

Práctico de Arquitectura Backend

Jorge Villalobos Gutiérrez twitter: @jorge_vgut youtube.com/latincoder

A quién va dirigido este curso

Personas interesadas en:

- → Desarrollo y arquitectura de software en backend.
- → Entender cómo funciona un sistema distribuido en backend.
- → Aprendizaje a través de la práctica.

Tomando como base un modelo cliente- servidor. Se suele usar el término "backend" para referirse al software ejecutado en el servidor.

Una aplicación podría ser únicamente la "entrada" al Backend

El Backend de un sistema puede expandirse mucho más allá de una arquitectura cliente-servidor.

Sistemas distribuidos

De monolítico a distribuido

- → Sistema Monolítico Es un sistema conformado por una sola "pieza".
- → Sistema Distribuido Compuesto de múltiples componentes que se comunican entre sí usando redes.

Ejemplo sistema monolítico

Un único servidor que hospeda uno o más sitios web con LAMP stack.

Significado de "Distribuido" en la práctica

Aunque sabemos que es un sistema conformado por muchos componentes conectados por medio de redes, puede manifestarse en diferentes escalas e implementar múltiples patrones de arquitectura.

Ejemplo del backend de un sistema distribuido

Elementos en los sistemas distribuidos

Elementos que podemos encontrar

- → Load Balancers
- → Máquinas Virtuales
- → Bases de Datos (Relacionales y No Relacionales)
- → Servicios de Colas (ej. SQS)
- → Servicios de Storage (ej. S3)
- → Servicios Publisher-Subscriber (ej. SNS)
- → Pipelines
- \rightarrow etc.

66

¿Hasta dónde puede llegar o crecer un sistema distribuido?

Backend Sistema 2

Cómo se conecta todo en el Backend

¿Cómo se conecta todo en el backend?

El backend de un sistema puede estar conformado por múltiples componentes para su funcionamiento.

Sin embargo, independientemente de la implementación, generalmente debe exponer una API (Interfaz de Programación de Aplicaciones).

Comprendiendo la API

Cómo está implementado el sistema

Lo que hace el sistema

- → Registrar usuario (POST)
- → Obtener Usuario (GET)
- → Actualizar Usuario (PUT/PATCH)
- → Comprar Producto (POST)
- → Reembolsar Producto (POST)

Recap y objetivo del curso

Recordemos

- → Diferencias entre Frontend y Backend
- → Sistemas Monolíticos
- → Sistemas Distribuidos
- → Elementos que encontramos en estos sistemas
- → Qué es un API

Proyecto del curso

Dados ciertos requerimientos de negocio, diseñar e implementar un sistema sobre el que ejecutaremos una suite de tests confirmando el correcto funcionamiento por medio de su API.

Referencias

→ Artículos:

<u>Pattern: Monolithic Architecture</u> (StackOverflow)<u>what-is-a-lamp-stack</u>

→ WikiPedia
Distributed Computing

Arquitectura y planeación

Definición de requerimientos de negocio

¿Qué es un documento de diseño?

Elementos de un documento de diseño

Puede incluir pero no se limita a:

- → Objetivo (problema a resolver)
- → Alcance y expectativas
- → Solución propuesta y alternativa
- → Casos de Uso a soportar
- → Componentes de la Arquitectura
- → Límites (Escalabilidad, trade-offs)
- → Costos

Elaboración de un documento de diseño

Revisión de documento de diseño

Elaboración de la arquitectura del sistema

Plan de integración continua

Diseño de bajo nivel, planes de prueba e integración continua

Diseño de bajo nivel, planes de prueba e integración continua

Definiendo el "Code Complete"

Recapitulación del módulo y consejos

Desarrollo e implementación

Práctica: Diseño de una "Entidad"

Práctica: Implementación de una "Entidad"

Práctica: Usando "TDD"

Pasos para completar el proyecto

Challenge: Servicio de Lectura

Challenge: Servicio de Autenticación

Challenge: Escalabilidad Throttling y RetryPolicies

Pasos para completar el proyecto

Conclusiones