BCC760 Turma 6	Nome Completo:	
2023/1		
Estudo dirigido II		
xx		
Limite de Tempo: xx	Matrícula:	
•		

Este exercício contém 3 páginas (incluindo esta capa) e 7 questões. Confira se há páginas faltando. Para entrega, por favor, siga cuidadosamente os procedimentos determinados no documento instruções para a entrega das atividades avaliativas, disponível no Moodle Presencial.

Você deve demonstrar o seu raciocínio em cada problema deste teste. Utilize as seguintes regras:

- Retenha os cálculos em 4 casas decimais caso aproximações sejam necessárias.
- Organize sua resposta de maneira razoavelmente clara e coerente no espaço reservado.
- Respostas misteriosas não receberão crédito total. Uma resposta correta sem cálculos que a suporte, explicação, ou desenvolvimento algébrico não receberão crédito. Uma resposta incorreta apoiada por cálculos substancialmente corretos e explicações pode receber crédito parcial.
- Nota do estudo: A nota do estudo dirigido será dada pelo mínimo entre 10 e a soma da pontuação dos exercícios deste estudo (notaFinal = min{10, notaEstudoDirido}).

Problema	Pontos	Nota Exercícios
1	2	
2	2	
3	6	
4	2	
5	2	
6	3	
7	4	
Total:	21	

- 1. 2 pontos Descreva casos onde é necessário o uso de métodos numéricos para obter aproximações para o valor da integral definida.
- 2. 2 pontos Apresente a regra dos trapézios simples a partir da fórmula de quadratura, dada por

$$I = h \int_0^n P(z)dz,$$

onde n=1.

3. Suponha M=U/10000, onde U são os quatro últimos dígitos da sua matrícula. Exemplo: Para a matrícula 2020.1.1235, temos U=1235 e M=0,1235.

Sendo f(x) uma função conhecida nos pontos a seguir, estime o valor da integral de f(x) no intervalo [1;5]. Apresente os cálculos ou justifique caso não seja possível realizar a aplicação.

$x \mid 1$	1,5	2	2,5	3	3,5	4	4,5
$f(x) \mid 0$	(1+M)	3	3,75	4	3,75	3	1,75

(a) $1\frac{1}{2}$ pontos Regra dos trapézios para h = 0, 5

$$I = \frac{h}{2}(y_0 + 2y_1 + 2y_2 + \ldots + 2y_{n-1} + y_n)$$

(b) $1\frac{1}{2}$ pontos Primeira regra de Simpson para h=0,5

$$I = \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$$

- (c) 1½ pontos Erro de truncamento para a regra dos trapézios.
- (d) $1\frac{1}{2}$ pontos Erro de truncamento para a primeira regra de Simpson
- 4. 2 pontos Descreva casos onde é necessário o uso de métodos numéricos para obter aproximações para os zeros de uma função polinomial.
- 5. Assumindo o valor de M da questão anterior, considere a seguinte equação:

$$x^3 + Mx^2 - 2x - 1$$

- (a) 1 ponto Determine o limitante superior e o limitante inferior das raízes.
- (b) 1 ponto Estime o valor da raiz pertencente ao intervalo [1; 2] utilizando o método da **falsa posição**. Use como critério de decisão $\epsilon = 0,001$ ou, no máximo, 5 iterações. **Apresente os cálculos** e formate o resultado conforme tabela abaixo.

$$k \quad a_k \quad b_k \quad x_k \quad f(x_k) \quad |f(x_k)| \quad f(a_k)f(x_k) < 0?$$

6. 3 pontos Aplique o método da Bisseção para resolver a equação

$$f(x) = x^3 + \cos x = 0$$

considerando uma precisão de $m \times 10^{-2}$. Projete a função para identificar o(s) intervalo(s) de zero(s) da função.

7. 4 pontos Utilize a primeira e a segunda regra de Simpson para solução do seguinte problema: Considere as margens de um rio e tome como referência de medida uma linha reta, conforme a Figura 1.

Figura 1: Apresentação gráfica das medidas extraídas ao longo do rio.

Foram medidas distâncias, em metros, entre essa linha reta e as duas margens, em alguns pontos, a partir do ponto tomado como origem. Tais dados foram registrados na Tabela 1. Determine o valor aproximado da área de superfície do rio no intervalo de [0;6].

Tabela 1: Medidas computadas no intervalo.

\overline{x}	0	1	2	3	4	5	6
$F_1(x_i) \\ F_2(x_i)$	40,0	40,84	40,91	40,14	39,24	39,04	39,72
	39,2	40,04	40,11	39,34	38,04	36,74	38,52