Simplifications of Context-Free Grammars

Nullable Variables $\lambda-\text{production}:\qquad A\to\lambda$ Nullable Variable: $A\Rightarrow\ldots\Rightarrow\lambda$

Removing Unit Productions Observation:

 $A \rightarrow A$

Example Grammar:
$$S \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow B$$

$$B \rightarrow A$$

$$B \rightarrow bb$$

$$S \rightarrow aA$$

$$A \rightarrow a$$

$$B \rightarrow A$$

$$B \rightarrow bb$$

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow A \mid B$$

$$B \rightarrow bb$$

$$S \rightarrow aA \mid B$$

$$A \rightarrow a$$

$$B \rightarrow A \mid B$$

$$B \rightarrow bb$$

Useless Productions $S \to aSb$ $S \to \lambda$ $S \to A$ $A \to aA$ Useless Production $S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow \ldots \Rightarrow aa \ldots aA \Rightarrow \ldots$

In general: contains only terminals if $S\Rightarrow ...\Rightarrow xAy\Rightarrow ...\Rightarrow w$ $w\in L(G)$ then variable A is useful otherwise, variable A is useless

Removing Useless Productions

Example Grammar:

$$S \to aS \mid A \mid C$$
$$A \to a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals

$$S \rightarrow aS \mid A \mid C$$
 Round 1: $\{A, B\}$

$$A \rightarrow a$$
 $S \rightarrow A$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$
 Round 2: $\{A, B, S\}$

Keep only the variables

that produce terminal symbols: $\{A, B, S\}$

(the rest variables are useless)

$$S \rightarrow aS \mid A \mid \mathscr{C}$$

$$A \rightarrow a$$

$$S \rightarrow aS \mid A$$

$$B \rightarrow aa$$

 $A \rightarrow a$ $B \rightarrow aa$

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

(B)

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

 $B \rightarrow aa$

Remove useless productions

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Examples:

$$S \to AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form $S \rightarrow AS$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

 $T_c \rightarrow c$

Convertion to Chomsky Normal Form

Example: $S \rightarrow ABa$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

$$S \rightarrow ABT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$A \rightarrow aab$$

$$B \rightarrow AC$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

 $S \rightarrow ABT_a$

 $T_c \rightarrow c$

$$T_a \to a$$

$$T_b \to b$$

Introduce intermediate variable: $V_{
m l}$

$$A \to T_a T_a T_b$$
$$B \to A T_c$$

$$T_a \rightarrow a$$

 $S \rightarrow AV_1$

 $V_1 \rightarrow BT_a$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

5

Introduce intermediate variable: V_2 $S \rightarrow AV_1$ $S \rightarrow AV_1$ $V_1 \rightarrow BT_a$ $V_1 \rightarrow BT_a$ $A \rightarrow T_a V_2$ $A \rightarrow T_a T_a T_b$ $V_2 \rightarrow T_a T_b$ $B \rightarrow AT_c$ $B \rightarrow AT_c$ $T_a \rightarrow a$ $T_a \rightarrow a$ $T_b \rightarrow b$ $T_b \rightarrow b$ $T_c \rightarrow c$ $T_c \rightarrow c$

Final grammar in C	homsky Normal Form:		
	$S \rightarrow AV_1$		
	$V_1 \rightarrow BT_a$		
	$A \rightarrow T_a V_2$		
Initial grammar	$V_2 \rightarrow T_a T_b$		
$S \rightarrow ABa$	$B \rightarrow AT_c$		
$A \rightarrow aab$	$T_a \rightarrow a$		
$B \to Ac$	$T_b \rightarrow b$		
	$T_c \rightarrow c$		

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

34

Then, for every symbol a:

Add production $T_a \rightarrow a$

In productions: replace $\,a\,$ with $\,T_a\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \rightarrow C_1 V_1$$

$$V_1 \rightarrow C_2 V_2$$

$$\cdots$$

$$V_{n-2} \rightarrow C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

38

Greinbach Normal Form

All productions have form:

$$A \to a \ V_1 V_2 \cdots V_k \qquad \qquad k \ge 0$$
 symbol variables

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$S \to abSb$$

$$S \to aa$$

$$S \to aa$$

Greinbach
Normal Form
Normal Form

40

Conversion to Greinbach Normal Form:

$$S \rightarrow abSb$$

$$S \rightarrow aa$$

$$S \rightarrow aT_bST_b$$

$$S \rightarrow aT_a$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$
Greinbach
Normal Form

Theorem: For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greinbach Normal Form

42

Observations

· Greinbach normal forms are very good for parsing

 \cdot It is hard to find the Greinbach normal form of any context-free grammar

The CYK Parser

The CYK Membership Algorithm

Input:

- \cdot Grammar G in Chomsky Normal Form
- String w

Output:

find if $w \in L(G)$

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$

 $A \rightarrow BB$

 $A \rightarrow a$

 $B \rightarrow AB$

 $B \rightarrow b$

• String w: aabbb

aabbb

α

aa bЬ

aab abb bbb

aabb abbb

aabbb

 $S \rightarrow AB$

 $A \rightarrow BB$

 $A \rightarrow a$

 $B \rightarrow AB$

 $B \rightarrow b$

Α Α b b В В В

aa αb bb bb

aab abb bbb

aabb abbb

aabbb

$$S oup AB$$
 $A oup BB$
 $A oup a$
 $B oup AB$
 $A oup a$
 $A oup A oup B ou$

$S \rightarrow AB$				_	_
$A \rightarrow BB$	α	α	b	b	Ь
	Α	Α	В	В	В
$A \rightarrow a$	aa	ab	bb	bb	
$B \rightarrow AB$		S,B	Α	Α	
$B \rightarrow b$	aab	abb	bbb		
	S,B	Α	S,B		
-	aabb	abbb			
	Α	S,B			
-	aabbb				
	(s)B				
					50

Therefore: $aabbb \in L(G)$

Time Complexity: $|w|^3$

Observation: The CYK algorithm can be

easily converted to a parser

(bottom up parser)

9