en función de la evaluación de las iteraciones precedentes
- Una iteración es una secuencia de actividades con un plan establecido, resultando en una versión ejecutable.

RUP. Proceso Iterativo e incremental

En cada iteración

 Las actividades se encadenan en una mini-cascada con un alcance limitado por los objetivos de la iteración

RUP. Iteraciones

- Cada iteración conlleva la elección de un pequeño conjunto de requerimientos (casos de uso) y rápidamente, diseñar, implementar y probar.
- De esta forma el trabajo se desarrolla a través de una serie de ciclos estructurados en: "Construir-retroalimentar-adaptar"
- Una iteración en un proceso ágil puede durar de 2 a 6 semanas.
- Con iteraciones largas pierde su sentido el desarrollo iterativo

RUP. Centrado en la Arquitectura

- Arquitectura de un sistema es la organización o estructura de sus partes más relevantes
- Un arquitectura ejecutable es una implementación parcial del sistema, construida para demostrar algunas funciones y propiedades
- RUP establece refinamientos sucesivos de una arquitectura ejecutable, construida como un prototipo evolutivo

RUP. Dimensiones

RUP tiene 2 dimensiones:

- El eje horizontal representa tiempo y demuestra los aspectos del ciclo de vida del proceso
- El eje vertical representa las disciplinas (workflows), que agrupan actividades definidas lógicamente
- La primera dimensión (eje horizontal) representa el aspecto dinámico del proceso y se expresa en términos de fases, de iteraciones, y la finalización de las fases.
- La segunda dimensión (eje vertical) representa el aspecto estático del proceso: cómo se describe en términos de componentes de proceso, las disciplinas, las actividades, los flujos de trabajo, los artefactos, y los roles.

Dimensiones de RUP

RUP tiene dos dimensiones:

RUP. Fases y Workflows

- Una Fase es un intervalo de tiempo entre dos hitos importantes del proceso donde:
 - Se cumple un conjunto definido de objetivos
 - Se completan artefactos
 - Se toman decisiones de continuar o no
- Fases: Inicio, Elaboración, Construcción, Transición
- Dentro de cada fase hay varias iteraciones
- Una iteración representa un ciclo de desarrollo completo.
- El énfasis en cada disciplina es diferente dependiendo de la fase
- Workflows: Secuencia de actividades que produce un resultado de valor observable. Cada workflow se enfoca en distintas disciplinas (Modelado de Negocio, Diseño, Implementación, Test, Despliegue)

RUP. Fases e Hitos

Fases de RUP

Inicio o Estudio de oportunidad (inception)

- Se define el alcance y objetivos del proyecto
- Se define la visión del sistema
- > Se define la **funcionalidad y capacidades** del producto
- Se identifican los principales riesgos

Elaboración

- Tanto la funcionalidad como el dominio del problema se estudian en profundidad
- > Se define una arquitectura básica a través de iteraciones
- Gran parte del trabajo implica análisis y diseño
- Se planifica el proyecto considerando recursos disponibles

Fases de RUP

Construcción

- Se refina de manera incremental la arquitectura básica obtenida durante las primeras fases continuando con iteraciones de análisis, diseño e implementación
- Gran parte del trabajo es programación y pruebas
- Se completa el sistema para su despliegue y se documenta tanto el sistema construido como el manejo del mismo
- Esta fase proporciona un producto construido junto con la documentación

Transición

- Se libera el producto y se entrega al usuario para un uso real
- Se incluyen tareas de marketing, empaquetado atractivo, instalación, configuración, entrenamiento, soporte, mantenimiento, etc.
- Los manuales de usuario se completan y refinan con la información anterior

Disciplinas de RUP

- A través de las fases se desarrollan disciplinas:
- Las primarias son las necesarias para la realización de un proyecto de *software*:
 - Modelado del Negocio.
 - Requerimientos
 - Análisis
 - Diseño
 - Implementación
 - Pruebas
 - Despliegue
- Las de apoyo (sirven de apoyo a las primarias) son:
 - Entorno.
 - Gestión del Proyecto
 - Gestión de configuración y cambios

RUP Ágil

RUP Agil

RUP es un marco de referencia de procesos:

- Permite una variedad de configuraciones según las necesidades y el tipo de proyecto.
- RUP Ágil (Larman) es una de ellas

RUP Ágil se divide en 4 fases llamadas Inicio, Elaboración, Construcción y Transición.

Esas fases se dividen en Entrega iteraciones, cada una de las Configuración y Cambio cuales produce una pieza Gerencia de Proyecto Ambiente de software demostrable.

Fases y Disciplinas de RUP Ágil

Idem RUP

- Inicio: Visión aproximada, análisis del negocio, alcance, estimaciones imprecisas
- Elaboración: Visión refinada, implementación iterativa del núcleo central de la arquitectura, resolución de riesgos, identificación de más requisitos (alrededor del 80%) y alcance, estimaciones más realistas
- Construcción: implementación iterativa del resto de requisitos y elementos más fáciles, preparación para el despliegue
- Transición: pruebas beta, despliegue.

Fases y Disciplinas de RUP - RUP Ágil

Recordar que las disciplinas de RUP producen modelos

Qué implica una configuración RUP Ágil???

 La intención de los autores de RUP no fue hacer un proceso pesado, sino un amplio conjunto de actividades y artefactos opcionales, fácilmente adaptables.

Un RUP ágil implica:

- Optar por un conjunto pequeños de actividades y artefactos
- No se completan todos los requerimientos y diseño antes de la implementación. Surgen durante las iteraciones.
- No hay un Plan detallado para todo el proyecto, sino un Plan de alto nivel denominado Plan de Fase, que estima fecha de terminación y otros hitos importantes, sin detalles.

Ejemplo Disciplinas y Artefactos de RUP Ágil

- RUP define una serie de artefactos (no-software) o workproducts (productos de cada workflow).
- Estos productos están organizados dentro de las disciplinas.

Disciplina	Artefacto (Workproduct)	Comentario
Modelado de Negocio	- Modelo de Dominio	Clases conceptuales del dominio y sus relaciones
Requerimientos	VisiónModelo de Casos de UsoEspecificación suplementaria	Síntesis de necesidades y características de stakeholders Conjunto de Casos de uso describiendo funcionalidad Requerimientos no funcionales
Diseño	 Modelo de Diseño Documento de Arquitectura de Software 	Modelo de objetos describiendo la realización de Casos de Uso Descripción general del sistema desde distintas vistas

Disciplinas de RUP

- En cada iteración se desarrollan varias disciplinas.
- El énfasis sobre cada disciplina varía dependiendo de la fase donde se desarrolla (función del tiempo).

Fuente: Larman, 2003

Desarrollo Iterativo en RUP Ágil

Cada iteración comprende:

- Planificar la iteración (estudio de riesgos)
- Análisis de los Casos de Uso y escenarios
- > Diseño de opciones arquitectónicas y diseño detallado
- Codificación y pruebas. La integración del nuevo código con el existente de iteraciones anteriores se hace gradualmente durante la construcción
- Evaluación de la entrega ejecutable (evaluación del prototipo en función de las pruebas y de los criterios definidos)
- Preparación de la entrega (documentación e instalación del prototipo)

Desarrollo Iterativo en RUP Ágil

- Las versiones ejecutables preliminares del sistema obtenidas en cada iteración se muestran a los usuarios y clientes para su validación
- Los objetivos de una iteración se establecen en función de la evaluación de las iteraciones precedentes

Ejemplo Adaptación de RUP Ágil

- UP requiere ser adaptado a cada proyecto eligiendo un conjunto de prácticas y workproducts a crear del conjunto opcional disponible.
- Esta adaptación se llama Caso de Desarrollo del Proyecto
- Se muestra un Ejemplo de Caso utilizado por un grupo de desarrollo

Discipline	Techniques	Artifact	Incep.	Elab.	Const.	Trans.
		Iteration	11	E1En	C1Cn	T1Tn
Requirements	one-day timeboxed requirements workshops, prototypes, paper-based UI mock-ups.	Vision	Sai	r		
	, p. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Supplementary Specification	S	r		
Design	Pair designing doing whiteboard sketches captured with camera, test-first design, reverse engineering.	Design Model		s	r	
		SW Architecture Document		S		
Project Mgmt	All Scrum management practices	Risk List	s	r	r	r
Implementation	Pair programming, test-first development, continuous integration	code, graphics, etc.	S	r	r	r

Ejemplo de configuración de un proceso RUP Ágil (Larman, 2003)

Se selecciona un conjunto de Modelos y Artefactos para modelar el problema

RUP: Fase de Inicio

Fase de Inicio

Preguntas de la fase de inicio

Fase de Inicio: Objetivos

Objetivos principales:

- Analizar casos de uso importantes (aprox. 10 %)
- Analizar requerimientos no funcionales críticos
- Justificar el proyecto
- Configurar el entorno de desarrollo.

La Fase de Inicio no es la fase de "Requerimientos"

Fase de Inicio: Artefactos

Artefactos importantes:

- Visión: descripción del proyecto a alto nivel (gestión)
- Modelo de casos de uso: Requerimientos funcionales (esenciales!), explicitando requerimientos no funcionales
- Glosario: se necesita para una comunicación clara
- Marco de desarrollo: el proceso real utilizado y los artefactos a entregar. Descripción de pasos y artefactos de RUP adaptados al proyecto actual.
- Otros: lista de riesgos, prototipos, plan de iteración (elaboración01), estimaciones de la próxima fase del plan de desarrollo del SW, etc.

Estos artefactos se completan parcialmente en esta fase y se refinan después.

Fase de Inicio en RUP Agil: Artefactos

Artefacto	Comentario		
Visión y análisis del negocio	Objetivos, restricciones de alto nivel, modelado de procesos de negocio		
Modelo de Casos de uso	Se completan parcialmente req. func. (por ej., nombres de CU y actores) y no func.		
Especificación complementaria	Se describen otros requisitos		
Glosario	Terminología clave del dominio		
Riesgos/Plan de gestión de riesgos	Riesgos del negocio e ideas para mitigarlos		
Prototipos y pruebas de conceptos	Pruebas y experimentos de programación para aclarar conceptos con prototipos		
Plan de Iteración	Describe qué hacer en la primera iteración de la elaboración		
Plan de Desarrollo de Software	Estimación de duración y esfuerzo de la fase de elaboración		
Marco de Desarrollo	Descripción de los pasos de RUP adaptados al proyecto específico.		

Fase de Inicio. Cuántas interaciones

Normalmente en RUP Agil, esta fase puede desarrollarse en una iteración

Ingeniería de Software I U

Fase de Elaboración

- En la elaboración se realiza una investigación más seria, se implementa la arquitectura núcleo, se aclaran la mayoría de los requerimientos.
- La elaboración generalmente aborda de dos a tres iteraciones.
- En la iteración 1 se hace hincapié en la asignación de responsabilidades a los objetos.
- No es una fase de diseño ni donde se desarrollan los modelos de manera completa.
- No se desarrollan prototipos si no que se genera código y diseños de calidad

Fase de Elaboración

Artefacto	Comentario
Modelo del Dominio	Es una visualización de los conceptos del dominio: se muestra con un diagrama de clases del dominio.
Modelo de Diseño	Conjunto de diagramas que describen el diseño lógico: de Clases software, de Interacciones, de paquetes, etc.
Documento de la arquitectura de Software	Resume cuestiones claves arquitecturales y cómo se resuelven en el diseño.
Modelo de Datos	Esquemas de Bases de datos y estrategias ORM
Modelo de Pruebas	Descripción de lo que se probará y cómo
Modelo de Implementación	Implementación real: Código fuente, ejecutables, bases de datos, etc.
Prototipo UI	Descripción de la Interfaz de usuario, caminos de navegación, etc.

Muestra de Artefactos de Elaboración excluyendo los de la Fase de Inicio

Ingeniería de Software I, 2020

Ejemplo de avance de un Modelo en c/ fase

Estado de aspectos de los Casos de Uso al finalizar cada fase

	Modelo de Negocio Terminado	Casos de Uso Identificados	Casos de Uso Descritos	Casos de Uso Analizados	Casos de Uso Diseñados, Implementados y Probados
Fase de Concepción	50% - 70%	50%	10%	5%	Muy poco, puede que sólo algo relativo a un prototipo para probar conceptos
Fase de Elaboración	Casi el 100%	80% o más	40% - 80%	20% -40%	Menos del 10%
Fase de Construcción	100%	100%	100%	100%	100%
Fase de Transición					

The Unified Software Development Process. I. Jacobson, G. Booch y J. Rumbaugh. página 358. Addison-Wesley, 1999.

Bibliografía

- El Proceso Unificado de Desarrollo de Software. Jacobson, Booch, Rumbaugh. Addison Wesley, 2000
- Applying UML and Patterns 3^a ed. Larman. Addison Wesley, 2004
- The Rational Unified Process More Easy. Kroll, Kruchten, Booch.
 2004
- The Rational Unified Process. An Introduction. Kruchten. Ed. Addison Wesley, 2003